Interventional Therapy of Esophageal Cancer

Aiwu Mao

Department of Interventional Radiology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China

Key Words
Arterial infusion · Electrochemical interventional therapy · Endoscopic resection · Esophageal cancer · Interstitial involvement · Stent placement

Abstract
Esophageal cancer (EC) is the fourth leading cause of cancer death in China. Despite a lot of advances in diagnosis and therapy, the survival rate of patients with EC is low. There is urgent need for a variety of methods and techniques to improve the survival time and alleviate the lesions of EC. Nowadays, alternative and less invasive approaches to the treatment of ECs are being identified. Here, we review several main interventional methods at different stages of EC, including endoscopic resection, stent placement, arterial infusion, photodynamic therapy, and radiofrequency ablation. This review will focus on the indications, methods, clinical outcomes, and complications of these methods, which may help guide the way forward.

Introduction

Esophageal cancer (EC), which is the eighth most common cancer and the sixth most lethal cancer worldwide, remains an important global public health problem [1, 2]. EC affects more than 450,000 people worldwide, and its prevalence is expected to increase by 140% by 2025 [3, 4]. On the basis of the latest investigation, there were about 18,170 new cases and 15,450 deaths in 2014 in the United States [5]. However, developing countries made up more than 80% of total EC cases and deaths, and the cases in China account for half of worldwide EC cases [6]. Moreover, the incidence of EC is about 10 times higher in certain areas extending from Northeast China to Central and Eastern Asia than that in the United States. Adenocarcinoma and squamous cell carcinoma (SCC) are two major histologic types of EC, while small
cell carcinoma is a rare disease, accounting for 0.94–1.6% of all ECs [7, 8]. However, of all ECs, the incidence of SCC is approximately 95% in China [9], while the incidence of adenocarcinoma is relatively lower, with only about 5% per year from 2002 to 2011 [10].

Despite plenty of advances in diagnosis and therapy, the 5-year survival rate for all EC patients is about 15–20% [11]. There are a lot of obstacles when treating advanced EC, such as the distant failures and high rate of locoregional progression [12]. Currently, the treatment of EC mainly includes surgery, radiotherapy, chemotherapy and interventional therapy. However, the treatment options should be chosen according to several elements, which include cancer stage, cancer type, complications, the patient’s physical status and the possible side effects. For operable patients, surgery remains the first-choice treatment for resectable EC [13]. Nevertheless, local resection is still far from satisfactory because of the high related death rate of surgery and the negative effect on quality of life following surgery [14]. Furthermore, a large portion of patients with EC are found with unresectable disease in the middle to late stage due to highly advanced disease, and even with metastases to multiple lymph nodes or distant organs. Therefore, the purposes of clinical treatment at present are to reduce dysphagia symptoms, improve the quality of life and extend the lifespan of EC patients.

Interventional treatment, including endoscopic resection (ER), stent placement, arterial infusion, photodynamic therapy (PDT), radiofrequency ablation (RFA) and so on, is among the most important methods in the treatment of EC, with excellent effect and reliable with little harm [15]. This review will provide an overview of interventional treatment in EC, with emphasis on the indications, methods, complications, and clinical outcomes of these methods.

**Endoscopic Resection**

Early EC is defined as a tumor limited to the mucosa with or without metastasis to lymph nodes or distant organs. ER, which includes endoscopic mucosal resection (EMR) and endoscopic submucosal dissection (ESD), is regarded as a minimally invasive and effective therapy for the early stage of EC (fig. 1).

**Endoscopic Mucosal Resection**

EMR implies local excision of the dysplastic lesion. When the tumor is limited to the esophageal mucosa and the lesion size is <20 mm, EMR will be recommended as an alternative therapeutic modality. Furthermore, its results are similar to those achieved by surgery, with a good long-term survival outcome [16, 17]. According to a study in Hong Kong [17], ESD
was performed in 153 (81.8%) lesions and EMR in 34 (18.2%) lesions. The 30-day morbidity rate was 14.4%, while severe bleeding and perforations accounted for 3.2 and 4.3%, respectively. The results showed that short-term survival was very good. However, few studies have compared the long-term outcomes of ER and surgery for EC treatment. Pyo et al. [18] made this comparison for early gastric cancer, and the results demonstrated that EMR might not be inferior to surgery with respect to overall survival in patients who meet the absolute or expanded criteria. However, disease-free and recurrence-free survival might be lower after EMR than after surgery. There are still limitations to the safety and efficacy of ER. Moreover, there will be recurrence, especially when a lesion >20 mm is removed by EMR.

