Development and validation of a clinical predictive model for severe and critical pediatric COVID-19 infection

Judith Ju Ming Wong, Qalab Abbas, Felix Liauw, Ririe Fachrina Malisie, Chin Seng Gan, Muhammad Abid, Pustika Efar, Josephine Gloriana, Soo Lin Chuah, Rehena Sultana, Koh Cheng Thoon, Chee Fu Yung, Jan Hau Lee, PACCOVRA Investigators of the PACCMA research group

1 Department of Pediatric Subspecialties, Children’s Intensive Care Unit, KK Women’s and Children’s Hospital, Singapore, Singapore, 2 SingHealth Duke-NUS Global Health Institute, Singapore, Singapore, 3 Department of Pediatrics and Child Health, Aga Khan University, Karachi, Pakistan, 4 Division of Pediatric Emergency and Intensive Care, Harapan Kita Women and Children Hospital, Jakarta, Indonesia, 5 Child Health Department, Medical Faculty of Universitas Sumatera Utara, Kota Medan, Sumatera Utara, Indonesia, 6 Murni Teguh Memorial Hospital, Kota Medan, Sumatera Utara, Indonesia, 7 Pediatric Intensive Care Unit, Department of Pediatrics, University Malaya Medical Centre, University of Malaya, Kuala Lumpur, Malaysia, 8 Center for Quantitative Medicine, Duke-NUS Medical School, Singapore, Singapore, 9 Department of Pediatrics, Infectious Disease Service, KK Women’s and Children’s Hospital, Singapore, Singapore, 10 Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore, 11 Duke-NUS Medical School, Singapore, Singapore

These authors contributed equally to this work.
‡ These authors are joint senior authors on this work
* Judith.wong.jm@singhealth.com.sg

Abstract

Introduction
Children infected with COVID-19 are susceptible to severe manifestations. We aimed to develop and validate a predictive model for severe/critical pediatric COVID-19 infection utilizing routinely available hospital level data to ascertain the likelihood of developing severe manifestations.

Methods
The predictive model was based on an analysis of registry data from COVID-19 positive patients admitted to five tertiary pediatric hospitals across Asia [Singapore, Malaysia, Indonesia (two centers) and Pakistan]. Independent predictors of severe/critical COVID-19 infection were determined using multivariable logistic regression. A training cohort (n = 802, 70%) was used to develop the prediction model which was then validated in a test cohort (n = 345, 30%). The discriminative ability and performance of this model was assessed by calculating the Area Under the Curve (AUC) and 95% confidence interval (CI) from final Receiver Operating Characteristics Curve (ROC).

Results
A total of 1147 patients were included in this analysis. In the multivariable model, infant age group, presence of comorbidities, fever, vomiting, seizures and higher absolute neutrophil
count were associated with an increased risk of developing severe/critical COVID-19 infection. The presence of coryza at presentation, higher hemoglobin and platelet count were associated with a decreased risk of severe/critical COVID-19 infection. The AUC (95%CI) generated for this model from the training and validation cohort were 0.96 (0.94, 0.98) and 0.92 (0.86, 0.97), respectively.

Conclusion
This predictive model using clinical history and commonly used laboratory values was valuable in estimating the risk of developing a severe/critical COVID-19 infection in hospitalized children. Further validation is needed to provide more insights into its utility in clinical practice.

Introduction
Since the beginning of COVID-19 pandemic in late 2019, the infection rate and overall disease severity was reported to be low in children [1,2]. Up to January 2022, in the United States, more than 8.5 million children have been infected with an estimated hospitalization rate of 1.7% - 4.3% and a low mortality rate of 0.02% [3]. However, reports of children developing severe COVID-19 infection requiring hospitalization and pediatric intensive care unit (PICU) care are increasing worldwide [4–7]. Children infected with COVID-19 are susceptible to serious manifestations such as acute respiratory distress syndrome (ARDS), shock, stroke, and multisystem inflammatory syndrome in children (MIS-C) [5,8–11]. The reported mortality of these severe phenotypes ranges from 3.5% - 7% [7,12].

Many countries have approved the use of COVID-19 vaccines for children above 12 years of age [13,14] and clinical trials are ongoing to assess its safety and efficacy in adolescents and even younger children (NCT04796896) [15]. However, until these vaccines are approved and made readily available for younger children, they will continue to be at risk of severe infection. Additionally, infants and children with underlying comorbid conditions have been found to be at increased risk for developing severe manifestations of COVID-19 infection [16–18].

In Asia, children may be especially prone to develop severe COVID-19 infection and associated mortality. This susceptibility to severe disease and high mortality rate may be a reflection of socioeconomic factors, cultural factors, hospital admission criteria, management factors and low vaccine coverage [5]. In previous studies from Pakistan and India, children hospitalized with COVID-19 infection or MIS-C had a high mortality (10–20%) [19,20]. Literature also reported various risk factors found to be associated with severe COVID-19 infection and mortality in children; these included: age less than one year, associated comorbid conditions, evidence of acute inflammation and presence of organ dysfunction [21–23]. An early predictive model to identify patients who may progress to severe COVID-19 infection can help stratify patients who may benefit from closer monitoring and admission to a higher level of care. In this study, we aimed to develop and validate a predictive model for severe/critical pediatric COVID-19 infection utilizing routinely available hospital level data.

Materials and methods
Study design
We developed and validated a prediction model based on an analysis of registry data of patients admitted to five tertiary pediatric hospitals across Asia [Singapore, Malaysia,
Indonesia (two centers) and Pakistan. These were centers contributing data to the Pediatric Acute and Critical Care COVID-19 Registry of Asia (PACCOVRA), which is a registry (clinicaltrial.gov registration NCT04395781) within the Pediatric Acute and Critical Care Medicine Asian Network (PACCMAN). This study was approved by the respective institutional ethics boards [Singhealth Centralized Institutional Review Board (2020–2873), Ethics Review Committee, Aga Khan University (2020–4987-11134), Institutional Review Board, Harapan Kita Women’s and Children’s Hospital (IRB/45/11/ETIK/202), Persetujuan Komite Etik Pelaksanaan Penelitian Kesehatan (1173/KEP/USU/2021) and Medical Research Ethics Committee, University Malaya Medical Centre (2020527–8682)] and informed consent was waived at all centers.

