ON PRIMES p FOR WHICH d DIVIDES $\text{ORD}_p(g)$

PIETER MOREE

Abstract: Let $N_g(d)$ be the set of primes p such that the order of g modulo p, $\text{ord}_p(g)$, is divisible by a prescribed integer d. Wiertelak showed that this set has a natural density, $\delta_g(d)$, with $\delta_g(d) \in \mathbb{Q}_{\geq 0}$. Let $N_g(d)(x)$ be the number of primes $p \leq x$ that are in $N_g(d)$. A simple identity for $N_g(d)(x)$ is established. It is used to derive a more compact expression for $\delta_g(d)$ than known hitherto.

Keywords: multiplicative order, natural density.

1. Introduction

Let g be a rational number such that $g \notin \{-1,0,1\}$ (this assumption on g will be maintained throughout this note). Let $N_g(d)$ denote the set of primes p such that the order of g modulo p is divisible by d (throughout the letter p will also be used to indicate primes). Let $N_g(d)(x)$ denote the number of primes in $N_g(d)$ not exceeding x. The quantity $N_g(d)(x)$ (and some variations of it) has been the subject of various publications [1, 3, 4, 7, 9, 11-19]. Hasse showed that $N_g(d)$ has a Dirichlet density in case d is an odd prime [3], respectively $d = 2$ [4]. The latter case is of additional interest since $N_g(2)$ is the set of prime divisors of the sequence $\{g^k + 1\}_{k=1}^{\infty}$. (One says that an integer divides a sequence if it divides at least one term of the sequence.) Wiertelak [12] established that $N_g(d)$ has a natural density $\delta_g(d)$ (around the same time Odoni [9] did so in the case d is a prime). In a later paper Wiertelak [15] proved, using sophisticated analytic tools, the following result (with $\text{Li}(x)$ the logarithmic integral and with $\omega(d) = \sum_{\nu|d} 1$), which gives the best known error term to this date.

Theorem 1 [15]. We have

$$N_g(d)(x) = \delta_g(d) \text{Li}(x) + O_{d,\nu} \left(\frac{x}{\log^3 x} (\log \log x)^{\omega(d)+1} \right).$$

Wiertelak also gave a formula for $\delta_g(d)$ which shows that this is always a positive rational number. A simpler formula for $\delta_g(d)$ (in case $g > 0$) has

2001 Mathematics Subject Classification: 11N37, 11R45
only recently been given by Pappalardi [10]. With some effort Pappalardi's and Wiertelak's expressions can be shown to be equivalent.

In this note a simple identity for \(N_g(d)(x) \) will be established (given in Proposition 1). From this it is then inferred that \(N_g(d) \) has a natural density \(\delta_g(d) \) that is given by (4), which seems to be the simplest expression involving field degrees known for \(\delta_g(d) \). This expression is then readily evaluated.

In order to state Theorem 2 some notation is needed. Write \(g = \pm g_0^h \), where \(g_0 \) is positive and not an exact power of a rational and \(h \) as large as possible. Let \(D(g_0) \) denote the discriminant of the field \(\mathbb{Q}(\sqrt{g_0}) \). The greatest common divisor of \(a \) and \(\beta \) respectively the lowest common multiple of \(a \) and \(\beta \) will be denoted by \((a, \beta) \), respectively \([a, \beta]\). Given an integer \(d \), we denote by \(d^\infty \) the supernatural number (sometimes called Steinitz number), \(\prod_{p|d} p^\infty \). Note that

\[
(v, d^\infty) = \prod_{p|d} p^{v_p(v)}.
\]

Definition. Let \(d \) be even and let \(\epsilon_g(d) \) be defined as in Table 1 with \(\gamma = \max\{0, \nu_2(D(g_0)/dh)\} \).

\(g \) \(\gamma \)	\(\gamma = 0 \)	\(\gamma = 1 \)	\(\gamma = 2 \)
\(g > 0 \)	\(-1/2\)	\(1/4\)	\(1/16\)
\(g < 0 \)	\(1/4\)	\(-1/2\)	\(1/16\)

Note that \(\gamma \leq 2 \). Also note that \(\epsilon_g(d) = (-1/2)^{2\gamma} \) if \(g > 0 \).

