Switched Max-Link Relay Selection Algorithms for Buffer-Aided Relay Systems

F. L. Duarte and R. C. de Lamare

1Centre for Telecommunications Studies (CETUC), Pontifical Catholic University of Rio de Janeiro, Brazil
2Military Institute of Engineering, IME, Rio de Janeiro, RJ, Brazil
3Department of Eletronic Engineering, University of York, United Kingdom

Email: {flaviold, delamare}@cetuc.puc-rio.br

Abstract—In this paper, we investigate relay selection for cooperative multiple-antenna systems that are equipped with buffers, which increase the reliability of wireless links. In particular, we present a novel relay selection technique based on switching and the selection of the best link, that is named Switched Max-Link. We also introduce a novel relay selection criterion based on the Maximum Likelihood (ML) principle and the Pairwise Error Probability (PEP) denoted Maximum Minimum Distance (MMD) that is incorporated into the proposed Switched Max-Link protocol. We compare the proposed MMD to the existing Quadratic Norm (QN), in terms of PEP and computational complexity. Simulations are then employed to evaluate the performance of the proposed and existing techniques.

Index Terms—Cooperative communications, Relay-selection, Max-Link, Maximum Likelihood criterion

I. INTRODUCTION

In wireless networks, multipath propagation is a channel propagation phenomenon that affects the transmission of signals and can be mitigated through the use of cooperative diversity [1]–[3]. In cooperative communications with multiple relays, where a number of relays help a source in transmitting data packets to a destination, by receiving, processing (decoding) and forwarding these packets, relay selection schemes are key because of their high performance [4]–[6]. As cooperative communication can improve the throughput and extend the coverage of wireless communications systems, the task of relay selection serves as a building block to realize it. In this context, relay schemes have been included in recent/future wireless standards such as Long Term Evolution (LTE) Advanced [7], [8] and 5G standards [9].

A. Prior and Related Work

In conventional relaying, using half duplex (HD) and decode-and-forward protocols, transmission is usually organized in a prefixed schedule with two successive time slots. In the first time slot, the relay receives and decodes the data transmitted from the source, and in the second time slot the relay forwards the decoded data to the destination. Single relay selection schemes use the same relay for reception and transmission, so they are not able to simultaneously exploit the best available source-relay (SR) and relay-destination (RD) channels. The two most common schemes are bottleneck based and maximum harmonic mean based best relay selection (BRS) [4]. The performance of relaying schemes can be improved if the link with the highest power is used in each time slot. This can be achieved via a buffer-aided relaying protocol, where the relay can accumulate packets in its buffer, before transmitting. The use of buffers provides an improved performance and new degrees of freedom for system design [7], [10]. However, it suffers from additional delay that must be well managed for delay-sensitive applications. Buffer-aided relaying protocols require not only the acquisition of channel state information (CSI), but control of the buffer status. Some possible applications of buffer-aided relaying are: vehicular, cellular, and sensor networks [7]. In Max-Max Relay Selection (MMRS) [4], in the first time slot, the relay selected for reception can store the received packets in its buffer and forward them at a later time when selected for transmission. In the second time slot, the relay selected for transmission can transmit the first packet in the queue of its buffer, which was received from the source earlier. MMRS assumes infinite buffer sizes. To overcome this limitation, in [4] a hybrid relay selection (HRS) scheme, that is a combination of BRS and MMRS, was proposed. Although MMRS and HRS improve the throughput and/or SNR gain as compared to BRS, their diversity gain is limited to N (the quantity of relays). This can be improved by combining adaptive link selection with MMRS, which results in the Max-Link [11] protocol.

The main idea of Max-Link is to select in each time slot the strongest link among all the available SR and RD links (i.e., among 2N links) for transmission [12]. For independent and identically distributed (i.i.d.) links and no delay constraints, Max-Link achieves a diversity gain of 2N, which is twice the diversity gain of BRS and MMRS. Max-Link has been extended in [13] to account for direct source-destination (SD) connectivity, which provides resiliency in low transmit SNR conditions [12]. In [14]–[17], some buffer-aided relay selection protocols improve the Max-Link performance by: reducing the average packet delay, maintaining a good diversity gain, and/or achieving full diversity gain with a smaller buffer size compared to Max-Link. In summary, the previous schemes (MMRS, HRS and Max-Link) only use buffer-aided relay selection for cooperative single-antenna systems.

B. Contributions

In this work, we examine buffer-aided relay selection for cooperative multiple-antenna systems. In particular, we combine the concept of switching with the concept of selecting the best link used by the Max-Link protocol for cooperative multiple-antenna systems, which results in the proposed Switched Max-Link protocol. We also introduce the MMD criterion for selection of relays in the proposed scheme, which is based on the ML criterion and the PEP. The advantage of the MMD algorithm is that it maximizes the minimum value of the
PEP argument (PEP worst case). Simulations illustrate the performance of the proposed relay selection techniques. This paper is structured as follows. Section II describes the system model and the main assumptions made. Section III presents the proposed Switched Max-Link relay selection protocol and compares the proposed MMD criterion to the existing QN, in terms of PEP and complexity. Section IV illustrates and discusses the simulation results whereas Section V gives the concluding remarks.

II. SYSTEM DESCRIPTION

We consider a multiple-antenna relay network with one source node, S, one destination node, D, and N half-duplex decode-and-forward (DF) relays, $R_1,...,R_N$. Each relay is equipped with a buffer, whose size is J packets and each node is equipped with M antennas, and the transmission is organized in time slots [4]. This configuration is considered for simplicity. The considered system is shown in Fig. 1.

