Physicochemical and antioxidative characteristics of Iranian pomegranate (Punica granatum L. cv. Rabbab-e-Neyriz) juice and comparison of its antioxidative activity with Zataria multiflora Boiss essential oil

Behnaz Bazargani-Gilani*, Hossein Tajik, Javad Aliakbarlu

Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran.

Abstract

Pomegranate juice (PJ) and its products are directly used in foods due to their pleasant taste and palatability as well as preservative effects. In spite of useful effects of essential oils such as zataria multiflora Boiss essential oil (ZEO) on prolonging shelf-life of foods, their application is restricted due to their vigorous taste and aroma. In the present study, physicochemical characteristics, chemical compositions and antioxidative activities of two Iranian native plants, PJ (Rabbab-e-Neyriz cultivar) and ZEO were investigated. 2, 2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging and reducing power tests were used for measuring antioxidative activity. The level of total phenolic of them were also determined. Total soluble solids content, pH value, titratable acidity content and total anthocyanins content of PJ were also measured. Chemical compositions of ZEO were determined using gas chromatography, mass-spectrometry (GC-MS). The results of antioxidative tests indicated that the ZEO was significantly more potent (p < 0.05) than PJ. Also the phenolic content in ZEO (262.52 mg per g) was significantly higher (p < 0.05) than PJ (154.90 mg per 100g). Chemical compositions analysis of ZEO indicated that its major components were carvacrol (59.17%), linalool (23.67%), trans-caryophyllene (3.07%) and carvacrol methyl ether (2.44%). In the present study, physicochemical and antioxidative characteristics of Rabbab-e-Neyriz PJ were determined for first time. It was also found that ZEO in comparison with PJ had higher antioxidative activity and total phenolic content.

© 2014 Urmia University. All rights reserved.

Key words:
Antioxidative activity
Pomegranate juice
Shelf life
Taste and aroma
Zataria multiflora Boiss essential oil

Chemical characteristics, total phenolic and antioxidative activities of two Iranian native plants, pomegranate juice (Rabbab Neyriz) and ZEO were investigated. It was also found that ZEO had higher antioxidative activity and total phenolic content.

*Correspondence:
Behnaz Bazargani-Gilani. DVM, PhD Candidate
Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran.
E-mail: gilani_83@yahoo.com
Introduction

Natural preservatives with high antioxidant activities that prolong the shelf life of food are valuable. Some alternatives such as modified atmosphere packaging, gamma irradiation, organic acids, ozone treatment, heat, steam or hot water have been found to be effective on shelf life extension in fresh or processed foods. However, acidification by using organic acids or natural acidic fruit juices is another alternative that is used extensively in food processing to increase the shelf life. The increasing demand for natural preservatives has resulted in their extended utility. The various chemical disinfectants are generally undesired by consumers because of their side effects. Thus, natural sanitizers such as vinegar, lemon juice and pomegranate juice, not only give flavor to foods but they also have the advantage of being a natural preservative.

Pomegranate (Punica granatum L.) from the Punicaceae family is an important commercial fruit crop that is extensively cultivated in parts of Asia, North Africa, the Mediterranean and the Middle East. Iran is one of the most important pomegranate producers and exporters in the world. The edible parts of pomegranates (called arils) make up approximately 50.00% of the fruit weight and are composed of 76.00 to 85.00% juice and 15.00 to 24.00% seeds. Recently, the high antioxidant activities of different parts of pomegranate fruit such as juice, peel and seeds have been determined. The antioxidant activity of pomegranate juice is higher than other fruit juices. This antioxidant activity has been correlated to the great amount of phenolic compounds, including anthocyanins (3-glucosides and 3,5-diglucosides of delphinidin, cyanidin, and pelargonidin), ellagic acid, punicalin, punicalagin, pedunculagin and different flavonols. The various parts of pomegranate fruits can be consumed fresh or used for the producing of fresh juice, canned beverages, jelly, jam and paste and also for food additive such as flavouring and coloring. Pomegranate derivatives are the most popular products used to give flavor to several foods such as salads and appetizers, in Turkey. Rabbab-e-Neyriz is one of the most important cultivars in Iran and we could not find any information regarding the antioxidant activity, physico-chemical characteristics and its application with Zataria multiflora Boiss essential oil in foods.

