Phylogenetic analysis demonstrating four new species in *Megasporoporia* sensu lato (Polyporales, Basidiomycota)

Wang YR\(^1,2\), Wu YD\(^1,3\), Vlasák J\(^4\), Yuan Y\(^1*\) and Dai YC\(^1*\)

\(^1\)Institute of Microbiology, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China

\(^2\)The college of Forestry, Beijing Forestry University, Beijing 100083, China

\(^3\)China Fire and Rescue Institute, Beijing 102202, China

\(^4\)Biology Centre, Czech Academy of Sciences, Institute of Plant Molecular Biology, Branišovská 31, CZ-370 05 České Budějovice, Czech Republic

Wang YR, Wu YD, Vlasák J, Yuan Y, Dai YC 2021 – Phylogenetic analysis demonstrating four new species in *Megasporoporia* sensu lato (Polyporales, Basidiomycota). Mycosphere 12(1), 1012–1037, Doi 10.5943/mycosphere/12/1/11

Abstract

Megasporoporia sensu lato is a common polypore genus in tropics, the members of which are readily recognized in the field because of their resupinate, light-coloured basidiocarps with big pores. The species of the genus usually grow on fresh fallen trunks and branches. The genus was recognized as polyphyletic by molecular analyses and divided into three genera: *Megasporia*, *Megasporoporia* sensu stricto and *Megasporoporiella*. In the present study, phylogenies based on the combined 2-gene (ITS + nLSU) and 4-gene (ITS + nLSU + mtSSU + TEF) sequences datasets of *Megasporoporia* sensu lato are analysed, and 21 lineages nested in three clades (the *Megasporia* clade, the *Megasporoporia* sensu stricto clade and the *Megasporoporiella* clade) are formed. Based on morphological examination, four new species, *Megasporia bambusae*, *Megasporia fusiformis*, *Megasporoporia inflata* and *Megasporoporiella australiae*, are described based on materials from Australia, China and Malaysia, and a new combination, *Megasporoporiella hubeiensis* comb. nov., is proposed. *Megasporoporiella pseudocavernulosa* is selected as the type species of *Megasporoporiella* because the previous type species *Megasporoporiella cavernulosa* was misidentified. *Polyporus megasporoporus* is the revised name for *Megasporoporiella lacerata*. In addition, a comparison of main characteristics and an identification key of *Megasporoporia* sensu lato are provided.

Keywords – morphology – phylogeny – polymerase – Polyporaceae – taxonomy

Introduction

Ryvarden et al. (1982) established *Megasporoporia* Ryvarden & J.E. Wright in 1982, and four species were addressed in the genus. Species of the genus are easily recognized in the field because of their light coloured, resupinate basidiocarps with big pores. Microscopically, the genus is characterized by a dimitic hyphal structure with generative hyphae bearing clamp connections, skeletal hyphae usually branched and dextrinoid, presence of cystidioles and dendrophydidia in most species, and hyaline, thin-walled, big basidiospores (Ryvarden et al. 1982, Dai et al. 2004, Li & Cui 2013a, Yuan et al. 2017, Cui et al. 2019). Ecologically, the major members of the genus have a distribution in tropics, and usually grow on fallen trunks, branches and twigs which are not...
much decayed. The species diversity was for long underestimated, and 14 species were described recently (Dai & Li 2002, Dai & Wu 2004, Cui & Dai 2007, Zhou & Dai 2008, Du & Cui 2009, Li & Cui 2013a, Yuan et al. 2017). In addition, the molecular phylogeny demonstrated that the genus is polyphyletic, and two genera – *Megasporia* B.K. Cui et al. and *Megasporoporiella* B.K. Cui et al. were derived from *Megasporoporia* (Li & Cui 2013a). So, the definition of *Megasporoporia* by Ryvarden et al. (1982) is in sensu lato, including three genera: *Megasporia*, *Megasporoporia* sensu stricto and *Megasporoporiella* (Li & Cui 2013a). These three genera are distinctly different in phylogeny, but it is very difficult to distinguish them morphologically because their major characteristics are overlapped.

Based on more samples of *Megasporoporia* sensu lato from Australia, China and Malaysia, and using combined 2-gene (ITS + nLSU) and 4-gene (ITS + nLSU + mtSSU + TEF) sequences datasets, further phylogenetic analyses on the genus are carried out. Four new species belonging to *Megasporia*, *Megasporoporia* sensu stricto and *Megasporoporiella* are detected, and their illustrated descriptions are provided. *Dichomitus hubeiensis* Hai J. Li & B.K. Cui is nested in the *Megasporoporiella* clade, and its morphology fits well *Megasporoporiella*, so the combination of *Megasporoporiella hubeiensis* is proposed.

Materials & Methods

Morphological studies

The studied specimens are deposited in the herbaria of the Institute of Microbiology, Beijing Forestry University (BJFC), the Institute of Applied Ecology, Chinese Academy of Sciences (IFP), Universidade Federal de Pernambuco (URM), and the private herbarium of Josef Vlasák (JV). Morphological descriptions are based on field notes and herbarium specimens. Microscopic analyses follow Li & Cui (2013a). In the description: CB = Cotton Blue, CB+ = cyanophilous in Cotton Blue, CB− = acyanophilous in Cotton Blue, IKI = Melzer’s reagent, IKI− = neither amyloid nor dextrinoid, KOH = 2% potassium hydroxide, L = arithmetic average of all spore length, W = arithmetic average of all spore width, Q = L/W ratios, and n = number of spores/measured from given number of specimens (Yuan et al. 2017). Color terms are cited from Anonymous (1969) and Petersen (1996).

DNA extraction, PCR amplification and sequencing

The total genomic DNA was extracted from the dried specimens using CTAB rapid plant genome extraction kit (Aidlab Biotechnologies Co., Ltd, Beijing), according to the manufacturer’s instructions with some modifications (Chen et al. 2016, Shen et al. 2019). The PCR primers for all genes are listed in Table 1. The PCR protocol for ITS, nLSU, mtSSU, and TEF were followed by Rehner & Buckley (2005) and Li & Cui (2013a), and some adjustments were made to suit different species of *Megasporoporia* sensu lato. The PCR products were purified and sequenced in Beijing Genomics Institute (China) with the same primers. All newly generated sequences were deposited at GenBank (http://www.ncbi.nlm.nih.gov/) and listed in Table 2.

Gene	Primer	Primer sequences (5’-3’)*	Reference
ITS	ITS5	GGA AGT AAA AGT CGT AAC AAG G	White et al. 1990
	ITS4	TCC TCC GCT TAT TGA TAT GC	White et al. 1990
nLSU	LR0R	ACC CGC TGA ACT TAA GC	Vilgalys & Hester 1990
	LR7	TAC TAC CAC CAA GAT CT	Vilgalys & Hester 1990
mtSSU	MS1	CAG CAG TCA AGA ATA TTA GTC AAT G	White et al. 1990
	MS2	GCG GAT TAT CGA ATT AAA TAA C	White et al. 1990
TEF	983F	GCY CCY GGH CAY CGT GAY TTY AT	Rehner & Buckley 2005
	1567R	ACH GTR CCR ATA CCA CCR ATC TT	Rehner & Buckley 2005
Degeneracy codes: S = G or C, W = A or T, R = A or G, Y = C or T, N = A or T or C or G, D = G or A or T, M = A or C.

