New extremal singly even self-dual codes of lengths 64 and 66

Damyan Anev∗, Masaaki Harada† and Nikolay Yankov‡

August 22, 2017

Abstract

For lengths 64 and 66, we construct extremal singly even self-dual codes with weight enumerators for which no extremal singly even self-dual codes were previously known to exist. We also construct new 40 inequivalent extremal doubly even self-dual [64, 32, 12] codes with covering radius 12 meeting the Delsarte bound.

1 Introduction

A (binary) \([n, k]\) code \(C\) is a \(k\)-dimensional vector subspace of \(\mathbb{F}_2^n\), where \(\mathbb{F}_2\) denotes the finite field of order 2. All codes in this note are binary. The parameter \(n\) is called the length of \(C\). The weight \(\text{wt}(x)\) of a vector \(x\) is the number of non-zero components of \(x\). A vector of \(C\) is a codeword of \(C\). The minimum non-zero weight of all codewords in \(C\) is called the minimum weight of \(C\). An \([n, k]\) code with minimum weight \(d\) is called an \([n, k, d]\) code. The dual code \(C^\perp\) of a code \(C\) of length \(n\) is defined as \(C^\perp = \{x \in \mathbb{F}_2^n \mid x \cdot y = 0 \text{ for all } y \in C\}\), where \(x \cdot y\) is the standard inner product. A code \(C\) is called self-dual if \(C = C^\perp\). A self-dual code \(C\) is doubly self-dual if \(C = C^\perp = C^{\perp\perp}\).

∗Faculty of Mathematics and Informatics, Konstantin Preslavski University of Shumen, Shumen, 9712, Bulgaria.
†Research Center for Pure and Applied Mathematics, Graduate School of Information Sciences, Tohoku University, Sendai 980–8579, Japan.
‡Faculty of Mathematics and Informatics, Konstantin Preslavski University of Shumen, Shumen, 9712, Bulgaria.
even if all codewords of C have weight divisible by four, and singly even if there is at least one codeword x with $\text{wt}(x) \equiv 2 \pmod{4}$. It is known that a self-dual code of length n exists if and only if n is even, and a doubly even self-dual code of length n exists if and only if n is divisible by 8.

Let C be a singly even self-dual code. Let C_0 denote the subcode of C consisting of codewords x with $\text{wt}(x) \equiv 0 \pmod{4}$. The shadow S of C is defined to be $C_0^+ \setminus C$. Shadows for self-dual codes were introduced by Conway and Sloane [6] in order to give the largest possible minimum weight among singly even self-dual codes, and to provide restrictions on the weight enumerators of singly even self-dual codes. The largest possible minimum weights among singly even self-dual codes of length n were given for $n \leq 72$ in [6]. The possible weight enumerators of singly even self-dual codes with the largest possible minimum weights were given in [6] and [7] for $n \leq 72$. It is a fundamental problem to find which weight enumerators actually occur for the possible weight enumerators (see [6]). By considering the shadows, Rains [13] showed that the minimum weight d of a self-dual code of length n is bounded by $d \leq 4\lfloor \frac{n}{24} \rfloor + 6$ if $n \equiv 22 \pmod{24}$, $d \leq 4\lfloor \frac{n}{24} \rfloor + 4$ otherwise. A self-dual code meeting the bound is called extremal.

The aim of this note is to construct extremal singly even self-dual codes with weight enumerators for which no extremal singly even self-dual codes were previously known to exist. More precisely, we construct extremal singly even self-dual [64, 32, 12] codes with weight enumerators $W_{64,1}$ for $\beta = 35$, and $W_{64,2}$ for $\beta \in \{19, 34, 42, 45, 50\}$ (see Section 2 for $W_{64,1}$ and $W_{64,2}$). These codes are constructed as self-dual neighbors of extremal four-circulant singly even self-dual codes. We construct extremal singly even self-dual [66, 33, 12] codes with weight enumerators $W_{66,1}$ for $\beta \in \{7, 58, 70, 91, 93\}$, and $W_{66,3}$ for $\beta \in \{22, 23\}$ (see Section 2 for $W_{66,1}$ and $W_{66,3}$). These codes are constructed from extremal singly even self-dual [64, 32, 12] codes by the method given in [14]. We also demonstrate that there are at least 44 inequivalent extremal doubly even self-dual [64, 32, 12] codes with covering radius 12 meeting the Delsarte bound.

