A NOTE ON EXTENDED RECURRENT LORENTZIAN MANIFOLDS

CARLO ALBERTO MANTICA AND LUCA GUIDO MOLINARI

ABSTRACT. Extended recurrent pseudo-Riemannian manifolds were introduced by Mileva Prvanović. We reconsider her work in the light of recent results and show that the manifold is conformally flat, and it is a space of quasi-constant curvature. We also show that an extended recurrent Lorentzian manifold, with time-like associated covector, is a perfect fluid Robertson-Walker space-time. We obtain the equation of state; in $n = 4$ and if the scalar curvature is zero, a model for incoherent radiation is obtained.

Dedicated to the memory of Dr. Mileva Prvanović

1. INTRODUCTION

In 1999 Mileva Prvanović [22] introduced the following differential structure on a pseudo-Riemannian manifold, that she named “extended recurrent manifold”:

\[
\nabla_i R_{jklm} = A_i R_{jklm} + (\beta - \psi) A_i G_{jklm}
\]

\[
+ \frac{\beta}{2} [A_j G_{iklm} + A_k G_{jilm} + A_l G_{jkim} + A_m G_{jkl}]
\]

A_i is a closed one-form named “associated covector”, β and ψ are non vanishing scalar functions with $\nabla_j \psi = \beta A_j$. $G_{jklm} = g_{mj} g_{kl} - g_{mk} g_{jl}$. She proved that the associated covector is a concircular vector: $\nabla_s A_r = f g_{rs} + h A_r A_s$ with scalar functions f and h, and showed that the metric has the warped form

\[
ds^2 = (dx^1)^2 + e^\eta g^*_{ab} dx^a dx^b
\]

where g^*_{ab} are functions only of x^γ ($\gamma = 2, \ldots, n$) and η is a scalar function of x^1. These properties will be reviewed in Section 2, where we also derive some new ones. In particular we show that an extended recurrent pseudo-Riemannian manifold is conformally flat, and it is a space of quasi constant curvature, according the definition by K. Yano and B.-Y. Chen [5]. In Section 3 we focus on extended recurrent Lorentzian manifolds (space-times). Based on our recent study of Generalized Robertson Walker manifolds, to which the present model eventually belongs, we show that an extended recurrent space-time with time-like associated covector is a perfect fluid Robertson-Walker spacetime. The barotropic equation of state is

Date: 25 aug 2016.

2010 Mathematics Subject Classification. Primary 53B30, 53B50, Secondary 53C80, 83C15.

Key words and phrases. extended recurrent manifold, Robertson-Walker space-time, perfect fluid space-time, torse-forming vector, concircular vector.
obtained; in the particular case of vanishing scalar curvature, in 4 dimensions, we
obtain a model for incoherent radiation.

Throughout the paper we adopt the convention \(R_{ij} = R_{imjn} \) and \(R = R_{nm} \) for
the Ricci tensor and the scalar curvature, and use the notation \(v^2 = v^m v_m \).

2. General properties of extended recurrent
pseudo-Riemannian manifolds

We review some basic properties of extended recurrent pseudo-Riemannian man-
ifolds exposed in [22]. Furthermore, we prove some new characterizations of such
manifolds.

