INTRODUCTION

Indonesia is a low latitude archipelagic country located in Southeast Asia with tropical climate (Schneider, 1998; Julismin, 2013; Hall, 2017). This condition makes Indonesia have complex atmosphere and sea circulation which is very important for the surrounding area (Song et al., 2006; Sprintall et al., 2014). From this, Indonesia is a country that has very high marine diversity, one of which is shown by the richness of coral reefs (Rehema, 2007). Limestone is sedimentary rock resulting from organic, chemical, or mechanical processes associated with the development of coral reefs in an area (Natasha and Alfadi, 2018). The organic process occurs by the development of the carbonate skeleton and shell by various biota (CaCO₃). These biota include protists, algae, and other animals that make up biogenic sediments (Hallock, 1997). Biota in limestone in the form of foraminifera can be used as indicator of how the condition of limestone grows and develops in an area (Langer and Hottinger, 2000).

Foraminifera are marine organisms belonging to unicellular protists with shells mostly composed of CaCO₃ (Hottinger, 1982; Terakado et al., 2010; Saraswati and Srinivasan, 2015). These creatures live in the intertidal region to the bottom of photic zone because the foraminifera are in symbiosis with the presence of algae to form additional energy. (Hohenegger et al., 1999). Large foraminifera is one of the divisions of foraminifera based on their size characteristics (3-300 µ). These large foraminifera can live in water environments with warm, shallow, and tropical characteristics in oligotrophic conditions (Saraswati and Srinivasan, 2015).

Rajamandala Formation is one of formations in the Bogor Basin which has an old limestone lithology. The overall thickness of this formation reaches 60 – 100 m (Hutabarat, 1971; Sudrajat, 1973). This formation is generally divided into 2 members, the Limestone Member at the bottom and the Mudstone Member at the top (younger) (Figure 1c). Rajamandala Formation extends in southwest-northeast direction from the Sukabumi area to the Rajamandala Padalarang area. Rajamandala Formation in the Padalarang area has been widely studied before (Siregar, 2005; Siregar and Muljadi, 2007). Meanwhile, Rajamandala Formation in the Sukabumi area has not been studied much, especially from large foraminifera aspect. Based on previous studies that were analyzed using small foraminifera and nanofossils, Rajamandala Formation has Late Oligocene – Early Miocene age range. Furthermore, this formation is interpreted to have shallow Sea depositional environment (Effendi et al., 1999; Martodjojo, 2003; Siregar, 2005; Wirawodo and Kapid, 2014).
Research location is on the Cibatu River, Sukadami Village, Gantayant District, Sukabumi Regency, West Java with coordinates 06°56’ 36,57” to 06°56’ 56,13” S to 106°50’ 30,85” to 106°50’ 32,10” E (Figure 1a – 1b). From this description, it can be seen that it is interesting to analyze the limestone content of Rajamandala Formation in Sukabumi area. In addition, further analysis of large foraminifera was also carried out to determine the condition of age and depositional environment from this Rajamandala Formation limestone.

2. MATERIAL AND METHODS

This research was conducted in several stages. First, the rocks were taken by spot sampling on several limestone outcrops of Rajamandala Formation on the Cibatu River, Sukabumi Regency, West Java (Liu et al., 2014). As a result, 6 rock samples were obtained at several points from the Rajamandala Formation. Rock samples were described in the field megascopically with the help of rock parameters. After that, the sample is prepared by making a thin section. Then the samples were described, identified, and determined using an Olympus CX-22 binocular microscope to find out the content of each research sample. Next, analysis is carried out on limestone content in the research sample which is compared with the previous reference (Adams, 1984; BouDagher-Fadel, 2018). The results of the limestone content are then analyzed by grouping and drawing ranges based on biostratigraphic principles, both age and depositional environment of each biota, especially from the large foraminifera.

In addition, cluster analysis was also carried out to confirm the results of analysis. Cluster analysis is a multivariate technique that aims to classify objects into different groups. It is used to identify the similarities in the characteristics of objects that indicate certain conditions of influence (Romesburg, 2004). All of these steps are carried out to be able to interpret the conditions of Rajamandala Formation when these limestones grow and develop (Jambak et al., 2014; Patriani et al., 2016). After all interpretation and analysis is done. This research was compared with those in the Rajamandala Formation in the Padalarang area from previous studies. The results of the comparison are then concluded to determine the similarities and differences that occur from the Rajamandala Formation of these two regions.

