Evaluation of the Receptor Activator of Nuclear Factor Kappa B Ligand (RANKL) Expression in Osteosarcoma and Its Association with the Clinicopathological Data

Hui Heng Chua¹,², Sharifah Emilia Tuan Sharif³,⁴*, Wan Faisham Nu’man Wan Ismail³,², Muhamad Syahrul Fitri Zawawi¹,³, Sarimah Abdullah²,⁴

Abstract

Background: The receptor activator of nuclear factor kappa B ligand (RANKL) is one of the key regulators of bone remodelling in bone oncology, including osteosarcoma. We assessed RANKL immunohistochemical expression in osteosarcoma, its association, and disease-free survival with the patients’ clinicopathological characteristics. Methods: One hundred osteosarcoma cases from 2003 to 2018 in Hospital Universiti Sains Malaysia were retrieved. The tissue samples were stained for RANKL, and the association with the clinicopathological characteristics was evaluated. Staining was interpreted in a semiquantitative scoring system and classified into negative and positive expressions. Results: Eighty-two cases had a positive expression of RANKL in which 56 and 26 patients were classified as low expression and high expression, respectively. The positive expression of RANKL did not show a significant association with clinicopathological characteristics. However, Kaplan Meier survival analysis showed a significant improvement in the disease-free survival patients who underwent limb salvage surgery (LSS) than amputated patients (p-value 0.002), whereas poorer survival was observed among conventional osteosarcomas compared to non-conventional osteosarcoma (p-value 0.01). Conclusion: Limb salvage surgery had proven to improve osteosarcoma patients’ survival compared to amputation, which could improve overall quality of life in osteosarcoma patients. However, our data did not show a significant association between positive RANKL immunohistochemistry with any of the clinicopathological characteristics and patients’ final survival. Further studies may be acquired to understand the suitability of using RANKL immunohistochemistry as prognostication in the management of osteosarcoma patients.

Keywords: RANKL- immunohistochemistry- sarcoma- prognosis

Introduction

Osteosarcoma is a rare sarcoma that has histological findings of osteoid production in association with malignant mesenchymal cells (Misaghi et al., 2018). The incidence of osteosarcoma in all populations worldwide is approximately 4-5 per 1,000,000 population (Fletcher et al., 2002). Osteosarcoma represents the most common primary bone malignancy (Savage and Mirabello, 2011), wherein Malaysia, it accounts for 52.5% of all bone cancer cases from 2007 to 2011 (Azizah et al., 2016). When a wide range of ages are combined, males are affected more frequently than females (Savage and Mirabello, 2011). The typical presentation includes the onset of pain and swelling in the affected bone, occasionally associated with a pathologic fracture (Isakoff et al., 2015). Osteosarcoma occurs most frequently in the distal femur (43%), proximal tibia (23%), and proximal humerus (10%). Approximately 15–20% of patients have metastases detectable at presentation, with the lung being the most common site of distant disease (85%) (Gill et al., 2013).

A meta-analysis reported significant survival gains were made for patients with osteosarcoma from the 1960s to the 1980s due to the introduction of multi-agent chemotherapy and gradually improved surgical techniques. Recurrence rates decreased in the 1970s, and then further outcome improvements appeared to have plateaued. The plateau was due to the main chemotherapeutic agents used to treat osteosarcoma had not changed much for the past 30 years (Allison et al., 2012). Therefore, the identification of novel targeted therapeutic approaches to improve the survival of the patients suffering from osteosarcoma is
now needed to understand the biology of osteosarcoma and its association with the clinicopathological data.

Materials and Methods

All patients diagnosed histologically as osteosarcoma from the year 2003 to 2018 in Hospital Universiti Sains Malaysia (Hospital USM) were included in the study using a convenience sampling method. The cases were retrieved via computerized record collection system (PATHORS) and Laboratory Information System (LIS) from the Department of Pathology, Hospital USM. The clinicopathological data were retrieved from medical records, histopathology reports, and computerised radiology imaging (PACS).

Tumour volumes were calculated using three parameters (length, width, and depth) by using the ellipsoid formula \[V = \frac{4}{3}\pi abc \] (Munajat et al., 2008). For staging, the classification developed by Enneking was utilised (Faisham et al., 2017). The patients’ clinicopathological data were recorded in a separate proforma and kept in Statistical Package for the Social Sciences (SPSS) version 24.

