Radiological Society of North America Chest CT Classification System for Reporting COVID-19 Pneumonia: Interobserver Variability and Correlation with RT-PCR

Tom M.H. de Jaegere, MD
Jasenko Krdzalic, MD
Bram A.C.M. Fasen, MD
Robert M. Kwee, MD PhD

COVID-19 CT Investigators South-East Netherlands (CISEN) study group

Department of Radiology, Zuyderland Medical Center, Heerlen/Sittard/Geleen, The Netherlands

Correspondence
Robert M. Kwee, MD PhD
Department of Radiology, Zuyderland Medical Center
Henri Dunantstraat 5, 6419 PC Heerlen, The Netherlands
Email: rmkwee@gmail.com

Original research

Abbreviations
CI: confidence interval
CO-RADS: COVID-19 Reporting and Data System
COVID-19: coronavirus disease 2019
RSNA: Radiological Society of North America
Abstract

Purpose
To evaluate the Radiological Society of North America (RSNA) chest CT classification system for reporting COVID-19 pneumonia.

Materials and Methods
Chest CT scans of consecutive patients with suspected COVID-19 were retrospectively and independently evaluated by two chest radiologists and a fifth-year radiology resident using the RSNA chest CT classification system for reporting COVID-19 pneumonia. Interobserver agreement was evaluated by calculating weighted kappa (κ) coefficients. Proportion of patients with real-time reverse
transcriptase polymerase chain reaction (RT-PCR) confirmed COVID-19 in each of the four chest CT categories ("typical", "indeterminate", "atypical", and "negative" features for COVID-19) was calculated.

Results

Ninety-six patients (61 males, median age 70 years [range 29-94]) were included, of whom 45 had RT-PCR confirmed COVID-19. The number of patients assigned to chest CT categories "typical", "indeterminate", "atypical", and "negative" by the three readers ranged from 18-29, 26-43, 19-31, and 5-8 respectively. Coefficient between the chest radiologists was 0.663 (95% confidence interval [CI]: 0.565-0.761). Coefficients between the chest radiologists and the fifth-year radiology resident were 0.570 (95% CI: 0.443-0.696) and 0.564 (95% CI: 0.451-0.678). Proportion of patients with RT-PCR confirmed COVID-19 in the chest CT categories "typical", "indeterminate", "atypical", and "negative" for the three readers ranged from 76.9%-96.6%, 51.2%-64.1%, 2.8%-5.3%, and 20-25%, respectively.

Conclusion

The RSNA chest CT classification system for reporting COVID-19 pneumonia has moderate to substantial interobserver agreement. However, the proportion of RT-PCR confirmed COVID-19 cases in the categories "atypical appearance" and "negative for pneumonia" is non-negligible.

Introduction

Corona virus disease 2019 (COVID-19) is currently a pandemic and poses a major public health danger (1-5). Mortality rates among symptomatic patients may be as
high as 5.6% for China and 15.2% outside of China (6). COVID-19 spreads easily from person to person (7-9). Hospitals should screen patients with suspected COVID-19 in order to keep infected patients strictly isolated from noninfected patients and healthcare workers. Real-time reverse transcriptase polymerase chain reaction (RT-PCR) assay is currently the gold standard for diagnosing COVID-19. However, RT-PCR is suboptimal for rapid triaging: it takes several hours before results become available and sensitivity of the test may be insufficient to reliably exclude COVID-19 (10-14). Accordingly, RT-PCR testing should be repeated in patients with a negative initial result and persistent clinical suspicion of COVID-19 (10-14). Chest CT may be an attractive alternative or adjunct to RT-PCR testing, because it can be performed rapidly. A study among more than 1000 Chinese patients reported that chest computed tomography (CT) has a high sensitivity for the diagnosis of COVID-19 and that it may currently be considered as a primary tool for COVID-19 detection in epidemic areas (15). The promising results of Ai et al.'s study (15) and the clinical need for a fast screening tool have led to the introduction of chest CT for patients with suspected COVID-19 in our hospital mid-March 2020. From initial experience, we have learned that the interpretation of chest CT in patients with suspected COVID-19 in frontline clinical practice is not always straightforward. This can be attributed to the relative lack of experience in interpreting chest CT in suspected COVID-19, the lack of clear and uniform diagnostic criteria in the literature, and CT imaging findings that may overlap with other lung diseases. Because disagreement between CT interpreters can result in dissimilar diagnoses and subsequent patient management recommendations, high interobserver agreement is crucial before chest CT can be routinely used in practice. A chest CT classification scale may reduce differences in accuracy by reader experience and improve diagnostic performance. Recently, the
Radiological Society of North America (RSNA) Expert Consensus Statement on Reporting Chest CT Findings Related to COVID-19 was published (16). Four categories for standardized CT reporting of COVID-19 were proposed, based on current literature and expert consensus (16). However, this proposed system has not been evaluated yet, to our knowledge. Therefore, the purpose of our study was to evaluate the RSNA chest CT classification system for reporting COVID-19 pneumonia.

