Successful aging defined by health-related quality of life and its determinants in community-dwelling elders

Chia-Ing Li1,2, Chih-Hsueh Lin2,3, Wen-Yuan Lin2,3, Chiu-Shong Liu2,3, Chin-Kai Chang2,4, Nai-Hsin Meng2,4, Yi-Dar Lee5,6, Tsai-Chung Li7,8,9* and Cheng-Chieh Lin2,3,8,9*

Abstract

Background: Successful aging in old age is important. However, the determinants of successful aging vary across populations due to cultural differences, and only a limited number of studies have addressed these determinants in Taiwan population. This study aimed to evaluate successful aging via better physical and mental functions as well as to explore associated determinants in an elderly Taiwan population that had no impaired cognitive function.

Methods: A community-based cross-sectional survey was conducted in January 2009 in Taichung, Taiwan. A total of 903 elderly persons (≥65 years) without impaired cognitive function were enrolled. Those with physical and mental component scores in the top tertile of the Short-Form 36 were considered to be aging successfully. All participants completed a structured questionnaire and the comprehensive geriatric assessment measurements of the five components of frailty defined by Fried et al. Crude and adjusted odds ratios (ORs) with 95% confidence intervals (CIs) were calculated to evaluate the relationship between associated factors and successful aging using logistic regression analysis.

Results: The prevalence of successful aging was 10.4% in elders. A higher proportion of successful aging was found in non-frail (16.9%) and pre-frail elders (7.2%) than in frail elders (0.9%). Multivariate logistic regression showed pre-frail elders to be associated with lower prevalence of successful aging relative to non-frail elders (OR: 0.45; 95% CI: 0.24–0.84). Relative to those aged ≤70 years, elders aged 71–75 years were associated with a lower prevalence of successful aging (OR: 0.27; 95% CI: 0.13–0.58). Successful aging was also more likely among those able to visit relatives and friends (OR: 3.86, 95% CI: 1.09–13.61) and among those without a history of falling (OR: 4.95; 95% CI: 1.79–13.74), pain (OR: 4.04; 95% CI: 2.18–7.50), or sleep disorders (OR: 2.36; 95% CI: 1.30–4.27).

Conclusion: Successful aging was associated with age, frail status, chronic health-related problems and psychosocial support. However, whether or not these associations are causal requires further exploration.

Keywords: Aged, Successful aging, Quality of life
[5]; there was, however, a consensus regarding the multidimensional nature of successful aging [4-6]. The Study of Health Assessment and Risk in Ethnic groups also reported a cross-national variation in the prevalence of successful aging among 14 European countries. The authors suggested that self-reported health measures may be the most appropriate measures for comparing cross-national differences to avoid diagnostic differences across countries [7]. Multidimensional, standardized, and self-rated instruments are more practical and are more easily comparable among different countries and populations.

The Short Form-36 (SF-36) is a multidimensional scale and a well-established instrument that measures health concepts and self-reported health-related quality of life [8]. Using SF-36 to define successful aging is acceptable because it represents overall health status in two key measures—the physical component summary (PCS) and the mental component summary (MCS) scores. These two scores reflect the status of physical, mental, and social well-being that are generally used to define health status [9]. The aim of this study was to explore the prevalence of successful aging, as gauged by SF-36, as well as to identify determinants of successful aging among community-dwelling elders.

Methods
Population and participants
We conducted a population-based cross-sectional study in June 2009 with a target population of all residents aged ≥65 years residing in eight administrative neighborhoods of Taichung, Taiwan. Taichung is located in west-central Taiwan and has a population of just over one million people, making it the third largest city on the island; its area spans 163.4 km², and the population density is 6,249/km² (2009). There were 3,997 elderly residents in these eight administrative neighborhoods of Taichung, accounting for 4.5% of the population. Data for this study were obtained from individuals’ records compiled by the Bureau of Households; details of this study’s sampling method are described elsewhere [10]. This research was approved by the Human Research Committee of China Medical University Hospital, and written informed consent was obtained from each participant. A total of 1,347 elderly residents of Taichung participated in this study, yielding an overall response rate of 49.0%. Among these participants, 256 elderly residents completed only the first stage of the screening test for the frailty assessment and did not submit responses to the SF-36 questionnaire. A total of 903 elders were included in the final data analysis after excluding those diagnosed with dementia (n = 18), those lacking Mini-Mental State Examination (MMSE) information (n = 5), those with MMSE scores less than 14 points (n = 8), those with incomplete frailty-related components (n = 87), and those with incomplete SF-36 information (n = 70).

