The Role of Medicinal and Aromatic Plants against Obesity and Arthritis: A Review

Alok K. Paul 1,2,*, Rownak Jahan 2, Anita Paul 3, Tooba Mahboob 4, Tohmina A. Bondhon 2, Khoshnur Jannat 2, Anamul Hasan 2, Veeranoot Nissapatorn 4, Polrat Wilairatana 5,6, Maria de Lourdes Pereira 6, Christophe Wiart 7 and Mohammed Rahmatullah 2,8

1 School of Pharmacy and Pharmacology, University of Tasmania, Private Bag 26, Hobart, TAS 7001, Australia
2 Department of Biotechnology & Genetic Engineering, University of Development Alternative, Lalmatia, Dhaka 1207, Bangladesh; rownak86@hotmail.com (R.J.); afrozebondhon@gmail.com (T.A.B.); jannat.koli.22@gmail.com (K.J.); anamulhasanoris@gmail.com (A.H.)
3 Department of Pharmacy, University of Development Alternative, Dhanmondi, Dhaka 1207, Bangladesh; anita.paul1988@gmail.com
4 School of Allied Health Sciences, World Union for Herbal Drug Discovery (WUHeDD) and Research Excellence Center for Innovation and Health Products (RECIHP), Walailak University, Nakhon Si Thammarat 81060, Thailand; tooba66@hotmail.com (T.M.); nissapat@gmail.com (V.N.)
5 Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
6 CICECO-Aveiro Institute of Materials & Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal; mlourdespereira@ua.pt
7 The Institute for Tropical Biology and Conservation, Universiti Malaysia Sabah, Jalan UMS, Kota Kinabalu 88400, Sabah, Malaysia; asianpharmacog@gmail.com
8 Correspondence: alok.paul@utas.edu.au (A.K.P.); polrat.wil@mahidol.ac.th (P.W.); rahamatm@hotmail.com (M.R.)

Abstract: Obesity is a significant health concern, as it causes a massive cascade of chronic inflammations and multiple morbidities. Rheumatoid arthritis and osteoarthritis are chronic inflammatory conditions and often manifest as comorbidities of obesity. Adipose tissues serve as a reservoir of energy as well as releasing several inflammatory cytokines (including IL-6, IFN-γ, and TNF-α) that stimulate low-grade chronic inflammatory conditions such as rheumatoid arthritis, osteoarthritis, diabetes, hypertension, cardiovascular disorders, fatty liver disease, oxidative stress, and chronic kidney diseases. Dietary intake, low physical activity, unhealthy lifestyle, smoking, alcohol consumption, and genetic and environmental factors can influence obesity and arthritis. Current arthritis management using modern medicines produces various adverse reactions. Medicinal plants have been a significant part of traditional medicine, and various plants and phytochemicals have shown effectiveness against arthritis and obesity; however, scientifically, this traditional plant-based treatment option needs validation through proper clinical trials and toxicity tests. In addition, essential oils obtained from aromatic plants are being widely used as complementary therapy (e.g., aromatherapy, smelling, spicing, and consumption with food) against arthritis and obesity; scientific evidence is necessary to support their effectiveness. This review is an attempt to understand the pathophysiological connections between obesity and arthritis, and describes treatment options derived from medicinal, spice, and aromatic plants.

Keywords: rheumatoid arthritis; obesity; spice; medicinal plant; aromatic plant; essential oil; osteoarthritis; comorbidity
1. Introduction

Obesity can be characterized as a body mass index (BMI) of 25 or more in adults, who are classified as overweight, or a BMI of 30 or more, classified as obesity [1]. In 2016, around 1.9 billion adults (aged >18 years) were overweight, but >650 million people were obese. According to the WHO, the cause of obesity is an increased consumption of foods that are high in fat and sugars, along with the progressively sedentary nature of modern lifestyles, reduced physical work, lack of exercise, and urbanization [1]. An increased waist circumference of more than 40 inches in men (35 inches in women) is known as visceral adiposity, and can be a cause for concern even when BMI is at a normal level. Obesity and overweight also cause other diseases as comorbidities, such as musculoskeletal disorders (e.g., arthritis) [2], cardiovascular diseases [3], diabetes [4], and cancers [5].

1.1. Obesity and Inflammation

Obesity is caused by various factors, including imbalance between energy intake and expenditure, sedentary lifestyle, genetics, and many other causes [6]. In terms of cellular mechanisms, adipocytes (the cells responsible for the storage of lipids from food and synthesized from de novo lipogenesis) and macrophages secrete adipokines, and excess secretion of adipokines causes low-grade inflammation in some obese people [6,7]. In addition, triglycerides present in adipocytes hydrolyze into free fatty acids, and are transported into the blood circulation of obese people. Lipid deposition in hepatocytes can be seen in disease conditions such as non-alcoholic fatty liver disease (NAFLD) and other comorbidities related to obesity [7]. Heymsfield and Thomas described how obesity is strongly connected to the pathogenesis of several chronic diseases, such as coronary artery disease (CAD), NAFLD, osteoarthritis (OA), gastroesophageal reflux disease, obstructive sleep apnea, stroke, and chronic kidney disease [6]. Immune dysfunction derived from obesity is caused by excess secretion of inflammatory adipokines [8]. A clinical study revealed that obesity was firmly connected with various proinflammatory cytokines, such as interleukins (ILs: IL-5, -10, -12, and -13), interferon-γ (IFN-γ), and tumor necrosis factor-α (TNF-α), and obese patients displayed elevated plasma levels of IL-4, -10, and -13 [9]. Thus, obesity is not simply a result of high energy intake and low energy expenditure; it is multifaceted, and inflammatory cytokines (increased TNF-α, IL-4, and IL-6; reduced IL-10), adipokines (e.g., adiponectin, leptin, resistin, and visfatin), and many other factors are involved in the pathogenesis of obesity [10,11]. The interaction between adipocytes and hepatic lipid metabolism, along with imbalance in the synthesis of de novo synthesis, causes obesity and associated comorbidities [12,13]. Adipocytes release adipokinomes or adipokines that control energy metabolism and dietary intake [14]. Adipokinomes regulate the secretion of adipose cells, releasing fatty acids and prostaglandins, adipin, proinflammatory cytokines such as IL-1β, -6, -8, and -10, and tumor necrosis factor-α (TNF-α) [10,15,16]. Excess plasma IL-6 levels trigger the release of C-reactive proteins by hepatocytes, which indicate the levels of chronic inflammation and the risk of cardiovascular disorders [17]. Collectively, these processes lead to lipid deposition (obesity), vascular hemostasis, insulin resistance, chronic metabolic diseases such as type 2 diabetes, and inflammation, as the proinflammatory cytokines transform into inflammatory cytokines [17–19]. Inflammatory processes also stimulate the development or progression of psoriasis, cancer, and kidney diseases [17]. Increased plasma contents of IL-6, IL-10, and IL-18 are observed among obese patients [20,21]. Thus, obesity is not merely a metabolic disease; rather, it is a chronic inflammatory disorder, where dietary intake inflicts or triggers the pathogenesis of obesity and diabetes [11,22].
1.2. Influence of Dietary Habits during Childhood on Obesity and Inflammation

As mentioned in the previous section, there are possible correlations between obesity and adult diet. Similarly, childhood diet may influence the possibility of obesity and other comorbidities in later life. Breastfeeding (intake of colostrum and milk) at an earlier age (from birth to 6 months of age) reduces plasma proinflammatory cytokine levels compared to formula feeding [23] (Figure 1). Breast milk is an ideal food for children, naturally supplemented with various bioactive immunomodulatory substances such as immunoglobulins (e.g., secretory IgA), oligosaccharides, cytokines (e.g., IL-1, IFN-α, IL-6, and TNF-α help in the development and functions of the mammary gland), growth factors (e.g., transforming growth factor β2), food antigens, and essential microbiota supplements (e.g., non-sterile breast milk contains long-chain polyunsaturated fatty acids (LCPUFAs), which impede the production of proinflammatory cytokines [24–26] (Figure 1). Human milk intake in infancy can also protect children against various pathogens, including but not limited to Bordetella pertussis, Campylobacter, Haemophilus, Salmonella, Streptococcus, Shigella, Vibrio cholerae, and respiratory viruses [23,27,28]. Noticeably, formula-fed children show reduced transforming growth factor β2 compared to breast milk-fed children; instead, they display higher levels of plasma proinflammatory cytokines (e.g., IL-2 and TNF-α) than breast-fed children [29]. Inadequate intake of LCPUFAs in the body/diet can influence the development of obesity and arthritis (Figure 1). Resistin—an adipokine—along with other senescence-associated secretory phenotype factors, regulates glucose metabolism, oxidative stress, inflammatory responses, and autoimmune diseases [30,31]. High plasma resistin concentrations can increase the possibility of inflammation, insulin resistance, and the aging process [30]. Resistin possibly interacts with TLR-4 receptors, influences the transcription of proinflammatory genes, inflammatory cytokines, and chemokines, and causes osteoclastogenesis via the NF-κB pathway [30]. Sedentary lifestyle and increased calorie intake are related to the progression of adipocyte hypertrophy and low-grade inflammation via the recruitment of antigen-producing cells in adipose tissues [31,32]. Resistin, adiponectin, TNF-α (released by adipocytes), and proinflammatory cytokines (e.g., IL-1β, IL-6) derived from adipokines increase muscle and bone metabolism [30,32]. This biological pathway is responsible for the generation of several chronic diseases, including obesity, diabetes, and arthritis [32].
2. Arthritis and Inflammation

2.1. Osteoarthritis and Inflammation

There are various types of arthritis, and these are multifactorial, with the common features of chronic intense pain and inflammation [33]. Osteoarthritis (OA) is a chronic painful disorder that increases with age and is common in adults aged over 55 years [34]. The mechanisms of OA are not completely understood, but its clinical features include irreversible age-related damage to the joint cartilage, pain, and low-grade inflammation over a period of many years [35]. The pathogenesis of OA can also be caused by cellular stress produced by the activation of endogenous cytosolic proteins such as nucleotide-binding domain, leucine-rich repeat/pyrin domain-containing-3 (NALP3) inflammasome.
proinflammatory cytokines released by macrophages [41–43], or the production of proinflammatory cytokines induced by uric-acid-crystal-induced inflammasome assembly [40]. There is a positive correlation between osteoarthritis (OA) severity, uric acid levels (in synovial fluid), and proinflammatory cytokines (e.g., IL-18, IL-1β) [38,44]. Monosodium urate crystals (MSU) can accumulate in joints as crystals when its plasma concentrations exceed its solubility (≥70 mg/L) [45], stimulating the synthesis of different inflammatory cytokines [46]. The inflammatory processes are also triggered by chemokines, proteases, and oxidative materials that cause osteoporosis, cartilage degradation, and inflammation in the synovial joints [44,47]. This process is further exaggerated when toll-like receptors recognize MSU (monosodium urate crystals), and when lymphocytes and macrophages in synovial fluids uptake MSU. These interactions ultimately release various inflammatory cytokines (especially IL-1β, IL-6, TNF-α, and IL-18) via nucleotide-binding domain and the leucine-rich repeat/pyrin domain-containing-3 (NALP3) inflammasome [36–40]. OA is also influenced by calcium-oxalate-containing crystals that stimulate the production of IL-1β, causing cartilage damage [48]. OA is also caused by mutations of genes encoding collagens (e.g., types II, IV, V, and VI) [33,49]. The pathogenesis of OA can cause neuronal damage in joint tissues, causing intense pain, limited mobility, depression, and anxiety in elderly people (Figure 2) [50,51]. People experiencing OA also often have multiple comorbidities, such as obesity [52–54], diabetes [4], cardiovascular diseases [3], cancers [5], and musculoskeletal disorders [2].

Figure 2. Osteoarthritis (OA) and associated comorbidities. Abbreviations—COPD: chronic obstructive pulmonary disease. This figure was made with www.biorender.com (accessed on 25 February 2022).

Currently, analgesics such as non-steroidal anti-inflammatory drugs (NSAIDs) and corticosteroids are used to manage OA, but these drugs have no effect on the prevention of OA’s pathogenesis, and they are mainly for symptomatic management. In addition, these drugs have adverse effects on the gut, liver, kidneys, and heart [55–58]. Long-term
use of NSAIDs to manage arthritis provides poor pain relief, major discomfort for patients, and can lead to invasive procedures, such as surgeries [59–61] (Figure 3). A clinical study showed that paracetamol alone provided insufficient analgesia in OA, but an NSAID such as diclofenac (0.15 g daily) showed noticeable efficacy in OA management [62]. It is also important to note the adverse effects of diclofenac, including gastrointestinal toxicity, liver toxicity, and renal impairment (Figure 3). Another study reported that celecoxib (an NSAID) caused lower cardiovascular, renal, and gastrointestinal adverse reactions than ibuprofen or naproxen (NSAIDs), which was similar in patients experiencing OA or RA [63]. It is understood that there are significant variations between drugs within a group of drugs (e.g., NSAIDs), and the efficacy of a particular drug may depend on its molecular structure, formulation, route of administration, dosage, and duration of treatment [64]. The bioactivity and efficacy of a drug also depend on its metabolic capabilities (e.g., hepatic or renal impairment, aging-related) and bioavailability at the target site. Importantly, chronic treatment with NSAIDs for OA can result in adverse outcomes and cause adverse events in older adults [65,66]. Opioids are not recommended to manage OA [51,67], but these drugs are widely used in OA-related chronic pain management for older adults, despite their potential adverse effects—such as addiction, dependence, analgesic tolerance, respiratory depression, and behavioral disorders over long-term usages (Figure 3) [66,68–71].

Figure 3. Routes of administration of commonly used drugs for the treatment of OA, and some adverse effects associated with these drugs. Abbreviations—NSAIDs: non-steroidal anti-inflammatory drugs (NSAIDs); mAb: monoclonal antibody. This figure was made with www.biorender.com (accessed on 18 February 2022).

2.2. Brief Pathophysiology of Rheumatoid Arthritis (RA)

2.2.1. RA and Inflammation

Despite differences in the initiation and progression mechanisms between OA and RA—the latter of which is another type of arthritis that is multifactorial, and whose root causes remain to be elucidated—long-term low-grade inflammation is the common ground in the pathogenesis of obesity, OA, and RA [52–54,72]. As with the pathogenesis of OA, RA manifests with increased secretion of proinflammatory cytokines (e.g., IL-1, IL-6, IL-12, IL-17, IL-18, and TNF-α). In parallel, secretion of immunomodulatory cytokines (e.g., IL-10, IL-11, and IL-13) is reduced in the blood, along with stiffness, swollen joints, and impaired movement of the affected person [73–76] (Figure 1). Defensive cells, such as T helper 1 (Th1) and T helper 17 (Th17) cells, produce an inflammatory response via IL-17A, IFN-γ, and TNF-α, leading to the pathogenesis of RA [77,78]. Toll-like receptors
(TLRs) regulate the functions of the nuclear factor kappa B ligand (NF-κB), osteoclastogenesis, and generation of proinflammatory cytokines [79–81]. As a result, joint pain, inflamed joints, and damage to cartilage can be seen during clinical symptoms of RA [82]. Inflammatory cytokines such as IL-17 or TNF-α can influence the upregulation of matrix metalloproteinase (MMP) enzymes, which irreversibly damage the extracellular matrix and the cartilage of joints [74,83] (Figure 1). Apart from inflammatory or genetic mechanisms, fat-rich food intake, smoking, and periodontal infections also affect the generation and progression of RA [84,85]. Women are more prone to RA than men. Citrullination of proteins in lung macrophages, along with neuropathic pain and osteoporosis, can potentially influence the pathogenesis of RA [84,86–88].

2.2.2. RA, Gut Dysbiosis, and Inflammation

RA also manifests as a result of excess inflammatory cytokines, with the influence of major changes in the microbial population of the gut. For example, Faecalibacterium spp. are a part of the healthy gut microbiota that is responsible for butyrate production [89–91], and helps in the secretion of mucin—a natural lubricator of gut epithelial cells. If the abundance of Faecalibacterium spp. decreases, other opportunistic bacteria such as Collinsella, Eggerthella, Haemophilus, Prevotella, and Streptococcus can grow and produce inflammatory cytokines and/or cause citrullination of proteins, leading to RA [90,92].

Prevotella copri (*P. copri*) is a part of our normal gut microbiota and oral cavity, and can grow massively with the influence of change in diet, stress, lack of oral hygiene, and microbial infection [85,93–95]. As a result, *P. copri* can cause increased production of T helper cells (e.g., Th1, Th17) and inflammatory cytokines (e.g., IL-1β, IL-6, IL-17, and IL-23), leading to an inflammatory response in the gut, and can possibly migrate to inflammatory joint tissues [96,97] (Figure 1). *Prevotella* spp. can produce increased prostaglandin E2 in joint tissues, and has been observed in RA, causing joint pain, inflammation, and bone degradation [98,99] (Figure 1). The simultaneous growth of Porphyromonas gingivalis in the mouth and *P. copri* in the intestine are noticed in RA patients [100]. *P. gingivalis* possibly translocates to synovial joints via phagocytosis, causes citrullination of proteins in joints, and increases inflammatory cytokine production [101,102]. Proper management and restoration of healthy gut microbiota by using probiotic supplements as food can reduce the population of *Prevotella* spp. and increase the gut population of Lactobacillus spp. [95].

3. Relationships between Obesity and Arthritis

OA and RA are both prevalent in older adults (>55 years), and especially in the elderly with frailty syndromes (e.g., falls, immobility, delirium, incontinence, and adverse effects of medications) [72,103]. Obesity is also a common comorbidity of this population cohort for various reasons, including inactivity, diet, diabetes, and aging [104,105]. Tumor necrosis factor α (TNF-α)—a proinflammatory cytokine—from the adipose tissues of obese animals can cause low-grade inflammation in adipocytes [52,106]. Adipose tissues mainly produce inflammatory biomarkers such as TNF-α, and macrophages and other immune cells are partially responsible for oxidative damage and low-grade inflammation in the body [52,106,107]. NLRP3 (nucleotide-binding oligomerization domain-like receptor family pyrin domain-containing 3)—a polypeptide complex inflammasome found in macrophages—is also responsible for releasing proinflammatory cytokines. NLRP3 is stimulated by the activation of NF-κB (nuclear factor kappa B, which TNF-α stimulates), and causes the secretion of the proinflammatory cytokines pro-IL-1β and pro-IL-18 [108] (Figure 4). NLRP3 is matured by PAMPs (pathogen-associated molecular patterns) and DAMPs (damage-associated molecular patterns) or lipopolysaccharides. NLRP3 maturation stimulates the release of cytokines (e.g., IL (interleukin)-1β, IL-6, and IL-18) and low-grade inflammation in multiple organs, including joints (Figure 4) [109].
Figure 4. Connections between the pathogenesis of osteoarthritis (OA), obesity, and rheumatoid arthritis (RA) in older adults. Abbreviations—↑: increase; ROS: reactive oxygen species; TNF-α: tumor necrosis factor α; TLR: toll-like receptor; IL: interleukin; NADPH: nicotinamide adenine dinucleotide phosphate oxidase; IFNγ: interferon gamma; NF-κB: nuclear factor kappa B; NLRP3: nucleotide-binding oligomerization domain-like receptor family pyrin domain-containing 3 inflammasome; PAMPs: pathogen-associated molecular patterns; DAMPs: damage-associated molecular patterns; MHC-II: major histocompatibility complex class II. This figure was made with www.biorender.com (accessed on 18 February 2022), and partially reproduced from Paul et al. [107].

Clinical studies show strong positive connections between obesity, osteoarthritis, and rheumatoid arthritis [52,53,110–112] (Figure 4). People with a body mass index of >30 kg/m² show higher incidence of knee OA than people of normal weight, and it is recommended to reduce weight in order to improve clinical symptoms of OA in obese patients [113,114]. A clinical study showed that obesity was present (33.4%) in RA patients (n = 11,406) at a significantly higher rate than obesity (31.6%) in the control group (n = 54,701) [112]. Obesity causes inflammation and autoimmune conditions in RA patients [112]. Obese RA patients experience more tender joints and swelling in joints than non-obese RA patients [115]. Obesity is a common comorbidity of RA patients, and it also reduces the efficacy of drugs working against TNF-α, but losing body weight improves the success of treatment with these drugs [111]. Importantly, no association with BMI was found in this review with drugs other than anti-TNF-α drugs, such as biologics that act
against IL-6, CD4, or CD20 [111]. Studies have reported that the RA patients experience lower grip strength and fatigue (40–80%), and these decrease their strength and their interest in being involved in various physical activities [116,117]. Similarly, a later study showed that patients who also experienced RA displayed fatigue (40%) and anxiety/depression (52%) as comorbidities [118]. Obese RA patients experienced less remission (improvement of symptoms and pain relief) and lower disease activity scores than non-obese (control) RA patients [110]. Van Beers-Tas et al. mentioned that reduced smoking increased arthritis remission, but obesity increased arthritis progression and delayed its remission [119]. Another study on a small number (n = 19) of obese RA patients (aged 55 years on average; range: 34–71) observed that reduction in dietary energy intake and moderate physical exercise led to a 9% reduction in fat mass and improved physical fitness of the participants [120]. Conversely, another study with a comparatively large number (n = 192) of participants (aged 64.5 years on average, range: 50–78) in a similar weight-reduction program did not improve structural joint damage, muscle strength, or knee joint alignment, but achieved some benefits in terms of overall health improvement [121]. Noticeably, age was an important factor in the performance of the participants, and there were differences in the measurements of performance, as the previous study measured outcomes such as the capability to ride a bicycle, whereas the later study investigated using MRI and radiographs [120,121]. Collectively, management of obesity may improve the clinical symptoms of obese OA and RA patients.

