Evaluation of the potential of organ glucose metabolism by 18F-FDG accumulation with insulin loading in super-aged mice compared with young normal mice

Jingmin Zhao
Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun

Chengbo Tan
Department of Neurosurgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai

Ryota Imai
Department of Bioregulation and Pharmacological Medicine, Fukushima Medical University, Fukushima

Naoyuki Ukon
Advanced Clinical Research Center, Fukushima Global Medical Science Center, Fukushima Medical University, Fukushima

Saki Shimoyama
Advanced Clinical Research Center, Fukushima Global Medical Science Center, Fukushima Medical University, Fukushima

Yuko Maejima
Department of Bioregulation and Pharmacological Medicine, Fukushima Medical University, Fukushima

Yuji Omiya
Tsumura Kampo Research Laboratories, Kampo Research & Development Division, Tsumura & Co., Ibaraki

Kazuhiro Takahashi
Advanced Clinical Research Center, Fukushima Global Medical Science Center, Fukushima Medical University, Fukushima

Hiroshi Ito
Department of Radiology and Nuclear Medicine, Fukushima Medical University, Fukushima

Guangxian Nan (✉ nangx@jlu.edu.cn)
Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun

Songji Zhao
Advanced Clinical Research Center, Fukushima Global Medical Science Center, Fukushima Medical University, Fukushima

Kenju Shimomura
Department of Bioregulation and Pharmacological Medicine, Fukushima Medical University, Fukushima
Research Article

Keywords: glucose metabolism, 18F-FDG accumulation, age, insulin loading

DOI: https://doi.org/10.21203/rs.3.rs-119167/v1

License: ☕️ ☝️ This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

It is important to determine the functional changes of organs that occur as a result of aging, the understanding of which may lead to the maintenance of a healthy life. Glucose metabolism in healthy bodies is one of the potential markers used to evaluate the changes of organ function. Thus, information about normal organ glucose metabolism may help to understand the functional changes of organs. [18F]-Fluoro-2-deoxy-2-D-glucose (18F-FDG), a glucose analog, has been used to measure glucose metabolism in various fields, such as basic medical research and drug discovery. However, glucose metabolism changes in super-aged animals have not yet been fully clarified. The aim of this study is to evaluate changes in glucose metabolism in organs and brain regions by measuring 18F-FDG accumulation and 18F-FDG autoradiography with insulin loading in super-aged and young wild-type mice. In control groups, the levels of 18F-FDG accumulation in the blood, plasma, muscle, lungs, spleen, pancreas, testes, stomach, small intestine, kidneys, liver, brain, and brain regions, namely, the cortex, striatum, thalamus, and hippocampus, were all significantly higher in the super-aged mice. After insulin loading, the 18F-FDG accumulation levels showed negative changes in the pancreas and kidneys, as well as in the cortex, striatum, thalamus, and hippocampus in the super-aged mice, whereas positive changes were observed in those in the young mice. These results demonstrate that insulin loading decreases effect on 18F-FDG accumulation levels in some organs of the super-aged mice. Therefore, aging can increase insulin resistance and lead to systemic glucose metabolism dysfunction.

Introduction

With a globally aging population, the health issues caused by aging and age-related diseases have become inevitable challenges for all countries. Understanding the functional changes of organs that occur as a result of aging is essential to prevent these age-related diseases, including Alzheimer's disease (AD), Parkinson's disease (PD), dementia, stroke, peripheral neuropathy, macular degeneration, cataracts, senile deafness, diabetes mellitus, osteoporosis, osteoarthritis, atherosclerosis, prostatic hyperplasia, and even cancer. In particular, the metabolism of glucose as an energy source has been regarded as a potential indicator for these disorders.

Under tight hormonal control by insulin, glucose homeostasis is maintained by a balance among glucose ingestion, utilization, and production. As age advances, glucose homeostasis tends to gradually become disrupted, giving rise to type 2 diabetes (T2D) and cardiovascular diseases. Insulin resistance is one of the major mechanisms underlying abnormal glucose tolerance. Recognition of abnormal glucose metabolism in the elderly is important in implementing age-appropriate preventive and therapeutic strategies. It is widely accepted that aging is accompanied by an increase in insulin resistance. This age-related insulin resistance has been variously attributed to several factors, including mitochondrial dysfunctions, reduced lean muscle mass and elevated adiposity, hormonal changes, increased oxidative stress, inflammation, and reduced physical activity. However, these studies do not provide insights into organ-specific differences in insulin resistance.
The glucose analog \([^{18}F]-\text{Fluoro-2-deoxy-2-D-glucose (}^{18}F\text{-FDG)}\), a molecular imaging probe, is widely used in nuclear medicine for evaluating tissue glucose utilization and glucose metabolism15-17. Although \(^{18}F\text{-FDG} \) accumulation has been investigated in various fields, such as basic medical research and drug discovery, changes in glucose metabolism evaluated using \(^{18}F\text{-FDG} \) in super-aged animals have not yet been fully clarified. Determining whether \(^{18}F\text{-FDG} \) distribution is associated with aging could provide insight into metabolic changes and help to prevent age-related diseases.

