A simple counterexample for the permanent-on-top conjecture

Tran Hoang Anh
Eötvös Loránd University. Institute of Mathematics.
E-mail: bongtran5399@gmail.com

August 24, 2022

Abstract

The permanent-on-top conjecture (POT) was an important conjecture on the largest eigenvalue of the Schur power matrix of a positive semi-definite Hermitian matrix, formulated by Soules. The conjecture claimed that for any positive semi-definite Hermitian matrix H, $\text{per}(H)$ is the largest eigenvalue of the Schur power matrix of the matrix H. After half a century, the POT conjecture has been proven false by the existence of counterexamples which are checked with the help of computer. It raises concerns about a counterexample that can be checked by hand (without the need of computers). A new simple counterexample for the permanent-on-top conjecture is presented which is a complex matrix of dimension 5 and rank 2.

1 Introduction and notations

The symbol S_n denotes the symmetric group on n objects. The permanent of a square matrix is a vital function in linear algebra that is similar to the determinant. For an $n \times n$ matrix $A = (a_{ij})$ with complex coefficients, its permanent is defined as $\text{per}(A) = \sum_{\sigma \in S_n} \prod_{i=1}^{n} a_{i,\sigma(i)}$. By \mathcal{H}_n we mean the set of all $n \times n$ positive semi-definite Hermitian matrices. The Schur power matrix of a given $n \times n$ matrix $A = (a_{ij})$, denoted by $\pi(A)$, is a $n! \times n!$ matrix with the elements indexed by permutations $\sigma, \tau \in S_n$:

$$\pi_{\sigma \tau}(A) = \prod_{i=1}^{n} a_{\sigma(i),\tau(i)}$$

Conjecture 1. The permanent-on-top conjecture (POT) [9]: Let H be an $n \times n$ positive semi-definite Hermitian matrix, then $\text{per}(H)$ is the largest eigenvalue of $\pi(H)$.

In 2016, Shchesnovich provided a 5-square, rank 2 counterexample to the permanent-on-top conjecture with the help of computer [8].
Definition 1. For an $n \times n$ matrix $A = (a_{ij})$, let d_A be a function $S_n \to \mathbb{C}$ defined by

$$d_A(\sigma) = \prod_{i=1}^{n} a_{\sigma(i)i}$$

This function is also called the "diagonal product" function. Then we can define

$$\det(A) = \sum_{\sigma \in S_n} (-1)^{\text{sgn}(\sigma)} d_A(\sigma)$$

and

$$\text{per}(A) = \sum_{\sigma \in S_n} d_A(\sigma)$$

For any n-square matrix A and $I, J \subset [n]$, $A[I, J]$ denotes the submatrix of A consisting of entries which are the intersections of i-th rows and j-th columns where $i \in I$, $j \in J$. We define $A(I, J) = A[I^c, J^c]$.

In this paper, we shall study the properties of the spectrum of the Schur power matrix by examining the spectra of the matrices $C_k(A)$ which are defined in the manner:

For any $1 \leq k \leq n$, the matrix $C_k(A)$ is a matrix of size $\binom{n}{k} \times \binom{n}{k}$ with its (I, J) entry defined by $\text{per}(A[I, J]) \cdot \text{per}(A[I^c, J^c])$. There is another conjecture on these matrices $C_k(A)$ which states that:

Conjecture 2. Pate’s conjecture

Let A be an $n \times n$ positive semi-definite Hermitian matrix and k be a positive integer number less than n, then the largest eigenvalue of $C_k(A)$ is $\text{per}(A)$.

Pate’s conjecture is weaker than the permanent-on-top conjecture (POT) because it is well-known that every eigenvalue of C_k is also an eigenvalue of the Schur power matrix. In the case $k = 1$, in [1], it was conjectured that $\text{per}(A)$ is necessarily the largest eigenvalue of $C_1(A)$ if $A \in \mathcal{H}_n$. Stephen W. Drury has provided an 8-square matrix as a counterexample for this case in the paper [2]. Besides, Bapat and Sunder raise a question as follows:

Conjecture 3. Bapat & Sunder conjecture: Let A and $B = (b_{ij})$ be $n \times n$ positive semi-definite Hermitian matrices, then

$$\text{per}(A \circ B) \leq \text{per}(A) \prod_{i=1}^{n} b_{ii}$$

where $A \circ B$ is the entrywise product (Hadamard product).

The Bapat & Sunder conjecture is weaker than the permanent-on-top conjecture and has been proved false by a counterexample which is a positive semi-definite Hermitian matrix of order 7 proposed by Drury [3]. In the present paper, a new simple counterexample for the permanent-on-top conjecture and Pate’s conjecture is presented. It has size 5×5 and rank 2.

Conjecture 4. The Lieb permanent dominance conjecture 1966

Let H be a subgroup of the symmetric group S_n and let χ be a character of degree m of H. Then

$$\frac{1}{m} \sum_{\sigma \in H} \chi(\sigma) \prod_{i=1}^{n} a_{i\sigma(i)} \leq \text{per}(A)$$
holds for all $n \times n$ positive semi-definite Hermitian matrix A.

The permanent dominance conjecture is weaker than the permanent-on-top conjecture and still open. The POT conjecture was proposed by Soules in 1966 as a strategy to prove the permanent dominance conjecture.

Definition 2. The elementary symmetric polynomials in n variables x_1, x_2, \ldots, x_n are e_k for $k = 0, 1, \ldots, n$. In this paper, we define $e_k(x_i)$ for $i = 1, 2, \ldots, n$ to be the elementary symmetric polynomial of degree k in $n - 1$ variables obtained by erasing variable x_i from the set $\{x_1, x_2, \ldots, x_n\}$ and, for any subset $I \subset [n]$, the notation $e_k[I]$ denote the elementary symmetric polynomial of degree k in $|I|$ variables x_i’s, $i \in I$.

2 Associated matrices

We define the associated matrix of a matrix representation $W : S_n \rightarrow GL_N(\mathbb{C})$ with respect to a $n \times n$ matrix A by:

$$M_W(A) = \sum_{\sigma \in S_n} d_A(\sigma)W(\sigma)$$

Proposition 2.1. The Schur power matrix of a given $n \times n$ Hermitian matrix A is the associated matrix of the left-regular representation with respect to A.

