The First Report on Chemical Composition and Antimicrobial Activity of Artemisia scoparia Waldst. et Kit. Extracts

Gordana S. Stojanović1, Jovana D. Ickovski1, Aleksandra S. Đorđević1, Goran M. Petrović1, Katarina D. Stepić1, Ivan R. Palić1, and Jelena G. Stamenković1

Abstract
Volatiles of diethyl ether extract (DE), ethyl acetate extract (EE), and hexane extract (HE) of Artemisia scoparia Waldst. et Kit. were analyzed by gas chromatography with flame ionization detector and gas chromatography-mass spectrometry. In both DE and EE, the main compound was scoparone (24.0% and 86.1%, respectively) while in the HE, alkanes were dominant with nonacosane as the most represented (19.4%). Antimicrobial activity was tested against 4 bacterial strains and 1 fungal strain using disc-diffusion method. Tested samples were inactive against Gram-negative bacteria and they exhibited activity against Gram-positive bacteria and yeast Candida albicans. This is the first report on the chemical composition of volatile components and antimicrobial activity of DE, EE, and HE of A. scoparia Waldst. et Kit.

Keywords
Artemisia scoparia, extracts, coumarins, volatiles chemical composition, antimicrobial activity

Received: January 5th, 2020; Accepted: February 14th, 2020.

Genus Artemisia, commonly known as wormwood or sagebrush, is the most widely distributed genera of the tribe Anthemideae, Asteraceae family, which consists of around 800 species of herbs and shrubs. They are well known for their volatile oil that is frequently used in pharmaceutical and food industry. Artemisia scoparia Waldst. et Kit. (redstem wormwood) is a perennial and slightly aromatic herb which grows in the summer season, along road sides and on low hills, stony ground, waste or rural lands, from 400 to 2200 m altitude. The plant is well known in traditional medicine as a febrifuge, diuretic, antispasmodic, purgative, and a cure for earache, while the smoke is known to be good for burns. This species also has anticholesterolemic, antibacterial, antiseptic, and cholagogue properties. Moreover, infusions made from the whole plant have been traditionally used to treat jaundice and other liver disorders. Hydromethanolic extract of A. scoparia possesses antinociceptive and anti-inflammatory activities. Essential oil obtained from the aerial parts of this plant showed strong radical scavenging capacity and antioxidant activity against hydroxyl radical and hydrogen peroxide. Furthermore, the essential oil displays strong insecticidal activity against stored-product insects. Methanolic extract from aerial parts of A. scoparia showed activity toward Bacillus subtilis, Staphylococcus aureus, and Candida albicans while it was inactive against Escherichia coli and Pseudomonas aeruginosa. Khan et al evaluated that A. scoparia ethyl acetate extract (EE) demonstrated significant activity against Salmonella typhimurium and S. aureus while aqueous extracts were active only toward S. typhimurium. Acetone, ethanol, and n-hexane extracts showed weak activity against P. aeruginosa. The results of the antibacterial activity assays performed by Cha et al showed that the essential oil of A. scoparia exhibited moderate activities against Streptococcus pyogenes, Streptococcus sanguinis, Streptococcus sobrinus, and Streptococcus gordonii and strong activity against Fusobacterium nucleatum, Prevotella intermedia, and Porphyromonas gingivalis.

Geng et al examined the ethanol extract of A. scoparia and isolated 3 new glucosides: scoparamide A, 3′,8′-dihydroxydec-9-en-4,6-yne 1-β-d-glucopyranoside, and 3′,8′-dihydroxydec-9-en-4,6-yne 1-O-(β-d-glucopyranosyl)-β-d-glucopyranoside, and 3′,8′-dihydroxydec-9-en-4,6-yne 1-O-(β-d-glucopyranosyl)-β-d-glucopyranoside. Three β-coumaric acid derivatives, 5 flavanes, 4 flavonones, 2 flavonols, 1 flavanone (7-methoxytaxifolin), 1 coumarin (scopoletin), 1 benzoic acid derivative (vanillic acid), 1 chromone derivative (scopariachromane), and 1 chromone derivative (6-demethoxycapillarisin) were identified in the hydroethanolic extract of A. scoparia extracts.