Methods

This retrospective study was approved by the institutional review board of our hospital (Zuyderland Medical Center, Heerlen/Sittard/Geleen, The Netherlands) (IRB number Z2020061) and patients’ consents were waived.

Patients and CT protocol

Consecutive patients who presented with clinical suspicion of COVID-19 (i.e. fever, cough, and/or shortness of breath (17)) in our hospital between March 12, 2020 and March 23, 2020 were potentially eligible for inclusion. Most patients had severe clinical symptoms and were being considered for hospitalization. Patients with known COVID-19 (proven by RT-PCR testing) before CT scanning, were excluded. Cases who did not comply with the reference standard (see paragraph below) were also excluded. The first 60 patients were already reported in our pilot study which examined the feasibility of chest CT for screening [submitted manuscript under review]. Chest CT was performed on either a 64-slice CT scanner (Philips Incisive) or on a 64-slice dual source scanner (Siemens Somatom Definition Flash). Scanning parameters were: collimation 64 × 0.625 or 0.6 mm, 120 kVp, 667 max mA or 404
max mA, pitch 1.0 or 1.2, and matrix size 512×512. CT images were reconstructed in the transverse plane with 1.0-mm slice thickness and 1.0-mm increment. Images were also reconstructed in axial, coronal, and sagittal planes with 3.0-mm slice thickness.

**RSNA chest CT classification system for reporting COVID-19 pneumonia**

Four categories for standardized reporting of chest CT findings related to COVID-19 were proposed by the RSNA Expert Consensus Statement (16), i.e. "typical", "indeterminate", "atypical", and "negative" (Table 1). Examples of "typical" and "indeterminate" CT imaging features for COVID-19 are shown in Figures 1 and 2, respectively.

**CT analysis**

CT scans were retrospectively and independently read by two chest radiologists (initials blinded for review) with 5 and 22 years of experience in chest CT interpretation, and by a fifth-year radiology resident (initials blinded for review), using the RSNA chest CT classification system (16) as mentioned in the previous paragraph. Before chest CT interpretation, the readers studied the literature with regard to the typical chest CT imaging features of COVID-19 pneumonia (18-22). At the time of chest CT interpretation, the readers were only aware of age, gender, and the clinical information as provided by the referring physician.

**COVID-19 Reporting and Data System (CO-RADS)**

In an additional analysis, all chest CT scans were also analyzed according to the recently published CO-RADS (23). CO-RADS uses a five-point scale of suspicion for pulmonary involvement of COVID-19 on chest CT (CO-RADS 5: very high level of
suspicion; CO-RADS 4: high level of suspicion; CO-RADS 3: equivocal findings, CO-RADS 2: low level of suspicion; and CO-RADS 1: very low level of suspicion) (23).

Reference standard
Nasal and pharyngeal swabs were collected for RT-PCR testing directly after chest CT. Patients with a negative initial RT-PCR result and persistent clinical suspicion (note that results of the first RT-PCR were available after 4 hours) were retested. Patients with any positive RT-PCR result were considered to be infected with COVID-19, whereas patients with (persistent) negative RT-PCR result(s) were considered not to be infected with COVID-19.