Following the procedure in [22], by contracting (1) with \(g^{im} \) it is
\[
(3) \quad \nabla_i R_{kl} = A_i[R_{kl} - g_{kl}(n\beta - (n - 1)\psi)] - \frac{\beta}{2}(n - 2)(A_k g_{il} + A_l g_{ik}).
\]
Contracting again (3) with \(g^{kl} \) we obtain
\[
(4) \quad \nabla_i R = A_i[R - (n^2 + n - 2)\beta + n(n - 1)\psi].
\]
On the other hand, by the second Bianchi identity for the Riemann tensor it is
\[
A_i(R_{jklm} - \psi G_{jklm}) + A_j(R_{kilm} - \psi G_{kilm}) + A_k(R_{ijlm} - \psi G_{ijlm}) = 0.
\]
Contracting this with \(g^{im} \) it is
\[
(5) \quad R_{jklm} A^m = A_k[R_{jl} + \psi(n - 2)g_{jl}] - A_j[R_{kl} + \psi(n - 2)g_{kl}].
\]
and contracting (5) with \(g^{kl} \) we obtain
\[
(6) \quad R_{jm} A^m = \frac{1}{2}A_j[R + \psi(n - 2)(n - 1)].
\]
The components of the Weyl conformal curvature tensor are [19]:
\[
(7) \quad C_{ijkl}^m = R_{ijkl}^m + \frac{1}{n-2}(g_{jm} R_{kl} - g_{km} R_{jl} + R_{jim} g_{kl} - R_{km} g_{jl})
- \frac{g_{jm} g_{kl} - g_{km} g_{jl}}{(n-1)(n-2)} R
\]
By taking the covariant derivative of (7) and inserting (1) and (3) we infer that
\[
(8) \quad \nabla_i C_{jklm} = A_i C_{jklm}
\]
Now, (5), (6) are used to evaluate \(A_m C_{ijkl}^m \):
\[
(9) \quad A_m C_{ijkl}^m = \frac{n-3}{n-2} A_k \left[A_j \left(R_{jl} - \frac{R - \psi(n-1)(n-2)}{2(n-1)} g_{jl} \right) \right.
- A_j \left(R_{kl} - \frac{R - \psi(n-1)(n-2)}{2(n-1)} g_{kl} \right) \right]
\]
Next, consider Lovelock’s identity [14] page 289):
\[
\nabla_i \nabla_m R_{ijkl}^m + \nabla_j \nabla_m R_{iklm} + \nabla_k \nabla_m R_{ijlm} = -R_{im} R_{jkl}^m - R_{jm} R_{iklm} - R_{km} R_{ijlm}^m
\]
The evaluation of \(\nabla_i \nabla_m R_{ijkl}^m + \nabla_j \nabla_m R_{iklm} + \nabla_k \nabla_m R_{ijlm}^m \) with the aid of (3)
gives zero, therefore it is \(R_{im} R_{jkl}^m + R_{jm} R_{iklm} + R_{km} R_{ijlm}^m = 0 \). By taking the
covariant derivative \(\nabla_s \) of the last expression and contracting with \(g^{is} \), after long
calculations, it is inferred that (provided \(\beta \neq 0 \) and \(n > 3 \))
\[
(10) \quad A_j \left[R_{jl} - g_{jl} \frac{R - \psi(n-1)(n-2)}{2(n-1)} \right] = A_k \left[R_{kl} - g_{kl} \frac{R - \psi(n-1)(n-2)}{2(n-1)} \right]
\]
From (10) and (9) immediately it is $\nabla_mC_{jkl}^m = A_mC_{jkl}^m = 0$.

The second Bianchi identity for the Weyl tensor is (see [1])

$$\nabla_i C_{jkl}^m + \nabla_j C_{ikl}^m + \nabla_k C_{ijl}^m = \frac{1}{n-3} \left[\delta^m_p \nabla_p C_{kil}^p + \delta^m_k \nabla_p C_{ijl}^p \right] + a^m_i \nabla_p C_{jkl}^p + g_{kl} \nabla_p C_{ijl}^m + g_{il} \nabla_p C_{kjm} + g_{jl} \nabla_p C_{ikm}^p$$

For a conformally recurrent manifold it becomes

$$(11) \quad A_i C_{jkl} + A_j C_{kil} + A_k C_{ijl} = \frac{A^p}{n-3} \left[g_{mj} C_{kil}^p + g_{mk} C_{ijp} + g_{ml} C_{ikj} + g_{jl} C_{ikm} \right] = 0$$

because $A_p C_{jkl}^p = 0$. Thus in our case it is $A_i C_{jkl} + A_j C_{kil} + A_k C_{ijl} = 0$ from which $A^2 C_{jkl} = 0$. Therefore, if $A^2 \neq 0$, the manifold is conformally flat: $C_{jkl} = 0$. Moreover if $A^2 \neq 0$ eq. (10) readily rewrites as:

$$(12) \quad 2(n-1) R_{kl} - g_{kl} (R - \psi (n-1)(n-2)) = \frac{A_i A_j}{A^2} (n-2) [R + \psi n(n-1)]$$

and shows that the space is quasi-Einstein (see for example [5, 10, 11, 12, 20]):

$$(13) \quad R_{kl} = a g_{kl} + b \frac{A_i A_j}{A^2}, \quad a = \frac{R - \psi (n-1)(n-2)}{2(n-1)}, \quad b = \frac{n - 2}{2(n-1)} [R + \psi n(n-1)]$$

