Adverse outcomes after non-urological surgeries in patients with chronic kidney disease: a propensity-score-matched study

Yih-Guien Cherng¹,²
Chuen-Chau Chang²,³,⁴
Chun-Chieh Yeh⁵,⁶
Yung-Ho Hsu⁷
Ta-Liang Chen⁸,⁹,*
Chien-Chang Liao¹⁰,¹¹,¹²

¹Department of Anesthesiology, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan; ²Department of Anesthesiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; ³Department of Anesthesiology, Taipei Medical University Hospital, Taipei, Taiwan; ⁴Anesthesiology and Health Policy Research Center, Taipei Medical University Hospital, Taipei, Taiwan; ⁵Department of Surgery, China Medical University Hospital, Taichung, Taiwan; ⁶Department of Surgery, University of Illinois, Chicago, USA; ⁷Department of Nephrology, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan; ⁸Department of Anesthesiology, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan; ⁹School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan; ¹⁰Research Center of Big Data and Meta-analysis, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan

*These authors contributed equally to this work

Objective: To evaluate the complications, mortality, and medical expenditures after non-urological surgical procedures in patients with chronic kidney disease (CKD).

Methods: Using claims data of Taiwan’s National Health Insurance, we conducted a matched cohort study of 35,643 patients with CKD who underwent nonurological surgeries in 2008–2013. By using a propensity-score matching procedure, 35,643 non-CKD patients were selected for comparison. Logistic regression was used to calculate the odds ratios (ORs) and the 95% confidence intervals (CIs) of postoperative complications and in-hospital mortality associated with CKD.

Results: The results showed that patients with CKD had higher risks of postoperative septicemia (OR: 1.78, 95% CI: 1.68–1.89), pneumonia (OR: 1.60, 95% CI: 1.48–1.73), stroke (OR: 1.34, 95% CI: 1.24–1.44), and in-hospital mortality (OR: 2.17, 95% CI: 1.90–2.47) compared with non-CKD patients. Longer hospital stays and higher medical expenditures after nonurological surgical procedures were noted in CKD patients. The association between CKD and postoperative adverse events was significant in both sexes, all of the age groups, and the other subgroups. Histories of myocardial infarction, epilepsy, and ages greater than 70 years were factors that were significantly associated with postoperative adverse events.

Conclusion: Compared with non-CKD patients, surgical patients with CKD exhibited more adverse events, with risks of in-hospital mortality that were approximately 2-fold higher after nonurinary surgery. These findings suggest an urgent need to revise the protocols for postoperative care in this population.

Keywords: chronic kidney disease, surgery, outcome

Introduction

Chronic kidney disease (CKD) is a global health problem, and its prevalence and incidence have gradually increased.¹,² It has also been recognized as an independent risk factor for both cardiovascular complications and all-cause mortality in a wide spectrum of clinical scenarios.²–⁷ The national prevalence of CKD for adults aged 20 years and older over the period from 1994 to 2006 in Taiwan was approximately 11.9%.⁸ In the United States, the prevalence of CKD stages 1–5 during the 2011–2014 period reached 14.8%,¹ which was 1.23 times higher when compared with that in the 1988–1994 period.¹ Particularly, the largest increase was observed in stage 3 CKD (from 4.5% to approximately 6.5%), which has become the most prevalent stage.¹ Though the exact pathophysiology for postoperative morbidity and
mortality is still unknown, elevated levels of inflammatory mediators, plasma homocysteine, endothelial dysfunction, hypercoagulability, and arterial calcification may all serve important roles.5,6,9–14

Associated comorbidities, including diabetes mellitus, hypertension, hyperlipidemia, or cardiac diseases,1,5,6,8 may complicate CKD, in terms of surgical outcomes.5,15

In several widely used surgical risk indices, kidney dysfunction has often been listed as a major predictive factor.5,16,17

In view of the potentially increased absolute number of CKD patients, these patients are more likely to undergo various surgical procedures.

Renal function impairment represents a wide variety of complex diseases1,8,15 that may have differential impacts on postoperative adverse outcomes.3–5,18 Although the perioperative outcomes of surgical risks in patients with CKD have been reported,3–5,9 there were several limitations in the previous studies, such as small sample size,3,9,19,20 inadequate adjustments for potential confounders,9,19–22 and focus on a single surgical procedure or a specific population.4,9,19–22 These previous studies indicated that the association between preoperative CKD and postoperative adverse events was not completely understood. By using Taiwan’s National Health Insurance Research Database, we conducted a matched nationwide analysis to evaluate the global features of complications and mortality after various major surgeries in individuals with and without CKD.

Methods
Source of data
Taiwan’s National Health Insurance program was implemented in March 1995, with a high coverage of more than 99% of Taiwan’s 23 million residents. This study used reimbursement claims data from Taiwan’s National Health Insurance Research Database that recorded all of the beneficiaries’ medical services, including inpatient and outpatient demographic characteristics, the physicians’ primary and secondary diagnoses, treatment procedures, prescriptions, and medical expenditures.

Ethical approval
To protect personal privacy, the electronic database was coded with patient identification scrambled for further public access for research. According to the National Health Research Institutes regulations, informed consent is not required because of the use of coded and scrambled patient identification. Our study was conducted in accordance with the Helsinki Declaration, and it was also approved by Taiwan’s National Health Research Institutes and the institutional review board of Taipei Medical University (TMU-JIRB-201808012; TMU-JIRB-201509050).

