Subalgebras and finitistic dimensions of Artin algebras*

Aiping Zhang¹, Shunhua Zhang ²

1 School of Mathematics and Statistics, Shandong University at Weihai, 264209, China
2 School of Mathematics, Shandong University, Jinan 250100, China

Abstract. Let A be an Artin algebra. We investigate subalgebras of A with certain conditions and obtain some classes of algebras whose finitistic dimensions are finite.

Keywords: Artin algebras, representation dimension, finitistic dimension

MSC(2000): 16G10, 18G20

1 Introduction

Let A be an Artin algebra, A-mod the category of finitely generated left A-modules, and A-ind a full subcategory of A-mod containing exactly one representative of each isomorphism class of indecomposable A-modules. We denote the projective dimension of an A-module X by $\text{pd}_A X$.

Email addresses: pingping326@163.com(A.Zhang), shzhang@sdu.edu.cn(S.Zhang)

*Supported by the NSF of China (Grant No. 10771112) and NSF of Shandong Province (Grant No. Y2008A05).
Let A be an Artin algebra. Recall from [1] that the finitistic dimension of A, denoted by $\text{fin.dim } A$, is defined as

$$\text{fin.dim } A = \sup \{ \text{pd}_A M \mid M \in A - \text{mod}, \text{pd}_A M < \infty \}.$$

The finitistic dimension conjecture claims that every Artin algebra has a finite finitistic dimension.

So far, only a few classes of algebras were known to have finite finitistic dimensions. For example, monomial algebras [3], algebras where the cube of the radical is zero [4], and the algebras given in [5,6,7,8,9,10,11,12]. However, the finitistic dimension conjecture is still open and it is far from to be proven.

Let A be an Artin algebra, and $0 \to A A \to I_0 \to I_1 \to \cdots$ be the minimal injective resolution of A. Nakayama conjectured in [13] that A is a self-injective algebra whenever all I_j is projective. Up to now, Nakayama conjecture is still open. It is well known that finitistic dimension conjecture implies Nakayama conjecture, and this motivated further research on finitistic dimension conjecture. We refer to [8,9,10,11,12,14] for the background and some new progress about this conjecture.

According to Xi in [9], the finitistic dimension conjecture is equivalent to the following statement: if B is a subalgebra of A such that $\text{rad } B$ is a left ideal in A, then B has finite finitistic dimension whenever A has finite finitistic dimension.

In this paper, we investigate the finitistic dimensions of Artin algebras by using Igusa-Todorov function defined in [5] and obtain some classes of algebras with finite finitistic dimensions. The paper is arranged as follows. In Section 2 we collect some definitions and results needed for our research, and give a different proof for a well known fact (Theorem 2.5). In Section 3, we obtain some classes of algebras with finite finitistic dimensions, which gives a partly positive answer to the question 2 mentioned in [10].
2 Preliminaries

Throughout this paper, we always assume that A is an Artin algebra. We denote the global dimension of A by $\text{gl.dim } A$ and the Jacobson radical of A by $\text{rad } A$. For an A-module M, we denote by $\text{add } M$ the full subcategory having as objects the direct sums of indecomposable summands of M, by $\Omega^i M$ the ith syzygy of M. Then, $\mathcal{P} = \text{add } A A$ is the full subcategory consisting of all finitely generated projective A-modules, and $\mathcal{I} = \text{add } A D A$ is the full subcategory consisting of all finitely generated injective A-modules, where $D : A - \text{mod } \to A^{\text{op}} - \text{mod}$ is the standard duality, and A^{op} is the opposite algebra of A. Given two homomorphisms $f : L \to M$ and $g : M \to N$, the composition of f and g is denoted by gf. We follow the standard terminology and notation used in the representation theory of algebras, see [15] and [16].

An A-module V is called a generator – cogenerator if every indecomposable projective module and every indecomposable injective module is isomorphic to a summand of V. Recall from [18] that the number

$$\text{rep.dim } A = \inf \{ \text{gl.dim } \text{End}_A(V) \mid V \text{ is a generator – cogenerator } \}$$

is called the representation dimension of an Artin algebra A.

