Simulation Analysis of NO₂ Pollution Diffusion Law Based on Gauss Plume Model: A Case Study from Hebei Province

Tielin Gao¹, Donghai Xu²*, Yanxiang Mi² and Yue Lu¹

¹Business College of Hebei Normal University, Shijiazhuang 050024, China
²Huihua College of Hebei Normal University, Shijiazhuang 050024, China
Email: xu_tony77@hebtu.edu.cn

Abstract. Controlling the large-scale haze in Beijing-Tianjin-Hebei region has become a social issue of great attention to government departments and the public. This paper establishes the NO₂ diffusion model based on the Gauss plume model, by selecting Shijiazhuang city of Hebei Province as a case which is influenced seriously by NO₂ pollution, and analyses the diffusion law, diffusion range and concentration change of NO₂. Firstly, the conditions and parameters of the Gauss plume model are introduced, and the related factors affecting the NO₂ diffusion are analyzed. Secondly, the pollution sources are classified into point pollution sources (chimneys) and line pollution sources (automobile exhaust), and combines the yearly weather conditions of Shijiazhuang such as wind speed, wind direction, atmosphere stability etc. Then, simulating the diffusion area and concentration change using Stata 13.1 software platform, we found: (1) The formation of NO₂ pollution in Hebei Province is affected by special topography and unfavorable meteorological conditions; (2) The atmospheric stability is basically higher in autumn and winter; (3) Industrial emissions are the main source of NO₂ in Hebei Province; (4) The concentration of NO₂ pollutants near the emission source is the highest, and the concentration gradually decreases with increasing distance. The conclusion of the study has certain practical significance for the design and implementation of government environmental regulation and effective control and reduction of environmental pollution.

1. Introduction

As the main base of the heavy chemical industry in China, Beijing-Tianjin-Hebei region air pollution has become the focus of governments and the public at all levels. Today, air pollution is increasingly restricting the sustainable development of the environment, economy and society [1, 2]). In a recent study, many epidemiological studies have shown that air pollution is the main cause of many diseases, such as acute respiratory infections, heart disease, lung cancer, and chronic bronchitis. It has acute and chronic effects on human health, which will bring about premature mortality and reduce life expectancy [3-7].

According to the Report on the State of the Ecology and Environment in China in 2018, the evaluation results of air quality comprehensive index showed that Hebei province has five cities ranked among the top 20 cities with relatively poor air quality in 169 cities in China. This is mainly because of the fast industrial development in Hebei Province, and mostly for iron and steel, petrochemical enterprises, resulting in a large number of industrial pollutants emissions.
The NO$_x$ pollutant in Hebei Province mainly come from factories, vehicles, etc. [8, 9]. There are two types of NO$_x$: nitrogen dioxide (NO$_2$) and nitrogen monoxide (NO). Although most of NO$_x$ is NO at the time of emission, NO will relatively quickly be oxidized into NO$_2$.

According to environmental statistics, in 2017, the main nitrogen oxide emissions of Hebei Province were 1.056 million tons, ranking second in China. Among them, the vehicles nitrogen oxide pollutant emissions were 0.476 million tons, accounting for 45.08% of the total emission. As an important precursor of secondary pollutants, after entering the human respiratory system, NO$_x$ will cause deposition, absorption, and damage at various parts according to physical and chemical characteristics. Therefore, it is of great practical significance to protect public health, prevent air pollution and improve air quality, by analyzing the pollution diffusion law and the change of pollutant concentration of NO$_2$ in the urban and regional scale in Hebei Province.

Since the 1930s, scholars have formed hundreds of atmospheric diffusion models according to different diffusion theories in the study of atmospheric diffusion models of pollutants at home and abroad [10].

Some scholars examined the dispersion of air pollutants with the analytical Gauss approach, which the Euler and Lagrange descriptions are used for solution of the continuity equation [11, 12]. And estimating the plume dispersion parameters in lateral direction (σ_x) and vertical direction (σ_z) by using power law wind speed and the scheme of eddy diffusivity in unstable condition. Comparison among the model and algebraic and integral formulations were held, and find that the model and two other models are in agreement with observed data 12].

