CASE REPORT

Desmoplastic infantile astrocytoma with atypical phenotype, PTEN homozygous deletion and BRAF V600E mutation

Javier Megías1*†, Teresa San-Miguel1†, Mirian Sánchez1, Lara Navarro1, Daniel Monleón1, Silvia Calabuig-Fariñas1-2, José Manuel Morales1, Lisandra Muñoz-Hidalgo1, Pedro Roldán3, Miguel Cerdá-Nicolás1,4 and Concha López-Ginés1

Abstract
Desmoplastic infantile astrocytoma (DIA) is rare, cystic and solid tumor of infants usually found in superficial cerebral hemispheres. Although DIA is usually benign, uncommon cases bearing malignant histological and aggressive clinical features have been described in the literature. We report a newborn patient who was diagnosed with a DIA and died postresection. Pathologic examination revealed that the main part of the tumor had benign features, but the internal region showed areas with a more aggressive appearance, with higher proliferative cells, anaplastic GFAP positive cells with cellular polymorphism, necrosis foci, vascular hyperplasia with endothelial proliferation and microtrombosis. Genetic study, performed in both regions of the tumor, showed a BRAF V600E mutation and a homozygous deletion in PTEN, without changes in other relevant genes like EGFR, CDKN2A, TP53, NFKBIA, CDK4, MDM2 and PDGFRα. Although PTEN homozygous deletions are described in gliomas, the present case constitutes the first report of a PTEN mutation in a DIA, and this genetic feature may be related to the malignant behavior of a usually benign tumor. These genetic findings may point at the need of further and deeper genetic characterization of DIAs, in order to better understand the biology of this tumor and to obtain new prognostic approaches, a better clinical management and targeted therapies, especially in malignant cases of DIA.

Keywords: Desmoplastic infantile astrocytoma, PTEN, BRAF V600E, Atypical

Introduction
Desmoplastic infantile astrocytoma (DIA) is a meningocerebral neuroepithelial tumor of infancy defined by a combination of distinctive clinicopathologic features [1]. DIA was first described as a meningocerebral astrocytoma attached to dura with desmoplastic reaction [2], and later was included in the World Health Organization defined as a desmoplastic cerebral astrocytoma of infancy [1]. DIA is considered a biologically benign neoplasm. The large majority of cases are usually diagnosed in the first two years of life [1, 3]. Despite the fact that DIA has been generally considered as a tumor of infants, it can also be seen in older patients. The non-infantile cases are rare, with few cases reported previously [3–12]. When surgical complete resection is achieved, it is followed by a favorable postoperative course. However, in some cases, atypical, aggressive, and multifocal variants of DIA have been described [11, 13–17].

Here, we report a rare case of DIA in a male newborn, with histological characteristics of malignancy, BRAF V600E mutation and PTEN homozygous deletion. Genetic studies of DIA are very scarce. Since its first...
description in 1984, only twelve works performed genetic search of DIA mutations, and most of them focused exclusively on the detection of the well characterized BRAF V600E mutation [10–12, 18–26]. To our knowledge, only eleven cases of DIA with this BRAF mutation have been described [10–12, 18–20, 23, 26], and mutations in PTEN have never been reported. Table 1 shows a summary of the existing literature of DIA, highlighting the publications with genetic studies (Table 1).

Case presentation
The patient was a newborn male, product of the first pregnancy of a 27-year-old mother. Ultrasonography controls during pregnancy reported an adequate gestational age, with a 88 mm biparietal diameter at week 34. However, a subsequent control at week 39 showed a high biparietal diameter, 109 mm and an intracranial hypoechoic image. An emergency caesarean was performed. External analysis showed a cephalic perimeter of 38 cm, cephalic suture softening and prominent fontanels. A MRI scan on day 1 showed a supratentorial tumor of $75 \times 63 \times 76$ mm with heterogenic signal and cystic areas. The tumor produced a midline deviation, hydrocephaly and subfalcian herniation (Fig. 1A). On day 5, surgery was performed. As a result of a hemorrhagic complication, the patient died 24 h later. The tumor was diagnosed as DIA. Postmortem examination of the brain revealed a large, well-delineated tumor in the right parieto-occipital region attached to the dura. Upon section the tumor showed solid areas with a firm texture and a grayish and pale pink color. Residual hemorrhagic areas of the surgical intervention were observed (Fig. 1B).

