Mathematical model to calculate key parameters of forming irregular lateral cuttings on sheet articles to eliminate such defects as “under-forging”

V V Mironenko¹, Y N Larionova²

¹Irkutsk National Research Technical University, 83, Lermontov St., Irkutsk, 664074, Russia
²Irkutsk Aviation Plant (IAP), an affiliate of Irkut Corporation

Abstract. The paper considers irregular lateral cutting beyond OST 1.52468-80. It shows that standard methods do not provide solutions to forming of either element of a workpiece. The study suggests methods to find parameters of forming and technical characteristics of a part containing the given element. It also proposes method allowing eliminating such defects as “under-forging”. The results are compared with finite element analysis of forming and natural experiment. The paper makes the conclusion on the possibility of applying the suggested formulas.

1. Introduction
The analysis of the main technological tasks of elastic, liquid or gas forging states that forming with these methods may lead to various schemes of stress-strain behavior: from the simplest (linear compression or stretching) to the most complex (including deformation with additional high stress of hydrostatic compression). In some cases one and the same process may indicate diverse strained condition of deformable workpiece.

2. Results
When forming an element similar to “cutting” by elastic environment the stress-strain behavior is quite complex. At present, key parameters of cuttings during forming (pressure demand and minimum thickness) are suggested to calculate according to models proposed by E.I. Isachenkov [1], which may be presented as follows:

$$S_{(min)} = \frac{a s_0 \sin \beta}{2K}$$

(1)

where l – cutting runout;
$$s_0$$ – workpiece material thickness;
h – height (depth) of cutting;
h / l = K – steepness of cutting;
a – flat inclined area on cutting;
$$\beta$$ – angle of flat inclined area on cutting;
r – approximate cutting radius while forming.
\[q = \frac{s_0 \sqrt{2\sigma_0 + 4\theta} \left(\frac{2l \cos \beta - 2r}{2l \cos \beta} \left(\sqrt{1 + K^2} - 1 \right) \right)^{2r \beta}}{r \left(2l \cos \beta \left(\sqrt{1 + K^2} - 1 \right) \right)^{2r \beta}} \]

where \(\Pi \) – hardening module;
\(\sigma_0 \) – yield limit.

Upon closer analysis these formulas (1) and (2) work only in a zone of the nomogram OST 1.52468-80 (Figure 1). Area of high-quality cuttings without corrugation C or with their fitting without under-forging H and gap P.

![Figure 1. Nomogram for “cuttings”](image1.png)

In case of going beyond the given nomogram these formulas show inadequate results. The model part from material D16AM is chosen as an example (Figure 2). Area of high-quality cuttings without corrugation C or with their fitting without under-forging H and gap P.

![Figure 2. Model piece](image2.png)

Using formulas (1) and (2) let us find thinning and pressure demand. We get \(s_{i(\text{min})} = 0.111 \text{ mm.} \) and \(q = 145.47 \text{ MPa.} \) Analyzing the obtained data we see that based on the calculated minimum thickness the thinning makes 94.45\%, and the pressure exceeds the current pressure of industrial presses. This is not correct since forming of this part may only lead to defect like “under-forging” and by thinning
we may state that the crack has appeared. This indicates the impossibility of using these formulas for calculations.

However, if we break the process into two transitions (at the second transition there is a need to use a mobile clip [2]) and change stress-strain behavior while forming, then we will get the following scenario. For parts going beyond the nomogram the calculation on the basis of deformation calculated according to forming area is suggested at the left. Supposing that the surface area built on the basis of four tops and a curve belonging to the cutting top is the area to obtain cutting before forming and that up to this point the metal is not made thinner. Then ratios of the cutting area and the area of designed surface is deformation characterizing thinning (Figure 3). According to Brahmagupta’s formula [3] through determinant it is possible to define the surface area of this surface using the Sarrus’ rule [4] to find the determinant (Formula 3).

