Nitric Oxide Mediates Natural Polyphenol-induced Bcl-2 Down-regulation and Activation of Cell Death in Metastatic B16 Melanoma*

Paula Ferrer, Miguel Asensi, Sonia Priego, María Benlloch, Salvador Mena, Angel Ortega, Elena Obrador, Juan M. Esteve, and José M. Estrela

From the Department of Physiology, University of Valencia, 46010 Valencia, Spain

Received for publication, June 21, 2006, and in revised form, November 8, 2006; Published, JBC Papers in Press, November 29, 2006, DOI 10.1074/jbc.M605934200

Intravenous administration to mice of trans-pterostilbene (t-PTER; 3,5-dimethoxy-4'-hydroxystilbene) and quercetin (QUER; 3,3',4',5,6-pentahydroxyflavone), two structurally related and naturally occurring small polyphenols, inhibits metastatic growth of highly malignant B16 melanoma F10 (B16M-F10) cells. t-PTER and QUER inhibit bcl-2 expression in metastatic cells, which sensitizes them to vascular endothelium-induced cytotoxicity. However, the molecular mechanism(s) linking polyphenol signaling and bcl-2 expression are unknown. NO is a potential bio-regulator of apoptosis with controversial effects on Bcl-2 regulation. Polyphenols may affect NO generation. Short-term exposure (60 min/day) to t-PTER (40 μM) and QUER (20 μM) (approximate mean values of the plasma concentrations measured within the first hour after intravenous administration of 20 mg of each polyphenol/kg) down-regulated inducible NO synthetase in B16M-F10 cells and up-regulated endothelial NO synthetase in the vascular endothelium and thereby facilitated endothelium-induced tumor cytotoxicity. Very low and high NO levels down-regulated bcl-2 expression in B16M-F10 cells. t-PTER and QUER induced a NO shortage-dependent decrease in cAMP-response element-binding protein phosphorylation, a positive regulator of bcl-2 expression, in B16M-F10 cells. On the other hand, during cancer and endothelial cell interaction, t-PTER- and QUER-induced NO release from the vascular endothelium up-regulated neutral sphingomyelinase activity and ceramide generation in B16M-F10 cells. Direct NO-induced cytotoxicity and ceramide-induced mitochondrial permeability transition and apoptosis activation can explain the increased endothelium-induced death of Bcl-2-depleted B16M-F10 cells.

Different natural polyphenols show potent antioxidant effects and may have therapeutic applications in oxidative stress-related diseases such as cancer (1–3). The cancer-chemopreventive activity of trans-resveratrol (t-RESV2; trans-3,5,4'-trihydroxystilbene) was first reported by Jang et al. (4). However, the potential anticancer properties of t-RESV are strongly limited because of its low bioavailability (5). Thus, structural modifications of the t-RESV molecule appeared to be necessary to increase its bioavailability while preserving its biological activity. Recently, we found that trans-pterostilbene (t-PTER; trans-3,5-dimethoxy-4'-hydroxystilbene) and quercetin (QUER; 3,3',4',5,6-pentahydroxyflavone) have longer in vivo half-lives compared with t-RESV (6). In vitro growth of highly malignant B16 melanoma F10 (B16M-F10) cells is inhibited (56%) by short-term exposure (60 min/day) to t-PTER (40 μM) and QUER (20 μM) (6). Intravenous administration of t-PTER and QUER (20 mg/kg/day) to mice inhibits (73%) metastatic growth of B16M-F10 cells in the liver, a common site for metastasis development (6). The antimetastatic mechanism involves (a) t-PTER-induced inhibition of vascular adhesion molecule 1 (VCAM-1) expression in the hepatic sinusoidal endothelium (HSE), which decreases B16M-F10 cell adhesion to the endothelium via very late activation antigen 4, and (b) QUER- and t-PTER-induced inhibition of bcl-2 expression in metastatic cells, which sensitizes them to vascular endothelium-induced cytotoxicity (6).

Analysis of the bcl-2 family of genes revealed that B16M-F10 cells (high metastatic potential), compared with B16M-F1 cells (low metastatic potential), overexpress bcl-2 preferentially (7). t-PTER increases expression of pro-death bax (~2.2-fold) and decreases expression of anti-death bcl-2 (~2.0-fold) (6), whereas QUER increases expression of different pro-death genes (bax, bak, bad, and bid; 1.5–2.5-fold) and decreases expression of all anti-death genes analyzed (bcl-2 (~7.3-fold), bcl-w (~1.5-fold), and bcl-xL (~2.0-fold)) (6). bcl-2 overexpression prevents the QUER- and t-PTER-dependent increase in metastatic B16M-F10 cell death caused by the HSE in vivo (6), thus suggesting that Bcl-2 by itself plays a critical role in regulating B16M-F10 resistance against vascular endothelium-in-
duced damage. In agreement with this idea, we also observed that antisense bcl-2 therapy potentiates tumor necrosis factor-α-induced oxidative stress and death in B16M-F10 cells (7). However, the molecular mechanisms that link polyphenol signaling with bcl-2 expression are unclear.

In vitro, t-RESV-driven apoptosis of chronic leukemic B cells has been shown to correlate with activation of caspase-3, a drop in the mitochondrial membrane potential, and reduction in the expression of inducible nitric-oxide synthetase (iNOS) (8, 9). NO is a potential bioregulator of apoptosis because high concentrations of NO or peroxynitrite can induce apoptotic death in different cell types, including tumor cells (10), although, on the other hand, NO may also act as an anti-apoptotic signal associated with, for example, suppression of mitochondrial cytochrome c release, ceramide generation, and caspase activation (10). Indeed, NO donors can elevate bcl-2 expression both at the mRNA and protein levels and prevent apoptotic cell death in vitro (11), whereas, paradoxically, also in vitro, NO-induced apoptosis of K-1735 melanoma cells (12) or human myeloid leukemia U937 cells (13) is associated with down-regulation of Bcl-2 and caspase activation. Therefore, NO, which may either prevent or induce apoptosis, can also increase or decrease Bcl-2 levels. These apparently controversial facts suggest that different intracellular NO levels may likely determine opposite effects. Whether natural polyphenols such as t-PTER and QUER also cause reduction in iNOS gene expression in metastatic cells (and consequently a decrease in their intracellular NO levels) and whether this is linked to changes in bcl-2 expression is unknown.

On the other hand, t-RESV, as well as other polyphenols (e.g. black tea polyphenols), can increase endothelial nitric-oxide synthetase (eNOS) activity and induce accumulation of p53 and p21WAF1/CIP1 in cultured pulmonary artery endothelial cells (14, 15). Thus, it is possible that natural polyphenols may also alter NO levels in the metastatic microenvironment during interaction of cancer and endothelial cells, which is important because endothelial NO generation was found to be essential in the mechanism of tumor cytotoxicity during B16M-F10 cell adhesion to the vascular endothelium (16).

