Incidence and outcomes of anterior bone loss in single-level Prestige LP cervical disc replacement

Xiao-Fei Wang¹, Yang Meng¹, Hao Liu¹, Bei-Yu Wang¹, Ying Hong²

¹Department of Orthopedic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China;
²Department of Anesthesia and Operation Center/West China School of Nursing, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.

To the Editor: Total cervical disc replacement (TDR) has been widely used to treat cervical degenerative disc diseases (CDDD). However, implant-related complications, including implant migration, implant subsidence, heterotopic ossification (HO), and anterior bone loss (ABL), have been reported by many studies. ABL has received more attention in recent years; however, this phenomenon has been recognized only in cervical artificial discs without keels, including Bryan, Baguera-C, Discocerv, and Mobi-C.¹⁻⁶ Therefore, the first aim of this study was to evaluate the incidence of ABL in a keeled artificial disc, the Prestige-LP cervical disc system (Medtronic Sofamor Danek Inc., Memphis, TN, USA).

Previous studies have reported that ABL could result in persistent neck pain,¹⁻⁵ endplate exposure, and implant failure (such as subsidence and grade 4 HO).¹⁻⁶ However, the impact of ABL on adjacent segments and implant subsidence remains unknown. Therefore, the other aim of our study was to identify the impact of ABL on these complications.

This study was approved by the Institutional Review Board of West China Hospital, Sichuan University. Patients who received single-level Prestige LP TDR with a minimum of 24 months of follow-up were reviewed. The inclusion criteria were: patients aged between 18 and 65 years; single-level CDDD causing symptomatic myelopathy or radiculopathy between C3 and C7; failed conservative treatment for 12 weeks. The exclusion criteria were: new or enlarged osteophyte formation of the posterior longitudinal ligament; cervical spine tumor; ossification of the posterior longitudinal ligament; ankylosing spondylitis; rheumatoid arthritis; metabolic bone disease; osteoporosis; radiological signs of instability; or irreducible kyphosis at the surgical level or severe global kyphotic deformity; severe spondylodiscitis or facet joint degeneration; previous cervical spine surgery. All patients received dual-energy X-ray bone density screening before surgery, and osteoporosis (T-score ≤−2.5) was one of the contraindications for TDR. All surgeries were performed by the same senior surgeon who used the same surgical techniques. Radiological data and clinical outcomes were collected before and immediately after surgery and at the 3, 6, 12-month, and final follow-ups. ABL was measured as described previously.⁷ Radiological outcomes were measured based on radiographs, as performed by prior studies,⁸⁻¹⁰ and the parameters included cervical curvature (C2−C7), global range of motion (ROM) (C2−C7), and segmental ROM at the surgical level. For the patient-reported clinical outcomes, we used the visual analog scale scores, neck disability index score, and Japanese Orthopaedic Association score.

The other outcomes that were measured included implant subsidence and migration. Implant subsidence was defined as ≥2 mm height loss of the anterior or posterior functional spinal height (FSU) height.⁹ Radiological adjacent segment degeneration (RASD) was identified on lateral radiographs based on one of the following lines of evidence:¹⁰⁻¹¹: (1) new or enlarged osteophyte formation at the anterior border of the vertebral body; (2) narrowing of the intervertebral disc space; (3) ossification of the anterior longitudinal ligament.

Statistical analysis was performed using the SPSS software (Version 23.0, SPSS Inc., Chicago, IL, USA). Quantitative variables were analyzed using the Student t test (for normally distributed data) or the Mann-Whitney U test (for non-normally distributed data). Classified variables were analyzed using the Chi-square test or the Fisher exact test. A two-tailed P < 0.05 was defined as statistically significant.

Finally, a total of 131 patients (65 males and 66 females) and 262 endplates were reported in this study. The mean
The patient-reported clinical outcome scores of all patients significantly improved at the 12-month and final follow-ups. No significant difference was found between the ABL and non-ABL groups in terms of the outcome scores at each follow-up ($P > 0.05$). As a group, the C2 to C7 cervical curvature, global ROM, and segmental ROM were preserved post-operatively, and the pre-operative cervical curvature and ROM were comparable between the two groups. However, the C2 to C7 cervical curvature of the ABL patients was significantly larger than that of the non-ABL group at the 12-month ($P = 0.044$) and final ($P = 0.011$) follow-ups. In addition, both global and segmental ROM values were significantly higher in patients with ABL ($P < 0.05$). Neither the implant subsidence nor the RASD was affected by the presence of ABL [Table 1].

