Development and characterization of microsatellite markers for *Morus* spp. and assessment of their transferability to other closely related species

Balachandran Mathithumilan¹, Niteen Narharirao Kadam¹†, Jyoti Biradar², Sowmya H Reddy¹, Mahadeva Ankaiah¹, Madhura J Narayanan¹, Udayakumar Makarla¹, Paramjit Khurana³ and Sheshshayee Madavalam Sreeman¹*

Abstract

Background: Adoption of genomics based breeding has emerged as a promising approach for achieving comprehensive crop improvement. Such an approach is more relevant in the case of perennial species like mulberry. However, unavailability of genomic resources of co-dominant marker systems has been the major constraint for adopting molecular breeding to achieve genetic enhancement of Mulberry. The goal of this study was to develop and characterize a large number of locus specific genic and genomic SSR markers which can be effectively used for molecular characterization of mulberry species/genotypes.

Result: We analyzed a total of 3485 DNA sequences including genomic and expressed sequences (ESTs) of mulberry (*Morus alba* L.) genome. We identified 358 sequences to develop appropriate microsatellite primer pairs representing 222 genomic and 136 EST regions. Primers amplifying locus specific regions of Dudia white (a genotype of *Morus alba* L), were identified and 137 genomic and 51 genic SSR markers were standardized. A two pronged strategy was adopted to assess the applicability of these SSR markers using mulberry species and genotypes along with a few closely related species belonging to the family Moraceae viz., Ficus, Fig and Jackfruit. While 100% of these markers amplified specific loci on the mulberry genome, 79% were transferable to other related species indicating the robustness of these markers and the potential they hold in analyzing the molecular and genetic diversity among mulberry germplasm as well as other related species. The inherent ability of these markers in detecting heterozygosity combined with a high average polymorphic information content (PIC) of 0.599 ranging between 0.076 and 0.943 clearly demonstrates their potential as genomic resources in diversity analysis. The dissimilarity coefficient determined based on Neighbor joining method, revealed that the markers were successful in segregating the mulberry species, genotypes and other related species into distinct clusters.

Conclusion: We report a total of 188 genomic and genic SSR markers in *Morus alba* L. A large proportion of these markers (164) were polymorphic both among mulberry species and genotypes. A substantial number of these markers (149) were also transferable to other related species like Ficus, Fig and Jackfruit. The extent of polymorphism revealed and the ability to detect heterozygosity among the cross pollinated mulberry species and genotypes render these markers an invaluable genomic resource that can be utilized in assessing molecular diversity as well as in QTL mapping and subsequently mulberry crop improvement through MAS.

* Correspondence: msheshshayee@hotmail.com
† Equal contributors
¹ Department of Crop Physiology, University of Agricultural Sciences, Bangalore, India
Full list of author information is available at the end of the article

© 2013 Mathithumilan et al; licensee BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Background
Mulberry, a perennial out-breeding tree species is distributed in varied environments ranging from tropical to sub-arctic regions. The wide distribution can be attributed to its capability to adapt to diverse agro-climatic conditions, fast regeneration and both sexual and asexual modes of propagation. The mulberry leaf serves as the sole source of food to the domesticated silkworm, *Bombyx mori* L., and hence contributes significantly to the success of silk industry in India. It is predicted that around 27,000 MT of raw silk would need to be produced by the year 2030 to meet the demand in India [1]. This goal is strongly dependant on improving mulberry productivity. Enhancing the yield potential and minimizing the yield loss due to stresses are therefore the most viable strategies to achieve genetic enhancement of mulberry [2].

Despite the significant progress achieved so far, genetic improvement of mulberry yield potential through conventional breeding has been distressingly slow, mainly because of the perennial growth habit and complex inheritance pattern. Convincing evidences suggest that relevant traits need to be introgressed onto an elite genetic background to achieve greater success in crop improvement endeavors. Thus, the applications of modern molecular and genomic tools are expected to strongly complement the breeding efforts in enhancing yield potential of mulberry [2]. Advances in PCR based genomic approaches have generated robust DNA marker systems [3,4], which offer an effective approach to augment breeding methods for mulberry improvement [5]. Randomly amplified polymorphic DNA (RAPD), Amplified fragment length polymorphism (AFLP) and Inter simple sequence repeats (ISSR) have been the most frequently employed marker systems to study the genetic diversity among mulberry species and genotypes [6-8]. Though these marker systems provide a good option to discriminate the evolutionary relationships among species [9], being dominant, RAPD, AFLP and ISSR markers have limited application in marker assisted breeding, especially in heterozygous out-breeding perennial species like mulberry. Lack of sufficient number of co-dominant marker systems renders molecular breeding practices in mulberry still a distant possibility.

Microsatellites or simple sequence repeats (SSR) are short stretches of tandemly repeated DNA sequences, distributed throughout the eukaryotic genome [10,11]. SSR markers display locus specificity, are co-dominant and highly transferable to other related species [12] and hence are the most attractive choice of marker systems for mulberry. Further, the higher ability to detect polymorphism by the SSR markers is an added advantage while analyzing closely related species and/or genotypes, which is often the case in breeding programs [13]. The efficiency of the SSR markers in genetic screening has been reported in tree species like peach, olive and fig [14-16].

Except for the reports of Aggarwal et al. [17] and Zhao et al. [18], there have not been many efforts in developing co-dominant markers in mulberry. From this background, the main aim of this work was to generate SSR markers for characterizing mulberry germplasm and/or mapping populations. We report a large number of genic and genomic SSR markers for mulberry and examined their transferability to closely related species like *Ficus* (*Ficus bengalensis*), *Ficus carica* and Jackfruit (*Artocarpus heterophyllus*).

Result and discussion
Pre-cloning enrichment strategy was adopted to isolate the genomic microsatellite regions and a set of previously characterized expressed sequence tags (ESTs) [19-21] were analyzed to identify genic microsatellite regions. A total of 3485 sequences, including 1094 genomic and 2391 EST sequences were analyzed for the presence of microsatellite regions. Locus specific primers were designed for such target sequences to develop SSR markers.

Isolation and characterization of genomic microsatellites
Analysis of the genomic sequences revealed a total of 900 diverse microsatellite loci (Table 1). Among them, 167 (18.56%) sequences had mono nucleotide repeats (MNR) followed by 303 (33.67%) sequences with di-nucleotide repeats (DNR). Tri nucleotide repeats (TNR) were found among 155 (17.22%) sequences while tetra (TtNR), penta (PNR) and hexa (HNR) nucleotide repeats were relatively less frequent in the enrichment library (Figure 1). Besides these types, 52 (5.78%) microsatellite loci with repeat motifs having more than six nucleotide bases referred to as long nucleotide repeats (LNR) were also identified. It is well accepted that di, tri, tetra, penta and hexa repeat motifs represent an appropriate marker system and can generally distinguish greater diversity [22]. Hence, the LNRs and MNRs were excluded from designing locus specific primers. In our study, “TC/AG” repeats constituted the most frequent DNR microsatellite variant (25.5%) followed by “CT/GA”. While “AT/TA” and “AG/TC” repeats were reported as the most frequent in plant genomes [17,23-29]. He et al. [30] identified “GA/CT” as the most frequently occurring di-repeat motifs in groundnut. Our results revealed the presence of both the types of DNR motifs indicating a possibility that these markers would be able to distinguish greater diversity among mulberry accessions. The least abundant DNR motifs found in genomic SSRs was “CA/GT” and “CG/GC”. The frequency of “GC” repeats was generally less in genomic regions of most plants as reported in peach [31], coffee [32], rubber tree [33], wheat [34] and soybean [35]. While “GAA” repeats were most
frequent (15.9%) among the TNRs, “AAAT” repeats were the most frequent tetra nucleotide repeats (16.6%). Similarly, “AAAAC” and “AAAAAG” repeat types were more frequent among the PNR and HNR groups, respectively.

Based on the repeat sequences, the microsatellite regions were classified as perfect, interrupted (more than one of the same repeat motif spaced by a few base pairs) and compound repeats (different repeat motifs occurring tandemly and/or interrupted by a few base pairs). Details about the genomic SSR marker types, their repeat motifs detected in the enrichment library and the gene bank accession number are presented in Table 2. Of the repeat regions identified, 74.5% were perfect, 6.5% were interrupted and 19% were compound repeats. Repeat regions of the “perfect” type are more common in plant genome compared with “interrupted” or “compound” [36,37]. Though greater representation of compound repeat motifs is not common in plant genomes, they seem to exhibit greater levels of polymorphism and hence have a distinct advantage in mapping and diversity analysis [38-41].

