Nominal of Money and Colour Detector for the Blind People

F Andika and J Kustija*
Department of Electrical Engineering Education, Universitas Pendidikan Indonesia
Jl. Dr. Setiabudhi No. 207 Bandung 40154, Indonesia
*j.kustija@upi.edu

Abstract. Blind people often face a detection to identify the colour object. One of important of inability from the blind is to identify a nominal of money. It is very likely occurrence of undesirable things, such as the possibility of exchanged money, or even act of fraud. It is necessary to design an equipment that allows for detecting a colour and a nominal of money. This tool is designed using TCS3200, RGB LED, LDR as the sensors, Arduino Nano as the controller and speaker. The sensors will detect the colour of the money, then sensors will transforms the colour into analog data and Arduino Nano will process this analog data into a digital data. Arduino Nano will convert the data into the form of audio as the output result. The speaker will release the audio according to the money or colour which detected, the audio output will be identified by the blind people.

1. Introduction
Blind people often face a detention to identify the colour of an object. One of important of inability from the blind is to identify a nominal of money. So far the blind identify a nominal of money by making a fold or arrange their money with help by the other people, but it has a weakness, that if blind forget with the fold or honesty from people who make a transaction with them giving a right nominal or not [1]. From this case, it is necessary to design an equipment that allows for detecting a colour and nominal of money to support the blind. This paper describes the design of nominal of money and colour detector using a sensor and microcontroller.

2. Methods

2.1. List of materials
Table 1 is List of Materials (LoM) required in this research.

Materials	Specification	Quantity
Arduino	Arduino Nano	1
Colour Sensor	TCS3200	1
RBG LED	Common cathode	1
Resistor	LDR	1
TP4056	5 V, 1A	1
Amplifier	PAM8403	1
Materials	Specification	Quantity
--------------	--	----------
Switch	2 pin	1
Batterry	Li-ion 18650 4,2 V, 1200 mAh rechargeable	1
Mp3 module	DFPlayer mini	1
Acrylic	2mm, size A4	1
Micro SD Card	4 Gb	1

2.2. Block diagram
The block diagram of this tools is represented by figure 1.

![Figure 1. Block diagram.](image)

2.3. Flowchart
The flowchart of this tools is represented by figure 2.

![Figure 2. Flowchart.](image)
2.4. Circuit diagram

Figure 3 show the circuit diagram of this tool.

![Figure 3. Circuit diagram.](image)

2.5. Arduino nano

The controller of this tool is using Arduino Nano, the specification of Arduino Nano is represented by Table 2.

Specification	Component
Microcontroller	ATMega328
Architecture	AVR
Operating Voltage	5 V
Flash Memory	32 KB
SRAM	2 KB
Clock Speed	16 Mhz
Analog I/O	6
Digital I/O	14
DC Current Per I/O	40 mA
Input Voltage	7-12
Weight	7 g

Arduino Nano could be easily programmed by using Arduino IDE with another electronic device such as a computer by using USB port [2, 3].
2.6. Colour sensor
Colour sensor is a component that could identify the colour of the object to be electrical value. In this research, we use TCS3200. It has two main components: a photodiode and a frequency converter [4, 5]. The photodiode will release a current whose value is proportional to the colour detected, this current will be converted into a signal whose frequency is proportional to its current. TCS3200 has 4 filter modes: red filter, clear, green filter, and blue filter [6]. TCS3200 identifies the colour and gives a serial output in RGB value to the Arduino Nano [7]. To set the filter mode, we use S2 and S3 pins as shown in Table 3 [6]. Figure 4 is the pin of TCS3200.

S2	S3	Photodiode
L	L	Red
L	H	Blue
H	L	Clear
H	H	Green

![Figure 4. TCS3200.](image)

2.7. RGB led and LDR (Light Dependent Resistor)
Both of these components could be used as an RGB sensor to detect the colour of an object. At first, the RGB led will emits red, green, and blue alternately to the object that will be detected. The reflected colour will affect the value of resistance of the LDR and is expressed in the RGB output. Figure 5 is the schematic diagram of the RGB sensor with LDR.