Zataria multiflora Boiss belongs to the family of Lamiaceae, and is an aromatic medicinal plant that grows widely in warm and mountainous parts of Iran, Pakistan and Afghanistan. The essential oil (EO) of this plant (ZEO) has high quantities of phenolic oxygenated monoterpenes and exhibits antioxidant, antibacterial and antifungal activities in vitro. The use of EO for food preservation is often restricted because of high costs, vigorous aroma and also potential toxicity. An alternative approach to decrease the amounts of essential oils with remaining their benefits in food could be to incorporate them into the formulation of edible coatings. The aim of this study was to identify the physicochemical and antioxidative characteristics of Iranian pomegranate (Punica granatum L. cv. Rabbab-e-Neyriz) juice and comparison of its antioxidant activity with ZEO as native Iranian natural preservative.

Materials and Methods

Preparation of pomegranate juice. Pomegranate fruit ‘Rabbab-e-Neyriz’ was harvested at the commercial harvest stage from a commercial orchard located in Neyriz, east of Shiraz in the Fars province, Iran. On the same day, harvested fruit were transported by a ventilated car to the Laboratory of Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Urmia University. Fresh pomegranate fruits were washed and cut into four pieces. Separated arils were ground in a mixer for 30 sec and passed through muslin cloth. The freshly prepared juice was used for analyzing.

Extraction of essential oil and gas chromatography mass spectrometry (GC-MS) analysis. The plant, Zataria multiflora Boiss, was provided by the local groceries and identified at the Institute of Medicinal Plants, Karaj, Iran. The dried aerial parts were subjected to hydrodistillation for 3 hr using a clevenger-type apparatus. The extracted oil was dried over anhydrous sodium sulfate, followed by filtering and stored in air-tight glass vials covered with aluminum foil at 4 °C. The constituents of EO were identified by a gas chromatograph (GC) (Model 6890N; Hewlett-Packard, Palo Alto, USA) equipped with a column HP-5MS (30 m length × 0.25 mm inner diameter, film thickness 0.25 μm) coupled to a mass spectrometer (MS) (Model 5973N; Hewlett-Packard, Palo Alto, USA). The chromatographic condition was as follows: helium flow rate was 1.5 mL per min; temperature programmed to rise from 50 to 240 °C with a gradient of 3 °C per min (holding the initial and final temperature for 6 min); followed by a temperature enhancement of 15 °C per min up to 300 °C (holding for 3 min); injector port temperature and detector temperature were set at 290 °C and 250 °C, respectively. The individual compounds were identified and confirmed with those of authentic samples and with available library data of the GC/MS system (WILEY 2001 data software; John Wiley and Sons, New York, USA).

Chemicals and reagents. Gallic acid, 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,6-di-tert-butyl-4-methylphenol (butylated hydroxytoluene, BHT), ferric chloride, and potassium ferricyanide [K₃Fe(CN)₆] were obtained from Sigma-Aldrich Chemie (Steinheim, Germany). Analytical grade ethanol, methanol, Folin-Ciocalteu’s phenol reagent, disodium hydrogen phosphate (Na₂HPO₄), sodium dihydrogen phosphate (NaH₂PO₄), sodium carbonate, anhydrous sodium sulfate, and trichloroacetic acid were purchased from Merck (Darmstadt, Germany).
DPPH radical scavenging activity. The ability to scavenge DPPH radical by PJ and ZEO was estimated using the method of Blois with slight modification. A volume of 50 µL of PJ (1:10) and ZEO (1, 2, 4 and 8 mg mL⁻¹) which have been previously dissolved in methanol were mixed with 2 mL of DPPH (24 µg mL⁻¹) solution and shaken. The reaction mixture was stored in the dark at room temperature for 60 min and the absorbance was measured at 517 nm by a spectrophotometer (Model Novaspec II; Pharmacia LKB, Uppsala, Sweden). The radical scavenging activity (RSA) was calculated by the following equation:

\[
RSA(\%) = \left(\frac{A_{\text{blank}} - A_{\text{sample}}}{A_{\text{blank}}} \right) \times 100
\]

where \(A_{\text{blank}}\) is the absorbance of control reaction (containing all reagents except the test compound), and \(A_{\text{sample}}\) is the absorbance of the test compound. Butylated hydroxytoluene (1 mg mL⁻¹) was used as a positive control. All tests were carried out in triplicate and results were reported as mean ± SD of triplicates.

