Marine natural compounds as potent inhibitors against the main protease of SARS-CoV-2—a molecular dynamic study

Muhammad Tahir Khana,\, Arif Alib, Qiankun Wangb, Muhammad Irfanc, Abbas Khanb, Muhammad Tariq Zebd, Yu-Juan Zhange, Sathishkumar Chinnasamyb,f and Dong-Qing Weib,f

aDepartment of Bioinformatics and Biosciences, Capital University of Science and Technology, Pakistan; bState Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, and Joint Laboratory of International Cooperation in Metabolic and Developmental Sciences, Ministry of Education, Shanghai Jiao Tong University, China Shanghai; cDepartment of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL, USA; dSenior Research Officer, In-charge Genomic Laboratory, Veterinary Research Institute, Peshawar, Peshawar, Pakistan; eCollege of Life Sciences, Chongqing Normal University, China; fPeng Cheng Laboratory, Shenzhen, Guangdong, China;

\textbf{ABSTRACT}

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a single-stranded RNA (ssRNA) virus, responsible for severe acute respiratory disease (COVID-19). A large number of natural compounds are under trial for screening compounds, possessing potential inhibitory effect against the viral infection. Keeping in view the importance of marine compounds in antiviral activity, we investigated the potency of some marine natural products to target SARS-CoV-2 main protease (MPro) (PDB ID 6MO3). The crystallographic structure of MPro in an apo form was retrieved from Protein Data Bank and marine compounds from PubChem. These structures were prepared for docking and the complex with good docking score was subjected to molecular dynamic (MD) simulations for a period of 100 ns. To measure the stability, flexibility, and average distance between the target and compounds, root mean square deviations (RMSD), root mean square fluctuation (RMSF), and the distance matrix were calculated. Among five marine compounds, C-1 (PubChem CID 11170714) exhibited good activity, interacting with the active site and surrounding residues, forming many hydrogen and hydrophobic interactions. The C-1 also attained a stable dynamic behavior, and the average distance between compound and target remains constant. In conclusion, marine natural compounds may be used as a potential inhibitor against SARS-CoV-2 for better management of COVID-19.

\textbf{Abbreviations:} ADME: adsorption, distribution, metabolism and excretion; HCV: Hepatitis C virus; MD: molecular dynamic simulations; MPro: Main protease; MOE: molecular operating environment; PDB: Protein Data Bank; RMSD: Root mean square deviation; Rg: radius of gyration; RMSF: root mean square fluctuation; SARS-CoV-2: Severe acute respiratory syndrome coronavirus-2

\textbf{CONTACT} Dong-Qing Wei dqwei@sjtu.edu.cn State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, and Joint Laboratory of International Cooperation in Metabolic and Developmental Sciences, Ministry of Education, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai 200240, China

© 2020 Informa UK Limited, trading as Taylor & Francis Group
Table 1. Marine compounds docked against SARS-COV-2 main protease.

Compound no.	Formula	Molecular mass (kDa)	PubChem CID	Source
1	C19H40O3	316.53	21646261	Family Aplysinidae
2	C22H32O4	360.49	21591485	Soft coral Pterogorgia citrina
3	C21H26O3	326.44	460087	Petrosia strongylophora sp.
4	C21H26O3	326.44	460087	Petrosia strongylophora sp.

1. Introduction

Coronavirus pandemic-19 (COVID-19) is an ongoing disease caused by severe acute respiratory syndrome (SARS-CoV-2). According to the WHO latest report, 3,442,234 are confirmed SARS-CoV-2 infected people including 239,740 deaths. Among the six WHO regions, the largest number of cases has been reported from Europe (1,544,145) followed by Americas (1,433,756), Eastern Mediterranean (211,555), Western Pacific (152,774), South-East Asia (68,756), and Africa (30,536) (WHO COVID-19 Dashboard, n.d.). Since it was first identified in December 2019, COVID-19 has infected a large population of people around the world (Coronavirus Disease 2019 Situation Report-35, n.d.).

The SARS-CoV-2, previously known as 2019-nCoV, is a single-stranded RNA (ssRNA) betacoronavirus, responsible for a severe pathological condition (Guarner, 2020). The COVID-19 is expanding rapidly as compared with previous coronaviruses (SARS-CoV and MERS-CoV) with the absence of therapeutic agents (Heymann et al., 2020; Zhang & Liu, 2020). On January 2020, the International Health Regulations Emergency Committee of the World Health Organization declared the outbreak as ‘public health emergency’ in responding to SARS-COVID-19.

Unfortunately, the timeline for characterizing a typical drug discovery process badly couples with the urgency of finding a therapy. It is important to accelerate the early stages of the drug discovery for all possible future emergencies (Mani et al., 2019). The early extraction of the COVID-19 genome to highlight sequence identity (~80% of conserved nucleotides) with respect to the original SARS-CoV (Gralinski & Menachery, 2020) has paved the way for rapid research.

