ON THE UPPER AND LOWER ESTIMATES OF NORMS IN VARIABLE EXPONENT SPACES

TENGIZ KOPALIANI, NINO SAMASHVILI, AND SHAIVA ZVIADADZE

Abstract. In the present paper we investigate some geometrical properties of the norms in Banach function spaces. Particularly there is shown that if exponent \(1/p(\cdot)\) belongs to \(BL^{1/\log}\) then for the norm of corresponding variable exponent Lebesgue space we have the following lower estimate

\[
\|\sum Q \chi_Q f \|_{p(\cdot)} / \|\chi_Q\|_{p(\cdot)} \leq C \|f\|_{p(\cdot)}
\]

where \(\{Q\}\) defines disjoint partition of \([0; 1]\). Also we have constructed variable exponent Lebesgue space with above property which does not possess following upper estimation

\[
\|f\|_{p(\cdot)} \leq C \sum Q \chi_Q f \|\|_{p(\cdot)} / \|\chi_Q\|_{p(\cdot)} \|f\|_{p(\cdot)}.
\]

1. Introduction

Let \(\Omega \subset \mathbb{R}^n\) and let \(\mathcal{M}\) be the space of all equivalence classes of Lebesgue measurable real-valued functions endowed with the topology of convergence in measure relative to each set of finite measure.

Definition 1.1. A Banach subspace \(X\) of \(\mathcal{M}\) is called a Banach function space (BFS) on \(\Omega\) if

1) the norm \(\|f\|_X\) is defined for every measurable function \(f\) and \(f \in X\) if and only if \(\|f\|_X < \infty\), \(\|f\|_X = 0\) if and only if \(f = 0\) a.e.;
2) \(\|f\|_X = \|f\|_X\) for all \(f \in X\);
3) if \(0 \leq f \leq g\) a.e., then \(\|f\|_X \leq \|g\|_X\);
4) if \(0 \leq f_n \uparrow f\) a.e., then \(\|f_n\|_X \uparrow \|f\|_X\);
5) if \(E\) is measurable subset of \(\Omega\) such that \(|E| < \infty\), (below we denote the Lebesgue measure of \(E\) by \(|E|\)) then \(\|\chi_E\|_X < \infty\);
6) for every measurable set \(E\), \(|E| < \infty\), there is a constant \(C_E < \infty\) such that \(\int_E f(t)dt \leq C_E \|f\|_X\).

Given a BFS \(X\), its associate space \(X'\) is defined by

\[
X' = \left\{ g : \int_\Omega |f(x)g(x)| dx < \infty \text{ for all } f \in X \right\}
\]
and endowed with the associate norm
\[\|f\|_{X'} = \sup \left\{ \int_{\Omega} |f(x)g(x)|dx : \|g\|_X \leq 1 \right\}. \]

An immediate consequence of this definition is the generalized Hölder’s inequality: for all \(f \in X \) and \(g \in X' \),
\[\left| \int_{\Omega} f(x)g(x)dx \right| \leq \|f\|_X \|g\|_{X'}. \]

Furthermore, \(X' \) is also a BFS on \(\Omega \) and \((X')' = X \). The associate space of \(X \) is closed norming subspace of the dual space \(X^* \), and equality
\[\|f\|_X = \sup \left\{ \int_{\Omega} |f(x)g(x)|dx : \|g\|_{X'} \leq 1 \right\} \]
holds for all \(f \in X \) (see [1]).

Given a Banach function space \(X \), define the scale of spaces \(X^r, \ 0 < r < \infty \), by
\[X^r = \{ f \in \mathcal{M} : |f|^r \in X \}, \]
with the "norm"
\[\|f\|_{X^r} = \|f|^r\|_{X}^{1/r}. \]

If \(r \geq 1 \), then \(\| \cdot \|_{X^r} \) is again an actual norm and \(X^r \) is a Banach function space. However, if \(r < 1 \), need not be a Banach function space. The simple example is the scale of Lebesgue spaces: if \(X = L^p(\Omega), (1 \leq p < \infty) \), then \((L^p)^r = L^{pr} \), and so \(X^r \) is a Banach space only for \(r \geq 1/p \).

Let \(\mathcal{Q} \) be some fixed family of sequences \(\mathcal{Q} = \{Q_i\} \) of disjoint measurable subsets of \(\Omega \), \(|Q_i| > 0 \) such that \(\Omega = \cup_{Q_i \in \mathcal{Q}} Q_i \). We ignore the difference in notation caused by a null set.

Everywhere in the sequel \(l_\mathcal{Q} \) is a Banach sequential space (BSS), meaning that axioms 1)-6) from definition 1.1 are satisfied with respect to the count measure. Let \(e_k = e_{Q_k} \) denote the standard unit vectors in \(l_\mathcal{Q} \).

Kopaliani in [10] introduced notions of uniformly upper (lower) \(l \)-estimates.

Definition 1.2. 1) Let \(l = \{l_\mathcal{Q}\}_{\mathcal{Q} \in \mathcal{E}} \) be a family of BSSs. A BFS \(X \) is said to satisfy a uniformly upper \(l \)-estimate if there exists a constant \(C < \infty \) such that for every \(f \in X \) and \(\mathcal{Q} \in \mathcal{E} \) we have
\[\|f\|_X \leq C \left\| \sum_{Q_i \in \mathcal{Q}} e_i \|f\chi_{Q_i}\|_X \right\|_{l_\mathcal{Q}}. \]

2) BFS \(X \) is said to satisfy uniformly lower \(l \)-estimate if there exists a constant \(C < \infty \) such that for every \(f \in X \) and \(\mathcal{Q} \in \mathcal{E} \) we have
\[\|f\|_X \geq C \left\| \sum_{Q_i \in \mathcal{Q}} e_i \|f\chi_{Q_i}\|_X \right\|_{l_\mathcal{Q}}. \]

