A construction of projective bases for irreducible representations of multiplicative groups of division algebras over local fields

David Kazhdan

Published online: 8 October 2019
© Springer Nature Switzerland AG 2019

Abstract

Let \(F_0 \) be a local non-archimedian field of positive characteristic, \(D_0 \) a skew-field with center \(F_0 \) and \(G_0 := D_0^\times \) the multiplicative group of \(D_0 \). The goal of this paper is to provide a canonical decomposition of any complex irreducible representation \(V \) of \(G_0 \) in a direct sum of one-dimensional subspaces. I will also consider the case when \(F_0 = \mathbb{Q}_p \), \(p = 2, 3, 5, 7 \) or 13.

1 The case of a finite characteristic

Let \(k = \mathbb{F}_q \) be a finite field, \(F := k(t) \) the field of rational functions on the projective line \(\mathbb{P}^1 \) over \(k \).

Let \(S \) be the set of points of \(\mathbb{P}^1 \). For any point \(s \in S \) we denote by \(F_s \) the completion of \(F \) at \(s \), by \(\nu_s : F_s \to \mathbb{Z} \cup +\infty \) the valuation map and by \(\mathcal{O}_s \subset F_s \) the subring of integers. We denote by \(\mathcal{A} \) the ring of adeles for \(F \).

Let \(D \) be a skew-field with the center \(F \) unramified outside \(\{0, \infty\} \), \(D_0 := D \otimes_F F_0 \) and \(D_\infty := D \otimes_F F_\infty \). We have \(\dim_F(D) = n^2 \).

We denote by \(G \) the multiplicative group of \(D \) considered as an algebraic \(F \)-group, write \(G_s := G(F_s) \) and denote by \(\mathcal{C}_c(G_0) \subset \mathcal{C}(G_0) \) the algebra of locally constant compactly supported functions on \(G_0 \).

For any point \(s \in S \) where \(s \neq 0, \infty \), we identify the group \(G(F_s) \) with \(GL_n(F_s) \) and define \(K_s := GL_n(\mathcal{O}_s) \).

Let \(N_\infty : G_\infty \to F_\infty^\times \) be the reduced norm. We define \(K_\infty = \{g \in D_\infty|\nu_\infty(N_\infty(g)) \geq 0\} \) and \(K_\infty^1 = \{g \in D_\infty|\nu_\infty(N_\infty(g - 1)) > 0\} \).

Then \(K_\infty \subset G_\infty \) is an open compact subgroup and \(K_\infty/K_\infty^1 = \mathbb{F}_q^n \). We define \(K^1 := \prod_{s \in S - \{0, \infty\}} K_s \times K_\infty^1 \).

David Kazhdan
kazhdan.david@gmail.com

1 Hebrew University, Jerusalem, Israel
The multiplication defines a map
\[\kappa : G_0 \times K_1 \times G(F) \to G(\mathbb{A}). \]

This paper is based on the following result

Proposition 1.1 The map \(\kappa \) is a bijection.

Proof The surjectivity follows from Lemma 7.4 in [3]. To show the injectivity it is sufficient to check the equality
\[(D_0^\times \times K_1) \cap G(F) = \{e\},\]
which is obvious. \(\square\)

We denote by \(R \) the space of \(\mathbb{C} \)-valued locally constant functions on \(G(\mathbb{A})/(K_1 \times G(F)) \); let \(\mathcal{H}_s, \ s \neq 0, \infty, \) be the spherical Hecke algebra at \(s \), and \(\mathcal{H} := \prod_{s \in S - \{0, \infty\}} \mathcal{H}_s \).

We have a natural action \(a \mapsto \hat{a} \) of the commutative algebra \(A := \mathcal{H} \otimes \mathbb{C}[K_0^0/K_1^1] \) on \(R \).

