Review Article

Modern retinal laser therapy

Igor Kozak,⇑ Jeffrey K. Luttrull

Abstract
Medicinal lasers are a standard source of light to produce retinal tissue photocoagulation to treat retinovascular disease. The Diabetic Retinopathy Study and the Early Treatment Diabetic Retinopathy Study were large randomized clinical trials that have shown beneficial effect of retinal laser photocoagulation in diabetic retinopathy and have dictated the standard of care for decades. However, current treatment protocols undergo modifications. Types of lasers used in treatment of retinal diseases include argon, diode, dye and multicolor lasers, micropulse lasers and lasers for photodynamic therapy. Delivery systems include contact lens slit-lamp laser delivery, indirect ophthalmocope based laser photocoagulation and camera based navigated retinal photocoagulation with retinal eye-tracking. Selective targeted photocoagulation could be a future alternative to panretinal photocoagulation.

Keywords: Retinal Laser, Photocoagulation, Therapy, Pattern laser, Micropulse laser, Navigated laser

A brief history of retinal photocoagulation

Past laser photocoagulation concepts
Photocoagulation uses light to coagulate tissue. Medicinal lasers have become a source of light to produce tissue coagulation. The effect of laser interaction with retinal tissue had been studied earlier but it was not until Meyer-Schwicrath's report in 1954 that beneficial therapeutic effects of laser photic burns were recognized.1 With Hans Littmann of Zeiss Laboratories they assembled the first xenon-arc photocoagulator in 1956.2 The system was effective but it was difficult to focus beam to a small spot, treatments required long exposures and were often painful. Theodore Maiman, PhD, designed the first ophthalmic laser in 1960 at the Hughes Research Laboratories emitting monochromatic energy. Systems using ruby laser (694-nm wavelength) were among the first to be studied in ophthalmology.3,4 They offered some variability in pulse durations and more precisely targeted treatments. They could be successfully applied therapeutically but intense chorioretinal destruction and frequent hemorrhaging soon showed to be an issue. The advent of argon laser marked a new milestone in retinal photocoagulation.5,6 Argon laser can use the blue (488-nm wavelength) and green (514-nm wavelength) light emission absorbed by both hemoglobin and melanin. The Diabetic Retinopathy Study7 and the Early Treatment Diabetic Retinopathy Study8 were large randomized clinical trials that have shown beneficial effect of retinal laser photocoagulation in diabetic retinopathy and have dictated the standard of care for decades. In DRS, argon laser had equal efficacy to xenon arc laser but in general produced less adverse effects. Later on water-cooled argon lasers have been replaced by air-cooled Nd:YAG frequency doubled lasers (532-nm wavelength). Other conditions, including age-related macular degeneration and retinal vein occlusion, were found to benefit from laser retinal photocoagulation, widening treatment indications.9

Introduction of dye lasers represented a further development. The design of a dye laser is similar to a pulsed solid-state
laser with the laser crystal replaced by a dye cell. Dye lasers can usually be used for a much wider range of wavelengths. The introduction of solid state lasers has offered an advantage of being less expensive and portable.

Past laser delivery systems

Mode of delivery is an important aspect of laser photocoagulation. While the ruby laser was attached to a monocular direct ophthalmoscope, subsequent generations of lasers could be attached to indirect ophthalmoscope, operating microscope or slit lamp. Endolaser photocoagulation (applied via a fiberoptic probe placed inside the eye) has shortened treatment times and improved results of vitreoretinal surgery. Coupling lasers with slit lamp improved laser delivery to the retina, especially for posterior pole application in the clinic.

Modern laser technology developments and applications

Current laser photocoagulation concepts and techniques

The above-mentioned clinical trials and subsequent clinical experience by physicians established retinal photocoagulation as the standard treatment of choice for complications of diabetic retinopathy for over 40 years. Although clinically effective, retinal laser photocoagulation leads to collateral damage and side effects including reduced night vision, macular and peripheral scotomata with decrease in central and peripheral vision, exacerbation of macular edema and disruption of the retinal anatomy through scarring. In search for ways to spare retinal tissue yet achieving desired therapeutic benefit, the first attempts were aimed at titration of laser power to reduce tissue damage. Diode lasers (810-nm wavelength) were used to produce “classically” subthreshold (ophthalmoscopically less visible) burns in diabetic macular edema (DME) and age-related macular degeneration (AMD).