1Department of Chemistry, Faculty of Science and Mathematics, University of Niš, Serbia

Corresponding Author:
Gordana S. Stojanović, Department of Chemistry, Faculty of Science and Mathematics, University of Niš, Višegradska 33, 18000 Niš, Serbia.
Email: gocast@pmf.ni.ac.rs
extract of *A. scoparia*. From HPLC profiling, Khan et al observed the following compounds in the examined *A. scoparia* extracts: artemisinin (EE), quercetin (acetone and ethanol), caffeic acid (methanol, acetone), rutin (acetone), apigenin (acetone), and kaempferol (in all the above-mentioned extracts). Boudreau et al putatively identified prenylated derivatives of coumaric acid and cinnamic acid as well as some glycosides, flavones, and fatty acids.

To the best of our knowledge there are no data on the chemical composition and antimicrobial activity of *A. scoparia* diethyl ether extract (DE), hexane extract (HE), and EE extracts. Therefore, the aim of this paper was GC/FID and GC/MS analysis of these extracts and preliminary screening of their antimicrobial activity.

Qualitative composition and relative abundance of the volatile compounds of *A. scoparia* DE, HE, and EE are given in Table 1. The number of identified components from DE was 96 (representing 92.0% of the total GC peak areas), among which 53 components represented less than 0.1%. For HE that number was 83 (96.3% of total), among which 46 components represented less than 0.1%, while for EE the number of identified components was 10 (89.9% of total), among which 5 components represented less than 0.1%, as shown in Table 1. In both DE and EE, the main compound was scoparone (DE 24.0%; EE 86.1%). Scoparone was previously isolated from *A. scoparia* but was also found in some other species of this genus. Among others scoparone was found in *A. capillaris*, *A. annua*, and *A. dracunculus*.

Other abounded components in DE were nonacosane (5.9%), stigmasterol (4.9%), and tritriacontane (3.9%), while in EE scopoletin (1.2%) and vanillin derivatives (2.6%) were above threshold. The major classes of compounds identified in DE were n-alkanes with a share of 42.1% and coumarins with a share of 24.4% of the total extract. As well as for DE, in HE the dominant class of compounds was n-alkanes with a share of 60.3% of the total HE. The most abundant component in HE was nonacosane (19.4%). Other compounds present in HE in significant amounts were hentriacontane, heptacosane, capillene, and eugenol (11.0%, 9.0%, 5.8%, and 4.8%, respectively). For EE coumarins were the predominant class of compounds with a share of 87.3% of the total extract.

There was similarity in qualitative chemical composition of DE and HE, while composition of EE is notably different which is consistent with solvent polarity. In both DE and HE, hydrocarbon sesquiterpenoids were present in more than 10 times smaller amounts than oxygenated sesquiterpenoids. In the case of EE, monoterpenoids, sesquiterpenoids, and diterpenoids were not detected at all. Percentage of sterols in DE and HE was about the same (7.5%, 8.0%, respectively), while they were absent from EE. The components present only in EE in trace amount were maltol, 1,2-benzenediol, (Z)-3-hexenyl valerate, and eugenol.

No literature data about volatiles of *A. scoparia* extracts are available, while there are reports about the chemical composition of essential oil of this plant. A previous analysis of the essential oil of *A. scoparia* showed that there are highly significant differences in chemical composition of the oil. Kapoor et al determined that the major components of *A. scoparia* oil from India were β-myrcene, γ-terpinene, p-cymene, and neral. Hydrocarbon monoterpenoids were the predominant class of compounds. In *A. scoparia* volatiles from India monoterpenoids amounted to about half of the total oil content and γ-terpinene and eugenol were the most abundant constituents.

Kaur et al found that the major class of compounds in *A. scoparia* oil from India was hydrocarbon monoterpenoids, while dominant components were β-myrcene, p-cymene, and limonene. Singh et al reported that the major compounds in the essential oil obtained from young leaves of *A. scoparia* from India were β-myrcene and p-cymene, while in oil obtained from mature leaves were p-cymene and ace-naphthalene. The essential oil of *A. scoparia* from South Korea was rich in 1,8-cineole (21.5%), camphor (11.0%), and β-caryophyllene (6.8%). The dominant class of compounds was oxygenated monoterpenoids. Safaiz-Ghomi et al discovered that the oil from Iran contained high level of 1-phenyl-penta-2,4-diyne (capillene), β-pinene, limonene, and (E)-β-ocimene. The essential oil of *A. scoparia* from Tajikistan was dominated by the phenylacetylenes (2,4-pentadiynyl-benzene and capillene).