Inserting this in (7) with $C_{jklm} = 0$ gives the Riemann tensor:

$$(14) \quad R_{ijkl} = \frac{b}{n-2} \left[- g_{jm} \frac{A_i A_j}{A^2} + g_{km} \frac{A_j A_l}{A^2} - g_{kl} \frac{A_j A_m}{A^2} + g_{jl} \frac{A_k A_m}{A^2} \right] + \psi (g_{jm} g_{kl} - g_{jl} g_{km})$$

Eq. (14) characterizes the “manifolds of quasi constant curvature”, introduced by Chen and Yano in 1972 [5]. We thus proved the following

Theorem 2.1. An $n \geq 3$ dimensional extended recurrent pseudo-Riemannian manifold is conformally flat and is a space of quasi-constant curvature.

Note that the hypothesis $\nabla_j \psi = A_j \beta$ is not used in the proof of Theorem 2.1

As shown in [22], the covariant derivative ∇_s of (12) and the condition $\nabla_j \psi = A_j \beta$ imply that

$$\nabla_s A_r = f g_{rs} + \omega_s A_r$$

where $f = -\frac{(n-1)\beta}{R+n(n-1)\psi} A^2$, $\omega_s = h A_s$, $h = A^2 A^2 \nabla_s A_i + \frac{(n-1)\beta}{R+n(n-1)\psi}$. By showing $\nabla_s h = \mu A_s$ it follows that ω_s is closed (i.e. A_j is a proper concircular vector). Based on the works [20, 30] by Yano, Prvanovic in [22] concluded that the metric has the warped form (2).

3. Extended recurrent space-times

In this section we consider extended recurrent Lorentzian manifolds (i.e. space-times) with a time-like associated covector ($A^2 < 0$). We prove it that it is a Robertson-Walker space-time. For this, we need a generalization of such spaces:
An $n \geq 3$ dimensional Lorentzian manifold is named generalized Robertson-Walker space-time (for short GRW) if the metric may take the shape:

\begin{equation}
 ds^2 = -(dx^1)^2 + q(x^1)^2 g_{\alpha \beta}^* (x^2, \ldots, x^n) dx^\alpha dx^\beta,
\end{equation}

A GRW space-time is thus the warped product $1 \times q^2 M^*$ \cite{2, 3, 25, 26} where M^* is a $(n - 1)$-dimensional Riemannian manifold. If M^* is a 3-dimensional Riemannian manifold of constant curvature, the space-time is called Robertson-Walker space-time. GRW space-times are thus a wide generalization of Robertson-Walker space-times on which standard cosmology is modelled and include the Einstein-de Sitter space-time, the Friedman cosmological models, the static Einstein space-times, and the de Sitter space-time. They are inhomogeneous space-times admitting an isotropic radiation (see Sánchez \cite{25}). We refer to the works by Romero et al. \cite{23, 24}, Sánchez \cite{25} and Gutiérrez and Olea \cite{13} for an exhaustive presentation of geometric and physical properties.

Recently, perfect fluids with the condition $\nabla_m C_{jklm} = 0$ were studied in \cite{15} and \cite{16}, where the authors showed that such spaces are GRW space-times. The following deep result was proved by Bang Yen Chen, in ref.\cite{4} (for similar results see also the works by Yano \cite{29, 30}, Prvanović \cite{21}, and the recent paper \cite{9}).

Theorem 3.1 (Chen). Let (M, g) an $n \geq 3$ dimensional Lorentzian manifold. The space-time is a generalized Robertson-Walker space-time if and only if it admits a time-like vector of the form $\nabla_k X_j = \rho g_{kj}$.

In the previous section we reviewed Prvanovic’s result that the associate covector is concircular, $\nabla_j A_k = f g_{jk} + \omega_j A_k$, with $\omega_j = h A_j$ being a closed one-form. In this case $\omega_j = \nabla_j \sigma$ for a suitable scalar function.

If the associated covector is time-like, i.e. $A^2 < 0$ (with Lorentzian signature), then it can be rescaled to a time-like vector $X_k = A_k e^{-\sigma}$ such that $\nabla_j X_k = \rho g_{kj}$. In fact it is $\nabla_j X_k = (\nabla_j A_k - \omega_j A_k) e^{-\sigma} = (f e^{-\sigma}) X_k$. By Chen’s theorem 3.1 the space is a GRW space-time (see \cite{15} \cite{16}).

