Investigation of Water Permeability of Ultrasonic Seaming on PU Coated Fabrics

PU Kaplamalı Kumaşlarda Ultrasonik Dikişin Su Geçirgenliğinin Araştırılması

Ayşe ŞEVKAN MACİT1, Bahar TİBER1

1Uşak University, Engineering Faculty, Textile Engineering Department, 1 Eylül Kampüsü, Uşak, Türkiye

Abstract
Technical textiles take an important place in textile and apparel sector. In technical textiles, ultrasonic seaming method besides conventional seaming methods is one of the alternative methods used in seaming processes of functional textiles. In this study, the effects of ultrasonic seaming method in which needle and thread usage is not needed on waterproofing property of PU coated fabrics in comparison with conventional seaming methods were investigated. Sewn fabrics obtained with different seaming parameters were exposed to washing process and the waterproofing properties of these fabrics were tested considering before and after washing processes. The results evaluated in terms of seam type, fabric type, ultrasonic seaming velocity and washing process were statistically analyzed. According to the test results, waterproofing properties of ultrasonically sewn fabrics are higher than that of conventionally sewn fabrics. The difference between waterproofing values of ultrasonically and conventionally sewn fabrics are found to be statistically significant. It is determined that waterproofing property of the fabrics are in relation with the other parameters.

Keywords: Ultrasonic seam, water permeability, coated fabric

I.INTRODUCTION
Apparel industry has a great importance on obtaining different products used in textile sector. Various seaming methods are used in conversion of different fabrics into final product. However, seaming process of some types of textile products which requires functional specifications is in need of alternative seaming methods besides conventional seaming methods. One of these alternative methods is ultrasonic seaming which has taken attention from researchers in recent years.

Ultrasonic seaming method is not only an energy saving method, but also it can perform sewing process without the need for the materials such as needle and thread that have been used in the conventional seaming methods. Holes occurring because of the needle usage in conventional seaming can be determined as an undesirable result which is considered as disadvantage
in a waterproof garment. Therefore the importance of ultrasonic seaming method in which no needle and thread are needed can be comprehensively recognized. By using ultrasonic seaming method, it can be possible to obtain seams with high waterproofing properties. Also recycling of fabrics seamed with ultrasonic seaming method is easier. Ultrasonic seaming is used in a wide range of industries such as technical textiles, medical, filtration and automotive [1]. Hence, when determining intended usage areas, it should be taken into account that waterproofing properties of these ultrasonically sewn fabrics can be advantageous with satisfying strength values considering the appropriate products.

Our study aims to compare ultrasonic seaming method and conventional seaming method in terms of water permeability by using woven fabrics coated with polyurethane membrane which are used as blouson. Nine types of sewn fabrics were gained by changing the production speed of ultrasonic seam. Water permeability property of the sewn fabrics was compared in terms of seam type, fabric type, ultrasonic seaming velocity and washing process.

II.EXPERIMENTAL SET-UP AND PROCEDURE

In our study, woven fabrics coated with polyurethane membrane were used to compare water permeability property. The fabrics were sewn with ultrasonic seam and conventional seam by using different parameters. The properties of fabrics and the seam parameters are characterized in Table 1.

Fabric samples were prepared according to the test standard along the warp directions. Ultrasonic seam process was applied by using Pfaff 8310 ultrasonic sewing machine. Amplitude of the machine was 100% during the sewing process. Two different speeds were performed as 25 dm/min (v1) and 45 dm/min (v2). A roller was used that has 8 mm width (Figure 1). Conventional seam process was performed to woven fabrics by using Brother S-7200C-403 electronic lock stitch sewing machine. Stitch density was 2.6 stitches/cm.

