Paraoxonase1 and its relationship with Parkinson’s disease

Ali Mota1, AliAkbar Taheraghdam2 and Mohammad Valilo1,2

1Department of Clinical Biochemistry, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
2Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran

Abstract

This study reviews current understanding of relationship of paraoxonase1 polymorphisms and activity of paraoxonase1 in Parkinson’s Disease (PD). Paraoxonase 1 (PON1) is involved in the detoxification of insecticides and pesticides and metabolisms of these toxins. Two polymorphisms within the gene affect the activity of paraoxonase. In one of them a methionine replaces with leucine at position 54 (M54L) and the other a glutamine change to arginine variant at position 192 (Q192R). There are some evidences show the genetic polymorphisms of PON1 can protect against organophosphates such as paraaxon and diazinon. Results of studies that investigate these associations are controversial. There was no significant association between PON1-1 92Q/R alleles and risk of developing PD and also there is no evidence for an association between PON 1-192 polymorphism and development of PD, however, a study found that the 192R alleles were risk factor for developing PD. These polymorphisms explain only some of the variations in serum PON1 activity; thus, the other critical test of the hypothesis is likely to be whether low serum PON1 activity is associated with Parkinson disease or not. In this review we summarize current knowledge from PON1 association studies regarding the interaction between gene polymorphisms and activity of PON1 with the risk of PD.

Introduction

Parkinson’s disease was first described in 1817 by an English doctor [1], although the reports of possible parkinsonian syndromes dating back many years ago [2,3]. PD is the most common neurodegenerative disorder just after the Alzheimer disease among the elderly [4,5]. Although the median age at onset PD is about 60 years, clinical diagnosis may occur after loss of 30 to 50%of substantia nigra dopaminergic neurons of PD [6]. The PD phenotype may occur only when 60-70% of substantia nigra neurons stop functioning [7]. PD leads to rigidity, slowness of voluntary movement and postural instability [4], in the advanced stages, cognitive and mood disorders are also common [8].

Diagnosing of PD is typically done by the presence of some intracytoplasmic inclusions, known as "Lewy bodies", which are primarily composed of a-synuclein protein aggregates [9]. Parkinson disease arise from neuronal loss, which mainly affecting dopaminergic neurons of the substantia nigra [10], with a prevalence of 5 million individuals world-wide [11]. The Formation of the Parkinson’s disease is arisen from a combination of genetic and environmental factors, which likely interact with each other. Epidemiological studies have indicated that environmental factors such as pesticides may increase risk of idiopathic Parkinson's disease (PD) [12]. Environmental factors are apparent causes of the 'sporadic' Parkinson's disease [13,14]. In addition to the environmental factors, sporadic autosomal recessive form of PD a candidate gene (Parkin) on human chromosome 6q25.2-q27 has been identified [15]. The risk in relatives has been reported to be threefold higher than in the general population [16]. In 1985, it was reported that familial susceptibility to PD might be mediated by genetic variability of enzymes involved in the detoxification of neurotoxins [17]. It has been widely believed that polymorphic variations in xenobiotic metabolizing enzymes, such as glutathione transferase, CYPs and paraoxonase, may affect PD risk by altering the detoxification of pesticides and other putative neurotoxins [18-20]. A number of case-control studies and prospective studies have shown a significant association between pesticide exposure and risk of PD [21,22], whereas other studies have failed to demonstrate such association [23,24].

Paraoxonase1

The Paraoxonase (PON) gene family contains three different members (PON1, PON2 and PON3), and exhibits anti-oxidative characters principally in the blood circulation [25]. Human PON genes share approximately 70% identity at the nucleotide level and approximately 60% identity at the amino acid level [26]. Human PON2 and PON3 lack or have very limited paraoxonase and arylerase activities, but they are similar to PON1 in that both hydrolyze aromatic and long-chain aliphatic lactones, e.g. [27,28]. PON1 is not found in the blood of fishes, birds and most reptiles. The enzymes also classified by Norman Aldridge [29]. Paraoxonase (PON1; EC 3.1.8.1; formerly EC 3.1.1.2) is a calcium-dependent serum enzyme belonging to the class of A-esterases [29], this enzyme is a protein of 354 amino acids with a molecular mass of 43 kDa [30, 31]. It is a glycoprotein synthesized in the liver and secreted into the blood [32]. Paraoxonase1 in the plasma associated with High-Density Lipoproteins (HDL) [33-35].

