Effect of nutrient supply system on biometry and rhizosphere microflora of soybean, pigeon pea and sorghum

M.S. Girme and D.H. Sarnobat*
Agriculture College, Latur, Marathwada Agriculture University, Parbhani-431 402, Maharashtra, India.
Received: 12-12-2016 Accepted: 18-12-2017 DOI: 10.18805/ag.D-4516

ABSTRACT
A field experiment was conducted at farm of Agriculture College, Latur (Maharashtra) to study the Effect of Nutrient Supply System on Biometry i.e. Plant height, functional leaves, grain yield and straw yield of soybean, pigeon pea and Sorghum as well as to study the azotobactor, phosphate solubilizing bacteria, fungi, actinomycetes and total microorganism in the rhizosphere microflora of soybean, pigeon pea and sorghum. The experiment was laid out in randomized block design with seven treatments combinations replicated two time. The treatments were - T1-organic (100% R.D.F.), T2—inorganic nutrient supply system.(Rhizobium + PSB + Azotobactor + FYM), T3—Integrated nutrient supply system. (50% R.D.F. +50% FYM + Rhizobium PSB + Azotobactor), T4- maximum yield nutrient supply system. T5- biofertilizers or ecofriendly nutrient supply system.. T6- natural (No fertilizer), T7-fallow . The fertilizer were applied as a basal dose as per the treatments. The observation on growth i.e. height of plant and number of functional leaves and yield were recorded by using five randomly selected plants of soybean,pigeon pea and sorghum in each treatment plot. The selected plants were labelled and all subsequent biometric observations were recorded on labelled plants during the course of investigation.The judicious use of biofertilizers like rhizobium, azotobactor, phosphate solubilizing bacteria with organic manures helped in building up of soil microflora. It also helped to augment the availability of nutrient that could be easily assimilated by plants. The results revealed that the maximum yield nutrient supply system (MYNSS) is significantly superior to other system and it was at par with integrated nutrient supply system.

Key words: Actinomycetes, Azotobactor, Biometry, Fungi, Functional leaves, Microflora, Nutrient supply system, Phosphate Solubilizing Bacteria, Plant height, Total microorganism, Yield.

INTRODUCTION
Soybean [Glycin max. (L). Merril] is an important pulse and oilseed crop containing 43.2 per cent proteins, 19.5 per cent oil. (SOPA 2016). The total yield of soybean in Maharashtra was 35.80 million tons during the year 2016 and productivity 1102 kg per acre. (SOPA 2016). Among the pulses, Pigeon pea is important pulse crop in India, both in respect of area (14.76 million ha) and production (23.63 million tons) during the year 2010-2011. Sorghum is main cereal crop of Maharashtra and its contribution of total cereal production in the state is 51%. For achievement of highest yield, precision farming is adopted by the farmers where extra (more than recommended) doses of fertilizers and concentrated doses of pesticides are used. Thus it is essential to develop suitable method for determining the availability of nutrients for specific soil crop system based on field trial i.e. maximum yield nutrient supplying system.

The continuous use of chemical fertilizer over a long period may cause imbalance in the microflora and thereby indirectly affect the biological properties have an adverse effect on the soil leading to land degradation. Bharadwaj and Omanwar (1992) studied the impact of long term fertility treatments on microbial population in soil. Also many workers have showed the importance of soil fertility to the symbiotic nitrogen fixation by Rhizobium (Iswarm et.al. (1970); Somani, 1978). Baink and Datta (1988) found increased seed protein in soybean due to inoculation using ‘p’ solubilizer. Biodynamic farming consider soil microbiological properties as quality indicator because soil microorganisms are second most important biological agents in the agriculture ecosystem.

Research in India has indicated that use of different nutrient system for significantly increase in plant height, leaves, seed yield and dry matter accumulation in soybean (Sharma et. al., 2002). Considering these facts an experiment was conducted to study the response of sorghum, pigeonpea and soybean to various nutrient supply system in relation to microflora in Rhizosphere soil and biometry i.e. plant height, functional leaves, grain yield and straw yield of soybean, pigeon pea and sorghum.

MATERIALS AND METHODS
The field experiments was conducted at a farm of College of Agriculture, Latur (Marharashtra) during the year 2015-16. The soil of experimental site was sandy loam
The experiment was laid out in randomized block design with six treatment combinations replicated two times.

The treatments were: T1-organic (100% R.D.F.), T2-Inorganic nutrient supply system. (Rhizobium + PSB + Azotobactor + FYM), T3—Integrated nutrient supply system. (0% R.D.F. +50% FYM + Rhizobium+ PSB + Azotobactor), T4- Maximum Yield nutrient supply system. T5- Biodyamics or Ecofriendly nutrient supply system. T6-Natural (No fertilizer). The fertilizer was applied as a basal dose as per the treatments. The observation on growth i.e. height of plant and number of functional leaves and yield were recorded by using five randomly selected plants of soybean, pigeon pea and sorghum in each treatment plot. The selected plants were labelled and all subsequent biometric observations were recorded on labelled plants during the course of investigation.

