Consistent Scaling Exponents at the Deconfined Quantum-Critical Point *

Anders W. Sandvik1,2*, Bowen Zhao1

1Department of Physics, Boston University, Boston, Massachusetts 02215, USA
2Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190

(Received 6 April 2020)

We report a quantum Monte Carlo study of the phase transition between antiferromagnetic and valence-bond solid ground states in the square-lattice $S = 1/2$ $J-Q$ model. The critical correlation function of the Q terms gives a scaling dimension corresponding to the value $\nu = 0.455 \pm 0.002$ of the correlation-length exponent. This value agrees with previous (less precise) results from conventional methods, e.g., finite-size scaling of the near-critical order parameters. We also study the Q-derivatives of the Binder cumulants of the order parameters for L^2 lattices with L up to 448. The slope grows as $L^{1/\nu}$ with a value of ν consistent with the scaling dimension of the Q term. There are no indications of runaway flow to a first-order phase transition. The mutually consistent estimates of ν provide compelling support for a continuous deconfined quantum-critical point.

PACS: 75.10.Jm, 64.70.Tg, 75.40.Mg, 75.30.Kz

DOI: 10.1088/0256-307X/37/5/057502

Among the many proposed exotic quantum states and quantum phase transitions beyond the Landau–Ginzburg–Wilson (LGW) paradigm in two dimensions,[1–3] the deconfined quantum critical point (DQCP)[4] is special because it has concrete lattice realizations in sign-free “designer models” accessible to quantum Monte Carlo (QMC) simulations.[5] Indeed, the first hints of an LGW-forbidden continuous transition between antiferromagnetic (AFM) and spontaneously dimerized valence-bond solid (VBS) ground states came from QMC simulations,[6] and following the DQCP concept (which builds on previous works on VBS phases and topological defects[7–13]) numerous additional studies have been reported. The most compelling results for DQCP physics have been obtained with J–Q models,[14–27] which are Heisenberg antiferromagnets in which the exchange of strength J is supplemented by multi-spin couplings of strength Q that induce singlet correlations and eventually cause spontaneous dimerization. The space-time loop structure employed in QMC simulations[28–30] can also be used to formulate analogous classical three-dimensional loop models, which exhibit behaviors very similar to the J–Q models.[31,32] Even though very large lattices have been studied, with linear size L up to 256 for the J–Q mode[18,26] and twice as large for the loop model,[32] it has not yet been possible to draw definite conclusions on the nature of the AFM–VBS transition. While no explicit signs of a first-order transition have been detected in the best DQCP candidate models (in contrast to intriguing discontinuous transitions with emergent symmetry in related models[33–36]), some observables exhibit scaling behaviors incompatible with conventional quantum criticality. Such behaviors have been interpreted as runaway flows toward what would eventually become a first-order transition on lattices even larger than those studied so far.[16,22,36] Another proposal is that the DQCP is even more exotic than initially anticipated, with novel relationships between critical exponents originating from the presence of two divergent length scales[26]—in addition to the standard correlation length ξ, there is a larger scale ξ' associated with a “dangerously irrelevant” perturbation and emergent $U(1)$ symmetry of the near-critical VBS fluctuations in the DQCP scenario.[4,37] The weak first-order scenario has attracted attention in the context of non-unitary conformal field theories (CFTs), which have critical points in the complex plane.[38–41] In this scenario, the AFM–VBS transition is a “walking” first-order transition,[42,43] where the renormalization-group flow (which is also manifested in finite-size scaling) is affected by the inaccessible nearby critical point and only slowly “walks” to a first-order instability.

In support of the weak first-order scenario, the J–Q and loop models are often invoked as supporting evidence, though there are no concrete predictions that have been compared with the numerical results. In the absence of any quantitative tests or clear signs of discontinuities or coexistence state in the lattice models, the walking scenario should not be accepted as the final word on the fate of the DQCP. Here we will show that the cited[39–41] large scaling corrections affecting estimates of the correlation length exponent ν[21,26,32] are not precursors to a first-order transition. We reach this conclusion by extracting ν from the scaling di-

*Supported by the National Science Foundation (USA) under Grant No. DMR-1710170 and by the Simons Foundation under a Simons Investigator Award.