3. RESULTS

3.1 Limestone Content

Reef limestone outcrops were found to be located on the Cibatu River. This limestone has light white to yellowish color characteristic with a lot of coral and foraminifera content. Moreover, this limestone looks massive with 7.2 meters thickness. From these outcrops, 6 samples were taken sequentially (S.1 – S.6) which represented each of the rock outcrops in study area (Figure 1c).

Table 1: Large Foraminifera Rajamandala Formation

Foraminifera	S.1	S.2	S.3	S.4	S.5	S.6
Austrotrillina asmariensis	2	4	1	4	1	2
Heterostegina borneensis	11	4	1	2	1	1
Lepidocyclina sumatrensis	5	3	11	11	11	11
Cyclocyclus sp.	3	3	3	3	3	3
Amphistegina sp.	1	3	1	1	1	1
Borelis sp.	2	5	6	6	6	6
Operculina sp.	4	4	4	4	4	4
Red Algae	1	3	2	2	2	2
Total	36	22	17	17	17	17

Table 2: Material Content Rajamandala Formation

Content (%)	S.1	S.2	S.3	S.4	S.5	S.6
Calcite	50	20	10	15	60	25
Coral	0	5	15	0	5	5
Large Foraminifera	30	20	20	30	5	45
Small Foraminifera	5	15	20	15	10	10
Algae	5	25	10	0	5	10
Other Fragments	5	10	15	30	10	5
Matrix	5	5	10	5	5	5
Total	100	100	100	100	100	100

In general, Rajamandala Formation has quite diverse limestone content, some samples are dominated by large amounts of calcite (S.1 and S.2), other sample is dominated by large foraminifera (S.6), and the other samples have a wide variety of limestone content. When viewed from the large foraminifera content, at least 95 individual foraminifera which are divided into 7 species were identified. The most dominant foraminifera were obtained from the Cyclocyclus sp as many as 24 individuals. While the least identified foraminifera came from the Operculina sp as many as 4 individuals. When viewed from the sample, sample S.1 has the most identified foraminifera as many as 36 individuals and sample S.5 has the least identified foraminifera as many as 1 individual (Table 1 - 2).

3.2 Age Analysis

Age analysis was carried out by drawing the biostratigraphic zone from all research samples. As a result, Rajamandala Formation was deposited at Late Oligocene (Chatian) age which belongs to the large foraminiferal zone Te1-4. This age was drawn based on interval zone between the early appearance of Lepidocyclina sumatrensis and the late appearance of Austrotrillina asmariensis (Figure 2). Basically, Lepidocyclina sumatrensis was only present and developed in Southeast Asia starting in Late Oligocene as a result from evolution of Lepidocyclina isolepidinoides species. This L. sumatrensis then evolved into L. verbeeki with changes influenced by the nepionic chamber conditions of each of these large foraminifera (Adams, 1976; BouDagher-Fadel, 2018). While Austrotrillina asmariensis is species that developed until the Late Te which then evolved into Austrotrillina borneensis in Tf1 and became extinct throughout the Austrotrillina genus in Indonesian territory at Early Miocene age (Tf1). In addition, the development of large foraminifera from Heterostegina borneensis and Cyclocyclus sp. that were present in the study sample showed that the study sample has age not far from Oligocene. (Adams, 1976; BouDagher-Fadel, 2018).

Figure 1: Location and Stratigraphy of Research Area; a. Research location in relation to Java; b. Research location in relation to Base Map; c. Results of Stratigraphy and Lithology

Figure 2: Age Range of Rajamandala Formation from Large Foraminifera Analysis (Adams, 1976; BouDagher-Fadel, 2018)
3.3 Depositional Environmental Analysis

The analysis of depositional environment was interpreted based on foraminifera content in research sample. Result, Rajamandala Formation in this study can be divided into 3 depositional environments. First, samples S.3, S.4, and S.5 showed that these three samples were formed in Backreef shelf environment. This can be seen by the large number of large foraminifera from Austrotrilina and Borelis species (Alveolinids). These two large foraminifera basically developed well in Backreef shelf environment compared to other foraminifera. In addition, the abundance of calcite, small foraminifera, large foraminifera, and coral growth in sample S.3 indicates that this sample has very close formation site to the main reef. Meanwhile, in samples S.4 and S.5, large amount of calcite, algae, and other fragments indicate that these samples have site of formation that is further away from the presence to the main reef. Therefore, it can be interpreted that these three samples were formed in Backreef shelf depositional environment with tendency for S.3 samples to be closer to the main reef development.