Although commercially synthetic sources prepared many drugs but the major hurdles, drug side effects, resistance, cell toxicity, and long-term treatment, were some factors behind the failure. The potential marine products are playing a vital role in the identification of novel prototypes and behind the failure. The potential marine products are playing a cutting edge in-silico investigation.

Once the cell is infected with COVID-19, the existing molecular machinery of the host cell is taken over by the virus to translate its RNA into long chains of proteins, producing more copies. These long viral proteins are activated when cut into smaller pieces by proteases. Hence, viral proteases have a critical role in the propagation of the virus. Identification of specific inhibitors from natural products against the COVID-19 Mpro might be of great importance in terms of proposing the treatment regimen. Here in the current study, we searched some marine compounds and docked into the Mpro, shows a good binding interactions that might be useful against COVID-19.
2.3. Molecular docking

Five marine compounds reported earlier in the study (Felix et al., 2017) were docked using rigid receptor docking protocol in MOE. During the process of docking, the protein was fixed, while ligands were kept flexible. Residue selenomethionines were converted into methionine and side-chain polar hydrogen were refined. Molecular docking grid was specified and centered using $20\times20\times20$ with 0.375 grid spacing. A total of 50 runs were performed to observe a wide range of conformational orientations.

2.4. Molecular dynamics (MD) simulation

MD simulation was carried out via Gromacs 5.1 [54] for a period of 100 ns. The system was stabilized by adding Na$^+$/Cl$^-$ ions. Energy minimization (NVT and NPT) was performed in two-step for a duration of 50,000, continued till the maximum force reached below 1000 kJ/mol/nm. An overall pressure and temperature equal to 1 bar and 300 K were kept with a time gap of 2 fs to achieve a stable state. To maintains a constant temperature inside the box, the v-rescale, an optimized Berendsen thermostat temperature coupling technique, was used. Once the MD was completed, all the obtained trajectories were examined for conformational drifts. The root mean square deviation (RMSD) and root mean square fluctuation (RMSF) were calculated to measure the stability and flexibility of protein and compound. Ccpptraj was used to calculate the average distance between marine natural compound and proteins during the simulation period (Bernardi et al., 2019; Gajula et al., 2016; Roe & Cheatham, 2017).
Radius of gyration (Rg) was calculated to infer the stable protein folding.

2.5. ADME prediction

To analyze the pharmacodynamics of the marine compounds, Adsorption, Distribution, Metabolism, and Excretion (ADME) is important which could be used as a drug. SWISS-ADME (https://www.swissadme.ch) allows the user to include SMILES data from PubChem and provides lipophilicity, water solubility, and drug likeness rules. SMILES files of all the marine compounds retrieved from the PubChem was entered into the search bar and the results were analyzed.

3. Result and discussion

3.1. Marine drug and Mpro interactions

In the current study, five marine compounds, designated as C-1, C-2, C-3, C-4, and C-5 (Table 1) have been docked in the crystal structure of viral Mpro. The compounds (Figure 1) exhibited a good interaction with viral Mpro, forming many hydrogen bonds (Figure 2). The ADME properties (supplementary data S1) shows that these compounds may be applied in the therapy of SARS-CoV-2. Although the molecular weight of C1 is very high but the new FDA approval seems beyond the Lipinski’s rule of five (www.fda.gov/Drugs/DevelopmentApprovalProcess/ DrugInnovation/). This may due be the increasing focus that offer potential for promising new therapeutic compounds for the treatment of diseases, particularly in the areas of virology and oncology. However, conducting drug discovery ‘beyond rule of 5’ chemical space offerings important drug design and challenges to medicinal scientist to achieve oral pharmacokinetics. In some cases, including HCV NS3/4A protease, and hepatitis C virus (HCV) NS5A inhibitors the Lipinski’s rule of five has not been considered (DeGoey et al., 2018).

In the last 20 years, SARS and MERS have been found as new infectious agents, emerged to cause epidemics (de Wit et al., 2016; Guarner, 2020). Conventional drug development methods take years and costly, offering more time for transmission of pathogens. The appropriate and timely development of potent antiviral agents for clinical use is of central interest, using cost-effective and fast computational approaches. Moreover, the approved pharmaceutical drugs may be repurposed as alternative method to screen for rapid identification of potential leads (Chu et al., 2006; Enayatkhani et al., 2020; Muralidharan et al., 2020; Pillaiyar et al., 2016; Yang et al., 2005). In this regard, recently a large number of in-silico studies have been performed on medicinal plants, drug designing, and vaccine development (Aanouz et al., 2020; Elfiky, 2020a, 2020b; Elfiky & Azzam, 2020; Elmezayen et al., 2020; Enmozhi et al., 2020; Joshi et al., 2020; Pant et al., 2020).

Hundreds and thousands of humans have been died in many epidemics, broken out over the centuries. