MODEL OF THE CASCADE THERMOELECTRIC COOLING DEVICES IN THE MODE OF THE LARGEST ENERGY EFFICIENCY (p. 4-11)

Vladimir Zaykov,
Vladimir Mescheryakov, Yuri Zhuravlov

We developed and analyzed a model of the interrelation between the reliability indicators of the cascade thermoelectric coolers that operate under regime of the largest energy effectiveness at the serial electrical connection of cascades and the design and energy indicators of cooler.

It is demonstrated that the application of cascade thermoelectric devices, built on the basis of standardized modules, is predetermined not only by attaining maximal possible level of cooling but by the increase in efficiency as well. In this case, it is important to obtain maximally possible energy effectiveness at the assigned temperature drop, to select current regime at the assigned design of cooler and to estimate reliability indicators.

We obtained ratios for determining the optimum magnitude of relative operating current, which corresponds to the maximum value of refrigerating coefficient of the cooler with the assigned design and temperature drop. They are functional dependences, which connect basic parameters of the two-cascade thermoelectric coolers of the assigned design with relative operating current of the first cascade in the form of algebraic equations of the 4th degree.

The conducted analysis of the model demonstrated that there is an optimum ratio of the number of thermoelements in the cascades, which corresponds to the maximum refrigerating coefficient at the assigned temperature drop. The obtained ratios make it possible to determine both the basic parameters and the reliability indicators of the cascade thermoelectric cooler of the assigned design. This provides the possibility to evaluate the efficiency of functioning and prediction of the indicators of reliability in the regime of maximum energy effectiveness under varied conditions of operation.

Keywords: thermoelectric devices, indicators of reliability, temperature drop, energy effectiveness.

References
1. Zebazjrdi, M., Esfarjani, K., Dresselhaus, M. S., Ren, Z. F., Chen, G. (2012). Perspectives on thermoelectrics: from fundamentals to device applications. Energy & Environmental Science, 5 (1), 5147–5162. doi: 10.1039/c1ee02497c
2. Riffat, S. B., Ma, X. (2004). Improving the performance of thermoelectric cooling systems: a review. International Journal of Energy Research, 28 (9), 753–768. doi: 10.1002/er.991
3. Sootsman, J. R., Chung, D. Y., Kanatzidis, M. G. (2009). New and Old Concepts in Thermoelectric Materials. Ange-wandte Chemie International Edition, 48 (46), 8616–8639. doi: 10.1002/anie.200900598
4. Jurgensmeyer, A. L. (2011). High Efficiency Thermoelectric Devices Fabricated Using Quantum Well Confinement Techniques. Colorado State University, 59.
5. Singh, R. (2008). Experimental Characterization of Thin Film Thermoelectric Materials and Film Deposition VIA Molecular Beam Epitaxy. University of California, 138.
6. Brown, S. R., Kauzlarich, S. M., Gascoin, E., Snyder, G. J. (2006). Yb14MnSb11: New High Efficiency Thermoelectric Material for Power Generation. Chemistry of Materials, 18 (7), 1873–1877. doi: 10.1021/cm600261t
7. Iversen, B. B., Palmqvist, A. E. C., Cox, D. E., Nolas, G. S., Stucky, G. D., Blake, N. P., Metiu, H. (2000). Why are Clathrates Good Candidates for Thermoelectric Materials? Journal of Solid State Chemistry, 149 (2), 453–458. doi: 10.1006/jssc.1999.8534
8. Sheveled, A. V. (2010). Nanostructured thermoelectric materials. Moscow: Research and Education Center for Nanotechnology MSU Lomonosova, 58.
9. Nesterov, S. B., Holopkin, A. I. (2014). Assessing the possibility of increasing the thermoelectric figure of merit of nanostructured semiconductor materials for cooling technology. Cooling technology, 5, 40–43.
10. Kozenyakina, G. N., Turpentine, S. J., Kroot, Y. M., Parshchenko, A. N., Ivanov, O. N., Soklakova, O. N. (2014). Nanostructured bismuth and antimony tellurides for thermoelectric heat pump. Thermoelectricity, 1, 37–47.
11. Wereszczak, A. A., Wang, H. (2011). Thermoelectric Mechanical Reliability. Vehicle Technologies Annual Merit Reviewand Peer Evaluation Meeting. Arlington, 18.
12. Melcor Thermoelectric Cooler Reliability Report (2002). Melcor Corporation, 36.
13. Simkin, A. V., Biryukov, A. V., Repnikov, N. I., Ivanov, O. N. (2012). Influence of the contact surface condition on the adhesive strength of switching layers thermocouples on the basis of extruded bismuth telluride. Thermoelectricity, 2, 13–19.
14. Zaikov, V. P., Kirshova, L. A., Moiseev, V. F. (2009). Predic-tion of reliability on thermoelectric cooling devices. Single-stage devices, Odessa: Politehperiodika, 120.

DECREASING THE MASS INDICES OF GAS TURBINE ENGINES REGENERATORS BY MEANS OF CHOOSING RATIONAL PARAMETERS (p. 12-23)

Viktor Gorbov, Denis Solomonuk

The purpose of the conducted research was to develop a method for determining parameters of GTE regenerator, which would ensure at the initial stages of designing a minimum mass of the heat exchanger with the assigned values of efficiency.

