Supplement to

Foraging behaviour and habitat-use drives niche segregation in sibling seabird species

Ryan R. Reisinger, Tegan Carpenter-Kling, Maëlle Connan, Yves Cherel, Pierre A. Pistorius

Author for correspondence: ryan.r.reisinger@gmail.com

Supplementary Tables

Supplementary Table S1

Details of 101 giant petrels studied at Marion Island.

We used GPS tracks from 94 individuals. We used δ^{13}C and δ^{15}N values from the blood plasma of 90 individuals. GPS tracking and stable isotope ratio values were coincident in 75 individuals. Sex: F – female; M – male. Where culmen length was not measured, birds were sexed molecularly.

ID	Sex	Culmen length (mm)	Deployment date	Deployment duration (days)	Maximum distance (km)	Mean latitude	Long trips?	Short trips?	Stable isotope analyses	C:N ratio				
									δ^{13}C (%)	δ^{15}N (%)	Plasma Delipidated plasma	Plasma Delipidated plasma	Plasma Delipidated plasma	
Northern giant petrel									Delta C	Delta N	Plasma Delipidated plasma	Plasma Delipidated plasma	Plasma Delipidated plasma	
NGP01_092017	F	88.7	2017-09-30	5.0	660.6	-43.378	Y	N	-21.9	-19.4	15.6	15.4	4.74	3.63
NGP01_26092016	F	89.6	2016-09-28	9.1	1805.0	-40.528	Y	N	-21.9	-	12.7	-	4.80	-
NGP02_26092016	F	95.7	2016-09-28	11.5	1924.3	-40.572	Y	N	-21.2	-19.6	14.6	14.8	4.88	3.44
NGP02_KD_SEP_2015	F	-	-	-	-	-	-20.3	-18.4	14.8	15.3	4.71	3.45		
NGP04_26102016	F	88.7	2016-10-01	7.5	1724.0	-42.619	Y	N	-23.7	-21.4	13.8	14.0	5.08	3.46
NGP06_092017	F	87.1	2017-10-04	5.9	631.2	-43.627	Y	N	-23.6	-21.3	13.9	14.0	4.75	3.54
NGP06_26102016	F	88.5	2016-09-28	10.9	539.0	-45.558	Y	N	-24.6	-21.7	13.2	13.3	5.40	3.56
NGP06_KD_SEP_2015	F	92.5	2015-09-20	9.9	1817.2	-41.612	Y	N	-20.9	-19.8	14.5	14.7	4.64	3.72
NGP07_092017	F	-	-	-	-	-	-23.7	-20.6	14.0	14.1	5.22	3.50		
NGP08_092017	F	87.4	2017-10-01	6.6	1665.6	-39.379	Y	N	-22.1	-19.7	14.1	14.2	4.91	3.52
NGP08_KD_SEP_2015	F	90.4	2015-09-20	10.3	1750.7	-41.535	Y	Y	-21.4	-19.1	14.5	15.1	5.03	3.50
NGP09_092017	F	91.7	2017-09-30	4.5	1056.6	-45.002	Y	N	-22.9	-20.8	13.7	13.9	4.87	3.53
NGP09_26102016	F	90.7	2016-09-26	9.0	1754.3	-40.286	Y	N	-23.7	-20.8	14.6	14.7	5.37	3.39
NGP10_092017	F	88.9	2017-09-28	7.3	514.5	-46.469	Y	Y	-22.0	-19.9	14.5	14.6	4.85	3.80
NGP10_26102016	F	-	-	-	-	-	-20.6	-19.0	14.8	14.8	4.56	3.47		
NGP10_KD_SEP_2015	F	-	-	-	-	-	-21.2	-19.2	14.6	15.1	4.62	3.52		
NGP11_092017	F	92.0	2017-09-28	6.1	1413.2	-39.224	Y	N	-21.6	-19.9	14.6	14.6	4.77	3.87
NGP12_092017	F	85.3	2017-10-06	13.1	1768.6	-40.748	Y	N	-21.6	-19.4	15.0	15.0	4.78	3.77
NGP12_26102016	F	90.6	2016-10-03	20.7	234.9	-47.002	Y	Y	-23.4	-19.4	14.6	14.0	4.61	3.56
NGP13_092017	F	-	-	-	-	-	-20.8	-18.9	14.5	14.8	4.71	3.61		
NGP13_26102016	F	93.7	2016-09-28	9.2	1310.8	-43.143	Y	N	-22.0	-19.9	14.3	14.4	4.72	3.35
NGP13_KD_SEP_2015	F	92.2	2015-10-04	11.0	727.2	-46.459	Y	Y	-21.9	-20.0	13.6	14.0	4.61	3.56
NGP14_092017	F	-	-	-	-	-	-21.2	-19.5	14.1	14.0	4.44	3.54		
NGP14_26102016	F	92.3	2016-10-02	7.0	1806.1	-39.720	Y	N	-21.6	-20.1	15.1	12.6	4.82	3.40
