Novel and Alternative Therapeutic Strategies for Controlling Avian Viral Infectious Diseases: Focus on Infectious Bronchitis and Avian Influenza

Ghulam Abbas, Jia Yu and Guangxing Li*

Heilongjiang Key Laboratory for Animal and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China

The growth of poultry farming has enabled higher spread of infectious diseases and their pathogens among different kinds of birds, such as avian infectious bronchitis virus (IBV) and avian influenza virus (AIV). IBV and AIV are a potential source of poultry mortality and economic losses. Furthermore, some pathogens have the ability to cause zoonotic diseases and impart human health problems. Antiviral treatments that are used often lead to virus resistance along with the problems of side effects, recurrence, and latency of viruses. Though target hosts are being vaccinated, the constant emergence and re-emergence of strains of these viruses cause disease outbreaks. The pharmaceutical industry is gradually focusing on plant extracts to develop novel herbal drugs to have proper antiviral capabilities. Natural therapeutic agents developed from herbs, essential oils (EO), and distillation processes deliver a rich source of amalgams to discover and produce new antiviral drugs. The mechanisms involved have elaborated how these natural therapeutics agents play a major role during virus entry and replication in the host and cause inhibition of viral pathogenesis. Nanotechnology is one of the advanced techniques that can be very useful in diagnosing and controlling infectious diseases in poultry. In general, this review covers the issue of the poultry industry situation, current infectious diseases, mainly IB and AI control measures and, in addition, the setup of novel therapeutics using plant extracts and the use of nanotechnology information that may help to control these diseases.

Keywords: therapeutic agents, infectious bronchitis, avian influenza, herbal medicine, nanotechnology, infectious diseases control

INTRODUCTION

Poultry production plays a vital role in food production and poverty alleviation in the absence of other nutrient-rich food items (1, 2). There are several important factors, such as poultry immunity, health, and production, which contest the future growth of the poultry industry (3). Globally, poultry diseases are continuously emerging to be the main subject in the poultry industry (4). Infectious bronchitis (IB), avian influenza (AI), Newcastle disease, and Gumboro disease are considered the common poultry diseases globally (5, 6). Although abundant consideration has
been paid to limiting infectious diseases to avoid losses, these diseases continue to emerge and re-emerge (7). Avian infectious bronchitis virus (IBV), of the genus *Gammacoronavirus*, is one such kind of virus. In 1931, IBV was the first coronavirus identified in poultry and was considered a very vital pathogenic virus in livestock (8). At present, avian coronavirus IBV is a major economic pathogen of domestic poultry that causes mortality and significant losses in production regardless of vaccination (9). Many researchers have reported worldwide outbreaks caused by IBV in chickens and other birds that are characterized by high morbidity, mortality, and poor egg and meat production (10, 11). Currently, live attenuated vaccines are extensively used for the prevention and control of IB (12, 13). However, due to the higher diversity in viral genetic composition and the emergence of novel strains, the efficacy of vaccination is being greatly compromised (14).

Avian influenza virus (AIV) is another very important virus that belongs to the family *Orthomyxoviridae* and causes huge losses to the global poultry industry (15, 16). This virus has an eight-segment negative, single-stranded RNA and encodes about 11 proteins (17). In addition, AIV is divided into subtypes based on the hemagglutinin (HA) and neuraminidase (NA) proteins that are present on the surface and are responsible for virus attachment and release, respectively (18, 19). The reassortment of HA and NA with different subtypes might consequence in disastrous pandemics as H1N1, H2N2, and H3N2 in humans (20). Based on its pathogenicity, the virus is categorized into highly pathogenic AIV (HPAIV) and low pathogenic AIV (LPAIV) (21, 22). The co-circulation of many subtypes of AIV, such as H5, H7, and H9, makes vaccination unsuccessful for production (23). Thus, it is very important to develop a vaccine that can be useful for multiple serotypes. Considering these factors, the risk of emergence of novel serotypes and infectious diseases into the human population and livestock increases (24). For instance, the occurrence of the highly pathogenic H7N9 AIV caused huge losses due to the intensification of the poultry production system. The increased density of poultry stocks and upsurges in populations lead to higher transmission between birds and humans (25). Additionally, the increased rate of evolution and pressure on the immune system limit the effect of vaccination (26). Furthermore, the use of antibiotics in feed has raised the issue of drug residues and ultimately pathogen resistance, so that the subtherapeutic use of antibiotics has been totally banned in European countries since January 2006 (27).

Therefore, it is becoming very imperative to develop new strategies to control these types of diseases. For this purpose, consideration is being given to antiviral herbs that have no noticeable side effects on human and poultry health (28, 29). The influence of novel and alternative therapeutic agents on definite immune functions and a decrease in hazards might be very useful to counter viral infection (30). In the past, some derivatives and feed additives, i.e., plant extract, prebiotics, probiotics, enzymes, and yeast, have been reported to have immunomodulatory effects (31, 32). Their effects include improving metabolic status, decreasing physiological stress, inhibiting the exhibition of cytokines by macrophages, and antimicrobial activity, thus enhancing immunity (33, 34). Antibodies (Abs) from mammals have been used for diagnostic and for therapeutic purposes against the invasion of pathogens (35), however, these Abs are obtained by invasive techniques. Thus, avian eggs have been considered for alternative production of Abs for therapeutic purposes against pathogen invasion (36, 37). Another important application, such as different nanomaterials that promote interactions between molecules and the virus, and enables researchers to construct a portable electroanalytical biosensing analyzer that effectively detects the virus (38, 39) along with the development of a nano-based viral vaccine. Generally, the development of first-generation vaccines has been produced by inactivation/killing or live attenuation of living organisms and second- and third-generation vaccines have been developed using RNA/DNA subunits (40, 41). Though subunit-based vaccines have many advantages, such as lower cost and the proficiency to produce an immune response against a specific pathogen as compared to conventionally developed vaccines (42), there are some disadvantages, such as poor immunogenicity, toxic effect, and are in vivo intrinsically instable along with multiple boosters. Hence, the development of a novel vaccine that can perform as an immunogen along with adjuvants to produce protection against the pathogen with enhanced immune response (43) and certainly nanotechnology is an advance technology that deals with the shortcomings of conventional vaccines.

