Obstructions for two-vertex alternating embeddings of graphs in surfaces

Bojan Mohar *† Petr Škoda

Department of Mathematics,
Simon Fraser University,
8888 University Drive,
Burnaby, BC, Canada.

Abstract

A class of graphs that lies strictly between the classes of graphs of genus (at most) $k - 1$ and k is studied. For a fixed orientable surface S_k of genus k, let A_{xy}^k be the minor-closed class of graphs with terminals x and y that either embed into S_{k-1} or admit an embedding Π into S_k such that there is a Π-face where x and y appear twice in the alternating order. In this paper, the obstructions for the classes A_{xy}^k are studied. In particular, the complete list of obstructions for A_{xy}^1 is presented.

1 Introduction

For a simple graph G, let $g(G)$ be the genus of G, that is, the minimum k such that G embeds into the orientable surface S_k. Similarly $\hat{g}(G)$ stands for the Euler genus of G. A combinatorial embedding Π of G is a pair (π, λ) where π assigns each vertex $v \in V(G)$ a cyclic permutation of edges adjacent

*Supported in part by an NSERC Discovery Grant (Canada), by the Canada Research Chair program, and by the Research Grant P1-0297 of ARRS (Slovenia).
†On leave from: IMFM & FMF, Department of Mathematics, University of Ljubljana, Ljubljana, Slovenia.
to \(v \) called the local rotation around \(v \) and the function \(\lambda : E(G) \to \{-1, 1\} \) describes the signature of edges when \(\Pi \) is non-orientable. A \(\Pi \)-face is a walk in \(G \) around a face of \(\Pi \) (for a formal definition see for example \([5]\)). Vertices \(v_1, \ldots, v_k \) are \(\Pi \)-cofacial if there is a \(\Pi \)-face where the vertices \(v_1, \ldots, v_k \) appear in some order.

For an edge \(e \) of \(G \), the two standard graph operations, deletion of \(e \), \(G - e \), and contraction of \(e \), \(G/e \), are called minor operations and are denoted by \(G \ast e \) when no distinction is necessary. A graph \(H \) is a minor of \(G \) if \(H \) is obtained from a subgraph of \(G \) by a sequence of minor operations. A family of graphs \(\mathcal{C} \) is minor-closed if, for each graph \(G \in \mathcal{C} \), all minors of \(G \) belong to \(\mathcal{C} \). A graph \(G \) is a (minimal) obstruction for a family \(\mathcal{C} \) if \(G \) does not belong to \(\mathcal{C} \) but for every edge \(e \) of \(G \), both \(G - e \) and \(G/e \) belong to \(\mathcal{C} \).

The well-known result of Robertson and Seymour \([12]\) asserts that the list of obstructions is finite for every minor-closed family of graphs.

For a fixed surface \(S \), the graphs that embed into \(S \) form a minor-closed family and it is of general interest to understand the obstructions \(\text{Forb}(S) \) for these families. Unfortunately, \(\text{Forb}(S_1) \) already contains thousands of graphs and is not yet determined \([6]\). We approach the problem by studying graphs in \(\text{Forb}(S_k) \) of small connectivity (see \([10]\)).

In this paper we study a phenomenon that arises when joining two graphs by two vertices. Given graphs \(G_1 \) and \(G_2 \) such that \(V(G_1) \cap V(G_2) = \{x, y\} \), the union of \(G_1 \) and \(G_2 \), that is the graph \((V(G_1) \cup V(G_2), E(G_1) \cup E(G_2))\), is an \(xy \)-sum of \(G_1 \) and \(G_2 \) (or a \(2 \)-sum if the vertices are not important). Sometimes, we also call \(G \) to be an \(xy \)-sum of \(G_1 \) and \(G_2 \) even if the edge \(xy \) is an edge of \(G_1 \) or \(G_2 \) but is not present in \(G \). To determine the genus of the \(xy \)-sum of \(G_1 \) and \(G_2 \), it is necessary to know if \(G_1 \) (and \(G_2 \)) has a minimum genus embedding \(\Pi \) such that there is a \(\Pi \)-face in which \(x \) and \(y \) appear twice in the alternating order (see \([4, 5]\)). For vertices \(x, y \in V(G) \), we say that \(G \) is \(xy \)-alternating on \(S_k \) if \(g(G) = k \) and \(G \) has an embedding \(\Pi \) of genus \(k \) with a \(\Pi \)-face \(W = v_1 \ldots v_l \) and indices \(i_1, \ldots, i_4 \) such that \(1 \leq i_1 < i_2 < i_3 < i_4 \leq l \), \(v_{i_1} = v_{i_3} = x \), and \(v_{i_2} = v_{i_4} = y \).

A graph \(G \) is \(k \)-connected if \(G \) has at least \(k + 1 \) vertices and \(G \) remains connected after deletion of any \(k - 1 \) vertices. A graph has connectivity \(k \) if it is \(k \)-connected but not \((k + 1) \)-connected.

To determine minimal obstructions of connectivity 2, we need to know which graphs are minimal not \(xy \)-alternating (see \([10]\)). For \(k \geq 1 \), let \(A^k_{xy} \) be the class of graphs with terminals \(x \) and \(y \) that are either embeddable in \(S_{k-1} \) or are \(xy \)-alternating on \(S_k \). When performing minor operations on graphs...
with terminals, we do not allow a contraction identifying two terminals to a single vertex. Also, when contracting an edge joining a terminal and a non-terminal vertex, the new vertex is a terminal. Thus the number of terminals of a minor is the same as of the original graph. A homomorphism of two graphs with terminals is an isomorphism if it is a graph isomorphism and (non-)terminals are mapped onto (non-)terminals. In particular, automorphisms that switch the terminals are considered. Under these restrictions, \mathcal{A}^k_{xy} is a minor-closed family of graphs with two terminals. Let \mathcal{F}^k_{xy} be the set of minimal obstructions for \mathcal{A}^k_{xy}, that is, a graph G belongs to \mathcal{F}^k_{xy} if $G \notin \mathcal{A}^k_{xy}$ and, for each edge $e \in E(G)$ and each allowed minor operation $*$, $G*e \in \mathcal{A}^k_{xy}$. It is shown in Sect. 2 that \mathcal{F}^k_{xy} is finite for each $k \geq 1$. Note that each vertex of a graph in \mathcal{F}^k_{xy} has degree at least 3 unless it is a terminal.

A Kuratowski graph is a graph isomorphic to K_5, the complete graph on five vertices, or to $K_{3,3}$, the complete bipartite graph on three and three vertices. For a fixed Kuratowski graph K, a Kuratowski subgraph in G is a minimal subgraph of G that contains K as a minor. A K-graph L in G is a subdivision of K_4 or $K_{2,3}$ that can be extended to a Kuratowski subgraph in G. We are using extensively the following well-known theorem.

Theorem 1 (Kuratowski [8]). A graph is planar if and only if it does not contain a Kuratowski subgraph.

We also use the following classical theorem (see [9, Theorem 6.3.1]).

Theorem 2. Let G be a connected graph and C a cycle in G. Let G' be a graph obtained from G by adding a new vertex joined to all vertices of C. Then G can be embedded in plane with C as an outer cycle unless G contains an obstruction of the following type:

(a) a pair of disjoint crossing paths,

(b) a tripod, or

(c) a Kuratowski subgraph contained in a 3-connected block of G' distinct from the 3-connected block of G' containing C.

Let G be a 2-connected graph. Each vertex of degree different from 2 is a branch vertex. A branch of G is a path in G whose endvertices are branch vertices and such that each intermediate vertex has degree 2.

Let H be a subgraph of G. An H-bridge in G is a subgraph of G which is either an edge not in H but with both ends in H, or a connected component
of $G - V(H)$ together with all edges which have one end in this component and the other end in H. For a H-bridge B, the interior of B, B°, is the set $E(B) \cup (V(B) \setminus V(H))$ containing the edges of B and the vertices inside B. Thus, $G - B^\circ$ is the graph obtained from G by deleting B.

