A
s compared with the skin sparing mastectomy (NSM), nipple sparing mastectomy (NSM) preserves the skin of the nipple-areolar complex (NAC). The risk of loco regional recurrence after preserving the skin envelope and NAC is the major concern in NSM. In 2012, Petit et al1 reported that the rate of local recurrence in the breast and the NAC was 3.6% and 0.8%, respectively. Several other publications confirmed the safety of the NSM in selected patients.2–5 The skin envelope and the NAC after removing the gland under the dermis, the NAC, and the peripheral skin are poorly vascularized by the subdermal vessel network.6,7 The size and the degree of ptosis increase the length of the skin flap between the thoracic wall and the NAC and increase the risk of poor blood supply of the tip of the breast. Therefore, the volume of the breast and the degree of pto-
sis are hypothesized as a risk factor of necrosis of the NAC area. Moreover, the pressure on the vessels by the tension due to the prosthesis also increases the risk of skin necrosis in the NAC area. Petit et al. reported 3.5% of complete nipple loss and partial NAC necrosis in 5.5%. Several recent studies showed that the rate of nipple necrosis ranged from 0% to 29% but most series showed less than 10%. Algaithy et al. analyzed the correlation between surgical factors and NAC necrosis. Several publications of NSM were concerned with oncologic safety, surgical technique, and cosmetic results and other sequelae. Few studies focus the factors predisposing to necrotic complications. Age, skin incision, flap thickness, reconstruction type, and smoking have been reported as the risk factors for NAC necrosis and NAC removal. Lohsiriwat et al. demonstrated that clinicopathological features had no significant impact on necrotic complications. No study reported the correlation between breast morphology and necrotic complications. Our prospective study aims at identifying the patient and the breast morphology factors that might increase necrotic complications after performing NSM with immediate reconstruction.

PATIENTS AND METHODS

From September 2012 to January 2013, 113 patients who underwent 124 NSM procedures for prophylactic mastectomy (n = 11) or breast carcinoma (n = 113) were included in our database at European Institute of Oncology. Patients’ age, weight, height, body mass index (BMI), smoking history, and associated comorbidities (diabetes mellitus, hypertension, and dyslipidemia) were recorded as patient factors. Specimen weight, volume of breast removed, degree of ptosis (grade 0, 1, 2, 3, pseudoptosis) (Table 1), mammographic breast density, and sternal notch to nipple distance were recorded as breast morphological factors. We recorded the volume of breast removed by measurement length, width, and thickness of specimen after finishing NSM procedure and reported as cubic centimeter. Surgical factors included skin incision types, mode of reconstruction, and duration of operation and were recorded. The selection criteria for NSM were primary tumors located outside the areola margins, no nipple retraction or bloody discharge from the nipple, no retroareolar microcalcifications, no inflammatory signs, and no retroareolar tumor infiltration at the frozen section. Multifocality of lesion was not a contraindication. In our series, patients with previous radiotherapy or neoadjuvant chemotherapy, tumors centrally located area, inflammatory breast cancer, and Paget’s disease of nipple were not included. The patients were excluded during the operative procedure if the intraoperative retroareolar frozen examination was positive for malignancy. All patients signed an informed consent for NSM and immediate breast reconstruction before the operation. NSM was performed by the breast surgery team and immediate breast reconstruction by the plastic surgery team.

Radiosurgical Technique

Subcutaneous mastectomy was performed through a cutaneous incision located above the tumor site. Skin incisions for NSM used included superolateral radial, inferolateral radial, superior circum areolar, periareolar, inframammary fold incisions, and others (designed to incorporate prior breast surgery scar) (Fig. 1). The glandular breast tissue was dissected very

Degree of Ptosis	Definition
First degree	Nipple at the level of inframammary fold
Second degree	Nipple below the level of inframammary fold but still higher that the majority of the breast contour
Third degree	Nipple below the level of inframammary fold and sitting at the most dependent, inferior part of the breast contour
Pseudoptosis	A loose breast that looks ptotic from a distance, but the nipple remains above the level of the inframammary fold

