Genomic landscape of T-cell lymphoblastic lymphoma

Zhaoming Li1*, Yue Song1*, Mingzhi Zhang1, Yiming Wei1-2, Hang Ruan1-2

1Department of Oncology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; 2State Key Laboratory of Esophageal Cancer Prevention & Treatment and Henan Key Laboratory for Esophageal Cancer Research, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China

*These authors contributed equally to this work.

Correspondence to: Zhaoming Li. Department of Oncology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China. Email: fcclizm@zzu.edu.cn.

Abstract

Objective: T-cell lymphoblastic lymphoma (T-LBL) is an aggressive neoplasm of precursor T cells, however, detailed genome-wide sequencing of large T-LBL cohorts has not been performed due to its rarity. The purpose of this study was to identify putative driver genes in T-LBL.

Methods: To gain insight into the genetic mechanisms of T-LBL development, we performed whole-exome sequencing on 41 paired tumor-normal DNA samples from patients with T-LBL.

Results: We identified 32 putative driver genes using whole-exome sequencing in 41 T-LBL cases, many of which have not previously been described in T-LBL, such as Janus kinase 3 (JAK3), Janus kinase 1 (JAK1), Runx-related transcription factor 1 (RUNX1) and Wilms' tumor suppressor gene 1 (WT1). When comparing the genetic alterations of T-LBL to T-cell acute lymphoblastic leukemia (T-ALL), we found that JAK-STAT and RAS pathway mutations were predominantly observed in T-LBL (58.5% and 34.1%, respectively), whereas Notch and cell cycle signaling pathways mutations were more prevalent in T-ALL. Notably, besides notch receptor 1 (NOTCH1), mutational status of plant homeodomain (PHD)-like finger protein 6 (PHF6) was identified as another independent factor for good prognosis. Of utmost interest is that co-existence of PHF6 and NOTCH1 mutation status might provide an alternative for early therapeutic stratification in T-LBL.

Conclusions: Together, our findings will not only provide new insights into the molecular and genetic mechanisms of T-LBL, but also have tangible implications for clinical practice.

Keywords: T-cell lymphoblastic lymphoma; PHF6; NOTCH1; mutation

Submitted Nov 25, 2021. Accepted for publication Mar 23, 2022.
doi: 10.21147/j.issn.1000-9604.2022.02.03
View this article at: https://doi.org/10.21147/j.issn.1000-9604.2022.02.03

Introduction

T-cell lymphoblastic lymphoma (T-LBL) is a rare and aggressive neoplasm of precursor T cells, with an incidence less than 2% of all non-Hodgkin’s lymphomas (NHL) and a bimodal age distribution, with higher frequencies in individuals younger than 20 years and in those older than 50 years. The incidence is higher in children, where T-LBL represents the second most common subtype of NHL (1). Because T-LBL shares common clinical, morphological and immunophenotypic features with T-cell acute lymphoblastic leukemia (T-ALL), they have often been thought to represent a spectrum of a single disease, differing by the extent of bone marrow infiltration (2). However, there is still ongoing discussion on whether T-LBL and T-ALL are two distinct entities (3). Currently, pathogenetic and molecular biological knowledge of T-LBL is extremely limited, partly due to the rarity of this disorder and the difficulty in obtaining appropriate material for research. Therefore, it remains elusive whether there might be additional differences in molecular genetics which distinguish T-LBL from T-ALL.
Previous candidate gene mutational and cytogenetic analyses have identified recurring genetic alterations in T-LBL patients (4,5), for example, NOTCH1 and F-Box and WD Repeat Domain Containing 7 (FBXW7) mutations were found in 55% of T-LBL patients, and associated with better prognosis (6). Genes of the PI3K-AKT signaling pathway were commonly mutated in T-LBL (7). Although these studies have provided important insights into the oncogenic pathways that drive lymphomagenesis in T-LBL, there are relatively few data from unbiased, genome-wide sequencing approaches, except one study with a relatively small cohort of patients (8).

Here we carried out whole-exome sequencing in a cohort of 41 individuals with T-LBL to illustrate the spectrum and constellations of genetic alterations in T-LBL, and identify molecular genetic markers for risk stratification of these patients.

Materials and methods

Samples

In total, 41 formalin-fixed, paraffin-embedded (FFPE) tumor tissues from T-LBL patients were obtained from the First Affiliated Hospital of Zhengzhou University. All cases were reviewed and interpreted independently by three experienced pathologists, and the diagnoses were made according to the current World Health Organization classification criteria. The diagnosis was confirmed by two pathologists. The study was conducted in accordance with the Declaration of Helsinki and with approval of the Institutional Review Board of the First Affiliated Hospital of Zhengzhou University. Signed informed consent was obtained from all patients.

Whole-exome sequencing, mutation calling and annotation

To identify somatic genomic variants associated with T-LBL, we performed whole-exome sequencing on 41 tumor samples and their matched normal tissue (whole-blood samples or skin) (Novogene Bioinformatics Institute, Beijing, China). The whole-exome sequencing, mutation calling and annotation were performed as previously described (9).

Sanger validation of mutation calls

We performed PCR amplification and Sanger sequencing on a total of 115 putative somatic single nucleotide variants (SNVs) and insertions and deletions (InDels) of the top mutated genes [NOTCH1, PHF6, JAK3, JAK1, NRAS, ETS variant transcription factor 6 (ETV6), FBXW7, RUNX1, SUZ12 and WT1] identified by next-generation sequencing were verified by Sanger sequencing. Excluding the loci that failed in PCR, 94 of 101 SNVs and InDels (93%) were successfully validated.

Data availability

Data supporting the main findings of this study are available within the article and its supplementary information and supplementary data files. Whole-exome sequencing data were deposited into the NCBI Sequence Read Archive with the BioProject ID: PRJNA473585 and Title: T-cell lymphoma sequencing.

Statistical analysis

All data were expressed as ± s. Comparisons between and among groups were performed with student’s t test and analysis of variance (ANOVA), respectively. The frequency of gene mutations and copy number variation (CNV) between T-LBL and T-ALL were compared by χ2 test or Fisher’s exact test. Overall survival (OS) and progression-free survival (PFS) rates were calculated using the Kaplan-Meier method, and the significance was assessed by the log-rank test. To determine the relationship between somatic non-silent mutation burden and OS of T-LBL patients, we used the median tumor burden (#T7, n=33) as the cut-off value. Statistical analysis was carried out using the IBM SPSS (Version 19.0; IBM Corp., New York, USA) and the online statistics calculator VassarStats (www.vassarstats.net). P<0.05 was considered statistically significant.

