Anisotropic magnetic entropy change in \(R \text{FeO}_3 \) single crystals (\(R = \text{Tb}, \text{Tm}, \text{or Y} \))

Ya-Jiao Ke, Xiang-Qun Zhang, Yue Ma & Zhao-Hua Cheng

Compared with traditional gas-compression/expansion refrigeration, magnetic refrigeration based on magnetocaloric effect (MCE) exhibits the advantages of high energy efficiency and environment friendliness. Here, we created large MCE in \(\text{RFeO}_3 \) (\(R = \text{Tb} \) or \(\text{Tm} \)) single crystals by the magnetization vector rotation of single crystal with strong magnetocrystalline anisotropy (MCA), rather than merely via the order-disorder magnetic phase transition or magnetic structural transition. Owing to the difference in charge distribution of \(4f \)-electrons between \(\text{Tb}^{3+} \) and \(\text{Tm}^{3+} \) ions, the rotating field entropy with different signs, \(-\Delta S_M^b = 17.42 \text{ J/kg K}, \) and \(-\Delta S_M^c = 9.01 \text{ J/kg K} \) are achieved at 9 K and 17 K for \(\text{TbFeO}_3 \) and \(\text{TmFeO}_3 \) single crystals from \(b \) axis to \(c \) axis, at 50 kOe, respectively. The finding of the large anisotropic MCE not only advances our understanding of the anisotropy of MCE, but also extends the application for single crystals to magnetic refrigeration.

Magnetocaloric effect (MCE), which describes the temperature change of magnetic materials in an adiabatic process caused by magnetic entropy change \(\Delta S_M \) under external magnetic field, has been extensively investigated. In comparison with traditional gas-compression/expansion refrigeration, magnetic refrigeration based on MCE exhibits the advantages of high energy efficiency and environment friendliness. The giant or very large magnetic entropy change was obtained in various kinds of magnetic materials, including Gd-based alloys \(\text{Gd}_x(\text{Si}, \text{Ge})_{1-x} \), Mn-based Ni-Mn-Ga(Sn) alloys \(\text{MnFeP}_{0.45}\text{As}_{0.55} \), \(\text{Fe}\)-based \(\text{LaFe}_{13-x}(\text{Si}, \text{Al})_x \), as well as rare-earth perovskite-type manganites \(\text{(La}_{1-x}\text{M})\text{MnO}_3 \) \(\text{(M = Ca, Sr, and Ba etc.)} \). Although numerous studies on MCE have been concentrated on exploring new materials with giant MCE near room temperature for domestic applications, giant MCE in the low-temperature region from about 30 K down to sub-Kelvin temperatures is also essential for utilization in certain fields, such as liquid hydrogen economy and space application.

The magnetic, barocaloric and electrocaloric effects can be tuned or created by element substitution, pressure, strain, electric field, or elastic force. The giant magnetic entropy change in the vicinity of magnetic ordering temperature is usually accompanied by a field-induced or temperature-induced magnetic phase transition with the changes in either crystal symmetry or volume. In addition to magnetic entropy change, mechanical properties and chemical stability are key issues for the practical use of magnetic refrigeration. The material will definitely become very brittle and even break into smaller grains if its crystal symmetry or volume is changed very frequently, and consequently the corrosion resistance and the lifetime of a magnetic refrigerator will be deteriorated. Therefore, it is interesting to explore whether the giant MCE can be created by the magnetization vector rotation of single crystal with strong magnetocrystalline anisotropy (MCA), rather than merely via the order-disorder magnetic phase transition or magnetic structural transition.