In 1990 Pankratov developed the micropulsed diode laser. Producing a train of millisecond laser pulses separated by variable quiet intervals, micropulsing allowed selective treatment of the retinal pigment epithelium (RPE) and sparing of the neurosensory retina. Early use of micropulsed lasers reduced but did not eliminate thermal retinal damage due to use of high treatment powers and / or micropulse duty cycles, as well as the continuing belief in the need to produce at least some laser-induced thermal retinal injury to achieve a therapeutic effect. This long-held maxim was called into question by the later finding that use of particular micropulsed laser parameters (high-density/low-intensity “true” Subthreshold Diode Micropulse laser, or “SDM”) is clinically effective without any laser-induced retina injury detectable by any currently available retinal imaging modality, or known adverse treatment effects. Non-destructive and thus non-inflammatory, SDM has been reported effective for a number of disorders and uniquely allows safe transfoveal treatment in eyes with good visual acuity. SDM has also been uniquely shown to increase, rather than decrease, retinal sensitivity by microperimetry at the locus of laser application.

In 1992 Reginald Birngruber and colleagues introduced application of even shorter microsecond continuous-wave laser pulses. These microsecond laser pulses also selectively target the retinal pigment epithelium (RPE) sparing the photoreceptors and other intraretinal cells. Such short-pulse continuous wave laser cause explosive vaporization of melanosomes and formation of cavitation bubbles resulting in cell death and subsequent proliferation and migration of RPE cells to restore the integrity of the defective RPE layer. The clinical term adopted for this approach has been “Selective Retina Therapy” or SRT.

Another concept to use laser therapy with minimal collateral damage is transpupillary thermotherapy (TTT) using near-infrared (810-nm wavelength) laser, low irradiance and long exposure (1 min), and large retinal treatment spots. TTT has been used in the treatment of small choroidal metastases, nowadays in combination with other modalities such as brachytherapy. However, former use for neovascular AMD and other macular disorders has been abandoned due to higher efficacy of intravitreal anti-angiogenic therapy and the risk of inadvertent macular photocoagulation and visual loss. Also in the 1990s, a new concept of targeting choroidal vessels in the neovascular membrane emerged using a photosensitizer activated by red/near-infrared laser and became known as photodynamic therapy (PDT). The original photosensitizer phthalocyanine was replaced by the liposomal benzoporphyrin derivative complex with affinity to endothelium of newly formed blood vessels. The latter is commercially known as verteporfin which was the first pharmacologic treatment for AMD. The PDT treatment causes intraluminal vascular occlusion with subsequent regression of choroidal neovascular membrane. With time, its use in AMD has been replaced by more effective and less destructive intravitreal anti-angiogenic therapy. It still remains a treatment option or supplemental therapy in some pathologic choroidal conditions.

Current laser delivery systems

Developments in laser technology lagged behind developments in other areas of retinal field such as imaging, pharmacology and genetics. Most innovations in laser therapy in previous decades have focused on laser adjustments such as spot size and pulse duration. However, two major developments took place in recent years.

In 2006, OptiMedica Corp. (Santa Clara, CA) introduced PASCAL pattern scan laser photocoagulator with a 532-nm laser used for standard photocoagulation procedures that can apply a uniform pattern of many laser spots at one time. Due to short pulse duration, the heat is decreased resulting in less thermal damage. The pattern laser technology allows equidistant spacing of individual spots and fairly consistent retina burns. The PASCAL laser allows ophthalmologists to perform macular grid treatments effectively and panretinal photocoagulation more rapidly with less pain than conventional lasers. At present, it is one of the most common laser delivery systems.

The second major development was introduction of new laser platform called NAVILAS (OD-OS, Inc. Germany) which uses retinal navigation and fundus camera based delivery. This 532-nm pattern-type eye-tracking laser integrates live color fundus imaging, red-free and infra-red imaging, fluorescein angiography with photocoagulator system. After image acquisition and making customized treatment plans by physicians including marking areas which will be coagulated the
treatment plan is superimposed onto the live digital retina during treatment. The physician controls laser application and the systems assist with prepositioning the laser beam. This platform allows for digital documentation of treatment for future reference. For the first time physicians are able to deliver fast and painless laser through camera system and monitor treatment progress on wide screen. Retinal navigation has resulted in significant increase in treatment accuracy in comparison to conventional slit-lamp lasers.

