A handy and accessible tool for identification of Sn(II) in toothpaste

Shampa Kundu1, Khai-Nghi Truong2, Shrabani Saha1, Kari Rissanen2 & Prithidipa Sahoo1*

An easily accessible colorimetric probe, a carbazole–naphthaldehyde conjugate (CNP), was successfully prepared for the selective and sensitive recognition of Sn(II) in different commercially-available toothpaste and mouthwash samples. The binding mechanism of CNP for Sn²⁺ was confirmed by UV–Vis, ¹H, and ¹³C NMR titrations. The proposed sensing mechanism was supported by quantum chemical calculations. Selective detection of Sn(II) in the nanomolar range (85 nM), among other interfering metal ions, makes it exclusive. Moreover, Sn²⁺ can be detected with a simple paper strip from toothpaste, which makes this method handy and easily accessible. The potential application of this system for monitoring Sn²⁺ can be used as an expedient tool for environmental and industrial purposes.

The utilization of tin has been established for thousands of years and is the most commonly used for the manufacturing of bronze, which is a tin and copper alloy. In the recent era, Sn(II) is used in many fields in the industry such as aerospace, construction and home decor, electronics, jewelry manufacturing, telecommunications, paint/plastic industries, and agriculture via pesticides. Sn(II) as fluoride is present in several dental care products such as toothpaste and mouth rinse. Sn²⁺ has been utilized in dentistry as a chemical adjunct to prevent dental caries since 1950. It was found to effectively inhibit Streptococcus mutants, which leads to tooth decay in human interproximal dental plaque and oral disease. However, the wide utilization of toothpaste in our everyday life may increase the consumption of Sn²⁺ in the human body. The continuous use of Sn(II) becomes detrimental to our health and environment as well. The human can intake Sn(II) by breathing, through the skin, or by the consumption of food. The accumulation of Sn(II) can induce acute and long-term effects in the human body such as eye irritations, heavy sweating, urination complications. Excess consumption of Sn(II) also finds severe immunotoxic and neurotoxic effects in humans causing symptoms such as disorders in the immune system, damage in liver functioning, chromosomal destruction, damage in the brain, and lack of red blood cells. Excess consumption of Sn(II) also finds severe immunotoxic and neurotoxic effects in humans causing symptoms such as disorders in the immune system, damage in liver functioning, chromosomal destruction, damage in the brain, and lack of red blood cells. Excess consumption of Sn(II) also finds severe immunotoxic and neurotoxic effects in humans causing symptoms such as disorders in the immune system, damage in liver functioning, chromosomal destruction, damage in the brain, and lack of red blood cells. Excess consumption of Sn(II) also finds severe immunotoxic and neurotoxic effects in humans causing symptoms such as disorders in the immune system, damage in liver functioning, chromosomal destruction, damage in the brain, and lack of red blood cells. Excess consumption of Sn(II) also finds severe immunotoxic and neurotoxic effects in humans causing symptoms such as disorders in the immune system, damage in liver functioning, chromosomal destruction, damage in the brain, and lack of red blood cells.

The development of a highly sensitive expedient and readily accessible tool is the greatest requirement. However, various methods have already been performed to detect Sn(II) fluorimetric and colorimetric sensing methods because it offers the advantage of ‘on spot’ real-time detection with naked eyes, low cost, portable, and wide applicability. Hence, inspired with the requirement of active colorimetric probes, herein, we report the synthesis and sensing behavior of a novel colorimetric probe carbazole-naphthaldehyde conjugate (CNP) that exhibits high selectivity and sensitivity toward Sn²⁺ in the neutral aqueous medium (10 mM phosphate buffer, pH 7.0). The structure of the synthesized probe CNP was confirmed by detailed NMR (¹H NMR, ¹³C NMR), HRMS, and X-ray analysis (Figure S1–S4, ESI†) as well as optimized by density functional theory. Significantly, the discriminative detection and quantification of Sn²⁺ in different toothpaste samples has also been accomplished using our synthesized probe CNP. To the best of our knowledge, this is the first colorimetric sensor displaying a distinguished recognition of Sn²⁺ in different toothpaste and mouthwash samples.

1Department of Chemistry, Visva-Bharati University, Santiniketan, W.B. 731235, India. 2Department of Chemistry, University of Jyväskylä, Survontie 9 B, P.O. Box 35, 40014 Jyväskylä, Finland. *email: prithidipa@hotmail.com
Results and discussions

To explore the interaction pattern of the probe CNP with Sn^{2+}, we have performed several experiments such as NMR titration, absorbance titration, pH titration, selectivity test and theoretical calculations.

