An analysis of supply chain collaboration index by using FAHP and SCCI: a case study of organic fertiliser company X, Indonesia

W A P Dania, A Hidayat, B A Nugrah and E Lestar

Agroindustrial Technology Department, Faculty of Agriculture Technology, Universitas Brawijaya, Malang, Indonesia

E-mail: wikedania@ub.ac.id

Abstract. Supply chain collaboration is one of the most crucial variables of driving business success in organic fertiliser Companies, especially to maintain the continual flow from upstream to downstream. Therefore, understanding the level of collaboration factors is vital in sustaining the partnership as well as reducing any conflicts among stakeholders. This study aims to measure the depth of collaboration among Company X and its suppliers. The assessment of the supply chain collaboration index will perform Fuzzy Analytical Hierarchy Process (FAHP) to weight the collaboration behaviour factors and Supply Chain Collaboration Index (SCCI) to measure the depth level of collaboration. The collaboration behaviour factors examined in this study are including joint effort, collaboration values, sharing activities, adaptation, trust, power, stability, commitment, continuous improvement and coordination. Based on the computation process using SCCI, the collaboration index among company X and its supplier is 76.72 on a scale of 1-100. It implies that the collaboration is at a moderate level. Consequently, the company needs to recognise the low score factors and develop a strategy for improvement. Some aspects that deserve further attention are sharing activities, power, and stability. By enhancing the performance of these factors, the supply chain collaboration index can also be increased.

1. Introduction

Collaboration is one of the most significant aspects of supporting business activities in any industry. Collaboration refers to integration and coordination process among supply chain partners in developing business process and organisation in order to accomplish common goals [1]. Collaboration provides access to any information, knowledge, financial and non-financial supports needed in the supply chain process. Collaboration also increases the agility in supporting a sustainable supply chain and assists any stakeholders to work together in resolving the common problems and achieving the intended outcomes [2].

Collaboration behaviour is one of the functional requirements to build a solid partnership agreement. Collaboration behaviour refers to a set of organisational characteristics which are essential in managing the collaboration activities among stakeholders to achieve excellent collaboration quality [3, 4]. Collaboration quality should be managed and improved continuously to ensure fair and productive collaboration among stakeholders involved. There are ten collaboration behaviour factors that have been shown to be significant in reaching the common goals among stakeholders who join in collaboration activities. It consists of collaboration value, coordination, joint effort, sharing activities, adaptation,
trust, continuous improvement, commitment, stability, and power [3]. These collaboration behaviour elements will affect supply chain strategies to reach the market and improve supply chain performance.

Company X is an organic fertiliser company based in East Java, Indonesia, with a vision to provide the greatest service to the stakeholders through its business and product. To attain this goal, Company X needs to maintain collaboration among the stakeholders in the supply chain, including with the suppliers. Suppliers are company’s partner who provides Company X with the organic fertiliser product. Then, the organic fertiliser will be distributed under Company X’s brand to all regions in Indonesia. This type of partnership will optimise the distribution process in terms of amount, location, time as well as improve profitability for both parties [5].

Despite the profits and benefits earned from its collaboration activities, it is likely to occasionally generate ineffective and inefficient outcomes [6, 7]. Collaboration behaviour factors heavily influence supply chain collaboration activities. Hence, it is necessary to evaluate the collaboration behaviour factors that represent the supply chain collaboration activities. As a consequence, both parties will be able to identify which factors need to be developed to enhance the collaboration activities that can bring effective business activities. This study aims to assess the collaboration index among Company X and its suppliers by considering the collaboration behaviour factors.

Each factor in the collaboration behaviour has a varied importance level. Therefore, the importance level for each factor needs to be evaluated to achieve a highly accurate supply chain collaboration analysis. There are several approaches that can be utilised in determining the importance level, such as Rank Order Centroid (ROC), Simple Additive Weighting (SAW), Analytical Network Process (ANP) dan Analytical Hierarchy Process (AHP) [8-11]. However, this study will apply AHP since this approach can evaluate the qualitative factors from quantitative perspectives and yield a realistic result [12]. AHP is multicriteria decision-making that can simplify the assessment problem and avoid the randomness of weighting factors [8, 13].

Moreover, AHP weights the independent factors systematically by breaking down the problem into smaller and superficial paired comparison judgments [14]. However, since it involves human judgement to evaluate the collaboration activities level, this assessment has relatively high ambiguity. Therefore, fuzzy logic is applied to the AHP process to minimise vagueness in the assessment process and increase accuracy [15].