Second, samples S.1 and S.6 showed that they were formed in Forereef shelf environment. This can be seen by the presence of large foraminifera from Heterostegina and Cycloclypeus types. Basically, these two types of large foraminifera can develop well in Forereef shelf environment. In addition, the large number of Lepidocyclina that can live in wider environmental range also shows that samples S.1 and S.6 have depositional environment in the Forereef shelf region. When viewed from the composition, large amount of foraminifera in this sample indicates the formation area is very close to the main reef. Therefore, these two samples are interpreted to have formed in Forereef shelf depositional environment close to the main reef growth.

Last, sample S.2 shows that it was formed in Reef environment. This can be seen with the same number of large foraminifera originating from the Forereef and Backreef environment in this sample. Furthermore, when viewed from the sample content, the large number of calcite, small foraminifera, large foraminifera, and the growth of coral in this sample also indicate the conditions for main reef. Therefore, this sample is interpreted to have formed in main Reef depositional environment.

4. DISCUSSION

The analysis carried out in previous studies was mostly carried out on the Rajamandala Formation in Sukabumi area. Age of this formation is found to be in Late Oligocene – Early Miocene range (Effendi et al., 1998; Martodjojo, 2003). When compared with this study, rock from Rajamandala Formation in Sukabumi area were formed at the same time as those in the Rajamandala area. This can be seen from large foraminifera analysis which shows that these rocks were formed at Late Oligocene age (Chattian).

Results from cluster analysis show that the research sample can be divided into three main clusters. The first cluster is cluster that shows the Backreef shelf environment. This cluster consists of 3 samples [S.3, S.4, and S.5]. In this first cluster, foraminifera from Austrotrilina and Borelis types (Alveolinids) show that this limestone formed in shallow marine environment with very low current conditions. These current conditions can occur in Backreef shelf environment because the currents that occur in this environment are blocked by the presence of main Reef. These two types of foraminifera are associated with each other at the rear of main Reef. When viewed based on its classification, the environmental area is in Euphotic lighting zone with a tropical index that is classified as Oligotropic – Mesotrophic. (BouDagher-Fadel, 2018). Therefore, this first cluster is interpreted to have environment on Backreef shelf when viewed from the association of large foraminifera.

The second cluster is cluster that shows the Forereef depositional environment. This second cluster consists of 2 main samples (S.1 and S.6). In this second cluster, the large number of foraminifera from Heterostegina and Cycloclypeus types indicate that the limestones in this cluster were formed in very shallow environment (< 30 m) with soft sediments or hard sediments substrate conditions. This is interpreted because genus Cycloclypeus has low tolerance for light and changes in temperature in shallow sea areas. In addition, the presence of Heterostegina and Lepidocyclina indicates that limestone was formed in high energy environment. When viewed based on its classification, this environmental area is in Oligophotic lighting zone with tropical index that is classified as Oligotropic – Mesotrophic. (BouDagher-Fadel, 2018). Therefore, this second cluster is interpreted to have an environment formed on Forereef shelf with conditions close to the main Reef which has shallow depth.

Last, the third cluster is cluster formed in the Reef environment which consists of only one sample (S.2). In this last cluster, all foraminifera dominated the research sample, both those in the Forereef shelf and Backreef shelf environments. When viewed based on its classification, this environmental area is in Mesophotic lighting zone with tropical index that is classified as Oligotropic – Mesotrophic. (BouDagher-Fadel, 2018). Due to the abundance of foraminifera with various types, it is interpreted that this cluster formed on the main Reef of Rajamandala Formation.

From all these explanations, it can be seen that the results of cluster analysis confirm the results of analysis of depositional environment based on large foraminifera. The research sample can be divided into 3 main environments, namely Forereef shelf, Backreef shelf, and Reef. The results of this study are in line with previous studies which stated that the Rajamandala Formation is divided into shallow marine environment which was divided into several facies, namely Reef facies, Forereef shelf, and also Backreef shelf (Siregar, 2005; Wibowo & Kapić, 2014). However, it is true that the Rajamandala Formation located in Sukabumi region contains foraminifera and coral that are not as abundant as those found in Rajamandala area.

From this description, it can be interpreted that the reef limestones in Sukabumi and Rajamandala areas are continuous reef limestones and are formed at the same age and environment. This reef limestone was formed at Late Oligocene age with Shallow Sea depositional environment on the Reef, Forereef shelf, and Backreef shelf. These limestones were formed when the Bogor Basin began to develop and became more visible due to the changing of northern and southern parts of Java into higher elevations. This elevation is caused by development of volcanoes associated with the Jampang Formation (Martodjojo, 2003).