Note that if in Definition 1.2 for all \(\mathcal{Q} \in \mathcal{E} \), we take one discrete Lebesgue space \(l_p, (1 \leq p < \infty) \), we obtain classical definition of upper and lower \(p \)-estimates of Banach spaces (see [15, 8]). The existence of upper or lower \(p \)-estimates in the Banach spaces is of great interest in study of the structure of the space (see [14]). Berezhnoi [2, 3] investigate uniformly upper (lower) \(l \)-estimates of BFS, when discrete \(l_\mathcal{Q} \) spaces for all partition of \(\Omega \) coincides to some discrete BSS.
Definition 1.3. A pair of BFSs \((X, Y)\) is said to have property \(G\) if there exists a constant \(C > 0\) such that
\[
\sum_{Q_i \in \mathcal{Q}} \frac{\|f \chi_{Q_i}\|_X}{\|\chi_{Q_i}\|_X} \leq C \cdot \|f\|_X \cdot \|g\|_{Y'},
\]
for any \(\mathcal{Q} \subseteq \mathcal{S}\) and every \(f \in X, g \in Y'\).

Definition 1.6 was introduced by Berezhnoi \cite{3}. Let us remark that a pair \((L^p(\Omega), L^q(\Omega))\) possesses the property \(G\) if \(p \leq q\).

Theorem 1.4 (\cite{10}). Let \((X, Y)\) be a pair of BFSs. Then the following assertions are equivalent:
1) The pair \((X, Y)\) of BFSs possesses property \(G\).
2) There is a family \(I = \{l_Q\}_{Q \in \mathcal{Q}}\) of BSSs such that \(X\) satisfies uniformly lower \(l\)-estimate and \(Y\) satisfies uniformly upper \(l\)-estimate.

Theorem 1.5 (\cite{10}). Let the pair \((X, Y)\) of BFSs possesses property \(G\). Then there exist constants \(C_1, C_2 > 0\) such that for every \(f \in X\) and \(Q \in \mathcal{S}\) we have
\[
C_1 \|f\|_X \leq \left(\frac{\sum_{Q_i \in \mathcal{Q}} \frac{\|f \chi_{Q_i}\|_X}{\|\chi_{Q_i}\|_X}}{\|f\|_X} \right) \leq C_2 \|f\|_X.
\]

Note that the \((1.1)\) type inequalities is very important for studying the boundedness properties of operators of harmonic analysis in variable Lebesgue spaces (see \cite{4, 7}).

Definition 1.6. We say that BFS \(X\) has property \(G'\) (property \(G''\)) if there exists constant \(C_1, C_2 > 0\) such that for every \(f \in X\) and \(Q \in \mathcal{S}\) we have
\[
\left(\frac{\sum_{Q_i \in \mathcal{Q}} \frac{\|f \chi_{Q_i}\|_X}{\|\chi_{Q_i}\|_X}}{\|f\|_X} \right) \leq C_1 \|f\|_X, \quad \left(\|f\|_X \leq C_2 \sum_{Q_i \in \mathcal{Q}} \frac{\|f \chi_{Q_i}\|_X}{\|\chi_{Q_i}\|_X} \right).
\]

The idea of \((1.2)\) type inequalities are to generalize the following property of the Lebesgue norm
\[
\|f\|_{L^p} = \left\| \sum_i \frac{\|f \chi_{Q_i}\|_{L^p}}{\|\chi_{Q_i}\|_{L^p}} \chi_{Q_i} \right\|_{L^p},
\]
where \(\Omega_i\) is disjoint measurable partition of \(\Omega\).

The aim of our paper is to investigate the properties \(G'\) (property \(G''\)) for variable Lebesgue spaces \(L^{p(\cdot)}[0; 1]\). By \(\mathcal{S}\) we denote the family of all sequences (may be finite) \(\{Q_i\}\) of disjoint intervals from \([0; 1]\). Assume that sets like \([0; a)\) and \((b; 1]\) are also intervals. We have described the class of exponents, for which the correspondent variable exponent Lebesgue spaces has property \(G'\) (property \(G''\)). Also we have constructed variable exponent Lebesgue space with property \(G'\) (\(G''\)), which does not possess \(G''\) (\(G'\)) property.

Particularly we will proof following theorems:

Theorem 1.7. Let for exponent \(p(\cdot)\) we have \(1/p(\cdot) \in BLO^{1/\log}, 1 \leq p_- \leq p_+ < \infty\). Then the space \(L^{p(\cdot)}[0; 1]\) has property \(G'\).
Theorem 1.8. Let for exponent $p(\cdot), 1 \leq p_- \leq p_+ < \infty$ we have $1/p(\cdot) \in \text{BLO}^{1/\log}$. Then there exists c such that the space $L^{[p(\cdot)+c]}[0;1]$ has property G''.

Theorem 1.9. 1) There exists exponent $p(\cdot), 1 \leq p_- \leq p_+ < \infty$ such that $1/p(\cdot) \in \text{BLO}^{1/\log}$ and $L^{p(\cdot)}[0;1]$ has property G' but does not have property G''.

2) There exists exponent $p(\cdot), 1 \leq p_- \leq p_+ < \infty$ such that $1/p(\cdot) \in \text{BLO}^{1/\log}$ and $L^{p(\cdot)}[0;1]$ has property G'' but does not have property G'.

2. Some remarks on properties G' and G''

In this section we will discuss about relations between G' and G'' properties for BFS X and its associate space. \mathfrak{S} denotes the family of all sequences of disjoint intervals.

Definition 2.1 ([3]). Let X be a BFS. We say that for BFS X is fulfilled condition A if there exists constant $C > 0$ such that, for all interval $Q \subseteq [0;1]$

\[\| x_Q \| x \cdot \| x_Q \| x' \leq C \cdot |Q| \]

Theorem 2.2. Let BFS X has property G' and for X fulfilled condition A. Then associate space of X has property G''.

