Cadmium and zinc pnictides (Cd₃As₂, Zn₃As₂, Cd₃P₂ and Zn₃P₂) belong to a group of quantum phase transition of three-dimensional Dirac electrons. The changes of the structures and physical properties of polycrystalline (Cd₁₋ₓZnₓ)₃As₂ and Cd₃(As₁₋ₓPx)₂ were studied before32–36. (Cd₁₋ₓZnₓ)₃As₂ crystallize in a primitive tetragonal structure32. The majorities undergo a crossover from n- to p-type when x increases in (Cd₁₋ₓZnₓ)₃As₂ and Cd₃(As₁₋ₓPx)₂, while the band gap increases linearly with the proportion of Zn, according to the magneto-optical measurements39. However the change of the topological properties of the electronic structure has not been addressed.

Received: 9 March 2017
Accepted: 26 April 2017
Published online: 09 June 2017

Topological Phase Transition in Single Crystals of (Cd₁₋ₓZnₓ)₃As₂
Hong Lu¹, Xiao Zhang¹, Yi Bian¹ & Shuang Jia¹,²

Single crystals of (Cd₁₋ₓZnₓ)₃As₂ were synthesized from high-temperature solutions and characterized in terms of their structural and electrical properties. Based on the measurements of resistivity and Hall signals, we revealed a chemical-doping-controlled transition from a three-dimensional Dirac semimetal to a semiconductor with a critical point x_c ~ 0.38. We observed structural transitions from a body-center tetragonal phase to a primitive tetragonal phase then back to a body-center tetragonal phase in the solid solutions as well, which are irrelevant to the topological phase transition. This continuously tunable system controlled by chemical doping provides a platform for investigating the topological quantum phase transition of three-dimensional Dirac electrons.

Cadmium and zinc pnictides (Cd₃As₂, Zn₃As₂, Cd₃P₂ and Zn₃P₂) belong to a group of quantum phase transition of three-dimensional Dirac electrons. These four compounds crystallize at various temperatures in several closely related structures, which can be viewed as the different arrangements of a distorted antifluorite structure5–12. The electrical properties of these four compounds are distinct in several aspects. Zn₃As₂, Zn₃P₂ and Cd₃P₂ are semimetals with low carrier mobility and the direct band gaps being 1.0 eV, 1.5 eV and 0.5 eV respectively13–15. Both Zn₃P₂ and Zn₃As₂ are p-type, while Cd₃P₂ and Cd₃As₂ are n-type13–15. On the other hand, previous studies on the optical properties of Cd₃As₂ suggested that it was a semiconductor with a narrow band gap around 0.1 eV13. The mobility for Cd₃As₂ was reported as high as 1.5 × 10⁴ cm²/Vs at room temperature13. For comparing, the hole mobility for Zn₃As₂ is only 10 cm²/Vs at room temperature13. Cd₃As₂ was believed to manifest an inverted band structure due to the spin-orbital coupling (SOC)16,17 while the other three had normal band structures.

Recent studies on Cd₃As₂ have revealed the topological aspect of its electrical properties18–26. Band structure calculation predicted that Cd₃As₂ was a three-dimensional (3D) Dirac semimetal with the band inversion24. The energy dispersion of the Dirac electron is protected by the rotational symmetry along the crystallographic c axis in the tetragonal unit cell. The 3D Dirac cones of Cd₃As₂ have been observed in angle-resolved photoemission spectroscopy (ARPES)19–21. The Dirac-like band dispersion and the inverted band ordering was probed by the Landau level spectroscopy and quasiparticle interference in scanning tunneling microscopy (STM)22. Based on the electrical transport measurements, two experimental groups found an ultrahigh mobility of the Dirac electrons23,24. A strongly sample-dependent, large linear magnetoresistance (MR) was observed in Cd₃As₂ at low temperatures23. The nonsaturating linear MR in n-type Cd₃As₂ up to 65 T was believed to result from its mobility fluctuations25. The anisotropic Fermi surface with two ellipsoids of Dirac electrons along the c axis was revealed from the angular dependent measurements of SdH oscillations26.

Noticing the opposite band orderings in Cd₃As₂ and the other three members in the family, we expect a band inversion transition in pseudo-binary compounds of (Cd₁₋ₓZnₓ)₃As₂ and Cd₃(As₁₋ₓPx)₂. A band inversion transition due to the change of the SOC strength has been observed in solid solutions of semiconductors and semimetals such as HgI₂–CdTe and Pb₁₋ₓSnₓSe27,28. Recent studies on the solid solutions of TlBi₄Se₇, S₅ and Bi₂–InₙSe₄ have confirmed the existence of a quantum phase transition tuned by chemical doping from topological insulators to trivial band insulators29,30. A topological phase transition from a 3D Dirac semimetal to a trivial semiconductor was predicted in Na₃Bi₁₋ₓSbₓ and Cd₃(As₁₋ₓPx)₂ by first-principle calculations as well31.

