Conservative interventions and clinical outcome measures used in the perioperative rehabilitation of breast cancer patients undergoing mastectomy: a scoping review

Janny Mathieu1*, Catherine Daneau1, Nadège Lemeunier2,3, Annabelle Doyon4, Andrée-Anne Marchand5 and Martin Descarreaux6

Abstract

Background: Mastectomy is the first-line treatment approach for more than 90% of breast cancer patients. The numerous physical impairments associated with this surgical procedure negatively impact the patient’s quality of life. To date, rehabilitation resources available for breast cancer patients undergoing mastectomy within the institutions affiliated to the Centre intégré universitaire de soins de santé et de services sociaux de la Mauricie-et-du-Centre-du-Québec (CIUSSS-MCQ) are lacking and do not always seem to reflect the particularities of breast cancer care pathways. The purpose of this review was to identify and describe the conservative interventions and the clinical outcome measures used in the perioperative physical rehabilitation of women with breast cancer who are awaiting or have undergone mastectomy. We also aimed to report on the barriers and facilitators to study participation and completion.

Methods: MEDLINE, CINAHL, and the Cochrane Library were searched from inception to January 2021, and we updated the search on July 11, 2022. We included peer-reviewed English and French literature with quantitative designs, describing conservative interventions and clinical outcome measures used within rehabilitation programs designed for women who were awaiting or had undergone mastectomy. Paired reviewers independently reviewed all citations and articles using a two-phase screening process and independently extracted the data.

Results: Of the 6080 articles identified, 57 met the inclusion criteria. Most interventions were multimodal, which combined exercise with patient education, manual therapy, and/or lymphatic drainage. The most frequently used objective measures of physical function were shoulder range of motion, muscle strength, and signs of lymphedema. In contrast, the primary patient-reported outcome measures were quality of life, shoulder function, and pain. Undergoing another breast surgery, death, and cancer recurrence were the most reported barriers to study completion.

Conclusion: This scoping review reports on the heterogeneity and wide range of conservative interventions and clinical outcome measures used in the physical rehabilitation of breast cancer patients who had undergone or were scheduled to undergo mastectomy. Tailoring interventions to breast cancer patients' needs and promoting outpatient

*Correspondence: janny.mathieu@uqtr.ca

1 Department of Anatomy, Université du Québec à Trois-Rivières, Trois-Rivières, QC, Canada

Full list of author information is available at the end of the article
Background
Breast cancer is a malignant tumor with the second highest incidence rate among females worldwide [1]. In 2020, breast cancer cases accounted for one in four new cancer diagnoses among Canadian women [1]. Implementation of a biennial population-based mammography screening program in 1998 [2], along with the improvement of surgical techniques [3] has contributed to a significant decrease in breast cancer mortality rates in Canada over the last twenty years [4]. Specifically in Quebec, over 90% of breast cancer patients in the early 2000s were diagnosed with an in situ breast tumor (stage 0) or a stage I or II disease [5]. Early detection of lower histological grade cancer significantly improves breast cancer patients' prognosis, allowing treatment strategies to be initiated sooner, thus reducing the risk of disease progression [5]. In 2003, patients diagnosed with a stage I or II breast tumor showed a 5-year survival rate of 98.1% and 89.2%, respectively, while this number dropped to 10.5% for patients with a stage IV disease [5]. Although breast cancer patients may now benefit from a longer life expectancy, this is not without consequences for those women, who will still need to undergo a series of therapeutic interventions whose physical, psychological, and socio-economic effects are substantial [6].

Mastectomy (i.e., surgery to remove part of or all the breast) represents the first-line treatment approach for more than 90% of breast cancer patients [7]. Physical impairments associated with this surgical procedure are numerous (e.g., loss of shoulder range of motion (ROM), pain, lymphedema, and muscle weakness) [8], leading to limitations in activities of daily living, which negatively impacts the patient's quality of life [9, 10]. Several studies aimed to develop effective interventions to support breast cancer patients dealing with musculoskeletal adverse events (AEs) resulting from a mastectomy. A systematic review published in 2015 by De Groef et al. [11] confirmed the effectiveness of multimodal physical therapy (i.e., stretching exercises combined with general active exercises) to treat upper limb impairments after breast cancer treatments. Another systematic review published in 2019 by Ribeiro et al. [12] concluded that ROM and upper extremity strengthening exercises effectively improve shoulder ROM in patients who had undergone breast surgery. However, when comparing the 15 randomized controlled studies included in this review, the rehabilitation interventions described were found to be highly heterogeneous [12]. Although there seems to be no consensus as to which parameters should be chosen to promote optimal postoperative recovery for breast cancer patients, the use of self-management strategies in cancer patients is widely emphasized in the literature for its perceived benefits on patients’ quality of life and ability to manage treatment-related symptoms, besides promoting better utilization of health care and services [13, 14].

To date, there are limited rehabilitation resources available for breast cancer patients undergoing mastectomy within the institutions of the Centre intégré universitaire de santé et de services sociaux de la Mauricie-et-du-Centre du Québec (CIUSSS-MCQ). Previously published systematic reviews certainly provide important insights regarding the rehabilitation of women who have undergone mastectomy for breast cancer, but these have focused primarily on interventions initiated in the early postoperative period, and targeted specific outcome measures. Consequently, to ensure that we will provide timely and comprehensive patient care for women undergoing mastectomy, we must first establish a more comprehensive portrait of perioperative rehabilitation interventions and current clinical outcome measures. It stands to reason that such understanding represents a prerequisite for developing interventions whose modalities will reflect patients’ needs and expectations and consider the particularities of breast cancer care pathways.

Therefore, this study aimed to identify the conservative interventions and the clinical outcome measures used as part of the perioperative physical rehabilitation of women diagnosed with breast cancer who plan to or have undergone mastectomy. As a secondary objective, we aimed to report on the barriers and facilitators to participating and completing these rehabilitation programs.

Methods
Study design
To address our broad research question, a scoping review was conducted based on the framework from Arksey and O'Malley [15] and Levac et al. [16]. This type of study allows us to report on the current state of knowledge in a research field and captures the breadth of information on a topic that has been widely studied and for which the available data are numerous and heterogeneous [17]. Consistent with this framework, we did not appraise the methodological quality of the included studies.
Identifying the research question
Our scoping review was guided by the following research question: *What are the conservative interventions and clinical outcome measures used as part of the perioperative physical rehabilitation of women diagnosed with stage 0-III breast cancer who are awaiting or have undergone a mastectomy?*

Identifying relevant studies

Data sources and searches
Our search strategy was developed by one of the authors (J.M.) and two coauthors (A.A.M., M.D.) subsequently cross-validated the search to ensure completeness of results. The search strategy was first developed in MEDLINE and then adapted to other bibliographic databases. Search terms included controlled vocabulary for each database and free text words for the key concepts of breast cancer, mastectomy, and rehabilitation (see Additional file 1 for full search strategy). In addition, reference lists from relevant articles and previously published systematic reviews were hand searched for any additional relevant studies. We initially searched MEDLINE, CINAHL, and Cochrane databases from inception to January 24, 2021, and updated the search on July 11, 2022. EndNote X9 was used to de-duplicate references electronically across all databases.

Study selection

Eligibility criteria
To be included, studies had to meet the following criteria: (1) be written in the English or French language; (2) were randomized controlled trials, quasi-randomized trials, cohort studies, secondary analysis, exploratory studies or systematic reviews (for reference purposes only); (3) focused on adult women (aged ≥ 18 years) who engaged in a physical rehabilitation intervention before or following any type of mastectomy (e.g., partial mastectomy or breast conserving surgery (BCS), lumpectomy, quadrantectomy, wide local excision, segmental mastectomy) for a stage 0-III breast cancer. Studies including participants that underwent a mastectomy combined with an axillary staging procedure (i.e., axillary sampling or sentinel lymph node biopsy) or a lymph node dissection (ALND) were also included, considering that these surgical interventions are in line with the Society of Surgical Oncology-American Society of Clinical Oncology (SSO-ASTRO) clinical practice guideline recommendations [18]. All included studies also had to match the following characteristics for physical rehabilitation interventions:

1. Initiated within 3 months preceding or following the surgical intervention.
2. Involved at least one active physical modality (i.e., the patient physically contributed to its own treatment), including but not limited to exercises, conditioning, yoga, Taiichi, and Pilates.
3. Provided alone or in combination with other types of conservative interventions (e.g., patient education, manual therapy, manual lymphatic drainage (MLD), nutritional or psychological interventions).

Study exclusion criteria included: cross-sectional studies, case report and case series designs, study protocol, practice guidelines, letters, editorials, commentaries, unpublished manuscripts, books and book chapters, conference proceedings, cost analyses, meeting and conference abstracts, thesis and dissertations, non-systematic reviews, qualitative studies, laboratory studies and cadaveric or animal studies. Studies focusing on breast cancer survivors (i.e., patients who had completed all forms of cancer treatments), on patients with a stage IV disease, on managing or preventing the AEs of systemic treatments (i.e., chemotherapy, radiation, or hormonal therapy) rather than surgery, and studies who failed to provide enough methodological details (i.e., minimally a description of the intervention’s procedures and its initiation time) to enable interventions’ replication were also excluded.

Screening and agreement
A two-phase screening process was used to select eligible studies. In phase I screening, a pair of independent reviewers (J.M., C.D.) screened citation titles and abstracts to determine the eligibility of studies (categorizing studies as possibly relevant or irrelevant). In instances where eligibility could not be ensured due to limited information in the title/abstract, the citation was considered “possibly relevant” until a final decision could be made upon full text review. A pair of independent reviewers (J.M., N.L.) screened possibly relevant studies in full text during phase II screening to determine eligibility and reasons for exclusion were documented. Reviewers met to discuss disagreements and to reach consensus in both phases. An additional reviewer (A.A.M.) was involved if consensus could not be reached.

Data charting
Both reviewers (J.M., N.L.) extracted the following data (when available) from half of the eligible studies: (1) study description (first author, publication year and country of origin); (2) study population (sample size, cancer stage, surgery type and systemic treatment administered); (3) rehabilitation interventions provided
(e.g., type, initiation, duration, frequency); (4) outcome measures and outcome validation information and (5) patients’ experience data (e.g., reasons for not completing the study or for declining to participate, adherence outcomes, postoperative complications, AEs). An evidence table was built (see Additional file 2: Table S1) using a Microsoft Word document. A third reviewer (M.D.) independently verified the extracted data to minimize error.

Data synthesis and analysis
A descriptive synthesis was conducted to provide details regarding the total number of studies kept for analysis, their authors and year of publication, country where they were conducted, study design, and study population. The summary of evidence table includes a brief description of conservative rehabilitation interventions identified as well as outcome measures used for each of them. Interventions’ procedures and data on barriers and facilitators to engagement in these interventions were summarized separately in Additional file 2: Tables S1 and S2. To answer our research question, our review findings were sorted by themes of interest: “conservative rehabilitation interventions,” “clinical outcome measures,” and “patients’ experience.”

Results
Descriptive synthesis
A total of 6068 articles were identified from the literature search, and twelve articles were retrieved from additional data sources. Following the removal of duplicates (n = 958), 5065 articles were excluded (see Fig. 1), bringing the total count to 57 papers, including 54 original studies.

