ABSTRACT

Bangladesh has a vibrant street food culture, with easily available ready-to-eat (RTE) foods. In this study, a total of 221 isolates were obtained from 141 Bangladeshi RTE food samples, such as fried, non-fried, and cooked foods; egg-, milk-, cereal-, and cream-based foods; pickles/achar; fruit; and RTE leaves, through culture on trypticase soy (for aerobic plate count), mannitol salt (MS for *Staphylococcus*), deoxycholate-hydrogen sulfide-lactose (DHL, for *Enterobacteriaceae*), and NaCl glycine Kim Goepfert agar (NGKG, for *Bacillus cereus*-like bacteria) agar plates. The aerobic plate counts ranged from undetectable to 8.5 log CFU/g. After enrichment with peptone water, contaminated bacteria detected on DHL, MS, and NGKG agar plates, from 77, 110, and 77 samples, respectively. Twenty out of 111 isolates on DHL agar, and 17 of 32 isolates on NGKG agar clearly showed resistance against three or more drugs. Through 16S ribosomal DNA sequencing analysis, six selected isolates from DHL agar were identified as *Pseudomonas nitroreducens*, *Citrobacter braakii*, *Klebsiella pneumoniae* subsp. *pneumoniae*, and *Serratia marcescens*. One selected isolate from NGKG agar was identified as *Bacillus cereus*-like bacteria. The results suggest that additional safety measures and regulations are necessary to ensure the quality and safety of the RTE foods in Bangladesh.

Keywords: antibiotic resistant bacteria, food safety, ready to eat food, street vendor.

I. INTRODUCTION

Bangladesh is one of the most densely populated countries in the world, and it has a vibrant street food culture, with ready-to-eat (RTE) foods, beverages, and snacks easily found at almost any time of the day [1]. The general Bangladeshi population’s traditional eating habits are changing due to rapid urbanization [2]. Changing lifestyles, including an increasing number of women working outside the home and changes in family structures, encourage more people to consume RTE foods than home-cooked food, which was the standard practice in the last century [3]. There are 128 varieties of street foods found in Dhaka, Bangladesh, among which chotpoti, bhelpuri, samucha, jhalmuri, daalpuri, lassi, pakura, and halim are the most popular [4]. Traditionally RTE foods and beverages are produced at the commercial or household level; unfortunately, such food items are sold by grocery stores, department stores, vendors, and supermarkets without supervision by authorities [5]. Bangladesh has long been facing problems associated with microbiological contamination of various foods due to the lack of awareness on hygiene followed by the defective legislative action [6].

In developing countries, bacterial diarrhoea causes high mortality [7]. Controlling microorganisms is essential to addressing the microbial safety issues associated with RTE foods. The World Health Organization estimates that foodborne and waterborne diseases together globally kill approximately 2.2 million people annually, including 1.9 million children [8], [9]. However, in Bangladesh, a dependable assessment of the public health impact of food contamination is not available due to the absence of a regular monitoring system. Limited data from the International Centre for Diarrhoeal Disease Research, Bangladesh, indicates that 501 hospital visits for diarrhoea treatment per day were attributable to food- and waterborne illnesses [10]. Multi-drug resistant (MDR) bacterial infections are a public health problem worldwide [11]. It can be considered that multi-drug resistance genes of bacteria found in foods can be horizontally transferred to human gut bacteria, including opportunistic pathogens [12], [13]. Many researchers have reported the role of street foods as vectors of pathogenic bacterial transmission to humans [14]. Most studies focus on microbiological and hygiene quality; however, only few efforts have been made to identify antibiotic-resistant organisms, although the status of multi-drug resistance plays an important role in fighting foodborne pathogens [15], [16]. Several studies have assessed foodborne pathogens in RTE foods in other countries. For example, among 154 foodborne *Staphylococcus aureus* isolates analysed in Turkey, 39 (25.3%) were found to be MDR [17]. In a study on vegetables collected in Switzerland, 78.3% (47/60) of samples contained MDR extended-spectrum β-lactamase-producing *Enterobacteriaceae* isolates [18]. In Bangladesh, some research teams have focused on the microbiological quality of RTE foods; however, few efforts have been made to determine antibiotic resistance levels and associated

Submitted: December 01, 2021
Published: January 23, 2022
ISSN: 2684-1827
DOI: 10.24018/ejfood.2022.4.1.442

Sayed M. Nahidul-Islam
Tokyo University of Marine Science and Technology, Tokyo, Japan.
(e-mail: nahid.cs76@gmail.com)

*Corresponding Author

DOI: http://dx.doi.org/10.24018/ejfood.2022.4.1.442
resistance mechanisms in these foods [19]. Therefore, in this study, to confirm the existence of multi-drug resistance and the potential contribution of food to the dissemination of antibiotic-resistant pathogens, various RTE foods (141 samples) were collected mainly from street vendors in the densely populated cities of Dhaka, Chittagong, and Cox’s Bazar in Bangladesh. The level of multi-drug resistance of a total of 221 isolates was determined using classical disc diffusion assay, and the strains having high resistance against multiple drugs were selected and identified.

