Leptoquarks with Exactly Stable Protons

Joe Davighi,1,* Admir Greljo,2,† and Anders Eller Thomsen2,‡

1Physik-Institut, University of Zurich, CH 8057 Zürich, Switzerland
2Albert Einstein Center for Fundamental Physics, Institute for Theoretical Physics, University of Bern, Bern 3012, Switzerland

(Dated: August 12, 2022)

We explore a novel mechanism to restrict TeV-scale leptoquark interactions and render the proton exactly stable to all orders in the effective field theory expansion. A scalar condensate breaks a lepton-flavored $U(1)_X$ gauge symmetry in the ultraviolet and generates neutrino masses, leaving a discrete Z_6 or Z_{18} gauge symmetry in the infrared, forbidding $\Delta B = 1$ processes. This provides an elegant framework to address the flavour anomalies and can be adapted to many other new-physics models. The $U(1)_X$ can emerge from a gauge–flavour unified $SU(12) \times SU(2) \times SU(2)$ theory at even higher energies.

I. INTRODUCTION

Leptoquarks [1]—hypothetical particles motivated by quark-lepton unification—were historically discussed in the context of grand unified theories and proton decay. Given the stringent lower bound on the proton lifetime, these particles were thought to be much heavier than the next mass threshold beyond the Standard Model (SM). A TeV-scale leptoquark generically gives excessive proton decay, charged lepton flavour violation, and electric dipole moment contributions. Their LHC searches were categorised as exotica for a good reason.

This exotic status has changed dramatically in recent years with hints of new physics (NP) emerging from the LHCb experiment, without accompanying signs of NP at high-p_T. Several observables in $b \to s\ell^+\ell^−$ transitions are in tension with SM predictions, suggesting a deficit of muons in B-meson decays [2–13] and pointing to a consistent NP picture [14–18] with a global significance estimated to be 4.3σ [19]. This is not the only instance of muons behaving strangely: measurements [20, 21] of its anomalous magnetic moment $(g - 2)_\mu$ show a 4.2σ deviation from the consensus theory prediction [22–43] (however, see [44]). Popular NP explanations of either anomaly invoke TeV-scale leptoquarks.

In addition to the minimal set of couplings needed to fit the anomalies, there are other renormalisable couplings consistent with Poincaré symmetry and SM gauge invariance. Those violate the accidental symmetries of the SM, which have been exquisitely tested in experiment to hold good far beyond the TeV scale. The most challenging transitions are $\Delta B = 1$ where B is baryon number. Thus, as already hinted at, such TeV-scale leptoquarks would appear in flagrant violation of the naive expectation that marginal couplings should be $O(1)$.

Following the idea developed in [45–49], charging leptoquarks under a lepton-specific $U(1)_X$ gauge symmetry can preserve $U(1)$ baryon and $U(1)^3$ lepton numbers as accidental symmetries. To address the $b \to s\ell^+\ell^−$ and $(g - 2)_\mu$ anomalies for instance, it is convenient to choose gauge charges such that the leptoquarks carry global baryon and muon numbers. Such ‘muoquarks’ couple exclusively to the muon flavour at the renormalisable level, and have no dangerous diquark interactions qS^*q.

Of course, the $U(1)_X$ lepton number symmetries are ultimately broken, as indicated by the observation of neutrino oscillations. A successful realisation of neutrino masses restricts the possible $U(1)_X$ gauge charges; one valid example was provided in [47]. Generally, the neutrino mass matrix can only be generated after spontaneous symmetry breaking (SSB) of $U(1)_X$, for example by condensing $U(1)_X$-charged scalars ϕ. This, unfortunately, reintroduces the dangerous leptoquark couplings, suppressed by powers of $\langle \phi \rangle / \Lambda$, requiring a low-scale breaking of $U(1)_X$ and a high-scale cutoff. A notable example is provided by the $U(1)_{L_\mu - L_\tau}$ symmetry [46] where a $\Delta B = 1$ operator arises already at dimension-5.

Even if this operator is suppressed by the Planck scale,1 this would not be enough to evade the proton lifetime bound.

In this Letter, we discover a class of models where, contrary to expectations, the $U(1)_X$ breaking and subsequent realisation of neutrino masses can be at a high-scale while exactly forbidding proton decay thanks to a residual discrete gauge symmetry in the IR. A famous example of a discrete symmetry used to forbid certain $\Delta B = 1$ operators, and whose UV completion might be a local $U(1)$, is R-parity in supersymmetry [51]. The novelty here is a discrete gauge symmetry in the IR under which baryons but not leptons are charged, forbidding all $\Delta B = 1$ operators. Such a symmetry can only be embedded into a lepton-non-universal local $U(1)_X$, as discussed in Section III.

Interestingly, this does not prevent further quark-lepton unification into a semi-simple gauge group. In the

1 Quantum gravity is expected to break all global charges, including global (but not gauged) discrete symmetries [50–54].
II. THE UV MODEL

Introducing scalar leptoquarks $S_{3/1}$ with gauge quantum numbers $(3,3,1)/3$ under $G_{SM} := SU(3)_c \times SU(2)_L \times U(1)_Y$, and interactions

$$\mathcal{L} \supset \lambda_{ij}^{\alpha} \bar{q}_i S_3 \ell_j + \lambda_{ij}^{\alpha} \bar{d}_j S_1 \ell_j + \lambda_{ij}^{\alpha} \bar{u}_j S_1 \ell_j + \text{H.c.},$$

(1)

provides a well-known simplified model for the flavour anomalies [55–68]. Either leptoquark might be there to address a subset of data: only the weak triplet (singlet) breaking scalars; (ii) restrict to the case where two lepton charges coincide, which allows for a dense neutrino Majorana mass matrix using only one or two $U(1)_X$-breaking scalars; and (iii) do not require additional chiral fermions beyond the SM $+$ 3R. Up to normalisation, this class is parametrized by two coprime integers m and $n \neq 0$:

$$X = 3n(B - L) - n(2L_\mu - L_e - L_\tau), \quad \gcd(m,n) = 1.$$

(2)

The model of [47] is equivalent to the case $(m,n) = (1,3)$, ergo $X \propto B - 3L_\mu$. In addition to the $U(1)_X$ gauge field X, we introduce two SM singlet leptoquarks and with $U(1)_X$ charges, which acquire vacuum expectation values (VEVs) at a high scale. Both the SM fields and $S_{1/3}$ are charged under $U(1)_X$ and charges recorded in Table I detailing the full field content of the model.