4. Current Drugs for the Management of Obesity and Arthritis

A few anti-obesity drugs have now been approved for human use, and most of these show various side effects. According to the National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), the United States Food and Drug Administration (USFDA) has so far approved five drugs—namely, orlistat, phentermine/topiramate, lorcaserin, naltrexone/bupropion, and liraglutide—to treat obesity [122]. Importantly, the European Medicines Agency (EMA) has approved three drugs to fight symptoms of obesity: orlistat, bupropion/naltrexone, and liraglutide [123]. Orlistat reduces intestinal absorption of fat content from food, as it is a pancreatic lipase inhibitor; side effects of this drug include diarrhea, oily stools, abdominal pain and, less frequently, cholelithiasis, cholestatic hepatitis, and subacute hepatitis [124]. People feel less hungry when using the drug combination phentermine/topiramate, as phentermine decreases one’s appetite, while topiramate reduces seizures and migraine headaches. Noticeably, this drug combination can cause serious side effects, including dysgeusia (taste alteration), paresthesia (burning sensation in hands and feet), hypoesthesia (loss of sensation of a body part), attention deficiency, dizziness, constipation, and dry mouth [125]. There are serious safety concerns with respect to the long-term efficacy of anti-obesity medications; the European Medicines Agency refused approval of phentermine/topiramate, while for lorcaserin, authorization was previously withdrawn for a low overall benefit/risk ratio [126]. Lorcaserin (for the risk of cancer), rimonabant, and sibutramine have been withdrawn from the US market for safety concerns [126,127]. Mitral regurgitation is a serious side effect of lorcaserin, and may lead to other complications, such as increased risk of cardiovascular complications [127,128]. The naltrexone/bupropion drug combination has little effect against obesity individually. Long-term opioid treatment causes various behavioral adverse effects, addiction, and tolerance, but naltrexone—as an opioid antagonist—shows efficacy against dependency on opioids and alcoholic beverages [64,69,122,129]. Patient management using these analgesics should also consider the reduced metabolic capability of people such as the elderly, or people suffering from chronic kidney or liver diseases [70,130–133]. Bupropion is used for treating depression and for help with giving up smoking. Individually, these drugs have no or little effect on obesity; used in combination, they form a safe anti-obesity polypharmacy drug with no serious side effects except for nausea [134,135].
Liraglutide—an anti-diabetic drug—works as an anti-obesity drug as well, and shows side-effects such as nausea, diarrhea, abdominal pain, and constipation. Acute pancreatitis and rare thyroid tumors are severe adverse effects that may arise from the use of liraglutide [136].

Rheumatoid arthritis (RA) is currently treated with disease-modifying anti-rheumatic drugs (DMARDs) such as methotrexate, non-steroidal anti-inflammatory drugs (such as paracetamol, ibuprofen, naproxen, diclofenac, indomethacin, ketoprofen, and meloxicam), Janus kinase (JAK) inhibitors (e.g., baricitinib and upadacitinib), anti-malarial drugs (e.g., hydroxychloroquine and chloroquine), TNF-α inhibitors, and glucocorticoids (e.g., prednisone, hydrocortisone, and dexamethasone). All of these drug types produce severe adverse effects (Figure 5), limiting their efficacy, and scientists are looking for safe alternative drugs or food supplements for the prevention or cure of RA [95,137–139].

Figure 5. Common problems associated with long-term treatment of arthritis with current anti-arthritis drugs. Abbreviations—NSAIDs: non-steroidal anti-inflammatory drugs; DMARDs: disease-modifying anti-rheumatic drugs; GI: gastrointestinal. The purple-colored text indicates common routes of administration of various anti-arthritis drugs. This figure was made with www.biorender.com (accessed on 25 February 2022).

Overall, anti-obesity drugs are effective in reducing body weight, but in consideration of their adverse effect profiles, the only possible alternative to these drugs is bariatric surgery, which also increases the risk of developing alcohol use disorders [140]. Thus, scientists, naturopaths, and traditional medicinal practitioners are investigating some suitable plants that have the ability to reduce weight. A single plant may contain hundreds
of secondary metabolites, a few of which may be effective against obesity. Plants are readily available from nature; many plants can be cultivated and extracted to isolate active ingredients for various purposes.

5. Research Methodology

To select the information on medicinal or aromatic plants for use against obesity and rheumatoid arthritis (RA) for this review, data from recent literature (no time limit used) were gathered from the PubMed, Scopus, and Google Scholar databases. The keywords used for the literature research included the terms obesity, anti-obesity, rheumatoid arthritis, RA, medicinal plant, essential oils, and clinical (or preclinical) studies.

6. Obesity and Arthritis Management

6.1. Ayurvedic Medicines against Arthritis and Obesity

Ayurvedic medications have been used on the Indian subcontinent since the 2nd century BC, and are still being used as traditional, complementary, and alternative medicines [141]. There are many Ayurvedic plants and drug formulations that are used to manage arthritis and inflammatory diseases [142–146]. Recent randomized clinical trials (RCTs) of several Ayurvedic drugs (e.g., Rumalaya (Moringa oleifera; Tinospora cordifolia), Shunti-Guduchi (Zingiber officinale; Tinospora cordifolia), Ashwagandha powder (Withania somnifera), and Sidh Makardhwaj (gold, mercury, and sulfur in a specific ratio of 1:8:24, and prepared according to the Ayurvedic Formulary of India [147]) reported efficacy against osteo- and rheumatoid arthritis [148–150]. It is to be noted that despite the presence of mercury in Sidh Makardhwaj, it has been claimed that the formulation has no detectable toxic effects [147]. The following plants are mainly used as medications against arthritis in Ayurveda: Curcuma longa L., Boswellia serrata Roxb. ex Colebr., Zingiber officinale Roscoe, Tinospora cordifolia (Willd.) Miers, Withania somnifera (L.) Dunal, Commiphora myrrha (Nees) Engl., Glycyrrhiza glabra L., Piper nigrum L., and Capsicum spp. (Table 1). Curcuma longa has shown anti-inflammatory and anti-arthritic effects in various clinical and preclinical studies. The rhizome of Curcuma longa is traditionally used as a spice in Indian cuisine and for medicines in Ayurveda. The rhizome of this plant is known to be effective against asthma, allergies, rheumatism, liver disorders, and inflammation in Ayurvedic medicines. A recent clinical trial demonstrated that 0.5 g twice daily consumption of Curcuma longa extract (composition: 80% wt/wt aqueous-based extract standardized to turmerosaccharides, and 20% wt/wt curcuminoids) over 12-week period improved symptoms (such as knee pain using both the visual analogue scale (VAS) and Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) pain values) of patients experiencing symptomatic knee osteoarthritis and knee effusion synovitis [151].
Table 1. Ayurvedic medicinal plants used against arthritis (comparisons of traditional knowledge versus randomized clinical trials). Abbreviations—n: number of patients; VAS: visual analogue scale; KOOS: Knee Injury and Osteoarthritis Outcome Score; PGADA: Patient Global Assessment of Disease Activity; serum sColl2-1: a cartilage degradation marker; SLBSP: solid lipid Boswellia serrata particles; BSE: Boswellia serrata extract; DAS28: Disease Activity Score-28; WOMAC: Western Ontario and McMaster Universities Osteoarthritis Index; KSF-36: Korean 36-Item Short-Form Health Survey score.

Name	Traditional Use(s)	Clinical Evidence (Total n, n in Each Group)	Formulation (Treatment Duration, Days)	Arthritis Measurement Parameters	Arthritic Pain Measurement Reference Parameters
Curcuma longa	Against asthma, allergies, food poisoning, rheumatism, liver disorders, and inflammation (rhizome)	Improved RA (total 90, n = 0)	2 or 4 caps/day for 84 days (0.25 g/cap turmacin)	Stair mill test	VAS; [152,153]
Curcuma longa	-	Decreased knee OA (total 150, n = 50)	2 or 3 caps/day for 90 days (46.7 mg turmeric extract)	PGADA; serum sColl2-1	VAS; KOOS [154]
Boswellia serrata	Rheumatism	Decreased knee OA (total 48, n = 24)	169.33 mg/cap for 120 days (87.3 mg β-boswellic acids) twice daily	MRI to inspect changes in knee joint gap and osteophytes	Pain and stiffness [155,156]
Boswellia serrata	-	Decreased knee OA (total 43, n = 20 (BSE); 23(SLBSP))	SLBSP; BSE: three times daily for 60 days	CTX-II (in urine); IL-2, IL-4, IL-6, TNF-α, and IFN-γ (in serum)	WOMAC, VAS [157]
Tinospora cordifolia (formulation of: T. cordifolia, Zingiber officinale, W. somnifera, and T. terrestris)	Leprosy, fever, asthma, anorexia, jaundice, gout, skin infections, diabetes, chronic diarrhea, and dysentery	Reduced knee OA (total 121, n = 40 per group)	4 caps/day for 168 days (water extracts: 750 mg daily)	Joint counts, global disease assessments, and health assessment questionnaires; plasma inflammatory cytokines.	VAS [158,159]
Tinospora cordifolia (Formulation of: T. cordifolia, Boswellia serrata, Emblica officinalis, Zingiber officinale)	-	Reduced knee OA (total 440, n = 110 per group)	6 caps for 168 days (2 caps three times daily)	Functional difficulty Likert score	VAS; Modified WOMAC [160]
Commiphora myrrha	Anti-inflammatory, hepatoprotective, muscle relaxing, anti-arthritic, anti-inflammatory	Reduced knee OA (total 100, n = 50 per group)	0.5 g (Commiphora myrrha) tab twice daily for 84 days	KSF-36, personal evaluation, and laboratory analysis	VAS [161,162]
Name	Traditional Use(s)	Clinical Evidence (Total n, n in Each Group)	Formulation (Treatment Duration, Days)	Arthritis Measurement Parameters	Arthritic Pain Measurement Reference Parameters
---------------------------	---	---	---------------------------------------	---------------------------------	--
Zingiber officinale	Colds, nausea, arthritis, migraines, and hypertension	Improved OA (total 60, n = 20/group)	Ginger (750 mg cap daily); ginger plus Diclofenac tab (750 mg + 50 mg) for 84 days	WOMAC	VAS [163,164]
Zingiber officinale	-	Improved RA (total 70, n = 35/group)	2 caps/day (750 mg ginger/cap) for 84 days	Gene expression of FoxP3, RORγt, and T-bet. Disease Activity Score-28	- [165]
Piper nigrum (mixed with:		Improved knee OA (total 60, n = 30/group)	2 caps/day for 28 days (ingredients: 300 mg curcumin, 7.5 mg gingerols, and 3.75 mg piperine)	Reduced prostaglandin E2 levels	Beck’s International Questionnaire [166]
Curcuma longa, and Zingiber officinale)		(compared against Naproxen)			

Boswellia serrata is known as an Ayurvedic medicine used against rheumatic pain and inflammatory diseases. In recent years, several randomized clinical trials found that the extracts of *Boswellia serrata* provided relief from arthritis-related pain and stiffness from knee osteoarthritis [155], reduced inflammatory cytokines, and improved Western Ontario and McMaster Universities Osteoarthritis Index and visual analogue scale scores [157]. Supplementation of 100 mg of *Boswellia serrata* extract with 300 mg of hyaluronic acid (1 tab/day for 20 days) improved arthritis-pain-related visual analogue scales (e.g., the American Knee Society Score (AKSS) and visual analogue scale (VAS) for pain) [167]. *Curcuma longa* (350 mg extract) and *Boswellia serrata* extract (150 mg) twice daily for 12 weeks also improved OA pain in patients with moderate knee OA using the Western Ontario and McMaster Universities Osteoarthritis (WOMAC) Index and visual analogue scale (VAS) [168].

Ginger (rhizomes of *Zingiber officinale*) improved RA by increasing expression of the forkhead-box-P3 (FoxP3) gene, and by reducing the expression of retinoic-acid-receptor-related orphan nuclear receptor gamma (RORγt) and T-reg genes [165] (Figure 6). FoxP3 is an essential transcription factor of regulatory T (T-reg) cells, and expression of this factor helps the development and function of T-reg cells [169]. Activation of T-reg cells produces the immunomodulatory cytokines transforming growth factor (TGF)-β and interleukin-10 (IL-10), and reduces inflammation [169]. The transcription factor RORγt is considered to be a major regulator of the differentiation of T helper 17 cells (Th17 cells) and the production of IL-17 family cytokines, which play an essential role in the development of a number of autoimmune disorders, including arthritis. T-bet is an immune cell transcription factor; in dendritic cells, T-bet reportedly regulates the production of the proinflammatory cytokine IL-1α [170]. Cumulatively, the decrease in the expression of these two transcription factor genes can be helpful in ameliorating RA (Figure 6) [171]. In another study with knee OA patients, 12 weeks of treatment with ginger (750 mg capsule) and ginger supplemented with diclofenac (750 mg capsule with a 50 mg diclofenac tablet) improved OA [163]. Noticeably, no severe adverse effects were recorded in these studies. Importantly, a *Tinospora cordifolia*-*, Zingiber officinale*-*, and *Semecarpus anacardium*-containing Ayurvedic drug reportedly improved the symptoms of
Furthermore, another clinical study over a period of 24 weeks with co-treatment with an Ayurvedic formulation containing mixed extracts of *Tinospora cordifolia*, *Boswellia serrata*, *Emblīca officinalis*, and *Zingiber officinale*, along with glucosamine sulphate (2 g/day) and celecoxib (0.2 g/day), reduced symptoms of knee OA [160]. A three-month treatment with a herbal formulation containing mixtures of powders of *Withania somnifera* (roots), *Boswellia serrata* (stem), *Curcuma longa* (rhizomes), and zinc produced better pain relief and reduced the disability scores of patients with knee OA [172].

Figure 6. Simplified mechanisms of the immunomodulatory effects of *Zingiber officinale*. Abbreviations—T-reg cells: regulatory T-lymphocytes; Th17: helper T-lymphocyte 17; IL: interleukin; FoxP3: forkhead-box-P3; RORyt: retinoic-acid-receptor-related orphan nuclear receptor gamma. This figure was made with www.biorender.com (accessed on 10 January 2022).

Commiphora species of plants have been used in traditional medicine as painkillers and anti-inflammatory agents. In a recent clinical trial, a TCM medicinal formulation containing extracts of *Commiphora myrrha* (gum resin) and *Paeonia lactiflora* (root) showed pain relief and no severe adverse effects when given over a period of 12 weeks in people experiencing knee OA [161].

Piper nigrum is traditionally used in many Ayurvedic formulations [166]. The main alkaloid of fruits of this plant is piperine. Daily treatment twice for 4 weeks with herbal capsules containing curcumin (300 mg), gingerols (7.5 mg), and piperine (3.75 mg) reduced the prostaglandin E2 levels in people experiencing chronic knee OA [166]. Another plant—*Typhonium trilobatum* (L.) Schott (Ghatkul, Ghetkun)—is known to have anti-arthritic and anti-rheumatic effects (leaf and whole plant, respectively). A preclinical study confirmed that the plant showed anti-inflammatory and analgesic effects, but the study needs further evidence from actual clinical trials [173,174]. It can be concluded that various trials have shown the efficacy of a number of Ayurvedic and other traditional
medicinal formulations in the treatment of arthritis; however, more clinical trials are necessary, as there are various discrepancies between the settings of clinical trials, such as the population sizes, types of patients, methodologies, and duration of treatment. Using modern formulations, such as implementation of nanotechnology-based formulations, would increase the bioavailability of some of these phytochemicals (such as curcumin), as shown in experimental studies [175,176].

In addition to the anti-arthritic plants mentioned above, Mukhopadhyay et al. (2019), in their list of anti-arthritic plants, mentioned Cuscuta reflexa Roxb., Piper longum L., Coriandrum sativum L., Cinnamomum zeylanicum Blume, Caesalpinia pulcherrima (L.) Sw., Asparagus racemosus Willd., Abutilon hirtum (Lam.) Sweet, Terminalia pallida Brandis, Lawsonia inermis L., Trigonella foenum-graecum L., Punica granatum L., Ruta graveolens L., Terminalia chebula Retz., Sida rhombifolia L., Xanthium strumarium L., Vilex negundo L., Lantana camara L., and Citrullus colocynthis (L.) Schrad. for their uses in the alleviation of arthritis [177–179]; their phytoconstituents and other details are shown in Table 2.

Table 2. Recent updates on studies related to plants with anti-arthritic properties that are used in traditional medicine.

Family	Name	Parts Used	Potential Ingredient(s)	Reference
Acanthaceae	Andrographis paniculata	Leaves	Andrographolide	[180,181]
Amaryllidaceae	Allium sativum	Essential oil	Diallyl disulfide, diallyl trisulfide, diallyl tetrasulfide	[182]
Anacardiaceae	Semecarpus anacardium	Nut, milk extract	Bioflavonoids	[183–186]
Apiaceae	Centella asiatica	Leaves (alcoholic extract)	Madecassoside, triterpenoid glycoside, asiaticoside	[187–189]
Apiaceae	Coriandrum sativum	Herb, fruit, seed, essential oils, hydroalcoholic extract	Cineole	[190,191]
Apocynaceae	Calotropis procera	Leaves, seeds, roots	Benzoylelineolone, benzolisolineolone	[192]
Apocynaceae	Hemidesmus indicus	Roots	Terpenoids	[193]
Araliaceae	Acanthopanax chisanensis	Leaves	Chiisanoside, chisanogenin	[194]
Araliaceae	Panax notoginseng	Ethanol extract, n-butanol extract	Ginsenoside	[195–198]
Asparagaceae	Anemarrhena asphodeloides	Roots	Mangiferin, polysaccharides, fructan	[199,200]
Asparagaceae	Asparagus racemosus	Hydroalcoholic extract	Shatavarin, saponin	[201,202]
Asparagaceae	Yucca schidigera	Bark, methanolic extract	Resveratrol, trans-3,3′,5,5′-tetrahydroxy-4′-methoxyx stilbene, yuccaols, spirobiflavonoids	[203–205]
Family	Name	Parts Used	Potential Ingredient(s)	Reference
--------------	-----------------------	-----------------------------	--	--------------
Asteraceae	Pluchea lanceolata	Root, hydroalcoholic extract	Sorghumol acetate, boehmerol acetate	[206–208]
Asteraceae	Siegesbeckia orientalis	Ethanical extract	Kirenol	[209,210]
Asteraceae	Tanacetum parthenium	Inflorescence	Parthenolide	[211–213]
Asteraceae	Tanacetum vulgare	Aerial parts, methanolic extract, hydroalcoholic extract	3,5-O-dicaffeoylquinic acid (3,5-DCQA)	[214,215]
Asteraceae	Xanthium strumarium	Fruits, methanolic extract	Sesquiterpenoids, phenylpropanoids, lignanoids, coumarins, steroids, glycosides, flavonoids, thiazides, anthraquinones, naphthoquinones	[216–218]
Berberidaceae	Berberis vulgaris	Root extract	Berberine	[219,220]
Boraginaceae	Arnebia euchroma	Entire herb (alcoholic extract)	Hydroxy naphthoquinone	[221,222]
Bromeliaceae	Ananas comosus	Fruit	Bromelain	[223,224]
Burseraceae	Boswellia carteri	Resin	Boswellic acids	[156,225]
Burseraceae	Boswellia frereana	Resin	Boswellic acid, epi-lupeol	[226,227]
Burseraceae	Boswellia serrata	Resin	3-Oacetyl-11-keto-β-boswellic acid, boswellic acid	[228,229]
Caesalpiniaceae	Caesalpinia pulcherrima	Plant, alcoholic extract	6-Amyrin, glucose, aspartic acid, glycine, proline, caesalpulcherrins	[230,231]
Cannabaceae	Cannabis sativa	Leaves	Cannabidiol	[232–234]
	Cannabis indica			
Capparaceae	Capparis spinosa	Ethanol extract, water extract	P-hydroxy benzoic acid, 5- (hydroxymethyl) furfural; bis(5-formylnurfuryl) ether, daucosterol; α-dfructofuranosides, uracil, stachydrine	[235–237]
Caprifoliaceae	Lonicera japonica	Dried leaves, dried flowers, water extract	Chlorogenic acid, ioniflavone, polysaccharides	[200,238–241]
Celastraceae	Tripterygium wilfordii	Entire herb, flower, ethyl acetate extracts	Celastrol, macrocyclic dilactone, valerian-type sesquiterpenes,	[242–246]
Family	Name	Parts Used	Potential Ingredient(s)	Reference
-----------------	--------------------------	-----------------------------------	--	-----------
Nutrients				
Cleomaceae	*Cleome gynandra*	Ethanolic extract	Triptolide (diterpene), alkaloids (celabazine, celacinnine, celafurine, and celallocinnine)	[247]
Combretaceae	*Terminalia chebula*	Fruits, hydroalcoholic extract	Triterpenes, tannins, anthroquinones, flavonoids, saponins, steroids	[248–253]
Convolvulaceae	*Erycibe obtusifolia*	Stems	Scopoletin	[254,255]
Cucurbitaceae	*Citrus colocynthis*	Herb, aqueous extract	Alkaloids, glycosides, flavonoids, tannins, sterols	[177,256,257]
Cucurbitaceae	*Thladiantha dubia*	Fruit	Polysaccharides	[258]
Cuscutaceae	*Cuscuta reflexa*	Alcoholic extract	Dulcitol, mannitol, sitosterol, lycopene, apigenin-7-β-rutinoside, 6-7 dimethoxy coumarin, quercetin, hyperoside, propenamide, reflexin, lutein, cuscutin, cuscutalin, kaempferol, kaempferol-3-O-glucoside	[259–261]
Fabaceae	*Bauhinia tarapotensis*	Leaves (chloroform extract)	Triterpenic acids of ursane and oleanane	[262]
Fabaceae	*Sophora flavescens*	Rhizomes	Kurarinone, kuraridin, isoxanthohumol	[263,264]
Fabaceae	*Trigonella foenum-graecum*	Seeds, alcoholic extract	Choline, mucilage, trigonelline	[177,265–267]
Lamiaceae	*Lavandula multifida*	Aerial parts, essential oils	Linalool, camphene, linalyl acetate, α-thujene, bornyl acetate, β-caryophyllene	[262,268]
Lamiaceae	*Leucas aspera*	Ethanolic extract	Epicatechin, β-epicatechin, procyanidin, β-sitosterol	[269,270]
Lamiaceae	*Rosmarinus officinalis*	Aerial parts, water extract, ethanol extract, essential oils	Carnosic acid, α-pinene, camphene, β-pinene, myrcene	[271–274]
Family	Name	Parts Used	Potential Ingredient(s)	Reference
--------------	-------------------------------	-----------------------	--	------------
Lamiaceae	*Salvia miltiorrhiza*	Flower, hydroalcoholic extracts	Tanshinone, cryptotanshinone	[275–277]
Lamiaceae	*Vitex negundo*	Seeds, leaves,	Lignans (e.g., vitexdoins), Tris(2,4-di-tert-butylphenyl) phosphate	[278, 279]
Lauraceae	*Cinnamomum zeylicanium*	Bark, essential oil	Cinnamaldehyde, eugenol, cymene, caryophyllene	[177–179]
Lauraceae	*Lindera aggregata*	Dry roots	Norisoboldine	[280–282]
Lauraceae	*Litsea guatemalensis*	Etanolic extract, essential oils	5,7,3′,4′-Tetrahydroxyisoflavone, pinocembrin, scopoletin	[283]
Lecythidaceae	*Barringtonia racemosa*	Fruits	Bartogenic acid	[284]
Loganiaceae	*Strychnos nux-vomica*	Seeds	Brucine, brucine n-oxide, strychnine	[285–287]
Lythraceae	*Punica granatum* (juice), methanolic extract	Seeds, leaves	Gallic acid, anthocyanins, ellagic acid, tannins, flavones, flavonoids, anthocyanidins, sterols	[288–291]
Malvaceae	*Abutilon hirtum*	Herb, essential oil	β-sitosterol, tocopherol, α-pinene, caryophyllene, caryophyllene oxide, endesmol, farnesol, borenol, geraniol, geranyl acetate, elemene and α-cineole	[292, 293]
Malvaceae	*Sida rhombifolia*	Aerial parts, stems, roots, hydroalcoholic extract	Flavonoids, tannins, vitamin C	[294, 295]
Meliaceae	*Dysoxylum binectariferum*	Seeds	Rohitukine	[296]
Oleaceae	*Olea europaea*	Leaves, fruit, compression-extracted oil	Omega-3 fatty acids, hydroxytyrosol	[297–301]
Oxalidaceae	*Biophytum sensitivum*	Inflorescence	Amentoflavone, polysaccharide	[227, 302]
Paeoniaceae	*Paeonia lactiflora*	Flowers, roots,	Glucosides, gallic acid	[303, 304]
Phyllanthaceae	*Phyllanthus amarus*	Aqueous extract	Phyllanthin, hypophyllanthin	[305–308]
Piperaceae	*Piper longum*	Seeds, aqueous extracts	Piperine, piperlongumine,	[309–311]
Family	Name	Parts Used	Potential Ingredient(s)	Reference
---------------	-----------------------------	---------------------------------	---	---------------
Poaceae	*Saccharum officinarum*	Whole plant, wax oil	Palmitic, oleic, linoleic, and linolenic acids	[312,313]
Polyporaceae	*Poria cocos* (saprophytic fungus)	Sclerotium	Triterpenoids	[314]
Ranunculaceae	*Clematis vitalba*	Aerial parts	Vitalboside	[315]
Ranunculaceae	*Coptidis rhizoma*	Roots and rhizomes	Berberine	[258,316]
Ranunculaceae	*Nigella sativa*	Seeds, compression-extracted oil	Thymoquinone	[317–320]
Rosaceae	*Chaenomeles speciosa*	Hydroalcoholic extract	Chlorogenic acid	[321–324]
Rosaceae	*Rosa canina*	Water extract	Terpenoids, galactolipids, carotenoids, fruit acids, fatty oils, phenolics,	[325–327]
Rubiaceae	*Lasianthus acuminatissimus*	Roots (methanolic and ethyly acetate extracts)	Anthraquinone glycosides, lasianthuoside, codonolactone	[328,329]
Rutaceae	*Ruta graveolens*	Methanolic extract	8-Methoxycoumarin	[330–332]
Solanaceae	*Cestrum diurnum*	Leaves, alcoholic extract	Ursolic acid	[333,334]
Solanaceae	*Withania somnifera*	Roots, leaves, water extract	Withanolides (steroidal lactones)	[335–337]
Verbenaceae	*Lantana camara*	Leaves, methanolic extract	Triterpenoids	[338–340]
Verbenaceae	*Lawsonia inermis*	Leaves, hydroalcoholic extract	Lawsons, luteolins, apigenin, esculetin, scopletin	[341,342]
Xanthorrhoeacea	*Aloe vera*	Gel from leaves	Anthroquinone glycosides	[343,344]
Zingiberaceae	*Alpinia officinarum*	Rhizomes	Diaryl heptanoids	[345]
Zingiberaceae	*Curcuma longa*	Rhizome	Curcumin	[346–348]
Zingiberaceae	*Zingiber officinale*	Rhizome, alcoholic extract	Gingerols, gingerdiols, phenylpropanoids, [6]-shogaol, shogaols	[349–352]

