In vitro activities of Eravacycline against 336 isolates collected from 2012 to 2016 from 11 teaching hospitals in China

Chunjiang Zhao, Xiaojuan Wang, Yawei Zhang, Ruobing Wang, Qi Wang, Henan Li and Hui Wang *

Abstract

Background: In China multidrug-resistant bacteria pose a considerable threat to public health. Antimicrobial resistance has weakened the effectiveness of many medicines widely used today. Thus, discovering new antibacterial drugs is paramount in the effort to treat emerging drug-resistant bacteria.

Methods: Eravacycline, tigecycline and other clinical routine antibiotics were tested by reference broth micro-dilution method against 336 different strains collected from 11 teaching hospitals in China between 2012 and 2016. These isolates included Enterobacteriaceae, non-fermentative, Staphylococcus spp., Enterococcus, and a number of fastidious organisms. The strains involved in this study possess the most important drug resistance characteristics currently known in China. Drug resistant bacteria such as those producing extended spectrum β-lactamases (ESBL) and carbapenemases (KPC-2 and NDM-1), and those exhibiting colistin resistance (mcr-1) and tigecycline were included in this study. Additionally, methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant enterococci (VRE), β-lactamase positive Haemophilus influenzae, and penicillin resistant Streptococcus pneumoniae (PRSP) were also included.

Results: Eravacycline exhibited good efficacy against all the strains tested, especially for organisms with ESBLs, carbapenemases, and mcr-1 gene compared with tigecycline and other antibiotics tested. The MIC values of eravacycline against carbapenemase producing Enterobacteriaceae and OXA-23-producing A. baumannii were much lower than the MIC values of other antibiotics. MRSA, VRE, β-lactamase positive Haemophilus influenzae, and PRSP were sensitive to eravacycline in every strain tested. Furthermore, in most strains tested, the MICs of eravacycline were two to four-fold lower than the MICs of tigecycline.

Conclusions: Eravacycline has shown potent antibacterial activity against common and clinically important antibiotic-resistant pathogens. The MIC distribution of eravacycline was generally lower than that of tigecycline which demonstrates that this new drug is potentially more effective than the existing medications.

Keywords: Eravacycline, Tigecycline, Carbapenem resistant Enterobacteriaceae bacteria, Acinetobacter baumannii, Antibiotic resistance

* Correspondence: whuibj@163.com
Department of Clinical Laboratory, Peking University People’s Hospital,
Beijing 100044, China

© The Author(s). 2019 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
Background
In China, microbial resistance to presently administered antimicrobial agents is increasing steadily owing to the emergence of novel resistance mechanisms in the microbes [1, 2]. Multidrug-resistant bacterium causes a considerable threat to public health. Antimicrobial resistance weakened the effectiveness of many medicines widely used today [3]. Thus discovering new antibacterial drugs are required to combat the threat of these emerging resistant bacteria. Eravacycline (TP-434 or 7-fluoro-9-pyrrolidinoacetamido-6-demethyl-6-deoxytetra-cycline) is a novel broad-spectrum synthetic tetracycline antibiotic being developed for the treatment of severe life-threatening infections, including those that are resistant to current broad-spectrum antibiotics [4]. Eravacycline has already been proven effective against some clinically important antibiotic-resistant pathogens, including gram-positive and gram-negative aerobic and anaerobic pathogens [5, 6]. Moreover, eravacycline was found to be safer and more effective than carbapenems in patients with complicated intra-abdominal infection (cIAI) during global phase 3 clinical trials (NCT01844856 and NCT02784704) [5, 7]. Additionally, there is a clinical development plan in place to introduce it into China to address bacterial drug resistance. The targets of eravacycline include complicated intra-abdominal infection (cIAI), complicated urinary tract infection (cUTI), and pulmonary infections caused by other susceptible pathogens. Tigecycline is a relatively new competing drug for eravacycline, imipenem, meropenem and colistin in the treatment of carbapenem-resistant Enterobacteriaceae. The present study was designed to evaluate the in vitro activities of eravacycline against panels of clinical bacterial pathogens, with or without remarkable resistance factors, which were collected in recent years and were similar to pathogenic bacteria that this drug was designed to treat. This study was designed to prove the in-vitro efficacy of eravacycline (presented by minimum inhibitory concentration, MIC) against major target pathogens in China, which will be used to support further clinical development of eravacycline within China.

