ABSTRACT

Background Systematic reviews have suggested that time spent on computer-related tasks increases consultation length. However, these reviews pre-date the current ubiquitous use of computers in U.K. general practice.

Objective As part of a U.K. national study of the influence of information technology (IT) on the interaction between patients and healthcare professionals during consultations, we explored how IT functions affected time allocation and styles of computer use during general practitioner (GP) consultations.

Methods We drew on multichannel video recording of consultations and measured consultation phases and the duration of computer-related tasks. We related measures of actual time to GP’s interpretation of computer use elicited in qualitative interviews.

Results Our sample included recordings of 112 consultations from 6 GPs in three practices. The computer was used for about one-third of the greater consultation. However, its use was concentrated pre- and post- the patient consultation. The workflow of consultation was exemplified through six computer use cases. Most functionality was accepted and accommodated within the consultation, though
disruptive and time-consuming tasks were generally delegated to administrative staff. Recognised styles of computer use (minimal, block and conversational) were apparent, but applied very flexibly by GPs according to the nature of the consultation.

Conclusions In contrast to earlier reports, contemporary computer use does not appear to have lengthened consultations. GPs adopted different styles of computer use in different consultations, challenging classifications that seek to stereotype GP computer use. Designing systems that support this versatility require an understanding of the fluid application of computer use within consultation structure.

What is already known
- Although computers have been used in U.K. general practice consultations for four decades, there are on-going concerns about the amount of time new computer functions may take.
- General practitioners (GPs) adopt different styles of computer use during patient consultations.

What this paper adds
- This study found no evidence that computer use increases the length of consultation.
- The electronic health record is now the accepted norm in U.K. primary care, and in general, GPs do not express concerns about the time allocated to undertaking computer-related tasks within the consultation.

Implications for clinical practice
- Despite some preferences in how they used the computer within the consultation, all the GPs readily adapted their style to suit the individual consultation.
- Understanding of the skilful versatile strategies employed by GPs may be a useful design resource and inform clinical training.
- Computer designers need to address the tension between ordered computer function and the fluid demands of a clinical consultation.

INTRODUCTION

Systematic reviews have suggested that time spent on computer-related tasks increases the length of the consultation, though some studies have associated longer consultations with less computer use. Although time may be saved by functions such as computerised repeat prescribing, this may not be reflected in an overall improvement in time efficiency, as illustrated by a study of poorly designed computerised decision support. Analysis of general practitioners’ (GPs’) actual computer use (clock time) and their perceived time (user experience) should enhance understanding of how computer use fits with the process and rhythm of time-managed consultations, and provide insights for software development, implementation and clinical training.

Classification of computer use

‘How long things take’ has been a focus of early studies of activities within the consultation. For example, TIMER (a tool for analysing tasks within the consultation) identified the number and types of problems addressed in the consultation, and rated doctor and patient activity as (a) physical (e.g. administration and examination), (b) verbal (e.g. information giving) or (c) secondary tasks (e.g. exploring patient concept and decision making) in 5-s intervals and totalled for the consultation. A more recent time and motion study evaluated how electronic health record (EHR) use in primary care affected time utilisation. Physician and patient behaviours were assigned to categories including: ‘major’ [e.g. computer – looking for notes (clinical records)] and ‘minor’ (e.g. checking lab result) and particular activities like looking, reading and writing (e.g. orders, emails or forms). As computer use is now the norm in U.K. general practice, a form of goal-oriented task analysis is appropriate for evaluating regular use of EHR systems in consultation practice. ‘Use Case Diagrams’, a feature of the Unified Modelling Language (UML), are commonly employed by systems analysts to describe an interaction between an actor and a system to achieve a particular goal. Framing computer use in the clinical consultation using this method can facilitate an interpretation of the interactions that can be shared between designers, implementers and user practitioners.
Structure and order: styles of computer use
Different styles of use have been characterised. Clinicians have been classified as ‘minimal users’ who record information at the end of the consultation either from memory or transcribing handwritten notes, ‘conversational users’ who multitask and record information throughout the consultation and ‘block users’ who interrupt the consultation to use the computer. Style may be ‘systematic’ (working through forms and templates) or ‘personalised’ (e.g. recording data as it emerges naturally during the consultation). By 2008, there was little evidence that clinicians had learnt to multitask, instead developing strategies to ‘insert’ dedicated time for computer use into the consultation. Analysis of speech in 10-min consultations for hypertension revealed an average of 2-min silence when clinicians concentrated on the computer. In contrast, GPs reduced their use of the computer during consultations of a psychosocial nature. A recent observational study showed that the GPs were more sparing with their use of the computer in 2008 than in 2001; however, it was not clear whether the computer was integrated better into the consultation or whether the GPs had shifted computer use outside the time with patient.

These studies, however, pre-date the shift over the last decade towards ‘paper-light’ practice in the UK. As part of a national project, ‘Healthcare INTERACTions and the impact of Information Technology (INTERACT-IT)’, funded by the National Health Service Connecting for Health Evaluation Programme, we therefore sought to update the evidence on duration of computer use, the computer tasks performed and the styles adopted by GPs in the context of contemporary consultations in which computer use is the norm.

METHODS

A detailed account of the methodology of the INTERACT-IT study is available in the final report. The methods relevant to our analysis of consultation time and computer use in general practice are described below.

Ethics
Ethical approval was obtained from Leeds East Multicentre Research Ethics Committee (MREC: 09/H1306/60) and governance approval from all NHS trusts. Informed consent was sought from all participants for: (i) recording the consultation; (ii) viewing and analysing the recorded consultation and requesting a post-consultation interview and (iii) permission to request use of images for dissemination or further research.

Practice, GP and patient recruitment
We purposively recruited GP practices representing diverse demography, size and computer software, and arranged to record complete surgeries comprising between 12 and 18 10-min appointments. Patients were advised about the research when booking an appointment in a recorded surgery, and their informed consent was obtained by researchers upon arrival.

Multichannel video recording
We used established methodology to undertake multichannel video recording of consultations. Three cameras recorded the interaction, and a video output recorder captured the computer screen. Using editing software images, audios and screen capture were synchronised and rendered into single views for analysis.

Post-consultation interviews
We purposively selected exemplar consultations from each surgery for interviews with the clinician to encompass a range of clinical scenarios, patient demographics and computer use. The GP watched the recording and provided a commentary on the consultation, specifically including a discussion of the time and efficiency of computer use.