Kulanda Duysebekova et al. [13] and Liu et al. [14] used Gauss approach and studied the analysis of the solution of the semi-empirical solution of turbulent diffusion in problems of polluting impurity transfer, and presented an optimization technique to obtain the optimized dispersion parameters, for the sake of enabling the Gauss model to produce fast estimates of CO$_2$ concentration levels and precluded the necessity to set up much more complicated models.

Zhu et al. [15] utilized a modified Gauss plume model and compared the difference between the modified model and the traditional model, when considering plume rise and ground roughness to simulate the release consequence. Furthermore, they analyzed the effects of influencing factors involved in the modified model. The modelling system with a Kalman filter approach is capable to adapt modelled concentrations based on the originating source of the concentrations, more accurately than using simple background estimates, and optimize plume model concentrations using actual observations [16].

Over the decade years, many scholars discussed the classification and development stages of atmospheric diffusion models, and discussed the principles and laws of Lagrange model, Euler diffusion model, box model, Gauss plume model and puff model, and analyzed the advantages and disadvantages of atmosphere diffusion models [17-21].

Based on the standard Gauss diffusion model, many scholars considered various sources of emissions, leakage methods and diffusion conditions to simulate the diffusion law, concentration distribution and leakage range of pollutants [21-26]; There are many scholars who have studied the NO$_2$ pollution in the Beijing-Tianjin-Hebei region [8, 9, 27-29]. However, scholars have obtained the characteristics of atmospheric NO$_2$ pollution in Beijing-Tianjin-Hebei region based on OMI data inversion or ground monitoring, and few studies on the diffusion law and concentration distribution of NO$_2$ pollution sources based on atmospheric diffusion model. In order to solve this problem, this paper used the Gauss plume model to construct the diffusion model of NO$_2$ pollutants, and then selects the Hebei Province, which is seriously affected by NO$_2$, as an analysis case to study the diffusion law of NO$_2$ and the range of the contaminated area.

2. Gauss Model of NO$_2$ Pollution Diffusion

As early as the 1950s and 1960s, the Gauss model has been applied to investigate the concentration distribution of diffusion mass, which is divided into two types: Plume Model and Puff Model [30-32]. Among them, the plume model is suitable for the diffusion of continuous [33], and the puff model is
suitable for the diffusion of short-term leakage [34, 35]). The plume model and the puff model use a normal distribution to indicate the concentration of emission source in the downwind [36]. Although convection and diffusion phenomena are considered, chemical and gravity effects are not considered, it is only applicable to the diffusion of light gases or gases with similar air densities [35, 37]. Although the Gauss model has many shortcomings, many of the standards adopted by the US Environmental Protection Association (EPA) are still based on the Gauss model and are widely [38, 39].

The concentration distribution of NO\textsubscript{2} is usually high in the vicinity of the emission source, and the concentration gradually decreases toward the periphery of the emission source accompanying convection-diffusion. However, the temporal and spatial distribution of NO\textsubscript{2} pollutants and their concentrations are closely related to the distribution of pollutant sources, emissions, topography, geomorphology and meteorology.

2.1. Windy Point Source Normal Gauss Plume Model
When there is wind (the average wind speed is 1.5 m/s or more at a height of 10 m from the ground), and the ground is a total reflector, there are:

\[C(x, y, z) = \frac{Q}{2\pi \sigma_y \sigma_z \mu} \times \exp \left(-\frac{y^2}{2\sigma_y^2} \right) \cdot \left\{ \exp \left[-\frac{(z-H_e)^2}{2\sigma_z^2} \right] + \exp \left[-\frac{(z+H_e)^2}{2\sigma_z^2} \right] \right\} \] (1)