The changes of the structures and physical properties of polycrystalline (Cd₁₋ₓZnₓ)₃As₂ and Cd₃(As₁₋ₓPx)₂ were studied before32–36. (Cd₁₋ₓZnₓ)₃As₂ crystallize in a primitive tetragonal structure32. The majorities undergo a crossover from n- to p-type when x increases in (Cd₁₋ₓZnₓ)₃As₂ and Cd₃(As₁₋ₓPx)₂, while the band gap increases linearly with the proportion of Zn, according to the magneto-optical measurements39. However the change of the topological properties of the electronic structure has not been addressed.

¹ICQM, School of Physics, Peking University, Beijing, 100871, China. Correspondence and requests for materials should be addressed to S.J. (email: gwljiashuang@pku.edu.cn)
Figure 1. Panel (a–d): Unit cells of α''–Cd$_3$As$_2$ and α–Cd$_3$As$_2$ viewed along c and b axes respectively. Panel (e,f): Single crystals of Zn$_3$As$_2$ and (Cd$_{0.69}$Zn$_{0.31}$)$_3$As$_2$ show different morphologies (see more details in the text). The scale on right is 1 mm.

Figure 2. XRD patterns for (Cd$_{1-x}$Zn$_x$)$_3$As$_2$. Panel (a): Powder XRD patterns for $x = 0$, 0.07 and 0.14 for $25^\circ < 2\theta < 36^\circ$. The characteristic peaks of (231)$_I$, (233)$_I$ and (237)$_I$ for a body-center structure and (032)$_P$ for a primary structure are labeled. Panel (b): Powder XRD patterns for $x = 0.38$, 0.52 and 0.58 for $31^\circ < 2\theta < 37^\circ$. The peak of (032)$_P$ occurs for $x = 0.38$, while the peaks of (240)$_I$ and (244)$_I$ occur for $x = 0.58$. For $x = 0.52$, we observed two sets of peaks, which indicates the batch has the mixture of two types of crystals. The (100) peak of cadmium at 34.5° occurs in all the XRD patterns with no shift. Panel (c): The diffraction pattern of the (112)$_I$ plane for α–Cd$_3$As$_2$ and α–Zn$_3$As$_2$. Panel (d): The diffraction pattern of the (022)$_P$ plane for (Cd$_{0.69}$Zn$_{0.31}$)$_3$As$_2$.
In this study, we report the single-crystalline (Cd$_{1-x}$Zn$_x$)$_3$As$_2$ obtained from high-temperature solution growth. Powder X-ray Diffraction (XRD) measurements revealed structural transitions from a body-center tetragonal phase for Cd$_3$As$_2$, to a primitive tetragonal phase for $0.07 \leq x < 0.52$, and then back to a body-center tetragonal phase for $x > 0.52$. The electrical resistivity and Hall measurements revealed a metal-insulator transition at a critical point $x_c \sim 0.38$. The analysis of the MR demonstrated a transition from a 3D Dirac semimetal to a trivial direct-gap semiconductor via the modulation of the SOC strength.

Results

The low temperature phases of Cd$_3$As$_2$ and Zn$_3$As$_2$ were reported as α'' (P4$_2$/nmc), α' (P4$_2$/mnb) and α (I4$_1$cd) at different temperatures$^{5-7,12}$, which evolve from a high-temperature β ($Fm\bar{3}m$) phase6,8,12. The β phase belongs to an antifluorite structure in which an arsenic atom is coordinated by six cationic and two vacancies randomly distributed in corners of a cube. In the low-temperature phases, two cationic atoms are missed along a diagonal of one face in the distorted cube$^{5-7,12}$. At room temperature, both Cd$_3$As$_2$ and Zn$_3$As$_2$ were reported to crystallize in a body-center tetragonal phase$^{6,7,12,19-26}$. Recently single-crystal XRD measurements suggested that the crystals of Cd$_3$As$_2$ form in the structure of I4$_1$/acd instead of I4$_1$/cd at room temperature9. Considering that our powder XRD cannot distinguish these two structures, we prefer to believe the result in ref. 9 and take I4$_1$/acd to be α-phase hereafter. The unit cell of I4$_1$/acd phase is made of the unit cells of P4$_2$/nmc phase associated with the lattice constants $a_1 = \sqrt{2}a_p$ and $c_1 = 2c_p$ (The subscripts I and P present the body-center and primitive space group respectively) (Fig. 1(a)-(d)).

