Pseudo Elastic and Self-healing Cyclic Properties of Smart NiTi Shape Memory Alloy for Seismic Mitigation

Nubailah Abd Hamid¹, Azmi Ibrahim¹, Azlan Adnan², Muhammad Hussain Ismail³
¹Faculty of Civil Engineering, Universiti Teknologi Mara, 40450 Shah Alam, Malaysia
²Faculty of Civil Engineering, 81310 Skudai Universiti Teknologi Malaysia
³Faculty of Mechanical Engineering, Universiti Teknologi Mara, 40450 Shah Alam, Malaysia

Abstract. This research highlights the novel properties of pseudo-elastic Ni-Ti bar owing to their ability to reverse macroscopically inelastic deformation during earthquake known as recentering capability and large elastic strain capacity which originated from the reversible austenite to martensite phase transformation. Hence, this paper presented and evaluates the cyclic properties of pseudo elastic Ni–Ti shape memory alloys to assess their prospective use for seismic applications to be exploited as seismic resistant design and retrofit. In addition, the correlation of hysteretic behavior of Ni-Ti alloy in terms of cyclic loading number and history, mechanical properties at ambient temperature, equivalent damping, energy dissipation and recovery stress were evaluated. The NiTi bar with weight percentage of Ti-43.98 at. % Ni 56.02 and diameter of 12mm. The tensile cyclic test obtained demonstrated a rounded loading curve based on a 0.2% offset. The NiTi bar exhibited superior pseudo-elastic behaviour and recentering through repeated cycling without significant degradation or permanent deformation but low energy dissipation due to narrow hysteresis while the steel rebar shows vice versa. Experimental results show potential for the use of SMAs in seismic applications and provide areas for continued research. It was concluded that the as-received pseudo elastic Ni-Ti bar is suitable use for seismic mitigation despite of their ability to undergo cyclical strains is 6% which is greater than 5%, with minimal residual strain, 0.01% which is less than 1%.

1. Introduction
Shape memory alloys is one of the promising emerge as functional metallic materials due to its unique atomic bonding which causes significant changes in mechanical properties and crystallographic forms associated with the crystallographically reversible nature of the martensitic transformation or pseudoeelastic property known as shape memory effect (SME) or pseudo-elasticity (PE)[1]. The superelasticity refers to the phenomenon that SMAs can undergo a large amount of inelastic deformations and recovers their shapes after unloading [1-2]. The discoveries of pseudo elastic alloy present new challenges and opportunities for structural engineers which is growing significantly, with wide range of applications, particularly in civil engineering application.

Pseudo-elastic SMA has exhibited energy dissipation capabilities, large elastic strain capacity, hysteretic damping, excellent high or low-cycle fatigue resistance, re-centering capabilities and
excellent corrosion resistance [1] which promise a great impending for seismic resistant design and retrofit applications. For civil engineering applications, pseudo-elastic Ni-Ti alloy possess superior mechanical properties in term of Young’s modulus, yield strength, ultimate tensile strength, elongation at failure, recovery strain and recovery stress at austenite and martensite phase [2] and the most suited for use in the design of building, bridge structures and use as energy dissipating damper element subjected to earthquake loading conditions [3] and [4].

In order to evaluate the pseudo elastic SMA for structural application, many researchers tested mechanical behaviours of SMA wires in tension. The test results exhibit a promising of SMA for application in civil engineering due to their ability to spontaneously recover strain of up to 8%. It is found that temperature, strain amplitude, loading rate and cyclic loading had influence on the mechanical behaviours of SMA [5]. Mechanical behaviour of Shape Memory Alloys for seismic applications for Martensite and Austenite Ni-Ti bars subjected to torsion and Austenite Ni-Ti wires subjected to tension were experimentally evaluated by [2] and [6] respectively. Dolce and Cordone (2001) demonstrate that superelastic wire is suitable for seismic application despite of their recentring and energy dissipation. The diameter is 1.84 mm of austenitic wire by taking into account their sensitivity to temperature and strain rate with alloy composition of (Ni–Ti–[Nb] about 50 at% Ni). Experimental work by [7] revealed that Ni-Ti wires have better energy dissipation characteristics than bars. Furthermore McCormick et al [8] discovered that the equivalent viscous and recentring capability decreases with increasing of bar size. [7], [9] and [10] distinguished the properties of pseudo elastic Ni-Ti bar and wire subjected to cyclic loading to assess their potential for applications in seismic resistant design and retrofit. It demonstrates that recentring properties can be negligible due to nearly ideal pseudo elastic obtained for bars and wire. However, the strength and damping properties of wire is higher than bar but equivalent damping decreases when loading rates increased. [11] describes experiments on the radial compression of super elastic wires and tubes between flat loading surfaces.

