Explaining Causal Models with Argumentation: the Case of Bi-variate Reinforcement

Antonio Rago1, Pietro Baroni2 and Francesca Toni1
1Department of Computing, Imperial College London, UK
2Dipartimento di Ingegneria dell’Informazione, Università degli Studi di Brescia, Italy
{a.rago, ft}@imperial.ac.uk, pietro.baroni@unibs.it

Abstract

Causal models are playing an increasingly important role in machine learning, particularly in the realm of explainable AI. We introduce a conceptualisation for generating argumentation frameworks (AFs) from causal models for the purpose of forging explanations for the models’ outputs. The conceptualisation is based on reinterpreting desirable properties of semantics of AFs as explanation moulds, which are means for characterising the relations in the causal model argumentatively. We demonstrate our methodology by reinterpreting the property of bi-variate reinforcement as an explanation mould to forge bipolar AFs as explanations for the outputs of causal models. We perform a theoretical evaluation of these argumentative explanations, examining whether they satisfy a range of desirable explanatory and argumentative properties.

1 Introduction

The field of explainable AI (XAI) has in recent years become a major focal point of the efforts of researchers, with a wide variety of models for explanation being proposed (see e.g. (Guidotti et al. 2019) for an overview). More recently, incorporating a causal perspective into explanations has been explored by some, e.g. (Schwab and Karlen 2019; Madumal et al. 2020). The link between causes and explanations has long been studied (Halpern and Pearl 2001); indeed, the two have even been equated (under a broad sense of the concept of “cause”) (Woodward 1997). Causal reasoning is, in fact, how humans explain to one another (de Graaf and Malle 2017), and so mimicking such a trend lends credence to the hypothesis that machines should do likewise when their explanations target humans. Further, research from the social sciences (Miller 2019) has indicated the value of causal links, particularly in the form of counterfactual reasoning, within explanations, and that the importance of such information surpasses that of probabilities or statistical relationships for users. In this paper we outline a methodology for obtaining explanations from causal models (Pearl 1999), based on (computational) argumentation (see (Atkinson et al. 2017; Baroni et al. 2018) for recent overviews).

Argumentation has received increasing attention in recent years as a means for providing explanations of the outputs of a number of AI models (see (Vassiliades, Bassiliades, and Patkos 2021; Cylas et al. 2021) for recent overviews on argumentative XAI), e.g. for recommender systems (Teze, Godo, and Simari 2018), neural classifiers (Dej et al. 2021), Bayesian networks (Timmer et al. 2015) and PageRank (Albini et al. 2020a). Argumentative explanations have also been advocated in the social sciences (Antaki and Leudar 2009; Miller 2019), and several works focus on the power of argumentation to provide a bridge between explained models and users, validated by user studies (Madumal et al. 2019; Rago et al. 2020). While argumentative explanations are wide-ranging in their application, their links with causal models have remained largely unexplored to date.

In this paper, we introduce a conceptualisation for generating argumentation frameworks (AFs) from causal models for the purpose of forging explanations for the models’ outputs. Like (Albini et al. 2020b; Albini et al. 2021), we focus on explaining by relations – rather than by features, as is more conventional (e.g. for feature attribution methods such as (Lundberg and Lee 2017)). Our method is based on a reinterpretation of properties of argumentation semantics from the literature as explanation moulds, i.e. means for characterising argumentative relations (§3). Here, we focus on reinterpreting the property of bi-variate reinforcement (Amgoud and Ben-Naim 2018) as a basis for extracting bipolar AFs (Carayol and Lagasque-Schiex 2005) which may be used as explanations for the outputs of causal models. We provide a theoretical assessment of these explanations (§4), demonstrating how they satisfy desirable properties from both explanatory and argumentative viewpoints.

2 Background

Here, we provide the core background on causal models and computational argumentation, on which our method relies.

