Spin-glass–like ground state and observation of exchange bias in \(\text{Mn}_{0.8}\text{Fe}_{0.2}\text{NiGe} \) alloy

P. Dutta\(^1\), S. Pramanick\(^2\), D. Venkateshwarl\(^3\), V. Ganesan\(^3\), S. Majumdar\(^2\), D. Das\(^1\) and S. Chatterjee\(^1\(^{(a)}\))

\(^1\)UGC-DAE Consortium for Scientific Research, Kolkata Centre, Sector III, LB-8 Salt Lake, Kolkata 700 098, India
\(^2\)Department of Solid State Physics, Indian Association for the Cultivation of Science 2 A & B Raja S. C. Mullick Road, Jadavpur, Kolkata 700 032, India
\(^3\)UGC-DAE Consortium for Scientific Research, University Campus - Khandwa Road, Indore 452 017, India

received 1 May 2014; accepted in final form 23 September 2014
published online 7 October 2014

PACS 75.50.Lk – Spin glasses and other random magnets
PACS 75.47.Np – Metals and alloys
PACS 81.30.Kf – Martensitic transformations

Abstract – The ground-state magnetic properties of a hexagonal equiatomic alloy of nominal composition \(\text{Mn}_{0.8}\text{Fe}_{0.2}\text{NiGe} \) were investigated through dc magnetization and heat capacity measurements. The alloy undergoes a first-order martensitic transition below 140 K with simultaneous development of long-range ferromagnetic ordering from the high-temperature paramagnetic phase. The undoped compound MnNiGe has an antiferromagnetic ground state and it shows martensitic–like structural instability well above room temperature. Fe doping at the Mn site not only brings down the martensitic transition temperature, but it also induces ferromagnetism in the sample. Our study brings out two important aspects regarding the sample, namely i) the observation of exchange bias at low temperature, and ii) spin-glass–like ground state which prevails below the martensitic and magnetic transition points. In addition to the observed usual relaxation behavior, the spin glass state is confirmed by the zero-field–cooled memory experiment, thereby indicating cooperative freezing of spin and/or spin clusters rather than uncorrelated dynamics of superparamagnetic-like spin clusters. We believe that doping disorder can give rise to some islands of antiferromagnetic clusters in the otherwise ferromagnetic background which can produce interfacial frustration and exchange pinning responsible for spin glass and exchange bias effect. A comparison is made with doped rare-earth manganites where a similar phase separation can lead to a glassy ground state.

Copyright © EPLA, 2014

Introduction. – Intermetallic alloys and compounds, which undergo a magneto-structural transition, are always in the forefront of research due to their rewarding properties such as large magnetoresistance [1–3], large magnetocaloric effect [4], magnetic superelasticity [5, 6], colossal magnetostriction [7] etc. Coupling between spin and lattice degrees of freedom plays a pivotal role towards the observation of such magneto-functional properties. Magnetic equiatomic ternary alloys of the general formula \(\text{M}_M\text{X} (M, M' = \text{transition metals, } X = \text{Si, Ge, Sn}) \) belong to the series of compounds that undergo a magneto-structural transition of martensitic type on cooling from high temperature [8]. These alloys are identified as a new class of ferromagnetic shape memory alloys (FSMAs) [9]. The recent discovery of a very large magnetocaloric effect (MCE) around the martensitic phase transition (MPT) triggered renewed interest on these ternary equiatomic alloys. Though several doping studies have been performed to explore the magnetocaloric properties of these materials [10–13], very little effort has been made to address the true nature of their magnetic ground state.