6.2. Essential Oils for use against Arthritis and Obesity

Apart from the intake of traditional medicines, massages and complementary therapies using essential oils are also claimed by traditional medicinal practitioners (TMPs) to improve the symptoms of various diseases—especially from arthritis or chronic pain. These beliefs stem from the practices and customs learned in various human societies over hundreds or thousands of years, and oral passage of the knowledge gained from generation to generation before the arrival of writing and record keeping on clay.
nutrients are volatile aromatic oils isolated from flowers, barks, leaves, and other parts of specific plants. Many of these oils have antimicrobial, emollient, palatable, and lipophilic permeability through the skin. Essential oils give people a good feeling at spiritual, physical (via massaging), and olfactory levels. The efficacy of these oils against chronic arthritic pain is yet to be established. Some preliminary clinical trials with a few essential oils have shown some benefits against arthritis, but their efficacy over a long period of time is unknown (Table 3). In our search of the PubMed search engine, we found four randomized clinical trials (Table 3) of essential oil therapy. Out of these four trials, aromatherapy with essential oils was used in two studies, whereas oral or gargling administrations were used in the other two trials [354–357]. A recent systematic review reported that essential oils have been used to treat RA, mainly with a small number of subjects for a short duration of observation (2–12 weeks), and mostly with women (60–100%) [358]. The typical oil used for aromatherapy to treat RA was lavender, ginger, or rosemary oil, and a single study showed efficacy against RA [358].

Table 3. Essential oils used to treat RA in randomized clinical trials (RCTs).

Oil Type	Key Findings	Reference
Evening primrose oil	Patients with RA (n = 40 total) and NSAID-induced GI lesion treated with γ-linolenic acid 540 mg/day (evening primrose oil 6 g/day) for 3 months slightly improved RA-related morning stiffness.	[355]
Lavender oil	Aromatherapy with lavender oil improved arthritic pain (against placebo) in patients (n = 30 each group) with knee osteoarthritis, but no proof of its long-term efficacy.	[356]
Lavender oil	Aromatherapy with lavender oil improved daily routine activities of patients (n = 30 each group) with knee osteoarthritis (against placebo), but no proof of its long-term efficacy.	[357]
Mouthwash with essential oils and curcumin (MEC)	Gargling with mouthwash containing essential oils and curcumin (MEC) over 6 weeks reduced periodontal disease and RA-related parameters (n = 15 each group)	[354]

The efficacy of essential oils in anti-obesity trials has been mostly based on in vitro experimental and preclinical studies (Table 4). Essential oils from various plants, flowers, leaves, and roots have been experimentally proven to be effective against obesity based on their anti-inflammatory effects in mice or rats via a common mechanism sharing the pathogenesis of obesity, OA, and RA (as shown in Figures 1 and 2). Oral consumption of ginger or garlic oils, inhalation of certain species of lavender oil, or injections of certain citrus essential oils have been shown to result in reductions in body weight, lipid profile, fatty liver disease, and arthritis (Table 4 and references therein).

Table 4. Essential oils used to treat obesity and arthritis in preclinical trials.

Essential Oil	Key Findings	Reference
Garlic essential oil	Daily consumption of garlic essential oil (25, 50, and 100 mg/kg) or diallyl disulfide (10 and 20 mg/kg) for 12 weeks in C57BL/6j mice prevented the development of non-alcoholic fatty liver disease. The oil and its major compound also significantly prevented the release of proinflammatory cytokines from murine livers.	[359]
6.3. Medicinal Plants Used to Treat Obesity and Arthritis

Various plant materials produced better results in terms of anti-obesity and anti-inflammatory properties compared to their respective placebo or control groups, as observed in various clinical studies. All of these plants are indispensable parts of different traditional and complementary medicines, and recently, in various randomized clinical trials, they have shown some promising results against obesity and/or arthritis (Table 5).

Table 5. Clinical trial results of medicinal plants or phytochemicals against obesity.

Essential Oil	Key Findings	Reference
Ginger essential oil	Ginger essential oil (28 mg/kg/day i.p. for 4 weeks) treatment improved joint inflammation caused by streptococcal cell-wall-induced arthritis in female Lewis rats.	[351]
Pogostemon cablin Benth. or patchouli essential oil	Inhalation of the oil reduced food intake, systolic blood pressure, and plasma low-density lipoprotein cholesterol levels in SD rats.	[360]
Rhaponticum acaule (L.) DC.	Treatment inhibited xanthine oxidase and turkey pancreatic lipase, thus reducing oxidative stress and pancreatitis.	[361]
Ginger essential oil (GEO)	Male C57BL/6j mice with a high-fat diet (HFD) mixed with GEO (12.5, 62.5, and 125 mg/kg) or citral (2.5 and 25 mg/kg) for 12 weeks showed improved HFD-induced obesity by reducing triglyceride and total cholesterol levels. In addition, the treatment reduced inflammatory response in murine livers.	[362]
Pinus koraiensis Siebold and Zucc. leaf essential oil	Treatment inhibited the level of cholesterol acyltransferase-1 and -2, as well as low-density lipoprotein (LDL) oxidation activity; thus, it may act against hyperlipidemia.	[363]
Citrus aurantifolia (Christm.) swingle essential oil	Forty-five days of treatment with this oil (125 mg/kg/day, s.c.) prevented ketotifen (32 mg/kg/day s.c.)-induced body weight gain and food intake in mice.	[364]
Artemisia annua L. essential oil	Treatment reduced obesity-related PPAR-γ, C/EBP-α, SREBP-1c, FAS, and ACC levels in vitro using 3T3-L1 cells.	[365]
Lavandula pubescens Decne. essential oil	*L. pubescens* EO was assessed against pancreatic lipase inhibitory activity with an IC₅₀ of 1.08 μL/mL (in vitro).	[366]

Table 5. Clinical trial results of medicinal plants or phytochemicals against obesity.
Opuntia ficus-indica Natural fiber complex (litramine) was 3 g/day with a low-calorie diet for 12 weeks, which reduced body weight compared to placebo in obese women (total n = 133) [369].

Camellia sinensis Green tea (n = 32; 1 g of dry green tea extract in capsule/day) reduced total cholesterol (TC) and LDL-C after 12 weeks of treatment in non-diabetic obese women. [370]

Crocus sativus Saffron reduced hyperglycaemia and hyperlipidaemia and improved liver function in patients with type 2 diabetes in an 8-week randomized clinical trial. [371]

Laminaria digitata (brown seaweed) Treatment with sodium alginate from Laminaria digitata over a period of 10 days showed no effects in an anti-obesity related trial. [372]

Lycium barbarum (fruit juice) A single-day bolus drink increased metabolic rate; 120 mL of fruit juice per day for 2 weeks reduced waist circumference in overweight men and women (n = 15, BMI = 29, age = 34 years). [373]

Allium sativum Consumption of 1.6 g of garlic powder (4 × 400 mg tablets daily, for 12 weeks) produced significant decreases in waist circumference and body fat percentage in patients with non-alcoholic fatty liver disease (n = 45). [374]

Allium cepa Onion powder (9 g per day for 12 weeks) did not cause any major changes between groups. [375]

Persea americana Avocados are a natural source of lutein. Daily oral consumption of 300 mg/day of ASU-E (Avocado–Soybean Unsaponifiables, Expanscience—a formula with a 1:3 ratio of avocado:soybean oil) for 3 years did not cause any changes in joint space width loss compared to the placebo group. [376]

Momordica charantia Oral consumption of Momordica charantia (3 × 500 mg per capsule daily for 3 months) taken thrice daily reduced body weight, body mass index, fasting blood glucose levels, and Knee Injury and Osteoarthritis Outcome scores. [377]

Cissus quadrangularis Consumption of (n = 35) aqueous extract of Cissus quadrangularis (300 mg/day, over 8 weeks) reduced body fat and improved blood parameters related to metabolic syndrome in overweight patients. [378]

Flavonoids are natural polyphenolic compounds with antioxidant, anti-inflammatory, and antiviral properties, as well as protective effects on the gastrointestinal tract [379–382]. Apigenin, cyanidin, (-)-epigallocatechin-3-O-gallate (EGCG), genistein, kaempferol, luteolin, puerarin, and quercetin are all antioxidants (Table 6); therefore, these compounds demonstrate an inverse relationship between oxidative stress and arthritis, with or without obesity [383–387].

Table 6. Role of flavonoids against obesity and arthritis (clinical and preclinical studies).

Flavonoid’s Name	Role against Obesity or Arthritis	Reference
Apigenin	RA was induced by 0.1 mL Freund’s complete adjuvant (FCA) injections in the palmar surface of paws of Sprague–Dawley (SD) rats. Apigenin suppressed the expressions of P2X7/NF-κB signaling and associated RA-	[388]

Table 6. Role of flavonoids against obesity and arthritis (clinical and preclinical studies).
Flavonoid’s Name	Role against Obesity or Arthritis	Reference
Apigenin	RA was induced in a murine collagen-induced arthritis (CIA) model. Apigenin inhibited CIA by repressing synovial hyperplasia (by reducing the multiplication of fibroblast-like synoviocytes), causing the growth of new blood vessels and osteoclastogenesis.	[389]
Cyanidin	The effects of cyanidin-3-O-glucoside were investigated in a murine high-fat-diet-induced non-alcoholic fatty liver disease (NAFLD) model. Treatment with this flavone reduced NLRP3 inflammasome activation, oxidative stress, and steatosis in mice.	[390]
(-)-Epigallocatechin-3-O-gallate (EGCG)	Over a period of 3 days, 300 mg of EGCG drink increased postprandial fat oxidation in obese men similarly to 200 mg of caffeine, but the effect was not observed with 600 mg of EGCG drink. Limitation: total n = 10, pilot study.	[391]
(-)-Epigallocatechin-3-O-gallate (EGCG)	Consumption of EGCG and resveratrol (282 mg and 80 mg/day over a period of 12-week accordingly) increased oxidative capacity in permeabilized muscle fibers, but showed reduced plasma triacylglycerol concentration in a high-fat mixed-meal assay in obese men (n = 18).	[392]
Genistein	Consumption of 15 g of genistein for 3 months (5 days of daily administration per week plus 2 days without treatment) in adult patients (53% men) reduced blood glucose and malondialdehyde levels, but did not impact on lipid profile.	[393]
Kaempferol	Treatment with 200 mg/kg of kaempferol (over eight weeks) with a high-fat diet in C57BL/6 mice reduced the increases in body and liver weight, serum cholesterol, and triglyceride levels.	[394]
Luteolin	Luteolin increased the expression of liver X receptor (LXR)-α (in vitro). Luteolin (0.05% w/w in high fat diet) reduced plasma cholesterol and low- and very-low-density lipoprotein cholesterol levels in male C57BL/6 mice.	[395]
Puerarin	Obese women with polycystic ovary syndrome (PCOS) took 150 mg/d of puerarin tablets for 3 months in addition to their standard treatment, and showed decreased total cholesterol and systolic blood pressure compared with their pre-treatment levels.	[396]
Quercetin	Quercetin (500 mg/day for 8 weeks) reduced RA symptoms (based on an assessment questionnaire) and high-sensitivity tumor necrosis factor α (hs-TNF-α) in women with RA.	[397]

Metabolic syndrome (MetS) is a combination of obesity along with high blood pressure and diabetes; obesity can be a driving factor behind the occurrence of MetS. It is said that around one-quarter of the world’s adult population now suffers from MetS. There are conventional drugs for the treatment of obesity, such as orlistat or semaglutide, but these drugs either have adverse effects or are not affordable to the general obese.
people of low-income countries (LICs) and low-middle-income countries (LMICs) [398]. To reduce obesity, the common, illiterate people, with less means to afford expensive conventional drugs, mostly rely on TMPs, who treat obesity, cardiovascular disorders, and diabetes with medicinal plants. A recent survey lists 16 plants/plant parts used in South Africa for weight loss [398]. These plants include leaves of Aloe vera Mill., Rosmarinus officinalis L., and Moringa oleifera Lam.

Over 20 plants used to reduce obesity were listed in a review published in 2013; the authors concluded that among the significant anti-obesity plants were Cissus quadrangularis L., Asparagus officinalis L., and Zingiber officinal Roscoe [399]. Another review listed Curcuma longa L. rhizomes (active ingredient curcumin) and leaves of Salvia officinalis L. (active ingredient: carnosic acid) as anti-obesity plant parts [400]. Obesity as a disorder has been recognized in Ayurveda—the ancient medical treatise of India—where it is described as “meda”. Some Ayurvedic plants/plant parts used to treat obesity in India include the fruits of Garcinia cambogia L. (active ingredient: (-)-hydroxycitric acid), Cyperus rotundus L. rhizomes (active ingredient: cyperine), the roots of Embelia ribes Burm.f., whole plants of Boerhaavia diffusa L., seeds of Achyranthes aspera L., and roots of Withania somnifera (L.) Dunal. [401].

7. Conclusions

Some natural anti-obesity agents have been described from dietary sources. These include flavonoids from Citrus depressa Hayata, anthocyanins from Vaccinium ashei Rehder and Morus australis Poir., and gingerol, paradol, and shogaol from Zingiber officinale Roscoe [402]. It is evident from several clinical and preclinical trials that essential oils or extracts from aromatic and medicinal plants demonstrate potential therapeutic value against obesity and arthritis (Tables 1–5). These plants and phytochemicals should be considered as functional foods rather than therapeutics, and warrant further extensive clinical studies for dosage and safety determinations for chronic conditions. Importantly, traditional medicines have been used as medicines and foods since prehistoric times. A number of these plant materials (e.g., flavonoids) are used almost every day as a part of our foods, drinks, or spices, and their consumption as medications or therapeutic supplements can help people to avoid the severity of obesity or arthritis (Table 6). The famous Greek physician Hippocrates in 440 BC stated “Let food be thy medicine, and let medicine be thy food”, which is still applicable today. Whether knowingly or unknowingly, human beings do consume at least some bioactive compounds with their daily diet. Traditional medicinal doctors and even scientists recommend that certain foods are beneficial during certain diseases. Although the daily intake of plants containing requisite phytochemicals for a given disorder is also recommended by the authors (Tables 1,3,5,6), we would like to point out that such intake should have scientific evidence behind it, including determination of dosage, frequency of eating, toxicity, and any adverse reactions when taken alone or with other foods. We need to take a closer look at the dietary factors that influence obesity and other inflammatory diseases, obesity and the development of metabolic syndrome, and obesity itself. From this viewpoint, flavonoids such as quercetin, genistein, apigenin, and cyanidin deserve a closer look [403].

