Promising antimicrobials from *Phoma* spp.: progress and prospects

Mahendra Rai1,2*, Beata Zimowska3, Aniket Gade1 and Pramod Ingle1

Abstract

The increasing multidrug-resistance in pathogenic microbes and the emergence of new microbial pathogens like coronaviruses have necessitated the discovery of new antimicrobials to treat these pathogens. The use of antibiotics began after the discovery of penicillin by Alexander Fleming from *Penicillium chrysogenum*. This has attracted the scientific community to delve deep into the antimicrobial capabilities of various fungi in general and *Phoma* spp. in particular. *Phoma* spp. such as *Phoma arachidicola*, *P. sorghina*, *P. exigua* var. *exigua*, *P. herbarum*, *P. multirostrata*, *P. betae*, *P. fimeti*, *P. tropica*, among others are known to produce different bioactive metabolites including polyketides, macrosorpin, terpenes and terpenoids, thiodiketopiperazines, cytochalasin derivatives, phenolic compounds, and alkaloids. These bioactive metabolites have already demonstrated their antimicrobial potential (antibacterial, antifungal, and antiviral) against various pathogens. In the present review, we have discussed the antimicrobial potential of secondary metabolites produced by different *Phoma* species. We have also deliberated the biogenic synthesis of eco-friendly antimicrobial silver nanoparticles from *Phoma* and their role as potential antimicrobial agents.

Key points

- Growing multidrug-resistance and emerging pathogens need new antimicrobial drugs
- Different species of *Phoma* produce antimicrobial metabolites
- *Phoma* spp. are potential synthesizers of silver nanoparticles demonstrating antimicrobial activity.

Keywords: *Phoma* spp., Multidrug-resistance, Antibiotics, Bioactive metabolites, Silver nanoparticles

Introduction

There are terrifying global reports of the multidrug-resistance in pathogens that are not responding to the available antibiotics (Wencewicz 2019). The main reasons for developing resistance by microbes include misuse and overuse of antibiotics, and environmental factors (Ghosh et al. 2020; Christaki et al. 2020). This problem of antibiotic resistance has garnered the attention of the scientific community, policymakers, and the public at large from all over the world, and it is a global health challenge (Markley and Wencewicz 2018; Hu et al. 2021).

The new and emerging diseases caused by microbes are major threat to mankind. The recent emergence of the COVID-19 pandemic caused by SARS-CoV-2 is a burning example that has devastated human life globally. The current burden of co-infections and superinfections such as mucormycosis in COVID-19 patients is also a great issue that emphasizes the discovery of new antimicrobials (Feldman and Anderson 2021). Moreover, there has been huge concern about re-emerging microbial diseases such as malaria, tuberculosis, influenza, cholera, pertussis, etc.
Unfortunately, for more than three decades, no new antibiotics have been discovered (Böttcher et al. 2021), and therefore, these facts warrant the discovery of new antibiotics and/or search for new alternatives from natural products such as plants and microbes to tackle such a grave problem (WHO Newsletter 2020). Among the microbes, fungi play a key role in the production of antimicrobials. The serendipitous discovery of penicillin by Alexander Fleming (1929) from Penicillium notatum and P. chrysogenum is the best example (Zhu et al. 2014). Other potential antibiotics produced by fungi include cephalosporins and griseofulvin. Several species of Phoma such as P. arachidica, P. sorghina, P. exigua var. exigua, P. herbarum, P. multistrotrata, P. betae, and P. fimeti are pigment-producing (Chande et al. 1899) and some Phoma species have already demonstrated the antimicrobial potential against various fungi (Aoyagi et al. 2007; Hussain et al. 2014), bacteria (Huang et al. 2017; Chen et al. 2019) and viruses (Liu et al. 2019; Peng et al. 2020). They produce secondary metabolites with antimicrobial potential. These bioactive compounds include polyketides like anthraquinones and diphenyl ether derivatives; ergocyclotachalin A, macrosporin, thiodiketopiperazines, cytochalasin derivatives, and alkaloids. The antimicrobial metabolites producing species of Phoma can be harnessed to treat various microbial pathogens.