Although the anisotropic MCE, which was discovered in Ni single crystal more than 70 years ago, is lower than that from the paramagnetic-ferromagnetic phase transition, it should be large for materials with high values of derivatives of the MCA with respect to temperature. Here, we explore the anisotropic magnetic entropy change of \(\text{RFeO}_3 \) single crystals with \(R = \text{Tb}, \text{Tm} \) or \(Y \). The reasons for choosing \(\text{RFeO}_3(R = \text{Tb}, \text{Tm}, \text{or Y}) \) single crystals are three-fold. Firstly, \(\text{RFeO}_3 \) show a complex magnetic transformation and spin-reorientation transitions. The magnetoelastic properties and superfast optomagnetic effect of \(\text{RFeO}_3 \) single crystal have been extensively investigated. Unfortunately, the effect of the complex magnetic transformation on MCE is not understood yet. Secondly, the magnetic moments of \(\text{Tb}^{3+} \) and \(\text{Tm}^{3+} \) ions are large, and we can achieve a larger magnetic entropy change in \(\text{RFeO}_3(R = \text{Tb}, \text{Tm}) \) single crystal according to the relation of \(-\Delta S_M^{\text{Max}} = \text{Rln}(2J + 1) \),
where R is the gas constant and J is the total angular momentum of the magnetic ion. Thirdly, the 4f shell of Tb$^{3+}$, Tm$^{3+}$ and Y$^{3+}$ has an oblate, a prolate, and a spherical shape, respectively, a different anisotropy of MCE would be expected between the TbFeO$_3$ and TmFeO$_3$ single crystals on the basis of single-ion-anisotropy model39. The rotating field entropy with different signs, $-\Delta S_M^b = 17.42$ J/kg K, and $-\Delta S_M^c = -9.01$ J/kg K are achieved at 9 K and 17 K for TbFeO$_3$ and TmFeO$_3$ single crystals from b axis to c axis, respectively. The finding not only advances our understanding of the MCE anisotropy in magnetic single crystals, but also opens a new arena for magnetic refrigerator by rotating its magnetization vector.

X-ray diffraction (XRD) patterns and back-reflection Laue XRD patterns demonstrate that RFeO$_3$(R = Tb, Tm or Y) single crystals have an orthorhombically distorted pervoskite structure with Pbnm symmetry (not shown). Figure 1(a,b) display the zero-field-cooled (ZFC) and field-cooled (FC) thermal magnetization curves along a and c axis from 2 K to 300 K under a magnetic field of 100 Oe, respectively. Insets: thermal magnetization curves along a and c axis of TbFeO$_3$.

![Figure 1. Zero-field-cooled (ZFC) and field-cooled (FC) thermal magnetization curves. (a) of TbFeO$_3$ along a and c axis; and (b) of TmFeO$_3$ along a and c axis from 2 K to 300 K under a magnetic field of 100 Oe. Insets: thermal magnetization curves along a and c axis of TbFeO$_3$.](image)

The kink point at 3 K indicated by the arrows in inset of Fig. 1(a) corresponds to the ordering temperature of Tb$^{3+}$ moments (T_N^{3+}). From the inset thermal magnetization curves of a and c axes, two spin-reorientation transitions are observed in the temperature range from 8.5 K to 6 K and 3.5 K to 2.5 K, corresponding to the spin-reorientation of Fe$^{3+}$ moments from $\Gamma_1(G_xA_yF_z)$ configuration to $\Gamma_1(F_xC_yG_z)$ configuration, and then back to the high temperature configuration $\Gamma_1(G_xA_yF_z)$. From the thermal magnetization curves of a and c axes of TbFeO$_3$ single crystal shown in Fig. 1(b), a spin-reorientation transition is observed in the temperature range from 85 K to 95 K, corresponding to the spin-reorientation of Fe$^{3+}$ moments rotate from $\Gamma_1(F_xC_yG_z)$ configuration to $\Gamma_1(F_yC_yG_z)$ configuration40. Figure 2(a–c) illustrate the isothermal magnetization curves along a, b and c axes of TbFeO$_3$ single crystal in the temperature range of 2–40 K with an interval of 2 K, respectively. A spin-flip phenomenon can be observed along a, b and c axis of the TbFeO$_3$ single crystal at 2 K due to the antiferromagnetic interaction of Tb-Tb ions40,41. Form the data we can see that the easy magnetization direction (EMD) lies in a axis and 9 K along c axis, respectively. The values of ΔM along a and b axes from 2 K to 300 K under a magnetic field of 100 Oe for TbFeO$_3$ and TmFeO$_3$ single crystals, respectively.

At temperature T, the magnetic entropy change due to applied field H can be calculated from the isothermal curves by the Maxwell relation

$$\Delta S_M(T, H) = \int_0^H \left(\frac{\partial M}{\partial T} \right)_H dH = \sum_{0}^{H} \left(\frac{M_{T+\Delta T} - M_{T-\Delta T}}{(T+\Delta T) - (T-\Delta T)} \right) \Delta H$$

(1)

where the slope of two adjacent data points is approximatively used for the numerical calculation of the gradient of $(\partial M/\partial T)_H$.