Genomic assortment and outbreaks of such infectious diseases can turn into an epidemic and cause a widespread adverse effect on the global trade of poultry products along with human health (20, 44). The development of novel antiviral treatment strategies to control IBV and AIV is urgently required as existing inimitable tasks concerning its control in commercial poultry farming. Therefore, in the present review, we discuss possible new strategies and plant derivatives along with the use of nanotechnology that might be helpful to better control IB and AI.

MEDICINAL PLANT DERIVATIVES AGAINST IBV INFECTION

Research on plant-derived antiviral substances is inadequate in comparison with the search for antimicrobial properties. However, a number of investigations have publicized the positive role of plant extracts in relation to antiviral effect (Figure 1). Assessment of different plant extracts was conducted, and *Thymus vulgaris, Mentha piperita*, and *Desmodium canadense* showed an antiviral effect against IBV preinfection and postinfection (53). *Hypericum perforatum* L, which is also recognized as Saint John’s Wort, has been well studied for its biochemical composition and pharmacological activities (54). The extracts of *H. perforatum*, such as hypericin (HY), quercetin, pseudohypericin, and quercitrin, were assessed as antiviral against IBV. It was proved that a reduction in mRNA expression of pro-inflammatory cytokines [interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α)] via the nuclear factor kappa B (NF-κB) signaling pathway and upregulation of type I interferon via the MDA5 signaling pathway (55). Similarly, in another study, the natural compound of HY polycyclic quinone (56) has been proven to be antiviral against IBV infection in chicken embryonic
Abbas et al. Novel Therapeutics to Control IBV and AIV

FIGURE 1 | Plants in therapeutics to control infectious bronchitis (IB). (A) Thymus vulgaris (45). (B) Mentha piperita (46). (C) Desmodium canadense (47). (D) Hypericum perforatum (48). (E) Sambucus nigra (49). (F) Alium sativum (50). (G) Achyranthes aspera (51), and (H) Panicum antidotale (52).

kidney cells (CEK). IBV-infected CEK cells were treated with HY, and were found to upregulate anti-apoptosis genes such as Bcl-2 and to downregulate apoptosis-associated genes such as Caspase 3, Caspase 8, Bax and Fas, FasL, and JNK (57). The extract of Sambucus nigra was reported to have an inhibitory effect against IBV infection. When IB occurs at the early age of chicken, nigra extract has shown inhibition of IBV infection in the early phase of disease infestation (58). Thus, it can be used for the inhibition of IBV and other CoVs. Garlic from the genus Allium of the family Amaryllidaceae was used as an antitherapeutic use in early times (59). The antiviral potential of garlic against IBV has been reported when exposed to various IBV strains and it showed an inhibitory effect (60). Allium (garlic) have been found to be a very effective therapeutic agent against corona viruses including COVID-19 as far as the immune system is concerned (61).

Similarly, the immune system of chicken against IBV has shown to be resistant during the supplementation of extract of sweet orange peel (62). Shahzad et al. (63) reported that various plants, such as Achyranthes aspera, Neuroda procumbens, Panicum antidotale, Ochthochloa compressa, and Suaeda fruticos, were very effective against all poultry viruses through their extracts, hence their use can be beneficial in future IBV infections. These plants extracts are useful in controlling the viral growth and have antiviral effect. The optimum antiviral activity and lowest viral growth were observed with the extracts of S. icilados and O. compressa, in terms of HA/HI as HA titer = 0 showed complete control over viral growth (64). The essential oils (EO) have been used for different viruses, such as dengue and herpesvirus, to assess virucidal activities (65, 66). Jackwood et al. (67) have carried out a research using two different hosts, i.e., Embryonated eggs (ECE) and Vero cells (E6). The EO designated as QR448a and botanical oleoresins in liquid emulsion was administered to the chicken infected with IBV. Following the aforementioned treatment, the clinical manifestation, pathological lesion, and RNA of IBV decreased, confirming the positive effect of EO and oleoresins.

USE OF NANOTECHNOLOGY TO CONTROL IBV

Nanotechnology is one of the inventive skills that have an inordinate possibility of uses along with a socio-economic prospective in the global poultry industry (68). The origin of nano is a word from the Latin “nanus” that mean a lesser, dwarf, or minute unit approximately 1 nm equals 10^{-9} m (69). Nanotechnology has developed the area of biomedical sciences, with a vast variety of NPs and capability in regard to diagnosis to therapeutics for viral infectious diseases (Figure 2) (70, 71).

The antiviral effects of G-Ag nanocomposites against IBV and Feline CoV (72) were investigated. Li et al. (73) have prepared a vaccine based on IBV-flagellin self-assembled protein nanoparticles (SAPNs) against IBV by incorporating spike protein as an adjuvant with the flagellin. IBV-challenged chicken with the aforementioned nano-vaccine showed a higher Ab response confirming its protective role. In another research, adjuvant-based nano-carriers of Quil-A and chitosan (QAC) having a size <100 nm were developed by Chandrasekar et al. (74). Furthermore, encapsulation with plasmid DNA (pQAC-N) vaccine and coding nucleocapsid (N) protein was done.
When this vaccine was administered intranasally, improved immunogenicity and protection in terms of humoral and cellular immunity against IBV infection were observed. In addition, a decrease in viral load and reduced severity of clinical symptoms were observed. Polymeric carbonized nano-gels (CNGs) are also very effective in terms of IBV therapeutic agents as CNGs are very adsorbent on virus particles that may obstruct S1 and S2 glycoproteins to interact with host cells during infection. The development of CNGs is carried out at higher temperatures that possess a greater positive charge, which might cause the neutralization on the surface charge of IBV and weaken the pathogenicity of virus (75). Chou et al. (76) demonstrated the amalgamation of CNGs from lysine hydrochloride by a simple pyrolysis method, which resulted in the inhibition of virus against IBV. At a very lower concentration of 30 µg/ml, its efficiency was demonstrated by showing an inhibitory effect >98% in IBV-infected chicken embryos.