Development of genomic SSR markers

Although DNA sequences harboring microsatellite regions were captured using specific probes, primers could not be designed to all the sequences. In instances where the repeat stretch was less than 15 nucleotides or in situations where the repeat regions were close to the ends of the sequences, primers were not designed. Thus, out of the 1094 genomic clones sequenced, 222 primer pairs could be developed (Table 1). The web-based program, Primer3 (http://bioinfo.ebc.ee/mprimer3/), was adopted to design primers to the identified regions with more than 15 nucleotide repeats so as to amplify at least 150 bp fragments. The pre-cloning enrichment strategy captured specific genomic regions that were complementary to the microsatellite probes used. Thus, this approach enhanced the success of identifying specific loci that were unique in the genome. Of the set of 222 primer pairs developed, 137 (61.71%) showed locus specific amplification reiterating the advantages of the pre-cloning enrichment strategy in discovering microsatellite regions [17,30,42,43].

Table 1 Sequences analyzed while developing genomic and genic SSR markers in mulberry

Library	No. of colonies screened	No. of clones sequenced/Transcripts screened	Clones with SSR repeats	Sequences containing more than one SSR	Total no. of repeats	Primers developed	Primers standardized/Locus specific amplification
Genomic	1588	1094	484	234	900	222	137
EST	-	2391	800	254	1155	136	51
Total	3485		1284	488	2055	358	188

Figure 1 Classification and diversity of repeat types among the identified genomic and genic microsatellite motifs. The total number of microsatellite motifs on genomic sequences is illustrated in panel A while the genic microsatellites are in B. The locus specific marker diversity of genomic and genic microsatellites is illustrated in A1 and B1, respectively.
Sl no	Primer name	Primer sequence	GenBank-ID	Amplicon size	Repeat motif	Ta (°C)	Repeat type
1	MulSSRF	GATCTGAAGTCAACCCAGCC	GF101960	236	TC	56.8	Perfect
	MulSSRIR	GCAGAATCTTTCAGCTTCCA					
2	MulSSRF2	GGTGCCTGAAGATATGTTGGA	BV722881	154	AC	56.8	Perfect
	MulSSR2R	CTCTGAGGGAAGCAGAAG					
3	MulSSR23F	CGGAAACAGCCCAAGAGGCC	GF101977	223	AAACCT	56.8	Perfect
	MulSSR23R	AGGAGGTTTATAGGGG					
4	MulSSR26F	CCACTGGTGCTGAAG	BV722891	282	AC	56.8	Perfect
	MulSSR26R	CATCTCATACTGGGGAAGC					
5	MulSSR-82F	CAATCACTAACGGGGGAAG	BV722895	240	CT	56.8	Perfect
	MulSSR-82R	GCTCTTTTTGTGCTCC					
6	MulSSR59F	GGTTCTATTTTCCTTCTAG	BV722893	243	TTC	56.8	Perfect
	MulSSR59R	GGGCGATGCGAACAGA					
7	MulSSR85F	CCGGAGAAATCCCAAGG	BV722896	304	TC	56.8	Perfect
	MulSSR85R	CATCCAGGCACTGATTG					
8	MulSSR69F	CAATTACCAACCTCACC	GF101963	294	TC	56.8	Perfect
	MulSSR69R	GAAATGTTTCTGACATCC					
9	MulSSR1F	CTCCTGGAAGACCTATCA	GF107867	217	CA	50	Perfect
	MulSSR1R	GGTTGCAAGTAGGACAGGC					
10	MulSSR12F	GCGACCATTCAACAGAACCA	GF107890	270	AG	50	Perfect
	MulSSR12R	GTGTGTGTTACTGTTCTCC					
11	MulSSR13F	GTGTGTGTTAGTGATCCGGG	GF107891	154	GT	58	Perfect
	MulSSR13R	CGACGAAAGATACGACAGACC					
12	M2SSR1F	CTCCTGGAAGACCTATCA	GF107894	178	TTTTC	51.5	Perfect
	M2SSR1R	GAAAGGCTCCCTGACAGGA					
13	M2SSR12F	GCGACCATTCAACAGAACCA	GF107896	230	TC	55	S5
	M2SSR12R	ACCCGACCATTAGTCTAGC					
14	M2SSR21F	GTGTGTGTTGCTGTTGG	GF107897	247	TG	45	Perfect
	M2SSR21R	ACAAACACGTCCAACACAGA					
15	M2SSR53F	GTGTGTGTTGCTGTTGG	GF109658	172	AG	50	Perfect
	M2SSR53R	GCAAGCCGACACACGTC					
16	M2SSR65F	GGCTGATAATCCGCAATGC	GF107874	173	AGG	51.5	Perfect
	M2SSR65R	CGGTCTTCCACGTGGAAG					
17	M2SSR67F	CGGAAATCTCCGACATGGTC	GF107901	158	CTC	55	Perfect
	M2SSR67R	CGGAGAATCTCCGACATGGTC					
18	M2SSR68F	AATTCGACTCCATGTTGAG	GF107902	211	TCT	51.5	Perfect
	M2SSR68R	TCCGTGGTATGTTGCTG					
19	M2SSR93F	ATAGCGCATTGGCCAGGC	GF107877	243	CTCC	50	Perfect
	M2SSR93R	GAAATTCCGACTCATGTTG					
20	M2SSR94F	AATGAGGCTGCTCTGG	GF107909	295	ACTA	55	Perfect
	M2SSR94R	CGATCCTTCTGATGACAGGG					
21	M2SSR102F	GAGCAAGGTCTTGAACCC	GF107910	203	AAG	51.5	Perfect
	M2SSR102R	CTCAGCAGTCTGCTAGGG					
Table 2 Details of the genomic SSR markers developed for mulberry (Continued)