Proof. Take a look at the (σ, τ) entry of $M_L(A)$ which is

$$\sum_{\eta \in S_n, \eta \circ \tau = \sigma} d_A(\eta) = d_A(\sigma \circ \tau^{-1}) = \prod_{i=1}^{n} d_{\sigma(i) \tau(i)}$$

the right side is the (σ, τ) entry of $\pi(A)$.

Let us now consider two important matrices $C_1(A)$ and $C_2(A)$ that shall appear frequently from now on.

Definition 3. Let $\mathcal{M}_k : S_n \rightarrow GL_{\binom{n}{k}}(\mathbb{C})$ be the matrix representation given by the permutation action of S_n on $\binom{[n]}{k}$.

Proposition 2.2. For any $n \times n$ Hermitian matrix A, the matrix $\mathcal{C}_k(A)$ is the matrix $M_{\mathcal{M}_k}(A)$.

We obtain directly the statement that every eigenvalue of matrix $M_{\mathcal{M}_k}(A)$ is an eigenvalue of the associated matrix of the left-regular representation which is the Schur power matrix. Consequently, Pate’s conjecture is weaker than the permanent-on-top conjecture(POT).
3 Several properties of the Schur power matrix and $\mathcal{C}_1(A)$ in rank 2 case

The main object of this section is $n \times n$ positive semi-definite Hermitian matrices of rank 2. We know that every matrix $A \in \mathcal{H}_n$ of rank 2 can be written as the sum $v_1v_1^* + v_2v_2^*$ where v_1 and v_2 are two column vectors of order n.

Definition 4. A matrix $A \in \mathcal{H}_n$ is called ”formalizable” if A can be written in the form $v_1v_1^* + v_2v_2^*$ and every element of v_1 vector is non-zero.

Definition 5. The formalized matrix A' of a given formalizable matrix A defined in the manner: if $A = v_1v_1^* + v_2v_2^*$ and $v_1 = (a_1, \ldots, a_n)^T$, $a_i \neq 0 \forall i = 1, \ldots, n$; $v_2 = (b_1, \ldots, b_n)^T$ then $A' = v_3v_3^* + v_4v_4^*$ where $v_3 = (1, \ldots, 1)^T$ and $v_4 = (\frac{b_1}{a_1}, \ldots, \frac{b_n}{a_n})^T$.

Proposition 3.1. Let $A \in \mathcal{H}_n$ be a formalizable matrix, then $\pi(A) = \prod_{i=1}^n |a_i|^2 \pi(A')$.

Proof. We compare the (σ, τ)-th entries of two matrices.

$$\pi_{\sigma \tau}(A) = \prod_{i=1}^n (a_{\sigma(i)} \overline{a_{\tau(i)}} + b_{\sigma(i)} \overline{b_{\tau(i)}}) = \prod_{i=1}^n |a_i|^2 \prod_{i=1}^n \left(1 + \frac{b_{\sigma(i)} \overline{b_{\tau(i)}}}{a_{\sigma(i)} \overline{a_{\tau(i)}}}\right) = \prod_{i=1}^n |a_i|^2 \pi_{\sigma \tau}(A')$$

Remark 1. The same result will be obtained with the matrices $\mathcal{C}_k(A)$ and $\mathcal{C}_k(A')$. It is obvious to see that if the matrix A is a counterexample for the permanent-on-top conjecture and Pate’s conjecture then so is A'. Assume that we have an unformalizable matrix $B \in \mathcal{H}$ of rank 2 that is a counterexample for the permanent-on-top conjecture and Pate’s conjecture. That also implies that there is a column vector x such that the following inequality holds

$$\frac{x^* \pi(B)x}{\|x\|^2} > \text{per}(B)$$

By continuity and $B = vv^* + uu^*$, we can change slightly the zero elements of the vector v such the the inequality remains. Therefore, if the permanent-on-top conjecture or Pate’s conjecture is false for some positive semi-definite Hermitian matrix of rank 2 then so is the permanent-on-top conjecture and Pate’s conjecture for some formalizable matrices. That draws our attention to the set of all formalizable matrices.

For any $n \times n$ positive semi-definite Hermitian matrix A of rank 2 there exist two eigenvectors of v and u of A such that $A = vv^* + uu^*$. Let u_i, v_i be the i-th row elements of v and u respectively for $i = 1, n$. In the case A has a zero row then $\text{per}(A) = 0$ and the Schur power matrix and matrices $\mathcal{C}_k(A)$ of A are all zero matrices, there is nothing to discuss. Otherwise, every row of A has a non-zero element (so does every column since A is a
The upper bound of rank of the Schur power matrix of rank 2: If A is an Hermitian matrix) which means that for any \(i = 1, n \), the inequalities \(|v_i|^2 + |u_i|^2 > 0 \) hold. Besides, A can be rewritten in the form

\[
(sin(x)v + cos(x)u)(sin(x)v + cos(x)u) + (cos(x)v - sin(x)u)(cos(x)v - sin(x)u) \forall x \in [0, 2\pi]
\]

and the system of n equations \(sin(x)v_i + cos(x)u_i = 0 \), \(i = 1, n \) takes finite solutions in the interval \([0, 2\pi]\). Therefore, there exists \(x \in [0, 2\pi] \) satisfying that \((sin(x)v + cos(x)u) \) has every element different from 0. Hence, every rank 2 positive semi-definite Hermitian that has no zero-row is formalizable. Several properties about the formalized matrices are presented below.

Let \(H \in \mathcal{H} \) be a formalizable matrix of the form \(H = vv^* + uu^* \) where \(v = (1, \ldots, 1)^T \) and \(u = (x_1, x_2, \ldots, x_n)^T \). We recall quickly the Kronecker product [10].

