Supplementary Figure 1 | Cell line TRIB2 status. TRIB2 protein expression to determine endogenous expression and to determine the effectiveness of each of our TRIB2 knockdown constructs.

Supplementary Figure 2 | TRIB2 status has no impact on the cell cycle after PI3K inhibition. a. Matched isogenic TRIB2 cell line cell cycle analysis via FACS following exposure to BEZ235 (n = 6). Data represent the mean ± standard deviation (s.d.). b. Matched isogenic TRIB2 cell line cell cycle analysis via FACS following exposure to BAY236 (n=6). Data represent the mean ± standard deviation (s.d.). c. Matched isogenic TRIB2 cell line cell cycle analysis via FACS following exposure to BAY439 (n=6). Data represent the mean ± standard deviation (s.d.).
Supplementary Figure 3 | TRIB2-dependent resistance to BEZ235 is ablated in the presence of a phosphomimetic AKT473D or FOX3a-AAA. Matched isogenic TRIB2 cell line FACS analysis following 72 hour exposure to BEZ235 (n=6), following transient transfection of each indicated plasmid construct. P values are indicated for each comparison by two-way analysis of variance (ANOVA) and data represent the mean ± standard deviation (s.d.).
Supplementary Figure 4 | PDK1, p70S6K and pSer792 Raptor protein levels are not significantly different in cell lines with elevated TRIB2 protein expression. Representative immunoblot profiles for matched isogenic U2OS osteoarcoma cell lines for total PDK1, pSer241-PDK1, pSer792-Raptor, total p70S6K and pThr389-p70S6K. TRIB2 expression did not correlate with significantly different post-translational modification(s) of the indicated proteins before or after treatment with 100nM BEZ235, BAY236, BAY439 or Rapamycin (Rapa).

Supplementary Figure 5 | Knockdown efficiency of FOXO3a in isogenic in vitro models. Immunoblot analysis to determine the effectiveness of each of our FOXO3a knockdown constructs.
Supplementary Figure 6 | TRIB2 confers resistance to 5-Flurouracil. Matched isogenic TRIB2 cell line FACS analysis following 72 hour exposure to 5-Flurouracil (n=6). *P* values are indicated for each comparison by two-way analysis of variance (ANOVA) and data represent the mean ± standard deviation (s.d.).
Supplementary Figure 7 | TRIB2 negatively regulates FOXO3a by the COP1 domain. a, Schematic of TRIB2 constructs used in our transient transfection experiments. b, qRT-PCR analysis of p27 and FasLG expression in our 293T cell line 24 hours post transient transfection of each indicated construct (n=6). * (P ≥ 0.05) are indicated for each comparison by two-way ANOVA and data represent the mean ± s.d. c, (left) Immunoblot analysis for p27 or FasLG expression following the transient transfection of each TRIB2 construct shown in a. (right) Quantification of p27 or FasLG protein expression for 293T cells before and 24 hours post BEZ235 exposure. Data represent the mean ± s.d.
Supplementary Figure 8 | TRIB2 protein expression in *ex vivo* primary colon or pancreatic cancer prior to first line chemotherapy. a, Immunoblot analysis for TRIB2 in matched colon cancer patient sample (n = 14). b, TRIB2 immunoblot analysis from pancreatic cancer patients following surgical removal (n = 7).

Supplementary Figure 9 | TRIB1 and TRIB3 are not differentially expressed in metastatic melanoma clinical samples. qRT-PCR analysis of TRIB1 and TRIB3 expression in *ex vivo* metastatic melanoma samples (n = 20) versus normal control tissue (n = 10). Data were analysed by two-way ANOVA and values represent the mean ± s.d.
Supplementary Figure 10 | TRIB2, pSer473-AKT and pSer253-FOXO3a protein expression correlates with clinical prognosis for melanoma patients. a. Average protein quantification of normal
and melanoma patient tissue samples separated based on clinical outcome (CR, complete response, SD, stable disease, PD, progressive disease) presented in figure 4d. Samples between clinical cohorts were normalized to β-actin and relative intensity measured by ImageJ. Data is presented +/- St.Dev. and P values indicated by two-tailed t-test. b-l. Individual protein expression for every sample within each patient cohort. The average expression is indicated by the red line shown in each group.