Statistical analysis
Degree of interobserver agreement was evaluated by calculating weighted kappa (κ) coefficients. κ coefficients of 0-0.20, 0.21-0.40, 0.41-0.60, 0.61-0.80, and 0.81-1.00 were considered to indicate none to slight, fair, moderate, substantial, and almost perfect agreement, respectively (24). Proportion of patients with RT-PCR confirmed COVID-19 in each of the chest CT categories was calculated for each of the readers. A one-way analysis of variance was conducted to assess whether there were differences in patient’s duration of symptoms between the four categories of the RSNA chest CT classification system in patients with RT-PCR confirmed COVID-19. Analyses were executed using Microsoft Excel 2010 (Redmond, WA, USA) and MedCalc statistical software version 12.6.0 (MedCalc Software, Ostend, Belgium).

Results
The patient selection flow diagram is displayed in Figure 3. One hundred and nine consecutive patients were potentially eligible for inclusion. Thirteen of the 109 patients were excluded because they did not comply with the reference standard (12 patients did not undergo RT-PCR testing, whereas 1 patient with negative initial RT-PCR result and persistent clinical suspicion did not undergo repeated RT-PCR testing). Eventually, 96 patients (61 males, median age 70 years [range 29-94]) were included, of whom 45 (47%) had RT-PCR confirmed COVID-19. Duration of symptoms before chest CT was reported in 36 of 45 patients (80%) with COVID-19, with a median of 7 days (range 2-21 days).

The number of patients assigned to categories "typical", "indeterminate", "atypical", and "negative" of the RSNA chest CT classification system (16) by the three readers ranged from 18-29, 26-43, 19-31, and 5-8, respectively (Table 2). κ coefficients between pairs of each of the three readers are displayed in Table 3. Using the RSNA chest CT classification system, there was substantial interobserver agreement between the chest radiologists (κ coefficient of 0.663) and moderate interobserver agreement between the chest radiologists and the fifth-year radiology resident (κ coefficients of 0.570 and 0.564). Proportion of patients with RT-PCR confirmed COVID-19 in each of the categories of the RSNA chest CT classification system (16), as assigned by the readers, varied as follows: "typical": 76.9%-96.6%, "indeterminate": 51.2%-64.1%, "atypical": 2.8%-5.3%, and "negative": 20%-25% (Figure 4). Of all 45 patients with RT-PCR confirmed COVID-19, 62.2% (28/45), 37.8% (17/45) and 44.4% (20/45) were called “typical” by chest radiologist 1, chest radiologist 2, and the fifth-year radiology resident, respectively. There were no significant differences in patient’s duration of symptoms between the four categories of the RSNA chest CT classification system as assigned by the readers (for chest
radiologist 1: $F(3,32) = 0.971; P=0.418$; for chest radiologist 2: $F(3,32) = 1.581; P=0.213$; and for the fifth-year radiology resident: $F(3,32) = 1.542; P=0.223$.

Using CO-RADS, there was substantial interobserver agreement between the chest radiologists ($\kappa$ coefficient of 0.773), and between the chest radiologists and the fifth-year radiology resident ($\kappa$ coefficients of 0.658 and 0.648) (Supplemental Table 1). Proportion of patients with RT-PCR confirmed COVID-19 in each of the categories of CO-RADS (23) varied as follows: CO-RADS 5: 81.8%-96.7%, CO-RADS 4: 33.3%-76.9%, CO-RADS 3: 34.6%-50%, CO-RADS 2: 3.1%-5.6%, and CO-RADS 1: 11.1%-22.2% (Supplemental Figure 1).