![Fig. 1. System Model](image)

A. Assumptions

In cooperative transmissions two time slots are needed to transmit data packets from the source to the destination, so the energy transmitted in direct transmission (from the source to the destination) is twice the energy transmitted in the cooperative transmission, from the source to the relay selected for reception (E_s) or from the relay selected for transmission to the destination (E_r), $E_r = E_s$. For this reason, the energy transmitted from each antenna in cooperative transmissions is E_s/M and the energy transmitted from each antenna in direct transmissions is $2E_s/M$.

We consider that the channel coefficients are mutually independent zero mean complex Gaussian random variables (Rayleigh fading). Moreover, we assume that the transmission is organized in data packets and the channels are constant for the duration of one packet and vary independently from one packet to the next. The information about the order of the data packets is contained in the preamble of each packet, so the original order is restored at the destination node. Other information such as signaling for network coordination and pilot symbols for training and knowledge of the channel (CSI) are also inserted in the preamble of the packet. We consider perfect and imperfect CSI. Furthermore, we assume that the relays do not communicate with each other.

We also assume that the destination is the central node, being responsible for deciding whether the source or the relay should transmit in a given time slot i. The central node has a perfect channel and buffer state information, so it may run the algorithm in each time slot and select the relay for transmission or reception through an error-free feedback channel. This assumption can be ensured by an appropriate signalling that provides global channel state information (CSI) at the destination node [11]. Furthermore, we assume that the source has no CSI and each relay has only information about its SR channel and buffer status.

B. System Model

The received signal from the source to the destination is organized in an $M \times 1$ vector $y_{s,d}[i]$ given by

$$y_{s,d}[i] = \sqrt{\frac{2E_s}{M}} x_{s,d}[i] + n_d[i],$$ \hspace{1cm} (1)

where E_s represents the total energy of the symbols transmitted from the source, $x_{s,d}[i]$ represents the vector formed by M symbols sent by the antennas of the source (a symbol of each packet). The quantity $H_{s,d}$ represents the $M \times M$ matrix of SD links and n_d denotes the zero mean additive white complex Gaussian noise (AWGN) at the destination receiver.

The received signal from the source to the selected relay is organized in an $M \times 1$ vector $y_{s,r_k}[i]$ given by

$$y_{s,r_k}[i] = \sqrt{\frac{E_s}{M}} H_{s,r_k} x_{s,d}[i] + n_{r_k}[i],$$ \hspace{1cm} (2)

where r_k refers to the selected relay for reception, H_{s,r_k} is the $M \times M$ matrix of SR_k links and n_{r_k} represents the AWGN at the relay selected for reception.

The signal transmitted from the selected relay and received at the destination is structured in an $M \times 1$ vector $y_{r_j,d}[i]$ given by

$$y_{r_j,d}[i] = \sqrt{\frac{E_{r_j}}{M}} H_{r_j,d} x_{r_j}[i] + n_d[i],$$ \hspace{1cm} (3)

where E_{r_j} represents the total energy of the decoded symbols transmitted from the relay selected for transmission r_j, $x_{r_j}[i]$ is the vector formed by M previously decoded symbols in the relay selected for reception and stored in its buffer and now transmitted by r_j and $H_{r_j,d}$ is the $M \times M$ matrix of $R_j D$ links.

Assuming perfect CSI, at the relays, we employ the maximum likelihood (ML) receiver [5]:

$$x_{r_j}[i] = \arg \min_{\hat{x}_{r_j}[i]} \left(\frac{E_s}{M} H_{s,r_k} x_{r_j}[i] \right)^2,$$ \hspace{1cm} (4)

where $x'_{r_j}[i]$ represents each possible vector formed by M symbols. As an example, if we have BPSK (number of
constellation symbols $N_s = 2$), unit power symbols and $M = 2$, the estimated symbol vector x_i may be $[-1 - 1]^T$, $[-1 + 1]^T$, $[+1 - 1]^T$ or $[+1 + 1]^T$.

At the destination, we also resort to the ML receiver which depending on the transmission (SD or $R_j D$) yields

$$\hat{x}[i] = \arg \min_{x'[i]} \left(\left\| y_{s,d}[i] - \sqrt{\frac{2E_s}{M}} H_{s,r} x'[i] \right\|^2 \right), \quad (5)$$

$$\hat{x}[i] = \arg \min_{x'[i]} \left(\left\| y_{r,j,d}[i] - \sqrt{\frac{E_{s}}{M}} H_{r,j,d} x'[i] \right\|^2 \right), \quad (6)$$

The ML receiver of the DF relay looks for an estimate of the vector of symbols transmitted by the source $x[i]$, comparing the quadratic norm between the output $y_{s,r,k}$ and the term $\sqrt{E_s/M} H_{s,r}$ multiplied by $x'[i]$, that represents each of the N_s^M possible transmitted symbols vector x. We compute the symbol vector which is the optimal solution for the ML rule. The same reasoning is applied to the ML receiver at the destination. Other detection techniques can also be employed [7], [21]-[28], [30]-[32], [34]-[38], [40], [41], [44], [61], [66].

