Fibronectin Mechanobiology Regulates Tumorigenesis

KARIN WANG,1,2 BO RI SEO,2 CLAUDIA FISCHBACH,2,3 and DELPHINE GOURDON1,2

1Department of Materials Science and Engineering, Cornell University, 327 Bard Hall, Ithaca, NY 14853, USA; 2Department of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA; and 3Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, NY 14853, USA

(Received 6 July 2015; accepted 8 August 2015; published online 15 August 2015)

Associate Editor Michael R. King oversaw the review of this article.

Abstract—Fibronectin (Fn) is an essential extracellular matrix (ECM) glycoprotein involved in both physiological and pathological processes. The structure–function relationship of Fn has been and is still being studied, as changes in its molecular structure are integral in regulating (or dysregulating) its biological activities via its cell, matrix component, and growth factor binding sites. Fn comprises three types of repeating modules; among them, FnIII modules are mechanically unstable domains that may be extended/unfolded upon cell traction and either uncover cryptic binding sites or disrupt otherwise exposed binding sites. Cells assemble Fn into a fibrillar network; its conformational flexibility implicates Fn as a critical mechanoregulator of the ECM. Fn has been shown to contribute to altered stroma remodeling during tumorigenesis. This review will discuss (i) the significance of the structure–function relationship of Fn at both the molecular and the matrix scales, (ii) the role of Fn mechanobiology in the regulation of tumorigenesis, and (iii) Fn-related advances in cancer therapy development.

Keywords—Fibronectin conformational flexibility, Fibronectin mechanics, Tumor stroma, Tumor progression.

Fn AND ITS SIGNIFICANCE IN CANCER

Fibronectin (Fn) is one of the most abundant extracellular matrix proteins (ECM) along with collagen. Fn was first discovered as a high molecular weight fibroblast cell surface protein in the early 1970s, and then as an extracellular fibrillar network surrounding fibroblasts through immunofluorescence and scanning electron microscopy. Early isolation of Fn revealed a dimeric glycoprotein with two subunits measuring ~220 kDa held together by disulfide bonds. Most Fn is synthesized by hepatocytes to circulate in the bloodstream as soluble plasma Fn. Various cells also secrete Fn, named cellular Fn, to be directly assembled into an insoluble fibrillar network. Plasma and cellular Fn mediate different biological behaviors; plasma Fn is essential in clots during early wound healing, whereas cellular Fn mediates late wound healing, neovascularization, and angiogenesis (Fig. 1a). Fn is also implicated in other physiological (e.g., embryogenesis) and pathological (e.g., fibrosis, cancer) processes.

Originally, Fn was discovered because fibroblast cells lack a cell surface protein after viral transformation. However, the loss of Fn is not a good marker of malignancy, as some anchorage-independent tumorigenic cell lines are still able to assemble a fibrillar Fn network. Further studies assessing the role of Fn in malignancy reveal high concentrations of plasma Fn after mice were inoculated with Ehrlich tumor cells, but plasma Fn fluctuates with clinical events such as chemotherapy. Other reports addressed the controversial deposition of Fn in tumors and found that it is absent in tumors but abundant in the surrounding stroma. As such, understanding Fn dynamics, i.e., Fn deposition and remodeling during tumorigenesis, is essential to expanding our knowledge of cancer.

The tumor stroma is a complex microenvironment in which components are recruited or remodeled to facilitate invasive growth and metastasis. Therefore, specific focus is placed on understanding how the surrounding ECM is altered to mediate tumor progression. Cancer-associated fibroblasts (CAFs) are major sources of increased ECM deposition and altered remodeling to create tracks for cancer cell invasion. This review will discuss (i) the importance of Fn structure, matrix assembly, and mechanics in invasive tumor growth, and (ii) their relevance to improve therapeutic strategies and diagnostic tools.
Fn MECHANOREGULATION OF VARIOUS CELLULAR ACTIVITIES

Fn is a mechanoregulator of the ECM due to its conformational flexibility in both plasma and fibrillar forms. Fn consists of 3 repeating modules: FnI, FnII, and FnIII. FnI and FnII are mechanically stable modules as they are stabilized by disulfide bonds, but FnIII lacks these disulfide bonds and is sensitive to external mechanical forces. FnIII modules are made up of 7 β strands within 2 anti-parallel β sheets surrounding a hydrophobic core, with FnIII10 holding a RGD loop (cell-binding site) between the F (6th) and G (7th) β strands. The RGD sequence is a ubiquitous cell binding region as it has also been found in other proteins such as fibrinogen, vitronectin, laminin, and thrombospondin. Fn contains two sites that collaboratively confer adhesion, the RGD site on FnIII10 and the PHSRN synergy site located on the adjacent FnIII6. Simultaneous engagement to both RGD and PHSRN sites is essential for integrins α5β1 resulting in a binding that is highly sensitive to Fn molecular conformation. In contrast, the binding of most other integrins, including αvβ3 integrins, requires engagement only to the RGD loop and is not (or less) sensitive to Fn conformation. Briefly, the RGD loop is separated from the PHSRN site by 30–40 Å and a small rotation between FnIII8 and FnIII10 orients the two cell binding sites on the same side of the Fn molecule. Therefore, any change either in the orientation (i.e., in the relative angles between the two adjacent modules) or in the spacing between adjacent modules (e.g., as it occurs during FnIII10 unfolding and shown in Fig. 1b), alters the type of transmembrane receptors used by cells to bind to the Fn matrix, and the subsequent downstream signaling. Another important region on Fn essential to mechanoregulation is the FnIII12–14 sequence, which binds various growth factors for sustained, localized signaling. Immobilization of growth factors modulates different downstream signaling. Specifically, Fn-bound vascular endothelial growth factor (VEGF) mediates structured vascularization whereas soluble VEGF directs large, leaky vasculature. Thus, Fn conformational flexibility is able to regulate cell activity via integrin specificity and growth factor binding.