No.	Markers	Primer (5'-3')	Accession No.	Size (bp)	Motif	Type
23	M2SSR121F	CGATCTGAAAGATGTCGTGC	KF030913	210	CAC	Perfect
	M2SSR121R	GCAACGCTGTTCGTAGGC				
24	M2SSR11F	CGGAAGGCTATGATGGTG	KF030980	150	AAAT	Perfect
	M2SSR11R	CTGCTGGTATGAGAGGAGG				
25	M2SSR2F	GCTAGCAGATCCCCACC	KF030981	261	CT, GAGACC	Perfect
	M2SSR2R	CACGCTCTCCTCAGAACG				
26	M2SSR4F	GGAGCAGCTAATCTCTTG	KF030982	314	(ATATAC)C(ACTA)	Interrupted
	M2SSR4R	CTGGGGAATGACTAAGGCTC				
27	M2SSR6F	GAGGAGTCGCCCTCTTAG	KF030983	335	GT	Perfect
	M2SSR6R	GCCTCACAGGAGAACACC				
28	M2SSR7F	CCATGCTCTCTTGGTC	KF030984	198	CTG	Perfect
	M2SSR7R	GCAAGATCCAGCTTTTTGG				
29	M2SSR8F	GCCAGCGATGAGCCTAC	KF030985	378	GT, GA	Perfect
	M2SSR8R	GTTCACAACACAACTCTCC				
30	M2SSR9F	GCCGTTTAGGAAATAAGGC	KF030986	227	AG	Perfect
	M2SSR9R	CAAAACGAGAAGAACG				
31	M2SSR10F	CATAAGAGCATGACCCAC	KF030987	207	A, AAAAG	Compound
	M2SSR10R	CGTGCTCTCCTCTATCC				
32	M2SSR11F	GTCTTGGCACTAGGAGAGG	KF030988	345	GT	Perfect
	M2SSR11R	CTCAGAGGAGAACACCAC				
33	M2SSR12F	CCAAGCTCTCCTCCAG	KF030989	172	GAA	Perfect
	M2SSR12R	GTTTGATGACTTCGG				
34	M2SSR13F	CATAGCAGTCGCTGGCATTG	KF030990	252	(CT)CTCTCTCAT(CT)	Interrupted
	M2SSR13R	CTCGCCACCAATAATCTCAC				
35	M2SSR14F	GCAAGATCTCGTGTGTCG	KF030991	239	TC	Perfect
	M2SSR14R	GTTCTGCTGCTGGAGAGG				
36	M2SSR15F	GCTAGCAGATCCCCAAG	KF030992	224	TGCCAC, TCT	Compound
	M2SSR15R	CGAAAACGAGCATTCTTC				
37	M2SSR16F	GCTCTTGGCACTAGGC	KF030993	225	TC	Perfect
	M2SSR16R	CCGATTGTTAGGC				
38	M2SSR17F	GTTTGATGACTTCGG	KF030994	155	AAG	Perfect
	M2SSR17R	GTCAGCGATGACCCAC				
39	M2SSR18F	GGTATGAGAGCTTGCTGC	KF030995	202	(TC)G(TC)	Interrupted
	M2SSR18R	GTTCTGCTGCTGGAGAGG				
40	M2SSR19F	GGATCTTGCCATCTAGTG	KF030996	112	TA, TG	Compound
	M2SSR19R	GCAAGATCTAGGAGGCC				
41	M2SSR20F	GAGCCAGATCTGCTGC	KF030997	382	GTC, TCT	Compound
	M2SSR20R	GCGAGCATTCTGCTGGAG				
42	M2SSR21F	CCTCGGGTAAGCACAACAG	KF030998	390	GAA	Perfect
	M2SSR21R	CCTGCTCTGCATCATCTCG				
43	M2SSR22F	GATCCAGATCGTTGCTG	KF030999	221	GA	Perfect
	M2SSR22R	CGTCTAGCTGCCCTTC				
44	M2SSR23F	GCAAGATCTCCTAGGAGGCC	KF031000	329	GAA	Perfect
	M2SSR23R	GCAGAATCCCCGGAGAACAG				
Marker No.	Forward Primer	Reverse Primer	Accession No.	GC Content (%)	Type	
-----------	----------------	----------------	---------------	----------------	----------	
45	CATCGCTGGTTTTCGCATC	KF031001	251	CTT	49	
46	CTCTGGGAGTAAAGGGAAGGCC	KF031002	345	GAA	49.5	
47	CGCTGATCCGTTTTCGCATC	KF031003	238	CT, CA	52	
48	CAACATCAACCGATCACCTACC	KF031004	140	TCA	52	
49	CTAGCAGATCCAAAGACCC	KF031005	161	CTT	53	
50	GGTCTGCTGCCCTGCAAGC	KF031006	391	TTTTTC	51.5	
51	CAGCTATGACCATGATACGCC	KF031007	124	AAAAC	50.5	
52	GACGAAAACCGTAAGAGGCC	KC408230	380	ATGAGC	47.9	
53	CTGGGAGTATGGTCAAGAGGCC	KC408231	220	GAA	53.8	
54	CGCTGCTGGTTTTCGCATC	KC408232	262	TTTTTC	52.8	
55	ATACCAGGTGGTGGGTTTG	KC408233	304	GT, GA	52.8	
56	CATACGTGCGCCCAACTTAC	KC408234	187	AAATAA	54.1	
57	GAGAAGGGGAGAGAGAAGC	KC408235	198	AAATAC	54.5	
58	CATCTCTGTCAATCCCAAGAC	KC408236	231	(AG)TTACCAAAAAGAAT(AG)	58.0	
59	GGGGGAGGTAGCTGATGTC	KC408237	360	AAAT, GAA	54.5	
60	AGCATGCTGCTCATTACAG	KC408238	407	AG, GTGAGC	54.8	
61	CAGGGGAGGAGCAGGATGTC	KC408239	318	TA, TATT	49.1	
62	ACTCAGCTGAGAAGAAGAGC	KC408240	158	CT	47.9	
63	GCCCGTTTGGTTTTCGTC	KC408241	102	CT, TCA, TC	47.9	
64	GAGGACGTGCTGGGTAAAAGC	KC408242	277	AG	54.8	
65	ATCCAGATCCAAAAATACCC	KC408243	343	AC	49.1	
66	CCCCTATGGTGGTCTGCTACC	KC408244	198	AAAACAA	52.8	
Table 2 Details of the genomic SSR markers developed for mulberry (Continued)

No.	Name	Primer Sequences	Accession Number	Length	Allele	Type		
67	Mul3SSR95F	GATCATCGTGCCAATAAGCC, KC408250	209 AG	52.8	perfect			
68	Mul3SSR95R	TAAAGGCTGAGGGGGAAGC						
69	Mul3SSR97F	TCCACCCACGAAACCAATC	292 GAA	50.8	Perfect			
70	Mul3SSR97R	AGTAAGGCTGAGGGGAAGC						
71	Mul3SSR101F	TGAGCCAAGAAGAGGAGACA	330 AC	50.8	Perfect			
72	Mul3SSR101R	AGCTAGCAGATCCCCCTTGA						
73	Mul3SSR102F	TTGGTCTCGAATGAAATCG	230 AAAT, GAA	55.4	Compound			
74	Mul3SSR102R	TTGTGATGAGAAAACAGC						
75	Mul3SSR103F	GTGATATGCAAGTTGCC	325 ATGAGC, GCAGAGAA	53.3	Compound			
76	Mul3SSR103R	GAGAGCGGGGCTGTAAGGG						
77	Mul3SSR104F	GACATCTGCCAGATTCAGTC	235 AG	58.5	Perfect			
78	Mul3SSR104R	GTGTGCCAGATGAGGTGC						
79	Mul3SSR105F	GCTAGAATTGAAAGGAGA	254 TCT, TGCCAC	57.1	Compound			
80	Mul3SSR105R	CCTCATAGATCAAGAACCAG						
81	Mul3SSR108F	TCTGCCCATGAGATGGTC	215 CCTCT, TC, TC	54.1	Compound			
82	Mul3SSR108R	GACAGAAACCGGAGAGA						
83	Mul3SSR114F	GACACCTGCTGTTTTC	106 AG	58.5	Perfect			
84	Mul3SSR114R	TGGTTCCTTACAGTAGC						
85	Mul3SSR116F	GATTTCTGAGCCATGGTG	382 TTAT, AATA	58.5	Compound			
86	Mul3SSR116R	CCAAGAAGGTGAAGAATCC						
87	Mul3SSR118F	CATGACACCTGGTAGATCAG	277 AG	53.3	Perfect			
88	Mul3SSR118R	ATCCCAAGATCCAAAAATACCC						
89	Mul3SSR122F	GGTGATGGAGGCTTTGTG	219 ATC	51.7	Perfect			
90	Mul3SSR122R	GTGTGATCTGGAGAGGAGG						
91	Mul3SSR124F	GGCTGCCAAGAAGAAGGA	228 TCTTTC	54.8	Perfect			
92	Mul3SSR124R	AGAGAGTTCGGGCAAACC						
93	Mul3SSR125F	CTGTGATGTGCTTCTTGTG	261 CTT, CTA	54.1	Compound			
94	Mul3SSR125R	GTGTGACAGAATTTGTGACTG						
95	Mul3SSR126F	GGTGCTAATGGCCTAAGTG	199 AAAAG, AAAAGA	52.8	Compound			
96	Mul3SSR126R	AGCAATCAGAGGTGGTGGTCC						
97	Mul3SSR127F	CGAATGCGCATGCTAGCAG	309 AC	52.8	Perfect			
98	Mul3SSR127R	GCAGAGCCCGATAAGCAGTA						
99	Mul3SSR131F	ACTGTGCTGTTGAGGTT	305 CT, TCA	55.4	Compound			
100	Mul3SSR131R	GAGAAGCTGAGGGGGAAG						
101	Mul3SSR135F	GATCATCACAAAGAGCCTG	137 TC	55.4	Perfect			
102	Mul3SSR135R	GATTTGCGAGATCGTGAT						
103	Mul3SSR141F	TTGTGACAGTCACCAAC	336 TTTGT, T	52.8	Compound			
104	Mul3SSR141R	TCACCGGCTAGAACCAC						
105	Mul3SSR142F	GCAGAATCTCAACACTCTAGGA	213 (AG)AAGCTGAATGGGT(AG)	54.5	interrupted			
106	Mul3SSR142R	CACAGTATGAGCATCACCAGTC						
No.	SSR Name	Forward Primer	Reverse Primer	Accession No.	Marker Type			
-----	------------	----------------	----------------	---------------	-------------			
89	Mul3SSR143F	TGCCACCTTCTCCAATATG	KGGAATCGGAGTAAAG	KC408288	151	TTA	54.5	Perfect
90	Mul3SSR144F	GATAGGGAGCAAGGGCAGCGT	KGGAATCGGAGTAAAG	KC408289	284	CATCAG, ACT	54.5	Compound
91	Mul3SSR145F	CCTTCTTCACCATCCAC	KGGAATCGGAGTAAAG	KC408290	165	TCA	50.4	Perfect
92	Mul3SSR146F	CAACCGATTACATGCTGAG	KGGAATCGGAGTAAAG	KC408291	256	CT	50.4	Perfect
93	Mul3SSR148F	AAGGCAATGCAAACGGAAG	KGGAATCGGAGTAAAG	KC408292	156	CAA	45.1	Perfect
94	Mul3SSR149F	TGCTCTCTCTGCAAGCGC	KGGAATCGGAGTAAAG	KC408293	280	(AC)TATACATTCGT(AC)	54.8	Interrupted
95	Mul3SSR150F	TCTTCTCTCTCTGCAAGCGC	KGGAATCGGAGTAAAG	KC408294	226	TTATTA, AAG	54.8	Compound
96	Mul3SSR151F	AGATGTTGACCCCTCTGAG	KGGAATCGGAGTAAAG	KC408295	196	GT, T	54.8	Compound
97	Mul3SSR152F	TCTCTCTCTCTGCAAGCGC	KGGAATCGGAGTAAAG	KC408296	189	TC	54.5	Perfect
98	Mul3SSR153F	GGGCATTGTATTGTCCAAGC	KGGAATCGGAGTAAAG	KC408297	302	TTA	51.7	Perfect
99	Mul3SSR155F	ACCCTAAATTGGGACGGAAG	KGGAATCGGAGTAAAG	KC408298	105	AAG	54.5	Perfect
100	Mul3SSR156F	CCCCACCTACACAATAACC	KGGAATCGGAGTAAAG	KC408299	190	GAA	54.5	Perfect
101	Mul3SSR157F	ACCCGTCTCGTCTGCAAGCGC	KGGAATCGGAGTAAAG	KC408300	108	TTC	51.7	Perfect
102	Mul3SSR158F	CCCCACCTACACAATAACC	KGGAATCGGAGTAAAG	KC408301	171	CTT	54.8	Perfect
103	Mul3SSR159F	ACCGTACGAGATGATGTC	KGGAATCGGAGTAAAG	KC408302	166	TGAAG	54.8	Perfect
104	Mul3SSR160F	CAGCCTCTCTCTCTGAG	KGGAATCGGAGTAAAG	KC408303	221	CT, CA	54.5	Compound
105	Mul3SSR161F	CCAGGTTGAGAAACAAAAG	KGGAATCGGAGTAAAG	KC408304	393	GA, AAAG, AAAAG	54.8	Compound
106	Mul3SSR162F	GGATGCCTCTCTCTGAG	KGGAATCGGAGTAAAG	KC408305	222	ATCACC	54.8	Perfect
107	Mul3SSR163F	CCTTCTCTCTCTACCATCAC	KGGAATCGGAGTAAAG	KC408306	190	TCA	49.1	Perfect
108	Mul3SSR164F	CCTTCTCTCTCTACCATCAC	KGGAATCGGAGTAAAG	KC408307	267	AC	50.4	Perfect
109	Mul3SSR165F	CCAGGTTGAGAAACAAAAG	KGGAATCGGAGTAAAG	KC408308	107	TTC	54.8	Perfect
110	Mul3SSR166F	CCTTCTCTCTCTACCATCAC	KGGAATCGGAGTAAAG	KC408309	241	GT	49.1	Perfect
Table 2 Details of the genomic SSR markers developed for mulberry (Continued)

