Neutrino spin-flavor oscillations derived from the mass basis

R Fabbricatore1, A Grigoriev2, A Studenikin1,3

1 Department of Theoretical Physics, Faculty of Physics, Lomonosov Moscow State University, Moscow, 119991, Russia
2 Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, 119991, Russia
3 Joint Institute for Nuclear Research, Dubna, Moscow Region, 141980, Russia

E-mail: studenik@srd.sinp.msu.ru

Abstract. We reconsider the standard scheme for description of neutrino spin-flavor oscillations aiming at a rigorous derivation of evolution equation for the mixed flavor neutrino states in magnetic field. For this purpose we obtain the evolution equation in the physical basis of massive neutrinos and then trace its transformation into the flavor basis. The effective Hamiltonian of the resulting equation relevant to interaction with the magnetic field differs from the standard one by several entries. The approach leads to interesting relations of the neutrino magnetic moments defined in the two neutrino bases and to some additional subtle properties of the formalism.

1. Introduction

Significant advances in neutrino physics, performed during the last decades, do not leave any doubt that neutrino is subjected to oscillations and has nonzero mass [1]. The latter fact leads to the well-known possibility for neutrino to have non-trivial electromagnetic properties [2], which brought forth the research area that was investigated in details by numerous authors (see recent review [3] and references therein). In the course of these studies many phenomena that may appear in electromagnetic fields have been recognized and described thoroughly. Among them the neutrino spin-flavor oscillations is the one, featuring both the above mentioned basic neutrino aspects – nonzero mass and electromagnetic properties from the one side and mixing from another [4]. Owing to this, in spite of being a longstanding problem, the spin-flavor oscillations can reveal some new aspects of existence of neutrino mass and electromagnetic properties. These concern the problems of neutrino parameters relation in neutrino physical (mass) and flavor bases and, generally speaking, of accurate establishment of the formulas used to describe oscillations.

In this way, in this short note we would like to give an advanced view on the standard scheme of neutrino spin-flavor oscillations description aiming at solid determination of parameters involved in the formalism and its rigorous derivation. Starting from the mass basis we obtain neutrino evolution equation with effective Hamiltonian written through fundamental electromagnetic parameters, and then perform transformation to flavor basis. A direct comparison of the result with the standard picture known for the flavor basis gives relation of the neutrino electromagnetic parameters among the bases. The resulting spin-flavor oscillation...
pattern must contain nothing but fundamental parameters, defined in the mass basis. In
conclusion to our note, features of the spin-flavor oscillations arising due to the transformations
are highlighted.

2. Neutrino spin oscillations in mass basis
As usual, for the sake of brevity, we will consider only two neutrino physical states, ν_1 and ν_2, having masses m_1 and m_2. We also restrict ourself by the Dirac neutrino nature and assume fundamental interactions introduced into the Standard Model such way that neutrino acquire electromagnetic interaction via magnetic moment matrix $\mu_{\alpha\beta}$, $\alpha, \beta = 1, 2$:

$$H_{EM} = \frac{1}{2} \mu_{\alpha\beta} \sigma_{\mu\nu} \nu_\alpha F^{\mu\nu} + h.c.,$$ (1)

where $F^{\mu\nu}$ is the electromagnetic field tensor, $\sigma_{\mu\nu} = i/2(\gamma_\mu \gamma_\nu - \gamma_\nu \gamma_\mu)$ and γ_μ being the Dirac matrices. In a uniform magnetic field the Hamiltonian (1) becomes

$$H_{EM} = -\mu_{\alpha\alpha'} \Sigma B \nu_{\alpha'} + h.c.,$$ (2)

where

$$\Sigma_i = \begin{pmatrix} \sigma_i & 0 \\ 0 & \sigma_i \end{pmatrix},$$ (3)

and σ_i are the Pauli matrices.

In the neutrino oscillation framework, one is interested in evolution of chiral neutrino components within the common neutrino beam state. Since in the ultrarelativistic limit the latter are approximated by free neutrino states with definite helicity $s = \pm 1$ the 4-component basis ($\nu_1, s = 1$, $\nu_1, s = -1$, $\nu_2, s = 1$, $\nu_2, s = -1$) is adopted to describe neutrino beam. With the standard column vector notation, $\nu_m \equiv (\nu_{1,s=1}, \nu_{1,s=-1}, \nu_{2,s=1}, \nu_{2,s=-1})^T$ the neutrino evolution equation relevant to electromagnetic interaction has the Schrödinger-like form:

$$i \frac{d}{dt} \nu_m(t) = H_{eff} \nu_m(t).$$ (4)

The effective Hamiltonian consists of the vacuum and interaction parts:

$$H_{eff} = H_{vac} + H_B.$$ (5)

where the interaction part is composed of matrix elements of the field interaction Hamiltonian taken over the helicity neutrino states: $H_B = \langle \nu_{\alpha,s} | H_{EM} | \nu_{\alpha',s'} \rangle$.