After evaluating the importance level of each factor, the collaboration quality level can be assessed. There are several methods that can be applied in evaluating the collaboration quality level, such as Graph Theory, Structural Equation Modelling (SEM) dan Supply Chain Collaboration Index (SCCI)[16-18]. SCCI will be used in this study since this method can illustrate the collaboration level from various indicators explicitly from all stakeholders’ perspectives [17]. Besides, it can measure the index of collaborative practice from a collaboration behaviour factors perspective. The integration of FAHP and SCCI can provide a comprehensive result of the supply chain collaboration index by considering the importance level of each behaviour factor. In addition, based on the index level, the strategy to improve the collaboration performance will be suggested.

2. Material and methods

2.1. Data collection

The data collection was initiated by designing the questionnaires to gather all information relevant to the research objective. There are two questionnaires in a closed-ended format had been used in this study. The first questionnaire is a pairwise comparison to assess the weight of criteria, representing the important priorities of the collaboration behaviour factors. Three experts as respondents were asked to rate the relative importance of two criteria by using a 1-9 scale that indicated equally important (1), weakly more important (3), strongly more important (5), very strongly more important (7), and extremely more important (9). The second questionnaire assesses the degree of supply chain collaboration activities, representing the collaboration index. In this study, ten factors influencing collaboration behaviour are examined. These factors represent the significant factors in fostering and
maintaining collaboration among stakeholders in the supply chain [3]. The detail of the factors can be seen in Table 1. The Five-point Likert Scale was used here, then converted into eleven scales for index calculation. According to Kumar and Banerjee [19], the scale range in SCCI should be N+1, which is N is the total factor. This questionnaire was then distributed to 30 suppliers of organic fertiliser in Company X.

Table 1. Collaboration behaviour factors in supply chain.

Factors	Definition
Joint Effort	Collaborative activities among the supply chain members in the decision-making process regarding planning, executing, and assessment at the operational, tactical, and strategic levels.
Sharing activities	The willingness to share asset, profit, and risk among supply chain members.
Collaboration Value	The fundamental characteristics of the organisation in strengthening the supply chain collaboration value to build harmony among stakeholders.
Adaptation	The company’s ability in aligning the goal, strategy, resources, and supply chain process with its partners.
Trust	The willingness to trust and rely on other parties in achieving mutual goals.
Commitment	The willingness of the organisation to maintain and improve its relationship over time.
Power	The ability of the company to positively influence the other parties’ action and decision.
Continuous Improvement	The ability of the company to continually improve its performance.
Coordination	The interaction among stakeholders to align their perspectives and goals by cooperating effectively.
Stability	The awareness of the stakeholders to act cooperatively in achieving the common objective.

Source: [3, 16, 20-23]

2.2. Integrated model Fuzzy Analytic Hierarchy Process (FAHP) – Supply Chain Collaboration Index (SCCI)

Data were analysed in two stages. Firstly, the importance level of collaboration behaviour factors was examined by using FAHP. Before processing the data to the next step, the consistency ratio (CR) for each question in pairwise comparison had to be assessed. This step was conducted to ensure that all answers were consistent and valid with the value of CR ≤ 0.1 [24]. The equation to calculate CR can be seen below.

\[
CI = \frac{(\lambda_{max} - n)}{(n - 1)} \tag{1}
\]

\[
CR = \frac{CI}{RI} \tag{2}
\]

where CI is the consistency index, \(\lambda_{max}\) is the largest eigenvalue, n is the number of factors being compared, and RI is a random index developed by [25] which can be seen in Table 2.

Matrix order (n)	3	4	5	6	7	8	9	10
RI	0.58	0.90	1.12	1.24	1.32	1.41	1.45	1.49
b. Calculate the geometric mean of fuzzy comparison values of each criterion by using equation (4).

\[\tilde{r}_i = \left(\prod_{j=1}^{n} d_{ij} \right)^{1/n}, \quad i = 1, 2, \ldots, n \]

(4)

c. Calculate the fuzzy weight of each criterion by following these steps:
1) Determine the vector summation of each \(\tilde{r}_i \)
2) Find the inverse of the summation vector and replace the fuzzy triangular number.
3) Multiply each \(\tilde{r}_i \) with reverse vector to find the fuzzy weight of criterion I (\(\tilde{w}_i \))

\[\tilde{w}_i = \tilde{r}_i \otimes (\tilde{r}_1 \oplus \tilde{r}_2 \oplus \ldots \oplus \tilde{r}_n)^{-1} \]
\[= (l \tilde{w}_i, m \tilde{w}_i, u \tilde{w}_i) \]

