Energy correlation and asymmetry of secondary leptons originating in

\[H \rightarrow t\bar{t} \] and \[H \rightarrow W^+W^- \]

T. Arens, U.D.J. Gieseler and L.M. Sehgal

III. Physikalisches Institut (A), RWTH Aachen,

D-52074 Aachen, Germany

Abstract

We study the energy correlation of charged leptons produced in the decay of a heavy Higgs particle \(H \rightarrow t\bar{t} \rightarrow b^+\nu_l\bar{b}l^-\bar{\nu}_l \) and \(H \rightarrow W^+W^- \rightarrow l^+\nu_l l^-\bar{\nu}_l \). The possible influence of \(CP \)-violation in the \(Ht\bar{t} \) and \(HW^+W^- \) vertices on the energy spectrum of the secondary leptons is analyzed. The energy distribution of the charged leptons in the decay \(H \rightarrow W^+W^- \rightarrow l^+\nu_l l^-\bar{\nu}_l \) is sensitive to the \(CP \)-parity of the Higgs particle and yields a simple criterion for distinguishing scalar Higgs from pseudoscalar Higgs.
1 Introduction

We wish to report results on the energy spectrum and energy correlation of charged lepton produced in the reactions

\begin{align*}
H \rightarrow t\bar{t} \rightarrow bl^+\nu_l\bar{b}l^-\bar{\nu}_l, \quad (1) \\
H \rightarrow W^+W^- \rightarrow l^+\nu_l\bar{l}^-\bar{\nu}_l. \quad (2)
\end{align*}

The above decays represent interesting leptonic signals of a heavy Higgs particle, that can be used to test the structure of Higgs couplings to fermions and gauge bosons [1]. (Note that the reaction (2), in the standard model, is about 27 times more frequent than the “gold-plated” reaction \(H \rightarrow ZZ \rightarrow \mu^+\mu^-\mu^+\mu^- \)). We carry out the analysis in a general framework in which the couplings of the \(H \) to \(t\bar{t} \) and to \(W^+W^- \) are given by:

\begin{align*}
Ht\bar{t} &: \quad i(a + ib\gamma_5), \quad (3) \\
HW^+W^- &: \quad i2m_W^2\sqrt{G_F}\sqrt{2}(Bg_{\mu\nu} + \frac{D}{m_W^2}\epsilon_{\mu\nu\rho\sigma}p_{W^+}^\rho p_{W^-}^\sigma). \quad (4)
\end{align*}

Here \(p_{W^+} \) and \(p_{W^-} \) are the 4–momenta of the \(W \)–bosons. The terms proportional to \(b \) and \(D \) may arise as primary or induced effects in a generalized Higgs framework. Simultaneous presence of \(a \) and \(b \) or \(B \) and \(D \) is \(CP \)–violating [2]. Results will be obtained for the energy correlation of the two charged leptons in the \(H \) rest frame. A special result is a simple criterion for distinguishing a scalar Higgs from a pseudoscalar Higgs particle on the basis of the energy spectrum of any single charged lepton in \(H \rightarrow W^+W^- \rightarrow l^+\nu_l\bar{l}^-\bar{\nu}_l. \)
The vertex $Ht\bar{t}$ (Eq. (3)) gives rise to the following differential decay rate for $H(P) \rightarrow t(p_t, s_+)\bar{t}(p_{\bar{t}}, s_-)$:

\[
\frac{d\Gamma}{d\Omega_x}(s_+, s_-) = \frac{\beta_t}{64\pi^2 m_H} \left\{ (|a|^2 + |b|^2)(\frac{m_H^2}{2} - m_t^2 + m_t^2 s_+ s_-) + (|a|^2 - |b|^2)(P_{s_+} P_{s_-} - \frac{m_H^2}{2} s_+ s_- + m_t^2 s_+ s_- - m_t^2) - \text{Re}(ab^*) \varepsilon(Q, s_+, s_-) - 2\text{Im}(ab^*) m_t P(s_+ + s_-) \right\},
\]

(5)

where $P \equiv p_t + p_{\bar{t}}$, $Q = p_t - p_{\bar{t}}$, and s_+ and s_- denote the polarization vectors of t and \bar{t}, respectively. $\beta_t = \sqrt{1 - 4m_t^2/m_H^2}$ is the velocity of the top quarks in the Higgs rest frame. The symbol $\varepsilon(a, b, c, d)$ means $\varepsilon_{\mu\nu\rho\sigma} a^\mu b^\nu c^\rho d^\sigma$ with $\varepsilon_{0123} = +1$. The terms proportional to $\text{Re}(ab^*)$ and $\text{Im}(ab^*)$ represent the CP–violating part of the differential decay rate.