Let us calculate the effective interaction Hamiltonian under assumption that neutrino moves along the z-axis. From the magnetic field interaction Hamiltonian (2) we have:

$$H^B_{\alpha,s,\alpha',s'} = \langle \nu_{\alpha,s} | H_{EM} | \nu_{\alpha',s'} \rangle = -\frac{\mu_{\alpha\alpha'}}{2} \int d^3 x \nu^\dagger_{\alpha,0} (\Sigma B \nu_{\alpha'}),$$ (6)

For the spinors representing the free neutrino states we take:

$$\nu_{\alpha,s} = C_\alpha \sqrt{E_\alpha + m_\alpha} \begin{pmatrix} u_s \\ \Sigma \nu_0 \nu_0 \end{pmatrix} e^{ip_\alpha x},$$ (7)

where p_α is the neutrino ν_α momentum. The two-component spinors u_s define neutrino helicity states, and are given by

$$u_{s=1} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \quad u_{s=-1} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}.$$ (8)
Recall that in the ultrarelativistic limit these are correspondent to the right-handed \(\nu_R \) and left-handed \(\nu_L \) chiral neutrinos, respectively.

Substituting (7) into the effective Hamiltonian formula (6) we get

\[
H^{B}_{\alpha,s\alpha',s'} = -\frac{1}{2} \mu_{\alpha\alpha'} C_{\alpha} C_{\alpha'} \int d^3x B \left(u^\dagger_s \begin{pmatrix} \Sigma p_{\alpha} \overline{E_{\alpha} + m_{\alpha}} u^\dagger_s \\ 0 \end{pmatrix} \begin{pmatrix} \Sigma \overline{E_{\alpha'} + m_{\alpha'}} \end{pmatrix} - \Sigma \right) \begin{pmatrix} u^\dagger_{s'} \\ \Sigma \Sigma p_{\alpha'} \overline{E_{\alpha'} + m_{\alpha'}} u^\dagger_{s'} \end{pmatrix} \right) \times \sqrt{(E_{\alpha} + m_{\alpha})(E_{\alpha'} + m_{\alpha'})} \over 2\sqrt{E_{\alpha}E_{\alpha'}} \exp (i\Delta px). \tag{9}
\]

Decomposing the magnetic field vector into longitudinal and transversal with respect to neutrino motion components \(B = B_\parallel + B_\perp \) it is possible to show that

\[
B \left(u^\dagger_s \begin{pmatrix} \Sigma p_{\alpha} \overline{E_{\alpha} + m_{\alpha}} u^\dagger_s \\ 0 \end{pmatrix} \begin{pmatrix} \Sigma \overline{E_{\alpha'} + m_{\alpha'}} \end{pmatrix} - \Sigma \right) \begin{pmatrix} u^\dagger_{s'} \\ \Sigma \Sigma p_{\alpha'} \overline{E_{\alpha'} + m_{\alpha'}} u^\dagger_{s'} \end{pmatrix} =
\]

\[
u^\dagger_s \left(\Sigma B_\parallel \left(1 - \frac{p_{\alpha}p_{\alpha'}}{(E_{\alpha} + m_{\alpha})(E_{\alpha'} + m_{\alpha'})} \right) + \Sigma B_\perp \left(1 + \frac{p_{\alpha}p_{\alpha'}}{(E_{\alpha} + m_{\alpha})(E_{\alpha'} + m_{\alpha'})} \right) \right) u^\dagger_{s'}. \tag{10}
\]

Let us apply the ultrarelativistic condition \(\frac{m_{\alpha}}{E_{\alpha}} \ll 1 \) to the part of the integrand of Eq. (9):

\[
\left(1 - \frac{p_{\alpha}p_{\alpha'}}{(E_{\alpha} + m_{\alpha})(E_{\alpha'} + m_{\alpha'})} \right) \sqrt{(E_{\alpha} + m_{\alpha})(E_{\alpha'} + m_{\alpha'})} \approx \left(\frac{m_{\alpha}}{E_{\alpha'} + m_{\alpha'}} \right) = \gamma^{-1}_{\alpha\alpha'}, \tag{11}
\]

where the quantity \(\gamma_{\alpha\alpha'} \) we will call the transition gamma-factor. Similarly, it is also possible to show that

\[
\left(1 + \frac{p_{\alpha}p_{\alpha'}}{(E_{\alpha} + m_{\alpha})(E_{\alpha'} + m_{\alpha'})} \right) \sqrt{(E_{\alpha} + m_{\alpha})(E_{\alpha'} + m_{\alpha'})} \approx 1. \tag{12}
\]