Crystallographic analysis. Single crystals suitable for X-ray diffraction were obtained by slow evaporation of an acetonitrile solution of CNP at 3 °C. It crystallises in the monoclinic space group P2_1/n (Fig. 1, Figure S4 in ESI†). Different than in solution where CNP is unequivocally present as the enol-imine tautomer (Figures S1, S2 in ESI†), the X-ray structure of CNP revealed that the compound is in the keto-enamine form in solid-state.

NMR titration analysis. Interactive properties of the probe CNP towards Sn^{2+} was investigated through 1H, 13C NMR titrations in DMSO-d6 and D2O. In 1H NMR titration, the aromatic –OH proton peak at 16.37 ppm abruptly disappears after addition of one equivalent of Sn^{2+} (SnCl2 dihydrate), followed by downfield shift of imine proton peak at 9.84 ppm. This phenomena indicates the formation of strong coordination between –OH, –N groups of CNP and Sn^{2+} (Fig. 2).

Moreover in 13C NMR titration with the addition of one equivalent Sn^{2+}, the carbon attached with –OH group shifts downfield from 169 to 193 ppm and also the imine ‘C’ peak at 153 ppm shifted towards 159 ppm with decreased intensity (Fig. 3). The above features also confirm the formation of CNP–Sn^{2+} complex.

UV–Vis spectral behaviour of CNP with Sn^{2+}. The interactions between the probe CNP and Sn^{2+} was demonstrated by absorbance titration in acetonitrile:water (1:8, v/v) at neutral pH value (pH 7.0, 10 mM phosphate buffer). In the UV–Vis absorption spectra, we get a characteristic absorbance peak of CNP at 400 nm which decreases upon incremental addition of Sn^{2+}, with an enhancement at 454 nm followed by a rapid colour change from pale yellow to deep orange. Furthermore, a notable isosbestic point at 425 nm indicates possible stronger interaction between CNP and Sn^{2+} (Fig. 4a). Ratiometric changes in absorbance with increasing concentration of Sn^{2+} have been represented in Fig. 4b.

Binding interactions determine 1:1 stoichiometric ratio of CNP and Sn^{2+} (Figure S5, ESI†) with a high association constant of 0.35 × 10^6 M^{-1} from absorption spectra (Figure S6, ESI†). The detection limit of CNP for Sn^{2+} has been evaluated 0.85 nM (Figure S7, ESI†). The colorimetric behaviour of the sensor probe CNP was evaluated upon the addition of various metal ions in the aqueous medium (10 mM phosphate buffer, pH 7.0). As depicted in Figure S9, the pale yellow color of the probe turned to deep orange with the addition of Sn^{2+}. The synthesized probe CNP did not show any notable color changes with the addition of other metal ions. The specific color change of CNP with Sn^{2+} was attributed to several electron transitions in the CNP–Sn^{2+} complex such as π→π*, d–d, ligand–metal charge transfer, and metal–ligand charge-transfer effects. Furthermore, the comparative spectrophotometric response of CNP was also studied with these metal ions which confirms that our probe CNP selectivity sense Sn^{2+} over other metal ions (Figure S10, ESI†). Therefore, these experimental results indicate that our synthesized probe CNP shows remarkable selectivity and sensitivity towards Sn^{2+} over other analytes which could be a beneficial tool for practical approach.

Theoretical calculations. Theoretical calculations were executed for CNP and CNP–Sn^{2+} complex systems using quantum chemical calculations at the DFT level LANL2DZ/6-31G** method basis set implemented
Figure 2. 1H NMR titration [400 MHz] of CNP in DMSO-d_6 at 25 °C and the corresponding changes after the addition of Sn$^{2+}$ (SnCl$_2$·2H$_2$O) in D$_2$O from (1) only CNP, (2) CNP + 0.5 equivalent of Sn$^{2+}$, and (3) CNP + 1 equivalent of Sn$^{2+}$.