Inclusion criteria for patient data were (1) confirmed COVID-19 infection defined by a positive nasopharyngeal aspirate for COVID-19 nucleic acid reverse transcriptase polymerase chain reaction (RT-PCR); or (2) confirmed MIS-C defined by the Centers for Disease Control and Prevention (CDC) criteria [24]; and (3) admitted to participating hospitals from November 2019 to November 2021. Epidemiological, clinical, laboratory and outcome data were extracted retrospectively at participating sites and anonymized data was entered into a secure centralized database set up using Research Electronic Data Capture system (REDCAP) by the main coordinating center in Singapore [25]. Outcome data was captured upon discharge from the hospital. The primary outcome was severe/critical COVID-19 infection. Severity of COVID-19 infection was classified into four groups based on the World Health Organization (WHO) definition (mild, moderate, severe and critical) [26]. Secondary outcomes included hospital length of stay, final respiratory related diagnosis, respiratory support, supportive therapies and organ dysfunction. Organ dysfunction was defined by the International Pediatric Sepsis Consensus Conference criteria [27]. The management of patients with COVID-19 infection at each participating site was at the discretion of the managing team and no standardised protocol was utilised. The criteria for admission to intermediate care and intensive care was also at the discretion of the managing team.

Statistical analysis
Primary outcome, COVID-19 infection severity, was categorized as binary data with categories mild/moderate or severe/critical infection. All variables were summarized based on COVID-19 infection severity. Categorical and continuous variables were presented as counts (percentages) and median (interquartile range (IQR)), respectively. Chi-Square test and the Mann-Whitney U tests were used to compare categorical and continuous variables, respectively, with respect to COVID-19 infection severity.

The eligible sample (n = 1147) was randomly split into a training (n = 802, 70%) and a validation cohort (n = 345, 30%). Data was randomly split to avoid selection bias for any of the variables in training and validation cohort. The prediction risk model was created using the training cohort. Univariate and multivariable logistic regression model were used to find independent predictors of severe/critical COVID-19 infection. Generalized linear mixed model (GLIMMIX) approach for binary data with site as random effects was used for regression analysis. Covariates considered for inclusion in the model were identified a priori without knowledge of the outcome data based on clinical judgement and potential confounders identified in the univariate logistic regression. Variables with p value < 0.2 in the univariate logistic regression model were chosen for multivariable model. Backward, forward and stepwise variable selection were used to determine final predictors of severe/critical COVID-19 infection. The adjusted β coefficient with standard error (SE) and corresponding odds ratio (OR) with 95% confidence intervals (CI) were reported for each predictor. The model constant and β
coefficient for each predictor were used to generate the predicted probability equation. The prediction model was assessed by the calibration plot.

The discriminative ability and performance of the model was assessed by calculating the Area Under the Curve (AUC) from final Receiver Operating Characteristics Curve (ROC). Laboratory tests results were incorporated in order to assist clinicians in identifying patients who may develop severe/critical COVID-19 infections. The logistic regression model yields a score based on linear combination of the selected variables. These scores were also reported for full and reduced set of variables. This score can be converted to an estimated probability of severe/critical COVID-19 infection using the relationship: estimated probability = $e^{\text{score}} / (1 + e^\text{score}$), where e is the natural exponential. Because laboratory tests (e.g., C-reactive protein, pro-calcitonin) were not mandatory for each center, we expected missing data in these values. For patients who had no admission laboratory data, the first available laboratory data within that admission were used. In our sensitivity analysis, we applied the final multivariable model in two randomly selected sites (KKH and UMMC and again with AKUH and MTMH), and a separate analysis excluding MIS-C patients from both training and validation data to check robustness of the model.

All tests were two sided and statistical significance was set at p value < 0.05 unless otherwise stated. Analysis was conducted in R (R Core Team, 2020) and SAS version 9.4 software (SAS Institute; Cary, North Carolina, USA).

Results

Study population

A total of 1147 patients met inclusion criteria for this analysis. The epidemic curve of the pandemic in children from the participating sites is shown in Fig 1. The median (IQR) age was 6 (2, 11) years (Table 1). 982/1147 (85.6%) and 165/1147 (14.4%) patients were in the mild/moderate and severe/critical categories, respectively (S1 Table). The most common respiratory diagnosis was upper respiratory tract infection 98/1147 (8.5%) (Tables 2 and S2). Pneumonia and ARDS occurred in 78/1147 (6.8%) and 24/1147 (2.1%) patients respectively, which accounted for the majority of the severe/critical group (S2 Table). Oxygen supplementation, non-invasive ventilation and invasive ventilation was required in 84/1147 (9.5%), 40/1147 (3.5%) and 25/1147 (2.8%) patients, respectively. Ninety-eight of 165 (59.4%) patients in the severe/critical group received systemic corticosteroids, whereas, only 29/165 (17.6%) received intravenous immunoglobulin (IVIG). Empirical use of antibiotics was common especially in the severe/critical group [151/165 (91.5%)]. Cardiovascular dysfunction occurred in 79/1147 (6.9%) of patients and 58/1147 (5.1%) required vasoactive agents--of these, 14/79 (17.7%) had cardiovascular comorbidities. Respiratory dysfunction occurred in 94/1147 (8.2%)--of these, 9/94 (9.6%) had respiratory comorbidities. MIS-C was diagnosed in 36/1147 (4.3%) of patients. One hundred fifteen of 1147 (12.2%) patients required ICU admission and 33/1147 (2.9%) died--of these, 76/118 (64.4%) had underlying comorbidities.

Risk score model development and validation

The training and validation dataset were indifferent in all demographic, clinical, laboratory and outcome data, except for a lower lymphocyte count and presenting symptom of diarrhea (Tables 1 and 2). In the multivariable model, infant age group, presence of comorbidities, seizures, vomiting, fever and higher absolute neutrophil count were associated with an increased risk of developing severe/critical COVID-19 infection. The presence of coryza at presentation, hemoglobin and platelet count was associated with a decreased risk severe/critical COVID-19
infection. The severe/critical COVID-19 infection score based on final multivariable model was as follows (Table 3):

\[
\text{Score} = 4.29 + 1.87 \text{ (comorbidity)} + 2.18 \text{ (infant)} + 3.34 \text{ (seizure)} + 1.80 \text{ (vomiting)} + 1.19 \text{ (fever)} - 1.77 \text{ (coryza)} + 0.07 \text{ (absolute neutrophil count)} - 0.57 \text{ (hemoglobin)} - 0.01 \text{ (platelet count)}
\]

NB: The β coefficient for each variable indicates the magnitude of effect, whereas the +/- sign indicates the direction of effect. Absolute neutrophil count and platelet count are expressed in $10^9/L$ and haemoglobin in g/dL.

