Pathogenic Bacteria for Human and Fish Isolated from Fish Farm in Kastamonu, Turkey

Abstract

The danger of zoonotic diseases is increasing day by day for human. A lot of bacteria lives high concentrate in the water environment. Also the bacterial flora of the aquatic organisms is determined by the environment in which it lives. According to, this the objective of the study was to evaluate, examine, research and monitoring the condition of the pathogenic bacteria for human and fish in the fish farms of Kastamonu, Turkey. Aeromonashydrophilica, Lactococcusgarviae, Vibrio anguillarum and were isolated from fish samples, also Burkholderiacepacia, Pseudomonas aeruginosa and Pseudomonasfluorescens were isolated from water samples. Aeromonashydrophilica, Burkholderiacepacia, Pseudomonas aeruginosa and Vibrio flavials are zoonotic bacteria and Lactococcusgarviae is a circuitously dangerous for human health. According to this study results, fish producers must pay attention to hygiene rules and monitoring the aquaculture environment.

Keywords: Zoonotic bacteria; Fish pathogens; Water microbiology

Introduction

Aquaculture production has showed a rapid growth in the last years. To provide increasing amounts of aquaculture for the world’s growing population, many major fish farms are already at maximum capacity; fish are often cultured in limited spaces such as ponds and net cages under high densities, under parameters that depend on the species stocked and prevailing environmental conditions. However, these overcrowding trends adversely affect the health of cultured fish by making them susceptible to infectious diseases [1].

As in every living organism, human beings are producing a number of waste products while continuing their life, and diseases such as fish and aquatic products are emerging due to the pollution caused by these products, and some of these diseases may show zoonotic characteristics [2]. Zoonotic diseases can be transmitted to humans through drinking water and, consumption of raw and undercooked fish or similar aquatic products. For these reasons zoonotic organisms are an important for human health.

Enterobacteriaceae spp. can be transmitted to human by consumption of the aquatic organisms and contaminated water. Also Bacillaceae spp. are widely found in fish [3,4]. Vibrionaceae spp. lives extensively in almost every water source, especially in salty and brackish water. Besides these bacteria are frequently isolated from fish, other aquatic products, and shellfish [2,5]. Many bacteria of Vibrionaceae, especially non-epidemic isolates of Vibrio vulnificus, Vibrio parahaemolyticus and Vibrio cholerae cause the infections for human due to consumption of raw and/ or undercooked aquatic products. In contrast, the epidemic Vibrio cholerae isolates are transmitted from environments to water and human [6]. The most common species of the Vibrionaceae is the Vibrio parahaemolyticus strains [7]. Aeromonadaceae spp. are more often contaminated to human by water and food [8,9]. Aeromonadaceae spp. were isolated in 11.1% of the samples taken from diarrhea patients in Japan between 1985-1997. It has been found that younger human who eat fish products infected with Aeromonadaceae spp. may develop diarrhea and, chronic enterocolitis performs in elderly people, as well as inflammation and vomiting in people contaminating with these bacteria [10,11]. Salmonella spp. are isolated from fish and other aquatic organisms. Infections of Salmonella spp. are mostly transmitted to human by contaminated water and food. It has been reported that 7% of Salmonella spp. infections in the United States are related to seafood [12,13].

Importance of zoonotic diseases are day by day increasing owing to its risks and effects. For this reason, careful evaluation, examination and monitoring of foodstuffs in terms of human health is important. The microbial flora of processed and fresh aquatic organisms should be carefully examined in the evaluating stage. Also the bacterial flora of the aquatic organisms is determined by the environment in which it lives. According to, this the objective of the study was to evaluate, examine, research and monitoring the condition of the pathogenic bacteria for human and fish in the fish farms of Kastamonu, Turkey.