Marker ID	Forward Primer sequence	Reverse Primer sequence	Accession Number	Product size (bp)	Alleles	Type
Mu3SSR171F	GGAGGGTTTTCTCCTGAC	KC408316	168	GAA	51.7	Perfect
Mu3SSR171R	CGAAGGTGTGCTCTCAC					
Mu3SSR172F	CCGTGCTGGCTGAGAAG	KC408317	140	TGGATA	54.5	Perfect
Mu3SSR172R	TAGTCCGCCGACCACTCC					
Mu3SSR173F	TCCCGGAAACTCTTATGG	KC408318	304	CTT, CTA	54.5	Compound
Mu3SSR173R	GCTTGAGCACCCTCATTTCC					
Mu3SSR174F	AGCGTTTTTCTGTGAGGCAG	KC408319	371	A, TTC	54.8	Perfect
Mu3SSR174R	CATAGTTGCTGGATCCACG					
Mu3SSR175F	GGAAAAGAAAGGGGGGAGTAGC	KC408320	127	GT	54.8	Perfect
Mu3SSR175R	GTGCTCTTTTGGGGATACCA					
Mu3SSR177F	CAGTTGGGTGTGAGGATGTAAC	KC408322	329	AG	49.1	Perfect
Mu3SSR177R	GCTTGAGCACCCTCATTTCC					
Mu3SSR178F	GAGGGAGGATATGACATTAC	JX258829	150	AGA	52.8	Perfect
Mu3SSR178R	CGAAGGTGTGCTCTCAC					
Mu3SSR180F	CATTCCTGGTGTCAGCCT	JX258830	163	(TC)T(TC)	51.7	interrupted
Mu3SSR180R	CAGTCCGCCGACCACTCC					
Mu3SSR181F	AGAGAGCAACCACGGGAAG	JX465665	336	AAAAG	52.8	Perfect
Mu3SSR181R	GTAGTGGGTGTGAGGATGTAAC					
Mu3SSR183F	GACGTGAGGAAGGAGGAG	JX465668	283	AC, GC, AG, GA, GG, AG, GA, GG, AG, GA, GG, AG	54.8	Compound
Mu3SSR185F	GGATGGGTAGGTCCTGGTAAG	JX465670	386	AAAAC	50.4	Perfect
Mu3SSR185R	CAGATCGGCCAACCACCAT					
Mu3SSR187F	GAGACATTTCAACCCCTGT	JX465671	198	AAAAC	54.8	Perfect
Mu3SSR187R	CAGATCGGCCAACCACCAT					
Mu3SSR190F	CTTCACTCGAAGGATTG	JX465672	358	TTGA, TG	51.7	Compound
Mu3SSR190R	CAGATCGGCCAACCACCAT					
Mu3SSR191F	CGAATGCTAGAGGAGGAG	JX465673	238	TC	54.8	Perfect
Mu3SSR191R	CAGATCGGCCAACCACCAT					
Mu3SSR192F	GAGCCTTCTACTAGAAGCTAAC	JX465674	186	TCT, TC	54.8	Compound
Mu3SSR192R	CAGATCGGCCAACCACCAT					
Mu3SSR193F	CTTGAGGTGGCAGTCTTTG	JX465675	358	TTGA, TG	51.7	Compound
Mu3SSR193R	CAGATCGGCCAACCACCAT					
Mu3SSR194F	CCCTCTCGCAGATCATCAACC	JX465676	230	TTC	54.8	Compound
Mu3SSR194R	CAGATCGGCCAACCACCAT					
detected 232 microsatellite motifs that could be classified into interrupted and compound repeat types (Table 2). Of these repeat types, 86 (37.1%) were DNR, 73 (31.5%) TNR, 19 (8.2%) TtNR, 27 (11.6%) PNR and 27 (11.6%) were HNR types (Figure 1). These genomic SSR markers developed for mulberry have been deposited in the NCBI GenBank database and the details of all the locus specific primers are given in Table 2.

Isolation and characterization of genic microsatellites

A set of 2391 stress specific EST sequences obtained by subjecting K2, a leading mulberry variety [19-21], was examined for the presence of repeat motifs and 800 sequences were found to contain a total of 1155 genic microsatellite regions (Table 1). Of these, 254 sequences were found to contain more than one microsatellite locus. Mono nucleotide repeats were the most common among the sequences (Figure 1) followed by tri and hexa-repeat motifs (28.3% and 38.3% respectively). Among the factors that cause the generation of repeat sequences in the genome, replication slippage is often considered as the major mechanism. Though, this is a random phenomenon, the slippage in genic regions occurs in repeats of three bases clubbed with frame shift mutations which suppresses non-triplet repeats resulting in the abundance of TNR and HNR motifs [44-46]. A total of 180 compatible microsatellite regions were identified represented by 136 primer pairs (Figure 1). A significant 87.5% of these were perfect while 5.8% were interrupted and 6.6% were compound repeats (Table 3).