Methods
In the present study, a total of 336 different clinical isolates, were routinely collected from 11 teaching hospitals representing the south, north, northwest, east, and middle regions of mainland China between 2012 and 2016, and tested (list of the hospitals can be found in Additional file 1). After re-identification with the typical biochemical reaction of each organism, the strains were stored in a Microbank tube and placed in a refrigerator at −80 degrees Celsius before test. All organisms and their associated drug resistance factors are detailed in Table 1. MIC measurements were performed via the reference broth microdilution method as described by the Clinical and Laboratory Standards Institute (CLSI) M7-A9 (2012) [8]. Escherichia coli ATCC 25922 and Pseudomonas aeruginosa ATCC 27853 were utilized as quality controls in MIC testing of gram-negative bacteria. Staphylococcus aureus ATCC 29213 and Enterococcus faecalis ATCC 29212 were utilized as quality controls in MIC testing of gram-positive bacteria. Streptococcus pneumoniae ATCC 49619, Haemophilus influenzae ATCC 49247 and Haemophilus influenzae ATCC 49766 were used as quality controls during MIC testing of the fastidious organisms. Tigecycline, the major comparator for eravacycline, imipenem, meropenem and colistin to treat carbapenem-resistant Enterobacteriaceae and Acinetobacter bauman-nii, were selected in the panel of antibiotics to be tested. We evaluated eravacycline with a gradient concentration of 0.002–16 mg/L against common clinical gram-negative bacilli, gram-positive cocci, and fastidious organisms collected from our previous studies [9–13], including Enterobacteriaceae (Klebsiella pneumoniae, Escherichia coli, Enterobacter cloacae), Acinetobacter bauman-nii, Stenotrophomonas maltophilia, Staphylococcus aureus, Staphylococcus epidermidis, Staphylococcus haemolyticus, Staphylococcus malthophilia, Staphylococcus faecalis, Enterococcus faecium, Streptococcus pneumoniae and Haemophilus influenzae. Antibiotic solutions for susceptibility testing were freshly prepared according to the manual of CLSI [8]. A scatter plot of eravacycline versus tigecycline was drawn for each species of bacteria, to reveal the relationship between the two antibiotics in different organisms. All the results related to resistant genes were readily available, directly from our previous researches [12–14]. Statistical analyses and data visualization were done with R (version 3.4.4) and ggplot2 package (version 2.2.1).

Results
In vitro activity of eravacycline was evaluated against 336 strains of clinically significant species, with many exhibiting resistance factors (Table 1). In most of the strains tested, the MIC_{50} and MIC_{90} values for eravacycline were lower than that of tigecycline and other comparable antibiotics tested for each organism/phenotypic group. Furthermore, eravacycline was highly effective against all of the organisms tested, regardless of resistance factors.

For Enterobacteriaceae bacteria, the MIC values of eravacycline varied with the resistance characteristics, especially for K. pneumoniae. The MIC_{50} values of eravacycline against E. cloacae and E. coli were much lower than the values of other comparable drugs, especially in strains with resistance phenotypes (Table 2). For K. pneumoniae, the MIC distribution of eravacycline differed depending on the drug resistance features. K. pneumoniae strains which were ESBL-positive (n = 10),
Table 1 The strains involved in this study and antibiotic resistance characteristics of the strains

Group	Identification	Resistance features	Number
Enterobacteriaceae	Klebsiella pneumoniae	ESBL	10
		Tigecycline resistant	13
		kpc-2 positive	9
		NDM-1 positive	3
		mcr-1 positive	4
		Sensitive a	10
	Escherichia coli	ESBL	10
		mcr-1, NDM-5	5
		Carbapenem resistant	10
		Sensitive a	10
	Enterobacter cloacae	ESBL	6
		Carbapenem resistant	1
		Sensitive a	22
	Non-fermentive	Acinetobacter baumannii	
		OXA-23 positive	21
		Tigecycline resistant	9
		Sensitive a	9
	Stenotrophomonas maltophilia	Sensitive a	29
Staphylococcus sp.	Staphylococcus aureus	MRSA	15
		MSSA	6
	Staphylococcus epidermidis	MRCoNS	10
		MSCoNS	10
	Staphylococcus haemolyticus	MRCoNS	8
		MSCoNS	1
	Staphylococcus hominis	MRCoNS	6
		MSCoNS	4
	Enterococcus	Enterococcus faecalis	10
		Sensitive a	
		Enterococcus faecium	3
		VRE	
		Sensitive a	8
	Fastidious	Haemophilus influenzae	
		β-lactamase negative	10
		β-lactamase positive	10
		Streptococcus pneumoniae	
		PRSP	10
		PSSP	10