We obtained dependences that establish relationships between the regenerator and the GTE, which allow analyzing the influence of effectiveness and pressure losses in regenerator on the efficiency of GTE and the mass of the regenerator.

Relationship between parameters of the regenerator and performance efficiency of regenerative GTE was described by functional dependence, where energy parameters of the regenerator are collected in a single complex. It was established that the magnitude of effectiveness of the regenerator is associated with efficiency by inversely proportional function, and pressure losses – by linear function. Effectiveness of the regenerator is associated with the mass of the heat exchanger and the geometry of heat exchange surface by exponential dependence, and relative pressure losses – by algebraic irrational function.

Based on these dependences, the algorithm for selecting rational energy and geometrical parameters of regenera-
tors of GTE was developed. It was found that by selecting rational values of effectiveness of regenerator and pressure losses, it is possible to provide for a significant decrease in mass of the regenerator with a constant value of performance efficiency of GTE.

The obtained results of calculations of regenerators of GTE with different structural solutions allow a designer engineer to choose rational values of effectiveness of the regenerator, pressure losses, and initial gas temperature. Comparison of complex regenerative GTE by the mass of regenerator at constant values of performance efficiency was conducted. Based on the analysis of results of calculations, the stage dependence of specific mass of regenerator on the assigned increase in performance efficiency of regenerative GTE was obtained, which gives the possibility to estimate the mass of tubular regenerator at the initial stages of designing.

Implementation of the obtained results into the practice of designing regenerative GTE will make it possible to ensure the choice of their rational parameters and to decrease the time of designing.

Keywords: gas turbine engine, regenerator, performance efficiency, mass of regenerator, effectiveness of regenerator.