Therefore, in this study, we attempted to clarify the changes in glucose metabolism that occur with aging by comparing \(^{18}F\text{-FDG} \) accumulation levels after insulin loading in super-aged and young wild-type mice.

Results

Organ \(^{18}F\text{-FDG} \) accumulation experiment in control groups

The body weight and blood glucose level were determined in young and super-aged mice groups (Table 1). The levels of organ \(^{18}F\text{-FDG} \) accumulation were determined in young and super-aged mice groups (Table 2). The body weight of the super-aged mice was significantly higher than that of the young mice (Table 1, Fig. 1a). The blood glucose concentration was not significantly different between two groups (Table 1, Fig. 1b). Apart from the white adipose tissue, brown adipose tissue, large intestine, and heart, the levels of \(^{18}F\text{-FDG} \) uptake in the blood, plasma, muscle, lungs, spleen, pancreas, testes, stomach, small intestine, kidneys, liver and brain were all significantly higher in the super-aged mice than in the young mice (Table 2, Fig. 1c).

Changes in \(^{18}F\text{-FDG} \) accumulation level in organs

In the young mice group, the levels of \(^{18}F\text{-FDG} \) uptake in the muscle, heart, pancreas, white adipose tissue, stomach, kidneys, brown adipose tissue, and brain significantly increased after insulin loading. In contrast, the levels of \(^{18}F\text{-FDG} \) uptake in the blood, plasma, spleen, testes, large intestine, and liver significantly decreased after insulin loading (Table 2, Fig. 2). On the other hand, in the super-aged mice group, the levels of \(^{18}F\text{-FDG} \) uptake in the muscle, heart, white adipose tissue, stomach, and brown adipose tissue significantly increased after insulin loading. However, the levels of \(^{18}F\text{-FDG} \) uptake in blood, plasma, spleen, testes, and liver were significantly decreased after insulin loading (Table 2, Fig. 3). Compared with the young mice group, the levels of \(^{18}F\text{-FDG} \) uptake in the pancreas, kidneys and brain did not exhibit observable changes after insulin loading in the super-aged mice group. In contrast, those in the lungs and small intestine significantly decreased after insulin loading (Table 2, Fig. 3).

The body weight showed no significant difference between control and insulin-loaded groups in both young and super-aged mice (Table 1, Fig. 4a). When the blood glucose concentration decreased and displayed as “low” after insulin loading, we defined this blood glucose concentration as 20 mmol/dl which is the detection limit of blood glucose meter. After insulin loading, the blood glucose concentration significantly decreased in both young and super-aged mice groups (Table 1, Fig. 4b). The rate of \(^{18}F\text{-FDG} \)
uptake level change in the control and insulin-loaded groups was assessed according to the following formula: \(\left(\text{mean level of } ^{18}\text{F-FDG uptake in insulin-loaded group} - \text{mean level of } ^{18}\text{F-FDG uptake in control group} \right) / \text{mean level of } ^{18}\text{F-FDG uptake in control group} \times 100\% \). In these mice, the rates of change in the muscle, heart, white adipose tissue, stomach, brown adipose tissue, and brain showed positive changes, whereas those in the blood, plasma, lungs, spleen, testes, small intestine, large intestine, and liver showed negative changes (Fig. 4c). Moreover, the rates of change in the pancreas and kidneys showed positive changes in the young mice but negative changes in the super-aged mice (Fig. 4c). Regarding these positive changes, the rate of change in the muscle in the young mice was higher than that in the super-aged mice (223.3% vs 107.9%), as well as brain (31.6% vs 13.0%) (Fig. 4c).

Brain \(^{18}\text{F-FDG autoradiographic experiment in control groups}^{*}

The body weight and blood glucose concentration were determined in the young and super-aged mice (Table 3). The levels of \(^{18}\text{F-FDG uptake in brain regions were determined in the young and super-aged mice (Table 4). The body weight of the super-aged mice was significantly higher than that of the young mice (} P < 0.0001) (Table 3, Fig. 5a). The blood glucose concentration was not significantly different between the two groups (Table 3, Fig. 5b). The levels of \(^{18}\text{F-FDG accumulation in the cortex, striatum, thalamus, and hippocampus were all significantly higher in the super-aged mice than in the young mice (} P < 0.001) (Table 4, Fig. 5c).

Changes in \(^{18}\text{F-FDG accumulation level in brain regions}^{*}

The levels of \(^{18}\text{F-FDG accumulation in brain regions in the insulin-loaded young and super-aged mice were determined and compared with those in the control young and super-aged groups (Table 4). In the brain, the levels of } ^{18}\text{F-FDG accumulation in the cortex, striatum, and hippocampus significantly increased after insulin loading in the young group (Table 4, Fig. 6a). Compared with the young group, the levels of } ^{18}\text{F-FDG accumulation in the striatum, thalamus and hippocampus did not show observable changes after insulin loading in the super-aged group (Table 4, Fig. 6b). In contrast, the level of } ^{18}\text{F-FDG accumulation in the cortex significantly decreased after insulin loading in the super-aged group (Table 4, Fig. 6b).}