The aim of this study was to investigate the possible relationship between NO and the effect t-PTER and/or QUER (at in vivo bioavailable concentrations) on bcl-2 expression in B16M-F10 cells. Our results show that this polyphenolic association decreases NO production in isolated B16M-F10 cells and increases NO release from the vascular endothelium during B16M-F10/endothelial cell interaction. At both steps, changes in NO levels trigger Bcl-2 down-regulation and activation of death mechanisms in metastatic B16M-F10 cells.

EXPERIMENTAL PROCEDURES

Culture of B16M-F10 Cells—Murine B16M-F10 cells (American Type Culture Collection, Manassas, VA) were cultured in Dulbecco’s modified Eagle’s medium (DMEM; Invitrogen), pH 7.4, supplemented with 10% fetal calf serum (Invitrogen), 10 mM HEPES, 40 mM NaHCO3, 100 units/ml penicillin, and 100 μg/ml streptomycin (17). Cell integrity was assessed by trypan blue exclusion and leakage of lactate dehydrogenase activity (17).

Measurement of H2O2, Nitrite, and Nitrate—The assay of H2O2 production was based, as reported previously (16), on the H2O2-dependent oxidation of homovanillic acid (3-methoxy-4-hydroxyphenylacetic acid) to a highly fluorescent dimer (2,2’-dihydroxydiphenyl-5,5’-diacetic acid), which is mediated by horseradish peroxidase (18). Nitrite and nitrate determinations were performed as described previously (16) and based on the methodology of Braman and Hendrix (19). Total NOx (NO2− plus NO3−) determinations were made by monitoring NO evolution from a measured sample placed into a boiling VCl3/HCl solution (which will reduce both NO2− and NO3− to NO). Quantitation was accomplished using a standard curve made up of known amounts of NO2− and NO3−.

Isolation, Identification, and Culture of the HSE—Male C57BL/6J mice (10–12 weeks old) were from Charles River Laboratories, Inc. (Barcelona, Spain). The HSE was separated and identified as described previously (20). Sinusoidal cells were separated in a 17.5% (w/v) metrizamide gradient. HSE cultures were established and maintained in pyrogen-free DMEM supplemented as described above for the B16M-F10 cells. Differential adhesion of endothelial cells to the collagen matrix and washing allowed complete elimination of other sinusoidal cell types (Kupffer and stellate cells and lymphocytes) from the culture flasks.

B16M/Endothelial Cell Adhesion and Cytotoxicity Assays—B16M-F10 cells were loaded with 2′,7′-bis(2-carboxyethyl)-5(6)-carboxyfluorescein acetoxyethyl ester (BCECF-AM; Molecular Probes, Eugene, OR). (10)6 cells were incubated in 1 ml of HEPES-buffered DMEM containing 50 μg of BCECF-AM and 5 μl of Me2SO for 20 min at 37 °C. After washing, BCECF-AM-containing cells were resuspended in HEPES-buffered DMEM without phenol red at a concentration of 2.5 × 106 cells/ml and added (0.2 ml/well) to endothelial cells (plated 24 h before) and also to plastic- or collagen precoated control wells. The plates were then incubated at 37 °C, and 20 min later, the wells were washed three times with fresh medium and read for fluorescence using a Fluoroskan Ascent FL (LabSystems, Manchester, UK). The number of adherent tumor cells was quantified by arbitrary fluorescence units based on the percent--

Reverse Transcription-PCR and Detection of mRNA Expression—Total RNA was isolated using the TRIzol kit (Invitrogen) following the manufacturer’s instructions. cDNA was obtained using a random hexamer primer and a MultiScribe reverse transcription kit (TaqMan reverse transcription reagents, Applied Biosystems, Foster City, CA) as described by the manufacturer. A PCR Master Mix and AmpliTaq Gold DNA polymerase (Applied Biosystems) containing specific primers (synthesized by Integrated DNA Technologies according to published sequences available from the GenBank™ Data Bank) were then added: iNOS, 5′-CGGATATCTCTTGCAA-GTCCAAA (forward) and 5′-AAGTATGTCTGCGATATG (reverse); eNOS, 5′-CACCAGGAAGAGACCTT---
NO Mediates Polyphenol-induced Melanoma Cell Death

TAAGGA (forward) and 5’-CACACGCTTCCGCCATCAC (reverse); bcl-2, 5’-CTCGTGCTACCCGTGCTGACTTCG (forward) and 5’-CAGATGCGGGTTGCAGGATCTAGTC (reverse); and glyceraldehyde-3-phosphate dehydrogenase, 5’-CCTGGAGAAACCTGCAATTATG (forward) and 5’-GGTCCTCAGTGGACCCAAAGATG (reverse). Real-time quantitation of the mRNA relative to glyceraldehyde-3-phosphate dehydrogenase was performed with a SYBR Green I assay and a iCycler detection system (Bio-Rad). Target cDNA was quantitated by subtracting the average threshold cycle (CT) of endogenous glyceraldehyde-3-phosphate dehydrogenase and measured in real time during the extension step. The threshold cycle (Ct) was determined, and then the relative gene expression was expressed as follows: fold change = 2−ΔΔCt, where ΔCt = Ct target − Ct endogenous glyceraldehyde-3-phosphate dehydrogenase and ΔΔCt = ΔCt treated − ΔCt control.

Bcl-2 Analysis—Bcl-2 protein was quantitated in the soluble cytosolic fraction by enzyme immunoassay (23) using a monoclonal antibody-based assay from Sigma (1 unit of Bcl-2 is defined as the amount of Bcl-2 in 1000 non-transfected B16M-F10 cells).

eNOS-deficient Mice—Generation of eNOS-deficient mice was carried out as described previously (24). We interbred heterozygous (+/−) eNOS-deficient mice to generate eNOS+/+ and eNOS−/− mice. We used eNOS+/+ and wild-type C57BL/6J mice as controls. Genotyping of the animals was performed by Southern blotting DNA from tail biopsies. The identification of eNOS+/+ and eNOS−/− mice was as described previously (24). Briefly, 20-μg samples were digested with BamHI, separated on 1% agarose gels, and transferred to nylon-supported nitrocellulose. The blots were then hybridized using a random primer-labeled 1.4-kb eNOS cDNA probe (24). A 5.3-kb fragment was diagnostic of the endogenous eNOS locus, and a 6.4-kb fragment was diagnostic of the targeted allele.

Measurement of iNOS Activity in B16M-F10 Cells—Conversion of l-arginine to l-citrulline was measured by a modification of a previously described methodology (25). The assay was carried out by adding 100 μg of sample protein to 150 μl of assay buffer (50 mM HEPES, 1 mM dithiothreitol, 1 mM MgCl₂, 5 mg/liter pepstatin A, 0.1 mM phenylmethylsulfonyl fluoride, and 3 mg/liter aprotinin, pH 7.4) containing 70 μM arginine, 250,000 dpm l-[³H]arginine, (GE Healthcare, Little Chalfont, UK), 2 mM NADPH, 5 μM tetrahydrobiopterin, 5 μM FAD, and 0.5 mM CaCl₂ to measure total NOS activity or in the presence of 1 mM EGTA (without calcium) to determine Ca²⁺-independent iNOS activity. After 30 min at 37°C, the reaction was stopped with 100 μl of 1 M trichloroacetic acid. The samples were adjusted to pH 4.6 by adding 50 μl of 20 mM HEPES and applied to Dowex AG 50W-X8 resin columns. l-[³H]Citrulline was eluted and separated by thin-layer chromatography. Radioactivity was counted with an AR-2000 scanner detector (Bioscan, Inc., Washington, D.C.). The results are expressed as pmol of l-[³H]citrulline/mg of protein/min.