Study design
We identified 35,643 patients with CKD, aged 20 years and older, who underwent major nonurological surgical procedures from January 1, 2008, through December 31, 2013. These procedures required general, epidural, or spinal anesthesia as well as hospitalization for at least 1 day. Each surgical patient with CKD was matched with 1 randomly selected, non-CKD surgical patient. We conducted the analysis by using a propensity-score-matched pair procedure and considered the following factors: age, sex, low income or not, whether the operation took place in a medical center, coexisting medical conditions, preoperative emergency care, preoperative inpatient care, types of nonurological surgeries, and types of anesthesia. To identify patients with CKD strictly, the present study required at least medical visits with a physician’s primary diagnosis of CKD within the 24-month preoperative period. People without CKD were defined as those who had no medical visits with a physician’s primary or secondary diagnosis of CKD within the 24-month preoperative period.

Measures and definitions
The patients’ income statuses were identified from the Taiwan National Health Insurance Bureau, which defined low income as an economic status that qualified for waived medical copayments when receiving medical services. Whether the surgery was performed in a medical center and the types of nonurological surgeries and anesthesia were also recorded. The International Classification of Diseases, Ninth Revision, Clinical Modification (ICD-9-CM) was used to define the clinical diagnoses. Based on previous surgical studies, the medical conditions that were determined from the reimbursement claims for the 24-month preoperative period included mental disorders (ICD-9-CM 290–319), chronic obstructive pulmonary disease (ICD-9-CM 490–496), hypertension (ICD-9-CM 401–405), diabetes (ICD-9-CM 250), hyperlipidemia (ICD-9-CM 272.0, 272.1, and 272.2), ischemic heart disease (ICD-9-CM 410–414), epilepsy (ICD-9-CM 345), liver cirrhosis (ICD-9-CM 571), and heart failure (ICD-9-CM 428).

In-hospital mortality after the index surgery was considered to be the study’s primary outcome. Nine major
postoperative complications were considered to be secondary outcomes and included septicemia (ICD-9-CM 038 and 998.5), stroke (ICD-9-CM 430–437) pneumonia (ICD-9-CM 480–486), urinary tract infection (ICD-9-CM 599.0), acute myocardial infarction (ICD-9-CM 410), postoperative bleeding (ICD-9-CM 998.0, 998.1, and 998.2), and pulmonary embolism (ICD-9-CM 415). The incidences of intensive care, lengths of hospital stay, and medical expenditures during the index surgical admission were also compared. In this study, surgical patients who had septicemia, stroke, pneumonia, urinary tract infection, acute myocardial infarction, surgical bleeding, and pulmonary embolism within preoperative 3 months were not considered as those with postoperative complications.

Statistical analyses
For the determination of the associations between CKD and the postoperative outcomes, we used a nonparsimonious multivariable logistic regression model to estimate a propensity score for each of the surgical patients with CKD or without CKD. Clinical significance guided the initial choice of the covariates in this model to include age, sex, low-income status, whether the operation took place in a medical center, types of surgery and anesthesia, hypertension, diabetes, cancer, mental disorders, peptic ulcer disease, chronic obstructive pulmonary disease, gout, anemia, atherosclerosis, pneumonia, asthma, osteoporosis, liver cirrhosis, angina, heart failure, venereal disease, Parkinson’s disease, myocardial infarction, alcohol-related illness, peripheral vascular disease, atrial fibrillation, pulmonary tuberculosis, epilepsy, psoriasis, systemic lupus erythematosus, hypothyroidism, number of hospitalizations, and emergency care between the patients with CKD and those patients without CKD.

Compared with the non-CKD controls (Table 3), patients with CKD had higher risks of postoperative stroke (OR: 1.34, 95% CI: 1.24–1.44), pneumonia (OR: 1.60, 95% CI: 1.48–1.73), urinary tract infection (OR: 1.09, 95% CI: 1.01–1.17), septicemia (OR: 1.78, 95% CI: 1.68–1.89), admission to intensive care units (OR: 1.38, 95% CI: 1.32–1.43), and 30-day in-hospital mortality (OR: 2.17, 95% CI: 1.90–2.47). Longer lengths of stay (13.2 ±17.8 vs 11.0±16.5 days, respectively; P<0.0001) and higher medical expenditures (4,598±5,700 vs 3,938 ±5,195 US dollars, respectively; P=0.0001) were also noted in patients with CKD, compared to those patients without CKD.

Table 4 shows that the associations between CKD and increased postoperative adverse events were significant for women, men, every age group, and patients with lower than 3 medical conditions. Postoperative adverse event was associated with CKD in patients with hospitalization and emergency care or not.

