Mulheres com Síndrome do Ovário Policístico Apresentam menor Sensibilidade Barorreflexa, a Qual Pode Estar Associada ao Aumento da Gordura Corporal

Women with Polycystic Ovarian Syndrome Exhibit Reduced Baroreflex Sensitivity That May Be Associated with Increased Body Fat

Stella Vieira Philbois, Ada Clarice Gastaldi, Tábata de Paula Facioli, Ana Carolina Sanches Felix, Rosana Maria dos Reis, Thauane Hanna Fares, Hugo Celso Dutra de Souza

Faculdade de Medicina de Ribeirão Preto, Ribeirão Preto, SP – Brasil

Resumo

Fundamento: As mulheres com síndrome do ovário policístico (SOP) apresentam alta prevalência de obesidade e alterações no controle autonômico cardiovascular, principalmente modificações na modulação autonômica da variabilidade da frequência cardíaca (VFC). No entanto, existem poucos estudos sobre outros parâmetros de controle autonômico, como a variabilidade da pressão arterial (VPA) e a sensibilidade barorreflexa (SBR). Além disso, há dúvidas sobre a real contribuição da obesidade na alteração do controle autonômico dessas mulheres.

Objetivo: Investigar as alterações da modulação autonômica da VPA e SBR em mulheres com SOP, bem como avaliar se essas alterações se devem à SOP ou ao aumento da gordura corporal.

Métodos: Foram estudadas 30 voluntárias com peso normal [índice de massa corporal (IMC) < 25 kg/m²] sem SOP (grupo controle) e 60 voluntárias com SOP, divididas em: mulheres com peso normal (IMC < 25 kg/m², N = 30) e mulheres obesas (IMC > 30 kg/m², N = 30). Todas as voluntárias foram submetidas à avaliação antropométrica, com registro de parâmetros hemodinâmicos e cardiorespiratórios em repouso e durante exercício físico, e análise da VFC, VPA e SBR espontânea. As diferenças de p < 5% (p < 0,05) foram consideradas estatisticamente significantes.

Resultados: Em relação aos grupos com peso normal, não houve diferenças nos parâmetros autonômicos avaliados. A comparação entre os grupos SOP mostrou que ambos os grupos não diferiram na análise da VPA. No entanto, o grupo SOP obeso apresentou menores valores de SBR espontânea e VFC nas oscilações de baixa e alta frequências, em unidades absolutas.

Conclusão: Nossos resultados sugerem que a obesidade pouco influenciou a VFC em mulheres com SOP, mas pode afetar a SBR espontânea. (Arq Bras Cardiol. 2019; 112(4):424-429)

Palavras-chave: Obesidade; Hipertensão; Síndrome de Ovário Policístico/fisiopatologia; Adiposidade; Distribuição da Gordura Corporal; Sistema Nervoso Autônomo; Frequência Cardíaca.

Abstract

Background: Polycystic ovarian syndrome (PCOS) women have a high prevalence of obesity and alterations in cardiovascular autonomic control, mainly modifications in heart rate variability (HRV) autonomic modulation. However, there are few studies about other autonomic control parameters, such as blood pressure variability (BPV) and baroreflex sensitivity (BRS). In addition, there are still doubts about the obesity real contribution in altering autonomic control in these women.

Objective: To investigate BPV and BRS autonomic modulation alterations in PCOS women, as well as, to evaluate whether these alterations are due PCOS or increased body fat.

Methods: We studied 30 eutrophic volunteers (body mass index (BMI) < 25 kg/m²) without PCOS (control group) and 60 volunteers with PCOS divided into: eutrophic (BMI < 25 kg/m², N = 30) and obese women (BMI > 30 kg/m², N = 30). All volunteers were submitted to anthropometric evaluation, hemodynamic and cardiorespiratory parameters record at rest and during physical exercise, analysis of HRV, BPV and spontaneous BRS. The differences in p less than 5% (p < 0.05) were considered statistically significant.