The AUC (95%CI) generated for this model from the training and validation dataset was 0.96 (0.94, 0.98) and 0.92 (0.86, 0.97), respectively (Fig 2). The calibration plot for the training and validation dataset is found in the supplementary material (S1 Fig). This predictive model had a sensitivity and specificity of 53.2% (43.4 to 62.8) and 94.1% (92.1 to 95.7), respectively (S3 Table). In the sensitivity analysis, we applied the predictive model to two random sites to ensure its predictive ability was maintained across sites. The AUCs were satisfactory [0.99 (0.99 to 1.00) and 0.79 (0.71 to 0.86)] (S2 Fig). Calibration plots are provided in the supplementary material (S3 Fig). Excluding the 36 MIS-C patients from analysis also yielded satisfactory training and validation AUCs 0.95 (95%CI 0.92, 0.98) and 0.92 (0.87, 0.96), respectively (S4 Fig).

Discussion

Utilizing early hospital admission data from a multicenter network, we generated a simple clinical predictive model to identify children who may progress to develop severe/critical COVID-19 infection.
Table 1. Demographic, clinical and laboratory data for the patients in the training and validation dataset.

Variables	Total (n = 1147)	Training dataset (n = 802)	Validation dataset (n = 345)	P value
Demographic				
Age, years	6 (2 to 11)	6 (2 to 11)	6 (2 to 11)	0.397
Infant	117 (10.2)	84 (10.5)	33 (9.6)	0.641
Male gender	622 (54.2)	418 (52.1)	204 (59.1)	0.029
Weight, kg	19.4 (10.1 to 35.6)	19.4 (10 to 35)	20 (10.6 to 36.6)	0.458
Appropriate development	844 (92.2)	601 (93.2)	243 (90.0)	0.101
Comorbidity				0.218
Cardiovascular	21 (1.8)	18 (2.2)	3 (0.9)	
Respiratory	42 (3.7)	31 (3.9)	11 (3.2)	
Gastrointestinal	12 (1.0)	9 (1.1)	3 (0.9)	
Hematology oncology	37 (3.2)	28 (3.5)	9 (2.6)	
Neurology	37 (3.2)	23 (2.9)	14 (4.1)	
Others	44 (3.8)	32 (4.0)	12 (3.5)	
Clinical				
Fever	527 (45.9)	371 (46.3)	156 (45.2)	0.745
Cough	266 (23.2)	182 (22.7)	84 (24.3)	0.543
Coryza	183 (16.0)	130 (16.2)	53 (15.4)	0.719
Sore throat	109 (9.5)	79 (9.9)	30 (8.7)	0.541
Cyanosis	28 (2.4)	20 (2.5)	8 (2.3)	0.860
Wheezing	29 (2.5)	19 (2.4)	10 (2.9)	0.600
Crepitations	3 (0.3)	2 (0.2)	1 (0.3)	0.902
Other respiratory symptoms	73 (6.4)	44 (5.5)	29 (8.4)	0.063
Headache	38 (3.3)	23 (2.9)	15 (4.3)	0.199
Myalgia	14 (1.2)	12 (1.5)	2 (0.6)	0.195
Irritable	13 (1.1)	8 (1.0)	5 (1.4)	0.507
Feed refusal	17 (1.5)	12 (1.5)	5 (1.4)	0.952
Diarrhea	85 (7.4)	50 (6.2)	35 (10.1)	0.020
Vomiting	97 (8.5)	69 (8.6)	28 (8.1)	0.786
Impaired consciousness	23 (2.0)	17 (2.1)	6 (1.7)	0.673
Seizures	26 (2.3)	20 (2.5)	6 (1.7)	0.431
Others non-respiratory symptoms	143 (12.5)	94 (11.7)	49 (14.2)	0.243
Laboratory				
Hemoglobin, g/dL	12.8 (11.9 to 13.7)	12.8 (11.9 to 13.7)	12.8 (11.5 to 13.7)	0.394
WBC, x10/L	7.2 (5.2 to 9.4)	7.3 (5.2 to 9.8)	7.0 (5.4 to 8.7)	0.217
Lymphocyte, x10(9)/L	3.0 (2.0 to 4.6)	3.1 (2.2 to 4.9)	2.9 (1.8 to 4)	0.004
Neutrophil, x10(9)/L	2.9 (1.9 to 4.5)	2.8 (1.8 to 4.5)	3.1 (2.0 to 4.5)	0.298
Platelets, x10(9)/L	294 (230 to 361)	296 (233 to 369)	284.5 (218 to 348)	0.109
APTT, seconds*	32.3 (26.8 to 38.5)	32.2 (27 to 36.8)	32.4 (24.9 to 42.2)	0.912
PT, seconds*	13.3 (11.9 to 14.7)	13.3 (11.9 to 14.7)	12.7 (11.7 to 14.8)	0.928
INR*	1.1 (1 to 1.3)	1.13 (1 to 1.3)	1.1 (1.07 to 1.2)	0.944
D-dimer, FEU*	2.3 (0.5 to 4.5)	2.2 (0.5 to 4.3)	2.5 (0.76 to 4.53)	0.636
Total bilirubin, g/dL*	5 (4 to 7)	5 (4 to 7)	5 (4 to 8)	0.428
AST, U/L*	30 (24 to 38)	29.5 (24 to 38)	30 (23 to 37)	0.534
ALT, U/L*	18 (13 to 25)	17 (13 to 24)	18 (13 to 27)	0.586
Sodium, mmol/L	139 (136 to 142)	140 (136 to 142)	139 (136.5 to 142)	0.446
Potassium, mmol/L	4 (3.5 to 4.4)	4 (3.5 to 4.4)	3.9 (3.5 to 4.4)	0.324

(Continued)
COVID-19 disease. Having satisfactory AUC and calibration plots, this model identified the infant age group, presence of comorbidities, fever, vomiting, seizures and a higher absolute neutrophil count to be associated with developing severe/critical COVID-19 disease. The presence of coryza, high hemoglobin and platelet count was, in contrast, protective.

