Role of Phase Nanosegregation in the Photoluminescence Spectra of Halide Perovskites

Alessia Di Vito, Alessandro Pecchia, Matthias Auf der Maur, Valerio Campanari, Faustino Martelli, and Aldo Di Carlo

ABSTRACT: The study of MAPbI$_3$ phase transitions based on temperature-dependent optical spectroscopy has recently gained a huge attention. Photoluminescence (PL) investigations of the tetragonal–orthorhombic transition suggest that tetragonal nanodomains are present below the transition temperature and signatures associated with tetragonal segregations are observed. We have studied the impact of phase nanosegregation across the orthorhombic–tetragonal phase transition of MAPbI$_3$ on the system’s properties employing a tight binding (TB) approach. The particle swarm optimization has been used to obtain a consistent set of TB parameters, where the target properties of the system have been derived by first-principles calculations. The theoretical results have been compared with the measured PL spectra for a temperature range going from 10 to 100 K. Our model effectively captures the carriers’ localization phenomenon induced by the presence of residual tetragonal nanodomains and demonstrates that the assumption of phase nanosegregation can explain the low-energy features in the PL spectra of MAPbI$_3$.
Theoretical studies related to halide perovskites, the MAPbI₃ system has been widely used as prototypical model.⁵³ Several challenges have to be tackled in order to successfully model the optical properties of such phase segregated nanodomains. The first problem is related to modeling of the individual bulk structures of orthorhombic and tetragonal phases and the matching of the two crystalline structures in the polycrystalline system. A clear issue in this context is that density functional calculations are out of reach for systems with hundreds of thousands of atoms; hence, accurate empirical methods are needed. The second related problem is how to obtain reliable electronic states of the nanodomains. A connected issue is how to set the correct band alignment between the tetragonal and the orthorhombic phases.

Our model is based on several ingredients, pivoting around a tight binding (TB) calculation of the electronic structure and optical transitions. TB was chosen because it intrinsically takes into account for the atomic details of the structures, in contrast to envelop function methods (e.g., k-p). However, TB requires a careful construction of the atomic model at the orthorhombic/tetragonal interfaces in order to avoid artifacts. In particular, the TB parameters needs to be exportable across different phases and the effect of bond distortion at the interfaces needs to be taken into account. This goal has been achieved by constructing a fully consistent parametrization, able to reproduce the density functional theory (DFT) bulk band structures of orthorhombic, tetragonal, and pseudocubic phases of halide perovskites. The cubic phase was added in band structures of orthorhombic, tetragonal, and pseudocubic obtained after the PSO are shown. The TB band structures of, respectively, orthorhombic and tetragonal MAPbI₃ obtained after the PSO are shown. The orthorhombic energy gap value derived by our TB method is consistent with the reference work of Weston et al.⁴¹ The position of the TB valence and conduction band edge fitting parameters able to reproduce the target DFT band structure. In order to optimize the fitting procedure, we used the particle swarm optimization (PSO) algorithm.⁴⁰ Note that the optimization of the TB parameters is performed taking into account the band structure of all the three MAPbI₃ phases simultaneously. Moreover, the experimental band gap value has been taken into account as target feature, adjusting the DFT energy gap to the measured one. This is discussed in detail in Section 1 of the Supporting Information. In parts a and b of Figure 1, the TB band structures of, respectively, orthorhombic and tetragonal MAPbI₃ obtained after the PSO are shown. The related energy gap values are listed in Table 1. Our results are compared with the measurements and GW calculations found in the reference study of Quart et al.,⁵² also reported in the table. The orthorhombic energy gap value derived by our TB model is consistent with the reference GW calculation and both approaches overestimate the experimental result. Nevertheless, the energy gap difference between tetragonal and orthorhombic MAPbI₃ obtained with TB is in agreement with measurements. Since we are interested in simulating the presence of tetragonal domains below the phase transition temperature and its effect on the emission properties of MAPbI₃, a consistent energy gap difference between the two crystals is paramount to properly describe the confinement of carriers and the related spatial localization. For completeness, the effective masses for holes and electrons obtained by parabolic fitting of the TB valence and conduction band edge for tetragonal MAPbI₃ along the directions Γ → X and Γ → Z are reported in Table 2. Our results are compared with the theoretical values obtained by Umari et al.⁵⁹