5. CONCLUSIONS

From the results of this study, several conclusions can be drawn. Reef limestones of Rajamandala Formation in Sukabumi region contain both calcite, coral, large foraminifera, small foraminifera, algae, and other fragments. From the age of this formation, these rocks of Rajamandala Formation has Late Oligocene (Chattian) age. This age was drawn based on interval zone between the early appearance of Lepidocyclina sumatrasiensis and the late appearance of Austrotrilina asmarisensis. Meanwhile, from the depositional environment, this formation has shallow marine depositional environment which is divided into 3 clusters. The first cluster is dominated by foraminifera from Austrotrilina and Borelis types which show Backreef shelf environment. The second cluster is dominated by Heterostegina and Cycloclypeus which shows Forereef shelf environment. Finally, the third cluster is dominated by all foraminifera that represent Reef environment. When compared with previous studies, the limestones of Rajamandala Formation in Sukabumi
and Rajamandala regions have the same age and depositional environment.

ACKNOWLEDGEMENT

Thanks to the Chancellor of Padjadjaran University for funding research through the HIU-RKDU program, the paleontology laboratory team, Faculty of Geological Engineering, Padjadjaran University and all parties who have helped and provided encouragement in this research.

REFERENCES

Adams, C.G., 1968. A Revision of the Foraminiferid Genus Austrotrillina Parr. In: Bulletin of The British Museum (Natural History). The British Museum (Natural History), London, pp. 71-97.

Adams, C.G. 1976. Larger foraminifera and the late cenozoic history of the mediterranean region. Palaeogeography, Palaeoclimatology, Palaeoecology, 20 (1-2). Pp. 47-66. https://doi.org/10.1016/0031-0182(76)90025-0.

Boudagher-Fadel, M.K. 2018. Evolution and Geological Significance of Larger Benthic Foraminifera, Second Edition. UCL Press, London.

Effendi, Kusnana, Hermantos. 1998. Geological Map Sheet Bogor, West Java, Scale 1: 100,000. Geological Research and Development Center, Bandung.

Hall, R. 2017. Southeast Asia: New Views of the Geology of the Malay Archipelago. Annual Review of Earth and Planetary Sciences, 45. Pp. 331-358. https://doi.org/10.1146/annurev-earth-063016-020633.

Hallock, P., 1997. Reefs and Reefs Limestones in Earth History, In: Bulletin of The British Museum (Natural History), 51, Pp. 36-49.

Hohenegger, J., Yordanova, E., Nakano, Y., Tatzreiter, F., 1999. Habitats of larger foraminifera on the upper shelf slope of Sesoko Island, Okinawa, Japan. Marine Micropaleontology, 36 (2-3), Pp. 109-168. https://doi.org/10.1016/S0377-8898(98)00030-9.

Hottinger, L. 1982. Larger foraminifera, giant cells with a historical background. Naturwissenschaften, 69 (9), Pp. 361-371. https://doi.org/10.1007/BF00396687.

Hutubarat, M., 1971. Stratigraf Batuan Karbonat daerah Tagogapu, Bandung. Thesis ITB (not published), Bandung.

Jambak, MA, Ovidia, Nababban, U.P., 2014. Aosisasi Fossil and Paleeokologi Batuan Karbonat Formasi Rajamandala, Padalarang, Jawa Barat. Mindagi, 8 (2), Pp. 1-12.

Juliak, A. 2013. Dampak dan Perubahan Iklim di Indonesia. Jurnal Geografi, 5 (1), Pp. 39-46. https://doi.org/10.24114/jg.v5i1.083.

Langer, M.R., Hottinger, L. 2000. Biogeography of selected larger foraminifera. Micropaleontology, 46, Pp. 105-126.

Liu, D., Li, Z., Lian, Z., 2014. Compaction quality assessment of earth-rock dam materials using roller-integrated compaction monitoring technology. Automation in Construction, 44, Pp. 234-246. https://doi.org/10.1016/j.autcon.2014.04.016.

Martodjojo, S., 2003. Evolusi Cekungan Bogor, Jawa Barat. Institut Teknologi Bandung, Bandung.

Natasia, N., Alfasdi, M.K., 2018. Pengaruh Parameter Sementasi Pada Perhitungan Saturasi Air Pada Reservoir Batugamping. Bulletin of Scientific Contribution: Geology, 16 (1), Pp. 57-64.

