A Low-Power Time-to-Digital Converter for the CMS Endcap Timing Layer (ETL) Upgrade

Wei Zhang, Hanhan Sun, Christopher Edwards, Datao Gong, Xing Huang, Chonghan Liu, Tiankuan Liu, Tiehui Liu, Jamieson Olsen, Quan Sun, Xiangming Sun, Jinyuan Wu, Jingbo Ye, and Li Zhang

Abstract—We present the design and test results of a time-to-digital-converter (TDC). The TDC will be a part of the readout Application-Specific Integrated Circuit (ASIC), called endcap timing read-out chip (ETROC), to read out low-gain avalanche detectors (LGADs) for the CMS endcap timing layer (ETL) of high-luminosity large hadron collider (LHC) upgrade. One of the challenges of the ETROC design is that the TDC is required to consume less than 200 μW for each pixel at the nominal hit occupancy of 1%. To meet the low-power requirement, we use a single delay line for both the time of arrival (TOA) and the time over threshold (TOT) measurements without delay control. A double-strobe self-calibration scheme is used to compensate for process variation, temperature, and power supply voltage. The TDC is fabricated in a 65-nm CMOS technology. The overall performances of the TDC have been evaluated. The TOA has a bin size of 17.8 ps within its effective dynamic range of 11.6 ns. The effective measurement precision of the TOA is 5.6 and 9.9 ps with and without nonlinearity correction, respectively. The TDC block consumes 97 μW at the hit occupancy of 1%. Over a temperature range from 23 °C to 78 °C and a power supply voltage range from 1.05 to 1.35 V (the nominal value of 1.20 V), the self-calibrated bin size of the TOA varies within 0.4%. The measured TDC performances meet the requirements except that more tests will be performed in the future to verify that the TDC complies with the radiation tolerance specifications.

Index Terms—Front-end electronics, integrated circuit, time measurement, time-to-digital converters (TDCs).

I. INTRODUCTION

THE high-luminosity large hadron collider (HL-LHC) operation is currently scheduled to start in 2027. All detectors on the LHC are undergoing upgrades to meet the demands of the HL-LHC operation to achieve the physics goals. One novel detector concept is officially chosen for both the CMS and ATLAS experiments to measure the arrival time of charged particles with a resolution of 30–40 ps per track at the start of the HL-LHC and 60 ps in the worst case at the end of the operation. This new detector, together with the conventional silicon-based tracker, would allow the reconstructed interaction point along the beamline to be well-separated in both space and time. In CMS, this is the minimum-ionizing-particle timing detector (MTD) [1]. The MTD has two parts: the barrel timing layer (BTL) and the endcap timing layer (ETL). In the ETL, the low-gain avalanche detector (LGAD) [2], [3] is read out using an Application-Specific Integrated Circuit (ASIC) called the endcap timing read-out chip (ETROC) [4], [5]. A critical design block of the ETROC is a time-to-digital converter (TDC). The TDC performs the precision time measurement of arrival hits against the 40-MHz LHC clock. The TDC should measure the time of arrival (TOA) with a less than 30 ps bin size over a 5-ns dynamic range. The TDC should also measure the time over threshold (TOT) for time-walk correction with a less than 100 ps bin size over a 10-ns dynamic range [1]. The power consumption of the TDC is required to be less than 200 μW per pixel at the 1% hit occupancy due to the limitation of the cooling system. The power consumption requirement is most challenging for the TDC design and leads us to study an innovative approach that has never been implemented in ASICs. In this article, we will present a TDC implemented in a 65-nm CMOS technology. This TDC has achieved a TOA bin size of 17.8 ps over a window of 11.6 ns and a TOT bin size of 35.4 ps over a window of 16.6 ns with a power consumption of 97 μW at the 1% hit occupancy.

II. DESIGN OF THE TDC

A. Design Approach

The conventional approach of TDC implementation in ASICs is based on a controlled delay line or delay-locked loops (DLLs) [6]–[9]. The delay cells are tuned to match the system clock period. The output taps of the delay cells are routed to a set of registers and the leading edge of the input hit signal captures the delay pattern. An advantage of this approach is that the propagation delay of each delay cell is well-determined for the cost of extra power to control the delay cells. If the speed of the delay cells is not high enough, a Vernier architecture can be used to improve the precision. However, it is hard for a TDC implemented in this approach
ZHANG et al.: LOW-POWER TDC FOR CMS ETL UPGRADE

Fig. 1. Block diagram of the TDC.