Lemma 2.1. Let M be an A-module and there is an exact sequence $0 \to X_s \to \cdots \to X_1 \to X_0 \to M \to 0$. If $\text{pd}_A X_i \leq k$, $i = 0, \cdots, s$, then $\text{pd}_A M \leq s + k$. \square

The following two Lemmas proved in [18] and [9] will be used later.

Lemma 2.2. Let V be a generator-cogenerator of A-mod and $n \geq 3$ an integer. The following two statements are equivalent:

(1) For any $X \in A\text{-ind}$, there is an exact sequence

$$0 \to V_{n-2} \to \cdots \to V_1 \to V_0 \to X \to 0$$

with \(V_i \in \text{add} (A^i) \) for \(j = 0, \cdots, n-2 \), such that

\[
0 \to \text{Hom}_A(V, V_{n-2}) \to \cdots \to \text{Hom}_A(V, V_1) \to \text{Hom}_A(V, V_0) \to \text{Hom}_A(V, X) \to 0
\]

is exact.

(2) \(\text{gl.dim } \text{End } _AV \leq n. \) \(\square \)

Lemma 2.3. Suppose \(B \) is a subalgebra of \(A \) such that \(\text{rad } B \) is a left ideal in \(A \). For any \(B \)-module \(X \) and integer \(i \geq 2 \), there is a projective \(A \)-module \(Q \) and an \(A \)-module \(Z \) such that \(\Omega^i_B(X) \cong \Omega^2_A(Z) \oplus Q \) as \(A \)-modules. If \(\text{rad } B \) is an ideal in \(A \), then there is an exact sequence of \(A \)-modules

\[
0 \to \Omega^i_B(X) \to \Omega^2_A(Y) \oplus P \to S \to 0,
\]

where \(P \) is projective, and \(S \) is an \(A \)-module such that \(B^2S \) is semi-simple. In particular, if \(\text{rad } B = \text{rad } A \), the module \(S \) is even a semi-simple \(A \)-module. \(\square \)

Let \(K(A) \) be the free abelian group with the basis of non-isomorphism classes of non-projective indecomposable \(A \)-modules in \(A \)-mod. Igusa and Todorov in [5] define a function \(\psi_A \) on \(K(A) \), which depends on the algebra \(A \) and take values of non-negative integers. Now \(\psi_A \) is called Igusa-Todorov function, and it is a powerful tool to show the finiteness of the finitistic dimensions. The following lemma collects some important properties of this Igusa-Todorov function.

Lemma 2.4. Let \(A \) be an Artin algebra, and \(\psi_A \) be the corresponding Igusa-Todorov function. Let \(M, X, Y, Z \) be \(A \)-modules in \(A \)-mod.

(1) \(\psi_A(M) = \text{pd } M \) provided \(\text{pd } M < \infty. \)

(2) \(\psi_A(X) \leq \psi_A(X \oplus Y). \)

(3) If \(0 \to X \to Y \to Z \to 0 \) is an exact sequence in \(A \)-mod and \(\text{pd } Z < \infty \), then \(\text{pd } Z \leq \psi_A(X \oplus Y) + 1. \)
Let \mathcal{X} be a full subcategory of A-mod. When we say that \mathcal{X} is a full subcategory, we always mean that \mathcal{X} is closed under direct summands. We denote by gen \mathcal{X} (cogen \mathcal{X}) the full subcategory of A-mod generated (cogenerated) by \mathcal{X}, see [17] and [16]. If $\mathcal{X} = \{M\}$, we set $\mathcal{X} = M$ and denote gen \mathcal{X} (cogen \mathcal{X}) by gen M (cogen M). If \mathcal{X} contains only finite non-isomorphic indecomposable A-modules, we call \mathcal{X} is of finite type.

It has been shown in [20] that rep.dim A is at most 3 whenever gen DA is finite, then in this case, according to [5], fin.dim A is finite. Now, we give a different proof for this result by using Igusa-Todorov function.

Theorem 2.5. Let A be an Artin algebra. If gen DA is of finite type, then fin.dim A is finite.