Initial studies have shown that children with COVID-19 infection may not demonstrate the same degree of disease severity compared to adults [11]. However, subsequent studies seem to suggest that there is a bimodal severity peak: The first peak occurs in young infants (<3 months) and the second in adulthood [23,28–30]. Similar to these prior studies conducted in United States and United Kingdom, our predictive model identified infants as a group with increased risk of developing severe COVID-19 disease. The exact reason for this susceptibility remains unclear, though maternal vaccination and breastfeeding practices most likely play a role. The maternal IgG humoral response to vaccination (or infection) has been demonstrated to transfer across the placenta into the fetus, conferring protection to the newborn [31]. Hence, cohorts with a low vaccination rate in expectant mothers (or prior to vaccine approval in pregnancy) may result in inferior protection to the newborn. Although COVID-19 antibodies (SARS-CoV-2 spike RBD-specific IgG1, IgA and IgM antibodies) were detected in breast milk, these were absent in the infants’ serum [32]. On the other hand, other studies, such as a multicenter multivariable Bayesian modeling study conducted in Spain reported that age <2 years to be protective against critical COVID-19 infection [33]. The infant age group was therefore included as a discriminatory factor associated with severe COVID-19 infection in our model.

The presence of complex comorbidities increases the risk of hospitalization and severe COVID-19 disease [21,22]. In particular, in a large cross-sectional pediatric study (n = 43,465), cardiovascular diseases, type 1 diabetes, obesity and prematurity were shown to be associated with severe COVID-19 infection [34]. This is not surprising given that majority of mortalities due to COVID-19 infection occur in patients with underlying metabolic and cardiovascular disease [35]. The predisposition of adult patients with metabolic and cardiovascular comorbidities to COVID-19 disease is recognized to be associated with their pro-inflammatory and hypercoagulopathic tendencies [36]. Obesity also results in altered respiratory mechanics predisposing to severe respiratory infections [37]. It is plausible that these mechanisms also apply to the pediatric patient. Though our study identified the presence of comorbidities to be associated with 6-fold increased odds of severe COVID-19 disease (Table 3), we were not able to

Table 1. (Continued)

Variables	Total (n = 1147)	Training dataset (n = 802)	Validation dataset (n = 345)	P value
Creatinine, umol/L	35.4 (26.5 to 53.0)	35.3 (21 to 50)	40 (26.5 to 56)	0.050
C-reactive protein, mg/L	9.6 (3.1 to 62.1)	8.9 (3.0 to 57.0)	18.5 (4.8 to 74.2)	0.674
Viral co-infection	14 (1.2)	11 (1.4)	3 (0.9)	0.151
Bacterial co-infection	37 (3.2)	24 (3.0)	13 (3.8)	0.337

*High proportion of missing data and were not considered for inclusion in the predictive model

Chi-Square test and the Mann-Whitney U tests were used to compare categorical [counts (%)] and continuous [median (interquartile range)] variables, respectively.

WBC–white blood cell.

APTT–activated partial thromboplastin time.

PT–prothrombin time.

INR–international normalized ratio.

AST–aspartate aminotransferase.

ALT–alanine aminotransferase.

https://doi.org/10.1371/journal.pone.0275761.t001
Variables	Total	Training dataset (n = 802)	Validation dataset (n = 345)	P value
Respiratory diagnosis				
URTI	98 (8.5)	64 (8.0)	34 (9.9)	0.298
Bronchiolitis/bronchitis	5 (0.4)	4 (0.5)	1 (0.3)	0.622
Pneumothorax	7 (0.6)	4 (0.5)	3 (0.9)	0.460
Pleural effusion	22 (1.9)	13 (1.6)	9 (2.6)	0.263
Pneumonitis	5 (0.4)	3 (0.4)	2 (0.6)	0.628
Pneumonia	78 (6.8)	54 (6.7)	24 (7.0)	0.890
ARDS	24 (2.1)	14 (1.7)	10 (2.9)	0.211
Respiratory support				
Oxygen	84 (9.5)	55 (8.9)	29 (10.8)	0.391
HFNC	16 (1.8)	11 (1.8)	5 (1.9)	0.943
CPAP	11 (1.2)	9 (1.5)	2 (0.7)	0.374
BiPAP	13 (1.5)	11 (1.8)	2 (0.7)	0.235
Mechanical ventilation	25 (2.8)	13 (2.1)	12 (4.5)	0.053
Other therapies				
IVIG	29 (2.5)	17 (2.1)	12 (3.5)	0.179
Systemic corticosteroids	122 (10.6)	80 (10.0)	42 (12.2)	0.268
Antibiotics	242 (21.1)	160 (20.0)	82 (23.8)	0.146
Anti-viral	76 (6.6)	53 (6.6)	23 (6.7)	0.971
Anti-fungal	17 (1.5)	9 (1.1)	8 (2.3)	0.124
Vasoactive drugs	58 (5.1)	38 (4.7)	20 (5.8)	0.453
Organ dysfunction				
Cardiovascular	79 (6.9)	50 (6.2)	29 (8.4)	0.183
Respiratory	94 (8.2)	64 (8.0)	30 (8.7)	0.685
Neurological	26 (2.3)	16 (2.0)	10 (2.9)	0.346
Hepatic	8 (0.7)	4 (0.5)	4 (1.2)	0.218
Renal	19 (1.7)	11 (1.4)	8 (2.3)	0.249
Hematological	30 (2.6)	17 (2.1)	13 (3.8)	0.109
Others				
MIS-C	36 (4.3)	22 (3.8)	14 (5.5)	0.265
Highest level of inpatient care				0.314
General ward	792 (84.2)	557 (85.2)	235 (81.9)	
Intermediate care	31 (3.3)	19 (2.9)	12 (4.2)	
Intensive care	115 (12.2)	75 (11.5)	40 (13.9)	
Hospital duration, days	7 (3 to 12)	7 (3 to 12)	6 (2 to 12)	0.147
Mortality	33 (2.9)	19 (2.4)	14 (4.1)	0.214

Chi-Square test and the Mann-Whitney U tests were used to compare categorical [counts (%)] and continuous [median (interquartile range)] variables, respectively. URTI–upper respiratory tract infection. HFNC–high flow nasal cannula. CPAP–continuous positive airway pressure. BiPAP–bilevel positive airway pressure. IVIG–intravenous immunoglobulins. MIS-C–multisystemic inflammatory syndrome in children.

https://doi.org/10.1371/journal.pone.0275761.t002
replicate with granularity, the contribution of each type of comorbidity due our smaller sample size. Nevertheless, the frequency of cardiovascular, respiratory, gastrointestinal, hematology-oncology and neurology comorbidities were higher in the severe group (S1 Table). The types of hematology-oncology comorbidity and treatments received at the time of study which could have affected outcomes were also not captured.

