HOCHSCHILD COHOMOLOGY AND ORBIFOLD JACOBIAN ALGEBRAS ASSOCIATED TO INVERTIBLE POLYNOMIALS

ALEXEY BASALAEV AND ATSUSHI TAKAHASHI

ABSTRACT. Let \(f \) be an invertible polynomial and \(G \) a group of diagonal symmetries of \(f \). This note shows that the orbifold Jacobian algebra \(\text{Jac}(f, G) \) of \((f, G) \) defined by \([BTW16]\) is isomorphic as a \(\mathbb{Z}/2\mathbb{Z} \)-graded algebra to the Hochschild cohomology \(\text{HH}^*(\text{MF}_G(f)) \) of the dg-category \(\text{MF}_G(f) \) of \(G \)-equivariant matrix factorizations of \(f \) by calculating the product formula of \(\text{HH}^*(\text{MF}_G(f)) \) given by Shklyarov \([S17]\). We also discuss the relation of our previous results to the categorical equivalence.

1. Introduction

To a polynomial \(f = f(x_1, \ldots, x_n) \in \mathbb{C}[x_1, \ldots, x_n] \) which defines an isolated singularity only at the origin, one can associate a finite dimensional \(\mathbb{C} \)-algebra called the Jacobian algebra \(\text{Jac}(f) := \mathbb{C}[x_1, \ldots, x_n]/(\partial f/\partial x_1, \ldots, \partial f/\partial x_n) \) of \(f \), which is an important and interesting invariant of \(f \).

In our previous paper \([BTW16]\), when \(f \) is an invertible polynomial and \(G \) is a finite abelian group acting diagonally on variables which respects \(f \) we show the existence and the uniqueness of the \(G \)-twisted version of the Jacobian algebra of \(f \), a \(\mathbb{Z}/2\mathbb{Z} \)-graded \(G \)-twisted commutative algebra denoted by \(\text{Jac}'(f, G) \). The expected Jacobian algebra \(\text{Jac}(f, G) \) of the pair \((f, G) \), a natural generalization of the Jacobian algebra \(\text{Jac}(f) \) of \(f \) to the pair \((f, G) \), is then given as the \(G \)-invariant subalgebra of \(\text{Jac}'(f, G) \) and it is called the orbifold Jacobian algebra of \((f, G) \).

Another important invariant associated to the pair \((f, G) \) is the dg-category \(\text{MF}_G(f) \) of \(G \)-equivariant matrix factorizations of \(f \). To this category, one can associate the Hochschild cohomology \(\text{HH}^*(\text{MF}_G(f)) \), which is equipped with a \(\mathbb{Z}/2\mathbb{Z} \)-graded commutative cup product. Actually, our axiomatization of \(\text{Jac}'(f, G) \) and \(\text{Jac}(f, G) \) is motivated by the algebraic structure of the pair \((\text{HH}^*(\text{MF}_G(f)), \text{HH}_*(\text{MF}_G(f))) \). It is natural to show now that \(\text{Jac}(f, G) \) is isomorphic to \(\text{HH}^*(\text{MF}_G(f)) \).

Recently, Shklyarov \([S17]\) developed a method to compute \(\text{HH}^*(\text{MF}_G(f)) \). He introduces a \(\mathbb{Z}/2\mathbb{Z} \)-graded \(G \)-twisted commutative algebra \(\mathcal{A}^*(f, G) \) such that its \(G \)-invariant part \(\mathcal{A}^*(f, G)^G \) is isomorphic as a \(\mathbb{Z}/2\mathbb{Z} \)-graded algebra to the Hochschild cohomology \(\text{HH}^*(\text{MF}_G(f)) \) \([S17]\), Theorem 3.1 and Theorem 3.4.

Date: February 13, 2018.
It is natural to expect the isomorphism between $\Jac'(f, G)$ and $\A^*(f, G)$ since they have the same underlying $\mathbb{Z}/2\mathbb{Z}$-graded \mathbb{C}-vector spaces with similar algebraic structures. We show this by calculating the Shklyarov’s product formula of $\A^*(f, G)$.

Theorem (Theorem 8). Let f be an invertible polynomial and G a subgroup of the group G_f of maximal diagonal symmetries. We have a $\mathbb{Z}/2\mathbb{Z}$-graded algebra isomorphism

$$\Jac'(f, G) \cong \A^*(f, G),$$

which is compatible with the G-actions on both sides. In particular, by taking the G-invariant part, we have a $\mathbb{Z}/2\mathbb{Z}$-graded algebra isomorphism

$$\Jac(f, G) \cong \HH^*(\MF_G(f)).$$

When f is of chain type in two variables, this is done in [S17] Appendix A.1.

Remark 1. While preparing the manuscript, a closely related work by He–Li–Li [HLL] has appeared. They seem to give another method to calculate the cup product of the Hochschild cohomology $\HH^*(\mathbb{C}[x] \rtimes G, f)$ of G-equivariant curved algebra (cf. [S17, Section 2]) isomorphic to $\A^*(f, G)$. Their product formula coincides (up to sign) with the Shklyarov’s formula.

Acknowledgements. The first named author is very grateful to Dmytro Shklyarov for sharing his ideas and also the draft version of his text [S17]. We are grateful to Elisabeth Werner for the help on the early stages of the project and to Wolfgang Ebeling for fruitful discussions. The second named author is supported by JSPS KAKENHI Grant Number JP16H06337.