Figure 3. 13C NMR titration [100 MHz] of CNP in DMSO-d_6 at 25 °C and the corresponding changes after addition of Sn$^{2+}$ in D$_2$O where (1) only CNP, and (2) CNP + 1 equivalent of Sn$^{2+}$.
at Gaussian 09 program and CPCM (Conductor like Polarizable Continuum Model) solvent model was used for solvent (water) effect incorporation. In the optimized structure of CNP, the positions of carbazole and naphthaldehyde units were nearly in the same plane. The optimized structure of the CNP–Sn2+ complex showed the formation of coordination bonds of Sn2+ with –OH and –N groups of CNP, which enhanced the stability of the complex (Figure S11, Table S1, ESI†).

From TDDFT calculation, we can see that there is a sharp S\textsubscript{0}–S\textsubscript{1} transition in CNP at 410 nm (oscillator strength f = 0.5188) which is very close to that experimentally observed value at 400 nm, responsible for the absorption of the carbazole moiety. Moreover, in CNP–Sn2+, the transition at 448 nm (S\textsubscript{0}–S\textsubscript{1}, f = 0.3563) indicates the π–π* electronic transition from the carbazole to naphthaldehyde moiety which is distinctly executed in the absorbance graph at 454 nm (Table S2, ESI†). Next, the energy distributions of HOMO and LUMO for CNP and its Sn2+ complex were examined (Table S3, ESI†). As shown in Fig. 5, the energy of the HOMO and LUMO orbital levels for the CNP–Sn2+ complex is lower than that of the probe CNP. Also, the HOMO–LUMO energy gap of CNP and CNP–Sn2+ complex was calculated with an energy difference of 0.29 eV.

These outcomes indicate that the effective resonance attraction obtained in the CNP–Sn2+ complex. The density of the orbital coefficient migrates from the carbazole unit to naphthaldehyde units in CNP, whereas in the CNP–Sn2+ complex, the orbital coefficient of total framework is moving towards Sn2+ via N–Sn2+ coordination.

Figure 4. (a) UV–Vis absorption spectra of CNP (1 μM) upon incremental addition of Sn2+ up to 1.2 μM in CH\textsubscript{3}CN:H\textsubscript{2}O (1:8, v/v) at pH 7.0 (10 mM phosphate buffer) [inset: naked eye colour change of CNP on addition of Sn2+]. (b) Ratiometric change in absorbance with increasing concentration of Sn2+ at neutral pH.

Figure 5. HOMO and LUMO distributions of CNP and CNP–Sn2+.
bond. Hence, the obtained results imply the formation of a stable complex, which is consistent with the proposed binding mechanism. Furthermore, the mass of the CNP–Sn$^{2+}$ complex has been checked which truly validated the binding mechanism (Figure S12, ESI†). The anticipated coordination mechanism of the CNP–Sn$^{2+}$ complex is given in Figure 6. In 1H NMR spectrum, the resonances assigned to the hydroxyl and imine groups are 16.37 ppm and 9.84 ppm, respectively. The naphthalene CO and imine C resonances in 13C NMR spectroscopy are observed at 169.46 and 153.90 ppm, respectively.

Plausible mechanism and explanation. The naphthalene C–O bond length (1.282(3) Å) observed in the X-ray structure is characteristic of ketones rather than phenols, and the C–N bond (1.324(3) Å) is elongated relative to that of a typical imine33,34. Accordingly, CNP-enol is more susceptible to bind with Sn$^{2+}$ through stronger hydrogen bonding which is also corroborated with IR experiments (Figure S13, ESI†). In consequence, the pale yellow color of CNP becomes the deep orange color due to the non-covalent interactions of CNP with Sn$^{2+}$ (Fig. 6).

Quantitative analysis. The excellent photophysical properties of the probe CNP toward Sn$^{2+}$, such as high sensitivity and selectivity at physiological pH encouraged us to further evaluate the potential of the probe for realistic approach. The specific and selective recognition of Sn$^{2+}$ by the chemosensor CNP was also examined in three different toothpaste samples. In this work, we took commercially available toothpastes from three different brands (T1, T2, T3). The details procedure of the preparation of toothpaste solutions was described in ESI†. Toothpaste solutions were then added to the CNP solution, a rapid orange color change resulted after few minutes (Fig. 7a). Furthermore, the method was also applied to recognize Sn$^{2+}$ by a simple paper strip in different toothpaste solutions. Three paper strips soaked in CNP were dipped separately in the different toothpaste solutions (T1, T2, T3), and Fig. 7b shows the respective color changes of CNP-coated paper strip after dipping in the toothpaste solutions T1, T2, T3 respectively.

