The role of carotenoids in enhancing the health of aquatic organisms

Jean Mary Joy, Aneykutty Joseph and R Anandan

DOI: https://doi.org/10.22271/fish.2021.v9.i2d.2459

Abstract
Carotenoids constitute a class of pigments derived from photosynthetic plants, algae, bacteria and some fungi. Carotenoids act as potent antioxidants scavenging reactive oxygen species. They hold a vital role in the antioxidant defense system of humans. Several studies have shown carotenoid can increase the growth overall well being of aquatic animals. This review examined the effect of carotenoid in aquatic organisms on growth, survival, immunity, pigmentation and reproductive performance. The review recommends the use of carotenoid as feed additive for enhance the overall improvement of the aquatic organisms.

Keywords: carotenoids, growth, survival, pigmentation, immunity, reproductive performance

1. Introduction
Carotenoids are group of natural pigments contributes many of the hue in nature. The basic structure of carotenoid is a symmetrical tetraterpene skeleton formed by the conjugation of two C20 units, which could be deemed the backbone of the molecule. Based on their composition, carotenoids are subdivided into two groups. Carotenoid which comprises solely carbon and hydrogen atoms are collectively assigned as carotenes. The majority of natural carotenoids contain at least one oxygen functional group, referred to as xanthophylls. Only plants, bacteria, fungi and algae can synthesize carotenoids; animals cannot biosynthesize them thus, they must be obtained from the diet [1]. Carotenoids play a critical role in the photosynthetic process and they carry out a protective function against damage by light and oxygen. Antioxidants, immunoregulators, pro-vitamin A is the distinct roles of carotenoids. Furthermore, the mobilization of the pigment from muscle to ovaries implies a purpose in reproduction [2]. It has similarly mentioned that fishes with a large content of carotenoids are further resistant to microbial diseases [1]. The long conjugated double-bond system is the major feature of carotenoid which make them able to absorb light of wavelength 400-500nm from electromagnetic spectrum [3]. The chemical structure of the carotenoids plays an important role in their oxygen scavenge properties [4].

2. Application of carotenoids in aquaculture
Aquaculture is the farming of aquatic organisms, including fish, molluscs, crustaceans and aquatic plants. Farming intends some sort of intrusion in the rearing method to improve production. The feed choice and feed management practices have a significant impact on the economic performance of a production system [5]. Several feed additives have been incorporated in shrimp feed to generate resistance against various stressors and thereby increase aquaculture production. Carotenoid is one such compound that plays a significant function in industrial aquaculture. Carotenoids are chiefly employed in diets of crustaceans, salmonids and other farmed and ornamental fishes being pigment sources for desirable coloration. Besides, carotenoids will serve as antioxidant that helps to mitigate the oxidative stress.

2.1 Growth performance and survival
Various studies are reported the influence of carotenoid pigment on the development and
survival of the aquatic organisms (Table: 1). The carotenoid source of these studies varies from synthetic carotenoids [6, 7, 8, 9, 10] to natural carotenoids [11, 12]. Chien [13] reported a 77% increase in survival rate for shrimp fed 100mg/kg astaxanthin supplemented diet in contradiction to shrimp enriched with β-carotene which equated to 40%. An 88.2% increased survival was observed in L. vannamei fed 350 ppm carotenoids enriched diet (Tagetes erecta) for 5 weeks rearing contrasted to 76.5% in the control [14]. Petit [15] noticed that feeding astaxanthin-based diet at 60 mg kg\(^{-1}\) over 8 weeks showed notable decrease in mortality of adult shrimp (Penaeus japonicas) than those individuals receiving carotenoid-free diets. Yamada [9] proclaimed an increased survival rate of 91% for P. japonicas supplemented with 100 ppm carotenoid contrasted to 57% in the control group. The authors further elucidated that astaxanthin is more effective than β-carotene or canthaxanthin as a pigment source in P. japonicus. P. indicus larvae exhibited markedly greater survival rate (88%) from PZ1 stage until metamorphosis when fed the astaxanthin-enriched nematodes Panagrellus redivivus (1.43 μg astaxanthin g\(^{-1}\) dry weight of nematode), while neither larval growth nor development was affected [18]. Survival (100%) was greater in shrimp (L. vannamei) fed paprika (Capsicum annuum) than in those fed basal diets (80.5%) [17]. Hyphessobrycon callistus was supplied with nine pigmented diets containing AX-astaxanthin, BC- β-carotene and MX-1:1 mixture of AX and BC at different concentrations (10, 20, and 40 mg/kg). No differences in growth and survival of the fish among treatments were found after 8 weeks rearing [18].

