There is a large difference in the reported cause of cardiac death in dialysis patients between Japan and other countries. In Japan, 26% of deaths are due to heart failure and only 2.5% of deaths are caused by sudden cardiac death (SCD)\(^1\), whereas in the United States, 28% of deaths are caused by SCD and only 4% of deaths are due to heart failure\(^2\), according to the national data in both countries. Thus, the major cause of cardiac death in Japan is heart failure, whereas it is SCD in the United States, one of the leading countries for dialysis medicine in the world. One of the reasons for this big difference may be no currently established and accepted definition of SCD in the clinical setting. A recent meta-analysis\(^3\) analyzing the incidence of SCD in patients with end-stage kidney disease clearly showed a complicated situation, wherein the definition of SCD varied among the 43 included studies. In these studies, there was no obvious definition of SCD in 26 studies and the remaining 17 studies included time in their definition of SCD. The most common definitions of SCD were “death occurring within 1 h of symptom onset with no clinical support for another cause” and “death occurring within 24 h of symptom onset with no clinical support for another cause”\(^4\).

Several recent articles have suggested that the incidence of SCD in Japanese dialysis patients is higher than was previously thought\(^5,6\). Hiyamuta et al.\(^7\) performed a multicenter longitudinal observational cohort study and reported a notable finding about sudden death in Japanese hemodialysis (HD) patients on this issue. They focused on a search for the incidence and associated factors of sudden death in their study, which included 3505 Japanese HD patients. During the 10-year follow-up period, 1735 patients died, including 227 (13%) cases of sudden death, which is defined as witnessed death within 24 h of the onset of acute symptoms and un witnessed unexpected death within the interval between dialysis sessions, excluding causes such as trauma, suicide, and suffocation. Taking these studies into account, it would appear that SCD is more common in the Japanese dialysis clinical setting than was previously thought, and its incidence in Japan appears to be still low, but close to that in other countries.

Two major questions regarding SCD in Japanese HD patients remain unanswered. We have believed and accepted the common sense theory that fatal arrhythmia is the central cause of sudden death in HD patients because of the high prevalence of latent coronary artery disease\(^8\) and cardiac functional morphological abnormalities\(^9\) in them and because they have a high rate of triggers for ventricular arrhythmias, such as volume expansion and electrolyte shifts, which occur routinely. According to the findings from an autopsy study\(^10\), only one-fourth of sudden deaths are due to a suspected fatal arrhythmic event, which includes acute myocardial infarction, arrhythmia, and hyperkalemia. Thus, fatal arrhythmia as a cause of sudden death in HD patients might be fewer than was previously thought. In the study of Hiyamuta et al.\(^7\), it is of interest that about 25% of sudden deaths, which is almost the same percentage as that reported in an autopsy study\(^10\), were found to develop on Monday, after a long interval day of HD schedule that fatal arrhythmia is most likely to develop.

In general, most SCD events are believed to be due to fatal ventricular arrhythmias, ventricular tachycardia, or ventricular fibrillation. The second question is whether this ordinary concept is applicable to HD patients. A recent clinical study by an Australian group has shown an impressive finding that all SCD events in HD patients were caused by bradycardia and asystole, such as sudden cardiac arrest (SCA) without ventricular arrhythmia and advanced atrioventricular block\(^11\). Even though their study had a small sample size, they explored the cause of death using a loop...
A similar finding was confirmed by a study from a Brazilian group, which showed a high frequency of fatal bradyarrhythmias monitoring using loop recorders in 100 chronic HD patients. The two key words “bradyarrhythmia” and “long interdialytic period” remind us that severe bradyarrhythmia due to hyperkalemia may lead to sudden death. Unfortunately, potassium levels were not added to the risk analysis for sudden death in the study of Hiyamuta et al.\(^1\). On the other hand, high phosphorus levels associated with sudden death in the study may be explained via bradyarrhythmia. Although it is not beyond the hypothesis, hyperphosphatemia might induce the calcification of myocardial conduction system and cause fatal bradyarrhythmia. Several autopsy case reports in dialysis patients have demonstrated the association of degenerated calcification of the atroventricular (AV) node with sudden death due to bradyarrhythmia.\(^2\) These findings do not necessarily imply that fatal ventricular tachyarhythmias are not one of the underlying cause of SCD in HD patients, however, we need to pay more attention to bradyarrhythmias, such as advanced AV block and SCA, as a cause of SCD.

Even in Japanese dialysis patients, who have a better prognosis than dialysis patients in the other countries of the world, further study is necessary to know whether the incidence SCD due to fatal arrhythmia is actually high and whether it is mainly due to ventricular tachyarrhythmia.

Conflict of Interest

NJ, YT, and TH declare having received honoraria as a speaker from Chugai Pharmaceutical and Kyowa Kirin.