Data production and analysis

Measuring consultation time
We used OBSWIN software, version 3 (Antam Ltd., London), to time duration of consultation activities. The trained rater (JH) marked the beginning and end of computer activities which was used to produce a visual ‘map’ of computer use throughout the consultation. In order to calculate ratios of computer use, we defined the stages of the greater consultation as: preparation, patient consultation and post-consultation (Table 1).

Table 1 Definition of the stages of consultation

The Greater consultation:	We understood this to be the whole consultation beginning when the GP selects the patient from the appointment list and ending when that GP closes the electronic health record after the patient has left. We did not include further work on the record if the clinician returned to the record later in the same recording session. The length of the ‘greater consultation’ for the GP is usually the time elapsed from opening to closing the patient record (see below for a caveat to this rule).
Patient consultation:	For the patient, we interpreted the consultation time to start when they are welcomed by the GP into the consulting room to the time they leave.
Pre-patient consultation:	For the GP, this is the time they allocate to preliminary tasks after selecting the patient from the appointment list before welcoming the patient; we also refer to this as preparation.
Post-patient consultation:	For the GP, this is the time they allocate to tasks associated with the patient after the patient has left.

Typically, the ‘patient consultation’ occurs within the time for accessing the patient record (the ‘greater consultation’), but there were occasional instances where patient consultation begins before the clinician opens the record or where the record is closed before the patient leaves. In these circumstances, the ‘greater consultation’ starts or finishes with the arrival or departure of the patient.

Within the patient consultation, we conveniently derived five overarching stages from the Roter Interaction Analysis System analysis:

1. Opening;
2. History taking;
3. Examination;
4. Counselling/directing the patient;
5. Closing.

These typically followed the above order, but (ii), (iii) and (iv) could occur more than once in a consultation.
We considered that the GP was the primary actor interacting with the system (EHR) in various use cases via the computer (an object) on behalf of or with the patient or their carers (also actors). We observed use cases in the greater consultation with UML, an industrial standard modelling language widely deployed within the healthcare system community.13–15 The use case has purpose and duration affording interpretation of different preferred styles of use.29 Following discussion with multidisciplinary advisers and participating GPs, we identified six use cases [reviewing the record, ordering tests, referring the patient, prescribing, updating record and using other/external information technology (IT)] as relevant to both clinical consultations30 and EHR designers (see Table 2 for detailed descriptions).

Computer use cases

Singleton computer uses

These generally occur once and include: (i) blood pressure measurement; (ii) prescribing; (iii) referral or (iv) physical examination.28

Episodic computer uses

Definition: separate sections of interactions with computer which are less frequent in duration and more predictable or relatively easy to observe. Execution involves use of any: (i) coded data entry; (ii) free text data entry; (iii) navigation; (iv) prompts and alerts; (v) interruptions or (vi) screen sharing.28

Using other/external IT

This is used to note particular computer tasks undertaken for the patient that do not necessarily involve the EHR, through there may be soft key links from it to invoke the functions. These tasks include: printing information leaflets (using Web Mentor or equivalent), dictating letters/instructions (but not referrals) or access of alternate systems for book functionality (application functionality that enables the GP to book an appointment time for the patient in an outpatient clinic within the consultation) or a dictation for later letter writing. If a paper form is printed, referring is deemed to end at the time of submitting a message or taking the (last) page off the printer.

Order emergency tests

This activity is observed during the interaction or before the patient record is closed. It usually begins with a keystroke or menu action and includes different types of test, for example: (i) pathology (bloods, urine etc.); (ii) assessments (e.g. audio/visual tests and questionnaires). The amount of time spent on the computer doing the task is measured up to submission of produced forms: if a paper form is printed the activity ends at the time of taking the (last) page off the printer.

Referring patient

This is identified usually by stated intention of the GP and can take place (a) during consultation, (b) after consultation or (c) later, outside the consultation session. The duration is observed for how long the clinician spends doing the task from beginning of observed function to return to context to the previous. It may be Choose and Book functionality (application functionality that enables the GP to book an appointment time for the patient in an outpatient clinic within the consultation) or a dictation for later letter writing. If a paper form is printed, referring is deemed to end at the time of submitting a message or taking the (last) page off the printer where a form is printed.

Prescribing

This starts with the observed stated intention to prescribe (in conjunction with using the computer) and ends with the doctor picking up the prescription for signing; it may be interspersed with other activities in which case the bout is ended and a subsequent bout observed. It includes review of prescription history preparatory to prescribing specific medicine(s), but if there is no indicated intention to add or modify prescriptions, then previous looking at prescription history counts as reviewing.

Updating record

This takes place at different stages in the consultation with the most common practice being a large block of updating after at the end of the patient consultation. Updating is defined as any data entry that involves input to the system as free text or selected codes. It includes: entry of readings such as blood pressure or temperature; additions to patient’s medical history; notes and memos on treatment and miscellaneous actions, e.g. coding and flagging templates.

Mapping computer use within the consultation

We mapped computer use to the phases of the patient consultation derived from the Roter Interaction Analysis System (RIAS) (coded by SB). RIAS is an established validated tool31 which divides the consultation into five over-arching stages (Table 1). We combined timings of these stages with computer use timings from OBSWIN within an MS-Access database to produce ‘occurrence graphs’ (visual representations of computer use cases within the stages of the consultation), to enable analysis of patterns and map the overall computer use.

Classifying consultation styles

We interpreted use styles17 as minimal, where (apart from prescribing) computer use occurred outside patient consultation, block, if the GP completed computer tasks in one bout and conversational, where updating occurred in frequent short bouts throughout patient consultation. We used number of bouts of computer use as a proxy for conversational (frequent short bouts) versus block or minimal use (few potentially longer bouts), but needed video recordings to identify...
block use (e.g. explicit signposting of computer by verbal or non-verbal means).

RESULTS

Characteristics of the practices

We observed 112 GP consultations from 8 GPs in three practices (pseudonyms: Seaside, Church and Hills). The details are in Table 3. All practices were paper light using the EHR to manage consultations, administrative tasks, prescriptions, investigation results and correspondence. Seaside (three GPs) used INPS (In Practice Systems Ltd.) Vision software, and Church and Hills (five GPs) used EMIS (Egton Medical Information Systems Ltd.) PCS.