The body weight showed no significant difference between control and insulin-loaded groups in both young and super-aged mice (Table 3, Fig. 7a). When the blood glucose concentration decreased and displayed as “low” after insulin loading, we defined this blood glucose concentration as 20 mmol/dl which is the detection limit of blood glucose meter. After insulin loading, the blood glucose concentration significantly decreased in both young and super-aged groups (Table 3, Fig. 7b). The rate of \(^{18}\text{F-FDG accumulation level change in the control and insulin-loaded groups was assessed according to the following formula: } \left(\text{mean level of } ^{18}\text{F-FDG accumulation in insulin loaded group} - \text{mean level of } ^{18}\text{F-FDG accumulation in control group} \right) / \text{mean level of } ^{18}\text{F-FDG accumulation in control group} \times 100\%. The } ^{18}\text{F-
FDG accumulation level showed positive changes in the cortex, striatum, thalamus, and hippocampus in the young group, whereas negative changes were observed in those in super-aged group (Fig. 7c).

Discussion

Alterations in glucose homeostasis are enhanced with age and can be linked to T2D, cardiocerebrovascular injury, and other age-related diseases\(^\text{18}\). To clarify the changes in glucose metabolism with aging, we examined and compared the body weight, blood glucose concentration, and \(^{18}\)F-FDG accumulation level in each organ between the super-aged and young mice.

In this study, the body weight of the super-aged mice was markedly higher than that of the young mice. Previous studies have indicated that the progressive decline in insulin action with age can be attributed largely to gradual increases in the degree of relative obesity and the number of sites of fat deposition. In addition, insulin resistance is associated with sarcopenia and an accompanying relative increase in fat mass\(^\text{19,20}\). In a longitudinal study of over 4,500 healthy individuals, Lindstrom and Tuomilehto\(^\text{21}\) and Salmon\(^\text{22}\) showed that the likelihood of patients aged 55–64 years developing drug-treated diabetes was roughly equivalent to patients with a BMI > 30. Since muscle is a crucial variable in determining the efficacy of glucose uptake, a decrease in muscle mass leads to a simultaneous decrease in glucose disposal rate\(^\text{23,24}\). Although the mechanisms underlying the link between insulin resistance and fat deposition have not yet been fully elucidated, it has been suggested that because of both an increased level of the \(\beta\)-adrenoceptor pathway and a reduced \(\alpha_2\)-adrenoceptor component level, visceral adipose tissue shows a high lipolytic response to catecholamine, exposing the liver to high free fatty acid concentrations, which in turn induces insulin resistance\(^\text{24-27}\). In this study, after insulin loading, the muscle \(^{18}\)F-FDG uptake rate of super-aged mice was significantly lower than that of young mice (107.9% vs 223.3%). In super-aged mice, the increase in adipose tissue weight may lead to insulin resistance to decrease glucose uptake level in the muscle.

In all the insulin-loaded groups, the levels of \(^{18}\)F-FDG uptake in the muscle, heart, white adipose tissue, stomach, and brown adipose tissue were significantly higher than in all the control groups. Glucose transporter type 4 (Glut-4), which is an insulin-regulated glucose transporter, is primarily expressed in several tissues, including adipocytes, as well as the skeletal and cardiac muscles\(^\text{28,29}\). An excessively high blood insulin concentration leads to a series of signal cascades, including the autophosphorylation of the insulin cell surface receptor, the activation of receptor tyrosine kinase, the tyrosine phosphorylation of insulin receptor substrates 1 and 2, the activation of phosphatidylinositol 3-kinase, and the activation of protein kinase B and its downstream mediator AS160. These signal cascades eventually induce the translocation of a large quantity of Glut-4 from intracellular vesicles to the plasma membrane\(^\text{30,31}\). Thus, hyperinsulinemia markedly increases the level of glucose uptake in adipocytes and the skeletal and cardiac muscles.
In all the insulin-loaded groups, the levels of $^{18}\text{F-FDG}$ uptake in the blood, plasma, spleen, testes, and liver were significantly lower than those in all the control groups. Previous studies ascribed the reduced $^{18}\text{F-FDG}$ uptake in tumors and inflammatory lesions with insulin-induced hypoglycemia to the effects of insulin, which shifts $^{18}\text{F-FDG}$ from the original area to insulin-sensitive organs32,33. This insulin effect may also explain the reduced $^{18}\text{F-FDG}$ accumulation in insulin-insensitive organs with insulin-induced hypoglycemia.

