SUPPORTING INFORMATION

Controlling Two-Photon Action Cross Section by Changing a Single Heteroatom Position in Fluorescent Dyes

Borys Ośmiałowski,*† Elizaveta F. Petrusevich,‡ Magda A. Antoniak,¶ Izabela Grela,§ Mohammed A. Bin Jassar,∥ Marcin Nyk,¶ Josep M. Luis,⊥ Beata Jędrzejewska,§ Robert Zalesny,*‡ and Denis Jacquemin*#:+

†Faculty of Chemistry, Nicolaus Copernicus University, Gagarina 7, PL-87100 Toruń, Poland
‡Department of Physical and Quantum Chemistry, Faculty of Chemistry, Wrocław University of Science and Technology, Wyb. Wyspiańskiego 27, PL–50370 Wrocław, Poland
¶Advanced Materials Engineering and Modelling Group, Faculty of Chemistry, Wrocław University of Science and Technology, Wyb. Wyspiańskiego 27, PL–50370 Wrocław, Poland
§Faculty of Chemical Technology and Engineering, UTP University of Science and Technology, Seminaryjna 3, 85-326, Bydgoszcz, Poland
∥Université d’Aix-Marseille, Département de Chimie, CNE Master, Campus de St Jérôme, 13013 Marseille, France
⊥Institute of Computational Chemistry and Catalysis and Department of Chemistry, University of Girona, Campus de Montilivi, 17071 Girona, Catalonia, Spain
#Université de Nantes, CNRS, CEISAM UMR 6230, F-44000 Nantes, France

E-mail: Borys.Osmialowski@umk.pl; Robert.Zalesny@pwr.edu.pl;
Denis.Jacquemin@univ-nantes.fr
SYNTHESIS... S2
CHARACTERIZATION OF OBTAINED FLUORESCENT DYES ... S2
NMR SPECTRA.. S4
ABSORPTION AND FLUORESCENCE MEASUREMENTS (EXPERIMENTAL SETUP)................................. S15
PHOTOPHYSICAL DATA .. S16
TIME-CORRELATED SINGLE-PHOTON COUNTING MEASUREMENTS ... S18
PHOTOISOMERISATION EXPERIMENTS.. S44
Z-SCAN SETUP AND EXPERIMENT (EXPERIMENTAL SETUP)... S50
QUANTUM-CHEMICAL CALCULATIONS.. S53
Synthesis

The synthesis of the precursors of 1-5 was performed by the reaction of the aminoheterocycle available from commercial sources with ethyl (N,N-dimethylamino)cinnamate according to the procedure described elsewhere. [1] The ethyl (N,N-dimethylamino)cinnamate was obtained as described before. [2] The resulting amides were converted to BF₂-carrying dyes using known procedure. [1, 3]

Characterization of obtained fluorescent dyes

Compound 2.

Diffuoroboranyl (Z,2E)-3-[4-(dimethylamino)phenyl]-N-(pyrimidin-2-yl)prop-2-enimidate. Orange-red powder. Mp >360 °C (dec). ¹H NMR (400 MHz, CDCl₃) δ 9.06 (dd, J = 4.5, 2.5 Hz, 1H), 8.50 (dd, J = 6.1, 2.5 Hz, 1H), 8.08 (d, J = 15.6 Hz, 1H), 7.53 (d, J = 8.9 Hz, 2H), 7.25 (dd, J = 6.0, 4.5 Hz, 1H), 6.72 (d, J = 9.0 Hz, 2H), 6.62 (d, J = 15.6 Hz, 1H), 3.07 (s, 6H). ¹¹B NMR (128 MHz, CDCl₃) δ 0.62 (t). ¹³C NMR (101 MHz, CDCl₃) δ 170.9, 165.8, 158.1, 152.2, 148.6, 147.5, 131.1, 123.0, 115.4, 115.2, 112.4, 40.4. ¹⁹F NMR (376 MHz, CDCl₃) δ -138.52 (m). Elemental for C₁₅H₁₅BF₂N₄O calcd.: C (56.99), H (4.78), B (3.42), F (12.02), N (17.72), O (5.06), found C (56.85), H (4.83), N (17.58).

Compound 3.