At the renormalisable level, such muoquarks furnish examples of new physics models in which quark flavour violation is linear [72] (thus rank-one [73]),

$$\lambda_{3i}^j = \alpha_{3i}^j \delta_{i2}, \quad \lambda_{I,LR}^{ij} = \alpha_{I,LR}^{ij} \delta_{ij}.$$

(3)

The vectors α_{3i}^j and $\alpha_{I,LR}^{ij}$ that encode their couplings to quarks are, however, arbitrary in quark flavour space. Following [47], it is natural for $\alpha_{I,LR}^{ij}$ to be consistent with the approximate $U(2)_I \times U(2)_M \times U(2)_X$ flavour symmetry observed in the quark Yukawa interactions with the Higgs [74] (see also [75]). A global flavour fit [47] shows plenty of parameter space to fit both sets of anomalies simultaneously, consistent with complementary direct searches at the LHC. Moreover, the minimal set of couplings can be consistently extrapolated to the Planck scale without developing Landau poles [47].

While all the quark Yukawa couplings are permitted at the renormalisable level, the charged lepton Yukawa matrix has texture

$$Y_e \sim \begin{pmatrix} 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{pmatrix}.$$

(4)

This means that the charged lepton rotation matrices, that take us from the gauge eigenbasis to the mass basis, only act within the electron-tau subspace. Therefore the $S_{3/1}$ leptoquarks remain coupled only to muons in the lepton mass basis as per Eq. (3).

The neutrinos have a Yukawa coupling matrix Y_ν with a similar structure to the charged lepton Yukawa (4), which gives mass contributions set by the electroweak scale v. However, by design ϕ_τ and ϕ_μ act as Majorons: Majorana mass terms for the right-handed neutrinos are generated by the $U(1)_X$-breaking VEVs of ϕ_τ and ϕ_μ, both assumed to be of order v_X, through their Yukawa interactions

$$\mathcal{L} \supset \bar{\nu}_R^c \nu_R^c (\xi_{\nu \tau} \phi_\tau + \xi_{\nu \mu} \phi_\mu) \implies \frac{M_\nu}{v_X} \sim \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}.$$

(5)

This mass structure can accommodate all the data pertinent to neutrino masses and mixings [76–78], since it reduces to the two-zero minor structure of type D_R^ν [79] by

Quarks	Fields	$U(1)_X$
q_u, q_d, d_i	m	
Electrons and taus	$\ell_{1,3}, \ell_{1,3}, \nu_{1,3}$	$n - 3m$
Muons	ℓ_2, ℓ_2, ν_2	$-2n - 3m$
Higgs	H	0
Leptoquarks	S_3, S_1	$2m + 2n$
Scalars	$\phi_{\tau \tau}, \phi_{\mu \mu}$	$6m - 2n$
		$6m + n$
setting some entries to zero. In the special case \((m, n) = (1, 3)\), i.e. \(X \propto B - 3L_\mu\), studied in Ref. [47], the scalar \(\phi_{\tau}\) is neutral and decouples, and four of the entries in \(M_\phi^6\) are populated by bare mass terms, whose dimensionful coefficients have to coincide with the scale \(\varepsilon_X\) to fit the data well. Similarly, for the case \((m, n) = (1, -6)\), corresponding to \(X \propto B + 3L_\mu - 3L_\nu - 3L_\tau\), the \(\phi_\mu\) scalar decouples.

III. THE IR: DISCRETE GAUGE SYMMETRY

The \(U(1)_X\) gauge symmetry is broken by the VEVs of \(\phi_{\tau}\) and \(\phi_\mu\), whose charges are uniquely fixed so as to produce a dense neutrino Majorana mass matrix (5). Because these charges are non-trivial multiples of the fundamental unit of \(U(1)_X\) charge, there remains an unbroken discrete subgroup \(\Gamma \subset U(1)_X\) acting on matter in the IR, which in our case remarkably protects baryon number. Such a discrete gauge symmetry imposes IR selection rules that are exact, holding to all orders in the EFT expansion.

Here we determine the remnant symmetry \(\Gamma\) in our model and some of its striking consequences. The group \(\Gamma\) is isomorphic to the cyclic group \(\mathbb{Z}_k\), where

\[
k = \gcd([\phi_{\tau}]_X, [\phi_\mu]_X) = \gcd(6m - 2n, 6m + n) = \gcd(3n, 6m + n).
\]

The \(\Gamma \cong \mathbb{Z}_k\) charge of the \(\Delta B = 1\) inducing diquark operator \(qS^*q\), for any quark and leptoquark fields, is

\[
[qS^*q]_\Gamma = -2n (\text{mod } k).
\]

This diquark operator is invariant under \(\Gamma\) iff \([qS^*q]_X \in k\mathbb{Z}\), or, equivalently,

\[
k = \gcd([qS^*q]_X, k) = \gcd(3n, 6m + n, -2n) = \gcd(6m, n).
\]

If \(n \notin 3\mathbb{Z}\), Eq. (8) is automatically satisfied. Thus, for models with \(n \notin 3\mathbb{Z}\), we learn that diquark operators are not banned by \(\Gamma\)-invariance in the IR and, so, are expected to arise at some order in the EFT expansion.