2. Notations and terminologies

For a non-negative integer n and $f = f(x_1, \ldots, x_n) \in \mathbb{C}[x_1, \ldots, x_n]$ a polynomial, the *Jacobian algebra* $\Jac(f)$ of f is a \mathbb{C}-algebra defined as

$$\Jac(f) = \mathbb{C}[x_1, \ldots, x_n] / \left(\frac{\partial f}{\partial x_1}, \ldots, \frac{\partial f}{\partial x_n} \right).$$

If $\Jac(f)$ is a finite-dimensional, then set $\mu_f := \dim_{\mathbb{C}} \Jac(f)$ and call it the *Milnor number* of f. In particular, if $n = 0$ then $\Jac(f) = \mathbb{C}$ and $\mu_f = 1$. The *Hessian* of f is defined as

$$\hess(f) := \det \left(\frac{\partial^2 f}{\partial x_i \partial x_j} \right)_{i,j=1,\ldots,n}.$$

In particular, if $n = 0$ then $\hess(f) = 1$.
A polynomial $f \in \mathbb{C}[x_1, \ldots, x_n]$ is called a weighted homogeneous polynomial if there are positive integers w_1, \ldots, w_n and d such that $f(\lambda^{w_1}x_1, \ldots, \lambda^{w_n}x_n) = \lambda^df(x_1, \ldots, x_n)$ for all $\lambda \in \mathbb{C}^*$. A weighted homogeneous polynomial f is called non-degenerate if it has at most an isolated critical point at the origin in \mathbb{C}^n, equivalently, if the Jacobian algebra $\text{Jac}(f)$ of f is finite-dimensional.

Definition 2. A non-degenerate weighted homogeneous polynomial $f \in \mathbb{C}[x_1, \ldots, x_n]$ is called invertible if the following conditions are satisfied.

- The number of variables coincides with the number of monomials in f:

 $$f(x_1, \ldots, x_n) = \sum_{i=1}^n c_i \prod_{j=1}^n x_{ij}^E$$

 for some coefficients $c_i \in \mathbb{C}^*$ and non-negative integers E_{ij} for $i, j = 1, \ldots, n$.

- The matrix $E := (E_{ij})$ is invertible over \mathbb{Q}.

Let $f = \sum_{i=1}^n c_i \prod_{j=1}^n x_{ij}^E$ be an invertible polynomial. Without loss of generality one may assume that $c_i = 1$ for all i by rescaling the variables. According to [KS], an invertible polynomial f can be written as a Thom–Sebastiani sum $f = f_1 \oplus \cdots \oplus f_p$ of invertible ones (in groups of different variables) f_ν, $\nu = 1, \ldots, p$ of the following types:

1. $x_1^{a_1} x_2 + x_2^{a_2} x_3 + \cdots + x_m^{a_m-1} x_m + x_m^{a_m}$ (chain type, $m \geq 1$);
2. $x_1^{a_1} x_2 + x_2^{a_2} x_3 + \cdots + x_m^{a_m-1} x_m + x_m^{a_m} x_1$ (loop type, $m \geq 2$).

Remark 3. In [KS] the authors distinguished also polynomials of the so called Fermat type: $x_1^{a_1}$, which is regarded as a chain type polynomial with $m = 1$ in this paper.

Definition 4. The group of maximal diagonal symmetries of an invertible polynomial $f(x_1, \ldots, x_n)$ is defined as

$$G_f := \{(\lambda_1, \ldots, \lambda_n) \in (\mathbb{C}^*)^n \mid f(\lambda_1 x_1, \ldots, \lambda_n x_n) = f(x_1, \ldots, x_n)\}.$$

Each element $g \in G_f$ has a unique expression of the form $g = (e[\alpha_1], \ldots, e[\alpha_n])$ with $0 \leq \alpha_i < 1$, where $e[\alpha] := \exp(2\pi i \sqrt{-1} \alpha)$. The age of g is defined as the rational number

$$\text{age}(g) := \sum_{i=1}^n \alpha_i.$$

For each $g \in G_f$, let $I_g := \{i_1, \ldots, i_{n_g}\}$ be a subset of $\{1, \ldots, n\}$ such that $\text{Fix}(g) = \{x \in \mathbb{C}^n \mid x_j = 0, j \notin I_g\}$. In particular, $I_{id} = \{1, \ldots, n\}$ and $n_g = \dim_\mathbb{C} \text{Fix}(g)$. Denote by I_g^c the complement of I_g in I_{id} and set $d_g := n - n_g$, the codimension of $\text{Fix}(g)$.

Proposition 5. For $f = x_1^{a_1} x_2 + \cdots + x_m^{a_m-1} x_m + x_m^{a_m}$ of chain type, for each $g \in G_f \backslash \{\text{id}\}$ there exists $1 \leq k \leq n$, such that $I_g^c = \{1, \ldots, k\}$. For $f = x_1^{a_1} x_2 + \cdots + x_m^{a_m} x_1$ of loop type, for each element $g \in G_f \backslash \{\text{id}\}$ has $I_g^c = \{1, \ldots, n\}.$
3. Orbifold Jacobian algebra

We briefly recall our orbifold Jacobian algebras. From now on, let \(f = f(x_1,\ldots,x_n) \) be an invertible polynomial and \(G \) a subgroup of \(G_f \). In order to simplify the notation, we often write \(f(x_1,\ldots,x_n) \) as \(f(x) \), \(\mathbb{C}[x_1,\ldots,x_n] \) as \(\mathbb{C}[x] \) and so on.

A \(G \)-twisted Jacobian algebra \(\text{Jac}'(f,G) \) of a \(\mathbb{Z}/2\mathbb{Z} \)-graded algebra characterized by a set of axioms [BTW16, Section 3] motivated by properties satisfied by the pair of the Hochschild cohomology and homology. It exists and it is uniquely defined up to an isomorphism [BTW16, Theorem 21]. This allows us to describe it by the explicit formula.