Using the time before, during and after the patient consultation

Overall, the mean duration of the greater consultation was 12 min 45 s (765 (SD 290) s) and the patient consultation 9 min 29 s (569 (SD 217) s) (see Table 1 for definitions). On average, the patient consultation occupied about three-quarters of the greater consultation; however, there were differences in how this time was allocated or managed. For example, Seaside GP02 spent 87% of the greater consultation with the patient accomplishing his main computer work in that time.

Computer use took 35% of the greater consultation, but typically was concentrated before (reviewing the EHR in preparation) and after (updating the EHR) the patient consultation (Table 4). The three GPs in Church, Seaside GP01 and Hills GP01 exemplified this pattern using the computer for about half the pre-consultation preparation, 20% or less of the time within the patient consultation and around 80% of the post-consultation. The main outlier is Seaside GP02 (and to a lesser extent Hills GP02) whose computer use occupied 45% of the time with the patient with less time updating the records post-consultation. It was observed that these two GPs were adept at multitasking – updating ‘conversationally’ while interacting with the patient.

Timings and patterns of computer use throughout the greater consultation

The duration of computer use and the percentage of time in each section of the greater consultation are detailed in Table 5. Each use case is described below quantitatively and qualitatively.

(1) Reviewing the EHR

On average, reviewing took 80 (SD 64) s, occupying an average of 39 s (37% of the pre-consultation) and 55 s (7.6%) of patient-consultation time). Seaside GP01 and Hills GP01 particularly took time reviewing the past history to prepare for consultation in anticipation of complex clinical situations.

‘I feel like I probably review the records more before someone comes in but in a – consultation where I’m a bit less certain about what I’m going to do I’ll review them more during’. [Seaside GP01]

‘Yeah it depends very much on the consultation if I’ve got somebody complicated about to come in then looking at the notes beforehand can take a while’. [Hills GP01]

Screen shots and descriptions of this preparatory reviewing in EMIS and Vision are shown in Supplementary Tables 1 and 2 in the Appendix. The basic pattern, adapted for clinical circumstances, showed a four-part process:

1. explore recent consultation history (31 s);
2. check medications (4 s);
3. review results/correspondence (up to 29 s, if relevant);
4. review recent consultations (8 s).

(2) Updating the EHR

Typically, updating took 103 (SD 46) s occurring mainly after the patient had left, though two GPs showed a conversational style of use, sometimes updating continuously throughout the patient consultation. Other GPs also updated the EHR during the patient consultation, but for specific purposes:

‘Yeah, but I might put in facts ... you know, if you do a blood pressure I’d usually do that at the time but I wouldn’t write up my big bulk of notes until the patient has gone generally’. [Seaside GP01]
Table 4 Duration of consultation and bouts of computer use by GP

Greater consultation	Church (EMIS)	Hills (EMIS)	Seaside (VISION)	Overall Mean (SD)					
	GP01	GP02	GP03	GP01	GP02	GP01	GP02	GP03	Mean duration in seconds (SD)
Duration of greater consultation	775 (287)	758 (265)	831 (243)	843 (324)	664 (255)	875 (282)	616 (262)	774 (419)	765 (290)
Duration of patient consultation	611 (282)	588 (263)	646 (196)	555 (236)	519 (210)	624 (193)	533 (208)	499 (274)	569 (217)
Percentage of greater consultation	79%	78%	78%	66%	78%	71%	87%	64%	74%

Overall Mean (SD)	Mean duration in seconds (percentage of greater consultation)	Mean duration in seconds (SD)							
	Duration of computer use								
	216 (28%)	268 (35%)	285 (34%)	283 (34%)	235 (35%)	293 (34%)	270 (44%)	184 (24%)	264 (35%)

Phase of consultation	Computer use in preparation phase	Computer use in patient-consultation phase	Computer use in post-patient consultation phase						
	Mean duration in seconds (percentage of phase of consultation)	Mean number of bouts (SD)	Mean duration in seconds (percentage of phase of consultation)						
	34 (51%)	28 (65%)	21 (48%)	68 (51%)	21 (23%)	53 (50%)	15 (25%)	19 (14%)	36 (40%)
	99 (16%)	117 (20%)	81 (13%)	102 (17%)	171 (33%)	108 (17%)	238 (45%)	56 (11%)	138 (24%)
	82 (87%)	92 (75%)	115 (84%)	118 (78%)	39 (76%)	130 (92%)	15 (89%)	109 (78%)	83 (84%)

The above figures represent the overall computer for 112 recorded GP consultations. The mean number of bouts is rounded down.
Table 5 Time spent on computer use cases in the different phases of the consultations