By selecting $\Delta T = 1$ K and $H = 2$ kOe, the calculated $-\Delta S_M$ vs temperature is shown in Fig. 2(d–f) for fields along a, b and c axis, respectively. A large anisotropy of MCE is observed in TbFeO$_3$ single crystal along a and b plane and c axis. The maximum values of $-\Delta S_M$ are achieved at 24.05 J/kg K and 20.18 J/kg K in a field of 70 kOe at 11 K along a axis and 9 K along b axis, respectively. The values of $-\Delta S_M$ along c axis are smaller than those along a and b axis above the ordering temperature of Tb$^{3+}$ moments ($T_N^{3+} \sim 3$K). Around $T_N^{3+} - 3$K, a field-induced transition from antiferromagnetic configuration of Tb$^{3+}$ moments to ferromagnetic one results in $-\Delta S_M = 10.55$ J/kg K.

Figure 3(a–c) illustrate the isothermal magnetization curves along a, b and c axis of TmFeO$_3$ single crystal in the temperature range of 2–40 K with an interval of 2 K, respectively. In contrast to TbFeO$_3$ single crystal, TmFeO$_3$ single crystal exhibits a uniaxial magnetic anisotropy with EMD along c-axis. The magnetic entropy
Figure 2. Isothermal magnetization curves and magnetic entropy change of TbFeO₃ single crystal. (a) magnetization curves along a axis, (b) magnetization curves along b axis, (c) magnetization curves along c axis; (d) magnetic entropy change along a axis, (e) magnetic entropy change along b axis, and (f) magnetic entropy change along c axis.

Figure 3. Isothermal magnetization curves and magnetic entropy change of TmFeO₃ single crystal. (a) magnetization curves along a axis, (b) magnetization curves along b axis, (c) magnetization curves along c axis, (d) magnetic entropy change along a axis, (e) magnetic entropy changes along b axis, and (f) magnetic entropy change along c axis.
change $-\Delta S_M$ calculated from the isothermal curves using the equation (1) is shown in Fig. 3(d–f) for fields along the a, b and c axis, respectively. The maximum values of $-\Delta S_M$ are achieved of 11.93 J/kg K in a field of 70 kOe at 17 K along c axis, whereas $-\Delta S_M$ for a and b axes are about one order of magnitude smaller than those along c axis in the whole temperature range.

The anisotropy of magnetic entropy change results from the MCA. In general, the overall MCA of RFeO$_3$ single crystal is the sum of R^{3+} sublattice anisotropy and Fe^{3+} sublattice one, as similar with $RMnO_3$ series29. In order to separate the individual contribution from R^{3+} ion sublattice, we measured the magnetization curves and magnetic entropy change of YFeO$_3$ single crystal for comparison. Since Y ion has non-magnetic moments, and consequently makes no contribution to the overall MCA. Therefore, it affords a separate investigation of the Fe^{3+} sublattice anisotropy. Isothermal magnetization curves along a, b and c axis of YFeO$_3$ single crystal are shown in Fig. 4(a–c), respectively. The magnetization curves indicate that the magnetic anisotropy among a, b and c axis is not significant. Furthermore, the magnetic entropy change of YFeO$_3$ are nearly zero (Fig. 4(d–f)), suggesting that the anisotropy of magnetic entropy change in TbFeO$_3$ and TmFeO$_3$ single crystals is arisen mainly from the contribution of Tb^{3+} and Tm^{3+} ions sublattice anisotropy.

In the first approximation, the MCA constant $K_{1,R}$ can be described as42.

$$K_{1,R} = -\frac{1}{2} \alpha_J A_J^0 < r_{JZ}^2 > (3 f_{R,Z}^2 - f_R (f_R + 1))$$

(2)

where α_J is the second-order Stevens coefficient, and A_J^0 is the second-order crystalline electrical field (CEF) coefficient. $< r_{JZ}^2 >$ is the squared $4f$ shell radius. J_R is the Hund’s rules angular moment of R ion.