Measurements
Successful aging
Measurements from the SF-36 instrument were applied to identify whether the elderly residents of Taichung were aging successfully. The SF-36 is a short questionnaire with 36 items that measures the following eight multi-item variables: physical functioning (PF, 10 items), role limitations due to physical problems (RP, 4 items), mental health (MH, 5 items), vitality (VT, 4 items), pain (BP, 2 items), and general perception of health (GH, 5 items). The scores for each variable item were coded, summed, and transformed into a score ranging from 0 (worst measured health state) to 100 (best measured health state). The SF-36 PCS and MCS scales were derived from the standard SF-36 scoring algorithms. Elders with both PCS and MCS in the highest tertile, indicating the best states of physical and mental health, were considered to be successfully aging. The cutoff scores of the top tertile were 53.00 for the PCS and 59.28 for the MCS.

Socioeconomic factors, health-related practices, visual and hearing capacity, and psychosocial support
Data on health-related practices, psychosocial support, and socioeconomic factors (including age, gender, education, marital status and money use) were collected through self-administered questionnaires. Visual and hearing capacities were categorized as good, general, and bad/blind or bad/deaf. Health-related practices, such as tobacco use and alcohol consumption, were categorized as never and former/current. Regular exercise was categorized as “yes” or “no”. Psychosocial support was assessed using two statements: “Someone is listening when you talk” and “You see relatives/friends when you want”.

Frailty status and chronic illness and problems
We adopted the definition of frailty proposed by Fried et al. [11], consisting of five components: unintended weight loss, weakness, poor endurance and energy, slowness, and low physical activity level. In this study, unintended weight loss was defined as weight loss ≥3 kg over the course of the previous year; weakness was defined as grip strength in the lowest quintile at baseline, based on the subgroups of gender and body mass index. Poor endurance and energy were evaluated by self-reported exhaustion and by two questions from the Center for Epidemiological Studies-Depression scale [12]. Slowness was measured for each gender and height subgroup and was defined as the slowest quintile to walk a distance of 15 feet and was divided into gender and height subgroups.
Low physical activity level was measured for each gender and was defined as the lowest quintile of kilocalories spent every week (using weighted scores), based on responses from each participant. Subjects exhibiting none of the above components were considered robust; those with one or two components were considered pre-frail; and those with more than two components were considered frail.

Self-reported personal medical histories—including diabetes mellitus, hypertension, heart disease, stroke, arthritis, hyperlipidemia, gout, hyperuricemia, cataract, and fall histories—were collected. Pain problems and sleep disorders were also collected as “yes” or “no” binary responses.

Statistical analysis
Continuous variables were reported as mean ± standard deviation (SD), and categorical variables were reported as numbers and percentages. Student’s t-test was used to compare the eight dimensions and the two component summaries of SF-36 among elders who were and were not aging successfully. Univariate logistic regression was used to explore the associations of sociodemographic factors, psychosocial support, visual and hearing capacities, health-related practices, and chronic health problems with successful aging. Variables found to be statistically significant by univariate logistic regression analysis were selected to further evaluate their relative contributions using four multivariate logistic regression models. First, the sociodemographic and psychosocial support factors were evaluated by multivariate logistic regression. Health-related practices and visual and hearing capacities were then added to the second model; chronic illness and fall history were then added to the third model; and pain, sleep disorders, and frailty were finally added to the fourth model. All calculations were repeated for sensitivity analysis. The cutoff point of both the PCS and the MCS for defining successful aging was changed from the highest tertile to the seventieth percentile and the fourth quartile. All reported p-values were those of two-sided tests; significance was defined as p < 0.05. All analyses were performed using SAS version 9.2 statistical software (SAS Institute Inc., Cary, NC, USA).