The selected formalin-fixed paraffin-embedded tissue blocks were sectioned and stained with both Hematoxylin and Eosin (H&E) and RANKL antibody according to standard procedures (Abcam Code ab9957). For RANKL staining, the tissue slides were heated on the hotplate at 60°C for 1 hour and proceeded for hydration process and antigen retrieval process in PT link (Dako). The endogenous peroxidase was blocked by incubation in 3% hydrogen peroxidase and protein block (Abcam Code ab64226) for 10 minutes each at room temperature. Rabbit polyclonal primary antibody to RANKL with dilution 1:250 was applied to the sections and incubated overnight at room temperature. Chromogen was applied to the sections and incubated for 5 minutes, followed by counterstaining with hematoxylin. Finally, the slides were mounted with cytoseal. Sections without the primary antibody staining served as negative control while lymph node tissue was used as a positive control. The slides were viewed using a standard light microscope Olympus CX-31.

\[\text{RANKL expression in the cytoplasm and cell membrane of the tumour cells were examined using a scoring method (Bago-Horvath et al., 2014). A score combining the percentage of positively stained cytoplasm and cell membrane of the tumour cells (0, none; 1, 1–29%; 2, 30–69%; 3, 70–100%) with their intensity (0, none; 1, weak; 2, moderate; 3, strong) was constructed. A three-tiered system (negative, weakly positive, strongly positive) was applied to evaluate the staining results, as shown in Table 1. Tumours were considered positive if the sum of scores was >2. Weakly positive cases were defined by a sum of scores 3–5. A sum of scores >5 defined strongly positive cases. Staining results were independently evaluated by one pathologist blinded to the patient’s clinicopathological status. Kaplan-Meier test was used to describe the median survival time of the patients. Chi-Square and Fisher Exact tests were done to identify the association of immunopositivity of RANKL with the clinicopathological parameters. The level of significance in this study was set as p-value <0.05.} \]

Results

The clinicopathological characteristics of the total 100 patients are shown in Table 2. The age ranges from 2 to 70-year-old with the mean age of the patients were 20.4 years old. The commonest age is 15 years old. Eighty-six percent of them were Malay ethnicity, male patients (62%) are more common than females. There were 66.2% (49/74) of patients presented with bone swelling, while
33.8% (25/74) presented with bone pain. The femur is the commonest site of presentation, 46.4% (45/97), followed by the tibia, humerus, and other locations. Most of the cases were diagnosed at stage IIB, which accounted for 67.1% (51/76) by Enneking staging system. The majority (92%) were conventional osteosarcoma, and mostly (98%) were high grade.

A total of 82 cases were positive for RANKL expression immunohistochemically, with 56 and 26 of them were weakly and strongly positive, respectively. Eighteen percent (18%) of the cases recorded negative RANKL expression. However, most clinicopathological characteristics did not show a statistically significant association with the RANKL expression (Table 3).

For median DFS and OSS calculation, only 23 patients and 13 patients were included, respectively due to incomplete medical records. The median DFS

Table 1. Scoring System for RANKL Expression

Score	Percentage of positive tumour cells (A)	Intensity of stain on cytoplasm and cell membranes (B)
0	0	None
1	1–29%	Weak
2	30–69%	Moderate
3	70–100%	Strong

Score = A + B; Positive expression if the sum of scores was >2; Weakly positive cases were defined by a sum of scores 3–5; Strongly positive cases were defined by a sum of scores >5.
for 23 patients who ended with tumour progression was 13 months (RANKL negative) and seven months (RANKL positive) (Figure 1). The median OSS for 13 patients who resulted in death was 11 months (RANKL negative) and 19 months (RANKL positive). However, Kaplan Meier survival analysis showed a significant improvement in the disease-free survival patients who underwent limb salvage surgery (LSS) than amputated patients (p value 0.002), whereas poorer survival was observed among conventional osteosarcomas compared to non-conventional osteosarcoma (p-value 0.01) (Figures 1 and 2).