Table 1: Effect of carotenoids on various parameters to aquatic organisms

Carotenoid	Source	Organism studied	Effect	Reference
Cantaxanthin/ astaxanthin	Synthetic	*Salmo salar*	Astaxanthin and cantaxanthin supplemented diet promoted growth rate during the early start-feeding periods. No significant effect on survival and pigmentation to the eyed, hatching, and alevin stage.	[6, 5]
Astaxanthin β-carotene	Synthetic	*Penaeus japonicas*	No notable variations in daily feed intake, percent gain or feed efficiency on feeding various pigments diets.	[7]
Astaxanthin β-carotene algal meal	Synthetic	*Dunaliella salina*	The average weight gain was higher in algal meal fed group. Prawns fed the astaxanthin diet had a higher rate of survival than those supplemented with β-carotene or algal meal diets.	[19]
Cantaxanthin astaxanthin	Synthetic	*Penaeus japonicus*	The shrimp fed canthaxanthin had a growth rate higher that of individuals receiving the other three diets and least growth rate for standard diet.	[8]
Astaxanthin	Synthetic	*Salmo salar L.* (First-feeding fry)	The conclusions recommend a minimum of 3.1 mg astaxanthin/kg diet to achieve maximum growth and supreme endurance throughout the start-feeding period.	[20]
Astaxanthin	Synthetic	*Salmo salar L.* (Juveniles)	The mean weight of the organism supplemented with astaxanthin was significantly higher than those fed the unsupplemented diet. The highest survival was achieved by 125-300 mg Dunaliella extract/kg fed group related to the control.	[21]
Astaxanthin	Synthetic	*Penaeus monodon*	Increased survival rates, higher total antioxidant status and improved hepatopancreatic function were shown by dietary astaxanthin fed group under ammonia stress.	[22]
β-carotene	Synthetic	*Penaeus monodon*	Shrimp fed 125 - 300 mg of the Dunaliella extract/kg diet for 8 weeks showed higher weight gain and survival related to the control. Survival of all groups fed β-carotene supplemented diet were significantly higher than control groups during 9 days of low dissolved oxygen stress.	[23]
Astaxanthin	Synthetic	*Litopenaeus vannamei*	Supplemented astaxanthin at 90mg kg\(^{-1}\) improved growth, survival and moult frequency in shrimp. Under salinity stress, shrimp fed astaxanthin supplemented diet (80 mg/kg) had significantly greater concentration of glucose, haemocyanin, lactate in haemolymph and total haemocyte count.	[9]
Natural astaxanthin	Synthetic	*Litopenaeus vannamei*	Postlarvae given Natural astaxanthin diet had significantly higher growth performance and astaxanthin content. The mRNA expression levels for the antioxidant enzymes (cMnSOD and GPx) also increased for Natural astaxanthin (90 ppm) fed shrimp under the stress of Vibrio parahaemolyticus infection.	[24]
Synthetic astaxanthin	Synthetic	*Litopenaeus vannamei*	Astaxanthin diet fed group shows better growth performance, with the best performance exhibited by in the 400 mg kg\(^{-1}\) diet astaxanthin supplemented group.	[10]
Synthetic astaxanthin	Synthetic	*Marsupenaeus japonicus*	No notable variations among treatments concerning the total growth parameters (p > 0.05). However, the Pollen extract with carotenoid (50mg kg\(^{-1}\)) diet rendered a positive effect on growth parameters.	[11]
Astaxanthin	Synthetic	*Litopenaeus vannamei*	Specific growth rate (SGR) and weight gain were significantly greater in treatment groups compared to control group. Optimal dose of dietary astaxanthin activated metabolic pathway to enhance growth by favoring the expression of many vital genes.	[12]
2.2 Immunity
An early research revealed that dietary intake between 230 and 810 mg astaxanthin kg⁻¹ diet for 4 weeks improved the immunity of postlarvae giant tiger prawn (*P. monodon*) against salinity shock [20]. Another study pointed out that astaxanthin (200 mg kg⁻¹ diet) was effective in increasing the endurance of *P. monodon* postlarvae to low salinity stress [23]. Additionally, Chien [21] noticed that dietary inclusion of astaxanthin (360 mg kg⁻¹ feed) for 1 week appeared to induce optimal tolerance in the larval stages of *P. monodon* upon exposure to 4 h of low dissolved oxygen level (<1 mg L⁻¹). The observations made when different stress factors were tested on *P. monodon* juveniles that received astaxanthin (80 mg kg⁻¹ diet) over 8 weeks also exhibited enhanced antioxidant defense capability, better hepatopancreatic function and subsequent improvement recovery against osmotic and thermal stresses [28]. Similarly, *P. monodon* juveniles fed diet supplemented with 71.5 mg astaxanthin kg⁻¹ feed displayed a sounding antioxidant status and elevated resistance to ammonia stress [24]. Supamattaya [30] found that *P. monodon* supplemented 200–300 mg Dunaliella extract kg⁻¹ diet were more endurable to hypoxic conditions (0.8–1 mg L⁻¹) along with significantly greater resistance to white spot syndrome virus (WSSV), while measures of phenoloxidase assay and total haemocyte count were negatively correlated.

