Development, characterization, and cross-amplification of 17 microsatellite markers for *Filipendula vulgaris*

Dijana Čortan1, Karol Krak1,2, Petr Vít1,2, and Bohumil Mandák1,2,3

Manuscript received 3 September 2019; revision accepted 21 October 2019.

1 Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, Praha 6–Suchdol, CZ-165 00, Czech Republic
2 The Czech Academy of Sciences, Institute of Botany, Zámeček 1, Průhonice, CZ-252 43, Czech Republic
3 Author for correspondence: mandak@fp.cz.cz

Citation: Čortan, D., K. Krak, P. Vít, and B. Mandák. 2019. Development, characterization, and cross-amplification of 17 microsatellite markers for *Filipendula vulgaris*. Applications in Plant Sciences 7(12): e11307.

doi:10.1002/aps3.11307

The genus *Filipendula* Mill. (Rosaceae) contains 15 species of perennial herbaceous flowering plants native to temperate regions in the Northern Hemisphere (Schanzer, 1994). This genus is most diverse in eastern Asia, with only two species native to Europe and North America (Schanzer, 2016). The native European species belong to sect. *Filipendula* and are represented by *F. ulmaria* (L.) Maxim., and *F. vulgaris* Moench (syn. *F. hexapetala* Gilib.) (Ball, 1968). Whereas *F. ulmaria* is confined to wet habitats, the focal species *F. vulgaris* occurs in dry steppe-like habitats. Morphologically, *F. vulgaris* is unique within *Filipendula* in having tuberous roots and strongly dissected leaves. The geographic distribution of *F. vulgaris* covers Europe, central Asia, and northwestern Africa (Meusel et al., 1965). It occurs in dry, non-acidic grasslands in Europe (Ball, 1968) and in continental Eurasian steppes. The species is adapted to drought-prone soils and is not sensitive to frost and low temperatures. Flowers, leaves, and underground organs are used as medicinal raw materials because they are rich in tannins and polyphenolic acids (Bączek et al., 2012).

Filipendula vulgaris is a perennial diploid species (2n = 2x = 14; Schanzer, 1994 and references therein). It is described as a self-compatible but predominantly outcrossing plant with low genetic differentiation both within and among populations (Weidema et al., 2000). To date, only isozymes have been used to assess genetic variation in this species (Weidema et al., 2000). Our study reports the development and characterization of 17 novel microsatellite loci for *F. vulgaris*. In addition, these loci were cross-amplified in three related Rosaceae species: *Filipendula ulmaria*, *F. camtschatica* (Pall.) Maxim., and *Geum urbanum* L. The microsatellite markers developed here will be used to assess genetic diversity in investigations of population genetic structures, mating systems, and phylogeographic patterns of these species.

METHODS AND RESULTS

Microsatellite development

Total genomic DNA of *F. vulgaris* was extracted from 20–25 mg of silica gel-dried leaf tissue using the DNeasy Plant Mini Kit (QIAGEN, Hilden, Germany), following the manufacturer’s instructions. A DNA library was prepared with a NEBNext Ultra II DNA Library Prep Kit for Illumina (New England Biolabs, Ipswich, Massachusetts, USA) as described in Belyayev et al. (2019), and 2 × 300-bp paired-end sequencing was carried out on an Illumina MiSeq instrument using the services of Macrogen (Seoul, South Korea). The library was sequenced in one run together with nine other libraries. Sequencing resulted in 1,327,940 raw reads (National Center for Biotechnology Information [NCBI] Sequence Read Archive no. SRR10028579). Paired-end reads were trimmed using Trimmomatic 0.36 (Bolger et al., 2014) with the following settings: ILLUMINACLIP: adapters_used.fa: 2:30:10;
Chloroplast reads of *F. vulgaris* were then removed by mapping the trimmed reads to the complete chloroplast sequence of *Rosa roxburghii* Tratt. (GenBank accession no. KX768420) using Bowtie 2 aligner with default settings (Langmead and Salzberg, 2012). Sequences containing microsatellite motifs were identified using SSR_pipeline (Miller et al., 2013), and only perfect motifs (di-, tri-, and tetranucleotide repeats of minimum length of 14, 18, and 20 bp, respectively) were further processed. Primers were designed using Primer3 (Untergasser et al., 2012), as integrated in MSATCOMMANDER version 0.8.2 (Faircloth, 2008).

