North American import? Charting the origins of an enigmatic Trypanosoma cruzi domestic genotype

Federico A Zumaya-Estrada1, Louisa A Messenger2, Teresa Lopez-Ordonez1, Michael D Lewis2, Carlos A Flores-Lopez3, Alejandro J Martínez-Ibarra4, Pamela M Pennington5, Celia Cordon-Rosales5, Hernan V Carrasco6, Maikel Segovia6, Michael A Miles2 and Martin S Llewellyn2*

Abstract

Background: Trypanosoma cruzi, the agent of Chagas disease, is currently recognized as a complex of six lineages or Discrete Typing Units (DTU): TcI-TcVI. Recent studies have identified a divergent group within TcI - TcIDOM. TcIDOM is associated with a significant proportion of human TcI infections in South America, largely absent from local wild mammals and vectors, yet closely related to sylvatic strains in North/Central America. Our aim was to examine hypotheses describing the origin of the TcIDOM genotype. We propose two possible scenarios: an emergence of TcIDOM in northern South America as a sister group of North American strain progenitors and dispersal among domestic transmission cycles, or an origin in North America, prior to dispersal back into South American domestic cycles. To provide further insight we undertook high resolution nuclear and mitochondrial genotyping of multiple Central American strains (from areas of México and Guatemala) and included them in an analysis with other published data.

Findings: Mitochondrial sequence and nuclear microsatellite data revealed a cline in genetic diversity across isolates grouped into three populations: South America, North/Central America and TcIDOM. As such, greatest diversity was observed in South America ($A_r = 4.851, \pi = 0.00712$) and lowest in TcIDOM ($A_r = 1.813, \pi = 0.00071$). Nuclear genetic clustering (genetic distance based) analyses suggest that TcIDOM is nested within the North/Central American clade.

Conclusions: Declining genetic diversity across the populations, and corresponding hierarchical clustering suggest that emergence of this important human genotype most likely occurred in North/Central America before moving southwards. These data are consistent with early patterns of human dispersal into South America.

Keywords: Trypanosoma cruzi, Maxicircle, Microsatellite, Chagas Disease, Phylogeography, Population genetics, TcI

Findings

Trypanosoma cruzi, the aetiological agent of Chagas disease, infects 6-8 million people in Latin America, while some 25 million more are at risk of acquiring the disease [1]. Parasite transmission to mammal hosts, including humans, can occur through contact with the faeces of hematophagous triatomine bugs. However, non-vectorial routes are also recognized, including blood transfusion, organ transplantation, congenital transmission, and oral transmission via ingestion of meals contaminated with infected triatomin feces [2,3].

T. cruzi (family Trypanosomatidae; Euglenozoa: Kinetoplastida) is most closely related to several widely dispersed species of bat trypanosomes [4]. Salivarian trypanosomes including medically important Trypanosoma brucei subspecies, represent a more divergent group [5]. The age of the split between the T. cruzi-containing and T. brucei-containing trypanosome lineages is thought to have been concurrent with the separation of Africa and South America/Antarctica/Australasia 100MYA [6], implying that T. cruzi and the other Schizotrypanum

