Supplementary Information

A Heterocyclic Polyurethane with Enhanced Self-healing Efficiency and Outstanding Recovery of Mechanical Properties

Jinsil Kim 1,2, Pyong Hwa Hong 1, Kiwon Choi 3, Gyeongmin Moon 1, Jungsoon Kang 3, Seoyun Lee 3, Sungkoo Lee 1, Hyun Wook Jung 2, Min Jae Ko 3,4,* and Sung Woo Hong 1,*

1 Intelligent Sustainable Materials R&D Group, Korea Institute of Industrial Technology, 89 Yangdaegiro-gil, Ipijang-myeon, Seobuk-gu, Cheonan-si, Chungcheongnam-do 31056, Republic of Korea
2 Department of Chemical and Biological Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
3 Department of Chemical Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
4 Institute of Nano Science and Technology, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
* Correspondence: mjko@hanyang.ac.kr (M.J.K.); swhong@kitech.re.kr (S.W.H.)
Tel.: +82-2-2220-0528 (M.J.K.); +82-41-589-8675 (S.W.H.)
Figure S1. (a) Overall scheme for synthesis and 1H NMR spectrum in CDCl$_3$ and (b) GPC trace of polyol (poly(HEMA-r-BMA)).
Figure S2. DSC thermograms of PU, PUB, PUT, and PUD.

Figure S3. Optical properties of PU, PUB, PUT, and PUD: (a) transmittance; (b) haze and yellow index. All data points were obtained by averaging three measurements.
Figure S4. TGA curves of PU, PUB, PUT, and PUD.

Figure S5. The N-H stretching region of PU in the FT-IR spectra. The spectrum was resolved into its components by the curve-fitting method.