Kinetic Interconversion of Rat and Bovine Homologs of the α Subunit of an Amiloride-sensitive Na⁺ Channel by C-terminal Truncation of the Bovine Subunit*

(Received for publication, May 21, 1996, and in revised form, July 17, 1996)

Catherine M. Fuller‡, Iskander I. Ismailov, Bakhram K. Bordiev, Vadim G. Shlyonsky, and Dale J. Benos

From the Department of Physiology and Biophysics, University of Alabama at Birmingham, Birmingham, Alabama 35294

We have recently cloned the α subunit of a bovine amiloride-sensitive Na⁺ channel (bENaC). This subunit shares extensive homology with both rat and human αENaC subunits but shows marked divergence at the C terminus beginning at amino acid 584 of the 697-residue sequence. When incorporated into planar lipid bilayers, bENaC almost exclusively exhibits a main transition to 39 picosiemens (pS) with very rare 13 pS step transitions to one of two subconductance states (26 and 13 pS). In contrast, an equivalent treatment with the reducing agent dithiothreitol produces an amiloride-sensitive channel activity (2). However, the α subunit of the rat renal homolog of ENaC (rENaC) has a main transition step to 13 pS that is almost constitutively open, with a second stepwise transition of 26 to 39 pS. A deletion mutant of αENaC, encompassing the C-terminal region (R567X), converts the kinetic behavior of αENaC to that of rENaC, i.e. a transition to 13 pS followed by a second 26 pS transition to 39 pS. Chemical cross-linking of R567X restores the wild-type αENaC gating pattern, whereas treatment with the reducing agent dithiothreitol produced only 13 pS transitions. In contrast, an equivalent C-terminal truncation of αENaC (R613X) had no effect on the gating pattern of αENaC. These results are consistent with the hypothesis that interactions between the C termini of αENaC account for the different kinetic behavior of this member of the ENaC family of Na⁺ channels.

A family of amiloride-sensitive Na⁺ channels, the ENaCs, has recently been cloned from the colon of rats either fed a low sodium diet or treated with dexamethasone, and they have since been identified in both epithelial and non-epithelial tissues from several species (1–8). This family of channels is comprised of three homologous subunits, termed α, β, and γ, that when co-expressed in Xenopus oocytes produce maximum amiloride-sensitive channel activity (2). However, the α subunit alone can act as an amiloride-sensitive Na⁺ channel (9), and other related members of the ENaC family can form a conductive pore by expression of a single cDNA (10–12). We have recently cloned the α subunit of the bovine renal homolog of ENaC, which we term αbENaC (13). This bovine isoform also forms an amiloride-sensitive Na⁺ channel when expressed in Xenopus oocytes. Fusion of αbENaC-expressing oocyte membrane vesicles to the planar lipid bilayer reveals an amiloride-sensitive Na⁺ channel that exhibits a distinct kinetic signature. This is characterized by a main transition to 39 pS, with very rare 13 pS step transitions to one of two subconductance states (26 and 13 pS). Moreover, there are long (1–5 min) closed periods between bursts of activity. In contrast, the rat colon αENaC subunit (the first cloned member of the ENaC family), exhibits a very different kinetic profile when studied under identical conditions. In this case, the main transition step is to 13 pS with a second stepwise transition of 26 to 39 pS (9), and there are no long closures. Although both αbENaC and rENaC share an identical domain organization, are of similar size, and are highly homologous at the nucleotide level over most of their length, there are some specific differences (2, 13). The most notable among these is a marked sequence (and thus amino acid) divergence at their respective C termini. This divergence initiates at residue 584 in αENaC (residue 630 in rENaC) and continues to the end of the coding region. The open reading frame of αbENaC also initiates 44 amino acids downstream of the αENaC start site and terminates 23 amino acids downstream of the rENaC stop. We therefore tested the hypothesis that the C-terminal divergence between αbENaC and the prototypical rENaC accounts for the difference in the gating pattern exhibited by these two Na⁺ channel proteins. We have thus constructed C-terminal truncated versions of both αENaC subunits, expressed the respective cRNAs in Xenopus oocytes, and fused oocyte membrane vesicles to the planar lipid bilayer for electrophysiological recording.

