Gut microbial communities associated with phenotypically divergent populations of the striped stem borer *Chilo suppressalis* (Walker, 1863)

Haiying Zhong1,2, Juefeng Zhang1,2, Fang Li1,2 & Jianming Chen1,2*

Chilo suppressalis (Walker, 1863) is a serious stem borer of rice and water-oat plants, and has phenotypically diverged into rice and water-oat populations. Insect gut microbiota plays an important role in the host life and understanding the dynamics of this complicated ecosystem may improve its biological control. The effect of diet and gut compartments on the gut microflora of divergent populations of *C. suppressalis* is not fully clear. Herein, we characterized the gut microbiota of *C. suppressalis* populations fed on two hosts (i.e., water-oats fruit pulps and rice seedlings), by sequencing the V3–V4 hypervariable region of the 16S rRNA gene using the Illumina MiSeq platform. Gut bacterial communities showed variation in relative abundance among *C. suppressalis* populations fed on water-oats fruit pulps or rice seedlings. Proteobacteria and Firmicutes became the predominant phyla, and Enterobacteriaceae, Enterococcaceae and Halomonadaceae were the predominant family in all *C. suppressalis* populations. The highest bacteria diversity was found in the midgut of the rice population fed on water-oat fruit pulps. Bacterial communities in the midgut were more diverse than those in the hindgut. The bacterial genera distribution showed great differences due to diet types and gut compartments among populations. Our results demonstrated that the host plants tested had a considerable impact on gut bacterial composition of *C. suppressalis* populations. Additionally, the unique gut morphology and physiological conditions (viz., oxygen content, enzymes) also contributed to variation in microbiomes. In conclusion, our study provided an important insight into investigation of insect-bacteria symbioses, and biocontrol of this species and other related lepidopterans.

Abbreviations

SSB Striped stem borer
NMDS Non-metric multidimensional scaling
PCR Polymerase chain reaction
OTUs Operational units
JMG Midgut of water-oat population
JHG Hindgut of water-oat population
RMG Midgut of rice population
RHG Hindgut of rice population
jMG Midgut of water-oat population feeding on rice seedlings
jHG Hindgut of water-oat population feeding on rice seedlings
rMG Midgut of rice population feeding on water-oat fruit pulps
rHG Hindgut of rice population feeding on water-oat fruit pulps
NCBI National center for biotechnology information
SRA Sequence read archive

1Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
2State Key Laboratory for Managing Biotic and Chemical Threats To the Quality and Safety of Agro-Products, Hangzhou 310021, China.
*email: jianmchen63@163.com
Methods

Specimen collection and rearing. In order to obtain representative populations of water-oat and rice, larvae of *C. suppressalis* were collected from the water-oat field in Lishui and the rice field in Yuyao, Zhejiang, China in 2018, where rice TN1 and water-oat *Zizania latifolia* are exclusively planted. During the experiment in our laboratory, rice-seedlings and water-oat pulps were collected from our institutional experimental field. The use of plant parts in the present study complies with institutional guidelines. The *C. suppressalis* larvae from the water-oat and rice fields were reared respectively with fresh water-oat fruit pulps and rice seedlings. *C. suppressalis* larvae were kept in an insectarium at 28 ± 1 °C, with a photoperiod of 16 h: 8 h (light/dark), and a relative humidity > 80%. All the larvae were maintained in the laboratory for three generations before dissection.

We analyzed the 16S rRNA gene to estimate the gut bacterial composition in the midgut and hindgut of larvae feeding on water-oat fruit pulps and rice seedlings. Treatments, abbreviations, and locations of the samples were provided in Table 1. *C. suppressalis* fed with their original hosts were named as original populations, and those fed with non-original hosts were named as cross-rearing populations.

Experimental design. Schematic diagram of the fully factorial experimental design used in the present study. *C. suppressalis* from water-oat field were respectively reared on water-oat fruit pulps (I) and rice seedlings (J); and those from rice field were respectively reared on rice seedlings (R) and water-oat fruit pulps (r). All the groups were reared for three continuous generations before examining the effects of host plant, population origin and gut compartment on the gut microbial communities (Fig. 1).

C. suppressalis dissection and gut sample collection. Healthy, uniformly developed individuals of the same batch of *C. suppressalis* were collected. Each individual was anesthetized by placing on ice and externally sterilized with 75% ethanol and rinsed 3 times with sterilized water. The gut were dissected out with a sterilized fine-tip forcep and washed twice with sterile 0.9% NaCl solution quickly. The midgut and hindgut were carefully separated and placed in different sterile microcentrifuge tubes, synchronously. Midguts and hindguts of 50 individuals of each population were collected as one sample, and three samples were taken for each population. All samples were immediately frozen in liquid nitrogen and stored at −80 °C for DNA isolation.
Total bacterial genomic DNA was extracted from eight sets of sample groups using a Soil DNA Kit (Omega Bio-tek, Norcross, GA, U.S.) according to the manufacturer’s instructions. The DNA was finally eluted with TE buffer (Tris–EDTA buffer). DNA purity and concentration were measured using the NanoDrop 2000 spectrophotometer (Nano-drop Technologies, Wilmington, DE, USA). The total DNA was stored at − 70 °C until use.

