COVID-19: vaccination vs. hospitalization

Oguz Uzun1,40 · Tekin Akpolat2 · Ayhan Varol3 · Sema Turan4 · Serife Gokbulut Bektas4 · Pelin Duru Cetinkaya5 · Mazlum Dursun6 · Nurten Bakan7 · Burcu Baran Ketencigolu8 · Murat Bayrak3 · Serap Argun Baris9 · Rahmet Guner10 · Ozgur Gunal11 · Serkan Nural12 · Pelin Pinar Deniz13 · Oya Baydar Toprak14 · Gulcihan Ozkan15 · Ayca Gumus1 · Ferhan Kerget16 · Merve Erceleik17 · Ozlem Ataoglu18 · Aycan Yuksel19 · Gungor Ates20 · Oya Eren Kutsoylu21 · Neslihan Kose22 · Deniz Kizilirmak23 · Serdar Keskin6 · Okkes Gultekin24 · Nilufer Coskun7 · Emine Serap Yilmaz25 · Selen Uslu26 · Ilknur Basyigit9 · Begum Ergun27 · Figen Deveci28 · Mehmet Nuri Yakar29 · Cigdem Zuhur30 · Gulseren Sagcan31 · Zeynep Ture Yuce32 · Mutlu Kuluozturk28 · Mehmet Emin Sezgin6 · Esma Nur Aktepe Sezgin6 · Yavuz Havluvcu23 · Caglar Cuhadaroglu31 · Oguz Kilinc33 · Hasim Boyaci9 · Hayriye Altnay6 · Mehmet Akti6 · Zehra Bastepe Dursun34 · Ayse Kaya Kalem10 · Sinem Akkaya Isik35 · Levent Akyildiz36 · Nilufer Aykac27 · Mehmet Selim Almaz26 · Nurdan Kokturk38 · Oya Itil29

Received: 18 September 2021 / Accepted: 21 December 2021 / Published online: 4 January 2022
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany 2022

Abstract

Objective Vaccination is the most efficient way to control the coronavirus disease 2019 (COVID-19) pandemic, but vaccination rates remain below the target level in most countries. This multicenter study aimed to evaluate the vaccination status of hospitalized patients and compare two different booster vaccine protocols.

Setting Inoculation in Turkey began in mid-January 2021. Sinovac was the only available vaccine until April 2021, when BioNTech was added. At the beginning of July 2021, the government offered a third booster dose to healthcare workers and people aged > 50 years who had received the two doses of Sinovac. Of the participants who received a booster, most chose BioNTech as the third dose.

Methods We collected data from 25 hospitals in 16 cities. Patients hospitalized between August 1 and 10, 2021, were included and categorized into eight groups according to their vaccination status.

Results We identified 1401 patients, of which 529 (37.7%) were admitted to intensive care units. Nearly half (47.8%) of the patients were not vaccinated, and those with two doses of Sinovac formed the second largest group (32.9%). Hospitalizations were lower in the group which received 2 doses of Sinovac and a booster dose of BioNTech than in the group which received 3 doses of Sinovac.

Conclusion Effective vaccinations decreased COVID-19-related hospitalizations. The efficacy after two doses of Sinovac may decrease over time; however, it may be enhanced by adding a booster dose. Moreover, unvaccinated patients may be persuaded to undergo vaccination.

Keywords COVID-19 pandemic · COVID-19 vaccine · SinoVac · BioNTech

Introduction

Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), rapidly developed into a pandemic with approximately 210 million cases of infection and more than 4.4 million deaths recorded worldwide as of August 19, 2021 [1]. The rapid and successful development of COVID-19 vaccines is a significant hallmark of this pandemic [2, 3]. Vaccination is the most efficient way to control the pandemic; however, vaccination rates are still below the target level in most countries [4], and cases continue to increase despite the existence of effective vaccines. The anti-vaccine movement and vaccine hesitancy are prominent issues. There are different types of vaccines, including mRNA, vector, and inactivated vaccines, and population studies have documented
their success [5–9]. Vaccine supply, vaccine combinations, booster doses, and new virus variants are controversial matters. Turkey is one of the most affected countries and is currently experiencing the fourth wave of the pandemic. In general, vaccination programs are considered successful (>72% of the adult population have received their first dose) [10] despite anti-vaccine campaigns and vaccine hesitancy. Turkey is the first country to offer two options for a third (booster) dose to its residents. This multicenter study aimed to evaluate the vaccination status of hospitalized patients and compare the efficacy of the two booster vaccine protocols.