1) Height of plant: The height of plant was measured from the ground level of the plant to the base of apical bud of main shoot with 15 days interval

2) Number of functional leaves per plant: The progressive number of functional leaves i.e. fully opened green leaves per plant was counted at 15 days interval. In case of pigeonpea, trifoliate was considered as one leaf.

3) Yield: The soybean and sorghum crops matured in 120 days and pigeonpea crop was matured in 180 days the plot strips from each gross plot were harvested, threshed, winnowed and cleaned seperately. The produce was sun dried and its final weight was recorded.

For the calculation of Rhizospheric microflora the experiment was laid out in randomized block design with seven treatment combinations replicated two times.

Microbial count: It was counted by following the method given by Pramer and Schmidt (1964). Serial dilution was used for microbial count. For the bacterial count antifungal Natamycin (1 ml of 8ppm contration) was added to each petriplate just after pouring the media (Nutrient agar) and inoculated with 1 ml of dilution from treatments Likewise for fungal count antibacterial Penicillin (1ml of 1ppm concentration) was used which suppressed the growth of fungi . Actinomycetes count was taken using selective media viz Glycerol yeast extract agar.

For azotobactor count, soil sample were collected from experimental plot of sorghum and dried in shade to removed excess moisture. 10 gm soil sample was diluted from 10^1 to 10^8 and one ml of each dilution series was used to inoculated each of petriplate of Ashby’s media. Enumeration of azotobactor number was made by a MPN procedure.

In case of phosphate solublising bacterial count soil samples were collected from rhizosphere of crops at flowering stage from experimental plots. Isolation was done by the dilution and plating method. Serial dilution of PSB was made by following method like Azotobactor. One ml of suspension from each test tube was transfered in sterilised petriplates, sterilised Pikovovaskaya’s medium before solidification (45 temperature) was poured in each petriplate. After solidification the medium plates were kept at 30°C in incubator for 4-5 days and colonies showing transparent zones of phosphate solublizing bacteria were counted.

RESULTS AND DISCUSSION

Plant height: Mean height of soybean plants were recorded upto 90 days. In treatment T4 (MYNSS) higher plant height were recorded in over all treatments. The treatment T6 showed significantly lowest plant height and was at par with T 1, T2, T3 and T5 (Table 1).

This clearly indicated the need for adding organic manures to the soil conjunctive with inorganic fertilizers, which increased the availability of nutrients considerably resulting in a positive effect on growth parameters. These findings were in accordance with the results of Babalad (1999) who had observed increased plant height, number of trifoliate leaves per plant and number of branches per plant in soybean due to the application of organic manure and inorganic fertilizers.

In pigeonpea,treatment T3 was significantly superior over all other treatments except T4 which were at par. These finding were in confirmony with, finding of Rajput et al. (2002) observed that integrated phosphorus management

Table 1: Height and functional leaves of soybean, pigeon pea and sorghum.

Particular (Treatments)	Plant height (cm)	Functional leaves / plant				
	Soybean	Pigeon pea	Sorghum	Soybean	Pigeon pea	Sorghum
T1	21.2	175.7	148.2	16.0	116.6	9.7
T2	21.4	177.6	152.2	16.4	134.4	10.65
T3	22.0	185.4	156.9	18.6	110.8	11.9
T4	22.5	183.7	155.2	21.4	152.2	11.65
T5	20.4	180.7	142.2	14.2	119.2	8.5
T6	20.1	168.2	135.25	14.6	84.4	6.3
S.E.	0.13	2.20	6.23	0.42	7.62	0.20
C.D.	0.49	6.80	22.6	1.54	2.62	0.75
C.V.	3.08	4.23	5.94	3.57	7.71	3.02
were significantly affected plant height at 45, 90 and 135 days after sowing. (Table 1).

Sneha et al. (2003) noticed that application of 15 kg N + 32 kg P₂O₅ / ha + Rh + PSB + MO recorded maximum plant height and yield over seed dressing with Rh + PSB.

Functional leaves: In soybean and pigeonpea, treatment T4 (MYNSS) had significantly more number of functional leaves. The lowest numbers of functional leaves were observed in T6. In sorghum, treatment T3 (INM) was found more effective followed by T4 (MYNSS). These results were in conformity with finding recorded by Dhonde et al. (2004) who reported that the highest average number of leaves per plant (4.78/plant) were with 50% RDR and 50% N through gliricidia leaves. (Table 1).

Menaria et al. (2003) observed that application N₂O + P₂O₅ + K₂O + S₄O kg/ha and Rh + PSB had significantly increased growth parameters.