Histopathological study revealed that the main part of the tumor was composed of uniform atypical astrocytes with moderate pleomorphic nuclei and large eosinophilic cytoplasmic. These had a gemistocytic pattern and spinel-shaped cells with benign appearance, forming irregular fascicles or a storiform pattern (Fig. 1C, D). Neoplastic cells showed GFAP expression (Fig. 1E). A fibrillary network of reticulin Gomori-positive fibers completed the morphology (Fig. 1F). A low proliferative index (< 1 mitoses/HPF; < 1% Ki-67 labeling index) (Fig. 1G) without necrosis or vascular endothelial proliferative features was found in these areas. No ganglionic synaptophysin-positive cells were identified. The astrocytic differentiation with heterogeneity in cellular patterns, absence of ganglionic neuronal cells and desmoplastic stroma, support the diagnosis as DIA. However, the internal part of the tumor showed areas with a more aggressive appearance (Fig. 1H, I), with anaplastic GFAP positive cells with cellular polymorphism. Micronecrosis foci (Fig. 1J) and macro necrosis, vascular hyperplasia with endothelial proliferation and microtrombosis (Fig. 1K, L) were observed. An increased proliferative index (11 mitoses/HPF; ≥ 25% Ki-67) (Fig. 1M, N) completes this aggressive histopathological pattern. Finally, the tumor showed a non-desmoplastic area of small embryonal-like cells with low level of differentiation and CD133 expression (Fig. 1O). These cells altered the distribution of the reticulin network and vessels around it (Fig. 1P, Q).

All the genetic studies were performed in the two areas of the tumor, the part with more benign features and the part with an aggressive histological pattern. For the mutational analysis, BRAF was amplified by PCR and the products were analysed using the ABI-PRISM 310 Genetic Analyzer automated sequencer. For the study of deletions, multiplex ligation-dependent probe amplification (MLPA) was used (MS–MLPA probe sets P105-C2 and PO44-B1, MRCHolland, The Netherlands). Results showed a BRAF mutation that led to a substitution of valine by glutamic acid at position 600 (V600E), in both parts of the tumor (Fig. 1R). Moreover, a homozygous deletion in PTEN (exons 2 to 9) was found in both areas (Fig. 1S). No changes in EGFR, CDKN2A, TP53, NFKBIA, CDK4, MDM2 and PDGFRB were found.

Discussion and conclusions
It is generally accepted that DIA is a low-grade, biologically benign neoplasm [1]. Clinical malignancy is related to the size of the tumor and to a non-successful surgical resection. However, different reports referred to an increase of the proliferative index, histological anaplastic features, endothelial proliferation and necrosis, supporting the existence of an atypical or histologically malignant form of DIA [11, 13–17].

Setty et al. described a case of DIA associated with clusters of malignant cells which expressed GFAP [13]. Darwish et al. also reported a patient with DIA who developed multiple cerebrospinal metastases [14]. Phi and colleagues showed the case of a DIA that recurred eight years after the first surgery and had transformed to overt glioblastoma [15]. Al-Kharazi et al. described a case bearing aggressive clinical and malignant histological features, which continued to grow despite intensive chemotherapy [16]. Narayan et al. reported a case of an infant diagnosed with multifocal, cranial and spinal DIA [17]. In 2018, Wang et al. found a case which occurred ten years after subtotal resection [11]. Finally, we present a case of a DIA with areas with anaplastic GFAP positive cells, necrosis, vascular hyperplasia with endothelial proliferation and increased proliferative index. With this background, it may be concluded that not all tumors with histological features of DIA behave in a benign way, and consequently a close postsurgical follow-up would be required.
Table 1 Cases of DIA described in literature

