On Calabi-Yau supermanifolds II

Martin Roček
C.N. Yang Institute for Theoretical Physics
SUNY, Stony Brook, NY 11794-3840, USA
rocek@insti.physics.sunysb.edu

Neal Wadhwa
Ward Melville High School

ABSTRACT

We study when Calabi-Yau supermanifolds $\mathbb{M}^{1|2}$ with one complex bosonic coordinate and two complex fermionic coordinates are super Ricci-flat, and find that if the bosonic manifold is compact, it must have constant scalar curvature.
In [1], we found that super Ricci-flat Kähler manifolds with one fermionic dimension and an arbitrary number of bosonic dimensions exist above a bosonic manifold with a vanishing Ricci scalar. This paper explores super Calabi-Yau manifolds with one bosonic dimension and two fermionic dimensions. We find that the supermetric is super Ricci-flat implies several interesting constraints that are familiar from other contexts, including the field equation of the WZW-model on \(AdS_3 \). Locally, these constraints imply that the super Kähler potential has the form

\[
K(z, \bar{z}, \theta, \bar{\theta}) = K_0(z, \bar{z}) + \sqrt{K_0(z, \bar{z})} (\theta^i \bar{\theta}^i)^2 + \frac{1}{4} \left(\ln [K_0(z, \bar{z})] \right)_{z \bar{z}} (\theta^i \bar{\theta}^i)^2 ,
\]

where \(K_0(z, \bar{z}) \) is the Kähler potential of the bosonic manifold. We find the further constraint that the scalar curvature of the bosonic manifold is harmonic; on a complete compact space, this implies that the scalar curvature is constant.

Consider the super Kähler potential \(K \) of the manifold \(M^{1|2} \) with 1 bosonic coordinate and 2 fermionic coordinates:

\[
K = f_0 + if_1 \theta^2 + i \bar{f}_1 \bar{\theta}^2 + f_{ij} \theta^i \bar{\theta}^j + f_2 \theta^2 \bar{\theta}^2
\]

We use the notation \(\theta^2 = \frac{1}{2} \epsilon_{ij} \theta^i \theta^j \), where \(\epsilon_{ij} = -\epsilon_{ji} \). Since \(\bar{\theta}^i \theta^i = \bar{\theta}^i \bar{\theta}^i \), the factor of \(i \) is needed to make \(K \) real. The supermetric of this manifold is

\[
\begin{pmatrix}
 f_{0, z\bar{z}} + if_{1, z\bar{z}} \theta^2 + i \bar{f}_{1, z\bar{z}} \bar{\theta}^2 + if_{ij, z\bar{z}} \theta^i \theta^j + f_{2, z\bar{z}} \theta^2 \bar{\theta}^2 & if_{1, z\bar{z}} \epsilon_{ij} \bar{\theta}^i + f_{ij, z\bar{z}} \theta^j \bar{\theta}^i + f_{2, z\bar{z}} \theta^2 \epsilon_{ij} \bar{\theta}^i \\
if_{1, z\bar{z}} \epsilon_{ij} \theta^i + f_{ij, z\bar{z}} \bar{\theta}^j + \frac{1}{2} f_{2, z\bar{z}} \epsilon_{ij} \theta^i \bar{\theta}^j & f_{ij} + f_{2} \epsilon_{id} \epsilon_{kj} \bar{\theta}^k
\end{pmatrix}
\]

The superdeterminant can be set to 1 by a holomorphic coordinate transformation as described in [1]. Looking at only the bosonic part of the superdeterminant yields

\[
f_{0, z\bar{z}} = \det(f_{ij})
\]

