Lift-off invariant inductance of steels in multi-frequency eddy-current testing

DOI:
10.1016/j.ndteint.2021.102458

Document Version
Accepted author manuscript

Link to publication record in Manchester Research Explorer

Citation for published version (APA):
Lu, M., Meng, X., Huang, R., Chen, L., Peyton, A., & Yin, W. (2021). Lift-off invariant inductance of steels in multi-frequency eddy-current testing. NDT & E International, 121, 102458. Article 102458. https://doi.org/10.1016/j.ndteint.2021.102458

Published in:
NDT & E International

Citing this paper
Please note that where the full-text provided on Manchester Research Explorer is the Author Accepted Manuscript or Proof version this may differ from the final Published version. If citing, it is advised that you check and use the publisher's definitive version.

General rights
Copyright and moral rights for the publications made accessible in the Research Explorer are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Takedown policy
If you believe that this document breaches copyright please refer to the University of Manchester's Takedown Procedures [http://man.ac.uk/04Y6Bo] or contact uml.scholarlycommunications@manchester.ac.uk providing relevant details, so we can investigate your claim.
Lift-off invariant inductance of steels in multi-frequency eddy-current testing

Mingyang Lua,\textasteriskcentered,\textdagger, Xiaobai Menga,\textbullet,\textdagger, Ruochen Huanga, Liming Chena, Anthony Peytona, Wuliang Yina,\textasteriskcentered**

a School of Electrical and Electronic Engineering, University of Manchester, Oxford Road, Manchester, M13 9PL, UK
b Faculty of Art, Science and Technology, University of Northampton, Northampton, NN1 5PH, UK

ARTICLE INFO

Index Terms:
Eddy current testing
Lift-off invariance
Property measurement
Multi-frequency
Non-destructive testing

ABSTRACT

Eddy current testing can be used to interrogate steels but it is hampered by the lift-off distance of the sensor. Previously, the lift-off point of intersection (LOI) feature has been found for the pulsed eddy current (PEC) testing. In this paper, a lift-off invariant inductance (LII) feature is proposed for the multi-frequency eddy current (MEC) testing, which merely targets the ferromagnetic steels. That is, at a certain working frequency, the measured inductance signal is found nearly immune to the lift-off distance of the sensor. Such working frequency and inductance are termed as the lift-off invariant frequency (LIF) and LII. Through simulations and experimental measurements of different steels under the multi-frequency manner, the LII has been verified to be merely related to the sensor parameters and independent of different steels. By referring to the LIF of the test piece and using an iterative inverse solver, one of the steel properties (either the electrical conductivity or magnetic permeability) can be reconstructed with a high accuracy.

1. Introduction

Non-destructive testing (NDT) is a commonly used measurement technique for evaluating the property of the material without causing damage. As one of the typical NDT techniques, the eddy current (EC) testing is widely applied for the measurement of sample properties and defect inspection owing to its rich information, high adaptability and sensitivity \[1–9\]. By referring to the signals from the transmitters and receivers of EC sensors, the electromagnetic characteristic of the test piece can be derived in a contactless manner \[10–16\]. Currently, the lift-off distance between the EC sensor and sample is one of the major issues in the practical measurement.

Previously, many techniques have been proposed to address the error caused by the lift-off variation when using the multi-frequency eddy current (MEC) testing, pulsed eddy current (PEC) testing, and single-frequency eddy current (SEC) testing \[17–27\]. The point of intersection (LOI) feature has been proposed by Giguère et al. for the PEC testing \[20\], which has been further utilised by various researchers to measure the property of the conductive films, multi-layer metallic plates, and steels \[21–24\]. Tian and Sophian used the normalised method with dual signals to further limit the lift-off effect when using PEC sensors \[25\]. However, these methods are all suitable for PEC testing. Yin et al. have proposed the peak frequency and zero-crossing frequency features of the MEC spectrum to reconstruct the thickness of non-magnetic material and ferrite fractions of magnetic alloys \[26,27\]. However, the reconstruction error was around 8\%, which still needs to be further mitigated.

