3-Total Edge Product Cordial Labeling for Stellation of Square Grid Graph

Rizwan Ullah,1 Gul Rahmat,1 Muhammad Numan,2 Kraidy Anoh Yannick3, and Adnan Aslam4

1Department of Mathematics, Islamia College, Peshawar, Pakistan
2Department of Mathematics, COMSATS University Islamabad, Attock, Pakistan
3UFR of Mathematics and Computer Science, University Felix Houphouet Boigny of Cocody, Abidjan, Côte d’Ivoire
4Department of Natural Sciences and Humanities, University of Engineering and Technology, Lahore, Pakistan

Correspondence should be addressed to Kraidy Anoh Yannick; kayanoh2000@yahoo.fr

Received 6 September 2021; Accepted 10 November 2021; Published 6 December 2021

1. Introduction and Definitions

Let G be a simple graph with vertex set V(G) and edge set E(G). An edge labeling $\delta: E(G) \rightarrow \{0, 1, \ldots, p - 1\}$, where p is an integer, induces a vertex labeling $\delta^*: V(G) \rightarrow \{0, 1, \ldots, p - 1\}$ defined by $\delta^*(v) = \delta(e_1)\delta(e_2)\cdots\delta(e_p) \mod p$, where e_1, e_2, \ldots, e_p are edges incident to v. The labeling δ is said to be p-total edge product cordial (TEPC) labeling of G if $|\delta(e_1) + \delta(e_2) - \delta(e_3) + \delta(e_4)| \leq 1$ for every i, j, $0 \leq i \leq j \leq p - 1$, where $e_1(i)$ and $e_2(j)$ are numbers of edges and vertices labeled with integer i, respectively. In this paper, we have proved that the stellation of square grid graph admits a 3-total edge product cordial labeling.

Considerable amount of work have been done on cordial labeling. For latest results, see [3–10]. A vertex labeling $\delta: V(G) \rightarrow \{0, 1\}$ induces an edge labeling $\delta^*: E(G) \rightarrow \{0, 1\}$ defined by $\delta^*(xy) = \delta(x)\delta(y)$ which is called product cordial labeling if $|v_0(0) - v_1(1)| \leq 1$ and $|e_0(0) - e_1(1)| \leq 1$, where $v_0(0)$ and $v_1(1)$ represent the number of vertices that are labeled 0 and 1, respectively. While $e_0(0)$ and $e_1(1)$ represent the number of edges labeled with 0 and 1, respectively. The concept named product cordial labeling was first presented by Sundaram et al. [11]. A variation in the cordial theme, namely, edge product cordial labeling and a TEPC labeling was introduced by Vaidya and Barasara [12, 13].
and vertices labeled with integer i, respectively. Azaizheh et al. [14] introduced the concept of p-TEPC labeling. A graph G that admits a p-TEPC labeling is called a p-TEPC graph. Baca et al. [15] investigated the 3-TEPC labeling of carbon nanotube networks. Ahmad et al. [16] showed that the grid graph $P_m \square P_n$ admits a 3-TEPC labeling. Ahmad et al. [3] proved that the hexagonal grid H_m^r admits 3-TEPC labeling. Javed and Jamil [17] proved that the Rhombic grid R_{m}^n is 3-TEPC for $m, n \geq 1$.

Let P_n denote a path graph on n vertices. A rectangular grid is an $m \times n$ lattice graph and is obtained by taking the Cartesian product of P_m with P_n. The graph of rectangular grid is denoted by $L(m, n)$ and has n and m squares in each row and column respectively. It is easy to observe that rectangular grid $L(m, n)$ has mn vertices and $mn - m - n + 1$ edges. The stellation of $L(m, n)$ is obtained by adding a vertex in each face of $L(m, n)$ and then joining this vertex to each vertex of the respective face. We denote the stellation of $L(m, n)$ by G_{m}^n, as shown in Figure 1. In this paper, we show that the graph G_{m}^n admits 3-TEPC labeling.