Proof. Let X be an A-module with finite projective dimension. Let $i : X \longrightarrow E(X)$ be the injective envelope of X, then we have an exact sequence $0 \longrightarrow X \overset{i}{\longrightarrow} E(X) \longrightarrow \text{coker } i \longrightarrow 0$.

We may assume that M_1, \cdots, M_t are a complete list of pairwise non-isomorphic indecomposable A-modules in gen DA. Since the modules $E, \text{coker } i$ lie in gen DA, we may write $E(X) = \bigoplus_{i=1}^{t} M_{ti}^{ti}$, coker $i = \bigoplus_{j=1}^{s} M_{sj}^{sj}$. We denote by $a = \max\{ t_i + s_i \}$. By Lemma 2.4, we know that

\[
\text{pd } X \leq \psi_A(\Omega(E(X) \oplus \text{coker } i)) + 1
\]
\[
= \psi_A(\Omega(E(X)) \oplus \Omega(\text{coker } i)) + 1
\]
\[
= \psi_A(\Omega(\bigoplus_{i=1}^{t} M_{ti}^{ti}) \oplus \Omega(\bigoplus_{j=1}^{t} M_{sj}^{sj})) + 1
\]
\[
= \psi_A(\bigoplus_{i=1}^{t} \Omega(M_i)^{t_i} \oplus \bigoplus_{j=1}^{t} \Omega(M_j)^{s_j}) + 1
\]
\[
= \psi_A(\bigoplus_{i=1}^{t} \Omega(M_i)^{t_i+s_i}) + 1
\]
\[
\leq \psi_A(\bigoplus_{i=1}^{t} \Omega(M_i)^a) + 1
\]
\[
= \psi_A(\bigoplus_{i=1}^{t} \Omega(M_i)) + 1.
\]
Thus \(\text{fin.dim } A \leq \psi_A \left(\bigoplus_{i=1}^{t} \Omega(M_i) \right) + 1 \), it follows that the finitistic dimension of \(A \) is finite. \(\square \)

3 Main results

In this section, we investigate the finitistic dimensions of subalgebras of an Artin algebra with certain conditions and give some examples to show how our results are applied.

We replace the condition \(\text{gl.dim } A \leq 1 \) of Theorem 3.3 in [10] by \(\text{rep.dim } A \leq 3 \) and obtain the following result.

Theorem 3.1. Let \(A_0 = B \subseteq A_1 \subseteq \cdots \subseteq A_{s-1} \subseteq A_s = A \) be a chain of subalgebras of \(A \), \(\text{rad } (A_{i-1}) \) is a left ideal in \(A_i \) for all \(i \) and \(\text{pd}_{A_{i-1}} A_i < \infty \) for all \(1 \leq i \leq s - 1 \). If \(\text{rep.dim } A \leq 3 \), then \(\text{fin.dim } B < \infty \).

Proof. According to the proof of Theorem 3.1 in [10]. We know that \(\text{pd}_B A_j < \infty \) for all \(1 \leq j \leq s - 1 \). Suppose \(M \) is a \(B \)-module, \(\text{pd}_B M < \infty \). We denote by \(\Omega_i \) the first syzygy operator of \(A_i \)-modules. By Lemma 2.3, \(\Omega^2_0(M) \) is an \(A_1 \)-module. Similarly \(\Omega^2_j \cdots \Omega^2_1\Omega^2_0(M) \) is an \(A_{j+1} \)-module, we have the following exact sequences:

\[
0 \rightarrow \Omega^2_0(M) \rightarrow P_0(1) \rightarrow P_0(0) \rightarrow M \rightarrow 0,
\]

\[
0 \rightarrow \Omega^2_1\Omega^2_0(M) \rightarrow P_1(1) \rightarrow P_1(0) \rightarrow \Omega^2_0(M) \rightarrow 0,
\]

\[
0 \rightarrow \Omega^2_2\Omega^2_1\Omega^2_0(M) \rightarrow P_2(1) \rightarrow P_2(0) \rightarrow \Omega^2_1\Omega^2_0(M) \rightarrow 0,
\]

\[
\vdots
\]

\[
0 \rightarrow \Omega^2_{s-2}\cdots\Omega^2_0(M) \rightarrow P_{s-1}(1) \rightarrow P_{s-1}(0) \rightarrow \Omega^2_{s-2}\cdots\Omega^2_0(M) \rightarrow 0, \quad (**)
\]