Supplementary Figure 11 | High TRIB2 expression correlates with significantly worse clinical prognosis for colon cancer patients. a, Kaplan-Meier analysis of colon cancer patients (n = 177) classified based on low (≥1.5 fold TRIB2 expression) or high (≥2.5 fold TRIB2 expression)\(^25\). Patients with low TRIB2 expression improved patient survival (log-rank P = ≥ 0.0002). b, Kaplan-Meier analysis of pancreatic cancer patients (n = 38) classified based on low (≥1.5 fold TRIB2 expression) or high (≥2.5 fold TRIB2 expression)\(^26\). Low TRIB2 expression displayed a trend towards, although this was not a statistically significant increase in overall patient survival (log-rank P = 0.205).
Supplementary Figure 12 | TRIB1 or TRIB3 expression does not correlate with clinical prognosis for melanoma, colon or pancreatic cancer patients. a, Kaplan-Meier analysis of melanoma patients (n = 38) classified based on low (≥1.5 fold TRIB1 expression) or high (≥2.5 fold TRIB1 expression). Low TRIB1 expression did not improve patient survival (log-rank P = 0.656). b, Kaplan-Meier analysis of melanoma patients (n = 38) classified based on low (≥1.5 fold TRIB3 expression) or high (≥2.5 fold TRIB3 expression). Low TRIB3 expression did not improve patient survival (log-rank P = 0.079). c, Kaplan-Meier analysis of colon cancer patients (n = 177) classified based on low (≥1.5 fold TRIB1 expression) or high (≥2.5 fold TRIB1 expression). TRIB1 expression did not affect patient survival (log-rank P = 0.667). d, Kaplan-Meier analysis of colon cancer patients (n = 177) classified based on low (≥1.5 fold TRIB3 expression) or high (≥2.5 fold TRIB3 expression). TRIB3 expression did not affect patient survival (log-rank P = 0.492). e, Kaplan-Meier analysis of pancreatic cancer patients (n = 38) classified based on low (≥1.5 fold TRIB1 expression) or high (≥2.5 fold TRIB1 expression). TRIB1 expression had no statistically significant effect on survival (log-rank P = 0.143). f, Kaplan-Meier analysis of pancreatic cancer patients (n = 38) classified based on low (≥1.5 fold TRIB3 expression) or high (≥2.5 fold TRIB3 expression). TRIB3 expression had no statistically significant effect on patient survival (log-rank P = 0.973).
Supplementary Table 1 | Cell lines used in this study.

Cell line	Parental cell line (supplier)	Origin	Manipulation	TRIB2 level	FOXO3a level
293T –Empty	HEK293T (ATCC)	Embryonal kidney	GFP over expression	Low (endogenous)	Endogenous
293T +TRIB2	HEK293T (ATCC)	Embryonal kidney	TRIB2-GFP over expression	High (endogenous + exogenous)	Endogenous
U2OS –Empty	U2OS (ATCC)	Osteosarcoma	GFP over expression	Low (endogenous)	Endogenous
U2OS +TRIB2	U2OS (ATCC)	Osteosarcoma	TRIB2-GFP over expression	High (endogenous + exogenous)	Endogenous
G361 –TRIB2	G361 (ATCC)	Melanoma	Scramble shRNA sequence	High (endogenous)	Endogenous
G361 +TRIB2sh	G361 (ATCC)	Melanoma	TRIB2 shRNA sequence	Low > 90% reduction compared to control	Endogenous
SK-Mel28 –TRIB2	SK-Mel28 (ATCC)	Melanoma	Scramble shRNA sequence	High (endogenous)	Endogenous
SK-Mel28 +TRIB2sh	SK-Mel28 (ATCC)	Melanoma	TRIB2 shRNA sequence	Low > 90% reduction compared to control	Endogenous
293T – empty/FOXO3aKD	HEK293T (ATCC)	Embryonal kidney	GFP over expression stable FOXO3a shRNA expression	Low (endogenous)	> 80% reduction compared to control
293T +TRIB2/FOXO3aKD	HEK293T (ATCC)	Embryonal kidney	TRIB2-GFP over expression, stable FOXO3a shRNA expression	High (endogenous + exogenous)	> 80% reduction compared to control
U2OS – empty/FOXO3aKD	U2OS (ATCC)	Osteosarcoma	GFP over expression, stable FOXO3a shRNA expression	Low (endogenous)	> 80% reduction compared to control
U2OS +TRIB2/FOXO3aKD	U2OS (ATCC)	Osteosarcoma	TRIB2-GFP over expression, stable FOXO3a shRNA expression	High (endogenous + exogenous)	> 80% reduction compared to control
Supplementary Table 2 | Antibodies used for immunoblotting in this study.