...to meet the low-power consumption requirement of the ETROC.

Our TDC design is based on a simple untuned delay-line approach originally developed in the field programmable gate arrays (FPGAs) [10]–[12]. In this approach, the input hit signal propagates in the delay line and a register array takes snapshots at the leading edge of the system clock. The position of the signal transition in the delay line is encoded into the arrival time relative to the clock. Due to the simplicity of the untuned delay line, the delay cell is fast and power-efficient. We use one single delay line to measure both the TOA and the TOT.

The propagation delay of each untuned delay cell is sensitive to process variation, temperature, and power supply voltage. To compensate for these variations, a double-strobe self-calibration approach successfully demonstrated in FPGAs is used to record the timestamp twice. For each input hit signal, the extra measurement calibrates the propagation delay and improves the measurement precision.

When the propagation of the whole delay line is shorter than the required range of the TOA and the TOT, after the input hit reaches the end of the delay line, it is fed back to the beginning of the delay line and oscillates in the delay line. The oscillation stops after both the TOA and the TOT measurements are complete. A counter is incremented to count the oscillations. Accurate TOA and TOT measurements are then calculated by combining the coarse counter values with a snapshot of the delay line (the fine values).

B. Design Concept

Fig. 1 shows the block diagram of the TDC. The input hit signal (PULSE) of the TDC is the discriminator output after the preamplifier signal. The TDC measures the TOA and the TOT of the PULSE signal. The TDC needs a pair of external clock signals, one at 40 MHz (CLK40M) and the other one at 320 MHz (CLK320M), from an on-chip clock generator. The on-chip clock generator performance has been studied with simulation and the expected jitter contribution is at 1.1 ps (rms) level. Based on the signals CLK40M, CLK320M, and PULSE, a controller generates a START signal, a TOA clock (TOACLK), a TOT clock (TOTCLK), and a TOA latch signal (TOALATCH). The time measurement is implemented with a delay line for fine time measurement and a ripple counter for coarse time measurement. Three recorders, each implemented in a D-flip-flop (DFF) chain, snapshot the fine and coarse times of the TOA, the TOT, and the calibration, respectively. The data are encoded in a TDC encoder. The hit flag indicates whether there is valid data over a 40-MHz clock cycle.

Fig. 2 displays the timing diagram of the major signals used in the TDC. CLK40M is a synchronous copy of the 40-MHz LHC clock with phase adjustable inside the chip. CLK320M has two successive pulses with a known phase difference in every 25 ns. The phase difference is programmable with a default value of 3.125 ns. The leading edge of the first pulse of CLK320M is aligned with the rising edge of CLK40M. The START signal is asserted after the leading edge of the PULSE signal and reset after the leading edge of the second pulse of the CLK320M signal. The assertion of START enables the oscillation of the delay line and the deassertion of START disables the oscillation. The TOACLK signal has two consecutive pulses with the same phase difference as CLK320M. The first pulse is asserted after the leading edge of the CLK40M signal and the second pulse is asserted after the second pulse of CLK320M. The TOALATCH signal duplicates the first pulse of the TOACLK signal. The TOACLK signal snapshots two
timestamps in the TOA/CAL recorder. The first timestamp stores the TOA information, while the second one keeps the calibration information. The TOALATCH signal transfers the first timestamp immediately to the TOA recorder. The second timestamp is stored in the TOA/CAL recorder for in situ calibration. The leading edge of the TOTCLK is aligned with the trailing edge of the signal PULSE and is used to catch the TOT state in the delay line. To minimize the time of the DFFs in the transparent mode and save power, both the TOACLK and TOTCLK signals are active low for about 400 ps.

Over each bunch crossing period of 25 ns, the TDC is designed to only handle the first hit. Any other hits following the first hit within the same bunch crossing period will be ignored. The TDC will always be ready to handle the first hit in the next bunch crossing period. The dead time of the TDC is shown in Fig. 2.