Capillene was the major component (57.2%) of the essential oil obtained from a portion of the same plant material that was used to obtain the extracts examined in this paper. The compositions of essential oils and volatiles of extracts in question differ substantially in terms of major components. Namely, the main component of the oil was phenylacetylenes while the dominant component of DE and EE was coumarins. However, there are common monoterpenes, sesquiterpenes, and phenylpropanoids between EO, DE, and HE. Even, the content of capillene (5.8%) and capillin (4.6%) of HE is higher than the content of scoparone (1.8%).

The results of antimicrobial activity of the extracts against 4 bacteria and 1 yeast species are summarized in Table 2. Tested extracts were inactive against both Gram-negative strains, but they exhibited some activity against Gram-positive bacteria: *S. aureus* and *B. subtilis*. The antifungal activity against *C. albicans* of DE and EE was high, while HE exhibited low activity.

Differences in extract antimicrobial activity do not follow the difference in extract scoparone content (1.8% for HE, 24.0% for DE to 86.1% for EE). Given the content of scoparone in EE extracts (86.1%), it could be expected that the activity of the EE would be similar to that of scoparone, but these results do not confirm this expectation. Namely, Yang et al found that scoparone was active against *E. coli* and *B. subtilis* and inactive against *S. aureus* and *Aspergillus niger*. Devendar et al found that scoparone showed a moderate reduction in the growth of *C. albicans* and *A. niger*.

Based on the above, it could be concluded that the dominant group of compounds in DE and HE are alkanes while in EE coumarins are predominant, mostly scoparone. Further,
Table 1. Chemical Composition (%) of *Artemisia scoparia* Extracts.