Author Contributions: Conceptualization, A.K.P., R.J., V.N., P.W., and M.R.; writing—original draft preparation, A.K.P., A.P., T.A.B., and M.R.; writing—review and editing, A.K.P., T.M., A.P., K.J., A.H., R.J., V.N., P.W., M.d.L.P., C.W., and M.R.; visualization, A.K.P. and A.P.; supervision, V.N., P.W., and M.R. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.
Acknowledgments: M.d.L.P. thanks project CICECO-Aveiro Institute of Materials, UIDB/00111/2020,UIDP/00111/2020, LA/P/0006/2020, financed by national funds through the FCT/MEC (PIDDAC).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. World Health Organization. Obesity and overweight. 9 June 2021. Available online: https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight (accessed on 11 August 2021).
2. Kortt, M.; Baldry, J. The association between musculoskeletal disorders and obesity. *Aust. Health Rev.* 2002, 25, 207–214. https://doi.org/10.1071/AH020207.
3. Poirier, P.; Després, J.-P. Obésité et maladies cardiovasculaires. *M/S Méd. Sci.* 2003, 19, 943–949. https://doi.org/10.1053/medsci.2003190149.
4. Parmar, M.Y. Obesity and type 2 diabetes mellitus. *Integr. Obes. Diabetes* 2018, 4, 1–2.
5. Basen-Engquist, K.; Chang, M. Obesity and cancer risk: Recent review and evidence. *Curr. Oncol. Rep.* 2010, 13, 71–76. https://doi.org/10.1007/s11912-010-0139-7.
6. Heymsfield, S.B.; Wadden, T.A. Mechanisms, pathophysiology, and management of obesity. *N. Engl. J. Med.* 2017, 376, 254–266. https://doi.org/10.1056/nejmra1514009.
7. Tchekonia, T.; Thomou, T.; Zhu, Y.; Karagiannides, I.; Pothoulakis, C.; Jensen, M.D.; Kirkland, J.L. Mechanisms and metabolic implications of regional differences among fat depots. *Cell Metab.* 2013, 17, 644–656. https://doi.org/10.1016/j.cmet.2013.03.008.
8. Redinger, R.N. The pathophysiology of obesity and its clinical manifestations. *Gastroenterol. Hepatol.* 2007, 3, 856–863.
9. Schmidt, F.M.; Weschenfelder, J.; Sander, C.; Minkwitz, J.; Thormann, J.; Chittka, T.; Mergl, R.; Kirkby, K.C.; Faßhauer, M.; Stumvoll, M.; et al. Inflammatory cytokines in general and central obesity and modulating effects of physical activity. *PLoS ONE* 2015, 10, e0121971. https://doi.org/10.1371/journal.pone.0121971.
10. Trayhurn, P.; Wood, I.S. Adipokines: inflammation and the pleiotropic role of white adipose tissue. *Br. J. Nutr.* 2004, 92, 347–355. https://doi.org/10.1079/bjn20041213.
11. Lee, H.; Lee, I.S.; Cho, R. Obesity, inflammation and diet. *Pediatr. Gastroenterol. Hepatol. Nutr.* 2013, 16, 143–152. https://doi.org/10.5223/pghn.2013.16.3.143.
12. Knebel, B.; Fahlbusch, P.; Poschmann, G.; Dille, M.; Wahlers, N.; Stühler, K.; Hartwig, S.; Lehr, S.; Schiller, M.; Jacob, S.; et al. Adipokine signatures in obese mouse models reflect adipose tissue health and are associated with serum lipid composition. *Int. J. Mol. Sci.* 2019, 20, 2559. https://doi.org/10.3390/ijms20102559.
13. Eissig, L.; Scherer, T.; Tödtler, K.; Knippchild, U.; Greve, J.W.; Buurman, W.A.; Pinnschmidt, H.O.; Rensen, S.S.; Wolf, A.M.; Bartelt, A.; et al. De novo lipogenesis in human fat and liver is linked to ChREBP-β and metabolic health. *Nat. Commun.* 2013, 4, 1528. https://doi.org/10.1038/ncomms1523.
14. Adolph, T.E.; Grander, C.; Grabherr, F.; Tilg, H. Adipokines and non-alcoholic fatty liver disease: Multiple interactions. *Int. J. Mol. Sci.* 2017, 18, 1649. https://doi.org/10.3390/ijms18081649.
15. Frühbeck, G.; Gomez-Ambrosi, J.; Muruzaabal, F.J.; Burrell, M.. The adipocyte: A model for integration of endocrine and metabolic signaling in energy metabolism regulation. *Am. J. Physiol. Metab.* 2001, 280, E827–E847. https://doi.org/10.1152/ajpendo.2001.280.6.E827.
16. Trayhurn, P.; Beattie, J.H. Physiological role of adipose tissue: White adipose tissue as an endocrine and secretory organ. *Proc. Nutr. Soc.* 2001, 60, 329–339.
17. Ellulu, M.S.; Patimat, I.; KhazâAi, H.; Rahmat, A.; Abed, Y. Obesity and inflammation: The linking mechanism and the complications. *Arch. Med. Sci.* 2017, 13, 851–863. https://doi.org/10.5114/ams.2016.58928.
18. Das, U. Is obesity an inflammatory condition?. *Nutrition* 2001, 17, 953–966. https://doi.org/10.1016/s0899-9007(01)00672-4.
19. Hill, J.O. A new way of looking at obesity. *Nutrition* 2001, 17, 975–976. https://doi.org/10.1016/s0899-9007(01)00680-3.
20. Vozarova, B.; Weyer, C.; Hanson, K.; Tataranni, P.A.; Bogardus, C.; Pratley, R.E. Circulating interleukin-6 in relation to adiposity, insulin action, and insulin secretion. *Obes. Res.* 2001, 9, 414–417. https://doi.org/10.1038/oby.2001.54.
21. Esposito, K.; Pontillo, A.; Ciota, M.; Di Palo, C.; Grella, E.; Nicoletti, G.; Giugliano, D. Weight loss reduces interleukin-18 levels in obese women. *J. Clin. Endocrinol. Metab.* 2007, 92, 3864–3866. https://doi.org/10.1210/jc.2007-8878.
22. Rodríguez-Hernández, H.; Simental-Mendía, L.E.; Rodríguez-Ramírez, G.; Reyes-Romero, M.A. Obesity and inflammation: Epidemiology, risk factors, and markers of inflammation. *Int. J. Endocrinol.* 2013, 2013, 678159. https://doi.org/10.1155/2013/678159.
23. Palmeira, P.; Carneiro-Sampaio, M. Immunology of breast milk. *Rev. Assoc. Méd. Bras.* 2016, 62, 584–593.
24. Burris, A.D.; Pizzarello, C.; Järvinen, K.M. Immunologic components in human milk and allergic diseases with focus on food allergy. *Semin. Perinatal.* 2020, 45, 151386. https://doi.org/10.1016/j.semperi.2020.151386.
25. Dain, A.; Repossi, G.; Diaz-Gerevini, G.T.; Vanamala, J.; Das, U.N.; Eynard, A.R. Long chain polyunsaturated fatty acids (LCPUFAs) and n-dihydrogenatedric acid (NDGA) modulate metabolic and inflammatory markers in a spontaneous type 2 diabetes mellitus model (Stillman Salgado rats). *Lipids Health Dis.* 2016, 15, 205. https://doi.org/10.1186/s12944-016-0363-8.
26. Das, U.N. Long-chain polyunsaturated fatty acids and diabetes mellitus. *Am. J. Clin. Nutr.* 2002, 75, 780–781. https://doi.org/10.1093/ajcn/75.4.780.
27. Hanson, L.; Korotkova, M. The role of breastfeeding in prevention of neonatal infection. Semin. Neonatol. 2002, 7, 275–281. https://doi.org/10.1053/siny.2002.0124.
28. Quinlin, C.; Quintilio, W.; Carneiro-Sampaio, M.; Palmeira, P. Passive Acquisition of protective antibodies reactive with Bordetella pertussis in newborns via placental transfer and breast-feeding. Scand. J. Immunol. 2010, 72, 66–73. https://doi.org/10.1111/j.1365-3083.2010.02410.x.
29. Kainonen, E.; Rautava, S.; Isolauri, E. Immunological programming by breast milk creates an anti-inflammatory cytokine milieu in breast-fed infants compared to formula-fed infants. Br. J. Nutr. 2012, 109, 1962–1970. https://doi.org/10.1017/s0007114512004429.
30. Acquarone, E.; Monacelli, F.; Borghi, R; Nencioni, A.; Odetti, P. Resistin: A reappraisal. Mech. Ageing Dev. 2019, 178, 46–63. https://doi.org/10.1016/j.mad.2019.01.004.
31. Xie, C; Chen, Q. Adipokines: New therapeutic target for osteoarthritis?. Curr. Rheumatol. Rep. 2019, 21, 71. https://doi.org/10.1007/s11926-019-0868-z.
32. Kirk, B.; Feehan, J.; Lombardi, G.; Duque, G. Muscle, bone, and fat crosstalk: The biological role of myokines, osteokines, and adipokines. Curr. Osteoporos. Rep. 2020, 18, 388–400. https://doi.org/10.1007/s11914-020-00599-y.
33. SenthelaI, S.; Li, J.; Goyal, A.; Bansal, P.; Thomas, M.A. Arthritis. In Statpearls; StatPearls Publishing: Treasure Island, FL, USA, 2022.
34. Wallace, J.L. Polypharmacy of osteoarthritis: The perfect intestinal storm. Am. J. Dig. Dis. 2013, 58, 3088–3093. https://doi.org/10.1016/j.sao2010-013-2777-8.
35. Xia, B.; Chen, D.; Zhang, J.; Hu, S.; Jin, H.; Tong, P. Osteoarthritis pathogenesis: A review of molecular mechanisms. Calcif. Tissue Res. 2014, 95, 495–505. https://doi.org/10.1007/s00223-014-9917-9.
36. So, A. Developmental in the scientific and clinical understanding of gout. Arthritis Res. Ther. 2008, 10, 221–221. https://doi.org/10.1186/ar2509.
37. Goo, B.; Lee, J.; Park, C.; Yune, T.; Park, Y. Bee venom alleviated edema and pain in monosodium urate crystals-induced gouty arthritis in rat by inhibiting inflammation. Toxins 2021, 13, 661. https://doi.org/10.3390/toxins13090661.
38. Leung, Y.Y.; Yao Hui, L.L.; Kraus, V.B. Colchicine—Update on mechanisms of action and therapeutic uses. Semin. Arthritis Rheum. 2015, 45, 341–350. https://doi.org/10.1016/j.semarthrit.2015.06.013.
39. Stannus, O.; Jones, G.; Ciccantini, F.; Parameswaran, V.; Quinn, S.; Burgess, J.; Ding, C. Circulating levels of IL-6 and TNF-α are associated with knee radiographic osteoarthritis and knee cartilage loss in older adults. Osteoarthr. Cartil. 2010, 18, 1441–1447. https://doi.org/10.1016/j.joca.2010.08.016.
40. Martinon, F.; Petrilli, V.; Mayor, A.; Tardivel, A.; Tschopp, J. Gout-associated uric acid crystals activate the NALP3 inflammasome. Nature 2006, 440, 237–241. https://doi.org/10.1038/nature04516.
41. Guo, H.; Callaway, J.B.; Ting, J.P.-Y. Inflammasomes: mechanism of action, role in disease, and therapeutics. Nat. Med. 2015, 21, 677–687. https://doi.org/10.1038/nm.3893.
42. Millerand, M.; Berenbaum, F.; Jacques, C. Danger signals and inflamming in osteoarthritis. Clin. Exp. Rheumatol. 2019, 37 (Suppl. 120), 48–56.
43. Zhao, L.; Xing, R.; Wang, P.; Zhang, N.; Yin, S.; Li, X.; Zhang, L. NLRP1 and NLRP3 inflammasomes mediate LPS/ATP-induced pyroptosis in knee osteoarthritis. Mol. Med. Rep. 2018, 17, 5463–5469. https://doi.org/10.3892/mmr.2018.8820.
44. Denoble, A.E.; Huffman, K.M.; Stabler, T.V.; Kelly, S.J.; Hershfield, M.S.; McDaniel, G.E.; Coleman, R.E.; Kraus, V.B. Uratic acid is a danger signal of increasing risk for osteoarthritis through inflammasome activation. Proc. Natl. Acad. Sci. USA 2011, 108, 2088–2093. https://doi.org/10.1073/pnas.1012743108.
45. Fiddis, R.W.; Vlachos, N.; Calvert, P.D. Studies of urate crystallisation in relation to gout. Ann. Rheum. Dis. 1983, 42 (Suppl. 1), 12–15. https://doi.org/10.1136/ard.42.suppl_1.12.
46. Wilson, L.; Saseen, J.J. Gouty Arthritis: A review of acute management and prevention. Pharmacoother. J. Hum. Pharmacol. Drug Ther. 2016, 36, 906–922. https://doi.org/10.1562/phar.1788.
47. Richette, P.; Doherty, M.; Pascual, E.; Barskova, V.; Becce, F.; Castaneda, J.; Coyfish, M.; Giullo, S.; Jansen, T.; Janssens, H.; et al. 2018 updated European league against rheumatism evidence-based recommendations for the diagnosis of gout. Ann. Rheum. Dis. 2019, 79, 31–38. https://doi.org/10.1136/annrheumdis-2019-215315.
48. Sokolove, J.; Lepus, C.M. Role of inflammation in the pathogenesis of osteoarthritis: latest findings and interpretations. Ther. Adv. Musculoskelet. Dis. 2013, 5, 77–94. https://doi.org/10.1177/1759720x12467868.
49. Reginato, A.M.; Olsen, B.R. The role of structural genes in the pathogenesis of osteoarthritic disorders. Arthritis Res. Ther. 2002, 4, 337–345. https://doi.org/10.1186/ar595.
50. Held, F.P.; Blyth, F.; Gnjidic, D.; Hiranvi, V.; Nagarathanan, V.; Waite, L.M.; Seibel, M.J.; Rollo, J.; Handelsman, D.J.; Cumming, R.G.; et al. Association rules analysis of comorbidity and multimorbidity: The concord health and aging in men project. J. Gerontol. A Biol. Sci. Med. Sci. 2016, 71, 625–631. https://doi.org/10.1093/gerona/glv181.
51. Hunter, D.J.; Biema-Zeinstr, S. Osteoarthritis. Lancet 2019, 393, 1745–1759. https://doi.org/10.1016/s0140-6736(19)30417-9.
52. Wang, T.; He, C. Pro-inflammatory cytokines: The link between obesity and osteoarthritis. Cytokine Growth Factor Rev. 2018, 44, 38–50. https://doi.org/10.1016/j.cytogfr.2018.10.002.
53. Kulkarni, K.; Karssien, T.; Kumar, V.; Pandit, H. Obesity and osteoarthritis. Maturitas 2016, 89, 22–28. https://doi.org/10.1016/j.maturitas.2016.04.006.
54. Hawker, G.A. Osteoarthritis is a serious disease. Clin. Exp. Rheumatol. 2019, 37, 3–6.
81. Piccinini, A.M.; Williams, L.; McCann, F.E.; Midwood, K.S. Investigating the role of toll-like receptors in models of arthritis. In *Toll-Like Receptors*; Springer: Berlin/Heidelberg, Germany, 2016; Volume 1390, pp. 351–381. https://doi.org/10.1007/978-1-4939-3335-8_22.

82. McInnes, I.B.; Schett, G. The pathogenesis of rheumatoid arthritis. *N. Engl. J. Med.* 2011, 365, 2205–2219. https://doi.org/10.1056/nejma1004965.10.7748/jhc2011.11.21.9.29.e8797.

83. Malemud, C.J. Matrix metalloproteinases and synovial joint pathology. *Prog. Mol. Biol. Transl. Sci.* 2017, 148, 305–325. https://doi.org/10.1016/bs.pmbts.2017.03.003.

84. Klareskog, L.; Stolt, P.; Lundberg, K.; Källberg, H.; Bengtsson, C.; Grunewald, J.; Rönnelid, J.; Harris, H.E.; Ulfgren, A.K.; Rantapää-Dahlqvist, S.; et al. A new model for an etiology of rheumatoid arthritis: Smoking may trigger HLA–DR (shared epitope)-restricted immune responses to autoantigens modified by citrullination. *Arthritis Rheum.* 2006, 54, 38–46. https://doi.org/10.1002/art.21575.

85. Möller, B.; Kollert, F.; Sculean, A.; Villiger, P.M. Infectious triggers in periodontitis and the gut in rheumatoid arthritis (RA): A complex story about association and causality. *Front. Immunol.* 2020, 11, 1108. https://doi.org/10.3389/fimmu.2020.01108.

86. Favalli, E.G.; Biggioggero, M.; Crotti, C.; Becciolini, A.; Raimondo, M.G.; Meroni, P.L. Sex and management of rheumatoid arthritis. *Clin. Rev. Allergy Immunol.* 2018, 56, 333–345. https://doi.org/10.1007/s12016-018-8672-5.

87. Islander, U.; Jochems, C.; Lagerquist, M.K.; Forsblad-D’Elia, H.; Carlsten, H. Estrogens in rheumatoid arthritis: the immune system and bone. *Mol. Cell. Endocrinol.* 2011, 335, 14–29. https://doi.org/10.1016/j.mce.2010.05.018.

88. Fert-Bober, J.; Darrah, E.; Andrade, F. Insights into the study and origin of the citrullinome in rheumatoid arthritis. *Immunol. Res.* 2019, 294, 133–147. https://doi.org/10.1111/imr.12834.

89. Ferreira-Halder, C.V.; de Sousa Faria, A.V.; Andrade, S.S. Action and function of Faecalibacterium prausnitzii in health and disease. *Best Pract. Res. Clin. Gastroenterol.* 2017, 31, 643–648. https://doi.org/10.1016/j.bpg.2017.09.011.

90. Chen, J.; Wright, K.; Davis, J.M.; Jeraldo, P.; Marietta, E.V.; Murray, J.; Nelson, H.; Matteson, E.L.; Taneja, V. An expansion of rare lineage intestinal microbes characterizes rheumatoid arthritis. *Genome Med.* 2016, 8, 43. https://doi.org/10.1186/s13073-016-0299-7.

91. He, X.; Zhao, S.; Li, Y. *Faecalibacterium prausnitzii*: A next-generation probiotic in gut disease improvement. *Can. J. Infect. Dis. Med. Microbiol.* 2021, 2021, 6666114. https://doi.org/10.1177/10477223216666114.

92. Chu, X.-J.; Cao, N.-W.; Zhou, H.-Y.; Meng, X.; Guo, B.; Zhang, H.-Y.; Li, B.-Z. The oral and gut microbiome in rheumatoid arthritis patients: a systematic review. *Rheumatology 2020*, 60, 1054–1066. https://doi.org/10.1093/rheumatology/keaa835.

93. Tanaka, S.; Yoshida, M.; Murakami, Y.; Ogiwara, T.; Sboji, M.; Kobayashi, S.; Watanabe, S.; Machino, M.; Fujisawa, S. The Relationship of *Prevotella intermedia*, *Prevotella nigrescens* and *Prevotella melaninogenica* in the supragingival plaque of children, caries and oral malodor. *J. Clin. Pediatr. Dent.* 2008, 32, 195–200. https://doi.org/10.17796/jcpd.32.3.vp6571778156181.

94. Ceccarelli, F.; Saccucci, M.; Di Carlo, G.; Lucchetti, R.; Pilloni, A.; Pranno, N.; Luzzi, V.; Valesini, G.; Polimeni, A. Periodontitis and rheumatoid arthritis: The same inflammatory mediators? *Mediat. Inflamm.* 2019, 2019, 6034546. https://doi.org/10.1159/201906034546.

95. Paul, A.K.; Paul, A.; Jahan, R.; Jannat, K.; Bondhon, T.A.; Hasan, A.; Nissapatorn, V.; Pereira, M.L.; Wilairatana, P.; Rahmatullah, M. Probiotics and amelioration of rheumatoid arthritis: Significant roles of *Lactobacillus casei* and *Lactobacillus acidophilus*. *Microorganisms* 2021, 9, 1070. https://doi.org/10.3390/microorganisms9051070.

96. Maeda, Y.; Kurakawa, T.; Umemoto, E.; Motooka, D.; Ito, Y.; Gotoh, K.; Hirotta, K.; Matsushita, M.; Furuta, Y.; Narazaki, M.; et al. Dysbiosis contributes to arthritis development via activation of autoreactive T cells in the intestine. *Arthritis Rheumatol.* 2016, 68, 2646–2661. https://doi.org/10.1002/art.39783.

97. Larsen, J.M. The immune response to *Prevotella* bacteria in chronic inflammatory disease. *Immunology 2017*, 151, 363–374. https://doi.org/10.1111/jmm.12760.

98. Guan, S.-M.; Fu, S.-M.; He, J.-J.; Zhang, M. *Prevotella intermedia* induces prostaglandin E2 via multiple signaling pathways. *J. Dent. Res.* 2010, 90, 121–127. https://doi.org/10.1177/0022034510382545.

99. Dubois, R.N.; Abramson, S.B.; Crofford, L.; Gupta, R.A.; Simon, L.S.; Van De Putte, L.B.; Lipsky, P.E. Cyclooxygenase in biology and disease. *FASEB J.* 1998, 12, 1063–1073. https://doi.org/10.1096/fasebj.12.12.1063.

100. Drago, L.; Zucotti, G.V.; Romanò, C.L.; Goswami, K.; Villafañe, J.H.; Mattina, R.; Parvisi, J. Oral–gut microbiota and arthritis: Is there an evidence-based axis?. *J. Clin. Med.* 2019, 8, 1753. https://doi.org/10.3390/jcm8101753.

101. Jung, H.; Jung, S.M.; Rim, Y.A.; Park, N.; Nam, Y.; Lee, J.; Park, S.-H.; Ju, J.H. Arthritic role of *Porphyromonas gingivalis* in collagen-induced arthritis mice. *PloS ONE 2017*, 12, e0188698. https://doi.org/10.1371/journal.pone.0188698.

102. Carrión, J.; Sciscic, E.; Miles, B.; Sabino, G.J.; Zeituni, A.E.; Gu, Y.; Bear, A.; Genco, C.A.; Brown, D.L.; Cutler, C.W. Microbial carriage state of peripheral blood dendritic cells (DCs) in chronic periodontitis influences DC differentiation, atherogenic potential. *J. Immunol.* 2012, 189, 3178–3187. https://doi.org/10.4049/jimmunol.1201053.

103. Salaffi, F.; Farah, S.; Di Carlo, M. Frailty syndrome in rheumatoid arthritis and symptomatic osteoarthritis: An emerging concept in rheumatology. *Acta Bio-Med Atenei Parm.* 2020, 91, 274–296. https://doi.org/10.23750/ABM.V91I2.9094.

104. Han, T.; Tajar, A.; Lean, M.E.J. Obesity and weight management in the elderly. *Br. Med Bull.* 2011, 97, 169–196. https://doi.org/10.1093/bmbldr/002.

105. Han, T.; Wu, F.; Lean, M. Obesity and weight management in the elderly: A focus on men. *Best Pr. Res. Clin. Endocrinol. Metab.* 2013, 27, 509–525. https://doi.org/10.1016/j.beem.2013.04.012.
106. Tzanavari, T.; Giannogonas, P.; Karalis, K.P. TNF-α and obesity. TNF Pathophysiol. 2010, 11, 145–156. https://doi.org/10.1159/000289203.

107. Paul, A.K.; Hossain, K.; Mahboob, T.; Nissapatorn, V.; Wilairatan, P.; Jahan, R.; Jannot, K.; Bondhon, T.A.; Hasan, A.; Pereira, M.D.L.; et al. Does oxidative stress management help alleviation of COVID-19 symptoms in patients experiencing diabetes?. Nutrients 2022, 14, 321. https://doi.org/10.3390/nu14020321.

108. Vandanmagar, B.; Youm, Y.-H.; Ravussin, A.; Galgani, J.E.; Stadler, K.; Mynn, R.L.; Ravussin, E.; Stephens, J.M.; Dixit, V.D. The NLRP3 inflammasome instigates obesity-induced inflammation and insulin resistance. Nat. Med. 2011, 17, 179–188. https://doi.org/10.1038/nm.2279.

109. Ding, S.; Xu, S.; Ma, Y.; Liu, G.; Jang, H.; Fang, J. Modulatory mechanisms of the NLRP3 inflammasomes in diabetes. Biomolecules 2019, 9, 850. https://doi.org/10.3390/biom9120850.

110. Liu, Y.; Hazlewood, G.; Kaplan, G.G.; Eksteen, B.; Barnabe, C. Impact of obesity on remission and disease activity in rheumatoid arthritis: A systematic review and meta-analysis. Arthritis Care Res. 2016, 69, 157–165. https://doi.org/10.1002/acr.22992.

111. Moroni, L.; Farina, N.; Dagna, L. Obesity and its role in the management of rheumatoid and psoriatic arthritis. Clin. Rheumatol. 2020, 39, 1039–1047. https://doi.org/10.1007/s10067-020-04963-2.

112. Dar, L.; Tiosano, S.; Watad, A.; Bragazzi, N.L.; Zisman, D.; Comaneshter, D.; Cohen, A.; Amital, H. Are obesity and rheumatoid arthritis interrelated?. Int. J. Clin. Pr. 2017, 72, e13045. https://doi.org/10.1111/ijcp.13045.

113. King, L.K.; March, L.; Anandacoomarasamy, A. Obesity & osteoarthritis. Indian J. Med. Res. 2013, 138, 185–193.

114. Coggon, D.; Reading, I.; Croft, P.; McLaren, M.; Barrett, D.; Cooper, C. Knee osteoarthritis and obesity. Int. J. Obes. 2001, 25, 622–627. https://doi.org/10.1038/sj.ijo.0801585.

115. Kaeley, G.S.; MacCarter, D.K.; Pangan, A.L.; Wang, X.; Kalabic, J.; Ranganath, V.K. Clinical Responses and synovial vascularity in obese rheumatoid arthritis patients treated with adalimumab and methotrexate. J. Rheumatol. 2018, 45, 1628–1635. https://doi.org/10.3899/jrheum.171232.

116. Stebbings, S.; Treharne, G.J. Fatigue in rheumatic disease: An overview. Int. J. Clin. Rheumatol. 2010, 5, 487.

117. Vilietra, L.; Stebbings, S.; Meredith-Jones, K.; Abbott, J.H.; Treharne, G.; Waters, D.L. Sarcopenia in osteoarthritis and rheumatoid arthritis: The association with self-reported fatigue, physical function and obesity. PLoS ONE 2019, 14, e0217462. https://doi.org/10.1371/journal.pone.0217462.

118. Tournadre, A.; Pereira, B.; Gossec, L.; Soubrier, M.; Dougdos, M. Impact of comorbidities on fatigue in rheumatoid arthritis patients: Results from a nurse-led program for comorbidities management (COMEDRA). Jt. Bone Spine 2018, 85, 56–60. https://doi.org/10.1016/j.jbspin.2018.06.010.

119. Van Beers-Tas, M.H.; Turk, S.A.; Van Schaardenburg, D. How does established rheumatoid arthritis develop, and are there possibilities for prevention?. Best Pr. Res. Clin. Rheumatol. 2015, 29, 527–542. https://doi.org/10.1016/j.berh.2015.09.001.

120. Engelhart, M.; Kondrup, J.; Höie, L.H.; Andersen, V.; Kristensen, J.H.; Heitmann, B.L. Weight reduction in obese patients with rheumatoid arthritis, with preservation of body cell mass and improvement of physical fitness. Clin. Exp. Rheumatol. 1996, 14, 289–293.