The shape memory effect and super-elasticity phenomena of the Ni-Ti alloy are influenced by the alloy’s chemical composition, the annealing temperature and the history of its mechanical deformation [12]. Tyber et al [10] confirmed that heat treatment influence the transformation temperatures and hardness but not bar diameter. Futhermore, the pseudo-elastic alloy can be heat treated to produce super elastic response at room temperature [13] but, extreme temperature conditions can completely eliminate the shape memory or pseudo-elastic effects within a specimen [1]. Effect of annealing on the transformation behavior and superelasticity of Ni-Ti shape memory alloy were studied by [14] for 1mm superelastic wire. Nevertheless, little research has been conducted for heat treated of pseudo-elastic wire lesser than 1mm.

Furthermore, no attention from the previous research is devoted to explicitly investigate of NiTi bar phase transformation changes on the number of cycles, recovery stress, residual strain, energy dissipation and energy viscous damping in comparison with mild steel rebar. Therefore, this study emphasized on the mechanical behavior of Ni-Ti alloy (Af -6.3) and steel with diameter of 12mm respectively in terms of fatigue resistant in cyclic loading, mechanical properties at ambient temperature, and the number of cycle, loading history, equivalent damping, energy dissipation and stress recovery were investigated experimentally. An attempt is made to correlate findings obtained from the NiTi and steel bar results from the tensile and tensile cyclic test at room temperature.
2. Stress-strain curve of pseudo elastic Shape Memory Alloy

The material behaviour of SMA effect can be characterised base on the stress strain temperature diagram [3]. The metallurgical basis of any of these effects is the reversible phase transformation from the high temperature phase, austenite into low temperature phase martensite. In the absence of heating or cooling, the SMA is at ambient temperature. Below Mf, the material is fully martensitic. The material is showing pseudoplastic deformation behaviour and is able to undergo large pseudoplastic deformation of up to 8% [5]. Between Af and Md the material is in the austenite phase where pseudoelastic (superelastic) occurs. The yield stress of the austenite state in SMA is higher than in martensite state [5]. Figure 1 shows the properties of stress-strain properties of austenitic and martensitic shape memory alloys. Both plots depict one cycle from zero load to a specific strain and back to zero load. These phase transformations refer to spontaneous shifts between martensitic and austenitic crystal forms. Conceptual pseudoelastic stress-strain curve depicting those properties important for structural applications.

Pseudo-elastic also called as super elasticity, which occurs when the load applied, is sufficient to change the austenite phase transformation into martensite phase whereby it happens when the alloy is above the martensite temperature.

Figure 1. Schematic stress–strain curve of super elastic Shape Memory Alloy showing the phenomena associated with the deformation process

Figure 2. Schematic stress–strain curve the of superelastic NiTi

Phenomena associated with the deformation process are shown Fig.1 and Fig.2. Fig. 1 points out the key properties, which are important for the introduction of NiTi into structural applications: forward transformation stress, σAf; reverse transformation stress, σMf; initial elastic modulus, Ei; residual strain, εR; and the equivalent viscous damping, ζeq. The forward transformation stress refers to the stress at which the martensitic phase transformation initiates. The characteristics of a shape memory alloy can be denoted as As = austenite start, Af = Austenite finish, Ms = Martensite start and Mf = Martensite finish. While Fig 2 shows the schematic stress-strain curve of the superelastic Shape Memory Alloy in comparison with mild steel rebar.