Symptoms associated with severe COVID-19 infection identified in our study included fever, vomiting and the presence of seizures. Considering that respiratory related COVID-19 disease was more frequent in children [33], it is interesting to note that the presence of non-

Table 3. Final multivariable model predicting severe/critical COVID-19.

Variables	Adjusted β (SE)	Adjusted OR (95%CI)	P value
Intercept	4.29 (1.48)		
Comorbidities (ref: none)	1.87 (0.46)	6.46 (2.62–15.94)	<0.001
Haemoglobin, g/dL	-0.57 (0.11)	0.57 (0.45–0.70)	<0.001
Infant (ref: not infant)	2.18 (0.58)	8.84 (2.82–27.72)	<0.001
Neutrophil, x10(9)/L	0.07 (0.02)	1.08 (1.04–1.11)	<0.001
Seizures (ref: none)	3.34 (1.54)	28.27 (1.39–575.10)	0.030
Vomiting (ref: none)	1.8 (0.54)	6.02 (2.10–17.27)	<0.001
Platelet, x10(9)/L	-0.01 (0.002)	0.99 (0.99–1.00)	<0.001
Coryza (ref: none)	-1.77 (0.84)	0.17 (0.03–0.89)	0.036
Fever (ref: none)	1.19 (0.52)	3.28 (1.19–9.02)	0.021

SE—standard error.
OR—odds ratio.
CI—confidence interval.

https://doi.org/10.1371/journal.pone.0275761.t003

Fig 2. Receiver operating characteristic curve of the training (left) and validation (right) dataset. ROC—Receiver operating characteristic. CI—Confidence interval.

https://doi.org/10.1371/journal.pone.0275761.g002
respiratory symptoms was associated with severe disease. These symptoms potentially indicate systemic involvement. Viral particles have been demonstrated in bronchial and alveolar epithelium, myocardium, intestinal, hepatic, splenic, renal, as well as, brain tissue [38]. Reactive microglia, neuronal ischemia and congestion are among the pathologic findings reported in children with COVID-19 infection who presented with acute encephalopathy and seizures [38]. Our study identifies seizures as a symptom associated with the highest β coefficient for severe disease. It is possible this symptom reflects direct central nervous system (CNS) infection, is part of a systemic syndrome (e.g., shock, cytokine storm, electrolyte imbalance) or part of underlying epilepsy [39]. In contrast, symptoms indicating a mild upper respiratory tract infection (coryza) was evidently protective against severe COVID-19 disease.

Our predictive model included routinely available laboratory variables. Neutrophilia was associated development of severe disease, whereas, higher hemoglobin and platelet were protective. Neutrophilia or relative lymphopenia has been shown to be a feature of both severe respiratory disease and MIS-C [18,19,21,40]. Though less studied, low hemoglobin (anemia) has been associated with an increased risk of respiratory failure, ICU admission, mechanical ventilation and death [41,42]. This hemoglobin effect may be a reflection of disease severity, underlying comorbidity, or malnutrition [42]. Studies have associated thrombocytopenia with critical illness and death in adult COVID-19 infections [43,44]. Interestingly, a trend towards less critical illness was also observed in adult patients with high platelet counts [$>400\times10^9$/L], though this has not been previously demonstrated in children until our study [43,45]. The mechanism responsible for the protective effect of platelets are unclear but postulated to be related to a protective role of platelets towards the lung parenchyma and improved viral clearance [45].

Though predictive models for severe COVID-19 infection in children have been previously proposed [21,40], these were generated from single countries. Our study utilized data from a network of hospitals across Asia including a population of children with diverse socio-economic, cultural and biological background which may increase its generalizability. We used routinely available demographic, clinical and laboratory data which is likely relevant in most pediatric admissions to generate the model. However, there were several limitations in this study. Firstly, the diagnosis of MIS-C which requires a recent laboratory confirmed SARS-CoV-2 infection within the prior 4 weeks was challenging in regions where routine PCR or serological evidence of previous infection was not available for patients who had mild symptoms/ asymptomatic primary infections. Some cases may have been missed due to this criteria. Conversely, clinical MIS-C features (e.g. fever, gastro-intestinal symptoms, hypotension and high inflammatory markers) may also be present in acute COVID-19 infection [24,46]. As such, even though the immune-pathology associated with sub-acute/post-acute MIS-C is unique from the cytokine storm of acute COVID-19 infection, the clinical presentation may not be easy to differentiate [47]. We excluded all patients who fulfilled MIS-C criteria in our sensitivity analysis to ensure the predictive model performed satisfactorily regardless of this challenging diagnosis. This limitation also precluded analysis to differentiate patients with/ without COVID-19 immunity. Secondly, we were not able to account for circulating variants of concern which were dominant at the different time periods at each of the sites. For example, the Delta variant (B.1.617.2) of SARS-CoV-2 was dominant in Singapore by May 31st 2021, whereas in Indonesia and Malaysia, it became dominant by July 8th and 23rd 2021, respectively [48–50]. Moreover, availability of sequencing data in some regions was limited and may be subject to sampling bias [51]. Due to the retrospective nature of data collection, the perceived severity of disease may be biased and there was no standardized reporting, laboratory testing or management protocol. As such, we could not investigate other commonly used laboratory tests such as C-reactive protein, procalcitonin and lactate dehydrogenase in the model [52].
Further external validation is needed to evaluate the performance of this predictive model in the clinical setting and in other geographical regions. Lastly, we did not explore other important outcomes including mortality (due to the small sample size, n = 33) and the cause of mortality reported in this study may or may not be directly due to COVID-19 infection.

Conclusion

In summary, we created a predictive model to identify children who may develop severe/critical COVID-19 infection using routinely available hospital level data. This novel model should be validated further in other settings and potentially useful to hospitalists in helping stratify patients into those may benefit from closer monitoring in a higher level of care.