121. Gudbergsen, H.; Boesen, M.; Lohmander, S.; Christensen, R.; Henriksen, M.; Bartels, E.; Rindel, L.; Aabo, J.; Dannesiold-Samsøe, B.; Riecke, B.; et al. Weight loss is effective for symptomatic relief in obese subjects with knee osteoarthritis independently of joint damage severity assessed by high-field MRI and radiography. Osteoarthr. Cartil. 2012, 20, 495–502. https://doi.org/10.1016/j.joca.2012.02.639.

122. NIDDK. National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), prescription medications to treat overweight & obesity. Available online: https://www.niddk.nih.gov/health-information/weight-management/prescription-medications-treat-overweight-obesity (accessed on 15 August 2021).

123. Yumuk, V.; Tsigos, C.; Fried, M.; Schindler, K.; Busetto, L.; Micic, D.; Toplak, H. European guidelines for obesity management in adults. Obes. Facts 2015, 8, 402–424. https://doi.org/10.1159/000442721.

124. Filippatos, T.D.; Derdemezis, C.S.; Gazi, I.F.; Nakou, E.S.; Mikhailidis, D.P.; Elifas, M.S. Orlistat-associated adverse effects and drug interactions. Drug Saf. 2008, 31, 53–65. https://doi.org/10.2165/00002018-200831010-00005.

125. Lei, X.; Ruan, J.; Lai, C.; Sun, Z.; Yang, X. Efficacy and safety of phentermine/topiramate in adults with overweight or obesity: A systematic review and meta-analysis. Obesity 2021, 29, 985–994. https://doi.org/10.1002/oby.23152.

126. Siebenhofer, A.; Winterholer, S.; Jeitler, K.; Horvath, K.; Berghold, A.; Krenn, C.; Semlitsch, T. Long-term effects of weight-reducing drugs in people with hypertension. Cochrane Database Syst. Rev. 2021, 2021, CD007654. https://doi.org/10.1002/14651858.cd007654.pub5.

127. Tak, Y.J.; Lee, S.Y. Long-term efficacy and safety of obesit-y treatment: Where do we stand?. Curr. Obes. Rep. 2021, 10, 14–30. https://doi.org/10.1007/s13679-020-00422-w.

128. Di Nicolantonio, J.J.; Chatterjee, S.; O’Keefe, J.H.; Meier, P. Lorcaserin for the treatment of obesity? A closer look at its side effects. Open Hrt. 2014, 1, e000173. https://doi.org/10.1136/openhrt-2014-000173.

129. Paul, A.; Gueven, N.; Dietis, N. Profiling the effects of repetitive morphine administration on motor behavior in rats. Molecules 2021, 26, 4355. https://doi.org/10.3390/molecules26144355.

130. Paul, A.K.; Gueven, N.; Dietis, N. Data on prolonged morphine-induced antinociception and behavioral inhibition in older rats. Data Brief 2018, 19, 183–188. https://doi.org/10.1016/j.dib.2018.05.001.

131. Paul, A.K.; Gueven, N.; Dietis, N. Age-dependent antinociception and behavioral inhibition by morphine. Pharmacol. Biochem. Behav. 2018, 168, 8–16. https://doi.org/10.1016/j.pbb.2018.03.003.
Nutrients 2022, 14, 985

132. Andreasen, P.B.; Hutters, L. Paracetamol (acetaminophen) clearance in patients with cirrhosis of the liver. *Acta Med. Scand.* 2009, 205, 99–105. https://doi.org/10.1111/j.1600-0462.1979.tb00728.x.

133. Ochs, H.R.; Schuppan, U.; Greenblatt, D.J.; Abernethy, D.R. Reduced distribution and clearance of acetaminophen in patients with congestive heart failure. *J. Cardiovasc. Pharmacol.* 1983, 5, 697–699. https://doi.org/10.1097/00005440-198307000-00027.

134. Verpeut, J.L.; Bello, N.T. Drug safety evaluation of naltrexone/bupropion for the treatment of obesity. *Expert Opin. Drug Saf.* 2014, 13, 1–11. https://doi.org/10.1517/14740338.2014.904905.

135. McIntyre, R.S.; Paron, E.; Burrows, M.; Blavignac, J.; Gould, E.; Camacho, F.; Barakat, M. Psychiatric Safety and Weight loss efficacy of naltrexone/bupropion as add-on to antidepressant therapy in patients with obesity or overweight. *J. Affect. Disord.* 2021, 289, 167–176. https://doi.org/10.1016/j.jad.2021.04.017.

136. Onge, E.S.; Miller, S.A.; Motycka, C. Liraglutide (Saxenda®) as a treatment for obesity. *Food Nutr. Sci.* 2016, 07, 227–235. https://doi.org/10.4236/fns.2016.74024.

137. Therapeutic Guidelines Limited. Principles of nonsteroidal anti-inflammatory drug use for musculoskeletal conditions in adults. In *eTG complete Melbourne*; Therapeutic Guidelines Limited: West Melbourne, Australia. Available online: https://tgldcp.tg.org.au/index (accessed on 29 December 2020).

138. Schrezenmeier, E.; Dörner, T. Mechanisms of action of hydroxychloroquine and chloroquine: Implications for rheumatology. *Nat. Rev. Rheumatol.* 2020, 16, 155–166. https://doi.org/10.1038/s41584-020-0372-x.

139. Wang, W.; Zhou, H.; Liu, L. Side effects of methotrexate therapy for rheumatoid arthritis: A systematic review. *Eur. J. Med. Chem.* 2018, 158, 502–516. https://doi.org/10.1016/j.ejmech.2018.09.027.

140. Bramming, M.; Becker, U.; Jørgensen, M.B.; Neermark, S.; Bisgaard, T.; Tolstrup, J.S. Bariatric surgery and risk of alcohol use disorder: a register-based cohort study. *Int. J. Epidemiol.* 2019, 48, 1826–1835. https://doi.org/10.1093/ije/dyya147.

141. Jaiswal, Y.S.; Williams, L.L. A glimpse of Ayurveda—The forgotten history and principles of Indian traditional medicine. *J. Tradit. Complement. Med.* 2016, 7, 50–53. https://doi.org/10.1016/j.jtcme.2016.02.002.

142. Grover, A.K.; Samson, S.E. Benefits of antioxidant supplements for knee osteoarthritis: rationale and reality. *Nutr. J.* 2015, 15, 1–13. https://doi.org/10.1186/s12937-015-0115-z.

143. Chopra, A. Ayurvedic medicine and arthritis. *Rheum. Dis. Clin. N. Am.* 2000, 26, 133–144. https://doi.org/10.1016/s0898-857x(05)70127-7.

144. Basnyat, S.; Kolasinski, S.L. Ayurvedic medicine for rheumatoid arthritis. *Curr. Rheumatol. Rep.* 2014, 16, 1–6. https://doi.org/10.1007/s11926-014-0435-6.

145. Ali, A.M.T.; Agrawal, A.; Lulu, S.S.; Priya, A.M.; Vino, S. RAACFDb: Rheumatoid arthritis ayurvedic classical formulations database. *J. Ethnopharmacol.* 2017, 197, 87–91. https://doi.org/10.1016/j.jep.2016.06.047.

146. Prasad, S.; Kulshreshtha, A.; Lall, R.; Gupta, S.G. Inflammation and ROS in arthritis: Management by Ayurvedic Medicinal Plants. *Food Funct.* 2021, 12, 8227–8247. https://doi.org/10.1039/d1fo01078f.

147. Kumar, G.; Srivastava, A.; Sharma, S.K.; Gupta, Y.K. Safety evaluation of mercury based Ayurvedic formulation (Sidh Makardhaj) on brain cerebrum, liver & kidney in rats. *Indian J. Med. Res.* 2014, 139, 610–618.

148. Kessler, C.S.; Finders, L.; Michalsen, A.; Cramer, H. Ayurvedic interventions for osteoarthritis: A systematic review and meta-analysis. *Rheumatol. Int.* 2014, 35, 211–232. https://doi.org/10.1007/s00296-014-3095-y.

149. Park, J.; Ernst, E. Ayurvedic medicine for rheumatoid arthritis: A systematic review. *Semin. Arthritis Rheum.* 2005, 34, 705–713. https://doi.org/10.1016/j.semarthrit.2004.11.005.

150. Gupta, Y.K.; Srivastava, A.; Sharma, S.K.; Kumar, G.; Rao, T.D. Efficacy & safety evaluation of Ayurvedic treatment (Ashwagandha powder & Sidh Makardhaj) in rheumatoid arthritis patients: A pilot prospective study. *Indian J. Med. Res.* 2015, 141, 100–106. https://doi.org/10.4103/0971-5916.154510.

151. Wang, M.Z.; Jones, G.; Winzenberg, T.; Cai, M.G.; Laslett, L.L.; Aitken, D.; Hopper, J.; Singh, M.A.; Jones, R.; Fripp, J.; et al. Effectiveness of *Curcuma longa* extract for the treatment of symptoms and effusion–synovitis of knee osteoarthritis. *Ann. Intern. Med.* 2020, 173, 861–869. https://doi.org/10.7326/m20-0990.

152. Raj, J.P.; Venkatachalam, S; Racha, P.; Bhaskaran, S.; Amaravati, R.S. Effect of Turmacin supplementation on joint discomfort and functional outcome among healthy participants—A randomized placebo-controlled trial. *Complement. Ther. Med.* 2020, 53, 102522. https://doi.org/10.1016/j.cntm.2020.102522.

153. Prasad, S.; Aggarwal, B.B. Turmeric, the golden spice: From traditional medicine to modern medicine. In *Herbal Medicine: Biochemical and Clinical Aspects*, Benzie, I.F.F., Wachtel-Galor, S., Eds.; CRC Press/Taylor & Francis Taylor and Francis Group, LLC: Boca Raton, FL, USA, 2011.

154. Henrotin, Y.; Malaise, M.; Wittoek, R.; De Vlam, K.; Brasseur, J.-P.; Luyten, F.P.; Jiangang, Q.; Berghe, M.V.D.; Uhoda, R.; Bentin, J.; et al. Bio-optimized *Curcuma longa* extract is efficient on knee osteoarthritis pain: A double-blind multicenter randomized placebo controlled three-arm study. *Arthritis Res. Ther.* 2019, 21, 179. https://doi.org/10.1186/s13075-019-1960-5.

155. Majeed, M.; Majeed, S.; Narayanan, N.K.; Nagabhushanam, K. A pilot, randomized, double-blind, placebo-controlled trial to assess the safety and efficacy of a novel *Boswellia serrata* extract in the management of osteoarthritis of the knee. *Phytother. Res.* 2019, 33, 1457–1468. https://doi.org/10.1002/ptr.6338.

156. Siddiqui, M.Z. *Boswellia Serrata*, A Potential antiinflammatory agent: An overview. *Indian J. Pharm. Sci.* 2011, 73, 255–261. https://doi.org/10.4103/0250-474X.93507.
Nutrients 2022, 14, 985

157. Kulkarni, P.D.; Damle, N.D.; Singh, S.; Yadav, K.S.; Ghante, M.R.; Bhaskar, V.H.; Hingorani, L.; Gota, V.S. Double-blind trial of solid lipid Boswellia serrata particles (SLBSP) vs. standardized Boswellia serrata gum extract (BSE) for osteoarthritis of knee. Drug Metab. Pers. Ther. 2020. https://doi.org/10.1515/dmpt-2020-0104.

158. Chopra, A.; Saluja, M.; Tilleu, G.; Venugopalan, A.; Narasimulu, G.; Handa, R.; Bichile, L.; Raut, A.; Sarmukkadam, S.; Patwardhan, B. Comparable efficacy of standardised Ayurveda formulation and hydroxychloroquine sulfate (HCQS) in the treatment of rheumatoid arthritis (RA): A randomized investigator-blind controlled study. Clin. Rheumatol. 2011, 31, 259-269. https://doi.org/10.1007/s10067-011-1809-z.

159. Upadhyay, A.; Kumar, K.; Kumar, A.; Mishra, H. Tinospora cordifolia (Willd.) Hook. f. and Thoms. (Guduchi)—Validation of the Ayurvedic pharmacology through experimental and clinical studies. Int. J. Ayurveda Res. 2010, 1, 112–121. https://doi.org/10.4103/0974-7788.64405.

160. Chopra, A.; Saluja, M.; Tilleu, G.; Sarmukkadam, S.; Venugopalan, A.; Narasimulu, G.; Handa, R.; Sumantran, V.; Raut, A.; Bichile, L.; et al. Ayurvedic medicine offers a good alternative to glucosamine and celecoxib in the treatment of symptomatic knee osteoarthritis: a randomized, double-blind, controlled equivalence drug trial. Rheumatology 2013, 52, 1408-1417. https://doi.org/10.1093/rheumatology/ker414.

161. Lee, D.; Kim, S.J.; Kim, H. A 12 week, randomized, double-blind, placebo-controlled clinical trial for the evaluation of the efficacy and safety of HT083 on mild osteoarthritis. Medicine 2020, 99, e20907. https://doi.org/10.1097/md.0000000000020907.

162. Sairkar, P.K.; Sharma, A.; Shukla, N.P. SCAR marker for identification and discrimination of Commiphora wightii and C. myrrha. Mol. Biol. Int. 2016, 2016, 1–10. https://doi.org/10.1155/2016/1482796.

163. Paramdeep, G. Efficacy and tolerability of ginger (Zingiber officinale) in patients of osteoarthritis of knee. Indian J. Physiol. Pharmacol. 2014, 57, 177–183.

164. BBode, A.M.; Dong, Z. The amazing and mighty ginger. In Herbal Medicine: Biomolecular and Clinical Aspects, Benzie, I.F.F., Wachtel-Galor, S., Eds.; CRC Press/Taylor & Francis Group, LLC.; Boca Raton, FL, USA, 2011.

165. Aryaeian, N.; Shahram, F.; Mahmoudi, M.; Tavakoli, H.; Yousefi, B.; Arabolou, T.; Kargar, S.J. The effect of ginger supplementation on some immunity and inflammation intermediate genes expression in patients with active Rheumatoid Arthritis. Gene 2019, 698, 179–185. https://doi.org/10.1016/j.gene.2019.01.048.

166. Heidari-Beni, M.; Moravejelahkami, A.R.; Gorgian, P.; Askari, G.; Tarrahi, M.J.; Bahreini-Esfahani, N. Herbal formulation “turmeric extract, black pepper, and ginger” versus naproxen for chronic knee osteoarthritis: A randomized, double-blind, controlled clinical trial. Phytother. Res. 2020, 34, 2067–2073. https://doi.org/10.1002/ptr.6671.

167. Ricci, M.; Micheloni, G.M.; Berti, M.; Perusi, F.; Sambugaro, E.; Vecchini, E.; Magnan, B. Clinical comparison of oral administration and viscosupplementation of hyaluronic acid (HA) in early knee osteoarthritis. Musculoskelet. Surg. 2016, 101, 45–49. https://doi.org/10.1007/s12306-016-0428-x.

168. Kizhakkedath, R. Clinical evaluation of a formulation containing Curcuma longa and Boswellia serrata extracts in the management of knee osteoarthritis. Mol. Med. Rep. 2013, 8, 1542–1548. https://doi.org/10.3892/mmr.2013.1661.

169. Pereira, L.M.S.; Gomes, S.T.M.; Ishak, R.; Vallinoto, A.C.R. Regulatory T cell and forhead box protein 3 as modulators of immune homeostasis. Front. Immunol. 2017, 8, 605. https://doi.org/10.3389/fimmu.2017.00605.

170. Wang, J.; Fathman, J.W.; Lugo-Villarino, G.; Scimone, L.; Von Andrian, U.; Dorfman, D.M.; Glimcher, L.H. Transcription factor T-bet regulates inflammatory arthritis through its function in dendritic cells. J. Clin. Investig. 2006, 116, 414–421. https://doi.org/10.1172/JCI26631.

171. Egozur, F.; Weiss, J.; Kaupmann, K.; Hintermann, S.; Orain, D.; Guntermann, C. Antagonizing retinoic acid-related-orphan receptor gamma activity blocks the T helper 17/interleukin-17 pathway leading to attenuated pro-inflammatory human keratinocyte and skin responses. Front. Immunol. 2019, 10, 577. https://doi.org/10.3389/fimmu.2019.00577.

172. Kulkarni, R.; Pathki, P.; Jog, V.; Gandage, S.; Patwardhan, B. Treatment of osteoarthritis with a herbomineral formulation: A double-blind, placebo-controlled, cross-over study. J. Ethnopharmacol. 1991, 33, 91–95. https://doi.org/10.1016/0378-8741(91)90167-c.

173. Paul, A.K.; Al Ariif, H.; Seraj, S.; Nahar, A.; Nasrin, D.; Chowdhury, M.H.; Islam, F.; Jahan, R.; Anwarul Bashar, A.B.M.; Freedman, R.; et al. A survey of plant items eaten by the low income groups of the rural population of Talbunga village in Bagerhat district, Bangladesh with an account of their folk medicinal applications. Am. Eurasian J. Sustain. Agric. 2011, 5, 132–144.

174. Ali, K.; Ashraf, A.; Biswas, N.N. Analgesic, anti-inflammatory and anti-diarrheal activities of ethanolic leaf extract of Typhonium trifoliatum L. Schott. Asian Pac. J. Trop. Biomed. 2012, 2, 722–726. https://doi.org/10.1016/s2221-1691(12)60217-2.

175. Zhang, Z.; Leong, D.J.; Xu, L.; He, Z.; Wang, A.; Navati, M.; Kim, S.J.; Hirsh, D.M.; Hardin, J.A.; Cobelli, N.J.; et al. Curcumin slows osteoarthritis progression and relieves osteoarthritis-associated pain symptoms in a post-traumatic osteoarthritis mouse model. Arthritis Res. Ther. 2016, 18, 128. https://doi.org/10.1186/s13075-016-1025-y.

176. Wang, J.; Wang, X.; Cao, Y.; Huang, T.; Song, D.-X.; Tao, H.-R. Therapeutic potential of hyaluronic acid/chitosan nanoparticles for the delivery of curcuminoid in knee osteoarthritis and in vitro evaluation in chondrocytes. Int. J. Mol. Med. 2018, 42, 2604–2614. https://doi.org/10.3892/ijmm.2018.3817.

177. Mukhopadhyay, N.; Sampath, V.; Pai, S.; Babu, U.; Lobo, R. Antiarthritic medicinal plants: A review. Res. J. Pharm. Technol. 2019, 12, 375–381.
178. Vetal, S.; Bodhankar, S.L.; Mohan, V.; Thakurdesai, P.A. Anti-inflammatory and anti-arthritic activity of type-A procyanidine polyphenols from bark of Cinnamomum zeylanicum in rats. Food Sci. Hum. Wellness 2013, 2, 59–67. https://doi.org/10.1016/j.fshw.2013.03.003.

179. Rathi, B.; Bodhankar, S.; Mohan, V.; Thakurdesai, P. Ameliorative effects of a polyphenolic fraction of Cinnamomum zeylanicum L. bark in animal models of inflammation and arthritis. Sci. Pharm. 2013, 81, 567–589. https://doi.org/10.7979/scipharm.1301-16.

180. Li, Z.-Z.; Tan, J.-P.; Wang, L.-L.; Li, Q.-H. Andrographolide benefits rheumatoid arthritis via inhibiting MAPK pathways. Inflammation 2017, 40, 1599–1605. https://doi.org/10.1007/s10753-017-0600-y.

181. Burgos, R.A.; Hancke, J.L.; Bertoglio, J.C.; Aguirre, V.; Arriagada, S.; Calvo, M.; Cáceres, D.D. Efficacy of an Andrographis paniculata composition for the relief of rheumatoid arthritis symptoms: a prospective randomized placebo-controlled trial. Clin. Rheumatol. 2009, 28, 931–946. https://doi.org/10.1007/s10067-009-1180-5.

182. Bedini, S.; Guarino, S.; Echeverria, M.C.; Flamini, G.; Ascrizzi, R.; Lonì, A.; Conti, B. Allium sativum, Rosmarinus officinalis, and Salvia officinalis essential oils: A spiced shield against blowflies. Insects 2020, 11, 143. https://doi.org/10.3390/insects11030143.

183. Vijayalakshmi, T.; Muthulakshmi, V.; Sachdanandam, P. Effect of the milk extract of Centella asiatica on the inflammatory cytokines and oxidative stress. Nutrients 2013, 5, 367–373. https://doi.org/10.3390/nu5020367.

184. Ramprasath, V.R.; Shanthi, P.; Sachdanandam, P. Anti-inflammatory Effect of Semecarpus anacardium nut on acute chronic inflammatory conditions. Biol. Pharm. Bull. 2004, 27, 2028–2031. https://doi.org/10.1248/bpb.27.2028.

185. Ramprasath, V.R.; Shanthi, P.; Sachdanandam, P. Evaluation of antioxidant effect of Semecarpus anacardium Linn. nut extract on the components of immune system in adjuvant arthritis. Vasc. Pharmacol. 2005, 42, 179–186. https://doi.org/10.1101/vph.2005.02.001.

186. Singh, D.; Aggarwal, A.; Mathias, A.; Naik, S. Immunomodulatory activity of Semecarpus anacardium extract in mononuclear cells of normal individuals and rheumatoid arthritis patients. J. Ethnopharmacol. 2006, 108, 398–406. https://doi.org/10.1016/j.jep.2005.06.028.

187. Rotpenpian, N.; Arayapisit, T.; Roumwong, A.; Pakaprot, N.; Tantisira, M.; Wanasuntronwong, A. A standardized extract of Centella asiatica (ECa 233) prevents temporomandibular joint osteoarthritis by modulating the expression of local inflammatory mediators in mice. J. Appl. Oral Sci. 2021, 29, e20210329. https://doi.org/10.1590/1678-7757-2021-0329.

188. Micheli, L.; Mannelli, L.D.C.; Mattoli, L.; Tamimi, S.; Flamini, E.; Garetto, S.; Lucci, J.; Giovanghini, E.; Cinci, L.; D’Ambrosio, M.; et al. Intra-articular route for the system of molecules 14G1862 from Centella asiatica: Pain relieving and protective effects in a rat model of osteoarthritis. Nutrients 2020, 12, 1618. https://doi.org/10.3390/nu12061618.

189. Sharma, S.; Gupta, R.; Thakur, S.C. Attenuation of collagen induced arthritis by Centella asiatica methanol fraction via modulation of cytokines and oxidative stress. Biomed. Environ. Sci. 2014, 27, 926–938. https://doi.org/10.3967/bes2014.133.

190. Nair, V.; Singh, S.; Gupta, Y. Evaluation of disease modifying activity of Coriandrum sativum in experimental models. Indian J. Med. Res. 2012, 135, 240–245.

191. Singh, S.; Gupta, Y.; Nair, V. Anti-granuloma activity of Coriandrum sativum in experimental models. J. Ayurveda Integr. Med. 2013, 4, 13–18. https://doi.org/10.4103/0975-9476.109544.

