Fluidoterapia de manutenção em crianças doentes: estado da arte

Maintenance fluid therapy in sick children: state of art

Emannuely Juliani Souza Izidoro¹, Adriana Koliski¹

Resumo

Fluidos intravenosos são frequentemente usados em pediatria, mas estão associados com efeitos adversos significativos. Compreender a composição dos fluidos prescritos e administrá-los nas taxas adequadas é essencial para a prescrição segura. O uso de fluidos isotônicos pode diminuir o risco de hiponatremia com redução da morbimortalidade infantil. A literatura recente demonstra uma maior incidência de desordens do equilíbrio acidobásico e maior risco de lesão renal aguda com as soluções isotônicas, sendo proposto o uso de fluidos balanceados para minimizar tais danos. O objetivo desta revisão não sistemática é verificar as recomendações atuais quanto a administração da fluidoterapia endovenosa, bem como auxiliar no reconhecimento dos efeitos adversos mais comuns da terapia de manutenção e as razões para escolha de diferentes tipos de fluidos. Concluiu-se que a prescrição de fluidos endovenosos deve ser considerada medicamentosa e que seus riscos e efeitos adversos devem ser considerados e continuadamente monitorizados.

Palavras-chave:
Hidratação, efeitos adversos, Estado de Hidratação do Organismo, Criança Hospitalizada.

Keywords:
Child Care, Fluid Therapy, adverse effects, Infusions, Intravenous.

Abstract

Intravenous fluids are frequently used in pediatrics, but they have been associated with significant adverse effects. Understanding the composition of fluids prescribed and administering them at the appropriate infusion rate is essential for a safe prescription. The use of isotonic fluids can reduce the risk of hyponatremia, reducing infant morbidity and mortality as well. However, recent literature shows a higher incidence of acid-base balance disorders and a risk of acute renal injury with isotonic solutions, proposing the use of balanced fluids to minimize these damages. This narrative review aims to verify current recommendations about assessment and management of intravenous fluids in acutely ill child, as well as the recognition of maintenance therapy adverse effects. It was concluded that the intravenous fluids prescription is like the medicines prescription, and their risks must be considered and monitored continuously.

¹ Hospital de Clínicas da Universidade Federal do Paraná, Unidade de Terapia Intensiva Pediátrica, Departamento de Pediatria - Curitiba - Paraná - Brasil.

Endereço para correspondência:
Emannuely Juliani Souza Izidoro.
Hospital de Clínicas da Universidade Federal do Paraná - Departamento de Pediatria. Rua Gen. Carneiro, nº 181, Alto da Glória. Curitiba - PR. Brasil. CEP: 80060-900. E-mail: izidoro.manu@hotmail.com
INTRODUÇÃO

A terapia de fluidos é um dos tópicos mais relevantes no atendimento à criança hospitalizada e sua administração e avaliação são essenciais para obtenção de desfechos positivos. Apesar desta importância, uma em cada cinco crianças desenvolve complicações devido às inadequações da fluidoterapia endovenosa.

A partir do reconhecimento da hiponatremia adquirida no hospital como causa importante de morbimortalidade, o debate sobre tonicidade e volume adequados ganhou relevância na Pediatria. O clássico método de Holliday e Segar, que inclui o uso de solução salina hipotônica em volumes baseados no gasto energético de crianças saudáveis e hidratadas, não considera as necessidades da criança doente ou o potencial para retenção de água livre associada à secreção não osmótica de hormônio antidiurético (ADH) associado a esta condição.

O objetivo deste trabalho é revisar as recomendações atuais quanto à administração da fluidoterapia endovenosa, bem como auxiliar no reconhecimento dos efeitos adversos mais comuns da terapia de manutenção e as razões para escolha de diferentes tipos de fluidos.

MÉTODOS

Trata-se de uma revisão não sistemática sobre fluidoterapia em Pediatria, para a qual foram pesquisadas as bases de dados PubMed, Cochrane Library, Lilacs, Portal de Periódicos da CAPES/MEC e SciELO. As listas de referências dos estudos inicialmente analisados foram consultadas a fim de identificar publicações relevantes adicionais não encontradas na busca eletrônica.

Foram selecionados estudos publicados de janeiro de 2007 a dezembro de 2017, nas bases de dados já relatadas, e estudos clássicos foram incorporados devido à sua relevância científica e para elaboração da perspectiva histórica. Não houve restrição de idioma na busca dos artigos. Os estudos selecionados compreenderam metanálises, revisões sistemáticas, revisões não sistemáticas e ensaios clínicos que abordassem a terapia com fluidos endovenosos em pacientes pediátricos.