Causal models. A causal model (Pearl 1999) is a triple (U, V, E), where: U is a (finite) set of exogenous variables, i.e. variables whose values are determined by external factors (outside the causal model); V is a (finite) set of endogenous variables, i.e. variables whose values are determined by internal factors, namely by (the values of some of the) variables in U ∪ V; each variable may take any value in its associated domain; we refer to the domain of Wi ∈ U ∪ V as D(Wi); E is a (finite) set of structural equations that, for each endogenous variable Vi ∈ V, define Vi’s values as a function fVi of the values of Vi’s parents PA(Vi) ⊆ U ∪ V \ {Vi}. We use the term binary
3 From Causal Models to Explanation Moulds and Argumentative Explanations

We see the task of obtaining explanations for causal models’ assignments of values to variables as a two-step process: first we define moulds characterising the core ingredients of explanations; then we use these moulds to obtain, automatically, (instances of) AFs as argumentative explanations. Moulds and explanations are defined in terms of influences between variables in the causal model, in turn defined in terms of the parent relation underpinning the model.

Definition 1. The influence graph corresponding to a causal model (U, V, E) is the pair $(\mathcal{V}, \mathcal{I})$, where $\mathcal{V} = U \cup V$ and $\mathcal{I} \subseteq \mathcal{V} \times \mathcal{V}$ such that $\mathcal{I} = \{(W_1, W_2)| W_1 \in PA(W_2)\}$ (referred to as the set of influences).

Note that influence graphs are closely related to the notion of causal diagrams (Pearl 1995). While straightforward, they are useful as they underpin much of what follows.

Throughout, for illustration we will use a toy example with a simple (binary) causal model (U, V, E) comprising $U = \{U_1, U_2\}$, $V = \{V_1, V_2\}$ and $\forall W_i \in U \cup V, D(W_i) = \{0, 1\}$. Figure 1i gives the combinations of values for the variables resulting from the structural equations E (amounting to $V_1 = U_1 \land \neg U_2$ and $V_2 = V_1$) and Figure 1ii visualises the influence graph $\{(U_1, U_2, V_1, V_2), \{(U_1, V_1), (U_2, V_1), (V_1, V_2)\}\}$ (we ignore Figure 1iii for the moment: this will be discussed later). This causal model may represent a group’s decision on whether to enter a restaurant, with variables U_1: “margherita” is spelt correctly on the menu, not like the drink; U_2: there is pineapple on the pizzas; V_1: the pizzeria seems to be legitimately Italian; and V_2: the group chooses to enter the pizzeria.

Influence graphs syntactically express which variables affect which others but do not give an account of how the influences actually occur in the context the user may be interested in, as expressed by the given values to the exogenous variables. For example, the influence graph in Figure 1i alone...
shows which variables affect other variables but provides little intuition on how they do so. Thus, our standpoint is that each influence can be assigned an explanatory role, indicating how that influence is actually working in that context. We assume that each explanatory role is specified by a relation characterisation, i.e. a Boolean logical requirement, that is used as a mould to forge explanations to be presented to users by indicating which relations play a role therein.

Definition 2. Given a causal model \(\langle U, V, E \rangle \) with corresponding influence graph \(\langle V, I \rangle \), an explanation mould is a non-empty set \(\{ c_1, \ldots, c_m \} \) where, \(\forall i \in \{ 1, \ldots, m \}, c_i : U \times I \rightarrow \{ \text{true}, \text{false} \} \) is a relation characterisation, in the form of a Boolean condition in some formal language.

Here, we do not prescribe any formal language for specifying relation characterisations: several may be suitable. The use of this definition requires an up-front choice of the number of relations and their characterisations. This choice then applies to all inputs in need of explaining.

Given an input \(u \), based on an explanation mould we can obtain an AF including, as dialectical relations, the influences satisfying the (different) relation characterisations for the given \(u \). Thus, the choice of relation characterisations is to a large extent dictated by the specific form of argumentative explanation the intended users expect. In general, argumentative explanations can be generated as follows.

