INVERSION FORMULAE FOR SIEGEL TRANSFORMS

Mишель Скендери

Abstract. Let \(n \in \mathbb{Z}_{\geq 3} \) be given. We prove Lebesgue-almost everywhere pointwise inversion formulae for the Siegel transforms in the geometry of numbers. These inversion formulae are quite general; for instance, they are valid for the Siegel transforms of any even and compactly supported Borel measurable function \(f : \mathbb{R}^n \to \mathbb{R} \) that belongs to \(L^1(\mathbb{R}^n) \cap L^2(\mathbb{R}^n) \).

Notation 1.1. Let \(n \in \mathbb{Z}_{\geq 3} \) be given. We regard elements of \(\mathbb{R}^n \) as column vectors. Let \(G := \text{SL}_n(\mathbb{R}) \) and \(\Gamma := \text{SL}_n(\mathbb{Z}) \). Let \(e_1 \) denote the first standard basis vector in \(\mathbb{R}^n \). Let \(H \) denote the stabilizer in \(G \) of \(e_1 \) when \(G \) acts on \(\mathbb{R}^n \) in the usual fashion. Set \(\Gamma_{\infty} := \Gamma \cap H \). We identify \(G/H \) with \(\mathbb{R}^n_{\neq 0} := (\mathbb{R}^n \setminus \{0\}) \) via the bijective correspondence \(gH \leftrightarrow ge_1 \). We identify \(X := G/\Gamma \) with the space of all covolume one full-rank lattices in \(\mathbb{R}^n \) via the bijective correspondence \(g\Gamma \leftrightarrow g\mathbb{Z}^n \). Let \(m \) denote the Lebesgue measure on \(\mathbb{R}^n \). Let \(\mu_G \) denote the Haar measure on \(G \) that is normalized so that any fundamental domain for \(X \) in \(G \) has \(\mu_G \)-measure equal to one. Let \(\mu_X \) denote the unique \(G \)-invariant Radon probability measure on \(X \). Let \(\mu_G/H \) denote the \(G \)-invariant Radon measure on \(G/H \) that is obtained by pushing forward the measure \(m \) on \(\mathbb{R}^n_{\neq 0} \) by the aforementioned bijective correspondence \(\mathbb{R}^n_{\neq 0} \to G/H \), which is a homeomorphism. Let \(\mu_{G/\Gamma_{\infty}} \) denote the counting measure on \(G/\Gamma_{\infty} \). Let \(\mu_{G/\Gamma_{\infty}} \) denote the unique \(G \)-invariant Radon measure on \(G/\Gamma_{\infty} \) for which the usual unfolding formula holds for the triple \((\mu_{G/\Gamma_{\infty}}, \mu_X, \mu_{\Gamma/\Gamma_{\infty}}) \). Let \(\mu_{H/\Gamma_{\infty}} \) denote the unique \(H \)-invariant Radon measure on \(H/\Gamma_{\infty} \) for which the unfolding formula holds for the triple \((\mu_{G/\Gamma_{\infty}}, \mu_G/H, \mu_{H/\Gamma_{\infty}}) \). Let \(\zeta \) denote the Euler–Riemann zeta function. It is then a result of C. L. Siegel that \(\mu_{H/\Gamma_{\infty}}(H/\Gamma_{\infty}) = (\zeta(n))^{-1} \); see [6]; see also [8] or [7] Proposition 1.4.2 for the proof of A. Weil, which uses Poisson summation, of Siegel’s result. Finally, for any \(\Lambda \in X \), we write \(\Lambda_{\text{pr}} \) to denote the set of all primitive points of \(\Lambda \); an arbitrary point \(v \in \Lambda \) is said to be primitive if the following is true: for any \(k \in \mathbb{Z}_{\geq 1} \) and any \(w \in \Lambda \) for which \(v = kw \), we have \(k = 1 \) and \(v = w \). Notice that for any \(g \in G \), we have \((g\mathbb{Z}^n)_{\text{pr}} = g(\mathbb{Z}^n_{\text{pr}}) \). For each \(p \in \{1, +\infty\} \subset \mathbb{R} \), we adopt the notational convention that the elements of any \(L^p \) space are always real-valued. As usual, we say that a function \(f : \mathbb{R}^n \to \mathbb{R} \) is even (respectively, odd) if for every \(z \in \mathbb{R}^n \), we have \(f(z) = f(-z) \) (respectively, \(f(z) = -f(-z) \)).

