Phosphatidylinositol-phospholipase C2 regulates pattern-triggered immunity in *Nicotiana benthamiana*

Akinori Kiba1,*; Masahito Nakano1,2; Miki Hosokawa1; Ivan Galis3; Hiroko Nakatani3; Tomonori Shinya3; Kouhei Ohnishi4; and Yasufumi Hikichi1

1 Laboratory of Plant Pathology and Biotechnology, Faculty of Agriculture, Kochi University, Nankoku, Kochi 783–8502, Japan
2 Okayama Prefectural Technology Center for Agriculture, Forestry, and Fisheries, 7549–1 Kibichuo-cho, Kaga-gun, Okayama 716–1241, Japan
3 Institute of Plant Science and Resources, Okayama University, Okayama 710-0046, Japan
4 Laboratory of Defense in Plant–Pathogen Interactions, Research Institute of Molecular Genetics, Kochi University, Nankoku, Kochi 783–8502, Japan

* Correspondence: akiba@kochi-u.ac.jp

Received 9 December 2019; Editorial decision 23 April 2020; Accepted 11 May 2020

Methods

Phospholipid signaling plays an important role in plant immune responses against phytopathogenic bacteria in *Nicotiana benthamiana*. Here, we isolated two phospholipase C2 (PLC2) orthologs in the *N. benthamiana* genome, designated as PLC2-1 and 2-2. Both *NbPLC2-1* and *NbPLC2-2* were expressed in most tissues and were induced by infiltration with bacteria and flg22. *NbPLC2-1* and *NbPLC2-2* (*NbPLC2s*) double-silenced plants showed a moderately reduced growth phenotype. The induction of the hypersensitive response was not affected, but bacterial growth and the appearance of bacterial wilt were accelerated in *NbPLC2s*-silenced plants when they were challenged with a virulent strain of *Ralstonia solanacearum* that was compatible with *N. benthamiana*. *NbPLC2s*-silenced plants showed reduced expression levels of *NbPR-4*, a marker gene for jasmonic acid signaling, and decreased jasmonic acid and jasmonoyl-L-isoleucine contents after inoculation with *R. solanacearum*. The induction of pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI) marker genes was reduced in *NbPLC2s*-silenced plants after infiltration with *R. solanacearum* or *Pseudomonas fluorescens*. Accordingly, the resistance induced by flg22 was compromised in *NbPLC2s*-silenced plants. In addition, the expression of flg22-induced PTI marker genes, the oxidative burst, stomatal closure, and callose deposition were all reduced in the silenced plants. Thus, *NbPLC2s* might have important roles in pre- and post-invasive defenses, namely in the induction of PTI.

Keywords: Jasmonic acid, *Nicotiana benthamiana*, pathogen-associated molecular pattern-triggered immunity, phosphatidylinositol-phospholipase C2, *Ralstonia solanacearum*, virus-induced gene silencing.

Introduction

Plants combat invading pathogens by employing a two-layered innate immune system (Thomma et al., 2011). The first layer is triggered upon perception of conserved molecular structures termed pathogen-associated molecular patterns (PAMPs) through pattern recognition receptors localized to the plasma membrane, and this is designated as PAMP-triggered...
immunity (PTI). Well-studied examples of PTI are Arabidopsis FLS2 and EFR, which recognize the bacterial flagellar component flg22 and the elongation factor thermo unstable (EF-Tu), respectively. Adapted pathogens have evolved a number of virulence mechanisms to suppress PTI by acquiring effector proteins (Bigard et al., 2015). As a counter-measure, plants have evolved the second layer of the innate immune system to directly or indirectly recognize effector proteins by their cognate resistance proteins, resulting in the initiation of effector-triggered immunity (ETI) (Gassmann and Bhattacharjee, 2012). PTI and ETI share signaling components that have distinct activation dynamics and amplitudes (Tsuda and Katagiri, 2010). Generally, PTI is characterized by broad-spectrum, transient, and relatively mild immune responses without an associated programmed cell death hypersensitive response (HR) (Segonzac et al., 2011; Bigard et al., 2015). In contrast, ETI is characterized by specific, sustainable, and robust immune responses with HR (Jones and Dangl, 2006).

During PTI and ETI, plants trigger activation of diverse signaling cascades, such as generation of reactive oxygen species (ROS), spikes in cellular Ca^{2+}, activation of MAP kinase, production of phytohormones, and transcriptional reprogramming. The most characterized Ca^{2+} spike results from an influx from the apoplast and endoplasmic reticulum that causes a rapid increase in the cytosolic concentration (Blume et al., 2000; Lecourieux et al., 2005). Plant cyclic nucleotide-gated ion channels provide a pathway for conductance of Ca^{2+} across the plasma membrane and thus facilitate the elevation of the cytosolic concentration. In Arabidopsis, cyclic nucleotide-gated channel 2 plays a pivotal role in allowing entry of Ca^{2+} into cells in response to pathogen signals (Ma and Berkowitz, 2011). The elevated cytosolic Ca^{2+} reportedly activates downstream intracellular signaling components. ROS generation is another event in immune signaling, and is mainly brought about by a respiratory-burst oxidase homologue (Rboh). ROS act not only as direct antimicrobial agents that cross-link components for cell-wall strengthening, but also as second messengers during immune signaling (Torres, 2010). In Nicotiana benthamiana, NbRbohA and NbRbohB are required for ROS generation to occur after treatment with hyphal cell wall components and the IN1 elicitor from Phytophthora infestans (Yoshioka et al., 2003). The rapid activation of MAP kinase cascades is another important event in the downstream signal transduction during induction of PTI and ETI. In N. tabacum (tobacco) and N. benthamiana, protein kinases induced by salicylic acid (SA) and wounding are also activated rapidly after elicitation (Seo et al., 1995; Lebrun-Garcia et al., 1998; Zhang and Klessig, 1998; Dahan et al., 2009).

Phospholipid-based signaling cascades are important for signal transduction in plant immune responses. Phospholipid turnover is mainly composed of cascades associated with diacylglycerol kinase and phospholipase C (PLC) and phospholipase D (PLD). Treatment with SA significantly increases the generation of phosphatidic acid (PA) by the activation of PLD (Rodas-Junco et al., 2015). PLD is involved in defense signaling in non-host resistance against powdery mildew, and PLD0 may be the main participating isoform in Arabidopsis (Pinoso et al., 2013). The silencing of diacylglycerol kinase cluster III abolishes PA production and strongly inhibits the ROS burst in tobacco in response to the elicitor cryptogein (Cascales et al., 2017). We have previously identified the SEC14 gene in N. benthamiana. Suppression of PLC and PLD activities, and production of diacylglycerol (DAG) and PA were observed in NbSEC14-silenced plants, resulting in compromised disease resistance against phytopathogenic bacteria through the jasmonic acid (JA)-dependent pathway (Kiba et al., 2012, 2014, 2016). Thus, phospholipid turnover may play an important role in the induction of immune responses in N. benthamiana.