Thus for $A^2 < 0$ Prvanović’s model \cite{1} is a quasi-Einstein GRW space-time with $C_{jklm} = 0$. It is well known (see \cite{7}) that in this case the fiber is a space of constant curvature and the GRW space-time reduces to an ordinary Robertson-Walker model. Moreover in the region $A^2 < 0$, on defining $u_k = A_k / \sqrt{-A^2}$, it is $u^2 = -1$ and the Ricci tensor \cite{13} becomes $R_{kl} = a g_{kl} - b u_k u_l$. With this form of the Ricci tensor, a Lorentzian manifold is named perfect fluid space-time \cite{14}.

Theorem 3.2. An $n > 3$ dimensional extended recurrent Lorentzian manifold with $A^2 < 0$ is a Robertson-Walker space-time.

Remark 3.3. In \cite{17}, we proved that for a GRW space-time the condition $\nabla_m C_{jklm} = 0$ is equivalent to have $R_{kl} = a g_{kl} + b X_k X_l$, where X_j is the concircular vector of Chen’s theorem. Prvanović’s model matches these conditions.

Some physical consequences are now outlined. Let (M, g) be an n-dimensional Lorentzian manifold equipped with Einstein’s field equations without cosmological constant,

\begin{equation}
 R_{kl} - \frac{1}{2} R g_{kl} = \kappa T_{kl}
\end{equation}

$\kappa = 8\pi G$ is Einstein’s gravitational constant (in units $c = 1$) and T_{kl} is the stress-energy tensor describing the matter content of the space-time (see for example
Eq. (16) is used to evaluate T_{kl} obtaining:

$$\kappa T_{kl} = -\frac{n-2}{2(n-1)}[R + \psi(n-1)] (g_{kl} - u_k u_l)$$

We recognize a perfect fluid stress-energy tensor $T_{kl} = (p + \mu) u_k u_l + p g_{kl}$, being p the isotropic pressure, μ the energy density and u_j the fluid flow velocity. It is

$$\kappa p = -\frac{n-2}{2(n-1)}[R + \psi(n-1)], \quad \kappa \mu = -\frac{1}{2} \psi(n-1)(n-2)$$

One reads that the (non constant) function ψ controls the energy density of the perfect fluid (then it must be negative). An equation of state can be written:

$$p = \frac{\mu}{n-1} - \frac{n-2}{2(n-1)} \frac{R}{\kappa}$$

In $n = 4$ dimensions with the particular choice $R = 0$, we have a model for incoherent radiation: $p = \mu/3$ [27] (a superposition of waves of a massless field with random propagation directions).

REFERENCES

[1] T. Adati, and T. Miyazawa, On a Riemannian space with recurrent conformal curvature, Tensor (N.S.) 18 (1967), 348–354.
[2] L. Alías, A. Romero, and M. Sánchez, Uniqueness of complete spacelike hypersurfaces of constant mean curvature in generalized Robertson-Walker space-times, Gen. Relat. Gravit. 27 n.1 (1995), 71–84.
[3] L. Alías, A. Romero, M. Sánchez, Compact spacelike hypersurfaces of constant mean curvature in generalized Robertson-Walker spacetimes. In: Dillen F. editor. Geometry and Topology of Submanifolds VII. River Edge NJ, USA: World Scientific, 1995, pp 67–70.
[4] B.-Y. Chen, A simple characterization of generalized Robertson-Walker space-times, Gen. Rel. Grav. 46 (2014), 1833.
[5] B.-Y. Chen and K. Yano, Hypersurfaces of conformally flat spaces, Tensor (N.S.) 26 (1972), 318–322.
[6] J. K. Beem, P. E. Ehrlich, and K. L. Easley, Global Lorentzian Geometry, 2nd ed. Pure and Applied mathematics, vol. 202, 1996 Marcel Dekker, New York.
[7] M. Brozos-Vázquez, E. García-Rio, and R. Vázquez-Lorenzo, Some remarks on locally conformally flat static space-times, J. Math. Phys. 46 (2005), 022501.
[8] M. C. Chaki and R. K. Maity, On quasi-Einstein manifolds, Publ. Math. Debrecen 57 (2000), 257–306.
[9] A. De, C. Özgür, U. C. De, On conformally flat Pseudo-Ricci Symmetric Spacetimes, Int. J. Theor. Phys. 51 n.9 (2012), 2878–2887.
[10] R. Deszcz, F. Dillen, L. Verstraelen and L. Vrancken, Quasi-Einstein totally real submanifolds of the nearly Kähler 6-sphere, Tohoku Math. J. 51 n.4 (1999), 461–478.
[11] R. Deszcz, M. Głogowska, M. Hotloś and Z. Sentürk, On certain quasi-Einstein semi-symmetric hypersurfaces, Annu. Univ. Sci. Budapest Eötvös Sect. Math. 41 (1998), 151–164.
[12] R. Deszcz, M. Hotloś and Z. Sentürk, Quasi-Einstein hypersurfaces in semi-Riemannian space forms, Colloq. Math. 89 n.1 (2001), 81–97.
[13] M. Gutiérrez and B. Olea, Global decomposition of a Lorentzian manifold as a generalized Robertson-Walker space, Differ. Geom. Appl. 27 (2009), 146–156.
[14] D. Lovelock and H. Rund, Tensors, Differential Forms and Variational Principles, Reprinted Edition (Dover, 1988).
[15] C. A. Mantica, L. G. Molinari and U. C. De, A condition for a perfect fluid space-time to be a generalized Robertson-Walker space-time, J. Math Phys. 57 n.2 (2016), 022508, Erratum, J.M.P. 57 (2016) 049901.
[16] C. A. Mantica, Y. J. Suh, and U. C. De, A note on generalized Robertson-Walker space-times, Int. J. Geom. Meth. Mod. Phys. 13 (2016), 1650079, (9 pp).
[17] C. A. Mantica and L. G. Molinari, On the Weyl and the Ricci tensors of Generalized Robertson-Walker space-times, [arXiv:1608.01209v1 [math-ph]] 3 Aug 2016.
[18] B. O’Neil, Semi Riemannian Geometry with applications to the Relativity (Academic Press, New York, 1983).

