Some Smooth and Nonsmooth Traveling Wave Solutions for KP-MEW(2, 2) Equation

Liping He,1 Yuanhua Lin,2 and Hongying Zhu1

1School of Information and Statistics, Guangxi University of Finance and Economics, Nanning, Guangxi 530003, China
2School of Mathematics and Statistics, Hechi University, Yizhou, Guangxi 546300, China

Correspondence should be addressed to Yuanhua Lin; yuanhualin01@163.com

Received 25 March 2021; Revised 1 June 2021; Accepted 17 June 2021; Published 29 June 2021

Academic Editor: Hang Xu

Copyright © 2021 Liping He et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

In this paper, we consider the KP-MEW(2, 2) equation by the theory of bifurcations of planar dynamical systems when integral constant is considered. KT_his periodic peakon solution and peakon and smooth periodic solutions are given.

1. Introduction

The KdV equation [1]

\[q_t + aqq_x + q_{xxx} = 0, \] \((1) \)

is a model that governs the one-dimensional propagation of small-amplitude and weakly dispersive waves. In (1), the nonlinear term \(aqq_x \) causes steepening of wave form, and the linear dispersion term \(q_{xxx} \) gives rise to the spread of the wave.

There are many researches on higher dimensional models recently. One of the well-known 2-dimensional generalizations of the KdV equation is KP equation [2]:

\[(q_t + aqq_x + q_{xxx})_x + q_{yy} = 0, \] \((2) \)

which was proposed by Kadomtsev and Petviashvili, described as a nonlinear model for shallow water waves with weakly nonlinear restoring forces and waves in the media of ferromagnet. MEW equation

\[q_t + a(q^3)_x - bq_{xxx} = 0, \] \((3) \)

plays an important role in many physical applications [3]. Wazwaz [4] proposed a KP-MEW equation

\[(q_t + (q^m)_x + (q^m)_{xxx})_x + q_{yy} = 0, \] \((4) \)

and investigated the exact solutions with different physical structure. Moreover, KP-MEW equation was investigated on some methods [4–6]. Particularly, Saha [7] considered the generalized KP-MEW equation

\[q_t + (q^m)_x + (q^m)_{xxx} = 0, \] \((5) \)

by using the theory of bifurcations of planar dynamical systems [7–11]. In [7], integral constant is neglected; it is said that, on the condition integral constant \(g = 0 \), the author obtained traveling wave solutions when \(m, n, c \) varied. More precisely, for \(m = n = 2 \), what called KP-MEW (2, 2) equation in the form

\[(q_t + (q^2)_x + (q^2)_{xxx})_x + q_{yy} = 0, \] \((6) \)

is investigated by Li and Song [12]. They used the theory of bifurcations of planar dynamical systems to find compacton-like wave and a kink-like wave for (6) when integral constant \(g \) was not neglected. After that, (6) was investigated to find the peakon soliton, cuspon soliton, and smooth soliton solutions on the boundary condition by using the phase portrait analytical technique [13, 14]. Particularly, the generalized KP-MEW equation is the nonlinear PDEs which described the propagation of long wave with dissipation and dispersion in nonlinear media. In [15], the qualitative change of the traveling wave solutions of the KP-MEW-Burgers equation is investigated by using numerical simulations.
More recently, the solitary wave solutions for KP-MEW equation are constructed with the help of a new technique which is a modification form of the extended auxiliary equation mapping method.

In present paper, we consider the KP-MEW (2, 2) equation in the form

\[\left(q_{t} - \left(q^{2}\right)_{x} - \left(q^{2}\right)_{xtt}\right)_{x} - q_{yy} = 0, \]

by the theory of bifurcations of planar dynamical systems when integral constant \(g \neq 0 \) and \(g = 0 \), which is not investigated by the same method before. In (7), the first term is the evolution term, while the second term is the dissipative term and the third term is the dispersion term.

It is well known that nonlinear complex wave phenomena appear in many fields, such as plasma physics, biology, fluid mechanics, solid state physics, and optical fibers. They are related to nonlinear partial differential equations. As mathematical models of the phenomena, investigations of exact solutions for nonlinear partial differential equations will help understand these phenomena better. With the development of nonlinear partial differential equations theory, there exist many different approaches to search for their exact solutions, such as Hirota bilinear method [16], inverse scattering method [17], Darboux transformation method [18], and so on. Practically, there is no unified technique that can be employed to handle all types of nonlinear differential equations.