As a \(G \times \mathbb{Z}/2\mathbb{Z} \)-graded \(\mathbb{C} \)-vector space, we have

\[
\text{Jac}'(f,G) = \bigoplus_{g \in G} \text{Jac}(f^g) \tilde{v}_g, \quad f^g := f|_{\text{Fix}(g)},
\]

where \(\tilde{v}_g \) is a generator (a formal letter) attached to each \(g \in G \). The \(\mathbb{Z}/2\mathbb{Z} \)-grading of the element \([\phi(x)] \tilde{v}_g \) is defined by the parity of \(d_g \). \(\text{Jac}'(f,G) \) is endowed with a \(\mathbb{Z}/2\mathbb{Z} \)-graded \(G \)-twisted commutative\(^1\) product \(\circ \) with the unit \(\tilde{v}_{\text{id}} = [1] \tilde{v}_{\text{id}} \). Namely, for all \(g,h \in G \)

\[
[\psi(x)] \tilde{v}_g \circ [\phi(x)] \tilde{v}_h \in \text{Jac}(f^{gh}) \tilde{v}_{gh},
\]

\[
[\psi(x)] \tilde{v}_g \circ [1] \tilde{v}_{\text{id}} = [\psi(x)] \tilde{v}_g = [1] \tilde{v}_{\text{id}} \circ [\psi(x)] \tilde{v}_g,
\]

and

\[
[\psi(x)] \tilde{v}_g \circ [\phi(x)] \tilde{v}_h = (-1)^{d_g d_h} \cdot g^*([\phi(x)] \tilde{v}_h) \circ [\psi(x)] \tilde{v}_g
\]

where \(g^* \) is the \(G \)-action, given on the subspace \(\text{Jac}(f^h) \tilde{v}_h \) by

\[
g^*([\phi(x)] \tilde{v}_h) = \prod_{i \in I_h^n} g_i^{-1} \cdot [\phi(g \cdot x)] \tilde{v}_h, \quad g = (g_1,\ldots,g_n).
\]

Note that \(f^g \) is also an invertible polynomial and there is a surjective map \(\text{Jac}(f) \to \text{Jac}(f^g) \) ([ET13, Proposition 5] and [BTW16, Proposition 7]). The product is compatible with this map and, in particular, we have \([\psi(x)] \tilde{v}_{\text{id}} \circ [\phi(x)] \tilde{v}_g = [\psi(x) \phi(x)] \tilde{v}_g\).

In order to explain the explicit product formula for \(\text{Jac}'(f,G) \) simpler, we give the following Künneth property of \(\text{Jac}'(f,G) \).

Proposition 6. Let \(f_1, f_2 \) be invertible polynomials and \(G_1 \subseteq G_{f_1}, G_2 \subseteq G_{f_2} \) be subgroups. We have an algebra isomorphism compatible with \((G_1 \times G_2)\)-actions on both sides:

\[
\text{Jac}'(f_1 \oplus f_2, G_1 \times G_2) \cong \text{Jac}'(f_1, G_1) \otimes_{\mathbb{C}} \text{Jac}'(f_2, G_2).
\]

Proof. This is a direct consequence of a set of axioms [BTW16, Section 3] or the product formula [BTW16, Corollary 43]. The key fact is that for any \(g_1 \in G_1 \) and \(g_2 \in G_2 \) we

\(^1\)in [SI17] it is called braided commutative
have \(\tilde{v}_{g_1} \circ \tilde{v}_{g_2} := \text{sgn}(\sigma_{g_1,g_2})\tilde{v}_{g_1g_2} \) where \(\sigma_{g_1,g_2} \) is the permutation that turns the ordered sequence \(I_{c_{g_1}} \sqcup I_{c_{g_2}} \) to \(I_{c_{g_1g_2}} \). In [BTW16], \(\text{sgn}(\sigma_{g_1,g_2}) \) is denoted by \(\tilde{\epsilon}_{g_1,g_2} \).

By this Künneth property, we assume \(f \) is of chain type or of loop type. For each pair \((g,h)\) of elements in \(G \) and \(\phi(x), \psi(x) \in \mathbb{C}[x] \), the product formula is given as follows.

- If \(gh \neq id \), \(g \neq id \) and \(h \neq id \), then \([\phi(x)]\tilde{v}_g \circ [\psi(x)]\tilde{v}_h = 0\).
- If \(gh = id \), then \([\phi(x)]\tilde{v}_g \circ [\psi(x)]\tilde{v}_g^{-1} = (\frac{-1}{\mu_f}) \cdot \tilde{\epsilon}_{g,g^{-1}} \cdot \tilde{v}_{id}, \) where

\[
H_{g,g^{-1}} := \tilde{m}_{g,g^{-1}} \det \left(\frac{\partial^2 f}{\partial x_i \partial x_j} \right)_{i,j \in I_{c_g}}
\]

and \(\tilde{m}_{g,g^{-1}} \) is a constant uniquely determined by the following equation in \(\text{Jac}(f) \)

\[
\frac{1}{\mu_f} \text{[hess}(f^g)H_{g,g^{-1}} = \frac{1}{\mu_f} \text{[hess}(f)].
\]

The product \(\circ \) is invariant under the \(G \)-action of (11) (cf. [BTW16 Proposition 58]) and hence \(G \)-invariant subspace \(\text{Jac}^*(f,G) \) is a \(\mathbb{Z}/2\mathbb{Z} \)-graded commutative algebra.

Definition 7. Let \(f \) and \(G \) be as above. The \(G \)-invariant \(\mathbb{Z}/2\mathbb{Z} \)-graded subalgebra \(\text{Jac}(f,G) := (\text{Jac}^*(f,G))^G \) is called the **orbifold Jacobian algebra** of \((f,G)\).

4. Shklyarov’s description of Hochschild cohomology

Shklyarov [S17] introduces a \(\mathbb{Z}/2\mathbb{Z} \)-graded \(G \)-twisted commutative algebra \(A^*(f,G) \) whose underlying \(\mathbb{C} \)-vector space is given by

\[
A^*(f,G) = \bigoplus_{g \in G} \text{Jac}(f^g)\xi_g,
\]

where \(\tilde{\xi}_g \) is a generator (a formal letter) attached to each \(g \in G \). It is required that the group \(G \) acts naturally on \(\text{Jac}(f^g) \) for each \(g \in G \) and \(\xi_g \) transforms as

\[
G \ni h = (h_1, \ldots, h_n) : \tilde{\xi}_g \mapsto \prod_{i \in I_{c_g}} h_i^{-1} \cdot \tilde{\xi}_g,
\]

so that the product structure of \(A^*(f,G) \) is invariant under the \(G \)-action. In particular, its \(G \)-invariant part \(A^*(f,G)^G \) is isomorphic as a \(\mathbb{Z}/2\mathbb{Z} \)-graded algebra to the Hochschild cohomology \(\text{HH}^*(\text{MF}_G(f)) \) of \(\text{MF}_G(f) \) equipped with the cup product [S17 Theorem 3.1 and Theorem 3.4]. We shall recall the product structure of \(A^*(f,G) \) [S17 Section 3].

