The In Vitro Virucidal Effects of Mouthwashes on SARS-CoV-2

Miriam Ting 1,*, and Jon B. Suzuki 2,3,4,5,6

1 Think Dental Learning Institute, Paoli, PA 19301, USA
2 Department of Graduate Periodontics, University of Maryland, Baltimore, MD 20742, USA; jon.suzuki@temple.edu
3 Department of Graduate Prosthodontics, University of Washington, Seattle, WA 98195, USA
4 Department of Graduate Periodontics, Nova Southeastern University, Fort Lauderdale, FL 33314, USA
5 Department of Microbiology and Immunology (Medicine), Temple University, Philadelphia, PA 19140, USA
6 Department of Periodontology and Oral Implantology (Dentistry), Temple University, Philadelphia, PA 19140, USA
* Correspondence: thinkdentallearninginstitute@gmail.com; Tel.: +1-610-601-8898

Abstract: Oral antiseptic mouthwashes have been widely used for their antibacterial activity. As a result of the SARS-CoV-2 pandemic, the antiviral properties of these oral antiseptics have been aggressively studied. To demonstrate the direct antiviral activity of mouthwashes against SARS-CoV-2, this review will focus on the in vitro virucidal effects of these mouthwashes. Knowledge of the type, concentration, and exposure time of available mouthwashes can provide insights into effective protocols for their clinical use. With an understanding of the characteristics of each oral antiseptic mouthwash, proper mouthwash selection against SARS-CoV-2 may become a useful adjunct to personal protective equipment.

Keywords: SARS-CoV-2; COVID-19; mouthwashes; virucidal; antiviral; oral rinses; hygiene; CHX; CPC; PVP

1. Introduction

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible for the coronavirus disease 2019 (COVID-19) pandemic. SARS-CoV-2 is a single stranded enveloped RNA virus [1]. Its exponential spread, resulting in significant morbidity and mortality [2]. The SARS-CoV-2 viral load is highest in the oropharynx, nasopharynx, and nasal cavity [3]. This is due to the high angiotensin-converting enzyme 2 (ACE2) receptors in the respiratory epithelium. The ACE2 receptors are used by the virus on first entry into the body [4]. Since the mouth is part of the oropharynx, contaminated saliva can contribute to the spread of SARS-CoV-2 [5,6]. SARS-CoV-2 can spread via respiratory droplets, saliva, dental procedures that produce aerosolized viral particles [7], and physical contact. Dental providers are at risk of exposure to high levels of contamination with SARS-CoV-2 while performing aerosol-producing dental procedures [8].

SARS-CoV-2 shedding is the highest during the initial stages of disease and occurs in the upper respiratory tract [9,10]. SARS-CoV-2-infected symptomatic patients, as well as asymptomatic and pre-symptomatic SARS-CoV-2-infected individuals can spread the virus [11]. Social distancing and preventative measures, including personal hygiene and frequent disinfection of high-touch surfaces, are some important interventions to reduce person-to-person transmission. Cross-infection control guidelines need to stay abreast of the constantly mutating SARS-CoV-2 [12] and, likewise, new vaccines need to constantly evolve to continue to be effective [13]. Thus, strategies to curb the spread may involve proper hand washing and oral disinfection with mouthwashes [7].
2. Oral Antiseptic Mouthwashes

Oral antiseptic mouthwashes have been used widely for their antibacterial activity. Due to the COVID-19 pandemic, the antiviral properties of these oral antiseptics have been further investigated for infection control (Table 1). Commercially available mouthwashes contain active ingredients such as povidone iodine or polyvinylpyrrolidone iodine (PVP-I), cetylpyridinium chloride (CPC), chlorhexidine gluconate (CHX), dipotassium oxalate, stabilized hypochlorous acid, hydrogen peroxide (H_2O_2), eucalyptol, thymol, menthol, sodium fluoride, and zinc fluoride [14].

Study	Contact Time	Active Ingredient	Viral Titer (Median)	% Viral Kill	LRV	Compared to Control
Anderson et al., 2020 [15]	30 s	PVP-I 0.5%	>0.67	3.63	4.33	
	30 s	PVP-I 1.0%	>0.67	3.63	4.33	
Bidra et al., 2020 [16]	15 s	PVP-I 0.5%	<0.67	1.8	2.5	
	15 s	PVP-I 1.0%	>0.67	1.8	2.5	
	30 s	PVP-I 0.5%	<0.67	1.8	2.5	
	30 s	PVP-I 1.0%	>0.67	1.8	2.5	
Bidra et al., 2020 [17]	15 s	PVP-I 0.5%	<0.67	3.33	3.0	
	15 s	PVP-I 1.0%	>0.67	3.33	3.0	
	30 s	PVP-I 0.5%	<0.67	3.33	3.0	
	30 s	PVP-I 1.0%	>0.67	3.33	3.0	
Davies et al., 2021 [14]	PBS	0.2% CHX (formulation contains ethanol with 0.2% CHX (alcohol-free formulation)) 1.4% dipotassium oxalate (alcohol-free formulation) Eucalyptol, thymol, menthol, sodium fluoride, zinc fluoride 0.01–0.02% stabilised hypochlorous acid 1.5% HO_2 0.5% PVP-I (surfactant-free)	NR	NR	≥4.1	
Hassandarvish et al., 2020 [18]	Distilled water	Bovine serum albumin group	NR	NR	≥5	

Table 1. In-vitro studies on the virucidal effects of mouthwash on SARS-CoV-2.
Table 1. Cont.