Several uses of full NP based on magnetic and gold quantum dots (QDs) for virus detection and tracing have been described (77). Ahmed et al. (78) reported a novel method by linking anti-IBV Abs with QDs for the production of an immune-link of chiral-QDs as a chiro-immuno-sensor for IBV from blood samples of chicken. Furthermore, a self-assembled nanostructure was established for the limit need to be used for detection and 47.91 egg infection dose (EID)/50 ml, was quite efficient in examination of the target virus (79). Virus-like particles (VLPs) have been extensively studied and developed to transport a range of compounds, including medicines, peptides/proteins, RNA/DNA, Abs, and vaccines, for use as antigen nanocarriers and adjuvants to immune cells in an attempt to elicit a protective humoral immune response (80). Cell surface protein S that binds to the receptor can induce the body to produce an immune response (81). Chen et al. (82) have described a classic approach to the use of avian CoVs VLPs-based S protein using 100-nm gold np incubation with an optimized concentration of viral proteins (Figure 3). The aforementioned study resulted in the impulsive development of proteins with the induction of the assembly of virus-like nanostructures with viral antigens coating the fundamental particulate. Furthermore, it was concluded that the results of VLPs from the present study validate the successful preparation of synthetic VLPs (sVLPs) through NP, innate inclination to persuade protein coating (83, 84).

USE OF VIRUCIDAL DRUGS AGAINST IBV INFECTION

Advanced studies in the molecular biology of viruses have highlighted many potential targets for antiviral drugs (85). The efficacy of virus activity limiting drugs, such as Argovit, Triviron, Ecocid, and lauric acid monoglycerides, has been tested in chickens by inoculation of the vaccine strain of IBV H120 against IB of chickens. These virucidal drugs were shown to possess potential virucidal activity in the small intestine against IBV (86). Traditional medicines, mainly from China, have been very effective against respiratory viruses (87). A combination effect
of traditional Chinese medicines (TCMs), such as Shegandilong (SGDL) and doxycycline, was examined by Feng et al. (88) to prevent viral infection, and the outcomes indicated an increased level of tracheal immunoglobulin A (IgA). Additionally, SGDL granule and doxycycline efficiently subdued the replication of IBV and inhibited the propagation of IBV tropism between the trachea and lung. Furthermore, they controlled the expression of mRNA of IL-6, IL-1β, IFN-γ, and TNF-α, and reduced histopathological lesions of respiratory organs such as trachea and lung. In other similar studies, based on the combination of glycyrrhizin diammonium (GD) and lithium chloride (LiCl) conducted by Li et al. (89), IBV was used to infect cells. The effect of the drugs to inhibit the virus was established by using CEFK. Additionally, the apoptotic effect was positively associated with the cytopathic effect and might be repressed in effect of the drug treatment. The replication of IBV and the effect of LiCl were examined in two different cells types, i.e., Vero cells derived from African Green monkey kidney-epithelial cells and DF-1 cells derived from chicken embryo fibroblast cells. The concentration of viral RNA and proteins was reduced after the aforementioned cells lined were treated with LiCl (90).

Amino acid derivatives are known for their antiviral ability against different poultry, animal, plant, and human viruses (91). The modification of amino acids with respect to antimicrobial peptides activities plays an important role in antiviral activities (92). The evaluation of antimicrobial peptides was carried out in terms of swine intestinal antimicrobial peptides (SIAMP) against IBV in chicken embryos. Pre-treatment of embryos with SIAMP and infected with IBV showed a remarkable reduction in mortality. Though the authors of this study did not present the characterization of the antiviral mechanism, they suggested that SIAMP might play a role during virus attachment to the cell surface, thus limiting IBV infection (93). Mannose binding lectin (MBL) is well known as an antiviral agent (94). In terms of IBV, recombinant chicken MBL showed antiviral activity during the direct interaction with virus particles that subsequently inhibited IBV infection (95). Thiazolidines are reported as antiviral inhibitors (96). The substitution of 2-aryl
thiazolidine-4-carboxylic acids 1a-h was better antiviral than their N-acylated derivatives 2a and 3a, which would be promising antiviral agents against AIV H9N2 and IBV infections in the near future (97). Avian eggs can produce Abs that protect against pathogen entry by non-invasive techniques. Similarly, when Tsukamoto et al. (98) produced IgY (Ab) from ostrich eggs and used against IBV-infected chickens, infection was remarkably inhibited.

MEDICINAL PLANT DERIVATIVES AGAINST AIV INFECTION

Novel anti-influenza therapeutic techniques are a prerequisite for its control in the present era, and these developments can be achieved through the search for new ways to modulate the viral mechanism and immune system (Figure 4) (105–107). Numerous herbal species with potential inhibitory effects on the replication of influenza viruses were frequently described using in vitro cell culture methods and embryonated eggs or in vivo mouse models (108, 109). Many phytochemicals of relatively low molecular weight, such as polyphenols, flavonoids, terpenes, glucosides, and alkaloids extracted from different plants have been shown to be endowed with an antiviral activity against AIV (110, 111). In this regard, polyphenol-enriched extract of *Rumex acetosa* employs an inhibitory effect against AIV replication by weakening the attachment of viral particles to target cells (112).

The antiviral effect of the water extract of *Psoraleae semen* (WPS) has an auspicious role of novel anti-influenza. Choi et al. (113) have conducted a comprehensive study using RAW 264.7 and MDCK cells to assess the inhibitory effect of virus using 100 µg/ml in WPS. It was proven that WPS served as an immunomodulator and inhibitor of influenza HA and NA. Furthermore, they suggested that WPS can be a substantial alternative as an antiviral therapeutic agent due to the disruption of infection via type I IFN-mediated signaling pathway involving RAW 264.7 cells. Similar findings were reported in which the anti-influenza effects of WPS produce direct inhibition of HA and NA mediation. The predominant role of Psoralen and bakuchiol in influenza and herpes simplex viruses was reported in WPS antiviral activity against many (114, 115). Recently, bakuchiol was found to exert anti-influenza viral activity via the activation of erythroid 2-related factor 2 (Nrf2) (116).

