Quasi-Monte Carlo point sets with small t-values and WAFOM

Shin Harasea,*

aGraduate School of Innovation Management, Tokyo Institute of Technology, W9-115, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8550, Japan.

Abstract

The t-value of a (t,m,s)-net is an important criterion of point sets for quasi-Monte Carlo integration, and many point sets are constructed in terms of t-values, as this leads to small integration error bounds. Recently, Matsumoto, Saito, and Matoba proposed the Walsh figure of merit (WAFOM) as a quickly computable criterion of point sets that ensure higher order convergence for function classes of very high smoothness. In this paper, we consider a search algorithm for point sets whose t-value and WAFOM are both small so as to be effective for a wider range of function classes. For this, we fix digital (t,m,s)-nets with small t-values (e.g., Sobol’ or Niederreiter–Xing nets) in advance, apply random linear scrambling, and select scrambled digital (t,m,s)-nets in terms of WAFOM. Experiments show that the obtained point sets improve the rates of convergence for smooth functions and are robust for non-smooth functions.

Keywords: Quasi-Monte Carlo method, Multivariate numerical integration, Digital net, (t,m,s)-net, Walsh figure of merit

2010 MSC: 65C05, 65D30

*Corresponding author (Tel: +81-3-5734-3517)

URL: harase@craft.titech.ac.jp (Shin Harase)
1. Introduction

For a Riemann integrable function \(f : [0, 1)^s \to \mathbb{R} \), we consider the integral \(\int_{[0,1)^s} f(x)dx \) and its approximation by quasi-Monte Carlo integration:

\[
\int_{[0,1)^s} f(x)dx \approx \frac{1}{N} \sum_{k=0}^{N-1} f(x_k),
\]

where the point set \(P := \{x_0, \ldots, x_{N-1}\} \subset [0,1)^s \) is chosen deterministically.

A typical quasi-Monte Carlo point set \(P \) is a low-discrepancy point set based on the \(t \)-value of a \((t, m, s)\)-net. Thus, the \(t \)-value is probably the most important criterion of quasi-Monte Carlo point sets \([4, 6, 17]\). Matsumoto, Saito, and Matoba \([14]\) recently proposed the Walsh figure of merit (WAFOM) as another criterion of quasi-Monte Carlo point sets ensuring higher order convergence for function classes of very high smoothness. WAFOM is also quickly computable, and this efficiency enables us to search for quasi-Monte Carlo point sets using a random search. As an analogy to coding theory, since a random search is easier than a mathematical construction (e.g., the success of low-density parity-check codes), Matsumoto et al. also searched for point sets at random by minimizing WAFOM. In the same spirit, Harase and Ohori \([11]\) searched for low-WAFOM point sets with extensibility (i.e., the number of points may be increased while the existing points are retained). In numerical experiments, these point sets are significantly effective for low-dimensional smooth functions. In fact, as shown later (in Remark \([2]\), low-WAFOM point sets based on a simple random search do not always have small \(t \)-values in the framework of \((t, m, s)\)-nets, and such point sets are sometimes inferior to classical \((t, m, s)\)-nets for non-smooth functions.

In this paper, we search for point sets whose \(t \)-value and WAFOM are both small, so as to be effective for a wider range of function classes, i.e., point sets combining the advantages of good \((t, m, s)\)-nets and low-WAFOM point sets. For this, we fix suitable digital \((t, m, s)\)-nets (e.g., Sobol’ or Niederreiter–Xing nets) in advance and apply random linear scrambling with non-singular lower triangular matrices that preserves \(t \)-values. Our key approach is to select good point sets from the scrambled digital \((t, m, s)\)-nets in terms of WAFOM. Our numerical experiments show that the obtained point sets improve the rates of convergence for smooth functions and are robust for non-smooth functions.
The rest of this paper is organized as follows. In Section 2, we briefly recall the definitions of digital \((t, m, s)\)-nets and WAFOM. Section 3 is devoted to our main result: a search for low-WAFOM point sets with small \(t\)-values using linear scrambling. In Section 4, we compare between our new point sets and other quasi-Monte Carlo point sets by using the Genz test function package \([7, 8]\). Section 5 concludes the paper with some directions for future research.

