Distal Arthrogryposis type 5 in an Italian family due to an autosomal dominant gain-of-function mutation of the PIEZO2 gene

Gregorio Serra*, Vincenzo Antona, Chiara Cannata, Mario Giuffrè, Ettore Piro, Ingrid Anne Mandy Schierz and Giovanni Corsello

Abstract

Background: Arthrogryposis multiplex congenita (AMC) is a group of clinically and etiologically heterogeneous conditions, characterized by prenatal onset contractures affecting two or more joints. Its incidence is about 1 in 3000 live births. AMC may be distinguished into amyoplasia, distal and syndromic arthrogryposis. Distal arthrogryposis (DA) predominantly affects hands and feet. It is currently divided into more than ten subtypes (DA1, DA2A/B, DA3–10), based on clinical manifestations, gene mutations and inheritance pattern. Among them, only a few patients with DA5 have been reported. It is associated to a gain-of-function pathogenic variant of the PIEZO2 gene, encoding for an ion-channel necessary to convert mechanical stimulus to biological signals and crucial for the development of joints, neuromuscular and respiratory systems. Main clinical features include multiple distal contractures, short stature, ptosis, ophthalmoplegia and, in some cases, restrictive lung disease.

Case presentation: Hereby, we report on a four-generation Italian family with DA5. Our first proband was a newborn with prenatal suspicion of AMC. At birth, clinical findings were compatible with a DA diagnosis. Family history was positive for the mother with short stature, ophthalmoplegia, short neck, and contractures of the joints of distal extremities, and for three other relatives on the maternal side, including grandfather and great-grandmother, who all shared similar findings. Thus, we performed a next generation sequencing analysis (NGS) of the genes associated to AMC and of those involved in DA. The gain-of-function heterozygous mutation c.8181_8183delAGA (p.Glu2727del) of PIEZO2 was identified in the proband, and the same mutation was also found in the mother, confirming the autosomal dominant inheritance of the condition.

Conclusions: Our patients contribute to the current DA5 genomic database, and to a better characterization of the disease. Clinicians may have suspicion of a DA diagnosis based on suggestive (also prenatal) clinical findings, which must be then confirmed by NGS analysis. Since natural history varies widely among different DA disorders, detection of the underlying causal variant is essential for the identification of the exact subtype, and to its adequate management, which must rely on a multidisciplinary and individualized approach.

Keywords: Arthrogryposis multiplex congenita, DA5, Ophthalmoplegia, PIEZO2 gene, Gain-of-function mutation, NGS, Case report
1 in 3000 live births, with female to male ratio 1:1 [1]. The pathogenic mechanism underlying arthrogryposis is the reduction of fetal movements, leading to an atypical increase of connective tissue around the joints (collagenosis) during development. This, in turn, further limits the joint movement and increases the contractures [2]. AMC has been described as a clinical feature in more than 400 specific disorders, and over 400 genes are currently associated to arthrogryposis [1, 2]. AMC may be classified into amyoplasia, distal (DA) and syndromic arthrogryposis [3]. DA predominantly affects hands and feet, and more than ten subtypes (DA1, DA2A and B, DA3–10) have been reported, based on clinical manifestations (including extra-articular findings), as well as gene pathogenic variants and inheritance pattern [1]. Distal arthrogryposis type 5 (DA5, MIM#108145) shows autosomal dominant inheritance, and its clinical features include multiple distal contractures, short stature, triangular face, ocular manifestations including deep-set eyes, ptosis and ophthalmoplegia, a textural peculiarity of the muscles to palpation described as “woody”; and in some cases restrictive lung disease with pulmonary hypertension [2]. It is associated to a gain-of-function heterozygous variant of the PIEZO2 (piezo type mechanosensitive ion channel type 2) gene, encoding for an ion-channel protein necessary to convert mechanical stimulus to biological signals and crucial for the development of joints, and neuromuscular and respiratory systems [4]. Only a few cases of DA5 have been described to date, although such condition is sometimes mistaken with the allelic phenotypes of PIEZO2, namely Gordon (GS) and Marden-Walker (MWS) syndromes, and/or with other DAs subtypes [5]. Hereby, we report on an Italian family affected with DA5, in which target next generation sequencing (NGS) analysis revealed the pathogenic gain-of-function heterozygous variant c.8181_8183delAGA (p.Glu2727del) of the PIEZO2 gene.