Table 2 Information on samples of *Megasporoporia sensu lato* used in this study

Species	Sample no.	Geographic origin	GenBank accessions	References			
			ITS	nLSU	mtSSU	TEF	
Cerioporus squamosus	Cui10394	China	KX8516	35	KX8517	KX8517	Cui et al. 2019
			KX8516	88	14	89	Zhou et al. 2016
C. squamosus	Cui10595	China	KU1897	78	KU1899	KU1899	Cui et al. 2019
			KU1898	09	60	25	Cui et al. 2019
Crassisporus macroporus	Cui14468	China	MK1164	86	MK1164	MK1165	Cui et al. 2019
C. macroporus	Cui14465	China	MK1164	85	MK1164	MK1165	Cui et al. 2019
C. imbricatus	Dai 10788	China	KC8673	50	KC8674	KX8383	Cui et al. 2019
C. imbricatus	Cui6556	China	KC8673	26	KC8674	–	Cui et al. 2019
Daedaleopsis confragosa	Cui6892	China	KU8924	28	KU8924	KX8383	Cui et al. 2019
D. confragosa	Cui9756	China	KU8924	38	KU8924	–	Cui et al. 2019
D. hainanensis	Dai9268	China	KU8924	34	KU8924	KX8384	Li et al. 2016
D. hainanensis	Cui5178	China	KU8924	35	KU8924	KX8384	Li et al. 2016
D. purpurea	Dai8060	Japan	KU8924	42	KU8924	KX8384	Li et al. 2016
D. purpurea	Dai13583a	China	KX8320	54	KX8320	KX8384	Li et al. 2016
D. subtropicus	Dai12883	China	KX8320	5	KX8320	KX8384	Li et al. 2014
D. subtropica	Dai12885	China	KX8320	84	KX8320	KX8384	Li et al. 2014
Datronia mollis	Dai11456	China	JX55925	3	JX55925	KX8384	Li et al. 2014
D. mollis	Dai11253	China	JX55925	3	JX55925	KX8384	Li et al. 2014
D. subtropicus	Dai12883	China	KC4151	84	KC4151	KX8384	Li et al. 2014
D. subtropica	Dai12885	China	KC4151	85	KC4151	KX8384	Li et al. 2014
Dichomitus amazonicus	URM87859	Brazil	MW989	394	MW965	–	Present study
D. cylindrosporus	Ryvarden4518	Belize	–	–	–	–	–
D. squalens	Cui9639	China	JQ78040	6	JQ78040	KX8384	Li & Cui 2013a
D. squalens	Cui9725	China	JQ78040	8	JQ78040	KX8384	Li & Cui 2013a
Echinochaete russiceps	Dai13868	China	KX8320	51	KX8320	KX8384	Cui et al. 2019
E. russiceps	Dai13866	China	KX8320	50	KX8320	KX8384	Cui et al. 2019
Favolus acervatus	Cui11053	China	KU1897	74	KU1897	KU1899	Zhou & Cui 2017
F. acervatus	Dai10749b	China	KU1897	74	KU1897	KU1899	Zhou & Cui 2017
F. niveus	Cui11129	China	KU1897	53	KU1897	KU1899	Zhou & Cui 2017
F. niveus	Dai13276	China	KU1897	55	KU1897	KU1899	Zhou & Cui 2017
Table 2 Continued.

Species	Sample no.	Geographic origin	GenBank accessions	References
M. rimosa	Cui11079	China	KX5489	Zhau & Cui 2017
M. rimosa	Cui13757	China	KX5489	Zhau & Cui 2017
H. glabra	Dai12993	China	KX9006	Cui et al. 2019
H. glabra	Cui11367	China	KX9006	Cui et al. 2019
Horndonemoporus latissimus	Cui6625	China	HQ8766	Zhao & Cui 2012
H. latissimus	Dai12054	China	KX9006	Cui et al. 2019
Megasporia bambusae	Dai22106	China	MW694	Present study
M. bambusae	Dai20064	China	MW694	Present study
M. cystidiolophora	Cui2642	China	JQ78039	Li & Cui 2013a
M. cystidiolophora	Cui2688	China	JQ78038	Li & Cui 2013a
M. ellipsoidae	Dai19743	China	MW694	Present study
M. ellipsoidae	Cui5222	China	JQ31436	Li & Cui 2013a
M. fusiformis	Dai18596	Malaysia	MW694	Present study
M. fusiformis	Dai18578	Malaysia	MW694	Present study
M. guangdongensis	Cui9130	China	JQ31437	Li & Cui 2013a
M. guangdongensis	Cui13986	China	MG8472	Cui et al. 2019
M. hengduanensis	Cui8076	China	JQ78039	Li & Cui 2013a
M. hengduanensis	Cui8176	China	JQ31437	Li & Cui 2013a
M. hexagonoides	Cui6592	China	JQ78040	Li & Cui 2013a
M. hexagonoides	Cui13853	China	MW694	Present study
M. major	Cui10253	China	JQ31436	Li & Cui 2013a
M. major	Yuan1183	China	JQ31436	Li & Cui 2013a
M. rimosa	Dai15357	China	KY4494	Yuan et al. 2017
M. rimosa	Dai21997	China	MW422	Present study
M. tropica	Cui13740	China	KY4494	Yuan et al. 2017
M. tropica	Cui13660	China	KY4494	Yuan et al. 2017
M. violacea	Cui6570	China	JQ78039	Li & Cui 2013a

1015
Species	Sample no.	Geographic origin	GenBank accessions	References				
			ITS	nLSU	mtSSU	TEF		
M. violacea	Cui13845	China	MG8472		MG8472	MG8472	MG8677	Cui et al. 2019
			11	20	32	03		
M. violacea	Cui13838	China	MG8472		MG8472	MG8472	MG8677	Cui et al. 2019
			10	19	31	02		
M. yunnanensis	Cui12614A	China	KY4494		KY4494	WK694	MZ6186	Yuan et al. 2017
			42	53	922	28		
M. yunnanensis	Dai13870	China	KY4494		KY4494	WK694	–	Yuan et al. 2017
	(Holotype)		43	54	907	–		
Megasporoporia bannaensis	Dai12306	China	JQ31436		JQ31437	–	–	Li & Cui 2013a
	(Holotype)		2	9	–	–		
M. bannaensis	Dai13596	China	KX9006		KX9007	KX9007	KX9008	Cui et al. 2019
			53	02	54	38		
M. cavernulosa	JV0904/52J	USA	JF89410		–	–	–	Present study
			7	–	–	–		
M. cavernulosa	JV0904/50J	USA	JF89410		–	–	–	Present study
			5	–	–	–		
M. cavernulosa	JV0904/81	USA	MW989		–	–	–	Present study
			395	–	–	–		
M. inflata	Dai17882	Malaysia	MW694		MW694	MW694	–	Present study
			886	929	914	–		
M. inflata	Dai17478	Malaysia	MW694		MW694	MW694	MZ6186	Present study
	(Holotype)		887	930	915	33		
M. mexicana	JV1806/4J	Honduras	MW989		–	–	–	Present study
			396	–	–	–		
M. minor	Dai18322	Vietnam	MW694		MW694	MW694	MZ6186	Li & Cui 2013a
			881	925	901	24		
M. minor	Dai12170	China	JQ31436		JQ31438	MW694	MF4949	Present study
	(Holotype)		3	0	902	80		
M. minuta	Zhou120	China	JX16305		JX16305	MW694	–	Present study
			5	6	36	–		
M. minuta	Cui13945	China	MW989		MW965	–	–	Present study
			397	596	–	–		
M. setulosa	JV1008_51J	USA	JF89410		–	–	–	Present study
			9	–	–	–		
M. setulosa	JV1008_102J	USA	JF89411		–	–	–	Present study
			0	–	–	–		
Megasporoporiella australiae	Dai18657	Australia	MW694		MW694	MW694	MZ6186	Present study
	(Holotype)		888	931	916	34		
M. australiae	Dai18658	Australia	MW694		MW694	MW694	MZ6186	Present study
			889	932	917	35		
M. hubeiensis	Dai18102	China	MW694		MW694	MW694	MZ6186	Present study
			890	933	918	36		
M. hubeiensis	Dai18103	China	MW694		MW694	MW694	–	Present study
			891	934	919	–		
M. hubeiensis	Wei2045	China	JQ78038		JQ78042	KX8383	–	Present study
	(Holotype)		7	1	96	–		
M. pseudocavernulosa	Yuan1270	China	JQ31436		JQ31439	KX8383	–	Present study
	(Holotype)		0	4	–	–		
M. pseudocavernulosa	Dai19379	China	MW694		MW694	MW694	MZ6186	Present study
			882	904	904	26		
M. rhododendri	Dai4226	China	JQ31435		JQ31439	MW694	–	Present study
	(Holotype)		6	2	905	–		
M. rhododendri	Cui12432	China	MW694		MW694	MW694	MZ6186	Present study
			883	927	906	27		
Species	Sample no.	Geographic origin	GenBank accessions	References				
-------------------------------	------------	-------------------	--------------------	------------------				
			ITS nLSU mtSSU TEF					
M. subcavernulosa	Cui9252	China	JQ78037 6 35 06	Li & Cui 2013a				
			JQ78041 22 34 05					
	Cui14247	China	MG8472 6 22 34	Li et al. 2014				
			MG8472 35 36 46					
	Cui8055	China	JX55926 9 6 36	Li et al. 2014				
Neodatronia gaoligongensis	Cui8186	China	JX55926 8 5 37	Li et al. 2014				
			MG8472 5 37					
			MG8677 05					
Perenniporia martia	Cui4055	China	KX9006 41 8 37	Cui et al. 2019				
			KX9006 88					
			KX9007 38					
			MG8472 36 22					
			KX9007 5 34					
			MG8677 05					
	Cui7992	China	HQ8766 03 14 41	Zhao & Cui 2012				
			HQ6541 14 41					
			KF0510 35					
			KF1811 112					
Polyporus arcularius	Cui10998	China	KX5489 73 95 29	Zhou & Cui 2017				
			KX5489 95					
			KX5490 59					
			KX5490 29					
			KX5490 152					
	Cui11398	China	KU1897 66 97 47	Zhou et al. 2016				
			KU1897 97					
			KU1899 11					
			KU1899 59					
			KU1899 97					
			KU1899 9703					
			KU1899 9703					
P. megasporoporus	Yuan3880	China	JQ31437 7 5	Li & Cui 2013a				
(Megasporoporiella lacerata)			JQ31439 – 37					
			MW694 926					
			MW694 903					
P. megasporoporus	Yuan3874	China	–	Present study				
(Megasporoporiella lacerata)			–					
P. tuberaster	Dai12462	China	KU5075 80 84 90	Zhou et al. 2016				
			KU5075 84 90					
			KU5075 90					
			KU5075 483					
	Dai11271	China	KU1897 69 00 50	Zhou et al. 2016				
			KU1897 97					
			KU1899 462					
			KU1899 97					
			KU1899 9703					
	Dai12249	China	KU5075 81 83 85	Zhou et al. 2016				
			KU5075 85 91					
			KU5075 91					
			KU5075 9103					
P. varius	Dai13874	China	KU1897 77 08 58	Zhou et al. 2016				
			KU1897 58					
			KU1899 23					
Trametes hirsuta	RLG5133T	USA	JN16494 1 1	Li & Cui 2013a				
			JN16494 1 1					
			JN16489 1 1					
			JN16489 4					
T. ochracea	HHB13445sp	USA	JN16495 4 2	Li & Cui 2013a				
			JN16495 2 4					
			JN16490 4					
			JN16490 4					