Referring to our previous work, the conductivity invariance phenomenon (CIP) and permeability invariance phenomenon (PIP) have been proposed to tackle the correlation between the electrical conductivity and magnetic permeability at an optimal lift-off distance \[28,29\]. Besides, the revised (via the lift-off compensation algorithm) peak frequency and zero-crossing frequency features have been found and used to measure the property of both non-magnetic and magnetic materials \[30,31\]. Moreover, different sensor designs (e.g., triple-coil sensor for SEC testing) and measurement techniques (e.g., phase feature for MEC testing) have been used to address the lift-off issue \[32–38\]. However, the proposed scenarios on reducing measurement error due to the lift-off variation can still be improved.
A lift-off invariant inductance (LII) feature is presented in this paper. It is found that at a certain working frequency, the inductance measured by the eddy current sensor is not affected by the lift-off variation. Such frequency and corresponding inductance are termed as the lift-off invariant frequency (LIF) and lift-off invariant inductance (LII) features. The proposed method only works for ferromagnetic samples. For the austenitic (non-ferromagnetic) materials, the inductance change (ideally starts from zero under extremely low-frequency excitation) is negative for different frequencies. Besides, there is no intersected point for inductance change (due to non-ferromagnetic materials) curves at different lift-offs. Experiments on the inductance measurement of three types of steels, including dual-phase 600, low-carbon mild, and Cr–Mo steels have been carried out under the multi-frequency (or swept frequency) mode. The LII feature is found only determined by the geometry of the sensor and nearly immune to the test piece. Moreover, the properties (including the magnetic permeability and electrical conductivity) of different steels have been estimated starting by the LIF feature, with a maximum error of 0.61%. The reconstruction is achieved by inputting the known parameters, LIF, and LII into the inverse solver based on the modified Newton-Raphson iterative method.

2. Methodology – lift-off invariant inductance

The eddy current sensor can be utilized to test the steel via the measured signal, including the impedance and inductance. However, the lift-off the sensor distance can significantly affect the detected signals. To address the lift-off issue of the sensor, features of lift-off invariant inductance (LII) and lift-off invariant frequency (LIF) have been proposed. Then the properties of the steels can be reconstructed by referring to LIF using an iterative inverse solver (modified Newton-Raphson method).

2.1. Forward solver - analytical formulation of inductance change

To initiate the investigation of the LII and LIF features, the analytical formulation of the inductance for two circular transmitting/receiving coils (with one transmitter and receiver) co-axially deployed above the half-space material is introduced [39].

As illustrated in Fig. 1, the air-core sensor is composed of one transmitter and one receiver. Two circular transmitting/receiving coils with the identical spiral height h, inner radius r_1 and outer radius r_2 are co-axially wound on the ceramic rod with a separation distance of g. The eddy current sensor is placed parallel to the steel plate with a small lift-off of l_0. It was found that the induced eddy current would not be restrained by the edge of the steel when the plate planar size is around 5 times larger than the diameter of the transmitting/receiving coil. Consequently, the steel plate can be treated as an infinite half-space material. Besides, the change of mutual inductance on the sensor due to the steel is defined as

$$L = K \int_0^\infty M(\alpha) \varphi(\alpha) d\alpha$$

where

$$K = \frac{\pi \mu_0 N^2 (r_1 + r_2)}{2h(r_2 - r_1)}$$

There exists a restriction for the radius of the transmitting/receiving coils. That is, the planar dimension of the test piece should be at least 5 times of the radius of the transmitting/receiving coils [28]. Otherwise, the induced eddy current will be confined by the cutting edge of the steel plate, and the fundamental formula (equation (1)) will be invalid. In (2), N is the turns of the transmitter and receiver. μ_0 is the magnetic permeability of the free space. In (1), $M(\alpha)$ is determined by the geometry of the sensor and defined in (3).

$$M(\alpha) = \frac{P(\alpha)}{\alpha} e^{-\alpha l_0} e^{-(\alpha l_0 + h)} \left(e^{-h} - 1\right)^2$$

$\varphi(\alpha)$ in (1) is determined by the property of the steel, which is defined as
Table 1

Properties and thicknesses of steels.

Steel Type	Electrical conductivity (MS/m)	Relative magnetic permeability	Thickness (mm)
DP 600	4.13	222	2.4
Low-carbon Mild	8.55	154	3.0
Cr-Mo steel	3.37	222	3.0

Table 2

Parameters of eddy current Sensor.