Diffuoroboranyl (Z,2E)-3-[4-(dimethylamino)phenyl]-N-(pyrazin-2-yl)prop-2-enimidate. Red solid. Mp >360 °C (dec). ¹H NMR (400 MHz, CDCl₃) δ 8.81 (d, J = 1.3 Hz, 1H), 8.47 (d, J = 3.6 Hz, 1H), 8.03 (s, 1H), 8.01 (d, J = 15.5 Hz, 1H), 7.53 (d, J = 8.8 Hz, 1H), 6.70 (d, J = 9.0 Hz, 1H), 6.55 (d, J = 15.5 Hz, 1H), 3.07 (s, 6H). ¹¹B NMR (128 MHz, CDCl₃) δ 0.07 (t). ¹³C NMR (101 MHz, CDCl₃) δ 169.9, 148.6, 148.2, 138.8, 131.0, 128.9, 115.1, 112.6, 40.6. ¹⁵N NMR (41 MHz, CDCl₃) δ 57.7, 205.9. ¹⁹F NMR (376 MHz, CDCl₃) δ -138.25 – -138.51 (m). Elemental for C₁₅H₁₅BF₂N₂O calcd.: C (56.99), H (4.78), B (3.42), F (12.02), N (17.72), O (5.06), found C (56.93), H (4.89), N (17.56).

Compound 4.
Difluoroboranyl (Z,2E)-3-[4-(dimethylamino)phenyl]-N-(pyrimidin-4-yl)prop-2-enimidate. Deep-red crystals. Mp >360 °C (dec) 1H NMR (400 MHz, CDCl3) δ 8.90 (d, J = 1.1 Hz, 1H), 8.66 (d, J = 5.9 Hz, 1H), 8.05 (d, J = 15.5 Hz, 1H), 7.53 (d, J = 8.6 Hz, 2H), 7.18 (d, J = 5.5 Hz, 1H), 6.70 (d, J = 8.8 Hz, 2H), 6.52 (d, J = 15.5 Hz, 1H), 3.08 (s, 6H). 13B NMR (128 MHz, CDCl3) δ 0.05 (t). 13C NMR (101 MHz, CDCl3) δ 170.90, 159.61, 158.34, 152.71, 150.35, 149.80, 131.34, 122.12, 117.30, 114.22, 111.92, 40.15. 15N NMR (41 MHz, CDCl3) δ 59.3, 202.4, 275.1. 19F NMR (376 MHz, CDCl3) δ -137.60 (m). Elemental for C15H15BF2N4O calcd.: C (56.99), H (4.78), N (17.72), found C (56.77), H (4.90), N (17.66).

Compound 5.

Difluoroboranyl (Z,2E)-3-[4-(dimethylamino)phenyl]-N-(pyridazin-3-yl)prop-2-enimidate. Red solid. Mp 245-246 °C. 1H NMR (400 MHz, CDCl3) δ 8.81 (dd, J = 4.4, 1.6 Hz, 1H), 8.03 (d, J = 15.5 Hz, 1H), 7.73 (dd, J = 9.0, 4.4 Hz, 1H), 7.59 (dd, J = 9.0, 1.6 Hz, 1H), 7.52 (d, J = 8.9 Hz, 2H), 6.70 (d, J = 9.0 Hz, 2H), 6.53 (d, J = 15.5 Hz, 1H), 3.07 (s, 6H). 13B NMR (128 MHz, CDCl3) δ 0.20 (t). 13C NMR (101 MHz, CDCl3) δ 169.3, 156.9, 152.3, 148.9, 147.0, 133.3, 131.1, 130.3, 114.3, 112.2, 40.3. 15N NMR (41 MHz, CDCl3) δ 57.7. 19F NMR (376 MHz, CDCl3) δ -138.81. Elemental for C15H15BF2N4O calcd.: C (56.99), H (4.78), N (17.59), found C (56.71), H (4.99), N (17.59).
NMR spectra

Fig. S1. The 1H NMR spectrum for 2

Fig. S2. The 11B NMR spectrum for 2
Fig. S3. The 13C NMR spectrum for 2

Fig. S4. The 1H,15N HMBC NMR spectrum for 2
Fig. S5. The 19F NMR spectrum for 2
Fig. S6. The 1H NMR spectrum for 3

Fig. S7. The 11B NMR spectrum for 3
Fig. S8. The 13C NMR spectrum for 3

Fig. S9. The 1H,15N HMBC NMR spectrum for 3
Fig. S10. The 19F NMR spectrum for 3
Fig. S11. The 1H NMR spectrum for 4