Oxidative stress tempted by infections of RNA virus may contribute to numerous features of viral disease pathogenicity including apoptosis, impairment of immune defenses, inflammation, and degeneration. Interestingly, oxidative stress appears to be more prevalent in viral infections than in bacterial infections. The extent of oxidative stress is influenced by the type of virus and the host. Influenza virus infection is associated with a rapid increase in oxidative stress, which is thought to contribute to the pathogenesis of influenza. The protective effect of polyphenols against viral infections has been attributed to their antioxidant properties. Polyphenols have been shown to reduce the production of pro-inflammatory cytokines and reactive oxygen species (ROS) in infected cells. These compounds also have the ability to scavenge free radicals and prevent the oxidation of lipids and proteins. Thus, polyphenols can directly reduce oxidative stress in infected cells and help to alleviate the symptoms of influenza.

FIGURE 4 | Plants in therapeutics to control avian infectious influenza. (A) *Eugenia jambolana* (99), (B) *Ocimum sanctum* (100), (C) *Acacia Arabica* (101), (D) *Agrimonia pilosa* (102), (E) *cranberry* (103), and (F) *Ginseng* (104).
system, inflammation response, and body weight loss (117). One of these compounds, Yi-Zhi-Hao pellet (CYZH), is a known TCM that is used as an antiviral. Further, it induced the activation of Nrf2 and NF-κB, which subsequently upregulated heme oxygenase-1 (HO-1) expression. Also, CYZH protected cells from oxidative damage induced by reactive oxygen species. In conclusion, CYZH inhibits IAV replication in vitro, at least partly by activating the expression of the Nrf2/HO-1 pathway (118).

Considering multiple components in CYZH, the other relevant mechanisms of anti-IAV are still needed to be considered in future study. Activation of the Nrf2/ARE pathway induces the expression of anti-inflammatory and anti-oxidative genes, such as HO-1, which is known to play a role in alleviating oxidative stress and tissue protection (119, 120). For example, previous studies have indicated that Nrf2 protect cells from the cytotoxic effects of AIV, most likely by increasing the expression of antioxidant genes in human alveolar epithelial cells and modifies AIV entry and replication in nasal epithelial cells (121, 122). This mechanism further need to be studied in avian species in the future.

Sood et al. (123) found that extracts of Eugenia jambolana had a 100% virucidal effect against HPAIV H5N1 in tissue culture and ECE in ovo inoculation. In another study (124), Ocimum sanctum and Acacia Arabica crude extract and terpenoid isolated from the leaves of O. sanctum and polyphenol from A. Arabica have shown promising antiviral properties against H9N2 virus, showing significant virucidal activity. Future investigations are necessary to formulate combinations of these compounds for a broader antiviral activity against H9N2 viruses and evaluate them in chickens. The extracts of these plants were used on tissues in ovo, however; further study is needed in avian species. The extract of Agrimonia pilosa also exhibited a virucidal effect at a concentration of 160–570 ng/ml against influenza A and B viruses when the viruses were treated with the extract prior to plaque assay (125).

Luganini et al. (126) conducted research considering the direct action of cranberry extract against influenza virus and showed that the novel Oximacro of cranberry extract impedes two subtypes (A and B) of influenza viruses. During in vitro studies, they elaborated on the mechanism of Oximacro that prevented virus entry and attachment, leading to virucidal activities. In the past, the immune response, mainly humoral, in chickens during the inactivation of the vaccine for AIV has been induced by the addition of immunoadjuvants and extracts of plants in feed. Similarly, when the stems and leaves of Ginseng saponins were added to the drinking water, the humoral immune response increased to a significant level. In another such instance, serum Abs level enhancement was observed significantly when H. perforatum L. was administered orally and in the drinking water (127, 128). When the extract of ginseng after fermentation was administered to mice, the protection level against different subtypes (H1N1, H3N2, H5N1, and H7N9) of the influenza virus. Additionally, components of the adaptive immune system such as B cell, CD4, CD8, and major histocompatibility complex II were observed. However, detailed studies are needed in the future to explore the anti-influenza mechanism of ginseng in fermented form (129).

The efficacy of Sargassum pallidum polysaccharides (SPP) as adjuvant in inactivated vaccines of NDV, AIV, and IBV in chickens was tested by Li et al. (130). In that study, the vaccines containing 10, 30, and 50 mg SPP/ml were compared with the traditional oil adjuvant vaccines. Serum Ab titers against the three viruses significantly increased at the dose 30 mg/ml. Moreover, the CD4 content and T lymphocyte multiplication were enhanced in all treated groups.

USE OF NANOTECHNOLOGY TO CONTROL AIV

The application of various nanomaterials endorses the interactions between the materials and the virus, enabling other researchers to build a biosensing analyzer that should work effectively based on the portable electroanalysis, and perform exact detection of influenza virus (131). The use of nano-based vaccines has many advantages that include higher storage time, and the encapsulation of vaccines in NP that are polymers in solid form might assist to stabilize at room temperature, consideration of an alternate route of administration, and enabling precise discharge. Nano-vaccines might release soluble antigens that induce both types of immunity, i.e., humoral and cellular (132). In a similar way, NPs based on a chitosan derivative are used to deliver an immune response when administered into mucosal sites of poultry (Figure 5). Furthermore, a decrease in morbidity, mortality, and viral load is observed in chickens infected with IBV and AIV (133). Magnetic beads are also considered as nano beads and are used to identify signals at amplification along with quartz crystal microbalance (QCM) apta sensors, the magnetic nano bead-amplified QCM immune-sensors have been used for the detection of the H5N1 protein (134). Silver nanoparticles (AgNPs) magnetic particles, and carbon-based materials are commonly used to analyze and identify the different subtypes of influenza viruses. The preparation of these particles is carried out based on the methodology already available in the literature (135, 136). Additionally, there are well-known techniques such as electrode-based well array, electrochemical quantitative systems, and on-chip nanomembrane tubular sensors of based on full integration (137, 138). Furthermore, mesoporous silica NPs performing functions with the amino group and naturally loaded with prodrugs of quercetin and shikimic acid discovered a novel antiviral nanoformulation that targets the detection of highly pathogenic avian influenza H5N1 virus. They induced also strong immunomodulatory effects: they limited the production of cytokines (IL-1β and TNF-α) and nitric oxide (NO) by 50%. Furthermore, it played an extraordinary role in the critical carrageenan-induced rat model to induce the antiinflammatory influence carried in vivo (38, 139). Thus, nanotechnology through the use of a variety of NPs and in the form of nano-vaccines, nanobodies and nanomedicine, along with the use of adjuvants, has a remarkable future perspective in the field of biomedicine to control avian infectious diseases.