In the control groups, excluding the heart, white adipose tissue, brown adipose tissue, and large intestine, the levels of $^{18}\text{F-FDG}$ accumulation in the blood, plasma, muscle, lungs, spleen, pancreas, testes, stomach, small intestine, kidneys, liver, and brain were all significantly higher in the super-aged mice than that in the young mice. However, the blood glucose concentration was not significantly different between the young and super-aged control groups. Hyperinsulinemia has been implicated in the progression of obesity, insulin resistance, and T2D. Elevated insulin levels can be a cause and consequence of obesity and insulin resistance$^{34-36}$. Hyperinsulinemia, which is inevitably associated with insulin resistance, also appears to negatively affect kidney function via the induction of glomerular hyperfiltration and increase in vascular permeability37. In this study, the levels of $^{18}\text{F-FDG}$ uptake in the kidneys in the young insulin-loaded group were significantly higher than those in the young control group. Compared with the young group, the levels of $^{18}\text{F-FDG}$ uptake in kidneys in the super-aged group did not markedly change after insulin loading. Moreover, the levels of $^{18}\text{F-FDG}$ uptake in the kidneys showed positive changes in the young mice, but negative changes were observed in the super-aged mice after insulin loading. As mentioned above, insulin-induced hypoglycemia shifts $^{18}\text{F-FDG}$ from the original area to insulin-sensitive organs32,33. This insulin effect may also explain the reduced $^{18}\text{F-FDG}$ uptake in the kidneys in the super-aged mice, because the decreased insulin sensitivity of the kidneys leads to the shift of $^{18}\text{F-FDG}$ to insulin-sensitive organs. These findings suggest that there were obstacles in glucose metabolism in the kidneys in super-aged mice. On the other hand, this insulin resistance in old mice negatively affects kidney function, which leads to the excretion disorders of $^{18}\text{F-FDG}$, and subsequently to higher levels of $^{18}\text{F-FDG}$ accumulation in organs of elderly mice. Kidney dysfunction is a major cause of morbidity and mortality, whose prevalence is rising worldwide mainly because of the aging of populations38. However, the epidemics of abnormalities associated with insulin resistance39 might play a role in the increase in the prevalence of kidney dysfunction40. Insulin receptor substrate 1 plays a key role in insulin signaling and action in several organs including the kidneys41. Among the genes involved in the insulin signaling pathway is the gene encoding transmembrane glycoprotein ectonucleotide pyrophosphatase phosphodiesterase 1, which binds to and inhibits the insulin receptor and subsequent downstream insulin signaling and action in both cultured cells and animal models42. We consider that aging could induce insulin resistance through abnormal-insulin-signaling-related genes, and ultimately lead to glucose intolerance and kidney dysfunction.

In addition, after insulin loading, the brain glucose uptake rate in old mice was significantly lower than that in young mice (13.0% vs 31.6%). To more specifically evaluate the changes in glucose metabolism in
the brain, we carried out 18F-FDG autoradiography to evaluate the 18F-FDG accumulation in brain regions after insulin loading in super-aged and young wild-type mice. We found that the levels of 18F-FDG accumulation in the cortex, striatum, thalamus, and hippocampus were all significantly higher in the super-aged mice than in the young mice. However, the blood glucose concentration was not significantly different between the young and super-aged groups. This is consistent with the finding that the levels of 18F-FDG uptake in the brain were significantly higher in the super-aged mice that in the young mice in the study on the 18F-FDG distribution in organs. In the young mice group, the levels of 18F-FDG accumulation in the cortex, striatum, and hippocampus significantly increased after insulin loading. Compared with the young group, the levels of 18F-FDG accumulation in the cortex, striatum, and hippocampus in the super-aged group did not markedly change after insulin loading. In contrast, the level of 18F-FDG accumulation in the cortex significantly decreased after insulin loading in the super-aged group. Aging is associated with reductions in the levels of both insulin and its receptor in the brain, which may even cause the brain to be in the state of insulin resistance$^{43-46}$. Cholerton et al.44 indicated that chronic high levels of insulin and insulin resistance may exert a negative effect on several body systems, including the central nervous system, for some time prior to the onset of diabetes. There is increasing support to the idea that such early insulin abnormalities may be associated with the initiation of the cascade of the AD pathology in some individuals, years or even decades before the first clinical dementia symptoms are manifest44. Bingham et al.16 demonstrated an enhanced cerebral glucose metabolism that was particularly pronounced in the cortex following the administration of a low dose of insulin. The basis for brain-region-specific insulin effects on glucose metabolism may be attributable to the distribution of GLUTs47,48. Insulin-sensitive GLUTs 4 and 8 are selectively distributed in the brain, and insulin increases the levels of brain GLUT 4 expression and translocation49. In this study, 18F-FDG accumulation showed positive changes in the cortex, striatum, thalamus, and hippocampus in the young mice, whereas negative changes were observed in those in the super-aged mice after insulin loading. These indicate that the insulin sensitivity of these brain regions might gradually decrease with age and lead to age-related brain diseases such as AD and PD. The characteristics of glucose metabolism in the localized brain regions of these super-aged mice can be used to develop therapeutic models for age-related brain diseases.

Conclusions

In summary, we demonstrated that aging can induce insulin resistance and lead to dysfunction of systemic glucose metabolism. Insulin resistance could affect glucose metabolism and eventually cause age-related diseases. On the basis of findings, ameliorating this dysfunction may be a good preventive and therapeutic strategy for age-related diseases.

Methods

Preparation of animal models
The entire experimental protocols were approved by the Laboratory Animal Care and Use Committee of Fukushima Medical University (approval number 30021) and performed in accordance with the Guidelines for Animal Experiments at Fukushima Medical University. Eight-week-old and 96-week-old male C57BL/6J mice were purchased from Charles River Laboratories Japan, Inc. (Yokohama, Japan) and maintained in a specific-pathogen-free animal experiment facility. The room temperature was maintained between 23 and 25°C, and the relative humidity was maintained between 45 and 55%. The institutional laboratory housing provided a 12-h light/dark cycle and met all the criteria of the Association for Assessment and Accreditation of Laboratory Animal Care (AAALAC) International (http://www.aaalac.org/) 50. All animals were fasted overnight and then divided into four subgroups: young control group, super-aged control group, young insulin-loaded group, and super-aged insulin-loaded group.

