Subclinical Myocardial Injury and Risk of COVID-19 in the General Population: The Trøndelag Health Study

To the Editor:

Cardiovascular disease (CVD) is a risk factor for a severe clinical course in COVID-19 (1), and CVD risk factors associate with the risk of contracting COVID-19 in the general population (2). Subclinical myocardial injury, quantified by cardiac troponin, is common in patients hospitalized with COVID-19 (3), but its association with risk of COVID-19 is unknown. We hypothesized that subclinical myocardial injury is associated with incident COVID-19 in the general population.

The Trøndelag Health (HUNT) Study is the largest population-based cohort in Norway (4), and the fourth study visit (HUNT4) was conducted from 2017 to 2019 including 56,078 participants. The study was approved by the ethics committee and all participants provided informed written consent.

For the current investigation, we included all study participants from HUNT4 with measurement of high-sensitivity cardiac troponin I (cTnI, ARCHITECT STAT High Sensitive Troponin, assay 99th percentile 16 ng/L for women and 34 ng/L for men). cTnI analysis was performed within 24 h of serum collection. Information on incident COVID-19 was acquired from the Norwegian Surveillance Service for Communicable Diseases and all-cause mortality from the Norwegian Cause of Death Registry. Clinical end points were obtained through May 31, 2021. We used a Fine and Gray proportional subhazards model to analyze associations with incident COVID-19, using all-cause mortality as competing risk. We adjusted for age, sex, and established risk factors of severe COVID-19 (i.e., CVD, diabetes mellitus, body mass index, and current smoking) (1). Prognostic accuracy was assessed by c statistics and the net reclassification index (NRI).

cTnI was measured in 37,835 study participants from HUNT4. During a median follow-up time of 1083 (interquartile range 943 to 1152) days, 237 events (0.6%) were registered for incident COVID-19 (including 4 hospital admissions) and 1030 (2.7%) events for all-cause mortality. No COVID-19 related deaths were registered. Study participants with incident COVID-19 were younger, less frequently established CVD, and lower concentrations of cTnI.

Most of these differences were attenuated after adjustment for age and sex (Table 1). After adjustment for age and sex, the difference in cTnI between groups was 8.2% (95% CI, −2.9 to 19.4%). Lower concentrations of log-transformed cTnI were associated with incident COVID-19 (subdistribution hazard ratio [sHR] 0.77; 95% CI, 0.67–0.89). This association was no longer significant in adjusted analysis (adjusted sHR [asHR] 1.02; 95% CI, 0.87–1.20). The results were similar when limiting analysis to 2020, before the initiation of the Norwegian coronavirus immunization program (asHR 0.90; 95% CI, 0.66–1.22). There was no difference in the associations of cTnI with incident COVID-19 in study participants with (asHR 1.27; 95% CI, 0.72–2.25) or without established CVD (asHR 1.01; 95% CI, 0.86–1.19, P for interaction = 0.72). cTnI above the sex-specific 99th percentile (asHR 0.73, 95% CI, 0.18–2.95) or established CVD per se (asHR 0.77; 95% CI, 0.41–1.42) were not associated with incident COVID-19. cTnI did not improve the c statistics or NRI when added to a basic risk model constructed on age, sex, and established risk factors for severe COVID-19 (c index 0.686; 95% CI, 0.654–0.718, vs 0.686; 95% CI, 0.654–0.718, P for comparison = 0.97; NRI 0.087, 95% CI, −0.204 to 0.240). C-reactive protein (CRP) was not associated with incident COVID-19 (c index 0.514; 95% CI, 0.474–0.554), and there were no model improvements when cTnI was added to the basic risk model and CRP.

In conclusion, our study did not permit investigations of COVID-19 severity, as we acquired data on incident COVID-19 from the national registry of communicable diseases. The number of COVID-19 events was low, as Norway has been modestly affected by the ongoing pandemic. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) testing is performed on clinical indication and accordingly non-systematic, possibly underestimating the true number of COVID-19 patients. The number of hospital admissions was low, barring any meaningful analyses in this regard.