Results
Of the 903 elders (mean age, 73.90 years) enrolled in this study, 10.4% were identified as successful agers. Successfully aging elders had significantly higher scores in eight SF-36 dimensions than those who were not successfully aging; they also had the most favorable health status (with scores of 100) in the RP, SE, and RE variables (Table 1).

Older elders, females, and elders without enough or with just enough money for personal use had a lower prevalence of successful aging. The unadjusted analysis showed a higher prevalence of successful aging among elders with ≥7 years of education, with general or good visual capacity, with good hearing capacity, who regularly exercised, and who were able to see relatives and friends whenever they wished (Table 2).

Among the associations with chronic health problems, increased odds of successful aging were found in non-frail elders and in those without hypertension, heart disease, hyperuricemia, arthritis, cataracts, fall histories, pain problems, or sleep disorders (Table 3).

Nested logistic regression analysis was used to further examine the interrelatedness of factors significantly associated with successful aging. Among socioeconomic and psychosocial support factors, the odds of successful aging were significantly lower for the very elderly and for those with insufficient income. After accounting for the effects of visual capacity, hearing capacity, and exercise habits on successful aging, the significance of age remained unchanged while the strength of the financial resources association diminished. Meanwhile, we observed increased odds of successful aging for elders with general or good visual capacity and for those who exercised regularly. After chronic illness and history of falling were added into the regression model, successfulness of aging was statistically associated with an age range of 71–75 years; regular exercise; and the absence of heart disease, arthritis, and fall histories.

The associations of regular exercise and chronic diseases with successful aging disappeared, however, after adding...
Variable	Total n	Successful aging	OR	95% CI
		n	%	
Total	903	94	10.4	-
Socio-demographic factors				
Age (years)				
≤70	339	54	15.93	1.00
71–75	226	14	6.19	0.35 (0.19, 0.64)
>75	338	26	7.69	0.44 (0.27, 0.72)
Gender				
Men	477	61	12.79	1.00
Women	426	33	7.75	0.57 (0.37, 0.89)
Education				
Illiterate	103	3	2.91	1.00
≤6 years	229	16	6.99	2.50 (0.71, 8.79)
7–12 years	308	42	13.64	5.26 (1.60, 17.36)
≥13 years	240	33	13.75	5.31 (1.59, 17.75)
Marital status				
Current	644	74	11.49	1.00
Others	256	20	7.81	0.65 (0.39, 1.09)
Money use				
Enough	210	32	15.24	1.00
Just enough	578	57	9.86	0.61 (0.38, 0.97)
Not enough	111	5	4.50	0.26 (0.10, 0.69)
Visual and hearing capacity				
Visual capacity				
Bad/blind	245	10	4.08	1.00
General	410	42	10.24	2.68 (1.32, 5.45)
Good	245	42	17.14	4.86 (2.38, 9.94)
Hearing capacity				
Bad/deaf	152	9	5.92	1.00
General	308	17	5.52	0.93 (0.40, 2.13)
Good	443	68	15.35	2.88 (1.40, 5.93)
Health-related practices				
Regular exercise				
No	217	11	5.07	1.00
Yes	683	83	12.15	2.59 (1.35, 4.96)
Smoking				
No	711	74	10.41	1.00
Current	82	12	14.63	1.48 (0.76, 2.85)
Former	110	8	7.27	0.68 (0.32, 1.44)
Drinking				
No	727	70	9.63	1.00
Current	121	17	14.05	1.53 (0.87, 2.71)
Former	55	7	12.73	1.37 (0.60, 3.14)
the factors of pain, sleep disorders and frailty in the fourth model. In the final model, the odds of successful aging decreased in elders aged 71–75 years relative to those ≤70 years (adjusted odds ratio [OR]: 0.27; 95% confidence interval [CI]: 0.13–0.58) and in those in pre-frail states. An increase in the odds of successful aging was observed in elders who were able to visit relatives and friends whenever they wished (OR: 3.86; 95% CI: 1.09–13.61) and in those without a history of falling (OR: 4.95; 95% CI: 1.79–13.74), pain (OR: 4.04; 95% CI: 2.18–7.50), or sleep disorders (OR: 2.36; 95% CI: 1.30–4.27) (Table 4).