Definition 6. The Kronecker product (also known as tensor product or direct product) of two matrices \(A \) and \(B \) of sizes \(m \times n \) and \(s \times t \), respectively, is defined to be the \((ms) \times (nt)\) matrix

\[
A \otimes B = \begin{pmatrix}
a_{11}B & a_{12}B & \ldots & a_{1n}B \\
a_{21}B & a_{22}B & \ldots & a_{2n}B \\
\vdots & \vdots & \ddots & \vdots \\
a_{n1}B & a_{n2}B & \ldots & a_{nn}B
\end{pmatrix}
\]

Lemma 1. The upper bound of rank of the Schur power matrix of rank 2: If A is an \(n \times n \) of rank 2 then rank of \(\pi(A) \) is not larger than \(2^n - n \).

Proof. We observe that rank(A) = 2 implies that dim(Im(A)) = 2 and dim(Ker(A)) = \(n - 2 \). Let \(\langle \{\cdot\} \rangle \) be an orthonormal basis of the orthogonal complement of Ker(A) in \(\mathbb{C}^n \), then denote \(v = Aw, u = At \). Thus, A can be rewritten in the form \(vv^* + uu^* \) where \(v = (a_1, \ldots, a_n)^T, u = (b_1, \ldots, b_n)^T \). It is obvious that \(\text{Im}(A) = \langle v, u \rangle \). Let us denote the Kronecker product of \(n \) copies of the matrix A by \(\otimes^nA \). The mixed-product property of Kronecker product implies that \(\text{Im}(\otimes^nA) = \langle \{\otimes^n_{i=1}t_i, t_i \in \{v, u\} \} \rangle \). Furthermore, the Schur power matrix of A is a diagonal submatrix of \(\otimes^nA \) obtained by deleting all entries of \(\otimes^nA \) that are products of entries of A having two entries in the same row or column. Let define the function \(f \) in the manner that

\[
f: \{\otimes^n_{i=1}t_i, t_i \in \{v, u\}\} \rightarrow \mathcal{V}
\]

and the \(\sigma \)-th element of \(f(\otimes^n_{i=1}t_i) \) vector of order \(n! \) is \(\prod_{i=1}^{n} t_i(\sigma(i)) \) where \(t_i(j) \) is the \(j \)-th row element of the column vector \(t_i \). Let \(\mathcal{B} = \{f(\otimes^n_{i=1}t_i), t_i \in \{v, u\}\} \) then \(\mathcal{B} \) is a generator of \(\text{Im}(\pi(A)) \) since \(\pi(A) \) is a principal matrix of \(\otimes^nA \) and \(\text{Im}(\otimes^nA) = \langle \{\otimes^n_{i=1}t_i, t_i \in \{v, u\}\} \rangle \). We partition \(\mathcal{B} \) into disjoint sets \(S_k \)

\[
k = 0, 1, \ldots, n, S_k = \{f(\otimes^n_{i=1}t_i), t_i \in \{v, u\}, v \text{ appears } k \text{ times in the Kronecker product}\}
\]
Hence, for any \(k = 1, 2, \ldots, n \) the \(\sigma \)-th row element of the sum vector \(\sum_{w \in S_k} w \) is

\[
\sum_{1 \leq i_1 < \ldots < i_k \leq n} \prod_{j=1}^{k} a_{\sigma(i_j)} \prod_{t=k+1}^{n} b_{\sigma(i_t)} = \sum_{1 \leq i_1 < \ldots < i_k \leq n} \prod_{j=1}^{k} a_{i_j} \prod_{t=k+1}^{n} b_{i_t}
\]

and \(S_0 = \{(1, 1, \ldots, 1)^T\} \). Therefore, for any \(k = 1, \ldots, n \) then \(S_0 \cup S_k \) is linearly dependent. Hence, by deleting an arbitrary element of each set \(S_k \), \(k = 1, \ldots, n \), then it still remains a generator of \(\text{Im}(\pi(H)) \). Thus

\[
\text{rank}(\pi(A)) = \dim(\text{Im}(\pi(A))) \leq \vert \mathcal{B} \vert - n = 2^n - n
\]

Lemma 2. The permanent of a formalized matrix [5]:

\[
\text{per}(H) = \sum_{k=0}^{n} k!(n-k)! |e_k|^2
\]

Proof. We show that

\[
\text{per}(H) = \sum_{\sigma \in S_n} \prod_{i=1}^{n} (1 + x_{\sigma(i)})
\]

\[
= n! + \sum_{\sigma \in S_n} \sum_{k=1}^{n} \sum_{1 \leq i_1 < \ldots < i_k \leq n} x_{i_1} \ldots x_{i_k} \prod_{\sigma \in S_n} x_{\sigma(i_1)} \ldots x_{\sigma(i_k)}
\]

\[
= n! + \sum_{k=1}^{n} \sum_{1 \leq i_1 < \ldots < i_k \leq n} k!(n-k)! x_{i_1} \ldots x_{i_k} \prod_{\sigma \in S_n} x_{\sigma(i_1)} \ldots x_{\sigma(i_k)}
\]

\[
= \sum_{k=0}^{n} k!(n-k)! |e_k|^2
\]

We use the elementary symmetric polynomials to examine entries of \(C_1(H) \) with the
Therefore, we have the following proposition.

\[(i, j)\text{-th entry defined by } (1 + x_i x_j), \text{ per}(H(i|j))\] and

\[
\text{per}(H(i|j)) = \sum_{\sigma \in S_n; \; \sigma(i) = j} \prod_{i \neq l} (1 + x_l x_{\sigma(l)})
\]

\[
= \sum_{\sigma \in S_n; \; \sigma(i) = j} \prod_{k=0}^{n-1} \sum_{1 \leq i_1 < \ldots < i_k \leq n; \; i_m \neq i} x_{i_1} \ldots x_{i_k} x_{\sigma(i_1)} \ldots x_{\sigma(i_k)}
\]

\[
= \sum_{k=0}^{n} \sum_{1 \leq i_1 < \ldots < i_k \leq n; \; i_m \neq i} k!(n-1-k)! x_{i_1} \ldots x_{i_k} e_k(x_j)
\]

\[
= \sum_{k=0}^{n-1} k!(n-1-k)! e_k(x_i) e_k(x_j)
\]

And notice that

\[
e_k = x_i e_{k-1}(x_i) + e_k(x_i) \forall k = 1, \ldots, n
\]

