Enhancing the Utility of Dietary *Moringa oleifera* Leaf Meal for Sustainable Jumbo quail (*Coturnix* sp.) Production

Anzai Mulaudzi 1,2, Caven Mguvane Mnisi 1,2,∗ and Victor Mlambo 3,∗

1 Department of Animal Science, Faculty of Natural and Agricultural Science, North-West University, Mafikeng 2735, South Africa; anzaimatshavhange@gmail.com
2 Food Security and Safety Focus Area, Faculty of Natural and Agricultural Science, North-West University, Mafikeng 2735, South Africa
3 School of Agricultural Sciences, Faculty of Agriculture and Natural Sciences, University of Mpumalanga, Nelspruit 1200, South Africa; victor.mlambo@ump.ac.za

∗ Correspondence: 23257539@nwu.ac.za; Tel.: +27-18-389-2738

Abstract: The effect of pre-treating *Moringa oleifera* leaf powder (MOLP) with different levels of polyethylene glycol (PEG) on the growth performance, serum biochemistry, hematology, and meat quality parameters of Jumbo quail was evaluated. Two-week-old quail chicks (*n* = 432; 239.6 ± 6.48 g live-weight) were randomly allocated to six diets formulated by incorporating (10% *w*/*w*) untreated MOLP (PEG0) or MOLP pre-treated with PEG at 2.5% (PEG25), 5% (PEG50), 7.5% (PEG75), and 10% (PEG100) (*w*/*w*) into a standard grower diet (CON). Overall feed intake linearly increased with PEG levels. At week 4, significant quadratic trends were recorded for weight gain and feed conversion efficiency (FCE) but, at week 5, FCE linearly declined as PEG levels increased. Hemoglobin, phosphorus, and albumin showed quadratic trends, while calcium and chroma (1 h post-mortem) linearly declined in response to PEG levels. Diet PEG50 promoted a higher shear force value (2.41) than diets PEG0 and PEG25. The PEG50 diet promoted a similar (*p > 0.05*) shear force as diet CON. Based on the quadratic response for weight gain, the optimal PEG pre-treatment level was calculated to be 5.9%. It was concluded that MOLP condensed tannins negatively affect growth performance and should be ameliorated to enhance the utility of this nutraceutical source for Jumbo quail.

Keywords: avian birds; blood indices; feed additives; growth traits; meat quality; phytogenics

1. Introduction

The use of phytochemicals could be a long-term strategy for achieving sustainable Jumbo quail (*Coturnix* sp.) intensification for enhanced food and nutrition security. The Jumbo quail is a subspecies of the Japanese quail (*Coturnix coturnix japonica*) that was recently introduced in South Africa for meat production [1]. It is a fast-growing, large-framed (weighing up to 300 g) brownish bird [1,2]. Moreover, quail farming has the capacity to revolutionize the South African poultry industry, which relies heavily on imports to meet local consumer demand. Quail production also provides an opportunity to diversify the poultry industry to increase the supply of animal protein [3]. Currently, quail birds are steadily evolving around the world as an excellent source of protein [4]. Their evolution could be attributed to their low maintenance, early sexual maturity, high prolificacy, short generation intervals, fast growth rates, and resistance to numerous avian diseases [5,6]. However, sustainable intensification of quail birds could be restricted by high feed costs, disease outbreaks, and poor performance. Indeed, the cost of poultry feeds has remained high, especially in the tropics, due to rising prices of soybeans and maize grain, which are conventional nutrient sources in poultry diets [7]. The competition between humans and livestock for these conventional nutrient sources [8] contributes to rising demand that fuels price increases on the world market. It is, therefore, imperative that non-conventional feedstuffs that have nutraceutical properties be identified for use in quail diets to allow...
for sustainable intensification and reduce production cost. One such potential feedstuff is *Moringa oleifera* leaf powder (MOLP), which contains a variety of nutrients and bioactive compounds that could be beneficial to the Jumbo quail.

Moringa oleifera Lam is a nutrient-rich plant that is widely distributed in tropical and subtropical countries. It is widely used in the animal, food, and pharmaceutical sectors [9,10]. *Moringa oleifera* by-products have bioactive agents (flavonoids and other phenolics compounds such as caffeic, ferulic, and coumaric) with antimicrobial, antioxidant properties, and hypcholesterolemic effects that can enhance growth performance, health status, meat shelf life, and product quality [11,12]. *Moringa oleifera* leaves have been used as a source of nutrients in poultry [13,14] because they contain high concentrations of protein, vitamins (C, K, and B complex), beta-carotene, and manganese [15]. Moreover, the leaf powder has detergent and anti-septic properties due to the presence of different phytochemicals [16]. The use of MOLP as a dietary supplement in broilers and layers has been shown to improve growth performance and egg quality [17]. However, the amount of MOLP that can be added into Jumbo quail diets is limited by the presence of condensed tannins (CT) (12 g/kg tannins in a dry matter basis) and fiber (19.3% crude fiber) [18]. Indeed, other scholars have reported that the inclusion of MOLP in poultry diets should not exceed 25 g/kg due to the presence of antinutritional factors [19,20]. Further reports have shown that high levels of CT reduce feed utilization efficiency, growth rate, and protein digestibility in chickens [21]. High levels of tannins are harmful to the lining of the small intestines because they disturb normal absorptive function of the gut, resulting in poor performance.

Therefore, there is a need to ameliorate the negative effect of CT to allow the birds to fully benefit from the bioactive components of MOLP. One potential strategy is the use of polyethylene glycol (PEG), a tannin-inactivating compound, which has been reported to have high affinity for CT [22]. Pre-treatment of tannin-rich feeds with PEG has the potential to reduce the negative effects of CT in the gastrointestinal tract of birds and to improve protein digestibility [23]. Several studies have investigated the effect of PEG treatment in poultry [24–26] and ruminant feeds [27,28]. However, the effectiveness of PEG in improving the feed value of MOLP in Jumbo quail diets has not been investigated, possibly because this bird is relatively new to the South African poultry industry. Moreover, the application of PEG to ameliorate the negative effects of CT may enable the inclusion of MOLP at high levels (e.g., 100 g/kg) in Jumbo quail diets without compromising their productivity and meat quality. Therefore, this feeding trial evaluated the effect of pre-treating MOLP with different levels of polyethylene glycol on feed intake, physiology, and meat quality responses of Jumbo quail. We tested the hypothesis that PEG treatment of MOLP would improve the growth performance, blood parameters, and meat quality attributes in Jumbo quail.