2. Main Results

Let $m, n \geq 1$ and G_{m}^n be stellation of rectangular grid containing m rows and n columns. Observe that G_{m}^n has $2mn + m + n + 1$ vertices and $6mn + m + n$ edges. We use the notations $G_1 \oplus G_2$ for gluing the graph G_1 with G_2 vertically. Similarly, $G_1 \oplus G_2$ represent gluing G_1 with G_2 horizontally.

If we have a labeled segment or labeled graph H and we rotate it by 90 degree in clockwise direction, then we will denote it by \overline{H}.

Theorem 1. For $m \geq 1$, the graph G_{m}^1 is 3-TEPC.

Proof. The 3-TEPC labeling of G_{m}^1 is shown in Figure 2. Similarly, the 3-TEPC labeling of G_{m}^3 and the labeled segment S_1^3 are shown in Figure 3. The segment S_1^3 has the property that open edges are assigned labeled 1. Hence, if we glue the segment S_1^3 with itself vertically, then it will not change the vertex labels in $S_1^3 \oplus S_1^3 = 2S_1^3$. Observe that the labels 0, 1, and 2 are used 10 times in the segment S_1^3. Table 1 shows the multiplicity of numbers 0, 1, and 2, respectively, used in the labeled graph G_{m}^3 for $m = 1, 2, 3$.

Case (i). $m = 3r, r \geq 1$.

To construct labeled graph G_{m}^r, we will use the labeled segments S_1^3. First, glue $r - 1$ copies of labeled segment S_1^3 vertically that is $S_1^3 \oplus S_1^3 \oplus \cdots \oplus S_1^3 = (r - 1)S_1^3$. Finally, glue vertically the label segment G_{m}^1 to the open edges of $(r - 1)S_1^3$ to get labeled graph G_{m}^r, that is,

$$G_{m}^r = \begin{bmatrix} (r - 1)S_1^3 \\ \Phi_v \\ G_{m}^1 \end{bmatrix}.$$

In the labeled graph G_{m}^r, the multiplicity of 0, 1, and 2 is $10r + 1$ exactly.

Case (ii): $m = 3r + 1, r \geq 1$.
To construct the labeled graph G_m^{2}, we glue r copies of the labeled segment S_1^3 and then finally glue G_1^2 vertically. That is,

$$G_m^{2} = \left[\begin{array}{c} rS_1^3 \\ \Phi_v \\ G_1^2 \end{array} \right].$$

(2)

In the labeled graph G_m^{2}, the multiplicity of 0 is $10r + 5$, whereas the multiplicity of 1 and 2 is $10r + 4$.

Case (iii): $m = 3r + 2$, $r \geq 1$.

We obtain the labeled graph G_m^{2} by gluing r times the labeled segment S_1^3 and finally gluing G_1^2 in vertical direction. That is,

$$G_m^{2} = \left[\begin{array}{c} rS_1^3 \\ \Phi_v \\ G_1^2 \end{array} \right].$$

(3)

In the labeled graph G_m^{2}, the multiplicity of 0 is $10r + 7$, whereas the multiplicity of 1 and 2 is $10r + 8$.

Theorem 2.

For $m \geq 1$, the graph G_m^{2} is 3-total edge product cordial.

Proof. Observe that the graphs G_1^2 and G_1^1 are isomorphic and the 3-total edge cordial labeling of G_1^2 is given in Figure 2. Therefore, G_1^2 is 3-TEPC. The 3-total edge product cordial labeling of the graphs G_2^2 and G_2^1 is given in Figures 4 and 5, respectively. Table 2 shows the multiplicity of numbers 0, 1, and 2 used in G_1^1 and G_2^1.

Figure 6 depicts the labeled segment S_2^3, which has the property that open edges are assigned labeled 1 and each number 0, 1, and 2 is used 18 times.

Case (i): $m = 3r$, $r \geq 1$.

To construct labeled graph G_m^{2}, we will use the labeled segments S_2^3. First, we glue $r - 1$ copies of labeled segment S_2^3 vertically, that is, $S_2^3 \oplus S_2^3 \oplus \cdots \oplus S_2^3 := (r - 1)S_2^3$. Since the open edges of S_2^3 are labeled with 1, therefore, this gluing process does not change the label of other vertices of $(r - 1)S_2^3$. Finally, we glue vertically the label segment G_2^2 to the open edges of $(r - 1)S_2^3$ to get labeled graph G_m^{2}. That is,

$$G_m^{2} = \left[\begin{array}{c} (r - 1)S_2^3 \\ \Phi_v \\ G_2^3 \end{array} \right].$$

(4)

In the labeled graph G_m^{2}, the multiplicity of 0 is $18r + 1$, whereas the multiplicity of 1 and 2 is $18r + 2$.