[19] M. M. Postnikov, Geometry VI, Riemannian geometry, Encyclopaedia of Mathematical Sciences, Vol. 91, 2001, Springer-Verlag, Berlin. (translated from the 1998 Russian edition by S.A. Vakhrameev).

[20] M. Prvanović, On a class of SP-Sasakian manifold, Note di Matematica, 10 n.2 (1990), 325–334.

[21] M. Prvanović, On warped product manifolds, Filomat (Niš) 9 n.2 (1995), 169–185.

[22] M. Prvanović, Extended recurrent manifolds, Izv. Vyssh. Uchebn. Zaved. Mat. n1 (440) (1999), 41–50.

[23] A. Romero, R. N. Rubio, and J. J. Salamanca, Uniqueness of complete maximal hypersurfaces in spatially parabolic generalized Robertson-Walker space-times, Class. Quantum Grav. 30 n.11 (2013), 115007.

[24] A. Romero, R. N. Rubio, and J. J. Salamanca, Uniqueness of complete maximal hypersurfaces in spatially parabolic generalized Robertson-Walker space-times. Applications to uniqueness results, Int. J. Geom. Meth. Mod. Phys. 10 n.8 (2013), 1360014.

[25] M. Sánchez, On the geometry of generalized Robertson-Walker spacetimes: geodesics, Gen. Relativ. Grav. 30 (1998), 915–932.

[26] M. Sánchez, On the geometry of generalized Robertson-Walker spacetimes: curvature and Killing fields, Gen. Relativ. Grav. 31 (1999), 1–15.

[27] H. Sthepani, D. Kramer, M. MacCallum, C. Hoenselaers and E. Hertl, Exact solutions of Einstein’s Field Equations, Cambridge Monographs on Mathematical Physics 2nd ed. (Cambridge University Press, 2003).

[28] R. M. Wald, General Relativity, (The University of Chicago Press, 1984).

[29] K. Yano, Concircular geometry I-IV, Proc. Imp. Acad. Tokyo 16 (1940), 195–200, 354–360, 442–448, 505–511.

[30] K. Yano, On the torseforming direction in Riemannian Spaces, Proc. Imp. Acad. Tokyo 20 (1944), 340–345.

C. A. Mantica (corresponding author): Physics Department, Università degli Studi di Milano, Via Celoria 16, 20133, Milano and I.I.S. Lagrange, Via L. Modignani 65, 20161, Milano, Italy – L. G. Molinari: Physics Department, Università degli Studi di Milano and I.N.F.N. sez. Milano, Via Celoria 16, 20133 Milano, Italy.

E-mail address: carloalberto.mantica@libero.it, luca.molinari@unimi.it