Since the sign of A_J^0 for orthorhombically distorted pervoskite structure RFeO$_3$($R = Tb, Tm$ or Y) single crystals is the same and negative43, the easy magnetization directions of these single crystals are governed by the sign of the second-order Stevens factor α_J of rare earth ions. The signs of α_J for Tb^{3+} and Tm^{3+} are negative and positive, respectively. Therefore, the MCA constants $K_{1,Tb} < 0$, and $K_{1,Tm} > 0$, suggesting that the easy magnetization direction of TbFeO$_3$ and TmFeO$_3$ single crystals aligns in ab plane and c axis, respectively. Similar results were also observed in DyFeO$_3$ and ErFeO$_3$ single crystals33,34.

The connection between anisotropic magnetic entropy change and magnetic anisotropy is evident from the field-dependence of $-\Delta S_M$ for TbFeO$_3$ single crystal at 9 K and TmFeO$_3$ single crystal at 17 K along different axis (Fig. 5(a,c)). For magnetic refrigeration application, not only a large entropy change value, but also a large refrigeration capacity (RC) is required. RC is defined as

$$RC = \int_{T_1}^{T_2} \Delta S_M dT$$

(3)
where T_1 and T_2 are the temperatures corresponding to both sides of the half-maximum value of $-\Delta S_M^{\text{peak}}$. The RC is the measure of the amount of heat transfer between the cold and hot reservoirs in an ideal refrigerator as a function of field. The field-dependent refrigeration capacity of TbFeO$_3$ and TmFeO$_3$ single crystals is shown in Fig. 5(b) and Fig. 5(d). The three directions manifest obvious anisotropy with values of RC in a field of 70 kOe are 504.8 J/kg, 319.9 J/kg and 11.4 J/kg for a, b and c axes for TbFeO$_3$ single crystal, respectively. For TmFeO$_3$ single crystal, we also see obvious anisotropy with values of RC in a field of 70 kOe are 34.8 J/kg, 47.8 J/kg and 279.2 J/kg for a, b and c axes. It is interesting that both TmFeO$_3$ single crystal and TbFeO$_3$ single crystal exhibit a strong magnetocrystalline anisotropy between ab plane and c axis, and almost magnetic isotropy in ab plane.

The rotating magnetic entropy change $-\Delta S_M^{R}$ can be obtained by rotating the crystal from b to c axis and measuring the corresponding isothermal magnetization curves. Figure 6(a,b) indicate the representative isothermal magnetization curves at different angles for temperatures of 8 K and 10 K for TbFeO$_3$ single crystal and of 16 K and 18 K for TmFeO$_3$ single crystal, respectively. Taking b axis as the starting angle, we can get the rotating magnetic entropy change $-\Delta S_M^{R}$ as a function of angle by using Eq. (1). As is shown in Fig. 7(a,b), the largest values of $-\Delta S_M^{R} = 17.42$ J/kg K can be achieved at temperature of 9 K for TbFeO$_3$ and $-\Delta S_M^{R} = -9.01$ J/kg K can be achieved at temperature of 17 K for TbFeO$_3$ both under a magnetic field of 50 kOe from b to c axis. Since RFeO$_3$ ($R = $ Tb, Tm) single crystals exhibit almost magnetic isotropy in ab plane and a strong magnetocrystalline anisotropy between ab plane and c axis, Fig. 7(c–d) display the “expected” magnetic entropy change $-\Delta S_M^{R}$. As proposed by Kuz’min and Tishin, the large and reversible anisotropic magnetic entropy change with broad temperature span suggests that a promising candidate for new type magnetic refrigeration can be achieved by simply rotating the RFeO$_3$ ($R = $ Tb, or Tm) single crystals or magnet.

In conclusion, we investigated the MCE of RFeO$_3$ single crystals among a, b and c axis. The large MCE with broad temperature span and little hysteresis loss is ideal for the application of magnetic refrigeration operated in a wide temperature window. The detailed analysis of magnetization data shows that both TbFeO$_3$ single crystal and TmFeO$_3$ single crystal exhibit a strong magnetocrystalline anisotropy between ab plane and c axis and almost magnetic isotropy in ab plane. Owing to the difference in charge distribution of 4f-electrons between Tb$^{3+}$ and Tm$^{3+}$ ions, the rotating field entropy with different signs, $-\Delta S_M^{ab} = 17.42$ J/kg K, and $-\Delta S_M^{c} = -9.01$ J/kg K are achieved at 9 K and 17 K for TbFeO$_3$ and TmFeO$_3$ single crystals from b axis to c axis, respectively. This discovery not only gives us a deeper insight into the understanding of the MCE anisotropy in spin canting anti-ferromagnetic single crystal, but also opens a new arena for rotary magnetic refrigerator by rotating its magnetization vector.