Various cells are able to incorporate plasma Fn into the predominantly cellular Fn based-ECM of any tissue. Additionally, fibroblasts are able to deposit a Fn matrix by secreting and assembling Fn into fibers at the cell periphery. Cells’ integrins α5β1, α5β3, and αvβ3 binding to Fn were shown to participate in Fn matrix assembly. Assembly requires mechanical stimulation provided by cellular traction forces to induce a conformational change in Fn and expose cryptic binding sites that mediate Fn polymerization. Recent advances in super-resolution microscopy such as direct stochastic optical reconstruction microscopy provide insight to the ordered structure of Fn within bundled fibers, demonstrating that Fn molecules are aligned within fibers with alternating N-terminal and C-terminal overlapping regions. Fn maturation follows deposition and involves the polymerization of nascent deoxycholate-soluble Fn (12–20 nm in diameter) into mature deoxycholate-insoluble Fn thick fibrils networks (up to 200 nm in diameter). Although multiple Fn conformations coexist in the matrix (and in individual fibrils), the average Fn conformation has been reported to evolve during ECM maturation from compact/extended Fn in early fibrils to extended/unfolded Fn in mature fibrils and matrices. The polymerization of Fn in extended conformations stimulates cell growth, a process that may be mediated by interactions with heparin sulfate proteoglycans (another matrix component to which Fn binds). Fn networks may also be initiated via self-assembly. Fn contains conformational-dependent binding sites for itself located on FnI1–5, FnIII1–2, FnIII4–5, and FnIII12–14. These Fn–Fn interactions may be mediated by interactions with FnIII10. Furthermore, fragments of these binding sites have been shown to inhibit Fn–Fn interactions and Fn fibrillogenesis. Thus, changes to initial Fn conformations are also crucial in the regulation of Fn binding to other ECM components (including itself), and modulate further ECM deposition and remodeling.

The assembly of an initial Fn network is often a prerequisite for the downstream deposition of collagen. Reciprocally, the co-deposition of collagen has several effects on the initial Fn matrix: it assists further Fn remodeling by matrix metalloproteinases such as MT1-MMP, it stabilizes the ECM, it promotes cell proliferation and maintenance of microtissue morphology (ECM reorganization), and it facilitates cell migration. The reported co-localization of both Fn and procollagen within the cell further demonstrates a likely synergistic relationship between these two ECM proteins. Fn contains a large (multimodular) collagen binding site located on modules FnIII1–2FnI1–9. Fn regions within this site collectively bind to the collagen z(I) chain between residues 757 and 791. Collagen binding stabilizes the 90° kink between FnI5FnI2FnI7 and FnI5, which is believed to assist Fn in maintaining a compact/relaxed conformation in the stroma, further regulating normal tissue homeostasis.

Fn-coated beads restrained by optical traps reveal cells’ ability to sense their environment and to respond...
to increased external resistance due to the strengthening of cytoskeletal tension, as later confirmed by traction force microscopy. Additionally, lysophosphatidic acid (from platelets) mediates Rho-activated stress fiber formation and enhances Fn matrix assembly, revealing the importance of cellular tension in Fn fibrillogenesis. Briefly, $\alpha_5\beta_1$ integrins translocating along actin cytoskeletal bundles elongate Fn molecules with varying amounts of force, which initiates Fn polymerization and induces cytoskeletal tension. L8, an antibody known to bind Fn within FnIα and FnIIIα, and to inhibit Fn fiber assembly when added to fibroblast culture medium, increases its binding to Fn when Fn monolayers deposited on rubber substrates (cell-free system) were mechanically strained to expose a cryptic binding site. These studies suggest that isolated Fn must unfold to bind to itself and begin the fibrillogenesis process. Detailed analysis of Fn matrix assembly and maturation indicates that Fn fibers are highly elastic and heterogeneous as they comprise multiple molecular conformations, from compact/relaxed to extended/unfolded. The elasticity of Fn fibers can be attributed to the conformational flexibility of FnIII modules (lacking disulfide bonds) that are allowed to extend/unfold upon cellular traction, as suggested by...
steered molecular dynamics simulations86 and fluorescence resonance energy transfer.139 Importantly, an \textit{in vivo} study also portrays the critical role of Fn conformational changes in modulating tissue function (e.g., the exposure of FnIII\textsubscript{I} mediated by skeletal muscle contraction leads to vasodilation).60 Collectively, Fn’s cell-induced changes in conformation implicate this glycoprotein as a critical mechanotransducer in translating mechanical signals from the external environment into biochemical signals mediated by integrin clustering and cytoskeletal tension.26,150

\textbf{ROLES OF CONFORMATION AND MECHANICS OF FN IN TUMORIGENESIS}

In fetal tissues and cancers, cellular Fn is larger100 and alternatively spliced132 to contain the following sequences: IIICS, ED-A, ED-B, which confer additional conformational changes to Fn.10,16,39,149 Fn ED-A is found at sites of tissue remodeling and during dysregulated signaling, it promotes a fibrotic phenotype136 for tumorigenesis77 and for neovascularization of metastases.132 This splice variant enhances VEGF-C secretion \textit{via} the PI3 K/Akt signaling pathway.163 Fn ED-A secreted by endothelial cells (isolated from tumors) also induces epithelial-mesenchymal transition of cancer cells by activating the FAK-Src signaling pathway \textit{via} $\alpha_5\beta_1$.116,137 Instead, Fn ED-B is found in the tumor stroma72 and in the tumor vasculature.19 This splice variant of Fn has been found to enhance cell adhesion and formation of focal adhesions for cell spreading.36 ECM stiffening, a hallmark of cancer, has been found to enhance ED-B splicing of Fn to propagate a tumorigenic phenotype.133 Thus, changes in conformation, mechanics, and alternative splicing of Fn synergistically regulate tumorigenesis.

Fn is up-regulated in the tumor stroma.30 Its enhanced synthesis110 is attributed to CAFs, fibroblasts with altered phenotype and function.74 CAFs are activated by TGF-β83 or transformed by Fn-tissue transglutaminase complexes contained in microvesicles released from cancer cells.5 Breast tumor CAFs deposit an initially dense, unfolded20 and stiff155 Fn matrix that facilitates an ‘integrin switch’, i.e., a change from primarily $\alpha_\text{v}\beta_1$ binding (that depends on Fn conformation) to that of mostly $\alpha_\text{v}\beta_3$ binding (that is independent of Fn conformation),34,151 resulting in enhanced pro-angiogenic (VEGF) secretion.152,153 Changes to the material properties of Fn can in turn mediate a cascade of signaling events for tumorigenesis (e.g., ECM unfolding, stiffening, tumor angiogenesis, and tumor invasion) (Fig. 1b).