Theorem 2. We have

\[
\delta_g(d) = \frac{\epsilon_1}{d(h, d^\infty)} \prod_{p|d} \frac{p^2}{p^2 - 1},
\]

with

\[
\epsilon_1 = \begin{cases}
1 & \text{if } 2 \nmid d; \\
1 + 3(1 - \text{sgn}(g))(2^{\nu_2(h)} - 1)/4 & \text{if } 2|d \text{ and } D(g_0) \nmid 4d; \\
1 + 3(1 - \text{sgn}(g))(2^{\nu_2(h)} - 1)/4 + \epsilon_g(d) & \text{if } 2|d \text{ and } D(g_0)|4d; \\
1 + \epsilon_{|g|}(d) & \text{if } 4|d, D(g_0) \nmid 4d; \end{cases}
\]

In particular, if \(g > 0 \), then

\[
\epsilon_1 = \begin{cases}
1 & \text{if } 2|d \text{ and } D(g_0)|4d; \\
1 + (-1/2)^{2\max\{0, \nu_2(D(g_0)/dh)\}} & \text{otherwise}, \end{cases}
\]

and if \(h \) is odd, then

\[
\epsilon_1 = \begin{cases}
1 & \text{if } 2|d \text{ and } D(g)|4d; \\
1 + (-1/2)^{2\max\{0, \nu_1(D(g)/dh)\}} & \text{otherwise}, \end{cases}
\]

Using Proposition 1 of Section 2 it is also very easy to infer the following result, valid under the assumption of the Generalized Riemann Hypothesis (GRH).
Theorem 3. Under GRH we have
\[N_g(d)(x) = \delta_g(d) \text{Li}(x) + O_d(g(\sqrt{x \log(\omega(d)+1)} x)), \]
where the implied constant depends at most on \(d \) and \(g \).

In Tables 2 and 3 (Section 6) a numerical demonstration of Theorem 2 is given.

2. The key identity

Let \(\pi_L(x) \) denote the number of unramified primes \(p \leq x \) that split completely in the number field \(L \). For integers \(r \mid s \) let \(K_{s,r} = \mathbb{Q}(\zeta_s, g^{1/r}) \).

The starting point of the proof of Theorem 2 is the following proposition. By \(r_p(g) \) the residual index of \(g \) modulo \(p \) is denoted (we have \(r_p(g) = [\mathbb{F}_p : \langle g \rangle] \)). Note that \(\text{ord}_p(g) r_p(g) = p - 1 \).

Proposition 1. We have \(N_g(d)(x) = \sum_{v \mid d^{\infty}} \sum_{\alpha \mid d} \mu(\alpha) \pi_{K_{d,\alpha,v}}(x) \).

Proof. Let us consider the quantity \(\sum_{\alpha \mid d} \mu(\alpha) \pi_{K_{d,\alpha,v}}(x) \). A prime \(p \) counted by this quantity satisfies \(p \leq x \), \(p \equiv 1 \mod dv \) and \(r_p(g) = vw \) for some integer \(w \). Write \(w = w_1 w_2 \), with \(w_1 = (w, d) \). Then the contribution of \(p \) to \(\sum_{\alpha \mid d} \mu(\alpha) \pi_{K_{d,\alpha,v}}(x) \) is \(\sum_{\alpha \mid w_1} \mu(\alpha) \). We conclude that
\[\sum_{\alpha \mid d} \mu(\alpha) \pi_{K_{d,\alpha,v}}(x) = \# \{ p \leq x : p \equiv 1 \mod dv, v \mid r_p(g) \text{ and } (\frac{r_p(g)}{v}, d) = 1 \}. \]