Western Blot Analysis—Cultured cells were harvested as indicated above and then washed twice with ice-cold Krebs-Henseleit bicarbonate buffer, pH 7.4. Whole cell extracts were made by freeze-thaw cycles in buffer containing 150 mM NaCl, 1 mM EDTA, 10 mM Tris-HCl, 1 mM phenylmethylsulfonyl fluoride, 1 μg/ml leupeptin, 1 μg/ml aprotinin, and 1 μg/ml pepstatin, pH 7.4. Fifty μg of protein (as determined by the Bradford assay (68)) were boiled in Laemmli buffer and resolved by 12.5% SDS-PAGE. Proteins were transferred to a nitrocellulose membrane and subjected to Western blotting with anti-CAM-response element-binding protein (CREB) or anti-phospho-CREB (Ser133) monoclonal antibody (Chemicon International Inc., Temecula, CA). Blots were developed using horseradish peroxidase-conjugated secondary antibody and enhanced chemiluminescence (ECL system, Amersham Biosciences).

Gene Silencing—Small interfering RNA (siRNA) transfection experiments were performed with double-stranded RNA designed and synthesized by Eurogentec (Seraing, Belgium). A CREB-specific siRNA sense orientation strand (5’-UACAGCGUGCCUAACAAUGGdTdT-3’) was used. Cells were transfected with the siRNA delivery reagent jetSI™ (Eurogentec) at 3 μl/μg of siRNA according to the manufacturer’s instructions. Transfection efficiency in cells plated on coverslips was determined with fluorescein isothiocyanate-labeled siRNA and determined by cell counting using a TCS-SP2 confocal microscope (Leica Microsystems, Bensheim, Germany) to be 90~95% after 24 and 48 h.

Guanylate Cyclase Assay—Enzyme activity (soluble and particulate) was determined as described previously (26, 27). Briefly, the reaction mixture contained 7.5 pmol of Tris-HCl, pH 7.6, 0.75 μmol of creatine phosphate, 0.5 μmol of cGMP, 0.45 μmol of MgCl₂, 1.2 μmol of theophylline, 0.6 units of creatine kinase, and 37.5 nmol of [⁸⁻³⁵S]GTP (10–12 mCi/mmol; PerkinElmer Life Sciences) in a total reaction volume of 150 μl. The radioactive cGMP produced was isolated as described previously (28) and measured using a Packard Tri-Carb 2700TR Variette analyzer (PerkinElmer Life Sciences).

Assay of Sphingomyelinases—This procedure was a modification of a previously reported methodology (29). B16M-F10 cells (5 × 10⁶) were separated from the co-cultured HSE as described previously (30), washed twice with ice-cold phosphate-buffered saline, and homogenized in 0.4 ml of lysis buffer (10 mM HEPES/KOH, pH 7.4, 2 mM EDTA, 0.1% CHAPS, 5 mM MgCl₂, 5 mM dithiothreitol, 1 mM phenylmethylsulfonyl fluoride, 100 μM pepstatin, 0.15 units/ml aprotinin, and 50 mg/ml leupeptin) containing 0.1% Triton X-100. The homogenate was passed through a 25-gauge needle and then centrifuged at 100,000 × g for 1 h at 4°C. The supernatant was used as an enzyme source. The mixture used to assay magnesium-dependent neutral sphingomyelinase (SMase) contained 0.1 μM Tris-HCl, pH 7.5, 50 nmol of [N-methyl-¹⁴C]sphingomyelin (specific activity, 55 mCi/mmol; GE Healthcare), 10 mM MgCl₂, 0.1% Triton X-100, and 200 μg of protein in a final volume of 0.2 ml. For magnesium-independent neutral SMase, MgCl₂ was removed from the reaction mixture. For acid SMase, 0.1 mM sodium acetate, pH 5.0, was used instead of Tris-HCl. Incubation was carried out at 37°C for 30 min. The reaction was stopped by adding 1.25 ml of chloroform/methanol (2:1). Then, 0.25 ml of double-distilled water were added to the tubes and vortexed. The tubes were centrifuged at 1000 × g for 6 min to separate the two phases. The clear upper phase was removed, placed in a glass scintilla-
tion vial, and counted with a scintillation counter (Packard Tri-Carb 2700TR Varisette).

C_{16}-ceramide and C_{16}-dihydroceramide Analysis—The amounts of ceramide and dihydroceramide in B16M-F10 cells were measured as described previously (31). Briefly, cancer cell suspensions (5 \times 10^6 cells in 200 \muL of DMEM) were vigorously mixed with 4 ml of chloroform/methanol (2:1, v/v) for 20 min. Then, 0.8 ml of distilled water were added to the mixture, and the sample was vortexed and centrifuged. The lower layer was collected, and the chloroform was allowed to evaporate. The residue was dissolved in a solvent and subjected to liquid chromatography-mass spectrometry analysis using a Quattro micro triple-quadrupole mass spectrometer (Micromass, Manchester, UK) equipped with a Shimadzu LC-10AD VP pump and SCL-10A VP autoinjector. Samples were analyzed by reverse-phase high pressure liquid chromatography using a Phenomenex ODS column (35 \times 2 mm) with 5-\muM particle size. In all cases, 40 \muL were injected onto the column. The temperature of the column was maintained at 25 °C. Mobile phases were as follows: mobile phase A, 5 mM ammonium formate/methanol/tetrahydrofuran (5:2:3, v/v/v); and mobile phase B, 5 mM ammonium formate/methanol/tetrahydrofuran (1:2:7, v/v/v) containing 0.01% formic acid. Elution was carried out at a flow rate of 0.2 ml/min with 70% mobile phase A and 100% mobile phase B for 6.3 min in a linear gradient mode.

Cell Death Analysis—Apopotptic and necrotic cell death were distinguished by fluorescence microscopy (32). For this purpose, isolated cells were incubated with Hoechst 33342 (10 \muM; which stains all nuclei) and propidium iodide (10 \muM; which stains nuclei of cells with disrupted plasma membranes) for 3 min and analyzed using a Nikon Diaphot 300 fluorescence microscope with excitation at 360 nm. Nuclei of viable, necrotic, and apoptotic cells were observed as blue round nuclei, pink round nuclei, and fragmented blue or pink nuclei, respectively. About 1000 cells were counted each time. DNA strand breaks in apoptotic cells were assayed using a direct terminal transferase dUTP nick end labeling assay (Roche Applied Science) and fluorescence microscopy following the manufacturer’s methodology.