**Endoscopic Submucosal Dissection**

In order to overcome these limitations of EMR, ESD was developed. The technique of ESD with improved needle knife makes it possible to remove large lesions in the alimentary tract despite the presence or size of submucosal fibrosis, thus providing en bloc specimens for adequate pathological evaluation of lateral and deep margins [16]. However, it is still a technically difficult and time-consuming procedure associated with a higher rate of complications.

The residual mucosal defect may cause deep ulcers, esophageal wall fibrosis, proliferation of local submucosal fibrous connective tissue, acute inflammation, collagen deposition, and even esophageal stricture formation after the procedure [19]. The incidence of esophageal strictures after ESD has been extremely high at 88–100% [20–22], and the risk factors mainly include cervical location when the tumor size is >3/4 of the esophageal circumference and the diameter of a longitudinal tumor is >40 mm [23, 24]. Patients’ quality of life is seriously affected due to these complications. Currently, the methods of prevention and treatment of esophageal stenosis include endoscopic autologous cell transplantation, pharmacological treatment, stent placement and endoscopic esophageal dilatation [25]. However, no single method has been widely recognized as effective in clinical practice. Experimental studies have emerged in recent years, but most of them are in the animal research stage.

To date, there are few long-term follow-up data on ESD for EC. Several reports indicated that there was a higher risk of local recurrence in patients with incomplete resection compared with complete resection during ESD.

**Stent Placement**

Esophageal stents have a history of more than 100 years, since Symonds discovered the benefits of the esophagus stent for the first time in 1885. Atkinson and Ferguson [26] treated inoperable malignant strictures at the cardia with fiberoptic endoscopy in 1977, and Frimberger [27] treated malignant esophageal stenoses with an expanding spiral in 1983. Later, nickel titanium alloy, stainless steel and other metal stents have been developed in recent decades [28]. The types and classifications of esophageal stents are various. According to the materials, esophageal stents can be divided into polyester plastic, silicone, stainless steel, alloy, biodegradable biomaterial scaffolds, etc.; according to the expansion mode, they are divided into expansion and memory stents; and according to whether they are coated, esophageal stents can be divided into fully/partly coated and naked stents. Moreover, there are also some other special designs of stents, such as reverse flow preventable, radioactive, recyclable, biodegradable, heating, chemotherapy drug slow release stents, and so on. At present, the main stents sold in the market include Gianturco-Rosch Z, Song, Choo, Ultraflex, Wallstent, Esophacoil, Niti-S, Flamingo, Ella, Polyflex, Niti shape memory alloy stents and Z-type stainless steel wire and so on [29].
Stent placement is suitable for unresectable EC, inducing narrow or esophageal fistula later. The procedure was confirmed by various procedures such as digital subtraction angiography, ultrasonic endoscopy and so on. The site of esophageal stent placement is 2 cm above the cricopharyngeal part in solid and narrow tumors. At present, esophageal stents are already being widely used in the treatment of esophageal stenosis or obstruction, and the effects in patients with EC are remarkable [30]. In this paper, we mainly summarize two kinds of stents, self-expandable stents and esophageal stents with iodine-125 (\(^{125}\text{I}\)) seeds, which have been used commonly in recent time.

**Self-Expandable Stents**

Currently, self-expandable metal stents (SEMS) and self-expandable plastic stents (SEPS) are included in the available stents for esophageal obstructions. Metal stents, made of stainless steel and alloys, are able to generate high radial forces to maintain stent patency and position with a higher degree of flexibility [31]. SEMS are available in three styles, including uncovered, partially covered or fully covered with a plastic membrane or silicone. Moreover, SEPS are always composed of polyester and silicone. It has been reported that symptom relief, survival rate and complications are the same with the use of SEPS and of SEMS. However, insertion of SEPS is technically more difficult and associated with a higher migration rate compared with SEMS. It was shown that SEMS could alleviate dysphagia rapidly in 90% of patients when they were put in place endoscopically under fluoroscopic control [7]. However, there is still debate about the first choice to different types of SEMS.