The bacterial 16S rRNA variable V3−V4 regions were used to identify bacteria. Two universal primers (341F and 806R) containing the specific barcode sequence were used for the amplification of the V3–V4 regions (341F: 5’-CCT AYG GGRBGCASCAG-3’, 806R: 5’-GGACTACNNGGGTATCTAAT-3’). The Polymerase Chain Reaction (PCR) reaction was performed in triplicate 20.0 μL mixture containing 4.0 μL 5 × FastPfu Buffer, 2.0 μL 2.5 mM dNTPs, 0.8 μL of each Primer (5.0 μM), 0.4 μL FastPfu Polymerase, and 10 ng of template DNA. The amplification procedure was as follows: 95 °C for 2 min, followed by 25 cycles of denaturation at 95 °C for 30 s, annealing at 50 °C for 30 s, and elongation at 72 °C for 30 s and a final extension at 72 °C for 5 min.
Illumina MiSeq sequencing. Amplicons were extracted from 2% agarose gels and purified using a AxyPrep DNA Gel Extraction Kit (Axygen Biosciences, Union City, CA, U.S.) following the manufacturer’s protocols and quantified using QuantiFluor™-ST (Promega, U.S.). Purified amplicons were pooled in equimolar and paired-end sequenced (2 × 250) on an Illumina Novaseq6000 platform according to the standard instructions.

Processing of sequencing data. Raw fastq files were demultiplexed, quality-filtered using QIIME (version 1.17) with the following criteria: (i) The 250 bp reads were truncated at any site receiving an average quality score < 20 over a 10 bp sliding window, discarding the truncated reads that were shorter than 50 bp; (ii) exact barcode matching, 2 nucleotide mismatch in primer matching, reads containing ambiguous characters were removed; (iii) only sequences that overlap longer than 10 bp were assembled according to their overlap sequence. Reads which could not be assembled were discarded.

Operational Units (OTUs) were clustered using UPARSE (version 7.1 http://drive5.com/uparse/) and chimeric sequences were identified and removed using UCHIME. The phylogenetic affiliation of each 16S rRNA gene sequence was analyzed by RDP Classifier (http://rdp.cme.msu.edu/) against the silva (SSU115) 16S rRNA database.

Results

General structure of gut. The gut of C. suppressalis was a continuous tube running from the mouth to the anus. It was structurally divided into foregut, midgut and hindgut. The foregut (Fg) was a slender, elongate tube, expanding posteriorly and constricting at its ends. The midgut (Mg) was a well-developed saclike tube beginning from the end of the foregut and extending to the long, narrow hindgut (Hg). The freshly dissected foregut was translucent, the midgut was opaque white, and the hindgut was yellowish-brown (Fig. 2).

Analysis of bacterial 16S rDNA gene sequences. Illumina sequencing obtained 861,370 sequences clustering into 3234 operational taxonomic units (OTUs) (Table 2). Chao1 estimator and Shannon Index were calculated for the determination of the richness and homogeneity of the community. The relative bacterial abundance of 18 phyla differed significantly across the eight samples (Kruskal–Wallis test, p < 0.0001). The midgut and hindgut of the rice population feeding on water-oat fruit pulps (rMG, rHG), possessed the highest bacteria diversity. The bacteria in the midgut were more diverse than those in the hindgut (Table 2).

Microbial diversity of gut microbiota. A total of 49 and 62 OTUs were observed in the midguts and hindguts, respectively (Fig. 3A,B). The core OTUs identified belonged to the phyla Proteobacteria, Firmicutes, Actinobacteria, Saccharibacteria, and Bacteroidetes (S1 Fig). The OTUs detected from the midgut were grouped into 31 families, of which five families were abundant: Enterobacteriaceae (24.6%), Halomonadaceae (20.2%), Enterococcaceae (31.4%), Bacillaceae (11.4%), and Streptococcaceae (6.9%) (S1A Table; S2 Table and S3 Table). However, the OTUs coming from the hindgut were grouped into 28 families. The predominant families were Enterobacteriaceae (66.4%), Enterococcaceae (11.2%), Bacillaceae (5.0%), Streptococcaceae (3.0%), Xanthomonadaceae (2.2%) and Flavobacteriaceae (1.7%) (S1B Table; S2 Table and S3 Table). The rMG and rHG had the maximum number of unique OTUs, whereas the midgut and hindgut of the water-oat population feeding on rice seedlings (jMG, jHG) possessed the minimum number.