The PULSE provided by the preamplifier and discriminator in ETROC is typically 5 ns wide and maximum 10 ns wide. If the PULSE goes wider for whatever reason and its falling edge is beyond the falling edge of the CLK40M, the TOT_Code will be set to 1 (the minimum value).

C. Fine Time Measurement

Fig. 3 shows the schematic of the TDC fine time measurement circuit. The delay line has 63 NAND gates and forms an oscillator. All gates are configured as inverters except that the first one is controlled by the START signal. At each rising edge of the TOACLK or TOTCLK signals, a DFF chain takes a snapshot of the delay line for the fine time information. The resolution requirement of the TOT is more relaxed than that of the TOA, so the TOA DFF chain attaches to every tap (D0, D1, D2, ..., D62) of the delay line, while the TOT DFF chain only connects to every even tap (D0, D2, D4, ..., D62).

D. Coarse Time Measurement

The coarse time is derived from a 3-bit ripple counter, which records the number of oscillating turns. Fig. 4 shows the schematic of the TDC coarse time measurement. The clock of the ripple counter comes from the 31st tap (D31) of the delay line. The signal D31 is buffered by a latch, which has the same load as a DFF. The coarse time measurement is implemented in a 3-bit ripple counter and two DFF chains. The two DFF chains snapshot the timestamps of the coarse time information for the TOA and the TOT, respectively.

Since the START signal is asynchronous with the CLK40M and CLK320M signal, the TOA/TOT recorders may violate the setup/hold time requirements of the DFFs. In this case, the metastability phenomenon may occur and the outputs of the DFFs may be unstable. To resolve the metastability problem, the counter and the recorders are duplicated, whereas the clock of the duplicated counter is inverse. If the metastability occurs in one recorder groups, the outputs of the other recorder group are stable. The fine time information is used to distinguish which counter recorders are more stable than the other. It should be noted that the metastability also exists in the fine time recorders. However, at any specific moment, only one DFF in each recorder may have a metastable state. After its unstable output is considered in the encoder design, metastability affects only the least significant bits (LSBs) of the fine time measurement.

E. Calibration Circuit

The schematic of the calibration and the TOA recorders is shown in Fig. 5. As mentioned before, the TOACLK signal has two consecutive pulses with a known phase difference, which carries the calibration information. The fine and coarse time measurements are snapshotted by two DFF chains, as shown in Figs. 3 and 4, respectively. The DFF chains that snapshot the TOA time information are triggered twice. The first timestamp, which represents the TOA information, is stored in the TOA/CAL DFF chain, while the second timestamp, which stands for the calibration information, is kept in the calibration TOA DFF chain.

F. Radiation Tolerance

Following the practice of lpGBT [13], the delay line of the ETROC TDC uses the same enclosed layout transistors (ELTs) to improve the radiation tolerance. Due to power consumption considerations, this version of TDC prototype design does not use triple modular redundancy (TMR) in the TDC.

G. Prototype Chip

The TDC block includes a few supporting functional blocks that are used for test purposes. Electrical transmitter/receiver (eTx/eRx) ports transmit/receive differential signals. A clock divider divides an input clock of 1.28 GHz to generate the internal clocks at 40 and 320 MHz. A diagnostic mode read-out (DMRO) circuit scrambles the 30-bit TDC data (including the TOA code, the TOT code, the CAL code, and the hit flag), adds a 2-bit frame header (2'b10), and serializes the 32-bit parallel data to a 1.28-Gb/s serial stream in each 40-MHz clock cycle. An I2C module is used for slow control. A gated ring oscillator (GRO) is a copy of the delay line that is used to calibrate the oscillation frequency of the delay line and can be used to calibrate the oscillation frequency of the delay line.

Fig. 6(a) shows the layout of the TDC block. The dimension of the TDC block is 0.700 mm × 1.900 mm. The TDC core, excluding the input–output pads and supporting circuits, occupies 0.169 mm × 0.468 mm.
The prototype of ETROC named ETROC1 is designed and fabricated in a 65-nm CMOS technology [14], [15]. Besides a dedicated standalone TDC block, the ETROC1 contains a $5 \times 5$ array of pixels. Each pixel consists of a preamplifier, a discriminator, and a TDC block along with digital readout circuitry. Fig. 6(b) and (c) shows the photographs of the standalone TDC block on ETROC1. The TDC block is located on the upper right corner of ETROC1. The standalone TDC block of the ETROC1 chip is wire-bonded on the test board, allowing direct access to the signals for the standalone TDC block.

