Evolutionarily conserved neural signatures involved in sequencing predictions and their relevance for language
Yukiko Kikuchi¹,², William Sedley¹, Timothy D Griffiths¹,³,⁴ and Christopher I Petkov¹,²

Predicting the occurrence of future events from prior ones is vital for animal perception and cognition. Although how such sequence learning (a form of relational knowledge) relates to particular operations in language remains controversial, recent evidence shows that sequence learning is disrupted in frontal lobe damage associated with aphasia. Also, neural sequencing predictions at different temporal scales resemble those involved in language operations occurring at similar scales. Furthermore, comparative work in humans and monkeys highlights evolutionarily conserved frontal substrates and predictive oscillatory signatures in the temporal lobe processing learned sequences of speech signals. Altogether this evidence supports a relational knowledge hypothesis of language evolution, proposing that language processes in humans are functionally integrated with an ancestral neural system for predictive sequence learning.

Addresses
¹ Institute of Neuroscience, Newcastle University Medical School, Newcastle Upon Tyne, UK
² Centre for Behaviour and Evolution, Newcastle University, Newcastle Upon Tyne, UK
³ Wellcome Trust Centre for Neuroimaging, University College London, UK
⁴ Department of Neurosurgery, University of Iowa, Iowa City, USA

Corresponding authors: Kikuchi, Yukiko (yukiko.kikuchi@newcastle.ac.uk), Petkov, Christopher I (chris.petkov@newcastle.ac.uk)

Introduction
The human language faculty is unique in the animal kingdom because it harnesses open-ended combinatorial capabilities operating on a massive semantic store. Language affords humans the capacity to comprehend and to produce structured sentences of speech sounds, visual symbols or signs, with informative content at multiple temporal scales (phonemic, syllabic, syntactic, etc.). There is general agreement that the human language faculty is not monolithic, but has core phonological, semantic and syntactic components (see Friederici, Hagoort and Marslen-Wilson papers in this issue). However, consensus is lacking on which functions are language-specific and which engage cognitive domain-general operations not specific for language [1–⁴] (also see Campbell & Tyler in this issue). This issue may be better understood by asking which aspects of human language rely on evolutionarily conserved neurocognitive processes.

In this article, we discuss converging empirical evidence on the neurobiology of sequence learning and natural language. Sequence learning tasks, including those that use Artificial Grammar (AG) learning paradigms, are designed to emulate rule-based dependencies in language across various temporal scales and distances. These tasks do not engage identical processes as those in language, such as syntactic operations on semantic units, but recent work has shown that such sequence learning capabilities, firstly have associations to temporally corresponding language operations in children and adults, secondly are seen to engage parts of the fronto-temporal language network, again for processing at similar temporal scales, and finally form a core part of the impairments seen in aphasic patients with grammatical difficulties. Also, neural oscillations, which reflect the coordination of neuronal populations, are ubiquitous in the brain and are seen to be crucial for segmenting the temporal structure of speech signals and lexical or phrasal dependencies in a sentence. Moreover, comparative work using sequence learning tasks is identifying the evolutionarily conserved processes and neural temporal predictive operations involved, which are seen to reside in regions homologous to those supporting certain speech and language-related processes in humans. On the basis of the combination of this evidence, we extend a relational knowledge hypothesis on the origin of language, proposing that certain fronto-temporal language operations are integrated with an evolutionarily conserved system for predictive sequence learning, particularly when processes require neural operations at corresponding temporal scales. Finally, the synopsis highlights empirical pathways for advancing our understanding of the human language system and its likely evolutionary precursors.

Empirical links between sequence learning and analogous temporal operations in language
Rule-based sequence learning paradigms (Figure 1) were originally employed to study human infants and
An Artificial Grammar (AG) learning paradigm establishing probabilistic transitions between nonsense words in a sequence. (a) Spectrograms of the five nonsense word elements used in the study by Kikuchi et al. [71**]. (b) The AG used was developed by Saffran and colleagues [80], also see [75,81]. It consists of obligatory (red) and optional (blue) nonsense word elements. In the illustration, following any of the arrows from start to end generates a legal ‘consistent’ sequence. (c) Example consistent and matching violation sequence pair. The red box highlights the first illegal sound element in the sequence. Neural responses were measured after this illegal transition over a probe stimulus window that contained identical acoustical items as with the matched consistent sequence, which was wholly consistent with the learned AG sequencing relationships.