Study	Control	Contact Time	Active Ingredient	Viral Titer (Median)	% Viral Kill	LRV Compared to Control
Kariva et al., 2021 [19]	0.5% sodium thiosulfate	30 s	PVP 0.47%	>99.94	>3.2	NR
		30 s	PVP 0.23%	>99.93	>3.1	NR
		30 s	PVP 0.35%	>99.92	>3.1	NR
		30 s	PVP 0.45%	>99.91	>3.2	NR
		60 s	PVP 0.47%	>99.90	>3.2	NR
		60 s	PVP 0.23%	>99.89	>3.1	NR
		60 s	PVP 0.35%	>99.88	>3.1	NR
		60 s	PVP 0.45%	>99.87	>3.0	NR
Koch-Heier et al., 2021 [20]	Infection medium control	NR	0.05% CPC and 1.5% H₂O₂, 0.1% CHX, 0.05% PPC, and 0.00% F (fluoride), without ethanol	NR	NR	NR
Komine et al., 2021 [21]	Medium control	30 s	H₂O₂	<3.00	<0.67	>99.999
		30 s	CHX	<3.00	<0.67	>99.999
Meister et al., 2020 [22]	Medium control (BetaCoV/Germany/Ulm/01/2020)	30 s	Ethanol and essential oils	<3.00	<0.67	>99.999
		30 s	Polyaminopropyl biguanide	<3.00	<0.67	>99.999
Muscovitz and Mendonchall, 2020 [23]	Water (Negative control)	30 s	1.5% H₂O₂	<3.00	<0.67	>99.999
		30 s	0.2% PVP-I	<3.00	<0.67	>99.999
		30 s	0.12% CHX	<3.00	<0.67	>99.999
Pelletier et al., 2021 [24]	Water	60 s	1.5% PVP-I	<0.67	4.63	NA
Santos et al., 2021 [25]	Viral solution and cellular system (Positive Control)	30 s	0.1% anionic phthalocyanine derivate (APD)	<0.67	4.63	NA
		60 s	Virus control	<0.67	4.63	NA
	Cellular system only (Negative Control)	30 s		<0.67	4.63	NA
Shet et al., 2022 [26]	Water (negative control)	30 s	1.5% PVP-I	<0.67	4.63	NR
		60 s	0.5% PVP-I	<0.67	4.63	NR
		60 s	Negative control	<0.67	4.63	NR
Shewale et al., 2021 [27]	PBS	30 s	Stabilized chlorine dioxide	<0.67	98.4	NR
		60 s	Ultra sensitive rinse	<0.67	98.4	NR

Strain

Strain	1	2	3
Medium control (BetaCoV/Germany/Ulm/01/2020)	0.50	0.56	0.50
Medium control (BetaCoV/Germany/Ulm/02/2020)	0.50	0.56	0.50

LRV

Strain	1	2	3
Medium control (BetaCoV/Germany/Ulm/01/2020)	0.50	0.56	0.50
Medium control (BetaCoV/Germany/Ulm/02/2020)	0.50	0.56	0.50

Median % Viral Kill

Strain	1	2	3
Medium control (BetaCoV/Germany/Ulm/01/2020)	0.50	0.56	0.50
Medium control (BetaCoV/Germany/Ulm/02/2020)	0.50	0.56	0.50

Virucidal

Strain	1	2	3
Medium control (BetaCoV/Germany/Ulm/01/2020)	0.50	0.56	0.50
Medium control (BetaCoV/Germany/Ulm/02/2020)	0.50	0.56	0.50

No effect

Strain	1	2	3
Medium control (BetaCoV/Germany/Ulm/01/2020)	0.50	0.56	0.50
Medium control (BetaCoV/Germany/Ulm/02/2020)	0.50	0.56	0.50
Table 1. Cont.

Study	Control	Contact Time	Active Ingredient	Viral Titer (Median)	% Viral Kill	LRV Compared to Control
Steinhauer et al., 2021 [28]	Validation control (EN14476 protocol)	300 s	0.1% CHX (80% conc)	0.15 s	NR	≥4.38
		600 s	0.2% CHX (80% conc)	0.30 s	NR	≥4.38
		15 s	0.1% Octenidine dihydrochloride (OCT) (80% conc)	0.15 s	0.81	≥4.38
		30 s	0.1% Octenidine dihydrochloride (OCT) (20% conc)	0.30 s	0.4	≥4.38
		60 s	0.1% Octenidine dihydrochloride (OCT) (20% conc)	0.60 s	0.4	≥4.38
Tiong et al., 2021 [29]	Cell culture medium (EN14476:2013/FprA1:2015 protocol)	Clean 30 s	0.12% CHX	0.5	4.0	5.0
		Clean 30 s	0.05% CPC and 0.05% SF	0.5	4.0	5.0
		Dirty 30 s	0.05% Thymol	0.5	5.0	5.0
		Dirty 60 s	0.1% Hexetidine and 9% Ethanol	0.75	5.0	5.0
		Dirty 60 s	2% NaCl	5.0	5.0	5.0
		60 s	0.05% Thymol	5.0		

NR: not reported. NA: not applicable.