(5)
d. Since \(\tilde{w}_i \) are fuzzy triangular number, defuzzification should be carried out by using the centre of area method:

\[M_i = \frac{3}{l \tilde{w}_i + m \tilde{w}_i + u \tilde{w}_i} \]

(6)
e. \(M_i \) is a non-fuzzy number, and the normalisation process is implemented by using equation (6):

\[N_i = \frac{M_i}{\sum_{i=1}^{n} M_i} \]

(7)

Once the weight of each factor determined, the next step is assessing the collaboration index with Kumar and Banerjee [19] model below:

\[SCCI = \frac{\sum_{i=1}^{n} \frac{w_i}{x_i} - \sum_{i=1}^{n} w_i}{n \sum_{i=1}^{n} w_i} \times 100 \]

(8)

Where:
- \(w_i \): the weight of collaboration behaviour factor \(i \)
- \(x_i \): the average of value measurement of collaboration behaviour factor \(i \)
- \(n \): the number of collaboration behaviour factors

3. Results and discussion

3.1. The importance level of collaboration behaviour factors
The pairwise comparison was created based on the experts’ response to the questionnaires. Before performing further analysis, the consistency of the respondents’ result was evaluated to ensure the accuracy of the weighting process. The data obtained has a consistency ratio of 0.097. According to Saaty [25], the assignment of judgement can be categorised as consistent and acceptable if the CR < 0.1. The pairwise comparison is created once the data has been checked for consistency. After that, the result of the pairwise comparison was converted into a Triangular Fuzzy Number (TFN). Meanwhile, the weight of each criterion was calculated by using Geometric Mean to determine the importance level. The importance level of each collaboration behaviour factor is presented in Table 3.

As seen in Table 3, the most significant factor among stakeholders in organic fertiliser is sharing activities. Company X shares the facility, risk, raw material, technology, and incentive with the suppliers, while suppliers share the organic fertiliser as the primary commodity in this business process. Anbanandam, Banwet and Shankar [16] stated that sharing activities in the partnership process can be beneficial in supply chain risk mitigation and increase the competitive advantages. On the other hand, coordination has the lowest priority compared to other factors. It is because Company X and its suppliers have managed a clear and well-structured collaboration system. Therefore, without performing regular coordination, the collaboration of both parties is still well-organised. However, a centralised coordination mechanism will allow sharing activities and reduce the supply chain costs to create a more transparent and effective operation process. [27, 28].
Table 3. The importance level of collaboration behaviour factor.

Collaboration behaviour Factor	Weight	Priority
Joint Effort (X₁)	0.1003	5
Sharing activities (X₂)	0.1475	1
Adaptation (X₃)	0.1064	4
Collaboration value (X₄)	0.0865	8
Trust (X₅)	0.0866	7
Coordination (X₆)	0.0587	10
Commitment (X₇)	0.0752	9
Power (X₈)	0.1431	2
Continuous Improvement (X₉)	0.0881	6
Stability (X₁₀)	0.1075	3

3.2. Supply chain collaboration index

After the importance level of each factor has been determined, the supply chain collaboration index can be calculated as shown in Table 4 below.

Table 4. Supply chain collaboration index.

Factor	Weight	Collaboration score	Index	Rank
Joint Effort (X₁)	0.1003	9.152	0.918	5
Sharing activities (X₂)	0.1475	7.392	1.090	2
Adaptation (X₃)	0.1064	9.174	0.976	3
Collaboration value (X₄)	0.0865	9.196	0.795	8
Trust (X₅)	0.0866	9.548	0.827	6
Coordination (X₆)	0.0587	8.272	0.486	10
Commitment (X₇)	0.0752	9.152	0.688	9
Power (X₈)	0.1431	8.14	1.165	1
Continuous Improvement (X₉)	0.0881	9.108	0.802	7
Stability (X₁₀)	0.1075	8.602	0.925	4

$$\sum = 1.0000 \quad 87.736 \quad 8.672$$

$$SCCI = \frac{\sum_{i=1}^{n}w_i x_i - \sum_{i=1}^{n}w_i x}{n^2 \sum_{i=1}^{n}w_i} \times 100 = \frac{8.672 - 1.000}{10 \times 1.000} \times 100 = 76.72$$

Table 4 demonstrates that the highest collaboration behaviour factor in practice is trust. It is known that Company X and its supplier have built a strong mutual trust in their partnership. Company X strongly believes that its suppliers will provide a product with exceptional grade. On the other hand, the suppliers also have high confidence that Company X will offer high profitability in this business process. A partnership with a high degree of trust has a better possibility of generating new business opportunities [29].

