Allosteric targeting of the Fanconi anemia ubiquitin-conjugating enzyme Ube2T by fragment screening
Morreale, Francesca; Bortoluzzi, Alessio; Chaugule, Viduth; Arkinson, Connor; Walden, Helen; Ciulli, Alessio

Published in:
Journal of Medicinal Chemistry

DOI:
10.1021/acs.jmedchem.7b00147

Publication date:
2017

Document Version
Publisher's PDF, also known as Version of record

Link to publication in Discovery Research Portal

Citation for published version (APA):
Morreale, F., Bortoluzzi, A., Chaugule, V., Arkinson, C., Walden, H., & Ciulli, A. (2017). Allosteric targeting of the Fanconi anemia ubiquitin-conjugating enzyme Ube2T by fragment screening. Journal of Medicinal Chemistry, 60(9), 4093-4098. DOI: 10.1021/acs.jmedchem.7b00147
Allosteric Targeting of the Fanconi Anemia Ubiquitin-Conjugating Enzyme Ube2T by Fragment Screening

Francesca E. Morreale,† Alessio Bortoluzzi,‡ Viduth K. Chaugule,† Connor Arkinson,† Helen Walden,*† and Alessio Ciulli*†,‡

†MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom
‡Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom

Supporting Information

ABSTRACT: Ube2T is the E2 ubiquitin-conjugating enzyme of the Fanconi anemia DNA repair pathway and it is overexpressed in several cancers, representing an attractive target for the development of inhibitors. Despite the extensive efforts in targeting the ubiquitin system, very few E2 binders have currently been discovered. Herein we report the identification of a new allosteric pocket on Ube2T through a fragment screening using biophysical methods. Several fragments binding to this site inhibit ubiquitin conjugation in vitro.

INTRODUCTION

Ubiquitination is a post-translational modification of proteins that regulates many cellular processes, from protein degradation to cell cycle progression and DNA repair.1,2 Ubiquitin conjugation to substrate proteins is catalyzed by the sequential action of three enzymes: E1 (ubiquitin-activating enzyme), E2 (ubiquitin-conjugating enzyme), and E3 (ubiquitin ligase).3 There are approximately 40 known E2s in humans that regulate diverse biological processes, making them attractive drug targets.4,5 Structural information is available for many E2s, but the lack of deep active site clefts and the need to target the protein surface have led to E2s being considered challenging targets to small molecules.5,6 Indeed, to date, the possibility of targeting E2s with small molecules has been largely unexplored and very few inhibitors are known.7−10

Ube2T is the E2 enzyme of the Fanconi anemia (FA) pathway,11 which is essential for the repair of DNA interstrand cross-links. Together with FANCL (the E3 ligase), Ube2T catalyzes the monoubiquitination of the heterodimeric FANCI/FANCD2 complex, which is the key signaling event to activate the FA pathway for DNA repair.11−16 Modulation of DNA repair pathways is an emerging strategy for the development of inhibitors of tumor cell growth, as it can either potentiate the effects of radiotherapy and conventional genotoxins or exploit synthetic lethal interactions.15−17 The latter approach relies on genetic defects in DNA repair pathways in certain tumor cells, which lead to hypersensitivity toward inhibitors of compensatory pathways.

Ube2T has recently been found to be overexpressed in several tumors,18−21 including breast18 and prostate cancer,20 and therefore it represents an attractive therapeutic target. Here we unveil an allosteric pocket on Ube2T that is ligandable to small molecules as identified via fragment screening using biophysical methods. Fragment-based drug discovery is now an established approach for the development of lead compounds.22−25 “Fragments” are low molecular weight compounds (typically <250−300 Da), which bind to the target protein with weak affinities (high micromolar to low millimolar range). Fragments represent synthetically tractable starting points for medicinal chemistry to aid their elaboration into high affinity small molecules.26,27 The weak affinities typically observed for fragments make it challenging to reliably detect and validate their binding. However, direct binding methods can aid detection of novel, secondary, and potentially allosteric sites on protein surfaces.28 One way to enhance success rates is to deploy a combination or cascade of biophysical methods in order to complement the different detection and sensitivity capabilities of the single techniques.29,30

RESULTS AND DISCUSSION

Our biophysical cascade consisted of a first screen of a library of approximately 1200 fragments using two orthogonal techniques: differential scanning fluorimetry (DSF) and biolayer interferometry (BLI). This was followed by a secondary screen...
using one-dimensional 1H NMR spectroscopy, binding site identification through protein-observed NMR spectroscopy, and X-ray crystallography.