Equating the coefficients of the purely holomorphic and purely anti-holomorphic fermions gives the equation

\[
\frac{f_{1, z\bar{z}}}{f_{1, z}} = \frac{\det(f_{ij})}{f_{0, z\bar{z}}}
\]

as well as its conjugate. This is equivalent to \(\ln(f_{1, z})_z = \ln(\det(f_{ij}))_z \) or

\[
f_{1, z} = \lambda(\bar{z}) \det(f_{ij})
\]

where \(\lambda(\bar{z}) \) is an arbitrary function of \(\bar{z} \). This implies that locally \(f_1 \) can always be removed by a holomorphic coordinate transformation: If \(\lambda = 0 \), \(f_1 = f_1(z) \) is holomorphic and
contributes a holomorphic term to the super Kähler potential that does not change the supermetric. Otherwise, the coordinate transformation \(\frac{1}{\lambda(z)} \frac{\partial}{\partial \bar{z}} \rightarrow \frac{\partial}{\partial \bar{z}'} \), results in the equation

\[
f_{1,z} = \det(f_{i\bar{j}}) = f_{0,z\bar{z}} ,
\]

where we have used (4) in the last step. Then the coordinate transformation, \(z + i \theta^2 \rightarrow z \) and \(\bar{z} + i \bar{\theta}^2 \rightarrow \bar{z} \) eliminates \(f_1 \) (up to purely holomorphic terms), as can be verified by a Taylor expansion. This coordinate transformation is only valid locally, as \(z \) and \(\bar{z} \) are not globally defined functions on all such manifolds.

Thus the Kähler potential can be assumed to have the form:

\[
K = f_0 + f_{ij} \theta^i \bar{\theta}^j + f_2 \theta^2 \bar{\theta}^2
\]

and the simplified supermetric is

\[
\begin{pmatrix}
 f_{0,z\bar{z}} + f_{ij,z\bar{z}} \theta^i \bar{\theta}^j + f_{2,z\bar{z}} \theta^2 \bar{\theta}^2 & f_{ij,z} \theta^i + \frac{1}{2} f_{2,z} \theta^2 \epsilon_{ij} \bar{\theta}^2 \\
 f_{ij,z} \bar{\theta}^j + \frac{1}{2} f_{2,z} \epsilon_{ij} \theta^i \bar{\theta}^2 & f_{ij} + f_{2} \epsilon_{ij} \epsilon_{k\bar{j}k}
\end{pmatrix}
\]

By looking at the coefficient of the \(\theta \bar{\theta} \) terms, one can find that

\[
\frac{f_{bc} f_{i\bar{a},z} f_{d\bar{j},z} \epsilon^{db} \epsilon^{ca}}{\det(f_{i\bar{j}})} + f_{ij,z\bar{z}} = - f_{2} f_{ij} ,
\]

where \(\epsilon_{abc} \delta^c_a = \delta^a_b \). Multiplying by the inverse \(f_{i\bar{j}} \) and contracting yields the equation

\[
f_2 = - \left(\ln \sqrt{\det(f_{i\bar{j}})} \right)_{z\bar{z}} .
\]

Substituting this into equation (10) gives

\[
(f_{ij,z} f^{i\bar{k}})_{\bar{z}} = \left(\ln \sqrt{\det(f_{i\bar{j}})} \right)_{z\bar{z}} \delta^{i}_{\bar{k}} ,
\]

where \(f^{i\bar{j}} \) is the inverse of \(f_{ij} \). Now let \(M := \frac{f_{i\bar{j}}}{\sqrt{\det(f_{i\bar{j}})}} \); then \(M \) is a hermitian matrix whose determinant is 1. It can be written as

\[
M = \begin{pmatrix}
x + y & u + iv \\
u - iv & x - y
\end{pmatrix} .
\]

The condition \(\det(M) = 1 \) implies \(x^2 - y^2 - u^2 - v^2 = 1 \), which is a hyperboloid, and is well known in the physics literature as \(AdS_3 \) (see, e.g., [2], where this space is used to study Black holes).

Equation (12) implies

\[
(M^{-1} M_{\bar{z}})_z = 0 \leftrightarrow (M_{\bar{z}} M^{-1})_{\bar{z}} = 0 .
\]
This matrix differential equation is well studied and appears in many physical systems– it is
the classical equation of motion of the WZW-model on AdS_3 \[^3\]. If we use the parameteriza-
tion

$$M = \begin{pmatrix} e^{-\phi} + \gamma \bar{\gamma} e^{\phi} & \gamma e^{\phi} \\ \bar{\gamma} e^{\phi} & e^{\phi} \end{pmatrix},$$

then the four resulting equations give the functional gradient of equation (2.9) in \[^3\].