Proof. Let $Q = \{Q_1, Q_2, \ldots\}$ denotes some partition of $[0;1]$. Let $g \in X'$ and $f \in X$ such that $\|f\|_X \leq 1$. Using Hölder’s inequality and A condition we conclude that $|Q| \leq \|x_Q\|_x \cdot \|x_Q\|_{x'}$. Using this fact and property G' we obtain

\[
\int_{[0;1]} |f(x)g(x)|dx = \sum_k \int_{Q_k} |f(x)g(x)|dx \leq \sum_k \|f\|_{x} \cdot \|g\|_{x'}
\]

\[
\leq C_1 \int_{[0;1]} \sum_k \frac{\|f\|_{x} \cdot \|g\|_{x'}}{\|x_Q\|_x \cdot \|x_Q\|_{x'}} \chi_{Q_k} dx \leq C_1 \left\| \sum_k \frac{\|f\|_{x} \cdot \|g\|_{x'}}{\|x_Q\|_x \cdot \|x_Q\|_{x'}} \chi_{Q_k} \right\|_{x'}
\]

\[
\leq C_2 \left\| \sum_k \frac{\|g\|_{x'} \cdot \|x\|_{x'}}{\|x_Q\|_{x'} \cdot \|x_Q\|_x} \chi_{Q_k} \right\|_{x'}.
\]

Consequently X' possesses G'' property. □

Note that if for BFS X we have property G then for X' we have property G without condition A (see [10]).

Definition 2.3. Let $Q \in \mathfrak{S}$. We define averaging operator with respect to Q by

\[T_Q f(x) = \sum_i |f|_{Q_i} \chi_{Q_i}(x) \]

where $|f|_{Q}$ denotes the average of $|f|$ on Q.

Theorem 2.4. Let BFS X has property G'' and averaging operators $T_Q : X \rightarrow X, Q \in \mathfrak{S}$ are uniformly bounded. Then associate space of X has property G'.

Proof. Let $g \in X$ is nonnegative function such that $\|g\|_X \leq 1$. For any $\varepsilon > 0$ and i we choose nonnegative function $h_i \in X$ such that $\|h_i\|_X \leq 1$ and $\|f\|_{x'} \leq (1 + \varepsilon) \int_{Q_i} h_i df$. Note that uniformly boundedness of averaging operator implies condition A for space X (see [3]). So by property G'' and Hölder inequality we get

\[
\int_{[0;1]} g(x) \sum_i \frac{\|f\|_{x'} \cdot \chi_{Q_i}(x)}{\|x_Q\|_x \cdot \|x_Q\|_{x'}} dx \leq \int_{[0;1]} g(x) \sum_i \frac{(1 + \varepsilon) \int_{Q_i} f(t)h_i(t)dt}{\|x_Q\|_{x'}} \chi_{Q_i}(x) dx
\]
In the notation introduced above, an exponent \(p \)-measurable functions conditions, calculus of variations, image processing and etc (see [7])

By the fact that \(\varepsilon \) is arbitrary small we conclude that \(X' \) has property \(G' \). \hfill \Box

Note that if \(0 < r < \infty \) then for any \(f \in X \) we have \(\|f\|_X = \|f^{1/r}\|_{X'} \) and the inequalities in definition [1,6] can be written in following form

\[
\left\| \sum_{Q \in Q} \frac{f^{1/r} \chi_Q \|x^r\|}{\chi_Q} \right\|_{X'}^{r} \leq C_1 \|f^{1/r}\|_{X'}^{r},
\]

\[
\|f^{1/r}\|_{X'}^{r} \leq C_2 \sum_{Q \in Q} \left(\frac{f^{1/r} \chi_Q \|x^r\|}{\chi_Q} \right)^{r} \frac{\|x^r\|}{\chi_Q}.
\]

Consequently if BFS has property \(G' (G'') \), then the "norms" \(\| \cdot \|_{X'} (0 < r < \infty) \) have property \(G' (G'') \).

3. VARIABLE LEBESGUE SPACES

The variable exponent Lebesgue spaces \(L^{p(\cdot)}(\mathbb{R}^n) \) and the corresponding variable exponent Sobolev spaces \(W^{k,p(\cdot)} \) are of interest for their applications to the problems in fluid dynamics, partial differential equations with non-standard growth conditions, calculus of variations, image processing and etc (see [7]).

Given a measurable function \(p : [0; 1] \to [1; +\infty) \), \(L^{p(\cdot)}[0; 1] \) denotes the set of measurable functions \(f \) on \([0; 1]\) such that for some \(\lambda > 0 \)

\[
\int_{[0; 1]} \left(\frac{|f(x)|}{\lambda} \right)^{p(x)} dx < \infty.
\]

This set becomes a Banach function spaces when equipped with the norm

\[
\|f\|_{p(\cdot)} = \inf \left\{ \lambda > 0 : \int_{[0; 1]} \left(\frac{|f(x)|}{\lambda} \right)^{p(x)} dx \leq 1 \right\}.
\]

For the given \(p(\cdot) \), the conjugate exponent \(p'(\cdot) \) is defined pointwise \(p'(x) = p(x)/(p(x) - 1) \), \(x \in [0; 1] \). Given a set \(Q \subset [0; 1] \) we define some standard notations:

\[
p_{-}(Q) := \text{essinf}_{x \in Q} p(x), \quad p_{+}(Q) := \text{esssup}_{x \in Q} p(x), \quad p_{-} := \text{essinf}_{[0; 1]}, \quad p_{+} := \text{esssup}_{[0; 1]}.
\]

In the notation introduced above, an exponent \(p(\cdot), 1 \leq p_{-} \leq p_{+} < \infty \), the associate space of \(L^{p(\cdot)}[0; 1] \) contains measurable functions \(f \) such that

\[
\|f''\|_{(L^{p(\cdot)')}'} = \sup \left\{ \int_{[0; 1]} |f(x)g(x)| dx : g \in L^{p(\cdot)}[0; 1], \|g\|_{p(\cdot)} \leq 1 \right\} < \infty.
\]
Note that in this case the associate space of $L^{p(·)}[0;1]$ is equal to $L^{q(·)}[0;1]$, and $\|·\|_{(L^{p(·)})'}$ and $\|·\|_{p(·)}$ are equivalent norms (see [4, 7]). We have also

$$\int_{[0;1]} |f(x)g(x)|dx \leq C\|f\|_{p(·)}\|g\|_{p(·)}, \quad f \in L^{p(·)}[0;1], \ g \in L^{p(·)}[0;1].$$

Conversely for all $f \in L^{p(·)}[0;1]

$$\|f\|_{p(·)} \leq C\sup_{[0;1]} |f(x)g(x)|dx,$$

where the supremum is taken over all $g \in L^{p(·)}[0;1]$ such that $\|g\|_{p(·)} \leq 1$.