* a: Sensitive strains referred to strains do not have specific resistance characteristics such as ESBL, carbapenem resistance, polymyxin resistance and glycopeptide resistance.

kpc-2-positive (*n* = 9) and **NDM-1-positive** (*n* = 3), had similar MIC distributions. The MIC$_{50}$ value of eravacycline against strains with the above three resistance mechanisms is 0.5 mg/L, and the MIC90 values were 1 mg/L, 2 mg/L and 1 mg/L respectively.

K. pneumoniae strains resistant to tigecycline were susceptible to eravacycline at higher MIC$_{50}$ values of 8 mg/L, while the MIC$_{90}$ was equivalent to that of tigecycline at 16 mg/L. For **mcr-1** positive strains, the MIC$_{50}$ of eravacycline was 1 mg/L compared with 16 mg/L for tigecycline, while the MIC$_{90}$ of eravacycline and tigecycline was equivalent at 16 mg/L. The MIC$_{50}$ (0.5 mg/L) and MIC$_{90}$ (2 mg/L) values of eravacycline against carbapenem-resistant *K. pneumoniae*, were much lower than those of other antibiotics such as imipenem, meropenem, cephalosporins, and fluoroquinolones. The MIC distributions for *K. pneumoniae* of different resistant phenotypes to eravacycline, tigecycline, and other clinically common antibiotics are presented in Table 3.

MIC distributions for *A. baumannii* also varied by resistance characteristics. *A. baumannii* isolates were tigecycline resistant and showed slightly elevated MIC$_{50}$ and MIC$_{90}$ for eravacycline at 2 mg/L. OXA-23-producing *A. baumannii* isolates have a MIC$_{50}$ of 1 mg/L and MIC$_{90}$
of 2 mg/L for eravacycline, and these values were much lower than the MIC\textsubscript{50} and MIC\textsubscript{90} of tigecycline (4 mg/L, 4 mg/L), imipenem (64 mg/L, 64 mg/L), and meropenem (32 mg/L, 64 mg/L). The MIC distributions for \textit{A. baumannii} with different resistant phenotypes to eravacycline, tigecycline, and other clinically relevant antibiotics such as imipenem, meropenem, and colistin are presented in Table 4.

For \textit{S. maltophilia} there is no breakpoints available for tigecycline, the MIC distributions of tigecycline and eravacycline against \textit{S. maltophilia} were evaluated. The MIC\textsubscript{50} and MIC\textsubscript{90} for eravacycline were both 1 mg/L, at the same time the MIC\textsubscript{50} and MIC\textsubscript{90} for tigecycline were 0.5 mg/L and 1 mg/L.

For \textit{Staphylococcus} spp., the results indicated that MIC\textsubscript{50} and MIC\textsubscript{90} of eravacycline were 0.25 mg/L and 0.5 mg/L,
Table 3 MIC distribution of eravacycline and relevant antibiotics against *K. pneumoniae* of different resistance characteristics