Case (ii): $m = 3r + 1$, $r \geq 1$.

To construct the labeled graph G_m^{2}, we glue r copies of the labeled segment S_2^3 and then finally glue G_2^2 vertically. That is,

$$G_m^{2} = \left[\begin{array}{c} rS_2^3 \\ \Phi_v \\ G_2^2 \end{array} \right].$$

(5)

In the labeled graph G_m^{2}, the multiplicity of 0 is $18r + 7$ whereas the multiplicity of 1 and 2 is $18r + 8$.

Case (iii): $m = 3r + 2$, $r \geq 1$.

The labeled graph G_m^{2} can be obtained by gluing r times the labeled segment S_2^3 and then gluing G_2^2 in vertical direction. That is,

$$G_m^{2} = \left[\begin{array}{c} rS_2^3 \\ \Phi_v \\ G_2^2 \end{array} \right].$$

(6)

Table 2: The multiplicity of 0, 1, and 2 in G_m^{2}, for $m = 2, 3$.

m	$e_0(0)$	$e_1(0)$	$e_2(0)$	$e_0(2)$	$e_1(2)$	$e_2(2)$
2	13	14	14	19	20	20
3	19	20	20			

In the labeled graph G_m^3, the multiplicity of 0 is $18r + 13$, whereas the multiplicity of 1 and 2 is $18r + 14$. □

Theorem 3. The graph G_m^3 is 3-TEPC for $m \geq 1$.

Proof. Observe that the graphs G_1^3 and G_3^3 are isomorphic. Similarly, the graphs G_1^3 and G_3^3 are also isomorphic. The 3-TEPC labeling of G_1^3 and G_3^3 are given in Figures 3 and 5, respectively. The 3-TEPC labeling of G_3^3 is shown in Figure 7. In the labeled graph G_m^3, the multiplicity of 0 is 29, whereas the multiplicity of 1 and 2 is 28.

Figure 8 shows the labeled segment S_3^3 which has the property that open edges are assigned with label 1 and each number 0, 1, and 2 appears 26 times.

Case (i): $m = 3r$, $r \geq 1$.

To construct labeled graph G_m^3, we use the labeled segment S_3^3. First, glue $r - 1$ copies of labeled segment S_3^3 vertically, that is, $S_3^3 \oplus S_3^3 \oplus \cdots \oplus S_3^3 = (r - 1)S_3^3$. Since the open edges of S_3^3 are labeled with 1, therefore, this gluing process does not change the label of other vertices of $(r - 1)S_3^3$. Finally, glue vertically the label segment G_3^3 to the open edges of $(r - 1)S_3^3$ to get labeled graph G_m^3. That is,

$$G_m^3 = \begin{bmatrix} (r - 1)S_3^3 \\ \oplus_v \\ G_3^3 \end{bmatrix}. \quad (7)$$

In the labeled graph G_m^3, the multiplicity of 0 is $26r + 3$, whereas the multiplicity of 1 and 2 is $26r + 2$.

Case (ii): $m = 3r + 1$, $r \geq 1$.

To construct the labeled graph G_m^3, we glue r copies of the labeled segment S_3^3 vertically and then finally glue G_3^3 vertically. That is,

$$G_m^3 = \begin{bmatrix} rS_3^3 \\ \oplus_v \\ G_3^3 \end{bmatrix}. \quad (8)$$

In the labeled graph G_m^3, the multiplicity of 0, 1, and 2 is $26r + 11$.

Case (iii): $m = 3r + 2$, $r \geq 1$.