where \(P_0(1), P_0(0) \) are projective \(A_0 \)-modules, \(P_1(1), P_1(0) \) are projective \(A_1 \)-modules, \(P_2(1), P_2(0) \) are projective \(A_2 \)-modules, \(\cdots, P_{s-1}(1), P_{s-1}(0) \) are projective \(A_{s-1} \)-modules.
Thus we have the following long exact sequence
\[
(1) \quad 0 \to \Omega^2_{s-1}\Omega^2_{s-2}\cdots\Omega^2_0(M) \to P_{s-1}(1) \to P_{s-1}(0) \to \cdots \to P_1(1) \to P_1(0) \to P_0(1) \to P_0(0) \to M \to 0.
\]

By (**) we know that B-module $\Omega^2_{s-1}\Omega^2_{s-2}\cdots\Omega^2_0(M)$ has finite projective dimension.

It follows from Lemma 2.2 and the inequality $\text{rep. dim } A \leq 3$ that there exists a generator-cogenerator V for A-mod, such that for any A-module X, there is an exact sequence $0 \to V_1 \to V_0 \to X \to 0$, with $V_1, V_0 \in \text{add } V$, such that
\[
0 \to \text{Hom}_A(V, V_1) \to \text{Hom}_A(V, V_0) \to \text{Hom}_A(V, X) \to 0
\]
is exact.

Obviously $\Omega^2_{s-1}\Omega^2_{s-2}\cdots\Omega^2_0(M)$ is an A-module and there is a short exact sequence
\[
0 \to V_1 \to V_0 \to \Omega^2_{s-1}\Omega^2_{s-2}\cdots\Omega^2_0(M) \to 0
\]
of A-module with $V_1, V_0 \in \text{add } V$. By Lemma 2.4, we know that
\[
\text{pd}_B \Omega^2_{s-1}\Omega^2_{s-2}\cdots\Omega^2_0(M) \leq \psi_B(V_1 \oplus V_0) + 1 \\
\leq \psi_B(V) + 1.
\]

By the long exact sequence (1), we have
\[
\text{pd}_B M \leq 2s + \max\{ \text{pd}_B \Omega^2_{s-1}\Omega^2_{s-2}\cdots\Omega^2_0(M), \text{pd}_B (P_j(i)) \}_{j=0, \ldots, s-1} \}
\leq 2s + \max\{ \psi_B(V) + 1, \text{pd}_B (A_j) \}_{j=1, \ldots, s-1} \}
\]
Thus fin.dim B is finite.

When $s = 2$, we obtain the following consequence.

Corollary 3.2. Let $C \subseteq B \subseteq A$ be a chain of subalgebras of an Artin algebra A such that rad C is a left ideal in B, rad B is a left ideal in A. If $\text{pd}_C B < \infty$ and $\text{rep. dim } A \leq 3$, then fin.dim C is finite.
Example 1. Let A be an algebra (over a field) given by the following quiver with relations: $cd = ef$, $a^4 = ba = 0$.

Now we use the method "gluing of idempotents" to construct subalgebras of A, which have the same radical $\text{rad } A$, see [10] for details.

Let B be the subalgebra of A given by the following quiver with relations: $cd = ef$, $a^4 = ba = ca = bd = ad = 0$:

Now we consider the subalgebra C of B, which is given by quiver and relations $cd = ef$, $a^4 = ba = ca = bd = ad = 0$, $gf = hf$.

By Corollary 2.4 in [19], rep. dim $A \leq 3$, and it is easy to see that $\text{pd}_C B = 2$. Then we have that fin. dim $C < \infty$ by Corollary 3.2.
Theorem 3.3. Let B be a subalgebra of an Artin algebra A such that $\text{rad} B$ is an ideal in A. If $\text{add}\{\Omega^2_A(M) \mid M \in A - \text{mod}\}$ is of finite type, then $\text{fin.dim} B$ is finite.