Our powder XRD measurements revealed that (Cd$_{1-x}$Zn$_x$)$_3$As$_2$ have different crystal structures for different x at room temperature. Figure 2(a) shows that the crystals of Cd$_3$As$_2$ grown from flux are α phase, and their

Figure 3. Panel (a): The (440)$_I$ peaks and the counterpart (040)$_P$ peaks in the powder XRD patterns for (Cd$_{1-x}$Zn$_x$)$_3$As$_2$. Panel (b): The lattice constants and the volume of the primitive cell change with the concentration (concn.) of zinc x linearly. Panel (c): The nominal concentration of zinc x and the initial y have a linear dependence for $0.00 \leq x < 0.58$.

In this study, we report the single-crystalline (Cd$_{1-x}$Zn$_x$)$_3$As$_2$ obtained from high-temperature solution growth. Powder X-ray Diffraction (XRD) measurements revealed structural transitions from a body-center tetragonal phase for Cd$_3$As$_2$, to a primitive tetragonal phase for $0.07 \leq x < 0.52$, and then back to a body-center tetragonal phase for $x > 0.52$. The electrical resistivity and Hall measurements revealed a metal-insulator transition at a critical point $x_c \sim 0.38$. The analysis of the MR demonstrated a transition from a 3D Dirac semimetal to a trivial direct-gap semiconductor via the modulation of the SOC strength.
XRD pattern exhibits the characteristic peaks of (231)I, (233)I and (237)I of the body-center tetragonal phase for $25^\circ < 2\theta < 36^\circ$. This result is consistent with what was previously reported7, 19. Once a small amount of Zn is added ($x = 0.07$), the XRD pattern is distinct from that of Cd\textsubscript{3}As\textsubscript{2}. The characteristic peaks of (231)I, (233)I and (237)I disappear, while the (032)P peak of the P4_2/nmc group occurs (Fig. 2(a)). This peak remains resolvable until the doping level reaches $x = 0.38$. For $0.38 < x < 0.46$, the structure reenters the body center tetragonal structure I4/\text{acd} accompanied by (240)I and (244)I peaks which are exceedingly weak in the pattern of Cd\textsubscript{3}As\textsubscript{2}7, 36, 37 (Fig. 2(b)).

The peaks of (440)I with the strongest intensity stand at 40.0° and 43.1° for α-Cd\textsubscript{3}As\textsubscript{2} and Zn\textsubscript{3}As\textsubscript{2} respectively (Fig. 3(a)). The peak of (040)P is the counterpart of (440)I in P4_2/nmc group. Figure 3(a) shows that the peaks of (040)P and (440)I shift gradually when x changes from 0 to 1. Although the volume of the unit cell changes about 20% from $x = 0$ to 1, the peak shape does not change significantly in the solid solutions, indicating homogeneous chemical distributions in the crystals. The lattice constants for the samples in the I4/\text{acd} group were presented in the view of the P4_2/nmc group as $a_P = 2a_I$ and $c_P = 2c_I$. Figure 3(b) shows that a_P and c_P change in a precisely linear relation with respect to x, albeit the structural transitions. This result is similar as what is reported for polycrystalline (Cd\textsubscript{1-x}Znx)\textsubscript{3}As\textsubscript{2}36.

Temperature dependent resistivity of (Cd\textsubscript{1-x}Znx)\textsubscript{3}As\textsubscript{2} shows a clear change from a metallic to semiconducting profile when x increases from 0 to 0.31, being close to what was previously reported22 with the residual resistivity ratio (RRR = $\rho(300K)/\rho(2K)$) being 10. The values of RRR keep almost invariant when x increases up to 0.31. For $x = 0.38$, the $\rho(T)$ decreases with decreasing temperatures above 200 K, and then increases below this temperature. This complicated behavior indicates that the sample is likely a very narrow bandgap semiconductor for $x = 0.38$. The values of RRR then dramatically decrease for $x \geq 0.38$, being 0.58 for $x = 0.38$ and 7.7×10^{-6} for $x = 0.58$ (see more details in the final phase diagram). The changes of the RRR for different x indicate a process of band gap opening for $x \geq 0.38$. Such metal-semiconductor transition point is close to that reported for polycrystals36.

Figure 4(b) shows the MR for the samples for $x \leq 0.46$ at 2 K. When $x \leq 0.31$, the values of the MR are comparably large as that for Cd\textsubscript{3}As\textsubscript{2}25, 38. The values of the MR decline significantly for the semiconducting samples for $x \geq 0.38$. Recent studies of Cd\textsubscript{3}As\textsubscript{2} reported linear MR at low temperatures25, 26. In our experiments, the MR of (Cd\textsubscript{1-x}Znx)\textsubscript{3}As\textsubscript{2} follows the power law of $\rho(T) \propto H^\alpha$ where α varies from 0.9 to 1.5 for different samples.

