Sorting by Reversals, Block Interchanges, Tandem Duplications, and Deletions

Martin Bader | January 15, 2009
Genome Rearrangement Problems

Ancestor

Evolution

Genome rearrangement events:
- Reversals
- Transpositions
- Translocations
- Fusions/Fissions
- Insertions/Deletions
- Duplications

Descendant
Genome Rearrangement Problems

Ancestor

Genome rearrangement events:
- Reversals
- Block Interchanges
- Tandem Duplications
- Deletions

Evolution

Descendant

- Further restrictions: unichromosomal genomes, ancestor has no duplicated genes
Example

Sort \((\rightarrow 1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow 5) \) into \((\rightarrow 4 \rightarrow 2 \rightarrow 5 \rightarrow 5 \rightarrow 2 \rightarrow 3) \)

\[\downarrow \]

\((\rightarrow 1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow 5) \)

?

\[\downarrow \]

\((\rightarrow 4 \rightarrow 2 \rightarrow 5 \rightarrow 5 \rightarrow 2 \rightarrow 3) \)
Example

Sort \((1 \ 2 \ 3 \ 4 \ 5)\) into \((4 \ 2 \ 5 \ 5 \ 2 \ 3)\)

\(\rightarrow (1 \ 2 \ 3 \ 4 \ 5)\) transposition

\(\rightarrow (1 \ 4 \ 5 \ 2 \ 3)\)

\(\rightarrow (4 \ 2 \ 5 \ 5 \ 2 \ 3)\)
Example

Sort \((1 \rightarrow 2 \leftarrow 3 \rightarrow 4 \leftarrow 5)\) into \((4 \rightarrow 2 \leftarrow 5 \rightarrow 2 \rightarrow 3)\)

- \((1 \underline{2} \rightarrow 3 \rightarrow 4 \leftarrow 5)\) \text{ transposition}
- \((1 \rightarrow 4 \leftarrow 5 \rightarrow 2 \rightarrow 3)\) \text{ tandem duplication}
- \((1 \rightarrow 4 \leftarrow 5 \rightarrow 2 \leftarrow 5 \rightarrow 2 \rightarrow 3)\)
- \((4 \rightarrow 2 \leftarrow 5 \rightarrow 2 \rightarrow 3)\)
Example

Sort (1 → 2 → 3 → 4 → 5) into (4 → 2 → 5 → 5 → 2 → 3)

- (1 _ 2 → 3 → 4 → 5) transposition
- (1 → 4 → 5 → 2 → 3) tandem duplication
- (1 → 4 → 5 → 2 → 5 → 2 → 3) reversal
- (1 → 4 → 2 → 5 → 5 → 2 → 3)
- (4 → 2 → 5 → 5 → 2 → 3)
Example

Sort \((1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow 5)\) into \((4 \rightarrow 2 \rightarrow 5 \rightarrow 5 \rightarrow 2 \rightarrow 3)\)

- ▶ \((1 _ \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow 5)\) transposition
- ▶ \((1 \rightarrow 4 \rightarrow 5 \rightarrow 2 \rightarrow 3)\) tandem duplication
- ▶ \((1 \rightarrow 4 \rightarrow 5 \rightarrow 2 \rightarrow 5 \rightarrow 2 \rightarrow 3)\) reversal
- ▶ \((1 \rightarrow 4 \rightarrow 2 \rightarrow 5 \rightarrow 5 \rightarrow 2 \rightarrow 3)\) deletion
- ▶ \((4 \rightarrow 2 \rightarrow 5 \rightarrow 5 \rightarrow 2 \rightarrow 3)\)
Algorithm: Outline

- Simulate Reversals and Block Interchanges by DCJs
- Start with π, sort backwards to id
 \Rightarrow apply inverse operations
- Define a lower bound on $d(\pi, id)$ based on the Breakpoint Graph
- Find operations on π that decrement the lower bound
- Apply the “best” of them (Greedy algorithm)
- If no such operation exists, use additional heuristics
The Breakpoint Graph

- Invented by Bafna and Pevzner for genomes without duplicates
The Breakpoint Graph