Results

Whole-exome sequencing of T-LBL samples

To gain insight into the genetic mechanisms of T-LBL development, we performed whole-exome sequencing on 41 paired tumor-normal DNA samples from patients with T-LBL. In the entire cohort, most of patients were adults (>18 years: 75.6%) with a median age of 26 (range, 11−60) years, 73.2% were males (male/female: 2.7), and 80.5% presented with an advanced stage (stage IV). Clinical characteristics of the patient cohort are summarized in Supplementary Table S1. The mean sequencing depth was 217x, and a mean of 96.6% of the target sequence was covered to a depth of at least 50x after excluding the
duplicates. A total of 1,599 non-silent mutations (median, 33; range, 4–124) were identified (Figure 1A).

To identify whether mutagenic processes are operative in T-LBL, we analyzed the mutation spectrum in a total of 41 T-LBL patients. The predominant type of substitution was C to T transition at NpCpG sites in T-LBL (Figure 1B). Combined non-negative matrix factorization clustering and correlation with the 30 curated mutational signatures defined by the Catalog of Somatic Mutations in Cancer (COSMIC) database (10) revealed three predominant signatures in T-LBL (Figure 1C). The predominant matched signature was Signature 1 (cosine similarities, 0.94; Supplementary Figure S1), which was found in all tumor types and was thought to result from age-associated accumulation of 5-methylcytosine deamination events.

We further evaluated the relationship between the somatic non-silent mutation burden and clinical features of T-LBL. The results showed that somatic non-silent mutation burden was not associated with gender, stage, lactase dehydrogenase, etc. Furthermore, survival analysis revealed no significant correlation between somatic non-silent mutation burden and OS of T-LBL patients (P=0.26; Figure 1D). The median tumor burden was applied as the cut-off value.

Significant mutated genes

The mutational significance detection tools MuSiC (11) were used to identify potential driver mutations. Overall, we identified 32 genes with a false discovery rate (FDR) less than 0.1. Each of them affected at least two cases (Figure 2A, Supplementary Table S2). These included the NOTCH signaling genes **NOTCH1** (20; 48.78%), **FBXW7** (6; 14.63%)
There is also evidence of the significantly mutated genes in T-LBL. Results showed that correlations and mutual-exclusion relationships among these key signaling pathways may have substantial roles in T-LBL pathogenesis.

We also examined the tumor clonality in each individual by using PyClone (13). Subclonal mutations were frequently detected in many driver genes (Supplementary Figure S3A), suggesting that subclonal evolution is a hallmark of T-LBL, which is consistent in T-ALL (12). In this study, we found that JAK3, NOTCH1 and JAK1 driver mutations were clonal events in 26.83% (11/41), 12.19% (5/41) and 12.19% (5/41) cases, respectively. Notably, NOTCH1 is the most frequently mutated gene, with 27 sequence mutations identified in 20 cases. Of the 27 mutations, 5 (18.51%) were subclonal. JAK3 is another most commonly mutated gene, with 18 sequence mutations identified in 14 cases. However, in contrast to NOTCH1, most of these mutations (15/18; 83.33%) were clonal. These data suggested that JAK3 might play an important part in the initiation of T-LBL.

The mutation relation test (MRT) was used to reveal correlations and mutual-exclusion relationships among significantly mutated genes in T-LBL. Results showed that JAK3 positively correlated with JAK1 (P<0.01, Supplementary Figure S3B). There is also evidence of the mutual exclusion of JAK3 and ETV6 (P<0.01) or NRAS (P=0.04) mutations (Supplementary Figure S3B). It was therefore proposed that, for the cases with no driver mutation in JAK3, mutations in ETV6 or NRAS might represent an independent path to T-LBL.

Somatic copy number alterations (SCNAs)

We further examined SCNAs in T-LBL. SCNAs analysis using genomic identification of significant targets in cancer (GISTIC) identified 58 focal amplifications and 10 focal deletions (Figure 3, Supplementary Table S3). Inconsistent with previously reports (14), amplifications of 6q23.3 (24.39%), 9q34.3 (21.95%), 3q29 (24.39%) and 21q22.3 (31.71%) recurrently occurred in our analysis. Additionally, amplification of 14q11.2 (36.59%), 7q22.1 (19.51%) and 10q26.3 (26.83%) were also commonly found. Focal amplifications targeted oncogenes included NOTCH2 (1q21.1), AHNK2 (1q32.33), MACF1 (1p34.3), NFA1C1 (18q23), PRKCA (17q24.2), MYB (6q23.3), MUC4 (3q29) and MALAT1 (11q13.1).

In addition to previously reported genomic deletions of 7p14.1 (TCCT, 43.90%), 4q35.2 (DUX4, 36.59%) and 9p21.3 (CDKN2A, 24.39%) (14), several novel recurrent focal deletions were also identified, including 17q11.2 (31.71%), 7q34 (29.27%), 10q26.3 (26.83%), 5q23.3 (21.95%), 12p12.3 (21.95%), 11p13 (17.07%) and 9p23 (14.63%). The known tumor suppressors targeted by these novel focal deletions were neurofibromatosis type 1 (NF1) (17q11.2), transcription factor 7 (TCFT) (5q23.3) and WT1 (11p13), suggesting that these genes might play vital roles in the lymphomagenesis of T-LBL.

Genetic differences between T-LBL and T-ALL

Although T-LBL shows many features in common with T-ALL, there is still ongoing discussion on whether T-ALL and T-LBL are two separate entities (3). We therefore investigated whether T-LBL are genetically distinct from T-ALL. First, we compared the frequencies of the most commonly mutated genes in T-LBL with those in T-ALL. Although T-LBL shows many features in common with T-ALL, there is still ongoing discussion on whether T-ALL and T-LBL are two separate entities (3). We therefore investigated whether T-LBL are genetically distinct from T-ALL. First, we compared the frequencies of the most commonly mutated genes in T-LBL with those in T-ALL. Most of them were reported in T-ALL (12) except the following deletion (Supplementary Figure S4). Figure 3B and Supplementary Figure S2. Most of them have been reported in T-ALL (12) except the following deletion (Supplementary Figure S4).
Figure 2 Significantly mutated genes identified by whole-exome sequencing in T-LBL. (A) Mutational significance was determined for SNV and InDels from the 41 sequenced cases using MuSiC. Significantly mutated genes are ranked according to mutation frequency. Samples are displayed as columns, and mutations are colored according to the type of alteration. The frequency and P value as determined by MuSiC are shown; (B) ProteinPaint visualizations of recurrently mutated genes in T-LBL. T-LBL, T-cell lymphoblastic lymphoma; SNV, single nucleotide variants; InDels, insertions and deletions.
square or Fisher exact test). Moreover, mutations in CDC27 (12.2%), MTRNR2L2 (9.8%), COL6A5 (9.8%), TMEM200C (7.3%), CATSPER4 (4.9%) and KRT38 (4.9%) occurred almost exclusively in T-LBL. On the other hand, the most frequent mutated genes in T-ALL such as FAT1, RPL10, SMARCA4, BCL11B and USP7, were seldom found in T-LBL cases.