*Correspondence: martin.llewellyn@lsthm.ac.uk
1London School of Hygiene and Tropical Medicine, London, UK
Full list of author information is available at the end of the article
Strain code	Strain	Host/vector	Country	State	Latitude	Longitude	Date	Population	Reference
PALDA4	PALDA4	*Didelphis albiventeris*	Argentina	Chaco	-27.133	-61.460	2001	SOUTH	Messenger et al., [12]
PALDA21	PALDA21	*Didelphis albiventeris*	Argentina	Chaco	-27.133	-61.460	2001	SOUTH	Messenger et al., [12]
PALDA5	PALDA5	*Didelphis albiventeris*	Argentina	Chaco	-27.133	-61.460	2001	SOUTH	Messenger et al., [12]
PALDAV2	PALDAV2^3	*Triatoma infestans*	Argentina	Chaco	-27.133	-61.460	2001	SOUTH	Messenger et al., [12]
PALDA20	PALDA20	*Didelphis albiventeris*	Argentina	Chaco	-27.133	-61.460	2001	SOUTH	Messenger et al., [12]
COTMA38	COTMA38	*Akodon boliviensis*	Bolivia	Cotopachi	-17.430	-66.270	2004	SOUTH	Messenger et al., [12]
P234	P234	*Homo sapiens*	Bolivia	Cochabamba	-17.380	-66.160	1985	SOUTH	Messenger et al., [12]
P238	P238	*Homo sapiens*	Bolivia	Cochabamba	-17.380	-66.160	1985	SOUTH	Messenger et al., [12]
P268	P268	*Homo sapiens*	Bolivia	Cochabamba	-17.380	-66.160	1987	SOUTH	Messenger et al., [12]
SJM22	SJM22	*Didelphis marsupialis*	Bolivia	Beni	-14.810	-64.600	2004	SOUTH	Messenger et al., [12]
SJM34	SJM34	*Didelphis marsupialis*	Bolivia	Beni	-14.810	-64.600	2004	SOUTH	Messenger et al., [12]
SJM37	SJM37	*Didelphis marsupialis*	Bolivia	Beni	-14.810	-64.600	2004	SOUTH	Messenger et al., [12]
SJM39	SJM39	*Didelphis marsupialis*	Bolivia	Beni	-14.810	-64.600	2004	SOUTH	Messenger et al., [12]
SJM41	SJM41	*Philander opossum*	Bolivia	Beni	-14.810	-64.600	2004	SOUTH	Messenger et al., [12]
SJMC12	SJMC12	*Philander opossum*	Bolivia	Beni	-14.810	-64.600	2004	SOUTH	Messenger et al., [12]
XES167	XES167	*Didelphis marsupialis*	Brasil	Para	-1.710	-48.880	1999	SOUTH	Messenger et al., [12]
IM4810	IM4810	*Didelphis marsupialis*	Brasil	Manaus	-3.070	-60.160	2002	SOUTH	Messenger et al., [12]
B2085	B2085	*Didelphis marsupialis*	Brasil	Belem	-1.360	-48.360	1991	SOUTH	Messenger et al., [12]
XE2929	XE2929	*Didelphis marsupialis*	Brasil	Pará	-5.830	-48.030	1988	SOUTH	Messenger et al., [12]
AAA1c5	AAA1c5	*Rhodinus prolitus*	Colombia	Casanare	4.150	-71.200	2010	SOUTH	Ramirez et al., Molecular Ecology In press
AAA7c2	AAA7c2	*Rhodinus prolitus*	Colombia	Casanare	5.100	-71.600	2010	SOUTH	Ramirez et al., Molecular Ecology In press
AAB3c3	AAB3c3	*Rhodinus prolitus*	Colombia	Casanare	4.150	-71.200	2010	SOUTH	Ramirez et al., Molecular Ecology In press
AAC1c3	AAC1c3	*Rhodinus prolitus*	Colombia	Casanare	5.100	-71.600	2010	SOUTH	Ramirez et al., Molecular Ecology In press
AAC1c4	AAC1c4	*Canis familiaris*	Colombia	Casanare	5.100	-71.600	2010	SOUTH	Ramirez et al., Molecular Ecology In press
AAD6c6	AAD6c6	*Rhodinus prolitus*	Colombia	Casanare	5.100	-71.600	2010	SOUTH	Ramirez et al., Molecular Ecology In press
CACQc17	CACQc17	*Homo sapiens*	Colombia	Santander	6.963	-73.420	2009	TcIDOM	Ramirez et al., Molecular Ecology In press
CACQc18	CACQc18	*Homo sapiens*	Colombia	Santander	6.644	-73.654	2009	TcIDOM	Ramirez et al., Molecular Ecology In press
DYRC16	DYRC16	*Homo sapiens*	Colombia	Boyacá	5.640	-72.899	2007	TcIDOM	Ramirez et al., Molecular Ecology In press
Table 1 *Trypanosoma cruzi* I samples included in this study (Continued)