Let B be an H-bridge in G. The vertices in $V(B) \cap V(H)$ are called attachments of B. The bridge B is a local bridge if all attachments of B lie on a single branch of H.

Let B be a cycle of a fixed orientation and u and v two vertices in C. The segment $C[u,v]$ is the path P in C from u to v (in the given orientation of C). Similarly, $C(u,v)$ denotes P without the endvertices and any combination of brackets can be used to indicate which endvertices are included in the path. Let P be a segment of C and B a C-bridge whose attachments are contained in P. The support of B in P is the smallest subsegment of P that contains all attachments of B.

For a cycle C, two C-bridges avoid each other if there are vertices u and v such that all attachments of one bridge lie on $C[u,v]$ and all attachments of the other bridge lie on $C[v,u]$. Otherwise, they overlap. A C-bridge B is planar if $C \cup B$ is planar. Let B be a set of C-bridges. The bridge-overlap graph of B has vertex set B and two bridges are adjacent if they overlap. We use the following well-known theorem.

Theorem 3. Let G be a graph that consists of a cycle C and a set B of planar C-bridges. Then G is planar if and only if the bridge-overlap graph of B is bipartite.

The paper is organized as follows. In Sec. 2 we study the classes F^k_{xy} in general. The rest of the paper is focused on the class F^1_{xy}. A basic classification of F^1_{xy} is shown in Sec. 3 and the complete list of F^1_{xy} is provided in the subsequent chapters. The paper is concluded in Sec. 7 where the main theorem is proven.

2 General properties

In this section we present some general results about graphs in F^k_{xy}, where $k \geq 1$. In the following, G/xy is the underlying simple graph of the multigraph obtained by identifying vertices x and y. Note that the edge xy does not have to be present and, if $xy \in E(G)$, we delete xy before identifying x and y. Let v_{xy} be the vertex obtained after the identification. For a graph G with
terminals \(x \) and \(y \), let \(G^+ \) denote the graph \(G + xy \) if \(xy \notin E(G) \) and the graph \(G \) otherwise. We will use the following lemma (see [9, Prop. 6.1.2.]).

Lemma 4. Let \(G \) be an \(xy \)-sum of graphs \(G_1 \) and \(G_2 \). If \(G^+_2 \) is planar, then each embedding of \(G^+_1 \) into a surface can be extended to an embedding of \(G \) into the same surface.

Proof. Since \(G^+_2 \) is planar, there is a planar embedding of \(G_2 \) such that \(x \) and \(y \) are on the infinite face. A given embedding \(\Pi \) of \(G^+_1 \) can be extended into the embedding of \(G \) by embedding \(G_2 \) into a \(\Pi \)-face incident with the edge \(xy \).

In the sequel, we shall use another graph \(G^* \) obtained from a given graph \(G \) with given terminals \(x \) and \(y \). The graph \(G^* \) is obtained as an \(xy \)-sum of \(G \) and \(K_5 - xy \) (the graph obtained from \(K_5 \) with two terminals \(x \) and \(y \) by deleting the edge \(xy \)). We will use a characterization of \(xy \)-alternating graphs by Decker et al. [5], that a graph \(G \) with terminals \(x \) and \(y \) is \(xy \)-alternating if and only if \(g(G^*) = g(G) \). They also proved the following theorem:

Theorem 5 (Decker, Glover, and Huneke [5]). If \(G \) is an \(xy \)-sum of graphs \(G_1 \) and \(G_2 \), then

\[
g(G) = \min\{g(G^+_1) + g(G^+_2) - \epsilon(G_1)\epsilon(G_2), g(G_1) + g(G_2) + 1\}
\]

where \(\epsilon(G) = 1 \) if \(G^+ \) is \(xy \)-alternating and \(\epsilon(G) = 0 \) otherwise.

Note that both \(K_5 \) and \(K_{3,3} \) are \(xy \)-alternating on the torus for any pair of vertices \(x \) and \(y \) (see Fig. 1).

For a graph \(G \) and a vertex \(x \) of \(G \), the graph \(G' \) is obtained by splitting \(G \) at \(x \) if \(x \) is replaced by two adjacent vertices \(x_1 \) and \(x_2 \) and edges incident with \(x \) in \(G \) are distributed arbitrarily to \(x_1 \) and \(x_2 \) in \(G' \). By doing the same except that \(x_1 \) and \(x_2 \) are non-adjacent, a resulting graph \(G' \) is said to be obtained by cutting of \(G \) at \(x \).

Suppose that a graph \(G \) is embedded in some surface \(S \). Let \(\gamma \) be a simple closed curve in \(S \) that intersects the embedded graph \(G \) only at vertices of \(G \). The number of vertices in \(\gamma \cap V(G) \) is called the width of \(\gamma \) (with respect to the embedded graph). If \(\gamma \) intersects \(G \) at a vertex \(z \), then it separates the edges incident with \(z \) into two parts, \(\gamma \)-sides at \(z \), according to their appearance in the local rotation around \(z \). The graph obtained by cutting \(G \) at each vertex \(v \) in \(\gamma \cap V(G) \) using the \(\gamma \)-sides to partition the edges is said
Figure 1: Kuratowski graphs and their two-vertex alternating embeddings in the torus.

to be obtained by cutting G along γ. The curve γ also induces the cutting of the surface \mathbb{S} along γ, and the cut graph is embedded in the cut surface. A curve is orientizing for a Π-embedded graph G if cutting G along γ yields an orientable embedding of the resulting graph using the embedding induced by Π. The orientizing face-width of G is the minimum width of an orientizing curve.

The next lemma outlines three characterizations of A_{xy}^k.

Lemma 6. Let G be a graph with terminals x and y. If G does not embed into S_{k-1}, then the following statements are equivalent:

(i) G is in A_{xy}^k.

(ii) G has an embedding Π into N_{2k-1} with an orientizing 1-sided simple closed curve γ of width 2 going through x and y.

(iii) G can be cut at x and y so that the resulting graph embeds into S_{k-1} with x_1, y_1, x_2 and y_2 appearing on a common face (in the stated order).

(iv) G^* embeds into S_k.

The proof of Lemma 6 uses the following result by Archdeacon and Huneke [2].

Lemma 7. Let G be a Π-embedded graph and W a Π-facial walk. If two vertices x and y appear twice in W in the alternating order x, y, x, y, then
there exists an embedding Π' of G of Euler genus $\hat{g}(\Pi) - 1$ such that every Π-facial walk is Π'-facial except for W which turns into two Π'-facial walks W_1 and W_2, each of which contains both x and y. Moreover, the curve γ passing through x and y and the faces W_1 and W_2 is 1-sided in Π' and the signatures of edges in Π' differ from Π only by switching the signatures of a γ-side at x and a γ-side at y.

Proof of Lemma 6. The equivalence of (i) and (iv) was proven by Decker et al. [5].

(i) \Rightarrow (ii): Since G does not embed into S_{k-1}, it Π-embeds into S_k with x and y alternating in a Π-face W. By Lemma 7, there is an embedding Π' of Euler genus $2k - 1$ with two Π'-faces W_1 and W_2, both containing x and y. The curve γ obtained by connecting vertices x and y in both faces W_1 and W_2 is the sought 1-sided curve of width 2. Since the signatures of edges in Π are positive, the edges of negative signature in Π' form two γ-sides of x and y (respectively). Thus cutting G along γ yields an orientable embedding and γ is orientizing.

(ii) \Rightarrow (iii): Cutting along the 1-sided orientizing curve γ yields an orientable embedding Π of genus $k - 1$. Since γ is 1-sided, the vertices obtained by cutting G along γ lie on a common face in the interlaced order.

