Unitarity and stability conditions in a 4-Higgs doublet model with an S_3-family symmetry

To cite this article: C Espinoza et al 2017 J. Phys.: Conf. Ser. 912 012022

View the article online for updates and enhancements.
Unitarity and stability conditions in a 4-Higgs
doublet model with an S_3-family symmetry.

C Espinoza1, E A Garcés2, M Mondragón3 and H Reyes-González3.
1Cátedras CONACyT - Instituto de Física, Universidad Nacional Autónoma de México, Apdo.
Postal 20-364, Cd. México 01000, México.
2Departamento de Física, Centro de Investigación y de Estudios Avanzados del IPN, Apdo.
Postal 14-740 07000 Cd. México, México.
3Instituto de Física, Universidad Nacional Autónoma de México, Apdo. Postal 20-364, Cd.
México 01000, México.
E-mail: myriam@fisica.unam.mx

Abstract. In order to obtain a dark matter candidate we propose an extension of the S_3 symmetric 3-Higgs doublet model, adding a new scalar doublet, occupying all the irreducible representations of the discrete symmetry. To ensure stability of the dark matter particle we impose an extra Z_2 symmetry. We find the analytical masses of the scalar particles and constrain their values using stability and unitarity conditions.

1. Introduction.

Finding what dark matter (DM) is made of is one of the main challenges in particle physics and cosmology. It has been proposed in [1] that DM is conformed by neutral scalar particles, a very interesting hypothesis as these particles have the characteristics expected for DM: Neutral, cold and weakly interacting (see for example [2, 3, 4, 5, 6]).

Among the numerous proposals to extend the scalar sector of the standard model, the 3-Higgs Doublet Model with an S_3-family symmetry (3H-S_3) presents interesting phenomenology, such as the prediction of a non zero reactor neutrino mixing angle θ_{13} and of a CKM matrix in accordance with experimental results (see e.g. [7, 8, 9, 10, 11, 12, 13, 14]).

A natural generalization embracing these two ideas suggests itself: enlarge the 3H-S_3 model with an additional doublet representing a dark matter candidate. In this letter we present an analysis of the S_3-symmetric 4-Higgs Doublet Model (4HDM) in which we occupy all irreducible representations of the S_3 symmetry: one symmetric singlet, one antisymmetric singlet and one doublet. The 3H-S_3 is constituted by the symmetric singlet and doublet representations, while for the fourth Higgs doublet (in the antisymmetric representation) we impose a Z_2 symmetry ensuring the stability of the potential dark matter candidates. In the following we present the analytical calculation of the masses of the scalar particles at tree level and constrain their values using unitarity and stability conditions. A complete analysis of the model with its dark matter phenomenology will be presented elsewhere [15].
2. The model.

The most general $SU(2)_L \times U(1)_Y$ invariant renormalizable scalar potential for a 4-Higgs doublet model with additional $S_3 \times Z_2$ symmetry is given by:

$$V = \mu_0^2 H_1^\dagger H_1 + \mu_1^2 (H_1^\dagger H_2 + H_2^\dagger H_1) + \mu_2^2 H_a^\dagger H_a + \lambda_1 (H_1^\dagger H_1 + H_2^\dagger H_2)^2 + \lambda_2 (H_1^\dagger H_2 - H_2^\dagger H_1)^2$$

$$+ \lambda_3 [(H_1^\dagger H_1 - H_2^\dagger H_2)^2 + (H_1^\dagger H_2 + H_2^\dagger H_1)^2]$$

$$+ \lambda_4 [(H_1^\dagger H_1) (H_2^\dagger H_2 + H_2^\dagger H_1) + (H_2^\dagger H_2) (H_1^\dagger H_1 - H_2^\dagger H_2) + \text{h.c.}]$$

$$+ \lambda_5 (H_a^\dagger H_a) (H_1^\dagger H_1 + H_2^\dagger H_2)$$

$$+ \lambda_6 [(H_1^\dagger H_1) (H_1^\dagger H_a) + (H_2^\dagger H_2) (H_2^\dagger H_a)]$$

$$+ \lambda_7 [(H_1^\dagger H_1) (H_a^\dagger H_1) + (H_2^\dagger H_2) (H_a^\dagger H_2) + \text{h.c.}]$$