Methods

TbFeO$_3$, TmFeO$_3$ and YFeO$_3$ ceramic were prepared with the starting material Tb$_2$O$_3$ (>99.9%), Tm$_2$O$_3$ (>99.9%), Y$_2$O$_3$ (>99.9%) and Fe$_2$O$_3$ (>99.9%) with the ratio of stoichiometric. Then, they were pressed into pellets and sintered in air atmosphere for 48 hours using the solid state reaction method at 1250 °C, 1300 °C and 1300 °C.
X-ray diffraction (XRD) patterns showed the prepared samples were single-phase with $Pbnm$ crystallographic symmetry. The ceramics were compressed into rods under the hydrostatic pressure and sintered at 1400 °C for 48 hours. TbFeO$_3$, TmFeO$_3$ and YFeO$_3$ single crystals were grown with four ellipsoidal mirrors (Crystal Systems Inc, Figure 6. Representative isothermal magnetization curves at different angles in bc plane. (a) of TbFeO$_3$ single crystal at 8 K and 10 K; (b) of TmFeO$_3$ single crystal at 16 K and 18 K. 0 and 90 correspond to the b and c directions, respectively.

Figure 7. Rotating field entropy changes $-\Delta S^R(\alpha)$ from b axis to c axis vs magnetic field. (a) of TbFeO$_3$ single crystal at 9 K; (b) of TmFeO$_3$ single crystal at 17 K; (c) “expected” anisotropy of magnetic entropy change of TbFeO$_3$ single crystal; and (d) “expected” anisotropy of magnetic entropy change of TmFeO$_3$ single crystal.

X-ray diffraction (XRD) patterns showed the prepared samples were single-phase with $Pbnm$ crystallographic symmetry. The ceramics were compressed into rods under the hydrostatic pressure and sintered at 1400 °C for 48 hours. TbFeO$_3$, TmFeO$_3$ and YFeO$_3$ single crystals were grown with four ellipsoidal mirrors (Crystal Systems Inc, Figure 6. Representative isothermal magnetization curves at different angles in bc plane. (a) of TbFeO$_3$ single crystal at 8 K and 10 K; (b) of TmFeO$_3$ single crystal at 16 K and 18 K. 0 and 90 correspond to the b and c directions, respectively.

Figure 7. Rotating field entropy changes $-\Delta S^R(\alpha)$ from b axis to c axis vs magnetic field. (a) of TbFeO$_3$ single crystal at 9 K; (b) of TmFeO$_3$ single crystal at 17 K; (c) “expected” anisotropy of magnetic entropy change of TbFeO$_3$ single crystal; and (d) “expected” anisotropy of magnetic entropy change of TmFeO$_3$ single crystal.