(iii) \Rightarrow (i): Take an embedding Π of the resulting graph G' into S_{k-1} with x_1, y_1, x_2, y_2 on a common face W. Let $G'' = G' + x_1x_2 + y_1y_2$. We extend Π to an embedding Π' of G'' into S_k by embedding the new edges into W (and adding a handle). The number of faces of Π' stays the same but the number of edges is increased by two. Thus $g(\Pi') = g(\Pi) + 1$. By contracting the edges x_1x_2 and y_1y_2, we obtain G and its xy-alternating embedding in S_k. □

The classical result of Robertson and Seymour [11] asserts that the set of obstructions for each minor-closed family of graphs is finite. In particular, this implies that $\text{Forb}(S_k)$ is finite for each $k \geq 0$. A topological obstruction G for S_k is a graph with no vertices of degree 2 that does not embed in S_k but each proper subgraph of G does. Since minors and topological minors (H is a topological minor of G if G contains a subdivision of H as a subgraph) are closely related, the set $\text{Forb}'(S_k)$ of topological obstructions is also finite for each $k \geq 0$ (see [9, Prop. 6.1.1.]). Unfortunately, since the graphs in the classes \mathcal{A}_{xy}^k have terminals, the result of Robertson and Seymour does not directly apply and thus it is not clear a priori whether the sets \mathcal{F}_{xy}^k are finite.
The next lemma shows that the graphs in \mathcal{F}_{xy}^k are derived from graphs in $\text{Forb}^*(S_k)$ and thus the finiteness of $\text{Forb}^*(S_k)$ implies the finiteness of \mathcal{F}_{xy}^k.

Lemma 8. Let $G \in \mathcal{F}_{xy}^k$. Then precisely one of the graphs G, G^+, or G^* belongs to $\text{Forb}^*(S_k)$.

Proof. For each $e \in E(G)$ (possibly $e = xy$), we have $G - e \in \mathcal{A}_{xy}^k$. Therefore, we have that $g(G - e) \leq k$ and, if $g(G - e) = k$, then $G - e$ is xy-alternating on S_k. If $g(G) > k$, then $G \in \text{Forb}^*(S_k)$, since $g(G - e) \leq k$ for each $e \in E(G)$.

Thus we may assume that $g(G) = k$ and G is not xy-alternating on S_k.

Suppose that $g(G^+) > g(G)$. For each $e \in E(G)$, we have $G - e \in \mathcal{A}_{xy}^k$, hence either $g(G - e) = k - 1$ and thus $g(G^+ - e) = k$, or $G - e$ is xy-alternating on S_k and then $g(G^+ - e) = k$ since the edge xy can be embedded into the xy-alternating face. Therefore, $G^+ \in \text{Forb}^*(S_k)$.

Suppose now that $g(G^+) = g(G)$. We shall show that $G^* \in \text{Forb}^*(S_k)$. Since G is not xy-alternating on S_k, $g(G^*) > g(G)$ by Lemma 6. For $e \in E(G)$, either $g(G - e) = k - 1$ and thus $g(G^* - e) \leq k$ by (1), or $G - e$ is xy-alternating on S_k and so $g(G^* - e) = k$ also by (1). Let H be the xy-bridge of G^* induced by the edges not in G, which is isomorphic to K_5 minus an edge. For $e \in E(H)$, since $H^+ - e$ is planar, Lemma 1 gives that $g(G^* - e) = g(G^*) = g(G) = k$. This shows that $G^* \in \text{Forb}^*(S_k)$.

In conclusion, G, G^+, or G^* belongs to $\text{Forb}^*(S_k)$, and it is clear that only one of these graphs is in $\text{Forb}^*(S_k)$ since they are topological minors of each other. \qed

Lemma 8 has the following immediate corollary.

Corollary 9. For $k \geq 1$, the class of graphs \mathcal{F}_{xy}^k is finite.

Proof. Let \mathcal{F} be the family of all graphs with two terminals obtained from graphs $H \in \text{Forb}^*(S_k)$ by declaring two vertices of H to be terminals (in all possible ways), by declaring two adjacent vertices to be terminals and deleting the edge joining them or by removing a bridge isomorphic to K_5 minus an edge and declaring its two vertices of attachments to be terminals. By Lemma 6, $\mathcal{F}_{xy}^k \subseteq \mathcal{F}$. This completes the proof since $\text{Forb}^*(S_k)$ is finite. \qed

Lemma 10. For $k \geq 1$, let $G \in \mathcal{F}_{xy}^k$. If G is not embeddable into S_k, then $xy \notin E(G)$, G is xy-alternating on S_{k+1} and an obstruction for S_k.

8
Proof. If \(xy \in E(G) \), then \(G - xy \in \mathcal{A}_{xy}^k \). Since \(g(G) > k \), we have \(g(G - xy) = k \) and thus \(G - xy \) has an \(xy \)-alternating embedding in \(S_k \). But then \(G \) also embeds in \(S_k \). This contradiction shows that \(xy \notin E(G) \).

Since \(G \ast e \in \mathcal{A}_{xy}^k \) for every edge \(e \in E(G) \) and each minor operation \(\ast \), \(G \ast e \) embeds into \(S_k \). Hence \(G \) is an obstruction for \(S_k \).

Let us construct an \(xy \)-alternating embedding in \(S_{k+1} \). Let \(e = uv \) be an arbitrary edge in \(G \) and consider the graph \(G - e \). Clearly, the genus of \(G - e \) cannot drop by more than one and since \(G \in \mathcal{F}_{xy}^k \), there has to be an \(xy \)-alternating embedding of \(G - e \) in \(S_k \). Let \(\Pi \) be this \(xy \)-alternating embedding of \(G - e \) in \(S_k \) and let \(W \) be an \(xy \)-alternating \(\Pi \)-face. Pick two arbitrary \(\Pi \)-faces \(W_u \) and \(W_v \) incident with \(u \) and \(v \), respectively. Since \(u \) and \(v \) are not \(\Pi \)-cofacial, \(W_u \) and \(W_v \) are distinct. Extend \(\Pi \) to an embedding \(\Pi' \) of \(G \) in \(S_{k+1} \) by adding a handle into faces \(W_u \) and \(W_v \). Since at most one of \(W_u \) or \(W_v \) is \(\Pi \)-labeled, the \(xy \)-alternating \(\Pi' \)-face \(W \) is extended to an \(xy \)-alternating \(\Pi' \)-face.

The following is an immediate corollary of Lemma 10.

Corollary 11. For \(k \geq 1 \), we have \(\mathcal{F}_{xy}^k \subseteq \mathcal{A}_{xy}^{k+1} \).

We think that the scenario forced by Lemma 10 when \(G \in \mathcal{F}_{xy}^k \) is not embeddable in \(S_k \), is quite unlikely, and we would like to pose the following conjecture.

Conjecture 12. Let \(G \) be in \(\mathcal{F}_{xy}^k \). Then \(G \) embeds in \(S_k \).

In this paper we confirm the conjecture for \(k = 1 \).

3 Basic classification

To classify all minimal obstructions for the torus of connectivity 2, we aim to understand the class \(\mathcal{A}_{xy}^1 \) of \(xy \)-alternating graphs on the torus and the set \(\mathcal{F}_{xy}^1 \) of its obstructions.

Lemma 6 gives the following characterizations of \(\mathcal{A}_{xy}^1 \).

Corollary 13. Let \(G \) be a non-planar graph with terminals \(x \) and \(y \). The following statements are equivalent:

(i) \(G \) is in \(\mathcal{A}_{xy}^1 \).
(ii) \(G \) has an embedding \(\Pi \) into the projective plane of face-width 2 with a non-contractible curve of width 2 going through \(x \) and \(y \).

(iii) \(G \) can be cut at \(x \) and \(y \) so that the resulting graph is planar with \(x_1, x_2, y_1 \) and \(y_2 \) on a common face.

(iv) \(G^* \) embeds into the torus.

By Corollary 13, a non-planar graph \(G \) belongs to \(A_{xy}^1 \) if and only if the vertices \(x \) and \(y \) can be split so that the resulting graph is planar with the new vertices on a common face. This implies that \(G/xy \) is planar.

Corollary 14. If \(G \) is a non-planar graph in \(A_{xy}^1 \), then \(G/xy \) is planar.

We will show below that, if \(G/xy \) is non-planar, then there is a Kuratowski subgraph in \(G \) with a K-graph disjoint from \(x \) and \(y \). The following lemma by Juvan et al. \(^7\) allows us to choose a subgraph without local bridges provided that we have an almost 3-connected graph. Let \(K \) be a subgraph of \(G \). The graph \(G \) is 3-connected modulo \(K \) if for every vertex set \(U \subseteq V(G) \) with at most 2 elements, every connected component of \(G - U \) contains a branch vertex of \(K \).