3. In vitro Studies assessing Virucidal Activity

To evaluate the disinfecting activity of mouthwashes, the EN14476 standard methods were utilized for the virus time–kill assay [30]. Against SARS-CoV-2, the evaluated mouthwashes were tested undiluted and 50% diluted, at contact times of 15, 30 and 60 s, and under clean (0.3 g/L bovine serum albumin (BSA)) or dirty (0.3 g/L BSA + 3 mL/L human erythrocytes) conditions. Viral activity was immediately neutralized at the specific contact times to ensure that there were no sequelae. The 10-fold serial dilutions were incubated with Vero E6 cells for 72 h until cytopathic effects were observed. The Spearman–Kärber method [31,32] was used to determine the viral titers. Based on the European Chemicals Agency (ECHA) guidelines [33], virucidal activity is calculated as the reduction in viral titer compared to control. The log reduction value (LRV) of each mouthwash (Table 1) was compared to the negative control (water).

4. Safety of Antiseptic Mouthwashes

For an antiseptic to be used safely as a mouthwash in the oral cavity, cytotoxicity assays were performed to evaluate the lowest concentration at which the mouthwash was non-cytotoxic to human cells. Mouthwash dilutions were added to confluent monolayers of Vero E6 cell culture and incubated for 72 h before measuring the cell viability to determine the concentration at which no cytotoxic effects were observed on human cells. This also needs to be taken into consideration when assessing virucidal activity via the time–kill assay [30]. The Vero E6 cell lines are commonly used to isolate, propagate, and study SARS-CoV-2. The Vero lineage was extracted and isolated from African green monkey kidney epithelial cells [34]. The Vero E6 is a clone derived from Vero 76. The advantages of the Vero E6 cells are that they support high titres of viral replication [35–39], due their high ACE2 receptor expression [40] and the lack of interferon-producing activity [41].

PVP-I at a 5% concentration has proven safe for oral use [42–44]. With 6 months of 5% PVP-I use, the thyroid-stimulating hormone was shown to slightly increase with no indication of thyroid disease [45]. Mouthwash absorption at concentrations of 0.2% to 0.5% iodine is minimal and below the daily 150 µg iodine intake for a healthy adult. Furthermore, no taste change or teeth discoloration were reported in the studies [46]. Importantly, PVP-I substantivity has been reported to be as long as 4 h [47]. Contraindications for PVP-I include anaphylactic allergy to iodine, active thyroid disease, pregnancy, and radioactive iodine therapy [48–51]. There was some cytotoxicity reported for H₂O₂ and CHX [23].
5. Effectiveness of Oral Antiseptic Mouthwashes

Virucidal activity of a mouthwash (Table 1) can be reported as the log reduction value (LRV), which compares the reduction in viral titers to viral control. A $\geq 4\log_{10}$ reduction in viral titers corresponds to a $\geq 99.99\%$ kill, which indicates rapid virucidal activity. The exposure time was tested at 15 or 30 s; the 30 s exposure time was mandated by the European Chemicals Agency (ECHA) guidelines [33]. The Centers for Disease Control and Prevention (CDC) has suggested the use of PVP-I, chlorhexidine gluconate, cetylpyridinium chloride, or essential oils as possible options for an antiviral mouth rinse [52].

SARS-CoV-2 can be effectively inactivated in 30 s by most commercially available mouthwashes [22]. The most effective active ingredients were povidone–iodine [18], cetylpyridinium chloride, hexetidine, benzalkonium chloride, and essential oils [22].

PVP-I is a complex of povidone and iodine. It has been used for over 60 years in healthcare because of its broad-spectrum antimicrobial properties and safety profile [30,53]. SARS-CoV-2 can be completely inactivated by PVP-I in-vitro at concentrations of 0.5%, 1.25%, or 1.5%, in as little as 15 s [16]. It can completely inactivate SARS-CoV-2 at a concentration as minimal as 0.5% and a contact time of as minimal as 15 s [17]. Other in vitro studies reported PVP-I solutions of 0.23% inactivated SARS-CoV-2 in as little as 15 s [19,30]. In Japan, PVP-I at a 0.23% concentration has been recommended by the Japanese Ministry of Health, Labor and Welfare and is routinely used for daily gargling to prevent upper respiratory tract infections and COVID-19 [19,30,54]. Commercial mouthwashes containing 0.01–0.02% hypochlorous acid or 0.58% PVP-I effectively inactivated SARS-CoV-2 [14]. Iotech International formula 100-S displayed the highest virucidal activity compared to other mouthwashes; it inactivated SARS-CoV-2 completely. The 100 ppm molecular iodine mouthwash is unique in iodine chemistry [55].

CPC is a quaternary ammonium compound with broad antiseptic and antimicrobial activity. It has been used in many oral mouthwashes and breath sprays. CPC is virucidal against enveloped viruses, including influenza and several coronaviruses [56,57]. CPC mouthwashes can effectively decrease the viral load of SARS-CoV-2-infected individuals regardless of the viral variant [58]. The CPC mouthwashes can retain their effectiveness in the presence or absence of saliva [58]. CPC and CPC-containing mouthwashes disrupt the viral membrane integrity and inhibit SARS-CoV-2 entry into human cells. This decreases the infectivity of SARS-CoV-2 and is effective against the viral variants [58]. Previous studies have also shown that CPC has substantivity, lasting 3–5 h in saliva [59]. Another study reported a 6 log reduction in virucidal activity in a solution containing CPC and D-limonene 0.2% [60].