PLCs are an important group of lipid-hydrolysing enzymes in both plants and animals. In plants, PLCs can be subdivided into the well-studied phosphatidylinositol-specific PLCs (PI-PLCs) and the recently identified phosphatidylincholine-PLCs (PC-PLCs). PI-PLCs act upon a specific substrate, PI (4,5) P_2, at the glycerophosphate ester linkages of membrane phospholipids and lead to the generation of secondary messengers, such as DAG and inositol 1,4,5-trisphosphate (IP3) (Singh et al., 2015). A total of seven PLCs have been identified in tomato (Abd-El-Haliem et al., 2016). We have searched the recently completed N. benthamiana genome sequence (https://solgenomics.net/) and identified 12 PLCs, and our objective here was to clarify their roles in plant immunity. We isolated two PLC2 orthologs, NbPLC2-1 and NbPLC2-2 (NbPLC2s), and determined the effects of silencing both on the induction of PTI and ETI in N. benthamiana by using several PTI-inducers and effectors, and by using Pseudomonas syringae pv. Tabaci and Ralstonia solanacearum. In the light of our results, we discuss the regulatory roles of NbPLC2s in immune responses in N. benthamiana.

Materials and methods

Biological and chemical materials

The flg22 peptide was obtained from the Funakoshi Co. Ltd. (Tokyo, Japan), and Nicotiana benthamiana was grown from seeds under a 16/8-h photoperiod in a growth room as described previously (Maimbo et al., 2007, 2010). Pseudomonas fluorescens 55 (an effective PTI inducer in N. benthamiana), P. syringae pv. tabaci 6605, the virulent compatible Ralstonia solanacearum strain OE1-1 (RsOE1-1), the avirulent R. solanacearum strain 8107, and hpyD-deficient RsOE1-1 that lacks the ability to deliver effectors into plant cells were cultured in peptone yeast-extract medium containing appropriate antibiotics as described previously (Chakravarty et al., 2010; Maimbo et al., 2010, 2014a, 2014b). Based on previous reports, the bacterial population of P. fluorescens 55 was adjusted to 10^8 (Chakravarty et al., 2016), P. syringae pv. tabaci 6605 to 10^8 (Ito et al., 2014a, 2014b), RsOE1-1 and R.s8107 to 10^8 (Maimbo et al., 2010), and hpyD-deficient RsOE1-1 to 10^8 (Kiba et al., 2018). Agrobacterium tumefaciens was cultured in YEB medium (Maimbo et al., 2010). The bacterial populations were determined by plating bacterial suspensions on R. solanacearum selective Hara-Ono medium plates at specified time-points (Maimbo et al., 2010). The bacterial suspensions and the flg22 solution were infiltrated using syringes as described previously (Maimbo et al., 2007, 2010; Nguyen et al., 2010). Control plants were infiltrated with water.

RNA isolation and cDNA synthesis

Total RNAs were isolated from the stems, gynoecium, petals, leaves, stems, petioles, and roots of 2-month-old N. benthamiana plants using NucleoSpin RNA Plant Kits (Macherey-Nagel), and qRT-PCR was
completed according to the method described by Maimbo et al. (2007). A 1–µg sample of total RNA was used as the template for reverse-transcription using a ReverTra Ace® qPCR RT Kit (Toyobo Co., Ltd.).

Sequence analysis was performed using the M4 and RV primers (Supplementary Table S1 at JXB online) with the reagents for the Big Dye Terminator Cycle Sequencing Kit (Applied Biosystems) and a 3100 Avant Automated Sequencer (Applied Biosystems) according to the manufacturer's instructions. The sequence analysis was carried out using DNASIS (version 3.6; Hitachi) and the the BLAST network service from the NCBI (Altschul et al., 1990).

Virus-induced gene silencing
cDNA fragments for NbPLC2-1, NbPLC2-2, and the combined NbPLC2-1 and NbPLC2-2 sequences (NbPLC2s) were amplified using the primers listed in Supplementary Table S1 using N. benthamiana cDNA as the template. These cDNA fragments were independently subcloned into the TA cloning site of the pMD20 vector (TaKaRa Bio.) to create pMD-NbPLC2-1, pMD-NbPLC2-2, and pMD-NbPLC2s. These plasmids were digested with SalI (TaKaRa Bio) and ligated into SalI-digested pPVX201 (Maimbo et al. 2007). The plasmids used for the virus-induced gene silencing (VIGS) experiments are listed in Supplementary Table S2. VIGS was conducted with pPVX201 containing the NbPLC2-1, NbPLC2-2, and combined NbPLC2s sequences. The cDNA fragments were amplified with the primers listed in Supplementary Table S1. The pPVX201 plasmid lacking any insert was used as a control, as previously described (Kiba et al., 2012). These binary plasmids were transformed into A. tumefaciens strain GV3101 and inoculated into leaves of 4-week-old N. benthamiana as described previously (Nakano et al., 2013). At 4 weeks after the initial inoculation, bacteria and flg22 were inoculated into a leaf located 3–4 leaves above the Agrobacterium-inoculated one as a challenge inoculation. The silencing efficiency was assessed by quantitative real-time PCR (qRT-PCR) assays (Supplementary Fig. S3).

Bacterial population and disease index
Bacterial suspensions (10^6 CFU ml^{-1}) of RsOE1-1 and hrpY-deficient R. solanacearum were inoculated into N. benthamiana leaves. The bacterial populations after 24 h and 48 h were determined by plating on Hara–Ono plates. Plants inoculated with rsOE1-1 were labeled and inspected daily for wilting symptoms for 14 d. For each plant, the disease index on a scale of 0–4 was calculated as described previously (Maimbo et al., 2010).

Quantitative real-time PCR
Gene expression analysis was carried out using qRT-PCR and the ΔΔCT method as described by Maimbo et al. (2007). Briefly, the qRT-PCR was carried out in 20 µl of reaction mixture, containing 1 µl of cDNA template, 10 pM of the respective primers (Supplementary Table S1) and THUNDERBIRD qPCR MIX (Toyobo Co.), on an Applied Biosystems 7300 real-time PCR instrument. The cycling parameters were the same for all the primers: an initial 50 °C for 2 min and 95 °C for 10 min, followed by 40 cycles of 95 °C for 10 s and 60 °C for 1 min. Melting-curve runs were performed at the end of each PCR reaction to verify the specificity of the primers by the presence of a single amplification product. The relative quantification of gene expression was performed according to the manufacturer's instructions using the comparative cycle threshold [Ct] method for the calculation of the Qty value. All values were normalized to the expression of the actin gene, which was used as an internal standard in each cDNA stock.

Estimation of cell death
Cell death was measured by ion conductivity (Nakano et al., 2013) using a Twin Cord B–173 conductivity meter (HORIBA, Kyoto, Japan).

Phytohormone analysis
Phytohormone contents were determined using a method described previously by Kiba et al. (2012). Extracted samples were measured on a triple-quadrupole LC-MS/MS 6410 (Agilent Technologies) equipped with a Zorbax SB-C18 column (2.1 mm id×50 mm, 1.8 µm; Agilent Technologies). The amounts of hormones were calculated from the ratios of the endogenous hormone peaks and the known amounts of internal standards, and expressed in relation to the fresh weight of the samples used for extraction.

Callose deposition assays
Callose deposition was detected using a modified version of a staining method using aniline blue (Ton and Mauch-Mani, 2004). Briefly, leaves of N. benthamiana were fixed and de-stained in 95% ethanol. The leaves were then washed with 0.07 M phosphate buffer (pH 9.0) and incubated for 1–2 h in 0.07 M phosphate buffer containing 0.01% aniline blue (Sigma). Samples were observed using a BX-51 epifluorescence microscope with a UV filter (Olympus). Callose deposition was quantified based on the number of deposits detected in digital photographs using the Photoshop Elements 7 software (Adobe Systems).