References	Age	Sex	Genetics	BRAF mutation	
Taratuto et al. [2]	6 months	Female	No	–	
	6 months	Female	No	–	
	6 months	Male	No	–	
	1.5 months	Male	No	–	
	7 months	Male	No	–	
	9 months	Female	No	–	
Chacko et al. [4]	7 years	Female	No	–	
VandenBerg (9 cases) [27]	1.5 to 14 months	4 males/5 females	No	–	
Rushing et al. [28]	6 months	Female	No	–	
Al-Sarraj and Bridges [29]	8 months	Male	No	–	
Prayson [30]	3 months	Male	No	–	
Setty et al. [13]	4 months	Male	No	–	
Mallucci et al. [5]	3.5 years	–	No	–	
	3 months	–	No	–	
	5 months	–	No	–	
Sugiyama et al. [31]	4 months	Female	No	–	
	2 months	Female	No	–	
	5 months	Female	No	–	
	4 months	Female	No	–	
Kato et al. [6]	9 years	Male	No	–	
Darwish et al. [14]	4 months	Male	No	–	
Beppu et al. [32]	1 year	Male	No	–	
Santhosh et al. [7]	11 years	Male	No	–	
Tsuji et al. [33]	3 months	Male	No	–	
Ulu et al. [3]	4 years	Female	No	–	
Gu et al. [34]	1 month	Male	No	–	
Uro-Coste et al. [8]	5 years	Male	No	–	
Phi et al. [15]	7 months	Female	No	–	
Rasalkar et al. [9]	18 years	Female	No	–	
Al-Kharazi et al. [16]	3 months	Male	No	–	
Gessi et al. [18]	2 months	Male	Yes	No	BRAF V600E
	2 years	Male	Yes	No	BRAF V600E
	3 months	Male	Yes	No	BRAF V600E
	8 months	Female	Yes	No	BRAF V600E
Karabagli et al. [10]	6 years	Male	Yes	No	BRAF V600E
Koelsche et al. [19]	4 months	Male	Yes	No	BRAF V600E
Abuharbid et al. [20]	11 months	Female	Yes	No	BRAF V600E
Greer et al. [21]	3 months	Female	Yes	No	–
	1 month	Male	Yes	No	–
	11 months	Female	Yes	No	–
Narayan et al. [17]	8 months	Female	No	–	
Samkari et al. [35]	1.5 years	Male	No	–	
Wang et al. [11]	3 months	Female	Yes	No	–
	7 months	Female	Yes	No	–
	11 years	Female	Yes	No	–
	6 years	Male	Yes	No	–
	4 months	Female	Yes	No	–
Chatterjee et al. [12]	10 years	Female	Yes	No	–
	10 years	Male	Yes	No	–
Knowledge of genetic alterations in these tumors is limited. Table 1 summarizes the published reports of DIA, indicating whether genetic studies were performed or not. Gessi et al. performed a genome-wide DNA copy number analysis in combination with a multiplex ligation-dependent probe amplification in four DIAs. One case presented focal losses in 17q24 and gains in 1q31.1, and other DIA showed gains in KDR/PDGFRα, MET, MDM2 and BRAF, but no specific locus appeared consistently [18]. From the few genetic features described in DIA, BRAF V600E mutation is considered relatively common and the most consistent of all [11, 19]. BRAF V600E mutation is involved in different types of tumors of the central nervous system like pleomorphic xanthoastrocytoma, ganglioglioma and extra-cerebellar pilocytic astrocytoma [36], but its relevance in DIA is still controversial. Gessi et al. studied four cases of DIA and described BRAF V600E mutation for the first time in this tumor. They found it only in one case and concluded that this mutation was rare in DIA-DIG [18]. From the few genetic features described in DIA, BRAF V600E mutation is considered relatively common and the most consistent of all [11, 19]. BRAF V600E mutation is involved in different types of tumors of the central nervous system like pleomorphic xanthoastrocytoma, ganglioglioma and extra-cerebellar pilocytic astrocytoma [36], but its relevance in DIA is still controversial. Gessi et al. studied four cases of DIA and described BRAF V600E mutation for the first time in this tumor. They found it only in one case and concluded that this mutation was rare in DIA-DIG [18]. Three independent cases of DIA with BRAF V600E mutation were published in the next two years, one of them being a non-infantile desmoplastic astrocytoma [10, 19, 20]. Greer et al. published three new cases, all of them negative for the mutation [21]. In 2018, Wang and colleagues examined five DIAs using targeted DNA exome sequencing and found BRAF V600E mutations in three of them and ATRX and BCORL1 mutations in one of them, a non-infantile anaplastic tumor [11]. Chaterjee et al. presented two cases of the non-infantile variant of DIA with the canonical V600E mutation, describing this mutation as frequent in DIG-DIA tumors [12]. Two more cases were published in 2018, one negative for BRAF V600E mutation and the other positive [22, 23]. In 2019, Guerreiro Stucklin et al. established the relevance of ALK/ROS1/NTRK/MET alterations in infant gliomas, especially in high-grade gliomas [37]. In 2020, Clarke et al. performed a histologic and genetic study in a collection of 241 gliomas from patients under 4 years of age. Fusions in receptor tyrosine kinase (RTK) including those in ALK/ROS1/NTRK/MET were found in 21 cases of infantile hemispheric glioma and four DIGs, but in none of the DIA cases. From this series, only three cases were diagnosed as DIAs, without BRAF mutations, and one of them with losses in chromosomes 2, 9 and 22, and gains in 5 and 10 [24]. Imperato et al. published in 2021 a cohort of 12 DIA/DIG tumors, where no mutations in BRAF were found [25]. Finally, Chiang et al. in 2022, studied separately low-grade and high-grade areas in twelve DIA/DIGs, looking for distinct molecular characteristics [26].