In conclusion, our study does not support the hypothesis of an association between subclinical myocardial injury and incident COVID-19. cTnI did not improve the c statistics or NRI when added to a basic risk model constructed on age, sex, and established risk factors for severe COVID-19 (c index 0.686; 95% CI, 0.654–0.718, vs 0.686; 95% CI, 0.654–0.718, P for comparison = 0.97; NRI 0.087, 95% CI, −0.204 to 0.240). C-reactive protein (CRP) was not associated with incident COVID-19 (c index 0.514; 95% CI, 0.474–0.554), and there were no model improvements when cTnI was added to the basic risk model and CRP.

In this population-based study with prospective measurement of cTnI, we found no association between subclinical myocardial injury, established CVD, and risk of incident COVID-19. Considering the established link between CVD, cardiac troponins, and COVID-19 severity (1), it is surprising that study participants with incident COVID-19 exhibited lower concentrations of cTnI. These study participants, however, were considerably younger, consistent with the demographic COVID-19 trends in Europe (5), and the absolute differences and prognostic properties of cTnI were attenuated in adjusted analyses.

Our study did not permit investigations of COVID-19 severity, as we acquired data on incident COVID-19 from the national registry of communicable diseases. The number of COVID-19 events was low, as Norway has been modestly affected by the ongoing pandemic. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) testing is performed on clinical indication and accordingly non-systematic, possibly underestimating the true number of COVID-19 patients. The number of hospital admissions was low, barring any meaningful analyses in this regard.

In conclusion, our study does not support the hypothesis of an association between subclinical myocardial injury and incident COVID-19. cTnI did not improve the c statistics or NRI when added to a basic risk model constructed on age, sex, and established risk factors for severe COVID-19 (c index 0.686; 95% CI, 0.654–0.718, vs 0.686; 95% CI, 0.654–0.718, P for comparison = 0.97; NRI 0.087, 95% CI, −0.204 to 0.240). C-reactive protein (CRP) was not associated with incident COVID-19 (c index 0.514; 95% CI, 0.474–0.554), and there were no model improvements when cTnI was added to the basic risk model and CRP.

In conclusion, our study does not permit investigations of COVID-19 severity, as we acquired data on incident COVID-19 from the national registry of communicable diseases. The number of COVID-19 events was low, as Norway has been modestly affected by the ongoing pandemic. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) testing is performed on clinical indication and accordingly non-systematic, possibly underestimating the true number of COVID-19 patients. The number of hospital admissions was low, barring any meaningful analyses in this regard.

In conclusion, our study does not support the hypothesis of an association between subclinical myocardial injury and incident COVID-19. cTnI did not improve the c statistics or NRI when added to a basic risk model constructed on age, sex, and established risk factors for severe COVID-19 (c index 0.686; 95% CI, 0.654–0.718, vs 0.686; 95% CI, 0.654–0.718, P for comparison = 0.97; NRI 0.087, 95% CI, −0.204 to 0.240). C-reactive protein (CRP) was not associated with incident COVID-19 (c index 0.514; 95% CI, 0.474–0.554), and there were no model improvements when cTnI was added to the basic risk model and CRP.

In conclusion, our study does not permit investigations of COVID-19 severity, as we acquired data on incident COVID-19 from the national registry of communicable diseases. The number of COVID-19 events was low, as Norway has been modestly affected by the ongoing pandemic. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) testing is performed on clinical indication and accordingly non-systematic, possibly underestimating the true number of COVID-19 patients. The number of hospital admissions was low, barring any meaningful analyses in this regard.