Continuing, we henceforth restrict ourselves to \(n \in 3\mathbb{Z}\). Writing \(n = 3n'\), our formula (6) for \(k\) reduces to

\[
k = 3 \gcd(3n', 2(m - n')).
\]

We distinguish two further subcases. For ‘subcase A’, consider \(m \notin n' \pmod{3}\), \(\gcd(3, n' - m) = 1\). Then Eq. (9) yields \(k = 3 \gcd(n', 2m) = \gcd(n, 6m)\), satisfying condition Eq. (8) for \(\Gamma\)-invariance of the diquark operators.

For ‘subcase B’, we have \(m \equiv n' \pmod{3}\). Defining \(r := m \pmod{3}\), clearly \(r = 0\) is inconsistent with the assumption \(\gcd(m, n) = 1\), so we have \(r \in \{1, 2\}\). We parametrize \(m = 3a + r\) and \(n' = 3b + r\) for integers \(a\) and \(b\). One finds that

\[
k = 9 \gcd(3b + r, 2(a - b)) \equiv 0 \pmod{9}.
\]

On the other hand, the RHS of Eq. (8) reduces to

\[
\gcd(n, 6m) = 3 \gcd(3b + r, 6a + 2r) \neq 0 \pmod{9}.
\]

It follows that condition (8) cannot be satisfied in this case. This covers all cases for \((m, n)\).

From this brief arithmetical excursion, we conclude that the troublesome diquark operator is banned by \(\Gamma\) gauge invariance only for the subset of \(U(1)_X\) models defined in (2) parametrized by

\[
(m, n) = (3a + r, 9b + 3r), \text{ for } r \in \{1, 2\}, \quad (a, b) \in \mathbb{Z}^2, \text{ and } \gcd(3a + r, b - a) = 1.
\]

The condition on \(a\) and \(b\) in the second line, which evades a simple parametrization, is simply to ensure that \(m\) and \(n\) label unique UV theories.

We proceed to consider the family of \(U(1)_X\) models (12). We emphasize that, since \(\phi_{\tau}\) and \(\phi_\mu\) are \(\Gamma\)-singlets, no number of scalar insertions in the EFT can make a \(\Gamma\)-invariant diquark operator. To our knowledge, this mechanism for banning \(B\)-violating operators using a remnant, discrete gauge symmetry that derives from a flavour–non-universal \(U(1)_X\) gauge symmetry at a high scale, is novel. It is therefore worth exploring in more detail.

First, as both \(m\) and \(n\) are necessarily non-zero, it is not enough to consider only \(B - L\) or only the lepton-flavoured factor; both are required to construct a model whose remnant symmetry exactly stabilizes the proton. Next, for the particular class of models (12), we can determine the remnant symmetry \(\Gamma\) explicitly. Substituting the ‘uniqueness condition’ \(\gcd(m, n) = 1\) into (10), we find, after a little algebra, that

\[
k = 9 \gcd(2, b + r).
\]

We conclude that

\[
\Gamma \cong \begin{cases} \mathbb{Z}_9, & \text{for } b + r \in 2\mathbb{Z} + 1 \\ \mathbb{Z}_{18}, & \text{for } b + r \in 2\mathbb{Z} \end{cases}.
\]

We record the charges of the lepton, quark, and leptoquark fields, as well as the leptoquark and diquark operators, in Table II. The \(\Gamma\) charges of SM fermions are flavour universal, despite coming from a flavour-dependent \(U(1)_X\) symmetry in the UV. While this might seem surprising, it had to be the case—after all, the remnant \(\Gamma\) gauge symmetry remains exact at all energies.\footnote{The \(\mathbb{Z}_{18}(\mathbb{Z}_{18})\) symmetry is not broken by electroweak symmetry breaking or QCD condensation, and persists to the deep IR.}
immediately follows that principal possible through \(\Delta B = 3 \) operators, somewhat reminiscent of sphalerons. However, these processes require effective operators with nine quarks and at least one lepton, which start at dimension 15 in the SMEFT.

We emphasize that our mechanism for protecting the proton stability at all-orders is much stronger than in the generic SMEFT, for which proton decay can occur at dimension 6. The same is true when comparing with model extensions à la Pati-Salam [80–96] interpreted as EFTs [97]. The protection in our model is guaranteed by the remnant discrete gauge symmetry in the IR. Crucially, it is insensitive to whatever physics might be lurking at higher energy scales.

b. Accidental lepton flavor conservation — The muon selection rule, unlike protection of baryon number, is not enscribed by \(\Gamma \)-invariance in the IR. In particular, the leptoquark operators \(qSf_\ell \) are \(\Gamma \)-invariant, despite not being \(U(1)_X \)-invariant, for all three lepton flavours. This suggests that higher-order operators coupling the leptoquarks to electrons and taus are allowed in the \(U(1)_X \)-invariant effective theory, which could come from even heavier dynamics integrated out at a scale \(\Lambda > v_X \). Rather, after the breaking of \(U(1)_X \rightarrow \Gamma \), muon number remains as an accidental, and thus approximate, symmetry in the IR.

Sure enough, both leptoquarks have dimension-6 couplings to the other lepton families: schematically, \(\frac{1}{\Lambda^2} \phi_\tau \phi^*_\mu qS_{1/3} \ell_{1/3} \) and \(\frac{1}{\Lambda^2} \phi_\tau \phi^*_\mu uS_{1} \ell_{1} \). Moreover, there are dimension-6 corrections of the form \(\frac{1}{\Lambda^2} \phi_\tau \phi^*_\mu H \ell_j \) to the charged lepton Yukawa matrix, populating the four zeroes in Eq. (4). The fact that the leptoquarks now have couplings to both muons and electrons means that \(\mu \rightarrow e\gamma \) is mediated by the leptoquark exchange. In the case of the \(S_1 \) leptoquark, this contribution to \(\mu \rightarrow e\gamma \) is related to its contribution to the \((g - 2)_\mu \) anomaly by a factor of \(\varepsilon_X^2 \) where \(\varepsilon_X \equiv v_X/A. \) The stringent experimental limit on \(BR(\mu \rightarrow e\gamma) [98] \) requires \(\varepsilon_X \lesssim 10^{-2} \) or so [99, 100], meaning that a modest scale separation is sufficient to suppress LFV processes to a level compatible with current bounds. Conversely, it is possible to introduce the next layer of NP safely below the Planck scale even if we take \(v_X \sim 10^{11}\text{TeV} \) to naturally accommodate light neutrinos in a seesaw with order-1 couplings.