Finally, the valence band offset between the two crystal structures is obtained by DFT calculations, following the steps described in the reference work of Weston et al.⁴¹ The position...
of the valence band maximum (VBM) with respect to the average electrostatic potential is determined from the DFT bulk calculations, separately for each crystal. Then, the alignment of the average electrostatic potential between the two crystals is determined from a supercell calculation, analyzing the average of the electrostatic potential in the bulk-like region of each crystal. Concerning the supercell calculation, we considered the $x-y$ plane-averaged electrostatic potential integrated along the z direction over the length of the unit cell. The calculated data exhibit the superposition of a polarization potential, originating from the heterojunction between the two crystals, and a step-like potential, representing the electrostatic potential difference between the bulk-like regions of the two crystals. The computational details are reported in Section II of the Supporting Information. Combining the information from bulk calculations, i.e., the position of the VBM with respect to the mean electrostatic potential for the two separate bulk materials, with the electrostatic potential difference derived by superlattice calculations, we obtain the valence band alignment reported in Figure 2. The valence band offset between tetragonal and orthorhombic MAPbI$_3$ is 0.011 eV, thus, the conduction band discontinuity is equal to 0.029 eV, i.e., the band gap difference between the two materials minus the valence band discontinuity value.

In Figure 3a, the conduction band (CB) and VB states of the system are reported for the considered tetragonal domain dimensions. We can see that the energy gap is significantly reduced for the 14 nm tetragonal domain system, as well as the value of the CB minimum (CBM), while the difference in VBM, CBM, and energy gap values between the 5 nm and the 9 nm tetragonal domain system is not relevant. On the other hand, the VBM value slightly increases for the largest domain size. In fact, the domain size dependence of the energy gap is almost equal to the CBM behavior. These trends originate from the spatially localized ground state electron wave function within the tetragonal domain. In fact, the 14 nm tetragonal segregation is sufficiently large to induce spatial localization of carriers. This phenomenon is clearly represented in panel b of Figure 3, where the isosurface containing the 50% of the total ground state density of the electron is depicted for the 14 nm tetragonal nanodomain. On the contrary, in panel c of Figure 3, where the same quantity is shown for the 5 nm tetragonal segregation, we can see that the spatial localization of the ground state electron wave function is not observed, even if the isosurface in panel c contains only the 10% of the total ground state density. Furthermore, as the conduction band discontinuity is much more pronounced than the valence band one, we
do not expect a significant localization of the ground state hole wave function. In fact, the VBM value is almost unaffected by the dimension of the tetragonal segregation.

In Figure 4, we show how the emission spectrum varies when the dimension of the tetragonal nanosegregation is increased from 5 to 14 nm. The three spectra are calculated at 150 K and normalized to unity. As expected from the behavior of the energy gap discussed above, we can see in the figure that, only for the 14 nm tetragonal segregation, the red-shift of the peak emission energy is observed. Furthermore, in the emission spectrum of the system with the highest dimension of the tetragonal domain, depicted by the cyan area plot in Figure 4, both the low-energy and the high-energy peaks, respectively associated with the tetragonal and the orthorhombic crystal structures, are visible. The low-energy feature in the calculated spectrum is due to the contribution of the electron ground state localized within the low-band gap tetragonal crystal, while the high-energy feature originates from higher-energy states coming from the prevalent orthorhombic phase. As discussed for Figure 3, the 5 nm and the 9 nm tetragonal segregations are not sufficiently large to yield a spatially localized electron ground state, thus, for these systems, the low-energy peak is not observed in the calculated spectra. The results obtained with different values of the band-offset are reported in Section III of the Supporting Information, for completeness.