The sensitivity analysis results showed that age, fall history, and pain were still significantly associated with successful aging when using the highest cutoff value at the seventieth percentile for both the PCS and the MCS. Successful aging associations with sleep disorders and visiting relatives and friends were strong but insignificant. Using the highest quartile as a cut-off value, only fall history and pain were significantly associated with successful aging. All elders who were frail were found to be unsuccessfully aging; however, the factor of frailty could not be added to the final multivariate model due to problems with statistical convergence.

Discussion

The prevalence of successful aging, as was defined using SF-36, was 10.4% in community-dwelling elders in a metropolitan population of Taiwan. Elders with chronic diseases or other health-related problems had a lower prevalence of successful aging compared with those without such health issues. All elderly people who had a stroke, for example, were considered to be unsuccessfully aging. Elders more likely to be successfully aging, however, were ≤70 years old; were able to visit relatives or friends whenever they wished; and had no history of falling, pain, or sleep disorders.

We adopted the five components of frailty defined by Fried et al. [11] that included objective, performance-based measures. A previous study had reported that frailty in elders is an important clinical state that is distinct from normal aging and a strong predictor for disability [11]. In this study, frailty was found to be an independent determinant of successful aging. Among frail elders, only one (0.93%) was found to be successfully aging; and even after PCS and MCS cutoff values were increased from tertile to a higher percentile, no other frail elders were found to be successfully aging. These results indicated that gauging successful aging using SF-36 is not only easy but also reflects actual health conditions. A noteworthy additional study by Theou et al., however, reported that frailty in elders can be reversed by structured exercise training [13].

The prevalence of successful aging among previous community-based studies ranges from 0.4% to 95% based on various definitions [5,6,12,14-20]. In general, those studies using a single-item, self-rating scale reported a higher and more variable prevalence of successful aging, ranging from 50.3% to 90.2% [6,15,18]. The focus of many studies on successful aging has shifted from disease status and functional decline to multidimensional health status, which encompasses physical, functional, psychological, and social health [21]. Early published reports defined successful aging using only one or two dimensions of health, such as the absence of chronic diseases, longer longevity, independent physical functioning, social life engagement, and mental health [14,16,17,19]. However, more recent studies have focused on the concept that successful aging is more multifaceted and complex [5,7]. Studies using the absence of major disease as one of the domains to define successful aging in elders reported a lower prevalence of successful aging [15,18,20] compared with those not using this domain [5,7,12,15]. To obtain a comparable prevalence of successful aging among elders and to explore the associated determinants, there is a need for a simple, standardized and multidimensional tool to be used across studies. In a study conducted in Hong Kong, higher PCS and MCS scores in SF-36 reflected better overall physical, functional, psychological, and social health in Chinese elders [22]. Consequently, higher PCS and MCS scores in SF-36 among elders were used to define successful aging in this study.

Age is a commonly identified determinant of successful aging. Consistent with the results reported in previous studies [5,23,24], younger age was one determinant of successful aging among elders in this study. We also found
that the ability to see relatives and friends at will (as a variable related to social support) was an independent determinant for successful aging among the elderly. Pruchno et al. [23] reported that unsuccessfully aging elders have less social support compared with successful agers. Our findings on the associations among sleep disorders, fall histories, and successful aging were similar to those in prior research [25]. Elderly persons with sleep disorders were at a higher risk of unsuccessfully aging compared with those without sleep disorders. This finding provides evidence supporting a previous study by Andrews et al. [25] that defined the concept of high functioning and found that elders without sufficient sleep were less likely to be in the high functioning category. In our findings, a history of falling was associated with a lower likelihood of successful aging, as those with such a history tend to restrict outdoor activity out of a fear of falling [26]. In general, the fear of falling has tended to impede elderly participation in healthy activities and leads to decreased mobility, resulting in diminished quality of life [27,28].