Definition 3. Given a causal model \(\langle U, V, E \rangle \), its corresponding influence graph \(\langle V, I \rangle \) and an explanation mould \(\{ c_1, \ldots, c_m \} \), an argumentative explanation for \(\langle U, V, E \rangle \) and \(u \in U \) is an AF \(\langle A, R_1, \ldots, R_m \rangle \), where \(A \subseteq V \), and \(R_1, \ldots, R_m \subseteq \mathcal{I} \cap (A \times A) \) such that, for any \(i = 1 \ldots m \), \(R_i = \{(W_1, W_2) \in \mathcal{I} \cap (A \times A) | c_i(u, (W_1, W_2)) = \text{true} \} \).

Note that these argumentative explanations are local, namely they focus on the causal model’s behaviour for (any) input \(u \). Thus, different argumentative explanations may be obtained for different inputs. Note also that we have left open the choice of \(A \) (as a generic, possibly non-strict subset of \(V \)). In practice, \(A \) may be the full \(V \), but we envisage that users may prefer to restrict attention to some variables of interest (for example, excluding variables not “involved” in any influence satisfying the relation characterisations). For example, an argumentative explanation of a counterfactual nature for the causal model in Figure 1i and the input in the first row may choose to neglect \(U_1 \) since changing its value in this case does not affect the other variables’ values.

The choice of (number and form of) relation characterisations in explanation moulds is crucial for the generation of argumentative explanations. Here we demonstrate a novel concept for utilising properties of gradual semantics for AFs for this choice, based on “property inversion”. The idea is to interpret the variable values in the causal model as generated by a “hypothetical” gradual semantics embedded in the model itself. This is similar, in spirit, to recent work to extract (weighted) BFs from multi-layer perceptrons (MLPs) (Potyka 2021), using the underlying computation of the MLPs as a gradual semantics, and to proposals to explain recommender systems via tripolar AFs (Rago, Cocarascu, and Toni 2018) or BFs (Rago et al. 2020), using the underlying predicted ratings as a gradual semantics. A natural semantic choice for causal models, given that we are trying to explain why endogenous variables are assigned specific values, given assignments to the exogenous variables, is to use the assignments as a gradual semantics.

Then, the idea of inverting properties of semantics to obtain dialectical relations in AFs can be recast to obtain relation characterisations in explanation moulds as follows: given an influence graph and a selected value assignment to exogenous variables, if an influence satisfies a given, desirable semantics property, then the influence can be cast as part of a dialectical relation with explanatory purposes in the resulting AF. We will illustrate this concept with the property of bi-variate reinforcement for BFs (Amgoud and Ben-Naim 2018), which we posit is intuitive in the realm of explanations. In our formulation of this property, we require that increasing the value of variables which are attackers (supporters) can only decrease (increase, respectively) the values of variables they attack (support, respectively).

Definition 4. Given a gradual causal model \(\langle U, V, E \rangle \) and influence graph \(\langle V, I \rangle \), a reinforcement explanation mould is an explanation mould \(\{ c_r^-, c_r^+ \} \) such that, given some \(u \in U \) and \((W_1, W_2) \in I \):

- \(c_r^-(u, (W_1, W_2)) = \text{true iff:} \)
 1. \(\forall w_+ \in D(W_1) \text{ such that } w_+ > f_{W_1}(u), \text{ it holds that } f_{W_2}(u, \text{set}(W_1 = w_+)) < f_{W_2}(u) \text{ with } <, = \leq; \)
 2. \(\forall w_- \in D(W_1) \text{ such that } w_- < f_{W_1}(u), \text{ it holds that } f_{W_2}(u, \text{set}(W_1 = w_-)) > f_{W_2}(u) \text{ with } >, = \geq; \)
 3. \(\exists w^* \in D(W_1) \text{ or } \exists w^*_n \in D(W_1) \text{ satisfying the conditions at points 1 and 2 with } <, = \leq \text{ and } >, = \geq; \)
- \(c_r^+(u, (W_1, W_2)) = \text{true iff:} \)
 1. \(\forall w_+ \in D(W_1) \text{ such that } w_+ > f_{W_1}(u), \text{ it holds that } f_{W_2}(u, \text{set}(W_1 = w_+)) > f_{W_2}(u) \text{ with } >, = \geq; \)
 2. \(\forall w_- \in D(W_1) \text{ such that } w_- < f_{W_1}(u), \text{ it holds that } f_{W_2}(u, \text{set}(W_1 = w_-)) < f_{W_2}(u) \text{ with } <, = \leq; \)
 3. \(\exists w^* \in D(W_1) \text{ or } \exists w^*_n \in D(W_1) \text{ satisfying the conditions at points 1 and 2 with } <, = \leq \text{ and } >, = \geq; \)