The adverse effects of stents include high obstruction recurrence as the result of tumor ingrowth, stent migration, retrosternal pain, perforation, food impaction and bronchoesophageal fistulas. It is always effective to insert a second stent for restoring luminal patency when tumor ingrowth occurs, and endoscopic clearance will be used for obstruction caused by impacted food. Stent migration is a one major complications, its occurrence varying from 4 to 36% [31, 32]. Moreover, the risk of migration will increase significantly when the stent is placed across the gastroesophageal junction [33, 34]. Some techniques of stent fixation and new stent designs preventing migration have been described [35]. Nevertheless, a double-layered SEMS embedded into the esophageal wall (named Niti-S stent) is capable of reducing migration and preventing tumor ingrowth with a structure of an outer uncovered nitinol wire mesh and an inner polyurethane layer (fig. 2). Several clinical studies have demonstrated its low migration rate [36, 37]. Experts suggested that once an esophageal stent migrates, it may cause bowel obstruction with perforation. In that case, removal of the migrated stent should be considered if possible [38].

**Esophageal Stents with \(^{125}\text{I}\) Seeds**

In recent years, stent placement has been an option for alleviating the symptoms caused by esophageal strictures. Nevertheless, there is a high recurrence rate of neoplastic strictures following stent placement. In order to help radiotherapy, radioactive stents were developed. Among these, an esophageal stent loaded with \(^{125}\text{I}\) seeds was designed, with a combination of advantages of immediate relief of esophageal dysphagia and radiation therapy with brachytherapy in advanced EC patients who are diagnosed with unresectable tumors due to extensive lesions, metastases, or poor medical effect [39].

\(^{125}\text{I}\) radioactive seeds were preloaded into the sheaths (4.8 mm long and 0.8 mm wide), which were attached to the outer surface of the SEMS immediately before stent insertion. Esophageal stents loaded with \(^{125}\text{I}\) seeds were first demonstrated to be safe and feasible in a healthy rabbit model [40]. Then, esophageal stents with \(^{125}\text{I}\) seeds were developed in clinical research. It was shown that an irradiation stent with \(^{125}\text{I}\) can relieve dysphagia and prolong patient survival compared with controls, and no additional complications related to seed
implantation were found [41, 42]. Other research also revealed that this method could help EC patients to relieve their esophageal obstruction immediately and slow down the rate of tumor growth [43, 44]. Furthermore, the study by Luo et al. [45] indicated that expandable esophageal stents loaded with $^{125}$I seeds were an ideal therapeutic approach for patients with advanced EC. Overall survival was 6–20.5 months (mean 9.9 months), and all patients had improved dysphagia after stent deployment; 25 patients had a Karnofsky score $\geq 60$ after the procedure compared to 11 patients before operation. However, with the limitation of accurate measurement using in vivo dosimetry of the irradiation seeds around the stent, the calculated dose might differ from the real dose around the stent. Nevertheless, the common complications and side effects did not differ between the irradiation stent and conventional stent groups, the complaints being esophageal fistula, hemorrhage, perforation, aspiration, failure of deployment and expansion, tumor overgrowth and ingrowths, stent migration, gastroesophageal reflux, recurrent dysphagia, and pain [41]. In their research, Shen et al. [46] also indicated that $^{125}$I Niti stents had the same probability of thyroid toxicity and other adverse reactions compared with ordinary stents by observing about 100 cases of clinical application.

**Arterial Infusion**

Arterial infusion chemotherapy is a method to treat tumors using femoral artery puncture, an esophageal artery interventional catheter with selective local infusion of chemotherapy drugs, which has achieved several theoretical advantages over conventional therapy for the treatment of unresectable malignancies. Research showed that the target arterial infusion of verapamil combined with chemotherapy significantly improved the clinical symptoms of advanced EC. The study by Zhu et al.
[47] included 24 patients, 23 of whom achieved partial response, which is an efficiency rate of 95.8%. When liver metastasis occurs in advanced EC, arterial infusion therapy also plays a therapeutic role. Ikebe et al. [48] reported on hepatic arterial infusion therapy with a combination regimen of low-dose cis-diamminedichloroplatinum and 5-fluorouracil as a multimodality therapy for liver metastases of EC. The hepatic metastases decreased markedly with no adverse effects, so hepatic arterial infusion chemotherapy can be a choice for EC when metastasis is limited to the liver. The serious complications after esophageal artery perfusion chemotherapy are few. The main complications are esophageal perforation, spinal cord injury and esophagitis. Cytotoxic drug and tissue tolerance are the main causes of esophageal perforation, so the drugs should not be strongly excitant or administered at a high dose or concentration, and the perfusion rate should not be too fast.