Sample ID	Sample Name	Host Species	Country	Region	Latitude	Longitude	Collection Year	TcIDOM	Source
EBcl11	EBcl11	*Homo sapiens*	Colombia	Boyacá	5.130	-73.119	2007	TcIDOM	Ramirez et al., Molecular Ecology In press
FECcl10	FECcl10	*Homo sapiens*	Colombia	Boyacá	5.920	-73.500	2001	TcIDOM	Ramirez et al., Molecular Ecology In press
Td3c11	Td3c11	*Triatoma dimidiata*	Colombia	Boyacá	6.270	-71.200	2000	TcIDOM	Ramirez et al., Molecular Ecology In press
X-1084c10	X-1084c10	*Rhodnius prolixus*	Colombia	Boyacá	4.960	-73.630	2010	SOUTH	Ramirez et al., Molecular Ecology In press
X-236c9	X-236c9	*Rhodnius prolixus*	Colombia	Boyacá	4.960	-73.630	2010	SOUTH	Ramirez et al., Molecular Ecology In press
YAS1c13	YAS1c13	*Alouatta spp*	Colombia	Casanare	5.300	-72.400	2010	SOUTH	Ramirez et al., Molecular Ecology In press
38	38	*Triatoma dimidiata*	Guatemala	Jutiapa	14.287	-89.844	2000	NORTH-CENT	This study
46	46	*Triatoma dimidiata*	Guatemala	Santa Rosa	14.177	-90.303	2001	NORTH-CENT	This study
66	66	*Triatoma dimidiata*	Guatemala	Jalapa	14.633	-89.989	2001	NORTH-CENT	This study
67	67	*Triatoma dimidiata*	Guatemala	Jutiapa	14.287	-89.844	2001	NORTH-CENT	This study
70	70	*Triatoma dimidiata*	Guatemala	Jutiapa	14.287	-89.844	2001	NORTH-CENT	This study
71	71	*Triatoma dimidiata*	Guatemala	Jalapa	14.633	-89.989	2001	NORTH-CENT	This study
83	83	*Triatoma dimidiata*	Guatemala	Chiquimula	14.768	-89.458	2002	NORTH-CENT	This study
95	95	*Triatoma dimidiata*	Guatemala	Chiquimula	14.768	-89.458	2002	NORTH-CENT	This study
100	100	*Triatoma dimidiata*	Guatemala	Santa Rosa	14.177	-90.303	2002	NORTH-CENT	This study
113	113	*Triatoma dimidiata*	Guatemala	Chiquimula	14.768	-89.458	2002	NORTH-CENT	This study
116	116	*Triatoma dimidiata*	Guatemala	Baja Verapaz	15.079	-90.413	2002	NORTH-CENT	This study
154	154	*Triatoma dimidiata*	Guatemala	Alta Verapaz	15.594	-90.149	2002	NORTH-CENT	This study
DAVIScl1	DAVIS 9.90 cl1	*Triatoma dimidiata*	Honduras	Tegucigalpa	14.080	-87.200	1983	NORTH-CENT	Messenger et al., 2012
ANITA II	ANITA	*Triatoma dimidiata*	Mexico	Campeche	19.188	-90.300	2011	NORTH-CENT	This study
CAM6	CAM6	*Triatoma dimidiata*	Mexico	Campeche	19.188	-90.300	2011	NORTH-CENT	This study
CRISTY	CRISTY	*Homo sapiens*	Mexico	San Luis Potosí	22.159	-100.990	2007	NORTH-CENT	This study
MICH1	MICH	*Triatoma dimidiata*	Mexico	Michoacan	19.567	-101.707	2011	NORTH-CENT	This study
NINOA	NINOA	*Homo sapiens*	Mexico	Oaxaca	17.054	-96.714	1994	NORTH-CENT	This study
PLI	PLI	*Dipetalogaster maxima*	Mexico	Baja California Sur	26.044	-111.666	2001	NORTH-CENT	This study
QROI	QROI	*Triatoma barberi*	Mexico	Queretaro	20.594	-100.393	1986	NORTH-CENT	This study
TQI	TQI	*Triatoma pallidipennis*	Mexico	Morelos	18.953	-99.223	1991	NORTH-CENT	This study
species evolved exclusively in South America. Others propose an alternative origin of *T. cruzi* from an ancestral bat trypanosome potentially capable of long range dispersal [7]. Whilst the precise scenario for the arrival of ancestral *Schizotrypanum* lineages in South America is a matter for debate, the current continental distribution and genetic diversity of *T. cruzi* supports an origin within South America. Parasite transmission is maintained via hundreds of mammal and triatomine species in different biomes throughout South and Central America, as well as the southern states of the USA [8].