All computer calculations in this note were done with the help of the algebra software Magma [1] and the computer system Q-extensions [2].
2 Weight enumerators of extremal singly even self-dual codes of lengths 64 and 66

The possible weight enumerators $W_{64,i}$ and $S_{64,i}$ of extremal singly even self-dual $[64, 32, 12]$ codes and their shadows are given in [6]:

\[
\begin{align*}
W_{64,1} &= 1 + (1312 + 16\beta)y^{12} + (22016 - 64\beta)y^{14} + \cdots, \\
S_{64,1} &= y^4 + (\beta - 14)y^8 + (3419 - 12\beta)y^{12} + \cdots, \\
W_{64,2} &= 1 + (1312 + 16\beta)y^{12} + (23040 - 64\beta)y^{14} + \cdots, \\
S_{64,2} &= \beta y^8 + (3328 - 12\beta)y^{12} + \cdots,
\end{align*}
\]

where β are integers with $14 \leq \beta \leq 104$ for $W_{64,1}$ and $0 \leq \beta \leq 277$ for $W_{64,2}$. Extremal singly even self-dual codes with weight enumerator $W_{64,1}$ are known for $\beta \in \{14, 16, 18, 20, 22, 24, 25, 26, 28, 29, 30, 32, \\
34, 36, 38, 39, 44, 46, 53, 59, 60, 64, 74\}$ (see [4], [10], [11] and [16]). Extremal singly even self-dual codes with weight enumerator $W_{64,2}$ are known for $\beta \in \{0, 1, \ldots, 92, 94, 100, 101, 115\} \setminus \{4, 7, 58, 70, 91\}$ (see [4], [10], [16] and [18]).

The possible weight enumerators $W_{66,i}$ and $S_{66,i}$ of extremal singly even self-dual $[66, 33, 12]$ codes and their shadows are given in [7]:

\[
\begin{align*}
W_{66,1} &= 1 + (858 + 8\beta)y^{12} + (18678 - 24\beta)y^{14} + \cdots, \\
S_{66,1} &= \beta y^9 + (10032 - 12\beta)y^{13} + \cdots, \\
W_{66,2} &= 1 + 1690y^{12} + 7990y^{14} + \cdots, \\
S_{66,2} &= y + 9680y^{13} + \cdots, \\
W_{66,3} &= 1 + (858 + 8\beta)y^{12} + (18166 - 24\beta)y^{14} + \cdots, \\
S_{66,3} &= y^5 + (\beta - 14)y^9 + (10123 - 12\beta)y^{13} + \cdots,
\end{align*}
\]

where β are integers with $0 \leq \beta \leq 778$ for $W_{66,1}$ and $14 \leq \beta \leq 756$ for $W_{66,3}$. Extremal singly even self-dual codes with weight enumerator $W_{66,1}$ are known for $\beta \in \{0, 1, \ldots, 92, 94, 100, 101, 115\} \setminus \{4, 7, 58, 70, 91\}$.
Extremal singly even self-dual codes with weight enumerator $W_{66,2}$ are known (see [8] and [15]). Extremal singly even self-dual codes with weight enumerator $W_{66,3}$ are known for $\beta \in \{24, 25, \ldots, 92\} \setminus \{65, 68, 69, 72, 89, 91\}$ (see [9], [10], [11] and [12]).

3 Extremal four-circulant singly even self-dual $[64, 32, 12]$ codes

An $n \times n$ circulant matrix has the following form:

$$
\begin{pmatrix}
 r_0 & r_1 & r_2 & \cdots & r_{n-1} \\
 r_{n-1} & r_0 & r_1 & \cdots & r_{n-2} \\
 \vdots & \vdots & \vdots & \ddots & \vdots \\
 r_1 & r_2 & r_3 & \cdots & r_0 \\
\end{pmatrix},
$$

so that each successive row is a cyclic shift of the previous one. Let A and B be $n \times n$ circulant matrices. Let C be a $[4n, 2n]$ code with generator matrix of the following form:

$$
\begin{pmatrix}
 I_{2n} & A & B \\
 B^T & A^T \\
\end{pmatrix},
$$

where I_n denotes the identity matrix of order n and A^T denotes the transpose of A. It is easy to see that C is self-dual if $AA^T + BB^T = I_n$. The codes with generator matrices of the form (1) are called four-circulant.