References	Age	Sex	Genetics	BRAF mutation
Naylor et al. [22]	3 months	Female	Yes	No
Van Tilburg et al. [23]	4.5 months	Male	Yes	BRAF V600E
Clarke et al. [24]	>1 year	Female	Yes	No
	≤1 year	Female	Yes	No
Imperato et al. [25]	4 months	Female	Yes	No
	7 months	Male	Yes	No
	8 months	Male	Yes	No
	1 year	Female	Yes	No
	3 months	Male	Yes	No
	3 months	Female	Yes	No
	3 months	Male	Yes	No
	3 months	Female	Yes	No
	3 months	Male	Yes	No
	11 months	Female	Yes	No
	8 months	Female	Yes	No
	2 months	Female	Yes	No
Chiang et al. [26]	2 months	Female	Yes	BRAF V600E
	1 year	Female	Yes	No
	1 month	Female	Yes	No
Megías et al. (present case)	1 week	Male	Yes	BRAF V600E

Genetic studies and presence of BRAF mutation
twelve cases, only three were DIAs, one of them with the \textit{BRAF V600E} mutation. The study concluded that no recurrent genetic alterations were identified in the series, and high-grade and low-grade areas did not have significant genetic differences that could explain their distinct morphology or biological behavior.

Taken together, although \textit{BRAF V600E} mutation is now considered relatively common in DIA [11, 12, 19], it has been more associated with non-infantile cases of DIA [12], and its presence has been related with the absence of histological features of aggressiveness [11, 12, 36].

In the present work, we show a rare case of a DIA from a newborn, with histological features of malignancy, \textit{BRAF V600E} mutation and a \textit{PTEN} homozygous deletion. Both mutations were present in the different
areas of the tumor, apparently showing a lack of correlation between the aggressiveness of the area and the genetic findings. Interestingly, although PTEN homozygous deletions are found in high-grade gliomas [38], the present case constitutes the first report of a PTEN mutation in a DIA. PTEN is a haploinsufficient gene tumor suppressor which regulates various cellular processes, including genomic stability, survival, proliferation, and metabolism. Due to its role, a subtle decline or a partial inactivation of PTEN functions substantially induces susceptibility to cancer and tumorigenesis [39, 40]. Several studies suggest that the successive loss of each PTEN allele contributes to increase the aggressiveness of gliomas, being involved in the transition from the low to the high grade of these tumors [41–43] and the shortening of median life expectancy and survival [44, 45]. Similarly, the loss of PTEN could explain, at least partially, the malignant transformation of a typical benign tumor like DIA. Elucidating the mechanisms underlying tumorigenesis mediated by PTEN loss in gliomas would be important and can reveal its potential role in atypical DIAs with this mutation, like the present case.

Since no previous studies reported data about PTEN alterations in DIA, it is unknown whereas PTEN mutational status may provide useful information for the prognosis of this tumor, and distinguish a new PTEN-deficient category of aggressive DIAs. These genetic findings, concurrent with the anaplastic histological characteristics of the tumor, point at the possibility of analyze the mutational status of PTEN, together with BRAF and other still undiscovered gene mutations in new cases of DIA, in order to better understand the behavior of this rare tumor, provide a new classification of DIAs, achieve a better management of the patients and obtain new targeted molecular therapies.

Abbreviations
BRaf: B-Raf gene; DIA: Desmoplastic infantile astrocytoma; DIG: Desmoplastic infantile ganglioglioma; GFAP: Glial fibrillary acidic protein; HiFi: High-power field; MLPA: Multiplex ligation-dependent probe amplification; MRI: Magnetic resonance imaging; PTEN: Phosphatase and tensin homolog gene.