II. MATERIALS AND METHODS

A. Collection of RTE Food Samples

A total of 141 food samples (Table I) were collected from randomly selected vendors operating in Dhaka, Chittagong, and Cox's Bazar between June and December 2019. All samples were handled aseptically during transportation and kept in sterile containers until they were prepared for bacteriological analysis. The information of each sample is shown in Table I. The products were preserved in the refrigerator (4 °C), except for the RTE tobacco. Food product pH was measured using a pH meter (B-711 LAQUAtwin, Horiba, Kyoto, Japan), and salinity was measured with a salinity analyser (B-721 LAQUAtwin, Horiba).

B. Aerobic Plate Counts

A 3 g sample of each food was homogenised in 30 mL of phosphate-buffered saline (Nissui Pharmaceutical, Tokyo, Japan) containing 0.1% (w/v) agar. The serial diluted samples (0.03 mL) were plated on trypticase soy agar (TSA) (Nippon Becton Dickinson, Tokyo, Japan) plates and incubated at 30 °C for isolation of aerobic bacteria. Plates of deoxycholate hydrogen sulfide lactose (DHL) agar (for Enterobacteriaceae, Eiken Chemical, Tokyo, Japan), mannitol salt (MS) agar (for Staphylococcaceae, Eiken Chemical, Tokyo, Japan), and NaCl-glycine Kim and Goepfert (NGKG) agar (for Bacillus cereus-like bacteria, Nissui Pharmaceutical) were incubated at 30 °C (NGKG) or 37 °C (DHL, MS) for 24 h under aerobic conditions. Viable cell counts were calculated from the number of developed colonies.

C. Isolation and Antibacterial Resistance Test

Each sample (3 g) was enriched at 37 °C for 18 h using 30 mL of buffered peptone water (BPW, Nippon Becton Dickinson) and streaked on DHL, MS, and NGKG agar. After 24 h incubation, as described above, typical colonies from the plates were isolated. The susceptibility of the isolates to different antimicrobial agents was determined with the disc diffusion assay using 10 or 11 antibiotic discs: ciprofloxacin (CPFX, 5 μg), ampicillin (ABPC, 10 μg), fosfomycin (FOM, 50 μg), ofloxacin (OFLX, 5 μg), tetracycline (TC, 30 μg), gentamicin (GM, 10 μg), vancomycin (VCM, 30 μg), levofloxacin (LVFX, 5 μg), chloramphenicol (CP, 30 μg), trimethoprim/sulfamethoxazole (ST, 23.75 μg/1.25 μg), and cefoxitin (CFX for methicillin-resistant staphylococci, 30 μg) (BD Sensi-Disc™, Nippon Becton Dickinson) on Mueller-Hinton agar (Oxoid, Basingstoke, UK). The assay allows the determination of bacterial resistance to the antibiotic on the disc, based on the relative diameter of the zone of inhibition surrounding the disc. Briefly, isolated colonies were inoculated into the nutrient broth, incubated at 37 °C for 24 h, and then spread (0.1 mL) on the test plates. The diameters of the inhibition zones (Fig. 2) were measured using precision callipers 24 h after incubation. The resistance was as resistance (R), intermediate resistance (IR), and susceptible (S) according to manual of the disk products and the British Society for Antimicrobial Chemotherapy (BSAC) standard disc susceptibility [20]. Additionally, among the R group, isolates that showed no clear zone were defined as no clear zone (NCZ).

Table I: Values of pH and Salinity in Ready to Eat (RTE) Foods Distributed in Bangladesh

Groups	Sample name (number of samples)	Samples/ group	pH*	Salinity (%)
Cream-based food	Cream bun (3), cream cake, layer cake, sandwich sponge cake, butter cake (2)	8	5.58±0.50	0.90±0.27
Egg-based food	Egg cake (3), egg alor chop, vanilla egg bun, custard cake	6	5.24±0.32	1.00±0.24
Milk based food	Lassi, matha, borhani, shandesh (2), dahi (3), laddu (2), shonpapri, modhu-sandesh, doi-fuska	13	5.14±1.10	0.91±0.72
Non fried dry food	Toast, biscuit, dry cake (2), coconut fudge ball, pinuts cookies, vapa pitha (4), patishapta pitha (2), chitoi pitha, taler pitha	15	5.81±0.79	1.05±0.25
Fried dry food	Fried pitha (3), jhal petesh, coconut khaja, velpuri (2), singara, samosa (2), nimki, piaju, anthon, egg chop	14	5.44±0.61	0.61±0.27
Cooked food	Payesh, sujhi/vala (2), chicken roll (3), chicken samosa, chicken sandwich, chotpoti (4), fuska (5), noodles, pizza, crab-jhal	20	4.67±0.46	1.18±0.42
Fruit juice and liquid food	Mango juice, basil seed juice (2), aloe vera juice, sugarcane juice (3), shorbot, tetul juice (3), isabol juice.	11	5.64±0.87	0.89±0.34
Cereal based food	Jilapi, pauruti, pantavaat, corn flakes, muri, jhal muri (3), puffed rice ball, naan, jorda vaat	25	3.86±0.99	0.90±0.35
Pickle/achar	Boros/kal chani (9), mango achar (6), jam chatni (2), tamarind achar, pinapple chatni, mix fruits achar, dates achar (3), kasundi, guava pickle (paan) betel leaf with areca nut (8)	8	4.53±0.29	0.67±0.31
RTE betel leaves	Swagat, kuber, zit, pan parag, pan masala (2), baba 120 plus, dilber, special gul, supari	9	7.98±0.98	1.86±0.36
Total			48	