References

1. Ofitsiinyi sait Verkhovnoi Rady Ukrainy (2013). Energetychna stratehiia Ukrainy na period do 2030 roku ta dalshu perspektivu. Available at: http://zakon3.rada.gov.ua/laws/show/n000212-13/paran3#n3
2. Paton, B., Khalatov, A., Kostenko, D., Bileka, B., Pysmenyi, O., Botsula, A., Parafin, V., Koniakhkin, V. (2008). Konseptsiia (proekt) derzhavno-naukovo-tekhnichnoi prohromy “Stvorennia promyslovokhvylykh hazoturbinnykh dvyhuniv novobok pokolimia dlia hazovoi promyslovosti ta enerhetyky”. Visn. NAN Ukrainy, 4, 3–9.
3. Khalatov, A. A., Kostenko, D. A. (2008). Kakye hazoturbinyne dvyhately neobkhodymi hazotransportnoi systeme Ukrayiny? Hazoturbyanye tehnolohyy, 7, 22–24.
4. Shchuruvskiy, V. A. (2007). Osnovnoe napravleniye razvitiya hazoperekhachaivauschei tehnykky. Hazoturbyanye tehnolohyy, 7, 38–39.
5. Khalatov, A. A., Dolynskyi, A. A., Kostenko, D. A., Parafin, V. P. (2010). Sostoianye y problemy razvitiya mekhanycheskogo priyodiva dlia HTS Ukrayny. Promyslennaiia teplotekhnika, 32 (1), 45–50.
6. Bondyn, Yu. N., Sultanskyi, Yu. O., Stashok, A. N. (2005). Hazoturbyanye dvyhately promyslennokho prymenienia (sostoianye y perspektivy razvityia). Naukovyi pratsi: Naukovyi tehnolohyy, 41 (28), 132–139.
7. Shelesiuk, A. Y. (2004). Perspektivy prymenienia HTD NPKH “Zoria” “Marshproekt” v enerhetyke Ukrainy. Sudo- voe y enerhetycheskoe hazoturbostroenie, 2, 427–434.
8. Dluhoselskiy, V. Y., Beliaev, V. E., Myshestun, N. Y., Rybackov, V. P. (2007). Hazoturbyanye ustanovki dlia teplotykatsy. Teploenerhetky, 12, 64–66.
9. Zariiankyn, A. E., Rohalev, A. N., Maher, A. S. (2013). Raschetno-analiticheskoe yssledovanye voposmozhnosti povysshenija moschnosti parohazovokhvylykh ustanovok, rabotaishchikh na bazeDONEI HTU. Hazoturbyanye tehnolohyy, 4, 40–43.
10. Movchan, S. N., Bochkarev, Yu. V., Solomonik, D. N. (2009). Reheneratory proekta TsNYOKR “Marshproekt” dlia statyosno- narykh y sudovykh hazoturbinykh ustanovok. Naukovyi pratsi. Seriia «Tehnhohennia bezpeka», 111 (98), 205–210.
11. Kolomieiiev, V. M., Ksendziuk, M. V. (2006). HPU-16K-doslidno-promyslova ekspluatatsiia, mizhvidomchyi prymal- ni vyprobuvannya, perspektivy vykorystannya. Naftova i hazova promyslovist, 4 (228), 38–40.
12. Romanov, V. V., Spycyn, V. E., Bocula, A. L., Movchan, S. N., Chobennik, V. N. (2009). Osobennosti sozdaniya gazoturbinno- noy ustanovki regenerativnogo cikla dlia GPa. Eastern-European Journal of Enterprise Technologies, 4 (4 (40)), 16–19. Available at: http://journals.uran.ua/oejet/article/view/20953/18578
13. Spytysyn, V. E., Botsula, A. L., Chobennik, V. N., Solomonik, D. N. (2008). Vysokoefektyvnaia hazoturbyanya ustanovka dlia HPA. Vestnyk natsionalnoho tekhnicheskogo universtyta “KhP”, 35, 3–6.
14. Aresnev, L. V., Tyryshkyn, V. H., Bobov, Y. A. (1989). Statyosno- naryh hazoturbyanye ustanovky Mashynostroenye, 543.
15. Koval, V. A., Vasylev, B. P., Kanako, V. V., Pavlenko, H. V., Romanov V. V. (2005) Osnovy proektyrovannyia hazoturby- nnykh dvyhutelei y ustanovok. Kharkiv: Kontrast, 376.
16. Hriaiznov, N. D., Epyfanov, V. M., Yvanov, V. L., Manushyn, E. A. (1985). Teploobmyryne ustanovky dlia HTD slozhnych tsyklov. Vestnyk natsionalnoho tekhnicheskogo universtyta “KhP”, 35, 78–88.
17. Kuznetsov, V. V., Solomatyk, D. N. (2008). Proektyrovanye teploobmyrynykh apparatov dlia HTD slozhnych tsyklov. Vestnyk natsionalnoho tekhnicheskogo universtyta “KhP”, 35, 78–88.
18. Zariankyn, A. E., Rohalev, A. N., Maher, A. S. (2013). Optimizaciia masso-gabaritnykh pokazatelei regenerators GTE, Eastern-European Journal of Enterprise Technologies, 4 (6 (40)), 48–52. Available at: http://journals.uran.ua/oejet/article/view/22025/19530
19. Fyloemenko, A. A., Kucherenko, O. S., Evseenko, A. V. (2007). Koheneratsyonnaia HTD s elementami adaptaty- syy k hrafykam teplovoho y elektrycheskoho potreblenyia. Naukovyi pratsi MDHU. Seriia Tekhnohennia bezpeka, 61 (48), 198–206.
20. Kaplan, M. P., Dyzenko, T. P. (2002). Teplovaia effek- tyvnost enerhetycheskikh teplotykatsyomykh HTD s prom- nezhtochutnym okhlazdzeniem voduzhka y reheneratsyey. Teploenerhetky, 8, 51–58.
21. Ibrahima, T. K., Rahman, M. M., Abdallac, A. N. (2011). Optimum Gas Turbine Configuration for Improving the performance of Combined Cycle Power Plant. Procedia En- gineering, 15, 4216–4223.
22. Nkoi, B., Pildis, P., Nikolaidis, T. (2013). Performance assessment of simple and modified cycle turboshaft gas turbines. Propulsion and Power Research, 2 (2), 96–106. doi: 10.1016/j.jppr.2013.04.009
23. Memon, A. G., Harijan, K., Uqaili, M. A., Memon, R. A. (2013). Thermo-environmental and economic analysis of simple and regenerative gas turbine cycles with regression modeling and optimization. Energy Conversion and Management, 76, 852–864. doi: 10.1016/j.enconman.2013.07.076
24. Rovira, A., Sánchez, C., Muñoz, M. (2015). Analysis and optimisation of combined cycles gas turbines working with partial recuperation. Energy Conversion and Management, 106, 1097–1108. doi: 10.1016/j.enconman.2015.10.046
25. Bade, M. H., Bandyopadhyay, S. (2015). Analysis of gas turbine integrated cogeneration plant: Process integra- tion approach. Applied Thermal Engineering, 78, 118–128. doi: 10.1016/j.applthermaleng.2014.12.024
We developed a thermoeconomic model of refrigeration plant that works by the supercritical CO2 cycle as refrigerating medium. The model is built for the plant of the "air – air" type and makes it possible at the optimization of design and the selection of economical operating modes to simultaneously consider both thermodynamic and economic parameters. Resulting expenses for the creation and operation of the system over the projected life cycle were accepted as objective function for analysis of the model. The minimum of resulting expenses corresponds to the optimum system characteristics while maintaining amount and quality of produced cold. Development of the model allowed us to represent objective function in the form of expanded analytical expressions, which consider interrelation between all optimizing parameters of the system.

One of the benefits of the method consists in the fact that the obtained unique analytical solution in the form of a system of equations of partial derivatives from objective function of the resulting expenses is applicable for the thermoeconomic optimization of regime parameters of operation of any refrigeration system that works according to the examined scheme and with a similar type of equipment.

Numerical solution of the thermoeconomic optimization problem of refrigeration plant of the "air – air" type (conditioner), with CO2 as refrigerant, that works in the supercritical region made it possible to find optimum parameters of the system, which provide for the conditions of reaching minimum level of the resulting expenses at different values of tariffs for electric power. We examined effect of the value of tariff for electric power on the character of optimization of the system.

An application of this technique in practice should contribute to the reduction in financial costs for the creation and operation of conditioners that work on CO2, to an increase in their competitiveness compared with traditional freon systems and contribute to the creation of conditions for their large-scale implementation in Ukraine.

Keywords: thermoeconomic model, supercritical cycle, exergy, resulting expenses.