Acknowledgements
We thank Ana Clari for her technical support.

Author contributions
Conceptualization, JM, MC-N and CL-G; Methodology, LM-H, LN and TS-M; Software, JM, DM, J-MM, MS, MC-N, LN and CL-G; Validation, JM, MS, DM and CL-G; Formal analysis, JM, MS, J-MM, DM, MC-N, LN and CL-G; Investigation, MS, LM-H, TS-M, JM, SC-F, DM and CL-G; Resources, JM, DM, MC-N and CL-G; Data curation, SF-C, J-MM, MS, MC-N and CL-G; Writing—original draft, LM-H, TS-M, JM and CL-G; Writing—review and editing, JM, MC-N and CL-G; Visualization, LM-H, J-MM, TS-M, MS, PR, JM, SC-F, DM, MC-N and CL-G; Supervision, LM-H, J-MM, TS-M, JM, PR, SC-F, DM, MC-N and CL-G; Project administration, JM, MC-N and CL-G; Funding acquisition, TS-M, JM, and MC-N. All authors read and approved the final manuscript.

Funding
The funding sources have no involvement in the research and/or preparation of the article. This work was supported by Generalitat Valenciana-Spain (Grant Numbers: GV/2020/048, GRSUL/UPV2021/119 and IDI-FEDER/2021/072), Ministerio de Ciencia e Innovación-Spain (Grant Numbers P114/01669, PID2019-108973RB-C22 and PCIN2017-117), Programa VLC-Bioclinic (Grant Number AP-2021-001) and GUTMOM INTIMIC-085 from the Joint Programming Initiative HDHL. Lisandra Muñoz thanks Generalitat Valenciana-Spain for her Grant (APOST/2020/196).

Availability of data and materials
All data generated or analysed during this study are included in this published article.

Declarations
Ethics approval and consent to participate
Approval for the study herein reported was provided by Institutional Ethics Committee of the University of Valencia and Clinic Hospital of Valencia (Ley 14/2007 de Investigación Biomédica, ethics committee approval on 2015/06/03).

Consent for publication
The tumor was obtained with the child’s parents’ understanding that it might be published.

Competing interests
The authors declare that they have no competing interests.

Author details
1 Department of Pathology, Faculty of Medicine and Dentistry, University of Valencia, Avenida de Blasco Ibáñez, 13, 46010 Valencia, Spain. 2 Centro de Investigación Biomédica en Red en Cáncer (CIBERONC), Valencia, Spain. 3 Department of Neurosurgery, Clinic Hospital of Valencia, Valencia, Spain. 4 INCLIVA, Clinic Hospital of Valencia, Valencia, Spain.