Materials and Methods

There are 11 fish farm in Kastamonu, which are total production capacities 419, 50 t per year, but 5 of them made fish production at all seasons. For this, sample collected from 5 fish farms for the bacteriological analyses at 2015 and 2016. Farm I, II and II...
based in different streams, Farm IV and V established in a dam lake. Dissolved oxygen, pH, salinity, temperature, conductivity and resistivity are measured in these farm with Hach Lange HQ 40 D multimeter and were given Table 1. Ten fish and water samples were taken in duplicate from each fish farm for the bacteriological investigations. Bacteria were isolated from samples with dilution-plate methods [14]. All of the bacteriological media used in this research was from Merck (Merck, Germany). Individual colonies were then identified [15,16]. Gram staining, catalase, oxidase and motility were using for presumptive identification of the bacterial strains. Biochemical characteristics of totally 21 bacteria were determined with API 20 E, API 20 STREP and API 50 CH tests (BioMerieux S.S., France) at 25±0.5 °C for 48 h [17,18].

Table 1: Water parameters in the fish farms.

Parameters	Farm I	Farm II	Farm III	Farm IV	Farm V
Dissolved O₂ (mg L⁻¹)	8.60	8.56	8.62	9.58	9.50
pH	8.96	8.78	8.82	8.68	8.65
Temperature (°C)	10.70	10.40	10.50	17.50	17.30
Salinity (mg L⁻¹)	0.22	0.22	0.22	0.21	0.21
Conductivity (ms cm⁻¹)	462	465	453	434	430
Resistivity (Ω)	2165	2154	2161	2054	2050

Results and Discussion

There are no find any parasitic infestation in fish farms. Aeromonas hydrophila, Lactococcus garvieae, Vibrio anguillarum and Vibrio fluvialis were isolated from fish samples, also Burkholderia cepacia, Pseudomonas aeruginosa and Pseudomonas fluorescens were isolated from water samples. Distribution of the bacteria were given Table 2 in the fish farms. API 20 E, API 20 STREP and API 50 CH tests results were given Table 3-5 respectively.

Table 2: Isolated bacteria species in the fish farms.

Bacteria	Farm I	Farm II	Farm III	Farm IV	Farm V
Aeromonas hydrophila	+	+			
Burkholderia cepacia		+			+
Lactococcus garvieae		+			+
Pseudomonas aeruginosa	+	+	+		
Pseudomonas fluorescens	+	+	+		
Vibrio anguillarum					+
Vibrio fluvialis					+

Table 3: Isolated bacteria from fish farms according to API 20 E tests results.

Properties	Farm I	Farm II	Farm III	Farm IV	Farm V
Aeromonas hydrophila	-	-	-	-	-
Pseudomonas aeruginosa	-	-	-	-	-
Vibrio anguillarum					+
Pseudomonas fluorescens	+	+	+	+	+
Gram stain	-	-	-	-	-
Motility	+	+	+	+	+
Oxidase	+	+	+	+	+
Catalase	+	+	+	+	+

Table 4: Isolated bacteria from fish farms according to API 20 STREP and API 50 CH tests results.
ONPG	+	-	-	+	+	-	-	+	+
ADH	+	+	+	+	+	-	+	+	+
LDC	+	-	-	+	+	-	-	-	+
ODC	-	-	-	-	-	-	-	-	+
CIT	+	+	+	+	+	+	+	+	+
H₂S	-	-	-	-	+	-	-	-	-
URE	-	+	+	-	-	-	+	-	-
TDA	-	-	-	-	-	-	-	-	-
IND	+	-	-	+	-	-	-	-	-
VP	+	-	-	+	-	-	-	-	+
GEL	+	+	+	+	-	+	+	+	+
GLU	+	-	-	+	+	+	+	+	+
MAN	+	-	-	+	-	-	+	+	+
INO	-	-	-	-	-	-	-	-	-
SOR	+	-	-	+	+	-	-	+	+
RHA	-	-	-	-	-	-	-	-	-
SAC	+	-	-	-	-	-	-	-	-
MEL	-	-	-	-	-	-	-	-	-
AMY	+	-	-	-	-	-	-	-	-
ARA	+	-	-	+	-	+	-	+	+
OX	+	+	+	+	+	+	+	+	+