We call any argumentative explanation for \(\langle U, V, E \rangle \) and \(u \), given a reinforcement explanation mould \(\{ c_r^-, c_r^+ \} \), a reinforcement explanation (RX) (for \(\langle U, V, E \rangle \) and \(u \)).

For illustration, Figure 1iii shows the RX for the causal model in Figure 1i and \(u \) as in the caption. Note that the causal model can only be understood by inspection of the structural equations; instead, the argumentative explanations provide a qualitative characterisation of influences, without requiring an understanding of the structural equations. Note also that conditions 1 and 2 for the attack and support relations in RXs correspond to a weak form of local monotonicity of the model. For instance, since \(U_2 \) attacks \(V_1 \), the user knows that, all else remaining the same, any increase in the value of \(U_2 \) cannot give rise to an increase of the value of \(V_1 \), while a decrease of \(U_2 \) will not decrease the value of \(V_1 \). Condition 3 adds a guarantee of effectiveness: there is at least one variation of \(U_2 \), which, all else remaining the same, enforces a variation of \(V_1 \). Thus RXs have a counterfactual nature, as they suggest to the user the kind of local changes with respect to the current situation that could give rise to
a desired change of outcome. In this respect, note that the role assigned to variables refers to the selected value assignment to exogenous variables. For example, in the RX for the input in the first line of the table in Figure 1i, the fact that “margherita” is spelt correctly on the menu does not play a role in determining that the pizzeria is not legitimately Italian (indeed this is determined solely by pineapple being on the pizza), thus the support \(\langle U_1, V_1 \rangle \) is not present in the RX for this input. Such differences reflect the fact that only some (or possibly none) of the individual changes of variables \(U_1 \) and \(U_2 \) are guaranteed to produce a change in \(V_1 \)’s value, depending on the initial context. The local nature of RXs, corresponding to the local nature of bi-variate reinforcement, ensures simplicity and a rather intuitive interpretation but pending on the initial context. The local nature of RXs, corresponding to the local nature of bi-variate reinforcement, ensures simplicity and a rather intuitive interpretation but

The following proposition states that argumentative relations in RXs are derived from causal relationships.

Proposition 4 (Relevance). \(R_- \cup R_+ \subseteq I \).

Note that, while straightforward for RXs, this property may be violated by (model-agnostic) explanation methods which do not leverage upon the underlying causal model. This property is in the same spirit as other properties in the XAI literature, e.g. *Dummy* (Sundararajan and Najmi 2020), which states that a feature which does not affect a classification is given a zero attribution value. This may be particularly important in some cases, e.g. in the running example, it may not be enough to use the absence of pineapple on pizza \((U_2 = 0) \) as a reason for entering a restaurant \((V_2 = 1) \), and \(V_1 = 1 \) provides a useful intermediate justification that the restaurant seems to be legitimately Italian.

The following requires that changing attackers or supporters in binary causal models necessitates a change in the value of the argument they attack or support, respectively.

Proposition 5 (Bipolar Counterfactual). If \(\langle U, V, E \rangle \) is binary, then \(\forall \langle W_1, W_2 \rangle \in I \) where \(\langle W_1, W_2 \rangle \in R_- \cup R_+ \), for every \(w \neq f_{W_1}[u] \): \(f_{W_2}[u, set(W_1 = w)] \neq f_{W_2}[u] \).