Current posterior pole laser treatment techniques

Conventional laser photoagulation techniques

Argon laser photoagulation (488 and 514.5-nm) has been the most common standard treatment for diabetic maculopathy with DME and continues to be a treatment option even in the era of intravitreal pharmacotherapy. The ETDRS showed that laser treatment reduced the incidence of moderate vision loss by 50%. The effects of therapy are controlled by exposure time, power, spot size with a short and intense exposure time increasing risk of tissue (Bruch’s membrane) rupture and retinal hemorrhages. Long and less intense exposure times as used in treatment of some vascular malformations increase in size afterwards. A consideration of different magnification factors for contact lens is also important (Mainster focal grid (1.05), Volk area centrals (1.0) and the Goldmann 3-mirror contact glass (1.08)) induce no significant magnification. However, QuadraspHERE (1.92), SuperQuad 160 (2.0) and UltraField (1.89) need laser beam reduction by half. The retinal target should be properly focused and aligned perpendicular to the axis of the slit-lamp beam, giving a sharp laser spot on the retinal surface.

Early treatment with focal macular photoagulation before chronic macular edema ensues is recommended for maintaining good vision. Focal laser refers to a direct treatment of leaking aneurysms in the edematous retina within 3000 μm of the center of the macula. For conventional treatment, each microaneurysm is treated by a 50- to 100-μm spot and an exposure of 0.1 s, leading to spots of small chorioretinal scars. Parameters can be modified if we wish to apply subthreshold treatments.

Grid pattern laser photoagulation has been believed to increase the migration and proliferation of retinal pigment epithelium cells and endothelial cells, thus decreasing fluid exudation. Grid laser is mainly used in areas of diffuse leakage with no defined focal leakage. The grid technique is composed of burns 50–200 μm in diameter, producing a pattern of equally spaced burns and spots. Grid laser in diffuse DME has questionable long-term efficacy. Grid laser photoagulation has been an evidence-based treatment of choice for macular edema due to branch retinal vein occlusion but may now be complimented or replaced by antiangiogenic drug therapy as the first line of treatment.

Pattern scanning laser photoagulation techniques

Pattern scanning laser (PASCAL) photoagulator delivers multiple burns in a rapid predetermined sequence in the form of a pattern array produced by a scanner. The pulse duration is reduced to 10–30 ms. The aim is to optimize therapeutic effect with minimal damage to the retina tissue. In initial studies the treatment of macular edema seemed safe, comfortable and of the same efficacy as conventional laser.

For macular grid laser photoagulation, however, the single spot technique seems to be safer due to danger of eye movement during the treatment. Clinical efficacy of short pulse pattern photoagulation has been shown in macular edema associated with branch retinal vein occlusion. Immediate tissue remodeling has been found using spectral-domain and polarization-sensitive OCT. While tissue damage is minimized, healing occurs by migration and filling-in of adjacent surviving tissue rather than regeneration with inherent loss of retinal function and re-treatment limitation. However, no loss of photoreceptors in humans has been observed using adaptive optics imaging.

Subthreshold diode micropulse technique

As described above, SDM employs a unique treatment paradigm: low-intensity micropulsed laser spots are applied which, while absorbed selectively by the RPE, do not damage the RPE in any currently detectable way. Thus, focal treatment of retinal microaneurysms is not a strategy of SDM. The low-intensity treatment effect is then amplified and maximized by placement of many confluent and contiguous laser spots (high-density treatment) over the entire area of retinal pathology. In the absence of tissue damage and subsequent inflammation and healing, SDM appears to work by normalizing RPE function, likely manifest by altered cytokine expression. SDM has no known adverse treatment effects and, in the treatment of DME, has been found to be more effective than conventional photoagulation in a randomized clinical trial. In the absence of retinal damage the potential for retreatment with SDM is unlimited. SDM can be used alone or in combination with drug therapy to achieve retina-sparing disease management. Despite the absence of retinal damage or adverse treatment effects, SDM has been reported effective in the treatment of DME, proliferative diabetic retinopathy, retinal vein occlusion, central serous chorioretinopathy, and other disorders (Fig. 1).