Antibiotics	Sensitive, n=10	ESBL, n=10	*kpc*-2 positive, n=9	NDM-1 positive, n=3	mcr-1 positive, n=4	Tigecycline resistant, n=13												
	MIC₅₀	MIC₉₀	Range															
Eravacycline	0.25	0.5	0.125-0.5	0.5	0.125	0.25-4	0.5	1	0.5-1	1	16	0.5-16	8	16	2-16			
Tigecycline	0.5	1	0.5-2	1	4	0.5-4	1	4	0.125	1	2	1-2	16	16	2-16			
Piperacillin/Tazobactam	2	4	2-4	4	256	2-256	256	256	256-256	4	4	4-4	16	32	4-32			
Cefoxitin	4	8	2-16	8	16	2-32	256	256	256-256	8	8	2-8	32	64	8-128			
Ceftazidime	0.125	0.25	0.125-0.25	64	256	16-256	64	256	32-256	1	1	0.125-1	1	64	0.5-64			
Cefoperazone/Sulbactam	0.25	0.25	0.125-0.25	16	64	8-64	256	256	256-256	1	1	0.5-1	2	32	1-128			
Ceftriaxone	0.064	0.064	0.032-0.125	256	256	256	256	256	256-256	0.125	0.125	0.032-0.125	0.5	128	0.125-256			
Cefotaxime	0.032	0.125	0.032-0.125	256	256	256	256	256	256-256	0.125	0.125	0.032-0.125	0.5	128	0.125-256			
Cefepime	0.032	0.064	0.032-0.064	32	64	4-128	64	256	32-256	128	256	128-256	2	2	0.032-2			
Ertapenem	0.016	0.016	0.016-0.016	0.25	0.05	0.032-0.05	32	32	32-32	32	32	32-32	0.016	0.016	0.032-0.016			
Imipenem	0.125	0.25	0.125-1	0.125	0.025	0.125-0.25	8	32	8-32	8	32	8-32	0.125	0.125	0.125-0.125			
Meropenem	0.016	0.082	0.016-0.032	0.032	0.0064	0.032-0.015	16	32	8-32	0.032	0.064	0.032-0.064	0.032	0.064	0.016-0.064			
Colistin	0.25	0.25	0.125-0.25	0.25	0.25	0.125-0.25	0.25	0.25	0.125-0.25	32	64	16-64	0.25	32	0.125-32			
Amikacin	1	1	0.5-1	1	4	0.5-32	1	256	0.5-256	2	2	1-2	1	1	1-1	1	2	0.5-256
Minocycline	2	4	2-8	16	32	2-32	32	32	4-32	32	32	4-32	32	128	16-256			
Ciprofloxacin	0.016	0.082	0.016-0.25	2	0.016-0.64	32	64	64	64-64	32	32	0.032-32	32	64	0.25-64			
Levofloxacin	0.004	0.125	0.004-0.05	2	0.004-0.64	16	64	16-64	32	32	16-32	16	16	0.064-16				

^a Sensitive strains referred to strains do not have ESBL, carbapenem resistance and polymyxin resistance
respective, for MRSA (methicillin-resistant \textit{S. aureus}), for MSSA (methicillin-sensitive \textit{S. aureus}) the MIC\textsubscript{50} of eravacycline was as low as 0.064 mg/L, and MIC\textsubscript{50} remained the same as that of MRSA. MIC\textsubscript{50} and MIC\textsubscript{90} of eravacycline for methicillin-resistant coagulase-negative \textit{staphylococci} (MRCoNS) were 0.25 mg/L and 1 mg/L, respectively, and for MSCoNS (methicillin-sensitive coagulase-negative \textit{staphylococci}) the values of eravacycline were lower at 0.016 mg/L and 0.25 mg/L, respectively. For other antibiotics, the values are presented in Table 5.

In the results obtained for \textit{Enterococcus} spp. it was found that MIC\textsubscript{50} and MIC\textsubscript{90} of eravacycline for \textit{E. faecalis} were both 0.032 mg/L. The MIC\textsubscript{50} and MIC\textsubscript{90} of eravacycline for \textit{E. faecium} were 0.016 mg/L and 0.032 mg/L. For Vancomycin-Resistant \textit{Enterococci} (VRE) strains, the MIC\textsubscript{50} and MIC\textsubscript{90} were identical with that of vancomycin-susceptible \textit{E. faecium} strains. For other antibiotics, the values are presented in Table 6. In general, for gram-positive bacteria with varying resistance factors, eravacycline demonstrated substantial antibacterial activity.