Figure 1

An Artificial Grammar (AG) learning paradigm establishing probabilistic transitions between nonsense words in a sequence. (a) Spectrograms of the five nonsense word elements used in the study by Kikuchi et al. [71**]. (b) The AG used was developed by Saffran and colleagues [80], also see [75,81]. It consists of obligatory (red) and optional (blue) nonsense word elements. In the illustration, following any of the arrows from start to end generates a legal ‘consistent’ sequence. (c) Example consistent and matching violation sequence pair. The red box highlights the first illegal sound element in the sequence. Neural responses were measured after this illegal transition over a probe stimulus window that contained identical acoustical items as with the matched consistent sequence, which was wholly consistent with the learned AG sequencing relationships.

 adultos [5–7] and are also used to comparatively test the sequence learning capabilities of nonhuman animals [8,9]. Typically, there is an initial learning phase, via exposure or operant training, where the participants experience exemplary sequences following a specific set of rule-based dependencies; for example, stimulus A can be followed by stimuli C or D with some probability, and D is always followed by C for a sequence including these stimuli to be legal (Figure 1b). Then, in a subsequent testing phase, novel test sequences are presented, which either follow or violate the learned sequencing dependencies. Behavioral or neural responses to consistencies or violations in the sequencing relationships can therefore determine which ordering dependencies humans or other animals can process and the neural substrates involved.

A number of sequence learning abilities now have established links to language in humans, and some of these abilities are known to be evolutionarily conserved in nonhuman animals. Predictive sequence learning is associated with infant and adult language processing [10–14], and sequencing capabilities are impaired in developmental language disorders, including specific language impairment [15,16] and dyslexia [17]. For example, 7-month-old infants show similar order sensitivity during an artificial grammar learning task as they do with the word order dependencies present in their natural language (Japanese infants can expect the opposite word order from English infants: the equivalent of Tokyo ni ‘Tokyo to’ in Japanese is ‘to Tokyo’ in English) [18**]. As another example, within a serial reaction time task, the ability of adults to process an artificial grammar with non-adjacent dependencies (an AXB paradigm where A and B items are associated with one another across the intervening X items) is associated with the speed of reading object-relative rather than subject-relative clauses in natural language, the latter of which are quicker to parse [13]. There is also growing evidence from comparative behavioral work that nonhuman animals such as primates, songbirds and rodents can process adjacent and non-adjacent sequencing dependencies between items in a sequence [19,20,21–24].

Additional empirical evidence for links between sequence processing and related temporal scales of analysis in language comes from patient studies and neurobiological data. Aphasic patients with prefrontal vascular or degenerative pathologies affecting their grammatical abilities are also severely impaired on sequence processing tasks using speech or non-speech sounds [25–27]. The
sequence processing deficits appear to affect simpler predictable adjacent dependencies between two items in a sequence through to more complex sequencing dependencies [28].

Neurobiological studies in healthy humans have shown that processing AG sequences of different forms of complexity engages distinct frontal and temporal brain regions and pathways. Adjacent operations on words in a sentence or analogous operations in AG learning tasks, such as the processing of adjacent dependencies between items, primarily involve the ventral processing stream interconnecting anterior temporal to inferior frontal areas such as the frontal opercular cortex [20,29]. By comparison, in humans, more complex non-adjacent or hierarchically organized dependencies during language processing or AG learning tasks additionally engage regions interconnected by the dorsal arcuate fasciculus pathway, including Broca’s area (Brodmann areas 44/45) [30–32]. We refer the reader elsewhere for details on how the involvement of the frontal system depends on language syntax or sequencing structural complexity [20,29].

Recent comparative neuroimaging work in monkeys and humans has identified cross-species correspondences in the frontal operculum for processing adjacent sequencing dependencies [33]. The study also found that the level of involvement of neighboring prefrontal regions involving Brodmann areas 44/45 was minimal in humans but more variable in the monkeys. It is thus possible that BA44/45 in humans has evolved to cope with more complex sequencing dependencies and those required for language [20], or to better integrate different cognitive operations, such as the number of items and their sequencing relationships [34]. However, how the human inferior frontal cortex may have mechanistically differentiated and for which purposes is unknown, requiring further human work at the interface of language and domain general operations complemented by comparative work on temporal dependencies in nonhuman animals.