PTI assays based on cell death
PTI assays based on cell death were conducted as described previously by Chakravarthy et al. (2010), with P. fluorescens 55 (1×10^7 CFU ml^{-1}) and P. syringae pv. tabaci 66455 (1×10^7 CFU ml^{-1}) as the inducer and challenger, respectively. The PTI was induced by infiltrating the leaves with the inducer, then 24 h later the challenger was applied to a partially overlapping area. Images were taken 5 d after the challenge inoculations.

ROS measurements
ROS measurements were performed as described by Kobayashi et al. (2007). Leaves of N. benthamiana were infiltrated with 0.5 mM L-012 (Wako Pure Chemical Industries Ltd, Osaka, Japan) in 10 mM MOPS-KOH (pH 7.4) using a needleless syringe. Chemiluminescence was monitored continuously using a photon image processor equipped with a sensitive CCD camera (ARGUS-50 or Aquacosmos 2.5; Hamamatsu Photonics). Photons were integrally incorporated for 5 min after the treatment.

Epidermal strip bioassays
Epidermal strip bioassays were carried out as described by Chen et al. (2004) with slight modifications. Leaves of N. benthamiana were incubated in MES buffer (10 mM MES-Tris, pH 6.0, containing 30 mM KC1 and 0.1 mM CaCl2) for 90 min under light to open the stomata. The strips were then transferred to MES buffer in the absence or presence of 100 nM flg22 for 3 h and images of stomatal apertures were captured with an Olympus BX43 microscope. Measurements of 50 randomly selected stomata were taken. Each assay was repeated three times.

Statistical analysis
Significant differences between means were determined using Student's t-tests (two-sided).

Results
Identification of phosphatidylinositol phospholipase C2 from Nicotiana benthamiana
Based on PLC sequences from tomato (Solanum lycopersicum cv. Microtom), we searched for orthologs in N. benthamiana using the Sol Genomics Network (https://solgenomics.net/) and identified a total of 12. A phylogenic
analysis of the amino acid sequences divided the NbPLCs into seven classes (Supplementary Fig. S1A). Two of them (Niben101Scf02221g00009 and Niben101Scf00318g03011) were classified into the same clade as SiPLC2; however, AtPLC2 belonged to a different clade. The deduced amino acid sequences of the full-length cDNAs of the PLC2 orthologs contained the PI-PLC–X, PI-PLC–Y, and PI3K–C2 domains, suggesting that they were phosphatidylinositol-specific PLCs (PI-PLCs; Supplementary Fig. S1B, C). We designated them as NbPLC2-1 (Niben101Scf02221g00009) and NbPLC2-2 (Niben101Scf00318g03011).

Expression patterns of NbPLC2-1 and NbPLC2-2

Total RNAs were isolated from various organs of the plants, and qRT-PCR showed that NbPLC2-1 and NbPLC2-2 were expressed in all of them (Fig. 1A). The highest level of expression of NbPLC2-1 was observed in the stamens, followed by the leaves, stems, petioles, roots, petals, and gynoecium. The highest level of expression of NbPLC2-2 was also observed in the stamens, followed by the stems, leaves and roots equally, petioles, petals, and gynoecium.

To determine the expression profiles of NbPLC2s in response to inoculation with *R. solanacearum*, we used the virulent compatible strain OE1-1 (RsOE1-1) and the avirulent strain 8107 (Rs8107), and total RNAs were isolated from leaves at between 0–48 h after inoculation. Strong induction of both NbPLC2-1 and NbPLC2-2 was observed in leaves inoculated with Rs8107 (Fig. 1B), with the expression of NbPLC2-1 showing a peak at 24 h whilst the highest expression of NbPLC2-2 was observed at 48 h. The expression levels of NbPLC2-1 and NbPLC2-2 were lower in leaves inoculated with RsOE1-1 and increases in expression were not evident until 18–24 h after inoculation.

Effects of silencing of NbPLC2s on resistance against Ralstonia solanacearum

To examine the roles of NbPLC2s in plant immunity, we carried out virus-induced gene silencing (VIGS). We created constructs for silencing both PLC2s (PLC2s-VIGS), and individually for NbPLC2-1 (PLC2-1-VIGS) and NbPLC2-2 (PLC2-2-VIGS) (Supplementary Fig. S2). We checked the specific suppression of NbPLC2-1 and NbPLC2-2 using qRT-PCR, which confirmed that the expression levels of both genes were reduced in plants inoculated with *Agrobacterium* carrying the NbPLC2s-VIGS construct and that the expression levels of the individual genes were reduced in the individual VIGS constructs.

Fig. 1. Expression patterns of NbPLC2s in *Nicotiana benthamiana*. (A) Relative expression of NbPLC2-1 and NbPLC2-2 in different tissues. (B) Relative expression of NbPLC2-1 and NbPLC2-2 in leaves of plants inoculated with avirulent *Ralstonia solanacearum* 8107 (Rs8107) or with virulent compatible *R. solanacearum* OE1-1 (RsOE1-1). Expression levels were determined by qRT-PCR and are relative to the *Actin* housekeeping gene. Data are means (±SD) of *n* = 3 replicates.
(Supplementary Fig. S3A). It was notable that the expression of NbPLC2-2 was increased in PLC2-1-VIGS plants and the expression of NbPLC2-1 was increased in PLC2-2-VIGS plants. In terms of phenotype, compared with water-inoculated controls, PLC2s-VIGS plants showed a significant reduction in growth at 3 weeks after inoculation with the construct whilst no differences were observed in the PLC2-1-VIGS and PLC2-2-VIGS plants (Supplementary Fig. S3B, C).

We then examined the roles of NbPLC2s using a N. benthamiana–R. solanacearum interaction model. We first inoculated PLC2s-VIGS, PLC2-1-VIGS, and PLC2-2-VIGS plants with the RsOE1-1 strain, a compatible pathogen that causes characteristic wilt symptoms in N. benthamiana. At 24 h after inoculation with RsOE1-1, the bacterial population was ~10-fold greater in PLC2s-VIGS plants compared with the control (Fig. 2A). Bacterial wilt was first observed in control plants at 12 d, and the plants were completely wilted at 18 d after inoculation (Fig. 2B). In PLC2s-VIGS plants, accelerated wilting was observed, with symptoms first being visible at 9 d, and the plants were completely wilted by 17 d after inoculation (Fig. 2B, C). In contrast, no significant changes in disease development or bacterial populations were observed in the PLC2-1-VIGS and PLC2-2-VIGS plants (Supplementary Fig. S4). The results therefore indicated that NbPLC2s might play important roles in induced defense against R. solanacearum OE1-1, and that NbPLC2-1 and NbPLC2-2 might cooperatively regulate the responses. Another possibility was that activity of just one of the two PLC2s was sufficient to mediate the defense responses. Therefore, we used PLC2s-VIGS plants for further functional analysis of NbPLC2s in plant immunity.