The present review is focused on the antimicrobial potential of secondary metabolites produced by different terrestrial, marine or endophytic Phoma species. Moreover, the biogenic synthesis of eco-friendly antimicrobial silver nanoparticles produced from Phoma and their role as potential antimicrobial agents have been discussed. The review is timely as so far there is no review available on the antimicrobial nature of metabolites produced by different Phoma species.

Phoma: the producer of novel bioactive metabolites

The Phoma spp. are widely distributed as pathogens of plants, animals, and humans, and also in soil, water and air (Rai 2002). The Phoma spp. secrete various metabolites that have already demonstrated antimicrobial potential (Rai et al. 2009a, b, c, 2018; Herath et al. 2009). Not only terrestrial but marine and endophytic species of Phoma are also responsible for the production of antimicrobial metabolites (Hoffman et al. 2008; Bhimba et al. 2012; Elsebai et al. 2016, 2018). A large number of metabolites with unique structures, and potential biological and pharmacological activities have been reported from the marine Phoma species particularly P. sorghina, P herbarum, and P. tropica. These metabolites generally include lactones, quinine, diterpenes, phthalate, enolides, and anthraquinones (Fig. 1a–c), which have shown a broad range of bioactivities including antimicrobial, anticancer, radical scavenging, and cytotoxic (Rai et al. 2018, 2020). There are several reports which provide conclusive evidence that endophytic Phoma species living in plants secrete potential antimicrobial compounds (Fig. 2) (Hussain et al. 2015; Huang et al. 2017; da Silva et al. 2017; de Vries et al. 2018; Nalli et al. 2019; El-Zawawy et al. 2020; Li et al. 2020; Rai et al. 2020; Hu et al. 2021). For example, the compounds like α-tetralone derivative (3S)-3,6,7-trihydroxy-α-tetralone, together with cerscospamide, β-sitosterol, and trichodermin reported from the ethyl acetate extract of endophytic Phoma sp. (ZJWC006) isolated from Arisaeuma rubescens (Wang et al., 2012). These compounds were found to be effective against the plant pathogenic fungi such as Fusarium oxysporum, Rhizoctonia solani, Colletotrichum gloeosporioides, Magnaporthe oryzae, and plant pathogenic bacteria including Xanthomonas campestris and X. oryzae.

Many species of Phoma have demonstrated remarkable antimicrobial activities. For example, Hussain et al. (2014) isolated phomafuranol (I), phomalacton (II), (3R)-5-hydroxymellein (III), and emodin (IV) (Fig. 3) from the ethyl acetate fractions of Phoma spp. recovered from Fucus serratus. Which demonstrated potential inhibitory activities including antibacterial, antifungal, and antialgal.

Arora et al. (2016) screened endophytes isolated from Glycyrrhiza glabra and reported the presence of Phoma spp. which was closely related to P. cucurbitacearum. Further, the authors isolated two thiodiketopiperazine derivatives (Fig. 4) from the extract of this species of Phoma which showed remarkable antibacterial activity against Staphylococcus aureus and S. pyogenes. Moreover, these compounds significantly inhibited the biofilm formation ability of both the pathogens singly and in combination with ciprofloxacin and ampicillin in a synergistic way. Endophytic Phoma spp. (URM 7221) isolated from the leaves of Schinus terebinthifolius effectively inhibited S. aureus, MRSA, B. subtilis, and E. faecalis (de Silva...
Fig. 1 (See legend on previous page.)
The potential of Phoma sp. was attributed to the production of phenolic compounds and steroids. In another study, Chen et al. (2019) reported that Phoma species SYSU-SK-7 inhabiting endophytically in mangrove plant Kandelia candel contains polyketides that have shown significant activity against Pseudomonas aeruginosa, Staphylococcus aureus followed by Candida albicans. Recently, Peng and his colleagues (2020) reported ergocytochalasin A from P. multirostrata which was found as an endophyte in Paraseucecio albus. The bioactive compound demonstrated strong activity against different pathogenic viruses including Human dengue virus type 3 (DV3), influenza A virus (H1N1), and respiratory syncytial virus (RSV).