A consistent description of the emission properties of the system can be obtained as a superposition of the calculated spectra for the minimum and maximum tetragonal domain dimension, i.e., $x E_{\text{5nm}} + (1 - x) E_{\text{14nm}}$, where E_{5nm} and E_{14nm} are the calculated emission spectra for the 5 and 14 nm domain size, respectively, and x is a temperature related weighting parameter derived by fitting the measured spectra. The results are represented in parts a–d of Figure 5, where panels a and c show the experimental data obtained by PL measurements in a temperature range going from 10 to 100 K with incident power density of 1.3 and 13 W/cm2, respectively, and the related fitted spectra are shown in panels b and d. In order to fit the experimental data, we have used a weighting parameter that is not a linear function of temperature. Thus, the emission properties of the system cannot be simply described assuming that the fraction of tetragonal phase decreases when the temperature is lowered. The behavior of the fitting parameter and the experimental setup for the PL measurements are discussed in Section IV of the Supporting Information. Note that the calculated spectra are blue-shifted with respect to the measured ones. This is due to the overestimation of the energy gap values, as discussed for Table 1. As it can be seen in Figure 5, the low energy feature, originating from localized states confined within the tetragonal domain, is visible even far below the transition temperature, indicating that a significant fraction of tetragonal MAPbI$_3$ is still present. Some differences can be found between experimental and fitted spectra about the width and the temperature trend of tetragonal peak. In experimental data the tetragonal peak appears wider and less sharp, moreover seems to perform a slight red-shift lowering temperature below 100 K. These two features can be explained by the presence, in experimental data, of spectral components due to recombination on defect states lying within the band gap. Defect states related luminescence can appear in a wide spectral range and it tends to saturate increasing the temperature. Therefore, they can influence both the width and the position of other peaks. On the other hand, the red-shift of the orthorhombic peak observed in panels b and d is qualitatively consistent with the measurements of panels a and c. In fact, the occupation of the high-energy states associated with the orthorhombic crystal for different temperatures is accounted for in the theoretical spectra. The occupation decreases when the temperature is lowered, yielding an overall red-shift of the orthorhombic peak. This effect is further discussed in Section IV of the Supporting Information.
In conclusion, our simulations demonstrate that the presence of residual nanodomains of tetragonal phase below the tetragonal-orthorhombic transition temperature can explain the low-energy features in the PL spectra of MAPbI$_3$ perovskite down to 10 K. Even if our theoretical model does not address defect states recombination that can affect both the width and the position of PL peaks, the calculated spectra are consistent with the measured ones and the red-shift of the orthorhombic peak is confirmed. However, based on TB simulations and measurements, we think that the PL features cannot be quantitatively related to the exact fraction of residual tetragonal phase. In fact, the relative intensity of the tetragonal and orthorhombic peaks varies with the density of excitation employed in the experiment for a same value of temperature. Moreover, the fraction of tetragonal phase used in the theoretical spectra to fit the experimental trends is not a linear function of the temperature. Finally, the TB model, supported by PSO to determine the HME and by DFT calculations to estimate the VB offset, effectively capture the carriers’ localization phenomenon at the origin of the low-energy PL features.

FIGURE 5. Experimental spectra obtained by PL measurements in a temperature range going from 10 to 100 K with incident power density of a 1.3 W/cm2 and c 13 W/cm2. The related theoretical spectra are shown in panels b and d, respectively. The higher density of excitation is taken into account using a carrier density ten times larger in panel d with respect to panel b.

ASSOCIATED CONTENT

Supporting Information
The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acs.jpcl.1c03378. Additional computational and experimental details, materials, and methods (PDF)

AUTHOR INFORMATION

Corresponding Author
Alessia Di Vito — University of Rome “Tor Vergata”, 00133 Rome, Italy; orcid.org/0000-0003-4774-3488; Email: alessia.di.vito@uniroma2.it