c. Dark Matter — The discrete gauge symmetry \(\Gamma \) can be used to stabilise the WIMP dark matter [101–108]. To name one example, a dark matter candidate could be a scalar \(\chi \) thermalised via the Higgs portal interaction \(|H|^2 \chi^2 \). To make the dark matter, \(\chi \), stable, its \(U(1)_X \) charge should be such that all operators involving one \(\chi \) field and arbitrary other light fields should be forbidden. Since all colour-singlet operators have \(\Gamma \) charge equal to 0 (mod 3), the DM is automatically stabilized if \([\chi]_\Gamma \neq 0 \) (mod 3)—for example, if \([\chi]_\Gamma = 1 \), coming from (say) the minimal unit of \(U(1)_X \) charge in the UV model.

d. Matter asymmetry — The scale of the right-handed neutrinos can allow for the usual high-scale leptogenesis scenario [109–111]. The global \(U(1)_{B+L} \) is anomalous allowing for the efficient sphalerons processes to take place.

IV. Deeper into the UV: Unification

To conclude, we tentatively discuss how the \(G_{SM} \times U(1)_X \) muoquark model, which gives rise to both LFUV and exactly stable protons in the IR, could be embedded inside a unified semi-simple gauge theory deeper in the

TABLE II. Charges under the remnant discrete symmetry \(\Gamma \). Here \(q \) and \(\ell \) refers to any of the quark and lepton fields, respectively, and \(S \) refers to either \(S_1 \) or \(S_3 \). The parameter \(r \in \{1, 2\} \), while \(a \) and \(b \) can be any integers satisfying the second line of (12). In the \(Z_{18} \) case, we can always write \(Z_{18} \cong Z_9 \times Z_2^4 \), where \(Z_2^4 \) is the usual ‘fermion number’ symmetry.

\(b + r \) (mod 2)	\(\Gamma \)	\(\ell \)	\(q \)	\(S \)	\(qS \ell \)	\(qS^2q \)
0	\(Z_{18} \)	3a + r	6a + 8r	0	12r	
1	\(Z_9 \)	3a + r	6a + 8r	0	3r	

FIG. 1. Tentative gauge–flavour unification scenario. See Section IV for details.
UV. The starting point is to realise that \(U(1)_Y \times U(1)_X \) can be embedded inside \(SU(2)_R \times U(1)_{\mu-\tau} \times U(1)_Z \), where \(Z = X - 3m(B - L) \). \(U(1)_Z \) can in turn be embedded inside an SU(3)_{lepton} flavour symmetry that acts on lepton families, which we promote to a gauge symmetry. One can also unify SU(3)_{c} with an SU(3)_{quark} flavour symmetry acting on the quarks into an SU(9)_{quark} colour-flavour unified gauge symmetry. At this point, the gauge symmetry is SU(9)_{quark} \times SU(3)_{lepton} \times SU(2)_L \times SU(2)_R \times U(1)_{B-L}. This can be embedded inside the semi-simple gauge group

\[
G_{\text{CF}} := SU(12) \times SU(2)_L \times SU(2)_R,
\]

which was identified in \([112]\) and discussed in \([113]\).

The group \(G_{\text{CF}} \) can be viewed as an extension of the Pati–Salam gauge group \([114]\), whereby colour and family quantum numbers are unified. Remarkably, all three families of SM+3\(\nu_R\) fermions are packaged into two UV fermion fields, \(\Psi_L \sim (12, 2, 1) \) and \(\Psi_R \sim (12, 1, 2) \). The muoquarks descend from scalars transforming in the representations \((78, 3, 1)\) and \((66, 1, 1)\) of the unified gauge group, while the scalar fields \(\phi_{\tau, \mu} \) responsible for Majorana neutrino masses and for breaking \(U(1)_X \rightarrow \Gamma \) can sit in an \((78, 1, 3)\). A hierarchical breaking of SU(9)_{quark} can also give a UV explanation of the global U(2)_{q} quark flavour symmetry that appears accidental in the IR (in a similar way to \([82]\)). We save a detailed study of this embedding of the muoquark model inside a unified gauge theory for future work.

In this work, we sketched a complete story for lepton-flavoured TeV-scale leptoquarks that respect the SM accidental symmetries, consistent with very light neutrino masses. The proton is exactly stable thanks to a remnant discrete gauge symmetry in the IR. Of course, there remains the puzzle of why such a scalar leptoquark (and the Higgs) would reside at the TeV scale in the first place, in the presence of complicated physics at much higher scales. This hints at orthogonal routes towards the deep UV, in which the muoquark could arise from partial compositeness \([115, 116]\) or be embedded in a supersymmetric \(U(1)_X \) extension of the SM. Such flavour-dependent supersymmetric extensions were recently classified in \([117]\), suggesting a second path to the UV for future study. Beyond that, we wish to emphasize that the mechanism for stabilizing the proton with a remnant subgroup of a lepton-flavored gauged \(U(1)_X \) can be adapted to many other NP models with or without leptoquarks. Notably, this mechanism does not seem to work in lepton-universal models, perhaps an ever so small hint that something might be up with the muons.

ACKNOWLEDGMENTS

We thank Peter Stangl and Javier Fuentes-Martín for useful feedback. The work of \([A]_G\) and \([A]_ET\) has received funding from the Swiss National Science Foundation (SNF) through the Eccellenza Professorial Fellowship “Flavor Physics at the High Energy Frontier” project number 186866. \([J]_D\) is supported by the SNF under contract 200020-204428. The work of \([J]_D\) and \([A]_G\) is also partially supported by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme, grant agreement 833280 (FLAY).