ONPG: ß-galactosidase; ADH: Arginine DiHydrolase; LDC: Lysine DeCarboxylase; ODC: Ornithine DeCarboxylase; CIT: CITrate utilization; H₂S: H₂S production; URE: UREase; TDA:Tryptophane De Aminase; IND: INDole Production; VP: VogesProskauer; GEL: GELatinase; GLU: GLUcose Fermentation / oxidation; MAN: MANNitol Fermentation / Oxidation; INO: INOsitol Fermentation / Oxidation; SOR: SORbitol Fermentation / Oxidation; RHA: RHAmnose Fermentation / Oxidation; SAC: SACcharose Fermentation / Oxidation; MEL: MELibiose Fermentation / Oxidation, AMY: AMYgdalin Fermentation / Oxidation; ARA: ARABinosse Fermentation / Oxidation; OX: cytochrome-OXidase

Table 4: Isolated bacteria from two farms according to API 20 STREP tests results.
Pathogenic Bacteria for Human and Fish Isolated from Fish Farm in Kastamonu, Turkey

Properties	Farm IV	Farm V
PAL	-	-
LAP	+	+
ADH	+	+
RIB	+	+
ARA	+	+
MAN	+	+
SOR	-	-
LAC	-	-
TRE	+	+
INU	-	-
RAF	-	-
AMD	-	-
GLYG	-	-

β-Hemolysis

Abbreviations: VP: Voges Proskauer; HIP: acide HIPpurique; ESC: ESCulin; PYRA: PYRroldonyl Arylamidase; α-GAL: α-GALactosidase; β-GUR: β-Glucuronidase; PAL: Phosphatase ALcaline; LAP: Leucine AminoPeptidase; ADH: Arginine DiHydrolase; RIB: RIBose Acidification; ARA: ARabinose Acidification; MAN: MANnitol Acidification; SOR: SORbitol Acidification; LAC: LACtose Acidification; TRE: TREhalose Acidification; INU: INUline Acidification; RAF: RAFfinose Acidification; AMD: AMiDon Acidification; GLYG: GLYcoGene Acidification

Table 5: Isolated bacteria from two farms according to API 50 CH tests results.

Properties	Farm IV	Farm V
L. garvieae	+	+
L. garvieae	+	+

Properties	Farm IV	Farm V
GLY	-	-
ERY	-	-
DARA	-	-
LARA	-	-
RIB	+	+
DXYL	-	-
LXYL	-	-
ADO	-	-
MDX	-	-
GAL	+	+
GLU	+	+
FRU	+	+
MNE	-	-
SBE	-	-
RHA	-	-
DUL	-	-
INO	+	+
MAN	-	-
SOR	-	-
MDM	-	-
MDG	+	+
NAG	+	+
AMY	+	+
ARB	+	+
ESC	+	+

Citation: Alkhunni SBA, Gaballah MSM, Gültepe N (2017) Pathogenic Bacteria for Human and Fish Isolated from Fish Farm in Kastamonu, Turkey. J Aquac Mar Biol 6(3): 00157. DOI: 10.15406/jamb.2017.06.00157
Abbreviations: GLY: GLycerol, ERY: ERYthritol, DARa: D-ARAbinoS, LARa: L-ARAbinoS, RIb: D-RIbose, DXYL: D-XyloS, LXYL: L-XyloS, ADo: D-ADOnitol, MDX: methyl-D-xylopyranoside, GAL: D-GALactose, GLU: D-GLucose, FRU: D-FRUctose, MNE: D-MANnosE, SBE: D-SORBosE, RHA: L-RHAMnosE, DLL: DLLictol, INo: INositol, MAN: D-MaNnosE, MDM: methyl-α-D-Mannopyranoside, MDG: methyl-α-D-Glucopyranoside, NAG: N-Acetylglucosamine, AMY: AMYgdaline, ARB: ARButine, ESC: ESCulin, SAL: SALLicine, CEL: D-CELlobiose, MAL: D-MALtose, MEL: D-MELibiose, SAC: D-SACcharose, TRE: D-TREhalose, INU: INULine, MLZ: D-MeLeZitose, RAF: D-RAFtose, AMIDoN, GLYG: GLycoGene, XIL: XYLitol, GEN: GENiobiose, TUR: D-TUranose, LIX: D-LIXose, TAG: D-TAGatose, DFUC: D-DFUCose, L-FUcose, DARL: D-AraBITol, LARL: L-ARAbitol, GNT: potassium GlucoNaTe, 2KG: potassium 2-CetoGluconate, 5KG: potassium 5-CetoGluconate.