Previous studies have reported that chronic diseases—such as arthritis, diabetes, stroke, and hypertension—were all associated with successful aging. [5,16] We found that these diseases were not independent risk factors of unsuccessful aging because their effects were explained by falls, frailty, pain, and sleep problems. Among these chronic diseases, stroke had a major impact on successful aging; all elders who had a history of stroke in this study were found to be unsuccessfully aging. Strokes were however, not added to the final multivariate model due to problems with statistical convergence. We observed lower physical component scores in elders with stroke histories compared with those without stroke histories; no significant differences were observed in mental component scores. Consistent with the findings of Okonkwo et al. [29], the difference in PCS scores between subjects with and without a stroke history in this study was approximately twofold that in MCS scores. In contrast to our findings on stroke effects, Haley et al. [30] indicated that an incident of stroke has a negative impact in both mental and physical health over a three-year period. One possible explanation for these different findings is that the elders in our present study had already coped with their conditions, allowing for better mental health.

In present study, we used Cohen’s d in the chi-square value formula ($d = \sqrt{4x^2}/(N-x^2)$, where N is total sample size) [31] to calculate the effect size of significant factors. Our results indicated a mid-size effect of both pain ($d = 0.47$) and frailty ($d = 0.38$). The effect sizes of other factors (including age, seeing relatives and friends at will, fall histories, and sleep disorders) were small, between 0.2 and 0.3. The two determinants of pain problems

Variable	Total n	Successful aging	OR	95% CI
Hypertension				
Yes	474	37	7.81	1.00
No	420	57	13.57	1.85 (1.2, 2.87)
Diabetes mellitus				
Yes	154	12	7.79	1.00
No	740	81	10.95	1.45 (0.77, 2.74)
Heart disease				
Yes	264	13	4.92	1.00
No	639	81	12.68	2.80 (1.53, 5.13)
Hyperlipidemia				
Yes	226	21	9.29	1.00
No	662	73	11.03	1.21 (0.73, 2.02)
Gout				
Yes	110	7	6.36	1.00
No	781	87	11.14	1.84 (0.83, 4.09)
Hyperuricemia				
Yes	105	4	3.81	1.00
No	786	89	11.32	3.22 (1.16, 8.97)
Arthritis				
Yes	178	7	3.93	1.00
No	691	82	11.87	3.29 (1.49, 7.25)
Stroke				
Yes	48	0	0.00	1.00
No	837	94	11.23	-
Cataract				
Yes	421	32	7.60	1.00
No	477	62	13.00	1.82 (1.16, 2.84)
Fall history				
Yes	702	87	12.39	1.00
No	188	7	3.72	3.65 (1.66, 8.04)
Pain problem				
Yes	471	19	4.03	1.00
No	401	74	18.45	5.38 (3.19, 9.09)
Sleep disorder				
Yes	394	22	5.58	1.00
No	497	71	14.29	2.82 (1.71, 4.64)
Frailty				
Non-frail	368	62	16.85	1.00
Pre-fail	428	31	7.24	0.39 (0.24, 0.61)
Frail	107	1	0.93	0.05 (0.01, 0.34)

OR: odds ratio; 95% CI: 95% confidence interval; Results in bold are significant at p<0.05.
and frailty were found to have greater relative association with successful aging.

The present study has certain limitations that should be taken into account when interpreting the results. First, owing to the nature of the cross-sectional study, we cannot explore the possible causal relationships between the health conditions considered in this study and successful aging. Second, the findings of our work are not generalizable to rural elders because this study sample was a group of metropolitan elders. Finally, the prevalence of successful aging in urban elders may have been overestimated due to the exclusion of elders who were diagnosed with dementia, had cognitive impairment, and were unable to complete the SF-36 questionnaire. Our study’s elders reflected the general global measures of physical and mental dysfunction, rather than those of specific disabilities or impairments [32].