3. Experimental procedures

This study involved two sets of austenitic NiTi bars of 12mm diameter provided by a commercial supplier with a Ni-rich composition of Ti-43.98 at. %Ni 56.02 as tabulated in the table 1 to prevent any influence from composition differences.
Table 1. Nominal composition ratio (wt%) for NiTi bar

Element	Nickel (wt%)	Titanium (wt%)	Oxygen	Carbon
Nominal ratio	56.02%	43.98%	0.045	0.041

Tensile cyclic tests were performed using Instron Universal Testing apparatus model 600DX equipped with a data acquisition system as depicted in Fig 3. The preparation of the specimens complies with the ASTMF2004-05 standard and were reshaped as shown in the Fig 4. The SMA bar were 200 mm long and the gage length was 50 mm for each specimen respectively. The bars were grip with flat wedges fixtures as demonstrated in Fig 4(a) and 5(a). Extensometer used was 25mm. The above mentioned loading protocol was input using Blue hill 3 software which use strain output to control the movement of the actuator. The specimens were loaded and unloaded with the loading rate of 0.025 mm/min and in compliance to ASTM F2516-07 (Standard Test Method for Tension Testing of Nickel-Titanium Super elastic Materials 2007). The data were automatically stores in the computer for every 1 second interval. The data were then extracted and analyzed.

Equation for Equivalent viscous damping for half cycle, \(\zeta_{eq} \):

\[
\zeta_{eq} = \frac{1}{\pi} \frac{A_{half \ cycle}}{\sigma_{max} x \varepsilon_{max}} \quad \zeta_{eq} = \frac{1}{\pi} \frac{A_{half \ cycle}}{\sigma_{max} x \varepsilon_{max}} \text{ where } A_{half \ cycle} \text{ stands for the energy dissipated within a half cycle, } \sigma_{m} \text{ and } \varepsilon_{m} \text{ are respectively the maximum of the stress and strain. Figure 7 shows the computation of the equivalent viscous damping ratio for half cycle.}

Residual strain, \(\varepsilon_R \):

It can be define as the recovery capacity as the maximum recoverable strain measurement for the material to return to its original undeformed shape upon unloading.
(3) The secant stiffness, $E = \frac{\sigma_{\text{max}} - \sigma_{\text{min}}}{\varepsilon_{\text{max}} - \varepsilon_{\text{min}}}$

where σ_{max} and σ_{min} are, respectively, the maximum and minimum stress and ε_{max} and ε_{min} are, respectively, the maximum and minimum deformation.

4.1 Stress-strain diagram
The stress–strain responses of the as-received steel and NiTi bar were illustrated in Figure 6(a) and 6(b) and demonstrated that a rounded loading curve with 14 numbers of cycle for steel rebar and 16 number of cycle for NiTi respectively. The yield point was offset base on 0.2 % forward transformation stress. As the result, for NiTi rebar obtained is suitable for seismic application despite of the number of cycle is within the range 5-15 N as mentioned in the previous paper by (Debroches 2013).
Figure 8(a) shows the stress-strain curve of mild steel rebar while cyclic stress-strain curve in Figure 8(b). The mild steel sample was subjected to approximately 14\% corresponding with 94.240\% strain recovery capacity. Mild steel rebar was subjected to a comparable strain of 2.6\% during the last loading cycle. The resulting permanent strain was approximately 2.5\%, representing a strain recovery of 3.99.