Remark 1.2. Throughout this note, we identify any two mappings that are equal almost everywhere; similarly, we regard any mapping that is defined almost everywhere as being defined everywhere.

Definition 1.3. Let \(\mathcal{F} \) denote the set of all Borel measurable functions \(f : \mathbb{R}^n \to \mathbb{R} \) that belong to \(L^1(\mathbb{R}^n) \cap L^2(\mathbb{R}^n) \) and that satisfy the following condition: for each \(g \in G \),
\[
\sum_{v \in \mathbb{Z}^n_{\text{pr}}} |f(g(v))| < +\infty.
\]

Let \(\mathcal{F}_{\text{even}} \) denote the set of all even elements of \(\mathcal{F} \). Note that each of \(\mathcal{F} \) and \(\mathcal{F}_{\text{even}} \) is a real vector space.
§§

S. Helgason: see [1, Chapter II, series, one may regard the primitive Siegel transform as a particular example of a Radon transform

\mathcal{F} to instance, [1, Chapter II, is injective; if the transform is injective, then one seeks to prove an inversion formula: see, for

field of integral geometry, an important problem is to determine whether a given Radon transform

Second, we may identify Γ/Γ_∞ with \mathbb{Z}_n^{pr} via the bijective correspondence $\gamma \Gamma_\infty \leftrightarrow \gamma e_1$. We may thus regard \hat{f} as the pseudo-Eisenstein series given by

$$g\Gamma \mapsto \sum_{[\gamma] \in \Gamma/\Gamma_\infty} f(g\gamma) = \int_{\Gamma/\Gamma_\infty} f(g\gamma) d\mu_{\Gamma/\Gamma_\infty}(\gamma).$$

Thanks to the preceding characterization of the primitive Siegel transform as a pseudo-Eisenstein series, one may regard the primitive Siegel transform as a particular example of a Radon transform for homogeneous spaces in duality, per the terminology of integral geometry in the fashion of S. Helgason: see [1, Chapter II, §§1–2] and, especially, [1, Chapter II, §4, Example H]. In the field of integral geometry, an important problem is to determine whether a given Radon transform is injective; if the transform is injective, then one seeks to prove an inversion formula: see, for instance, [1, Chapter II, §2, (iii)].

Our first objective in this note is to establish that the restriction of the primitive Siegel transform to \mathcal{F}_even is injective and then prove a Lebesgue-almost everywhere pointwise inversion formula for it. To this end, we shall use well-known mean and inner product formulae for the primitive Siegel transform. We note here that the primitive Siegel transform of every odd function in \mathcal{F} is identically zero.

In the seminal paper [3], Siegel proved the following theorem, usually known as the Siegel mean value theorem.

Theorem 1.5. [3] Let $f \in \mathcal{F}$. Then

$$\int_X \hat{f} \, d\mu_X = \frac{1}{\zeta(n)} \int_{\mathbb{R}^n} f \, dm.$$

In the paper [5], C.A. Rogers proved a theorem that immediately yields the following inner product formula as a special case.

Theorem 1.6. [5] Theorem 51

Let $f_1, f_2 \in \mathcal{F}$. Then

$$\int_X \hat{f}_1 \hat{f}_2 \, d\mu_X = (\zeta(n))^{-2} \left(\int_{\mathbb{R}^n} f_1 \, dm \right) \left(\int_{\mathbb{R}^n} f_2 \, dm \right) + (\zeta(n))^{-1} \int_{\mathbb{R}^n} (f_1(z) [f_2(z) + f_2(-z)]) \, dm(z).$$

If we assume further that f_2 is even, then

$$\int_X \hat{f}_1 \hat{f}_2 \, d\mu_X = (\zeta(n))^{-2} \left(\int_{\mathbb{R}^n} f_1 \, dm \right) \left(\int_{\mathbb{R}^n} f_2 \, dm \right) + 2(\zeta(n))^{-1} \int_{\mathbb{R}^n} f_1 f_2 \, dm.$$