The stoichiometric MnNiGe equiatomic alloy is one of the well-studied systems among the MM’X series of alloys, which undergoes MPT at \(T_t = 470\,\text{K} \) during cooling and orders antiferromagnetically below \(T_N = 346\,\text{K} \) [8, 14]. These characteristic transition temperatures depend strongly on the composition of the alloy. One can control the structural transition temperature and induce

\(^{(a)}\)E-mail: souvik@alpha.iuc.res.in
Fig. 1: (Color online) The main panel of (a) represents the temperature dependence of the magnetization \(M \) in the presence of 100 Oe of the applied magnetic field \(H \) in the zero-field-cooled heating (ZFCH), field-cooled (FC) and field-cooled heating (FCH) protocols. The inset of (a) shows the powder x-ray diffraction pattern of \(\text{Mn}_{0.8}\text{Fe}_{0.2}\text{NiGe} \) at room temperature. The main panel of (b) depicts the isothermal \(M \) as a function of the applied \(H \) at 5 K after the sample is cooled at \(H = 0.2 \), and \(-0.2\) kOe from 300 K. A full \(\pm 50\) kOe loop on the zero-field-cooled state is shown in the lower inset of (b). The upper inset of (b) shows the variation of the exchange field \(H_E \) and the shift in magnetization \(M_E \) as a function of the cooling field \(H_{\text{cool}} \).

Results. – The main panel of fig. 1(a) depicts the variation of \(M \) as a function of temperature \(T \) in the presence of 100 Oe of the applied magnetic field \(H \) in zero-field-cooled heating (ZFCH), field cooling (FC) and field-cooled heating (FCH) sequences. A sudden increase in \(M(T) \) data is observed around 140 K with decreasing \(T \) in all three sequences indicating the presence of a magnetic and a martensitic transition in the sample. A clear thermal hysteresis associated with \(M(T) \) data around 140 K confirms the first-order nature of the transition. The width of the hysteresis loop is quite narrow (~4 K), and a careful look reveals that the FC and FCH curves cross once within the hysteresis region (around 118 K and marked by an arrow in fig. 1(a)) constituting a double-loop structure. Similar two or more consecutive thermal hysteresis loops are not uncommon among the shape memory alloys, and the phenomenon is often attributed to a multi-step martensitic process [16]. The ZFCH curve is found to deviate from the field-cooled data below 125 K (just below MPT) and a broad peak is observed around 100 K.

Fe doping at the Mn site favors ferromagnetism, while the undoped sample is antiferromagnetic. Therefore, in the partially Fe-doped sample, there is a possibility for the presence of both FM and AFM interactions. The existence of such two different magnetic phases may give rise to the exchange bias effect (EBE). The EBE is defined as the shift in the center of \(M(H) \) loop from the origin when the sample is field cooled from high \(T \) (well above the AFM and FM transition points) [17,18]. In general, EBE is observed in the materials having two different types of magnetic interfaces, namely FM/AFM, FM/SG and FM/ferrimagnet based multilayer etc. However, EBE is also observed in bulk polycrystalline materials without any well-defined interface [17,18]. We recorded isothermal \(M(H) \) data at 5 K after cooling the sample from 300 K in the presence of different applied \(H \) (see main panel of fig. 1 (b), \(H_{\text{cool}} = 0.2 \), and \(-0.2\) kOe are shown for clarity). All the \(M-H \) isotherms were recorded in the range \(\pm 50\) kOe, which is well above the technical saturation field of the sample and rules out the minor loop effect towards the observed EBE. A restricted range of \(\pm 1.5\) kOe is shown in the main panel of fig. 1 (b) for clarity. A full loop in the range \(\pm 50\) kOe at 5 K for \(H_{\text{cool}} = 0\) kOe is shown in the lower inset of fig. 1 (b) for completeness. The signature of EBE is clear from the shift observed in field-cooled \(M-H \) isotherms both in horizontal \((H_E) \) and vertical \((M) \) axes. The shift in the horizontal field axis \((H_E) \) and the vertical magnetization axis \((M_E) \) in field-cooled \(M-H \) isotherm is the measure of EBE. Variations of \(H_E \) and \(M_E \) as a function of \(H_{\text{cool}} \) are plotted in the upper inset of fig. 1 (b). Both \(H_E \) and \(M_E \) increase sharply with