In order to evaluate the mechanical properties for seismic application the stress-strain curve for mild steel rebar and NiTi rebar subjected to quasi static loading were distinguished from the residual strain for 14 cycles of mild steel rebar and 16 cycles of NiTi rebar. From the curves, it is clear at glance that the stress-strain behaviour and cyclic properties for pseudo elastic NiTi is depend on their materials properties, strain rate and the loading applied. It is found that the reverse transformation occurs at the higher loading rates but lower stress level at the higher loading rates. As a result, the hysteresis loop for the NiTi rebar is increasing. Thus, the stress–strain curve plateau and the ultimate strain increased significantly for NiTi. It was observed for all the loading cycles in Figure 9(a) and Figure 9(b) that the specimen exhibit superior super elastic with narrow hysteresis and able to recover from plastic deformation until 7\(^{th}\) cycle in austenitic condition and martensitic condition from 8\(^{th}\) to 15\(^{th}\) cycle before it fails at 16\(^{th}\) cycle. The residual strain for NiTi bar during the final loading on stress induced martensitic finish is 6.0\%, while residual strain (ε\(_R\)) was 0.01\% corresponding with 99.82\% strain recovery capacity.

The mechanical quantities of SMA NiTi bar as a function of a cyclic number to portray residual strain, energy dissipation, and elastic modulus or secant stiffness. With the increasing of the cyclic number, the energy dissipation increasing for the specimen and decreasing of residual strain after 7\(^{th}\) cycle. The residual strain for mild steel rebar displays a steep decrease after 1\% of strain cycle and subsequently for the next 2\% cyclic strain it tends to return to its original residual strain before gradually decreasing until the end of cyclic strain.

From these curves, the super elastic property of NiTi rebar could be clearly observed for all the loading cycles, where the specimens were gradually increased showing that the NiTi rebar were able to recover from plastic deformation and the recentering capability is greater than the mild steel rebar. Table 2 and Figure 10 shows the comparison of the energy dissipation for mild steel rebar and NiTi bar. Both diameter are 12mm. The NiTi rebar shows in the graph representing narrow hysteresis indicates less energy dissipation but higher recentering capacity whereby is potentially to be exploited as self-healing for self-crack repair in concrete with pseudo elastic properties for seismic mitigation. In comparison, the large area of stress-strain curve hysteresis of mild steel rebar contributes to higher energy dissipation and stress plateau until 569.4 MPa.
However, the maximum strain it can reach only 2.6% of strain before it fail showing that mild steel rebar has lower fatigue resistant as compared to NiTi rebar.

Table 2. Comparison of Energy Dissipation vs cycle for NiTi 12mm and the mild steel rebar

Cycle	Steel rebar (12 mm)	NiTi bar af -6.3 (12mm)
1	2.0508	2.3343
2	11.9971	6.9378
3	29.6077	16.4310
4	76.9511	29.2376
5	223.4750	62.4082
6	587.325	269.3263
7	1.2268e+03	612.9874
8	1.9684e+03	948.6881
9	2.5727e+03	1.2125e+03

Figure 10. Energy Dissipation vs cycle for NiTi 12mm and the mild steel rebar

5. Conclusion

The following conclusion are drawn based on the results from the experimental presented in this study:

1. The tensile cyclic test obtained demonstrated a rounded loading curve based on a 0.2% offset. NiTi bar exhibited superior pseudo-elastic behaviour with narrow hysteresis through repeated cycling without significant degradation or permanent deformation and in a good agreement with their recentering capability but, decreasing in energy dissipation.
2. The mechanical response of particularly corresponding with the values of stress plateau of NiTi bar increased with the increasing of loading rate. This is due to the formation of martensitic phase upon loading. As a consequence, forward and reverse phase transformations are effected differently as the function of loading, which contribute to wider hysteresis loops and subsequently higher energy dissipation but reduction in recentering capability.

3. The as-received pseudo-elastic Ni-Ti bar is suitable for the earthquake engineering despite of their ability to undergo cyclical strains is 6%, with minimal residual strain, 0.01% which is less than 1%. Therefore, it can significant to be utilising as bracing elements in buildings, and as restraining elements in bridges. However, despite of corresponding values of equivalent viscous damping are too low for pseudo elastic austenitic SMA wire, the heat-treated wire in the martensitic form could be initiative added because of their wider hysteresis loops can contribute to higher energy viscous damping. Therefore the performance of SMA pseudo elastic bar can be optimize using a hybrid of both austenitic and martensitic form to obtained the recentering and high damping.