Remark 1.7. Let $f_1, f_2 \in \mathcal{F}$ be given; then $\int_X |\hat{f}_1 \hat{f}_2| \, d\mu_X < +\infty$. This follows by noting that

$\{ |f_1|, |f_2| \} \subset \mathcal{F}$ and $\int_X |\hat{f}_1 \hat{f}_2| \, d\mu_X \leq \int_X |\hat{f}_1| |\hat{f}_2| \, d\mu_X$, applying Theorem 1.6 to $|f_1|$ and $|f_2|$, and then using the Cauchy-Schwarz inequality to show

$$\int_{\mathbb{R}^n} |f_1(z)| (|f_2(z)| + |f_2(-z)|) \, dm(z) \leq 2 \|f_1\|_2 \|f_2\|_2 < +\infty.$$

1Rogers incorrectly stated that [5, Theorem 5] is also valid for functions defined on \mathbb{R}^2; for a correct analogue of Rogers’s theorem in the setting of \mathbb{R}^2, see [3, Theorem 1 and Remark 0.8] and [2, Proposition 2.10]. See also [1, §2].
Notice that Theorem 1.6 and the foregoing discussion imply the following: for any \(f_3, f_4 \in \mathcal{F} \) with \(f_3 = f_4 \) Lebesgue-almost everywhere, we have \(\| \hat{f}_3 - \hat{f}_4 \|_2 = 0 \) and thus have \(\hat{f}_3 = \hat{f}_4 \) \(\mu_X \)-almost everywhere. It is therefore permissible to identify the primitive Siegel transforms of elements of \(\mathcal{F} \) that are equal Lebesgue-almost everywhere.

Definition 1.8. Define \(S : \mathcal{F}_{\text{even}} \to L^2(X) \) by \(S(f) := \hat{f} \). Remark 1.7 implies that the \(\mathbb{R} \)-linear transformation \(S \) is well-defined.

Proposition 1.9. The \(\mathbb{R} \)-linear transformation \(S : \mathcal{F}_{\text{even}} \to L^2(X) \) is injective. Let \(\mathcal{T} : \text{Im}(S) \to \mathcal{F}_{\text{even}} \) denote the left inverse of \(S \). We then have \(\| \mathcal{T} \|_{\text{op}} = \left(\frac{\zeta(n)}{2} \right)^{1/2} \), where \(\| \mathcal{T} \|_{\text{op}} \) denotes the operator norm of \(\mathcal{T} \) with respect to the respective \(L^2 \) norms on \(L^2(X) \) and on \(L^2(\mathbb{R}^n) \).

Proof. Let \(f \in \mathcal{F}_{\text{even}} \). Theorem 1.6 implies
\[
\| S(f) \|_2^2 = \frac{1}{\zeta(n)} \int_{\mathbb{R}^n} f \, dm + \frac{2}{\zeta(n)} \| f \|_2^2 \geq \frac{2}{\zeta(n)} \| f \|_2^2.
\]
Hence, the kernel of \(S \) is equal to zero. A simple manipulation now yields \(\| f \|_2 \leq \left(\frac{\zeta(n)}{2} \right)^{1/2} \| S(f) \|_2 \).

Finally, it is easy to explicitly construct a compactly supported function \(f_0 \in \mathcal{F}_{\text{even}} \) with \(\int_{\mathbb{R}^n} f_0 \, dm = 0 \) and \(\| f_0 \|_2 > 0 \); we then have \(0 < \| f_0 \|_2 = \left(\frac{\zeta(n)}{2} \right)^{1/2} \| S(f_0) \|_2 \).

Let us now introduce the transform that is dual to the primitive Siegel transform.