Phase & Use Type	Church (EMIS)	Hills (EMIS)	Seaside (Vision)	Overall Consultation									
	GP1	GP2	GP3	GP1	GP2	GP3							
Preparation	1 m 8 s	0 m 44 s	0 m 44 s	2 m 14 s	1 m 33 s	1 m 47 s	1 m 3 s	2 m 13 s	1 m 32 s	Average Time			
Overall computer use	(6,6)	41 (7,7)	29 (6,6)	21 (17,35)	68 (25,28)	22 (27,32)	56 (6,13)	44 (4,5)	19 (4,5)	0 m 42 s	4,118	100%	39.8%
Reviewing history	(6,6)	41 (7,7)	28 (6,6)	21 (17,27)	61 (25,28)	22 (27,30)	53 (6,12)	35 (4,5)	19 (4,5)	0 m 39 s	3,871	94.0%	37.4%
Patient Consultation	10 m 11 s	9 m 48 s	10 m 47 s	9 m 3 s	8 m 39 s	10 m 24 s	8 m 53 s	8 m 19 s	9 m 29 s	63,765	100%	100%	24.3%
Overall computer use	(7,31)	99 (7,24)	117 (5,11)	122 (16,62)	102 (25,165)	178 (25,146)	122 (17,192)	238 (3,12)	75 (1 m 0 s)	2 m 28 s	15,410	100%	24.3%
Reviewing history	(5,14)	49 (7,18)	46 (3,4)	79 (11,41)	68 (20,52)	40 (25,90)	44 (2,5)	87 (2,5)	13 (0 m 55 s)	0 m 55 s	4,853	31.5%	7.6%
Updating history	(1,1)	6 (1,1)	10 (1,3)	133 (3,7)	19 (23,72)	57 (9,15)	28 (17,94)	93 (2,4)	39 (1 m 0 s)	1 m 0 s	3,443	22.3%	5.4%
Referring patient	(0,0)	0 (0,0)	0 (0,0)	0 (0,0)	0 (3,4)	285 (0,0)	0 (2,2)	31 (0,0)	0 (3 m 4 s)	3 m 4 s	919	6.0%	1.4%
Ordering tests	(0,0)	0 (0,0)	0 (0,0)	0 (0,0)	0 (2,2)	73 (10,10)	40 (6,9)	60 (1,2)	72 (0 m 52 s)	0 m 52 s	983	6.4%	1.5%
Prescribing	(5,13)	73 (4,4)	110 (2,2)	45 (10,13)	79 (17,32)	67 (22,30)	54 (12,13)	54 (1,1)	51 (1 m 7 s)	1 m 7 s	4712	30.6%	7.4%
Use of information/external IT	(3,3)	26 (1,1)	47 (1,1)	172 (0,0)	0 (2,2)	84 (1,1)	106 (0,0)	0 (0,0)	0 (1 m 11 s)	1 m 11 s	571	3.7%	0.9%
Post-Consultation	1 m 34 s	2 m 4 s	2 m 19 s	2 m 32 s	1 m 10 s	2 m 22 s	0 m 78 s	2 m 21 s	2 m 2 s	11,099	—	100%	80%
Overall computer use	(7,9)	82 (5,6)	130 (5,7)	139 (17,34)	119 (17,28)	59 (27,43)	136 (4,7)	66 (4,5)	110 (4,5)	1 m 48 s	8,891	100%	80%
Reviewing history	(1,1)	13 (0,0)	0 (0,0)	0 (1,1)	33 (4,5)	17 (2,2)	17 (2,2)	18 (0,0)	0 (0 m 18 s)	0 m 18 s	149	1.7%	1.3%
Updating history	(7,8)	80 (5,6)	130 (5,6)	112 (17,24)	80 (17,20)	45 (27,35)	118 (4,5)	41 (4,5)	109 (1 m 29 s)	1 m 29 s	7,704	86.6%	69.4%
Referring patient	(0,0)	0 (0,0)	0 (0,0)	0 (0,0)	0 (1,1)	62 (4,4)	70 (2,2)	51 (0,0)	0 (1 m 3 s)	1 m 3 s	447	5.0%	4.0%
Ordering tests	(0,0)	0 (0,0)	0 (1,1)	135 (4,5)	73 (0,0)	0 (2,2)	69 (0,0)	0 (0,0)	0 (1 m 20 s)	1 m 20 s	563	6.3%	5.1%
Use of information/external IT	(0,0)	0 (0,0)	0 (0,0)	0 (0,0)	0 (1,1)	28 (0,0)	0 (0,0)	0 (0,0)	0 (0 m 28 s)	0 m 28 s	28	0.3%	0.3%

The average duration of computer use (for each actual use in the phase of consultation) is shown on aggregate and by type of use within each phase under each GP. The overall usage (for all consultations) is shown in the last three columns. The overall computer use is broken down for each GP: in each cell, the figures in brackets denote (consultations where computer used and number of bouts of use); the average use time in seconds is placed to the right. There were 7 consultations out of 112 where there was no computer use during the patient consultation (compared with Table 3).
Reasons for avoiding updating during patient consultation included needing time to select the correct ‘read code’ or not being ‘rude’ to the patient [Seaside GP01]. In contrast, Seaside GP02, who regularly updated the EHR in the presence of the patient, felt that they could have more time with the patient and save time later.

‘You can adapt the system to whatever you want, it doesn’t have to be perfect, but the basic dichotomy is that you cannot perfect your note keeping and your computer skills on the consultations at the expense of the patient. But you can’t give all your time to a patient and rush through your note keeping because you will then get substandard note keeping or if you do both well you will overrun horribly by two hours’ [Seaside GP02]

(3) Referring patients

In total, 13 referrals were made in 12 consultations. Although the decision to refer was made during the patient consultation, the process of referral was done after the patient had left.

‘Referrals I never do with the patient there so that would always be done after they’ve gone if I was dictating a referral... Yeah, I don’t get time during’ [Seaside GP01] Seaside GP02 said that they would do the referral with a patient if they thought this was appropriate, but we did not observe such an event.

‘Choose and Book’ (CaB) was available in all the practices, but generally delegated to administrative staff. On the two occasions that we witnessed its use in the consultation, the process partially worked (only going so far as printing out forms for the patient to complete later), and on a third occasion, it failed completely, despite using up 10 min (63% of patient consultation time). (Supplementary Figures 1 and 2 in the Appendix describe these events in detail) This was not a one-off experience for the GP:

‘...every time I open Choose and Book I actually feel quite anxious it’s not going to work and 1) that’s going to not be good for the patient but secondly, actually it’s going to waste my time and I’m going to be back to square one with just dictating a letter…’ [Hills GP02]

(4) Ordering tests

The process of ordering tests differed in each practice. In Hills and Church, EMIS online integration was used usually post-consultation. In Seaside, one of the GPs had designed a computer template which self-populated with patient details. This took only about 20 s to complete and was used routinely during the patient consultation.

(5) Prescribing

Prescribing was always done within the patient consultation. The work required and the time taken varied according to the clinical context and between GPs (Table 2). Church GP02, who tended to spend longer on each prescription than the other GPs (109 s versus 64 s), explained how he used the prescribing process tactically to gain thinking time.

‘So sometimes you can use that, the computer, a little bit to just give yourself a bit of thinking time. “Oh, let me just have a look and see what we did last time,” [Hills GP02]
just see what antibiotics you’re allergic to.” It just gives you a few seconds of thinking time just sometimes to come to a conclusion in your own head when it’s not a clear-cut kind of “Do I treat, don’t I?” kind of decision…” [Church GP02]

Once prescribing decisions were taken, the process of preparing the prescription required navigation through, sometimes complex, dialogue boxes involving informational and safety alerts, though this was a familiar sequence of actions often accomplished in a short period of time.32

(6) Other computer-related tasks
Less common computer uses included accessing external Web-based resources and printing of information leaflets. In Church and Hills, the GPs used Web Mentor to search and print out appropriate information leaflets on eight occasions. In Seaside, FRAX (a Web-based calculation tool to assess 10-year risk of osteoporosis fracture) was used in one consultation.