This is a powerful explanatory characteristic of RXs since attacks and supports indicate counterfactuals (in the binary case). For example, given the RX in Figure 1iii, a user can immediately see that changing the value of \(V_1 \) can be achieved by changing the value of \(V_1 \), which itself can be achieved by changing the value of \(U_1 \) or \(U_2 \).

The next property shows that behaviour similar to attacks and supports with discrete semantics (see (Carayol and Lagasque-Schiex 2005)) arises in RXs for binary models.

Proposition 6 ((Dis)agreement). If \(\langle U, V, E \rangle \) is binary, then, if \(\exists \langle W_1 \rangle \in R_-(u) \) then \(f_{W_1}[u] \neq f_{W_1}[u] \).

We thus observe that attacks indicate a contradiction between two arguments while supports indicate harmony between them. Clearly this is the case in Figure 1, where assigning \(U_2 \) value \(0 \) will reduce the value of \(V_1 \) to 0: a contradiction. Meanwhile, any input which changes \(V_1 \)’s value to 0 will necessitate the same result in \(V_2 \): a harmony.

The set of arguments assigned value \(1 \) in an RX for a binary causal model satisfies coherence (see §2).

Proposition 7 ((Internal and External) Coherence). If \(\langle U, V, E \rangle \) is binary, then the set of accepted arguments \(A_\alpha = \{ W_1 \in A \mid f_{W_1}[u] = 1 \} \) is internally and externally coherent.

This result indicates that the basic principles of argumentation are upheld in RXs, which hence can support some genuine forms of argumentative reasoning on the model by the user. For example, if the RX in Figure 1iii were given for an input \(u \) with \(f_{W_2}[u'] = 1 \) and \(f_{W_1}[u'] = 1 \), the set of accepted arguments would contain a contradiction, which is not intuitive since the accepted attacker has no effect.

5 Future Work

We believe that our approach provides the groundwork for many future directions. The computational complexity of RXs deserves attention. Moulds inspired by other properties, and resulting in other forms of AFs, could be devised. A full empirical analysis of RXs, including user studies, also seems worthwhile. Links between our work and existing XAI methods, particularly those utilising argumentation, could be instructive, while counterfactuals and causality also warrant investigation in our approach.
Acknowledgements
Toni was partially funded by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No. 101020934). Rago and Toni were partially funded by J.P. Morgan and by the Royal Academy of Engineering under the Research Chairs and Senior Research Fellowships scheme. Any views or opinions expressed herein are solely those of the authors listed. The authors would like to thank Fabrizio Russo and Emanuele Albini for their helpful contributions to discussions in the build up to this work.