$$+ \lambda_8 (H_a^\dagger H_a)^2$$

$$+ \lambda_9 (H_a^\dagger H_a) (H_a^\dagger H_1 + H_2^\dagger H_2)$$

$$+ \lambda_{10} [(H_a^\dagger H_1) (H_1^\dagger H_a) + (H_2^\dagger H_2) (H_a^\dagger H_a)]$$

$$+ \lambda_{11} [(H_a^\dagger H_1) (H_a^\dagger H_1) + (H_a^\dagger H_2) (H_a^\dagger H_2) + \text{h.c.}]$$

$$+ \lambda_{12} [(H_a^\dagger H_1) (H_a^\dagger H_1) + (H_a^\dagger H_2) (H_a^\dagger H_2) + \text{h.c.}]$$

$$+ \lambda_{13} (H_a^\dagger H_a)^2$$

$$+ \lambda_{14} (H_a^\dagger H_a) (H_a^\dagger H_1 + H_2^\dagger H_2).$$

Here we have arranged the $SU(2)_L$ doublets H_1 and H_2 into a column vector transforming in the doublet representation of S_3, while H_a and H_a are required to transform in the symmetric and antisymmetric singlet representations of S_3 respectively. In the following we will assume all the couplings $\lambda_i, i = 1...14$ to be real, CP conserving, and $|\lambda_i| < 4\pi$ in order to fulfill perturbativity. Note that there are no terms with odd powers of H_a, the only field assumed odd under Z_2.

After electroweak symmetry breaking all Higgs doublets acquire a vacuum expectation value (vev) which we denote respectively by v_0, v_1, v_2 and v_a. Nevertheless, to avoid the breaking of the Z_2 symmetry we fix v_a identically to zero, and from the minimization conditions (a.k.a. tadpole equations) of the potential (1) the fourth equation $\partial V/\partial v_a = 0$ is therefore automatically satisfied. The three minimization equations left ($\partial V/\partial v_i = 0, i = 1, 2, 3$) reduce to those of the 3H-S3, from which we reproduce the following conditions to the quadratic couplings:

$$\mu_0^2 = - (\lambda_5 + \lambda_6 + 2\lambda_7) (v_1^2 + v_2^2) - 2\lambda_8 v_0^2 + \frac{\lambda_4 (v_2^2 - 3v_1^2) v_2}{v_0}$$

$$\mu_1^2 = - (\lambda_5 + \lambda_6 + 2\lambda_7) v_0^2 - 2(\lambda_1 + \lambda_3)(v_1^2 + v_2^2) - 6\lambda_4 v_2 v_0$$

$$\mu_2^2 = - (\lambda_5 + \lambda_6 + 2\lambda_7) v_0^2 - 2(\lambda_1 + \lambda_3)(v_1^2 + v_2^2) + 3\lambda_4 \frac{v_0 (v_2^2 - v_1^2)}{v_2}. \quad (2)$$

The self consistency of the above conditions require either $\lambda_4 = 0$ or the alignment of the vacuum expectation values v_1 and v_2:

$$v_1 = \sqrt{3} v_2. \quad (3)$$

Since the case $\lambda_4 = 0$ is phenomenologically unappealing in the context of the 3HDM, we will assume the alignment (3) in the rest of this work.
2.1. The masses.

We parametrize the Higgs doublets by

\[H_s = \begin{pmatrix} h_n^+ \\ v_n + h_n^0 + i h_n^1 \end{pmatrix} \]

and similarly for \(H_1, H_2 \) and \(H_a \). Here the indexes \(n \) and \(p \) refer to neutral (scalar) and (neutral) pseudoscalar and we use primes to distinguish from the mass eigenstates denoted by the same letters. The masses of the scalar particles are found by diagonalizing the corresponding mass matrices, e.g. for the neutral scalar fields the following matrix:

\[(M_{h,n}^2)_{ij} = \left. \frac{1}{2} \frac{\partial^2 V}{\partial h_i^m \partial h_j^n} \right|_{\text{min}} \]

which is block diagonal such that the primed fields \(h_n^0, h_1^0 \) and \(h_2^0 \) mix into the mass eigenstates \(h_n^0, h_1^0 \) and \(h_2^0 \) and the \(Z_2 \) odd field remains unmixed \(h_a^0 = h_a^0 \).

The expressions for the masses presented below are separated by neutral scalar, neutral pseudoscalar and charged particles.