Until now, the hypothetical mechanisms of ABL include stress shielding, immunoreaction caused by wear debris, and micro-motion.[1-6] However, these hypotheses have several limitations. First, stress shielding is a common condition in large joint arthroplasty and usually shows a progressive course over several years, while most ABL in TDR occurs within the first 3 months after surgery. Second, wear debris and micro-motion may induce immunoreaction, which occurs around the implant rather than presenting confinement to the ventral part of the vertebral body.

In our point of view, stress may be one of the critical factors in the development of ABL. The hypo-pressure in the anterior region of the bone-implant interface may lead to resorption of the vertebral body. The following evidence supports our hypothesis: First, in agreement with the basic orthopedic principle, if the loading on a particular part of the bone decreases, the bone will become less dense and finally resorb. Second, the incidence of ABL significantly varies among different artificial discs. Third, finite element studies have shown that each cervical artificial disc has a specific stress distribution pattern. For example, the anterior part of the Prestige LP cervical disc system imposes a low-stress level[12] which might resorb according to Wolff law and present as ABL. We encourage further studies to assess ABL in other kinds of implants to address our hypothesis.

Previously, ABL was considered as a complication after TDR; however, those studies did not fully describe the long-term effects of ABL. Our study was conducted with a maximum of 10-year follow-up and showed that ABL did not affect clinical outcomes nor increase the risk of post-operative complications. Therefore, we hold the view that ABL is a radiographic anomaly rather than a potential complication.

Funding
This study was supported by grants from the Sichuan Province Science and Technology Support Program of China (No. 2019YFQ0002 and No. 2018SZ0045), West China Nursing Discipline Development Special Fund Project, Sichuan University (No. HXHL19016), The Commercialization of Scientific and Technological

Table 1: Incidence and outcomes of anterior bone loss in single-level Prestige LP cervical disc replacement.

Variables	Non-ABL group	ABL group	P
No. of patients	50	81	
(12-month follow-up)			
Age (years)	42.9 ± 9.2	43.2 ± 7.2	0.817
Sex			1.000
Male	25	40	
Female	25	41	
Follow-up (months)	66.6 ± 14.4	65.7 ± 10.0	0.808
Level operated, n		0.733	
C3/4	1	0	
C4/5	4	7	
C5/6	40	67	
C6/7	7		
VAS-neck			
Pre-operation	5.8 ± 1.2	5.9 ± 1.5	0.691
12-month follow-up	2.7 ± 0.9	2.8 ± 1.1	0.590
Last follow-up	1.4 ± 0.7	1.5 ± 0.5	0.343
VAS-arm			
Pre-operation	5.8 ± 1.2	5.8 ± 1.5	1.000
12-month follow-up	1.2 ± 0.6	1.2 ± 0.8	1.000
Last follow-up	0.6 ± 0.5	0.7 ± 0.6	0.326
NDI score			
Pre-operation	22.3 ± 5.1	21.9 ± 4.9	0.656
12-month follow-up	12.5 ± 3.7	13.0 ± 3.2	0.415
Last follow-up	5.7 ± 0.7	5.7 ± 0.9	1
JOA score			
Pre-operation	12.0 ± 2.0	12.1 ± 1.4	0.737
12-month follow-up	15.8 ± 0.9	15.6 ± 1.0	0.250
Last follow-up	16.1 ± 0.6	16.0 ± 0.9	0.488
Cervical alignment ($^\circ$)			
Pre-operation	13.3 ± 10.8	12.0 ± 10.9	0.504
12-month follow-up	13.3 ± 6.6	16.5 ± 9.5	0.044
Last follow-up	10.7 ± 5.5	15.1 ± 9.9	0.011
C2–7 ROM ($^\circ$)			
Pre-operation	52.6 ± 15.3	53.1 ± 16.5	0.876
12-month follow-up	53.1 ± 12.3	57.5 ± 14.0	0.066
Last follow-up	50.6 ± 15.3	55.9 ± 12.1	0.030
Segmental ROM ($^\circ$)			
Pre-operation	9.1 ± 5.0	10.2 ± 4.5	0.224
12-month follow-up	8.3 ± 5.8	10.4 ± 4.7	0.022
Last follow-up	6.3 ± 4.3	9.7 ± 5.1	0.001
Implant subsidence, n	4	9	0.765
Radiological djacent segment degeneration, n	10	18	0.829

ABL: Anterior bone loss; VAS: Visual analog scale; NDI: Neck disability index; JOA: Japanese Orthopaedic Association; ROM: Range of motion.
Achievements Funds, West China Hospital, Sichuan University (No. CGZH19007).