Corollary 1.2
1. The natural action of the group \(G_0 \) on the space \(X := G(\mathbb{A})/(K_1 \times G(F)) \) is simply transitive. So we can identify \(X \) with \(G_0 \).
2. The restriction to \(G_0 \) defines a \(G_0 \)-equivariant isomorphism \(u : \mathcal{H} \to \mathbb{C}(G_0) \).
3. For any irreducible representation \(V \) of \(G_0 \) the restriction to \(G_0 \) defines an isomorphism \(u_V : \text{Hom}_{G_0}(V^\vee, \mathcal{H}) \to V \), where \(V^\vee \) is the representation dual to \(V \).
4. There exists a map \(\alpha : A \to \mathbb{C}_c(G_0) \) such that
\[f \star \alpha(a) = \hat{\alpha}(f), \ a \in A, \ f \in \mathbb{C}_c(G_0). \]

Let \(\Xi \) be the set of homomorphisms \(\chi : \mathcal{H} \otimes \mathbb{C}[\mathbb{F}_q^\times] \to \mathbb{C} \).

For any \(\chi \in \Xi \) we define \(V_{\chi} := \{ v \in V | av = \chi(a)v \} \) for all \(a \in \mathcal{H} \otimes \mathbb{C}[\mathbb{F}_q^\times] \). Let \(\Xi_V = \{ \chi \in \Xi | V_{\chi} \neq \{0\} \} \).

Theorem 1.3
1. \(\dim(V_{\chi}) = 1 \) for all \(\chi \in \Xi_V \).
2. \(V = \bigoplus_{\chi \in \Xi_V} V_{\chi} \).

Proof As follows from [2] and [6] we have a direct sum decomposition
\[V = \bigoplus_{\chi \in \Xi_V} V_{\chi} \]

where the subspaces \(V_{\chi} \subset V \) are \(\mathcal{H} \times G_\infty \)-invariant and the representation \(\tilde{\rho}_{\chi} \) of \(\mathcal{H} \times G_\infty \) on \(V_{\chi} \) is irreducible. Since \(\mathcal{H} \) is commutative this implies the irreducibility of the restriction \(\rho_{\chi} \) of \(\tilde{\rho}_{\chi} \) to \(G_\infty \). By definition we can consider \(\rho_{\chi} \) as a representation of the quotient group \(G_\infty/K_1^1 = \mathbb{Z} \times \mathbb{F}_q^\times \) where \(1 \in \mathbb{Z} \) acts by the Frobenius automorphism on \(\mathbb{F}_q^\times \). It is easy to see that the restriction of any irreducible representation of the group \(\mathbb{Z} \times \mathbb{F}_q^\times \) to \(\mathbb{F}_q^\times \) is the direct sum of distinct one-dimensional representations. \(\square\)
2 The case of special p-adic fields

In this section we consider the case when $F_0 = \mathbb{Q}_p$, $p = 2, 3, 5, 7$ or 13. Let $\mathbb{A}^f \subset \mathbb{A}$ be the subring of finite adeles of \mathbb{Q}, D be a quaternion algebra over \mathbb{Q}. Fix a maximal order $\mathcal{O} \subset D$ and denote by $\text{Cl}(D)$ the class number of D, that is the number of isomorphism classes of left \mathcal{O}-modules M that admit an embedding $M \hookrightarrow D$. For any prime ℓ we denote by $\mathcal{O}_\ell \subset D(\mathbb{Q}_\ell)$ the completion of \mathcal{O} at ℓ and write $\widehat{\mathcal{O}} := \prod_\ell \mathcal{O}_\ell \subset D(\mathbb{A}^f)$.

The following statement is contained in [8] (see especially Theorem 5.7).

Claim 2.1.1. The class number $\text{Cl}(D)$ does not depend on a choice of a maximal order \mathcal{O}.

Claim 2.1.2. The class number $\text{Cl}(D)$ is equal to the size of the two-sided quotient $D^\times(\mathbb{Q}) \backslash D^\times(\mathbb{A}^f)/\widehat{\mathcal{O}}^\times$.

Let $D = D^p$ be the quaternion algebra over \mathbb{Q} ramified at p and ∞. The following result is in [1].

Claim 2.2 $\text{Cl}(D^p) = 1$ if $p = 2, 3, 5, 7$ or 13.

Let $\kappa : D^\times(\mathbb{Q}) \times D^\times(\mathbb{R}) \times \widehat{\mathcal{O}}^\times \rightarrow D^\times(\mathbb{A})$ be the product map.

Corollary 2.3 The map κ is onto.

We denote by $N : D(\mathbb{A}) \rightarrow \mathbb{A}$ the reduced norm and by $||| : \mathbb{A}^\times \rightarrow \mathbb{R}_{>0}$ the product of local norms. So $||a|| = 1$ for $a \in \mathbb{Q}^\times$.