Using the method of Kawasaki, Shirafuji and Tsai [3], the differential decay rate $\frac{d\Gamma}{d\Omega_x}(s_+, s_-)$ yields the following normalized energy correlation of the charged leptons produced in the decay $H \rightarrow t\bar{t} \rightarrow l^+l^- + \cdots$ [F 1]:

\[
\frac{1}{\Gamma} \frac{d\Gamma}{dx dx'}(H \rightarrow t\bar{t} \rightarrow l^+l^- + \cdots) = f(x) f(x') - \frac{1}{\beta_t^2} g(x) g(x') + \frac{2\text{Im}(ab^*)}{|a|^2 \beta_t^2 + |b|^2} \left[f(x') g(x) - f(x) g(x') \right],
\]

(6)

where x and x' are the reduced energies

\[
x = \frac{2E(l^+)}{m_t} \sqrt{\frac{1 - \beta_t}{1 + \beta_t}}, \quad x' = \frac{2E(l^-)}{m_t} \sqrt{\frac{1 - \beta_t}{1 + \beta_t}},
\]

(7)

$E(l^+)$ and $E(l^-)$ being the energies of the final leptons l^+ and l^- in the Higgs rest frame. x and x' are bounded by

\[
\frac{m_W^2}{m_t^2} \frac{1 - \beta_t}{1 + \beta_t} \leq x, x' \leq 1,
\]

(8)
assuming the narrow width approximation for the W–bosons in the top decay. The functions f and g are defined as follows (see [4]):

1. \[\frac{m_W^2}{m_t^2} \geq \frac{1 - \beta_t}{1 + \beta_t} \]

\[
f(x) = \frac{3}{2W} \frac{\beta_t}{1 + \beta_t} \begin{cases}
-2 \frac{m_W^2}{m_t^2} + \frac{m_W^4}{m_t^4} + 2x \frac{1 + \beta_t}{1 - \beta_t} - x^2 \left(\frac{1 + \beta_t}{1 - \beta_t} \right)^2 & : I_1 \\
1 - 2 \frac{m_W^2}{m_t^2} + \frac{m_W^4}{m_t^4} & : I_2 \\
1 - 2x + x^2 & : I_3
\end{cases}
\]

\[
g(x) = \frac{3}{W} \frac{(1 + \beta_t)^2}{\beta_t} \begin{cases}
-x \frac{m_W^2}{m_t^2} + x^2 \frac{1 + \beta_t}{1 - \beta_t} + x \ln \frac{m_W^2}{m_t^2} - x \ln \left(\frac{1 + \beta_t}{1 - \beta_t} \right) + \frac{1}{2} \left[-2 \frac{m_W^2}{m_t^2} + \frac{m_W^4}{m_t^4} + 2x \frac{1 + \beta_t}{1 - \beta_t} - x^2 \left(\frac{1 + \beta_t}{1 - \beta_t} \right)^2 \right] & : I_1 \\
x - x \frac{m_W^2}{m_t^2} + x \ln \frac{m_W^2}{m_t^2} + \frac{1}{2} \left[-2 \frac{m_W^2}{m_t^2} + \frac{m_W^4}{m_t^4} \right] & : I_2 \\
x - x^2 + x \ln x + \frac{1}{2} \left[1 - 2x + x^2 \right] & : I_3
\end{cases}
\]

where the intervals I_i are given by:

\[
I_1 : \frac{m_W^2}{m_t^2} \frac{1 - \beta_t}{1 + \beta_t} \leq x \leq \frac{1 - \beta_t}{1 + \beta_t}, \\
I_2 : \frac{1 - \beta_t}{1 + \beta_t} \leq x \leq \frac{m_W^2}{m_t^2}, \\
I_3 : \frac{m_W^2}{m_t^2} \leq x \leq 1.
\]

2. \[\frac{m_W^2}{m_t^2} \leq \frac{1 - \beta_t}{1 + \beta_t} \]

\[
f(x) = \frac{3}{2W} \frac{1 + \beta_t}{\beta_t} \begin{cases}
-2 \frac{m_W^2}{m_t^2} + \frac{m_W^4}{m_t^4} + 2x \frac{1 + \beta_t}{1 - \beta_t} - x^2 \left(\frac{1 + \beta_t}{1 - \beta_t} \right)^2 & : I_4 \\
-2x + x^2 + 2x \frac{1 + \beta_t}{1 - \beta_t} - x^2 \left(\frac{1 + \beta_t}{1 - \beta_t} \right)^2 & : I_5 \\
1 - 2x + x^2 & : I_6
\end{cases}
\]
\[g(x) = \frac{3}{W} \frac{(1 + \beta_t)^2}{\beta_t} \begin{cases}
-x^2 + x^2 \frac{1 + \beta_t}{1 - \beta_t} + x \ln \frac{m_W^2}{m_t^2} - x \ln \left(\frac{1 + \beta_t}{1 - \beta_t} \right)
+ \frac{1}{2} \left[-2 \frac{m_W^2}{m_t^2} + \frac{m_W^4}{m_t^4} + 2x \frac{1 + \beta_t}{1 - \beta_t} - x^2 \left(\frac{1 + \beta_t}{1 - \beta_t} \right)^2 \right] & : I_4 \\
-x^2 + x^2 \frac{1 + \beta_t}{1 - \beta_t} + x \ln \frac{1 - \beta_t}{1 + \beta_t} + \frac{1}{2} \left[-2x + x^2 \right]
+ 2x \frac{1 + \beta_t}{1 - \beta_t} - x^2 \left(\frac{1 + \beta_t}{1 - \beta_t} \right)^2 & : I_5 \\
x - x^2 + x \ln x + \frac{1}{2} \left[1 - 2x + x^2 \right] & : I_6
\end{cases} \]

with the intervals \(I_i \):

\[\begin{align*}
I_4 & : \quad \frac{m_W^2}{m_t^2} \frac{1 - \beta_t}{1 + \beta_t} \leq x \leq \frac{m_W^2}{m_t^2}, \\
I_5 & : \quad \frac{m_W^2}{m_t^2} \leq x \leq \frac{1 - \beta_t}{1 + \beta_t}, \\
I_6 & : \quad \frac{1 - \beta_t}{1 + \beta_t} \leq x \leq 1,
\end{align*} \]

and

\[W = \left(1 - \frac{m_W^2}{m_t^2} \right)^2 \left(1 + 2 \frac{m_W^2}{m_t^2} \right). \tag{9} \]

The normalizations of \(f \) and \(g \) are

\[\int f(x) dx = 1, \]
\[\int g(x) dx = 0. \tag{10} \]

The functions \(f \) and \(g \) represent the spin–independent and spin–dependent parts of the lepton spectrum in \(t \)--decay. Eq. (6) can also be written as

\[\frac{1}{\Gamma} \frac{d\Gamma}{dx dx'} (H \rightarrow t\bar{t} \rightarrow l^+ l^- + \cdots) = S_t(x, x') + \Delta A_t(x, x'), \tag{11} \]
where
\[S_t(x, x') = f(x)f(x') - \frac{1}{\beta_t^2} g(x)g(x'), \]
\[A_t(x, x') = f(x')g(x) - f(x)g(x'), \]
\[\Delta = \frac{2\text{Im}(ab^*)}{|a|^2\beta_t^2 + |b|^2}. \] (12)

\(S_t(x, x') \) and \(A_t(x, x') \) represent the symmetric and antisymmetric part of the energy correlation. These are plotted in Figs. (1a) and (1b).

The symmetric (\(CP \)-conserving) part of the two–dimensional distribution \(\frac{1}{\Gamma} \frac{d\Gamma}{dx dx'} \) does not depend on the coupling constants \(a \) and \(b \). This means that in the \(CP \)-conserving limit the energy correlation of secondary leptons arising from \(H \to t\bar{t} \) is independent of the \(CP \)-parity of the decaying Higgs particle.

Integration over \(x \) or \(x' \) yields the single lepton energy spectra
\[\frac{1}{\Gamma} \frac{d\Gamma}{dx} (H \to t\bar{t} \to l^\pm + \cdots) = f(x) \pm \Delta g(x). \] (13)

Eq. (13) agrees with the energy spectrum obtained by Chang and Keung using a different method. The single energy spectra are plotted in Fig. 2. The parameter \(\Delta \) is calculated within a 2–Higgs Doublet Model in Refs. [5, 6].