Results: Related to eutrophics groups, there were no differences in autonomic parameters evaluated. The comparison between the PCOS groups showed that both PCOS groups did not differ in the BPV analysis. Although, the obese PCOS group presented lower values of spontaneous BRS and HRV, in low frequency and high frequency oscillations in absolute units.

Conclusion: Our results suggest that obesity did little to alter HRV in women with PCOS, but it may influence the spontaneous BRS. (Arq Bras Cardiol. 2019; 112(4):424-429)

Keywords: Obesity; Hypertension; Polycystic Ovary Syndrome/physiopathology; Adiposity; Body Fat Distribution; Autonomic Nervous System; Heart Rate.

Correspondência: Hugo Celso Dutra de Souza
Rua Luís Basso, 130, CEP 14040-130, Jardim Recreio, Ribeirão Preto, SP – Brasil
E-mail: hugocds@fmrp.usp.br, hugousp@gmail.com
Artigo recebido em 08/05/2018, revisado em 25/07/2018, aceito em 15/08/2018

DOI: 10.5935/abc.20190031
Introdução

Mulheres com síndrome do ovário policístico (SOP) frequentemente apresentam comprometimento do controle autonômico cardiovascular, caracterizado principalmente por um desequilíbrio autonômico cardíaco na determinação da variabilidade da frequência cardíaca (VFC). Esse desequilíbrio é um importante preditor de risco para doenças cardiovasculares. As causas da deficiência autonômica ainda não estão bem estabelecidas. Alguns estudos sugerem que ela é causada por distúrbios hormonais e metabólicos decorrentes da SOP, como a resistência insulinica aumentada. Por outro lado, é possível que ocorra simplesmente devido ao aumento percentual de gordura corporal, o que desencadeia uma série de alterações sistêmicas que afetam o controle autonômico cardíaco, incluindo alterações metabólicas e cardiovasculares.

Outro aspecto importante é que apenas a VFC é comumente investigada nessas mulheres, e pouco se sabe sobre os efeitos da SOP sobre outros parâmetros autonômicos, como a sensibilidade barorreflexa (SBR) e a variabilidade da pressão arterial (VPA). Mais especificamente, não há estudos associando a SOP à VPA e, no caso da SBR, os estudos são incipientes. Sobre esse assunto, apenas um estudo foi realizado, sem encontrar diferenças. Entretanto, esse estudo avaliou apenas as mulheres com e sem SOP, o que limitou achados adicionais.

Portanto, o objetivo do presente estudo foi avaliar a SBR espontânea e a VPA em mulheres com SOP e peso normal e investigar a contribuição da obesidade para esses parâmetros autonômicos nessas mulheres.

Métodos

Participants

Com uma amostra de conveniência, foram incluídas 90 voluntárias com idade entre 18 e 39 anos, 30 mulheres sem SOP, como grupo controle, e 60 mulheres com SOP, segundo o consenso de Rotterdam, e subdivididas de acordo com o índice de massa corporal (IMC): grupo com peso normal (30 mulheres) e grupo obeso (30 mulheres). Todas eram sedentárias, não utilizavam qualquer medicação e foram mantidas em carente peso em quilogramas e ‘E’ é a estatura do indivíduo em metros. A composição corporal foi avaliada pelo método da impedância bioelétrica (Quantum BIA 101; Q-RJL Systems, Clinton Township, Michigan, EUA). Os grupos foram subdivididos pelo IMC, onde os grupos com peso normal apresentaram IMC < 25 kg/m² e o grupo obeso apresentou IMC > 30 kg/m².

Diagnóstico da síndrome dos ovários policísticos

A ultrassonografia pélvica transvaginal foi realizada com o equipment Voluson 730 Expert Machine (GE Medical Systems, ZIPF, Áustria) para analisar a presença ou ausência de cístos. Avaliou-se o volume ovariano e o número/tamanho dos folicúlos, e para calcular o volume ovariano foi utilizada a fórmula do elipsóide prolato (profundidade x largura x comprimento x 0,5).