Compound	RI	RL	DE	HE	EE	Class
α-Pinene	936	932	t	t	/	M
β-Pinene	977	974	t	/	/	M
Dehydro-1,8-Cineole	993	988	t	/	/	MO
α-Phellandrene	999	1002	t	/	/	M
α-Terpinene	1019	1014	t	/	/	M
p-Cymene	1023	1020	t	/	/	M
Limonene	1025	1024	/	t	/	M
1,8-Cineole	1030	1026	t	t	/	MO
γ-Terpinene	1055	1054	t	/	/	M
Artemisia ketone	1060	1056	/	t	/	MO
Acetophenone	1063	1059	t	t	/	O
Terpinolene	1091	1086	t	/	/	M
p-Cymene	1092	1089	t	/	/	M
trans-Sabinene hydrate	1099	1098	t	t	/	MO
n-Nonanal	1104	1100	t	t	/	O
Maltol	1111	1106	/	/	t	O
trans-Pinene hydrate	1121	1119	t	/	/	MO
α-Campholenal	1123	1122	t	t	/	MO
Nopinone	1140	1135	t	t	/	O
αβ-Pinene hydrate	1143	1139	t	t	/	MO
Camphor	1146	1141	/	t	/	MO
Pinocarvone	1156	1160	t	/	/	MO
Lavandulol	1166	1165	t	t	/	MO
Terpinen-4-ol	1178	1174	t	t	/	MO
p-Cymen-8-ol	1183	1179	t	t	/	MO
α-Terpineol	1191	1186	t	t	/	MO
1,2-Benzenediol	1197	1197	/	/	t	O
Myrtenal	1200	1195	t	t	/	MO
n-Decanal	1205	1201	t	t	/	O
Verbenone	1209	1204	t	/	/	MO
trans-Carvicol	1220	1215	/	t	/	MO
cis-Carvicol	1223	1226	t	/	/	MO
Carvone	1244	1239	t	t	/	MO
Chavicol	1250	1247	t	t	/	O
cis-Carvone oxide	1256	1259	0.5	/	/	MO
Nonanoic acid	1262	1267	t	t	/	O
(Z)-3-Hexenyl valerate	1274	1279	/	/	t	O
Carvacrol	1301	1298	t	t	/	MO
(Z)-3-Hexenyl tiglate	1323	1319	t	t	/	O
Eugenol	1360	1356	1.9	4.8	t	PP
α-Copaene	1379	1374	t	t	/	S
α-Isocomene	1390	1387	t	t	/	S
Vanillin	1397	1393	0.4	0.2	0.8	O
(E)-Caryophyllene	1420	1417	0.3	/	/	S
Lavandulyl isobutanoate	1423	1421	t	t	/	MO
(Z)-β-Farnesene	1439	1440	t	/	/	S
(E)-Isoeugenol	1451	1448	/	/	t	PP
Ethyl-vanillin	1456	1452	t	t	0.7	O
9-epi-(E)-Caryophyllene	1469	1464	t	t	/	S
αr-Curcumene	1483	1479	0.1	0.2	/	S
β-Seleinene	1487	1489	t	t	/	S
Capillene	1497	1493	1.7	5.8	/	P
Compound	RI	RL	DE	HE	EE	Class
---	------	------	----	----	----	-------
α-Muurolene	1505	1500	t	/	/	SO
Lavandulyl isovalerate	1510	1509	t	t	/	SO
δ-Cadinene	1527	1522	t	t	/	S
α-Calacorene	1546	1544	/	t	/	S
(E)-Nerolidol	1560	1561	t	t	/	SO
β-Calacorene	1563	1564	t	/	/	S
Dodecanoic acid	1565	1565	/	t	/	O
α-Caryophyllene oxide	1574	1572	t	t	/	SO
Spathulenol	1580	1577	1.3	3.0	/	SO
trans-Caryophyllene oxide	1586	1582	0.8	1.6	/	SO
Junenol	1617	1618	0.1	0.3	/	SO
1-epi-Cubenol	1623	1627	0.3	0.2	/	SO
(E)-Sesquilavandulol	1636	1631	t	0.2	/	SO
Capillin	1640	1637	2.0	4.6	/	P
β-Eudesmol	1653	1649	0.4	0.8	/	SO
Homovanillic acid	1654	1659	0.1	/	1.1	O
epo-α-Bisabolol	1680	1683	t	0.2	/	SO
Germaea-4(15),5,10(14)-tri-en-1α-ol	1682	1685	0.2	0.3	/	SO
Coniferaldehyde	1732	1728	0.2	/	/	O
(E)-Coniferyl alcohol	1734	1733	t	/	/	O
(E)-Sesquilavandulyl acetate	1739	1739	/	0.3	/	SO
Oplopaneone	1744	1739	t	t	/	O
iso-Longifolol acetate	1821	1819	0.1	t	/	SO
Neophytadiene	1835	1830	t	t	/	O
Phyton	1845	1843	t	t	/	O
Pentadecanoic acid	1858	1862	t	/	/	O
Nonadecane	1900	1900	0.7	t	/	A
Methyl palmitate	1924	1927	/	t	/	O
Hexadecanoic acid	1961	1959	0.7	t	/	O
Scopoletin	1969	1974	0.4	/	1.2	C
Scoparone	1980	1984	24.0	1.8	86.1	C
Heneicosane	2100	2100	1.6	0.1	/	A
Phytol	2115	2114	/	t	/	D
(Z,Z)-9,12-Octadecadienoic acid	2134	2137	0.3	/	/	O
(Z,Z,Z)-9,12,15-Octadecatrienoic acid	2140	2143	0.9	/	/	O
Octadecanoic acid	2159	2159	t	t	/	O
Docosane	2200	2200	1.6	t	/	A
1-Eicosanol	2289	2290	/	0.2	/	O
Tricosane	2300	2300	2.5	0.8	/	A
8,13-Abietadien-18-ol	2327	2324	2.0	/	/	O
Methyl dehydroabietate	2346	2341	0.6	0.6	/	O
Tetracosane	2400	2400	1.3	0.4	/	A
Labd-13-ene-8,15-diol	2424	2422	1.0	t	/	O
Pentacosane	2500	2500	1.3	1.8	/	A
Hexacosane	2600	2600	1.6	0.8	/	A
Heptacosane	2700	2700	3.5	9.0	/	A
Octacosane	2800	2800	1.8	2.8	/	A
Squalene	2831	2833	0.7	0.7	/	O
Nonacosane	2900	2900	5.9	19.4	/	A
Triacantane	3000	3000	3.5	2.7	/	A
Hentriacontane	3100	3100	2.9	11.0	/	A
Stigmasterol	3166	3170	4.9	5.5	/	ST

Table 1. Continued
only Gram-positive bacteria S. aureus and B. subtilis and yeast C. albicans were sensitive to the examined extracts. The mentioned microorganisms were most sensitive to DE.

