Skinner, T.D. and Wang, M. and Hindmarch, A.T. and Rushforth, A.W. and Irvine, A.C. and Heiss, D. and Kurebayashi, H. and Ferguson, A.J. (2014) Spin-orbit torque opposing the Oersted torque in ultrathin Co/Pt bilayers. Applied Physics Letters, 104 (6). 062401/1-062401/4. ISSN 1077-3118

Access from the University of Nottingham repository:
http://eprints.nottingham.ac.uk/34353/1/Skinner%20APL2014.pdf

Copyright and reuse:
The Nottingham ePrints service makes this work by researchers of the University of Nottingham available open access under the following conditions.

This article is made available under the University of Nottingham End User licence and may be reused according to the conditions of the licence. For more details see:
http://eprints.nottingham.ac.uk/end_user_agreement.pdf

A note on versions:
The version presented here may differ from the published version or from the version of record. If you wish to cite this item you are advised to consult the publisher's version. Please see the repository url above for details on accessing the published version and note that access may require a subscription.

For more information, please contact eprints@nottingham.ac.uk
Spin-orbit torque opposing the Oersted torque in ultrathin Co/Pt bilayers
T. D. Skinner, M. Wang, A. T. Hindmarch, A. W. Rushforth, A. C. Irvine, D. Heiss, H. Kurebayashi, and A. J. Ferguson

Citation: Applied Physics Letters 104, 062401 (2014); doi: 10.1063/1.4864399
View online: http://dx.doi.org/10.1063/1.4864399
View Table of Contents: http://scitation.aip.org/content/aip/journal/apl/104/6?ver=pdfcov
Published by the AIP Publishing

Articles you may be interested in
Effect of rare earth metal on the spin-orbit torque in magnetic heterostructures
Appl. Phys. Lett. 108, 232405 (2016); 10.1063/1.4953348

Engineering spin-orbit torque in Co/Pt multilayers with perpendicular magnetic anisotropy
Appl. Phys. Lett. 107, 232407 (2015); 10.1063/1.4937443

Large voltage-induced modification of spin-orbit torques in Pt/Co/GdOx
Appl. Phys. Lett. 105, 222401 (2014); 10.1063/1.4903041

Enhanced spin-orbit torques in Pt/Co/Ta heterostructures
Appl. Phys. Lett. 105, 212404 (2014); 10.1063/1.4902529

Ultrafast magnetization switching by spin-orbit torques
Appl. Phys. Lett. 105, 212402 (2014); 10.1063/1.4902443
Spin-orbit torque opposing the Oersted torque in ultrathin Co/Pt bilayers

T. D. Skinner,¹,a) M. Wang,² A. T. Hindmarch,²,b) A. W. Rushforth,² A. C. Irvine,¹ D. Heiss,¹,c) H. Kurebayashi,¹,d) and A. J. Ferguson¹,e)¹
Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, United Kingdom
²School of Physics and Astronomy, University of Nottingham, Nottingham NG7 2RD, United Kingdom

(Received 9 December 2013; accepted 24 January 2014; published online 10 February 2014)

Current-induced torques in ultrathin Co/Pt bilayers were investigated using an electrically driven ferromagnetic resonance technique. The angle dependence of the resonances, detected by a rectification effect as a voltage, was analysed to determine the symmetries and relative magnitudes of the spin-orbit torques. Both anti-damping (Slonczewski) and field-like torques were observed. As the ferromagnet thickness was reduced from 3 to 1 nm, the sign of the sum of the field-like torque and Oersted torque reversed. This observation is consistent with the emergence of a Rashba spin orbit torque in ultra-thin bilayers. © 2014 AIP Publishing LLC. (http://dx.doi.org/10.1063/1.4864399)

Current-induced spin-orbit torques in ultrathin ferromagnetic/heavy metal bilayers provide ways to electrically control magnetisation. Two mechanisms for observed torques have been proposed, both of which could contribute to the total torques and both of which originate in the spin-orbit interaction. A schematic of both mechanisms is shown in Figure 1(a). The first mechanism is due to the spin-Hall effect (SHE),¹–⁴ where a charge-current in the heavy metal layer generates spin currents perpendicular to the charge-current. When a spin-current flows into the ferromagnetic layer, it can exert a spin-transfer torque (STT).⁵–⁷ This torque normally follows the anti-damping form predicted by Slonczewski⁸ and Berger,⁹ but it is known that a field-like non-adiabatic spin transfer torque can also exist.¹⁰–¹²