A total of 44 and 66 OTUs were observed in the guts of original and cross-rearing populations, separately (Fig. 3C,D). These OTUs were pooled into 28 families for the midgut of original populations. The relative abundances of five families were Enterobacteriaceae, Halomonadaceae, Bacillaceae, Enterococcaceae and Streptococcaceae (S1C Table; S2 Table and S3 Table). However, in the hindgut of cross-rearing populations, the OTUs were
grouped to 35 families, of which the abundant ones were Enterobacteriaceae, Enterococcaceae, Streptococcaceae, Xanthomonadaceae and Halomonadaceae (S1D Table; S2 Table and S3 Table).

Taxonomic distribution of gut bacteria. Taxonomic classification yielded 122 families belonging to 18 bacterial phyla (Fig. 4; S3 Table and S4 Table), and the predominant phyla were Proteobacteria (16.0–96.4%), followed by Firmicutes (2.3–78.9%). At the family level, Enterobacteriaceae (8.0–78%) was the most predominant taxa, followed by Enterococcaceae (1.7–64.2%) and Halomonadaceae (0.3–69.8%) (S3 Table). The family Bacillaceae was only found in the water-oat population and two cross-rearing populations, although it was low relative abundance (Fig. 4; S3 Table). It was enriched in the midgut of the water-oat population (JMG) (17.9–33.1%), followed by the midgut of the rice population feeding on water-oat fruit pulps (rMG) (17.0–26.8%) and the hindgut of the water-oat population (JHG) (4.6–15.1%). They exhibited a high variation of relative abundance associated with diet and gut compartment, though the most abundant taxa were identified in the midgut and hindgut of all populations.

Regardless of diet, a more homogeneous phylum distribution was found in the hindguts of all original populations and cross-rearing populations (i.e., hindguts of the water-oat population feeding on water-oat fruit pulps (JHG) and rice seedlings (jHG), hindguts of the rice population feeding on rice seedlings (RHG) and water-oat fruit pulps (rHG)): Proteobacteria (71.5–80.9%), Firmicutes (9.0–27.7%), Bacteroidetes (0.1–8.8%), Actinobacteria (0.1–2.8%) and Saccharibacteria (0.6%), respectively (Fig. 4; S1 Figure; S3 Table and S4 Table). However, community of the Firmicutes and Proteobacteria was changed in the midgut of the water-oat population feeding on water-oat fruit pulps (JMG) (40.3–71.8%, 27.3–58.6%), midgut of the water-oat population feeding on rice seedlings (jMG) (50.6–82.0%, 17.8–49.0%) and midgut of the rice population feeding on water-oat fruit pulps (rMG) (72.1–87.3%, 10.5–24.8%). Four bacterial phyla in the midgut of the rice population feeding on rice seedlings (RMG) were more homogeneous in richness: Proteobacteria (96.2–96.6%), Firmicutes (2.2–2.3%), Bacteroidetes (0.6–0.9%) and Actinobacteria (0.3–0.5%).

The bacterial genera from original populations showed distinct distribution according to diet types and gut compartments (Fig. 5; S5 Table). Halomonas (69.9%) and Klebsiella (70.1%) were dominant in the midgut and hindgut of the rice population feeding on rice seedlings (RMG and RHG); but Bacillus (26.9%) and Klebsiella (35.14%) were prevailed in the midgut of the water-oat population feeding on water-oat fruit pulps (JMG), Citrobacter (40.8%) was enriched in the hindgut of the water-oat population feeding on water-oat fruit pulps (JHG). Enterococcus was dominant in the midguts of the two cross-rearing populations (jMG (64.8%) and rMG (45.9%)), and Citrobacter was prevailed in the hindguts of the two cross-rearing populations (i.e., (43.7%) and rHG (37.1%)). However, the bacteria in cross-rearing populations showed different genus distributions based on

Table 2. Diversity of gut bacterial communities based on sequencing. S number of sequences, WO water-oat, RS rice seedlings.

Insect populations	Diet type	Gut compartment	Abbreviations	Reads	Bases (bp)	OTUs	Coverage	Richness estimate	Diversity index
Original populations									
WO	Midgut	JMG1	40,138	17,434,180	248	0.998729	303	40,769	1.82
		JMG2	30,164	13,022,139	156	0.998110	225	30,361	1.76
		JMG3	38,225	16,566,823	185	0.998483	242	38,626	2.03
	Hindgut	HG1	39,198	17,058,995	154	0.998954	182	39,778	1.78
		HG2	29,999	13,129,341	97	0.999033	142	30,626	1.84
		HG3	41,964	18,898,628	105	0.999261	129	44,068	1.45
Cross-rearing populations									
WO	Midgut	jMG1	38,043	16,419,021	60	0.999448	95	38,220	0.86
		jMG2	42,406	18,247,431	77	0.999245	148	42,501	1.00
		jMG3	37,306	16,100,611	66	0.999383	94	37,483	0.89
RS	Midgut	HG1	30,535	14,170,587	102	0.999247	115	33,125	1.85
		HG2	41,371	18,295,563	106	0.999202	150	42,683	1.68
		HG3	35,379	16,197,473	117	0.998954	159	37,880	1.94
RS	Midgut	RHG1	42,873	18,879,467	209	0.998904	245	44,039	1.62
		RHG2	29,291	13,496,628	147	0.998669	196	31,641	2.02
		RHG3	30,888	14,254,538	277	0.997960	342	33,311	2.51
RS	Hindgut	rHG1	39,706	18,019,083	205	0.998187	290	42,137	2.43
		rHG2	37,724	16,820,944	174	0.998940	209	39,318	2.29
		rHG3	30,319	13,404,392	183	0.998450	232	31,425	2.81
diet types. The *Klebsiella* (27.6%) and *Bacillus* (18.7%) were the relative dominance in jMG and rMG, whereas the *Enterococcus* (18.9%, 6.7%) and *Klebsiella* (20.4%, 11.1%) were relatively prevalent in jHG and rHG.