Proof. Suppose X is a B-module with finite projective dimension, by Lemma 2.3, there is an exact sequence of A-modules:

\[(*) \quad 0 \to \Omega_B^2(X) \to \Omega_A^2(Y) \oplus P \to S \to 0, \]

where AP is projective, and S is an A-module such that BS is semisimple.

Since $\text{add}\{\Omega_A^2(M) \mid M \in A - \text{mod}\}$ is of finite type, we may assume that M_1, \ldots, M_t are a complete list of pairwise non-isomorphic indecomposable A-modules. Obviously $\Omega_A^2(Y)$ lie in $\text{add}\{\Omega_A^2(M) \mid M \in A - \text{mod}\}$, so we may write $\Omega_A^2(Y) = \bigoplus_{i=1}^t M_i^t$.

By Lemma 2.4 and $(*)$, we know that

\[
\text{pd}_B X \leq \text{pd} \Omega_B^2(X) + 2 \\
\leq \psi_B(\Omega_B(\Omega_A^2(Y) \oplus P \oplus S)) + 3 \\
= \psi_B((\bigoplus_{i=1}^t M_i^t) \oplus P \oplus \Omega_B(S)) + 3 \\
\leq \psi_B(\Omega_B(M_1) \oplus \cdots \oplus \Omega_B(M_t) \oplus \Omega_B(A) \oplus \Omega_B(B/\text{rad}B)) + 3.
\]

Thus $\text{fin.dim} B$ is finite. \qed

Corollary 3.4. Let B be a subalgebra of an Artin algebra A such that $\text{rad} B$ is an ideal in A. If $\text{gl.dim} A \leq 2$, then $\text{fin.dim} B$ is finite. \qed

Theorem 3.5. Let $C \subseteq B \subseteq A$ be a chain of subalgebras of an Artin algebra A such that $\text{rad} C$ is a left ideal in B, $\text{rad} B$ is a left ideal in A. If $\text{cogen} A$ is of finite type, then $\text{fin.dim} C$ is finite.

Proof. Suppose X is a C-module with finite projective dimension. By Lemma 2.3, $\Omega_C^2(X)$ is a B-module, we have the following exact sequence

\[0 \to \Omega_B \Omega_C^2(X) \to P \to \Omega_C^2(X) \to 0, \]
of B-modules where P is a projective B-module. By Lemma 2.3, there is a B-module Y and a projective B-module Q' such that $\Omega^2_B(X) = \Omega_B(Y) \oplus Q'$. Thus the above exact sequence can be rewritten as

$$0 \rightarrow \Omega^2_B(Y) \rightarrow P \rightarrow \Omega^2_C(X) \rightarrow 0,$$

by Lemma 2.3 again, there is an A-module Z and a projective A-module Q such that $\Omega^2_B(Y) = \Omega_A(Z) \oplus Q$, so we have the following exact sequence

$$0 \rightarrow \Omega_A(Z) \oplus Q \rightarrow P \rightarrow \Omega^2_C(X) \rightarrow 0.$$

Since cogen A is of finite type, we may assume that M_1, \cdots, M_t are a complete list of pairwise non-isomorphic indecomposable A-modules, $\Omega_A(Z) \in \text{cogen } A$, $Q \in \text{cogen } A$, we may write $\Omega_A(Z) = \bigoplus_{i=1}^t M_i^{x_i}$, $Q = \bigoplus_{j=1}^s M_j^{y_j}$, By Lemma 2.4, we know that

$$\text{pd} \ C.X \leq \text{pd} \ \Omega^2_C(X) + 2 \leq \psi_C(\Omega_A(Z) \oplus Q \oplus P) + 3 \leq \psi_C(\bigoplus_{i=1}^t M_i^{x_i} \oplus \bigoplus_{j=1}^s M_j^{y_j} \oplus B) + 3 \leq \psi_C(M_1 \oplus \cdots \oplus M_t \oplus B) + 3.$$

Thus fin.dim C is finite.

Remark. we should point that Corollary 3.2 and Theorem 3.5 give partial answer to the question 2 in [10].

Corollary 3.6. Let $C \subseteq B \subseteq A$ be a chain of subalgebras of an Artin algebra A such that rad C is a left ideal in B, rad B is a left ideal in A. If A is a hereditary Artin algebra, then fin.dim C is finite.
Example 2. Let A be an algebra (over a field) given by the following quivers with relations: $a^4 = 0$, $cd = ef$.