Humans harness their syntactic and semantic knowledge to build complex meaningful expressions, often creating hierarchical dependencies between words or phrases in a sentence [1]. While certain whale and songbird songs contain phrases and simpler hierarchical organization of song units [35], whether any nonhuman animal can learn to process ‘language-like’ hierarchically organized relationships remains controversial [36]. On the other hand, nonhuman primates, for instance, can organize complex motor sequences [37], evaluate social knowledge based on a rich hierarchy of social relations [38], and their prefrontal cortex richly and dynamically encodes cognitive behavior over time [39]. Thus, the full extent of nonhuman animal sequence processing capabilities, which types of hierarchical operations nonhuman animals are able to learn and the correspondences that can be made to language-related operations in humans remain outstanding questions.

The need to anticipate: predictive coding of environmental events and cross-frequency oscillatory coupling

Intrinsic neural oscillations are ubiquitous in the brain and can be categorized into different oscillatory frequency bands reflecting different neurobiological functions. For instance, memory-related operations [40] and attentional sampling [41] are associated with low frequency neural oscillations, such as those in the theta frequency range (~4–8 Hz). Populations of neurons can also entrain their oscillations to rhythmic sensory input, both reactively and preemptively [42–44]. The latter is thought to constitute a form of sensory prediction manifest in hierarchically higher brain areas, as we consider.

The predictive coding framework posits that higher level brain areas send predictions to hierarchically earlier sensory areas [45], in the form of beta frequency oscillations (~15–30 Hz) [46]. These predictions are assessed alongside ascending sensory input, and any discrepancies generate a prediction error signal [47–49], which is relayed to higher level areas in the form of gamma band activity (>30 Hz). There can also be cross-frequency coupling, such as the phase of low frequency signals coordinating with high frequency signal amplitude, known as phase-amplitude coupling (PAC). PAC is a signature of information transfer between neural populations within and between spatially segregated brain regions [50,51]. Neural oscillations and oscillatory coupling are impaired in many neurological and psychiatric disorders [52], such as over-coupling in Parkinson’s patients in the beta and high-gamma bands [53] or under-coupling in autism or schizophrenia in the alpha/gamma band [54].

The research community now has a detailed understanding of how rhythmic activity entrains the brain at particular oscillatory frequencies. We also better understand how expected or unexpected (oddball) sounds elicit prediction errors in the brain [55–57]. Much less is known about how sequence learning affects neural oscillations and how these relate to speech and language processes.

Neural oscillatory responses to speech

Speech has temporal regularities at multiple scales (e.g. phonemic, syllabic, and phrasal rates) [58,59]. For example, syllabic content occurs in an approximately theta frequency cycle (~4–8 Hz). This rhythm is consistent across languages [60] and is also present in primate vocalizations [61]. In human auditory cortex, neural oscillations can entrain to the syllabic and phonemic content in speech [59,62]. For example, phase entrainment of
Conserved neural signatures in human (left column) and monkey (right column) auditory cortex in response to sequences of nonsense words. (a) Recording sites in the human Heschl’s gyrus (left panel) and macaque auditory cortex (right panel). The macaque structural MRI image on the right shows an axial MRI slice looking down on the supratemporal plane overlayed with a functionally defined auditory tonotopic map. (b) Time–frequency responses to each of the sounds in the sequence, shown as power changes (event-related spectral perturbation, ERSP) in the recorded local field potentials (LFPs) from human (left panel) and monkey (right panel) auditory cortex. Colored boxes on the top of the plots identify the time of occurrence of the different nonsense words. Note the prominent high gamma power responses to each of the speech sounds in a sequence. (c) Plots of the inter-trial phase coherence (ITC) across the frequency bands and in response to the sequences of sounds. These show
speech signals at the syllabic rate is thought to be a core process for perceptual segmentation of continuous speech into its constituent parts [63,64]. A prominent neurobiological model [59] postulates that theta phase entrainment to the syllable rate couples with high-frequency gamma amplitude (>30 Hz), resulting in theta-gamma phase-amplitude coupling as measured in local field potential, EEG or MEG signals.