The second mechanism is a “Rashba” spin-orbit torque. Due to the structural inversion asymmetry of the two dissimilar materials at the interface, when a current is applied, the spin-orbit Hamiltonian breaks the degeneracy of the electron spin states near the interface, creating a non-equilibrium spin-accumulation. The electron spins in the ferromagnet, through exchange coupling, can then exert a torque on the magnetic moments. This was initially predicted to give a field-like torque, acting perpendicularly to the interface normal and injected current,¹³–¹⁵ which was later confirmed by experiments in ultrathin Pt/Co/Al₂O₃,¹⁶–¹⁸ and Ta/CoFeB/MgO¹⁹ tri-layers. However, further measurements in these layers have confirmed the presence of an additional anti-damping torque.²⁰,²¹ A recent experiment, in a single-layer ferromagnet with broken symmetry, has shown that this anti-damping torque can be explained by the precession of the spins, initially polarised along the magnetisation, around the additional current-induced spin-orbit fields.²² These additional torques have also been modelled theoretically in metal bilayer systems.²³,²⁴

The torques are further complicated by the additional Oersted torque in the ferromagnetic layer, due to the total current in the heavy metal, which has the same symmetry as the field-like torque. The total torques can be formulated as

\[\mathbf{\tau} = \tau_{AD} \mathbf{m} \times \hat{y} \times \mathbf{m} - (\tau_F + \tau_{OE}) \hat{y} \times \mathbf{m}, \] (1)

where the anti-damping (\(\tau_{AD}\)) and field-like (\(\tau_F\)) torques can have contributions from both the spin-Hall and Rashba effects. Previous studies have tried to disentangle these two effects by studying the dependence of the torques on the

![Image](http://example.com/image.png)

FIG. 1. (a) A charge current density, \(J_C\), passing through the bilayer induces a transverse spin-current in the platinum due to the spin-Hall effect which flows into the cobalt layer. At the interface, due to the structural inversion asymmetry, the conduction electrons experience an effective magnetic field, \(h_{OE}\). The cobalt has an additional oxidised silicon interface which could also similarly produce an effective magnetic field. The current passing through the platinum also induces an Oersted field in the cobalt, due to Ampère’s law. (b) The Oersted field induces an out of plane torque on the cobalt magnetisation, \(\tau_{OE}\). Additional anti-damping and field-like torques, \(\tau_{AD}\) and \(\tau_F\), respectively, are induced due to the exchange interaction of the non-equilibrium spin-density in the ferromagnet with the magnetisation. A field-like torque with negative coefficient is shown here opposing a positive Oersted torque.
thickness of the two layers. In particular, Fan et al. observed an additional field-like torque in Py/Pt layers with the same direction as the Oersted field. In this paper, we report a similar field-like torque, emerging only in the ultrathin Co layer regime, opposing the Oersted field. This suggests that the field-like torque is sensitive to details of the sample composition and can vary significantly, possibly due to competing mechanisms.

Using electrically driven ferromagnetic resonance (FMR), we have studied sputtered ultrathin bilayers of Co/Pt which are in-plane magnetised, where the cobalt thickness, \(d_{\text{Co}}\), is varied between 1 and 3 nm, whilst the platinum thickness, \(d_{\text{Pt}}\) = 3 nm, remains constant. A schematic of the magnetisation precession, and the directions of the torques in our measurement is shown in Figure 1(b). First cobalt and then platinum were deposited on a thermally oxidised silicon substrate by dc magnetron sputtering. 1 × 10 μm bars were patterned using electron-beam lithography and Ar ion-milling. Each bar was mounted on a low-loss dielectric circuit board. Microwave power was delivered to the board via a microstrip transmission line on the circuit board which was terminated by a wirebond to one end of the sample. The other end of the sample was connected to ground via another wirebond. An on-board bias-tee, comprising of an in-line gap capacitor and a wirebond as an inductor, was used to separate the injected microwave power from the measurement of the dc voltage, \(V_{\text{dc}}\), across the bar (see Figure 2(a)).