Second, the most common SCNAs in T-LBL and T-ALL were compared in our study. As shown in Figure 3, focal amplifications of 1q44 and 6q23.3, and focal deletions of 7p14.1, 11p13, 17q11.2 and 9p21.3 were found in both T-LBL and T-ALL cases. The affected known oncogenes or tumor suppressor genes included MYB, CDKN2A, NF1 and WT1. Furthermore, the frequencies of genes targeted by these most common SCNAs were compared between T-LBL and T-ALL (Table 1). Deletion of CDKN2A, a key negative regulator of cell cycle, was much more common in T-ALL than in T-LBL (P=0.0001). On the contrary, deletions of tumor suppressors such as NF1 (P<0.001), WT1 (P<0.001), SUZ12 (P=0.004) and TCF7 (P=0.022) were found to occur predominantly in T-LBL cases (Table 1).

Third, integrated analysis of sequence mutation and copy-number alteration data identified five functional pathways that were recurrently mutated in T-LBL, including JAK-STAT signaling (58.5%), NOTCH signaling (56.1%), cell cycle signaling (46.3%), PI3K-AKT signaling (17.0%) and RAS signaling (34.1%) (Figure 4B, Table 2). As compared to T-ALL, mutations in JAK-STAT signaling (T-LBL vs T-ALL, 58.5% vs 24.6%, respectively; P<0.001) and RAS signaling (T-LBL vs T-ALL, 34.1% vs 13.6%, respectively; P=0.003) were predominantly observed in T-LBL. In contrast, mutations in NOTCH and cell cycle signaling pathways were altered at higher frequencies in T-ALL than in T-LBL. Collectively, these data indicated that T-LBL might have a different profile of genetic alterations distinguishing it from T-ALL.

NOTCH1/PHF6 mutations predict favorable prognosis for patients with T-LBL

Currently, identification of biological markers that can predict outcome in T-LBL has been hampered by the

Figure 3 Copy number alterations in T-LBL. Global chromosomal amplifications (shown in red) and deletions (shown in blue) identified by whole-exome sequencing of 41 T-LBL cases; GISTIC analysis of cases reveals chromosomal regions that are significantly deleted/amplified. T-LBL, T-cell lymphoblastic lymphoma; GISTIC, genomic identification of significant targets in cancer.

© Chinese Journal of Cancer Research. All rights reserved. www.cjercn.org Chin J Cancer Res 2022;34(2):83-94
Table 1 Frequencies of genes targeted by these most common SCNAs in T-LBL and T-ALL

Genes	SCNAs	Percent (%)	T-LBL (N=41)	T-ALL (N=264)	P
MYB	Amplification	21.95	12.50	0.100	
MYC	Amplification	2.44	9.47	0.224	
TLX3	Amplification	2.44	1.89	0.582	
ABL1	Amplification	9.76	6.06	0.324	
CDKN1B	Deletion	9.76	11.74	1.000	
CDKN2A	Deletion	31.89	77.27	<0.001	
IKZF1	Deletion	0	2.65	0.599	
LEF1	Deletion	9.76	13.26	0.801	
PTEN	Deletion	7.32	6.44	0.739	
PTPN2	Deletion	2.44	5.30	0.702	
RB1	Deletion	9.76	9.09	0.777	
RPL22	Deletion	7.32	4.55	0.435	
SUZ12	Deletion	14.63	2.65	0.004	
TCF7	Deletion	14.63	4.55	0.022	
WT1	Deletion	19.51	2.65	<0.001	
PHF6	Deletion	4.88	4.92	1.000	
CTCF	Deletion	4.88	4.92	1.000	
NF1	Deletion	19.51	2.27	<0.001	

SCNAs, somatic copy number alterations; T-LBL, T-cell lymphoblastic lymphoma; T-ALL, T-cell acute lymphoblastic leukemia.

In the present study, we investigated the association of genetic mutations with clinical outcome in 41 T-LBL cases. Genes with mutational frequency more than 10% were included in our analysis. The univariate analysis showed that NOTCH1 and PHF6 mutations were significantly associated with clinical outcome (Supplementary Table S5). In consistent with previous reports, patients with NOTCH1 mutations had improved OS (P=0.01) and PFS (P=0.002) compared with individuals without mutations (Figure 5A,B). Of note, PHF6 mutations were also significantly correlated with good prognosis in T-LBL patients. The estimated three-year OS rates of patients with PHF6 mutations and those without mutations were (93.3±6.4)% and (41.1±11.5)%, respectively (P=0.01; Figure 5C). The estimated three-year PFS rates of the two groups of patients were (72.2±15.1)% and (28.7±10.4)%, respectively (P=0.004; Figure 5D). Moreover, a Cox multivariate regression model was conducted in our study. After controlling for clinical factors (age, stage and treatment), only NOTCH1 or PHF6 mutation status is independent prognostic markers for better outcomes in T-LBL (Supplementary Table S5).

NOTCH1 and PHF6 were the two most frequently mutated genes in T-LBL, which affected 68.3% (28/41) of all patients in our study. After combining two genetic mutations, patients were divided into three groups.
according to the two gene mutation status: those with wild-type NOTCH1 and wild-type PHF6 (n=13), those with mutations in either NOTCH1 or PHF6 (n=21), and those had both NOTCH1 and PHF6 mutations (n=7). The result showed that NOTCH1 and PHF6 wide-type patients showed an exceedingly poor prognosis, whereas patients with co-existence of the two mutations showed good response to current therapies and had an extremely good prognosis (OS, P<0.001; Figure 5E; PFS, P<0.001; Figure 5F). Accordingly, T-LBL patients in our study can be stratified into three groups with distinct prognoses: a low-risk subgroup (with co-existence of both NOTCH1 and PHF6 mutations), an intermediate-risk subgroup (with mutations in either NOTCH1 or PHF6) and a high-risk subgroup (with wild-type NOTCH1 and PHF6). Consequently, PHF6 and NOTCH1 might provide an alternative for therapeutic stratification in T-LBL.