\(C(x, y, z) \) is the concentration of air pollutants (kg/m3) at a certain point \((x, y, z)\) from emission source in the downwind; \(x\): the downwind distance (m); \(y\): the crosswind distance (m); \(z\): the height from the ground (m); \(Q\): the intensity of the pollutant source, ie the release rate (kg/s); \(\mu\): the wind speed (m/s); \(\sigma_y\): lateral diffusion parameter(m); \(\sigma_z\): vertical diffusion parameter (m); \(H_e\): the effective height of emission source (m); because the concentration of pollutants on the ground is to be predicted, according to formula (1), let \(z = 0\), which can be obtained:

\[C(x, y, 0) = \frac{Q}{\pi \sigma_y \sigma_z \mu} \times \exp \left(-\frac{y^2}{2\sigma_y^2} \right) \cdot \exp \left(-\frac{H_e^2}{2\sigma_z^2} \right) \] (2)

\(\sigma_y \) and \(\sigma_z \) are functions of the distance \(x\), which increase as \(x\) increases, and can generally be expressed as a power function form as shown in equation (3). The values are shown in table 1.

\[\sigma_y = \gamma_1 x^{\alpha_1}; \sigma_z = \gamma_2 x^{\alpha_2} \] (3)

In addition, the ground concentration of pollutants along the downwind axis, according to formula (1), let \(y = 0\), \(z = 0\), which can be obtained:

\[C(x, y, 0) = \frac{Q}{\pi \sigma_y \sigma_z \mu} \cdot \exp \left(-\frac{H_e^2}{2\sigma_z^2} \right) \] (4)

Due to the first term on the right side of equation (4) decreases with the increase of \(x\), the second term increases with the increase of \(x\). As a result of the two interactions, the maximum concentration \(C_{\text{max}}\) must occur at a certain distance \(X_{\text{max}}\). By deriving \(x\) by equation (4) and making it equal to zero, it can be obtained.

\[C_{\text{max}} = \frac{2Q}{e \sigma \mu H_e P_1}. \] (5)

\[X_{\text{max}} = \left(\frac{H_e}{\gamma_2} \right)^{\frac{1}{\alpha_2}} \left(1 + \frac{\alpha_1}{\alpha_2} \right)^{\frac{1}{\alpha_2}} \] (6)

Among them,
Table 1. The power function value table of lateral diffusion parameter and vertical diffusion parameter (sampling time: 30 min).

Diffusion parameter	Atmospheric stability level	a_1/a_2	γ_1/γ_2	Downwind distance (m)
A		0.901074	0.425809	0~1000
		0.850934	0.602052	>1000
		0.914370	0.281846	0~1000
		0.865014	0.396353	>1000
		0.919325	0.229500	0~1000
B		0.875086	0.314238	>1000
		0.924279	0.177154	0~1000
		0.885157	0.232123	>1000
		0.926849	0.143940	0~1000
B~C		0.926849	0.143940	>1000
C		0.886940	0.189396	>1000
		0.929418	0.110726	0~1000
		0.888723	0.146669	>1000
		0.925118	0.098563	0~1000
		0.892794	0.101947	>1000
C~D		0.929418	0.110726	0~1000
		0.920818	0.086400	>1000
D		0.929418	0.055363	0~1000
		0.896864	0.101947	>1000
		0.888723	0.073335	>1000
		1.121540	0.079990	0~300
		1.523600	0.008548	300~500
		2.108810	0.000212	>500
		0.964435	0.127190	0~500
		1.093560	0.057025	>500
		0.941015	0.114682	0~500
		1.007700	0.075718	>500
		0.917595	0.106803	>0
		0.838628	0.126152	0~2000
		0.756410	0.235667	2000~10000
		0.815575	0.136659	>10000
		0.826212	0.104634	1~1000
		0.632023	0.400167	1000~10000
		0.555360	0.810763	>10000
		0.776864	0.111771	0~2000
		0.572340	0.528992	2000~10000
		0.499149	1.038100	>10000
		0.788370	0.092753	0~1000
		0.565188	0.433384	1000~10000
		0.414743	1.732410	1000~10000
		0.788400	0.062077	0~1000
		0.525969	0.370015	1000~10000
		0.322659	2.406910	1000~10000