Two codes are equivalent if one can be obtained from the other by a permutation of coordinates. In this section, we give a classification of extremal four-circulant singly even self-dual $[64, 32, 12]$ codes. Our exhaustive search found all distinct extremal four-circulant singly even self-dual $[64, 32, 12]$ codes, which must be checked further for equivalence to complete the classification. This was done by considering all pairs of 16×16 circulant matrices A and B satisfying the condition that $AA^T + BB^T = I_{16}$, the sum of the weights of the first rows of A and B is congruent to 1 (mod 4) and the sum of the weights is greater than or equal to 13. Since a cyclic shift of the first rows gives an equivalent code, we may assume without loss of generality
that the last entry of the first row of B is 1. Then our computer search shows that the above distinct extremal four-circulant singly even self-dual $[64, 32, 12]$ codes are divided into 67 inequivalent codes.

Proposition 1. Up to equivalence, there are 67 extremal four-circulant singly even self-dual $[64, 32, 12]$ codes.

We denote the 67 codes by $C_{64,i}$ ($i = 1, 2, \ldots, 67$). For the 67 codes $C_{64,i}$, the first rows r_A (resp. r_B) of the circulant matrices A (resp. B) in generator matrices are listed in Table 1. We verified that the codes $C_{64,i}$ have weight enumerator $W_{64,i}$, where β are also listed in Table 1.

4 Extremal self-dual $[64, 32, 12]$ neighbors of $C_{64,i}$

Two self-dual codes C and C' of length n are said to be neighbors if $\dim(C \cap C') = n/2 - 1$. Any self-dual code of length n can be reached from any other by taking successive neighbors (see [3]). Since every self-dual code C of length n contains the all-one vector 1, C has $2^{n/2-1} - 1$ subcodes D of codimension 1 containing 1. Since $\dim(D^\perp/D) = 2$, there are two self-dual codes rather than C lying between D^\perp and D. If C is a singly even self-dual code of length divisible by 8, then C has two doubly even self-dual neighbors (see [3]). In this section, we construct extremal self-dual $[64, 32, 12]$ codes by considering self-dual neighbors.

For $i = 1, 2, \ldots, 67$, we found all distinct extremal singly even self-dual neighbors of $C_{64,i}$, which are equivalent to none of the 67 codes. Then we verified that these codes are divided into 385 inequivalent codes $D_{64,i}$ ($i = 1, 2, \ldots, 385$). These codes $D_{64,i}$ are constructed as

$$\langle (C_{64,j} \cap \langle x \rangle^\perp), x \rangle.$$

To save space, the values j, the supports $\text{supp}(x)$ of x, the values (k, β) in the weight enumerators $W_{64,k}$ are listed in

http://www.math.is.tohoku.ac.jp/~mharada/Paper/64-SE-d12.txt

for the 385 codes. For extremal singly even self-dual $[64, 32, 12]$ codes with weight enumerators for which no extremal singly even self-dual codes were previously known to exist, j, $\text{supp}(x)$ and (k, β) are list in Table 2. Hence, we have the following:

Proposition 2. There is an extremal singly even self-dual $[64, 32, 12]$ code with weight enumerator $W_{64,1}$ for $\beta = 35$, and $W_{64,2}$ for $\beta \in \{19, 34, 42, 45, 50\}$.