Biochemical and molecular markers support the existence of six lineages or Discrete Typing Units (DTU): TcI, - TcVI agreed by international consensus [9]. Each DTU can be loosely associated with a particular ecological and/or geographical framework [10]. TcI is ubiquitous among arboreal sylvatic foci throughout the geographic distribution of *T. cruzi* and is the major agent of human Chagas disease in northern South America. Several molecular tools now identify substantial genetic diversity within TcI [11-14]. Importantly these new approaches consistently reveal the presence of a genetically divergent and homogeneous TcI group (henceforth TcIDOM – previously TcIa/VENDOM) associated with human infections from Venezuela to Northern Argentina, and largely absent from wild mammals and vectors sampled to date [14]. The origin of this clade is unclear, although recent work supports a

| Table 1 Trypanosoma cruzi I samples included in this study (Continued) |
|------------------|------------------|------------------|
| XAL1 XAL | Triatoma dimitiata | Mexico Veracruz | 19.173 -96.133 2003 NORTH-CENT This study |
| 9209802P 9209802P cl1 | Didelphis marsupialis | USA Georgia | 32.430 -83.310 1992 NORTH-CENT Messenger et al., [12] |
| 9307 9307103P cl1 | Didelphis marsupialis | USA Georgia | 32.430 -83.310 1993 NORTH-CENT Messenger et al., [12] |
| ARMA USAARMA cl3 | Dasypus novemcinctus | USA Louisana | 30.500 -91.000 Unknown NORTH-CENT Messenger et al., [12] |
| USA USAOPOSSUM cl2 | Didelphis marsupialis | USA Louisana | 30.500 -91.000 Unknown NORTH-CENT Messenger et al., [12] |
| 9354 9354 | Homo sapiens | Venezuela Sucre | 10.460 -63.610 1999 TcIDOM Messenger et al., [12] |
| 11541 11541 | Homo sapiens | Venezuela Merida | 8.590 -71.230 2003 TcIDOM Messenger et al., [12] |
| 11713 11713 | Homo sapiens | Venezuela Lara | 10.233 -69.866 2003 TcIDOM Messenger et al., [12] |
| 11804 11804 | Homo sapiens | Venezuela Portuguesa | 9.084 -69.103 2003 TcIDOM Messenger et al., [12] |
| 10462P2C3 10462P2C3 | Homo sapiens | Venezuela Miranda | 10.266 -66.485 Unknown TcIDOM This study |
| 10462P2C7 10462P2C7 | Homo sapiens | Venezuela Miranda | 10.080 -66.449 Unknown TcIDOM This study |
| 10968P1C1 10968P1C1 | Homo sapiens | Venezuela Sucre | 10.406 -63.298 Unknown TcIDOM This study |
| ANT3P1C6 ANT3P1C6 | Homo sapiens (oral) | Venezuela DC | 10.500 -66.951 Unknown SOUTH This study |
| M13 M13 | Didelphis marsupialis | Venezuela Barinas | 7.500 -71.230 2004 SOUTH Messenger et al., [12] |
| M16 M16 cl4 | Didelphis marsupialis | Venezuela Barinas | 7.500 -71.230 2004 SOUTH Messenger et al., [12] |
| M18 M18 | Didelphis marsupialis | Venezuela Barinas | 7.500 -71.230 2004 SOUTH Messenger et al., [12] |
| M7 M7 | Didelphis marsupialis | Venezuela Barinas | 7.500 -71.230 2004 SOUTH Messenger et al., [12] |
| 92122 92122102R | Procyon lotor | TcIV USA | Georgia OUTGROUPS Messenger et al., [12] |
| CANIII CANIII cl1 | Homo sapiens | TcIV Brazil | Belem OUTGROUPS Messenger et al., [12] |
| CM17 CM17 | Dasypus spp. | TcIII Colombia | Carimagu OUTGROUPS Messenger et al., [12] |
| X1060 X1060 cl5 | Homo sapiens | TcIV Venezuela | Guárico OUTGROUPS Messenger et al., [12] |
| ERA ERA cl2 | Homo sapiens | TcIV Venezuela | Anzoátegui OUTGROUPS Messenger et al., [12] |
| 10R26 10R26 | Aotus spp. | TcIV Bolivia | Santa Cruz OUTGROUPS Messenger et al., [12] |
| SAI R3 Saimiri3 cl1 | Saimiri sciureus | TcIV Venezuela | Venezuela OUTGROUPS Messenger et al., [12] |
sister group relationship with TcI circulating in North America (e.g. [12,13]).

In this manuscript we have set out to evaluate the genetic diversity of TcI in North/Central America, undertaking a comparison with TcI diversity in South America, including TcIDOM. Our aim was to examine hypotheses describing the origin of the TcIDOM clade. We propose two possible scenarios: an emergence of TcIDOM in northern South America as a sister group of North American strains and dispersal among domestic transmission cycles, or an origin in North America, prior to dispersal back into South American domestic cycles, possibly anthropically. To provide further insight into this question we undertook high resolution nuclear and mitochondrial genotyping of multiple Central American strains (from areas of México and Guatemala) and included them in an analysis with other published data [11-13].