Parameter	Value
Turns - N	25
Coil height - h /mm	12.5
Gap - g /mm	45.0
Inner radius - r₁ /mm	19.5
Outer radius - r₂ /mm	20.0
Lift-off - l₀ /mm	1.0:1:0:5:0

Fig. 2 exhibits the integrand - \(M(\alpha) \cdot \phi(\alpha) \) with different lift-offs are nearly the same. Moreover, the integrated inductance change (integral in (1)) for both curves has an identical value \(L₀ = -1.195 \) nH. As can be observed from the red dot-dash line in Fig. 3, the inductance value \(L₀ \) is almost immune to the lift-off variations. The inductance value \(L₀ \) is constant and can be termed as the lift-off invariant inductance (LII). The LII - \(L₀ \) is found to be independent of the test piece and merely determined by the geometry of the sensor. Besides, the corresponding frequency when the inductance change approaches LII - \(L₀ \) is termed as the lift-off invariant frequency (LIF) (see Fig. 4a).

2.3. Inverse solver - iterative method

Since the inductance change in the presence of different samples achieves the LII - \(L₀ \) value at different frequency values. The properties of the steel can be reconstructed by finding the corresponding frequency - LIF at which \(L = L₀ \) under the multi-frequency excitation, by choosing the frequency for which \(L \) is the closest to \(L₀ \). Therefore, one of the steel properties (either the electrical conductivity or the relative magnetic permeability; one must be known as a priori) can be reconstructed by finding the minimum value of \(\Delta L \) when varying \(\sigma \) or \(\mu_1 \).

\[
\Delta L(\mu_1, \sigma) = |L(\mu_1, \sigma) - L₀|
\]

In (7), \(L(\mu_1, \sigma) \) is the analytical inductance change using (1) when inputting \(\mu_1, \sigma \), and the corresponding frequency - LIF (refer to the measured multi-frequency inductance change) at or closest to LII - \(L₀ \). One of the efficient inverse solvers for retrieving \(\sigma \) or \(\mu_1 \) is the modified Newton-Raphson iterative method, which can determine increasing or decreasing reference values of \(\mu_1 \) or \(\sigma \) when finding the minimum \(\Delta L \) [31].

\[
\mu_1 = \mu_{1r} - J_0^{-1}(L(\mu_{1r}) - L₀) \quad (8)
\]

\[
\sigma = \sigma_r - J_0^{-1}(L(\sigma_r) - L₀) \quad (9)
\]

In (8) and (9), \(\mu_{1r} \) and \(\sigma_r \) are the reference values under the current iterative loop. 6 different initial reference values (for the first iterative loop) have been used for the retrieval of electrical conductivity or relative magnetic permeability. Each initial reference value is used in an independent parallel iterative solver for searching the local minimum convergence threshold (maximum interference threshold (MAXIT))/residual of the inductance. That is, values of 1 MS/m, 10 MS/m, 20 MS/m, 30 MS/m, 40 MS/m, 50 MS/m are used for the retrieval of electrical conductivity; and values of 50, 100, 200, 300, 400, 500 are used for the retrieval of relative magnetic permeability. And the global solution of

![Fig. 3. Inductance change – L for the sensor in Table 2 with different lift-offs](image-url)
The retrieval is by finding the local solution with the smallest residual value (of the inductance). These 6 different initial values are randomly set. In practice, a crude test of the conductivity (using the four-terminal method) or permeability fitting (using air-core or ferrite-core sensors) will hasten the convergence.

For the input of multiple frequencies, \(J_\mu \) and \(J_\sigma \) are the Jacobian matrix. For the (single) corresponding frequency - LIF at or closest to LII - \(L_0 \), \(J_\mu \) and \(J_\sigma \) are single values and defined in (10) and (11).

\[
J_\mu = \frac{L(\mu_1 r_1) - L(\mu'_1 r_1)}{\mu_1 r_1 - \mu'_1 r_1} \tag{10}
\]

\[
J_\sigma = \frac{L(\sigma r_0) - L(\sigma'_r)}{\sigma r_0 - \sigma'_r} \tag{11}
\]

In (10) and (11), \(\mu'_1 r_1 \) and \(\sigma'_r \) are the values approaching \(\mu_1 r_1 \) and \(\sigma r_0 \), which can be defined as 0.999\(\mu_1 r_1 \) and 0.999\(\sigma r_0 \). \(L(\mu_1 r_1) \) and \(L(\sigma r_0) \) are the inductance change when inputting \(\mu_1 r_1 \), \(\sigma r_0 \), and the corresponding frequency - LIF at or closest to LII - \(L_0 \) into forward analytical formulation – equation (1). The iterative loop can be terminated when \((L(\mu_1 r_1) - L(\mu'_1 r_1)) \) or \((L(\sigma r_0) - L(\sigma'_r)) \) converges at a small maximum interference threshold (MAXIT).

