Reply to comment “On the test of the modified BCS at finite temperature”

V. Yu. Ponomarev1,2 and A. I. Vdovin1

1Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, 141980 Dubna, Russia
2Institut für Kernphysik, Technische Universität Darmstadt, D–64289 Darmstadt, Germany

(Dated: August 5, 2018)

PACS numbers: 21.60.-n, 24.10.Pa

The applicability, predictive power, and internal consistency of a modified BCS (MBCS) model suggested by Dang and Arima have been analyzed in details in 1. It has been concluded that “The T-range of the MBCS applicability can be determined as far below the critical temperature T_c, i.e., $T \ll T_c$. Unfortunately, the source of our conclusions has been misrepresented in 2 and referred to MBCS predictions at $T >> T_c$.

Since above T_c particles and holes contribute to an MBCS gap with opposite signs, the model results are rather sensitive to details of a single particle spectra (s.p.s.) (e.g., discussion in Sec. IV. A. 1. of 3). As so, it is indeed possible to find conditions when the MBCS simulates reasonable thermal behavior of a pairing gap. This can be achieved, e.g., by introducing some particular T-dependence of the s.p.s. (entry 1 in 2) or by adding an extra level to a picket fence model (PFM) (entry 2 in 2). But such results are very unstable and accordingly, the model has no predictive power.

Dang and Arima explain poor MBCS results for the PFM ($N = \Omega = 10$) discussed in 1 by referring to strong asymmetry in the line shape of the quasiparticle-number fluctuations δN_j above $T \sim 1.75$ MeV (symmetry of δN_j is announced as a criterion of the MBCS applicability.) The space limitation is blamed for that in 2. Remember, particle-hole symmetry is an essential feature of the PFM with $N = \Omega$. Thus, strong asymmetry is reported from the MBCS calculation in an ideally symmetric system.

It has been found that a less symmetrical example $N = 10$, $\Omega = 11$ satisfies better the MBCS criterion 2. Indeed, the model mimics behavior of a macroscopic thermodynamical and statistical mechanical definition of entropy, respectively. The calculations have been performed for neutron system of 120Sn with a realistic s.p.s.

Another example of the MBCS thermodynamical inconsistency is shown below. We calculate the system entropy S as

\[S_1 = \int_0^T \frac{1}{t} \cdot \partial \mathcal{E} / \partial t \, dt \]

and

\[S_2 = - \sum_j (2j + 1) \cdot [n_j \ln n_j + (1 - n_j) \ln (1 - n_j)] \]

where n_j are thermal quasiparticle occupation numbers. In Fig. 2 we compare S_1 and S_2 quantities which refer to thermodynamical and statistical mechanical definition of entropy, respectively. The calculations have been performed for neutron system of 120Sn with a realistic s.p.s.

It is not possible to distinguish by eye S_1 and S_2 in the FT-BCS calculation (solid curve in Fig. 2) represents both...
FIG. 2: Entropy of the neutron system in 120Sn calculated within the FT-BCS (solid curve) and MBCS (dashed and dot-dashed curves). Notice the logarithmic y scale of the main figure and linear y scale of the insert. See text for details.

We stress that low T part is presented in Fig. 2. Dramatic disagreement between S_1(MBCS) and S_2(MBCS) representing the system entropy remains at higher T as well but we do not find it necessary to extend the plot: the model obviously does not describe correctly a heated system even at $T \sim 200$ keV.

We show in the insert of Fig. 2 another MBCS prediction: entropy S_1 decreases as temperature increases. This result is very stable against variation of the pairing strength G within a wide range and contradicts the second law of thermodynamics.

Finally, we repeat, the conclusion in [1] that “The T-range of the MBCS applicability can be determined as far below the critical temperature T_c” is based on the analysis of the model predictions from $T << T_c$ and not on $T >> T_c$ results as presented in [2].

The work was partially supported by the Deutsche Forschungsgemeinschaft (SFB 634).

[1] V.Yu. Ponomarev and A.I. Vdovin Phys. Rev. C 72, 034309 (2005).
[2] N. Dinh Dang and A. Arima, arXiv: nucl-th/0510004
[3] N. Dinh Dang and A. Arima, Phys. Rev. C 68, 014318 (2003).
[4] Dang and Arima put in doubts the validity of the PFM calculations in [1] claiming that “The limitation of the configuration space with $\Omega = 10$ causes a decrease of the heat capacity C at $T_M > 1.2$ MeV . . . Therefore, the region of $T > 1.2$ MeV, generally speaking, is thermodynamically unphysical.” [2]. It is well-known that such a behavior of the heat capacity is a characteristic feature of finite systems of bound fermions and “does not concern the validity of statistical mechanics” [O. Civitarese, G.G. Dussel, and A.P. Zuker, Phys. Rev. C 40, 2900 (1989)].