Data Article

Water vapor sorption and glass transition temperatures of phase-separated amorphous blends of hydrophobically-modified starch and sucrose

Job Ubbink a,*, Thomas Zwick b, David Hughes c, Gabriela Badolato Bönisch b

a Food Science and Nutrition Department, California Polytechnic State University, 1 Grand Ave., San Luis Obispo, CA 93407, USA
b DSM Nutritional Products Ltd, Research Center Formulation & Application, P.O. Box 2676, 4002 Basel, Switzerland
c H. H. Wills Physics Laboratory, University of Bristol, Tyndall Avenue, Bristol BS8 1TL, United Kingdom

A R T I C L E I N F O

Article history:
Received 14 June 2018
Received in revised form
17 June 2018
Accepted 24 August 2018

A B S T R A C T

This article contains water vapor sorption data obtained on amorphous blends of octenyl succinic acid-modified (denoted as hydrophobically modified starch; HMS) and sucrose (S) in the anhydrous weight HMS/S ratios between 100/0 and 27/75. The water vapor sorption data was obtained gravimetrically. The amorphous state of the blends was confirmed by X-ray diffraction. The glass transition temperatures of the phase-separated blends are listed; the blends show phase separation into a sucrose-rich phase and a HMS-rich phase, the composition of which varies with the blend ratios. The sucrose-rich phase is characterized by a glass transition temperature $T_{g,\text{lower}}$ that is 40 to 90 K lower than the glass transition temperature $T_{g,\text{upper}}$ of the HMS-rich phase.

© 2018 Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
Specifications table

Subject area	Physical chemistry
More specific subject area	Hydrocolloids, carbohydrate polymers, phase transitions
Type of data	Table (Water vapor sorption, glass transition data), figure (X-ray diffraction, Water vapor sorption isotherms)
How data was acquired	Water vapor sorption data (gravimetric analysis); X-ray diffraction data (Phillips X'pert Pro diffractometer (Panalytical)); Differential Scanning Calorimetry (Discovery DSC, TA Instruments)
Data format	Analyzed data
Experimental factors	Spray-dried blends of Octenyl succinic acid-modified starch and sucrose in the anhydrous weight ratios 100/0, 90/10, 80/20, 60/40, 45/55 and 25/75.
Experimental features	Spray-dried blends were water activity-equilibrated at water activities 0.11, 0.22, 0.33, 0.43, 0.54, 0.68 and 0.75 ($T = 298$ K). Water vapor sorption was determined gravimetrically until equilibrium was achieved (1200 hours). Water activity-equilibrated samples were analyzed for eventual crystallinity by X-ray diffraction and for the glass transitions of the phase separated blends (sucrose-rich and modified starch-rich phases) by Differential Scanning Calorimetry.
Data source location	NA
Data accessibility	NA
Related research article	D. J. Hughes, G. Badolato Bönisch, T. Zwick, C. Schäfer, C. Tedeschi, B. Leuenberger, F. Martini, G. Mencarini, M. Geppi, M. A. Alam, J. Ubbink, Phase separation in amorphous hydrophobically-modified starch - sucrose blends: Glass transition, matrix dynamics and phase behavior, Carbohydrate Polymers (in press)

Value of the data

- We present a broad set of water vapor data on blends of hydrophobically modified starch and sucrose with a systematic variation in composition. The water vapor data are obtained in the range between 0.11 and 0.75 at $T = 298$ K.
- Data on the glass transition temperatures of the phase-separated blends is valuable in the context of the understanding of the phase behavior of amorphous phase-separated systems.
- These data allow the exploration of the effect of composition on water vapor sorption behavior in the glass transition range.

1. Data

Spray-dried blends of hydrophobically-modified starch and sucrose were water activity-equilibrated at water activities 0.11, 0.22, 0.33, 0.43, 0.54, 0.68 and 0.75 ($T = 298$ K). Water vapor sorption was determined gravimetrically until equilibrium was achieved (1200 h); the data is reported in Table 1. Water activity-equilibrated samples were analyzed for eventual crystallinity by X-ray diffraction (Fig. 1) and for the glass transitions of the phase separated blends (sucrose-rich and modified starch-rich phases) by Differential Scanning Calorimetry (Tables 3 and 4).
The water vapor sorption data in Fig. 2 are fitted by the GAB equation (Fig. 2):

\[Q_{w} = \frac{K C W_{m} a_{w}}{(1 - K a_{w}) \cdot (1 - K a_{w} + K C a_{w})} \]

where \(K \), \(C \) and \(W_{m} \) are fitting coefficients [3].