Under conditions of normal tissue homeostasis, Fn mediates strong cellular adhesion. Upon matrix maturation during healthy ECM remodeling (e.g., wound healing, vascularization, embryogenesis) (Fig. 1a), Fn gradually unfolds while cells become more contractile and develop strong fibrillar adhesions containing β_1 integrins.4 $\alpha_5\beta_1$ integrins binding to Fn stimulates myosin II44 and RhoA-GTPase to form robust peripheral fibrillar adhesions.28 These strong adhesive forces between Fn and $\alpha_5\beta_1$ integrins (\textsim 93 pN)94 reduce migration of invasive cells.69 Fn conformational changes are often responsible for an ‘integrin switch’ as Fn conformation alters the type of integrins cells may utilize to bind to the surrounding ECM. As detailed in Section II, the most abundant Fn integrins, $\alpha_5\beta_1$, require both the synergy and the RGD sites located on FnIII\textsubscript{I} and FnIII\textsubscript{II} respectively, to form complexes with Fn, which implies that strong $\alpha_5\beta_1$-Fn binding is conformation-dependent and occurs only when Fn is in a nearly compact conformation. In contrast, $\alpha_5\beta_3$ integrins require only the RGD site, i.e., weaker $\alpha_5\beta_3$-Fn binding is conformation-independent and occurs even when Fn is unfolded during ECM remodeling.28 Weak Fn-$\alpha_5\beta_3$ adhesions131 by cancer cells then lead to greater cytoskeletal reorganization for enhanced migration capacity9 and resistance against anoikis (Fig. 1b).170 Once Fn conformation is altered during tumorigenesis, cell–matrix interactions are dysregulated and changes to downstream signaling take place.

As Fn contains binding sites for cells, growth factors, and matrix components, variations in Fn conformation during tumorigenesis alter multiple microenvironmental interactions. The up-regulation of Fn combined with the preferred utilization of $\alpha_5\beta_3$ in the tumor stroma mediates the release and activation of matrix metalloproteinase-2 (MMP-2), which favors tumor invasion and metastasis.71,128 The resulting remodeled Fn, likely degraded by MMP-2, may in turn bind with altered affinity37 to collagen ECM, which may lead to the formation of dysregulated, crosslinked, and stiff Col I93 tracks for enhanced invasion by cancer cells.27,122 Although the deposition of collagen usually requires the presence of provisional Fn, enhanced secretion of TGF-β does lead to collagen fibrillogenesis and fibrotic ECM remodeling even in the absence of Fn.107

Besides conformation, stiffness of the ECM also plays a role in tumorigenesis.55,93,120 ECM stiffening not only promotes Fn ED-B splicing and Fn unfolding for a pro-angiogenic integrin switch, but also contributes to TGF-β activity,28 a phenomenon that can influence myofibroblast differentiation7,160 or epithelial to mesenchymal transition (EMT) for tumor progression.91 Invasive cells preferentially migrate towards
stiffer ECM (durotaxis). Durotaxis is mediated by both the recruitment of α5β3 integrins that re-organize and reinforce the cytoskeleton at the leading edge of cells and the extensions of filopodia. This rigidity response is attributed to activation of p130Cas via Fyn recruitment by receptor-like protein tyrosine phosphatase alpha (RPTPα) at the leading edge of these cells. As altered Fn is stiffer, it may direct cancer cell invasion into the surrounding stroma for eventual metastasis.

Finally, Fn binding to cell surfaces via integrins also mediates clustering of growth factor receptors. Enhanced levels of VEGF are secreted by breast cancer cells (and/or fibroblasts subjected to paracrine signaling by breast cancer cells) for tumor angiogenesis. An isoform of VEGF, VEGF165, increases breast cancer and endothelial cell migration in presence of Fn (and heparin). Specifically, Fn forms a complex with VEGF-receptor-2 and α5β1 to bind VEGF on the heparin II binding domain located on FnIII13-14. Furthermore, ECM components such as heparin or heparan sulfate facilitate an extended conformation of Fn to enhance VEGF binding in a pH-dependent manner. As acidic environments promote tumorigenesis, low pH in the tumor stroma may contribute to these changes in Fn conformation and subsequent tumor angiogenesis. Overall, the Fn matrix is not only a mechanotransducing network but also a chemical reservoir of signaling molecules for cells, as Fn-bound VEGF facilitates organized vascular sprouting and branching via enhanced activation of MAPK through β1 mediated clustering of VEGFR2.
tributions during tumorigenesis must be addressed. Neither the mechanisms responsible for Fn assembly into fibers nor the detailed molecular structure of fibers are well understood, which would certainly help in defining the full range of parameters that regulate the Fn structure–function relationship. Although it is now well accepted that Fn assembly is dysregulated during tumorigenesis and leads to altered materials properties of the entire Fn network, it is likely that other microenvironmental disorders, such as altered MMP activity, additionally drive changes in Fn remodeling to predispose the altered ECM for tumor progression. Hence, understanding the means by which early Fn alterations occur during tumorigenesis may pave the way for the development of both diagnostic tools to halt cancer growth at early stages and therapeutics to prevent invasive cancer growth.

Tumor-associated Fn mechanobiology research is critical to deconvolute the diverse materials properties of the dysregulated tumor Fn, i.e., to distinguish among physical (matrix topology, molecular conformation), biochemical (binding affinity, sequestration), and biomechanical (elasticity, viscoelasticity) alterations during disease progression. For example, aging-and/or disease-induced Fn conformational changes occurring at the molecular scale (e.g., unfolding) dictate the binding of specific types of growth factors, integrins, and matrix components, which has deep implications in driving tumorigenesis. However, these molecular conformational changes are usually accompanied by concurrent topological and mechanical changes at a larger scale, which makes it difficult to unravel specific mechanisms and their chronology. As such, the recent advances made towards understanding the structure–function relationship of Fn in tumorigenesis highlight the importance of utilizing interdisciplinary approaches in cancer research.

ACKNOWLEDGMENTS

Funding by the NSF under award DMR-1352299 (to DG), by the NIH/NCI under award R01 CA185293 (to CF and DG), and by the Cornell Center on the Microenvironment & Metastasis under award NCI U54 CA143876 (to CF).

CONFLICT OF INTEREST

The authors Karin Wang, Bo Ri Seo, Claudia Fischbach, and Delphine Gourdon declare no conflict of interest.

ETHICAL STANDARDS

No human studies were carried out by the authors for this review article. No animal studies were carried out by the authors for this review article.