2. Materials and Methods

2.1. *Moringa Source and Chemical Composition*

Moringa oleifera leaf powder (MOLP) was purchased from Origin Organics Investments (PTY) LTD (Gauteng, South Africa). The MOLP (2 mm) was chemically analyzed for dry matter (DM), ash, organic matter (OM), and crude protein (CP) using guidelines by Association of Official Analytical Chemists [29]. The fiber detergent method by Van Soest et al. [30] was used to determine the neutral detergent fiber (NDF) and acid detergent fiber (ADF). The methods by Makkar [31] were used to determine the total soluble phenolics (TsPh) and soluble condensed tannins (sCT) of the MOLP. Minerals (calcium, phosphorus, sodium, potassium, magnesium, and sulfur) were analyzed using Agri-Laboratory Association of Southern Africa guidelines [32]. Metabolizable energy was calculated using the equation described by Khalil et al. [33].
2.2. Polyethylene Glycol Treatment of Moringa

The PEG (Mr 4000) was purchased from Agro-Enviro Solutions (Gauteng, South Africa). It is a biocompatible, synthetic, hydrophilic polyether compound for which the molecular structure is \(\text{H}-(\text{O}-\text{CH}_2-\text{CH}_2)_n-\text{OH} \) [34]. Initially, four PEG solutions were made by dissolving 150, 300, 450, and 600 g of PEG in 6 L of distilled water. Subsequently, each PEG solution was sprayed onto 6 kg of MOLP, thus producing PEG treatment rates of 2.5, 5, 7.5, and 10% (w/w) before inclusion into the experimental diets. Untreated MOLP was also sprayed with 6 L of distilled water without PEG. The mixing process was conducted as described by Van Niekerk et al. [26]. The untreated and treated MOLP samples were kept at an average room temperature of 25 °C for a duration of 12 h so that the PEG would react with MOLP tannins. The untreated and treated MOLPs were thereafter air-dried to a constant weight and then milled (Polymix PX-MFC 90 D, Kinematica AG, Malters, Switzerland) before being incorporated into a standard grower diet.

2.3. Formulation of Experimental Diets and Analyses

In a mash form, six isonitrogenous and isocaloric experimental diets were formulated by incorporating (10% w/w) untreated MOLP (PEG0) or MOLP pre-treated with PEG at 2.5% (PEG25), 5% (PEG50), 7.5% (PEG75), and 10% (PEG100) (w/w) into a standard grower diet (CON), as shown in Table 1. Nutrient composition of the experimental diets were determined as described in Section 2.1 above and are indicated in Table 2.

Ingredients	CON	PEG0	PEG25	PEG50	PEG75	PEG100
Polyethylene glycol (%)	0.0	0.0	2.5	5.0	7.5	10.0
Moringa oleifera leaf powder	0.0	100.0	100.0	100.0	100.0	100.0
Yellow maize-fine	698.6	626.9	626.9	626.9	626.9	626.9
Choline powder	0.8	0.8	0.8	0.8	0.8	0.8
Full fat soya powder	50.7	148.6	148.6	148.6	148.6	148.6
Grower-phytase	1.7	1.7	1.7	1.7	1.7	1.7
Limestone powder	14.5	14.5	14.5	14.5	14.5	14.5
L-Threonine	0.4	0.4	0.4	0.4	0.4	0.4
Lysine	2.8	2.8	2.8	2.8	2.8	2.8
Methionine	1.9	1.9	1.9	1.9	1.9	1.9
Monocalcium phosphate	7.2	7.2	7.2	7.2	7.2	7.2
Olaquindox	0.4	0.4	0.4	0.4	0.4	0.4
Prime gluten 60	18.0	18.0	18.0	18.0	18.0	18.0
Salt-fine	3.2	3.2	3.2	3.2	3.2	3.2
Sodium bicarbonate	1.7	1.7	1.7	1.7	1.7	1.7
Soybean powder	196.7	70.5	70.5	70.5	70.5	70.5
Vitamin and Mineral Premix	0.5	0.5	0.5	0.5	0.5	0.5

1Diets: CON = control diet (a standard grower diet); PEG0 = control diet containing 10% MOLP; PEG25 = PEG0 pre-treated with 2.5% polyethylene glycol; PEG50 = PEG0 pre-treated with 5% polyethylene glycol; PEG75 = PEG0 pre-treated with 7.5% polyethylene glycol; PEG100 = PEG0 pre-treated with 10% polyethylene glycol.

2.4. Feeding Trial

The feeding trial was conducted from December to January 2020 at the North-West University’s Farm (Molelwane, 25°86′00″ S; 25°64′32″ E) in South Africa. During this period, ambient temperatures ranged from 27 °C to 37 °C. Mixed-gender Jumbo quail chicks (n = 432; one-week old) were purchased from Golden Quail Farm (Randfontein, South Africa). The chicks were randomly and evenly allotted to 36 pens deemed as the experimental units. The experimental diets were replicated six times per experimental unit. The pens (60 cm W × 100 cm L × 30 cm H) were built using wire mesh, and the floor was covered with removable polythene plastics used as bedding. The birds were adapted to the six experimental diets until two weeks of age while a stress pack containing water-soluble vitamins and electrolytes was given in the first three days. The experiment was conducted
under natural lighting (12 h of daylight) with house temperatures ranging between 25 °C and 30 °C and an average indoor humidity of 60%. For the 4-week feeding period, the birds had unrestricted access to clean water and experimental diets. Initial live weights were measured at 2 weeks of age and thereafter measured weekly until 6 weeks of age to determine average weekly body weight gain (ABWG). Average weekly feed intake (AWFI) was measured by subtracting the weight of the feed refusals (which were measured daily from beginning of week 1 to the end of week 6). Feed conversion efficiency (FCE) was calculated by dividing body weight gain by feed consumed. Nine birds died in total, and the growth performance data were adjusted using the mortality values from the study.

Table 2. Nutrient content (g/kg DM, unless stated otherwise) of the dietary treatments.