It appears that the forces causing tandem repeats such as mutation, replication slippage etc., occurred more frequently in non-coding regions than the genic regions [22,45,47]. It is also possible that the lethal mutations in genic regions would subsequently eliminate the genotype while the sequence variations in non-coding regions of the genome would persist, resulting in the observation of higher frequency of sequence variations in the non-coding genomic regions. Accordingly, more numbers of repeat regions were found on the genomic regions (82%) while 48% were found in the genic regions. A large number of clones with more than 15bp of repeat motifs were found among the markers developed. Results revealed that the frequency of such markers was more in the non-coding regions of the mulberry genome than the genic regions [25]. The presence of longer repeats in the genome may have an evolutionary advantage leading to differences in the ability to adapt to new environments [48,49].

Validation of genomic and genic SSR markers

The genic and genomic SSR markers were validated using four contrasting genotypes of *Morus alba* that were chosen based on variations in certain physiological traits [50] and seven different mulberry species (all belonging to the genus *Morus*) (Table 4). Of the 222 genomic and 136 genic SSR markers screened, 137 (62%) genomic and 51 (37%) genic SSR markers showed single locus amplification in all the *Morus* species (Table 5). Further, genomic SSRs exhibited greater levels of polymorphism compared with the genic SSR markers. Such phenomenon has also been reported in other plant species [51]. Of the 188 markers examined, 87 (46.2%) detected heterozygosity in the mulberry genotypes and species with a maximum of 1.00 for markers MulSSR39, Mul3SSR26 Mul3SSR91 and Mul3SSR135, (Additional file 1). Around 41% of the genic markers also detected heterozygosity among the mulberry genotypes and species (Additional file 1). SSR markers are highly suited for mapping even in cross pollinated species because of their ability to detect heterozygosity. The markers developed in this study also detected significant levels of heterozygosity in mulberry species and genotypes.

Variations in the genic regions, though less frequent, would have a greater possibly of having a direct role in altering the phenotype of an organism [52]. The variability obtained for the SSR markers across mulberry species and genotypes was analyzed using Power Marker version 3.25 and the results are summarized in Table 6. A total

Table 2 Details of the genomic SSR markers developed for mulberry (Continued)
Locus
133
134
135
136
137
138
139
Sl no

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22

Mathimuthilan et al. BMC Plant Biology 2013, 13:194
doi:10.1186/1471-2229-13-194
Table 3 Details of the genic (EST) SSR markers developed for mulberry (Continued)

	Primer Name	Sequence 1	Sequence 2	Length (bp)	GC Content (%)	Annotations
23	MESTSSR56F	CATTCCGTCTTCTTGAG	ES448442.1	220	58.8	Perfect
24	MESTSSR56R	GGAACCAAGACTCTTAAG	ES448462.1	236	54.8	Perfect
25	MESTSSR61F	GGACCCGACGCCACCAAC	ES448534.1	239	54.8	Perfect
26	MESTSSR66F	GCCGCACCGGTACGAAATAAC	ES448763.1	215	54.8	Perfect
27	MESTSSR67F	GCGTCGCTTTGATG	ES448909.1	238	52.8	Perfect
28	MESTSSR67R	GCAGACACGCTGACGAG	ES448763.1	215	54.8	Perfect
29	MESTSSR73F	GCCGTTCGCTTCTCAGGACG	ES448909.1	238	52.8	Perfect
30	MESTSSR73R	GCAGACACGCTGACGAG	ES448763.1	215	54.8	Perfect
31	MESTSSR76F	CCGACACACCTCTGAAGAG	ES448915.1	238	52.8	Perfect
32	MESTSSR76R	GCAGACACGCTGACGAG	ES448763.1	215	54.8	Perfect
33	MESTSSR77F	CCGACACACCTCTGAAGAG	ES448915.1	238	52.8	Perfect
34	MESTSSR77R	GCCGTTCGCTTCTCAGGACG	ES448763.1	215	54.8	Perfect
35	MESTSSR78F	CCGACACACCTCTGAAGAG	ES448915.1	238	52.8	Perfect
36	MESTSSR78R	GCCGTTCGCTTCTCAGGACG	ES448763.1	215	54.8	Perfect
37	MESTSSR79F	CCGACACACCTCTGAAGAG	ES448915.1	238	52.8	Perfect
38	MESTSSR79R	GCCGTTCGCTTCTCAGGACG	ES448763.1	215	54.8	Perfect
39	MESTSSR85F	CCGACACACCTCTGAAGAG	ES448915.1	238	52.8	Perfect
40	MESTSSR85R	GCCGTTCGCTTCTCAGGACG	ES448763.1	215	54.8	Perfect
41	MESTSSR90F	CCGACACACCTCTGAAGAG	ES448915.1	238	52.8	Perfect
42	MESTSSR90R	GCCGTTCGCTTCTCAGGACG	ES448763.1	215	54.8	Perfect
43	MESTSSR93F	CCGACACACCTCTGAAGAG	ES448915.1	238	52.8	Perfect
44	MESTSSR93R	GCCGTTCGCTTCTCAGGACG	ES448763.1	215	54.8	Perfect
of 936 alleles were obtained from 188 markers of which 164 (87%) were polymorphic among the mulberry species and genotypes. These markers revealed an allelic diversity ranging from 1 to 17 with an average of 4.97 alleles per marker locus (Figure 2/Table 6). Earlier reports on allelic diversity of mulberry SSR markers had revealed an average of 4.9 [18], 5.1 [53] and 18.6 [17] alleles per locus. This allelic diversity can be effectively used for various applications ranging from diversity, evolutionary history and QTL mapping of complex traits in mulberry.

Most of the genic and genomic SSR markers developed in this study were highly informative with an average PIC value of 0.543 which ranged from 0.000 to 0.929 among mulberry species and genotypes (Table 6). Percentage of variation explained by the principal component analysis also revealed that 41% of the markers were effective in discriminating the variation among the mulberry species and genotypes confirming their efficiency in detecting genetic variations even among closely related varieties.

Two mulberry genotypes viz., Dudia white and UP105 were identified as contrasting lines differing in root traits and WUE in earlier studies [50]. These lines were crossed and a F₁ segregating population was developed. Of the 188 markers examined, 94 genomic and 22 genic markers were found to be polymorphic between these two parents. These polymorphic markers would be a very useful genomic resource for constructing a genetic linkage map for mulberry. This work is in progress and when done would lead to the determination of the linkage between markers and their position on mulberry linkage groups.

In the present investigation, we report a large number of genic and genomic SSR markers that can be exploited to examine the diversity among mulberry genotypes and

S.No	Genotypes	Family	Origin	Ploidy	PIC
1	M. alba	Moraceae	Japan	2n = 28	A
2	M. assambola	Moraceae	-	-	-
3	M. exotica	Moraceae	Zimbabwe	-	-
4	M. indica	Moraceae	India	2n = 28	
5	M. lavigata	Moraceae	India	2n = 3x = 42	
6	M. macroura	Moraceae	-	-	
7	M. multicaulis	Moraceae	China	2n = 28	
8	Dudia white	Moraceae	India	-	B
9	Himachal Local	Moraceae	India	-	
10	MS3	Moraceae	India	-	
11	UP105	Moraceae	India	-	
12	Artocarpus heterophyllus (Jackfruit)	Moraceae	Asia	2n = 56	C
13	Ficus bengalensis (Banyan)	Moraceae	South Asia	-	
14	Ficus carica (Fig)	Moraceae	South Asia	2n = 26	

(Note: All species belong to family Moraceae).
species. However, the relevance of the marker system would increase if they are transferable to other species.

Transferability of the SSR markers to other related species

The transferability of the mulberry SSR markers was examined using three species belonging to the family Moraceae viz., Ficus (F. bengalensis), Fig (F. carica), and Jackfruit (A. heterophyllus) (Table 4). Of all the markers evaluated 78% (107) genomic and 82% (42) markers showed locus specific amplification in at least one of the three species studied (Table 5). Around 30% of the markers were transferable to all the three species. Of the 107 genomic and 42 genic markers, 70% and 76% were transferable to jackfruit. The transferability of these markers was relatively low in Fig and Ficus, which ranged between 41 to 46% (Table 5). It can be perceived that the genic regions of related genomes would be more conserved than the non-coding regions and hence would have higher transferability [55]. These markers would be highly useful for genome mapping and comparative genomics in mulberry and other closely related species belonging to Moraceae.