Reducing power. The reducing power of PJ and ZEO were determined according to the method of Oyaizu. A volume of 1 mL of PJ (1:10) and ZEO (2, 4 and 8 mg mL⁻¹) diluted with methanol was mixed with 2.5 mL of sodium phosphate buffer (0.2 M, pH 6.6) and 2.5 mL of potassium ferricyanide (1.0%). After incubation at 50 °C for 20 min, 2.5 mL of trichloroacetic acid (10.0%) was added to the mixture to stop the reaction, followed by centrifugation at 1,430 g for 10 min. Finally, the 2.5 mL of upper layer was mixed with 2.5 mL of distilled water and 0.5 mL of ferric chloride (0.1%). After 10 min, the absorbance was measured at 700 nm against blanks that contained all reagents except the sample extracts. A higher absorbance value indicated a higher reducing power. Butylated hydroxytoluene (1 mg mL⁻¹) was used as a positive control.

Total phenolics. The total phenolic contents of PJ and ZEO were determined using the Folin-Ciocalteu reagent assay according to the method of Singleton and Rossi. The major components were carvacrol (59.17%), linalool (23.67%), trans-caryophyllene (3.07%) and carvacrol methyl ether (2.44%).

Antioxidative activity. The scavenging effects of pomegranate juice (PJ), ZEO and butylated hydroxytoluene (BHT) at different concentrations on the DPPH radical are shown in Figure 1. The DPPH was used as a free radical to evaluate antioxidiant activity present in natural sources. Increasing the concentration of ZEO led to increased (\(p < 0.05\)) radical scavenging activity. Therefore the lowest and highest radical scavenging effect of ZEO were detected in 1 mg mL⁻¹ and 8 mg mL⁻¹ concentrations, respectively. The juice at 1:10 dilution level showed 67.00% radical scavenging effect. Also, ZEO at 8 mg mL⁻¹ concentration exhibited similar radical scavenging activity to PJ at 1:10 dilution. Thus, ZEO showed more antioxidant ability than PJ.
Table 1. Chemical composition of Zataria multiflora Boiss essential oil.

Compounds	Ki \(^a\)	Area (%)
2e-Hexenal	858	0.06
α-Pine ne	933	0.24
β-Pine ne	980	0.04
(1)Octen-3-ol	985	0.05
3-Octanone	991	0.26
3-Octanol	1002	0.11
α-Terpine ne	1020	0.15
para-Cymene	1029	0.48
1,8Cineole	1036	0.32
(2-β)Ocinene	1049	0.05
gamma-Terpine ne	1062	0.47
(trans)Linalool oxide	1075	0.40
α-Terpinolene	1089	0.06
cis-Linalool oxide	1091	0.3
Linalool	1109	23.67
Hotrienol	1111	0.84
(3-Octanol acetate	1122	0.11
(1,3,β-p) Mentatriene	1136	0.18
Borneol	1182	0.24
Terpinene-4-ol	1189	0.54
α-Terpineol	1205	1.17
cis-Dihydrocarvone	1211	0.19
2,6-Dimethyl-3,5,7-octateriene-2-ol-e-e	1219	0.16
Thymol, methyl ether	1236	0.31
Carvacrol methyl ether	1246	2.44
Linalyl acetate	1254	0.92
Geraniol	1261	0.12
Thymol	1293	0.06
Carvacrol	1304	59.17
(delta)Elemene	1335	0.09
Neryl acetate	1363	0.07
Carvacryl acetate	1373	0.16
Geranyl acetate	1383	0.11
trans-Caryophyllene	1426	3.07
Aromadendrene	1445	0.48
α-Humulene	1463	0.15
(allo)Aromadendrene	1467	0.07
(α)Curcumene	1487	0.06
Veridiflören	1498	0.40
Bicyclgermacrene	1503	0.26
β-Sesquistellandrene	1530	0.07
Spathulenol	1589	0.69
Caryophyllene oxide	1594	0.57
Total	-	99.37

\(^a\)Ki: Kovats indices calculated against n-alkanes on HP-5 column.