3 \(H \to W^+W^- \)

The differential decay rate for the reaction \(H(P) \to W^+W^- \to l^+(q_1)\nu_l(q_2)l^-(q_3)\bar{\nu}_l(q_4) \), arising from the \(HW^+W^- \) vertex given in Eq. (4), is
\[d^8\Gamma = 8\sqrt{2} \frac{G_F}{m_H} D_W \left[|B|^2 S + \frac{|D|^2}{m_W^4} P + \frac{\text{Re}(BD^*)}{m_W^2} Q - \frac{\text{Im}(BD^*)}{m_W^2} R \right] \cdot dLips. \] (14)

The Lorentz invariant phase space is given by
\[dLips = (2\pi)^4 \delta^{(4)}(P - q_1 - q_2 - q_3 - q_4) \prod_{i=1}^{4} \frac{d^3q_i}{(2\pi)^3 2q_i^0}. \] (15)
In the massless fermion approximation,

\[S = (q_2 \cdot q_3)(q_1 \cdot q_4), \]
\[P = -\left\{ (q_2 \cdot q_3)(q_1 \cdot q_4) - (q_2 \cdot q_4)(q_1 \cdot q_3) \right\}^2 + \frac{m_W^4}{4} \left\{ (q_2 \cdot q_3)^2 + (q_1 \cdot q_4)^2 + 2(q_2 \cdot q_4)(q_1 \cdot q_3) - \frac{m_W^4}{4} \right\}, \]
\[Q = \varepsilon(q_1, q_2, q_3, q_4) \left\{ (q_2 \cdot q_3) + (q_1 \cdot q_4) \right\}, \]
\[R = \left\{ (q_2 \cdot q_3) - (q_1 \cdot q_4) \right\} \left(\frac{m_W^4}{4} + (q_2 \cdot q_3)(q_1 \cdot q_4) - (q_2 \cdot q_4)(q_1 \cdot q_3) \right), \] (16)

while \(D_W \) is the propagator factor

\[D_W = m_W^4 \prod_{j=1}^2 \frac{g^2}{(s_j - m_W^2)^2 + m_W^2 \Gamma_W^2}, \] (17)

with \(s_1 = (q_1 + q_2)^2, s_2 = (q_3 + q_4)^2 \). In the narrow width approximation, the total decay rate is given by

\[\Gamma(H \to W^+W^- \to l^+\nu l^-\bar{\nu}) = \frac{g^6 m_H^3 \beta_W}{9 \cdot 2^{16} \pi^3 \Gamma_W^2} \left\{ 1 \right\} |B|^2 (3 - 2\beta_W^2 + 3\beta_W^4) + 8 |D|^2 \beta_W^2, \] (18)

in agreement with the result of Osland and Skjold \[1\].

We now introduce scaled energy variables in the \(H \) rest frame:

\[y = \frac{4E(l^+)}{m_H}, \quad y' = \frac{4E(l^-)}{m_H}, \] (19)

which are bounded by

\[1 - \beta_W \leq y, y' \leq 1 + \beta_W, \] (20)

where \(\beta_W = \sqrt{1 - 4m_W^2/m_H^2} \). The two-dimensional spectrum in the variables \(y \) and \(y' \) is then given by

\[
\frac{1}{\Gamma} \frac{d\Gamma}{dydy'}(H \to W^+W^- \to l^+\nu l^- + \cdots) = \frac{1}{|B|^2 (3 - 2\beta_W^2 + 3\beta_W^4) + 8 |D|^2 \beta_W^2} \cdot \frac{9}{32 \beta_W^6}.
\]
\[
\left\{ |B|^2 \left[(3 + 2\beta_W^2 + 3\beta_W^4)((y - 1)^2 - \beta_W^2)((y' - 1)^2 - \beta_W^2) + 2\beta_W^2(1 - \beta_W^2)^2(y - y')^2 \right] + 4\beta_W^2|D|^2 \left[((y - 1)^2 + \beta_W^2)((y' - 1)^2 + \beta_W^2) - 4\beta_W^2(y - 1)(y' - 1) \right] + 8\beta_W^2\text{Im}(BD^*)(1 - \beta_W^2) \left[\beta_W^2 - (y - 1)(y' - 1) \right] \right\}. \tag{21}
\]

Neglecting terms proportional to $|D|^2$, the correlation can be written as

\[
\frac{1}{\Gamma} \frac{d\Gamma}{dydy'}(H \to W^+W^- \to l^+l^- + \cdots) = S_W(y, y') + \frac{\text{Im}(BD^*)}{|B|^2} A_W(y, y') + O(|D|^2/|B|^2). \tag{22}
\]

Here $S_W(y, y')$ and $A_W(y, y')$ represent the symmetric and antisymmetric parts of the energy correlation of the charged leptons, the latter being multiplied by the CP–violating coefficient $\text{Im}(BD^*)/|B|^2$. These functions are plotted in Figs. (3a) and (3b).

There is an interesting difference in the energy characteristics of the leptons emanating from $H \to W^+W^- \to l^+\nu_l l^-\bar{\nu}_l$, dependent on whether H is a scalar (0^+) or pseudoscalar (0^-) particle. The correlated energy spectrum of the l^+l^- pair can be derived from Eq. (21) by taking $D = 0$ (scalar case) or $B = 0$ (pseudoscalar case), with the result

\[
\frac{1}{\Gamma} \frac{d\Gamma(0^+)}{dydy'} = S_W(y, y') = \frac{9}{32\beta_W^6} \frac{1}{3 - 2\beta_W^2 + 3\beta_W^4} \left[2\beta_W^2(1 - \beta_W^2)^2(y - y')^2 + (3 + 2\beta_W^2 + 3\beta_W^4)((y - 1)^2 - \beta_W^2)((y' - 1)^2 - \beta_W^2) \right], \tag{23}
\]

\[
\frac{1}{\Gamma} \frac{d\Gamma(0^-)}{dydy'} = P_W(y, y') = \frac{9}{64\beta_W^6} \left[((y - 1)^2 + \beta_W^2)((y' - 1)^2 + \beta_W^2) - 4\beta_W^2(y - 1)(y' - 1) \right]. \tag{24}
\]

These two functions are strikingly different, as shown in Figs. (3a) and (3c). This difference persists even if we consider the energy spectrum of a single lepton. Inte-
grating Eqs. (23, 24) over \(y' \), we have

\[
\frac{1}{\Gamma} \frac{d\Gamma(0^+)}{dy} = \frac{3}{2\beta_W} \frac{1 + \beta_W^4 - 2(y - 1)^2}{3 - 2\beta_W^2 + 3\beta_W^4}, \tag{25}
\]

\[
\frac{1}{\Gamma} \frac{d\Gamma(0^-)}{dy} = \frac{3}{8\beta_W^3} (\beta_W^2 + (y - 1)^2). \tag{26}
\]

These distributions are clearly quite distinct (Fig. 4) and provide a simple criterion for distinguishing \(0^+ \) and \(0^- \) objects decaying into \(W^+W^- \) pairs. Indeed, the single lepton spectra (Eqs. (25), (26)) are also valid for the inclusive process \(H \to W^+W^- \to l^\pm X \), where only one of the \(W \)–bosons decays leptonically. The difference in the lepton energy spectrum for the \(0^+ \) and \(0^- \) cases is intimately related to the different helicity structure of the \(W \)–bosons produced in the two cases [8]. It should be stressed that the correlations and spectra given above (Eqs. (21)–(26)) refer directly to energies measured in the \(H \) rest frame, and do not require reconstruction of the decay planes of \(W^+ \) and \(W^- \). In this respect, the present criterion provides a useful alternative to other criteria that have recently been proposed in the literature [8, 9]. Finally, we note that the energy spectrum in the \(0^+ \) case agrees with that obtained by Chang and Keung [3], after correction of a minor typographical error [F 2].

One of us (T.A.) acknowledges a stipend from the NRW Graduiertenförderungsprogramm. This research has been supported by the BMFT (German Ministry of Research and Technology).
Footnotes

[F 1] Some of the essential steps in the procedure of Ref. [3] can be found in Ref. [4].

[F 2] Eq. (15) of Ref. [4] should read

\[
\frac{1}{N} \frac{dN}{dx(l^\pm)} = \left(\frac{(1 + \beta_W^2)^2}{3 - 2\beta_W^2 + 3\beta_W^4} \right) \frac{3[\beta_W^2 - (1 - x)^2]}{4\beta_W^4} + \sum_{s=-1,+1} \ldots
\]
References

[1] J.R. Dell’Aquila and C.A. Nelson, Phys. Rev. D33 (1986) 80, 93, 101; Nucl. Phys. B320 (1989) 86;
 D. Chang, W.–Y. Keung and I. Phillips, Phys. Rev. D48 (1993) 3225;
 X.–G. He, J.P. Ma and B. McKellar, Mod. Phys. Lett. A9 (1994) 205;
 A. Soni and R.M. Xu, Phys. Rev. D48 (1993) 5259;
 T. Matsuura and J.J. van der Bij, Z. Phys. C51 (1991) 259