Antibody	Species	Supplier	Ratio used
Tribbles2 (TRIB2)	Rabbit	Custom raised – CNIO Madrid	1:1000
caspase-3 (H-277)	Rabbit	Santa Cruz Biotechnology (SCBT)	1:250
β actin (C4)	Mouse	SCBT	1:2000
Akt1 (C-20)	Goat	SCBT	1:1000
pSer473-Akt1/2/3	Rabbit	SCBT	1:1000
PDK1 (C-20)	Goat	SCBT	1:1000
p70 S6 kinase α (C-18)	Rabbit	SCBT	1:1000
pThr389-p70 S6 kinase α	Goat	SCBT	1:500
FKHR1L1 (FOXO3a) (N-16)	Goat	SCBT	1:500
pSer253-FKHR1L1 (FOXO3a)	Rabbit	SCBT	1:1000
FAS-LG (C-178)	Rabbit	SCBT	1:1000
Bim (H-191)	Rabbit	SCBT	1:1000
p27 (F-8)	Mouse	SCBT	1:1000
p53 (DO-1)	Mouse	SCBT	1:1000
MDM2 (C-18)	Rabbit	SCBT	1:1000
pSer166-MDM2	Rabbit	Cell Signalling Technology (CST)	1:1000
pSer241-PDK1	Rabbit	CST	1:1000
pSer792-RAPTOR	Rabbit	CST	1:1000
Supplementary Table 3 | Quantitative real time PCR primers used in this study.

Gene	5'-3' Fwd	5'-3' Rev
CDKN1B (p27)	CCTCCTCAGACGAACACAGC	CTGTATTGGAACGACGACGCA
BCL2-like 11 (BIM)	GCCGTCCTCCCTACACGAGC	AAGGATGAAAAGCGGGAGCTCCTT
FasLG	TCTTCCTGCTCCACCTCTCTT	TGCTGTGGTTCCCTCTCTCT
CDKN2A (p16)	CTTCCCTGCCACGCTTTGGT	GCCGTTGTTACTGCTCTGCT
TRIBBLES1 (TRIB1)	AAAAGGAAGAGATGATGCAGTGTT	TGCTGCTACTGAGATGAGCAGCAAGAC
TRIBBLE2 (TRIB2)	CACACGTCCTACCCCATCACC	CCCGATACAAAGAAACGCAAT
TRIBBLES3 (TRIB3)	AGGAGAGAGGTCGTTAGTT	TGCACGATTGCTGAGAGCTGAGTA
CDKN1A (p21)	GACACACTGAGGAGGTGACT	CTGCCTCTGCCACACTCAT
TRAIL	ACCACGAGCTGAGCAGAGT	ACGGATGTCGCTCACACTGACTT
Homo sapiens MDM2	CAGCTTCCGAGAACGAAGACC	GTCCGATGATTCCCTGCTGAT
GAPDH	CAATGACCACCTTCCATTGACC	TTGATTGAGGAGGATCTG

Supplementary Table 4 | shRNA sequences used in this study.