Wang [18] studied antioxidant activities of *H. callistus* modified with dietary carotenoid type viz; astaxanthin, β-carotene and combination of both (1:1) at 10, 20, and 40 mg/kg concentrations. Dietary astaxanthin had more numbers of negative correlations with antioxidant parameters in fish than β-carotene. Pham [24] authenticated lesser liver and plasma SOD activities in *Paralichthys olivaceus* supplemented with carotenoid than the control group.

2.3 Pigmentation
Menasveta [26] reported a 318% increase in carotenoids from the tissue of carotenoid fed group than those fed the commercial diet without carotenoid had a carotenoid increase of only 14%. A noticeable increment of carotenoid content in the exoskeleton was reported when animals were provided with *Spirulina*-supplemented diets [33, 34, 35]. Arredondo-Figueroa [14] unveiled that pigmentation of *L. vannamei* was influenced by carotenoid supplemented diet. Abdomen coloration produced by 200 ppm carophyll and unesterified marigold diet is insignificant. Red porgy (*P. grapsus*) were fed with 100 ppm astaxanthin obtained 27.7 µg g⁻¹ carotenoid from skin, while fish fed non-carotenoid supplemented diet (control) had 4.33 µg g⁻¹ skin [16]. Nine pigmented diets includes carotenoid diet (CD) and its combination (AX-astaxanthin, BC- β-carotene, MX-1:1 combination of AX and BC) at three concentrations (10, 20, and 40 mg/kg) were used for feeding *H. callistus*. Body AX and BC content increased with increasing dietary CD concentration [18]. Pham [24] reported that skin coloration and total carotenoid content of olive flounder (juvenile) is increased by dietary supplementation of carotenoid (paprika, *H. pluvialis* extract and raw *H. pluvialis*). Ruangsomboon [37] discovered that 30% inclusion of *Arthrospira platensis* in feed as carotenoid supplement improved fish color in Red tilapia (*Oreochromis sp.*).