Foram identificados 146 documentos científicos associando filtros para limitar a idade das populações em estudo e o período de publicação. Destes, foram excluídos 116 artigos por não trazerem conteúdo ou relevância pertinente ao tema. Constituíram o levantamento bibliográfico 30 documentos científicos.

A HISTÓRIA DA FLUIDOTERAPIA

A primeira injeção intravenosa de fluidos foi realizada em 1656 por Christopher Wren, arquiteto londrino, que introduziu uma cânula revestida por bexiga de porco para infundir vinho, cerveja e ópio nas veias de um cão, cuja intoxicação foi considerada bem-sucedida. Seis anos mais tarde, Johann D. Major, alemão da Universidade de Pádua, injetou um composto não purificado na veia de um homem. O resultado ruim acarretou a interrupção de mais tentativas por muitos anos.

Em 1827, a epidemia de cólera se alastrou pela Índia, Rússia, Inglaterra e Estados Unidos, ceifando milhares de vidas. Inicialmente considerada um distúrbio do sangue e tratada com sangria, apenas em 1831, após os estudos de William Blackfan O'Shaugnessy, é que a desidratação foi reconhecida como fator que levava à morte. Três anos mais tarde, Hermann e Jaehnichen, médicos russos desesperados com a doença, injetaram cerca de 200 ml de água em um paciente que morreu 2 horas mais tarde.

A administração intravenosa de uma solução salina foi descrita pela primeira vez em 1832, pelo britânico Tomas Latta, assistente de O'Shaugnessy. Ele infundiu solução salina alcalinizada em uma adulta com cólera grave, que faleceu 30 minutos depois. Em 1833, fez a primeira infusão salina bem-sucedida em uma mulher de 52 anos que sobreviveu após receber 330 ml de líquido ao longo de 12 horas. Um ano depois, John Mackintosh, médico escocês e estudante de Latta, aconselhou tornar o fluido semelhante ao soro do sangue adicionando albumina obtida a partir de ovo às soluções.

Aproximadamente 40 anos depois, o britânico Sidney Ringer descobriu que carboidratos de animais funcionavam por maior período de tempo quando instilada água mineral ao invés de água destilada. Criou então a solução de Ringer, que continha pequenas quantidades de cálcio e potássio numa solução de sódio e cloreto. Anos depois, o pediatra Alexis Hartmann modificou essa solução adicionando lactato de sódio e chamando-a de Ringer lactato.

Em 1882, a solução salina 0,9% foi desenvolvida pelo fisiologista holandês Hartog Hamburger para uso in vitro em estudos sobre hemólise. Posteriormente, presumiu que essa seria uma solução segura para infusão de inúmeras medicações e hemocomponentes.

A partir de então, restaurar a circulação através da expansão do fluido extracelular tem sido a prioridade da terapia com fluidos. Foi usada pela primeira vez em crianças por Blackfan e Maxcy em 1918, em que soro fisiológico 0,8% foi administrado por via intraperitoneal para nove pacientes com desidratação e todos se recuperaram. Em 1920, Marriott descreveu especificamente como uma solução de lactato de sódio e chamada-a de Ringer lactato.

Sem sombra de dúvidas, o ano mais importante para a Pediatria foi 1957, quando os fundamentos atuais da prescrição de fluidos para crianças foram estabelecidos por Holliday e Segar. Eles estimaram que o gasto energético das crianças hospitalizadas se situava entre a taxa metabólica basal e a despesa calórica associada à atividade normal. Elaboraram uma fórmula simples relacionada ao peso corporal: 100 cal/kg/dia (para pacientes com peso até 10 kg); 1000 cal + 50 cal/kg/dia por kg acima de 10 kg (para crianças pesando de 10 a 20 kg); e 1500 cal + 20 cal/kg/dia por kg acima de 20 kg (para pacientes pesando mais de 20 kg) e estimaram as perdas de água fisiológicas médias descrevendo sua correlação com o
gasto de energia. Postularam que para cada caloria gasta há um mililitro de perda de água insensível e diurese, permitindo prever o gasto energético e a subsequente relação com a perda de água, determinando a quantidade de líquido necessária para o equilíbrio hídrico diário.

As estimativas de Holliday e Segar para aditivos eletrólitos foram rudes e basearam-se simplesmente no teor médio de eletrólitos de leite humano e de vaca, levando à recomendação de adicionar 3 mEq de sódio por 100 calorias gastas. Essas recomendações desenvolvidas há 50 anos foram seguidas até recentemente.