Let $H \subset D^\times$ be the subgroup formed by the elements of reduced norm 1. Let \mathcal{H}_ℓ be the spherical Hecke algebra at ℓ, and $\mathcal{H} := \bigotimes_{\ell \neq p} \mathcal{H}_\ell$. For $\ell \neq p$ we write H_ℓ for $SL(2, \mathbb{Z}_\ell) \subset SL(2, \mathbb{Q}_\ell) = H(\mathbb{Q}_\ell)$. We write $H^1 := H_\mathbb{R} \times \prod_{\ell \neq p} H_\ell$ and denote by R the space of \mathbb{C}-valued locally constant functions on $H(\mathbb{A})/(H(\mathbb{Q}) \times H^1)$. The algebra \mathcal{H} acts on R.

Let $\kappa_1 : H(\mathbb{Q}) \times H_\mathbb{R} \times H_{\mathbb{R}} \times \prod_{\ell \neq p} H_\ell \rightarrow H(\mathbb{A})$ be the product map.

Claim 2.4 κ_1 is onto and $\text{Ker}(\kappa_1) = \pm 1$.

Proof The surjectivity follows from Corollary 2.3 and the triviality of the divisor class group for \mathbb{Q}. The equality $\text{Ker}(\kappa_1) = \pm 1$ is clear.

Corollary 2.5 For any irreducible representation V of H_p trivial on $-\text{Id}$ we may identify the space $\text{Hom}_{H_p}(V, R)$ with V^\vee.

So we have an action of the algebra \mathcal{H} on V^\vee. For any morphism $\chi : \mathcal{H} \rightarrow \mathbb{C}$ we define $V_\chi^\vee := \{ \lambda \in V^\vee \mid h\lambda = \chi(h)\lambda \ \forall h \in \mathcal{H} \}$. Let $\Sigma_V = \{ \chi : \mathcal{H} \rightarrow \mathbb{C} \mid V_\chi^\vee \neq 0 \}$. Now the multiplicity one theorem for SL_2 (see [7]) implies the validity of the following statement.
Theorem 2.6 For any irreducible representation V of H_p trivial on $-\text{Id}$ we have

1. $\dim V^{\vee}_X = 1 \forall X \in \mathcal{E}_V$.
2. $V^{\vee} = \bigoplus_{X \in \mathcal{E}_V} V^{\vee}_X$.

Question 2.7 Is it possible to extend this construction to the quaternion algebra over \mathbb{Q}_p for all primes p?

Remark 2.8 The paper [5] was influenced by [4] and is concerned with the understanding of the local Langlands conjecture. This short paper is a streamlined version of [5].

Acknowledgements The project has received funding from ERC under Grant agreement 669655.

References

1. Brzezinski, J.: Definite quaternion orders of class number one. J. de Théorie des Nombres de Bordeaux 7(1), 93–96 (1995)
2. Deligne, P., Kazhdan, D., Vignéras, M.-F.: Représentations des algèbres centrales simples p-adiques. In: Representations of Reductive Groups Over a Local Field, pp. 33–117. Travaux en Cours, Hermann, Paris (1984)
3. Hrushovski, E., Kazhdan, D.: Motivic poisson summation. Moscow Math. J. 9(3), 569–623 (2009)
4. Katz, N.: Local-to-global extensions of representations of fundamental groups. Ann. Inst. Fourier 36(4), 69–106 (1986)
5. Kazhdan, D.: On a theorem of N. Katz and bases in irreducible representations. In: From Fourier Analysis and Number Theory to Radon Transforms and Geometry. Developments in Mathematics, vol. 28, pp. 335–340. Springer, New York (2013)
6. Piatetskii-Shapiro, I.: Multiplicity one theorems. Proceedings of Symposium in Pure Mathematics 33, Part I, pp. 209–212. Providence (1979)
7. Ramakrishnan, D.: Modularity of the Rankin–Selberg L-series, and multiplicity one for $SL(2)$. Ann. Math. 152, 45–111 (2000)
8. Vignéras, M.-F.: Arithmétique des algèbres de quaternions. Lecture Notes in Math, vol. 800. Springer, Berlin (1980)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.