Then

\[
\frac{\text{per}(H)}{n} = \frac{1}{n} \sum_{k=0}^{n} k!(n-k)! |e_k|^2
\]

\[
= (n-1)! (|e_0|^2 + |e_n|^2) + \sum_{k=1}^{n-1} \frac{k!(n-k)!}{n} (x_i e_{k-1}(x_i) + e_k(x_i))(x_j e_{k-1}(x_j) + e_k(x_j))
\]

Hence

\[
(1 + x_i x_j), \text{ per}(H(i|j)) - \frac{\text{per}(H)}{n}
\]

\[
= \sum_{k=1}^{n-1} \left(k!(n-1-k)! - \frac{k!(n-k)!}{n} \right) e_k(x_i) e_k(x_j)
\]

\[
+ \left((k-1)!(n-k)! - \frac{k!(n-k)!}{n} \right) x_i e_{k-1}(x_i) x_j e_{k-1}(x_j)
\]

\[
- \frac{k!(n-k)!}{n} (x_i e_{k-1}(x_i) e_k(x_j) + x_j e_{k-1}(x_j) e_k(x_i))
\]

\[
= \sum_{k=1}^{n-1} \frac{(k-1)!(n-1-k)!}{n} (ke_k(x_i) - (n-k)x_i e_{k-1}(x_i))(ke_k(x_j) - (n-k)x_j e_{k-1}(x_j))
\]

\[
= \sum_{k=1}^{n-1} \frac{(k-1)!(n-1-k)!}{n} (ne_k(x_i) - (n-k)e_k)(ne_k(x_j) - (n-k)e_k)
\]

Therefore, we have the following proposition.
Proposition 3.2. The matrix $\mathcal{C}_1(H)$ can be rewritten in the form

$$\mathcal{C}_1(H) = \frac{\operatorname{per}(H)}{n} v v^* + \sum_{k=1}^{n-1} \frac{(k-1)!(n-1-k)!}{n} v_k v_k^*$$

where $v = (1, \ldots, 1)^T$ of order n, for $k = 1, \ldots, n-1$, $v_k = (\ldots, ne_k(x_i) - (n-k)e_k, \ldots)^T$

Proposition 3.3. For any $k = 1, \ldots, n-1$, $\langle v, v_k \rangle = 0$

Proof.

$$\langle v, v_k \rangle = \sum_{i=1}^{n} (ne_k(x_i) - (n-k)e_k)$$

$$= n \sum_{i=1}^{n} e_k(x_i) - n(n-k)e_k$$

$$= 0$$

Proposition 3.4. The rank of $\mathcal{C}_1(H)$ is the cardinality of the set $\{x_i, i = \overline{1,n}\}$. In formula, $\operatorname{rank}(\mathcal{C}_1(H)) = |\{x_i, i = \overline{1,n}\}|$.

Proof. For the i-th element of v_k, we have

$$ne_k(x_i) - (n-k)e_k$$

$$= ke_k - nx_i e_{k-1}(x_i)$$

$$= ke_k + n \sum_{j=1}^{k} (-1)^j e_{k-j} x_i^j$$

which leads us to a conclusion that $\langle v, v_1, \ldots, v_{n-1} \rangle = \langle p_0, \ldots, p_{n-1} \rangle$ where $p_j = (\ldots, x_i^j, \ldots)^T$

which is equal to $|\{x_i, i = \overline{1,n}\}|$ by the determinantal formula of Vandermonde matrices.

Proposition 3.5. The determinant of $\mathcal{C}_1(H)$ is given by

$$\det(\mathcal{C}_1(H)) = \frac{\operatorname{per}(H)}{n} \prod_{k=1}^{n-1} n(k-1)!(n-1-k)! \cdot \prod_{i<j} |x_i - x_j|^2$$

Proof. Case 1: There are indices i and j such that $x_i = x_j$ then rank$(\mathcal{C}_1(H)) < n$ that is equivalent to det$(\mathcal{C}_1(H)) = 0$.

Case 2: x_i’s are distinct then $\{v, v_1, \ldots, v_{n-1}\}$ makes a basis of \mathbb{C}^n. Therefore, $\mathcal{C}_1(H)$ is
similar to the Gramian matrix of \(n \) vectors

\[
\begin{pmatrix}
\frac{\text{per}(H)}{n} v_1; \sqrt{\frac{(k-1)!(n-1-k)!}{n}} v_k, & k = 1, n-1
\end{pmatrix}.
\]

Thus

\[
\det(\mathcal{G}_1(H)) = \det\left(G\left(\frac{\text{per}(H)}{n} v_1; \sqrt{\frac{(k-1)!(n-1-k)!}{n}} v_k, \ k = 1, n-1 \right) \right)
\]

\[
= \frac{\text{per}(H)}{n} \prod_{k=1}^{n-1} \frac{(k-1)!(n-1-k)!}{n} \cdot \det(G(v, v_1, \ldots, v_{n-1}))
\]

And from the proof of proposition 3.4, we obtain that

\[
\begin{pmatrix}
1 & \ldots & ke_k & \ldots & (n-1)e_{n-1} \\
0 & \ldots & (-1)^2 ne_{k-1} & \ldots & (-1)^2 ne_{n-2} \\
& \ddots & \ddots & \ddots & \ddots \\
0 & \ldots & \ldots & (-1)^i ne_{j-i} & \ldots \\
& \ddots & \ddots & \ddots & \ddots \\
0 & \ldots & \ldots & \ldots & (-1)^{n-1}n
\end{pmatrix}
\]

\((v, v_1, \ldots, v_{n-1}) = (p_0, p_1, \ldots, p_{n-1})\)