Gene	Plasmid backbone	Sequence
FOXO3a #1	pRetroSuper	GCAGGGCTCATCTCAGAGCTCCTGGAGACTGAGGCTGCTG
FOXO3a #2	pRetroSuper	CTGCAGCGGCTGACTGAGATTCTCAGTCAGTCAGTCGAG
FOXO3a #3	pRetroSuper	CCTGATGGGGGAANACCTCCTGGAGACTGAGGAGGCTG
FOXO3a #4	pRetroSuper	CTGCCGCTTGAGAGATGAGATCGTGAGTGGATGACTG
TRIBBLE2 (TRIB2) #1	pRetroSuper	CCAGGGACGAGACTCAGTTGACTGAGGATCGGACTGAGGAGGCTG
TRIBBLE2 (TRIB2) #2	pRetroSuper	CTCGCGCTGAGGACTGAGACTGAGGCTGAGGACTGAGGAGGCTG
TRIBBLE2 (TRIB2) #3	pRetroSuper	TAAAATCAGTGGCAGCCGCCGAGAGGCTTGAGATCGGACTGAGGAGGCTG
TRIBBLE2 (TRIB2) #4	pRetroSuper	CTCGCCGCTGAGGACTGAGACTGAGGCTGAGGACTGAGGAGGCTG
Supplementary Table 5 | CEBPα and CEBPα-dependent gene expression analysis.

Gene	locus	log_{2} (fold change)	P value	q value	Sig?	Fold down regulation	Reference
CEBPα	chr19:33790839-33793430	-2.67789	0.0003	0.0030	Yes	1.271	Zhang, H., et al. (2013). Cancer Cell 24(5): 575-588.
SOX4	chr6:21593971-21598849	-0.323092	0.0001	0.0008	Yes	1.251	
TGFBR2	chr3:30647993-30735633	-0.262085	0.0001	0.0008	Yes	1.199	Takayama, K., et al. (2014). Development 141(1): 91-100.
CD33	chr19:51728334-51743274	-2.09402	0.0007	0.0067	Yes	4.269	Shamsasenjan, K., et al. (2009). Int J Hematol 89(3): 310-318.
SLC2A4	chr17:7185053-7191367	-0.60402	0.0019	0.0156	Yes	1.520	Fujimoto,M., et al. (2005). Biochimica et Biophysica Acta (BBA) 1745(1):
UCA1	chr19:15939756-15947131	-0.788302	0.0011	0.0101	Yes	1.727	Xue, M., et al. (2014). Oncol Rep 31(5): 1993-2000.

Supplementary Table 6 | Multivariate analysis of TRIB2 expression and clinical confounding factors (GSE65904). Variables in the model: TRIB2 expression, stage, age and gender.

Parameter	P value	HR	95% CI (lower)	95% CI (upper)
Stage				
General	0.001			
In transit	0.402	0.708	0.316	1.587
Local	0.022	0.234	0.234	0.813
Primary	0.004	0.051	0.051	0.388
Regional	0.001	0.372	0.372	0.658
TRIB2	0.019	1.099	1.099	2.807

Supplementary Table 7 | Multivariate analysis of TRIB2 expression and clinical confounding factors (GSE65904). Variables in the model: TRIB2 expression, stage, age and gender.

Parameter	P value	HR	95% CI (lower)	95% CI (upper)
Age	0.013	1.886	1.144	3.111
Gender	<0.001	2.583	1.517	4.398
TRIB2	0.006	2.018	1.226	3.323
Supplementary Figure 13 | Uncropped scans of western blots presented in Figure 1b.
Supplementary Figure 14 | Uncropped scans of western blots presented in Figure 2a
Supplementary Figure 15 | Uncropped scans of western blots presented in Figure 2b
Supplementary Figure 17 | Uncropped scans of western blots presented in Figure 2e
Supplementary Figure 18 | Uncropped scans of western blots presented in Figure 3d
Supplementary Figure 19 | Uncropped scans of western blots presented in Figure 3f
Supplementary Figure 20 | Uncropped scans of western blots presented in Figure 3h
Supplementary Figure 21 | Uncropped scans of western blots presented in Figure 4c
Supplementary Figure 22 | Uncropped scans of western blots presented in Figure 4e
Supplementary Figure 23 | Uncropped scans of western blots presented in Supplementary Figure 1
Supplementary Figure 4 | Uncropped scans of western blots presented in Supplementary Figure 4
Supplementary Figure 5 | Uncropped scans of western blots presented in Supplementary Figure 5
Supplementary Figure 26 | Uncropped scans of western blots presented in Supplementary Figure 7
Supplementary Figure 27 | Uncropped scans of western blots presented in Supplementary Figure 8