Some mouthwash formulations containing CHX were reported to have limited effectiveness against SARS-CoV-2 [28]. One study reported that the virucidal activity of CHX-containing mouthwash against SARS-CoV-2 was slightly less than those of CPC and hexetidine. This is incongruent with another study, which showed log reduction factors ranging from 0.33 to 0.78 [22]. Other in vitro and in vivo studies reported that CHX at a concentration of 0.12–2% was effective against SARS-CoV-2 [61,62]. CHX may temporarily reduce SARS-CoV-2 viral load in COVID-19 patients [63].

H$_2$O$_2$ is low cost and easily accessible [64,65]. However, it has the potential for toxicity under routine use [64], which includes gastric and colon symptoms [66]. H$_2$O$_2$ can be inactivated by the catalase in the saliva [67], and there is a lack of clinical or in vitro data for its virucidal effects on SARS-CoV-2. H$_2$O$_2$ at 3.0% and 1.5% had minimal antiviral activity after 15 s or 30 s [16]. PVP-I has more virucidal activity than H$_2$O$_2$. [16]. Some studies reported that H$_2$O$_2$ and CHX alone had no virucidal effect against SARS-CoV-2 [20]. Commercial H$_2$O$_2$ oral rinses may have additional components that improve the virucidal activity.

Mouthwashes containing dequalinium chloride and benzalkonium chloride had virucidal activity against SARS-CoV-2 [22]. Delmopinol hydrochloride is a known cationic surfactant [22]. Thus, cationic surfactants may also be effective against SARS-CoV-2.
Mouthwashes with an anionic phthalocyanine derivative (APD) can adhere to the cellular components of microorganisms [68]. APD mouthwashes can produce an in vitro intense antiviral reaction resulting in 90% viral inactivation [25].

Stabilized chlorine dioxide is antiviral, antibacterial, anti-biofilm, antifungal, and oxidative on oral malodor compounds [69–71]. Diluted toothpaste slurry with stabilized 0.04% chloride dioxide, compared to 0.1% chloride dioxide in mouthwashes, showed comparable viral load reduction [27]. The amino acids and organic acids present in saliva quickly liberate the chloride dioxide from its stabilized form in the oral cavity [70]. The released chlorine dioxide exhibits antiviral and antimicrobial activity [69].

Ethanol at 70% (positive control) did not completely inactivate SARS-CoV-2 at 15 s of contact; 30 s of contact was required to inactivate the virus [20].

Salt water and thymol was not effective against SARS-CoV-2, even though a high concentration of NaCl (0.34 M) was used [29]. Salt water gargling has been a common home remedy to alleviate the symptoms of a cold and sore throat. Mucin in buffers with a high salt concentration (0.3 M) increased the mucin barrier function, blocking viral infection in vitro [29]. Increasing the concentration of sodium chloride (NaCl) can enhance the antiviral activity of epithelial cells via inhibition of RNA and DNA viral replications [72]. More elaborate studies are needed to evaluate the virucidal effect of different NaCl concentrations on SARS-CoV-2.

6. Other Effects of Mouthwashes on SARS-CoV-2

In addition to the virucidal effects, the previously described mouthwashes may have inhibitory effects on the viral spike protein–ACE2 interaction, as well as transmembrane protease serine 2 (TMPRSS2) activity [73]. Disruption to the viral spike protein–ACE2 interaction and the TMPRSS2 activity can limit the entry of SAR-CoV-2 into the host cells and help prevent the spread of SARS-CoV-2 [74,75]. TMPRSS2 cleaves the viral spike protein and facilitates SARS-CoV-2 fusion to the host cell membrane [76].

Some active ingredients present in commercially available mouthwashes and toothpastes include sodium dodecyl sulfate (SDS), sodium N-lauroyl-N-methyltaurine (LMT), sodium tetradecene sulfonate (TDS), sodium N-lauroylsarcosinate (LSS), and copper gluconate (GCU). These active ingredients are reported to be effective against ACE2 and TMPRSS2, resulting in a highly preventive effect [73]. In addition, tranexamic acid (TXA) has inhibitory effects on TMPRSS2 protease activity [73].

7. Biocide Resistance of Mouthwashes

Long-term use of a sublethal dose of mouthwash may increase the bacterial minimum inhibitory concentration (MIC) and biocide resistance [77–81]. The MICs are lower for Gram-positive bacteria compared to Gram-negative bacteria; CHX has a greater affinity for the Gram-positive bacterial cell wall. Thus, prolonged use may increase risk of Gram-negative bacterial overgrowth.

The development of biocide resistance may lead to concomitant antibiotic cross-resistance [82]. Bacterial drug resistance was reported after frequent use of CPC [83]. Likewise, there is evidence of the development of bacterial resistance in response to low-level exposure to CHX [84]. Some mechanisms for bacterial resistance involve dysfunctional efflux pumps and cell membrane mutation [84].

However, studies reported that biocide resistance was to non-oral bacteria. There are limited reports on the long-term effects of low-concentration mouthwashes on oral bacteria. One study reported that the short-term use of CPC did not result in non-native bacterial colonization nor increased Gram-negative microorganisms [85].