The test results of the standalone TDC will be reported in this article. The design and the test results of the ETROC1 are beyond the scope of this article and will be reported somewhere else in the future.

III. TEST RESULTS OF THE TDC

A. Test Setup

The block diagram of the test setup is shown in Fig. 7. A pattern generator [16] provides a 1.28-GHz clock and a 40-MHz clock. Based on the 40-MHz clock, a clock builder [17] drives a pulse generator with user-adjustable frequency. The pulse generator in turn provides the input pulse (PULSE) of the TDC with an adjustable width. The jitter of the Pattern Gen, the Clock builder, and the Pulse Gen is measured to be less than few picoseconds (rms). Their contributions should be negligible for the TDC performance study. The output data of the TDC at 1.28 Gb/s are buffered in an FPGA (Xilinx Model KC705 Development Kit) and transferred to a personal computer (PC) through an Ethernet cable. Fig. 8 shows the photographs of the test setup.

For dedicated TOA measurement, the PULSE frequency emulates the hit occupancy of the TDC. For example, when the occupancy is 1%, the frequency of the input pulse should be about 400 kHz (1% of 40 MHz). In the actual test, the CLK frequency is set at 400.0001 MHz to generate the PULSE at 400.0001 kHz to emulate the 1% occupancy. Due to the tiny frequency shift from 400 to 400.0001 kHz, the PULSE
chases the system clock of 40 MHz constantly with a step of 0.625 ps [18]. In this way, the entire measurement range is evenly covered. The width of PULSE is controlled by the pulse generator [19] and it emulates the TOT. It is set at a typical value of 5 ns for dedicated TOA study.

For the dedicated TOT study, the frequency of the PULSE is set at 40 MHz and this corresponds to 100% hit occupancy of the TDC operation. The width of PULSE is adjusted by a different pulse generator [20], with step of 2 ps over the nominal TOT dynamic range from 0.4 to 10.2 ns.

B. Resolution

In the TOA measurement, the arrival time of the input pulse increases a fixed value after each clock cycle, and in the TOT measurement, the width of input pulse increases a constant value after data acquisition. The TOA/TOT times are calculated based on the index of the acquired data. When we plot the measured TOA/TOT codes with all TOA/TOT times, we obtain a stair-shaped curve, namely, the transfer function. Fig. 9 shows the transfer functions of the TOA and the TOT. The details of each transfer function at a typical TOA (TOT) code of 56 (150) are zoomed in and displayed in the lower right corner. The effective dynamic range of the TOA is about 11.6 ns, significantly larger than the required range of 5 ns. The large dynamic window of the TOA can be used to study long-lived particles in the HL-LHC. The effective dynamic range of the TOT is measured separately to be 16.6 ns, larger than the range (which is limited by the pulse generator during the test) as shown in Fig. 9. The effective dynamic range of the TOT is larger than the required dynamic range of 10 ns.

A minimum-square linear fitting of the measured data is also shown in Fig. 9. The reciprocal of the linear fitting slope is the quantization resolution or the average bin size of the measurement. The bin size represents the propagation delay of each delay cell. The resolution of the TOA is estimated to be 17.8 ps. The bin size of the TOT is 35.4 ps, about twice the TOA bin size as expected.

C. Nonlinearity

Nonlinearity is the deviation of the transfer function from the ideal linear relationship. Nonlinearity is usually divided into integral nonlinearity (INL) and differential nonlinearity (DNL).

The INL reflects the deviation of each stair center in the transfer function from the expected time. Based on our measurements, the INLs of the TOA and the TOT. Based on our measurements, the INL of the TOA (TOT) is less than $\pm 1.0$ LSB (TOA) and $\pm 1.3$ LSB (TOT). The INL performances meet the design goal INL should be less than $\pm 1.5$ LSB for both TOA and TOT).