Considering imperfect CSI, a channel error matrix H_c is added to the channel matrix $(H_{s,r}, H_{r,j,d}$ or $H_{s,d})$ [13], where the variance of the H_c coefficients is given by $\sigma_c^2 = \beta E_s^{-\alpha}$ ($\beta \geq 0$ and $0 \leq \alpha \leq 1$), in the case of the channel matrix $H_{s,r,k}$ or $H_{r,j,d}$, and $\sigma_c^2 = \beta (2E_s)^{-\alpha}$, in the case of the channel matrix $H_{s,d}$. III. PROPOSED SWITCHED MAX-LINK RELAY SELECTION PROTOCOL

In this section, we detail the proposed Switched Max-Link relay selection protocol for cooperative multiple-antenna systems. The proposed Switched Max-Link scheme can be implemented by making use of a network with one source node, S, one destination node, D, and N half-duplex DF relays, $R_1,...,R_N$. Each relay is equipped with a buffer, whose size is J packets, and each node is equipped with M antennas, resulting in a number of MN SR channels (links) for reception, MN RD links for transmission and MS SD links, as illustrated in Fig. 1. This scheme selects the best relay for reception (R_k) or the best relay for transmission (R_j) between N relays (the best set of M SR links among N sets or the best set of M RD links among N sets). Similarly to the scheme proposed in [19], the MMD relay selection criterion (incorporated in Switched Max-Link), is based on the ML criterion. However, the metrics calculated by MMD are different from those of the scheme in [19], which leads to considerably better performance. MMD is also based on the worst case of the PEP and chooses the relay that has the highest minimum distance. So, it requires calculating the distance between the N_s^M possible vectors of transmitted symbols.

For Switched Max-Link to work properly, it is not necessary that a certain number of buffer elements be filled with data before the system starts its normal operation. The buffers may be empty. Despite of that, in this work, for security, we considered that half of the buffer elements are filled in an initialization phase [4], by allowing the source to transmit a number of packets to the relays, before Switched Max-Link is used. During this initialization phase the relays do not transmit and the source transmits to the relay with the best set of M SR links among the available relays.

In each time slot, the proposed Switched Max-Link Protocol may operate in two possible modes ("Direct Transmission" or "Max-Link"), with three options: a) work in "Direct Transmission" mode, by S sending a quantity of M packets directly to D; b) work in "Max-Link" mode, by S sending a quantity of M packets to R_k and these packets are stored in its buffer; c) work in "Max-Link" mode, by R_j forwarding a quantity of M packets from its buffer to D. Table 1 shows the Switched Max-Link pseudo-code and the following subsections explain how this protocol works.

TABLE I	SWITCHED MAX-LINK PSEUDO-CODE
1:	Calculate the metric D_{SR_i} \($D_{SR_i} = \| \sqrt{E_s/M} H_{s,r,k} x_i - \sqrt{E_s/M} H_{s,r,k} x_n \|_2 $; $i = 1, ..., N$; $l = 1, ..., N_M - 1$; $n = l + 1, ..., N_M$
2:	Find the minimum distance - $D_{min SR_i}$ \($D_{min SR_i} = \min (D_{SR_i})$;
3:	Calculate the metric $D_{R_j D}$ \($D_{R_j D} = \| \sqrt{E_s/M} H_{r,j,d} x_i - \sqrt{E_s/M} H_{r,j,d} x_n \|_2 $; $i = 1, ..., N$; $l = 1, ..., N_M - 1$; $n = l + 1, ..., N_M$
4:	Find the minimum distance - $D_{min R_j D}$ \($D_{min R_j D} = \min (D_{R_j D})$;
5:	Perform ordering on $D_{min SR_i}$ and $D_{min R_j D}$
6:	Find the maximum minimum distance (considering the buffer status) \($D_{max min SR - RD} = \max (D_{min SR_i}, D_{min R_j D})$;
7:	Calculate the metric D_{SD} \($D_{SD} = \| \sqrt{2E_s/M} H_{s,d} x_l - \sqrt{2E_s/M} H_{s,d} x_n \|_2 $; $l = 1, ..., N_M - 1$; $n = l + 1, ..., N_M$
8:	Find the minimum distance - $D_{min SD}$ \($D_{min SD} = \min (D_{SD})$;
9:	Select the transmission mode \(D_{min SD} \geq D_{max min SR - RD}$ \(\) Operate in "Direct transmission mode"; else \(\) Operate in "Max-Link mode";

A. Calculation of relay selection metric

In the first step we calculate the metric D_{SR_i} related to the SR channels of each relay R_i in Max-Link mode:

$$D_{SR_i} = \| \sqrt{E_s/M} H_{s,r,k} x_l - \sqrt{E_s/M} H_{s,r,k} x_n \|_2 , \quad (7)$$

where "l" is different from "n", x_l and x_n represent each possible vector formed by M symbols.

This metric is calculated for each of the C_2^N (combination of N_s^M in 2) possibilities. As an example, if $M = 2$ and
where \(N_s = 2 \), we have \(C_2^4 = 6 \) possibilities. Then, we store the information related to the smallest metric \((D_{\min,SR})\), for being critical (a bottleneck) in terms of performance, and thus each relay will have a minimum distance associated with its SR channels.

In the second step we calculate the metric \(D_{R_i,D} \) related to the RD channels of each relay \(R_i \):

\[
D_{R_i,D} = \left\| \frac{E_s}{M} H_{R_i,d} d x_l - \frac{E_s}{M} H_{d,R_i} d x_n \right\|^2,
\]

(8)

where "l" is different from "n". This metric is calculated for each one of the \(C_2^N \) possibilities. Then, we store the information related to the minimum distance \((D_{\min,R_i,D})\), and thus each relay will have a minimum distance associated with its RD channels.

In the third step, after calculating the metrics \(D_{\min,SR-RD} \) and \(D_{\min,R_i,D} \) for each of the relays, as described previously, we look for the largest value of the minimum distance:

\[
D_{\max,SR-RD} = \max(D_{\min,SR}, D_{\min,R_i,D}),
\]

(9)

where "i" is the index of each relay (1, 2, ..., \(N \)). Therefore, we select the relay that is associated with this \(D_{\max,SR-RD} \), considering its buffer status. This relay will be selected for reception (if its buffer is not full) or transmission (if its buffer is not empty), depending on this metric is associated with the SR or RD channels, respectively.