Table 1 summarizes the key findings from the included articles. Most studies (39 of 57) were RCT [19–57], five were controlled non randomized clinical trials [58–63], four were prospective cohort studies [61, 64–66], one was a retrospective cohort study [67], two was a case-control study [68, 69], four were quasi-experimental [70–73], one was a cohort study [74] and one was a feasibility study [75]. The studies originated from 22 countries distributed across 4 continents (i.e., Americas, Europe, Asia and Oceania), most of which were high income countries [19–26, 29, 31, 33–36, 39–41, 44–47, 50, 52–54, 56, 57, 59, 61–69, 71, 73–75] or upper-middle income countries [27, 28, 30, 32, 37, 38, 42, 43, 48, 49, 58, 60, 72], with only
First author	Study design	Participants	Intervention	Outcome measures
Ammitzbøll	RCT	N = 158	Exercise intervention group: Resistance exercises program (covered all major muscles groups of the UL and lower limbs, and core strength and stability) Phase 1 (w1-w20) Initiation: 3rd post-op w Frequency: 3 days/w Phase 2 (w21-w50) Initiation: after phase 1 Frequency: 3 days/w Exercise sessions duration: 50–55 min (10–15-min warm-up, 40 min of resistance training)	Arm VOL, ILVD (water displacement) LE-related symptoms: heaviness, tightness and swelling (NRS-11) Muscle strength (7RM-test and dynamometer) Shoulder movement (goniometer) Interlimb mass difference-ILMD (DXA and arm scan) Clinical examination LE (Stanton & al criteria) Clinically relevant LE (> 3% increased ILVD, NRS-11 ≥ 2 and 2 or more clinical criteria)
(1) (2019)		Exercise IG; n = 82 Age, mean±SD: 53 ± 10 Stage, n (%): I: 12 (15)/II: 48 (59)/III: 15 (18)/N/A: 7 (9) Sx type, n (%): LUMP + ALDN: 43 (52)/MX + ALDN: 39 (48) Systemic treatment, n (%) RT: 82 (100)/Adj Ch: 48 (59) Neoad Ch: 25 (30)/HT: 64 (78) Usual-care CG; n = 76 Age, mean±SD: 53 ± 10 Stage, n (%): I: 16 (21)/II: 35 (46)/III: 18 (24)/N/A: 7 (9) Sx type, n (%): LUMP + ALDN: 41 (54)/MX + ALDN: 35 (46) Systemic treatment, n (%) RT: 82 (100)/Adj Ch: 45 (59) Neoad Ch: 21 (28)/HT: 51 (67)	HRQOL (EORTC QLQ C-30 v3; FACIT-f) Symptom clustered: pain–sleep–fatigue (EORTC QLQ-C30 v3)	
Denmark				
Ammitzbøll	RCT	N = 158	Exercise intervention group: Resistance exercises program (covered all major muscles groups of the UL and lower limbs, and core strength and stability) Phase 1 (w1-w20) Initiation: 3rd post-op w Frequency: 3 days/w Phase 2 (w21-w50) Initiation: after phase 1 Frequency: 3 days/w Exercise sessions duration: 50–55 min (10–15-min warm-up, 40 min of resistance training)	Arm VOL, ILVD (water displacement) LE-related symptoms: heaviness, tightness and swelling (NRS-11) Muscle strength (7RM-test and dynamometer) Shoulder movement (goniometer) Interlimb mass difference-ILMD (DXA and arm scan) Clinical examination LE (Stanton & al criteria) Clinically relevant LE (> 3% increased ILVD, NRS-11 ≥ 2 and 2 or more clinical criteria)
(2) (2019)		Exercise IG; n = 82 Age, mean±SD: 53 ± 10 Stage, n (%): I: 12 (15)/II: 48 (59)/III: 15 (18)/N/A: 7 (9) Sx type, n (%): LUMP + ALDN: 43 (52)/MX + ALDN: 39 (48) Systemic treatment, n (%) RT: 82 (100)/Adj Ch: 48 (59) Neoad Ch: 25 (30)/HT: 64 (78) Usual-care CG; n = 76 Age, mean±SD: 53 ± 10 Stage, n (%): I: 16 (21)/II: 35 (46)/III: 18 (24)/N/A: 7 (9) Sx type, n (%): LUMP + ALDN: 41 (54)/MX + ALDN: 35 (46) Systemic treatment, n (%) RT: 82 (100)/Adj Ch: 45 (59) Neoad Ch: 21 (28)/HT: 51 (67)	HRQOL (EORTC QLQ C-30 v3; FACIT-f) Symptom clustered: pain–sleep–fatigue (EORTC QLQ-C30 v3)	
First author (year)	Study design	Participants	Intervention	Outcome measures
---------------------	--------------	--------------	--------------	------------------
Anderson [3] (2012)	RCT	N = 104	**Intervention arm; n = 52**	
Age group, n (%):				
<50: 21 (40)/50–64: 23 (44)/65–74: 4 (8)/ >75: 4 (8)				
Stage, n (%):				
I: 25 (48)/II: 19 (37)/III: 8 (15)/N/A: 1 (2)				
Sx type, n (%): LUMP: 23 (44)/MX: 28 (54)/N/A: 1 (2)				
Type of node dissection, n (%):				
SND only: 10 (19)/ALND: 39 (75)/Neither: 1 (2)/N/A: 2 (4)				
Systemic treatment, n (%):				
Ch: 31 (60)/HT: 26 (50)/RT: 31 (60)				
Comparison arm; n = 52	Age group, n (%):			
<50: 21 (40)/50–64: 23 (44)/65–74: 7 (13)/ >75: 7 (13)				
Stage, n (%):				
I: 26 (50)/II: 21 (40)/III: 4 (8)/N/A: 1 (2)				
Sx type, n (%): LUMP: 25 (48)/MX: 24 (46)/N/A: 3 (6)				
Type of node dissection, n (%):				
SND only: 9 (17)/ALND: 40 (77)/Neither: 0/N/A: 3 (6)				
Systemic treatment, n (%):				
Ch: 31 (60)/HT: 23 (46)/RT: 36 (69)				
Bendz [4] (2002)	RCT	N = 230	**Group A; n = 115**	
Age, mean± SD: 58 ± 11				
Stage: N/A				
Sx type, n (%):				
MX: 31 (31)/MX + RT: 5 (5)				
CT, 20 (20)/CT + RT: 45 (44)				
Group B; n = 115				
Age, mean± SD: 58 ± 11				
Stage: N/A				
Sx type, n (%):				
MX: 22 (21)/MX + RT: 7 (7)				
CT, 23 (22)/CT + RT: 52 (50)				
Intervention arm				
Comprehensive program consisting of tailored exercises and LE prevention module				
Initiation: 4-12w post-op				
Frequency: 2 days/w				
Phase 2 (m1-3): Transition to HB exercises (Supervised exercises 1 day/w)				
Phase 3 (m7-12): HB exercises				
Exercise session's duration: 65 min (5 min warm-up, 30 min of walking, 20 min of strengthening exercises and 10 min of stretching)				
Comparison arm				
Usual care consisting of patient ED (LE awareness, tips about PA and nutrition, recommendations for improving function and strength)				
Arm VOL (water displacement)				
Shoulder ROM (Myrin goniometer)				
Grip strength (vigorimeter)				
Patient reported measures of pain, heaviness and tension (VAS scale)				
First author (year)	Study design	Participants	Intervention	Outcome measures
---	---	---	---	---
Beurskens [5] (2007)	RCT	N = 30 **Physiotherapy group; n = 15** Age, mean±SD: 53.7 ± 13.0 Stage: N/A Sx type, n (%): BCS + ALND: 3 (20)/MX + ALND: 12 (60) Systemic treatment, n (%): Ch: 2 (13)/HT: 1 (7)/RT + Ch: 6 (40) Ch + HT: 1 (7)/RT + HT: 1 (7) RT + HT + Ch: 1 (7) **Control group; n = 15** Age, mean±SD: 55.4 ± 9.3 Stage: N/A Sx type, n (%): BCS + ALND: 2 (13)/MX + ALND: 7 (47) Systemic treatment, n (%): Ch: 4 (27)/HT: 1 (7)/RT + Ch: 2 (13) Ch + HT: 1 (7)/RT + HT: 1 (7) RT + HT + Ch: 1 (7)	**Physiotherapy group** PT sessions advice and exercises for arm/shoulder, posture correction, coordination exercises, exercises for muscular strength, improvement of general physical condition, exercises to prevent LE and instruction for ST massage of the scar if required Initiation: 2w following surgery Duration: 3 months Frequency: 1–2/w for the first 3w and then once a fortnight or less + 10 min of home exercises daily	Arm/shoulder pain (VAS) Shoulder mobility (digital inclinometer) Disabilities in daily life (DASH) Arm edema (water displacement) Grip strength (hand-held dynamometer) Quality of life (SF-36 questionnaire short version)
Box [6] (2002)	RCT	N = 65 **Treatment group; n = 33** Age, mean±SD: 53.03 ± 9.49 Stage: N/A Sx type, n (%): BCS + ALND: 46.9/MRM: 53.1 **Control group; n = 32** Age, mean±SD: 59.00 ± 10.95 Stage: N/A Sx type, n (%): BCS + ALND: 51.5/MRM: 48.5	**Treatment group** Physiotherapy Management Care Plan (PMCP) Included a thorough preop assessment and explanation with postop reviews to monitor shoulder ROM, progress exercise program, LE awareness ED and individualized intervention as required **Control group** Exercise instruction booklet	Shoulder ROM (goniometer) Function (12-items functional questionnaire)
Box [7] (2002)	RCT	N = 65 **Treatment group; n = 33** Age, mean±SD: 53.03 ± 9.49 Stage: N/A Sx type, n (%): BCS + ALND: 46.9/MRM: 53.1 **Control group; n = 32** Age, mean±SD: 59.00 ± 10.95 Stage: N/A Sx type, n (%): BCS + ALND: 51.5/MRM: 48.5	**Treatment group** Physiotherapy Management Care Plan (PMCP) Included a thorough preop assessment and explanation with postop reviews to monitor shoulder ROM, progress exercise program, LE awareness ED and individualized intervention as required **Control group** Exercise instruction booklet	Arm size-CIRC Arm VOL (water displacement) Multi-frequency bioimpedance-MFBIA (spectroscopy) Incidence of secondary LE (based on preop CIRC, preop VOL and MFBIA ratio)
First author (year)	Study design	Participants	Intervention	Outcome measures
---------------------	--------------	--------------	--------------	------------------
Cho [8] (2016)	RCT	N = 48	PTMLD group; n = 24	Arm VOL (CIRC tape measurements)
			PT program combined with MLD	Muscular strength (dynamometer)
			Supervised PT program	Active ROM (inclinometer)
			UE strengthening and stretching exercises combined with MT session (ST mobs and stretching), shoulder girdle mobs and PROM exercises	Pain (NRS-11)
			Initiation: At least 4w after BSx	Arm disability (DASH)
			Duration: 4w	QoL (EORTC QLQ-C30 v3, EORTC QLQ-BR23)
			Frequency: 3 times/w	Visible coding
			MLD	Subjective assessment by a rehab doctor
			Frequency: 5 days/w for 4w	
			MLD sessions duration: 30 min	
			PT group; n = 24	
			PT program solely	
Cinar [9] (2008)	RCT	N = 57	Treatment group; n = 27	ROM (Myringoniometer)
			Early shoulder ROM exercises (to be started on the 1st post-op day) and PT program	Arm VOL
			PT program	CIRC tape measurements
			Included ROM, stretching and strengthening exercises	Function
			Initiation: Following drains removal	(10-item functional questionnaire)
			Duration: 15 supervised sessions and 8w self-A	
			HB exercise program	
			Postoperative exercise forms to perform at home	
First author (year)	Country	Study design	Participants	Intervention
---------------------	---------	--------------	--------------	--------------
de Almeida Rizzi [10] (2020) Brazil		RCT	N = 62	Both groups
		Free ROM group; n = 31	Age, mean ± SD: 49.90 ± 10.11	Exercise protocol consisting of neck and UL stretching exercises and shoulder ROM exercises
		Stage, n (%): 10 (33)/II: 4 (13)/III: 3 (10)	Initiation: 1st post-op day	
		IB: 7 (23)/II: 17 (56)/III: 1 (3)/IV: 0 (0)	Day 1-14: Exercises 1-6	
		Sx type, n (%):	Free ROM group	
	N = 31	Breast sparing Sx: 14 (47)	Were allowed to perform the protocol exercises and ADL in free amplitude	
		MX: 16 (53)/Breast recons: 30 (97)	**Limited ROM group**	
		Type of node dissection, n (%):	Had ROM maintenance limited to 90° until the 30th post-op day, then started free ROM exercises	
	N = 31	SNB: 15 (50)/ALND: 14 (47)		
		Systemic treatment, n (%):		
	N = 31	Neoadj Ch: 13 (43)		
De Groef [11] (2017) Belgium		RCT	N = 147	Both groups
		Intervention group; n = 72	Age, mean ± SD: 53.9 ± 11.5	Individual standard PT program consisting passive mobs, stretching and transverse strain of pectoral muscles, scar tissue massage, exercises schemes, posture and movement control and shoulder AROM
		Stage, n (%):	Initiation: after surgery	
	0: 7 (12)/I: 16 (22)/II: 36 (50)/III: 13 (18)	Duration: 4 months		
	N (0):	Exercise sessions duration: 30 min		
	Sx type, n (%):	Frequency: 2 session/w, reducing to once/w after the first 2 months		
	MX: 46 (64)/Breast recons: 30 (97)	Intervention group		
	Type of node dissection, n (%):			
	SNB: 21 (30)/ALND: 7 (23)	Systemic treatment, n (%):		
	Systemic treatment, n (%):	Neoadj Ch: 10 (33)		
	RT, IMC and medial supraclavicular: 72 (100)	Target therapy: 22(31)/HT: 57 (79)		
	Sx type, n (%):			
	RT, axilla: 8(11)/Ch: 60 (83)	Neoadj Ch: 3 (4)		
	Systemic treatment, n (%):	Target therapy: 22 (31)/HT: 57 (79)		
	RT, IMC and medial supraclavicular: 72 (100)			
	Sx type, n (%):			
	RT, axilla: 8(11)/Ch: 60 (83)			
	Systemic treatment, n (%):			
	RT, IMC and medial supraclavicular: 72 (100)			
	Sx type, n (%):			
	RT, axilla: 8(11)/Ch: 60 (83)			
	Systemic treatment, n (%):			
First author (year)	Country	Study design	Participants	Intervention
---------------------	---------	--------------	---------------	--------------
De Rezende [12] (2006) Brazil	N = 60			
Directed exercises group; n = 30				
Age, mean ± SD: 54.00 ± 10.11				
Stage, n (%):				
I: 5 (17)/IIA: 4 (13)/IIB: 8 (27)/IIC: 2 (7)/IV: 2 (7)				
Sx type, n (%):				
Halsted RMX: 5 (17)/MRM: 16 (53)/QT: 9 (30)				
Systemic treatment, n (%):				
Previous Ch: 8 (27)	Directed exercises group			
19 ROM-exercises program performed in groups of 5 to 20 women and supervised by a team of PT and students				
Initiation: 1st post-op day				
Duration: 3 days/w for 42 days				
Exercise sessions duration: 40 min	N = 60			
Free exercises group; n = 30				
Age, mean ± SD: 55.40 ± 11.24				
Stage, n (%):				
I: 6 (20)/IIA: 3 (10)/IIIB: 3 (10)/IIC: 0 (0)/IV: 2 (7)				
Sx type, n (%):				
Halsted RMX: 1 (3)/MRM: 21 (70)/QT: 8 (27)				
Systemic treatment, n (%):				
Previous Ch: 9 (30)	Bears ROM (Manual goniometer)			
Lymphatic disturbance (Drainage VOL)				
Arm CIRC (tape measure)				
Devoogdt [13] (2018) Belgium	N = 160			
Experimental group; n = 79				
Age, mean ± SD: 56 ± 13				
Stage, n (%):				
0: 1 (1)/I: 21 (27)/II: 38 (48)/III: 13 (17)				
IV: 6 (8)				
Sx type, n (%):				
MX + ALDN: 52 (66)/BCS + ALDN: 27 (34)				
Systemic treatment, n (%):				
Ch: 50 (63)/Target therapy: 14 (18)/HT: 55 (70)	Both groups			
During hospitalization: Received information about the prevention of LE + exercise therapy (mobilizing exercises)				
After hospitalization: 30-min individual exercise sessions				
Duration: 6 months				
Frequency: 2 times/w, gradually diminished to 1/2w				
Experimental group				
Initiation: one week after removal of axillary drains				
Duration of MLD: 20 weeks				
Frequency of exercise sessions during this period: one to 3 times/w and then gradually decreased to once/w				
Control group				
Protocol described above without MLD	Both groups			
Protocol described above without MLD				
Incidence of arm LE (Water displacement, arm CIRC)				
Point prevalence of arm LE (water displacement, arm CIRC)				
Point prevalence of subjective arm and trunk LE (Questioned at interview)				
Arm VOL difference (water displacement)				
Shoulder/RM-abd, flexion, ext and int rotation (Goniometer, tape measure)				
HRQoL (SF-36)				
Problems in functioning (Lymph-ICF)				
First author	Study design	Participants	Intervention	Outcome measures
---	---	---	---	---
Fatima [14]	RCT	N = 30	Treatment group: n = 15	Pain intensity (NPRS)
(2022) Pakistan		Control group: n = 15	Preoperative EX protocol	Shoulder ROM (Goniometer)
		Overall mean age (y), mean ± SD: 46 ± 10.75	Initiation: Pre-operative period	Ability to perform ADLs
		Sex type: All participants were scheduled to undergo unilateral MRM and axillary clearance	Freq: 2–3 times/day, 2–5 sessions/w	(Groningen Activity Restriction Scale-GARS)