Next, we inoculated plants with Rs8107, which is an incompatible pathogen that induces a hypersensitive response (HR) in N. benthamiana. HR lesions developed in both the control and PLC2s-VIGS plants 24 h after inoculation (Supplementary Fig. S5), and the magnitude of induced cell death and its timing were also similar, suggesting that the HR–mediated immune responses might have been independent of NbPLC2. Furthermore, silencing of the NbPLC2s had no effect on the induction of HR by Agrobacterium–mediated transient expression of the R. solanacearum effectors AvrA and PopP1 (Poueymiro et al., 2009; Supplementary Fig. S5), and hence we concluded that NbPLC2 was not essential for the induction of effector-triggered immunity (ETI).

Silencing of NbPLC2s reduces jasmonic acid-dependent defenses against Ralstonia solanacearum

Phospholipid turnover plays an important role in defense responses against RsOE1-1 through JA signaling (Kiba et al., 2012, Nakano et al., 2013), and therefore we examined the effects of silencing NbPLC2s on JA signaling. Total RNA was extracted from leaves of control and PLC2s-VIGS plants at 0–2 d after inoculation with RsOE1-1. The expression level of PR-4, a marker gene for the JA signaling pathway, increased dramatically in control plants at both 1 d and 2 d after inoculation (Fig. 3A). In contrast, the increase in expression in PLC2s-VIGS plants at 1 d was significantly lower than in the control, and it had decreased at 2 d. Similar patterns were observed for the contents of JA and JA-L-isoleucine (Fig. 3B): whilst no significant differences were observed compared with the controls at 1 d after inoculation, the contents were both significantly reduced at 2 d in the PLC2s-VIGS plants. These results therefore suggested that NbPLC2s might be involved in JA-mediated immune responses against R. solanacearum.

Stimulation of expression of NbPLC2s by PAMP-triggered immunity inducers

The silencing of NbPLC2s essentially had no effect on the induction of HR by the incompatible Rs8107 strain and by type III effectors from R. solanacearum. However, PLC2s-VIGS plants showed a reduced-resistance phenotype against the compatible RsOE1-1 strain. Jones and Dangl (2006) defined resistance activated by virulent pathogens on susceptible hosts as basal disease resistance. Accordingly, it can be described as PAMP-triggered immunity (PTI) plus weak ETI minus effector-triggered susceptibility. Basal disease resistance is then mainly covered by PTI (Jones and Dangle, 2006). We therefore examined the correlation

Fig. 2. Responses of NbPLC2s-silenced Nicotiana benthamiana plants to virulent compatible strain of Ralstonia solanacearum. Leaves of plants at 8 weeks old were infiltrated with R. solanacearum OE1-1. Plants were silenced using VIGS. (A) Bacterial populations of R. solanacearum following inoculation. Data are means (±SD) of n=5 replicates. (B) Disease development of bacterial wilt according to a disease index scale of 0–4. Data are means of n=10 plants; for clarity, the error bars are not shown. (C) Images of control and VIGS plants at 12 d after inoculation. Significant differences between control and VIGS plants were determined using Student’s t-test: *P<0.05. (This figure is available in colour at JXB online.)
between NbPLC2s and PTI by first determining their expression patterns in the presence of PTI inducers. We used a type III secretion system \((hrpY)\)-deficient mutant of RsOE1-1 that lacks the ability to deliver effectors into plant cells and induces PTI in \(N. benthamiana\), and we also used \(Pseudomonas fluorescens\) and the bacterial flagellar component flg22, which are effective PTI inducers in \(N. benthamiana\) (Chakravarthy et al., 2010). Strong inductions of NbPLC2-1 and NbPLC2-2 were observed 1 h after inoculation with the \(hrp\)-deficient mutant and 1 h after inoculation with \(P. fluorescens\) (Fig. 4). Inoculation with flg22 induced increasing expression of NbPLC2-1 from 1–6 h, after which it declined, whilst expression of NbPLC2-2 increased from 1–9 h after treatment. NbPLC2s thus appeared to be expressed after the perception of PAMPs.

Silencing of NbPLC2 reduces PAMP-triggered immune responses to Ralstonia solanacearum

Because the expression levels of NbPLC2-1 and NbPLC2-2 were induced by the \(hrp\)-deficient mutant of RsOE1-1, by \(P. fluorescens\), and by flg22, we hypothesized that NbPLC2s may be involved in the initiation of PTI. To assess the effects of silencing of NbPLC2s on the induction of PTI, we examined the expression levels of the PTI marker genes \(NbAcre31\) and \(NbPti5\) after inoculation with RsOE1-1. In control plants, increased expression of \(NbAcre31\) was observed between 18–24 h after inoculation and increased expression of \(NbPti5\) was observed between 24–48 h after inoculation (Fig. 5). In agreement with our hypothesis, the expression levels of both genes were significantly reduced in PLC2s-VIGS plants relative to the controls following inoculation.

We then inoculated plants with the \(hrp\)-deficient mutant of RsOE1-1 and observed increased expression of \(NbAcre31\) and \(NbPti5\) after 18–24 h in the controls, whereas expression in the PLC2s-VIGS plants was significantly lower at these time-points (Fig. 6A). To further confirm their role in PTI, we determined the effects of NbPLC2-silencing on the growth of the \(hrp\)-deficient mutant. Bacterial growth increased following inoculation in both control and PLC2s-VIGS plants, but the rate was higher in the latter with the result that populations

![Fig. 3. Suppression of jasmonic acid-dependent defense responses in NbPLC2s-silenced Nicotiana benthamiana plants inoculated with a virulent compatible strain of Ralstonia solanacearum. Leaves of plants at 8 weeks old were infiltrated with \(R. solanacearum\) OE1-1. Plants were silenced using VIGS. (A) Expression of \(NbPR-4\) (a marker gene for jasmonic acid signaling) was determined relative to that in the control and values were normalized against Actin. Data are means (±SD) of \(n=3\) replicates. (B) Total contents of jasmonic acid (JA) and jasmonoyl-L-isoleucine (JA-Ile) were determined using LC-MS/MS. Data are means (±SD) of \(n=5\) replicates. Significant differences between control and VIGS plants were determined using Student’s t-test: *P<0.05.

![Fig. 4. Induction of NbPLC2-1 and NbPLC2-2 in Nicotiana benthamiana by pathogen-associated molecular pattern (PAMP)-triggered immunity inducers. Plants were inoculated with either a \(hrpY\)-deficient mutant of virulent compatible \(R. solanacearum\) OE1-1 (RsOE1-1Y), \(Pseudomonas fluorescens\) (Pf), or 100nM flg22 peptide (Flg22). Expression levels of NbPLC2-1 and NbPLC2-2 were determined by qRT-PCR and are relative to the control, with values normalized against Actin. Data are means (±SD) of \(n=3\) replicates.](image-url)
were ~10-fold greater after 48 h in the silenced plants (Fig. 6B). These results further supported the involvement of NbPLC2s in the induction of PTI.

Silencing of NbPLC2s reduces PAMP-triggered immune responses to *Pseudomonas fluorescens*

Pseudomonas fluorescens is an effective PTI inducer in *N. benthamiana* (Chakravarthy *et al.*, 2010), and so we used it to inoculate control and NbPLC2-silenced plants to induce responses. Expression of *NbAcre31* increased after 1 h following inoculation in both control and PLC2s-VIGS plants, but it was significantly higher in the control (Fig. 7A). The levels were then the same after 6 h. For *NbPti5*, expression increased at 1 h and 6 h after inoculation and at both time-points it was significantly higher in the controls than in the silenced plants.

