Concise Review: Vascular Stem Cells and Tumor Angiogenesis

JUAN M. MELERO-MARTIN, ANDREW C. DUDLEY

Department of Cardiac Surgery and Vascular Biology Program, Children’s Hospital Boston, Boston, Massachusetts; Department of Surgery, Harvard Medical School, Boston, Massachusetts

Key Words. Tumor • Angiogenesis • Stem cells • Adult stem cells • Mesenchymal stem cells • Bone marrow • Tumor stroma • Hematopoietic stem cells • Endothelial progenitor cells • Tumor microenvironment

ABSTRACT

Solid tumors are complex “organs” of cancer cells and a heterogeneous population of hematopoietic cells, mesenchymal cells, and endothelial cells. The cancer stem cell model proposes that tumor growth and progression is driven by rare populations of cancer stem cells; however, nontumor-forming stem and progenitor cells are also present within the tumor microenvironment. These adult stem cells do not form tumors when injected into experimental animals, but they may augment tumor growth through their existence at all in some mouse tumor models (reviewed in [2]). Normal stem cells and CSCs can be identified by efflux of Hoechst dye via multi-drug resistance (MDR) and ATP-binding cassette transporters [3]. But the ability to export Hoechst dye diminishes in more committed progeny. By inference, refractoriness to chemotherapy could be explained by rapid export of cytotoxic agents by the CSC pool. Thus, CSC may act as the “linchpin” in some solid tumors and their selective elimination may initiate a cascade ultimately leading to tumor destruction. Notably, cancer cells with stem-like properties that express markers of vascular endothelium and form tumor blood vessels have been described [4]. However, second populations of “adult” stem/progenitor cells, which do not form tumors, are also present in the tumor microenvironment and are the building blocks of most tumor blood vessels. This review covers the role of this second population of nontumor-forming progenitors and their role during angiogenesis and tumor progression.

CANCER STEM CELLS

The suggestion that tumors may be characterized by hierarchies of organized stem cells was a paradigm shift in our understanding of tumor biology [1]. Putative cancer stem cells (CSCs) have now been identified in several tumor types, and several competing but not necessarily mutually exclusive models have been put forth to explain tumor cell heterogeneity and propagation of CSCs. A stochastic model states that all cells within a tumor have equal abilities to initiate and maintain tumor growth, whereas a hierarchical model suggests that only a minor subset of cancer cells can self-renew and give rise to tumor-forming and nontumor-forming progeny. However, the rarity of stem cells in tumors has been brought into question, as has their existence at all in some mouse tumor models (reviewed in [2]). Normal stem cells and CSCs can be identified by efflux of Hoechst dye via multi-drug resistance (MDR) and ATP-binding cassette transporters [3]. But the ability to export Hoechst dye diminishes in more committed progeny. By inference, refractoriness to chemotherapy could be explained by rapid export of cytotoxic agents by the CSC pool. Thus, CSC may act as the “linchpin” in some solid tumors and their selective elimination may initiate a cascade ultimately leading to tumor destruction. Notably, cancer cells with stem-like properties that express markers of vascular endothelium and form tumor blood vessels have been described [4]. However, second populations of “adult” stem/progenitor cells, which do not form tumors, are also present in the tumor microenvironment and are the building blocks of most tumor blood vessels. This review covers the role of this second population of nontumor-forming progenitors and their role during angiogenesis and tumor progression.

DEFINITION OF STEM AND PROGENITOR CELLS

First, a distinction should be made between bona fide stem cells that have the capacity for unlimited self-renewal and multilineage differentiation (e.g., embryonic stem cells) and progenitor cells or “precursor” cell that have limited self-renewal and differentiation abilities. The generation of progenitor cells is hierarchical with an undifferentiated parental cell lying at the apex that generates progressively more differentiated progeny. For example, hematopoietic stem cells, which reside in the bone marrow, generate an array of more committed hematopoietic progenitor cells (HPC) that act as specific precursors to different blood cell lineages. Mesenchymal stem cells (herein termed mesenchymal progenitor cells [MPCs]) although often referred to as stem cells, are also a type of progenitor or “precursor” cell. MPCs are found throughout the body, they can differentiate to form multiple cell types (e.g., osteocytes, adipocytes, chondrocytes, fibroblasts, and smooth muscle cells) and they have a limited ability to self-renew. Endothelial progenitor cells (EPCs) are another type of lineage-restricted progenitor cell. Although there is still debate about the definitive site(s) where EPC reside in the body, the progeny of circulating EPC (defined as endothelial colony-forming cells [ECFCs]) circulate in

Disclosure of potential conflicts of interest is found at the end of this article.