Diet- and compartment-related variations in the gut microbial composition. In all populations, there were significant differences in the relative abundances at the family level (p < 0.0001, Kruskal–Wallis test). 95 bacterial taxa were identified at the genus level. Influence of compartment sampling proved significant with a well-defined cluster formed by the midguts of all original and cross-rearing populations (i.e., JMG, jMG, rMG and RMG). By contrast, bacteria from the hindguts of all populations (i.e., RHG, JHG, jHG, rHG) were more heterogeneous for constituting four different clusters (Fig. 6). All the midguts and hindguts exhibited a significant difference in bacteria abundance of three families: Enterobacteriaceae, Enterococcaceae and Bacillaceae. Enterobacteriaceae was dominant in the hindgut (66.4%), but was decreased to 24.6% in the midgut. In comparison, Enterococcaceae was less abundant in the hindgut (11.2%), whereas increased to 31.4% in the midgut; Bacillaceae (5.0%) resided in the hindgut was increased to 11.4% in the midgut (Fig. 6; Table S3).

The differences at the family level were (Fig. 6): (1) a higher abundance of Enterobacteriaceae in the hindguts (55.8%) than in the midguts of the rice population feeding on water-oat fruit pulps (8.6%) and the water-oat population feeding on water-oat fruit pulps (35.9%); (2) a higher presence of Enterococcaceae in the midgut of the water-oat population feeding on rice seedlings (64.8%) than in the midgut and hindgut of the water-oat population feeding on water-oat fruit pulps (12.4%, 10.0%), midgut of the rice population feeding on water-oat fruit pulps (45.9%) and the hindgut of the water-oat population feeding on rice seedlings (18.9%); (3) and a higher presence of Halomonadaceae in the midguts of two original populations (RMG: 69.9%; JMG: 4.9%) and the rice population feeding on water-oat fruit pulps (6.0%), hindguts of the water-oat population feeding on water-oat fruit pulps and rice seedlings (3.4%, 0.3%). However, the Bacillaceae was higher in the midgut.
and hindgut of the water-oat population feeding on water-oat fruit pulps (26.9%, 11.3%) and midgut of the rice population feeding on water-oat fruit pulps (18.6%), than that in the midgut of the water-oat population feeding on rice seedlings (0.6%) and hindgut of the rice population feeding on water-oat fruit pulps (1.2%).

A non-metric multidimensional scaling (NMDS) analysis was performed to analyze the influence of diet and compartment on the microbiota (Fig. 7A–D). The analysis revealed a clear separation of samples in accordance to the gut regions and a closer association among samples of the same gut region. At the midgut, the clusters were well defined and the highest variability was found in the RMG (i.e., midgut of rice population feeding on rice seedlings) cluster. The RMG and JMG (i.e., midgut of the water-oat population feeding on water-oat fruit pulps, RHG1–RHG3 hindguts of water-oat population feeding on water-oat fruit pulps, RHG1–RHG3 hindguts of rice population feeding on rice seedlings, jHG1–jHG3 hindguts of water-oat population feeding on rice seedlings, rHG1–rHG3 hindguts of rice population feeding on water-oat fruit pulps) clusters exhibited the most different taxa composition, followed by the rMG (i.e., midgut of the rice population feeding on water-oat fruit pulps) and jMG (i.e., midgut of the water-oat population feeding on rice seedlings) clusters, showing an intermediate composition (Fig. 7A). At the hindgut, there were clearly separated clusters: the RHG (i.e., hindgut of rice population feeding on rice seedlings) clusters exhibited a higher inter-sample variation; the JHG (i.e., hindgut of the water-oat population feeding on water-oat fruit pulps) cluster showed an intermediate composition respecting to the RHG, JHG (i.e., hindgut of the water-oat population feeding on rice seedlings) and rHG (i.e., hindgut of rice population feeding on water-oat fruit pulps) clusters (Fig. 7B). The midguts and hindguts clusters from all original populations (JMG, JHG, RMG, RHG) were well-defined, and the JMG, RHG clusters had similar homogeneity level (Fig. 7C). RMG was the most heterogeneous, followed by JMG and RHG. Clusters of cross-rearing populations were better defined than those of original populations. rMG was the most heterogeneous in taxa composition, followed by the jHG.