Define the \(n \)-th \(\mathbb{Z} \)-graded **Clifford algebra** \(\text{Cl}_n \) as the quotient algebra of

\[
\mathbb{C}\langle \theta_1, \ldots, \theta_n, \partial_{\theta_1}, \ldots, \partial_{\theta_n} \rangle
\]
modulo the ideal generated by

\[\theta_i\theta_j = -\theta_j\theta_i, \quad \partial_{\theta_i}\partial_{\theta_j} = -\partial_{\theta_j}\partial_{\theta_i}, \quad \partial_{\theta_i}\theta_j = -\theta_j\partial_{\theta_i} + \delta_{ij}, \]

where \(\theta_i \) is of degree \(-1\) and \(\partial_{\theta_i} \) is of degree \(1 \). For \(I \subseteq \{1, \ldots, n\} \) write

\[\partial_{\theta_I} := \prod_{i \in I} \partial_{\theta_i}, \quad \theta_I := \prod_{i \in I} \theta_i, \]

(18)

where in both cases the multipliers are taken in increasing order of the indices. The subspaces \(\mathbb{C}[\theta] = \mathbb{C}[\theta_1, \ldots, \theta_n] \) and \(\mathbb{C}[\theta_0] = \mathbb{C}[\partial_{\theta_1}, \ldots, \partial_{\theta_n}] \) of \(\text{Cl}_n \) have the left \(\mathbb{Z} \)-graded \(\text{Cl}_n \)-module structures via the isomorphisms

\[\mathbb{C}[\theta] \cong \text{Cl}_n / \text{Cl}_n(\partial_{\theta_1}, \ldots, \partial_{\theta_n}), \quad \mathbb{C}[\theta_0] \cong \text{Cl}_n / \text{Cl}_n(\theta_1, \ldots, \theta_n). \]

Write \(\mathbb{C}[x_1, \ldots, x_n, y_1, \ldots, y_n] \) as \(\mathbb{C}[x, y] \) and \(\mathbb{C}[x_1, \ldots, x_n, y_1, \ldots, y_n, z_1, \ldots, z_n] \) as \(\mathbb{C}[x, y, z] \). For each \(1 \leq i \leq n \), there is a map

\[\nabla_i^{x \rightarrow (x, y)} : \mathbb{C}[x] \to \mathbb{C}[x, y], \quad \nabla_i(p) := \frac{l_i(p) - l_{i+1}(p)}{x_i - y_i}. \]

(19)

where \(l_i(p) := p(y_1, \ldots, y_{i-1}, x_i, \ldots, x_n) \), \(l_1(p) = p(x) \) and \(l_{n+1}(p) = p(y) \) \footnote{17}. They are called the difference derivatives, whose key property is the following:

\[\sum_{i=1}^{n} (x_i - y_i)\nabla_i(p) = p(x) - p(y). \]

(20)

The difference derivatives can be applied consecutively. In particular, we shall use \(\nabla_j^{y \rightarrow (y, x)}\nabla_i^{x \rightarrow (x, y)}(p) \), which is an element of \(\mathbb{C}[x, y, z] \). For an \(\mathbb{C} \)-algebra homomorphism \(\psi : \mathbb{C}[x] \to \mathbb{C}[x] \), write \(\nabla_i^{x \rightarrow (x, \psi(x))}(p) := \nabla_i^{x \rightarrow (x, y)}(p)|_{y = \psi(x)} \in \mathbb{C}[x] \).

Now we are ready to describe the product structure of \(\mathcal{A}^*(f, G) \). For each pair \((g, h)\) of elements in \(G \), define the class \(\sigma_{g,h} \in \text{Jac}(f^{gh}) \) as follows.

- If \(d_{g,h} := \frac{1}{2}(d_g + d_h - d_{gh}) \) is not a non-negative integer, set \(\sigma_{g,h} = 0 \).
- If \(d_{g,h} \) is a non-negative integer, define \(\sigma_{g,h} \) to be the class of the coefficient of \(\partial_{\theta_{c_{gh}}} \)

in the expression

\[\frac{1}{d_{g,h}} ! \nabla \left(\left[H_f(x, g(x), x) \right]_g + [H_{f,g}(x)]_{gh} \otimes 1 + 1 \otimes [H_{f,h}(g(x))]_{gh} \right) \partial_{\theta_{c_{gh}}} \]

(21)

where

\[H_f(x, g(x), x) \]

(1) is an element of \(\mathbb{C}[x] \otimes \mathbb{C}[\theta] \) defined as the restriction to the set \(\{ y = g(x), z = x \} \) of the following element of \(\mathbb{C}[x, y, z] \otimes \mathbb{C}[\theta] \)

\[H_f(x, y, z) := \sum_{1 \leq j \leq n} \nabla_j^{y \rightarrow (y, x)}\nabla_i^{x \rightarrow (x, y)}(f) \theta_i \otimes \theta_j; \]

(22)
(2) $H_{f,g}(x)$ is the element of $\mathbb{C}[x] \otimes \mathbb{C}[\theta]$ given by

$$H_{f,g}(x) := \sum_{i,j \in I_g, j < i} \frac{1}{1-g_j} \nabla_j^{x \rightarrow (x, x^q)} \nabla_i^{x \rightarrow (x, g(x))} (f) \theta_j \theta_i;$$

(23)

where x^q is defined as $(x^q)_i = x_i$ if $i \in I_g$ and $(x^q)_i = 0$ if $i \notin I_g$;