Secondary metabolites are responsible for antimicrobial activity

The secondary metabolites such as anthraquinones are secreted by Phoma spp. including P. herbarum, P. exigua var. exigua, P. sorghina, P. macrostoma, P. glomerata, P. macdonalldii, P. tracheiphila, P. multirostrata, P. proboscis, and P. joveata, etc. (Rai et al. 2009a, b, c, 2021a, b). As shown in Fig. 5, the different bioactive secondary metabolites reported from Phoma spp include α-Pyrone derivatives (Sang et al. 2017), isoquoumatins (Hussain et al. 2014; Shi et al. 2017); anthraquinones and xanthones (Xia et al. 2015; Liu et al. 2019); thiodiketopiperazines, phomazines (Arora et al. 2016); cytochalasin derivatives (Peng et al. 2020), and diphenyl ether derivatives (Sumilat et al. 2017), tetrasubstituted furanpyrans, chenopodolans E (Evidente et al. 2016), xyloketals and chromones (Kim et al. 2018), meroterpenoids and diterpenoids (Xu et al. 2016), alkaloids such as phomapyrrolidones (Wijeratne et al. 2013), polyketides, phomaketides (Li et al. 2020) produced by different Phoma spp. A detailed account of different Phoma spp., secondary bioactive compounds, and antimicrobial activities have been given in Table 1.

Several members of the genus Phoma are well-known to produce a wide range of antimicrobials that are specific to the target organisms (bacteria, fungi, and viruses). P. exigua var. exigua produces antibiotic E and cytochalasin B (Boerema and Howeler 1967), P. pigmentivora produces LL-D253alpha (McIntyre et al. 1984), P. lingam (Tode) Desm. yields phomenoic acid and phomenolactone which are antibacterial and antifungal compounds (Topgi et al. 1987). In addition, there are other bioactive compounds reported from Phoma spp. For example, a well-known anti-infective agent squalatin was reported from a Phoma spp. (Dawson et al. 1992); anti-tumor compound fusidienol A from another Phoma spp. (Singh et al. 1997), and Yamaguchi et al. (2002) isolated the bioactive compound FOM-8108 which inhibited neutral sphingomyelinases.

Biosynthesis of silver nanoparticles by Phoma spp. and its antimicrobial efficacy

As discussed earlier, Phoma species are known to produce a wide range of metabolites that have already shown antimicrobial activity (Rai et al. 2009a). Some
of the metabolites may not directly reveal the antimicrobial potential but can be used for the fabrication of silver nanoparticles (AgNPs) which also demonstrated remarkable antimicrobial potential. AgNPs are well known as a new generation of antimicrobials (Rai et al., 2009b). An elaborative account of multiple modes of action of AgNPs is reviewed by Dakal et al. (2016) and a schematic representation of the same is given in Fig. 6.
Species	Compound	Activity	Host plant/Source	Reference
Phoma sp.	Sclerodione	Antifungal: Eurotium repens	Host plant: Ustilago violacea	Hussain et al. (2015)
		Antifungal: Mycotypha microspora		
	8,9-dihydro-3,5,7-trihydroxy-1,8,8-tetramethyl-5-2-oxopropyl]-4H-phenaleno[1,2-b]furan-4,6(5H)-dione			
	Atrovenetinone	Antifungal: Fusarium oxysporum	Host plant: Ustilago violacea	Hussain et al. (2015)
		Antibacterial: Bacillus megaterium		
Phoma sp. URM 7221	4-acetylpyrenophorol	Antibacterial: E. coli, B. megaterium	Host plant: Lycium intricatum	Zhang et al. (2008)
	4α-acetyldihydropyrenophorin	Antifungal: Microbotryum violaceum	Antialgal: Chlorella fusca	
	cis-dihydropyrenophorin			
	tetrahydropyrenophorin			
	7α-acetyl-seco-dihydropyrenophorin			
	seco-dihydropyrenophorin-1,4-lactone			
Phoma sp.	4,4′-diacetylpyrenophorol			
Phoma herbarum VB7	Phomodione			
	Phalate derivates			
Phoma sp.	polyketide derivatives			
Phoma multirostrata PUTY3	Crude extract			
Phoma medicaginis	Crude extract			
Table 1 (continued)