Computer use in the consultation
The six main use cases together with their component task structure are depicted in relation to the primary uses of time in managing the stages of the consultation in Figure 1. This holistic framework shows relationships between tasks at different levels of granularity and particular sets of system-level computer-related tasks requiring the GP’s attention. We may associate particular use cases with certain phases of the consultation, but the order in which these take place depended on clinical context and clinicians’ choice. In addition to this overview of computer use, we also looked at individual cases to see how patterns of use were constructed.

Classifying the consultation: styles of computer use
We ascertained styles of computer use for each GP, observing the following patterns or styles (illustrated in Supplementary Figures 3–5):

Minimal use
For example, Hills GP01 rarely updated the EHR during the patient consultation (mean bouts of updating = 0.4 (SD 1.1); mean time spent updating = 19 s in only 3 consultations). Both Seaside GP01 and Hills GP01 actively prepared by carefully reviewing history and results to be ready for the patient consultation and also invested time afterwards to ensure correct coding:

‘Normally I would spend a minute or two with the consultation just being me and the computer before getting them then it’s completely different because I tend to get patients from the waiting room so you then get a bit of the consultation which is not technically part of the consultation but it is part of the introductory part and the information gathering seeing how people walk down the corridor or whatever’ [Hills GP01]

Block use
Undivided attention was sometimes needed for prescribing; for example, Church GP02 actively blocked discussion as he used computer prescribing as ‘thinking time’:

‘And sometimes I say things like “I’m sorry I’m having to spend a bit of time on the computer, I’m just looking over this” so I’m sort of signposting what I’m doing rather than, erm… yeah, to try and keep them engaged, I guess, with what you’re doing whilst you’re fiddling around on the computer’. [Church GP02]

Others on occasion partially interrupted the consultation to update the record:

‘I sometimes do type, very occasionally, when the patient’s still in the room and they’re still speaking but often they’re speaking and it’s not particularly useful what they’re saying so I use it just to…’ [Church GP01]

Conversational use
Consistent with their observed conversational use of the computer, Seaside GP02 and Hills GP02 registered a mean of 11 and 8 bouts, respectively, of computer use (mainly updating the EHR) within the patient consultation. In contrast, the other GPs’ computer use was a mean 3.2 bouts per patient consultation.

Adaptation of style
Despite preferences in computer use, all GPs adapted their style to suit individual consultations and patients. Seaside GP02 specifically expressed the need for a flexible approach to use of the computer:

‘Each consultation is different for every patient, different every time, for every patient it can be different every time’. [Seaside GP02]

The overlap in consulting styles is illustrated in Figure 2, and contrasting consultations from Seaside GP01 and Seaside GP02 are in Figure 3.
DISCUSSION

The GPs in our study used the computer for about one-third of the greater consultation, but much of this time was concentrated before and after the patient consultation. On average, GPs used the computer for a quarter of patient consultation time with ‘reviewing’ patient records and ‘prescribing’ being the most common use cases. The time allocated by GPs varied according to GP’s preferred styles of computer use. Minimal/block users used the computer for a mean of 1 m 56 s (20% of patient consultation time) compared to conversational users whose updating of the patient record extended computer use to a mean of 3 m 28 s (40%). Despite preferences for ‘conversational/ minimal use’ styles, GPs were very flexible in the way they worked, adapting how they used the computer to the clinical context. Potentially troublesome or time-consuming tasks were postponed or delegated in order to manage time within the consultation.

Strengths and limitations

We analysed consultations from eight GPs in three surgeries using the two most commonly deployed GP computer systems giving transferability and depth to our findings. Nevertheless, we may not have encompassed all styles or types of consultations.

Our sample size was relatively small for quantitative analysis, but this allowed detailed qualitative investigation, enhancing our understanding of quantified observations. While large-scale surveys would be needed to enumerate prevalence of different use styles, our in-depth mixed methodology meant that we could explore differences in use strategy.

One of the strengths of our approach is that we captured all computer use before, during and after patient consultations, though not any postponed or delegated tasks. The method of use case analysis is particularly suited to longitudinal studies/evaluations involving embedding of new or upgraded EHR systems in practice.

Styles of computer use

Current perceptions of computer use in general practice, and the research that underpins it, tend to represent the computer as a static object in a consultation and give stereotypical accounts of GPs styles of use. We adopted the conversational/block/minimal styles in analysing bouts of computer use and found that although GPs had ‘preferred styles’, they were very flexible in the way they worked, readily adapting their computer use to the clinical context. Understanding such patterns of adaptation between clinical contexts is important for professional training. We may consider ‘conversational use’ as a tactic rather than trait.

Time taken for computer use in the consultation

Over 25 ago, computer use took 7% of the 8-min patient consultation. In our study, this had increased to approximately 25% of the patient consultation. This may not,
however, represent an increase in workload as many functions previously performed on paper are now computerised. The mean duration of the patient consultation was 9 min 29 s which compares with the 10-min consultations for hypertension reported in 2002 in which computer use occupied 20% of the time. 23 Thus, our data do not support the widely held perception that computer use lengthens the consultation.1–3

Workarounds and disruptive technologies

CaB, designed to enable GP and patient jointly to arrange convenient outpatient appointments,38 proved to be cumbersome, unreliable and poor use of time within the consultation. Hence, most GPs worked around the problem by delegating the use of CaB to their secretaries. Prescribing alerts, delivered at the point of printing a prescription, were often over-ridden as management decisions had typically been taken and/or negotiated with the patient earlier in the course of the consultation.32 Reducing the incidence of such workarounds requires designers to understand clinical practices and processes.

Our observations suggest that far from being a new addition to a ‘normal’ consultation as it was described in 1986,9 computer use has become the norm in the GP consultation. While computer use is taken for granted in consultation, some processes (e.g. CaB or prescribing alerts) involve workarounds to ‘get the job done’, though not necessarily in the intended way. In this sense, the IT use has become ‘infrastructural’ – invisible except on breakdown.39

Implications

Our methods for differentiating style by use cases could be developed further and applied to a larger more varied sample. Understanding GPs’ versatility in clinical strategies for use of the computer and other health technologies and how they form a reliable and regular work rhythm is particularly relevant for designers and clinician leads involved in implementing usable and time-efficient changes in EHR decision support within the consultation. In this light, just as our data marks a sea change from the main categories used in TIMER,9 similar observational studies might inform design levels (e.g. for pathways of care40) in future EHR system development.