Navigated laser photoagulation technique

Both focal and grid laser treatments of the posterior pole can now be performed using retinal eye-tracking assisted photoagulation. Navigated laser photoagulation is a safe technique that significantly increases accuracy of laser delivery to the retina. This is especially useful in focal photoagulation technique where the exact location and targeting of diabetic microaneurysms, for instance, is of crucial importance (Figs. 2–5). In accuracy of laser delivery, it significantly outperformed conventional laser photoagulation with 96% of laser applications being delivered within 100 μm from the target spot. This is believed to contribute to its clinical efficacy in focal retinovascular disease. Because of different imaging principles, the photoagulation does not require the use of contact lens and can be monitored on computer screen.

Current panretinal photoagulation (PRP)

Conventional single-spot laser PRP

The Diabetic Retinopathy Study and Early Treatment Diabetic Retinopathy Study are landmark studies that for
long have impacted clinical practice patterns.⁷,⁸ Until today, the panretinal photocoagulation is the first treatment of choice for high risk proliferative diabetic retinopathy and its complications such as rubeosis iridis. Panretinal photocoagulation, as recommended by those original randomized clinical trials, uses visible end point (whitening of the retina) achieved by recommended parameters of 500 microns spot size, one-half to one spot diameter spacing.
Figure 2. (Case 2). **LEFT PANEL:** Color fundus image of an eye with non-proliferative diabetic retinopathy and maculopathy showing dot blot hemorrhages and hard exudates in the macular area. **RIGHT PANEL:** Late phase fluorescein angiography showing multiple microaneurysms throughout the posterior pole.

Figure 3. (Case 2). **LEFT PANEL:** Optical coherence tomography thickness map of the same eye showing increased foveal thickness. **RIGHT PANEL:** Color fundus photograph of the same eye immediately after navigated focal laser photocoagulation showing a laser burn (white arrow) to the macular microaneurysm (please compare with pre-treatment color fundus photo from Fig. 2).

Figure 4. (Case 2). **UPPER PANEL:** Pre-treatment optical coherence tomography macular B-scan of the same eye showing intraretinal edema. **LOWER PANEL:** Post-treatment optical coherence tomography macular B-scan of the same eye showing resolution of the macular edema with residual intraretinal hard exudates.
and 100–200 ms duration. The whitening is caused by thermal damage in which the temperature rises 20–30 °C above baseline body temperature. A typical PRP pattern of 1200 to 1500 burns is applied in order to reduce the number of metabolically active photoreceptors as well as total oxygen consumption of the outer retina. Significant regression of retinopathy risk factors has been reported after PRP. Some modifications in argon laser technique such as light PRP (LPRP) were adopted to reduce adverse effects of heavy PRP. Other types of lasers have been used for PRP such as orange dye (600-nm) laser, red (630-nm) and yellow (580-nm) dye lasers, krypton laser, diode laser, and double-frequency Nd:YAG laser.

Pattern scanning laser photocoagulation PRP

Panretinal photocoagulation with conventional laser systems can cause a variety of side effects including peripheral field loss and decrease in central and peripheral vision due to retinal tissue destruction. The procedure can be painful for patients and is usually divided into several sessions. The short-pulse semiautomated PRP is now possible with the PASCAL photocoagulator which is capable of producing a variety of short-pulse pattern arrays (Fig. 6). Pattern PRP has significantly shortened treatment times and has been shown to produce less pain during the procedure compared to conventional lasers. Single session treatment has been reported to be of equal clinical efficacy in controlling proliferative diabetic eye disease as multiple sessions. Favorable regression rates in proliferative diabetic retinopathy have been described as well as some concerns that reduction of treatment parameters may cause failure to control proliferative disease calling for adjusting the parameters.

Subthreshold diode micropulse PRP

The subthreshold diode micropulse laser approach has been used in panretinal photocoagulation after its efficacy has been shown in DME (Fig. 7). The rationale is that the pathophysiology of diabetic retinopathy is the same in all parts of the retina. In the macula, it is manifested by diabetic macular edema and, less often, macular ischemia. In the rest of the retina it is manifested by ischemia leading to ocular

Figure 5. (Case 2). Post-treatment optical coherence tomography retinal thickness map of the same eye showing resolution of the macular edema with laser spots (left side) and follow-up scan of the same retinal section showing the amount of thickness decrease (right side) (Image series by Dr. I. Kozak).