References

1. Fillipini, S., Merlo, U. (2014). Vozdushnye teploobmen- niki dlja holodilnyh tsiklov na CO2. Holodilnaja technika, 1, 39–43.
2. Sarkar, J., Bhattacharyya, S., Gopal, M. R. (2004). Optimization of a transcritical CO2 heat pump cycle for simultaneous cooling and heating applications. International Journal of Refrigeration, 27 (8), 830–838. doi: 10.1016/j.ijrefrig.2004.03.006
3. Savalha, S. (2008). Theoretical evaluation of trans-critical CO2 systems in supermarket refrigeration. Part I: Modeling, simulation and optimization of two system solutions. International Journal of Refrigeration, 31 (3), 516–524. doi: 10.1016/j.ijrefrig.2007.05.017
4. Kim, S. G., Kim, Y. J., Lee, G., Kim, M. S. (2005). The performance of a transcritical CO2 cycle with an internal heat exchanger for hot water heating. International Journal of Refrigeration, 28 (7), 1064–1072. doi: 10.1016/j.ijrefrig.2005.03.004
5. Kalnin, I. M., Pustovalov, S. B. (2006). Optimizatsija teplogra- drovicheskikh protsessov v osnovnyh apparatah teplovых na- sosov na diokside ugleroda (R744). Isparnenie, kondensacija. Dvizhajusie techenija, 5, 122–125.
6. Sarkar, J., Bhattacharyya, S., Gopal, M. R. (2006). Simulation of a transcritical CO2 heat pump cycle for simultaneous cooling and heating applications. International Journal of Refrigeration, 29 (5), 735–743. doi: 10.1016/j.ijrefrig.2005.12.006
7. Jasnikov, G. P., Belousov, V. S. (1977). Eskergeticheskoe predstavlenie v termodinamike neobratimyh protsessov. Ingeniero-fizicheskiy journal, 32 (2), 336–341.
8. Brodjanskiy, V. M., Verhivker, G. P., Karchev, Ja. Ja. et. al.; Dolinskogiy, A. A., Brodjanskiy, V. M. (Eds.) (1991). Esker- geticheskie raschety tehchicheskih sistem. Kyiv: Naukova dumka, 361.
9. Protsenko, V. P., Kovylkin, N. A. (1985). Vybor optimalnyh temperaturnyh naporov v teploobmennikah teplososnoy ustavok. Holodilnaja technika, 6, 11–14.
10. Tribus, M., Evans, R. B. (1962). The thermonomics of sea water conversion. UCLA Report #62-63, 241.
11. El-Sayed, Y. M., Evans, R. B. (1970). Thermoconomics and the Design of Heat Systems. Journal of Engineering for Power, 92 (1), 27. doi: 10.1115/1.3445296
12. Onosovskiy, V. V., Kraynev, A. A. (1978). Vybor optimal- nogo regime raboty holodilnyh mashin s ispolzovaniem metoda termoekonomicheskogo analiza. Holodilnaja technika, 5, 15–20.
13. Onosovskiy, V. V., Rotgolts, E. A. (1980). Optimizatsija regime raboty dvuhstupenchatoy holodilnoy ustavok. Ho- lodilnaja technika, 12, 60–64.
14. Onosovskiy, V. V. (1990). Modelirovanie i optimizatsija ho- lodilnyh ustavok. Leningrad: LTIIRI, 205.
15. Brodjanskiy, V. M., Fratsher, V., Mihalek, K. (1988). Esker- geticheskiy metod i ego prilozhenija. Moscow: Energoato- nizdat, 288.
16. Matsevytiy, V. M., Kharlampidi, D. Kh., Kara- sova, V. A. (2014). Systemno-structurniy analis parocom- pressornych thermotransformatorov. Kharkov: A.N. Podgorny Institute problem in machinery of NAS of Ukraine, 269.
17. Krasnoschekov, E. A., Kuraeva, I. V., Protopopov, V. S. (1969). Eksperimentalnoe issledovanie mestnyh teplootladchikhi dvoiki- si ugleroda sverkhkriticeskogo davlenija v uslovijah ohlah- denija. Teplofizika vosikh temperaturn, 7 (5), 922–930.
18. Ortiz, T. M., Li, D., Groll, E. A. (2003). Evaluation of the performance potential of CO2 as a refrigerant in air-to-air air conditioners and heat pumps: system modeling and analysis. Final report. Arlington, Virginia: Air-Conditioning and Re- frigeration Technology Institute, 205.
19. Petuhov, B. S., Kirillov, V. V. (1958). K voprosu o teploobmene pri turbulentnom techenii zhidkosti v trubah. Teploenergetika, 4, 63–68.
A variant of modernization is examined of the ground-based system for filling and thermostating by liquid hydrogen of the carrier rockets fuel tanks, including promising systems of storage, cooling and filling with liquid hydrogen when designing new and modernizing those existing systems. The technical solutions proposed may be applied when designing new and modernizing those existing systems of storage, cooling and filling with liquid hydrogen of the carrier rockets fuel tanks, including promising objects of heavy and superheavy CRs: SLS and Falkon Heavy (USA), CZ-5 and CZ-9 (C.P.R), Angara 5V (Russian Federation).

Keywords: liquid hydrogen, starting complex, evaporative cooling, jet liquid cooler.