DSF monitors the unfolding temperature of a protein using a fluorescent dye. We screened our fragment library measuring the effect of fragments as singletons on the melting temperature of Ube2T ($\Delta T_m = T_m^{\text{Ube}2T+\text{fragment}} - T_m^{\text{Ube}2T}$; Supporting Information (SI) Figure S1). We selected as primary hits nine fragments that induced stabilization of the protein ($\Delta T_m \geq +0.5 ^\circ$C) as well as 33 fragments that generated significant negative shifts ($\Delta T_m \leq -2.5 ^\circ$C). Previous work has indeed demonstrated that several destabilizers can be confirmed as real

Figure 1. Chemical shift perturbations observed upon addition of 3 mM fragment* to 80 nM Ube2T$_{1-154}$. Weighted $\Delta \delta s \geq$ average + SD are indicated by a yellow line. Weighted $\Delta \delta s \geq$ average + 2×SD are indicated by an orange line. Equivalent colors are used to highlight corresponding residues on the Ube2T surface. As a reference, the catalytic cysteine (C86) is colored in green. Chemical structures for individual fragments are shown. For HSQC spectra and weighted $\Delta \delta s$ formula, see SI. *Concentration accuracy is limited by solubility issues for several fragments.
Carr screening (SI, Figure S2). We then repeated the BLI (WaterLOGSY),32 saturation transfer difference (STD),33 and Carr–Purcell–Meiboom–Gill (CPMG)34,35 relaxation-edited spectroscopy (WaterLOGSY).32 We accessed a six-point concentration series, and 37 hits were selected after visual inspection of the individual binding sensograms. As a result of this first screen, we obtained 42 DSF hits (nine stabilizers and 33 destabilizers) and 37 BLI hits, out of which 10 were in common between the two screens (SI, Figure S3A), making a total of 69 unique hits (5.5% overall hit rate).

Of these initial hits, 34 fragments were chosen based on chemical diversity and commercial availability and submitted to a series of one-dimensional 1H NMR spectroscopy binding experiments: water ligand observed gradient spectroscopy (WaterLOGSY),32 saturation transfer difference (STD),33 and Carr–Purcell–Meiboom–Gill (CPMG)34,35 relaxation-edited sequences. Binding was assessed by comparing the proton signals of the fragments in the presence and in the absence of the protein. This secondary screen validated 13 of the 34 hits (9.5% attrition rate).

The next goal was the identification of fragments’ binding sites on the Ube2T surface. X-ray crystallography is normally used for this purpose, but in our case, we used a truncated form of Ube2T (Ube2T−154) lacking the C-terminal flexible tail,36 assigned the backbone amide protons of the HSQC spectrum (BMRB entry 27035), and performed chemical shift perturbation (CSP) analysis with each individual fragment. Out of the 13 fragments, six induced detectable shifts at 2 mM concentration after visual inspection of the spectra (the six validated binders were equally distributed between BLI and DSF hits; a summary of the confirmed hits is shown in SI, Figure S3, together with some representative data). CSPs shown by the six fragments were concentration-dependent, as demonstrated by a four-point titration of fragment into protein (SI, Figure S4).

Shifts mapped onto the X-ray structures of Ube2T (PDB 1YH2, 6, 4CCG36) were primarily clustered around a pocket adjacent to the catalytic cysteine (Cys86), formed by the loop between strand β4 and the 310 helix of the E2 fold (Figures 1A, E). A slightly different behavior was observed for EM02 and EM17 (to a lesser extent), which also shifted several amino acids located between strands β1 and β2 (Figure 1A,E).