2.4 Reproductive performance
Pangantihon- Kuhlmann [38] provided valuable insight on the improved fecundity, ovarian development and spawning of *P. monodon* broodstock when fed with astaxanthin (100 mg kg⁻¹ diet) for 61 days. In another related study, *P. monodon* broodstock performance assessed in terms of number of spermatooza in male shrimp and amount of eggs in gravid female was greatly enhanced when fed with 500 mg astaxanthin kg⁻¹ diet [39]. Dietary intake of 150 mg astaxanthin kg⁻¹ feed (compared to 50 and 100 mg levels) for 150 days significantly promoted the spermocrit value, sperm concentration, motility, osmolality and fertilization rate of goldfish *Carassius auratus* [42]. In rainbow trout *O. mykiss*, supplementation of astaxanthin are deemed necessary for optimum reproduction [41], Scabini [42] reported the influence of supplemented carotenoids from paprika oleoresin on gilthead seabream broodstock performance and seems a significant improvement in broodstock performance via egg viability, hatching rates and fecundity.

3. Conclusion
Investigations on supplementation of carotenoids to the diet of aquatic organisms came out with promising results that the dietary inclusion of carotenoids would enhance the growth and general performance of the animal simultaneously with marked reduction in their mortality. In addition, a large amount of empirical data suggests that sufficient carotenoids supply is essential for the wellbeing of the animal.

5. Acknowledgement
The authors are thankful to Department of Marine Biology, Microbiology and Biochemistry, School of Marine Sciences, CUSAT for providing the necessary research facilities. The first author is thankful to Kerala State Council for Science, Technology and Environment (KSCSTE).

6. References
1. Schiedt K. Absorption and metabolism of carotenoids in birds, fish and crustaceans, in: Britton G, Liaaen-Jensen S, Pfander H. (Eds.), Carotenoids Biosynthesis and Metabolism. Birkhäuser, Switzerland 1998, 285-358.
2. Shahidi F, Brown JA. Carotenoid pigments in seafoods and aquaculture. Critical Reviews in Food Science 1998;38(1):1-67.
3. Goodwin TW. Biosynthesis of carotenoids, in: Goodwin, T.W. (Eds.), The biochemistry of the carotenoids. Springer, Dordrecht 1980, 33-76.
4. Britton G. Structure and properties of carotenoids in relation to function. Federation of American Societies for Experimental Biology 1995;9(15):1551-1558.
5. Shipton TA, Hasan MR. An overview of the current status of feed management practices. FAO Fisheries and Aquaculture Technical Paper 2013;583:3-20.
6. Torrissen OJ. Pigmentation of salmonids-effect of carotenoids in eggs and start-feeding diet on survival and growth rate. Aquaculture 1984;43(1-3):185-193.
7. Yamada S, Tanaka Y, Sameshima M, Ito Y. Pigmentation of prawn (*Penaeus japonicus*) with carotenoids: I. Effect of dietary astaxanthin, β-carotene and canthaxanthin on pigmentation. Aquaculture. 1990;87(3, 4):323-330.
8. Negre-Sadargues G, Castillo R, Petit H, Sancé S, Martinez RG, Milicua JCG et al. Utilization of synthetic carotenoids by the prawn *Penaeus japonicus* reared under laboratory conditions. Aquaculture 1993;110(2):151-159.
9. Flores M, Díaz F, Medina R, Re AD, Licea A.
Physiological, metabolic and haematological responses in white shrimp Litopenaeus vannamei (Boone) juveniles fed diets supplemented with astaxanthin acclimated to low-salinity water. Aquaculture research 2007;38(7):740-747.

10. Wang W, Ishikawa M, Koshio S, Yokoyama S, Hossain MS, Moss AS. Effects of dietary astaxanthin supplementation on juvenile kuruma shrimp, Marsupenaeus japonicus. Aquaculture 2018;491:197-204.

11. Sánchez EG, Fuenmayor CA, Mejía SMV, Díaz-Moreno C, Mehecha HS. Effect of bee pollen extract as a source of natural carotenoids on the growth performance and pigmentation of rainbow trout (Oncorhynchus mykiss). Aquaculture 2020;514:734490.

12. Wang T, Shan HW, Geng ZX, Yu P, Ma S. Dietary supplementation with freeze-dried Amphitoe sp. enhances the ammonia-N tolerance of Litopenaeus vannamei by reducing oxidative stress and endoplasmic reticulum stress and regulating lipid metabolism. Aquaculture Reports 2020;16:100264.

