Geometrical Model for Non-Zero θ_{13}

Jun-Mou Chen, Bin Wang and Xue-Qian Li

School of Physics, Nankai University, Tianjin, 300071, China

Abstract

Based on Friedberg and Lee’s geometric picture by which the tribimaximal Pontecorvo-Maki-Nakawaga-Sakata leptonic mixing matrix is constructed, namely, corresponding mixing angles correspond to the geometric angles among the sides of a cube. We suggest that the three realistic mixing angles, which slightly deviate from the values determined for the cube, are due to a viable deformation from the perfectly cubic shape. Taking the best-fitted results of θ_{12} and θ_{23} as inputs, we determine the central value of $\sin^2 2\theta_{13}$ should be 0.0238, with a relatively large error tolerance; this value lies in the range of measurement precision of the Daya Bay experiment and is consistent with recent results from the T2K Collaboration.

PACS: 14.60.Pq Neutrino mass and mixing
I. INTRODUCTION

Neutrino oscillation observations have revealed evidence that neutrinos are massive. Neutrinos are produced via weak interaction as flavor eigenstates $\nu_f = (\nu_e, \nu_\mu, \nu_\tau)$ and can be written in the mass basis $\nu_m = (\nu_1, \nu_2, \nu_3)$, which are really the physical states. These two bases are related by a unitary matrix U_ν, i.e., $\nu_f = U_\nu \nu_m$. The mixing in the lepton sector is named as the Pontecorvo-Maki-Nakawaga-Sakata (PMNS) matrix, which can account for the currently available data on the observation of solar, atmospheric neutrino oscillations and the reactor and accelerator neutrino experiments. In the standard model, the weak charged currents are

$$J^\mu = \bar{l}_i \gamma^\mu (1 - \gamma_5) (U_\nu^\dagger U_\nu)_{ij} \nu_j,$$

where $i, j = 1, 2, 3$ and correspond to physical particles. The mixing matrix

$$U_{PMNS} = U_\nu^\dagger U_\nu,$$

is a 3×3 unitary matrix and can be parameterized by three mixing angels $\theta_{12}, \theta_{23},$ and $\theta_{13},$ and one CP phase δ.

$$U_{PMNS} = \begin{pmatrix}
 c_{12} c_{13} & s_{12} c_{13} & s_{13} e^{-i \delta} \\
 -s_{12} c_{23} - c_{12} s_{23} s_{13} e^{i \delta} & c_{12} c_{23} - s_{12} s_{23} s_{13} e^{i \delta} & s_{23} c_{13} \\
 s_{12} s_{23} - c_{12} c_{23} s_{13} e^{i \delta} & -c_{12} s_{23} - s_{12} c_{23} s_{13} e^{i \delta} & c_{23} c_{13}
\end{pmatrix},$$

where $c_{ij} \equiv \cos \theta_{ij}, s_{ij} \equiv \sin \theta_{ij}$. If neutrinos are Majorana particles, there would be an additional diagonal matrix $\text{diag}(e^{i \alpha_1/2}, e^{i \alpha_2/2}, 1)$ multiplied to the above U_{PMNS} matrix, which is not relevant for neutrino oscillations. The parametrization Eq. (3) can be rewritten as a product of three rotations R_{ij} in the ij plane through angles θ_{ij} and a diagonal CP phase matrix $U_\delta = \text{diag}(e^{i \delta/2}, 1, e^{-i \delta/2}),$

$$U_{PMNS} = R_{23}(\theta_{23}) U_\delta^\dagger R_{13}(\theta_{13}) U_{12}(\theta_{12}),$$