Case presentation

A male newborn, first child of Italian nonconsanguineous parents, was born at 38+1 weeks of gestation by caesarean section due to preeclampsia. Pregnancy was complicated by hypertension treated with methyldopa. Second trimester prenatal ultrasound (US) revealed oligohydramnios, flexed wrists, and bilateral clubfeet, raising the diagnostic suspicion of AMC. Apgar scores were 8, 8 and 9 at 1, 5 and 10 minutes respectively. At birth, anthropometric measurements were as follows: weight 2460 g (5th centile, −1.65 standard deviation, SD), length 47 cm (12th centile, −1.17 SD) and occipitofrontal circumference (OFC) 36 cm (95th centile, +1.65 SD). Soon after birth, he was transferred to the neonatal intensive care unit due to mild respiratory distress, that required non-invasive ventilatory support by continuous positive airway pressure. At admission, physical examination showed high forehead, low anterior hairline, deep-set eyes, wide and depressed nasal bridge, bulbous nose, antverted nares, long and thick philtrum, increased nasogenian folds and half-opened mouth with “whistling” appearance. The right posteriorly rotated ear with thick helix, and microretrognathia completed his craniofacial profile (Fig. 1a, b). Pectus excavatum, and increased tone (“woody”) of the muscles of the abdominal wall were also observed. Anomalies of the extremities

![Fig. 1](image-url)
included ulnar deviation of the hands, bilateral arachnodactyly, proximal set and short first and fifth fingers, with clinodactyly of the latters, in addition to talipes equinovarus-adductus-supinatus, with overlapping toes, short and proximal set of the first (also straight and broad) and fifth toes (Fig. 2a, b). Neurological findings were a mild generalized hypotonia, poor reactivity, crying and suction, as well as decreased osteotendinous and arcaic reflexes. Most of these phenotypic features were observed in the mother, who had short stature (height 150 cm), ophthalmoplegia, short neck, along with contractures of the joints of distal extremities. Furthermore, family history disclosed three further relatives (grandfather, aunt, and great-grandmother), on the maternal side, sharing overlapping clinical features.

The clinical course was characterized by the need of non-invasive ventilatory support during the first week of life. Due to lack of sucking/swallowing coordination, nasogastric tube feeding was initially required. Laboratory analyses including complete blood count, serum electrolytes, liver, kidney, and thyroid function tests showed normal results. Ophthalmologic examination revealed a bilateral decreased accommodation reflex, secondary to ophthalmoplegia. Except for mild enlargement of the left ventricle, major structural brain anomalies were ruled out on head US. Moreover, abdominal US documented no abnormalities, and the echocardiographic evaluation, revealed an isolated patent foramen ovale. Conversely, skeletal X-Ray confirmed the clinically observed abnormalities of the extremities, consisting of ulnar deviation of the hands, talipes equinovarus-adductus-supinatus, in addition to proximal set and short first and fifth fingers and toes. No bone anomalies were identified in the proximal segments of the extremities, chest, spine and hips.

Then, having considered the family history along with the clinical, laboratory and image findings, a targeted next generation sequencing analysis (NGS) of the genes associated to AMC and of those involved in distal arthrogryposis and digital synostosis (Table 1) was performed. The gain-of-function heterozygous pathogenic variant c.8181_8183delAGA (p.Glu2727del) (Ref Seq NM_022068.3, based on genome build GRCh37/hg19) of the PIEZO2 gene was identified in the proband, and the same mutation was also found in his mother. Genetic investigations of the other family members were not carried out due to restrictions related to the COVID-19 pandemic emergency occurring at the time of the hospital stay of our patient.

In the following months, the proband showed mild generalized hypotonia and developmental delay. However, he overcame his initial feeding difficulties, reaching adequate and exclusive bottle feeding with standard infant formula, at around 3 weeks of life. He was discharged from the Hospital at about 1 month of age, in good general condition but with poor weight gain and growth, and included in a multidisciplinary follow-up. Initial hearing screening, through transient evoked otoacoustic emissions (TEOAEs), showed abnormal results. To ascertain and characterize the hearing loss, an audiological assessment was started. It included brain auditory evoked response (BAER) evaluation at 3 months of age, which detected bilateral response threshold at 30 dB (decibel) HL (hearing level) according to mild hearing loss, that did not require any treatment. He underwent further ophthalmological assessments, which confirmed the previous findings compatible with ophthalmoplegia. He also performed hip US, which ruled out congenital dysplasia. Finally, an orthopedic evaluation was carried out, which counseled and prescribed the conservative Ponseti method for the management of bilateral clubfoot, consisting in manipulation, serial casting, and Achilles tendon tenotomy followed by foot abduction bracing. Indeed, he underwent reduction of the right foot.