- **Masses of the neutral scalar particles:**

\[
\begin{align*}
m_n^2 &= -18\lambda_4 v_0 v_2 \\
m_n^2 &= \mu_4^2 + 14 v_0^2 + 4(\lambda_{10} + \lambda_{11} + 2\lambda_{12}) v_2^2 \\
m_n^2 &= \left(\frac{1}{v_0} \right) (2\lambda_8 v_0^3 + v_2 (3\lambda_4 v_0^2 + 8(\lambda_1 + \lambda_3) v_0 v_2 - 4\lambda_4 v_2^2) + \\
&\quad ((4\lambda_8^2 v_0^6 - 12\lambda_4 \lambda_8 v_0^5 v_2 + (9\lambda_4^2 + \\
&\quad 16((\lambda_5 + \lambda_6 + 2\lambda_7)^2 - 2(\lambda_1 + \lambda_3 + 8)) v_0^2 v_2^2 + \\
&\quad 16\lambda_4 (3(\lambda_1 + \lambda_3 + 2(\lambda_5 + \lambda_6 + 2\lambda_7)) - \lambda_8) v_0^2 v_2^2 + \\
&\quad 8(8(\lambda_1 + \lambda_3)^2 + 21\lambda_4^2 v_0^2 v_2^4 + 64(\lambda_1 + \lambda_3) \lambda_4 v_0 v_2^5 + \\
&\quad 16\lambda_4^2 v_2^6)^{1/2} \right) \\
m_n^2 &= \left(\frac{1}{v_0} \right) (2\lambda_8 v_0^3 + v_2 (3\lambda_4 v_0^2 + 8(\lambda_1 + \lambda_3) v_0 v_2 - 4\lambda_4 v_2^2) + \\
&\quad -(4\lambda_8^2 v_0^6 - 12\lambda_4 \lambda_8 v_0^5 v_2 + (9\lambda_4^2 + \\
&\quad 16((\lambda_5 + \lambda_6 + 2\lambda_7)^2 - 2(\lambda_1 + \lambda_3 + 8)) v_0^2 v_2^2 + \\
&\quad 16\lambda_4 (3(\lambda_1 + \lambda_3 + 2(\lambda_5 + \lambda_6 + 2\lambda_7)) - \lambda_8) v_0^2 v_2^2 + \\
&\quad 8(8(\lambda_1 + \lambda_3)^2 + 21\lambda_4^2 v_0^2 v_2^4 + 64(\lambda_1 + \lambda_3) \lambda_4 v_0 v_2^5 + \\
&\quad 16\lambda_4^2 v_2^6)^{1/2} \right) \\
\end{align*}
\]

- **Masses of the neutral pseudo scalar particles:**

\[
\begin{align*}
m_n^2 &= 0 \\
m_n^2 &= \mu_4^2 + 14 v_0^2 + 4(\lambda_{10} + \lambda_{11} - 2\lambda_{12}) v_2^2 \\
m_n^2 &= \left(\frac{2(2\lambda_7 v_0^3 + 5\lambda_4 v_0^2 v_2 + 8\lambda_2 v_0 v_2^2 + 8\lambda_3 v_0 v_2^2)}{v_0} \right) \\
m_n^2 &= \left(\frac{2(2\lambda_7 v_0 + 14 v_2)(v_0^2 + 4v_2^2)}{v_0} \right).
\end{align*}
\]
• Masses of the charged particles:

\[
\begin{align*}
 m_{h^±} &= 0 \\
 m_{h^±_3} &= \mu^2 + 4\lambda_1 v^2_0 \\
 m_{h^±_1} &= - (\lambda_6 + 2\lambda_7)v^2_0 - 10\lambda_4 v_0 v_2 - 16\lambda_3 v^2_0 \\
 m_{h^±_2} &= - \frac{(\lambda_6 v_0 + 2\lambda_7 v_0 + 2\lambda_4 v_2)(v^2_0 + 4v^2_2)}{v_0}.
\end{align*}
\]

(8)