Além disso, foram feitos testes laboratoriais para medir a testosterona sérica total, androstenediona, globulina de ligação a hormônios sexuais e andrógenos livres, prolactina, 17-hidroxiprogesterona e tirotropina para diagnosticar as causas de exclusão. Amostras de sangue foram coletadas durante a fase follicular em mulheres com ciclos ovulatórios regulares e a qualquer momento naquelas com ciclos irregulares. Todos os exames acima foram realizados no Laboratório de Ginecologia do HC-FMRP, entre as 07h00 e as 09h00, após jejum de 12 horas.

Teste ergoespirométrico

O pico de consumo de oxigênio (VO_pico) foi avaliado por meio de teste de esforço submáximo em esteira rolante (Super ATL Millenium®, Inframed/Inbrasport, Brasil), utilizando o protocolo de Bruce Modificado. A análise dos gases expirados (VO2 e VCO2) foi realizada utilizando-se um analisador metabólico (UltimaTM CardiO2, Medical Graphics Corp., EUA).

Parâmetros antropométricos

O peso corporal e a estatura foram obtidos utilizando-se uma balança analógica com estadiômetro (Welmy), enquanto os valores do IMC foram obtidos pela fórmula P/E², onde ‘P’ é o peso em quilogramas e ‘E’ é a estatura do indivíduo em metros. A comparação corporal foi avaliada pelo método da impedância bioelétrica (Quantum BIA 101; Q-RJL Systems, Clinton Township, Michigan, EUA). Os grupos foram subdivididos pelo IMC, onde os grupos com peso normal apresentaram IMC < 25 kg/m² e o grupo obeso apresentou IMC > 30 kg/m².

Análise da variabilidade da frequência cardíaca (VFC) e da variabilidade da pressão arterial (VPA)

A análise espectral da VFC foi registrada entre as 09h00 e as 10h00 de acordo com o seguinte protocolo: após permanecerem em decúbito dorsal em repouso ortostático por 20 min, as voluntárias foram passivamente posicionadas em posição inclinada (ângulo de 75°) por mais 10 minutos. A VFC para as posições supina e inclinada (isto é, o tilt test) foi registrada utilizando um eletrocardiograma (AD Instruments, Sydney, Austrália), sendo obtida uma série temporal de intervalos RR (RRi, do inglês RR intervals).

O RRi foi obtida utilizando os RRi a partir do registro eletrocardiográfico (ECG), através da derivação MC5 modificada em uma frequência de amostragem de 1000Hz. Os valores da VPA foram obtidos da pressão arterial sistólica (PAS), registrada durante o registro de pulsimetria digital, FINOMETER (Finometer Pro, Finapress Medical System, Amsterdam, Holanda). A temperatura ambiente foi mantida a 21°C, a luz ambiente e o ruído foram controlados, para evitar qualquer interferência na gravação dos dados.

As análises de VPA e VFC foram realizadas utilizando-se um software customizado (CardioSeries v2.0, http://sites.google.com/site/cardioseries). Os valores dos RRi e intervalos PAS foram redimensionados em interpolação com spline cúbico de 3 Hz, para normalizar o intervalo de tempo entre os batimentos. As séries de RRi interpolados e PAS seguem o Protocolo de Welch; elas foram divididas em conjuntos de sobreposição de 256 pontos de dados, com sobreposição de 50%. O segmento estacionário foi visualmente inspecionado e aqueles com artefatos ou transientes foram excluídos. Cada segmento estacionário RRi e PAS foi submetido à análise espectral por Transformada Rápida de Fourier (FFT),
Tabela 1 – Características hemodinâmicas e valores em mulheres saudáveis e mulheres com síndrome dos ovários policísticos (SOP), subdivididas em grupo SOP com peso normal (IMC < 25 kg/m²) e grupo SOP obeso (IMC > 30 kg/m²)