Several reports confirm the molecular relatedness of mulberry with a few other plant species belonging to the family Moraceae [56,57]. Thus, the effective transferability of both genic and genomic SSR markers to these species can be expected. In this context, the present study is significant as a large proportion of the mulberry markers were found to be effectively transferable to these closely related species of family Moraceae.

Diversity analysis

Genetic diversity among the mulberry and three closely related species from the family Moraceae was analyzed using the 188 locus specific markers. We used two clustering algorithms viz., Unweighted Neighbor Joining (NJ) and factorial analysis (FA) to group the species and genotypes. The results of genetic relationships among the species and mulberry genotypes based on NJ and FA is presented in Figures 3 and 4. Both the algorithms were congruent and grouped the species and genotypes into four clusters. A. heterophyllus, F. bengalensis and F. carica segregated into a distinct cluster (I) while other mulberry species and genotypes clustered separately (II, III and IV). It was interesting to note that Dudia white clustered along with M. lavigata and M. assambola, while all other mulberry species and genotypes grouped into clusters III and IV. Though the dendrogram in Figure 3 indicates clusters III and IV as different, based on the boot strap values, these clusters could be considered as not significantly distinct. Therefore it is apparent that all the mulberry genotypes and species share common alleles except the genotype Dudia white and mulberry species M. lavigata and M. assambola. The diversity structure represented by the factorial analysis also indicated a similar grouping pattern for the mulberry species and genotypes (Figure 4). Though Dudia white is often considered as a genotype of M. alba, there is no firm molecular evidence for its origin.

The genetic relatedness of the 14 species and genotypes is explained in the Table 7. Based on the dissimilarity matrix Fig and UP105 showed maximum dissimilarity (93.8%) and Fig and Ficus showed the least (38%). Among the mulberry species and genotypes, the minimum genetic dissimilarity (44.4%) was observed between M. alba and M. exotica and highest dissimilarity of 74.7% was found between Dudia white and UP105.
These two genotypes significantly differed in physiological traits such as root length and water use efficiency [50]. Overall, the diversity analysis clearly indicates that the markers reported in this study are very well conserved across the taxa and can be effectively utilized to study the genetic relationship among varieties, genotypes and species of *Moraceae*.

Conclusion

Considering the commercial importance of mulberry and the complexity of trait based breeding, a focused molecular breeding strategy needs to be evolved for the genetic enhancement of this crop. Lack of sufficient genomic resources such as SSR markers has been one of the major constraints. We report a total of 188 robust locus...
specific SSR markers generated by analyzing 3485 genic and genomic sequences of mulberry genome. The markers developed were highly efficient in characterizing seven different mulberry species and four contrasting genotypes of *Morus alba* L. These markers also exhibited extensive transferability to other related species belonging to the family *Moraceae* viz., *Ficus* (*Ficus bengalensis*), *Fig* (*Ficus carica*) and *Jackfruit* (*Artocarpus heterophyllus*). The markers displayed high levels of polymorphic information content (PIC) and heterozygosity, enhancing the opportunities of using these markers in diversity analysis as well as for tagging QTLs governing complex agronomic and physiological traits. All the markers developed have been deposited in NCBI/EMBL database and are publicly available.

Methods

Plant materials and DNA extraction

Two strategies were adopted for the generation of genomic resources of microsatellite markers for mulberry. Microsatellite motifs in the genomic regions were identified by adopting the pre-cloning enrichment strategy using the genomic DNA isolated from a mulberry genotype Dudia white. Similarly, a stress expressed sequence tag (EST) was analyzed to identify microsatellite motifs in genic regions of mulberry genome. Details of the methodology adopted are described below.

Pre-cloning enrichment strategy for the construction of genomic library and mining of microsatellite motifs

The SSR enriched genomic library was constructed by a modified method of SaghaiMaroof et al. [58]. Four micrograms of high quality genomic DNA was extracted from a genotype, Dudia white. This genotype was identified based on the extensive phenotyping carried out with a diverse set of mulberry germplasm [50]. The genomic DNA was digested by blunt-end generating restriction endonuclease, RsaI (MBI Fermentas, USA). This restriction reaction generated a large number of approximately 500–1000 base pair fragments. The ligation of Super SNX linkers, consisting of a Super SNX 24-mer (5′-GGTTAAGGCTAGCTAGCAGAATC-3′) and a phosphorylated 28-mer (5′-pGATTCTGCTAGCTAGGCCTTAAACAAA-3′) to the blunt termini of restriction fragments was performed for 2 hours at 37°C. To ensure linker ligation, 10 μl of digested and ligated product was pre-amplified using 1.5 μl of Super SNX24 Forward primer (10 μM), 150 μM of dNTPs, 2 mM MgCl2, 1 unit of *Taq* DNA polymerase and 25 μg/ ml of BSA in a volume of 25 μl. Self-ligation of the linkers was avoided by adding 1 unit of the restriction enzyme, *XmnI*. PCR amplification was carried out with a program consisting of an initial DNA denaturation step of 95°C for 2 min followed by 20 cycles of: DNA denaturation step at 95°C for 20 s, primer annealing cycle with the appropriate temperature for specific primer pairs for 20s and a DNA
Table 7: Dissimilarity matrix of mulberry and other related species tested for transferability of genic and genomic SSR markers

Accessions	Mulberry species				Mulberry genotypes			Related species						
	M. Lavigata	M. indica	M. assambola	M. macroura	M. multicaulis	M. exotica	M. alba	Himachal Local	UP105	Dudia white	MS3	Jackfruit	Ficus	Fig
M. lavigata	1													
M. indica	0.602	1												
M. assambola	0.535	0.629	1											
M. macroura	0.615	0.544	0.641	1										
M. multicaulis	0.620	0.578	0.647	0.590	1									
M. exotica	0.608	0.527	0.634	0.550	0.584	1								
M. alba	0.576	0.495	0.602	0.518	0.552	0.444	1							
Himachal local	0.662	0.620	0.689	0.632	0.597	0.626	0.594	1						
UP105	0.682	0.640	0.708	0.652	0.616	0.645	0.613	0.582	1					
Dudia white	0.625	0.668	0.651	0.680	0.686	0.673	0.641	0.728	0.747	1				
MS3	0.630	0.587	0.656	0.600	0.564	0.593	0.561	0.581	0.600	0.695	1			
Jackfruit	0.734	0.753	0.760	0.765	0.771	0.758	0.727	0.813	0.832	0.799	0.780	1		
Ficus	0.833	0.852	0.859	0.864	0.870	0.857	0.825	0.912	0.931	0.898	0.879	0.704	1	
Fig	0.840	0.859	0.867	0.871	0.877	0.865	0.833	0.919	0.938	0.905	0.886	0.711	0.380	1
extension cycle of 72°C for 2 mins. A final elongation step of 72°C for 10 min was performed to ensure complete amplification of the fragments. All PCR amplifications were carried out using an Eppendorf Master Cycler (Eppendorf, Hamburg). An aliquot of the amplicons was resolved on a 1.2% agarose gel to check the success of linker ligation.

The restriction digested and linker-ligated DNA fragments were captured by hybridizing with biotinylated microsatellite oligonucleotides (Sigma Aldrich): [CA]_{17}, [AG]_{16}, [AGCl]_{20}, [AGG]_{30}, [ACGC]_{15}, [ACCT]_{30}, [AAC]_{14}, [ATC]_{14}, and [AAG]_{14}. The enrichment of microsatellites was carried out in 50 μl reaction volume containing 25 μL 2x hybridization solution (12x Sodium saline citrate, 0.2% SDS), 10 μL equimolar biotinylated microsatellite oligos and 2 μg of linker ligated DNA. The hybridization of the microsatellite harboring genomic DNA fragments with the biotinylated microsatellite probes was facilitated by a touchdown temperature PCR consisting of 99 cycles of 95°C C/5 min, 70°C/5 sec, 68.8°C/5 sec, 66.8°C/5 sec with step down of 0.2°C for every 5 sec until it reaches 50°C. The temperature in the tubes was then maintained at 50°C for 10 min. Subsequently, a program consisting of 20 cycles of 49.5°C/5 sec with step down of 0.5°C every 5 sec until it reaches 40°C/5 sec and finally held at 15°C.