Introducing an angle \(\beta \) between the \(B \) and \(p_{\alpha} \) vectors and assuming that \(B_\perp \) is aligned along the \(x \)-axis we further obtain:

\[
u^\dagger_{s=1} \Sigma Bu_{s=1} = \begin{pmatrix} 1 & 0 \end{pmatrix} \begin{pmatrix} \frac{1}{0} \end{pmatrix} (B_\parallel + B_\perp) = \begin{pmatrix} 1 & 0 \end{pmatrix} \sigma_3 \begin{pmatrix} 1 & 0 \end{pmatrix} B \cos \beta + \begin{pmatrix} 1 & 0 \end{pmatrix} \sigma_1 \begin{pmatrix} 1 & 0 \end{pmatrix} B \sin \beta = B \cos \beta, \tag{13}
\]

and similarly

\[
u^\dagger_{s=1} \Sigma Bu_{s=-1} = B \sin \beta, \tag{14}
\]

\[
u^\dagger_{s=-1} \Sigma Bu_{s=1} = B \sin \beta, \tag{15}
\]

\[
u^\dagger_{s=-1} \Sigma Bu_{s=-1} = -B \cos \beta. \tag{16}
\]

As it was expected, in neutrino transitions without change of helicity only the \(B_\parallel = B \cos \beta \) component of the magnetic field contribute to the effective potential, whereas in transitions with change of the neutrino helicity the transversal component \(B_\perp = B \sin \beta \) matters.
Performing the remaining simple algebra one can readily write out the H_B matrix. However we wish to write at once the evolution equation (4) in which the whole effective Hamiltonian is obtained by adding the diagonal vacuum part H_{vac}:

$$i \frac{d}{dt} \begin{pmatrix} \nu_{1,s=1} \\ \nu_{1,s=-1} \\ \nu_{2,s=1} \\ \nu_{2,s=-1} \end{pmatrix} = \begin{pmatrix} E_1 + \mu_{11} \frac{B_{||}}{711} & \mu_{11} B_\perp & \mu_{12} B_\perp & \mu_{12} \frac{B_{||}}{712} \\ \mu_{11} B_\perp & E_1 - \mu_{11} \frac{B_{||}}{711} & \mu_{12} B_\perp & -\mu_{12} \frac{B_{||}}{712} \\ \mu_{12} B_\perp & \mu_{12} B_\perp & E_2 + \mu_{22} \frac{B_{||}}{722} & \mu_{22} B_\perp \\ -\mu_{12} \frac{B_{||}}{712} & \mu_{22} B_\perp & -\mu_{22} \frac{B_{||}}{722} & E_2 \end{pmatrix} \begin{pmatrix} \nu_{1,s=1} \\ \nu_{1,s=-1} \\ \nu_{2,s=1} \\ \nu_{2,s=-1} \end{pmatrix}. \quad (17)$$

This equation governs all possible oscillations of the four neutrino mass states determined by the masses m_1 and m_2 and helicities $s = 1$ and $s = -1$ in the presence of a magnetic field. The form of the equation enables us to make some general suggestions on influence of an arbitrary magnetic field on neutrino evolution:

1) the longitudinal magnetic field component $B_{||}$ coupled to the corresponding magnetic moment shifts the neutrino energy,

2) in case of nonzero transition magnetic moment μ_{12}, the mixing between neutrino states with different masses is induced by $B_{||}$ also.

At the same time, we note that general previously known features of the spin oscillations are clearly emerge here: first, the change of helicity upon mixing is due to the corresponding magnetic moment (or transition magnetic moment) interaction with the transversal magnetic field B_\perp, and, second, the suppression of terms with longitudinal field component in the ultrarelativistic limit.