The microwave current injected into the bar, \(I_0 e^{i\omega t}\), induces effective magnetic fields, \((h_x, h_y, h_z) e^{i\omega t}\), which drive FMR. As the magnetisation precesses, there is an oscillating component of the resistance due to the anisotropic magnetoresistance (AMR) of the sample: \(R = R_0 + \Delta R \cos^2 \theta\), where \(\theta\) is the angular separation of the current and magnetisation. At resonance, this rectifies with the driving microwave current to give a peak in \(V_{\text{dc}}\). This can be fitted by a combination of symmetric and antisymmetric Lorentzians:

\[
V_{\text{dc}} = V_{\text{sym}} \frac{\Delta H^2}{(H - H_0)^2 + \Delta H^2} + V_{\text{asy}} \frac{(H - H_0)\Delta H}{(H - H_0)^2 + \Delta H^2},
\]

where \(V_{\text{sym}}\) and \(V_{\text{asy}}\) are given by

\[
V_{\text{sym}} = V_{\text{mix}} A_y h_z \sin 2\theta
\]

and

\[
V_{\text{asy}} = V_{\text{mix}} A_{xy} (h_y \cos \theta - h_x \sin \theta) \sin 2\theta.
\]

In these expressions, \(V_{\text{mix}} = \frac{1}{2} I_0 \Delta R\), \(H_0\) and \(\Delta H\) are the resonant field and linewidth, and \(A_{yz}\) and \(A_{xy}\) are related to the scalar amplitudes of the ac magnetic susceptibility by \(A_{ij} = \chi_{ij}/M_s\). Their values are

\[
A_{yz} = \frac{\sqrt{H_0(H_0 + M_{\text{eff}})}}{\Delta H(2H_0 + M_{\text{eff}})}
\]

and

\[
A_{xy} = \frac{(H_0 + M_{\text{eff}})}{\Delta H(2H_0 + M_{\text{eff}})}
\]

The microwave current, \(I_0\), was swept from high to low at an in-plane angle, \(\theta\). Source microwave powers of 20 dBm were typically used to excite FMR. Microwave frequencies of between 16 and 19 GHz were used to ensure that the entire resonance peak was measured in a magnetic field large enough that the magnetisation was saturated. With microwave power applied, the resonances were measured in \(V_{\text{dc}}\) as the external magnetic field, \(H\), was swept from high to low at an in-plane angle, \(\theta\).
The resonances were measured for successive values of θ, with the peaks then fitted by Eq. (2) (Figures 2(b) and 2(c)). By measuring FMR out of plane and self-consistently fitting the Kittel and energy equations, values of M_{eff} were determined.\(^{29}\) The fitted values of $\mu_0 M_{\text{eff}}$ were similar to those we have previously reported in spin-pumping measurements of the same layers at 250 K.\(^{30}\) In this case varying from 1.4 to 0.14 T as d_{Co} is reduced, consistent with Eq. (7). To analyse the data, A_{xz} and A_{yy} are calculated from Eqs. (5) and (6) using the measured values of M_{eff}.

For all the sweeps measured, the symmetric part dominates the antisymmetric part. We now fit the effective fields to $V_{\text{sym}/A_{xz}}$ and $V_{\text{sym}/A_{yy}}$ (Figure 2(d)). We find empirically that the symmetric angular dependence can be almost entirely fitted by the anti-damping torque ($h_y \propto \cos \theta$) and that the antisymmetric angular dependence can be almost entirely fitted by a field-like term (h_y independent of angle).

Small additional terms which are not consistent in size or sign from device to device are needed for the fitting (h_y independent of angle and $h_y \propto \cos \theta$). These terms are consistent with additional field-like and anti-damping torques with symmetry $\tau \propto \hat{z} \times \hat{m}$ and $\tau \propto \hat{m} \times \hat{z} \times \hat{m}$, respectively. Most significantly, we see that as the cobalt thickness is reduced from 3 to 1 nm, the sign of the symmetric voltage stays constant, whilst the sign of the antisymmetric voltage flips (see Figures 2(b) and 2(c)). This indicates that as the cobalt thickness is reduced, the sum of the field-like torque and Oersted torque reverses. The voltages measured scale linearly with power (Figure 2(e)), showing the torques are

This reversal in sign of the total field-like torque has not been observed before in Co/Pt. We note that the sign of our τ_F and τ_{AD} is consistent with the torques observed by Garello et al. at low frequency in an AlOx/Co(0.6 nm)/Pt(3 nm) device.\(^{21}\) Equally, in the $d_{\text{Co}} = 3$ nm layer, where τ_F is weakest, the torques resemble those measured by Liu et al. at microwave frequencies in Py(4 nm)/Pt(6 nm)\(^{5}\) and CoFeB(3 nm)/Pt(6 nm).\(^{6}\)

Kim et al. have studied the torques at low frequency as a function of ferromagnet thickness (0.9 to 1.3 nm) in CoFeB/Ta(1 nm).\(^{25}\) They observed a constant τ_{AD} with opposite sign because the spin-Hall angle is negative in Ta. τ_F increased in the thinner ferromagnet layers, but in contrast to our observation, added to the Oersted torque.