Figure 4. Compositions of gut microbiota at the family level of original and cross-rearing populations of C. suppressalis. The Y-axis represents the proportion of each taxon. JMG1–JMG3 midguts of water-oat population feeding on water-oat fruit pulps, RMG1–RMG2 midguts of rice population feeding on rice seedlings, jMG1–jMG3 midguts of water-oat population feeding on rice seedlings, rMG1–rMG3 midguts of rice population feeding on water-oat fruit pulps, RHG1–RHG3 hindguts of water-oat population feeding on water-oat fruit pulps, RHG1–RHG3 hindguts of rice population feeding on rice seedlings, jHG1–jHG3 hindguts of water-oat population feeding on rice seedlings, rHG1–rHG3 hindguts of rice population feeding on water-oat fruit pulps; Original populations: C. suppressalis collected from water-oat field and reared on water-oat fruit pulps; or C. suppressalis collected from rice field and reared on rice seedlings. Cross-rearing populations: C. suppressalis collected from water-oat field but reared on rice seedlings; or C. suppressalis collected from rice field but reared on water-oat fruit pulps. Abbreviations for each sample are explained in Tables 1 and 2.
Discussion

To date, there were few documents on how gut microbial communities differ across divergent insect populations based on diet and gut compartments. Gut bacterial diversity overall was notably greater in the rice population feeding on water-oat fruit pulps compared to the water-oat population or rice population feeding on rice seedlings. Only bacteria of *Citrobacter, Enterococcus, Halomonas,* and *Klebsiella* were shared by original populations of *C. suppressalis,* and they were core microbiota based on their relative distribution. The core bacteria was able to colonize in different gut regions, and might have evolved in closely related to hosts and were potential symbiont or beneficial bacteria. Since rice seedlings and water-oat were very different in nutritional ingredient and secondary compounds, it was probable that the bacteria inhabited in *C. suppressalis* may enhance the immune of this pest during it host shift.

![Figure 5. Compositions of gut microbiota at the genus level of original and cross-rearing populations of C. suppressalis. The composition of each sample was based on the taxonomic assignment of the 16S rDNA sequences. The Y-axis represented the proportion of each taxon. JMG1–JMG3 midguts of the water-oat population feeding on water-oat fruit pulps, RMG1–RMG2 midguts of rice population feeding on rice seedlings, jMG1–jMG3 midguts of the water-oat population feeding on rice seedlings, rMG1–rMG3 midguts of rice population feeding on water-oat fruit pulps, JHG1–JHG3 hindguts of the water-oat population feeding on rice seedlings, RHG1–RHG3 hindguts of rice population feeding on rice seedlings, RHG1–rHG3 hindguts of rice population feeding on water-oat fruit pulps; Original populations: *C. suppressalis* collected from water-oat field and reared on water-oat fruit pulps; or *C. suppressalis* collected from rice field and reared on rice seedlings. Cross-rearing populations: *C. suppressalis* collected from water-oat field but reared on rice seedlings; or *C. suppressalis* collected from rice field but reared on water-oat fruit pulps. Abbreviations for each sample are explained in Tables 1 and 2.](https://www.nature.com/scientificreports/)
Our findings also showed that a remarkable different bacteria composition in the RMG and JMG and an intermediate bacteria composition in the rMG and jMG. The inter-individual variability was previously documented in honey bees *Apis mellifera*55, Anopheles56, and cockroaches *Blattella germanica*38,57, *Shelfordella lateralis*58 and *Periplaneta americana*59. The divergence in taxon composition may reflect divergent functional roles in specific resource use. Gut harbored bacteria community of the water-oat population feeding on rice seedlings, *rMG1–rMG2* midguts of rice population feeding on rice seedlings, *jMG1–jMG3* midguts of the water-oat population feeding on rice seedlings, *rMG1–rMG3* midguts of rice population feeding on water-oat fruit pulps, *JHG1–JHG3* hindguts of the water-oat population feeding on water-oat fruit pulps, *RHG1–RHG3* hindguts of rice population feeding on rice seedlings, *jHG1–jHG3* hindguts of the water-oat population feeding on rice seedlings, *rHG1–rHG3* hindguts of rice population feeding on water-oat fruit pulps; Original populations: *C. suppressalis* collected from water-oat field and reared on water-oat fruit pulps; or *C. suppressalis* collected from rice field and reared on rice seedlings. Cross-rearing populations: *C. suppressalis* collected from water-oat field but reared on rice seedlings; or *C. suppressalis* collected from rice field but reared on water-oat fruit pulps.
identical laboratory conditions, such a variability could be ascribed to host genetics and population divergence, as was suggested by Sullam et al. Cluster analysis showed the jHG and rHG samples formed the most well-defined clusters, suggesting stable microbial profiles. The inter-individual differences suggested that SSB gut microbiome profiles may serve as useful biomarkers for bio-control in population-based studies.