The concentration of Sn$^{2+}$ was also quantified from these three different toothpaste samples (T1, T2, T3). For this work, the above-mentioned toothpaste samples were subjected to colorimetric analysis at pH 7.0 (10 mM phosphate buffer) to quantify the amount of Sn$^{2+}$ present therein. Sn$^{2+}$ was quantified from these given samples by CNP (1 µM) by virtue of its selective and direct recognition properties. All estimations were done in triplicate. Concentrations of Sn$^{2+}$ were estimated by comparison with the CNP–Sn$^{2+}$ standard absorbance curve. From the standard curve it was found that the concentration of Sn$^{2+}$ was 0.73 µM, 0.70 µM and 0.64 µM in 100 µL of T1, T2 and T3 samples, respectively (Fig. 8, Table 1). Concentration of Sn$^{2+}$ was further quantified from two different mouth wash samples (M1, M2) using above mentioned procedure and the respective values are 0.25 µM and 0.28 µM in 100 µL sample solution (Table 2).

Conclusion

In conclusion, a new carbazole-naphthaldehyde based colorimetric probe CNP was successfully synthesized for selective recognition of Sn$^{2+}$ in the aqueous medium under physiological pH value. The structure of the synthesized probe CNP was analyzed by single crystal X-ray diffraction which represents the presence of keto (CNP-keto) form in its solid state. The sensing mechanism has been triggered by the strong coordination bonding of CNP-enol with Sn$^{2+}$, which was confirmed by absorbance, 1H and 13C NMR spectroscopy as well as mass spectrometry (HRMS). Theoretical calculations were also performed to justify the binding mechanism and optical behavior of the sensor probe. CNP showed high selectivity and sensitivity for Sn$^{2+}$ even in the presence of other metal ions. The detection limit of the probe for Sn$^{2+}$ was calculated to be 85 nM, which is much lower than...
Figure 7. (a) Schematic diagram for estimation of Sn$^{2+}$ in toothpaste samples using the probe CNP. (b) Display of naked-eye color change of CNP-coated paper strip after dipping in T1, T2, T3 solutions, respectively (all experiments performed at pH 7.0, 10 mM phosphate buffer).

Figure 8. (a) Standard fluorescence curve obtained for the estimation of Sn$^{2+}$ ions. (b) Estimation of unknown concentration of Sn$^{2+}$ ions (red, blue and green point) in the different toothpaste samples from the standard fluorescence curve. Standard deviations are represented by error bar (n = 3).
the WHO permissible amount of Sn$^{2+}$ in drinking water. We further demonstrated that CNP has been utilized as a colorimetric sensor to detect and quantify trace amounts of Sn$^{2+}$ in different toothpaste and mouth wash samples. A handy and accessible paper strip method has been proposed for this purpose. Being a potential probe, it can be used as an expedient ‘in-field’ approach to estimate Sn$^{2+}$ for environmental and industrial purposes for sustainable and environment-friendly industrial production.

Experimental section

Materials and methods.

All the reagents were purchased from Sigma-Aldrich Pvt. Ltd. (India). Unless otherwise mentioned, materials were obtained from commercial suppliers and were used without further purification. Solvents were dried according to standard procedures. Elix Millipore water was used in all respective experiments. 1H and 13C NMR spectra were recorded on a Bruker 400 MHz instrument. For NMR spectra, DMSO-d_6 and for NMR titration DMSO-d_6 and D$_2$O were used as solvent using TMS as an internal standard. Chemical shifts are expressed in δ ppm units and 1H–1H and 1H–13C coupling constants in Hz. The mass spectrum (HRMS) was carried out using a micromass Q-TOF Micro$^+$ instrument by using methanol as a solvent. UV spectra were recorded on a SHIMADZU UV-3101PC spectrophotometer. FT-IR data were recorded on Shimadzu IRAffinity-1S Fourier transform infrared spectrometer (Spectrum Two) by ATR technique. The following abbreviations are used to describe spin multiplicities in 1H NMR spectra: s = singlet; d = doublet; t = triplet; m = multiplet. Single crystal X-ray data of CNP was measured using a dual-source Rigaku Super Nova diffractometer equipped with an Atlas detector and an Oxford Cryostream cooling system using mirror-monochromated Cu-K_a radiation ($\lambda = 1.54184 \text{Å}$). Data collection and reduction for both compounds were performed using the program CrysAlisPro35 and Gaussian face-index absorption correction method was applied15. The structures were solved with Direct Methods (SHELXS)$^{36–38}$ and refined by full-matrix least-squares based on F^2 using SHELXL-2015$^{36–38}$. Non-hydrogen atoms were assigned anisotropic displacement parameters unless stated otherwise. The hydrogen atom bonded to nitrogen was located from Fourier difference maps and refined with an N–H distance restraint of approximately 0.96 Å. Other hydrogen atoms were placed in idealised positions and included as riding. Isotropic displacement parameters for all H atoms were constrained to multiples of the equivalent displacement parameters of their parent atoms with $U_{eq}(H) = 1.2 \times U_{eq}(\text{parent atom})$. The single crystal X-ray data, experimental details as well as CCDC number are given in the Supporting Information.