Arterial infusion chemotherapy also has certain limitations: (1) As EC is not a typical tumor with rich blood supply and shows individual differences, sometimes specific tumor arteries of blood supply cannot be found or introduced during the operative time. (2) Although the dosing accuracy of instantaneous blood concentration is high, it cannot long enough to maintain the effective blood drug concentration [15, 49].

Fig. 3. A case with local failure after chemoradiotherapy was treated with salvage PDT. a A local failure lesion limited to T1b. b A well-demarcated lesion after Lugol staining. c Deep ulceration was present 1 week after PDT. d Complete response was achieved and continued 1 year after PDT.
Photodynamic Therapy

In recent years, PDT has been getting more attention and application in the treatment of EC because of its good selectivity and safety, especially in the setting of EC, as well as Barrett’s mucosa with neoplasia or dysplasia (fig. 3) [50–53]. The photosensitizer will accumulate in the tumor, and then treatment occurs when the photosensitizer is activated by endoscopically applied laser directly to the malignant tumor. Besides, the activated photosensitizer drugs are capable of interacting with oxygen or other cellular and vascular components to stimulate a photodynamic reaction, often inducing damage or necrosis of the target tissue. Thus, the effect of treatment is often determined by the concentration of photosensitizer drug in the mucosa and the dose of light energy.

In China, PDT is approved for EC with porfimer sodium followed by 630 nm wavelength excimer dye laser irradiation. The initial descriptions of PDT, which is combined with porphyrin-based agents, dihematoporphyrin ether (DHE) with red light and hematoporphyrin derivative (HpD), have become the major forms of PDT. After further purification of the photosensitizers, several agents were released: Ps (Photofrin, USA), DHE (available in Europe under the trade name Photosan), and a second-generation form of HpD available in China under the trade name Hemporfin. A prospective randomized research by Overholt et al. [54] found that the ablation of high-grade dysplasia and the recurrence of neoplasia was 77 and 15% in the PDT group, while the rates were 39 and 29% in the omeprazole group. It is thus implied that PDT is a therapeutic method in the clinic and can ablate high-grade dysplasia and reduce the potential impact of cancer. Consistent with the research results of Overholt et al., another three studies identified PDT to have superior outcomes, satisfactory safety profiles and longer survival periods. They included 38 patients with superficial SCC, 113 consecutive patients with local failure limited to T2 without any metastases, and 93 consecutive SCC patients separately [55–57]. Nevertheless, no severe side effects, complications or therapy-related deaths were found with the method [57].

Radiofrequency Ablation

Radiofrequency waves are a kind of low-frequency and high-electric-effect magnetic waves. The polarity transformation frequency of radiofrequency is 150–1,000 kHz, which can produce a heat effect when getting into contact with the human body, causing dehydration, drying, pyknosis and necrosis of the lesion tissue to achieve a treatment effect. Moreover, the lesions can be eradicated with adjusted output power and time, with decreased injury to normal tissue and without adverse effects such as pain or stimulation of heart. Radiofrequency electrodes do not bind with the tissues or produce smoke or fire, so they have no effect on endoscopic therapy. Nowadays, RFA is a popular therapy for EC.

The use of RFA is recommended in individuals with high-grade dysplasia in Barrett’s esophagus, early-stage (T1a) intramucosal cancer and selected individuals with low-grade dysplasia [58]. Furthermore RFA, which took only around 30 min to complete in the case of a 48-year-old man with an 8-cm-long circumferential squamous high-grade dysplasia over the esophagus, showed good effect in early SCC neoplasia without major adverse events [59]. Furthermore, an investigation which included 429 patients in a community practice setting revealed and verified RFA as a safe and effective treatment for Barrett’s esophagus [60]. The research by Chuanqing et al. [61] indicated a significant short-term effect in relieving esophageal obstruction and improving nutrition intake by endoscopic RFA. Moreover, Matsui et al. [62] retrospectively evaluated the outcomes for pulmonary metastases from EC after RFA in 21 consecutive patients. From the initial RFA session, the rates of estimated overall survival
were 85.7, 54.8 and 38.4% at 1, 2 and 3 years, while 7.4% adverse events occurred, including pleural effusion requiring chest tube placement and pneumoderma requiring surgical intervention. In conclusion, RFA is a potential therapeutic option for patients who suffer from pulmonary metastases from EC. The main adverse reactions included persistent nausea, severe epiglottic reflex, burning pain in the chest area and pain in upper abdomen [61].