Here we observed the precious studies reported the SdH oscillations for (Cd\textsubscript{1-x}Znx)\textsubscript{3}As\textsubscript{2} when $x \leq 0.1$ and $x = 0.2$39, 40. Conspicious SdH oscillations occur in the field dependent resistivity for all the samples for $x \geq 0.38$ at low temperatures, while the oscillations were not observed for the samples for $x \geq 0.46$. This observation is consistent with a metal-insulator transition with a critical point $x_c \sim 0.38$. The part of resistivity with oscillations versus the reciprocal of the magnetic field is presented in Fig. 5. For $x < 0.29$, only one frequency was observed for each sample (Fig. 6(a)). The frequencies of the oscillations show a clear trend of a decline with respect to x up to 0.29 (Fig. 6(a)). For $0.29 \leq x \leq 0.38$, the frequencies show more significant sample difference in a same batch. Some samples show single frequencies from 15 T to 30 T, while the second and third frequencies as large as 70 T.
occur in other samples. Such strong sample-dependence and complicated multi-frequency features indicate that
the samples for $0.29 \leq x \leq 0.38$ are semimetals or very narrow bandgap semiconductors with complicated Fermi
surface which is strongly influenced by subtle changes of chemical potential.

As shown in Fig. 5, the temperature dependent amplitudes of the SdH oscillations were fitted by the
Lifshitz-Kosevich formula:

$$\Delta \rho_{xx} \propto A(T) e^{\frac{2\pi^2 k_B T}{\hbar \omega_c}} \cos\left(\frac{S_F}{B} + \beta\right)$$

(1)

$$A(T) = \frac{2\pi^2 k_B T / \hbar \omega_c}{\sinh\left(2\pi^2 k_B T / \hbar \omega_c\right)}$$

(2)

where k_B is the Boltzmann’s constant; ω_c is the cyclotron frequency; T_D is the Dingle temperature and $A(T)$ is the
thermal damping factor which helps to fit the energy gap $\hbar \omega_c$. For the samples with multi-frequencies, their main
frequencies were analyzed. For large x, the amplitudes of the oscillations are damped less significantly by the
temperatures, which indicates a smaller cyclotron effective mass (Fig. 5).

The parameters of the SdH oscillations for different x are listed in Table 1. The cross-sectional area A_F in the
momentum space comes from the Onsager relation $S_F = \frac{\hbar}{2\pi^2} A_F$. Simply assuming a circular A_F, we got the Fermi
wave vector k_F from $A_F = \pi k_F^2$. The Fermi velocity $v_F = \hbar k_F / m^*$, the Fermi energy $E_F = v_F^2 m^*$, and the cyclotron

Figure 5. The oscillatory components of $\Delta \rho_{xx}$ versus the reciprocal of the magnetic field ($1/B$) at different
temperatures for $x = 0.07, 0.29$ and 0.38. Insets: Fast Fourier Transform (FFT) spectra for $x = 0.07, 0.29$ and
0.38. The results of the SdH oscillations are summarized in Table 1.
effective mass \(m^* = eB/\omega_c \) are listed as well. Figure 6 shows that \(m^* \) changes in a similar manner as \(S_{11} \) with respect to \(x \).

In order to better understand the metal-insulator transition, we measured Hall resistivity in (Cd\(_{1-x}\)Zn\(_x\))\(_3\)As\(_2\) at 2 K. The field dependent Hall resistivity of the samples for \(x \leq 0.31 \) shows a linear negative profile with SdH oscillations on the background. The negative linear-field-dependent \(\rho_{xy}(H) \) indicates that the carriers in the samples for \(x \leq 0.31 \) simply originate from an electron band. The carrier density decreases nearly linearly with increasing \(x \) from 0 to 0.31 (Fig. 7(b)). These results are consistent with the observation of the decreasing SdH oscillation frequencies with respect to \(x \), 36, 39, 40. \(\rho_{xy}(H) \) becomes smaller and nonlinear for \(0.38 \leq x < 0.59 \). This nonlinear feature is clear for \(x = 0.46 \) (inset of Fig. 7(a)). In this range, the samples manifest a semiconducting \(\rho(T) \) profile while multi-frequencies were observed in the SdH oscillations in their MR. The Hall signals and the resistivity indicate two types of carriers. For \(x \geq 0.59 \), the Hall signals become large and positively field-dependent, which indicate p-type semiconductors consistent with low carrier concentrations. The change of the carrier density \(n_H \) and mobility \(\mu_c \) with respect to \(x \) is summarized in Fig. 7(b,c). Meanwhile we used the standard Bloch-Boltzmann transport to estimate the mobilities which read \(\mu_m = 1/B_{\text{max}} \) as the minimum on the \(\sigma_{xy} \) curves in Fig. 7(c). The mobility undergoes a similar linear decline with the respect to \(x \).