Discussion

To the best of our knowledge, this is the largest genomic analyses to date that revealed a comprehensive landscape of genetic alterations in T-LBL by whole-exome sequencing approach. In present study, 32 genes were identified as driver genes. Although most of these genes have been previously reported in T-ALL, many of them have not yet been described in T-LBL (for example, JAK3, JAK1, RUNX1, WT1, etc.). Notably, some gene mutations were exclusively identified in T-LBL but not in T-ALL (for example, CDC27, MTRNR2L2, COL6A5 and TMEM200C). Thus, we put forward that T-LBL might have a different genetic alterations profile that distinguishes it from T-ALL.
ALL, although there was mutation overlap between the two.

The NOTCH signaling pathway plays a critical role in cell lineage commitment decisions during development (15). However, the central role of NOTCH1 in T cell transformation was only realized upon the identification of activating mutations in the \textit{NOTCH1} gene present in over half of T-ALL cases (16). \textit{NOTCH1} activating mutations were found in 48.78% of T-LBL in the present study (Supplementary Table S6). \textit{NOTCH1} mutations typically involve specific domains responsible for controlling the initiation and termination of NOTCH signaling (17). In addition, \textit{FBXW7} mutations, present in 14.6% of T-LBL cases, contribute to NOTCH activation by impairing the proteasomal degradation of activated NOTCH1 in the nucleus (18).

As reported in T-ALL, mutations in epigenetic factors are also highly common in T-LBL. PHF6 is a highly conserved epigenetic transcriptional regulator, which is important for hematopoiesis and neurodevelopment (19). However, animal models have revealed that while PHF6 mutations/deletions may be initial events, they are insufficient for tumor initiation without additional driver mutations (20). Dysfunction of PHF6 usually cooperates with several other driver mutations in the development of leukemia. For example, inactivation of PHF6 in hematopoietic progenitors has been reported to facilitate NOTCH1-induced T-ALL, potentially through increasing leukemia-initiating cells and development of a “leukemia stem cell transcriptional program” in lymphoblasts (21). Another study showed that PHF6 mutations frequently cooperate with \textit{HOX11L2} overexpression or \textit{WT1} mutations.

\textbf{Figure 5} \textit{NOTCH1}/\textit{PHF6} mutations predict favorable prognosis for patients with T-LBL. (A) OS (P=0.016) and (B) PFS (P=0.002) of T-LBL patients with \textit{NOTCH1} mutations; (C) OS (P=0.009) and (D) PFS (P=0.004) of T-LBL patients with \textit{PHF6} mutations; (E) OS (P=0.001) and (F) PFS (P<0.001) of T-LBL patients with \textit{NOTCH1} and \textit{PHF6} mutations. Patients were divided into three groups: those with wild type for both \textit{NOTCH1} and \textit{PHF6} (n=13), those with mutations in either \textit{NOTCH1} or \textit{PHF6} (n=21), and those with mutations in both \textit{NOTCH1} and \textit{PHF6} (n=7). Survival curves are estimated with the Kaplan-Meier method and compared using a two-sided log-rank test. T-LBL, T-cell lymphoblastic lymphoma; OS, overall survival; PFS, progression-free survival.
in pediatric T-ALL (22). Our study demonstrated that PHF6 mutations were particularly prevalent in T-LBL patients harboring mutations of NOTCH1, which is consistent with previous reports in T-ALL (21). It suggests that PHF6 mutations may cooperate with NOTCH mutations during the oncogenesis of T-LBL. In addition, loss-of-function defects in the polycomb-repressive complex 2 (PRC2) components EZH2, SUZ12, and EED were also commonly found in present study.

The IL-7 receptor signals transmitted by JAK/STAT pathway are critical for the growth and survival of early T cell progenitor cells (23). Activating mutations in JAK1 and JAK3 have been reported in T-ALLs (24). Consistently, activating JAK1 and JAK3 mutations were found in 26.8% and 34% of T-LBL cases, respectively. Moreover, somatic gain-of-function mutations in the IL7R gene, encoding the IL7 receptor and resulting in constitutive activation of JAK/STAT signaling, were identified in 9.7% of T-LBL in our study. In addition to the JAK/STAT pathway, the RAS-MAPK and phosphatidylinositol 3-kinase (PI3K) pathways are also activated by IL7 that acts on the development of T cells. Activating NRAS mutations and inactivating PTEN mutations occur in 17.0% and 7.3 of T-LBL cases, respectively.

The transcription factor tumor suppressor genes have been shown to be mutated and deleted in T-LBL, including ETv6, RUNX1 and WT1. ETv6 encodes an ETS family transcriptional repressor strictly required for the development of hematopoietic stem cells (15). ETv6 mutations encoding truncated proteins with dominant-negative activity were frequently found in early immature T-ALLs (15). Loss-of-function mutations in RUNX1 occurred in 14.6% cases of T-LBL, suggesting a tumor suppressor role for RUNX1 in T-cell transformation. As reported in T-ALL, WT1 mutations found in T-LBL are predominantly heterozygous frameshift mutations resulting in truncation of the C-terminal zinc finger domains of this transcription factor (25). They are frequently associated with oncogenic expression of the TLX1, TLX3 or HOXA oncogenes (25).

Although T-LBL shows many characteristics in common with T-ALL, there is still ongoing discussion on whether T-ALL and T-LBL are two distinct entities. To identify the critical molecular and cytogenetic differences that distinguish T-LBL from T-ALL, genetic alterations of T-LBL and T-ALL were compared in our study. By integrating gene mutation and copy-number alteration data, we found that mutations in JAK-STAT and RAS signaling pathways were predominantly observed in T-LBL (58% and 34%, respectively), whereas NOTCH and cell cycle signaling pathways mutations were more prevalent in T-ALL. Therefore we believe that T-LBL might have a different genetic alteration profile that distinguishes it from T-ALL. This is also a finding of potential therapeutic relevance, providing a rationale for targeting these pathways in T-LBL cases.

T-LBL is commonly treated on T-ALL-derived protocols (4). Therapeutic stratification based on prednisone response and minimal residual disease assessment is well established in T-ALL but is not easy to extrapolate to T-LBL (26). Molecular genetic markers are promising candidates for risk stratification because they represent underlying biological properties of the subgroups, and their analyses can be standardized, which is essential for cooperative clinical trials. Hence the prognostic value of these genetic mutations in T-LBL was evaluated. Recent retrospective studies in T-LBL have reported association of outcome with loss of heterozygosity at chromosome 6q, biallelic T-cell receptor-γ deletions and with FBXW7 and NOTCH1 mutations (27). Here we present the prognostic relevance of mutations in the genes PHF6 and NOTCH1. In our study, we found that patients with NOTCH1 mutations were associated with a favorable prognosis, which is consistent with previous researches. It has also been reported that co-existence of NOTCH1 and FBXW7 mutations allowed identification of a low-risk subgroup of T-LBL with a more favorable prognosis than NOTCH1 alone (6); however, our study did not reproduce these findings. The discrepancy may be attributed to the population differences and sample size. We also found that PHF6, an X-linked tumor suppressor gene (28), is the second most frequent mutated gene in T-LBL. Furthermore, the association of PHF6 mutations and survival in T-LBL was established for the first time. Mutation status of PHF6 was identified as another independent prognostic factor for improved survival of T-LBL patients. Notably, the combination of mutation data of PHF6 and NOTCH1 could allow identification of those patients who do extremely well on current T-ALL-derived protocols, but also a significant fraction of patients for whom treatment needs to be improved. Therefore, it might provide an alternative for early therapeutic stratification in T-LBL.