![Figure 5. Schematic of RGB led and LDR.](image)

2.8. TP4056
TP4056 is a module used to recharge the battery. This module has 2 LED indicators, which are red and blue. The red LED indicates that the battery charging is still going, while the blue LED indicates that the battery is full. When the battery is fully charged, the system will cut off, so the current does not flow to the battery. TP4056 works with USB and adapter [8].
2.9. DFPlayer mini
DFPlayer mini is a module that used for the music player. This module could work alone (standalone) or work with another microcontroller with serial communication RX/TX [9].

2.10. PAM8403
PAM8403 is an amplifier that can be used for a sound amplifier, the power of this amplifier is 3 watts with 5 volt DC source. The magnitude of this amplifier can be adjusted with potentiometer contained in this module [10].

2.11. Design
This equipment is using acrylic 16 cm x 5 cm x 7 cm for the case, all materials will be inserted in this case. The case looks like as the follows. Figure 6 is the design and component position of this tools.

![Design and component position](image)

Figure 6. Design and component position.

3. Results and discussion

3.1. Sensor recitations and data mapping
To read the sensor recitations is by using serial communication in Serial Monitor from Arduino IDE. Sensors recitation is done for 4 times to get ADC value for each position. The output from TCS3200 are R, G, B meanwhile the output of LDR are RL, GL, and BL. There are 4 positions of money, it has 4 possibilities positions. This tool is tested with Rupiah 2016 emissions. The left table is the ADC of the money or colour, and the right table is the mapping data of ADC. Mapping of ADC is by making an interval of data (See in Table 4 until Table 19).

Table 4. ADC of Rp.1000.
Position
1st
2nd
3rd
4th

Table 5. Mapping ADC of Rp.1000.
1st Position
56≤ R ≤60
57≤G ≤61
49≤ B ≤54
21≤RL≤26
31≤GL≤37
62≤BL≤68
Table 6. ADC of Rp.2000.

Position	R	G	B	RL	GL	BL
1st	63	70	61	20	27	61
2nd	60	65	57	20	26	51
3rd	58	64	57	25	31	58
4th	66	68	57	23	30	62

Table 7. Mapping ADC of Rp.2000.

Position	1st Position	2nd Position	3rd Position	4th Position
R	61≤ R ≤66	58≤ R ≤62	56≤ R ≤60	64≤ R ≤68
G	68≤ G ≤72	63≤ G ≤68	62≤ G ≤667	66≤ G ≤71
B	59≤ B ≤64	55≤ B ≤60	55≤ B ≤59	55≤ B ≤60
RL	18≤ RL ≤25	18≤ RL ≤24	22≤ RL ≤27	22≤ RL ≤27
GL	25≤ GL ≤31	24≤ GL ≤30	29≤ GL ≤33	28≤ GL ≤33
BL	59≤ BL ≤65	49≤ BL ≤56	56≤ BL ≤62	60≤ BL ≤66

Table 8. ADC of Rp.5000.

Position	R	G	B	RL	GL	BL
1st	58	60	60	17	24	57
2nd	56	57	52	15	25	55
3rd	50	64	60	19	28	61
4th	59	70	62	21	31	61

Table 9. Mapping ADC of Rp.5000.

Position	1st Position	2nd Position	3rd Position	4th Position
R	56≤ R ≤60	54≤ R ≤58	48≤ R ≤59	57≤ R ≤62
G	58≤ G ≤68	55≤ G ≤65	62≤ G ≤67	68≤ G ≤72
B	58≤ B ≤62	50≤ B ≤60	58≤ B ≤62	60≤ B ≤65
RL	15≤ RL ≤21	13≤ RL ≤18	17≤ RL ≤22	19≤ RL ≤24
GL	22≤ GL ≤27	23≤ GL ≤28	26≤ GL ≤32	29≤ GL ≤34
BL	55≤ BL ≤61	53≤ BL ≤60	59≤ BL ≤65	60≤ BL ≤66

Table 10. ADC of Rp.10,000.

Position	R	G	B	RL	GL	BL
1st	63	71	56	20	32	59
2nd	59	67	52	18	26	45
3rd	57	60	47	18	27	48
4th	62	69	54	24	31	53

Table 11. Mapping ADC of Rp.10,000.