Conclusions

The following conclusions can be drawn from the present study: the higher proportion of successful aging in elders was found among those who were relatively younger, had social support, were not frail, and had no pain, sleep impairment, and fall history. These findings revealed the importance of considering suitable intervention to improve the frailty, pain, and sleep problems among the elders. However, the causal relationships between these factors and successful aging will require further investigations.

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

CCL and TCL designed the study. CIL drafted the manuscript. CCL, CHL, WYL, CSL, CRC, and NHM carried out the study, participated in coordination and evaluation of data. YDL contributed to the study with his knowledge on field

Table 4 Nested logistic regression analysis of successful aging defined by health-related quality of life

Variable	Model I	Model II	Model III	Model IV					
	Effect	OR 95% CI	OR 95% CI	OR 95% CI	OR 95% CI				
Age (years)									
71–75 vs ≤70	0.36	0.18 0.69	0.36	0.18 0.70	0.34	0.17 0.70	0.27	0.13 0.58	
>75 vs ≤70	0.38	0.22 0.67	0.41	0.23 0.74	0.53	0.28 1.02	0.60	0.30 1.21	
Gender									
Women vs Men	0.64	0.39 1.08	0.79	0.46 1.36	0.88	0.50 1.56	1.08	0.58 2.00	
Education									
≤5 years vs Illiterate	1.49	0.41 5.41	1.07	0.28 4.03	0.99	0.26 3.88	1.03	0.25 4.27	
7–12 years vs Illiterate	2.87	0.84 9.79	1.91	0.54 6.75	1.93	0.53 7.03	1.61	0.42 6.22	
≥13 years vs Illiterate	2.86	0.81 10.11	2.18	0.60 7.99	2.18	0.58 8.28	1.87	0.46 7.63	
Money use									
Just enough vs Enough	0.76	0.45 1.27	0.85	0.50 1.45	0.90	0.51 1.60	1.04	0.56 1.93	
Not enough vs Enough	**0.35**	**0.12**	**0.07**	0.40	0.14 1.14	0.39	0.13 1.16	0.54	0.17 1.75
You see relatives/friends when you want	3.08	0.93 10.22	2.77	0.82 9.36	3.45	1.00 11.89	**3.86**	**1.09** 13.61	
Visual capacity									
General vs Bad/Blind	**2.32**	**1.04**	**5.18**	2.07	0.90 4.73	1.36	0.57 3.27		
Good vs Bad/Blind	**2.15**	**1.01**	**4.60**	2.06	0.94 4.54	1.67	0.74 3.79		
Hearing capacity									
General vs Bad/Deaf	2.00	0.84 4.73	1.57	0.64 3.81	1.78	0.70 4.54			
Good vs Bad/Deaf	0.66	0.25 1.77	0.53	0.19 1.46	0.48	0.17 1.36			
Regular exercise									
Yes vs No	**2.71**	**1.25**	**5.87**	**2.73**	**1.24**	**6.02**	1.53	0.61 3.79	
Hypertension									
No vs Yes	1.42	0.84 2.42	1.38	0.78 2.42					
Heart disease									
No vs Yes	**2.07**	**1.01**	**4.26**	2.06	0.96 4.42				
Hyperuricemia									
No vs Yes	3.16	0.92 10.87	3.19	0.89 11.49					
Arthritis									
No vs Yes	**2.47**	**1.06**	**5.80**	1.82	0.74 4.45				
Cataract									
No vs Yes	1.05	0.59 1.86	1.07	0.59 1.97					
Fall history									
No vs Yes	**4.08**	**1.55**	**10.72**	**4.95**	**1.79**	**13.74**			
Pain problem									
No vs Yes	4.04	2.18 7.50							
Sleep disorder									
No vs Yes	2.36	1.30 4.27							
Frailty									
Pre-fail vs Non-frail	0.45	0.24 0.84							
Frail vs Non-frail	0.14	0.02 1.13							
Adjusted McFadden’s R²	9.1%	16.0%	23.4%	32.3%					

OR: odds ratio; 95% CI: 95% confidence interval. Results in bold are significant at p<0.05.