Table 1: Extremal four-circulant singly even self-dual $[64, 32, 12]$ codes

Codes	r_A	r_B	β
$C_{64,1}$	(0000001100111111)	(0001011010101111)	0
$C_{64,2}$	(0000010101111011)	(0010011010111011)	0
$C_{64,3}$	(0000001100110111)	(0010110010101111)	0
$C_{64,4}$	(0000000010111111)	(0010101010111011)	8
$C_{64,5}$	(0000000011011111)	(0011011110111111)	8
$C_{64,6}$	(0000001101011111)	(0011101011100111)	8
$C_{64,7}$	(0000000110101111)	(0011101011100111)	8
$C_{64,8}$	(0000000101101111)	(0011101011100111)	8
$C_{64,9}$	(0000010110111111)	(0011101111111111)	8
$C_{64,10}$	(0000100111101111)	(0011101111111111)	8
$C_{64,11}$	(0000010011111111)	(0011010101111111)	8
$C_{64,12}$	(0000010010111111)	(0011010101111111)	8
$C_{64,13}$	(0000010011111111)	(0011010101111111)	8
$C_{64,14}$	(0000010011111111)	(0011010101111111)	8
$C_{64,15}$	(0000101010010000)	(0011010101011111)	8
$C_{64,16}$	(0000101010101011)	(0011010101011111)	8
$C_{64,17}$	(0000101010101111)	(0011010101011111)	8
$C_{64,18}$	(0000000111111111)	(0011101111111111)	16
$C_{64,19}$	(0000010010111111)	(0011101111111111)	16
$C_{64,20}$	(0000010011111111)	(0011101111111111)	16
$C_{64,21}$	(0000010011111111)	(0011101111111111)	16
$C_{64,22}$	(0000011100010000)	(0011101111111111)	16
$C_{64,23}$	(0000011100010111)	(0011101111111111)	16
$C_{64,24}$	(0000011101111111)	(0011101111111111)	16
$C_{64,25}$	(0000101110111111)	(0011101111111111)	16
$C_{64,26}$	(0000101110111111)	(0011101111111111)	16
$C_{64,27}$	(0000101110111111)	(0011101111111111)	16
$C_{64,28}$	(0000110110111111)	(0011010101011111)	16
$C_{64,29}$	(0000110110111111)	(0011010101011111)	16
$C_{64,30}$	(0000110110111111)	(0011010101011111)	16
$C_{64,31}$	(0000110110111111)	(0011010101011111)	16
$C_{64,32}$	(0000000010011111)	(0001110110011111)	24
$C_{64,33}$	(0000000010011111)	(0001110110011111)	24
$C_{64,34}$	(0000000010011111)	(0001110110011111)	24
$C_{64,35}$	(0000000010011111)	(0001110110011111)	24
$C_{64,36}$	(0000000010011111)	(0001110110011111)	24
$C_{64,37}$	(0000000010011111)	(0001110110011111)	24
$C_{64,38}$	(0000000010011111)	(0001110110011111)	24
$C_{64,39}$	(0000011000111111)	(0001101010111111)	24
$C_{64,40}$	(0000011000111111)	(0001101010111111)	24
$C_{64,41}$	(0000100110111111)	(0001101110011111)	24
$C_{64,42}$	(0000100110111111)	(0001101110011111)	24
$C_{64,43}$	(0000100110111111)	(0001101110011111)	24
$C_{64,44}$	(0000100110111111)	(0001101110011111)	24
$C_{64,45}$	(0000100110111111)	(0001101110011111)	24
$C_{64,46}$	(0000100110111111)	(0001101110011111)	24
$C_{64,47}$	(0000100110111111)	(0001101110011111)	24
$C_{64,48}$	(0000100110111111)	(0001101110011111)	24
$C_{64,49}$	(0000000010010111)	(0001110101011111)	32
$C_{64,50}$	(0000000010010111)	(0001110101011111)	32
Table 1: Extremal four-circulant singly even self-dual $[64, 32, 12]$ codes (continued)

Codes	r_A	r_B	β
$C_{64,51}$	(0000010101111011)	(0001011110011111)	32
$C_{64,52}$	(0000010101111011)	(0001011110011111)	32
$C_{64,53}$	(0000010101111011)	(0001011110011111)	32
$C_{64,54}$	(0000010101111011)	(0001011110011111)	32
$C_{64,55}$	(0000010101111011)	(0001011110011111)	32
$C_{64,56}$	(0000000000100111)	(0001011000101111)	40
$C_{64,57}$	(0000000000100111)	(0001011000101111)	40
$C_{64,58}$	(0000000000100111)	(0001011000101111)	40
$C_{64,59}$	(0000000000100111)	(0001011000101111)	40
$C_{64,60}$	(0000000011011001)	(0001001011001111)	48
$C_{64,61}$	(0000000011011001)	(0001001011001111)	48
$C_{64,62}$	(0000000011011001)	(0001001011001111)	48
$C_{64,63}$	(0000000101011001)	(0001010010111001)	56
$C_{64,64}$	(0000000101011001)	(0001010010111001)	56
$C_{64,65}$	(0000000101011001)	(0001010010111001)	56
$C_{64,66}$	(0000010110110111)	(0001010111110111)	64
$C_{64,67}$	(0000000101011001)	(0001010010111001)	64