Table 4 MIC distribution of Eravacycline and relevant antibiotics against \textit{A. baumannii} of different resistance characteristics

Antibiotics	Sensitive \(^a\), n = 9	OXA-23 positive, n = 21	Tigecycline resistant, n = 9						
	MIC\textsubscript{50}	MIC\textsubscript{90}	Range	MIC\textsubscript{50}	MIC\textsubscript{90}	Range	MIC\textsubscript{50}	MIC\textsubscript{90}	Range
Eravacycline	0.125	0.25	0.016–0.25	1	2	0.5–2	2	2	2–4
Tigecycline	0.25	0.5	0.25–0.5	4	4	4–8	8	8	8–8
Piperacillin/Tazobactam	2	4	0.016–8	256	256	256–256	256	256	256–256
Cefazidime	2	8	0.125–32	256	256	64–256	256	256	256–256
Cefepime	1	4	0.032–32	64	256	32–256	256	256	128–256
Imipenem	0.125	1	0.125–1	64	64	16–64	64	64	16–64
Meropenem	0.032	1	0.016–1	32	64	16–64	64	64	32–128
Colistin	0.125	0.25	0.125–0.25	0.25	0.25	0.125–0.25	0.25	0.25	0.25–0.25
Amikacin	4	4	1–4	256	256	256–256	256	256	256–256
Minocycline	0.125	16	0.064–16	8	16	4–16	8	8	8–16
Ciprofloxacin	0.125	0.5	0.032–32	32	32	32–32	32	32	32–32
Levofloxacin	0.125	1	0.064–32	16	32	8–32	16	16	16–32

\(^a\) Sensitive strains referred to strains do not have carbapenem resistance and tigecycline resistance

Table 5 MIC distribution of Eravacycline and relevant antibiotics against \textit{Staphylococcus} spp. of different resistance characteristics

Antibiotics	MRSA\(^b\), N = 15	MSSA\(^b\), N = 6	MRCoNS\(^b\), N = 24	MSCoNS\(^b\), N = 15					
	MIC\textsubscript{50}	MIC\textsubscript{90}	Range	MIC\textsubscript{50}	MIC\textsubscript{90}	Range	MIC\textsubscript{50}	MIC\textsubscript{90}	Range
Eravacycline	0.25	0.5	0.032–1	0.064	0.5	0.016–2	0.25	0.25	0.16–2
Tigecycline	0.25	0.5	0.125–0.5	0.25	0.25	0.125–0.25	0.25	0.25	0.125–0.25
Oxacillin	64	64	2–64	0.25	0.5	0.25–0.5	2	64	0.5–25
Cefoxitin	256	256	32–256	4	4	2–4	16	256	2–256
Vancomycin	1	1	0.5–1	0.5	0.5	0.5–0.5	1	2	0.5–2
Teicoplanin	2	2	0.5–2	0.5	0.5	0.5–1	2	4	0.064–8
Erythromycin	256	256	0.25–256	256	256	0.25–256	64	256	0.125–256
Minocycline	4	16	0.064–32	0.064	0.125	0.064–0.125	0.25	0.25	0.064–8
Ciprofloxacin	64	64	0.25–64	0.5	0.5	0.25–0.5	16	64	0.125–64
Levofloxacin	32	64	0.25–64	0.25	0.25	0.125–0.25	4	128	0.25–128
Moxifloxacin	8	16	0.016–32	0.064	0.064	0.016–0.064	1	16	0.064–32
Trimethoprim/Sulfamethoxazole	0.125	16	0.032–16	0.032	0.064	0.032–0.25	4	32	0.064–64
Chloramphenicol	8	8	4–32	8	8	4–64	4	8	2–64
Rifampin	256	256	0.004–256	0.008	0.016	0.004–0.016	0.008	0.008	0.004–0.016
Clindamycin	128	256	0.064–256	0.064	256	0.064–256	0.125	256	0.064–256
Linezolid	1	2	0.5–2	2	2	1–2	1	1	0.5–1

\(^b\) Methicillin-resistant \textit{Staphylococcus aureus}, \(^b\) Methicillin-sensitive \textit{Staphylococcus aureus}, \(^b\) Methicillin-resistant coagulase-negative \textit{staphylococci}, \(^b\) Methicillin-sensitive coagulase-negative \textit{staphylococci}
For fastidious strains, including 20 *S. pneumoniae* isolates and 20 *H. influenzae* isolates, eravacycline showed high antimicrobial activities against *S. pneumoniae* with MIC50 (0.008 mg/L) and MIC90 (0.008 mg/L), there was no difference with eravacycline distribution between PRSP (Penicillin-resistant *S. pneumoniae*) and PSSP (Penicillin-sensitive *S. pneumoniae*) strains (Table 7). For *H. influenzae* the MIC50 and MIC90 were 0.064 mg/L and 0.125 mg/L, and they were the same in both β-lactamase-positive and β-lactamase-negative strains (Table 8).