Características	Controle	SOP peso normal	SOP obeso	p \(Ι\)	p \(ΙΙ\)
Idade, anos	31,2 ± 6,6	28,5 ± 5,2	30,2 ± 5,3	0,053	0,107
Altura, metros	1,64 ± 5,0	1,62 ± 5,8	1,62 ± 7,9	0,102	0,649
Peso, kg	64 ± 10	60,6 ± 5,7	90,3 ± 10,9 \(†\)	0,09	< 0,001
IMC, kg/m²	23,5 ± 3	22,9 ± 1,6	33,9 ± 2,4 \(†\)	0,494	< 0,001
Percentual de gordura corporal, %	25,6 ±3,6	26,4 ± 3,4	44,3 ± 3,3 \(†\)	0,325	< 0,001
\(\text{VO}_{2\text{pico}}\), L/min/kg	35,5 ± 3,3	31,9 ± 3,9	25,3 ± 3,3 \(†\)	0,05	< 0,001

Valores Hemodinâmicos

FC (bpm)	76 ± 2,6	74,6 ± 2	77 ± 2	0,764	0,416
PAs (mmHg)	105 ± 8,9	101 ± 11,8	111 ± 9,5 \(†\)	0,057	< 0,001
PAD (mmHg)	70 ± 10,3	66 ± 9,6	76 ± 7,4 \(†\)	0,05	< 0,001
PAM (mmHg)	84 ± 9	80 ± 9,8	90 ± 7,5 \(†\)	0,05	< 0,001

Resultados

As características antropométricas e os parâmetros hemodinâmicos das voluntárias são apresentadas na Tabela 1. O grupo SOP obeso apresentou maior IMC, peso e percentual de gordura corporal que os demais grupos. Por outro lado, o \(\text{VO}_{2\text{pico}}\) foi menor no grupo SOP obeso. Em relação à pressão arterial, o grupo obeso apresentou maiores valores de pressão arterial diastólica e pressão arterial média em comparação com os grupos controle e SOP com peso normal.

A Tabela 2 apresenta a análise espectral dos resultados da VFC e da VPA durante o repouso em todos os grupos estudados. A análise da VFC em repouso mostra que o grupo SOP obeso apresentou menor variação. Além disso, os grupos Controle e SOP com peso normal apresentaram
Tabela 2 – Parâmetros da análise espectral da variabilidade da frequência cardíaca calculada a partir da série temporal dos intervalos RR e da variabilidade da pressão arterial sistólica calculada pelo intervalo de batimentos cardíacos entre as mulheres sem e com a síndrome dos ovários policísticos (SOP), divididas de acordo com o índice de massa corporal: normal < 25 kg/m² e obeso > 30 kg/m²

Parâmetro	Controle	SOP peso normal	SOP obeso	p²	p¹
Variabilidade da FC					
RRi, ms	872 ± 31	879 ± 20,6	812 ± 18,5†	0,961	0,049
Variância, ms²	2389 ± 310	2654 ± 341	1851 ± 405*†	0,971	0,010
LF, ms²	697 ± 105	720 ± 93	413 ± 80*	0,855	0,002
LF, un	40,3 ± 3,8	45,5 ± 3,5	46,4 ± 2,9	0,350	0,850
HF, ms²	1134 ± 188	1180 ± 229	968 ± 204†	0,502	0,014
HF, un	59,6 ± 3,8	54,4 ± 3,5	53,4 ± 2,9	0,350	0,850
Relação LF/HF	0,79 ± 0,1	0,92 ± 0,1	0,94 ± 0,1	0,474	0,99

Variabilidade da PA					
Variância, mmHg²	22,9 ± 4,3	24,9 ± 2,2	21 ± 2	0,168	0,052
LF, mmHg²	6,7 ± 1,4	7,6 ± 0,8	5,7 ± 0,7	0,196	0,054

Valores expressos em média ± DP: desvio padrão; FC: frequência cardíaca; RRi: intervalo entre as ondas R no eletrocardiograma; un: unidades normalizadas; ms²: milissegundos ao quadrado; LF: banda de baixa frequência; HF: banda de alta frequência; PA: pressão arterial; diferenças significativas p < 0,05; (*) vs. grupo controle em repouso, (†) vs. grupo SOP com peso normal em repouso; PΙ: grupo controle com peso normal vs. grupo SOP com peso normal; PΙΙ: grupo SOP com peso normal vs. grupo SOP obeso.

maiores oscilações de LF e HF em valores absolutos do que o grupo SOP obeso. Não houve diferenças entre os grupos na análise da VPA.