3. Experiments on different steels

To verify the lift-off invariant inductance (LII) feature, experiments on the multi-frequency (or swept frequency) inductance change of the eddy current sensor above different steels have been carried out. As listed in Table 1, the test pieces selected were three types of steels (including the ferrite-austenite dual-phase 600 alloy, low-carbon mild steel, and Cr-Mo steel) with different electrical conductivities, magnetic permeabilities, and thicknesses. The planar size of these samples (500 × 500 mm) is larger than 10 times of the diameter of the sensor. Therefore, the sample plates can be treated as the infinite half-space material and suitable for the analytical forward solver in (1). The parameters of the eddy current sensor in Fig. 1 are listed in Table 2.

In Fig. 4 (b), the eddy current sensor is placed above the steel. The
measurement is conducted under a small range of lift-offs (from 1.0 to 5.0 mm with an increment of 1.0 mm). Two transmitting/receiving coils (top and bottom slot of the sensor in Fig. 4 b), with one transmitter on the top and one receiver at the bottom, are connected to the MFIA impedance analyser. The working frequencies range from 100 Hz to 500 kHz.

4. Results and discussions

4.1. Intersection points of inductance change curves with different lift-offs

Fig. 5 shows the measurement of the multi-frequency inductance change for the eddy current sensor above the steels with lift-off distance of 1, 3, and 5 mm. Several slightly fluctuating points exist at low frequencies (particularly for frequencies lower than 300 Hz), which is caused by the low signal-to-noise ratio (SNR) of the impedance analyser when working at low frequencies. It can be observed that the inductance change curves for one sample with different lift-offs cross zero and intersect at a single locus point under a certain frequency. This intersection phenomenon occurs in the ferromagnetic materials (and disappears in austenitic materials). As induced eddy currents reduce inductive energy storage in the sensor, there exists a “zero-crossing” point for the inductance change where the system stores the same energy as it is in the free space [30]. Moreover, the inductance change is shown to be less affected by the lift-off variation under medium frequencies, and almost immune to the lift-off distance under the corresponding frequency – lift-off invariant frequency (LIF) of the overlapped points. Moreover, the LIF is determined by the properties of the sample, including the electrical conductivity, magnetic permeability, and thickness of the steel. As can be seen from the zooming of the inductance change curves in Fig. 5 (b), intersected points for curves of different lift-offs locate at different working frequencies but almost the same inductance change level $L_0 = 1.195 \, \text{nH}$, which is exactly the same as the analytical result of the lift-off invariant inductance (LII) in Fig. 3. The working frequencies closest to the corresponding frequency of the intersected points – LIF for DP-600, low-carbon mild, and Cr–Mo steels are 11.602, 3.889, and 5.637 kHz respectively.

![Fig. 6. Inductance change versus lift-offs of the sensor under a series of excitation frequencies](image-url)

(a) DP-600: $L(l_0)$ approaches L_0 around 11.602 kHz
(b) Low carbon Mild: $L(l_0)$ approaches L_0 around 3.889 kHz
(c) Cr–Mo: $L(l_0)$ approaches L_0 around 5.637 kHz.
4.2. Lift-off invariant inductance (LII)

Fig. 6 illustrates the inductance change with different lift-off variations under a series of excitation frequencies for DP-600, low-carbon mild, and Cr–Mo steels. It can be observed that the inductance change of DP-600, low-carbon mild, and Cr–Mo steels approaches L_0, and becomes almost immune to the lift-off variation under the working frequency of 11.602, 3.889, and 5.637 kHz (closest to LIF of each steel). Lower frequencies result in a larger inductance but (nearly linear) decrease with incremented lift-offs of the sensor. By increasing the frequency starting from the LIF, the magnitude of L increases, while, for a given frequency, it decreases as the L_0 increases. Moreover, as can be seen from the inductance change curve under 1.008, 6.002, 100.011, and 200.014 kHz, the inductance change gradually approaches the lift-off invariant inductance (LII) - L_0 (-1.195 nH for the sensor geometry listed in Table 1) and becomes more stable with increased lift-offs of the sensor when the working frequency is closer to the corresponding frequency of the intersected points - lift-off invariant frequency (LIF).