13. Chien Y. Biological effects of astaxanthin in shrimp, a review. In: The 3rd annual Roche aquaculture centre conference on nutrition and disease 1996, 61-88.

14. Arredondo-Figueroa JL, Vernon-Carter EJ, Ponce-Palafot JT. Dose response to unesterified Aztec marigold (Tagetes erecta) pigments of Pacific white shrimp (Litopenaeus vannamei) fed various dietary concentrations of carotenoids. Crustacean Issues 1999;12:481-487.

15. Petit H, Nègre-Sadargues G, Castillo R, Trilles JP. The effects of dietary astaxanthin on growth and molting cycle of postlarval stages of the prawn, Penaeus japonicus (Crustacea, Decapoda). Comparative Biochemistry and Physiology Part A: Physiology. 1997;117(4):539-544.

16. Kumlu M, Fletcher DJ, Fisher CM. Larval pigmentation, survival and growth of Penaeus indicus fed the nematode Panagrellus redivivus enriched with astaxanthin and various lipids. Aquaculture Nutrition 1998;4(3):193-200.

17. Arredondo-Figueroa JL, Pedroza-Islas R, Ponce-Palafot JT, Vernon-Carter EJ. Pigmentation of white shrimp (Litopenaeus vannamei, BOO NE 1931) with esterified and saponified carotenoids from red chile (Capsicum annuum) in comparison to astaxanthin. Revista Mexicana de Ingeniería Química 2004;2:101-108.

18. Wang YJ, Chien YH, Pan CH. Effects of dietary supplementation of carotenoids on survival, growth, pigmentation, and antioxidant capacity of characins, Hyphessobrycon callistus. Aquaculture 2006;261(2):641-648.

19. Chien YH, Jeng SC. Pigmentation of kuruma prawn, Penaeus japonicus Bate, by various pigment sources and levels and feeding regimes. Aquaculture 1992;102(4):333-346.

20. Christiansen R, Lie Ø, Torrissen OJ. Effect of astaxanthin and vitamin A on growth and survival during first feeding of Atlantic salmon, Salmo salar L. Aquaculture Research 1994;25(9):903-914.

21. Christiansen R, Lie Ø, Torrissen OJ. Growth and survival of Atlantic salmon, Salmo salar L., fed different dietary levels of astaxanthin. First-feeding fry. Aquaculture Nutrition 1995;1(3):189-198.

22. Christiansen R, Torrissen OJ. Growth and survival of Atlantic salmon, Salmo salar L. fed different dietary levels of astaxanthin. Juveniles. Aquaculture Nutrition. 1996;2(1):55-62.

23. Darachai J, Piyatiratitivarakul S, Kittakoop P, Nitithamyoung C, Menasveta P. Effects of astaxanthin on larval growth and survival of the giant tiger prawn, Penaeus monodon. Advances in Shrimp Biotechnology. 1998, 117-21.

24. Pham MA, Byun HG, Kim KD, Lee SM. Effects of dietary carotenoid source and level on growth, skin pigmentation, antioxidant activity and chemical composition of juvenile olive flounder Paralichthys olivaceus. Aquaculture 2014;431:65-72.

25. Liu XH, Wang BJ, Li YF, Wang L, Liu JG. Effects of dietary botanical and synthetic astaxanthin on E/Z and R/S isomer composition, growth performance, and antioxidant capacity of white shrimp, Litopenaeus vannamei, in the nursery phase [For this article an Erratum has been published]. Invertebrate Survival Journal 2018;15(1):131-140.

26. Merchant G, Kontara E, Lavens P, Robles R, Kurmaly K, Sorgeloos P. Effect of vitamin C and astaxanthin on stress and disease resistance of postlarval tiger shrimp, Penaeus monodon (Fabricius). Aquaculture Research. 1998;29(8):579-585.