ferromagnetism in this system by suitably doping different transition metals in the Mn or Ni site. Recently, Liu et al. have reported the effect of Fe doping at the Mn and Ni sites on the magnetostructural transition of this alloy [15]. Fe doping in the MnNiGe alloy alters the spin antiferromagnetic (AFM) interaction among Mn atoms and induces a ferromagnetic (FM) or spin-glass (SG)–like state in the sample. Strong dependence of magnetic and structural properties on Fe doping tempted us to investigate extensively the true nature of the magnetic ground state of this system of alloys. Here one such Fe-doped MnNiGe alloy of nominal composition \(\text{Mn}_{0.8}\text{Fe}_{0.2}\text{NiGe} \) has been investigated by different magnetic and heat capacity measurements.

Experimental details. – The polycrystalline sample \(\text{Mn}_{0.8}\text{Fe}_{0.2}\text{NiGe} \) was prepared by argon arc-melting and subsequent annealing at 800 °C for 100 h followed by a rapid quenching in ice water. Room temperature x-ray powder diffraction (XRD) pattern (see inset of fig. 1(a)) of the sample recorded using the Cu Kα radiation confirms the single-phase hexagonal Ni2In-type structure (space group \(\text{p}6_{3}\text{mmc} \)). The lattice parameters are found to be \(a = 4.077\) Å, \(c = 5.320\) Å. The dc magnetization \(M \) of the sample was measured using a Quantum Design SQUID magnetometer (MPMS 7, Evercool model). Whereas the heat capacity \((C_p)\) of the sample was measured in a commercial Physical Properties Measurement System from Quantum Design using the relaxation technique.
Spin-glass-like ground state and observation of exchange bias in Mn$_{0.8}$Fe$_{0.2}$NiGe alloy

Fig. 2: (Color online) Isothermal variation of the magnetization (M) as a function of time (t) at different constant temperatures in zero magnetic field after being cooled in the presence of 250 Oe of the applied H from 300 K. Here the data have been normalized by the initial value of the magnetization [$M(0)$] at $t = 0$. The solid lines are the modified stretched exponential fit to the experimental data.

H_{cool} in the low-field region and go through a maximum around 0.5 kOe followed by a sluggish drop with further increase of H_{cool}. For $H_{\text{cool}} = 500$ Oe, M_E is found to be 2.26 emu/g, which is close to the zero-field–cooled value of remnant magnetization $M_r = 1.99$ emu/g. The initial increase in H_{cool} (before the saturation of FM fraction) favors the FM fraction which results in a sharp increase in EBE, whilst a large value of H_{cool} weakens the interfacial exchange coupling and hence the EBE decreases.

In addition to the EBE, both zero-field–cooled (not shown here) and field-cooled M-H isotherms show a clear signature of constriction near the origin (marked by dashed arrows in the main panel of fig. 1(b)). Although the reason behind such constricted double-loop structure of hysteresis is not exactly clear, an often complex domain structure of the AFM phase is held responsible for similar anomalies in the hysteresis loop in magnetically inhomogeneous materials [19].

The observation of EBE at 5 K indicates the presence of two types of magnetic phases in the system. To shed more light into this, we measured the isothermal variation of M as a function of time (t) at different constant temperatures (see fig. 2, where M is plotted in normalized form as $M(t)/M(0)$). The sample was first cooled from 300 K to the desired T in the presence of $H = 250$ Oe and M was measured as a function of t immediately after removing H. The magnitude of relaxation is found to increase with increasing T and attains a maximum at 70 K. On further increase in T, a drop in the relaxation magnitude is observed. After 6400 s of measurement, an about 7.5% change in M is observed at 70 K. Such large change in M indicates that the system evolves through a landscape of spatially distributed free-energy barriers. This relaxation behavior can be well explained by a modified stretched exponential (MSE) function given by $M(t) = M_0 + b \exp(-t/\tau)^\beta$. It is widely used to describe the relaxation behavior of glassy magnetic systems [20–24]. Here M_0 corresponds to the initial magnetization, b is the contribution from the glassy part, τ is the time constant and the exponent $0 \leq \beta \leq 1$ is linked with the distribution of energy barriers among the metastable states. For an ordered FM system, the numbers of local energy minima shrink to a single global energy minimum and β becomes unity. In our sample, the fitted values of β for all T’s remain between 0.45 to 0.6 which fall within the range of β values reported earlier for different SG-like systems [25,26]. Apart from MSE model, we have also tried to fit the relaxation data with another slightly different function $M(t) = M_0 \exp(-C(t/\tau)^{1-\beta}/(1-\beta)^n)$ used for the glassy magnetic state [27,28]. We find that the fitting to our data is relatively poor with the second function. However, the fitted values of n increase with increasing T as expected for SG systems [27,28].