2. Notations

2.1. Digital \((t, m, s)\)-nets

For use in later sections, we briefly recall the definitions of digital \((t, m, s)\)-nets. Let \(s\) and \(n\) be positive integers. Let \(\mathbb{F}_2 := \{0, 1\}\) be the two-element field, and \(V := \mathbb{F}_2^{s \times n}\) the set of \(s \times n\) matrices. Let us denote \(x \in V\) by \(x := (x_{i,j})_{1 \leq i \leq s, 1 \leq j \leq n}\) with \(x_{i,j} \in \mathbb{F}_2\). We identify \(x \in V\) with the \(s\)-dimensional point
\[
\left(\sum_{j=1}^{n} x_{1,j} 2^{-j} + 2^{-n-1}, \ldots, \sum_{j=1}^{n} x_{s,j} 2^{-j} + 2^{-n-1}\right) \in [0, 1)^s.
\]
Note that \(n\) corresponds to the precision. Note also that the points are shifted by \(2^{-n-1}\) because we will later consider WAFOM (see \([14, \text{Remark 2.2}]\)). To construct \(P := \{x_0, x_1, \ldots, x_{2^m-1}\} \subset [0, 1)^s\), we often use the following construction scheme called the \textit{digital net}.

Definition 1 (Digital net). Consider \(n \times m\) matrices \(C_1, \ldots, C_s \in \mathbb{F}_2^{n \times m}\). For \(k = 0, 1, \ldots, 2^m - 1\), let \(k = \sum_{l=0}^{m-1} k_l 2^l\) with \(k_l \in \mathbb{F}_2\) be the expansion of \(k\) in base 2. We set \(k := \{k_0, \ldots, k_{m-1}\} \in \mathbb{F}_2^m\), where \(\cdot^t\) represents the transpose. We set \(x_k := \{C_1 k, \ldots, C_s k\} \in V\). Then, the point set \(P := \{x_0, \ldots, x_{2^m-1}\}\) is called a \textit{digital net} over \(\mathbb{F}_2\) and \(C_1, \ldots, C_s\) are the \textit{generating matrices} of the digital net \(P\).

Throughout this paper, we assume \(P\) is a digital net. Note that \(P \subset V\) is an \(\mathbb{F}_2\)-linear subspace of \(V\).

Definition 2 \((t, m, s)\text{-net}\). Let \(s \geq 1\), and \(0 \leq t \leq m\) be integers. Then, a point set \(P\) consisting of \(2^m\) points in \([0, 1)^s\) is called a \((t, m, s)\text{-net}\) (in base 2) if every subinterval \(J = \prod_{j=1}^{s} [a_j 2^{-d_j}, (a_j + 1)2^{-d_j})\) in \([0, 1)^s\) with integers \(d_j \geq 0\) and \(0 \leq a_j < 2^{d_j}\) for \(1 \leq j \leq s\) and of volume \(2^{t-m}\) contains exactly
2^t points of \(P \). If \(t \) is the smallest value such that \(P \) is a \((t, m, s)\)-net, then we call this the \(t \)-value (or exact quality parameter). If \(P \) is a digital net, it is called a digital \((t, m, s)\)-net.

As a criterion, \(P \) is well distributed if the \(t \)-value is small. In this framework, from the Koksma–Hlawka inequality and estimation of star-discrepancies, the upper bound on the absolute error of (1) is \(O(2^t(\log N)^{s-1}/N) \) (see [6, 17] for details). There are many studies on generating matrices of digital \((t, m, s)\)-nets, e.g., Sobol’ nets [24], Niederreiter nets [17], and Niederreiter–Xing nets [26]. There are also some algorithms for computing \(t \)-values of digital nets [3, 22].