Now we consider the extremal doubly even self-dual neighbors of $C_{64,i}$ ($i = 1, 2, 3$). Since the shadow has minimum weight 12, the two doubly even self-dual neighbors $C_{64,i}^1$ and $C_{64,i}^2$ are extremal doubly even self-dual $[64, 32, 12]$ codes with covering radius 12 (see [4]). Thus, six extremal doubly even self-dual $[64, 32, 12]$ codes with covering radius 12 are constructed. In addition, among the 385 codes $D_{64,i}^1 (i = 1, 2, \ldots, 385)$, the 19 extremal singly even self-dual codes $D_{64,j}^1$ have shadow of minimum weight 12, where $j \in \{1, 2, 12, 19, 22, 33, 44, 58, 66, 68, 84, 95, 108, 115, 136, 143, 191, 240, 254\}$.

The constructions of the 19 codes $D_{64,j}^1$ are listed in Table 2. Their two doubly even self-dual neighbors $D_{64,j}^1$ and $D_{64,j}^2$ are extremal doubly even self-dual $[64, 32, 12]$ codes with covering radius 12. We verified that there are the following equivalent codes among the four codes in [3], the six codes $C_{64,i}^1$, $C_{64,i}^2$ and the 38 codes $D_{64,j}^1$, $D_{64,j}^2$, where

$$D_{64,22}^2 \cong D_{64,68}^2, D_{64,33}^2 \cong D_{64,84}^2, D_{64,44}^2 \cong D_{64,95}^2, D_{64,136}^2 \cong D_{64,143}^2.$$

where $C \cong D$ means that C and D are equivalent, and there is no other pair of equivalent codes. Therefore, we have the following proposition.

Proposition 3. There are at least 44 inequivalent extremal doubly even self-dual $[64, 32, 12]$ codes with covering radius 12 meeting the Delsarte bound.
Table 2: Extremal singly even self-dual $[64, 32, 12]$ neighbors