New species and sequences are shown in **bold**

Phylogenetic analysis

Sequences generated in this study were aligned with additional sequences downloaded from GenBank (Table 2) using Clustal X (Thompson et al. 1997) and BioEdit (Hall 1999). The data matrices were edited in Mesquite v3.04 software (Maddison & Maddison 2009). Sequence alignment was deposited at TreeBase (submission ID 28606 and 28610). Previous to phylogenetic analysis, ambiguous sequences at the start and the end were deleted and gaps were manually adjusted to optimize the alignment using BioEdit (Hall 1999). Two combined matrices were reconstructed for phylogenetic analyses as a 2-gene dataset (ITS + nLSU) and a 4-gene dataset (ITS + nLSU + mtSSU + TEF). The phylogenetic analyses used in this study followed the approach of Zhu et al. (2019) and Sun et al. (2020). Maximum parsimony (MP), Maximum likelihood (ML) and Bayesian inference (BI) were employed to perform phylogenetic analysis.

Sequences of *Trametes hirsuta* (Wulfen) Lloyd and *T. ochracea* (Pers.) Gilb. & Ryvarden were used as outgroups to root trees. All characters were equally weighted and gaps were treated as missing data. Trees were inferred using heuristic search option with TBR branch swapping and 1,000 random sequence additions. Max-trees were set to 5,000, branches of zero length were collapsed and all parsimonious trees were saved. Clade robustness was assessed using bootstrap analysis with 1,000 replicates (Felsenstein 1985). Descriptive tree statistics tree length (TL),
consistency index (CI), retention index (RI), rescaled consistency index (RC), and homoplasy index (HI) were calculated for each maximum parsimonious tree generated (Farris 1989, Farris et al. 1994, Swofford 2002, Yuan et al. 2017).

Maximum likelihood (ML) research was conducted with RAxML-HPC v. 8.2.3 (Stamatakis 2014) involved 1000 ML searches under the GTRGAMMA model, and only the maximum likelihood best tree from all searches was kept. In addition, 1000 rapid bootstrap replicates were run with the GTRCAT model to assess ML bootstrap values (ML) of the nodes.

MrMODELTEST 2.3 (Posada & Crandall 1998, Nylander 2004) also was used to determine the best-fit evolution model for the combined dataset of ITS + nLSU and ITS + nLSU + mtSSU + TEF sequences for estimating Bayesian inference (BI). Bayesian inference was calculated with MrBayes 3.2 (Ronquist & Huelsenbeck 2003). Four Markov chains were run for 2 runs from random starting trees for 2 million generations until the split deviation frequency value < 0.01, and sampled every 100 generations. The first one-fourth sampled three were discarded as burn-in, while the remaining ones were used to calculate Bayesian posterior probabilities (BPP) of the clades.

Branches that received bootstrap support for Maximum parsimony (MP), Maximum Likelihood (ML), and Bayesian posterior probabilities (BPP) more than or equal to 50% (MP and ML) and 0.90 (BPP) were considered as significantly supported. (Figs 1-2). Phylogenetic trees were visualized with the program FigTree v. 1.4.3 (http://tree.bio.ed.ac.uk/software/figtree/).

Results

Phylogenetic analyses

The consequence of phylogeny includes the combined dataset of ITS and nLSU sequences from 96 fungal collections representing 49 species. The dataset has an aligned length of 2074 characters, of which 1148 characters are constant, and 591 are parsimony-informative. MP analysis yields a tree (TL = 2588, CI = 0.388, RI = 0.795, RC = 0.309, HI = 0.612). The best-fit evolutionary model is selected by maximum parsimony (MP) from the combined dataset of ITS + nLSU sequences. The MP and ML values (≥ 50%) and BPP (≥ 0.90) are shown at the nodes. So, the topology from the MP tree is presented along with statistical values from the MP/ML/BPP algorithms (Fig. 1).

The consequence of phylogeny includes the combined dataset of ITS, nLSU, mtSSU, and TEF sequences from 94 fungal collections representing 48 species. The dataset has an aligned length of 3363 characters, of which 2177 characters are constant, and 1093 are parsimony-informative. MP analysis yields a tree (TL = 4864, CI = 0.409, RI = 0.772, RC = 0.316, HI = 0.591). The best-fit evolutionary model is selected by maximum parsimony (MP) from the combined dataset of ITS + nLSU sequences. The MP and ML values (≥ 50%) and BPP (≥ 0.90) are shown at the nodes. So, the topology from the MP tree is presented along with statistical values from the MP/ML/BPP algorithms (Fig. 2).

Our phylogenies support previous conclusions (Li & Cui 2013a, Yuan et al. 2017), three clades are formed in the topology (Fig. 1): Megasporia (79% MP, 99% ML, 1.00 BPP), Megasporoporia sensu stricto (91% MP, 99% ML, 1.00 BPP) and Megasporoporiella (95% MP, 100% ML, 1.00 BPP).

The Megasporia clade includes twelve species: M. bambusae sp. nov., M. cystidiolophora B.K. Cui & Hai J. Li, M. ellipsodea B.K. Cui & Hai J. Li, M. fusiformis sp. nov., M. guangdongensis B.K. Cui & Hai J. Li, M. hengduanensis B.K. Cui & Hai J. Li, M. hexagonoides B.K. Cui et al., M. major B.K. Cui & Hai J. Li, M. rimosa Y. Yuan et al., M. tropica Y. Yuan et al., M. violacea B.K. Cui et al. and M. yunnanensis Y. Yuan et al.

The Megasporoporia sensu stricto clade includes four species: M. bannaensis B.K. Cui & Hai J. Li, M. inflata sp. nov., M. minor B.K. Cui & Hai J. Li, and M. setulosa Rajchenb.

The Megasporoporiella clade includes five species: M. australiae sp. nov., M. hubeiensis comb. nov., M. pseudocavernulosa B.K. Cui & Hai J. Li, M. rhododendri B.K. Cui & Hai J. Li, and M. subcavernulosa B.K. Cui & Hai J. Li.
In addition, another clade (the unnamed clade of *Megasporoporia* sensu lato, Figs 1–2) includes three species: *Dichomitus amazonicus* Gomes-Silva et al., *Megasporoporia cavernulosa* (Berk.) Ryvarden and *M. mexicana* Ryvarden.