*Values are expressed as the mean ± standard deviation
TABLE II: ViABLE BACTERIA COUNT AND DETECTION WITH THE SELECTIVE AGAR PLATES WITH ENRICHMENT IN THE RTE FOOD SAMPLES

Groups	Detection samples	TSA counts (Log CFU/g)	DHL	MSA	NGKG
		Log CFU g⁻¹			
		SD			
Cream based food (n=8)	Detected samples	8	2	5	6
		Log CFU g⁻¹	4.92	2.91	
		SD	0.67	0.12	
Egg-based food (n=6)	Detected samples	6	2	1	5
		Log CFU g⁻¹	5.42	4.3	8.11
		SD	1.93	2.14	1.03
Milk-based food (n=13)	Detected samples	13	7	9	5
		Log CFU g⁻¹	6.33	4.89	5.02
		SD	1.71	0.97	1.78
Non fried dry food (n=15)	Detected samples	15	8	8	8
		Log CFU g⁻¹	5.50	5.37	5.79
		SD	1.44	0.66	0.44
Fried dry food (n=14)	Detected samples	14	11	11	7
		Log CFU g⁻¹	6.23	4.75	6.21
		SD	1.16	1.77	1.72
Cooked food (n=20)	Detected samples	19	13	19	8
		Log CFU g⁻¹	6.54	4.54	6.66
		SD	0.96	1.20	1.22
Fruit juice and liquid food (n=12)	Detected samples	12	9	11	8
		Log CFU g⁻¹	5.71	4.81	4.45
		SD	1.69	1.38	1.28
Cereal based food (n=11)	Detected samples	11	3	6	1
		Log CFU g⁻¹	5.36	7.13	5.60
		SD	1.96	0.28	1.51
Pickle/Achar (n=25)	Detected samples	19	6	14	7
		Log CFU g⁻¹	5.52	5.52	4.41
		SD	1.44	1.17	1.44
RTE betel Leaves (n=8)	Detected samples	8	8	6	4
		Log CFU g⁻¹	7.11	5.57	5.32
		SD	1.25	2.27	1.84
RTE Tobacco (n=9)	Detected samples	7	1	5	1
		Log CFU g⁻¹	4.19	4.14	3.59
		SD	1.11		

D. Identification of Selected Strains

In the case of isolates from DHL and NGKG agar plates, strains that showed NCZ to at least three classes of antimicrobial agents were selected. In the case of isolates from MS agar plates, bacteria that showed R to at least three classes of antimicrobial agents, including CFX, were selected. The selected isolates from DHL agar were preliminarily classified using commercial API ID 32E kits (BioMerieux, Marcy-l’Etoile, France) for bacterial identification according to the manufacturer’s instructions, and the data were analysed with apiweb™ (https://apilab.biomerieux.com/). Among that, 11 isolates that showed resistance to the largest having number of the antibiotics were identified based on their 16S rRNA gene sequences. Following the amplification of the 16S rRNA genes using the PCR primers 27F and 1492R, the PCR products were sequenced by Macrogen Japan Corp. (Tokyo, Japan). The homology search was performed using BLASTn, which was from the DNA Data Bank of Japan (http://www.ddbj.nig.ac.jp/blast/blastn).

III. RESULTS AND DISCUSSION

A. Values of pH, Salinity, and Total Aerobic Plate Counts of RTE Food Samples

About the total 141 RTE food samples sold by street vendors in Bangladesh, the average pH of the 11 RTE food groups ranged from 3.86 to 7.98 (Table I). Zit and kuber (RTE tobacco) had the highest pH (9.80 and 9.70, respectively, Table II), whereas the lowest pH (3.86) was observed in the RTE pickle group. The groups’ salinity ranged from 0.53% to 1.86%, and the highest salinity (2.3%) was observed in borhani (fermented milk).

In this study, the average total aerobic plate counts (APCs) with TS agar plate of the RTE food groups ranged from 4.19 to 7.11 log CFU/g (Table II). Among the sample APCs, APCs for 6.4% (9/141) were <2 log CFU/g, 16% (22/141) ranged from 2 to 4 log CFU/g, 38% (53/141) ranged from 4 to 6 log CFU/g, and 40% (57/141) were >6 log CFU/g. The bacterial load of RTE betel leaf (7.11 log CFU/g) was the highest among the 11 types of RTE foods. However, several samples of other sample groups, such as egg-aloo chop, lassi, borhani, sandesh (milk-based sweet), samosa, chicken roll, crab jhal (curry taste), and basil seed juice, showed a high APC (>8 log CFU/g).