A jittered scatter plot was drawn using the MIC values of eravacycline and tigecycline involving all the strains tested. A clear pattern was found showing that most of the MIC values of tigecycline are higher than the corresponding MIC values of eravacycline (in many cases by 2 to 4 fold). For all of the clinical isolates tested, except for *Staphylococcus* spp. and *S. maltophilia*, more points are located above the diagonal y = x line, suggesting that eravacycline has lower MIC distribution than tigecycline (Fig. 1). For *Staphylococcus* spp. and *S. maltophilia* the points were distributed on both sides of the diagonal.

Table 8 MIC distribution of Eravacycline and relevant antibiotics against H. influenza of different resistance characteristics

Antibiotics	β-lactamases negative, n = 10		β-lactamases positive, n = 10			
	MIC50	MIC90	Range	MIC50	MIC90	Range
Eravacycline	0.064	0.125	0.064-0.125	0.064	0.125	0.032-0.125
Tigecycline	0.25	0.5	0.125-0.5	0.125	0.25	0.064-0.5
Ampicillin	0.125	0.5	0.125-1	16	64	0.064-64
Amoxicillin/Clavulanic acid	0.125	0.5	0.125-0.5	1	1	0.5-1
Penicillin	16	32	0.032-32	16	32	1-64
Cefadroxil	2	8	0.5-8	4	16	1-32
Cefuroxime	1	2	0.25-4	1	4	0.25-16
Azithromycin	1	4	0.064-4	2	64	0.25-64
Clarithromycin	4	16	0.5-16	4	64	1-64
Levofloxacin	0.032	1	0.016-1	0.032	0.125	0.016-0.5
Moxifloxacin	0.032	1	0.016-1	0.032	0.25	0.016-0.5
Trimethoprim/Sulfamethoxazole	16	32	0.032-32	16	32	1-64
Tetracycline	1	4	0.064-4	2	64	0.25-64
Chloramphenicol	0.5	1	0.25-1	1	8	0.5-8

...
bacterial isolates is required. For fastidious strains, eravacycline demonstrated excellent potency despite resistance characteristics of the strains. From the scatter plot, we can see that although MIC values of eravacycline were generally lower than those of tigecycline, the MIC values of eravacycline were also rising with the MIC values of tigecycline proportionally, thus, we need to be alert to the possible cross-resistance potential of eravacycline and tigecycline, especially in strains with higher MIC values of tigecycline.

Limitation and suggestion
The clinical isolates tested were limited by country as they were exclusively collected in China and within this country, these isolates were only obtained from 11 teaching hospitals. No strains from other hospitals were utilized. Therefore, many different clinical isolates remain untested. Thus, it is important that researchers reproduce our work in other countries with different isolates in order to understand the full spectrum of this new antibiotics’ efficacy. The results of this study show
that eravacycline has a positive application potential for the treatment of current drug-resistant bacterial infections. Considering the relatively small number of each organism and limited types of resistant phenotypes, the result of this study only partially represent the resistant phenotype encountered in real clinical practice, and additional studies are needed for a more comprehensive assessment of the antibacterial activity of eravacycline.

Conclusions
The results of this study proved that eravacycline possesses a broad spectrum of activity against a variety of gram-positive and gram-negative bacteria, including multi-drug resistant strains such as *A. baumannii* and carbapenem-resistant *Enterobacteriaceae*.