The widespread use of mouthwashes may pose a potential risk of bacterial phenotypic adaptation, biocide resistance, and antibiotic cross-resistance. Further studies needed to investigate this potential risk and the underlying molecular mechanisms.
8. Limitations of In Vitro Studies

The effects of mouthwashes in vitro may not perform the same way in vivo; the human oral microenvironment is more complex. Substances such as saliva or teeth can act as viral carriers [86]. The presence of saliva may interfere with the effectiveness of the mouthwash in vivo. Saliva in the mouth with a flow rate of 5mL/min [87] can dilute the concentration of the mouthwash. In addition, bacteria in biofilms may exhibit a higher tolerance to antimicrobial mouthwashes [88]. In addition, the oral cavity maintains a mean temperature of 36.6 °C [89], while in vitro studies occur at ambient temperature. SARS-CoV-2 may be more stable at ambient temperature than at body temperature [90]. The temperature difference in the mouth and in vitro may contribute to some errors in outcomes. Furthermore, in vitro studies use standardized validated virucidal efficacy tests that are not representative of the in vivo antiviral effects in the oral cavity. The substantivity of the mouthwashes may also be different in the oral cavity compared to in vitro.

9. Conclusions

The broad-spectrum antibacterial and rapid virucidal activities against SARS-CoV-2, of the antiseptic mouthwashes discussed above suggests an important application in infection control. Randomized clinical trials comparing mouthwashes in COVID-19-positive patients are the next step in determining the ideal mouthwash and pre-procedural strategies to inactivate SARS-CoV-2 in the oral cavity in a clinical setting. PVP-I at 0.5–1.5% or CPC should be preferred over H₂O₂ or CHX. These virucidal mouthwashes with adequate substantivity can help reduce disease transmission and can be easily integrated into existing infection control protocols. The use of these mouthwashes can complement hygiene measures and curb the transmission of COVID-19 in the community.

Author Contributions: M.T. participated in the design of the review, literature search and article selection, drafting and revising of manuscript and table, and final approval of submitted version. J.B.S. participated in the design of the review, article selection, drafting and revising of manuscript and table, and final approval of submitted version. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest in the writing of this manuscript. J.B.S. is a U.S. Government Special Government Employee with the US Food and Drug Administration, Silver Spring, MD, USA.

References

1. Ting, M.; Suzuki, J.B. SARS-CoV-2: Overview and Its Impact on Oral Health. Biomedicines 2021, 9, 1690. [CrossRef] [PubMed]
2. Zhao, S.; Lin, Q.; Ran, J.; Musa, S.S.; Yang, G.; Wang, W.; Lou, Y.; Gao, D.; Yang, L.; He, D.; et al. Preliminary estimation of the basic reproduction number of novel coronavirus (2019-nCoV) in China, from 2019 to 2020: A data-driven analysis in the early phase of the outbreak. Int. J. Infect. Dis 2020, 92, 214–217. [CrossRef] [PubMed]
3. Zou, L.; Ruan, F.; Huang, M.; Liang, L.; Huang, H.; Hong, Z.; Yu, J.; Kang, M.; Song, Y.; Xia, J.; et al. SARS-CoV-2 Viral Load in Upper Respiratory Specimens of Infected Patients. N. Engl. J. Med. 2020, 382, 1177–1179. [CrossRef] [PubMed]
4. Sungnak, W.; Huang, N.; Becavin, C.; Berg, M.; Queen, R.; Litvinukova, M.; Talavera-Lopez, C.; Maatz, H.; Reichart, D.; Sampaziotis, F.; et al. SARS-CoV-2 entry factors are highly expressed in nasal epithelial cells together with innate immune genes. Nat. Med. 2020, 26, 681–687. [CrossRef] [PubMed]
5. Harrel, S.K.; Molinaro, J. Aerosols and splatter in dentistry: A brief review of the literature and infection control implications. J. Am. Dent. Assoc. 2004, 135, 429–437. [CrossRef] [PubMed]
6. Micik, R.E.; Miller, R.L.; Mazzarella, M.A.; Ryge, G. Studies on dental aerobiology. I. Bacterial aerosols generated during dental procedures. J. Dent. Res. 1969, 48, 49–56.e11. [CrossRef] [PubMed]
7. Enciso, R.; Keaton, J.; Saleh, N.; Ahmadieh, A.; Clark, G.T.; Sedghizadeh, P.P. Assessing the utility of serum C-telopeptide cross-link of type 1 collagen as a predictor of bisphosphonate-related osteonecrosis of the jaw: A systematic review and meta-analysis. J. Am. Dent. Assoc. 2016, 147, 551–560. [CrossRef] [PubMed]
31. Spearman, C. The method of ‘Right and Wrong cases’ ("Constant Stimuli") without Gauss’s Formulae. Br. J. Psychol. 1908, 2, 227–242. [CrossRef]

32. Kärber, G. Beitrag zur kollektiven Behandlung pharmakologischer Reihenversuche. Naunyn-Schmiedebergs Arch. Für Exp. Pathol. Pharmacol. 1931, 162, 480–483. [CrossRef]

33. Rupel, K.; Ottaviani, G.; Gobbo, M.; Contardo, L.; Tirelli, G.; Vescovi, P.; Di Lenarda, R.; Biasotto, M. A systematic review of therapeutic approaches in bisphosphonates-related osteonecrosis of the jaw (BRONJ). Oral Oncol. 2014, 50, 1049–1057. [CrossRef]

34. Yasumura, Y.; Kawakita, M. The research for the SV40 by means of tissue culture technique. Nippon. Rinsho. 1963, 21, 1201–1219.