Synthetic procedure of CNP.

In a 100 mL round bottom flask, 2-hydroxy naphthaldehyde (1.0 g, 5.8 mmol) in 30 ml ethanol was vigorously stirred at ambient temperature for few minutes. Then, 3-amino-9-ethyl carbazole (1.46 g, 6.95 mmol) was dissolved in ethanol (10 mL) and added dropwise to the solution. The reaction mixture was refluxed for 24 h at 83 °C. After completion of the reaction (monitored by TLC), the solvent was evaporated completely under reduced vapor pressure, then extracted with chloroform and water. After drying it over anhydrous Na$_2$SO$_4$, the organic layer was evaporated completely to get the solid product. This product was purified by column chromatography with the eluent CHCl$_3$/PET (5:1; v:v) to get the product CNP with 86% yield (Fig. 9). 1H NMR (400 MHz, DMSO-d_6): δ (ppm) = 16.37 (s, 1H), 9.84 (s, 1H), 8.57–8.59 (d, 2H, $J = 8$ Hz),

Toothpaste sample	Conc. of CNP (µM)	Amount of toothpaste sample taken (µL)	Conc. of Sn$^{2+}$ (µM)	Average conc. of Sn$^{2+}$ (µM)
T1	1	100	0.73	
		100	0.74	
		100	0.72	
T2	1	100	0.69	
		100	0.70	
		100	0.71	
T3	1	100	0.63	
		100	0.65	
		100	0.64	

Table 1. Determination of [Sn$^{2+}$] in algae solutions under UV-lamp.

Mouth wash sample	Conc. of CNP (µM)	Amount of Mouth wash sample taken (µL)	Conc. of Sn$^{2+}$ (µM)	Average conc. of Sn$^{2+}$ (µM)
M1	1	100	0.25	
		100	0.23	
		100	0.24	
M2	1	100	0.29	
		100	0.27	
		100	0.28	

Table 2. Determination of [Sn$^{2+}$] in different mouth wash samples.
8.26–8.28 (d, 1H, J = 8 Hz), 7.90–7.92 (d, 1H, J = 8 Hz), 7.77–7.82 (t, 2H, J = 20 Hz), 7.71–7.73 (d, 1H, J = 8 Hz),
7.62–7.64 (t, 1H, J = 8 Hz), 7.55–7.57 (t, 1H, J = 8 Hz), 7.47–7.51 (t, 1H, J = 16 Hz), 7.34–7.37 (t, 1H, J = 12 Hz),
7.23–7.26 (t, 1H, J = 12 Hz), 7.04–7.06 (d, 1H, J = 8 Hz), 4.47–4.49 (q, 2H, J = 8 Hz), 1.31–1.34 (t, 3H, J = 12 Hz).

13C NMR (100 MHz, DMSO-d$_6$): δ (ppm) = 169.46, 153.90, 140.30, 138.46, 135.94, 133.15, 129.04, 127.93,
126.67, 126.32, 123.28, 123.02, 122.26, 122.11, 120.92, 120.36, 119.55, 119.05, 112.08, 109.98, 109.52, 108.67,
37.19, 13.83. HRMS (TOF MS): (m/z, %): Calcd. for C$_{25}$H$_{20}$N$_2$O: 364.1576. Found: m/z = 365.1283 (M + H$^+$).