The oligophagous diet of stem borers provided suitable ecological niches for harboring bacteria in compared with monophagous lepidopterans. As the phyla Proteobacteria were reported to be involved in carbohydrate degradation, such as starches and hemicellulose, and can be involved in pectin-degrading and nitrogen. Firmicutes was suggested to take part in energy absorption from the diet and may influence the development. The present results illuminated the abundance of two dominant phyla (i.e., Proteobacteria and Firmicutes) and the difference of three families (Enterobacteriaceae, Enterococcaceae and Halomonadaceae) in C. suppressalis populations. As the representative of the oligophagous, C. suppressalis feeding either on water-oat fruit pulps
or rice seedlings. Both host plants shared the same family Gramineae, but their biochemical components and secondary substances were very different. Our findings suggested that the rapid fluctuation of bacterial flora in larval gut was probably influenced by the biochemical components and secondary substances coming from the host plants; and the diet was an important factor in modulating the bacteria community, as was documented for other insect species.

The gut bacterial genera were also varied, due to the difference of diets in *Chilo suppressalis*: in original populations, *Halomonas* was dominant in the RMG, *Klebsiella* was prevailed in the RHG and JMG, and *Citrobacter* was enriched in the JHG; in cross-rearing populations, *Enterococcus* was abundant in the midgut, and *Citrobacter* was predominant in the hindgut. Since diet and host taxonomy modulated bacteria community, the successful expansion of bacteria over time probably in turn suppressed the bacteria growth from other phyla in the same habitat. Therefore, we inferred that the different bacteria dominance might be related to successful reproduction of some bacteria genus and suppression of others. Whether the bacteria of *Citrobacter, Enterococcus, Halomonas,* and *Klebsiella* detected in the gut of original populations of *C. suppressalis* was truly associated with the host defense merits further investigation.

One interesting and unexpected result concerned the two compartments chosen for analysis, as we found that variability in microbial composition was higher in the midgut than in the hindgut, independently of diet. The obvious community difference indicated that only some specific groups of microorganisms were able to survive and colonize in the hindgut. However, Kacaniova et al. reported that the hindgut contained a higher number of anaerobic microorganisms than the midgut of honeybee. Although the midgut and hindgut were alkaline, the unique morphology, favorable physiological conditions (viz., oxygen content, lack of unfavorable enzymes), and the availability of partially digested food could become a benign site for maintaining a special bacteria and quick proliferation in the hindgut of *C. suppressalis*. Indeed, this may be a controversial issue, and the different richness and colonization efficiency of the host symbiont indicated that further investigation should be done to understand their drivers.

Conclusion

We investigated the gut microbial communities of two phenotypically divergent populations of *C. suppressalis*. The comparison of the midgut and hindgut microbia of *C. suppressalis* fed on the same diet provided insights into the compartment changes in the gut microbiota of SSB. Analysis of microbial community supplied an initial step toward improving our understanding of the mechanisms underlying *C. suppressalis* adaptation to host plants at the microbiological level. The results showed that the highest bacteria diversity was found for the midgut of the rice population feeding on water-oat fruit pulps. The most dominant phyla were Proteobacteria and Firmicutes; the enriched families were Enterobacteriaceae, followed by Enterococcaceae and Halomonadaceae. The microbial communities were highly diverse at the genera level due to diet types or gut compartments among populations. The bacterial community composition was driven mainly by diet types, and affected by other factors including gut compartments. These findings provided an important insight into investigation of insect-bacteria symbioses, and biocontrol of this species and other lepidopterans.

Data availability

The raw reads were deposited into the National Center for Biotechnology Information (NCBI) Sequence Read Archive (SRA) database (accession no. SRP116573).

