Enhanced low-temperature performance of slight Mn-substituted LiFePO$_4$/C cathode for lithium ion batteries

ZENG LingJie, GONG Qiang, LIAO XiaoZhen*, HE Li, HE YuShi & MA ZiFeng

Department of Chemical Engineering, Institute of Electrochemical & Energy Technology, Shanghai Jiao Tong University, Shanghai 200240, China

Received December 12, 2009; accepted May 27, 2010

Low temperature performance of LiFePO$_4$/C cathode was remarkably improved by slight Mn-substitution. Electrochemical measurements showed that about 95% of the discharge capacity of LiFe$_{0.98}$Mn$_{0.02}$PO$_4$/C cathode at 20°C was obtained at 0°C, compared to 85% of that of LiFePO$_4$/C cathode. The LiFe$_{0.98}$Mn$_{0.02}$PO$_4$/C sample also presented enhanced rate performance at −20°C with the discharge capacities of 124.4 mA h/g (0.1C), 99.8 mA h/g (1C), 80.7mA h/g (2C) and 70 mA h/g (5C), respectively, while pristine LiFePO$_4$/C only delivered capacities of 120.5 mA h/g (0.1C), 90.7 mA h/g (1C), 70.4 mA h/g (2C) and 52.2 mA h/g (5C). Cyclic voltammetry measurements demonstrated an obvious improvement of the lithium insertion-extraction process of the LiFePO$_4$/C cathode by slight Mn-substitution. The results of FSEM observation and electrical conductivity measurement indicated that slight Mn-substitution minimized the particle size of LiFe$_{0.98}$Mn$_{0.02}$PO$_4$/C and also obviously improved the electrical conductivity of the compound, thus obviously enhances the interface reaction process on the cathode.

low-temperature performance, Mn-substitution, LiFePO$_4$/C cathode, lithium ion batteries

Citation: Zeng L J, Gong Q, Liao X Z, et al. Enhanced low-temperature performance of slight Mn-substituted LiFePO$_4$/C cathode for lithium ion batteries. Chinese Sci Bull, 2011, 56: 1262–1266, doi: 10.1007/s11434-010-4097-0

Lithium ion phosphate has been intensively investigated in recent years as the most promising cathode material for large-scale lithium ion batteries (such as EV and HEV) due to its low cost, low toxicity, reasonable capacity and good thermal stability [1–4]. Commercial application of this material has made great progress. It has been successfully used in batteries for laptops, power tools and electric bicycles, etc. However, there are still a number of issues to work out before the batteries are suitable for EV and HEV application, such as high rate capability and low temperature performance. Several effective approaches such as carbon coating on the particle surface [5–8], minimizing the particle size [9–11], and cation substitution [12] have been applied to overcome the high rate problems at room temperature. However, efforts still need to be focused on enhancing low temperature performance of LiFePO$_4$ cathode. Although many efforts have been made on improving the low temperature performance of lithium ion batteries by developing new low temperature electrolytes [13–15], improving the low temperature properties of the electrode materials is also imperative. In our previous work [16], we reported the low temperature performance of LiFePO$_4$/C cathode in a quaternary carbonate-based electrolyte. It was found that charge-discharge behavior of LiFePO$_4$/C cathode was obviously impeded at low temperature. The increase of charge-transfer resistance and the decrease of lithium ion diffusion capability were the main performance limiting aspects at low temperature. In our present work, we managed to improve the rate capability of LiFePO$_4$/C cathode at low temperatures by slight Mn-substitution of Fe-site in LiFePO$_4$ structure.

1 Experiment

LiFe$_{1-x}$Mn$_x$PO$_4$/C (x=0, 0.02, 0.04, 0.06) cathode materials
were prepared by a mechanical/chemical reaction using a ball milling procedure as described in detail in another paper [17]. The starting materials were stoichiometric mixtures of Fe powder, iron phosphate (FePO₄·3H₂O), lithium phosphate (Li₃PO₄) and manganese phosphate (Mn₃(PO₄)₂·3H₂O). Sucrose was added as a conductive additive precursor. The precursor mixture powders were ball-milled for 24 h in a planetary mill (Puluerisett 6) with agate vessels. The resulting products were heat-treated under argon at 650°C for 30 minutes to obtain the final LiFe₁₋ₓMnₓPO₄/C (x=0, 0.02, 0.04, 0.06) samples. The carbon content was about 2.7% by weight.