We obtain the labeled graph G_m^3 by gluing r times the labeled segment S_3^3 vertically and then finally glue G_3^3 in vertical direction. That is,

$$G_m^3 = \begin{bmatrix} rS_3^3 \\ \oplus_v \\ G_3^3 \end{bmatrix}. \quad (9)$$

In the labeled graph G_m^3, the multiplicity of 0 is $26r + 19$, whereas the multiplicity of 1 and 2 is $26r + 20$. □
Theorem 4. The graph G_n^m is 3-TEPC for $m, n \geq 1$.

Proof. To construct the labeled graph of G_n^m, and to examine its 3-TEPC labeling, we introduced a new segment R_3. This segment has 17 open edges which are labeled with the number 1 and multiplicity of 0, 1, and 2 is 24. The labeled segment R_3^1 is shown in Figure 9.

Case 1: $m = 3r, r \geq 1$.

First, we glue the segment R_3^1 vertically $r - 1$ times, that is, $R_3^1 \oplus R_3^1 \oplus \cdots \oplus R_3^1 = (r - 1)R_3^1$. Since the open edges in the segment are labeled with number 1, it follows that gluing these segments do not change the vertex labels in the segment $(r - 1)R_3^1$. Finally, we glue the segment S_3^1 in the vertical direction. This gives a new segment X and is defined as

$$X = \begin{bmatrix} (r - 1)R_3^1 \\ R_3^1 \\ S_3^1 \end{bmatrix}. \tag{10}$$

Note that the labels of open edges of X are 1 and multiplicity of each number 0, 1, and 2 is $24r + 2$.

Subcase 1: $n = 3s, s \geq 1$.

First, we glue $s - 1$ times the segment X horizontally and finally glue the labeled segment G_3^m horizontally to obtain the labeled graph G_n^m. That is,

$$G_n^m = [(s - 1)X \oplus hG_3^m]. \tag{11}$$

Subcase 2: $n = 3s + 1, s \geq 1$.

First, we glue s times the segment X horizontally and finally glue the labeled segment G_3^m horizontally with sX to obtain the labeled graph G_n^m. That is,

$$G_n^m = [sX \oplus hG_3^m]. \tag{12}$$

Subcase 3: $n = 3s + 2, s \geq 1$.

First, we glue s times the segment X horizontally and finally glue the labeled segment G_3^m horizontally with sX to obtain the labeled graph G_n^m. That is,

$$G_n^m = [sX \oplus hG_2^m]. \tag{13}$$

Case 2: when $m = 3r + 1, r \geq 1$.

First, we glue the segment R_3^1 vertically r times, that is, $R_3^1 \oplus R_3^1 \oplus \cdots \oplus R_3^1 = rR_3^1$. Then, we glue the segment S_3^1 in the vertical direction. This gives us a new segment Y defined as

$$Y = \begin{bmatrix} rR_3^1 \\ R_3^1 \\ S_3^1 \end{bmatrix}. \tag{14}$$

Note that the labels of open edges of Y are 1 and multiplicity of each number 0, 1, and 2 is $24r + 10$.

Subcase 1: $n = 3s, s \geq 1$.

First, we glue $s - 1$ times the segment Y horizontally and finally glue the labeled segment G_3^m horizontally with $(s - 1)Y$ to obtain the labeled graph G_n^m. That is,

$$G_n^m = [(s - 1)Y \oplus hG_3^m]. \tag{15}$$

Subcase 2: $n = 3s + 1, s \geq 1$.

First, we glue s times the segment Y horizontally and finally glue the labeled segment G_3^m horizontally with sY to obtain the labeled graph G_n^m. That is,

$$G_n^m = [sY \oplus hG_3^m]. \tag{16}$$

Subcase 3: $n = 3s + 2, s \geq 1$.

First, we glue s times the segment Y horizontally and finally glue the labeled segment G_3^m horizontally with sY to obtain the labeled graph G_n^m. That is,

$$G_n^m = [sY \oplus hG_2^m]. \tag{17}$$

Case 3: $m = 3r + 2, r \geq 1$.

First, we glue the segment R_3^1 vertically r times, that is, $R_3^1 \oplus R_3^1 \oplus \cdots \oplus R_3^1 = rR_3^1$. Then, we glue in the vertical direction of the segment S_3^1. This gives us a new segment Z defined as

$$Z = \begin{bmatrix} rR_3^1 \\ R_3^1 \\ S_3^1 \end{bmatrix}. \tag{18}$$

Note that the labels of open edges of Z are 1 and multiplicity of each number 0, 1, and 2 is $24r + 18$.