It suffices to show that
\[N_g(d)(x) = \sum_{v \mid d^{\infty}} \# \{ p \leq x : p \equiv 1 \mod dv, v \mid r_p(g) \text{ and } (\frac{r_p(g)}{v}, d) = 1 \}. \]

Let \(p \) be a prime counted on the right hand side. Note that it is counted only once, namely for \(v = (r_p(g), d^{\infty}) \). From \(\text{ord}_p(g) r_p(g) = p - 1 \) it is then inferred that \(d \mid \text{ord}_p(g) \). Hence every prime counted on the right hand side is counted on the left hand side as well. Next consider a prime \(p \) counted by \(N_g(d)(x) \). It satisfies \(p \equiv 1 \mod d \). Note there is a (unique) integer \(v \) such that \(v \mid d^{\infty} \), \(p \equiv 1 \mod dv \) and \((r_p(g)/v, d) = 1 \). Thus \(p \) is also counted on the right hand side.

Remark 1. From (1) and Chebotarev's density theorem it follows that
\[0 \leq \sum_{\alpha \mid d} \frac{\mu(\alpha)}{[K_{d,\alpha,v} : \mathbb{Q}]} \leq \frac{1}{[K_{d,v} : \mathbb{Q}]} \]

3. Analytic consequences

Using Proposition 1 it is rather straightforward to establish that \(N_g(d) \) has a natural density \(\delta_g(d) \).
Lemma 1. Write \(g = g_1/g_2 \) with \(g_1 \) and \(g_2 \) integers. Then

\[
N_g(d)(x) = \left(\delta_g(d) + O_{d,g} \left(\frac{\log \log x}{\log \log x} \right) \right) \text{Li}(x),
\]

where the implied constant depends at most on \(d \) and \(g \) and

\[
\delta_g(d) = \sum_{\nu \mid d} \sum_{\alpha \mid d} \frac{\mu(\alpha)}{|K_{d\nu,\alpha} : Q|}.
\]

Corollary 1. The set \(N_g(d) \) has a natural density \(\delta_g(d) \).

The proof of Lemma 1 makes use of the following consequence of the Brun-Titchmarsh inequality.

Lemma 2. Let \(\pi(x;l,k) = \sum_{\nu \leq x, \, \nu \equiv l (\text{mod} \, k)} 1 \). Then

\[
\sum_{\nu \leq x, \, \nu \equiv l (\text{mod} \, k)} \pi(x;\nu,1) = O_d \left(\frac{x}{\log x} \frac{\log z)^{\omega(d)}}{z} \right),
\]

uniformly for \(3 \leq z \leq \sqrt{x} \).

Proof. On noting that \(M_d(x) := \# \{ \nu \leq x : \nu \mid d^\infty \} \leq (\log x)^{\omega(d)}/\log 2 \), it straightforwardly follows that

\[
\sum_{\nu \leq x, \, \nu \equiv l (\text{mod} \, k)} \frac{1}{\nu} = \int_z^\infty \frac{dM_d(z)}{z} \ll_d \frac{(\log z)^{\omega(d)}}{z}.
\]

By the Brun-Titchmarsh inequality we have \(\pi(x;\nu,1) \ll \frac{x}{\varphi(\nu) \log x} \), where the implied constant is absolute and \(\nu < x \). Thus

\[
\sum_{\nu \leq x, \, \nu \equiv l (\text{mod} \, k)} \pi(x;\nu,1) \ll \frac{x}{\varphi(\nu) \log x} \sum_{\nu \mid d^\infty} \frac{1}{\nu} \ll_d \frac{x}{\log x} \frac{(\log z)^{\omega(d)}}{z}.
\]

Using the trivial estimate \(\pi(x;d,1) \ll x/d \) we see that

\[
\sum_{\nu \leq x, \, \nu \equiv l (\text{mod} \, k)} \pi(x;\nu,1) \ll \sum_{\nu \leq x, \, \nu \equiv l (\text{mod} \, k)} \frac{x}{\nu} \ll_d \frac{x^{1/3}}{\log x} (\log x)^{\omega(d)}.
\]