Nutrients	MOLP	CON	PEG0	PEG25	PEG50	PEG75	PEG100
Dry matter (g/kg)	923.7	916.1	906.5	914.6	913.7	920.8	921.2
Ash	7.6	4.93	5.21	4.81	4.85	5.15	4.49
Organic matter	847.2	911.2	901.2	909.8	908.9	915.7	916.7
Calculated metabolizable energy (MJ/kg)	12.0	12.07	12.07	12.07	12.07	12.07	12.07
Calculated crude protein	177.5	182.5	182.2	182.2	182.3	182.4	182.3
Calcium	7.01	7.00	7.03	7.03	7.03	7.03	7.03
Phosphorus	5.05	5.34	4.77	4.77	4.77	4.77	4.77
Potassium	3.19	3.74	2.66	2.66	2.66	2.66	2.66
Magnesium	1.05	1.21	0.88	0.88	0.88	0.88	0.88
Sulphur	0.60	0.74	0.48	0.48	0.48	0.48	0.48
Sodium	1.68	1.69	1.68	1.68	1.68	1.68	1.68
Neutral detergent fiber	211.1	150.0	142.6	142.4	139.2	105.6	140.5
Acid detergent fiber	151.5	113.9	111.8	92.17	92.2	102.2	111.0
Total phenolics (g/TAE kg DM)	41.8	9.22	19.90	20.90	20.39	18.23	18.83
Condensed tannins (AU550 nm/200 mg)	0.80	0.04	0.45	0.23	0.20	0.18	0.13

1Diets: CON = control diet (a standard grower diet); PEG0 = control diet containing 10% MOLP; PEG25 = PEG0 pre-treated with 2.5% polyethylene glycol; PEG50 = PEG0 pre-treated with 5% polyethylene glycol; PEG75 = PEG0 pre-treated with 7.5% polyethylene glycol; PEG100 = PEG0 pre-treated with 10% polyethylene glycol.

2.5. Slaughter and Hemato-Biochemical Analyses

At day 42 of age, all the birds were weighed to determine their final body weights (FBWs) and then transported to a local poultry abattoir, where they were stunned and then slaughtered by cutting the jugular vein. Blood samples (4 mL) were collected into two sets of sterilized whole blood and serum tubes at slaughter. Hematological and serum biochemical parameters were determined using the Hematology and Vet Test Chemistry Analyzers (IDEXX Laboratories S.A. PTY, Gauteng, South Africa), respectively.

2.6. Carcass and Meat Quality Parameters

Carcass yield, hot carcass weight (HCW), cold carcass weight (CCW), carcass cuts (breast, wing, drumstick, and thigh) and internal organs (liver, proventriculus, gizzard, small intestine, caecum, and colon) of the Jumbo quail were measured as described in our previous work [2,5]. Breast meat pH was determined 1 h and 24 h post-mortem using a Corning pH meter (Model 4 Corning Glass Works, Medfield, MA, USA). Breast meat lightness (L*), redness (a*), yellowness (b*), hue angle, and chroma were taken 1 h and 24 h post-mortem using a spectrophotometer (CM 2500 c, Konika Minolta, Osaka, Japan) following the guidelines by the Commission Internationale de l’Eclairage [35]. Drip and cooking losses were determined following the methods described by Honikel [36]. Shear force, a measure of meat tenderness, was performed on raw breast meat samples according to the method described in our previous work [2]. The water-binding capacity (WBC) was determined using breast meat samples held under 60 kg pressure following the filter-paper press method [37].
2.7. Statistical Analysis

The coefficients for linear and quadratic effects of PEG levels were determined using the response surface regression procedure of SAS (PROC RSREG; SAS [38]). The data for CON were excluded for the regression analysis. Repeated measures analysis by means of General Linear model (GLM) of SAS [38] were used to determine the interaction effects between diet and time (in weeks) on weekly feed intake, weight gain, and FCE. The data for overall feed intake, physiological responses, and meat quality traits were analyzed using one-way analysis of variance (PROC GLM; SAS [38]) with the dietary treatment as the only factor. Significance was set at \(p < 0.05 \), and treatment means were separated using the probability of difference option in SAS.

3. Results
3.1. Growth Performance and Indices

Repeated measures analysis showed significant week \(\times \) diet interaction effects on ABWG (\(p = 0.031 \)) and FCE (\(p = 0.017 \)), except on AWFI (\(p = 0.341 \)). Table 3 shows that PEG pre-treatment levels linearly increased overall feed intake (\(y = 676.2 (\pm 15.95) + 0.198 (\pm 0.763) x; R^2 = 0.329, p = 0.004 \)). Pre-treatment of dietary MOLP with PEG resulted in quadratic trends for weight gain (\(y = 37.22 (\pm 3.17) + 0.471 (\pm 0.152) x - 0.004 (\pm 0.001) x^2; R^2 = 0.305, p = 0.007 \)) and FCE (\(y = 0.223 (\pm 0.016) + 0.002 (\pm 0.0008) x - 0.00002 (\pm 0.000007) x^2; R^2 = 0.374, p = 0.002 \)) in four-week-old quail birds, from which the optimal PEG pre-treatment level was calculated to be 5.9% for weight gain. Five-week-old quail birds showed a linear decrease in FCE (\(y = 0.132 (\pm 0.017) - 0.001 (\pm 0.0008) x; R^2 = 0.172, p = 0.046 \)) as PEG levels increased. Birds reared on PEG75 and PEG100 diets had higher (\(p < 0.05 \)) overall feed intake than those reared on CON, PEG0, and PEG25, for which the overall feed intake did not differ (\(p > 0.05 \)). In week 4, diet PEG50 (57.02 g/bird) promoted the highest (\(p > 0.05 \)) AWG compared with diets CON, PEG0, PEG100, which were statistically similar (\(p > 0.05 \)). The PEG0 diet promoted a similar (\(p > 0.05 \)) AWG as diet PEG25. There were dietary influences (\(p < 0.05 \)) observed for FCE in weeks 4 and 5. In week 4, birds on diet PEG50 (0.232) had the highest FCE when compared with those on diets PEG0 (0.232) and PEG75 (0.231). Diet PEG50 promoted the same (\(p > 0.05 \)) FCE as diets CON, PEG25, and PEG75. In week 5, diets PEG0 (0.135) promoted higher FCE than diets PEG50 (0.087), PEG75 (0.087 g/bird), and PEG100 (0.080), which did not differ (\(p > 0.05 \)). The PEG0 diet had similar (\(p > 0.05 \)) FCEs as diets CON and PEG25.

Table 3. Effect of pre-treating dietary *Moringa oleifera* leaf powder with different levels of polyethylene glycol on growth performance of Jumbo quail.