Four new species, *Megasporia bambusae*, *Megasporia fusiformis*, *Megasporoporia inflata*, *Megasporoporiella australiae*, and a new combination, *Megasporoporiella hubeiensis*, formed well-supported phylogenetic lineages (100% ML, 100% ML, 1.00 BPP) distinct from other known lineages (species) of *Megasporoporia* sensu lato (Fig. 2).

Figure 1 – Phylogeny of *Megasporoporia* sensu lato and related species generated by Maximum Parsimony based on combined ITS + nLSU sequences. Bootstrap supports for Maximum parsimony (MP), Maximum Likelihood (ML) and Bayesian posterior probabilities (BPP) were not lower than: 50% (MP and ML) and 0.90 (BPP) on the branches. The new species and combination were in bold.
Figure 2 – Phylogeny of *Megasporoporia* sensu lato and related species generated by Maximum Parsimony based on combined ITS + nLSU + mtSSU + TEF sequences. Bootstrap supports for MP, ML and BPP were not lower than: 50 % (MP and ML) and 0.90 (BPP) on the branches. The new species and combination were in bold.

Taxonomy

Megasporia bambusae Y.C. Dai, Yuan Yuan & Ya. R. Wang sp. nov.

Index Fungorum number: IF558811; Facesoffungi number: FoF10470

Etymology – *bambusae* (Lat.): referring to the species growing on bamboo.

Basidiocarps annual, resupinate, corky, without odor or taste when fresh, becoming hard corky upon drying, up to 2.7 cm long, 2.2 cm wide, and 0.2 mm thick at center; sterile margin distinct, white, up to 1 mm wide. Pore surface white to cream when fresh, cream to buff when dry; pores angular, 4–5 per mm; dissepiments thick, entire; subiculum pale buff, corky, up to 0.05 mm thick; tubes cream, paler than subiculum, corky, up to 0.15 mm long. *Hyphal system* dimitic; generative hyphae bearing clamp connections; skeletal hyphae weakly dextrinoid, CB+; tissues unchanged in KOH (not dissolved). *Subicular* generative hyphae hyaline, thin-walled, occasionally branched, 1.5–1.8 µm in diam; skeletal hyphae dominant, thick-walled with a narrow to wide...
lumen, frequently branched, mostly flexuous, interwoven, 2.5–3 µm in diam. *Tramal* generative hyphae hyaline, thin-walled, occasionally branched, 1.5–1.8 µm in diam; skeletal hyphae dominant, thick-walled with a narrow to medium lumen, frequently branched, mostly flexuous, interwoven, 1.5–2 µm in diam. *Dendrohyphidia* present. *Hyphal pegs* absent. *Cystidia* absent; *cystidioles* present, subulate or ventricose, thin-walled, smooth, 14–41 × 4.8–14.8 µm. *Basidia* clavate to pear-shaped, usually constricted in middle, with four sterigmata and a basal clamp connection, 20–35.2 × 10–14.8 µm; *basidioles* in shape similar to basidia, but distinctly smaller. Small tetrahedric or polyhedral crystals frequently present among hymenium. *Basidiospores* ellipsoid, hyaline, fairly thick-walled, smooth, IKI–, CB–, (10.5–)11.8–14(–14.8) × (5.5–)5.8–6.8(–7.5) µm, L = 12.67 µm, W = 6.53 µm, Q = 1.91–1.96 (n = 90/3).

Known distribution – widespread in tropical and subtropical regions.

Materials examined – China, Hainan Prov., Haikou, Jinniuling Park, on dead bamboo, 18 Nov 2020, Y.C. Dai 22106 (BJFC035998, holotype), Y.C. Dai 22113 (BJFC036005); Guangxi Auto. Reg., Yulin, Guishan Forest Park, on dead bamboo, 3 Jul 2019, Y.C. Dai 20064 (BJFC031738).

Notes – *Megasporia bambusae* is found from the tropical zone of China. It is readily distinguished from other species in *Megasporoporia* sensu lato by its fairly thick-walled basidiospores and growing on bamboo, all other members of *Megasporoporia* sensu lato have thin-walled basidiospores and growing on dicotyledon. *Megasporia bambusae* resembles *Megasporia cystidiolophora*, *Megasporia guangdongensis* and *Megasporoporiella rhododendri* by the overlapped distribution and almost the same size of pore (3–5 per mm), but the latter three species have thin-walled basidiospores and lacks dendrohyphidia. Phylogenetically, *Megasporia bambusae* is related to *Megasporia elipsoidea*, *M. yunnanensis*, *M. major*, *M. hexagonoides*, *M. fusiformis* and *M. rimosa* (Figs 1–2), but the latter six species have thin-walled basidiospores and growing on another angiosperm rather than bamboo (Ryvarden et al. 1982, Yuan et al. 2017).

Figure 3 – Basidiocarps of *Megasporia bambusae* (the holotype, Dai 22106).
Figure 4 – Microscopic structures of *Megasporia bambusae* (drawn from the holotype, Dai 22106). A Basidiospores. B Basidia. C Basidioles. D Cystidioles. E Dendrohyphidia. E Hyphae from subiculum. G Hyphae from tubes.

Megasporia fusiformis Y.C. Dai, Yuan Yuan & Ya.R. Wang, sp. nov.

Index Fungorum number: IF558812; Facesoffungi number: FoF10471

Etymology – *fusiform* (Lat.): referring to the species producing fusiform basidiospores.
Basidiocarps annual, resupinate, corky, without odor or taste when fresh, becoming hard corky when dry, up to 11.6 cm long, 2.2 cm wide, and 0.4 mm thick at center; sterile margin distinct, white, up to 1 mm wide. Pore surface cream when fresh, cream to buff-yellow when dry; pores angular, 3.5–4 per mm; dissepiments thick, entire; subiculum cream, corky, up to 0.2 mm thick; tubes cream, paler than subiculum, corky, up to 0.2 mm long. Hyphal system dimitic; generative hyphae bearing clamp connections; skeletal hyphae sometime simple septate, IKI–, CB+; tissues unchanged in KOH (not dissolved). Subicular generative hyphae infrequent, hyaline, thin-walled, occasionally branched, 2–2.5 µm in diam; skeletal hyphae dominant, thick-walled with a narrow to wide lumen, frequently branched, occasionally simple septate, mostly flexuous, interwoven, 2.8–3 µm in diam. Tramal generative thin-walled, occasionally branched, 2–3 µm in diam; skeletal hyphae dominant, thick-walled with a narrow to medium lumen, frequently branched, mostly flexuous, interwoven, 2–3.5 µm in diam. Dendrohyphidia present. Hyphal pegs absent. Cystidia absent; cystidioles present, ventricose, thin-walled, smooth, 23.2–28.5 × 5.2–9.5 µm. Basidia clavate, usually constricted in middle, with four sterigmata and a basal clamp connection, 25.2–38.2 × 8.2–11.5 µm; basidioles in shape similar to basidia, but distinctly smaller. Small tetrahedric or polyhedral crystals frequently present among hymenium. Basidiospores fusiform, hyaline, thin-walled, smooth, sometimes with one or two guttules, IKI–, CB–, (14.1–)15–19.8–(20.2) × (4–)4.2–6.8–(7) µm, L = 17.59 µm, W = 5.12 µm, Q = 3.24–3.68 (n = 60/2).

Known distribution – widespread in subtropical regions.

Materials examined – Malaysia. Selangor, Kota Damansara, Community Forest Reserve, on rotten angiosperm wood, 16 April 2018, Y.C. Dai 18596 (BJFC026884, holotype), Y.C. Dai 18578 (BJFC026866).

Figure 5 – Basidiocarps of Megasporia fusiformis (the holotype, Dai 18596).

Notes – Morphologically, Megasporia rimosa is similar to M. fusiformis by white to cream pore surface and extremely thin basidiocarp (less than 0.5 mm thick), but M. rimosa is different from M. fusiformis by its dextrinoid skeletal hyphae, cylindrical basidiospores and skeletal hyphae
without any septa (Yuan et al. 2017). Phylogenetically *M. fusiformis* is closer to *M. hexagonoides* and *M. rimosa* (Figs 1–2), but *M. hexagonoides* differs from *M. fusiformis* by the bigger pores (0.5–1 per mm vs. 3.5–4 per mm), the absence of dendrohyphidia, and skeletal hyphae without any septa (Dai & Cui 2008).