Os resultados das análises da SBR obtidas durante o repouso em todos os grupos estudados – controle, SOP com peso normal e SOP obeso – são apresentados na Tabela 3, onde observa-se que, em repouso, o grupo SOP obeso apresentou menor SBR espontânea que os demais grupos. Além disso, é importante notar que o grupo controle demonstrou maior índice de efetividade do barorreceptor.

Discussão

No presente estudo, os principais achados foram que, em repouso, o grupo SOP obeso apresentou menor VFC e SBR do que os outros dois grupos. A VPA foi semelhante entre os grupos.

Em relação aos valores hemodinâmicos, o grupo SOP obeso apresentou os maiores valores de PAS, diastólica e média em comparação aos demais grupos, apesar de todas as mulheres serem normotensas; alguns estudos também mostraram uma associação com o aumento da gordura corporal e aumento dos valores de PA.9,10,21,22 Para o VO₂pico, o grupo SOP obeso apresentou menor valor, em concordância com a literatura, onde alguns autores encontraram uma correlação negativa entre obesidade e VO₂pico.10

Existem poucos estudos na literatura sobre obesidade e SOP, e eles são contraditórios, com alguns apontando essa associação como um fator negativo na VFC,1,4 enquanto outros relatam que não há associação entre o aumento do peso e SOP.11,21 Nesse sentido, no presente estudo, a menor VFC encontrada no grupo SOP obeso sugere que essa alteração ocorre devido à obesidade. A literatura indica que os mecanismos de obesidade podem estar associados à redução da resposta do sistema simpático na região pós-sináptica, uma vez que encontraram alta atividade simpática na fenda pré-sináptica, representada pela alta concentração de noradrenalina.24,25 Além disso, um estudo recente realizado em nosso laboratório apresentou diferenças nas bandas de baixa frequência (LF) e alta frequência (HF), em unidades absolutas e normalizadas, em mulheres saudáveis e sedentárias com IMC normal, sobrepeso e obesidade, e os autores verificaram que o grupo obeso apresentava menores oscilações de LF e HF.10

Em relação à SBR, os grupos SOP com peso normal e controle apresentaram valores semelhantes, em concordância com Lambert, 2015, em cujo trabalho os grupos apresentaram valores semelhantes de IMC e SBR. Em relação ao grupo SOP obeso, o mesmo apresentou menores valores em todos os parâmetros de SBR em comparação com os outros dois grupos com peso normal, sugerindo que a obesidade pode ser responsável por uma redução na SBR. Nesse sentido, um estudo comparando a SBR em mulheres divididas de acordo com o IMC, indicou uma redução da SBR com o aumento de peso, observado pelo valor do ganho da SBR; dessa forma, a diminuição da SBR pode se correlacionar ao aumento de peso.26 Entretanto, sabe-se que a SBR também é influenciada por muitos outros fatores, como resistência à insulina, glicemia, sensibilidade ao sódio, marcadores genéticos e hormônios ovarianos.27,28 No presente estudo, nenhum desses outros fatores foi mensurado. Desse modo, é possível sugerir que a obesidade pode influenciar os valores de SBR, como observado em outro estudo,26 embora sejam necessários mais estudos para confirmar esses achados em mulheres com SOP.