[1] I. Doršner, S. Fajfer, A. Greljo, J. F. Kamenik, and N. Košnik, Physics of leptoquarks in precision experiments and at particle colliders, Rept. 641 (2016) 1–68, [arXiv:1603.04993].

[2] G. Hiller and F. Krüger, More model-independent analysis of \(b \rightarrow s \) processes, Phys. Rev. D 69 (2004) 074020, [hep-ph/0310219].

[3] LHCb Collaboration, R. Aaij et al., Test of lepton universality with \(B^0 \rightarrow K^{*0} \ell^+ \ell^- \) decays, JHEP 08 (2017) 055, [arXiv:1705.08802].

[4] LHCb Collaboration, R. Aaij et al., Test of lepton universality in beauty-quark decays, Nature Phys. 18 (2022), no. 3 277–282, [arXiv:2103.11769].

[5] LHCb Collaboration, R. Aaij et al., Measurement of CP-Averaged Observables in the \(B^0 \rightarrow K^{*0} \mu^+ \mu^- \) Decay, Phys. Rev. Lett. 125 (2020), no. 1 011802, [arXiv:2003.04831].

[6] LHCb Collaboration, R. Aaij et al., Angular Analysis of the \(B^+ \rightarrow K^{*+} \mu^+ \mu^- \) Decay, Phys. Rev. Lett. 126 (2021), no. 16 161802, [arXiv:2012.13241].

[7] LHCb, ATLAS, CMS Collaboration, Combination of the ATLAS, CMS and LHCb results on the \(B^0_{(s)} \rightarrow \mu^+ \mu^- \) decays.

[8] LHCb Collaboration, R. Aaij et al., Measurement of the \(B^0 \rightarrow \mu^+ \mu^- \) decay properties and search for the \(B^0 \rightarrow \mu^+ \mu^- \) and \(B^0_s \rightarrow \mu^+ \mu^- \) decays, Phys. Rev. D 105 (2022), no. 1 012010, [arXiv:2108.09283].

[9] LHCb Collaboration, R. Aaij et al., Analysis of Neutral B-Meson Decays into Two Muons, Phys. Rev. Lett. 128 (2022), no. 4 041801, [arXiv:2108.09284].

[10] LHCb Collaboration, R. Aaij et al., Differential branching fractions and isospin asymmetries of \(B \rightarrow K^{(*)} \mu^+ \mu^- \) decays, JHEP 06 (2014) 133, [arXiv:1403.8044].

[11] LHCb Collaboration, R. Aaij et al., Angular analysis and differential branching fraction of the decay \(B^0 \rightarrow \phi \mu^+ \mu^- \), JHEP 09 (2015) 179, [arXiv:1506.08777].

[12] LHCb Collaboration, R. Aaij et al., Measurements of the S-wave fraction in \(B^0 \rightarrow K^+ \pi^- \mu^+ \mu^- \) and the \(B^0 \rightarrow K^* (892)^0 \mu^+ \mu^- \) differential branching fraction, JHEP 11 (2016) 047, [arXiv:1606.04731]. [Erratum: JHEP 04, 142 (2017)].

[13] LHCb Collaboration, R. Aaij et al., Branching Fraction Measurements of the Rare \(B^0 \rightarrow \phi \mu^+ \mu^- \) and \(B^0 \rightarrow f_2 (1525) \mu^+ \mu^- \) Decays, Phys. Rev. Lett. 127
[59x280][59x395][59x92] T. Aoyama, T. Kinoshita, and M. Nio, T. Aoyama et al.,
Muon [59x437]Muon g-2
[59x510][19] G. Isidori, D. Lancierini, P. Owen, and N. Serra,
Muon g-2
[59x636][16] M. Algueró, B. Capdevila, S. Descotes-Genon,
New physics in rare
[59x720][14] W. Altmannshofer and P. Stangl,
Muon g-2
Refinements in electroweak contributions to the muon
(2019), no. 1 28.

[119901 (2006)].

Complete Tenth-Order QED Contribution to the Muon
(2019), no. 1 28.

[77x270][77x123]muon
g
cross-section data

Report of the Muon E821 Anomalous Magnetic
(2021), no. 1 015030, [arXiv:2011.00367].

[17] T. Hurth, F. Mahmoudi, D. M. Santos, and
S. Neshatpour, More Indications for Lepton
Nonuniversality in b → sℓ⁺ ℓ⁻, Phys. Lett. B 824
(2022) 136836, [arXiv:2104.10058].

[18] M. Ciuchini, M. Fedele, E. Franco, A. Paul,
L. Silvestrini, and M. Valli, Lessons from the
B_d,s → K^{0,−}μ⁺μ⁻ angular analyses, Phys. Rev. D
103 (2021), no. 1 015030, [arXiv:2011.01212].

[19] G. Isidori, D. Lancierini, P. Owen, and N. Serra,
On the significance of new physics in b → sℓℓ decays,
Phys. Lett. B 822 (2021) 136644, [arXiv:2104.05631].

Muon g-2 Collaboration, G. W. Bennett et al., Final
Report of the Muon E821 Anomalous Magnetic
Moment Measurement at BNL, Phys. Rev. D 73
(2006) 072003, [hep-ex/0602035].

Muon g-2 Collaboration, B. Abi et al., Measurement of
the Positive Muon Anomalous Magnetic Moment
to 0.46 ppm, Phys. Rev. Lett. 126 (2021), no. 14 141801,
[arXiv:2104.03281].

T. Aoyama et al., The anomalous magnetic moment
of the muon in the Standard Model, Phys. Rept. 887
(2020) 1–166, [arXiv:2006.04822].

G. Colangelo, M. Hoferichter, and P. Stoffer,
Constraints on the two-pion contribution to hadronic
vacuum polarization, Phys. Lett. B 814 (2021) 136073,
[arXiv:2010.07943].