The morphology of the powder materials was observed with a field emission scanning electron microscope (JSM-7401F). X-ray diffraction (XRD) measurements were carried out over the two-theta range from 10 to 70° with a Philips 3100E diffractometer using filtered Cu Kα radiation (∆λ=1.5418 Å). The electrical conductivity was measured by four-probe dc method based on sintered bars of approximate dimensions 2 mm×5 mm×12 mm. The measurements were performed in air at room temperature. A constant current was applied to the two current wires and the voltage response on the two voltage wires was recorded using a Keithley 2420 sourcemeter.

Electrochemical testing for the samples were carried out using coin cells (R2016) with Li metal foil as counter electrode and 1.0 M LiPF₆/EC+DMC+DEC+EMC (1:1:1:3, v/v) electrolyte. The cathode was constituted from 75 wt% active material, 15 wt% carbon black and 10 wt% PVDF binder. The active material loaded on the electrode disks was about 4.5 mg/cm². Charge-discharge performance of the cells was evaluated using a battery test system (LAND CT2001A model, Wuhan Jinnuo Electronics Co., Ltd). The cyclic voltammetry of the cells was performed on Solartron SI1260/SI1287 test system.

Figure 1 X-ray diffraction patterns of the prepared LiFe₁₋ₓMnₓPO₄/C (x=0, 0.02, 0.04, 0.06) samples and standard LiFePO₄.

2 Results and discussion

The phase composition of the prepared LiFe₁₋ₓMnₓPO₄/C (x=0, 0.02, 0.04, 0.06) samples were characterized by XRD as shown in Figure 1. The diffraction patterns for the Mn-substituted samples are similar to that of undoped LiFePO₄/C. All the Bragg diffraction peaks of the compounds can be well indexed based on a single-phase olivine-type structure indexed to the orthorhombic Pnmb space group. No impurity phases were detected by XRD. The single phase characteristic of the LiFe₁₋ₓMnₓPO₄ samples in the whole substitution range (0≤x≤1) was also reported by Molenda and coworkers [18]. Figure 2 presents the charge-discharge profiles of the prepared LiFe₁₋ₓMnₓPO₄/C (x=0, 0.02, 0.04, 0.06) samples at 20°C, 1C rate. It can be seen that the voltage gaps between charge and discharge profiles of Mn-substituted samples were obviously reduced compared with pristine LiFePO₄/C. This phenomenon indicates decreased electrode polarization by Mn-substitution. Slightly substituted LiFe₀.98Mn₀.02PO₄/C sample demonstrated the best electrochemical performance with the discharge capacity of 137.8 mAh/g. As the Mn content increased, the charge and discharge capacities of LiFe₁₋ₓMnₓPO₄/C (x = 0.04, 0.06) were decreased. In this paper we focused on the comparison of low temperature performance of LiFe₀.98Mn₀.02PO₄/C sample and pristine LiFePO₄/C.

Figure 3 compares the charge-discharge characteristics of LiFe₀.98Mn₀.02PO₄/C and LiFePO₄/C electrodes at four different temperatures under 1C rate. It can be seen that LiFe₀.98Mn₀.02PO₄/C sample showed substantially better low temperature performance than that of LiFePO₄/C sample. The voltage gap between charge and discharge profiles of LiFe₀.98Mn₀.02PO₄/C is reduced and the decrease of charge and discharge capacities of LiFe₀.98Mn₀.02PO₄/C electrode with the decrease of operation temperature is obviously alleviated compared with that of LiFePO₄/C electrode.
The charge-discharge characteristics of LiFe$_{0.98}$Mn$_{0.02}$PO$_4$/C and LiFePO$_4$/C electrodes at different temperatures under 1C rate. (a) LiFePO$_4$/C; (b) LiFe$_{0.98}$Mn$_{0.02}$PO$_4$/C.