A panel of 72 TcI isolates and clones was assembled for analysis (Table 1) [11-16]. Of these, existing sequences and microsatellite data were available for 46 isolates [11,12]. Isolates were classified into three populations: TcINORTH-CENT, TcISOUTH and TcIDOM. TcINORTH-CENT includes samples from the USA, México, Guatemala and Honduras; TcISOUTH corresponds to South America (Argentina, Bolivia, Colombia, Venezuela and Brazil) and TcIDOM with exclusively domestic isolates from Colombia and Venezuela, already known to correspond to a genotype with restricted genetic diversity: Tcla, as previously described by Herrera et al., (2007) [17] and VEN-dom, as described by Llewellyn et al., (2009) [13]. Additional DTU isolates (TcIII-TcIV) were included as out-groups in the mitochondrial analysis.

Isolates from México and Guatemala were characterized to DTU level via the amplification and sequencing of glucose-6-phosphate isomerase (GPI) as previously described by Lauthier et al., (2012) [18]. Subsequently, nine maxicircle gene fragments were amplified, sequenced and concatenated from the Méxican and Guatemalan strains according to Messenger et al., 2012 (excluding ND4) [12]. Phylogenetic analysis was also conducted as in Messenger et al., 2012 [12]. Nineteen nuclear microsatellite loci previously described by Llewellyn et al., 2009 [13], were selected based on their level of TcI intra-lineage resolution. Microsatellite loci were amplified across 21 unpublished biological stocks from México and Guatemala. Reaction conditions were as described previously [13]. Dendrograms based on multilocus allele profiles were constructed also according to Llewellyn et al., 2009 [13].

Maxicircle nucleotide diversity (π) was calculated for TcINORTH-CENT, TcISOUTH and TcIDOM respectively in DNAsp v5 [19]. Nuclear allelic diversity was calculated for the same populations using allelic richness (Ar) in FSTAT [20]. The resulting values are shown in Figure 1. Nucleotide sequences per gene fragment are available from GenBank under the accession numbers MURF1 (fragment a): JX431060 - JX431084; MURF1 (fragment b): JX431085 - JX431109; ND1: JX431110 - JX431134; ND5 (fragment a): JX431135 - JX431159; ND5 (fragment b): JX431160 - JX431184; 9S rRNA: JX431185 - JX431209; 12S rRNA: JX431210 - JX431234; COII: JX431235 - JX431259 and CYT b: JX431260 - JX431284.

Across the 3,449 bp final concatenated alignment (including outgroups), a total of 374 variable sites were found. The mitochondrial phylogeny supported the presence of significant diversity among the isolates examined (Figure 2). TcIDOM strains formed a monophyletic clade [60% ML BS/0.98 BPP]. The principal division in the
phylogeny was between TcISOUTH and TcIDOM/TcINORTH-CENT (98% ML BS/0.98 BPP). However, this division is incomplete, such that a subset of South American strains is also grouped with TcIDOM and TcINORTH-CENT. Thus, it is not possible to conclude that TcIDOM maxicircle sequences nest uniquely among those from TcINORTH-CENT strains. Conversely, a basal relationship of the TcINORTH-CENT to TcIDOM is suggested at the level of nucleotide diversity by population (Figure 1), whereby TcIDOM < TcINORTH-CENT < TcISOUTH. Low standard errors about the mean in all three populations, but especially in TcIDOM and TcINORTH-CENT, suggest that sample size had little impact on the accuracy of estimation between populations.

Distance-based clustering using the microsatellite data-set indicated the presence of several well defined clades (Figure 3). Importantly in this case the monophyly of North-Central American isolates was corroborated, and TcIDOM clustered firmly within them (bootstrap 65%). By contrast, South American isolates fall into a divergent but diverse clade. Thus the nuclear data provide stronger support for divergence of TcIDOM from within TcINORTH-CENT than the maxicircle phylogeny. Sample size-corrected allelic richness estimates are consistent with hierarchical patterns of clustering based on pair-wise genetic distances. As with the maxicircle dataset, there is a pronounced cline in diversity across the populations studied - Ar TcIDOM < Ar TcINORTH-CENT < Ar TcISOUTH (Figure 1).