Figure 6 – Microscopic structures of *Megasporia fusiformis* (drawn from the holotype, Dai 18596). A Basidiospores. B Basidia and basidioles. C Cystidioles. D Dendrohyphidia. E Hyphae from subiculum. F Hyphae from tubes.

Megasporoporia inflata Y.C. Dai, Yuan Yuan & Ya.R. Wang, sp. nov.
Index Fungorum number: IF558813; Facesoffungi number: FoF10472
Etymology – *inflata* (Lat.): referring to the skeletal hyphae of the species become swollen in KOH.

Basidiocarps annual, resupinate, cushion-shaped, corky, without odor or taste when fresh, becoming hard corky upon drying, up to 9.5 cm long, 2 cm wide, and 3.5 mm thick at center; sterile margin thinning out, cream to clay buff, up to 1 mm wide. Pore surface cream to buff when fresh, buff when dry; pores round to angular, 2.5–3 per mm; dissepiments thick, entire; subiculum buff, corky, up to 1 mm thick; tubes pale buff, corky, up to 2.5 mm long. *Hyphal system* dimitic; generative hyphae bearing clamp connections; skeletal hyphae strongly dextrinoid, CB+; tissues more or less dissolved and skeletal hyphae become strongly swollen in KOH. *Subicular* generative hyphae infrequent, hyaline, thin-walled, moderately branched, mostly flexuous, 2–2.5 μm in diam; skeletal hyphae dominant, thick-walled with a narrow to medium lumen, moderately branched, mostly flexuous, interwoven, 2–3.5 μm in diam. *Tramal* generative hyaline, thin-walled, moderately branched, 2–2.5 μm in diam; skeletal hyphae dominant, thick-walled with a narrow lumen to subsolid, moderately branched, mostly flexuous, interwoven, 2.5–3 μm in diam. *Dendrohyphidia* absent. *Hyphal pegs* absent. *Cystidia* and *cystidioles* absent. *Basidia* broadly barrel-shaped to pyriform, with four sterigmata and a basal clamp connection, 14.2–22.5 × 7–8.9 μm; *basidioles* dominant in hymenium, in shape similar to basidia, but smaller. Big rhomboid or polyhedric crystals frequently present among hymenium. *Basidiospores* cylindrical, hyaline, thin-walled, smooth, with one big guttule, IKI−, CB−, (9.8–)10–11.8(–12) × 3.5–4.2 μm, L = 10.38 μm, W = 3.86 μm, Q = 2.69–2.98 (n = 60/2).

Known distribution – widespread in tropical and subtropical regions.

Materials examined – Malaysia. Selangor, Kota Damansara Community Forest Reserve, on fallen angiosperm twig, 19 June 2017, Y.C. Dai 17478 (BJFC025011, holotype). Singapore. Bukit Timah Natural Reserve, on fallen angiosperm branch, 20 July 2017, Y.C. Dai 17882 (BJFC025414).

![Figure 7 – Basidiocarps of *Megasporoporia inflata* (the holotype, Dai 17478).](image-url)
Figure 8 – Microscopic structures of *Megasporoporia inflata* (drawn from the holotype, Dai 17478). A Basidiospores. B Basidia. C Basidioles. D Hyphae from subiculum. E Hyphae from tubes.

Notes – The skeletal hyphae of *Megasporoporia inflata* strongly swell in KOH, and this feature is unique in *Megasporoporia* sensu lato. In addition, *Megasporoporia inflata* lacks hyphal pegs, cystidioles and dendrohyphidia. So, the above characteristics stand out the new species from other members of *Megasporoporia* sensu lato. *Megaspora tropica* is similar to *Megasporoporia inflata* by occurring in tropical China, almost the same size of pores, strongly dextrinoid skeletal hyphae, the absence of hyphal pegs and dendrohyphidia, but the former has cystidioles and bigger basidiospores (14.7–18.8 × 5–6.5 μm vs. 10–11.8 × 3.5–4.2 μm), and its skeletal hyphae are unchanged in KOH (Yuan et al. 2017). Phylogenetically, *M. inflata* is closely related to
M. bannaensis (Figs 1–2), but the latter species has bigger pores (1–2 per mm) and their skeletal hyphae unchanged in KOH (Li & Cui 2013a).

Megasporoporiella australiae Y.C. Dai, Yuan Yuan & Ya.R. Wang, sp. nov. Figs 9–10

Index Fungorum number: IF558814; Facesoffungi number: FoF10473

Etymology – *australie* (Lat.): referring to the species found from Australia.

Basidiocarps annual, resupinate, corky, without odor or taste when fresh, becoming hard corky and cracked upon drying, up to 5.4 cm long, 2 cm wide, and 0.4 mm thick at center; sterile margin distinct, white to cream, cottony, up to 3 mm wide. Pore surface white to cream when fresh, vinaceous buff to fulvous when dry; pores round to angular, 3–4 per mm; dissepiments thick, entire; subiculum pale buff, corky, up to 0.2 mm thick; tubes cream, paler than subiculum, corky, up to 0.2 mm long. *Hyphal system* dimitic; generative hyphae bearing clamp connections; skeletal hyphae IKI−, CB+; tissues unchanged in KOH (not dissolved). *Subicular* generative hyphae infrequent, hyaline, thin-walled, occasionally branched, 2–3 µm in diam; skeletal hyphae dominant, thick-walled with a narrow to medium lumen, frequently branched, strongly flexuous, strongly interwoven, 2–3.5 µm in diam. *Tramal* generative hyphae hyaline, thin-walled, occasionally branched, 2–2.5 µm in diam; skeletal hyphae dominant, thick-walled with a narrow lumen, moderately branched, strongly flexuous, strongly interwoven, 2–3 µm in diam. *Dendrohyphidia* absent. *Hyphal pegs* absent. *Cystidia* absent; *cystidioles* present, tubular to fusoid, thin-walled, smooth, 29–41 × 2.5–11.5 µm. *Basidia* pear-shaped, with four sterigmata and a basal clamp connection, 35–38 × 9.5–12 µm; *Basidioles* in shape similar to basidia, but smaller, some with a few guttules. All the hymenial cells (cystidioles, basidia and basidioles) with abundant oily substance. Small tetrahedric or polyhedric crystals frequently present among hymenium. *Basidiospores* cylindrical, hyaline, thin-walled, smooth, sometimes with one big guttule, IKI−, CB−, (11.5–)11.8–15(–16.5) × (3.5–)4–6(–6.5) µm, L = 13.4 µm, W = 4.98 µm, Q = 2.52–2.64 (n = 60/2).

Known distribution – widespread in temperate region.

Figure 9 – Basidiocarp of *Megasporoporiella australiae* (the paratype, Dai 18658).
Figure 10 – Microscopic structures of *Megasporoporiella australiae* (drawn from the holotype, Dai 18658). A Basidiospores. B Basidia. C Basidioles. D Cystidioles. E Hyphae from subiculum. F Hyphae from tubes.

Materials examined – Australia. Melbourne. Dandenong Ranges Botanic Garden, on dead tree of *Rhododendron*, 12 May 2018, Y.C. Dai 18657 (BJFC27125, holotype), Y.C. Dai 18658 (BJFC27126).
Notes – Morphologically, *Megasporoporiella australiae* resembles *Megasporia cystidiocephora*, *Megasporia hengduanensis* and *Megasporoporia cavernulosa* by sharing almost the same size of pores and basidiospores, but the latter three species can be readily distinguished from *Megasporoporiella australiae* by their dextrinoid skeletal hyphae (Ryvarden et al. 1982, Cui & Dai 2007, Li & Cui 2013a). Phylogenetically, *M. australiae* is closely related to *M. rhododendri* (Figs 1, 2), but *M. rhododendri* can be distinguished from *M. australiae* by dextrinoid skeletal hyphae and ellipsoid basidiospores measuring as 11–14 × 6.5–8 μm (Dai et al. 2004).

Megasporoporiella hubeiensis (Hai J. Li & B.K. Cui) Y.C. Dai, Yuan Yuan & Ya. R. Wang, comb. nov.