The gen of this protein is collocated on the long arm of chromosome 7 between q21.3 and q22.1 with other members of its family [36,37]. Regarding the roles of organophosphates in etiology of PD, PON1 is the main means of protection of the nervous system against the neurotoxicity of organophosphates [38,39]. PON1 has two activities; one paraoxonase activity that breakdown paraxoxan, a toxic metabolite of the parathion and the other activity is arylerase that breakdown phenyl acetate to phenyl lactate [32]. Mammal serum paraoxonase is also hydrolyze the active metabolite of other OPs insecticides,

*Correspondence to: Mohammad Valilo, Department of Clinical Biochemistry, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran, Tel: +989380540995; E-mail: valilo.biomed@gmail.com

Key words: Parkinson’s disease, Paraoxonase, Pesticide, Polymorphism

Received: February 06, 2019; Accepted: February 25, 2019; Published: February 26, 2019
Paraoxonase1 polymorphism
Studies have shown PON1 polymorphisms generated variable susceptibility to different diseases. As mentioned earlier PON1 have two common coding polymorphisms, a leucine to methionine substitution at position 54 (L54M, rs854560) and a glutamine to arginine substitution at position 192 (Q192R, rs662), which influence the PON1 activity [44-46]. The PON 1 L55M polymorphism has been associated with variability in PON1 concentration and PON1 activity in plasma [46-48]. whereas the PON1 Q 192 R polymorphism has been shown to affect only the activity of PON1 [49]. The PON1 polymorphisms affect the catalytic abilities of this enzyme. The R allele at position 192 hydrolyzes paraoxon faster than the Q allele but hydrolyzes diazoxon slowly. Then, homozygotes for the B allele are poor metabolizer of organophosphate such as diazoxon, soman and sarin.
The plasma concentration of the enzyme in M allele at position 54 is lower from L54 allele. Thus, R192 and L54 might be markers of higher activity of PON1 [46,50-54]. In other words, plasma of homozygous individuals for the wild-type Leu-allele of the rs854560 polymorphism has higher PON1 mRNA, protein and higher PON1 activity than homozygous for Met-allele carriers, while heterozygous carriers have intermediate mRNA, protein levels [48,55]. Several previous studies showed the association of one or both of these polymorphisms with PD. Akhmedova et al. reported that the M54 allele increase susceptibility to PD in a Russian population [56]. A further evidence for this association was shown in a Swedish case-control study. Kondo and Yamamoto described a significant increase of the R192 allele in PD patients from Japan in comparison to healthy controls [57]. However, some studies indicated there is no an association between PON1 polymorphisms and Parkinson's disease [57]. The aim of the present study includes investigation of both the M54L and the R192Q allele, genotype and haplotype distribution in PD patients and healthy subjects. In addition to these polymorphisms, some investigators have recently detected polymorphic mutations in the promoter region of PON1 gene, in particular, the T(107)C promoter polymorphism has been shown to affect PON1 gene expression and enzymatic activity [58]. Table 1 summarizes the evidence for an association between PON1 L55M and Parkinson's disease. Moreover, another study showed the association of R192Q allele with PD.

Sources of variation in PON1 activity

PON1 activity has been shown to be regulated both genetically and by post translational modifications [59,60]. PON1 diurnal activity is quite constant. Serum paraoxonase activity significantly decreased with age (r ¼ 2 0.38; p < 0.0001); however, its arylesterase activity and its concentration in the serum did not change significantly by aging. Thus, the decrease in PON1 activity may contribute to the increased susceptibility of HDL to oxidation; decreased in detoxification of organophosphates because of aging and oxidative damage. In newborns, PON1 activity until 6 months age is very low, suggesting that newborns can be significantly more sensitive to poisoning by pesticide than adults [50]. In rats, no differences were found in plasma and liver PON1 activity between 3- and 24-month-old animals [61]. Recent investigations have reported a progressive decrease in PON1 activity in elderly humans. More over many other factors can affect the PON1 activity and concentration. Some factors such as Dietary cholesterol, alcohol use, and vitamin C associate with an increase in AREase activity. And others like iron and folic acid can decrease AREase activity [62]. Triolein supplementation maybe increase the serum PON1 activity; whereas fish oil reduce this enzyme and tripalmitin not affect it [63]. The effects of various dietary fats on PON1 status have been evaluated in rats. Interestingly, PON1 activity in mice and humans can be increases with feed Oleic acid [64,65], others studies shows that Aspirin use associated with high serum levels of paraoxonase activity [66] and synthesis of the PON1 protein as well as activity reduced by glycation of this enzyme [60].