Methods

We collected data from 25 hospitals in 16 cities. Patients hospitalized between August 1 and 10, 2021, were included. Patients hospitalized because of social indications for isolation were excluded.

Age, sex, vaccination status, comorbidities (such as diabetes mellitus, hypertension, cardiovascular disease, chronic lung disease, cerebrovascular disease, cancer, and chronic kidney disease), and the reason for the patients not being vaccinated (if available) were collected. The patients were categorized into two groups based on whether they were admitted to the intensive care unit or were treated in clinics. A government vaccine tracking system was used to determine the patients’ vaccination status and vaccination dates. There are two types of vaccines available in Turkey: Sinovac (inactivated virus) and BioNTech (mRNA).

The patients were categorized into eight groups according to their vaccination status:

0: Unvaccinated,
1: Two doses of Sinovac,
2: Two doses of BioNTech,
3: Three doses of Sinovac,
4: Two doses of Sinovac + one dose of BioNTech,
5: One dose of Sinovac,
6: One dose of BioNTech,
7: Two to three doses of Sinovac with or without BioNTech, but less than 14 days after the last dose;

The reasons for not getting vaccinated are questioned, such as negligence, hesitancy, or anti-vaccine advocacy.

We also obtained data from the Ministry of Health website [11]. The study was approved by the Ministry of Health, and the Turkish Thoracic Society supported the study.

Student t and chi-square tests were used for statistical analysis, and a p value < 0.05 was considered significant.

Results

We enrolled 1401 patients (715 men, 686 women; mean age 59.7 years) from the hospitals, of which 529 (37.7%) were admitted to intensive care units. Approximately half (47.8%) of the patients were unvaccinated, and the next largest group comprised those who received two doses of Sinovac (32.9%). Vaccination status, sex, mean age, and the number of patients’ comorbidities are presented in Table 1.

Vaccination status	Clinics n (%)	Intensive care n (%)	Male	Female	Total number n (%)	Mean age (years)	Mean number of comorbidities
0	388 (44.5)	281 (53.1)	353 (49)	316 (46)	669 (47.8)	53.4	0.9
1	285 (32.7)	176 (33.2)	216 (30)	245 (36)	461 (32.9)	69.3	1.6
2	29 (3.3)	8 (1.5)	25 (3)	12 (2)	37 (2.6)	58.4	1.3
3	28 (3.2)	21 (4.0)	32 (4)	17 (2)	49 (3.5)	72.2	1.7
4	8 (0.9)	3 (0.6)	5 (0.6)	6 (1)	11 (0.8)	75.5	1.5
5	37 (4.2)	10 (1.9)	19 (2.6)	28 (4)	47 (3.4)	54.5	1.0
6	71 (8.1)	21 (4.0)	50 (7)	42 (6%)	92 (6.6)	51.5	0.8
7	26 (2.9)	9 (1.7)	15 (2)	20 (3)	35 (2.5)	60.9	1.5
Total	872 (100)	529* (100)	715 (51)	686 (49)	1401 (100)	–	–

*299 male, 230 female, p = 0.001
comorbidities. The mean ages of these groups (vaccination groups 1, 3, and 4) were 69.3, 72.2, and 75.5 years, respectively. Hospitalizations in group 4 (2 doses of Sinovac + 1 dose of BioNTech) were lower than in group 3 (3 doses of Sinovac), and there were only three patients from group 4 who were admitted to the intensive care unit.

The vaccination status according to the age group is shown in Table 2. Among patients younger than 50 years, 322 of 445 (72.4%) were unvaccinated. On the other hand, nearly half (301/608, 49.5%) of the patients older than 64 years had two doses of Sinovac, while 32.9% of this age group were unvaccinated.

Vaccination status

Vaccination status	Age < 50 years	Age 50–64 years	Age ≥ 65 years	Total
0	322 (72.4)	147 (42.2)	200 (32.9)	669
1	35 (7.9)	125 (35.9)	301 (49.5)	461
2	9 (2.0)	17 (4.9)	11 (1.8)	37
3	2 (0.4)	7 (2.0)	40 (6.6)	49
4	2 (0.4)	0	9 (1.5)	11
5	23 (5.2)	12 (3.4)	12 (2.0)	47
6	47 (10.6)	26 (7.5)	19 (3.1)	92
7	5 (1.1)	14 (4.0)	16 (2.6)	35
Total	445 (100)	348 (100)	608 (100)	1401

Table 3 shows the correlation between intensive care hospitalizations and the number of comorbidities ($p=0.000$). As the number of comorbidities increased, so did age and intensive care hospitalizations.