B. Antibiotic Resistance of Isolates

As summarised in Fig. 1A (raw data is shown in Table III), all 111 isolates formed NCZ in the presence of VCM, whereas 49%, 14%, and 9.0% of isolates formed NCZ in the presence of ABPC, FOM, TC, and ST, respectively. Resistance was most commonly observed in FOM (45%) and ABPC (23%). Furthermore, 34%, 18%, 17%, 14%, and 11% of isolates showed IR to GM, CP, CFX, ABPC, and FOM, respectively. Among the isolates, 15, 4, and 1 were resistant...
to three, four, and five antibiotics, respectively, as indicated by NCZ formation (Fig. 1B). Origin samples and the 20 isolates showing NCZ against three and more antibiotics are summarised in Table III. There was no correlation between the resistance and RTE food materials and sampling areas.

Preliminary classified names using API ID 32E kit are also shown in Table III. Seven, three, two, two, and two isolates were estimated as Enterobacter spp., Klebsiella spp., Escherichia coli, Citrobacter spp., Enterobacteriaceae spp., and Pseudomonas spp., respectively.

Fig. 1. Numbers of isolates from DHL agar (A, B), mannitol salt (MS) agar (C, D), and NGKG agar (E, F) plates showing no clear zone (NCZ: closed column), resistance (R: semi-closed column), and intermediate resistance (IR: open column) against antibiotics. CPFX: ciprofloxacin, ABPC: ampicillin, FOM: fosfomycin, OFLX: ofloxacin, TC: tetracycline, GM: gentamicin, VCM: vancomycin, LVFX: levofloxacin, ST: trimethoprim-sulfamethoxazole, CP: chloramphenicol, CFX: cefoxitin.

TABLE III: ISOLATES FROM DHL AGAR PLATES SHOWING NO CLEAR ZONE (NCZ) AGAINST THREE OR MORE DRUGS

Groups	Sample Name	Area	Strain ID	No clear zone	Resistant to	Classified names with API 32E
Milk-based food	Borhani	Dhaka	E-27	ABPC, TC, VCM	FOM	Enterobacter cloacae
	Borhani	Dhaka	E-28	ABPC, TC, VCM	FOM	Enterobacter aerogenes
	Martha		E-21	ABPC, FOM, VCM		Cronobacter malonaticus
Non fried dry food	Vapa pitha-2	Cox’sbazar	E-40	ABPC, TC, VCM	FOM	Escherichia coli
	Vapa pitha-4	Cox’sbazar	E-41	ABPC, TC, VCM	FOM	Klebsiella pneumoniae
Fried dry food	Samosa-1	Chittagong	E-55	ABPC, FOM, VCM		Enterobacter aerogenes
	Samosa-2	Dhaka	E-47	ABPC, FOM, VCM		Enterobacter aerogenes
	Nimki	Dhaka	E-53	ABPC, FOM, VCM	TC	Salmonella Typhimurium
	Velpuri-1	Dhaka	E-49	ABPC, FOM, VCM		Burkholderia cepacia
Cooked food	Fuska	Chittagong	E-51	ABPC, FOM, VCM	ST, CP	Pseudomonas aeruginosa
	Chotpoti-3	Dhaka	E-65	ABPC, FOM, VCM	ST, CP	Klebsiella pneumoniae
Fruit juice and liquid	Basil seed	Chittagong	E-35	ABPC, VCM, ST		Hafnia alvei
food	juice-1					
	Fuska tok-1	Chittagong	E-79	ABPC, TC, VCM	ST	Citrobacter freundii
Cereal based food	Jhal muri-1	Chittagong	E-72	ABPC, FOM, VCM		Enterobacter aerogenes
	Jhal muri-3	Dhaka	E-104	ABPC, FOM, VCM		Raoultella planticola
Pickle/Achar	Guava pickle	Cox’sbazar	E-84	ABPC, TC, VCM	ST, CP	Citrobacter braakii
	Jam pickle-1	Chittagong	E-42	ABPC, TC, VCM		Klebsiella pneumoniae
RTE Leaves	Paan-1	Chittagong	E-30	ABPC, VCM, ST		Escherichia coli
	RTE Tobacco	Paan masala-2	E-82	ABPC, FOM, VCM		Enterobacter cloacae