2.2. WAFOM

Matsumoto et al. [14] proposed WAFOM as a computable criterion of quasi-Monte Carlo point sets constructed by digital nets \(P \). WAFOM has the potential ability to ensure higher order convergence than \(O(N^{-1}) \) for function classes of very high smoothness (so-called \(n \)-smooth functions). In a recent talk, Yoshiki [28] modified the definition of WAFOM resulting in a more explicit upper bound for integration errors. Thus, throughout this paper, we adopt this new result as our WAFOM value.

Definition 3 (WAFOM). Let \(P \subset V \) be a digital net. For \(\mathbf{x} = (x_{i,j}) \in P \), the (modified) WAFOM (or Walsh figure of merit) is defined as

\[
\text{WAFOM}(P) := \frac{1}{|P|} \sum_{\mathbf{x} \in P} \left\{ \prod_{1 \leq i \leq s} \prod_{1 \leq j \leq n} (1 + (-1)^{x_{i,j}}2^{-j-1}) - 1 \right\}.
\]

(2)

This criterion is computable in \(O(nsN) \) arithmetic operations, where \(N := |P| \), and is computable in \(O(sN) \) steps when using look-up tables (see [11]).

Next, we recall the \(n \)-digit discretization \(f_n \) of \(f \) by following [14, Section 2]. For \(\mathbf{x} = (x_{i,j})_{1 \leq i \leq s, 1 \leq j \leq n} \in V \), we define the \(s \)-dimensional subinterval \(I_{\mathbf{x}} \subset [0, 1)^S \) by

\[
I_{\mathbf{x}} := \left[\sum_{j=1}^{n} x_{1,j}2^{-j}, \sum_{j=1}^{n} x_{1,j}2^{-j} + 2^{-n} \right] \times \cdots \times \left[\sum_{j=1}^{n} x_{s,j}2^{-j}, \sum_{j=1}^{n} x_{s,j}2^{-j} + 2^{-n} \right].
\]

For a Riemann integrable function \(f : [0, 1)^s \to \mathbb{R} \), we define its \(n \)-digit discretization \(f_n : V \to \mathbb{R} \) by \(f_n(\mathbf{x}) := (1/\text{Vol}(I_{\mathbf{x}})) \int_{I_{\mathbf{x}}} f(\mathbf{x}) \, d\mathbf{x} \). This is the
average value of f over I_x. When f is Lipschitz continuous, it can be shown [14] that the discretization error between f and f_n on I_x is negligible if n is sufficiently large (e.g., when $n \geq 30$). Thus, for such $f : [0, 1)^s \to \mathbb{R}$ and large n, we may consider (1/|P|) $\sum_{x \in P} f_n(x)$.

Here, we assume that f is an n-smooth function (see [2] and [6, Ch. 14.6] for the definition). Yoshiki [28] gave the following Koksma–Hlawka type inequality by improving Dick’s inequality ([3, Section 4.1] and [14, (3.7)]):

$$\left| \int_{[0,1)^s} f(x) dx - \frac{1}{|P|} \sum_{x \in P} f_n(x) \right| \leq \sup_{0 \leq N_1, \ldots, N_s \leq n} ||f^{(N_1, \ldots, N_s)}||_\infty \cdot \text{WAFOM}(P),$$

where $||f||_\infty$ is the infinity norm of f and $f^{(N_1, \ldots, N_s)} := \partial^{N_1} \cdots \partial^{N_s} f / \partial x_1^{N_1} \cdots \partial x_s^{N_s}$.

Remark 1. In [14], WAFOM is originally defined by replacing 2^{-j-1} in [2] with 2^{-j}. Following the discussions in [15, 25, 27], the best (i.e., smallest) value of $\log(\text{WAFOM}(P))$ is $O(-m^2/s)$ for P with $|P| = 2^m$. Thus, WAFOM can be used to search a digital net P with higher order convergence than $O(N^{-1})$ for n-smooth functions.

