Case Report

Case reports of a typical extrafollicular adenomatoid odontogenic tumor of maxilla

Annem Sudarshan Kumar1, Ayesha Sameera2*, Sridhar Reddy Erugula2, Karri Roja Lakshmi1, Hasini Nelakurthi1, Pothuraju Haritha3

INTRODUCTION

Philipsen and Birn first introduced the term Adenomatoid Odontogenic tumor (AOT) in 1969, later on adopted by World Health Organization (WHO) in 1971.1,2 However it was first described by Ghosh as an adamantinoma of the maxilla and Stafne recognized it as distinct entity.3 WHO (2005) defined it as “AOT is composed of odontogenic epithelium in a variety of histoarchitectural patterns, embedded in a mature connective tissue stroma and characterized by slow but progressive growth”.4,5 Due to its non-invasive and non aggressive nature, many authors believe it to be a benign neoplasm.6 While few authors consider AOT as a hamartoma due to its limited size and lack of recurrence after complete removal.2,7 Radiographically intrabony variants comprise of follicular and extrafollicular types. Follicular type is unilocular and associated with an unerupted tooth resembling a dentigerous cyst. Extrafolliclular type is not associated with unerupted tooth, but most commonly seen around erupted permanent tooth.8 Treatment of AOT involves conservative surgical enucleation. Recurrence is rare.9

CASE REPORT

Case 1

A 38 years old female patient was referred to the department of oral pathology and microbiology, GSL...
Dental College and Hospital, Rajahmundry with a chief complaint of swelling on the right maxillary region. Patient noticed the swelling one month back and was asymptomatic. There was no history of dental caries or pus discharge and tooth mobility. No relevant medical history. On further examination mild extraoral bony swelling was noticed in the right maxillary canine region. Intraoral periapical radiograph (Figure 1) and Orthopantomogram (Figure 2) showed a radiolucent lesion between the roots of right maxillary lateral incisor and canine and the roots were displaced.

Excisional biopsy of the lesion revealed a well encapsulated cystic lesion. Macroscopic examination of the cut lesion showed white gritty material inside the cystic cavity, with a thick fibrous capsule (Figure 3).

Microscopically epithelial cells arranged in the form of whorls or rosettes and ducts lined by a single layer of cuboidal to columnar cells were seen. Few areas showed basaloïd epithelial cells resembling cell rests of dental lamina (Figure 4). The fibrous capsule showed variable thickness (Figure 5).

Case 2

A 21 years old male patient reported to the GSL Dental College and Hospital, Rajahmundry with swelling and pain in the maxillary anterior region since one week and was gradually increasing in size. On extraoral examination a mild swelling was noticed below the ala of nose extending up to the corner of the mouth (Figure 6).
Figure 6: Mild swelling seen extraorally below the ala of nose up to the corner of the mouth.

Intraorally a 2 x 2 cm swelling was noticed between maxillary left lateral incisor and canine. It was soft, fluctuant and tender on palpation (Figure 7).

Figure 7: Obliteration of vestibule with swelling extending from central incisor to canine.

Radiographic examination revealed a well demarcated radiolucent area between 22 and 23. Roots of 22 and 23 were displaced (Figure 8).

Figure 8: Radiographically a well demarcated radiolucent area between 22 and 23 is noticed.

Provisional diagnosis of periapical cyst or lateral periodontal cyst was considered. Excisional biopsy revealed a well encapsulated cystic lesion with thin watery fluid was found (Figure 9).

Figure 9: Biopsy revealed a well encapsulated cystic lesion with thin watery fluid.

Histopathological examination revealed ductal pattern of cuboidal or columnar cells (Figure 10).

Figure 10: Microscopic examination revealed ductal pattern of cuboidal or columnar cells.

Spindle cells were seen arranged in the form of sheets and anastomizing cords in an eosinophilic matrix. Few
AOT exhibits diverse features in histopathology. The tumor shows proliferation of spindle, cuboidal and columnar cells in variety of patterns. As many as 20 different histological patterns of this tumor have been described (Table 1). Usually duct like structures, with eosinophilic material or calcifications with a thick fibrous capsule are seen. Occasionally round or polygonal epithelial cells may dominate the tissue between the cell rich nodules. Small amounts of eosinophilic material or calcifications also may be present between these cells.