(3) $[-]_{gh} : \mathbb{C}[x] \otimes V \rightarrow \text{Jac}(f^{gh}) \otimes V$ for $V = \mathbb{C}[x] \otimes \mathbb{C}[\theta] \otimes^2$ or $V = \mathbb{C}[x] \otimes \mathbb{C}[\theta]$ is a \mathbb{C}-linear map defined as the extension of the quotient map $\mathbb{C}[x] \rightarrow \text{Jac}(f^{gh})$;

(4) the $d_{g,h}$-th power in Equation (21) is computed with respect to the natural product on $\mathbb{C}[x] \otimes \mathbb{C}[\theta] \otimes \mathbb{C}[\theta]$;

(5) Υ is the $\mathbb{C}[x]$-linear extension of the degree zero map $\mathbb{C}[\theta] \otimes^2 \mathbb{C}[\partial_\theta] \otimes^2 \rightarrow \mathbb{C}[\partial_\theta]$ defined by

$$p_1(\theta) \otimes p_2(\theta) \otimes q_1(\partial_\theta) \otimes q_2(\partial_\theta) \mapsto (-1)^{|q_1||p_2|} p_1(\sigma_1) \cdot p_2(\sigma_2)$$

(24)

where $p_i(q_i)$ denotes the action of $p_i(\theta)$ on $q_i(\partial_\theta)$ via the Cl$_n$-module structure on $\mathbb{C}[\partial_\theta]$ defined above and \cdot is the natural product in $\mathbb{C}[\partial_\theta]$.

Then the product of $A^*(f, G)$ is given by

$$[\phi(x)]e_g \cup [\psi(x)]e_h = [\phi(x)\psi(x)]e_{g,h}, \quad \phi(x), \psi(x) \in \mathbb{C}[x].$$

(25)

5. Results

Now we can state our main theorem in this paper.

Theorem 8. Let f be an invertible polynomial and G a subgroup of G_f. We have a $\mathbb{Z}/2\mathbb{Z}$-graded algebra isomorphism $\text{Jac}'(f, G) \cong A^*(f, G)$ compatible with the G-actions on both sides.

One sees immediately that $\text{Jac}'(f, G)$ and $A^*(f, G)$ have isomorphic underlying $\mathbb{Z}/2\mathbb{Z}$-graded vector spaces. It is also clear that the G-actions are compatible on both sides (recall (11) and (17)). It remains to check that the products agree. One only needs to do this for f of chain type or of loop type since $\text{Jac}'(f, G)$ and $A^*(f, G)$ have the same Künneth property (12) and [S17 Proposition 2.6]. The rest of this section is devoted to the proof of the theorem.

Proof. First, similarly to the case $\text{Jac}'(f, G)$, we have the following

Proposition 9. If $gh \neq id$, $g \neq id$ and $h \neq id$, then $\sigma_{g,h} = 0$.

Proof. Since the algebra $A^*(f, G)$ is also $\text{Aut}(f, G)$-invariant due to [S17 Theorem 3.1], we may apply [BTW16 Proposition 34], which yields the statement. We can also show the vanishing of $\sigma_{g,h}$ due to degree reason by direct calculation, which is elementary.
Hence, we only need to calculate $\sigma_{g,g^{-1}}$ for each $g \in G_f\setminus\{id\}$.

Proposition 10. For each $g = (e[\alpha_1], \ldots, e[\alpha_n]) \in G_f\setminus\{id\}$ with $0 \leq \alpha_i < 1$, we have

$$\sigma_{g,g^{-1}} = (-1)^{\frac{d_g(d_g-1)}{2}} \cdot e \left[-\frac{1}{2} \text{age}(g) \right] \cdot \left(\prod_{i=1}^{d_g} e \left[\frac{-1}{2 \sin(\alpha_i \pi)} \right] \right) [H_{g,g^{-1}}]. \quad (26)$$

Proof. For f of chain type one applies Lemma 11 and Lemma 12 (see Section 5.1 below) and for f of loop type one does Lemma 13 and Lemma 14 (see Section 5.2 below). \qed

Note that for $i = 1, \ldots, d_g$ we have $0 < \alpha_i < 1$ and that $\prod_{i=1}^{d_g} 2 \sin(\alpha_i \pi)$ is invariant under taking g to its inverse g^{-1} since this is equivalent to substituting α_i with $1 - \alpha_i$.

The algebra isomorphism $A^*(f, G) \rightarrow \text{Jac}'(f, G)$ reads:

$$\tilde{v}_g \rightarrow e \left[\frac{-d_g}{8} \right] \left(\prod_{i=1}^{d_g} 2 \sin(\alpha_i \pi) \right)^{-1/2} \xi_g. \quad (27)$$

5.1. Chain type $f = x_1^{a_1} x_2 + \cdots + x_{n-1}^{a_{n-1}} x_n + x_n^{a_n}$. First, we list the ingredients for the product formula (25):

$$H_f(x, y, z) = \sum_{i=1}^{n} \frac{x_i+1}{y_i - z_i} \left(\frac{x_i^{a_i} - y_i^{a_i}}{x_i - y_i} - \frac{x_i^{a_i} - z_i^{a_i}}{x_i - z_i} \right) \theta_i \otimes \theta_i + \sum_{i=1}^{n-1} \frac{y_i^{a_i} - z_i^{a_i}}{y_i - z_i} \theta_{i+1} \otimes \theta_i, \quad x_{n+1} := 1,$n

$$H_{f,g}(x) = \sum_{i=1}^{d_g-1} x_i^{a_i-1} g_i^{a_i} \theta_i \theta_{i+1}, \quad g = (g_1, \ldots, g_n) \in G_f\setminus\{id\}.$$ They give

$$H_f(x, g(x), x) = \sum_{i=1}^{n} \frac{x_i^{a_i-2} x_i+1}{g_i - 1} \left(\frac{1 - g_i^{a_i}}{1 - g_i} - a_i \right) \theta_i \otimes \theta_i + \sum_{i=1}^{n-1} \frac{g_i^{a_i-1}}{g_i - 1} x_i^{a_i-1} \theta_{i+1} \otimes \theta_i,$$