REFERENCES

1. Alexander, S. S., G. Colonna, and H. Edelhoch. The structure and stability of human plasma cold-insoluble globulin. J. Biol. Chem. 254:1501–1505, 1979.
2. Alexander, S. S., G. Colonna, K. M. Yamada, I. Pastan, and H. Edelhoch. Molecular properties of a major cell surface protein from chick embryo fibroblasts. J. Biol. Chem. 253:5820–5824, 1978.
3. Anderson, S. M., T. T. Chen, M. L. Iruela-Arispe, and T. Segura. The phosphorylation of vascular endothelial growth factor receptor-2 (VEGFR-2) by engineered surfaces with electrostatically or covalently immobilized VEGF. Biomaterials 30:4618–4628, 2009.
4. Antia, M., G. Baneyx, K. E. Kubow, and V. Vogel. Fibronectin in aging extracellular matrix fibrils is progressively unfolded by cells and elicits an enhanced rigidity response. Faraday Discuss. 139:229, 2008.
5. Antonyak, M. A., B. Li, L. K. Boroughs, et al. Cancer cell-derived microvesicles induce transformation by transferring tissue transglutaminase and fibronectin to recipient cells. PNAS 108(12):4852–4857, 2011.
6. Aota, S., T. Nagai, and K. M. Yamada. Characterization of regions of fibronectin besides the arginine-glycine-aspartic acid sequence required for adhesive function of the cell-binding domain using site-directed mutagenesis. J. Biol. Chem. 266:15938–15943, 1991.
7. Arora, P. D., N. Narani, and C. A. McCulloch. The compliance of collagen gels regulates transforming growth factor-beta induction of alpha-smooth muscle actin in fibroblasts. AIP 154:871–882, 1999.
8. Asch, B. B., B. R. Kamat, and N. A. Burstein. Interactions of normal, dysplastic, and malignant mammary epithelial cells with fibronectin in vivo and in vitro. Cancer Res. 41:2115–2125, 1981.
9. Balcioğlu, H. E., H. van Hoorn, D. M. Donato, T. Schmidt, and E. H. J. Danen. The integrin expression profile modulates orientation and dynamics of force transmission at cell-matrix adhesions. J. Cell Biol. 128:1316–1326, 2005.
10. Balza, E., et al. A novel human fibronectin cryptic sequence unmasked by the insertion of the angiogenesis-associated extra type III domain B. Int. J. Cancer 125:751–758, 2009.
Fibronectin Mechanobiology Regulates Tumorigenesis

11Banexy, G., L. Baugh, and V. Vogel. Coexisting conformations of fibronectin in cell culture imaged using fluorescence resonance energy transfer. *Proc. Natl. Acad. Sci. U.S.A.* 98:14464–14468, 2001.

12Banexy, G., L. Baugh, and V. Vogel. Fibronectin extension and unfolding within cell matrix fibrils controlled by cytoskeletal tension. *PNAS* 99:5139–5143, 2002.

13Bordeleau, F., et al. Tissue stiffness regulates serine/arginine-rich protein-mediated splicing of the extra domain B fibronectin isoform in tumors. *PNAS* 112:8314–8319, 2015.

14Bradshaw, M. J., and M. L. Smith. Multiscale relationships between fibronectin structure and functional properties. *Acta Biomater.* 10:1524–1531, 2014.

15Cao, L., M. K. Zeller, V. F. Fiore, P. Strane, H. Bermudez, and T. H. Barker. Phage-based molecular probes that discriminate force-induced structural states of fibronectin in vivo. *PNAS* 109:7251–7256, 2012.

16Carraher, C. L., and J. E. Schwarzbauer. Regulation of the synergy site for cell adhesion to fibronectin depends on the ED-B oncofetal domain: a marker of angiogenesis. *Int. J.* 2013.

17Carnemolla, B., A. Leprini, G. Allemanni, M. Saginati, and L. Zardi. The inclusion of the type III repeat ED-B in the fibronectin molecule generates conformational modifications that unmask a cryptic sequence. *J. Biol. Chem.* 267:24689–24692, 1992.

18Carnemolla, B., et al. Phage antibodies with pan-species recognition of the oncofetal angiogenesis marker fibronectin ED-B domain. *Int. J. Cancer* 68:397–405, 1996.

19Chernousov, M. A., A. I. Faerman, M. G. Frid, O. Y. U. Dzamba, B. J., H. Wu, R. Jaenisch, and D. M. Peters. Fibronectin binding site in type I collagen regulates fibronectin fibril formation. *J. Cell Biol.* 121:1165–1172, 1993.

20Choate, J. J., and D. F. Mosher. Fibronectin concentration and unfolding within cell matrix fibrils controlled by cytoskeletal tension. *PNAS* 99:5139–5143, 2002.

21Choquet, D., et al. Alignment collagen is a prognostic signature for survival in human breast carcinoma. *Am. J. Pathol.* 178:1221–1232, 2011.

22Conklin, M. W., et al. Alternative splicing of integrin-cytoskeletal linkages. *Cell* 88:39–48, 1997.

23Cluzel, C., F. Saltel, J. Lussi, F. Paulhe, B. A. Imhof, and B. Wehrle-Haller. The mechanisms and dynamics of (alpha)5(beta)3 integrin clustering in living cells. *J. Cell Biol.* 171:383–392, 2005.

24Danen, E. H., S. Aota, A. A. van Kraats, K. M. Yamada, D. J. Ruiter, and G. N. van Muijen. Requirement for the synergy site for cell adhesion to fibronectin depends on the activation state of integrin alpha 5 beta 1. *J. Biol. Chem.* 270:21612–21618, 1995.

25De, S., O. Razorenova, N. P. McCabe, T. O'Toole, J. Qin, and T. V. Byzova. VEGF-integrin interplay controls tumor growth and vascularization. *Proc. Natl. Acad. Sci. U.S.A.* 102:7589–7594, 2005.

26Deno, D. C., T. M. Saba, and E. P. Lewis. Kinetics of endogenously labeled plasma fibronectin: incorporation into tissues. *Am. J. Physiol.* 245:R564–R575, 1983.

27Dzamba, B. J., H. Wu, R. Jaenisch, and D. M. Peters. Fibronectin binding site in type I collagen regulates fibronectin fibril formation. *J. Cell Biol.* 121:1165–1172, 1993.

28Elosegui-Artola, A., et al. Rigidity sensing and adaptation through regulation of integrin types. *Nat. Mater.* 13:631–637, 2014.

29Engel, J., et al. Shapes, domain organizations and flexibility of laminin and fibronectin, two multifunctional proteins of the extracellular matrix. *J. Mol. Biol.* 150:97–120, 1981.