Moreover, collaboration value, adaptation, joint effort, commitment, and continuous improvement have a score greater than 9. It means that the stakeholders share collaboration values such as mutual understanding and interpersonal relationship [3]. They also commit to adjusting their strategies to fit each other and keep a better performance in the long-term partnership process. In addition, they work together in arranging several activities to fulfil market demand at the operational and tactical level. This activity will result in better demand management and ease both parties to solve the limited resources problem [30].
However, several factors with high importance level show lower collaboration activities score (sharing activities, power, stability). Therefore, after calculating the total collaboration index (Equation 9) among Company X and its suppliers, it is categorised as moderate level (76.72). Sharing activities is a critical factor to consider when it comes to collaborative activities. Both Company X and its suppliers should balance the sharing risk, losses, and benefit during the process due to product delivery delays or inferior product quality. Risk sharing in supply chain activities will increase stakeholder involvement and encourage them to contribute more [3, 31]. Additionally, they should commit to aligning their strategy and resources to achieve a specific mission: providing a high-quality product and excellent customer service through sharing material, information, and technology.

Furthermore, power is also critical in collaboration activities since it can drive the partnership and its elements to attain the common goals. Company X has the power to organising the suppliers, managing the resources, and supervising supply chain activities. However, Company X should optimise the resources management and assure a seamless supply chain process in practice. Stakeholders with the dominant resources will continue to maintain, facilitate, and support their partners to build effective collaboration [32].

Stability is also one of the factors that should be given more attention. Suppliers should be able to adjust and develop their production capabilities to meet the customer demand based on the forecasting result of Company X. On the other hand, Company X should be more flexible to various enterprises with diverse capabilities and characteristics. Hence, maintaining stability may improve trust and lead to a long-term partnership to gain more significant benefits [33, 34].

4. Conclusions
Collaboration behaviour is one of the functional requirements to establish a solid partnership agreement in supply chain activities among Company X and its suppliers. However, each factor in the collaboration behaviour has a different importance level. According to the research, the most important to the least important factors in the collaboration behaviour are sharing activities (X_2), power (X_8), stability (X_{10}), adaptation (X_3), joint effort (X_1), continuous improvement (X_9), trust (X_5), collaboration value (X_4), commitment (X_7), and coordination (X_6). Furthermore, these factors affect the supply chain collaboration index. Based on the computation using SCCI, the collaboration index among company X and its supplier is 76.72 on a scale of 1-100. It shows that the collaboration is classified as moderate level. Thus, the company must review the low-scoring factors and devise an improvement plan. The factors that demand more attention are sharing activities, power, and stability. The performance of these factors can be managed by aligning their strategy and resources to reach the common goal, strengthening power in directing the partnership and its elements, and adjusting as well as developing their capabilities to gain a long-term partnership.