35. Banerjee, A.; Nasir, J.A.; Budylovsky, P.; Yip, L.; Aftanas, P.; Christie, N.; Ghalami, A.; Baid, K.; Raphenya, A.R.; Hirota, J.A.; et al. Isolation, Sequence, Infectivity, and Replication Kinetics of Severe Acute Respiratory Syndrome Coronavirus 2. Emerg. Infect. Dis. 2020, 26, 2054–2063. [CrossRef] [PubMed]

36. Matsuyama, S.; Nao, N.; Shirato, K.; Kawase, M.; Saito, S.; Takayama, I.; Nagata, N.; Sekizuka, T.; Katoh, H.; Kato, F.; et al. Enhanced isolation of SARS-CoV-2 by TMPRSS2-expressing cells. Proc. Natl. Acad. Sci. USA 2020, 117, 7001–7003. [CrossRef] [PubMed]

37. Tseng, C.T.; Tseng, J.; Perrone, L.; Worthy, M.; Popov, V.; Peters, C.J. Apical entry and release of severe acute respiratory syndrome-associated coronavirus in polarized Calu-3 lung epithelial cells. J. Virol. 2005, 79, 9470–9479. [CrossRef] [PubMed]

38. Mossez, E.C.; Huang, C.; Narayanan, K.; Makino, S.; Tesh, R.B.; Peters, C.J. Exogenous ACE2 expression allows refractory cell lines to support severe acute respiratory syndrome coronavirus replication. J. Virol. 2005, 79, 3846–3850. [CrossRef] [PubMed]

39. Kaye, M. SARS-associated coronavirus replication in cell lines. Emerg. Infect. Dis. 2006, 12, 128–133. [CrossRef] [PubMed]

40. Gillim-Ross, L.; Taylor, J.; Scholl, D.R.; Ridenour, J.; Masters, P.S.; Wentworth, D.E. Discovery of novel human and animal cells infected by the severe acute respiratory syndrome coronavirus by replication-specific multiplex reverse transcription-PCR. J. Clin. Microbiol. 2004, 42, 3196–3206. [CrossRef]

41. De Clercq, E.; Stewart, W.E., 2nd; De Somer, P. Studies on the mechanism of the priming effect of interferon on interferon production by cell cultures exposed to poly(rI)-poly(rC). Infect. Immun. 1973, 8, 309–316. [CrossRef] [PubMed]

42. Frank, S.; Brown, S.M.; Capriotti, J.A.; Westover, J.B.; Pelletier, J.S.; Tessema, B. In Vitro Efficacy of a Povidone-Iodine Nasal Antiseptic for Rapid Inactivation of SARS-CoV-2. JAMA Otolaryngol. Head Neck Surg. 2020, 146, 1054–1058. [CrossRef] [PubMed]

43. Reimer, K.; Wichelhaus, T.A.; Schafer, V.; Rudolph, V.; Kramer, A.; Wutzler, P.; Ganz, D.; Fleischer, W. Antimicrobial effectiveness of povidone-iodine and consequences for new application areas. Dermatolology 2002, 204 (Suppl. 1), 114–120. [CrossRef] [PubMed]

44. Madan, P.D.; Sequeira, P.S.; Shenoy, K.; Shetty, J. The effect of three mouthwashes on radiation-induced oral mucositis in patients with head and neck malignancies: A randomized control trial. J. Cancer Res. 2008, 4, 3–8. [CrossRef] [PubMed]

45. Ader, A.W.; Paul, T.L.; Reinhardt, W.; Safran, M.; Pino, S.; McArthur, W.; Braverman, L.E. Effect of mouth rinsing with two polyvinylpyrrolidone-iodine mixtures on iodine absorption and thyroid function. J. Clin. Endocrinol. Metab. 1988, 66, 632–635. [CrossRef] [PubMed]

46. Kovess, G. [The use of Betadine antiseptic in the treatment of oral surgical, parodontological and oral mucosal diseases]. Fogorv. Szle. 1999, 92, 243–250. [PubMed]

47. Domingo, M.A.; Farrales, M.S.; Loya, R.M.; Pura, M.A.; Uy, H. The effect of 1% povidone iodine as a pre-procedural mouthrinse in 20 patients with varying degrees of oral hygiene. J. Philipp. Dent. Assoc. 1996, 48, 31–38. [PubMed]

48. Foley, T.P., Jr. The relationship between autoimmune thyroid disease and iodine intake: A review. Endokrynol. Pol. 1992, 43 (Suppl. 1), 53–69.

49. Furudate, S.; Nishimaki, T.; Perrone, L.; Aftanas, P.; Christie, N.; Ghalami, A.; Baid, K.; Raphenya, A.R.; Hirota, J.A.; et al. Potential Role of Oral Rinses Targeting the Viral Lipid Envelope in SARS-CoV-2 Infection. zqaa002. [CrossRef] [PubMed]

50. Gray, P.E.; Katelaris, C.H.; Lipson, D. Recurrent anaphylaxis caused by topical povidone-iodine (Betadine). J. Paediatr Child. Health 2013, 49, 506–507. [PubMed]

51. Kämpf, G.; Todt, D.; Pfänder, S.; Steinmann, E. Persistence of coronaviruses on inanimate surfaces and their inactivation with biocidal agents. J. Hosp. Infect. 2020, 104, 246–251. [CrossRef]

52. The Centers for Disease Control and Prevention (CDC). Interim Infection Prevention and Control Guidance for Dental Settings during the COVID-19 Response. Available online: https://www.cdc.gov/coronavirus/2019-ncov/hcp/dental-settings.html (accessed on 28 May 2020).