T. Aoyama, M. Hayakawa, T. Kinoshita, and M. Nio,
Complete Tenth-Order QED Contribution to the Muon
g-2, Phys. Rev. Lett. 109 (2012) 111808,
[arXiv:1205.5370].

T. Aoyama, T. Kinoshita, and M. Nio, Theory of the
Anomalous Magnetic Moment of the Electron, Atoms 7
(2019), no. 1 28.

A. Czarnecki, W. J. Marciano, and A. Vainshtein,
Refinements in electroweak contributions to the anomalous
magnetic moment, Phys. Rev. D 67 (2003) 073006,
[hep-ph/0212229]. [Erratum: Phys.Rev.D 73, 119901 (2006)].

C. Gnediger, D. Stöckinger, and H. Stöckinger-Kim,
The electroweak contributions to (g−2), after the
Higgs boson mass measurement, Phys. Rev. D 88
(2013) 053005, [arXiv:1306.5546].

M. Davier, A. Hoecker, B. Malaescu, and Z. Zhang,
Reevaluation of the hadronic vacuum polarisation
contributions to the Standard Model predictions of the
muon g − 2 and α(M^2_Z) using newest hadronic
cross-section data, Eur. Phys. J. C 77 (2017), no. 12
827, [arXiv:1706.09436].

A. Keshavarzi, D. Nomura, and T. Teubner,Muon
g − 2 and α(M^2_Z) : a new data-based analysis, Phys.
Rev. D 97 (2018), no. 11 114025, [arXiv:1802.02995].

G. Colangelo, M. Hoferichter, and P. Stoffer, Two-pion
contribution to hadronic vacuum polarization, JHEP
02 (2019) 006, [arXiv:1810.00007].

M. Hoferichter, B.-L. Hoid, and B. Kubis, Three-pion
contribution to hadronic vacuum polarization, JHEP
08 (2019) 137, [arXiv:1907.01556].

M. Davier, A. Hoecker, B. Malaescu, and Z. Zhang, A
new evaluation of the hadronic vacuum polarisation
contributions to the muon anomalous magnetic
moment and to α(M^2_Z), Eur. Phys. J. C 80 (2020),
no. 3 241, [arXiv:1908.00921]. [Erratum:
Eur.Phys.J.C 80, 410 (2020)].

A. Keshavarzi, D. Nomura, and T. Teubner, g − 2 of
charged leptons, α(M^2_Z) , and the hyperfine splitting
of muonium, Phys. Rev. D 101 (2020), no. 1 014029,
[arXiv:1911.00367].

A. Kurz, T. Liu, P. Marquard, and M. Steinhauser,
Hadronic contribution to the muon anomalous
magnetic moment to next-to-next-to-leading order,
Phys. Lett. B 754 (2014) 144–147, [arXiv:1403.6400].

K. Melnikov and A. Vainshtein, Hadronic light-by-light
scattering contribution to the muon anomalous
magnetic moment revisited, Phys. Rev. D 70 (2004)
113006, [hep-ph/0312226].

P. Masjuan and P. Sanchez-Puertas, Pseudoscalar-pole
contribution to the (g−2): a rational approach, Phys.
Rev. D 95 (2017), no. 5 054026, [arXiv:1701.05829].

G. Colangelo, M. Hoferichter, M. Procura, and
P. Stoffer, Dispersion relation for hadronic
light-by-light scattering: two-pion contributions, JHEP
04 (2017) 161, [arXiv:1702.07347].

M. Hoferichter, B.-L. Hoid, B. Kubis, S. Leupold, and
S. P. Schneider, Dispersion relation for hadronic
light-by-light scattering: pion pole, JHEP 10 (2018)
141, [arXiv:1808.04823].

A. Gérardin, H. B. Meyer, and A. Nyffeler, Lattice
calculation of the pion transition form factor with
N_f = 2 + 1 Wilson quarks, Phys. Rev. D 100 (2019),
noc.3 034520, [arXiv:1903.09471].

J. Bijnens, N. Hermansson-Truedsson, and
A. Rodríguez-Sánchez, Short-distance constraints for the
HLbL contribution to the muon anomalous
magnetic moment, Phys. Lett. B 798 (2019) 134994,
[arXiv:1908.03331].

G. Colangelo, F. Hagelstein, M. Hoferichter, L. Laub,
and P. Stoffer, Longitudinal short-distance constraints
for the hadronic light-by-light contribution to (g−2),
with large- N_c Regge models, JHEP 03 (2020) 101,
[arXiv:1910.13432].

T. Blum, N. Christ, M. Hayakawa, T. Izubuchi, L. Jin,
C. Jung, and C. Lehner, Hadronic Light-by-Light
Scattering Contribution to the Muon Anomalous
Magnetic Moment from Lattice QCD, Phys. Rev. Lett.
124 (2020), no. 13 132002, [arXiv:1911.08123].

G. Colangelo, M. Hoferichter, A. Nyffeler, M. Passera,
and P. Stoffer, Remarks on higher-order hadronic
corrections to the muon g−2, Phys. Lett. B 735 (2014)
90–91, [arXiv:1403.7512].

S. Borsanyi et al., Leading hadronic contribution to the
muon magnetic moment from lattice QCD, Nature
593 (2021), no. 7857 51–55, [arXiv:1908.03331].

T. Hambye and J. Heeck, Proton decay into charged
leptons, Phys. Rev. Lett. 120 (2018), no. 17 171801,
[arXiv:1712.04871].
[46] J. Davighi, M. Kirk, and M. Nardecchia, Anomalies and accidental symmetries: charging the scalar leptoquark under $L_\mu - L_\tau$, JHEP 12 (2020) 111, [arXiv:2007.15016].

[47] A. Greljo, P. Stangl, and A. E. Thomesen, A model of muon anomalies, Phys. Lett. B 820 (2021) 136554, [arXiv:2103.13991].