Definition 1.10. Given any \(\varphi \in L^2(X) \), we define \(\tilde{\varphi} : G/H \left(\cong \mathbb{R}^n_{\neq 0} \right) \to \mathbb{R} \), the dual primitive Siegel transform of \(\varphi \), by
\[
\tilde{\varphi}(gH) := \int_{H/\Gamma_{\infty}} \varphi(gh) \, d\mu_{H/\Gamma_{\infty}}(h).
\]

Remark 1.11. It is necessary to confirm that the dual primitive Siegel transform of \(\varphi \in L^2(X) \) is well-defined. Let \(\varphi \in L^2(X) \). Let \(t : \mathbb{R}^n \to \mathbb{R} \) be an arbitrary continuous function with compact support. By Remark 1.7, we have \(\hat{t} \in L^2(X) \). The Cauchy-Schwarz inequality then implies \(\hat{t} \varphi \in L^1(X) \). We then have the valid calculations
\[
\int_X \hat{t} \varphi \, d\mu_X = \int_{G/\Gamma_{\infty}} t(g) \varphi(g) \, d\mu_{G/\Gamma_{\infty}}(g) = \int_{G/H} t \varphi \, d\mu_{G/H}.
\]
We thus conclude \(\tilde{\varphi} : G/H \to \mathbb{R} \) is well-defined.

Definition 1.12. Given any \(\varphi \in L^2(X) \), we define \(\mathcal{L}(\varphi) : G/H \left(\cong \mathbb{R}^n_{\neq 0} \right) \to \mathbb{R} \), the primitive Lebesgue transform of \(\varphi \), by
\[
\mathcal{L}(\varphi)(gH) := \frac{1}{2} \left[\zeta(n) \tilde{\varphi}(gH) - \left(\int_X \varphi \, d\mu_X \right) \right].
\]
This definition makes sense because \(L^2(X) \subseteq L^1(X) \).

Remark 1.13. For any \(g \in G \), notice that \(\{ gh \Gamma : h \in H \} \) is precisely equal to the set of all elements of \(X \) that contain \(gh \in G/H \left(\cong \mathbb{R}^n_{\neq 0} \right) \) as a primitive point. Equivalently, the homogeneous space \(H/\Gamma_{\infty} \cong (HG)/\Gamma \) may be identified with the set of all elements of \(X \) that contain \(\text{id}_G H = e_1 \) as a primitive point. Notice also that \(\zeta(n) \mu_{H/\Gamma_{\infty}} \) is the unique \(H \)-invariant Radon probability measure on \(H/\Gamma_{\infty} \). Thus, we may interpret \(\zeta(n) \tilde{\varphi}(gH) \) in Definition 1.12 as the mean value of \(\varphi \), with
respect to the natural probability measure, on the set of all elements of X that contain gH as a primitive point. The probabilistic interpretation of $\int_X \varphi d\mu_X$ is obvious.

We then have the following inversion theorem, whose proof will utilize the Siegel mean value theorem and the Rogers inner product formula.

Theorem 1.14. For any $f \in F_\text{even}$, we have $f = \mathcal{L}(S(f))$.

Proof. Let $f \in F_\text{even}$, Set $\varphi := \hat{f} = S(f)$. Let $t : \mathbb{R}^n \to \mathbb{R}$ be an arbitrary continuous function with compact support. Using Theorem 1.6 and Theorem 1.5, we have

\[
\int_{G/H} t f d\mu_{G/H} = \frac{\zeta(n)}{2} \left[\left(\int_X \hat{t} \hat{f} d\mu_X \right) - (\zeta(n))^{-1} \left(\int_{G/H} t d\mu_{G/H} \right) \left(\int_X \hat{f} d\mu_X \right) \right]
\]

\[
= \frac{\zeta(n)}{2} \left[\left(\int_X \hat{t} \hat{f} d\mu_X \right) - \left(\int_{G/H} t d\mu_{G/H} \right) \left(\int_X \hat{f} d\mu_X \right) \right]
\]

\[
= \frac{1}{2} \left[\zeta(n) \left(\int_{G/H} t d\mu_{G/H} \right) - \left(\int_{G/H} t d\mu_{G/H} \right) \left(\int_X \hat{f} d\mu_X \right) \right]
\]

\[
= \frac{1}{2} \left[\zeta(n) \left(\int_{G/H} t \varphi d\mu_{G/H} \right) - \left(\int_{G/H} t d\mu_{G/H} \right) \left(\int_X \varphi d\mu_X \right) \right]
\]

\[
= \frac{1}{2} \left[\zeta(n) \left(\int_{G/H} t \varphi d\mu_{G/H} \right) - \left(\int_{G/H} t d\mu_{G/H} \right) \left(\int_X \varphi d\mu_X \right) \right]
\]

\[
= \frac{1}{2} \int_{G/H} t \mathcal{L}(S(f)) d\mu_{G/H}.
\]