Species	Compound	Activity	Host plant/Source	Reference
Phoma hedericola		Antibacterial: *B. subtilis, Bacillus licheniformis, Micrococcus luteus, P. aeruginosa	*Calotropis procera*	Juyal et al. (2017)
Phoma sorghina, Phoma exigua, Phoma herbarum, Phoma fimeti	pigments	Antibacterial: *S. aureus, P. aeruginosa, B. subtilis and Proteus vulgaris		Kadu (2021)
Phoma moricola	(3S)-3, 6, 7-trihydroxy-a-tetralone	Antibacterial: *E. coli, Klebsiella pneumoniae, P. vulgaris, P. aeruginosa, Salmonella typhimurium, Staphylococcus aureus, and Streptococcus faecalis	*Withania somnifera*	Roshan and Mohana (2021)
Phoma sp.	flavipunicine	Antifungal: Phththora infestans	*Salvia officinalis*	Loesgen et al. (2011)
Phoma herbarum	Ethyl acetate extract	Antibacterial: *Bacillus cereus*	*Urospermum picroides*	El-Zawawy et al. (2020)
Phoma sp.135	cryptophomic acid, cryptodiol, cryptotriol	Antibacterial: *E. coli, B. subtilis, Mycobacterium phlei, S. aureus*	Marine-derived	Elsebai et al. (2018)
Phoma sp. L28	7-(γ,γ)-dimethylallyloxymacrosporin, macrosporin, 7-methoxymacrosporin, tetrahydroaltersolanol, 7-methoxymacrosporin, 7-methoxymacrosporin, tetrahydroaltersolanol L, ampelanol	Antifungal: Colletotrichum musae, Colletotrichum gloeosporioides, Fusarium graminearum, Penicillium italicum, F. oxysporum, f. sp. lycopersici Rhizoctonia solani	mangrove	Huang et al. (2017)
Phoma macrostoma	macrosporin	Antifungal: *F. graminearum*		
Phoma sp. JS752	barceloneic acid C	Antibacterial: *L. stella monocytophages, Staphylococcus pseudintermedius*	*Phragmites communis*	Xia et al. (2015)
Phoma macrostoma	macrooxazole C	Antibacterial: *B. subtilis*	*Circum arvense*	Matio Kemkuignou et al. (2020)
Phoma herbarum YG5839	macrodin A, macroxazole B, macroxazole C, macroxidin Z tyrosine derivative, terepizone derivatives	Antifungal: *F. oxysporum, P. italicum, Colletotrichum gloeosporioides, Colletotrichum musae*	marine-sponge-derived	Hu et al. (2021)
Phoma eupatorii 8082	Ergocytochalasin A	Antifungal: Phththora infestans		De Vries et al. (2018)
Phoma multirostrata XJ-2–1	Ergocytochalasin A	Antiviral: Human dengue virus type 3 (DV3), influenza A virus (H1N1), respiratory syncytial virus (RSV)		Peng et al. (2020)
Phoma sp.	Phomalacton, (3R)-5-hydroxymellein, emodin	Antibacterial: Microbotryum violaceum, Bacillus megaterium	*Fucus serratus*	Hussain et al. (2014)
Species	Compound	Activity	Host plant/Source	Reference
-----------------	----------	------------------------------	-------------------	---------------------------
Phoma sp. WF4	Viridicatol, tenuazonic acid, alternariol, alternariol monomethyl ether	Antifungal: *F. graminearum*	*Eleusine coracana*	Mousa et al. (2015)
Phoma sp.	Phomapyrrolidones A, B and C	Antibacterial: *Mycobacterium tuberculosis*	*Saurauia scaberrinae*	Wijeratne et al. (2013)
Phoma sp.	4-hydroxymellein	Antibacterial: *B. subtilis*	*Cinnamomum mollisimum*	Santiago et al. (2014)
Phoma sp.	4,8-dihydroxy-6-methoxy-3-methyl-3,4-dihydro-1H-isochromen-1-one	Antifungal: *Aspergillus niger*		
Phoma sp.	Thiodiketopiperazine derivatives	Antibacterial: *S. aureus, Streptococcus pyogenes*	*Glycyrrhiza glabra*	Arora et al. (2016)
Phoma sp.	phomafungin	Antifungal: *Candida albicans, Aspergillus fumigatus, Trichophyton mentagrophytes*	Africa and the Indian and Pacific Ocean islands	Herath et al. (2009)
Phoma species are capable of extracellular synthesis of spherical AgNPs and silver nanorods. Extracellular synthesis of nanoparticles by *Phoma* spp. offer an advantage of obtaining large quantities of AgNPs at a rapid rate and in a relatively pure state. Furthermore, the extracellular synthesis of AgNPs by *Phoma* spp. would make the process simple and easier for downstream processing; fungal broths can be easily filtered by filter press of similar simple equipment, thus making it a cost-effective process (Gade et al., 2010). Moreover, the fabrication of AgNPs by *Phoma* spp. is a green and eco-friendly approach as no toxic chemicals, high temperature, or pressure are used for the synthesis (Gade et al., 2014; Rai et al. 2021a, b).