The touchdown PCR conditions facilitate the microsatellite probes to hybridize with complimentary DNA repeat fragments (i.e., expectantly long prefix repeats) when the reaction mixture is at or near the microsatellite probes melting temperature. Hybridized fragments were selectively isolated using Streptavidin coated paramagnetic beads (Roche, Mannheim, Germany). Enriched DNA fragments were amplified with super SNX24 primers and purified using PCR purification column (Sigma, USA). The purified enriched products were ligated to pTZ57R/T vector (MBI Fermentas, USA) using T4-DNA ligase overnight at 16°C. The ligated genomic inserts were cloned in competent E. coli DH5α host cells and grown overnight at 37°C. The transformed colonies were confirmed by performing PCR using M13 universal primers (3 μM), 100 μM dNTPs, 2 mM MgCl₂, 1 U Taq DNA polymerase and 1X PCR buffer, at an annealing temperature of 58°C for 30 cycles. PCR products of the recombinant clones were purified using PCR-purification column (Sigma, USA) and sequenced using M13 forward and reverse primers on ABI 3700 sequencer.

Development of EST library to identify genic microsatellite markers

A stress transcriptome was developed by extracting the total mRNA from the leaves of water stressed and well watered mulberry plants. A widely adopted mulberry variety, K2 was used for this purpose. A modified guanidiumisothiocyanate protocol [59] was adopted to isolate total RNA from mature leaf tissue. Total messenger RNA (mRNA) was then isolated from 1 mg of total RNA using mRNA isolation kit (Promega). The mRNA was reverse transcribed to develop cDNA and the ESTs have been isolated [19]. These EST sequences were used in this investigation to develop genic SSR markers.

SSR marker development

Initially, the sequences were analyzed to identify unique and non-redundant libraries of genic and genomic regions for designing primers. The nucleotide sequences were analyzed using the Clustal-W, an on-line tool to determine the complementarity between pairs of sequences. The non-redundant sequences were analyzed with “Mreps” software (http://bioinfo.lifl.fr/mreps/mreps.php) to identify sequences containing microsatellite motifs. The analysis revealed the presence of a single nucleotide base being the repeat motif (mono nucleotide repeat – MNR) to as high as regions with more than six bases (long nucleotide repeat – LNR). The MNR and LNR sequences were omitted from further analysis and primers were designed only the sequences with repeat motifs of two nucleotides (di-nucleotide repeats – DNR) and six nucleotides (hexa-nucleotide repeats – HNR).

Primer3, also online software was used for designing appropriate primers [60]. The quality of primers was determined using the FAST PCR program and only those primers that would amplify a fragment in the range of 150 and 450 base pairs of template DNA were selected. Synthesis of these primers was outsourced to Bioserve India Pvt. Ltd., Hyderabad). Each of the primer pairs was standardized for their locus specific amplification using the genomic DNA of Dudia white as a template. GradientPCR was carried out in a total volume of 15 μL containing 2 ng of DNA template, 1x Taq buffer, 2 mM MgCl₂, 0.2 mM dNTPs, 1 U Taq DNA polymerase (MBI Fermentas, USA) and 3 μM each of forward and reverse primers. Amplification was performed in a epGradient Master cycler (Eppendorf, Hamburg) with the following PCR conditions: DNA denaturation at 95°C for 5 min followed by 30 cycles of 95°C for 1 min, primer annealing temperatures ranging between 45-65°C for 45 s (depending on the Ta for each primer pair) and a DNA extension step of 72°C for 45 s and a final extension step at 72°C for 8 min. The details of the primer sequences, their annealing temperatures, expected amplicon size etc. are summarized in Table 2 and Table 3. The amplified products were resolved on 3% agarose gels. Only those primer pairs that produced unambiguous single band amplification alone were considered for the development of SSR markers in mulberry. This stringency ensured the development of robust SSR markers in
mulberry which can be effectively used for diversity analysis as well as for constructing genetic linkage maps. Only such markers were further used for validation.

Validation of markers
Each of the markers was examined for their ability in amplifying the genomic DNA from other mulberry species and genotypes. Genomic DNA was extracted from seven distinct mulberry species and four contrasting genotypes of mulberry using a modified CTAB method [61]. These four genotypes were selected based on the extensive phenotyping of a set of 295 germplasm accessions for the variability in root traits and water use efficiency. Thus, the four genotypes represent contrast for these highly relevant drought adaptive traits. The list of the mulberry species and genotypes are given in Table 4. The template DNA from the different mulberry species and genotypes were amplified using each of the primers for genic and genomic microsatellite markers. The PCR conditions followed are same as that adopted for gradient PCR, explained above. All the amplified products were analyzed on microchip based electrophoresis system MultiNA (Shimadzu biotech, Japan) and the highest peak detected by the fragment analyzer was scored for the presence of the expected band for each primer pair. The polymorphism data was scored and used for the determination of polymorphic information content (PIC) for each marker as per Liu and Muse [62], Observed heterozygosity and allele diversity were computed using the Power Marker 3.25 software [62]. The most appropriate locus specific marker competent to divulge the variation among the species and genotypes was determined by principle component analysis (PCA).

Genetic diversity and cross species transferability
It is well known that there would be significant levels of sequence homology between closely related species and hence, there would be a possibility of a specific SSR marker detecting a similar locus in other related species. Establishment of the transferability of markers to other related species is therefore important while developing locus specific marker systems. The transferability of these markers was examined in three closely related species belonging to the family Moraceae, namely Ficus (F. bengalensis), Fig (F. carica) and Jackfruit (A. heterophyllus) (Table 4).

The percentage of transferability of the markers was calculated for each species by determining the presence of target loci to the total number of loci analyzed. The allelic diversity data obtained for all the microsatellite loci amplified were used to compute the genetic dissimilarity using DARwin v.5.0 program [63]. The dissimilarity matrix was further used to group the species according to their genetic relatedness based on Unweighted Neighbor Joining method and factorial analysis.

Additional file

Additional file 1: Marker-wise details of the gene diversity, heterozygosity and PIC values tested using mulberry species and genotypes.

Competing interests
The authors declare that they have no competing interest.

Authors’ contributions
MB and NNK contributed equally for the development of microsatellite enriched genomic libraries, marker development and validation. MB wrote the first draft of the manuscript. JB, SHR, MA and MJN contributed in genotyping activity. MSS conceptualized and directed the research program. UKM coordinated the research and oversaw the progress. The EST library was developed and annotated by PK. All authors reviewed and edited the manuscript. All authors read and approved the final manuscript.

Acknowledgement
This work was carried out with the financial support from Department of Biotechnology (DBT), Government of India to MSS which is sincerely acknowledged (File No: Grant/DBT/C/SHA/GIA/1395/2010-11. We also wish to thank the Departments of Sericulture and Horticulture, UAS, Bangalore for kindly providing the samples of mulberry and other related species, respectively. We acknowledge the technical inputs and suggestions by Dr. T.K. Narayanaswamy, Professor of Sericulture.

Author details
1Department of Crop Physiology, University of Agricultural Sciences, Bangalore, India. 2Department of Sericulture, University of Agricultural Sciences, Bangalore, India. 3Department of Plant Molecular Biology, University of Delhi, South Campus, New Delhi, India.