Neural oscillatory responses in temporal cortex are modulated within different oscillatory frequency bands during phonotactic segmentation [65], by between-word phrases [66**,67] and as a function of working memory demands in sentence comprehension [68]. As another example, in Mandarin speakers, segmenting Chinese phrases that occur at a lower rate (~2 Hz) results in modulation of low-frequency oscillations in fronto-temporal regions that phase-lock to the perceived phrase structure [66**]. Such low-frequency neural tracking of phrasal structure may further modulate higher frequency neural oscillations such as those in the gamma band [59]. Another intracranial recording study in humans using natural sentences shows that as words within a phrase are being processed there is an accumulation of frontal neural activity in the gamma range [67]. Once a phrase boundary occurs there is a drop of gamma activity, possibly indicative of a change in representation from individual words to a phrase. Furthermore, recent patient work suggests that the primary deficit in prefrontal cortex atrophy is not the formation of predictions per se, but that speech predictions are overly precise and inflexible [69**]. These disrupted predictions are linked to increased pre-stimulus beta band oscillatory activity in the patients that can be detrimental for speech perception. Therefore, predictive neural operations at various temporal scales feature prominently not only in processing sequences of environmental events, but also for processing speech and language.

Conserved neural oscillatory coupling and sequencing predictions in human and monkey auditory cortex

Two recent studies show that speech and sequencing predictions in auditory cortex are evolutionarily conserved between humans and monkeys [70,71**]. Both studies found the morphology of oscillatory coupling to speech signals to be remarkably similar, as we consider here.

Zoefel and colleagues recorded from monkey primary auditory cortex (A1) neurons and report theta-gamma coupling in response to natural speech [70], similar to speech responses in human EEG signals [72]. Kikuchi and colleagues [71**] recorded from primary and adjacent auditory cortical regions in monkeys in response to sequences of speech sounds, comparing the neural responses to these signals in monkeys with those obtained in humans from intracranial depth electrode recordings of Heschl’s gyrus. The study showed similar theta-gamma coupling in the human and monkey auditory cortex in response to the speech sounds (Figure 2), supporting the notion of evolutionarily conserved neural oscillatory processes for speech sounds in auditory cortex.

The study by Kikuchi and colleagues also assessed the processing of adjacent sequencing relationships, using an AG learning paradigm that regulates the predictability of the between word transitions [71**]. After exposing the humans and monkeys to sequences that establish the AG sequencing dependencies, they tested the two species with novel sequences that were consistent with or in violation of the learned AG sequencing relationships. In both species, they saw that theta-gamma coupling, a sequencing prediction error signal, was increased by an illegal sequencing transition in the violation sequences. They also saw that in a different subset of neurons the theta-gamma coupling strength was increased by the legal predicted sequencing relationships present in the sequences consistent with the AG.

With monkeys as a model system in which a substantial number of single neuron responses can be recorded, the authors were able to link the observed neural oscillatory responses to local single neuron activity. This is illustrated in Figure 3, which presents a physiological model of predictive sequencing operations in auditory cortex. Here it can be seen that stimulus-driven theta-gamma coupling occurs in response to each of the speech sounds in the sequence (green in Figure 3). However, sequencing prediction and prediction error signals are distinct from stimulus driven effects. Namely, if a correctly predicted transition occurs, a predictive signal (blue) is seen to accumulate later in a subset of neural responses (~500 ms). If, however, a sequencing violation has occurred, this manifests at an even later time (~600 ms) as modulation of theta-gamma coupling in another neural subpopulation (red). This relatively late neural signal associated with sequencing prediction errors matches a late event related potential seen in human and macaque EEG [73,74]. Also, the neurophysiological prediction error signal from auditory cortex occurs at a behaviorally meaningful time, at the approximate time that macaque monkey eye tracking data shows that they notice specific sequence order violations [75]. The later neural response latency in relation to the relatively earlier accumulation of predictive signals may stem from the need to accumulate information to assess sensory input in

(Figure 2 Legend Continued) phase alignment at particular frequency bands (such as theta; 4–8 Hz). (d) Exemplary phase-amplitude coupling (PAC) in response to the nonsense words. The modulation index (MI) values show the strength of PAC for each combination of low frequency phase (x-axis) and high frequency amplitude (y-axis).
A physiologically informed model of sequencing predictions in time. This physiological model is based in part on the results of the study by Kikuchi and colleagues [71**]. (a) Speech signals, as complex sounds, entrain to low-frequency phase that further coordinates with high frequency amplitude, resulting in phase-amplitude coupling (PAC). (b) After exposure to structured sequencing relationships, different neural signals (LFP, SUA, oscillatory coupling) show sequencing context-dependent response modulations, lagging sound onset. Prediction signals, reflected in PAC and likely emanating from hierarchically higher brain areas such as frontal cortex or the hippocampus, occur when the ordering relationships are consistent with the learned sequence ordering relationships. These influence auditory cortical neurons prior to concomitant effects being seen in local field potential power. This prediction signal accumulates and is modulated later in time (~600 ms) when a sequencing violation occurs (a prediction error), evident as high-gamma power predominantly responding to the violation sequences, see [71**].

relation to predictive signals likely emanating from other sites interacting with auditory cortex. Thus, distinct sequencing prediction effects segregate in both space and time, with theta driven phase-amplitude coupling coordinating in tandem with local single neuron responses, prior to effects on other neural responses (Figure 3).