In addition to PON1 activity, PON1 concentration change with genetic polymorphisms. Experimental evidence showed that serum activity in healthy subjects is directly related to protein concentration. Homozygous BB individuals have higher PON1 concentrations than homozygous AA. Moreover, heterozygous AB individuals have an intermediate level. It was shown the 55 polymorphism also affected the PON1 concentration. However it could not be found such effects in healthy population [67]. Considering the role of PON1 in PD, the concentration and activity of this enzyme can be different in Parkinson’s patients and healthy subjects. Serum PON1 activity were significantly lower in patients than in healthy individuals and this different would be expected based on age alone [7]. Aryl esterase activity of the PON1 protein was significantly higher in PD healthy subjects suggesting that paraoxonase activity of PON1, but not aryl esterase activity of PON1, is causally involved in the progression of PD [7].

Other disease association with PON 1

PON1 activity can be regulated genetically and environmentally [60]. One of the most important roles of the PON1 is protection of LDL and HDL against oxidation induced by copper ions as well as by other free radicals [68]. This protection of PON1 is most probably related to the hydrolyzing of some activated lipids [69] and other lipid peroxide products [68] which are produced during the acute phase response. PON1 activity has been demonstrated decrease by LPS (lipopolysacaride) [70] or TNF α /IL-1B explosion but increase with IL-6 [71]. Regarding the roles of these factors, activity of PON1 can be changed in different inflammatory and infectious diseases. PON1 activity has been observed decrease in the serum of patients diagnosed with chronic hepatitis [72], rheumatoid arthritis [73], multiple sclerosis [74], diabetes mellitus [75], atherosclerosis, Alzheimer dementia and cancers [76-79]. Also decrease in PON1 activity levels were reported in radiology workers exposed to long-term (>5 years) ionizing radiation [80].

Prostate and ovarian cancers

These types are the most common cancers in developed countries. The serum paraoxonase eliminates carcinogenic radicals [81,82]. A study in Finnish man found a new common mutation in the coding region of the PON1 gene, termed I102V, that was strongly associated with an Parkinson’s disease [7]. Moreover, another study showed the association of one or both of these polymorphisms with PD. Alzheimers disease and cancers [76-79]. A study in Finnish man found a new common mutation in the coding region of the PON1 gene, termed I102V, that was strongly associated with an Parkinson’s disease [7]. Moreover, another study showed the association of one or both of these polymorphisms with PD.

Table 1. Genetic association studies about the co-relation of PON1 polymorphism and PD risk

Study	PD Patients	Controls	PD Susceptibility
Kondo et al. [15]	166	252	Increased risk for MM
Akhmedova et al. [56]	117	207	Increased risk for MM
Carmine et al. [102]	114	127	Increased risk for MM
Clarimon et al. [5]	144	135	No influence
Fong et al. [57]	125	162	No influence
Đurić et al. [103]	106	7	Increased risk for MM
Dick et al. [104]	767	199	No influence
Manthripragada et al.[20]	351	363	Increased risk for MM
Wingo et al. [105]	566	719	No influence

Lung cancer

It has been emerged the serum PON1 activity in patients with LC compared to healthy individuals is found to be significantly lower [89].

Diabetes

Presence of PON1-55 MM and PON1-192 QQ genotypes related with weaker diabetes control than RR genotypes. other studies like this emphasized above findings [87,88].

Breast cancer

The L55M polymorphism, make lowers paraoxonase activity by decreasing the amount of this enzyme present in blood. women with
the MM genotype for this polymorphisms had a 57% higher incidence of breast cancer and an 85% higher incidence of invasive breast cancer [90].

Rheumatoid Arthritis (RA)

It was shown that increased amount of ROS in plasma may be a sign of rheumatoid arthritis. Baskol et al. reported that increased ROS levels in RA might result in decreased antioxidant PON1 activity [91].

Cirrhosis

Studies found that PON1 activity was lower in patients with cirrhosis than in those with hepatitis. This reduction in activity of PON1 was considered as a consequence of an altered synthesis and/or secretion of HDL. Alterations of the structure and circulatory levels of HDL was attributed to the hepatic LCAT activity which is frequently affected by chronic liver diseases [92,93].

Atherosclerosis

Animal models demonstrated that PON1 deficiency was related to a susceptibility of LDL and HDL to oxidation and atherosclerosis development [94,95].