[2] C.R. Schmidt and M.E. Peskin, Phys. Rev. Lett. 69 (1992) 410;
 W. Bernreuther and A. Brandenburg, Phys. Lett. B314 (1993) 104

[3] S. Kawasaki, T. Shirafuji and S.Y. Tsai, Prog. Theor. Phys. 49 (1973) 1656;
 S.Y. Tsai, Phys. Rev. D4 (1971) 2821

[4] T. Arens and L.M. Sehgal, “Energy correlation and asymmetry of secondary leptons in $e^+e^- \rightarrow t\bar{t}$”, Aachen preprint PITHA 94/14, submitted to Phys. Rev. D; Nucl. Phys. B393 (1993) 46

[5] D. Chang and W.–Y. Keung, Phys. Lett. B305 (1993) 261

[6] B. Grządkowski, Warsaw preprint, IFT 07/94

[7] A. Skjold and P. Osland, Phys. Lett. B311 (1993) 261; Phys. Lett. B329 (1994) 305

[8] M. Krämer, J. Kühn, M.L. Stong and P.M. Zerwas, DESY preprint 93-174

[9] V. Barger, K. Cheung, A. Djouadi, B.A. Kniehl and P.M. Zerwas, Phys. Rev. D49 (1994) 79

11
Figure Captions

Fig. 1. CP–conserving (a) and CP–violating (b) part of the normalized energy correlation in the decay $H \rightarrow t\bar{t} \rightarrow l^+l^- + \cdots$ for $m_H = 400$ GeV and $m_t = 150$ GeV.

Fig. 2. Single particle energy spectra of l^+ (dotted curve) and l^- (full curve) in the decay $H \rightarrow t\bar{t}$ for $\Delta = 0.1$, $m_H = 400$ GeV and $m_t = 150$ GeV.

Fig. 3. CP–conserving (a) and CP–violating (b) part of the normalized energy correlation in the decay $H \rightarrow W^+W^- \rightarrow l^+l^- + \cdots$ for $m_H = 300$ GeV. Fig. 3(c) shows the normalized energy correlation for the decay of a pseudoscalar Higgs $H \rightarrow W^+W^- \rightarrow l^+l^- + \cdots$ for $m_H = 300$ GeV.

Fig. 4. Energy distribution of a single lepton in the decay $H \rightarrow W^+W^- \rightarrow l^\pm + \cdots$ for $m_H = 300$ GeV. The full curve represents the scalar case and the dotted curve shows the pseudoscalar case.
This figure "fig1-1.png" is available in "png" format from:

http://arxiv.org/ps/hep-ph/9408316v1
This figure "fig2-1.png" is available in "png" format from:

http://arxiv.org/ps/hep-ph/9408316v1
This figure "fig3-1.png" is available in "png" format from:

http://arxiv.org/ps/hep-ph/9408316v1
This figure "fig4-1.png" is available in "png" format from:

http://arxiv.org/ps/hep-ph/9408316v1
This figure "fig1-2.png" is available in "png" format from:

http://arxiv.org/ps/hep-ph/9408316v1
This figure "fig3-2.png" is available in "png" format from:

http://arxiv.org/ps/hep-ph/9408316v1
\[\Gamma^{-1} \frac{d\Gamma}{dx} (H \rightarrow t\bar{t} \rightarrow l^\pm + \ldots) \]

\[m_H = 400 \text{ GeV} \]
\[m_t = 150 \text{ GeV} \]
\[\Delta = 0.1 \]

Fig. 2.
$\Gamma^{-1} \frac{d\Gamma}{dy} (H \rightarrow W^+ W^- \rightarrow l^\pm + ...)$

Fig. 4.
This figure "fig3-3.png" is available in "png" format from:

http://arxiv.org/ps/hep-ph/9408316v1
$S_W(y, y')$

$m_h = 300$ GeV

Fig. 3(a).
$A_W(y, y^l)$

$m_H = 300 \text{ GeV}$

Fig. 3(b).
$P_w(y, y')$

$m_H = 300 \text{ GeV}$

Fig. 3(c).
$S_t(x, x^1)$

$m_H = 400 \text{ GeV}$

$m_t = 150 \text{ GeV}$

Fig. 1(a).
\[A_r(x, x^l) \]

\(m_H = 400 \text{ GeV} \)
\(m_\tau = 150 \text{ GeV} \)

Fig. 1(b).