The control of IBV and AIV has faced many troubles due to several factors such as drug resistance, emergence of novel viral strains, and cross-species infections. Plant extracts can be
a potential source to develop novel therapeutic medicine. The use of nanotechnology in terms of nano-vaccines, nanobodies, and nanomedicine might be very helpful to diagnose and control these poultry infectious diseases. In the future, the exact mechanism of action to counteract poultry infectious diseases caused by novel viral strains needs to be studied to develop control strategies.

AUTHOR CONTRIBUTIONS

Conceptualization and writing—original draft: GA. Writing—review and editing: GA, GL, and JY. Supervision, project administration, and funding acquisition: GL. Validation: GL and JY. All authors agreed to the final version.
ACKNOWLEDGMENTS

The China Scholarship Council is highly thanked for funding the stay of GA for conduction of his doctoral research. Images Credit to Biorender.com.
35. Wang W, Xu R, Li J. Production of native bispecific antibodies in rabbits. PLoS ONE. (2010) 5:e10879. doi: 10.1371/journal.pone.0010879
36. Pereira EP, Van Tilburg MF, Floren EO, Guedes MI. Egg yolk antibodies (IgY) and their applications in human and veterinary health: a review. Int Immunopharmacol. (2019) 1:293–303. doi: 10.1016/j.intimp.2019.01.005
37. El-Kaswy SA, Abbas AT, Sobrah SS, Tahli AA, Hassan AM, Iwata-Yoshikawa N, et al. Immunotherapeutic efficacy of IgY antibodies targeting the full-length spike protein in an animal model of middle east respiratory syndrome coronavirus infection. Pharmaceuticals. (2021) 14:511. doi: 10.3390/ph14060511
38. Neethirajan S. Recent advances in wearable sensors for animal health management. Sens Bio Sens Res. (2017) 12:15–29. doi: 10.1016/j.sbsr.2016.11.004
39. Power AG, Gorey B, Chandra S, Chapman J. Carbon nanomaterials and their application to electrochemical sensors: a review. Nanotechnol Rev. (2018) 7:19–41. doi: 10.1515/ntrev-2017-0160
40. Saha A, Chowdhury MI, Nazim M, Alam MM, Ahmed T, Hossain MB, et al. Vaccine specific immune response to an inactivated oral cholera vaccine and EPI vaccines in a high and low arsenic area in Bangladesh children. Vaccine. (2013) 31:647–52. doi: 10.1016/j.vaccine.2012.11.049
41. Scallen CD, Tingley DW, Lindblom JD, Toomey JS, Tucker SN. An adenovirus-based vaccine with a double-stranded RNA adjuvant protects mice and ferrets against H5N1 avian influenza in oral delivery models. Clin Vaccine Immunol. (2013) 20:885–94. doi: 10.1128/CVI.00552-12
42. Brisse M, Vrba SM, Kirk N, Liang Y, Ly H. Emerging concepts and technologies in vaccine development. Front Immunol. (2020) 11:2578. doi: 10.3389/fimmu.2020.583077
43. Yan X, Zhou M, Lu S, Jin Z, Zhao K. An overview of biodegradable nanomaterials and applications in vaccines. Vaccine. (2020) 38:1096–104. doi: 10.1016/j.vaccine.2019.11.031
44. Shao W, Li X, Goraya MU, Wang S, Chen J. Evolution of influenza a virus by mutation and re-assortment. Int J Mol Sci. (2017) 18:1650. doi: 10.3390/ijms18081650
45. Wimmer R, Thymus Vulgaris. (2016). Available online at: https://www.flickr.com/photos/raf_wimmer/32777148450 (accessed June 3, 2022).
46. Star K, Star F. Mentha Piperita. (2006). Available online at: https://www.flickr.com/photos/raf_wimmer/32777148450 (accessed June 3, 2022).
47. Mayer J, Desmodium Canadense. (2013). Available online at: https://www.flickr.com/photos/wackybadger/9382889455 (accessed June 3, 2022).
48. Tanne A. Hypericum Perforatum. (2007). Available online at: https://www.flickr.com/photos/annetanne/538464711 (accessed June 3, 2022).
49. Hodgkins R. Sambucus Nigra. (2020). Available online at: https://www.flickr.com/photos/131806380@N05/5009750784 (accessed June 3, 2022).
50. Star K, Star F. Allium Sativum (Garlic). (2007). Available online at: https://www.flickr.com/photos/star-environmental/24522811579 (accessed June 3, 2022).
51. Valké D. Achyranthes Aspera. (2008). Available online at: https://www.flickr.com/photos/dinesh_valke/2891857287 (accessed June 3, 2022).