Assay for in Vitro Invasion of the Hepatic Endothelial Cell Monolayer by B16M-F10 Cells—Invasion of the endothelial cell monolayer by B16M-F10 cells was assayed following the method by Ohigashi et al. (33) with some modifications. HSE cells were seeded on 1% gelatin-coated tissue culture dishes with grids. When the cells reached confluency, the culture medium was replaced with fresh medium. After a 2-h incubation, the cultures were washed with DMEM, and then HSE cells were overlayered with B16M-F10 cells and cocultured for 5 days. The invasion capacity of B16M-F10 cells was measured by counting the number of colonies/1 cm^2 formed under the HSE monolayer using a phase-contrast microscope.

RESULTS

Effect of t-PTER and QUER on NO and H_{2}O_{2} Generation by Melanoma Cells—Growing B16M-F10 cells generate NO and H_{2}O_{2} (16). Constitutive production of endogenous NO by iNOS has an anti-apoptotic role in human melanoma cells (34), whereas endogenous H_{2}O_{2}, as well as other reactive oxygen species, acts as an intracellular messenger regulating cell growth and differentiation (35). Natural polyphenols are potential iNOS inhibitors (8, 9) and antioxidants (36). Thus, we tested the effect of t-PTER and QUER on NO and H_{2}O_{2} production by B16M-F10 cells. To mimic in vivo conditions, we incubated B16M-F10 cells for a limited period (60 min) in the presence of t-PTER (40 \muM) and/or QUER (20 \muM) (approximate mean values of the concentrations of PTER and QUER measured in plasma during the first hour after intravenous administration of 20 mg of each polyphenol/kg) (6). As shown in Table 1, t-PTER and QUER decreased NO, and their effect was synergic when both were present (reaching almost 90% inhibition of NO generation). Reverse transcription-PCR expression analysis revealed that the t-PTER- and/or QUER-induced decrease in NO generation by B16M-F10 cells was associated with inhibition of iNOS gene expression (Fig. 1). However, H_{2}O_{2} production was only significantly decreased (~35%) when both polyphenols were present (Table 1).

Endogenous NO may also be synthesized in melanoma cells by other NOS activities (endothelial [e.g. Ref. 34] and mitochondrial [37]). However, the effect t-PTER and QUER on NO generation by B16M-F10 cells (Table 1) was similar to that obtained when these cells were cultured for 12 h in the presence of a specific iNOS inhibitor (2 mM aminoguanidine (AMG)) added to 24-h cultured cells (NO_{x} = 0.08 \pm 0.03 nmol/10^6 cells, calculated as described in the legend to Table 1). iNOS activity was 3.0 \pm 0.5 or <0.1 pmol of [3H]citrulline/mg of protein/min in control and AMG-treated B16M-F10 cells, respectively. These results indicate that endogenous NO in B16M-F10 cells is derived mainly from iNOS and that this enzyme is a main target for the polyphenols.

Furthermore, QUER undergoes rapid systemic metabolism once it is absorbed in the body. Its major metabolite, QUER 3'-sulfate, can be found in substantially higher concentrations than the parent compound in the plasma (38). However, it

Addition	NO_{x}	H_{2}O_{2}
Basal medium	0.43 \pm 0.08	12.6 \pm 2.9
t-PTER	0.27 \pm 0.06*	10.5 \pm 1.6
QUER	0.15 \pm 0.04*	9.4 \pm 1.7
t-PTER + QUER	0.05 \pm 0.02*	8.3 \pm 1.4*

* \(p < 0.01 \) comparing each value versus the control (basal medium).

* \(p < 0.05 \).
remains unclear whether QUER 3'-sulfate exhibits any activity upon NO production. To clarify this, QUER metabolites were analyzed in plasma after administration of 20 mg of QUER/kg to B16M-F10-bearing mice as described (6). Extraction of QUER metabolites from plasma and HPLC analysis were performed exactly as described by De Pascual-Teresa et al. (38). The HPLC profile showed a main peak that was identified as QUER 3'-sulfate by its tandem mass spectra. A calibration curve was obtained using a standard of QUER 3'-sulfate (0.01–50 μM; Extrasythes S.A., Bordeaux, France), which was found to be linear with a correlation coefficient of >0.99. The limits of detection and quantitation for our method were 0.02 μM. QUER 3'-sulfate levels in plasma were <0.1, 1 ± 0.2, 3 ± 0.6, 10 ± 1.7, 6 ± 0.9, 1 ± 0.3, and <0.1 μM at 5, 10, 20, 30, 60, 90, and 120 min, respectively, after intravenous administration of QUER. Cultured B16M-F10 cells were exposed to 8 μM QUER 3'-sulfate (approximate mean value of the plasma concentrations measured at 30–60 min after intravenous administration of 20 mg of QUER/kg) for 30 min using the same approach used for QUER and t-PTER that respects bioavailable concentrations (see Table 1). However, in the presence of QUER 3'-sulfate, NO and H₂O₂ values were not significantly different from controls (“Basal medium” in Table 1). Therefore, we conclude that, although bioavailable concentrations of QUER decrease NO generation by the cancer cells, its main metabolite does not.

Effect of t-PTER and QUER on NO and H₂O₂ Generation during Melanoma Cell Adhesion to the Vascular Endothelium—Interaction of cancer and endothelial cells in capillary beds is a critical step in the initiation of metastasis (39). The mechanism of B16M-F10/HSE interaction includes mannose receptor-mediated melanoma cell attachment to the HSE, which subsequently causes cytokine (tumor necrosis factor-α, interleukin-1β, and interleukin-18) and NO/H₂O₂ release, VCAM-1-dependent adherence, and melanoma growth factor release by the HSE (e.g. Ref. 40). Endothelium-derived reactive nitrogen and oxygen species and OONO radicals in particular are harmful and lethal for a high percentage of adherent melanoma cells (16). Thus, because t-RESV can increase eNOS activity (14), in the second set of experiments, we used an in vitro B16M-F10/endothelial cell adhesion assay to investigate the effect of t-PTER and QUER on NO and H₂O₂ production during the process of tumor cell attachment to the HSE. As shown in Table 2, during B16M-F10/HSE interaction, QUER and t-PTER/QUER significantly increased NO release to the extracellular medium, whereas H₂O₂ generation was not affected. Reverse transcription-PCR expression analysis revealed that the t-PTER- or t-PTER/QUER-induced increase in NO generation by B16M-F10 cells was associated with an increase in eNOS gene expression (Fig. 2). This is important because, as
TABLE 3
Effect of t-PTER and QUER on the rates of B16M-F10 cell adhesion, cytotoxicity, and invasion during interaction with the HSE
HSE and B16M-F10 cells were co-cultured in the presence or absence of t-PTER (P; 40 μM) and QUER (Q; 20 μM) as described in the legend to Table II. In melanoma/endothelial cell adhesion experiments, at 20 min after B16M-F10 cell addition to the HSE, the plates were washed as described under “Experimental Procedures.” In endothelium-induced B16M-F10 cell cytotoxicity assays, tumor cytotoxicity (expressed as the percentage of tumor cells that lost viability within the 4–6-h period of incubation; see “Experimental Procedures”) was determined after 6 h of incubation. During the 6-h period of incubation, HSE cell viability was 99–100% in all cases. Values represent the mean ± S.D. for five to six different experiments in each case.