1Diets	CON	PEG0	PEG25	PEG50	PEG75	PEG100	2SEM	p Value	
Overall feed intake	644.5 c	679.8 bc	666.9 bc	710.6 ab	711.5 a	745.1 a	14.6	0.004	0.538
Average weekly weight gain (g/bird)	47.6	39.3	37.1	37.1	46.7	48.3	4.27	0.139	0.179
Average weekly feed conversion efficiency	0.371	0.289	0.287	0.269	0.004	0.330	0.031	0.771	0.450

\(^{abc}\) Means in the same row with different superscripts are significantly different (\(p < 0.05 \)). \(^{1}\)Diets: CON = control diet (a standard grower diet); PEG0 = control diet containing 10% MOLP; PEG25 = PEG0 pre-treated with 2.5% polyethylene glycol; PEG50 = PEG0 pre-treated with 5% polyethylene glycol; PEG75 = PEG0 pre-treated with 7.5% polyethylene glycol; PEG100 = PEG0 pre-treated with 10% polyethylene glycol. \(^{2}\)SEM = standard error of the mean.
Table 4 shows that there was a significant quadratic trend for hemoglobin \((y = 6.99 (\pm 1.08) + 0.126 (\pm 0.049) x - 0.001 (\pm 0.0004) x^2; R^2 = 0.151, p = 0.036)\), which increased with PEG levels and then decreased. Similarly, no significant dietary effects were observed on all hematological parameters of Jumbo quails except for hemoglobin. Birds reared on diet PEG0 had the least \((p < 0.05)\) amount of hemoglobin \((6.84 \text{ g/dL})\) compared with those on diets PEG50 and PEG75, which did not differ \((p > 0.05)\).

Table 4. Effect of pre-treating dietary *Moringa oleifera* leaf powder with different levels of polyethylene glycol on hematological parameters in Jumbo quail.

Parameters \(10^9/\text{L} \)	CON	PEG0	PEG25	PEG50	PEG75	PEG100	\(^2\)SEM	\(^3\)p Value	Linear	Quadratic
Basophils \(10^9/\text{L}\)	0.102	0.196	0.309	0.194	0.328	0.136	0.067	0.633	0.188	
Eosinophils \(10^9/\text{L}\)	0.182	0.801	0.811	0.432	0.582	0.395	0.196	0.115	0.825	
Erythrocytes \(10^{12}/\text{L}\)	4.76	3.85	3.75	4.96	4.97	3.64	0.091	0.091	0.462	
Hematocrits \(\text{L/L}\)	34.1	26.6	25.2	34.6	34.6	31.6	4.7	0.212	0.410	
Hemoglobin (g/dL)	9.39 \(^\text{ab}\)	6.84 \(^\text{b}\)	9.76 \(^\text{ab}\)	10.9 \(^\text{a}\)	10.2 \(^\text{a}\)	9.57 \(^\text{ab}\)	1.12	0.122	0.036	
Lymphocytes \(10^9/\text{L}\)	37.75	57.27	82.24	79.24	66.8	83.3	16.6	0.514	0.720	
MCH (pg)	18.8	14.8	22.0	23.5	21.1	20.2	3.43	0.395	0.116	
MCV (fl)	65.9	55.6	58.3	68.08	70.4	66.1	7.47	0.156	0.388	
Monocytes \(10^9/\text{L}\)	0.660	1.31	1.86	1.31	1.21	1.45	0.326	0.751	0.978	
Neutrophils \(10^9/\text{L}\)	3.48	10.2	9.03	5.31	9.77	5.25	2.46	0.259	0.868	
RDW \(10^9/\text{L}\)	18.4	17.7	21.5	23.1	22.3	22.9	2.31	0.172	0.351	
Reticulocytes (K/\(\mu\)L)	3.32	5.25	1.85	2.37	3.10	3.41	1.61	0.659	0.203	
WBC \(10^9/\text{L}\)	42.1	69.9	94.2	85.6	78.7	90.5	17.6	0.663	0.771	

\(^a\)Means in the same row with different superscripts are significantly different \((p < 0.05)\). \(^b\)Diets: CON = control diet (a standard grower diet); PEG0 = control diet containing 10% MOLP; PEG25 = PEG0 pre-treated with 2.5% polyethylene glycol; PEG50 = PEG0 pre-treated with 5% polyethylene glycol; PEG75 = PEG0 pre-treated with 7.5% polyethylene glycol; PEG100 = PEG0 pre-treated with 10% polyethylene glycol. \(^2\)Parameters: MCV = mean corpuscular volume; MCH = mean corpuscular hemoglobin; RDW = red blood cell distribution width; WBC = white blood cells. \(^3\)SEM = standard error of the mean.

Serum calcium linearly declined \((y = 3.94 (\pm 0.346) - 0.018 (\pm 0.015) x; R^2 = 0.158, p = 0.035)\) as PEG levels increased (Table 5). However, serum phosphorus \((y = 3.31 (\pm 0.613) + 0.076 (\pm 0.028) x - 0.0006 (\pm 0.0002) x^2; R^2 = 0.189, p = 0.018)\) and albumin \((y = 27.6 (\pm 4.14) - 0.379 (\pm 0.189) x + 0.004 (\pm 0.001) x^2; R^2 = 0.165, p = 0.030)\) quadratically responded to incremental levels of PEG by first decreasing and then increasing. The diets had no \((p > 0.05)\) effect on serum biochemical parameters, except on phosphorus and albumin. However, diet CON promoted statistically similar \((p > 0.05)\) albumin and phosphorus levels as the other treatment groups.

3.2. Carcass and Meat Quality Characteristics

Pre-treatment of dietary MOLP with PEG had no \((p > 0.05)\) linear or quadratic trends for carcass characteristics and internal organ weights in Jumbo quail (Table 6). Similarly, no significant dietary effects were observed on internal organ weights and carcass traits of the birds, except on thigh weights with birds reared on diet CON having lighter \((p < 0.05)\) thigh weights (6.03%HCW) than those reared on diet PEG0 (6.90%HCW).
Table 5. Effect of pre-treating dietary *Moringa oleifera* leaf powder with different levels of polyethylene glycol on serum biochemical parameters in Jumbo quail.