Coronary artery disease

Studies indicate that PON1 in human is significantly associated with CAD risk [96,97] and its activity is lower among individuals and populations with CAD.

Depression

A study of the association of paraoxonase1 Q192R polymorphism with depression among a random sample of 3266 British women, suggested that there was an association of PON1 Q192R polymorphism with symptoms of depression [98].

Other disease

The studies of PON1 polymorphism, activity or levels found a relationship between PON1 with Age-Related Macular Degeneration (AMD). The mechanism(s) for PON1-mediated protection against AMD remains to be determined. A study supported a role for the Q192R polymorphism in decreasing susceptibility to AMD [99]. Saeed et al. found a significant association of variants in the Paraoxonase gene cluster and sporadic ALS in Gulf War veterans [100]. Finally, Paraoxonase activity showed an inverse association with sperm quality parameter [101].

Conclusion

Multiple genetic and environmental risk factors are known to increase susceptibility to the development of PD. Each factor individually may have a minor effect however their interaction may prove sufficient to cause PD. Over the past few years, an increasing number of studies have attempted to identify paraoxonase1 relationship with PD. Our analysis shows that people work with organophosphates are at significantly increased risk of PD. The association of organophosphates with PD may be related to PON1. PON1 would thus seem worthy of further study as an etiologic factor in the development of PD and perhaps other diseases. To date, accepted that both PON1 L55M and PON1 Q192R polymorphisms have been unequivocally associated with PD. Our review of the results of former studies shows that paraoxonase1 polymorphism may have influence on PD development. And also, it suggests that paraoxonase activity but not aryl esterase activity of PON1 is causally involved in the progression of PD. The authors of this review concluded that there was a significant association of the PON1-55 MM + LM genotype with the risk of PD than the LL genotype and there was only a study for association of the polymorphism of PON1-192 and PD. However, some studies suggested that the M54L and Q192R polymorphisms were not major risk factors for PD. Also, we found that factors which increase paraoxonase activity; such as aspirin and oleic acid may reduce risk of PD. The roles of PON1 in PD is controversial, there is an essential need of future studies which provide a better understanding of roles of the PON1 in PD and pathogenic mechanisms of this disease.

References

1. Tyler KL, Tyler HR (1986) The secret life of James Parkinson (1755-1824) The writings of Old Hubert. Neurology 36: 222-224.
2. Devoisin RC (1992) A brief history of parkinsonism. Neurol Clin 10: 301-316. [Crossref]
3. Gourie-Devi M., Ramu M., Venkataram B. (1991) Treatment of Parkinson’s disease with ayurvedic(ancient Indian system of medicine): discussion paper. J R Soc Med 84: 491-492. [Crossref]
4. Erikson JL, Przedborski S, Petrucelli L (2005) Gene dosage and pathogenesis of Parkinson’s disease. Trends Mol Med 11: 91-96. [Crossref]
5. Clarimón J, Eerola J, Hellstrom O, Tienari P, Singleton A (2004) Paraoxonase 1 (PON1) gene polymorphisms and Parkinson’s disease in a Finnish population. Neurosci Lett 367: 168-170. [Crossref]
6. Fearnley JM, Lees AJ (1991) Ageing and Parkinson’s disease: substantia nigra regional selectivity. Brain 114: 2283-2301. [Crossref]
7. Benmoyal-Segal L, Vander T, Shifman S, Bryk B, Ebstein RP, et al. (2005) Acetylcholinesterase/paraoxonase interactions increase the risk of insecticide-induced Parkinson’s disease. FASEB J 19: 452-454. [Crossref]
8. Lang AE, Lozano AM (1998) Parkinson’s disease. Second of two parts. N Engl J Med 339: 1130-1143. [Crossref]
9. Baba M, Nakajo S, Tu PH, Tomita T, Nakaya K, et al. (1998) Aggregation of alpha-synuclein in Lewy bodies of sporadic Parkinson’s disease and dementia with Lewy bodies. Am J Pathol 152: 879-884. [Crossref]
10. Ibanez P, Bonnet AM, Debarges B, Lohmann E, Tison F, et al., (2004). Causal relation between a-synuclein locus duplication as a cause of familial Parkinson’s disease. Lancet 364: 1169-1171. [Crossref]
11. Dorsey ER, Constantinescu R, Thompson JP, Biglan KM, Holloway RG, et al. (2007) Projected number of people with Parkinson disease in the most populous nations, 2005 through 2030. Neurology 68: 384-386. [Crossref]
12. Le Couteur DG, McLean AJ, Taylor MC, Woodham BL, Board PG (1999) Pesticides and Parkinson’s disease. Biomed Pharmacother 53: 122-130. [Crossref]
13. Priyadarshi A, Khuder SA, Schaub EA, Priyadarshii SS (2001) Environmental risk factors and Parkinson’s disease: a metaanalysis. Environ Res 86: 122-127. [Crossref]
14. Semchuk KM, Love EJ, Lee RG (1992) Parkinson’s disease and exposure to agricultural work and pesticide chemicals. Neurology 42: 1328-1335. [Crossref]
15. Kondo I, Yamamoto M (1998) Genetic polymorphism of paraoxonase 1 (PON1) and susceptibility to Parkinson’s disease. Brain Res 806: 271-273. [Crossref]
16. Marder K, Levy G, Louis ED, Mejia-Santana H, Cote L, et al. (2003) Accuracy of family history data on Parkinson’s disease. Neurology 61: 18-23. [Crossref]
17. Barbeau A, Cloutier T, Roy M, Plasse L, Parlee H, et al. (1986) The secret life of James Parkinson (1755–1824). The writings of Old Hubert. [Crossref]
18. Franco R, Li S, Rodriguez-Roche H, Burns M, Panayiotidis MI (2010) Molecular mechanisms of pesticide-induced neurotoxicity: Relevance to Parkinson’s disease. Chem Biol Interact 188: 289-300. [Crossref]
19. Lopez O, Fernandez-Bolanos JG, Gill MV (2005) New trends in pest control: the search for greener insecticides. Green Chemistry 7: 431-442.
20. Manthripragada AD, Costello S, Cockburn MG, Bronstein JM, Ritz B (2010). Paraoxonase 1 (PON1), agricultural organophosphate exposure, and Parkinson disease. Epidemiology 21: 87-94. [Crossref]
Mota A (2017) Paraoxonase1 and its relationship with Parkinson’s disease