6. Notation
The following symbols are used in this paper:

- A_f = austenite finish temperature
- A_s = austenite start temperature
- E_i = initial modulus of elasticity
- M_d = maximum temperature at which martensite occurs
- M_s = martensite start temperature
- ε_R = residual strain
- ζ_{eq} = equivalent viscous damping ratio residual strain
- σ_L = loading plateau stress
- σ_{UL} = Unloading plateau stress.

Acknowledgment
The authors of this work would like to express their sincere gratitude to Universiti Teknologi MARA (UiTM), Universiti Teknologi Malaysia (UTM), KPM and FRGS grant for facilitating the research grant and facilities.

References

[1] R. DesRoches and B. Smith, “Shape Memory Alloy In Seismic Resistant Design and Retrofit: A critical Review of Their Potential and Limitations,” *J. Earthq. Eng.*, vol. 8, no. 3, pp. 415–429, 2004.

[2] M. Dolce and D. Cardone, “Mechanical behaviour of shape memory alloys for seismic applications 2. Austenite NiTi wires subjected to tension,” vol. 43, pp. 2657–2677, 2001.

[3] C. M. Vemury and S. Renfrey, “Small Diameter Nitinol wires,” vol. 4, no. 5, pp. 280–284, 2013.

[4] H. Tamai and Y. Kitagawa, “Pseudoelastic behavior of shape memory alloy wire and its application to seismic resistance member for building,” *Comput. Mater. Sci.*, vol. 25, no. 1–2, pp. 218–227, Sep. 2002.

[5] H. J. Zhou, H. F. Liu, and H. H. Huang, “Mechanical Behavior of Super-Elastic Home-Made NiTi Shape Memory Alloy Bar in Tension,” *Adv. Mater. Res.*, vol. 671–674, pp. 1817–1820, 2013.

[6] M. Dolce and D. Cardone, “Mechanical behaviour of shape memory alloys for seismic applications 1. Martensite and austenite NiTi bars subjected to torsion,” vol. 43, pp. 2631–2656, 2001.

[7] R. DesRoches, J. McCormick, and M. Delemon, “Cyclic Properties of Superalastic Shape Memory Alloy Wires and Bars,” *J. Struct. Eng.*, vol. 130, no. 1, pp. 38–46, Jan. 2004.
[8] J. P. McCormick, “Cyclic Behaviour of Shape Memory Alloys: Material Characterization and Optimization Jason P. McCormick,” no. May, 2006.

[9] J. P. McCormick, “Cyclic Behaviour of Shape Memory Alloys: Material Characterization and Optimization,” no. May, 2006.

[10] J. McCormick et al., “Structural Engineering with NiTi. II: Mechanical Behavior and Scaling,” no. September, pp. 1019–1029, 2007.

[11] E. I. Rivin, G. Saylor, and P. R. Singh Johal, “‘Giant Superelasticity Effect’ in Superelastic Materials and Its Applications,” J. Mater. Civ. Eng., vol. 18, no. 6, pp. 851–857, 2006.

[12] H. Sadiq, M. B. Wong, R. Al-Mahaidi, and X. L. Zhao, “The effects of heat treatment on the recovery stresses of shape memory alloys,” Smart Mater. Struct., vol. 19, no. 3, p. 35021, Mar. 2010.

[13] A. Abdulridha, D. Palermo, S. Foo, and F. J. Vecchio, “Behavior and modeling of superelastic shape memory alloy reinforced concrete beams,” Eng. Struct., vol. 49, pp. 893–904, Apr. 2013.

[14] X. Huang and Y. Liu, “Effect of annealing on the transformation behavior and superelasticity of NiTi shape memory alloy,” vol. 45, pp. 153–160, 2001.

[15] Masound Motavalli, Cristoph Czaderski, Andrea Bergamini (2009). Shape Memory Alloys for Civil Engineering Structures – On the Way From Vision to Reality. ACEE Journal :81-94

[16] E.G Richards, R.M Cook (1997). Factors Influencing The Stability of Nickel – Base High Temperature Alloys tns.org (1-24)