Author contributions: J.M.M.-M. and A.C.D.: wrote the manuscript.

Correspondence: Andrew C. Dudley, Ph.D., Harvard Medical School and Children’s Hospital Boston, 300 Longwood Ave., Boston, Massachusetts 02115, USA. Telephone: 617-919-2166; Fax: 617-730-0231; e-mail: acdudley@email.unc.edu Received September 22, 2010; accepted for publication November 25, 2010; first published online in Stem Cells Express December 23, 2010; available online without subscription through the open access option. © AlphaMed Press 1066-5099/2009/$30.00/0 doi: 10.1002/stem.583

Stem Cells 2011;29:163–168 www.StemCells.com
Table 1. Common markers used to identify EPC, MPC, HSC, and HPC

Cell type	Human	Mouse
EPC (Alternative terminology: ECFC, OEC)	Positive expression	EPC are exceedingly rare in mice and are yet to be isolated and culture expanded.
CD31, vascular endothelial cadherin (VE-cadherin), vWF, VEGF-R2, VEGF-R1, CD34, CD146, CD105, eNOS, UEA-1 lectin (binding), Ac-LDL (uptake)	Negative expression	
CD45, CD14, CD11b, CD133, aCD90a	Positive expression	Positive expression
CD90, CD44, CD29, CD105, NG2, platelet-derived growth factor (PDGF)-Rβ	CD90, CD44, CD29, CD105, NG2, PDGF-Rβ	
CD45, CD14, CD11b, VE-cadherin	CD45, Gr-1, CD11b, VE-cadherin	
CD34, CD133	Positive expression	Positive expression
c-Kit, Sca-1	Lineage-specific markers	
HPC	Positive expression	Positive expression
CD45	CD45, c-Kit, Sca1	
CD14, Ac-LDL (uptake), UEA-1 lectin (binding), CD31, VEGF-R2, VEGF-R1	Myeloid: CD11b, CD14, Ac-LDL (uptake), UEA-1 lectin (binding), CD31, VEGF-R2, VEGF-R1	
CD3, CD4, CD8	Lymphoid: CD3, CD4, CD8	
Megakaryocytic: CD41, CD42	Megakaryocytic: CD41, CD42	
Negative expression	Negative expression	
CD133	CD133	

*Culture-expanded EPC are negative for CD133 and CD90.

Abbreviations: Ac-LDL, acetylated low density lipoprotein; ECFC, endothelial colony-forming cell; eNOS, endothelial nitric oxide synthase; EPC, endothelial progenitor cell; HPC, hematopoietic progenitor cell; HSC, hematopoietic stem cell; MPC, mesenchymal progenitor cell; OEC, outgrowth endothelial cells; NG2, chondroitin sulfate proteoglycan; PDGF-Rβ, platelet-derived growth factor receptor beta; TIE2, TEK tyrosine kinase with Ig and EGF homology domains-2; UEA-1, Ulex europaeus agglutinin-1; VE-cadherin, vascular endothelial cadherin; VEGF, vascular endothelial growth factor; vWF, von Willebrand factor.

Peripheral blood, can be ex vivo expanded into clonal populations and will form vessel lumens when injected into mice. EPCs, MPCs, and HPCs are often identified in blood or tissues using the markers listed in Table 1.

Endothelial Progenitor Cells

EPCs may be defined as circulating precursor cells with the ability to differentiate to form functional blood vessels at sites of neovascularization. However, there has been a lack of consensus regarding EPC definition, origin, and function in humans and animal models of disease. As a consequence, the contribution of these cells to the vasculature of solid tumors is still the subject of lively debate [5].

A seminal article identified EPC as cells that circulate in peripheral blood and express markers such as CD34 and vascular endothelial growth factor receptor-2 (VEGF-R2) (kinase insert domain receptor [KDR]) [6]. However, hematopoietic cells also express these cellular markers, and they can be mobilized into circulation from the bone marrow in order to home to sites of neovascularization. The functional differences distinguishing hematopoietic cells (generally do not line blood vessels) from bona fide ECFC (form lumens) are becoming clear. Yoder et al. suggest that most of the cells long referred to as EPC are in fact hematopoietic cells that are proangiogenic and assist during nascent vessel formation but have no ability to form vessel lumens (reviewed in [7]).