†: The current model compared with prior model.
study. CIL and TCL carried out the data organization and performed the statistical analysis. All authors read and approved the final manuscript.

Acknowledgments

This research was supported by the Taiwan National Health Research Institutes Grant (NHRI-EX109-9838P, NHRI-EX100-9838P, NHRI-EX101-9838P), Taiwan Ministry of Health and Welfare Clinical Trial and Research Center of Excellence (MOHW103-TDU-B-212-11302), and China Medical University Hospital (DMR-100-075).

Author details

1 Department of Medical Research, China Medical University Hospital, Taichung, Taiwan. 2 School of Medicine, College of Medicine, China Medical University, Taichung, Taiwan. 3 Department of Family Medicine, China Medical University Hospital, Taichung, Taiwan. 4 Department of Physical Medicine and Rehabilitation, China Medical University Hospital, Taichung, Taiwan. 5 Department of Psychiatry, Medical College, National Cheng-Kung University, Tainan, Taiwan. 6 Medical Division, Sanofi Taiwan Co., Ltd, Taipei, Taiwan. 7 Graduate Institute of Biostatistics, College of Management, China Medical University, Taichung, Taiwan. 8 Department of Healthcare Administration, College of Medical and Health Science, Asia University, Taichung, Taiwan. 9 China Medical University and Hospital, 2 Yude Road, Taichung 40421, Taiwan.

Received: 8 August 2013 Accepted: 18 September 2014

Published: 28 September 2014

References

1. Kinsella K, He W: An Aging World: 2008. Washington, DC: US Government Printing Office; 2009. US Census Bureau. In International Population Reports, P23/09-1.

2. Molton IR, Jensen MP: Aging and disability: biopsychosocial perspectives. Phys Med Rehabil Clin N Am 2010, 21(2):253-265.

3. Finlayson ML, Peterson EW: Falls, aging, and disability. Phys Med Rehabil Clin N Am 2010, 21(2):357-373.

4. Depp CA, Jeste DV: Definitions and predictors of successful aging: a comprehensive review of larger quantitative studies. Am J Geriatr Psychiatry 2006, 14(1):6–20.

5. Ng TP, Broekman BF, Niti M, Gwee X, Kua EH: Determinants of successful aging using a multidimensional definition among Chinese elderly in Singapore. Am J Geriatr Psychiatry 2009, 17(5):407–416.

6. Pruchno RA, Wilson-Genderson M, Cartwright F: A two-factor model of successful aging. J Gerontol B Psychol Sci Soc Sci 2010, 65B(6):671–679.

7. Hank K: How “successful” do older Europeans age? Findings From SHARE. J Gerontol B Psychol Sci Soc Sci 2011, 66(2):230–236.

8. Ware JE Jr, Gandek B: Overview of the SF-36 health survey and the international quality of life assessment (IQOLA) Project. J Clin Epidemiol 1998, 51(11):913–921.

9. World Health Organization: Constitution of the World Health Organization. Geneva, Switzerland: WHO Basic Documents; 1948.

10. Lin CC, Li CI, Chang CK, Liu CS, Lin CH, Meng NH, Lee YD, Chen FN, Li TC: Reduced health-related quality of life in elders with frailty: a cross-sectional study of community-dwelling elders in Taiwan. PLoS One 2011, 6(7):e21841.

11. Fried LP, Tangen CM, Walston J, Newman AB, Hirsch C, Gotttdiener J, Seeman T, Tracy R, Kop WJ, Burke G: Frailty in older adults: evidence for a phenotype. J Gerontol A Biol Sci Med Sci 2001, 56(3):M146–M157.

12. Almeida OP, Norman P, Hankey G, Jamrozik K, Flicker L: Correlates of self-rated successful aging among community-dwelling older adults. Am J Geriatr Psychiatry 2006, 14(1):43–51.