3. Transition to flavor basis

Once having physics in the mass basis in hands, our next step is to bring it to observational terms. This means that we must elaborate a generalization of the mixing matrix for transitions between neutrino vector written in two four-component bases ν_m and $\nu_f \equiv (\nu_e^R, \nu_e^L, \nu_\mu^R, \nu_\mu^L)^T$ so that

$$\nu_f = U \nu_m. \quad (18)$$

This procedure appears to be not quite direct since we should hold the condition that polarization of the fields must preserve under transformation of the bases elements. That is why we put (still keeping in mind that chiral components are almost helicity ones):

$$\begin{aligned}
\nu_e^{R,L} &= \nu_{1,s=\pm 1} \cos \theta + \nu_{2,s=\pm 1} \sin \theta, \\
\nu_\mu^{R,L} &= -\nu_{1,s=\pm 1} \sin \theta + \nu_{2,s=\pm 1} \cos \theta.
\end{aligned} \quad (19)$$

Then, using Eqs. (18) and (19), it is easy to obtain that

$$U = \begin{pmatrix}
\cos \theta & 0 & \sin \theta & 0 \\
0 & \cos \theta & 0 & \sin \theta \\
-\sin \theta & 0 & \cos \theta & 0 \\
0 & -\sin \theta & 0 & \cos \theta
\end{pmatrix}. \quad (20)$$

Given the transition matrix (20), derivation of the evolution equation in the flavor basis is straightforward:

$$i \frac{d}{dt} \nu_f = U H U^\dagger \nu_f, \quad (21)$$
so that the effective interaction Hamiltonian \(H_B^f = U H_B U^\dagger \) has the structure:

\[
H_B^f = \begin{pmatrix}
\tilde{\mu}_{ee} B_{\sigma_{ee}} & \mu'_{ee} B_{\perp} & \tilde{\mu}_{e\mu} B_{\sigma_{e\mu}} & \mu'_{e\mu} B_{\perp} \\
\mu'_{ee} B_{\perp} & -\tilde{\mu}_{ee} B_{\sigma_{ee}} & \mu'_{e\mu} B_{\perp} & -\tilde{\mu}_{e\mu} B_{\sigma_{e\mu}} \\
\mu'_{e\mu} B_{\perp} & \tilde{\mu}_{e\mu} B_{\sigma_{e\mu}} & -\mu_{e\mu} B_{\perp} & -\tilde{\mu}_{e\mu} B_{\sigma_{e\mu}} \\
\mu_{e\mu} B_{\perp} & \tilde{\mu}_{e\mu} B_{\sigma_{e\mu}} & -\mu_{e\mu} B_{\perp} & -\tilde{\mu}_{e\mu} B_{\sigma_{e\mu}}
\end{pmatrix}.
\]

(22)

Here we have introduced the following formal notations intended to manifest an analogy with the standard spin-flavor oscillation formalism (see below):

\[
\begin{align*}
\mu'_{ee} &= \left(\mu_{11} \cos^2 \theta + \mu_{22} \sin^2 \theta + \mu_{12} \sin 2\theta \right) \\
\mu'_{e\mu} &= \left(\mu_{12} \cos 2\theta + \frac{1}{2} (\mu_{22} - \mu_{11}) \sin 2\theta \right) \\
\mu'_{\mu\mu} &= \left(\mu_{11} \cos^2 \theta + \mu_{22} \sin^2 \theta - \mu_{12} \sin 2\theta \right)
\end{align*}
\]

\[
\begin{align*}
\tilde{\mu}_{ee} &= \left(\frac{\mu_{11}}{\gamma_{11}} \cos^2 \theta + \frac{\mu_{22}}{\gamma_{22}} \sin^2 \theta + \frac{\mu_{12}}{\gamma_{12}} \sin 2\theta \right) \\
\tilde{\mu}_{e\mu} &= \left(\frac{\mu_{12}}{\gamma_{12}} \cos 2\theta + \frac{1}{2} \left(\frac{\mu_{22}}{\gamma_{22}} - \frac{\mu_{11}}{\gamma_{11}} \right) \sin 2\theta \right) \\
\tilde{\mu}_{\mu\mu} &= \left(\frac{\mu_{11}}{\gamma_{11}} \cos^2 \theta + \frac{\mu_{22}}{\gamma_{22}} \sin^2 \theta - \frac{\mu_{12}}{\gamma_{12}} \sin 2\theta \right)
\end{align*}
\]

(23)

(24)

It should be noted that the Eqs. (23) have been in principle defined in [3] but in the general form through transition relation among the neutrino bases (the final form like that of Eqs. (23) was not established).