TIPOS DE FLUIDOS

Os diferentes fluidos apresentam particularidades relacionadas à capacidade de expansão volêmica, duração de efeito e impacto sobre a integridade vascular, equilíbrio acidobásico, resposta inflamatória e alterações na homeostase. São geralmente classificados em cristaloides e coloides.

Cristaloides são soluções contendo água, íons livremente permeáveis (principalmente sódio e cloreto) e pequenas moléculas orgânicas. Podem conter outros íons como potássio, cálcio ou magnésio e ter tampões, comumente bicarbonato, lactato, acetato e gluconato, a fim de manter a neutralidade elétrica. São as soluções de primeira escolha para a terapia de manutenção e a solução salina é a mais utilizada no mundo. Coloides são suspensões com proteínas de alto peso molecular em uma solução carreadora. As moléculas são suspensas em um solvente, que geralmente é um cristaloid. A solução salina isotônica é o solvente mais comum utilizado em soluções coloidais. Esses fluidos têm duração relativamente maior e capacidade de expansão intravascular com menores volumes, devido à pressão oncótica mais alta quando comparada aos cristaloides. Por não atravessarem a membrana vascular, teriam supostamente um efeito poupador de volume, com uma proporção de 1:3 em comparação com cristaloides para atingir os mesmos objetivos hemodinâmicos.

A albumina humana em solução salina é o coloide natural de referência. Coloides semissintéticos têm aumentado o risco de doenças agudas, lesão renal e morte, quando comparados, com cristaloides e não são geralmente recomendados.

A TERAPIA DE FLUIDOS E ELETRÓLITOS NAS CRIANÇAS

Além de selecionar o melhor tipo de fluido a ser administrado, reconhecer o volume e a indicação de sua infusão é imprescindível para o sucesso do atendimento à criança.

Embora muitos fatores interfiram no equilíbrio hidroeletrolítico, a abordagem sistemática e organizada pode ajudar no atendimento às necessidades contínuas e específicas de cada paciente. Para tanto, é necessário indicar a terapia de fluidos adequada para cada contexto clínico: correção de déficits, terapia de reposição, terapia de manutenção ou ressuscitação volêmica.

Correção de déficits

A terapia para correção de déficits é definida como o manejo das perdas de fluidos e eletrólitos que ocorreram antes da admissão do paciente. Uma criança apresenta déficits hídricos na gastroenterite com vômito e diarreia, em lesões traumáticas com perda de sangue e na ingestão inadequada de líquidos, por exemplo. O manejo dessas situações é baseado em duas ações principais: estimar a gravidade da desidratação e reparar o déficit.

Primeiro, sinais clínicos de desidratação devem ser considerados (Tabela 3). Um sinal bastante útil é a perda de peso, mas o aumento da sede, as mucosas secas e a diminuição da diurese correlacionam-se bem com o grau de desidratação. Após a observação clínica, o grau de desidratação deve ser determinado (Tabela 4).

Propriedades	Plasma Humano	Solução Salina 0,9%	Solução Hartmann	Ringer Lactato	Plasma Lyte
pH	7,35 - 7,45	5,5	6,5	6,5	7,4
Osmolalidade (mOs/m/L)	291	308	279	273	294
Sódio (mmol/L)	135 - 145	154	131	130	140
Potássio (mmol/L)	4,5 - 5,5	-	5	4	5
Cálcio (mmol/L)	2,2 - 2,6	-	2	1,5	-
Magnésio (mmol/L)	0,8 - 1	-	-	-	1,5
Cloreto (mmol/L)	94 - 111	154	111	109	98
Bicarbonato (mmol/L)	23 - 27	-	-	-	-
Lactato (mmol/L)	1,0 - 2,0	-	29	28	-
Acetato (mmol/L)	-	-	-	-	27
Gluconato (mmol/L)	-	-	-	-	23
Tabela 2. Principais soluções coloides e sua composição (adaptado de Correa, 2015).

Propriedades	Albumina 5%	Albumina 25%	Hidroxietilamido	Dextran	Gelatinas
Peso molecular	69	-	100 - 450	40 - 70	30 - 35
Osmolalidade (mOsml/L)	300	1500	300 - 326	280 - 324	300 - 350
Pressão oncótica (mmHg/L)	19 - 30	74 - 120	23 - 82	20 - 60	25 - 42
Expansão plasmática (%)	70 - 100	200 - 300	100 - 160	100 - 200	70 - 100
Duração da expansão plasmática (h)	< 24	< 24	< 12	< 8	2 - 9
Meia-vida plasmática (h)	16 - 24	16 - 24	2 - 12	2	2 - 9

Tabela 3. Sinais clínicos de desidratação (adaptado de Meyers, 2009).