Conclusions

In summary, this review reports several approaches to interventional treatment in EC with a focus on ER, stent placement, arterial infusion, PDT and RFA. They are the regular intervention methods used in the treatment of EC, with some advantages and disadvantages. Thus, fully considering tumor location, tumor stage, the patient’s age, physical and economic conditions as well as other factors will be necessary to maximize the advantages of each interventional treatment. According to organic combination and sequential treatment, the use of different interventional methods to achieve the best therapeutic effect will be an important guide and medical thought to every physician.

Acknowledgment

This study was funded by the National Natural Science Foundation of China (81571775).

Statement of Ethics

This study complied with the guidelines for human studies and animal welfare regulations.

References

1. Zhang Y: Epidemiology of esophageal cancer. World J Gastroenterol 2013;19:5598–5606.
2. Jemal A, Bray F, Center MM, et al: Global cancer statistics. CA Cancer J Clin 2011;61:69–90.
3. Lambert R, Hainaut P: Epidemiology of oesophagogastric cancer. Best Pract Res Clin Gastroenterol 2007;21:921–945.
4. Lagergren J, Lagergren P: Oesophageal cancer. BMJ 2010;341:c6280.
5. Nan H, Du M, De Vivo I, et al: Shorter telomeres associate with a reduced risk of melanoma development. Cancer Res 2011;71:6758–6763.
6. Dai M, Ren JS, Li N, et al: Estimation and prediction on cancer related incidence and mortality in China, 2008 (in Chinese). Zhonghua Liu Xing Bing Xue Za Zhi 2012;33:57–61.
7. Enzinger PC, Mayer RJ: Esophageal cancer. New Engl J Med 2003;349:2241–2252.
8. Zhu Y, Qiu B, Liu H, et al: Primary small cell carcinoma of the esophagus: review of 64 cases from a single institution. Dis Esophagus 2014;27:152–158.
9. Li M, Zhang X, Zhao F, et al: Involved-field radiotherapy for esophageal squamous cell carcinoma: theory and practice. Radiat Oncol 2016;11:18.
10. Liu S, Dai JY, Yao L, et al: Correction: Esophageal adenocarcinoma and its rare association with Barrett’s esophagus in Henan, China. PLoS One 2015;10:e0127135.
11. Rice TW, Ishwaran H, Hofstetter WL, et al: Esophageal cancer: associations with (pN+) lymph node metastases. Ann Surg 2016. Epub ahead of print.
12. Pöttgen C, Stuschke M: Radiotherapy versus surgery within multimodality protocols for esophageal cancer – a meta-analysis of the randomized trials. Cancer Treat Rev 2012;38:599–604.
13. Kutup A, Nentwich MF, Bollschweiler E, et al: What should be the gold standard for the surgical component in the treatment of locally advanced esophageal cancer: transthoracic versus transhiatal esophagectomy. Ann Surg 2014;260:1016–1022.
14. Rizk N: Surgery for esophageal cancer: goals of resection and optimizing outcomes. Thorac Surg Clin 2013;23:491–498.
Gaur P, Kim MP, Dunkin BJ: Esophageal cancer: recent advances in screening, targeted therapy, and management. J Carcinog 2014;13:11.

Vani JA: Esophageal resection for high-grade dysplasia and intramuscular carcinoma: when and how? World J Gastroenterol 2010;16:3786–3792.

Teoh AY, Chiu PW, Chan SY, et al: Hospital Authority audit of the outcome of endoscopic resection of superficial upper gastrointestinal lesions in Hong Kong. Hong Kong Med J 2015;21:224–231.

Pyo JH, Lee H, Min BH, et al: Long-term outcome of endoscopic resection vs. surgery for early gastric cancer: a non-inferiority-matched cohort study. Am J Gastroenterol 2016;111:240–249.

Radu A, Groșeian P, Fontoliet C, et al: Endoscopic mucosal resection in the esophagus with a new rigid device: an animal study. Ann Reg Sci 2004;36:298–305.