$$S = \frac{1}{4} \left| \begin{array}{cccc}
\frac{a^4 - 2 \cdot a^2 \cdot b^2 - 2 \cdot a^2 \cdot c^2 - 2 \cdot a^2 \cdot d^2 - 2 \cdot b^2 \cdot c^2 - 2 \cdot b^2 \cdot d^2 + c^4 - 2 \cdot c^2 \cdot d^2 + d^4}{8 \cdot a \cdot b \cdot c \cdot d + b^4 - 2 \cdot b^2 \cdot c^2 - 2 \cdot b^2 \cdot d^2 + c^4 - 2 \cdot c^2 \cdot d^2 + d^4} \right| = 0.25 \cdot \sqrt{8 \cdot a \cdot b \cdot c \cdot d - b^4 + 2 \cdot b^2 \cdot c^2 + 2 \cdot b^2 \cdot d^2 - c^4 + 2 \cdot c^2 \cdot d^2 - d^4}$$

Figure 3. For thinning calculations

Due to allowance the minimum thickness after forming is equal

$$S_{i(min)} = S_0 - \frac{S_{i-1} - S_0}{100} = 2 \text{ mm} - \frac{16.11\% \times 2 \text{ mm}}{100} = 1.678 \text{ mm}$$

In a general view the formula for the minimum thickness looks as follows (Formula 5):

$$S_{i(min)} = S_0 \left(\frac{2 \cdot a^2 \cdot b^2 \cdot c^2 \cdot d^2 - 2 \cdot a^4 + 2 \cdot a^2 \cdot b^2 \cdot c^2 + 2 \cdot a^2 \cdot c^2 + 2 \cdot a^2 \cdot d^2 + 2 \cdot a^2 \cdot b^2 \cdot c^2 + 2 \cdot a^2 \cdot b^2 \cdot d^2 + c^4 - 2 \cdot c^2 \cdot d^2 + d^4}{2 \cdot a^2 \cdot b^2 \cdot c^2 \cdot d^2 - 2 \cdot a^4 + 2 \cdot a^2 \cdot b^2 \cdot c^2 + 2 \cdot a^2 \cdot c^2 + 2 \cdot a^2 \cdot d^2 + 2 \cdot a^2 \cdot b^2 \cdot c^2 + 2 \cdot a^2 \cdot b^2 \cdot d^2 + c^4 - 2 \cdot c^2 \cdot d^2 + d^4} \right)$$

To find the pressure demand let us define complete deformation in undercutting zone of a piece through the ratio of undercutting zone areas and the projected area of this piece.
Let us find the surface area of undercutting zone of a piece by Brahmagupta’s formula (Figure 5, Formula 6):

\[
S_3 = 0.25 \cdot \sqrt{2 \cdot a^2 \cdot b^2 - a^4 + 2 \cdot a^2 \cdot c^2 + 2 \cdot a^2 \cdot d^2 + 8 \cdot a \cdot b \cdot c \cdot d - b^4 + 2 \cdot b^2 \cdot c^2 + 2 \cdot b^2 \cdot d^2 - c^4 + 2 \cdot c^2 \cdot d^2 - d^4}
\]

\[
= 0.25 \cdot \sqrt{2 \cdot (32,653 \, mm)^2 \cdot (12,047 \, mm)^2 - (32,653 \, mm)^4 + 2 \cdot (32,653 \, mm)^2 \cdot (31,873 \, mm)^2 + 2 \cdot (32,653 \, mm)^2 \cdot (12,122 \, mm)^2 + 8 \cdot (32,653 \, mm) \cdot (12,047 \, mm) \cdot (31,873 \, mm) \times \times (12,122 \, mm) - (31,873 \, mm)^4 + 2 \cdot (12,047 \, mm)^2 \cdot (12,122 \, mm)^2 - (31,873 \, mm)^4}
\]

\[
= 0.25 \cdot 1583,689 \, mm^2 = 395,922 \, mm^2
\]

\((6) \)

The projection surface area as the area of a rectangle (Figure 6, Formula 7):

\[
S_4 = a \cdot b = 9 \, mm \cdot 30,0073 \, mm = 270,0657 \, mm^2
\]

\((7) \)
Hence, complete deformation is equal (Formula 8):

\[\varepsilon_{pol} = \frac{S_3 - S_4}{S_3} \cdot 100\% = \frac{395.922 \text{mm}^2 - 270.0657 \text{mm}^2}{395.922 \text{mm}^2} \cdot 100\% = 31.8\% \]