Fig. 2

a) Ulnar deviation of the hand, arachnodactyly, proximal set and short first, and fifth finger (showing also clinodactyly).
b) Talipes equinovarus-adductus-supinatus, overlapping toes, with short, and proximal set of the first (also straight and broad) and fifth ones.
Name	HGNC	Full name	OMIM	Coding sequence length (bases number)	>5x Coverage	>10x Coverage	>20x Coverage	Depth of medium coverage (x) maximum
Arthrogryposis multiplex congenita								
ADCY6	600,294	Adenylate cyclase 6	3507	100.00 100.00	100.00 100.00	99.17 100.00	97.43 100.00	444.82 779
ARSC1	614,215	Activating signal cointegrator 1 complex subunit 1	1203	100.00 100.00	100.00 100.00	97.43 100.00	444.82 779	
CNTN1	600,016	Contactin 1	3024	100.00 100.00	100.00 100.00	99.17 100.00	97.43 100.00	444.82 779
CNTNAP1	602,346	Contactin associated protein 1	4155	100.00 100.00	100.00 100.00	99.17 100.00	97.43 100.00	444.82 779
DOK7	610,285	Docking protein 7	1515	100.00 100.00	100.00 100.00	97.43 100.00	97.43 100.00	444.82 779
ERGIC1	617,946	Endoplasmic reticulum-golgi intermediate compartment 1	873	100.00 100.00	100.00 100.00	97.43 100.00	97.43 100.00	444.82 779
FKBP10	607,063	FKBP prolyl isomerase 10	1749	100.00 100.00	100.00 100.00	97.43 100.00	97.43 100.00	444.82 779
GLE1	603,371	GLE1 RNA export mediator	2097	100.00 100.00	100.00 100.00	97.43 100.00	97.43 100.00	444.82 779
KIF14	611,279	Kinesin family member 14	4947	100.00 100.00	100.00 100.00	97.43 100.00	97.43 100.00	444.82 779
LGII4	608,303	Leucine rich repeat LGII family member 4	1614	100.00 100.00	100.00 100.00	97.43 100.00	97.43 100.00	444.82 779
MUSK	601,296	Muscle associated receptor tyrosine kinase	2610	100.00 100.00	100.00 100.00	97.43 100.00	97.43 100.00	444.82 779
MYBPC1	160,794	Myosin binding protein C, slow type	3522	100.00 100.00	100.00 100.00	97.43 100.00	97.43 100.00	444.82 779
MYOD1	159,970	Myogenic differentiation 1	963	100.00 100.00	100.00 100.00	97.43 100.00	97.43 100.00	444.82 779
NUP88	602,552	Nucleoporin 88	2226	100.00 100.00	100.00 100.00	97.43 100.00	97.43 100.00	444.82 779
PIEZO2	613,629	Piezo type mechanosensitive ion channel component 2	8259	100.00 100.00	100.00 100.00	97.43 100.00	97.43 100.00	444.82 779
RAPSN	601,592	Receptor associated protein of the synapse	1239	100.00 100.00	100.00 100.00	97.43 100.00	97.43 100.00	444.82 779
SCARF2	613,619	Scavenger receptor class F member 2	2598	100.00 100.00	100.00 100.00	97.43 100.00	97.43 100.00	444.82 779
SYNE1	608,441	Spectrin repeat containing nuclear envelope protein 1	26,394	100.00 100.00	100.00 100.00	97.43 100.00	97.43 100.00	444.82 779
TRIP4	604,501	Thyroid hormone receptor interactor 4	1746	100.00 100.00	100.00 100.00	97.43 100.00	97.43 100.00	444.82 779
UBA1	314,370	Ubiquitin like modifier activating enzyme 1	3177	100.00 100.00	100.00 100.00	97.43 100.00	97.43 100.00	444.82 779
VIPAS39	608,552	VPS33B late endosome and lysosome associated	1854	100.00 100.00	100.00 100.00	97.43 100.00	97.43 100.00	444.82 779
ZC4H2	300,897	Zinc finger C4H2-type containing	675	100.00 100.00	100.00 100.00	97.43 100.00	97.43 100.00	444.82 779
Distal arthrogryposis								
CHST14	608,429	Carbohydrate sulfotransferase 14	1131	100.00 100.00	100.00 100.00	97.43 100.00	97.43 100.00	444.82 779
DSE	605,942	Dermatan sulfate epimerase	2877	100.00 100.00	100.00 100.00	97.43 100.00	97.43 100.00	444.82 779
Table 1 (continued)

