Trilateral Large-Scale OSN Account Linkability Study

Alice Tweeter Bob Yelper Eve Flickerer

Abstract—In the last decade, Online Social Networks (OSNs) have taken the world by storm. They range from superficial to professional, from focused to general-purpose, and, from free-form to highly structured. Numerous people have multiple accounts within the same OSN and even more people have an account on more than one OSN. Since all OSNs involve some amount of user input, often in written form, it is natural to consider whether multiple incarnations of the same person in various OSNs can be effectively correlated or linked. One intuitive means of linking accounts is by using stylometric analysis.

This paper reports on (what we believe to be) the first trilateral large-scale stylometric OSN linkability study. Its outcome has important implications for OSN privacy. The study is trilateral since it involves three OSNs with very different missions: (1) Yelp, known primarily for its user-contributed reviews of various venues, e.g., dining and entertainment, (2) Twitter, popular for its pithy general-purpose micro-blogging style, and (3) Flickr, used exclusively for posting and labeling (describing) photographs. As our somewhat surprising results indicate, stylometric linkability of accounts across these heterogeneous OSNs is both viable and quite effective. The main take-away of this work is that, despite OSN heterogeneity, it is very challenging for one person to maintain privacy across multiple active accounts on different OSNs.

I. INTRODUCTION

Online Social Networks (OSNs) have been rapidly gaining worldwide popularity for almost two decades. The OSN paradigm evolved from pre-web BBSs (Bulletin Board Systems) and Usenet discussion groups, through AOL[1] and Yahoo, to enormous and global modern OSNs. One of them, Twitter, has already exceeded 500,000,000 accounts[2]. In addition to gaining users, OSNs have permeated into many spheres of everyday life. One of many possible ways to classify OSNs is by their primary mission:

• Generic OSNs, such as Facebook, VK, Google+ and LinkedIn, where users establish and maintain connections while sharing any type of content, of almost any size.
• Microblogging OSNs, such as Twitter and Tumblr, that let users share short, frequent and (ostensibly) newsworthy missives.
• Media-specific OSNs, such as Instagram and Flickr, where users mainly share content of a certain media type, such as photos or videos. However, even in these OSNs, users provide textual labels and descriptions for shared media content.
• Review OSNs, such as Yelp, TridAdvisor and Amazon, where users offer or products and services, e.g., restaurants, hotels, airlines, music, books, etc. These tend to be hybrid sites, that include some social networking functionality, beyond user-provided reviews. Users are evaluated by their reputations and there are typically no size restrictions on reviews.

Despite their indisputable popularity, OSNs prompt some privacy concerns[3]. With growing revenue on targeted ads, many OSNs are motivated to increase and broaden user profiling and, in the process, accumulate large amounts of Personally Identifiable Information (PII). Disclosure of this PII, whether accidental or intentional, can have unpleasant and even disastrous consequences for some OSN users. Many OSNs acknowledge this concern offering adjustable settings for desired privacy levels.

A. Motivation

Meanwhile, a large number of people have accounts on multiple OSNs, especially, OSNs of different types. For example, it is common for someone in his/her 20-s to have a Twitter, Instagram and Facebook accounts. However, privacy across OSNs is not yet sufficiently explored. Many users naturally expect that their accumulated contributions (content) and behavior in one OSN account are confined to that OSN. It would be clearly detrimental to one’s privacy if correlating or linking accounts of the same person across OSNs were possible.

In this paper, we explore linkability of user accounts across OSNs of different types. That is, given a user holding accounts on two OSNs, we investigate the efficacy and efforts needed to correctly link these accounts. While this problem has been studied in[4], prior results are very limited with respect to linkage accuracy and large numbers of accounts. The goal of this work is to develop cross-OSN linkage models that are highly accurate and scalable. To this end, we apply Stylometry – the study of one’s writing – in a novel framework, that yields very encouraging results. Our linkability study is performed over three popular OSNs: Twitter, Yelp and Flickr. These OSNs are heterogeneous, i.e., each has a very distinct primary mission. Thus, the problem of accurately linking users accounts is quite challenging. Figure[5] captures the OSN pairs we study for linkability purposes.

Although accurate and scalable linking techniques are detrimental to user privacy, they can also be useful in forensics, e.g., to trace various miscreants. As is well-known, OSNs have become a favorite global media outlet for both criminals

[1]This is despite the fact that the entire notion of “OSN Privacy” might seem inherently contradictory.
and terrorists to recruit and promote ideology. Both sides of linkability arguments are equally important. However, we believe that it is important to know potential privacy consequences of participating in multiple OSNs, since, as mentioned above, many (perhaps naively) expect some confinement or compartmentalization of each OSN account.

B. Contributions

Our anticipated contributions are as follows:

- **High Accuracy.** We develop stylometric-based linkability models that are substantially more accurate than those in previous work, e.g., [26].
- **Scalability.** Popular OSNs have enormous numbers of users. Thus, scalability of linkability models is essential. Unlike previous work, our models easily scale from 100 to 100,000 users.
- **Public Data.** Proposed linkability models perform very well with respect to accuracy and scalability even though we assume that the adversary only has access to publicly available textual data from OSNs. Therefore, achieving high accuracy armed only with publicly available data, provides a lower bound on how much the adversary can achieve and serves as an indicator of the severity of the privacy problem.

C. Organization

The rest of the paper is organized as follows: Section II summarizes related work in authorship attribution and linkability. Then, Section III provides background information on OSNs used in our study. Problem settings are presented in Section IV, followed by Section V which describes the massive dataset used as input for the study. Section VI describes some preliminaries of the experiment framework. Next, experimental results are presented in Section VII. Potential issues and questions stemming from the study results are discussed in Section VIII. Finally, Section IX summarizes the paper.

2 We believe that users who pursue privacy would disable all OSN meta-data information, such as geo-location – a feature that was essential for linkability accuracy in [14]. Moreover, private messages will not be available to outside world, which was used in [9].