52. Star K, Star F. Panicum Antidotale. (2000). Available online at: https://www.flickr.com/photos/star-environmental/23903761613 (accessed June 3, 2022).
53. Lelešius R, Karpovaite A, Chapman J. Carbon nanomaterials and their application to electrochemical sensors: a review. Nanotechnol Rev. (2018) 7:19–41. doi: 10.1515/ntrev-2017-0160
54. Zhou SF, Lai X. An update on clinical drug interactions with the genus Allium as poultry feed and enveloped viruses. Vaccine Immunol. (2013) 20:85–94. doi: 10.1128/CVI.00552-12
55. Zhana MM, Donna O. The effects of allium sativum on immunity within the scope of COVID-19 infection. Med hypotheses. (2020) 141:109934. doi: 10.1016/j.mehy.2020.109934
56. Pourhossein Z, Qotbi AAA, Sajeedi A, Laudadio V, Centoducati G, Tufarelli V. Effect of different levels of dietary sweet orange (Citrus sinensis) peel extract on humoral immune system responses in broiler chickens. Anim Sci J. (2015) 86:105–10. doi: 10.1111/aj.12250
57. Shahzad MI, Anwar S, Ashraf H, Manzoor A, Naseer M, Rani U, et al. Antiviral activities of Cholistan plants against common poultry viruses. Trop Biomed. (2020) 37:129–40. doi: 10.46765/tb.37.4.1129
58. Aslam A, Shahzad MI, Parveen S, Ashraf H, Naz N, Zehra SS, et al. Evaluation of antiviral potential of different Cholistan plants against infectious bursal disease and infectious bronchitis virus. Pak Vet J. (2016) 36:302–6. Available online at: http://www.pvjs.com.pk/index.php/pvjs/article/view/6583-10.6–1
59. Duchatzky CR, Possetto ML, Talarico LB, Garcia CC, Michis F, Almeida NV, et al. Evaluation of chemical and antiviral properties of essential oils from South American plants. Antivir Chem Chemother. (2005) 16:247–51. doi: 10.1179/095632005X7650100044
60. Koch C, Reichling J, Kehrm R, Sharaf M, Zentgraf H, Schneele J, et al. Efficacy of anise oil, dwarf-pin pine oil and chamomile oil against thymidine-kinase-positive and thymidine-kinase-negative herpesviruses. J Pharm Pharmacol. (2008) 60:1545–50. doi: 10.1211/jp.11.00117
61. Jackwood MW, Rosenbloom R, Petteruti M, Hill DA, McCaw AL, Williams SM. Avian coronavirus infectious bronchitis virus susceptibility to botanical oleoresins and essential oils in vitro and in vivo. Virus Res. (2019) 149:86–94. doi: 10.1016/j.virusres.2010.01.006
62. Abd El-Ghany WA, Shaalan M, Salem HM. Nanoparticle applications in poultry production: an updated review. Poult Sci. J. (2021) 77:1001–25. doi: 10.1007/s1255320209160235
63. Youssef FS, El-Banna HA, Elzorba HY, Galal AM. Application of some nanoparticles in the field of veterinary medicine. Int J Vet Sci. (2019) 7:78–93. doi: 10.1080/23149599.2019.1691379
64. Krishnan S, Dusane A, Morajkar R, Venkat A, Vernekar A. Deciphering the role of nanostructured materials in the point-of-care diagnostics for COVID-19: a compre- hensive review. J Mater Chem B. (2021) 9:5967–81. doi: 10.1039/D1TB01182K
65. Ramos AP, Cruz MA, Tovani CR, Ciancaglini P. Bio- medical applications of nanotechnology. Biophys Rev. (2017) 9:79–89. doi: 10.1007/s12551-016-0246-2
66. Chen YN, Hsieh YH, Hsieh CT, Tsou DY, Chang PL. Antiviral activity of graphene–silver nanocomposites against non-enveloped and enveloped viruses. Int J Environ Res Public Health. (2016) 13:430. doi: 10.3390/ijerph13040340
67. Li J, Helal ZH, Karch CP, Mishra N, Garshick T, Garmendia A, et al. A self-adjuvanted nano-particle-based vaccine against infectious bronchitis virus. PLoS ONE. (2018) 13:e0203771. doi: 10.1371/journal.pone.0203771
68. Chandrasekar SS, Kingstad-Bakke B, Wu CW, Suresh M, Talaat AM. A novel mucosal adjuvant system for immunization against avian coronavirus causing infectious bronchitis. J Virol. (2020) 94:e01016–e0120. doi: 10.1128/JVI.01016-20
69. Liu J, Li R, Yang B. Carbon dots: a new type of carbon-based nanomaterial with wide applications. ACS Cent Sci. (2020) 6:2179–95. doi: 10.1021/acscentsci.0c01306
70. Chou DL, Mao YJ, Anand A, Lin HL, Lin JHY, Tieng CP, et al. Carbonized lysine-nanogels protect against infectious bronchitis virus. Int J Mol Sci. (2021) 22:5415. doi: 10.3390/ijms22115415
Abbas et al. Novel Therapeutics to Control IBV and AIV