13. Theou O, Stathokostas L, Roland KP, Jakobi JM, Patterson C, Vandenvoort AA, Jones GR: The effectiveness of exercise interventions for the management of frailty: a systematic review. J Aging Res 2011, 2011:569194.

14. Gafni AJ, Herzog AR: Robust aging among the young-old, old-old, and oldest-old. J Gerontol B Psychol Sci Soc Sci 1995, 50(3):577–587.

15. Montross LP, Depp C, Daly J, Reichstadt J, Golshan S, Moore D, Stiter D, Jeste DV: Correlates of self-rated successful aging among community-dwelling older adults. Am J Geriatr Psychiatry 2006, 14(1):43–51.

16. von Faber M, Bootsma-van der Wel A, van Exel E, Gussenko J, Lagaaey AM, van Dongen E, Knook DL, van der Geest S, Westendop RG: Successful aging in the oldest old: who can be characterized as successfully aged? Arch Intern Med 2001, 161(22):2694–2700.

17. Strawbridge WJ, Cohen RD, Shema SJ, Kaplan GA: Successful aging: predictors and associated activities. Am J Epidemiol 1996, 144(2):135–141.

18. Strawbridge WJ, Wallhagen MI, Cohen RD: Successful aging and well-being: self-rated compared with Rowe and Kahn. Gerontologist 2002, 42(2):727–733.

19. Burke GL, Arnold AM, Bild DE, Cushman M, Fried LP, Newman A, Nunn C, Robbins J: Factors associated with healthy aging: the cardiovascular health study. J Am Geriatr Soc 2001, 49(3):254–262.

20. McLaughlin SJ, Connell CM, Heeringa SG, Li LW, Roberts JS: Successful aging in the United States: prevalence estimates from a national sample of older adults. J Gerontol B Psychol Sci Soc Sci 2010, 65B(2):216–226.

21. Phelan EA, Anderson LA, LaCroix AZ, Larson EB: Older adults’ views of “successful aging”–how do they compare with researchers’ definitions? J Am Geriatr Soc 2004, 52(2):211–216.

22. Lam CL, Tse FY, Gendek B, Fong DT: The SF-36 summary scales were valid, reliable, and equivalent in a Chinese population. J Clin Epidemiol 2005, 58(8):815–822.

23. Pruchno RA, Wilson-Genderson M, Rose M, Cartwright F: Successful aging: early influences and contemporary characteristics. Gerontologist 2010, 50(4):821–833.

24. Newman AB, Arnold AM, Naydek B, Fried LP, Burke GL, Enright P, Gotttdiener J, Hirsch J, O’Leary D, Tracy R: “Successful aging”: effect of subclinical cardiovascular disease. Arch Intern Med 2006, 163(19):2135–2132.

25. Andrews G, Clark M, Luszcz M: Successful aging in the Australian longitudinal study of aging: applying the MacArthur model cross-nationally. J Soc Issues 2002, 58(4):749–765.

26. Fletcher PC, Guthrie DM, Berg K, Hirdes JP: Risk factors for restriction in activity associated with fear of falling among seniors within the community. J Patient Saf 2010, 6(3):187–191.

27. Vellas BJ, Wayne SJ, Romero LJ, Baumgartner RN, Garry PJ: Fear of falling and restriction of mobility in elderly fallers. Age Ageing 1997, 26(3):189–193.

28. Brouwer B, Musselman K, Culham E: Functional status and health status among seniors with and without a fear of falling. Gerontology 2004, 50(3):135–141.

29. Okonkwo OC, Roth DL, Pulley L, Howard G: Confirmatory factor analysis of the validity of the SF-12 for persons with and without a history of stroke. Qual Life Res 2010, 19(9):1333–1331.

30. Haley WE, Roth DL, Kissela B, Perkins M, Howard G: Quality of life after stroke: a prospective longitudinal study. Qual Life Res 2011, 20(6):799–806.

31. Dunst CJ, Hamby DW, Trivette CM: Guidelines for calculating effect sizes for practice-based research syntheses. Centrereview 2004, 3(1):11–10.