B. Calculation of the metric for direct transmission

In this step we calculate the metric \(D_{SD} \) related to the SD channels for the direct transmission mode:

\[
D_{SD} = \left\| \sqrt{\frac{2E_s}{M}} H_{s,d} d x_l - \sqrt{\frac{2E_s}{M}} H_{d,s} d x_n \right\|^2,
\]

(10)

where "l" is different from "n". This metric is calculated for each of the \(C_2^N \) possibilities. Then, we store the information related to the minimum distance \((D_{\min,SD})\), associated with SD channels.

C. Comparison of metrics and choice of transmission mode

After calculating all the metrics associated to the SR and RD channels, finding \(D_{\max,SR-RD} \) and calculating the metrics associated to the SD channels and finding \(D_{\min,SD} \), we compare these parameters and select the transmission mode:

- If \(D_{\min,SD} \geq D_{\max,SR-RD} \), we select "Direct transmission mode".
- Otherwise, we select "Max-Link mode".

If we do not consider the possibility of a direct SD connectivity ("Direct Transmission mode"), considering only the cooperative SR-RD connectivity ("Max-Link mode"), we have another scheme, called "MMD-Max-Link", instead of the proposed "Switched Max-Link" scheme.

\[P(x_n \rightarrow x_l|H) = Q\left(\sqrt{\frac{E_s}{2N_0 M D'}}\right) \]

(11)

where \(N_0 \) is the AWGN noise spectrum density.

We may consider that the PEP will have its maximum value for the minimum value of \(D' \) (worst case of the PEP). So, for the worst case of the PEP (\(D_{\min}' \)), in direct SD transmissions, in each time slot, we have

\[P(x_n \rightarrow x_l|H) = Q\left(\sqrt{\frac{E_s}{2N_0 M D_{\min}'}}\right) \]

(12)

However, for cooperative SR-RD transmissions, an approximated expression for computing the worst case of the PEP in each time slot (regardless of whether it is an SR or RD link) is given by

\[P(x_n \rightarrow x_l|H) \approx 1 - \left(1 - Q\left(\sqrt{\frac{E_s}{2N_0 M D_{\min}'}}\right)\right)^2 \]

(13)

The advantage of the MMD algorithm compared to QN is that MMD maximizes the metric \(D_{\min}' \), and QN does not take it into account. The QN algorithm is based only on the total power of these links (as the traditional Max-Link). Its metric \(Q \) is related to the quadratic norm of each matrix \(H \), and the matrix selected by this criterion is: \(H^{QN} = \arg \max H \|H\|^2 \). Even though the QN criterion selects the relay that has the largest quadratic norm of the channel coefficients matrices, the minimum value of the PEP argument \(D_{\min}' \) associated with \(H^{QN} \), selected by the QN criterion, may be not as high as the minimum value of the PEP argument \(D_{\min}^{MMD} \) associated with \(H^{MMD} \), selected by the MMD criterion. So, we have

\[P^{MMD}(x_n \rightarrow x_l|H^{MMD}) \leq P^{QN}(x_n \rightarrow x_l|H^{QN}) \]

(14)

where \(P^{MMD}(x_n \rightarrow x_l|H^{MMD}) \) is the PEP for the worst case in the MMD criterion and \(P^{QN}(x_n \rightarrow x_l|H^{QN}) \) is the PEP for the worst case in the QN criterion.

E. Complexity

As we have seen, the metric \(D \) may be calculated for each of the \(C_2^N \) possibilities. However, it is not necessary to calculate all of them. We may generalize the total number \(\lambda' \) of calculations of the metric \(D \), needed by the MMD criterion, for each matrix \(H \):

\[\lambda' = WC_1^M + 2W^2C_2^M + 4W^3C_3^M + \ldots + 2^{M-1}W^MC_M^M \]

(15)

where \(W \) is the total number of different distances between the constellation symbols. If we have BPSK, \(W = 1 \), and QPSK, \(W = 3 \).

Table 1 shows the complexity of the MMD and QN criteria for a number of \(N \) relays, \(M \) antennas, considering only the cooperative transmission (not considering the direct transmission mode), and the constellation type.
TABLE II
MAXIMUM MINIMUM DISTANCE VERSUS QUADRATIC NORM - COMPLEXITY

Operations/Criterion	Maximum	Minimum	Distance Quadratic Norm
additions	$2NM/((X-1)$	$2N(M^2-1)$	
multiplications	$2NM$	$2NM^2$	

Fig. 2. MMD-Max-Link and QN-Max-Link complexity.

Fig. 2 shows the complexity of the MMD and QN criteria, for $N = 3$ (a source, 3 relays and a destination), and BPSK. By the analysis of this result, it is observed that the complexity of the MMD criterion with $M = 2$ is not so higher than the complexity of the QN criterion. If we increase the number of antennas to $M = 3$ (or more) in each node, the complexity of MMD criterion becomes considerably higher than the complexity of QN criterion.

IV. SIMULATION RESULTS

This section illustrates and discusses the simulation results of the proposed "Switched Max-Link", the "MMD-Max-Link", the "conventional MIMO" (direct transmission, without relaying) and the Max-Link with the QN criterion ("QN-Max-Link"). QN-Max-Link with a single antenna is equal to the traditional Max-Link. We assume that the transmitted signals belong to BPSK or QPSK constellations. The 16-QAM constellation was not included in this work because of its higher complexity. Each relay is equipped with a buffer whose size is $J = 4$ packets. Note that we tested the performance for different J but found that $J = 4$ is sufficient to ensure a good performance. We also assume unit power channels ($\sigma_s^2 = \sigma_{r,d}^2 = \sigma_{x,d}^2 = 1$), $N_0 = 1$ and $E_S = E_{r_j} = E$ (total energy transmitted). The transmit signal-to-noise ratio SNR (E/N_0) ranges from 0 to 12 dB and the performances of the transmission schemes were tested for 20000 packets, each containing 100 symbols.