![Fig. 1. Skin incision types (1 = superolateral radial incision, 2 = inferolateral radial incision, 3 = superior circum areolar incision, 4 = periareolar incision, 5 = inframammary fold incisions, 6 = other incision) (designed to incorporate prior breast surgery scar).](image-url)
close to the dermis and from the pectoral fascia. A thin tissue beneath the retroareolar area was removed separately for immediate frozen section examination. If the frozen result was positive, the NAC should be removed and the patient was excluded. In our institute, 16 Gy (at the point of maximum dose) single-shot electron beam radiotherapy is delivered to NAC except for the prophylactic mastectomy in a single fraction with disk protection of the pectoralis muscle and chest wall. The electron intraoperative treatment (EL-IOT) technique for the biologic equivalence dose of 16 Gy is calculated to be 1.5–2.5 higher than a dose delivered with conventional fractionated radiotherapy, and this technique has already been described. NAC irradiation was delayed if the blood perfusion after NSM was poor. The immediate breast reconstruction was performed by the plastic team using different technique (submuscular implants, tissue expanders, or musculocutaneous flap). Generally, we performed inflation of expander volume postoperatively at least 3 weeks after NSM procedure and then continued inflation every 2–6 weeks. If there was wound problem, the inflation was delayed. The total volume depended on the definitive volume of the tissue expander and the patient’s comfort. Almost all of our patients had immediate reconstruction with prosthesis or tissue expanders, only 7 cases had autologous tissue (latissimus dorsi flaps, transverse rectus abdominis myocutaneous flaps) breast reconstructions. All patients were followed up by oncologic or plastic surgeons for at least 1 month postoperatively. NAC necrosis or mastectomy skin flap necrosis with mode of treatment was recorded accordingly.

Statistical Analysis
The statistical analysis of data was performed using the t test, Wilcoxon rank-sum test, and Fisher’s exact test as appropriate. NAC necrosis can be partial complete necrosis. All tests were 2 sided. The level of significant was set at P < 0.05.

RESULTS
Postoperative Complications
Rates of postoperative complications and type of necrosis are shown in Table 2 (Figs. 2 and 3), whereas management of necrotic complications is shown in Table 3.

Necrosis Types and Management
Postoperative hematoma was seen in 7 NSM cases (5.6%) and all cases required reoperation. Three infections (2.4%) were observed in the postoperative period and 2 prostheses were removed. Mastectomy skin flap necrosis occurred in 10 mastectomies (8.1%). Nipple necrosis occurred in 19 NSM cases (15.3%), with only 4 cases (3.5%) of complete NAC necrosis. The NAC was removed in 5 NSM cases (4%) one of which was partial NAC necrosis with mastectomy skin flap necrosis around NAC which required NAC removal with the necrotic skin.

Patient Risk Factors
As shown in Table 4, there was no clear association between NAC necrosis and age, weight, height, BMI,
smoking history, and comorbid disease (diabetes mellitus, hypertension, and dyslipidemia).

Breast Morphological Factors

Breast morphological factors including specimen weight, volume of breast removed, degree of ptosis, mammographic breast density, and nipple distance from sternal notch were analyzed for association with the necrotic complications after performing NSM. The analysis showed (Table 5) no clear association between NAC necrosis and mammographic breast density and nipple distance from sternal notch. Focusing on the breast specimen weight showed the median weight was 308 g (range, 102–856 g) and 339 g (range, 200–550 g) in no NAC necrosis group and NAC necrosis group, respectively. There seemed to be a slight but nonsignificant tendency ($P = 0.13$) for patients with NAC necrosis to have greater weight specimen. Significant association could be seen between NAC necrosis and volume of breast removed ($P = 0.04$). The median volume of breast removed was 784 cm3 (range, 60–4410 cm3) and 920 cm3 (range, 302.5–1870 cm3) in no NAC necrosis group and NAC necrosis group, respectively. We found that 37% of mastectomy skin flap necrosis had the NAC necrosis. Significantly more patients with NAC necrosis had associated mastectomy skin flap necrosis ($P < 0.01$).

We examined the cutoff volume of breast removed and proportions of NAC necrosis (Table 6). Patients with volume of breast removed greater than 750 cm3 that had 23% of NAC necrosis were compared with patients with volume of breast removed less than 750 cm3 that had 6% of NAC necrosis ($P < 0.01$).

There seemed to be some tendency for patients with NAC necrosis to have higher degree of ptosis in evaluating the association between necrotic complications and degree of ptosis. We additionally focused.