After adjustments in the multivariate logistic regressions (Table S1), age (≥80 years; OR: 3.65, 95% CI: 2.28–5.83), the male sex (OR: 1.09, 95% CI: 1.03–1.15), and surgeries that did not occur in medical centers (OR: 1.13, 95% CI: 1.06–1.19), as well as incidences of neurosurgery (OR: 8.45, 95% CI: 5.16–13.8), general anesthesia (OR: 1.23, 95% CI: 1.14–1.33), myocardial infarction (OR: 2.17, 95% CI: 1.41–3.32), alcohol-related illness (OR: 1.88, 95% CI: 1.14–3.10), epilepsy (OR: 3.97, 95% CI: 1.77–8.92), Parkinson’s disease (OR: 1.45, 95% CI: 1.08–1.94), diabetes (OR: 1.15, 95%
Table 1 Characteristics of patients received nonurological surgeries with and without chronic kidney disease

	No CKD (N=489,436)		CKD (N=122,359)		P
	n	(%)	n	(%)	
Age, years					<0.0001
20–29	4736 (1.0)		1184 (1.0)		
30–39	14,960 (3.1)		3740 (3.1)		
40–49	39,760 (8.1)		9940 (8.1)		
50–59	88,208 (18.0)		22,052 (18.0)		
60–69	115,976 (23.7)		28,994 (23.7)		
70–79	152,162 (31.1)		35,206 (28.8)		
≥80	73,634 (15.0)		21,243 (17.4)		
Sex					1.0000
Female	229,976 (47.0)		57,494 (47.0)		
Male	259,460 (53.0)		64,865 (53.0)		
Low income					<0.0001
No	479,230 (97.9)		115,838 (94.7)		
Yes	10,206 (2.1)		6521 (5.3)		
Operation in medical center					<0.0001
No	292,981 (59.9)		68,148 (55.7)		
Yes	196,455 (40.1)		54,211 (44.3)		
Types of surgery					<0.0001
Musculoskeletal	11,539 (2.4)		3661 (3.0)		
Digestive	8131 (1.7)		907 (0.7)		
Neurosurgery	176,298 (36.0)		34,909 (28.5)		
Cardiovascular	22,034 (4.5)		3577 (2.9)		
Respiratory	14,006 (2.9)		26,981 (22.1)		
Skin	126,124 (25.8)		25,499 (20.8)		
Eye	6525 (1.3)		313 (0.3)		
Breast	60,306 (12.3)		10,836 (8.9)		
Delivery, CS, abortion	6335 (1.3)		2325 (1.9)		
Others	57,938 (11.8)		13,351 (10.9)		
Types of anesthesia					<0.0001
General	350,831 (71.7)		97,402 (79.6)		
Epidural or spinal	138,605 (28.3)		24,957 (20.4)		
Coexisting medical conditions					
Hypertension	156,299 (31.9)		50,963 (41.7)		<0.0001
Diabetes	72,099 (14.7)		45,126 (36.9)		<0.0001
Anemia	21,626 (4.4)		30,086 (24.6)		<0.0001
Mental disorders	81,935 (16.7)		25,427 (20.8)		<0.0001
Peptic ulcer disease	54,820 (11.2)		23,675 (19.4)		<0.0001
COPD	61,406 (12.6)		17,760 (14.5)		<0.0001
Cancer	71,000 (14.5)		17,038 (13.9)		<0.0001
Atherosclerosis	23,342 (4.8)		15,708 (12.8)		<0.0001
Gout	25,172 (5.1)		14,300 (11.7)		<0.0001
Pneumonia	18,230 (3.7)		13,380 (10.9)		<0.0001
Heart failure	9213 (1.9)		12,342 (10.1)		<0.0001
Angina	15,391 (3.1)		7887 (6.5)		<0.0001
Asthma	27,408 (5.6)		7493 (6.1)		<0.0001
Liver cirrhosis	12,169 (2.5)		5406 (4.4)		<0.0001

(Continued)
CI: 1.07–1.23), ≥3 preoperative hospitalizations (OR: 1.74, 95% CI: 1.58–1.91), and ≥3 emergency visits (OR: 1.47, 95% CI: 1.36–1.60), were significant factors that were associated with postoperative adverse events among surgical patients with CKD.

Discussion

By using a comprehensive study design that included matching by propensity score, a large sample size, a multivariate adjustment of confounders, and the inclusion of various types of surgery, we observed that patients with CKD had a nearly 2.5-fold higher postoperative 30-day in-hospital mortality and higher risk of complications, such as stroke, acute myocardial infarction, postoperative bleeding, pneumonia, urinary tract infection, and septicemia. In the CKD population, older age, low-income status, male sex, general anesthesia, and neurosurgery had relatively higher risks of postoperative mortality.

In this study, CKD is associated with postoperative mortality. A previous study suggested that the mortality in CKD patients is higher during hospitalization in other conditions as well especially in infections even without surgery. The postoperative mortality in patients with CKD differed in the various types of surgeries, and the corresponding complication rate was associated with both the preoperative stage of CKD and the estimated glomerular filtration rate (eGFR). Our investigation focused on different types of surgical specialties, and the overall postoperative mortality was 2.6%. A previous meta-analysis suggested that most of the causes of postoperative death in CKD patients were due to cardiovascular adverse events, followed by septicemia. Among previous studies, cardiovascular and infectious adverse events commonly occurred in patients with CKD, but there still existed inconsistencies in these events, either in mortality rate or complication incidence. These observations can possibly be attributed to the different surgical procedures and varied severities of renal dysfunction.