Fig. 3 shows the PEP performance of the MMD-Max-Link and QN-Max-Link protocols, for $M = 2$, $N = 3$, 5 and 10, BPSK and perfect CSI. The performance of the MMD-Max-Link scheme is worse than the performance of the conventional MIMO scheme for a SNR less than 2 dB. Nevertheless, the performance of the proposed Switched Max-Link scheme is better than the performance of the conventional MIMO for a wide range of SNR values. It is observed, as expected, that the performance of the proposed Switched Max-Link scheme is better than the performance of the MMD-Max-Link scheme, as well as its resiliency in low transmit SNR conditions.

Fig. 4 shows the Switched Max-Link, the MMD-Max-Link, the QN-Max-Link and the conventional MIMO (direct transmission) BER performance comparison for $M = 2$, $N = 10$, BPSK and perfect CSI. We notice that the performance of the MMD-Max-Link scheme is worse than the performance of the conventional MIMO scheme for a SNR less than 2 dB. Nevertheless, the performance of the proposed Switched Max-Link scheme is better than the performance of the conventional MIMO for a wide range of SNR values. It is observed, as expected, that the performance of the proposed Switched Max-Link scheme is better than the performance of the MMD-Max-Link scheme, as well as its resiliency in low transmit SNR conditions.

Fig. 5 shows the Switched Max-Link, the MMD-Max-Link and the conventional MIMO BER performance comparison for $M = 2$, $N = 10$, QPSK and perfect CSI (the QN-Max-Link was not considered as its performance is worse than the performance of the proposed protocol). The performance of the MMD-Max-Link scheme is worse than the performance
of the conventional MIMO scheme for a SNR less than 6 dB. Nevertheless, the performance of the proposed Switched Max-Link scheme is better than the performance of the conventional MIMO for a wide range of SNR values. It is observed that the performance of the proposed Switched Max-Link scheme is better than the performance of the MMD-Max-Link scheme, as well as its resiliency in low transmit SNR conditions.

Fig. 5. Switched Max-Link, MMD-Max-Link and Conventional MIMO (direct transmission) BER performance.

Fig. 6. Switched Max-Link, MMD-Max-Link and Conventional MIMO (direct transmission) BER performance for imperfect channel knowledge.

Fig. 6 shows the Switched Max-Link, the MMD-Max-Link and the conventional MIMO BER performance comparison for $M = 2$, $N = 10$, BPSK and imperfect channel knowledge ($\beta = 1$, $\alpha = 0.5$ and $\alpha = 0.8$). As in the case of perfect channel knowledge, the performance of the proposed Switched Max-Link scheme is better than the performance of the conventional MIMO for a wide range of SNR values. It is observed that the performance of the proposed Switched Max-Link scheme is still better than the performance of the MMD-Max-Link scheme, as well as its resiliency in low transmit SNR conditions.

V. CONCLUSIONS

In this paper we have presented the benefits of using buffers and multiple antennas for the design of half-duplex decode-and-forward relaying protocols in cooperative communication systems, by using the MMD relay selection criterion, based on the ML criterion and the PEP. Moreover, a new cooperative protocol using multiple antennas that combines the concept of switching and the concept of selection of the best link used by Max-Link and incorporates the MMD selection criterion has been proposed. The proposed Switched Max-Link was evaluated experimentally and outperformed the conventional direct transmission and the existing QN Max-Link scheme.

REFERENCES

[1] J. N. Laneman; D. N. C. Tse; G. W. Wornell, "Cooperative Diversity in Wireless Networks: Efficient Protocols and Outage Behavior", in IEEE Transactions on Information Theory, vol. 50, no. 12, pp. 3062-3080, Dec. 2004.

[2] A. Sendonaris, E. Erkip, and B. Aazhang, “User cooperation diversity - parts I and II,” IEEE Transactions on Communications, vol. 51, no. 11, pp. 1927–1948, Nov. 2003.

[3] T. M. Cover, “Capacity Theorems for the Relay Channel”, *IEEE Transactions on Information Theory*, vol. 25, no. 5, pp. 572-584, September 1979.

[4] A. Ikhlief, D. S. Michalopoulos and R. Schober, "Max-Max Relay Selection for Relays with Buffers," in *IEEE Transactions on Wireless Communications*, vol. 11, no. 3, pp. 1124-1135, March 2012.

[5] T. Hesketh, R. C. De Lamanre and S. Wales, “Joint maximum likelihood detection and link selection for cooperative MIMO relay systems,” in *IET Communications*, vol. 8, no. 14, pp. 2489-2499, Sept. 25 2014.

[6] P. Clarke and R. C. de Lamanre, “Transmit Diversity and Relay Selection Algorithms for Multicore Cooperative MIMO Systems,” in *IEEE Transactions on Vehicular Technology*, vol. 61, no. 5, pp. 1084-1098, March 2012.

[7] N. Zlatanov, A. Ikhlief, T. Islam and R. Schober, "Buffer-aided cooperative communications: opportunities and challenges," in *IEEE Communications Magazine*, vol. 52, no. 4, pp. 146-153, April 2014.