Discussion

The present study reports the proportion of RANKL expression among osteosarcoma specimens and evaluates the association between RANKL expression and the patients’ clinicopathological characteristics. RANKL expression in other bone tumours has been studied to determine its role as a reliable prognostic marker in predicting recurrence (Ghani et al., 2018) and the use of Denosumab in treating patients with RANKL expression (Heymann, 2012). However, there were conflicting reports on the RANKL expression in osteosarcoma in a few limited studies. Our study reported up to 82% of cases with positive expression of RANKL with 56% and 26% of them were weakly and strongly positive, respectively. This is relatively high compared to other similar studies on osteosarcoma from other parts of the world, with a reported proportion from 8.8% to 75% (Lee et al., 2011; Bago-Horvath et al., 2014; Branstetter et al., 2015). Bago-Horvath et al., (2014) used the same method of reporting positivity of RANKL expression, but they only reported 8.8%. The difference might be due to the different antibody clones used as they were using R and D Systems, USA; 1:100. Difficulty in antibody optimization such as high background staining was noted in our cases, which initially was thought to be caused by non-specific binding. Repeated staining was done with a

Table 2. Clinicopathological Characteristics (n=100).

Variables	Mean (SD)	n (%)
Clinicopathological characteristics		
Age (year)	20.4 (11.76)	92 (92)
Age group (year)		
< 40		92 (92)
≥ 40		8 (8)
Gender		
Male	62 (62)	
Female	38 (38)	
Race		
Malay	86 (86)	
Chinese	9 (9)	
Indian	5 (5)	
Family history with osteosarcoma (n=30)*		
No	29 (96.7)	
Yes	1 (3.3)	
Presentation (n=74)*		
Bone pain	25 (33.8)	
Swelling	49 (66.2)	
Tumour volume (n=75)*		
< 150 ml	23 (30.7)	
≥ 150 ml	52 (69.3)	
Tumour site (n=97)*		
Femur	45 (46.4)	
Tibia	28 (28.9)	
Humerus	7 (7.2)	
Maxillofacial	2 (2.1)	
Pelvic	5 (5.2)	
Others	10 (10.3)	
Stage of disease (Enneking) (n=76)*		
IA	-	
IB	-	
IIA	2 (2.6)	
IIB	51 (67.1)	
III	23 (30.3)	
Pathologic subtypes		
Conventional	92 (92)	
Low-grade central	1 (1)	
Telangiectatic	5 (5)	
Small cell	1 (1)	
Parosteal	1 (1)	
Grade		
Low	2 (2)	
High	98 (98)	
Metastatic event (n=94)*		
No	38 (40.4)	
Yes	56 (59.6)	
Surgery (n=88)*		
No	15 (17)	
Yes	73 (83)	

*Not all the patients had complete clinicopathological data
Table 3. Association between RANKL Immunohistochemistry Expression in Osteosarcoma with the Clinicopathological Characteristics Using Pearson Chi-Square (n=100).

Variables	RANKL negative n (%)	RANKL positive n (%)	p value
Age group (year)			0.632†
< 40	16 (17.4)	76 (82.6)	
≥ 40	2 (25)	6 (75)	
Gender			0.774
Male	13 (21)	49 (79)	
Female	5 (13.2)	33 (86.8)	
Family history with osteosarcoma (n=30)*			0.48†
No	5 (17.2)	24 (82.8)	
Yes	0 (0)	1 (100)	
Presentation (n=74)*			0.342†
Bone pain	6 (24)	19 (76)	
Swelling	7 (14.3)	42 (85.7)	
Tumour volume (n=75)*			0.96†
< 150 ml	5 (21.7)	18 (78.3)	
≥ 150 ml	9 (17.3)	43 (82.7)	
Tumour site (n=97)*			0.143†
Femur	9 (20)	36 (80)	
Tibia	3 (10.7)	25 (89.3)	
Humerus	0 (0)	7 (100)	
Maxillofacial	0 (0)	2 (100)	
Pelvic	3 (60)	2 (40)	
Others	2 (20)	8 (80)	
Stage of disease (Enneking) (n=76)*			0.18†
IA	-	-	
IB	-	-	
IIA	0 (0)	2 (100)	
IIB	11 (21.6)	40 (78.4)	
III	4 (17.4)	19 (82.6)	
Grade			0.329†
Low	1 (50)	1 (50)	
High	17 (17.3)	81 (82.7)	
Metastatic event (n=94)*			0.36
No	7 (18.4)	31 (81.6)	
Yes	9 (16.1)	47 (83.9)	
Surgery (n=88)*			0.064†
No	0 (0)	15 (100)	
Yes	15 (20.5)	58 (79.5)	
Chemotherapy (n=89)*			1.000†
No	4 (16.7)	20 (83.3)	
Yes	12 (18.5)	53 (81.5)	
Response to chemotherapy (n=43)*			0.69†
Non-Responder	10 (32.3)	21 (67.7)	
Responder	1 (8.3)	11 (91.7)	
Recurrence (n=96)*			1.000†
No	15 (17.4)	71 (82.6)	
Yes	1 (10)	9 (90)	