Figure 6. (Case 3). Wide-field late phase fluorescein angiogram of an eye with aggressive proliferative diabetic retinopathy showing areas of retinal non-perfusion and active neovascularization in spite of prior pattern short-pulse panretinal photocoagulation (Image by Dr. I. Kozak).
neovascularization. Thus treatments effective against DME are hypothesized to be effective against proliferative diabetic retinopathy. Thus, it is not surprising that SDM, which is effective in the treatment of DME, has also been reported to be effective as panretinal laser treatment for PDR. In this study, the clinical response to SDM PRP appeared to be more benign than following conventional PRP, but similar to anti-VEGF therapy. This was attributed to the lack of retinal damage and subsequent inflammation. Progression of severe non-proliferative diabetic retinopathy to proliferative retinopathy also appeared reduced. There were no treatment complications or adverse effects, and no laser-induced retinal damage by FFA. However, it has since become clear that all therapeutically effective treatment modes for diabetic retinopathy, including retinal photocoagulation and intravitreal drug therapy, also slow, stop, or reverse the rate of disease progression. The unique safety profile of SDM suggests that it, or a similarly safe process, may become the first practical preventive treatment for diabetic retinopathy.

Navigated laser PRP

Panretinal photocoagulation is now possible to be performed with retinal eye-tracking (Fig. 8). Unlike treating the posterior pole of the retina with eye-tracking where we do not need the contact lens, in PRP we use a wide-field contact lens. In navigated PRP, the laser system provides a pattern positioning on the retina, independent from the imaging by using galvanometer scanners controlled by the operator via elements on the system base joystick or by placing treatment patterns on the touch screen. Unlike pattern laser systems which can use only short pulse arrays, the navigated PRP arrays can be performed with 100 ms pulse durations thereby following the original criteria from randomized clinical studies.
Targeted retinal photoocoagulation (TRP)

Targeted or selective therapy in general is any therapy aimed to block a specific target. Examples of targeted retinal therapy can be feeder vessel photoocoagulation in choroidal neovascularization or focal laser photoocoagulation in the treatment of DME. These are not new concepts and, therefore, here we would like to focus on selective retina laser therapy to areas of non-perfusion.

The idea behind targeted retinal photoocoagulation (TRP) is to selectively treat ischemic retinal areas and adjacent intermediate areas showing angiographic leakage while minimizing some of the risks and complications of conventional PRP. Wide-angle fluorescein angiography has been instrumental in identification of peripheral areas of non-perfusion and has opened the door for clinical application of TRP. It has served as a guide for TRP in recent studies. In reports by Muqit et al. TRP for proliferative diabetic retinopathy using 20-ms PASCAL did not produce increased macular thickness and paradoxically improved central retinal thickness and visual field sensitivity with reasonable neovascularization regression rate. TRP may be less effective in central retinal vein occlusion which has a different ischemic load compared to diabetic retinopathy. Spaide in a recent prospective study reported no clinical benefit using laser photoocoagulation to peripheral areas of non-perfusion visualized by wide-field angiography.

It is obvious that more prospective randomized trials are needed to assess the real benefit of TRP.

Conflict of interest

The authors declared that there is no conflict of interest.