$\sigma_y = \gamma_1 x_{at}$

$\sigma_y = \gamma_1 x_{at}$
\[P_t = \frac{2\gamma_1^{\frac{\gamma}{\alpha}}}{\left(1 + \frac{\alpha_1}{\alpha_2}\right)^{\gamma/\alpha_2}} \cdot H e^{\frac{\gamma}{\alpha_1}} \cdot e^{\gamma/\alpha_2} \] \tag{7}

It can be seen from equations (6) and (7) that under the conditions of source strength and meteorological conditions, the maximum landing concentration of the pollution source increases with the increase of the effective height \(H_e \), and its corresponding appearance position is extended with the increase of the effective height \(H_e \).

2.2. Small Wind and Static Wind Point Source Diffusion Model

In the meteorology, the wind speed \(u \leq 0.5 \text{ m/s} \) is generally referred to as static wind, and the wind speed between 0.5 and 1.5 m/s is called small wind. In the case of static wind and small wind, because the average wind speed is too small and the dominant wind direction is uncertain, the Gauss plume model cannot be applied to predict the atmospheric environmental quality under such conditions.

Taking the ground position of the emission source as the coordinate origin, the downwind direction is the \(X \)-axis, and the calculation formula of the pollutant concentration at any point \((x, y)\) on the ground is as shown in equation (8).

\[C(x, y, 0) = \frac{2Q}{(2\pi)^\gamma} \frac{\gamma_1^2}{\gamma_1^2} \cdot G \] \tag{8}

\[\gamma_1^2 = x^2 + y^2 + \gamma_1^{\frac{\gamma}{\alpha_1}} \cdot H_e^2 \] \tag{9}

\[G = \exp \left(-\frac{u^2}{2\gamma_1} \right) \left[1 + \sqrt{2\pi} \exp \left(-\frac{s^2}{2} \right) \phi(s) \right] \] \tag{10}

\[\phi(s) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{s} \exp \left(-\frac{t^2}{2} \right) dt \] \tag{11}

\[s = \frac{ux}{\gamma_1} \] \tag{12}

Among them, \(\gamma_01, \gamma_02 \): are respectively the regression coefficients of the diffusion coefficients in the lateral and vertical directions, the values are shown in table 2. \(\Phi(s) \): normal distribution function; \(t \): diffusion time (s).

Atmospheric stability level	\(\gamma_01 \)	\(0.5 \text{ m/s} \leq u \leq 1.5 \text{ m/s} \)	\(\gamma_02 \)	\(0.5 \text{ m/s} \leq u \leq 1.5 \text{ m/s} \)
A	0.93	0.76	1.57	1.57
B	0.76	0.56	0.47	0.47
C	0.55	0.35	0.21	0.21
D	0.47	0.27	0.12	0.12
E	0.44	0.24	0.07	0.07
F	0.44	0.24	0.05	0.05
The formula of the plume model and the puff model includes a formula that considers the deposition of particulate matter based on the diameter of particulate matter. After trying to consider the formula of deposition, we found that the simulation results are not much different from the calculation results without considering the deposition. Therefore, sedimentation is not considered when calculating the concentration of NO2 pollutant.

3. Simulation Analysis of NO2 Pollutant Diffusion Model: A Case Study of Hebei Province

The modified formula of above-mentioned Gauss plume model and puff model were used and the meteorological conditions of various cities in Hebei Province were used for simulation analysis. Because the plume model and puff model assume a linear relationship between emission and concentration, the concentration obtained by the simulation can be divided by the emission amount to calculate “the increase in the concentration of NO2 pollutants caused by the emission of NO2 pollutants per unit amount” (ΔC/ΔE). The specific calculation steps are as follows.