192. Arya, V.; Gupta, V.K.; Kaur, R. A review on plants having anti-arthritic potential. Int. J. Pharm. Sci. Res. 2011, 7, 131–136.

193. Mehta, A.; Sethiya, N.K.; Mehta, C.; Shah, G. Anti–arthritis activity of roots of Hemidesmus indicus R.Br. (Anantmull) in rats. Asian Pac. J. Trop. Med. 2012, 5, 130–135. https://doi.org/10.1016/s1995-7645(12)60011-x.

194. Jung, H.-J.; Nam, J.H.; Choi, J.; Lee, K.-T.; Park, H.-J. Antiinflammatory effects of chiasanoside and chiasanogenin obtained from the leaves of Acanthopanax chisanensis in the carrageenan- Freund’s complete adjuvant-induced rats. J. Ethnopharmacol. 2005, 97, 359–367. https://doi.org/10.1016/j.jep.2004.11.026.

195. Jang, Y.-J.; Kim, M.-E.; Ko, S.-Y. n-Butanol extracts of Panax notoginseng suppress LPS-induced MMP-2 expression in periodontal ligament fibroblasts and inhibit osteoclastogenesis by suppressing MAPK in LPS-activated RAW264.7 cells. Arch. Oral. Biol. 2011, 56, 1319–1327. https://doi.org/10.1177/0093397512454023.

196. Wei, C.C.; Yue, L.F.; You, F.T.; Tao, C. Panax notoginseng saponins alleviate osteoporosis and joint destruction in rabbits with antigen-induced arthritis. Exp. Ther. Med. 2021, 22, 1–7. https://doi.org/10.3892/etm.2021.10737.

197. Zhang, Y.; Cai, W.; Han, G.; Zhou, S.; Li, J.; Chen, M.; Li, H. Panax notoginseng saponins prevent senescence and inhibit apoptosis by regulating the PI3K-AKT-mTOR pathway in osteoarthritic chondrocytes. Int. J. Mol. Med. 2020, 45, 1225–1236. https://doi.org/10.3892/ijmm.2020.4491.

198. Kim, H.A.; Kim, S.; Chang, S.H.; Hwang, H.J.; Choi, Y.-N. Anti-arthritic effect of ginsenoside Rb1 on collagen induced arthritis in mice. Int. Immunopharmacol. 2013, 7, 1286–1291. https://doi.org/10.1016/j.intimp.2013.05.006.

199. Piwowar, A.; Rembiłkowska, N.; Rorbach-Dolata, A.; Garbiec, A.; Ślusarczyk, S.; Dobosz, A.; Długosz, A.; Marchewka, Z.; Matkowski, A.; Saczko, J. Anemarrhenae asphodeloides rhizoma extract enriched in mangiferin protects PC12 cells against a neurototoxic agent-3-nitropropionic acid. Int. J. Mol. Sci. 2020, 21, 2510. https://doi.org/10.3390/ijms21072510.

200. Kang, M.; Jung, I.; Hur, J.; Kim, S.H.; Lee, J.H.; Kang, J.-Y.; Jung, K.C.; Kim, K.S.; Yoo, M.C.; Park, D.-S.; et al. The analgesic and anti-inflammatory effect of WIN-348, a new herbal formula for osteoarthritis composed of Loniceria japonica Thumb and Anemarrhenae asphodeloides BUNGE in vivo. J. Ethnopharmacol. 2010, 131, 485–496. https://doi.org/10.1016/j.jep.2010.07.025.

201. Mittal, S.; Dixit, P.K. In-vivo anti-inflammatory and anti-arthritic activity of Asparagus racemosus roots. Int. J. Pharm. Sci. Res. 2013, 4, 2652.
202. Joshi, G.; Rawat, M.; Bisht, V.; Negi, J.S.; Singh, P. Chemical constituents of Asparagus. Pharmacogn. Rev. 2010, 4, 215–220. https://doi.org/10.4103/0973-7847.70921.

203. Pecio, ; Alliou, M.; Orhan, I.E.; Eren, G.; Deniz, F.S.S.; Stuppner, H.; Oleszek, W. Yucafechins A–C from the Yuca schidigera Roelz ex ortgies bark: Elucidation of the relative and absolute configurations of three new spiribiflavonoids and their cholinesterase inhibitory activities. Molecules 2019, 24, 4162. https://doi.org/10.3390/molecules24224162.

204. Cheeke, P.; Piacente, S.; Oleszek, W. Anti-inflammatory and anti-arthritic effects of Yuca schidigera: A review. J. Inflamm. 2006, 3, 6–6. https://doi.org/10.1186/1477-7847-3-6.

205. Pferschy-Wenzig, E.-M.; Oleszek, W.; Stochmal, A.; Kunert, O.; Bauer, R. Influence of Phenolic Constituents from Yuca schidigera bark on Arachidonate metabolism in Vitro. J. Agric. Food Chem. 2008, 56, 8885–8890. https://doi.org/10.1021/jf801289m.

206. Bhagwat, D.; Kharya, M.D.; Bani, S.; Kaul, A.; Kour, K.; Chauhan, P.S.; Suri, K.; Satti, N. Immunomodulatory and anti-inflammatory activities of Pluchea lanceolata leaves. Indian J. Pharmacol. 2010, 42, 21–26. https://doi.org/10.4103/0253-7613.62405.

207. Srivastava, P.; Shanker, K. Pluchea lanceolata (Rasana): Chemical and biological potential of Rasanya herb used in traditional system of medicine. Fitoterapia 2012, 83, 1371–1385. https://doi.org/10.1016/j.fitote.2012.07.008.

208. Sivanesan, S.; Mundugur, R.; Udaykumar, P.; Rao, N.; Chandra, N. Protective effect of Pluchea lanceolata against aluminum chloride-induced neurotoxicity in Swiss albino mice. Pharmacogn. Mag. 2017, 13, S567–S572. https://doi.org/10.4103/pm.pm_124_17.

209. Wang, Z.; Fan, X.; Xu, Y.; Chen, K.; Yu, X.; Sun, G. Efficacy of Xixincao (Herba siegesbeckiae orientalis) on interactions between nuclear factor kappa-B and inflammatory cytokines in inflammatory reactions of rat synovial cells induced by sodium urate. J. Tradit. Chin. Med. = Chung I Tsa Chih Ying Wen Pan 2020, 40, 774–781.

210. Wang, J.-P.; Zhou, Y.-M.; Ye, Y.-J.; Shang, X.-M.; Cai, Y.-L.; Xiong, C.-M.; Wu, Y.-X.; Xu, H.-X. Topical anti-inflammatory and analgesic activity of kireno isolated from Siegesbeckia orientalis. J. Ethnopharmacol. 2011, 137, 1089–1094. https://doi.org/10.1016/j.jep.2011.07.016.

211. Vêgh, K.; Rießmüller, E.; Töth, A.; Alberti, ; Béni, S.; Balla, J.; Kéry, . Convergence chromatographic determination of camphor in the essential oil of Tanacetum parthenium L. Biomed. Chromatogr. 2016, 30, 2031–2037. https://doi.org/10.1002/bmc.3781.

212. Pareek, A.; Suthar, M.; Rathore, G.S.; Bansal, V. Feverfew (Tanacetum parthenium L.): A systematic review. Pharmacogn. Rev. 2011, 5, 103–110. https://doi.org/10.4103/0973-7847.79105.

213. Parada-Turska, J.; Mitura, A.; Brzana, W.; Jabłoński, M.; Majdan, M.; Rzeski, W. Parthenolide inhibits proliferation of fibroblast-like synoviocytes in vitro. Inflammation 2008, 31, 281–285. https://doi.org/10.1007/s10753-008-9076-0.

214. Xie, G.; Schepetkin, I.A.; Quinn, M.T. Immunomodulatory activity of acidic polysaccharides isolated from Tanacetum vulgare L. Int. Immunopharmacol. 2007, 7, 1639–1650. https://doi.org/10.1016/j.intimp.2007.08.013.

215. Juan-Badauruge, M.; Habtemariam, S.; Jackson, C.; Thomas, M.J.K. Antioxidant principles of Tanacetum vulgare L. aerial parts. Nat. Prod. Commun. 2009, 4, 1561–1564. https://doi.org/10.1177/1934578X0904001121.

216. Lin, B.; Zhao, Y.; Han, P.; Yue, W.; Ma, X.-Q.; Rahman, K.; Zheng, C.-J.; Qin, L.-P.; Han, T. Anti-arthritic activity of Xanthium strumarium L. extract on complete Freund’s adjuvant induced arthritis in rats. J. Ethnopharmacol. 2014, 155, 248–255. https://doi.org/10.1016/j.jep.2014.05.023.

217. Fan, W.; Fan, L.; Peng, C.; Zhang, Q.; Wang, L.; Li, L.; Wang, J.; Zhang, D.; Peng, W.; Wu, C. Traditional uses, botany, phytochemistry, pharmacology, pharmacokinetics and toxicology of Xanthium strumarium L.: A Review. Molecules 2019, 24, 359. https://doi.org/10.3390/molecules24020359.

218. Hossen, M.J.; Cho, J.Y.; Kim, D. PKD1 in NF-xB signaling is a target of Xanthium strumarium methanolic extract-mediated anti-inflammatory activities. J. Ethnopharmacol. 2016, 190, 251–260. https://doi.org/10.1016/j.jep.2016.06.019.

219. Ghorbani, N.; Sahebari, M.; Mahmoudi, M.; Rastin, M.; Zamani, S.; Zamani, M. Berberine inhibits the gene expression and production of proinflammatory cytokines by mononuclear cells in rheumatoid arthritis and healthy individuals. Curr. Rheumatol. Res. 2021, 17, 113–121. https://doi.org/10.2174/1573397116666200907111303.

220. Ivanovska, N.; Filipov, S. Study on the anti-inflammatory action of Berberis vulgaris root extract, alkaloid fractions and pure alkaloids. Int. J. Immunopathol. Pharmacol. 1996, 9, 553–561. https://doi.org/10.1177/s0118056956007047-1.

221. Fan, H.-Y. Effectiveness of a hydroxynaphthoquinone fraction from Arnebia euchroma in rats with experimental colitis. World J. Gastroenterol. 2013, 19, 9318–9327. https://doi.org/10.3748/wjg.v19.i18.9318.

222. Fan, H.; Yang, M.; Che, X.; Zhang, Z.; Xu, H.; Liu, K.; Meng, Q. Activity study of a hydroxynaphthoquinone fraction from Arnebia euchroma in experimental arthritis. Fitoterapia 2012, 83, 1226–1237. https://doi.org/10.1016/j.fitote.2012.06.011.

223. Taussig, S.J.; Batkin, S. Bromelain, the enzyme complex of pineapple (Ananas comosus) and its clinical application. An update. J. Ethnopharmacol. 1988, 22, 191–203. https://doi.org/10.1016/0378-7471(88)90127-4.

224. Hale, L.P.; Greer, P.K.; Trinh, C.T.; James, C.L. Proteinase activity and stability of natural bromelain preparations. Int. Immunopharmacol. 2005, 5, 783–793. https://doi.org/10.1016/j.intimp.2004.12.007.

225. Banno, N.; Akihisa, T.; Yasukawa, K.; Tokuda, H.; Tabata, K.; Nakamura, Y.; Nishimura, R.; Kimura, Y.; Suzuki, T. Anti-inflammatory activities of the triterpene acids from the resin of Boswellia carteri. J. Ethnopharmacol. 2006, 107, 249–253. https://doi.org/10.1016/j.jep.2006.03.006.

226. Blain, E.J.; Ali, A.Y.; Duance, V.C. Boswellia frereana (frankincense) suppresses cytokine-induced matrix metalloproteinase expression and production of pro-inflammatory molecules in articular cartilage. Phytother. Res. 2009, 24, 905–912. https://doi.org/10.1002/ptr.3055.
227. Muruganathan, G.; Kumar, G.S.; Chethan, P.S.; Mohan, S. Anti-arthritic and anti-inflammatory constituents from medicinal plants. J. App. Pharm. Sci. 2013, 3, 161–164. https://doi.org/10.7324/japs.2013.34324

228. Umar, S.; Umar, K.; Sarwar, A.H.M.G.; Khan, A.; Ahmad, N.; Ahmad, S.; Katiyar, C.K.; Husain, S.A.; Khan, H.A. Boswellia serrata extract attenuates inflammatory mediators and oxidative stress in collagen induced arthritis. Phytoncide 2014, 21, 847–856. https://doi.org/10.1016/j.phymed.2014.02.001.

229. Mishra, N.; Bstia, S.; Mishra, G.; Chowdary, K.; Patra, S. Anti-arthritic activity of Glycyrrhiza glabra, Boswellia serrata and their synergistic activity in combined study in Freund’s adjuvant induced arthritic rats. J. Pharm. Educ. Res. 2011, 2, 92.

230. Yun, X.; Chen, X.M.; Wang, J.Y.; Lu, W.; Zhang, Z.H.; Kim, Y.H.; Zong, S.C.; Li, C.H.; Gao, J.M. Cassane diterpenoids from Caesalpinia pulcherrima and their anti-inflammatory and α-glycosidase inhibitory activities. Nat Prod Res. 2021, 1–9, online ahead of print. https://doi.org/10.1080/17486141.2021.2007096.

231. Rajaram, C.; Kundala, R.R. Evaluation of anti-arthritic activity of Caesalpinia pulcherrima in Freund’s complete adjuvant induced arthritic rat model. J. Young Pharm. 2015, 7, 132.

232. Costa, B.; Colleoni, M.; Conti, S.; Parolaro, D.; Franke, C.; Trovato, A.E.; Giagnoni, G. Oral anti-inflammatory activity of cannabidiol, a non-psychoactive formulation of cannabis, in acute carrageenan-induced inflammation in the rat paw. Naunyn-Schmiedeberg's Arch. Exp. Pathol. Pharmacol. 2004, 369, 294–299. https://doi.org/10.s00210-004-0871-3.

233. Berg, M.V.D.; John, M.; Black, M.; Semprini, A.; Oldfield, K.; Glass, M.; Braithwaite, I. Cannabis-based medicinal products in arthritis, a painful conundrum. N. Zealand Med. J. 2020, 133, 35–45.

234. Baron, E.P.; Lucas, P.; Eades, J.; Hogue, O. Patterns of medicinal cannabis use, strain analysis, and substitution and specificity among patients with migraine, headache, arthritis, and chronic pain in a medicinal cannabis cohort. J. Headache Pain 2018, 19, 1–28. https://doi.org/10.1186/s10194-018-0862-2.

235. Ageel, A.M.; Parmar, N.S.; Mossa, J.S.; Al-Yahya, M.A.; Al-Said, M.S.; Tariq, M. Anti-inflammatory activity of some Saudi Arabian medicinal plants. Agents Actions 1986, 17, 383–384. https://doi.org/10.1159/000154226.

236. Feng, X.; Lu, J.; Xin, H.; Zhang, L.; Wang, Y.; Tang, K. Anti-arthritic active fraction of Capparis spinosa L. fruits and its chemical constituents. Yakugaku Zassi 2011, 131, 423–429. https://doi.org/10.1248/yakushi.131.423.

237. Maresca, M.; Micheli, L.; Mammelli, L.D.C.; Tenci, B.; Innocenti, M.; Khatib, M.; Muliniacci, N.; Ghelardini, C. Acute effect of Capparis spinosa root extracts on rat articular pain. J. Ethnopharmacol. 2016, 193, 456–465. https://doi.org/10.1016/j.jep.2016.09.032.

238. Yang, Q.; Wang, Q.; Deng, W.; Sun, C.; Wei, Q.; Adu-Frimpong, M.; Shi, J.; Yu, J.; Xu, X. Anti-hyperuricemic and anti-gouty arthritis activities of polysaccharide purified from Lonicera japonica in model rats. Int. J. Biol. Macromol. 2018, 123, 801–809. https://doi.org/10.1016/j.ijbiomac.2018.11.077.

239. Cheng, B.C.Y.; Yu, H.; Gao, H.; Su, T.; Fu, X.-Q.; Li, T.; Cao, H.-H.; Tse, A.K.W.; Wu, Z.-Z.; Kwan, H.-Y.; et al. A herbal formula comprising Rosae Multiflorae Fructus and Lonicerae Japonicae Flos, attenuates collagen-induced arthritis and inhibits TLR4 signalling in rats. Sci. Rep. 2016, 6, 20042. https://doi.org/10.1038/srep20042.

240. Kadiooglu, O.; Saeed, M.; Gretan, H.J.; Effert, T. Identification of novel compounds against three targets of SARS CoV-2 coronavirus by combined virtual screening and supervised machine learning. Comput. Biol. Med. 2021, 133, 104539. https://doi.org/10.1016/j.compbiomed.2021.104539.

241. Huh, J.-E.; Lee, W.-I.; Seo, B.-K.; Baek, Y.-H.; Lee, J.-D.; Choi, J.-Y.; Park, N.-S. Gastroprotective and safety effects of WIN-34B, a novel treatment for osteoarthritis, compared to NSAIDs. J. Ethnopharmacol. 2011, 137, 1011–1017. https://doi.org/10.1016/j.jep.2011.07.025.

242. Zhang, Y.; Mao, X.; Li, W.; Chen, W.; Wang, X.; Ma, Z.; Lin, N. Tripterygium wilfordii: An inspiring resource for rheumatoid arthritis treatment. Med. Res. Rev. 2020, 41, 1337–1347. https://doi.org/10.1111/med.21762.

243. Marks, W.H. Tripterygium wilfordii Hook F. versus sulfasalazine in the treatment of rheumatoid arthritis: A well-designed clinical trial of a botanical demonstrating effectiveness. Fitoterapia 2011, 82, 85–87. https://doi.org/10.1016/j.fitote.2010.11.024.

244. Li, H.; Zhang, Y.-Y.; Tan, H.-W.; Jia, Y.-F.; Li, D. Therapeutic effect of tripterine on adjuvant arthritis in rats. J. Ethnopharmacol. 2008, 118, 479–484. https://doi.org/10.1016/j.jep.2008.05.028.

245. Tao, X.; Lipsky, P.E. The Chinese anti-inflammatory and immunosuppressive herbal remedy Tripterygium wilfordii hook F. Rheum. Dis. Clin. N. Am. 2000, 26, 29–50. https://doi.org/10.s0889-857x(05)70118-6.

246. Zhang, W.; Li, F.; Gao, W. Tripterygium wilfordii inhibiting angiogenesis for rheumatoid arthritis treatment. J. Natl. Med Assoc. 2017, 109, 142–148. https://doi.org/10.1177/jnma.2017.02.007.

247. Narendhirakannan, R.; Subramanian, S.; Kandaswamy, M. Anti-inflammatory and lysosomal stability actions of Cleome gynandra L. studied in adjuvant induced arthritic rats. Food Chem. Toxicol. 2007, 45, 1001–1012. https://doi.org/10.1016/j.fct.2006.12.009.

248. Karpaludi, V.; Mungara, A.V.P.; Sengupta, K.; Davis, B.A.; Raychaudhuri, S.P. A placebo-controlled double-blind study demonstrates the clinical efficacy of a novel herbal formulation for relieving joint discomfort in human subjects with osteoarthritis of Knee. J. Med. Food 2018, 21, 511–520. https://doi.org/10.1089/jmf.2017.0065.

249. Ekambaram, S.P.; Perumal, S.S.; Erusappan, T.; Srinivasan, A. Hydrolysable tannin-rich fraction from Terminalia chebula Retz. fruits ameliorates collagen-induced arthritis in BALB/c mice. Inflammopharmacology 2019, 28, 275–287. https://doi.org/10.1007/s10787-019-00629-x.

250. Seo, J.-B.; Jeong, J.-Y.; Park, J.-Y.; Jun, E.-M.; Lee, S.-I.; Choe, S.-S.; Park, D.-Y.; Choi, E.-W.; Seen, D.-S.; Lim, J.-S.; et al. Anti-arthritic and analgesic effect of NDH10218, a standardized extract of Terminalia chebula, on arthritis and pain model. Biomol. Ther. 2012, 20, 104–112. https://doi.org/10.4062/biomolther.2012.20.1.104.
251. Nair, V.; Singh, S.; Gupta, Y.K. Anti-arthritis and disease modifying activity of *Terminalia chebula* Retz. in experimental models. *J. Pharm. Pharmacol.* 2010, 62, 1801–1806. https://doi.org/10.1111/j.2042-7158.2010.01193.x.

252. Muhammad, S.; Khan, B.A.; Akhtar, N.; Mahmood, T.; Rasul, A.; Hussain, I.; Khan, H.; Badshah, A. The morphology, extractions, chemical constituents and uses of *Terminalia chebula*: A review. *J. Med. Plants Res.* 2012, 6, 4772–4775.

253. Bag, A.; Bhattacharyya, S.K.; Pal, N.K.; Chattopadhyay, R.R. Anti-inflammatory, anti-lipid peroxidative, antioxidant and membrane stabilizing activities of hydroalcoholic extract of *Terminalia chebula*fruits. *Pharm. Biol.* 2013, 51, 1515–1520. https://doi.org/10.3109/13880209.2013.79709.

254. Pan, R.; Li, Y.; Dai, Y.; Gao, X.-H.; Xia, Y.-F. Anti-arthritic effect of scopoletin, a coumarin compound occurring in *Erycibe obtusifolia* Benth stems, is associated with decreased angiogenesis in synovium. *Fundam. Clin. Pharmacol.* 2009, 24, 477–490. https://doi.org/10.1111/j.1472-8206.2009.00784.x.

255. Pan, R.; Dai, Y.; Gao, X.; Xia, Y. Scopolin isolated from *Erycibe obtusifolia* Benth stems suppresses adjuvant-induced rat arthritis by inhibiting inflammation and angiogenesis. *Int. Immunopharmacol.* 2009, 9, 859–869. https://doi.org/10.1016/j.intimp.2009.02.019.

256. Marzouk, B.; Marzouk, Z.; Fenina, N.; Bouraoui, A.; Aouni, M. Anti-inflammatory and analgesic activities of Tunisian *Citrus reticulata* (Fenugreek) mucilage against rheumatoid arthritis. *Phytother. Res.* 2008, 22, 1386–1389. doi.org/10.1002/j.2042-7158.2012.01193.x.

257. Marzouk, B.; Marzouk, Z.; Haloui, E.; Fenina, N.; Bouraoui, A.; Aouni, M. Screening of analgesic and anti-inflammatory activities of *Citrus reticulata* from southern Tunisia. *J. Ethnopharmacol.* 2010, 128, 15–19. https://doi.org/10.1016/j.jep.2009.11.027.