To elucidate the fragments binding modes, we next obtained well-diffracting protein crystals (1.7 Å for the apo form) that we found to tolerate relatively high concentrations of organic solvents that are needed for fragment soaking. The binding site identified by protein NMR was found to be solvent-accessible in our crystal form, suggesting that it would be suitable for soaking experiments. We could confirm this by solving the crystal structure of Ube2T in complex with EM04 at 2.4 Å resolution (PDB SNGZ, Figure 2 and SI, Figure S5). The newly discovered pocket is distinct from the small molecules binding sites identified on the E2s Cdc34 and Ubc9 (SI, Figure S6).

EM04 binds Ube2T with a $K_D = 1.3$ mM (LE = 0.36 kcal mol$^{-1}$), as measured by isothermal titration calorimetry (ITC) (SI, Figure S7A). As shown in Figure 2B, the binding mode is driven by several hydrophobic contacts and by a hydrogen bond between the amino group of EM04 and the carbonyl group of Phe70 on Ube2T. An −NH_2 (hydrogen bond donor) appears to be a common structural feature between the identified fragments, as it is also present in EM02, EM11, EM17, and EM29, potentially suggesting a conserved interaction. A second hydrogen bond is formed between the backbone NH of Ile74 and the sulfur atom of the benzothiazole ring. These data are in agreement with the CSP experiments,
where major shifts were observed for Ile74 backbone NH upon fragment addition (Figure 1B and SI, Figure S4).

Fragments are typically thought as too weak binders to warrant testing in functional assays. However, fragments binding to secondary pockets have been found to exert allosteric effects on their targets.37,38 To address this, we next investigated whether the validated fragments could impact Ube2T enzymatic activity using a biochemical assay, which measures the conjugation of fluorescently labeled ubiquitin to the substrate protein FANCD2.39 A significant reduction of substrate ubiquitination was observed upon addition of fragments EM02, EM04, and EM17 (Figure 3A), suggesting that binding of small molecules to this pocket can lead to inhibition of Ube2T’s biochemical activity. The assay was repeated in the presence of detergent as a control for aggregation (SI, Figure S8). None of the fragments affected the formation of the Ube2T–ubiquitin thioester (as demonstrated by an E2-charging assay, SI, Figure S9), suggesting that such inhibition involves the catalytic transfer of the thioester-linked ubiquitin molecule from Ube2T to the substrate protein FANCD2. The effect of EM02, EM04, and EM17 on FANCD2 ubiquitination was concentration-dependent (Figure 3B) as shown by a four-point titration series. Additionally, the three fragments did not show detectable inhibitory effect when tested in a similar biochemical assay set up using UbcH5c as ubiquitin-conjugating enzyme (SI, Figure S4).

In summary, using fragment screening, we discovered a new allosteric pocket on Ube2T, the E2 ubiquitin-conjugating enzyme of the FA pathway. Small molecules binding to this site can inhibit substrate ubiquitination in vitro, suggesting an allosteric modulation of Ube2T enzymatic activity, although we cannot rule out potential direct inhibition of specific protein–protein interactions. A cascade of biophysical methods was successfully implemented to screen and validate the binding of fragment-like small molecules and to elucidate their binding mode. Such fragments represent attractive starting points for further elaboration into high affinity inhibitors. A potent Ube2T inhibitor could find application in sensitizing cancer cells to cross-linking agents (such as cisplatin and mitomycin C) or be used to exploit specific synthetic lethal interactions. Very few E2 inhibitors are known to date, and targeting this newly discovered allosteric pocket could represent a successful strategy to develop high-affinity small molecules to effectively drug this class of enzymes.

CONCLUSIONS

Experimental section: protein expression and purification, DSF, BLI, ligand-observed NMR spectroscopy, Ube2T backbone resonance assignment, CSP experiments, ITC, crystallization and structure determination, ubiquitination assays (PDF)

Molecular formula strings (CSV)

Accession Codes

Atomic coordinates can be accessed using PDB code SNGZ.

Authors will release the atomic coordinates and experimental
data upon article publication. Backbone assignment of human Ube2T (1–154) can be accessed using BMRB accession number 27035.