Name	HGNC	Full name	OMIM	Coding sequence length (bases number)	>5x Coverage%	>10x Coverage%	>20x Coverage%	Depth of medium coverage (x) maximum
ECEL1	Endothelin converting enzyme like 1	605,896	2328	100.00	100.00	98.80	248.47	929
FBN2	Fibrillin 2	612,570	8739	100.00	100.00	100.00	225.84	600
MYBPC1	Myosin binding protein C, slow type	160,794	3522	100.00	100.00	100.00	183.71	581
MYH3	Myosin heavy chain 3	160,720	5823	100.00	100.00	100.00	211.55	551
MYH8	Myosin heavy chain 8	160,741	5814	100.00	100.00	99.47	191.77	746
NALCN	Sodium leak channel, non-selective	611,549	5217	100.00	100.00	100.00	177.57	395
PIEZO2	Piezo type mechanosensitive ion channel component 2	613,629	8259	100.00	100.00	99.94	191.65	677
SLC35A3	Solute carrier family 35 member A3	605,632	1104	100.00	100.00	100.00	156.35	264
TNNI2	Troponin I2, fast skeletal type	191,043	549	100.00	100.00	100.00	355.52	890
TNNT1	Troponin T1, slow skeletal type	191,041	837	100.00	100.00	100.00	196.36	370
Other genes								
ACTA1	Actin alpha 1, skeletal muscle	102,610	1134	100.00	100.00	100.00	250.29	714
AGRN	Agrin	103,320	6138	100.00	100.00	99.54	351.00	897
BIN1	Bridging integrator 1	601,248	1782	100.00	100.00	100.00	283.67	580
CASK	Calcium/calmodulin dependent serine protein kinase	300,172	2766	100.00	100.00	100.00	110.05	307
CFL2	Cofilin 2	601,443	501	100.00	100.00	100.00	142.68	262
CHAT	Choline O-acetyltransferase	118,490	2247	100.00	100.00	98.00	234.82	481
CHRNA1	Cholinergic receptor nicotinic alpha 1 subunit	100,690	1374	100.00	100.00	100.00	219.81	422
CHRNA1	Cholinergic receptor nicotinic beta 1 subunit	100,710	1506	100.00	100.00	100.00	257.88	591
CHRNA1	Cholinergic receptor nicotinic delta subunit	100,720	1554	100.00	100.00	100.00	326.22	666
CHRNA1	Cholinergic receptor nicotinic epsilon subunit	100,725	1482	100.00	100.00	100.00	311.97	705
CHRNA1	Cholinergic receptor nicotinic gamma subunit	100,730	1554	100.00	100.00	100.00	309.39	644
COL6A2	Collagen type VI alpha 2 chain	120,240	3060	100.00	100.00	100.00	380.62	701
COLQ	Collagen like tail subunit of asymmetric acetylcholinesterase	603,033	1368	100.00	100.00	100.00	193.65	454
DHC2	24-dehydrocholesterol reductase	606,418	1551	100.00	100.00	100.00	305.51	710
Name	HGNC	Full name	OMIM	Coding sequence length (bases number)	>5x Coverage %	>10x Coverage %	>20x Coverage %	Depth of medium coverage (x) maximum