Cardiovascular complications and associated death have been shown to be related to patients with renal function insufficiency. In our investigation,

	No CKD (N=489,436)	CKD (N=122,359)	P		
	n	(%)	n	(%)	
Myocardial infarction	4073	(0.8)	4502	(3.7)	<0.0001
Osteoporosis	17,870	(3.7)	4316	(3.5)	0.0383
Parkinson’s disease	10,891	(2.2)	3608	(3.0)	<0.0001
Venereal disease	10,779	(2.2)	2785	(2.3)	0.1170
Peripheral vascular disease	4583	(0.9)	2742	(2.2)	<0.0001
Pulmonary tuberculosis	4671	(1.0)	2337	(1.9)	<0.0001
Alcohol-related illness	7233	(1.5)	2204	(1.8)	<0.0001
Atrial fibrillation	3834	(0.8)	1763	(1.4)	<0.0001
Epilepsy	3167	(0.7)	1563	(1.3)	<0.0001
Systemic lupus erythematosus	847	(0.2)	1521	(1.2)	<0.0001
Psoriasis	3331	(0.7)	1245	(1.0)	<0.0001
Hypothyroidism	2159	(0.4)	885	(0.7)	<0.0001
Number of hospitalizations					
0	296,852	(60.7)	29,300	(24.0)	<0.0001
1	105,368	(21.5)	24,751	(20.2)	
2	43,012	(8.8)	19,178	(15.7)	
≥3	44,204	(9.0)	49,130	(40.2)	
Number of emergency visits					<0.0001
0	258,654	(52.9)	27,654	(22.6)	
1	114,014	(23.3)	22,986	(18.8)	
2	54,457	(11.1)	18,017	(14.7)	
≥3	62,311	(12.7)	53,702	(43.9)	

Abbreviation: CKD, chronic kidney disease.
Table 2 Characteristics of patients received nonurological surgeries with and without chronic kidney disease

Category	No CKD (N=35,643)	CKD (N=35,643)	P
	n (%)	n (%)	
Age, years			
20–29	223 (0.6)	223 (0.6)	1.0000
30–39	848 (2.4)	848 (2.4)	
40–49	2789 (7.8)	2789 (7.8)	
50–59	6968 (19.6)	6968 (19.6)	
60–69	8816 (24.7)	8816 (24.7)	
70–79	10,966 (30.8)	10,966 (30.8)	
≥80	5033 (14.1)	5033 (14.1)	
Sex			1.0000
Female	16,851 (47.3)	16,851 (47.3)	
Male	18,792 (52.7)	18,792 (52.7)	
Low income			1.0000
No	35,286 (99.0)	35,286 (99.0)	
Yes	357 (1.0)	357 (1.0)	
Operation in medical center			1.0000
No	19,684 (55.2)	19,684 (55.2)	
Yes	15,959 (44.8)	15,959 (44.8)	
Types of surgery			1.0000
Musculoskeletal	12,196 (34.2)	12,196 (34.2)	
Digestive	9075 (25.5)	9075 (25.5)	
Neurosurgery	3971 (11.1)	3971 (11.1)	
Cardiovascular	2937 (8.2)	2937 (8.2)	
Respiratory	742 (2.1)	742 (2.1)	
Skin	480 (1.4)	480 (1.4)	
Eye	394 (1.1)	394 (1.1)	
Breast	263 (0.7)	263 (0.7)	
Delivery, CS, abortion	111 (0.3)	111 (0.3)	
Others	5474 (15.4)	5474 (15.4)	
Types of anesthesia			1.0000
General	27,580 (77.4)	27,580 (77.4)	
Epidural or spinal	8063 (22.6)	8063 (22.6)	
Coexisting medical conditions			
Hypertension	10,907 (30.6)	10,907 (30.6)	1.0000
Diabetes	7543 (21.2)	7543 (21.2)	
Cancer	4068 (11.4)	4068 (11.4)	
Mental disorders	3863 (10.8)	3863 (10.8)	
Peptic ulcer disease	2936 (8.2)	2936 (8.2)	
COPD	1858 (5.2)	1858 (5.2)	
Gout	1856 (5.2)	1856 (5.2)	
Anemia	1824 (5.1)	1824 (5.1)	
Atherosclerosis	903 (2.5)	903 (2.5)	
Pneumonia	602 (1.7)	602 (1.7)	
Asthma	554 (1.6)	554 (1.6)	
Osteoporosis	434 (1.2)	434 (1.2)	
Liver cirrhosis	353 (1.0)	353 (1.0)	
Angina	372 (1.0)	372 (1.0)	

(Continued)
incidences of postoperative stroke and acute myocardial infarction were significantly higher in the CKD group. Although the exact mechanism for the development of postoperative cardiovascular events is still unknown, some hypotheses have been developed to explain the phenomena. For example, increased levels of inflammatory and prothrombotic markers, such as c-reactive protein, fibrinogen, albumin, hemoglobin, white blood cell counts, and coagulation factor VII, have been observed in cases of renal disease and decreased GFR.\(^\text{24,25}\) Other factors contributing to the abnormal cardiovascular outcomes included accelerated atherogenesis, nutritional effects, endothelial dysfunction, metabolic changes, coronary artery calcification, and left ventricle abnormalities.\(^\text{25}\)

Medical and surgical infections are common in patients with CKD.\(^\text{26-29}\) In our investigation, pneumonia, septicemia, and urinary tract infection were remarkably major postoperative complications in patients with CKD. Although the probable pathophysiology for the association is still unclear, several potential mechanisms have been postulated. For example, more comorbid illnesses, declined vaccination responsiveness, increased inflammatory cytokine levels, higher serum c-reactive protein concentrations, albuminuria, degraded endothelial glycoalyx, and impaired host immunity were shown to be associated with different types of infectious adverse outcomes.\(^\text{26,27,30}\) However, the results were inconsistent between systemic infections (pneumonia and septicemia) and local infections in our study. Deep wound infections in patients with CKD did not exhibit significant differences when compared with the non-CKD group. A prior investigation of coronary artery bypass surgery in CKD patients revealed that wound infection rates were doubled in the moderate CKD group and that there was a more than 5-fold increase in the severe CKD group.\(^\text{29}\) Local wound infection was solely notably increased in advanced CKD,\(^\text{27,29}\) and the discrepancies between our investigation and previous investigations are possibly due to the limitation of staging status in the presenting database. We suggested that the prevention of infection in CKD patients is crucial because it may lead to increased risk of cardiovascular events, end-stage kidney disease, and mortality.\(^\text{31}\)