These neural results on sequence processing are generally consistent with the predictive coding framework [71**]. We further postulate that low-frequency theta oscillations may be a feedback prediction signal from inferior frontal cortex [33] and/or the hippocampal memory system [76] that influences auditory cortical neuronal responses involved in segmenting complex signals, such as speech. The high-gamma responses related to sequencing violations appear to be a sequencing prediction error signal that is relayed forward from auditory cortex to hierarchically higher level brain areas [77]. Feedback signals may enhance low-frequency phase in

Figure 3

A physiologically informed model of sequencing predictions in time. This physiological model is based in part on the results of the study by Kikuchi and colleagues [71**]. (a) Speech signals, as complex sounds, entrain to low-frequency phase that further coordinates with high frequency amplitude, resulting in phase-amplitude coupling (PAC). (b) After exposure to structured sequencing relationships, different neural signals (LFP, SUA, oscillatory coupling) show sequencing context-dependent response modulations, lagging sound onset. Prediction signals, reflected in PAC and likely emanating from hierarchically higher brain areas such as frontal cortex or the hippocampus, occur when the ordering relationships are consistent with the learned sequence ordering relationships. These influence auditory cortical neurons prior to concomitant effects being seen in local field potential power. This prediction signal accumulates and is modulated later in time (~600 ms) when a sequencing violation occurs (a prediction error), evident as high-gamma power predominantly responding to the violation sequences, see [71**].

These neural results on sequence processing are generally consistent with the predictive coding framework [71**]. We further postulate that low-frequency theta oscillations may be a feedback prediction signal from inferior frontal cortex [33] and/or the hippocampal memory system [76] that influences auditory cortical neuronal responses involved in segmenting complex signals, such as speech. The high-gamma responses related to sequencing violations appear to be a sequencing prediction error signal that is relayed forward from auditory cortex to hierarchically higher level brain areas [77]. Feedback signals may enhance low-frequency phase in
auditory cortex, strengthening the gamma prediction error signal as a function of the learned sequencing relationships.

In summary, auditory cortex neural responses in humans and monkeys show a signature of learned sequencing dependencies, which is seen to be remarkably similar across the species and is now linked to single neuron responses in monkeys as a model system. Further comparative work is needed to identify the feedforward and feedback processes involved in sequence learning and how these predictive neural processes compare across the species and with temporally aligned language-specific processes that can be studied in humans.

The relational knowledge hypothesis of language origins

Wilson and Petkov motivated a relational knowledge hypothesis of language evolution [78], developed from observations of primate sequence learning behavior and how monkeys apply their social knowledge during natural vocal interactions [38]. We extend this hypothesis here with the neurobiological observations that were considered above.

Sequence learning is a form of relational knowledge [79], where temporal dependencies are established via learning at the appropriate temporal granularity. After learning, the brain evaluates incoming sequences of sensory events in relation to expectations from previously learned sequencing dependencies in the form of feedback from hierarchically higher frontal and other sites. When predictions for subsequent sequences cannot be supported, a sequencing prediction error results and updates synaptic weights that are fed-forward throughout the network to update future predictions. Differential aspects of the neurocognitive system, including broader aspects of inferior frontal cortex, are likely engaged as a function of the complexity of the temporal dependencies [20], as is also seen for language syntactic operations [29].

Conclusions

Language-critical processes in humans appear to be functionally integrated with an ancestral neural system supporting relational knowledge, such as sequence learning. The extent to which this or any other domain general neural system can be segregated from the one supporting language is an active area of research aiming to clarify the neural specializations for language. It remains possible that two separate systems exist side-by-side in humans, by way of evolutionary duplication and differentiation of general processes for language. Even so, it follows that at some levels a shared process can identify the generic neural mechanisms involved, aspects of which could be modelled in nonhuman animals at the circuit, cell and molecular levels if the process is also shown to be evolutionarily conserved. The relevance to language notwithstanding, understanding the impact of serial order on the brain and behavior remains an important endeavor. Thus future studies could seek to clarify the laminar and inter-regional feedforward and feedback neural dynamics involved in predicting environmental events at different temporal scales, perturbing the system as necessary to establish causal relationships.