A limitation of this study is that we did not carry out whole-genome sequencing or RNA-sequencing for these cases, due to the difficulty of obtaining fresh T-LBL samples.
samples. Therefore, we cannot identify gene rearrangements information in these cases, which might also have a critical role in the development of T-LBL, as it does in T-ALL (12).

Conclusions

We have identified multiple genes mutations and signaling pathways in T-LBL which are different from those in T-ALL, implying that T-LBL might have a different profile of genetic alterations distinguishing it from T-ALL. Consequently, this detailed portrait of the T-LBL genomic landscape offers a rationale for targeting these pathways in T-LBL. What’s more, the combination of PHF6 and NOTCH1 mutations can be used to establish future molecular and prognostic analyses and early therapeutic stratification in T-LBL. Nevertheless, larger-scale independent prospective therapeutic trials are required to validate our findings. These studies not only advance current insights into the molecular basis of T-LBL, but may also have tangible clinical implications.

Acknowledgments

This study was supported by the National Natural Science Foundation of China (No. U1904139 and 82070209).

Footnote

Conflicts of Interest: The authors have no conflicts of interest to declare.

References

1. Bassan R, Maino E, Cortelazzo S. Lymphoblastic lymphoma: an updated review on biology, diagnosis, and treatment. Eur J Haematol 2016;96:447-60.
2. Cortelazzo S, Ponzoni M, Ferreri AJ, et al. Lymphoblastic lymphoma. Crit Rev Oncol Hematol 2011;79:330-43.
3. Zhu J, Ma J, Union for China Lymphoma Investigators of Chinese Society of Clinical Oncology. Chinese Society of Clinical Oncology (CSCO) diagnosis and treatment guidelines for malignant lymphoma 2021 (English version). Chin J Cancer Res 2021;33:289-301.
4. Gui L, Cao J, Ji D, et al. Chidamide combined with cyclophosphamide, doxorubicin, vincristine and prednisone in previously untreated patients with peripheral T-cell lymphoma. Chin J Cancer Res 2021;33:616-26.
5. Cai Y, Chen W, Wang X, et al. Contemporary trends on expenditure of hospital care on total cancer and its subtypes in China during 2008–2017. Chin J Cancer Res 2021;33:627-36.
6. Callens C, Baleydier F, Lengline E, et al. Clinical impact of NOTCH1 and/or FBXW7 mutations, FLASH deletion, and TCR status in pediatric T-cell lymphoblastic lymphoma. J Clin Oncol 2012;30:1966-73.
7. Balbach ST, Makarova O, Bonn BR, et al. Proposal of a genetic classifier for risk group stratification in pediatric T-cell lymphoblastic lymphoma reveals differences from adult T-cell lymphoblastic leukemia. Leukemia 2016;30:970-3.
8. Bonn BR, Huge A, Rohde M, et al. Whole exome sequencing hints at a unique mutational profile of paediatric T-cell lymphoblastic lymphoma. Br J Haematol 2015;168:308-13.
9. Li Z, Zhang X, Xue W, et al. Recurrent GNAQ mutation encoding T96S in natural killer/T cell lymphoma. Nat Commun 2019;10:4209.
10. Forbes SA, Bhamra G, Bamford S, et al. The Catalogue Of Somatic Mutations in Cancer (COSMIC). Curr Protoc Hum Genet 2008;Chapter 10:Unit 10.11.
11. Dees ND, Zhang Q, Kandoth C, et al. MuSiC: identifying mutational significance in cancer genomes. Genome Res 2012;22:1589-98.
12. Liu Y, Easton J, Shao Y, et al. The genomic landscape of pediatric and young adult T-lineage acute lymphoblastic leukemia. Nat Genet 2017;49:1211-8.
13. Roth A, Khattr J, Yap D, et al. PyClone: statistical inference of clonal population structure in cancer. Nat Methods 2014;11:396-8.
14. Sekimizu M, Sunami S, Nakazawa A, et al. Chromosome abnormalities in advanced stage T-cell lymphoblastic lymphoma of children and adolescents: a report from Japanese Paediatric Leukaemia/Lymphoma Study Group (JPLSG) and review of the literature. Br J Haematol 2011;154:612-7.
15. Van Vlierberghe P, Ferrando A. The molecular basis of T cell acute lymphoblastic leukemia. J Clin Invest 2012;122:3398-406.
16. Weng AP, Ferrando AA, Lee W, et al. Activating mutations of NOTCH1 in human T cell acute lymphoblastic leukemia. Science 2004;306:269-71.

17. Sulis ML, Williams O, Palomero T, et al. NOTCH1 extracellular juxtamembrane expansion mutations in T-ALL. Blood 2008;112:733-40.

18. O’Neil J, Grim J, Strack P, et al. FBW7 mutations in leukemic cells mediate NOTCH pathway activation and resistance to gamma-secretase inhibitors. J Exp Med 2007;204:1813-24.

19. Wendorff AA, Quinn SA, Rashkovan M, et al. Phf6 loss enhances HSC self-renewal driving tumor initiation and leukemia stem cell activity in T-ALL. Cancer Discov 2019;9:436-51.

20. Loontiens S, Vanhauwaert S, Depestel L, et al. A novel TLX1-driven T-ALL zebrafish model: comparative genomic analysis with other leukemia models. Leukemia 2020;34:3398-403.

21. Kurzer JH, Weinberg OK. PHF6 mutations in hematologic malignancies. Front Oncol 2021;11:704471.

22. Yeh TC, Liang DC, Liu HC, et al. Clinical and biological relevance of genetic alterations in pediatric T-cell acute lymphoblastic leukemia in Taiwan.

Cite this article as: Li Z, Song Y, Zhang M, Wei Y, Ruan H. Genomic landscape of T-cell lymphoblastic lymphoma. Chin J Cancer Res 2022;34(2):83-94. doi: 10.21147/j.issn.1000-9604.2022.02.03

23. Mazzucchelli R, Durum SK. Interleukin-7 receptor expression: intelligent design. Nat Rev Immunol 2007;7:144-54.

24. Asnafi V, Le Noir S, Lhermitte L, et al. JAK1 mutations are not frequent events in adult T-ALL: a GRAALL study. Br J Haematol 2010;148:178-9.