53. Vogt, P.M.; Hauser, J.; Mueller, S.; Bosse, B.; Hopp, M. Efficacy of Conventional and Liposomal Povidone-Iodine in Infected Mesh Skin Grafts: An Exploratory Study. Infect. Dis. Ther. 2017, 6, 545–555. [CrossRef]

54. O’Donnell, V.B.; Thomas, D.; Stanton, R.; Maillard, J.Y.; Murphy, R.C.; Jones, S.A.; Humphreys, I.; Wakeham, M.J.O.; Fegan, C.; Wise, M.P.; et al. Potential Role of Oral Rinses Targeting the Viral Lipid Envelope in SARS-CoV-2 Infection. Function 2020, 1, zqa002. [CrossRef] [PubMed]

55. Elliot, K.R.; Herbert, M.; Jack, K. Stable Compositions of Uncomplexed Iodine and Methods of Use. U.S. Patent No. 11,297,839, 9 October 2018.

56. Popkin, D.L.; Zilka, S.; Dimanno, M.; Fujioka, H.; Rackley, C.; Salata, R.; Griffith, A.; Mukherjee, P.K.; Ghannoum, M.A.; Esper, F. Cetylpyridinium Chloride (CPC) Exhibits Potent, Rapid Activity Against Influenza Viruses in vitro and in vivo. Pathog. Immun. 2017, 2, 252–269. [CrossRef] [PubMed]
57. Shen, L.; Niu, J.; Wang, C.; Huang, B.; Wang, W.; Zhu, N.; Deng, Y.; Wang, H.; Ye, F.; Cen, S.; et al. High-Throughput Screening and Identification of Potent Broad-Spectrum Inhibitors of Coronaviruses. J. Virol. 2019, 93, e00023-19. [CrossRef]

58. Munoz-Basaguit, J.; Perez-Zsolt, D.; Leon, R.; Blanco, V.; Raich-Regue, D.; Cano-Sarabia, M.; Trinite, B.; Pradens, E.; Blanco, J.; Gispert, J.; et al. Mouthwashes with CPC Reduce the Infectivity of SARS-CoV-2 Variants In Vitro. J. Dent. Res. 2021, 100, 1265–1272. [CrossRef] [PubMed]

59. Rodríguez-Casanovas, H.J.; la Rosa, M.D.; Bello-Lemus, Y.; Rasperini, G.; Acosta-Hoyos, A.J. Virucidal Activity of Different Mouthwashes Using a Novel Biochemical Assay. Healthcare 2022, 10, 63. [CrossRef]

60. Huang, Y.H.; Huang, J.T. Use of chlorhexidine to eradicate oropharyngeal SARS-CoV-2 in COVID-19 patients. J. Med. Virol. 2021, 93, 4370–4373. [CrossRef] [PubMed]

61. Elworthy, A.; Greenman, J.; Doherty, F.M.; Newcombe, R.G.; Addy, M. The substantivity of a number of oral hygiene products determined by the duration of effects on salivary bacteria. J. Periodontol. 1996, 67, 572–576. [CrossRef]

62. Jain, S.; Bhat, N.; Asawa, K.; Tak, M.; Singh, A.; Shinde, K.; Gandhi, N.; Doshi, A. Effect of Training School Teachers on Oral Hygiene Status of 8-10 Years Old Government School Children of Udaipur City, India. J. Clin. Diagn. Res. JCDR 2016, 10, Ze95–Ze99. [CrossRef] [PubMed]

63. Caruso, A.A.; Del Prete, A.; Lazzarino, A.I. Hydrogen peroxide and viral infections: A literature review with research hypothesis definition in relation to the current covid-19 pandemic. Med. Hypotheses. 2020, 144, 109910. [CrossRef] [PubMed]

64. Walsh, L.J. Safety issues relating to the use of hydrogen peroxide in dentistry. Aust Dent. J. 2000, 45, 257–269. [CrossRef]

65. Zanelli, M.; Ragazzi, M.; De Marco, L. Chemical gastritis and colitis related to hydrogen peroxide mouthwash. Br. J. Clin. Pharmacol. 2017, 83, 427–428. [CrossRef]

66. Kraus, F.W.; Perry, W.I.; Nickerson, J.F. Salivary catalase and peroxidase values in normal subjects and in persons with periodontal disease. Oral Surg. Oral Med. Oral Pathol. 1958, 11, 95–102. [CrossRef]

67. Santos, C.; Teodoro, G.; Sibelino, S.; Novaes, P.; Farias, M.; Vilhena, F. Antiviral vaccine action of PHTALOX®-containing oral care formulations. J. Dent. Res. 2020, 99, 3326.

68. Drake, D.; Villhauer, A.L. An in vitro comparative study determining bactericidal activity of stabilized chlorine dioxide and other oral rinses. J. Clin. Dent. 2011, 22, 1–5. [PubMed]

69. Grootveld, M.; Silwood, C.; Gill, D.; Lynch, E. Evidence for the microbicidal activity of a chlorine dioxide-containing oral rinse formulation in vivo. J. Clin. Dent. 2001, 12, 67–70.