In a study, the fabrication of AgNPs by *P. glomerata* (MTCC-2210) was reported by Birla et al. (2009). Authors also reported the combined activity of commercial antibiotics and AgNPs synthesised from *Phoma* spp. by testing against *E. coli* JM-103 (ATCC-39403) and *S. aureus* (ATCC-25923) on Muller–Hinton agar plates. Commercial antibiotics like ampicillin (10 μg), gentamycin (10 μg), kanamycin (30 μg), streptomycin (10 μg) and vancomycin (30 μg) were used in the study. The comprehensive fold increases in area were observed for ampicillin, streptomycin, and vancomycin. Thus, the combined activity observed was better in *E. coli* than *S. aureus*. Whereas the disc diffusion analysis of only AgNPs showed better activity against *S. aureus* as compared to *E. coli*. In another study, the AgNPs synthesised from *P. gardiniae* (ITCC 4554) showed antimicrobial activity against human pathogenic bacteria and fungi (Rai et al., 2015a). Authors evaluated the activity of AgNPs against *C. albicans*, *S. choleraesuis*, *P. aeruginosa*, *S. aureus*, and *E. coli*. The AgNPs were found to be most effective against *E. coli* followed by *S. aureus*, *C. albicans*, *S. choleraesuis*, and *P. aeruginosa* as compared with antibiotics. Further extracellular synthesis of AgNPs by *P. capsulatum*, *P. putaminum*, and *P. citri* was reported by Rai and co-workers (2015b).