The discrepancies surrounding the definition of EPC have made it difficult to identify these elusive cells in vivo, especially in tumors. Bone marrow has been proposed as a depot for circulating EPC in humans and in mouse tumor models although it is not always clear whether the identified cells are ECFC or hematopoietic cells located close to the bone vessel wall (reviewed in [8]). The absolute number of putative bone marrow EPC is suggested to increase dramatically depending on the tumor site, mouse strain, stage of tumor progression, and method of quantification (reviewed in [9]). Gao et al. [10] suggest that EPC facilitate metastasis as their genetic ablation using ID1 shRNA mitigated pulmonary micro metastasis and impaired angiogenesis. Some chemotherapies are reported to increase EPC in circulation and their homing to tumors following vascular damage [11]. On the other hand, some studies report minimal contribution of EPC to the tumor vasculature and question the importance of these cells during tumor growth [12] (for further discussion see [13]). Our lab recently showed that the endothelium in spontaneous prostate tumors was rarely, if ever, derived from the bone marrow and instead most likely recruited from nearby tissue [14]. Interestingly, we also found no difference in the number of incorporated circulating endothelial cells in prostate tumors versus normal age-matched prostates. Studies in humans using sex-mismatched bone marrow transplants also suggest a minor but steady-state incorporation of donor-derived endothelium in normal tissues at levels similar to those reported in human cancers [15].

Recently, the vascular wall itself has been proposed as a source for EPC because it contains subpopulations of
endothelial cells with properties similar to blood-derived ECFC [16]. Because endothelial turnover in resting blood vessels is low, a local and immediate reservoir of highly proliferative endothelium proximal to the site of injury may be biologically advantageous following tissue injury. Vessel wall EPC (VW-EPC) are proposed to rest in a “vasclogenetic zone” between the smooth muscle and adventitial layers at the periphery of large blood vessels (reviewed in [17]). No studies to date have determined whether VW-EPC might form the majority of the angiogenic response in tumors, if there are any unique properties in VW-EPC that could be exploited as an antiangiogenesis strategy or if VW-EPC might mediate vascular rebound following treatment with antiangiogenic therapies. Definitive proof for the existence of VW-EPC will have to wait on the identification of a unique marker that can distinguish these cells from mature vascular endothelial cells.

MPC and their progeny are present in most if not all postnatal organs. Their major function is to maintain and regenerate connective tissues and to replenish damaged tissue following injury or inflammation. MPC differentiation is dependent on the local production of cytokines/growth factors resulting in tissue specificity. Therefore, MPC may differentiate into the type of tissue they engraft [18]. Because paracrine/juxtacrine interactions between MPC and neighboring cells may be critical for controlling the rate and timing of differentiation, it is predicted that crosstalk between mutant cancer cells and resident MPC could affect their normal differentiation patterns. A good example is the adipogenic differentiation of MPC in subcutaneous tumor sites and osteoblastic differentiation at sites of lung metastasis [19]. Similar to HPC, MPC may be hierarchically organized into heterogeneous clonal variants with different proliferative and differentiation abilities. Although it has not been investigated, these variants may function differently depending on tumor stage or type.

One unanswered question is whether bone marrow is the primary source of MW-EPC. Definitive proof for the existence of VW-EPC will have to wait on the identification of a unique marker that can distinguish these cells from mature vascular endothelial cells.

The role of hematopoietic cells in tumor angiogenesis has recently received great attention. HPC from the bone marrow emigrate to the blood and tissues and differentiate to form cells of the innate and adaptive immune system. Tumor-infiltrating leukocytes can either protect against or promote tumor formation. The simplest example of the former is loss of immune surveillance and spontaneous tumor formation in some strains of immunodeficient mice. On the other hand, CD4+ T lymphocytes may promote tumor cell invasion and metastasis by altering the function of tumor-associated macrophages (TAMs) [33]. Myeloid lineage cells, including monocytes/macrophages, neutrophils, dendritic cells, eosinophils, and mast cells feature prominently in the stroma of most solid tumors (reviewed in [34]). Although direct stimulation of malignant cells by the hematopoietic cells is possible, the tumor-promoting abilities of the recruited myelomonocytic pool is largely related to their secretion of a variety of proangiogenic factors and ability to orchestrate the formation of new blood vessels.