Siar et al has described a cystic variant of AOT with mural lining. Similarly Philipsen et al has noted CEOT like areas, cribiform pattern type, interlacing strands of cells, nest, rosette, trabecular and tubular like patterns. Fredrich et al., described a case of AOT with net like proliferations by peripheral smaller cells. Ribbon, ring, whorled spheroidal pattern and sieve-like, solid nodules type pattern where discussed by Garg et al and Takahashi et al respectively.

Although the location of AOT was typical, both cases described in the present article were of extrafollicular variant types as the lesion was seen between roots of Maxillary lateral incisor and canine, with displacement of the roots. The occurrence of this tumor in male patient in the third decade with symptoms of pain is quite uncommon.

AOT origin is considered controversial, while some believe it is from the odontogenic epithelium of the dentigerous cyst and others consider it to be derived from epithelial remnants of the dental lamina complex system. Chen et al. has stated that AOT derived from dentigerous cyst and suggested the term “hybrid variant”.

Immunohistochemical analysis usually indicates that AOT is a noninvasive tumor that never infiltrates surrounding normal tissues. These tumors exhibit weaker expressions of p53 and MDM2 indicating their less aggressive behavior. Enamel proteins including amelogenin, ameloblastin, and amelotin, as well as TGF-β/SMADs, are more intensely expressed in AOT.

CONCLUSION

Therefore, AOT can present themselves with variations in size, gender and location, sometimes mimicking other odontogenic tumors. However, irrespective of the pattern the biological behavior of the tumor has never changed unlike that of the other tumors. Conservative surgical enucleation is the treatment of choice. Recurrence of AOT is exceptionally rare with only few cases reported indicating excellent prognosis.

Funding: No funding sources
Conflict of interest: None declared
Ethical approval: Not required

