Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Abstract

CD9 is a member of the cell membrane associated tetraspanin family and has been shown to have a wide array of functions, including promotion of MHC clustering, antigen presentation, T cell activation, cell adhesion, motility, growth and differentiation, signal transduction, tumor formation and egg/sperm fusion. CD9 is ubiquitously expressed in mammalian tissues and its roles are cell type dependent. CD9 is a typical interferon and egg/sperm fusion. CD9 is ubiquitously expressed in mammalian tissues and its roles are cell type dependent. CD9 is a typical interferon domain. CD9 is ubiquitously expressed in mammalian tissues and its roles are cell type dependent. CD9 is a typical interferon system and inflammation in general, as has been shown in mammals and to a lesser extent in fish. In mammals, some viruses, such as influenza, coronavirus and hepatitis C, exploit CD9 for exit of new virus particles from host cells. In contrast, increased expression of CD9 can limit HIV-1 virus budding.

Due the limited knowledge of the involvement of CD9 in immune system responses in fish, we explored the phylogeny and expression of this gene in salmonids. We found 6 paralogues, which can be further organized into three distinct clades. We termed these clades CD9a, CD9b and CD9c, each of which include two paralogues reflecting the salmonid specific whole genome duplication. CD9a and CD9b are closely related and have the greatest sequence homology with the mammalian single copy gene of CD9, indicative of the teleost specific whole genome duplication. The CD9c clade is very distinct to CD9a and CD9b in sequence identity and further shows little sequence homology with the mammalian CD9, therefore could be an ancestral form of CD9 that was subsequently lost in all other vertebrate classes.

We investigated the expression of the different paralogues in embryonic chinook salmon cells (CHSE) stimulated with interferon type I, an inducer of the antiviral pathways in fish. The paralogues of clade CD9c were highly inducible by interferon stimulation, whilst CD9a and CD9b appeared to be non-responsive. The specific inducibility of the ancestral CD9c clade to interferon type I highlights the unique immune responses in teleost. The presence of 6 paralogues organized in three clades may also reflect the diversity of roles this gene has been implicated in. In future, we aim to explore the expression of CD9, especially the putatively immune system relevant clade CD9c, in different cell types at baseline and in response to virus stimulations. This study contributes to a better understanding of CD9 involvement in immune system responses and how the gene is related to the antiviral interferon type I response. As CD9 has been shown to be important for the replication of certain viruses in mammals, this could be explored for fish viruses and potentially used as an anti-viral target.

Keywords: Tetraspanins, Salmonid, Interferon signalling, Antiviral immune response, Phylogeny

O-033.

Genomics for the understanding of the host-pathogen interaction: the case of the Atlantic salmon and Piscirickettsia salmonis

D. Valenzuela-Miranda*, B. Collet-Escarate

Interdisciplinary Center for Aquaculture Research, Laboratory of Biotechnology and Aquatic Genomics, Universidad de Concepción, Concepción, Chile

Abstract

During an infection both host and pathogen undergo a deep transcriptomic remodeling that will orchestrate either the pathogen clearance or host infection. These changes involve both the regulation of protein coding genes (mRNA) and non-coding RNAs (ncRNAs) elements, such as lincRNAs and miRNAs. Thus, knowing how these elements are modulated can reveal key aspects about host-pathogen interaction. Through RNA-seq, miRNA-seq and dual RNA-seq, we explored the coding and non-coding transcriptional response in Atlantic salmon infected with the intracellular bacterium Piscirickettsia salmonis. Differential expression analysis revealed that fish respond to P. salmonis infection through modulation of different coding genes associated with immunity, clathrin mediated endocytosis and iron metabolism responses. In addition, a strong response associated with ncRNAs was also evidenced. Our results suggested that these ncRNAs might fulfilling key regulatory roles in the response of the Atlantic salmon to P. salmonis infection. On the other hand, bacteria transcriptomic response was associated with a large number of genes involved in amino acid metabolism. Genome wide comparison and in vitro studies evidenced a metabolic dependency of P. salmonis on salmon amino acids. Based in our results, we propose that amino acids might be an important component of the nutritional immunity triggered by the Atlantic salmon to cope with P. salmonis infection. Overall, our results evidence how genomics can lead us to the understanding of novel means of interaction between host and pathogens in marine models.

Keywords: Dual RNA-Seq, Piscirickettsia salmonis, Atlantic salmon, Nutritional immunity, metabolic dependency, amino acids

---

O-034.

In vitro rainbow trout transcriptome reveals immune evasion associated with higher virulence of viral haemorrhagic septicaemia virus

I. Cano*, R. van Aarle*

Centre for Environment, Fisheries and Aquaculture Science, Barrack Road, The Nothe Weymouth, Dorset, DT4 8UB, United Kingdom

Abstract

Rainbow trout pathogenic freshwater viral haemorrhagic septicaemia virus (VHSV) emerged from an ancestral marine virus, however the pathogenic mechanism of the virulent freshwater VHSV remains unknown. In the present work, the transcriptome of RTG-2 cells inoculated with two pathogenic (J167 and DK-5131) and two non-pathogenic (96-43/8 and 1p49) isolates were analyzed at 3, 6, and 12 hours and compared to control samples using RNA-seq. Although VHSV isolates showed the same pattern of viral replication, the transcriptional profiles in RTG-2 cells were dramatically different between pathogenic and non-pathogenic isolates, revealing a lack of sensing of the viral replication in cells inoculated with both pathogenic VHSVs at early stages of infection. Functional annotation analysis of differentially-expressed genes between non-pathogenic VHSV and controls revealed an enrichment of pathways involved in the defense to biotic stimulus and metabolic processes (strong up-regulation of genes), and lipid metabolism and cell cycle (down-regulation of genes). In contrast, cholesterol and cytoskeleton mobility pathways were enriched (up-regulation of genes) by both pathogenic VHSV. Furthermore, an increasingly