3. Scrambling methods

In previous works, Matsumoto et al. [14] and Harase and Ohori [11] searched for low-WAFOM point sets using only WAFOM as a criterion. In fact, the point sets obtained in these ways do not always have small t-values as (t, m, s)-nets. In this section, we take into account the structure of (t, m, s)-nets, and search for low-WAFOM point sets with small t-values. For this, we consider the following transformation, known as linear scrambling.

Proposition 1 ([19]). Let $C_1, \ldots, C_s \in \mathbb{F}_2^{n \times m}$ be generating matrices of a digital (t, m, s)-net. Let $L_1, \ldots, L_s \in \mathbb{F}_2^{n \times n}$ be non-singular lower triangular matrices. Then, the digital net with generating matrices $L_1 C_1, \ldots, L_s C_s \in \mathbb{F}_2^{n \times m}$ is also a (t, m, s)-net.

Linear scrambling preserves the t-values, so we cannot distinguish whether scrambled nets are good using t-values itself. Here, WAFOM can be applied to the assessment of linearly scrambled digital (t, m, s)-nets. Our algorithm proceeds as follows:

1. Fix a digital (t, m, s)-net with a small t-value in advance.
2. Generate L_1, \ldots, L_s at random M times, and construct P from L_1C_1, \ldots, L_sC_s.
3. Select the point set P with the smallest WAFOM(P).

In this case, note that the point sets P are not extensible.

As an example, we set $(s, n, M) = (5, 32, 100000)$ and compare the WAFOM values of the following point sets P:

- (a) Niederreiter–Xing nets [26] implemented by Pirsic [21].
- (b) Sobol’ nets with better two-dimensional projections [12].
- (c) Naive low-WAFOM point sets based on a random search [11].
- (d) Scrambled Niederreiter-Xing nets given by the above procedure.
- (e) Scrambled Sobol’ nets given by the above procedure.

Figure 1 plots the WAFOM values. This shows that (c)–(e) have similar values. Taking a closer look at the figure, the WAFOM values of the Sobol’ nets (without linear scrambling) are rather large. This is because the generating matrices $C_1, \ldots, C_s \in \mathbb{F}_2^{n\times m}$ of Sobol’ nets are non-singular upper triangular, and hence the lower bits in their output are all zero. Consequently, WAFOM(P) tends to be large in (2). Roughly speaking, the slope of the Sobol’ nets is $O(N^{-1})$. In fact, the WAFOM values of the Niederreiter–Xing nets are already small, so we obtain higher order convergence rates using non-scrambled Niederreiter–Xing nets. However, by selecting suitable scrambling matrices, further improvements can be obtained for large values of m.

Remark 2. Low-WAFOM point sets based on a simple random search do not always possess small t-values, particularly for larger s and m. Table 1 gives a summary of the t-values of the above point sets for $s = 5$. As described in [11], the naive low-WAFOM point sets were searched by inductively determining the columns vectors of C_1, \ldots, C_s in terms of WAFOM, thus allowing extensibility. Because we did not consider the structure of the (t, m, s)-nets in advance, the t-values are rather large. Matsumoto–Saito–Matoba (non-extensible) sequential generators [14] exhibit a similar tendency. Nevertheless, such low-WAFOM point sets are effective for smooth functions (see the next section for details).