2Parameters	CON	PEG0	PEG25	PEG50	PEG75	PEG100	3SEM	Linear	Quadratic
Albumin (g/L)	25.9ab	26.6ab	22.7ab	17.6b	21.6ab	31.0a	4.64	0.492	0.030
ALKP (U/L)	244.3	82.8	212.1	150.5	180.5	122.6	54.85	0.864	0.143
ALT (U/L)	65.5	31.8	43.8	50.6	56.1	55.2	12.38	0.089	0.487
Amylase (U/L)	284.1	274.8	384.2	330.5	441.4	363.9	99.79	0.462	0.559
Calcium (mmol/L)	3.71	3.87	3.69	3.09	3.05	2.94	0.361	0.035	0.584
Creatine (µmol/L)	26.6	31.4	17.4	39.5	18.0	29.5	9.77	0.954	0.854
Globulin (g/L)	42.9	49.8	56.5	44.5	45.08	39.9	8.61	0.232	0.742
Glucose (mmol/L)	0.885	1.75	1.57	1.38	1.06	1.00	0.450	0.154	0.941
Lipase (U/L)	264.4	125.0	168.7	186.8	172.9	148.9	54.89	0.767	0.328
Phosphorus (mmol/L)	4.68ab	3.12ab	5.20a	5.20a	4.33a	0.599	0.307	0.018	0.167
Total protein (g/L)	63.2	41.6	79.3	63.5	62.9	60.9	11.41	0.661	0.167

1Diets: CON = control diet (a standard grower diet); PEG0 = control diet containing 10% MOLP; PEG25 = PEG0 pre-treated with 2.5% polyethylene glycol; PEG50 = PEG0 pre-treated with 5% polyethylene glycol; PEG75 = PEG0 pre-treated with 7.5% polyethylene glycol; PEG100 = PEG0 pre-treated with 10% polyethylene glycol.

2Parameters: ALKP = alkaline phosphatase; ALT = alanine transaminase.

3SEM = standard error of the mean.

There were significant linear and quadratic trends for breast meat hue angle24 (R² = 1.00, p = 0.0001) as PEG levels increases (Table 7). Chroma values measured 1 h post-mortem showed a linear decrease (y = 22.4 ±1.64 − 0.207 ±0.077 x; R² = 0.436, p = 0.049) in response to PEG pre-treatment levels. The dietary treatments had significant effects on chroma, hue angle24, and shear force of the meat. Birds reared on PEG0, PEG25, PEG50, and PEG100 diets had higher (p < 0.05) meat chroma1 than those reared on CON and PEG75, for which the chroma1 did not differ. Diet PEG100 promoted the highest chroma24 value (17.87) compared with diets CON, PEG0, PEG25, PEG50, and PEG75, which did not differ (p > 0.05). Meat from birds reared on diet PEG100 had a lower (p < 0.05) hue angle24 than meat from those in PEG0 and PEG 75, in which the hue angle24 did not differ. Diet PEG50

Table 6. Effect of pre-treating dietary *Moringa oleifera* leaf powder with different levels of polyethylene glycol on carcass characteristics and internal organ weights (%HCW, unless stated otherwise) of Jumbo quail.

2Parameters	CON	PEG0	PEG25	PEG50	PEG75	PEG100	3SEM	Linear	Quadratic	
Carcass yield (%)	67.3	66.2	60.5	64.0	65.3	63.9	2.03	0.794	0.391	
FBW (g)	234.3	232.4	233.1	239.6	235.9	231.3	6.487	0.766	0.366	
HCW (g)	157.8	153.7	142.4	152.2	153.6	147.5	4.20	0.741	0.957	
CCW (g)	154.5	149.6	142.5	149.1	122.6	166.9	14.94	0.866	0.951	
Breast	21.2	21.2	19.9	20.8	21.6	18.94	1.57	0.537	0.569	
Wing	7.46	7.27	7.72	7.51	7.35	7.41	0.239	0.839	0.721	
Thigh	6.03b	6.90a	6.52ab	6.34ab	6.20ab	6.21ab	0.280	0.050	0.404	
Drumstick	4.26	4.05	4.17	4.27	3.90	4.82	0.319	0.223	0.345	
Ceacum	0.979	1.36	1.33	1.50	0.824	1.18	0.153	0.136	0.911	
Colon	0.620	0.255	0.224	0.395	0.564	0.322	0.160	0.258	0.352	
Gizzard	2.25	2.09	2.37	2.14	2.06	2.33	0.102	0.532	0.661	
Liver	2.93	2.89	3.05	3.01	3.13	0.204	0.310	0.973		
Proventiculus	0.541	0.571	0.582	0.647	0.585	0.719	0.063	0.175	0.645	
Small intestine	3.90	3.630	3.70	3.70	3.62	3.94	3.68	0.253	0.291	0.238

1Diets: CON = control diet (a standard grower diet); PEG0 = control diet containing 10% MOLP; PEG25 = PEG0 pre-treated with 2.5% polyethylene glycol; PEG50 = PEG0 pre-treated with 5% polyethylene glycol; PEG75 = PEG0 pre-treated with 7.5% polyethylene glycol; PEG100 = PEG0 pre-treated with 10% polyethylene glycol.

2Parameters: FBW = final body weight; HCW = hot carcass weight; CCW = cold carcass weight.

3SEM = standard error of the mean.
promoted a higher shear force value (2.41 N) than PEG0 and PEG25 diets, which did not differ ($p > 0.05$). The CON diet promoted similar ($p > 0.05$) shear force values as all the other treatment groups.

Table 7. Effect of pre-treating dietary *Moringa oleifera* leaf powder with different levels of polyethylene glycol on breast meat quality parameters in Jumbo quail.

Parameters	CON	PEG0	PEG25	PEG50	PEG75	PEG100	p Value
pH	5.9	6.00	6.02	5.97	5.96	6.03	0.033
L_*	53.4	52.9	51.5	52.9	53.6	51.9	1.05
a_*	3.73	3.93	4.05	4.18	3.80	4.15	0.226
b_*	9.66	11.6	11.5	11.8	10.8	11.7	0.603
Chroma$_a$	10.3	12.2	12.2	12.5	11.4	12.4	0.564
Hue angle$_a$	1.19	1.23	1.23	1.22	1.22	1.23	0.027
pH$_{24}$	5.92	5.99	5.95	5.93	5.95	5.90	0.897
$L_*$$_{24}$	48.77	49.37	47.45	47.22	40.21	34.91	3.91
$a_*$$_{24}$	5.50	5.43	6.11	6.16	5.40	9.03	0.786
$b_*$$_{24}$	11.8	14.7	14.5	13.4	13.06	15.03	0.611
Chroma$_{24}$	13.06	15.7	15.7	14.8	14.1	17.8	0.629
Hue angle$_{24}$	1.13	1.21	1.16	1.13	1.17	1.04	0.046
Cooking loss (%)	23.9	19.6	21.4	24.6	21.7	24.6	1.88
Drip loss (%)	33.9	30.7	30.8	31.6	31.3	31.4	1.48
Shear force (N)	2.30	2.21	2.21	2.41	2.25	2.23	0.049
WBC (%)	87.9	86.9	87.5	87.0	87.3	87.4	0.978

a,b Means in the same row with different superscripts are significantly different ($p < 0.05$). 1Diets: CON = control diet (a standard grower diet); PEG0 = control diet containing 10% MOLP; PEG25 = PEG0 pre-treated with 2.5% polyethylene glycol; PEG50 = PEG0 pre-treated with 5% polyethylene glycol; PEG75 = PEG0 pre-treated with 7.5% polyethylene glycol; PEG100 = PEG0 pre-treated with 10% polyethylene glycol. 2Parameters: L^* = lightness; a^* = redness; b^* = yellowness; WBC = water-binding capacity. 3SEM = standard error of the mean.