References

1) Hanafusa N, Nakai S, Iseki K and Tsubakihara Y. Japanese society for dialysis therapy renal data registry-a window through which we can view the details of Japanese dialysis population. Kidney Int suppl, 2015; 5: 15-22
2) Saran R, Li Y, Robinson B, Abbott KC, Agodoa LY, Ayanian J, Bragg-Gresham J, Balkrishnan R, Chen JL, Cope E, Eggers PW, Gillen D, Gipson D, Hailpern SM, Hall YN, He K, Herman W, Heung M, Hirth RA, Hutton D, Jacobsen SJ, Kalantar-Zadeh K, Kovesdy CP, Lu Y, Molnar MZ, Morgensen H, Nallamothu B, Nguyen DV, O’Hare AM, Plattner B, Pisoni R, Port FK, Rao P, Rhee CM, Sakhuja A, Schaubel DE, Seleeński DT, Shahinian V, Sim JJ, Song P, Streja E, Kurella Tamura M, Tentori F, White S, Woodside K and Hirth RA. US Renal Data System 2015 Annual Data Report: Epidemiology of Kidney Disease in the United States. Am J Kidney Dis, 2016; 67: Svi, S1-305
3) Ramesh S, Zalucky A, Hemmelgarn BR, Roberts DJ, Ahmed SB, Wilton SB and Jun M. Incidence of sudden cardiac death in adults with end-stage renal disease: a systematic review and meta-analysis. BMC nephrol, 2016; 17: 78
4) Joki N, Tokumoto M, Takahashi N and Nishimura M. Current Perspectives on Sudden Cardiac Death in Hemodialysis Patients. Contrib Nephrol, 2018; 196: 5-12
5) Nishimura M, Tsukamoto K, Tamaki N, Kikuchi K, Iwamoto N and Ono T. Risk stratification for cardiac death in hemodialysis patients without obstructive coronary artery disease. Kidney Int, 2011; 79: 363-371
6) Moroi M, Tamaki N, Nishimura M, Haze K, Nishimura T, Kusano E, Akiba T, Sugimoto T, Hase H, Hara K, Nakata T, Kumita S, Nagai Y, Hashimoto A, Momose M, Miyakoda K, Hasebe N and Kikuchi K. Association between abnormal myocardial fatty acid metabolism and cardiac-derived death among patients undergoing hemodialysis: results from a cohort study in Japan. Am J Kidney Dis, 2013; 61: 466-475
7) Hiyamuta H, Tanaka S, Taniguchi M, Tokumoto M, Fujiaksi K, Nakano T, Tsuruya K and Kitazono T. Incidence and Associated Factors of Sudden Death in Patients on Hemodialysis: 10-Year Outcome of the Q-Cohort Study. J Atheroscler Thromb, 2020; 27: 306-318
8) Hase H, Tsunoda T, Tanaka Y, Takahashi Y, Imamura Y, Ishikawa H, Inishi Y and Joki N. Risk factors for de novo acute cardiac events in patients initiating hemodialysis with no previous cardiac symptom. Kidney Int, 2006; 70: 1142-1148
9) Foley RN, Parfrey PS, Harnett JD, Kent GM, Murray DC and Barry PE. Impact of hypertension on cardiomyopathy, morbidity and mortality in end-stage renal disease. Kidney Int, 1996; 49: 1379-1385
10) Takeda K, Harada A, Okuda S, Fujimi S, Oh Y, Hattori F, Motomura K, Hirakata H and Fujishima M. Sudden death in chronic dialysis patients. Nephrol Dial Transplant, 1997; 12: 952-955
11) Wong MC, Kalman JM, Pedagogos E, Toussaint N, Vohra JK, Sparks PB, Sanders P, Kistler PM, Halloran K, Lee G, Joseph SA and Morton JB. Bradycardia and asystole is the predominant mechanism of sudden cardiac death in patients with chronic kidney disease. J Am Coll Cardiol, 2015; 65: 1263-1265
12) Silva RT, Martinelli Filho M, Peixoto Gde L, Lima JJ, Siqueira SF, Costa R, Gowdak LH, Paula FJ, Kalil Filho R and Ramires JA. Predictors of Arrhythmic Events Detected by Implantable Loop Recorders in Renal Transplant Candidates. Arq Bras Cardiol, 2015; 105: 493-502
13) Isotalo PA, Halli A, Green M, Tang A, Lach B and Veinot JP. Metastatic calcification of the cardiac conduction sys-
tem with heart block: an under-reported entity in chronic renal failure patients. J Forensic Sci, 2000; 45: 1335-1338
14) Henderson RR, Santiago LM, Spring DA and Harrington AR. Metastatic Myocardial Calcification in Chronic Renal Failure Presenting as Atrioventricular Block. New Engl J Med, 1971; 284: 1252-1253