Fig. 7. Relative error of the inductance change (with respect to L_0) under the frequencies at or closest to LII - L_0 with different lift-offs of the sensor.

Fig. 8. Error of the reconstructed relative magnetic permeability with different lift-offs of the sensor (a) using the LIF and LII feature (b) using the zero-crossing feature [38] without considering the effect of lift-off parameter (i.e., assuming lift-off is zero) in the algorithm.

Fig. 9. Error of the reconstructed electrical conductivity with different lift-offs of the sensor (a) using the LIF and LII feature (b) using the zero-crossing feature [38] without considering the effect of lift-off parameter (i.e., assuming lift-off is zero) in the algorithm.
change error for different steels follow the same trend and close values with the incremented lift-offs. With the increased lift-offs of the eddy current sensor, the inductance change closest to LII (L in y axis of Fig. 7) starts at a slightly lower value, then overshoots LII (L0) and gradually reverses back to a lower value. Besides, the error of the inductance change is within 0.60% for a small range of lift-offs.

Since the inductance change of the point that is closest to LII or LIF has been verified almost immune to a small range of lift-offs of the eddy current sensor, its value and the corresponding frequency (closest to LIF) can be further used to reconstruct one of the property of samples (either the electrical conductivity or the relative magnetic permeability; one must be known as a priori). The principle of the reconstruction is shown from (7) to (11), which is the modified Newton-Raphson iterative method. For example, to find the non-linear solution of the relative permeability μ of steels, parameters including the thickness (Table 1), electrical conductivity (Table 2), inductance change (closest to LII), and frequency (closest to LII, as shown in the legend of Fig. 7) are inputted into equations (8) and (10). The relative permeability can be accurately derived when the difference of the inductance change between the current and last iterative loop (\(L(\mu_r) - L(\mu_{r0})\)) converges at a small maximum interference threshold (MAXIT).

As can be seen from Figs. 8 a, steels of DP-600, low-carbon mild, and Cr-Mo share a similar error trend of the reconstructed relative permeability. With the increased lift-off distance of the eddy current sensor, the reconstructed magnetic permeability begins with a higher value, then falls below the actual value and finally approaches a higher value. In Fig. 9 a, the reconstructed electrical conductivity of steels follows an inverse trend of the reconstructed permeability (but the similar trend of the inductance change shown in Fig. 7), which is due to the different sensitivities with respect to the inductance change. Overall, from Figs. 8 a, and Fig. 9 a, the properties of the steels can be reconstructed with a maximum relative error of 0.61% (with 0.32% for the reconstructed magnetic permeability, and 0.61% for the reconstructed electrical conductivity).

Figs. 8 b, and Fig. 9 b show the retrieval of relative permeability and electrical conductivity using the zero-crossing feature (ZCF), which does not consider the effect of lift-off parameter (i.e., assuming lift-off is zero) in the algorithm. It can be seen that the retrieval error using the proposed LIF and LII feature is much lower than that using the ZCF feature, particularly for lift-offs over 2 mm.

5. Conclusions

This paper presents the lift-off invariant inductance (LII) and corresponding lift-off invariant frequency (LIF) features in the multi-frequency eddy current testing. It has been found under the LIF (or the frequency sample closest to LIF), the measured inductance change (which is exactly the LII or significantly approaches LII) for the sensor above the test piece is almost immune to the lift-off distance. From the inductance measurement of three different types of steels, the LII is proved only determined by the size of the sensor and barely affected by different steels. By inputting the known parameters (e.g., thickness and sensor geometries), LII, and LIF into the Newton-Raphson iterative inverse solver, one of the property of samples (either the electrical conductivity or the relative magnetic permeability; one must be known as a priori) is derived with a small error of 0.61% and 0.32% respectively. Previously, the eddy current thin-skin regime [40] is proposed for the surface defect inspection, which does not consider the lift-off effect. In the future, more investigations will be carried out to test the feasibility of blending the proposed method (LIF feature) into the surface defect detection. Besides, inductance sensitivities to several parameters (electrical conductivity, magnetic permeability, thickness, and lift-off) have been analysed at different frequencies [34]. In the future, more tests will be conducted to optimise the sensor design for the augmentation of LIF sensitivities to a local change of electrical conductivity or magnetic permeability.