On combining (5) and (6) the proof is readily completed. \(\square \)
On primes p for which d divides $\text{ord}_p(g)$

Proof of Lemma 1. From [10, Lemma 2.1] we recall that there exist absolute constants A and B such that if $v \leq B(\log x)^{1/8}/d$, then

$$\pi_{K_{d,v,\alpha \nu}}(x) = \frac{\text{Li}(x)}{[K_{d,v,\alpha \nu} : Q]} + O_g(xe^{-A\sqrt{\log x}}). \quad (7)$$

Let $y = B(\log x)^{1/8}/d$. From the proof of Proposition 1 we see that

$$N_g(d)(x) = \sum_{\nu \leq v} \sum_{\alpha | d} \mu(\alpha) \pi_{K_{d,v,\alpha \nu}}(x) + O \left(\sum_{\nu > v} \pi(x; dv, 1) \right) = I_1 + O(I_2),$$

say. By Lemma 2 we obtain that $I_2 = O(x(\log \log x)^{\omega(d)} \log^{-9/8} x)$. Now, by (7), we obtain

$$I_1 = \sum_{\nu \leq v} \sum_{\alpha | d} \frac{\mu(\alpha)}{[K_{d,v,\alpha \nu} : Q]} + O_{d,g}(y \frac{x}{\log^{5/4} x}).$$

Denote the latter double sum by I_3. Keeping in mind Remark 1 we obtain

$$I_3 = \delta_g(d) + O \left(\sum_{\nu \leq v} \sum_{\alpha | d} \frac{\mu(\alpha)}{[K_{d,v,\alpha \nu} : Q]} \right).$$

Using (2) and Lemma 3 it follows that

$$\sum_{\nu \leq v} \sum_{\alpha | d} \frac{\mu(\alpha)}{[K_{d,v,\alpha \nu} : Q]} = O \left(\sum_{\nu \leq v} \frac{1}{[K_{d,v,\nu} : Q]} \right) = O(\frac{1}{\varphi(d)} \sum_{\nu \leq v} \frac{\Lambda}{\nu^2})
= O_d \left(\frac{h(\log y)^{\omega(d)}}{y} \right) = O_{d,g} \left(\frac{(\log y)^{\omega(d)}}{y} \right),$$

and hence

$$I_3 = \delta_g(d) + O_{d,g} \left(\frac{(\log y)^{\omega(d)}}{y} \right).$$

The result follows on collecting the various estimates.

4. The evaluation of the density $\delta_g(d)$

A crucial ingredient in the evaluation of $\delta_g(d)$ is the following lemma.
Lemma 3. [6] Write \(g = \pm g_0^b \), where \(g_0 \) is positive and not an exact power of a rational. Let \(D(g_0) \) denote the discriminant of the field \(\mathbb{Q}(\sqrt{g_0}) \). Put \(m = D(g_0)/2 \) if \(\nu_2(h) = 0 \) and \(D(g_0) \equiv 4 \) (mod 8) or \(\nu_2(h) = 1 \) and \(D(g_0) \equiv 0 \) (mod 8), and \(m = (2^{\nu_2(h)+2}, D(g_0)) \) otherwise. Put

\[
n_r = \begin{cases} m & \text{if } g < 0 \text{ and } r \text{ is odd;} \\ \left[2^{\nu_2(kr)+1}, D(g_0)\right] & \text{otherwise.} \end{cases}
\]

We have

\[
[K_{kr,k} : \mathbb{Q}] = [\mathbb{Q}(\zeta_{kr}, g^{1/k}) : \mathbb{Q}] = \frac{\varphi(kr)k}{\epsilon(kr,k)(k,h)},
\]

where, for \(g > 0 \) or \(g < 0 \) and \(r \) even we have

\[
\epsilon(kr,k) = \begin{cases} 2 & \text{if } n_r | kr; \\ 1 & \text{if } n_r \nmid kr, \end{cases}
\]

and for \(g < 0 \) and \(r \) odd we have

\[
\epsilon(kr,k) = \begin{cases} 2 & \text{if } n_r | kr; \\ \frac{1}{2} & \text{if } 2 | kr \text{ and } 2^{\nu_2(h)+1} \nmid k; \\ 1 & \text{otherwise.} \end{cases}
\]

Remark 2. Note that if \(h \) is odd, then \(n_r = (2^{\nu_2(r)+1}, D(g)) \). Note that \(n_r = n_{2^{\nu_2(r)}} \).