Biological validation

A total of 65 primer pairs containing perfect di-, tri-, and tetranucleotide repeats and different amplicon lengths (100–400-bp intervals) were randomly selected and tested for amplification in seven individuals of *F. vulgaris* (Appendix 1). PCRs were carried out in 10-μL reaction volumes containing 10 ng of genomic DNA (0.05 μM of forward and 0.2 μM of reverse primer, 1× concentrated QIAGEN Multiplex PCR Master Mix). We further added 0.2 μM of fluorescently labeled (FAM, NED, VIC, or PET) M13 primer to facilitate labeling of the resulting PCR product as described in Schuelke (2000). Reactions were carried out under the following conditions: an initial denaturation step at 95°C for 15 min, followed by 25 cycles of denaturation at 95°C for 30 s, annealing at 55°C for 30 s, and extension at 72°C for 2 min. This was followed by 10 cycles of denaturation at 95°C for 30 s, annealing at 50°C for 30 s, extension at 72°C for 2 min, and final extension at 72°C for 10 min. After verifying amplification by electrophoresis in 2% agarose gel, a total of 25 primers were selected as successfully amplified in all seven individuals and these were used for the initial polymorphism tests. A volume of 1 μL of PCR products was added to a mix of 12.0 μL Hi-Di Formamide (Applied Biosystems, Waltham, Massachusetts, USA) and 0.2 μL GeneTrace LIZ 500 Size Standard (Carolina BioSystems, Orech, Czech Republic) for fragment analysis on the Applied Biosystems 3500 genetic analyzer. Next, fragment length analyses and scoring were carried out with GeneMarker version 2.7.4 (SoftGenetics, State College, Pennsylvania, USA). Finally, 17 polymorphic markers with easily scorable peaks were selected for further analysis on three *F. vulgaris* populations (Table 1, Appendix 1).

Microsatellite data analysis and results

Summary statistics were calculated for each microsatellite locus and population combination, i.e., the number of alleles, observed and expected heterozygosities, and inbreeding index *f* (Weir...
and Cockerham, 1984), as a measure of departure from within-population random mating using the R package diveRsity (Keenan et al., 2013). Deviation from Hardy–Weinberg equilibrium was determined by the Fisher’s exact test as implemented in diveRsity with 9999 Monte Carlo replicates. In order to reduce the number of false-positive results, a Bonferroni correction was used. MICRO-CHECKER version 2.2.3 (van Oosterhout et al., 2004), using the method of Chakraborty et al. (1994), was used to identify potential scoring errors due to stuttering, large allele dropouts, and the presence of null alleles in the matrix.

The summary statistics for genetic variability of the loci and populations studied are presented in Table 2. We identified a total of 203 alleles at 17 microsatellite loci, ranging from three to 15 per locus. Levels of observed heterozygosity ranged from 0.267 to 1.000, and levels of expected heterozygosity ranged from 0.461 to 0.899. Inbreeding coefficients of all three populations were relatively high (Table 2), indicating a certain level of inbreeding in each population, thus conflicting with the results of Wiedema et al. (2000) based on isoenzyme analyses. Accordingly, Hardy–Weinberg equilibrium tests indicated that eight out of 17 primer pairs deviated significantly from the expected values (Table 2) in one or two populations, which could be expected by small and inbred populations or presence of null alleles. The average null allele frequency for each locus calculated using the method of Chakraborty et al. (1994) detected a moderate presence of null alleles below 0.2. Five loci showed null allele frequencies over 0.2, but these were not present in all three populations (Table 2).

Cross-amplification testing showed seven successfully cross-amplified loci in *F. camtschatica* and *F. ulmaria*, and three successfully cross-amplified loci in *Geum urbanum* (Table 3).