**Discussion**

At present, the role of chest CT in diagnosing COVID-19 is not completely clear. According to the 7th edition of the Chinese Novel Coronavirus Pneumonia Diagnosis and Treatment Plan, COVID-19 may be suspected based on epidemiological history and clinical presentation, among which chest imaging findings (including chest radiography and CT) (25). However, chest CT is not described as a diagnostic criterion for COVID-19 (25). The American College of Radiology recommends that chest CT should not be used to screen for or as a first-line test to diagnose COVID-19 (26). The Royal College of Radiologists stated that, based on current evidence, there is no role for CT in the diagnostic assessment of patients with suspected COVID-19 in the UK (27). Many other national radiological societies have not made (clear) recommendations or statements yet with regard to the role of chest CT in diagnosing COVID-19. In practice, frontline physicians may request chest CT in patients suspected with COVID-19 for faster triaging or as an extra diagnostic tool, which is also the case in our hospital. In addition, chest CT may be performed for other reasons
in COVID-19 patients who are still not diagnosed with COVID-19. Radiologists who interpret chest CT should be vigilant for possible COVID-19, especially in endemic areas. COVID-19 is a new disease and chest CT interpretation in patients with possible COVID-19 may not always be straightforward. The recently published Expert Consensus Statement on Reporting Chest CT Findings Related to COVID-19 by the RSNA may provide radiologists and referring clinicians guidance and confidence in reporting these findings and a more consistent framework to improve clarity (16).

The four-category RSNA chest CT classification system for reporting COVID-19 pneumonia was based on current literature and expert consensus (16). We found substantial interobserver agreement between chest radiologists and moderate interobserver agreement between chest radiologists and a fifth-year radiology resident when using this system in patients with suspected COVID-19. It should be noted, however, that the proportion of RT-PCR confirmed COVID-19 cases in the categories "atypical appearance" and "negative for pneumonia" was non-negligible. Interestingly, the proportion of RT-PCR confirmed COVID-19 cases was lower in the "atypical appearance" category (2.8% to 5.3%) than in the "negative for pneumonia" category (20% to 25%). This can be explained by the facts that this study included symptomatic patients (i.e. fever, cough, and/or shortness of breath) and that the "atypical appearance" category also included abnormalities consistent with another lung disease (not COVID-19). Therefore, the prevalence of diseases other than COVID-19 (e.g., bacterial lobar pneumonia, bronchial and bronchiolar infections, and typical cardiogenic pulmonary edema) was considerably higher in the "atypical appearance" category than in the "negative for pneumonia" category, whereas the opposite was true for the prevalence of COVID-19 between these two categories. On
the other hand, as expected, the proportion of RT-PCR confirmed COVID-19 cases increased from categories "indeterminate", to "typical" for all readers.

At the time of conducting the current study, another chest CT classification scale for diagnosing COVID-19 pneumonia was circulating around in The Netherlands, CO-RADS, which has recently been published (23). The RSNA chest CT classification system for reporting COVID-19 pneumonia (16) and CO-RADS are very similar (categories "typical", "indeterminate", "atypical", and "negative for pneumonia" of the RSNA chest CT classification system (16) are essentially equal to CO-RADS categories 5, 4-3, 2, and 1(23), respectively). Not surprisingly, there were no real differences when using CO-RADS (23).

Our study has some potential limitations. First, because of the limited availability of RT-PCR kits in our hospital, it was not feasible to retest all patients with negative initial RT-PCR result. Accordingly, only 19 of 52 patients (37%) with initial negative RT-PCR underwent repeated RT-PCR. However, according to our reference standard, all patients with persistent clinical suspicion were retested. Second, each of the three readers assigned relatively few patients (5 up to 8) to the "negative for pneumonia" category of the RSNA chest CT classification system (16). The relatively limited sample size in this category can be explained because most patients had severe clinical symptoms and were being considered for hospitalization. Third, the prevalence of COVID-19 was relatively high (47%) in our study population. The proportion of RT-PCR confirmed COVID-19 cases in each of the categories may be different in areas with different COVID-19 prevalence. Fourth, there was a wide variation in duration of symptoms before chest CT (median of 7 days [range 2-21 days]), whereas it is known that chest CT appearance of COVID-19 can dramatically change over time (28). However, this variation reflects clinical practice, as some
patients present earlier in the course of the disease while other patients present later in the course of the disease. In addition, there were no significant differences in patient’s duration of symptoms between the four chest CT categories. Fifth, our study has a retrospective design. A prospective study is needed to validate our findings in an independent and larger sample of patients.