Discussion

The course of the pandemic in Turkey is similar to that of other countries in the Northern Hemisphere facing the fourth wave; however, strict social restrictions controlled the first two peaks. The alpha variant dominated the third peak, and effective vaccines were available. In Turkey, inactivated vaccines (Sinovac) were primarily used in the third peak, while Western countries had mRNA or vector vaccines. Sinovac has also been used in Brazil, Chile, Indonesia, and China. During the third peak, the number of vaccinated people was limited in Turkey, but a significant decrease in healthcare worker death was observed after inoculation with Sinovac [12]. The hallmark of the fourth peak is the Delta variant and its rapid spread, mainly among unvaccinated people. Vaccination began in mid-January 2021 in Turkey, where healthcare workers were initially vaccinated, and the protocol was two doses of vaccine, 28 days apart. Only Sinovac was available until April 2021 when BioNTech was added as an option. At the beginning of July 2021, the government offered a third booster dose to healthcare workers and people > 50 years who had received two doses of Sinovac. Most people (>90%) preferred BioNTech (96% of the authors of this article received BioNTech as their third dose). By August 10, 2021, 12 million, 30 million, and 6 million people had received one, two, and three doses, respectively, and nearly 19 million remained unvaccinated [10].

The results presented in Tables 1 and 2 should be evaluated and compared cautiously, because vaccine types and their accessibility were dependent on age group, comorbidities, and previous infection; therefore, only appropriate data are presented. Our study showed that nearly half of the hospitalized patients were unvaccinated, and the duration of protection after two doses of Sinovac may not be long enough. It also showed that the fourth wave of the pandemic affected people regardless of being vaccinated or not. Approximately half of the patients > 64 years had received
two doses of Sinovac, which was more than the number of unvaccinated patients (301 vs. 200). However, it should be considered that 301 and 200 are absolute numbers rather than frequencies, and vaccination rates are higher among patients >64 years. As 52% of the hospitalized patients were infected despite vaccination, it also indicates the importance of correct, adequate, and timely vaccination. The main limitation of our study is using absolute numbers instead of frequencies for vaccination rates due to unknown exact vaccination numbers. Therefore, Table 1 should be interpreted with caution. For example, the hospitalization rate in group 5 (only one dose of Sinovac) may seem low compared to that of group 1 (two doses of Sinovac), or the hospitalization rate of group 6 (one dose of BioNTech) is twice as large as that of group 5 (one dose of Sinovac). However, both these inferences are incorrect, because absolute numbers rather than frequencies are presented in Table 1. Since data regarding the total number of people with one or two doses of Sinovac or one dose of BioNTech were not available, comparisons between these groups could not be performed. In addition, only a few people in Turkey have received only one dose of Sinovac.

The development of several types of vaccines led to vaccine combinations and modifications of original protocols, most of which required two doses. In addition, impaired or reduced response to vaccines in immunocompromised and high-risk patients showed the need for booster doses. Booster doses can be categorized into two groups:

1. A third dose with the same vaccine: mRNA (Israel, USA) [13–15] or inactivated vaccine (Turkey)
2. A third dose with a different type of vaccine: two doses of inactivated vaccine followed by an mRNA vaccine (Turkey, Indonesia) [16] or a vector vaccine (Chili) [17].

The main reasons for using a different type of vaccine for the third booster dose are the decreased antibody titers with time [18] or in response to the Delta variant [19]. Turkey is the only country offering its population two different types of vaccine (mRNA or inactivated) as a booster dose which allowed us to compare them. Although the number of hospitalized patients after three doses was limited, the results suggest that the preference of BioNTech over Sinovac as the third dose in patients who had previously received two doses of Sinovac may be more effective in the prevention of hospitalization and severe disease. Since our study did not involve mild disease or mortality, more studies are needed to compare the effects of these vaccines. In addition to comparing the efficacy of two different vaccines as a booster, our study also justified the administration of a third dose, which the World Health Organization criticized considering the COVID-19 vaccine inequity in low-and middle-income countries [20].