Figure 2 Isolate grouping of 72 Trypanosoma cruzi I strains, as well as outgroups, based on nine concatenated maxicircle sequences. Bayesian consensus topology is displayed. Bayesian posterior probability analysis (BPP) was performed using MrBAYES v3.1. Five independent analyses were run using a random starting tree with three heated chains and one cold chain over 10 million generations with sampling every 10 simulations (25% burn-in). Decimal values (second number) on nodes indicate Bayesian probabilities for clusters. First number indicates the Maximum-Likelihood (ML) % bootstrap support for clade topologies, which was estimated following the generation of 1000 pseudo-replicate datasets. Branch colours indicate isolate origin. Isolates that show clear incongruity between nuclear genotype and maxicircle genotype are marked. Outgroup branches were cropped for ease of visualization, full branch lengths are show inset top right.
TcI dispersion into Central and North America

Using a 100 MYA biogeographic calibration point [6], molecular clock analyses point to the origin of T. cruzi (sensu stricto) 5–1 MYA [21-23] and a most recent common ancestor for TcI at 1.3-0.2 MYA [22]. Reduced genetic diversity among North-Central American isolates by comparison to their southern counterparts is powerful evidence in support of others who suggest that TcI originated in South America [13,24]. The emergence of TcI in the South occurred prior to either migration across the Isthmus of Panama alongside didelphid marsupials during the Great American Interchange [25], or perhaps prior to northerly dispersal via volant mammals (e.g. bats).

Origin of TcIDOM

Recent findings indicate a close resemblance between TcIDOM isolates from the northern region of South America and parasite populations from Central and North America by the use of nuclear and mitochondrial markers [11-13]. Indeed SL-IR genotyping suggests a distribution for TcIDOM that now extends as far south as the Argentine Chaco, where multiple sequences have been identified from human and domestic vector sources [14]. Llewellyn et al., (2009) originally hypothesised that a distinct human/domestic clade could be maintained despite the presence of nearby infective sylvatic strains due to the low parasite transmission efficiency by the vector [13]. In this case multiple feeds by domestic vector nymphs are required to infect individuals, as such human – human transmission is far more common than reservoir host - human transmission. Originally this hypothesis was developed to explain the epidemiology of Chagas disease in Venezuela. However, TcIDOM is clearly widespread and recent data propose a date for its emergence 23,000 ± 12,000 years ago [11].
This corresponds to the earliest human colonisation of the Americas [26]. Thus it seems that TcIDOM may be as ancient as humans in South America. Crucially, our data, which show that TcIDOM is nested among North and Central American strains, suggest that this widespread domestic T. cruzi genotype may actually have made first contact with man in North–Central America. The expansion of limited diversity genotypes into domestic transmission cycles is a familiar story in T. cruzi. This phenomenon seems to have occurred almost simultaneously with TcIDOM (<60,000 YA) in the Southern Cone region but involving DTUs TcV and TcVI [22]. Nonetheless, static human population densities sufficient to support a sustained domestic cycle are presumably vital. For TcIDOM, patterns of genetic diversity suggest early colonizing Amerindians may have been responsible for its southerly migration and dispersal from North/ Central America. However, such early settler populations were probably small, dynamic, and inherently unsuitable to sustain transmission of such a genotype. Many questions, therefore, remain unanswered regarding its emergence. Insight could perhaps be drawn from a better understanding of the current distribution and diversity of TcIDOM (including samples from the Southern Cone), patterns of vector population migrations, and even from analysis of ancient DNA (e.g. [27]). We hope this report serves to galvanize efforts towards this understanding, especially among researchers in Central and North America, where many of the answers lie.

Competing interests
The authors declare no competing financial interests. The funder played no role in the study design.

Authors’ contributions
FZE wrote the article, performed the experiments and analysed the data. LAM analysed the data and wrote the article. MSL contributed reagents. MAM contributed microsatellites. MSL conceived the experiments, analysed the data and wrote the article. TLO, PM, MDL and MAM and MSL acknowledge support from the European FP7 Project ChagasEpiNet, Grant 223034. MSL of National Public Health Institutes. LAM, MDL, MAM and MSL acknowledge FZE received an MSc scholarship from the Mexican Council of Science and Technology (CONACYT), and financial support from the International Agency of National Public Health Institutes. LAM, MDL, MAM and MSL acknowledge support from the European FP7 Project ChagasEpiNet, Grant 223034. MSL would like to thank Juan David Ramirez and Prof. Felipe Guhi at the Universidad de los Andes, Colombia for constructive discussion.