 AUTHOR INFORMATION

Corresponding Authors
*For A.C.: phone, +441382386230; fax, +441382386373; e-mail, a.ciulli@dundee.ac.uk.
* H.W.: e-mail: h.walden@dundee.ac.uk.

ORCID
Francesca E. Morreale: 0000-0001-9416-0459
Alessio Ciulli: 0000-0002-8654-1670

Notes
The authors declare no competing financial interest.

ACKNOWLEDGMENTS

This work was supported by the European Research Council (ERC-2012-STG-311460 DrugE3CRLs starting grant to A.C.; ERC-2015-CoG-681582 ICLUb consolidator grant to H.W.); the UK Biotechnology and Biological Sciences Research Council (BBSRC BB/G023123/2 David Phillips Fellowship to A.C.); the Medical Research Council (MRC grant number MC_UU_12016/12); the EMBO Young Investigator Programme to H.W.; and the Wellcome Trust (strategic awards 100476/Z/12/Z for biophysics and drug discovery and strategic advances and lessons learned. ERC-2012-StG-311460 DrugE3CRLs starting grant to A.C.; and beamline support at beamline I04-1.

ABBREVIATIONS USED

FA, Fanconi anemia; DSF, differential scanning fluorimetry; BLI, biolayer interferometry; SD, standard deviation; WaterLOGSY, water ligand observed gradient spectroscopy; STD, saturation transfer difference; CPMG, Carr–Purcell–Meiboom–Gill; CSP, chemical shift perturbation; ITC, isothermal titration calorimetry; SEM, standard errors of the mean