Brain Nerves, 2019
doi: 10.15761/JBN.1000120

Volume 4: 5-6
65. Fuhrman B, Volkova N, Aviram M (2006) Postprandial serum triacylglycerols and oxidative stress in mice after consumption of fish oil, soy oil or olive oil: possible role for paraoxonase-1 triacylglycerol lipase-like activity. Nutrition 22: 922-936. [Crossref]

66. Blatter-Garin MC, Kaïb B, De Pree S, James RW (2003) Aspirin use is associated with higher serum concentrations of the anti-oxidant enzyme, paraoxonase-1. Diabetologia 46: 594-595. [Crossref]

67. Mackness B, Mackness MI, Arrol S, Turkie W, Durrington PN (1997) Effect of the molecular polymorphisms of human paraoxonase (PON1) on the rate of hydrolysis of paraaxon. Br J Pharmacol 122: 265-268. [Crossref]

68. Aviram M, Rosenblat M, Bingaier CL, Newton RS, Primo-Parmo SL, et al. (1998) Paraoxonase inhibits high-density lipoprotein oxidation and preserves its functions. A possible peroxidase role for paraoxonase. J Clin Invest 101: 1581-1590. [Crossref]

69. Watson AD, Berliner JA, Hama SY, La Du BN, Faull KF, et al. (1995) Protective effect of high density lipoprotein associated paraoxonase. Inhibition of the biological activity of minimally oxidized low density lipoprotein. J Clin Invest 96: 2882-2891. [Crossref]

70. Cabana VG, Reardon CA, Feng N, Neath S, Lukes J, et al. (2003) Serum paraoxonase effect of the apolipoprotein composition of HDL and the acute phase response. J Lipid Res 44: 780-7892. [Crossref]

71. Kumon Y, Suehiro T, Ikeda Y, Hashimoto K (2003). Human paraoxonase-1 gene expression by HepG2 cells is downregulated by interleukin-1beta and tumor necrosis factor-a, but is upregulated by interleukin-6. Life Sci 73: 2007-215. [Crossref]

72. Akcy MN, Polat MF, Yilmaz I, Akcy G (2003) Serum paraoxonase levels in pancreatic cancer. Hepatogastroenterology 50: Suppl 2:ccxvxv-cxxvii. [Crossref]