with

$$R_{23} = \begin{pmatrix}
 1 & 0 & 0 \\
 0 & c_{23} & s_{23} \\
 0 & -s_{23} & c_{23}
\end{pmatrix}, R_{13} = \begin{pmatrix}
 c_{13} & 0 & s_{13} \\
 0 & 1 & 0 \\
 -s_{13} & 0 & c_{13}
\end{pmatrix}, R_{12} = \begin{pmatrix}
 c_{12} & s_{12} & 0 \\
 -s_{12} & c_{12} & 0 \\
 0 & 0 & 1
\end{pmatrix}.$$
There have been numerous phenomenological Ansätze for the entries of U_{PMNS}, for example, the democratic [4], the bimaximal [5], and the tribimaximal Ansätze [6]. Among them, the tribimaximal mixing is closer to the experimentally observed mixing patterns, and the matrix is given by

$$U_{tribi} = \begin{pmatrix} 2/\sqrt{6} & 1/\sqrt{3} & 0 \\ -1/\sqrt{6} & 1/\sqrt{3} & 1/\sqrt{2} \\ 1/\sqrt{6} & -1/\sqrt{3} & 1/\sqrt{2} \end{pmatrix},$$

(6)

which suggests $\theta_{12} = \sin^{-1}(1/\sqrt{3})$, $\theta_{23} = \pi/4$, $\theta_{13} = 0$. As noted, the CP phase $e^{i\delta}$ is always associated with s_{13} [Eq. (3)]; thus, null θ_{13} would imply that one cannot observe CP violation at lepton sector in the framework of the standard model even though δ is not zero. Obviously, there is no priori that the CP violation should appear at the lepton sector, but only nonzero θ_{13} can intrigue an enthusiasm to explore CP violation at the lepton sector. Once the θ_{13} is determined to be nonzero as the T2K experiment and our theoretical prediction made in this work suggest, the next step would be searching for CP violation at the lepton sector.

Indeed, the tribimaximal symmetry is well manifested by the data. A rigorous symmetry would demand θ_{13} to be zero; however, it is not the whole story because this elegant symmetry is to be broken, and a nonzero θ_{13} is expected. The question is if it is not zero, what is its size, which is the main concern of the recent studies.

The unbroken tribimaximal matrix Eq. (6) can be further written as a sequential product of two independent rotations on 12 and 23 planes:

$$R_{23}(\pi/4) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1/\sqrt{2} & 1/\sqrt{2} \\ 0 & -1/\sqrt{2} & 1/\sqrt{2} \end{pmatrix}, \quad R_{12}(\sin^{-1}(1/\sqrt{3})) = \begin{pmatrix} 2/\sqrt{6} & 1/\sqrt{3} & 0 \\ -1/\sqrt{3} & 2/\sqrt{6} & 0 \\ 0 & 0 & 1 \end{pmatrix},$$

(7)

and R_{13} becomes a 3×3 unit matrix, i.e., $U_{tribi} = R_{23}(\pi/4)R_{12}(\sin^{-1}(1/\sqrt{3}))$. Friedberg and Lee [7] propose a geometrical interpretation for the tribimaximal symmetry as shown in Fig. 1. For readers’ convenience, let us briefly introduce Friedberg and Lee’s geometrical model and their conventions [7]. The charged leptons in the basis $L_e = (S_e, S_\mu, S_\tau)^T$ correspond to the three mutually perpendicular sides of a cube, and the neutrino basis $L_\nu = (S_{\nu_1}, S_{\nu_2}, S_{\nu_3})^T$ corresponds to another coordinate system (see Fig. 1). These two
coordinate systems are related to each other by rotations. One can perform two independent rotations to associate them. $R^l_{23}(\pi/4)$ and $R_{12}(\sin^{-1}(1/\sqrt{3}))$ transform the two independent bases into a common one. These practical operations are described below. $R^l_{23}(\pi/4)$ mixes the second and third components of the basis L_c and keeps the first one invariant to get a new basis $(S_1, S_2, S_3)^T$, while $R_{12}(\sin^{-1}(1/\sqrt{3}))$ mixes the first and second components of L_n, retaining the third one invariant to reach the same basis $(S_1, S_2, S_3)^T$. The mathematical expressions for relating $(S_1, S_2, S_3)^T$ with the charged lepton basis $(S_e, S_\mu, S_\tau)^T$ and neutrino basis $(S_{\nu_1}, S_{\nu_2}, S_{\nu_3})^T$ are shown as follows:

$$
\begin{pmatrix}
S_1 \\
S_2 \\
S_3
\end{pmatrix}
= R^l_{23}(\pi/4)
\begin{pmatrix}
S_e \\
S_\mu \\
S_\tau
\end{pmatrix},

\begin{pmatrix}
S_1 \\
S_2 \\
S_3
\end{pmatrix}
= R_{12}(\sin^{-1}(1/\sqrt{3}))
\begin{pmatrix}
S_{\nu_1} \\
S_{\nu_2} \\
S_{\nu_3}
\end{pmatrix}.
$$

(8)

Following the convention given in Ref. [7], when we discuss the geometry structure, we abbreviate the sides S_l (S_{ν_i}) as l (ν_i) without causing any confusion. Here $S_{e,\mu,\tau}$ and S_{ν_1,ν_2,ν_3} just refer to the corresponding geometrical quantities marked in Fig. 1 and are by no means the physical states.

Comparing $U_{\text{tribi}} = R_{23}(\pi/4)R_{12}(\sin^{-1}(1/\sqrt{3}))$ with $U_{PMNS} = U_l^T U_\nu$, it appears that the two rotations $R^l_{23}(\pi/4)$ and $R_{12}(\sin^{-1}(1/\sqrt{3}))$ correspond to the mixing matrices for the
charged leptons and neutrinos, respectively. It is noted that in Eq. (8), we only concern the mixing parts; thus, inserting $\gamma^0\gamma^\mu(1 - \gamma^5)$ between $((S_1, S_2, S_3)^T)^\dagger$ and $(S_1, S_2, S_3)^T$ which is irrelevant to our geometrical settings, we just derive the Lagrangian of weak interaction.

We also would like to point out that in Eq. (8), the high symmetry is assumed, and all quantities are indeed corresponding to the zeroth order ones [7], and then later when we introduce a deformation of the cube to break the tribimaximal symmetry, the concerned quantities would turn into the physical ones.

Concretely, in Fig. 1, sides OX, OY, and OZ represent e, μ, and τ; and ν_1, ν_2, and ν_3 correspond to OX', OB, and OZ', respectively. The line-OZ' resides on the plane $OZAY$ and spans an angle of $\pi/4$ with respect to the OZ axis, whereas line OX', line OZ', and line OB compose three-dimensional mutually perpendicular coordinate axes, and according the right-hand rule, we have an $OB - OZ' - OX'$ system. The angle spanned between OX' and OX is θ_{12}. Therefore, the two rectangular coordinate systems transform from each other by two rotations about the axes OX and OZ', respectively. The right-handed rotation $R^1_{23}(\pi/4)$ about the OX axis brings μ to OA and τ to ν_3, and a second right-handed rotation $R_{12}(\sin^{-1}(1/\sqrt{3}))$, with $\theta_{12} = \sin^{-1}(1/\sqrt{3})$, turns ν_1 into e and ν_2 into OA. Then, after performing the two successive operations, the basis $(S_1, S_2, S_3)^T$ shown above can be directly read out as $(e, OA, \nu_3)^T$.

Although the tribimaximal mixing Ansatz is close to the experimental data and exhibits a striking symmetry, it is not the exact form of the PMNS matrix. Moreover, this symmetry demands θ_{13} to be zero. If the tribimaximal symmetry is not exact, with the angles θ_{23} and θ_{12} obviously deviate from the values determined by the symmetry, one has sufficient reason to believe that θ_{13} should not be zero. In fact, the previous measurements set a lower bound for θ_{13} as $\sin^2 2\theta_{13} < 0.15$ [3], and will be more precisely measured at the upcoming reactor experiments Daya Bay [8] and Double Chooz [9].