Experimental

Plant Material and Isolation of Solvent Extracts

The aerial parts of A. scoparia were collected in Niška Banja, near Niš, Serbia, in 2017 in the full-blooming stage. A voucher specimen No. 13814 has been deposited in the Herbarium Moesiacum Niš (HMN), Department of Biology and Ecology, Faculty of Science and Mathematics, University of Niš. The plant material was dried at room temperature, milled, macerated with diethyl ether, ethyl acetate, or hexane (10 g of plant material in 100 mL of solvent) and then kept for 72 hours in the dark, at room temperature, with occasional shaking. The resulting extracts were filtered and concentrated on a rotary vacuum evaporator to dryness. Dry extracts were then diluted with the adequate solvent (DE with diethyl ether, EE with ethyl acetate, and HE with hexane) and analyzed by GC/FID and GC/MS.

GC/FID and GC/MS Analysis

The GC/MS analysis was performed using an Agilent Technologies 7890A gas chromatograph equipped with a fused...
silica capillary column HP-5MS (5% phenyl methyl siloxane, 250 µm × 25 m, film thickness 0.25 µm, Agilent Technologies, Santa Clara, CA, USA) and coupled with a 7000 MS/MS triple quadrupole system, operating in MS1 scan mode, of the same company. GC/MS was operated under the following conditions: injector and interface temperatures were 250°C and 300°C, respectively; oven temperature programmed from isothermal at 70°C for 2.25 minutes, then 70°C to 300°C at a heating rate of 5°C/min, and then isothermally held for 10 minutes; carrier gas was helium with a flow of 1.0 mL/min, constant flow mode, vacuum outlet (23.39 cm/s average velocity); injected volume was 5 µL of 1/100 diluted solution, split ratio 20:1. MS conditions were as follows: ionization voltage of 70 eV, acquisition mass range 35 to 500, scan time 0.32 seconds. GC/FID analysis was carried out under the same experimental conditions using the same column as described for the GC/MS. The percentage composition of the extracts (Table 1) was computed from the GC peak areas without the use of any correction factors.

Identification of Volatile Compounds

Extract constituents were identified by comparison of their linear retention indices (relative to C₆-C₄₀ alkanes on the HP-5MS column) with literature values and their MS with those from Wiley 6, NIST 11, Agilent Mass Hunter Workstation B.06.00 software by the application of the AMDIS software (Automated Mass Spectral Deconvolution and Identification System, ver. 2.1, DTRA/NIST, 2011).

Antimicrobial Activity

The antimicrobial activity of *A. scoparia* extracts was evaluated against 2 Gram-positive bacteria: *B. subtilis* (ATCC 6533) and *S. aureus* (ATCC 6538) and 2 Gram-negative bacteria: *E. coli* (ATCC 8739) and *Salmonella abony* (NCTC 6017). The antifungal activity was tested against *C. albicans* (ATCC 10231). Microbial strains belonged to the American Type Culture Collection (ATCC; Gaithersburg, MD, USA) except *S. abony*, belonging to National Collection of Type Cultures (NCTC, Public Health England, London, UK). A disc-diffusion method was used for the determination of the antimicrobial activity of the extracts, according to the National Committee for Clinical Laboratory Standards. Inoculates of the bacterial and fungal strains were prepared from overnight cultures and suspensions were adjusted to 0.5 McFarland standard turbidity. A volume of 100 µL of the suspension containing 1.0 × 108 CFU/mL of bacteria or 1.0 × 104 CFU/mL of fungal spores was spread on Mueller-Hinton agar (Torlak, Serbia) or sabouraud dextrose agar (Torlak, Serbia) and placed on the inoculated agar. Negative controls were prepared using DMSO. The standard discs (6 mm in diameter) of chloramphenicol (30 µg, Torlak), streptomycin (10 µg, Torlak), and nystatin (30 µg, Torlak) were used as positive control. The inoculated plates were kept at 4°C for 2 hours and incubated at 37°C (24 hours) for bacterial strains and at 28°C (48 hours) for fungal strains. The antimicrobial activity was evaluated by measuring the zone (in millimeters) of inhibition against the test microorganisms using appliance “Fisher-Lilly Antibiotic Zone Reder” (Fisher Scientific Co., USA). All microorganisms were completely insusceptible to the control discs imbued with DMSO. Antimicrobial assay was performed in triplicate and the mean values are reported.

Acknowledgments

We are grateful to the Ministry of Education, Science and Technological Development and the Science Fund of the Republic of Serbia for scientific research support.