Fig. S12. The 11B NMR spectrum for 4
Fig. S13. The 13C NMR spectrum for 4

Fig. S14. The 1H,15N HMBC NMR spectrum for 4
Fig. S15. The 19F NMR spectrum for 4

Fig. S16. The 1H NMR spectrum for 5
Fig. S17. The 11B NMR spectrum for 5

Fig. S18. The 13C NMR spectrum for 5
Fig. S19. The 1H,15N HMBC NMR spectrum for 5

Fig. S20. The 19F NMR spectrum for 5
Absorption and fluorescence measurements (experimental setup)

Absorption spectra were recorded at room temperature with a Shimadzu UV-vis Multispec-1501 spectrophotometer (Japan), using quartz cells with a path length of 1.0 cm. The concentration of the compounds was ca. 1.0 x 10^{-5} M.

Emission spectra were taken on a Hitachi F-7100 spectrometer (Japan) in ca. 1.0 x 10^{-6} M solutions. Fluorescence quantum yields were determined based on the equation below following a literature protocol.[4]

\[\Phi_{dye} = \frac{\Phi_{ref}}{\frac{l_{dye}A_{dye}}{l_{ref}A_{ref}} \cdot n_s^2} \]

(eq. 1)

where \(\Phi \) is the fluorescence quantum yield, \(A \) is the absorbance at the excitation wavelengths, \(I \) is the integrated emission intensity and \(n \) is the refractive indices of the solvents used. The “dye” and “ref” index refer to the dye and standard samples, respectively. As a standard[5] we used Coumarin 153 in anhydrous ethanol, Ex=450 nm or 420 nm, \(\Phi_{ref} = 0.38 \) and Fluorescein in 0.1N NaOH, Ex=470 nm, \(\Phi_{ref} = 0.91 \).

Time-correlated single-photon counting measurements were performed with an Edinburgh Analytical Instruments F920P spectrometer. Samples were excited at 466.6 nm using a laser diode with a pulse width of about 81.5 ps, and maximal average power 5 mW. The emission intensity was recorded at fluorescence maximum wavelength. A solution of colloidal silica was used to obtain the instrument response function (IRF). Fluorescence lifetimes were calculated using the FAST software package by fitting an exponential decay curve to the obtained data. The average lifetime, \(\tau_{av} \), was calculated as

\[\tau_{av} = \frac{\Sigma \tau_i \alpha_i}{\Sigma \alpha_i} \]

(eq. 2)

were \(\alpha_i \) and \(\tau_i \) are the amplitudes and lifetimes.

The radiative (\(k_r \)) and nonradiative (\(k_{nr} \)) rate constants were calculated based on the average lifetime of the \(S_1 \) excited state (\(\tau_{av} \)) and the fluorescence quantum yield (\(\Phi \)), using following equations:

\[k_r = \frac{\Phi_{dye}}{\tau_{av}} \]

(eq. 3)

\[k_{nr} = \frac{1-\Phi_{dye}}{\tau_{av}} \]

(eq. 4)

The measurements of bleaching process studied by UV-Vis spectroscopy were performed in a quartz cuvette with dimensions 4x1x1 cm. In order to ensure complete absorption of light, the cuvette was placed in a horizontal position and irradiated with diode-pumped solid state (DPSS) laser light (\(\lambda_{EM}=457 \) nm; intensity 50 mW) through the bottom wall (the optical path length = 4 cm). The solution was stirred during irradiation.
Table S1. The spectral properties of 1-5 in chosen solvents

Solvent	λ_abs	λ_flu	FQY									
MCH												
Dioxane	429.5	441	465.5	462	449.5	605	4060	3970	4211	3343	4196	
Et_2O	425.5	437	462.5	460	443	605	4024	3980	4200	3289	4258	
CHCl_3	441.5	468	486.5	481.5	471.5	605	3675	3059	4220	3044	3818	
EA	428.5	442	465.5	464	447	605	4887	4574	5679	4130	5010	
THF	432	444	471	466	450	605	4766	4601	5708	4116	5415	
AcMe	434	444	470	466	453	605	5374	4684	7232	4869	4025	
ACN	431.5	447	467.5	468	453.5	605	5814	4660	7424	5033	3809	
DMF	443	454	478	475.5	461.5	605	5421	4528	6149	4854	3811	
MeOH	437.5	453	473	472	456.5	605	5436	4025	5565	4641	4207	