Received: 21 April 2022 Accepted: 1 June 2022
Published online: 20 June 2022

References
1. WHO Classification of Tumours Editorial Board (2021) World Health Organization classification of tumours of the central nervous system, 5th edn. International Agency for Research on Cancer, Lyon
2. Taratuto AL, Monges J, Lylyk P, Leiguarda R (1984) Superficial cerebral astrocytoma attached to dura. Report of six cases in infants. Cancer 54:2505–2512
3. Ulu MO, Tannröver N, Biçeroğlu H, Oz B, Canbaz B (2008) A case report: a noninfantile desmoplastic astrocytoma. Turk Neurosurg 18:42–46
4. Chacko G, Chandi SM, Chandy MJ (1995) Desmoplastic low grade astrocytoma: a case report and review of literature. Clin Neurol Neurosurg 97:32–35
5. Mallucci C, Lelouch-Tubiana A, Salazar C, Cinalli G, Renier D, Sainte-Rose C et al (2000) The management of desmoplastic neuroepithelial tumours in childhood. Child's Nerv Syst 16:8–14
6. Kato M, Yano H, Okumura A, Shihoda J, Sakai N, Shimokawa K (2004) A non-infantile case of desmoplastic infantile astrocytoma. Childs Nerv Syst 20:499–501
7. Santhosh K, Kesavadas C, Radhakrishnan VV, Abraham M, Gupta AK (2008) Multifocal desmoplastic noninfantile astrocytoma. J Neurol Neurosurg Psychiatry 35:286–291
8. Uro-Coste E, Sai-Yan-Kai G, Guibell-Brugier C, Boetto S, Bertozzi AI, Sevely A et al (2010) Desmoplastic infantile astrocytoma with benign histological phenotype and multiple intracranial localizations at presentation. J Neurooncol 98:143–149
9. Rasalkar DD, Paunipagar BK, Ng A (2012) Primary spinal cord desmplastic astrocytoma in an adolescent: a rare tumour at rare site and rare age. Hong Kong Med J 18:253–255
10. Karabagli P, Karabagli H, Kose D, Kokal N, Etsu V, Koskal Y (2014) Desmo-
plastic non-infantile astrocytic tumor with BRAF V600E mutation. Brain Tumor Pathol 31:282–288
11. Wang AC, Jones DTW, Abeccasis U, Cole BL, Leary SES, Lockwood CM et al (2018) Desmoplastic infantile ganglioglioma/astrocytoma (DIG/A) are distinct entities with frequent BRAFV600 mutations. Mol Cancer Res 16:1491–1498
12. Chatterjee D, Garg C, Singla N, Radotra BD (2018) Desmoplastic non-
infantile astrocytoma/ganglioglioma: rare low-grade tumor with frequent BRAF V600E mutation. Hum Pathol 80:186–191
13. Setty SN, Miller DC, Camras L, Charbel F, Schmidt ML (1997) Desmo-
plastic infantile astrocytoma with metastases at presentation. Mod Pathol 10:945–951
14. Darwish B, Arbuckle S, Kellie S, Besser M, Chaseling R (2007) Desmoplastic infantile ganglioglioma/astrocytoma with cerebrospinal metastasis. J Clin Neurosci 14:496–501
15. Phi JH, Koh EJ, Kim S-K, Park S-H, Cho B-K, Wang K-C (2011) Desmoplas-
tic infantile astrocytoma: recurrence with malignant transformation into glioblastoma. a case report. Childs Nerv Syst 27:2177–2181
16. Al-Kharazi K, Gillis C, Steinbok P, Dunham C (2013) Malignant desmo-
plastic infantile astrocytoma? A case report and review of the literature. Clin Neuropathol 32:100–106
17. Narayan V, Savaidekar AR, Mahadevan A, Anvazhagan A, Appaji L (2017) Unusual occurrence of multifocal desmoplastic infantile astrocytoma: a case report and review of the literature. PNE 52:173–180
18. Gessi M, zur Mühlen A, Hammers J, Waha A, Denkhaus D, Pietsch T (2013) Genome-wide DNA copy number analysis of desmoplastic infantile astrocytomas and desmoplastic infantile gangliogliomas. J Neuropathol Exp Neurol 72:807–815
19. Koolsche C, Sahm F, Paulus W, Mittelbronn M, Giangaspero F, Antonelli M et al (2014) BRAF V600E expression and distribution in desmoplastic infantile astrocytoma/ganglioglioma. Neuropathol Appl Neurobiol 40:337–344
20. Abuharbaid G, Esmaeilzadeh M, Hartmann C, Hermann EJ, Krauss JK (2015) Desmoplastic infantile astrocytoma with multiple intracranial and intraspinal localizations at presentation. Childs Nerv Syst 31:959–964
21. Greer A, Foreman NK, Donson A, Davies KO, Kleinschmidt-DeMasters BK (2017) Desmoplastic infantile astrocytoma with rare BRAF V600D mutation. Pediatr Blood Cancer. https://doi.org/10.1002/pbc.26350
22. Naylor RM, Wolf A, Raghunathan A, Ecker LJ, Keating GF, Daniels DJ (2018) Novel suprasellar location of desmoplastic infantile astrocytoma and ganglioglioma: a single institution’s experience. J Neurosurg Pediatr 22:397–403