Yamaguchi N, Isomoto H, Shikuwa S, et al: Effect of oral prednisolone on esophageal stricture after complete circular endoscopic submucosal dissection for superficial esophageal squamous cell carcinoma: a case report. Digestion 2011;83:291–295.

Naoyuki Y, Hajime I, Toshiyuki N, et al: Usefulness of oral prednisolone in the treatment of esophageal stricture after endoscopic submucosal dissection for superficial esophageal squamous cell carcinoma. Gastrointest Endosc 2011;73:1115–1121.

Ono S, Fujishiro M, Nimi K, et al: Predictors of postoperative stricture after esophageal endoscopic submucosal dissection for superficial squamous cell neoplasms. Endoscopy 2009;41:661–665.

Ono S, Fujishiro M, Nimi K, et al: Long-term outcomes of endoscopic submucosal dissection for superficial esophageal squamous cell neoplasms. Gastrointest Endosc 2009;69:860–866.

Isomoto H, Yamaguchi N, Minami H, et al: Management of complications associated with endoscopic submucosal dissection/endoscopic mucosal resection for esophageal cancer. Dig Endosc 2013;25(suppl S1):29–38.

Wen J, Lu Z, Liu Q: Prevention and treatment of esophageal stenosis after endoscopic submucosal dissection for early esophageal cancer. Gastroenterol Res Pract 2014;2014:457101.

Atkinson M, Ferguson R: Fibreoptic endoscopic palliative intubation of inoperable oesophagogastric neoplasms. Br Med J 1977;1:266–267.

Frimberger E: Expanding spiral – a new type of prosthesis for the palliative treatment of malignant esophageal stenoses. Endoscopy 1983;15:213–214.

Domischke W, Foerster EC, Matek W, et al: Self-expanding mesh stent for esophageal cancer stenosis. Endoscopy 1990;22:134–136.

Zhu HD, Guo JH: Esophageal stent implantation for the treatment of esophageal strictures: its current situation and research progress. J Interv Radiol 2011;20:494–498.

Iwanaga A, Egashira A, Minami K, et al: Evaluation of esophageal and airway stent placement for patients with advanced and recurrent esophageal cancer. Esophagus 2016, Epub ahead of print.

Kochar R, Shah N: Enteral stents: from esophagus to colon. Gastrointest Endosc 2013;78:913–918.

Repici A, de Paula Pessoa Ferreira D: Expandable metal stents for malignant colorectal strictures. Gastrointest Endosc Clin N Am 2011;21:511–533.

Park JH, Song HY, Kim JH, et al: Polytetrafluoroethylene-covered retrievable expandable nitinol stents for malignant obstruction: factors influencing the outcome of 270 patients. AJR Am J Roentgenol 2012;199:1380–1386.

Pellen MGC, Sabri S, Razack A, et al: Safety and efficacy of self-expanding removable metal esophageal stents during neoadjuvant chemotherapy for resectable esophageal cancer. Dis Esophasig 2012;25:48–53.

Martins BDC, Retes FA, Medrado BF, et al: Endoscopic management and prevention of migrated esophageal stents. World J Gastrointest Endosc 2014;6:49–54.

Verschuur EML, Homs MYV, Steyerberg EW, et al: A new esophageal stent design (Niti-S stent) for the prevention of migration: a prospective study in 42 patients. Gastrointest Endosc 2006;63:134–140.

Kim MD, Park SB, Kang DH, et al: Double layered self-expanding metal stents for malignant esophageal obstruction, especially across the gastroesophageal junction. World J Gastroenterol 2012;18:3732–3737.

Harries R, Campbell J, Ghosh S: Fractured migrated esophageal stent fragment presenting as small bowel obstruction three years after insertion. Ann R Coll Surg Engl 2010;92:14–15.

Bergquist H, Johnsson E, Nyman J, et al: Combined stent insertion and single high-dose brachytherapy in patients with advanced esophageal cancer – results of a prospective safety study. Dis Esophagus 2012;25:410–415.

Guo JH, Teng GJ, Zhu GY, et al: Self-expandable stent loaded with 125I seeds: Feasibility and safety in a rabbit model. Eur J Radiol 2007;61:356–361.

Zhu HD, Guo JH, Mao AW, et al: Conventional stents versus stents loaded with 125I iodine seeds for the treatment of unresectable oesophageal cancer: a multicentre, randomised phase 3 trial. Lancet Oncol 2014;15:612–619.