Position	1st Position	2nd Position	3rd Position	4th Position
R	61≤ R ≤66	57≤ R ≤62	55≤ R ≤60	60≤ R ≤65
G	69≤ G ≤73	65≤ G ≤70	58≤ G ≤63	67≤ G ≤72
B	54≤ B ≤59	50≤ B ≤55	45≤ B ≤49	52≤ B ≤54
RL	18≤ RL ≤25	16≤ RL ≤21	16≤ RL ≤23	22≤ RL ≤26
GL	30≤ GL ≤35	24≤ GL ≤30	25≤ GL ≤30	29≤ GL ≤34
BL	57≤ BL ≤64	43≤ BL ≤49	46≤ BL ≤51	51≤ BL ≤58
Table 12. ADC of Rp.20.000.

Position	R	G	B	RL	GL	BL
1st	60	59	51	18	22	47
2nd	52	52	48	20	23	48
3rd	52	61	59	18	22	48

Table 13. Mapping ADC of Rp.20.000.

1st Position	2nd Position	3rd Position	4th Position
58≤ R ≤63	50≤ R ≤54	50≤ R ≤60	63≤ R ≤67
57≤ G ≤62	50≤ G ≤56	59≤ G ≤63	62≤ G ≤66
49≤ B ≤53	46≤ B ≤50	57≤ B ≤60	54≤ B ≤58
16≤ RL ≤21	18≤ RL ≤22	16≤ RL ≤22	21≤ RL ≤28
20≤ GL ≤25	21≤ GL ≤26	20≤ GL ≤26	27≤ GL ≤32
45≤ BL ≤51	46≤ BL ≤52	46≤ BL ≤52	65≤ BL ≤72

Table 14. ADC of Rp.50.000.

Position	R	G	B	RL	GL	BL
1st	63	62	50	24	28	58
2nd	60	60	51	20	23	42
3rd	63	60	52	20	26	48
4th	71	68	52	26	30	60

Table 15. Mapping ADC of Rp.50.000.

1st Position	2nd Position	3rd Position	4th Position
61≤ R ≤65	58≤ R ≤63	61≤ R ≤65	69≤ R ≤74
60≤ G ≤64	58≤ G ≤63	58≤ G ≤66	66≤ G ≤71
40≤ B ≤53	49≤ B ≤53	50≤ B ≤55	50≤ B ≤56
22≤ RL ≤27	18≤ RL ≤23	18≤ RL ≤24	24≤ RL ≤29
26≤ GL ≤32	21≤ GL ≤27	24≤ GL ≤30	28≤ GL ≤34
56≤ BL ≤61	40≤ BL ≤46	44≤ BL ≤50	58≤ BL ≤64

Table 16. ADC of Rp.100.000.

Position	R	G	B	RL	GL	BL
1st	56	68	56	18	28	53
2nd	51	64	52	15	25	46
3rd	57	67	55	15	27	48
4th	54	67	54	19	32	62

Table 17. Mapping ADC of Rp.100.000.

1st Position	2nd Position	3rd Position	4th Position
54≤ R ≤58	49≤ R ≤54	55≤ R ≤59	52≤ R ≤57
66≤ G ≤71	62≤ G ≤66	65≤ G ≤70	65≤ G ≤72
54≤ B ≤58	50≤ B ≤56	53≤ B ≤58	52≤ B ≤56
16≤ RL ≤22	13≤ RL ≤17	13≤ RL ≤19	17≤ RL ≤22
26≤ GL ≤31	23≤ GL ≤28	25≤ GL ≤30	30≤ GL ≤36
51≤ BL ≤57	44≤ BL ≤49	46≤ BL ≤52	60≤ BL ≤67
Table 18. ADC of colour.

Colour	R	G	B
Red	45	90	70
Yellow	48	57	57
Green	71	53	62
Light green	50	47	47
Blue	90	73	50
Dark blue	100	93	64
Orange	33	79	6
Pink	32	78	54
Black	103	109	87
White	43	46	36

Table 19. Mapping ADC of colour.