Aeromonas hydrophila can be find in fresh water, aquatic plants, fish and fish eggs, which is a pathogenic bacterium for both human and fish. It causes high mortality and heavy economically losses in fish farms and also gastroenteritis, vomiting, fever, epigastric pain, septicemia, arthritis, meningitis and peritonitis in humans [16, 19].

Pseudomonas aeruginosa were isolated from Farm I, II and IV. This pathogen causes various lesions and fever in the body for human and fish [16, 20]. Vibrio fluvialis, a zoonotic pathogen that can cause zoonotic infections, is a type of bacterium that is found intensely in an normal environment. It may be dangerous for human health with produces toxins. It is known that this bacterium, which causes gastroenteritis, diarrhea, lesions and bacteremia in humans, causes diseases in shellfish and their eaters. There are contamination and disease risks with consumption of raw and/or undercooked aquatic products [6, 21-23]. V. fluvialis was isolated from Farm III.

Pseudomonas fluorescens bacteria isolated from the production water in Farm IV is among the bacterium commonly found in the waters. It is known to be pathogenic in many species of fish, especially in carp [16, 24].

Lactococcus garviae isolated from Farm IV and V is known to be a species of pathogenic bacterium that causes heavy economically losses in various fish species all over the world [16]. It is also an important species in terms of threatening human health. Bacterium was first time isolated from a bovine mastitis case in England [25, 26].

Vibrio anguillarum isolated from fish in Farm V is a pathogenic bacterium causing vibrios is infection in many fish species and high rate of losses in aquaculture. This bacterium, which can be found especially in salty and brackish waters, is causing an outbreak infection in fish farms [16, 19, 27].

Burkholderia cepacia was isolated from water in the Farm V. This bacterium, which is pathogenic for human, can be found in the water and sediment, also cause cystic fibrosis in human [28]. Diler [29] reported that Gram positive coccus, Coryneform and Gram negative bacteria were isolated from rainbow trout microflora. Similarly, Achromobacter spp., Acinetobacter spp., Aeromonas spp., Bacillus spp., Brevundimonas spp., Comamonas spp., Enterobacter spp., Flavobacterium spp., Pseudomonas spp., Proteus spp., Rahnella spp., Salmonella spp., Shigella spp., Sphingomonas spp., Staphylococcus spp., Streptococcus spp., Vibrio spp. and Yersinia spp. were isolated from fish farm in Turkey [17, 27, 30-33]. The results of these study have a similarity with this research finding.

Conclusion

Unsurprisingly, Aeromonas hydrophila, Lactococcus garviae, Vibrio anguillarum, Vibrio fluvialis, Burkholderia cepacia, Pseudomonas aeruginosa and Pseudomonas fluorescens were isolated from these farms on account of its natural living environments. It is thought that, this condition is caused by the microbial flora of these water and also this results supported that the production water of the fish is directly related to the bacterial flora of fish. Some of them these bacteria can be cause zoonotic infection for human. For this reason, fish producers must pay attention to hygiene rules and monitoring the aquaculture environment.