In conclusion, the RSNA chest CT classification system for reporting COVID-19 pneumonia has moderate to substantial interobserver agreement. However, radiologists and clinicians should take into account that the proportion of RT-PCR confirmed COVID-19 cases in the categories "atypical appearance" and "negative for pneumonia" is non-negligible.
References

1. Zhu N, Zhang D, Wang W, Li X, Yang B, Song J, Zhao X, Huang B, Shi W, Lu R, Niu P, Zhan F, Ma X, Wang D, Xu W, Wu G, Gao GF, Tan W; China Novel Coronavirus Investigating and Research Team. A Novel Coronavirus from Patients with Pneumonia in China, 2019. N Engl J Med 2020;382:727-733. doi: 10.1056/NEJMoa2001017.

2. Wang C, Horby PW, Hayden FG, Gao GF. A novel coronavirus outbreak of global health concern. Lancet 2020;395:470-473. doi: 10.1016/S0140-6736(20)30185-9.

3. Del Rio C, Malani PN. COVID-19-New Insights on a Rapidly Changing Epidemic. JAMA, in press. doi: 10.1001/jama.2020.3072.

4. World Health Organization. WHO Director-General's opening remarks at the media briefing on COVID-19 - 11 March 2020. https://www.who.int/dg/speeches/detail/who-director-general-s-opening-remarks-at-the-media-briefing-on-covid-19---11-march-2020. Accessed March 31, 2020.

5. Bedford J, Enria D, Giesecke J, Heymann DL, Ihekweazu C, Kobinger G, Lane HC, Memish Z, Oh MD, Sall AA, Schuchat A, Ungchusak K, Wieler LH; WHO Strategic and Technical Advisory Group for Infectious Hazards. COVID-19: towards controlling of a pandemic. Lancet 2020;395:1015-101. doi: 10.1016/S0140-6736(20)30673-5

6. Baud D, Qi X, Nielsen-Saines K, Musso D, Pomar L, Favre G. Real estimates of mortality following COVID-19 infection. Lancet Infect Dis, in press. doi: 10.1016/S1473-3099(20)30195-X.
7. Klompas M. Coronavirus Disease 2019 (COVID-19): Protecting Hospitals From the Invisible. Ann Intern Med, in press. doi: 10.7326/M20-0751.

8. He F, Deng Y, Li W. Coronavirus Disease 2019 (COVID-19): What we know? J Med Virol, in press. doi: 10.1002/jmv.25766.

9. Wang D, Hu B, Hu C, Zhu F, Liu X, Zhang J, Wang B, Xiang H, Cheng Z, Xiong Y, Zhao Y, Li Y, Wang X, Peng Z. Clinical Characteristics of 138 Hospitalized Patients With 2019 Novel Coronavirus-Infected Pneumonia in Wuhan, China. JAMA, in press. doi: 10.1001/jama.2020.1585.

10. Sharfstein JM, Becker SJ, Mello MM. Diagnostic Testing for the Novel Coronavirus. JAMA, in press. doi: 10.1001/jama.2020.3864.

11. Xie X, Zhong Z, Zhao W, Zheng C, Wang F, Liu J. Chest CT for Typical 2019-nCoV Pneumonia: Relationship to Negative RT-PCR Testing. Radiology, in press. doi: 10.1148/radiol.2020200343.

12. Han Y, Yang H. The transmission and diagnosis of 2019 novel coronavirus infection disease (COVID-19): A Chinese perspective. J Med Virol in press. doi: 10.1002/jmv.25749.

13. Zhang W, Du RH, Li B, Zheng XS, Yang XL, Hu B, Wang YY, Xiao GF, Yan B, Shi ZL, Zhou P. Molecular and serological investigation of 2019-nCoV infected patients: implication of multiple shedding routes. Emerg Microbes Infect 2020;9:386-389. doi: 10.1080/22221751.2020.1729071.