We thus have $\int_{G/H} t f d\mu_{G/H} = \int_{G/H} t \mathcal{L}(S(f)) d\mu_{G/H}$. Since $t : \mathbb{R}^n \to \mathbb{R}$ is an arbitrary continuous function with compact support, it follows $f = \mathcal{L}(S(f))$. \(\square\)

We shall soon introduce the full Siegel transform (as opposed to the primitive one that has been considered thus far) and prove an analogue of Theorem 1.14 for it.

Definition 1.15. Let \mathcal{G} denote the set of all Borel measurable functions $f : \mathbb{R}^n \to \mathbb{R}$ that belong to $L^1(\mathbb{R}^n) \cap L^2(\mathbb{R}^n)$ and that satisfy the following conditions:

- for each $g \in G$, we have $\sum_{u \in \mathbb{Z}^n} |f(g(u))| < +\infty$;

- for each $z \in \mathbb{R}^n_{\neq 0}$, we have $\sum_{\ell \in \mathbb{Z}_{\geq 1}} |f(\ell k z)| < +\infty$, where the index ℓ ranges over the set of all squarefree integers in $\mathbb{Z}_{\geq 1}$.

Let \mathcal{G}_even denote the set of all even elements of \mathcal{G}. Note that each of \mathcal{G} and \mathcal{G}_even is a real vector space.
For any \(f \in \mathcal{G} \), we define \(f_\infty : \mathbb{R}^n \rightarrow \mathbb{R} \) by

\[
f_\infty(z) = \begin{cases} \sum_{k=1}^{+\infty} f(kz) & \text{if } z \neq 0, \\ f(0) & \text{if } z = 0. \end{cases}
\]

(This definition makes sense because \(1 \in \mathbb{Z}_{\geq 1} \) is a squarefree integer.)

For any \(f \in \mathcal{G} \), we have \(f_\infty \in \mathcal{F} \) because of the following:

\[
\|f_\infty\|_1 \leq \sum_{k=1}^{+\infty} \|f(k\bullet)\|_1 = \sum_{k=1}^{+\infty} k^{-n} \|f\|_1 = \zeta(n) \|f\|_1 < +\infty;
\]

\[
\|f_\infty\|_2 \leq \sum_{k=1}^{+\infty} \|f(k\bullet)\|_2 = \sum_{k=1}^{+\infty} k^{-n/2} \|f\|_2 = \zeta(n/2) \|f\|_2 < +\infty;
\]

and for any \(g \in G \),

\[
\sum_{\nu \in \mathbb{Z}_n^2} |f_\infty(g(\nu))| \leq \sum_{\nu \in \mathbb{Z}_n^2} \sum_{k=1}^{+\infty} |f(g(k\nu))| = -|f(0)| + \sum_{\nu \in \mathbb{Z}_n} |f(g(\nu))| < +\infty.
\]

For any \(f \in \mathcal{G}_{\text{even}} \), we clearly have \(f_\infty \in \mathcal{F}_{\text{even}} \).

Definition 1.16. Given any \(f \in \mathcal{G} \), we define \(\tilde{f} : X \rightarrow \mathbb{R} \), the **full Siegel transform** of \(f \), by

\[
\tilde{f}(\Lambda) := \sum_{w \in (\Lambda \setminus \{0\})} f(w).
\]

Notice that for each \(f \in \mathcal{G} \), we have \(f_\infty \in \mathcal{F} \) and \(\tilde{f} = \tilde{f}_\infty \). Notice also that the full Siegel transform of every odd function in \(\mathcal{G} \) is identically zero. We now establish that the restriction of the full Siegel transform to \(\mathcal{G}_{\text{even}} \) is injective and then prove a Lebesgue-almost everywhere pointwise inversion formula for it.