	No CKD (N=35,643)	CKD (N=35,643)	P		
	n	(%)	n	(%)	
Heart failure	303	(0.9)	303	(0.9)	1.0000
Venerreal disease	244	(0.7)	244	(0.7)	1.0000
Parkinson’s disease	223	(0.6)	223	(0.6)	1.0000
Myocardial infarction	93	(0.3)	93	(0.3)	1.0000
Alcohol-related illness	96	(0.3)	96	(0.3)	1.0000
Peripheral vascular disease	67	(0.2)	67	(0.2)	1.0000
Atrial fibrillation	38	(0.1)	38	(0.1)	1.0000
Pulmonary tuberculosis	36	(0.1)	36	(0.1)	1.0000
Epilepsy	28	(0.1)	28	(0.1)	1.0000
Psoriasis	49	(0.1)	49	(0.1)	1.0000
SLE	27	(0.1)	27	(0.1)	1.0000
Hypothyroidism	30	(0.1)	30	(0.1)	1.0000
Number of hospitalizations	18,344	(51.5)	18,344	(51.5)	1.0000
0	18,344	(51.5)	18,344	(51.5)	
1	8903	(25.0)	8903	(25.0)	
2	3749	(10.5)	3749	(10.5)	
≥3	4647	(13.0)	4647	(13.0)	
Number of emergency visits	15,573	(43.7)	15,573	(43.7)	1.0000
0	15,573	(43.7)	15,573	(43.7)	
1	8719	(24.5)	8719	(24.5)	
2	4342	(12.2)	4342	(12.2)	
≥3	7009	(19.7)	7009	(19.7)	

Abbreviations: CKD, chronic kidney disease; SLE, systemic lupus erythematosus.
In the nonoperative condition, individuals with CKD had greater chances of bleeding. The possible mechanism was thought to be related to platelet dysfunction, an abnormal interaction between platelets and the vascular walls, anemia, or effects of certain drugs. Nevertheless, the detailed risk for perioperative bleeding remains unclear. In our study, postoperative bleeding was significantly higher in patients with CKD than in the population without CKD. Our findings were similar with a previous meta-analysis, which revealed the increased risks of blood transfusion requirements and postoperative bleeding.

CKD was also considered to be an independent risk factor for blood transfusion predictions. The postulated pathophysiology for the risk of postoperative bleeding is complicated and may be attributed to multiple defects in all of the steps of platelet aggregation. Abnormal platelet adhesion has been observed to be due to the functional derangement of the interaction between von-Willebrand factors and glycoproteins Ib-IIIa as well as increased production of prostacyclin and nitric oxide, which makes platelet activation in CKD patients difficult. Furthermore, inadequate platelet stores of adenosine diphosphate (ADP), as well as inadequate serotonin levels, cyclooxygenase defects, decreased thromboxane A2 synthesis, and altered calcium mobilization, also appear to be associated with bleeding diathesis.

There were some limitations that need to be addressed. First, we could not categorize the stage of CKD in this study because the information of glomerular filtration rate was not available in the database of Taiwan’s National Health Insurance. The definition of CKD was based on physician’s diagnosis during medical visits may cause misclassification because some people with mild CKD (such as stage 1 CKD) may not seek for medical care. This condition may lead to underestimation of the impact of CKD on perioperative outcome in this study because some mild CKD patients may exist in the non-CKD group in this study. Second, the administrative database lacked information on the individual characteristics of patients, such as socioeconomic condition, lifestyle, preoperative laboratory data, and pharmacological compliance. Third, the perioperative variables that were related to surgery and anesthesia were not adequately available in this research database, including factors such as changes in hemodynamic parameters, total volume of blood loss, transfusion details, use of prophylactic antibiotics or anticoagulants, duration of surgery, and postoperative meticulous care profiles. In addition, our study was of a retrospective nature, and a detailed randomization distribution could not be achieved between the groups, even though comprehensive matching and statistical adjustment were performed in this study. However, we assumed that the influence of all of the covariates was evenly distributed between the groups and that the bias would be reduced in this population-based, large-scale study. Finally, our study is based on

Table 3 Risk of postoperative complications and mortality for surgical patients with preoperative CKD

Postoperative outcomes	No CKD (N=35,643)	CKD (N=35,643)	Risk of outcomes		
Postoperative outcomes	Events	%	Event	%	OR (95% CI)*
30-day in-hospital mortality	346	1.0	733	2.1	2.17 (1.90–2.47)
Postoperative complications					
Septicemia	1818	5.1	3037	8.5	1.78 (1.68–1.89)
Stroke	1374	3.9	1785	5.0	1.34 (1.24–1.44)
Pneumonia	1141	3.2	1761	4.9	1.60 (1.48–1.73)
Urinary tract infection	1382	3.9	1497	4.2	1.09 (1.01–1.17)
Acute myocardial infarction	363	1.0	360	1.0	0.99 (0.85–1.15)
Postoperative bleeding	235	0.7	275	0.8	1.17 (0.98–1.40)
Pulmonary embolism	50	0.1	32	0.1	0.64 (0.41–1.00)
ICU stay	6301	17.7	7732	21.7	1.38 (1.32–1.43)
Medical expenditure, USD	3938±5195		4598±5700		p<0.0001
Length of hospital stay, days	11.0±16.5		13.2±17.8		p<0.0001