$$H_{f,g^{-1}}(g(x)) = \sum_{i=1}^{d_g-1} x_i^{a_i-1} \frac{1}{g_i - 1} \theta_i \theta_{i+1}, \quad g = (g_1, \ldots, g_n) \in G_f\setminus\{id\}.$$ Consider a square matrix M_g of size d_g whose (i, j)-th entry is given by

$$(M_g)_{ij} := -\frac{x_i^{a_i-2} x_i+1}{g_i - 1} \left(\frac{1 - g_i^{a_i}}{1 - g_i} - a_i \right) \delta_{i,j} + x_i^{a_i-1} g_i^{a_i} \delta_{i+1,j} + x_i^{a_i-1} - \frac{1}{g_i - 1} \delta_{i-1,j}. \quad (28)$$

Lemma 11. For each $g \in G_f\setminus\{id\}$, we have the following equality in Jac(f):

$$\sigma_{g,g^{-1}} = (-1)^{\frac{d_g(d_g-1)}{2}} [\det(M_g)]. \quad (29)$$

Proof. Since $I_{id}^c = \emptyset$ and due to (24), we only consider the coefficient of $\theta_{I_g} \otimes \theta_{I_g}^*$ in

$$\frac{1}{d_g} \left[[H_f(x, g(x), x)]_{id} + [H_{f,g}(x)]_{id} \otimes 1 + 1 \otimes [H_{f,h}(g(x))]_{id} \right]^{d_g}.$$
It is clear from this and also the specific form of $H_f(x, g(x), x)$, $H_{f,g}(x)$ and $H_{f,g^{-1}}(g(x))$ that the coefficients of $\theta_{i+1} \otimes \theta_i$ in $H_f(x, g(x), x)$ do not contribute to $\sigma_{g,g^{-1}}$. Due to the same reason one sees that $H_{f,g}$ and $H_{f,g^{-1}}$ contribute to $\sigma_{g,g^{-1}}$ in pairs. Taking care of the Clifford algebra coefficients, one obtains a recurrence formula for $\sigma_{g,g^{-1}}$ in terms of $\det(M_g)$ via its minors.

Lemma 12. For each $g \in G_f \setminus \{\text{id}\}$, we have

$$[\det(M_g)] = \left(\prod_{i=1}^{d_g} \frac{-a_i}{1 - g_i} \right) [x_1^{a_1-2} x_2^{a_2-1} \cdots x_{d_g}^{a_{d_g}-1} x_{d_g+1}] = \left(\prod_{i=1}^{d_g} \frac{1}{g_i - 1} \right) [H_{g,g^{-1}}]. \quad (30)$$

Proof. The proof is done inductively as follows:

$$[\det(M_g)] = \left[\frac{-x_1^{a_1-2} x_2^{a_2-2}}{g_1 - 1} \left(\frac{1 - g_1}{1 - g_1} - a_1 \right) \left(\prod_{i=2}^{d_g} \frac{-a_i}{1 - g_i} \right) x_2^{a_2-2} x_3^{a_3-1} \cdots x_{d_g}^{a_{d_g}-1} x_{d_g+1} \right]$$

$$+ \left[\frac{x_1^{a_1-2} x_2^{a_2-2}}{(1 - g_1)^2} \left(\prod_{i=3}^{d_g} \frac{-a_i}{1 - g_i} \right) x_3^{a_3-2} x_4^{a_4-1} \cdots x_{d_g}^{a_{d_g}-1} x_{d_g+1} \right]$$

$$= \left(\prod_{i=1}^{d_g} \frac{-a_i}{1 - g_i} \right) [x_1^{a_1-2} x_2^{a_2-1} \cdots x_{d_g}^{a_{d_g}-1} x_{d_g+1}]$$

$$+ \left(\frac{-1 - g_1}{1 - g_2} - g_1^{a_1} \right) \left(\prod_{i=3}^{d_g} \frac{-a_i}{1 - g_i} \right) [x_1^{a_1-2} x_2^{a_2-1} \cdots x_{d_g}^{a_{d_g}-1} x_{d_g+1}]$$

where we used the relations $[x_1^{a_1}] = -a_2[x_2^{a_2-1} x_3]$ and $g_1^{a_1} g_2 = 1$. Since the element $[H_{g,g^{-1}}]$ is easily calculated and it is given by $(\prod_{i=1}^{d_g} a_i) [x_1^{a_1-2} x_2^{a_2-1} \cdots x_{d_g}^{a_{d_g}-1} x_{d_g+1}]$ (cf. [BTW16, Proof of Lemma 29]), the statement follows.

Thus we have finished the proof of Proposition 10 for f of chain type.

5.2. **Loop type** $f = x_1^{a_1} x_2 + \cdots + x_n^{a_n} x_1$. First, we list the ingredients for the product formula (25):

$$H_f(x, y, z) = \sum_{i=1}^{n-1} \frac{x_i + 1}{y_i - z_i} \left(\frac{x_i - y_i}{x_i - z_i} - \frac{x_i - z_i}{x_i - z_i} \right) \theta_i \otimes \theta_i + \sum_{i=1}^{n-1} \frac{y_i - z_i}{y_i - z_i} \theta_i \otimes \theta_i$$

$$+ \frac{z_1}{y_n - z_n} \left(\frac{x_n - z_n}{x_n - y_n} - \frac{x_n - y_n}{x_n - y_n} \right) \theta_n \otimes \theta_n + \frac{x_n - y_n}{x_n - y_n} \theta_n \otimes \theta_1.$$