First, calculating the solar elevation angle HA, and the solar elevation angle is calculated as shown in equation (13).

\[HA = \arcsin (\sin\phi \cdot \sin\delta + \cos\phi \cdot \cos\delta \cdot \cos T_0) \] \hspace{2cm} (13)

Among them, HA is the solar elevation angle, \(\phi \) is the local latitude, \(\delta \) is the solar declination, and \(T_0 \) is the mid-solar angle. The calculation formula is as shown in equation (14).

\[T_0 = (TT - 12) \times 15^\circ = (CT + LC + EQ - 12) \times 15^\circ \] \hspace{2cm} (14)

Among them, TT is the true solar time; CT is the local standard (time zone), China belongs to the 120° E place, which is called Beijing time; LC is the longitude correction (4 min/degree), if the local meridian circle is on the east side of the standard meridian circle, then LC is positive and vice versa; EQ is time difference. The time difference EQ and the solar declination \(\delta \) can be obtained by looking up the table separately.

Secondly, the solar radiation level is determined according to the cloud amount and the solar elevation angle inquiry table 3.

Cloud amount (1/10)	Solar elevation angle				
	At night	\(H_A \leq 15^\circ \)	\(15^\circ < H_A \leq 35^\circ \)	\(35^\circ < H_A \leq 65^\circ \)	\(H_A > 65^\circ \)
\(\leq 4 \) (\(\leq 4 \))	-2	-1	1	2	3
5~7 (\(\leq 4 \))	-1	0	1	2	3
\(\geq 8 \) (\(\leq 4 \))	-1	0	0	1	1
>5 (5~7)	0	0	0	0	1
\(\geq 8 \) (\(\geq 8 \))	0	0	0	0	0

Again, the atmospheric stability level is determined based on the surface wind speed and solar radiation level inquiry table 4. Finally, the simulation is carried out according to the equation (2) of the windy point source normal Gauss plume model and the equation (8) of the small wind and static wind point source diffusion model. The range of simulation calculation, emission, and calculated heights of the concentration are shown in table 5.

Finally, although \(\Delta C/\Delta E \) covers the annual average concentration since there is a nonlinear relationship between meteorological conditions (wind speed, etc.) and concentration in the plume model and the puff model, only one scenario of annual mean weather conditions is simulated, and the concentration change may not be accurately simulated. Therefore, this study first classified the wind direction, wind speed and atmospheric stability of various cities in Hebei Province into several models, and simulated the \(\Delta C/\Delta E \) of each model. Next, the weighting of \(\Delta C/\Delta E \) is weighted by the frequency of each model in each year, and the annual average \(\Delta C/\Delta E \) is obtained. The calculation idea
is shown in figure 1. The data such as wind direction and wind speed used are derived from the National Meteorological Science Data Sharing Service Platform and the National Earth System Science Data Sharing Platform.

Table 4. Atmospheric stability level.

Ground wind speed (m/s)	Solar radiation level					
	3	2	1	0	-1	-2
≤1.9	A	A-B	B	D	E	F
2~2.9	A-B	B	C	D	E	F
3~4.9	B	B-C	C	D	D	D
5~5.9	C	C-D	D	D	D	D
≥6	C	D	D	D	D	D

Table 5. Calculation condition of “the increase in the concentration of NO\textsubscript{2} pollutants caused by the emission of NO\textsubscript{2} pollutants per unit amount” (ΔC/ΔE).

Condition	Content
Calculation range	Calculated to 20 km from the emission source (radius 10 km)
Emission	Regarding the discharge rate of primary pollutants, estimate the daily average value of the annual emissions data of NO\textsubscript{2} related to the 2016 Hebei Provincial Environmental Status Bulletin and the Hebei Provincial Motor Vehicle Pollution Prevention Bulletin (assuming that the daily variation of chimney and vehicle emissions is fixed) The chimney emission height is fixed at 15 m and the vehicle discharge height is 1 m high.
Calculated height of concentration	Considering the height of human breathing, it is fixed at 1.5 meters above the ground.

Figure 1. Calculated steps of annual average concentration-related “The increase in NO\textsubscript{2} pollutants concentration caused by the emission of NO\textsubscript{2} pollutants per unit amount” (ΔC/ΔE).
Using the above methods, 10 cities including Zhangjiakou, Chengde, Qinhuangdao, Tangshan, Langfang, Shijiazhuang, Zhangzhou, Xingtai and Hengshui in Hebei Province were used to simulate and analyze the concentration distribution around the emission source of NO₂ pollutants. Among them, the simulation results of the chimney and vehicle emission sources which are calculated according to the meteorological conditions in Shijiazhuang are shown in figures 2 and 3.