Codes	j	$\text{supp}(x)$	(k, β)
$D_{64,138}$	24	$\{1, 2, 3, 38, 42, 43, 45, 46, 48, 54, 56, 57\}$	(2, 19)
$D_{64,270}$	49	$\{1, 2, 8, 32, 38, 41, 48, 49, 50, 53, 55, 61\}$	(1, 35)
$D_{64,283}$	52	$\{1, 2, 4, 33, 36, 37, 41, 43, 46, 51, 61, 64\}$	(2, 42)
$D_{64,293}$	56	$\{3, 7, 9, 10, 11, 37, 43, 53, 57, 58, 62, 64\}$	(2, 34)
$D_{64,314}$	64	$\{6, 8, 26, 37, 38, 40, 43, 46, 48, 59, 61, 63\}$	(2, 50)
$D_{64,329}$	65	$\{1, 6, 8, 9, 37, 47, 50, 52, 57, 60, 63, 64\}$	(2, 45)
$D_{64,1}$	1	$\{4, 7, 9, 34, 38, 40, 45, 46, 47, 50, 51, 53\}$	(2, 0)
$D_{64,2}$	1	$\{3, 37, 38, 47, 48, 50, 52, 53, 54, 59, 60, 63\}$	(2, 0)
$D_{64,12}$	4	$\{2, 4, 5, 16, 17, 38, 40, 46, 56, 57, 60, 62\}$	(2, 0)
$D_{64,19}$	4	$\{2, 3, 6, 7, 9, 35, 41, 49, 55, 56, 57, 61\}$	(2, 0)
$D_{64,22}$	4	$\{2, 33, 34, 35, 38, 39, 42, 45, 48, 52, 61, 62\}$	(2, 0)
$D_{64,33}$	6	$\{8, 9, 10, 16, 17, 33, 44, 45, 54, 55, 59, 61\}$	(2, 0)
$D_{64,44}$	6	$\{1, 3, 6, 33, 36, 38, 45, 47, 55, 57, 59\}$	(2, 0)
$D_{64,58}$	8	$\{1, 3, 5, 16, 17, 35, 36, 38, 42, 44, 54, 59\}$	(2, 0)
$D_{64,66}$	8	$\{4, 6, 9, 34, 36, 39, 41, 42, 48, 51, 57, 63\}$	(2, 0)
$D_{64,68}$	8	$\{3, 6, 9, 33, 36, 37, 38, 49, 56, 57, 60, 62\}$	(2, 0)
$D_{64,84}$	13	$\{1, 4, 5, 35, 37, 38, 41, 44, 53, 60, 61, 62\}$	(2, 0)
$D_{64,95}$	13	$\{2, 4, 9, 34, 35, 40, 42, 47, 49, 52, 59, 64\}$	(2, 0)
$D_{64,108}$	15	$\{2, 16, 17, 37, 43, 48, 49, 52, 54, 57, 58, 64\}$	(2, 0)
$D_{64,115}$	16	$\{1, 3, 6, 7, 8, 41, 45, 46, 49, 50, 57, 60\}$	(2, 0)
$D_{64,136}$	21	$\{3, 16, 17, 33, 34, 37, 42, 44, 47, 51, 52, 56\}$	(2, 0)
$D_{64,143}$	26	$\{1, 2, 9, 34, 37, 38, 41, 48, 57, 58, 59, 64\}$	(2, 0)
$D_{64,191}$	35	$\{1, 2, 6, 8, 10, 33, 37, 46, 54, 59, 60, 63\}$	(2, 0)
$D_{64,240}$	47	$\{2, 4, 7, 9, 13, 16, 17, 44, 56, 59, 62, 64\}$	(2, 0)
$D_{64,254}$	48	$\{1, 2, 5, 7, 8, 35, 36, 37, 45, 47, 49, 63\}$	(2, 0)
$D_{64,14}$	4	$\{1, 7, 8, 35, 36, 37, 41, 43, 46, 49, 51, 53\}$	(1, 14)
$D_{64,383}$	67	$\{1, 33, 34, 36, 37, 38, 40, 41, 47, 49, 50, 53, 55, 59, 61, 63\}$	(2, 40)
In order to distinguish two doubly even neighbors $D_{64,i}^1$ and $D_{64,i}^2$ ($i = 68, 84, 95, 143$), we list in Table 3 the supports $\text{supp}(x)$ for the 8 codes, where $D_{64,i}^1$ and $D_{64,i}^2$ are constructed as $\langle (D_{64,i} \cap \langle x \rangle^\perp), x \rangle$.

Codes	supp(x)
$D_{64,68}^1$	{1, 4, 7, 34, 35, 36, 47, 54, 55, 58, 60, 63}
$D_{64,68}^2$	{1, 4, 5, 6, 30, 42, 45, 47, 54, 56, 58, 64}
$D_{64,84}^1$	{16, 17, 33, 39, 43, 46, 48, 49, 51, 54, 58, 64}
$D_{64,84}^2$	{1, 2, 6, 33, 35, 38, 40, 42, 52, 57, 59, 60}
$D_{64,95}^1$	{1, 2, 6, 33, 35, 38, 40, 42, 52, 57, 59, 60}
$D_{64,95}^2$	{3, 33, 38, 41, 45, 47, 51, 53, 58, 60, 62, 64}
$D_{64,143}^1$	{1, 4, 10, 40, 43, 46, 52, 54, 58, 61, 62, 63}
$D_{64,143}^2$	{1, 31, 34, 42, 44, 45, 46, 50, 51, 52, 54, 62}

5 Four-circulant singly even self-dual $[64, 32, 10]$ codes and self-dual neighbors

Using an approach similar to that given in Section 3, our exhaustive search found all distinct four-circulant singly even self-dual $[64, 32, 10]$ codes. Then our computer search shows that the distinct four-circulant singly even self-dual $[64, 32, 10]$ codes are divided into 224 inequivalent codes.

Proposition 4. Up to equivalence, there are 224 four-circulant singly even self-dual $[64, 32, 10]$ codes.

We denote the 224 codes by $E_{64,i}$ ($i = 1, 2, \ldots, 224$). For the codes, the first rows r_A (resp. r_B) of the circulant matrices A (resp. B) in generator matrices [1] can be obtained from

"http://www.math.is.tohoku.ac.jp/~mharada/Paper/64-4cir-d10.txt".