Organ \(^{18}\)F-FDG accumulation study

Eight-week-old and 96-week-old male mice (n = 5, each group) were assigned to the control and insulin-loaded groups. Those in the insulin-loaded groups were intraperitoneally injected with human insulin (2 U/kg body weight, Eli Lilly & Co., Kobe) 30 min prior to \(^{18}\)F-FDG injection. We excluded one of the 96-week-old mice in the insulin-loaded group because the blood glucose level did not decrease after insulin loading. Each animal was initially anesthetized with 4% isoflurane in air and maintained via spontaneous ventilation with 2% isoflurane in air. \(^{18}\)F-FDG (11.5 MBq/0.1 ml) was injected into the tail vein. Ninety minutes later, the animals were sacrificed and their organs were excised. The organs (muscle, heart, lungs, spleen, pancreas, white adipose tissue, testes, stomach, small intestine, large intestine, kidneys, liver, brown adipose tissue, and brain) and blood samples (blood and plasma) were weighed, and their radioactivity was determined with a gamma counter (WIZARD\(^2\) 2480; PerkinElmer, USA). After decay correction, the percentage of injected dose per gram of tissue was obtained and normalized to the animal weight [%ID/g tissue/kg body weight (%ID/g/kg)]. Blood samples for glucose concentration measurement were obtained from the control group and insulin-loaded groups.

Brain\(^{18}\)F-FDG autoradiography study

Eight-week-old and 96-week-old male mice (n = 6, each group) were assigned to the control and insulin-loaded groups. Those in the insulin-loaded groups received an intraperitoneal injection of human insulin (2 U/kg body weight, Eli Lilly & Co., Kobe) 30 min prior to \(^{18}\)F-FDG injection. Each animal was initially anesthetized with 4% isoflurane in air and maintained via spontaneous ventilation with 2% isoflurane in air. \(^{18}\)F-FDG (11.5 MBq/0.1 ml) was injected into the tail vein. Ninety minutes later, the animals were sacrificed, then brains were rapidly removed, placed in Brain Matrix (Stoelting Co, USA) and cut into coronal slices (2 mm/slice) to obtain 8–9 coronal slices that were exposed to a phosphor imaging plate (Fuji Imaging Plate BAS-SR 2025 for \(^{18}\)F; Fuji Photo Film Co., Ltd., Tokyo, Japan) with a set of calibrated standards 51. This autoradiographic exposure was performed overnight to detect the distribution of \(^{18}\)F-FDG. Autoradiography images were analyzed using a computerized imaging analysis system (raytest,
CR35, Version 2.1.0, Straubenhardt, Germany) with the image analysis software AIDA (Version 5.1 SP2, Straubenhardt, Germany). To determine brain radioactivity concentration, the cortex, striatum, thalamus and hippocampus were defined using Aida Image Analyzer software. The roles of interests (ROIs), namely, the cortex, striatum, thalamus, and hippocampus in the left and right hemispheres in all mice were marked on the same anatomical plane with reference to the corresponding brain coronal slices (Fig. 8). The radioactivity in each ROI was determined per unit area, the percentage of injected dose per pixel of the cortex, striatum, thalamus, and hippocampus was obtained and normalized to the animal weight [%ID/pixel/kg body weight (%ID/p/kg)]. Finally, the average of the left and right values around each of the four regions was obtained. Blood samples for glucose concentration measurement were obtained from the control and insulin-loaded mice groups.

Statistical analyses

All data are expressed as mean ± standard deviation. Statistical analyses were performed using the unpaired Student’s t-test to evaluate the significance of differences between the young and super-aged mice in body weight, blood glucose concentration, and 18F-FDG distribution. Significance was assumed at $P < 0.05$.

Data availability

The data generated and/or analyzed in this study are available from the corresponding author on reasonable request.

Declarations

Acknowledgments

This study was supported by Tsumura & Co.

Author contributions

J.Z. and C.T. designed the study and wrote the manuscript. R.I., N.U., and S.S. performed animal studies. Y.O. performed bait prescription. K.T. performed radiolabeling and QC examination. H.I. and J.M. contributed to the interpretation of the results. G.N., S.Z. and K.S. critically revised the manuscript for important intellectual content. All authors reviewed the manuscript.

Additional Information

The authors declare that no financial nor non-financial competing interests exist.

References
1 Martin, G. M. The biology of aging: 1985-2010 and beyond. *Faseb J* **25**, 3756-3762, doi:10.1096/fj.11-1102.ufm (2011).

2 van den Beld, A. W. *et al.* The physiology of endocrine systems with ageing. *Lancet Diabetes Endocrinol* **6**, 647-658, doi:10.1016/s2213-8587(18)30026-3 (2018).

3 Broughton, D. L. & Taylor, R. Review: deterioration of glucose tolerance with age: the role of insulin resistance. *Age Ageing* **20**, 221-225, doi:10.1093/ageing/20.3.221 (1991).