Declaration of Conflicting Interests

The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Funding

The author(s) received no financial support for the research, authorship, and/or publication of this article.

ORCID ID

Gordana S. Stojanović https://orcid.org/0000-0002-3128-6510

References

1. Masotti V, Juteau F, Bessière JM, Viano J. Seasonal and phenological variations of the essential oil from the narrow endemic species *Artemisia molinieri* and its biological activities. J Agric Food Chem. 2003;51(24):7115-7121.
2. Singh H, Mittal S, Kaur S, Batish D, Kohli R. Chemical composition and antioxidant activity of essential oil from residues of *Artemisia scoparia*. Food Chem. 2009;114(2):642-645.
3. Hayat MQ, Khan MA, Ashraf M, Jabeen S. Ethnobotany of the genus *Artemisia* L. (Asteraceae) in Pakistan. Ethnobot Res App. 2009;7:147-162.
4. Chin CY. *New Chinese Materia Medica*. Peking, People’s Republic of China: Pharmaceutical Institute of the Academy of Medicine; 1951:3. 161.
5. Ahmad SS, Javed S. Exploring the economic value of underutilized plant species in Ayubia national park. Pak J Bot. 2007;39(5):1435-1442.
6. Perry LM. *Medicinal Plants of East and South-East Asia*. London, UK: MIT Press; 1980:84.
7. Habib M, Waheed I. Evaluation of anti-nociceptive, anti-inflammatory and antipyretic activities of *Artemisia scoparia* hydromethanolic extract. J Ethnopharmacol. 2013;145(1):18-24.
8. Singh HP, Kaur S, Mittal S, Batish DR, Kohli RK. In vitro screening of essential oil from young and mature leaves of *Artemisia*
Stojanović et al.

Compounds compared to its major constituents for free radical scavenging activity. _Food Chem Toxicol_. 2010;48(4):1040-1044.

9. Negahban M, Moharramipour S, Sefidkon F. Chemical composition and insecticidal activity of _Artemisia scoparia_ essential oil against three coleopteran stored-product insects. _J Asia Pac Entomol_. 2006;9(4):381-388.

10. Ramezani M, Fazil-Bazzaz BS, Saghafi-Khadem F, Dabaghan A. Antimicrobial activity of four _Artemisia_ species of Iran. _Fitoterapia_. 2004;75(2):201-203.

11. Khan K, Fatima H, Taqi MM, et al. Phytochemical and in vitro biological evaluation of _Artemisia scoparia_ Waldst. & Kit for enhanced extraction of commercially significant bioactive compounds. _J Appl Res Med Aromat Plants_. 2015;2(3):77-86.

12. Cha J-D, Jeong M-R, Jeong S-I, et al. Chemical composition and antimicrobial activity of the essential oils of _Artemisia scoparia_ and _A. capillaris_. _Planta Med_. 2005;71(2):186-190.

13. Geng C-A, Huang X-Y, Chen X-I, et al. Three new anti-HBV active constituents from the traditional Chinese herb of Yin-Chen (_Artemisia scoparia_). _J Ethnopharmacol_. 2015;176:109-117.

14. Yahagi T, Yakura N, Matsuzaki K, Kitanaka S. Inhibitory effect of chemical constituents from _Artemisia scoparia_ Waldst. et Kit. on triglyceride accumulation in 3T3-L1 cells and nitric oxide production in RAW 264.7 cells. _J Nat Med_. 2014;68(2):414-420.

15. Boudreau A, Poulev A, Ribnicky DM, et al. Distinct fractions of an _Artemisia scoparia_ extract contain compounds with novel adipogenic bioactivity. _Front Nutr_. 2019;6:18.

16. Chandrasekharan J, Khan HA, Ghanim A. Flavonoids from _Artemisia scoparia_. _Planta Med_. 1981;43(11):310-311.

17. Huang HC, Chu SH, Chao PD. Vasorelaxants from Chinese herbs, emodin and scoparone, possess immunosuppressive properties. _Eur J Pharmacol_. 1991;198(2-3):211-213.

18. Hoult JR, Paya M. Pharmacological and biochemical actions of simple coumarins: natural products with therapeutic potential. _Gen Pharmacol_. 1996;27(4):713-722.

19. Xie T, Liang JY, Liu J, Wang M, Wei XL, Yang CH. Chemical study on _Artemisia scoparia_. _J China Pharm Univ_. 2004;35:401-403.