Acknowledgements

This study partially supported that Kastamonu University Scientific Research Projects Coordination Department, which number is KÜBAP-01/2014-02.

Conflict of Interest

The authors declare no conflict of interest.

References

1. Gültepe N, Hisar O, Sahur S, Hoşuş B, Tanrıkül TT et al (2012) Preliminary assessment of dietary mannanoligosaccharides on growth performance and health status of gilthead seabream Sparus auratus. Journal of Aquatic Animal Health 24:37-42.
2. Jones D (1988) Composition and properties of the family Enterobacteriaceae. Journal of Applied Bacteriology 65: 1s-19s.
3. Bilgehan H (1990) Klinik Mikrobiyoloji. Özel Bakteriyolojiye Bakteri Enfeksiyonları, Bariş Yayınları, Fakülteler Kitabevi, Bornova- İzmir, Turkey, pp.186.
4. Goepfert JM (1976) Bacillus cereus. Compendium of Methods for the Microbiological Examination of Food; Speck ML (Eds.), American Pub. Health Ass. USA, pp. 417-423.
5. Kahla-nabbi AB, Chaib K, Bebes A, Zmantar T, Bakhrouf A (2006) Virulence and entomopathogenic repetitive intergenic consensus ORF of Vibrio alginolyticus strains isolated from Tunisian cultured gilthead sea bream and sea bass outbreaks. Veterinary Microbiology 117 (2-4): 321-327.
6. Morris JRG (2003) Cholera and other types of vibrios: A story of human pandemics and oysters of half shell. Clin Infect Dis 37(2): 272-280.
7. Feldhusen F (2000) The role of seafood bacterial food-borne diseases. Microbes Infect 2(13): 1651-1660.
8. Cipriano RC, Bullock GL, Pyle SW (1984) Aeromonas hydrophila and motile aeromonad septicemias of fish. U.S. Fish and Wildlife Service pp. 1-26.
1. Cipriano RG, Ford LA, Starliper CE, Teska JD, Nelson JE, et al. (1996) Control of external *Aeromonas salmonicida*: Topical disinfection of salmonids with Chloramine-T. Journal of Aquatic Animal Health 8(1): 52-57.

2. Hanninen ML, Divanen P, Koski VH (1997) *Aeromonas* species in fish, fish eggs, shrimp and fresh water. Journal of Food Microbiology 34(1): 17-26.

3. Butt AA, Aldridge KE, Sanders CV (2004) Infections related to the ingestion of seafood Part I: viral and bacterial infections. Lentis Infect Dis 4(4): 201-212.

4. Bean NH, Goulding JS, Daniels MT, Angulo FJ (1997) Surveillance of foodborne disease outbreaks-United States, 1988-1992. Journal of Food Protection 60: 1266-1266.

5. Wilson IG, Moore JE (1996) Presence of *Salmonella* spp. and *Campylobacter* spp. in shellfish. Epidemiol Infect 116(2): 147-153.

6. Gültepe N, Aydin S (2009) *Pseudomonas elongata* infection in scattered mirror carp (*Cyprinus carpio*): bacteriology, gross pathology and treatment. Journal of Animal and Veterinary Advances 8(5): 835-838.

7. Plumb JA, Bowser PR (1983) Microbial fish disease laboratory manual. Alabama Agricultural Experiment Station, Alabama University, Brown Printing Company, Montgomery, Alabama, USA pp. 92.

8. Austin B, Austin DA (1999) Bacterial Fish Pathogens: Disease of Farmed and Wild Fish. Springer, pp. 457.

9. Gültepe N, Tanrikul TT (2006) Treatment methods of *Flavobacterium psychrophilum*: Cause of Rainbow Trout Fry Syndrome (RFTS) and Bacterial Cold-Water Disease (BCWD) in Turkey. Journal of Fisheries International 1(2-4): 102-105.