	Desidratação leve	Desidratação moderada	Desidratação grave
Perda de peso (%)	3 - 5	6 - 9	>10
Nível de consciência	Normal	Normal a confuso	Normal a letárgico
Mucosas	Podem estar normais	Secas	Secas
Fontanela anterior	Normal	Deprimida	Deprimida
Olhos	Normal	Encovados	Muito encovados
Turgor de pele	Normal	Diminuído	Diminuído
Pressão arterial	Normal	Normal	Normal a reduzida
Frequência cardíaca	Normal	Aumentada	Aumentada
Débito urinário	Diminuído	Consideravelmente reduzido	Anúria

Tabela 4. Graus de desidratação em porcentagem aproximada de peso corporal (adaptado de Meyers, 2009).

	Desidratação leve	Desidratação moderada	Desidratação grave
Crianças	3%	6%	9%
Lactentes	5%	10%	15%

Uma vez estabelecido o grau de desidratação, o tipo de desidratação deve ser confirmado através da mensuração da concentração sérica de sódio. A maioria dos pacientes desidratados tem desidratação isotônica. A desidratação com concentração sérica de sódio menor que 135 mmol/L é considerada hipotônica e quando maior que 145 mmol/L é hipertônica, situação que requer maior cuidado pelo risco de complicações durante a reidratação, como edema cerebral1,15.

Pacientes com desidratação leve/moderada podem ser reidratados com terapia oral, mesmo na presença de diarreia e vômito. As soluções de reidratação oral geralmente têm quantidades de hidratos de carbono e eletrólitos adequadas15.

A reidratação endovenosa deve ser direcionada para pacientes graves. Primeiro, restaura-se o volume sanguíneo com líquidos isotônicos, na dose de 20 ml/kg, até a manutenção de perfusão adequada. Na sequência, o volume total da terapia de déficits é determinado pelo grau de desidratação (Tabela 4). Na desidratação hipo ou isotônica oferta-se um terço do volume calculado nas primeiras 8 horas e os dois terços restantes nas 16 horas seguintes. Na desidratação hipertônica as perdas podem ser corrigidas em até 48 horas, pelo risco de edema cerebral e convulsões15.

Terapia de manutenção

Fluidos de manutenção são utilizados para compensar as perdas hídricas contínuas - as sensíveis que incluem o débito urinário e a perda de água fecal e as insensíveis como a respiração e a transpiração - sendo necessários em todos os pacientes. São frequentemente administrados pela via endovenosa, mas também podem ser fornecidos oralmente se o paciente é capaz de tolerá-los.

As características fisiológicas das crianças desempenham papel importante na fluidoterapia e as mudanças que ocorrem durante o crescimento têm um grande efeito sobre a necessidade hídrica. Em relação aos adultos, crianças têm maior taxa metabólica e gasto calórico, o que se traduz em uma exigência de fluidos diretamente proporcional. Em segundo lugar, têm uma superfície corporal muito maior e grande perda de água através da pele, apresentam frequência respiratória mais alta, aumentando as perdas insensíveis. Quanto menor a criança, maior seu consumo hídrico15.

Deve-se frequentemente avaliar a condição do paciente durante a terapia de manutenção. Se a estimativa está correta, os níveis eletrolíticos do paciente devem permanecer estáveis e a criança clinicamente euvolêmica. Níveis anormais...
de eletrólitos ou sinais clínicos de hipervolemia ou hipovolemia indicam a necessidade de reavaliar cada componente do plano básico⁴.

Os fluidos de manutenção não são fornecidos para corrigir alterações no equilíbrio hidroeletrolítico e há uma terapia de fluidos específica para cada condição clínica anômala. Nenhuma solução em particular pode fornecer água e eletrólitos capazes de suprir as necessidades de todas as crianças. As circunstâncias clínicas individuais devem ser consideradas antes de qualquer prescrição e a adequação do fluido parenteral precisa ser regularmente avaliada durante a administração⁹.

Terapia de reposição

A fluidoterapia de reposição é direcionada para restituir carências anormais de líquidos e eletrólitos que ocorrem, por exemplo, em pacientes com drenos, vômitos incoercíveis e diarreia persistente, em que há uma perda contínua de líquidos que não é suprida pela administração dos fluidos de manutenção¹⁰⁻¹².

Os constituintes destas perdas, na maioria dos casos, diferem substancialmente da composição dos fluidos de manutenção (Tabela 5) e simplesmente aumentar o volume do plano básico para compensação do quadro pode ser perigoso. O ideal seria administrar fluidos fisiologicamente semelhantes à perda.