**Corresponding author. Email: sandvik@bu.edu

© 2020 Chinese Physical Society and IOP Publishing Ltd
The dimension of the relevant field of the model. The corresponding correlation function exhibits only small scaling corrections and delivers an exponent compatible with results based on Binder cumulants; \(\nu = 0.455(2) \). Given the well behaved estimators of \(\nu \), a continuous transition is the most likely scenario.

To set the stage, we briefly summarize some standard facts on critical scaling. Consider a Hamiltonian \(H_c \) tuned to a quantum critical point to which a perturbation is added that maintains all the symmetries of \(H_c \):

\[
H = H_c + \delta \sum_r D(r),
\]

where \(r \) denotes the lattice coordinates and \(D(r) \) are local operators. Normally \(H \) is written in a form with some tunable parameter \(g \) such that, for some critical value \(g = g_c \), \(H(g_c) = H_c \) and \(\delta = g - g_c \). We assume that the system develops long-range order when \(\delta > 0 \), with an order parameter \(m(r) \) such that \(\langle m(r) \rangle \propto \delta^\beta \) for small \(\delta > 0 \) and \(m = 0 \) for \(\delta < 0 \). The critical exponent \(\beta \) depends on the universality class of \(H_c \) in the thermodynamic limit. On either side of the phase transition, the exponential decay of the correlation function \(C_m(r) = \langle m(0)m(r) \rangle - \langle m \rangle^2 \) defines the divergent correlation length, \(\xi \propto |\delta|^{-\nu} \). At \(\delta = 0 \), the correlation function takes the critical form \(C_m(r) \propto r^{-\Delta_m} \), where \(\Delta_m = \beta/\nu \) is the scaling dimension of the operator \(m \).

In QMC calculations \(\nu \) is typically extracted using finite-size scaling of some dimensionless quantity, such as the Binder ratio \(R = \langle M^4 \rangle/\langle M^2 \rangle^2 \), where \(M = \sum_r m(r) \). Neglecting scaling corrections, in the neighborhood of the critical point we have \(R(d,L) = R(\delta L^{1/\nu}) \), by which \(\nu \) (and the critical point \(g_c \) if it is not known) can be obtained from data for different values of \(\delta \) and \(L \). A less common method is to use the relation \(1/\nu = d - \Delta_D \), where \(d \) is the space-time dimensionality (here \(d = 3 \)) and \(\Delta_D \) is the scaling dimension of the perturbing operator \(D \) in Eq. (1). The scaling dimension can be obtained from the power-law decay \(C_D(r) \propto r^{-2\Delta_D} \) of the correlation function

\[
C_D(r) = \langle D(0)D(r) \rangle - \langle D \rangle^2 \quad \text{at} \quad g_c.
\]

It is not clear to us why \(\nu \) is not commonly extracted from \(C_D(r) \), but there are two potential drawbacks: (i) Often \(\Delta_D \) is rather large, e.g., in the case of the \(O(3) \) universal class (of which we will show an example below) \(\Delta_D \approx 1.6 \), so that the correlation function decays rapidly and is difficult to compute precisely (with small relative statistical errors) at large \(r \). (ii) The operator \(D \) is often off-diagonal and may appear to be technically difficult to compute. However, although the latter issue is absent in simulations of classical systems, the scaling dimension \(\Delta_D \) is still normally not computed.

Here we will take advantage of the fact that existing estimates of \(\nu \) at the DQCP (\(\nu \approx 0.45 \)) are in both the \(J-O \) and loop \(\gamma \) models) correspond to a rather small value of the scaling dimension, \(\Delta_D \approx 0.8 \), and therefore it may be possible to compute it reliably in this case (as was done recently for the transverse-field Ising chain, where, in the notation used here, \(\Delta_D = 1 \)). Furthermore, we point out that off-diagonal correlation functions of operators that are terms of the Hamiltonian have very simple estimators within the Stochastic Series Expansion (SSE) QMC method. The quantum fluctuations are here represented by a string of length \(n \) of terms \(H_i \) of \(H \), with mean length \(\langle n \rangle = \langle |H| \rangle/T \), where \(T \) is the temperature. A connected correlation function of any two terms is given by

\[
C_{ab} = \langle H_a H_b \rangle - \langle H_a \rangle \langle H_b \rangle - T^2 \langle (n_{ab} (n-1)) - \langle n_a \rangle \langle n_b \rangle \rangle,
\]

where \(n_a \) is the number of operators \(H_a \) in the string and \(n_{ab} \) is the number of terms \(H_a \) and \(H_b \) appear adjacent to each other. This expression can be easily applied to all location pairs \((a,b) \) in a single scan of the operator string, and translational invariance can be exploited at no additional cost to improve the statistics.