discharge capacities of LiFe$_{0.98}$Mn$_{0.02}$PO$_4$/C were 137.8 mAh/g (20°C), 131.0 mAh/g (0°C), 99.8 mAh/g (−20°C) and 70.5 mAh/g(−40°C), respectively, while LiFePO$_4$/C delivered capacities of 134.5 mAh/g (20°C), 113.8 mAh/g (0°C), 90.1 mAh/g (−20°C) and 69.0 mAh/g (−40°C). It is interesting to find that 95% of discharge capacities of LiFe$_{0.98}$Mn$_{0.02}$PO$_4$/C cathode at 20°C was obtained at 0°C, compared to 85% of that of LiFePO$_4$/C. This is an attractive result for routine application of this material.

The rate capabilities of the LiFe$_{0.98}$Mn$_{0.02}$PO$_4$/C and LiFePO$_4$/C electrodes at −20°C are displayed in Figure 4. The cells were firstly charged to 4.2 V at a constant current of 34 mA/g (0.2C), and then discharged to 2.0 V at different current densities. It can be seen that at a low discharge current of 17 mA/g (0.1C), the LiFe$_{0.98}$Mn$_{0.02}$PO$_4$/C and LiFePO$_4$/C electrodes showed discharge capacities of 124.4 mA h/g and 120.5 mA h/g respectively. As discharge current increased, the LiFe$_{0.98}$Mn$_{0.02}$PO$_4$/C sample demonstrated obviously enhanced rate performance with discharge capacities of 99.8 mA h/g (1C), 80.7 mA h/g (2C) and 70 mA h/g (5C), respectively, while pristine LiFePO$_4$/C only delivered capacities of 90.7 mA h/g (1C), 70.4 mA h/g (2C) and 52.2 mA h/g (5C). Furthermore, the discharge voltage plateaus of LiFe$_{0.98}$Mn$_{0.02}$PO$_4$/C sample were enhanced compared with that of LiFePO$_4$/C, indicating a decreased electrochemical polarization.

Figure 5 exhibits cyclic voltammograms of the LiFePO$_4$/C and LiFe$_{0.98}$Mn$_{0.02}$PO$_4$/C samples at −20°C. The LiFePO$_4$/C sample showed broad redox peaks with the anodic peak at 3.77 V and cathodic peak at 3.16 V (vs. Li$^+/Li$), respectively. The LiFe$_{0.98}$Mn$_{0.02}$PO$_4$/C sample showed narrower peak separation and the peak shape was slightly sharper compared with that of LiFePO$_4$/C. These results are consistent with the charge-discharge performance, indicating an easier lithium insertion and extraction behavior of the slightly Mn-substituted sample.

In order to further understand the effects of Mn-substitu-
tion on the electrochemical behavior of LiFePO4/C material, electrochemical impedance spectra of LiFe0.98Mn0.02PO4/C and LiFePO4/C cathodes were measured at different temperatures using a three-electrode electrochemical cell. The tests were carried out at a 20% depth-of-discharge (DOD) state of the cathodes after 60 cycles. The results were shown in Figure 6. All the Nyquist plots showed two overlapped semicircles at high and medium frequency range and a straight line at low frequency range. The intercept of the high frequency semicircle with the real impedance axis refers to R_c, corresponding to the sum of electrolyte and conducting substrate resistances. The semicircle at high frequencies reflects the charge–transfer reaction resistance R_t and corresponding constant phase element Q_p. The straight line at low frequencies represents lithium ion diffusion resistance in electrode matrix. By fitting the Nyquist plots with the equivalent circuit as shown in Figure 6(c), the impedance parameters R_c, R_p, and R_t at different temperatures can be derived. The results are listed in Table 1.