Received: 21 January 2021; Accepted: 24 June 2021
Published online: 22 July 2021

References

1. Jiang, M. & Cheng, J. Interactions between the striped stem borer *Chilo suppressalis* (Walk.) (Lep., Pyralidae) larvae and rice plants in response to nitrogen fertilization. *J. Pest Sci.* 76, 124–128 (2003).
2. Alfaro, C., Navarrollosp, V. & Primo, J. Optimization of pheromone dispenser density for managing the rice striped stem borer, *Chilo suppressalis* (Walker), by mating disruption. *Crop Prot.* 28, 567–572 (2009).
3. Chen, M., Shelton, A. & Ye, G. Insect-resistant genetically modified rice in China: From research to commercialization. *Annu. Rev. Entomol.* 56, 81–101 (2011).
4. Muralsidharan, K. & Pasalu, I. C. Assessments of crop losses in rice ecosystems due to stem borer damage (Lepidoptera: Pyralidae). *Crop Prot.* 25, 409–417 (2006).
5. Guo, H., Li, S., Peng, J. & Ke, W. *Zizania latifolia* Turcz. cultivated in China. *Genet. Resour. Crop. Evol.* 54, 1211–1217 (2007).
6. Hou, M., Han, Y. & Lin, W. Influence of soil moisture on supercooling capacity and associated physiological parameters of overwintering larva of rice stem borer. *Entomol. Sci.* 12, 155–164 (2009).
7. He, Y. et al. Regression analysis of dynamics of insecticide resistance in field populations of *Chilo suppressalis* (Lepidoptera: Crambidae) during 2002–2011 in China. *J. Econ. Entomol.* 106, 1832–1837 (2013).
8. Wang, Y. N. et al. Comparison of three transgenic Bt rice lines for insecticidal protein expression and resistance against a target pest, *Chilo suppressalis* (Lepidoptera: Crambidae). *Insect Sci.* 23, 78–87 (2016).
9. Guo, L. et al. A host plant genome (*Zizania latifolia*) after a century-long endophyte infection. *Plant J.* 83, 600 (2015).
10. Chen, J., Yu, X. & Zhen, X. Biological performances of the striped stem borer, *Chilo suppressalis* Walker fed on Jiaobai, *Zizania caduciflora*, and rice plants. *Acta Agricult. Zhejiangensis.* 15, 139–143 (2003).
11. Quan, W. et al. Do differences in life-history traits and the timing of peak mating activity between host-associated populations of *Chilo suppressalis* have a genetic basis?. *Ecol. Evol.* 6, 4478–4487 (2016).
12. Cho, M. J. et al. Symbiotic adaptation of bacteria in the gut of *Reticulitermes speratus*: Low endo-β-1,4-glucanase activity. *Biochem. Biophys. Res. Co.* 395, 432–435 (2010).
13. Xu, Z. et al. Relationship between biological quality and nutrition of rice and damage of *Chilo suppressalis*. *Acta Phytophyl. Sin.* 38, 139–146 (2011).
14. Maki, Y. & Yamashita, M. Ecological difference of rice stem borer, *Chilo suppressalis* Walker in the various host plants. *Bull. Hyogo. Pref. Agric. Exp. Sta.* 3, 47–50 (1956).
15. Tsuchida, K. & Ichihashi, H. Estimation of monitoring range of sex pheromone trap for the rice stem borer moth, Chilo suppressalis (Walker) (Lepidoptera: Pyralidae) by male head width variation in relation to two host plants, rice and water-oats. Appl. Entomol. Zool. 30, 407–414 (1995).

16. Matsuura, K., Hoshizaki, S., Ishikawa, Y. & Tatsuki, S. Morphometric differences between rice and water-oats population of the striped stem borer moth, Chilo suppressalis (Lepidoptera: Crambidae). Appl. Entomol. Zool. 41, 529–535 (2006).

17. Ding, N. et al. A comparison of the larval overwintering biology of the striped stem borer, Chilo suppressalis (Lepidoptera: Crambidae), in rice and water-oat fields. Appl. Entomol. Zool. 48, 147–153 (2013).

18. Zibae, A., Send, I. J., Ghadamian, M., Alinia, F. & Etebar, K. Diazinon resistance in different selected strains of Chilo suppressalis (Lepidoptera: Crambidae) in northern Iran. J. Econ. Entomol. 102, 1189–1196 (2009).

19. Ishiguro, N., Yoshida, K. & Tsuchida, K. Genetic differences between rice and water-oat feeders in the rice stem borer, Chilo suppressalis (Walker) (Lepidoptera: Pyralidae). Appl. Entomol. Zool. 41, 585–593 (2006).

20. Ueno, H., Furukawa, S. & Tsuchida, K. Difference in the time of mating activity between host-associated populations of the rice stem borer, Chilo suppressalis (Walker). Entomol. Sci. 9, 255–259 (2006).

21. Yang, C., Yang, X., Fu, Q., Xu, K. & Lu, B. R. Limited divergence among populations of rice striped stem borer in southeast China. Zool. Appl. Entomol. (Walker) (Lepidoptera: Pyralidae). J. Syst. Evol. 50, 443–453 (2012).

22. Konno, Y. & Tanaka, F. Mating time of the rice-feeding and water-oat-feeding strains of the rice stem borer, Chilo suppressalis Walker (Lepidoptera: Pyralidae). Appl. Entomol. Zool. 40, 245–247 (1996).

23. Samudra, I. M., Emura, K., Hoshizaki, S., Ishikawa, Y. & Tatsuki, S. Temporal difference in mating behavior between rice- and wateroats-populations of the striped stem borer, Chilo suppressalis (Walker) (Lepidoptera: Crambidae). Appl. Entomol. Zool. 37, 257–262 (2002).

24. Yu, X. et al. Differentiation of striped stem borer (SSB), Chilo suppressalis Walker from rice and Zizania caduciflora. Habitats. Acta Ecol. Sin. 22, 341–345 (2002).

25. Matsuura, K., Hoshizaki, S., Ishikawa, Y. & Tatsuki, S. Differences in timing of the emergence of the overwintering generation between rice and water-oats populations of the striped stem borer moth, Chilo suppressalis (Lepidoptera: Crambidae). Appl. Entomol. Zool. 44, 485–489 (2009).