Remark 3. In two pioneering papers, Dick [1, 2] proposed higher order digital nets and sequences that achieve a convergence rate of $O(N^{-\alpha}(\log N)^{\alpha s})$ for α-smooth functions ($\alpha \geq 1$) by considering the decay of the Walsh coefficients. For this, he described an explicit construction for generating
matrices, called *interlacing*. Namely, we prepare \(s \alpha \) generating matrices \(C_1, \ldots, C_{s \alpha} \in \mathbb{F}_2^{m \times m} \) of a digital \((t, m, s \alpha)\)-net in advance. These are converted to the matrices \(C_1^{(\alpha)}, \ldots, C_{s \alpha}^{(\alpha)} \in \mathbb{F}_2^{m \alpha \times m} \) by rearranging the row vectors of \(\alpha \) successive generating matrices. Then, the digital net with \(C_1^{(\alpha)}, \ldots, C_{s \alpha}^{(\alpha)} \) achieves a convergence rate of \(O(N^{-\alpha}(\log N)^{\alpha s}) \). From [6, Proposition 15.8], such a digital net is a classical digital \((t', m, s)\)-net with \(t' \leq t \). However, when \(\alpha \) or \(s \) is large, the exact quality parameter \(t' \) might become large compared with the best possible \(t \)-value in the framework of classical \((t, m, s)\)-nets. The last two rows of Table 1 give the \(t \)-values of interlaced Niederreiter–Xing nets for \(\alpha = 2 \) and 3. Our scrambling approach has the advantages that the exact quality parameters \(t \) do not increase and higher order convergences can be expected.

Remark 4. Goda, Ohori, Suzuki, and Yoshiki [10] proposed a variant of WAFOM from the view point of the mean square error for digitally shifted digital nets. They defined the criterion by replacing 2 in [2] with 4. Thus, this is applicable to our approach in a similar manner.
4. Numerical results

To evaluate the point sets (a)–(e) described in Section 3, we applied the Genz test package [7, 8]. This has been used in many studies (e.g., [18, 21, 23, 16]), and was also analyzed from a theoretical perspective in [20]. Thus, we investigate six different test functions defined over \([0, 1)^s\). These are:

- Oscillatory: \(f_1(x) = \cos(2\pi u_1 + \sum_{i=1}^s a_i x_i)\),
- Product Peak: \(f_2(x) = \prod_{i=1}^s \left[1/(a_i^{-2} + (x_i - u_i)^2)\right]\),
- Corner Peak: \(f_3(x) = (1 + \sum_{i=1}^s a_i x_i)^{-1}\),
- Gaussian: \(f_4(x) = \exp(-\sum_{i=1}^s a_i^2 (x_i - u_i)^2)\),
- Continuous: \(f_5(x) = \exp(-\sum_{i=1}^s a_i |x_i - u_i|)\),
- Discontinuous: \(f_6(x) = \begin{cases} 0, & \text{if } x_1 > u_1 \text{ or } x_2 > u_2, \\ \exp(\sum_{i=1}^s a_i x_i), & \text{otherwise}. \end{cases}\)

In these functions, we have two parameters, i.e., the difficulty parameters \(a = (a_1, \ldots, a_s)\) and the shift parameters \(u = (u_1, \ldots, u_s)\). We generate \(a = (a_1, \ldots, a_s)\) and \(u = (u_1, \ldots, u_s)\) as uniform random vectors in \([0, 1]^s\), and \(a\) is renormalized to satisfy the following condition:

\[\sum_{i=1}^s a_i = h_j, \]

where \(h_j\) depends on the family \(f_j\). By varying \(a\) and \(u\), we formed quantitative examples based on 20 random samples for each function class. For any sample size \(|P| = 2^m\) and any function \(f_j\), we computed the median of the relative errors (in log10 scale)

\[\log_{10} \frac{|I(f_j) - I_N(f_j)|}{|I(f_j)|} \]