Authors
Alessandro Pecchia — CNR-ISMN, 00014 Monterotondo Stazione, Rome, Italy
Matthias Auf der Maur — University of Rome “Tor Vergata”, 00133 Rome, Italy
Valerio Campanari — University of Rome “Tor Vergata”, 00133 Rome, Italy
Faustino Martelli — CNR-IMM, 00133 Rome, Italy; orcid.org/0000-0002-4496-4165
Electronic-hole Diffusion Lengths Exceeding 1 micrometer in an Organometal Trihalide Perovskite Absorber. Science 2013, 342, 341–344.
(14) Xing, G.; Mathews, N.; Sun, S.; Lim, S. S.; Lam, Y. M.; Grätzel, M.; Mhaisalkar, S.; Sum, T. C. Long-range Balanced Electron-and Hole-transport Lengths in Organic-inorganic CH₃NH₃PbI₃. Science 2013, 342, 344–347.
(15) Wohlenberg, C.; Eperon, G. E.; Johnston, M. B.; Snaith, H. J.; Herz, L. M. High Charge Carrier Mobilities and Lifetimes in Organolead trihalide Perovskites. Adv. Mater. 2014, 26, 1584–1589.
(16) Stoumpos, C. C.; Malliakas, C. D.; Kanatzidis, M. G. Semiconducting Tin and Lead Iodide Perovskites with Organic Cations: Phase Transitions, High Mobilities, and Near-infrared Photoluminescence Properties. Inorg. Chem. 2013, 52, 9019–9038.
(17) Pogliatsch, A.; Weber, D. Dynamic Disorder in Methylammonium Trihalogeno Plumbates (Ⅱ) Observed by Millimeter-wave Spectroscopy. J. Chem. Phys. 1987, 87, 6373–6378.
(18) Onoda-Yamamuro, N.; Matsuou, T.; Suga, H. Calorimetric and IR Spectroscopic Studies of Phase Transitions in Methylammonium Trihalogeno Plumbates (Ⅱ). J. Phys. Chem. Solids 1990, 51, 1383–1395.
(19) Knap, O.; Wasylishen, R. E.; White, M. A.; Cameron, T. S.; Van Oort, M. J. M. Alkylammonium Lead Halide Halides. Part 2. CH₃NH₃PbX₃ (x = Cl, Br, I) Perovskites: Cuboctahedral Halide Cages with Isotropic Cation Reorientation. Can. J. Chem. 1990, 68, 412–422.
(20) Kong, W.; Ye, Z.; Qi, Z.; Zhang, B.; Wang, M.; Rahimi-Iman, A.; Wu, H. Characterization of an Abnormal Photoluminescence Behavior upon Crystal-phase Transition of Perovskite CH₃NH₃PbI₃. Phys. Chem. Chem. Phys. 2015, 17, 16405–16411.
(21) Glushkova, A.; Mantulnikovs, K.; Giriart, G.; Semeniuk, K.; Forró, L.; Horváth, E.; Arakcheeva, E. Effect of Thermal Cycling on the Structural Evolution of Methylammonium Lead Iodide Monitored around the Phase Transition Temperatures. Sol. RRL 2019, 3, 1900044.
(22) Singh, S.; Li, C.; Panzer, F.; Narasimhan, K. L.; Graeser, A.; Gujar, T. P.; Kohler, A.; Thelakkat, M.; Huetten, S.; Kabra, D. Effect of Thermal and Structural Disorder on the Electronic Structure of Hybrid Perovskite Semiconductor CH₃NH₃PbI₃. J. Phys. Chem. Lett. 2016, 7, 3014–3021.
(23) Parrott, E. S.; Milot, R. L.; Stergiopoulos, T.; Snaith, H. J.; Johnston, M. B.; Herz, L. M. Effect of Structural Phase Transition on Charge-carrier Lifetimes and Defects in CH₃NH₃SnI₃ Perovskite. J. Phys. Chem. Lett. 2016, 7, 1321–1326.
(24) Osherov, A.; Hutter, E. M.; Galkowski, K.; Brens, R.; Maude, D. K.; Nicholas, R. J.; Plochocka, P.; Bulovic, V.; Savenije, T. J.; Stranks, S. D. The Impact of Phase Retention on the Structural and Optoelectronic Properties of Metal Halide Perovskites. Adv. Mater. 2016, 28, 10757–10763.
(25) Wohlenberg, C.; Liu, M.; Snaith, H. J.; Johnston, M. B.; Herz, L. M. Charge Carrier Recombination Channels in the Low-Temperature Phase of Organic-inorganic Lead Halide Perovskite Thin Films. APL Mater. 2014, 2, 081513.
(26) Panzer, F.; Li, C.; Meier, T.; Köhler, A.; Huetten, S. Impact of Structural Dynamics on the Optical Properties of Methylammonium Lead Iodide Perovskites. Adv. Energy Mater. 2017, 7, 1700286.
(27) Campanari, V.; Agresti, A.; Pescetelli, S.; Sivan, A. K.; Catone, D.; O’Keeffe, P.; Turchini, S.; Di Carlo, A.; Martell, F. Systematic Approach to the Study of the Photoluminescence of MAPbI₃. Phys. Res. Lett. 2021, 5, 035049.
(28) Fang, H.-H.; Raissa, R.; Abdu-Aguye, M.; Adjokatse, S.; Blake, G. R.; Even, J.; Loi, M. A. Photophysics of Organic-inorganic Hybrid Lead Iodide Perovskite Single Crystals. Adv. Funct. Mater. 2015, 25, 2378–2385.
(29) Schuck, G.; Tobbens, D. M.; Koch-Muller, M.; Efthimiopoulos, I.; Schorr, S. Infrared Spectroscopic Study of Vibrational Modes Across the Orthorhombic-tetragonal Phase Transition in Methylammonium Lead Halide Single Crystals. J. Phys. Chem. C 2018, 122, 5227–5237.
(30) Phuong, L. Q.; Nakaike, Y.; Wakamiya, A.; Kanemitsu, Y. Free Excitons and Exciton-phonon Coupling in CH$_3$NH$_3$PbI$_3$ Single Crystals Revealed by Photocurrent and Photoluminescence Measurements at Low Temperatures. *J. Phys. Chem. Lett.* **2016**, *7*, 4905–4910.