Table 3. Description of Necrosis Type and Management

Necrotic Complications	Number ($n = 22$)
Total NAC necrosis with skin flap necrosis	2
Total NAC necrosis without skin flap necrosis	2
Partial NAC necrosis with skin flap necrosis	5
Partial NAC necrosis without skin flap necrosis	10
Skin flap necrosis without NAC necrosis	3

Table 4. Comparison of Patient Risk Factors and Outcomes

Patients Characteristics	No NAC Necrosis ($n = 105$)	NAC Necrosis ($n = 19$)	P
Age (y), mean (SD)	47.9 (9.3)	48.8 (9.8)	0.67*
Weight (kg), mean (SD)	58.6 (9.3)	59.5 (7.0)	0.70*
Height (m), mean (SD)	1.64 (0.07)	1.65 (0.05)	0.60*
BMI (kg/m2), mean (SD)	21.7 (3.0)	21.7 (2.0)	0.92*
Comorbidity (DM, HT, dyslipidemia), n (%)	14 (13)	4 (21)	0.38†
Smoker, n (%)	31 (29)	3 (16)	0.22†

DM, Diabetes Mellitus; HT, Hypertension
* P value by unpaired t test;
† P value by Fisher’s exact test.

Table 5. Comparison of Breast Morphological Factors and Outcomes Patients

Patients Characteristics	No NAC Necrosis ($n = 105$)	NAC Necrosis ($n = 19$)	P
Degree of ptosis, n (%)			
None	20 (19)	2 (11)	0.42*
1	41 (39)	5 (26)	
2	31 (30)	9 (47)	
3	13 (12)	3 (16)	
Specimen weight (g), median (range)	308 (102–856)	339 (200–550)	0.13†
Volume of breast removed (cm3), median (range)	784 (60–4410)	920 (302.5–1870)	0.04†
Sternal notch to nipple distance (cm), mean (SD)	22.2 (2.2)	22.7 (1.7)	0.37‡
Breast density, n (%)			
Fatty breast	10 (10)	0	0.64*
Scattered fibroglandular	47 (45)	10 (53)	
Heterogeneous	45 (43)	9 (47)	
Extremely dense	3 (3)	0	
Flap necrosis, n (%)	5 (3)	7 (37)	<0.01*

* P value by Fisher’s exact test;
† P value by Wilcoxon rank-sum test;
‡ P value by unpaired t test.
on individual degree of ptosis (Table 5). On statistical analysis, no statistically significant differences between groups could demonstrate association between degree of ptosis and NAC necrosis.

Surgical Risk Factors

Duration of operation, type of surgical incision, and type of reconstruction were not statistically significant (Table 7). Similarly, we could not find the significant correlation between the total expander or prosthesis volume and the risk of necrotic complications.

To evaluate more efficiently the possible association between skin incision types and necrosis, we combined superior circumareolar and periareolar skin incisions for comparing with other skin incisions (Table 8). We found 25% NAC necrosis with superior circumareolar and periareolar incisions as compared with 13% necrosis with other incisions. There was no statistically significant difference between the 2 groups of skin incisions.

DISCUSSION

The objective of our study was to evaluate the relationship between the morphology of the breast and the risk of NAC and skin necrosis. Our study showed a 4% rate of NAC removal consistent with the results of the literature (range, 0.0–29%).4,9,13,17,27 The volume of breast removed was the only factor significantly associated with NAC necrosis. We observed a trend of higher risk of necrosis in ptotic breast, with larger volume of breast removed and larger volume of prosthesis inserted for the reconstruction, which were not significant (Tables 5 and 6). Rusby and Gui28 described a higher risk of necrosis in patients with large or ptotic breast, but there is no study showing an association between degree of ptosis and the risk of NAC necrosis in the NSM procedure. In our study, patients with ptosis grade 0 had only 9% of NAC necrosis compared with higher percentages of NAC necrosis in higher grade ptosis (11–19%). This finding should be investigated further in larger studies. Because of the risk of local recurrence in the breast parenchyma preserved beneath the NAC for the vascular supply, we performed the NSM with the ELIOT technique. The single application of 16 Gy should be sufficient to sterilize more than 90% of the residual cancer cells. The risk of radiodystrophy is low with ELIOT. A mild pigmentation was reported in 20% of the patients at 1-year follow-up, and no local recurrence was observed on NAC area.8 Type of reconstruction was not significantly associated with NAC necrosis in our study. This was different from other studies showing a significant impact of reconstructive techniques on necrotic complications.13,17,19 The lack of association in our study was probably due to selection bias. The choice of reconstructive technique is related to the quality of the blood supply of the skin at the end of mastectomy. We usually preferred to place an expander only moderately inflated but may choose an autologous flap reconstruction in case of poor blood supply of the skin envelope. Skin incision types are not related to necrotic complications in our study. Several studies have shown that incision types are an important risk factor of NAC necrosis.18,17,29,30 Regolo et al31 report-