Terapia de ressuscitação volêmica

O transporte limitado de oxigênio associado à hipoperfusão tecidual é o principal fenômeno que desencadeia disfunção orgânica e morte no choque. A terapia de ressuscitação volêmica tem como objetivo reverter ou, pelo menos, minimizar tais danos.

Quando fluidos são infundidos na circulação venosa sistêmica, ampliam o volume do compartimento intravascular e contribuem para o retorno venoso, com consequente aumento do débito cardíaco, aliando-se as disfunções celulares e mitocondriais¹¹⁻¹³. Cada hora de atraso no restabelecimento da pressão arterial e do enchimento capilar está associada ao dobro de mortalidade¹⁶.

Recomenda-se a administração rápida de 20 ml/kg em bolus de solução fisiológica 0,9% ao longo de 5 minutos, seguida de avaliação da melhora da perfusão ou da sobrecarga de líquido - evidenciada por novos ritmos cardíacos, aumento do esforço respiratório, hipoxemia por edema pulmonar e hepATOMEGALIA. Recomenda-se até 60ml/Kg de ressuscitação hipotônica na primeira hora de atendimento ao choque¹⁶,¹⁷.

FLUIDOS HIPOTÔNICOS

Grande parte das milhões de crianças internadas todos os anos recebe alguma forma de infusão intravenosa de fluidos e há uma duradoura tradição na prescrição de soluções hipotônicas para prover água e eletrólitos para esses pacientes.

Devido a mecanismos adaptativos renais, supostamente hábeis em excretar o excesso de água livre e manter o balanço de sódio, a infusão de fluidos hipotônicos foi copiosamente considerada segura para crianças¹⁸. Entretanto, após relatos de casos preocupantes e estudos observacionais que sugeriram um potencial nocivo de encefalopatia hipotônica e mortalidade com o uso destas soluções, a elaboração de revisões e trials foi impulsionada¹⁹.

No início dos anos 2000, Moritz & Ayus²⁰ reportaram mais de 50 casos de crianças que foram a óbito ou sofreram lesão neurológica grave por hiponatremia adquirida no hospital ao compilar 15 estudos prospectivos. Em 2006, Choong et al.²¹, em revisão sistemática, indicaram o perigo potencial do uso de soluções hipotônicas em crianças. Concluíram que tais fluidos exacerbavam os riscos de hiponatremia, enquanto soluções isotônicas podiam ser protetoras. Neste estudo, nenhum volume ou composição se mostrou ideal para uso na infância, ainda que os fluidos isotônicos, por serem mais fisiológicos, deveriam ser escolhidos na fase aguda das doenças e no perioperatório.

Um ano depois, Yung & Keeley²² publicaram um estudo randomizado e duplo-cego, no qual 50 crianças com eletrólitos normais na admissão e que precisaram de fluidos de manutenção por mais de 12 horas foram randomizadas para receber solução salina a 0,9% ou a 0,18%, em taxa de infusão tradicional ou com 60% desta. Entre as crianças normonatrêmicas, o fluido hipotônico reduziu a concentração de sódio em 2,3 mmol/L e a salina isotônica aumentou o sódio em 0,8 mmol/L.

No mesmo ano, realizou-se uma revisão sistemática comparando fluidos de manutenção intravenosos hipotônicos e isotônicos em crianças hospitalizadas. Todos os estudos incluídos foram observacionais e globalmente inconclusivos. Os autores alertaram contra o uso rotineiro de fluidos de manutenção hipotônicos, mas a administração destes nem sempre explicava o desenvolvimento da hiponatremia²³.

Na tentativa de esclarecer esses achados, Montañana et al.²⁴ randomizaram 122 pacientes pediátricos hospitalizados em unidade de terapia intensiva, que necessitavam de fluidos de manutenção, para receber soluções isotônicas ou hipotônicas. Após 24 horas de infusão, a percentagem de hiponatremia no grupo hipotônico foi de 20,6%, contra 5,1% no grupo isotônico.

Tabela 5. Fluidos corporais e sua composição (adaptado de Snyder, 2017).

Fluido	Sódio (mEq/L)	Potássio (mEq/L)	Cloreto (mEq/L)	Bicarbonato (mEq/L)
Gástrico	70	5 – 15	120	0
Pancreático	140	5	50 – 100	100
Bilioso	130	5	100	40
Ileostomia	130	15 – 20	120	25 – 30
Diarréia	50	35	40	50

Residência Pediátrica 2019;9(3):347-354.
Estudo subsequente, randomizado com 124 crianças, comparou o uso de solução salina a 0,9% e a 0,45% em taxas de infusão de 100% e 50% do habitual e apontou que o risco de hiperonatremia foi reduzido com o uso de salina isotônica, mas não com restrição de fluidos.