Index Fungorum number: IF558815; Facesoffungi number: FoF10468

Basidiocarps biennial, resupinate, cushion-shaped, corky, without odor or taste when fresh, becoming hard corky upon drying, up to 2.4 cm long, 12 cm wide, and 2.4 mm thick at center; sterile margin thinning out, very narrow to almost lacking. Pore surface white to cream when fresh, vinaceous buff to fulvous when dry; pores round to angular, 1–2 per mm; dissepiments thick, entire; subiculum pale buff, corky, up to 0.6 mm thick; tubes concolorous with the pore surface, corky, up to 1.8 mm long. *Hyphal system* dimitic; generative hyphae bearing clamp connections; skeletal hyphae IKI–, CB+; tissues unchanged in KOH. (not dissolved). *Subicular* generative hyphae hyaline, thin-walled, occasionally branched, 2.5–2.8 μm in diam; skeletal hyphae dominant, thick-walled with a narrow to medium lumen, frequently branched, mostly flexuous, interwoven, 2.8–3 μm in diam. *Tramal* generative hyphae hyaline, thin-walled, occasionally branched, 1.8–2.5 μm in diam; skeletal hyphae dominant, thick-walled with a narrow lumen, frequently branched, mostly flexuous, interwoven, 2.5–3 μm in diam. *Dendrohyphidia* present. *Hyphal pegs* absent. *Cystidia* absent; *cystidioles* present, subulate or ventricose, thin-walled, smooth. 18.2–37.2 × 6.3–10.5 μm. *Basidia* clavate, with four sterigmata and a basal clamp connection, 26.8–34.2 × 7.8–11.2 μm; *basidioles* in shape similar to basidia, but smaller. Small tetrahedric or polyhedral crystals frequently present among hymenium. *Basidiospores* cylindrical, hyaline, thin-walled, smooth, usually with one big guttule, IKI–, CB–, (11–)12–14.3(–14.8) × (4–)4.5–5.7(–6.5) μm, L = 13.26 μm, W = 5.12 μm, Q = 2.37–2.55 (n = 60/2).

Figure 11 – Basidiocarps of *Megasporoporiella hubeiensis* (Dai 18102).
Figure 12 – Microscopic structures of *Megasporoporiella hubeiensis* (drawn from Dai 18103). A Basidiospores. B Basidia. C Basidioles. D Cystidioles. E Hyphae from subiculum. F Hyphae from tube.

≡ *Dichomitus hubeiensis* Hai J. Li & B.K. Cui, Nordic Journal Botany 31: 118 (2013).

Known distribution – widespread in temperate and subtropical regions.

Materials examined – China, Hebei, Zhuolu County, Xiaowutai Natural Reserve, Shanjiankou, on dead branch of *Salix*, 10 September 2017, Y.C. Dai 18102 (BJFC025632), Y.C.
Dai 18103 (BJFC025633); Hubei, Fang County, Shennongjia Natural Reserve, on fallen angiosperm branch, 22 September 2004, Wei 2045 (BJFC012314, holotype).

Notes – *Megasporoporiella hubeiensis* was originally described as *Dichomitus hubeiensis* Hai J. Li & B.K. Cui from subtropical China (Li & Cui 2013b). But our phylogenies (Figs 1–2) show the species nested in *Megasporoporiella* clade with a robust support (100% MP, 100% ML, 1.00 BPP). So, the above combination is proposed.

In addition, Li & Cui (2013a) defined *Megasporoporiella cavernulosa* as type species of the genus (Li & Cui 2013a), and they used the specimen Wu 9508-328 (AY333800) for phylogeny, however, the specimen represents *Megasporoporia subcavernulosa* rather than *Megasporoporia cavernulosa* (Dai & Wu 2004). *Megasporoporia cavernulosa* was originally described from America, specimens JV0904/50J, JV0904/52J and JV0904/81 collected from America are analyzed, and they are distantly related to *Megasporoporiella* (Fig. 1). In the present study we select *Megasporoporiella pseudocavernulosa* as the type species of *Megasporoporiella*.

For conveniences for the readers, a comparison of main characteristics (Table 3) and an identification key of *Megasporia*, *Megasporoporia* sensu stricto and *Megasporoporiella* are provided as following.

Table 3 The main characteristics of species of *Megasporia*, *Megasporoporia* sensu stricto and *Megasporoporiella*

Species	Pores (per mm)	Dextrinoid of skeletals	KOH reaction of skeletals	Cystidioles	Gloeocystidioles	Basidia (μm)	Shape of basidiospores	Basidiospores (μm)	Dendrohyphidia	Hyphal pegs	References
Megasporia bambusae	4–5	[+]	[−]	+	–	20–35 × 10–15	ellipsoid	11.8–14 × 5.8–6.8	+	–	Present study
M. cystidiolophora	3–5	[++]	[−]	+	–	18–25 × 7–10	cylindrical	11.7–14.9 × 4.1–5.6	–	–	Cui & Dai (2007)
M. ellipsoidea	1–1.5	[+]	[−]	+	+	23–40 × 9–15	ellipsoid	12–15 × 6–8.2	+	+	Du & Cui (2009)
M. fusiformis	3.5–4	[−]	[−]	+	–	25–38 × 8–12	fusiform	15–19.8 × 4.2–6.8	–	–	Present study
M. guangdongensis	4–5	[+++]	[−]	+	–	20–28 × 5–8	cylindrical	11–14.9 × 3.4–4.5	–	–	Li & Cui (2013a)
M. hengduanensis	2–3	[++]	[−]	+	–	30–37 × 9–12	cylindrical	11–15 × 4.2–5.2	–	–	Li & Cui (2013a)
M. hexagonoides	0.5–1	[+]	[−]	+	–	38–40 × 8–12	allantoid	17–21 × 5–6	–	–	Dai & Cui (2008)
M. major	1–1.5	[+++]	[+]	+	–	24–38 × 12–16	cylindrical	15.2–20 × 5.5–7.1	+	+	Dai & Li (2002)
M. rimosa	3–4	[+]	[−]	+	–	20–28 × 5–8	cylindrical	16.8–20.2 × 4.3–5.5	+	–	Yuan et al. (2017)
M. tropica	2–3	[+++]	[−]	+	–	20–25 × 7–10	cylindrical	14.7–18.8 × 5–6.5	–	–	Yuan et al. (2017)
Species	Pores (per mm)	Dextrinoid of skeletals	KOH reaction of skeletals	Cystidioles	Gloecystidioles	Basidia (μm)	Shape of basidiospores	Basidiospores (μm)	Dendrohyphidia	Hyphal pegs	References
------------------------------	----------------	-------------------------	---------------------------	-------------	-----------------	--------------	-------------------------	-------------------	----------------	-------------	--------------------------------
M. violacea	5–7	[+++]	[–]	+	–	13–19 × 5–10	cylindrical	11–14.9 × 3.2–5	+	–	Du & Cui (2009)
M. yunnanensis	2–3	[+]	[–]	+	–	30–35 × 9–11	cylindrical	15–20.8 × 5.5–7.1	+	–	Yuan et al. (2017)
Megasporoporia bannaensis	1–2	[+++]	[–]	+	–	20–32 × 8–10	cylindrical	10–14 × 3.9–4.6	–	+	Li & Cui (2013a)
M. inflata	2.5–3	[+++]	[+++]	–	–	14–23 × 7–9	cylindrical	10–11.8 × 3.5–4.2	–	–	Present study
M. minor	6–7	[+++]	[–]	+	–	18–26 × 6–8	ellipsoid	6–7.8 × 2.6–4	–	+	Li & Cui (2013a)
M. setulosa	1–2	[+++]	[–]	–	–	18–29 × 7–10	cylindrical	10–14 × 4.2–5.7	–	+	Present study, Ryvarden et al. (1982)
Megasporoporiella australiae	3–4	[–]	[–]	+	+	35–38 × 10–12	cylindrical	11.8–15 × 4–6	–	–	Present study, Li & Cui (2013a)
M. hubeiensis	1–2	[–]	[–]	+	–	27–34 × 8–11	cylindrical	12–14.3 × 4.5–7	+	–	Present study, Li & Cui (2013a), Present study
M. pseudocavernulosa	1.5–2.5	[++]	[–]	+	–	34–52 × 10–12	allantoid	10.8–14 × 5.3–6.5	–	+	Li & Cui (2013a)
M. rhododendri	4–5	[++]	[–]	+	–	23–40 × 9–14	ellipsoid	11–14 × 6.5–8	–	–	Dai et al. (2004)
M. subcavernulosa	2–4	[+]	[–]	–	–	18–24 × 8–11	cylindrical	9–12.1 × 4.2–5.2	+	+	Dai & Wu (2004)

Abbreviations: [+] = weakly dextrinoid / slightly swollen; [++] = moderately dextrinoid; [+++] = strongly dextrinoid / distinctly swollen; [–] = indextrinoid/not swollen; + = present; – = absent.