30Erat, M. C., B. Sladek, I. D. Campbell, and I. Vakonakis. Structural analysis of collagen type I interactions with human fibronectin reveals a cooperative binding mode. *J. Biol. Chem.* 288(24):17441–17450, 2013.

31Fang, X., Y. Qiao, and M. L. Iruela-Arispe. AnchORAGE of VEGF to the extracellular matrix conveys differential signaling responses to endothelial cells. *J. Cell Biol.* 188:595–609, 2010.

32Femel, J., D. P. Felsenfeld, and M. P. Sheetz. Extracellular matrix rigidity causes strengthening of integrin-cytoskeleton linkages. *Cell* 88:39–48, 1997.

33Dzamba, B. J., H. Wu, R. Jaenisch, and D. M. Peters. Fibronectin molecule visualized in electron microscopy: a long, thin, flexible strand. *J. Cell Biol.* 91:673–678, 1981.

34Fattorusso, R., M. Pellecchia, F. Viti, P. Neri, D. Neri, and K. Wittrich. NMR structure of the human oncofetal fibronectin ED-B domain, a specific marker for angiogenesis. *Structure* 7:381–390, 1999.

35Friedl, P., and S. Alexander. Cancer invasion and the microenvironment: plasticity and reciprocity. *Cell* 147:992–1009, 2011.

36Friedland, J. C., M. H. Lee, and D. Boettiger. Mechanically activated integrin switch controls alpha5beta1 function. *Science* 323:642–644, 2009.

37Frathe, S. M., I. Schon, J. Ries, and V. Vogel. Molecular architecture of native fibronectin fibrils. *Nat. Commun.* 6:7275, 2015.

38Gaglioli, C., et al. Fibroblast-led collective invasion of carcinoma cells with differing roles for RhoGTPases in leading and following cells. *Nat. Cell Biol.* 9:1392–1400, 2007.

39Gildner, C. D., D. C. Roy, C. S. Farrar, and D. C. Hocking. Opposing effects of collagen I and vitronectin on...
fibronectin fibril structure and function. *Matrix Biol.* 14:33–45, 2014.

40 Goel, H. L., and A. M. Mercurio. VEGF targets the tumour cell. *Nat. Rev. Cancer* 13:871–882, 2013.

41 Goeres, A. L., and M. A. Nugent. pH regulates vascular endothelial growth factor binding to fibronectin: a mechanism for control of extracellular matrix storage and release. *J. Biol. Chem.* 279:2307–2315, 2004.

42 Grinnell, F. Fibronectin and wound healing. *J. Cell. Biochem.* 26:107–116, 1984.

43 Hahn, L. H., and K. M. Yamada. Identification and isolation of a collagen-binding fragment of the adhesive glycoprotein fibronectin. *Proc. Natl. Acad. Sci. U.S.A.* 76:1160–1163, 1979.

44 Halin, C., et al. Enhancement of the antitumor activity of interleukin-12 by targeted delivery to neovasculature. *Nat. Biotechnol.* 20:264–269, 2002.

45 Hanahan, D., and M. Coussens. Accessories to the crime: functions of cells recruited to the tumor microenvironment. *Cancer Cell* 21:309–322, 2012.

46 Hanahan, D., and R. A. Weinberg. The hallmarks of cancer. *Cell* 100:57–70, 2000.

47 Hanahan, D., and R. A. Weinberg. Hallmarks of cancer: the next generation. *Cell* 144:646–674, 2011.

48 Hashimoto-Uoshima, M., Y. Z. Yan, G. Schneider, and I. Aukhil. The alternatively spliced domains EIIIB and EIIIA of human fibronectin affect cell adhesion and spreading. *J. Cell Biol.* 110(Pt 18):2271–2280, 1997.

49 Hocking, D. C., R. K. Smith, and P. J. McKeown-Longo. A novel role for the integrin-binding III–I0 module in fibronectin matrix assembly. *J. Cell Biol.* 133:431–444, 1996.

50 Hocking, D. C., J. Sottile, and K. J. Langenbach. Stimulation of integrin-mediated cell contractility by fibronectin polymerization. *J. Biol. Chem.* 275:10673–10682, 2000.

51 Hocking, D. C., J. Sottile, and P. J. McKeown-Longo. Fibronectin’s III-I module contains a conformation-dependent binding site for the amino-terminal region of fibronectin. *J. Cell Biol.* 169:19183–19187, 1994.

52 Hocking, D. C., P. A. Titus, R. Sumagin, and I. H. Sarelius. Extracellular matrix fibronectin mechanically couples skeletal muscle contraction with local vasodilation. *Circ. Res.* 102:372–379, 2008.

53 Homandberg, G. A., J. Kramer-Bjerke, D. Grant, G. Christianson, and R. Eisenstein. Heparin-binding fragments of fibronectin are potent inhibitors of endothelial cell growth: structure–function correlations. *Biochim. Biophys. Acta* 874:327–332, 1986.

54 Hubbard, B., J. A. Buczek-Thomas, M. A. Nugent, and M. L. Smith. Heparin-dependent regulation of fibronectin matrix conformation. *Matrix Biol.* 34:124–131, 2013.

55 Huibers, E. J. M., et al. Vaccination against the extra domain-B of fibronectin as a novel tumor therapy. *FASEB J.* 24:4535–4544, 2010.

56 Hynes, R. O. Alteration of cell-surface proteins by viral transformation and by proteolysis. *Proc. Natl. Acad. Sci. USA* 70:3170–3174, 1973.

57 Hynes, R. O. The dynamic dialogue between cells and matrices: implications of fibronectin’s elasticity. *Proc. Natl. Acad. Sci. USA* 96(6):2588–2590, 1999.

58 Hynes, R. O., and A. Destree. Extensive disulfide bonding at the mammalian cell surface. *Proc. Natl. Acad. Sci. USA* 74:2855–2859, 1977.

59 Hynes, R. O., and K. M. Yamada. Fibronectins: multifunctional modular glycoproteins. *J. Cell Biol.* 95:369–377, 1982.

60 Ingham, K. C., S. A. Brew, and M. M. Migliorini. Further localization of the gelatin-binding determinants within fibronectin. *FASEB J.* 16:2697–2698, 1982.

61 Jia, D., I. Enters, C. Butler, and R. A. Foty. Fibronectin matrix-mediated cohesion suppresses invasion of prostate cancer cells. *BMC Cancer* 12:94, 2012.

62 Jiang, G., A. H. Huang, Y. Cai, M. Tanase, and M. P. Sheetz. Rigidity sensing at the leading edge through alphavbeta3 integrins and RPTPlpha. *Biophys. J.* 90:1804–1809, 2006.