The 'generic' degree of \([K_{dv,ov} : \mathbb{Q}] \) equals \(\varphi(dv)\alpha(v,h) \) and on substituting this value in (4) we obtain the quantity \(S_1 \) which is evaluated in the following lemma.

Lemma 4. We have

\[
S_1 := \sum_{v \mid d^\infty} \sum_{\alpha \mid d} \frac{\mu(\alpha)(\alpha v, h)}{\varphi(dv)\alpha v^2} = S(d,h),
\]

where

\[
S(d,h) := \frac{1}{d(h,d^\infty)} \prod_{v \mid d} \frac{p^2}{p^2 - 1}.
\]

Proof. Since for \(v \mid d^\infty \) we have \(\varphi(dv) = v \varphi(d) \), we can write

\[
S_1 = \frac{1}{\varphi(d)} \sum_{v \mid d^\infty} \sum_{\alpha \mid d} \frac{\mu(\alpha)(\alpha v, h)}{\alpha v^2} = \frac{1}{\varphi(d)} \sum_{v \mid d^\infty} \frac{(v, h)}{v^2} \sum_{\alpha \mid d} \frac{\mu(\alpha)(\alpha v, h)}{\alpha(v, h)}.
\]

The expression in the inner sum is multiplicative in \(\alpha \) and hence

\[
\sum_{\alpha \mid d} \frac{\mu(\alpha)(\alpha v, h)}{\alpha(v, h)} = \prod_{v \mid d} \left(1 - \frac{(pv, h)}{p(v, h)}\right) = \begin{cases} \frac{\varphi(d)}{d} & \text{if } (h, d^\infty)|(v, d^\infty); \\ 0 & \text{otherwise.} \end{cases}
\]

\[
= \begin{cases} \frac{\varphi(d)}{d} & \text{if } (h, d^\infty)|(v, d^\infty); \\ 0 & \text{otherwise.} \end{cases}
\]

\[
= \begin{cases} \frac{\varphi(d)}{d} & \text{if } (h, d^\infty)|(v, d^\infty); \\ 0 & \text{otherwise.} \end{cases}
\]
On primes p for which d divides $\text{ord}_p(g)$

$$\sum_{r=k}^{\infty} \frac{(p^r, h)}{p^{2r}} = \frac{p^{\nu_p(h)} + 2 - 2k}{p^2 - 1},$$

one concludes that

$$S_1 = \frac{1}{d} \sum_{\nu_2(d) > \nu_p(h)} \frac{(v, h)}{v^2} = \frac{1}{d} \prod_{p \mid d} \sum_{r \geq \nu_p(h)} \frac{(p^r, h)}{p^{2r}} = \frac{1}{d} \prod_{p \mid d} \frac{p^{2 - \nu_p(h)}}{p^2 - 1} = S(d, h).$$

This completes the proof. \(\square\)

Remark 3. Note that the condition $(h, d^n) | (v, d^n)$ is equivalent with $\nu_p(v) \geq \nu_p(h)$ for all primes p dividing d.

By a minor modification of the proof of the latter result we infer:

Lemma 5. Let $k \geq 0$ be an integer. Then

$$S_2(k) := S_2(0) \sum_{\nu_2(v) > \nu_2(h) + k} \frac{\mu(\alpha)(\nu_2(h))}{\varphi(dv)\alpha v} = 4^{-k} S(d, h).$$

The next lemma gives an evaluation of yet another variant of S_1.