varying the parameters, where \(I(f_j) := \int_{[0,1]^s} f_j \, dx\), \(N := |P|\), and \(I_N(f_j) := (1/|P|) \sum_{x \in P} f(x)\).
Figure 2 shows a summary of the medians of the relative errors for $s = 5$, $m = 1, \ldots, 23$, and $(h_1, \ldots, h_6) = (4.5, 3.625, 0.925, 3.515, 1.02, 2.15)$, which are the same settings in [11]. For f_1 and f_3, the low-WAFOM point sets are clearly superior to the Niederreiter-Xing nets. In particular, the scrambled Sobol’ nets represent a drastic improvement over the original Sobol’ nets. Note that the slopes are similar to those in Figure 1. Additionally, for f_2 and f_4, the low-WAFOM point sets are competitive with the Niederreiter–Xing nets. In these smooth functions, the WAFOM criterion seems to work very well. In the case of non-smooth functions, the situations is different. For the continuous but non-differentiable functions f_5, the naive low-WAFOM point sets are inferior to the Niederreiter–Xing nets. However, when we take into account the structure of (t, m, s)-nets, the low-WAFOM point sets preserve the rate of convergence. For f_6, the naive low-WAFOM point sets are also inferior to the other point sets with small t-values. These results imply that the structure of (t, m, s)-nets is important for non-smooth functions.

5. Conclusions and future directions

In this paper, we have searched for point sets whose t-value and WAFOM are both small so as to be effective for a wider range of function classes. For this, we fixed digital (t, m, s)-nets in advance and applied random linear scrambling. The key technique was to select linearly scrambled (t, m, s)-nets in terms of WAFOM. Numerical experiments showed that the point sets obtained by our method have improved convergence rates for smooth functions and are robust for non-smooth functions.

Finally, we discuss some directions for future research. In our approach, m was fixed and the extensibility was discarded. We also attempted to search for extensible point sets, but the WAFOM values tend to be worse than the current ones for large m. Thus, an efficient search algorithm for extensible scrambling matrices is one area of future work. As another direction, the quasi-Monte Carlo method is an important tool in computational finance (e.g., [9, 13]). However, many applications encounter integrands with boundary singularities. Such integrands are not included in a suitable class of functions, i.e., n-smooth functions, so we might not expect higher order convergence from the simple application of low-WAFOM point sets. There will probably be a need for some kind of transformation to force the integrand to be included in a suitable class of functions, such as periodization.
Figure 2: Median of relative errors for Genz functions.
in lattice rules. The study of WAFOM is still in its infancy, so a number of unsolved problems remain.

Acknowledgments

The author was partially supported by Grant-in-Aid for JSPS Fellows 24·7985.

References

[1] J. Dick, Explicit constructions of quasi-Monte Carlo rules for the numerical integration of high-dimensional periodic functions, SIAM J. Numer. Anal. 45 (2007) 2141–2176.

[2] J. Dick, Walsh spaces containing smooth functions and quasi-Monte Carlo rules of arbitrary high order, SIAM J. Numer. Anal. 46 (2008) 1519–1553.

[3] J. Dick, On quasi-Monte Carlo rules achieving higher order convergence, in: Monte Carlo and quasi-Monte Carlo methods 2008, Springer, Berlin, 2009, pp. 73–96.

[4] J. Dick, F.Y. Kuo, I.H. Sloan, High-dimensional integration: the quasi-Monte Carlo way, Acta Numer. 22 (2013) 133–288.

[5] J. Dick, M. Matsumoto, On the fast computation of the weight enumerator polynomial and the t value of digital nets over finite abelian groups, SIAM J. Discrete Math. 27 (2013) 1335–1359.

[6] J. Dick, F. Pillichshammer, Digital nets and sequences, Cambridge University Press, Cambridge, 2010. Discrepancy theory and quasi-Monte Carlo integration.

[7] A. Genz, Testing multidimensional integration routines, in: Tools, Methods, and Languages for Scientific and Engineering Computation, Elsevier North-Holland, Inc., New York, NY, USA, 1984, pp. 81–94.

[8] A. Genz, A package for testing multiple integration subroutines, in: Numerical Integration: Recent Developments, Software and Applications, Springer, 1987, pp. 337–340.
[9] P. Glasserman, Monte Carlo methods in financial engineering, volume 53 of Applications of Mathematics (New York), Springer-Verlag, New York, 2004. Stochastic Modelling and Applied Probability.