This paper is organized as follows. In Section 2, depending on the changes of parameters \(c \) and \(g \), bifurcations of the phase portraits of systems (2) are shown. In Section 3, the parametric expressions of periodic peakon solution and peakon and smooth periodic solutions are given. In Section 4, for given periodic wave solutions, we prove that the KP-MEW (2, 2) equation has two isochronous centers under certain parameter conditions and there exist two families of periodic solutions with equal period.

\[(9) \hspace{1cm} \frac{d\xi}{dt} = 2cu, \]

\[\frac{dy}{d\xi} = \frac{g + (1 + c)u + u^2 - 2cy^2}{2cu}, \]

with the first integral

\[y^2 = \left(\frac{g}{2}\right)u^2 + \left(1 + \frac{c}{2}u^2 - \frac{1}{2}c + \frac{1}{4}u^2\right) = h, \]

where \(h \) is an integral constant. Thus, systems (9) and (10) have the same topological phase portraits except for the straight line \(u = 0 \). Under some parametric conditions, the variable \(\tau \) is a fast variable while the variable \(\xi \) is a slow variable in the sense of the geometric singular perturbation theory [19, 20].

Suppose that \(u(\xi) \) is a continuous solution of (9) for \(\xi \in (-\infty, +\infty) \) and \(\lim_{\xi \to -\infty} u(\xi) = \alpha \) and \(\lim_{\xi \to +\infty} u(\xi) = \beta \). If \(\alpha = \beta, \) \(u(x, t) \) is called a solitary wave solution. If \(\alpha \neq \beta, \) \(u(x, t) \) is called a kink (anti-kink) wave solution. A solitary wave solution corresponds to a homoclinic orbit, a kink (anti-kink) wave solution corresponds to a heteroclinic orbit, and a periodic orbit corresponds to a periodic traveling wave solution. According to the bifurcation theory of dynamical systems, let \(\Delta = (1 + c)^2 - 4g \), and the following holds:

(i) For \(\Delta > 0 \), system (10) has two equilibrium points

\[E_1 = (1 + c) - \sqrt{\Delta}/2, \]

\[E_2 = (1 + c) + \sqrt{\Delta}/2, \]

(see Figures 1(a), 2(a)–2(c), 3(b)–3(d), and 4(a)–4(c)).

(ii) For \(\Delta = 0 \), system (10) has unique equilibrium point

\[E_1 = (1 + c)^2/2, \]

(see Figures 2(d), 3(a), and 4(d)).

(iii) For \(\Delta < 0 \), system (10) has no equilibrium point.

(iv) On the straight line \(u = c \), system (10) has two equilibrium points \(S_1(0, \sqrt{\frac{g}{2c}}) \) and \(S_2(0, -\sqrt{\frac{g}{2c}}) \) for \(cg > 0 \) (see Figures 1(a), 2(a), 3(a)–3(d), and 4(a)); system (10) has unique equilibrium point \(S_1(0, 0) \) for \(g = 0, c \neq -1 \) on the straight line \(u = c \) (see Figures 2(b) and 4(b)).

Let \(M(u_i, y_i) \) be the coefficient matrix of the linearized system of (10) at an equilibrium point \((u_i, y_i) \) and \(f(u_i, y_i) = \det(M(u_i, y_i)). \) Hence, the following holds:

\[f(u_i, y_i) = -8c^2y_i^2 - 2cu_i(1 + c + 2u_i). \]
3. Some Smooth and Nonsmooth Traveling Wave Solutions of System (7)

In this section, some traveling wave solutions of system (7) are given, with the exact parametric representations of its solutions presented. With the aid of [21], we will obtain the exact traveling wave solutions of KP-MEW (2, 2) equation.

3.1. Periodic Peakon Solution

In this subsection, we shall to find the exact expression of periodic peak as solution for system (7) under the parametric condition $c > 0, 0 < g < g_2$. The phase portrait is seen in Figure 3(d). For $h_2 < h < 0$, on the left-hand side of the straight line $u = 0$, there exists an orbit connecting S_1 and S_2. At the same time,

$$\begin{align*}
y^2 &= \frac{1}{4c} \left(u^2 + \frac{4(1+c)}{3} u + 2g \right) = \frac{1}{4c} \left[\left(u + \frac{2(1+c)}{3} \right) - \left(\frac{4(1+c)^2}{9} - 2g \right) \right].
\end{align*}$$

Consequently, from the first equation of (11), the parametric representations are as follows:

$$\begin{align*}
u(\xi) &= -\frac{2(1+c)}{3} + \sqrt{\frac{4(1+c)^2}{9} - 2g \cosh \left(\frac{1}{2\sqrt{c}} |\xi| \right)}, \\
\xi &\in \left(0, 2\sqrt{c} \cosh^{-1} \left(\frac{4(1+c)}{4(1+c)^2 - 18g} \right) \right),
\end{align*}$$

and equation (15) gives rise to a periodic peakon solution; the profile is shown in Figure 5(a).