X-ray diffraction (XRD) patterns showed the prepared samples were single-phase with $Pbnm$ crystallographic symmetry. The ceramics were compressed into rods under the hydrostatic pressure and sintered at 1400 °C for 48 hours. TbFeO$_3$, TmFeO$_3$ and YFeO$_3$ single crystals were grown with four ellipsoidal mirrors (Crystal Systems Inc,
References
1. Pecharsky, V. K., Gschneidner, K. A. & Giant, J. Magnetocaloric Effect in Gd5(Si2Ge2). Phys. Rev. Lett. 78, 4549 (1997).
2. Provenzano, V., Shapiro, A. J. & Shull, R. D. Reduction of hysteresis losses in the magnetic refrigerant Gd5Ge2Si2 by the addition of iron. Nature 429, 853 (2004).
3. Hu, F. X., Shen, B. G., Sun, J. R. & Wu, G. H. Large magnetic entropy change in a Heusler alloy Ni12.5Mn12.5Ga1.5, single crystal. Phys. Rev. B 64, 132412 (2001).
4. Krenke, T. et al. Inverse magnetocaloric effect in ferromagnetic Ni-Mn-Sn alloys. Nat. Mater. 4, 450–454 (2005).
5. Tegus, O., Brück, E., Buschow, K. H. J. & Boer, F. R. d. Transition-metal-based magnetic refrigerants for room-temperature applications. Nature 415, 150–152 (2002).
6. Hu, F. X. et al. Influence of negative lattice expansion and metamagnetic transition on magnetic entropy change in the compound LaFe11.4Si1.6. Phys. Rev. B 78, 134428 (2008).
7. Shen, R. G. et al. Recent Progress in Exploring Magnetocaloric Materials. Adv. Mater. 21, 4545–4564 (2009).
8. Guo, Z. B. et al. Large Magnetic Entropy Change in Perovskite-Type Manganese Oxides. Phys. Rev. Lett. 78, 1142 (1997).
9. Phan, M.-H. & Yu, S.-C. Review of the magnetocaloric effect in manganite materials. J. Magn. Magn. Mater. 308, 325–340 (2007).
10. Gschneidner Jr., K. A., Pecharsky, V. K. & Tsokol, A. O. Recent developments in magnetocaloric materials. Rep. Prog. Phys. 68, 1479–1539 (2005).
11. De Campos, A. et al. Ambient pressure colossal magnetocaloric effect tuned by composition in Mn1−xFe2As. Nat. Mater. 5, 802–804 (2006).
12. Morell, L. et al. Pressure Enhancement of the Giant Magnetocaloric Effect in Tb5Si4Ge2. Phys. Rev. Lett. 93, 137201 (2004).
13. Gama, S. et al. Pressure-Induced Colossal Magnetocaloric Effect in MnAs. Phys. Rev. Lett. 93, 237202 (2004).
14. Sun, Y. et al. Tuning of magnetocaloric effect in a La40.8Ca0.2Mn6O19 single crystal by pressure. Appl. Phys. Lett. 88, 102505 (2006).
15. Mafiosa, L. et al. Giant solid-state barocaloric effect in the Ni-Mn-In magnetic shape-memory alloys. Nat. Mater. 9, 478–481 (2010).
16. Mosca, D. H., Vidal, F. & Ettgens, V. H. Strain Engineering of the Magnetocaloric Effect in MnAs Eplayers. Phys. Rev. Lett. 101, 125503 (2008).
17. Moya, X. et al. Giant and reversible extrinsic magnetocaloric effects in La0.7Ca0.3MnO3 films due to strain. Nat. Mater. 12, 52–58 (2013).
18. Mischenko, A. S. et al. Giant Electrocaloric Effect in Thin-Film PbZr0.27Ti0.73O3. Science 311, 1270–1271 (2006).
19. Neese, B. et al. Large Magnetocaloric Effect in Ferroelectric Polymers Near Room Temperature. Science 321, 821–823 (2008).
20. Bonnot, E. et al. Elastocaloric Effect Associated with the Martensitic Transition in Shape-Memory Alloys. Phys. Rev. Lett. 100, 125901 (2008).
21. Liu, J. et al. Giant magnetocaloric effect driven by structural transitions. Nat. Mater. 11, 620 (2012).
22. Brück, E. Magnetocaloric Refrigeration at Ambient Temperature. In Handbook of Magnetic Materials vol. 17 (Ed. Buschow, K. H. J.) 235–291 (North Holland, Amsterdam, 2007).
23. Akulov, N. S. & Kirensky, L. W. A new magneto-caloric effect. J. Phys-USSR. 3, 31–34 (1940).
24. Kuz'min, M. D. & Tishin, A. M. Magnetic refrigerants for the 4.2–20 K region garnets or perovskites. J. Phys. D: Appl. Phys. 24, 2039 (1991).
25. Von Ranke, P. J. et al. Magnetocaloric effect in the RNi5(R = Pr, Nd, Gd, Tb, Dy, Ho, Er) series. Phys. Rev. B 70, 134428 (2004).