14. World Health Organization. Laboratory testing for coronavirus disease 2019 (COVID-19) in suspected human cases. https://apps.who.int/iris/bitstream/handle/10665/331329/WHO-COVID-19-laboratory-2020.4-eng.pdf?sequence=1&amp;isAllowed=y. Accessed March 31, 2020.
15. Ai T, Yang Z, Hou H, Zhan C, Chen C, Lv W, Tao Q, Sun Z, Xia L. Correlation of Chest CT and RT-PCR Testing in Coronavirus Disease 2019 (COVID-19) in China: A Report of 1014 Cases. Radiology, in press. doi: 10.1148/radiol.2020200642.

16. Simpson S, Kay FY, Abbara S, Bhalla S, Chung JH, Chung M, Henry TS, Kanne JP, Kligerman S, Ko JP, Litt D. Radiological Society of North America Expert Consensus Statement on Reporting Chest CT Findings Related to COVID-19. Endorsed by the Society of Thoracic Radiology, the American College of Radiology, and RSNA. Radiology: Cardiothoracic Imaging, in press. doi.org/10.1148/ryct.2020200152

17. Centers for Disease Control and Prevention. Coronavirus Disease 2019 (COVID-19). Symptoms of Coronavirus. https://www.cdc.gov/coronavirus/2019-ncov/symptoms-testing/symptoms.html. Accessed March 31, 2020.

18. Zu ZY, Jiang MD, Xu PP, Chen W, Ni QQ, Lu GM, Zhang LJ. Coronavirus Disease 2019 (COVID-19): A Perspective from China. Radiology, in press. doi: 10.1148/radiol.2020200490.

19. Zhou S, Wang Y, Zhu T, Xia L. CT Features of Coronavirus Disease 2019 (COVID-19) Pneumonia in 62 Patients in Wuhan, China. AJR Am J Roentgenol, in press. doi: 10.2214/AJR.20.22975.

20. Han R, Huang L, Jiang H, Dong J, Peng H, Zhang D. Early Clinical and CT Manifestations of Coronavirus Disease 2019 (COVID-19) Pneumonia. AJR Am J Roentgenol, in press. doi: 10.2214/AJR.20.22961.

21. Ye Z, Zhang Y, Wang Y, Huang Z, Song B. Chest CT manifestations of new coronavirus disease 2019 (COVID-19): a pictorial review. Eur Radiol, in press. doi: 10.1007/s00330-020-06801-0.
22. Guan CS, Lv ZB, Yan S, Du YN, Chen H, Wei LG, Xie RM, Chen BD. Imaging Features of Coronavirus disease 2019 (COVID-19): Evaluation on Thin-Section CT. Acad Radiol 2020; pii: S1076-6332(20)30143-4. doi: 10.1016/j.acra.2020.03.002.

23. Prokop M, van Everdingen W, van Rees Vellinga T, Quarles van Ufford J, Stöger L, Been L, Geurts B, Gietema H, Krdzalic J, Schaefer-Prokop C, van Ginneken B, Brink M; “COVID-19 Standardized Reporting” Working Group of the Dutch Radiological Society. CO-RADS - A categorical CT assessment scheme for patients with suspected COVID-19: definition and evaluation. Radiology, in press. doi: 10.1148/radiol.2020201473.

24. McHugh ML. Interrater reliability: the kappa statistic. Biochem Med (Zagreb). 2012;22(3):276-82.

25. Novel Coronavirus Pneumonia Diagnosis and Treatment Plan (Provisional 7th Edition). http://www.gov.cn/zhengce/zhengceku/2020-03/04/5486705/files/ae61004f930d47598711a0d4cbf874a9.pdf. Accessed March 31, 2020.

26. ACR Recommendations for the use of Chest Radiography and Computed Tomography (CT) for Suspected COVID-19 Infection. https://www.acr.org/Advocacy-and-Economics/ACR-Position-Statements/Recommendations-for-Chest-Radiography-and-CT-for-Suspected-COVID19-Infection. Accessed March 31, 2020.