[48] A. Greljo, Y. Soreq, P. Stangl, A. E. Thomesen, and J. Zupan, Muonic force behind flavor anomalies, JHEP 04 (2022) 151, [arXiv:2107.07518].

[49] X. Wang, Muon $(g - 2)$ and Flavor Puzzles in the $U(1)_{\chi}$-gauged Leptoquark Model, arXiv:2108.01279.

[50] S. W. Hawking, Particle Creation by Black Holes, Commun. Math. Phys. 43 (1975) 199–220. [Erratum: Commun.Math.Phys. 46, 206 (1976)].

[51] L. M. Krauss and F. Wilczek, Discrete Gauge Symmetry in Continuum Theories, Phys. Rev. Lett. 62 (1989) 1221.

[52] T. Banks and N. Seiberg, Symmetries and Strings in Field Theory and Gravity, Phys. Rev. D 83 (2011) 084019, [arXiv:1011.5120].

[53] D. Harlow and H. Ooguri, Symmetries in quantum field theory and quantum gravity, Commun. Math. Phys. 383 (2021), no. 3 1809–1804, [arXiv:1810.05338].

[54] D. Harlow and H. Ooguri, Constraints on Symmetries from Holography, Phys. Rev. Lett. 122 (2019), no. 19 191601, [arXiv:1810.05337].

[55] V. Gherardi, D. Marzocca, and E. Venturini, Low-energy phenomenology of scalar leptoquarks at one-loop accuracy, JHEP 01 (2021) 138, [arXiv:2008.09548].

[56] D. Buttazzo, A. Greljo, G. Isidori, and D. Marzocca, B-physics anomalies: a guide to combined explanations, JHEP 11 (2017) 044, [arXiv:1706.07808].

[57] G. Hiller and M. Schmaltz, R_K and future $b \to s\ell\ell$ physics beyond the standard model opportunities, Phys. Rev. D 90 (2014) 054014, [arXiv:1408.1627].

[58] M. Bauer and M. Neubert, Minimal Leptoquark Explanation for the $R_{K^{(*)}}, R_{K}$, and $(g - 2)_\mu$ Anomalies, Phys. Rev. Lett. 116 (2016), no. 14 141802, [arXiv:1511.01990].

[59] I. Doršner, S. Fajfer, and O. Sumensari, Muon $g - 2$ and scalar leptoquark mixing, JHEP 06 (2020) 089, [arXiv:1910.03877].

[60] A. Angelescu, D. Bečirević, D. A. Faroughy, F. Jaffredo, and O. Sumensari, Single leptoquark solutions to the B-physics anomalies, Phys. Rev. D 104 (2021), no. 5 055017, [arXiv:2103.12504].

[61] I. Doršner, S. Fajfer, D. A. Faroughy, and N. Košnik, The role of the S_3 GUT leptoquark in flavor universality and collider searches, JHEP 10 (2017) 188, [arXiv:1706.07779].

[62] D. Bečirević, I. Doršner, S. Fajfer, N. Košnik, D. A. Faroughy, and O. Sumensari, Scalar leptoquarks from grand unified theories to accommodate the B-physics anomalies, Phys. Rev. D 98 (2018), no. 5 055003, [arXiv:1806.05689].

[63] K. S. Babu, P. S. B. Dev, S. Jana, and A. Thapa, Unified framework for B-anomalies, muon $g - 2$ and neutrino masses, JHEP 03 (2021) 179, [arXiv:2009.01771].
[79] K. Asai, *Predictions for the neutrino parameters in the minimal model extended by linear combination of $U(1)_{L_e-L_\mu}$, $U(1)_{L_{	au}-L_\nu}$, and $U(1)_{L_n-L}$ gauge symmetries*, Eur. Phys. J. C 80 (2020), no. 2 76, [arXiv:1907.04042].

[80] L. Di Luzio, A. Greljo, and M. Nardecchia, *Gauge leptoquark as the origin of B-physics anomalies*, Phys. Rev. D 96 (2017), no. 11 115011, [arXiv:1708.08450].

[81] A. Greljo and B. A. Stefanek, *Third family quark-lepton unification at the TeV scale*, Phys. Lett. B 782 (2018) 131–138, [arXiv:1802.04274].

[82] M. Bordone, C. Cornella, J. Fuentes-Martin, and G. Isidori, *A three-site gauge model for flavor hierarchies and flavor anomalies*, Phys. Lett. B 779 (2018) 317–323, [arXiv:1712.01368].

[83] M. Bordone, C. Cornella, J. Fuentes-Martín, and G. Isidori, *Low-energy signatures of the PS3 model: from B-physics anomalies to LFV*, JHEP 10 (2018) 148, [arXiv:1805.09328].

[84] C. Cornella, J. Fuentes-Martín, and G. Isidori, *Revisiting the vector leptoquark explanation of the B-physics anomalies*, JHEP 07 (2019) 168, [arXiv:1903.11517].

[85] B. Fornal, S. A. Gadam, and B. Grinstein, *Left-Right SU(4) Vector Leptoquark Model for Flavor Anomalies*, Phys. Rev. D 99 (2019), no. 5 055025, [arXiv:1812.01603].

[86] M. Blanke and A. Crivellin, *B Meson Anomalies in a Pati-Salam Model within the Randall-Sundrum Background*, Phys. Rev. Lett. 121 (2018), no. 1 011801, [arXiv:1801.07256].

[87] J. Fuentes-Martín, G. Isidori, M. König, and N. Selimović, *Vector Leptoquarks Beyond Tree Level*, Phys. Rev. D 101 (2020), no. 3 035024, [arXiv:1910.03502].

[88] M. J. Baker, D. A. Faroughy, and S. Trifinopoulos, *Collider signatures of coannihilating dark matter in light of the B-physics anomalies*, JHEP 11 (2021) 084, [arXiv:2109.08689].