		Treatment group; n = 15	REPS: ROM EX 10–12; stretching EX 8–10	
		Control group; n = 15	Duration: Preoperative period and was repeated after the 1st and 3rd pod; continued with routine care in the postop period (unclear)	
			Control group	**Both groups**
			Routine care (ROM EX)	Pain intensity (VAS)
			Initiation: Pre-operative period	Shoulder ROM (Digital goniometer)
			Freq: 2–3 times/day	Shoulder muscle strength
			REPS: 10–12	Handgrip strength
			Duration: unclear	Hydraulics hand dynamometer
Feyzioğlu [15]	RCT	N = 40	Both groups	Upper extremity function (DASH)
(2020) Turkey		Kinect-based rehabilitation group: n = 20	Breathing, ROM and pumping exercises, limitations for shoulder ROM amplitudes, weightlifting, jumping and running up to 6w post-op	Fear of movement (TKS)
		Age, mean ± SD: 50.84 ± 8.53	Initiation: 1st post-op day	
		Stage, n (%): N/A	Duration: 2w	
		Sex type: Unilateral BSx + ALND	KBR group	XBOX 360 Kinect video game program combined with tissue massage and passive mobs
		Systemic treatment, n (%):	SPT group	Standard UE PT program including scar tissue massage and mobilizations
		Ch. 4 (21)/RT. 13 (66)/HT. 2 (11)	Initiation: 2nd post-op w	Initiation: 2nd post-op w
		Standardized physiotherapy group: n = 20	Duration: 2 days/w for 6 w	Duration: 2 days/w for 6 w
		Age, mean ± SD: 51.00 ± 7.06	Program sessions duration: 45 min	
		Stage, n (%): N/A		
		Sex type: Unilateral BSx + ALND		
		Systemic treatment, n (%):		
		Ch. 2 (12)/RT. 13 (77)/HT. 2 (12)		
Heiman [16]	RCT	N = 400	Intervention group: n = 200	Physical recovery
(2021) Sweden				(self-reported questionnaires, SGPALS)
				Mental recovery
				(self-reported questionnaire)
				Duration of hospital stay
		Intervention group: n = 200	Instructions by a PT to add 30 min of aerobic PA daily + 2 follow-up calls	Unplanned reoperations and readmissions
		Age (median; range): 61 (52–68; 30–84)	Initiation: 1–3w before Sx	(retrieved from medical records)
		Stage, n (%): I: 92 (51.4)/II: 83 (46.4)/III: 4 (2.2)	Duration: up to 4w after discharge from hospital	Postoperative complications (CCI)
		Sex type, n (%): BCS: 147 (80.3)/MX: 36 (19.7)	Control group	
First author (year)	Study design	Participants	Intervention	Outcome measures
---------------------	--------------	---------------	--------------	------------------
Joo [17] (2021)	RCT	N = 56	Early shoulder exercise group; n = 28	
		Age, mean± SD: 44.50±6.70	Arm restriction group; n = 28	
		Sx type, n (%): MX+Immediate Brecons 28 (100)	Age, mean± SD: 44.10±8.35	
		Type of node dissection, n (%): SNB: 26 (92.86)/ALND: 2 (7.14)	Sx type, n (%): MX+Immediate Brecons 28 (100)	
Korea		Early shoulder exercise group	Arm restriction group	
		Shouldero ROM exercise routine	Any type of arm exercise was restricted until drains removal	
		Initiation: 2nd pod	Duration: unclear	
		Duration: unclear	Drainage volume	
		Arm restriction group	Duration of drain placement	
		Any type of arm exercise was restricted until drains removal		
Kilbreath [18] (2012)	RCT	N = 160	Exercise group; n = 81	
(Australia)		Age, mean± SD: 53.5 ± 12.1	Control group; n = 79	
		Stage, %: I: 17/II: 44/III: 38	Age, mean± SD: 51.6 ± 11.0	
		Sx type, %: MX+SNB: 48/ALND: 62	Stage, %: I: 19/II: 37/III: 44	
		Systemic treatment, %: Ch: 68/RT: 79	Sx type, %: MX: 47/ALND: 58	
		Control group	Systemic treatment, %: Ch: 71/RT: 76	
		Exercise group	Both groups	
		Resistance training and passive stretching for SHOULDER muscles + HB program of resistance training and stretching	Both groups	
		Initiation: 4–6 w post-surgery	Exercise group	
		Duration: 8 w	Postop care including information outlining arm exercises and prevention of LE	
		Exercise group	Exercise group	
		Initiation: 4–6 w post-surgery	Exercise group	
		Frequency: once/w	Exercise group	
		Control group	Control group	
		No exercises or advice was provided	Control group	
		Quality of life	Quality of life	
		EORTC-QLC-C30, EORTC-QLC-BR23	EORTC-QLC-C30, EORTC-QLC-BR23	
		Presence of LE	Presence of LE	
		Arm CIRC measurements	Arm CIRC measurements	
		Upper shoulder muscle strength	Upper shoulder muscle strength	
		Hand-held dynamometer	Hand-held dynamometer	
		Presence of LE	Presence of LE	
		Bioimpedance spectroscopy	Bioimpedance spectroscopy	
Kilbreath [19] (2006)	RCT	N = 22	Exercise group; n = 14	
(Australia)		Age, mean± SD: 52.7 ± 14.0	Control group	
		Stage, %: I: 17/II: 44/III: 38	Age, mean± SD: 51.5 ± 10.2	
		Sx type, %: MX+ALND: 8 (57)/WLE+ALND: 6 (43)	Sx type, %: MX+ALND: 4 (50)/WLE+ALND: 4 (50)	
		Systemic treatment, n (%): RT: 9/64/Ch: 7/50	Systemic treatment, n (%): RT: 7/88/Ch: 6/75	
		Control group; n = 8	Control group	
		Exercise group	Exercise group	
		Resistance training and passive stretching for SHOULDER muscles	Exercise group	
		Initiation: 4–6 w post-surgery	Exercise group	
		Frequency: performed daily and supervised once/w by a PT	Exercise group	
		Control group	Control group	
		No exercises or advice was provided	Control group	
		Quality of life	Quality of life	
		EORTC-QLC-C30, EORTC-QLC-BR23	EORTC-QLC-C30, EORTC-QLC-BR23	
		Presence of LE	Presence of LE	
		Arm CIRC measurements	Arm CIRC measurements	
		Shoulder ROM (inclinometer)	Shoulder ROM (inclinometer)	
		Maximal isometric shoulder strength (dynamometer)	Maximal isometric shoulder strength (dynamometer)	
First author	Study design	Participants	Intervention	Outcome measures
--------------	--------------	--------------	--------------	------------------
Klein [20] (2021) Israel	RCT	N = 160	Intervention group:	Pain (NPRS)
		Intervention group: n = 73	PT treatment that included therapeutic, stretching and strengthening exercises + patient education	UL function (QuickDASH)
		Age, mean ± SD: 53.3 ± 12.7	Initiation: 2nd pod	Shoulder ROM
		Stage, n (%): IA: 40 (55.6)/IB: 2 (2.8)/IIA: 12 (16.7)/IIB: 4 (5.6)/ IIA/IIIC: 1 (1.4)	Duration: unclear	Goniometer application
		Sx type, n (%): LUMP: 4 (4.6)/LUMP + SNB: 23 (31.9)/LUMP + AUND: 7 (9.7)/PMMX + SNB: 14 (19.4)/ PMMX + ALND: 1 (1.4)/PMMX + Brecons: 23 (31.9)		Presence of LE or AWS
		Systemic treatment, n (%): Neoad Ch: 17 (23.6)/Adj Ch: 33 (45.8)/RT: 51 (70.8)/IORT: 8 (11.1)		Patient self-reported
		Control group:		
		n = 87		
		Age, mean ± SD: 51.2 ± 13.1		
		Stage, n (%): IA: 34 (40.0)/IB: 5 (5.9)/IIA: 7 (8.2)/IIB: 2 (4.2)/IV: 0		
		Sx type, n (%): LUMP: 15 (17.6)/LUMP + SNB: 16 (18.8)/LUMP + AUND: 0/PMMX + SNB: 21 (24.7)/PMMX + ALND: 4 (4.7)/PMMX + Brecons: 29 (34.1)		
		Systemic treatment, n (%):		
		Neoad Ch: 17 (21.1)/Adj Ch: 27 (31.8)/RT: 45 (52.9)/IORT: 4 (4.7)		
Lauridsen [21] (2005) Denmark	RCT	N = 139	**Intervention**	**Outcome measures**
		Group A: n = 72	**Intervention group**	Pain (NPRS)
		Age (age range): MRM + RT: 49 (40–70)/NRMM: 60 (37–74)	PT treatment that included relaxation and strengthening exercises, combined to vein pump therapy and stretching of scar tissue	UL function (QuickDASH)
		BCS: 54 (31–79)	Initiation: 6th to 8th post-op w	Shoulder ROM
		Stage: N/A	Duration: 60 min	Goniometer application
		Sx type, n (%): MRM + RT: 20 (28)/NRMM: 21 (29)/BCS: 31 (43)		Presence of “strings” in the axilla
		Systemic treatment, n (%):		Physical assessment
		Ch: 26 (36)/RT: 23 (32)/IORT: 25 (35)		
		Group B: n = 67		
		Age (age range):	**Group A**	
		MRM + RT: 51 (29–70)/NRMM: 63 (32–77)	Team instructed PT program consisting of relaxation and strengthening exercises, combined to vein pump therapy and stretching of scar tissue	
		BCS: 54 (2–69)	Initiation: 6th to 8th post-op w	
		Stage: N/A	Duration: 60 min	
		Sx type, n (%): MRM + RT: 23 (34)/NRMM: 13 (19)/BCS: 31 (46)	**Group B**	
		Systemic treatment, n (%):	"Standard treatment of the ward" and were offered the same	
		Ch: 21 (31)/RT: 17 (25)/IORT: 17 (25)	PT program after the 26th post-op w	
First author (year)	Study design	Participants	Intervention	Outcome measures
---------------------	--------------	--------------	--------------	------------------
Odynets [22] (2021)	RCT	Ukraine	N = 77	
Group A: n = 38 (age, mean±SD: 57.10±1.37; stage, n (%): I: 9 (24.0)/II: 29 (76.0); sex type, n (%): Madden MX: 38 (100))				
Group B: n = 39 (age, mean±SD: 57.40±1.24; stage, n (%): I: 10 (26.0)/II: 29 (74.0); sex type, n (%): Madden MX: 39 (100))	Group A: Progressive muscular relaxation and visualization exercises + yoga intervention. Initiation: 2–3 w after surgery. Duration: 1 m			
Group B: Yoga intervention only. Initiation: 2–3 w after surgery. Duration: 1 m	Pain experience and intensity (McGill Pain Questionnaire and VAS)			
Majed [23] (2020)	RCT	USA	N = 69	
BC women undergoing MRM				
Intervention group; n = 35 (age group, n (%): 35–42: 14 (47)/43–48: 10 (33)/49–55: 6 (20))				
Control group; n = 34 (age group, n (%): 35–42: 14 (47)/43–48: 10 (33)/49–55: 6 (20))	Intervention group: Phase 1 and 2 Measurements: QoL-BC survey and shoulder ROM. Intervention: one-to-one ED in addition to routine hospital care. Demonstration of the exercises by the researcher with a return demonstration by the patient was done. Phase 3 (post-surgery): Deep breathing + shoulder exercises. Shoulder flexion was limited to 90° of assisted AROM until the drains were removed, gradually increased after the 3rd pod.			
Control group: Routine hospital care that did not include any exercise training or ED. Routine hospital care included explanation by the surgeon on the surgical procedure	Quality of life (Breast Cancer Patient Version (QoL-BC))			
Shoulder ROM (Goniometer)				
Pace do Amaral [24] (2012)	RCT	Brazil	N = 131	
MT + UL exercises group; n = 65 (age, mean±SD: 55.0±11.4; stage, n (%): I/II: 46 (72)/IV: 18 (28); sex type, n (%): BCS: 15 (23)/RM: 50 (77); systemic treatment, n (%): Chem: 22 (34)/RT: 13 (20)/HT: 15 (60))				
UL exercises group; n = 66 (age, mean±SD: 56.7±11.7; stage, n (%): I/II: 38 (58)/IV: 28 (42); sex type, n (%): BCS: 13 (20)/RM: 53 (80); systemic treatment, n (%): Chem: 27 (40)/RT: 24 (36)/HT: 18 (26))	Both groups: Initiated PT on the 1st pod			
MT + UL exercises group: UL exercises sessions, followed by an MT protocol consisting of scapular and glenohumeral joint mobs and therapeutic massage. Duration: 1 month. Frequency: twice a week. MT session duration: 20 min.				
UL exercises group: Outpatient physical therapy program combining UL exercises to precautions to prevent LE. Initiation: 3rd post-op day. Duration: 1 month. Frequency: 3 times a week. Exercise sessions duration: 45 min.	Shoulder ROM (goniometer)			
Upper limb function				
Modified-University of California at Los Angeles Shoulder Rating Scale				
Postoperative complications (Observations made by the main investigator)				
First author (year)	Country	Study design	Participants	Intervention
---	---	---	---	---
Paskett [25] (2021)	USA	RCT	N = 568 LEAP group; n = 315	LEAP group (LE etiology, signs, symptoms, treatments, preventive self-care practices) and exercise program (breathing, stretching, strengthening and ROM EX)
			LE education and prevention only	Initiation: ≤ 6w after Sx, Freq: daily, Exercises duration: 15 min, Duration: unclear
			EO group; n = 253	ED education and prevention only
			Age, year, median (range): 58 (27–88)	
			Grade, n (%): Low: 65 (22.0)/Intermediate: 138 (46.6)/High: 93 (31.4)	
			Sx type, n (%): PMX or LUMP: 199 (64.8), MIX: 199 (35.2)	
			Missing: 5	
			Type of node dissection, n (%): SLND: 158 (50.6)/ALND: 67 (21.5)/SLND + ALND: 87 (27.9)	
			Systemic treatment, n (%): Ch: 109 (35.2)/RT: 214 (68.6)	
Petito [26] (2014)	Brazil	RCT	N = 77	Exercise program (both groups)
			Early group; n = 40	9 exercises outside hospital with illustrated manual, Duration: 105 post-operative days, Frequency: daily at home
			Age, mean ± SD: 55 ± 8	Early group Initiation: 1st post op day
			Sx type, n (%): MX: 24 (59), QT: 18 (40)	Late group Initiation: After drain removal (postoperative day 7–10, mean postoperative day: 9)
			Late group; n = 40	
			Age, mean ± SD: 53 ± 12	
			Sx type, n (%): MIX: 21 (57), QT: 18 (43)	
First author (year)	Country	Study design	Participants	Intervention
---------------------	---------	--------------	--------------	--------------
Rizzi [27] (2021)	Brazil	RCT	N = 60	Both groups
			Free ROM group; n = 30	Exercise protocol (UL ROM and cervical muscles stretching EX)
			Age (y), mean ± SD: 55.06 ± 10.56	
			Stage, n (%): QT + symmetrization: 26 (86.7); Margin re-excision + symmetrization: 4 (13.3)	
			Sx type, n (%): QT + symmetrization: 26 (86.7); Margin re-excision + symmetrization: 4 (13.3)	
			Type of node dissection, n (%): SNB: 23 (76.7); ALND: 5 (16.7)	
			Systemic treatment, n (%): Neoadj Ch: 5 (16.7)	
			Limited ROM group; n = 30	
			Age (y), mean ± SD: 52.53 ± 9.08	
			Stage, n (%): QT + symmetrization: 29 (96.7); Margin re-excision + symmetrization: 1 (3.3)	
			Sx type, n (%): QT + symmetrization: 29 (96.7); Margin re-excision + symmetrization: 1 (3.3)	
			Type of node dissection, n (%): SNB: 2 (6.6); ALND: 5 (16.7)	
			Systemic treatment, n (%): Neoadj Ch: 7 (23.3)	
			Exercise protocol (UL ROM and cervical muscles stretching EX)	
			Initiation: 1st pod Day 1–14: Exercises 1–6	
			From Day 15: Exercises 1–8	
			Duration: unclear	
Sagen [28] (2009)	Norway	RCT	N = 207	NAR group
			No activity restriction group (NAR); n = 104	Supervised physical therapy program which emphasized moderate progressive resistance exercise training
			Age, mean ± SD: 54.29 ± 7.90	Duration: 6 months
			Sx type, n (%): BSx: 46 (45)/BSC: 57 (55)	Frequency: 2–3 times a week
			Systemic treatment, n (%): RT, nodes: 47 (47)/RT, breast: 78 (75)	Exercise duration: 45 min
			Ch: 42 (42)/HT: 48 (46)	
			Activity restriction group; n = 100	AR group
			Age, mean ± SD: 55 ± 7.90	Physical therapy program with restricted activities of the OA avoiding heavy (> 3 kg) and strenuous activity
			Sx type, n (%): BSx: 51 (51)/BSC: 49 (49)	Program: 6 different passive manual techniques emphasizing flexibility and light massage of the affected shoulder, arm and scar
			Systemic treatment, n (%): RT, nodes: 40 (40)/RT, breast: 73 (73)	Duration: 6 months
			Ch: 38 (38)/HT: 50 (50)	Frequency: 1/week
			Early postoperative shoulder exercise group; n = 89	Early postoperative shoulder exercise group
			Age, median (range): 59 (35–83)	Active shoulder exercise (anteflexion, abduction, rotation)
			Delayed postoperative shoulder exercise group; n = 74	Delayed postoperative shoulder exercise group
			Age, median (range): 62 (41–84)	Active shoulder exercise (anteflexion, abduction, rotation)