[8] “Relaying in 3GPP LTE”, ITG Fachtagung – IMT Advanced, Dr. Christian Hoymann, Ericsson Research – AACHEN, Jul. 8, 2010, available at: https://www.slideshare.net/allabout4g/relaying-in-3gpp-headadvanced

[9] “5 G Radio Access”, Ericsson White Paper, Uen 284 23-3204 Rev C | Apr. 2016, available at: https://www.ericsson.com/assets/local/publications/white-papers/wp-5g.pdf.

[10] J. Gu, R. C. de Lamanre and M. Huemer, "Buffer-Aided Physical-Layer Network Coding with Optimal Linear Code Designs for Cooperative Networks," in *IEEE Transactions on Communications*, 2018.

[11] I. Krikidis, T. Charalambous, and J. Thompson, “Buffer-Aided Relay Selection for Cooperative Diversity Systems Without Delay Constraints,” *IEEE Transactions on Wireless Communications*, vol. 11, no. 5, pp. 1957–1967, May 2012.

[12] N. Nomikos et al., “A Survey on Buffer-Aided Relay Selection,” in *IEEE Communications Surveys & Tutorials*, vol. 18, no. 2, pp. 1073-1097, Secondquarter 2016.

[13] T. Charalambous, N. Nomikos, I. Krikidis, D. Vouyioukas, and M. Johansson, “Modeling buffer-aided relay selection in networks with direct transmission capability,” *IEEE Communications Letters*, vol. 19, no. 4, pp. 649–652, April 2015.

[14] P. Xu, Z. Ding, I. Krikidis and X. Dai, “Achieving Optimal Diversity Gain in Buffer-Aided Relay Networks With Small Buffer Size,” in *IEEE Transactions on Vehicular Technology*, vol. 65, no. 10, pp. 8788-8794, Oct. 2016.

[15] D. Poulimeneas, T. Charalambous, N. Nomikos, I. Krikidis, D. Vouyioukas and M. Johansson, “Delay- and diversity-aware buffer-aided relay selection policies in cooperative networks,” 2016 IEEE Wireless Communications and Networking Conference, Doha, 2016, pp. 1-6.

[16] A. A. M. Siddig and M. F. M. Salleh, “Balancing Buffer-Aided Relay Selection for Cooperative Relaying Systems,” in *IEEE Transactions on Vehicular Technology*, vol. 66, no. 9, pp. 8276-8290, Sept. 2017.

[17] B. R. Manoj, R. K. Mallik and M. R. Bhatnagar, “Performance Analysis of Buffer-Aided Priority-Based Max-Link Relay Selection in DF Cooperative Networks,” in *IEEE Transactions on Communications*.

[18] H. Joudeh and B. Clerckx, “Sum-Rate Maximization for Linearly Precoded Downlink Multiuser MISO Systems With Partial CSIT: A Rate-Splitting Approach,” in *IEEE Transactions on Communications*, vol. 64, no. 11, pp. 4847-4861, Nov. 2016.

[19] X. Lu and R. C. de Lamanre, “Buffer-aided relay selection for physical-layer security in wireless networks,” in *WSA 2015*, Ninth International ITG Workshop on Smart Antennas, Ilmenau, Germany, 2015, pp. 1–5.
A. G. D. Uchoa, C. T. Healy and R. C. de Lamare, "Iterative Detection"

P. Li and R. C. de Lamare, Distributed Iterative Detection With Re...

P. Li, R. C. de Lamare and J. Liu, "Adaptive Decision Feedback Detec...

P. Clarke and R. C. de Lamare, "Transmit Diversity and Relay Selection...

R.C. de Lamare and R. Sampaio-Neto, "Minimum mean-square error iter...

R. Fa, R. C. de Lamare, "Multi-Branch Successive Interference Cancell...

R. Fa, R. C. de Lamare, "Multi-Branch Successive Interference Cancel...

P. Li, R. C. de Lamare and R. Fa, "Multiple Feedback Successive Interference Cancellation Detection for Multiuser MIMO Systems, IEEE Transactions on Communications, vol.58, no.1, pp.21-27, January 2010.

P. Clarke and R. C. de Lamare, "Transmit Diversity and Relay Selection Algorithms for Multirelay Cooperative MIMO Systems" IEEE Transactions on Vehicular Technology, vol.61, no.3, pp.986-996, March 2012.

R.C. de Lamare, R. Sampaio-Neto, "Blind adaptive MIMO receivers for space-time block-coded DS-CDMA systems in multipath channels using a constant modulus criterion," IEEE Transactions on Communications, vol.58, no.1, pp.484 - 494, March 2011.

R.C. de Lamare and R. Sampaio-Neto, "Adaptive reduced-rank equalization algorithms based on alternating optimization design techniques for MIMO systems," IEEE Trans. Veh. Technol., vol. 60, no. 6, pp. 2482-2494, July 2011.

P. Clarke and R. C. de Lamare, "Transmit Diversity and Relay Selection Algorithms for Multirelay Cooperative MIMO Systems" IEEE Transactions on Vehicular Technology, vol.61, no. 3, pp. 1084-1098, October 2012.

R.C. de Lamare, R. Sampaio-Neto, "Minimum mean-squared error iterative successive parallel arbitrated decision feedback detectors for DS-CDMA systems," IEEE Trans. Commun., vol. 56, no. 5, May 2008, pp. 778-789.

R. C. de Lamare and R. Sampaio-Neto, "Reduced-Rank Adaptive Filtering Based on Joint Iterative Optimization of Adaptive Filters", IEEE Signal Processing Letters, Vol. 14, no. 12, December 2007.

R. C. de Lamare and R. Sampaio-Neto, "Adaptive reduced-rank equalization algorithms based on alternating optimization design techniques for MIMO systems," IEEE Trans. Veh. Technol., vol. 60, no. 6, pp. 2482-2494, July 2011.