Supporting information

S1 Fig. Calibration plots for the training (left) and validation (right) dataset. (TIF)

S2 Fig. Receiver operating characteristic curve for two randomly selected sites KK Women’s and Children’s Hospital and University Malaya Medical Center (left), and Aga Khan University Hospital and Murni Teguh Memorial Hospital (right). (TIF)

S3 Fig. Calibration plots for two randomly selected sites KK Women’s and Children’s Hospital and University Malaya Medical Center (left), and Aga Khan University Hospital and Murni Teguh Memorial Hospital (right). (TIF)

S4 Fig. Receiver operating characteristic curve excluding patients fulfilling MISC criteria. (TIF)

S1 Table. Demographic, clinical and laboratory data for the patients in the mild/moderate and severe/critical COVID-19 group. (DOCX)

S2 Table. Diagnosis, complications, therapies and outcomes data for the patients in the mild/moderate and severe/critical COVID-19 group. (DOCX)

S3 Table. Diagnostic accuracy of the predictive model for severe/critical COVID-19. (DOCX)

Acknowledgments

We thank Ms. Fatin Insyirah Binte Fadil for assisting with data extraction at KK Women’s and Children’s Hospital, Singapore. We acknowledge the Department of Medical Microbiology for assisting with data extraction at University Malaya Medical Center, Malaysia. Authors’ information.

Author Contributions

Conceptualization: Judith Ju Ming Wong, Qalab Abbas, Rehena Sultana, Chee Fu Yung, Jan Hau Lee.

Data curation: Judith Ju Ming Wong, Qalab Abbas, Felix Liauw, Ririe Fachrina Malisie, Chin Seng Gan, Muhammad Abid, Pustika Efar, Josephine Gloriana, Soo Lin Chuah.
Formal analysis: Rehena Sultana.

Funding acquisition: Judith Ju Ming Wong.

Investigation: Judith Ju Ming Wong, Qalab Abbas, Felix Liauw, Ririe Fachrina Malisie, Chin Seng Gan, Muhammad Abid, Pustika Efar, Josephine Gloriana, Soo Lin Chuah, Rehena Sultana.

Methodology: Judith Ju Ming Wong.

Project administration: Judith Ju Ming Wong, Qalab Abbas, Felix Liauw, Ririe Fachrina Malisie, Chin Seng Gan.

Resources: Koh Cheng Thoon, Chee Fu Yung, Jan Hau Lee.

Supervision: Koh Cheng Thoon, Chee Fu Yung, Jan Hau Lee.

Validation: Rehena Sultana.

Visualization: Rehena Sultana.

Writing – original draft: Judith Ju Ming Wong, Qalab Abbas, Rehena Sultana.

Writing – review & editing: Judith Ju Ming Wong, Qalab Abbas, Felix Liauw, Ririe Fachrina Malisie, Chin Seng Gan, Muhammad Abid, Pustika Efar, Josephine Gloriana, Soo Lin Chuah, Rehena Sultana, Koh Cheng Thoon, Chee Fu Yung, Jan Hau Lee.

References

1. Ludvigsson JF. Systematic review of COVID-19 in children shows milder cases and a better prognosis than adults. Acta Paediatr. 2020; 109(6):1088–95. https://doi.org/10.1111/apa.15270 PMID: 32202343

2. Bhuiyan MU, Stiboy E, Hassan MZ, Chan M, Islam MS, Haider N, et al. Epidemiology of COVID-19 infection in young children under five years: A systematic review and meta-analysis. Vaccine. 2021; 39 (4):667–77. https://doi.org/10.1016/j.vaccine.2020.11.078 PMID: 33302035

3. American Academy of Pediatrics. Children and COVID-19: State-Level Data Report 2022 [Available from: aap.org/en/pages/2019-novel-coronavirus-covid-19-infections/children-and-covid-19-state-level-data-report/.

4. Oualha M, Bendavid M, Berteloot L, Corsia A, Lesage F, Vedrenne M, et al. Severe and fatal forms of COVID-19 in children. Arch Pediatr. 2020; 27(5):235–8. https://doi.org/10.1016/j.arcped.2020.05.010 PMID: 32518045

5. Wong JJM, Abbas Q, Chuah SL, Malisie RF, Pon KM, Katsuta T, et al. Comparative Analysis of Pediatric COVID-19 Infection in Southeast Asia, South Asia, Japan, and China. Am J Trop Med Hyg. 2021.

6. Pathak EB, Salemi JL, Sobers N, Menard J, Hambleton IR. COVID-19 in Children in the United States: Intensive Care Admissions, Estimated Total Infected, and Projected Numbers of Severe Pediatric Cases in 2020. J Public Health Manag Pract. 2020; 26(4):325–33. https://doi.org/10.1097/PHH.000000000001190 PMID: 32282440

7. Tripathi S, Gist KM, Bjornstad EC, Kashyap R, Boman K, Chiotos K, et al. Coronavirus Disease 2019-Associated PICU Admissions: A Report From the Society of Critical Care Medicine Discovery Network Viral Infection and Respiratory Illness Universal Study Registry. Pediatr Crit Care Med. 2021; 22 (7):603–15. https://doi.org/10.1097/PCC.0000000000002760 PMID: 33965987

8. Hoang A, Chorath K, Moreira A, Evans M, Burmeister-Morton F, Burmeister F, et al. COVID-19 in 7780 pediatric patients: A systematic review. EClinicalMedicine. 2020; 24:100433. https://doi.org/10.1016/j.eclinm.2020.100433 PMID: 32766542

9. Shekerdemian LS, Mahmood NR, Wolfe KK, Riggs BJ, Ross CE, McKiernan CA, et al. Characteristics and Outcomes of Children With Coronavirus Disease 2019 (COVID-19) Infection Admitted to US and Canadian Pediatric Intensive Care Units. JAMA Pediatr. 2020; 174(9):868–73. https://doi.org/10.1001/jamapediatrics.2020.1948 PMID: 32392288

10. Mitchell WB, Davila J, Keenan J, Jackson J, Tal A, Morrone KA, et al. Children and young adults hospitalized for severe COVID-19 exhibit thrombotic coagulopathy. Pediatr Blood Cancer. 2021; 68(7): e28975. https://doi.org/10.1002/pbc.28975 PMID: 33661561
11. Dong Y, Mo X, Hu Y, Qi X, Jiang F, Jiang Z, et al. Epidemiology of COVID-19 among children in China. Pediatrics. 2020:e20200702. https://doi.org/10.1542/peds.2020-0702 PMID: 32179660

12. Shahid S, Raza M, Junejo S, Maqsood S. Clinical features and outcome of COVID-19 positive children from a tertiary healthcare hospital in Karachi. J Med Virol. 2021; 93(10):5988–97. https://doi.org/10.1002/jmv.27178 PMID: 34228363

13. GOV.UK. UK regulator approves use of Pfizer/BioNTech vaccine in 5 to 11-year olds 2021 [updated 22 December 2021. Available from: https://www.gov.uk/government/news/uk-regulator-approves-use-of-pfizerbiontech-vaccine-in-5-to-11-year-olds.