It would be interesting to investigate how to break the tribimaximal symmetry from a theoretical aspect. Friedberg and Lee suggest to break the symmetry from the charged lepton side [10], whereas He and his collaborators break the symmetry from the neutrino sector [11]. Since the whole mixing matrix is a product of the two unitary matrices that, respectively, diagonalize the charged lepton and neutrino mass matrices as $U_{PMNS} = U_l^\dagger U_\nu$, breaking from either side is just like climbing up Mount Everest from the south or north side as Lee comments [12]. Their schemes to break the symmetry are algebraic.
Instead, in this work, we propose to break the symmetry based on Friedberg and Lee’s geometrical picture. Namely, we let the cube be slightly deformed and the nonzero θ_{13} value would emerge. Concretely, by deforming the geometric representation of the tribimaximal mixing, the angles would deviate from their ideal values; by fitting them to the data, we determine the deformation scale of the cube, and then by the new geometric shape θ_{13} is no longer zero.

The work is organized as follows. In Sec. II, we present our geometrical model of deforming the cube to get the θ_{13} as a function of the other two mixing angles. Then, in Sec. III, we present our numerical results. The last section is devoted to our conclusion and some discussions.

II. THE DEFORMED CUBE MODEL

It is noticeable that the angle between lines OA and OB and that between OY and OA in the cube are precisely the two mixing angles of the tribimaximal matrix θ_{12} and θ_{23}, respectively. For a perfect symmetry, which corresponds to a complete cube, we have $\theta_{12} = \sin^{-1}(1/\sqrt{3})$ and $\theta_{23} = \pi/4$, which are determined by the geometry. It is then viable that a deformation would lead to the more realistic form of the PMNS matrix, and, thus, the
nonzero θ_{13} would emerge. After this deformation, θ_{12} and θ_{23} are not the values given above anymore, but dependent on the form of the deformation. A cube is a kind of polyhedron with high symmetry described by a certain group, so a deformation of a cube should be regarded as a symmetry breaking.

Now, let us demonstrate how to deform the above cube. For choosing the deformation scheme, we set three principles:

- There are three rotation axes for a cube as presented in Fig. 2, i.e., EE', FF', and GG'. Apparently, the axis GG' is related with the mixing angle θ_{12} ($\angle AOB$), and the axis FF', which is parallel to the side OA, is related to θ_{23} ($\angle AOE$). Then, the rest symmetry axis EE' may be related to the zero θ_{13} in the tribimaximal mixing. Thus, after the supposed deformation, the three symmetries would be broken, and the value of the deformation angle is related to θ_{13}. For simplicity, we just choose the deformation angle to be θ_{13}.

- For the tribimaximal mixing, $\theta_{23} = \pi/4$ and $\theta_{13} = 0$, there exists the $\mu - \tau$ symmetry [13]. The global fit [14] gives $\theta_{23} = 42.8^\circ$, which apparently breaks the $\mu - \tau$ symmetry. Thus, in the deformation, θ_{23} ($\angle AOE$) should be changed from $\pi/4$ to some values in order to break the $\mu - \tau$ symmetry.

- In Ref. [14], the global fits of θ_{12} and θ_{23} are 34.4° and 42.8°, respectively. Thus, for the deformation, θ_{12} ($\angle AOB$) and θ_{23} ($\angle AOE$) should be changed toward smaller values than $\sin^{-1}(1/\sqrt{3})$ and $\pi/4$, respectively.

Considering above principles, the simplest and most direct scheme to deform the cube is to slide the bottom face parallel to the top face, and a small angle would emerge, and this angle is identified as θ_{13}. The length of each side is unchanged during the slide. This operation is explicitly illustrated in Fig. 3. With the parallel slide, the bottom face becomes $EFGH$. To be consistent with Friedberg and Lee’s picture and the principles we proposed above, we identify $\theta_{12} = \angle FAG$, $\theta_{23} = \angle BAF$, and $\theta_{13} = \angle EAE_0$. E_0 is the point of intersection between side AE' and plane $EFGH$. AE_1 and E_0E_1 are perpendicular to the diagonal line EG.