An assay based on cell death using *P. fluorescens* has been reported to be an effective tool for examining PTI responses (Oh and Collmer, 2005). We used *P. fluorescens* as a PTI inducer and *P. syringae pv. tabaci* as a challenger. In the control and PLC2s-VIGS plants, infection with *P. syringae pv. tabaci* resulted in necrotic lesions in leaf regions in which *P. fluorescens* was not infiltrated (Fig. 7B). In control plants, necrotic lesions were suppressed in the region in which *P. fluorescens* and *P. syringae pv. tabaci* overlapped, indicating that PTI was effectively induced. In contrast, necrotic lesions were observed in the overlapping area of PLC2s-VIGS plants inoculated with both bacteria. This suggested that the silencing of the NbPLC2s impaired the PTI response by *P. fluorescens*.

Silencing of NbPLC2s reduces PAMP-triggered immune responses to *flg22*

In both control and PLC2s-VIGS plants, a strong increase in expression of *NbAcre31* was observed 1 h after treatment with the *flg22* elicitor, and expression remained elevated at 3 h...
were taken 5 d after inoculation with *P. syringae*. The images (area within the white line). The area within the black dotted line indicates the necrotic lesions caused by *tabaci* pv. *tabaci* inoculation, the same leaves were challenged with *P. syringae* infiltrated into the leaves to induce PTI (area within grey circle). At 7 h after *Pseudomonas syringae* was used as the death-inducible challenger, and *P. fluorescens* was against. Data are means (±SD) of =3 replicates. Significant differences between control and VIGS plants were determined using Student’s t-test: *P<0.05.

Discussion

Phospholipase Cs (PLCs) represent an important group of lipid-hydrolysing enzymes in both plants and animals (Pokotylo *et al.*, 2014). In plants, phosphatidylinositol-specific (PI-)PLCs act on a specific substrate, PI (4,5) P2, at glycerophosphate ester linkages of membrane phospholipids and lead to the generation of secondary messengers, such as DAG and IP3. The phosphorylated products of DAG and IP3, namely PA, diacylglycerol pyrophosphate, and hexakisphosphate may function as second messengers in plants (van Leeuwen *et al.*, 2007, Xue *et al.*, 2007). Plant PI-PLCs have been implicated in a number of cellular processes and signal transduction events during differentiation and development. In Arabidopsis, nine PI-PLCs (PLC1–9) have been identified (Tasma *et al.*, 2008). More recently, PLCs have been detected in the tomato genome and classified into seven groups (Abd-El-Haliem *et al.*, 2016). In our current study, we found 12 PLC orthologs in *N. benthamiana* (Supplementary Fig. S1). Based on a phylogenetic analysis of the amino acid sequences, we designated two PLC orthologs, Niben101Scf00318g03011 and Niben101Scf02221g00009, as NbPLC2-1 and NbPLC2-2, respectively. Intriguingly, AtPLC2 belonged to a different clade from NbPLC2-1, NbPLC2-2, and SIPLC2 (Supplementary Fig. S1A; Abd-El-Haliem *et al.*, 2016). In addition, 15 amino acids were lacking in the central regions of NbPLC2-1, NbPLC2-2, and SIPLC2 (Supplementary Fig. S1B). Hence, the structures of PLC2s from the Solanaceae were different from those of the Brassicaceae, and these differences might be correlated with functional differences.

PLC1 and PLC3 are expressed in Arabidopsis pollen and have significant roles in pollen-tube growth (Dowd *et al.*, 2006, Helling *et al.*, 2006). PI-PLC has also been found to play a significant role during the process of asymmetric cell division that generates stomatal complexes in maize (Apostolakos *et al.*, 2008). In petunia, the catalytically inactive form of PLC1 contains a large increase in callose deposition 24 h after the inoculation with flg22 while PLC2s-VIGS plants showed no response (Fig. 8C, Supplementary Fig. S6A).

Guard cells exhibit innate immune responses to pathogens and PAMP compounds, such as flg22, which induce stomatal closure (Zhang *et al.*, 2009). At 3 h following treatment with flg22, the size of the stomatal apertures was clearly reduced in both control and PLC2s-VIGS plants, suggesting induced closure (Fig 8D, Supplementary Fig. S6B). However, the induced closure was significantly less in PLC2s-VIGS plants relative to the control.

We then treated leaves with flg22, and 24 h later inoculated the treated areas with *R. solanacearum* strain OE1-1. The bacterial population increased at 24 h and 48 h after inoculation with RsOE1-1 in control plants, and populations were greater in PLC2s-VIGS plants than in the controls (Fig. 8E; see also Fig. 2A). The proliferation of bacteria was suppressed by pre-treatment with flg22 in the control plants, indicating that it effectively induced PTI against RsOE1-1. In contrast, no suppression of bacterial growth by flg22 was observed in the PLC2s-VIGS plants.

Fig. 7. Effect of NbPLC2s-silencing in *Nicotiana benthamiana* on pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI) in response to *Pseudomonas fluorescens* (an effective PTI inducer). Leaves of plants at 8 weeks old were infiltrated with *P. fluorescens*. Plants were silenced using VIGS. (A) Expression of the PTI marker genes *NbAcre31* and *NbPti5* were determined by qRT-PCR and are relative to the control, with values normalized against *Actin*. Data are means (±SD) of n=3 replicates. Significant differences between control and VIGS plants were determined using Student’s t-test: *P<0.05. (B) A cell death-based assay for PTI. *Pseudomonas syringae* pv. *tabaci* was used as the death-inducible challenger, and *P. fluorescens* was infiltrated into the leaves to induce PTI (area within grey circle). At 7 h after *P. fluorescens* inoculation, the same leaves were challenged with *P. syringae* pv. *tabaci* (area within the white line). The area within the black dotted line indicates the necrotic lesions caused by *P. syringae* pv. *tabaci*. The images were taken 5 d after inoculation with *P. syringae* pv. *tabaci*. (This figure is available in colour at JXB online.)
PLC2 regulates pattern-triggered immunity in *Nicotiana benthamiana* | 5035

Disruption of PLC2 can lead to sterility because the development of both male and female gametophytes is severely perturbed in homozygous *plc2* Arabidopsis mutants (Li et al., 2015; Di Fino et al., 2017). PLC2 also functions in auxin-modulated root development in Arabidopsis (Chen et al., 2019). Thus, plant PI-PLCs may act as important regulators of various signaling pathways in different processes of growth and development. In our study, expression of *NbPLC2-1* and *NbPLC2-2* was observed in the stamen, gynoecium, petals, leaves, stems, and roots (Fig. 1A). *NbPLC2s*-silenced plants displayed phenotypes with moderately retarded growth relative to controls, with ~40% reduced height (Supplementary Fig. S3B, C). However, there were no phenotypic changes in plants with *NbPLC2-1* or *NbPLC2-2* silenced individually. Intriguingly, the expression level of *NbPLC2-2* was significantly increased in *NbPLC2-1*-silenced plants, whilst the expression of *NbPLC2-1* was significantly increased in *NbPLC2-2*-silenced plants. Taken together, our results indicate that *NbPLC2s* appear to be involved in growth and development in *N. benthamiana* plants, at least in the stages following the initiation of VIGS in our experiments. In addition, *NbPLC2-1* and *NbPLC2-2* may mutually complement each other at the transcriptional level during these developmental stages.