Given exponent $p(·)$, $1 \leq p_- \leq p_+ < \infty$ and a Lebesgue measurable function f define the modular associated with $p(·)$ on the set $E \subset [0;1]$ by

$$\rho_{p(·),E}f = \int_E |f(x)|^{p(x)}dx.$$

In case of constant exponents, the L^p norm and the modular differ only by an exponent. In the variable Lebesgue spaces their relationship is more subtle as the next result shows (see [4, 7]).

Proposition 3.1. Given exponent $p(·)$, suppose $1 \leq p_- \leq p_+ < \infty$. Let E measurable subset of $[0;1]$. Then:

1. $\|f_{\chi_E}\|_{p(·)} = 1$ if and only if $\rho_{p(·),E}f = 1$;
2. if $\rho_{p(·),E}f \leq C$, then $\|f_{\chi_E}\|_{p(·)} \leq \max(C^{1/p_-(E)}, C^{1/p_+(E)})$;
3. if $\|f\|_{p(·)} \leq C$, then $\rho_{p(·),E}f \leq \max(C^{p_+(E)}, C^{p_-(E)})$.

The next result is a necessary and sufficient condition for the embedding $L^{q(·)}[0;1] \subset L^{p(·)}[0;1]$ (see [4, 7]).

Proposition 3.2. Given the exponents $p(·), q(·)$, suppose $1 \leq p_- \leq p_+ < \infty, 1 \leq q_- \leq q_+ < \infty$. Then $L^{q(·)}[0;1] \subset L^{p(·)}[0;1]$ if and only if $p(·) \leq q(·)$ almost everywhere. Furthermore, in this case we have

$$\|f\|_{p(·)} \leq 2\|f\|_{q(·)}.$$

For our results we need to impose some regularity on the exponent function $p(·)$. The most important condition, one widely used in the study of variable Lebesgue spaces, is log-Löder continuity. Let $C^{1/\log}$ denotes the set of exponents $p : [0;1] \rightarrow [1, +\infty]$ with log-Hölder condition

$$(3.1) \quad |(p(x) - p(y))\ln |x - y| \leq C, \ x, y \in [0;1], x \neq y.$$

For Lebesgue integrable function f define Hardy-Littlewood maximal function

$$Mf(x) = \sup_{x \in Q} |f|_Q,$$

where supremum is taken over all $Q \subset [0;1]$ intervals containing point x and f_Q denotes the average of function f on Q. Let by B denote set of all exponents $p(·)$ for which Hardy-Littlewood maximal operator is bounded on the space $L^{p(·)}[0;1]$. Diening [5] proved a key consequence of log-Hölder continuity of $p(·)$. If $1 < p_-$ and $p(·) \in C^{1/\log}$, then $p(·) \in B$.

Kopaliani [10] proved that if exponent $p(·)$ satisfies log-Hölder conditions then the pair of BFSs $(L^{p(·)}[0;1], L^{p(·)}[0;1])$ has property G. Note that there are another classes of exponents $p(·)$ such that pair of BFSs $(L^{p(·)}[0;1], L^{p(·)}[0;1])$ has property
Given a function \(f \in L^1[0;1] \). Let define its \(BMO \) modulus by
\[
\gamma(f,r) = \sup_{|Q| \leq r} \frac{1}{|Q|} \int_Q |f(x) - f_Q|dx, \quad 0 < r \leq 1,
\]
where supremum is taken over all intervals of \([0;1]\). We say that \(f \in BMO^{1/\log} \) if \(\gamma(f,r) \leq C/\log(e + 1/r) \) and \(f \in VMO^{1/\log} \) if \(\gamma(f,r) \log(e + 1/r) \to 0 \) as \(r \to 0 \).

Given a function \(f \in L^1[0;1] \). Let define its \(BLO \) modulus by
\[
\eta(f,r) = \sup_{|Q| \leq r} (f_Q - \text{essinf} f(x)), \quad 0 < r \leq 1,
\]
where supremum is taken over all intervals of \([0;1]\). We say that \(f \in BLO^{1/\log} \) if \(\eta(f,r) \leq C/\log(e + 1/r) \).

The class \(BMO^{1/\log} \) is very important for investigation of exponents from \(\mathcal{B} \).

Theorem 3.3 ([13], [9]). Let \(p : [0;1] \to [1;+\infty) \), then
1) if \(p(\cdot) \in \mathcal{B} \), then \(1/p(\cdot) \in BMO^{1/\log} \);
2) if \(p(\cdot) \in VMO^{1/\log} \), then \(p(\cdot) \in \mathcal{B} \);
3) if \(p(\cdot) \in BMO^{1/\log} \), then there exists \(c \) such that \(p(\cdot) + c \in \mathcal{B} \).

4. Proof of results

Proof of theorem 3.7 We begin with auxiliary estimations.

Lemma 4.1. Let \(p(\cdot) \) be an exponent on \([0;1] \) with \(1 \leq p_- \leq p_+ < \infty \). Then for all \(t \geq 0 \) and \(Q \subset [0;1] \) interval
\[
\frac{1}{|Q|} \int_Q t^{p(x)}dx \geq e^{2(p_-(Q) - p_+(Q))} t^{p_Q},
\]
where \(p_Q \) is defined as \(p_Q = \frac{1}{|Q|} \int_Q \frac{1}{p(x)}dx \).