77. Kang J, Tahir A, Wang H, Chang J. Applications of nanotechnology in virus detection, tracking, and infection mechanisms Wiley Interdiscip. Rev Nanomed. (2021) 13:1700. doi: 10.1002/wnan.1700
78. Ahmed SR, Kang SW, Oh S, Lee J, Neethirajan S. Chiral zirconium quantum dots: a new class of nanocrystals for optical detection of coronavirus. Helyon. (2018) 4:e00766. doi: 10.1016/j.helyon.2018.e00766
79. Ahmed SR, Nagy É, Neethirajan S. Self-assembled star-shaped chiroplasmic gold nanoparticles for an ultrasensitive chiro-immunosensor for viruses. RSC Adv. (2017) 7:40849–57. doi: 10.1039/C7RA07175B
80. Nasrollahzadeh M, Sajjadi M, Soufi GJ, Iravani S, Varma RS. Nanomaterials and nanotechnology-associated innovations against avian infections with a focus on coronavirus. Nanomaterials. (2020) 10:1072. doi: 10.3390/nano10061072
81. Kato T, Takami Y, Deo VK, Park EY. Preparation of virus-like particles mimetic nanovesicles displaying the S protein of Middle East respiratory syndrome coronavirus using insect cells. J Biotechnol. (2019) 296:177–84. doi: 10.1016/j.jbiotec.2019.10.007
82. Chen HW, Huang CY, Lin SY, Fang ZS, Hsu CH, Lin JC, et al. Synthetic virus-like particles prepared via protein corona formation enable effective vaccination in an avian model of coronavirus infection. Biomaterials. (2016) 106:111–8. doi: 10.1016/j.biomaterials.2016.08.018
83. Liu G, Lv Y, Yin L, Li X, Luo D, Liu K, et al. Assembly and immunogenicity of coronavirus-like particles carrying infectious bronchitis virus M and S proteins. Virus. (2013) 31:5524–30. doi: 10.1016/j.vaccine.2013.09.024
84. Wang C, Zheng X, Gai W, Zhao Y, Wang H, Wang H, et al. MERS-CoV virus-like particles produced in insect cells induces specific humoral and cellular immunity in rhesus macaques. Oncotarget. (2017) 8:12686. doi: 10.18632/oncotarget.8475
85. García R, Hussain A, Koduru P, Atis M, Wilson K, Park JY, et al. Biological evaluation of anti-influenza viral activity of semi-synthetic catechin derivatives. Antiviral Res. (2017) 154:13–24. doi: 10.1016/j.antiviral.2017.08.003
86. Nefedova E, Koptev V, Bobikova AS, Cherepushkina V, Mironova T, Afonyushkin V et al. The infectious bronchitis coronavirus pneumonia model presenting a novel insight for the SARS-CoV-2 dissemination route. Mol Cell Biochem. (2021) 476:2917–42. doi: 10.1007/s11010-021-04107-3
87. Sun Q, Wang K, She R, Ma W, Peng F, Jin H. Swine intestine antimicrobial peptides inhibit infectious bronchitis virus infectivity in chick embryos. Poult Sci. (2010) 89:644–51. doi: 10.3382/poulsci.2009-00451
88. Gupta A, Gupta GS. Status of mammnose-binding lectin (MBL) and complement system in COVID-19 patients and therapeutic applications of antiviral plant MBLs. Mol Cell Biochem. (2021) 476:2917–42. doi: 10.1007/s11010-021-04107-3
89. Zhang W, Bouwman KM, van Beurden SJ, Ordonez SR, van Eijik M, Haagsman HP, et al. Chicken mannose binding lectin has antiviral activity towards infectious bronchitis virus. Virol. (2017) 509:252–9. doi: 10.1016/j.virology.2017.06.028
90. Abid DS, Shihab NL, Kamounah FS. Synthesis, characterization and structure activity relationship analysis of N-acetyl-2-substituted phenyl thiazolidinethio-carboxylic acids derivatives as neuraminidase inhibitors. J Chem Pharm. (2014) 6:845–54.
91. Musaddiq S, Shahzad MI, Firdous F, Iqbal A, Tanveer M, Ashraf A, et al. Thiazolidines: Potential anti-viral agents against avian influenza and infectious bronchitis viruses. Vet Res Forum. (2020) 11:415–21. doi: 10.30466/vrf.2018.91264.2211
92. Vorontsova M, Eugenia Jambolana. (2012). Available online at: https://www.flickr.com/photos/36803481@N06/7064471011 (accessed June 3, 2022).
93. Yaddanapudi P, Oszumum Sanctum. (2008). Available online at: https://www.flickr.com/photos/neychurlure/2844691743 (accessed June 3, 2022).
94. Ekckhoff D, Acacia Arabica/ Acacia koaia. (2006). Available online at: https://www.flickr.com/photos/dweickhoff/4765979829 (accessed June 3, 2022).
95. Aqiaq HAO. Agrimonia Piloa. (2011). Available online at: https://www.flickr.com/photos/nnhq801/9216086004 (accessed June 3, 2022).
96. Pokrzywinski A. Bog Cranberry. (2007). Available online at: https://www.flickr.com/photos/49562796@N06/3610914 (accessed June 3, 2022).
97. Gangehei L, Ali M, Zhang W, Chen Z, Wakame K, Haidari M. Synthesis, characterization and structural and non-structural protein targets: a pharmacoinformatics study of the CAS COVID-19 dataset. Comput Biol Med. (2021) 133:104364. doi: 10.1016/j.compbiomed.2021.104364
98. Yuan S. Drugs to cure avian influenza infection–multiple ways to prevent cell death. Cell Death Dis. (2013) 4:e835–835. doi: 10.1038/cddis.2013.367
99. Lovernia C, Mercorelli B, Nannetti G, Compagnin C, Palù, G. Antiviral strategies against influenza virus: towards new therapeutic approaches. Cell Mol Life Sci. (2014) 71:6569–83. doi: 10.1007/s00018-014-1615-2
100. Luo Z, Liu LF, Wang XH Li W, Ju C, Chen H, et al. Epigoptorin, an alkaloid from Isatis indigotica, reduces H1N1 infection in stress-induced susceptible model in vivo and in vitro. Front in Pharm. (2019) 10:78. doi: 10.3389/fphar.2019.00078
101. Kurokawa M, Kameda CA, Yamamura J, Kamiyama T, Shiraki K. Antipyretic activity of cinnamyl derivatives and related compounds in influenza virus-infected mice. Eur J Pharmacol. (1998) 348:45–51. doi: 10.1016/S0014-2999(98)00121-6
102. Grieken U, Richter M, Walther E, Hoffmann A, Kirchmair J, Makarov V, et al. Discovery of prenylated flavonoids with dual activity against influenza virus and Streptococcus pneumoniae. Sci Rep. (2016) 6:27156. doi: 10.1038/srep27156
103. Ganghele I, Ali M, Zhang W, Chen Z, Wakame K, Haidari M. Oligonorol a low molecular weight polyphenol of lychee fruit extract inhibits proliferation of influenza virus by blocking reactive oxygen species-dependent ERK phosphorylation. Phytotherapy. (2010) 17:1047–56. doi: 10.1177/0160245710300316
104. Derksen D, Hensel A, Hafezi W, Herrmann F, Schmidt TJ, Ethrhardt C, et al. 3-O-Galloylated procyanidins from Rumex acetosa L. inhibit the attachment of influenza A virus. PLoS ONE. (2014) 9:e110089. doi: 10.1371/journal.pone.0110089
105. Choi JG, Jin YH, Kim JH, Oh TW, Yim NH, Cho WK, et al. In vitro anti-viral activity of pсорalene semea water extract against influenza a viruses. Front Pharmacol. (2019) 7:460. doi: 10.3389/fphar.2016.00460
106. Nakashima K, Chanda PK, Deutsch V, Barnerjee AK, Shatkin AJ. Inactivation of influenza and vesicular stomatitis virion RNA polymerase activities by photoreaction with 4-0 substituted psoralens. J Virol. (1979) 32:838–44. doi: 10.1128/jvi.32.3.838-844.1979
107. Redfield DC, Richman DD, Oxman MN, Kronenberg LH. Psoralen inactivation of influenza and herpes simplex viruses and of virus-infected cells. Infect Immun. (1981) 32:1216–26. doi: 10.1128/iai.32.12.1216-1226.1981
108. Shoji M, Arakaki Y, Esumi T, Kohnomi S, Yamamoto C, Suzuki Y, et al. Bakuchiol Is a phenolic isoprenoid with novel enantiomer-selective applications of antiviral plant MBLs.
anti-influenza A virus activity involving Nrf2 activation. J Biol Chem. (2015) 290:28001–17. doi: 10.1074/jbc.M115.669465