P. Li, R. C. de Lamare and J. Liu, "Adaptive Decision Feedback Detection with Parallel Interference Cancellation and Constellation Constraints for Multiuser MIMO systems", IET Communications, vol.7, 2012, pp. 538-547.

J. Liu, R. C. de Lamare, "Low-Latency Reweighted Belief Propagation Decoding for LDPC Codes," IEEE Communications Letters, vol. 16, no. 10, pp. 1660-1663, October 2012.

C. T. Healy and R. C. de Lamare, "Design of LDPC Codes Based on Multipath EMD Strategies for Progressive Edge Growth," IEEE Transactions on Communications, vol. 64, no. 8, pp. 3208-3219, Aug. 2016.

P. Li and R. C. de Lamare, Distributed Iterative Detection With Reduced Message Passing for Networked MIMO Cellular Systems, IEEE Transactions on Vehicular Technology, vol.63, no.6, pp. 2947-2954, July 2014.

A. S. Chihara, A. G. D. Uchoa, C. T. Healy and R. C. de Lamare, "Iterative Detection and Decoding Algorithms For MIMO Systems in Block-Fading Channels Using LDPC Codes," IEEE Transactions on Vehicular Technology, 2015.

C. T. Healy and R. C. de Lamare, "Adaptive and Iterative Multi-Branch MMSE Decision Feedback Detection Algorithms For MIMO Antennas Systems," IEEE Trans. Wireless Commun., vol. 14, no. 10, October 2015.

A. G. D. Uchoa, C. T. Healy and R. C. de Lamare, "Iterative Detection and Decoding Algorithms For MIMO Systems in Block-Fading Channels Using LDPC Codes," IEEE Transactions on Vehicular Technology, vol. 65, no. 4, pp. 2735-2741, April 2016.

Y. Cai, R. C. de Lamare, B. Champagne, B. Qin and M. Zhao, "Adaptive Reduced-Rank Receiver Processing Based on Minimum Symbol-Error-Rate Criterion for Large-Scale Multi-ANTenna Systems," in IEEE Transactions on Communications, vol. 63, no. 11, pp. 4185-4201, Nov. 2015.

R. C. de Lamare, "Massive MIMO Systems: Signal Processing Challenges and Future Trends", Radio Science Bulletin, December 2013.

Z. Xu and R. C. de Lamare, "Iterative Detection and Decoding for Large-Scale Multi-Antenna Systems with 1-Bit ADCs," IEEE Wireless Communications Letters, 2018.

L. L. Scharf and D. W. Tufts, "Rank reduction for modeling stationary signals," IEEE Transactions on Acoustics, Speech and Signal Processing, vol. ASSP-35, pp. 350-355, March 1987.

A. M. Haimovich and Y. Bar-Ness, "An eigenanalysis interference canceler," IEEE Trans. on Signal Processing, vol. 39, pp. 76-84, Jan. 1991.

D. A. Pados and S. N. Batalama "Joint space-time auxiliary vector filtering for DSCDMA systems with antenna arrays" IEEE Transactions on Communications, vol. 47, no. 9, pp. 1406 - 1415, 1999.

J. S. Goldstein, I. S. Reed and L. L. Scharf "A multistage representation of the Wiener filter based on orthogonal projections" IEEE Transactions on Information Theory, vol. 44, no. 7, 1998.

Y. Hua, M. Nikpour and P. Stoica, "Optimal reduced rank estimation and filtering," IEEE Transactions on Signal Processing, pp. 457-469, Vol. 49, No. 3, March 2001.

M. L. Honig and J. S. Goldstein, "Adaptive reduced-rank interference suppression based on the multistage Wiener filter," IEEE Transactions on Communications, vol. 50, no. 6, June 2002.

E. L. Santos and M. D. Zoltowski, "On Low Rank MVDR Beamforming using the Conjugate Gradient Algorithm", Proc. IEEE International Conference on Acoustics, Speech and Signal Processing, 2004.

Q. Haoli and S.N. Batalama, "Data record-based criteria for the selection of an auxiliary vector estimator of the MMSE/MVDR filter", IEEE Transactions on Communications, vol. 51, no. 10, Oct. 2003, pp. 1700 - 1708.

R. C. de Lamare and R. Sampaio-Neto, "Reduced-Rank Adaptive Filtering Based on Joint Iterative Optimization of Adaptive Filters", IEEE Signal Processing Letters, vol. 14, no. 12, December 2007.

Z. Xu and M.K. Tsatsanis, "Blind adaptive algorithms for minimum variance CDMA receivers," IEEE Trans. Communications, vol. 49, no. 1, January 2001.

R. C. de Lamare and R. Sampaio-Neto, "Low-Complexity Variable Step-Size Mechanisms for Stochastic Gradient Algorithms in Minimum Variance CDMA Receivers", IEEE Trans. Signal Processing, vol. 54, pp. 2302 - 2317, June 2006.

C. Xu, G. Feng and K. S. Kwak, "A Modified Constrained Constant Modulus Approach to Blind Adaptive Multiuser Detection," IEEE Trans. Communications, vol. 49, no. 9, 2001.

Z. Xu and P. Liu, "Code-Constrained Blind Detection of CDMA Signals in Multipath Channels," IEEE Sig. Proc. Letters, vol. 9, No. 12, December 2002.

R. C. de Lamare and R. Sampaio Neto, "Blind Adaptive Code-Constrained Constant Modulus Algorithms for CDMA Interference Suppression in Multipath Channels", IEEE Communications Letters, vol. 9, no. 4, April, 2005.

L. Landau, R. C. de Lamare and M. Haardt, "Robust adaptive beamforming algorithms using the constrained constant modulus criterion", IET Signal Processing, vol.8, no.5, pp.447-457, July 2014.