Discussion

Our measurements show that the change of the electrical properties of (Cd\(_{1-x}\)Zn\(_x\))\(_3\)As\(_2\) has no observable correlation with the structural transitions. This result is not unexpected according to previous band structural calculation. Both \(\alpha'' \) (P4\(_2\)/nmc) and \(\alpha \) (I\(_4_1\)/acd) phases of Cd\(_3\)As\(_2\) manifest similar simple band structures near the Fermi surface. Only two Dirac cones protected by rotational symmetry cross the Fermi level (\(E_F \)) along the high symmetric line \(\Gamma - Z \) in the Brillouin zones\(^{18} \). Therefore a structural transition cannot influence the bands near the \(E_F \).

Previous studies of the calculation and experiments showed that the negative gap is about \(-0.3 \text{eV} \sim -0.7 \text{eV} \) for Cd\(_3\)As\(_2\),\(^{18,35} \), while the direct gap is 1.0 eV for Zn\(_3\)As\(_2\).\(^{13} \) With a semimetal and a semiconductor as two terminals, the band inversion transition should accompany a metal-semiconductor transition at a certain \(x \). If we assume that the band gap of (Cd\(_{1-x}\)Zn\(_x\))\(_3\)As\(_2\) changes linearly with respect to \(x \), the critical point of the band inversion transition is estimated to occur in the range of \(0.23 \leq x \leq 0.41 \). This estimation is consistent with our experimental results. The critical point can also be estimated by considering the change of the SOC strength in (Cd\(_{1-x}\)Zn\(_x\))\(_3\)As\(_2\). Here we assume that the band inversion is solely induced by the change of the SOC strength, which is proportional to \(Z^2/n^3 \) in case of the hydrogenic wavefunctions in a Coulomb field where \(Z \) is the nuclear charge and \(n \) is the principal quantum number\(^{45} \). Then the critical point is estimated as \(x \sim 0.35 \), which is very close to the experimental result: \(x_c \sim 0.38 \).
The band structure calculation for Cd$_3$(As$_{1-x}$P$_x$)$_2$ revealed a topological phase transition from a Dirac semi-metal to a trivial semiconductor induced by the change of the SOC strength. When x increases, the two Dirac points along the k_z axis gradually move closer and then merge at the Γ point under the protection of the crystal symmetry. A direct band gap is opened beyond the critical point. The process of the band inversion transition in (Cd$_{1-x}$Zn$_x$)$_3$As$_2$ should be similar as that in Cd$_3$(As$_{1-x}$P$_x$)$_2$. Despite of large chemical replacement in the crystals,

x	Parameters	0.00	0.07	0.13	0.29	0.31	0.38
	A_0 (10^{-7} Å$^{-1}$)	8.08	6.18	2.53	1.30/1.74	1.98	2.66/4.01/6.66
	k_0 (Å$^{-1}$)	0.051	0.044	0.028	0.02/0.024	0.025	0.029/0.036/0.046
	E_F (eV)	0.346	0.289	0.165	0.107/$-$	0.143	0.169/$-$/$-$
	v_F (10^3 m/s)	9.9	10.1	9.1	8.3/$-$	8.6	9.4/$-$/$-$
	m^* (me)	0.061	0.051	0.036	0.028	0.034	0.036

Table 1. Parameters of the tested samples of different zinc concentration x. The dashed entries mean quantities missing.

Figure 7. Panel (a): Field dependent Hall resistivity of (Cd$_{1-x}$Zn$_x$)$_3$As$_2$ for $0 \leq x \leq 0.46$ at 2 K. From $x = 0.00$ to 0.46, all samples are n-type. Inset: The Hall resistivity of the sample for $x = 0.46$ shows a non-linear profile. For $x = 0.58$, the signal turns to p-type. Panel (b): Carrier density n_H ($n_H = B/(e\rho_{xy})$) and mobility $\mu_c (\mu_c = 1/(e\rho_{xx}n_H))$ at 2 K versus x for $x = 0.00$ to 0.38. Panel (c): The conductivity σ_{xy} versus the magnetic field. Inset: The mobility got from the standard Bloch-Boltzmann transport.
the Dirac cones are robust, which is supported by the vanishing disorder self-energy around the crossing points. Further investigation such as ARPES measurements for (Cd$_{1-x}$Zn$_x$)$_3$As$_2$ will help to reveal the details of this topological phase transition.