Colour	RL	GL	BL
Red	43≤RL≤47	89≤GL≤93	69≤BL≤73
Yellow	46≤RL≤50	55≤GL≤59	65≤BL≤70
Green	69≤RL≤75	50≤GL≤55	60≤BL≤66
Light green	48≤RL≤53	45≤GL≤49	45≤BL≤50
Blue	88≤RL≤93	71≤GL≤76	48≤BL≤52
Dark blue	98≤RL≤103	90≤GL≤100	60≤BL≤68
Orange	30≤RL≤40	77≤GL≤80	61≤BL≤72
Pink	30≤RL≤35	75≤GL≤84	52≤BL≤58
Black	102≤RL≤107	108≤GL≤113	85≤BL≤93
White	40≤RL≤50	43≤GL≤54	33≤BL≤45

3.2. Trial

This tool is tested by using some different sample of rupiah 2016 emission and some colour, this trial is 4 times for each colour or money. Table 20 is the result of the sensing colour trial, and Table 21 show the result of trial sensing of nominal.

Table 20. Result of colour.

Colour	Result	
Red	Red	
Red	Red	
Red	Red	
Pink	Pink	
Pink	Pink	
Pink	Pink	
Green	Green	
Green	Green	
Green	Green	
Light green	Light green	Light green
Light green	Light green	
Light green	Light green	
Blue	Blue	
Blue	Blue	
Blue	Blue	
Table 20. Cont.

Colour	Result
Dark blue	Dark blue
Dark blue	
Dark blue	
Dark blue	
Orange	Orange
Orange	
Orange	
White	White
White	
White	
Yellow	Yellow
Yellow	
Yellow	
Black	Black
Black
Black |

Table 21. Result of nominal detector.

Money	Result
Rp.1000	Undetected(error)
	Rp.1000
	Rp.1000
	Rp.1000
Rp.2000	Rp.1000 (Error)
	Rp.2000
	Rp.1000 (Error)
	Rp.2000
Rp.5000	Rp.5000
	Rp.5000
	Rp.5000
	Rp.5000
Rp.10.000	Rp.10.000
	Rp.10.000
	Rp.10.000
	Rp.10.000
Rp.20.000	Rp.20.000
	Rp.20.000
	Rp.20.000
	Rp.20.000
Rp.50.000	Rp.50.000
	Rp.50.000
	Rp.50.000
	Undetected(error)
Rp.100.000	Rp.100.000
	Rp.100.000
	Rp.100.000
	Rp.100.000
The result of the trial for the colour is always true for 4 time trial, but the tool has a some error to detecting a nominal of money, it is because the data ADC of money with different nominal is almost same. Sensing of nominal money depends on the physical condition of money.

\[
error = \frac{\text{total error}}{\text{total trial}} \times 100\%
\]

\[
error = \frac{4}{28} \times 100\% = 14.3\%
\]

4. Conclusions

Based on the test that has been done can be taken several conclusions:

- The design of colour and nominal of money detector works well but has some error.
- This tool has an error if the nominal value of money included in the box is the 2004 emission money, this is because the ADC value of the nominal of money 2004 has the same ADC value at different nominal on emissions 2016 banknotes.
- Sensing of money depends on the physical condition of the money to be detected.

References

[1] Siwindarto I P, Probadi D A and Rif'an M 2014 “Alat Deteksi Nominal Uang Kertas Untuk Penyandang Tuna Netra” Jurnal Mahasiswa TEUB 2 (1).
[2] Sudhan R H, Kumar M G, Prakash A U, Devi S A N U R and Sathiya P 2015 “Arduino ATMEGA-328 microcontroller” International Journal of Innovative in Electrical, Electronics, Instrumentation and Control Engineering 3 (4) pp. 27-29.
[3] Arduino LLC 2015 “Arduino Nano”.
[4] Joy A 2014 “Object Sorting Robotic Arm Based on Colour Sensing” Int. J. Adv. Res. Electr. 3 (3) pp. 7741–7746.
[5] S Shirgave, A Salunkhe, K Shirgave and U S Y 2017 “Color Sorting Robot” Ijarcce 6 (3), pp. 403–405.
[6] F B Diagram 2004 “Programmable Color Light-To-Frequency Converter Texas Advanced Optoelectronic Solutions Inc. Programmable”.
[7] T G Gaikar 2016 “Object Sorting using Color Sensor and Arduino” pp. 483–486.
[8] N T P A Corp 2015 “TP4056 1A Standalone Linear Li-Ion Battery Charger with Thermal Regulation in SOP-8”.
[9] P Map and W Mode 2014 “DFPlayer Mini SKU : DFR0299”.
[10] PAM 2007 “Pam8403”.
