High Precision Mass Measurements
in Ψ and Υ Families Revisited

A.S.Artamonov, S.E.Baru, A.E.Blinov, V.E.Blinov, A.E.Bondar, A.D.Bukin, A.G.Chilingarog, N.F.Denisov, S.I.Eidelman, Yu.I.Eidelman, V.R.Groshev, N.I.Inozemtsev, G.Ya.Kezerashvili, V.A.Kiselev, S.G.Klimenko, G.M.Kolachev, E.A.Kuper, L.M.Kurdadze, M.Yu.Lelchuk, S.I.Mishnev, S.A.Nikitin, A.P.Onuchin, E.V.Pakhtusova, V.S.Panin, V.V.Petrov, I.Ya.Protopopov, E.L.Saldin, A.G.Shamov, Yu.M.Shatunov, B.A.Shwartz, V.A.Sidorov, Yu.I.Skovpen, A.N.Skrinsky, V.A.Tayursky, V.I.Telnov, A.B.Temnykh, Yu.A.Tikhonov, G.M.Tumaikin, A.E.Undrus, A.I.Vorobiov, M.V.Yurkov, V.N.Zhilich, A.A.Zholentz

Budker Institute of Nuclear Physics, 630090, Novosibirsk, Russia

November 5, 2018

Abstract

High precision mass measurements in Ψ and Υ families performed in 1980-1984 at the VEPP-4 collider with OLYA and MD-1 detectors are revisited. The corrections for the new value of the electron mass are presented. The effect of the updated radiative corrections has been calculated for the $J/\Psi(1S)$ and $\Psi(2S)$ mass measurements.

Development of the resonant depolarization method (RDM) suggested in Novosibirsk [1, 2] opened unique opportunities in the high precision determination of the elementary particle masses. Pioneer experiments in Novosibirsk (see [3] and references therein) were
followed by those at Cornell [1], DESY [3] and CERN [8]. In this paper we reconsider
our measurements performed at the e^+e^- collider VEPP-4 in Novosibirsk in the Ψ [7, 8]
and Υ meson families [2, 11, 12, 13] with the goal to take into account the change of
the electron mass value [14, 15] as well as the updated radiative corrections [16] in case
of $J/\Psi(1S)$ and $\Psi(2S)$.

$J/\Psi(1S)$ and $\Psi(2S)$ mass measurements [7, 8] were performed in 1980 with the OLYA
detector [17] while the MD-1 group [18] carried out three independent measurements of
the $\Upsilon(1S)$ mass in 1982 [9], in 1983 [10] and in 1984 [11, 12] as well as determined the
masses of $\Upsilon(2S)$ and $\Upsilon(3S)$ in 1983 [10, 13]. The masses of the Ψ and Υ mesons were
obtained from a fit of the energy dependence of $\sigma(e^+e^- \rightarrow \text{hadrons})$ and relating the
value of the resonance mass to the beam energy. The absolute calibration of the beam
energy was performed using the RDM.

The resonant depolarization method is based upon the fact that in a storage ring with
a planar orbit the spin precession frequency Ω_s depends on the beam energy E as

$$\Omega_s = \omega(1 + \frac{\mu'}{\mu_0}\gamma), \quad (1)$$

where ω is the beam revolution frequency, $\mu'/'\mu_0$ is the ratio of the anomalous and normal
parts of the electron magnetic moment, $\gamma = E/mc^2$ is the Lorentz factor of electrons.
The frequency Ω_s is measured at the polarized electron beam using a depolarizer with the
frequency Ω_d adjusted as $\Omega_d = \Omega_s + n\omega$, where n is an arbitrary integer number.

A typical accuracy of the method is about 10^{-5}. However, the measured quantity is a
γ factor of electrons rather than their energy. Thus, the beam energy and the resonance
mass determined by the RDM depend on the electron mass assumed. In 1986 when the
results of the $\Upsilon(1S)$ mass measurement were published [14], its accuracy was about five
times worse than the claimed accuracy of the electron mass in the MeV scale (2.8 ppm)
[14]. However, in “The 1986 adjustment of the fundamental physical constants” [15] the
value of the electron mass was decreased by 8.5 ppm while its error was reduced to 0.3 ppm.

The decrease of the electron mass [15] was caused mainly by the 7.8 ppm (about three
“old” standard deviations) increase of the e/h ratio. Taking into account that two other
fundamental constants which depend on e, h and m_e, i.e. the fine-structure constant α
and Rydberg constant R_∞, remained almost unchanged, the increase of e/h propagates
to the abovementioned 8.5 ppm decrease of m_e in the MeV scale. Since resonance masses
determined from RDM are based upon the value of the electron mass and are quoted in
MeV, they should be also decreased by 8.5 ppm. The corresponding corrections to the
values of the $\Upsilon(1S)$, $\Upsilon(2S)$ and $\Upsilon(3S)$ meson masses measured by MD-1 were already
reported at the Chicago Conference [19].

2
An additional correction should be applied to the values of the $J/\Psi(1S)$ and $\Psi(2S)$ mass obtained in [7, 8]. Similarly to most early measurements, a fit of $\sigma(e^+e^- \rightarrow \text{hadrons})$ in these papers included the radiative corrections calculated according to the classic work of Jackson and Scharre [20]. Later, in Ref. [16] it was shown that the approach of Ref. [20] is not quite accurate and, in particular, violates the Bloch-Nordsieck theorem. Correspondingly, the analysis of the Υ resonances was performed [11, 12, 13] using the improved radiative corrections suggested in [16]. In Ref. [11] it was shown that the corresponding shift of the mass was about 0.1 MeV. Somewhat later the paper [21] was published entirely dedicated to the correction of the old measurements of Ψ and Υ parameters using the updated radiative corrections. However, the $J/\Psi(1S)$ and $\Psi(2S)$ masses were neither refit by the authors of Ref. [7, 8] nor quoted in Ref. [21].