\(a\) – Absorption maximum (λ_max), extinction coefficient (ε), emission maximum (λ_flu), Stokes shift (ΔS) and fluorescence quantum yield (FQY), \(b\) – vibrational features, \(c\) – values very close to the benzoate derivative [6]
Table S2. The time-resolved fluorescence data of 1-5 in chosen solvents:

Solvent	t1 (%)	t2 (%)	t1 (%)	t2 (%)	t1 (%)	t2 (%)
MCH	1.793	1.434	1.488	1.727	1.551	
Dioxane	1.294	1.192	1.530	1.014	1.476	
EtO	1.111	1.184	1.390	1.487	1.326	
CHCl3	1.054	1.657	1.453	1.437	1.176	
EA	1.073	1.896	1.628	1.233	2.744	
THF	1.054	1.155	1.337	1.240	0.844	
AcMe	1.073	1.896	1.628	1.233	2.744	
ACN	1.040	2.034	1.386	1.700	1.640	
DMSO	1.212	1.729	1.536	1.566	1.581	
MeOH	1.155	1.753	1.505	1.214	1.092	

* - t1/2 (%) fluorescence lifetimes and their amplitudes, radiative (k_r) and non-radiative (k_n) rate constants [*10^9 s^-1].

S17
Time-correlated single-photon counting measurements

Fig. S21. The time-resolved measurements for fluorescence of 1 in methylcyclohexane

Fig. S22. The time-resolved measurements for fluorescence of 1 in 1,4-dioxane
Fig. S23. The time-resolved measurements for fluorescence of 1 in diethyl ether

Fig. S24. The time-resolved measurements for fluorescence of 1 in chloroform
Fig. S25. The time-resolved measurements for fluorescence of 1 in ethyl acetate

Fig. S26. The time-resolved measurements for fluorescence of 1 in tetrahydrofuran
Fig. S27. The time-resolved measurements for fluorescence of 1 in acetone

Fig. S28. The time-resolved measurements for fluorescence of 1 in acetonitrile
Fig. S29. The time-resolved measurements for fluorescence of 1 in dimethylformamide

Fig. S30. The time-resolved measurements for fluorescence of 1 in methanol
Fig. S31. The time-resolved measurements for fluorescence of 2 in methylcyclohexane

Fig. S32. The time-resolved measurements for fluorescence of 2 in 1,4-dioxane
Fig. S33. The time-resolved measurements for fluorescence of 2 in diethyl ether

Fig. S34. The time-resolved measurements for fluorescence of 2 in chloroform
Fig. S35. The time-resolved measurements for fluorescence of 2 in ethyl acetate

Fig. S36. The time-resolved measurements for fluorescence of 2 in tetrahydrofuran
Fig. S37. The time-resolved measurements for fluorescence of 2 in acetone

Fig. S38. The time-resolved measurements for fluorescence of 2 in acetonitrile
Fig. S39. The time-resolved measurements for fluorescence of 2 in dimethylformamide

Fig. S40. The time-resolved measurements for fluorescence of 2 in methanol
Fig. S41. The time-resolved measurements for fluorescence of 3 in methylcyclohexane

Fig. S42. The time-resolved measurements for fluorescence of 3 in 1,4-dioxane
Fig. S43. The time-resolved measurements for fluorescence of 3 in diethyl ether

Fig. S44. The time-resolved measurements for fluorescence of 3 in chloroform
Fig. S45. The time-resolved measurements for fluorescence of 3 in ethyl acetate

Fig. S46. The time-resolved measurements for fluorescence of 3 in tetrahydrofuran
Fig. S47. The time-resolved measurements for fluorescence of 3 in acetone

Fig. S48. The time-resolved measurements for fluorescence of 3 in acetonitrile
Fig. S49. The time-resolved measurements for fluorescence of 3 in dimethylformamide

Fig. S50. The time-resolved measurements for fluorescence of 3 in methanol
Fig. S51. The time-resolved measurements for fluorescence of 4 in methylcyclohexane

Fig. S52. The time-resolved measurements for fluorescence of 4 in 1,4-dioxane
Fig. S53. The time-resolved measurements for fluorescence of 4 in diethyl ether.