EXPERIMENTAL PROCEDURES

Materials

Molecular reagents were obtained from Promega (Madison, WI), New England Biolabs Inc. (Beverly, MA), Stratagene (La Jolla, CA), or Bio 101, Inc. (Buena Vista, CA). Female *Xenopus laevis* were obtained from Xenopus I (Ann Arbor, MI). Radioactive [³⁵S]methionine was from Du Pont NEN. Lipids for planar bilayer experiments were purchased from Avanti Polar Lipids (Birmingham, AL). All other reagents were obtained either from Sigma, Bio-Rad, or Fisher.

Methods

Truncation of ENaC cDNA—We adopted a PCR-based strategy to generate truncation mutants of αENaC and αbENaC. The full-length (2.1 kilobases) αENaC open reading frame was used as a template in a PCR reaction, using primers designed to insert a stop codon at amino acid residue 567 in the αENaC sequence. This residue falls just after the predicted end of the second transmembrane domain of the α subunit. The primer pairs (including *Bg/I*I sites) were 5’-GAAGATCCT-TCATGAAAGGAGACAAGCCTGA-3’ (sense) and 5’-GAAGATCCTCT-AGCCTAGGAG-3’. The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked “advertisement” in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

* This study was supported by National Institutes of Health Grant DK37206. The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked “advertisement” in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

† To whom correspondence should be addressed: Dept. of Physiology and Biophysics, University of Alabama at Birmingham, BHS 735, University Station, Birmingham, AL 35294-0005. Tel.: 205-934-6085; Fax: 205-934-2577; E-mail: fuller@phybio.bhs.uab.edu.

‡ This study was supported by National Institutes of Health Grant DK37206. The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked “advertisement” in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

1 The abbreviations used are: αENaC, α subunit of the bovine renal homolog of ENaC; pS, picosiemens(s); αbENaC, α subunit of the rat renal homolog of ENaC; PCR, polymerase chain reaction; DTT, dithiothreitol; MOPS, 4-morpholinopropanesulfonic acid; DTNB, 5,5'-dithiobis-(2-nitrobenzoate).
Truncation of ENaC

Fig. 1. Alignment of amino acid sequences for rat and bovine ENaC subunits. The start of bovine ENaC is shifted 44 amino acids downstream of the enaC start site. The two sequences begin to diverge. The site of the residue change (R→STOP) is highlighted in bold in each sequence.

Fig. 2. In vitro translation of wild-type and truncated rat and bovine αENaC subunits. αENaC cDNAs were transcribed and in vitro translated in the presence of [35S]methionine as described under "Methods." In vitro translated bovine αENaC and rat αENaC migrated with an Mr of 70,000–75,000 on 8% SDS-polyacrylamide gel electrophoresis. Truncated bovine αENaC and rat αENaC migrated at 54 and 57 kDa, respectively. The autoradiogram was exposed to the gel for 45 min at −80 °C.

The kit from Promega or SP6 polymerase in the presence of a methylguanosine cap analog, m7G(5′)-ppp(5′)-G. In vitro translation was carried out in the presence of L-[35S]methionine using micrococcal nuclease-treated rabbit reticulocyte lysate (Promega) in the absence of canine pancreatic microsomes (13). In vitro translated products were separated by 8% SDS-polyacrylamide gel electrophoresis according to the method of Laemmli (14) under reducing (50 mM DTT) conditions. Oocyte Injection and Planar Lipid Bilayer Recording—Xenopus oocytes were prepared and injected as described previously (13, 15). Briefly, oocytes were defolliculated in oocyte Ringer (in mM: 82.5 NaCl, 2.4 KCl, 5 MgCl2, 5 HEPES, pH 7.4) containing 1 mg/ml Type 1 collagenase (320 units/mg; Sigma) for 2 h with one solution change. Stage V/VI oocytes were selected and maintained for 24 h in 0.5 mM HEPES, 10,000 units/ml solution of penicillin/streptomycin. Oocytes were injected with either 50 nl of nuclease-free water or 25 ng of the appropriate cRNA. After an additional 24–48 h, membrane vesicles were prepared from the injected oocytes and frozen at −80 °C for subsequent fusion to the lipid bilayer for physiological recording as described previously (15–17). Planar lipid bilayer membranes were composed of a mixture of dihexanoylphosphatidylcholine/cholesterol (20 mg/ml) in a 2:1 (w/w) ratio, bathed with symmetrical solutions of 100 mM NaCl and 10 mM MOPS (pH 7.5). Data analysis was as described previously (9).

RESULTS

The full-length open reading frames (including the stop codons) of αENaC and rat αENaC are 2,094 and 2,097 base pairs, respectively, predicting translated polypeptides of 697 and 698 amino acids. As shown in Fig. 1, both bovine αENaC and rat αENaC are highly homologous over most of their length. However, this homology breaks down at residue position 584 of αENaC. Under reducing conditions, in vitro translated αENaC and rat αENaC migrated with an Mr of 70,000–75,000 (in the absence of co-translational glycosylation), consistent with a predicted size of 79 kDa. As shown in Fig. 2, truncation of the last 130 amino acids in the case of αENaC and 85 amino acids in the case of ENaC resulted in both a translated product and a translated product that migrated at 54 kDa and rat αENaC product that migrated at 57 kDa.

When membrane vesicles prepared from oocytes expressing R567X αENaC were fused to planar lipid bilayers, we observed a marked difference in the gating pattern of the resultant channel as compared with that found when full-length...
αbENaC was studied under identical conditions. Control or wild-type αbENaC exhibited a predominantly 39 pS open state conductance, manifested as a single transition to 39 pS. This channel also exhibited burst-type behavior in that the frequent opening of the 39 pS conductance state was punctuated by long closed periods with little or no channel activity. In contrast, R567X αbENaC seemed to show an almost constitutively open 13 pS conductance level, on top of which were frequent 26 pS transitions to a 39 pS conductance main state. These two states gated cooperatively in that we never observed transitions to 26 pS followed by a second transition of 13 pS. Wild-type αrENaC also exhibited an almost constitutively open 13 pS conductance level, with frequent 26 pS transitions to 39 pS. This gating behavior of αrENaC was identical to that shown by the C-terminal truncated αrENaC construct, R613X αrENaC. Each panel is representative of at least six separate experiments, the holding potential was +100 mV, and dashed lines represent the zero current level.

We have previously shown that exposure of a single wild-type αrENaC incorporated into the planar lipid bilayer to the reducing agent DTT caused the gating behavior of the channel to change radically from 13 and 39 pS main states to 3 × 13 pS subconductance states that appear to gate independently, thus following a binomial distribution (9). Treatment of the wild-type αrENaC with high salt (1.5M NaCl) also changed the kinetic pattern of gating, increasing the frequency with which the 13 and 26 pS subconductance states were seen. Thus, instead of predominantly observing a single 39 pS transition, the gating pattern could be clearly resolved into 13 and 26 pS components that gated independently (9). Because R567X αbENaC seemed to share the gating characteristics of the wild-type αrENaC channel, we examined whether this resemblance could be extended to the behavior of both wild-type and R567X αbENaC in the presence of DTT or high salt. As shown in Fig. 4, 50 μM DTT added to the trans side of the bilayer (the putative external face of the channel) resolved the wild-type channel into three independently gated 13 pS subconductance states. In the presence of 1.5 M NaCl, wild-type αbENaC showed behavior identical to that exhibited by wild-type αrENaC studied under the same conditions, i.e. separately gated 13 and 26 pS transitions. Conversely, the addition of 300 μM 5,5′-dithiobis(2-nitrobenzoate) (DTNB), a sulphydryl cross-linking agent, to wild-type αbENaC did not affect the gating pattern of the channel. Similarly, the addition of DTT or 1.5 M NaCl to R567X αbENaC (Fig. 5) had effects similar to those observed when wild-type αbENaC was used, i.e. an increase in

![Figure 3](http://www.jbc.org/)

Fig. 3. Single channel records of both wild-type and C-terminal truncated αbENaC and αrENaC. The cRNAs for each construct were injected and expressed in *Xenopus* oocytes as described. Oocyte vesicles were then fused to planar lipid bilayers, resulting in the incorporation of ENaC channels into the bilayer membrane. Wild-type αbENaC exhibited predominantly single-step transitions of 39 pS. In contrast, R567X αbENaC had an almost constitutively open 13 pS conductance level on top of which were frequent 26 pS transitions to a 39 pS conductance main state. These two states gated cooperatively in that we never observed transitions to 26 pS followed by a second transition of 13 pS. Wild-type αrENaC also exhibited an almost constitutively open 13 pS conductance level, with frequent 26 pS transitions to 39 pS. This gating behavior of αrENaC was identical to that shown by the C-terminal truncated αrENaC construct, R613X αrENaC. Each panel is representative of at least six separate experiments, the holding potential was +100 mV, and dashed lines represent the zero current level.
independently gated single step transitions to 13 pS (in the presence of DTT) or an increased appearance of independent 13 and 26 pS transitions (in the presence of 1.5 M NaCl). However, cross-linking with DTNB restored the previously observed gating behavior of wild-type αβENaC, such that only single transitions to 39 pS were observed. Thus, following cross-linking with DTNB, the gating behavior of R567X αβENaC was indistinguishable from wild-type αβENaC gating kinetics. An identical gating pattern was also observed when wild-type αrENaC was studied under the same conditions, i.e. single step transitions to 39 pS in the presence of 300 μM DTNB (9).