Author contributions

M. Lu: Methodology, manuscript drafting, Conceptualization, manuscript revision, experiment data curation, manuscript review, Supervision. X. Meng: Methodology, manuscript drafting, Conceptualization, manuscript revision, experiment data curation, manuscript review. R. Huang: experiment data curation, manuscript review. L. Chen: experiment data curation, manuscript review. W. Yin: Supervision. A. Peyton: Supervision. All authors have read and agreed to the published version of the manuscript.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgments

This work was supported by [UK Engineering and Physical Sciences Research Council (EPSRC)] [grant number: EP/P027237/1] [title: Real-time In-line Microstructural Engineering (RIIME)].

References

[1] Yang G, Dib G, Udpa L, Tamburino A, Udpa SS. Rotating field EC-GMR sensor for crack detection at fastener site in layered structures. IEEE Sensor J 2015; 15 (1):463–70.
[2] Abidin ZI, Mandache C, Tian GY, Moreoovon M. Pulsed eddy current testing with variable duty cycle on rivet joints. NDT E Int 2009; 42(7):599–605.
[3] Chen X, Lei Y. Electrical conductivity measurement of ferromagnetic metallic materials using pulsed eddy current method. NDT E Int 2015; 75:33–8.
[4] He DF, Yoshizawa M. Dual-frequency eddy-current NDE based on high-Te rf SQUID. Phys C Supercond 2002; 383(3):223–6.
[5] Pinotti E, Poppen P. Simple lock-in technique for thickness measurement of metallic plates. IEEE Transactions on Instrumentation and Measurement Feb. 2014; 63(2):879–94.
[6] Tai CC, Rose JH, Moulder AC. Thickness and conductivity of metallic layers from pulsed eddy-current measurements. Rev Sci Instrum Aug. 1996;67(11).
[7] Vasic D, Bilas V, Ambrus D. Pulsed eddy-current nondestructive testing of ferromagnetic tubes. IEEE Transactions on Instrumentation and Measurement Aug. 2004;53(4):1289–94.
[8] Moulder JC, Uzal E, Rose JH. Thickness and conductivity of metallic layers from eddy current measurements. Rev Sci Instrum 1992;63(6).
[9] Egorov AV, Polyakov VV, Salita DS, Kolubaev EA, Peshke SG, Chernyavsky AG, Vorobey IV. Inspection of aluminum alloys by a multi-frequency eddy current method. Defence Technology 2015;11(2):99–103.
[10] Theodoroulis T, Kriezis EE. Eddy current canonical problems (with applications to nondestructive evaluation). Mater Sci 2006. ISBN 0-9717880-1-4.
[11] Huang R, Lu M, Peyton A, Yin W. Thickness measurement of metallic plates with finite planar dimension using eddy current method. IEEE Transactions on Instrumentation and Measurement, early access 2020. https://doi.org/10.1109/TIM.2020.2987413.
[12] Shin Y, Choi D, Kim Y, Lee S. Signal characteristics of differential-pulsed eddy current sensors in the evaluation of plate thickness. NDT E Int 2009;42(3):215–21.
[13] Li W, Yuan X, Chen G, Ge J, Yin X, Li K. High sensitivity rotating alternating current field measurement for arbitrary-angle underwater cracks. NDT&E International Apr. 2016;79:123–31.
[14] Lu M, et al. Acceleration of frequency sweeping in eddy current computation. IEEE Trans Magn 2017;53(1):8.
[15] He Y, Tian G, Zhang H, Alamin M, Simm A, Jackson P. Steel corrosion characterization using pulsed eddy current systems. IEEE Sensor J 2012;12(6):2113–20.
[16] Tycko G, Dziczkowski L. E-Ecored coil with a circular air gap inside the core column used in eddy current testing. IEEE Trans Magn Sept. 2015;51(9):2246–53.
[17] Ribeiro AL, Ramos HG, Arez JC. Lift-off insensitive thickness measurement of aluminum plates using harmonic eddy current excitation and a GMR sensor. Measurement 2012;45(9):2246–53.
[18] Abu-Nahab BA. Reduction of lift-off effect in high-frequency apparent eddy current conductivity spectroscopy. Meas Sci Technol 2017;28(5). 055107.
[19] Kral J, Smid R, Ramos HMG, Ribeiro AL. The lift-off effect in eddy currents on thickness modeling and measurement. IEEE Transactions on Instrumentation and Measurement 2013;62(7):2043–9.
[20] Giguere S, Lepine BA, Dubois JMS. Pulsed eddy current technology: characterizing material loss with gap and lift-off variations. Journal of Research in Nondestructive Evaluation 2001;13(3):119–29.
[21] Wang Y, Fan M, Cao B, Ye B, Wen D. Measurement of coating thickness using lift-off point of intersection features from pulsed eddy current signals. NDT E Int 2020; 116:102333.