$$H_{f,g}(x) = \sum_{i=1}^{n-1} \frac{g_i}{1 - g_i} \theta_i \otimes \theta_{i+1} + \frac{1}{g_n - 1} \theta_1 \otimes \theta_n, \quad g = (g_1, \ldots, g_n) \in G_f \setminus \{\text{id}\}.$$
They give
\[
H_f(x, g(x), x) = \sum_{i=1}^{n-1} \frac{x_i^{a_i-2} x_{i+1}}{g_i-1} \left(\frac{1 - g_i^{a_i}}{1 - g_i} - a_i \right) \theta_i \otimes \theta_i + \sum_{i=1}^{n-1} \frac{g_i^{a_i} - 1}{g_i-1} x_i^{a_i-1} \theta_{i+1} \otimes \theta_i \\
+ \frac{x_n^{a_n-2} x_1}{g_n-1} \left(\frac{1 - g_n^{a_n}}{1 - g_n} - a_n \right) \theta_n \otimes \theta_n + \frac{g_n^{a_n} - 1}{g_n-1} x_n^{a_n-1} \theta_n \otimes \theta_n.
\]
\[
H_{f,g^{-1}}(g(x)) = \sum_{i=1}^{n-1} \frac{x_i^{a_i-1}}{g_i-1} \theta_i \theta_{i+1} + \frac{g_n^{a_n} - 1}{g_n-1} \theta_n \theta_n, \quad g = (g_1, \ldots, g_n) \in G_f \setminus \{1\}.
\]
Consider a square matrix \(M_g \) of size \(n \) whose \((i,j)\)-th entry is given by
\[
(M_g)_{ij} := -x_i^{a_i-2} x_{i+1} \left(\frac{1 - g_i^{a_i}}{1 - g_i} - a_i \right) \delta_{i,j} + x_i^{a_i-1} \frac{g_i^{a_i}}{1 - g_i} \delta_{i+1,j} + x_i^{a_i-1} \frac{1}{g_i-1} \delta_{i,j} \\
+ \frac{x_n^{a_n-1} g_n^{a_n}}{g_n-1} \delta_{i,n} \delta_{j,1} + x_n^{a_n-1} \frac{1}{g_n-1} \delta_{i,j} \delta_{j,n}.
\] (31)

Lemma 13. For each \(g \in G_f \setminus \{1\} \), we have the following equality in \(\text{Jac}(f) \):
\[
\sigma_{g,g^{-1}} = (-1)^{\frac{n(n-1)}{2}} [\det(M_g)].
\] (32)

Proof. The proof is similar to that of Lemma 11. The only differences are the term \(\theta_i \otimes \theta_i \) in \(H_f(x, g(x), x) \) and \(\theta_i \theta_n \) in \(H_{f,g^{-1}}(g(x)) \) (and also in \(H_{f,g^{-1}}(g(x)) \)) that give some additional contributions to \(\sigma_{g,g^{-1}} \) (in particular the third and fourth summands in proof of Lemma 14 below).

Lemma 14. For each \(g \in G_f \setminus \{1\} \), we have
\[
[\det(M_g)] = \left(\prod_{i=1}^{n} \frac{1}{g_i-1} \right) \left(\prod_{l=1}^{n} a_l \right) (-1)^n \left[x_1^{a_1-1} \cdots x_n^{a_n-1} \right] = \left(\prod_{i=1}^{n} \frac{1}{g_i-1} \right) \left[H_{g,g^{-1}} \right].
\] (33)

Proof. First, we have the following

Lemma 15. Let \(M'_g \) be a square matrix of size \(n \) whose \((i,j)\)-th entry is given by
\[
(M'_g)_{ij} := -x_i^{a_i-2} x_{i+1} \left(\frac{1 - g_i^{a_i}}{1 - g_i} - a_i \right) \delta_{i,j} + x_i^{a_i-1} \frac{g_i^{a_i}}{1 - g_i} \delta_{i+1,j} + x_i^{a_i-1} \frac{1}{g_i-1} \delta_{i,j} \\
+ \frac{x_n^{a_n-1} g_n^{a_n}}{g_n-1} \delta_{i,n} \delta_{j,1} + x_n^{a_n-1} \frac{1}{g_n-1} \delta_{i,j} \delta_{j,n}.
\]
We have
\[
[\det(M'_g)] = \left(\prod_{i=1}^{n} \frac{1}{g_i-1} \right) \left(\sum_{k=0}^{n} (-1)^k \left(\prod_{l=1}^{n-k} a_l \right) \left(\prod_{l=n-k+1}^{n} \frac{1 - g_l^{a_l}}{1 - g_l} \right) \right) \left[x_1^{a_1-1} \cdots x_n^{a_n-1} \right].
\]

Proof. One can show easily the statement by induction where we use the relations \([x_1^{a_1}] = -a_2[x_2^{a_2-1} x_3], \ldots, [x_{n-1}^{a_{n-1}^{-1}}] = -a_n[x_n^{a_n-1} x_1] \) and \(g_1^{a_1} g_2 = \cdots = g_{n-1}^{a_{n-1}} g_n = 1 \).

The statement follows from a direct calculation of the determinant:
\[
\left(\prod_{i=1}^{n} (g_i - 1) \right) [\det(M_g)]
\]
\[= \left(\sum_{k=0}^{n} (-1)^k \left(\prod_{l=1}^{n-k} a_l \right) \left(\prod_{l=n-k+1}^{n} \frac{1-g_l}{1-g_l} \right) \right) \left[x_1^{a_1-1} \cdots x_n^{a_n-1} \right] \]
\[+ a_1 \frac{1-g_n}{1-g_n} \left(\sum_{k=0}^{n-2} (-1)^k \left(\prod_{l=2}^{n-k-1} a_l \right) \left(\prod_{l=n-k}^{n-1} \frac{1-g_l}{1-g_l} \right) \right) \left[x_1^{a_1-1} \cdots x_n^{a_n-1} \right] \]
\[+ (-1)^n \left[x_1^{a_1-1} \cdots x_n^{a_n-1} \right] - \left(\prod_{i=1}^{n} g_i^{a_i} \right) \left[x_1^{a_1-1} \cdots x_n^{a_n-1} \right] \]
\[= \left(\sum_{k=0}^{n} (-1)^k \left(\prod_{l=1}^{n-k} a_l \right) \left(\prod_{l=n-k+1}^{n} \frac{1-g_l}{1-g_l} \right) \right) \left[x_1^{a_1-1} \cdots x_n^{a_n-1} \right] \]
\[= \left(a_1 \cdots a_n - (-1)^n \right) \left[x_1^{a_1-1} \cdots x_n^{a_n-1} \right], \]