Similarly, when the equivalent truncation mutant of αrENaC (R613X αrENaC) was examined under identical conditions to those described above for R567X αβENaC, we found that the gating pattern of the mutant was indistinguishable from the pattern exhibited by the wild-type αrENaC channel protein. Thus, as shown in Fig. 6, the addition of 50 μM DTT to R613X αrENaC (which in the absence of DTT exhibited an almost constitutively open 13 pS state, with frequent 26 pS transitions to 39 pS) resolved the gating pattern into three independently gated 13 pS subconductance states, while high salt (1.5 M NaCl) altered the gating pattern so that two clear independent states could be observed, one at 13 pS and one at 26 pS. Addition of the cross-linker DTNB resulted in the predominant appearance of a single 39 pS transition (Fig. 6).

We also examined whether other properties characteristic of αβENaC and αrENaC, such as amiloride sensitivity and ion selectivity, were altered in the C-terminal truncated proteins. As shown in Fig. 7, the apparent Kᵅ of amiloride for wild-type αβENaC (168.9 ± 46.1 nM) was not affected in R613X αrENaC (Kᵅ = 176.5 ± 48.9 nM). Similarly, the apparent Kᵅ of amiloride for wild-type αβENaC was not affected by C-terminal truncation of the channel (apparent amiloride Kᵅ for wild-type αβENaC was 109.7 ± 32.4 nM as opposed to 113 ± 32.2 nM for R567X αβENaC) although the dose-response curve was displaced slightly (but not significantly) to the left of that for αβENaC. In addition, deletion of the C-terminal region of each isoform did not appear to affect the Na⁺ to K⁺ permeability; P₉/P₉ was 10:1 when determined under biionic conditions for both wild-type and truncated αβENaC rat and bovine isoforms (Fig. 8).

DISCUSSION

We have previously reported that αrENaC, the α subunit of an amiloride-sensitive Na⁺ channel cloned from the rat colon, exhibits a distinct kinetic signature when incorporated into planar lipid bilayers (9). This kinetic signature was identical to that observed when *Xenopus* oocytes heterologously expressing αrENaC were examined under cell-attached patch-clamp conditions (9). The kinetic signature of the channel incorporated into planar lipid bilayers was radically changed by the addition of a disulfide-reactive agent or by the chaotropic effects of high salt. Our earlier studies demonstrated that a single αrENaC channel that predominantly exhibited 13 and 39 pS main state conductances could be resolved into three apparently independently gated 13 pS subconductance states, following reduction of the protein with DTT. Conversely the 39 pS main state conductance could be restored by the addition of a disulfide cross-linker. The effect of high salt was to cause the 13 and 26 pS transition steps to gate independently. Similar effects of disulfide-active agents and high salt were seen when single αβγrENaC channels were studied under identical conditions.
These observations led us to propose a model whereby both the αENaC and βENaC Na$^+$ channels behaved functionally as a triple-barreled ion channel. In the case of αENaC, the channel was proposed to comprise three 13 pS conductive pores that, when gating cooperatively, gave rise to a 39 pS conductance level. Based on our experimental observations with high salt and DTT, we suggested a simple model whereby two of these barrels would be linked by disulfide bonds and the third barrel might interact with the covalently linked pair by electrostatic mechanisms that would be subject to disruption by high salt.