The matrix in the right side is the transition matrix given by

\[
\text{The } (i, j)\text{-th entry } = \begin{cases}
(-1)^i ne_{j-i} & \text{ if } i > 1 \\
(j-1)e_{j-1} & \text{ if } i = 1 \text{ and } j > 1 \\
1 & \text{ if } (i, j) = (1, 1)
\end{cases}
\]

with convention that \(e_0 = 1; \ e_t = 0 \text{ if } t < 0 \). Moreover, we observe that the transition matrix is an upper triangular matrix with the absolute value of diagonal entries equal to \(n \) except the \((1,1)\)-th entry equal to 1 and \((p_0, p_1, \ldots, p_{n-1})\) is a Vandermonde matrix. Hence

\[
\det(\mathcal{G}_1(H)) = \frac{\text{per}(H)}{n} \prod_{k=1}^{n-1} n(k-1)! (n-1-k)! \cdot \det(G(p_0, p_1, \ldots, p_{n-1}))
\]

\[
= \frac{\text{per}(H)}{n} \prod_{k=1}^{n-1} n(k-1)! (n-1-k)! \cdot |\det(p_0, p_1, \ldots, p_{n-1})|^2
\]

\[
= \frac{\text{per}(H)}{n} \prod_{k=1}^{n-1} n(k-1)! (n-1-k)! \cdot \prod_{i < j} |x_i - x_j|^2
\]

The right side is also equal to 0 if there are indices \(i \neq j \) such that \(x_i = x_j \). Hence the equality holds in both cases. \(\blacksquare \)
Remark 2. From the proposition 3.5, we are able to calculate the determinant of $C_1(H)$ of any positive semi-definite Hermitian matrix H of rank 2 in the way:

Let A be an $n \times n$ positive semi-definite Hermitian matrix of rank 2 then A can be written in the form $vv^* + uu^*$ with v_i, u_i are the i-th elements of v and u respectively. Then the following formula for the determinant of $C_1(H)$ is achieved.

Theorem 1. Let $H = vv^* + uu^*$ be an $n \times n$ positive semi-definite Hermitian matrix then:

$$\det(C_1(H)) = \frac{\text{per}(H)}{n} \prod_{k=1}^{n-1} n(k-1)!(n-1-k)! \cdot \prod_{i<j} |v_i u_j - v_j u_i|^2$$

where v_i and u_i are i-th elements of the vector v and u respectively.

4 A counterexample for the conjectures 1 and 2 in the case $n = 5$

Let us take the values of u_i’s and v_i’s, $a \in \mathbb{R}$

$$u_1 = ai, u_2 = -a, u_3 = -ai, u_4 = a, u_5 = 0, v_i = 1 \forall i = 1, \ldots, 5$$

then $e_1 = e_2 = e_3 = e_5 = 0, e_4 = -a^4$

For any matrix of the form, the spectrum of $C_1(H)$ is determined clearly by the mentioned above properties and theorems.

By lemma 3.1, $\text{rank}(\pi(H)) \leq 2^5 - 5 = 27$ which means that there are at most 27 positive engenvalues.

By lemma 3.2,

$$\text{per}(H) = 120 + 24|e_1|^2 + 12|e_2|^2 + 12|e_3|^2 + 24|e_4|^2 + 120|e_5|^2 = 120 + 24a^8$$

and the proposition 3.2 implies that

$$C_1(H) = \frac{\text{per}(H)}{5} vv^* + \frac{6}{5} v_1 v_1^* + \frac{2}{5} v_2 v_2^* + \frac{2}{5} v_3 v_3^* + \frac{6}{5} v_4 v_4^*$$

where

$$v_1 = \begin{pmatrix} -5ai \\ 5a \\ 5ai \\ -5a \\ 0 \end{pmatrix}, \quad v_2 = \begin{pmatrix} -5a^2 \\ 5a^2 \\ -5a^2 \\ 5a^2 \\ 0 \end{pmatrix}, \quad v_3 = \begin{pmatrix} 5a^3 i \\ 5a^3 \\ -5a^3 i \\ -5a^3 \\ 0 \end{pmatrix}, \quad v_4 = \begin{pmatrix} a^4 \\ a^4 \\ a^4 \\ a^4 \\ -4a^4 \end{pmatrix}$$
Notice that \(\{v, v_1, v_2, v_3, v_4\} \) is orthogonal, thus those vectors are eigenvectors of \(\mathcal{C}_1(H) \) corresponding to the eigenvalues

\[
\text{per}(H) = 120 + 24a^8, \quad \frac{6}{5} ||v_1||^2 = 120a^2, \quad \frac{2}{5} ||v_2||^2 = 40a^4, \quad \frac{2}{5} ||v_3||^2 = 40a^6, \quad \frac{6}{5} ||v_4||^2 = 24a^8
\]

We replace \(a^2 = c \), then \(\text{tr}(\pi(H)) = 120(1 + c)^4 \). The spectrum of \(\mathcal{C}_1(H) \) is

\[
\{120 + 24c^4, 120c, 40c^2, 40c^3, 24c^4\}
\]

Moreover, every eigenvalue of \(\mathcal{C}_1(H) \) except \(\text{per}(H) \) is an eigenvalue of \(\pi(H) \) with multiplicity at least 4 and, every eigenvalue of \(\mathcal{C}_2(H) \) except eigenvalues of \(\mathcal{C}_1(H) \) is an eigenvalue of \(\pi(H) \) with multiplicity at least 5. Therefore, if we can calculate the sum and the sum of squares of at most 2 unknown positive eigenvalues of \(\pi(H) \), then the spectrum is determined. We compute the trace of \(\mathcal{C}_2(H) \). The \((i, j)(i, j)\)-th diagonal entry of \(\mathcal{C}_2(H) \) is given by

\[
\text{per}(H[i, j], \{i, j\}) + \text{per}(H\{i, j\}, \{i, j\}) = (2 + |e_1[i, j]|^2 + 2|e_2[i, j]|^2 + 6|e_1[i, j]|^2 + 2|e_3[i, j]|^2) + 6|e_3[i, j]|^2
\]

Hence, we use the table to represent all the diagonal entries of \(\mathcal{C}_2(H) \).