Yield: The grain yield in soybean (26.04 q/ha) and pigeonpea (18.68q/ha) was highly increased due to T4 (MYNSS) treatment than other treatments. In sorghum, treatments T3 (INM) was more significant than other and was at par with T4 (MYNSS) treatment. (Table 2).

Functional leaves: In soybean and pigeonpea, treatment T4 (MYNSS) had significantly more number of functional leaves. The lowest numbers of functional leaves were observed in T6. In sorghum, treatment T3 (INM) was found more effective followed by T4 (MYNSS). These results were in conformity with finding recorded by Dhonde et al. (2004) who reported that the highest average number of leaves per plant (4.78/plant) were with 50% RDR and 50% N through gliricidia leaves. (Table 1).

Menaria et al. (2003) observed that application N₂O + P₂O₅ + K₂O + S₄O kg/ha and Rh + PSB had significantly increased growth parameters.

Yield: The grain yield in soybean (26.04 q/ha) and pigeonpea (18.68q/ha) was highly increased due to T4 (MYNSS) treatment than other treatments. In sorghum, treatments T3 (INM) was more significant than other and was at par with T4 (MYNSS) treatment. (Table 2).

Sahara and Joshi (1986) observed that in cereal crops recommended dose + biofertilizer resulted in higher yields to the tune of 10 to 15 per cent compared to only recommended fertilizer dose.

Kumarawt et al. (1997) evaluated that the influence of different biofertilizer applied along with chemical fertilizers on yield of soybean and reported that seed yield increased significantly due to application of Rhizobium and NPK fertilizers.

The findings of present investigation were the maximum yield nutrient supply system is significantly superior over other system and it was at par with integrated nutrient supply system.

Results obtained from analysis indicated that there were significant difference between organic, inorganic and combine effect of these treatment on rhizosphere microflora of soybean, pigeon pea and sorghum. Among the nutrient supply system, treatment T4 i.e. Maximum Yield nutrient supply system (MYNSS) supported for proliferation of azotobactor (i.e. 31.3 x 10⁴ cell/g) in sorghum crop followed by Integrated nutrient supply system (24.9 X10⁴ cell/g) (Table 3). In pigeon pea and soybean, Integrated nutrient supply system enhanced the proliferation of azotobactor upto 23.00 x 10⁴ cell/g and 24.20 X10⁴ cell/g respectively followed by biodyamics and organic nutrient supply system respectively.

Table 2: Effect of different nutrient supply system on yield of soybean, pigeon pea and sorghum.

Particular (Treatments)	Soybean, (q/ha)	Pigeon pea	Sorghum, (q/ha)	Soybean, (q/ha)	Pigeon pea
T1	20.67	18.38	15.99	31.02	23.11
T2	23.67	16.93	19.22	35.79	23.57
T3	24.8	17.51	21.08	38.21	24.02
T4	26.04	18.68	20.25	39.05	23.01
T5	20.68	12.57	12.53	31.05	21.15
T6	16.80	9.12	10.99	27.03	18.8
S.E.	0.85	0.92	1.37	0.42	0.24
C.D.	3.09	3.34	5.0	1.55	0.92
C.V.	5.45	8.42	11.68	1.79	1.57

Table 3: Abundance of azotobacter and phosphate solubilising bacteria in rhizosphere soil (10⁴ cells/gm).

Treatment	Azotobacter	PSB
T1	20.8	17.20
T2	21.9	22.15
T3	24.9	23.00
T4	31.3	19.00
T5	25.0	22.10
T6	18.9	13.20
T7	11.2	11.10
MEAN	22.85	17.96
Findings were in conformity with findings recorded by Jones and Sreenivasa (1993) studied the effect of inoculation of VAM or PSB on the population of free living nitrogen fixing azotobactor and PSB in rhizosphere of sunflower. Also Raut (1980) observed the increase in azotobacter number due to inoculation was about four times (11.5 x 10^4 cell/g) greater than it’s count in uninoculated control.(2.9 x 10^4 cell/g).

In case of PSB (Phosphate Solubilizing Bacteria), Integrated nutrient supply system significantly enhanced the abundance of PSB in sorghum (35.20 x 10^4 cell/g), pigeonpea (55.40 x 10^4 cell/g), soybean (50.80 x 10^4 cell/g) followed by maximum yield nutrient supply system. (Table 3).These findings were in conformity with,Patil (1999) measured the abundance of phosphate solubilizing bacteria and observed that bacterial population ranged from 25.33 to 33.60 x 10^4 cell/g soil from Parbhani district.

Also Sulveestar et.al. (1982) who observed that phosphate solubilizing bacteria were more in legume than in grass rhizosphere.