73. Kiliç SS, Aydin S, Kılıç N, Eman F, Aydin S, et al. (2005) Serum arylesterase and paraoxonase activity in patients with chronic hepatitis. World J Gastroenterol 11: 7351. [Crossref]

74. Tanimoto N, Kumon Y, Suehiro T, Ohkubo S, Ikeda Y, et al. (2003) Serum paraoxonase activity decreases in rheumatoid arthritis. Life Sci 72: 2877-2885. [Crossref]

75. Ferretti G, Bacchetti T, Moroni C, Savino S, Liuzzi A, et al. (2005) Paraoxonase activity in high-density lipoproteins: a comparison between healthy and obese females. J Clin Endocoridol Metab 44: 780-7892. [Crossref]

76. Chen Q, Reis SE, Kammerer CM, McNamara DM, Helokob R, et al. (2003). Association between the Severity of Angiographic Coronary Artery Disease and Paraoxonase Gene Polymorphisms in the National Heart, Lung, and Blood Institute Sponsored Women’s Ischemia Syndrome Evaluation (WISE) Study. Am J Hum Genet 72: 13-22. [Crossref]

77. Mota A (2017) Paraoxonase1 and its relationship with Parkinson’s disease Brain Nerves, 2019 doi: 10.15761/JBN.1000120

78. Janka Z., Juhasz A., Rimanoczy A., Boda K., Marki-Zay J., Kalman J. (2002). Codon 311 (Cys? Ser) polymorphism of paraoxonase-2 gene is associated with apolipoprotein E4 factor-a, but is upregulated by interleukin-6. Mol Psychiatry 7: 110-112. [Crossref]

79. Fortunato G, Rubba P, Paniclo S, Trono D, Tinto N, et al. (2003) Paraoxonase activity in familial hypercholesterolaemia and insulin-dependent diabetes mellitus. Atherosclerosis 186: 193-199. [Crossref]

80. Lawlor DA, Day IN, Timpson N, et al. (2007) The association between the paraoxonase (PON1) Q192R polymorphism and depression in older women: findings from the British Women’s Heart and Health Study. J Epidemiol Community Health 61: 85-87. [Crossref]

81. Antognelli C, Mearini L, Talesa VN, Giannantoni A, Mearini E (2005) Association of PON1 Met-54 allele with Parkinson’s disease. Mov Disord 17: 2070-2077. [Crossref]

82. Lawlor DA, Day IN, Timpson N, et al. (2007) The association between the paraoxonase (PON1) Q192R polymorphism and depression in older women: findings from the British Women’s Heart and Health Study. J Epidemiol Community Health 61: 85-87. [Crossref]

83. Sabesin SM, Hawkins HL, Kaiiken L, Bagland JB (1977) Abnormal plasma lipoproteins and lecithin-cholesterol acyltransferase deficiency in alcoholic liver disease. Gastroenterology 72: 510-518. [Crossref]

84. Tward A, Xia YR, Wang XP, Shi YS, Park C, et al. (2002) Decreased atherosclerotic lesion formation in human serum paraoxonase transgenic mice. Circulation 106: 484-490. [Crossref]

85. Av.Trimol, D. Papageorgiou, A. Prekas, D. P. Vaidis, et al. (2009) Glucose inactivates paraoxonase 1 (PON1) and displaces it from high density lipoprotein (HDL) to a free PON1 form. The paraoxonases: their role in disease development and xenobiotic metabolism. Springer 10: 35-49.

86. Elkinar ET, Mar N, Aygen B, Gursu F, Karaoglu A, et al. (2007) Serum paraoxonase and arylesterase activities in patients with lung cancer in a Turkish population. BMC Cancer 7: 48. [Crossref]

87. Li J, Wang X, Huan Y, Liu T, Chen C, et al. (2005) PON1 polymorphism, diabetes mellitus, obesity, and risk of myocardial infarction: Modifying effect of diabetes mellitus and obesity on the association between PON1 polymorphism and myocardial infarction. Genet Med 7: 58-63. [Crossref]

88. Rosenblat M, Sapir O, Aviram M (2008) Glucose inactivates paraoxonase 1 (PON1) and displaces it from high density lipoprotein (HDL) to a free PON1 form. The paraoxonases: their role in disease development and xenobiotic metabolism. Springer 10: 35-49.

89. McElveen J, Mackness MI, Colley CM, Peard T, Warner S, et al. (1986) Distribution of paraoxonase activity in patients after myocardial infarction. Clin Chim Acta 164: 253-262. [Crossref]