Lemma 6. Let D be a fundamental discriminant. Then

$$S_3(D) := \sum_{\nu_2(v) > \nu_2(h), D \mid dv} \frac{\mu(\alpha)(\nu_2(h))}{\varphi(dv)\alpha v} = \begin{cases} 4^{-\gamma} S(d, h) & \text{if } 2 \mid d, D \mid 4d \text{ and } \gamma \geq 1; \\ S(d, h) & \text{if } 2 \mid d, 2 \nmid D \text{ and } \gamma = 0; \\ 0 & \text{otherwise}, \end{cases}$$

where $\gamma = \max\{0, \nu_2(D/dh)\}$.

Proof. The integer $[2^{\nu_2(hd/\alpha) + 1}, D]$ is even and is required to divide d^∞, hence $S_3(D) = 0$ if d is odd. Assume that d is even. If D has an odd prime divisor not dividing d, then $D \nmid d^\infty$ and hence $S_3(D) = 0$. On noting that $\nu_2(D) \leq \nu_2(4d)$ and that the odd part of D is squarefree, it follows that if $S_3(D) \neq 0$, then $D \mid 4d$. So assume that $2 \mid d$ and $D \mid 4d$. Note that the condition $[2^{\nu_2(hd/\alpha) + 1}, D] \mid dv$ is equivalent with $\nu_2(v) \geq \nu_2(h) + \max\{1, \nu_2(D/dh)\}$ for the α that are odd, and $\nu_2(v) \geq \nu_2(h) + \gamma$ for the even α. Thus if $\gamma \geq 1$ the condition $[2^{\nu_2(hd/\alpha) + 1}, D] \mid dv$ is equivalent with $\nu_2(v) \geq \nu_2(h) + \gamma$ and then, by Lemma 5, $S_3(D) = S_2(\gamma) = 4^{-\gamma} S(d, h)$. If $\gamma = 0$ then

$$S_3(D) = S_2(0) - \sum_{\nu_2(v) = \nu_2(h), 2 \nmid v} \sum_{\alpha \mid d} \frac{\mu(\alpha)(\nu_2(h))}{\varphi(dv)\alpha v}.$$
By Lemma 5 it follows that $S_2(0) = S(d, h)$. A variation of Lemma 4 yields that the latter double sum equals $3S(d, h)/2$.

Remark 4. Put

$$
\epsilon_2(D) = \begin{cases}
(-1/2)^{\max(0, \nu_p(D/dh))} & \text{if } 2 \mid d \text{ and } D \mid 4d; \\
0 & \text{otherwise}.
\end{cases}
$$

Note that Lemma 6 can be rephrased as stating that if D is a fundamental discriminant, then $S_3(D) = \epsilon_2(D)S(d, h)$.

Let $g > 0$. It turns out that $\text{ord}_p(g)$ is very closely related to $\text{ord}_p(-g)$ and this can be used to express $N_{-g}(d)(x)$ in terms of $N_g(\ast)(x)$. From this $\delta_{-g}(d)$ is then easily evaluated, once one has evaluated $\delta_g(d)$.

Lemma 7. Let $g > 0$. Then

$$
N_{-g}(d)(x) = \begin{cases}
N_g(\frac{d}{2})(x) + N_g(2d)(x) - N_g(d)(x) + O(1) & \text{if } d \equiv 2(\text{mod } 4); \\
N_g(d)(x) + O(1) & \text{otherwise}.
\end{cases}
$$

In particular,

$$
\delta_{-g}(d) = \begin{cases}
\delta_g(\frac{d}{2}) + \delta_g(2d) - \delta_g(d) & \text{if } d \equiv 2(\text{mod } 4); \\
\delta_g(d) & \text{otherwise}.
\end{cases}
$$

The proof of this lemma is a consequence of Corollary 1 and the following observation.

Lemma 8. Let p be odd and $g \neq 0$ be a rational number. Suppose that $\nu_p(g) = 0$. Then

$$
\text{ord}_p(-g) = \begin{cases}
2\text{ord}_p(g) & \text{if } 2 \nmid \text{ord}_p(g); \\
\text{ord}_p(g)/2 & \text{if } \text{ord}_p(g) \equiv 2(\text{mod } 4); \\
\text{ord}_p(g) & \text{if } 4 \mid \text{ord}_p(g).
\end{cases}
$$

Proof. Left to the reader.