The DNL reflects the uneven stair width of the transfer function. In our measurement, the arrival time of the pulse and the
pulsewidth are uniformly distributed in the effective windows. However, due to the existence of the DNL, the distribution of the TOA and TOT codes is not uniform. The count of each code is proportional to its bin size. The DNL is estimated as follows:

\[
DNL(i) = \frac{\text{count}(i)}{\text{average count}} - 1
\]

where \(DNL(i)\) is the DNL of the \(i\)th code of the TOA or TOT, \(\text{count}(i)\) is the count of the \(i\)th code, and the average count is the average count of all codes. Fig. 11 shows the DNLs of the TOA and the TOT. Based on our measurements, the DNL is less than \(\pm 0.5\) and \(\pm 0.8\) LSB for the TOA and TOT, respectively. The DNL performances of the TOA/TOT meet the design goal (DNL should be less than \(\pm 1.0\) LSB for both TOA and TOT).

For the TOA measurement, DNL represents the nonuniform propagation delay of the NAND delay cells. The delay of the even cells is slightly different from that of the odd cells. For example, as can be seen in Fig. 9(a), Bin 56 is wider than Bins 55 and 57. This even–odd effect reflects the fact that the propagation delay from the rising edge to the falling edge is different from the one from the falling edge to the rising edge. The DNL of the TOA has a period of 126, combining the delay line of 63 NAND gates with the even–odd effects.

The same periodicity exists in TOT DNL. Since the TOT DFF chain only connects to every other tap of the delay cells, the TOT code from 1 to 31 and from 33 to 63 is twice the propagation delay of a NAND gate, whereas the bin size of the TOT at 32 or 64 is the propagation delay of the first NAND gate (in the TDC implementation, the TOT code has an offset of 1). That is why the values of the DNL at 32, 64, 96, ..., are less than the other values. The periodicity of the TOT DNL is also reflected in the TOT INL figure, where there is a jump after every 32 codes.

D. Effective Measurement Precision

The residuals of the linear fitting of the TOA/TOT transfer function represent the deviation of the measurements from the expected values. The histograms of the linear fitting residuals at the TOA (TOT) of 56 (150), typical values of the TOA/TOT codes in the ETL application, are shown in Fig. 12(a).

Fig. 12(b) displays the histograms of the combined fitting residuals of all TOA/TOT codes. The standard deviation of the combined residuals is about 9.9 ps for TOA (16.7 ps for TOT), which represents the effective measurement precision in a large dynamic range without nonlinearity correction.

When we operate the TDC in a large dynamic range, the effective measurement precision with nonlinearity correction is calculated as the weighted average [15] of the standard deviation of all codes as follows:

\[
\sigma = \sqrt{\sum_i w(i) \sigma^2(i)} / \sum_i w(i)
\]

where \(\sigma\) is the weighted average of all codes, \(\sigma(i)\) is the standard deviation of the \(i\)th code, and \(w(i)\) is the bin size of the \(i\)th code. The effective measurement precision of the TOA (TOT) measurement is estimated to be about 5.6 ps (10.4 ps). Based on the average bin size, the quantization noise of the TOA (TOT) is estimated to be 5.2 ps (10.2 ps). The quantization noise dominates the effective measurement precision with nonlinearity correction. When the TDC is operated in a small window, the effective measurement precision without the nonlinearity correction is close to the effective measurement precision with nonlinearity correction.

E. Power Consumption

We have measured the power consumption of the TDC functional block for various operating conditions. At the hit occupancies of 1%, 2%, 5%, and 10%, the total power consumptions of the TDC block are 97, 122, 195, 318 \(\mu\)W.
respectively. The power consumption of 97 μW at the nominal hit occupancy of 1% is less than half of the specification.

F. Self-Calibration

The delay cells in the TDC block are plain CMOS NAND gates and their propagation delays change with the process variations, power supply voltage, and temperature. However, using two strobes separated with a known time interval, the propagation delays are measured constantly (for every hit). Therefore, the variation in the propagation delays of the delay cells can be self-calibrated during the offline analysis process.