II. RELATED WORK

Author Attribution. There has been a lot of research in the field of author attribution. Abbasi, et al. [8] proposed a technique based on a new unsupervised learning method, referred to as Writeprints. It uses Karhunen-Loeve transforms along with a rich set of features to identify authors, achieving accuracy of 91% in finding the author of an anonymous message from a set of 100 candidate authors. A study called Herbert West – Deanonymizer, was conducted to investigate the possibility of de-anonymizing peer reviews of academic papers [21]. A high percentage – around 90% – of reviews were correctly de-anonymized from a set of 23 reviewers using Naive Bayes Classifier. Another recent effort studied author identification of the Internet blogs on a relatively large-scale, with 100,000 authors [22]. In certain cases, de-anonymization accuracy of 80% was achieved and anonymous texts were linked cross different platforms. Mishari, et al. [20] studied linkability of community-based reviews in Yelp, based on a set of about 2,000 reviewers and almost all reviews were correctly de-anonymized. Even though a simple feature set was used (e.g., unigrams and bigrams) with Naive Bayesian classifier, high linkability accuracy was achieved. Stamatakos [26] extensively surveyed the area of author attribution and we refer to it for a good overview of the topic.

Cross-Linking Accounts. The study most relevant to this paper was conducted by Goga, at al. [14]. It cross-linked accounts between different OSNs, the same three that are used in this paper: Twitter, Yelp and Flicker. Features that included locations, timestamps and text were used, with the help of the cosine distance function, to link accounts operated by the same user across OSNs. While the settings is similar to ours [9] we substantially improve linkability results. Unlike [14], we rely only on text-based features and leverage them to improve scalability (larger set of accounts) and linkability results. Moreover, we report on correlations in between all OSN pairs, whereas [14] only discusses correlating Yelp and Flickr to Twitter.

Similarly, Afroz, et al. [9] successfully explored cross-linking multiple accounts belonging to the same user within the same forum or blog-based site. This is a step forward since, in prior studies, linking was based on artificially created accounts of the same user. Accuracy between 85% and 90% was achieved, while maintaining high recall values. The study used an algorithm called Doppelgänger Finder, where two accounts: account_A and account_B were claimed to belong to the same user if combined probability of attributing account_A to account_B and vice versa exceeded a specific threshold. The probability of attributing account_A to account_B was computed based on a model trained on all accounts except account_A and vice versa. Probabilities are combined by averaging, multiplying or square-averaging. Lexical, domain and syntactic features were used along with Principal Component Analysis to reduce the feature set size.

3 As acknowledged in Section V we borrowed our dataset from this study.
A large-scale (10, 000) author attribution study was recently conducted to link Twitter accounts based on very simple lexical features – unigrams and bigrams – and Naive Bayesian classifier [10]. High linkability results – nearly 100% – have been achieved. Also, results were verified based on ground truth – actual Twitter accounts belong to the same user.

Other related work explored account linkability in online services based on entropy of user-names [24]. In [16], account properties with a simple set of heuristics were used to cross-link users. And finally, Iofciu, et al. explored tags to identify users across Delicious, StumbleUpon and Flickr [15].

De-anonymization in User Preference Databases. More distantly related is the body of research that addressed de-anonymization of contributors to user preference databases. One seminal work studied de-anonymization of Netflix database users who rated movies [23]. It proposed a model for privacy breaches, based on an external knowledge base, and demonstrated an actual attack on the Netflix dataset. A closely related effort proposed techniques for cross-linking user accounts between movie rating database and public forums [13].

III. OSN BACKGROUND

In this section, we overview three OSNs used in our study. Yelp is a community-based review site [5] where users – who must have accounts – offer reviews of various products and services. Access to reviews is not restricted, i.e., anyone can read Yelp reviews, with or without an account. Typical reviewed industry categories include: restaurants, automotive, medical, hospitality and entertainment. At least in North America, Yelp is very popular: the number of reviews exceeds 70,000,000 and the number of yearly visitors is about 142,000,000 [6]. Yelp is considered to be an OSN since it also allows its users to connect to, and interact with, other Yelp users. Yelp has a reward system for reviewers based on the quantity and quality (popularity and ratings) of their contributions. Not surprisingly, this helps increase the number of avid or prolific reviewers [7].

Twitter is a microblogging OSN [3] where registered users (known as tweeters) post short messages (called tweets)4. Some tweeters make their tweets public, meaning that anyone can read them regardless of having a Twitter account. Meanwhile, others restrict access to their tweets to so-called followers – Twitter users who have explicitly requested, and have been granted, access to one’s tweets. One of Twitter’s most distinctive features is the 140-character size limit for tweets. Twitter is currently one of the most popular and diverse OSNs, having attracted many avid tweeters among politicians, journalists, athletes and various celebrities. Furthermore, all kinds of groups, societies and organizations (both in public and private sectors) have strong Twitter presence. The number of Twitter accounts exceeds 200,000,000 [4].

Flickr is a focused OSN and a cloud storage provider, specializing in sharing multimedia content, i.e., photographs and videos [2]. Flickr users can annotate their multimedia content with text. Without annotations, the file-name of a particular photo or video content is used as a default title. Unlike Twitter, Flickr imposes no size limit on the annotation text. Using Flickr to post (or view restricted) content, generally requires having an account. However, public content can be viewed by anyone. Flickr has a notion of a contact, akin to a friend or a connection on other OSNs.

As follows from the above description, each of these three OSNs is quite distinct in its primary mission. This makes the problem of linking accounts across them particularly challenging.

IV. PROBLEM SETTING

The author attribution problem can be informally defined as:

Given a set of known authors $A_{\text{known}} = \{a_1, a_2, ..., a_n\}$, and an anonymous contribution C (textual, non-textual or a mix of both), find the most likely candidate author of C among those in A_{known}.

In the OSN context, author attribution problem translates into finding the most likely candidate author of anonymous posts, i.e., the user who most likely generated these posts given his or her OSN profile. We refer to attribution of anonymous posts to a user account as linking.