Table 6. Cutoff Volume of Breast Removed and Proportions of NAC Necrosis

Cutoff Values	Cutoff Positive: No. NAC Necrosis (%)	Cutoff Negative: No. NAC Necrosis (%)	P
Volume ≥500 cm³	18/99 (18)	1/25 (4)	0.12
Volume ≥750 cm³	16/71 (23)	3/53 (6)	0.01
Volume ≥1000 cm³	8/41 (20)	11/83 (13)	0.43
Volume ≥1250 cm³	6/24 (25)	13/100 (13)	0.20

All P values by Fisher’s exact test.

Table 7. Comparison of Surgical Risk Factors and Outcomes

Patients Characteristics	No NAC Necrosis (n = 105)	NAC Necrosis (n = 19)	P
Type of incision, n (%)			
Superolateral radial	85 (79)	13 (68)	0.26*
Inferolateral radial	1 (1)	1 (5)	
Superior circumareolar	14 (13)	4 (21)	
Periareolar	1 (1)	1 (5)	
Inframammary fold	3 (3)	0	
Others	3 (3)	0	
Duration of operation (min), mean (SD)	165.5 (59.1)	177.5 (80.7)	0.45†
Prosthesis volume (mL), median (range)	302 (100–600); n = 60	338 (125–520); n = 8	0.66‡
Expander volume (mL), median (range)	200 (90–400); n = 38	200 (100–350); n = 9	0.91‡
Recon (transverse rectus abdominis myocutaneous, latissimus dorsi), n (%)	6 (6)	1 (5)	0.90*
Hematoma/infection, n (%)	9 (9)	2 (11)	0.68*

*P value by Fisher’s exact test; †P value by unpaired t test; ‡P value by Wilcoxon rank-sum test.
ed of 60% NAC loss with the periareolar incision. As we know, the periareolar incision provides the best cosmetic outcomes. This incision limits the view of operative field and may compromise blood supply to the NAC.32,33 Lateral or inframammary incisions give a better view in the operative field and does not compromise blood supply to the NAC.34 Other authors also favor the use of radial or lateral incisions.13,15 In contrast, Paepke et al35 reported only a 1% NAC loss with periareolar incision. Algaithy et al19 recommended maintaining a 5 mm thickness of the areola and periareolar area to prevent from flap necrosis. In our study, the superior circumareolar and periareolar incisions were associated with a NAC necrosis rate of 25% as compared with a rate of 13% with other incisions, but this difference was not statistically significant. It seems likely that the variation in the NAC necrosis rates may relate to the individual surgeon’s technique. Smoking history is not related to NAC necrosis in our study, but the literatures have shown that smoking status is an important risk factor for NAC necrosis.17,19 However, the number of smokers in our study was too small to show a significant association. Diabetes mellitus, hypertension, and dyslipidemia were nonsignificant risk factors for NAC necrosis. Although there was no relation between BMI and NAC necrosis in our study, Davies et al29 reported higher risk of skin necrosis in women with BMI greater than 25 kg/m² and Platt et al36 also showed higher rate of wound complication for higher BMI women.30 The nipple sternal notch distance did not influence the risk of skin necrosis in our study as mentioned in different studies.37–39

Table 8. Comparing Type of Incisions	Superior Circumareolar + Periareolar Incision	Others Incisions
NAC necrosis, n (%)	5 (25)	14 (13)
No NAC necrosis, n (%)	15 (75)	90 (87)
Total, n (%)	20 (100)	104 (100)

P= 0.19 by Fisher’s exact test.

CONCLUSIONS

Despite a relatively high necrotic complication rate (17.7%) after therapeutic NSM, NSM remains an option for appropriately selected patients. Our study underlined the risk of skin and NAC necrosis in patients with larger breasts and suggests careful consideration of the choice of breast reconstruction in such cases, such as the use of tissue expanders with slow expansion or autologous musculocutaneous flap.