Lemma 15 (Juvan, Marinček and Mohar \(^7\)). Let \(K \) be a subgraph of a graph \(G \). If \(G \) is 3-connected modulo \(K \), then \(G \) contains a subgraph \(K' \) such that

(a) \(K' \) is homeomorphic to \(K \) and has the same branch vertices as \(K \).

(b) For each branch \(e \) of \(K \), the corresponding branch \(e' \) of \(K' \) joins the same pair of branch vertices as \(e \) and is contained in the union of \(e \) and all \(K \)-bridges that are local on \(e \).

(c) \(K' \) has no local bridges.

Now, we are ready to prove that if \(G/xy \) is non-planar, then there is a Kuratowski subgraph in \(G \) with a K-graph disjoint from \(x \) and \(y \).

Lemma 16. Let \(G \) be a non-planar graph and \(x, y \in V(G) \). If \(G/xy \) is non-planar, then \(G \) contains a K-graph disjoint from \(x \) and \(y \).
Proof. Suppose that the conclusion of the lemma is false. Let G be a counterexample with $|V(G)| + |E(G)|$ minimum. It is easy to see that G is connected. If $G-x$ is non-planar, then by Theorem 1, $G-x$ contains a Kuratowski graph K and thus $K-y$ contains a K-graph in G that is disjoint from x and y. Hence $G-x$ is planar. Similarly, $G-y$ is planar.

Let K be a Kuratowski subgraph in G/xy and L a K-graph contained in $K-v_{xy}$. Let B_x and B_y be the L-bridges of G containing x and y, respectively. Necessarily, B_x and B_y are different L-bridges of G since otherwise L is a K-graph in G disjoint from x and y. We aim to get rid of the local L-bridges by applying Lemma 15 but also preserve the property that the graph is a K-graph in G/xy that is disjoint from x and y. In order to achieve that, we consider the graph $\hat{G} = G - B_x^o - B_y^o - w_1w_2$ in the case when L is isomorphic to $K_{2,3}$, w_1, w_2 are the vertices of degree 3 in L, and $w_1w_2 \in E(G)$. Otherwise, let $\hat{G} = G - B_x - B_y$.

If \hat{G} is not 3-connected modulo L, then there is a (minimal) vertex set U with $|U| \leq 2$ such that a U-bridge C does not contain any branch vertex (in C^o). If $|U| \leq 1$, then C is a block of \hat{G}. Since genus is additive over blocks (see 3), the block C is planar and its removal from G yields a subgraph of G that satisfies the assumptions of the lemma. This is a contradiction with the choice of G being minimal. Thus U contains exactly two vertices, u and v, and there is a path in C that connects u and v. Let G' be the graph obtained from G by contracting C into a single edge uv. Since C does not contain x and y, if $C + uv$ is non-planar, then C contains a K-graph disjoint from x and y in G. Hence $C + uv$ is planar and Lemma 4 gives that G' is non-planar. It is not difficult to see that G'/xy is also non-planar. By the choice of G, there is a K-graph L' in G' disjoint from x and y. Since the edge uv in G' can be replaced in G by a path in C, L' induces in a straightforward way a K-graph in G disjoint from x and y.

Therefore, we may assume that \hat{G} is 3-connected modulo L. By Lemma 15, there exists a subgraph L' of \hat{G} homeomorphic to L that has no local bridges, and has the same branch vertices as K' and also satisfies property (b) of Lemma 15. Note that, since $K_{2,3}$ and K_4 are uniquely embeddable in the plane, L' has a unique planar embedding. Let B'_x and B'_y be the L'-bridges in G containing x and y, respectively. By using (b) of Lemma 15, it is not difficult to check that L' is still a K-graph in G/xy. It follows that B'_x and B'_y are different L'-bridges in G.

Case 1: L' is a subdivision of K_4 or $w_1w_2 \notin E(G)$.
Since \(G - B_x^t \) and \(G - B_y^t \) are planar, each \(L' \)-bridge can be embedded into some \(\Pi \)-face. Since only \(B_x' \) and \(B_y' \) can be local \(L' \)-bridges in \(G \), each other \(L' \)-bridge in \(G \) embeds into a unique \(\Pi \)-face. Since the vertices of the union of the attachments of \(B_x' \) and \(B_y' \) do not lie on a single \(\Pi \)-face, the bridges \(B_x' \) and \(B_y' \) embed into different \(\Pi \)-faces. We conclude that each \(L' \)-bridge in \(G \) can be assigned a \(\Pi \)-face such that all bridges assigned to a single \(\Pi \)-face can be embedded there simultaneously. Hence \(G \) is planar — a contradiction.

Case 2: \(L \) is a subdivision of \(K_{2,3} \) and \(w_1w_2 \in E(G) \).

Consider the graph \(G' = G - w_1w_2 \). Since \(G' \) is a subgraph of \(G \) and \(G' / xy \) is non-planar, \(G'' \) is planar by the choice of \(G \). Since the planar embedding of \(G' \) cannot be extended into a planar embedding of \(G \) by adding the edge \(w_1w_2 \) into one of the three \(\Pi \)-faces, there are three paths \(P_1, P_2, P_3 \) that connect the three pairs of open branches of \(L' \), respectively (see Fig. 2). Let \(L'' \) be the subgraph of \(G \) that consists of \(w_1w_2 \), the path \(P_i \) that is embedded in the \(\Pi \)-face containing neither \(x \) nor \(y \) and the two branches of \(L' \) that \(P_i \) connects to. It is easy to see that \(L'' \) forms a K-graph in \(G \) that is disjoint from \(x \) and \(y \), a contradiction.

Lemma 16 leads to the following dichotomy of graphs is \(F_{xy}^1 \).

Lemma 17. Let \(G \) be a graph in \(F_{xy}^1 \). Then one of the following is true.

(i) \(G \) is a split of a Kuratowski graph with \(x \) and \(y \) being the two vertices resulting after the split (see Fig. 3) or \(G \) is a Kuratowski graph plus one or two isolated vertices that are terminals.

(ii) \(G/xy \) is planar.
Proof. Suppose that G does not satisfy (ii). By Lemma [16], there is a Kuratowski subgraph K in G with a K-graph L disjoint from x and y. If there is an edge e and a minor operation $*$ such that $G * e$ still contains a K-graph disjoint from x and y, then $(G * e)/xy$ is non-planar and thus $G * e \notin A^1_{xy}$ by Corollary [14]. Hence $E(G) = E(K)$. If e is a subdivided edge of K, then G/e still contains a K-graph disjoint from x and y unless a terminal and a branch vertex of K are the endvertices of e. Now it is easy to see that G satisfies (i).

4 XY-labelled graphs

Let G be a graph with terminals x and y. To investigate graphs in $G \in F^1_{xy}$ where G/xy is planar, we study the graph $H = G - x - y$. Let us label each vertex of H by the label X (Y) if it is adjacent to x (y) in G. Thus each vertex of H is given up to two labels. Let $\lambda(v)$ denote the set of labels given to the vertex v of H. A vertex v is labelled if $\lambda(v)$ is non-empty. The graph H together with the labels carries all information about G. Let us call H an XY-labelled graph. The notion of a minor of a graph is extended to XY-labelled graphs naturally: an XY-labelled graph H_1 is a minor of an XY-labelled graph H_2 if the graph with terminals corresponding to H_1 is a minor of the graph with terminals corresponding to H_2. For example, the deletion of a label is a minor operation that corresponds to an edge deletion and, when contracting an edge uv in an XY-labelled graph, the resulting vertex is labelled by $\lambda(u) \cup \lambda(v)$.