As a demonstration of the method, we first consider the \(S = 1/2 \) bilayer Heisenberg Hamiltonian

\[
H = J_1 \sum_{a=1,2} \sum_{(ij)} S_{a,i} \cdot S_{a,j} + J_2 \sum_{i=1}^N S_{1,i} \cdot S_{2,i},
\]

where \(\langle ij \rangle \) denotes nearest neighbors on a square periodic lattice with \(N = L^2 \) sites and \(a \) is the layer index. This system has an AFM ground state for \(g \equiv J_2/J_1 < g_c \) and is a quantum paramagnet dominated by inter-layer singlet formation for \(g > g_c \). The \(O(3) \) quantum phase transition has been investigated in many previous works. Here we take \(g_c = 2.52205 \) for the critical point \(g_c \) and study a correlation function corresponding to the perturbation \(D \) in Eq. (1). Since both the \(J_1 \) and \(J_2 \) interactions drive the system away from the critical point, we can study correlations between either type of terms (i.e., they have the same scaling dimension). We use the \(J_2 \) terms, which form a simple square lattice, and define

\[
C_2(r_{ij}) = \langle (S_{1,i} \cdot S_{2,i})(S_{1,j} \cdot S_{2,j}) \rangle - \langle S_{1,i} \rangle \langle S_{2,i} \rangle^2,
\]

where \(r_{ij} \) denotes the separation of the sites \(i \) and \(j \).

Investigating the decay of the correlations, we can either study large lattices and focus on \(r \ll L \) to eliminate finite-size effects or take \(r \) of order \(L \) and study the size dependence. Here we opt for the latter method with \(r = (L/2 - 1,0) \), for which there are more equivalent points for averaging than for the high-symmetry points \((L/2,0) \) and \((L/2,L/2) \). For the expected \(O(3) \) universality class in \(2+1 \) dimensions \(\nu \approx 0.711 \), corresponding to a scaling dimension \(\Delta_2 \approx 1.594 \) of the \(J_2 \) interaction. As shown in

\[
057502-2
\]
Early QMC studies placed the VBS–AFM transition at \(g_c \approx 0.040,^{[14–16]} \) while more recent works show a somewhat larger value, \(g_c \approx 0.045^{[18,25,26,30]} \) as a consequence of significant finite-size corrections. We now have data for system sizes up to \(L = 512 \) and present the Binder cumulants \(U_z \) and \(U_d \) defined in the standard way such that \(U_z \to 1 \) with increasing system sizes if there is order of type \(x \) and \(U_x \to 0 \) otherwise:

\[
U_z = \frac{5}{2} - \frac{5}{6} \langle m_z^4 \rangle \quad \text{and} \quad U_d = 2 - \frac{\langle d_x^2 + d_y^2 \rangle^2}{\langle d_x^2 + d_y^2 \rangle^2} \quad (8)
\]

Results for several system sizes are shown in Fig. 2(a).

To improve the \(g_c \) estimate, we analyze crossing points \(g = g^* \), where \(U_x(g^*, L) = U_d(g^*, L) \) and also where (for different \(g^* \)) \(U_x(g^*, L/2) = U_x^*(g^*, L) \) with \(x = z \) or \(x = d \). As shown in Fig. 2(b), these crossing points flow to \(g_c = 0.04510(2) \) as \(L \to \infty \). The extrapolation is based on a fit to two power laws for each data set, with a common \(g_c = g^*(L \to \infty) \) value, resulting in the critical point estimate \(g_c = 0.34510(2) \).

\[H = -J \sum_b P_b - Q \sum_p Q_p. \quad (5) \]