NGP15_092017	F	87.4	2017-10-06	7.3	1737.7	-39.131	Y	N	-20.0	-18.0	15.0	15.1	4.70	3.50
NGP15_26102016	F	87.2	2016-09-29	8.0	1285.5	-40.679	Y	Y	-20.5	-19.4	15.9	15.1	4.62	3.34
NGP16_092017	F	87.8	2017-09-29	5.2	519.5	-45.452	Y	N	-22.2	-19.9	14.3	14.5	4.77	3.69
NGP16_26102016	F	93.8	2016-09-27	10.9	1846.6	-40.813	Y	N	-21.0	-14.7	-	5.31	-	
NGP16_KD_SEP_2015	F	92.2	2015-10-03	9.0	1740.0	-39.754	Y	N	-20.0	-18.6	14.6	14.8	4.58	3.51
NGP17_092017	F	90.2	2017-09-27	6.8	1523.1	-38.121	Y	N	-21.6	-18.7	15.2	15.3	5.20	3.72
NGP17_26102016	F	93.5	2016-09-29	7.2	1422.3	-42.382	Y	N	-23.0	-20.9	14.0	14.1	5.21	3.49
NGP17_KD_SEP_2015	F	89.5	2015-10-04	10.4	1802.9	-44.089	Y	Y	-	-	-	-	-	-
NGP18_KD_SEP_2015	F	92.7	2015-10-06	5.4	96.7	-47.161	Y	N	-23.6	-21.5	13.2	13.7	4.65	3.50
-------------------	----	------	------------	------	------	----------	-----	-----	-------	-------	------	------	-----	------
NGP19_27102016	F	91.3	2016-10-05	7.3	1742.4	-38.703	Y	N	-20.7	-18.3	14.5	14.5	4.99	3.40
NGP20_092017	F	85.6	2017-10-06	14.7	1763.1	-42.813	Y	N	-24.9	-22.7	12.8	12.9	4.77	3.60
NGP20_26102016	F	91.3	2016-10-02	9.3	1737.3	-41.336	Y	N	-20.6	-18.7	15.0	15.0	4.81	3.39
NGP21_102017	F	-	-	-	-	-	-	-	-23.4	-21.3	13.0	13.1	4.79	3.79
NGP21_27102016	F	89.6	2016-10-05	10.8	88.0	-47.007	Y	N	-23.1	-12.0	-	-20.0	4.20	-
NGP01_KD_SEP_2015	M	100.1	2015-09-17	4.6	13.2	-46.961	N	Y	-23.6	-20.8	11.8	11.8	4.84	3.46
NGP02_092017	M	106.1	2017-09-30	4.9	42.7	-46.958	N	Y	-23.3	-21.0	12.9	12.9	4.63	3.51
NGP03_092017	M	-	-	-	-	-	-	-	-24.0	-21.6	12.3	12.2	4.5	3.61
NGP03_26092016	M	102.4	2016-09-30	7.2	8.7	-46.966	N	Y	-24.2	-21.7	11.9	12.0	4.79	3.39
NGP03_KD_SEP_2015	M	102.9	2015-09-17	10.8	1221.3	-39.413	Y	N	-21.3	-18.9	15.6	16.2	5.28	3.49
NGP04_092017	M	-	-	-	-	-	-	-	-21.4	-19.6	13.3	13.3	4.27	3.71
NGP04_KD_SEP_2015	M	99.3	2015-09-18	2.2	4.1	-46.965	N	Y	-	-	-	-	-	-
NGP05_092017	M	99.9	2017-09-30	6.9	1137.6	-46.224	Y	Y	-22.9	-20.4	13.6	13.7	4.78	3.73
NGP05_26102016	M	108.1	2016-09-28	7.9	231.3	-45.915	Y	N	-23.3	-21.2	14.0	13.9	4.60	3.40
NGP05_KD_SEP_2015	M	103.9	2015-09-22	8.0	1609.7	-42.874	Y	N	-21.9	-19.6	13.9	13.9	4.98	3.53
NGP07_26102016	M	107.6	2016-09-29	7.0	8.5	-46.962	N	Y	-23.7	-21.4	12.4	12.4	4.60	3.45
NGP08_26102016	M	109.7	2016-09-27	15.9	615.8	-47.899	Y	Y	-	-	-	-	-	-
NGP09_KD_SEP_2015	M	102.5	2015-09-24	8.4	69.2	-46.961	Y	Y	-	-	-	-	-	-
NGP11_26102016	M	113.9	2016-09-30	11.8	9.3	-46.955	N	Y	-22.4	-18.5	12.6	15.8	5.04	3.44
NGP11_KD_SEP_2015	M	107.7	2015-10-07	7.0	984.8	-43.375	Y	N	-22.0	-20.1	14.1	14.0	4.74	3.47
NGP14_KD_SEP_2015	M	110.0	2015-10-04	6.2	1424.2	-49.894	Y	N	-24.3	-21.7	11.8	12.3	4.62	3.32
NGP15_KD_SEP_2015	M	105.4	2015-10-03	7.6	25.6	-46.930	N	Y	-22.6	-20.4	13.0	13.2	5.00	3.61
NGP19_092017	M	-	-	-	-	-	-	-	-24.0	-21.2	12.9	13.0	4.76	3.50
NGP19_KD_SEP_2015	M	-	2015-10-03	5.9	42.8	-46.965	N	Y	-23.5	-21.4	11.9	12.2	4.68	3.52
NGP20_KD_SEP_2015	M	104.2	2015-10-04	8.8	26.6	-46.935	N	Y	-	-	-	-	-	-
NGP22_102017	M	107.0	2017-10-19	5.9	49.9	-46.951	N	Y	-23.4	-21.6	11.7	11.6	4.45	3.50
NGP23_102017	M	-	-	-	-	-	-	-	-23.3	-21.4	11.6	11.5	4.40	3.52