Por fim, em relação à semelhança da VPA entre os grupos estudados, há poucas informações, pois não há estudos...
Tabela 3 – Parâmetros da análise do barorreceptor pela série sequencial calculada de intervalos RR obtidas em mulheres com e sem síndrome dos ovários policísticos (SOP), divididas de acordo com o índice de massa corporal: normal < 25 kg/m² e obeso > 30 kg/m²

Sensibilidade barorreceptiva	Repouso	Controle	SOP peso normal	SOP obeso	\(\text{p}^1 \)	\(\text{p}^2 \)
Números de rampas		85 ± 40,7	84,3 ± 39,8	93,7 ± 42,4	0,853	0,379
BEI		0,74 ± 0,13	0,63 ± 0,12*	0,58 ± 0,15*	0,005	0,225
Ascendente, ms/mmHg		15,1 ± 6	18 ± 11	11,7 ± 6,7*	0,738	0,008
Descendente, ms/mmHg		16,5 ± 5,6	18,3 ± 8,8	12,7 ± 7,5*†	0,738	0,004
GANHO, ms/mmHg		16,1 ± 5,5	18,3 ± 9,3	12,3 ± 7,2*†	0,687	0,003

Valores expressos em média ± DP: desvio padrão; BEI: índice de efetividade do barorreceptor; GANHO: ganho total; Descendente: respostas hipotensivas associadas a respostas bradicárdicas; Ascendente: respostas hipertensivas associadas a respostas taquicárdicas; diferença significativa \(p < 0,05 \); (*) vs. grupo controle em repouso; (†) vs. grupo SOP com peso normal em descanso; \(P^1 \): grupo controle com peso normal vs. grupo SOP com peso normal; \(P^2 \): grupo SOP com peso normal vs. grupo SOP obeso.

Limiteações do estudo
O presente estudo apresentou algumas limitações, como a ausência da dosagem de insulina, glicose e marcadores inflamatórios, o que poderia contribuir para a discussão dos resultados; outra limitação foi que as medidas da VFC e da VPA foram realizadas apenas na posição supina. É possível que durante uma manobra de provocação autonômica, como no teste de inclinação, pudéssemos encontrar respostas diferentes na modulação autonômica entre os grupos estudados. No entanto, é importante notar que as limitações do estudo não invalidam os princípios achados na posição supina e suas implicações clínicas.

Conclusão
Embora a SOP seja uma doença endócrino-metabólica que causa diversas alterações corporais, ela não altera o controle autonômico cardiovascular. No entanto, a associação com a obesidade resultou em diminuição nos valores da VFC, sugerindo que a obesidade pode desempenhar um papel na alteração dos parâmetros hemodinâmicos e controle autonômico cardiovascular. Entretanto, novos estudos devem ser realizados para investigar os efeitos das alterações metabólicas e hormonais nessas mulheres e a associação dessas alterações com o controle autonômico cardiovascular.

Contribuição dos autores
Concepção e desenho da pesquisa: Philbois SV, Souza HCD; obtenção de dados: Philbois SV, Facioli TP, Felix ACS; análise e interpretação dos dados: Philbois SV, Souza HCD; análise estatística: Gastaldi AC; obtenção de financiamento: Souza HCD; redação do manuscrito: Gastaldi AC, Souza HCD.

Potencial conflito de interesses
Declaro não haver conflito de interesses pertinentes.

Fontes de financiamento
O presente estudo foi financiado pelo CNPq 457216/2014-0.

Vinculação acadêmica
Este artigo é parte de dissertação de Mestrado de Stella Vieira Philbois pela Faculdade de Medicina de Ribeirão Preto.