For example, future work could explore the association of parameters (such as whether the consultation was initiated by the patient or professional) on bouts and duration of computer uses cases within the consultation. Furthermore, while we privileged the GP’s perspective on the consultation, our methodology could be used by system designers or clinical trainers for third person evaluation of the efficiency of GP computer use.

CONCLUSIONS

After four decades of use, integrating the computer into the flow of the patient consultation has been achieved to a significant degree in primary care consultations without increasing the overall consultation time. GPs readily adopted different styles of computer use in different consultations, challenging classifications that seek to stereotype GP computer use.

Natural clinical workflow determines boundaries for acceptance of new IT functions. Designing systems that support the versatile working styles of clinicians require an understanding of the fluid application of computer tasks within the structure of the clinical consultation. Seeking further time efficiency and improvement through IT systems needs to be guided by a clear vision of how organisation of information for diagnosis and treatment of patients’ conditions can reduce time pressure within and around the consultation.

Funding: This work was funded by the NHS CFH Evaluation Programme (NHS CFHEP 010). The views expressed in this publication are those of the authors and not necessarily those of the NHS, the NHS CFH Evaluation Programme or the Department of Health.

HP was supported by a Primary Care Research Career Award from the Chief Scientist’s Office of the Scottish Government at the time of the research.

Competing interest: None

Acknowledgements: We are grateful to the officers of the Primary Care Research Networks in supporting practice recruitment, the practices, GPs and administrative staff for their active participation and the patients who agreed to have their consultations videoed. We thank Prof. Simon de Lusignan who chaired the ITSC supported by Antony Chuter (lay advisor), Stephen Corbett (CFH sponsor) and Lee Priest (representing the funder). We also acknowledge the contributions of Dr. Guro Huby (an investigator on the project until her retirement), Elizabeth Neill (study secretary), Dr. John Harries (researcher in the early stages of the project) and Andy Pryde (technical advice on video recording).

Contributorship: HP, AS, KC and RW conceived the idea for the study, developed the protocol and secured funding. HP was the principal investigator and with AS, KC and RW led study administration, data analysis and interpretation of results. JH, FT and HM undertook the data collection, handling of data and data analysis. SB assisted with RIAS coding and analysis. All authors had full access to all the data, and were involved in interpretation of the data. JH and HP wrote the initial draft of the paper, to which all the authors contributed. HP is the study guarantor.

Data sharing: We do not have consent to share the data.
REFERENCES

1. Car J, Anandan C, Black A, Cresswell K, Pagliari C, McKinstry B et al. The Impact of eHealth on the Quality & Safety of Healthcare - A Systematic Overview and Synthesis of the Literature. Report for the NHS Connecting for Health Evaluation Programme. Birmingham: CFHEP, 2008.

2. Mitchell E and Sullivan F. A descriptive feast but an evaulative famine: systematic review of published articles on primary care computing during 1980-97. British Medical Journal 2001;322:279–82. http://dx.doi.org/10.1136/bmj.322.7281.279. PMid:11157532 PMCid:PMC26582.

3. Sullivan F and Mitchell E. Has general practitioner computing made a difference to patient care? A systematic review of published reports. British Medical Journal 1995;311:848–52. http://dx.doi.org/10.1136/bmj.311.7009.848. PMid:7580494 PMCid:PMC2550856.

4. Noordman J, Zander LI, Evans M, Morris R and Savage RA. Evaluation of a computer assisted repeat prescribing programme in a general practice. British Medical Journal 1982;291:456–8. http://dx.doi.org/10.1136/bmj.291.6493.456. PMid:3926236 PMCid:PMC1416301.

5. Roland MO, Zander LI, Evans M, Morris R and Savage RA. Evaluation of a computer assisted repeat prescribing programme in a general practice. British Medical Journal 1985;291:456–8. http://dx.doi.org/10.1136/bmj.291.6493.456. PMid:3926236 PMCid:PMC1416301.

6. Poissant L, Pereira J, Tamblyn R and Kawasumi Y. The impact of electronic health records on time efficiency of physicians and nurses: a systematic review. Journal of the American Medical Informatics Association 2005;12:505–16. http://dx.doi.org/10.1197/jamia.M1700. PMid:15905487 PMCid:PMC1205599.

7. Moulene MV, de Lusignan S, Freeman G, van Vlymen J, Sheeler I, Singleton A et al. Assessing the impact of recording quality target data on the GP consultation using multichannel video. Studies in Health Technology and Informatics 2007;12:1132–6.

8. Reddy M and Dourish P. A Finger on the Pulse: Temporal Rhythms and Information Seeking in Medical Work. Proceedings of the 2002 ACM Conference on Computer Supported Cooperative Work, 2002, pp. 344–53. http://dx.doi.org/10.1145/587078.587126.

9. Pringle M, Robins S and Brown G. Timer: a new objective measure of consultation content and its application to computer assisted consultations. British Medical Journal 1986;293:20–2. http://dx.doi.org/10.1136/bmj.293.6538.20. PMid:3089391 PMCid:PMC1340772.

10. Pizziferri L, Kittler AF, Volk LA, Honour MM, Gupta S, Wang S et al. Primary care physician time utilization before and after implementation of an electronic health record: a time-motion study. Journal of Biomedical Informatics 2005;38:176–88. http://dx.doi.org/10.1016/j.jbi.2004.11.009. PMid:15896691.

11. Richardson J, Ormerod T and Shepherd A. The role of task analysis in capturing requirements for interface design. Interacting with Computers 1998;9:367–84. http://dx.doi.org/10.1016/S0953-5438(97)00036-2.

12. Fowler M. UML Distilled: A Brief Guide to the Standard Object Modeling Language. Boston, MA: London: Addison Wesley Pearson Education, 2004.

13. Benson T. Prevention of errors and user alienation in healthcare IT integration programmes. Informatics in Primary Care 2007;15:1–7. http://dx.doi.org/10.4018/jhisi.2004110103. PMid:15896691.