* CPFX: Ciprofloxacin, ABPC: Ampicillin, FOM: Fosfomycin, OFLX: Ofloxacin, TC: Tetracycline, GM: Gentamicin, VCM: Vancomycin, LVFX: Levofloxacin, ST: Trimethoprim-sulfamethoxazole, CP: Chloramphenicol.
Based on direct detection analysis, 64% (90/141) of samples were contaminated with *Staphylococcus aureae*-like bacteria, including 18% (26/141) with between 2 and 4 log CFU/g, and 19% (27/141) with >6 log CFU/g (Table II). Notably, the counts in egg-alnor chopp and one samosa were higher than 8 log CFU/g. With the enrichment culture, 78% (110/141) of the tested samples were positive for *Staphylococcus aureae*-like bacteria. As shown in Fig. 1C and Table IV, more than 70% of *Staphylococcus aureae*-like isolates were susceptible to seven antimicrobials, including SXT, GM, TC, LVFX, CFX, CP, and FOM. Resistance was most commonly observed to VM (59 isolates, 75%), ABPC (46 isolates, 58%), CFX (12 isolates, 15%), TC (11 isolates, 14%), and FOM (6 isolates, 8%). NCZ formation in the presence of FOM was observed for 7 isolates, 16 of 79 isolates were resistant to at least 3 different classes of antimicrobials, and 7 isolates (8.8%) were resistant to more than 4 antimicrobials (Fig. 1D). Origin samples and the selected 15 isolates showed apparent R against three and more antibiotics, including CFX, summarised in Table IV. There was no correlation between the resistance and RTE food materials and sampling areas. Strain S-54 showed R against the most (seven) of the antibiotics. As shown in Table II, based on direct detection analysis, 36% (52/141) of samples were contaminated with bacteria detected on NGKG agar, including 9.9% (14/141) with counts between 2 and 4 log CFU/g, and 6.4% (9/141) with counts >6 log CFU/g. After enriching the 141 food samples, 55% (77/141) of samples showed presence of bacteria that grew on NGKG agar. From the NGKG agar plates, a total of 32 typical *B. cereus*-like morphological (White turbid colony and red discoloration of the medium) colonies were selected and isolated. Of these, 81%, 72%, and 69% formed NCZs in the presence of ABPC, ST, and FOM, respectively (Fig. 1E and Table IV). Fifteen isolates (48.4%) resistant to three antibiotics and one isolate (3.2%) resistant to four antibiotics formed NCZs and were considered MDR (Fig. 1F). Origin samples and the selected 17 isolates showing NCZ against three and more antibiotics are summarised in Table IV. There was no correlation between the resistance and RTE food materials and sampling areas. Besides one strain (B-6), most strains were observed as gram-positive rods with spores. Strain B-19 showed NCZ with four antimicrobial drugs.

One of the most critical aspects of food safety is the emergence of antimicrobial-resistant bacterial strains [21]. Resistant strains are capable of horizontal transfer of resistance genes from environmental and animal food sources to normal human indigenous microbiome and pathogens through the food chain [22], [23]. VCM is regarded as a drug for gram-positive bacteria as it cannot penetrate their outer membrane of gram-negative bacteria [24]. In this study, all isolates from DHL agar (mainly *Enterobacteriaceae*) showed NCZ with VCM (Fig. 1A). Most of the isolates from MS and NGKG showed clear “R” against VCM (Fig. 1C and E). Furthermore, VCM has been regarded as a silver bullet against MDR gram-positive bacteria; however, issues with VCM-resistant gram-positive bacteria, not only enterococci but also *Staphylococcus aureae*, have been reported [25].

In this study, most isolates from NGKG agar and a proportion of isolates from DHL agar showed NCZ with ABPC, FOM, and ST (Fig. 1A and E). Resistances of *Bacillus spp.* against these antibiotics has previously been reported [26]. Additionally, an increase in ampicillin-resistant *Enterobacteriaceae* is regarded as an alarming issue. Of note, adverse effects of ampicillin dosage on ampicillin resistance in *Enterobacteriaceae* in swine faeces were reported [27]. Moreover, 16/78 isolates from MS agar showed CFX resistance (Fig. 1C). CFX resistance is regarded as a surrogate marker for detecting methicillin-resistant *Staphylococcus aureus* [28]. The present study’s results suggest that antibiotic-resistant bacteria are ubiquitous in RTE foods distributed in Bangladesh.