23. van Tilburg CM, Seft F, Sahm F, Bächli H, Pfister SM, Witt O et al (2018) Response in a child with a BRAF V600E mutated desmoplastic infantile astrocytoma upon retreatment with vemurafenib. Pediatr Blood Cancer 65:e26893
24. Clarke M, Mackay A, Ismer B, Pickles JC, Tavetianossian RG, Newman S et al (2020) Infant high grade gliomas comprise multiple subgroups characterized by novel targetable gene fusions and favorable outcomes. Cancer Discov 10:942–963
25. Imperato A, Spennato P, Mafli F, Arcas E, Ozgural O, Quaglietta L et al (2021) Desmoplastic infantile astrocytoma and ganglioglioma: a series of 12 patients treated at a single institution. Childs Nerv Syst 37:2187–2195
26. Cingi H, Li X, Jin H, Wu G, Lin T, Ellson DW (2022) The molecular char-
acteristics of low-grade and high-grade areas in desmoplastic infantile astrocytoma/ganglioglioma. Neuropathol Appl Neurobiol 48:e12801
27. VandenBerg SR (1993) Desmoplastic infantile ganglioglioma and desmo-
plastic cerebral astrocytoma of infancy. Brain Pathol 3:275–281
28. Rushing EJ, Ronke LB, Sutton L (1993) Problems in the nosology of desmo-
plastic tumors of childhood. Pediatr Neurosurg 19:57–62
29. Al-Sarraj ST, Bridges LR (1996) Desmoplastic cerebral glioblastoma of infancy. Br J Neurosurg 10:215–219
30. Prayson RA (1996) Gliofibroma: A distinct entity or a subtype of desmo-
plastic astrocytoma? Hum Pathol 27:610–613
31. Sugiyama K, Arata K, Shima T, Nakaoka M, Matsuoka T, Taniguchi E et al (2002) Good clinical course in infants with desmoplastic cerebral neo-
roepithelial tumor treated by surgery alone. J Neuro-oncol 59:63–69
32. Beppu T, Sato Y, Uesugi N, Kuzuy Ogasawara K, Ogawa A (2008) Desmo-
plastic infantile astrocytoma and characteristics of the accompanying cyst: case report. J Neurosurg Pediatr 1:148–151
33. Tsujj K, Nakasu T, Tsujj A, Fukumi T, Nozaki K (2008) Postoperative regression of desmoplastic infantile astrocytoma. No Shinkei Geka 36:1035–1039
34. Guo S, Bao N, Yin M-Z (2010) Combined fontanelle puncture and surgical operation in treatment of desmoplastic infantile astrocytoma: case report and a review of the literature. J Child Neurosurg 25:216–221
35. Samkari A, Alzahrani F, Almehdar A, Algahtani H (2017) Desmoplastic infantile astrocytoma and ganglioglioma: case report and review of the literature. NP 36:31–40
36. Schindler G, Capper D, Meyer J, Janzarik W, Omran H, Herold-Menke C et al (2011) Analysis of BRAF V600E mutation in 1,320 nervous system tumors reveals high mutation frequencies in pleomorphic xanthoastrocytoma, ganglioglioma and extra-cerebellar pilocytic astrocytoma. Acta Neuropathol 121:397–405
37. Guerreiro Stucklin AS, Ryall S, Fukuoka K, Zapotocky M, Lassalaletta A, Li C et al (2019) Alterations in ALK/ROS1/NTRK/MET drive a group of infantile hemispheric gliomas. Nat Commun 10:4343
38. Ohgaki H, Kleihues P (2009) Genetic alterations and signaling pathways in the evolution of gliomas. Cancer Sci 100:2235–2241
39. Alimonti A, Carracedo A, Clohessy JG, Trotman LC, Nardella C, Egia A et al (2010) Subtle variations in Pten dose determine cancer susceptibility. Nat Genet 42:454–458
40. Carracedo A, Alimonti A, Pandolfi PP (2011) PTEN level in tumor suppres-
sor: How much is too little? Cancer Res 71:629–633
41. Ali IU, Schriml LM, Dean M (1999) Mutational spectra of PTEN/MMAC1 gene: a tumor suppressor with lipid phosphatase activity. J Natl Cancer Inst 91:1922–1932
42. Kwon C-H, Zhao D, Chen J, Alcantara S, Li Y, Burns DK et al (2008) Pten haploinsufficiency accelerates formation of high-grade astrocytomas. Cancer Res 68:3286–3294
43. Navarro L, Gil-Benzo R, Megias J, Muñoz-Hidalgo L, San-Miguel T, Callaghan RC et al (2015) Alteration of major vault protein in human glioblastoma and its relation with EGFR and PTEN status. Neuroscience 297:243–251
44. Ermoian RP, Furniss CS, Lamborn KR, Basila D, Berger MS, Gottschalk AR et al (2002) Dysregulation of PTEN and protein kinase B is associated with glioma histology and patient survival. Clin Cancer Res 8:1100–1106
45. Chaichana KL, Chaichana KK, Olivi A, Weingart JD, Bennett R, Brem H et al (2011) Surgical outcomes for older patients with glioblastoma multiforme: preoperative factors associated with decreased survival. J Neurosurg 114:587–594

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.