14. Kumarapeli P, de Lusignan S, Ellis T and Jones B. Unified modelling Language (UML) as a process-modelling technique for clinical-research process improvement. Informatics for Health and Social Care 2007;32:51–64. http://dx.doi.org/10.1080/14639230601097705. PMid:17365645.

15. Raghubath P and Gao W. Exploring a UML profile approach to modeling web services in healthcare. International Journal of Healthcare Information Systems and Informatics 2007;2:36–52. http://dx.doi.org/10.4018/jhi.2007040103.

16. Herzmark G, Brownbridge G, Fitter M and Evans A. Consultation use of a computer by general practitioners. The Journal of the Royal College of General Practitioners 1984;34:649–54. PMid:6512748.

17. Fitter MJ and Cruickshank PJ. The computer in the consulting room: a psychological framework. Behaviour and Information Technology 1982;1:81–92. http://dx.doi.org/10.1080/01449288208914438.

18. Pringle M, Robins S and Brown G. Computer assisted screening: effect on the patient and his consultation. British Medical Journal 1985;290:1709–12. http://dx.doi.org/10.1136/bmj.290.6483.1709. PMid:3924226 PMCid:PMC1416093.

19. de Lusignan S, Kumarapeli P, Debar S, Kushniruk AW and Pearce C. Using an Open Source Observational Tool to Measure the Influence of the Doctor’s Consulting Style and the Computer System on the Outcomes of the Clinical Consultation. Adlassnig K-P et al. (Ed) Medical Informatics in a United and Healthy Europe. IOS Press, 2009, pp. 1017–22.

20. Pearce C, Walker H and O’Shea C. A visual study of computers on doctors’ desks. Informatics in Primary Care 2008;16:111–17. http://dx.doi.org/10.14236/jhi.v16i2.682.

21. Rouf E, Whittle J, Lu N and Schwartz MD. Computers in the exam room: differences in physician–patient interaction may be due to physician experience. Journal of General Internal Medicine 2007;22:43–8. http://dx.doi.org/10.1007/s11606-007-0112-9. PMid:17351838 PMCid:PMC1824776.

22. Chan WS, Stevenson M and McGlade K. Do general practitioners change how they use the computer during consultations with a significant psychological component? International Journal of Medical Informatics 2008;77:534–8. http://dx.doi.org/10.1016/j.ijmedinf.2007.10.005. PMid:18036885.

23. Bensing JM, Tromp F, van Dulmen S, van den Brink-Muinen A, Verheul W and Schellevis FG. Shifts in doctor-patient communication between 1986 and 2002: a study of videotaped general practice consultations with hypertension patients. BMC Family Practice 2006;7:62. http://dx.doi.org/10.1186/1471-2296-7-62. PMid:17064407 PMCid:PMC1630692.
24. Greatbatch D, Luff P, Heath C and Campion P. Interpersonal communication and human-computer interaction: an examination of the use of computers in medical consultations. *Interacting Computers* 1993;5:193–216. http://dx.doi.org/10.1016/0953-5438(93)90016-O.

25. Pinnock H, Cresswell K, Fernando B, Huby G, Williams R, Sheikh A et al. Evaluation of the effect of IT on interactions between healthcare workers and patients Connecting for Health Evaluation Programme. Available from: http://www.birmingham.ac.uk/research/activity/mds/projects/HaPS/PHEB/CFHEP/reports/projects/010.aspx (accessed September 2014).

26. de Lusignan S, Kumarapeli P, Chan T, Pfliug B, van Vlymen J, Jones B et al. The ALFA (Activity Log Files Aggregation) Toolkit: a method for precise observation of the consultation. *Journal of Medical Internet Research* 2008;10:e27.

27. Antam Software: Obswin (Observational Data Collection & Analysis). Available from: http://www.antam.co.uk/obswin.htm (accessed April 2015).

28. Kumarapeli P and de Lusignan S. Using the computer in the clinical consultation; setting the stage, reviewing, recording, and taking actions: multi-channel video study. *Journal of the American Medical Informatics Association* 2013;20:e67–75.

29. Cockburn A. *Writing Effective Use Cases*. Upper Saddle River, NJ: Pearson Education Corporate, 2001.

30. Beyer M, Kuhn, K, Meiler C, Jablonski S and Lenz R. Towards a Flexible, Process Oriented IT Architecture for an Integrated Healthcare Network. *Proceedings of the ACM Symposium on Applied Computing*, 2004, pp. 264–71. http://dx.doi.org/10.1145/967900.967958.

31. Roter DL, Stewart M, Putnam SM, Lipkin M, Stiles W and Inui TS. Communication patterns of primary care physicians. *The Journal of the American Medical Association* 1997;277:350–6. http://dx.doi.org/10.1001/jama.1997.03540280088045. http://dx.doi.org/10.1001/jama.277.4.350. PMid:9002500.

32. Hayward J, Thomson F, Milne H, Buckingham S, Sheikh A, Fernando B et al. “Too much, too late”: mixed methods multi-channel video recording study of computerised decision support systems and GP prescribing. *Journal of the American Medical Informatics Association* 2013;20:e76–84. http://dx.doi.org/10.1136/amiajnl-2012-001484. PMid:23470696 PMCID:PMC3715350.

33. Kurtz S, Silverman J, Benson J and Draper J. Marrying content and process in clinical method teaching: enhancing the Calgary-Cambridge guides. *Academic Medicine* 2003;78:802–9. http://dx.doi.org/10.1097/00001888-200308000-00011. PMid:12915371.

34. Cheek B. *Cambridgeギャラリ: teaching and learning communication skills in medicine*. 2011. Available from www.gp-training.net/training/communication_skills/calgary/index.htm (accessed September 2014).

35. Pearce C, Arnold M, Phillips C, Trumble S and Dwan K. The patient and the computer in the primary care consultation. *Journal of the American Medical Informatics Association* 2011;18:138–42. http://dx.doi.org/10.1136/jamia.2010.006486. PMid:21262923 PMCID:PMC3116262.

36. Pearce C, Dwan K, Arnold M, Phillips C and Trumble S. Doctor, patient and computer - a framework for the new consultation. *International Journal of Medical Informatics* 2009;78:32–8. http://dx.doi.org/10.1016/j.ijmedinf.2008.07.002. PMid:18752989.