References

1. Gorbatskii, Yu. V., Domashenko, A. M., Krishtal, V. N. (2002). Stages of development of cryogenic systems for space rocket technology. Chemical and Petroleum Engineering, 38 (9-10), 594–598. doi: 10.1023/a:1022024923524
2. Krishtal, V. N., Lenskii, A. B. (2008). Kriogennye zapravochnye sistemy mnogorazovogo kosmicheskogo kompleksa “Jenergija-Buran”. Tekhnicheskie Gazy, 6, 13–20.
3. Domashenko, A. M., Krishtal, V. N., Krasovickij, M. V., Krasovickij, Ju. V., Lapshin, A. G. (2009) Sozdanie i sovershestvovanie kriogennyh zapравочных i stendovyh kompleskov raketno-kosmicheskoy tehniki. Tekhnicheskie Gazy, 1, 27–33.
4. Domashenko, A. M., Krishtal, V. N. (2007) Principy postroenija, problemy i opyt sozdanija kriogennyh zapравочных kompleksov dlja raketno-kosmicheskoy tehniki. Al’ternativnaja jenergetika i jekologija, 9 (53), 16–19.
5. Fesmire, J. E., Tomski, T. M., Bonner, T., Oliveira, J. M., Conyers, H. J., Johnson, W. L., Notardonato, W. U. (2014) Integrated heat exchanger design for a cryogenic storage tank. Advances in Cryogenic Engineering AIP Conf. Proc. 1573, 1365–1372. doi: 10.1063/1.4860865
6. Swanger, A. M., Jumper, K. M., Fesmire, J. E., Notardonato, W. U. (2015). Modification of a liquid hydrogen tank for integrated refrigeration and storage. IOP Conference Series: Materials Science and Engineering, 101, 012080. doi: 10.1088/1757-899x/101/1/012080
7. Ramesh, T. (2014). Investigation studies on sub-cooling of cryogenic liquids using helium injection method. American Journal of Applied Sciences, 11 (5), 709–715. doi: 10.3844/ajassp.2014.707.716
8. Ramesh, T., Thayagarajan, K. (2014) Performance Studies on Sub-cooling of Cryogenic Liquids Used for Rocket Propulsion Using Helium Bubbling International Journal of Engineering and Technology, 6 (1), 58–65.
9. Petukhov, I. I., Bredikhin, V. V., Shakhov, Y. V. (1999). Jet equipment for cryogenic fuel cooling. 14th International Symposium on Air Breathing Engines. 10. Petukhov, I. I., Shakhov, Y. V. (2010) Raschet staticheskikh karakteristik strujnogo oholaditelja zhidkosti. Aviationnokosmicheskaja tehnika i tehnologija, 7 (74), 71–76.
11. Sokolov, E. Ya., Zinger, N. M. (1989). Strujnye apparatyi. Moscow: Energoizdat, 352.
SUBSTANTIATION OF ECONOMIC EFFICIENCY OF USING A SOLAR DRYER UNDER CONDITIONS OF PERSONAL PEASANT FARMS (p. 41-47)

Mykhailo Babych, Svetlana Korobka, Ruslan Skrynkovskyy, Serhiy Korobka, Roman Krygul

A new design of a solar dryer for drying fruits is proposed, which includes the use of a flat mirror concentrator to enhance the flow of slant morning and evening sunlight, and a thermal accumulator based on pebble for accumulating over night time the excess heat from the reserve source of energy. This makes it possible to increase economic efficiency of the drying process by 20 %, to reduce energy consumption by 15 %, specific energy consumption by 10 %, direct operating costs by 5 %, electricity consumption by 3.4 kWh, or 12384 kJ of thermal energy, by using solar energy.

We improved a technique of the substantiation of economic efficiency of the developed solar dryer, the basis of which is a simplified mechanism for calculating direct operating costs, economic effect and payback period of the machine depending on the fluctuation of prices for electricity and dried products, linked to a specific territory of the location of a personal peasant farm.

The results that were obtained can be used when developing and improving technical means of drying fruits, to improve technological, energy, biological and economic efficiency of the process.

Keywords: solar energy, solar fruit dryer, mirror concentrator, thermal accumulator, economic efficiency.