	HSE	Tumor cell adhesion	NO_2^-	H_2O_2	Tumor cell cytotoxicity	Apoptotic cells	No. of penetrated colonies/cm^2
	Control P + Q	% nmol/10^6 cells	%	%	%	%	
eNOS^+/+	65 ± 12	31 ± 7^a	2.2 ± 0.4	7.7 ± 1.0^a	36 ± 5	10 ± 3	56 ± 8^b
eNOS^-/-	61 ± 11	34 ± 5^a	0.2 ± 0.1^a	0.4 ± 0.1^a	35 ± 6	1 ± 0.5^b	3 ± 1^a

a p < 0.01 comparing t-PTER and QUER versus no polyphenol addition.
b p < 0.01 comparing eNOS^-/- versus eNOS^+/+ cells.

reported previously (16), just an increase in the metastatic microenvironment NO levels is enough to increase cancer cell death.

To calculate the percentage of NO_2^- produced by the HSE during the adhesion process, in parallel experiments, we used HSE cells preincubated for 12 h in the presence of 1 mm N^G^-nitro-L-arginine methyl ester, which blocks NO synthesis activity (41). (Under these conditions, after being washed with medium and cultured in the absence of tumor cells, HSE cells do not produce detectable amounts of NO_2^- or NO_3^- in the following 4 h.) Similar results were obtained when NO_2^- produced by the HSE was calculated as follows: NO_2^- produced by co-cultured HSE and B16M cells minus NO_2^- produced by cultured B16M-F10 cells alone (data not shown). The percentage of H_2O_2 generated by the HSE was calculated by subtracting H_2O_2 produced by co-cultured HSE and B16M-F10 cells minus H_2O_2 produced by cultured B16M-F10 cells alone (data not shown). Our data show that, during the adhesion process, most of the NO and H_2O_2 were generated by the HSE (Table 2). Preculture of endothelial cells in the presence of N^G^-nitro-L-arginine methyl ester did not alter the percentage of B16M cell adhesion (data not shown) compared with controls (see the legend to Table 2).

Effect of t-PTER and QUER on Melanoma Cell Adhesion, Viability, and Invasive Growth upon Interaction with the Vascular Endothelium—The potential increase in the rate of metastatic cell death induced by the polyphenols was further investigated and correlated with NO and H_2O_2 generation, the percentage of tumor cell adhesion to the HSE, and the rate of invasion through HSE monolayers. These experiments were performed using control HSE cells and HSE cells isolated from eNOS-deficient (eNOS^-/-) mice to abolish eNOS-dependent NO production. Because the effects of t-PTER and QUER on NO_2^- generation either by the B16M-F10 cells (Table 1) or during cancer and endothelial cell interaction (Table 2) were practically additive, in the next experiments, we focused on the polyphenol association. As shown in Table 3, the percentage of B16M-F10 cell adhesion to the endothelium decreased in the presence of polyphenols, in agreement with the previously reported PTER-induced inhibition of VCAM-1 expression in the HSE (6). In the presence or absence of polyphenols, NO generation was almost abolished in eNOS^-/- HSE cells (Table 3), implying that the t-PTER- and QUER-induced increase in NO production is fully dependent on eNOS. The t-PTER- and QUER-induced increase (5–6-fold) in the percentage of B16M-F10 cell death (mainly apoptotic) during cancer and endothelial cell interaction was also NO-dependent (Table 3). Furthermore, when assaying the in vitro invasion of hepatic endothelial cell monolayers by B16M-F10 cells, we found a marked decrease (~83%) in the number of penetrated colonies in the presence of t-PTER and QUER (Table 3); however, when eNOS^-/- HSE cells instead of control eNOS^+/+ HSE cells were used, the number of colonies increased by ~2-fold, and the inhibition elicited by the polyphenols almost disappeared (Table 3). To further prove that NO is indeed involved in the mechanism of tumor cell killing, we added a NO scavenger (300 mM 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide potassium salt, Affinity Research Products, Mamhead, UK) (42) to the co-culture medium. During HSE and B16M-F10 cell interaction in either the presence or absence of t-PTER and QUER (as in Table 3), NO_2^- values remained <0.1 nmol/10^6 cells in the presence of 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide potassium salt. Under these conditions, tumor cell cytotoxicity was ~1% in either the presence or absence of t-PTER and QUER.

NO Regulates bcl-2 Expression in B16M-F10 Cells—We know from previously reported data that t-PTER- and QUER-induced inhibition of bcl-2 expression sensitizes B16M-F10 cells to vascular endothelium-induced cytotoxicity (6). In addition, the results reported above show that HSE-induced B16M-F10 cell cytotoxicity is potentiated by t-PTER and QUER in a NO-dependent fashion (Table 3). However, we do not know if exposure to high NO levels (as those expected in the metastatic environment) (Table 3) also affects bcl-2 expression and/or Bcl-2 levels in those cancer cells that survive the interaction with the vascular endothelium. To investigate this, we manipulated NO generation by incubating B16M-F10 cells in the presence of AMG and/or the NO donor S-nitroso-N-acetyl-DL-penicillamine (SNAP). As shown in Table 4, AMG-induced inos production was associated with a marked decrease in NO_2^- bcl-2 expression, and Bcl-2 levels. However, when 0.3 mM SNAP elicited recovery of NO_2^- levels to practically control values, bcl-2 expression and Bcl-2 levels were found to be also similar to their respective controls (Table 4). In addition, when 3.0 mM SNAP promoted higher NO generation, a decrease in bcl-2 expression and Bcl-2 levels was also measured (Table 4). Moreover, SNAP (0.3 mM) reversed the effects of t-PTER and QUER (Table 4), thus revealing a direct role of NO in t-PTER/QUER-induced Bcl-2 down-regulation. These results suggest that very low and high NO levels (compared with controls) may
have similar effects on bcl-2 expression and Bcl-2 levels. In this sense, t-PTER and QUER administration may represent a double advantage in vivo. Polyphenol-induced down-regulation of the iNOS gene (and consequently of bcl-2) in B16M-F10 cells may render metastatic cells more susceptible to immune- and endothelium-elicited cytotoxicity, and on the other hand, polyphenol-induced up-regulation of endothelial eNOS can facilitate cytotoxic NO-dependent cancer cell death.

t-PTER- and QUER-induced NO Shortage in B16M-F10 Cells Down-regulates the Activity of CREB—The transcription factor CREB mediates survival in many cells, including cancer cells (43). CREB and its associated proteins act as survival factors for human melanoma cells and hence contribute to the acquisition of their malignant phenotype (44). CREB proteins function as positive regulators of the bcl-2 gene via direct binding of CREB and activating transcription factor 1 family members to a cAMP-response element within the bcl-2 promoter (45). Recently, it was shown that sustained inhibition of NO production triggers apoptosis in differentiated cerebellar granule neuron cultures, a fact that is associated with down-regulation of important survival factors such as Akt/protein kinase B and CREB (46). Ciani et al. (46) identified bcl-2 as one of the anti-apoptotic genes down-regulated by decreased CREB phosphorylation.