[89] J. Heeck and D. Teresi, *Pati-Salam explanations of the B-meson anomalies*, JHEP 12 (2018) 103, [arXiv:1808.07492].

[90] J. Fuentes-Martín and P. Stangl, *Third-family quark-lepton unification with a fundamental composite Higgs*, Phys. Lett. B 811 (2020) 135953, [arXiv:2004.11376].

[91] J. Fuentes-Martín, M. Reig, and A. Vicente, *Strong CP problem with low-energy emergent QCD: The 4321 case*, Phys. Rev. D 100 (2019), no. 11 115028, [arXiv:1907.02550].

[92] J. Fuentes-Martín, G. Isidori, M. König, and N. Selimović, *Vector leptoquarks beyond tree level. III. $O(\alpha_s)$ corrections and radial modes*, Phys. Rev. D 102 (2020), no. 3 035021, [arXiv:2006.16250].

[93] J. Fuentes-Martín, G. Isidori, M. König, and N. Selimović, *Vector Leptoquarks Beyond Tree Level III: Vector-like Fermions and Flavor-Changing Transitions*, Phys. Rev. D 102 (2020) 115015, [arXiv:2009.11296].

[94] P. Fileviez Perez, C. Murgui, and A. D. Plascencia, *Leptoquarks and matter unification: Flavor anomalies and the muon g-2*, Phys. Rev. D 104 (2021), no. 3 035041, [arXiv:2104.11129].

[95] N. Assad, B. Fornal, and B. Grinstein, *Baryon Number and Lepton Universality Violation in Leptoquark and Quark Models*, Phys. Lett. B 777 (2018) 324–331, [arXiv:1708.06350].

[96] C. Murgui and M. B. Wise, *Scalar leptoquarks, baryon number violation, and Pati-Salam symmetry*, Phys. Rev. D 104 (2021), no. 3 035017, [arXiv:2105.14029].

[97] MEG Collaboration, A. M. Baldini et al., *Search for the lepton flavour violating decay $\mu^+ \rightarrow e^+\gamma$ with the full dataset of the MEG experiment*, Eur. Phys. J. C 76 (2016), no. 8 434, [arXiv:1605.05081].

[98] L. Calibbi, M. L. López-Iláñez, A. Melis, and O. Vives, *Implications of the Muon g-2 result on the flavour structure of the lepton mass matrix*, Eur. Phys. J. C 81 (2021), no. 10 929, [arXiv:2104.03296].

[99] G. Isidori, J. Pagès, and F. Wilsch, *Flavour alignment of New Physics in light of the $(g - 2)_\mu$ anomaly*, JHEP 03 (2022) 011, [arXiv:2111.13724].

[100] D. G. E. Walker, *Dark Matter Stabilization Symmetries from Spontaneous Symmetry Breaking*, arXiv:0907.3146.

[101] D. G. E. Walker, *Dark Matter Stabilization Symmetries and Long-Lived Particles at the Large Hadron Collider*, arXiv:0907.3142.

[102] B. Batell, *Dark Discrete Gauge Symmetries*, Phys. Rev. D 83 (2011) 035006, [arXiv:1007.0045].

[103] W.-F. Chang and C.-F. Wong, *A Model for Neutrino Masses and Dark Matter with the Discrete Gauge Symmetry*, Phys. Rev. D 85 (2012) 013018, [arXiv:1104.3934].

[104] P. Ko and Y. Tang, *Self-interacting scalar dark matter with local Z_3 symmetry*, JCAP 05 (2014) 047, [arXiv:1402.6449].

[105] S.-M. Choi and H. M. Lee, *SIMP dark matter with gauged Z_3 symmetry*, JHEP 09 (2015) 063, [arXiv:1505.00960].

[106] S.-M. Choi, J. Kim, H. M. Lee, and B. Zhu, *Connecting between inflation and dark matter in models with gauged Z_3 symmetry*, JHEP 06 (2020) 135, [arXiv:2003.11823].

[107] F. Bishara, A. Greljo, J. F. Kamenik, E. Stamou, and J. Zupan, *Dark Matter and Gauged Flavor Symmetries*, JHEP 12 (2015) 130, [arXiv:1505.03862].

[108] M. Fukugita and T. Yanagida, *Baryogenesis Without Grand Unification*, Phys. Lett. B 174 (1986) 45–47.

[109] S. Davidson and A. Ibarra, *A Lower bound on the right-handed neutrino mass from leptogenesis*, Phys. Lett. B 535 (2002) 25–32, [hep-ph/0202239].

[110] W. Buchmuller, P. Di Bari, and M. Plumber, *Leptogenesis for pedestrians*, Annals Phys. 315 (2005) 305–351, [hep-ph/0401240].

[111] B. C. Allanach, B. C. Allanach, B. Gripaios, B. Gripaios, J. Tooby-Smith, and J. Tooby-Smith, *Semisimple extensions of the Standard Model gauge algebra*, Phys. Rev. D 104 (2021), no. 3 035035, [arXiv:2104.14555]. [Erratum: Phys.Rev.D 106, 019901 (2022)].

[112] J. Davighi and J. Tooby-Smith, *Electroweak flavour unification*, arXiv:2201.07245.

[113] J. C. Pati and A. Salam, *Lepton Number as the Fourth Color*, Phys. Rev. D 10 (1974) 275–289. [Erratum: Phys.Rev.D 11, 703–703 (1975)].
[115] B. Gripaios, *Composite Leptoquarks at the LHC*, JHEP 02 (2010) 045, [arXiv:0910.1789].

[116] B. Gripaios, M. Nardecchia, and S. A. Renner, *Composite leptoquarks and anomalies in B-meson decays*, JHEP 05 (2015) 006, [arXiv:1412.1791].

[117] B. C. Allanach, M. Madigan, and J. Tooby-Smith, *A \(\nu\) supersymmetric anomaly-free atlas*, JHEP 02 (2022) 144, [arXiv:2107.07926].