SUPPLEMENTARY MATERIAL

Trichosides A and B, New Withanolide glucosides from *Tricholepis eburnea*

Saima Maher\(^a\), Shagufta Rasool\(^a\), Rashad Mehmood\(^b\)^*\, Shagufta Perveen\(^c\) and Rasool Bakhsh Tareen\(^d\)

\(^a\)International center for Chemical and Biological Sciences, H. E. J. Research Institute of Chemistry, University of Karachi, Karachi-75270, Pakistan

\(^b\)Department of Conservation Studies, Hazara University, Mansehra-21120, Pakistan

\(^c\)Department of Pharmacognocy, College of Pharmacy, King Saud University, PO Box 2457, Riyadh11451, Saudi Arabia

\(^d\)Department of Botany, University of Balochistan, Sariab Road, Quetta, Pakistan

*Corresponding author Email: rashadhej@gmail.com; Tel. +92-997-414195, Fax. +92-997-414111
Trichosides A (1) and B (2), new withanolide glucosides, have been isolated from n-butanol fraction of the 75% methanolic extract of aerial parts of *Tricholepis eburnea*. Their structures were elucidated through spectroscopic analysis including ESI-MS, 2D NMR and acid hydrolysis.

Key words: Asteraceae, *Tricholepis eburnea*, withanolide glucosides, trichoside A, trichoside B
1H NMR of Trichoside A
^{13}C NMR of Trichoside A
1H NMR of Trichoside B
13C NMR of Trichoside B
Table S1. 1H (600 MHz) and 13C (125 MHz) NMR in CD$_3$OD spectral data of compounds 1 and 2.

| C | Compound 1 | | | | Compound 2 | | | |
|-----|------------|----------------------------------|---|---|-----------------------------------|---|---|
| | δ C | Multi | δH (J in Hz) | δ C | Multi | δH (J in Hz) |
| 1 | 214.5 C | --- | --- | 217.8 C | --- | --- |
| 2 | 46.8 CH$_2$ | 2.73 (1H, m) | 40.0 CH$_2$ | 2.76 (1H, m), | 2.09 (1H, m) | 2.06 (1H, d, $J = 17.3$) |
| 3 | 76.9 CH | 4.00 (1H, m) | 72.7 CH | 3.59 (1H, m) | --- | --- |
| 4 | 38.8 CH$_2$ | 2.69 (1H, dd, $J = 6.31, 13.64$) | 2.48 (1H, d, $J = 13.64$) | --- | --- | --- |
| 5 | 136.4 C | --- | --- | 36.1 C | --- | --- |
| 6 | 127.0 CH | 5.68 (1H, d, $J = 5.2$ Hz) | 18.1 CH$_2$ | 1.62 (2H, m) | 30.0 CH$_2$ | 1.30 (1H, m) | 1.24 (1H, m) |
| 7 | 26.4 CH$_2$ | 2.09 (2H, m) | --- | --- | --- | --- |
| 8 | 33.1 CH | 2.26 (1H, m) | 32.4 C | --- | --- | --- |
| 9 | 37.1 CH | 2.14 (1H, dd, $J = 11.9, 6.3$) | 40.8 CH | 2.75 (1H, m) | --- | --- |
| 10 | 54.5 C | --- | --- | 53.0 C | --- | --- |
| 11 | 23.1 CH$_2$ | 2.08 (1H, m), | 21.6 CH$_2$ | 2.08 (1H, m) | 1.62 (1H, m) | 1.93 (1H, m) |
| 12 | 33.1 CH$_2$ | 2.34 (1H, ddd, $J = 11.8, 5.7, 5.7$); 1.26 (1H, m) | 32.9 CH$_2$ | 2.32 (1H, m) | --- | --- |
| 13 | 55.0 C | --- | --- | 48.6 C | --- | --- |
| 14 | 84.4 C | --- | --- | 84.5 C | --- | --- |
| 15 | 47.9 CH$_2$ | 2.91 (1H, dd, $J = 16.0, 6.7$) | 32.8 CH$_2$ | 1.81 (1H, m) | 1.59 (1H, br d, $J = 16.0$) | --- | --- |
| 16 | 76.5 CH | 3.82 (1H, dd, $J = 11.7, 6.7$) | 21.9 CH$_2$ | 1.83 (1H, m) | 1.32 (1H, m) | --- | --- |
| 17 | 89.4 C | --- | --- | 50.2 CH | 3.59 (1H, m) | --- | --- |
| 18 | 20.6 CH$_3$ | 1.33 (3H, s) | 17.8 CH$_3$ | 1.38 (3H, s) | --- | --- |
| 19 | 18.5 CH$_3$ | 1.31 (3H, s) | 15.4 CH$_3$ | 1.55 (3H, s) | --- | --- |
| 20 | 79.7 C | --- | --- | 75.2 C | --- | --- |
| 21 | 19.7 CH$_3$ | 1.36 (3H, s) | 21.5 CH$_3$ | 1.44 (3H, m) | --- | --- |
| 22 | 82.9 CH | 4.84 (1H, br s) | 82.3 CH | 4.42 (1H, m) | --- | --- |
| 23 | 35.7 CH$_2$ | 2.63 (1H, br s) | 34.4 CH$_2$ | 2.74 (1H, m) | 2.51 (1H, br s) | 2.37 (1H, m) | --- | --- |
| 24 | 153.4 C | --- | --- | 156.9 C | --- | --- |
| 25 | 122.0 C | --- | --- | 123.7 C | --- | --- |
| 26 | 169.1 C | --- | --- | 165.8 C | --- | --- |
| 27 | 12.3 CH$_3$ | 1.84 (3H, s) | 63.3 CH$_2$ | 5.09 (1H, d, $J = 10.5$) | --- | --- |
| 28 | 20.6 CH$_3$ | 1.95 (3H, s) | 20.4 CH$_3$ | 1.83 (3H, s) | --- | --- |
| 1' | 103.1 CH | 4.36 (1H, d, $J = 7.8$ Hz) | 104.9 CH | 4.97 (1H, d, $J = 7.8$) | --- | --- |
| 2' | 75.0 CH | 3.13 (1H, dd, $J = 7.8, 8.6$) | 75.2 CH | 4.01 (1H, m) | --- | --- |
| 3' | 77.9 CH | 3.33 (1H, d, $J = 5.20$) | 78.6 CH | 4.24 (1H, m) | --- | --- |
| 4' | 71.6 CH | 3.25 (1H, m) | 71.7 CH | 4.37 (1H, m) | --- | --- |
| 5' | 78.0 CH | 3.25 (1H, d, $J = 4.6$) | 78.5 CH | 3.95 (1H, m) | --- | --- |
| 6' | 62.7 CH$_2$ | 3.83 (1H, d, $J = 11.6$) | 62.8 CH$_2$ | 4.53 (1H, dd, $J = 10.8, 4.6$) | 3.63 (1H, dd, $J = 11.6, 4.6$) | 4.37 (1H, d, $J = 10.8$ Hz) | --- | --- |