As mentioned earlier, our goal is to study the author attribution problem (based on stylometry) across multiple OSNs. Basically, we assume that some people have accounts in two OSNs and we want to link these accounts. We have OSN_1 and OSN_2 each with its own set of accounts. We first remove from each OSN accounts that do not have a match (authored by the same user) in the other OSN. This results in R_{OSN_1} and R_{OSN_2} that are reduced versions of OSN_1 and OSN_2, respectively. To make the problem more challenging and also more realistic, we pollute R_{OSN_2} by introducing additional randomly chosen accounts that were originally in OSN_2. As a result, for each account in R_{OSN_1}, there is a matching account in R_{OSN_2}. We refer to the accounts in R_{OSN_1} as unknown, and those in R_{OSN_2} as known, accounts.

Now, the problem is reduced to finding a matching model M, i.e., an author attribution technique, that links unknown accounts in R_{OSN_1} to known accounts in R_{OSN_2}. Specifically, for each unknown account in R_{OSN_1}, M returns a list of all accounts in R_{OSN_2} sorted in decreasing order of probability of the correct match. Similar to prior work in [20], we define Top-K linkability ratio LR of M as the ratio of unknown accounts (accounts in R_{OSN_1}) that have their correct matching account – in R_{OSN_2} – among the Top-K accounts of their returned lists from M. Our goal boils down to finding a matching model that maximizes LR with respect to X and K. We vary X so that the total number of known accounts ranges from 100 to 100,000. Furthermore, we vary K among 1, 10 and 100.

4Technically, one can be a Twitter user but not a tweeter, e.g., someone might create an account only to follow others’ tweets, but not tweet.
V. Dataset

We use the base dataset obtained (crawled) and used by Goga et al. [14]. Encompassing users from Yelp, Twitter and Flickr, this dataset is gigantic, containing over 350,000,000 tweets, 29,000,000 Flickr posts and 1,000,000 Yelp reviews. Its most important property is the ground truth of matching accounts: it provides a set of users who operate accounts in multiple OSNs. In the rest of this section, we describe the data cleaning process and then provide more details regarding matching accounts.

A. Data Cleaning

Our initial analysis of the base dataset revealed the existence of numerous users with very limited overall contributions. However, stylometric analysis is known to perform accurately in the context of highly prolific users. Some recent studies [9], [19], [25] report achieving good linkability performance with at least 4,500 words per author. Thus, we first need to cull users with lower overall contributed text. We also need to filter out contributions that did not originate with the target user, since some OSNs (e.g., Twitter) allow users to repost (retweet) what other people have posted. This filtering helps us better capture users’ own stylometric properties. Consequently, we filter out the following:

- Twitter re-tweets – including tweets preceded with “rt”. (Some Twitter users copy & paste tweets and add “rt” to start of a new tweet, instead of using Twitter’s official re-tweet functionality. This often occurs because Twitter does not allow re-tweeting if the author of the original tweet has a private profile.)
- URLs, since they typically have no relevance to a user’s stylometric profile.
- User mentions, identified via “@” character followed by a user-name.
- Posts in languages other than English.

NOTE: we refer to a single piece of content generated by a user as a *post*. It denotes: a tweet in Twitter, a review in Yelp, and a photo annotation text in Flickr.

After filtering, we combine all remaining posts of users into a single body of text. This corresponds to the union of Yelp reviews, Twitter tweets and Flickr photo annotations. As the last step, we remove all users who have a cumulative word count of less than 1,000. We stress that this threshold of only 1,000 words per author is significantly lower than that in previous studies, e.g., 4,500 words in [9], [19], [25]. Table I presents some dataset statistics before and after data cleaning. The most important difference is the evident increase in average number of posts per user after cleaning.

Dataset	Original Dataset	Cleaning w/ words ≥ 1000
Yelp-Twitter	1,889	153
Twitter-Flickr	13,629	299
Yelp-Flickr	1,199	55

B. Matching Accounts

Dataset includes a set of matching accounts that correspond to what we refer to as: *ground truth*. This set links usernames from different OSNs. This information was collected in [14] using the “Friend Finder” functionality provided in OSNs. Friend Finder was run on input of a list of 10,000,000 e-mail addresses using browser automation tools: Watir and Selenium. Then, the list of users registered with the given e-mail addresses was checked, in order to identify user-names registered to the same e-mail address, i.e. operated by the same person. Table II shows the number of matching accounts in the original base dataset. We also present the number of matching accounts after data cleaning, as described above.

VI. Preliminaries

Before presenting experimental results, we provide some background information about the feature set and the methodology.

A. Feature Set

We construct an unique set of features, using a subset of the popular Writeprints set [8] along with 3 additional features. Writeprints contains 22 distinct stylometric features. From these, we select 9 lexical, syntactic and content features before adding 3 more custom features (not present in Writeprints). The resulting 12 features are:

- **Lexical** features include frequencies of alphabetical n-grams (n consecutive letters) and special characters, e.g. “*”, “@”, “#”, “$”, and “%”.
- **Syntactic** features consist of frequencies of function words, punctuation characters and Part-Of-Speech (POS) tags, where unigrams correspond to one tag, and bigrams to two consecutive tags. Function words are 512 common function words used by Koppel et al. [18].

POS tags are grammatical descriptions of words in sentences, e.g. adjective, noun, verb and adverb. We use two popular POS taggers:

1) Stanford Log-linear [27], which was the booster of account linkability in recent studies [9], [11].

2) GATE Twitter [12], which has never been used in account linkability before.

POS tagging of tweets is hard due to the short message style in Twitter. Therefore, we integrate GATE – a state-of-art accurate POS tagger specially designed for Twitter to our feature set. Our experimental results demonstrate that GATE Twitter tagger improves the account linkability significantly.

[8]Watir: https://github.com/watir/watir and Selenium: http://www.seleniumhq.org/
TABLE I
DATASET STATISTICS BEFORE (Yelp, Twitter, Flickr) AND AFTER (Yelp’, Twitter’, Flickr’) CLEANING.