REFERENCES

1. Philipsen HP, Birn H. The adenomatoid odontogenic tumour. Ameloblastic adenomatoid tumour or adeno-ameloblastoma. Acta Pathol Microbiol Scand. 1969; 75(3):375-98.
2. Kramer IRH, Pindborg JJ. Histological typing of Odontogenic Tumors, Jaw cysts, and allied lesions. Berlin: springer-verlag;1971.
3. Ghosh LS. Adamantinoma of the upper jaw. Am J Pathol. 1934;10:773.
4. Stafne EC. Epithelial tumors associated with developmental cysts of the maxilla: a report of three cases. Oral Surg, Oral Med, Oral Pathol. 1948;1(10):887-94.
5. Barnes L, Eveson JW, Reichart P, Sidransky D. World Health Organization classification of tumours: pathology and genetics, head and neck tumours. Lyon: IARC Press;2005.
6. Lucas RB. A tumor of enamel epithelium. Oral Surg 1957;10:652-6.
7. Philipsen HP, Reichart PA. Adenomatoid Odontogenic tumor: facts and figures. Oral Oncol. 1998;35:125-31.
8. Philipsen HP, Reichart PA, Siar CH, Ng KH, Lau SH, Zhang X et al. An updated clinical and epidemiological profile of the adenomatoid odontogenic tumour: a collaborative retrospective study. J Oral Pathol Med. 2007;36:383-93.
9. Philipsen HP, Reichart PA, Nikai H. The adenomatoid odontogenic tumor (AOT): an update. J Oral Med Pathol. 1997;2:55-60.
10. Steensland HS. Epithelioma adamantinum. J Exper Med. 1905;6:377-89.
11. Marx RE, Stern D. Odontogenic and nonodontogenic cysts. Oral and maxillofacial pathology: A rationale for diagnosis and treatment. Odontogenic and nonodontogenic cysts. Quintessence Publishing Chicago; Hanover Park, III, USA;2003:607.
12. Mehkri S, Rajkumar GC, Nagesh KS, Manjunath GS. Bilateral adenomatoid Odontogenic tumor of the maxilla in a 2 year old female: the report of a rare case and Review of literature. Dentomaxillofac Radiol. 2012;41:342-8.
13. Gorlin RJ, Chaudhry AP. Adenoameloblastoma. Oral Surg. 1958;11:762-8.
14. Raubenheimer EJ, Seeliger JE, van Heerden WF, Dreyer AF. Adenomatoid odontogenic tumour: a report of two large lesions. Dentomaxillofac Radiol. 1991;20(1):43-5.
15. Mutalik VS, Shreshtha A, Mutalik SS, Radhakrishnan R. Adenomatoid odontogenic tumor: A unique report with histological diversity. J Oral Maxillofac Pathol. 2012;16:118-21.
16. Rick GM. Adenomatoid Odontogenic Tumor. Oral Maxillofac Surg Clin North Am. 2004;16:333-54.
17. Siar CH, Ng KH. Adenomatoid odontogenic tumor: A survey of 44 new cases in Malaysia. Ann Dent. 1986;45:11-4.
18. Philipsen HP, Reichart PA, Zhang KH, Nikai H, Yu QX. Adenomatoid odontogenic tumor: Biologic profile based on 499 cases. J Oral Pathol Med. 1991;20:149-58.
19. Friedrich RE, Scheuer HA, Zustin J. Adenomatoid odontogenic tumor (AOT) of maxillary sinus: Case report with respect to immunohistochemical findings. In vivo. 2009;23:111-6.
20. Garg D, Palaskar S, Shetty VP, Bhushan A. Adenomatoid odontogenic tumor - hamartoma or true neoplasm: A case report. J Oral Sci. 2009;51:155-9.
21. Takahashi H, Fujita S, Shibata Y, Yamaguchi A. Adenomatoid odontogenic tumour: Immunohistochemical demonstration of transferrin, ferritin and alpha-one-antitrypsin. J Oral Pathol Med. 2001;30:237-44.
22. Philipsen HP, Samman N, Ormiston IW, Wu PC, Reichart PA. Variants of the adenomatoid odontogenic tumor with a note on tumor origin. J Oral Pathol Med. 1992; 21(8):348-52.
23. Chen YK, Hwang IY, Chen JY, Wang WC, Lin LM. Adenomatoid odontogenic tumour arising from a dentigerous cyst: a case report. Int J Ped Otorhinolaryngol Extra. 2007;2:257-63.
24. Salehinejad J, Zare-Mahmoodabadi R, Saghafi S, Jafarian AH, Ghazi N et al. Immunohistochemical detection of p53 and PCNA in ameloblastoma and adenomatoid odontogenic tumor. J Oral Sci. 2011;53:213-7.
25. Krishna A, Kaveri H, Kumar RN, Kumaraswamy KL, Shylaja S, Murthy S. Overexpression of MDM2 protein in ameloblastomas as compared to adenomatoid odontogenic tumor. J Cancer Res Ther. 2012;8:232-37.
26. Crivelini MM, Felipini RC, Miyahara GI, de Sousa SC. Expression of odontogenic ameloblast-associated protein, amelotin, ameloblastin, and amelogenin in odontogenic tumors: immunohistochemical analysis and pathogenetic considerations. J Oral Pathol Med. 2012;41:272-80.
27. Karathanasi V, Tosiots KI, Nikitakis NG, Piperi E, Koutlas I, Trimis G, et al. TGF-beta1, Smad-2/3, Smad-1/5/8, and Smad-4 signaling factors are expressed in ameloblastomas, adenomatoid odontogenic tumors, and calcifying cystic odontogenic tumors: an immunohistochemical study. J Oral Pathol Med. 2013;42:415-23.

Cite this article as: Kumar AS, Sameera A, Eruğula SR, Lakshmi KR, Nelakurthi H, Haritha P. Case reports of a typical extrafollicular adenomatoid odontogenic tumor of maxilla. Int J Contemp Pediatr 2018;5:1680-4.