Funding

This work was supported by Wellcome Trust [grant numbers WT091681MA received by TDG and WT092606AIA received by CIP and YK]; U.K. Biotechnology and Biological Sciences Research Council [grant number BB/J009849/1 received by CIP and YK, joint with Quoc Vuong]; NPO NeuroCreative Lab award received by YK; National Institutes of Health intramural contract received by CIP and YK; NIH extramural grant; the National Institutes of Health [grant number R01-DC04290 received by Matthew Howard III, joint with TDG and CIP].

Conflict of interest statement

Nothing declared.

Acknowledgements

We thank Ben Wilson for excellent comments and discussion on previous versions of the manuscript. We also thank the participants of the stimulating workshop on the topic of language precursors and animal models at the University of Maryland (9/2017) hosted by Jonathan Fritz, Shilab Shamma, Bill Ibarsi and Jerry Wilkinson.

References and recommended reading

Papers of particular interest, published within the period of review, have been highlighted as

- of special interest
- of outstanding interest

1. Everaert MBH, Huybregts MAC, Chomsky N, Berwick RC, Bolhuis JJ: Structures, not strings: linguistics as part of the cognitive sciences. Trends Cogn Sci 2015, 19:729-743.

2. Fedorenko E, Thompson-Schill SL: Reworking the language network. Trends Cogn Sci 2014, 18:120-126.

3. Frost R, Armstrong BC, Siegelman N, Christiansen MH: Domain generality versus modality specificity: the paradox of statistical learning. Trends Cogn Sci 2015, 19:117-125.

4. Aalin RN, Newport EL: Distributional language learning: mechanisms and models of category formation. Lang Learn 2014, 64:96-105.

5. Reber AS: Implicit learning of artificial grammars. J Verbal Learn Verbal Behav 1967, 6:855-863.

6. Saffran JR, Aalin RN, Newport EL: Statistical learning by 8-month-old infants. Science 1996, 274:1926-1928.

7. Marcus GF, Vijayan S, Bandi Rao S, Vithson PM: Rule learning by seven-month-old infants. Science 1999, 283:77-80.

8. ten Cate C: On the phonetic and syntactic processing abilities of birds: from songs to speech and artificial grammars. Curr Opin Neurobiol 2014, 28:157-164.

9. Fitch WT: Toward a computational framework for cognitive biology: unifying approaches from cognitive neuroscience and comparative cognition. Phys Life Rev 2014, 11:329-364.

10. Pelucchi B, Hay JF, Saffran JR: Statistical learning in a natural language by 8-month-old infants. Child Dev 2009, 80:674-685.
11. Gervain J, Erna RG: The statistical signature of morphosyntax: a study of Hungarian and Italian infant-directed speech. Cognition 2012, 125:263-287.

12. Conway CM, Pisoni DB: Neurocognitive basis of implicit learning of sequential structure and its relation to language processing. Ann N Y Acad Sci 2008, 1145:113-131.

13. Misyak JB, Christiansen MH, Bruce Tomblin J: Sequential expectations: the role of prediction-based learning in language. Top Cogn Sci 2010, 2:138-153.

14. Misyak JB, Christiansen MH: Extending statistical learning farther and further: long-distance dependencies, and individual differences in statistical learning and language. In Proceedings of the Cognitive Science Society; 2007.

15. Hsu HJ, Bishop DVM: Sequence-specific procedural learning deficits in children with specific language impairment. Dev Sci 2014, 17:352-365.

16. Evans JL, Saffran JR, Robe-Torres K: Statistical learning in children with specific language impairment. J Speech Lang Hear Res 2009, 52:321-335.

17. Gabay Y, Thiessen ED, Holt LL: Impaired statistical learning in developmental dyslexia. J Speech Lang Hear Res 2015, 58:934-945.

18. Gervain J, Werker JF: Prosody cues word order in 7-month-old bilingual infants. Nat Commun 2013, 4:1480.

19. Toro JM, Nespor M, Gervain J: Frequency-based organization of speech sequences in a nonhuman animal. Cognition 2016, 146:1-7.