To find the pressure demand it is necessary to calculate stress in plastic part of a flow curve. To describe the behavior of a material in a plastic zone let us use the Krupkowsky law function [5]. It is the mathematical function (Formula 9) considering strain hardening and connecting equivalent stress with plastic deformation:

\[\sigma = K(\varepsilon_0 + \varepsilon_p)^n \]

where \(K \) – mathematical constant of this material;
\(n \) – coefficient of strain hardening;
\(\varepsilon_0 \) – deformation of counting the beginning of plastic deformations.

For D16AM \(K = 324.17 \text{ MPa}, n = 0.2183; \varepsilon_0=0.0003 \) and \(\varepsilon_p=\varepsilon_{pol}/100\% \)

In our case stresses are equal (Formula 10):

\[\sigma_{pod} = 252,627 \text{ MPa} (0.0003 + 0.318)^{0.2183} = 252,627 \text{ MPa} \]

For verification finite element modeling in PAM-STAMP system was carried out and the natural experiment was performed. The following results are obtained (Table 1).

As a result we see that:
- the difference between \(\sigma_{pod} = 252,627 \text{ MPa} \) calculated analytically and \(\sigma_{eq} = 247,426 \) makes 2.1\%, so the results can be considered identical;
- the difference between \(\varepsilon_{pod} = 31.8\% \) calculated analytically and \(\varepsilon = 31.3\% \) makes 2.4\%, so the results can be considered identical;
- the difference between \(s_i(\text{min}) = 1,678 \text{ mm} \) calculated analytically and \(s_{\text{min}} = 1,696 \text{ mm} \) makes 1.1\%, so the results can be considered identical;
- the difference between \(s_i(\text{min}) = 1,678 \text{ mm} \) calculated analytically by proposed technique differs from the natural experiment \(s_{\text{nat(\text{min})}} = 1,6862 \text{ mm} \) by 0.488\%, so the results can be considered identical.
Table 1. Results of modeling and natural experiment

\[\sigma_{eq} = \sqrt{\frac{(\sigma_1 - \sigma_2)^2 + (\sigma_2 - \sigma_3)^2 + (\sigma_3 - \sigma_1)^2}{2}} \]

Stress

\[\varepsilon = \sqrt{\varepsilon_x^2 + \varepsilon_y^2 + \varepsilon_z^2} \]

Deformation

3. Conclusion
Based on comparisons it is possible to conclude that the suggested formulas can be used to calculate the minimum thickness, deformation and stress while forming irregular cuttings going beyond the nomogram into a defect zone like “under-forging”.

References
[1] Isachenkov E I 1967 Rubber pressing and high-pressure liquid forming (Moscow: Mechanical engineering) 367 p
[2] Mironenko V and Shmakov A 2018 Movable-clamp undercutting of sheet metal parts Advances in Engineering Research Int. Conf. on Aviamechanical Engineering and Transport (AviaENT 2018 vol 158) pp 271–75
[3] Fedorchuk M and Pak I 2005 Rigidity and polynomial invariants of convex polytopes Duke Math. J. 129(2) 371–404 DOI:10.1215/S0012-7094-05-12926-X
[4] Fischer G 1985 Analytische Geometrie 4 ed (Vieweg) ISBN 3-528-37235-4
[5] PAM-STAMP 2012 User’s Guide, ESI Group 960
[6] Bobarika I, Demidova A and Bukhanchenko S 2017 Hydraulic model and algorithm for branched hydraulic systems parameters optimization Procedia Engineering ser. Int. Conf. on Industrial Engineering (ICIE 2017) pp 1522–7
[7] Shahrai S, Sharypov N, Polyaakov P, Kondratiev V and Karlina A 2017 Quality of anode overview of problems and some methods of their solution Part 2 Improving the quality of the Anode Int. J. of Applied Engineering Res. 21 11268–78
[8] Baranov, Kondratiev V, Ershov V, Judin A and Yanchenko N 2016 Improving the Efficiency of
Aluminium Production by Application of F Composite Chrome Plating on the Anode Pins Int. J. of Applied Engineering Res. 22 10907–11