CONCLUSIONS

Seventeen polymorphic microsatellite loci were successfully developed for *F. vulgaris*. The cross-species amplification of these markers indicates that half of them may also be useful in the related

Locus	*Filipendula camtschatica* (n = 5)	*Filipendula ulmaria* (n = 5)	*Geum urbanum* (n = 5)
FV_di_02	160–179	163–173	—
FV_di_10	—	—	—
FV_tri_24	—	—	—
FV_tet_34	—	—	325
FV_di_03	88–116	95–124	—
FV_di_12	163–175	157–167	142–178
FV_di_06	179–184	179–184	—
FV_di_47	—	—	—
FV_tri_58	244–275	244–261	—
FV_tri_56	159–168	159–168	—
FV_tri_53	—	—	135

Note: — = unsuccessful amplification; n = number of individuals sampled.

*Voucher and locality information are provided in Appendix 1.

Table 3. Results of cross-amplification of 17 microsatellite markers developed for *Filipendula vulgaris* and tested in three species of the same family:

Locus	*Filipendula camtschatica* (n = 5)	*Filipendula ulmaria* (n = 5)	*Geum urbanum* (n = 5)
FV_di_02	160–179	163–173	—
FV_di_10	—	—	—
FV_tri_24	—	—	—
FV_tet_34	—	—	325
FV_di_03	88–116	95–124	—
FV_di_12	163–175	157–167	142–178
FV_di_06	179–184	179–184	—
FV_di_47	—	—	—
FV_tri_58	244–275	244–261	—
FV_tri_56	159–168	159–168	—
FV_tri_53	—	—	135

Note: — = unsuccessful amplification; n = number of individuals sampled.

*Voucher and locality information are provided in Appendix 1.
species \textit{F. camtschatica}, \textit{F. ulmaria}, and \textit{G. urbanum}. The markers developed here constitute a valuable tool for genetic investigation of population structure, gene flow levels, and mating systems, as well as conservation genetic studies of the \textit{Filipendula} genus and will facilitate ecological and evolutionary studies of \textit{F. vulgaris} and related species.

ACKNOWLEDGMENTS

This study was supported by the Czech Science Foundation (18-03028S) and is part of long-term research development project RVO 67985939. The authors would like to thank Katerína Machynková and Alena Hrdličková for their help in the laboratory. Dr. Sandy Lang is thanked for helping with language editing.

AUTHOR CONTRIBUTIONS

D.Č., K.K., P.V., and B.M. conceived and designed the study. K.K., P.V., and B.M. collected the plant material. D.Č. and K.K. supervised the laboratory work. D.Č. and B.M. analyzed the data and drafted the manuscript. All authors reviewed the manuscript and approved its final version.

DATA AVAILABILITY

All sequence information was deposited in the National Center for Biotechnology Information (NCBI) GenBank database (accession numbers MN259475–MN259491). The NCBI BioSample accession number for Illumina sequencing is SAMN12646161, as a part of BioProject no. PRJNA562628. Raw reads are stored in the NCBI Sequence Read Archive (SRR10028579).

LITERATURE CITED

Bączek, K., M. Cygan, J. L. Przybył, O. Kosakowska, and Z. Węglarz. 2012. Seasonal variation of phenolics content in above- and underground organs of dropwort (\textit{Filipendula vulgaris} Moench). \textit{Herba Polonica} 58: 24–32.

Ball, P. W. 1968. \textit{Filipendula}. In T. G. Tutin, V. H. Heywood, N. A. Burges, D. M. Moore, D. H. Valentine, S. M. Walters, and D. A. Webb [eds.], \textit{Flora Europaea}, vol. 2, 6–7. Cambridge University Press, Cambridge, United Kingdom.

Belyaev, A., J. Josefović, M. Jandová, R. Kaládor, K. Krak, and B. Mandák. 2019. Natural history of a satellite DNA family: From the ancestral genome component to species-specific sequences, concerted and non-concerted evolution. \textit{International Journal of Molecular Sciences} 20: 1201.

Bolger, A. M., M. Lohse, and B. Usadel. 2014. Trimmomatic: A flexible trimmer for Illumina sequence data. \textit{Bioinformatics} 30: 2114–2120.

Chakraborty, R., Y. Zhong, L. Jin, and B. Budowle. 1994. Nondetectability of restriction fragments and independence of DNA fragment sizes within and between loci in RFLP typing of DNA. \textit{American Journal of Human Genetics} 55: 391–401.