In order to examine the presence of nonergodicity in the sample, we performed a magnetic memory measurement using different protocols [29,30]. Figure 3(a) represents field-cool field-stop memory measurement data. During this protocol, the sample was cooled in the presence of 100 Oe of H from room T to the lowest T of the measurement (here 5 K) with three intermediate stops of 3600 s each at $T_{\text{stop}} = 90$ K (S_{FC}^C), 65 K (S_{FC}^F) and 40 K (S_{FC}^C). During each isothermal stop, the applied H was reduced to zero. H was reapplied during further cooling. This results in step-like drops in M-T data (see
curve M_{FC}^{stop} in fig. 3(a)). Subsequent heating in 100 Oe of the applied H (without any intermediate stop) shows a characteristic feature at each T_{stop}, revealing the presence of magnetic memory in the present alloy (see curve M_{ZFCH}^m in fig. 3(a)). A normal FCH curve (M_{ZFCH}^r) in 100 Oe of the applied H (without any stop during cooling) is also plotted for reference.

To strengthen the observed memory effect in M-T data, we performed relaxation memory measurements with negative T cycling as shown in fig. 3(b) and (c). During this measurement, relaxation data were recorded in zero-field-cooled (ZFC) mode. First the sample was cooled from room T to 15 K in the absence of external H and subsequently M was recorded as a function of time in the presence of 250 Oe of applied H for 6400 s (τ_1). Then the sample was cooled down to 10 K in constant H and $M(t)$ was recorded for another 6400 s (τ_2) and, finally, the sample was heated back to 15 K and $M(t)$ was recorded for further 6400 s (τ_3). It is observed that the τ_3 part is simply a continuation of the τ_1 part, which reflects that the state of the sample before cooling is recovered when the sample is cycled back to initial T. To check the robustness of the relaxation memory effect, we performed both T and H cycling simultaneously (fig. 3(c)). The measurement protocol is the same as that depicted in fig. 3(b). The only difference is that during the 10 K relaxation measurement, H (100 Oe in this case) was reduced to zero. The continuity of the $\tau_1\tau_2\tau_3$ segments of the $M(t)$ curve before and after T and H cycling indicates that the sample remembers its previous state even after experiencing a large change in M. For a nonergodic system, a small positive T cycling can erase the previous memory and rejuvenates the system. Such rejuvenation measurement was also performed and depicted in fig. 3(d). During this measurement, the sample was heated to a higher value of T for the intermediate relaxation measurement, instead of a negative T cycling as done in the relaxation memory measurement. Here M vs. t was measured at 15 K ($\tau_1\tau_2\tau_3$), 20 K ($\tau_1\tau_2\tau_3$), and 15 K ($\tau_1\tau_2\tau_3$), respectively. The result of this measurement is found to be significantly different (not a continuation of a similar M) from the relaxation memory data described in fig. 3(b) and (c). This observation indicates that a small positive T cycling can destroy the magnetic memory of the compound.

The signature of the magnetic memory in the FC magnetization and relaxation data are a convincing evidence for the glassy magnetic state. However, such memory effect can also originate from the distribution of the magnetic relaxation time among noninteracting superparamagnetic nanoparticles [31,32]. In a phase-separated system like Mn$_{94}$Fe$_{0.2}$NiGe, a similar effect may also arise from the distribution of the magnetic relaxation time among noninteracting superparamagnetic clusters [30–32]. There-
lattice contributions, respectively) [34]. We failed to obtain a good fit with this relation below 10 K, which reaffirms that a simple FM-like ground state is not a good picture for the studied alloy.