Patrani, E.Y., Rijani, S., Sundari, D., 2017. Perubahan Biofasies Foraminifera pada Batugamping di Pantai Baron dan Serpang, Provinsi DI Yogyakarta. Jurnal Geologi dan Sumberdaya Mineral, 17 (2), Pp. 61-71.

Renema, W., 2007. Fauna Development of Larger Benthic Foraminifera in the Cenozoic of Southeast Asia, In: Biogeography, Time, and Place: Distributions, Barriers, and Islands. Springer, Leiden, Pp. 179-215.

Romesburg, C., 2004. Cluster Analysis for Researchers. Lulu Press, North Carolina.

Saraswati P.K., Srinivasan, M.S., 2015. Micropaleontology Principles and Applications. Springer, London.

Schneider, N., 1998. The Indonesian Throughflow and the global climate system. Journal of Climate, 11 (4), Pp. 676-689.

Siregar, M.S. 2005. Sedimentasi dan Model Terumbu Formasi Rajamandala di Daerah Padalarang, Jawa Barat. Riset – Geologi dan Pertambangan, 15 (1), Pp. 61-81. https://doi.org/10.14205/risetgeotam2005.v15.s189.

Siregar, M.S., Mulyadi, D., 2007. Fasies and Diagenesis Formasi Rajamandala di Daerah Padalarang, Jawa Barat. LIPI Geoscience Research Center, Bandung, Pp. 19-23.

Song, Q., Vecchi, G.A., Rosati, A.J., 2007. The Role of the Indonesian Throughflow in the Indo-Pacific Climate Variability in the GFDL Coupled Climate Model. Journal of Climate, 20 (11), Pp. 2434-2451. https://doi.org/10.1175/JCLI4133.1.

Sprintall, J, Gordon, A.L., Koch-Larrooy, A., Lee, T., Potemra, J.T., Pujana, K., Wijfells, S.E., 2014. The Indonesian seas and their role in the coupled ocean–climate system. Nature Geoscience, 7 (7), Pp. 487-492. https://doi.org/10.1038/ngeo2188.

Sudrajat, D., 1973. Stratigraf batuan karbonat daerah Gunung Manik, Formasi Rajamandala, Jawa Barat. Thesis UNPAD (not published), Bandung.

Terakado, Y., Ofuka, Y., Tada, N., 2010. Rare Earth Elements, Sr, Ba, Fe, and Major Cation Concentrations in Some Living Foraminiferal Tests Collected from Iriomote Island, Japan: An Exploration for Trace Element Behavior During Biogenic Calcium Carbonate Formation. Geochemical Journal, 44, Pp. 315-322. https://doi.org/10.2343/geochemj.1.0068.

Bibowono, U.P., Kapid, R., 2014. Biostratigraf Nannoplankton Daerah Rajamandala. Jurnal Geologi Sumber Daya Mineral, 15 (4), Pp. 185-194.

APPENDICES

Plate 1
- Sample S.1
 a. Amphistegina sp.; Vertical Incision
 b – d. T. Cycloneps sp.; Vertical Incision
 e – h. j. Heterostegina borneensis; Vertical Incision
 g. Red algea
 k. Lepidocyclina sumatrensis; Horizontal incision

Plate 2
- Sample S.4
 a. Austrotrillina asmariansis; Vertical Incision
 b – c. Borelis sp.; Vertical – Horizontal incision
 Sample S.3
 d – h. Borelis sp.; Vertical – Horizontal incision
 i. Red algea
 Sample S.2
 j. Amphistegina sp.; Vertical Incision
 k. Borelis sp.; Horizontal incision
 l. Operculina sp.; Horizontal incision
 m. Lepidocyclina sumatrensis; Vertical Incision
 n. Cycloneps sp.; Vertical Incision
 o. Red algea
 p. Heterostegina borneensis; Vertical Incision

Plate 3
- Sample S.5
 a. Austrotrillina asmariansis; Vertical Incision
 Sample S.6
 b. Amphistegina sp.; Vertical Incision
 c – e. Cycloneps sp.; Vertical Incision
 f. Heterostegina borneensis; Vertical Incision
 g – m. Lepidocyclina sumatrensis; Vertical – Oblique Incision
Cite the Article: Rizki Satria Rachman, Winantris (2021). Large Foraminifera from Limestone in The Rajamandala Formation, Sukabumi, West Java. Malaysian Journal of Geosciences, 5(2): 51-55.