Another useful representation of G is as follows. Consider the multigraph \tilde{H} and the vertex v_{xy} obtained by identification of x and y in G (in contrast to the simple graph G/xy used in the previous sections). Label each edge e of \tilde{H} incident to v_{xy} by the label X (Y) if the edge was incident to x (y) in G. Let Π be a planar embedding of \tilde{H}. The local rotation around v_{xy} gives a cyclic sequence S of labels that appear on the edges incident with

Figure 3: Splits of Kuratowski graphs.
Call S a label sequence of \hat{H}. A label transition in a label sequence is a pair of (cyclically) consecutive labels that are different. The number of transitions $\tau(Q)$ of S is the number of label transitions in S. In the case when S contains only two different labels, $\tau(Q)$ is a multiple of 2. Thus we say that a label sequence S is k-alternating if $\tau(Q) = 2k$. A planar embedding of \hat{H} is k-alternating if the induced label sequence is k-alternating and H is called k-alternating if \hat{H} admits a k-alternating embedding in the plane. Note that Lemma 13 implies that, if H is 2-alternating, then the corresponding graph G is in A_{xy}^1.

When H is connected, a planar embedding of \hat{H} induces a planar embedding of H with a special face W in which v_{xy} is embedded. Call the cyclic sequence of vertices of W (with some possibly appearing more than once) a boundary of H. If H is 2-connected, then W is a cycle of H (see [9, Thm. 2.2.3]). To understand when a planar embedding of \hat{H} induces a 2-alternating label sequence, we study the possible boundaries of H. If M is a block of H that is not an edge, then a boundary of H induces a boundary cycle in M.

A sequence $R = v_1, \ldots, v_k$ of consecutive vertices on a boundary Q is called an X-block in Q if no vertices in R except possibly the endvertices v_1 and v_k are labelled with Y. Define a Y-block similarly.

The following lemma states the observation that, if two X-blocks contain all vertices that are labelled X, then it is easy to construct a 2-alternating embedding of \hat{H}. In this case, we say that the labels X are covered by the two X-blocks.

Lemma 18. Let H be an XY-labelled graph, Q a boundary of H, and $A \in \{X, Y\}$. If the A-labelled vertices of H are covered by two A-blocks in Q, then H is 2-alternating.

For $A \in \{X, Y\}$, an induced subgraph H' of H contains the label A if there is a vertex in H' labelled A. Let $S = A_1 \ldots A_k$ be a label sequence. Here we consider S as a linear label sequence as opposed to cyclic. Let R be a subsequence of a boundary of H. We say that R contains the label sequence S if there are distinct vertices v_1, \ldots, v_k that appear in R in this order (or the reverse order) and v_i is labelled A_i for $i = 1, \ldots, k$. We say that H' contains the label sequence S if for every boundary Q of H, the subsequence of Q induced by $V(H')$ contains the label sequence S. Let B be a block of H and v a vertex of B. We say that label A is attached to B at v if either v is labelled A or there is a v-bridge in H not containing B that contains A.

14
Lemma 19. Let H be an XY-labelled graph such that at most four vertices of H have both labels X and Y. If H is not 2-alternating, then H contains the label sequence $XYXYXY$.

Proof. Suppose that H is not 2-alternating and let Q be a boundary of H. Let R be a subsequence of Q with no unlabelled vertices such that each labelled vertex appears in R exactly once. A stronger claim is proved instead. If R does not contain the label sequence $XYXYXY$, then the labels of vertices in R can be arranged in the order given by R to obtain a 2-alternating sequence of labels. Suppose that this is not true and choose a counter-example R with minimum total number of labels.

Suppose there are cyclically consecutive vertices u and v in R such that both u and v have label A and v has only one label. By deleting A from u we obtain a sequence R' with smaller total number of labels. By the construction of R', R' does not contain the label sequence $XYXYXY$. Thus there is a 2-alternating label sequence S' of labels in R'. By inserting the label A before the occurrence of A at v, we obtain a valid 2-alternating label sequence for R. Therefore, every two consecutive vertices in R have either distinct labels or both labels.

Two cases remain: Either R contains at most four labelled vertices, all with both labels, or there are at most four vertices that have alternating labels (six vertices give the label sequence $XYXYXY$ and five vertices are not possible because of parity). In both cases, we see immediately that the labels in R can be arranged into a 2-alternating label sequence.

For graphs in \mathcal{F}_{xy}^1, Lemma 4 gives the following result.

Corollary 20. Let $G \in \mathcal{F}_{xy}^1$ and let $\{u, v\}$ be a 2-vertex-cut in G. If C is a non-trivial uv-bridge such that $C + uv$ is planar, then $C - u - v$ contains a terminal.

The following lemma describes the structure of a graphs in \mathcal{F}_{xy}^1 when the XY-labelled graph is disconnected.

Lemma 21. Let G be a graph in \mathcal{F}_{xy}^1 such that G/xy is planar and let H be the XY-labelled graph corresponding to G. If H is disconnected, then G is an xy-sum of two Kuratowski graphs and $xy \notin E(G)$ (this yields precisely six non-isomorphic graphs; see Fig. 4).
Figure 4: The two-sums of Kuratowski graphs.

Figure 5: Kuratowski graphs as an alternating extension to outerplanar graphs.

Proof. Each xy-sum of two Kuratowski graphs (without the edge xy even if it is present in a summand) is a projective planar obstruction (see [1]) and it is straightforward to check that if belongs to \mathcal{F}_{xy}^1. Fig. 5 shows the three possible XY-labelled blocks that arise.

Since H is disconnected, G has at least two non-trivial xy-bridges C_1 and C_2. Since neither $C_1 - x - y$ nor $C_2 - x - y$ contains a terminal, Corollary 20 gives that both $C_1 + xy$ and $C_2 + xy$ are non-planar. Hence G contains an xy-sum of two Kuratowski graphs as a minor.

□

5 Connectivity 2

This section is devoted to the proof of the following lemma characterizing graphs in \mathcal{F}_{xy}^1 that correspond to a 2-connected XY-labelled graph.

Lemma 22. Let G be a graph in \mathcal{F}_{xy}^1 such that G/xy is planar and such that the XY-labelled graph H corresponding to G is 2-connected. If $xy \in E(G)$, then H is one of the graphs in Fig. 6. Otherwise, H is one of the graphs in Fig. 7.
First, we derive two lemmas that will be used in the proof of Lemma 22.

Lemma 23. Let G be a graph that consists of a cycle C and C-bridges B_1, B_2 such that all other C-bridges avoid each other. If G is non-planar, then there is a C-bridge B (different from B_1 and B_2) such that B, B_1, and B_2 all pairwise overlap.

Proof. Let B be the set of C-bridges in H different from B_1 and B_2. Since the bridges in B avoid each other, B forms an independent set in the bridge-overlap graph H of $B \cup \{B_1, B_2\}$. Since G is non-planar, Theorem 3 asserts that H is non-bipartite and thus contains an odd cycle. Since every edge in H is incident with B_1 or B_2, this odd cycle is a triangle that consists of B_1, B_2 and a bridge $B \in B$. \hfill \Box

Lemma 24. Let H be an XY-labelled planar graph that consists of an XY-labelled cycle C and a C-bridge B. Let $C[w_1, w_2]$ be a segment of C that contains all attachments of B. If C contains all labels of H and the graph with terminals corresponding to H is non-planar, then $C(w_1, w_2)$ contains both labels.
Proof. Let G be the graph with terminals x, y corresponding to H. Let B_x and B_y be the C-bridges that contain x and y, respectively. Since C contains all labels of H, B_x and B_y are stars attached only to C. By Lemma 23, the bridges B, B_x and B_y pairwise overlap. Theorem 2 implies that, for each $z \in \{x, y\}$, either

(i) there are disjoint crossing paths P_1 in B and P_2 in B_z, or

(ii) the bridges B and B_z have three vertices of attachment in common.

Let Z be the label corresponding to the vertex z. When (i) holds, $C(w_1, w_2)$ contains one of the endvertices of P_2 and thus contains the label Z. When (ii) holds, each attachment of B is labelled Z. Since $C(w_1, w_2)$ contains at least one of the attachments of B, $C(w_1, w_2)$ contains the label Z. Therefore, $C(w_1, w_2)$ contains both labels X and Y as claimed. \hfill \Box

Proof of Lemma 22. Let C be a boundary cycle of H and Π the corresponding planar embedding of H.