Tian D, Wen H, Fu M: Comparative study of self-expanding metal stent and intraluminal radioactive stent for inoperable esophageal squamous cell carcinoma. World J Surg Oncol 2016;14:18.

Li J, Zou XZ, Li YM: Clinical application of esophageal stent with membrane bound radioactive particles iodine-125 implantation for patients with advanced esophageal cancer. Chin Foreign Med Res 2014;10:128–129.

Zhang S: Self-expandable medical memorial metallic stent with ~{125}I seeds for the treatment of esophageal carcinoma: a retrospective analysis. J Interv Radiol 2011;20:444–447.
45 Luo YH, Jiang ZB, Huang MS, et al: ~(125)I particle esophageal stent in the treatment of 30 patients with advanced esophageal cancer. Contemp Med 2011;19:215–223.

46 Shen Y, Liu AG, Xin MI: Development and clinical application of esophageal radiotherapy stent. China Med Device Inf 2014;1:23–27.

47 Zhu L, Duan Q, Fan P, et al: Clinical evaluation of targeted arterial infusion of verapamil in the interventional chemotherapy for advanced esophageal cancer. Anhui Med J 2011;32:1821–1824.

48 Ikebe M, Kitamura M, Saitoh G, et al: Multimodality therapy containing hepatic arterial infusion chemotherapy for liver metastasis of esophageal cancer – a case report (in Japanese). Gan To Kagaku Ryoho 2012;39:1555–1557.

49 Power C, Byrne PJ, Lim K, et al: Superiority of anti-reflux stent compared with conventional stents in the palliative management of patients with the lower esophagus and esophago-gastric junction: results of a randomized clinical trial. Dis Esophagus 2007;20:466–470.

50 Park JH, Dipasco PJ, Baranda JC, et al: Esophageal Cancer. New York, Springer, 2015.

51 Lindenmann J, Matzi V, Neuboeck N, et al: Individualized, multimodal palliative treatment of inoperable esophageal cancer: clinical impact of photodynamic therapy resulting in prolonged survival. Lasers Surg Med 2012;44:189–198.

52 Yano T, Hatogai K, Morimoto H, et al: Photodynamic therapy for esophageal cancer. Ann Transl Med 2014;2:29.

53 Qumseya BJ, David W, Wolfson HC: Photodynamic therapy for Barrett’s esophagus and esophageal carcinoma. Clin Endosc 2013;46:30–37.

54 Overholt BF, Wang KK, Burdick JS, et al: Five-year efficacy and safety of photodynamic therapy with Photofrin in Barrett’s high-grade dysplasia. Gastrointest Endosc 2007;66:460–468.

55 Tanaka T, Matono S, Nagano T, et al: Photodynamic therapy for large superficial squamous cell carcinoma of the esophagus. Gastrointest Endosc 2011;73:1–6.

56 Hatogai K, Yano T, Kojima T, et al: Salvage photodynamic therapy for local failure after chemoradiotherapy for esophageal squamous cell carcinoma. Gastrointest Endosc 2016;83:1130–1139.e3.

57 Mashimo Y, Eozo Y, Ueda K, et al: Salvage photodynamic therapy is an effective and safe treatment for patients with local failure after definitive chemoradiotherapy for esophageal squamous cell carcinoma. J Cancer Ther 2014;5:647–656.

58 Ha NH, Hummel R, Watson D: Endoscopic radiofrequency ablation therapy for the prevention of esophageal cancer in Barrett’s esophagus. Gastrointest Cancer 2015;5:111–121.

59 Tsai YN, Lee CT, Tang TQ, et al: Endoscopic balloon-based radiofrequency ablation for long-segment early esophageal squamous cell neoplasia. Ad Dig Med 2015;31:718–724.

60 Lyday WD, Corbett FS, Kuperman DA, et al: Radiofrequency ablation of Barrett’s esophagus: outcomes of 429 patients from a multicenter community practice registry. Endoscopy 2010;42:272–278.

61 Chunqing KE, Liu H, Chunan LJ, et al: The effect of endoscopic radiofrequency ablation in 37 patients with advanced esophageal cancer. J Med Oncol 2011;19:2249–2250.

62 Matsui Y, Hiraki T, Gobara H, et al: Percutaneous radiofrequency ablation for pulmonary metastases from esophageal cancer: retrospective evaluation of 21 patients. J Vasc Interv Radiol 2014;25:1566–1572.