Setting $\angle E_0EG \equiv \alpha$ and in the rectangular triangle $\text{Rt} \triangle AE_1G$, one has

$$AG^2 = AE_1^2 + E_1G^2 = \cos^2 \theta_{13} + \sin^2 \theta_{13} \sin^2 \alpha + (\sqrt{2} + \sin \theta_{13} \cos \alpha)^2.$$ \hspace{1cm} (9)
FIG. 3: (color online) The sketch of the shift of the bottom face relative to the top face.

In \(\triangle AEF \),

\[AG^2 = 1 + 4 \cos^2 \theta_{23} - 4 \cos \theta_{23} \cos (\pi - \theta_{12} - \sin^{-1}(2 \sin \theta_{12} \cos \theta_{23})) \, , \]

(10)

and in \(\triangle E_0E_F \),

\[E_0F^2 = E_0E^2 + EF^2 - 2E_0E \cdot EF \cos \angle E_0EF \]

(11)

\[4 \cos^2 \theta_{23} - \cos^2 \theta_{13} = \sin^2 \theta_{13} + 1 - 2 \sin \theta_{13} \cos(\alpha + \frac{\pi}{4}) \]

(12)

The geometrical relationship of the sides and angles in the deformed cube would determine Eq. (9), Eq. (10), and Eq. (12). From these equations, we can get an analytical expression of \(\theta_{13} \), with respect to the other two mixing angles \(\theta_{12} \) and \(\theta_{23} \) as

\[\sin^2 \theta_{13} = 4 \cos^4 \theta_{23} - 4 \cos^2 \theta_{23} + 4 \cos^2 \theta_{23} \cos^2 (\theta_{12} + \sin^{-1}(2 \sin \theta_{12} \cos \theta_{23})) + 1 \]

(13)

As we have mentioned above, a cube is a highly symmetric polyhedron that could be represented by a global \(S_4 \) group \[15\]. This group has 24 elements classified in five conjugate classes. As shown in Fig. 2, a cube has three kinds of rotation axes, \(h = 2 \), \(h = 3 \), and \(h = 4 \), corresponding to \(FF' \), \(GG' \), and \(EE' \), respectively. All the rotation axes in the same \(h \) are equivalent.
FIG. 4: (color online) Comparison of our result (dashed line) with the Daya Bay expected sensitivity limit to $\sin^2 2\theta_{13}$ as a function of running time.

It is notable that the angle between the axes of $h = 2$ and $h = 4$ is $\pi/4$, and the angle between the axes of $h = 2$ and $h = 3$ is $\sin^{-1}(\sqrt{1/3})$. In other words, the two angles are exactly that in the tribimaximal form of the PMNS matrix. Another angle corresponding to θ_{13} must be an angle between $h = 4$ and $h = 4$ itself, so $\theta_{13} = 0$.

With the deformation, the symmetry of the cube is broken, and θ_{13} acquires a nonzero value. We can then view θ_{13} as the parameter representing the deviation from the cubic symmetry. It is then viable to define θ_{13} as the angle between the ”new” $h = 4$ axis and the ”old” one.

III. NUMERICAL RESULTS

Ref. [14] presents the updated global fit to the three-generation neutrino mixing:

$$\theta_{12} = 34.4 \pm 1.0^\circ, \theta_{23} = 42.8^{+4.7}_{-2.5}^\circ.$$ (14)

Using the data as inputs, we obtain the numerical value of θ_{13}:

$$\sin^2 2\theta_{13} = 0.0238, \theta_{13} = 4.44^\circ.$$ (15)
FIG. 5: (color online) Comparison of our result (dashed line) with the Double Chooz expected sensitivity limit to $\sin^2 2\theta_{13}$ as a function of running time.

The errors of the fit would cause a theoretical uncertainty to θ_{13}:

$$\sin^2 2\theta_{13} = 0.0238^{+0.0762}_{-0.0238}. \hspace{1cm} (16)$$

The errors are rather large, and, in fact, to make $\sin^2 2\theta_{13} \geq 0$, the lower bound shown in the above expression is set. This expression indicates that our prediction on θ_{13} is somehow sensitive to the input data and that in order to get more precise values of θ_{13}, more precise values of the input are needed.