Fabric code	Weaving structure	Weight in grams (g/m²)	Thickness (mm)	Raw material	Sewn fabric code	Seam type	Velocity code
F₁	Plain	105	0.366	Polyester	F₁v₁	Ultrasonic seam	v₁
F₁	Plain	105	0.366	Polyester	F₁v₂	Ultrasonic seam	v₂
F₂	Plain	170	0.432	Polyester	F₂v₁	Ultrasonic seam	v₁
F₂	Plain	170	0.432	Polyester	F₂v₂	Ultrasonic seam	v₂
F₃	Twill	170	0.540	Polyester	F₃v₁	Ultrasonic seam	v₁
F₃	Twill	170	0.540	Polyester	F₃v₂	Ultrasonic seam	v₂
F₁	Plain	105	0.366	Polyester	F₁L	Conventional seam	Lock stitch
F₂	Plain	170	0.432	Polyester	F₂L	Conventional seam	Lock stitch
F₃	Twill	170	0.540	Polyester	F₃L	Conventional seam	Lock stitch
All of the sewn fabrics were washed at 30°C with synthetic washing programme without prewashing according to TS EN ISO 6330:2012 test standard. 4 g/l ECE non-phosphate reference detergent without optical brightening agent was used for washing processes. Washing process was repeated for five times.

III. ANALYSIS

Waterproofing property can be defined as the ability of the fabric to protect from water and rain (Bulut and Sülär, 2008). This property can be tested either by laboratory tests or by wear trials [4]. In this study, waterproofing property of the sewn fabrics were evaluated through laboratory test analyses. Five samples were prepared from each sewn fabric. The samples were conditioned for 24 hours in standard atmospheric conditions (temperature 20±2 oC and relative humidity 65±2%) before testing. The water permeability tests were performed to fabrics before and after washing processes with Prowhite Hydrostatic Head Tester according to TS 257 EN 20811:1996. As the waterproofing of the fabric increases, the hydrostatic pressure also increases in the water permeability test and thus higher waterproofing values are obtained. Test results were evaluated considering fabric type, seam type, ultrasonic seaming velocity and washing process. To evaluate the importance of test results, SPSS 13.0 programme was used with the analysis of variance (ANOVA). In this way the effects of fabric type, seam type, ultrasonic seaming velocity and washing process on waterproofing property were analyzed.

IV. RESULTS AND DISCUSSIONS

Water permeability test results of the ultrasonically and conventionally sewn fabrics before and after washing processes were given in Table 2 and Table 3, respectively.

Fabric code	Before washing	After washing
F1	59	24
F2	131	17
F3	96	23

Fabric code	Conventional seam
F1	13
F2	15
F3	15

When Table 2 and Table 3 are examined; test results demonstrated that waterproofing values of the fabrics sewn with ultrasonic seam are higher than that of conventional seam. In Figure 2, water permeability test results of ultrasonically and conventionally sewn fabrics are presented together before and after washing processes. In ultrasonic seam, no holes are occurred during the seaming process and this case declares that waterproofing property of the fabrics sewn using this method is higher than that of conventionally sewn ones. In ultrasonic seam process, these values decreased with the increase of seaming velocity. It is expected because at lower velocities, fabric layers weld much better due to much more ultrasonic energy exposure and by this way waterproofing property of the fabric improves. In addition, waterproofing values decreased after washing processes for both ultrasonic and conventional seams. This can be result from the damage that the washing process causes in ultrasonic seam. In conventional seam, coating of the fabric around the stitch areas might be damaged during washing processes. Therefore waterproofing values may decrease after washing processes for both methods.
It is clear from the results that the lowest waterproofing values were observed in the fabric with the lowest weight in grams before washing process. This can be related to the lower weight in grams and lower thickness values of the fabric. On the other hand, waterproofing values are higher in plain structure than in twill structure at equivalent weight in grams before washing process in ultrasonic seam. The difference between plain and twill structure considering the values of ultrasonically sewn samples before washing process is found statistically significant (Sig.<0.05). This result in a close relation with the number of intersection points for warp and weft yarns in plain woven fabrics which are higher than that of in twill structure. But no generalization can be made for the results after washing process in terms of fabric type. According to statistical analyzing of fabric differences considering the all values for both ultrasonic and conventional seam types before and after washing processes, the differences of waterproofing values between fabrics are statistically insignificant.

In ultrasonically seamed samples, waterproofing values decreased with the increase of seaming velocity. When the values are statistically investigated, difference between them can be stated as insignificant.

Besides, among all of the fabrics the lowest waterproofing value before and after washing processes is obtained from the lightest fabric coded F1. For ultrasonic seaming method, higher waterproofing values in plain woven fabric than that of twill structure are observed at the equivalent weight in grams before washing (F2>F3) and this result is found statistically significant (Sig.<0.05). But the difference between the fabrics considering the all values for both ultrasonic and conventional seam types before and after washing processes are found statistically insignificant.