where we used the relations \([x_n^{a_n}] = -a_1 [x_1^{a_1-1} x_2], 1-g_1^{a_1} = -g_2^{a_1} (1-g_2), \ldots, 1-g_{n-1}^{a_n} = -g_n (1-g_n), 1-g_n^{a_n} = g_1 (1-g_1) \) and \(g_1^{a_1} \cdots g_n^{a_n} = g_1^{a_1-1} \cdots g_n^{-1} \). Since the element \([H_{g,g-1}]\) is nothing but \([\text{hess}(f)]\) and it is given by \((a_1 \cdots a_n - (-1)^n) [x_1^{a_1-1} \cdots x_n^{a_n-1}]\).

Thus we have finished the proof of Proposition \([\text{III}]\) also for \(f \) of loop type.

6. CATEGORICAL EQUIVALENCE

In our previous papers \([\text{BTW16, BTW17}]\), we found an algebra isomorphism
\[
\text{Jac}(\overline{f}) = \text{Jac}(\overline{f}, \{ \text{id} \}) \cong \text{Jac}(f, G), \quad (34)
\]
for some invertible polynomials \(f, \overline{f} \) and subgroups \(G \subseteq G_f \cap \text{SL}(3, \mathbb{C}) \). More precisely, \(f \) is an invertible polynomial defining an ADE singularity or an exceptional unimodal singularity and \(G \) is any subgroup of \(G_f \cap \text{SL}(3, \mathbb{C}) \). The polynomial \(\overline{f} \) is defined as the restriction of the map \(\widehat{f} : \mathbb{C}^3 \to \mathbb{C} \) to a chart \(U \) isomorphic to \(\mathbb{C}^3 \) containing all the critical points of \(\widehat{f} \) where \(\mathbb{C}^3 / G \) is a crepant resolution of \(\mathbb{C}^3 / G \). See \([\text{BTW16, Theorem 63}]\) and \([\text{BTW17, Theorem 1}]\).

On the other hand, one may ask whether the (quasi-)equivalence of categories of matrix factorizations holds:
\[
\text{MF}(\overline{f}) = \text{MF}_{\{ \text{id} \}}(\overline{f}) \cong \text{MF}_G(f). \quad (35)
\]

\(^2\)Theorem 1 in \([\text{BTW17}]\) is stated in a different way. Namely, we used as \(\overline{f} \) the Berghlund–Hübsch transpose of \(f \). However, it is easy to check that two different \(\overline{f} \)'s give isomorphic Jacobian algebras.
This is true from the construction of \tilde{f} due to the local property of the category of singularities of $\{\hat{f} = 0\} \subset \mathbb{C}^3/G$ which is equivalent to $\text{MF}_G(f)$ [Or, Proposition 1.14]. It is worth mentioning that in [CRCR16, RCN16] the equivalence is given as their “orbifold equivalence” $\tilde{f} \sim_{\text{orb}} f$.

The Hochschild cohomology and the cup product is invariant under categorical equivalences. Theorem 8 of this paper confirms the compatibility of the isomorphism (34) and the equivalence (35) as expected.

References

[AGV85] V. Arnold, A. Gusein-Zade, A. Varchenko, *Singularities of Differentiable Maps*, vol I
Monographs in Mathematics, 82. Birkhäuser Boston, Inc., Boston, MA, 1985

[BTW16] A. Basalaev, A. Takahashi, E. Werner, *Orbifold Jacobian algebras for invertible polynomials*, arXiv preprint: 1608.08962.

[BTW17] A. Basalaev, A. Takahashi, E. Werner, *Orbifold Jacobian algebras for exceptional unimodal singularities*, Arnold Math J. (2017). https://doi.org/10.1007/s40598-017-0076-8.

[CRCR16] N. Carqueville, A.R. Camacho, I. Runkel, *Orbifold equivalent potentials*, Journal of Pure and Applied Algebra, 220(2), (2016). 759781. http://doi.org/10.1016/j.jpaa.2015.07.015

[ET13] W. Ebeling, A. Takahashi, *Variance of the exponents of orbifold Landau–Ginzburg models*, Math. Res. Lett. 20 (1) (2013), 51–65.

[HLL] W. He, S. Li, Y. Li, *G-twisted braces and orbifold Landau-Ginzburg Models*, arXiv:1801.04560.

[KS] M. Kreuzer, H. Skarke: *On the classification of quasihomogeneous functions*, Commun. Math. Phys. 150, 137–147 (1992).

[Or] D. Orlov, *Triangulated categories of singularities and D-branes in Landau-Ginzburg models*, Proc. Steklov Inst. Math. 2004, no. 3(246), 227–248.

[RCN16] A.R. Camacho, R. Newton, *Orbifold autoequivalent exceptional unimodal singularities*, arXiv preprint: 1607.07081

[S17] D. Shklyarov, *On Hochschild invariants of Landau-Ginzburg orbifolds*, arXiv preprint: 1708.06030v1.

Skolkovo Institute of Science and Technology, Russian Federation

E-mail address: a.basalaev@skoltech.ru

Ruprecht-Karls-Universität Heidelberg, Germany

E-mail address: abasalaev@mathi.uni-heidelberg.de

Department of Mathematics, Graduate School of Science, Osaka University, Toyonaka Osaka, 560-0043, Japan

E-mail address: takahashi@math.sci.osaka-u.ac.jp

\(^3\)the second-named author thanks M. Wymess for reminding him of this at the workshop “Matrix factorizations and related topics” at ICMS, 24–28 July 2017.