Supplementary Materials

Contents

Scheme S1. Preparation of the gelators B and C	Page S2
NMR and IR spectra of compounds B and C	Pages S3-S8
Figure S1. Analysis of the minimum gelation concentration (MGC) need to form hydrogels from A.	Page S9
Figure S2. Analysis of the minimum gelation concentration (MGC) need to form hydrogels from C.	Page S9
Figure S3. Hydrogel images of 1, 2 and 3 obtained with an optic microscope	Page S10
Figure S4. Hydrogel images of 7, 8 and 9 obtained with an optic microscope	Page S10
Figure S5. DLS correlation coefficient, number and volume analysis of 4, 5 and 6	Page S11
Figure S6. Amplitude sweep analysis of hydrogel 1	Page S12
Figure S7. Amplitude sweep analysis of hydrogel 2	Page S12
Figure S8. Amplitude sweep analysis of hydrogel 3	Page S13
Figure S9. HPLC-MS analysis of gelators B and C after gelation process, showing different degrees of hydrolysis	Page S14
Figure S10. Time sweep analysis of hydrogel 10	Page S15
Figure S11. Absorbance spectrum of hydrogel 10	Page S16
Figure S12. 19F-NMR spectra of gelators A and C before and after the gelation process	Page S17
Scheme 1. Synthesis of Boc-D-F₂-Phe-D-Oxd-OH B and Boc-D-F₂-Phe-L-Oxd-OH C, with yields after flash chromatography.
1H NMR spectrum of Boc-D-F$_2$-Phe-Oxd-OH B in CD$_3$OD

COSY spectrum of Boc-D-F$_2$-Phe-D-Oxd-OH B in CDCl$_3$
13C NMR spectrum of Boc-D-F$_2$-Phe-D-Oxd-OH B in CD$_3$OD

19F NMR spectrum of Boc-D-F$_2$-Phe-D-Oxd-OH B in CDCl$_3$
IR-ATR spectrum of Boc-D-F₂-Phe-D-Oxd-OH B
1H NMR spectrum of Boc-D-F$_2$-Phe-L-Oxd-OH C in CD$_3$OD

COSY spectrum of Boc-D-F$_2$-Phe-L-Oxd-OH C in CDCl$_3$
13C NMR spectrum of Boc-D-F$_2$-Phe-L-Oxd-OH C in CD$_3$OD

19F NMR spectrum of Boc-D-F$_2$-Phe-L-Oxd-OH C in CDCl$_3$
IR-ATR spectrum of Boc-D-F2-Phe-L-Oxd-OH C

Transmittance (a.u.)

Wavelength (cm$^{-1}$)

1DL
Figure S1. Analysis of the minimum gelation concentration (MGC) need to form hydrogels from A: from left to right: 0.1% w/w concentration; 0.2% w/w concentration; 0.3% w/w concentration; 0.4% w/w concentration.

Figure S2. Analysis of the minimum gelation concentration (MGC) need to form hydrogels from C: from left to right: 0.1% w/w concentration; 0.2% w/w concentration; 0.3% w/w concentration; 0.4% w/w concentration.
Figure S3. From left to right, hydrogel images of 1, 2 and 3 obtained with an optic microscope with a 10x magnification. Scalebar: 100 μm.

Figure S4. From left to right, hydrogel images of 7, 8 and 9 obtained with an optic microscope with a 40x magnification. Scalebar: 25 μm.
Figure S5. From top to bottom, DLS correlation coefficient, number and volume analysis of particles after filtration: (a) solution 4; (b) solution 5; (c) solution 6.
Figure S6. Amplitude sweep analysis of hydrogel 1.

Figure S7. Amplitude sweep analysis of hydrogel 2.
Figure S8. Amplitude sweep analysis of hydrogel 3.
Figure S9. HPLC-MS analysis of gelators B and C before (left) and after (right) the addition of GdL: (a) gelator B (0.5 w/w concentration) in NaOH (no gel is formed); (b) gelator B (0.5% w/w concentration) in PBS (no gel is formed); (c) gelator C (0.5 w/w concentration) in NaOH (gel is formed); (d) gelator C (0.5% w/w concentration) in PBS (gel is formed). Retention times: gelator A (after hydrolysis) = 6.3 min; gelator B = 6.7 min; gelator C = 6.7 min.
Figure S10. Time sweep analysis of hydrogel 10.
Figure S11. Absorbance spectrum of hydrogel 10, collected using an optical path of 1.0 cm cuvette at 10 nm/s with a Cary300 UV-Vis double beam spectrophotometer, having a cuvette full of water as a reference.
Figure S12. 19F-NMR spectra registered in D$_2$O of gelator A (a) before the gelation process and (b) afterwards and gelator C (c) before the gelation process and (d) afterwards.