We have calculated the change in entropy (ΔS) due to the application of H (magneto-caloric effect) and it has been depicted in fig. 5(b). ΔS is found to be negative throughout the measurement range and it peaks around 125 K. The peak value of ΔS is about 2.8 J/kg-K for $H = 50$ kOe and the magnitude is small compared to other Fe-doped MnNiGe alloys where magnetic and structural transitions are well separated [15]. We have also calculated the corresponding change in temperature ΔT, which comes out to be -0.85 K in the presence of $H = 50$ kOe. The observation of negative ΔS is related to the shift in the MPT towards higher T in the presence of external H. This observation is in contrast with Heusler-based FSMAs, where MPT shifts towards lower T on application of H resulting in an inverse magnetocaloric effect (positive ΔS) [35,36].

Discussion. — Our magnetic studies on the hexagonal equiatomic alloy bring out two very important aspects which are quite important in judging the ground state magnetic properties of the studied material. Firstly, the alloy shows EBE, which clearly indicates that the ground state is not purely FM. There exists a sizable AFM or SG phase along with the majority FM fraction which is responsible for the exchange enhanced unidirectional anisotropy in the system. The second important observation is the SG-like character of the ground state, which is supported by the relaxation and various memory measurements. Notably, the existence of the ZFC memory rules out the possibility of the role of superparamagnetic-like clusters towards the slow dynamics of the material. The ZFC memory is an indication of cooperative freezing of the spins or spin clusters. This is only possible if there exists conflicting magnetic interactions leading to frustration. The observation of EBE warrants FM and AFM phase fractions in the sample, and magnetic frustration does take place in the presence of more than one type of interactions.

It is to be noted that SG and EBE are often interconnected in bulk magnetic materials [17]. EBE is traditionally reported to occur in thin films and/or magnetic multilayers where the magnetic characters of two layers are dissimilar. However, magnetically inhomogeneous bulk materials can also show EBE, where a well-defined interface is lacking. It is interesting to note that many bulk metallic spin glasses (such as AgMn or CuMn) show EBE [17,18]. This is due to the same magnetic inhomogeneity of the material which can give rise to a complex exchange anisotropy. In such materials it is difficult to infer whether the SG phase itself gives EBE or it is the interface between SG and FM phases that is responsible for the observed effect. The present Mn$_{0.8}$Fe$_{0.2}$NiGe sample simultaneously shows SG behavior and EBE, and it is at par with the metallic spin glasses reported in the literature [18,37].

The ground-state properties of Mn$_{0.8}$Fe$_{0.2}$NiGe have a striking similarity with the Heusler-based metamagnetic shape memory alloys of general formula Ni$_2$Mn$_{1+z}$Z$_{1-x}$ (Z = Sn, Sb, In). Although both hexagonal (such as Mn$_{0.8}$Fe$_{0.2}$NiGe) and the cubic Heusler-based alloys are FSMAs with the existence of first-order MPT, the underlying magnetic interaction is completely different in these two groups of alloys. In the case of Ni$_2$Mn$_{1+z}$Z$_{1-x}$, the excess Mn is doped at the Z site to invoke the martensitic instability, and the magnetic interaction between excess (at the Z site) and the regular Mn atoms is of AFM in nature. SG state or EBE in these Heusler alloys occurs due to this incipient antiferromagnetism [37,38]. On the other hand, hexagonal alloy has only one crystallographic site for Mn and one can not have mixed magnetic bonds between Mn atoms. The likely scenario is the random occupancy of the substitutes Fe atoms at the Mn site. The parent compound MnNiGe has AFM ground state and in the undoped condition Mn-Mn interaction is AFM in nature. On substitution of Fe at the Mn site ferromagnetism is invoked possibly due to the combined effect of the change in electronic and lattice properties. Due to a random substitution, there may remain some Mn-rich phases, which will act as AFM islands. The interface between these AFM islands and the Fe-rich FM part can give rise to conflicting magnetic interactions leading to a SG-like state as well as to the manifestation of EBE. In addition to these similarities between Heusler and hexagonal alloys, a constricted hysteresis loop is another alikeness observed