27. RCR position on the role of CT in patients suspected with COVID-19 infection. Accessed March 31, 2020.
28. Wang Y, Dong C, Hu Y, Li C, Ren Q, Zhang X, Shi H, Zhou M. Temporal Changes of CT Findings in 90 Patients with COVID-19 Pneumonia: A Longitudinal Study. Radiology, in press. doi: 10.1148/radiol.2020200843.
Table 1. RSNA chest CT classification system for reporting COVID-19 pneumonia (adopted from reference (16)).

| COVID-19 pneumonia imaging classification | Rationale | CT Findings |
|------------------------------------------|-----------|-------------|
| **Typical appearance**                  | Commonly reported imaging features of greater specificity for COVID-19 pneumonia | Peripheral, bilateral, GGO* with or without consolidation or visible intralobular lines (“crazy-paving”) Multifocal GGO of rounded morphology with or without consolidation or visible intralobular lines (“crazy-paving”) Reverse halo sign or other findings of organizing pneumonia (seen later in the disease) |
| **Indeterminate appearance**            | Nonspecific imaging features of COVID-19 pneumonia | **Absence of typical features AND** **Presence of:** Multifocal, diffuse, perihilar, or unilateral GGO with or without consolidation lacking a specific distribution and are non-rounded or non-peripheral. Few very small GGO with a non-rounded and non-peripheral distribution |
| **Atypical appearance**                 | Uncommonly or not reported features of COVID-19 pneumonia | **Absence of typical or indeterminate features AND** **Presence of:** Isolated lobar or segmental consolidation without GGO Discrete small nodules (centrilobular, “tree-in-bud”) Lung cavitation Smooth interlobular septal thickening with pleural effusion |
| **Negative for pneumonia**              | No features of pneumonia | No CT features to suggest pneumonia. |

*GGO = ground glass opacity.
Table 2. Number of patients per category of the RSNA chest CT classification system (16) as assigned by each of the three readers.

|                  | Typical | Indeterminate | Atypical | Negative |
|------------------|---------|---------------|----------|----------|
| Chest radiologist 1 | 18      | 39            | 31       | 8        |
| Chest radiologist 1 | 29      | 26            | 36       | 5        |
| Fifth-year radiology resident | 26      | 43            | 19       | 8        |
Table 3. Weighted κ coefficients between pairs of readers using the RSNA chest CT classification system

| Reader pair                                    | κ coefficient (95% CI) |
|------------------------------------------------|------------------------|
| Chest radiologist 1 - chest radiologist 2      | 0.663 (0.565-0.761)    |
| Chest radiologist 1 - fifth-year radiology resident | 0.570 (0.443-0.696)    |
| Chest radiologist 2 - fifth-year radiology resident | 0.564 (0.451-0.678)    |
Supplemental Table 1. Weighted κ coefficients between pairs of readers using CO-RADS (23).

| Reader pair                                      | κ coefficient (95% CI) |
|--------------------------------------------------|------------------------|
| Chest radiologist 1 - chest radiologist 2        | 0.773 (0.699-0.848)    |
| Chest radiologist 1 - fifth-year radiology resident | 0.658 (0.557-0.759)    |
| Chest radiologist 2 - fifth-year radiology resident | 0.648 (0.555-0.742)    |
**Figures**

**Figure 1.** Example of typical CT imaging features for COVID-19 in a 55-year old male patient. Chest CT shows bilateral multifocal ground-glass opacities (arrows), which showed a posterior part / lower lobe predilection and mainly peripheral /
Figure 2. Example of indeterminate CT imaging features for COVID-19 in a 36-year old female patient. Chest CT shows bilateral multifocal ground-glass opacities (arrows), which were mainly located in the right upper lobe. There was no posterior part / lower lobe predilection and there was also no peripheral / subpleural distribution of lung abnormalities.
Figure 3. Flow diagram of patient selection.
Figure 4. Proportion RT-PCR confirmed COVID-19 cases in each of the four categories according to RSNA chest CT classification system (16) for each of the three readers.
Supplemental Figure 1. Proportion RT-PCR confirmed COVID-19 cases in each of the five categories according to CO-RADS (23) for each of the three readers.