Additional file

Additional file 1: The list of committee and the institute to which it belongs for all hospitals that provided Administrative Consent to access or receive samples. This additional file list the committee (and the institute to which it belongs) for all hospitals that provided Administrative Consent to access or receive samples/data (DOCX 13 kb)

Abbreviations
CLSI: Clinical and Laboratory Standards Institute; CRAB: Carbapenem resistant *Acinetobacter baumannii*; CRE: Carbapenem resistant *Enterobacteriaceae*; cUTI: complicated urinary tract infections; ESBL: extended-spectrum-lactamases; MIC: minimum inhibitory concentration; MRSA: methicillin-resistant *Staphylococcus aureus*; MSCoNS: Methicillin-sensitive coagulase-negative *Staphylococci*; PCR: polymerase chain reaction; PRSP: penicillin resistant *Streptococcus pneumoniae*; VRE: Vancomycin-resistant enterococci

Acknowledgements
Not Applicable.

Authors’ contributions
HW, CZ conceived and designed experiments. CZ, XW, YZ, RW, QW and HL performed antibiotic susceptibility testing. HW, CZ wrote the manuscript. CZ performed the data processing and data visualization. All authors read and approved the final manuscript.

Funding
No funding was obtained for this study.

Availability of data and materials
The datasets used and analyzed during the current study are available from the corresponding author upon reasonable request.

Ethics approval and consent to participate
Study protocols were reviewed and granted by the Ethical Committee of Peking University People’s Hospital (No. 2017/PHB163). For the hospitals participated, administrative permissions to access the raw samples were granted by the Research Department of the hospitals participated.

Consent for publication
Not applicable as no human subjects.

Competing interests
The authors declare that they have no competing interests.