[10] T. Goda, R. Ohori, K. Suzuki, T. Yoshiki, The mean square quasi-monte carlo error for digitally shifted point sets, 2014. Talks at Eleventh International Conference on Monte Carlo and Quasi-Monte Carlo Methods in Scientific Computing (MCQMC2014).

[11] S. Harase, R. Ohori, A search for extensible low-wafom point sets, 2013. ArXiv:1309.7828.

[12] S. Joe, F.Y. Kuo, Constructing Sobol’ sequences with better two-dimensional projections, SIAM J. Sci. Comput. 30 (2008) 2635–2654.

[13] P. L’Ecuyer, Quasi-Monte Carlo methods with applications in finance, Finance Stoch. 13 (2009) 307–349.

[14] M. Matsumoto, M. Saito, K. Matoba, A computable figure of merit for quasi-Monte Carlo point sets, Math. Comp. 83 (2014) 1233–1250.

[15] M. Matsumoto, T. Yoshiki, Existence of higher order convergent quasi-Monte Carlo rules via Walsh figure of merit, 2012. Josef Dick, Frances Y. Kuo, Gareth W. Peters, and Ian H. Sloan (eds.), Monte Carlo and Quasi-Monte Carlo Methods 2012, to appear, Springer-Verlag.

[16] H. Morohosi, M. Fushimi, A practical approach to the error estimation of quasi-Monte Carlo integrations, in: Monte Carlo and quasi-Monte Carlo methods 1998 (Claremont, CA), Springer, Berlin, 2000, pp. 377–390.

[17] H. Niederreiter, Random number generation and quasi-Monte Carlo methods, volume 63 of CBMS-NSF Regional Conference Series in Applied Mathematics, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1992.

[18] E. Novak, K. Ritter, High-dimensional integration of smooth functions over cubes, Numer. Math. 75 (1996) 79–97.

[19] A.B. Owen, Randomly permuted \((t, m, s)\)-nets and \((t, s)\)-sequences, in: Monte Carlo and quasi-Monte Carlo methods in scientific computing (Las Vegas, NV, 1994), volume 106 of Lecture Notes in Statist., Springer, New York, 1995, pp. 299–317.
[20] A.B. Owen, The dimension distribution and quadrature test functions, Statist. Sinica 13 (2003) 1–17.

[21] G. Pirsic, A software implementation of Niederreiter-Xing sequences, in: Monte Carlo and quasi-Monte Carlo methods, 2000 (Hong Kong), Springer, Berlin, 2002, pp. 434–445. https://sites.google.com/site/isabelpirsic/nxlegacy.

[22] G. Pirsic, W.C. Schmid, Calculation of the quality parameter of digital nets and application to their construction, J. Complexity 17 (2001) 827–839. Complexity of multivariate problems (Kowloon, 1999).

[23] I.H. Sloan, S. Joe, Lattice methods for multiple integration, Oxford Science Publications, The Clarendon Press Oxford University Press, New York, 1994.

[24] I.M. Sobol’, Distribution of points in a cube and approximate evaluation of integrals, Ž. Výčisl. Mat. i Mat. Fiz. 7 (1967) 784–802.

[25] K. Suzuki, Wafom on abelian groups for quasi-monte carlo point sets, 2014. ArXiv:1403.7276.

[26] C.P. Xing, H. Niederreiter, A construction of low-discrepancy sequences using global function fields, Acta Arith. 73 (1995) 87–102.

[27] T. Yoshiki, A Lower Bound on WAFOM, 2013. Preprint.

[28] T. Yoshiki, Bounds on the Walsh coefficients by dyadic difference and an improved figure of merit for QMC, 2014. A talk at Eleventh International Conference on Monte Carlo and Quasi-Monte Carlo Methods in Scientific Computing (MCQMC2014).