Our results also showed that among the reasons people are not vaccinated, hesitancy and negligence prevailed over being anti-vaccine. This indicates that most people can be persuaded if provided with education and correct information. Misinformation spread by social media [21] is a serious threat to controlling the pandemic. The efforts of governments, healthcare workers, and community leaders are needed to control the current pandemic as well as for future pandemics and other global health problems.

In conclusion, effective vaccinations decrease COVID-19-related hospitalizations. Protection after two doses of Sinovac may not provide long-lasting immunity; however, a booster dose increases the immune response of patients who received two doses of Sinovac. In addition, most unvaccinated patients may be persuaded to undergo vaccination.

Table 4	Sex, hospitalization status, and number of comorbidities according to age groups			
Variables	Age < 50 years, n (%)	Age 50–64 years, n (%)	Age ≥ 65 years, n (%)	Total years, n (%)
Sex				
Male	247 (55.5)	185 (53.1)	283 (46.5)	715 (51)
Female	198 (44.4)	163 (46.8)	325 (53.4)	686 (49)
Hospitalization				
Clinics	344 (77.3)	219 (62.9)	309 (50.8)	872 (62.2)
Intensive Care Unit	101 (22.6)	129 (37)	299 (49.1)	529 (37.7)
No of comorbidities*				
0	278 (58.8)	107 (22.6)	87 (18.4)	472 (34.6)
1	102 (25.5)	110 (27.5)	187 (46.8)	399 (29.3)
2	28 (10.1)	67 (24.1)	182 (65.7)	277 (20.3)
3	17 (10.4)	43 (26.5)	102 (62.9)	162 (11.9)
> 4	5 (9.8)	10 (19.6)	36 (70.5)	51 (3.7)

*Comorbidity status of 40 patients is unknown.
COVID-19: vaccination vs. hospitalization

Author contributions Oğuz UZUN and Tekin AKPOLAT contributed to the study conception and design. Material preparation, data collection and analysis were performed by all authors. The first draft manuscript was written by Oğuz UZUN and Tekin Akpolat, all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Declarations

Conflict of interest None of the authors have conflict of interest to declare.