Remark 5. It is of course also possible to evaluate $\delta_g(d)$ for negative g using the expression (4) and Lemma 3, however, this turns out to be rather more cumbersome than proceeding as above.

5. The proofs of Theorems 2 and 3

Proof of Theorem 2. By Lemma 1 it suffices to show that

$$
\sum_{v \mid d} \sum_{a \mid d} \frac{\mu(\alpha)}{|K_{d,v,av} : Q|} = \epsilon_1 S(d, h)
$$

If $g > 0$, then it follows by Lemma 3 that $\delta_g(d) = S_1 + S_3(D(g_0))$ and by Lemmas 4 and 6 (with $D = D(g_0)$), the claimed evaluation then results in this case. If h
On primes p for which d divides $\text{ord}_p(g)$ is odd, then similarly, $\delta_g(d) = S_1 + S_3(D(g))$ (cf. the remark following Lemma 3) and, again by Lemma 4 and 6, the claimed evaluation then is deduced in this case. If $g < 0$, the result follows after some computation on invoking Lemma 7 and the result for $g > 0$.

Proof of Theorem 3. Recall that $\pi_L(x)$ denotes the number of unramified primes $p \leq x$ that split completely in the number field L. Under GRH it is known, cf. [5], that

$$\pi_L(x) = \frac{\text{Li}(x)}{[L : \mathbb{Q}]} + O \left(\frac{\sqrt{x}}{[L : \mathbb{Q}]} \log(d_Lx) \right),$$

where d_L denotes the absolute discriminant of L. From this it follows on using the estimate $\log|d_{K_{d,v},\alpha_v}| \leq dv(\log(dv) + \log|g_1g_2|)$ from [6] that, uniformly in v,

$$\pi_{K_{d,v},\alpha_v}(x) = \frac{\text{Li}(x)}{[K_{d,v},\alpha_v] : \mathbb{Q}} + O_d,g(\sqrt{x} \log x),$$

where α is an arbitrary divisor of d. On noting that in Proposition 1 we can restrict to those integers v satisfying $dv \leq x$ and hence the number of non-zero terms in Proposition 1 is bounded above by $2^w(d)(\log x)^w(d)$, the result easily follows.

6. Some examples

In this section we provide some numerical demonstration of our results.

The numbers in the column 'experimental' arose on counting how many primes $p \leq p_{10^8} = 2038074743$ with $\nu_p(g) = 0$, satisfy $a|\text{ord}_p(g)$.

Table 2: The case $g > 0$

g	g_0	h	$D(g_0)$	d	ε_1	$\delta_g(d)$	numerical	experimental
2	2	1	8	2	17/16	17/24	0.70833333...	0.70831919
2	2	1	8	4	5/4	5/12	0.41666666...	0.41667021
2	2	1	8	8	1/2	1/12	0.08333333...	0.08333144
3	3	1	12	11	1	11/120	0.09166666...	0.09165950
3	3	1	12	12	$i/2$	1/16	0.06250000...	0.06249098
4	2	2	8	5	1	5/24	0.20833333...	0.20833328
4	2	2	8	5	5/4	5/32	0.15625000...	0.15625824
Table 3: The case $g < 0$

g	g_0	h	$D(g_0)$	d	ε_1	$\delta_g(d)$	numerical	experimental
-2	2	1	8	2	$17/16$	$17/24$	0.70833333...	0.70835101
-2	2	1	8	4	$5/4$	$5/12$	0.41666666...	0.41667021
-2	2	1	8	6	$17/16$	$17/64$	0.26562500...	0.26562628
-3	3	1	12	5	1	$5/24$	0.20833333...	0.20834107
-3	3	1	12	12	$1/2$	$1/16$	0.06250000...	0.06249098
-4	2	2	8	2	2	$2/3$	0.66666666...	0.66666122
-4	2	2	8	4	$1/2$	$1/8$	0.08333333...	0.08333144
-9	3	2	12	2	$5/2$	$5/6$	0.83333333...	0.8333215
-9	3	2	12	6	$11/4$	$11/32$	0.34375000...	0.34375638