Aprovação ética e consentimento informado
Este estudo foi aprovado pelo Comitê de Ética do Hospital das Clínicas de Ribeirão Preto e da Faculdade de Medicina de Ribeirão Preto sob o número de protocolo 11487/2014. Todos os procedimentos envolvidos nesse estudo estão de acordo com a Declaração de Helsinki de 1975, atualizada em 2013. O consentimento informado foi obtido de todos os participantes incluídos no estudo.
Referências

1. Yildirim A, Aybar F, Kabaçılı G, Varali H, Oto A. Heart rate variability in young women with polycystic ovary syndrome. Ann Noninvasive Electrocardiol. 2006;11(4):306-12.
2. Tekin G, Tekin A, Kiçiçanlar EB, Havancedeoglu B, Karhicabaz T, Koçum T, et al. Altered autonomic neural control of the cardiovascular system in patients with polycystic ovary syndrome. Int J Cardiol. 2008;130(1):49-55.
3. de Sá JC, Costa EC, da Silva E, Zutin RS, da Silva EP, Lemos TM, et al. Analysis of heart rate variability in polycystic ovary syndrome. Cyrcenal Endocrinol. 2011;27(6):443-7.
4. Saranya K, Pal GK, Habebeullah S, Pal P. Assessment of cardiovascular autonomic function in patients with polycystic ovary syndrome. J Obstet Gynaecol Res. 2014;40(1):192-9.
5. La Rovere MT, Bigger JT, Marcus FI, Mortara A, Schwartz PJ. Baroreflex sensitivity and heart-rate variability in prediction of total cardiac mortality after myocardial infarction. ATRAMI (Autonomic Tone and Reflexes After Myocardial Infarction) Investigators. Lancet. 1998;351(9101):478-84.
6. Tank J, Jordan J, Diedrich A, Obst M, Plehm R, Luft FC, et al. Clonidine improves spontaneous baroreflex sensitivity in conscious mice through parasympathetic activation. Hypertension. 2004;43(5):1042-7.
7. Kouchaki Z, Butlin M, Qasem A, Avolio AP. Assessment of baroreflex sensitivity by continuous noninvasive monitoring of peripheral and central aortic pressure. Conf Proc IEEE Eng Med Biol Soc. 2014;2014:2940-3.
8. Kuppusamy S, Pal GK, Habebeullah S, Ananthanarayanan PH, Pal P. Association of sympathovagal imbalance with cardiovascular risks in patients with polycystic ovary syndrome. Endocr Res. 2015;40(1):37-43.
9. Szajzel J, Golay A, Makoundou V, Lehmann TN, Barthassat V, Sievert K, et al. Impact of body fat mass on cardiac autonomic alterations in women. Eur J Clin Invest. 2009;39(9):649-56.
10. Thaisa HRBS, Castaldo AC, Izahela CC, João EA, Sueniimeire V, Hugo CDS. Effects of Physical Training on Cardiac Modulation in Normal Weight, Overweight, and Obese Individuals: A Comparative Study. J Nutr Food Sci. 2015;5(6):1-7.
11. Lambert EA, Teede H, Sari CI, Jona E, Shoraki V, Sievert K, et al. Sympathetic activation and endothelial dysfunction in polycystic ovary syndrome are not explained by either obesity or insulin resistance. Clin Endocrinol (Oxf). 2015;83(6):812-9.
12. Rotterdam ESHRE/ASRM-Sponsored PCOS consensus workshop group. Revised 2003 consensus on diagnostic criteria and long-term health risks related to polycystic ovary syndrome (PCOS). Hum Reprod. 2004;19(1):41-7.
13. Griffin J, Cole TJ, Duncan KA, Hollman AS, Donaldson MD. Pelvic ultrasound measurements in normal girls. Acta Paediatr. 1995;84(5):536-43.
14. World Health Organization (WHO). Global status report on noncommunicable diseases 2010: Description of the global burden of NCDs, their risk factors and determinants. Geneva: World Health Organization; 2011.
15. Welch Be, Riedeau Rp, Crisp Ce, Izenstein Rs. Relationship of maximal oxygen consumption to various components of body composition. J Appl Physiol. 1958;12(3):395-8.