C. Identification of Selected Strains with 16S rRNA Gene Sequencing

Finally, six, three, and one typical and selected MDR isolates from DHL (E-6, 29, 51, 65, 79, and 84 in Table III), MS (S-3, 54 and 57 in Table IV), and NGKG (B-19 in Table IV) agar plates, respectively, were subjected to 16S rRNA gene sequencing to confirm the results. The selected isolates from DHL were identified as four *Enterobacteriaceae* species — *Klebsiella pneumoniae* subsp. *pneumoniae* (E-65, Accession number: LC572262), *Enterobacter cloacae* (E-79, LC572263), *Citrobacter braakii* (E-84, LC572264) and *Serratia marcescens* (E-29, LC572258) — and two species of *Pseudomonas*: *P. plecoglossicida* (E-6, LC572260) and *P. nitroreducens* (E-51, LC572261). Three isolates from MS agar having resistance to CFX and three other antibiotics were identified as two *Staphylococcus* species — *S. gallinarum* (S-3, LC572265) and *S. sciuri* (S-54, LC572267) — and *Aerococcus viridans* (S-57, LC572266). The rRNA sequence of a strain isolated from NGKG (B-19, LC572259) was similar (99.7%) to those of several species of *B. cereus*-like bacteria. With 16S rDNA and BLASTn search, four MDR *Enterobacteriaceae* isolates in this study were identified as *K. pneumoniae*, *E. cloacae*, *C. braakii*, and *S. marcescens*. These were reported as indigenous bacteria and opportunistic virulent bacteria in *pneumoniae*, *bacteraemia*, and other infections [29]. The correlation of the virulence and antibiotic-resistant properties is essential for the therapy, though the interplay between resistance and virulence is not understood well [30]. There are reports on antibiotic resistance of *P. plecoglossicida* and *P. nitroreducens* in aquaculture, wastewater, sludge, and soils [31]. The excretion of antibiotics into these environments and the consequent development of resistance are regarded as a major issue in the food supply. The MDR *S. gallinarum* and *S. sciuri* were detected in both farms and hospitals, and their susceptibility against drugs, including CFX, varies [32]. Furthermore, *B. cereus* and the related species have been isolated from RTE foods [33].

The current study indicates the poor microbiological quality of several RTE food types and food products prepared by vendors and sold in open markets or supermarkets in Bangladesh. Some of the bacterial species isolated as MDR in the present study and related species have been reported as pathogenic bacteria; however, most isolated bacteria have no virulence. However, as mentioned earlier, horizontal gene transfer of antibiotic resistance to pathogenic bacteria is possible. The present study’s results suggest that additional safety measures and regulations are necessary for the preparation and manufacture of RTE foods to ensure food quality of several RTE food types and food products prepared by vendors and sold in open markets or supermarkets in Bangladesh.
quality and safety. Genetic analyses of multi-drug resistance of the selected strains by whole genome sequencing are in progress.

| TABLE IV: ISOLATES FROM MS AND NGKG AGAR PLATES SHOWING NO CLEAR ZONE (NCZ) AND RESISTANCE (R) AGAINST THREE OR MORE DRUGS |
|---|---|---|---|---|---|
| Isolated from | Groups | Sample Name | Area | Strain ID | No clear zone to* | Resistant to* |
| MS agar | Cream based food | Cream bun-2 | Dhaka | S-3 | FOM | CPFX, ABPC, VCM, CFX |
| | Egg-based food | Egg-Alor chop | Dhaka | S-9 | ABPC, FOM, OFLX, VCM, CFX |
| | Milk-based food | Sweet dahi | Chittagong | S-15 | ABPC, FOM, VCM, CFX |
| | Non fried dry food | Vapa pitha-3 | Chittagong | S-27 | ABPC, FOM, VCM, CFX |
| | Patishapta pitha-2 | Dhaka | S-30 | FOM, TC, VCM, CFX |
| | Fried dry food | Egg chop | Dhaka | S-43 | FOM, VCM, CFX |
| | | Anthong | Dhaka | S-44 | FOM, VCM, CFX |
| | Cooked food | Suji/Halwa-2 | Dhaka | S-46 | FOM | ABPC, VCM, CFX |
| | | Fuska-1 | Chittagong | S-47 | FOM | ABPC, VCM, CFX |
| | | Fuska-3 | Dhaka | S-49 | FOM | VCM, CFX |
| | | Chicken roll-1 | Dhaka | S-52 | FOM, VCM, CFX |
| | | Chotpoti-1 | Chittagong | S-57 | FOM | ABPC, VCM, CFX |
| | Fruit juice and liquid food | Shorbath | Cox’sbazar | S-50 | FOM | ABPC, VCM, CFX |
| | Cereal based food | Jhal muri-3 | Dhaka | S-62 | ABPC, FOM, VCM, CFX |
| | RTE Leaves | Paan-2 | Cox’sbazar | S-64 | ST | CPFX, OFLX, GM, VCM, LVFX |
| NGKG agar | Egg-based food | Egg Cake-2 | Dhaka | B-3 | ABPC, FOM, ST | TC, VCM |
| | | Egg-Alor chop | Dhaka | B-6 | ABPC, FOM, TC, ST | VCM |
| | Milk-based food | Lassi | Chittagong | B-7 | ABPC, FOM, ST | VCM |
| | Non fried dry food | Vapa pitha-2 | Cox’sbazar | B-10 | ABPC, FOM, ST | TC, VCM |
| | | Vapa pitha-4 | Cox’sbazar | B-11 | ABPC, FOM, ST | TC, VCM |
| | | Chitpai pitha | Cox’sbazar | B-12 | ABPC, FOM, ST | TC, VCM |
| | | Patishapta pitha-2 | Dhaka | B-13 | ABPC, FOM, ST | VCM |
| | Fried dry food | Samosa-2 | Dhaka | B-17 | ABPC, FOM, ST | VCM |
| | | Anthong | Dhaka | B-18 | ABPC, FOM, ST | VCM |
| | Cooked food | Fuska-3 | Dhaka | B-19 | ABPC, FOM, ST, TC | VCM |
| | | Chicken roll-2 | Chittagong | B-21 | ABPC, FOM, ST | VCM |
| | | Chotpoti-3 | Dhaka | B-22 | ABPC, FOM, ST | TC, VCM |
| | Fruit juice and liquid food | Basil seed juice-1 | Chittagong | B-23 | ABPC, FOM, ST | VCM |
| | | Aloe vera juice | Chittagong | B-28 | ABPC, FOM, ST | VCM |
| | | Sugarcane juice-2 | Dhaka | B-29 | ABPC, FOM, ST | VCM |
| | Cereal based food | Jhal muri-1 | Chittagong | B-30 | ABPC, FOM, ST | VCM |
| | RTE Tobacco | Pan masala-2 | Chittagong | B-31 | ABPC, FOM, ST | TC, VCM |