3.2. Peakon Solutions

In this section, we will consider the curve triangle S_2SS_1 in Figure 3(c). There exists an equilibrium point S of (10) at the vertex of the triangle S_2SS_1, which is far from the singular straight line $u = 0$. If $\xi \rightarrow \pm \infty$, the phase point $(u(\xi), y(\xi))$ of (10) tends to the equilibrium point S along two curves S_1S and S_2S_1 as ξ varies. In Figure 3(c), the curve triangle S_2SS_1, defined by $H(u, y) = 0$ is the limit curve of the periodic orbits which is given by

$$y^2 = \frac{1}{4c} (u + t_0)^2,$$

where $t_0 > 0$ from the first equation of (11); parametric representations of the peakon solution (see Figure 5(b)) are obtained as follows:

$$u(\xi) = -t_0 + (u_1 + t_0) \exp \left(-\frac{1}{2\sqrt{c}} |\xi| \right).$$

Remark 1. Note that the periodic peakon solution (15) and peakon solution (17) are not obtained in [6, 10].
3.3. Smooth Periodic Solutions. For \(c = -1, g < 0 \) (see Figure 1(a)), more precisely, we color the orbits for different values of \(h \) to better understand (see Figure 6).

(I) Corresponding to the level curves defined by \(H(u, y) = h \) (green orbits in Figure 6) connecting the equilibrium points \(S_{1,2}(0, \pm \sqrt{g^2/2c}) \) of system (7), enclosing the centers \(E_1(-1 + c + \sqrt{\Delta}/2, 0) \) and \(E_2(-(1 + c) - \sqrt{\Delta}/2, 0) \), respectively. For the oval orbit loop, it has

\[
y^2 = \frac{u^2(t_2^2 - u^2)}{-4u^2},
\]

where \(t_1 > u; \) then, it can arrives to the following smooth periodic wave solutions (see Figure 7(a)) of system (7):

\[
u(\xi) = \pm t_1 \sin \left(\frac{\xi}{2}\right).
\]

(II) Corresponding to the level curves defined by \(H(u, y) = h \) (red and blue orbits in Figure 6) enclosing the centers \(E_1(-1 + c + \sqrt{\Delta}/2, 0) \) and \(E_2(-(1 + c) - \sqrt{\Delta}/2, 0) \), respectively:

\[
y^2 = \frac{(t_3^2 - u^2)(u^2 - t_3^2)}{-4u^2},
\]

where \(t_2 > u > t_3 > 0 \). Consequently, it can obtain the parametric representations for the two families periodic wave solutions by quoting [21], see Figures 7(b) and 7(c):

Figure 2: Phase portraits of system (9) when \(-1 < c < 0\). (a) \(g < 0 \). (b) \(g = 0 \). (c) \(0 < g < g_1 \). (d) \(g = g_1 \).
Figure 3: Phase portraits of system (9) when $c > 0$. (a) $g = g_1$. (b) $g_2 < g < g_1$. (c) $g = g_2$. (d) $0 < g < g_2$.

Figure 4: Continued.
Therefore, as $h \to 0$, (21) gives rise to periodic peakon solutions (see Figure 5(a)). Furthermore, the presented two families of periodic solutions are of equal period from Figures 7(b) and 7(c), and their period is half of the smooth periodic solution in Figure 7(a).

Remark 2. Note that smooth periodic solutions (18) and (21) for KP-MEW (2, 2) equation are not obtained by the same method in the reference.

\[
u(\xi) = \pm \frac{\sqrt{2}}{2} \sqrt{t_2^2 + t_3^2 + (t_2^2 - t_3^2)\sin(\xi)}.
\] (21)
Figure 6: The phase portrait of system (2) for $c = -1, g < 0$.

Figure 7: Continued.
4. Conclusion
In present paper, the method of bifurcation theory of dynamical systems is used to investigate KP-MEW equation. We obtain the parametric representations of peakon, periodic peakon, and smooth periodic wave solutions. The phase portrait bifurcations of the traveling wave system corresponding to the equation are shown.

Data Availability
The data used to support the findings of this study are included within the article.

Conflicts of Interest
The authors declare that they have no conflicts of interest.