Note: Adjusted for age, sex, low income, operation in medical center, types of anesthesia, types of surgery, and coexisting medical conditions. Mean±SD. Abbreviations: CI, confidence interval; CKD, chronic kidney disease; ICU, intensive care unit; OR, odds ratio.
Table 4 Stratified analysis for the risk of postoperative adverse events in patients with and without CKD

Age 20–29 years	n	Postoperative adverse events	OR (95% CI)	
No CKD	223	Events	Incidence, %	1.00 (reference)
CKD	223	9	4.0	2.65 (1.15–6.11)
Age 30–39 years	848	No CKD	26	3.1 (1.85–4.93)
2789	CKD	67	7.9	3.02 (1.85–4.93)
Age 40–49 years	2789	No CKD	191	6.9 (1.37–2.02)
2789	CKD	296	10.6	1.66 (1.37–2.02)
Age 50–59 years	6968	No CKD	571	8.2 (1.58–1.98)
6968	CKD	930	13.4	1.77 (1.58–1.98)
Age 60–69 years	8816	No CKD	1034	11.7 (1.52–1.81)
8816	CKD	1567	17.8	1.66 (1.52–1.81)
Age 70–79 years	10,966	No CKD	1878	17.1 (1.38–1.58)
10,966	CKD	2530	23.1	1.48 (1.38–1.58)
Age ≥80 years	5033	No CKD	1231	24.5 (1.18–1.42)
5033	CKD	1472	29.3	1.30 (1.18–1.42)
Female	16,851	No CKD	2043	12.1 (1.52–1.73)
16,851	CKD	3001	17.8	1.62 (1.52–1.73)
Male	18,792	No CKD	2897	15.4 (1.39–1.55)
18,792	CKD	3882	20.7	1.47 (1.39–1.55)
0 Medical condition	10,549	No CKD	1195	11.3 (1.62–1.90)
10,549	CKD	1894	18.0	1.76 (1.62–1.90)
1 Medical condition	14,282	No CKD	1951	13.7 (1.42–1.62)
14,282	CKD	2732	19.1	1.52 (1.42–1.62)
2 Medical conditions	8016	No CKD	1233	15.4 (1.29–1.52)
8016	CKD	1610	20.1	1.40 (1.29–1.52)
3 Medical conditions	2276	No CKD	442	19.4 (1.03–1.38)
2276	CKD	504	22.1	1.19 (1.03–1.38)
≥4 Medical conditions	520	No CKD	119	22.9 (0.97–1.74)
520	CKD	143	27.5	1.30 (0.97–1.74)
0 Hospitalization	18,344	No CKD	2101	11.5 (1.38–1.57)
18,344	CKD	2878	15.7	1.47 (1.38–1.57)
1 Hospitalization	8903	No CKD	1194	13.4 (1.50–1.77)
8903	CKD	1756	19.7	1.63 (1.50–1.77)
2 Hospitalizations	3749	No CKD	596	15.9 (1.49–1.88)
3749	CKD	883	23.6	1.67 (1.49–1.88)
≥3 Hospitalizations	4647	No CKD	1049	22.6 (1.32–1.60)
4647	CKD	1366	29.4	1.46 (1.32–1.60)
0 Emergency visit	15,573	No CKD	1674	10.8 (1.36–1.56)
15,573	CKD	2281	14.7	1.45 (1.36–1.56)

(Continued)
ICD-9-CM codes and very few coding errors could not be avoided.

In conclusion, CKD was an independent risk factor for postoperative mortality and complications, and adverse events after surgery could be observed in the various subgroups. The comprehensive preoperative assessment and optimal control of correctable risk factors should be effectively and efficiently implemented in advance to achieve better outcomes.

Abbreviations
CI, confidence interval; CKD, chronic kidney disease; OR, odds ratio; ICD-9-CM, International Classification of Diseases, 9th Revision, Clinical Modification.

Acknowledgments
This study was supported in part by Taiwan’s Ministry of Science and Technology (MOST106-2314-B-038-036-MY3).

Author contributors
All authors contributed to study design, data analysis, drafting or revising the article, gave final approval of the version to be published, and agree to be accountable for all aspects of the work.

Disclosure
The authors report no conflicts of interest in this work.