* CFLEX: Ciprofloxacin, ABPC: Ampicillin, FOM: Fosfomycin, OFLX: Ofloxacin, TC: Tetracycline, GM: Gentamicin, VCM: Vancomycin, LVFX: Levofloxacin, ST: Trimethoprim-sulfamethoxazole, CP: Chloramphenicol, CFX: Cefoxitin

CONFLICT OF INTEREST

No conflict of interest declared.

REFERENCES

[1] Muzaffar AT, Hui I, Mallick BA. Entrepreneurs of the streets: an analytical work on the street food vendors of Dhaka city. Int J Bus Manag. 2009; 4: 80-88.
[2] Khairunnazaman MM, Choudhury FM, Zaman S, Manun AA, Bari ML. Food safety challenges towards safe, healthy, and nutritious street foods in Bangladesh-a review. Int J Food Sci. 2014; 483519.
[3] Banik A, Abony M, Datta S. Microbiological quality of ready-to-eat food from Dhaka, Bangladesh. Curr Res Nutr Sci. 2019; 7: 161-168.
[4] Rahman MM, Rahman MH, Ansary, NP. Safety issues of street foods in Bangladesh. Time J Biol Sci Technol. 2014; 2: 21-32.
[5] Manun MA, Rahman MM, Turin TC. Microbiological quality of selected street food items vended by school-based street food vendors in Dhaka, Bangladesh. Int J Food Microbiol. 2013; 166: 413-418.
[6] Noor R, Perez PN. Microbiological quality of commonly consumed street foods in Bangladesh. Nutr Food Sci. 2016; 46: 130-141.
[7] Das SK, Ahmed S, Ferdous F, Fazana FD, Chisti MJ, Latham JR, et al. Etiological diversity of diarrheal disease in Bangladesh. J Infect Dev Countries. 2013; 7: 900-909.
[8] Nynen ME, Odjadjere CE, Tanh NF, Green E, Ndiop RN. Food borne pathogens recovered from ready-to-eat foods from roadside cafeterias and retail outlets in Alice, Eastern Cape Province, South Africa: Public health implications. Int J Environ Res Public Health. 2012; 9: 2608-2619.
[9] Fernandez-Segovia I, Perez-Llacer A, Pedrro B, Fuentes A. Implementation of food safety management systems according to ISO 22000 in the food supplement industry: A case study. Food Control. 2014; 43: 28-34.
[10] Banik A, Abony M, Datta S. Microbial status and multidrug resistance pattern of pathogenic bacteria isolated from street food in Dhaka city, Bangladesh. J Adv Microbiol. 2018; 13: 1-13.
[11] Girona-Alarcon M, Frensam E, Garcia-Garcia A, Perez SB, Giraldo MB, Villalobos AF, et al. Device-associated multidrug-resistant bacteria surveillance in critically ill children: 10 years of experience. Acta Paediatr. 2021; 110: 203-209.
[12] Wang HH, Manuzon M, Lehman M, Wan K, Luo H, Wittum TE, et al. Food commensal microbes as a potentially important avenue in transmitting antibiotic resistance genes. FEMS Microbiol Lett. 2006; 254: 226-231.
[13] Li Y, Cao W, Liang S, Yamasaki S, Chen X, Shi L, et al. (2020) Metagenomic characterization of bacterial community and antibiotic resistance genes in representative ready-to-eat food in southern China. Sci Rep. 2020; 10: 15175.
[14] Campos J, Gil J, Morillo J, Peixe L, Antunes P. Ready-to-eat street-vended food as a potential vehicle of bacterial pathogens and antimicrobial resistance: An exploratory study in Porto region, Portugal. Int J Food Microbiol. 2015; 206: 1-6.
[15] Gormley FJ, Little CL, Grant KA, de Pinna E, McLauchlin J. The microbiological safety of ready-to-eat specialty meats from markets and specialty food shops: a UK wide study with a focus on Salmonella and Listeria. Food Microbiol. 2010; 17: 243–249.
[16] Oliveira MA, de Souza VM, Bergamini AM, De Martinis ECP, Microbiological quality of ready-to-eat minimally processed vegetables consumed in Brazil. Food Control. 2011; 22: 1400-1403.
[17] Aydin A, Muratoglu K, Sudagidan M, Bostan K, Okuklu B, Harsa S. Prevalence and antibiotic resistance of food borne Staphylococcus aureus isolates in Turkey. Foodborne Pathog Dis. 2010; 8: 63–69.