This lemma is proved in [13] (see Lemma 4.1) in case of \(1 < p_- \leq p_+ < \infty \), but analogously may be proved in presented case. If in (4.1) we take \(t = \frac{1}{\|x_Q\|_{p(\cdot)}}, \) we obtain
\[
\|x_Q\|_{p(\cdot)} \geq C_1 |Q|^{(1/p(\cdot))},
\]
for some constant \(C_1 > 0 \).

Now assume that \(1/p(\cdot) \in BLO^{1/\log} \), then there exists \(C_2 \) such that
\[
|Q|^{(1/p(\cdot))} = |Q|^{\frac{1}{p_Q}} \int_Q t^{p_Q}dx = \frac{1}{p_Q} \int_Q t^{p_Q}dx \geq \frac{1}{p_Q} \int_Q t^{p_Q}dx \geq C_2 \cdot |Q|^{\frac{1}{p_Q}}.
\]

From (4.2) and (4.3) we obtain
\[
C_3 \cdot |Q|^{(1/p_+(Q))} \leq \|x_Q\|_{p(\cdot)} \leq C_4 \cdot |Q|^{1/p_+(Q)}.
\]

Let \(Q = \{Q_1, Q_2, \ldots\} \) denotes some partition of \([0;1]\). Define on \([0;1]\) function \(\tilde{p}(\cdot) \) in following way: \(\tilde{p}(x) = p_+(Q_1) \) when \(x \in Q_1 \).
Without restriction of generality let consider case when $\|f\|_{p(\cdot)} = 1$. By Proposition 3.1 $\int_0^1 |f(x)|^{p(x)} \, dx = 1$. Then we only need to prove that
\[
\left\| \sum_i \frac{\|f \chi_{Q_i}\|_{p(\cdot)}}{\|\chi_{Q_i}\|_{p(\cdot)}} \chi_{Q_i}(x) \right\|_{p(\cdot)} \leq C.
\]

By Proposition 3.1 we have
\[
(4.5) \quad \|f \chi_{Q_i}\|_{p(\cdot)} \leq \left(\int_{Q_i} |f(x)|^{p(x)} \, dx \right)^{1/p_+(Q_i)}.
\]

Then by (4.4) and (4.5)
\[
\int_{[0;1]} \left(\sum_i \frac{\|f \chi_{Q_i}\|_{p(\cdot)}}{\|\chi_{Q_i}\|_{p(\cdot)}} \chi_{Q_i}(x) \right) \tilde{p}(x) \, dx = \sum_i \int_{Q_i} \left(\frac{\|f \chi_{Q_i}\|_{p(\cdot)}}{\|\chi_{Q_i}\|_{p(\cdot)}} \right)^{p_+(Q_i)} \chi_{Q_i}(x) dx
\]
\[
= \sum_i |Q_i| \left(\frac{\|f \chi_{Q_i}\|_{p(\cdot)}}{\|\chi_{Q_i}\|_{p(\cdot)}} \right)^{p_+(Q_i)} \leq \sum_i |Q_i| \frac{\int_{[0;1]} |f(x)|^{p(x)} \, dx}{C_1 |Q_i|}
\]
\[
= \frac{1}{C_1} \int_{[0;1]} |f(x)|^{p(x)} \, dx = \frac{1}{C_1}.
\]

Consequently we obtain
\[
\left\| \sum_i \frac{\|f \chi_{Q_i}\|_{p(\cdot)}}{\|\chi_{Q_i}\|_{p(\cdot)}} \chi_{Q_i}(x) \right\|_{p(\cdot)} \leq C.
\]

Using the fact that $p(x) \leq \tilde{p}(x)$, $x \in [0;1]$ and proposition 3.2 we obtain desired result. \(\Box\)

Proof of theorem 1.8. The proof of theorem can be obtained from analogous arguments as in proof of theorem 1.7. But we will obtain this proof from more general proposition.

Consider exponent $p(\cdot)$ such that $1/p(\cdot) \in BLO^{1/\log}$, then by theorem 3.3 there exits constant c such $p(\cdot) + c \in B$. Using theorem 2.2 and theorem 1.7 we obtain desired result. \(\Box\)

Proof of theorem 1.9. Let us show that the function
\[
f(x) = \begin{cases}
\ln \ln(1/x) & \text{if } x \in (0, e^{-1}); \\
0 & \text{if } x \in (e^{-1}, 1],
\end{cases}
\]

belongs to $BLO^{1/\log}$.

Let $(a; b) \subset [0;1]$. Without loss of generality assume that $0 \leq a < b \leq e^{-1}$. On $(a; b]$ define the function
\[
h(x) = \int_a^x \ln \ln(1/t) \, dt - (x - a) \ln \ln(1/x) - \frac{2(x - a)}{\ln(1/(x - a))}.
\]

We have
\[
h'(x) = \frac{x - a}{x \ln(1/x)} - 2 \cdot \frac{\ln(1/(x - a)) + 1}{(\ln(1/(x - a)))^2}, \quad a < x \leq b.
\]
Since the function $x \ln(1/x)$ on $(0; 1)$ is increasing

$$(\ln(1/(x-a)))^2(x-a) - 2x \ln(1/x)(\ln(1/(x-a)) + 1)$$

$$\leq \ln \frac{1}{x-a} \left((x-a) \ln \frac{1}{x-a} - 2x \ln \frac{1}{x} \right) \leq -x \cdot \ln \frac{1}{x} \cdot \ln \frac{1}{x-a} < 0.$$ This means that function h is decreasing. From monotonicity of h and $h(a^+) = 0$ follows thats

$$\int_a^b \ln \ln(1/x) dx - (b-a) \ln \ln(1/b) - \frac{2(b-a)}{\ln(1/(b-a))} \leq 0.$$ By the last inequality we get

$$(4.6) \quad \frac{1}{b-a} \int_a^b \ln(1/x) dx - \ln \ln(1/b) \leq \frac{4}{\ln(e + 1/(b-a))},$$

and consequently $f \in BLO^{1/\log}$.