----------	--------	---	-------	--------------------------------------	---------------	----------------	----------------	--------------------------------------
DPAGT1	191,350	Dolichyl-phosphate N-acetylglucosaminephosphotransferase 1	1227	100.00	100.00	100.00	100.00	209.58
EGR2	129,010	Early growth response 2	1431	100.00	100.00	100.00	313.71	523
ERCC5	133,530	ERCC excision repair 5, endonuclease	3561	100.00	100.00	100.00	171.74	386
ERCC6	609,413	ERCC excision repair 6, chromatin remodeling factor	4482	100.00	100.00	100.00	229.78	501
EXOSC3	606,489	Exosome component 3	828	100.00	100.00	99.88	292.51	690
FHL1	300,163	Four and a half LIM domains 1	972	100.00	100.00	98.66	96.30	207
FGTN	607,440	Fukutin	1386	100.00	100.00	100.00	198.58	376
GBA	606,463	Glucosylceramidase beta	1611	100.00	100.00	100.00	602.97	1174
GBE1	607,839	1,4-alpha-glucan branching enzyme 1	2109	100.00	100.00	100.00	204.50	501
GFTPI	138,292	Glutamine-fructose-6-phosphate transaminase 1	2100	100.00	100.00	100.00	162.87	429
GLDN	608,603	Gliomedin	1656	100.00	100.00	100.00	157.95	407
KAT6B	605,880	Lysine acetyltransferase 6B	6222	100.00	100.00	100.00	276.88	1144
KLHL40	615,340	Kelch like family member 40	1866	100.00	100.00	100.00	307.58	611
MPZ	159,440	Myelin protein zero	747	100.00	100.00	100.00	293.78	823
MTM1	300,415	Myotubularin 1	1812	100.00	100.00	100.00	111.02	238
MYH2	160,740	Myosin heavy chain 2	5826	100.00	100.00	100.00	200.07	480
NEB	161,650	Nebulin	19,974	100.00	100.00	100.00	193.18	564
PLOD2	601,865	Procollagen-lysine,2-oxoglutarate 5-dioxygenase 2	2277	100.00	100.00	100.00	166.51	435
PMM2	601,785	Phosphomannomutase 2	741	100.00	100.00	100.00	202.86	369
RARS2	611,524	Arginyl-tRNA synthetase 2, mitochondrial	1737	100.00	100.00	100.00	164.02	377
SCO2	604,272	SCO cytochrome c oxidase assembly protein 2	801	100.00	100.00	100.00	325.72	627
TGF3	190,230	Transforming growth factor beta 3	1239	100.00	100.00	100.00	280.94	449
TK2	188,250	Thymidine kinase 2	798	100.00	100.00	99.25	212.26	474
TNNT3	600,692	Troponin T3, fast skeletal type	771	100.00	100.00	100.00	286.03	564
TPM3	191,030	Tropomyosin 3	858	100.00	100.00	100.00	181.98	368
TRPV4	605,427	Transient receptor potential cation channel subfamily V member 4	2616	100.00	100.00	100.00	308.90	554
deformity with plaster casting, and a percutaneous Achilles tenotomy is at present planned.