References
1. National Institute of Diabetes and Digestive and Kidney Diseases. U.S. Renal Data System. USRDS 2016 Annual Data Report. Atlas of Chronic Kidney Disease and End-stage Renal Disease in the United States. Bethesda, MD: National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases; 2016.
2. Tonelli M, Karumanchi SA, Thadhani R. Epidemiology and mechanisms of uremia-related cardiovascular disease. *Circulation*. 2016;133(5):518–536. doi:10.1161/CIRCULATIONAHA.115.018713
3. Mases A, Sabaté S, Guílera N, et al. Preoperative estimated glomerular filtration rate and the risk of major adverse cardiovascular and cerebrovascular events in non-cardiac surgery. *Br J Anaesth*. 2014;113(4):644–651. doi:10.1093/bja/aeu134
4. Mathew A, Devereaux PJ, O’Hare A, et al. Chronic kidney disease and postoperative mortality: a systematic review and meta-analysis. *Kidney Int*. 2008;73(9):1069–1081. doi:10.1038/ki.2008.29
5. Blitz JD, Shoham MH, Fang Y, et al. Preoperative renal insufficiency: underreporting and association with readmission and major postoperative morbidity in an academic medical center. *Anesth Analg*. 2016;123(6):1500–1515. doi:10.1213/ANE.0000000000001573
6. Wannamethee SG, Shaper AG, Lowe GD, et al. Renal function and cardiovascular mortality in elderly men: the role of inflammatory, procoagulant, and endothelial biomarkers. *Eur Heart J*. 2006;27(24):2975–2981. doi:10.1093/eurheartj/ehl402
7. Go AS, Chertow GM, Fan D, et al. Chronic kidney disease and the risks of death, cardiovascular events, and hospitalization. *N Engl J Med*. 2004;351(13):1296–1305. doi:10.1056/NEJMoa041031
8. Wen CP, Cheng TY, Tsai MK, et al. All-cause mortality attributable to chronic kidney disease: a prospective cohort study based on 462,923 adults in Taiwan. *Lancet*. 2008;371(9631):2173–2182. doi:10.1016/S0140-6736(08)60952-6
9. Ackland GL, Moran N, Cone S, et al. Chronic kidney disease and postoperative morbidity after elective orthopedic surgery. *Anesth Analg*. 2011;112(6):1375–1381. doi:10.1213/ANE.0b013e3181ee8456
10. Jager A, Kostense PJ, Nijpels G, et al. Serum homocysteine levels are associated with the development of (micro)albuminuria: the Hoorn study. *Arterioscler Thromb Vasc Biol*. 2001;21(1):74–81
11. Shlipak MG, Fried LF, Crump C, et al. Elevations of inflammatory and procoagulant biomarkers in elderly persons with renal insufficiency. *Circulation*. 2003;107(1):87–92. doi:10.1161/01.cir.0000042700.48769.59
12. Shlipak MG, Katz R, Cushman M, et al. Cystatin C and inflammatory markers in the ambulatory elderly. *Am J Med*. 2005;118(12):14–16. doi:10.1016/j.amjmed.2005.09.031
13. Schmidt EP, Yang Y, Janssen WJ, et al. The pulmonary endothelial glycocalyx regulates neutrophil adhesion and lung injury during experimental sepsis. *Nat Med*. 2012;18(8):1217–1223. doi:10.1038/nm.2843
14. Raggi P, Boulay A, Chasan-Taber S, et al. Cardiac calcification in adult hemodialysis patients: a link between end-stage renal disease and cardiovascular disease. *J Am Coll Cardiol*. 2002;39(4):695–701. doi:10.1016/s0735-1097(01)01781-8

Note: *Adverse events include stroke, pneumonia, urinary tract infection, septicemia, and 30-day in-hospital mortality.

Abbreviations: CI, confidence interval; CKD, chronic kidney disease; OR, odds ratio.
15. Cherng YG, Liao CC, Chen TH, et al. Are non-cardiac surgeries safe for dialysis patients? A population-based retrospective cohort study. *PloS One.* 2013;8(3):e58942. doi:10.1371/journal.pone.0058942

16. Lee TH, Marcantonio ER, Mangione CM, et al. Derivation and prospective validation of a simple index for prediction of cardiac risk of major noncardiac surgery. *Circulation.* 1999;100(10):1043–1049. doi:10.1161/01.cir.100.10.1043

17. Gupta PK, Gupta H, Sundaram A, et al. Development and validation of a risk calculator for prediction of cardiac risk after surgery. *Circulation.* 2011;124(4):381–387. doi:10.1161/CIRCULATIONAHA.110.105701

18. Ackland GL, Laing CM. Chronic kidney disease: a gateway for perioperative medicine. *Br J Anaesth.* 2014;113(6):902–905. doi:10.1093/bja/aeu222

19. Charytan DM, Yang SS, McGurk S, Raw J. Long and short outcomes following coronary artery bypass grafting in patients with and without chronic kidney disease. *Nephrol Dial Transplant.* 2010;25(11):3654–3663. doi:10.1093/ndt/gfq328

20. Patel VI, Mukhopadhyay S, Guest JM, et al. Impact of severe chronic kidney disease on outcomes of infragenual peripheral arterial intervention. *J Vasc Surg.* 2014;59(2):368–375. doi:10.1016/j.jvs.2013.09.006

21. Turgeon NA, Perez S, Mondestin M, et al. The impact of renal function on outcomes of bariatric surgery. *J Am Soc Nephrol.* 2012;23(5):885–894. doi:10.1681/ASN.2011050476

22. Cloyd JM, Ma Y, Morton JM, et al. Does chronic kidney disease affect outcomes after major abdominal surgery? Results from the National surgical quality improvement program. *J Gastrointest Surg.* 2014;18(3):605–612. doi:10.1007/s11605-013-2390-3

23. Goyal A, Chatterjee K, Yadlapati S, Rangaswami J. Impact of end stage kidney disease on costs and outcomes of Clostridium difficile infection. *Int J Infect Dis.* 2017;62:8–9. doi:10.1016/j.ijid.2017.06.013

24. Fried L, Solomon C, Shlipak M, et al. Inflammatory and prothrombotic markers and the progression of renal disease in elderly individuals. *J Am Soc Nephrol.* 2004;15(12):3184–3191. doi:10.1097/001 ASN.0000146422.45434.35