	Yelp	Yelp’	Twitter	Twitter’	Flickr	Flickr’
Number of users	62,788	9,348	693,866	263,680	228,735	10,800
Number of posts	1,260,927	1,135,912	359,015,338	320,071,427	29,521,599	9,497,133
Average number of posts per user	20	122	517	1,214	129	879
Average number of words in a post	136	139	12	9	6	11

- **Content** features include frequency of words. This is the only stylometric feature used in [14] for linking accounts. Table [III] lists our feature categories and the number of features within each. Features are computed for each user profile. Each feature is normalized by the total count of features within the same category.

Similar subsets of Writeprints were used in several prior linkability studies, e.g., Afroz et al. [9], [11], to yield high linkability accuracy. Encouraging results using Letter Quads (4-grams) are achieved in Kevselj et al. [17]. To the best of our knowledge, GATE Twitter POS features have never been used in linkability studies before.

TABLE III
LEXICAL, SYNTACTIC AND CONTENT FEATURES IN OUR FEATURE SET. **BOLDFACED FEATURES ARE NOT IN WRITEPRINTS.**

Features	Count	
Letter n-grams, n = 1, 2, 3		26^6
Letter 4-grams		26^4
Special characters		20
Function words		Dynamic
Punctuation marks		8
Stanford POS n-grams, n=1,2		Dynamic
Gate POS n-grams, n=1,2		Dynamic
Words		Dynamic

B. Methodology

Based on the setting described in Section [IV], we have two sets of accounts: known and unknown. We want to accurately match unknown accounts to their known counterparts, while maintaining the highest possible Top-K Linkability Ratio (LR). For that, we first convert each user profile into a feature vector: \(F_T = \{ F_{T_1}, F_{T_2}, ..., F_{T_n} \} \) where \(F_{T_i} \) denotes the \(i \)-th token for feature \(F_T \).

Next, we initiate a distance learning model using Chi-Square Distance (\(CS_d \)) to link an unknown account to a known one. Specifically, for each unknown account \(a_u \), we calculate the \(CS_d(a_u, a_k) \) where \(j \) varies over all possible known accounts. Finally, we rank the distances in ascending order and output the resulting ordered list, where the first entry represents the most likely match of the known account \(a_k \) to the unknown account \(a_u \).

VII. EXPERIMENTAL RESULTS

This section presents the results of the large-scale trilateral OSN account linkability study. We begin with the baseline result. Next, we outline the new Multi-Level Linker Framework which significantly improves on the baseline. Then, we show how this framework yields scalable linkability ratios (LRs) for up to 100,000 authors. Finally, we present and discuss experiment execution times & memory footprint.

A. Baseline

Using the methodology from the previous section, we experiment with various features. Similar to prior work in [11], we apply a greedy hill-climbing algorithm to assess the effects of every feature. We start with all features individually. Then, we combine the best-performing features and assess the amount of improvement. We present the baseline assessment only for Yelp\(\rightarrow\)Twitter linkability, since other sets perform similarly. Following Section [IV] we set the list of unknown accounts \(A_{unknown} \) to the full-set of matching accounts as (153 accounts) while we set the size of the known accounts \(A_{known} \) to 1000 accounts.

Table [IV] shows Top-1 LR$^K_{-1}$ of individual features. At best, Yelp\(\rightarrow\)Twitter already shows a relatively high 55% Top-1 LR, while Twitter\(\rightarrow\)Yelp performs quite poorly, at 10%.

TABLE IV
TOP-1 LR$^K_{-1}$ USING THE BASELINE CHI-SQUARE METHODOLOGY. ** **BOLDFACED CELLS REPRESENT THE HIGHEST LR$^K_{-1}$.

Feature Index	Twitter\(\rightarrow\)Yelp	Yelp\(\rightarrow\)Twitter
1: Letter Uni	1%	1%
2: Letter Bi	1%	43%
3: Letter Tri	7%	55%
4: Letter Quad	10%	53%
5: Special chars	1%	9%
6: Func. Words	3%	50%
7: Punc. Marks	0%	1%
8: Stanford POS Tags Uni	1%	8%
9: Stanford POS Tags Bi	3%	27%
10: Words	9%	39%
11: Gate POS Tags Uni	2%	7%
12: Gate POS Tags Bi	3%	18%

Next, we combine the best features (highlighted in boldface) from Table [IV] and show improved results in Table [V].

TABLE V
TOP-1 LR$^K_{-1}$, WITH COMBINED BEST FEATURES FROM TABLE [IV]

Features	4&10	3&9	3&4	3&4&10
Twitter\(\rightarrow\)Yelp	11%	8%	9%	9%
Yelp\(\rightarrow\)Twitter	54%	59%	57%	56%

For the Twitter\(\rightarrow\)Yelp case, when Letter Quadgrams and Words features are combined, results are slightly better than...
the baseline. However, after combining more than two features, we observe a decrease in LR. As for Yelp→Twitter, LR increases slightly when best features are combined (3&6). Similar to Twitter→Yelp, combining more than two features decreases LR.

These results are comparable to those obtained in language-style correlation investigated in [14]. Likewise, we achieve modest LRs, even with more complex language-based features. To summarize, recent techniques that work reasonably well within the same OSNs, do not appear to be as effective across OSNs. To this end, in the next section, we construct the Multi-Level Linker Framework, which, according to our experiments, significantly boosts linkability.

B. Multi-Level Linker Framework (MLLF)

While experimenting with various combination of features, we notice that combining many of them increases noise and prolongs run-times. Moreover, dimensionality reduction techniques like SVD, do not help increase linkability. This motivates us to explore how to make better use of all textual features.