![Figure 2. Shijiazhuang City (Chimney).](image1)

Figure 2. Shijiazhuang City (Chimney).

![Figure 3. Shijiazhuang City (Automobile).](image2)

Figure 3. Shijiazhuang City (Automobile).

As shown in the figures, the simulation results of chimney and vehicle exhaust emissions show that in each city, the concentration of NO₂ pollutants near the emission source is the highest, and the concentration gradually decreases with increasing distance. Based on the distance from the emission source, the simulated distribution of concentrations can be obtained from the plume model and the puff model.

In order to calculate “the increase in NO₂ pollutants concentration caused by the emission of NO₂ pollutants per unit amount” ($\Delta C/\Delta E$), it is necessary to summarize the product of the simulated concentration of the primary pollutant and the area of the region within the range of 20 km (radius 10 km) as stated in table 5.

Wind direction, wind speed and atmospheric stability can be respectively divided into total L model, total M model, and total N model. Specifically, as shown in the formula (15), it summarized that the concentration of the NO₂ pollutant obtained by the simulation is multiplied by the circle (ring) area within 2 meters in an interval of 2 meters.

$$\sum_{n=1}^{500} \left[\pi \cdot (2n)^2 - \pi \cdot (2(n-1))^2 \right] \cdot C(n)$$ \hspace{1cm} (15)

Among them, n: The point is 1 when the distance from the emission source is 2 m, and as the distance increases by 2 meters, the value increases by 1. C(n): annual average concentration of NO₂ pollutants at point n (μg/m³) Calculating “the increase in NO₂ pollutants concentration caused by the emission of NO₂ pollutants per unit amount” $\Delta C/\Delta E$, through the total product which obtained by
simulation according to equation (15) divided by emissions. The calculation results of 10 cities in Hebei Province are shown in table 6.

Table 6. The increase in NO$_2$ pollutants concentration caused by the emission of NO$_2$ pollutants per unit amount ($\Delta C/\Delta E$) (μg/m3·m2/kg/year).

City	Chimney	Vehicle
Shijiazhuang	3.68E+03	7.22E+03
Tangshan	1.04E+03	2.41E+03
Baoding	2.49E+03	5.43E+03
Cangzhou	1.94E+03	4.42E+03
Xingtai	1.74E+02	1.40E+03
Langfang	4.62E+03	8.62E+03
Chengde	4.98E+03	9.27E+03
Zhangjiakou	6.83E+02	2.54E+03
Hengshui	2.63E+03	6.14E+03
Qinghuangdao	4.30E+03	8.03E+03

4. Conclusions

The diffusion model of NO$_2$ pollutants is constructed by using the Gaussian plume model in this paper. The Hebei Province, which is seriously affected by NO$_2$, is selected as an analysis case to study the diffusion law of NO$_2$ and the range of the contaminated area. Firstly, this paper introduced the Gauss plume model and analyzed the wind speed, wind direction, atmospheric stability and source strength parameters that affect NO$_2$ diffusion. Then, combined with the actual meteorological conditions in Hebei Province and other factors, under the premise of simulating the same source strength, the emission per unit of NO$_2$ pollution source leads to the increase of NO$_2$ pollution concentration in the regional areas of Hebei Province.

The results show that the formation of NO$_2$ pollution in Hebei Province is affected by special topography and unfavorable meteorological conditions. The atmospheric stability is basically higher in autumn and winter than in spring and summer, and is generally E in winter and A or B in summer. In addition, industrial emissions are the main source of NO$_2$ in Hebei Province. In recent years, a series of environmental governance policy regulations and the introduction of environmental protection equipment in the industrial sector, NO$_2$ pollution had been greatly improved. On the other hand, with a sharp increase in the number of motor vehicles, the share of vehicle exhaust emissions should not be underestimated.