Dr. Prakasit Chirappapha, MD
Division of Plastic Surgery
European Institute of Oncology
Via Ripamonti 435
20141 Milan, Italy
E-mail: onco.prakasit@gmail.com

ACKNOWLEDGMENTS

We wish to acknowledge Asst. Prof. Dr. Gloria Vidheecharoen and Assoc. Prof. Panuwat Lertsithichai for English revision of the text.

REFERENCES

1. Petit JY, Veronesi U, Orecchia R, et al. Risk factors associated with recurrence after nipple-sparing mastectomy for invasive and intrapithelial neoplasia. Ann Oncol. 2012;23:2053–2058.
2. de Alcantara Filho P, Capko D, Barry JM, et al. nipple-sparing mastectomy for breast cancer and risk-reducing surgery: the Memorial Sloan-Kettering Cancer Center experience. Ann Surg Oncol. 2011;18:3117–3122.
3. Jensen JA, Orringer JS, Giuliano AE. Nipple-sparing mastectomy in 99 patients with a mean follow-up of 5 years. Ann Surg Oncol. 2011;18:1665–1670.
4. Spear SL, Willey SC, Feldman ED, et al. Nipple-sparing mastectomy for prophylactic and therapeutic indications. Plast Reconstr Surg. 2011;128:1005–1014.
5. Lohsiriwat V, Martella S, Rietjens M, et al. Paget’s disease as a local recurrence after nipple-sparing mastectomy: clinical presentation, treatment, outcome, and risk factor analysis. Ann Surg Oncol. 2012;19:1850–1855.
6. Kroll SS, Ames F, Singletary SE, et al. The oncologic risks of skin preservation at mastectomy when combined with immediate reconstruction of the breast. Surg Gynecol Obstet. 1991;172:17–20.
7. Larson DL, Basir Z, Bruce T. Is oncologic safety compatible with a predictably viable mastectomy skin flap? Plast Reconstr Surg. 2011;127:27–33.
8. Petit JY, Veronesi U, Orecchia R, et al. Nipple sparing mastectomy with nipple areola intraoperative radiotherapy: one thousand and one cases of a five years experience at the European Institute of Oncology of Milan (EIO). Breast Cancer Res Treat. 2009;117:333–338.
9. Wagner JL, Fearmonti R, Hunt KK, et al. Prospective evaluation of the nipple-areola complex sparing mastectomy for risk reduction and for early-stage breast cancer. Ann Surg Oncol. 2012;19:1137–1144.
10. Petit JY, Veronesi U, Luini A, et al. When mastectomy becomes inevitable: the nipple-sparing approach. Breast. 2005;14:527–531.
11. Mortensen MM, Schneider PD, Khatri VP, et al. Immediate breast reconstruction after mastectomy increases wound complications: however, initiation of adjuvant chemotherapy is not delayed. *Arch Surg.* 2014;149:988–991.

12. Caruso F, Ferrara M, Castiglione G, et al. Nipple sparing mastectomy for breast cancer and risk reduction: oncologic or technical problem? *J Am Coll Surg.* 2006;203:704–714.

13. Sacchini V, Pinotti JA, Barros AC, et al. Nipple-sparing mastectomy: sixty-six months follow-up. *Eur J Surg Oncol.* 2006;32:937–940.

14. Komorowski AL, Patrick RJ, Yetman RJ, et al. Nipple-sparing mastectomy: can we predict the factors predisposing to complications after nipple- and areola-sparing mastectomy? *World J Surg.* 2006;30:1410–1413.

15. Crowe JP, Patrick RJ, Yetman RJ, et al. Nipple-sparing mastectomy update: one hundred forty-nine procedures and clinical outcomes. *Arch Surg.* 2008;143:1106–1110.

16. Garcia-Etienne CA, Cody lii HS 3rd, Disa JJ, et al. Nipple-sparing mastectomy: initial experience at the Memorial Sloan-Kettering Cancer Center and a comprehensive review of literature. *Br J Surg.* 2009;15:440–449.

17. Garwood ER, Moore D, Ewing C, et al. Total skin-sparing mastectomy: complications and local recurrence rates in 2 cohorts of patients. *Ann Surg.* 2009;249:26–32.

18. Pink JM, Smith BL, Gui GP. Nipple-sparing mastectomy. *Br J Surg.* 2010;97:305–316.

19. Algalithy ZK, Petit JY, Lohsiriwat V, et al. Nipple sparing mastectomy: can we predict the factors predisposing to necrosis? *Eur J Surg Oncol.* 2012;38:125–129.