25. Arici M, Walls J. End-stage renal disease, atherosclerosis, and cardiovascular mortality: is C-reactive protein the missing link? *Kidney Int.* 2001;59(2):407–414. doi:10.1046/j.1523-1755.2001.059002407.x

26. McDonald HI, Thomas SL, Nitsch D. Chronic kidney disease as a risk factor for acute community-acquired infections in high-income countries: a systematic review. *BMJ Open.* 2014;4(4):e004100. doi:10.1136/bmjopen-2013-004100

27. Ishigami J, Grams ME, Chang AR, et al. CKD and risk for hospitalization with infection: the atherosclerosis risk in communities (ARIC) study. *Am J Kidney Dis.* 2017;69(6):752–761. doi:10.1053/j.ajkd.2016.09.018

28. Sarnak MJ, Jaber BL. Mortality caused by sepsis in patients with end-stage renal disease compared with the general population. *Kidney Int.* 2000;58(4):1758–1764. doi:10.1111/j.1523-1755.2000.00337.x

29. Minakata K, Bando K, Tanaka S, et al. Preoperative chronic kidney disease as a strong predictor of postoperative infection and mortality after coronary artery bypass grafting. *Circ J.* 2014;78(9):2225–2231.

30. Su G, Xu H, Marrone G, et al. Chronic kidney disease is associated with poorer in-hospital outcomes in patients hospitalized with infections: electronic record analysis from China. *Sci Rep.* 2017;7(1):11530. doi:10.1038/s41598-017-11861-2

31. Cheikh Hassan HI, Tang M, Djurdjev O, et al. Infection in advanced chronic kidney disease leads to increased risk of cardiovascular events, end-stage kidney disease and mortality. *Kidney Int.* 2016;90(4):897–904. doi:10.1016/j.kint.2016.07.013

32. Ascillo RO, Shah M, Devereaux PJ, et al. The risk of perioperative bleeding in patients with chronic kidney disease: a systematic review and meta-analysis. *Ann Surg.* 2013;258(6):901–913. doi:10.1097/SLA.0000000000002244

33. Noris M, Remuzzi G. Uremic bleeding: closing the circle after 30 years of controversies? *Blood.* 1999;94(8):2569–2574.

34. Sohal AS, Gangji AS, Crowther MA, Treleaven D. Uremic bleeding: pathophysiology and clinical risk factors. *Thromb Res.* 2006;118(3):417–422. doi:10.1016/j.thromres.2005.03.032

35. Augustin ID, Yeoh TY, Sprung J, et al. Association between chronic kidney disease and blood transfusions for knee and hip arthroplasty surgery. *J Arthroplasty.* 2013;28(6):928–931. doi:10.1016/j.arth.2013.02.004

36. Remuzzi G, Cavenagh AE, Mecca G, et al. Prostacyclin-like activity and bleeding in renal failure. *Lancet.* 1977;2(8050):1195–1197. doi:10.1016/s0140-6736(77)90437-8

37. Gawaz MP, Dobos G, Spath M, et al. Impaired function of platelet membrane glycoprotein IIb—IIIa in end-stage renal disease. *J Am Soc Nephrol.* 1994;5(1):36–46.
Supplementary material

Table S1 Factors associated with adverse events after nonurological surgeries in patients with chronic kidney disease (N=35643)*

	OR	(95% CI)
Age, years		
20–29	1.00	(reference)
30–39	0.83	(0.49–1.40)
40–49	1.14	(0.70–1.84)
50–59	1.35	(0.84–2.15)
60–69	1.84	(1.16–2.94)
70–79	2.55	(1.60–4.07)
≥80	3.65	(2.28–5.83)
Sex		
Female	1.00	(reference)
Male	1.09	(1.03–1.15)
Operation in medical center		
No	1.13	(1.06–1.19)
Yes	1.00	(reference)
Types of surgery		
Musculoskeletal	3.39	(2.07–5.54)
Digestive	5.27	(3.22–8.62)
Neurosurgery	8.45	(5.16–13.8)
Cardiovascular	8.03	(4.89–13.2)
Respiratory	6.19	(3.68–10.4)
Skin	4.89	(2.85–8.39)
Eye	1.00	(reference)
Breast	3.02	(1.56–5.84)
Delivery, CS, abortion	3.87	(1.58–9.52)
Others	2.73	(1.66–4.50)
Types of anesthesia		
Epidural or spinal	1.00	(reference)
General	1.23	(1.14–1.33)
Myocardial infarction		
Yes vs no	2.17	(1.41–3.32)
Alcohol-related illness		
Yes vs no	1.88	(1.14–3.10)
Parkinson's disease		
Yes vs no	1.45	(1.08–1.94)
Epilepsy		
Yes vs no	3.97	(1.77–8.92)
Diabetes		
Yes vs no	1.15	(1.07–1.23)
Number of hospitalizations		
0	1.00	(reference)
1	1.18	(1.10–1.26)
2	1.38	(1.25–1.51)
≥3	1.74	(1.58–1.91)
Number of emergency visits		
0	1.00	(reference)
1	1.27	(1.18–1.36)
2	1.37	(1.25–1.50)
≥3	1.47	(1.36–1.60)

Note: *Adverse events include stroke, pneumonia, urinary tract infection, septicemia, and 30-day in-hospital mortality.

Abbreviations: CI, confidence interval; OR, odds ratio.