258. Wang, L.; Zhao, D.; Li, L.; Xu, T.; Lin, X.; Yang, B.; Zhou, X.; Yang, X.; Liu, Y. The analgesic and anti-rheumatic effects of *Thladiantha dubia*fruit crude polysaccharide fraction in mice and rats. *J. Ethnopharmacol.* 2011, 137, 1381–1387. https://doi.org/10.1016/j.jep.2011.08.004.

259. Vennila, V.; Anitha, R. In vitro evaluation of anti-arthritic activity in different solvent extracts from *Cascuta reflexa*. *World J. Pharm. Sci.* 2015, 4, 1340–1350.

260. Kumaraswamy, D.; Puchchakayala, G.; Yatla, P. Evaluation of anti-rheumatoid activity of *Cuscuta reflexa* in Freund’s adjuvant induced arthritic rats. *Int. J. Pharm. Technol.* 2016, 8, 13515–13530.

261. Saini, P.; Mittal, R.; Menghani, E. A parasitic medicinal plant *Cuscuta reflexa*: An overview. *Int. J. Sci. Eng. Res.* 2015, 6, 951–959.

262. Sosa, S.; Altinier, G.; Politi, M.; Braca, A.; Morelli, I.; Della Loggia, R. Extracts and constituents of *Lavandula multifida* with topical anti-inflammatory activity. *Phytomedicine* 2005, 12, 271–277. https://doi.org/10.1016/j.phymed.2004.02.007.

263. Jin, J.H.; Kim, J.S.; Kang, S.S.; Son, K.H.; Chang, H.W.; Kim, H.P. Anti-inflammatory and anti-arthritic activity of total flavonoids of the roots of *Sophora flavescentis*. *J. Ethnopharmacol.* 2010, 127, 589–595. https://doi.org/10.1016/j.jep.2009.12.020.

264. Wu, D.; Zhu, X.; Kang, X.; Huang, H.; Yu, J.; Pan, J.; Zhang, X. The protective effect of sophocarpine in osteoarthritis: An in vitro and in vivo study. *Int. Immunopharmacol.* 2018, 67, 145–151. https://doi.org/10.1016/j.intimp.2018.11.046.

265. Sindhu, G.; Ratheesh, M.; Shyne, G.; Namibisan, B.; Helen, A. Anti-inflammatory and antioxidative effects of mucilage of *Trigonella foenum graecum* (Fenugreek) on adjuvant induced arthritic rats. *Int. Immunopharmacol.* 2012, 12, 205–211. https://doi.org/10.1016/j.intimp.2011.11.012.

266. G. S.; L. S.G.; Pushpan, C.K.; Namibisan, B.; A, H. Evaluation of anti-arthritic potential of *Trigonella foenum graecum* L. (Fenugreek) mucilage against rheumatoid arthritis. *Prostaglandins Other Lipid Mediat.* 2018, 138, 48–53. https://doi.org/10.1016/j.prostaglandins.2018.08.002.

267. Suresh, P.; Kavitha, C.N.; Babu, S.M.; Reddy, V.P.; Latha, A.K. Effect of ethanol extract of *Trigonella foenum graecum* (Fenugreek) seeds on Freund’s adjuvant-induced arthritis in Albino rats. *Inflammation* 2012, 35, 1314–1321. https://doi.org/10.1007/s10753-012-9444-7.

268. Msaada, K.; Salem, N.; Tammar, S.; Hammami, M.; Saharkhiz, M.J.; Debiche, N.; Limam, F.; Marzouk, B. Essential oil composition of *Lavandula dentata*, *L. stoechas* and *L. multifida*cultivated in Tunisia. *J. Essent. Oil Bear. Plants* 2012, 15, 1030–1039. https://doi.org/10.1080/0972060X.2012.10662608.

269. Augustine, B.B.; Dash, S.; Lahkar, M.; Sarma, U.; Samudrala, P.K.; Thomas, J.M. *Leucas aspera* inhibits the Dalton’s ascitic lymphoma in Swiss albino mice: A preliminary study exploring possible mechanism of action. *Pharmacob. Mag.* 2014, 10, 118–124. https://doi.org/10.4103/0973-1296.131022.

270. Kripa, K.; Chamudeeswari, D.; Thanka, J.; Reddy, C.U.M. Modulation of inflammatory markers by the ethanolic extract of *Leucas aspera* in adjuvant arthritis. *J. Ethnopharmacol.* 2011, 134, 1024–1027. https://doi.org/10.1016/j.jep.2011.01.010.

271. Gonçalves, G.D.A.; de Sá-Nakanishi, A.B.; Comar, J.F.; Bracht, L.; Dias, M.I.; Barros, L.; Peralta, R.M.; Ferreira, I.C.F.R.; Bracht, A. Water soluble compounds of *Rosmarinus officinalis* L. improve the oxidative and inflammatory states of rats with adjuvant-induced arthritis. *Food Funct.* 2018, 9, 2328–2340. https://doi.org/10.1039/c7fo1928a.

272. González-Trujano, M.; Peña, E.; Martínez, A.L.; Moreno, J.; Guevara-Peiter, P.; Déciga-Campos, M.; López-Muñoz, F. Evaluation of the antinociceptive effect of *Rosmarinus officinalis* L. using three different experimental models in rodents. *J. Ethnopharmacol.* 2007, 117, 476–482. https://doi.org/10.1016/j.jep.2006.12.011.

273. Liu, M.; Zhou, X.; Zhou, L.; Liu, Z.; Yuan, J.; Cheng, J.; Zhao, J.; Wu, L.; Li, H.; Qiu, H.; et al. Carnosic acid inhibits inflammation response and joint destruction on osteoclasts, fibroblast-like synoviocytes, and collagen-induced arthritis rats. *J. Cell. Physiol.* 2018, 233, 6291–6303. https://doi.org/10.1002/jcp.26517.
Nutrients 2022, 14, 985

274. Xia, G.; Wang, X.; Sun, H.; Qin, Y.; Fu, M. Carnosic acid (CA) attenuates collagen-induced arthritis in db/db mice via inflammation suppression by regulating ROS-dependent p38 pathway. Free Radic. Biol. Med. 2017, 108, 418–432. https://doi.org/10.1016/j.freeradbiomed.2017.03.023.

275. Jiang, W.-Y.; Jeon, B.-H.; Kim, Y.-C.; Lee, S.H.; Sohn, D.H.; Seo, G.S. PF2401-5F, standardized fraction of Salvia miltiorrhiza shows anti-inflammatory activity in macrophages and acute arthritis in vivo. Int. Immunopharmacol. 2013, 16, 160–164. https://doi.org/10.1016/j.intimm.2013.03.028.

276. Liu, Q.-S.; Luo, X.-Y.; Jiang, H.; Xing, Y.; Yang, M.-H.; Yuan, G.-H.; Tang, Z.; Wang, H. Salvia miltiorrhiza injection restores apoptosis of fibroblast-like synovocytes cultured with serum from patients with rheumatoid arthritis. Mol. Med. Rep. 2014, 11, 1476–1482. https://doi.org/10.3892/mmr.2014.2779.

277. Jiang, R.; Zhang, X.; Li, Y.; Zhou, H.; Wang, H.; Wang, F.; Ma, H.; Cao, L. Identification of the molecular mechanisms of Salvia miltiorrhiza relevant to the treatment of osteoarthritis based on network pharmacology. Discov. Med. 2021, 30, 83–95.

278. Zheng, C.-J.; Zhao, X.-X.; Ai, H.-W.; Lin, B.; Han, T.; Jiang, Y.-P.; Xing, X.; Qin, L.-P. Therapeutic effects of standardized Vitex negundo seeds extract on complete Freund’s adjuvant induced arthritis in rats. Phytomedicine 2014, 21, 838–846. https://doi.org/10.1016/j.phymed.2014.02.003.

279. Jing, R.; Ban, Y.; Xu, W.; Nian, H.; Guo, Y.; Geng, Y.; Zang, Y.; Zheng, C. Therapeutic effects of the total lignans from Vitex negundo seeds on collagen-induced arthritis in rats. Phytomedicine 2019, 58, 152825. https://doi.org/10.1016/j.phymed.2019.152825.

280. Wei, Z.-F.; Tong, B.; Xia, Y.-F.; Lu, Q.; Chou, G.-X.; Wang, Z.-T.; Dai, Y. Norisoboldine suppresses osteoclast differentiation through preventing the accumulation of TRAF6-TAK1 complexes and activation of MAPKs/NF-κB/c-Fos/NFATc1 pathways. PLoS ONE 2013, 8, e59171. https://doi.org/10.1371/journal.pone.0059171.

281. Wei, Z.-F.; Lv, Q.; Xia, Y.; Yue, M.-F.; Shi, C.; Xia, Y.-F.; Chou, G.-X.; Wang, Z.-T.; Dai, Y. Norisoboldine, an anti-arthritis alkaloid isolated from Radix L varieties. Attenuates osteoclast differentiation and inflammatory bone erosion in an aryl hydrocarbon receptor-dependent manner. Int. J. Biol. Sci. 2015, 11, 1113–1126. https://doi.org/10.7150/ijbs.12152.

282. Tong, B.; Dou, Y.; Wang, T.; Yu, J.; Wu, X.; Lu, Q.; Chou, G.; Wang, Z.; Kong, L.; Dai, Y.; et al. Norisoboldine ameliorates collagen-induced arthritis through regulating the balance between Th17 and regulatory T cells in gut-associated lymphoid tissues. Toxicol. Appl. Pharmacol. 2015, 282, 90–99. https://doi.org/10.1016/j.taap.2014.11.008.

283. da Silva, K.A.B.S.; Klein-Júnior, L.C.; Cruz, S.M.; Cáceres, A.; Quintão, N.L.M.; Monache, F.D.; Cechinel-Filho, V. Anti-inflammatory and anti-hyperalgesic evaluation of the condiment laurel (Litsaea gutenarsensis Mez.) and its chemical composition. Food Chem. 2012, 132, 1980–1986. https://doi.org/10.1016/j.foodchem.2011.12.036.

284. Patil, K.R.; Patil, C.R.; JadHAV, R.B.; Mahajan, V.K.; Patil, P.R.; Gaikwad, P.S. Anti-arthritic activity of bartogenic acid isolated from fruits of Barringtonia racemosa Roxb. (Lecythidaceae). Evid. -Based Complement Altern. Med. 2011, 2011, 785245. https://doi.org/10.1093/ecam/nep148.

285. Zheng, Y.; Wu, Z.; Liu, J.; Hu, J.; Yang, C. Therapeutic effect of nux vomica total alkali gel on adjuvants arthritis rats. China J. Chin. Mater. Medica 2012, 37, 1434–1439.

286. Patel, K.; Laloo, D.; Singh, G.K.; Gadewar, M.; Patel, D.K. A review on medicinal uses, analytical techniques and pharmacological activities of Styrchnos nux-vomica Linn.: A concise report. Chin. J. Integr. Med. 2017, 1–13. https://doi.org/10.1007/s11655-016-2514-1.

287. Yin, W.; Wang, T.-S.; Yin, F.-Z.; Cai, B.-C. Analgesic and anti-inflammatory properties of brucine and brucine N-oxide extracted from seeds of Styrchnos nux-vomica. J. Ethnopharmacol. 2003, 88, 205–214. https://doi.org/10.1016/s0378-7474(03)00224-1.

288. Gautam, R.; Sharma, S.; Sharma, K.; Gupta, G. Evaluation of antiarthritic activity of butanol fraction of Punica granatum Linn. Rind extract against Freund’s complete adjuvant-induced arthritis in rats. J. Environ. Pathol. Toxicol. Oncol. 2018, 37, 53–62. https://doi.org/10.1615/jenvironpatholtoxicoloncol.2018025137.

289. Shukla, M.; Gupta, K.; Rasheed, Z.; Khan, K.A.; Haqqi, T.M. Consumption of hydrolyzable tannins-rich pomegranate extract suppresses inflammation and joint damage in rheumatoid arthritis. Nutrition 2008, 24, 733–743. https://doi.org/10.1016/j.nut.2007.03.013.

290. Jurenka, J.S. Therapeutic applications of pomegranate (Punica granatum L.): A review. Altern. Med. Rev. J. Clin. Ther. 2008, 13, 128–144.

291. Mahdavi, A.M.; Seyedasadji, N.; Javadivala, Z. Potential effects of pomegranate (Punica granatum) on rheumatoid arthritis: A systematic review. Int. J. Clin. Pr. 2021, 75, e13999. https://doi.org/10.1111/ijcp.13999.

292. Bhaipale, N.S. Anti-Arthritic Activity of Abutilon hirtum. Int. J. Pharm. Biol. Arch. 2014, 5, 99–101.

293. Sharma, A.; Sharma, R.; Singh, H. Phytochemical and pharmacological profile of Abutilon indicum L. Sweet: A review. Int. J. Pharm. Sci. Res. Rev. 2013, 20, 120–127.

294. Gupta, S.; Nirmal, S.; Patil, R.; Asane, G. Anti-arthritic activity of various extracts of Sida rhombifolia aerial parts. Nat. Prod. Res. 2009, 23, 689–695. https://doi.org/10.1080/14786410802242778.

295. Narendhirakannan, R.; Limmy, T. Anti-inflammatory and anti-oxidant properties of Sida rhombifolia stems and roots in adjuvant induced arthritic rats. Immunopharmacol. Immunotoxicol. 2011, 34, 326–336. https://doi.org/10.3109/08929373.2011.605142.

296. Bharate, S.B.; Vishwakarma, R.A. Cyclin-dependent kinase inhibition by flavoalkaloids. Mini-Rev. Med. Chem. 2012, 12, 632–649. https://doi.org/10.2174/138955712800626683.
Nutrients 2022, 14, 985

307. Kooti, W.; Hasanzadeh-Noohi, Z.; Sharafi-Ahvazi, N.; Asadi-Samani, M.; Ashtary-Larky, D. Phytochemistry, pharmacology, and therapeutic uses of Phyllanthus amarus (L.) wax oil in two models of inflammation: Zymosan-induced arthritis and mice tail test of psoriasis. *Phytomedicine* 2007, 14, 690–695. https://doi.org/10.1016/j.phymed.2006.12.019.

308. Rios, J.-L. Chemical constituents and pharmacological properties of *Poria cocos*. *Planta Med.* 2011, 77, 681–691. https://doi.org/10.1055/s-0030-1270823.

309. Yesilada, E.; Küpeli, E. *Clematis vitalba* L. aerial part exhibits potent anti-inflammatory, antioxidative and anti-oxidative effects. *J. Nat. Med.* 2007, 61, 504–515. https://doi.org/10.1007/s11539-006-0106-8.

310. Meng, F.-C.; Wu, Z.-F.; Yin, Z.-Q.; Lin, L.-G.; Wang, R.; Zhang, Q.-W. *Coptidis rhizoma* and its main bioactive components: recent advances in chemical investigation, quality evaluation and pharmacological activity. *Chin. Med.* 2018, 13, 13. https://doi.org/10.1186/s13202-018-0173-3.

311. Nasuti, C.; Fedeli, D.; Bordoni, L.; Pangerelli, M.; Servili, M.; Selvaggini, R.; Gabbianelli, R. Anti-inflammatory, anti-artritic and anti-nociceptive activities of *Nigella sativa* oil in a rat model of arthritis. *Antioxidants* 2019, 8, 342. https://doi.org/10.3390/antiox8090342.

312. Kooti, W.; Hasanazadeh-Noohi, Z.; Sharafi-Ahvazi, N.; Asadi-Samani, M.; Ashtary-Larky, D. Phytochemistry, pharmacology, and therapeutic use of black seed (*Nigella sativa*). *Chin. J. Nat. Med.* 2016, 14, 732–745. https://doi.org/10.1016/s1875-5364(16)30088-7.

313. Mahboubi, M.; Kashani, L.M.T.; Mahboubi, M. *Nigella sativa* fixed oil as alternative treatment in management of pain in arthritis rheumatoid. *Phytomedicine* 2018, 46, 69–77. https://doi.org/10.1016/j.phymed.2018.04.018.

314. Hadi, V.; Kheirouri, S.; Alizadeh, M.; Khabbazi, A.; Hosseini, H. Effects of *Nigella sativa* oil extract on inflammatory cytokine response and oxidative stress status in patients with rheumatoid arthritis: A randomized, double-blind, placebo-controlled clinical trial. *Aviceena J. Phytomed.* 2016, 6, 34–43. https://doi.org/10.22038/AJP.2016.3910.
321. Chen, Q.; Wei, W. Effects and mechanisms of glucosides of Chaenomeles speciosa on collagen-induced arthritis in rats. *Int. Immunopharmacol.* 2003, 3, 593–608. https://doi.org/10.1016/s1576-5769(03)00051-1.

322. Dai, M.; Wei, W.; Shen, Y.; Zheng, Y.-Q. Glucosides of Chaenomeles speciosa remit rat adjuvant arthritis by inhibiting synoviocyte activities. *Acta Pharmacol. Sin.* 2003, 24, 1161–1166.

323. Li, X.; Yang, Y.-B.; Yang, Q.; Sun, L.-N.; Chen, W.-S. Anti-inflammatory and analgesic activities of Chaenomeles speciosa fractions in laboratory animals. *J. Med. Food* 2009, 12, 1016–1022. https://doi.org/10.1089/jmf.2008.1217.

324. Cerri, G.C.; Lima, L.C.P.; Lelis, D.D.F.; Barcelos, L.D.S.; Feltenberger, J.D.; Mussi, S.V.; Monteiro-Junior, R.S.; dos Santos, R.A.S.; Ferreira, L.A.M.; Santos, S.H.S. Sclareool-loaded lipid nanoparticles improved metabolic profile in obese mice. *Life Sci.* 2019, 218, 292–299. https://doi.org/10.1016/j.lfs.2018.12.063.

325. Gruenwald, J.; Uebelhack, R.; Moré, M.I. *Rosco canina—* Rose hip pharmacological ingredients and molecular mechanics counteracting osteoarthritis—A systematic review. *Phytomedicine* 2019, 60, 152958. https://doi.org/10.1016/j.phymed.2019.152958.

326. Chrubasik, C.; Roufogalis, B.; Müller-Ladner, U.; Chrubasik, S. A systematic review on the *Rosco canina* effect and efficacy profiles. *Phytother. Res.* 2008, 22, 725–733. https://doi.org/10.1002/tr.20440.

327. Kirkeskov, B.; Christensen, R.; Bügel, S.; Bliddal, H.; Danneksild-Samsoe, B.; Christensen, L.P.; Andersen, J.R. The effects of rose hip (*Rosco canina*) on plasma anti-inflammatory activity and C-reactive protein in patients with rheumatoid arthritis and normal controls: A prospective cohort study. *Phytomedicine* 2011, 18, 953–958. https://doi.org/10.1016/j.phymed.2011.02.008.

328. Li, B.; Zhang, D.-M.; Luo, Y.-M. A new sesquiterpene lactone from the roots of *Lasianthus acuminatissimus*. *Yao Xue Xue Bao Acta Pharm. Sin.* 2006, 41, 426–430.

329. Li, B.; Zhang, D.-M.; Luo, Y.-M.; Chen, X.-G. Three new and antitumor anthraquinone glycosides from *Lasianthus acuminatissimus* MERR. *Chem. Pharm. Bull.* 2002, 50, 297–300. https://doi.org/10.1248/cpb.54.297.

330. Chung, Y.C.C.Y.C.; Kim, S.-Y.K.S.-Y.; Hyun, C.-G.H.C.-G. 8-Methoxycoumarin enhances melanogenesis via the MAPKase signaling pathway. *Die Pharm. Int. J. Pharm. Sci.* 2019, 74, 529–535. https://doi.org/10.16911/PH.2019.9553.

331. Ratheesh, M.; Shyni, G.L.; Sindhu, G.; Helen, A. Protective effects of isolated polyphenolic and alkaloid fractions of *Ruta graveolens* L. on acute and chronic modes of inflammation. *Inflammation* 2009, 33, 18–24. https://doi.org/10.1007/s10753-009-9154-y.

332. Ratheesh, M.; Shyni, G.L.; Helen, A. Methanolic extract of *Ruta graveolens* L. inhibits inflammation and oxidative stress in adjuvant induced model of arthritis in rats. *Inflammopharmacology* 2009, 17, 100–105. https://doi.org/10.1007/s10787-009-0844-0.

333. Amina, K.; Mahmudur, R.; Lutfun, N.; Chung Yeng, L.; Won Fen, W.; Hazrira, H.; Mohammad Azrul bin, M.; Shaikh Jamal, U.; Khalijah, A.; Jamil Ahmad, S. Anti-inflammatory and NF-κB inhibitory activity of aerial parts of *Cestrum diurnum* (preprint v1). *Res. Sq.* 2021, https://doi.org/10.21203/rs.3.rs-23226/v1.

334. Ahmad, S.F.; Khan, B.; Bani, S.; Suri, K.; Satti, N.; Qazi, G. Amelioration of adjuvant-induced arthritis by ursolic acid through altered Th1/Th2 cytokine production. *Pharmacol. Res.* 2006, 53, 233–240. https://doi.org/10.1016/j.phrs.2005.11.005.

335. Grover, A.; Shandilya, A.; Punetha, A.; Bisaria, V.S.; Sundar, D. Inhibition of the NEMO/IKKβ association complex formation, a novel mechanism associated with the NF-κB activation suppression by *Wilhania somnifera*’s key metabolite withaferin A. *BMC Genom.* 2010, 11, S25–S25. https://doi.org/10.1186/1471-2164-11-s4-25.

336. Gupta, A.; Singh, S. Evaluation of anti-inflammatory effect of *Wilhania somnifera* root on collagen-induced arthritis in rats. *Pharm. Biol.* 2013, 52, 308–320. https://doi.org/10.3109/13880209.2013.835325.

337. Khan, M.A.; Ahmed, R.S.; Chandra, N.; Arora, V.K.; Ali, A. In vivo, Extract from *Wilhania somnifera* root ameliorates arthritis via regulation of key immune mediators of inflammation in experimental model of arthritis. *Anti-Inflamm. Anti-Allergy Agents Med. Chem.* 2019, 18, 55–70. https://doi.org/10.2174/1871523101766181116092934.

338. Basu, S.; Hazra, B. Evaluation of nitric oxide scavenging activity, in vitro and ex vivo, of selected medicinal plants traditionally used in inflammatory diseases. *Phytotherapy Res.* 2006, 20, 896–900. https://doi.org/10.1002/pr.1971.

339. Wu, P.; Song, Z.; Wang, X.; Li, Y.; Li, Y.; Cui, J.; Tuerhong, M.; Jin, D.-Q.; Abudukeremu, M.; Lee, D.; et al. Bioactive triterpenoids from *Lantana camara* showing anti-inflammatory activities in vitro and in vivo. *Bioorganic Chem.* 2020, 101, 104004. https://doi.org/10.1016/j.biox.2020.104004.