We now present the Multi-Level Linker Framework (MLLF). The intuition behind it is the use of features in a more hierarchical manner. The basic idea is to run linkability experiments at multiple levels, with each level using a different feature category. After each level, we halve the number of known authors, for every unknown author. This is done by filtering out the most distant (least likely) known authors. Then, at the next level, we use a different feature category with the most likely known authors. We apply this technique for every feature category, and eventually output the final linkability – the final position of the matching account. In every experiment, we randomly permute the order of feature categories. We run experiments in 10-fold and report the averages of final linkability results. In plots, we provide positive and negative error bars to average linkability results in order to better understand the effects of feature ordering. High level pseudo-code of MLLF can be found in the Appendix.

Applying MLLF yields significantly higher LRs with respect to the baseline. Improvements – between [27%, 73%] – in Top-1 LR, when the number of known authors is 1,000, are:

Direction	Improvement
Twitter→Yelp	11% → 63%
Yelp→Twitter	59% → 88%
Twitter→Flickr	11% → 54%
Flickr→Twitter	67% → 94%
Flickr→Yelp	13% → 86%
Yelp→Flickr	5% → 66%

C. Scalability: Number of Authors

Having obtained an improvement over baseline results, we now consider MLLF’s scalability. To this end, we vary the number of known authors from 100 to 1,000, and examine how LRs are affected.

1) From 100 to 1,000: In the first batch, we experiment with $|A_{known}|$ from 100 to 1,000. OSN pairs with the highest Top-1 LRs are shown in Figure 2. OSN→Twitter LRs gets as high as 95% (Figure 2(a)) while OSN→Yelp LRs gets 90% (Figure 2(b)) in a set of 1,000 authors. We notice linkability to Twitter is higher than linkability to Yelp in all cases. Also, when number of author increases, OSN→Yelp LRs decreases more than OSN→Twitter. Lastly, OSN→Yelp linkability results shows higher variance, that is affected more by the order features.

OSN→Flickr exhibits the worst results; LRs are shown in Table VI. Top-1 LR of Twitter→Flickr drops to 63% in a set of 1,000 authors. Interestingly, LRs of OSN→Flickr does not decrease as much as OSN→Yelp. While Top-1 LRs of OSN→Yelp decreases as much as 15%, the biggest decrease is only 4% for OSN→Flickr when number of authors grows from 100 to 1,000.

![Fig. 2. Top-1 LRs when number of authors is increased from 100 to 1,000](image)
2) From 1,000 to 10,000: Next, we vary the number of authors from 1,000 to 10,000. (The actual number of accounts in Yelp' is 9,348, which we round to 10,000 to simplify the graphs.)

Firstly, we show Top-1 LRs of OSN→Twitter in Figure 3. Similar to trends in Section VII-C1, the highest Top-1 LRs among all OSN combinations is 86% for Flickr→Twitter, followed by 77% for Yelp→Twitter when the number of authors is 10,000. Moreover, OSN→Twitter model continues to show low linkability variance – 6% in Flickr→Twitter and 9% in Yelp→Twitter – according to the order of features.

Secondly, Top-10 LRs of OSN→Yelp are shown Figure 4(a) and OSN→Flickr in Figure 4(b). OSN→Yelp and OSN→Flickr perform worse than OSN→Twitter. Therefore, we present the graphs in Top-10 and show Top-1 values in Table VII. We observe that Flickr→Yelp LR achieves 89% and Twitter→Yelp achieves 80% in Top-10. In contrast, Yelp→Flickr is 72% and Twitter→Flickr is 70%. Also, OSN→Yelp is more resilient to random feature ordering than OSN→Flickr. Furthermore, both Yelp and Twitter perform very similarly when linking to a Flickr account.

Finally, Table VII summarizes linkability results for all OSN combinations. Top-1 LR for 10,000 authors drops to as low as 29% in Yelp→Flickr, and grows as high as 86% in Flickr→Twitter. For Top-1, linkability to Twitter is best, while linkability to Flickr is worst. For Top-10, the results are really encouraging with 70% as the lowest LR for a set of 10,000 authors. Lastly, linkability to Twitter decreases by only 2%
when number of authors changes from 1,000 to 10,000.

TABLE VII

Number of Authors	Top-1	Top-10
Flickr→Twitter	94%	86%
Yelp→Twitter	88%	73%
Flickr→Yelp	86%	63%
Twitter→Yelp	63%	45%
Yelp→Flickr	66%	29%
Twitter→Flickr	54%	38%

3) From 10,000 to 100,000: As the final step in the scalability exercise, we increase \(|A_{known}| \) to 100,000 authors. As evident from Table I, only Twitter has up to 100,000 authors after cleaning. Thus, we only experiment with Flickr→Twitter and Yelp→Twitter combinations. Also, we remove Letter Quadgrams from the feature set and run this batch of experiments with the remaining 11 features, due to memory problems experienced with over 90,000 authors.

Figure 5(a) shows Top-100 LRs and Table VIII shows Top-1 and Top-10 LRs. Notably, even in the extreme case of 100,000 authors, we can still link to the known author with 54% accuracy in Flickr→Twitter, and 18% accuracy in Yelp→Twitter. If we relax the linkability goal to Top-100, Flickr→Twitter grows to 83% and Yelp→Twitter to 58%. We notice that linkability from Flickr is higher than that from Yelp. Moreover, the former is less affected by the increase in the number of authors: Flickr→Twitter Top-1 LR decreases by 26% while Yelp→Twitter decreases by 50%.

We also demonstrate Top-10 LRs from 100 to 100,000 authors in Figure 5(b). We observe a decrease in LRs after 9,000 authors, and a sharp fall after 40,000 authors. However, we still find our results highly encouraging, and scary for authorship privacy, since we are only reporting Top-10 LRs, 0.01% of all possible authors.

Our results significantly improve on the prior work of Goga, et al [14]. Even though their setting is slightly different from ours, we achieve True Positive Rate of 60% in Flickr→Twitter and 36% in Yelp→Twitter in a set of 70,000 authors, while [14] reaches 13% for the former and 9% for the latter using language profile in a set of 75,747 authors. As a similar result, both our and [14]'s experiments show that linkability of Flickr→Twitter is higher than Yelp→Twitter. We discuss some possible reasons in Section VIII. Finally, since [14] did not experiment with any other OSN pairs, we cannot compare our other linkability ratios.