Reducing power. A concentration dependent increase in reducing power was observed for ZEO (Fig. 2). As it exhibited at 2 mg mL\(^{-1}\) and 8 mg mL\(^{-1}\) concentrations the lowest and highest reducing power respectively. With high radical scavenging activity, ZEO at 8 mg mL\(^{-1}\) concentration exhibited similar reducing capacity to PJ at 1:10 dilution. Thus ZEO showed more reducing capacity than PJ.

Total phenolic content. The level of total phenolics in pomegranate juice and ZEO was 154.90 mg per 100 g and 262.52 mg per g, respectively.

Titratable acidity, pH, total soluble solids, maturity index and total anthocyanins. The results of physico-

Discussion

Results of GC-MS analytical data of compounds in ZEO were in agreement with other researchers that have also shown carvacrol to be the main component in ZEO.\(^{15}\) The quantity of these compounds can vary due to harvesting season, plant age, soil, climate, geographical sources, herb drying method and extraction method.\(^{20}\)

The results of DPPH in ZEO in the present study were not in agreement with the findings of Moradi et al. (ZEO in 10 mg mL\(^{-1}\) concentration with 34.00% radical scavenging effect)\(^{13}\) and Aliakbarlu et al. (ZEO in 2 mg mL\(^{-1}\) concentration with 88.00% radical scavenging effect)\(^{21}\) Moreover, the findings of the 2 latter studies were not in agreement with each other. These differences may be due to changes in culture, harvest and drying conditions that lead to diversity in constituents of ZEO. The DPPH of PJ of Rabbab-e-Neyriz cultivar was the highest among other cultivars of Iranian pomegranates.\(^{22}\) That is probably due
to its high amount of total anthocyanins which are major constituents of phenolic compounds of PJ.10

The antioxidative activity has been reported to be directly correlated with reducing power. The reducing properties are generally associated with the presence of reductones.23 Gordon reported that the antioxidant action of reductones is based on the breaking of the free radical chain by donating a hydrogen atom.24 The results of reducing power in ZEO were not in agreement with findings of Aliakbarlou et al. (ZEO 2 mg mL⁻¹ with 1.2 absorbance).21 This might be due to the mentioned reasons for differences in DPPH. The results of reducing power in PJ were not similar to findings of Naveena et al. (200 µg P) phenolics with 1.2 absorbance).25,26 This might be due to using different method or different variety of pomegranate for reducing power measurement.

The reported levels of total phenolic content for pomegranate juice in literature were between the range of 124.50 to 207.60 mg per 100 g (Ozgen et al.),27 208.3 to 343.6 mg per 100 g (Cam et al.),28 14.40 to 1008.60 mg per 100 g (Tezcan et al.),29 and 23.70 to 930.40 mg per 100 g (Mousavinejad et al.).22 These differences may be due to various varieties. In a study by Zangiabadi et al. the phenol content for ZEO was 322.00 ± 2.90 mg gallic acid mL⁻¹.30 Aliakbarlou et al. showed that the phenol content for ZEO was 44.81 mg GAE per g of sample.21 These differences are related to many factors, such as geographic location, environmental and climate conditions, season of growth, soil type, storage, and processing conditions that can influence the levels of phenolics compounds. The phenol contents are important vegetable antioxidant compounds, because their hydroxyl groups have the inhibitory potential for radicals.31 Many researches have reported that there is a relation between the phenol content and antioxidiant activity, but some researchers showed that, there may be no relation at all.31

The pH value in the current study was lower than those reported by Tehranifar et al. of other pomegranate cultivars grown in Iran.32 Our results indicated that the pomegranate juice (Rabbab-e-Neyriz) was the most acidic crop among other Iranian cultivars. Our result relating to the total soluble solids was higher than values observed (11 to 15 Brix) on twenty Iranian cultivars by Tehranifar et al.32 The titratable acidity content was 1.13. Similarly, Tehranifar et al. and Fadavi et al. reported same results about other Iranian cultivars.32,33 The maturity index (TSS/TA) is responsible for the taste and flavor of pomegranate, which some authors have used it for classifying pomegranate cultivars. This classification has been optimized for Spanish cultivars: maturity index (MI) = 5 to 7 for sour, MI = 17 to 24 for sour-sweet and MI = 31 to 98 for sweet cultivars.34 Regarding our result about MI (14.75), Rababe-Neyriz pomegranate can be ordered as sour-sweet. Anthocyanins are members of phenolics compounds that contribute to the red, blue, or purple color of many fruits, including pomegranate juice, and they are well-known for their antioxidant activity. Rabbab-e-Neyriz cultivar is a crop with a high amount of anthocyanin (28 mg cy-3-glu per 100 g). Thus, it may be claimed that this cultivar is one of the most antioxidant crops among other Iranian cultivars. According to the results of Tehranifar et al. total anthocyanin values ranged between 5 to 30 mg cy-3-glu per 100 g among twenty Iranian cultivars. ‘Malase Yazdi’ had the highest amount of total anthocyanins (30.11mg cy-3-glu per 100 g) among the other cultivars and the rest were below 11mg cy-3-glu per 100 g.32