Note that function f is a classical example discontinuous functions from $BMO^{1/\log}$ (see [16]). From the well-known observation that a Lipschitz function preserves mean oscillations it follows that the function $\sin(f(x))$ provides an example of a discontinuous bounded function from $BMO^{1/\log}$. Lerner [13] proved that if $p(x) = p_0 + \mu \sin(f(x)), x \in [0; 1]$ where $p_0 > 0$ and μ sufficiently close to 0, then Hardy-Littlewood maximal operator is bounded on $L^{p(x)}[0; 1]$. It is unknown whether $p(\cdot) \in BLO^{1/\log}$. Bellow we will construct a bounded function (some sense analogous of $\sin(f(x))$) which belongs to $BLO^{1/\log}$.

Let $d_n = e^{-e^n}, n \in \{0\} \cup \mathbb{N}$ and $c_0 = 2/e, c_{2n+1} = c_{2n} - (d_n - d_{n+1}), c_{2n+2} = c_{2n+1} - (d_n - d_{n+1}), n \in \{0\} \cup \mathbb{N}$. Let us show that the non-negative bounded function

$$g(x) = \begin{cases}
\ln \ln \frac{1}{x^{c_{2n+1}+c_{2n+2} - d_n}} - n & \text{if } x \in (c_{2n+1}; c_{2n+1}], n \in \{0\} \cup \mathbb{N}; \\
\ln \ln \frac{1}{x - d_n} - n & \text{if } x \in (c_{2n+1}; c_{2n}], n \in \{0\} \cup \mathbb{N}; \\
0 & \text{if } x \in (2/e, 1].
\end{cases}$$

belongs to $BLO^{1/\log}$ i.e. for all $(a; b) \subset [0; 1]$ we have

$$(4.7) \quad \frac{1}{b-a} \int_{(a;b)} g(x) dx - \inf_{x \in (a; b)} g(x) \leq \frac{C}{\ln(e + 1/(b-a))}.$$ Note that $g(c_{2n}) = 0, g(c_{2n+1}) = 1, n \in \{0\} \cup \mathbb{N}$ and on each set $[c_{2n+1}; c_{2n}]$ function g is strictly monotonic and continuous.

Let $(a; b) \subset [0; 1]$, without lose of generality suppose that $b \leq 2/e$. Consider three cases:

Case 1. At least one point c_{2n} belongs to interval $(a; b)$, where $n \in \{0\} \cup \mathbb{N};$

Case 2. Interval $(a; b)$ contains only one point like $c_{2n+1},$ where $n \in \{0\} \cup \mathbb{N};$

Case 3. Interval $(a; b)$ does not contain point c_n for any $n \in \{0\} \cup \mathbb{N}.$

Define $m_a = \sup\{k : a \leq c_k\}, m_b = \inf\{k : c_k \leq b\}.$ Note that if $a > 0$ then $m_a = \max\{k : a \leq c_k\}$ and $m_a = \infty$ if $a = 0.$

Consider case 1. Suppose that $m_a < \infty$, define $m'_a = \max\{k : a \leq c_k \land g(c_k) = 0\}$ and $m'_b = \min\{k : c_k \leq b \land g(c_k) = 0\}.$ It is clear that $c_m \leq c_m' \leq c_m'' \leq c_m.$
We have

\begin{equation}
(4.8) \quad \frac{1}{b-a} \int_{(a,b)} g(x)dx - \inf_{x \in (a,b)} g(x) = \frac{1}{b-a} \int_{(a;b)} g(x)dx
\end{equation}

\[= \frac{1}{b-a} \left(\int_{a}^{c_{m_a}'} + \int_{c_{m_a}'}^{b} \right) g(x)dx = A_1 + A_2 + A_3. \]

Let \(c_{m_a} < c_{m_a}' \). Using the fact that \(g(2c_{2k+1} - x) = g(x) \) when \(x \in [c_{2k+2}; c_{2k+1}] \) we get

\[(b-a)A_2 = \int_{c_{m_a}'}^{c_{m_a}''} g(x)dx = \sum_{k=m_k'/2}^{(m_k'-2)/2} \left(\int_{c_{2k+1}}^{c_{2k+2}} \int_{k}^{c_{2k+1}} g(x)dx = \sum_{k=m_k'/2}^{(m_k'-2)/2} \left(\int_{c_{2k+1}}^{c_{2k+2}} \left(\int_{k}^{c_{2k+1}} g(x)dx \right) dx. \right.\]

Note that by \(c_{2k} - d_k = d_k \) and \(c_{2k+1} - d_k = d_{k+1} \) we have

\[(b-a)A_2 = 2 \sum_{k=m_k'/2}^{(m_k'-2)/2} \int_{d_{k+1}}^{d_k} \left(\ln \frac{1}{t} - k \right) dt \leq 2 \sum_{k=m_k'/2}^{(m_k'-2)/2} \int_{d_{k+1}}^{d_k} \left(\ln \frac{1}{t} - \frac{m_k'}{2} \right) dt.
\]

Now by the following estimation \(b-a > (b-a)/2 \geq d_{m_k'/2} - d_{m_a}/2 \) and by (4.6) we have

\begin{equation}
(4.9) \quad A_2 \leq \frac{1}{d_{m_k'/2} - d_{m_a}/2} \int_{d_{m_k'/2}}^{d_{m_a}/2} \left(\ln \frac{1}{t} - \ln \frac{1}{d_{m_a}/2} \right) dt
\end{equation}

\[\leq \frac{4}{\ln(e + 1/(d_{m_k'/2} - d_{m_a}/2))} \leq \frac{4}{\ln(e + 1/(b-a))}.\]

If \(m_a = \infty \) then

\begin{equation}
(4.10) \quad A_2 \leq \frac{1}{d_{m_a}/2} \int_{0}^{d_{m_a}/2} \left(\ln \frac{1}{t} - \ln \frac{1}{d_{m_a}/2} \right) dt \leq \frac{4}{\ln(e + 1/(b-a))}.
\end{equation}