R. C. de Lamare, "Adaptive Reduced-Rank LCMV Beamforming Algorithms Based on Joint Iterative Optimisation of Filters", Electronics Letters, vol. 44, no. 9, 2008.

R. C. de Lamare and R. Sampaio-Neto, "Adaptive Reduced-Rank Processing Based on Joint and Iterative Interpolation, Decimation and Filtering", IEEE Transactions on Signal Processing, vol. 57, no. 7, July 2009, pp. 2503-2514.

R. C. de Lamare and Raimundo Sampaio-Neto, "Reduced-rank Interference Suppression for DS-CDMA based on Interpolated FIR Filters", IEEE Communications Letters, vol. 9, no. 3, March 2005.

R. C. de Lamare and R. Sampaio-Neto, "Adaptive Reduced-Rank MMSE Filtering with Interpolated FIR Filters and Adaptive Interpolators", IEEE Signal Processing Letters, vol. 12, no. 3, March, 2005.

R. C. de Lamare and R. Sampaio-Neto, "Adaptive Interference Suppression for DS-CDMA Systems based on Interpolated FIR Filters with Adaptive Interpolators in Multipath Channels", IEEE Trans. Vehicular Technology, Vol. 56, no. 6, September 2007.

R. C. de Lamare, "Adaptive Reduced-Rank LCMV Beamforming Algorithms Based on Joint Iterative Optimisation of Filters", Electronics Letters, 2008.
[66] R. C. de Lamare and R. Sampaio-Neto, “Reduced-rank adaptive filtering based on joint iterative optimization of adaptive filters,” IEEE Signal Process. Lett., vol. 14, no. 12, pp. 980-983, Dec. 2007.

[67] R. C. de Lamare, M. Haardt, and R. Sampaio-Neto, “Blind Adaptive Constrained Reduced-Rank Parameter Estimation based on Constant Modulus Design for CDMA Interference Suppression,” IEEE Transactions on Signal Processing, June 2008.

[68] M. Yukawa, R. C. de Lamare and R. Sampaio-Neto, “Efficient Acoustic Echo Cancellation With Reduced-Rank Adaptive Filtering Based on Selective Decimation and Adaptive Interpolation,” IEEE Transactions on Audio, Speech, and Language Processing, vol.16, no. 4, pp. 696-710, May 2008.

[69] R. C. de Lamare and R. Sampaio-Neto, “Reduced-rank space-time adaptive interference suppression with joint iterative least squares algorithms for spread-spectrum systems,” IEEE Trans. Vehi. Technol., vol. 59, no. 3, pp. 1217-1228, Mar. 2010.

[70] R. C. de Lamare and R. Sampaio-Neto, “Adaptive reduced-rank equalization algorithms based on alternating optimization design techniques for MIMO systems,” IEEE Trans. Vehi. Technol., vol. 60, no. 6, pp. 2482-2494, Jul. 2011.

[71] R. C. de Lamare, L. Wang, and R. Fa, “Adaptive reduced-rank LCMV beamforming algorithms based on joint iterative optimization of filters: Design and analysis,” Signal Processing, vol. 90, no. 2, pp. 640-652, Feb. 2010.

[72] R. Fa, R. C. de Lamare, and L. Wang, “Reduced-Rank STAP Schemes for Airborne Radar Based on Switched Joint Interpolation, Decimation and Filtering Algorithm,” IEEE Transactions on Signal Processing, vol.58, no.8, Aug. 2010, pp.4182-4194.

[73] L. Wang and R. C. de Lamare, "Low-Complexity Adaptive Step Size Constrained Constant Modulus SG Algorithms for Blind Adaptive Beamforming", Signal Processing, vol. 89, no. 12, December 2009, pp. 2503-2513.

[74] L. Wang and R. C. de Lamare, “Adaptive Constrained Constant Modulus Algorithm Based on Auxiliary Vector Filtering for Beamforming,” IEEE Transactions on Signal Processing, vol. 58, no. 10, pp. 5408-5413, Oct. 2010.

[75] L. Wang, R. C. de Lamare, M. Yukawa, "Adaptive Reduced-Rank Constrained Constant Modulus Algorithms Based on Joint Iterative Optimization of Filters for Beamforming," IEEE Transactions on Signal Processing, vol.58, no.6, June 2010, pp.2983-2997.

[76] L. Wang, R. C. de Lamare and M. Yukawa, “Adaptive reduced-rank constrained constant modulus algorithms based on joint iterative optimization of filters for beamforming”, IEEE Transactions on Signal Processing, vol.58, no. 6, pp. 2983-2997, June 2010.

[77] L. Wang and R. C. de Lamare, “Adaptive constrained constant modulus algorithm based on auxiliary vector filtering for beamforming”, IEEE Transactions on Signal Processing, vol. 58, no. 10, pp. 5408-5413, October 2010.

[78] R. Fa and R. C. de Lamare, “Reduced-Rank STAP Algorithms using Joint Iterative Optimization of Filters,” IEEE Transactions on Aerospace and Electronic Systems, vol.47, no.3, pp.1668-1684, July 2011.

[79] Z. Yang, R. C. de Lamare and X. Li, “L1-Regularized STAP Algorithms With a Generalized Sidelobe Canceler Architecture for Airborne Radar,” IEEE Transactions on Signal Processing, vol.60, no.2, pp.674-686, Feb. 2012.

[80] Z. Yang, R. C. de Lamare and X. Li, “Sparsity-aware space-time adaptive processing algorithms with L1-norm regularisation for airborne radar,” IET signal processing, vol. 6, no. 5, pp. 413-423, 2012.