4. Discussion

4.1. Feed Intake and Physiological Responses

Moringa oleifera leaf powder has nutraceutical properties that can be used in poultry diets to enhance performance, antioxidant capacity, and product quality [20,21]. However, high levels of condensed tannins (CT) in MOLP could restrict its utilization at higher inclusion levels in Jumbo quail diets. Consequently, PEG, a tannin-binding agent, can be applied to negate the antinutritional effects of *Moringa* CT on quail performance [22]. The PEG does not interfere with digestion processes but binds all the polyphenolic compounds including flavones, lignin, and tannins, although it has a higher affinity for tannins [39]. However, the use of PEG to improve the feed value of MOLP at higher inclusion levels in Jumbo quail diets has not been investigated. Pre-treatment of dietary MOLP with incremental levels of PEG had no effect on the concentrations of total soluble phenolics, suggesting that most phenolics in MOLP are not CT. However, pre-treatment with PEG tended to reduce the concentrations of CT. This is because PEG binds to CT, forming strong PEG-tannin complexes that do not react with butanol-HCl mixture during CT assay [31].

Most importantly, the CT in these complexes become inactive and do not reduce crude protein digestibility. In this study, repeated measures analysis showed a significant diet × week interaction effect for weight gain and FCE, indicating that the efficacy of the birds in converting the dietary treatments into body mass varied with the age of birds. The quadratic responses observed for weight gain and FCE in week 4 only were surprising and the reasons are unknown. The significant linear increase in overall feed intake as PEG levels increased could indicate that the anti-nutritional effects of CT were successfully ameliorated, resulting in improved feed utilization. The untreated MOLP promoted the lowest weight gain compared with the standard control diet and the PEG pre-treated MOLP diets, further confirming that the antinutritional effects of CT were ameliorated. These findings corroborate a report that PEG enhanced nitrogen digestibility in broilers fed
high-tannin sorghum [39]. In contrast, pre-treating tannin-containing rapeseed meal with PEG at a rate 1.5% PEG had no influence on male broiler performance [40]. The response of the quail reared on MOLP treated with less than 5.9% PEG may indicate that the amount of PEG administered to them was insufficient to inactivate the harmful effects of CT on quails.

Blood parameters offer a clearer diagnosis of toxicosis and clinical surveillance of disorders as well as indicators of pathogenic and nutritional state of animals [41]. No diet-induced changes were observed for all hematological parameters except hemoglobin, which exhibited a positive quadratic trend as PEG levels increased. However, all the hematological parameters fell within the normal ranges reported for a healthy quail [2,4,5]. The fact that the albumin initially increased and then declined confirms that PEG treatment must be capped at 5.9%. Moreover, no differences were observed particularly on serum total protein as well as the liver enzymes (ALT and ALKP), further verifying that the pre-treating MOLP with PEG did not compromise the health status of the birds.

4.2. Carcass and Meat Quality Traits

Pre-treating MOLP with PEG had no influence on the size of internal organs, carcass, or meat quality attributes except chroma, hue angle, and shear force. These findings agreed with those of Kumanda et al. [25], who indicated a lack of dietary effect on meat lightness (L^*), redness (a^*), and yellowness (b^*) in broilers fed diets containing red grape pomace. Nonetheless, as the PEG levels increased, the redness of the meat decreased, indicating that the highest PEG treatment of MOLP may have interfered with anthocyanin and lowered the myoglobin content of the meat. Because of the degradation of myofibrillar proteins, meat softness improves substantially as muscles age. Tenderness is an important factor that consumers evaluate when making a purchase [42]. The shear force value reveals how delicate the meat is, with a lower value indicating tenderness and a higher value showing toughness.

As such, meat from birds reared on the diet pre-treated with 5% PEG had a higher shear force value than the meat from the birds reared on the other treatments (PEG0 and PEG25) indicating tougher meat in the former group. In comparison with the control diet, the chroma values increased considerably with the addition of PEG, which could be attributable to an increase in a^* values. As a result, PEG treatment of MOLP increased the color intensity of Jumbo quail meat. The ability of meat to hold water is referred to as its water binding capacity (WBC) [43]. It is a critical quality metric that impacts the amount of water lost during transit, storage, processing, and cooking as well as the visual attractiveness of meat [44]. Juices are released during cooking because of protein denaturation and muscle atrophy [45]. In this investigation, there was no change in WBC, cooking loss, or drip loss, indicating that utilizing untreated or treated MOLP did not impact meat quality in Jumbo quail birds.

5. Conclusions

Inactivating condensed tannins with polyethylene glycol in Moringa oleifera leaf powder boosted overall feed intake. In week 4, the average weekly weight gain and feed conversion efficiency of quail initially increased in response to polyethylene glycol pre-treatment levels before decreasing. However, blood parameters, internal organs, carcass characteristics, and meat quality attributes were not influenced by PEG treatment. We concluded that pre-treating Moringa oleifera leaf powder with PEG at 5.9% maximizes weight gain in Jumbo quail.

Author Contributions: Conceptualization, A.M., C.M.M. and V.M.; methodology, A.M., C.M.M. and V.M.; software, C.M.M. and V.M.; validation, C.M.M. and V.M.; formal analysis, A.M., C.M.M. and V.M.; investigation, A.M., C.M.M. and V.M.; resources, C.M.M. and V.M.; data curation, A.M., C.M.M. and V.M.; writing—original draft preparation, A.M., C.M.M. and V.M.; writing—review and editing, A.M., C.M.M. and V.M.; visualization, C.M.M. and V.M.; supervision, C.M.M. and V.M.; project administration, C.M.M. and V.M.; funding acquisition, A.M., C.M.M. and V.M. All authors have read and agreed to the published version of the manuscript.
Funding: This research was funded by the National Research Foundation (NRF grant number: 121399). The funder had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or in the decision to publish the results.