25. Renneville A, Kaltenbach S, Clappier E, et al. Wilms tumor 1 (WT1) gene mutations in pediatric T-cell malignancies. Leukemia 2010;24:476-80.

26. Waanders E, van der Velden VH, van der Schoot CE, et al. Integrated use of minimal residual disease classification and IKZF1 alteration status accurately predicts 79% of relapses in pediatric acute lymphoblastic leukemia. Leukemia 2011;25:254-8.

27. Rohde M, Bonn BR, Zimmermann M, et al. Multiplex ligation-dependent probe amplification validates LOH6q analyses and enhances insight into chromosome 6q aberrations in pediatric T-cell lymphoblastic leukemia and lymphoma. Leuk Lymphoma 2015;56:1884-7.

28. Van Vlierberghe P, Palomero T, Khiabanian H, et al. PHF6 mutations in T-cell acute lymphoblastic leukemia. Nat Genet 2010;42:338-42.
Figure S1 Combined non-negative matrix factorization clustering and correlation with 30 curated mutational signatures defined by COSMIC database. COSMIC, the Catalog of Somatic Mutations in Cancer.

Figure S2 ProteinPaint visualizations of recurrently mutated genes in T-LBL. T-LBL, T-cell lymphoblastic lymphoma.
Figure S3 Tumor clonality analysis and correlation of genetic alterations. (A) Tumor clonality of each tumor was examined by using PyClone, and the numbers of subclonal and clonal gene mutations in frequently mutated genes are shown; (B) Hierarchical clustering using Ward's minimum variance method of paired gene correlation analysis showed gene-based association between lesions in T-LBL. T-LBL, T-cell lymphoblastic lymphoma.
Figure S4 Frequency of gene mutations and CNVs between T-LBL (n=41) and T-ALL (n=264) were compared by χ² test or Fisher's exact test. CNV, copy number variation; T-LBL, T-cell lymphoblastic lymphoma; T-ALL, T-cell acute lymphoblastic leukemia.
Table S1 Demographics and clinical features of 41 subjects with T-LBL

ID	Gender	Age (year)	Stage	Bone marrow	Mediastinal tumor	CNS involvement	Effusion	LDH
T1	Male	49	4	No	Yes	No	Yes	Elevated
T10	Male	26	4	Yes	Yes	No	No	Elevated
T11	Female	54	4	Yes	No	No	No	Normal
T13	Male	27	4	Yes	Yes	No	No	Normal
T14	Male	16	4	Yes	Yes	No	No	Normal
T15	Female	55	4	Yes	Yes	No	Yes	Normal
T16	Male	16	2	No	Yes	No	No	Normal
T19	Female	22	2	No	Yes	No	Yes	Normal
T2	Female	48	4	No	Yes	Yes	No	Normal
T20	Male	23	4	No	Yes	No	Yes	Normal
T21	Male	16	4	Yes	Yes	No	No	Normal
T24	Male	33	2	No	No	No	No	Normal
T26	Male	60	3	No	Yes	No	No	Normal
T27	Male	30	4	Yes	Yes	No	No	Normal
T28	Male	26	4	Yes	Yes	No	No	Elevated
T29	Male	23	4	Yes	Yes	No	No	Normal
T3	Male	25	4	Yes	Yes	No	Yes	Elevated
T30	Male	21	4	Yes	No	No	No	Normal
T31	Male	15	2	No	Yes	No	No	Normal
T32	Male	16	4	Yes	Yes	No	No	Elevated
T33	Male	32	4	Yes	Yes	No	No	Elevated
T35	Female	12	4	Yes	No	No	No	Elevated
T37	Male	26	4	Yes	Yes	No	Yes	Normal
T39	Male	25	4	No	No	No	No	Normal
T4	Male	28	2	No	Yes	No	No	Normal
T43	Male	27	4	Yes	Yes	No	No	Normal
T5	Female	41	4	No	Yes	Yes	No	Normal
T6	Female	23	4	No	Yes	No	Yes	Normal
T7	Female	15	4	No	Yes	No	Yes	Elevated
T81	Male	26	4	Yes	Yes	No	No	Normal
T82	Female	43	4	Yes	Yes	No	Yes	Normal
T83	Female	46	4	No	Yes	No	No	Normal
T84	Male	22	4	No	Yes	No	No	Normal
T85	Male	36	4	Yes	No	No	No	Normal
T86	Female	36	4	Yes	Yes	No	No	Normal
T87	Male	22	4	Yes	No	No	No	Normal
T88	Male	11	4	No	Yes	No	No	Normal
T89	Male	40	4	Yes	No	No	No	Normal
T90	Male	28	4	Yes	No	No	No	Elevated
T91	Male	28	4	Yes	No	No	No	Normal
T92	Male	13	4	Yes	Yes	No	Yes	Elevated

T-LBL, T-cell lymphoblastic lymphoma; CNS, central nervous system; LDH, lactase dehydrogenase.
Genes	InDels	SNVs	Total	Sample affected (n)	Sample percent (%)	P (CT)	FDR (CT)
NOTCH1	14	13	27	20	48.78	<0.001	<0.001
PHF6	10	6	16	15	36.59	<0.001	<0.001
JAK3	0	18	18	14	34.15	<0.001	<0.001
JAK1	2	11	13	11	26.83	<0.001	<0.001
NRAS	1	6	7	7	17.07	<0.001	<0.001
ETV6	6	2	8	7	17.07	<0.001	<0.001
FBXW7	1	6	7	6	14.63	<0.001	<0.001
RUNX1	4	2	6	6	14.63	<0.001	<0.001
CDC27	0	9	9	5	12.20	<0.001	<0.001
SUZ12	3	4	7	5	12.20	<0.001	<0.001
WT1	5	1	6	5	12.20	<0.001	<0.001
IL7R	7	2	9	4	9.76	<0.001	<0.001
MTRNR2L2	0	4	4	4	9.76	<0.001	<0.001
ASXL1	4	1	5	4	9.76	<0.001	<0.001
CHD4	0	4	4	4	9.76	<0.001	0.012
DNM2	1	3	4	4	9.76	<0.001	0.019
COL6A5	1	3	4	4	9.76	<0.001	0.034
PTEN	2	2	4	3	7.32	<0.001	<0.001
U2AF1	0	3	3	3	7.32	<0.001	<0.001
CTCF	0	3	3	3	7.32	<0.001	0.011
EZH2	0	3	3	3	7.32	<0.001	0.014
ZFP36L2	2	1	3	3	7.32	<0.001	0.019
NOTCH3	0	4	4	3	7.32	<0.001	0.063
CNOT3	2	1	3	3	7.32	<0.001	0.072
TMEM200C	1	2	3	3	7.32	<0.001	0.072
SPI1	2	1	3	2	4.88	<0.001	0.003
EED	0	3	3	2	4.88	<0.001	0.015
GATA3	1	2	3	2	4.88	<0.001	0.025
POTEG	0	2	2	2	4.88	<0.001	0.049
CATSPER4	0	2	2	2	4.88	<0.001	0.072
KRT38	1	1	2	2	4.88	<0.001	0.073
FGFR1	3	0	3	2	4.88	<0.001	0.077