TABLE VIII

Number of Authors	Top-1	Top-10
Flickr→Twitter	80%	54%
Yelp→Twitter	68%	18%

D. Execution Time and Memory Footprint

Scalability in real-world OSNs begins with at least several millions of users. Therefore, it is very important to assess performance of a linkability study (such as ours) in order to test whether it is applicable in the real world.

We ran all experiments on a 64-processor machine: Intel(R) Xeon(R) CPU E5-4610 v2 @ 2.30GHz, with 128GB of memory. Multi-threaded experiment code is implemented in Java and executed under Ubuntu 14.04 LTS. We used MongoDB to store and query the datasets. Note that all the features are precomputed and saved to this database. This saves us a tremendous amount of execution time, since

6We set Top-1 LRs as True Positive Rate.
7https://www.mongodb.org/
feature extraction becomes very time-, memory- and storage-consuming, especially, for dynamic features such as Words and Part-of-Speech Tags. We plan to make all of the source code publicly available prior to publication of this paper.

Run-time complexity of the MLLF algorithm (to link a single unknown account) is \(O(|A_{\text{known}}| \cdot CS_d \cdot |F|) \), which is proportional to:

- Size of the known accounts set
- Time to calculate Chi-Square distance between two feature sets
- Number of feature categories

Figure 6 shows two plots, 6(a) for \(|A_{\text{known}}|\), from 100 to 10,000; and 6(b) for \(|A_{\text{known}}|\) from 10,000 to 100,000. We split plots into two parts since 6(b) uses one less feature (11 total), as mentioned in Section VII-C3. Also, we are only reporting execution times of Flickr→Twitter and Yelp→Twitter, since only Twitter has up to 100,000 authors in our dataset.

We observe linear trend in both plots, as expected from the algorithm complexity. Execution time reaches almost 1 second for 10,000 authors, and approximately 13 seconds for 90,000 authors. We observe an exponential jump for 100,000 authors. This occurs because of insufficient RAM, which forces the code to resort to using the disk swap partition.

After the execution times, we present the memory footprint of MLLF in Figure 7. Since running MLLF with more than 90,000 authors causes disk swap partition usage, we are only showing memory consumption up to 80,000 authors. As expectedly, memory usage increases linearly while author set size grows. MLLF requires 7 gigabyte of memory for 1,000 authors, 24 gigabyte for 10,000 authors and 111 gigabyte for 80,000 authors. Most important memory characteristics of MLLF is even though algorithms works in hierarchical increments, memory usage does not increase after each level. This is because MLLF is using only one feature category in each level. Thus, conventional algorithms, that uses more than one feature category, would require a lot more memory than MLLF.

Of course, better software engineering practices would likely lower the memory footprint and improve execution time. However, we believe that current results give a general idea of MLLF’s scalability. For example, in only 13 seconds, MLLF can link an unknown account with 71% accuracy, within a set of 90,000 authors.

E. Summary

Our experimental results can be summarized as follows:
1) We begin with a baseline method using a greedy hill-climbing algorithm on features to improve linkability. This results in 11% Top-1 LR from Twitter→Yelp, which is comparable to prior results in [14]. We concluded that recent stylometric linkability models are not resilient when used to link accounts across heterogeneous OSNs; see Section VII-A.
2) We then proposed a new Multi-Level Linker Framework (MMLF), which improves LRs by around 50%; see Section VII-B.

3) Next, we demonstrated MLLF’s scalability when the number of authors grows from 100 to 100,000. We managed to reach Top-10 LRs of 68% for Flickr→Twitter and 42% for Yelp→Twitter in a set of 100,000 possible authors; see Section VII-C.

4) Finally, we discussed the run-times and memory requirements of MLLF as the number of authors increases. MLLF only takes around 8 seconds to link an unknown account from either Flickr or Yelp to Twitter in a set of 80,000 possible authors, and requires around 111 gigabyte of memory; see Section VII-D.

In the next section, we discuss the results in more detail.

VIII. DISCUSSION: HYPOTHETICAL Q&A

We now attempt to elaborate (in a Q&A style) on some potential issues prompted by the results described in the previous section.

How to leverage relative disparity of results? Our trilateral account linkability study using simple stylometric features concludes that linkability from Flickr or Yelp to Twitter is the highest. Meanwhile, linkability from Yelp or Twitter to Flickr is the lowest. This means that Twitter is the best and Flickr is the worst OSN, respectively, as a basis for constructing stylometric profiles of users.

Why is linkability to Twitter so high? Our initial and somewhat intuitive expectation was that linkability to Yelp would be the highest, since Yelp, unlike Twitter, does not have text size limits. We anticipated that a typical Yelp user exhibits a writing style very similar to that used in their everyday writing activities. In contrast, Twitter forces certain verbal contortions and compressions due to its 140-characters limitation. However, it turns out that Twitter allows us to build a better stylometric profile than Yelp. One potential explanation is restricted context or focus: Twitter is a general-purpose micro-blogging OSN, while Yelp is primarily about reviewing restaurants, hotels and various other venues. In Twitter, people write mostly about themselves, other people, events (e.g., news), yet the context is totally unrestricted, i.e., anything goes. This could mean that contextual freedom allows capturing one’s writing style better as long as a user authors a sufficient overall amount of text.

Why is Flickr→Twitter linkability higher than Yelp→Twitter? One possible reason is that, like tweets, photo annotations tend to be relatively short, albeit without a mandatory upper limit on words or characters. In contrast, free-form reviews can (and often are) quite long. Therefore, Flickr encourages a certain writing style that is somehow closer to Twitter than that of Yelp.