(31) Schötz, K.; Askar, A. M.; Peng, W.; Seeberger, D.; Gujar, T. P.; Thelakkat, M.; Köhler, A.; Huettner, S.; Bakr, O. M.; Shankar, K.; et al. Double Peak Emission in Lead Halide Perovskites by Self-absorption. *J. Mater. Chem. C* **2020**, *8*, 2289–2300.

(32) Schötz, K.; Askar, A. M.; Köhler, A.; Shankar, K.; Panzer, F. Investigating the Tetragonal-to-Orthorhombic Phase Transition of Methylammonium Lead Iodide Single Crystals by Detailed Photoluminescence Analysis. *Adv. Opt. Mater.* **2020**, *8*, 2000455.

(33) Quarti, C.; Mosconi, E.; Ball, J. M.; D’Innocenzo, V.; Tao, C.; Pathak, S.; Snaith, H. J.; Petrozza, A.; De Angelis, F. Structural and Optical Properties of Methylammonium Lead Iodide Across the Tetragonal to Cubic Phase Transition: Implications for Perovskite Solar Cells. *Energy Environ. Sci.* **2016**, *9*, 155–163.

(34) TiberCAD Simulation Package; http://www.tibercad.org.

(35) Giannozzi, P.; Baroni, S.; Bonini, N.; Calandra, M.; Car, R.; Cavazzoni, C.; Ceresoli, D.; Chiarotti, G. L.; Cococcioni, M.; Dabo, I.; et al. Quantum Espresso: a Modular and Open-Source Software Project for Quantum Simulations of Materials. *J. Phys.: Condens. Matter* **2009**, *21*, 395502.

(36) Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. *Phys. Rev. Lett.* **1996**, *77*, 3865.

(37) Boyer-Richard, S.; Katan, C.; Traore, B.; Scholz, R.; Jancu, J.-M.; Even, J. Symmetry-based Tight Binding Modeling of Halide Perovskite Semiconductors. *J. Phys. Chem. Lett.* **2016**, *7*, 3833–3840.

(38) Even, J.; Pedesseau, L.; Jancu, J.-M.; Katan, C. Importance of Spin-Orbit Coupling in Hybrid Organic/inorganic Perovskites for Photovoltaic Applications. *J. Phys. Chem. Lett.* **2013**, *4*, 2999–3005.

(39) Umari, P.; Mosconi, E.; De Angelis, F. Relativistic GW Calculations on CH$_3$NH$_3$PbI$_3$ and CH$_3$NH$_3$SnI$_3$ Perovskites for Solar Cell Applications. *Sci. Rep.* **2015**, *4*, 4467.

(40) Kennedy, J.; Eberhart, R. Particle Swarm Optimization. *International Conference on Neural Networks* **1995**, *4*, 1942–1948.

(41) Weston, L.; Tailor, H.; Krishnaswamy, K.; Bjaalie, L.; Van de Walle, C. G. Accurate and Efficient Band-offset Calculations from Density Functional Theory. *Comput. Mater. Sci.* **2018**, *151*, 174–180.