Institutional Review Board Statement: The study was conducted according to the guidelines of the Declaration of Helsinki and approved by the Animal Production Research Ethics Committee of the North-West University (approval no: NWU-01884-19-S5 and date of approval: 6 November 2019).

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request from the corresponding author. The data are not publicly available because the diet formulae used in this study are proprietary brands.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Mbhele, F.G.T.; Mnisi, C.M.; Mlambo, V. A nutritional evaluation of insect meal as a sustainable protein source for Jumbo quails: Physiological and meat quality responses. *Sustainability* **2019**, *11*, 6592. [CrossRef]

2. Mahlake, S.K.; Mnisi, C.M.; Lebopa, C.; Kumanda, C. The effect of green tea (*Camellia sinensis*) leaf powder on growth performance, selected hematological indices, carcass characteristics and meat quality parameters of Jumbo quail. *Sustainability* **2021**, *13*, 7080. [CrossRef]

3. Deka, K.; Borah, J. Haematological and biochemical changes in Japanese quails *Coturnix coturnix japonica* and chickens due to *Ascaridia galli* infection. *Int. J. Poult. Sci.* **2008**, *7*, 704–710. [CrossRef]

4. Genchev, A.G.; Ribarski, S.S.; Afanasjev, G.D.; Blohin, G.I. Fattening capacities and meat quality of Japanese quails of Faraon and White English breeds. *J. Cent. Eur. Agric.* **2005**, *6*, 495–500. [CrossRef]

5. Huss, D.; Poynter, G.; Lansford, R. Japanese quail (*Coturnix japonica*) as a laboratory animal model. *Lab. Anim.* **2008**, *37*, 513–519. [CrossRef]

6. Mnisi, C.M.; Mlambo, V. Growth performance, haematology, serum biochemistry and meat quality parameters of Japanese quails (*Coturnix coturnix japonica*) fed canola powder-based diets. *Anim. Nutr.* **2018**, *4*, 37–44. [CrossRef]

7. Marareni, M.; Mnisi, C.M. Growth performance, serum biochemistry and meat quality traits of Jumbo quails fed with mopane worm (*Imbrasia belina*) meal-containing diets. *Vet. Anim. Sci.* **2020**, *10*, 100014. [CrossRef]

8. Newkirk, R. *Soybean: Feed Industry Guide*, 1st ed.; Canadian International Grains Institute: Winnipeg, MB, Canada, 2010; p. 48.

9. Bennett, R.N.; Mellon, F.A.; Foid, N.; Pratt, J.H.; Dupont, M.S.; Perkins, L.; Kroon, P.A. Profiling glucosinolates and phenolics in vegetative and reproductive tissues of the multi-purpose trees *Moringa oleifera* L. (horseradish tree) and *Moringa stenopetala*. *J. Agric. Food Chem.* **2003**, *51*, 3546–3553. [CrossRef]

10. Ferreira, P.M.P.; Farias, D.F.; Oliveira, J.T.; Carvalho, F.U. *Moringa oleifera*: Bioactive compounds and nutritional potential. *Rev. Nutr.* **2008**, *21*, 431–437. [CrossRef]

11. Melesse, A.; Getye, Y.; Berihun, K.; Banerjee, S. Effect of feeding graded levels of *Moringa stenopetala* leaf meal on growth performance, carcass traits and some biochemical parameters of Koekoek chickens. *Livest. Sci.* **2013**, *157*, 498–505. [CrossRef]

12. Nduku, X.P.; Mabusela, S.P.; Nkuwana, T.T. Growth and meat quality of broiler chickens fed *Moringa oleifera* leaf meal, a probiotic and an organic acid. *S. Afr. J. Anim. Sci.* **2020**, *50*, 710–718. [CrossRef]

13. Makkar, H.P.; Francis, G.; Becker, K. Bioactivity of phytochemicals in some lesser-known plants and their effects and potential applications in livestock and aquaculture production systems. *Animal* **2007**, *1*, 1371–1391. [CrossRef] [PubMed]

14. Mahajan, S.; Mali, R.; Mehta, A. Protective effect of ethanolic extract of seeds of *Moringa oleifera* Lam against inflammation associated with development of arthritis in rats. *J. Immunotoxicol.* **2007**, *4*, 39–47. [CrossRef] [PubMed]

15. Leon, A.; Spada, A.; Battezzati, A.; Schiraldi, A.; Aristil, J.; Bertoli, S. Cultivation, genetic, ethnopharmacology, phytochemistry and pharmacology of *Moringa oleifera* leaves: An overview. *Int. J. Mol. Sci.* **2015**, *16*, 12791–12835. [CrossRef]

16. Torondel, B.; Opare, D.; Brandberg, B.; Cobb, E.; Cairncross, S. Efficacy of *Moringa oleifera* leaf powder as a hand-washing product: A crossover controlled study among healthy volunteers. *BMC Complement. Altern. Med.* **2014**, *14*, 57. [CrossRef]

17. Briones, J.; Leung, A.; Bautista, N.; Golin, S.; Caliwig, N.; Carlos, M.A.; Guevarra, J.; Miranda, J.; Guevarra, J.K.; Pili, N.L. Utilization of *Moringa oleifera* Lam. in animal production. *Acta Hortic.* **2017**, *1158*, 467–474. [CrossRef]

18. Moyò, B.; Masika, P.J.; Hugo, A.; Muchenje, V. Nutritional characterization of *Moringa* (*Moringa oleifera* Lam) leaves. *Afr. J. Biotechnol.* **2011**, *10*, 12925–12933. [CrossRef]

19. Hassan, H.M.A.; El-Moniary, M.M.; Hamouda, Y.; El-Daly, E.F.; Youssif, A.W.; Abd ElAzeem, N.A. Effect of different levels of *Moringa oleifera* leaves powder on productive performance, carcass characteristics and some blood parameters of broiler chicks reared under heat stress conditions. *Asian J. Anim. Vet. Adv.* **2016**, *11*, 60–66. [CrossRef]