4 Yang, W. *et al.* Prevalence of diabetes among men and women in China. *N Engl J Med* **362**, 1090-1101, doi:10.1056/NEJMoa0908292 (2010).

5 Fonseca, V. A. Management of diabetes mellitus and insulin resistance in patients with cardiovascular disease. *Am J Cardiol* **92**, 50j-60j, doi:10.1016/s0002-9149(03)00616-7 (2003).

6 Xiao, J. *et al.* Worse pancreatic beta-cell function and better insulin sensitivity in older Chinese without diabetes. *J Gerontol A Biol Sci Med Sci* **69**, 463-470, doi:10.1093/gerona/glt104 (2014).

7 Karakelides, H., Irving, B. A., Short, K. R., O’Brien, P. & Nair, K. S. Age, obesity, and sex effects on insulin sensitivity and skeletal muscle mitochondrial function. *Diabetes* **59**, 89-97, doi:10.2337/db09-0591 (2010).

8 Jackson, R. A. *et al.* Influence of ageing on glucose homeostasis. *J Clin Endocrinol Metab* **55**, 840-848, doi:10.1210/jcem-55-5-840 (1982).

9 Michalakis, K. *et al.* Obesity in the ageing man. *Metabolism* **62**, 1341-1349, doi:10.1016/j.metabol.2013.05.019 (2013).

10 Atkins, J. L., Whincup, P. H., Morris, R. W. & Wannamethee, S. G. Low muscle mass in older men: the role of lifestyle, diet and cardiovascular risk factors. *J Nutr Health Aging* **18**, 26-33, doi:10.1007/s12603-013-0336-9 (2014).

11 Petersen, K. F. *et al.* Mitochondrial dysfunction in the elderly: possible role in insulin resistance. *Science* **300**, 1140-1142, doi:10.1126/science.1082889 (2003).

12 Maggio, M. *et al.* Association of hormonal dysregulation with metabolic syndrome in older women: data from the InCHIANTI study. *Am J Physiol Endocrinol Metab* **292**, E353-358, doi:10.1152/ajpendo.00339.2006 (2007).

13 Rains, J. L. & Jain, S. K. Oxidative stress, insulin signaling, and diabetes. *Free Radic Biol Med* **50**, 567-575, doi:10.1016/j.freeradbiomed.2010.12.006 (2011).

14 Singh, T. & Newman, A. B. Inflammatory markers in population studies of aging. *Ageing Res Rev* **10**, 319-329, doi:10.1016/j.arr.2010.11.002 (2011).
15 Voipio-Pulkki, L. M. et al. Heart and skeletal muscle glucose disposal in type 2 diabetic patients as determined by positron emission tomography. *J Nucl Med* **34**, 2064-2067 (1993).

16 Bingham, E. M. et al. The role of insulin in human brain glucose metabolism: an 18fluoro-deoxyglucose positron emission tomography study. *Diabetes* **51**, 3384-3390, doi:10.2337/diabetes.51.12.3384 (2002).

17 Virtanen, K. A. et al. Human adipose tissue glucose uptake determined using [(18)F]-fluoro-deoxy-glucose ([(18)F]FDG) and PET in combination with microdialysis. *Diabetologia* **44**, 2171-2179, doi:10.1007/s001250100026 (2001).

18 Reaven, G. M. Banting Lecture 1988. Role of insulin resistance in human disease. 1988. *Nutrition* **13**, 65; discussion 64, 66 (1997).

19 Cefalu, W. T. et al. Contribution of visceral fat mass to the insulin resistance of aging. *Metabolism* **44**, 954-959, doi:10.1016/0026-0495(95)90251-1 (1995).

20 Coon, P. J., Rogus, E. M., Drinkwater, D., Muller, D. C. & Goldberg, A. P. Role of body fat distribution in the decline in insulin sensitivity and glucose tolerance with age. *J Clin Endocrinol Metab* **75**, 1125-1132, doi:10.1210/jcem.75.4.1400882 (1992).

21 Lindström, J. & Tuomilehto, J. The diabetes risk score: a practical tool to predict type 2 diabetes risk. *Diabetes Care* **26**, 725-731, doi:10.2337/diacare.26.3.725 (2003).

22 Salmon, A. B. Oxidative stress in the etiology of age-associated decline in glucose metabolism. *Longev Healthspan* **1**, 7, doi:10.1186/2046-2395-1-7 (2012).

23 Chumlea, W. C., Rhyne, R. L., Garry, P. J. & Hunt, W. C. Changes in anthropometric indices of body composition with age in a healthy elderly population. *Am J Hum Bio* **1**, 457-462, doi:10.1002/ajhb.1310010408 (1989).

24 Barbieri, M., Rizzo, M. R., Manzella, D. & Paolisso, G. Age-related insulin resistance: is it an obligatory finding? The lesson from healthy centenarians. *Diabetes Metab Res Rev* **17**, 19-26, doi:10.1002/dmrr.178 (2001).

25 Fried, S. K., Leibel, R. L., Edens, N. K. & Kral, J. G. Lipolysis in intraabdominal adipose tissues of obese women and men. *Obes Res* **1**, 443-448, doi:10.1002/j.1550-8528.1993.tb00026.x (1993).