27. Chien YH, Chen IM, Pan CH, Kurmaly K. Oxygen depletion stress on mortality and lethal course of juvenile tiger prawn Penaeus monodon fed high level of dietary astaxanthin. Journal of the Fisheries Society of Taiwan. 1999;26(2):85-93.

28. Chien YH, Pan CH, Hunter B. The resistance to physical stress of Penaeus monodon juveniles fed diets supplemented with astaxanthin. Aquaculture. 2003;216(1-4):177-191.

29. Pan CH, Chien YH, Hunter B. The resistance to ammonia stress of Penaeus monodon Fabricius juvenile fed diets supplemented with astaxanthin. Journal of Experimental Marine Biology and Ecology 2003;297(1):107-118.

30. Supamattaya K, Kuiriatnikom S, Boonyaratpalin M, Borowitzka L. Effect of a Dunaliella extract on growth performance, health condition, immune response and disease resistance in black tiger shrimp (Penaeus monodon). Aquaculture 2005;248(1-4):207-216.

31. Pham MA, Byun HG, Kim KD, Lee SM. Effects of dietary carotenoid source and level on growth, skin pigmentation, antioxidant activity and chemical composition of juvenile olive flounder Paralichthys olivaceus. Aquaculture 2014;431:65-72.

32. Menasveta P, Worawatmanatekul W, Latscha T, Clark JS. Correction of black tiger prawn (Penaeus monodon Fabricius) coloration by astaxanthin. Aquacultural Engineering 1993;12(4):203-213.

33. Nakagawa H, Gómez-Díaz G. Usefulness of Spirulina sp. meal as feed additive for giant freshwater prawn, Macrobrachium rosenbergii. Aquaculture Science. 1995;43(4):521-526.

34. Liao WL, Nur-E-Bohnan SA, Okada S, Matsui T, Yamaguchi K. Pigmentation of Cultured Black Tiger Prawn by Feeding with a Spirulina-Supplemented Diet. Nippon Suisan Gakkaishi 1993;59(1):165-169.

35. Lorenz T. A review of the carotenoid, Astaxanthin, as a pigment and vitamin source for cultured Penaeus prawn. Naturose Technical Bulletin 1998;51:1-7.
36. Chatzifotis S, Pavlidis M, Jimeno CD, Vardanis G, Sterioti A, Divanach P. The effect of different carotenoid sources on skin coloration of cultured red porgy (Pagrus pagrus). Aquaculture Research 2005;36(15):1517-1525.

37. Ruangsomboon S, Choochote S, Taveekijakarn P. Growth performance and nutritional composition of red tilapia (Oreochromis niloticus x O. mossambicus) fed diets containing raw Spirulina platensis. In The International Conference on Sustainable Community Development 2010 21-23.

38. Pangantithon-Kühlmann MP, Millamena O, Chern Y. Effect of dietary astaxanthin and vitamin A on the reproductive performance of Penaeus monodon broodstock. Aquatic Living Resources 1998;11(6):403-409.

39. Paibulkichakul C, Piyatiratitivorakul S, Sorgeloos P, Menasveta P. Improved maturation of pond-reared, black tiger shrimp (Penaeus monodon) using fish oil and astaxanthin feed supplements. Aquaculture 2008;282(1-4): 83-89.

40. Tizkar B, Kazemi R, Alipour A, Seidavi A, Naseralavi G, Ponce-Palafox JT. Effects of dietary supplementation with astaxanthin and β-carotene on the semen quality of goldfish (Carassius auratus). Theriogenology. 2015;84(7):1111-1117.

41. Ahmadi MR, Bazyar AA, Safi S, Ytrestøy T, Bjerkeng B. Effects of dietary astaxanthin supplementation on reproductive characteristics of rainbow trout (Oncorhynchus mykiss). Journal of Applied Ichthyology. 2006;22(5):388-394.

42. Scabini V, Fernández-Palacios H, Robaina L, Kalinowski T, Izquierdo MS. Reproductive performance of gilthead seabream (Sparus aurata L., 1758) fed two combined levels of carotenoids from paprika oleoresin and essential fatty acids. Aquaculture Nutrition 2011;17(3):304-312.