O risco de hiperonatremia e de eventos adversos graves associados aos fluidos hipotônicos, principalmente em unidades de terapia intensiva, continuou a ser explorado em trials randomizados e duplos cegos publicados recentemente e não houve controvérsia entre as publicações.

Existem evidências suficientes que sustentam a prevenção da hiperonatremia através do uso de fluidos isotônicos. A disponibilidade de soluções com baixo teor de sódio deveria ser limitada a unidades de cuidados intensivos, enfermarias especializadas e em um número limitado de cenários em que há necessidade de administrar água livre extra. Essa mudança nos padrões da fluidoterapia pediátrica pode salvar vidas em potencial e reduzir morbidade de forma significativa.

FLUIDOS ISOTÔNICOS

As evidências acumuladas nas últimas décadas desafiaram, portanto, a abordagem sexagenária de prescrição de fluidos e as soluções isotônicas assumiram papel essencial na prescrição pediátrica. Entretanto, apesar dos avanços significativos, a fluidoterapia persistiu fundamentada na fisiologia de crianças saudáveis, superestimando as necessidades diárias das doentes, que, além de metabolismo e gasto calórico reduzidos, produzem estímulos não osmóticos para a liberação de ADH, prejudicando sua capacidade renal de excreção de água livre.

Crianças são habitualmente capazes de concentrar urina em qualquer valor entre 50 e 700 mOsmol/kg e nenhum dos fluidos comumente utilizados deveria perturbar essa capacidade de ajuste. Porém, nem todas são absolutamente flexíveis e adaptáveis, tanto por defeitos inerentes à função renal, quanto pela ocorrência de doença aguda.

Em situações de estresse há aumento na secreção de adrenalina, cortisol e ADH. O último é o principal controlador do equilíbrio da água corporal e causa retenção de água por aumento da reabsorção renal. Habitualmente, sua secreção está regulada por estímulos hemodinâmicos e osmóticos, em que tanto hipovolemia quanto aumento da osmolaridade plasmática aumentam a produção. Entretanto, uma infinidade de estímulos não osmóticos desencadeia sua secreção e praticamente todos os pacientes hospitalizados têm potencial estímulo para excesso de ADH e consequente risco de hiperonatremia.

Além da atuação do ADH na gênese de hiperonatremia, a expansão do volume intravascular com soluções isotônicas desencadeia uma “dessalinização” secundária, formando urina hipertônica pela eliminação desproporcional de sódio e potássio em relação à água. A água livre de eletrólitos, formada assim em excesso, não é excretada devido à liberação não osmótica do hormônio, resultando em hiperonatremia que, apesar da ocorrência substancialmente menor quando comparada ao uso de soluções hipotônicas, incide em 1,7 a 16% dos pacientes em fluidoterapia isotônica.

A fisiopatologia desse processo não foi integralmente elucidada, provavelmente seja multifatorial e relacionada aos volumes de infusão de solução salina, combinada ao excedente de ADH e à supressão de aldosterona.

O uso de solução salina 0,9% como fluido de manutenção aumenta em duas a três vezes o aporte diário de sódio em relação ao regime tradicional. Apesar disso, além da capacidade de produzir urina concentrada, o organismo possui o poderoso mecanismo da sede. Se este aparato estiver intacto e houver acesso irrestrito à água livre, é raro o desenvolvimento de hiperonatremia e a salina 0,9% pode ser administrada com segurança, sem efeitos adversos relevantes. O volume de fluido inadequado, e não a concentração de sódio, é que determina o desenvolvimento de hiperonatremia e a percentagem de hiperonatremia não é diferente entre pacientes que recebem fluidos hipo ou isotônicos.

EFEITOS ADVERSOS DA SOLUÇÃO SALINA 0,9%

A salina 0,9% é considerada isotónica pela osmolaridade próxima à do plasma e contém concentrações de sódio e cloreto de 154 mEq/L. A concentração de sódio é virtualmente a mesma do plasma humano, mas a de cloreto é suprafisiológica, sendo até 1,5 vezes maior que o normal (154 mmol/L versus 95 – 105 mmol/L). Por isso, considera-se a solução salina “não balanceada”. Essa característica determina seu perfil de risco e pode desencadear acidose metabólica hiperclorêmica.