The proband is now 4 months and 6 days old, and shows a poor growth: weight Kg 5.020 (<3rd centile, −3 SD), length 58 cm (<3rd centile, −3.01 SD), and head circumference 40.5 cm (14th centile, −1.09 SD) (according to World Health Organization growth standards for neonatal and infant close monitoring) [6]. The child is presently placed in a rehabilitation program, including physiokinesiotherapy as well as occupational and manipulation treatment of the upper limbs, to improve the hands contractures. He has increased axial, upper and lower limbs and abdominal muscles’ tone, and delayed motor development. Clinical examination and multiorgan US evaluations showed no further anomalies.

Discussion and conclusions
DA was first classified by Hall, Reed, and Greene, as a heterogeneous group of disorders with congenital joint contractures, predominantly affecting hands and feet. Although originally described as autosomal dominant (AD) trait, it is well known that DA may also show autosomal recessive (AR) pattern of transmission [1, 2].

DA is presently classified into more than ten subtypes (DA1, DA2A and B, and DA3–10), depending on the pattern of contractures combined with extraarticular features [7]. Distal arthrogryposis type 5 (DA5), originally classified as type 2B, is characterized by short stature, characteristic facies with ocular manifestations, and AD trait [8, 9]. Nevertheless, other features have been added to the phenotype, including ophthalmoplegia, pulmonary dysfunction, and a textural peculiarity of the muscles to palpation, described as “woody”. Its genotype was first identified by Coste et al. [7], through NGS, in three patients with the aforementioned clinical features and a heterozygous variant of PIEZO2. Such gene encodes for a large transmembrane protein (named from the Greek term πιεση, meaning pressure), belonging to components of mechanically (MA) or stretch-activated ion channels, found in many cells and tissues/organs (somatosensory neurons, dorsal root ganglions, inner ear hair, muscle and endothelial cells, osteoblasts, cartilage, urinary bladder,
lungs, kidneys, and gastrointestinal tract) [4]. Its action allows the phenomenon of mechanic transduction, which is the translation of mechanical force into biochemical signals. Therefore, it plays crucial roles in different processes, including perception and proprioception, pain and hearing, and further potential ones are assumed for the development of the skeletal, neuromuscular and respiratory systems during embryogenesis [10]. Indeed, the identification of PIEZO2 pathogenic variants in DA5, as in the present family, has provided further insights into the potential pathogenic mechanisms of the disease [11]. Specifically, its clinical picture may be related to gain-of-function pathogenic variants leading to hyperactive PIEZO2 signaling and increased channel activity, which may decrease joint extension, lung or thorax expansion, and ocular movement (muscular fibrosis leading to contractures may be the cause of ophthalmoparesis) [12, 13]. It is uncertain whether the respiratory complications are age dependent [14]. The current absence of chest and lung involvement in the mother of our newborn may not rule out its possible appearance over time.

To date, PIEZO2 missense, and frameshift (as the one here described, rsID 587,777,077, Ensembl transcript ENST00000503781.7, and reported in literature by some Authors [5, 7, 10]) pathogenic variants, account for the vast majority of variants. They have highly pleomorphic effects and different pathophysiological consequences [15, 16]. The clinical manifestations of PIEZO2-associated diseases display a great variation, as well [10]. Indeed, gain-of-function mutations of PIEZO2 have been also linked with DA3 (also known as Gordon Syndrome, GS, MIM#114300), Marden-Walker Syndrome (MWS, MIM#248700) and other related diseases [12, 17]. GS is commonly mistaken with DA5, but it may be distinguished by the presence of cleft palate and bifid uvula, whereas ophthalmological, muscle, and respiratory problems are primarily observed in DA5 [15]. Other less frequent signs and symptoms seen in DA5 patients are pectus excavatum (33%, observed also in our patient), trismus (26%), metacarpal and metatarsal synostosis (25%), toe syndactyly (18%), neck webbing (8%, found in the mother of our newborn), and sensorineural hearing loss (6%, and also present in the proband) [15]. Differential diagnosis of DA5 also includes Aase-Smith Syndrome (MIM#147800), and Marden-Walker Syndrome (characterized by joint contractures, cleft palate, blepharophimosis, “immobile” facies, diminished muscular bulk, developmental delay and hindbrain malformations) [15].

Hereby, we report on a four-generation family with clinical pictures compatible with DA5, in which two members (the newborn proband and his mother) were found to have the same gain-of-function heterozygous pathogenic variant of PIEZO2. The present study contributes to the current genomic databases, and to a better characterization of the disease. Moreover, it highlights the age-dependent phenotypic variability, which may also be observed among family members.

Clinicians may suspect DA based on suggestive (also prenatal) clinical findings, which must be then confirmed by NGS analysis [18–22]. Since natural history varies widely among different DA disorders, identification of the underlying causal variant is essential. The existing classification of DAs is a helpful tool for the differential diagnosis. Indeed, the prompt recognition of signs and symptoms of DA in our patient, in addition to NGS analysis, has led to early identification of the exact subtype (DA5), and then to proper management.

Comorbidities and/or potential complications related to growth, feeding, development and behavior, musculoskeletal system, ophthalmological abnormalities, respiratory difficulties, and hearing defects should be prevented and/or reduced according to a multidisciplinary and individualized approach [23–26]. Enrollment in physical and occupational therapy may improve the fine motor skills in these subjects. Periodic ophthalmological examinations are recommended to rule out keratoconus, refraction problems or abnormalities of the retina, which may require correction, while hearing screening is able to early detect sensorineural hearing loss (as in our proband). Moreover, pulmonary function testing and echocardiography should be performed for the early diagnosis of restrictive pulmonary disease [15].

Further understanding of the physiological implications of gain-of-function mutations of PIEZO2 is required to find the most effective management and treatment for each patient, and ultimately to improve the quality of life among patients with DA5 and PIEZO2-related phenotypes.