20. Lohsiriwat V, Rotmensch N, Botteri E, et al. Do clinicopathological features of the cancer patient relate with nipple-areolar complex necrosis in nipple-sparing mastectomy? *Ann Surg Oncol.* 2013;20:990–996.

21. Petit JY, Veronesi U, Orecchia R, et al. The nipple-sparing mastectomy: early results of a feasibility study of a new application of perioperative radiotherapy (ELIOT) in the treatment of breast cancer when mastectomy is indicated. *Tumori.* 2003;89:288–291.

22. Dubois JB, Hay M, Gely S, et al. IORT in breast carcinoma. *Front Radiat Ther Oncol.* 1997;31:131–137.

23. Battle JA, DuBois J-B, Merrick HW, et al. ELIOT for breast cancer. In: Gunderson LL, ed. *Current Clinical Oncology: Intraoperative Irradiation: Techniques and Results.* New York, NY: Humana Press; 1999:521–526.

24. Veronesi U, Orecchia R, Luini A, et al. Focalised intraoperative irradiation after conservative surgery for early stage breast cancer. *The Breast.* 2001;10:84–89.

25. Veronesi U, Orecchia R, Luini A, et al. A preliminary report of intraoperative radiotherapy (IORT) in limited-stage breast cancers that are conservatively treated. *Eur J Cancer.* 2001;37:2178–2183.

26. Petit JY, Veronesi U, Rey P, et al. Nipple-sparing mastectomy: risk of nipple-areolar recurrences in a series of 579 cases. *Breast Cancer Res Treat.* 2009;114:97–101.

27. Kim HJ, Park EH, Lim WS, et al. Nipple areola skin-sparing mastectomy with immediate transverse rectus abdominis musculocutaneous flap reconstruction is an oncologically safe procedure: a single center study. *Ann Surg.* 2010;251:493–498.

28. Rusby JE, Gui GP. Nipple-sparing mastectomy in women with large or ptotic breasts. *J Plast Reconstr Aesthet Surg.* 2010;63:e754–e755.

29. Davies K, Allan L, Roblin P, et al. Factors affecting post-operative complications following skin sparing mastectomy with immediate breast reconstruction. *Breast.* 2011;20:21–25.

30. Crowe JP Jr, Kim JA, Yetman R, et al. Nipple-sparing mastectomy: technique and results of 54 procedures. *Arch Surg.* 2004;139:148–150.

31. Regolo L, Ballardini B, Gallarotti E, et al. Nipple sparing mastectomy: an innovative skin incision for an alternative approach. *Breast.* 2008;17:8–11.

32. Bensimon RH, Bergmeyer JM. Improved aesthetics in breast reconstruction: modified mastectomy incision and immediate autologous tissue reconstruction. *Ann Plast Surg.* 2003;51:552–555.

33. Gabka CJ, Mainwald G, Bohmert H. Immediate breast reconstruction for breast carcinoma using the periareolar approach. *Plast Reconstr Surg.* 1998;101:1228–1234.

34. Larson DL, Basir Z, Bruce T. Is oncoplastic surgery compatible with a predictably viable mastectomy skin flap? *Plast Reconstr Surg.* 2011;127:27–33.

35. Paepke S, Schmid R, Fleckner S, et al. Subcutaneous mastectomy with conservation of the nipple-areola skin: broadening the indications. *Ann Surg.* 2009;250:288–292.

36. Platt AJ, Mohan D, Baguley P. The effect of body mass index and wound irrigation on outcome after bilateral breast reduction. *Ann Plast Surg.* 2003;51:552–555.

37. Setälä L, Papp A, Joukainen S, et al. Obesity and complications in breast reduction surgery: are restrictions justified? *J Plast Reconstr Aesthet Surg.* 2009;62:195–199.

38. O’Grady KF, Thoma A, Dal Cin A. A comparison of complication rates in large and small inferior pedicle reduction mammoplasty. *Plast Reconstr Surg.* 2005;115:736–742.

39. Erdogan B, Ayhan M, Deren O, et al. Importance of pedicle length in inferior pedicle technique and long-term outcome of areola-to-fold distance. *Aesthetic Plast Surg.* 2002;26:436–443.

40. Nahabedian MY, Momen B, Galdino G, et al. Breast reconstruction with the free TRAM or DIEP flap: patient selection, choice of flap, and outcome. *Plast Reconstr Surg.* 2002;110:466–475; discussion 476.