![Fig. 5: (Color online) The main panel of (a) depicts the temperature variation of the heat capacity (C_p) in the presence of zero and 50 kOe of the external magnetic field during heating. The upper inset of (a) shows a zoomed version of the transition region. C_p/T vs. T^2 is plotted in the lower inset of (a). The T variation of the entropy change (ΔS) and temperature change (ΔT) are plotted in (b).](image-url)
for these two systems of alloys [37,39,40]. However, the heat capacity behavior of the studied hexagonal alloy is quite different from the Hensler-based FSMAs, where in the later compositions a low-T linear $C_p/T\sim T^2$ behavior and a shift in the MPT towards the lower T with H are commonly observed, contrary to the former alloy [41].

The Fe-doped hexagonal alloy apparently resembles quite well the hole-doped manganites such as La$_{1-x}$Ca$_x$MnO$_3$, where both Mn$^{3+}$ and Mn$^{4+}$ exist [42,43]. The creation of Mn$^{4+}$ favors ferromagnetism through double exchange, while the Mn$^{3+}$-Mn$^{3+}$ interaction is of AFM type through superexchange. Due to the random substitution there may be Mn$^{3+}$-rich AFM clusters in the otherwise Mn$^{3+}$-Mn$^{4+}$ FM background. Such electronic phase separation in managnites is found to be responsible for the glassy magnetic phase and EBE. Although the mechanism of the magnetic interaction in hexagonal alloys such as Mn$_{0.8}$Fe$_{0.2}$NiGe is completely different (possibly the interaction is of RKKY type, where the magnetic exchange can be FM or AFM depending upon the separation of magnetic ions and the density of electronic states), a very similar FM/AFM phase separation can occur leading to the formation of the SG-like ground state. Notably the bifurcation of ZFCH and FCH magnetization and the broad peak in the ZFCH curve are very much akin with those of doped manganites [44–46].

EBE in hexagonal and Heusler-based FSMAs resembles much that of manganites [18] and, in both cases, it points towards the FM/AFM phase separation. However, an important difference between the intermetallic FSMAs and the manganites is that the EBE is generally observed below the spin freezing point in the former case as compared to the existence of finite EBE just below the long-range magnetic order (mostly of AFM type) in the later materials. It therefore points to the fact that EBE in FSMAs is closely connected with the SG state, while it is predominantly associated with the FM/AFM interfacial coupling in manganites [47–50].

In conclusion, we present a detailed study of the magnetic ground state of the Mn$_{0.8}$Fe$_{0.2}$NiGe alloy. A clear signature of the SG-like ground state is evident from different magnetic measurements. The presence of the ZFC memory confirms that the glassy magnetic state is associated with cooperative spin freezing. The EBE observed in the sample is closely connected with the SG fraction in the otherwise predominant FM phase of the sample.

The authors would like to thank DST, India, for low-temperature high-magnetic-field facilities at UGC-DAE Consortium for Scientific Research, Kolkata and Indore Centers.