Acknowledgments

This research was funded by Ministry of Education Humanities and Social Sciences Research Project (Youth Fund, 17YJC790181); Hebei Normal University Humanities and Social Sciences Fund Cross-Cooperative Research Fund Project (S2016JC02); Hebei Normal University Science and Technology Research Fund Project (L2016Z04).

References

[1] Zhang Y 2019 Dynamic effect analysis of meteorological conditions on air pollution: A case study from Beijing Science of The Total Environment 684 178-185.
[2] Gu Y, Su G and Tao C 2018 Influencing factors and prediction model of PM 2.5 concentration in Beijing area Environmental Chemistry 37 (3) 397-409.
[3] Apte J S, Brauer M, Cohen A J, Ezzati M and Pope III C A 2018 Ambient PM2. 5 reduces global and regional life expectancy Environmental Science & Technology Letters 5 (9) 546-551.
[4] Cole-Hunter T, Nazelle A and Donaire-Gonzalez D 2018 Estimated effects of air pollution and space-time-activity on cardiopulmonary outcomes in healthy adults: a repeated measures study Environ. Int 111 p 247–259.

[5] Cohen A J, Brauer M, Burnett R, Anderson H R, Frostad J, Estep K, et al. 2017 Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution: An analysis of data from the Global Burden of Diseases Study 2015 The Lancet 389 (10082) 1907-1918.

[6] Chen X, Shao S, Tian Z, Xie Z and Yin P 2017 Impacts of air pollution and its spatial spillover effect on public health based on China’s big data sample Journal of Cleaner Production 142 915-925.

[7] Guttikunda S K, Goel R and Pant P 2014 Nature of air pollution, emission sources, and management in the Indian cities Atmospheric Environment 95 501-510.

[8] Zhou C, Qing L I and Wang Z 2016 Spatio-temporal trend and changing factors of tropospheric NO2 column density in Beijing-Tianjin-Hebei region from 2005 to 2014 J. Remote Sens. 20 468-480.

[9] Zheng X X, Li L J and Zhao W J 2014 Spatial and temporal characteristics of atmospheric NO2 in the Beijing-Tianjin-Hebei region Ecology and Environmental Sciences 23 (12) 1938-1945.

[10] Zhang J-W, An Y and Wei L-J 2007 Review on atmospheric dispersion models for emergency response to chemical accidents China Safety Science Journal (6) 3.

[11] Lazaridis M 2011 Atmospheric Dispersion: Gaussian Models Springer pp 201-232.

[12] Abdel-Wahab M M, Essa K S, Embaby M and Elsaid S E 2013 Derivation the schemes of lateral and vertical dispersion parameters: Application in Gaussian plume model Open Journal of Air Pollution 2 (01) 19-24.

[13] Duysebekova K, Serbin V, Kuandykov A, Duysebekov T, Alimanova M, Orazbekov S and Alimzhanova L 2016 The Solution of Semi-Empirical Equation of Turbulent Diffusion in Problems of Polluting Impurity Transfer by Gauss Approach Procedia Computer Science 94 372-379.

[14] Liu X, Godbole A, Lu C, Michal G and Venton P 2015 Optimisation of dispersion parameters of Gaussian plume model for CO2 dispersion Environmental Science and Pollution Research 22(22) 18288-18299.

[15] Zhu H, Liu X, Wang Q and Sun J 2017 The simulation of release consequence with a modified Gaussian plume model Springer pp 445-454.

[16] Kranenburg R, Duyzer J and Segers A 2016 Optimization of plume model calculations and measurement network with a Kalman filter approach Springer pp 303-307.

[17] Yuan C-L, Fan S-L and Chai T-Y 2016 The review of air dispersion model Energy Conservation 409 (10) 14-18.

[18] Sun L and Li L 2018 Urban traffic infrastructure investment and air pollution: Evidence from the 83 cities in China Journal of Cleaner Production 172 488-496.

[19] Viard V B and Fu S 2015 The effect of Beijing’s driving restrictions on pollution and economic activity Journal of Public Economics 125 98-115.