References
1. Korobka, S. V. (2013). Issledovanie parametrov i regimov raborot konvektivnoy geliosushilki frotok. TOTROL Commission of motorization and energetics in agriculture, 15 (4), 134–139.
2. Ozarkiv, I. M., Ferents, O. B., Kobrynovych, M. S. (2007). Ososlovystva rozhakhunko heliosushilnyiy ustanovky dlya dereveny. Naukarry visnyk Natsionalnoho lisotekhничnoho universysetu, 17.1, 91–96.
3. Khazimov, M. Z., Bora, G. C., Urmashev, B. A., Khazimov, M. Z., Khazimov, Z. M. (2014). Computation of optimal structural and Technical parameters of solar dryer. International Journal of Engineering and Innovative Technology, 4 (1), 258–268.
4. Shcherbyna, O. M. (2007). Enerhiya dlya viskh. Uzhorod: Vydavnysttvo V. Padyaka, 340.
5. Atykhanov, A. K. (2010). Klassyfikatsyya sushynyk ustanovok z ispolzovanyem solnechnyey enerhiy. Adaptation of innovation technologies and forms of international collaboration in agrarian education. International conferences reports, 9, 95–112.
6. Kuprenko, A. Y., Ysaev, X. M., Baydakov, E. M. (2012). Ekonomicheskaya effektivnost harabannoy helyosushilky zerna. Vestnyk Bryanskoy hosudarstvennoy selskokhozyaystvennoy akademyu, 5, 41–43.
7. Kozar, B. S., Terekhov, S. S. (2011). Ekonomichnyy analiz vykorystannya sonychaynoy enerhiy dlya sushynnya dereveny. Naukorry visnyk Natsionalnoho lisotekhничnoho universysetu, 21.11, 123–126.
8. Bilgen, E., Bakeka, B. J. D. (2008). Solar collector systems to provide hot air in rural applications. Renewable Energy, 33 (7), 1461–1468. doi: 10.1016/j.renene.2007.09.018
9. Kassymbayev, B. M., Atykhanov, A. K., Karaiyanov, D. P. et. al. (2014). Method of calculation solar radiation intensity and its application in solar dryers-greenhouses for production of fruits and vegetables. Life Science Journal, 11 (10), 687–689.
10. Khazimov, M. Zh., Khazimov, Z. M., Ulanova, I. B., Sjag-undykova, A. D. (2015). Obosnovanie efektivnosti prim-eneniya geliosushilki shakhhtnogo tipa pri sushe frotkov i ovoshchev. Current issues and the development of science and education, 5, 6–12.
11. NASA Surface meteorology and Solar Energy. Available at: http://eosweb.larc.nasa.gov/cgi-bin/sse/grid/cgi?uid=3030
12. Unarov, H. Y., Avezov, P. P., Akmadalyev, A. A. (1974). Nekotorye sрывьтыне tehnikono-ekonomicheskie pokazateli sol-nechnoy fruktosushilnoy ustanovki. Heliyotekhnika, 5, 59–61.
13. Korobka, S. V. (2015). Otsinka ekonomichnoyi efektivnosti heliosusharky z teplevoy akumulyorom i vykorystannya sonychaynoy enerhiy. Problemy ta perspektivy rozvytku pidpryyemnystvy, 1 (2), 12–17.
14. Korobka, S. V. (2014). Pat. 97139 U Ukraina, MPK A23L3/00. Heliosusharka z teplevoy akumulyorom. No. UA 97139 U.; declared: 26.12.2014.; published: 25.02.2015. Byul. № 4, 3.
15. Metodyka opredelenyya ekonomycheskoj efektivnosti ispolzovaniya v narodnom khozyaystve novoy tekhniki, izo-breteniy i ratsyonalizatorskih predlozheniy (1988). Moscow: Ekonomika, 54.

NUMERICAL INTEGRATION OF THE PROCESS OF COOLING GAS FORMED BY THERMAL RECYCLING OF WASTE (p. 48-53)

Viola Vambol

The present paper describes the results of a numerical integration of the process of cooling gas during thermal recycling of waste. The physical model of such cooling is based on injecting the cooling liquid by centrifugal nozzles. The research object is gas-dynamic interphase interactions in the evaporative heat exchanger. The purpose of the research is to improve the ecological safety of thermal recycling of waste by preventing the formation of highly toxic substances in the generated gas. The mathematical models of the gas and dispersed phases are developed and the mathematical description of the interphase interactions in the heat exchanger is provided on the basis of laws of conserving the weight and the impulse amount in an environment that is inhomogeneous in terms of the composition and phases and includes the generated gas, drops of water, and steam. The mathematical formulation of the conservation laws for viscous gas (steam) is achieved through the Navier-Stokes equations; for drops, it is given as an equation of the balance of forces that affect the drop and equalize the inertia force and the resultant forces of gravity and aerodynamic resistance. The studied computational area covers a space fragment bounded by the walls of the heat exchanger. It has been scientifically proved that such technological equipment can be used to provide a sharp cooling of flue gases. The mode of fast cooling prevents the creation of temperature conditions that would facilitate dioxins formation, and thus it increases ecological safety.

Keywords: wastes utilization, ecological safety, dioxins content reduction, mathematical modeling of gas dynamic processes.

References
1. Shmandiy, V. M., Kharlamova, E. V., Ryhas, T. Ye. (2015). Issledovaniye pryavlenniy ekologicheskoy opasnosti na regionalnom urovne. Gigiena i sanitariya: nauchno-prakticheskiy zhurnal, 94 (7), 90–92.
2. Treatment and Disposal of Regulated Medical Waste (2015). Healthcare Environmental Resource Center. Available at: http://www.hercenter.org/rmw/treatment.cfm (Last accessed: 04.03.2015).

3. Hopewell, J., Dvorak, R., Kosior, E. (2009). Plastics recycling: challenges and opportunities. Philosophical Transactions of the Royal Society B: Biological Sciences, 364 (1526), 2115–2126. doi: 10.1098/rstb.2008.0311

4. Vambol, S. A., Shakho, Yu. V., Vambol, V. V., Petukhov, I. I. (2016). A mathematical description of the separation of gas mixtures generated by the thermal utilization of waste. Eastern-European Journal of Enterprise Technologies, 1 (2 (79)), 35–41. doi: 10.15587/1729-4061.2016.60486

5. Vambol, S. A., Shakho, Yu. V., Vambol, V. V., Petukhov, I. I. (2016). Mathematical description of processes in separation unit for gas mixtures during disposal of waste. Technology Audit and Production Reserves, 3 (3 (29)), 62–67. doi: 10.15587/2312-8372.2016.70688

6. Bernadiner, I. M. (2010). Oabezbyvaniye opasnykh otkhodov: vybor optimal’noy tekhnologii. Tverdyye bytovyye otkhodny, 9, 18–26.