The mechanism of CREB transcriptional activation depends on phosphorylation of Ser^133^, which may be mediated by different kinases (e.g. Ref. 47). Thus, we investigated this possibility in B16M-F10 cells and found that t-PTER and QUER caused inhibition of CREB phosphorylation (Fig. 3). This effect was similar to the NO shortage-dependent inhibition of CREB phosphorylation observed in the presence of AMG (Fig. 3). The t-PTER- and QUER-induced decrease in phospho-CREB was prevented in the presence of 0.3 mM SNAP (Fig. 3), thus indicating a direct link between NO generation and CREB phosphorylation. Therefore, a NO shortage-dependent decrease in phospho-CREB could be, at least in part, the mechanism involved in the polyphenol-induced decrease in bcl-2 expression. To test this hypothesis further, B16M-F10 cells were loaded by electroporation (Bio-Rad system, 1.0 kV/cm with a time constant of 50 ms) with anti-phospho-CREB monoclonal antibody (see “Experimental Procedures” and Ref. 48 for technical details). A decrease in bcl-2 expression (~80% compared with controls; data not shown), not significantly different from that induced by 2 mM AMG (Table 4), was observed in the presence of anti-CREB antibody. Moreover, silencing of CREB using specific siRNA was associated with lower bcl-2 expression and phospho-CREB levels (Fig. 4). In addition, PTER/QUER-induced bcl-2 down-regulation was reversed by a guanylate cyclase activator (YC-1, 3-(5'-hydroxymethyl-2'-furyl)-1-benzylindazole, Yusin Shin Pharmaceutical Industry Co., Ltd., Taichung, Taiwan) (Fig. 5). These results prove the direct connection of PTER/QUER to CREB and to bcl-2 expression. bcl-2 expression and phospho-CREB levels returned to control values (as in Fig. 4) (data not shown) in surviving B16M-F10 cells after 12 h of co-culture with endothelial cells, in agreement with the data showing that the effect of t-PTER and QUER could be reversed by NO directly (Table 4).

![FIGURE 3](image-url)
Therefore, a higher generation of highly reactive oxidants cannot be argued as a mechanism to explain the increased tumor cell death.

Experiments in human leukemia HL-60 cells have shown that NO-induced apoptosis is associated with an increase in ceramide generation (29). This lipid second messenger plays an important role in regulating cell growth, differentiation, and death (49). Thus, we investigated whether NO, at the level released during B16M-F10/HSE interaction in the presence of t-PTER and QUER, is linked to increased B16M-F10 cell death via an increase in ceramide generation. As shown in Table 5, co-culture of B16M-F10 and eNOS+/−/− cells indeed caused an increase (2-fold) in ceramide within the cancer cells. Ceramide can be generated through different mechanisms. First, it can be produced by dihydroceramide desaturase as dihydroceramide formed on microsome surfaces by N-acylation of sphinganine catalyzed by dihydroceramide synthase (50). However, control dihydroceramide levels measured in B16M-F10 cells (20 ± 6 pmol/mg of protein, n = 5) after coculture with the HSE were not significantly changed in the presence of t-PTER and QUER. Second, ceramide is also formed by hydrolysis of sphingomyelin catalyzed by different SMase activities. Hence, we measured magnesium-dependent and -independent neutral SMase and acid SMase activities in B16M-F10 cells after co-culture with the HSE and found that the magnesium-dependent neutral SMase activity was increased in the presence of polyphenol association (Table 5). Ceramide may promote apoptosis by interacting with apoptotic proteases or by signaling mitochondrial permeability transition (51). Kroemer and co-workers (52) showed that Bcl-2 is a highly efficient inhibitor of ceramide-induced mitochondrial permeability transition and release of apoptosis-inducing factor. Thus, t-PTER- and QUER-induced ceramide generation may be the mechanism that explains, at least in part, the increased death of Bcl-2-depleted B16M-F10 cells during their interaction with the vascular endothelium (Table 3). To test this hypothesis further, t-PTER- and QUER-pretreated B16M-F10 cells (as in Table 1) were incubated for 6 h in the presence of cell-permeable C6-ceramide (Sigma) (53) at 75 pmol/mg of protein (Table 5). Guanylate cyclase activity was 53 and 117 pmol of cGMP formed per min/mg of protein in control and YC-1-treated B16M-F10 cells, respectively (n = 5).

FIGURE 4. Silencing of CREB using specific siRNA is associated with bcl-2 down-regulation in B16M-F10 cells. Gene silencing experiments were performed as described under “Experimental Procedures.” A, whole cells extracts obtained from control and CREB siRNA-transfected B16M-F10 cells at 24 h after seeding were subjected to Western blotting. Proteins were probed with specific antibodies as described in the legend to Fig. 3. B, bcl-2 expression was analyzed as described in the legend to Table 4. Values represent the means ± S.D. for four different experiments. *, p < 0.01.

FIGURE 5. Guanylate cyclase activation reverses t-PTER/QUER-induced bcl-2 down-regulation. YC-1 was added to 23-h cultured B16M-F10 cells. t-PTER (40 μM) and QUER (20 μM) were added at 23 h after seeding and were present for only 60 min. A, whole cell extracts obtained at 24 h after YC-1 or polyphenol addition were subjected to Western blotting. Proteins were probed with antibody specific for CREB phosphorylated at Ser133 or β-actin. Lane 1, control; lane 2, YC-1; lane 3, t-PTER, QUER, and YC-1; lane 4, t-PTER and QUER. B, expression of bcl-2 was measured as described in the legend to Table 4. Values are the means ± S.D. for four to five different experiments. *, p < 0.01. Guanylate cyclase activity was 53 and 117 pmol of cGMP formed per min/mg of protein in control and YC-1-treated B16M-F10 cells, respectively (n = 5).
NO Mediates Polyphenol-induced Melanoma Cell Death

TABLE 5

Effect of t-PTER and QUER on SMase activities and ceramide levels in B16M-F10 cells during interaction with the HSE

SMase activities and ceramide levels in B16M-F10 cells are expressed as nmol/mg of protein/h and as pmol/mg of protein, respectively. These measurements were performed in isolated cancer cells after 3 h of interaction with the HSE. During this incubation period, both HSE and B16M-F10 cells maintained a viability of >90% (data not shown). NSMase, neutral SMase.