16. van de Borne P, Montano N, Zimmerman B, Pagani M, Somers VK. Relationship between repeated measures of hemodynamics, muscle sympathetic nerve activity, and their spectral oscillations. Circulation. 1997;96(12):4326-32.
17. Billman GE. Heart rate variability - a historical perspective. Front Physiol. 2011 Nov 29;2:86.
18. Heart rate variability: standards of measurement, physiological interpretation and clinical use. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Circulation. 1996;93(5):1043-65.
19. Montano N, Ruscone TG, Porta A, Lombardi F, Pagani M, Malliani A. Power spectrum analysis of heart rate variability to assess the changes in sympathovagal balance during graded orthostatic tilt. Circulation. 1994;90(4):1826-31.
20. Di Rienzo M, Bertinieri G, Mancia G, Redotti A. A new method for evaluating the baroreflex role by a joint pattern analysis of pulse interval and systolic blood pressure series. Med Biol Eng Comput. 1985;23:313-4.
21. Rowland TW. Effects of obesity on aerobic fitness in adolescent females. Am J Dis Child. 1991;145(7):764-8.
22. Ozcelik O, Aylan M, Ayar A, Kellestirimur H. Effects of body mass index on maximal work production capacity and aerobic fitness during incremental exercise. Physiol Res. 2004;53(2):165-70.
23. Di Domenico K, Willgen D, Nickell F, Magalahais EA, Moraes RS, Spitzer PM. Cardiac autonomic modulation in polycystic ovary syndrome: does the phenotype matter? Fertil Steril. 2013;99(1):286-92.
24. Piccirillo G, Vetta F, Viola E, Santageda E, Ronzoni S, Cacciafera M, et al. Heart rate and blood pressure variability in obese normotensive subjects. Int J Obes Relat Metab Disord. 1998;22(8):741-50.
25. Piccirillo G, Vetta F, Fimognari FL, Ronzoni S, Lama J, Cacciafera M, et al. Power spectral analysis of heart rate variability in obese subjects: evidence of decreased cardiac sympathetic responsiveness. Int J Obes Relat Metab Disord. 1996;20(9):829-9.
26. Indumathy J, Pal GK, Pal P, Ananthanarayanan PH, Parija SC, Balachander J, et al. Decreased baroreflex sensitivity is linked to sympathovagal imbalance, body fat mass and altered cardiometabolic profile in pre-obesity and obesity. Metabolism. 2015;64(12):1704-14.
27. Skrapari, Tentolouris N, Katsilambros N. Baroreflex function: determinants in healthy subjects and disturbances in diabetes, obesity and metabolic syndrome. Curr Diabetes Rev. 2006;2(3):329-38.
28. De Melo VU, Saldanha RR, Dos Santos CR, De Campos Cruz J, Lira VA, Santana-Filho VJ, et al. Ovarian Hormone Deprivation Reduces Oxytocin Expression in Paraventricular Nucleus Peaunautiom Neurons and Correlates with Baroreflex Impairment in Rats. Front Physiol. 2016 Oct 13;7:461.
29. Mancia G, Ferrari A, Gregorini L, Pariati G, Pomidossi G, Bertinieri G, et al. Blood pressure and heart rate variabilities in normotensive and hypertensive human beings. Circ Res. 1983;53(1):96-104.
30. Heussner K, Tank J, Engeli S, Diedrich A, Menne J, Eckert S, et al. Carotid baroreceptor stimulation, sympathetic activity, baroreflex function, and blood pressure in hypertensive patients. Hypertension. 2010;55(3):619-26.
31. Rothwell PM, Howard SC, Dolan E, O’Brien E, Dobson JE, Dahlöf B, et al. Prognostic significance of visit-to-visit variability, maximum systolic blood pressure, and episodic hypertension. Lancet. 2010;375(9718):895-905.
32. Lucini D, de Giacomi G, Tosi E, Malacarne M, Respizzi S, Pagani M. Altered cardiovascular autonomic regulation in overweight children engaged in regular physical activity. Heart. 2013;99(6):376-81.
33. Quilliot D, Fluckiger L, Zannad F, Drozin P, Ziegler O. Impaired autonomic control of heart rate and blood pressure in obesity: role of age and of insulin-resistance. Clin Auton Res. 2001;11(2):79-86.