2.2. Stability conditions.

The stability conditions, ensure that the vacuum is stable i.e. that the potential has a minimum. They were found for the potential (1), following the procedure in [14] for the 3H-S\(_3\):

\[
\begin{align*}
 \lambda_8 &> 0 \\
 \lambda_1 + \lambda_3 &> 0 \\
 \lambda_5 &> -2\sqrt{(\lambda_1 + \lambda_3)\lambda_8} \\
 \lambda_5 + \lambda_6 - 2|\lambda_7| &> \sqrt{(\lambda_1 + \lambda_3)\lambda_8} \\
 \lambda_1 - \lambda_2 &> 0 \\
 \lambda_13 &> 0 \\
 \lambda_{10} &> -2\sqrt{(\lambda_1 + \lambda_3)\lambda_{13}} \\
 \lambda_{10} + \lambda_{11} - 2|\lambda_{12}| &> \sqrt{(\lambda_1 + \lambda_3)\lambda_{13}} \\
 \lambda_{14} &> -2\sqrt{\lambda_8\lambda_{13}}.
\end{align*}
\]

(9)

2.3. Unitarity constraints.

Unitarity constraints over the quartic parameters can be obtained from the elegant LQT method [16]. On account of renormalizability, scattering amplitudes cannot exhibit unphysical growth in the limit of high energies. Thus, one is led to impose (tree level) unitarity on different sets of scattering processes, in particular those of two particle states. Defining the matrix \(M_{ij} = M_{i \rightarrow j} \) where the indices stand for all possible two particle processes, it suffices to consider processes involving Higgs scalars and longitudinal vector bosons. The eigenvalues of the matrix \(M_{ij} \), denoted \(a^\pm_i \) and \(b_i \) for charged and neutral two particle channels, will then be constrained according to \(|a^\pm_i|, \ |b_i| < 16\pi \), reflecting the physical fact that the coefficient \(a_0 \) of the s-wave term in a partial wave expansion of the scattering amplitude is bounded (e.g. \(|a_0| < 1/2 \)) in the limit of high energy exchange.

Of course, the eigenvalues corresponding to physical processes already present in the 3H-S\(_3\) are the same in this 4H-S\(_3\), so here we only report on the new constraints. Their expressions in
Figure 1. Mass scan for neutral scalar particles, where h_n^a is the Higgs boson of the SM.

terms of λ_i are:

$$a_7^\pm = \pm \sqrt{\lambda_{10}^2 + 2\lambda_{10}(\lambda_{11} - 4\lambda_{12}) + 2(\lambda_{11}^2 - 6\lambda_{11}\lambda_{12} + 10\lambda_{12}^2)}$$

$$a_8^\pm = \pm \sqrt{(\lambda_{10} - 2\lambda_{12})(\lambda_{10} + 2\lambda_{11} - 6\lambda_{12})}$$

$$a_{10}^\pm = \lambda_{10} \pm \lambda_{11}$$

$$a_{11}^\pm = \pm \lambda_{14}$$

$$a_{12}^\pm = \pm \frac{\lambda_{14}}{2}$$

$$b_7 = \lambda_{10} + 2\lambda_{11} + 6\lambda_{12}.$$

Eigenvalues a_i^\pm and b_i where $i = 1, 2, ..., 6$, were found by Das and Dey for the 3HDM in [12], whereas a_i^\pm where $i = 7, 8, ..., 12$ and b_7 correspond to 4H-S_3 interactions decoupled from the 3H-S_3 matrices, e.g. $h_n^a h_n^b h_n^c h_n^d$. The dispersion matrices involving fields from 4 Higgs Doublet, e.g. $h_n^a h_n^b h_n^c h_n^d$ were solved numerically during the scan with pseudorandom values for the λ_i couplings.

3. Numerical analysis.

To perform the analysis is convenient to parametrize the vevs in spherical coordinates, so

$$v_0 = v \cos \theta$$

$$v_1 = v \sin \theta \cos \phi$$

$$v_2 = v \sin \theta \sin \phi,$$
Figure 2. Mass scan for neutral pseudoscalar particles, where h^n_n is the Higgs boson of the SM.

Figure 3. Mass scan for charged particles, where $h^n_+^n$ is the Higgs boson of the SM.

where $\theta \in (0, \pi)$ and $\phi \in (0, 2\pi)$. With this parametrization and the relation found in Equation 3 we get

$$\tan^2 \phi = \frac{1}{3}.$$ \hspace{1cm} (12)
Figure 4. Mass scan for neutral scalar particles, where h_n^2 is the Higgs boson of the SM.

Figure 5. Mass scan for neutral pseudoscalar particles, where h_n^2 is the Higgs boson of the SM.