In the present study, physicochemical properties, chemical compositions and anti-oxidative activities of Rabbab-e-Neyriz pomegranate (Punica granatum L.) juice and ZEO were determined. The ZEO showed more potent anti-oxidative activity than pomegranate juice. Also its total phenolics content were higher than PJ. Moreover, ZEO exhibits its food preservative effects in low amounts. Its usage in food is limited due to the vigorous taste and aroma, so it cannot be directly used in high amounts as food preservative. However, Rabbab-e-Neyriz pomegranate (Punica granatum L.) juice and its products can be directly used in various foods due to their wonderful taste and high palatability. It can also increase food shelf life by its high antioxidant activities. Therefore ZEO maybe can be used in low amounts as a portion of coating of dipped foods in PJ and its products in order to remain and prolong its effects on foods.

Acknowledgments

This work was financially supported by the Faculty of Veterinary Medicine, Urmia University, Urmia, Iran.

References

1. Siripatrawan U, Noipha S. Active film from chitosan incorporating green tea extract for shelf life extension of pork sausages. Food Hydrocoll 2012; 27(1): 102-108.
2. Beuchat LR. Pathogenic microorganisms associated with fresh produce. J Food Prot 1996; 59(2): 204-216.
3. Vijayakumar C, Wolf-Hall C. Evaluation of household sanitizers for reducing levels of Escherichia coli on iceberg lettuce. J Food Prot 2002; 65(10): 1646-1650.
4. Karabiyikli S, Kislaz D: Inhibitory effect of sour pomegranate sauces on some green vegetables and kisir. Int J Food Microbiol 2012; 155(3): 211-216.
5. Sarker A, Zamani Z, Fatahi R, et al. RAPD markers reveal polymorphism among some Iranian pomegranate (Punica granatum L) genotypes. Sci Hortic 2006; 111(1): 24-29.
6. Statistical book of agricultural of Iran. Tehran: Iranian Statistical Center 2005: 314-320.
7. Gil MI, Tomas-Barberan FA, Hess-Pierce B, et al. Antioxidant activity of pomegranate juice and its relationship
with phenolic composition and processing. J Agric Food Chem 2000; 48: 4581-4589.
8. Seeram NP, Aviram M, Zhang Y, et al. Comparison of antioxidant potency of commonly consumed polyphenol rich beverages in the United States. J Agric Food Chem 2008; 56(4): 1415-1422.
9. Şeniz K, Duygu K. Inhibitory effect of sour pomegranate sauces on some green vegetable and kisir. Int J Food Microbiol 2012; 155(3): 211-216.
10. Gonzalez-Molina E, Moreno DA, Garcia-Viguera C. A new drink rich in healthy bioactives combining lemon and pomegranate juices. Food Chem 2009; 115(4): 1364-1372.
11. Saei Dehkordi SS, Tajik H, Moradi M, et al. Chemical composition of essential oils in Zataria multiflora Boiss. From different parts of Iran and their radical scavenging and antimicrobial activity. Food Chem Toxicol 2010; 48(6): 1562-1567.
12. Perdones A, Sanchez-Gonzalez L, Chiralt A, et al. Effect of chitosan-lemon essential oil coatings on storage-keeping quality of strawberry. Postharvest Biol Technol 2012; 70: 32-41.
13. Moradi M, Tajik H, Razavi Rohani SM, et al. Characterization of antioxidant chitosan film incorporated with Zataria multiflora Boiss essential oil and grape seed extract. J Food Sci Technol 2012; 46: 477-484.
14. Blois MS. Antioxidant determinations by the use of a stable free radical. Nature 1958; 119: 1199-1200.
15. Oyaizu M. Studies on products of browning reactions: Antioxidative activities of products of browning reaction prepared from glucosamine. Jpn J Nutr 1986; 44: 307-315.