References

1. Meyer-Schwickerath G. Light Coagulation: a method for treatment and prevention of the retinal detachment. Albert Von Graefes Arch Ophthalmol 1954;156(1):2–34.
2. Meyer-Schwickerath G. Prophylactic treatment of retinal detachment by light coagulation. Trans Ophthalmol Soc UK 1956;76:739–50.
3. Kapany NS, Peppers NA, Zweng HC, Flocks M. Retinal photoocoagulation by lasers. Nature 1963;199:146–9.
4. Noyori KS, Campbell CJ, Rittler MC, Koester C. Ocular thermal effects produced by photoocoagulation. Arch Ophthalmol 1963;70:817–22.
5. Bridges WB. Laser oscillation in singly ionized argon in visible spectrum. Appl Phys Lett 1964;4:128.
6. L’Esperance Jr FA. An ophthalmic argon laser photoocoagulation system: design, construction, and laboratory investigations. Trans Am Ophthalmol Soc 1968;66:827–904.
7. The Diabetic Retinopathy Study Research Group. Photocoagulation treatment of proliferative diabetic retinopathy: clinical application of Diabetic Retinopathy Study (DRS) findings, DRS Report Number 8. Ophthalmology 1981;88(7):583–600.
8. Early Treatment Diabetic Retinopathy Study Research Group. Techniques for scatter and local photoocoagulation treatment of diabetic retinopathy. Early Treatment Diabetic Retinopathy Study Report Number 3. Int Ophthalmol Clin 1987;27(4):254–64.
9. Macula Photocoagulation Study Group. Laser photoocoagulation for senile macular degeneration: results of a randomized clinical trial. Arch Ophthalmol 1982;100(6):912–8.
10. Holzrichter JF, Schawlow AL. Design and analysis of flashlamp systems for pumping organic dye lasers. Ann N Y Acad Sci 1969;168(3):703–14.
11. Manson N, Marshall J, Mellerio J, Smart D. Comments on histological studies of gas laser lesions in humans and possible non-linear optical phenomena, together with experiments using a tuneable dye laser. Mod Probl Ophthalmol 1972;10:114–28.
12. Little HL, Zweng HC, Peabody RR. Argon laser slit-lamp retinal photoocoagulation. Trans Am Acad Ophthalmol Otolaryngol 1970;74(1):85–97.
13. Morgan CM, Schatz H. Atrophic creep of the retinal pigment epithelium after focal macular photoocoagulation. Ophthalmology 1987;94(1):96–103.
14. McDonald HR, Schatz H. Macular edema following panretinal photoocoagulation. Retina 1985;5(1):5–10.
15. Frank RN. Visual fields and electroretinography following extensive photoocoagulation. Arch Ophthalmol 1975;93(8):591–8.
16. McDonald HR, Schatz H. Visual loss following panretinal photoocoagulation for proliferative diabetic retinopathy. Ophthalmology 1985;92(3):388–93.
17. Akduman I, Orl RJ. Subthreshold (modified grid) diode laser photoocoagulation in diffuse diabetic macular edema (DDME). Ophthalmic Surg Lasers 1999;30(9):706–14.
18. Orl RJ, Friberg TR, Stickney KL, Akduman I, Wong KL, Chen MC, et al. Ophthalmology 1999;106(11):2082–90.
19. Luttrull JK, Dorin G. Subthreshold diode micropulse photoocoagulation as invisible retinal phototherapy for diabetic macular edema. A review. Curr Diab Rev 2012;8:274–84.
20. Roeder J, Hillenkamp F, Flotte TJ, Birngruber R. Microphotoocoagulation: selective effects of repetitive short laser pulses. Proc Natl Acad Sci USA 1993;90(1):2037–8.
21. Pankratov MM. Pulsed delivery of laser energy in experimental thermal retinal photoocoagulation. Proc Soc Photo Opt Instrum Eng 1990;1202:205–13.
22. Dorin G. Subthreshold and micropulse photoocoagulation. Semin Ophthalmol 2003;18:147–53.
23. Roeder J, Michaud NA, Flotte TJ, Birngruber R. Response of the retinal pigment epithelium to selective photoocoagulation. Arch Ophthalmol 1992;110(12):1786–92.
24. Vujeovic S, Bottega E, Casciano M, Pilotto E, Convento E, Midena E. Microperimetry and fundus autofluorescence in diabetic macular edema. Subthreshold micropulse diode laser versus modified Early Treatment Diabetic Retinopathy Study Laser photoocoagulation. Retina 2010;30:908–16.
25. Roeder J, Brinkmann R, Wirbelauer C, Laqua H, Birngruber R. Subthreshold (retinal pigment epithelium) photoocoagulation in macular diseases: a pilot study. Br J Ophthalmol 2000;84(1):40–7.
26. Brinkmann R, Roeder J, Birngruber R. Selective retina therapy (SRT): a review on methods, techniques, preclinical and first clinical results. Bull Soc Belge Ophthalmol 2006;302:51–69.
27. Journée-de Korver JG, Oosterhius JA, Kakebeeke-Kemme HM, de Wolff-Rouendaal D. Transpupillary thermotherapy (TTT) by infrared irradiation of choroidal melanoma. Doc Ophthalmol 1992;82(3):185–91.
28. Kwon HJ, Ko JS, Kim M, Lee CS, Lee SC. Prognosis of choroidal melanoma and the result of ruthenium brachytherapy combined with transpupillary thermotherapy in Korean patients. Br J Ophthalmol 2013;97(5):653–6.
29. Squirell DM, Stewart AW, Joondph BC, et al. Large-spot subthreshold infrared laser to treat diabetic macular edema. Retina 2001;21(3):165–21.
30. Kliman GH, Puliafito CA, Stern D, Borirakchanayavat S, Gregory WA. Pthalocyanine photodynamic therapy: new strategy for closure of choroidal neovascularization. Lasers Surg Med 1994;15(1):2–10.
31. Schmidt-Erfurth U, Hasan T, Gragoudas E, Birngruber R. Selective occlusion of subretinal neovascularization with photodynamic therapy. Ophthalmology 1994;101(6):789–95.
32. Miller JW, Walsh AW, Kramer M, Hasan T, Michaud N, Flotte TJ, et al. Photodynamic therapy of experimental choroidal neovascularization using lipoprotein-delivered benzoporphyrin. Arch Ophthalmol 1999;117(6):810–8.
33. Bressler NM. Treatment of age-related macular degeneration with photodynamic therapy (TAP) Study group. Arch Ophthalmol 2001;119(2):198–207.
34. Luttrull JK, Spink CJ. Prolonged choroidal hypofluorescence following verteporfin photodynamic therapy combined with
intravitreal triamcinolone acetonide injection. Retina 2007;27(6):688–92.