Two reactor neutrino experiments, Daya Bay [8] and Double Chooz [9], aiming to directly measure θ_{13} are expected to reach a very high precision. We illustrate a relation of the expected sensitivity of the Daya Bay and Double Chooz as a function of the running time in Figs. 4 and 5, respectively, where we mark the central value of $\sin^2 2\theta_{13}$ calculated in this work.

Apparently, because of the high precision, the $\sin^2 2\theta_{13}$ value from our model would be probed at the first run of the Daya Bay experiment.

We show $\sin^2 2\theta_{13}$ as a function of θ_{12} for $\theta_{23} = 42.8^\circ$ in Fig. 6 and the dependence on θ_{23} for $\theta_{12} = 34.4^\circ$ in Fig. 7. Particle Data Group (PDG) presents an upper bound of θ_{13} as $\sin^2 2\theta_{13} < 0.15$ at CL=90\% [3], which is also marked in Figs. 6 and 7. From Figs. 6 and
FIG. 6: (color online) $\sin^2 2\theta_{13}$ as a function of θ_{12} for $\theta_{23} = 42.8^\circ$ from the toy model (solid line). The limit $\sin^2 2\theta_{13} < 0.15$, CL=90% from PDG is plotted as the dashed line.

we can see that the theoretically predicted value of $\sin^2 2\theta_{13}$ is sensitive to both θ_{12} and θ_{23}. By the updated data, θ_{12} and θ_{23} are constrained within the range $(31.9^\circ \sim 36.5^\circ)$ and $(40.2^\circ \sim 48.3^\circ)$, respectively.

IV. DISCUSSIONS AND CONCLUSIONS

$\theta_{23} = \pi/4$ and $\theta_{13} = 0$ imply the so-called $\mu - \tau$ symmetry embedding in the neutrino mass matrix, i.e., the mass matrix in the flavor basis has an obvious $\nu_\mu - \nu_\tau$ permutation symmetry. This leads to the mass matrix with the form

$$M = \begin{pmatrix} A & B & B \\ B & C & D \\ B & D & C \end{pmatrix}. \quad (17)$$

In Ref. [11], the authors discussed the soft breaking of the $\mu - \tau$ symmetry that arises from the Majorana mass term of the heavy right-handed neutrinos in the minimal seesaw model. From their $\mu - \tau$ symmetry breaking model, they derived a relation among the mixing angles
FIG. 7: (color online) $\sin^2 2\theta_{13}$ as a function of θ_{23} for $\theta_{12} = 34.4^\circ$ from the toy model (solid line). The limit $\sin^2 2\theta_{13} < 0.15$, CL=90% from PDG is plotted as the dashed line.

and Dirac CP phase

$$\theta_{23} - \frac{\pi}{4} = -\theta_{13} \cot \theta_{12} \cos \delta.$$ \hspace{1cm} (18)

For the case that the Dirac CP phase $\delta = 0$ and substituting the experimental fits $\theta_{12} = 34.4^\circ$ and $\theta_{23} = 42.8^\circ$ into Eq. (18), we obtain the value of θ_{13} as

$$\sin^2 2\theta_{13} = 0.00276, \theta_{13} = 1.51^\circ.$$ \hspace{1cm} (19)

Instead, in a parallel work, Friedberg and Lee\hspace{1cm} [10] suggested that one can break the $\mu - \tau$ symmetry at the charged lepton side in terms of a perturbation method, and they also showed that the breaking may lead to a nonzero θ_{13}.

In this work, by deforming the cube that corresponds to a full tribimaximal form of the mixing matrix according the proposed principles, we derive the analytic relation among the three lepton mixing angles, and, taking the experimental data as inputs, we deduce the value of unknown mixing angle θ_{13}. The result gives $\sin^2 2\theta_{13} = 0.0238$, i.e., $\theta_{13} = 4.44^\circ$. As noticed, our theoretical prediction favors smaller θ_{13}. As θ_{13} is to be measured at the Double Chooz and Daya Bay experiments, our result indicates that in the future, there would be a great opportunity to fix the mysterious θ_{13}. The recent measurement of the
T2K collaboration indicates that $\sin^2 2\theta_{13}$ falls in a rather wide range of $0.03(0.04) < \sin^2 2\theta_{13} < 0.28(0.34)$, and the central value of our theoretical prediction is consistent with the lower bound set by the collaboration, and the error range is comparable. This value also does not contradict the new measurement by Main Injector Neutrino Oscillation Search.