The AgNPs synthesised from these *Phoma* spp. showed potential antimicrobial activity against *Aspergillus niger*, *C. albicans*, *S. choleraesuis*, *P. aeruginosa*, *S. aureus*, and *E. coli*. The least minimal inhibitory concentration (MIC) of 0.85 μg/ml was shown by AgNPs synthesized from *P. citri* against *S. choleraesuis*. AgNPs fabricated using *Phoma* spp. is not only reported for antibacterial and antifungal activity but also demonstrated antiviral potential. Some *Phoma* spp. isolated from the infected plants and identified on the basis of morphological and molecular characteristics were used for the fabrication of AgNPs.
This demonstrated a significant decrease in replication efficiency for Herpes Simplex Virus (HSV)-1 and human parainfluenza virus (HPIV) type-3, and a minor effect on the replication of HSV-2 at a concentration of 10 mg/ml (Gaikwad et al. 2013). Further, the authors reported that AgNPs ability to control viral infectivity was most likely attributed to the size and zeta potential of the fabricated AgNPs, which interfere with virus and cell interaction, thereby blocking viral entry into the cell.

Shende et al. (2017) synthesised AgNPs using immobilized biomass of the \textit{P. exigua} var. \textit{exigua}. This process was found to be a simple, fast, large-scale, and efficient route for the synthesis of AgNPs, without disintegration of calcium alginate beads in the medium for ten batch cycles. The immobilization of \textit{P. exigua} biomass leads to the development of a method for the continuous synthesis of AgNPs. Moreover, this large-scale synthesis process could be a boon to the commercial fabrication of AgNPs which will be required due to the application of AgNPs in a large number of commercial products. The AgNPs thus produced also demonstrated antibacterial activity against \textit{E. coli} and \textit{S. aureus}. Graphical illustration of \textit{P. exigua} var. \textit{exigua} biomass immobilization process and AgNPs fabrication is given in Fig. 7.

It is evident from the above reports that the different \textit{Phoma} spp. possess tremendous ability to reduce the inorganic metal ions to nanoparticles in general and AgNPs in particular, which is due to the extracellular secretions of metabolites by \textit{Phoma} spp. Consequently, the metabolites secreted by the \textit{Phoma} spp. can be harnessed and explored for the synthesis of nanoparticles of different sizes and shapes. In near future, the possibility of utilizing antimicrobial metabolites secreted by \textit{Phoma} spp. for the fabrication of AgNPs cannot be overlooked, since these metabolites can be used with AgNPs synergistically which will provide the solution to the increasing drug resistance problem worldwide.

Conclusions

Antimicrobial resistance and the entry of new fatal microbes like Coronavirus have made the researchers to seriously think about searching for new strategies to combat the global problem. Thus, there is a high demand for new antibiotics for difficult-to-treat bacteria and other
pathogenic microbes. In this context, various fungi including Phoma offers antimicrobial metabolites. Various species of Phoma particularly pigment-producing species such as P. arachidicola, P. sorghini, P. exigua var. exigua, P. herbarum, P. multirrostrata, P. betae, and P. fimbrii have already demonstrated their potential against pathogenic fungi, bacteria, and viruses. Moreover, several species of Phoma have been studied for the production of bioactive compounds such as polyketides, ergocystochalasin A, macroporin, thiodiketopiperazines, terpenes, terpenoids, and alkaloids which have shown their antimicrobial potential. These antimicrobial metabolites of Phoma spp. are not only terrestrial but also include marine and endophytic spp. dwelling in medicinal plants. Moreover, some Phoma species are also known to synthesize silver nanoparticles extracellularly which have already proven to be the new generation of antimicrobials. Such a process of nanoparticle synthesis is eco-friendly, economically viable and a greener approach without the use of harmful chemicals and high pressure and temperature. These nanoparticles can also be utilized as nanocarriers for the slow and sustained delivery of antimicrobial drugs. Finally, more thorough research is required to screen different species of Phoma from extreme environments to find out potential antibiotic producers.

Acknowledgements
Mahendra Rai is thankful to the Polish National Agency for Academic Exchange (NAWA) for financial support (Project No. PPN/ULM/2019/1/00117/A/DRAFT/00001) to visit the Department of Microbiology, Nicolaus Copernicus University, Toruń, Poland.

Author contributions
MR conceived and designed the review. BZ co-wrote the manuscript. MR critically revised the mss. All authors read and approved the manuscript.