Note: UL ROM = upper limb range of motion; MRM = modified radical mastectomy; EX = exercise; BSx = breast surgery; BSC = breast conservation surgery; RT = radiation therapy; Ch = chemotherapy; HT = hormone therapy; VOL = volume; M = milliliter; VAS = visual analog scale.
Table 1 (continued)

First author (year)	Study design	Participants	Intervention	Outcome measures	
Siedentopf [30] (2013)	RCT	N = 93	**Intervention group: n = 48**	Quality of life (German version of the European Organization of Research and Treatment of Cancer Quality of Life questionnaire (EORTC QLQ-C30) and its breast-cancer-specific module EORTC QLQ-BR23)	
Germany			Age, mean ± SD: 55.82 ± 10.72		
			Sx type, n (%): BCS: 29 (5.8), RM: 18 (3.6)		
			SND: 37 (7.1), ALND: 15 (2.9)		
			Systemic treatment, n (%): Ch: 17 (3.5), RT: 23 (4.7)		
			Control group: n = 41		
			Age, mean ± SD: 58.41 ± 9.91		
			Sx type, n (%): BCS: 24 (59.0), RM: 16 (39.5)		
			SND: 32 (78.0), ALND: 9 (22.0)		
			Systemic treatment, n (%): Ch: 7 (17.0), RT: 16 (39.5)		
			Intervention group		
			Yoga classes		
			Initiation: Immediately after Sx		
			Duration: 5 w		
			Frequency: 2 times/w		
			Class duration: 75 min		
			10 classes over 5 w		
			Control group		
			Yoga classes		
			Initiation: 5 weeks after surgery		
			Duration: 5 w		
			Frequency: 2 times/w, 10 classes over 5 w		
			Class duration: 75 min		
			Yoga classes: started with lying postures and the gradual mobilization of arms and legs + breathing exercises + dynamic exercises		
			Intervention group		
			Self-management of LE program (SMLP) + exercising program + simple LD		
			SMLP program: Training booklet containing information about mechanisms and risk factors of LE and about prevention interventions		
			Exercising program: Hand squeezing exercises, active and passive arm exercises		
			Frequency: 3–6 times/day at first and gradually increased to 10		
			Exercise sessions duration: 30–60 min		
			Duration: 6 months		
			Simple lymphatic drainage: Deep diaphragmatic breathing exercises, neck drainage, axillary drainage and UE drainage		
			Frequency of breathing exercises: 3 times a day		
			Frequency of self-massage: 2 times a day		
			Control group		
			Usual post-op care		
			Free ROM group		
			Active UL movements with ROM over 90° (leaflet + home guide)		
			Restricted ROM group		
			Active UL movements with ROM restricted to 90° from 1st pod until removal of all surgical stitches (leaflet + home guide)		
			Initiation: 1st postop day		
			Frequency: 3 times/day (at least once a day)		
Temur [31] (2019)	RCT	N = 72	**Intervention group: n = 36**	Upper extremity function (DASH) Presence of LE upper extremity CIRC (measuring tape) Quality of life (EORTC QLQ-30 and EORTC QLQ-BR23)	
Turkey			Age, mean ± SD: 46.7 ± 9.96		
			Stage, n (%): I: 2 (7.2), II: 16 (53.3), III: 12 (40)		
			Sx type, n (%): BCS: 22 (73.3)		
			RM: 8 (27)		
			Control group: n = 36		
			Age, mean ± SD: 45.6 ± 9.03		
			Stage, n (%): I: 2 (7.2), II: 16 (52.2), III: 13 (36.1)		
			Sx type, n (%): BCS: 17 (55.6)		
			RM: 17 (55.6)		
			Intervention group		
			Self-management of LE program (SMLP) + exercising program + simple LD		
			Training booklet containing information about mechanisms and risk factors of LE and about prevention interventions		
			Exercising program: Hand squeezing exercises, active and passive arm exercises		
			Frequency: 3–6 times/day at first and gradually increased to 10		
			Exercise sessions duration: 30–60 min		
			Duration: 6 months		
			Simple lymphatic drainage: Deep diaphragmatic breathing exercises, neck drainage, axillary drainage and UE drainage		
			Frequency of breathing exercises: 3 times a day		
			Frequency of self-massage: 2 times a day		
			Control group		
			Usual post-op care		
Teodózio [32] (2020)	RCT	N = 572	**Free ROM group, n = 254**		
Brazil			Age, mean ± SD: 52.54 ± 12.03		
			Sx type, n (%): Segmentectomy: 107 (42)		
			MX: 147 (53)		
			Restricted ROM group, n = 211		
			Age, mean ± SD: 54.54 ± 10.95		
			Sx type, n (%): Segmentectomy: 94 (44.8)		
			MX: 117 (56)		
First author (year)	Country	Study design	Participants	Intervention	Outcome measures
----------------------	---------	--------------	---------------	--------------	------------------
Testa [33] (2014)	Italy	RCT	N = 70	Treated group, n = 35	Mobility of the glenohumeral joint (goniometer)
			Age, mean ± SD: 54.3 ± 8.02	Treated group, n = 35	Grade of pain perceived (VAS)
			Stage, n (%)	54/36/10	Quality of life
			Sx type, n (%)	MRM: 19 (54)	EORTC QLQ30 and QLQ-BR23
				Segmental MX + ALDN: 16 (45)	
				Systemic treatment, n (%)	
				Ch: 24 (69)/RT: 30 (86)	
		Control group, n = 35	Age, mean ± SD: 55.3 ± 8.02	Control group, n = 35	
			Stage, n (%)	N/A	
			Sx type, n (%)	Maddens' MRM: 21 (60)	
				Segmental MX + ALDN: 14 (40)	
				Systemic treatment, n (%)	
				Ch: 25 (71)/RT: 27 (77)	
Todd [34] (2008)	UK	RCT	N = 116	Delayed shoulder mobs, n = 58	Incidence of LE limb VOL difference
			Age, mean ± SD: 56.5 ± 12.4	Delayed shoulder mobs, n = 58	(Water displacement)
			Stage, n (%)	8 (14)/24 (41)/45 (63)	Shoulder ROM
			Sx type, n (%)	WLE: 36 (57)/MX: 24 (43)	Manual goniometer
				Systemic treatment, n (%)	
				RT: 39 (67)/Ch: 30 (50)/HT: 34 (59)	Grip strength
		Early full shoulder mobs, n = 58	Age, mean ± SD: 57 ± 14	Early full shoulder mobs	(Hand-held dynamometer)
			Stage, n (%)	8 (14)/27 (48)/33 (43)	Health-related QoL
			Sx type, n (%)	WLE: 29 (50)/MX: 29 (50)	FACT-B + 4 and SDQ
				Systemic treatment, n (%)	
				RT: 41 (71)/Ch: 26 (45)/HT: 41 (71)	

Treated group
- Early physical rehabilitation program from latest guidelines for rehabilitation in BC
- Initiation: 2nd postop day
- Program duration: 40 min
- Frequency: 5 times/w during all the duration of axillary drainage
- Once drainage removed (approximately postoperative day 7): 20 PT sessions
- Frequency: 5 times/w
- Duration: 60 min/session

Control group:
- No early physical rehabilitation program with no instructions of a PT. Rehabilitation program from the old rehabilitation guidelines

Delayed shoulder mobs
- Exercise program that limited arm movements < 90° in all planes, followed by a full shoulder ROM program

Early full shoulder mobs
- Full shoulder mobilization (i.e., movement > 90°) and shoulder ROM exercises
- Initiation: Limited ROM program: 2nd pod
- Full ROM program: 2nd post op w
- Exercise sessions duration: 10 min
- Frequency: 4 times/day until full shoulder ROM was restored and then once/day for the 1st postop year
Table 1 (continued)

First author (year)	Study design	Participants	Intervention	Outcome measures
Torres [35] (2010)	RCT	N = 120		
Early physiotherapy group: n = 60				
Age, mean ± SD: 52.9 ± 10.7				
Stage: N/A				
Sx type, n (%): QT: 24 (40)/Modified MX: 23 (38)/LUMP:13 (22)				
Systemic treatment, n (%): RT: 44 (75)/Ch: 50(85)/HT: 39 (66)				
ED strategy group: n = 60				
Age, mean ± SD: 52.9 ± 12.5				
Stage: N/A				
Sx type, n (%): QT: 26 (43)/Modified MX: 20 (34)/LUMP:14 (23)				
Systemic treatment, n (%): RT: 49 (86)/Ch: 45(79)/HT: 33 (58)	Early physiotherapy group			
MLD+progressive massage of the scar, stretching exercises and progressive active and action assisted shoulder exercises, combined with functional activities and proprioeptive neuromuscular exercises + ED strategy				
ED strategy only group				
Instruction with printed materials about the lymphatic system, concepts of normal load vs overload, source of secondary LE, precipitating factors and 4 preventive interventions				
Initiation: 3 to 5 days after hospital discharge				
Duration of both programs: 3 w				
Frequency of both programs: 3 times/w	Incidence of secondary LE			
(Arm CIRC)				
Wingate [36] (1989)	RCT	N = 115		
Treated group, n = 61				
Age: 56.26				
Control group, n = 54				
Age: 58.27	Treated group:			
Physical therapy: active hand, wrist, elbow and postural exercises, active and active assisted shoulder exercises, functional activities and PNF				
After drain removal: HB program with progressive restrictive exercises and PNF				
Initiation: 1st postop day				
Duration: 8 w minimum				
Frequency: 2 session/day				
Exercise sessions duration: 30 min				
Control group				
Untreated group with no physical therapy	Psychopathologic self-report inventory (SCL-90-R)			
Functional evaluation of the ipsilateral shoulder (Scale of difficulty)				
Upper extremity CIRC measurement				
Zhang [37] (2016)	RCT	N = 1000		
Physical exercise group: n = 500				
Age group, n (%): <50: 272 (54)/ ≥50: 228 (46)				
Stage, n (%): I/II: 211 (42)/III: 289 (58)				
Sx type, n (%): MRM: 500 (100)				
MLD group; n = 500				
Age group, n (%): <50: 266 (53)/ ≥50: 234 (47)				
Stage, n (%): I/II: 197 (39)/III: 303 (61)				
Sx type, n (%): MRM: 500 (100)	Physical exercise group			
Physical exercise alone				
Initiation: 24 h before surgery with patient ED				
Frequency: prn 1, 2, 3 and day of discharge				
Session duration: 20–30 min				
Postop day 1-7: Passive exercises				
Frequency: 3 times/day				
Session duration: 15 min				
Postop day 7-30: After drain removal to sutures removal: Exercises progressed to localized exercises on the affected UL				
After removal suetures to 6 months: Extensive active exercises involving affected shoulder				
Frequency: 3 times/day				
MLD group				
Physical exercises + Self MLD				
Initiation: after sutures removal				
Frequency: 3 sessions/day				
Session duration: 30 min	Stage of upper limb LE			
Observation and tape-measuring				
Scar formation				
(Vancouver Scar Scale)				
Shoulder function (max shoulder abduction)				
First author (year)	Country	Study design	Participants	Intervention
---------------------	---------	--------------	--------------	--------------
Zhou [38] (2019)	China	RCT	N = 92	Intervention group; n = 46
			Age, mean± SD: 49.94±8.88	Progressive UL exercises and muscle relaxation training by nurses
			Stage, n (%): I: 18 (35)/II: 27 (33)/III: 6 (12)	Initiation: before surgery
			Sx type, n (%): MX+ SND: 24 (47)/MX+ ALND: 15 (29)	Duration: 6 months
			BCS + SND: 10(20)/BCS + ALND: 2(4)	Frequency: 1 session/day at hospital and 1 session/week at home after discharge
			Systemic treatment, n (%): Ch: 41 (80)	**Control group:**
Control group:			n = 46	Routine nursing care (surgery district nursing, drainage tube nursing, routine health ED, physical exercises, vital sign monitoring and post-surgery complications)
			Age, mean± SD: 49.40±9.88	
			Stage, n (%): I: 14 (28)/II: 29 (57)/III: 8 (16)	
			Sx type, n (%): MX+SND: 25 (49)/MX+ALND: 17 (33)	
			BCS+SND: 6 (12)/BCS+ALND: 3 (6)	
			Systemic treatment, n (%): Ch: 43 (84)	
Intervention group				
MLD group:			n = 33	Exercises of limb and chest physiotherapy with manual lymph drainage
			Age, mean± SD: 60.3±8.2	Initiation: 2nd postop day
			Stage, n (%): I: 12 (36)/II: 15 (46)/III: 6 (18)	MLD group
			Sx type, n (%): BCS: 20 (61)/MRM: 13 (39)	Manual lymph drainage
			SND: 14 (42)/ALND: 19 (58)	Initiation: 14th postop day
			Systemic treatment, n (%): Ch: 13 (39)/RT: 22 (67)	Duration: 6 months
Control group:			n = 34	Applied self-drainage from modification of the method described by Földi and Strönbenreuther
			Age, mean± SD: 58.6±12.2	Both groups
			Stage, n (%): I: 11 (52)/II: 16 (47)/III: 7 (21)	Exercises of limb and chest physiotherapy
			Sx type, n (%): BCS: 20 (59)/MRM: 14 (41)	Initiation: 2nd postop day
			SND: 18 (53)/ALND: 16 (47)	MLD group
			Systemic treatment, n (%): Ch: 15 (44)/RT: 25 (74)	Manual lymph drainage
				Initiation: 14th postop day
				Duration: 6 months
				Frequency: 5 sessions/week
				Control group:
Control group:			n = 34	Applied self-drainage from modification of the method described by Földi and Strönbenreuther
First author	Study design	Participants	Intervention	Outcome measures
----------------------	-----------------------------------	--------------	---	--
de Oliveira [40]	Controlled non-randomized clinical trial	N = 96	**Exercise group; n = 48** Age, mean ± SD: 56.7 ± 15.1 Stage, n (%): I (2)/II (17)/III (37)/IV (28) (61) Systemic treatment, n (%): Neoadj Ch: 22 (48) **MLD group; n = 48** Age, mean ± SD: 55.6 ± 11.9 Stage, n (%): I (8)/II (9)/III (20)/IV (51) (79) Sx type, n (%): MRM: 42 (62)/Halsted RM: 1 (2) Systemic treatment, n (%): Neoadj Ch: 29 (67)	Both groups ED strategy: Information leaflets about proper care for the OA and lectures delivered by a multi-D team Initiation: 1st post-op day **Exercise group** 19-exercise supervised program including neck and rotator cuff muscles stretching and active assisted and free AROM exercises Initiation: 3rd post-op day Dur: 2 days/w for 30 days Exercise sessions duration: 40 min **MLD group** MLD applied by 3 experienced PT Initiation: 3rd post-op day Dur: 2 days/w for 30 days MLD session duration: 40 min Upper limb CIRC (Measuring tape) Shoulder ROM (Goniometer) Scarring complications Signed of wound dehiscence, infection, seroma and puncture
Huo (41) China	Controlled non-randomized clinical trial	N = 93	**Observation group; n = 47** Age, mean ± SD: 48.5 ± 7.0 Stage, n (%): I (7)/II (22)/III (46) (83) Sx type, n (%): MRM: 47 (100) **Control group; n = 46** Age, mean ± SD: 47.8 ± 6.4 Stage, n (%): I (5)/II (27)/III (38) (86) Sx type, n (%): MRM: 47 (100)	Observation group Routine nursing care + personalized rehabilitation EX intervention Initiation: 24 h post-Sx Dur: up to 6 m post-Sx Control group Routine nursing care Immune function (Blood sample) UL edema (CIRC) Presence of scutaneous fluid (Teiler's approach) Shoulder ROM (Goniometer) UL function (DASH questionnaire, ADL score) QoL (FACT-B)
Na [42] South Korea	Controlled non-randomized clinical trial	N = 33	**Rehabilitation group; n = 20** Age, mean ± SD: 40.9 ± 2.1 Stage: N/A Sx type, n (%): MRM: 15 (75)/Partial MX: 5 (25) **Control group; n = 13** Age, mean ± SD: 46.9 ± 9.8 Stage: N/A Sx type, n (%): MRM: 7 (54)/Partial MX: 6 (46)	Rehabilitation group Early postmastectomy rehabilitation program Initiation: 1st post-op day Dur: 4w (40 min of PT and 30 min of exercises) Frequency: 4 times/day **Lymphedema:** Postural exercises, AROM of the shoulder, elbow, wrist, and hands with active use of the involved arm from the 2nd post-op day Physical modalities for pain relief and therapeutic exercises After drains removal: Progressive resistance exercises with an increase in functional activities Control group Instructions alone for ROM exercises pertaining to the affected shoulder and postural exercises Symptoms Checklist (SCL-90-R) Shoulder ROM (Goniometer) Shoulder function (10 items provided by Wingate) Upper limb circumference (Tape measurement)
First author	Study design	Participants	Intervention	Outcome measures
------------	-------------------------------	---	---	---
Oliveira [43]	Controlled non-randomized clinical trial	N = 116	**Active exercise group: n = 58** Age, group 1 (n, %): Stage, n (%) I: 1 (20%) II/III/IV: 32 (64) Sx type, n (%) MRM Patey: 29 (55) / MRM Madden: 24 (45) RM Halsted: 0 (0) Systemic treatment, n (%): Neoadj Ch: 24 (45) / Adj Ch: 8 (16) RT: 16 / HT: 14 / IT: 3 (14) 	Both groups Educational strategy: Information leaflets about proper care for the OA and daily active exercises to do at home) + lectures delivered by the multidisciplinary team during the first month after surgery Initiation: 1st postop day **Active exercise group** Initiation: 48 h after surgery Duration: 30 days Frequency: 40 min group session, 2/w **MLD group** Manual lymphatic drainage Initiation: 48 h after surgery Duration: 30 days Frequency: 40 min individual session, 2/w
Tirolli Rett [44]	Controlled non-randomized clinical trial	N = 65	Age, mean ± SD: 50.61 ± 11.14 Sx type, n (%): MRM: 40 (61.6) / QT: 9 (14.4) Systemic treatment, n (%): Ch: 29 (49.1) / RT: 23 (39.9) 	PT protocol Initiation: Between 4-8w after Sx Freq: 3 times/w Sets/Reps: 3-8 x 12 Consultation duration: 60 min Duration: 20 sessions, 7w
Kim [45]	Retrospective case-control study	N = 115	**Early rehabilitation group: n = 49** Age (age range): 43 (34-61) Stage: N/A Sx type: Skin-sparing total MX and immediate Brecons with tissue expander Type of node dissection, n (%): SNB: 41 (84%) / ALND: 8 (16) Systemic treatment, n (%): Neoadj Ch: 3 (6) **Conventional protocol: n = 66** Age (age range): 42 (24-61) Stage: N/A Sx type: Skin-sparing total MX and immediate Brecons with tissue expander Type of node dissection, n (%): SNB: 46 (70%) / ALND: 20 (30) Systemic treatment, n (%): Neoadj Ch: 7 (11) 	Both groups Self-exercise ED Initiation: 1st post-op w **Early rehabilitation group** Short term immobilization period (2w) followed by a self-exercise program including progressive shoulder stretch exercises and strengthening exercises Initiation: 3rd post-op w Frequency: 4 times a day/7 days per w **Conventional protocol** Were asked to immobilize the OA for more than 4w and engaged themselves in the same self-exercise program after the immobilization period Initiation: From the 5th post-op w Frequency: 4 times a day/7 days per w
Table 1 (continued)