Equation (14) implies that

$$M = \mathcal{M}(z) Y \bar{\mathcal{M}}(\bar{z}) ,$$

where $\mathcal{M}(z)$ is a holomorphic matrix and $\bar{\mathcal{M}}$ is its adjoint. In this context, it is possible to

go further and (locally) eliminate M by applying the coordinate transformation $\theta M Y \bar{\theta} \rightarrow \theta$
and $Y^{1/2} \bar{\mathcal{M}} \bar{\theta} \rightarrow \bar{\theta}$. This simplifies the super Kähler potential further to the form \[^1\].

The remaining terms in the superdeterminant, once one assumes $M_{ij} = \delta_{ij}$, imply

$$R_{zz\bar{z}} = 0 ,$$

where R is the Ricci scalar of the bosonic part. On a complete compact manifold, the only
bosonic functions that obey (17) are constant functions. This proves that the Ricci scalar is
a constant on this type of manifold.

On a noncompact manifold, there are other solutions which may prove to be interesting;
the results of \[^4\] relate closely to equation (17), and potentially could be useful in pursuing
this further.

An example of a space obeying all the conditions that we have found is $S\mathbb{P}^{1|2}$. This
space is compact and satisfies all of the constraints that we have found, guaranteeing that
its supermetric is super Ricci-flat. Its Kähler potential is

$$\ln(1 + z\bar{z}) + \frac{\theta^1 \bar{\theta}^1 + \theta^2 \bar{\theta}^2}{1 + z\bar{z}} + \frac{\theta^1 \theta^2 \bar{\theta}^1 \bar{\theta}^2}{(1 + z\bar{z})^2} ,$$

The Ricci scalar of the bosonic part is 2 and $\ln(1 + z\bar{z})_{z\bar{z}} = 1/(1 + z\bar{z})^2$. Another example
is given by a Riemann surface Σ with a constant negative Ricci scalar.

In this paper, many coordinate transformations are used that could be obstructed glob-
ally, e.g., it may not be possible to remove the θ^2 and $\bar{\theta}^2$ terms as well to transform M
to the identity matrix; it would be interesting to see how such terms modify (17) and if other
interesting solutions arise.

Acknowledgement: We are happy to thank Leon Takhtajan for useful discussions and
Rikard von Unge for comments on the manuscript. The work of MR was supported in part
by NSF grant no. PHY-0354776.
Note: While writing up our results after completing our calculations, we became aware of [5], which has considerable overlap with our work. It studies the case with an arbitrary number of bosonic dimensions, but with a super Kähler potential assumed to have the simple form (8). Because of the greater complexity of bosonic manifolds in higher dimensions, [5] does not find as complete results as those presented here.

References

[1] M. Roček and N. Wadhwa, On Calabi-Yau supermanifolds, arXiv:hep-th/0408188.

[2] M. Banados, C. Teitelboim and J. Zanelli, The Black hole in three-dimensional space-time, Phys. Rev. Lett. 69, 1849 (1992) arXiv:hep-th/9204099.

[3] A. Giveon, D. Kutasov, N. Seiberg, Comments on String Theory on AdS_3, Adv.Theor.Math.Phys. 2 (1998) 733-780 arXiv:hep-th/9806194.

[4] R. Dey, A complete conformal metric of preassigned negative Gaussian curvature for a punctured hyperbolic Riemann surface
Proc. Indian Acad. Sci. (Math. Sci.), Vol. 114, No. 2, May 2004, pp. 141-151.
A variational proof for the existence of a conformal metric with preassigned negative Gaussian curvature for compact Riemann surfaces of genus > 1
Proc. Ind. Academy of Sciences, 111 (2001), 407.

[5] Chengang Zhou, On Ricci flat supermanifolds, arXiv:hep-th/0410047.