- Invented by Bafna and Pevzner for genomes without duplicates
- Write the identity genome on a straight line

Example: $\pi = (\vec{3} \vec{2} \vec{1} \vec{4} \vec{5})$
The Breakpoint Graph

- Invented by Bafna and Pevzner for genomes without duplicates
- Write the identity genome on a straight line
- Replace \overrightarrow{x} by $-x + x$

Example: $\pi = (\overleftarrow{3} \overrightarrow{2} \overleftarrow{1} \overrightarrow{4} \overleftarrow{5})$
The Breakpoint Graph

- Invented by Bafna and Pevzner for genomes without duplicates
- Write the identity genome on a straight line
- Replace \vec{x} by $-x + x$
- Add boundary elements $+0$ and $-(n+1)$

Example: $\pi = (\vec{3} \vec{2} \vec{1} \vec{4} \vec{5})$
The Breakpoint Graph

- Invented by Bafna and Pevzner for genomes without duplicates
- Write the identity genome on a straight line
- Replace \overrightarrow{x} by $-x + x$
- Add boundary elements $+0$ and $-(n+1)$
- Add reality edges from $+x$ to $-(x+1)$

Example: $\pi = (\overrightarrow{3} \overrightarrow{2} \overrightarrow{1} \overrightarrow{4} \overrightarrow{5})$
The Breakpoint Graph

- Invented by Bafna and Pevzner for genomes without duplicates
- Write the identity genome on a straight line
- Replace \overrightarrow{x} by $-x + x$
- Add boundary elements $+0$ and $-(n+1)$
- Add reality edges from $+x$ to $-(x+1)$
- Add desire edges according to adjacencies in π

Example: $\pi = (\overleftarrow{3} \overrightarrow{2} \overrightarrow{1} \overrightarrow{4} \overrightarrow{5})$
The Breakpoint Graph revisited

Example: \(\pi = (\overrightarrow{4} \overleftarrow{2} \overrightarrow{5} \overrightarrow{5} \overrightarrow{2} \overrightarrow{3}) \)
The Breakpoint Graph revisited

Example: \(\pi = (4 \leftarrow 2 \rightarrow 5 \rightarrow 5 \rightarrow 2 \rightarrow 3) \)

- Multiplicity of an element \(x \): number of occurrences of \(x \) in \(\pi \)
- Multiplicity of a desire edge \((v, w)\): number of desire edges \((v, w)\) in the breakpoint graph
- Loop: Desire edge \((v, v)\)
- Component: Connected component (graph theory)
- 1-bridge: Desire edge that can be removed to increase the number of components
- 2-bridge: Pair of desire edges that can be removed to increase the number of components
Effects of Operations: DCJ

- Cuts two desire edges and rejoins the ends
- Can split a component with a 2-bridge or two 1-bridges
- Can remove up to two loops

\[(\vec{1} \rightarrow \vec{4} \rightarrow \vec{2} \rightarrow \vec{5} \rightarrow \vec{3}) \leftarrow (\vec{1} \rightarrow \vec{5} \rightarrow \vec{2} \rightarrow \vec{5} \rightarrow \vec{3}) \]
Effects of Operations: Inverse Tandem Duplication

- Removes desire edge between segment end and segment start
- Removes desire edges inside the segment
- The latter desire edges have a multiplicity \(\geq 2 \)
- Splits a component if and only if the former desire edge is a 1-bridge
- Can remove one loop
- Precondition: Two consecutive identical segments

\[
\begin{pmatrix}
1 & 4 & 5 & 2 & 5 & 2 & 3 \\
\end{pmatrix}
\quad \leftrightarrow
\begin{pmatrix}
1 & 4 & 5 & 2 & 3 \\
\end{pmatrix}
\]
Effects of Operations: Inverse Deletion

- Removes one desire edge
- Inserts arbitrary desire edges
- Can split a component if the removed desire edge is a 1-bridge
- Can remove one loop

\[
\begin{array}{cccccccc}
+0 & -1 & +1 & -2 & +2 & -3 & +3 & -4 \\
\end{array}
\]

\[
\begin{array}{cccccccc}
+0 & -1 & +1 & -2 & +2 & -3 & +3 & -4 \\
\end{array}
\]
A lower bound

- The breakpoint graph of id has $n + 1$ components and no loops.
- Thus, the distance $d(\pi, id)$ can be bounded by

$$d(\pi, id) \geq lb(\pi) = n + 1 - C(\pi) + \sum_{\text{Components}} \left\lceil \frac{S_i}{2} \right\rceil$$

where $C(\pi)$ is the number of components and S_i is the number of vertices with a loop in component C_i.