One of the first clues that HPC might be required for angiogenesis came from studies in the developing embryo. For example, acute myeloid leukemia 1 (AML)-deficient embryos, which lack definitive hematopoiesis, showed impaired angiogenesis in the head and pericardium that was rescued by addition of HPC-expressing angiopoietin 1 (ANG-1) [35]. Thus, even physiological angiogenesis is dependent on crosstalk between the remodeling endothelium and recruited HPC. Moreover, we showed that “engineered” blood vessels in the adult mouse are also dependent on hematopoietic cell recruitment, as selective elimination of
GR-1\(^+\) circulating myeloid cells impaired blood vessel development and anastomosis with host vasculature [36]. Pathological angiogenesis (e.g., solid tumors) is also characterized by recruitment of an array of myelomonocytic cells with overlapping phenotypes and functions (reviewed in [37]). For example, a novel population of proangiogenic TEK tyrosine kinase with Ig and EGF homology domains-2 (TIE-2)–expressing monocytes was recently identified in tumors [38]. Selective elimination of TIE-2 monocytes impairs tumor growth and angiogenesis. On the other hand, similar to MPC, TIE-2 monocytes (and other HPC) may be used as vectors for drug delivery due to their tumor-homing properties.

The catalytic function of hematopoietic cells during tumor progression may be related to their expression of proangiogenic and tissue-remodeling factors including MMPs and VEGF. Furthermore, tumor-derived factors may activate or change the phenotype of the recruited pool of hematopoietic cells. A good example is the M2 skewing of TAMs as tumors become more vascular and invasive [39]. Macrophages invade most solid tumors in great numbers and elicit inflammatory responses that are generally protumorigenic and proangiogenic. The numbers of TAMs in Hodgkin's lymphoma is associated with a poor patient prognosis although the factor(s) mediating their tropism to the tumor site were not identified [40]. A hypoxia inducible factor alpha (HIF1\(\alpha\))/chemokine ligand 12 (CXCL-12) axis was shown to mobilize proangiogenic MMP9-expressing monocytic cells from bone marrow, which controls a postulated angiogenic switch in tumors [41]. These marrow-derived mononuclear cells are important mediators of resistance to anti-VEGF therapies [42] and angiogenesis rebound following radiotherapy [43]. Thus, depletion of specific populations of HPC and their progeny can have a favorable antitumor response, perhaps by indirectly controlling the rate of angiogenesis.

In addition to their paracrine functions, myeloid-lineage cells may act as "vascular bridges" by guiding and connecting nascent blood vessels. Proangiogenic TIE-2\(^+\) macrophages, for example, were recently shown to guide tip-cell fusion, a critical step during blood vessel anastomosis [44]. The ability of myeloid-lineage cells to directly form blood vessels is also possible. Transdifferentiation of CD45\(^+\) myeloid cells to form endothelial-like cells was described by Bailey [45]. Yang et al. [46] found that Gr-1\(^+\)/CD11b\(^+\) cells acquired properties of endothelial cells in tumors, expressed VE-cadherin and lined blood vessels. Similarly, lymphatic vessel endothelial hyaluronan receptor-1 (LYVE-1)\(^+\) macrophages were shown to differentiate to form lymphatic endothelium [47], a feature probably related to their inherent plasticity. Taken together, myeloid-lineage cells, through diverse mechanisms, may facilitate angiogenesis and enable tumor progression. It will be important to further clarify the factors mediating trafficking and differentiation of myeloid cells at the tumor site. The use of "humanized" mice engrafted with tumor cells could be an important tool for dissecting the function of HPC and their progeny in the laboratory.

PERSPECTIVE: DO TUMORS SUBVERT PROGENITOR CELL FUNCTIONS?

Solid tumors are caricatures of a dysfunctional "organ." In the shadow of malignant cells is the resident population of mesenchymal, hematopoietic, and endothelial cells that constitutes the tumor stroma. More than innocent bystanders, these stromal cells provide a growth advantage, for example, by forming the building blocks of tumor blood vessels (Fig. 1).
Prolonged paracrine/juxtacrine interactions between malignant cells and stromal cells might result in unexpected patterns of differentiation and plasticity, particularly in the resident population of more primitive adult stem/progenitor cells. These subtle changes in the stroma may accelerate or even precede progression to malignancy.