37. Pearce C, Trumble S, Arnold M, Dwan K and Phillips C. Computers in the new consultation, within the first minute. *Family Practice* 2008;25:202–8. http://dx.doi.org/10.1093/fampra/cmn018. PMid:18504254.

38. Department of Health. “Choose & Book” – Patient’s Choice of Hospital and Booked Appointment. *Policy Framework for Choice and Booking at the Point of Referral*. London: DH, 2004.

39. Star SL and Ruhleder K. Steps toward an ecology of infrastructure: design and access for large information spaces. *Information Systems Research* 1996;7:111–34. http://dx.doi.org/10.1287/isre.7.1.111.

40. Eason KD, Dent M, Waterson PE and Tutt D. Bottom up and middle out approaches to electronic patient information systems: a focus on healthcare pathways. *Informatics in Primary Care* 2012;20:51–6. http://dx.doi.org/10.14236/hi.v20i1.47. PMid:23366835.
In this consultation, a connection with the CaB web-site was made and the GP browsed options for clinics with the patient, the nearest main site being recommended by the GP. A form is printed out with details for the patient to book by telephone. Nearly 4 minutes of a 20 minute consultation is used to achieve this outcome. The overall pattern of computer use shows the elongation:

Supplementary Figure 1 Example of a successful CaB referral. [Hills GP02 P09]

Supplementary Figure 2 Example of an unsuccessful CaB referral. [Hills GP02 P09]
After a short review the patient is met outside the consulting room and following a short opening, history is taken and examination undertaken. Prescribing is undertaken while giving direction about treatment to the patient. There is a period of silence in the middle of prescribing as the GP attends to the task, and updating of the record is reserved until after the patient has left. The above pattern is typical with the computer only being used for prescribing during the patient-consultation.

Supplementary Figure 3 Example of minimal computer use [Hills GP01 P10]

Supplementary Figure 4 Example of block computer use. [Church GP02 P08]

The computer was used for reviewing interactively with the patient between 209 and 312 but during prescribing a period of c. 30 secs involved exclusive computer use when drugs were being selected. The dialogue during prescribing is shown below.

Timing(s)	Talk	Computer Use
209–312	Reviewing medications with patient and computer	Reviewing
312–333	GP Okay, so just 2 out of your regular em.. okay.. and the question is whether we treat this... Are you allergic to any antibiotics?	Prescribing – Selecting Drugs
333–336	P No not that I know of	Selecting Drugs
336–366	GP Just seeing what you were... (GP typing)... I'll just give you a low dose ...	Selecting Drugs (block use: ‘think time’)
366–367	P At times it's really prickly you know	Navigating through system options, pause then speaks after sending script to print
367–386	GP Yup... Well I think whether it's an infection or whether it's from the phlebitis which is the other condition you just have to hang in there really with it and take painkillers, keep it elevated when you're sitting down	Prescription being printed
386–389	P Yes	

Table:

Timing(s)	Talk	Computer Use
209–312	Reviewing medications with patient and computer	Reviewing
312–333	GP Okay, so just 2 out of your regular em.. okay.. and the question is whether we treat this... Are you allergic to any antibiotics?	Prescribing – Selecting Drugs
333–336	P No not that I know of	Selecting Drugs
336–366	GP Just seeing what you were... (GP typing)... I'll just give you a low dose ...	Selecting Drugs (block use: ‘think time’)
366–367	P At times it's really prickly you know	Navigating through system options, pause then speaks after sending script to print
367–386	GP Yup... Well I think whether it's an infection or whether it's from the phlebitis which is the other condition you just have to hang in there really with it and take painkillers, keep it elevated when you're sitting down	Prescription being printed
386–389	P Yes	
1: [Seaside GP02 P05]: This typical example from the conversational user shows some time being allocated to reviewing the record not only up front but also during history-taking. Updating is undertaken as and when the information becomes available and ordering a test and prescribing takes place immediately after updating comments on examination; the record is closed as the patient consultation finishes. This is a consistent pattern, a footprint in which the computer is used as part of the flow.

Segments of consultation shown in beige, computer uses in royal blue. Background; comments are from screen capture to indicate what is done on the computer at particular points. These occurrence graphs all follow the same convention. The length of patient-consultation was observed through OBSWIN and the segments of consultation were identified through RIAS analysis.

Supplementary Figure 5 Conversational usage
Supplementary tables 1. & 2. Examples of reviewing

Supplementary table 1 Example of reviewing - Church GP01 P02 (EMIS)

Screen-Image	Display	Time
[Image]	Cursor selecting P02 from front desk	00:00
[Image]	Consultation History displayed (15-July_2010) highlighted	00:02
[Image]	Recent problem (18-June-2010) highlighted; Details of examination on 18-June_2010 displayed	00:12
[Image]	Current Prescribing displayed	00:31
[Image]	Medical Record - Problem Management details displayed	00:35
[Image]	Scrolling through Consultation History	00:37

Finding the patient led immediately to a fleeting display of quality outcome framework (QOF) indicators, indicative of long-term conditions; a particular consultation is displayed (perused) for 10 seconds then a recent problem is highlighted and explored for 19 seconds. A brief look at current prescribing (4 seconds) took place with a return to the medical record and a (6 second) scroll through history.

Supplementary table 2 Example of reviewing - Seaside GP01 P16 (INPS Vision)

Screen-Image	Display	Time
[Image]	EHR opens on Problems tab; Examination findings highlighted in filter	00:04
[Image]	Move to history page and scrolling through history	00:07
[Image]	Cursor on log for problem (21/01/11) and entry highlighted (00:25)	00:17
[Image]	Document Viewer - Clinical letter from 17-May-10 highlighted; "CHOOSE & BOOK"; read letters (18-Nov-09 @ 0:48); (02-Nov-09 @ 0:55),	00:35
[Image]	Cursor on close (1:05) Journal - Therapy (list of drugs prescribed repeats) (1:08)	01:04
[Image]	Displaying Journal (21/02/11 problem highlighted until 06:20)	01:12

When letters and results were reviewed in preparing for the patient-consultation, they may be used to create the narrative in taking history. Interruptions to this reviewing process (e.g. a telephone call about a different patient) resulted in the GP repeating much of the review. The GP was able to switch to the review of the clinical letter at 06:23 in the patient consultation before reviewing a therapy at 06:35.