7. Slenkin, M. V., Zhovmir, N. M., Drozd, K. A. (2006). Obrazovanie dioksiniy pri termicheskoi utilizatsii tverdyh bytovyh otkhodov. Sotrudnichestvo dlia resheniia problemy otkhodov, 253–255.

8. Milosh, V. V. (2013). Dioxiny i ih potencial’naia opasnost’ v ekosisteme «chelovek – okruzhaiushchaia sreda». Available at: http://crowngold.narod.ru/articles/dioxini.htm (Last accessed: 24.11.2013).

9. Shibamoto, T., Yasuhara, A., Katami, T. (2007). Dioxin Formation from Waste Incineration. Reviews of Environmental Contamination and Toxicology, 1–41. doi: 10.1007/978-0-387-36903-7_1

10. Lee, W. S., Chang-Chien, G. P., Chen, S. J. et al. (2004). Removal of polychlorinated dibenzo–p–dioxins and dibenzofurans in flue gases by Venturi scrubber and bag filter. Aerosol and Air Quality Research, 4, 27–37.

11. Kim, B.-J., Lee, S., Maken, S., Song, H.-J., Park, J.-W., Min, B. (2007). Removal characteristics of PCDDs/Fs from municipal solid waste incinerator by dual bag filter (DBF) system. Fuel, 86 (5-6), 813–819. doi: 10.1016/j.fuel.2006.09.007

12. Mukherjee, A., Debnath, B., Ghosh, S. K. (2016). A Review on Technologies of Removal of Dioxins and Furans from Incinerator Flue Gas. Procedia Environmental Sciences, 35, 528–540. doi: 10.1016/j.proenv.2016.07.037

13. Yan, J., Chen, T., Li, X., Zhang, J., Lu, S., Ni, M., Cen, K. (2006). Evaluation of PCDD/Fs emission from fluidized bed incinerators co-firing MSW with coal in China. Journal of Hazardous Materials, 135 (1-3), 47–51. doi: 10.1016/j.jhazmat.2005.12.007

14. Vambol, S. A., Skob, Yu. A., Nechiporuk, N. V. (2013). Modelirovanie sistem upravleniya ekologicheskoi bezopasnost’yu s ispol’zovaniem mnogofaznykh dispersnykh struktur pri vzryve metanovozdushnoy smesi i ugol’noy pyli v podzemnykh gornykh vyrobakh. Vestnik Kazanskogo teknologicheskogo universiteta, 16 (24), 168–174.

15. Kostyuk, V. Ye., Kirilash, Ye. I., Kobrin, V. N., Vambol, S. A. (2013). Matematicheskaya model’ povedeniya dispersnykh struktur v atmosferе. Tekhnologii tehnosfernykh bezopasnost’i: internet-zhurnal, 4 (50). Available at: http://academicgisy.ru/img/UNK/aski/ttb/2013-4/07-04-13-ttb.pdf (Last accessed: 07.04.2013).

16. Vambol, S. A. (2013). Sistemy upravleniya ekologicheskoi bezopasnost’yu, kotorye ispol’zuют mnogofaznye dispersnye struktury. Kh.: Nats. aerokosm. un-t im. N. E. Zhukovskogo "Har’k. aviats. in-t", 204.

17. Lauder, B. E., Spalding, D. B. (1972). Lectures in Mathematical Models of Turbulence. London: Academic Press, 458.

18. Schmidt, D. P., Corradini, M. L., Rutland, C. J. (2000). A Two-Dimensional, Non-Equilibrium Model of Flashing Nozzle Flow. Proceedings of the 3rd ASME•JSME Joint Fluids Engineering Conference, 1322.

19. Vambol, V. V. (2014). Matematicheskoye modelirovanie gazovoy fazy okhazhdeniya generatornogo gaza ustanovki utilizatsii otkhodov zhishnedeyatelnost’i. Ekologichna bezpeka, 6 (89), Part 1, 148–152.

20. Vambol, V. V. (2015). Modelirovanie gazodinamicheskikh protsessov v bloke okhazhdeniya generatornogo gaza ustanovki dlia utilizatsii otkhodov. Tekhnologii tehnosfernoi bezopasnosti: internet-zhurnal, 1 (59). Available at: http://ipb.mos.ru/ttb/index.html (Last accessed: 17.01.2015).

21. Vambol, V. V. (2015). Mathematical description of the cooling process of generating gas during a waste disposal. Technology Audit and Production Reserves, 2 (4 (22)), 23–29. doi: 10.15587/2312-8372.2015.40467

22. Crowe, C. T., Sharma, M. P., Stock, D. E. (1977). The Particle-Source-In Cell (PSI-CELL) Model for Gas-Droplet Flows. Journal of Fluids Engineering, 99 (2), 325–332. doi: 10.1115/1.3448756

23. Fletcher, K. (1991). Vychislitel’nye metody v dinamike zhidkostey. Moscow: Mir, 504.

IMPROVING THE EFFICIENCY OF FUEL COMBUSTION WITH REGARD TO THE UNCERTAINTY OF MEASURING OXYGEN CONCENTRATION (p. 54-59)

Vitaly Babak, Valentin Mokiychuk, Artur Zaporozhezk, Oleksandr Redko

This paper presents a new approach to control and manage the process of fuel combustion in the boiler units. Ways to increase the efficiency of combustion of fuel materials are examined. We proposed a method for indirect measurement of the current concentration of oxygen in the air whose magnitude quantity depends on meteorological environmental parameters: temperature, absolute pressure and relative humidity. Experimental research was conducted to compare direct and indirect methods of measuring the volumetric concentration of oxygen in the air. We calculated the uncertainties of measurement of the volumetric concentration of oxygen in the direct and indirect methods.