Why is linkability to Flickr the lowest? Can it be improved? Our conclusion regarding Flickr is that photo descriptions are simply not rich enough to build one’s accurate stylometric profile. We suppose that people mostly write general facts about photos they share, and do not provide really personalized text. How to better utilize photo annotations to improve linkability remains an interesting open question. Perhaps we need a significantly larger body of text along with photo annotations. One possible approach would be to crawl Instagram profiles of our matching accounts and combine them with Flickr profiles. This would yield a larger body of text, which could increase LRs. As a separate item, studying linkability between Flickr and Instagram – two OSNs similar in their mission – will be another interesting future work direction.

Can MLLF scale to millions of accounts? MLLF’s complexity increases linearly with the number of accounts. Therefore, we believe it can be used in a much bigger account set, given enough RAM. According to the trend observed in our experiment execution times, we estimate that it would take around 2.5 minutes to link one unknown account to 1,000,000 known ones. Of course memory footprint, multi-threading and implementation efficiency can be further optimized using better software engineering practices, which we also leave to future work.

How should features be ordered in a real world study? Current implementation of MLLF shuffles available features and uses a different feature in each level. One can imagine that if a feature is weak and is unfortunately chosen in early levels, then the true match will be filtered out. As part of our future work, we plan to provide heuristics to order features so that linkability will be maximized. But right now, our suggestion is to order features randomly and run MLLF multiple times. We averaged our linkability results with 10 random ordering of features and linkability is already highly accurate.

Can we use other stylistic features? Extending MLLF’s feature set with other Writeprints features is very likely to influence LRs. As part of future work we plan to gradually experiment with the other 12 Writeprints features.

Can other textual OSN features be used? Hashtags in Twitter and tags in Flickr are examples of textual OSN features that we excluded in this study. They provide a mechanism for labeling each post, which is useful for classifying and finding interests. Also, they are generally not authored by the person who uses them in tweets or annotations, respectively. Therefore, they cannot be directly considered as part of a user’s stylometric profile. However, a recent Twitter-based study demonstrated a technique which combines hashtags with other stylistic features to improve linkability. We believe that a similar approach might also be helpful in our settings. However, we note that not all OSNs support labeling, e.g., Yelp does not.

Can MLLF be combined with other classifiers? We would like to extend MLLF with other types of techniques, such as SVM, Naïve Bayes and k-nearest neighbors. The intuition is that these more complex and expensive methods can be plugged in at the highest level of MLLF, where we currently have the lowest number of known accounts. This might keep execution overhead of a more complex method
Can two OSN profiles be combined while linking to an unknown account? We do not yet know how combining homogeneous and/or heterogeneous accounts influences linkability. This is another open question. One obvious step is to combine Yelp and Twitter profiles of known accounts, while trying to link to an unknown Flickr account. Such a hypothetical system could generate a generic stylometric fingerprint, which would be a real breakthrough in author attribution and linkability.

What can be said about linkability in the context of a generic OSNs? We believe our trilateral linkability study is only the first step. It is natural to add other (including different types of) OSNs, in particular, a global general-purpose OSN, such as Facebook, Google+, or LinkedIn. Once again, this is an item for near-term future work.

IX. CONCLUSIONS

Despite the elusiveness of OSN privacy, many users expect that multiple accounts they operate within one, and on more than one, OSNs remain isolated, i.e., unlinkable, owing perhaps to very different OSN missions. For example, photo-sharing, microblogging and product/service reviews appear to be quite distinct types of OSN specialization. However, this is unfortunately not the case, as supported by the results of the study presented in this paper. It also represents the first large-scale stylometric-based account linkability experiment conducted across three heterogeneous OSNs: Yelp, Twitter and Flickr.

ACKNOWLEDGMENTS

We are very grateful to the authors of [14] for kindly sharing with us the crawled Yelp, Flickr, and Twitter dataset used in their previous work.