The process variation for the TDC design has been studied extensively during the design stage. The variations are all within our requirements. In particular, the delay line latency varies from 14 to 28 ps over processes (ss, tt, ff corners), voltages (1.08, 1.20, and 1.32 V), and temperatures (−45 °C, −20 °C, 27 °C, and 55 °C) (PVTs) as shown in Fig. 13. This range of variation can be calibrated away using the double-strobe self-calibration. With more than 20 ETROC1 prototype chips we have tested so far, with each chip containing 16 pixels and each pixel containing one TDC stage, no large variation has been observed.

Fig. 14 shows the histogram of the measured calibration codes in the TOA test. The measured calibration codes fall into four consecutive bins. The mean value (173.5) of the calibration codes is consistent with the average propagation delay (17.8 ps) of each delay cells within 1%.

We have measured the bin sizes of the TDC at various power supplies voltages (VDDs) from 1.05 to 1.35 V and at room temperature 23 °C. We have also examined the bin sizes of the TDC at various temperatures from 23 °C to 77 °C and the nominal power supply voltage of 1.20 V. The measured bin sizes of the TOA and the calibration versus VDDs and temperatures are shown in Fig. 15.

As can be seen in Fig. 15, the bin sizes of the TOA and the calibration decrease with the power supply voltage and increase with temperature, consistent with our expectations. The calibration bin size is slightly larger than the TOA bin size. The bin size difference between the TOA and the calibration becomes more significant when the power supply voltage goes lower. This is confirmed in the simulation.

The worst case difference between the TOA bin size and the calibration bin size is 1.5% at 1.05 V and at room temperature. Such a bin size difference between the TOA and the calibration can be tolerated even if it is not calibrated. However, the difference can be easily self-calibrated offline.

A drying oven [21] was used to control the ambient temperature of the TDC during the testing, with a lower temperature limit at about 23 °C room temperature. At room temperature, from 1.05 to 1.35 V, the bin size of the TOA varies 23%, relative to the bin size at the nominal power supply voltage of 1.20 V. At the nominal power supply voltage, from 23 °C to 77 °C with a step of 5 °C, the bin size of the TOA varies 6.3%, relative to the bin size at room temperature. Such a bin size variation makes the offline self-calibration critically important to achieve the required measurement precision.

Self-calibration has been demonstrated to work well in the test. The bin size of the TOA can be self-calibrated as per the following equation:

$$B_{\text{TOA cal}}(x) = \frac{B_{\text{TOA meas}}(x_0)}{B_{\text{CAL}}(x_0)}, \quad B_{\text{CAL}}(x)$$

where $B_{\text{TOA cal}}$ is the self-calibrated TOA bin size, $B_{\text{TOA meas}}$ is the raw TOA bin size, $B_{\text{CAL}}$ is the calibration bin size, $x$ represents the power supply voltage VDD or the
temperature, and $x_0$ is the nominal power supply voltage of 1.20 V or room temperature. The self-calibrated TOA bin size is also shown in Fig. 15. Compared with the raw TOA bin size, the self-calibrated TOA bin sizes vary within 0.43% and 0.16% in the whole range of power supply voltage and temperature, respectively.

G. Radiation Tolerance

The TDC is required to tolerate a total ionizing dose (TID) of 1 MGY. Because of no access to the irradiation facility [22] at European Organization for Nuclear Research (CERN) during the Covid-19 pandemic, we preliminarily evaluated the radiation tolerance of the TDC with a low-dose-rate facility at Southern Methodist University. More tests will be performed in the future to verify that the TDC meets the radiation tolerance specifications.

The TDC was exposed in an X-ray irradiator (Precision x-rays, Inc., Model iR160 [23]) with a maximum energy of 160 keV for about 7 h. Fig. 16 shows the photograph of the test setup. The TID reached 23.4 kGy with a dose rate of 0.93 Gy/s.

1) During the irradiation test, the power supply current was monitored every 5 s. Fig. 17(a) shows the variations in the power supply current related to its initial value before the test. As can be seen in Fig. 17(a), the power supply current decreases within 5%.

2) During the test, a pulse with a width of 6.25 ns and a frequency of 80 MHz was input to the TDC. The TOA, the TOT, and the calibration codes of 500 words each were acquired every 5 s. The mean value, the minimum value, and the maximum value of each code in each acquisition were calculated. The change in the TOA, the TOT, and the calibration are shown in Fig. 17(b)–(d). The decrease in the TOA, the TOT, and the calibration codes are less than 1 LSB.