26. Zhong, H., Li, F., Chen, J., Zhang, J. & Li, F. Comparative transcriptome analysis reveals host-associated differentiation in Chilo suppressalis (Lepidoptera: Crambidae). Sci. Rep. 7, 13778 (2017).

27. Han, Y., Hao, L. & Hou, M. Comparison of overwintered bionomics of Chilo suppressalis larvae from paddy-rice field with those from water-oat field in North China. Chin. J. Eco-Agric. 17, 541–544 (2009).

28. Crotti, E. et al. Acetic acid bacteria, newly emerging symbionts of insects. Appl. Environ. Microb. 76, 6963–6970 (2010).

29. Buchner, P. Endosymbiosis of animals with plant microorganisms (Interscience, 1965).

30. Dale, C. & Moran, N. Molecular interactions between bacterial symbionts and their hosts. Cell 126, 453–465 (2006).

31. Behar, A., Yoval, B. & Jurkevitch, E. Gut bacterial communities in the Mediterranean fruit fly (Ceratitis capitata) and their impact on host longevity. J. Insect. Physiol. 54, 1377–1383 (2008).

32. Chung, S. H. et al. Herbivore exploits orally secreted bacteria to suppress plant defenses. P. Natl. Acad. Sci. USA 110, 15728 (2013).

33. Ceja-Navarro, J. A. et al. Gut microbiota mediate caffeine detoxification in the primary insect pest of coffee. Nat. Commun. 6, 1–9 (2015).

34. Cheng, D. et al. Gut symbiont enhances insecticide resistance in a significant pest, the oriental fruit fly Bactrocera dorsalis (Hendel). Microbiome 5, 13 (2017).

35. Emery, O., Schmidt, K. & Engel, P. Immune system stimulation by the gut symbiont Frischella perrara in the honey bee (Apis mellifera). Mol. Ecol. 26, 2576–2590 (2017).

36. Lee, J. B. et al. Gut symbiotic bacteria stimulate insect growth and egg production by modulating hexamerin and vitellogenin gene expression. Dev. Comp. Immunol. 69, 12–22 (2017).

37. Brucker, R. M. & Bordenstein, S. R. The holobiontic basis of speciation: Gut bacteria cause hybrid lethality in the genus Nasonia. Science 341, 667 (2013).

38. Pérez-Cobas, A. E. et al. Diet shapes the gut microbiota of the omnivorous cockroach Blattella germanica. FEMS Microbiol. Ecol. 91, 1–14 (2015).

39. Su, L. et al. Variation in the gut microbiota of termites (Testermes amplexipes) against different diets. Appl. Biochem. Biotech. 181, 32–47 (2017).

40. Lü, J. et al. Host plants influence the composition of the gut bacteria in Henosepilachna vintiiotocupunctata. PloS ONE 14, e0224213 (2019).

41. Luo, H. et al. The relationship between phenolics metabolism and browning and lignification of fresh-cut Zizania latifolia. J. Syst. Evol. 50, 2 (2012).

42. Koch, H., Abrol, D. P., Li, J. & Schmid-Hempel, P. Diversity and evolutionary patterns of bacterial gut associates of corbiculate bees. Mol. Ecol. 22, 2028–2044 (2013).

43. Zhang, J., He, Y. & Chen, J. Diversity analysis of bacterial community in midguts of larvae of the striped stem borer, Chilo suppressalis (Lepidoptera: Crambidae), with different levels of resistance to insecticides. Acta Entomol. Sin. 56, 1075–1082 (2013).

44. Shao, Y., Ariascardero, E., Guo, H., Bartram, S. & Boland, W. In vivo Pyro-SIP assessing active gut microbiota of the cotton leafworm, Spodoptera littoralis. Plos One 9, e85948 (2014).

45. Moran, N. A., Hansen, A. K., Powell, J. E. & Sabree, Z. L. Distinctive gut microbiota of honey bees assessed using deep sampling from individual worker bees. PloS ONE 7, 2 (2012).
Author contributions
J.C. conceived and designed the study; H.Z. and J.C. designed the experiments and discussed the results; H.Z.
performed the experiments, analyzed the data and drafted the manuscript; J.Z. and F.L. and collected and reared
insect populations. All authors reviewed and approved the final version of the manuscript.

Acknowledgements
The authors are grateful to Pan Xiaoting for rearing the striped stem Chilo suppressalis borer. We sincerely thank
anonymous reviewers for their critical review and providing valuable comments to this manuscript. Mingke
Biotechnology (Hangzhou, China) Co., Ltd. is also thanked for supplying technical assistance. This work is
financially supported by the Zhejiang Provincial Natural Science Foundation of China (Grant Nos. LY16C140006,
LQ19C140003), China Agriculture Research System of MOF and MARA (Grant No. CARS-24-G-06).

Competing interests
The authors declare no competing interests.

Additional information
Supplementary Information The online version contains supplementary material available at https://doi.org/
10.1038/s41598-021-94395-y.

Correspondence and requests for materials should be addressed to J.C.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2021