63 Jiao, Y., et al. Matrix metalloproteinase-2 promotes zvbeta3 integrin-mediated adhesion and migration of human melanoma cells by cleaving fibronectin. *PLoS One* 7:e41591, 2012.

64 Kaczmarek, J., P. Castellani, G. Nicolo, B. Spina, G. Allemanini, and L. Zardi. Distribution of oncofetal fibronectin isoforms in normal, hyperplastic and neoplastic human breast tissues. *Int. J. Cancer* 59:11–16, 1994.

65 Kahan, P., and S. I. Shin. Cellular tumorigenicity in nude mice. Test of associations among loss of cell-surface fibronectin, anchorage independence, and tumor-forming ability. *J. Cell Biol.* 82:1–16, 1979.

66 Kalluri, R., and M. Zeisberg. Fibroblasts in cancer. *Nat. Rev. Cancer* 6:392–401, 2006.

67 Kass, L., J. T. Erler, M. Dembo, and V. M. Weaver. Mammary epithelial cell: influence of extracellular matrix composition and organization during development and tumorigenesis. *Int. J. Biochem. Cell Biol.* 39:1987–1994, 2007.

68 Katagiri, Y., S. A. Brew, and K. C. Ingham. All six modules of the gelatin-binding domain of fibronectin are required for full affinity. *J. Biol. Chem.* 278:11897–11902, 2003.

69 Kelsh, R. M., P. J. McKeown-Longo, and R. A. F. Clark. EDA fibronectin in keloids create a vicious cycle of fibrotic tumor formation. *J. Invest. Dermatol.* 135:1714–1718, 2015.

70 Kim, S., K. Bell, S. A. Mousa, and J. A. Varner. Regulation of angiogenesis *in vivo* by ligation of integrin alpha5beta1 with the central cell-binding domain of fibronectin. *AJP A* 156:1345–1362, 2000.

71 Kimizuka, F., et al. Role of type III homology repeats in cell adhesion function within the cell-binding domain of fibronectin. *J. Biol. Chem.* 266:3045–3051, 1991.

72 Klein, R. M., M. Zheng, A. Ambesi, L. Van De Water, and P. J. McKeown-Longo. Stimulation of extracellular matrix remodeling by the first type III repeat in fibronectin. *J. Cell Biol.* 116:4663–4674, 2003.

73 Kleinman, H. K., E. B. McGoodwin, G. R. Martin, R. J. Klebe, P. P. Fietzek, and D. E. Woolley. Localization of the binding site for cell attachment in the alphaI(I) chain of collagen. *J. Biol. Chem.* 253:5642–5646, 1978.

74 Klotsch, E., et al. Fibronectin forms the most extensible biological fibers displaying switchable force-exposed cryptic binding sites. *Proc. Natl. Acad. Sci. USA* 106:18267–18272, 2009.

75 Kojima, Y., et al. Autocrine TGF-beta and stromal cell-derived factor-1 (SDF-1) signaling drives the evolution of tumor-promoting mammary stromal myofibroblasts. *PNAS* 107:20009–20014, 2010.

76 Kostic, A., and M. P. Sheetz. Fibronectin rigidity response through Fyn and p130Cas recruitment to the leading edge. *Mol. Biol. Cell* 17:2684–2695, 2006.
Fibronectin Mechanobiology Regulates Tumorigenesis

85Krammer, A., D. Craig, W. E. Thomas, K. Schulten, and V. Vogel. A structural model for force regulated integrin binding to fibronectin’s RGD-synergy site. *Matrix Biol.* 21(2):139–147, 2002.

86Krammer, A., H. Lu, B. Isralevitz, K. Schulten, and V. Vogel. Forced unfolding of the fibronectin type III module reveals a tensile molecular recognition switch. *PNAS* 96:1351–1356, 1999.

87Kubow, K. E., E. Klotsch, M. L. Smith, D. Gourdon, W. C. Little, and V. Vogel. Crosslinking of cell-derived 3D scaffolds up-regulates the stretching and unfolding of new extracellular matrix assembled by reseeded cells. *Integr. Biol.* 1:635–648, 2009.

88Leahy, D. J., I. Aukhil, and H. P. Erickson. 2.0 A crystal structure of a four-domain segment of human fibronectin encompassing the RGD loop and synergy region. *Cell* 84:155–164, 1996.

89Ledger, P. W., N. Uchida, and M. L. Tanzer. Immunocytochemical localization of procollagen and fibronectin in human fibroblasts: effects of the monovalent ionophore, monensin. *J. Cell Biol.* 87:663–671, 1980.

90Lee, S., S. M. Jilani, G. V. Nikolova, D. Carpizo, and M. L. Iruela-Arispe. Processing of VEGF-A by matrix metalloproteinases regulates bioavailability and vascular patterning in tumors. *J. Cell Biol.* 169:681–691, 2005.

91Leight, J. L., M. A. Wozniak, S. Chen, M. L. Lynch, and C. S. Chen. Matrix rigidity regulates a switch between TGF-1-induced apoptosis and epithelial-mesenchymal transition. *Mol. Biol. Cell* 23:781–791, 2012.

92Lemmon, C. A., C. S. Chen, and L. H. Romer. Cell traction forces direct fibronectin matrix assembly. *Biophys. J.* 96:729–738, 2009.

93Levental, K. R., et al. Matrix crosslinking forces tumor progression by enhancing integrin signaling. *Cell* 139:891–906, 2009.

94Li, F., S. D. Redick, H. P. Erickson, and V. T. Moy. Force measurements of the a5b1 integrin-fibronectin interaction. *Biophys. J.* 84:1252–1262, 2003.

95Lo, C. M., H. B. Wang, M. Dembo, and Y. L. Wang. Cell movement is guided by the rigidity of the substrate. *Biophys. J.* 79:144–152, 2000.

96Main, A. L., T. S. Harvey, M. Baron, J. Boyd, and I. D. Campbell. The three-dimensional structure of the tenth type III module of fibronectin: an insight into RGD-mediated interactions. *Cell* 71:671–678, 1992.

97Malik, R., P. I. Lelekis, and E. Cukierman. Biomechanical and biochemical remodeling of stromal extracellular matrix in cancer. *Trends Biotechnol.* 33(4):230–236, 2015.

98Martino, M. M., and J. A. Hubbell. The 12th–14th type III repeats of fibronectin function as a highly promiscuous growth factor-binding domain. *FASEB J.* 24:4711–4721, 2010.