Abbreviations
AMC: Arthrogryposis Multiplex Congenita; BAER: Brain Auditory Evoked Response; DA: Distal Arthrogryposis; GS: Gordon Syndrome; MA: Mechanically Activated; MWS: Marden-Walker Syndrome; NGS: Next Generation Sequencing; OFC: Occipitofrontal Circumference; PIEZO2: Piezo type mechanosensitive ion channel type 2; TEOAE: Transient-Evoked OtoAcoustic Emissions; US: Ultrasoundography.

Acknowledgements
Not applicable.

Authors’ contributions
GC conceptualized the report, revised the manuscript and gave final approval of the version to be submitted. GS drafted the final version of the manuscript and took care of the patient. VA contributed to the acquisition and interpretation of genetic data. CC collected clinical data, revised the literature, and drafted the first version of the paper. MG revised the manuscript. EP performed neurological and developmental assessment. IAMS contributed in drafting the manuscript and took care of the patient. All authors approved the final manuscript as submitted.
Funding
No funding was granted for this research.

Availability of data and materials
The datasets used and analyzed during the current study are available from the corresponding author on reasonable request.

Declarations

Ethics approval and consent to participate
Written informed consent was obtained from parents at admission of their newborn. The study was approved by the Mother and Child Department of the University of Palermo (Palermo, Italy). All procedures performed in this report were in accordance with the ethical standards of the institutional and national research committee, and with the 1964 Helsinki declaration and its later amendments, or comparable ethical standards.

Consent for publication
Written informed consent for publication was obtained.

Competing interests
The authors declare that they have no competing interests.

Received: 3 February 2022 Accepted: 19 July 2022
Published online: 29 July 2022

References
1. Whittle J, Johnson A, Dobbs MB, Gurnett CA. Models of distal arthrogryposis and lethal congenital contracture syndrome. Genes (Basel). 2021;12(6):943.

2. Desai D, Stiene D, Song T, Sadayappan S. Distal arthrogryposis and lethal congenital contracture syndrome - an overview. Front Physiol. 2020;11:689.

3. Hall JG. Arthrogryposis (multiple congenital contractures): diagnostic approach to etiology, classification, genetics, and general principles. Eur J Med Genet. 2014;57(8):464.

4. Okubo M, Fujita A, Saito Y, Kornaki H, Ishiyama A, Takeshita E, et al. A family of distal arthrogryposis type S due to a novel PIEZO2 mutation. Am J Med Genet A. 2015;167A(5):1100.

5. McMinn MJ, Beck AE, Chong JX, Shively KM, Buckingham KJ, Gildersleeve HI, Aracena MI, Aylesworth AT, Btoun P, Carey JC, Clericuzio CL, Crow YJ, Curry CJ, Devriendt K, Everman DB, Fryer A, Gibson K, Giovannucci Uzielli ML, Graham JH Jr, Hall JG, Hecht JT, Heidenreich RA, Hurst JA, Irani S, Krapels IP, Leovy JG, Mowat D, Plant GT, Robertson SP, Schorry EK, Scott RH, Seaver LH, Sherr E, Splitt M, Stewart H, Stumpel C, Temel SG, Weaver DO, Whiteford M, Williams MS, Tabor HK, Smith JD, Shendure J, Nickerson DA, University of Washington Center for Mendelian Genomics, Bambs MJ. Mutations in PIEZO2 cause Gordon syndrome, Marden-Walker syndrome, and distal arthrogryposis type S. Am J Hum Genet. 2014 May 1;94(5):734.

6. World Health Organization. Child growth standards 2021. https://www.who.int/tools/child-growth-standards/standards.

7. Coste B, Hugue G, Murray MF, Stitziel N, Bandelli M, Giovanni MA, et al. Gain-of-function mutations in the mechanically activated ion channel PIEZO2 cause a subtype of distal arthrogryposis. Proc Natl Acad Sci U S A. 2013;110(12):4667.

8. Pallotta R, Ehrenmann T, Fusilli P. Occurrence of Dandy-Walker anomaly in a familial case of distal arthrogryposis type IB. Am J Med Genet A. 2000;95(5):477.

9. Williams MS, Elliott CG, Bamshad MJ. Pulmonary disease is a component of distal arthrogryposis type S. Am J Med Genet A. 2007;143A(7):752.

10. Ma Y, Zhao Y, Cai Z, Hao X. Mutations in PIEZO2 contribute to Gordon syndrome, Marden-Walker syndrome and distal arthrogryposis: a bioinformatics analysis of mechanisms. Exp Ther Med. 2019;17(5):3518.