Acknowledgments

We thank Dr. Ye Xu for helpful discussion on the experimental issues. This work is supported by the National Natural Science Foundation of China, under Contract No. 11075079.

References

[1] B. Pontecorvo, Zh. Eksp. Teor. Fiz. 33, 549 (1957); 34, 247 (1958) [Sov. Phys. JETP 6, 429 (1957)].
[2] Z. Maki, M. Nakagawa and S. Sakata, Prog. Theor. Phys. 28, 870 (1962).
[3] K. Nakamura et al. (Particle Data Group), J. Phys. G 37, 075021 (2010).
[4] H. Fritzsch and Z.Z. Xing, Phys. Lett. B 372, 265 (1996); Phys. Lett. B 440, 313 (1998); Phys. Rev. D 61 073016, (2000).
[5] F. Vissani, arXiv:hep-ph/9708483; V. D. Barger, S. Pakvasa, T.J. Weiler and K. Whisnant, Phys. Lett. B 437, 107 (1998); A.J. Baltz, A.S. Goldhaber and M. Goldhaber, Phys. Rev. Lett. 81, 5730 (1998); I. Stancu and D.V. Ahluwalia, Phys. Lett. B 460, 431 (1999); H. Georgi and S.L. Glashow, Phys. Rev. D 61, 097301 (2000).
[6] P.F. Harrison, D.H. Perkins and W.G. Scott, Phys. Lett. B 530, 167 (2002); Z.Z. Xing, Phys. Lett. B 533, 85 (2002); P.F. Harrison and W.G. Scott, Phys. Lett. B 535, 163 (2002); X.G. He and A. Zee, Phys. Lett. B 560, 87 (2003); I. Stancu and D.V. Ahluwalia, Phys. Lett. B 460, 431 (1999).
[7] R. Friedberg and T.D. Lee, Annals Phys. (N.Y.) 324, 2196 (2009).
[8] J. Cao, Nucl. Phys. B, Proc. Suppl. 155, 229 (2006); S.M. Chen, J. Phys. Conf. Ser. 120, 052024 (2008); C. White, J. Phys. Conf. Ser. 136, 022012 (2008).
[9] C. Palomares (Double Chooz Collaboration), Proc. Sci., EPS-HEP2009 (2009) 275; F. Ardellier et al., arXiv:hep-ex/0606025, arXiv:hep-ex/0405032.

[10] R. Friedberg and T.D. Lee, Chinese Phys. C 34, 1547 (2010).

[11] S. F. Ge, H. J. He, and F. R. Yin, J. Cosmol. Astropart. Phys. 05 (2010) 017; H. J. He and F.R. Yin, Phys. Rev. D 84, 033009 (2011).

[12] T.D. Lee, Proceedings for the Conference on the Neutrino Physics in the Daya Bay Era, Beijing, China, 2010 (unpublished).

[13] R.N. Mohapatra and A.Yu. Smirnov, Ann. Rev. Nucl. Part. Sci. 56, 569 (2006).

[14] M. C. Gonzalez-Garcia, M. Maltoni, and J. Salvado, J. High Energy Phys., 04 (2010) 056.

[15] H. Ishimori, T. Kobayashi, H. Ohki, H. Okada, Y. Shimizu, and M. Tanimoto, Prog. Theor. Phys. Suppl. 183, 1 (2010).

[16] K. Abe et al. (T2K Collaboration), Phys. Rev. Lett. 107, 041801 (2011).

[17] P. Adamson et al., (MINOS Collaboration), arXiv:hep-ex/1108.0015.