[9] Khusainov R, Sabirov A and Mubarakhshin I 2017 Study of Deformations Field in the Working Zone of Vertical Milling Machine Procedia Engineering ser. Int. Conf. on Industrial Engineering (ICIE 2017) pp 1069–74

[10] Fabík R, Klíber J, Kubina T, Mamuzic I and Aksenov S 2012 Mathematical Modelling of Flat and Long Hot Rolling Based on Finite Element Methods (FEM) 51(3) (Sisak Yugoslavia: Metalurgija) pp 341–4

[11] Chumachenko E, Aksenov S and Logashina I 2012 Optimization of Superplastic Forming Technology METAL 2012 Conference proceedings 21st Int. Conf. on Metallurgy and Materials pp 295–301

[12] Mokritskii, Vereshchagin V, Mokritskaya E, Pyachin S, Belykh S and Vereshchagin A 2016 Composite Hard-Alloy End Mills Rus. Engineering Res. 36(12) 1030–2

[13] Kondratiev V, Rzhechtiskij E, Shakhrai S, Karlina A and Sysoev I 2016 Recycling of Electrolyzer Spent Carbon-Graphite Lining With Aluminum Fluoride Regeneration, Metallurgist 60(5–6) 571–5

[14] Kondrat’ev V, Govorkov A, Lavrent’eva M, Sysoev I and Karlina A 2016 Description of the heat exchanger unit construction, created in IRNITU Int. J. of Applied Engineering Res. 11(19) 9979–83

[15] Sevastyanov G, Chernomas V, Marin S and Sevastyanov A 2015 Numerical Simulation Features of Continuous Casting Process Form AD31 (A (Greek Passage)31) Alloy Using Finite-Difference and Finite-Element Models Non-Ferrous Metals 2 25–9

[16] Belykh S and Perevalov A 2013 Modelling of Bending Rolls of Extruded Nonsymmetric in the MSC Marc European Researcher 5–1(48) 1140–46

[17] Roshchupkin V, Krupskii R, Levchuk T and N Semashko 2002 Methodical Aspects of Exciting Acoustic Emission of Magnetostriction Russian metallurgy (Metally) 4 361–2

[18] Roshchupkin V, Semashko N, Krupskii R, Kupov A and Shport V 2003 Temperature and Strain Changes in VT20 Titanium Alloy under Electric-Pulse Effect High Temperature 41(5) 633–8

[19] Pokrasin M, Semashko N, Krupskii R and Kupov A 2004 Effect of Electric-Pulse Treatment on the Dislocation Structure of OT4 Titanium Alloy, Russian metallurgy (Metally) 6 595–600

[20] Roshchupkin V, Pokrasin M, Chernov A, Sobol N, Semashko N, Krupskii R and Kupov A 2005 Deformation of VT20 and OT4 Titanium Alloys Subjected to a High-Density Pulse Current During Static Loading Russian metallurgy (Metally) 4 350–54

[21] Erisov Y, Grechnikov F and Surudin S 2016 “Yield Function of the Orthotropic Material Considering the Crystallographic Texture Structural Engineering and Mechanics 58(4) 677–87

[22] Erisov Y, Surudin S, Shlyapugin A and Grechnikov F 2016 The End-to-End Computer Simulation of Casting and Subsequent Metal Forming Key Engineering Materials 685 167–71

[23] Pal-Val P, Natsik V, Pal-Val L, Loginov Y, Demakov S and Illarionov A 2014 Unusual Young’s Modulus Behavior in Ultrafine-Grained and Microcrystalline Copper Wires Caused by Texture Changes During Processing and Annealing Materials Sci. and Engineering 618 9–15

[24] Bourkine S, Korsunov E, Loginov Y, Shakhapazov E, Nassibov A and Babailov N 1999 Projection of Steel Wire Producing Technology Beyond the Continuous-Casting of an Ingot Using a Direct Combination of Casting and Metal Forming J. of Materials Proc. Technol. 86(1–3) 278–90