In conclusion, our study does not support the hypothesis of an association between subclinical myocardial injury and incident COVID-19. cTnI did not improve the c statistics or NRI when added to a basic risk model constructed on age, sex, and established risk factors for severe COVID-19 (c index 0.686; 95% CI, 0.654–0.718, vs 0.686; 95% CI, 0.654–0.718, P for comparison = 0.97; NRI 0.087, 95% CI, −0.204 to 0.240). C-reactive protein (CRP) was not associated with incident COVID-19 (c index 0.514; 95% CI, 0.474–0.554), and there were no model improvements when cTnI was added to the basic risk model and CRP.
Table 1. Baseline characteristics according to incident COVID-19.²

	Total cohort (n = 37,835)	No COVID-19 (n = 37,598)	Incident COVID-19 (n = 237)	Unadjusted	Adjusted for age and sex	
	n	Value	n	Value	P	
Male sex, n (%)	37,835	17,081 (45.1%)	37,598	17,074 (45.1%)	>0.99	0.85
Age, years	37,835	55.4 (41.1–68.4)	37,598	55.5 (41.2–68.5)	<0.001	<0.001
Current smoking, n (%)	37,060	3228 (8.7%)	36,837	3219 (8.7%)	0.012	0.034
Higher education, n (%)	37,001	13,817 (37.3%)	36,781	13,732 (37.3%)	0.73	0.27
Medical history						
Diabetes mellitus, n (%)	36,816	2257 (6.1%)	36,594	2247 (6.1%)	0.40	0.58
Angina pectoris, n (%)	35,543	1117 (3.1%)	35,331	1112 (3.1%)	0.69	0.32
Myocardial infarction, n (%)	35,733	1422 (4.0%)	35,520	1418 (4.0%)	0.16	0.86
Heart failure, n (%)	35,486	654 (1.8%)	35,273	651 (1.8%)	>0.99	0.22
Atrial fibrillation, n (%)	35,286	1884 (5.3%)	35,078	1879 (5.4%)	0.06	0.66
Stroke, n (%)	35,532	1170 (3.3%)	35,319	1166 (3.3%)	0.33	0.76
Any cardiovascular disease, n (%)	37,835	4736 (12.5%)	37,598	4724 (12.6%)	<0.001	0.36
Cancer, n (%)	35,795	2852 (8.0%)	35,585	2842 (8.0%)	0.10	0.77
Antihypertensive therapy, n (%)	37,835	8739 (23.1%)	37,598	8715 (23.2%)	<0.001	0.26
Lipid lowering therapy, n (%)	37,835	5994 (15.8%)	37,598	5979 (15.9%)	<0.001	0.30
Body mass index, kg/m²	37,420	26.8 (24.0–30.0)	37,184	26.8 (24.0–30.0)	0.16	0.06
Waist-to-hip ratio	37,838	0.95 (0.90–1.01)	37,598	0.95 (0.90–1.01)	0.52	0.008
Heart rate, bpm	36,319	71 (64–80)	36,088	71 (64–80)	0.21	0.37
Systolic blood pressure, mmHg	37,675	126 (115–139)	37,439	126 (115–139)	<0.001	0.28
Diastolic blood pressure, mmHg	37,675	72 (65–79)	37,439	72 (65–79)	<0.001	0.041
Total cholesterol, mg/dL	37,835	5.2 (4.4–6.0)	37,598	5.2 (4.4–6.0)	0.008	0.31
HDL cholesterol, mg/dL	37,835	1.3 (1.1–1.6)	37,598	1.3 (1.1–1.6)	0.004	0.005
Hb A₁c, %	37,694	5.2 (5.0–5.5)	37,459	5.2 (5.0–5.5)	<0.001	0.64
Hemoglobin, g/dL	37,699	14.6 (13.7–15.5)	37,464	14.6 (13.7–15.5)	0.80	0.09
White blood cell count, 10⁹/L	37,697	6.7 (5.7–7.9)	37,462	6.7 (5.7–7.9)	0.07	0.16
eGFR, ml/min/1.73m²	37,835	90.0 (80.0–105.0)	37,598	90.3 (80.0–105.0)	<0.001	0.48
CRP, mg/L	37,835	1.3 (0.6–2.7)	37,598	1.3 (0.6–2.7)	0.45	0.007
Cardiac troponin I, ng/L	37,835	1.8 (0.6–3.5)	37,598	1.8 (0.6–3.5)	<0.001	0.15

²Data are reported as absolute numbers (proportion) or median (interquartile range) unless otherwise stated.