10. Tanrikul TT, Gültepe N (2011) Mix infection in rainbow trout (*Oncorhynchus mykiss*): *Lactococcus garvieae* and *Vibrio anguillarum* OL. Journal of Animal and Veterinary Advances 10(8): 1019-1023.

11. Işleyici Ö, Sancak YC (2009) Health risks originated from motile *Aeromonas* in foods. YYU Veterinary Faculty Journal 20(2): 69-74.

12. Omak EE, Durmaz Y, Çiftçi A, Pelkmans GZ, Kilicioğlu Y (2015) Pathogenic bacteria and resistance genes profiles isolated from different fish species. Atatürk University Journal of Veterinary Sciences 10(3): 156-164.

13. Chakraborty S, Nair GB, Shinoda S (1997) Pathogenic vibrios in the nature aquatic environment. Reviews on Environmental Health 12(2): 63-80.

14. Tsai YH, Hsu RW, Huang KC, Chen CH, Cheng CC, et al. (2004) Systemic *Vibrio* infection presenting as necrotising fasciitis and sepsis. A series of thirteen cases. J Bone Joint Surg 86-A(11): 2497-2502.

15. Işlinsoy EO, Okoh AL (2010) *Vibrio fluvialis*: An unusual enteric pathogen of increasing public health concern. Int J Environ Res Public Health 7(10): 3628-3643.

16. Akaylı T, Ürükçü Ç, Çakak Ö (2013) Antimicrobial susceptibilities of gram-negative bacteria isolated from cultured rainbow trout (*Oncorhynchus mykiss*), Wallbaum 1792. Research Journal of Biological Sciences 6(2): 17-22.

17. Vela Al, Vazquez J, Gibello A, Blanco MM, Morena MA, et al. (2000) Phenotypic and genetic characterization of *Lactococcus garvieae* isolated in Spain from Lactoceccos is outbreaks and comparison with isolates of other countries and sources. Journal of Clinical Microbiology 38(10): 3791-3795.

18. Collins MD, Farrow FAE, Phillips RA, Kandler O (1984) *Streptococcus gallivartii* sp. nov. and *Streptococcus plantarum* sp. nov. Journal of Clinical Microbiology 129(11): 3427-3431.

19. Tanrikul T (2007) Vibriosis as an epizootic disease of rainbow trout (*Oncorhynchus mykiss*) in Turkey. Pakistan Journal of Biological Sciences 10(10): 1733-1737.

20. Chaparro C, Maurer J, Gutierrez C, Krajden M, Chan C, et al. (2001) Infection with *Burkholderia cepacia* in Cystic Fibrosis. Am J Respir Crit Care Med 163(1): 43-48.

21. Diler Ö, Altun S, Calkuşu F, Diler A (2000) A study on qualitative and quantitative bacterial flora of the rainbow trout (*Oncorhynchus mykiss*) living in different fish farms. Turkish Journal of Veterinary & Animal Sciences 24: 251-259.

22. Sarıyıldız M (1984) An investigation of aerobic microbial flora of stomach and intestinal flora in rainbow trout. Doğa Bilim Dergisi 8(3): 281-287.

23. Kılıç A, Şeke E, Özcen M, İspir Ü (2007) Bacterial flora of rainbow trout (*Oncorhynchus mykiss*) in farms in Elazığ Region. Science and Engineering Journal of Firat University 19(2): 129-132.

24. Korun J, Toprak HB (2010) The effect of NaCl on their antibiotic susceptibility motile *Aeromonas* strain isolated from the intestine of rainbow trout (*Oncorhynchus mykiss*). Journal of the Faculty of Veterinary Medicine, Kafkas University 16(2): 193-198.

25. Özer S, Demirel M, Us M, Yıldırım S (2008) Microbial flora of rainbow trout (*Oncorhynchus mykiss*), Wallbaum hatcheries in Cag˘larastra, province Mersin-Turkey. Journal of Fisheries Sciences 2(3): 261-271.