The following method for constructing self-dual neighbors was given in [4]. For $C = E_{64,i}$ ($i = 1, 2, \ldots, 224$), let M be a matrix whose rows are the codewords of weight 10 in C. Suppose that there is a vector x of even weight such that

$$Mx^T = 1^T.$$ (2)
Then $C^0 = \langle x \rangle^\perp \cap C$ is a subcode of index 2 in C. We have self-dual neighbors $\langle C^0, x \rangle$ and $\langle C^0, x + y \rangle$ of C for some vector $y \in C \setminus C^0$, which have no codeword of weight 10 in C. When C has a self-dual neighbor C' with minimum weight 12, there is a vector x satisfying (2) and we can obtain C' in this way. For $i = 1, 2, \ldots, 224$, we verified that there is a unique vector satisfying (2) and C has two self-dual neighbors, where C^0 is a doubly even $[64, 31, 12]$ code. In this case, the two neighbors are automatically doubly even. Hence, we have the following:

Proposition 5. There is no extremal singly even self-dual $[64, 32, 12]$ neighbor of $E_{64,i}$ for $i = 1, 2, \ldots, 224$.

6 Extremal singly even self-dual $[66, 33, 12]$ codes

The following method for constructing singly even self-dual codes was given in [14]. Let C be a self-dual code of length n. Let x be a vector of odd weight. Let C^0 denote the subcode of C consisting of all codewords which are orthogonal to x. Then there are cosets C^1, C^2, C^3 of C^0 such that $C^0^\perp = C^0 \cup C^1 \cup C^2 \cup C^3$, where $C = C^0 \cup C^2$ and $x + C = C^1 \cup C^3$. It was shown in [14] that

$$C(x) = (0, 0, C^0) \cup (1, 1, C^2) \cup (1, 0, C^1) \cup (0, 1, C^3)$$

is a self-dual code of length $n + 2$. In this section, we construct new extremal singly even self-dual codes of length 66 using this construction from the extremal singly even self-dual $[64, 32, 12]$ codes obtained in Sections 3 and 4.

Our exhaustive search shows that there are 1166 inequivalent extremal singly even self-dual $[66, 33, 12]$ codes constructed as the codes $C(x)$ in (3) from the codes $C_{64,i}$ ($i = 1, 2, \ldots, 67$). 1157 codes of the 1166 codes have weight enumerator $W_{66,1}$ for $\beta \in \{7, 8, \ldots, 92\} \setminus \{9, 11\}$, 3 of them have weight enumerator $W_{66,3}$ for $\beta \in \{30, 49, 54\}$, and 6 of them have weight enumerator $W_{66,2}$. Extremal singly even self-dual $[66, 33, 12]$ codes with weight enumerator $W_{66,1}$ for $\beta \in \{7, 58, 70, 91\}$ are constructed for the first time. For the four weight enumerators W, as an example, codes $C_{66,i}$ with weight enumerators W are given ($i = 1, 2, 3, 4$). We list in Table 4 the values β in W, the codes C and the vectors $x = (x_1, x_2, \ldots, x_{32})$ of $C(x)$ in (3), where $x_j = 1$ ($j = 33, \ldots, 64$).

By applying the construction given in (3) to $D_{64,i}$, we found more extremal singly even self-dual $[66, 33, 12]$ codes $D_{66,j}$ with weight enumerators for which
Table 4: Extremal singly even self-dual \([66, 33, 12]\) codes

Codes	\(\beta\)	\(W\)	\(C\)	\((x_1, \ldots, x_{32})\)
\(C_{66,1}\)	7	\(W_{66,1}\)	\(C_{64,1}\)	\((011011011010011011111010110101100)\)
\(C_{66,2}\)	58	\(W_{66,1}\)	\(C_{64,66}\)	\((0000111101000110111100011100000001)\)
\(C_{66,3}\)	70	\(W_{66,1}\)	\(C_{64,66}\)	\((00100011011110110010111111000001)\)
\(C_{66,4}\)	91	\(W_{66,1}\)	\(C_{64,67}\)	\((00001111010111100001101100011001)\)
\(D_{66,1}\)	22	\(W_{66,3}\)	\(D_{64,14}\)	\((10100011110011011111010100111111)\)
\(D_{66,2}\)	23	\(W_{66,3}\)	\(D_{64,14}\)	\((10111100111110000011010001100011)\)
\(D_{66,3}\)	93	\(W_{66,1}\)	\(D_{64,383}\)	\((101001010111101100011011001101101)\)

no extremal singly even self-dual codes were previously known to exist. For the codes \(D_{66,j}\), we list in Table 4 the values \(\beta\) in the weight enumerators \(W\), the codes \(C\) and the vectors \(x = (x_1, x_2, \ldots, x_{32})\) of \(C(x)\) in (3), where \(x_i = 1\) \((i = 33, \ldots, 64)\). Hence, we have the following:

Proposition 6. There is an extremal singly even self-dual \([66, 33, 12]\) code with weight enumerator \(W_{66,1}\) for \(\beta \in \{7, 58, 70, 91, 93\}\), and weight enumerator \(W_{66,3}\) for \(\beta \in \{22, 23\}\).

Remark 7. The code \(D_{66,1}\) has the smallest value \(\beta\) among known extremal singly even self-dual \([66, 33, 12]\) codes with weight enumerator \(W_{66,3}\).

Acknowledgment. This work was supported by JSPS KAKENHI Grant Number 15H03633.

References

[1] W. Bosma, J. Cannon and C. Playoust, The Magma algebra system I: The user language, *J. Symbolic Comput.* **24** (1997), 235–265.

[2] I. Bouyukliev, About the code equivalence, in Advances in Coding Theory and Cryptography, Ser. Coding Theory Cryptol., 3, World Sci. Publ., Hackensack, NJ, 2007, pp. 126–151.

[3] R. Brualdi and V. Pless, Weight enumerators of self-dual codes, *IEEE Trans. Inform. Theory* **37** (1991), 1222–1225.
[4] N. Chigira, M. Harada and M. Kitazume, Extremal self-dual codes of length 64 through neighbors and covering radii, Des. Codes Cryptogr. 42 (2007), 93–101.

[5] P. Çomak, J.L. Kim and F. Özbudak, New cubic self-dual codes of length 54, 60 and 66, (preprint), arXiv:1706.07631.

[6] J.H. Conway and N.J.A. Sloane, A new upper bound on the minimal distance of self-dual codes, IEEE Trans. Inform. Theory 36 (1990), 1319–1333.

[7] S.T. Dougherty, T.A. Gulliver and M. Harada, Extremal binary self-dual codes, IEEE Trans. Inform. Theory 43 (1997), 2036–2047.

[8] M. Harada, T. Nishimura and R. Yorgova, New extremal self-dual codes of length 66, Math. Balkanica (N.S.) 21 (2007), 113–121.

[9] S. Karadeniz and B. Yildiz, New extremal binary self-dual codes of length 66 as extensions of self-dual codes over R_k, J. Franklin Inst. 350 (2013), 1963–1973.

[10] A. Kaya, New extremal binary self-dual codes of lengths 64 and 66 from R_2-lifts, Finite Fields Appl. 46 (2017), 271–279.

[11] A. Kaya, B. Yildiz and A. Pasa, New extremal binary self-dual codes from a modified four circulant construction, Discrete Math. 339 (2016), 1086–1094.

[12] A. Kaya, B. Yildiz and I. Siap, New extremal binary self-dual codes from $\mathbb{F}_4 + u\mathbb{F}_4$-lifts of quadratic circulant codes over \mathbb{F}_4, Finite Fields Appl. 35 (2015), 318–329.

[13] E.M. Rains, Shadow bounds for self-dual codes, IEEE Trans. Inform. Theory 44 (1998), 134–139.

[14] H.-P. Tsai, Existence of certain extremal self-dual codes, IEEE Trans. Inform. Theory 38 (1992), 501–504.

[15] H.-P. Tsai, Extremal self-dual codes of lengths 66 and 68, IEEE Trans. Inform. Theory 45 (1999), 2129–2133.
[16] N. Yankov, Self-dual $[62, 31, 12]$ and $[64, 32, 12]$ codes with an automorphism of order 7, *Adv. Math. Commun.* 8 (2014), 73–81.

[17] N. Yankov, M.H. Lee, M. Gürel and M. Ivanova, Self-dual codes with an automorphism of order 11, *IEEE Trans. Inform. Theory* 61 (2015), 1188–1193.

[18] N. Yankov, M.H. Lee and M. Ivanova, Self-dual codes with an automorphism of order 7 and s-extremal codes of length 68, *Finite Fields Appl.*, (submitted).