	B16M-F10	
	+eNOS+/+	+eNOS-/-
Mg-dependent NSMase	1.26 ± 0.34	1.05 ± 0.23
Mg-independent NSMase	0.50 ± 0.17	0.47 ± 0.12
Acid SMase	7.44 ± 2.10	7.59 ± 1.41
Ceramide	36 ± 12	30 ± 8

**p < 0.01 comparing t-PTER + QUER versus no polyphenol addition.

However, despite the cytotoxic effect of ceramide reported above, the same ceramide concentration did not cause tumor cell death in viable B16M-F10 cells surviving 12 h after coculture with endothelial cells (data not shown). To test whether this is directly linked to Bcl-2, we used an antisense oligodeoxynucleotide to deplete Bcl-2 levels in B16M-F10 cells as described (7). In vitro treatment of B16M-F10 cells with the antisense bcl-2 oligodeoxynucleotide (50 μM) decreased bcl-2 expression and Bcl-2 levels to values that were not significantly different from those reported in Table 4 in the presence of AMG (2 mM). When antisense bcl-2 oligodeoxynucleotide-treated cells were incubated for 6 h in the presence of 75 pmol of the cell-permeable C26-ceramide (as described above) (Table 5), we observed 28 ± 5% (n = 4) apoptotic B16M-F10 cell death. Therefore, ceramide at the levels generated during B16M-F10 cell interaction with the vascular endothelium is not cytotoxic for cancer cells unless it is associated with Bcl-2 down-regulation.

DISCUSSION

Short-term exposure of B16M-F10 cells (high metastatic potential) to t-PTER and QUER at a concentration that is relevant under in vitro conditions decreases iNOS gene expression (Fig. 1) and NO generation (Table 1). NO shortage decreases CREB phosphorylation (Fig. 3) and bcl-2 expression (Table 4). In parallel, polyphenol association increases eNOS gene expression in the vascular endothelium (Fig. 2), leading, during cancer and endothelial cell interaction, to higher endothelial NO release (Tables 2 and 3) and to higher tumor cytotoxicity (Table 3). Furthermore, during B16M-F10/endothelial cell adhesion, t-PTER and QUER induce a NO-dependent increase in magnesium-dependent neutral SMase activity in cancer cells and thereby in ceramide generation (Table 5). NO and ceramide act as molecular inducers of apoptosis in Bcl-2-depleted B16M-F10 cells (see “Results”).

As stated in the Introduction, paradoxically, NO can promote apoptosis in some cells, whereas it inhibits apoptosis in others (see Ref. 10 for a review). NO-induced apoptosis in cells has been linked to high (supraphysiological) concentrations of NO (10) and appears to be regulated by the redox state and by formation of transition metal complexes (16, 54, 55). This concept is in agreement with the idea that activation of iNOS gene expression may facilitate cancer cell death and inhibition of metastases (56). On the other hand, anti-apoptotic signaling has been generally correlated with low or physiological NO levels (10). However, it was reported recently that AMG-induced inhibition of endogenous NO synthesis does not affect cell cycle progression of human melanoma cells, but leads to cell death by apoptosis (34). In addition, it has been shown that, in vitro, t-RESV induces the apoptosis of leukemic B cells and simultaneously inhibits the production of NO through iNOS gene down-regulation (57). Nevertheless, the effects of t-RESV on 48-h cultured leukemic B cells are unrealistic: e.g. 3–50 μM t-RESV, constantly present in the culture medium, increases the number of fluorescein isothiocyanate-labeled annexin V-positive cells by 10–50%; 10–50 μM t-RESV decreases iNOS gene expression by 50–90%; and 50 μM t-RESV decreases Bcl-2 content by 25–60% (57). Bioavailability of natural polyphenols is a critical issue that must be investigated before correlating in vitro observations and biochemical effects (2). After intravenous administration to rabbits of 20 mg of t-RESV/kg (a dose that represents, for an adult human weighing 70 kg, ~140 times the maximum amount of total RESV found in 1 liter of red wine), its highest concentration in plasma (42.8 ± 4.4 μM at 5 min after administration) decreases very rapidly to 0.9 ± 0.2 μM (0.2 mg/liter) at 60 min and to <0.1 μM at 120 min (5). Following a similar protocol, we calculated a half-life of t-RESV in mouse plasma of ~10.2 min (6) and in human plasma of ~11.5 min. If the same amount of t-RESV (20 mg/kg) is administered orally, the highest concentration in plasma (2–3 μM in mice and ~1 μM in rabbits or rats) is found within the first 5 min after administration, followed by a decrease to <0.1 μM at 60 min (5). On the other hand, after intravenous administration to mice of 20 mg of t-PTER or QUER/kg (a dose that represents, for an adult human weighing 70 kg, ~1000 times the maximum amount of PTER found in 1 kg of dark grapes and ~20 times the maximum daily intake of QUER), their mean values of plasma concentrations measured within the first hour are 40 and 20 μM, respectively (6). Both t-PTER and QUER decrease bcl-2 expression (6). Moreover, both polyphenols show synergic effects on NO generation by B16M-F10 and endothelial cells (Tables 1–3). Therefore, it is obvious that the association has advantages over each single polyphenol. Our present findings show that a link between iNOS down-regulation in malignant cells and polyphenols can be firmly established using the association of t-PTER and QUER at bioavailable concentrations (short-term exposure at mean plasma concentrations). How-

3 J. M. Estrela, M. Asensi, and P. Ferrer, unpublished data.
NO Mediates Polyphenol-induced Melanoma Cell Death

FIGURE 6. Molecular mechanisms in NO/Bcl-2-dependent metastatic cell death activation induced by t-PTER and QUER. A polyphenol-induced decrease in iNOS gene expression leads to Bcl-2 depletion in B16M-F10 cells at steps previous to the interaction with the vascular endothelium. A t-PTER- and QUER-induced increase in eNOS gene expression increases NO release from the vascular endothelium upon interaction with metastatic B16M-F10 cells; and (c) the presence of polyphenols, NO-mediated neutral SMase activation and increased ceramide generation are the main cell death-activated mechanisms in Bcl-2-depleted metastatic B16M-F10 cells. Our results demonstrate that, at different steps, very low and high NO lev-

for this purpose, concentrations of t-PTER and QUER obtained after intravenous administration were necessary.

t-PTER, a naturally occurring analog of t-RESV but ~60–100 times stronger as an antifungal agent, shows similar anticarcinogenic properties (58). t-PTER is present, for example, in extracts of the heartwood of Pterocarpus marsupium, used in Ayurvedic medicine for the treatment of diabetes, and in dark-skinned grapes (although quantitative studies have shown that, for every 10 parts t-RESV, there are only 1–2 parts t-PTER) (Ref. 58 and references therein). Human intake of flavones and flavonols (the most common flavonoids) is ~3–70 mg/day (mainly QUER, 60–75%; major sources include tea, wine, berries, apples, and onions) (2). Flavonoids are among the most potent antioxidants because they show one or more of the following structural elements: an o-diphenolic group, a 2,3-double bond conjugated with 4-oxo function, and OH groups at positions 3 and 5. QUER combines three properties, and previous research has confirmed that it also exhibits anti-tumor properties (2, 59). However, all bioactive polyphenols studied so far undergo conjugation in the intestinal tract of man and rodents. This conjugation is rapid and extensive. It is in this form that they are absorbed, with very little of the free polyphenol gaining access to the blood (60–63); in fact, the latter is so small that, theoretically, it could even arise from limited hydrolysis of the conjugates because blood is quite rich in glucuronidase, sulfatase, and other deconjugating enzymes. Orally administered polyphenols are unlikely to be biologically effective unless their biological effects are not inactivated by conjugation and/or the free polyphenol can be released by hydrolysis of conjugates and can be taken up by target tissues in amounts to generate pharmacologically active concentrations. There is no evidence so far that either of the above possibilities is true. These facts imply the need for intravenous administration to obtain pharmacologically active concentrations of natural polyphenols, at least for therapy applications in the case of systemically disseminated cancers. Nevertheless, doses required to inhibit metastatic growth in vivo may possibly depend on the tumor cell type.