16. Singleton UL, Rossi JA. Colorimetry of total phenolics with phosphomolybdic-posphotungstic acid reagent. Am J Enol Viticult 1965; 16: 144-158.
17. Giusti MM, Wrolstad RE. In: Wrolstad RE (Eds). Current Protocols in Food Analytical Chemistry. New York, USA: John Wiley & Sons 2001; 1-13.
18. Williams S. AOAC. Official Methods of Analysis. 14th ed. Washington DC, USA: Association of Official Analytical Chemists 1984: 523-529.
19. Kordsardouei H, Barzegar M, Safari MA. Application of Zataria multiflora Boiss. and Cinnamom zeylanicum essential oils as two natural preservatives in cake. Avicenna] J Phytomed 2013; 3(3): 238-247.
20. Gulcin I. Comparison of in vitro antioxidant and antiradical activities of L-tyrosine and L-dopa. Amino Acids 2007; 32(3): 431 - 438.
21. Aliakbarlu J, Khalili Sadaghiani S, Mohammadi S. Comparative evaluation of antioxidant and anti food-borne bacterial activities of essential oils from some spices commonly consumed in Iran. Food Sci Biotechnol 2013; 22(6): 1487-1493.
22. Mousavinejad G, Emam-Djomeh Z, Rezaei K, et al. Identification and quantification of phenolic compounds and their effects on antioxidant activity in pomegranate juices of eight Iranian cultivars. Food Chem 2009; 115(4): 1274-1278.
23. Tanaka M, Kuiie CW, Nagashima Y, et al. Application of antioxidative Maillard reaction products from histidine and glucose to sardine products. Nippon Suisan Gakk 1988; 54: 1409-1414.
24. Gordon MH. The mechanism of antioxidant action in vitro. In: Hudson BJF (Eds.). Food antioxidants. London, UK: Springer 1990; 1-18.
25. Naveena BM, Sen AR, Vaithiyathan S, et al. Comparative efficacy of pomegranate juice, pomegranate rind powder extract and BHT as antioxidants in cooked chicken patties. Meat sci 2008; 80(4): 1304-1308.
26. Naveena BM, Sen AR, Vaithiyathan S, et al. Antioxidant potential of pomegranate juice in cooked chicken patties. J Mus Foods 2010; 21: 557-569.
27. Ozgen M, Durgac C, Serce S, et al. Chemical and antioxidant properties of pomegranate cultivars grown in the Mediterranean region of Turkey. Food Chem 2008; 111(3): 703-706.
28. Cam M, Hisil Y, Durmaz G. Classification of eight pomegranate juices based on antioxidant capacity measured by four methods. Food Chem 2009; 112(3): 721-726.
29. Tezcan F, Gultekein-Ozguven M, Diken T, et al. Antioxidant activity and total phenolic, organic acid and sugar content in commercial pomegranate juices. Food Chem 2009; 115(3): 873-877.
30. Zangibadi M, Sahari MA, Barzegar M, et al. Zataria multiflora and Bunium persicum essential oils as two natural antioxidants. Med Plant 2012; 11: 8-20.
31. Sharififar F, Mosha MH, Mansouri S, et al. In vitro evaluation of antibacterial and antioxidant activities of the essential oil and methanol extract of endemic Zataria multiflora Boiss. Food Cont 2007; 18(7): 800-805.
32. Tehranifar A, Zarei M, Nemati Z, et al. Investigation of physico-chemical properties and antioxidant activity of twenty Iranian pomegranate (Punica granatum L) cultivars. Sci Hortic 2010; 126(2): 180-185.
33. Faradi A, Barzegar M, Azizi MH, et al. Physicochemical composition of 10 pomegranate cultivars (Punica granatum L) grown in Iran. Food Sci Technol Int 2005; 11(2): 113-119.
34. Martinez JJ, Melgarejo P, Hernandez F, et al. Seed characterisation of five new pomegranate (Punica granatum L.) varieties. Sci Hortic 2006; 110(3): 241-246.