340. Sathish, R.; Vyawahare, B.; Natarajan, K. Antiinulcerogenic activity of *Lantana camara* leaves on gastric and duodenal ulcers in experimental rats. *J. Ethnopharmacol.* 2011, 134, 195–197. https://doi.org/10.1016/j.jep.2010.11.049.

341. Kore, K.; Shete, R.; Desai, N. Anti-arthritis activity of hydroalcoholic extract of *Lauurosia Internervis*. *Int. J. Drug. Dev. Res.* 2011, 3, 217–224.

342. Ziae, A.; Sahranavard, S.; Gharghozlou, M.J.; Faizi, M. Preliminary investigation of the effects of topical mixture of *Lauurosia incrimis* L. and *Ricinuss communis* L. leaves extract in treatment of osteoarthritis using MIAD model in rats.. *DARU J. Pharm. Sci.* 2016, 24, 12. https://doi.org/10.1186/s40199-016-0152-y.

343. Anand, S.; Muthusamy, V.; Sujatha, S.; Sangeetha, K.; Raja, R.B.; Sudhagar, S.; Devi, N.P.; Lakshmi, B. Aloe emodin glycosides stimulates glucose transport and glycogen storage through PI3K dependent mechanism in L6 myotubes and inhibits adipocyte differentiation in 3T3L1 adipocytes. *FEBS Lett.* 2010, 584, 3170–3178. https://doi.org/10.1016/j.febslet.2010.06.004.

344. Cowan, D. Oral *Aloe vera* as a treatment for osteoarthritis: A summary. *Br. J. Community Nurs.* 2010, 15, 280–282. https://doi.org/10.12968/bjcn.2010.15.6.48369.

345. Lee, J.; Kim, K.A.; Jeong, S.; Lee, S.; Park, H.J.; Kim, N.J.; Lim, S. Anti-inflammatory, anti-nociceptive, and anti-psychoactive effects by the rhizomes of *Alpinia officinarum* on complete Freund’s adjuvant-induced arthritis in rats. *J. Ethnopharmacol.* 2009, 126, 258–264. https://doi.org/10.1016/j.jep.2009.08.033.
346. Huang, G.; Xu, Z.; Huang, Y.; Duan, X.; Gong, W.; Zhang, Y.; Fan, J.; He, F. Curcumin protects against collagen-induced arthritis via suppression of BAAF production. J. Clin. Immunol. 2012, 33, 550–557. https://doi.org/10.1007/s10875-012-9839-0.

347. Nonose, N.; Pereira, J.A.; Machado, P.R.M.; Rodrigues, M.R.; Sato, D.T.; Martinez, C.A.R. Oral administration of curcumin (Curcuma longa) can attenuate the neutrophil inflammatory response in zymosan-induced arthritis in rats. Acta Cir. Bras. 2014, 29, 727–734. https://doi.org/10.1590/s0102-8650201401800006.

348. Arora, R.; Kuhad, A.; Kaur, I.; Chopra, K. Curcumin loaded solid lipid nanoparticles ameliorate adjuvant-induced arthritis in rats. Eur. J. Pain 2014, 19, 940–952. https://doi.org/10.1016/j.ejp.620.

349. Nievengelt, A.; Marazzi, J.; Schoop, R.; Altmann, K.-H.; Gertsch, J. Ginger phenylpropanoids inhibit IL-1β and prostanoid secretion and disrupt Arachidonate-phospholipid remodeling by targeting phospholipases A2. J. Immunol. 2011, 187, 4140–4150. https://doi.org/10.4049/jimmunol.1100800.

350. Al Nahain, A.; Jahan, R.; Rahmatullah, M. Zingiber officinale: A potential plant against rheumatoid arthritis. Arthritis 2014, 2014, 1–8. https://doi.org/10.1155/2014/159089.

351. Funk, J.L.; Frye, J.B.; Oyarzo, J.N.; Chen, J.; Zhang, H.; Timmermann, B.N. Anti-inflammatory effects of the essential oils of ginger (Zingiber officinale Roscoe) in experimental rheumatoid arthritis. PharnaPharma 2016, 4, 123–131. https://doi.org/10.1016/j.pharnu.2016.02.004.

352. Semwal, R.B.; Semwal, D.; Combrinck, S.; Viljoen, A.M. Gingerols and shogaols: Important nutraceutical principles from ginger. Phytochemistry 2015, 117, 554–568. https://doi.org/10.1016/j.phytochem.2015.07.012.

353. Fokunang, C.N.; Ndikum, V.; Tabi, O.Y.; Jiofack, R.B.; Ngameni, B.; Leleu, M.B.; Louati, H.; Hammami, S.; Flamini, G.; Tembe-Fokunang, E.A.; Tomkins, P.; Barkwan, S.; Kechia, F.; et al. Traditional medicine: Past, present and future research and development prospects and integration in the National Health System of Cameroon. Afr. J. Tradit. Complement. Altern. Med. 2011, 8, 284–295. https://doi.org/10.4314/atcam.v8i3.65276.

354. Anusha, D.; Chaly, P.E.; Junaid, M.; Nijesh, J.; Shivashankar, K.; Sivasamy, S. Efficacy of a mouthwash containing essential oils and curcumin as an adjunct to nonsurgical periodontal therapy among rheumatoid arthritis patients with chronic periodontitis: A randomized controlled trial. Indian J. Dent. Res. 2019, 30, 506. https://doi.org/10.4103/ijdr.jdr_662_17.

355. Brzeski, M.; Madhok, R.; Capell, H.A. Evening primrose oil in patients with rheumatoid arthritis and side-effects of non-steroidal anti-inflammatory drugs. Rheumatology 1991, 30, 370–372. https://doi.org/10.1093/rheumatology/30.5.370.

356. Nasiri, A.; Mahmodi, M.A.; Nobakht, Z. Effect of aromatherapy massage with Lavender essential oil on pain in patients with osteoarthritis of the knee: A randomized controlled clinical trial. Complement. Ther. Clin. Pr. 2016, 25, 75–80. https://doi.org/10.1016/j.ctcp.2016.08.002.

357. Nasiri, A.; Mahmodi, M.A. Aromatherapy massage with lavender essential oil and the prevention of disability in ADL in patients with osteoarthritis of the knee: A randomized controlled clinical trial. Complement. Ther. Clin. Pr. 2018, 30, 116–121. https://doi.org/10.1016/j.ctcp.2017.12.012.

358. Paixão, V.L.B.; de Carvalho, J.F. Essential oil therapy in rheumatic diseases: A systematic review. Complement. Ther. Clin. Pr. 2021, 43, 101391. https://doi.org/10.1016/j.ctcp.2021.101391.

359. Lai, Y.-S.; Chen, W.-C.; Ho, C.-T.; Lu, K.-H.; Lin, S.-H.; Tseng, H.-C.; Lin, S.-Y.; Sheen, L.-Y. Garlic essential oil protects against obesity-triggered nonalcoholic fatty liver disease through modulation of lipid metabolism and oxidative stress. J. Agric. Food Chem. 2014, 62, 5897–5906. https://doi.org/10.1021/jf500803c.

360. Hong, S.J.; Cho, J.; Boo, C.G.; Youn, M.Y.; Pan, J.H.; Kim, J.K.; Shin, E.C. Inhalation of Patchouli (Pogostemon Cablin Benth.) essential oil improved metabolic parameters in obesity-induced Sprague Dawley rats. Nutrients 2020, 12, 2077. https://doi.org/10.3390/nu12072077.

361. Mosbah, H.; Chahdoura, H.; Kammoun, J.; Hila, M.B.; Louati, H.; Hammami, S.; Flamini, G.; Aouch, L.; Selmi, B. Rhaponticum acule (L) DC essential oil: chemical composition, in vitro antioxidant and enzyme inhibition properties. BMC Complement. Altern. Med. 2018, 18, 79. https://doi.org/10.1186/s12906-018-2145-5.

362. Lai, Y.-S.; Lee, W.-C.; Lin, Y.-E.; Ho, C.-T.; Lu, K.-H.; Lin, S.-H.; Panyod, S.; Chu, Y.-L.; Sheen, L.-Y. Ginger essential oil ameliorates hepatic injury and lipid accumulation in high fat diet-induced nonalcoholic fatty liver disease. J. Agric. Food Chem. 2016, 64, 2062–2071. https://doi.org/10.1021/acs.jafc.5b06159.

363. Kim, J.-H.; Lee, H.-J.; Jeong, S.-J.; Lee, M.-H.; Kim, S.-H. Essential oil of Pinus koraiensis leaves exerts antihyperlipidemic effects via up-regulation of low-density lipoprotein receptor and inhibition of acyl-coenzyme A: Cholesterol acyltransferase. Phytother. Res. 2012, 26, 1314–1319. https://doi.org/10.1002/pr.3734.

364. Asnaashari, S.; Delazar, A.; Habibi, B.; Vafsi, R.; Nahar, L.; Hamedeyazdan, S.; Sarker, S.D. Essential oil from Citrus aurantiifolia prevents ketotifen-induced weight-gain in mice. Phytother. Res. 2010, 24, 1893–1897. https://doi.org/10.1002/pr.3227.

365. Hwang, D.I.; Won, K.-J.; Kim, D.-Y.; Yoon, S.W.; Park, J.-H.; Kim, B.; Lee, H.M. Anti-adipocyte differentiation activity and chemical composition of essential oil from Artemisia annua. Nat. Prod. Commun. 2016, 11, 539-542. https://doi.org/10.1177/1934578x1601100430.

366. Ali-Shtayeh, M.S.; Abu-Zaitoun, S.Y.; Duda, N.; Jamous, R.M. Downy Lavender oil: A promising source of antimicrobial, antiobesity, and anti-Alzheimer’s disease agents. Evid. -Based Complement. Altern. Med. 2020, 2020, 5679408. https://doi.org/10.1155/2020/5679408.

367. Razm poosh, E.; Safi, S.; Nadjarzadeh, A.; Fallahzadeh, H.; Abdollahi, N.; Mazaheri, M.; Nazari, M.; Salehi-Abargouei, A. The effect of Nigella sativa supplementation on cardiovascular risk factors in obese and overweight women: A crossover, double-blind, placebo-controlled randomized clinical trial. Eur. J. Nutr. 2020, 60, 1863–1874. https://doi.org/10.1007/s00394-020-02574-2.
368. Mahdavi, R.; Namazi, N.; Alizadeh, M.; Farajinia, S. *Nigella sativa* oil with a calorie-restricted diet can improve biomarkers of systemic inflammation in obese women: A randomized double-blind, placebo-controlled clinical trial. *J. Clin. Lipidol.* 2016, 10, 1203–1211. https://doi.org/10.1016/j.jacl.2015.11.019.

369. Grube, B.; Chong, P.; Lau, K.; Orzechowski, H. A natural fiber complex reduces body weight in the overweight and obese: A double-blind, randomized, placebo-controlled study. *Obesity* 2013, 21, 58–64. https://doi.org/10.1002/oby.20244.

370. Ferreira, M.A.; Gomes, A.P.O.; de Moraes, A.P.G.; Stringhini, M.L.F.; Mota, J.F.; Coelho, L.; Botelho, P.B. Green tea extract outperforms metformin in lipid profile and glycemic control in overweight women: A double-blind, placebo-controlled, randomized trial. *Clin. Nutr. ESPEN* 2017, 22, 1–6. https://doi.org/10.1016/j.clnesp.2017.08.008.

371. Tajaddini, A.; Roshanravan, N.; Mobasseri, M.; Aeinnehchi, A.; Azar, P.S.; Hadi, A.; Ostadrahiemi, A. Saffron improves life and sleep quality, glycaemic status, lipid profile and liver function in diabetic patients: A double-blind, placebo-controlled, randomised clinical trial. *Int. J. Clin. Pr.* 2019, 75, e14334. https://doi.org/10.1111/jicp.14334.

372. Odunsi, S.T.; Vázquez-Roque, M.I.; Camilleri, M.; Panathanapopoulos, A.; Clark, M.M.; Wodrich, L.; Lempek, M.; McKinzie, S.; Ryks, M.; Burton, D.; et al. Effect of alginate on satiation, appetite, gastric function, and selected gut satiety hormones in overweight and obesity. *Obesity* 2010, 18, 1579–1584. https://doi.org/10.1038/oby.2009.421.

373. Amagase, H.; Nance, D.M. *Lycium barbarum* increases caloric expenditure and decreases waist circumference in healthy overweight men and women: pilot study.. *J. Am. Coll. Nutr.* 2011, 30, 304–309. https://doi.org/10.1089/janc.2010.07315724.2011.10719973.

374. Sangouni, A.A.; Azar, M.R.M.H.; Alizadeh, M. Effects of garlic powder supplementation on insulin resistance, oxidative stress, and body composition in patients with primary knee osteoarthritis: A randomized controlled clinical trial. *Complement. Ther. Med.* 2020, 51, 102428. https://doi.org/10.1016/j.ctim.2020.102428.

375. Nishimura, M.; Muro, T.; Kobori, M.; Nishihiira, J. Effect of daily ingestion of quercetin-rich onion powder for 12 weeks on visceral fat: A randomised, double-blind, placebo-controlled, parallel-group study. *Nutrients* 2019, 12, 91. https://doi.org/10.3390/nu12010091.

376. Mahieu, E.; Cadet, C.; Marty, M.; Moysse, D.; Kerloch, I.; Coste, P.; Dougdous, M.; Mazières, B.; Spector, T.D.; Halhol, H.; et al. Randomised, controlled trial of avocado–soybean unsaponifiable (Piascledine) effect on structure modification in hip osteoarthritis: The ERADIAS study. *Ann. Rheum. Dis.* 2013, 73, 376–384. https://doi.org/10.1136/annrheumdis-2012-202485.

377. May, L.S.; Sanip, Z.; Shokri, A.A.; Kadir, A.A.; Lazzin, R.M. The effects of *Monodora myristica* (bitter melon) supplementation in patients with primary knee osteoarthritis: A single-blinded, randomized controlled trial. *Complement. Ther. Clin. Pr.* 2018, 32, 181–186. https://doi.org/10.1016/j.ctcp.2016.06.012.

378. Nash, R.; Azantsa, B.; Kuate, D.; Singh, H.; Oben, J. The use of a stem and leaf aqueous extract of *Cissus quadrangularis* (CQR-300) to reduce body fat and other components of metabolic syndrome in overweight participants. *J. Altern. Complement. Med.* 2019, 25, 98–106. https://doi.org/10.1089/acm.2018.0016.

379. A.K., P. Potential role of flavonoids against SARS-CoV-2 induced diarrhea. *Trop. Biomed.* 2021, 38, 360–365. https://doi.org/10.47665/tb.38.3.079.

380. Boots, A.W.; Haenen, G.R.; Bast, A. Health effects of quercetin: From antioxidant to nutraceutical. *Eur. J. Pharmocol.* 2008, 585, 325–337. https://doi.org/10.1016/j.ejphar.2008.03.008.

381. Lim, C.L.; Raja, C.S.; Mahboob, T.; Kayesth, S.; Gupta, K.K.; Jain, G.K.; Dhobi, M.; Nawaz, M.; Wilairatana, P.; Pereira, M.D.L.; et al. Precision and advanced nanopharmaceutics for therapeutic applications. *Nanomaterials* 2022, 12, 238. https://doi.org/10.3390/nano12020238.

382. Jannat, K.; Paul, A.K.; Bondhun, T.A.; Hasan, A.; Nawaz, M.; Jahan, R.; Mahboob, T.; Nissapatorn, V.; Wilairatana, P.; Pereira, M.D.L.; et al. Nanotechnology applications of flavonoids for viral diseases. *Pharmaceutics* 2021, 13, 1895. https://doi.org/10.3390/pharmaceutics13111895.

383. Romanová, D.; Váchálková, A.; Cipák, L.; Ovesná, Z.; Rauko, P. Study of antioxidant effect of apigenin, luteolin and quercetin by DNA protective method. *Neoplasma* 2005, 48, 104–107.

384. Wang, J.; Fang, X.; Ge, L.; Cao, F.; Zhao, L.; Wang, Z.; Xiao, W. Antitumor, antioxidant and anti-inflammatory activities of kaempferol and its corresponding glycosides and the enzymatic preparation of kaempferol. *PloS ONE* 2018, 13, e0197563. https://doi.org/10.1371/journal.pone.0190908.

385. Khitka, B.; Kupittayanant, S.; Rangsriwatananok, K.; Manakasem, Y. Antioxidant properties of pueraerin and genistein from White Kwaoo Krua induced by elicitors and their antihyperglycemic effect on rats. *Suranaree J. Sci. Technol.* 2010, 17, 27–37.

386. Henning, S.M.; Niu, Y.; Liu, Y.; Lee, N.H.; Hara, Y.; Thanes, G.D.; Minutti, R.R.; Carpenter, C.; Wang, H.; Heber, D. Bioavailability and antioxidant effect of epigallocatechin gallate administered in purified form versus as green tea extract in healthy individuals. *J. Nutr. Biochem.* 2005, 16, 610–616. https://doi.org/10.1016/j.jnutbio.2005.03.003.

387. Stintzing, F.C.; Stintzing, A.S.; Carle, R.; Frei, B.; Wroslstad, R.E. Color and antioxidant properties of cyanidin-based anthocyanin pigments. *J. Agric. Food Chem.* 2002, 50, 6170–6181. https://doi.org/10.1021/jf0204811.

388. Chang, X.; He, H.; Zhu, L.; Gao, J.; Wei, T.; Ma, Z.; Yan, T. Protective effect of apigenin on Freund’s complete adjuvant-induced arthritis in rats via inhibiting P2X7/NF-kB pathway. *Chem. Interact.* 2015, 236, 41–46. https://doi.org/10.1016/j.chei.2015.04.021.

389. Li, Y.; Yang, B.; Bai, J.-Y.; Xia, S.; Mao, M.; Li, X.; Li, N.; Shen, L. The roles of synovial hyperplasia, angiogenesis and osteoclastogenesis in the protective effect of apigenin on collagen-induced arthritis. *Int. Immunopharmacol.* 2019, 73, 362–369. https://doi.org/10.1016/j.intimp.2019.05.024.
390. Li, X.; Shi, Z.; Zhu, Y.; Shen, T.; Wang, H.; Shui, G.; Loor, J.J.; Fang, Z.; Chen, M.; Wang, X.; et al. Cyanidin-3-O-glucoside improves non-alcoholic fatty liver disease by promoting PINK1-mediated mitophagy in mice. *J. Cereb. Blood Flow Metab.* 2020, 177, 3591–3607. https://doi.org/10.1016/j.bph.15083.

391. Thielecke, F.; Rahn, G.; Böhne, J.; Adams, F.; Birkenfeld, A.L.; Jordan, J.; Boschmann, M. Epigallocatechin-3-gallate and postprandial fat oxidation in overweight/obese male volunteers: a pilot study. *Eur. J. Clin. Nutr.* 2010, 64, 704–713. https://doi.org/10.1038/ejcn.2010.47.

392. Most, J.; Timmers, S.; Warnke, I.; Jocken, J.W.E.; Van Boekelshoten, M.; De Groot, P.; Bendik, I.; Schrauwen, P.; Goossens, G.H.; Blaak, E.E. Combined epigallocatechin-3-gallate and resveratrol supplementation for 12 wk increases mitochondrial capacity and fat oxidation, but not insulin sensitivity, in obese humans: a randomized controlled trial. *Am. J. Clin. Nutr.* 2016, 104, 215–227. https://doi.org/10.3945/ajcn.115.122937.

393. Cisneros, J.R.E.; Vasconcelos-Ulloa, J.J.; González-Mendoza, D.; Beltrán-González, G.; Díaz-Molina, R. Efecto de una intervención dietética con un producto alimenticio a base de leguminosas sobre los niveles de malondialdehído, índice HOMA y perfil de lípidos. *Endocrinol. Diabetes Nutr.* 2019, 67, 235–244. https://doi.org/10.1016/j.endinu.2019.08.003.

394. Wang, T.; Wu, Q.; Zhao, T. Preventive effects of kaempferol on high-fat diet-induced obesity complications in C57BL/6 mice.. *BioMed. Res. Int.* 2020, 2020, 4532482. https://doi.org/10.1155/2020/4532482.

395. Park, H.; Lee, K.; Kim, S.; Hong, M.J.; Jeong, N.; Kim, M. Luteolin improves hypercholesterolemia and glucose intolerance through LXRα-dependent pathway in diet-induced obese mice. *J. Food Biochem.* 2020, 44, e13358. https://doi.org/10.1111/jfbc.13358.

396. Li, W.; Hu, H.; Zou, G.; Ma, Z.; Liu, J.; Li, F. Therapeutic effects of puerarin on polycystic ovary syndrome. *Medicine* 2021, 100, e26049. https://doi.org/10.1097/md.0000000000026049.

397. Javadi, F.; Ahmadzadeh, A.; Eghtesadi, S.; Aryaeian, N.; Zabihiyeganeh, M.; Foroushani, A.R.; Jazayeri, S. The effect of quercetin on inflammatory factors and clinical symptoms in women with rheumatoid arthritis: A double-blind, randomized controlled trial. *J. Am. Coll. Nutr.* 2016, 36, 9–15. https://doi.org/10.1080/07315724.2016.1140993.

398. Nyakudya, T.; Tshabalala, T.; Dangarembizi, R.; Erlwanger, K.; Ndhlala, A.R. The potential therapeutic value of medicinal plants in the management of metabolic disorders. *Molecules* 2020, 25, 2669. https://doi.org/10.3390/molecules25112669.

399. Hasani-Ranjbar, S.; Jouyandeh, Z.; Abdollahi, M. A systematic review of anti-obesity medicinal plants—An update. *J. Diabetes Metab. Disord.* 2013, 12, 28–28. https://doi.org/10.1186/2251-6581-12-28.

400. Karrzi, S.; Sharma, S.; Hatware, K.; Patil, K. Natural anti-obesity agents and their therapeutic role in management of obesity: A future trend perspective. *Biomed. Pharmacother.* 2018, 110, 224–238. https://doi.org/10.1016/j.biopha.2018.11.076.

401. Verma, R.K.; Paraidathathu, T. Herbal medicines used in the traditional Indian medicinal system as a therapeutic treatment option for overweight and obesity management: A review. *Int. J. Pharm. Pharm. Sci.* 2014, 6, 40–47.

402. Sun, N.-N.; Wu, T.-Y.; Chau, C.-F. Natural dietary and herbal products in anti-obesity treatment. *Molecules* 2016, 21, 1351. https://doi.org/10.3390/molecules21101351.

403. García-Barrado, M.J.; Iglesias-Osma, M.C.; Pérez-García, E.; Carrero, S.; Blanco, E.J.; Carretero-Hernández, M.; Carretero, J. Role of Flavonoids in the interactions among obesity, inflammation, and autophagy. *Pharmaceuticals* 2020, 13, 342. https://doi.org/10.3390/ph13110342.