Fig. S54. The time-resolved measurements for fluorescence of 4 in chloroform.
Fig. S55. The time-resolved measurements for fluorescence of 4 in ethyl acetate

Fig. S56. The time-resolved measurements for fluorescence of 4 in tetrahydrofuran
Fig. S57. The time-resolved measurements for fluorescence of 4 in acetone

Fig. S58. The time-resolved measurements for fluorescence of 4 in acetonitrile
Fig. S59. The time-resolved measurements for fluorescence of 4 in dimethylformamide.

Fig. S60. The time-resolved measurements for fluorescence of 4 in methanol.
Fig. S61. The time-resolved measurements for fluorescence of 5 in methylcyclohexane

Fig. S62. The time-resolved measurements for fluorescence of 5 in 1,4-dioxane
Fig. S63. The time-resolved measurements for fluorescence of 5 in diethyl ether

Fig. S64. The time-resolved measurements for fluorescence of 5 in chloroform
Fig. S65. The time-resolved measurements for fluorescence of 5 in ethyl acetate

Fig. S66. The time-resolved measurements for fluorescence of 5 in tetrahydrofuran
Fig. S67. The time-resolved measurements for fluorescence of 5 in acetone

Fig. S68. The time-resolved measurements for fluorescence of 5 in acetonitrile
Fig. S69. The time-resolved measurements for fluorescence of 5 in dimethylformamide

Fig. S70. Fluorescence quantum yields for the set of studied compounds
Fig. S71. The phosphorescence and fluorescence for 2-5 recorded in MeTHF at 77K
Photoisomerisation experiments

Fig. S72. The absorption spectrum of 1 during irradiation (time given in [s])

Fig. S73. The absorption spectrum of 2 during irradiation (time given in [s])
Fig. S74. The absorption spectrum of 3 during irradiation (time given in [s])

Fig. S75. The absorption spectrum of 4 during irradiation (time given in [s])
Fig. S76. The absorption spectrum of 5 during irradiation (time given in [s]).
Table S3. The values of the Δf_{LM} solvent parameter (Lippert-Mataga model)

Solvent	Δf
methylcyclohexane	-0.00062
diethyl ether	0.166898
chloroform	0.148156
ethyl acetate	0.200218
THF	0.209585
acetone	0.284314
acetonitrile	0.304568
N,N-dimethylformamide	0.274396

Table S4. Ground- (μ, S_0) and excited-state (μ, S_1) dipole moments predicted by CC2 method for 1-5 in CHCl$_3$ and dipole moment difference ($\Delta \mu$) estimated from Lippert-Mataga plots (shown i salso the corresponding coefficient χ^2)

compound	Lippert-Mataga	CC2/aug-cc-pVDZ			
	$\Delta \mu$ [D]	χ^2	μ (S_0) [D]	μ (S_1) [D]	$\Delta \mu$ [D]
1	13.84	0.978	5.93	18.38	12.45
2	13.98	0.832	4.92	18.78	13.86
3	17.77	0.972	7.43	21.73	14.30
4	14.93	0.981	9.65	23.09	13.44
5	11.33	0.423	8.89	20.98	12.09

Fig. S7. The relation of the Stokes shift with the $f(e,n)$ function in the Lippert-Mataga model of solvation for 1
Fig. S78. The relation of the Stokes shift with the $f(e, n)$ function in the Lippert-Mataga model of solvation for 2

Fig. S79. The relation of the Stokes shift with the $f(e, n)$ function in the Lippert-Mataga model of solvation for 3

Fig. S80. The relation of the Stokes shift with the $f(e, n)$ function in the Lippert-Mataga model of solvation for 4
Fig. S81. The relation of the Stokes shift with the Δf_{LM} function in the Lippert-Mataga model of solvation for 5.
Z-scan setup and experiment (experimental setup)