Author details
1Centro Regional de Investigación en Salud Pública, Instituto Nacional de Salud Pública, Tapachula, Chiapas, México. 2London School of Hygiene and Tropical Medicine, London, UK. 3Department of Biology, University of Maryland, College Park, MD, USA. 4Área de Entomología Médica, Centro Universitario del Sur, Universidad de Guadalajara, Ciudad Guzmán, Jalisco, México. 5Center for Health Studies, Research Institute, Universidad del Valle de Guatemala, Guatemala City, Guatemala. 6Instituto de Medicina Tropical, Universidad Central de Venezuela, Caracas, Venezuela.

Received: 11 August 2012 Accepted: 3 October 2012 Published: 10 October 2012

References
1. Rassi A Jr, Rassi A, Marin-Neto JA: Chagas disease. Lancet 2010, 375(9723):1388–1402.
2. Carlier Y, Torrico F, Sosa-Estnai S, Russomando G, Luquetti A, Freile H, Albajar Vinas P: Congenital chagas disease: recommendations for diagnosis, treatment and control of newborns, siblings and pregnant women. PLoS Negl Trop Dis 2011, 5:e1250.
3. Alarconde Noya B, Diaz-Bello Z, Colmeneros C, Ruiz-Guevara R, Mauriello L, Zavalal-Jaspe R, Suarez IA, Abate T, Naranjo L, Paiva M, Rivas L, Castro J, Marques J, Wendoza I, Acuñeta H, Torres J, Noya O: Large urban outbreak of orally acquired acute Chagas disease at a school in Caracas, Venezuela. J Infect Dis 2010, 191(5):1388–1315.
4. Lima L, Silva FM, Neves L, Attias M, Takara CS, Campaner M, de Souza W, Hamilton PB, Teixeira MM: Evolutionary Insights from Bat Trypanosomes: Morphological, Developmental and Phylogenetic Evidence of a New Species, Trypanosoma (Schiizotrypanum) emeyi sp. nov., in African Bats Closely Related to Trypanosoma (Schiizotrypanum) cruzi and Allied Species. Protist 2012, 163:856–872.
5. Hamilton PB, Stevens JR, Gaunt MW, Gidley J, Gibson WC: Trypanosomes are monophyletic; evidence from genes for glycerolaldehyde phosphate dehydrogenase and small subunit ribosomal RNA. Int J Parasitol 2004, 34(12):1393–1404.
6. Stevens JR, Noyes HA, Dover GA, Gibson WC. The ancient and divergent origins of the human pathogenic trypanosomes, Trypanosoma brucei and T. cruzi. Parasitology 1999, 118(pt 1):107–116.
7. Hamilton PB, Teixeira MM, Stevens JR. The evolution of Trypanosoma cruzi: the ‘bat seeding’ hypothesis. Trends Parasitol 2012, 28(4):136–141.
8. Yeo M, Acosta N, Llewellyn M, Sanchez H, Adamson S, Miles GA, Lopez E, Gonzalez N, Patterson JS, Gaunt MW, de Arias AR, Miles MA: Origins of Chagas disease: Didelphis species are natural hosts of Trypanosoma cruzi I and armadillos hosts of Trypanosoma cruzi II, including hybrids. Int J Parasitol 2005, 35(2):225–233.
9. Zingales B, Andrade SG, Briones MR, Campbell DA, Chiari E, Fernandes O, Guhl F, Lages-Silva E, Macedo AM, Machado CR, Miles MA, Romanha AJ, Sturn NR, Tibayrenc M, Schijman AG: A new consensus for Trypanosoma cruzi intraspecific nomenclature: second revision meeting recommends Tc to TcV. Mem Inst Oswaldo Cruz 2009, 104(7):1051–1054.
10. Miles MA, Llewellyn MS, Lewis MD, Yeo M, Baleera R, Fitzpatrick S, Gaunt MW, Mauricio II. The molecular epidemiology and phylogeography of Trypanosoma cruzi and parallel research on Leishmania: looking back and to the future. Parasitology 2009, 136(12):1509–1528.
11. Ramirez J, Guhi F, Messenger L, Lewis M, Montilla M, Cucunuba Z, Miles M, Llewellyn M: Contemporary cryptic sexuality in Trypanosoma cruzi. Mol Ecol 2012, 21:4216–26.
12. Messenger LA, Llewellyn MS, Bhattacharya T, Franzon O, Lewis MD, Ramirez JD, Carrasco HI, Anderson B, Miles MA. Multiple mitochondrial introgression events and heteroplasy in Trypanosoma cruzi revealed by maxicircle MLST and next generation sequencing. PLoS Negl Trop Dis 2012, 6(6):e1584.
13. Llewellyn MS, Miles MA, Carrasco HI, Lewis MD, Yeo M, Vargas J, Torrico F, Dixoque P, Valente V, Valente SA, Gaunt MW: Genome-scale multilocus microsatellite typing of Trypanosoma cruzi discrete typing unit I reveals phylogeographic structure and specific genotypes linked to human infection. PLoS Pathog 2009, 5(5):e1000410.
14. Cura CI, Mejia-Jaramillo AM, Duffy T, Burgos JM, Rodriguero M, Cardinal MV, Kjos S, Gurgen-Gonzales R, Blanchet D, De Pablos LM, Tomarini N, da Silva A, Russomando G, Cuba CA, Aznar C, Abate T, Levin MJ, Osuna A, Guttler RE, Diosque P, et al: Trypanosoma cruzi I genotypes in different geographical regions and transmission cycles based on a microsatellite motif of the intergenic spacer of spliced-leader genes. Int J Parasitol 2010, 40(14):1599–1607.
15. Pennington PM, Paiz C, Grajeda LM, Cordon-Rosales C: Short report: concurrent detection of Trypanosoma cruzi lineages I and II in domestic Triatoma dimidiata from Guatemala. Am J Trop Med Hyg 2009, 80(2):239–241.
16. Bucio ML, Cabrera M, Segura EL, Zenteno E, Salazar-Schettino M: Identification of immunodominant antigens in Mexican strains of Trypanosoma cruzi. Immunol Invest 1999, 28(4):257–268.
17. Herrera C, Barques MD, Fajardo A, Montilla M, Triana O, Vallejo GA, Guhi F: Identifying four Trypanosoma cruzi I isolate haplotypes from different geographic regions in Colombia. Infect Genet Evol 2007, 7(4):535–539.
18. Lauthier JJ, Tomasini N, Barnabe C, Rumi MM, D’Amato AM, Ragone PG, Yeo M, Lewis MD, Llewellyn MS, Basombrio MA, Miles MA, Tibayrenc M, Diosque P: Candidate targets for Multilocus Sequence Typing of Trypanosoma cruzi: validation using parasite stocks from the Chaco Region and a set of reference strains. Infect Genet Evol 2012, 12(2):350–358.