In addition, after washing process waterproofing values decreased for all types of fabrics sewn by both of the methods. Moreover, the difference between waterproofing values before and after washing processes has statistical significance.

Ultrasonic seaming takes place in various sectors as an advantageous seaming method in terms of both ease of use, fast seaming process, not needing production materials such as needle or thread and waterproofing property. From an aspect of suitable end uses for ultrasonic seaming method, it is thought that the ultrasonic seaming method may find more uses where waterproofing property is needed either by the enhancement of physical properties of seams by changing parameters or where the high physical performances are not expected from the product.

Table 4. The analysis of variance table for water permeability test results of the sewn fabrics.

Factor	F	Significance
Washing process	50.275	**.000*
Seam type	27.578	**.000*
Fabric type	2.526	.086
Seaming velocity	.990	.324

*: Statistically significant for α = 0.05

The effects of washing process, seam type are found statistically significant on water permeability as seen in Table 4. On the other hand, the effects of fabric type and seaming velocity are found statistically insignificant on water permeability (Table 4).

V. CONCLUSION

In this study, ultrasonic and conventional seaming were performed to polyester woven fabrics coated with polyurethane membrane which are used as blouson. The effect of ultrasonic seaming parameters and fabric structure on water permeability were investigated before and after washing processes. The following states can be concluded throughout this study:

Our study demonstrated that waterproofing values of the ultrasonic seam are higher than the conventional seam before and after washing processes. The difference between waterproofing performances of ultrasonic seaming method and conventional seaming method are found to be statistically significant.

Acknowledgments

This study has been supported by Uşak University Scientific Research Project under grant [2015/MF005]. I would like to thank to Prof. Dr. M. Çetin Erdoğan and Dr. Serkan Boz at the Textile Engineering Department in Ege University for using ultrasonic sewing machine.

References

[1] Boz S., Erdoğan M. Ç. (2011). Ultrasonic energy usage in apparel industry. Tekstil ve Konfeksiyon, 21, 91-96.
[2] Boles, K. (2012). Ultrasonic Examination of Alternative Fabric Joining Techniques Compared to Traditional Sewing. McNair Scholars Research Journal, 5(1), Article 3.
[3] Appleby, C. K. (2009). Development of Fabric Seaming For Clothing Using Ultrasonic Sealing Technique. Senior Honors Thesis, Eastern Michigan University, Michigan.
[4] Bulut, Y., Sülar, V. (2008). Kaplama veya Laminasyon Teknikleri ile Üretilen Kumaşların Genel Özellikleri ve Performans Testleri. Tekstil ve Mühendis, 15(70-71), 5-16.

[5] Eryürük, S. H., Karagüzel Kayaoglu, B., Kalaoglu, F. (2017). A study on ultrasonic welding of nonwovens used for surgical gowns. International Journal of Clothing Science and Technology, 29(4), 539-552.

[6] Ghosh, S., Reddy, R. K. (2009). Ultrasonic Sealing of Polyester and Spectra Fabrics Using Thermo Plastic Properties. Journal of Applied Polymer Science, 113, 1082-1089.

[7] Jevšnik, S., Eryürük, S. H., Kalaoğlu, F., Karagüzel Kayaoglu, B., Komarkova, P., Golombikova, V., Stjepanović, Z. (2017). Seam properties of ultrasonic welded multilayered textile materials. Journal of Industrial Textiles, 46(5), 1193-1211.

[8] Porav V. (2013). Unconventional asassmbly. Annals of the University of Oradea, Fascicle of Textiles, 14, 85-88.

[9] Shi, H., Wang, J., Chen, X., Luo, S., Zhang, L. (2016). Research on the seam performance of waterproof clothing based on continuous ultrasonic welding technology. International Journal of Clothing Science and Technology, 28(2), 171-190.

[10] TS EN ISO 6330:2012. Textiles – Domestic washing and drying procedures for textile testing.

[11] TS 257 EN 20811:1996. Textiles Fabrics-Determination of Resistance to Water Penetration-Hydrostatic Pressure Test.