70. Lee, S.S.; Suprano, M.S.; Stephens, J.; Withers, S.A.; Li, Y. Efficacy of stabilized chlorine dioxide-based unflavored mouthwash in reducing oral malodor: An 8-week randomized controlled study. Am. J. Dent. 2018, 31, 309–312. [PubMed]

71. Ramalingam, S.; Cai, B.; Wong, J.; Twomey, M.; Chen, R.; Fu, R.; Boote, T.; McCaughan, H.; Griffiths, S.; Haas, J. Antiviral innate immune response in non-myeloid cells is augmented by chloride ions via an increase in intracellular hypochlorous acid levels. Sci. Rep. 2018, 8, 13630. [CrossRef]

72. Tateyama-Makino, R.; Abe-Yutori, M.; Iwamoto, T.; Tsutsumi, K.; Tsuji, M.; Morishita, S.; Kurita, K.; Yamamoto, Y.; Nishina, E.; Tsuchinoki, K. The inhibitory effects of toothpaste and mouthwash ingredients on the interaction between the SARS-CoV-2 spike protein and ACE2, and the protease activity of TMPRSS2 in vitro. PLoS ONE 2021, 16, e0257705. [CrossRef] [PubMed]

73. Abdel-Moneim, A.S.; Abdelwhab, E.M.; Memish, Z.A. Insights into SARS-CoV-2 evolution, potential antivirals, and vaccines. Virology 2021, 558, 1–12. [CrossRef] [PubMed]

74. Kabir, M.A.; Ahmed, R.; Chowdhury, R.; Iqbal, S.M.A.; Paulmurugan, R.; Demirci, U.; Asghar, W. Management of COVID-19: Current status and future prospects. Microbes. Infect. 2021, 23, 104832. [CrossRef] [PubMed]

75. Hoffmann, M.; Kleine-Weber, H.; Schroeder, S.; Kruger, N.; Herrler, T.; Erichsen, S.; Schiergens, T.S.; Herrler, G.; Wu, N.H.; Nitsche, A.; et al. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell 2020, 181, 271–280.e8. [CrossRef]

76. Loe, H.; Schiött, C.R. The effect of mouthrinses and topical application of chlorhexidine on the development of dental plaque and gingivitis in man. J. Periodontal Res. 1970, 5, 79–83. [CrossRef] [PubMed]

77. Emilson, C.G.; Fornell, J. Effect of toothbrushing with chlorhexidine gel on salivary microflora, oral hygiene, and caries. Scand. J. Dent. Res. 1976, 84, 308–319. [CrossRef] [PubMed]

78. Maynard, J.H.; Jenkins, S.M.; Moran, J.; Addy, M.; Newcombe, R.G.; Wade, W.G. A 6-month home usage trial of a 1% chlorhexidine toothpaste (II). Effects on the oral microflora. J. Clin. Periodontol. 1993, 20, 207–211. [CrossRef] [PubMed]

79. Kampf, G. Acquired resistance to chlorhexidine-is it time to establish an ‘antiseptic stewardship’ initiative? J. Hosp. Infect. 2016, 94, 213–227. [CrossRef] [PubMed]

80. Kampf, G. Biocidal Agents Used for Disinfection Can Enhance Antibiotic Resistance in Gram-Negative Species. Antibiotics 2018, 7, 110. [CrossRef] [PubMed]

81. Kampf, G. Antibiotic Resistance Can Be Enhanced in Gram-Positive Species by Some Biocidal Agents Used for Disinfection. Antibiotics 2019, 8, 13. [CrossRef]

82. Russell, A.D. Biocide use and antibiotic resistance: The relevance of laboratory findings to clinical and environmental situations. Lancet Infect. Dis. 2003, 3, 794–803. [CrossRef]
84. Cieplik, F.; Jakubovics, N.S.; Buchalla, W.; Maisch, T.; Hellwig, E.; Al-Ahmad, A. Resistance Toward Chlorhexidine in Oral Bacteria-Is There Cause for Concern? *Front. Microbiol.* 2019, *10*, 587. [CrossRef] [PubMed]

85. Radford, J.R.; Beighton, D.; Nugent, Z.; Jackson, R.J. Effect of use of 0.05% cetylpyridinium chloride mouthwash on normal oral flora. *J. Dent.* 1997, *25*, 35–40. [CrossRef]

86. Walsh, K.A.; Jordan, K.; Clyne, B.; Rohde, D.; Drummond, L.; Byrne, P.; Ahern, S.; Carty, P.G.; O’Brien, K.K.; O’Murchu, E.; et al. SARS-CoV-2 detection, viral load and infectivity over the course of an infection. *J. Infect.* 2020, *81*, 357–371. [CrossRef] [PubMed]

87. Iorgulescu, G. Saliva between normal and pathological. Important factors in determining systemic and oral health. *J. Med. Life* 2009, *2*, 303–307. [PubMed]

88. Ceri, H.; Olson, M.E.; Stremick, C.; Read, R.R.; Morck, D.; Buret, A. The Calgary Biofilm Device: New technology for rapid determination of antibiotic susceptibilities of bacterial biofilms. *J. Clin. Microbiol.* 1999, *37*, 1771–1776. [CrossRef] [PubMed]

89. Geneva, I.I.; Cuzzo, B.; Fazili, T.; Javaid, W. Normal Body Temperature: A Systematic Review. *Open Forum Infect. Dis.* 2019, *6*, ofz032. [CrossRef] [PubMed]

90. Chin, A.W.H.; Chu, J.T.S.; Perera, M.R.A.; Hui, K.P.Y.; Yen, H.L.; Chan, M.C.W.; Peiris, M.; Poon, L.L.M. Stability of SARS-CoV-2 in different environmental conditions. *Lancet Microbe* 2020, *1*, e10. [CrossRef]