Several PLCs participate in abiotic stress responses. The overexpression of maize and tobacco PLCs confers higher drought and salt tolerance levels in transgenic plants (Wang et al., 2008, Tripathy et al., 2012). In Arabidopsis, PI-PLCs have

Fig. 8. Effects of *NbPLC2s*-silencing in *Nicotiana benthamiana* on pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI) induced by flg22. Flg22 (100 nM) was used as the PTI-inducer and infiltrated into leaves of 8-week-old plants. Plants were silenced using VIGS. (A) Expression of the PTI marker genes *NbAcre31* and *NbPti5* were determined by qRT-PCR and are relative to the control, with values normalized against Actin. Data are means (±SD) of *n*=3 replicates. (B) Levels of reactive oxygen species determined 30 min after the flg22 treatment. Chemiluminescence intensities mediated by L-012 were quantified using a photon image processor. Photons were integrally incorporated for 5 min after the flg22 treatment. Data are means (±SD) of *n*=4 replicates. (C) Callose deposition at 24 h after flg22 treatment, as determined by staining with aniline blue. Fluorescent deposits were visualized using fluorescence microscopy. Data are means (±SD) of *n*=5 replicates. (D) Stomatal apertures in the leaves at 3 h after treatment with flg22. Data are means (±SD) of *n*=5 replicates from three independent experiments. (E) Flg22 was infiltrated into the leaves of control and *NbPLC2s*-silenced plants. After 24 h, a virulent compatible strain of *Ralstonia solanacearum*, OE1-1, was inoculated as a challenger into the flg22-infiltrated area, and the bacterial populations were determined at subsequent time-points. Data are means (±SD) of *n*=5 replicates. Significant differences between means were determined using Student’s *t*-test: *P*<0.05.
been implicated in the accumulation of the osmolyte proline that leads to adaptive responses following ionic hyperosmotic stress (Parre et al., 2007). A PLC-mediated signal transduction pathway is also induced during cold stress in plants (Ruelland et al., 2002). PLCs may also have significant roles in responses to heat stress. For example, PI-PLC proteins accumulate in pea plants after heat-stress treatments (Liu et al., 2006; Ruelland and Zachowski, 2010). Arabidopsis PLC9 has been implicated in heat-stress responses, and the atplc9 mutant exhibits a highly thermosensitive phenotype. Accumulation of HSP18.2 and HSP25.3 is reduced in atplc9 and enhanced in AtPLC9-overexpressing lines after exposure to heat stress (Zheng et al., 2012). An important role for AtPLC3 in thermo-tolerance has been established in Arabidopsis through a reduction in the heat-induced levels of Ca2+ in atplc3 plants (Gao et al., 2014). In rice, PLC1-mediated Ca2+ signaling is essential for controlling the accumulation of Na+ that leads to salt tolerance (Li et al., 2017). In contrast, AtPLC4 negatively regulates the salt tolerance of Arabidopsis seedlings through Ca2+ regulatory processes (Xia et al., 2017). PLC2 is involved in stress responses related to the endoplasmic reticulum in Arabidopsis (Kanehara et al., 2015). It remains to be determined whether the NbPLC2s isolated in our study may also participate in abiotic stress responses.

As well as abiotic stress responses, PLCs are also involved in responses to biotic stress, including plant immunity (Canonne et al., 2011). The PI-PLC family is required for HR-mediated defense responses and induction of effector-triggered immunity (ETI). Phytoalexin and ROS production, together with the HR, are reduced by the PI-PLC inhibitor U73122 in rice (de Jong et al., 2004; Wang et al., 2013). Silencing of SIPLC6 results in a reduction of HR and increased colonization of Avr4-carrying Cladosporium fulmum in Cf-4 containing tomato plants (Vossen et al., 2010). Avr4-induced HR is also reduced in the resistance Cf-4 carrying tobacco after SIPLC4-silencing. In addition, the heterologous expression of SIPLC4 results in accelerated Avr4/Cf-4-induced HR in N. benthamiana (Abd-El-Haliem et al., 2016). Treatment of tomato suspension cells with HR-inducible fungal xylanase leads to a rapid increase in nitric oxide, which is responsible for PI-PLC activity and consequent HR-inducible fungal xylanase leads to a rapid increase in nitric oxide, which is responsible for PI-PLC activity and consequent HR-inducible fungal xylanase leads to a rapid increase in nitric oxide, which is responsible for PI-PLC activity and consequent HR-inducible fungal xylanase leads to a rapid increase in nitric oxide, which is responsible for PI-PLC activity and consequent activation of the corresponding receptor, FLS2, in Arabidopsis are important for defenses without HR, including induction of PTI. Both the flagellin-triggered response and the internalization of the corresponding receptor, FLS2, in Arabidopsis are suppressed by the inhibition of PLC activity (Abd-El-Haliem et al., 2016). PLC2-silenced Arabidopsis plants are susceptible to a spray treatment of the type-III secretion system-deficient bacterial strain P. syringae pv. tomato DC3000 (hrcC–) but not to the wild-type P. syringae pv. tomato DC3000 (D’Ambrosio et al., 2017). In contrast, PLC2 does not affect bacterial growth when the bacteria are syringe-infiltreated into the apoplast. In response to flg22, PLC2-silenced Arabidopsis show reduced stomatal closures. Thus, PLC2s may control stomatal pre-invasive, but not post-invasive, immunity. In our present study, expression of NbPLC2-1 and NbPLC2-2 were induced by PTI inducers, such as hrp–deficient R. solanacearum, P. fluorescens, and flg22 (Fig. 4); however, intriguingly, the induction patterns were different. Therefore, we speculate that NbPLC2-1 and NbPLC2-2 might have different roles during the immune responses. Silencing the NbPLC2s negatively affected the expression of PTI reporter genes when control and NbPLC2-silenced plants were infiltrated with wild-type R. solanacearum, hrp–deficient R. solanacearum, P. fluorescens, or flg22 (Figs 3–7). The suppression of PTI induction was observed using a cell death–based assay with P. fluorescens and P. syringae pv. tabaci. Flg22-induced callose deposition and hence disease resistance were also compromised in NbPLC2s-silenced plants (Fig. 8C, Supplementary Fig. S6A). These results collectively support a significant role for PLC2 in PTI responses. In addition, flg22-induced stomatal closure was reduced by silencing of the NbPLC2s (Fig. 8D, Supplementary Fig. S6B). Furthermore, enhanced bacterial growth occurred in NbPLC2s-silenced plants when either R. solanacearum or a hrpY mutant were infiltrated into the apoplast area. These results suggest that NbPLC2s control not only stomatal pre-invasive, but also post-invasive, immunity in N. benthamiana.

In summary, we have demonstrated that NbPLC2s contribute to the induction of pre- and post-invasive PTI responses in N. benthamiana. While undergoing PTI induction, NbPLC2s may be activating JA and JA-mediated immune responses, leading to the suppression of bacterial infections. These results provide novel insights into the roles of PLC2 and the PLC family in the regulation of plant immunity. Further studies are necessary to clarify the complex mechanisms by which the NbPLC2 protein is engaged in PTI responses, and to characterize the phospholipid turnover involved in the PTI-signaling cascade.