We use the method "gluing of idempotents" (see [10]) to construct subalgebras of A as following.

Let B be the subalgebra of A given by the following quivers with relations: $a^4 = ba = 0$, $ca = ef$, $g_1 f = g_2 f$, $g_3 f = g_4 f$.

Let C be the subalgebra of B given by the following quiver with relations $a^4 = ba = bd = ca = ad = 0$, $cd = ef$, $g_1 f = g_2 f = g_3 f = g_4 f$.

Then we get a chain of subalgebras of A, $C \subseteq B \subseteq A$, such that $\text{rad } C$ is a left ideal of B, $\text{rad } B$ is a left ideal of A. It is easy to see that $\text{cogen } A$ is of finite type. By Theorem 3.5, we know that $\text{fin.dim } C < \infty$.
Acknowledgements The authors would like to thank the referee for his or her helpful suggestions. They also want to thank Wenxu Ge and Hongbo Lv for fruitful discussions. In particular, the Example 1 is pointed to us by Hongbo Lv and the quivers in Example 1 and Example 2 are edited by Wenxu Ge.

References

1 Bass H. Finitistic dimension and a homological generalization of semiprimary rings. Trans.Amer.Math.Soc, 1960,95: 466-488

2 Zimmermann-Huisgen B. Homological domino effects and the first finitistic dimension conjecture. Invent.Math, 1992,108: 369-383

3 Green E, Kirkman E, Kuzmanovich J. Finitistic dimension of finite dimensional monomial algebras. J.Algebra. 1991,136: 37-51

4 Green E, Zimmermann-Huisgen B. Finitistic dimension of artinian rings with vanishing radical cube. Math.Z. 1991,206: 505-526

5 Igusa k, Todorov G. On the finitistic global dimension conjecture for artin algebras, In:Representations of algebras and related topics,201-204. Fields Inst. Commun., 2002,45, Amer.math.Soc., Providence, RI, 2005.

6 Auslander M, Reiten I. Applications of contravariantly finite subcategories. Adv.Math. 1991,86: 111-152

7 Wang Y. A note on the finitistic dimension conjecture. Comm.Algebra. 1994, 22(7): 2525-2528

8 Xi C C. Representation dimension and quasi-hereditary algebras. Adv.Math. 2002, 168:193-212

9 Xi C C, On the finitistic dimension conjecture I: related to representation-finite algebras, J.Pure Appl.Algebra. 2004,193: 287-305
10 Xi C C, On the finitistic dimension conjecture II: related to finite global dimension, Adv.Math. 2006,201: 116-142

11 Xi C C, On the finitistic dimension conjecture III: related to the pair $e Ae \subseteq A$, J.Algebra, 2008,319(9):3666-3688

12 Zhang A P, Zhang S H. On the finitistic dimension conjecture of Artin algebras. J.Algebra, 2008,320:253-258

13 Nakayama T, On algebras with complete homology, Abh. Math. Sem. Univ. Hamburg. 1958,22: 300-307.

14 Zimmermann-Huisgen B. The finitistic dimension conjecture–a tale of 3.5 decades. Abelian group and modules (Padova, 1994), Math.Appl., Vol.343, Kluwer Academic Publishers, Dordrecht, 1995, 501-517.

15 Auslander M, Reiten I,Smalø S.O. Representation Theory of Artin Algebras. Cambridge University Press, Cambridge, 1995.

16 Assem I, Simson D, Skowronski A. Elements of the representation theory of associative algebras, Vol. 1, Cambridge Univ. Press, 2006.

17 Anderson F W, Fuller K R. Rings and categories of modules. Springer 1973.

18 Auslander M. Representation Dimension of Artin Algebras. Queen Mary College Mathematics Notes, Queen Mary College, London, 1971.

19 Coelho F.U.,Platzeck M.I. On the representation dimension of some classes of algebras. J.Algebra, 2004, 275(2):615-628.

20 Ringel C.M. The torsionless modules of an Artin algebra, preprint 2008.