Fan et al. have measured the torques at low frequency, with a Cu spacer layer inserted between a Py and Pt layer.\(^{26}\) A field-like torque was observed even with the spacer layer, and reduced with increasing spacer thickness, indicating that the torque was likely to be a non-adiabatic STT. As the ferromagnet thickness was reduced, the torque increased and added to the Oersted torque. This is the opposite sign to the τ_F we have observed in Co/Pt. Fan et al. also studied CoFeB/Ta layers using electrically driven FMR. It could be seen that as the thickness of the ferromagnet is reduced, the field-like torque increases, and opposes the Oersted field. This is the opposite sign to the observation of Kim et al.

When trying to reconcile these previous measurements with our own, we consider it likely that differing material parameters in each experiment, the quality of the interfaces and the degree of oxidation of the additional ferromagnet interface could give quite different results. Nonetheless, the trend and sign of the field-like torque we observe is consistent with the studies by Liu et al. and Garello et al. Furthermore,
if the direction of the Rashba field is inverted in CoFeB/Ta compared to Co/Pt, or if the non-adiabatic STT depends on the negative sign of the SHE in Ta, our results can also be consistent with Kim et al. and an earlier measurement by Suzuki et al. The sign of τ_p we measure opposes the Oersted field and is opposite to the one measured by Fan et al. in Py/Pt. This can be explained by the torque we measure having a different origin from Fan et al. with Cu spacers strongly indicate a non-adiabatic STT origin in their case. In contrast, our τ_p opposing the Oersted field is consistent with a Rashba field, with opposite sign to the non-adiabatic STT, dominating in our material.

In conclusion, using an electrically driven FMR technique, we have observed an increase in the field-like torque, as a proportion of the total spin-orbit torques, as the cobalt layer is reduced from 3 to 1 nm. This field-like torque opposes the Oersted torque. The enhancement in the torque is consistent with a Rashba field and takes the opposite sign to previous measurements in Py/Pt where the torque was shown to mostly originate non-locally from the interface, in the platinum layer. Whilst this is consistent with a Rashba origin of the field-like torque, we cannot rule out a contribution from a non-adiabatic STT.

A.W.R. acknowledges support from an EPSRC Career Acceleration Fellowship Grant No. EP/H003487/1. A.J.F. acknowledges support from the Hitachi research fellowship and a Royal Society Research Grant (No. RG110616).