Southern giant petrel
SGP01_03102016	F	92.4	2016-10-03	24.3	1341.3	-50.189	Y	N	-24.3	-22.5	12.7	12.8	4.72	3.52
SGP01_102017	F	89.2	2017-10-05	2.4	643.3	-49.427	Y	N	-25.2	-23.2	12.6	12.6	4.72	3.60
SGP02_03102016	F	-	-	-	-	- -	-	-	-25.5	-23.3	12.6	12.7	4.59	3.42
SGP03_03102016	F	-	-	-	-	- -	-	-	-25.2	-23.1	12.4	12.4	4.57	3.41
SGP04_102017	F	87.9	2017-10-04	6.7	1245.8	-49.900	Y	N	-24.9	-22.6	13.4	13.4	4.99	3.53
SGP04_KD_SEP_2015	F	92.3	2015-09-28	7.6	1389.5	-52.161	Y	N	-	-	-	-	-	-
SGP05_102017	F	84.9	2017-10-03	12.1	1524.6	-53.521	Y	N	-25.1	-23.1	12.6	12.6	4.96	3.57
SGP05_KD_SEP_2015	F	88.0	2015-10-01	16.6	1909.5	-52.419	Y	Y	-25.4	-23.0	12.7	12.7	4.68	3.52
SGP06_03102016	F	93.4	2016-10-08	10.8	1215.5	-51.097	Y	N	-24.2	-22.2	12.4	12.6	4.56	3.44
SGP07_03102016	F	93.3	2016-10-05	7.5	1676.0	-46.723	Y	N	-24.1	-22.2	13.2	13.2	4.71	3.42
SGP07_102017	F	88.7	2017-10-09	9.7	1245.3	-47.503	Y	N	-24.7	-	13.4	-	5.17	-
SGP07_KD_SEP_2015	F	85.3	2015-09-25	6.9	904.0	-49.377	Y	Y	-	-	-	-	-	-
SGP08_03102016	F	90.1	2016-10-04	10.6	846.8	-50.451	Y	N	-24.9	-22.3	12.8	12.8	4.72	3.40
SGP08_102017	F	89.5	2017-10-09	13.0	1305.6	-50.330	Y	N	-24.8	-22.9	13.0	13.1	4.97	3.63
SGP09_03102016	F	94.0	2016-10-09	13.1	992.7	-46.377	Y	N	-24.1	-21.8	13.3	13.4	4.72	3.46
SGP10_03102016	F	91.8	2016-10-12	16.4	1756.7	-53.214	Y	N	-25.6	-23.6	12.3	12.6	4.80	3.57
SGP11_102017	F	88.9	2017-10-04	22.0	2031.4	-49.128	Y	Y	-24.1	-22.1	11.6	11.8	4.78	3.69
SGP11_KD_SEP_2015	F	91.5	2015-10-07	10.4	1021.0	-49.530	Y	N	-23.8	-	12.9	-	4.64	-
SGP12_03102016	F	92.0	2016-10-14	14.9	1817.5	-55.898	Y	N	-	-	-	-	-	-
SGP13_03102016	F	91.6	2016-10-03	20.8	1572.8	-50.516	Y	N	-	-	-	-	-	-
SGP14_03102016	F	90.6	2016-10-11	17.5	2343.5	-51.459	Y	N	-24.0	-22.1	12.9	12.9	4.49	3.37
SGP14_KD_SEP_2015	F	89.9	2015-10-05	9.2	1089.0	-48.474	Y	N	-24.0	-22.4	12.5	12.5	4.28	3.47
SGP15_102017	F	90.2	2017-10-05	10.1	1095.3	-49.481	Y	N	-24.9	-23.3	12.8	13.0	4.86	3.72
SGP16_03102016	F	83.0	2017-10-17	16.0	1090.7	-48.732	Y	Y	-25.0	-23.0	12.6	12.7	5.18	3.74
SGP16_KD_SEP_2015	F	89.8	2015-10-08	11.9	1669.3	-53.441	Y	N	-24.7	-22.9	12.3	12.5	4.52	3.45