2. Experimental design, materials, and method

HMS-S blends were prepared by spray drying aqueous dispersions with well-defined ratios of HMS and S [2]. The blends were then equilibrated at a range of water activities \((a_{w}) \) at \(T = 298 \) K in desiccators containing saturated salt solutions \((a_{w} \text{ (salt)}) = 0.11 \) (LiCl), 0.22 (CH₃COOK), 0.33 (MgCl₂), 0.43 (K₂CO₃), 0.54 (Mg(NO₃)₂), 0.75 (NaCl). The pure spray-dried HMS \((Q_{S} = 0.0) \) was also equilibrated at \(a_{w} = 0.68 \) (KI). The water activities are given by Greenspan [1]. Water sorption was followed gravimetrically for 1200 h. In this time, all samples reached their equilibrium water content. The water content of the blends was determined from the weight loss/gain upon water activity equilibration and the initial water content of the blends. These initial water contents were determined by dehydration in a laboratory oven for 27 h at 253 K at a pressure below 25 mbar and under a slight flow of dry nitrogen. Powder diffraction patterns were collected using a Philips X’pert Pro diffractometer (Panalytical) operating at 40 kV and 30 mA utilizing Cu Kα radiation \((\lambda = 0.154 \text{ nm}) \). Scans were performed at 298 K under local atmospheric humidity over the 2θ range 5–35° with a step size of 0.02° and a data acquisition time of 2 s at each step. Glass transition temperatures were determined from the 2nd heating ramp of experiments carried out by Differential Scanning Calorimetry (DSC) as described by [2]. The midpoint glass transitions were extracted from the thermograms by deconvolution assuming the presence of multiple glass transitions each characterized by a Gaussian line shape of the first derivative of the heat flow curve [2].
Table 3

Water content and parameters associated with the glass transition fitting, as described in Section 2.4 of [2], for water activity equilibrated HMS-S blends. Q’s is the weight fraction of sucrose in the HMS-S blends (on anhydrous basis), Qaw is the weight fraction of water in the matrices, \(\Delta C_{g,lower} \) and \(\Delta C_{g,upper} \) are the changes in heat capacity associated with the lower and upper glass transitions, \(T_{g,lower} \) and \(T_{g,upper} \) are the glass transition temperatures and of the sucrose-rich and the HMS-rich phases, respectively, and \(\Delta T_{g,lower} \) and \(\Delta T_{g,upper} \) are the widths of the two glass transitions.

Qw [dimensionless]	aw [dimensionless]	Qaw [dimensionless]	\(\Delta C_{g,lower} \) [J g\(^{-1}\) K\(^{-1}\)]	\(\Delta T_{g,lower} \) [K]	\(\Delta C_{g,upper} \) [J g\(^{-1}\) K\(^{-1}\)]	\(\Delta T_{g,upper} \) [K]
0	0.11	6	–	–	0.16 ± 0.01	405 ± 1
	0.22	7.7	–	–	0.16 ± 0.01	388 ± 1
	0.33	9.1	–	–	0.17 ± 0.01	377 ± 1
	0.43	10.4	–	–	0.17 ± 0.01	366 ± 1
	0.54	11.7	–	–	0.17 ± 0.01	357 ± 1
	0.68	14.1	–	–	0.19 ± 0.01	337 ± 1
	0.75	15.9	–	–	0.19 ± 0.01	325 ± 1
0.1	0.11	4.7	0.41 ± 0.04	330 ± 2	84 ± 6	0.16 ± 0.01
	0.22	6	0.44 ± 0.03	322 ± 2	80 ± 5	0.16 ± 0.01
	0.33	7.1	0.43 ± 0.03	312 ± 2	76 ± 5	0.19 ± 0.01
	0.43	8.3	0.42 ± 0.03	305 ± 2	70 ± 5	0.20 ± 0.02
	0.54	9.7	0.44 ± 0.03	295 ± 2	70 ± 4	0.22 ± 0.02
	0.75	15.1	0.54 ± 0.03	270 ± 1	69 ± 3	0.18 ± 0.01
0.2	0.11	3.3	0.51 ± 0.03	327 ± 1	65 ± 3	0.12 ± 0.02
	0.22	4.6	0.50 ± 0.03	313 ± 1	59 ± 3	0.17 ± 0.02
	0.33	5.7	0.50 ± 0.02	303 ± 1	54 ± 2	0.19 ± 0.02
	0.43	7.4	0.49 ± 0.01	291 ± 1	48 ± 1	0.19 ± 0.01
	0.54	9.2	0.51 ± 0.01	284 ± 1	47 ± 1	0.18 ± 0.01
	0.75	17	0.53 ± 0.01	245 ± 1	37 ± 1	0.21 ± 0.01
0.4	0.11	2.4	0.52 ± 0.01	320 ± 1	28 ± 1	0.11 ± 0.01
	0.22	3.9	0.55 ± 0.01	304 ± 1	25 ± 1	0.13 ± 0.01
	0.33	5.5	0.55 ± 0.01	290 ± 1	22 ± 1	0.16 ± 0.01
	0.43	7.9	0.81 ± 0.02	278 ± 1	17 ± 1	0.03 ± 0.01
	0.54	10.5	0.70 ± 0.04	262 ± 1	15 ± 1	0.06 ± 0.01
	0.75	19.6	0.85 ± 0.02	232 ± 1	15 ± 1	0.09 ± 0.01
0.55	0.11	2.3	0.58 ± 0.01	302 ± 1	16 ± 1	0.13 ± 0.01
	0.22	4.4	0.68 ± 0.01	286 ± 1	11 ± 1	0.13 ± 0.01
	0.33	6.4	0.72 ± 0.02	269 ± 1	11 ± 1	0.10 ± 0.01
	0.43	9.2	0.75 ± 0.02	259 ± 1	11 ± 1	0.12 ± 0.01
	0.54	12	0.81 ± 0.02	247 ± 1	11 ± 1	0.12 ± 0.01
	0.75	22.9	0.68 ± 0.03	216 ± 1	9 ± 1	0.09 ± 0.01
0.75	0.11	1.9	0.72 ± 0.02	301 ± 1	9 ± 1	0.09 ± 0.01
	0.22	4.2	0.72 ± 0.02	286 ± 1	8 ± 1	0.09 ± 0.01
	0.33	6.2	0.72 ± 0.03	273 ± 1	7 ± 1	0.09 ± 0.01
	0.43	7.6	0.85 ± 0.02	258 ± 1	9 ± 1	0.12 ± 0.01
	0.54	11.8	0.61 ± 0.07	246 ± 1	8 ± 1	0.09 ± 0.01
	0.75	24.2	0.80 ± 0.04	214 ± 1	7 ± 1	0.18 ± 0.01