Theorem 1.17. The \(\mathbb{R} \)-linear transformation \(S_{\text{full}} : \mathcal{G}_{\text{even}} \rightarrow L^2(X) \) given by \(S_{\text{full}}(f) := \tilde{f} \) is well-defined and injective. Let \(\mu_M \) denote the Möbius function. Then for any \(f \in \mathcal{G}_{\text{even}} \), the following is true: for Lebesgue-almost every \(z \in \mathbb{R}^n \), we have

\[
f(z) = \sum_{k=1}^{+\infty} \mu_M(k) \mathcal{L}(S_{\text{full}}(f))(kz);
\]

the infinite series on the right-hand side is absolutely convergent.

Proof. Let \(f_0 \in \mathcal{G} \). Then \((f_0)_\infty \in \mathcal{F} \) and \(\tilde{f}_0 = (\tilde{f}_0)_\infty \). Remark 1.7 then implies that \(S_{\text{full}} \) is well-defined. Möbius inversion implies that for each \(z \in \mathbb{R}^n_{\neq 0} \), we have \(f_0(z) = \sum_{k=1}^{+\infty} \mu_M(k)(f_0)_\infty(kz) \).

Notice that this infinite series is absolutely convergent by the definition of \(\mathcal{G} \). In particular, it follows that the mapping \(\mathcal{G}_{\text{even}} \rightarrow \mathcal{F}_{\text{even}} \) given by \(f \mapsto f_\infty \) is injective. Appealing to Proposition 1.9, we conclude that \(S_{\text{full}} \) is injective. The foregoing discussion and Theorem 1.14 then imply the desired result. \(\square \)

Remark 1.18. Let us note that \(\mathcal{G} \) contains the set of all compactly supported Borel measurable functions \(f : \mathbb{R}^n \rightarrow \mathbb{R} \) that belong to \(L^1(\mathbb{R}^n) \cap L^2(\mathbb{R}^n) \). Thus, the inversion formulae in Theorems 1.14 and 1.17 are quite general.

Acknowledgements

The author would like to thank Dmitry Kleinbock, Jayadev Athreya, Uri Shapira, Paul Garrett, Seungki Kim, Omer Offen, Keith Merrill, Anish Ghosh, and Fulton Gonzalez.
REFERENCES

[1] Sigurdur Helgason, *Integral geometry and Radon transforms*, Springer, New York, 2011. MR2743116

[2] Dubi Kelmer and Amir Mohammadi, *Logarithm laws for one parameter unipotent flows*, Geom. Funct. Anal. 22 (2012), no. 3, 756–784, DOI 10.1007/s00039-012-0181-8. MR2972608

[3] Dubi Kelmer and Shucheng Yu, *The Second Moment of the Siegel Transform in the Space of Symplectic Lattices*, Int. Math. Res. Not. IMRN 8 (2021), 5825–5859, DOI 10.1093/imrn/rnz027. MR4251265

[4] Dmitry Kleinbock and Shucheng Yu, *A dynamical Borel–Cantelli lemma via improvements to Dirichlet’s theorem*, Mosc. J. Comb. Number Theory 9 (2020), no. 2, 101–122, DOI 10.2140/moscow.2020.9.101. MR4096116

[5] C. A. Rogers, *Mean values over the space of lattices*, Acta Math. 94 (1955), 249–287, DOI 10.1007/BF02392493. MR75243

[6] Carl Ludwig Siegel, *A mean value theorem in geometry of numbers*, Ann. of Math. (2) 46 (1945), 340–347, DOI 10.2307/1969027. MR12093

[7] Audrey Terras, *Harmonic analysis on symmetric spaces—higher rank spaces, positive definite matrix space and generalizations*, 2nd ed., Springer, New York, 2016. MR3496932

[8] André Weil, *Sur quelques résultats de Siegel*, Summa Brasil. Math. 1 (1946), 21–39 (French). MR15393

Mishel Skenderi
Department of Mathematics
Brandeis University
Waltham, MA 02454–9110
USA

mskenderi@brandeis.edu
https://orcid.org/0000-0001-8409-1613