SGP17_102017	F	88.2	2017-10-05	12.9	1716.9	-49.722	Y	N	-25.1	-23.1	13.1	13.1	4.71	3.53
SGP18_102017	F	89.0	2017-10-13	8.0	847.8	-48.910	Y	N	-24.0	-22.5	12.3	12.4	4.50	3.74
SGP18_KD_SEP_2015	F	87.9	2015-10-06	10.4	1573.7	-50.133	Y	N	-25.1	-	12.5	-	5.08	-
SGP20_102017	F	87.1	2017-10-06	3.6	379.7	-48.843	Y	N	-24.7	-22.9	12.6	12.7	4.64	3.67
ID	Sex	Date	BMI	Height	Weight	Fat	Lean	Age	Maturity	Testosterone	SHBG	E2	PRL	LH	FSH	TSH
SGP22_102017	F	2017-10-19	4.9	583.8	-47.916	Y	N	-24.9	-23.0	13.0	13.0	5.00	3.70			
SGP01_KD_SEP_2015	M	2015-09-30	4.0	12.6	-46.964	N	Y	-	-	-	-	-	-			
SGP02_102017	M	2017-10-07	4.9	1480.4	-54.205	Y	N	-25.6	-23.6	12.1	12.3	4.85	3.72			
SGP02_KD_SEP_2015	M	2015-09-26	11.5	21.2	-46.964	N	Y	-23.2	-21.7	11.9	12.1	4.63	3.65			
SGP03_KD_SEP_2015	M	2015-09-30	3.1	10.2	-46.962	N	Y	-23.1	-22.3	12.1	12.1	4.23	3.76			
SGP06_102017	M	2017-10-06	4.9	9.6	-46.966	N	Y	-24.6	-22.6	11.9	12.0	4.92	3.61			
SGP06_KD_SEP_2015	M	2015-10-01	3.6	13.2	-46.965	N	Y	-23.5	-22.1	11.8	12.0	4.63	3.59			
SGP08_KD_SEP_2015	M	2015-09-28	10.1	9.7	-46.965	N	Y	-23.0	-21.3	11.2	11.2	4.43	3.40			
SGP09_102017	M	2017-10-20	1.4	9.5	-46.952	N	Y	-25.1	-22.6	11.9	11.9	5.09	3.61			
SGP09_KD_SEP_2015	M	2015-10-05	3.3	9.7	-46.965	N	Y	-23.8	-21.8	11.8	11.8	4.78	3.56			
SGP10_KD_SEP_2015	M	2015-09-28	12.1	14.9	-46.962	N	Y	-23.4	-21.8	12.1	12.2	4.50	3.70			
SGP12_102017	M	2017-10-08	4.3	49.7	-46.964	N	Y	-25.1	-22.3	12.6	12.4	4.98	2.70			
SGP12_KD_SEP_2015	M	2015-10-06	4.1	9.5	-46.965	N	Y	-	-	-	-	-	-			
SGP13_102017	M	2017-10-11	18.1	1468.9	-51.865	Y	N	-25.2	-22.9	12.7	12.8	4.77	3.49			
SGP15_KD_SEP_2015	M	-	-	-	-	-	-	-24.0	-22.0	11.8	11.8	4.58	3.40			
SGP17_03102016	M	2016-10-07	4.5	9.5	-46.964	N	Y	-23.1	-21.3	12.0	12.0	4.33	3.43			
SGP17_KD_SEP_2015	M	2015-10-06	13.9	1735.9	-53.658	Y	N	-	-	-	-	-	-			
SGP18_03102016	M	2016-10-12	4.6	9.6	-46.968	N	Y	-23.7	-21.9	11.6	11.6	4.37	3.43			
SGP19_03102016	M	-	-	-	-	-	-	-24.2	-21.9	12.2	12.2	4.62	3.44			
SGP19_KD_SEP_2015	M	2015-10-06	3.3	9.8	-46.965	N	Y	-23.6	-21.9	11.9	11.9	4.56	3.58			
Supplementary Table S2