The multiphoton absorption properties of 2-5 were investigated in broad range (650 - 1700 nm) using the Z-scan technique with a laser system consisting of a Quantronix Integra-C Ti:sapphire regenerative amplifier operating as an 800 nm pump and a Quantronix-Palitra-FS BIBO crystal-based optical parametric amplifier. This system allows for wavelength tuning between 530 and 2000 nm pulses of ~130 fs length and operates at the repetition rate of 1 kHz. The solutions of 2-5 in chloroform (with concentration of ca. 0.3% w/w) were placed in 1 mm path length Starna glass cuvettes, which were moved along focused femtosecond laser beam in the Z axis typically from -20 to 20 mm. To determine the value of the laser intensity, scans of a 4.6 mm thick silica glass plate (used as a reference) and a cuvette filled with chloroform were investigated together with scans of the samples. The solvent measurement was conducted to eliminate the influence of the cuvette walls and the solvent itself to the closed aperture (CA) Z-scan traces. The open aperture (OA) scans for the solvent revealed absence of 2PA. To monitor the laser input, the CA signal and OA signal, the data were collected using three Si and InGaAs photodiodes (Thor Laboratories Inc.) for VIS and NIR range, respectively. Studying wavelength dependences by Z-scan requires aligning the system and determining the properties of the laser beam at each wavelength separately. Employment of appropriate expressions, introduced by Sheik-Bahae et al. [7], allows us to fit the transmittance traces corresponding to closed-aperture (CA) and open-aperture (OA) Z-scan signals, which were analyzed with the help of a custom fitting program. The detailed description of experimental setup can be found in our previous paper. The real and imaginary parts of the second hyperpolarizability γ of the solutes were computed assuming additivity of the nonlinear contributions of the solvent and the solute and the applicability of the Lorentz local field approximation [8].
Fig. S82. Representative CA (left side) and OA (right side) experimental Z-scan traces (circles), and the theoretical fits (lines) for 2, 3, 4 at 800 nm and 5 at 825 nm. The theoretical OA curves assume 2PA.
Fig. S83. Wide-range wavelength dependence of the two-photon absorption cross-section σ_2, measured by Z-scan technique (black squares) for 2-5.
Quantum-chemical calculations

The ground state geometries of 5 molecules (both trans and cis isomers were optimized using the density functional theoretical method with the M06-2X functional [9] and the 6-31G* basis set [10, 11]. In doing so, we employed IEF-PCM method. The minima on potential energy hypersurface were confirmed by evaluation of hessian. Subsequently, the minimum-energy geometries were used for electronic-structure calculations.

Molecular dynamics simulations

All structures were solvated by adding about 470 chloroform molecules to form 40x40x40 Å box (density of such system is close to chloroform density at room temperature (1.49 g/cm³)). Total charge for each system was zero. Molecular dynamics simulations program NAMD was used to perform simulations [12]. The partial charges were obtained from M06-2X/6-31G* calculations employing IEF-PCM model at the equilibrium geometry using the CHelpG method. The CHARMM force field and chloroform force field of Dietz and Heinzinger were used to describe the system [13-15]. The system was minimized during 10000 steps followed by constant temperature NVT dynamics for 2 ns (1 step = 2 fs) at 300 K using a Langevin thermostat. MD simulations were performed for the rigid geometry of solute. Periodic boundary conditions were applied. After hydrogen bonds balance and energy equilibrium had been achieved, 50 snapshots were taking from the resulting trajectory for subsequent electronic-structure calculations.

Electronic-structure calculations

Based on rigid-body MD simulations, for each molecule (1-5) we performed we performed ab initio quantum-chemistry calculations using resolution-of-identity coupled-cluster CC2 model [16] and the aug-cc-pVDZ basis set [17]. In particular we calculated one- and two-photon transition strengths using electrostatic embedding to account for discrete solvent representation. The choice of RI-CC2 method is dictated by recent reports that all studied density functional theory approximations show serious limitations as far as predictions of two-photon absorption strengths are concerned, i.e. hybrid functionals with fixed amount of HF exchange are burdened by cancellations of significant errors, while range-separated functionals systematically underestimate two-photon transition strengths due to their inability to correctly reproduce excited-state density distributions [18, 19]. RI-CC2 calculations were performed with the TURBOMOLE--7.3 program [20]. Moreover, to shed light on ground- and excited-state density distribution we have determined the electron density difference plots at the M06-2X/6-31G* level of theory. The calculations in question were performed using GAUSSIAN 16 program.
Fig. S84. Electron density difference maps showing changes upon $S_0 \rightarrow S_1$ electronic excitations. Calculations were done at the M06-2X/6-31G* level of theory. Solvents effects were taken into account employing IEF-PCM model.
Fig. S85. The charge transfer in 1 and the associated mesomerism
Fig. S86. Excited-state geometries (in the first singlet \(S_1 \) state) of compounds 2, 3, 4 with explicit CHCl\(_3\) molecules. Calculations were performed at the M06-2X/6-31G* level of theory using IEF-PCM model.
Fig. S87. Comparison of excited-state geometries (in the first singlet S_1 state) of compounds 2,3,4 optimized with explicit CHCl$_3$ molecules. Shown are only cores of the molecules (without hydrogen atoms). Calculations were performed at the M06-2X/6-31G* level of theory using IEF-PCM model.
Fig. S8. Simulated one-photon absorption spectra corresponding to *cis* isomers. Shown are the results of calculations for 50 solute-solvent snapshots performed at the RI-CC2/aug-cc-pVDZ level of theory.
Fig. S89. Simulated one-photon absorption spectra corresponding to trans isomers. Shown are the results of calculations for 50 solute-solvent snapshots performed at the RI-CC2/aug-cc-pVDZ level of theory.
Fig. S90. Simulated two-photon absorption spectra corresponding to cis isomers. Shown are the results of calculations for 50 solute-solvent snapshots performed at the RI-CC2/aug-cc-pVDZ level of theory.
Fig. S91. Simulated two-photon absorption spectra corresponding to trans isomers. Shown are the results of calculations for 50 solute-solvent snapshots performed at the RI-CC2/aug-cc-pVDZ level of theory.