Suppose that the edge xy is present in G. By Lemma 19, either C contains the label sequence $XYXYXY$, and then H has HEXAGON as a minor, or there are five vertices in C with both labels, and then H has PENTAGON as a minor.

Therefore, we may assume that the edge xy is not present in G. Let us consider the C-bridges B_x and B_y in G that are the stars with centers x and y, respectively. We may assume that, in Π, C is the boundary of the infinite face. By Lemma 23 there is a C-bridge B such that B, B_x, and B_y pairwise overlap.

Let us first consider the case when C does not contain the label sequence $XYXYXY$. By Lemma 19 C contains five vertices with both labels. Let v_1, \ldots, v_5 be the vertices with both labels. We may assume by symmetry that an attachment of B lies in $C(v_1, v_3)$. If there is an attachment of B in the segment $C(v_3, v_1)$, then H has ROCKET as a minor. Otherwise, all attachments of B are in the segment $C[v_1, v_3]$. Let S be the support of B in $C[v_1, v_3]$. By Lemma 24, the segment S (excluding the endvertices of S) contains both labels. Thus H has ROCKET as a minor.

Now, assume that C contains the label sequence $XYXYXY$ and let v_1, \ldots, v_6 be the vertices manifesting that (so $X \in \lambda(v_1)$, $Y \in \lambda(v_2)$, etc.). Let w_1, \ldots, w_k be the attachments of B. Note that $k \geq 2$. By symmetry, we may assume that w_1 lies in the segment $C(v_1, v_3)$.

18
If all attachments of B lie in $C[v_1, v_3]$, then the support S of B in $C[v_1, v_3]$ (excluding the endvertices of S) contains both labels by Lemma 24. Thus H has BULLET as a minor. Hence we may assume that not all attachments of B are in $C[v_1, v_3]$ and similarly in $C[v_2, v_4]$ and so on. If there is an attachment of B in the segment $C(v_4, v_6)$, then H has FROG as a minor. Hence we may assume that all attachments of B lie in the segment $C[v_6, v_4]$.

By using reflection symmetry exchanging v_1, v_3 and v_4, v_6, since not all attachments of B are in $C[v_1, v_3]$, there is an attachment w_2 of B in the segment $C(v_3, v_4)$. By the same argument as above, there is no attachment of B in $C(v_6, v_2)$. Since not all attachments of B are in $C[v_2, v_4]$, the vertex v_6 is an attachment of B. We conclude that H has HIVE as a minor.

\section{Connectivity 1}

In this section, we describe all obstructions in \mathcal{F}^1_{xy} that correspond to an XY-labelled graph of connectivity 1.

\textbf{Lemma 25.} Let G be a graph in \mathcal{F}^1_{xy} such that G/xy is planar and let H be the XY-labelled graph corresponding to G. If H has connectivity 1, then H is one of the graphs in Fig. 8. Furthermore, $xy \notin E(G)$.

The following observation is useful.

\textbf{Lemma 26.} Let G be a graph and uvw be a triangle in G. If u has degree 3 in G, then every embedding of $G − vw$ into a surface can be extended into an embedding of G into the same surface.

\textit{Proof.} Let H be the graph obtained from $G − vw$ by subdividing the edge incident to u that is not in the triangle uvw. Then G is the graph obtained from H by applying a Δ-operation on u. The result follows.

For graphs in \mathcal{F}^1_{xy}, Lemma 26 has the following consequence.

\textbf{Corollary 27.} Let $G \in \mathcal{F}^1_{xy}$ and uvw be a triangle in G. If u has degree at most 3 in G, then u is a terminal.

\textit{Proof.} Since $G − vw \in \mathcal{A}^1_{xy}$, either $G − vw$ is planar or $G − vw$ is xy-alternating on S_1. By Lemma 26, the first outcome is not possible since then G would be planar. In the second case, Lemma 26 shows that the xy-alternating embedding of $G − vw$ can be extended into an embedding of G in S_1 by
embedding \(vw \) along the path \(vuw \). This extension would be \(xy \)-alternating if \(u \notin \{ x, y \} \). Thus, \(u \) is one of the terminals.

The next lemma will be used throughout the rest of the paper.

Lemma 28. Let \(H \) be an \(XY \)-labelled graph that has distinct blocks \(B_1 \) and \(B_2 \). Suppose that each of \(B_1 \) and \(B_2 \) contains both labels \(X \) and \(Y \) on vertices that do not belong to another block. Let \(G \) be the graph with terminals corresponding to \(H \). If \(H \) is not 1-alternating, then \(G \) is non-planar.

Proof. Suppose for contradiction that \(G \) is planar and take a planar embedding \(\Pi \) of \(G \). If \(x \) and \(y \) are cofacial in \(\Pi \), then \(\Pi \) gives a 1-alternating embedding of \(\hat{H} \). If \(x \) and \(y \) are not cofacial in \(\Pi \), then there is a cycle \(C \) in \(H \) that separates \(x \) and \(y \) (since \(x \) and \(y \) lie inside different faces of the induced embedding of \(H \)). Since \(C \) is a cycle of \(H \), it intersects either \(B_1 \) or \(B_2 \) in at most one vertex. Say, \(B_1 \) shares at most one vertex with \(C \) and is embedded on the other side of \(C \) than \(x \) is. By assumption, there is a vertex \(v \in V(B_1) \setminus V(C) \) that is labelled \(X \). Clearly, \(v \) and \(x \) are not cofacial in \(\Pi \) since they are separated by \(C \). But \(v \) and \(x \) are adjacent and thus cofacial in \(\Pi \), a contradiction. \(\square \)

Let \(C \) be a block in a graph \(G \). The \(C \)-bridge set \(B_v \) at a vertex \(v \) of \(C \) is the union of all \(C \)-bridges in \(G \) that are attached to \(v \). The following lemma asserts several properties of \(H \) and its labels and it is used to classify the graphs of connectivity 1 in \(F_{xy}^1 \).

Lemma 29. Let \(G \) be a graph in \(F_{xy}^1 \) such that \(G/xy \) is planar and the corresponding \(XY \)-labelled graph \(H \) has connectivity 1. Then the following statements hold.

(S1) Vertices of degree at most 2 in \(H \) are labelled. Leaves in \(H \) have both labels.

(S2) If \(B \) is an endblock of \(H \), and \(v \) is a cutvertex that separates \(B \) from the rest of \(H \), then the graph \(B - v \) contains both labels.

(S3) Let \(M \) be a block of \(H \) that is not an edge and \(C \) a boundary cycle of \(M \). Let \(B \) be the subgraph of \(M \) that consists of \(C \)-bridges in \(M \). If \(B \) is non-empty, then \(H - B^o \) is not 2-alternating.

(S4) Each block of \(H \) is either an edge or a cycle.
Let u be a vertex of degree 2 in H. If u has only one label, then the neighbors of u are not labelled by $\lambda(u)$. In particular, if P is a path in H such that each vertex of P has degree 2 in H, then either each vertex of P has both labels or each vertex of P has precisely one label that is different from the labels of its neighbors.

The neighbor of a leaf in H is unlabelled.

Let C be a cycle of H and T a C-bridge set that is a tree. If H consists of at least three blocks, then T contains at least two leaves of H.

Let B be a block of H that is a triangle and v a vertex of B. If v is not a cutvertex, then it has both labels. Otherwise, both labels are attached to B at v.

Proof. Each property is proved separately.

(S1): Vertex of degree 2 in H with no label would be a vertex of degree 2 in G. Similarly, a vertex of degree 1 with at most one label would be a vertex of degree at most 2 in G.

(S2): Let B be an endblock of H and $v \in V(B)$ the cutvertex that separates B from the rest of the graph. If B is an edge, then the result follows from (S1). Suppose for contradiction that $B - v$ does not contain the label Y. Since G/xy is planar, B is either a planar block of G or B is in an xv-bridge C of G such that $C + xv$ is planar. Corollary 20 asserts that this cannot happen in G.