The linear part in Nyquist plot is related to Lithium ion diffusion in electrode bulk. The lithium diffusion coefficient in the LiFePO4/C and LiFe0.98Mn0.02PO4/C electrode can be calculated using the following equation [19]:

$$D = \frac{R_t^2 T^2}{2A^2 n^2 F^2 C^2 \sigma^2},$$ \hspace{1cm} (1)

here, R is the gas constant, T is the absolute temperature, A is the surface area of the cathode, n is the number of electrons involved in reaction $(n=1)$, F is the Faraday constant, C is the concentration of lithium ion, and σ is the Warburg factor which has the relationship with Z_{re}:

$$Z_{re} = R_t + R_p + R_c + nF \sigma \omega^{-1/2},$$ \hspace{1cm} (2)

here, Z_{re} is real part of impedance, R_c is the resistance of electrolyte and conducting substrate, R_p is the resistance of current collector-to-particles and the particle-to-particle contact resistance of the cathode, R_t is charge-transfer reaction resistance, σ is the Warburg factor, and ω is angular frequency.

The graph of Z_{re} against $\omega^{-1/2}$ in the low frequency region is a straight line with the slope of σ. The slope σ can be obtained and lithium ion diffusion coefficient D can be calculated. The results are listed in Table 1.

It can be seen from Table 1 that LiFe0.98Mn0.02PO4/C cathode showed smaller R_p and R_t values than that of LiFePO4/C cathode at low temperatures. The values of lithium ion diffusion coefficient D for LiFe0.98Mn0.02PO4/C sample were also obviously enhanced compared with those of LiFePO4/C sample. It can be said that slight Mn-substitution both decreased the interface charge transport resistance and enhanced lithium ion diffusion capability in the electrode bulk. The coexistence of Mn2+ with Fe2+/Fe3+ ion pair in matrix structure improved the local charge transportation. Electrical conductivity measurement demonstrated that the LiFe0.98-Mn0.02PO4 showed a spectacular increase in electrical conductivity which was 1.68×10^{-6} S/cm compared with the 1.08×10^{-10} S/cm of pure LiFePO4. Figure 7 shows the FSEM images of LiFePO4/C and LiFe0.98Mn0.02PO4/C samples. It can be seen that the particle size of LiFe0.98Mn0.02PO4/C is

![Figure 6](image)

Figure 6 Impedance spectra of (a) LiFePO4/C cathode (20% DOD); (b) LiFe0.98Mn0.02PO4/C cathode (20% DOD) at different temperatures; (c) equivalent circuit model used for fitting of the impedance spectra.

Temperature (°C)	LiFePO4/C	LiFe0.98Mn0.02PO4/C						
	R_c (Ω)	R_p (Ω)	R_t (Ω)	D (cm2 s$^{-1}$)	R_c (Ω)	R_p (Ω)	R_t (Ω)	D (cm2 s$^{-1}$)
20	4.7	86.9	98.2	1.7×10$^{-12}$	11.1	38.3	90.43	5.5×10$^{-12}$
0	5.9	101.1	124.3	1.6×10$^{-12}$	13.2	43.1	104.3	4.8×10$^{-12}$
−20	7.9	120.0	315.1	2.1×10$^{-13}$	18.6	94.0	150.1	1.4×10$^{-12}$
−40	13.0	126.3	2005.4	2.1×10$^{-14}$	33.2	122.7	610.2	3.4×10$^{-13}$
smaller than that of pristine LiFePO4/C. The smaller particle size may increase the active surface area of the LiFe0.98−
Mn0.02PO4/C material and also shorten the lithium ion diffusion path in the particles thus contributes to better elec-
trochemical performance of the LiFe0.98Mn0.02PO4/C sample.

3 Conclusions

Improving low temperature performance of olivine lithium ion phosphate is an important issue for its successful commercialization. Slight Mn-substitution of the Fe-site was demonstrated to be an effective approach to improve the rate performance of LiFePO4/C cathode at low temperatures. The discharge capacities of the prepared LiFe0.98−
Mn0.02PO4/C cathode at −20°C were about 124.4 mA h/g (0.1C), 99.8 mA h/g (1C), 80.7 mA h/g (2C) and 70 mA h/g (5C), respectively, while pristine LiFePO4/C only delivered capacities of 120.5 mA h/g (0.1C), 90.7 mA h/g (1C), 70.4 mA h/g (2C) and 52.2 mA h/g (5C). EIS measurements demonstrated that LiFe0.98Mn0.02PO4/C showed a smaller interface charge-transfer resistance and improved lithium ion diffusion capability than that of LiFePO4/C.