26. von Ranke, P. J. et al. The giant anisotropic magnetocaloric effect in DyAl12. J. Appl. Phys. 104, 093906 (2008).
27. Nikitin, S. A. et al. Giant Rotating Magnetocaloric Effect in the Region of Spin-Reorientation Transition in the NdCo5 Single Crystal. Phys. Rev. Lett. 105, 137205 (2010).
28. Jin, J. L. et al. Giant anisotropy of magnetocaloric effect in TbMnO3 single crystals. Phys. Rev. B 83, 184431 (2011).
29. Mihya, A. et al. Anisotropic magnetic properties and giant magnetocaloric effect in antiferromagnetic RMoO4 crystals (R = Dy, Tb, Ho, and Yb). Phys. Rev. B 84, 235127 (2011).
30. Jin, J. L., Zhang, X. Q., Ge, H. & Cheng, Z. H. Rotating field entropy change in hexagonal TmMnO3 single crystal with anisotropic paramagnetic response. Phys. Rev. B 85, 214426 (2012).
31. Patra, M. et al. Magnetocaloric effect in RAs (R = Nd, Sm, and Tm): Promising for cryogenic refrigeration close to liquid helium temperature. J. Alloys Compds. 511, 55–58 (2012).
32. Deb Nath, J. C. et al. Anisotropic and excellent magnetocaloric properties of La0.7Ca0.3MnO3 single crystal with anomalous magnetization. Mat. Sci. Eng. B 177, 48–53 (2012).
33. Huang, R. X. et al. Large rotating field entropy change in ErFeO3 single crystal with angular distribution contribution. Appl. Phys. Lett. 103, 162412 (2013).
34. Ke, Y. J. et al. Low field induced giant anisotropic magnetocaloric effect in DyFeO3 single crystal. Chin. Phys. B 24, 037501 (2015).
35. Zhang, H. et al. Giant rotating magnetocaloric effect induced by highly texturing in polycrystalline DyNiSi compound. Sci. Rep. 5, 11929 (2015).
36. White, R. L. Review of Recent Work on the Magnetic and Spectroscopic Properties of the Rare-Earth Orthoferrites. J. Appl. Phys. 40, 1061 (1969).
37. Tokunaga, Y., Taguchi, Y., Arima, T.-h. & Tokura, Y. Electric-field-induced generation and reversal of ferromagnetic moment in ferrites. Nat. Phys. 8, 838 (2012).
38. Kimel, A. V. et al. Laser-induced ultrafast spin reorientation in the antiferromagnet TbMnO3. Nature 429, 850–853 (2004).
39. Kuz’min, M. D. & Tishin, A. M. Theory of Crystal-Field Effects in 3d–4f Intermetallic Compounds. In Handbook of Magnetic Materials, vol. 17 (Ed. Buschow, K. H. J.) 149–233 (North Holland, Amsterdam, 2007).
40. Tejada, J. et al. Quantum Tunnelling of Antiferromagnetic Domain Walls in TbFeO3. Europhys. Lett. 50, 227 (1999).
41. Gordon, J. D., Gorodetsky, G. & Hornreich, R. Magnetization studies of TbFeO3. J. Magn. Magn. Mater. 3, 288–294 (1976).
42. Fiebig, M., Degenhardt, C. & Pisarev, R. V. Interaction of Frustrated Magnetic Sublattices in ErMnO3. Phys. Rev. Lett. 88, 027203 (2002).
43. Przenioslo, R., Sosnowska, I., Loewenhaupt, M. & Taylor, A. Crystal field excitations of NdFeO3. J. Magn. Magn. Mater. 140–144, 2151–2152 (1995).

Acknowledgements
This work was supported by the National Basic Research Program of China (973 program, Grant Nos. 2011CB921801, 2012CB933102, 2015CB921403), and the National Natural Sciences Foundation of
China (1117435, 11274360, and 51427801) and by the Wuhan National High Magnetic Field Center (No. PHMFF2015009).

Author Contributions
Z.H.C. designed the experiments. Y.J.K., X.Q.Z. and Y.M. grew the single crystal. Y.J.K. carried out the magnetic entropy changes experiments and calculation. All the co-authors contributed to the analysis and discussion for the results. Z.H.C. wrote the paper with the input from all the co-authors.

Additional Information
Competing financial interests: The authors declare no competing financial interests.

How to cite this article: Ke, Y.-J. et al. Anisotropic magnetic entropy change in RFeO$_3$ single crystals (R = Tb, Tm, or Y). Sci. Rep. 6, 19775; doi: 10.1038/srep19775 (2016).