26 Boden, G. Role of fatty acids in the pathogenesis of insulin resistance and NIDDM. *Diabetes* **46**, 3-10 (1997).

27 Mauriège, P. et al. Is visceral adiposity a significant correlate of subcutaneous adipose cell lipolysis in men? *J Clin Endocrinol Metab* **84**, 736-742, doi:10.1210/jcem.84.2.5499 (1999).
28 MacLean, P. S., Zheng, D., Jones, J. P., Olson, A. L. & Dohm, G. L. Exercise-induced transcription of the muscle glucose transporter (GLUT 4) gene. *Biochem Biophys Res Commun* **292**, 409-414, doi:10.1006/bbrc.2002.6654 (2002).

29 Cheng, C. *et al.* Evaluation of organ-specific glucose metabolism by (1)(8)F-FDG in insulin receptor substrate-1 (IRS-1) knockout mice as a model of insulin resistance. *Ann Nucl Med* **25**, 755-761, doi:10.1007/s12149-011-0522-y (2011).

30 James, D. E. Targeting of the insulin-regulatable glucose transporter (GLUT-4). *Biochem Soc Trans* **22**, 668-670, doi:10.1042/bst0220668 (1994).

31 De Tata, V. Age-related impairment of pancreatic Beta-cell function: pathophysiological and cellular mechanisms. *Front Endocrinol (Lausanne)* **5**, 138, doi:10.3389/fendo.2014.00138 (2014).

32 Zhao, S. *et al.* Effects of insulin and glucose loading on FDG uptake in experimental malignant tumours and inflammatory lesions. *Eur J Nucl Med* **28**, 730-735, doi:10.1007/s002590100517 (2001).

33 Torizuka, T., Fisher, S. J. & Wahl, R. L. Insulin-induced hypoglycemia decreases uptake of 2-[F-18]fluoro-2-deoxy-D-glucose into experimental mammary carcinoma. *Radiology* **203**, 169-172, doi:10.1148/radiology.203.1.9122387 (1997).

34 Page, M. M. & Johnson, J. D. Mild Suppression of Hyperinsulinemia to Treat Obesity and Insulin Resistance. *Trends Endocrinol Metab* **29**, 389-399, doi:10.1016/j.tem.2018.03.018 (2018).

35 Shanik, M. H. *et al.* Insulin resistance and hyperinsulinemia: is hyperinsulinemia the cart or the horse? *Diabetes Care* **31 Suppl 2**, S262-268, doi:10.2337/dc08-s264 (2008).

36 Mehran, A. E. *et al.* Hyperinsulinemia drives diet-induced obesity independently of brain insulin production. *Cell Metab* **16**, 723-737, doi:10.1016/j.cmet.2012.10.019 (2012).

37 De Cosmo, S., Menzaghi, C., Prudente, S. & Trischitta, V. Role of insulin resistance in kidney dysfunction: insights into the mechanism and epidemiological evidence. *Nephrol Dial Transplant* **28**, 29-36, doi:10.1093/ndt/gfs290 (2013).

38 de Boer, I. H. *et al.* Temporal trends in the prevalence of diabetic kidney disease in the United States. *Jama* **305**, 2532-2539, doi:10.1001/jama.2011.861 (2011).

39 Reaven, G. M. Banting lecture 1988. Role of insulin resistance in human disease. *Diabetes* **37**, 1595-1607, doi:10.2337/diab.37.12.1595 (1988).

40 Chen, J. *et al.* The metabolic syndrome and chronic kidney disease in U.S. adults. *Ann Intern Med* **140**, 167-174, doi:10.7326/0003-4819-140-3-200402030-00007 (2004).
41 Formoso, G. et al. The TRIB3 R84 variant is associated with increased carotid intima-media thickness in vivo and with enhanced MAPK signalling in human endothelial cells. *Cardiovasc Res* **89**, 184-192, doi:10.1093/cvr/cvq255 (2011).

42 Prudente, S., Morini, E. & Trischitta, V. Insulin signaling regulating genes: effect on T2DM and cardiovascular risk. *Nat Rev Endocrinol* **5**, 682-693, doi:10.1038/nrendo.2009.215 (2009).

43 Biessels, G. J., van der Heide, L. P., Kamal, A., Bleys, R. L. & Gispen, W. H. Ageing and diabetes: implications for brain function. *Eur J Pharmacol* **441**, 1-14, doi:10.1016/s0014-2999(02)01486-3 (2002).

44 Cholerton, B., Baker, L. D. & Craft, S. Insulin resistance and pathological brain ageing. *Diabet Med* **28**, 1463-1475, doi:10.1111/j.1464-5491.2011.03464.x (2011).

45 Frazier, H. N. et al. Expression of a Constitutively Active Human Insulin Receptor in Hippocampal Neurons Does Not Alter VGCC Currents. *Neurochem Res* **44**, 269-280, doi:10.1007/s11064-018-2510-2 (2019).

46 Rhea, E. M. & Banks, W. A. Role of the Blood-Brain Barrier in Central Nervous System Insulin Resistance. *Front Neurosci* **13**, 521, doi:10.3389/fnins.2019.00521 (2019).