20. Wilson B, Marslen-Wilson WD, Petkov CI: Conserved sequence processing in primate frontal cortex. Trends Neurosci 2017.

21. Chen J, ten Cate C: Bridging the gap: learning of acoustic nonadjacent dependencies by a songbird. J Exp Psychol Anim Learn Cogn 2017, 43:285.

22. Sonnweber R, Ravignani A, Fitch WT: Non-adjacent visual dependency learning in chimpanzees. Anim Cogn 2015:1-13.

23. Ravignani A, Sonnweber R-S, Stobbe N, Fitch WT: Action at a distance: dependency sensitivity in a New World primate. Biol Lett 2013, 9:20130082.

24. Spierings MJ, Ten Cate C: Budgerigars and zebra finches differ in how they generalize in an artificial grammar learning experiment. Proc Natl Acad Sci U S A 2016;201600483.

25. Zimmerer VC, Cowell PE, Varley RA: Artificial grammar learning in individuals with severe aphasia. Neuropsychologia 2014, 53:25-38.

26. Grube M, Bruffaerts R, Schaveverbeke J, Neyens V, De Weer A-S, Seghers A, Bergmans B, Dries E, Griffiths TD, Vandenberghe R: Core auditory processing deficits in primary progressive aphasia. Brain 2016:aww087.

27. Christiansen MH, Louise Kelly M, Shillcock RC, Greenfield K: Impaired artificial grammar learning in agrammatica. Cognition 2010, 116:382-393.

28. Cope TE, Wilson B, Robson H, Drinkall R, Dean L, Grube M, Jones PS, Patterson K, Griffiths TD, Rowe JB, Petkov CI: Artificial grammar learning in vascular and progressive non-fluent aphasias. Neuropsychologia 2017, 104:201-213.

29. Friederici AD: Evolution of the neural language network. Psychon Bull Rev 2017, 24:41-47.
power is phase-locked to theta oscillations in human neocortex. Science 2006, 313:1826-1829.

52. Watson BO, Buzsáki G: Neural syntax in mental disorders. Biol Psychiatry 2015, 77:998-1000.

53. de Hemtippette C, Swann NC, Ostrem JL, Ryapolova-Webb ES, San Luciano M, Galifianakis NB, Starr PA: Therapeutic deep brain stimulation reduces cortical phase-amplitude coupling in Parkinson’s disease. Nat Neurosci 2015, 18:779-786.

54. Voytek B, Knight RT: Dynamic network communication as a unifying neural basis for cognition, development, aging, and disease. Biol Psychiatry 2015, 77:1089-1097.

55. Dehaene S, Meyniel F, Wacongce C, Wang L, Pallier C: The neural representations of sequences: from transition probabilities to algebraic patterns and linguistic trees. Neuron 2015, 88:2-19.

56. Rubin J, Ulanovsky N, Neiken I, Tishby N: The representation of prediction error in auditory cortex. PLoS Comput Biol 2016, 12: e1005058.

57. Nieto-Diego J, Malmierca MS: Topographic distribution of stimulus-specific adaptation across auditory cortical fields in the anesthetized rat. PLoS Biol 2016, 14:e1002397.

58. Ghirzita O: Linking speech perception and neurophysiology: speech decoding guided by cascaded oscillators locked to the input rhythm. Front Psychol 2011, 2:130.

59. Giraud AL, Poeppel D: Cortical oscillations and speech processing: emerging computational principles and operations. Nat Neurosci 2012, 15:511-517.

60. Ding N, Patel AD, Chen L, Butler H, Luo C, Poeppel D: Temporal modulations in speech and music. Neurosci Biobehav Rev 2017.

61. Chandrasekaran C, Trubanova A, Stillitano S, Caplier A, Ghazanfar AA: The natural statistics of audiovisual speech. PLoS Comput Biol 2009, 5:e1000438.

62. Hyafil A, Fontolan L, Kabdebon C, Gutkin B, Giraud A-L: Speech encoding by coupled cortical theta and gamma oscillations. eLife 2015, 4:e06213.

63. McLellan D, VanRullen R: Theta-gamma coding meets communication-through-coherence: Neuronal oscillatory multiplexing theories reconciled. PLOS Comput Biol 2016, 12: e1005162.