* Not all the patients had complete clinicopathological data; †, Fisher’s Exact Test.
Hui Heng Chua et al

Figure 3. (A) H&Ex200; The osteosarcoma cells exhibited cell pleomorphism with (B) H&Ex200; lace-like osteoid formation. (C) Osteosarcoma cells with RANKL negative, (D) low expression of RANKL, and (E) high expression of RANKL (IHC x400). The positivity of RANKL refers to cytoplasmic and membrane immunoreactivity by IHC (red arrows).

prognostic factor. However, our result did not show any significant association for RANKL expression with chemotherapy response. Since the current study showed that RANKL is highly expressed in osteosarcoma tissue, this technique may be effective in routine staining of new cases with osteosarcoma in the future. There was a case report using Denosumab as RANKL inhibitor and tyrosine kinase inhibitor Sorafenib to treat a case of chemo-refractory osteosarcoma with an overexpression of RANK and RANKL, showing they were able to achieve a complete metabolic remission (Cathomas et al., 2015). A recent study, Chen et al., (2015), reported that RANKL blockade was effective for the management of osteosarcoma in animal models.

The oncological and functional outcomes of limb salvage surgery (LSS) combined with chemotherapy are the better option for osteosarcoma patients. Our data have shown a significant improvement in disease-free survival of patients who underwent LSS than amputation, supported by (Tiwari, 2014). In the present study, a significant number of patients with osteosarcoma have a positive expression for RANKL. However, our data did not show a statistically significant association with any of the clinicopathological characteristics and patients’ final survival. Further studies may be acquired to understand the suitability of using RANKL immunohistochemistry as prognostication in managing osteosarcoma patients. Furthermore, the role of denosumab and bisphosphonate as an adjuvant treatment of osteosarcoma has questionable benefits.

Author Contribution Statement

The manuscript has been read and approved by all the authors. All authors were involved in data analysis and manuscript draft preparation.

Acknowledgments

Special thanks to the staffs of the Pathology Laboratory, Hospital Universiti Sains Malaysia, especially Ummi Atikah AYUB and Rosli JUSOH, who had helped in the laboratory works

Funding statement

This study was supported financially by Research University Bridging Grant 304/PPSP/6316329.
Conflict of interest
We also have no conflict of interest to disclose.

References
Allison DC, Carney SC, Ahlmann ER, et al (2012). A meta-analysis of osteosarcoma outcomes in the modern medical era. Sarcoma, 2012, 704872.

Azziz AM, Nor Saleha IT, Noor Hashimah A, et al (2016). Malaysian National Cancer Registry Report 2007-2011, Malaysia Cancer Statistics, Data and Figures [Online]. Putrajaya: National Cancer Institute, Ministry of Health, No 4, Jalan P7, Presint 7, 62250 Putrajaya, Malaysia. Available: https://nci.moh.gov.my/index.php/ms/pengumuman/340-malaysian-national-cancer-registry-report-2007-2011 [Accessed 7 July 2017].

Bago-Horvath Z, Schmid K, Rossler F, et al (2014). Impact of RANK signalling on survival and chemotherapy response in osteosarcoma. Pathology, 46, 411-5.

Branstetter D, Rohrbach K, Huang LY, et al (2015). RANK and RANK ligand expression in primary human osteosarcoma. J Bone Oncol, 4, 59-68.

Branstetter DG, Nelson SD, Manivel JC, et al (2012). Denosumab induces tumor reduction and bone formation in patients with giant-cell tumor of bone. Clin Cancer Res, 18, 4415-24.

Cathomas R, Rothermundt C, Bode B, et al (2015). RANK ligand blockade with denosumab in combination with Sorafenib in chemo-refractory osteosarcoma: a possible step forward?. Oncology, 88, 257-60.