Coordinates	Values
(1, 2)\((1, 2) \)	\((2 + 2c + 2c^2)(6 + 4c + 2c^2) \)
(1, 3)\((1, 3) \)	\((2 + 2c^2)(6 + 2c^2) \)
(1, 4)\((1, 4) \)	\((2 + 2c + 2c^2)(6 + 4c + 2c^2) \)
(1, 5)\((1, 5) \)	\((2 + c)(6 + 2c + 2c^2 + 6c^3) \)
(2, 3)\((2, 3) \)	\((2 + 2c + 2c^2)(6 + 4c + 2c^2) \)
(2, 4)\((2, 4) \)	\((2 + 2c^2)(6 + 2c^2) \)
(2, 5)\((2, 5) \)	\((2 + c)(6 + 2c + 2c^2 + 6c^3) \)
(3, 4)\((3, 4) \)	\((2 + 2c + 2c^2)(6 + 4c + 2c^4) \)
(4, 5)\((4, 5) \)	\((2 + c)(6 + 2c + 2c^2 + 6c^3) \)
\(\text{tr}(\mathcal{C}_2(H)) \)	\(120 + 48c^8 + 104c^3 + 152c^2 + 120c \)

Furthermore, we use the symmetric polynomials to calculate the sum of all squares of eigenvalues.

\[
\text{tr}(\pi(H))^2 = \sum_{\sigma \in S_5} \sum_{\tau \in S_5} \left| \prod_{i=1}^{5} (1 + u_{\sigma(i)}u_{\tau(i)}) \right|^2
\]

\[
= 120 \sum_{\sigma \in S_5} \left| \prod_{i=1}^{5} (1 + u_{\sigma(i)}) \right|^2
\]

\[11\]
We know that $u_5 = 0$, and for $k = 1, \ldots, 4$ we have $u_k = a_i^k$ with $a^2 = c$ then

$$\text{tr}(\pi(H)^2) = 120 \sum_{\sigma \in S_5} \left| \prod_{i=1}^{5} (1 + u_i \mu_{\sigma(i)}) \right|^2$$

$$= 120 \left(\sum_{k=1}^{4} \sum_{\sigma \in S_5, \sigma(k)=5} \left| \prod_{j \neq k} (1 + u_j \mu_{\sigma(j)}) \right|^2 + \sum_{\sigma \in S_5, \sigma(5)=5} \left| \prod_{j=1}^{4} (1 + u_j \mu_{\sigma(i)}) \right|^2 \right)$$

$$= 120 \left(\sum_{k=1}^{4} \sum_{\sigma \in S_5, \sigma(k)=5} \left| \prod_{j \neq k} (1 + c \cdot i^{1-\sigma(j)} \right|^2 + \sum_{\sigma \in S_5, \sigma(5)=5} \left| \prod_{j=1}^{4} (1 + c \cdot i^{1-\sigma(j)}) \right|^2 \right)$$

Lemma 3. By the fundamental theorem of symmetric polynomials and $e_1 = e_2 = e_3 = e_5 = 0$ then every monomial symmetric polynomial in 5 variables of degree non-divisible by 4 takes $(u_1, u_2, u_3, u_4, u_5)$ as a root.

The lemma 4.1 reduces the sums

$$\sum_{k=1}^{4} \sum_{\sigma \in S_5, \sigma(k)=5} \left| \prod_{j \neq k} (1 + c \cdot i^{1-\sigma(j)}) \right|^2$$

$$= \sum_{k=1}^{4} \sum_{\sigma \in S_5, \sigma(k)=5} (1 + c^2)^3 + (1 + c^2) \sum_{j \neq k} 2 \text{Re}(i^{1-\sigma(j)})$$

$$+ (1 + c^2)^2 \sum_{i_1 < i_2 \neq k, 5} (i^{i_1-\sigma(i_1)} + i^{\sigma(i_1)-i_1})(i^{i_2-\sigma(i_2)} + i^{\sigma(i_2)-i_2}) + c^3 \prod_{j \neq k, 5} (i^{1-\sigma(j) + i^{\sigma(j)-j}})$$

$$= 96(1 + c^2)^3 + \sum_{k=1}^{4} \sum_{\sigma \in S_5, \sigma(k)=5} c^2(1 + c^2)2 \text{Re} \left(\sum_{i_1 < i_2 \neq k, 5} i^{i_1-\sigma(i_1)} - i^{i_2-\sigma(i_2)+\sigma(i_1)} \right)$$

$$= 96(1 + c^2)^3 + \sum_{k=1}^{4} \sum_{\sigma \in S_5, \sigma(k)=5} c^2(1 + c^2) \text{Re} \left(\sum_{i_1 \neq i_2 \neq k, 5} e^{i_1-i_2} \sum_{\sigma \in S_5, \sigma(k)=5} i^{\sigma(i_2)-\sigma(i_1)} \right)$$

combine with

$$\sum_{\sigma \in S_5, \sigma(k)=5} i^{\sigma(i_2)-\sigma(i_1)} = 2 \sum_{\alpha=1}^{4} i^\alpha \sum_{\beta \neq \alpha} i^\beta = -2.4 = -8$$

We attain

$$\sum_{k=1}^{4} \sum_{\sigma \in S_5, \sigma(k)=5} \left| \prod_{j \neq k, 5} (1 + c \cdot i^{1-\sigma(j)}) \right|^2 = 96(1 + c^2)^3 - 8c^2(1 + c^2) \sum_{k=1}^{4} \text{Re} \left(\sum_{i_1 \neq i_2 \neq k, 5} e^{i_1-i_2} \right)$$

$$= 96(1 + c^2)^3 + 64c^2(1 + c^2)$$

12
Hence, the spectrum of the matrix H ample to the permanent-on-top conjecture (POT).

The lemma 4.1 also reduces the sum

$$\sum_{\sigma \in S_4, \sigma(5)=5} \prod_{i=1}^4 (1 + c \cdot i^{j-\sigma(j)})^2 = \sum_{\sigma \in S_4} \prod_{i=1}^4 (1 + c \cdot i^{j-\sigma(j)})^2$$

$$= \sum_{\sigma \in S_4} \left| 1 + c^4 + c^3 \sum_{i=1}^4 i^{\sigma(j)-j} + c^2 \sum_{j_1<j_2} i^{j_1+j_2-\sigma(j_1)-\sigma(j_2)} \right|^2$$

$$= 24(1 + c^4)^2 + (c^6 + c^2) \sum_{\sigma \in S_4} \prod_{i=1}^4 i^{j-\sigma(j)}^2 + c^4 \sum_{\sigma \in S_4} \sum_{j_1<j_2} i^{j_1+j_2-\sigma(j_1)-\sigma(j_2)}^2$$