20. Ufele, A.N.; Ebenene, C.I. The Effect of *Moringa oleifera* on the growth performance, packed cell Volume (PCV) and laying capacity of young growing quails. *Am. J. Zool. Res.* **2017**, *5*, 33–37. [CrossRef]
21. Chung, K.T.; Wong, T.Y.; Wei, C.I.; Huang, Y.W.; Lin, Y. Tannins and human health: A Review. *Crit. Rev. Food Sci. Nutr.* 1998, 38, 421–464. [CrossRef]

22. Silanikove, N.; Perevolotsky, A.; Provenza, D.F. Use of tannin-binding chemicals to assay for tannins and their negative post-ingestive effects in ruminants. *Anim. Feed Sci. Technol.* 2001, 91, 69–81. [CrossRef]

23. Manssor, B.; Acamovic, T. Influence of tannic acid and polyethylene glycol on the excretion and digestibility of amino acids in gelatin-fed broilers. *Br. Poult. Sci.* 2009, 50, 199–206. [CrossRef]

24. Zulkifli, I.; Tan, H.S.; Soleimani, A.F.; Goh, Y.M.; Croes, E.; Partha, S.K.; Tee, A.K. The effects of glyceryl polyethylene glycol ricinoleate on growth performance, fat digestibility, apparent metabolisable energy, serum lipid profile, meat fatty acid content, and caecal microflora in male broiler chickens. *Eur. Poult. Sci.* 2019, 83. [CrossRef]

25. Kumanda, C.; Mlambo, V.; Mnisi, C.M. Valorization of red grape pomace waste using polyethylene glycol and fibrolytic enzymes physiological and meat quality responses in broilers. *Animals* 2019, 9, 779. [CrossRef]

26. Van Niekerk, R.F.; Mnisi, C.M.; Mlambo, V. Polyethylene glycol inactivates red grape pomace condensed tannins for broiler chickens. *Br. Poult. Sci.* 2020, 61, 566–573. [CrossRef] [PubMed]

27. Henkin, Z.; Perevolotsky, A.; Rosenfeld, A.; Brash, A. The effect of polyethylene glycol on browsing behaviour of beef cattle in a tanniferous shrubby Mediterranean range. *Livest. Sci.* 2009, 126, 245–251. [CrossRef]

28. Brown, D.; Ngambi, J.W. Effect of polyethylene glycol 4000 supplementation on the performance of yearling male Pedi goats fed dietary mixture levels of Acacia karroo leaf meal and *Setaria verticillata* grass hay. *Trop. Anim. Health Prod.* 2017, 49, 1051–1057. [CrossRef]

29. AOAC. *Official Methods of Analysis of the Association of Official Analytical Chemists*, 18th ed.; Association of Official Analytical Chemists: Arlington, VA, USA, 2005.

30. Van Soest, P.; Robertson, J.; Lewis, B. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. *J. Dairy Sci.* 1991, 74, 3583–3597. [CrossRef]

31. Makkar, H.P.S. *Quantification of Tannins in Tree and Shrub Foliage. A Laboratory Manual*; Springer: Dordrecht, The Netherlands, 2003; pp. 43–54.

32. AgriLASA. *Feed and Plant Analysis Methods*; Agri Laboratory Association of Southern Africa: Pretoria, South Africa, 1998.

33. Khalil, J.K.; Saway, W.N.; Hyder, S.Z. Nutrient composition of *Atriplex* leaves grown in Saudi Arabia. *J. Range Manag.* 1986, 39, 104–107. [CrossRef]

34. Sikka, M.P.; Midha, V.K. The role of biopolymers and biodegradable polymeric dressings in managing chronic wounds. In *Advanced Textiles for Wound Care*, 2nd ed.; Woodhead Publishing: New Delhi, India, 2019.

35. CIE. *Recommendations on Uniform Color Spaces-Color Difference Equations, Psychometric Color Terms*, Supplement No. 2 to CIE Publication No. 15 (E-1.3.1.) 1978, 1971/(TC-1-3); Commission Internationale de l’Eclairage: Paris, France, 1976.

36. Honikel, K.O. Reference methods for the assessment of physical characteristics of meat. *Meat Sci.* 1998, 49, 447–570. [CrossRef]

37. Grau, R.; Hamm, R. About the water-binding capacity of the mammalian muscle. II. *Communication Z Lebensm Unters Br.* 1957, 105, 446. [CrossRef]

38. Statistical Analysis System Institute Inc. *Users Guide*; SAS: Carry, NC, USA, 2010.

39. Ford, J.E.; Hewitt, D. Protein quality in cereals and pulses. 3. Bioassay with rats and chickens on sorghum (*Sorghum vulgare* Pers.), barley and field beans (*Vicia faba* L.). Influence of polyethylene glycol on digestibility of the protein in high-tannin grain. *Br. J. Nutr.* 1979, 42, 325–340. [CrossRef] [PubMed]

40. Karunajeewa, H.; Ijagbui, E.G.; Reece, R.L. Effect of dietary levels of *Acacia karroo* leaf meal and polyethylene glycol on the performance of male broiler chickens. *Br. Poult. Sci.* 1990, 31, 545–555. [CrossRef]

41. Karesh, W.B.; Campo, A.D.; Brasilson, E.; Puche, H.; Cook, R.A. Health evaluation of free ranging and hand reared Macaws (*Ara* Spp.) in Peru. *J. Zoo Wildl. Med.* 1997, 28, 368–377. [PubMed]

42. Siddhuraju, P.; Becker, K. Antioxidant properties of various solvent extracts of total phenolic constituents from three different agroclimatic origins of drumstick tree (*Moringa oleifera* Lam.) leaves. *J. Agric. Food Chem.* 2003, 51, 2144–2155. [CrossRef]

43. Pearce, K.L.; Rosenvold, K.; Andersen, H.J.; Hopkins, D.L. Water distribution and mobility in meat during the conversion of muscle to meat and ageing and the impacts on fresh meat quality attributes—A review. *Meat Sci.* 2011, 89, 111–124. [CrossRef]

44. Bertram, H.C.; Andersen, H.J.; Karlsson, A.H.; Horn, P.; Hedegaard, J.; Nørgaard, L.; Engelsen, S.B. Prediction of technological quality (cooking loss and Napole Yield) of pork based on fresh meat characteristics. *Meat Sci.* 2003, 65, 707–712. [CrossRef]

45. Purslow, P.P.; Oiseth, S.; Hughes, J.; Warner, R.D. The structural basis of cooking loss in beef: Variations with temperature and ageing. *Food Res. Int.* 2016, 89, 739–748. [CrossRef]