Acknowledgement. I like to thank Francesco Pappalardi for sending me his paper [10]. Theorem 1.3 in that paper made me realize that a relatively simple formula for $\delta_g(d)$ exists. The data in the tables are produced by a C++ program kindly written by Yves Gallot.

References

[1] C. Ballot, Density of prime divisors of linear recurrences, Mem. Amer. Math. Soc. 115 (1995), no. 551, viii+102 pp.
[2] K. Chinen and L. Murata, On a distribution property of the residual order of $a \pmod{p}$, I, J. Number Theory 105 (2004), 60–81.
[3] H. Hasse, Über die Dichte der Primzahlen p, für die eine vorgegebene ganzzahlige Zahl $a \neq 0$ von durch eine vorgegebene Primzahl $l \neq 2$ teilbarer bzw. unteilbarer Ordnung p ist, Math. Ann. 162 (1965/1966), 74–76.
[4] H. Hasse, Über die Dichte der Primzahlen p, für die eine vorgegebene ganzzahlige Zahl $a \neq 0$ von gerader bzw. ungerader Ordnung p ist, Math. Ann. 166 (1966), 19–23.
[5] S. Lang, On the zeta function of number fields, Invent. Math. 12 (1971), 337–345.
[6] P. Moree, On the distribution of the order and index of $g \pmod{p}$ over residue classes I, arXiv:math.NT/0211259, J. Number Theory, to appear.
[7] P. Moree, Asymptotically exact heuristics for prime divisors of the sequence $(a^k + b^k)_{k=1}^\infty$, arXiv:math.NT/0311483, submitted (already electronically available).
[8] L. Murata and K. Chinen, On a distribution property of the residual order of $a \pmod{p}$, II, J. Number Theory 105 (2004), 92–100.
On primes p for which d divides $\text{ord}_p(g)$

[9] R.W.K. Odoni, *A conjecture of Krishnamurthy on decimal periods and some allied problems*, J. Number Theory 13 (1981), 303–319.

[10] F. Pappalardi, *Square free values of the order function*, New York J. Math. 9 (2003), 331-344.

[11] K. Wiertelak, *On the density of some sets of primes. I*, Acta Arith. 34 (1977/78), 183–196.

[12] K. Wiertelak, *On the density of some sets of primes. II*, Acta Arith. 34 (1977/78), 197–210.

[13] K. Wiertelak, *On the density of some sets of primes. III*, Funct. Approx. Comment. Math. 10 (1981), 93–103.

[14] K. Wiertelak, *On the density of some sets of primes. III*, Studies in pure mathematics, 761–773, Birkhäuser, Basel, 1983.

[15] K. Wiertelak, *On the density of some sets of primes. IV*, Acta Arith. 43 (1984), 177–190.

[16] K. Wiertelak, *On the density of some sets of integers*, Funct. Approx. Comment. Math. 19 (1990), 71–76.

[17] K. Wiertelak, *On the density of some sets of primes p, for which $(\text{ord}_p b, n) = d$*, Funct. Approx. Comment. Math. 21 (1992), 69–73.

[18] K. Wiertelak, *On the distribution of the smallest natural numbers having order mod p not coprime with a given integer*, Acta Math. Hungar. 80 (1998), 271–284.

[19] K. Wiertelak, *On the density of some sets of primes p, for which $n|\text{ord}_p a$*, Funct. Approx. Comment. Math. 28 (2000), 237–241.

Address: Pieter Moree, Max-Planck-Institut für Mathematik, Vivatsgasse 7, D-53111 Bonn, Germany.
E-mail: moree@mpim-bonn.mpg.de
Received: 27 July 2004