14. Ministry of Health Singapore. CHILD VACCINATION 2021 [Available from: https://www.moh.gov.sg/covid-19/vaccination/faqs—children-related-vaccination-matters.

15. Frenck RW, Klein NP, Kitchin N, Gurtman A, Absalon J, Lockhart S, et al. Safety, Immunogenicity, and Efficacy of the BNT162b2 Covid-19 Vaccine in Adolescents. New England Journal of Medicine. 2021; 385(3):239–50. https://doi.org/10.1056/NEJMoa2107456 PMID: 34043894

16. Williams N, Radia T, Harman K, Agrawal P, Gupta A. COVID-19 Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in children and adolescents: a systematic review of critically unwell children and the association with underlying comorbidities. Eur J Pediatr. 2021; 180(3):689–97. https://doi.org/10.1007/s00431-020-03801-6 PMID: 32914200

17. Hendler JV, Miranda do Lago P, Muller GC, Santana JC, Piva JP, Daudt LE. Risk factors for severe COVID-19 infection in Brazilian children. Braz J Infect Dis. 2021; 25(6):101650. https://doi.org/10.1016/j.bjid.2021.101650 PMID: 34774486

18. Jat KR, Sankar J, Das RR, Ratageri VH, Choudhary B, Bhat JI, et al. Clinical Profile and Risk Factors for Severe Disease in 402 Children Hospitalized with SARS-CoV-2 from India: Collaborative Indian Pediatric COVID Study Group. J Trop Pediatr. 2021; 67(3). https://doi.org/10.1093/jtroped/fma048 PMID: 34152424

19. Moshin SS, Abbas Q, Chowdhry D, Khalid F, Sheikh AS, Ali Khan ZG, et al. Multisystem inflammatory syndrome (MIS-C) in Pakistani children: A description of the phenotypes and comparison with historical cohorts of children with Kawasaki disease and myocarditis. PLoS One. 2021; 16(6):e0253625. https://doi.org/10.1371/journal.pone.0253625 PMID: 34153080

20. Sharma AG, Kumar V, Sodani R, Sapre A, Singh P, Saha A, et al. Predictors of mortality in children admitted with SARS-CoV-2 infection in tertiary care hospital in North India. J Paediatr Child Health. 2021.

21. Dominguez-Rodriguez S, Villaverde S, Sanz-Santaeufemia FJ, Grasa C, Soriano-Arandes A, Saavedra-Lozano J, et al. A Bayesian Model to Predict COVID-19 Severity in Children. Pediatr Infect Dis J. 2021; 40(8):e287–e93. https://doi.org/10.1097/INF.0000000000003204 PMID: 34250967

22. Woodruff RC, Campbell AP, Taylor CA, Chai SJ, Kawasaki B, Meek J, et al. Risk Factors for Severe COVID-19 in Children. Pediatrics. 2021. https://doi.org/10.1542/peds.2021-053418 PMID: 34935038

23. Graff K, Smith C, Silveira L, Jung S, Curran-Hays S, Jarjour J, et al. Risk Factors for Severe COVID-19 in Children. The Pediatric Infectious Disease Journal. 2021; 40(4):e137–e45. https://doi.org/10.1097/INF.0000000000003043 PMID: 33538539

24. Centers for Disease Control and Prevention. Information for Healthcare Providers about Multisystem Inflammatory Syndrome in Children (MIS-C); 2021 [Available from: https://www.cdc.gov/mis/mis-c/hcp/index.html.

25. Harris PA, Taylor R, Thielke R, Payne J, Gonzalez N, Conde JG. Research electronic data capture (REDCap)—a metadata-driven methodology and workflow process for providing translational research informatics support. J Biomed Inform. 2009; 42(2):377–81. https://doi.org/10.1016/j.jbi.2008.08.010 PMID: 18929686

26. World Health Organization. Clinical management of COVID-19—interim guidance 2020 27 May. 62 p.

27. Goldstein B, Giroir B, Randolph A. International pediatric sepsis consensus conference: definitions for sepsis and organ dysfunction in pediatrics. Pediatric critical care medicine: a journal of the Society of Critical Care Medicine and the World Federation of Pediatric Intensive and Critical Care Societies. 2005; 6(1):2–8.

28. Swann OV, Holden KA, Turtle L, Pollock L, Fairfield CJ, Drake TM, et al. Clinical characteristics of children and young people admitted to hospital with covid-19 in United Kingdom: prospective multicentre observational cohort study. Bmj. 2020; 370:m3249. https://doi.org/10.1136/bmj.m3249 PMID: 32960186

29. Götzinger F, Santiago-García B, Noguera-Julían A, Lanaspa M, Lancell L, Calò Carducci FI, et al. COVID-19 in children and adolescents in Europe: a multinational, multicentre cohort study. Lancet Child Adolesc Health. 2020; 4(8):653–61. https://doi.org/10.1016/S2335-4642(20)30177-2 PMID: 32693339
30. Fernandes DM, Oliveira CR, Guerguis S, Eisenberg R, Choi J, Kim M, et al. Severe Acute Respiratory Syndrome Coronavirus 2 Clinical Syndromes and Predictors of Disease Severity in Hospitalized Children and Youth. J Pediatr. 2021; 230:23–31.e10. https://doi.org/10.1016/j.jpeds.2020.11.016 PMID: 33197493

31. Beharier O, Piltman Mayo R, Raz T, Nahum Sacks K, Schreiber L, Suissa-Cohen Y, et al. Efficient maternal to neonatal transfer of antibodies against SARS-CoV-2 and BNT162b2 mRNA COVID-19 vaccine. J Clin Invest. 2021; 131(13).