InDels, insertions and deletions, SNV, single nucleotide variant; CT, convolution test; FDR, false discovery rate.
Type	Cytoband	Wide peak boundaries	P	Q	Percent (%)
Amplification	6p25.3	chr6:699501–710249	5.29E–20	5.29E–20	24.39
Amplification	7q22.1	chr7:100639501–100650249	4.30E–12	3.22E–11	32.71
Amplification	14q32.33	chr14:106689501–107349540	5.70E–10	3.68E–09	41.46
Amplification	3q29	chr3:195499501–195510249	1.46E–08	1.46E–08	24.39
Amplification	6q23.3	chr6:135629501–135650249	2.06E–08	2.06E–08	24.39
Amplification	8q21.2	chr8:86799501–86820249	2.06E–08	2.06E–08	24.39
Amplification	10q26.3	chr10:135499501–135520249	1.89E–07	1.89E–07	31.71
Amplification	17q24.2	chr17:64789501–64800249	2.94E–07	2.94E–07	21.95
Amplification	4p16.1	chr4:9239501–9250249	1.32E–09	3.38E–07	24.39
Amplification	6q27	chr6:171039501–171115067	3.89E–07	3.89E–07	21.95
Amplification	15q26.1	chr15:92289501–92300249	2.06E–08	1.45E–06	19.51
Amplification	8p23.3	chr8:609501–630249	3.89E–07	1.06E–05	24.39
Amplification	18q22.3	chr18:71439501–71450249	1.13E–05	1.13E–05	19.51
Amplification	15q26.3	chr15:102299501–102310249	1.79E–07	1.34E–05	17.07
Amplification	14q11.2	chr14:22909501–22950249	4.16E–05	4.16E–05	36.59
Amplification	5q14.1	chr5:81039501–81050249	0.00015363	0.00015363	24.39
Amplification	6p22.2	chr6:26009501–26290249	0.00015363	0.00015363	19.51
Amplification	2q14.2	chr2:12239501–122350249	6.51E–05	0.00019892	12.20
Amplification	1q21.3	chr1:152319501–152330249	9.84E–08	0.00038974	21.95
Amplification	13q14.3	chr13:52929501–52940249	0.00039968	0.00039968	17.07
Amplification	1p34.3	chr1:39539501–39550249	0.00015363	0.00057161	14.63
Amplification	9q21.13	chr9:74589501–74630249	0.00039968	0.0004984	24.39
Amplification	9q34.3	chr9:141109501–141140249	0.00097389	0.0031723	21.95
Amplification	22q12.3	chr22:36349501–36360249	0.0014355	0.0037814	17.07
Amplification	2p14	chr2:65339501–65360249	0.0032783	0.0038858	14.63
Amplification	13q34	chr13:113559501–113580249	0.0040426	0.0040426	21.95
Amplification	21q22.3	chr21:45999501–46030249	0.0040426	0.0040426	31.71
Amplification	1q31.3	chr1:198599501–198830249	0.002074	0.0067056	21.95
Amplification	14q32.33	chr14:105409501–105420249	6.51E–05	0.0080815	17.07
Amplification	7q36.3	chr7:157249501–158110249	0.0032783	0.010175	17.07
Amplification	4p16.1	chr4:9349501–9360249	1.13E–05	0.010407	19.51
Amplification	1q21.2	chr1:149799501–149860249	4.16E–05	0.011415	21.95
Amplification	8p23.3	chr8:2139501–2150249	0.00039968	0.011633	14.63
Amplification	12q24.31	chr12:124789501–125310249	0.011633	0.011633	19.51
Amplification	3p12.1	chr3:85149501–85160249	0.011633	0.011633	19.51
Amplification	7q22.3	chr7:1889501–2190249	0.011633	0.011633	19.51
Amplification	1q21.1	chr1:120519501–145370249	0.0082766	0.016663	14.63
Amplification	18q23	chr18:77149501–77180249	0.020719	0.020719	19.51
Amplification	19q13.43	chr19:59099501–59128983	0.020719	0.020719	29.27
Amplification	20q13.33	chr20:59789501–59800249	0.0371	0.0371	17.07
Amplification	12q12	chr12:40859501–40870249	0.015379	0.037733	24.39
Amplification	11q13.1	chr11:65259501–65280249	0.037918	0.037918	17.07
Type	Cytoband	Wide peak boundaries	P	Q	Percent (%)
-----------	------------------	-------------------------------	----------	----------	-------------
Amplification	13q32.3	chr13:99959501–99980249	0.037918	0.037918	14.63
Amplification	16p12.2	chr16:21349501–21370249	0.037918	0.037918	24.39
Amplification	1q44	chr1:249219501–249250621	0.037918	0.037918	21.95
Amplification	4q13.3	chr4:62749501–71900249	0.037918	0.037918	24.39
Amplification	5p15.33	chr5:4089501–4100249	0.037918	0.037918	21.95
Amplification	22q13.1	chr22:38109501–38130249	0.011633	0.044144	26.83
Amplification	1p36.33	chr1:1–680249	0.011633	0.048058	21.95
Amplification	14q32.33	chr14:105399501–105410249	0.00076732	0.069561	17.07
Amplification	2p11.2	chr2:88069501–88100249	0.0371	0.079844	12.20
Amplification	9q22.31	chr9:95419501–96720249	0.037918	0.079844	17.07
Amplification	7q34	chr7:142479501–142520249	0.037918	0.10546	17.07
Amplification	1q21.3	chr1:153009501–153090249	8.80E–05	0.11953	24.39
Amplification	1q21.3	chr1:152269501–152280249	0.0030515	0.12126	17.07
Amplification	4p16.3	chr4:539501–1690249	0.011633	0.12551	19.51
Amplification	7q22.1	chr7:100669501–100680249	0.0032783	0.21469	19.51
Amplification	15q26.1	chr15:32669501–102310249	0.011633	0.22429	17.07
Deletion	7p14.1	chr7:38270251–38381249	9.86E–21	9.86E–21	43.90
Deletion	9p21.3	chr9:21865751–21994999	1.53E–12	1.15E–10	24.39
Deletion	7q34	chr7:141972001–142520249	7.53E–05	7.53E–05	29.27
Deletion	4q35.2	chr4:190948251–191154276	0.00011463	0.00011463	36.59
Deletion	17q11.2	chr17:29421251–30264249	0.00015084	0.00011618	31.71
Deletion	9p23	chr9:10612501–13406499	0.00030504	0.02781	14.63
Deletion	12p12.3	chr12:14849501–20167749	0.0017358	0.0017358	21.95
Deletion	10q26.3	chr10:135440251–135534747	0.015558	0.015558	26.83
Deletion	11p13	chr11:27743501–33563999	0.015558	0.015558	17.07
Deletion	5q23.3	chr5:104435751–166711999	0.02781	0.02781	21.95
Genes	n (%)	Mutations in T-LBL (N=41)	Mutations in T-ALL (N=264)	P	
------------	-------------	---------------------------	----------------------------	-------	
NOTCH1	20 (48.78)	196 (74.24)		0.001	
PHF6	15 (36.59)	50 (18.94)		0.014	
JAK3	14 (34.15)	20 (7.58)		0.000	
JAK1	11 (26.82)	7 (2.65)		0.000	
ETV6	7 (17.07)	7 (2.65)		0.001	
NRAS	7 (17.07)	20 (7.58)		0.069	
RUNX1	6 (14.63)	12 (4.55)		0.022	
FBXW7	6 (14.63)	63 (23.86)		0.231	
CDC27	5 (12.20)	0 (0)		0.000	
SUZ12	5 (12.20)	9 (3.41)		0.027	
WT1	5 (12.20)	24 (9.09)		0.565	
COL6A5	5 (9.76)	0 (0)		0.000	
MTRNR2L2	5 (9.76)	0 (0)		0.000	
CHD4	5 (9.76)	0 (0)		0.000	
ASXL1	5 (9.76)	3 (1.14)		0.007	
IL7R	5 (9.76)	18 (6.82)		0.514	
DNM2	5 (9.76)	29 (10.98)		1.000	
TMEM200C	3 (7.32)	0 (0)		0.002	
NOTCH3	3 (7.32)	0 (0)		0.002	
U2AF1	3 (7.32)	4 (1.52)		0.054	
ZFP36L2	3 (7.32)	5 (1.89)		0.078	
CNOT3	3 (7.32)	9 (3.41)		0.209	
PTEN	3 (7.32)	37 (14.02)		0.323	
CTCF	3 (7.32)	13 (4.92)		0.460	
EZH2	3 (7.32)	14 (5.30)		0.711	
SPI1	2 (4.88)	0 (0)		0.018	
CATSPER4	2 (4.88)	0 (0)		0.018	
FGFR1	2 (4.88)	0 (0)		0.018	
KRT38	2 (4.88)	0 (0)		0.018	
POTEG	2 (4.88)	0 (0)		0.018	
EED	2 (4.88)	3 (1.14)		0.136	
GATA3	2 (4.88)	4 (1.52)		0.186	