Acknowledgments
This study was supported by the National Natural Science Foundation of Guangxi Province (2020JJJB110007) and Guangxi College Enhancing Youths Capacity Project (2020KY16019 and 2020KY16020).

References
[1] D. J. Korteweg and G. D. Vries, "On the change of form of long waves advancing in a rectangular channel, and a new type of long stationary waves," Philosophical Magazine, vol. 39, pp. 422–443, 1895.
[2] B. B. Kadomtsev and V. I. Petviashvili, "On the stability of solitary waves in weakly dispersive media," Soviet Physics Journal of Experimental and Theoretical Physics, vol. 39, pp. 285–295, 1974.
[3] S. Chakravarty and Y. Kodama, "Soliton solutions of the KP equation and application to shallow water waves," Studies in Applied Mathematics, vol. 123, no. 1, pp. 83–151, 2010.
[4] A. M. Wazwaz, "The tanh method and the sine-cosine method for solving the KP-MEW equation," International Journal of Computer Mathematics, vol. 82, pp. 235–246, 2005.
[5] A. Esen, "A lumped Galerkin method for the numerical solution of the modified equal-width equation using quadratic B-splines," International Journal of Computer Mathematics, vol. 83, pp. 449–459, 2006.
[6] A. Esen and S. Kutluay, "Solitary wave solutions of the modified equal width wave equation," Communication in Nonlinear Science and Numerical Simulation, vol. 13, pp. 1538–1546, 2008.
[7] A. Saha, "Bifurcation of travelling wave solutions for the generalized KP-MEW equations," Communication in Nonlinear Science and Numerical Simulation, vol. 17, pp. 3539–3551, 2012.
[8] S. N. Chow and J. K. Hale, Method of Bifurcation Theory, Springer, New York, NY, USA, 1981.
[9] J. B. Li, Singular Nonlinear Traveling Wave Equations: Bifurcation and Exact Solutions, Science, Beijing, China, 2013.
[10] L. Y. Zhong, S. Q. Tang, and L. J. Qiao, "Bifurcations and exact traveling wave solutions for a class of nonlinear fourth-order partial differential equations," Nonlinear Dynamics, vol. 80, pp. 129–145, 2015.
[11] J. B. Li and W. J. Zhu, "Understanding peakons, periodic peakons and compactons via a shallow water wave equation," International Journal of Bifurcation & Chaos, vol. 12, no. 27, Article ID 1650207, 2016.
[12] S. Y. Li and M. Song, "Compacton-like wave and kink-like wave solutions of the generalized KP-MEW (2, 2) equation," Physica Scripta, vol. 89, Article ID 035202, 2014.
[13] L. Y. Zhong, S. Q. Tang, D. Li, and H. X. Zhao, "Compacton, peakon, cuspons, loop solutions and smooth solitons for the generalized KP-MEW equation," Computers & Mathematics with Applications, vol. 68, pp. 1775–1786, 2014.
[14] M. Wei, S. Tang, H. Fu, and G. Chen, “Single peak solitary wave solutions for the generalized KP-MEW (2, 2) equation under boundary condition,” Applied Mathematics and Computation, vol. 219, no. 17, pp. 8979–8990, 2013.
[15] A. Saha, “Dynamics of the generalized KP-MEW-Burgers equation with external periodic,” Computers & Mathematics with Applications, vol. 73, pp. 1879–1885, 2017.
[16] Y. Hua, B. Guo, W. Ma et al., “Interaction behavior associated with a generalized (2+1)-dimensional Hirota bilinear equation for nonlinear waves,” Applied Mathematical Modelling, vol. 74, pp. 184–198, 2019.
[17] M. J. Ablowitz and P. A. Clarkson, Solitons, Nonlinear Evolution Equations and Inverse Scattering, Cambridge University Press, London, UK, 1991.
[18] C. H. Gu, H. S. Hu, and Z. X. Zhou, Darboux Transformations in Soliton Theory and its Geometric Applications, Shanghai Science and Technology Publishing, Shanghai, China, 1999.
[19] W. F. Yan, Z. R. Liu, and Y. Liang, “Existence of solitary waves and periodic waves to a perturbed generalized KdV equation,” Mathematical Model & Analysis, vol. 4, pp. 537–555, 2014.
[20] X. B. Sun and P. Yu, “Periodic traveling waves in a generalized BBM equation with weak backward diffusion amd dissipation terms,” Discrete & Continuous Dynamic Systems Series B, vol. 2, pp. 965–987, 2019.
[21] P. F. Byrd and M. D. Friedman, Handbook of Elliptic Integrals for Engineers and Scientists, Springer, Berlin, Germany, 1971.