3) All performances of the TDC were measured before and after the test and compared. The bin sizes of the TOA, the TOT, and calibration decreased consistently by 0.67%, 1.2%, and 0.68%, respectively. It should be noted that the change in the TOA/TOT codes after the test is in the inverse direction of the change observed during irradiation. Therefore, the changes in the TOA/TOT bin sizes after the test are not induced by radiation and more likely due to the test environments such as the temperature or the power supply voltage. No significant degradation was observed in precision, INL, and DNL of the TOA/TOT.

IV. Conclusion

We have successfully designed and tested a delay-line-based TDC in a commercial 65-nm CMOS technology. The TOA has a bin size of 17.8 ps within its effective dynamic range of 11.6 ns. The DNL and the INL of the TOA are less than ±0.5 and ±1.0 LSB, respectively. The effective measurement precision of the TOA is 5.6 and 9.9 ps with and without the nonlinearity correction, respectively. The TOT has a bin size of 35.4 ps. The dynamic range of the TOT is measured to be 16.6 ns. The DNL and INL of the TOT are ±0.8 and ±1.3 LSB, respectively. The effective measurement precision of the TOT is 10.4 and 16.7 ps with and without nonlinearity correction, respectively. The actual TDC block consumes 97 $\mu$W at a hit occupancy of 1%. The self-calibration tests demonstrate that over a temperature range from 23 °C to 77 °C and a power supply voltage range from 1.05 to 1.35 V, the self-calibrated bin size varies within 0.4%. The TDC survives the TID of 23.4 kGy. The measured TDC performances meet the requirements for the ETROC for the CMS ETL project except for the lack of testing for radiation tolerance.
More tests will be performed in the future to verify that the TDC complies with the radiation tolerance specifications.

ACKNOWLEDGMENT

The authors are grateful to Dr. Paulo Moreira, Dr. Rui Francisco, and Dr. Szymon Kulis of CERN for sharing the ELT library in lpGBT and the generic I2C module for the TDC configuration.

REFERENCES

[1] The CMS Collaboration, “A MIP timing detector for the CMS phase-2 upgrade technical design report,” CERN, Geneva, Switzerland, Tech. Rep. CERN527/LHCC-2019-003, CMS-TDR-020, Sep. 2019. [Online]. Available: https://cds.cern.ch/record/2667167?

[2] G. Pellegrini et al., “Technology developments and first measurements of low gain avalanche detectors (LGAD) for high energy physics applications,” Nucl. Instrum. Methods Phys. Res. A. Accel. Spectrom. Detect. Assoc. Equip., vol. 765, pp. 12–16, Nov. 2014, doi: 10.1016/j.nima.2014.06.008.

[3] N. Cartiglia et al., “Design optimization of ultra-fast silicon detectors,” Nucl. Instrum. Methods Phys. Res. A. Accel. Spectrom. Detect. Assoc. Equip., vol. 796, pp. 141–148, Oct. 2015, doi: 10.1016/j.nima.2015.04.025.

[4] T. Liu et al., “The ETROC Project: ASIC development for CMS Endcap Timing Layer (ETL) upgrade,” Topical Workshop on Electronics for Particle Physics (TWEPP), Santiago de Compostela, Spain, Sep. 2019. [Online]. Available: https://indico.cern.ch/event/799025/contributions/3486223/. 

[5] Q. Sun et al., “The analog front-end for the LGAD based precision timing application in CMS ETL,” in Proc. 22nd Virtual IEEE Real Time Conf., Oct. 2020, pp. 1–10. [Online]. Available: https://indico.cern.ch/event/737461/contributions/4013066/attachments/2120645/3570531/P_
A-02_226.pdf

[6] M. Mota and J. Christiansen, “A high-resolution time interpolator based on a delay locked loop and an RC delay line,” IEEE J. Solid-State Circuits, vol. 34, no. 10, pp. 1360–1366, Oct. 1999, doi: 10.1109/792603.

[7] P. Dudek, S. Szczepanski, and J. V. Hatfield, “A high-resolution CMOS time-to-digital converter utilizing a Vernier delay line,” IEEE J. Solid-State Circuits, vol. 35, no. 2, pp. 240–247, Feb. 2000, doi: 10.1109/4.823449.