A clue that malignant cells might impinge on the differentiation state in the stroma comes from studies identifying aberrant DNA methylation and chromatin modification patterns in cancer-associated fibroblasts. Multiple tumor types, for example, breast and prostate are characterized by stromal alterations in methylated DNA (reviewed in [48]). Because normal patterns of differentiation are controlled, in part, by epigenetic switches, a “rogue” differentiation state of tumor-associated stromal cells may emerge. For example, we have shown that prostate tumor endothelial cells have unusual properties including acquisition of stem-like features and bipotent differentiation to form bone and cartilage [49]. A second level of control of stem cell fate and plasticity can occur through mechanical cues relayed by interactions between stem cells with the extracellular matrix ECM; reviewed in [50]). ECM remodeling and stiffening is common in the stroma of most tumors. For example, the breast tumor microenvironment is characterized by highly cross-linked collagen that modulates focal adhesions and alters cellular signaling [51]. It will be interesting to determine how changes in the tumor microenvironment affect the timing and pattern of differentiation in resident progenitor cells. Furthermore, whether tumors can “reprogram” the resident pool of progenitor cells, hijacking their normal functions, to facilitate tumor progression and metastasis should be investigated.

Pathologists have long noted the heterogeneous and disorganized nature of parenchymal cells in tumors. As recently suggested, these stromal cells may coevolve with tumor cells during tumor progression and acquire characteristics of tumor cells nearby [48]. “Normalizing” the tumor microenvironment to reprogram the fate and plasticity of progenitors within the stroma, in addition to direct targeting of tumor cells, might be an effective strategy for reversing or eliminating some cancers.

CONCLUSION

Solid tumors may be characterized by two populations of stem/progenitor cells: CSC that may ultimately drive tumor growth and progression and nontumor/forming progenitors, some of which comprise the building blocks of tumor blood vessels. Malignant cells and their supporting stromal cells are held together by an extracellular matrix. Tumors may thus resemble dysfunctional organs able to recapitulate features of development while malignant cells provide corrupt instructions to surrounding tissues [52]. Understanding how tumors alter their own microenvironment, in ways that promote their progression and perhaps ability to metastasize, is critical for the design of therapies that might eliminate some cancers.

REFERENCES

1. Hamburger AW, Salmon SE. Primary bioassay of human tumor stem cells. Science 1977;197:461–463.
2. Visvader JE, Lindeman GJ. Cancer stem cells in solid tumors: Accumulating evidence and unresolved questions. Nat Rev Cancer 2008;8:755–768.
3. Scharenberg CW, Harkey MA, Torok-Storb B. The ABCG2 transporter is an efficient Hoetcht 33342 efflux pump and is preferentially expressed by immature human hematopoietic progenitors. Blood 2002;99:507–512.
4. Hendrix MJ, Selford EA, Hess AR et al. Vasculogenic mimicry and tumour-cell plasticity: Lessons from melanoma. Nat Rev Cancer 2003;3:411–421.
5. Yoder MC, Ingram DA. Endothelial progenitor cell: Ongoing controversy for defining these cells and their role in neangiogenesis in the marine system. Curr Opin Hematol 2009;16:269–273.
6. Asahara T, Murohara T, Sullivan A et al. Isolation of putative progenitor endothelial cells for angiogenesis. Science 1997;275:964–967.
7. Yoder MC, Mead LE, Prater D et al. Redefining endothelial progenitor cells via clonal analysis and hematopoietic stem/progenitor cell principals. Blood 2007;109:1801–1809.
8. Yoder MC, Ingram DA. The definition of EPCs and other bone marrow cells contributing to neangiogenesis and tumor growth: Is there common ground for understanding the roles of numerous marrow-derived cells in the neangiogenic process? Biochim Biophys Acta 2009;1796:50–54.
9. Aghi M, Chiocca EA. Contribution of bone marrow-derived cells to blood vessels in ischemic tissues and tumors. Mol Ther 2005;12:994–1005.