Consider \(A_1 \). Let \(c_{m_a} = c_{m_a}' \). Since \(c_{m_a} - c_{m_a}' = d_{m_a}/2 \) and using (4.6) we get

\begin{equation}
(4.11) \quad A_1 = \frac{1}{b-a} \int_{a}^{c_{m_a}'} \left(\ln \frac{1}{x} - \frac{m_a'}{2} \right) dx
\end{equation}

\[= \frac{1}{b-a} \int_{a-d_{m_a}/2}^{c_{m_a} - d_{m_a}/2} \left(\ln \frac{1}{x} - \frac{m_a}{2} \right) dx \leq \frac{4}{\ln(e + 1/(c_{m_a} - a))} \leq \frac{4}{\ln(e + 1/(b-a))}.\]
Let \(c_{m_a} \neq c_{m_b} \) then \(m_a = m'_a + 1 \) and \(g(c_{m_a}) = 1 \). Since \(c_{m'_a} - d_{m'_a}/2 = d_{m_a}/2 \) we get

\[
A_1 \leq \frac{2}{b - a} \int_{c_{m_a}}^{c_{m'_a}} \left(\ln \ln \frac{1}{x - d_{m'_a}/2} - \frac{m'_a}{2} \right) dx =
\]

\[
= \frac{2}{b - a} \int_{c_{m_a} - d_{m_a}/2}^{c_{m'_a} - d_{m'_a}/2} \left(\ln \ln \frac{1}{t} - \ln \ln \frac{1}{d_{m_a}/2} \right) dx \leq \frac{8}{\ln(e + 1/(b-a))}.
\]

Consider \(A_3 \). Let \(c_{m_b} = c_{m'_b} \). Since \(c_{m_b-2} - d_{(m_b-2)/2} = d_{(m_b-2)/2} \) we get

\[
A_3 = \frac{1}{b - a} \int_{c_{m_b}}^{b} \left(\ln \ln \frac{1}{c_{m_b} - c_{m'_b} - x - d_{(m_b-2)/2}/2} - \frac{m_b - 2}{2} \right) dx =
\]

\[
= \frac{1}{b - a} \int_{c_{m_b} - c_{m'_b} - d_{(m_b-2)/2}/2}^{c_{m_b} - d_{(m_b-2)/2}/2} \left(\ln \ln \frac{1}{t} - \frac{m_b - 2}{2} \right) dt \leq \frac{4}{\ln(e + 1/(b-a))}.
\]

If \(c_{m_b} \neq c_{m'_b} \) then \(m_b = m'_b - 1 \) and \(g(m_b) = 1 \) we have

\[
A_3 \leq \frac{2}{b - a} \int_{c_{m'_b}}^{c_{m_b}} \left(\ln \ln \frac{1}{c_{m'_b} - c_{m_b} - x - d_{(m'_b-2)/2}/2} - \frac{m'_b - 2}{2} \right) dx =
\]

\[
= \frac{2}{b - a} \int_{c_{m'_b} - c_{m_b} - d_{(m'_b-2)/2}/2}^{c_{m'_b} - d_{(m'_b-2)/2}/2} \left(\ln \ln \frac{1}{t} - \frac{m'_b - 2}{2} \right) dt \leq \frac{8}{\ln(e + 1/(b-a))}.
\]

In case of \(m'_a = m'_b \) desired result can be obtained from estimations of \(A_1 \) and \(A_3 \).

Case 2. It is clear that in this case \(c_{m_a} = c_{m_b} = c_n \) where \(n \) is odd. Note that restriction of function \(g \) on the interval \((c_{n+1}; c_{n-1})\) has symmetry about \(x = c_n \) line, therefore without loss of generality we can assume that \(g(a) \geq g(b) \) then

\[
\frac{1}{b - a} \int_{a}^{b} g(x) dx - g(b) = \frac{1}{b - a} \int_{a}^{b} (g(x) - g(b)) dx \leq
\]

\[
\leq \frac{2}{b - a} \int_{c_n}^{b} \left(\ln \ln \frac{1}{x - d_{(n-1)/2}} - \frac{n - 1}{2} \right) dx \leq \frac{4}{\ln(e + 1/(b-a))}.
\]

Case 3. In this case by \(4.6 \) we get desired estimation.

Finally by the estimates (4.8)-(4.15) and (4.6) we get (4.7).
Now let construct exponent \(p(\cdot) \) such that \(1/p(\cdot) \in BLO^{1/\log} \) but \(G'' \) property fails.

We choose real numbers \(a \) and \(b \) such that \(0 < a < b < 1, a + b < 1 \). Consider sets \(A \) and \(B \)
\[
A = \{ x : g(x) \leq a \}, \quad B = \{ x : g(x) \geq b \}.
\]
It is clear that these sets are union of intervals and let denote they by \(\Delta_n^a \) and \(\Delta_n^b \)
\[
i.e. \quad A = \bigcup_{n \geq 1} \Delta_n^a, \quad B = \bigcup_{n \geq 1} \Delta_n^b.
\]
Let now construct exponent \(p \) in following way
\[
p(x) = \begin{cases}
1/a & \text{if } x \in A; \\
1/b & \text{if } x \in B; \\
1/g(x) & \text{if } x \in [0; 1] \setminus (A \cup B).
\end{cases}
\]
It is clear that \(p(\cdot) \) is continuous except point 0, where it has discontinuity and
\(1/p(\cdot) \in BLO^{1/\log} \).

Let consider the set of right side endpoints of intervals from \(A \). Let make partition of \([0; 1]\) by these points. So we will get sequence of disjoint intervals \(\Delta_n \) such that \(\Delta_n^a \cup \Delta_n^b \subset \Delta_n \).

Let \(\delta_k = \min \{ |\Delta_n^a|, |\Delta_n^b| \} \). Since \(\delta_k \leq \min \{ |\Delta_n^a|, |\Delta_n^b| \} \) for all \(n \leq k \) then for each \(n, n \leq k \) we can choose intervals \(\Delta'_n^a \subset \Delta_n^a \) and \(\Delta'_n^b \subset \Delta_n^b \) such that \(\delta_k = |\Delta'_n^a| = |\Delta'_n^b| \).