REFERENCES

(1) Pickart, C. M.; Eddins, M. J. Ubiquitin: structures, functions, mechanisms. Biochim. Biophys. Acta, Mol. Cell Res. 2004, 1695, S5–72.
(2) Welchman, R. L.; Gordon, C.; Mayer, R. J. Ubiquitin and ubiquitin-like proteins as multifunctional signals. Nat. Rev. Mol. Cell Biol. 2005, 6, 599–609.
(3) Dye, B. T.; Schulman, B. A. Structural mechanisms underlying posttranslational modification by ubiquitin-like proteins. Annu. Rev. Biophys. Biomol. Struct. 2007, 36, 131–150.
(4) van Wijk, S. J.; Timmers, H. T. The family of ubiquitin-conjugating enzymes (E2s): deciding between life and death of proteins. FASEB J. 2010, 24, 981–993.
(5) Stewart, M. D.; Ritterhoff, T.; Klevit, R. E.; Brzovic, P. S. E2 enzymes: more than just middle men. Cell Res. 2016, 26, 423–440.
(6) Sheng, Y.; Hong, J. H.; Doherty, R.; Srikumar, T.; Shloush, J.; Avvakumov, G. V.; Walker, J. R.; Xue, S.; Neculai, D.; Wan, J. W.; Kim, S. K.; Arrowsmith, C. H.; Raught, B.; Dhe-Paganon, S. A human ubiquitin conjugating enzyme (E2)-HECT E3 ligase structure-function screen. Mol. Cell. Proteomics 2012, 11, 329–341.
(7) Ceccharelli, D. F.; Tang, X.; Pelletier, B.; Orlicky, S.; Xie, W.; Plantevin, V.; Neculai, D.; Chou, Y. C.; Ogunjimi, A.; Al-Hakim, A.; Varelas, X.; Koszela, J.; Wasney, G. A.; Vedadi, M.; Dhe-Paganon, S.; Cox, S.; Xu, S.; Lopez-Girona, A.; Mercurio, F.; Wranza, J.; Durocher, D.; Meloche, S.; Webb, D. R.; Tyers, M.; Sichler, F. An allosteric inhibitor of the human Cdc34 ubiquitin-conjugating enzyme. Cell 2011, 145, 1075–1087.
(8) Hewitt, W. M.; Lountos, G. T.; Zlotokowski, K.; Dahlhauser, S. D.; Saunders, L. B.; Needle, D.; Tropea, J. E.; Zhan, C.; Wei, G.; Ma, B.; Nussinov, R.; Waugh, D. S.; Schneckloth, J. S., Jr. Insights into the allosteric inhibition of the SUMO E2 enzyme Ubc9. Angew. Chem., Int. Ed. 2016, 55, 5703–5707.
(9) Hodge, C. D.; Edwards, R. A.; Markin, C. J.; McDonald, D.; Pulvino, M.; Huen, M. S.; Zhao, J.; Spyropoulos, L.; Hendzel, M. J.; Glover, J. N. Covalent inhibition of Ubc13 affects ubiquitin signaling and reveals active site elements important for targeting. ACS Chem. Biol. 2015, 10, 1718–1728.
(10) Strickson, S.; Campbell, D. G.; Emmerich, C. H.; Knebel, A.; Plater, L.; Ritorto, M. S.; Shirollo, N.; Cohen, P. The anti-inflammatory drug BAY 11–7082 suppresses the MyD88-dependent signalling network by targeting the ubiquitin system. Biochem. J. 2013, 451, 427–437.
(11) Machida, Y. J.; Machida, Y.; Chen, Y.; Gurtan, A. M.; Kupfer, G. M.; D’Andrea, A. A.; Dutta, A. UBE2T is the E2 in the Fanconi anemia pathway and undergoes negative autoregulation. Mol. Cell 2006, 23, 589–596.
(12) Alpi, A.; Langevin, F.; Mosedale, G.; Machida, Y. J.; Dutta, A.; Patel, K. J. UBE2T, the Fanconi anemia core complex, and FANCD2 are recruited independently to chromatin: a basis for the regulation of FANC D2 monoubiquitination. Mol. Cell. Biol. 2007, 27, 8421–8430.
(13) Alpi, A. F.; Pace, P. E.; Babu, M. M.; Patel, K. J. Mechanistic insight into site-restricted monoubiquitination of FANCD2 by Ube2t, FANCL, and FANCl. Mol. Cell 2008, 32, 767–777.
(14) Walden, H.; Deans, A. J. The Fanconi anemia DNA repair pathway: structural and functional insights into a complex disorder. Annu. Rev. Biophys. 2014, 43, 257–278.
(15) Pearl, L. H.; Schiera, A. C.; Ward, S. E.; Al-Lazikani, B.; Pearl, F. M. Therapeutic opportunities within the DNA damage response. Nat. Rev. Cancer 2015, 15, 166–180.
(16) Curtin, N. J. DNA repair dysregulation from cancer driver to therapeutic target. Nat. Rev. Cancer 2012, 12, 801–817.
(17) Hellday, T.; Petermann, E.; Lundin, C.; Hodgson, B.; Sharma, R. A. DNA repair pathways as targets for cancer therapy. Nat. Rev. Cancer 2008, 8, 193–204.
(18) Ueki, T.; Park, J. H.; Nishidate, T.; Kijima, K.; Hirata, K.; Nakamura, Y.; Katagiri, T. Ubiquitination and downregulation of BRCA1 by ubiquitin-conjugating enzyme E2T overexpression in human breast cancer cells. Cancer Res. 2009, 69, 8752–8760.