10. Gao D, Nolan DI, Mellick AS et al. Endothelial progenitor cells control the angiogenic switch in mouse lung metastasis. Science 2008;319:195–198.
11. Shaked Y, Ciarrocchi A, Franco M et al. Therapy-induced acute recruitment of circulating endothelial progenitor cells to tumors. Science 2006;313:1785–1787.
12. Purhonen S, Palm J, Rossi D et al. Bone marrow-derived circulating endothelial precursors do not contribute to vascular endothelium and are not needed for tumor growth. Proc Natl Acad Sci USA 2008;105:6620–6625.
13. Kerbel RS, Benezra R, Lyden DC et al. Endothelial progenitor cells are cellular hubs essential for neangiogenesis of certain aggressive adenocarcinomas and metastatic transition but not adenomas. Proc Natl Acad Sci USA 2008;105(34):E54.
14. Dudley AC, Udagawa T, Melero-Martin JM et al. Bone marrow is a reservoir for pro-angiogenic myelomonocytic cells but not endothelial cells in spontaneous tumors. Blood 2010;116:3367–3371.
15. Jiang S, Walker L, Afentoulis M et al. Transplanted human bone marrow contributes to vascular endothelium. Proc Natl Acad Sci USA 2004;101:16891–16896.
16. Ingram DA, Mead LE, Moore DB et al. Vessel wall-derived endothelial cells rapidly proliferate because they contain a complete hierarchy of endothelial progenitor cells. Blood 2005;105:2783–2786.
17. Tilkic D, Hohn H-P, Erzin B et al. Emerging biology of vascular wall progenitor cells in health and disease. Trends Mol Med 2009;15:501–509.
18. Liechty KW, MacKenzie TC, Shaaban AF et al. Human mesenchymal stem cells engraft and demonstrate site-specific differentiation after in utero transplantation in sheep. Nat Med 2008;6:1282–1286.
19. Wang H, Cao F, De A et al. Trafficking mesenchymal stem cell engraftment and differentiation in tumor-bearing mice by bioluminescence imaging. Stem Cells 2009;27:1548–1558.
Vascular Stem Cells and Tumor Angiogenesis

20 Santamaria-Martínez A, Barquiner J, Barbosa-Desongles A et al. Identification of multipotent mesenchymal stromal cells in the reactive stroma of a prostate cancer xenograft by side population analysis. Exp Cell Res 2009;315:3004–3013.

21 Kidd S, Spach E, Dembinski JL et al. Direct evidence of mesenchymal stem cell tropism for tumor and wound healing microenvironments using in vivo bioluminescent imaging. Stem Cells 2009;27: 2614–2623.

22 Song S, Ewald AJ, Stallcup W et al. PDGFβR+ perivascular progenitor cells in tumors regulate pericyte differentiation and vascular survival. Nat Cell Biol 2005;7:870–879.

23 Crisan M, Yap S, Castella L et al. A perivascular origin for mesenchymal stem cells in multiple human organs. Cell Stem Cell 2008;3: 301–313.

24 Karnoub AE, Dash AB, Vo AP et al. Mesenchymal stem cells within tumor stroma promote breast cancer metastasis. Nature 2007;449: 557–563.

25 Khakoo AY, Pati S, Anderson SA et al. Human mesenchymal stem cells exert potent antitumorigenic effects in a model of Kaposi’s sarcoma. J Exp Med 2006;203:1235–1247.

26 Coffelt SB, Marini FC, Watson K et al. The pro-inflammatory peptide LL-37 promotes ovarian tumor progression through recruitment of multipotent mesenchymal stromal cells. Proc Natl Acad Sci USA 2009;106:3806–3811.

27 Studeny M, Marini FC, Dembinski JL et al. Mesenchymal stem cells: Potential precursors for tumor stroma and targeted-delivery vehicles for anticancer agents. J Natl Cancer Inst 2004;96:1593–1603.

28 Loebinger MR, Eddaudou A, Davies D et al. Mesenchymal stem cell delivery of TRAIL can eliminate metastatic cancer. Cancer Res 2009; 69:4134–4142.

29 Beckermann BM, Kalifatidis G, Groth A et al. VEGF expression by mesenchymal stem cells contributes to angiogenesis in pancreatic carcinoma. Br J Cancer 2008;99:622–631.

30 Silva GV, Litovsky S, Assad JAR et al. Mesenchymal stem cells differentiate into an endothelial phenotype, enhance vascular density, and improve heart function in a canine chronic ischemia model. Circulation 2005;111:150–156.

31 Chen L, Fredget EE, Wu PYG et al. Paracrine factors of mesenchymal stem cells recruit macrophages and endothelial lineage cells and enhance wound healing. Plos One 2008;3:e1886.

32 Otsu K, Das S, Houser SD et al. Concentration-dependent inhibition of angiogenesis by mesenchymal stem cells. Blood 2009;113: 4197–4205.

33 Denardo DG, Barreto JB, Andreu P et al. CD4(+) T cells regulate pulmonary metastasis of mammary carcinomas by enhancing protumor properties of macrophages. Cancer Cell 2009;16:91–102.