First author (year)	Study design	Participants	Intervention	Outcome measures
Lu [46] (2015)	Retrospective cohort study	N = 1217		
- **Group A; n = 415**
 - Age, mean ± SD: 51.79 ± 11.97
 - Stage, n (%): 0–2: 328 (79)/3: 89 (21)
 - Sx type, n (%): BCS: 129 (31)/Simple MX: 25 (6)
 - MRM: 267 (64)
 - Systemic treatment, n (%):
 - RT: 182 (44)/Ch: 342 (82)
- **Group B; n = 672**
 - Age, mean ± SD: 52.67 ± 11.01
 - Stage, n (%): 0–2: 503 (75)/3: 169 (25)
 - Sx type, n (%): BCS: 152 (23)/Simple MX: 25 (3)/MRM: 509 (76)
 - Systemic treatment, n (%):
 - RT: 297 (44)/Ch: 549 (82)
- **Group C; n = 130**
 - Age, mean ± SD: 51.88 ± 10.08
 - Stage, n (%): 0–2: 92 (71)/3: 38 (29)
 - Sx type, n (%): BCS: 303 (25)/Simple MX: 41 (3)/MRM: 873 (72)
 - Systemic treatment, n (%):
 - RT: 66 (51)/Ch: 111 (85) |
| **Manfuku [47] (2021)** | Retrospective case–control study | N = 153
- **BME + PT group; n = 78**
 - Age, mean ± SD: 54.2 ± 9.8
 - Stage, n (%): 0: 28 (36.7)/I–II: 30 (39.1)
 - Sx type, n (%): BCS: 28 (36.7)/Simple MX: 30 (39.1)
 - Type of node dissection, n (%): SNB: 39 (67.3)/ALND: 19 (32.7)
 - Systemic treatment, n (%):
 - Ch: 23 (29.7)/RT: 37 (63.3)/HT: 42 (72.4)
- **PNE + PT group; n = 75**
 - Age, mean ± SD: 52.3 ± 11.3 < Stage, n (%): 0–I: 35 (58.3)/II–III: 25 (41.7)
 - Sx type, n (%): BCS: 37 (61.7)/Simple MX: 38 (38.3)
 - Type of node dissection, n (%): SNB: 42 (70.0)/ALND: 18 (30.0)
 - Systemic treatment, n (%):
 - Ch: 17 (28.8)/RT: 3.2 (53.3)/HT: 43 (71.7) |

Group A
- No ED or PT provided

Group B
- ED only which provided information on the lymphatic system, the symptoms and signs of LE, suggestions for preventing LE

Group C
- ED + PT sessions which included the following treatments: breathing exercise, postsurgical positioning, massaging of scar tissue, mobs of the shoulders and UE exercises, passive and active stretching of the major and minor pectoral muscles
 - **Initiation:** 1st postop wk in the hospital and was continued at outpatient clinics post discharge
 - **Frequency:** 2 times/wk
 - **PT sessions duration:** 30 min

BME + PT group
- PT program that comprised shoulder joint EX and mobs + educational sessions on breast anatomy and surgical procedures
 - **Initiation:** 1w before Sx
 - **Duration:** 3 m

PNE + PT group
- PT program + educational sessions on pain mechanisms (purpose was to change the patient’s knowledge of their pain states)
 - **Initiation:** 1w before Sx
 - **Duration:** 3 m
 - **Follow-up:** 1 year after Sx

- Occurrence of LE
- (Limb-to-limb CIRC difference)
- LE severity
- (Criteria defined by the International Society of Lymphology)

- Pain intensity and pain interference (BPI)
- Shoulder ROM (Goniometer)
- Handgrip strength (Dynamometer)
- CS-related symptoms (CSI)
- Pain-related catastrophizing (PCS)
- Presence of LE (arm CIRC)
| First author (year) | Study design | Participants | Intervention | Outcome measures |
|---------------------|--------------|--------------|--------------|------------------|
| **Morimoto [48]** (2003) Japan | Prospective observational study | N = 72 | **Both groups** | Shoulder joint ROM (goniometer) |
| | | BC women stage I or II | Initiation: postoperative day 1 | Grip strength |
| | | PCM group: n = 33 | Duration: After hospital discharge, was entrusted to the | Pain after surgery |
| | | Age, mean±SD: 50.0±11.0 | patient's own initiative | Movement associated chest pain |
| | | Stage: N/A | Postoperative day 2: | Operative wound pain |
| | | SR type: PCM | Prevention of development of rigidity of shoulder joint on the | ADL (Ability to sleep on the affected side, ability to tie an apron, ability to air the futon in the sun) |
| | | BCS group: n = 38 | OA: Lateral and forward arm raising on the affected side in | |
| | | Age, mean±SD: 50.8±8.8 | the dorsal sitting positions | |
| | | Stage: N/A | | |
| | | SR type: BCS | | |
| | | Both groups | | |
| | | Postoperative day 3: | | |
| | | Exercise to approximate preoperative life | | |
| | | Postoperative day 4: | | |
| | | Exercise to reduce functional differences between the normal and affected sides | | |

Paolucci [49] (2021) Italy	Prospective cohort study	N = 38	**Rehabilitative treatment group**	Pain intensity (VAS)
		Age, mean±SD: 57.40±1.24	Pain intensity (VAS)	QoL (EORTCQLQ-C30)
		Sx type, n (%): Total MX + breast prostheses or tissue expanders: 38 (100)	QoL (EORTCQLQ-C30)	Personality Traits (MMPI-2)
		Prehabilitative treatment group	Rehabilitation and breathing exercises, stretching, GH joint ROM EX, cervical pumping, isometric strengthening EX	
		Relaxation and breathing exercises, stretching, GH joint ROM EX, cervical pumping, isometric strengthening EX	Initiation: unclear	
		Initiation: unclear	Freq: 2 times/w	
		Frequency: 2 times/w	Rehabilitation sessions duration: 1 h	
		Rehabilitation sessions duration: 1 h	Duration: 5w+2 m at home	
		Follow-up: 1 year	Pain intensity (VAS)	
		Follow-up: 1 year	QoL (EORTCQLQ-C30)	
			Personality Traits (MMPI-2)	

Scaffidi [50] (2012) Italy	Prospective observational study	N = 83	**Group A**		**Group B**				
		Group A; n = 25	Preoperative information orally + home rehabilitation program	Shoulder arm mobility (goniometer)					
		Age, mean±SD: 49.6±8.8		Upper limb function (Constant and Murley Score)					
		Sx type, n:		Presence of LL (Universal level meter)					
		LUMP: 10 with 7 SND and 3 ALND							
		AM: 15 with 2 SND and 13 ALND							
		Group B; n = 58	**Group B**						
		Age, mean±SD: 52.1±11.9	Preoperative information orally + information materials + PT treatment at hospital + home rehabilitation program						
		Sx type, n:	PT at hospital: 1 per day, 30–40 min						
		LUMP: 35 with 26 SND and 9 ALND	Home rehab program: 3 times/day						
		AM: 23 with 6 SND and 17 ALND							