REFERENCES

[1] Morellon L. et al., Appl. Phys. Lett., 73 (1998) 3462.
[2] Algarabel P. A. et al., Appl. Phys. Lett., 66 (1995) 3061.
[3] Sechovský V. et al., J. Appl. Phys., 76 (1994) 6913.
[4] Gschneidner K. A. Jr. et al., Rep. Prog. Phys., 68 (2005) 1479.
[5] Kainuma R. et al., Nature, 439 (2006) 957.
[6] Krenke T. et al., Phys. Rev. B, 75 (2007) 104414.
[7] Morellon L. et al., Phys. Rev. B, 58 (1998) R14721.
[8] Zhang C. L. et al., Appl. Phys. Lett., 93 (2008) 122505.
[9] Koyama K. et al., Jpn. J. Appl. Phys., 43 (2004) 8036.
[10] Samanta T. et al., Appl. Phys. Lett., 100 (2012) 052404.
[11] Trung N. T. et al., Appl. Phys. Lett., 96 (2010) 172504.
[12] Dincer I. et al., J. Alloys Compd., 540 (2012) 236.
[13] Caron L. et al., Phys. Rev. B, 84 (2011) 020414R.
[14] Zhang C. et al., J. Phys. D: Appl. Phys., 43 (2010) 205003.
[15] Liu E. et al., Nat. Commun., 3 (2012) 873.
[16] Fan G. et al., Acta Mater., 52 (2004) 4351.
[17] Nogués J. et al., J. Magn. &Magn. Mater., 192 (1999) 203.
[18] Giri S. et al., J. Phys.: Condens. Matter, 23 (2011) 073201.
[19] Dobrynin A. N. et al., New J. Phys., 9 (2007) 258.
[20] Ito A., Aruga H. et al., Phys. Rev. Lett., 57 (1986) 483.
[21] Chamberlin R. V. et al., Phys. Rev. Lett., 52 (1984) 867.
[22] Phillips J. C., Rep. Prog. Phys., 59 (1996) 1133.
[23] Mydosh J. A., Spin Glasses: An Experimental Introduction (Taylor & Francis, London) 1993.
[24] Binder K. et al., Rev. Mod. Phys., 58 (1986) 801.
[25] Wang F. et al., Phys. Rev. B, 69 (2004) 094424.
[26] Chu D. et al., Phys. Rev. Lett., 72 (1994) 3270.
[27] Chamberlin R. V., J. Appl. Phys., 57 (1985) 3377.
[28] Ding J. F. et al., Phys. Rev. B, 87 (2013) 054428.
[29] Sun Y. et al., Phys. Rev. Lett., 91 (2003) 167206.
[30] Jonason K. et al., Phys. Rev. Lett., 81 (1998) 3243.
[31] Bandypadhyay M. et al., Phys. Rev. B, 74 (2006) 214410.
[32] Sasaki M. et al., Phys. Rev. Lett., 93 (2004) 139701.
[33] Sasaki M. et al., Phys. Rev. B, 71 (2005) 104405.
[34] Gopal E. S. R., Specific Heats at Low Temperatures (Heywood Books, London) 1966.
[35] Krenke T. et al., Nat. Mater., 4 (2005) 450.
[36] Chattareje S. et al., J. Phys. D: Appl. Phys., 42 (2009) 065001.
[37] Chattareje S. et al., Phys. Rev. B, 79 (2009) 094210.
[38] Chattareje S. et al., Eur. Phys. Lett., 104 (2013) 47014.
[39] Chattareje S. et al., J. Phys.: Conf. Series, 200 (2010) 436213.
[40] Khan M. et al., Appl. Phys. Lett., 91 (2007) 072510.
[41] Chattareje S. et al., J. Phys.: Condens. Matter, 19 (2007) 346213.
[42] Anderson P. W. et al., Phys. Rev., 100 (1955) 675.
[43] Coey J. M. D. et al., Adv. Phys., 48 (1999) 167.
[44] Dutta P. et al., J. Alloys Compd., 590 (2014) 313.
[45] Tomoka Y. et al., Phys. Rev. B, 80 (2009) 174414.
[46] Wang J. Z. et al., Phys. Rev. B, 76 (2007) 104428.
[47] Niebiesikwiat D. et al., Phys. Rev. B, 72 (2005) 174422.
[48] Tian Y. F. et al., Appl. Phys. Lett., 104 (2014) 152404.
[49] Ding J. F. et al., Appl. Phys. Lett., 102 (2013) 032401.
[50] Tian Y. F. et al., Sci. Rep., 3 (2013) 1094.