An estimation of the extended uncertainty of the indirect method of measurement was carried out by the imitation simulation using the Monte-Carlo method. It is demonstrated that relative air humidity exerts the largest influence on the extended expanded uncertainty of measuring the volumetric concentration of oxygen. A comparison of the methods of measuring the volumetric concentration of oxygen revealed that the extended expanded uncertainty of the indirect method is less than that of the direct method. We proposed functional dependence of an increase in the accuracy of measurement of excess air coefficient that is based on highly effective fuel combustion in the boiler units at any regimes of its functioning.

Keywords: excess air coefficient, meteorological parameters, measurement uncertainty, Monte-Carlo method.
References

1. Volikov, A. N., Novikov, O. N., Okat’ev, A. N. (2010). Povyshenie effektivnosti tszhiganija topliva v kotloagregatah. Jenergonadzor-inform, 1 (43), 54–57.

2. Kouprianov, V. I., Tanetsakunvatana, V. (2003). Optimization of excess air for the improvement of environmental performance of a 150 MW boiler fired with Thai lignite. Applied Energy, 74 (3-4), 445–453. doi: 10.1016/s0306-2619(02)00199-x

3. Kuprianov, V. I. (2005). Applications of a cost-based method of excess air optimization for the improvement of thermal efficiency and environmental performance of steam boilers. Renewable and Sustainable Energy Reviews, 9 (5), 474–498. doi: 10.1016/j.rser.2004.05.006

4. Houshfar, E., Skreiberg, O., Lovas, T., Todorovic, D., Sorum, L. (2011). Effect of excess air ratio and temperature on NOx emission from grate combustion of biomass in the staged air combustion scenario. Energy & Fuels, 25 (10), 4643–4654. doi: 10.1021/ef200714d

5. Ning, F.-H., Wang, K., Zhang, H-Q., Cheng, K. (2015). Method for designing and calculating a boiler flue gas waste heat recovery system and its applications. Journal of Engineering for Thermal Energy and Power, 5, 745–749.

6. Chajkovs’ka, Je. Je. (2016). The development of energy-saving operation technology of the biodiesel plant as a part of the cogeneration system. Eastern-European Journal of Enterprise Technologies, 1 (8 (79)), 4–10. doi: 10.15587/1729-4061.2016.39479

7. Liu, X. J., Hou, G. L., Yin, C. (2007). An energy saving control for combined cycle power plant by supervisory predictive scheme. Proceedings of the European Control Conference. Greece, 2991–2998.

8. Ma, L., Fang, Q., Tan, P., Zhang, C., Chen, G., Lx, D. et. al. (2016). Effect of the separated overfire air location on the combustion optimization and NOx reduction of a 600 MW FW down-fired utility boiler with a novel combustion system. Applied Energy, 180, 104–115. doi: 10.1016/j.apenergy.2016.07.102

9. Luo, W., Wang, Q., Guo, J., Liu, Z., Zheng, C. (2015). Energy-based control strategy selection for flue gas recycle in oxy-fuel combustion plant. Fuel, 161, 87–96. doi: 10.1016/j.fuel.2015.08.036

10. Babak, V. P., Zaporozhets, A. O., Redko, O. O. (2015). Pidvyshhennja tochnosti vymiruyuvannya koeficijenta nadlyshku povitry v kotloagregatah iz zastosuvannjam gazoanalizatoriv elektrohimichnogo typu. Promyslova teplootechnika, 37 (1), 82–96.

11. Klanova, J., Eupr, P., Kohoutek, J., Harner, T. (2008). Assessing the Influence of Meteorological Parameters on the Performance of Polyurethane Foam-Based Passive Air Samplers. Environmental Science & Technology, 42 (2), 550–555. doi: 10.1021/es0720980

12. Katsoulis, B. D. (1996). The relationship between synoptic, mesoscale and microscale meteorological parameters during poor air quality events in Athens, Greece. Science of The Total Environment, 181 (1), 13–24. doi: 10.1016/0048-9697(95)04953-3

13. Ovcharova, V. F. (1983). Metodika rascheta kolichества кислорода в атмосферном воздухе на основе meteorologicheskih parametrov s cel’iu prognozirovaniia meteopaticheskih jeklektov atmosfery. Moscow: MZ SSSR, 13.

14. Zaharov, I. P. (2006). Analiz chislennyh metodov ocenivani-ja neopredelennosti v izmerenijah. Vestnik Nacional’nogo tehničeskogo universiteta Har’kovskij politehnicheskij institut, 40, 96–100.

15. Pereira, E. J. da S., Pinho, J. T., Galhardo, M. A. B., Macedo, W. N. (2014). Methodology of risk analysis by Monte Carlo Method applied to power generation with renewable energy. Renewable Energy, 69, 347–355. doi: 10.1016/j.renene.2014.03.054