4. Discussion

According to the aims of the paper let us now confront the obtained effective Hamiltonian of interaction with the magnetic field with the one typically written straight in the flavor basis:

\[
H_B^f = \begin{pmatrix}
\mu_{ee} B_{\perp} & \mu_{ee} B_{\perp} & 0 & \mu_{e\mu} B_{\perp} \\
-\mu_{ee} B_{\perp} & \mu_{ee} B_{\perp} & 0 & \mu_{e\mu} B_{\perp} \\
0 & 0 & \mu_{e\mu} B_{\perp} & \mu_{e\mu} B_{\perp} \\
0 & 0 & -\mu_{e\mu} B_{\perp} & \mu_{e\mu} B_{\perp}
\end{pmatrix}.
\]

(25)

where \(\gamma \) is the common neutrino gamma-factor.

First of all, we can ascertain that the structure of the obtained expression (22) is consistent with the “standard” Hamiltonian (25). At that, the magnitudes (23) well correspond to neutrino magnetic moments in flavor basis. The magnitudes (24), however, do not coincide with the due structures in (25), but resemble them. In the limit of ultrarelativistic neutrinos all the values for \(\gamma_{11} \), \(\gamma_{22} \) and \(\gamma_{12} \) in (24) obviously become equal leading to complete correspondence. The presence of these magnitudes in the Hamiltonian means that the spin-flavor oscillations depend on neutrino masses – an interesting feature, though useless due to the gamma-factor suppression.

Also, in general, all the comments made at the end of Section 2 remain true given that the second item from there is to be read with using of \(\mu'_{e\mu} \) magnitude and is concerned the mixing between flavor neutrino states. To make the meaning of this item more clear it is interesting
to observe that purely hypothetically, for the very specific set of parameters which we will not
discuss here, the Hamiltonian structure can be

\[
\begin{pmatrix}
 a & 0 & b & 0 \\
 0 & -a & 0 & -b \\
b & 0 & c & 0 \\
 0 & -b & 0 & -c
\end{pmatrix},
\]

(26)

so that neutrino states with different flavor and same chirality decouple and form subsystems
independently mixed by the field. For example, one would have two states \((\nu_e^L, \nu_\mu^L)\) mixed in
accordance with the equation

\[
\frac{i}{\hbar} \frac{d}{dt} \begin{pmatrix} \nu_e^L \\ \nu_\mu^L \end{pmatrix} = -\begin{pmatrix}
\tilde{\mu}_{ee} \frac{B}{|B|} & \tilde{\mu}_{e\mu} \frac{B}{|B|} \\
\tilde{\mu}_{\mu e} \frac{B}{|B|} & \tilde{\mu}_{\mu\mu} \frac{B}{|B|}
\end{pmatrix} \begin{pmatrix} \nu_e^L \\ \nu_\mu^L \end{pmatrix}.
\]

(27)

In this way, the system would change flavor and preserve chirality i.e. would oscillate in flavor
in the usual sense by means of magnetic field.

In conclusion we would like to summarize that going into the physical neutrino basis gives
some new possibilities for the neutrino spin-flavor oscillation phenomenon to reveal its features.
On this basis a new (secondary) oscillation channels can be established and a connection with
the fundamental electromagnetic neutrino parameters can be achieved.

Acknowledgments
One of the authors (A.S.) is thankful to Nicolao Fornengo and Carlo Giunti for the kind
invitation to participate in the 14th International Conference on Topics in Astroparticle and
Underground Physics. The work on this paper was partially supported by the Russian Basic
Research Foundation grants no. 14-22-03043-oi-m, 15-52-53112-gfen and 16-02-01023-a.

References
[1] Fukuda Y et al (Super-Kamiokande Collaboration) 1998 Phys. Rev. Lett. 81 1562; Ahmad Q R et al (SNO
collaboration) 2001 Phys. Rev. Lett. 87 071301; Ahmad Q R et al (SNO collaboration) 2002 Phys. Rev.
Lett. 89 011301
[2] Fujikawa K and Shrock R 1980 Phys. Rev. Lett. 45 963
[3] Giunti C and Studenikin A 2015 Rev. Mod. Phys. 87 531 (Preprint arXiv:1403.6344 [hep-ph])
[4] Cisneros A 1971 Astrophys. Space Sci. 10 87; Schechter J and Valle J 1981 Phys. Rev. D 24 1883; Voloshin
M B, Vysotsky M I and Okun L B 1986 Sov. Phys. JETP 64 446; Akhmedov E K 1988 Sov. J. Nucl. Phys.
48 382; Lim C-S and Marciano W J 1988 Phys. Rev. D 37 1368