Received: 3 December 2021; Accepted: 25 January 2022
Published online: 10 February 2022

References

1. Ravichandiran, P. et al. Naphthoquinone-dopamine linked colorimetric and fluorescence chemosensor for selective detection of Sn$^{2+}$ ion in aqueous medium and its bio-imaging applications. J. ACS Sustain. Chem. Eng. 8, 10947–10958, https://doi.org/10.1021/acssuschemeng.0c03548 (2020).
2. Tenuta, L. M. A. & Cury, J. A. Laboratory and human studies to estimate anticaries efficacy of fluoride toothpastes. Monogr. Oral Sci. Basel Karger 23, 108–124 (2013).
3. Fiorillo, L., Cervino, G., Herford, A. S., Laino, L. & Cicciù, M. Stannous fluoride effects on enamel: A systematic review. Biomimetics 5, 41 (2020).
4. Tinanoff, N. Special issue. Int. J. Clin. Dent. 6, 37 (1995).
5. Keene, H. J., Shklair, I. L. & Mickel, G. J. Effect of multiple dental floss-SnF$_2$ treatment on Streptococcus mutans in interproximal plaque. J. Dent. Res. 56, 21 (1977).
6. Ravichandiran, P. et al. Simple colorimetric and fluorescence chemosensing probe for selective detection of Sn$^{2+}$ ions in an aqueous solution: Evaluation of the novel sensing mechanism and its bioimaging applications. Anal. Chem. 93, 801–811 (2021).
7. Rudel, H. Case study: Bioavailability of tin and tin compounds. Ecotoxicol. Environ. Saf. 56, 180–189 (2003).
8. Winship, K. A. Toxicity of tin and its compounds. Adverse Drug React. Acute Poison. Rev. 7, 19–38 (1988).
9. Lan, H. et al. Fluorescence turn-on detection of Sn$^{2+}$ in live eukaryotic and prokaryotic cells. Analyst 139, 5223–5229 (2014).
10. Cardarelli, N. Tin and the thymus gland: A review. Thymus 15, 223–231 (1990).
11. Sherran, L. R., Masters, J., Peterson, R. & Levine, S. Tin concentration in the thymus glands of rats and mice and its relation to the involution of the gland. J. Anal. Toxicol. 10(1), 6–9 (1986).
12. Viau, C. M. et al. SnCl$_2$-induced DNA damage and repair inhibition of MMS-caused lesions in V79 Chinese hamster fibroblasts. Arch. Toxicol. 83, 769–775 (2009).
13. Jianqiang, W. et al. Highly sensitive and selective fluorescent detection of rare earth metal Sn$^{2+}$ ion by organic fluorine Schiff base functionalized periodic mesoporous material in aqueous solution. J. Photochem. Photobiol. A 309, 37–46 (2015).
14. Christison, T. T. & Rohrer, J. S. Direct determination of free cyanide in drinking water by ion chromatography with pulsed amperometric detection. J. Chromatogr. A 1155, 31–39. https://doi.org/10.1016/j.chroma.2007.02.083 (2007).
15. Dabeka, R. W., McKenzie, A. D. & Albert, R. H. Atomic absorption spectrophotometric determination of tin in canned foods, using nitric acid-hydrochloric acid digestion and nitrous oxide-acetylene flame: Collaborative study. J. Assoc. Off. Anal. Chem. 68, 209–213 (1985).
16. Safavi, A., Maleki, N. & Shahbazi, H. R. Indirect determination of cyanide ion and hydrogen cyanide by adsorptive stripping voltammetry at a mercury electrode. Anal. Chem. 503, 213–221 (2004).
17. Boutakhrir, K., Yang, Z. P. & Kauffmann, J. M. Inorganic tin(II) determination by FIA with amperometric detection of its oxinate complex. Talanta 20, 1883–1890 (1993).
18. Themelis, D. G., Karastogianni, S. C. & Tinanof, P. D. Selective determination of cyanides by gas diffusion-stopped flow sequential injection analysis and an on-line standard addition approach. Anal. Chim. Acta. 632, 93–100 (2009).
19. Heppeler, F., Sander, S. & Henze, G. Determination of tin traces in water samples by adsorptive stripping voltammetry. Anal. Chim. Acta 319, 19–24 (1996).
20. Ichimori, S., Iwase, H., Arakawa, F., Hirano, K. & Fujii, Y. Selective determination of tin(II) ion in water by solventextraction with salicyldenamino-2-ribophilene followed byreversed-phase highperformance liquid chromatographywith photometric detection. J. Liq. Chromatogr. Relat. Technol. 26, 3129–3139 (2003).