Now for each \(k \) we construct functions \(f_k \) and \(g_k \) in following way \(f_k(x) = \chi_{\bigcup_{n \leq k} \Delta_n^a}(x) \) and \(g_k(x) = \chi_{\bigcup_{n \leq k} \Delta_n^b}(x) \).

Let now check property \(G \) of \(L^p(\cdot)[0; 1] \)
\[
\sum_{n=1}^{k} \| f_k \chi_{\Delta_n} \|_{L^{1/a}} \cdot \| g_k \chi_{\Delta_n} \|_{L^{1/b}} = \sum_{n=1}^{k} \| \chi_{\Delta_n^a} \|_{L^{1/a}} \cdot \| \chi_{\Delta_n^b} \|_{L^{1/b}} = \\
= \sum_{n=1}^{k} |\Delta_n^a|^{a} \cdot |\Delta_n^b|^{b} = k \cdot \delta_k^{a+b}.
\]
On the other hand
\[
\| f_k \|_{L^{1/a}} \cdot \| g_k \|_{L^{1/b}} = \left(\sum_{n=1}^{k} |\Delta_n^a| \right)^a \cdot \left(\sum_{n=1}^{k} |\Delta_n^b| \right)^b = (k \cdot \delta_k)^{a+b}.
\]
Property \(G \) states that, there exits absolute constant \(C \) such that
\[
k \cdot \delta_k^{a+b} \leq C \cdot (k \cdot \delta_k)^{a+b},
\]
we have
\[
k^{1-a-b} \leq C.
\]
The last estimation is impossible since \(a + b < 1 \) and \(k^{1-a-b} \rightarrow +\infty, k \rightarrow +\infty \).

Using theorem [4.4] and theorem [5.3] we conclude that \(L^{p(\cdot)}[0; 1] \) does not have property \(G'' \).

Note that \(1/(p(\cdot) + c) \in BLO^{1/\log} \) for all \(c > 0 \). Consequently exponents \(p(\cdot) + c \) give us the spaces with same property.

Proof of the second part of theorem [1.1] Note that by theorem [3.3] and theorem [2.2] we conclude that space \(L^{(p(\cdot) + c)'}[0; 1] \) possesses property \(G'' \) for some constant
\(c > 0 \). It is clear that space \(L^{(p_1) + c'}[0; 1] \) does not have property \(G' \) (because \(L^{(p_1) + c}[0; 1] \) does not have property \(G'' \)).

\[\square \]

References

[1] C. Bennet and R. Sharpley, Interpolation of operators, Pure Appl. Math. 129, Academic Press, 1988.

[2] E. Berezhnoi, Sharp estimates for operators on cones in ideal spaces. Trudy Mat. Inst. Steklov. 204 (1993), 3-36 (in Russian).

[3] E. Berezhnoi, Two-weighted estimations for the Hardy-Littlewood maximal function in ideal Banach spaces. Proc. Amer. Math. Soc. 127 (1999), 79-87.

[4] D. Cruz-Uribe, A. Fiorenza, Variable Lebesgue Spaces: Foundations and Harmonic Analysis, Birkhäuser, Basel (2013).

[5] L. Diening, Maximal function on generalized Lebesgue spaces \(L^{p(\cdot)} \). Math. Inequal. Appl. 7 (2004), 245-253.

[6] L. Diening, Maximal function on Orlicz-Musielak spaces and generalized Lebesgue spaces. Bull. Sci. Math., (129), (2005), 657-700.

[7] L. Diening, P. Härkönen, P. Harjulehto and M. Růžička, Lebesgue and Sobolev spaces with variable exponents, Springer Lecture Notes, vol. 2017, Springer-Verlag, Berlin 2011.

[8] T. Figiel, W. Johnson, A uniformly convex Banach space which contains no \(l_p \), Compositio Mathematica 29. 2 (1974), 179-190.

[9] E. Kapanadze, T. Kopaliani, A note on maximal operator on \(L^{p(\cdot)}(\Omega) \) spaces. Georgian Math. J. 16, no. 2, (2008), 307-316.

[10] T. Kopaliani, On some structural properties of Banach function spaces and boundedness of certain integral operators. Czechoslovak Math. J., 54, (2004), 791-805.

[11] T. Kopaliani, Infimal convolution and Muckenhoupt \(A_{p(\cdot)} \) condition in variable \(L^p \) spaces. Arch. Math. (Basel), 89, (2007), 185-192.

[12] T. Kopaliani, A characterization of some weighted norm inequalities for maximal operators. Z. Anal. Anwend. 29 (2010), no. 4, 401-412.

[13] A. Lerner. Some remarks on the Hardy-Littlewood maximal function on variable \(L^p \) spaces. Math. Z., (251), (2005), 509-521.

[14] J. Lindenstrauss and L. Tzafriri, Classical Banach spaces, I, II, Springer-Verlag, 1977, 1979.

[15] T. Shimogaki, Exponents of norms in semi-ordered line ar spaces, Bull. Acad. Polon. Sci. 13, (1965), 135-140.

[16] S. Spanne, Some function spaces defined using the mean oscillation over cubes. Ann. Sc. Norm. Super. Pisa, Sci. Fis. Mat. III. 19, (1965), 593-608.

(Tengiz Kopaliani) Faculty of Exact and Natural Sciences, Javakhishvili Tbilisi State University, 13, University St., Tbilisi, 0113, Georgia

(Nino Samashvili) Faculty of Exact and Natural Sciences, Javakhishvili Tbilisi State University, 13, University St., Tbilisi, 0113, Georgia

(Shalva Zviadadze) Faculty of Exact and Natural Sciences, Javakhishvili Tbilisi State University, 13, University St., Tbilisi, 0113, Georgia

E-mail address, Tengiz Kopaliani: tengizkopaliani@gmail.com
E-mail address, Nino Samashvili: n.samashvili@gmail.com
E-mail address, Shalva Zviadadze: sh.zviadadze@gmail.com