99Massague, J. TGFbeta in cancer. *Cell* 134:215–230, 2008.

100Matsuura, H., and S. Hakomori. The oncofetal domain of fibronectin defined by monoclonal antibody FDC-6: its presence in fibronectins from fetal and tumor tissues and its absence in those from normal adult tissues and plasma. *Proc. Natl. Acad. Sci. USA* 82:6517–6521, 1985.

101McDonald, J. A., D. G. Kelley, and T. J. Broekelmann. Role of fibronectin in collagen deposition: Fab’ to the gelatin-binding domain of fibronectin inhibits both fibronectin and collagen organization in fibroblast extracellular matrix. *J. Cell Biol.* 92:485–492, 1982.

102McKeown-Longo, P. J., and D. F. Mosher. Binding of plasma fibronectin to cell layers of human skin fibroblasts. *J. Cell Biol.* 97:466–472, 1983.

103McKeown-Longo, P. J., and D. F. Mosher. Interaction of the 70,000-mol-wt amino-terminal fragment of fibronectin with the matrix-assembly receptor of fibroblasts. *J. Cell Biol.* 100:364–374, 1985.

104Mirailem, T., R. Steinberg, D. Price, and H. Avraham. VEGF165 requires extracellular matrix components to induce mitogenic effects and migratory response in breast cancer cells. *Oncogene* 20:5511–5524, 2001.

105Mitsi, M., Z. Hong, C. E. Costello, and M. A. Nugent. Heparin-mediated conformational changes in fibronectin expose vascular endothelial growth factor binding sites. *Biochemistry* 45(34):10319–10328, 2006.

106Miyamoto, S., B. Z. Katz, R. M. Lafrenie, and K. M. Yamada. Fibronectin and integrins in cell adhesion, signaling, and morphogenesis. *Morphol. Cell. Interact.* 857:119–129, 1998.

107Moriya, K., et al. A fibronectin-independent mechanism of collagen fibrillogenesis in adult liver remodeling. *Gas- troenterology* 140:1653–1663, 2011.

108Morla, A., and E. Ruoslahti. A fibronectin self-assembly site involved in fibronectin matrix assembly: reconstruction in a synthetic peptide. *J. Cell Biol.* 118:421–429, 1992.

109Morla, A., Z. Zhang, and E. Ruoslahti. Superfibronectin is a functionally distinct form of fibronectin. *Nature* 367:193–196, 1994.

110Moro, L., M. Colombi, M. P. Molinari Tosatti, and S. Barlati. Study of fibronectin and mRNA in human laryngeal and ectocervical carcinomas by in situ hybridization and image analysis. *Int. J. Cancer* 51:692–697, 1992.

111Nagai, T., et al. Monoclonal antibody characterization of two distant sites required for function of the central cell-binding domain of fibronectin in cell adhesion, cell migration, and matrix assembly. *J. Cell Biol.* 114:1295–1305, 1991.

112Obara, M., M. S. Kang, and K. M. Yamada. Site-directed mutagenesis of the cell-binding domain of human fibronectin: separable, synergistic sites mediate adhesive function. *Cell* 53:649–657, 1988.

113Oberhauser, A. F., C. Badilla-Fernandez, M. Carrion-Vazquez, and J. M. Fernandez. The mechanical hierarchies of fibronectin observed with single-molecule AFM. *J. Mol. Biol.* 319:433–447, 2002.

114Oh, E., M. Fierschbacher, and E. Ruoslahti. Deposition of plasma fibronectin in tissues. *Proc. Natl. Acad. Sci. USA* 78:3218–3221, 1981.

115Ohashi, T., D. P. Kiehart, and H. P. Erickson. Dynamics and elasticity of the fibronectin matrix in living cell culture visualized by fibronectin-green fluorescent protein. *PNAS* 96:2153–2158, 1999.

116Ou, J., et al. Endothelial cell-derived fibronectin extra domain A promotes colorectal cancer metastasis via inducing epithelial-mesenchymal transition. *Carcinogenesis* 35:1661–1670, 2014.

117Pankov, R., et al. Integrin dynamics and matrix assembly: tensin-dependent translocation of alpha(5)beta(1) integrins promotes early fibronectin fibrillogenesis. *J. Cell Biol.* 148:1075–1090, 2000.

118Peppicelli, S., F. Bianchini, and L. Calorini. Extracellular acidity, a “reappreciated” trait of tumor environment...
driving malignancy: perspectives in diagnosis and therapy. Cancer Metastasis Rev. 33:823–832, 2014.

10. Pickford, A. R., S. P. Smith, D. Staunton, J. Boyd, and I. D. Campbell. The hairpin structure of the (6)Fl(1)(F2)(F2) fragment from human fibronectin enhances gelatin binding. EMBO J. 20:1519–1529, 2001.

11. Pickup, M. W., J. K. Mouw, and V. M. Weaver. The extracellular matrix modulates the hallmarks of cancer. EMBO Rep. 15:1243–1253, 2014.

12. Plotnikov, S. V., A. M. Pasapera, B. Sabass, and C. M. Waterman. Force fluctuations within focal adhesions mediate ECM-rigidity sensing to guide directed cell migration. Cell 151:1513–1527, 2012.

13. Provenzano, P. P., K. W. Elieecri, J. M. Campbell, D. R. Inman, J. G. White, and P. J. Keely. Collagen reorganization at the tumor-stromal interface facilitates local invasion. BMC Med. 4:38, 2006.

14. Roca-Cusachs, P., N. C. Gauthier, A. del Rio, and M. P. Santimaria. Immunoscintigraphic detection of the proangiogenic capability of tumor-associated adhesion molecules. J. Cell Biol. 5:e268, 2007.

15. Sottile, J., and D. C. Hocking. Fibronectin polymization regulates the composition and stability of extracellular matrix fibrils and cell-matrix adhesions. Mol. Biol. Cell 13:3546–3559, 2002.

16. Sottile, J., D. C. Hocking, and K. J. Langenbach. Fibronectin polymerization stimulates cell growth by RGD-dependent and -independent mechanisms. J. Cell Biol. 113(Pt 23):4287–4299, 2000.

17. Sottile, J., D. C. Hocking, and P. J. Swiatek. Fibronectin matrix assembly enhances adhesion-dependent cell growth. J. Cell Biol. 111(Pt 19):2933–2943, 1993.