References
Albini, E.; Baroni, P.; Rago, A.; and Toni, F. 2020a. PageRank as an argumentation semantics. In COMMA, 55–66.
Albini, E.; Rago, A.; Baroni, P.; and Toni, F. 2020b. Relation-based counterfactual explanations for Bayesian network classifiers. In IJCAI, 451–457.
Albini, E.; Rago, A.; Baroni, P.; and Toni, F. 2021. Influence-driven explanations for Bayesian network classifiers. In PRICAI, 88–100.
Amgoud, L., and Ben-Naim, J. 2018. Weighted bipolar argumentation graphs: Axioms and semantics. In IJCAI, 5194–5198.
Antaki, C., and Leudar, I. 1992. Explaining in conversation: Towards an argument model. European Journal of Social Psychology 22:181–194.
Atkinson, K.; Baroni, P.; Giacomin, M.; Hunter, A.; Prakken, H.; Reed, C.; Simari, G. R.; Thimm, M.; and Villata, S. 2017. Towards artificial argumentation. AI Magazine 38(3):25–36.
Baroni, P.; Comini, G.; Rago, A.; and Toni, F. 2017. Abstract games of argumentation strategy and game-theoretical argument strength. In PRIMA, 403–419.
Baroni, P.; Gabbay, D.; Giacomin, M.; and van der Torre, L., eds. 2018. Handbook of Formal Argumentation. College Publications.
Baroni, P.; Rago, A.; and Toni, F. 2018. How many properties do we need for gradual argumentation? In AAAI, 1736–1743.
Cayrol, C., and Lagasquie-Schiex, M. 2005. On the acceptability of arguments in bipolar argumentation frameworks. In ECSQARU, 378–389.
Cyras, K.; Rago, A.; Albini, E.; Baroni, P.; and Toni, F. 2021. Argumentative XAI: A survey. In IJCAI, 4392–4399.
de Graaf, M. M. A., and Malle, B. F. 2017. How people explain action (and autonomous intelligent systems should too). In AAAI Fall Symposium, 19–26.
Dejl, A.; He, P.; Mangal, P.; Mohsin, H.; Surdu, B.; Voina, E.; Albini, E.; Lertvittayakumjorn, P.; Rago, A.; and Toni, F. 2021. Argflow: A toolkit for deep argumentative explanations for neural networks. In AAMAS, 1761–1763.
Dung, P. M. 1995. On the Acceptability of Arguments and its Fundamental Role in Nonmonotonic Reasoning, Logic Programming and n-Person Games. Artificial Intelligence 77(2):321–358.
Gabbay, D. M. 2016. Logical foundations for bipolar and tripolar argumentation networks: preliminary results. Journal of Logic and Computation 26(1):247–292.
Guidotti, R.; Monreale, A.; Ruggieri, S.; Turini, F.; Gianotti, F.; and Pedreschi, D. 2019. A survey of methods for explaining black box models. ACM Computing Surveys 51(5):93:1–93:42.
Halpern, J. Y., and Pearl, J. 2001. Causes and explanations: A structural-model approach: Part 1: Causes. In UAI, 194–202.
Lundberg, S. M., and Lee, S. 2017. A unified approach to interpreting model predictions. In NeurIPS, 4765–4774.
Madumal, P.; Miller, T.; Sonenberg, L.; and Vetere, F. 2019. A grounded interaction protocol for explainable artificial intelligence. In AAMAS, 1033–1041.
Madumal, P.; Miller, T.; Sonenberg, L.; and Vetere, F. 2020. Explainable reinforcement learning through a causal lens. In AAAI, 2493–2500.
Miller, T. 2019. Explanation in artificial intelligence: Insights from the social sciences. Artificial Intelligence 267:1–38.
Pearl, J. 1995. Causal diagrams for empirical research. Biometrika 82(4):669–710.
Pearl, J. 1999. Reasoning with cause and effect. In IJCAI, 1437–1449.
Pearl, J. 2012. The do-calculus revisited. In UAI, 3–11.
Potyka, N. 2021. Interpreting neural networks as quantitative argumentation frameworks. In AAAI, 6463–6470.
Rago, A.; Cocarascu, O.; Bechliyanidis, C.; and Toni, F. 2020. Argumentation as a framework for interactive explanations for recommendations. In KR, 805–815.
Rago, A.; Cocarascu, O.; and Toni, F. 2018. Argumentation-based recommendations: Fantastic explanations and how to find them. In IJCAI, 1949–1955.
Schwab, P., and Karlen, W. 2019. CXPlain: Causal explanations for model interpretation under uncertainty. In NeurIPS, 10220–10230.
Sokol, K., and Flach, P. A. 2020. Explainability fact sheets: A framework for systematic assessment of explainable approaches. In FAT*, 56–67.
Sundararajan, M., and Najmi, A. 2020. The many shapley values for model explanation. In ICML, 9269–9278.
Teze, J. C.; Godo, L.; and Simari, G. R. 2018. An argumentative recommendation approach based on contextual aspects. In SUM, 405–412.
Timmer, S. T.; Meyer, J. C.; Prakken, H.; Renooij, S.; and Verheij, B. 2015. Explaining bayesian networks using argumentation. In ECSQARU, 83–92.
Vassiliades, A.; Bassiliades, N.; and Patkos, T. 2021. Argumentation and Explainable Artificial Intelligence: A Survey. The Knowledge Engineering Review 36(2).
Woodward, J. 1997. Explanation, invariance, and intervention. Philosophy of Science 64:S26–S41.