Details of the 8 environmental covariates used to characterize the habitat of giant petrels GPS-tracked from Marion Island. Distance (DIST) was not considered in the random forest models.

Abbreviation	Description	Unit	Spatial resolution	Temporal resolution	Source/Reference
CHL	Chlorophyll-a concentration	mg/m³	9 km	Monthly	NASA Goddard Space Flight Center, Ocean Ecology Laboratory, Ocean Biology Processing Group. Sea-viewing Wide Field-of-view Sensor (SeaWiFS) Chlorophyll Data; 2014 Reprocessing. NASA OB.DAAC, Greenbelt, MD, USA. doi: 10.5067/ORBVIEW-2/SEAWIFS/L3M/CHL/2014.
DEPTH	Ocean depth	m	15 arc seconds	NA	General Bathymetric Chart of the Oceans (GEBCO) https://www.gebco.net/data_and_products/gridded_bathymetry_data/gebco_2019/gebco_2019_info.html
DIST	Distance from deployment location	km	NA	NA	NA
EKE	Eddy kinetic energy	cm²/s²	Daily	Altimeter products were produced by Ssalto/Duacs and distributed by Aviso, with support from CNES (http://www.aviso.altimetry.fr/duacs/)	
SSHA	Sea surface height anomaly	m	0.12°	Daily	Ssalto/Duacs altimeter products produced and distributed by the Copernicus Marine and Environment Monitoring Service (CMEMS) (http://www.marine.copernicus.eu)
Code	Description	Unit	Resolution	Frequency	Source
------	------------------------------	------	------------	-----------	---
SST	Sea surface temperature	°C	0.01°	Daily	JPL MUR MEaSUREs Project, 2015. GHRSST Level 4 MUR Global Foundation Sea Surface Temperature Analysis (v4.1). PO.DAAC, CA, USA. https://doi.org/10.5067/GHGMR-4FJ04
WINDU	Horizontal (zonal) wind	m/s	1.9°	Daily	NOAA/OAR/ESRL PSD, Boulder, Colorado, USA, http://www.esrl.noaa.gov/psd/
WINDV	Vertical (meridional) wind	m/s	1.9°	Daily	NOAA/OAR/ESRL PSD, Boulder, Colorado, USA, http://www.esrl.noaa.gov/psd/
Supplementary Figures

Supplementary Figure S1

Plot showing the overlapping tracking periods (horizontal lines) of 94 giant petrel individuals tracked in three years. Birds were tracked for 7.8 – 31.0 days (mean = 16.6 days). After trimming the tracks to exclude locations on the nest (shown in this figure), tracks were 1.4 – 24.3 days long, with a mean of 9.1 days.
Supplementary Figure S2

Bill dimensions of 91 individuals (49 northern giant petrels [NGP] and 42 southern giant petrels [SGP]) tracked from Marion Island. The sex of 22 individuals (with bill measurements) that were sexed molecularly is indicated by different shapes. Additionally, four individuals with no bill measurements were sexed molecularly. The vertical grey line shows the 97 mm culmen length threshold that we used to distinguish putative females (< 93 mm) and putative males (> 99 mm).
Supplementary Figure S3

Plots showing the displacement (distance from nest) against time for giant petrel individuals which made: a) distant trips (> 50 km maximum distance; 59 trips by females and 11 trips by males); and b) only nearby trips (< 50 km maximum distance; 11 trips by females and 28 trips by males). Multiple trips are defined per individual, so some individuals fall in both categories and numbers in each category do not sum to the total number of individuals (94).