117. He YW, Dong CZ, Zhao JY, Ma LL, Li YH, Aisa HA. 1,2,3-Triazole-containing derivatives of rupestonic acid: click-chemical synthesis and antiviral activities against influenza viruses. Eur J Med Chem. (2014) 76:245–55. doi: 10.1016/j.ejmech.2014.02.029

118. Loboda A, Damulewicz M, Pyza E, Izojkowicz A, Dulak J. Role of Nrf2/HO-1 system in development, oxidative stress response and diseases: an evolutionarily conserved mechanism. Cell Mol Life Sci. (2016) 73:3221–47. doi: 10.1007/s00018-016-2223-0

119. Wegiel B, Nemeth Z, Correa-Costa M, Bulmer AC, Otterbein LE. Heme oxygenase-1: a metabolic nike. Antioxid Redox Signal. (2014) 20:1709–22. doi: 10.1089/ars.2013.5667

120. Kosmidier B, Messier EM, Janssen WJ, Nahreini P, Wang J, Harts horn KL, et al. Nrf2 protects human alveolar epithelial cells against injury induced by influenza A virus. Respir Res. (2012) 13:43. doi: 10.1186/1465-9211-13-43

121. Kesci MJ, Simmons SO, Bauer R, Jaspers I. Nrf2 expression modifies influenza A entry and replication in nasal epithelial cells. Free Radic Biol Med. (2011) 51:444–53. doi: 10.1016/j.freeradbiomed.2011.04.027

122. Yin J, Ma L, Wang H, Yan H, Hu J, Jiang W, et al. Chinese herbal medicine compound Yi-Zhi-Hao pellet inhibits replication of influenza virus infection through activation of heme oxygenase-1. Acta Pharmacologica Sinica B. (2017) 7:630–7. doi: 10.1016/j.apsb.2017.05.006

123. Sood R, Swarup D, Bhatia S, Kulkarni DD, Dey S, Saini M, et al. Antiviral activity of crude extracts of Eugenia jambolana Lam against highly pathogenic avian influenza (H5N1) virus. Indian J Exp Biol. (2012) 50:179–86.

124. Ghoke SS, Sood R, Kumar N, Pateriya AK, Bhatia S, Mishra A, et al. “Evaluation of antiviral activity of Ocimum sanctum and Acacia arabica leaves extracts against H9N2 virus using embryonated chicken egg model” BMC Complement Altern Med. (2018) 18:1–10. doi: 10.1186/s12906-018-2238-1

125. Shin WJ, Lee KH, Park MH, Seong BL. Broad-spectrum antiviral effect of Hypericum perforatum L. Poult Sci. (2012) 9:1826. doi: 10.3389/fmicb.2018.01826

126. Luganini A, Terlizzi ME, Catucci G, Gilardi G, Maffeï ME, Gribaudo G. The cranberry extract oximacro® exerts in vitro virucidal activity against influenza virus by interfering with hemagglutinin. Front Microbiol. (2018) 9:1826. doi: 10.3389/fmicb.2018.01826

127. Zhai L, Li Y, Wang W, Hu S. Enhancement of humoral immune responses to inactivated Newcastle disease and avian influenza vaccines by oral administration of ginseng stem-and-leaf saponins in chickens. Poult Sci. (2011) 90:1955–9. doi: 10.3382/ps.2011.01433

128. Jiang W, Liu Y, Zheng H, Zheng Y, Xu H, Lu H, Immune regulation of avian influenza vaccine in hens using Hypericum perforatum L methanol extraction. Plant Omics. (2012) 5:40–5. doi: 10.3316/informit.007871356075970

129. Wang Y, Jung YJ, Kim KH, Kwon Y, Kim YJ, Zhang Z, et al. Antiviral activity of fermented ginseng extract against NBA and range of influenza viruses. Viruses. (2018) 10:471. doi: 10.3390/v10090471

130. Li LJ, Ming YL, Li YT, Feng Jl, Hao QF, Zhang L. Adjuvant activity of Sargas-sum pallidum polysaccharides against combined Newcastle disease, infectious bronchitis and avian influenza inactivated vaccines. Mar Drugs. (2012) 10:2648–60. doi: 10.3390/md10122648

131. Moullick A, Richtera L, Milosavljevic V, Cerda N, Haddad Y, Zitka O, et al. Advanced nanotechnologies in avian current status and future trends—a review. Anim Chim Acta. (2017) 983:42–53. doi: 10.1016/j.aca.2017.06.045

132. Chen YC, Cheng HE, Yang YC, Yeh MK. Nanotechnologies applied in biomedical vaccines. Intech Open. (2016) 24:69547. doi: 10.5772/intechopen.69547

133. Renu S. and Renukaradhy GL. Chitosan nanoparticle based mucosal vaccines delivered against infectious diseases of poultry and pigs. Front Bioeng Biotechnol. (2020) 8:558349. doi: 10.3389/fbioe.2020.558349

134. Brockman L, Wang R, Lu M, Li Y. QCM aptasensor for rapid and specific detection of avian influenza virus. Open J Appl Biosens. (2013) 2:97–103. doi: 10.4236/ojabs.2013.24013

135. Mokhtarzadeh A, Eivazzadeh-Kibirian R, Pashazadeh P, Hejazi M, Gharaatifar N, Hasanazadeh M, et al. Nanomaterial-based biosensors for detection of pathogenic virus. Trends Anal Chem. (2017) 97:445–57. doi: 10.1016/j.trac.2017.10.005

136. Boroumand H, Badie F, Mazaheri S, Seyedi ZS, Nahand JS, Nejati M, et al. Chitosan-based nanoparticles against viral infections. Front Cell Infect Microbiol. (2021) 7:177–801.

137. Cha MS, Lee JK, Cho SH, Park JG, Lee HY, Lim SH, et al. Quantitative analysis of H5N1 DNA hybridization on nanowell array electrode. J Nanosci Nanotechnol. (2013) 13:5245–9. doi: 10.1166/jnn.2013.7531

138. Abou-Aitah K, Swiderska-Sroda A, Kandeil A, Salman AM, Wojnarowicz J, Ali, MA, et al., Virucidal action against avian influenza H5N1 virus and immunomodulatory effects of nanof ormulations consisting of mesoporous silica nanoparticles loaded with natural prodrugs. Int J Nanomedicine. (2020) 15:518. doi: 10.2147/IJN.S247692

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or any claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.