- $lb(\pi) = 0$ if and only if $\pi = id$, otherwise $lb(\pi) > 0$.
Additional Heuristics

Search for

- Tandem duplications that do not change the lower bound
- Reversals that create adjacencies
- Sequences for elements with multiplicity ≥ 3
- Sequences for the few remaining cases

Which of those is the best?

- Maximize the number of adjacencies
- Bring multiplicity of elements close to 1

\Rightarrow Maximize $\tau(\pi) := \# \text{adjacencies} - 2 \cdot (\# \text{missing elements} + \# \text{duplicated elements})$
Additional Heuristics

Search for

- Tandem duplications that do not change the lower bound
- Reversals that create adjacencies
- Sequences for elements with multiplicity ≥ 3
- Sequences for the few remaining cases

Which of those is the best?

- Maximize the number of adjacencies
- Bring multiplicity of elements close to 1

$\Rightarrow \maximize \tau(\pi) := \# \text{adjacencies} - 2 \cdot (\# \text{missing elements} + \# \text{duplicated elements})$
Additional Heuristics

Search for

- Tandem duplications that do not change the lower bound
- Reversals that create adjacencies
- Sequences for elements with multiplicity ≥ 3
- Sequences for the few remaining cases

Which of those is the best?

- Maximize the number of adjacencies
- Bring multiplicity of elements close to 1

\Rightarrow Maximize

$\tau(\pi) := \#\text{adjacencies} - 2 \cdot (\#\text{missing elements} + \#\text{duplicated elements})$
Algorithm: Pseudocode

while $\pi \neq id$ do

Find all operations that decrease $lb(\pi)$

if operation found then

apply an operation that maximizes $\tau(\pi)$

else

find tandem duplications

find sequences for segments with multiplicity ≥ 3

find operations that create adjacencies

find sequences for the remaining cases

apply a sequence that maximizes $\tau(\pi)$

end if

end while
Experimental Results

- Start with id of size n ($n \in \{20, 50, 80, 100\}$)
- Apply αn random operations ($\alpha \in [0, 1]$)
- Use algorithm to reconstruct this sequence
- Compare # applied operations to # calculated operations
Experimental Results

For n = 50, the plot shows the comparison between the created sequence, lower bound, and calculated sequence. The x-axis represents the number of performed operations, while the y-axis represents the number of calculated operations. The graph illustrates the performance of the sorting algorithms under consideration.
Conclusion and Future work

- Algorithm works well for small values of n and α
- Possible improvements:
 - Tighter lower bound
 - Finding an upper bound
 - Improving the heuristics
 - Extending the algorithm to multichromosomal genomes
Acknowledgements

- Thanks to Sophia Yancopoulous for the initial idea of combining DCJ and duplications
- Thanks to Michal Ozery-Flato for invaluable discussion
Thanks!

Thank you for your attention!
Algorithm: Completeness

- Define

\[\tau(\pi) := \#\text{adjacencies} - 2 \cdot (\#\text{missing elements} + \#\text{duplicated elements}) \]

- \(\tau(\pi) \) is maximized for \(\pi = id \)
- All additional heuristics increase \(\tau(\pi) \) and do not decrease \(lb(\pi) \)
- Between two operations that decrease the lower bound, only a finite number of operations can be applied
- Only a finite number of operations that decrease the lower bound can be applied
The Double Cut and Join Operator (DCJ)

- Invented by Yancopoulos et al. (2005)
- Cuts the genome at two positions, and rejoins the ends
- Reversals can be simulated by one DCJ
- Block interchanges can be simulated by two DCJs (via circular intermediate)
- Circular intermediates must be absorbed by the next operation