Molecule	Spin symmetry	Excitation energy, eV
2	T1	2.53306
	S1	3.04774
	T2	3.74842
	S2	4.08453
3	T1	2.49019
	S1	2.96363
	T2	3.36541
	S2	3.97018
4	T1	2.48339
	S1	2.95842
	T2	3.74003
	S2	4.16710
5	T1	2.55697
	S1	3.08035
	T2	3.54001
	S2	4.05267
Table S6. Summary of statistical analysis of one-photon absorption spectra. Shown are average values of excitation energies and corresponding excitation wavelengths.

	trans \overline{E} [eV]	$\overline{\lambda}$ [nm]	cis \overline{E} [eV]	$\overline{\lambda}$ [nm]
1	3.1519	393	2.9719	417
2	3.0781	403	2.8314	438
3	2.9573	419	2.7635	449
4	2.9709	417	2.7893	444
5	3.0450	407	2.8351	437

Table S7. Comparison of two-photon transition strengths (in au) based on the generalized two- and three-state model.

molecule	response theory	two-state model	three-state model
2	129	156	156
3	138	174	174
4	142	208	210
5	119	148	147

References

1. Wu, Y.-Y.; Chen, Y.; Gou, G.-Z.; Mu, W.-H.; Lv, X.-J.; Du, M.-L.; Fu, W.-F. Large Stokes Shift Induced by Intramolecular Charge Transfer in N,O-Chelated Naphthyridine–BF$_2$ Complexes Org. Lett. 2012, 14, 5226-5229.

2. Moore, P. W.; Hooker, J. P.; Zavras, A.; Khairallah, G. N.; Krenske, E. H.; Bernhardt, P. V.; Quach, G.; Moore, E. G.; O’Hair, R. A. J.; Williams, C. M. Hydroxyl Radicals via Collision-Induced Dissociation of Trimethylammonium Benzyl Alcohols Aust. J. Chem. 2017, 70, 397-406.

3. Grabarz, A. M.; Laurent, A. D.; Jędrzejewska, B.; Zakrzewska, A.; Jacquemin, D.; Ośmiałowski, B. The Influence of the π-Conjugated Spacer on Photophysical Properties of Difluoroboranyls Derived from Amides Carrying a Donor Group J. Org. Chem. 2016, 81, 2280-2292.

4. Jędrzejewska, B.; Gordel, M.; Szeremeta, J.; Kaczorowska, M. A.; Józefowicz, M.; Samoć, M. One- and Two-Photon-Induced Isomerization of Styryl Compounds Possessing A-π-A’ Structure Dyes Pigm. 2016, 132, 237-247.

5. Brouwer, A. M. Standards for Photoluminescence Quantum Yield Measurements in Solution (IUPAC Technical Report) Pure Appl. Chem. 2011, 83, 2213.

6. Bonacroso, H. G.; Calheiro, T. P.; Acunha, T. V.; Iglesias, B. A.; Franceschini, S. Z.; Ketzer, A.; Meyer, A. R.; Nogara, P. A.; Rocha, J. B. T.; Zanatta, N.; Martins, M. A. P. Novel Aryl(Heteroaryl)-Substituted (Pyrimidyl)Benzamide-Based BF2 Complexes: Synthesis, Photophysical Properties, BSA-Binding, and Molecular Docking Analysis Dyes Pigm. 2019, 161, 396-402.