47 Reagan, L. P. et al. Localization and regulation of GLUTx1 glucose transporter in the hippocampus of streptozotocin diabetic rats. *Proc Natl Acad Sci U S A* **98**, 2820-2825, doi:10.1073/pnas.051629798 (2001).

48 Schulingkamp, R. J., Pagano, T. C., Hung, D. & Raffa, R. B. Insulin receptors and insulin action in the brain: review and clinical implications. *Neurosci Biobehav Rev* **24**, 855-872, doi:10.1016/s0149-7634(00)00040-3 (2000).

49 Piroli, G. G. et al. Corticosterone impairs insulin-stimulated translocation of GLUT4 in the rat hippocampus. *Neuroendocrinology* **85**, 71-80, doi:10.1159/000101694 (2007).

50 Oriuchi, N. et al. Possibility of cancer-stem-cell-targeted radioimmunotherapy for acute myelogenous leukemia using (211)At-CXCR4 monoclonal antibody. *Sci Rep* **10**, 6810, doi:10.1038/s41598-020-63557-9 (2020).

51 Zhao, S. et al. Biologic correlates of intratumoral heterogeneity in 18F-FDG distribution with regional expression of glucose transporters and hexokinase-II in experimental tumor. *J Nucl Med* **46**, 675-682 (2005).

Tables

Table 1. Body weight (g) and blood glucose concentration (mg/dl) in organ 18F-FDG accumulation study
	Young group	Super-aged group		
	Control (n=5)	Insulin (n=5)	Control (n=5)	Insulin (n=4)
Body weight	22.0±0.9	22.2±1.2	30.04±0.8	31.9±2.4
Blood glucose	91.4±9.9	24.0±6.8****	95.0±13.6	22.3±3.9****

Data in parentheses are mean±SD.

Control, control group; Insulin, insulin-loaded group

****P<0.0001 vs control value

Table 2. Organ \(^{18}\)F-FDG accumulation in mice (%ID/g/kg)

	Young groups	Super-aged groups		
	Control (n=5)	Insulin (n=5)	Control (n=5)	Insulin (n=4)
Blood	0.019±0.002	0.010±0.000****	0.033±0.002	0.012±0.002****
Blood plasma	0.015±0.002	0.007±0.001****	0.027±0.003	0.010±0.002****
Muscle	0.016±0.003	0.052±0.005****	0.028±0.007	0.057±0.019*
Heart	0.473±0.253	1.538±0.211****	0.479±0.259	1.551±0.406**
Lung	0.112±0.013	0.102±0.014	0.147±0.011	0.108±0.023*
Spleen	0.095±0.011	0.064±0.008**	0.141±0.021	0.072±0.012***
Pancreas	0.053±0.005	0.077±0.015*	0.072±0.010	0.063±0.004
White adipocytes	0.007±0.002	0.031±0.003****	0.010±0.004	0.033±0.008***
Testis	0.133±0.011	0.024±0.003****	0.185±0.014	0.035±0.005****
Stomach	0.077±0.009	0.137±0.010****	0.104±0.018	0.195±0.064*
Small intestine	0.105±0.014	0.084±0.014	0.147±0.019	0.088±0.020**
Large intestine	0.187±0.012	0.153±0.023*	0.202±0.034	0.154±0.027
Kidney	0.057±0.006	0.133±0.033***	0.084±0.010	0.080±0.046
Liver	0.032±0.002	0.016±0.002****	0.060±0.010	0.025±0.008***
Brown adipocytes	0.050±0.009	0.289±0.065****	0.051±0.012	0.252±0.099**
Brain	0.370±0.037	0.488±0.036***	0.488±0.059	0.551±0.190

Data in parentheses are mean±SD.
Control, control group; Insulin, insulin-loaded group

*$P < 0.05$, **$P < 0.01$, ***$P < 0.001$, ****$P < 0.0001$ vs control value

Table 3. Body weight (g) and blood glucose concentration (mg/dl) in brain 18F-FDG autoradiography study

	Young group	Super-aged group		
	Control (n= 6)	Insulin (n=6)	Control (n=6)	Insulin (n=6)
Body weight	21.4±1.0	22.0±0.7	31.8±1.5	29.7±1.9
Blood glucose	97.8±17.2	21.5±3.7****	102.5±9.5	22.5±6.1****

Data are shown in parentheses (mean±SD).

Control, control group; Insulin, insulin-loaded group

****$P < 0.0001$ vs control value

Table 4. 18F-FDG accumulation in brain regions in mice (%ID/p/kg)

	Young group	Super-aged group		
	Control (n= 6)	Insulin (n=6)	Control (n=6)	Insulin (n=6)
Cortex	0.013±0.002	0.017±0.002*	0.020±0.003	0.015±0.004*
Striatum	0.020±0.002	0.024±0.002***	0.028±0.003	0.026±0.005
Thalamus	0.018±0.002	0.020±0.002	0.025±0.002	0.021±0.007
Hippocampus	0.012±0.001	0.016±0.001****	0.018±0.002	0.015±0.003

Data are shown in parentheses (mean±SD).

Control, control group; Insulin, insulin-loaded group

*$P < 0.05$, ***$P < 0.001$, ****$P < 0.0001$ vs control value