Faircloth, B. C. 2008. MSATCOMMANDER: Detection of microsatellites repeat arrays and automated, locus-specific primer design. \textit{Molecular Ecology Resources} 8: 92–94.

Keenan, K., P. McGinnity, T. F. Cross, W. W. Crozier, and P. A. Prodolith. 2013. diveRsys: An R package for the estimation and exploration of population genetics parameters and their associated errors. \textit{Methods in Ecology and Evolution} 4: 782–788.

Langmead, B., and S. I. Salzberg. 2012. Fast gapped-read alignment with Bowtie 2. \textit{Nature Methods} 9: 357–359.

Meusel, H., E. J. Jäger, and E. Weinert. 1965. Vergleichende Chorologie der Zentraleuropäische Flora, Vol. 1–3. G. Fischer, Jena, Germany.

Miller, M. P., B. J. Knaus, T. D. Mullins, and S. M. Haig. 2013. SSR_pipeline: A bioinformatic infrastructure for identifying microsatellites from paired-end Illumina high-throughput DNA sequencing data. \textit{Journal of Heredity} 104: 881–885.

Schanzer, I. A. 1994. Taxonomical revision of the genus \textit{Filipendula} Mill. (Rosaceae). \textit{Journal of Japanese Botany} 69: 290–319.

Schanzer, I. A. 2016. Phylogenetic relationships of East Asian endemic species of \textit{Filipendula} (Rosaceae-Rosoideae) as revealed by nrITS markers. \textit{Journal of Japanese Botany} 91: 250–256.

Schuelke, M. 2000. An economic method for the fluorescent labeling of PCR fragments. \textit{Nature Biotechnology} 18: 233–234.

Untergasser, A., I. Gultepe, T. Koressaar, J. Ye, B. C. Faircloth, M. Remm, and S. G. Rozen. 2012. Primer3—New capabilities and interfaces. \textit{Nucleic Acids Research} 40: e115.

van Oosterhout, C., W. F. Hutchinson, D. P. Wills, and P. Shipley. 2004. MICRO-CHECKER: Software for identifying and correcting genotyping errors in microsatellite data. \textit{Molecular Ecology Notes} 4: 535–538.

Weidema, I. R., L. S. Magnussen, and M. Philipp. 2000. Gene flow and mode of pollination in a dry-grassland species, \textit{Filipendula vulgaris} (Rosaceae). \textit{Hereditas} 84: 311–320.

Weir, B. S., and C. C. Cockerham. 1984. Estimating F-statistics for the analysis of population structure. \textit{Evolution} 38: 1358–1370.

**APPENDIX 1. Locality and voucher information for populations of \textit{Filipendula vulgaris}, \textit{F. camtschatica}, \textit{F. ulmaria}, and \textit{G. urbanum}.

Taxon	Population code	Voucher no.	n	Location	Geographic coordinates	Elevation (m)
\textit{Filipendula vulgaris} Moench	pop1	BRNU 665928	20	Czech Republic, Louny	50.4102239°N, 13.8070417°E	476
\textit{Filipendula vulgaris}	pop3	BRNU 667301	20	Poland, Rzeczewice, Wały	50.3832670°N, 20.2331707°E	300
\textit{Filipendula vulgaris}	pop56	BRNU 667336	20	Bosnia and Herzegovina, Banja Luka	44.9034444°N, 17.3384444°E	120
\textit{Filipendula camtschatica} (Pall.) Maxim.	—	BRNU 667333	5	Czech Republic, Stříbrná	50.3781700°N, 12.5473400°E	660
\textit{Filipendula ulmaria} (L.) Maxim.	—	BRNU 667331	5	Czech Republic, Nový Bor	50.7824058°N, 14.5456506°E	470
\textit{Geum urbanum} L.	—	BRNU 667279	5	Czech Republic, Prague–Suchdol	50.1350822°N, 14.3725494°E	300

Note: n = number of individuals sampled.

*Herbarium vouchers are deposited at the herbarium of the Department of Botany and Zoology of Masaryk University, Brno (BRNU).