This work was supported by the National Natural Science Foundation of China (20773087), the National Basic Research Program of China (2007CB209705) and the Science and Technology Commission of Shanghai Municipality (09XD1402400, 09DZ2203603 and 09HJ500100).

1 Padhi A K, Nanjundaswamy K S, Goodenough J B. Phospho-olivines as positive–electrode materials for rechargeable lithium batteries. J Electrochem Soc, 1997, 144: 1188–1194
2 Yamada A, Chung S C, Hinokuma K. Optimized LiFePO4 for lithium battery cathodes. J Electrochem Soc, 2001, 148: A224–A229
3 Goodenough J B. Cathode materials: A personal perspective. J Power Sources, 2007, 174: 996–1000
4 Zaghb H, Charest P, Guerfi A, et al. Safe Li-ion polymer batteries for HEV applications. J Power Sources, 2004, 134: 124–129
5 Ravet N, Goodenough J B, Besner S, et al. Improved iron based cathode material. In: Nazi G A, Thackeray M, Ohzuku T, et al. Proceedings of the 196th ECS Meeting, 1999 Oct 17–22, Honolulu, Hawaii: The Electrochemical Society Inc, 1999, 99: 127
6 Barker J, Saide M Y, Swoyer J L. Lithium iron(II) phospho-olivines prepared by a novel carbotermal reduction method. Electrochem Solid-State Lett, 2003, 6: A53–A55
7 Liao X Z, Ma Z F, He Y S, et al. Electrochemical behavior of LiFePO4/C cathode material for rechargeable lithium batteries. J Electrochem Soc, 2005, 152: A1969–A1973
8 Kim K, Jeong J H, Kim J I, et al. Carbon coatings with olive oil, soybean oil and butan on nano-LiFePO4. J Power Sources, 2007, 167: 524–528
9 Prosini P P, Carewski M, Scaccia S, et al. A new synthetic route for preparing LiFePO4 with enhanced electrochemical performance. J Electrochem Soc, 2002, 149: A886–A890
10 Wang B, Qiu Y, Ni S. Ultrathin LiFePO4 cathode materials synthesized by chemical reduction and lithiation method in alcohol solution. Solid State Ionics, 2007, 178: 843–847
11 Takahashi M, Tobishima S, Takei K, et al. Characterization of LiFePO4 as the cathode material for rechargeable lithium batteries. J Power Sources, 2001, 97–98: 508–511
12 Chung S Y, Bloking J T, Chiang Y M. Electronically conductive phospho-olivines as lithium storage electrodes. Nat Mater, 2002, 1: 123–128
13 Zhang S S, Xu K, Jow T R. An improved electrolyte for the LiFePO4 cathode working in a wide temperature range. J Power Sources, 2006, 159: 702–707
14 Smart M C, Ratnakumar B V, Whitmanack L D, et al. Improved low-temperature performance of lithium-ion cells with quaternary carbonate-based electrolytes. J Power Sources, 2003, 119–121: 349–358
15 Smart M C, Ratnakumar B V, Behar A, et al. Gel polymer electrolyte lithium-ion cells with improved low temperature performance. J Power Sources, 2007, 165: 535–543
16 Liao X Z, Ma Z F, Gong Q, et al. Low-temperature performance of LiFePO4/C cathode in a quaternary carbonate-based electrolyte. Electrochem Commun, 2008, 10: 691–694
17 Liao X Z, Ma Z F, Wang L, et al. A novel synthesis route for LiFePO4/C cathode materials for lithium-ion batteries. Electrochem Solid-State Lett, 2004, 7: A522–A525
18 Moleanda J, Ojczyk W, Świerczek K, et al. Diffusional mechanism of deintercalation in LiFe1−yMn,PO4 cathode material. Solid State Ionics, 2006, 117: 2617–2624
19 Liu H, Li C, Zhang H P, et al. Kinetic study on LiFePO4/C nano-composites synthesized by solid state technique. J Power Sources, 2006, 159: 717–720

Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.