(S3): Suppose B is non-empty and Π is a 2-alternating embedding of $\hat{H} - B^o$ in the plane. Suppose that there is an edge e of $H - B^o$ with one end v in C. By construction of $\hat{H} - B^o$, e lies in a different v-block B of H than C. By (S2), there is a vertex u in B labelled X. Thus there is a path P in $\hat{H} - B^o$ that connects v_{xy} and v and is internally disjoint from C. It follows that e is embedded on the same side of C in Π as x and y. We conclude that C is a Π-face. By construction of C, Π can be extended to a 2-alternating embedding of \hat{H} by embedding B inside C — a contradiction.

(S4): Let M be a block of H that is neither a cycle nor an edge. Let C be a boundary cycle of M and B the subgraph that consists of C-bridges in M. By (S3), $G - B^o$ is not xy-alternating on the torus. By (S2), $H - B^o$ contains two endblocks that contain both labels. By Lemma 28, $G - B^o$ is non-planar, a contradiction with $G - B^o \in A^1_{xy}$.

21
(S5): By (S1), u is labelled, say by X. If v is a neighbor of u with label X, then u is a vertex of degree 3 in the triangle uvx which is not possible by Corollary 27 unless u is also labelled Y.

(S6): Let v be a leaf and u its neighbor. If u is labelled, say with label X, then v is a vertex of degree 3 in the triangle vxu which is not possible by Corollary 27.

(S7): Let C be a cycle and T be a C-bridge set that is a tree. Assume that H has at least 3 blocks and that T contains only one leaf. We see that T is a path and, by (S6) and (S1), it is a path of length 1. Contract T to C to get H'. Let G' be the graph corresponding to H'. By the choice of G, G' is either xy-alternating on the torus or planar. Since H either contains 3 endblocks or two disjoint endblocks, if G' is not xy-alternating on the torus, then Lemma 28 gives that G' is non-planar. Hence G' is xy-alternating on the torus. Let Π be a 2-alternating embedding of H' in the plane. Uncontract T to get a 2-alternating embedding of H — a contradiction.

(S8): Let v be a vertex in a triangle C with at most one label. If v is not a cutvertex, then v is has degree at most 3 in G. By Corollary 27, this is a contradiction. If v is a cutvertex, then there is a v-bridge B' that does not contain C. Since B' contains an endblock of H, (S2) implies that B' contains both labels. These labels are attached to B at v. □

We use the structural properties from Lemma 29 to prove Lemma 25.

Proof of Lemma 25. Let G and H be as in the statement of the lemma. Our goal is to show that H has one of the graphs from Fig. 8 as a minor.

If H has at least five leaves, then all leaves are labelled X and Y, by (S1). Since H is connected, H has STAR as a minor. We assume henceforth that H has at most four leaves.

By (S4), every block of H that is not an edge is a cycle. We split the discussion according to the number of cycles in H.

Case 1: H is acyclic.

Suppose H has k leaves w1, . . . , wk, where k ≤ 4. Let u1, . . . , uk be their neighbors (possibly not distinct). By (S6) and (S1), vertices ui (where i = 1, . . . , k) have no labels and are of degree at least 3. By a counting argument, there are at most two such vertices in H. If there is only one vertex u of degree at least 3, H is a star with center u and thus H is a proper minor of STAR and hence G is in A1xy. Thus, there are two of them, say u1
Figure 8: The XY-labelled graphs of connectivity 1 that correspond to graphs in \mathcal{F}^1_{xy}.
and u_2, and they are connected by a path P. If P contains both labels X and Y, then H has SADDLE as a minor. If P contains at most one of the labels, say X, then the two pairs of leaves are covered by two Y-blocks and thus G is in A_{xy}^1 by Lemma 18 — a contradiction.

Case 2: H has precisely one cycle C.

Since C is the only cycle in H, every C-bridge is a tree attached to a vertex of C. The proof is split according to the number of leaves of H. Note that H has at least one leaf since H is not 2-connected.

Subcase i: H has precisely four leaves.

If C is an endblock, then a single C-bridge set B_v contains all four leaves w_1, \ldots, w_4. By (S2), $C - v$ contains both labels. Therefore, H has STAR as a minor.

Otherwise, by (S7), there are precisely two non-trivial C-bridge sets B_{v_1} and B_{v_2}, and each contains two leaves. Hence each of $B_{v_1} - v_1$ and $B_{v_2} - v_2$ contains at most one vertex of degree 3 in H. When $B_{v_1} - v_1$ contains a vertex of degree 3, let u_1 be this vertex. Otherwise, let $u_1 = v_1$. Define u_2 similarly. Note that u_1 and u_2 are unlabelled by (S6) and (S1). If there is a path P in H connecting u_1 and u_2 and both labels X and Y appear on P, then H has SADDLE as a minor. Let P_1 and P_2 be the two paths in C connecting v_1 and v_2. If P_1 contains X and P_2 contains Y (or vice versa), then H has RIBBON (or SADDLE) as a minor. Otherwise, there is a label missing from $H - \{w_i : i = 1, \ldots, 4\}$, say X, so the leaves are covered by two X-blocks. Lemma 18 implies that $G \in A_{xy}^1$, a contradiction.

Subcase ii: H has precisely three leaves.

By (S7), there is a single C-bridge set B_v that contains all three leaves. Suppose C is a triangle. By (S8), both vertices of C different from v have both labels and H contains STAR as a minor.

Suppose C has length at least 4. By (S5), $C - v$ contains the label sequence XYX or YXY. Thus H has TRIPOD as a minor.

Subcase iii: H has precisely two leaves.

By (S7), there is a single C-bridge set B_v that contains both leaves. Let u be a vertex of degree 3 in $B_v - v$ if there is one and let $u = v$ otherwise. Let P be the path from u to v, possibly of zero length.

Suppose C is a triangle. Again by (S8), both vertices of C different from v have both labels. If P contains both labels, then H has ALIEN as a minor (by (S6)). Thus P contains at most one label, say X, and then labels Y
are covered by two Y-blocks, one at the leaves and one on the triangle. By Lemma 18, $G \in \mathcal{A}_{xy}^1$, a contradiction.

Suppose C has length at least 4. If all vertices in $C - v$ have both labels, then H has FOUR as a minor. If $C - v$ contains the label sequence $XYXY$, then H has FIVE as a minor. Otherwise, (S5) implies that C has length 4 and $C - v$ form the label sequence YXY or XYX, say the former. If P contains X, then H has HUMAN as a minor. Otherwise, the labels X are covered by two X-blocks, one at the leaves and one covering the label X at C — a contradiction by Lemma 18.

Subcase iv: H has precisely 1 leaf.

Let w be this leaf and u its neighbor. By (S6) and (S1), u is unlabelled vertex of degree at least 3 and thus lies on C. If C has length at most 5, then H contains five vertices with both labels, by Lemma 19. Thus H is isomorphic to Lollipop. If C has length at least 6 (and, then H has MIRROR as a minor, by (S5)).

Case 3: H has (at least) two cycles, C_1 and C_2.

Pick C_1 and C_2 such that, first, the distance between them is maximal and, second, their size is maximal. By (S4), C_1 and C_2 are blocks of H that share at most one vertex. Let P be a shortest path (possibly of zero length) joining vertices $v_1 \in V(C_1)$ and $v_2 \in V(C_2)$. Note that by the choice of C_1 and C_2, all C_1-bridges attached to $C_1 - v_1$ and all C_2-bridges attached to $C_2 - v_2$ are trees.

Subcase i: C_1 and C_2 are triangles.

Suppose there is more than one C_1-bridge at v_1 and let B be a C_1-bridge at v_1 not containing P. By (S2), B contains both labels. By (S8), all vertices of $C_1 - v_1$ and $C_2 - v_2$ have both labels attached. Thus H has STAR as a minor. So we may assume that there is only one C_1-bridge attached at v_1. Similarly, there is only one C_2-bridge attached at v_2.

If there is a C_1-bridge attached to a vertex v of $C_1 - v_1$, then the C_1-bridge set at v is a tree containing at least two leaves by (S7). This implies that H has STAR as a minor. Thus there are no C_1-bridges attached to $C_1 - v_1$. The same holds for C_2 by symmetry.