We compute each part separately by the lemma 4.1

$$\sum_{\sigma \in S_4} \prod_{i=1}^4 i^{j-\sigma(j)}^2 = 24 \cdot 4 - 8 \sum_{j_1 \neq j_2} i^{j_1-j_2} = 96 + 32 = 128$$

$$\sum_{\sigma \in S_4} \sum_{j_1<j_2} i^{j_1+j_2-\sigma(j_1)-\sigma(j_2)}^2 = \sum_{\sigma \in S_4} \left(\binom{4}{2} + \frac{1}{4} \sum_{\{i_1, i_2, i_3, i_4\} = \{1, 2, 3, 4\}} i^{\sigma(i_1)+\sigma(i_2)-\sigma(i_3)-\sigma(i_4)} + \sum_{j_1<j_2} i^{j_1-j_2+\sigma(j_2)-\sigma(j_1)} \right)$$

$$= 144 + 2 \sum_{\{i_1, i_2, i_3, i_4\}} i^{i_1+i_4-i_2-i_3} - 16 \sum_{j_1<j_2} i^{j_1-j_2} = 208 - 4 \sum_{j_1<j_2} i^{2j_1+2j_2} = 224$$

Thus, we obtain $\text{tr}(\pi(H)^2) = 120(24(1 + c^4)^2 + 128(c^6 + c^2) + 224c^4 + 96(1 + c^2)^3 + 64c^2(1 + c^2))$.

Hence, the spectrum of $\pi(H)$ is

- $\text{per}(H) = 120 + 24c^4$ of multiplicity 1
- $120c, 40c^2, 40c^3, 24c^4$ of multiplicity 4
- $64c^3, 112c^2$ of multiplicity 5
- 0 of multiplicity 93

We observe that $c = 2$ is a solution of the inequality $120 + 24c^4 - 64c^3 < 0$. Therefore, the matrix $H = vv^* + uu^*$ where $v = (1, \ldots, 1)^T$, $u = \sqrt{2}(i, -1, -i, 1, 0)^T$ is a counterexample to the permanent-on-top conjecture (POT).

$$H = \begin{pmatrix} 3 & 1 - 2i & -1 & 1 + 2i & 1 \\ 1 + 2i & 3 & 1 - 2i & -1 & 1 \\ -1 & 1 + 2i & 3 & 1 - 2i & 1 \\ 1 - 2i & -1 & 1 + 2i & 3 & 1 \\ 1 & 1 & 1 & 1 & 1 \end{pmatrix}$$
The spectrum of this counterexample is also given by above calculations:

- \(\text{per}(H) = 504 \) of multiplicity 1
- \(240, 160, 320, 384 \) of multiplicity 4
- \(512 \) and \(448 \) of multiplicity 5
- \(0 \) of multiplicity 93

Once, I have the counterexample, a shorter way to prove the matrix \(H \) is a counterexample for Pate’s conjecture in the case \(n = 5 \) and \(k = 2 \) is available by Tensor product. For the purposes of this paper let us describe the tensor product of vector spaces in terms of bases:

Definition 7. Let \(V \) and \(W \) be vector spaces over \(\mathbb{C} \) with bases \(\{v_i\} \) and \(\{w_j\} \), respectively. Then \(V \otimes W \) is the vector space spanned by \(\{v_i \otimes w_j\} \) subject to the rules:

\[
(\alpha v + \alpha' v') \otimes w = \alpha (v \otimes w) + \alpha' (v' \otimes w)
\]

\[
v \otimes (\alpha w + \alpha' w') = \alpha (v \otimes w) + \alpha' (v \otimes w')
\]

for all \(v, v' \in V \) and \(w, w' \in W \) and all scalars \(\alpha, \alpha' \).

If \(\langle \cdot, \cdot \rangle \) is an inner product on \(V \) then we can define an inner product \(\langle \cdot, \cdot \rangle \) on \(V \otimes V \) in the manner:

\[
\langle v_{i_1} \otimes v_{i_2}, v_{i_3} \otimes v_{i_4} \rangle = \langle v_{i_1}, v_{i_3} \rangle \langle v_{i_2}, v_{i_4} \rangle
\]

for any \(v_{i_1}, v_{i_2}, v_{i_3}, v_{i_4} \) vectors.

On \(\mathbb{C}[x,y] \), we consider the inner product, and the resulting Euclidean norm \(|\cdot| \), such that monomials are orthogonal and \(|x^n y^k|^2 = n!k! \).

Proposition 4.1. The permanent of the Gram matrix of any 1-forms \(f_j \in \mathbb{C}x \oplus \mathbb{C}y \) is \(|\prod f_j|^2 \).

Proof. We prove the generalization of the statement which states that if \(f_1, f_2, \ldots, f_n; g_1, g_2, \ldots, g_n \) be \(2n \) 1-forms and \(A \) be an \(n \times n \) matrix with \((i,j) \)-th entry \(\langle f_i, g_j \rangle \), then

\[
\text{per}(A) = \begin{vmatrix}
\prod_{i=1}^{n} f_i, \prod_{i=1}^{n} g_i
\end{vmatrix}
\]

Let \(f_i = \alpha_i x + \beta_i y, g_i = \alpha'_i x + \beta'_i y \) for any \(i \in \{1,2,\ldots,n\} \).