Hence the vevs only depend on θ:

\[v_0 = v \cos \theta \]
\[v_2 = \frac{1}{2} v \sin \theta. \]

(13)
Figure 6. Mass scan for charged particles, where h^ν_2 is the Higgs boson of the SM.

We computed the dependence on $\tan \theta$ of the mass spectrum of the Higgs bosons. The figures 1, 2 and 3 correspond to the neutral scalar, neutral pseudoscalar and charged higgses where h^ν_n corresponds to the SM Higgs boson, while the figures 4, 5 and 6 correspond to the neutral scalar, neutral pseudoscalar and charged higgses where h^ν_2 corresponds to the SM Higgs boson. All the figures above mentioned are scatter plots of mass vs. $\tan \theta$ and generated varying the λ_i parameters randomly, where we choose only the points that satisfy the unitarity and stability conditions previously calculated.

4. Conclusions.
The S3 flavor symmetry has been very successful accommodating fermion masses and mixings; in this work we use four $SU(2)$ doublets, using all irreducible S3 representations, which provides a rich phenomenology where one or several dark matter candidates can be feasible. We found analytical expression for the masses of the scalar particles and constrained their numerical values applying stability and unitarity conditions. The mass spectra was computed for two cases: 1) the SM Higgs boson corresponds to h^ν_n and 2) the SM Higgs boson corresponds to h^ν_2. In the plots 1, 2 and 3 corresponding to the first case, we found that the masses of h^ν_1, h^ν_2 and h^ν_2 are heavier than the rest for large $\tan \theta$. While, in the plots 4, 5 and 6 all masses have nearly the same range, with an upper limit close to 1TeV, the exception being $m_{h^\nu_2}$ and $m_{h^\nu_2}$ with a 500GeV upper limit. As a perspective of these results we are currently working in the complete analysis of the model and on the dark matter phenomenology in order to constrain the parameter space of the model by relic density measurements.

Acknowledgements
This work was supported by PAPIIT IN111115 and CONACYT. C.E. acknowledges the support of CONACYT. E.A.G. thanks support by CONACYT Project No. FOINS-296-2016 (Fronteras de la Ciencia).
References.

[1] Silveira V and Zee A 1985 Phys. Lett. B161 136–140
[2] Tytgat M H G 2011 PoS IDM2010 126 (Preprint 1012.0576)
[3] McDonald J 1994 Phys. Rev. D50 3637–3649 (Preprint hep-ph/9702143)
[4] Bento M C, Bertolami O, Rosenfeld R and Teodoro L 2000 Phys. Rev. D62 041302 (Preprint astro-ph/0003350)
[5] Lopez Honorez L, Nezri E, Oliver J F and Tytgat M H G 2007 JCAP 0702 028 (Preprint hep-ph/0612275)
[6] Ilnicka A, Krawczyk M and Robens T 2016 Phys. Rev. D93 055026 (Preprint 1508.01671)
[7] Mondragon A and Rodriguez-Jauregui E 2000 AIP Conf. Proc. 531 310–314 [AIP Conf. Proc.990,393(1999)]
[8] Kubo J, Mondragon A, Mondragon M and Rodriguez-Jauregui E 2003 Prog. Theor. Phys. 109 795–807
[9] Mondragon A, Mondragon M and Peinado E 2007 Phys. Rev. D76 076003 (Preprint 0706.0354)
[10] Gonzalez Canales F, Mondragon A and Mondragon M 2013 Fortsch. Phys. 61 546–570 (Preprint 1205.4755)
[11] Gonzalez Canales F, Mondragón A, Mondragón M, Saldaña Salazar U J and Velasco-Sevilla L 2013 Phys. Rev. D88 096004 (Preprint 1304.6644)
[12] Das D and Dey U K 2014 Phys. Rev. D89 095025 [Erratum: Phys. Rev.D91,no.3,039905(2015)] (Preprint 1404.2491)
[13] Barradas-Guevara E, Félix-Beltrán O and Rodríguez-Jáuregui E 2014 Phys. Rev. D90 095001 (Preprint 1402.2244)
[14] Emmanuel-Costa D, Ogreid O M, Osland P and Rebelo M N 2016 JHEP 02 154 (Preprint 1601.04654)
[15] Espinoza C Garcés E A M M and H R G In preparation.
[16] Lee B W, Quigg C and Thacker H B 1977 Phys. Rev. D16 1519