Funding
Not applicable.

Declarations
Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare no conflict of interest.

Author details
1Department of Biotechnology, Sant Gadge Baba Amravati University, Amravati 444 602, Maharashtra, India. 2Department of Microbiology, Nicolaus Copernicus University, 87-100 Toruń, Poland. 3Department of Plant Protection, Institute of Plant Pathology and Mycology, University of Life Sciences in Lublin, 7 K. St. Leszczyńskiiego Street, 20-069 Lublin, Poland.

Received: 10 May 2022 Accepted: 13 May 2022 Published online: 23 May 2022

References
Ahmed T, Sarma MV (2020) Attenuation of quorum sensing associated virulence factors and biofilm formation in Pseudomonas aeruginosa pac1 by Phoma multirrostrata pac1, a saprophytic fungus, isolated from Carica papaya. UPSR 11(7):3268–3284. https://doi.org/10.13040/UPSR.0975-8232.11(7).3268-84
Aoyagi A, Yano T, Kozuma S, Takatsu T (2007) Pleofungins, novel inositol phosphorylceramide synthase inhibitors, from Phoma sp. SANK 13899. II. Structural elucidation. J Antibiot 60(2):143–152. https://doi.org/10.1038/ja.2007.14
Aorica P, Wani ZA, Nalli Y, Ali A, Rajy-UL-Hassan S (2016) Antimicrobial potential of thiodiketopiperazine derivatives produced by Phoma sp., an endophyte of Glycerriha glabra Linn. Microb Ecol 72(4):802–812. https://doi.org/10.1007/s00248-016-0805-x
Bhimba BV, Pushpam AC, Anumugam P, Prakash S (2012) Phthalate derivatives from the marine fungi Phoma herbarum VB7. Int J Biol Pharma Res 3(4):507–512
Birla SS, Tiwari VV, Gade AK, Ingle AP, Yadav AP, Rai MK (2009) Fabrication of silver nanoparticles by Phoma glomerata and its combined effect against Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus. Lett App Micro 48:173–179
Boerema GH, Howeler LH (1967) Phoma exigua desm and its varieties. Persoonia 5:15–28
Böttcher L, Gernbach H, Wernli D (2021) Restoring the antibiotic R&D market to combat the resistance crisis. Sci Public Policy. https://doi.org/10.1093/scipol/scab067
Chande A, Kovics GS, Sandhu SS, Rai MK. Morphological and genetic differentiation among four pigment producing Indian species of Phoma (Saccardo, 1899). Indian J Microbiol. 50(Suppl 1):110–6. DOI: https://doi.org/10.1007/s12088-010-0067-0. Epub 2010 Nov 25. PMID: 22815582; PMCID: PMC336407.
Chen Y, Yang W, Zou G, Chen S, Pang J, She Z (2019) Bioactive polyketides from the mangrove endophytic fungi Phoma sp. SYSU-SK-7. Fitoterapia 139:104369. https://doi.org/10.1016/j.fitote.2019.104369
Christaki E, Marcou M, Tofarides A (2020) Antimicrobial resistance in bacteria: mechanisms, evolution, and persistence. J Mol Evol 88(1):26–40. https://doi.org/10.1007/s00248-019-09914-3
Dakal TC, Kumar A, Majumdar RS, Yadav V (2016) Mechanistic basis of antimicrobial actions of silver nanoparticles. Front Microbiol 7:1831. https://doi.org/10.3389/fmicb.2016.01831
Dawson MJ, Farthing JE, Marshall PS, Middleton RF, O’Neill MJ, Shuttleworth A, Syllé C, Tatt RM, Taylor PM, Wildman HG, Buss AD, Langley D, Hayes MV (1992) The squalestatins, novel inhibitors of squalene synthase produced by a species of Phoma. J Antibiotics 45:639–647
de Vries S, van Dahlen JK, Schnake A, Ginschel S, Schulz B, Rose LE (2018) Broad-spectrum inhibition of Phytophthora infestans by fungal endophytes. FEMS Micro Ecol 94(4):fy037. https://doi.org/10.1093/femsoc/fy037
Elsebaï MF, Ghabbour HA, Legrave N, Fontaine-Vive F, Mehiri M (2016) New derivatives from the marine-derived fungus Phoma sp. Med Chem Res 27(8):1885–1892. https://doi.org/10.1007/s00044-016-0007-z
Elsebaï MF, Ghabbour HA, Legrave N, Fontaine-Vive F, Mehiri M (2018) New bioactive chlorinated cyclopentene derivatives from the marine-derived fungus Phoma sp. Med Chem Res 27(10). 3268-3281
Elsebaï MF, Ghabbour HA, Legrave N, Fontaine-Vive F, Mehiri M (2019) New bioactive cyclopentene derivatives from the marine-derived fungus Phoma sp. isolated from the sponge Ectyplasia ferox. Biol Mar Mediterr 23(1):312
El-Zawawy N, Metwally M, El-Salam A (2020) Antitumor and antimicrobial activities of endophytic fungi obtained from Egyptian Urospermum picipaules. Int J Cancer Biol Res 4(3):187–199
Evidente M, Cimmino A, Zonno MC, Masi M, Santoro E, Vergura S, Evidente A (2016) Chenopodolans E and F, two new furanopyrans produced by Phoma Chenopodiicola and absolute configuration determination of chenopodolans B. Tetrahedron 72(51):8502–8507
Feldman C, Anderson R (2021) The role of co-infections and secondary infections in patients with COVID-19. Pneumonia 13(5). https://doi.org/10.1186/s41479-021-00083-w
Gade AK, Ingle AP, Whiteley C, Rai M (2010) Mycogenic metal nanoparticles: progress and applications. Biotech Lett 32(5):593–600
Wang LW, Xu BG, Wang JY, Su ZZ, Lin FC, Zhang CL, Kubicek CP (2012) Bioactive metabolites from Phoma species, an endophytic fungus from the Chinese medicinal plant Arisaema erubescens. App Micro Biotech 93(3):1231–1239. https://doi.org/10.1007/s00253-011-3472-3