Fungi: In fungi, among nutrient supply systems , maximum bacterial population in sorghum (12.4 x 10^4 cell/g) and pigeonpea (14.5x 10^4 cell/g) was recorded in integrated nutrient supply system followed by maximum yield nutrient supply system and in soybean, maximum yield nutrient supply system was responsible to enhance the population of fungi (22.2 x 10^4 cell/g) followed by integrated nutrient supply system.(Table 4)

These findings were in conformity with findings of Bagyaraj and Rangaswami(1968) reported that inorganic N,P,K fertilizers found to proliferate the growth of fungi but when FYM, the fungal population significantly increased over fertilizer alone.

REFERENCES

Anonymous , (2003). http // www. Sopa. Org. / introduction.htm.

Babalad HB (1999) Integrated nutrient management for sustainable production in soybean based cropping system. Ph.D. Thesis, University of Agricultural Science, Dharwad.

Bagyaraj , D.J. and Rangaswami,G.(1968). Effect of heavy doses of ammonium sulphate on the microflora of soil and the rhizosphere of ragi. *The Mysore J.Agril.Sci.*, 2:273-279.

Bairk,S and Datta, M. (1988). *Zentralbl Mikrobiol.*, 143 : 139-147

Bharadwaj,V. and Omanwar,P.K.(1992). Impact of long term fertility treatments on microbial population of soil. *J. India.Soc. Soil Sci.*, 40:553-55.
Dhonde, M.B., Andhale, R.P. and Shinde, S.H. (2004). Effect of integrated nutrient management of sorghum (sorghum biolor) J. Maharakshtra agric. Univ., 29(2): 130-132.

Emminath, V.S. and Rangaswami, G. (1971). Studies on the Effect of heavy doses of fertilizer on the soil and the rhizosphere microflora of rice. Mysores J. Agril. Sci., 5: 39-59

Iswaran, V. (1970). Effectiveness and ineffectiveness in Rhizobium. India Agri. News Digest, 2(1): 6

Jones, N.P. and Screenivasa, M.N. (1993). Effect of inoculation of VAM and or PSB on the rhizosphere microflora of sunflower. J. Azotobacter and PSB bacteria. Ecotoxicology and Environmental Monitoring, 3(1): 55-58.

Kukreja, K.Mishra, M.M., Dhankar, S.S. Kapoor, K.K. and Gupta, A.P. (1991) Effect of long term manurial application on microbial biomass. J. Indian Soc. Sci. 39: 685-88

Kumarawt et al. (1997). Response of soybean to biofertilizers in black clay soil. Crop Res., 14(2): 209-214

Menaria, B.L., Singh, P. and Nagar, R.K. (2003). Effect of nutrient and microbial inoculants on growth and yield of soybean. J. Soils and crops 13(1): 14-17.

Patil, U.S. (1999). Phosphorus solubilizing bacterial characterization from soils of Parbhani district and their effect on sunflower. M.Sc.(Agri) Thesis., M.A.U.Parbhani, (India)

Pramer, D. and Schmidt, E.J. (1964). Experimental Soil Microbiology, (Ed. 1 Burgess) publishing Company, Minnesota.

Rajput, R.S., Triwari, O.P., Shrivastava, G.K., and Tripathi, R.S. (2002). Effect of integrated phosphorus management on the growth and dry matter production of pigeonpea (cajanus cajan (L.)) J. Agril. Res. 23(3): 494-496.

Raut, R.S. (1980). Studies of Azotobacter in some soil of Marathwada and effect of Azotobacter inoculation on sorghum, wheat, onion, brinjal and okra. Ph.D. Thesis, M.A.U.Parbhani

Reddy, B. (1987). Growth, yield and nutrient uptake behaviour of soybean varieties. Thesis Abst., 13(3): 195. MAU, Parbhani.

Shaha, J.P. and Joshi, H.V. (1986). Biofertilizer for improving production of cereal crops. Fert. News, 31(12): 75-77.

Sharma, S.C., Vyas, A.K. and Shaktawat, M.S. (2002). Effect of levels and sources of phosphorus under the influence of farmyard manure on growth determinants and productivity of soybean [Glycine Max. (L.) Merril.] Indian J. Agric. Res., 36(2): 123-127.

Somani, L.L. (1978). It pays to inoculate legume seeds. Indian Fmg Dig., 11(3): 5-7

SOPA (2016) - Soybean Processors Association of India.

Sneha S., Raut, C.N., Chore, R.D. Deotale, Kuchanwar, Ommala, (2003). Response of seed dressing with bio-fertilizer and nutrient on morphophysiological parameters and yield of soybean. J. Soils and crops 13(2): 309-313.

Sulvestar, B.R., Asakwa, N., Torraco, S.L.A., Magalhaes, F.M.M., Oliveira, L.A., and Perrica, R. M. (1982). Quantitative survey of phosphate solubilizing microorganisms in the rhizosphere of grasses and forage legumes in Amezon. Acta. Amazonia, 12:15-22.