1J. Hirsch, Phys. Rev. Lett. 83, 1834 (1999).
2J. Sinova, D. Culcer, Q. Niu, N. Sinitsyn, T. Jungwirth, and A. MacDonald, Phys. Rev. Lett. 92, 126603 (2004).
3Y. Kato, R. Myers, A. Gossard, and D. Awschalom, Science 306, 1910 (2004).
4J. Wunderlich, B. Kaestner, J. Sinova, and T. Jungwirth, Phys. Rev. Lett. 94, 047204 (2005).
5L. Liu, T. Moriyama, D. C. Ralph, and R. A. Buhrman, Phys. Rev. Lett. 106, 036601 (2011).
6L. Liu, C.-F. Pai, Y. Li, H. W. Tseng, D. C. Ralph, and R. A. Buhrman, Science 336, 555 (2012).
7L. Liu, O. J. Lee, T. J. Gudmundsen, D. C. Ralph, and R. A. Buhrman, Phys. Rev. Lett. 109, 096602 (2012).
8J. Slonczewski, J. Magn. Magn. Mater. 159, L1 (1996).
9L. Berger, Phys. Rev. B 54, 9353 (1996).
10S. Zhang, P. M. Levy, and A. Fert, Phys. Rev. Lett. 88, 236601 (2002).
11M. A. Zirnmiller, B. Groyalmaz, W. Chen, A. D. Kent, J. Z. Sun, M. J. Rooks, and R. H. Koch, Phys. Rev. B 70, 184438 (2004).
12J. C. Sankey, Y.-T. Cui, J. Z. Sun, J. C. Slonczewski, R. A. Buhrman, and D. C. Ralph, Nat. Phys. 4, 67 (2008).
13A. Manchon and S. Zhang, Phys. Rev. B 78, 214429 (2008).
14K. Obata and G. Tata, Phys. Rev. B 77, 214429 (2008).
15A. Manchon and S. Zhang, Phys. Rev. B 79, 094422 (2009).
16T. M. Miron, G. Gaudin, S. Auffret, B. Rodmacq, A. Schuhl, S. Pizzini, J. Vogel, and P. Gambardella, Nature Mater. 9, 230 (2010).
17I. M. Miron, T. Moore, H. Szaumbolics, L. D. Buda-Prijebanu, S. Auffret, B. Rodmacq, S. Pizzini, J. Vogel, M. Bonfim, A. Schuhl et al., Nature Mater. 10, 419 (2011).
18U. H. Pi, K. Won Kim, J. Y. Bae, S. C. Lee, Y. J. Cho, K. S. Kim, and S. Seo, Appl. Phys. Lett. 97, 162507 (2010).
19T. Suzuki, S. Fukami, N. Ishiwata, M. Yamanouchi, S. Ikeda, N. Kasai, and H. Ohno, Appl. Phys. Lett. 98, 142505 (2011).
20T. M. Miron, K. Garello, G. Gaudin, P.-J. Zermatten, M. V. Costache, S. Auffret, S. Bandiera, B. Rodmacq, A. Schuhl, and P. Gambardella, Nature 476, 189 (2011).
21K. Garello, I. M. Miron, C. O. Avci, F. Freimuth, Y. Mokrousov, S. Blugel, S. Auffret, O. Boulle, G. Gaudin, and P. Gambardella, Nat. Nanotechnol. 8, 587 (2013).
22H. Kurebayashi, J. Sinova, D. Fang, A. Irvine, J. Wunderlich, V. Novak, R. Campion, B. Gallagher, E. Vehstedt, L. Zarbo et al., e-print arXiv:1306.1893.
23D. A. Pesin and A. H. MacDonald, Phys. Rev. B 86, 014416 (2012).
24X. Wang and A. Manchon, Phys. Rev. Lett. 108, 171201 (2012).
25J. Kim, J. Sinha, M. Hayashi, M. Yamanouchi, S. Fukami, T. Suzuki, S. Mitani, and H. Ohno, Nature Mater. 12, 240 (2012).
26S. Fan, J. Wu, Y. Chen, M. J. Jerry, H. Zhang, and J. Q. Xiao, Nat. Commun. 4, 1799 (2013).
27D. Fang, H. Kurebayashi, J. Wunderlich, K. Výborný, L. Zarbo, R. Campion, A. Casiraghi, B. Gallagher, T. Jungwirth, and A. Ferguson, Nat. Nanotechnol. 6, 413 (2011).
28D. Fang, T. Skinner, H. Kurebayashi, R. Campion, B. Gallagher, and A. Ferguson, Appl. Phys. Lett. 101, 182402 (2012).
29K. Ando, S. Takahashi, K. Ieda, Y. Kajiwara, H. Nakayama, T. Yoshino, K. Harri, Y. Fujikawa, M. Matsuo, S. Maekawa, and E. Saitoh, J. Appl. Phys. 109, 103913 (2011).
30T. D. Skinner, H. Kurebayashi, D. Fang, H. Heiss, A. C. Irvine, A. T. Hindmarsh, M. Wang, A. W. Rushforth, and A. J. Ferguson, Appl. Phys. Lett. 102, 072401 (2013).
31We note that a value of $\Delta a = 1$ nm for platinum is much smaller than in most of the literature. However, other studies in bilayers using ferromagnetic magnetic resonance have found similar values, e.g., 1.4 nm in L. Liu, R. A. Buhrman, and D. C. Ralph, e-print arXiv:1111.3702v3 and 1.2 nm in W. Zhang, V. Vlaminck, J. E. Pearson, R. Divan, S. D. Bader, and A. Hoffmann, Appl. Phys. Lett. 103, 242414 (2013).
32R. A. Buhrman and D. C. Ralph, e-print arXiv:1111.3702v3 and 1.2 nm in W. Zhang, V. Vlaminck, J. E. Pearson, R. Divan, S. D. Bader, and A. Hoffmann, Appl. Phys. Lett. 103, 242414 (2013).