Supplementary data
Supplementary data are available at JXB online.
PLC2 regulates pattern-triggered immunity in Nicotiana benthamiana

Fig. S1. Characterization of the phosphatidylinositol-specific phospholipase C in Nicotiana benthamiana.

Fig. S2. Nucleotide sequences of NbPLC2-1 and NbPLC2-2.

Fig. S3. Phenotypes of NbPLC2-1, NbPLC2-2, and NbPLC2-2-silenced plants.

Fig. S4. Responses of NbPLC2-1, NbPLC2-2-1, and NbPLC2-2-2-silenced plants to compatible Ralstonia solanacearum.

Fig. S5. Effects of NbPLC2-2-silencing on the induction of the hypersensitive response by effectors from incompatible Ralstonia solanacearum.

Fig. S6. Callose deposition and stomatal closure in NbPLC2-2-silenced plants.

Table S1. Primers used in this study.

Table S2. Plasmids used in this study.

Acknowlegements

The authors thank Dr David C. Baulcombe of the Sainsbury Laboratory, John Innes Centre, UK, and G. Martin of Cornell University, USA, for providing the PVX vector and Pseudomonas fluorescens, respectively. The authors also thank Dr Y. Ichinose for kindly providing Pseudomonas syringae pv. tabaci 6605. This work was supported by a Cabinet Office Grants-in-Aid, the Advanced Next-Generation Greenhouse Horticulture by the Internet of Plants (IoP), Japan. This research was also supported by the Ministry of Education, Culture, Sports, Science and Technology as part of the Joint Research Program implemented at the Institute of Plant Science and Resources, Okayama University, Japan. LC-MS/MS instrumentation was supported by the Japan Advanced Plant Science Network. AK is also grateful for financial support from a Grants-in-Aid for Scientific Research (24500660) from the Ministry of Education, Science, Sports, Culture, Japan, the Asahi Glass Foundation, the Agricultural Chemical Research Foundation, and the Sapporo Bioscience Foundation. We thank Dr Lesley Benyon from the Edanz Group (www.edanzediting.com/ac) for editing a draft of this manuscript.

Author contributions

AK, KO, and YH designed the research; AK, MH, HN, IG, and MN performed the research; AK, IG, and TS analysed the data and wrote the paper.

References

Abd-El-Haliem AM, Vossen JH, van Zeijl A, Zeijl J, Testen R, Seidl MF, Beck M, Strutt J, Robatzek Joosten MAHJ. 2016. Biochemical characterization of the tomato phosphatidylinositol-specific phospholipase C (Pi-PLC) family and its role in plant immunity. Biochimica et Biophysica Acta 1861, 1365–1378.

Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. 1990. Basic local alignment search tool. Journal of Molecular Biology 215, 403–410.

Apostolakos P, Panteris E, Galatis B. 2008. The involvement of phospholipases C and D in the asymmetric division of subsidiary cell mother cells of Zea mays. Cell Molity and the Cytoskeleton 65, 863–875.

Bigeard J, Colcombet J, Hirt H. 2015. Signaling mechanisms in pattern-triggered immunity (PTI). Molecular Plant 8, 521–539.

Blume B, Nümburger T, Nass N, Scheel D. 2000. Receptor-mediated increase in cytoplasmic free calcium required for activation of pathogen defense in parsley. The Plant Cell 12, 1425–1440.

Cacas JL, Gerbeau-Pissot F, Fromentin J, Cantrel C, Thomas D, Jeanette E, Kalachova T, Mongrand S, Simon-Plas F, Rueland E. 2017. Diacylglycerol kinases activate tobacco NADPH oxidase-dependent oxidative burst in response to cryptogein. Plant, Cell & Environment 40, 585–598.

Canonne J, Froidure-Nicolas S, Rivas S. 2011. Phospholipases in action during plant defense signaling. Plant Signaling & Behavior 6, 13–18.

Chakravarty S, Velásquez AC, Ekengren SK, Collmer A, Martin GB. 2010. Identification of Nicotiana benthamiana genes involved in pathogen-associated molecular pattern-triggered immunity. Molecular Plant-Microbe Interactions 23, 715–726.

Chen YL, Huang R, Xiao YM, Lu P, Chen J, Wang XC. 2004. Extracellular calmodulin-induced stomatal closure is mediated by heterotrimeric G protein and H2O2. Plant Physiology 136, 4096–4103.

Chen X, Li L, Xu B, Zhao S, Lu P, He Y, Ye T, Feng YQ, Wu Y. 2019. Phosphatidylinositol-specific phospholipase C functions in auxin-modulated root development. Plant, Cell & Environment 42, 1441–1457.

D’Ambrosio JM, Couto D, Fabro G, Scuffi D, Lamattina L, Munnik T, Andersson MX, Álvarez-ME, Zipfel C, Laxalt AM. 2017. Phospholipid C2 affects MAMP-triggered immunity by modulating ROS production. Plant Physiology 175, 970–981.

Dahan J, Pichereaux C, Rossignol M, Blanc S, Wendehenne D, Pugin A, Bourque S. 2009. Activation of a nuclear-localized SIPK in tobacco cells challenged by cryptogein, an elicitor of plant defence reactions. The Biochemical Journal 418, 191–200.

de Jong CF, Laxalt AM, Bargmann BO, de Wit PJ, Joosten MH, Munnik T. 2004. Phosphatic acid accumulation is an early response in the Cf-4/Avr4 interaction. The Plant Journal 39, 1–12.

Di Fino LM, D’Ambrosio JM, Tejos R, van Wijk R, Lamattina L, Munnik T, Pagnussat GC, Laxalt AM. 2017. Arabidopsis phosphatidylinositol-phospholipase C2 (PLC2) is required for female gametogenesis and embryo development. Planta 245, 717–728.

Dowd PE, Coursol S, Skipan AL, Kao TH, Gilroy S. 2006. Petunia phospholipase C1 is involved in pollen tube growth. The Plant Cell 18, 1439–1453.

Gao K, Liu YL, Li B, Zhou RG, Sun DY, Zheng SZ. 2014. Arabidopsis thaliana phospholipid-specific phospholipase C isoform 3 (AtPLC3) and AtPLC9 have an additive effect on thermotolerance. Plant & Cell Physiology 55, 1873–1883.

Gassmann W, Bhattacharjee S. 2012. Effector-triggered immunity signaling: from gene-for-gene pathways to protein–protein interaction networks. Molecular Plant-Microbe Interactions 25, 862–868.

Gonorazky G, Guzzo MC, Abd-El-Haliem AM, Joosten MH, Laxalt AM. 2016. Silencing of the tomato phosphatidylinositol-phospholipase C2 (SIPLC2) reduces plant susceptibility to Botrytis cinerea. Molecular Plant Pathology 2016. Silencing of the tomato phosphatidylinositol-phospholipase C2 (SIPLC2) reduces plant susceptibility to Botrytis cinerea. Molecular Plant Pathology 171, 959–965.

Helling D, Possart A, Cottier S, Klahre U, Kost B. 2006. Pollen tube tip growth depends on plasma membrane polarization mediated by tobacco PLC3 activity and endocytic membrane recycling. The Plant Cell 18, 3519–3534.