Wenczewicz TA (2019) Crossroads of antibiotic resistance and biosynthesis. J Mol Biol 431(18):3370–3399. https://doi.org/10.1016/j.jmb.2019.06.033

Wijeratne EK, He H, Franzblau SG, Hoffman AM, Gunatilaka AL (2013) Phomapyrrolidones A-C, antitubercular alkaloids from the endophytic fungus Phoma sp. NRRL 46751. J Nat Prod 76:1860–1865

Xia X, Kim S, Bang S, Lee HJ, Liu C, Park CI, Shim SH (2015) Barceloneic acid C, a new polyketide from an endophytic fungus Phoma sp. J5752 and its antibacterial activities. J Antibiotics 68(2):139–141

Xu JB, Fan YY, Gan LS, Zhou YB, Li J, Yue JM (2016) Cephalotanins A-D, Four norditerpenoids represent three highly rigid carbon skeletons from Cephalotaxus sinensis. Chem Eur J 22:14648–14654

Yamaguchi YM, Masuma R, Uchida R, Arai M, Tomoda H, Omura S (2002) Phoma sp. FOM-8108, a producer of gentisylquinones, isolated from sea sand. Mycoscience 43(2):127–133

Zhang W, Krohn K, Egold H, Draeger S, Schulz B (2008) Diversity of antimicrobial pyrenophorol derivatives from an endophytic fungus, Phoma sp. https://doi.org/10.1002/jemc.200800404

Zhu H, Sandiford SK, van Wezel GP (2014) Triggers and cues that activate antibiotic production by actinomycetes. J Ind Microbiol Biotechnol 41(2):371–386. https://doi.org/10.1007/s10295-013-1309-2

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.