Any cardiovascular disease = history of angina pectoris, myocardial infarction, heart failure, atrial fibrillation, and/or stroke.

Abbreviations: bpm, beats per minute; eGFR, estimated glomerular filtration rate; CRP, C-reactive protein; NA, not applicable.

To convert cholesterol concentrations from mg/dL to mmol/L, multiply by 0.02586.

Detectable cardiac troponin I = above or at limit of detection (1.2 ng/L). Cardiac troponin I concentrations below the limit of detection were assigned a value of 0.6 ng/L.
COVID-19 in predominantly healthy community dwellers. Populations with higher incidence of severe COVID-19 are needed to assess whether cTnI is an independent risk factor for hospital admission in COVID-19.

Nonstandard Abbreviations: CVD, cardiovascular disease; HUNT Study, Trøndelag Health Study; cTnI, cardiac troponin I; asHR, adjusted subdistribution hazard ratio.

Author Contributions: All authors confirmed they have contributed to the intellectual content of this paper and have met the following 4 requirements: (a) significant contributions to the conception and design, acquisition of data, or analysis and interpretation of data; (b) drafting or revising the article for intellectual content; (c) final approval of the published article; and (d) agreement to be accountable for all aspects of the article thus ensuring that questions related to the accuracy or integrity of any part of the article are appropriately investigated and resolved.

Authors’ Disclosures or Potential Conflicts of Interest: Upon manuscript submission, all authors completed the author disclosure form. Disclosures and/or potential conflicts of interest:

Employment or Leadership: None declared.

Consultant or Advisory Role: T. Omland, Roche Diagnostics, Abbott Diagnostics, and CardiNor.

Stock Ownership: T. Omland, CardiNor.

Honoraria: H. Røsjø, CardiNor, and SpinChip Diagnostics; T. Omland, Siemens Healthineers, Roche Diagnostics, and Abbott Diagnostics

Research Funding: T. Omland, funding from Abbott Diagnostics related to the current work.

Expert Testimony: None declared.

Patents: None declared.

Other Remuneration: T. Omland, nonfinancial support from Novartis, Abbott Diagnostics, Roche Diagnostics, and SomaLogic not related to the current work.

Acknowledgments: The Trøndelag Health Study (HUNT) is a collaboration between HUNT Research Centre (Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology NTNU), Trøndelag County Council, Central Norway Regional Health Authority, and the Norwegian Institute of Public Health.

References

1. Harrison SL, Buckley BJR, Rivera-Caravaca JM, Zhang J, Lip GYH. Cardiovascular risk factors, cardiovascular disease, and COVID-19: an umbrella review of systematic reviews. Eur Heart J Qual Care Clin Outcomes 2021;7:330–9.

2. Ho FK, Celis-Morales CA, Gray SR, Katikireddi SV, Niedzwiedz CL, Hastie C, et al. Modifiable and non-modifiable risk factors for COVID-19, and comparison to risk factors for influenza and pneumonia: results from a UK Biobank prospective cohort study. BMJ Open 2020;10:e040402.

3. Kavsak PA, Hammarsten O, Worster A, Smith SW, Apple FS. Cardiac troponin testing in patients with COVID-19: a strategy for testing and reporting results. Clin Chem 2021;67:107–13.

4. Krokstad S, Langhammer A, Hveem K, Holmen TL, Midthjell K, Stene TR, et al. Cohort profile: the HUNT study, Norway. Int J Epidemiol 2013;42:968–77.

5. European Centre for Disease Prevention and Control. COVID-19 surveillance report - Week 29, 2021. https://www.ecdc.europa.eu/en/covid-19/surveillance/weekly-surveillance-report (Accessed August 5, 2021).