Cd$_3$As$_2$ is always n-type due to As vacancies, while Zn$_3$As$_2$ is p-type because extra Zn vacancies serve as electron acceptors. Since both two types of carriers come from element vacancies, an n to p transition is expected in (Cd$_{1-x}$Zn$_x$)$_3$As$_2$. With increasing x, the zinc doping will suppress the chemical potential, which crosses a small Fermi surface near the Dirac cones. The decrease of S_F1 with increasing x is a comprehensive result of the change of the band structure and chemical potential.

For $0.29 \leq x \leq 0.38$, we found strongly sample-dependent frequencies of SdH oscillations. For a very narrow bandgap semiconductor or semimetal, any small change of the carrier concentrations will affect the chemical potential dramatically near the band touching. The strong sample-dependence and the complicated SdH oscillations in this regime are not unexpected.

Summary. Single crystals of (Cd$_{1-x}$Zn$_x$)$_3$As$_2$ were synthesized from high-temperature solutions. Based on the analysis of the electrical properties, we realized a transition from a 3D Dirac semimetal to a semiconductor with the critical point $x_C \approx 0.38$ in these solid solutions (Fig. 8). The structural transitions do not affect the electrical properties in this system. The topological aspect of this metal-insulator transition needs experimental exploration in the future.

Methods

Single crystalline (Cd$_{1-x}$Zn$_x$)$_3$As$_2$ samples were grown from high temperature solutions with the initial concentration of starting elements being (Cd$_{1-y}$Zn$_y$)$_9$As$_1$. The mixtures were sealed in evacuated quartz ampoules, and then kept at a high temperature between 800 °C and 1100 °C for two days, and then slowly cooled down to 425 °C with a rate of $-5 \degree$C/hour. After staying at 425 °C for one day, the ampoules were centrifuged to separate crystals from flux. The single crystals of Cd$_3$As$_2$ were mainly 3D bulks with triangular facets, but several needle-like crystals were found in the growth as well. When zinc was added to the solutions, the sizes of the 3D crystals decreased, while some flake-like crystals with smooth or mesa-landscape-like surfaces appeared. For $x \geq 0.58$, the flake-like crystals were dominant and no 3D crystals appeared in the growth. XRD measurements revealed that both the triangular facets (Fig. 1(f)) and the large surface of the flake-like crystals (Fig. 1(e)) were either the (011)$_0$ face of the P4$_2$/nmc structure or the (112)$_1$ face of the I4$_1$/amd structure, which were the counterparts of each other (Fig. 2(c,d)). In a same batch of growth, the crystals with different morphologies did not show larger difference of physical properties than those with the same morphologies.

In order to determine the zinc concentration x, we measured the Energy Dispersive X-ray Spectrum (EDX) of the samples in an FEI Nova NanoSEM 430 spectrometer. The samples with no residual cadmium were selected in the measurements and their EDX spectrum was observed through an overall area scanning. The linear relation of the measured zinc concentrations x and the initial y ($0 \leq y \leq 0.1$) is shown in Fig. 3(c). By weighing the mass of the crystals yielded in every growth, we found that all the initial stoichiometric zinc was compounded in the crystals.

The powder XRD data was collected from a Rigaku MiniFlex 600 diffractometer and then refined by a Rietica Rietveld program. As shown in Fig. 3(b), the lattice constants and the volume of the unit cell change linearly with x in accordance with a Vegards law. This result is same with what observed in polycrystalline (Cd$_{1-x}$Zn$_x$)$_3$As$_2$.

Figure 8. Phase diagram for (Cd$_{1-x}$Zn$_x$)$_3$As$_2$. With the concentration of Zn increasing, the samples transform from a topological Dirac semimetal to a semiconductor. The upper sketches of the band structure illustrate this transition. The structure transforms from I4$_1$/amd to P4$_2$/nmc then back to I4$_1$/amd with vertical dashed lines serving as rough boundaries. The background color presents the gradual change of resistivity at 2 K as x increases (inset of Fig. 4(a)). The changes of S_F1 and RRR are plotted in the diagram as well.
Therefore we selected x determined by EDX measurements as the nominal zinc concentrations, which were estimated to have less than ±1% difference between the real zinc concentrations. More details of the XRD experiments are discussed in the Result part. Single crystals were polished to the bars with length ~1.0 mm, width ~0.4 mm and thickness ~0.3 mm for electrical transport measurements. The crystallographic orientation of the bars was same as those chosen in the recent experiments21–23, i.e., the current was perpendicular to the [112]_x direction in I4/acd (or [011]_x direction in P4_2/nmc), and the magnetic field was along the [112]_x direction in I4/acd (or [011]_x direction in P4_2/nmc). The electrical resistance and Hall voltage were measured via a four-point contact method in Quantum Design Physical Property Measurement System (PPMS-9).