[8] N. Seguin-Moreau et al., “ALTIROC1, a 25 pico-second time resolution ASIC for the ATLAS high granularity timing detector (HGTD),” in Proc. Topical Workshop Electron. Particle Phys., vol. 370, Apr. 2020, p. 042, doi: 10.22323/1.370.0042.

[9] P. Kwiatkowski and R. Szplet, “Efficient implementation of multiple time coding lines-based TDC in an FPGA device,” IEEE Trans. Instrum. Meas., vol. 69, no. 10, pp. 7353–7364, Oct. 2020, doi: 10.1109/TIM.2020.2984929.

[10] J. Wu and Z. Shi, “The 10-ps wave union TDC: Improving FPGA TDC resolution beyond its cell delay,” in Proc. IEEE Nucl. Sci. Symp. Conf. Rec., Dresden, Germany, Oct. 2008, pp. 3440–3446, doi: 10.1109/ NSSMIC.2008.4775079.

[11] J. Wu, “Several key issues on implementing delay line based TDCs using FPGAs,” IEEE Trans. Nucl. Sci., vol. 57, no. 3, pp. 1543–1548, Jun. 2010, doi: 10.1109/TNS.2010.2045901.

[12] J. Wu, Y. Shi, and D. Zhu, “A low-power wave union TDC implemented in FPGA,” J. Instrum., vol. 7, no. 1, Jan. 2012, Art. no. C01021, doi: 10.1088/1748-0221/7/01/C01021.

[13] P. Moreira. (May 19, 2017). Inside the lpGBT, IN2P3 School of Microelectronics Bénodet-France. [Online]. Available: https://indico.in2p3.fr/event/14305/contributions/17786/attachments/14696/18009/ moreira_benodet201705191708.pdf

[14] L. M. J. Casas et al., “Characterization of radiation effects in 65 nm digital circuits with the DRAD digital radiation test chip,” J. Instrum., vol. 12, no. 2, Feb. 2017, Art. no. C02039, doi: 10.1088/1748-

[15] W. Wang, V. Reddy, A. T. Krishnan, R. Vattikonda, S. Krishnan, and Y. Cao, “Compact modeling and simulation of circuit reliability for 65-nm CMOS technology,” IEEE Trans. Device Mater. Rel., vol. 7, no. 4, pp. 509–517, Dec. 2007, doi: 10.1109/TDMR.2007.910130.

[16] Centellax. (Jul. 4, 2021). PCB12500 Datasheet. [Online]. Available: http://woojoohitech.com/pages/pdf/PCB12500.pdf

[17] Silicon Labs. (Jul. 4, 2021). Si5330/34/35/38 Evaluation Board User’s Guide. [Online]. Available: https://www.silabs.com/documents/public/user- guides/Si5338-EVB.pdf

[18] J. Wu, “Uneven bin width digitization and a timing calibration method using cascaded P.L.L.,” in Proc. 19th IEEE-NPSS Real Time Conf., Nara, Japan, May 2014, pp. 1–4, doi: 10.1109/RRTC.2014.7097534.

[19] Keysight Technologies. (Jul. 4, 2021). 8133A Pulse Generator, 3 GHz. [Online]. Available: https://www.keysight.com/upload/cmc_upload/All/8133Ag.pdf

[20] The Labworld Group. (Jul. 4, 2021). 8133A Pulse Generator, 3 GHz. [Online]. Available: https://www.thealabworldgroup.com/amERICAN-scientific-ds-44-lab-oven

[21] CERN. (Jul. 4, 2021). American Scientific DS-44 Lab Oven. [Online]. Available: https://www.thelabworldgroup.com/amERICAN-scientific-ds-44-lab-oven

[22] CERN. (Jul. 4, 2021). EP-SEE Irradiation System-AsteriX. [Online]. Available: https://espace.cern.ch/project-xrayes/AsteriX/Forms/AllItems.aspx

[23] Precision X-Ray. (Jul. 4, 2021). American Scientific DS-44 Lab Oven. [Online]. Available: https://www.thelabworldgroup.com/amERICAN-scientific-ds-44-lab-oven