Subcase 1: $n = 3s, s \geq 1$.

First, we glue $s - 1$ times the segment Y horizontally and finally glue the labeled segment G_3^m horizontally with $(s - 1)Z$ to obtain the labeled graph G_n^m. That is,
In this paper, we constructed 3-TEPC labeling for the stellation of square grid graph G_m^n. For every $m \geq 1$ and every $n \geq 1$, we proved that G_m^n is 3-TEPC.

3. Conclusion

In this paper, we constructed 3-TEPC labeling for the stellation of square grid graph G_m^n. For every $m \geq 1$ and every $n \geq 1$, we proved that G_m^n is 3-TEPC.

Data Availability

No data were used to support the findings of the study.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

References

[1] D. B. West, *Introduction to Graph Theory*, Prentice-Hall, Hoboken, NJ, USA, 2nd edition, 2003.

[2] I. Cahit, "Cordial graphs: a weaker version of graceful and harmonious graphs," *Ars Combinatoria*, vol. 23, pp. 201–207, 1987.

[3] A. Ahmad, M. Bača, M. Naseem, and A. Semaničová-Fešánková, "On 3-TEPC labeling of honeycomb," *AKCE International Journal of Graphs and Combinatorics*, vol. 14, no. 2, pp. 149–157, 2017.

[4] I. Cahit, "On cordial and 3-equitable labelings of graphs," *Utilitas Mathematica*, vol. 37, pp. 189–198, 1990.

[5] M. Hovey, "A-cordial graphs," *Discrete Mathematics*, vol. 93, no. 2-3, pp. 183–194, 1991.

[6] Y. S. Ho, S. M. Lee, and S. C. Shee, "Cordial labelings of the Cartesian product and composition of graphs," *Ars Combinatoria*, vol. 29, pp. 169–180, 1990.

[7] Y. S. Ho and S. C. Shee, "The cordiality of one-point union of n copies of a graph," *Discrete Mathematics*, vol. 117, pp. 225–243, 1993.

[8] W. W. Kirchherr, "On the cordiality of some specific graphs," *Ars Combinatoria*, vol. 31, pp. 127–137, 1991.

[9] D. Kuo, G. J. Chang, and Y. H. H. Kwong, "Cordial labeling of mK_n," *Discrete Mathematics*, vol. 169, no. 1–3, pp. 121–131, 1997.

[10] S. M. Lee and A. Liu, "A construction of cordial graphs from smaller cordial graphs," *Ars Combinatoria*, vol. 32, pp. 209–214, 1991.

[11] M. Sundaram, R. Ponraj, and S. Samasundaram, "Product cordial labeling of graphs," *Bulletin of Pure and Applied Sciences Section-E-Mathematics & Statistics*, vol. 23, pp. 155–163, 2004.

[12] S. K. Vaidya and C. M. Barasara, "Edge product cordial labeling of graphs," *Journal of Mathematics and Computer Science*, vol. 2, no. 5, pp. 68–74, 2012.

[13] S. K. Vaidya and C. M. Barasara, "TEPC labeling of graphs," *Malaya Journal of Matematik*, vol. 8, no. 1, pp. 55–63, 2013.

[14] A. Azaizeh, R. Hasni, A. Ahmad, and G.-C. Lau, "3-TEPC labeling of graphs," *Far East Journal of Mathematical Sciences*, vol. 96, no. 2, pp. 193–209, 2015.

[15] M. Baca, M. Irfan, and A. Semaničová-Fenovčíková, "On 3-TEPC labeling of a carbon nanotube network," *AKCE International Journal of Graphs and Combinatorics*, vol. 16, pp. 310–318, 2019.

[16] A. Ahmad, R. Hasni, M. Irfan, M. Naseem, and M. K. Siddiqui, "On 3-TEPC labeling of grid," *Asian-European Journal of Mathematics*, vol. 14, no. 6, Article ID 2150096, 2021.