However, when we incorporated the highly homologous bovine isoform of αENaC, βENaC, into planar lipid bilayers, we observed a different gating pattern, namely a single step transition of 39 pS interspersed by long closed periods. Comparison of the amino acid sequences of αENaC with βENaC showed that there was a significant region of diversity at the extreme C terminus. The present series of experiments were therefore undertaken to determine whether the site of the kinetic differences in gating pattern between αENaC and βENaC resided in the C-terminal region. We found that premature truncation of βENaC just after the end of the second hydrophobic domain and 17 amino acid residues prior to the initiation of the greatest sequence divergence effectively converted the gating pattern of βENaC to one that was indistinguishable from that which we had previously reported for αENaC. In contrast, the equivalent C-terminal truncation, when executed in αENaC, had no effect on the pattern of αENaC channel gating. However, in other respects (such as the response to DTT, high salt, cross-linking with DTNB, amiloride sensitivity, and ion selectivity), wild-type, R567X αENaC, and R613X αENaC behaved identically to wild-type αENaC.

These results suggest that a triple-barreled model could also account for the behavior of wild-type βENaC and that the region responsible for the different gating behavior of βENaC resides within the extreme C terminus; however, the minimum region required to maintain the gating characteristics of βENaC remains to be determined. In contrast, the C-terminal region of αENaC seems to exert no influence on the gating behavior of this prototypical ENaC isoform. We would also predict that the human homolog, αhENaC, which shares a much greater C-terminal homology with αENaC than does αβENaC (3, 13), would also not be subject to C-terminal-based modification of its gating pattern. In contrast, an alternatively spliced form of αENaC that has been detected in tissue samples, kidney, and lung has a significant (199 amino acid) deletion at the C terminus (18). This splice variant, which is missing the second transmembrane domain of the channel, was associated with no significant increase in amiloride-sensitive Na$^+$ current when heterologously expressed in Xenopus oocytes (18).

Our results with the cross-linking agent DTNB, together with our results using DTT, suggest that the residues important for cross-linking lie predominantly in the N terminus because DTNB and DTT were as effective in either restoring or disrupting triple-barreled behavior of the channel in the truncation mutants as they were in the wild-type αENaC channels. However, the C terminus of αENaC does contain a number of charged residues that are not present in αENaC, which may influence the gating behavior of the channel. Given the reducing environment of the cytosol, the way in which the N terminus of the αENaC subunit may cross-link to other subunits or even other associated proteins is at present unknown, as is the

FIG. 5. Effect of sulphydryl-active agents and high salt on the kinetic behavior of R567X αENaC. Exposure of truncated βENaC to the reducing agent DTT changed channel gating from two main conductance levels, that appeared to gate cooperatively, to three independently gated 13 pS conductance states. The addition of 1.5 M NaCl also changed the gating pattern of R567X βENaC such that the 13 and 26 pS subconductance states gated independently. The disulfide cross-linking agent DTNB restored the wild-type gating pattern to R567X βENaC. Each panel is representative of at least five separate experiments, the holding potential was +100 mV, and dashed lines represent the zero current level.
exact subunit stoichiometry of the assembly of the channel. However, our earlier studies do suggest that multiple αENaC subunits may contribute to the overall conformation of the αβγENaC channel complex (9).

In summary, therefore, we have demonstrated that the unique kinetic signature of αbENaC is conferred by the highly divergent C terminus of this protein. Truncation of this region in αENaC has no effect on gating of this rat αENaC isoform, and in either isoform, no property so far examined is affected by deletion of the C terminus other than the gating pattern of αbENaC.

FIG. 6. Effect of sulphydryl-active agents and high salt on R613X αrENaC. The addition of DTT to R613X αrENaC also caused the gating behavior of this truncated protein to resolve into three independently gated 13 pS subconductance levels. The presence of 1.5 M NaCl similarly caused the 13 and 26 pS transition steps to gate independently such that we could observe the 26 pS state in the absence of an initial transition to 13 pS. Cross-linking R613X αrENaC with DTNB also changed the gating behavior of the truncated protein, causing a predominance of single-step 39 pS transitions. Panels are representative of six separate experiments, the holding potential was +100 mV, and dashed lines represent the zero current level.

FIG. 7. Dose-response curve of amiloride on wild-type and truncated αbENaC and αrENaC. The K+-sparking diuretic amiloride caused a dose-dependent reduction in channel open probability in both αbENaC and αrENaC. Although the curve for the effect of amiloride on αbENaC was shifted slightly to the left of that for αrENaC, this shift was not significant. The amiloride sensitivity of each isoform was not affected by C-terminal truncation. Results are the means of four separate determinations and are expressed ± S.D.