Conflicts of interest
None.

References
1. Ren X, Wang W, Chu T, Wang J, Li C, Jiang T. The intermediate clinical outcome and its limitations of Bryan cervical arthroplasty for treatment of cervical disc herniation. J Spinal Disord Tech 2011;24:221–229. doi: 10.1097/BSD.0b013e3181ef309.
2. Hacker FM, Babcock RM, Hacker RJ. Very late complications of cervical arthroplasty. Spine (Phila Pa 1976) 2013;38:2223–2226. doi: 10.1097/brs.0b013e3182eb84e4.
3. Kieser DC, Cawley DT, Fujishiro T, Mazas S, Boissière L, Obeid I, et al. Risk factors for anterior bone loss in cervical disc arthroplasty. J Neurosurg Spine 2018;29:123–129. doi: 10.3171/2018.1.SPINE171018.
4. Kim SH, Chung YS, Ropper AE, Min KH, Ahn TK, Won KS, et al. Bone loss of the superior adjacent vertebral body immediately posterior to the anterior flange of Bryan cervical disc. Eur Spine J 2015;24:2872–2879. doi: 10.1007/s00586-015-3849-6.
5. Heo DH, Lee DC, Oh JY, Park CK. Bone loss of vertebral bodies at the operative segment after cervical arthroplasty: a potential complication? Neurosurg Focus 2017;42:E7. doi: 10.3171/2016.10.FOCUS16393.
6. Kieser DC, Cawley DT, Fujishiro T, Tavolaro C, Mazas S, Boissiere L, et al. Anterior bone loss in cervical disc arthroplasty. Asian Spine J 2019;13:13–21. doi: 10.31616/asj.2018.0008.
7. Wang X, Meng Y, Liu H, Hong Y, Wang B. Is anterior bone loss the opposite of anterior heterotopic ossification in Prestige-LP cervical disc replacement? World Neurosurg 2020;136:e417–e418. doi: 10.1016/j.wneu.2020.01.022.
8. Hu X, Jiang M, Liu H, Rong X, Hong Y, Ding C, et al. Five-year trends in center of rotation after single-level cervical arthroplasty with the Prestige-LP disc. World Neurosurg 2019;132:e944–e948. doi: 10.1016/j.wneu.2019.07.042.
9. Rihn JA, Radcliff K, Hipp J, Vaccaro AR, Hilibrand AS, Anderson DG, et al. Radiographic variables that may predict clinical outcomes in cervical disk replacement surgery. J Spinal Disord Tech 2015;28:106–113. doi: 10.1097/BSD.0b013e31826a0c84.
10. Robertson JT, Papadopoulos SM, Traynelis VC. Assessment of adjacent-segment disease in patients treated with cervical fusion or arthroplasty: a prospective 2-year study. J Neurosurg Spine 2005;3:417–423. doi: 10.3171/spi.2005.3.6.0417.
11. Zhang Y, Zhang Z-C, Li F, Sun T-S, Shan J-L, Guan K, et al. Long-term outcome of dynesys dynamic stabilization for lumbar spinal stenosis. Chin Med J 2018;131:2537–2543. doi: 10.4103/0366-6999.244107.
12. Lin CY, Kang H, Rouleau JP, Hollister SJ, Marca FL. Stress analysis of the interface between cervical vertebral end plates and the Bryan, Prestige LP, and ProDisc-C cervical disc prostheses: an in vivo image-based finite element study. Spine (Phila Pa 1976) 2009;34:1554–1560. doi: 10.1097/BRs.0b013e3181ba6d3b.

How to cite this article: Wang XF, Meng Y, Liu H, Wang BY, Hong Y. Incidence and outcomes of anterior bone loss in single-level Prestige LP cervical disc replacement. Chin Med J 2021;134:109–111. doi: 10.1097/CMJ.0000000000001254.