O cloreto é o principal ânion do corpo e representa 70% do total de ions negativos circulantes. Depois do sódio, é o eletrólito sérico mais abundante, com papel essencial na manutenção de pressão osmótica, balanço acidobásico, atividade muscular e movimento de água entre diferentes compartimentos. A hipercloremia desencadeia danos ao glicocálice endotelial, levando ao aumento da permeabilidade capilar e consequente ocorrência de derrame pleural, renal, miocárdico e disfunção orgânica.

A redução do pH, por sua vez, afeta uma variedade de mecanismos vasorregulatórios e há aumento da liberação de catecolaminas que induzem a produção de citocinas tanto pró quanto anti-inflamatórias. Há comprometimento da microvasculatura, da função renal, da coagulação e da resposta imunológica.
Ambas, acidose e hiperclorémia estão associadas à vasoconstrição renal, hipoperfusão, edema intersticial e hiper-tensão intracapsular, diminuindo a taxa de filtração glomerular. O aumento da concentração de cloro na macula densa também leva à redução na produção de renina, produzindo hipoaldosteronismo hiporreninêmico, causa mais comum de acidose tubular renal tipo IV. O aumento do fornecimento de cloro às células da macula densa também desencadeia a liberação de adenosina para a circulação, com constrição da arteriola aferente, comprometendo o fluxo sanguíneo, a taxa de filtração glomerular e a função renal.

A hiperclorémia também causa acidose indiretamente devido à sua relação estequiométrica com o bicarbonato. Qualquer mudança na concentração sérica de cloro desencadeia redistribuição de fluidos para restaurar a quantidade normal de água e eletrólitos no corpo. Para que isso ocorra, cloro e bicarbonato devem transitar entre interior e exterior dos eritrócitos e dos túbulos renais para manter a eletroneutralidade. Todo aumento sérico de cloro desencadeia redução de bicarbonato, aumentando a carga positiva do plasma e potencializando a acidose.

Apenas destas consequências deletérias estarem associadas principalmente à infusão rápida ou de grandes volumes, a hiperclorémia contribui para disfunção renal, insuficiência renal aguda e mortalidade independentemente do volume total de fluido recebido. A acidose metabólica hiperclorêmica pela fluidoterapia tem alta incidência, é pouco reconhecida e geralmente tratada de forma ineficaz.

Ainda não há dados suficientes para afirmar que a salina 0,9% não é segura quando usada como fluido de manutenção. Mas, apesar da inconsistência dos resultados apresentados até o momento, é notável que nenhum estudo mostre benefício à do plasma, são recomendadas para uso na maioria das circunstâncias desidratadas, uma taxa de infusão menor que a preconizada por Holliday e Segar deve ser considerada, principalmente nas crianças. Há grande número de fluidos para uso rotineiro, mas as soluções isotônicas balanceadas, com menor concentração de cloro, parecem ser as mais apropriadas. Em crianças não desidratadas, uma taxa de infusão menor que a preconizada por Holliday e Segar deve ser considerada, principalmente naquelas em risco de secreção inapropriada do hormônio antidiurético.

A prescrição de fluidos endovenosos deve ser considerada medicamentosa e, de forma similar, com riscos e efeitos adversos inerentes ao uso indiscriminado. A monitoração contínua dos pacientes em fluidoterapia, associada à adequação da prescrição à condição clínica individual, é primordial para a segurança e a efetividade da fluidoterapia em pediatria.

Referências

1. Snyder LC, Robert KM. Fluid Management for the Pediatric Surgical Patient. MedScape [Internet]. 2017. [acesso 2017 Abr 4]. Disponível em: http://emedicine.medscape.com/article/936511-overview
2. National Institute for Health and Care Excellence: Clinical Guidelines. IV Fluids in Children: Intravenous Fluid Therapy in Children and Young People in Hospital. London: National Institute for Health and Care Excellence; 2015.

3. Hariyanto H, Yahya CQ, Widiastuti M, Wibowo P, Tampubolon OE. Fluids and sepsis: changing the paradigm of fluid therapy: a case report. J Med Case Rep. 2017;11(1):30.

4. Neville KA, Sandeman DJ, Rubstein A, Henry GM, McGlyn M, Walker JL. Prevention of hyponatremia during maintenance intravenous fluid administration: a prospective randomized study of fluid type versus fluid rate. J Pediatr. 2010;156(2):313-9.e1-2.

5. Barsoun N, Kleemann C. Now and then, the history of parenteral fluid administration. Am J Nephrol. 2002;22(2-3):284-9.