[22] Angani CS, et al. Lift-off point of intersection feature in transient eddy-current oscillations method to detect thickness variation in stainless steel. IEEE Trans Magn 2016;52(1):1-8.

[23] Wen D, Fan M, Cao B, Ye B, Tian G. Extraction of LOI features from spectral pulsed eddy current signals for evaluation of ferromagnetic samples. IEEE Sensor J 2019; 19(1):189-95. 1 Jan.1.

[24] Mandache C, Lefebvre JHV. Transient and harmonic eddy currents: lift-off point of intersection. NDT E Int 2006;39(1):57-60.

[25] Tian GY, Sophian A. Reduction of lift-off effects for pulsed eddy current NDT. NDT E Int 2005;38(4):319-24.

[26] Yin W, Peyton AJ. Thickness measurement of non-magnetic plates using multi-frequency eddy current sensors. NDT E Int 2007;40(1):43-8.

[27] Yin W, et al. Measurement of permeability and ferrite/austenite phase fraction using a multi-frequency electromagnetic sensor. NDT E Int 2009;42(1):64-8.

[28] Lu M, Xu H, Zhu W, Yin L, et al. Conductivity Lift-off Invariance and measurement of permeability for ferrite metallic plates. NDT E Int Apr. 2018;95:36-44.

[29] Yin W, et al. Permeability invariance phenomenon and measurement of electrical conductivity for ferrite metallic plates. Insight-Non-Destructive Testing and Condition Monitoring 2019;61:472-9.

[30] Lu M, Zhu W, Yin L, Peyton AJ, Yin W, Qu Z. Reducing the lift-off effect on permeability measurement for magnetic plates from multifrequency induction data. IEEE Transactions on Instrumentation and Measurement Jan. 2018;67(1): 167-74.

[31] Lu M, Yin L, Peyton AJ, Yin W. A novel compensation algorithm for thickness measurement immune to lift-off variations using eddy current method. IEEE Transactions on Instrumentation and Measurement Dec. 2016;65(12):2773-9.

[32] Lu M, Huang R, Yin W, Zhao Q, Peyton A. Measurement of permeability for ferrous metallic plates using a novel lift-off compensation technique on phase signature. IEEE Sensor J 2019;19(17):7440-6. 1 Sept.1.

[33] Lu M, et al. Determining the magnetic permeability of ferrite steel strip by a custom inversion method. In: Proc. 12th ECNDT; 2018. p. 1-8.

[34] Lu M, et al. Determination of the magnetic permeability, electrical conductivity, and thickness of ferrite metallic plates using a multi-frequency electromagnetic sensing system. IEEE Transactions on Industrial Informatics 2019;15:4111-9.

[35] Avila JRS, Lu M, et al. Accurate measurements of plate thickness with variable lift-off using a combined inductive and capacitive sensor. NDT E Int 2020;110:102202.

[36] Lu M, Huang R, Yin W, Zhao Q, Peyton A. Measurement of permeability for ferrous metallic plates using a novel lift-off compensation technique on phase signature. IEEE Sensor J 2019;19(17):7440-6. 1 Sept.1.

[37] Lu M, Meng X, Yin W, Qu Z, Wu F, Tang J, et al. Thickness measurement of non-magnetic steel plates using a novel planar triple-coil sensor. NDT E Int 2019;107.

[38] Lu M, et al. Measurement of ferromagnetic slabs permeability based on a novel planar triple-coil sensor. IEEE Sensor J 2020;20(6):2904-10.

[39] Dodd CV, Deeds WE. Analytical solutions to eddy-current probe-coil problems. J Appl Phys 1968;39(6):2829-38.

[40] Lu M, et al. Determination of surface crack orientation based on thin-skin regime using triple-coil drive-pickup eddy-current sensor. IEEE Transactions on Instrumentation and Measurement 2020;70.