35. Blumenkranz MS, Yellachich D, Andersen DE, Wilbarger MW, Mordaut D, Marcellino GR, et al. Semi-automated patterned scanning laser for retinal photocoagulation. Retina 2006;26(2):370–6.

36. Muqit MM, Marcellino GR, Gray JC, McLauchlan R, Henson DB, Young LB, et al. Pain responses of Pascal 20 ms multi-spot and 100 ms single-spot panretinal photocoagulation: Manchester Pascal Study, MAPASS report 2. Br J Ophthalmol 2010;94(11):1493–8.

37. Nagpal M, Marlecha S, Nagpal K. Comparison of laser photocoagulation for diabetic retinopathy using 532-nm standard laser versus multiphoton pattern scan laser. Retina 2010;30(3):452–6.

38. Liebsfeld B, Ambrus KJ, Dowell D, Weber U, Teives W. Navigating comfortably across the retina. IFMBE Proc 2009;25(1):243–6.

39. Kozak I, Oster SF, Cortes MA, Dowell D, Hartmann K, Kim JS, et al. Clinical evaluation and treatment accuracy in diabetic macular edema using navigated laser photocoagulator NAVILAS. Ophthalmology 2011;118(6):1119–24.

40. Kernt M, Cheuteu RE, Cserhati S, Seidensticker F, Liegl RG, Lang J, et al. Pain and accuracy of focal laser treatment for diabetic macular edema using a retinal navigated laser (Navilas). Clin Ophthalmol 2012;6:289–96.

41. Ober MD, Kernt M, Cortes MA, Kozak I. Time required for navigated macular laser photocoagulation treatment with the Navilas. Graefes Arch Clin Exp Ophthalmol 2013;251(4):1049–53.

42. Lee CM, Olk RJ. Modified grid laser photocoagulation for diffuse diabetic macular edema: long-term visual results. Ophthalmology 1991;98:1594–602.

43. The Branch Vein Occlusion Study Group. Argon laser photocoagulation for diabetic macular edema. Early Treatment Diabetic Retinopathy Study Report Number 1. Arch Ophthalmol 1985;103:1796–806.

44. Lee CM, Olk RJ. Modified grid laser photocoagulation for diffuse diabetic macular edema: long-term visual results. Ophthalmology 1991;98:1594–602.

45. The Branch Vein Occlusion Study Group. Argon laser photocoagulation for diabetic macular edema in branch vein occlusion. Am J Ophthalmol 1984;98(3):271–82.

46. Bandello F, Brancato R, Menchini U, Virgili G, Lanzetta P, Ferrari E, et al. Light panretinal photocoagulation (LPRP) versus classic panretinal photocoagulation (CRP) in proliferative diabetic retinopathy. Semin Ophthalmol 2001;16(1):12–8.