References
[1] Jiang W 2019 An intelligent supply chain information collaboration model based on Internet of Things and big data IEEE Access 7 58324-35
[2] Rota C, Pugliese P, Hashem S and Zanasi C 2018 Assessing the level of collaboration in the Egyptian organic and fair trade cotton chain J. Clean. Prod. 170 1665-76
[3] Dania W A P, Xing K and Amer Y 2018 Collaboration behavioural factors for sustainable agri-food supply chains: a systematic review J. Clean. Prod. 186 851-64
[4] Fischer C and Reynolds N 2010 Collaborative advantage, relational risks and sustainable relationships: a literature review and definition. In: Agri-food Chain Relationships, (London, UK: CAB International) pp 74-89
[5] Turkulainen V, Roh J, Whipple J M and Swink M 2017 Managing internal supply chain integration: integration mechanisms and requirements J. Bus. Logist. 38 290-309
[6] Elkady G, Moizer J and Liu S 2014 A decision support framework to assess grocery retail supply chain collaboration: a system dynamics modelling approach Int. J. Innov. Technol. Manage. 5 232-8
[7] Nyaga G N, Whipple J M and Lynch D F 2010 Examining supply chain relationships: do buyer and supplier perspectives on collaborative relationships differ? J. Oper. Manag. 28 101-14
[8] Rajesh G and Malliga P 2013 Supplier selection based on AHP QFD methodology Procedia Eng. 64 1283-92
[9] Lam J S L and Lai K-h 2015 Developing environmental sustainability by ANP-QFD approach: the case of shipping operations J. Clean. Prod. 105 275-84
[10] Ribeiro A M N C, Sadok D F H, da Cruz Brito M E, de Araújo Cavalcanti Á, Endo P T and Kelner J 2020 Comparative Analysis of Current Transducers for Development of Smart Plug Through Rank Order Centroid Method IEEE Lat. Am. Trans. 18 147-55
[11] Azevedo S G and Barros M 2017 The application of the triple bottom line approach to sustainability assessment: The case study of the UK automotive supply chain J. Ind. Eng. Manag. 10 286-322
[12] Gomes L F A M and Andrade R M d 2012 Performance evaluation in assets management with the AHP Pesqui. Oper. 32 31-54
[13] Wang H, Chen Z, Feng X, Di X, Liu D, Zhao J and Sui X 2018 Research on network security situation assessment and quantification method based on analytic hierarchy process Wirel. Pers. Commun. 102 1401-20
[14] Awasthi A and Chauhan S S 2012 A hybrid approach integrating affinity diagram, AHP and fuzzy TOPSIS for sustainable city logistics planning Appl. Math. Model. 36 573-84
[15] Chan H K, Sun X and Chung S-H 2019 When should fuzzy analytic hierarchy process be used instead of analytic hierarchy process? Decis. Support Syst. 125 113114
[16] Anbanandam R, Banewt D K and Shankar R 2011 Evaluation of supply chain collaboration: a case of apparel retail industry in India Int. J. Product. Perform. 60 82-98
[17] Simatupang T M and Sridharan R 2005 The collaboration index: a measure for supply chain collaboration J. Phys. Distrib. Logist. Manag. 35 44-62
[18] Karuranga É, D'Amours S and Frayret J-M 2008 Measurement and determinants of supply chain collaboration. (Canada: CIRRELT Universite de Montreal, Montreal)
[19] Kumar G and Banerjee R N 2014 Supply chain collaboration index: an instrument to measure the depth of collaboration Benchmarking 21 184-204
[20] Lupton B and Warren R 2018 Managing without blame? Insights from the philosophy of blame J. Bus. Ethics 152 41-52
[21] Boeck H and Wamba S F 2008 RFID and buyer-seller relationships in the retail supply chain Int. J. Retail. Distrib. Manag. 36 433-60
[22] Fynes B, Voss C and de Búrca S 2005 The impact of supply chain relationship quality on quality performance Int. J. Prod. Econ. 96 339-54
[23] Wang J, Hao X and Xiao K 2012 Sa evaluation model of food supply chain stability. In: Industrial Control and Electronics Engineering (ICICEE): IEEE) pp 2018-21
[24] Senthil S, Murugananthan K and Ramesh A 2018 Analysis and prioritisation of risks in a reverse logistics network using hybrid multi-criteria decision making methods J. Clean. Prod. 179 716-30
[25] Saaty R W 1987 The analytic hierarchy process—what it is and how it is used Mathematical Modelling 9 161-76
[26] Ahmed F and Kilic K 2019 Fuzzy Analytic Hierarchy Process: A performance analysis of various algorithms Fuzzy Sets Syst. 362 110-28
[27] Heimeriks K and Schreiner M 2002 Alliance capability, collaboration quality, and alliance performance: an integrated framework. In: Eindhoven Center for Innovation Studies, Eindhoven,
[28] Chen T-H and Chen J-M 2005 Optimizing supply chain collaboration based on joint replenishment and channel coordination Transp. Res. E: Logist. Transp. Rev. 41 261-85
[29] Qu W G and Yang Z 2015 The effect of uncertainty avoidance and social trust on supply chain collaboration J. Bus. Res. 68 911-8
[30] Cao M and Zhang Q 2011 Supply chain collaboration: impact on collaborative advantage and firm performance J. Oper. Manag. 29 163-80

[31] Pradita S P, Ongkumaruk P and Leingpibul T 2020 The Use of Supply Chain Risk Management Process (SCRMP) in Third-Party Logistics Industry: A Case Study in Indonesia Industria: Jurnal Teknologi dan Manajemen Agroindustri 9 1-10

[32] Wu I-L, Chuang C-H and Hsu C-H 2014 Information sharing and collaborative behaviors in enabling supply chain performance: A social exchange perspective Int. J. Prod. Econ. 148 122-32

[33] Yang J, Wang J, Wong C W Y and Lai K-H 2008 Relational stability and alliance performance in supply chain Omega 36 600-8

[34] Bezuidenhout C N, Bodhanya S and Brenchley L 2012 An analysis of collaboration in a sugarcane production and processing supply chain Br. Food J. 114 880-95