18. Steward, R. L., C.-M. Cheng, J. D. Ye, R. M. Bellin, and P. R. LeDuc. Mechanical stretch and shear flow induced reorganization and recruitment of fibronectin in fibroblasts. Sci. Rep. 1:147, 2011.

19. Tang, N.-H., et al. N-terminal and C-terminal heparin-binding domain polypeptides derived from fibronectin reduce adhesion and invasion of liver cancer cells. BMC Cancer 10:552, 2010.

20. To, W. S., and K. S. Midwood. Plasma and cellular fibronectin: distinct and independent functions during tissue repair. Fibrogen. Tissue Repair 4:21, 2011.

21. Velling, T., J. Risteli, K. Wennergberg, D. F. Mosher, and S. Johansson. Polymerization of type I and III collagens is dependent on fibronectin and enhanced by integrins alpha 1beta 1 and alpha 2beta 1. J. Biol. Chem. 277:37377–37381, 2002.

22. Ventura, E., et al. Alternative splicing of the angiogenesis associated extra-domain B of fibronectin regulates the accessibility of the B-C loop of the type III repeat 8. PLoS One 5:e9145, 2010.

23. Vogel, V., W. E. Thomas, D. W. Craig, A. Kramer, and G. Banex. Structural insights into the mechanical regulation of molecular recognition sites. Trends Biotechnol. 19:416–423, 2001.

24. Wan, A. M. D., R. M. Schur, C. K. Ober, C. Fischbach, D. Gourdon, and G. G. Malliaras. Electrical control of protein conformation. Adv. Mater. 24:2501–2505, 2012.

25. Wang, K., R. C. Andreason Eguiluz, F. Wu, B. R. Sea, C. Fischbach, and D. Gourdon. Stiffening and unfolding of early deposited-fibronectin increase proangiogenic factor secretion by breast cancer-associated stromal cells. Biochim. Biophys. 2013.

26. Wang, K., R. C. Andreason Eguiluz, F. Wu, B. R. Sea, C. Fischbach, and D. Gourdon. Structural alterations in fibronectin during matrix assembly enhance adhesion-dependent cell growth. J. Biol. Chem. 283:2858–2870, 2008.
Wang, N., et al. Mechanical behavior in living cells consistent with the tensegrity model. *Proc. Natl. Acad. Sci. USA* 98:7765–7770, 2001.

Wartiovaara, J. Distribution of fibroblast surface antigen: association with fibrillar structures of normal cells and loss upon viral transformation. *J. Exp. Med.* 140:1522–1533, 1974.

Wartiovaara, J., I. Leivo, and A. Vaheeri. Expression of the cell surface-associated glycoprotein, fibronectin, in the early mouse embryo. *Dev. Biol.* 69:247–257, 1979.

Wijelath, E. S., et al. Novel vascular endothelial growth factor binding domains of fibronectin enhance vascular endothelial growth factor biological activity. *Circ. Res.* 91:25–31, 2002.

Wijelath, E. S., et al. Heparin-II domain of fibronectin is a vascular endothelial growth factor-binding domain: enhancement of VEGF biological activity by a singular growth factor/matrix protein synergism. *Circ. Res.* 99:853–860, 2006.

Williams, E. C., P. A. Janmey, J. D. Ferry, and D. F. Mosher. Conformational states of fibronectin. Effects of pH, ionic strength, and collagen binding. *J. Biol. Chem.* 257:14973–14978, 1982.

Wipff, P.-J., D. B. Rifkin, J.-J. Meister, and B. Hinz. Myofibroblast contraction activates latent TGF-beta1 from the extracellular matrix. *J. Cell Biol.* 179:1311–1323, 2007.

Wong, S., W.-H. Guo, and Y.-L. Wang. Fibroblasts probe substrate rigidity with filopodia extensions before occupying an area. *PNAS* 111:17176–17181, 2014.

Wu, C., A. E. Chung, and J. A. McDonald. A novel role for alpha 3 beta 1 integrins in extracellular matrix assembly. *J. Cell Biol.* 108(Pt 6):2511–2523, 1995.

Xiang, L., G. Xie, J. Ou, X. Wei, F. Pan, and H. Liang. The extra domain A of fibronectin increases VEGF-C expression in colorectal carcinoma involving the PI3 K/AKT signaling pathway. *PLoS One* 7:e35378, 2012.

Yamada, K. M., and J. A. Weston. Isolation of a major cell surface glycoprotein from fibroblasts. *Proc. Natl. Acad. Sci. USA* 71:3492–3496, 1974.

Yi, M., and E. Ruoslahti. A fibronectin fragment inhibits tumor growth, angiogenesis, and metastasis. *Proc. Natl. Acad. Sci. USA* 98:620–624, 2001.

Zardi, L., C. Ceconni, O. Barbieri, B. Carmemolla, M. Picca, and L. Santi. Concentration of fibronectin in plasma of tumor-bearing mice and synthesis by Ehrlich ascites tumor cells. *Cancer Res.* 39:3774–3779, 1979.

Zerlauth, G., and G. Wolf. Plasma fibronectin as a marker for cancer and other diseases. *Am. J. Med.* 77:685–689, 1984.

Zhang, Q., W. J. Checovich, D. M. Peters, R. M. Albrecht, and D. F. Mosher. Modulation of cell surface fibronectin assembly sites by lysophosphatidic acid. *J. Cell Biol.* 127:1447–1459, 1994.

Zhang, Y., H. Lu, P. Dazin, and Y. Kapila. Squamous cell carcinoma cell aggregates escape suspension-induced, p53-mediated anoikis: fibronectin and integrin alphav mediate survival signals through focal adhesion kinase. *J. Biol. Chem.* 279:48342–48349, 2004.

Zhang, Q., M. K. Magnusson, and D. F. Mosher. Lysophosphatidic acid and microtubule-destabilizing agents stimulate fibronectin matrix assembly through Rho-dependent actin stress fiber formation and cell contraction. *Mol. Biol. Cell* 8:1415–1425, 1997.

Zheng, M., D. M. Jones, C. Horzemapa, A. Prasad, and P. J. McKeown-Longo. The first type III domain of fibronectin is associated with the expression of cytokines within the lung tumor microenvironment. *J. Cancer* 2:478–483, 2011.

Zhong, C., M. Chrzanowska-Wodnicka, J. Brown, A. Shaub, A. M. Belkin, and K. Burridge. Rho-mediated contractility exposes a cryptic site in fibronectin and induces fibronectin matrix assembly. *J. Cell Biol.* 141:539–551, 1998.