32. Yeo KT, Chia WN, Tan CW, Ong C, Yeo JG, Zhang J, et al. Neutralizing Activity and SARS-CoV-2 Vaccine mRNA Persistence in Serum and Breastmilk After BNT162b2 Vaccination in Lactating Women. Frontiers in Immunology. 2022;12. https://doi.org/10.3389/fimmu.2021.783975 PMID: 35087517

33. Dominguez-Rodriguez S, Villaverde S, Sanz-Sanataufermia FJ, Grasa C, Sorian-Arandes A, Saavedra-Lozano J, et al. A Bayesian Model to Predict COVID-19 Severity in Children. The Pediatric Infectious Disease Journal. 2021; 40(8):e287–e93. https://doi.org/10.1097/INF.0000000000003204 PMID: 34250967

34. Kompaniyets L, Agathis NT, Nelson JM, Preston LE, Ko JY, Belay B, et al. Underlying Medical Conditions Associated With Severe COVID-19 Illness Among Children. JAMA Netw Open. 2021; 4(6):e2111182. https://doi.org/10.1001/jamanetworkopen.2021.11182 PMID: 34097050

35. Thakur B, Dubey P, Benitez J, Torres JP, Reddy S, Shokar N, et al. A systematic review and meta-analysis of geographic differences in comorbidities and associated severity and mortality among individuals with COVID-19. Sci Rep. 2021; 11(1):8562. https://doi.org/10.1038/s41598-021-88130-w PMID: 33879826

36. Steenblock C, Schwarz PEH, Ludwig B, Linkermann A, Zimmet P, Kulebyakin K, et al. COVID-19 and metabolic disease: mechanisms and clinical management. Lancet Diabetes Endocrinol. 2021; 9 (11):786–88. https://doi.org/10.1016/S2213-8587(21)00244-8 PMID: 34619105

37. Seidu S, Gillies C, Zaccardi F, Kunutsor SK, Hartmann-Boyce J, Yates T, et al. The impact of obesity on severe disease and mortality in people with SARS-CoV-2: A systematic review and meta-analysis. Endocrinol Diabetes Metab. 2020; 4(1):e00176. https://doi.org/10.1002/edm2.176 PMID: 32904932

38. Duarte-Neto AN, Caldini EG, Gomes-Gouvêa MS, Kamamura CT, de Almeida Monteiro RA, Ferranti JF, et al. An autopsy study of the spectrum of severe COVID-19 in children: From SARS to different phenotypes of MIS-C. eClinicalMedicine. 2021;35. https://doi.org/10.1016/j.eclinm.2021.100855 PMID: 33937731

39. Nikkakhft F, Mohammadkhaniizadeh A, Mohammadi E. How does the COVID-19 cause seizure and epilepsy in patients? The potential mechanisms. Mult Scler Relat Disord. 2020; 10.1016/j.msard.2020.102535 PMID: 33010584

40. Fernandes DM, Oliveira CR, Guerguis S, Eisenberg R, Choi J, Kim M, et al. Severe Acute Respiratory Syndrome Coronavirus 2 Clinical Syndromes and Predictors of Disease Severity in Hospitalized Children and Youth. J Pediatr. 2021; 230:23–31.e10. https://doi.org/10.1016/j.jpeds.2020.11.016 PMID: 33197493

41. Faghih Dinevari M, Somi MH, Sadeghi Majd E, Abbaspalazad Farhangi M, Nikniaz Z. Anemia predicts poor outcomes of COVID-19 in hospitalized patients: a prospective study in Iran. BMC Infectious Diseases. 2021; 21(1):170. https://doi.org/10.1186/s12879-021-05868-4 PMID: 33568084

42. Anai M, Akaike K, Iwagoe H, Akasaka T, Higuchi T, Miyazaki A, et al. Decrease in hemoglobin level predicts increased risk for severe respiratory failure in COVID-19 patients with pneumonia. Respiratory Investigation. 2021; 59(2):187–93. https://doi.org/10.1016/j.resinv.2020.10.009 PMID: 33281114

43. Barrett TJ, Bilaloglu S, Cornwell M, Burgess HM, Virgilio VW, Drenkova K, et al. Platelets contribute to disease severity in COVID-19. J Thromb Haemost. 2021; 19(12):3139–53. https://doi.org/10.1111/jth.15534 PMID: 34538015

44. Zong X, Gu Y, Yu H, Li Z, Wang Y. Thrombocytopenia Is Associated with COVID-19 Severity and Outcome: An Updated Meta-Analysis of 5637 Patients with Multiple Outcomes. Lab Med. 2021; 52(1):10–5. https://doi.org/10.1093/labmed/lmaa067 PMID: 32929506

45. Lucijanic M, Krecak I, Soric E, Sedinić M, Sabljic A, Derek L, et al. Thrombocytosis in COVID-19 patients without myeloproliferative neoplasms is associated with better prognosis but higher rate of venous thromboembolism. Blood Cancer Journal. 2021; 11(11):189. https://doi.org/10.1038/s41408-021-00585-2 PMID: 34845183

46. World Health Organization. Multisystem inflammatory syndrome in children and adolescents temporally related to COVID-19; 2020 [15 May 2020]. Available from: https://www.who.int/news-room/commentaries/detail/multisystem-inflammatory-syndrome-in-children-and-adolescents-with-covid-19.

47. Consiglio CR, Cotugno N, Sardh F, Pou C, Amodio D, Rodriguez L, et al. The Immunology of Multisystem Inflammatory Syndrome in Children with COVID-19. Cell. 2020; 183(4):968–81.e7. https://doi.org/10.1016/j.cell.2020.09.016 PMID: 32966765
48. Mahmud Aqil Haziq, Ang HM. IN FOCUS: The rapid rise of the Delta variant and how it is shaping Singapore’s COVID-19 fight Channel News Asia 2021 [Available from: https://www.channelnewsasia.com/singapore/covid-19-delta-variant-virus-vaccine-moh-2082741.

49. Kementrian Kesihatan Malaysia. Status Terkini Variant of Interest (VOI) dan Variant of Concern (VOC) di Malaysia Sehingga 23/07/2021; 2021 [Available from: https://covid-19.moh.gov.my/semasa-kkm/2021/07/situasi-terkini-voi-dan-voc-23072021.

50. Wahyuni NC, Andriyanto H. Delta Variant Blamed for Dramatic Covid Surge in Indonesia: Jakarta Globe; 2021 [Available from: https://jakartaglobe.id/news/delta-variant-blamed-for-dramatic-covid-surge-in-indonesia.

51. Sarwar MB, Yasir M, Alikhan NF, Afzal N, de Oliveira Martins L, Le Viet T, et al. SARS-CoV-2 variants of concern dominate in Lahore, Pakistan in April 2021. Microb Genom. 2021; 7(11). https://doi.org/10.1099/mgen.0.000693 PMID: 34846280

52. Henry BM, Benoit SW, de Oliveira MHS, Hsieh WC, Benoit J, Ballout RA, et al. Laboratory abnormalities in children with mild and severe coronavirus disease 2019 (COVID-19): A pooled analysis and review. Clin Biochem. 2020; 81:1–8. https://doi.org/10.1016/j.clinbiochem.2020.05.012 PMID: 32473151