References

1. Covid-19 coronavirus pandemic. https://www.worldometers.info/coronavirus/ (Accessed on 19 Aug 2021).
2. Francis AI, Ghany S, Gilkes T, et al. Review of COVID-19 vaccine subtypes, efficacy and geographical distributions. Postgrad Med J. 2021. https://doi.org/10.1136/postgradmed-j-2021-140654.
3. Tregoning JS, Flight KE, Higham SL, et al. Progress of the COVID-19 vaccine effort: viruses, vaccines and variants versus efficacy, effectiveness and escape. Nat Rev Immunol. 2021;21:626–36. https://doi.org/10.1038/s41577-021-00592-1 (Epub 2021 Aug 9. PMID: 34373623; PMCID: PMC835183).
4. Coronavirus (COVID-19) Vaccinations. https://ourworldindata.org/covid-vaccinations (Accessed on 20 Aug 2021).
5. Polack FP, Thomas SJ, Kitchin N, et al. Safety and efficacy of the BNT162b2 mRNA Covid-19 vaccine. N Engl J Med. 2020;383:2603–15.
6. Logunov DY, Dolzhikova IV, Shchelbyakov DV, et al. Safety and efficacy of an rAd26 and rAd5 vector-based heterologous prime-boost COVID-19 vaccine: an interim analysis of a randomised controlled phase 3 trial in Russia. Lancet. 2021;397:671–81.
7. Haas EJ, Angulo FJ, McLaughlin JM, et al. Impact and effectiveness of mRNA BNT162b2 vaccine against SARS-CoV-2 infections and COVID-19 cases, hospitalisations, and deaths following a nationwide vaccination campaign in Israel: an observational study using national surveillance data. Lancet. 2021;397:1819–29.
8. Jara A, Undurraga EA, González C, et al. Effectiveness of an inactivated SARS-CoV-2 vaccine in Chile. N Engl J Med. 2021;385:875–84. https://doi.org/10.1056/NEJMoa2107715.
9. Tanrjover MD, Doğanay HL, Akova M, et al. Efficacy and safety of an inactivated whole-virion SARS-CoV-2 vaccine (CoronaVac): interim results of a double-blind, randomised, placebo-controlled, phase 3 trial in Turkey. Lancet. 2021;398:213–22.
10. T.C. Sağlık Bakanlığı Covid-19 Bilgilendirme Platformu. https://covid19.saglik.gov.tr/ (Accessed on 20 Aug 2021).
11. T.C. Sağlık Bakanlığı Covid-19 Bilgilendirme Platformu. https://covid19.saglik.gov.tr/TR/66935/genel-koronavirus-tablosu.html# (Accessed on 20 Aug 2021).
12. Akpolat T, Uzun O. Reduced mortality rate after coronavirus vaccine among healthcare workers. J Infect. 2021;83:e20–1.
13. Callaway E. COVID vaccine boosters: the most important questions. https://www.nature.com/articles/d41586-021-02158-6. Published 2021. Accessed 20 Aug 2021.
14. Coronavirus (COVID-19) Update: FDA Authorizes Additional Vaccine Dose for Certain Immunocompromised Individuals. https://www.fda.gov/news-events/press-announcements/coronavirus-covid-19-update-fda-authorizes-additional-vaccine-dose-certain-immunocompromised. Published 2021. Accessed 20 Aug 2021.
15. Joint Statement from HHS Public Health and Medical Experts on COVID-19 Booster Shots. https://www.fda.gov/news-events/press-announcements/joint-statement-hhs-public-health-and-medical-experts-covid-19-booster-shots. Published 2021. Accessed 20 Aug 2021.
16. Indonesia considers COVID-19 booster shots for wider use -govt official. https://www.reuters.com/business/healthcare-pharmaceuticals/indonesia-considers-covid-19-booster-shots-wider-use-govt-official-2021-07-27/. Published. Accessed 20 Aug 2021.
17. Chile to give COVID-19 vaccine boosters for those inoculated with Sinovac. https://www.reuters.com/world/americas/chile-give-covid-19-vaccine-boosters-those-inoculated-with-sinovac-2021-08-05/. Published. Accessed 20 Aug 2021.
18. Antibodies from Sinovac’s COVID-19 shot fade after about 6 months, booster helps – study. https://www.reuters.com/business/healthcare-pharmaceuticals/antibodies-sinovacs-covid-19-shot-fade-after-about-6-months-booster-helps-study-2021-07-26/. Published. Accessed 20 Aug 2021.
19. Sanderson K. COVID vaccines protect against Delta, but their effectiveness wanes. Nature. 2021. doi:10.1038/d41586-021-02261-8.
20. WHO calls for halting COVID-19 vaccine boosters in favor of unvaccinated. https://www.reuters.com/business/healthcare-pharmaceuticals/who-calls-moratorium-covid-19-vaccine-boosters-unvaccinated-until-september-end-2021-08-04/. Published. 2021. Accessed 20 Aug 2021.
21. The most influential spreader of coronavirus misinformation online. https://www.vaccineconfidence.org/latest-news/ajtya28mehr74y-wgkj2j-8ddy-6k9a-fpes-8wfgc-6xy8t-5wkr-ybhb3-jzrr4t-jclkh-9kbbl-76n72-xectdt-dsme-3-6jgc5-wl54f. Published 2021. Accessed 20 Aug 2021.