Key to known species of *Megaspora*, *Megasporoporia* sensu stricto and *Megasporoporiella*

1. Pores < 1 per mm .. *Megasporia hexagonoides* 2
2. Pores > 1 per mm .. *Megasporia violacea* 3
3. Pores 5–7 per mm .. *Megasporoporia minor* 4
4. Pore surface violet to greyish violet ... *Megasporia violacea* 3
5. Pore surface cream to buff ... *Megasporoporia minor* 5
4. Basidiospores cylindrical, allantoid or fusiformMegasporia ellipsoidea
5. Pores 1–2 per mm ..Megasporia bambusae
6. Dendrohyphidia present; on bamboo ...Megasporoporiella rhododendri
7. Basidiospores fusiform ...Megasporia fusiformis
8. Hyphal pegs present ...Megasporoporia bannaensis
9. Skeletal hyphae weakly to moderately dextrinoidMegasporia guangdongensis
10. Basidiospores > 15 µm long ..Megasporia major
11. Cystidioles present; Asian species ..Megasporoporia inflata
12. Dendrohyphidia present, cystidioles absentMegasporoporiella pseu
docavernulosa
13. Skeletal hyphae strongly dextrinoid ...Megasporia yunnanensis
14. Dendrohyphidia present, cystidioles absentMegasporoporiella aust
draliae
15. Dendrohyphidia absent ...Megasporia hubeiensis
16. Basidiospores < 15 µm long ..Megasporoporia hubeiensis
17. Dendrohyphidia absent ...Megasporoporia rimosa
18. Basidiocarps cracked when dry ...Megasporia yunnanensis
19. Gloeocystidioles present, skeletal hyphae indextrinoidMegasporoporia hubeiensis
20. Pore surface cream to buff, pores 2–3 per mmMegasporia cystidiolophora

Discussion

Dichomitus D.A. Reid resembles Megasporoporia sensu lato by light colored and resupinate basidiocarps, a dimitic hyphal system with generative hyphae bearing clamp connections, cyanophilous skeletal hyphae, and hyaline, thin-walled basidiospores; that is why Masuka & Ryvarden (1999), Robledo & Rajchenberg (2007) merged them, but without molecular analysis. Type species of Dichomitus, D. squalens, is included in our phylogeny and it is distantly related to Megasporia, Megasporoporia sensu stricto, Megasporoporiella, and the unnamed clade of Megasporoporia sensu lato. (Figs 1–2). Morphologically, Dichomitus lacks hyphal pegs and dendrohyphidia, its skeletal hyphae are indextrinoid and dendritically branched in which they are very similar to Polyporus sensu stricto; while the most species of Megasporia, Megasporoporia sensu stricto and Megasporoporiella have hyphal pegs and dendrohyphidia, and their skeletal hyphae are dextrinoid in most species. So, we treat Dichomitus, Megasporia, Megasporoporia sensu stricto and Megasporoporiella as independent genera.

As mentioned in the introduction, Megasporia, Megasporoporia sensu stricto and Megasporoporiella are distinct in phylogeny, but it is impossible to separate each other by morphology. So, we treat our new species and the combination in Megasporia, Megasporoporia sensu stricto and Megasporoporiella, but for the discussion of their similar species, all the members of Megasporoporia sensu lato are included. In our phylogeny (Figs 1, 2), Dichomitus amazonicus,
Megasporoporia cavernulosa and M. mexicana are nested in three lineages and formed a clade. Dichomitus amazonicus was described from neotropics (Gomes-Silva et al. 2012), corresponding specimen URM 87859 is examined, and the specimen has strongly dextrinoid skeletal hyphae and hyphal pegs (not mentioned in the original description). Megasporoporia cavernulosa was originally described from Brazil (Ryvarden 1984), and it has dendorphydia and dextrinoid skeletal hyphae. Megasporoporia mexicana was originally described from Mexico (Ryvarden et al. 1982), and it was combined in Dichomitus without DNA data (Ryvarden 2007). A specimen of Megasporoporia mexicana from Honduras (JV1806/4J, sequenced) is studied, and it has hyphal pegs and dextrinoid skeletal hyphae which are different from D. squalens (the type species of Dichomitus). Phylogenetically, these three species are distantly related to Dichomitus, Megasporia, Megasporoporia sensu stricto and Megasporoporiella. A new genus might be set up to accommodate them, for the time being, we treat them as present names because more materials need to be examined and phylogenetically analyzed.

Megasporoporia minuta Y.C. Dai & X.S. Zhou was described from China without phylogenetic analysis (Zhou & Dai 2008), but our phylogenies show its type is distantly related to Megasporoporia sensu lato (Figs 1–2). Its type (Zhou 120) and another specimen Cui 13945 are studied, they have perennial basidiocarps, small pores (6–8 per mm), indextrinoid skeletal hyphae, narrowly ovoid basidiospores, lack hyphal pegs, dendorphydia and tetrahedric or polyhedric crystals. These characteristics do not fit the definition of Megasporoporia sensu lato. So, the species is excluded from Megasporia, Megasporoporia sensu stricto and Megasporoporiella. Moreover, Megasporoporiella lacerata B.K. Cui & Hai J. Li was described from China based on morphology and a single gene phylogeny (Li & Cui 2013a). Although its morphological characteristics are similar to that of Megasporoporia sensu lato. However, our phylogenies based on 2-gene and 4-gene sequences datasets show that M. lacerata is closer to Polyporus tuberaster (type species of Polyporus sensu stricto, Figs 1, 2). So, the species should be combined into Polyporus. However, Polyporus laceratus Berk. (Ann. nat. Hist., Mag. Zool. Bot. Geol. 3: 392, 1839) is existed, and the species is re-named as following.

Polyporus megasporoporus Y.C. Dai, Yuan Yuan & Ya.R. Wang, nomen. nov.

Index Fungorum number: IF558816; Facesoffungi number: FoF10469

Etymology – megasporopus (Lat.): referring to the species similar with Megasporoporia.

As given by Li and Cui 2013: 377.

= Megasporoporiella lacerata B.K. Cui & Hai J. Li, Mycologia 105(2): 377 (2013).

Material examined – China. Yunnan Province. Baoshan County, Gaoligong Mountains, Biahuailing Nature Reserve, on fallen angiosperm branch, 09 Sep 2007, Yuan 3880 (holotype in IFP, isotype in BJFC).

Besides the species in our phylogeny and the above discussion, the taxa Dichomitus affixus (Corner) T. Hatt. (Hattori 2002), D. africanus Ryvarden (Ryvarden 2019), D. amygaldinus (Berk & Ravnel) Ryvarden (Ryvarden 1977), D. anoectoporus (Berk & M.A. Curtis) Ryvarden (Ryvarden 1984), D. cameroonensis Ryvarden (Ryvarden 2018), D. citricremeus Masuka & Ryvarden (Masuka & Ryvarden 1999), D. costaricensis Ryvarden (Ryvarden 2012), D. cylindrosporus Ryvarden (Ryvarden 2007), D. delicatulus (Henn.) Masuka & Ryvarden (Masuka & Ryvarden 1999), D. densiporus Ryvarden (Ryvarden 2019), D. deviatus Ipulet & Ryvarden (Ipulet & Ryvarden 2005), D. ecuadorensis Ryvarden (Laessoe & Ryvarden 2010), D. efibulatus A.M. Ainsw. & Ryvarden (Ainsworth & Ryvarden 2008), D. epitephrus (Berk.) Ryvarden (Cunningham 1965), D. grandisporus Aime & Ryvarden (Aime et al. 2007), D. leucoplacus (Berk.) Ryvarden (Ryvarden 1977), D. newhookii P.K. Buchanan & Ryvarden (Buchanan & Ryvarden 2000), D. papuanus Quant (Quanten 1996), D. perennis Ryvarden (Ryvarden 2007) & D. sinuolatus H.S. Yuan (Yuan 2013) are recorded in Dichomitus, but most of these taxa lack DNA data, and we did not yet exam their vouchers, and for the time being they are not included in Megasporoporia.
sensu lato. By comparing the original descriptions of these species, the new species we have recently described are different from them.