Received: 2 May 2013 Accepted: 13 November 2013
Published: 1 December 2013

References
1. Khrama G, Mahanta JC, Deole AL, Kantharaju BM: Raw silk production: 2007–08. Indian Silk 2008; 47:33–44.
2. Khorana P, Checker VG: The advent of genomics in mulberry and perspectives for productivity enhancement. Plant Cell Rep 2011; 30:825–838.
3. Zietjiewicz E, Rafalski A, Labuda D: Genome fingerprinting by simple sequence repeat (SSR) – anchored polymerase chain reaction amplification. Genomics 1994, 20:176–183.
4. Prevost A, Wilkinson MJ: A new system of comparing PCR primers applied to ISSR fingerprinting of potato cultivars. Theor Appl Genet 1999, 98:107–112.
5. Gepts P. The use of molecular and biochemical markers in crop evolution studies. Evol. Biol 1993, 27:51–94.
6. Mathithumilan B, Dandin SB: Genetic analysis of diploid and colchicine-tetraploid mulberry (Morus indica and Morus alba) by molecular and morphological markers. Int J Plant Breed 2008, 3:58–64.
7. Vijayan K, Chatterjee SN: ISSR profiling of Indian cultivars of mulberry (Morus spp.) and its relevance to breeding programs. Euphytica 2003, 131:53–63.
8. Vijayan K, Srivastava PP, Awasthi AK: Analysis of phylogenetic relationship among five mulberry (Morus) species using molecular markers. Genome 2004, 47:410–418.
9. Awasthi AK, Nagaraja GM, Naik GV, Sriramana K, Thangavelu K, Nagaraju J: Genetic diversity and relationships in mulberry (Genus Morus) as revealed by RAPD and ISSR marker assays. BMC Genet 2004, S1:1–18.
10. Beckmann JS, Soller M: Toward a unified approach to genetic mapping of eukaryotes based on sequence tagged microsatellite sites. Bio Tech 1990, 8:910–912.
11. Taust D, Renz M: Simple sequences are ubiquitous repetitive components of eukaryotic genomes. Nucl Acid Res 1984, 2:4127–38.
12. Bhat PR, Krishnakumar V, Hendre PS, Rajendrakumar P, Varshney RK, Aggarwal RK: Identification and characterization of expressed sequence tags-derived simple sequence repeats markers from robusta coffee variety
'CtR' (an interspecific hybrid of Coffea canephora x Coffea arabica).

Mol Ecol Notes 2005, 5:880–83.

13. McCouch SR, Teytelman L, Xu Y, Lobos KB, Clare K, Walton M, Fu B, Maghrani R Li Z, Xing Y, Zhang Q, Kono L, Yano M, Fellstrom R, De Clerck G, Schneider D, Carneiro S, Ware D, Stein L: Development and Mapping of 2240 New SSR Markers for Rice (Oryza sativa L.). DNA Res 2002, 9:199–207.

14. Abbott AC, Soisinski BM, Kanwar K, Hagee F, QiYL, Young CD, Ryder S, Rajapakse WW, Baird RE: Ballard. Characterization of microsatellite markers in peach (Prunus persica (L.) Batsch). Theor Appl Genet 2000, 101:421–428.

15. Mookerjee S, Guerin J, Collins G, Ford C, Sedgley M: Paternity analysis using microsatellite markers to identify pollen donors in an olive grove. Theor Appl Genet 2005, 111:174–186.

16. Gulyani V, Khurana P: Microsatellite libraries (ESTs) and partial characterization of stress-related and membrane transporter genes from mulberry (Morus indica). Plant Science 2003, 168:519–525.

17. Khurana P, Khurana JP, Ravi V, Lal S: Microsatellite markers for genome analyses of coffee and related species. Theor Appl Genet 2003, 107:359–374.

18. Li Y, Korol AB, Fahima T, Belles A, Neuvo E: Microsatellites within genes: structure, function, and evolution. Mol Biol Evol 2004, 21:1437–1450.

19. Lagercrantz U, Ellefsen H, Anderson L: The abundance of various polymorphic SSR motifs differs between plants and vertebrates.

20. Wang Z, Weber JL, Zhang H, Tankersly SD: Survey of plant short tandem DNA repeats. Theor Appl Genet 1994, 194:61–6.

21. Liu BH: Statistical Genomics: In Linkage Mapping and QTL Analysis. Boca Raton: CRC Press; 1997.

22. Edwards KD, Barker JA, Daily A, Jones C, Karp A: Microsatellite libraries enriched for several microsatellite sequences in plants. Biotechniques 1996, 20:758–760.

23. Zane L, Bargelloni L, Patarnello T: Strategies for microsatellite isolation: a review. Mol Ecol 2002, 11:11–16.

24. Ferguson ME, Burrow MD, Schultz SR, Bramel PJ, Paterson AH, Kresovich S, Mitchell SL: Microsatellite identification and characterization in peanut (Arachis hypogaea L.) Theor Appl Genet 2004, 108:1064–1070.

25. He G, Meng R, Newman M, Gurumahesh P, Rinshi D, Bhat PR, Krishna KM, Kumar N, Balyan HS: Transferable EST-SSR markers for the study of polymorphism and genetic diversity in bread wheat. Mol Genet Genomics 2003, 270:315–323.

26. Metzger D, Bytof J, Wills C: Selection against frame shift mutations limits microsatellite expansion in coding DNA. Genome Research 2000, 10:72–80.

27. Morgante M, Hanafey M, Powell W: Microsatellites are preferentially associated with non-repetitive DNA in plant genomes. Nat Genet 2002, 30:194–200.

28. Wang Y, Kang M, Huang M: Microsatellite Loci Transferability in Chestnut. J Amer Soc Hort Sci 2008, 133:692–700.

29. Marcotte EM, Pellegrini M, Yeates TO, Eisenberg D: A census of protein repeats. J Mol Biol 1999, 293:151–160.

30. Wren JD, Fargacs E, Fondon JW, Pitterleidlis A, Cheng SY: Repeat polymorphisms within gene regions: Phenotypic and evolutionary implications. Am J Human Genet 2000, 67:345–356.

31. Vinoda KS: Identification of QTLs conditioning water use efficiency and associated traits in mulberry though marker assisted selection. PhD thesis; 2010.

32. Varsney RK, Granner A, Somers ME: Genic microsatellite markers in plants: Features and applications. Trends in biotech 2005, 23:48–55.

33. Grattapaglia D, Pompione C, Krist M, Sedel R: Genetics of growth traits in forest trees. Curr Opin Plant Biol 2009, 12:1–9.

34. Zhao WG, Zhou ZH, Mao XZ, Zhang Y, Wang SB, Huang JH, Xiang H, Pan YL, Huang YP: A comparison of genetic variation among wild and cultivated Morus species (Moraceae: Morus) as revealed by SSR and SSR markers. Biol Rev 2007, 62:259–290.

35. Kalinowski ST: Counting alleles with rarefaction: private alleles and hierarchical sampling designs. Cons Genet 2004, 5:539–543.

36. Gupta PK, Rustgi S, Sharma S, Singh R, Kumar N, Balyan HS: Transferable EST-SSR markers for the study of polymorphism and genetic diversity in bread wheat. Mol Genet Genomics 2003, 270:315–323.

37. Datwyler SL, Weisblen GD: On the origin of the Fig: Phylogenetic relationships of Moraceae from NdhF sequences. Ann J Bot 2004, 10:727–777.

38. Leitch IJ, Chase MW, Bennett MD: Phylogenetic analysis of DNA C-values provides evidence for a small ancestral genome size in flowering plants. Ann Bot 1998, 82:855–94.

39. Saghaimorafa MO, Solima RM, Jorgensen RA, Allard RW: Ribosomal DNA spacer-length polymorphisms in barley: Mendelian inheritance, chromosomal location, and population dynamics. Proc Nat Acad Sci 1984, 81:8014–8018. USA.

40. Virtual Resource of the Fig: Phylogenetic relationships of Moraceae from NdhF sequences. Ann J Bot 2004, 10:727–777.

41. Leitch IJ, Chase MW, Bennett MD: Phylogenetic analysis of DNA C-values provides evidence for a small ancestral genome size in flowering plants. Ann Bot 1998, 82:855–94.

42. Saghaimorafa MO, Solima RM, Jorgensen RA, Allard RW: Ribosomal DNA spacer-length polymorphisms in barley: Mendelian inheritance, chromosomal location, and population dynamics. Proc Nat Acad Sci 1984, 81:8014–8018. USA.
61. Ausubel FM, Brent R, Kingston RE, Moore DD, Seidmann JG, Smith JA, Struhl E; (Eds): Current protocols in molecular biology, Volume 3. New York: John Wiley and Sons; 2003.
62. Liu K, Muse SV: Power Marker: an integrated analysis environment for genetic marker analysis. Bioinformatics 2005, 21:2128–2129.
63. Perrier X, Flan A, Bonnot F: Data analysis methods. In Genetic diversity of cultivated tropical plants. Edited by Hamon P, Seguin M, Perrier X, Glaszmann JC. Enfield: Science Publishers, Montpellier; 2003:43–76.

doi:10.1186/1471-2229-13-194
Cite this article as: Mathithumilan et al: Development and characterization of microsatellite markers for Morus spp. and assessment of their transferability to other closely related species. BMC Plant Biology 2013 13:194.