47. Bandello F, Brancato R, Lattanzio R, Malegori A. Diode versus argon-green laser panretinal photocoagulation in proliferative diabetic retinopathy: a randomized study in 44 eyes with a long follow-up time. Graefes Arch Clin Exp Ophthalmol 1993;231(9):491–4.

48. Bandello F, Brancato R, Lattanzio R, Trabucchi G, Azzolini C, Malegori A. Double-frequency Nd:YAG laser versus argon-green laser in the treatment of proliferative diabetic retinopathy: randomized study with long-term follow-up. Lasers Surg Med 1996;19(2):173–6.

49. Muqit MM, Marcellino GR, Henson DB, Young LB, Patton N, Charles SJ, et al. Single-session vs multiple-session pattern scanning laser panretinal photocoagulation in proliferative diabetic retinopathy: Manchester Pascal Study. Arch Ophthalmol 2010;128(5):525–33.

50. Muqit MM, Marcellino GR, Henson DB, Young LB, Turner GS, Stanga PE. Pascal panretinal laser ablation and regression analysis in proliferative diabetic retinopathy: Manchester Pascal Study Report 4. Eye 2011;25(1):1144–56.

51. Chappelow AV, Tan HL, Waheed NK, Kaiser PK. Panretinal photocoagulation for proliferative diabetic retinopathy: pattern scan laser versus argon laser. Am J Ophthalmol 2012;153(1):137–42.

52. Luttrull JK, Spink CJ, Musch DA. Subthreshold diode micropulse panretinal photocoagulation for proliferative diabetic retinopathy. Eye 2008;22(5):60.

53. Bressler SB, Qin H, Mella M, Bressler NM, Beck RW, Chan CK, et al. Diabetic Retinopathy Clinical Research Network. Exploratory analysis of the effect of intravitreal ranibizumab or triamcinolone on worsening of diabetic retinopathy in a randomized clinical trial. JAMA Ophthalmol 2013;131(8):1033–40.

54. Kozak I, Chhablani J, Mathai A, Rani P, Alshahrani S, Gupta V, et al. Comparison of the visible effect on the fundus after peripheral laser photocoagulation between conventional pattern laser and Navilas, presented at the 13th EURETINA Congress, Hamburg, Germany, September 26–29, 2013.

55. Blakenship GW. A clinical comparison of central and peripheral argon laser panretinal photocoagulation for proliferative diabetic retinopathy. Arch Ophthalmol 1993;111(2):244–7.

56. Reddy S, Hu A, Schwartz SD. Ultra-wide field fluoroscein angiography guided targeted retinal photocoagulation (TRP). Semin Ophthalmol 2009;24:9–14.

57. Manivannan A, Piskova J, Farrow A, Mckay S, Sharp PF, Forrester JV. Ultra-wide-field fluorescein angiography of the oculus fundus. Am J Ophthalmol 2005;140(3):525–57.

58. Mackenzie PJ, Reid S, Ma PE, Isbister CM, Maberley DA. Sensitivity and specificity of the Optos optomap for detecting peripheral retinal lesions. Retina 2007;27(8):1119–24.
77. Friberg TR, Gupta A, Yu J, Huang L, Suner I, Puliafito CA, et al. Ultrawide angle fluorescein angiographic imaging: a comparison to conventional digital acquisition systems. *Ophthalmic Surg Lasers Imaging* 2008;39(4):304–11.

78. Muqit MM, Young LB, McKenzie R, John B, Marcellino GR, Henson DB, et al. Pilot randomized clinical trial of Pascal TargETEd Retinal versus variable fluence PANretinal 20 ms laser in diabetic retinopathy: PETER PAN study. *Br J Ophthalmol* 2013;97(2):220–7.

79. Muqit MM, Marcellino GR, Henson DB, Young LB, Patton N, Charles SJ, et al. Optos-guided pattern scan laser (Pascal)-targeted retinal photocoagulation in proliferative diabetic retinopathy. *Acta Ophthalmol* 2013;91(3):251–8.

80. Spaide RF. Prospective study of peripheral panretinal photocoagulation of areas of nonperfusion in central retinal vein occlusion. *Retina* 2013;33(1):56–62.