6. Cosnett JE. The origins of intravenous fluid therapy. Lancet. 1989;1(8641):768-71.

7. Holliday MA, Ray PE, Friedman AL. Fluid therapy for children: facts, fashions and questions. Arch Dis Child. 2007;92(6):546-50.

8. Keijzers G, Mcgrath M, Bell C. Survey of paediatric intravenous fluid prescription: are we safe in what we know and what we do? Emerg Med Australas. 2012;24(1):86-97.

9. Cawari Y, Pitfield AF, Kissoon N. Intravenous maintenance fluids revisited. Pediatr Emerg Care. 2013;29(11):1225-8.

10. Holliday MA, Segar WE. The maintenance need for water in parenteral fluid therapy. Pediatrics. 1957;19(5):823-32.

11. Corrêa TD, Rocha LL, Pessoa CM, Silva E, de Assunção MS. Fluid therapy for septic shock resuscitation: which fluid should be used? Einstein (Sao Paulo). 2015;13(3):462-8.

12. Corrêa TD, Cavalcanti AB, Assunção MS. Balanced crystalloids for septic shock resuscitation. Rev Bras Ter Intensiva. 2016;28(4):463-71.

13. Long E, Duke T. Fluid resuscitation therapy for paediatric sepsis. J Paediatr Child Health. 2016;52(2):141-6.

14. Myburgh JA, Mythen MG. Resuscitation fluids. N Engl J Med. 2013;369(25):2462-3.

15. Meyers RS. Pediatric fluid and electrolyte therapy. J Pediatr Pharmacol Ther. 2009;14(4):204-11.

16. Somers MJ; Mottoo TK, Kim MS, eds. Maintenance fluid therapy in children. UpToDate. 2017. [acesso 2017 Abr 11]. Disponível em: https://www.uptodate.com/contents/maintenance-intravenous-fluid-therapy-in-children

17. Akech S, Ledermann H, Maitland K. Choice of fluids for resuscitation in children with severe infection and shock: systematic review. BMJ. 2010;341:c4416.

18. Mcnab S, Duke T, South M, Babi F, Lee KJ, Arnup SJ, et al. 140 mmol/L of sodium versus 77 mmol/L of sodium in maintenance intravenous fluid therapy for children in hospital (PIMS): a randomised controlled double-blind trial. Lancet. 2015;385(9974):1190-7.

19. Choong K, Mcnab S. IV fluid choices in children: have we found the solution? J Pediatr (Rio J). 2015;91(5):407-9.

20. Moritz ML, Ayus JC. Preventing neurological complications from dysnatremias in children. Pediatr Nephrol. 2005;20(12):1687-700.

21. Choong K, Kho ME, Menon K, Bohn D. Hypotonic versus isotonic saline in hospitalised children: a systematic review. Arch Dis Child. 2006;91(10):828-35.

22. Yung M, Keeley S. Randomised controlled trial of intravenous maintenance fluids. J Paediatr Child Health. 2009;45(1-2):9-14.

23. Beck CE. Hypotonic versus isotonic maintenance intravenous fluid therapy in hospitalized children: a systematic review. Clin Pediatr (Philta). 2007;46(9):764-70.

24. Montañana PA, Modesto i Alapont V, Ocón AP, López PO, López Prats JL, Toledo Parreño JD. The use of isotonic fluid as maintenance therapy prevents iatrogenic hyponatremia in pediatrics: a randomized, controlled open study. Pediatr Crit Care Med. 2008;9(6):589-97.

25. Narsaria P, Lodha R. Isn’t it time to stop using 0.18% saline in dextrose solutions for intravenous maintenance fluid therapy in children? Indian Pediatr. 2014;51(12):964-6.

26. Drage JM, Ingvaldsen B, Dorph E, Bentsen G. New guidelines for intravenous fluid therapy for children. Tidsskr Nor Laegeforen. 2013;133(21):2235-6.

27. Coulthard MG. Will changing maintenance intravenous fluid from 0.18% to 0.45% saline do more harm than good? Arch Dis Child. 2008;93(4):335-40.

28. Alves JT, Troster EJ, Oliveira CA. Isotonic saline solution as maintenance intravenous fluid therapy to prevent acquired hyponatremia in hospitalized children. J Pediatr (Rio J). 2011;87(6):478-86.

29. Toledo JD, Morell C, Vento M. Intravenous isotonic fluids induced a positive trend in natraemia in children admitted to a general paediatric ward. Acta Paediatr. 2016;105(6):e263-8.

30. Berend K, van Hulstjin LH, Gans RO. Chloride: the queen of electrolytes? Eur J Intern Med. 2012;23(3):203-11.