7. Sheikbahae, M.; Said, A. A.; Wei, T. H.; Hagan, D. J.; Van Stryland, E. W. Sensitive Measurement of Optical Nonlinearities Using a Single Beam IEEE J. Quantum Electron. 1990, 26, 760–769.
8. Nyk, M.; Wawrzynczyk, D.; Szeremeta, J.; Samoc, M. Spectrally Resolved Size-Dependent Third-Order Nonlinear Optical Properties of Colloidal CdSe Quantum Dots. *Appl. Phys. Lett.* 2012, 100, 041102.

9. Zhao, Y.; Truhlar, D. G. The M06 Suite of Density Functionals for Main Group Thermochemistry, Thermochemical Kinetics, Noncovalent Interactions, Excited States, and Transition Elements: Two New Functionals and Systematic Testing of Four M06-Class Functionals and 12 Other Functionals. *Theor. Chem. Acc.* 2008, 120, 215-241.

10. Hehre, W. J.; Ditchfield, R.; Pople, J. A. Self—Consistent Molecular Orbital Methods. XII. Further Extensions of Gaussian—Type Basis Sets for Use in Molecular Orbital Studies of Organic Molecules. *J. Chem. Phys.* 1972, 56, 2257-2261.

11. Hariharan, P. C., Pople, J. A. The influence of polarization functions on molecular orbital hydrogenation energies. *Theor. Chim. Acta* 1973, 28, 213–222.

12. Phillips, J. C.; Braun, R.; Wang, W.; Gumbart, J.; Villa, E.; Chipot, C.; Skeel, R. D.; Kalé, L.; Schulten, K. Scalable Molecular Dynamics with NAMD. *J. Comput. Chem.* 2005, 26, 1781–1802.

13. MacKerell, A. D.; Bashford, D.; Bellott, M.; Dunbrack, R. L.; Evanseck, J. D.; Field, M. J.; Fischer, S.; Gao, J.; Guo, H.; Ha, S.; Joseph-McCarthy, D.; Kuchnir, L.; Kuczera, H.; Lau, F. T. K.; Mattos, C.; Michnick, S.; Ngo, T.; Nguyen, D. T.; Prodhom, B.; Reiher, W. E.; Roux, B.; Schlenkrich, M.; Smith, J. C.; Stote, R.; Straub, J.; Watanabe, M.; Wiorkiewicz-Kuczera, J.; Yin, D.; Karplus, M. All-Atom Empirical Potential for Molecular Modeling and Dynamics Studies of Proteins. *J. Phys. Chem. B* 1998, 102, 3586–3616.

14. Dietz, W.; Heinberger, K. A Molecular Dynamics Study of Liquid Chloroform. *Berichte der Bunsengesellschaft für physikalische Chemie* 1985, 89, 968–977.

15. Yu, W.; He, X.; Vanommeslaeghe, K.; MacKerell, A. D. Extension of the CHARMM general force field to sulfonyle-containing compounds and its utility in biomolecular simulations. *J. Comput. Chem.* 2012, 33, 2451-2468.

16. Hattig, C.; Weigend, F. CC2 Excitation Energy Calculations on Large Molecules Using the Resolution of the Identity Approximation. *J. Chem. Phys.* 2000, 113, 5154-5161.

17. Dunning, T. H. Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. *J. Chem. Phys.* 1989, 90, 1007–1023.

18. Beerepoot, M. T. P.; Friese, D. H.; List, N. H.; Kongsted, J.; Ruud, K. Benchmarking Two-Photon Absorption Cross Sections: Performance of CC2 and CAM-B3LYP. *Phys. Chem. Chem. Phys.* 2015, 17, 19306-19314.

19. Alam, Md. M.; Bednarska, J.; Bartkowiak, W.; Ruud, K.; Zaleśny, R. Benchmarking the Performance of Exchange-Correlation Functionals for Predicting Two-Photon Absorption Strengths. *J. Chem. Theory Comput.* 2018, 14, 3677-3685.

20. TURBOMOLE V7.0 2015, a development of University of Karlsruhe and Forschungszentrum Karlsruhe GmbH, 1989–2007, TURBOMOLE GmbH since 2007.