Springer [51] (2010) USA	Prospective observational study	N = 94	**Upper Limb ROM program**	Pain (NRS)				
		Age, mean±SD: 53.39±11.80	Flexion, abduction, internal and external rotation	Bilateral shoulder ROM (goniometer)				
		Stage, n (%):	Pre-operative examination: subjects were instructed in a post-operative UL ROM exercise program, and were	Bilateral shoulder strength (Constant and Murley Score)				
		0: 11 (12)/: 40 (43)/: 30 (32)/Ill: 13 (14)	educated regarding UL LE precautions and physical exercise	Break testing of upper limbs				
		Sx type, n (%):	initiation and progression	Volume and girth measurements for both upper limbs in				
		LCT: 6(1)/MRT: 505(3)/Simple MX: 3(3)		standard position				
		Lymph nodes dissection, n (%):		Optoelectronic volumeter, Perimeter®)				
		None: 89/20 (21)/ALND: 66 (70)	Pre-operative examination: subjects were instructed in a post-operative UL ROM exercise program, and were	Upper limb function and disability (Upper Limb Disability Questionnaire)				
		Systemic treatment, n (%)	educated regarding UL LE precautions and physical exercise initiation and progression					
		Ch: 57 (6)/RT: 64 (6)/HT: 67 (7)						
First author	Study design	Participants	Intervention	Outcome measures
Hsieh [52]	Pretest and post-test quasi-experimental study	N = 96 Women referred by local oncologists for rehabilitative exercises	All groups Individualized exercise intervention based on the results of the medical and cancer history, physical examination, and the initial physiologic and psychological assessments	Cardiovascular endurance (Bruce Treadmill Protocol, HR, BP, predicted VO2max time on treadmill and oxygen saturation) Pulmonary function-FVC, FEV1 (Flowmate™ spirometer) Cancer-related fatigue (Piper Fatigue Scale)
(2008) USA		Surgery alone: n = 22 Age, mean±SD: 55.6 ± 11.3		
		Surgery and Ch: n = 30 Age, mean±SD: 55.6 ± 11.0		
		Surgery and RT: n = 17 Age, mean±SD: 57.2 ± 9.4		
		Surgery and RT and Ch: n = 7 Age, mean±SD: 63.4 ± 9.0		
Petito [53]	Quasi-experimental, before and after study	N = 64 Mastectomy group; n = 43 Age, mean±SD: 52.2 ± 9.6	Exercise program	Shoulder ROM: flexion, extension, abduction (goniometer)
(2012) Brazil		Sx type, n (%): MRM: 37(86)/Simple MX: 7 (14)	Initiation: 1st post-op day	
		QT group; n = 21 Age, mean±SD: 63.4 ± 9.0	Duration: 105 post-op days	
			Frequency daily	
			Phase 1 (until drain removal)	
			Two stretches for the cervical region, two exercises for movement of the scapular girdle, one for shoulder flexion and one for extension beyond the midline	
			Phase 2 (after drain removal)	
			Three additional exercises: one exercise for flexion and two for abduction of the shoulder	
			Exercise program	
			Experimental group; n = 42 Age, mean±SD: 55.1 ± 14.8	
			Sx type, n (%): MRM: 22 (54)/Simple MX: 7 (17)	
			BCS: 12 (29)/B recons: 22 (54)	
			Systemic treatment, n (%): RT: 22 (54)/Ch: 16 (38)	
Singh [54]	Quasi-experimental pre-test post-test study	N = 73 Experimental group; n = 42 Age, mean±SD: 55.1 ± 14.8	Experimental group Standardized preoperative ED+PT treatment if needed focusing on teaching self-management strategies, scar tissue massage and AROM and assisted shoulder exercises	Arm mobility—Shoulder ROM (goniometer) Presence of LE (Arm CIRC, tape measure) UE strength (Manual muscle testing) UE function (DASH) Quality of life (FACT—B + 4) Postoperative pain (VAS)
(2013) Canada		Sx type, n (%): MRM: 22 (54)/Simple MX: 7 (17)	Standardized preoperative ED program: General postop mobility exercises	
		BCS: 12 (29)/B recons: 22 (54)	AROM exercises	
		Systemic treatment, n (%): RT: 22 (54)/Ch: 16 (38)	ED on LE	
			Scar management	
			Comparison group Standardized preoperative ED alone	
First author (year)	Study design	Participants	Intervention	Outcome measures
---------------------	--------------	--------------	--------------	------------------
Rekha [55] (2020)	Quasi-experimental study	N = 20 Age range: 40–60 Sx type: Unilateral BSx (MX or BCS) within a month	**Group A; n = 10** Swiss ball exercises + diaphragmatic breathing exercises (10 repetitions) Duration: 4 w, 5 days/w	Chest expansion (inch tape) FEV1, (computerized spirometer) Shoulder ROM (goniometer)
			Group B; n = 10 Stretching exercises + diaphragmatic breathing exercises (10 repetitions) Duration: 4 w, 5 days/w	Shoulder ROM (goniometer)
Kilgour [56] (2008)	Pilot study	N = 40 Home-based exercise (HBE) group; n = 20 Age, mean ± SD: 50.6 ± 9.3 Stage, n (%): N/A Sx type: MRM + ALND	**HBE group** HB exercise video program that incorporated the exercises and guidelines described in a brochure from CCS Initiation: 3rd postop day Phase 1 (Day 3-9): Self-adm shoulder ROM and flexibility exercises Frequency: 3 set/day Sets duration: 5–7 min Phase 2 (Day 10-14): Same exercises as Phase 1 Frequency: 2 sets/day Sets duration: 10–15 min	Shoulder strength (Manual muscle testing techniques) Grip strength (Hand-grip dynamometer) Forearm CIRC (Tape measurement) Frequency of medication intake; VOl of fluid from the axillary drains and self-perceived pain level (CR-10 Pain Scale) and exertion (Borg Scale)
			UC group Received information on diet and skin care and a 9-page brochure containing stretching and ROM shoulder exercises printed by the CCS, without further instructions	
Baima [57] (2017)	Feasibility study	N = 60 Age, mean, stage and systemic treatment: N/A Sx type: MX or lumpectomy Group 1-in person teaching; n = 36 Group 2-video-only teaching; n = 24	**Both groups** Prehabilitation exercise program and postsurgery shoulder ROM exercises restrictions > 90° until drains were removed Initiation: 1–4w prior to surgery Frequency: once daily, suspended postsurgery	Pain (NRS-11) Shoulder abduction ROM (Goniometer) Postoperative seroma formation

ADL: Activities of daily living; Adj Ch: Adjuvant chemotherapy; ALND: Axillary lymph node dissection; AROM: Active range of motion; AWS: Axillary web syndrome; BC: Breast cancer; BCS: Breast conserving surgery; BP: Blood pressure; BSx: Breast surgery; B recons: Breast reconstructive surgery; CCS: Canadian Cancer Society; CIRC: Circumference; Ch: Chemotherapy; CG: Control group; DASH: Disabilities of the Arm, Shoulder and Hand; DXA: Dual-energy X-ray absorptiometry; ED: Education; EORTC QLQ: European Organization for Research and Treatment of Cancer quality of life questionnaire; FACT-B: Functional Assessment of Cancer Therapy-Breast; FEV1: Forced expiratory volume in one second; FVC: Forced vital capacity; HB: Home-based; HR: Heart rate; HRQOL: Health-related quality of life; HT: Hormonotherapy; IG: Intervention group; IORT: Intraoperative radiotherapy; IVLD: Interlimb volume difference; KBR: Kinect based rehabilitation; LE: lymphedema; LUMP: Lumpectomy; MFBIA: Multi-frequency bioimpedance; min: minutes; MLD: Manual lymphatic drainage; Mobs: mobilizations; MRM: Modified radical mastectomy; MT: Manual therapy; MX: Mectomy; N/A: Not available; Neoad: Neoadjuvant; NRS: Numeric Rating Scale; OA: Operated arm; OT: Occupational therapist; PCM: Pectoral muscle-conserving mastectomy; PROM: Passive range of motion; PT: Physical therapy(s); QT: Quadrantectomy; RCT: Randomized controlled trial; RM: Repetition maximum; RMX: Radical mastectomy; RQ: Range of motion; RPE: Rated Perceived Exertion; RT: Radiotherapy; SD: Standard deviation; SDQ: Shoulder Disability Questionnaire; SLP: Sickness Impact Profile; SNB: Sentinel lymph node biopsy; SND: Sentinel lymph node dissection; ST: Soft tissue; Sx: Surgery; TKS: Tampa Kinesiophobia Scale; UE: Upper extremity; UL: Upper limb; VAS: Visual Analog Scale; VOl: Volume; w: week; WLE: Wide local excision; 6MWT: 6-Minute Walk Test
three studies conducted in lower-middle income countries [51, 55, 70]. The body of literature on this topic turned out to be quite recent, with 71.9% (41 of 57) of studies published between 2010 and 2022 and 22.8% (13 out of 57) between 2000 and 2009.

Participants
The studies’ sample size varied from 22 to 1217 participants, with participants’ mean age ranging from 44.1 to 63.4 years old. Most studies (34 out of 57) included women diagnosed with different breast cancer stages (i.e., 0-III), who underwent breast surgery combined with either an axillary staging procedure or ALND, and systemic treatments (i.e., chemotherapy, hormonal therapy, or radiotherapy). In 80.7% of the studies (46 out of 57), the study groups included patients who underwent BCS and those who underwent a total mastectomy. Therefore, no conclusions could be drawn as to whether the type of surgery might have an impact on clinical outcomes and on breast cancer patients’ motivation to engage in and complete a rehabilitation intervention.

Conservative rehabilitation interventions
Four main modalities were identified amongst rehabilitation programs, which were consistent with exercises, patient education, MLD, and manual therapy. Exercises were part of every rehabilitation program, with 43.9% (25 out of 57) of these interventions being unimodal. Multimodal interventions were characterized by 2 to 4 modalities, the most common combinations being: (1) exercise and patient education (40.6%); (2) exercise and manual therapy (15.6%); (3) exercise, patient education, and manual therapy (15.6%); and (4) exercise, patient education, and MLD (12.5%). Nearly half of rehabilitation interventions (47.4%) were delivered using a mixed approach, initially performed under nursing staff or physical therapists’ supervision and, in most instances, transitioned to a home-based intervention upon hospital discharge. Home-based interventions (15.8%) all consisted of exercises, which were either performed alone [38, 43, 68, 72], combined with patient education [36, 56, 64, 74] or with manual therapy [63]. Six studies reported implementing group interventions consisting solely of supervised exercise programs [30, 41, 49, 55, 60] or exercise combined with manual therapy [37].

Figure 2 illustrates the identified rehabilitation interventions’ timing, duration, and modalities. This graphical representation was constructed only for studies that clearly defined all three components. Looking at these studies (35 out of 57), we noted that 74.3% of interventions were initiated a few days to 4 weeks following surgery and went on for 2 to 24 weeks, while 3 interventions [21, 67, 73] lasted up to 12 months.

Preoperative rehabilitation interventions
Out of all included studies, 10 interventions [36, 48, 49, 51, 52, 61, 64, 69, 73, 75] were initiated before surgery, including eight that were pursued from 4 weeks to 12 months post-surgery. Only patient education and active shoulder ROM or aerobic exercises were implemented in the preoperative period. Six studies used these modalities as stand-alone, while 4 studies [48, 61, 64, 69, 73] combined them postoperatively with manual therapy or MLD. Educational strategies primarily focused on sharing information about postoperative complications, activity restrictions, prevention of lymphedema, infections or injuries, and explaining the upcoming surgical procedure.

Exercises
Types of exercises included in the rehabilitation programs are detailed in Fig. 3. Eleven types of exercises were identified, the most frequently reported being: (1) upper limb ROM exercises (77.2%); (2) stretching of shoulder muscles (45.6%); and (3) upper limb strengthening exercises (35.1%). Although a small proportion of studies (21.1%) suggested a single type of exercise, most built programs including 2–5 different types. Exercises targeting upper limb tissues and function were predominant. Fewer studies adopted a more global approach, providing aerobic exercises [21, 23, 52, 66, 71] or yoga [41, 55], as well as strengthening or stretching of the lower extremity [19–21] or neck muscles [28, 44, 57, 58, 60–63, 66, 72].

Patient education
Educational strategies were included in 42.1% (24 out of 57) of rehabilitation interventions identified. Prevention and lymphedema awareness, skincare routine, risks of postoperative complications, and physical activity or nutrition counseling were the cornerstones of these strategies. Nine studies also reported prescribing shoulder ROM limitations and activity restrictions (e.g., avoiding lifting, carrying heavier items, running, jumping, or other strenuous activities) up to 6 weeks following surgery [22, 32, 39, 51, 57] or upon surgical drains removal [36, 53, 54, 75].

MLD
Eight studies [26, 31, 42, 46, 48, 50, 58, 60] included MLD within their rehabilitation programs. Gentle pressure and circular massage were generally applied along the course of superficial lymph nodes lining the axillary region, the lateral aspect of the shoulder, the base of the neck, the chest region, and the affected and non-affected arm and hand. MLD was performed either by trained physical therapists or self-administered following supervised
sessions. While most studies reported initiating this modality a few days following surgery without further indications, two studies [31, 48] described waiting for suture and surgical drain removal before proceeding.
Thirteen studies incorporated manual therapy into their rehabilitation programs. This modality was always paired with exercises and, in some cases, complemented with MLD [26, 31, 46]. Passive scapular and shoulder joint mobilizations, scar tissue massage and passive shoulder muscle stretching performed by trained physical therapists [23, 26, 31, 32, 37, 46, 63, 69, 73] mainly characterized manual therapy. Two studies also included passive mobilizations of the elbow, wrist, and hand on the affected side [31, 44].

Manual therapy

Reporting of interventions
Details of interventions’ components were extracted using the TIDieR checklist and guide [76] and are provided in Additional file 2: Table S2. Almost all studies (55 out of 57) reported more than 50% of TIDieR checklist items. Only 3 studies reported modifications to their protocol, and 17 out of 57 provided details regarding intervention adherence. Although 87.72% of studies described the intervention schedule, 15 studies did not specify the duration of interventions.

Clinical outcome measures
Three categories of outcome measures were used to report the effects of rehabilitation interventions on breast cancer patients undergoing mastectomy, including objective measures of physiological and physical function and patient self-reported outcome measures (PROMS). Figure 4 illustrates the outcomes investigated in each category and the measurement tools used for each. Thirty-three unique outcome measures (i.e., 15 physical, 15 PROMS, and 3 physiological) were used across studies, using 54 different measurement tools. Each study used a range of 1 to 7 outcomes, and most studies (37 out of 57) included outcomes from at least 2 of the 3 categories, all of which but one combined PROMS with objective measures of physical function. The most reported outcomes of physical function were shoulder ROM, muscle strength, and signs of lymphedema, measured by the goniometer, the dynamometer and arm circumference or volume, respectively. Quality of life (QoL), shoulder function, and pain were the PROMS most often reported. The European Organization for Research and Treatment of Cancer questionnaire (EORTC QLC C-30/BR23), the Disability of the Arm, Shoulder and Hand questionnaire, and the Visual Analogue Scale were the most frequently used outcome measures for these three domains. Three studies also investigated objective measures of physiological function, such as chest expansion [70], the forced expiratory volume in one second (FEV1) [70, 71], and the forced vital capacity (FVC) [71].
Patients' experience

Study participation

Twenty-one of the 57 selected studies reported the number of patients who chose not to engage in rehabilitation interventions. Refusal rates ranged between 2 and 75% (MED = 9.0; IQR = 30), with 5 studies reporting rates higher than 40%. The main reasons cited for refusal were disclosed in only 6 studies. They involved transportation issues [21, 29, 35], a preference for another intervention [23, 31, 37] or requesting their own therapist [29, 31], lack of interest [29, 31] and a desire to minimize hospital appointments in favor of getting back to work, and to a normal lifestyle [45].

Compliance with the study protocol

Adherence to rehabilitation interventions was measured in 19.3% of studies (11 out of 57) and deemed reasonable in each case (see Additional file 2: Table S2 for details). Coordinating therapy sessions with oncologist appointments [21, 39, 45], follow-up calls and positive

Fig. 4 Outcome measures. Abd: Abduction; ADL: Activities of daily living; ALN: Axillary lymph nodes; BC: Breast Cancer; CCI: Comprehensive complication index; CR-10: Borg's Category Scale for Ratings of Perceived Pain; CV: Cardiovascular; DASH: Disabilities of the Arm, Shoulder and Hand; DXA: Dual-energy X-ray absorptiometry; EORTC QLC: European Organization for Research and Treatment of Cancer quality of life questionnaire; FACT-B: Functional Assessment of Cancer Therapy—Breast; FACIT-f: Functional Assessment of Chronic Illness Therapy – Fatigue; FVC: Forced vital capacity; FEV1: Forced expiratory volume in one second; GARS: Groningen Activity Restriction Scale; HRQOL: Health-related quality of life ILMD: Interlimb mass difference; ISL: International Society of Lymphology; NRS: Numeric Rating Scale; PCS: Pain Catastrophizing Scale; PROMS: Patient-reported outcome measures; QoL: Quality of life; RM: Repetition Maximum; ROM: Range of motion; SDQ: Shoulder Disability Questionnaire; SF-36: 36-Item Short Form Health Survey; SGPALS: Saltin-Grimby Physical Activity Level Scale; SIP: Sickness Impact Profile; TKS: Tampa Kinesiophobia Scale; UCLA: University of California at Los Angeles; ULDQ: Upper Limb Disability Questionnaire; VAS: Visual analogue scale; 6MWT: 6-Minute Walking Test
reinforcement by physical therapists [24, 25, 42, 74], individualization of interventions based on the patient’s needs [71], support from spouses or family members [74] and obtaining positive effects from the intervention [55] were identified as factors promoting adherence. Dropout rates were reported in 31 of the 57 included studies and were highly heterogeneous, ranging from 1 to 58% (MED = 10.0; IQR = 12.8). Main reasons stated for not completing the study were undergoing another breast surgery [19, 20, 22, 28, 38, 39, 42, 43, 72, 75], death [19, 20, 22, 24, 31, 35, 37–39, 45, 56, 60, 63], cancer recurrence or other medical conditions [19, 20, 22, 24, 31, 32, 35], having to deal with systemic treatment-related AEs [31, 32, 39, 41, 42], moving away [19, 20, 22, 24, 37, 39, 45], lack of interest or time [21, 24, 36] and transportation issues [29, 31]. Two studies also identified lack of support from family and friends [74] and hospital anxiety [19] as barriers to completion.