21. Kundu, S. & Sahoo, P. Estimation of hydrogen sulfide from crude petroleum: A unique invention using a simple chemosensor. New J. Chem. 43, 12369–12374 (2019).
22. Kundu, S., Sarkar, H. S., Das, S. & Sahoo, P. Easy and rapid estimation of ammonia in cold-storage potatoes: Precautions in the environment. New J. Chem. 43, 6843–6847 (2019).
23. Sarkar, H. S. et al. 2′-Deoxy-5′-(hydroxymethyl) cytidine: Estimation in human cancer cells with a simple chemosensor. RSC Adv. 8, 39893–39896 (2018).
24. Ghosh, A., Das, S., Kundu, S., Maji, P. K. & Sahoo, P. Rapid estimation of lead in lipsticks. Sens. Actuators B Chem. 266, 80–85 (2018).
25. Kundu, S., Maiti, P. K. & Sahoo, P. A multi-signaling performance for simultaneous surveillance and accretion of cysteine and serine in human cancer cell. Asian J. Org. Chem. 9, 94–98 (2020).
26. Kundu, S., Saha, S. & Sahoo, P. Rapid and selective visual detection of DCNP (nerve gas mimic) in sea water and soil with a simple paper strip. Results Chem. 1, 100014 (2019).
27. Ghosh, A., Das, S., Sarkar, H. S., Kundu, S. & Sahoo, P. Consumption of H₂S from our daily diet: Determination by a simple chemosensing method. ACS Omega 3, 11617–11623 (2018).
28. Das, S. et al. Development of a new fluorescent probe for detection of cysteine in processed food samples. Anal. Bioanal. Chem. https://doi.org/10.1007/s00216-019-02012-9 (2019).
29. Das, S. & Sahoo, P. A colorimetric sensor for hydrogen sulfide: Detection from biogas and quantitative estimation in water. Sens. Actuators B Chem. https://doi.org/10.1016/j.snb.2019.04.089 (2019).
30. Chunjie, Y. et al. Fluorescent probe for copper(II) ion based on a rhodamine spirolactam derivative, and its application to fluorescence imaging in living cells. Microchim. Acta 174, 247–255 (2011).
31. Das, S., Sarkar, H. S., Uddin, M. R., Mandal, S. & Sahoo, P. A chemosensor to recognize N-acyl homoserine lactone in bacterial biofilm. Sens. Actuators B Chem. 259, 332–338 (2018).
32. Frisch, M. J. et al. Gaussian 09, Revision A 0.2 (Gaussian Inc., 2009).
33. Popovic, Z. et al. Nitroaniline derivatives of 2-Oxo-1-naphthylideneamines— Molecular self-assembly via C−H···O intermolecular hydrogen bonds and stabilization of O−H···N and N−H···O tautomers in solution and solid state. Struct. Chem. 15, 6 (2004).
34. Kargil, H., Agar, A. A., Alpaslan, G., Buyukgungoren, O. & Erdonmez, A. 1-[(Z)-[2-Methoxy-5-(trifluoromethyl) anilino]methylidene]naphthalen-2(1H)-one. Acta Cryst. E69, 163 (2013).
35. Rigaku Oxford Diffraction. CrysAlis Pro software system, version 3846 (Rigaku Corporation, 2017).
36. Sheldrick, G. M. A short history of ShelX. Acta Cryst. A64, 112–122 (2008).
37. Sheldrick, G. M. SHELXL13 (University of Göttingen, 2013).
38. Sheldrick, G. M. Crystal structure refinement with ShelXL. Acta Cryst. C71, 3–8 (2015).

Acknowledgements
P.S. acknowledges CSIR, India, for awarding her the major Grant [Project file no. 02(0384)/19/EMR-II dated 20/05/2019]. S.K. and S.S. are sincerely thankful to UGC India for their research fellowship. We are thankful to Department of ISERC, Visva-Bharati University, India for the assistance with FT-IR, funded by DST FIST (ref. no. SR/FST/CS-I/2017/21).

Author contributions
S.K. performed all the experiments, interpreted data and prepared the manuscript. K.-N.T. and K.R. helped with the crystallographic analysis and revision of the manuscript. S.S. cross checked the manuscript and supporting information thoroughly and modified several sections. P.S. conceptualised the research, designed the experiments, wrote and edited the manuscript.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary Information The online version contains supplementary material available at https://doi.org/10.1038/s41598-022-06299-0.

Correspondence and requests for materials should be addressed to P.S.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2022