[18] Zurfluh K, Nüesch-Inderbinen MT, Morath A, Berner AZ, Hächler H, Stephan R. Extended-spectrum-β-lactamase-producing Enterobacteriaceae isolated from vegetables imported from the Dominican Republic, India, Thailand, and Vietnam. Appl Environ Microbiol. 2015; 81: 3115–3120.

[19] Happy A, Alam M, Mahmoud S, Imran S, Rony MH, Azim M, et al. Isolation, identification and characterization of gram-negative bacteria from popular street food (chotpoti) at Savar area, Dhaka, Bangladesh. Open Access Library J. 2018; 5: 1-11.

[20] British Society for Antimicrobial Chemotherapy, BSAC Methods for Antimicrobial Susceptibility Testing, Version 14. 2015.

[21] Girona-Alarcon M, Fresain E, Garcia-Garcia A, Perez SB, Grgallo MB, Villalobos AF, et al. Device-associated multidrug-resistant bacteria surveillance in critically ill children: 10 years of experience. Acta Paediatr. 2021; 110: 203–209.

[22] Ahmed AM, Shimamoto T. Molecular characterization of multidrug-resistant Shigella spp. of food origin. Int J Food Microbiol. 2015; 194; 78-82.

[23] Mclnnes RS, MacCallum GE, Lamberte LE, van Schaik W. Horizontal transfer of antibiotic resistance genes in the human gut microbiome. Curr Opin Microbiol. 2020; 53: 35-43.

[24] Kaur A, Preet S, Kumar V, Kumar R, Kumar R. Synergetic effect of vancomycion loaded silver nanoparticles for enhanced antibacterial activity. Colloids Surfaces B: Biointerfaces. 2019; 176: 62-69.

[25] Cong Y, Yang S, Rao X. (2020) Vancomycin resistant Staphylococcus aureus infections: A review of case updating and clinical features. J Adv Res. 2020; 21: 169-176.

[26] Luna VA, King DS, Gulledge J, Cannons AC, Amuso PT, Cattani J. Susceptibility of Bacillus anthracis, Bacillus cereus, Bacillus mycoides, Bacillus pseudomycoides and Bacillus thuringiensis to 24 antimicrobials using Sensititre automated microbroth dilution and Etest agar gradient diffusion methods. J Antimicrob Chemother. 2007; 60: 555–567.

[27] Bibbald D, Dupouy V, Ferré JP., Bousquet-Méluou A. Impact of three ampicillin dosage regimens on selection of ampicillin resistance in Enterobacteriaceae and excretion of blaTEM genes in swine feces. Appl Environ Microbiol. 2007; 73: 4785-4790.

[28] Fernandes CJ, Fernandes LA, Collignon P. Cefoxitin resistance as a surrogate marker for the detection of methicillin-resistant Staphylococcus aureus. J Antimicrob Chemother. 2005; 55: 506–510.

[29] Tzouvelekis LS, Markogiannakis A, Psichogiou M, Tassios PT, Daikos GL. Carbapenemases in Klebsiella pneumoniae and other Enterobacteriaceae: an evolving crisis of global dimensions. Clin Microbiol Rev. 2012; 25: 682-707.

[30] Hennequin C, Robin F. Correlation between antimicrobial resistance and virulence in Klebsiella pneumoniae. Eur J Clin Microbiol Infect Dis. 2016; 35: 333-341.

[31] Tsutsui H, Anami Y, Matsuda M, Inoue D, Sai K, Soda S. Transfer of plasmid pJP4 from Escherichia coli and Pseudomonas putida to bacteria in activated sludge developed under different sludge retention times. J Biosci Bioeng. 2010; 110: 684-689.

[32] Ouoba LIL, Mbozo ABV, Anyogu A, Obioha PI, Lingani-Sawadogo H, Sutherland JP, et al. Environmental heterogeneity of Staphylococcus species from alkaline fermented foods and associated toxins and antimicrobial resistance genetic elements. Int J Food Microbiol. 2019; 311: 108356.

[33] Rosenquist H, Smidt L, Ansersen SR, Jensen GB, Wilcks A, Notes A. Occurrence and significance of Bacillus cereus and Bacillus thuringiensis in ready-to-eat food. FEMS Microbiol Lett. 2005; 250: 129-136.

Sayed M. Nahidul-Islam, date of birth: 16/08/1990, place of birth: Cox’sbazar, Bangladesh, obtained his MS in Microbiology (2014) and BSc in Microbiology (2013) from University of Chittagong, Bangladesh. He also completed his second master's degree in Food Science and Technology (2019) from Tokyo University of Marine Science and Technology, Japan. He is currently working as PhD student in the Department of Food Science and Technology, Tokyo University of Marine Science and Technology, Japan. His research interests include food microbiology, food safety, and public health.