Adverse events
Only six studies included in this review explicitly discussed the occurrence of AEs. Of these, most studies (5 out of 6) found that the intervention did not affect the patients’ clinical presentation and symptoms. Sagen et al. [39] reported two cases of adhesive capsulitis and one case of supraspinatus tendinopathy. However, the timing of these AEs was not specified, therefore it is unclear whether these are due to the rehabilitation interventions or related to breast cancer treatments. A significant proportion of studies (25 out of 57) also reported that some participants suffered postoperative complications. Among these, lymphedema, seroma, wound dehiscence, and scar contracture were the most frequent. Once again, with little or no description of when these complications occurred, it remains unclear whether these were acute or late effects of breast cancer treatments.

Discussion
This scoping review examined the extent and nature of clinical research on perioperative physical rehabilitation for women with breast cancer who were awaiting or had undergone mastectomy. Our main objective was to identify conservative interventions and relevant clinical outcome measures currently used for this population. As a secondary objective, we aimed to report on barriers and facilitators of participating and completing these interventions. Over half of the eligible studies included mixed breast cancer stages (0-III) populations who underwent various types of breast surgery, axillary procedures, and a series of adjuvant treatments.

Conservative interventions
Rehabilitation programs identified four main modalities: exercise, patient education, manual therapy, and MLD. Multimodal rehabilitation interventions were most frequently reported, all of which included exercise. Rehabilitation interventions consisted primarily of one-on-one sessions initially performed under supervision in hospital settings until discharge. This review also established that rehabilitation interventions were by far the most studied after breast surgery. Only ten interventions were initiated preoperatively, consisting primarily of self-management strategies to be implemented in the postoperative period. Most interventions lasted less than 6 months.

The rehabilitation interventions identified in this scoping review reflect, to some extent, the recommendations provided by cancer care guidelines. However, we noted that the eligible studies had placed less emphasis on aerobic training, primarily providing rehabilitation programs that included exercises targeting upper extremity function. Few identified recommendations concerning rehabilitation strategies to be implemented before surgery, either in the eligible studies or in cancer care guidelines, indicating that further research is needed in this area. In 2017, the World Health Organization (WHO) urged for a coordinated and concerted global action toward improving the accessibility of high-quality rehabilitation services in health systems. Given the systemic effects of cancer and its associated treatments, oncology was designated as a priority area for this initiative [77]. Accordingly, a systematic review was conducted to identify and synthesize rehabilitation-specific recommendations provided by the most recent cancer care guidelines [78]. Of these, the American Cancer Society (ACS)/American Society for Clinical Oncology (ASCO) guideline [79] concluded that there was insufficient evidence to support a specific intervention that would promote optimal postoperative recovery for breast cancer patients. Nevertheless, physical rehabilitation recommendations endorsed by this guideline advised clinicians to encourage their patients to adhere to the ACS's physical activity recommendations [80], which include moderate to vigorous aerobic exercises and strength training. Returning to normal daily activities as soon as possible after vigorous aerobic exercises and strength training. Returning to normal daily activities as soon as possible after diagnosis and including spouses and family members in usual breast cancer care were also promoted. In turn, to manage breast cancer patients with or at risk for lymphedema, the National Comprehensive Cancer Network Survivorship Guideline [81] recommended a supervised multimodal rehabilitation intervention consisting of progressive resistance training, shoulder ROM exercises, manual lymphatic drainage, education regarding signs and symptoms of postoperative complications and self-care management strategies. This multimodal strategy is also consistent

Mathieu et al. BMC Women's Health (2022) 22:343
with the recommendations issued from the American College of Sports Medicine guideline [82], which supported the effectiveness of combined moderate-intensity aerobic and progressive resistance training, performed for 8 to 12 weeks, in improving cancer-related health outcomes, including physical functioning, QoL and fatigue. Interestingly, none of these recommendations provided guidance as to what parameters (i.e., frequency, repetitions, sets, etc.) should characterize shoulder ROM exercises. It should also be stressed that these guidelines were primarily derived from studies performed on breast cancer survivors. Therefore, these recommendations may not be fully applicable to breast cancer patients dealing with the acute effects of mastectomy.

Clinical outcome measures
A significant number of outcome measures were used to report the effects of perioperative rehabilitation in breast cancer patients, each of which was measured through a wide range of questionnaires and measurement tools. Objective measures of physical function were the most frequently used and combined with PROMS in over half of the eligible studies. Considering the large spectrum of side effects of breast cancer and its treatments, selecting relevant clinical outcome measures for this population can be challenging. The WHO's International Classification of Functioning, Disability and Health (ICF) is a common framework that describes health and disability worldwide [83]. As the ICF was considered hardly practical for research and clinical practice, the WHO developed core sets from this classification, which are lists of predetermined outcome measures known to be relevant for specific health conditions [83]. The ICF Core Set for breast cancer [84] covers all the factors that may impact breast cancer patients' functioning. This model acknowledges that breast cancer patients may experience disabilities not only related to (1) body structures and (2) functions, but also in relation to (3) activities participation and (4) environment interaction [84]. Most studies (39 out of 57) included in this review used outcome measures belonging to at least 2 of the 4 categories of the ICF core sets for breast cancer. Objective measures of physical function were used extensively to account for items pertaining to the first two categories. In contrast, QoL questionnaires were mostly used to report on patients' ability to carry out activities of daily living and interact with their environment. As QoL is a construct that encompasses many dimensions, the data obtained from these questionnaires may not be as informative. For psychological, social, and environmental factors to be adequately measured, it is advisable to select tools that can provide individual scores for these domains. As an example, the Functional Assessment of Cancer Therapy-Breast Questionnaire (FACT-B) is a questionnaire designed to measure five domains of health-related QoL in breast cancer patients: physical, social, emotional, functional well-being as well as breast cancer-specific concerns [85].

Patients' experience
This literature review also revealed that a variable proportion of breast cancer patients refused to engage in a rehabilitation intervention despite their eligibility. Studies identified a significant discrepancy in refusal rates. When comparing studies with higher refusal rates to those with lower rates, we noted that these studies had similar characteristics in terms of population, type of interventions, duration, and postoperative complications. However, most studies with higher refusal rates appeared to be conducted partly or entirely in hospital settings. As some wanted to minimize hospital appointments in favor of returning to a normal lifestyle, this information might suggest that transitioning from a supervised inpatient to a home-based intervention or implementing rehabilitation interventions in outpatient clinics or community settings may promote patient engagement. Study withdrawals were mainly attributed to personal or treatment-related factors rather than the intervention itself, which seems to support the appropriateness and safety of rehabilitation interventions for this population. Recognizing the positive impact that support from family and friends had on participants' motivation raises the possibility that breast cancer patients could also benefit from a group intervention, where they could support each other as they go through the same challenges. Tailoring interventions to participants' needs and circumstances also appears to promote intervention compliance. However, given the small number of studies from which these data were obtained, further work is needed to better document these issues.

Reporting of interventions and outcome measures
We identified several gaps in interventions and harm reporting by relying on the revised CONSORT statement and extensions [76, 86, 87] to guide data extraction. As shown in Additional file 2: Tables S1 and S2, these limitations are such that it remains unclear which parameters should be preferred to promote optimal postoperative recovery in breast cancer patients. Improvements in reporting are needed to ensure patient safety and replicability of interventions in clinical settings. A better description of recruitment and compliance issues arising in this clinical context is also warranted to foster the development of interventions tailored to breast cancer patients' needs and concerns. As for clinical outcome measures, several studies have used measurement tools
and questionnaires without mentioning their validity for the population of interest. To ensure the effects of rehabilitation interventions are accurately measured, future studies should focus on better describing these tools while providing evidence supporting their validity for breast cancer patients.

Limitations
Our scoping review has some limitations. Despite conducting robust systematic searches in multiple relevant databases, we excluded studies not published in English or French (authors’ native language), which may have resulted in relevant studies being missed. However, it has been reported that excluding non-English publications from evidence-syntheses does not lead to bias as it would have a minimal effect on overall conclusions [88, 89]. Some studies were also excluded as they focused on breast cancer survivors. However, some organizations, such as the National Cancer Institute, identify cancer patients as survivors from the day of their diagnosis until the end of their lives [90]. Therefore, studies that did not provide a clear definition of survivorship may have been excluded despite their eligibility. We must also consider that conducting a mixed method scoping review, which would have included qualitative designs, would probably have been better suited to identify barriers and facilitators to study engagement and completion.

Conclusion
This review reports on the variability and wide range of conservative interventions and clinical outcome measures used in physical rehabilitation for breast cancer patients undergoing mastectomy. Exercise, patient education, manual therapy, and MLD were identified as key components characterizing rehabilitation strategies for this population. Although most studies failed to describe interventions’ procedures and characteristics adequately, we were able to determine that most interventions were multimodal, initiated a few days following surgery, and initially performed in supervised hospital settings. More emphasis should be placed on selecting measurement tools and questionnaires that have already been validated for this population. Tailoring interventions to patients’ needs and promoting outpatient rehabilitation interventions appear to be better suited to the particularities of breast cancer care pathways. Ultimately, given the significant heterogeneity characterizing the interventions identified, a better understanding of breast cancer patients’ perioperative care needs and expectations is needed before we can work towards developing rehabilitation resources that can be embedded in our institutions’ standards of care.

Abbreviations
ACS: American Cancer Society; AES: Adverse events; ALND: Axillary lymph node dissection; ASCO: American Society of Clinical Oncology; BCS: Breast conserving surgery; CIUSSS-MCQ: Centre intégré universitaire de santé et de services sociaux de la Mauricie-et-du-Centre-du-Québec; FEV1: Forced expiratory volume in one second; FVC: Forced vital capacity; ICF: International Classification of Functioning, Disability and Health; MLD: Manual lymphatic drainage; PROMS: Patient-reported outcome measures; QoL: Quality of life; RCT: Randomized control trial; ROM: Range of motion; WHO: World Health Organization.

Supplementary Information
The online version contains supplementary material available at https://doi.org/10.1186/s12905-022-01927-3.

Additional file 1. MEDLINE search strategy
Additional file 2. Summary of included studies and description of rehabilitation the interventions

Acknowledgements
Not applicable.

Author contributions
JM participated to the study conception and selection, extracted and analyzed the data and wrote the first draft of the manuscript; CD collected data; NL contributed to the study selection and extracted data; AD contributed to the study conception; AAM contributed to study conception, revised the manuscript and supervised the work; MD contributed to the study conception, checked the extracted data and supervised the work. All authors read and approved the final manuscript.

Funding
Not applicable.

Availability of data and materials
All data is contained within the manuscript and the additional file.

Declarations
Ethical approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1 Department of Anatomy, Université du Québec à Trois-Rivières, Trois-Rivières, QC, Canada. 2 UMR1295, Toulouse III University, Inserm, Équipe EQUITY, Équipe constitutive du CERPOP, Toulouse, France. 3 Faculty of Health Sciences, Ontario Tech University, Oshawa, ON, Canada. 4 Department of General Surgery, Centre Intégré Universitaire de Santé et de Services Sociaux de la Mauricie-et-du-Centre-du-Québec, Trois-Rivières, QC, Canada. 5 Chiropractic Department, Université du Québec à Trois-Rivières, Trois-Rivières, QC, Canada. 6 Department of Human Kinetics, Université du Québec à Trois-Rivières, 3351, boul. des Forges, C.P. 500, Trois-Rivières, QC, Canada. 7 Organisme de sécurité sociale de l’Outaouais; FEV1: Forced expiratory volume in one second; FVC: Forced vital capacity; ICF: International Classification of Functioning, Disability and Health; MLD: Manual lymphatic drainage; PROMS: Patient-reported outcome measures; QoL: Quality of life; RCT: Randomized control trial; ROM: Range of motion; WHO: World Health Organization.

Received: 29 March 2022 Accepted: 9 August 2022
Published online: 16 August 2022
References

1. Lagacé F, Ghazawi FM, Le M, Rahme E, Savin E, Zubarev A, et al. Analysis of incidence, mortality trends, and geographic distribution of breast cancer patients in Canada. Breast Cancer Res Treat. 2019;178(3):683–91.

2. Brenner DR, Weir HK, Demers AA, Ellison LF, Louzado C, Shaw A, et al. Projected estimates of cancer in Canada in 2020. CMAJ. 2020;192(9):E199–205.

3. Jones C, Lancaster R. Evolution of operative technique for mastectomy. Surg Clin North Am. 2018;98(4):835–44.

4. Vanderl N, Daigle JM, Hébert-Croteau N, Théberge I, Brisson J. Breast cancer mortality reduction after initiation of a screening program: consistency of effect estimates obtained using different approaches. In: PQCDS Céde (ed) Institut national de santé publique du Québec. 2010.

5. Perron L, Majoro D, Hébert-Croteau N, Brisson J. Evolution de la détection précoce, l’incidence, le traitement et la survie chez les femmes avec un cancer du sein diagnostiqué entre 1993 et 2003 au Québec: Institut national de santé publique du Québec. 2011.

6. Santa Mina D, Brahmbhatt P, Lopez B, Baima J, Cillis G, Trachtenberg L, et al. The case for prehabilitation prior to breast cancer treatment. PMR. 2017;9(952):S305–16.

7. McDonald ES, Clark AS, Tchou J, Zhang P. Freedman GM. Clinical diagnosis and management of breast cancer. J Nucl Med. 2016;57(Suppl 1):95–165.

8. Senkus E, Kyriakides S, O’hna S, Pauel-Aulocks F, Poortmans P, Rutgeerts E, et al. Primary breast cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2015;26(Suppl 5):S8–30.

9. Hidding JT, Beurskens CH, van Uden CJ, Strobbe LJ, Oostendorp RA, Wobbes T. The impact of physiotherapy on shoulder function, quality of life, lymphedema incidence, and pain in breast cancer patients with axillary web syndrome following axillary dissection. Support Care Cancer. 2016;24(5):2047–57.

10. Cho Y, Do J, Jung S, Kwon O, Jeon J, Jeon JY. Effects of a physical therapy program combined with manual lymphatic drainage on shoulder function, quality of life, lymphedema incidence, and pain in breast cancer patients with axillary web syndrome following axillary dissection. Support Care Cancer. 2016;24(5):2047–57.