REFERENCES

[1] AOL. http://www.aol.com. Last accessed on 2015-04-30.
[2] Flickr. https://www.flickr.com. Last accessed on 2015-04-27.
[3] Twitter. https://www.twitter.com. Last accessed on 2015-04-26.
[4] Twitter Blog. https://blog.twitter.com/2013/celebrating-twitter7. Last accessed on 2015-04-26.
[5] Yelp. http://www.yelp.com. Last accessed on 2015-04-23.
[6] Yelp – About Us. http://www.yelp.com/about.
[7] Yelp Elite Squad. http://www.yelp.com/elite. Last accessed on 2015-04-23.
[8] Abbası, A., and Chen, H. Writeprints: A stylometric approach to identity-level identification and similarity detection in cyberspace. ACM Transactions on Information Systems (TOIS) 26, 2 (2008), 7.
[9] Afroz, S., Islam, A. C., Stolerman, A., Greenstadt, R., and McCoy, D. Doppelgänger finder: Taking stylometry to the underground. In Security and Privacy (SP), 2014 IEEE Symposium on (2014), IEEE, pp. 212–226.
[10] Alimishari, M., Kaafar, D., Oguz, E., and Tsudik, G. Stylometric Linkability of Tweets. In WPES (2014).
[11] Alimishari, M., Oguz, E., and Tsudik, G. Fighting authorship linkability with crowdsourcing. In Proceedings of the second edition of the ACM conference on Online social networks (2014), ACM, pp. 69–82.
[12] Derczyński, I., Ritter, A., Clark, S., and Bontcheva, K. Twitter part-of-speech tagging for all: Overcoming sparse and noisy data. In RANLP (2013), pp. 198–206.
[13] Frankowski, D., Cosley, D., Sen, S., Ter Veen, L., and Riedl, J. You Are What You Say: Privacy Risks of Public Mentions. In International ACM SIGIR Conference on Research and Development in Information Retrieval (2006).
[14] Goga, O., Lei, H., Parthasarathi, S. H. K., Friedland, G., Sommer, R., and Teixeira, R. Exploiting innocuous activity for correlating users across sites. In Proceedings of the 22nd international conference on World Wide Web (2013), International World Wide Web Conferences Steering Committee, pp. 447–458.
[15] Iofciu, T., Fankhauser, P., Abel, F., and Bischoff, K. Identifying users across social tagging systems. In ICWSM (2011).
[16] Irani, D., Webb, S., Li, K., and Pu, C. Large online social footprints—an emerging threat. In CSE ’09: Proceedings of the 2009 International Conference on Computational Science and Engineering (Washington, DC, USA, 2009), IEEE Computer Society, pp. 271–276.
[17] Keshel, V., Peng, F., Cercone, N., and Thomas, C. N-gram-based author profiles for authorship attribution. In Proceedings of the conference pacific association for computational linguistics, PACLING (2003), vol. 3, pp. 255–264.
[18] Koppe1, M., Schiler, J., and Zigdon, K. Automatically determining an anonymous author’s native language. In Intelligence and Security Informatics. Springer, 2005, pp. 209–217.
[19] McDonald, A. W., Afroz, S., Caliskan, A., Stolerman, A., and Greenstadt, R. Use fewer instances of the letter ‘i’; Toward writing style anonymization. In Privacy Enhancing Technologies (2012), Springer, pp. 299–318.
[20] Mishari, M. A., and Tsudik, G. Exploring linkability of user reviews. In ESORICS (2012).
[21] Nanavati, M., Taylor, N., Ahiello, W., and Warfield, A. Herbert West – Deanonymizer. In 6th USENIX Workshop on Hot Topics in Security (2011).
[22] Narayanan, A., Paskov, H., Gong, N. Z., Bethencourt, J., Stefanov, E., Shin, E. C. R., and Song, D. On the Feasibility of Internet-Scale Author Identification. In IEEE Symposium on Security and Privacy (2012).
[23] Narayanan, A., and Shmatikov, V. Robust De-anonymization of Large Sparse Datasets. In IEEE Symposium on Security and Privacy (2009).
[24] Perito, D., Castelluccia, C., Kaafar, M. A., and Manils, P. How Unique and Traceable Are Usernames? In PETS (2011).
[25] Rao, J. R., and Rohatgi, P. Can pseudonymity really guarantee privacy? In USENIX Security Symposium (2000).
[26] Stamatakos, E. A Survey of Modern Authorship Attribution Methods. In Journal of the American Society for Information Science and Technology (2009).
[27] Toutanova, K., Klein, D., Manning, C. D., and Singer, Y. Feature-rich part-of-speech tagging with a cyclic dependency network. In Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology-Volume 1 (2003), Association for Computational Linguistics, pp. 173–180.
Algorithm 1 Experiment algorithm, linkability from OSN_U to OSN_K

Input: DB; Database interface to access dataset
Input: OSN_U; OSN type of the unknown accounts
Input: OSN_K; OSN type of the known accounts
Input: $authorSize$; Number of authors in OSN_K

1: // Get all the available features and shuffle them.
2: $features \leftarrow \text{shuffle(getAllFeatures())}$
3:
4: // Get all the matching accounts in between OSN_U and OSN_K.
5: // We use all the matching accounts as shown from Table II.
6: $matchingAccounts \leftarrow DB.getMatchingAccounts(OSN_U, OSN_K)$
7:
8: // Get $authorSize$ number of known accounts from OSN_K.
9: $possibleAccounts \leftarrow DB.getPossibleAccounts(authorSize, OSN_K)$
10:
11: // Initialize other variables.
12: $level \leftarrow 0$ \hspace{1cm} \hspace{1cm} // Initialize experiment level to beginning
13: $results \leftarrow \text{Map\{Account, List\{Result\}\}}$ \hspace{1cm} // $results$ is a map of Account to a list of experiment Result objects
14:
15: // Do the level-0 experiment with $features[0]$.
16: $experiment \leftarrow \text{Experiment(matchingAccounts, possibleAccounts)}$
17: $result \leftarrow experiment.run(features[0])$ \hspace{1cm} // Perform the level-0 experiment
18:
19: // For each matchingAccount, create a list from her experiment result and save it to $results$.
20: for (matchingAccount in matchingAccounts) do
21: $results[matchingAccount] \leftarrow \text{List\{Result\}}(result.get(matchingAccount))$
22: end for
23:
24: $topT \leftarrow authorSize$ \hspace{1cm} // $topT$ is used to filter out accounts in each experiment level
25: $level \leftarrow level + 1$ \hspace{1cm} // Increase the $level$ since we are done with level-0 experiment
26:
27: // Continue with next level of experiments using remaining features.
28: for ($level < features.length$) do
29:
30: $feature \leftarrow features[level]$ \hspace{1cm} // Get the new feature to be used in this experiment $level$
31: $topT \leftarrow TopT/2$ \hspace{1cm} // In each level, filter out the halve of possible accounts
32: $experiments \leftarrow \text{List\{Experiment\}}$ \hspace{1cm} // $experiments$ is a list of Experiment objects
33:
34: // For every $matchingAccount$, assess the latest linkability result and try to improve it using this $feature$ of this level.
35: for (matchingAccount in matchingAccounts) do
36:
37: // If the latest level of result for current $matchingAccount$ reported $topT$ linkability,
38: if (results[matchingAccount].getTopElement().getPosition() < $topT$) then
39:
40: // Create a new experiment where $matchingAccount$ is the only unknown account
41: // and $topT$ possible authors for $matchingAccount$ are the possible authors.
42: $experiment \leftarrow \text{Experiment(matchingAccount, matchingAccount.getTopTAccounts(topT))}$
43:
44: // Run a new experiment with a new feature
45: $result \leftarrow experiment.run(feature)$
46:
47: // Append the latest experiment result to previous list of results of $matchingAccount$.
48: $results[matchingAccount].append(result)$
49: else
50:
51: // There are no possible improvements, linkability of this $matchingAccount$ will be reported as it is.
52: end if
53: end for
54: $level \leftarrow level + 1$ \hspace{1cm} // Increase the experiment level
55: end for
56: return $results$ \hspace{1cm} // Return the map of experiment results