References
1. Zdanowicz, W. & Zdanowicz, L. Semiconducting compounds of the AIB^3+ group. Annu. Rev. Mater. Sci. 5, 301–328 (1975).
2. Misiewicz, J. et al. Zn,P,−–a new material for optoelectronic devices. Microelectronics J 25, xxii–xxxviii (1994).
3. Stepanchikov, D. & Shutov, S. Cadmium phosphide as a new material for infrared converters. Sem. Phys. Quantum. El. & Opt. 9, 40–44 (2006).
4. Burgess, T. et al. Zn,As, nanowires and nanoplatelets: highly efficient infrared emission and photodetection by an earth abundant material. Nano Lett. 15, 378–385 (2015).
5. Stackelberg, M. V. & Paulus, R. Investigation on phosphides and arsenides of zinc and cadmium. the Zn,P, lattice. Z. Phys. Chem. 28, 427–460 (1935).
6. Węglowski, S. & Łukaszewicz, K. Phase transition of Cd,As, and Zn,As, Bull. Acad. Polon. Sci. Ser. Sci. Chim 16, 177–182 (1968).
7. Steigmann, G. A. & Goodyear, J. The crystal structure of Cd,As,. Acta Cryst. B 24, 1062–1067 (1968).
8. Pistorius, C. W. F. T. Melting and polymorphism of Cd,As, and Zn,As, at high pressures. High Temp. High Press. Temp. 7, 441–449 (1975).
9. Ali, M. N. et al. The crystal and electronic structures of Cd,As,, the three-dimensional electronic analogue of graphene. Inorg. Chem. 53, 4062–4067 (2014).
10. Elrod, U. et al. Morphological and structural properties of Zn,P, single crystals grown by recrystallization in a closed system. J. Cryst. Growth 67, 193–203 (1984).
11. Pistorius, C. W. F. T., Clark, G. B., Cootzter, J., Kruger, G. J. & Kunze, O. A. High pressure phase relations and crystal structure determination for Zn,P, & Cd,As,. High Press. High Temp. 9, 471–482 (1977).
12. Rubisov, V. A., Trukhan, V. M. & Yakimovich, V. N. Thermal expansion of Cd,As,–,Zn,As,–,p后的双轴类型固溶. Dokl. Akad. Nauk BSSR 54, 407–410 (1990).
13. Turner, W. L., Fischer, A. S. & Reese, W. E. Physical properties of several 2–5 semiconductors. Phys. Rev. 121, 759–767 (1961).
14. Fagen, E. A. Optical properties of Zn,P,. J. Appl. Phys. 50, 6505–6515 (1979).
15. Haacke, G. & Castellion, G. A. Preparation and semiconducting properties of Cd,P,. J. Appl. Phys. 35, 2484–2487 (1964).
16. Aubin, M. J., Caron, L. G. & Jay-Gerin, J. P. Band structure of cadmium arsenide at room temperature. Phys. Rev. B 15, 3872–3878 (1977).
17. Caron, L. G., Jay-Gerin, J. P. & Aubin, M. J. Energy-band structure of Cd,As, at low temperatures and the dependence of the direct gap on temperature and pressure. Phys. Rev. B 15, 3879–3887 (1977).
18. Wang, Z., Weng, H., Wu, Q., Dai, X. & Fang, Z. Three-dimensional Dirac semimetal and quantum transport in Cd,P,. Phys. Rev. B 88, 125427 (2013).
19. Neupane, M. et al. Observation of a three-dimensional topological Dirac semimetal phase in high-mobility Cd,As,. Nat. Commun. 5, 3786–3793 (2014).
20. Liu, Z. K. et al. A stable three-dimensional topological Dirac semimetal Cd,As,. Nat. Mater. 13, 677–681 (2014).
21. Borisenko, S. et al. Experimental realization of a three-dimensional Dirac semimetal. Phys. Rev. Lett. 113, 027603 (2014).
22. Jeon, S. et al. Landau quantization and quasiparticle interference in the three-dimensional Dirac semimetal Cd,As,. Nat. Mater. 13, 851–856 (2014).
23. Liang, T. et al. Ultrahigh mobility and giant magnetoresistance in the Dirac semimetal Cd,As,. Nat. Mater. 14, 280–284 (2015).
24. Zhao, Y. et al. Anisotropic Fermi surface and quantum limit transport in high mobility three-dimensional Dirac semimetal Cd,As,. Phys. Rev. X 5, 031037 (2015).
25. He, L. P. et al. Quantum transport evidence for the three-dimensional Dirac semimetal phase in Cd,P,. Phys. Rev. Lett. 113, 246402 (2014).
26. Narayanan, A. et al. Linear magnetoresistance caused by mobility fluctuations in n-doped Cd,As,. Phys. Rev. Lett. 114, 117201 (2015).