19. Librado P, Rozas J: DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 2009, 25(11):1451–1452.

20. Goudet J: FSTAT Version 1.2: a computer program to calculate F-statistics. J Heredity 1995, 86:485–486.

21. Flores-Lopez CA, Machado CA: Analyses of 32 loci clarify phylogenetic relationships among Trypanosoma cruzi lineages and support a single hybridization prior to human contact. PloS Negl Trop Dis 2011, 5(8):e1272.

22. Lewis MD, Llewellyn MS, Yeo M, Acosta N, Gaunt MW, Miles MA: Recent, Independent and Anthropogenic Origins of Trypanosoma cruzi Hybrids. PloS Negl Trop Dis 2011, 5(10):e1363.

23. Machado CA, Ayala FJ: Nucleotide sequences provide evidence of genetic exchange among distantly related lineages of Trypanosoma cruzi. Proc Natl Acad Sci U S A 2001, 98(13):7396–7401.

24. Barnabe C, Yaeger R, Pung O, Tibayrenc M: Trypanosoma cruzi: a considerable phylogenetic divergence indicates that the agent of Chagas disease is indigenous to the native fauna of the United States. Exp Parasitol 2001, 92(2):73–79.

25. Marshall LG, Sempere T: Evolution of the neotropical Cenozoic land mammal fauna in its geochronologic, stratigraphic, and tectonic context. In Biological relationships between Africa and South America. Edited by Goldblatt P. New Haven: Yale University Press; 1993:329–392.

26. Goebel T, Waters MR, O’Rourke DR: The late Pleistocene dispersal of modern humans in the Americas. Science 2008, 319(5869):1497–1502.

27. Lima VS, Iniguez AM, Otsuki K, Fernando Ferreira L, Araujo A, Vicente AC, Jansen AM: Chagas disease in ancient hunter-gatherer population, Brazil. Emerg Infect Diseases 2008, 14(6):1001–1002.

doi:10.1186/1756-3305-5-226

Cite this article as: Zumaya-Estrada et al.: North American import? Charting the origins of an enigmatic Trypanosoma cruzi domestic genotype. Parasites & Vectors 2012 5:226.