FIG. 8. Ion selectivity of wild-type and truncated bovine and rat ENaC isoforms. The ion selectivity of wild-type and mutant ENaC isoforms was determined under biionic conditions with 100 mM Na⁺ in the trans compartment and 100 mM K⁺ in the cis chamber. Under these conditions, we calculated a P_{Na^+}/P_{K^-} ratio of approximately 10:1 using the Goldman-Hodgkin-Katz constant field equation. Both isoforms and their respective truncations yielded an identical permeability ratio. Values are the mean of at least four separate determinations ± S.D.
Acknowledgments—We thank Christie Brown for excellent assistance with the expression of ENaC cRNAs in Xenopus oocytes and Elizabeth Fernandez for superb technical assistance.

REFERENCES
1. Canessa, C. M., Horisberger, J.-D., and Rossier, B. C. (1993) Nature 361, 467–470
2. Canessa, C. M., Schild, L., Buell, G., Thorens, B., Gautschi, I., Horisberger, J.-D., and Rossier, B. C. (1994) Nature 367, 463–467
3. McDonald, F. J., Price, M. P., Snyder, P. M., and Welsh, M. J. (1994) Am. J. Physiol. 268, 6708–C734
4. McDonald, F. J., Price, M. P., Snyder, P. M., and Welsh, M. J. (1995) Am. J. Physiol. 268, C1157–C1163
5. Lingueglia, E., Voilley, N., Waldmann, R., Lazdunski, M., and Barby, P. (1995) FEBS Lett. 318, 95–99
6. Bradford, A. L., Ismailov, I. I., Achard, J.-M., Warnock, D. G., Bubien, J. K., and Benos, D. J. (1995) Am. J. Physiol. 269, C601–C611
7. Pousti, A., May, A., Canessa, C. M., Horisberger, J.-D., Schild, L., and Rossier, B. C. (1995) Am. J. Physiol. 269, C188–C197
8. Voilley, N., Lingueglia, E., Champigny, G., Mattei, M. G., Waldmann, R., Lazdunski, M., and Barby, P. (1994) Proc. Natl. Acad. Sci. U. S. A. 91, 247–251
9. Ismailov, I. I., Awaysa, M. S., Berdiev, B. K., Bubien, J. K., Lucas, J. E., Fuller, C. M., and Benos, D. J. (1996) J. Biol. Chem. 271, 807–816
10. Price, M. P., Snyder, P. M., and Welsh, M. J. (1996) J. Biol. Chem. 271, 7879–7882
11. Waldmann, R., Champigny, G., Bassilana, F., Voilley, N., and Lazdunski, M. (1995) J. Biol. Chem. 270, 27411–27414
12. Lingueglia, E., Champigny, G., Lazdunski, M., and Barby, P. (1995) Nature 378, 730–733
13. Fuller, C. M., Awaysa, M. S., Arrate, M. P., Bradford, A. L., Morris, R. G., Canessa, C. M., Rossier, B. C., and Benos, D. J. (1995) Am. J. Physiol. 269, 641–654
14. Laemmli, U. K. (1970) Nature 227, 680–685
15. Awaysa, M. S., Ismailov, I. I., Berdiev, B. K., and Benos, D. J. (1995) Am. J. Physiol. 269, C1450–C1459
16. Perez, G., Lagrutta, A., Adelman, J. P., and Toro, L. (1994) Biophys. J. 66, 1022–1027
17. Cunningham, S. A., Awaysa, M. S., Bubien, J. K., Ismailov, I. I., Arrate, M. P., Berdiev, B. K., Benos, D. J., and Fuller, C. M. (1995) J. Biol. Chem. 270, 31016–31026
18. Li, X.-J., Xu, R.-H., Guggino, W. B., and Snyder, S. H. (1995) Mol. Pharmacol. 47, 1133–1140
Kinetic Interconversion of Rat and Bovine Homologs of the α Subunit of an Amiloride-sensitive Na$^+$ Channel by C-terminal Truncation of the Bovine Subunit

Catherine M. Fuller, Iskander I. Ismailov, Bakhram K. Berdiev, Vadim G. Shlyonsky and Dale J. Benos

J. Biol. Chem. 1996, 271:26602-26608.
doi: 10.1074/jbc.271.43.26602

Access the most updated version of this article at http://www.jbc.org/content/271/43/26602

Alerts:
• When this article is cited
• When a correction for this article is posted

Click here to choose from all of JBC's e-mail alerts

This article cites 18 references, 6 of which can be accessed free at http://www.jbc.org/content/271/43/26602.full.html#ref-list-1