27. Orlita, M. et al. Observation of three-dimensional massless Kane fermions in a zinc-blende crystal. Nat. Phys. 10, 233–238 (2014).
28. Dzialawa, P. et al. Topological crystalline island states in Pb,Sn,Se. Nat. Mater. 11, 1023–1027 (2012).
29. Xu, S. Y. et al. Topological phase transition and texture inversion in a tunable topological insulator. Science 332, 560–564 (2011).
30. Ruhl-Nel, M. et al. Topological-metal to band-insulator transition in (Bi,In,Se, thin films. Phys. Rev. Lett. 109, 186403 (2012).
31. Narayanan, A., Di Sante, D., Picozzi, S. & Sanvito, S. Topological tuning in three-dimensional Dirac semimetals. Phys. Rev. Lett. 113, 256403 (2014).
32. Zdanowicz, W., Łukaszewicz, K. & Trzebiatowski, W. Crystal structure of semiconductor system Cd,As,–Zn,As,. Bull. Acad. Pol. Sci., Ser. Chim 12, 169 (1964).
33. Zdanowicz, L. & Zdanowicz, W. Semiconducting properties of Cd,As,–,Zn,As,–, type solid solutions. Phys. Stat. Sol. 6, 227–234 (1964).
34. Rogers, L. M., Jenkins, R. M. & Crocker, A. J. Transport and optical properties of the Cd,As,–,Zn,As, alloy system. J. Phys. D: Appl. Phys. 4, 793 (1971).
35. Wagner, R. J., Palik, E. D. & Swiguard, E. M. Interband magnetoelectric effect in Cd,As,–,Zn,As, and Cd,As,P,–, J. Phys. Chem. Solids, Suppl. 1, 471 (1971).
36. Castellion, G. A. & Beegle, L. C. The preparation and properties of Cd,As,–,Zn,As, alloys. J. Phys. Chem. Solids 26, 767–773 (1965).
37. Volodina, G. F., Zakhvalinskii, V. S. & Kravtsov, V. K. Crystal structure of α′′–(Zn, Cd),As,–(x = 0.26). Crystallogr. Rep. 58, 563–567 (2013).
38. Iwami, M., Matsunami, H. & Tanaka, T. Galvanomagnetic effects in single crystals of cadmium arsenide. J. Phys. Soc. Jpn. 31, 768–775 (1971).
39. Aubin, M. J. & Portal, J.C. Shubnikov-de Haas oscillations in Cd,As,–,Zn,As, alloys. Solid State Commun. 38, 695–702 (1981).
40. Arushanov, E. K. et al. Cyclotron masses and g-factors of electrons in Cd,As,–,Zn,As, solid solutions. Fiz. Tkh. Poluprovodn 22, 338–340 (1988).
41. Qu, D.-X., Hor, Y. S., Xiong, J., Cava, R. J. & Ong, N. P. Quantum oscillations and Hall anomaly of surface states in the topological insulator Bi,Te, Science 329, 821–824 (2010).
42. Shenonberg, D. In Magnetic oscillations in metal (Cambridge University Press, Cambridge, 2009).
43. Murakawa, H. et al. Detection of Berry’s phase in a bulk Rashba semiconductor. Science 342, 1490–1493 (2013).
44. Bell, C. et al. Shubnikov-de Haas oscillations in the bulk Rashba semiconductor. Bīrīt. Phys. Rev. B 87, 081109 (2013).
45. Khomskii, D. Role of spin-orbit coupling. In Transition Metal compounds, chap. 3, 71–78 (Cambridge University Press, Cambridge, 2014).
46. Di Sante, D., Barone, P., Plekhanov, E., Ciuchi, S. & Picozzi, S. Robustness of Rashba and Dirac fermions against strong disorder. Sci. Rep. 5 (2015).
47. Naake, H. J. & Belcher, S. C. Solid solutions in the system Zn₃As₂-Cd₃As₂. J. Appl. Phys. 35, 3064–3065 (1964).

Acknowledgements
The authors acknowledge the members in Jian Wang's group and Yuan Li's group for helpful discussions and using their instruments. The project is supported by National Basic Research Program of China (Grant Nos 2013CB921901 and 2014CB239302).

Author Contributions
S.J. conceived the experiment, H.L. and X.Z. conducted the experiment. H.L. analysed the results and completed the manuscript with help from S.J. All authors reviewed the manuscript.

Additional Information
Competing Interests: The authors declare that they have no competing interests.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access
This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2017