11. Cinar N, Sekskin U, Bodur H, Bozkurt B, Cengiz O. The effectiveness of early rehabilitation in patients with modified radical mastectomy. Cancer Nurs. 2008;31(2):160–5.

12. De Almeida Rizzi SKL, Badadad CAS, Giron PS, Figuera PTV, Estevão A, Elias S, et al. Early free range-of-motion upper limb exercises after mastectomy and immediate implant-based reconstruction are safe and beneficial: a randomized trial. Ann Surg Oncol. 2020;27(12):4750–9.

13. De Groef A, Van Kampen M, Vervoorsen N, De Geyter S, Christiaens MR, Neven P, et al. Myofascial techniques have no additional beneficial effects to a standard physical therapy programme for upper limb pain after breast cancer surgery: a randomized controlled trial. Clin Rehabil. 2017;31(12):1625–35.

14. de Rezende LF, Franco RL, de Rezende MF, Beletti PO, Morais SS, Gurgel MS. Two exercise schemes in postoperative breast cancer: comparison of effects on shoulder movement and lymphatic disturbance. Tumori. 2006;92(1):55–61.

15. Devoogdt N, Geraerts I, Van Kampen M, De Vries E, De Groef A, Van Uden CJ, et al. The influence of the initiation of an exercise programme on seroma frequency after modified radical mastectomy: a prospective study. Br J Surg. 2014;102(9):1332–6.

16. Levac D, Colquhoun H, O'Brien K. Scoping studies: advancing the methodology. Implement Sci. 2010;5(1):1–9.

17. Peters MD, Godfrey CM, Khalil H, McHorney P, Parker D, Soares CB. Guidance for conducting systematic reviewing. JBI Evid Implement. 2015;13(3):141–6.

18. Lyman GH, Somerfield MR, Bosserman LD, Perkins CL, Weaver DL, Giuliano AE. Sentinel lymph node biopsy for patients with early-stage breast cancer: American Society of Clinical Oncology clinical practice guideline update. J Clin Oncol. 2017;35(15):1661–4.

19. Ammitzbøll G, Johansen C, Lønning P, Andersen EW, Kroman N, Zerahn B, et al. Progressive resistance training to prevent arm lymphoedema in the first year after breast cancer surgery: results of a randomized controlled trial. Cancer. 2014;125(10):1683–92.

20. Ammitzbøll G, Kristina Kjær T, Johansen C, Lønning P, Wreford Andersen E, Kroman N, et al. Effect of progressive resistance training on health-related quality of life in the first year after breast cancer surgery—results from a randomized controlled trial. Acta Oncol (Stockholm, Sweden). 2019;58(5):665–72.

21. Anderson RT, Kinnick GG, McCoy TP, Hopkins L, Levine E, Miller G, et al. A randomized trial of exercise on well-being and function following breast cancer surgery: the RESTORE trial. J Cancer Surv Res Pract. 2012;6(2):172.

22. Bendz I, Fagevik OM. Evaluation of immediate versus delayed shoulder exercises after breast cancer surgery including lymph node dissection—a randomised controlled trial. Breast (Edinburgh, Scotland). 2002;11(3):241–8.

23. Beurskens CH, van Uden CJ, Strobbe LL, Oostendorp RA, Wobbes T. The efficacy of physiotherapy upon shoulder function following axillary dissection in breast cancer, a randomized controlled study. BMC Cancer. 2007;7:166.

24. Box RC, Reul-Hirche HM, Bullock-Saxton JE, Furnival CM. Shoulder movement after breast cancer surgery: results of a randomised controlled study of postoperative physiotherapy. Breast Cancer Res Treat. 2002;75(1):35–50.

25. Box RC, Reul-Hirche HM, Bullock-Saxton JE, Furnival CM. Physiotherapy after breast cancer surgery: results of a randomised controlled study to minimise lymphoedema. Breast Cancer Res Treat. 2002;75(1):51–64.

26. Cho Y, Do J, Jung S, Kwon O, Jeon J, Jeon JY. Effects of a physical therapy program combined with manual lymphatic drainage on shoulder function, quality of life, lymphedema incidence, and pain in breast cancer patients with axillary web syndrome following axillary dissection. Support Care Cancer. 2016;24(5):2047–57.

27. Cinar N, Sekskin U, Keskin D, Bodur H, Bozkurt B, Cengiz O. The effectiveness of early rehabilitation in patients with modified radical mastectomy. Cancer Nurs. 2008;31(2):160–5.

28. de Almeida Rizzi SKL, Badadad CAS, Giron PS, Figuera PTV, Estevão A, Elias S, et al. Early free range-of-motion upper limb exercises after mastectomy and immediate implant-based reconstruction are safe and beneficial: a randomized trial. Ann Surg Oncol. 2020;27(12):4750–9.

29. de Groef A, Van Kampen M, Vervoorsen N, De Geyter S, Christiaens MR, Neven P, et al. Myofascial techniques have no additional beneficial effects to a standard physical therapy programme for upper limb pain after breast cancer surgery: a randomized controlled trial. Clin Rehabil. 2017;31(12):1625–35.

30. de Rezende LF, Franco RL, de Rezende MF, Beletti PO, Morais SS, Gurgel MS. Two exercise schemes in postoperative breast cancer: comparison of effects on shoulder movement and lymphatic disturbance. Tumori. 2006;92(1):55–61.

31. Devoogdt N, Geraerts I, Van Kampen M, De Vreese T, Van Loon P, De Rezende LF, Franco RL, de Rezende MF, Beletti PO, Morais SS, Gurgel MS. Two exercise schemes in postoperative breast cancer: comparison of effects on shoulder movement and lymphatic disturbance. Tumori. 2006;92(1):55–61.
41. Siedentopf F, Uitz-Billing I, Gairing S, Schoenegg W, Kentenich H, Kollak I. Yoga for patients with early breast cancer and its impact on quality of life—a randomized controlled trial. Geburtshilfe Frauenheilk. 2013;73(4):311–7.

42. Temur K, Kapucu S. The effectiveness of lymphedema self-management in the prevention of breast cancer-related lymphedema and quality of life: a randomized controlled trial. Eur J Oncol Nurs. 2019;40:22–35.

43. Teodózio CGC, Marchito LD, Fabro EAN, Macedo FO, de Aguiar SS, Thuler LCS, et al. Shoulder amplitude movement does not influence postoperative wound complications after breast cancer surgery: a randomized clinical trial. Breast Cancer Res Treat. 2021;179:105–17.

44. Testa A, Iannace C, Di Libero L. Strengths of early physical rehabilitation programs in surgical breast cancer patients: results of a randomized controlled study. Eur J Phys Rehabil Med. 2014;50(3):275–84.

45. Todd J, Scally A, Dodwell D, Horgan K, Topping A. A randomised controlled trial of two programmes of shoulder exercise following axillary node dissection for invasive breast cancer. Physiotherapy. 2008;94(4):265–73.

46. Torres Lacomboa M, Yuste Sánchez MJ, Zapico Góñi A, Prieto Merino D, Mayoral del Moral O, Cerezo Téllez E, et al. Effectiveness of early physical therapy to prevent lymphoedema after surgery for breast cancer: randomised, single-blind, clinical trial. BMJ. 2010;340:b5396.

47. Wingate L, Croghan I, Natarajan N, Michalek AM, Jordan C. Rehabilitation of the mastectomy patient: a randomized, blind, prospective study. Arch Phys Med Rehabil. 1989;70(1):21–4.

48. Zhang L, Fan A, Yan J, He Y, Zhang H, Zhang H, et al. Combining manual lymph drainage with physical exercise after modified radical mastectomy effectively prevents upper limb lymphedema. Lymphat Res Biol. 2016;14(2):104–8.

49. Zhou K, Wang W, An J, Li M, Li J, Li X. Effects of progressive upper limb exercises and muscle relaxation training on upper limb function and health-related quality of life following surgery in women with breast cancer: a clinical randomized controlled trial. Ann Surg Oncol. 2019;26(7):2156–65.

50. Zimmermann A, Wozniweski M, Szklarska A, Lipowicz A, Szuba A. Efficacy of manual lymphatic drainage in preventing secondary lymphedema after breast cancer surgery. Lymphology. 2012;45(3):103–12.

51. Fatima T, Shakoor A, Ilyas M, Safdar M, Majeed S. Effectiveness of preoperative stretching on postoperative shoulder function in patients undergoing mastectomy. JPAH J Pak Med Assoc. 2022;72(4):625–8.

52. Heiman J, Onerup A, Wessman C, Haglind E, Olofsson BR. Recovery after early physical rehabilitation reduces the onset of complications in the upper limb following breast cancer surgery. Eur J Phys Rehabil Med. 2012;48(4):601–11.

53. Hua H, Wang Q, Zhou S, Cui L. The application of personalized rehabilitation exercises in the postoperative rehabilitation of breast cancer patients. Ann Palliat Med. 2021;10(4):4486–92.

54. Rett MT, Moura DP, de Oliveira FB, Domingos HYR, de Oliveira MMF, Gallo RBS, et al. Physical therapy after breast cancer surgery improves range of motion and pain over time. Fisioterapia E Pesquisa. 2022;29(1):46–52.

55. Springer BA, Levy E, McGarvey C, Pfäler LA, Stout NL, Gerber LH, et al. Pre-operative assessment enables early diagnosis and recovery of shoulder function in patients with breast cancer. Breast Cancer Res Treat. 2010;120(1):135–47.

56. Mommoto T, Tamura A, Ichihara T, Minakawa T, Kusumamuro Y, Miki Y, et al. Evaluation of a new rehabilitation program for postoperative patients with breast cancer. Nurs Health Sci. 2003;5(4):75–82.

57. Paolucci T, Saggio G, Agostini F, Paolini M, Bennetti A, Mangone M, et al. The influence of rehabilitation on quality of life in breast cancer survivors: a clinical study. Int J Environ Res Public Health. 2021;18(16):5468.

58. Lu L, Shao H, Hong RB, Chou W, Hsiao PC. Role of physical therapy and patient education in lymphedema control following breast cancer surgery. Thel Clin Risk Manag. 2015;11:319–27.

59. Kim KH, Yeo SM, Cheong IY, Kim Y, Jeon BJ, Hwang JH. Early rehabilitation after total mastectomy and immediate reconstruction with tissue expander insertion in breast cancer patients: a retrospective case-control study. Breast Cancer. 2019;22(3):472–83.

60. Manfuku M, Nishigami T, Mibu A, Yamashita H, Imai R, Tanaka K, et al. Effect of perioperative pain neuroscience education in patients with post-mastectomy persistent pain: a retrospective, propensity score-matched study. Support Care Cancer. 2021;29(9):3531.

61. Effects of Swiss ball exercise and stretching exercise in chest wall mobility and shoulder range of motion among post-operative breast cancer women. Asian J Pharm Clin Res. 2020;13(4):137–41.

62. Hsieh CC, Sprod LK, Hydock DS, Carter SD, Hayward R, Schneider CM. Effects of a supervised exercise intervention on recovery from treatment regimens in breast cancer survivors. Oncol Nurs Forum. 2008;35(6):909–15.

63. Petit EL, Nazario ACP, Martellini SE, Facina G, De Gutierrez MGR. Application of a domicile-based exercise program for shoulder rehabilitation after breast cancer surgery. Rev Lat Am Enferm RAE. 2012;20(1):35–43.

64. Singh C, De Vera M, Campbell KL. The effect of progressive monitoring and early physotherapy intervention on arm morbidity following surgery for breast cancer: a pilot study. Physiother Can. 2013;65(2):183–91.

65. Kilgour RD, Jones DH, Keyserlingk JR. Effectiveness of a self-administered, home-based exercise rehabilitation program for women following a modified radical mastectomy and axillary node dissection: a preliminary study. Breast Cancer Res Treat. 2008;109(2):285–95.

66. Baima J, Reynolds SG, Edmiston K, Larkin A, Ward BM, O’Connor A. Teaching of independent exercises for prehabilitation in breast cancer. J Cancer Educ. 2017;32(2):252–6.

67. Hoffmann TC, Glazziou PP, Bouton I, Milne R, Pereira R, Moher D, et al. Better reporting of interventions: template for intervention description and replication (TIDieR) checklist and guide. BMJ. 2014;348:e874.

68. Moghimifard N, Negri R, The World Health Organization rehabilitation and cancer care program guidelines. CA Cancer J Clin. 2021;71(2):149–75.

69. Runowicz CD, Leach CR, Henry NL, Henry KS, Mackey HT, Cowens-Alvarado RL, et al. American cancer society/American society of clinical oncology breast cancer survivorship care guideline. CA Cancer J Clin. 2016;66(1):43–73.

70. Rock CL, Doyle C, Demark-Wahnefried W, Meyerhardt J, Courneya KS, Schwartz AL, et al. Nutrition and physical activity guidelines for cancer survivors. CA Cancer J Clin. 2016;66(2):242–74.
81. Denlinger CS, Sanft T, Baker KS, Broderick G, Demark-Wahnefried W, Friedman DL, et al. Survivorship, version 2.2018, NCCN clinical practice guidelines in oncology. J Natl Compr Canc Netw. 2018;16(10):1216–47.

82. Campbell KL, Winters-Stone KM, Wiskemann J, May AM, Schwartz AL, Courneya KS, et al. Exercise guidelines for cancer survivors: consensus statement from international multidisciplinary roundtable. Med Sci Sports Exerc. 2019;51(11):2375–90.

83. Stucki G. International Classification of Functioning, Disability, and Health (ICF): a promising framework and classification for rehabilitation medicine. Am J Phys Med Rehabil. 2005;84(10):733–40.

84. Brach M, Cieza A, Stucki G, Füssl M, Cole A, Ellenin B, et al. ICF Core Sets for breast cancer. J Rehabil Med. 2004;44 Suppl:121–7.

85. Brady MJ, Cella DF, Mo F, Bonomi AE, Tulsay DS, Lloyd SR, et al. Reliability and validity of the Functional Assessment of Cancer Therapy-Breast quality-of-life instrument. J Clin Oncol. 1997;15(3):974–86.

86. Ioannidis JP, Evans SJ, Gøtzsche PC, O’neill RT, Altman DG, Schulz K, et al. Better reporting of harms in randomized trials: an extension of the CONSORT statement. Ann Intern Med. 2004;141(10):781–8.

87. Schulz KF, Altman DG, Moher D. CONSORT 2010 statement: updated guidelines for reporting parallel group randomised trials. Trials. 2010;11(1):1–8.

88. Morrison A, Polisena J, Husereau D, Moulton K, Clark M, Fiander M, et al. The effect of English-language restriction on systematic review-based meta-analyses: a systematic review of empirical studies. Int J Technol Assess Health Care. 2012;28(2):138.

89. Nussbaumer-Streit B, Klerings I, Dobrescu A, Persad E, Stevens A, Garrity C, et al. Excluding non-English publications from evidence-syntheses did not change conclusions: a meta-epidemiological study. J Clin Epidemiol. 2020;118:42.

90. Institute NC. NCI dictionary of cancer terms. United States Government.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.