11. Li S, You Y, Gao J, Mao B, Cao Y, Zhao X, et al. Novel mutations in TPM2 and PIEZO2 are responsible for distal arthrogryposis (DA) 2B and mild DA in two Chinese families. BMC Med Genet. 2018;19(1):179.

12. Seidahmed MZ, Maddirevula S, Miqdad AM, Al Faifi A, Al Samadi A, Alkuraya FS. Confirming the involvement of PIEZO2 in the etiology of Marden-Walker syndrome. Am J Med Genet A. 2021;185(3):945.

13. Yamaguchi T, Takano K, Inaba Y, Morikawa M, Motoyashii M, Kawamura R, et al. PIEZO2 deficiency is a recognizable arthrogryposis syndrome: a new case and literature review. Am J Med Genet A. 2019;179(6):948.

14. Fang XZ, Zhou T, Xu JQ, Wang YX, Sun MM, He YJ, et al. Structure, kinetic properties and biological function of mechanosensitive piezo channels. Cell Biosci. 2021;11(1):13.

15. Zapata-Aldana E, Al-Mobarak SB, Karp N, Campbell C. Distal arthrogryposis type 5 and PIEZO2 novel variant in a Canadian family. Am J Med Genet A. 2019;179(6):1034.

16. Delle Vedove A, Storbeck M, Heller R, Hölker I, Hebarb M, Shukla A, et al. Biallelic loss of proprioception-related PIEZO2 causes muscular atrophy with perinatal respiratory distress, arthrogryposis, and scoliosis. Am J Hum Genet. 2016;99(5):1206.

17. Alish F, Weichert A, Kalache K, Paradiso V, Longardt AC, Dame C, et al. Familial Gordon syndrome associated with a PIEZO2 mutation. Am J Med Genet A. 2017;173(1):254.

18. Piro E, Nardello R, Gennaro E, Fontana A, Taglialetela M, Mangano GD, et al. A novel mutation in KCNQ3-related benign familial neonatal epilepsy: electroclinical features and neurodevelopmental outcome. Epileptic Disord. 2019;21(1):87.

19. Serra G, Antona V, D'Alessandro MM, Maggio MC, Verde Y, Corsello G. Novel SCN1A gene splicing-site mutation causing autosomal recessive pseudohypoparathyroidism type 1 (PHA1) in two Italian patients belonging to the same small town. Ital J Pediatr. 2021;47(1):138.

20. Schierz IAM, Serra G, Antona V, Persico I, Corsello G, Piro E. Infant developmental profile of Crisponi syndrome due to compound heterozygosity for CRLF1 deletion. Clin Dysmorphol. 2020;29(3):141.

21. Nardello R, Plicato G, Mangano GD, Gennaro E, Mangano S, Brighina F, et al. Two distinct phenotypes, hemipelagic migraine and episodic Ataxia type 2, caused by a novel common CACNA1A variant. BMC Neurol. 2020;20(1):155.

22. Serra G, Antona V, Guiffé M, Li Pomi F, Lo Scalzo L, Piro E, et al. Novel missense mutation of the TPR63 gene in a newborn with Hay-Wells/Aankyloblepharon-ectodermal defects-cleft lip/palate (AEC) syndrome: clinical report and follow-up. Ital J Pediatr. 2021;47:196.

23. Serra G, Memo L, Coscia A, Guiffè M, Luculano A, Lanna M, et al. Recommendations for neonatologists and pediatricians working in first level birthing centers on the first communication of genetic disease and malformation syndrome diagnosis: consensus issued by 6 Italian scientific societies and 4 parents’ associations. Ital J Pediatr. 2021;47:94.

24. Griffet J, Dietrich K, Bourg V, Bourgeois E. Amyoplasia and distal arthrogryposis. Ortop Traumatol Surg Res. 2021;107(15):102781.

25. Serra G, Corsello G, Antona V, D'Alessandro MM, Cassata N, Cimador M, et al. Autosomal recessive polycystic kidney disease: case report of a newborn with rare PHHD1 mutation, rapid renal enlargement and early fatal outcome. Ital J Pediatr. 2020;46(1):154.

26. Halloglu G, Topaloglu H. Arthrogryposis and fetal hypomobility syndrome. Handb Clin Neurol. 2013;113:1311.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.