Authors and Affiliations

Oğuz Uzun1, 2, · Tekin Akpolat3 · Ayhan Varol4 · Sema Turan5 · Serife Gokbulut Bektas6 · Pelin Duru Cetinkaya7 · Mazlum Dursun8 · Nurten Bakan9 · Burcu Baran Ketencioglu10 · Murat Bayrak3 · Serap Argun Baris11 · Rahmet Guner12 · Ozgur Gunal13 · Serkan Nural14 · Pelin Pinar Deniz15 · Oya Baydar Toprak16 · Gulchian Ozkan17 · Ayça Gumus18 · Ferhan Kerget19 · Merve Ercelik20 · Ozlem Ataoglu21 · Aycan Yuksel22 · Oya Eren Kutsoylu23 · Neslihan Kose24 · Deniz Kizilirmak25 · Serdar Keskin26 · Nilüfer Coskun27 · Emine Serap Yılmaz28 · Selen Uslu29 · İlknur Basyigit30 · Begüm Ergan31 · Figen Deveci32 · Mehmet Nuri Yakar33 · Cigdem Zuhur34 · Gulseren Sagcan35 · Zeynep Ture Yuce36 · Mutlu Kuluozturk37 · Mehmet Emin Sezgin38 · Esma Nur Aktepe Sezgin39 · Yavuz Havelcü40 · Caglar Cuhadaroglu41 · Oğuz Killinc42 · Hasim Boyaci43 · Hayriye Altunay44 · Mehmet Akti45 · Zehra Bastepe Dursun46 · Ayşe Kaya Kalem47 · Sinem Akkaya Isik48 · Levent Akyildiz49 · Nilüfer Aykac50 · Mehmet Selim Almaz51 · Nurdan Kokturk52 · Oya Itil53
1 Department of Pulmonary Medicine, Faculty of Medicine, Ondokuz Mayis University, Samsun, Turkey
2 Department of Internal Medicine and Nephrology, Faculty of Medicine, Istanbul University, Istanbul, Turkey
3 Kepez State Hospital, Antalya, Turkey
4 Department of Intensive Care Unit, Ankara City Hospital, Ankara, Turkey
5 Adana City Hospital, Adana, Turkey
6 Siirt Training and Research Hospital, Siirt, Turkey
7 Şehit Prof Dr Ilhan Varank Training and Research Hospital, Istanbul, Turkey
8 Department of Pulmonary Disease, School of Medicine, Erciyes University, Kayseri, Turkey
9 Department of Pulmonary Disease, School of Medicine, Kocaeli University, Kocaeli, Turkey
10 Department of Infectious Diseases and Clinical Microbiology, Ankara City Hospital, Yıldırım Beyazıt University, Ankara, Turkey
11 Department of Infectious Diseases and Clinical Microbiology, Samsun Training and Research Hospital, University of Medical Science, Samsun, Turkey
12 Department of Pulmonary Medicine, Training and Research Hospital, Hatay, Istanbul, Turkey
13 City Hospital, Adana, Turkey
14 Department of Pulmonary Medicine, Faculty of Medicine, Çukurova University, Adana, Turkey
15 Maslak Acibadem Hospital, Operating Room Services Department and Private Acibadem Maslak Hospital, Vocational School, Nişantaşı University, İstanbul, Turkey
16 Department of Infection Diseases and Clinical Microbiology, Faculty of Medicine, Erzurum Regional Education and Research Hospital, Health Sciences University, Erzurum, Turkey
17 Dinar State Hospital, Afyon, Turkey
18 Duzce Ataturk State Hospital, Duzce, Turkey
19 Department of Pulmonary Medicine, Faculty of Medicine, Ufakt University, Ankara, Turkey
20 Genesis Private Hospital, Diyarbakir, Turkey
21 Department of Infectious Diseases and Clinical Microbiology, Faculty of Medicine, Dokuz Eylül University, İzmir, Turkey
22 Bilecik State Hospital, Bilecik, Turkey
23 Department of Pulmonary Medicine, Faculty of Medicine, Celal Bayar University, Manisa, Turkey
24 Oltu State Hospital, Erzurum, Turkey
25 Department of Pulmonary Medicine, Medical Faculty, Training and Research Hospital, Ordu University, Ordu, Turkey
26 Department of Pulmonary Medicine, Medical Faculty, Training and Research Hospital, Ordu University, Ordu, Turkey
27 Division of Intensive Care, Department of Pulmonary and Critical Care, Faculty of Medicine, Dokuz Eylül University, İzmir, Turkey
28 Department of Pulmonary Medicine, Faculty of Medicine, Firat University, Elazig, Turkey
29 Division of Intensive Care, Department of Anaesthesiology and Reanimation, Faculty of Medicine, Dokuz Eylül University, İzmir, Turkey
30 Private Gelisim Hospital, İşkenderun, Turkey
31 Private Altunizade Maslak Hospital, İstanbul, Turkey
32 Department of Infectious Diseases and Clinical Microbiology, Erciyes University, Kayseri, Turkey
33 Department of Pulmonary Medicine, Faculty of Medicine, Dokuz Eylül University, İzmir, Turkey
34 Department of Infectious Diseases and Clinical Microbiology, Kayseri City Hospital, Health Science University, Kayseri, Turkey
35 Sultan Abdülhamid Han Training and Research Hospital, İstanbul, Turkey
36 Private Memorial Hospital, Diyarbakır, Turkey
37 Academic Hospital, İstanbul, Turkey
38 Department of Pulmonary Medicine, Faculty of Medicine, Gazi University, Ankara, Turkey
39 Department of Pulmonary Medicine, Faculty of Medicine, Dokuz Eylül University, İzmir, Turkey
40 Ondokuz Mayıs Üniversitesi Göğüs Hst, 55139 Samsun, Turkey