We define the coupling ratio \(g \equiv J/Q \) and use the SSE method to compute the \(z \) component of the staggered magnetization (the AFM order parameter)

\[m_z = \frac{1}{N} \sum_r S_r^z \langle -1 \rangle^{r_x + r_y}, \quad (6) \]

and the two-component dimer (VBS) order parameter, also defined with the \(z \) spin components,

\[d_{\alpha} = \frac{1}{N} \sum_r S_r^z S_{r+\alpha}^z \langle -1 \rangle^{r_{\alpha}}, \quad (7) \]

where \(\alpha \) stands for the \(x \) or \(y \) lattice direction. We scale the temperature in units of \(Q \) as \(T = c/L \), with \(c = 2.38 \) being the estimated critical velocity of excitations\(^{[25]} \) (i.e., the system is in the “cubic” scaling regime\(^{[14,50]} \) as in the case \(1/T = L/2 \) for the bilayer model in Fig. 1).

Fig. 1. Dimer correlation function, Eq. (4), in the critical Heisenberg bilayer at separation \(r = (x,0) \) with \(x = L/2 - 1 \). Results are shown for two different values of \(LT \). The lines have slope \(-2\Delta_2 = -3.188\), corresponding to the \(O(3) \) value of \(\nu \).
We here examine the correlation function of the Q-terms in the Hamiltonian (5),

$$C_Q(r_{ij}) = \langle Q_i Q_j \rangle - \langle Q_i \rangle^2,$$

(a)

which is less noisy than the J-energy correlator. As shown in Fig. 3(a), the correlations are also detected by the plaquette correlation function $C_Q(r)$ (for a detailed general discussion of this, see Ref. [35]).

(b)

In a columnar state with x-oriented dimers, $C_Q(0,y)$ will be small while $C_Q(x,0)$ will have signs $(-1)^x$ due to the dimerization. In an ergodic QMC simulation, $C_Q(x,y)$ will reflect averaging over states with x- and y-oriented dimers. The contributions from the VBS order parameter then cancel in $C_Q(x,0)$ for odd x, while $C_Q(x,x)$ retains the VBS contributions with $(-1)^x$ signs. These behaviors are seen in Fig. 3(a), where the amplitude decay is due to the system being a critical VBS. Since the system has emergent $U(1)$ symmetry of the order parameter, we should consider $C_Q(r)$ as averaged over an angle $\phi \in [0, 2\pi)$ corresponding to a circular-symmetric distribution $P(d_x, d_y)$. The above-mentioned behaviors of $C_Q(r)$ along the lines $r = (x, 0)$ and $r = (x, x)$ will also hold in this case.

In addition to the large contributions to $C_Q(r)$ from the VBS order parameter, there should be a uniform component reflecting the scaling dimension of the full Q operator. Since the VBS contributions are absent at $(x, 0)$ with odd x, examining the correlations at these distances is a good way to access the uniform component. In Fig. 3(a), small rapidly decaying values are indeed seen, and in Fig. 3(b) the functional form is analyzed on a log-log plot. We use a large system, $L = 256$, with $x \ll L$, as well as $x = L/2 - 1$ for smaller sizes. In both cases we observe the same algebraic asymptotic decay, and a power-law fit to the $x = L/2 - 1$ data for $x > 12$ gives $\Delta Q = 0.80(4)$. This scaling dimension corresponds to $1/\nu = 2.20(4)$, in good agreement with the previous (less precise) results for the $J-Q$ [26] and loop [32] models.

Next we consider the cumulant slopes $S_x \equiv dU_x/dQ$, $x = d, z$, computed with direct SSE estimators as previously carried out for S_z with $L \leq 160$ in Ref. [26]. Here we present the results for L up to $L = 448$ (our $L = 512$ results are too noisy). The slopes should scale asymptotically as $L^{1/\nu}$. In order to account for the leading correction we also include a second power-law term with smaller exponent, and exclude small systems until good fits are obtained. The results are shown in Fig. 4. The inset shows the same data sets and fits converted into $1/\nu^* \equiv \ln[S(L)/S(L/2)]/\ln^{-1}(2)$, which flows to $1/\nu$ as $L \to \infty$. We note that: (i) $1/\nu = 2.23(2)$ is fully consistent with the previous result from smaller systems [26] and (ii) the value also agrees with the above result from the scaling dimension of the Q terms (with a difference less than 1.5 standard deviations).