34 Mundsch C, Mutlu T, Coffelt SB et al. The role of myeloid cells in the promotion of tumour angiogenesis. Nat Rev Cancer 2008;8: 618–631.

35 Takeda N, Watanabe T, Suenoobu S et al. A role for hematopoietic stem cells in promoting angiogenesis. Cell 2000;102:199–209.

36 Melero-Martin JM, De Obaldia ME, Allen P et al. Host myeloid cells are necessary for creating bioengineered human vascular networks in vivo. Tissue Eng Part A 2010;16:2457–2466.

37 Coffelt SB, Lewis CE, Naldini L et al. Elusive identities and overlapping phenotypes of proangiogenic myeloid cells in tumors. Am J Pathol 2010;176:1564–1576.

38 De Palma M, Venneri MA, Galli R et al. Tie2 identifies a hematopoietic lineage of proangiogenic monocytes required for tumor vessel formation and a mesenchymal population of pericyte progenitors. Cancer Cell 2005;8:211–226.

39 Biswas SK, Sica A, Lewis CE. Plasticity of macrophage function during tumor progression: Regulation by distinct molecular mechanisms. J Immunol 2008;180:2011–2017.

40 Steidl C, Lee T, Shah SP et al. Tumor-associated macrophages and survival in classic Hodgkin’s lymphoma. N Engl J Med 2010;362: 875–885.

41 Du R, Lu KV, Petritsch C et al. HIF1alpha induces the recruitment of bone marrow-derived vascular modulatory cells to regulate tumor angiogenesis and invasion. Cancer Cell 2008;13:206–220.

42 Shojaii F, Wu X, Malik AK et al. Tumor refractoriness to anti-VEGF treatment is mediated by CD11b+Gr1+ myeloid cells. Nat Biotechnol 2007;25:911–920.

43 Ahn G-O, Tseng D, Liao C-H et al. Inhibition of Mac-1 (CD11b/ CD18) enhances tumor response to radiation by reducing myeloid cell recruitment. Proc Natl Acad Sci USA 2010;107:8363–8368.

44 Fantin A, Vieira JM, Gestri G et al. Tissue macrophages act as cellular chaperones for vascular anastomosis downstream of VEGF-mediated endothelial tip cell induction. Blood 2010;116:829–840.

45 Bailey AS, Willebringt H, Jiang S et al. Myeloid lineage progenitors give rise to vascular endothelium. Proc Natl Acad Sci USA 2006;103: 13156–13161.

46 Yang L, Huang J, Ren X et al. Abrogation of TGF beta signaling in mammary carcinomas recruits Gr-1+CD11b+ myeloid cells that promote metastasis. Cancer Cell 2008;13:23–35.

47 Schledzewski K, Falkowski M, Moldenhauer G et al. Lymphatic endothelium-specific hyaluronan receptor LYVE-1 is expressed by stabilin-1+ F4/80+ CD11b+ macrophages in malignant tumours and wound healing tissue in vivo and in bone marrow cultures in vitro: Implications for the assessment of lymphangiogenesis. J Pathol 2006;209:67–77.

48 Polvak K, Haviv I, Campbell IG. Co-evolution of tumor cells and their microenvironment. Trends Genet 2009;25:30–38.

49 Dudley AC, Khan ZA, Shih S-C et al. Calcification of multipotent progenitor cells in tumours regulate pericyte differentiation and invasion by enhancing integrin signaling. Cell 2009;139:891–906.

50 Schledzewski K, Falkowski M, Moldenhauer G et al. Lymphatic endothelium-specific hyaluronan receptor LYVE-1 is expressed by stabilin-1+, F4/80+, CD11b+ macrophages in malignant tumours and wound healing tissue in vivo and in bone marrow cultures in vitro: Implications for the assessment of lymphangiogenesis. J Pathol 2006;209:67–77.

51 Polvak K, Haviv I, Campbell IG. Co-evolution of tumor cells and their microenvironment. Trends Genet 2009;25:30–38.

52 Dudley AC, Khan ZA, Shih S-C et al. Calcification of multipotent progenitor cells in tumours regulate pericyte differentiation and invasion by enhancing integrin signaling. Cell 2009;139:891–906.

53 Egeblad M, Nakasone ES, Werb Z et al. Tumors as organs: complex tissues that interface with the entire organism. Dev Cell 2010; 18:884–901.