CREB and its associated proteins act as survival factors for human melanoma cells (44). A NO short-
age-induced decrease in CREB activity (Fig. 3) interferes with the cGMP-dependent protein kinase, the most important intracellular signaling pathway activated by NO (64). In addition, high levels of NO (released by the endothelium) promote an increase in ceramide for-
els act in parallel polyphenol-activated mechanisms, leading to metastatic cell death.

REFERENCES

1. Yang, C. S., Landau, J. M., Huang, M. T., and Newmark, H. L. (2001) Annu. Rev. Nutr. 21, 381–406
2. Ross, J. A., and Kasum, C. M. (2002) Annu. Rev. Nutr. 22, 19–34
3. Pervaiz, S. (2003) Free Radic. Biol. Med. 34, 878–897
4. Ignarro, L. J., Wood, K. S., and Wolin, M. M. (1989) J. Biol. Chem. 264, 7193–7199
5. Rasheed, A., Iman, M., O'Bryan, T. A., and Satter, T. A. (1989) J. Biol. Chem. 264, 7193–7199
6. Oh, K. H., Shin, K. S., and Koh, J. H. (2001) Biochem. Biophys. Res. Commun. 281, 746–752
7. Conkright, M. D., and Montminy, M. (2005) Cell. Signal. 17, 1685–1694
8.Revision

Acta 1538, 234–241
32. Obrador, E., Carretero, J., Esteve, J. M., Pellicer, J. A., Pascual, A., Petschen, L., and Estrella, J. M. (2001) Free Radic. Biol. Med. 31, 642–650
33. Ohigashi, H., Shinkai, K., Mukai, M., Ishikawa, O., Imaoka, S., Iwanga, T., and Acedo, H. (1989) Jpn. J. Cancer Res. 80, 818–821
34. Salvucci, O., Carsana, M., Bersani, I., Tragni, G., and Anichini, A. (2001) Cancer Res. 61, 318–326
35. Sauer, H., Wartenberg, M., and Hescheler, J. (2001) Cell. Physiol. Biochem. 11, 173–186
36. Dragst, L. O. (2003) Int. J. Vitam. Nutr. Res. 73, 112–119
37. Haynes, V., Effering, S., Traasseth, N., and Giulivi, C. (2004) J. Bioenerg. Biomembr. 36, 341–346
38. De Pascual-Teresa, S., Johnston, K. L., DuPont, M. S., O'Leary, K. A., Needs, P. W., Morgan, L. M., Clifford, M. N., Bao, Y., and Williamson, G. (2004) J. Nutr. 134, 552–557
39. Orr, F. W., Wang, H. H., Lafrenie, R. M., Scherbarth, S., and Nance, D. M. (2000) J. Pathol. 190, 310–329
40. Estrella, J. M., Ortega, A., and Obrador, E. (2006) Clin. Rev. Clin. Lab. Sci. 43, 143–181
41. Rees, D. D., Palmer, R. M., Schulz, R., Hodson, H. F., and Moncada, S. (1990) Br. J. Pharmacol. 101, 746–752
42. Maeda, H., Aikake, T., Yoshida, M., and Suga, M. (1994) Leukocyte Biol. 56, 588–592
43. Conkright, M. D., and Montminy, M. (2005) Trends Cell Biol. 15, 457–459
44. Jean, D., Harbison, M., McConkey, D. J., Ronai, Z., and Bar-Eli, M. (1998) J. Biol. Chem. 273, 24884–24890
45. Wilson, B. E., Mochnow, E., and Boxer, L. M. (1996) Mol. Cell. Biol. 16, 5546–5556
46. Cianci, E., Guidi, S., Bartesaghi, R., and Contestabile, A. (2002) J. Neurochem. 82, 1282–1289
47. Mayr, B., and Montminy, M. (2001) Nat. Rev. Mol. Cell Biol. 2, 599–609
48. Rui, M., Chen, Y., Zhang, Y., and Ma, D. (2002) Life Sci. 71, 1771–1778
49. Siskind, J. W. (2005) Eukaryotic Cell 4, 143–153
50. Michel, C., van Echten-Deckert, G., Rother, J., Sandhoff, K., Wang, E., and Merrill, A. H., Jr. (1997) J. Biol. Chem. 272, 22432–22437
51. Kolesnick, R. N., and Kronke, M. (1998) Annu. Rev. Physiol. 60, 643–665
52. Susin, S. A., Zamzami, N., Castedo, M., Daugas, E., Wang, H. G., Geley, S., Fossy, J. F., Reed, J. C., and Kroemer, G. (1997) J. Exp. Med. 186, 25–37
53. Chan, S. Y., Hillie, A. L., Brown, M. G., Anderson, R., and Hoskin, D. W. (2006) Exp. Mol. Med. 38, 1–12
54. Moncada, S., Palmer, R. M., and Higgs, E. A. (1991) Pharmacol. Rev. 43, 109–142
55. Nathan, C. (1992) Science 258, 1051–1064
56. Xie, K., Kong, D., and Sider, J. I. (1996) J. Leukocyte Biol. 59, 797–803
57. Roman, V., Billard, C., Kern, F., Duft, C., and Scherer, H. (2002) J. Pathol. 190, 842–851
58. Rinella, M., Cuendet, M., Desmarchelier, C., Mehta, R. G., Pizzuto, J. A., and Duke, S. O. (2002) J. Agric. Food Chem. 50, 3453–3457
59. Lamson, D. W., and Brignall, M. S. (2000) Altern. Med. Rev. 5, 196–208
60. Nivivelt, R. J., van Noord, E., van Hoorn, D. E. C., Boelen, P. G., van Norren, K., and van Deuren, P. A. M. (2001) Am. J. Clin. Nutr. 74, 418–425
61. Goldberg, D. M., Yan, J., and Soles, G. I. (2003) Clin. Biochem. 36, 79–87
62. Manach, C., Scalbert, A., Morand, C., Remézy, C., and Jimenez, L. (2004) Am. J. Clin. Nutr. 79, 727–747
63. Kroon, P. A., Clifford, M. N., Groz, A., Day, A. J., Donovan, J. L., Moncada, S., and Williamson, G. (2002) Oncogene 21, 2020–2028
64. Mihara, M., Erster, S., Zaika, A., Petrenko, O., Chittenden, T., Pancoska, P., and Moll, U. M. (2003) Mol. Cell. Biol. 11, 577–590
65. Bradford, M. M. (1976) Anal. Biochem. 72, 248–254