![Fig. 3.](image_url) Correlation function, Eq. (9), of the Q terms in the critical $J-Q$ model ($y = 0.0451$). In (a) results at $r = (x, 0)$ and (x, x) are shown for $L = 48$. In (b) results at $r = (x, 0)$ are shown only for odd values of x, with blue points at $x = L/2 - 1$ for different system sizes L and red points for fixed $L = 256$. The lines in (b) have slope $-2\Delta Q = -1.60$.

![Fig. 4.](image_url) Critical cumulant slopes vs the system size. The curves are fits of the $L \geq 64$ data to the form $aL^{1/\nu}(1 + bL^{-\omega})$, with $1/\nu = 2.23(2)$ (constrained to be the same for both data sets) and $\omega = 1.1(1)$ (for both data sets, not constrained to be the same). The inset shows $1/\nu^* \equiv \ln[S(L)/S(L/2)]/\ln^{-1}(2)$ vs $1/L$. The purple circle indicates the extrapolated exponent $1/\nu = 2.23(2)$ and the dashed lines show the values $1/\nu = 3 - \Delta Q = 2.200 \pm 0.004$ determined in Fig. 3.

While the finite-size corrections in $1/\nu$ obtained from the cumulant slopes in Fig. 4 are substantial, the corrections to the $r^{-2\Delta Q}$ form of the correlation function in Fig. 3 are very small. The good agreement of the extracted exponents with the relationship $1/\nu = 3 - \Delta Q$ should alleviate any concerns of $1/\nu$ eventually flowing to the value $3 \,(= d)$ expected at a
conventional first-order transition (or to $d+1$, as found at an unconventional transition in Ref. [33]). Weak first-order transitions are often more clearly manifested in $1/\nu$, [54] and the results presented here simply do not indicate anything unusual.

Previously, anomalous scaling was found of the order parameters and the spin stiffness,[16,18,22,32] and it was argued that the standard finite-size scaling hypothesis must be replaced by a form taking into account two divergent length scales in a new way. [20] Though this interpretation has not been independently confirmed, the results presented here reinforce the notion that anomalies are not present in the magnitude $L^{-1/\nu}$ of the critical window. The value $\nu = 0.455(2)$ is still puzzling in the sense that it violates a CFT bound from the bootstrap method [52]. This disagreement suggests that the transition is either not described by a CFT or that the arguments underlying the bound have some loophole. It would be interesting to compute ν from the relevant critical correlator for fermionic DQCP candidate models [54] where the standard finite-size analysis is difficult because of the rather small accessible lattices.

We would like to thank Jun Takahashi for useful discussions. The numerical calculations were carried out on the Shared Computing Cluster managed by Boston University’s Research Computing Services.