Chen Y, Di Grappa MA, Molyneux SD, et al (2015). RANKL blockade prevents and treats aggressive osteosarcomas. Sci Transl Med, 7, 317ra197.

Faisham WI, Mat Saad AZ, Alsagih LN, et al (2017). Prognostic factors and survival rate of osteosarcoma: A single-institution study. Asia Pac J Clin Oncol, 13, e104-e10.

Fletcher CDM, Bridge JA, Hogendoorn PCW, et al (2013). WHO Classification of Tumours of Soft Tissue and Bone. In ‘Conventional osteosarcoma’, Eds IARC Press, Lyon, pp 282.

Fletcher CDM, Unni KK, Mertens F (2002). World Health Organization Classification of Tumours. Pathology and Genetics of Tumours of Soft Tissue and Bone. In ‘Conventional osteosarcoma’, Eds IARC Press, Lyon, pp 264.

Ghani SA, Wan Ismail WF, Md Salleh MS, et al (2018). The values of receptor activator nuclear kappa-B ligand expression in stage III giant cell tumor of the bone. Indian J Orthop, 52, 31-4.

Gill J, Aihuwalia MK, Geller D, et al (2013). New targets and approaches in osteosarcoma. Pharmacol Ther, 137, 89-99.

Heymann D (2012). Anti-RANKL therapy for bone tumours: basic, pre-clinical and clinical evidences. J Bone Oncol, 1, 2-11.

Isakoff MS, Bielack SS, Meltzer P, et al (2015). Osteosarcoma: current treatment and a collaborative pathway to success. J Clin Oncol, 33, 3029-35.

Kerschan-Schindl K, Wendlova J, Kudlacek S, et al (2008). Serum levels of receptor activator of nuclear factor-kB ligand (RANKL) in healthy women and men. Exp Clin Endocrinol Diabetes, 116, 491-5.

Lee JA, Jung JS, Kim DH, et al (2011). RANKL expression is related to treatment outcome of patients with localized, high-grade osteosarcoma. Pediatr Blood Cancer, 56, 738-43.

Misaghi A, Goldin A, Awad M, et al (2018). Osteosarcoma: a comprehensive review. Scit J, 4, 12.

Mori K, Berreur M, Blanchard F, et al (2007a). Receptor activator of nuclear factor-kappaB ligand (RANKL) directly modulates the gene expression profile of RANK-positive Saos-2 human osteosarcoma cells. Oncol Rep, 18, 1365-71.

Mori K, Le Goff B, Berreur M, et al (2007b). Human osteosarcoma cells express functional receptor activator of nuclear factor-kappa B. J Pathol, 211, 555-62.

Munajat I, Zulmi W, Norazman MZ, et al (2008). Tumour volume and lung metastasis in patients with osteosarcoma. J Orthop Surg (Hong Kong), 16, 182-5.

Pulsatelli L, Dolzani P, Silvestri T, et al (2004). Soluble receptor activator of nuclear factor- kappaB Ligand (sRANKL) osteoprotegerin balance in ageing and age-associated diseases. Biogerontology, 5, 119-27.

Santini D, Perrone G, Roato I, et al (2011). Expression pattern of receptor activator of NF-kappaB (RANK) in a series of primary solid tumors and related bone metastases. J Cell Physiol, 226, 780-4.

Savage SA, Mirabello L (2011). Using epidemiology and genomics to understand the osteosarcoma etiology. Sarcoma, 2011, 548151.

Takayanagi H, Kim S, Koga T, et al (2002). Induction and activation of the transcription factor NFATc1 (NFAT2) integrate RANKL signaling in terminal differentiation of osteoclasts. Dev Cell, 3, 889-901.

Tiwari AJ (2014). Limb salvage surgery for osteosarcoma: Early results in Indian patients. Indian J Orthopaedics, 48, 266-72.

Trinidad EM, Gonzalez-Suarez E (2016). RANKL inhibitors for osteosarcoma treatment: hope and caution. Ann Transl Med, 4, 534.

Xiong J, Onal M, Jilka RL, et al (2011). Matrix-embedded cells control osteoclast formation. Nat Med, 17, 1235-41.

Younger E, Husson O, Bennister L, et al (2018). Age-related sarcoma patient experience: results from a national survey in England. BMC Cancer, 18, 991.