[20] Hao Y and Liu Y M 2016 The influential factors of urban PM 2.5 concentrations in China: a spatial econometric analysis Journal of Clean Production 112 1443-1453.

[21] Fu J and Li Y 2018 Study on ship’s exhaust-gas diffusion based on Gaussian plume model Marine Science Bulletin 37 (2) 235-240.

[22] Li B-J, Tong J-L and Pan F 2013 Application of Gaussian plume model in atmospheric environmental risk assessment for petrochemical projects Environmental Engineering 31 (13) 139-143.

[23] Wang X and Feng G 2006 Application on the normal distribution of mist diffuse in Shanxi mines Journal of Taiyuan University of Technology 37 (3) 331.

[24] Tan W, Wang D and Ma Y 2014 Diffusion coefficient adaptive correction in Lagrangian puff model Atomic Energy Science and Technology 48 (3) 571-576.
[25] Liang J, Kong W, Fei W and Xin Q 2016 Improvement of Gaussian plume model in complex terrain Chinese Journal of Environmental Engineering 10 (6) 3125-3129.
[26] Chen J F, Chai R R and Yan H 2015 PM2.5 pollution source diffusion law and simulation analysis based on the gaussian plume model Systems Engineering 33 (9) 153-158.
[27] Wang Y, Li L J and Liu Y 2012 Characteristics of atmospheric NO2 in the Beijing-Tianjin-Hebei Region and the Yangtze River Delta analyzed by satellite and ground observations Environmental Science 33 (11) 3685-3692.
[28] Zhang Y, Yuan J, Wang Y and Yu S 2018 remote sensing monitoring of tropospheric NO2 density in Beijing-Tianjin-Hebei region based on OMI data Resources and Environment in the Yangtze River Basin 27 443-452.
[29] Mei S, Ma J and Zhang X 2016 Analysis on spatial variation characteristics of NO2 concentration in Beijing-Tianjin-Hebei region during APEC Journal of Atmospheric and Environmental Optics 11 (4) 281-287.
[30] Sharan M and Gopalakrishnan S G 2003 Mathematical modeling of diffusion and transport of pollutants in the atmospheric boundary layer Pure and Applied Geophysics 160 (1-2) 357-394.
[31] Mazzoldi A, Hill T and Colls J 2008 CFD and Gaussian atmospheric dispersion models: A comparison for leak from carbon dioxide transportation and storage facilities Atmospheric Environment 42 (34) 8046-8054.
[32] Elperin T, Fominykh A and Krasovitov B 2016 Effect of raindrop size distribution on scavenging of aerosol particles from Gaussian air pollution plumes and puffs in turbulent atmosphere Process Safety and Environmental Protection 102 303-315.
[33] Schmid H P and Oke T R 1990 A model to estimate the source area contributing to turbulent exchange in the surface layer over patchy terrain Quarterly Journal of the Royal Meteorological Society 116 (494) 965-988.
[34] Cheng K C, Acevedo-Bolton V, Jiang R T, Klepeis N E, Ott W R, Kitanidis P and Hildemann L M 2014 Stochastic modeling of short-term exposure close to an air pollution source in a naturally ventilated room: An autocorrelated random walk method Journal of Exposure Science and Environmental Epidemiology 24 (3) 311.
[35] Mo Z and Liu C 2018 Wind tunnel measurements of pollutant plume dispersion over hypothetical urban areas Building and Environment 132 357-366.
[36] Kumar P, Sharan M and Moreira D 2009 Analytical models for the dispersion of pollutants in low wind conditions Air Pollution and Turbulence: Modeling and Applications 157-178.
[37] Stockie J M 2011 The mathematics of atmospheric dispersion modeling Siam Review 53 (2) 349-372.
[38] Holmes N S and Morawska L 2006 A review of dispersion modelling and its application to the dispersion of particles: an overview of different dispersion models available Atmospheric Environment 40 (30) 5902-5928.
[39] Barratt R 2013 Atmospheric Dispersion Modelling: An Introduction to Practical Applications (Routledge).