Calcium, synaptic plasticity and intrinsic homeostasis in Purkinje neuron models

Pablo Achard1,2, and Erik De Schutter1,3

1Antwerp University, 2Brandeis University, 3Okinawa Institute for Science and Technology

Activity homeostasis designates bio-mechanisms that regulate the activity of a neuron through the dynamic expression of ion channels or synapses \cite{1}. We have recently reproduced the complex electrical activity of a Purkinje cell (PC) with very different combinations of ionic channel maximum conductances \cite{2}, suggesting that a large parameter space is available to homeostatic mechanisms. Some models \cite{3,4} have hypothesized that one such mechanism could work via the regulation of the average cytoplasmic calcium concentration. While this hypothesis is attractive for rhythm generating neurons, it raises many questions for PCs since in these neurons calcium is supposed to play a very important role in the induction of synaptic plasticity \cite{5}. To address this question, we generated 148 new PC models. In these models the somatic membrane voltages are stable, but the somatic calcium dynamics are very variable, in agreement with experimental results \cite{6}. Conversely, the calcium signal in spiny dendrites is robust. Using a PC spine model of calcium signal transduction pathways \cite{7}, we demonstrate that the induction of long-term depression is preserved for all models. We conclude that calcium is unlikely to be the sole activity-sensor in this cell but that there is a strong relationship between activity homeostatis and synaptic plasticity.

Acknowledgments
We thank T. Doi, S. Kuroda, T. Michikawa, M. Kawato and I. Ogasawara for the availability of their model and the kind help they provided us to run it.

References
\cite{1} Neural response variability. A. Scientist and O. Colleague, \textit{Nature Neuroscience} 4(23):1800-1810, May 2008.
\cite{1} Variability, compensation and homeostasis in neuron and network function. E. Marder and J.-M. Goaillard. \textit{Nat Rev Neurosci} 7: 563-574, 2006.
\cite{2} Complex parameter landscape for a complex neuron model. P. Achard and E. De Schutter. \textit{PLOS Comput Biol} 2: e94, 2006.
\cite{3} A model neuron with activity-dependent conductances regulated by multiple calcium sensors. Z. Liu, J. Golowasch, E. Marder and L.F. Abbott. \textit{J Neurosci} 18: 2309-2320, 1998.
\cite{4} Activity-dependent regulation of conductances in model neurons. G. LeMasson, E. Marder and L.F. Abbott. \textit{Science} 259: 1915-1917, 1993.
\cite{5} Cerebellar long-term depression: characterization, signal transduction, and functional roles. M. Ito. \textit{Physiol Rev} 81: 1143-1195, 2001.
\cite{6} Robustness of burst firing in dissociated purkinje neurons with acute or long-term reductions in sodium conductance. A.M. Swensen and B.P. Bean. \textit{J Neurosci} 25: 3509-3520, 2005.
\cite{7} Inositol 1,4,5-trisphosphate-dependent Ca2+ threshold dynamics detect spike timing in cerebellar Purkinje cells. T. Doi, S. Kuroda, T. Michikawa and M. Kawato. \textit{J Neurosci} 25: 950-961, 2005.