References

[1] Sachdev S 2008 Nat. Phys. 4 173
[2] Savary L and Balents L 2017 Rep. Prog. Phys. 80 016502
[3] Wen X G 2019 Science 363 599
[4] Senthil T, Vishwanath A, Balents L, Sachdev S and Fisher M P A 2004 Science 303 1490
[5] Kaul R K, Melko R G and Sandvik A W 2013 Annu. Rev. Condens. Matter Phys. 4 179
[6] Sandvik A W, Daul S, Singh R R P and Scalapino D J 2002 Phys. Rev. Lett. 89 247201
[7] Haldane F D M 1988 Phys. Rev. Lett. 61 1029
[8] Chakravarty S, Halperin B I and Nelson D R 1989 Phys. Rev. B 39 2344
[9] Read N and Sachdev S 1989 Phys. Rev. Lett. 62 1694
[10] Read N and Sachdev S 1990 Phys. Rev. B 42 4568
[11] Dagotto E and Moreo A 1989 Phys. Rev. Lett. 63 2148
[12] Murthy G and Sachdev S 1990 Nucl. Phys. B 344 557
[13] Motrunich O I and Vishwanath A 2004 Phys. Rev. B 70 075104
[14] Sandvik A W 2007 Phys. Rev. Lett. 98 227202
[15] Melko R G and Kaul R K 2008 Phys. Rev. Lett. 100 017203
[16] Jiang F J, Nyfeler M, Chandrasekharan S and Wiese U J 2008 J. Stat. Mech.: Theory Exp. 2008 P02009
[17] Lou J, Sandvik A W and Kawashima N 2009 Phys. Rev. B 80 180414
[18] Sandvik A W 2010 Phys. Rev. Lett. 104 177201
[19] Kaul R K 2011 Phys. Rev. B 84 085407
[20] Sandvik A W 2012 Phys. Rev. B 85 134407
[21] Harada K, Suzuki T, Okubo T, Matsuo H, Lou J, Watanabe H, Todo S and Kawashima N 2013 Phys. Rev. B 88 220408
[22] Chen K, Huang Y, Deng Y, Kuklov A B, Prokof’ev N V and Svistunov B V 2013 Phys. Rev. Lett. 110 185701
[23] Block M S, Melko R G and Kaul R K 2013 Phys. Rev. Lett. 111 137202
[24] Pujari S, Alet F and Damlé K 2015 Phys. Rev. B 91 104411
[25] Suwa H, Sen A and Sandvik A W 2016 Phys. Rev. B 94 144416
[26] Shao H, Guo W and Sandvik A W 2016 Science 352 213
[27] Ma N, Sun G Y, You Y Z, Xu C, Vishwanath A, Sandvik A W and Meng Z Y 2018 Phys. Rev. B 98 174421
[28] Evertz H G 2003 Adv. Phys. 52 1
[29] Sandvik A W 1999 Phys. Rev. B 59 R14157
[30] Sandvik A W 2010 AIP Conf. Proc. 1297 135
[31] Nahum A, Serna P, Chalker J T, Ortuño M and Somoza A M 2015 Phys. Rev. Lett. 115 267203
[32] Nahum A, Chalker J T, Serna P, Ortuño M and Somoza A M 2015 Phys. Rev. X 5 041048
[33] Zhao B, Weinberg P and Sandvik A W 2019 Nat. Phys. 15 678
[34] Serna P and Nahum A 2019 Phys. Rev. B 99 195110
[35] Takahashi J and Sandvik A W 2020 arXiv:2001.10045[cond-mat.str-el]
[36] Kuklov A B, Matsumoto M, Prokof’ev N V, Svistunov B V and Troyer M 2008 Phys. Rev. Lett. 101 050405
[37] Levin M and Senthil T 2004 Phys. Rev. B 70 220403
[38] Wang C, Nahum A, Metlitski M A, Xu C and Senthil T 2017 Phys. Rev. X 7 031051
[39] Ma H and He Y C 2019 Phys. Rev. B 99 195130
[40] Ma R and Wang C 2019 arXiv:1912.12315[cond-mat.str-el]
[41] Nahum A 2019 arXiv:1912.13468[cond-mat.str-el]
[42] Gorbenko V, Rychkov S and Zan B 2018 J. High Energy Phys. 2018(10) 108
[43] Gorbenko V, Rychkov S and Zan B 2018 SciPost Phys. 5 050
[44] Patil P, Tang Y, Katz E and Sandvik A W 2017 Phys. Rev. B 96 045140
[45] Sandvik A W and Kurkijärvi J 1991 Phys. Rev. B 43 5950
[46] Sandvik A W 1992 J. Phys. A: Math. Gen. 25 3667
[47] Wang L, Beach K S D and Sandvik A W 2006 Phys. Rev. B 73 014431
[48] Sen A, Suwa H and Sandvik A W 2015 Phys. Rev. B 92 195145
[49] Campostrini M, Hasenbusch M, Pelissetto A, Rossi P and Vicari E 2002 Phys. Rev. B 65 144520
[50] Jiang F J and Wiese U J 2011 Phys. Rev. B 83 155120
[51] Iino S, Morita S, Kawashima N and Sandvik A W 2019 J. Phys. Soc. Jpn. 88 034006
[52] Nakayama Y and Ohtsuki T 2016 Phys. Rev. Lett. 117 131601
[53] Liu Y H, Wang Z J, Sato T, Hohenadler M, Wang C, Guo W A and Assaad F F 2019 Nat. Commun. 10 2658