20. Ma CM, Ke W, Sun ZL, et al. Large-scale isolation and purification of scoparone from _Herba artemisiae capillaris_ by high-speed counter-current chromatography. _Chromatographia_. 2006;64:83-87.

21. Cho J-Y, Jeong S-J, Lee HL, et al. Sesquiterpene lactones and scopoletins from _Artemisia scoparia_ Waldst. & Kit. and their angiotensin I-converting enzyme inhibitory activities. _Food Sci Biotechnol_. 2016;25(6):1701-1708.

22. Okuno I, Uchida K, Nakamura M, Sakurawi K. Studies on choleretic constituents in _Artemisia scoparia_ Thunb. _Chem Pharm Bull_. 1988;36(2):769-775.

23. Yamahara J, Kobayashi G, Matsuda H, Katayama T, Fujimura H. The effect of scoparone, a coumarin derivative isolated from the Chinese crude drug _artemisiae capillaris_ flos, on the heart. _Chem Pharm Bull_. 1989;37(5):1297-1299.

24. Jang SH, Kim Y-J, Lee W-Y, et al. Scoparone from _Artemisia scoparia_ inhibits the release of inflammatory mediators in RAW 264.7 cells upon stimulation cells by interferon-γ plus LPS. _Arq Pharm Res_. 2005;28(2):203-208.

25. Zhao Y-wu, Ni F-yong, Song Y-ling, et al. Chemical constituents from _Artemisia annua_. _Zhongguo Zhong Yao Za Zhi_. 2014;39(24):4814-4821.

26. Iversen E, Fretté XC, Christensen KB, et al. Bioassay-guided chromatographic isolation and identification of antibacterial compounds from _Artemisia annua_ L. that inhibit clostridium perfringens growth. _J AOAC Int_. 2014;97(5):1282-1290.

27. Balza F, Jamieson L, Towers GHN. Chemical constituents of the aerial parts of _Artemisia dracunculus_. _J Nat Prod_. 1985;48(2):339-340.

28. Kapoor R, Ali M, Mir SR, Rafiullah MRM. Essential oil constituents of aerial parts of _Artemisia scoparia_ Waldst. & Kit. _Flavour Fragg J_. 2004;19(2):109-111.

29. Ali M, Chaudhari A, Velasco-Negueruela A, Pérez-Alonso MJ. Volatile constituents of _Artemisia scoparia_ Waldst et Kit. Leaves. _Journal of Essential Oil Research_. 2000;12(1):64-66.

30. Kaur S, Singh HP, Batish DR, Kohli RK. _Artemisia scoparia_ essential oil inhibited root growth involves reactive oxygen species (ROS)-mediated disruption of oxidative metabolism: In vivo ROS detection and alterations in antioxidant enzymes. _Biochem Syst Ecol_. 2012;44:390-399.

31. Safaei-Ghom J, Bamoniri A, Sarafraz MB, Batooli H. Volatile components from _Artemisia scoparia_ Waldst et kit growing in central Iran. _Flavour Fragr J_. 2005;20(6):650-652.

32. Sharopov FS, Setzer WN. The essential oil of _Artemisia scoparia_ from Tajikistan is dominated by phenylacetylenes. _Nat Prod Commun_. 2011;6(1):119-122.

33. Ickovski J, Stepić K, Palić I, Stojanović G. Differences in the volatile profile of Artemisia scoparia Waldst. and Kit. after a prolonged storage period. In: 49th International Symposium on Essential Oils (ISEO2018), Niš, Serbia. Book of Abstracts: FACTA UNIVERSITATIS, Series: Physics, Chemistry and Technology 2018;16(1), Special Issue; 2018:150.

34. Yang B, Chen G, Song X, Chen Z, Song X, Wang J. Chemical constituents and antimicrobial activities of _Cannabina borrudii_. _Nat Prod Commun_. 2010;5(6):913-914.

35. Devendar P, Srinivas KVNS, Kumar JK, Kumar TS, Bhagel S, Sastry KP. Phytochemical investigation, antioxidant and anti-fungal activities of rhizomes of _Esphoria fusiiformis_. _Phong J_. 2014;6(4):78-82.

36. NCCLS (National Committee for Clinical Laboratory Standards). _Performance standards for antimicrobial disk susceptibility testing_. 6th International Supplement, Wayne, PA, M2-A6; 1997.