\(^a\) Parameters of a third resolved glass transition in the Q’s = 0.2, aw = 0.75 HMS-S blend.
Table 4
Water activity and parameters associated with the glass transition fitting, as described in Section 2.4 of [2], for the oven-dried HMS-S blends. Q’s is the weight fraction of sucrose in the HMS-S blends (on anhydrous basis), a_w is the water activity of the matrices, $\Delta C_{p,\text{lower}}$ and $\Delta C_{p,\text{upper}}$ are the changes in heat capacity associated with the lower and upper glass transitions, $T_{g,\text{lower}}$ and $T_{g,\text{upper}}$ are the glass transition temperatures and of the sucrose-rich and the HMS-rich phases, respectively, and $\Delta T_{g,\text{lower}}$ and $\Delta T_{g,\text{upper}}$ are the widths of the two glass transitions.

$Q’S$ [dimensionless]	a_w [dimensionless]	$\Delta C_{p,\text{lower}}$ [J g$^{-1}$ K$^{-1}$]	$T_{g,\text{lower}}$ [K]	$\Delta T_{g,\text{lower}}$	$\Delta C_{p,\text{upper}}$ [J g$^{-1}$ K$^{-1}$]	$T_{g,\text{upper}}$ [K]	$\Delta T_{g,\text{upper}}$
0	0.014	–	–	–	0.16 ± 0.01	449 ± 4	15 ± 1
0.1	0.01	0.31 ± 0.05	390 ± 7	140 ± 20	0.08 ± 0.01	430 ± 1	15 ± 1
0.2	0.013	0.40 ± 0.02	361 ± 1	74 ± 3	0.09 ± 0.01	396 ± 1	16 ± 1
0.4	0.031	0.46 ± 0.01	331 ± 1	33 ± 1	0.08 ± 0.01	357 ± 1	19 ± 1
0.55	0.112	0.53 ± 0.01	310 ± 1	20 ± 1	0.11 ± 0.01	342 ± 8	27 ± 3
0.75	0.163	0.60 ± 0.01	301 ± 1	13 ± 1	0.07 ± 0.01	350 ± 1	20 ± 2

Fig. 1. Normalized powder X-ray diffraction profiles of spray-dried HMS/S blends equilibrated at selected water activities. Q’s is the weight fraction of sucrose in the HMS/S blends on anhydrous basis.
Acknowledgements

This work was in part funded by DSM Nutritional Products, Kaiseraugst, Switzerland.

Transparency document. Supporting information

Transparency data associated with this article can be found in the online version at https://doi.org/10.1016/j.dib.2018.08.105.

References

[1] L. Greenspan, Humidity fixed points of binary saturated aqueous solutions, J. Res. Natl. Bur. Stand., A. Phys. Chem. A 81 (1977) 89–96.
[2] D.J. Hughes, G. Badolato Bönisch, T. Zwick, Ch. Schäfer, C. Tedeschi, B. Leuenberger, F. Martini, G. Mencarini, M. Geppi, M. A. Alam, J. Ubbink, Phase separation in amorphous hydrophobically-modified starch – sucrose blends: Glass transition, matrix dynamics and phase behavior, Carbohydr. Polym. (2018) (In press).
[3] J. Ubbink, M.I. Giardiello, H.J. Limbach, Sorption of water by bidisperse mixtures of carbohydrates in glassy and rubbery states, Biomacromolecules 8 (2007) 2862–2873.