We compute each side of the equality:
The left side is

$$\text{per}(A) = \sum_{\sigma \in S_n} \prod_{i=1}^{n} \langle f_i, g_{\sigma(i)} \rangle = \sum_{\sigma \in S_n} \prod_{i=1}^{n} \langle \alpha_i x + \beta_i y, \alpha'_{\sigma(i)} x + \beta'_{\sigma(i)} y \rangle = \sum_{\sigma \in S_n} \prod_{i=1}^{n} (\alpha_i \cdot \alpha'_{\sigma(i)} + \beta_i \cdot \beta'_{\sigma(i)})$$

$$= \sum_{\sigma \in S_n} \sum_{k=0}^{n} \left(\prod_{1 \leq i_1 < \cdots < i_k \leq n \atop 1 \leq k+1 < \cdots < i_n \leq n} \alpha_{i_1} \cdots \alpha_{i_k} \beta_{i_k+1} \cdots \beta_{i_n} \cdot \prod_{1 \leq i_1 < \cdots < i_k \leq n \atop 1 \leq k+1 < \cdots < i_n \leq n} \alpha'_{i_1} \cdots \alpha'_{i_k} \beta'_{i_k+1} \cdots \beta'_{i_n} \right)$$

$$= \sum_{k=0}^{n} k! (n-k)! \left(\prod_{1 \leq i_1 < \cdots < i_k \leq n \atop 1 \leq k+1 < \cdots < i_n \leq n} \alpha_{i_1} \cdots \alpha_{i_k} \beta_{i_k+1} \cdots \beta_{i_n} \right) \left(\prod_{1 \leq i_1 < \cdots < i_k \leq n \atop 1 \leq k+1 < \cdots < i_n \leq n} \alpha'_{i_1} \cdots \alpha'_{i_k} \beta'_{i_k+1} \cdots \beta'_{i_n} \right)$$

and the right side is

$$\left\langle \prod_{i=1}^{n} f_i, \prod_{i=1}^{n} g_i \right\rangle$$

$$= \left\langle \prod_{k=0}^{n} x^k y^{n-k} \sum_{1 \leq i_1 < \cdots < i_k \leq n \atop 1 \leq k+1 < \cdots < i_n \leq n} \alpha_{i_1} \cdots \alpha_{i_k} \beta_{i_k+1} \cdots \beta_{i_n} \right\rangle$$

$$= \sum_{k=0}^{n} k! (n-k)! \left(\prod_{1 \leq i_1 < \cdots < i_k \leq n \atop 1 \leq k+1 < \cdots < i_n \leq n} \alpha_{i_1} \cdots \alpha_{i_k} \beta_{i_k+1} \cdots \beta_{i_n} \right) \left(\prod_{1 \leq i_1 < \cdots < i_k \leq n \atop 1 \leq k+1 < \cdots < i_n \leq n} \alpha'_{i_1} \cdots \alpha'_{i_k} \beta'_{i_k+1} \cdots \beta'_{i_n} \right)$$

Let $f_j = x + yi \sqrt{2}$ ($j = 1, 2, 3, 4$) and $f_5 = x$. Their Gram matrix is the given matrix H with $\text{per}H = |f_1 f_2 f_3 f_4 f_5|^2 = |x^5 - 4xy^4|^2 = 512 \cdot 24 = 504$ (according to the proposition 4.1). When $\{p, q, r, s, t\} = \{1, 2, 3, 4, 5\}$, define $F_{p,q} = f_p f_q \otimes f_r f_s f_t$ and an inner product on $\mathbb{C}[x,y] \otimes \mathbb{C}[x,y]$ as the definition 4.1. It is obvious that $\mathcal{G}_2(H)$ of H is the Gram matrix of the ten tensors $F_{p,q}$ with $\{p, q, r, s, t\} = \{1, 2, 3, 4, 5\}$, $p < q$, and $r < s < t$. We observe that

$$(1 + i)F_{41} + (-1 + i)F_{12} + (-1 - i)F_{23} + (1 - i)F_{34} - 2iF_{51} + 2F_{52} + 2iF_{53} - 2F_{54}$$

$$= 16\sqrt{2}x^2 \otimes y^3 - 32\sqrt{2}xy \otimes xy^2 + 16\sqrt{2}y^2 \otimes x^2y,$$

whose norm squared is

$$2^9 \cdot 2!3! + 2^{11} \cdot 2! + 2^9 \cdot 2! \cdot 2! = 512 \cdot 24,$$

15
while the norm squared of the coefficient vector is
\[|1 + i|^2 + |-1 + i|^2 + |1 - i|^2 + |1 - i|^2 + |2i|^2 + 2^2 + |2i|^2 + |-2|^2 = 24. \]

Therefore, a linear operator mapping eight orthonormal vectors to \(F_{12}, F_{23}, F_{34}, F_{41}, F_{51}, F_{52}, F_{53}, F_{54} \) has norm at least \(\sqrt{512} \), so the Gram matrix of these eight tensors, which is an 8-square diagonal submatrix of \(\mathcal{C}_2(H) \), has norm (=largest eigenvalue) at least 512, whence so does \(\mathcal{C}_2(H) \) itself. In fact, the norm of \(\mathcal{C}_2(H) \) is 512.

References

[1] R.B. BAPAT, V.S. SUNDER, An extremal property of the permanent and the determinant, Linear Algebra Appl. 76, (1986), 153–163.

[2] DRURY, STEPHEN, A counterexample to a question of Bapat & Sunder, Math. Inequal. Appl. 21, (2018), no. 2, 517-520.

[3] DRURY, STEPHEN, A counterexample to a question of Bapat & Sunder, Electron. J. Linear Algebra 31, (2016), 69-70.

[4] E.H. LIEB, Proofs of some conjectures on permanents, J. Math. and Mech. 16, (1966), 127-134.

[5] ADAM W. MARCUS, A determinantal identity for the permanent of a rank 2 matrix, August 30, 2016. https://www.epflepf.com/adam/papers/rank2perms.pdf.

[6] MAXIM NAZAROV, J TAYLOR, Representation theory of the symmetric group [Lecture notes], (2007).

[7] PATE, THOMAS H.(1-ABRN), On permanental compounds, Linear Algebra Appl. 429, (2008), no. 5-6, 1093-1101.

[8] V.S. SHCHESNOVICH, The permanent-on-top conjecture is false, Linear Algebra Appl. 490, (2016), 196-201.

[9] G. SOULES, Matrix Functions and the Laplace expansion theorem, PhD Dissertation (University of California, Santa Barbara, 1966).

[10] FUZHEN ZHANG, Matrix Theory, Basic Results and Techniques, 2nd Edition - Springer (2011), 117-120.

[11] FUZHEN ZHANG, An update on a few permanent conjectures, Special Matrices 4, 2016, 305-316.