Acknowledgements

We thank Prof. Leif Ryvarden (Norway), Prof. Bao-Kai Cui (China) and Dr. Yu-Lian Wei (China) for allowing us to study their collections. The research is supported by National Natural Science Foundation of China (Project No. 32000010, 31530002).

References

Aime L, Ryvarden L, Henkel TW. 2007 – Studies in neotropical polypores 22. Additional new and rare species from Guyana. Synopsis Fungorum 23, 15–31.

Ainsworth AM, Ryvarden L. 2008 – Dichomitus efibulatus species nova. Synopsis Fungorum 25, 48–52.

Anonymous. 1969 – Flora of British fungi. Color identification chart. Her Majesty's Stationery Office, London.

Buchanan PK, Ryvarden L. 2000 – New Zealand polypore fungi: six new species and a redetermination. New Zealand Journal of Botany 38, 251–263.

Chen JJ, Cui BK, Dai YC. 2016 – Global diversity and phylogeny of Wrightoporilia (Russulales, Basidiomycota). Persoonia 37, 21–36. Doi 10.3767/003158516X689666

Cui BK, Dai YC. 2007 – Polypores from Tianmushan Nature Reserve (Zhejiang Province, eastern China). Mikologiya i Fitopatologiya 41, 506–514.

Cui BK, Li HJ, Ji X, Zhou JL et al. 2019 – Species diversity, taxonomy and phylogeny of Polyporaceae (Basidiomycota) in China. Fungal Diversity 97, 137–392.

Cunningham GH. 1965 – Polyporaceae of New Zealand. – NZ Dep. Sci. Ind. Res. Bull. 164, 1–304.

Dai YC, Cui BK. 2008 – Notes on Megasporoporia (Basidiomycota, Polyporales) in China. Mycosistema 27, 604–607.

Dai YC, Li TH. 2002 – Megasporoporia major (Basidiomycota), a new combination. Mycosistema 4, 519–521.

Dai YC, Wei YL, Wang Z. 2004 – Wood-inhabiting fungi in southern China 2. Polypores from Sichuan Province. Ann. Bot. Fenn. 41, 319–329.

Dai YC, Wu SH. 2004 – Megasporoporia (Aphyllophorales, Basidiomycota) in China. Mycotaxon 89, 379–388.

Du P, Cui BK. 2009 – Two new species of Megasporoporia (Polyporales, Basidiomycota) from tropical China. Mycotaxon 110, 131–138. Doi 10.5248/110.131

Farris JS. 1989 – The retention index and the rescaled consistency index. Cladistics 5, 417–419. Doi 10.1111/j.1096-0031.1989.tb00573.x

Farris JS, Källersjö M, Kluge AG, Bult C. 1994 – Testing significance of incongruence. Cladistics 10, 315–319. Doi 10.1111/j.1096-0031.1994.tb00181.x

Felsenstein J. 1985 – Confidence intervals on phylogenetics: an approach using bootstrap. Evolution 39, 783–791. Doi 10.2307/2408678

Gomes-Silva AC, Ryvarden L, Gibertoni TB. 2012 – Resupinate poroid fungi from tropical rain forests in Brazil: two new species and new records. Mycological Progress 11, 879–885. Doi 10.1007/s11557-011-0803-9

Hall TA. 1999 – Bioedit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 41, 95–98.

Hattori T. 2002 – Type studies of the polypores described by E.J.H. Corner from Asia and the West Pacific IV. Species described in Tyromyces (1). Mycoscience 43, 307–315. Doi 10.1007/s102670200045
Ipulet P, Ryvarden L. 2005 – New and interesting polypores from Uganda. Synopsis Fungorum 20, 87–99.

Læssøe T, Ryvarden L. 2010 – Studies in neotropical polypores 26. Some new and rarely recorded polypores from Ecuador. Synopsis Fungorum 27, 34–58.

Li HJ, Cui BK. 2013a – Taxonomy and phylogeny of the genus Megasporoporia and its related genera. Mycologia 105, 368–383. doi: 10.3852/12-114.

Li HJ, Cui BK. 2013b – Dichomitus hubeiensis sp. nov. and a new record of Dichomitus (Basidiomycota) from China. Nordic Journal of Botany 31, 118–121. doi 10.1111/j.1756-1051.2012.01498.x

Li HJ, Cui BK, Dai YC. 2014 – Taxonomy and multi-gene phylogeny of Datronia (Polyporales, Basidiomycota). Persoonia 32, 170–182. doi 10.3767/003158514X681828

Li HJ, Si J, He SH. 2016 – Daedaleopsis hainanensis sp. nov. (Polyporaceae, Basidiomycota) from tropical China based on morphological and molecular evidence. Phytotaxa 275, 294–300.

Masuka A, Ryvarden L. 1999 – Dichomitus in Africa. Mycological Research 103, 1126–1130. Doi 10.1017/S0953756299008436

Maddison WP, Maddison DR. 2009 – Mesquite: a modular system for evolutionary analysis. Evolution 11.

Nylander JAA. 2004 – MrModeltest v2.2 Program distributed by the author. Evolutionary Biology Centre, Uppsala University.

Petersen JH. 1996 – Farvekort. The Danish Mycological Society’s color-chart. Greve: Foreningen til Svampekundskabens Fremme, Greve, 1–6 pp.

Ryvarden L. 1977 – Type-studies in the Polyporaceae 10. Species described by J.M. Berkeley, either alone or with other authors from 1844 to 1855. Norwegian Journal of Botany 24, 213–230.

Ryvarden L. 2018 – Studies in African Aphyllophorales 32. Some new African polypores. Synopsis Fungorum 39, 59–71.

Stamatakis A. 2014 – RAxML Version 8: a tool for phylogenetic analyses and post analyses of large phylogenies. Bioinformatics 30, 1312–1313. Doi 10.1093/bioinformatics/btu033
Sun YF, Costa-Rezende DH, Xing JH, Zhou JL et al. 2020 – Multi-gene phylogeny and taxonomy of *Amauroderma* s. lat. (Ganodermataceae). Persoonia 44, 206–239.
Doi 10.3767/persoonia.2020.44.08
Swofford DL. 2002 – PAUP*: Phylogenetic analysis using parsimony (*and other methods), version 4.0 Beta. Sunderland, MA: Sinauer.
Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. 1997 – The CLUSTAL X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Research 25, 4876–4882. Doi 10.1093/nar/25.24.4876
Vilgalys R, Hester M. 1990 – Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several Cryptococcus species. Journal of Bacteriology 172, 4238–4246. Doi 10.1128/jb.172.8.4238-4246.1990
White TJ, Bruns T, Lee S, Taylor JW. 1990 – Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. pp. 315–322 in: Innis, M.A., Gelfand, D.H., Sninsky, J.J. and White, T.J. (eds.), PCR protocols: a guide to methods and applications. New York: Academic Press. Doi 10.1016/B978-012-372180-8.50042-1
Yuan HS. 2013 – *Dichomitus sinuolatus* sp. nov. (Basidiomycota, Polyporales) from China and a key to the genus. Nova Hedwigia 97, 495–501. Doi 10.1127/0029-5035/2013/0098
Yuan Y, Ji XH, Chen JJ, Dai YC. 2017 – Three new species of *Megasporia* (Polyporales, Basidiomycota) from China. MycoKeys 20, 37–50. Doi 10.3897/mycokeys.20.11816
Zhao CL, Cui BK. 2012 – A new species of *Perenniporia* (Polyporales, Basidiomycota) described from southern China based on morphological and molecular characters. Mycological Progress 11, 555–560. Doi 10.1007/s11557-011-0770-1
Zhou JL, Zhu L, Chen H, Cui BK. 2016 – Taxonomy and phylogeny of polyporus group *Melanopus* (Polyporales, Basidiomycota) from China. Plos One 11, e0159495. Doi 10.1371/journal.pone.0159495
Zhou JL, Cui BK. 2017 – Phylogeny and taxonomy of *Favolus* (Basidiomycota). Mycologia 109, 766–779. Doi 10.1080/00275514.2017.1409023
Zhou XS, Dai YC. 2008 – A new species of *Megasporoporia* (Polyporales, Basidiomycota) from China. Mycological Progress 7, 253–255. Doi 10.1007/s11557-008-0567-z
Zhu L, Song J, Zhou JL, Si J, Cui BK. 2019 – Species diversity, phylogeny, divergence time and biogeography of the genus *Sanghuangporus* (Basidiomycota). Frontiers in Microbiology 10, 812. Doi 10.3389/fmicb.2019.00812