The details of $J/\Psi(1S)$ and $\Psi(2S)$ mass measurements [7, 8] are not available now. Therefore, the $J/\Psi(1S)$ and $\Psi(2S)$ mass corrections were estimated by us as in Ref. [21] from the difference of the fits with the radiative corrections from Ref. [20] and Ref. [16]. Similarly to Ref. [20], only the electron loop was taken into account in the photon vacuum polarization term in Ref. [7, 8]. The resulting mass correction for radiative effects equals $-(0.023 \pm 0.003)\sigma_w$, where σ_w is the rms spread of the e^+e^- center of mass energy and the error accounts for dependence of the correction on the luminosity distribution around the resonance. The correction is somewhat lower than that which can be obtained from Fig.6 of Ref. [21]. At $\sigma_w = 0.7(1.0)$ MeV in $J/\Psi(1S)$ and $\Psi(2S)$ runs it equals -0.016 MeV and -0.023 MeV respectively.

Table 1 presents a list of the resonance masses measured at the VEPP-4 collider with the corresponding corrections, where $\Delta M(m_e)$ and $\Delta M(\text{rad.})$ stand for the correction for the electron mass and radiative effects respectively.

Let us briefly discuss how the change of the resonance masses above can affect other measurements. The new value of the $\psi(2S)$ mass should be taken into account during the interpretation of the Fermilab studies of the charmonium family in $p\bar{p}$ annihilation [22] which used the value of the $\psi(2S)$ mass from [7, 8] as a basic calibration in their determination of the $J/\psi(1S)$ mass. It is obvious that the obtained values of the m_e correction for $\Upsilon(1S)$ and $\Upsilon(2S)$ can also be applied to the Cornell [4] and DESY [5] measurements respectively. Since in these experiments the radiative corrections were calculated according to Ref. [21], their results should be also corrected for the radiative effects. We remind that our value of the $\Upsilon(1S)$ mass differs by more than 3.5 standard deviations from that at Cornell while for $\Upsilon(2S)$ it is consistent with the one in DESY. Our measurement of the $\Upsilon(3S)$ mass has not been repeated by any other group.
Table 1: Revision of mass measurements in Ψ and Υ families

Particle	Previous mass, MeV	$\Delta M(m_e)$, MeV	$\Delta M(rad.)$, MeV	Updated mass, MeV
$J/\Psi(1S)$	3096.93±0.09	-0.026	-0.016	3096.89±0.09
$\Psi(2S)$	3686.00±0.10	-0.031	-0.023	3685.95±0.10
$\Upsilon(1S)$	9460.59±0.09±0.05	-0.080	-	9460.51±0.09±0.05
$\Upsilon(2S)$	10023.6±0.5	-0.085	-	10023.5±0.5
$\Upsilon(3S)$	10355.3±0.5	-0.088	-	10355.2±0.5

References

[1] A.D.Bukin et al., Proceed. of the Vth Int. Symposium on High Energy and Elem. Particle Physics, Warsaw, September 1975, p.138.
[2] Ya.S.Derbenev et al., *Part. Acc.* 10 (1980) 177.
[3] A.N.Skrinsky and Yu.M.Shatunov, *Sov. Phys. Uspekhi* 32 (1989) 548.
[4] W.W.MacKay et al., *Phys. Rev.* D29 (1984) 2483.
[5] D.P.Barber et al., *Phys. Lett.* 135B (1984) 498.
[6] L.Arnaudon et al., *Phys. Lett.* B284 (1992) 431.
[7] A.A.Zholentz et al. (OLYA Collaboration), *Phys. Lett.* 96B (1980) 214.
[8] A.A.Zholentz et al. (OLYA Collaboration), *Sov. J. Nucl. Phys.* 34 (1981) 814.
[9] A.S.Artamonov et al. (MD-1 collaboration), *Phys. Lett.* 118B (1982) 225.
[10] A.S.Artamonov et al. (MD-1 collaboration), *Phys. Lett.* 137B (1984) 272.
[11] S.E.Baru et al. (MD-1 collaboration), *Z. Phys.* C30 (1986) 551.
[12] S.E.Baru et al. (MD-1 collaboration), *Z. Phys.* C56 (1992) 547.
[13] S.E.Baru et al. (MD-1 collaboration), *Z. Phys.* C32 (1986) 622.
[14] E.R.Cohen and B.N.Taylor, *J. Phys. and Chem. Reference Data* 2 (1973) 663.
[15] E.R.Cohen and B.N.Taylor, *Rev. Mod. Phys.* 59 (1987) 1121.
[16] E.A.Kuraev and V.S.Fadin, *Sov. J. Nucl. Phys.* **41** (1985) 466.

[17] A.D.Bukin et al. (OLYA Collaboration), *Sov. J. Nucl. Phys.* **27** (1978) 516.

[18] S.E.Baru et al. (MD-1 collaboration), *Phys. Reports* **267** (1996) 71.

[19] S.E.Baru et al., Proceed. of the b20 Symposium, Chicago, June 1997, AIP Conf. Proceed. 424, p.97.

[20] J.D.Jackson and D.L.Scharre, *Nucl. Instr. and Meth.* **128** (1975) 13.

[21] J.P.Alexander et al., *Nucl. Phys.* **B320** (1989) 45.

[22] T.A.Armstrong et al., *Phys. Rev.* **D47** (1993) 772.