T-LBL, T-cell lymphoblastic lymphoma; T-ALL, T-cell acute lymphoblastic leukemia.
Characteristics	Univariate analysis		Multivariate analysis	
	OS	P	OS	P
	HR (95% CI)		HR (95% CI)	P
Age	2.01 (0.22–9.13)	0.352	1.18 (0.38–3.60)	0.768
Gender	0.99 (0.31–3.23)	0.991	0.88 (0.31–2.47)	0.806
Stage	0.87 (0.45–1.63)	0.237	0.78 (0.46–1.33)	0.094
LDH	0.44 (0.09–2.02)	0.279	0.42 (0.12–1.49)	0.163
Effusion	0.52 (0.11–2.63)	0.387	0.77 (0.25–2.63)	0.646
Mediastinal tumor	1.19 (0.32–4.34)	0.788	1.28 (0.42–3.94)	0.643
Bone marrow	0.99 (0.32–3.04)	0.986	0.83 (0.32–2.12)	0.696
Treatment	0.87 (0.40–1.89)	0.805	0.94 (0.49–1.83)	0.684
NOTCH1 mutations	0.19 (0.04–0.87)	0.016	0.18 (0.05–0.63)	0.002
PHF6 mutations	0.10 (0.01–0.83)	0.009	0.19 (0.06–0.69)	0.004
JAK3 mutations	0.78 (0.24–2.56)	0.690	0.68 (0.25–1.92)	0.463
NRAS mutations	0.35 (0.05–2.69)	0.287	0.85 (0.25–2.96)	0.799
NOTCH1/FBXW7	0.35 (0.11–1.15)	0.069	0.33 (0.12–0.89)	0.020

T-LBL, T-cell lymphoblastic lymphoma; OS, overall survival; PFS, progression-free survival; HR, hazard ratio; 95% CI, 95% confidence interval; LDH, lactase dehydrogenase.
Table S6 Biological function of top gene mutations

Gene	Percent (%)	Type of genetic aberration	Function
NOTCH1	48.78	Activating mutation	NOTCH1 signaling pathway
FBXW7	14.63	Inactivating mutation	NOTCH1 signaling pathway
NOTCH3	7.32	Missense mutation	NOTCH1 signaling pathway
PHF6	36.59	Inactivating mutation	Epigenetic modifier
SUZ12	12.20	Inactivating mutation	Epigenetic modifier
ASXL1	9.76	Inactivating mutation	Epigenetic modifier
CHD4	9.76	Unknown	Epigenetic modifier
CTCF	7.32	Inactivating mutation	Epigenetic modifier
EZH2	7.32	Inactivating mutation	Epigenetic modifier
JAK3	34.15	Inactivating mutation	JAK/STAT signaling pathway
JAK1	26.83	Inactivating mutation	JAK/STAT signaling pathway
IL7R	9.76	Activating mutation	JAK/STAT signaling pathway
NRAS	17.07	Activating mutation	RAS/PTEN signaling pathway
PTEN	7.32	Inactivating mutation	RAS/PTEN signaling pathway
ETV6	17.07	Inactivating mutation	Transcription factors
RUNX1	14.63	Inactivating mutation	Transcription factors
WT1	12.20	Inactivating mutation	Transcription factors
CDC27	12.20	Unknown	Cell cycle
CNOT3	7.32	Missense mutation	Translation and RNA stability
MTRNR2L2	9.76	Unknown	Other
DNM2	9.76	Inactivating mutation	Other
COL6A5	9.76	Unknown	Other
U2AF1	7.32	Unknown	Other
ZFP36L2	7.32	Unknown	Other