64. VanRullen R: Perceptual cycles. Trends Cogn Sci 2016, 20:723-735.

65. Leonard MK, Bouchard KE, Tang C, Chang EF: Dynamic encoding of speech sequence probability in human temporal cortex. J Neurosci 2015, 35:7203-7214.

66. Ding N, Melloni L, Zhang H, Tian X, Poeppel D: Cortical tracking of hierarchical linguistic structures in connected speech. Nat Neurosci 2016, 19:158-164.

67. Human intracranial neural recording and MEG study of natural language phrase segmentation. The authors identified a low frequency neural signal that is associated with the perceptual segmentation of phrases in natural language that was not evident in individuals that could not comprehend the language

68. Nelson MJ, El Karoui M, Giber K, Yang X, Cohen L, Koopman H, Cash SS, Naccache L, Hale JT, Pallier C: Neurophysiological dynamics of phrase-structure building during sentence processing. Proc Natl Acad Sci U S A 2017:201701590.

69. Meyer L, Grigutsch M, Schmuck N, Gaston P, Friederici AD: Frontal–posterior theta oscillations reflect memory retrieval during sentence comprehension. Cortex 2015, 71:205-218.

70. Cope TE, Sohohu E, Sedley W, Patterson K, Jones PG, Wiggins J, Dawson C, Grube M, Carlyon RP, Griffiths TD, Davis MH, Rowe JB: Evidence for causal top-down frontal contributions to predictive processes in speech perception. Nat Commun 2017, 8:2154.

This paper studies that prefrontal cortex atrophy results in speech predictions that are overly precise and associated with increased pre-stimulus beta band oscillatory activity that can be detrimental to speech perception

71. Zafereanu R, Atlas A, Wilson B, Rhone AE, Nouri KJ, Gander PE, Kovach CK, Kawasaki H, Griffiths TD, Howard MA, Kelikov CI: Sequence learning modulates neural responses and oscillatory coupling in human and monkey auditory cortex. PLOS Biol 2017, 15:e2000219.

Comparative intracranial neural recording study in humans and macaque monkeys. The recordings from auditory cortex identify neural signatures in local field potentials that are remarkably similar in processing speech sounds and their sequencing relationships across the two species. Harnessing macaques as an animal model system the comparative results are also linked to and further understood at the single neuron level

72. Zafereanu R, VanRullen R: EEG oscillations entrain their phase to high-level features of speech sound. NeuroImage 2016, 124, Part A:16-23.

73. Attanasi A, Kikuchi Y, Milne AE, Wilson B, Alter K, Petkov CI: EEG potentials associated with artificial grammar learning in the primate brain. Brain Lang 2014.

74. Milne AE, Mueller JL, Mannel C, Attahera A, Friederici AD, Petkov CI: Evolutionary origins of non-adjacent sequence processing in primate brain potentials. Sci Rep 2016, 6:36259.

75. Wilson B, Slater H, Kikuchi Y, Milne AE, Marslen-Wendt WD, Smith K, Petkov CI: Auditory artificial grammar learning in macaque and marmoset monkeys. J Neurosci 2013, 33:18825-18835.

76. Chen J, Dastjeridi M, Foster BL, LaRoque KF, Rauschecker AM, Parvis J, Wagner AD: Human hippocampal increases in low-frequency power during associative prediction violations. Neuropsychologia 2013, 51:2344-2351.

77. Dürschmid S, Edwards E, Reichert C, Dewar C, Hinrichs H, Heineze H-J, Kirsch HE, Dalal SS, Deoull EY, Knight RT: Hierarchy of prediction errors for auditory events in human temporal and frontal cortex. Proc Natl Acad Sci U S A 2016, 113:3755-3760.

78. Wilson B, Petkov CI: Relational knowledge and the origins of language. In The Social Origins of Language. Edited by Seyfarth RM, Cheney DL. Edited and Introduced by Platt ML: Princeton University Press; 2017:79-101.

79. Hafod GS, Wilson WH, Phillips S: Relational knowledge: the foundation of higher cognition. Trends Cogn Sci 2010, 14:497-505.

80. Saffran J, Hauser M, Seibel R, Kapfhammer J, Tsao F, Cushman F: Grammatical pattern learning by human infants and cotton-top tamarins. Cognition 2008, 107:479-500.

81. Wilson B, Smith K, Petkov CI: Mixed-complexity artificial grammar learning in humans and macaque monkeys: evaluating learning strategies. Eur J Neurosci 2015, 41:568-578.