Hirayama T, Mitsukawa N, Shibata D, Shinozaki K. 1997. AtPLC2, a gene encoding phosphoinositide-specific phospholipase C, is constitutively expressed in vegetative and floral tissues in Arabidopsis thaliana. Plant Molecular Biology 34, 175–180.

Hirayama T, Mitsukawa N, Shibata D, Shinozaki K. 1997. AtPLC2, a gene encoding phosphoinositide-specific phospholipase C, is constitutively expressed in vegetative and floral tissues in Arabidopsis thaliana. Plant Molecular Biology 34, 175–180.

Ito M, Takahashi H, Sawai S, Ohnishi K, Hikichi Y, Kiba A. 2014a. Novel type of adenylyl cyclase participates in tabaxinoline-β-lactam-induced cell death and occurrence of wildfire disease in Nicotiana benthamiana. Plant Signaling & Behavior 9, e247420.

Ito M, Yamamoto Y, Kim CS, Ohnishi K, Hikichi Y, Kiba A. 2014b. Heat shock protein 70 is required for tabaxinoline-β-lactam-induced cell death in Nicotiana benthamiana. Journal of Plant Physiology 171, 173–178.

Jones JD, Dengh JL. 2006. The plant immune system. Nature 444, 323–329.

Kanekar H, Yu CY, Cho Y, Cheong WF, Torta F, Shui G, Wenk MR, Nakamura Y. 2015. Arabidopsis AtPLC2 is a primary phosphoinositide-specific phospholipase C in phosphoinositide metabolism and the endoplasmic reticulum stress response. Plant Science 11, e1003511.

Kiba A, Galis I, Hojo Y, Ohnishi K, Yoshioha K, Hikichi Y. 2014. SEC14 phospholipid transfer protein is involved in lipid signaling-mediated plant immune responses in Nicotiana benthamiana. PLoS ONE 9, e89150.

Kiba A, Imanaka Y, Nakano M, Galis I, Hojo Y, Shinya T, Ohnishi K, Hikichi Y. 2016. Silencing of Nicotiana benthamiana SEC14...
phospholipid transfer protein reduced jasmonic acid dependent defense against *Pseudomonas syringae*. Plant Biotechnology **33**, 111–115.

Kiba A, Nakano M, Ohnishi K, Hikichi Y. 2018. The SEC14 phospholipid transfer protein regulates pathogen-associated molecular pattern-triggered immunity in *Nicotiana benthamiana*. Plant Physiology and Biochemistry **125**, 212–218.

Kiba A, Nakano M, Vincent-Pope P, Takahashi H, Sawatsuki T, Endo Y, Ohnishi K, Yoshioka H, Hikichi Y. 2012. A novel Sec14 phospholipid transfer protein from *Nicotiana benthamiana* is up-regulated in response to *Ralstonia solanacearum* infection, pathogen associated molecular patterns and effector molecules and involved in plant immune. Journal of Plant Physiology **169**, 1017–1022.

Kobayashi M, Ohura I, Kawakita K, Yokota N, Fujiwara M, Shimamoto K, Doke N, Yoshioka H. 2007. Calcium-dependent protein kinases regulate the production of reactive oxygen species by potato NADPH oxidase. The Plant Cell **19**, 1065–1080.

Lebrun-Garcia A, Ouaked F, Chiltz A, Pugin A. 1998. Activation of MAPK homologues by elicitors in tobacco cells. The Plant Journal **15**, 773–781.

Lecourieux D, Lamotte O, Bourque S, Wendehenne D, Mazars C, Ranveja R, Pugin A. 2005. Proteinaceous and oligosaccharidic elicitors induce different calcium signatures in the nucleus of tobacco cells. Cell Calcium **38**, 527–538.

Li Li, He Y, Wang Y, Zhao S, Chen X, Zhao S, Chen X, Ye T, Wu Y, Wu Y. 2015. Arabidopsis PLC2 is involved in auxin-modulated reproductive development. The Plant Journal **84**, 504–515.

Li L, Wang W, Yan P, Jing W, Zhang C, Kulda J, Zhang W. 2017. A phosphoinositide-specific phospholipase C pathway elicits stress-induced Ca²⁺ signals and confers salt tolerance to rice. New Phytopathologist **214**, 1117–1127.

Liu HT, Huang WD, Pan QH, Weng FH, Zhan JC, Liu Y, Wan SB, Liu YY. 2006. Contributions of PIP₂-specific phospholipase C and free salicylic acid to heat acclimation-induced thermotolerance in pea leaves. Journal of Plant Physiology **163**, 405–416.

Ma W, Berkowitz GA. 2011. Ca²⁺ conduction by plant cyclic nucleotide gated channels and associated signaling components in pathogen defense sugar signal transduction cascades. New Phytopathologist **190**, 566–572.

Maimbo M, Ohnishi K, Hikichi Y, Yoshioka H, Kiba A. 2007. Induction of a small heat shock protein and its functional roles in *Nicotiana* plants in the defense response against *Ralstonia solanacearum*. Plant Physiology **145**, 1586–1599.

Maimbo M, Ohnishi K, Hikichi Y, Yoshioka H, Kiba A. 2010. S-glycoprotein-like protein regulates defense responses in *Nicotiana* plants against *Ralstonia solanacearum*. Plant Physiology **152**, 2023–2035.

Nakano M, Nishihara M, Yoshioka H, Takahashi H, Sawatsuki T, Ohnishi K, Hikichi Y, Kiba A. 2013. Suppression of DS1 phosphatidic acid phosphatase confirms resistance to *Ralstonia solanacearum* in *Nicotiana benthamiana*. PLoS ONE **8**, e75124.

Nguyen HP, Chakravarty S, Velásquez AC, McLane HL, Zeng L, Nakayashiki H, DH Park, Collmer A, Martin GB. 2010. Methods to study PAMP-elicited immunity using tomato and *Nicotiana benthamiana*. Molecular Plant-Microbe Interactions **23**, 991–999.

Oh HS, Collmer A. 2005. Basal resistance against bacteria in *Nicotiana benthamiana* leaves is accompanied by reduced vascular staining and suppressed by multiple *Pseudomonas syringae* type III secretion effector proteins. The Plant Journal **44**, 348–359.

Parre E, Ghars MA, Leprince AS, Thiery L, Lefebvre D, Bordenave M, Richard L, Mazzars C, Abdelly C, Savouré A. 2007. Calcium signaling via phospholipase C is essential for proline accumulation upon ionic but not nonionic hypotonic stresses in Arabidopsis. Plant Biology **144**, 503–512.

Pinosa F, Buhot N, Kwaaitaal M, Fahlberg P, Thordal-Christensen H, Ellerström M, Andersson MX. 2013. Arabidopsis phospholipase Dδ is involved in basal defense and nonhost resistance to powdery mildew fungi. Plant Physiology **163**, 896–906.

Pokotylo I, Kolesnikov Y, Kravets V, Zachowski A, Ruelland E. 2014. Plant phosphoinositide-specific phospholipid transfer proteins: variations around a canonical theme. Biochimie **96**, 145–157.

Poureymiro M, Cunnac S, Barberis P, Deslandes L, Peeters N, Cazale-Noel AC, Boucher C, Genin S. 2009. Two type III secretion system effectors from *Ralstonia solanacearum* GM1000 determine host-range specificity on tobacco. Molecular Plant-Microbe Interactions **22**, 538–550.