If the component M of $H - E(C_1) - E(C_2)$ containing P has both labels, then H has BOWTIE as a minor. Suppose to the contrary that M has at most one label, say X. Since there are no other bridges attached to C_1 and C_2, the Y-labelled vertices of H are covered by two Y-blocks, a contradiction by Lemma 18.
Subcase ii: C_1 is a triangle and C_2 has length at least 4.

If H contains four leaves, then it is not difficult to check that H has Star as a minor. Hence there is at most one non-trivial bridge set attached to $C_1 - v_1$ or $C_2 - v_2$ (by (S7)). Suppose that there is a C_2-bridge set B attached to a vertex v in $C_2 - v_2$. By (S7), B contains at least two leaves. If B contains three leaves, then H has Star as a minor. Therefore, B has precisely two leaves w_1, w_2. Let M be the component of $H - E(C_1) - w_1 - w_2$ containing P. By using (S6), it is easy to see that, if M contains both leaves, then H has ALIEN as a minor. Otherwise, M has at most one label, say X. Thus labels Y are covered by two Y-blocks, one at $C_1 - v_1$ and the other at w_1, w_2. A contradiction by Lemma 18.

Therefore, there is no C_2-bridge attached to $C_2 - v_2$. By (S5), $C_2 - v_2$ either contains the sequence YXY or XYX, say the former. Suppose there is a C_1-bridge B attached at $C_1 - v_1$. By (S7), B has at least two leaves. Hence H has Tripod as a minor. Therefore, there is no C_1-bridge attached at $C_1 - v_1$ and both vertices in $C_1 - v_1$ have both labels.

Let M be the component of $H - E(C_1) - E(C_2)$ containing P. If M contains X, then H has Doll as a minor. Hence M contains at most one label, say X. Hence all Y labels are at the leaves and can be covered by two Y-blocks. A contradiction by Lemma 18. If there are two non-trivial bridge sets B_1, B_2 attached to one of the cycles, say to C_1, then B_1 and B_2 contain together four leaves. By (S2), there are both labels attached to a vertex of $C_2 - v_2$. Hence H has Star as a minor.

Therefore, there is at most one non-trivial bridge set attached to $C_1 - v_1$.
and $C_2 - v_2$. Suppose there is a C_1-bridge set B attached to a vertex v in $C_1 - v_1$. By (S5), $C_2 - v_2$ contains the label sequence YXY or XYX, say the former. If B contains at least three leaves, then H has Tripod as a minor. By (S7), B has precisely two leaves w_1, w_2. If C_2 has length at least 5, then C_2 contains the sequence $XYXY$, by (S5). Hence H has Five as a minor. If C_2 contains three vertices with both labels, then H has Four as a minor. If $H - w_1 - w_2 - (C_2 - v_2)$ contains label X, then H has Human as a minor. Otherwise, the X labels at $C_2 - v_2$ can be covered by a single X block and all other X labels are at w_1, w_2 which are covered by a second X block. By Lemma 18, H is 2-alternating, a contradiction.

By symmetry of C_1 and C_2, we conclude that there are no non-trivial bridge sets attached to $C_1 - v_1$ and $C_2 - v_2$. By (S5), $C_2 - v_2$ contains the label sequence YXY or XYX, say the former. By (S5), $C_1 - v_1$ contains the label sequence YXY or XYX. If $C_1 - v_1$ contains the sequence XYX, then H has Pinch as a minor. Thus $C_1 - v_1$ contains the sequence YXY. If $C_2 - v_2$ contains the sequence XYX, then H has Pinch as a minor. Let M be the component of $H - E(C_1) - E(C_2)$ that contains P. If M contains label X, then H has Extra as a minor. Otherwise, the labels X can be covered by two X-blocks, one at $C_1 - v_1$ and one at $C_2 - v_2$. A contradiction by Lemma 18.

7 The main theorem

The previous lemmas give rise to the following theorem.

Theorem 30. Let G be a graph in F_{xy}^1. Then one of the following holds:

(i) G is a split of a Kuratowski graph with x and y being the two vertices resulting after the split (see Fig. 3) or G is a Kuratowski graph plus one or two isolated vertices that are terminals.

(ii) G is an xy-sum of two Kuratowski graphs (see Fig. 4).

(iii) G corresponds to one of the XY-labelled graphs in Fig. 6, 7, or 8.

Proof. By Lemma 17, either (i) holds or G/xy is planar. In the latter case, let H be the XY-labelled graph that corresponds to G. We will now show that H contains one of these graphs as a minor. If H is disconnected, then (ii) holds by Lemma 21. If H is 2-connected, then H is one of the graphs
in Fig. 6 or 7 by Lemma 22. Otherwise, H is one of the graphs in Fig. 8 by Lemma 25.

It is easy to see that none of the graphs in (i)–(iii) contains another one as a minor. Thus, in order to prove that each of them is in F_{xy}^1, it suffices to see that they are not in A_{xy}^1. This is clear for (i) since the graphs in (i) are non-planar after identifying x and y. Similarly, graphs in (ii) cannot be in A_{xy}^1 since they do not have an embedding in the projective plane. Finally, graphs in (iii) are not in A_{xy}^1 since their corresponding XY-labelled graphs are not 2-alternating.

Note that the edge xy is present in a graph $G \in F_{xy}^1$ if and only if $G - xy$ is planar. There are only five graphs in F_{xy}^1 with the edge xy, the three splits of Kuratowski graphs (see Fig. 3) and the two graphs in Fig. 6.

Corollary 31. All graphs in F_{xy}^1 embed into the torus.

Proof. By Theorem 30, graphs in F_{xy}^1 are of three types, (i)–(iii). For graphs in (i) and (ii), embeddings in the torus are easily constructed. The graphs in (iii) are 3-alternating and thus have a planar embedding with three X-blocks covering the X-labels. This embedding can be extended to an embedding in the torus by adding a single handle; see Fig. 9 where the X-blocks are shown as thick intervals on the boundary of the planar part (and Y-blocks are shown by thick broken line).

\[\square \]
References

[1] D. Archdeacon. A Kuratowski theorem for the projective plane. *J. Graph Theory*, 5(3):243–246, 1981.

[2] D. Archdeacon and P. Huneke. A Kuratowski theorem for nonorientable surfaces. *J. Combin. Theory Ser. B*, 46(2):173–231, 1989.

[3] J. Battle, F. Harary, Y. Kodama, and J. W. T. Youngs. Additivity of the genus of a graph. *Bull. Amer. Math. Soc.*, 68:565–568, 1962.

[4] R. W. Decker, H. H. Glover, and J. P. Huneke. The genus of the 2-amalgamations of graphs. *J. Graph Theory*, 5(1):95–102, 1981.

[5] R. W. Decker, H. H. Glover, and J. P. Huneke. Computing the genus of the 2-amalgamations of graphs. *Combinatorica*, 5:271–282, September 1985.

[6] A. Gagarin, W. Myrvold, and J. Chambers. The obstructions for toroidal graphs with no $K_{3,3}$’s. *Discrete Math.*, 309(11):3625–3631, 2009.

[7] M. Juvan, J. Marinček, and B. Mohar. Elimination of local bridges. *Math. Slovaca*, 47:85–92, 1997.

[8] K. Kuratowski. Sur le problème des courbes gauches en topologie. *Fund. Math.*, 15:271–283, 1930.

[9] B. Mohar and C. Thomassen. *Graphs on Surfaces*. Johns Hopkins Univ. Press, Baltimore, MD, 2001.

[10] B. Mohar and P. Škoda. Low-connectivity obstructions for embedding graphs into surfaces. *In preparation*.

[11] N. Robertson and P. D. Seymour. Graph minors. VIII. A Kuratowski theorem for general surfaces. *J. Combin. Theory Ser. B*, 48:255–288, April 1990.

[12] N. Robertson and P. D. Seymour. Graph minors. XX. Wagner’s conjecture. *J. Combin. Theory Ser. B*, 92:325–357, November 2004.