(19) Yu, H.; Xiang, P.; Pan, Q.; Huang, Y.; Xie, N.; Zhu, W. Ubiquitin-conjugating enzyme E2T is an independent prognostic factor and promotes gastric cancer progression. Tumor Biol. 2016, 37, 11723–11732.
(20) Wen, M.; Kwon, Y.; Wang, Y.; Mao, J. H.; Wei, G. Elevated expression of UBE2T exhibits oncogenic properties in human prostate cancer. Oncotarget 2015, 6, 25226–25239.
(21) Hu, W.; Xiao, L.; Cao, C.; Hua, S.; Wu, D. UBE2T promotes nasopharyngeal carcinoma cell proliferation, invasion, and metastasis by activating the AKT/GSK3beta/beta-catenin pathway. Oncotarget 2016, 7, 15161–15172.
(22) Hajduk, P. J.; Greer, J. A decade of fragment-based drug design: strategic advances and lessons learned. Nat. Rev. Drug Discovery 2007, 6, 211–219.
(23) Murray, C. W.; Rees, D. C. The rise of fragment-based drug discovery. Nat. Chem. 2009, 1, 187–192.
(24) Scott, D. E.; Coyne, A. G.; Hudson, S. A.; Abell, C. Fragment-based approaches in drug discovery and chemical biology. Biochemistry 2012, 51, 4990–5003.
(25) Erdman, D. A.; Fesik, S. W.; Hubbard, R. E.; Jahneke, W.; Jhoti, H. Twenty years on: the impact of fragments on drug discovery. Nat. Rev. Drug Discovery 2016, 15, 605–619.
(26) Chesari, G.; Woodhead, A. J. From fragment to clinical candidate—a historical perspective. Drug Discovery Today 2009, 14, 668–675.
(27) Baker, M. Fragment-based lead discovery grows up. Nat. Rev. Drug Discovery 2013, 12, 5–7.
(28) Ludlow, R. F.; Verdonk, M. L.; Saini, H. K.; Tickle, I. J.; Jhoti, H. Detection of secondary binding sites in proteins using fragment screening. Proc. Natl. Acad. Sci. U. S. A. 2015, 112, 15910–15915.
(29) Silvestre, H. L.; Blundell, T. L.; Abell, C.; Ciulli, A. Integrated biophysical approach to fragment screening and validation for fragment-based lead discovery. Proc. Natl. Acad. Sci. U. S. A. 2013, 110, 12984–12989.
(30) Renaud, J. P.; Chung, C. W.; Danielson, U. H.; Egner, U.; Hennig, M.; Hubbard, R. E.; Nar, H. Biophysics in drug discovery: impact, challenges and opportunities. Nat. Rev. Drug Discovery 2016, 15, 679–698.
(31) Dai, R.; Geders, T. W.; Liu, F.; Park, S. W.; Schnappinger, D.; Aldrich, C. C.; Finzel, B. C. Fragment-based exploration of binding site flexibility in Mycobacterium tuberculosis BioA. J. Med. Chem. 2015, 58, 5208–5217.
(32) Dalvit, C.; Fogliatto, G.; Stewart, A.; Veronesi, M.; Stockman, B. WaterLOGSY as a method for primary NMR screening: practical aspects and range of applicability. J. Biomol. NMR 2001, 21, 349–359.
(33) Mayer, M.; Meyer, B. Characterization of ligand binding by saturation transfer difference NMR spectroscopy. Angew. Chem., Int. Ed. 1999, 38, 1784–1788.
(34) Carr, H. Y.; Purcell, E. M. Effects of diffusion on free precession in nuclear magnetic resonance experiments. Phys. Rev. 1954, 94, 630–638.
(35) Meiboom, S.; Gill, D. Modified spin-echo method for measuring nuclear relaxation times. Rev. Sci. Instrum. 1958, 29, 688–691.
(36) Hodson, C.; Purkiss, A.; Miles, J. A.; Walden, H. Structure of the human FANCL RING-Ube2T complex reveals determinants of cognate E3-E2 selection. Structure 2014, 22, 337–344.
(37) Saalau-Bethell, S. M.; Woodhead, A. J.; Chessari, G.; Carr, M. G.; Coyle, J.; Graham, B.; Hiscock, S. D.; Murray, C. W.; Pathuri, P.; Rich, S. J.; Richardson, C. J.; Williams, P. A.; Jhoti, H. Discovery of an allosteric mechanism for the regulation of HCV NS3 protein function. Nat. Chem. Biol. 2012, 8, 920–925.
(38) Davies, T. G.; Jhoti, H.; Pathuri, P.; Williams, G. Selecting the right targets for fragment-based drug discovery. In Fragment-Based Drug Discovery Lessons and Outlook, 1st ed.; Erlanson, D. A., Jahnke, W., Eds.; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2016.
(39) Miles, J. A.; Frost, M. G.; Carroll, E.; Rowe, M. L.; Howard, M. J.; Sidhu, A.; Chaugule, V. K.; Alpi, A. F.; Walden, H. The Fanconi anemia DNA repair pathway is regulated by an interaction between ubiquitin and the E2-like fold domain of FANCL. J. Biol. Chem. 2015, 290, 20995–21006.