Received: 12 September 2018 Accepted: 15 May 2019
Published online: 10 June 2019

References
1. Yang Y, Song W, Lin H, Wang W, Du L, Xing W. Antibiotics and antibiotic resistance genes in global lakes: a review and meta-analysis. Environ Int. 2018;116:60–73. https://doi.org/10.1016/j.envint.2018.04.011.
2. Qiao M, Ying G-G, Singer AC, Zhu Y-G. Review of antibiotic resistance in China and its environment. Environ Int. 2018;110:160–72. https://doi.org/10.1016/j.envint.2017.10.016.
3. Boucher HW, Talbot GH, Bradley JS, Edwards JE, Gilbert D, Rice LB, et al. Bad bugs, no drugs: no ESCAPE An update from the Infectious Diseases Society of America. Clin Infect Dis. 2009;481–12. https://doi.org/10.1086/595011.
4. Grossman TH, Murphy TM, Sleet AM, Loiland D, Sutcliffe JA. Eravacycline (TP-434) is efficacious in animal models of infection. Antimicrob Agents Chemother. 2015;59:2567–71. https://doi.org/10.1128/AAC.04354-14.
5. Solomkin JS, Ramesh MK, Cesnaukas G, Novkovski N, Stefanova P, Sutcliffe JA, et al. Phase 2, randomized, double-blind study of the efficacy and safety of two dose regimens of eravacycline versus ertapenem for adult community-acquired complicated intra-abdominal infections. Antimicrob Agents Chemother. 2014;58:1847–54. https://doi.org/10.1128/AAC.01614-13.
6. Sutcliffe JA, O’Brien W, Faye C, Grossman TH. Antibacterial activity of Eravacycline (TP-434), a novel Fluoroxycline, against hospital and community pathogens. Antimicrob Agents Chemother. 2013;57:5548–58. https://doi.org/10.1128/AAC.01288-13.
7. Zhang Y, Zhao C, Wang Q, Wang X, Chen H, Li H, et al. High prevalence of Hypervirulent carbapenem-resistant Klebsiella pneumoniae in China: geographic distribution, clinical characteristics, and antimicrobial resistance. Antimicrob Agents Chemother. 2016;60:1155–20. https://doi.org/10.1128/AAC.01127-16.
8. Wang X, Chen H, Zhang Y, Wang Q, Zhao C, Li H, et al. Genetic characterisation of clinical Klebsiella pneumoniae isolates with reduced susceptibility to tigecycline: role of the global regulator RamA and its local repressor RamR. Int J Antimicrob Agents. 2015;45:635–40. https://doi.org/10.1016/j.ijantimicag.2015.07.010.
9. Zhang Y, Zeng J, Liu W, Zhao F, Hu Z, Zhao C, et al. Emergence of a hypervirulent carbapenem-resistant Klebsiella pneumoniae isolate from clinical infections in China. J Inf Secur. 2015;15:553–60. https://doi.org/10.1007/s12078-015-0100-4.
10. Zhang Y, Zhao C, Wang Q, Wang X, Chen H, Li H, et al. High prevalence of hypervirulent carbapenem-resistant *Klebsiella pneumoniae* in China: geographic distribution, clinical characteristics, and antimicrobial resistance. Antimicrob Agents Chemother. 2016;60:1155–20. https://doi.org/10.1128/AAC.01127-16.
11. Wang X, Chen H, Zhang Y, Wang Q, Zhao C, Li H, et al. Genetic characterisation of clinical Klebsiella pneumoniae isolates with reduced susceptibility to tigecycline: role of the global regulator RamA and its local repressor RamR. Int J Antimicrob Agents. 2015;45:635–40. https://doi.org/10.1016/j.ijantimicag.2014.12.022.
12. Zhang Y, Zeng J, Liu W, Zhao F, Hu Z, Zhao C, et al. Emergence of a hypervirulent carbapenem-resistant Klebsiella pneumoniae isolate from clinical infections in China. J Inf Secur. 2015;15:553–60. https://doi.org/10.1007/s12078-015-0100-4.
13. Wang X, Zhang F, Zhao C, Wang Z, Nichols WW, Testa R, et al. In vitro activities of ceftazidime-avibactam and aztreonam-avibactam against 372 gram-negative bacilli collected in 2011 and 2012 from 11 teaching hospitals in China. Antimicrob Agents Chemother. 2014;58:1774–8. https://doi.org/10.1128/AAC.02123-13.
14. Wang X, Xu X, Li Z, Chen H, Wang Q, Yang P, et al. An outbreak of a nosocomial NDM-1-producing Klebsiella pneumoniae ST147 at a teaching hospital in mainland China. Microb Drug Resist. 2014;20:144–9. https://doi.org/10.1089/mdr.2013.0100.
15. Wang Q, Wang X, Wang J, Ouyang P, Jin C, Wang R, et al. Phenotypic and Genotypic Characterization of Carbapenem-resistant Enterobacteriaceae: Data From a Longitudinal Large-scale CRE Study in China (2012–2016). Clin Infect Dis. 2018;67(suppl_5):196–205. https://doi.org/10.1093/cid/ciy660.
16. Sartelli M, Catena F, Ansaloni L, Coccolini F, Corbelli D, Moore EE, et al. Complicated intra-abdominal infections worldwide: the definitive data of the CIAOW study. World J Emerg Surg. 2014;9:37. https://doi.org/10.1186/s13017-014-0037-4.
17. Wang J, Hu J, Harbarth S, Pittet D, Zhou M, Zingg W. Burden of healthcare-associated infections in China: results of the 2015 point prevalence survey in dong Guan City. J Hosp Infect. 2017;96:132–8. https://doi.org/10.1016/j.jhin.2017.02.014.
18. Gong Y, Shen X, Huang G, Zhang C, Luo X, Yin S, et al. Epidemiology and resistance features of Acinetobacter baumannii isolates from the ward environment and patients in the burn ICU of a Chinese hospital. J Microbiol. 2016;54:551–8. https://doi.org/10.1007/s12275-016-6146-0.

19. Yuan X, Liu T, Wu D, Wan Q. Epidemiology, susceptibility, and risk factors for acquisition of MDR/XDR gram-negative bacteria among kidney transplant recipients with urinary tract infections. Infect Drug Resist. 2018;11:707–15. https://doi.org/10.2147/IDR.S163979.

20. Deng M, Zhu M-H, Li J-J, Bi S, Sheng Z-K, Hu F-S, et al. Molecular epidemiology and mechanisms of tigecycline resistance in clinical isolates of Acinetobacter baumannii from a Chinese university hospital. Antimicrob Agents Chemother. 2014;58:297–303. https://doi.org/10.1128/AAC.01727-13.

21. Du X, He F, Shi Q, Zhao F, Xu J, Fu Y, et al. The rapid emergence of Tigecycline resistance in blaKPC-2 harboring Klebsiella pneumoniae, as mediated in vivo by mutation in tetA during Tigecycline treatment. Front Microbiol. 2018;9:648. https://doi.org/10.3389/fmicb.2018.00648.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.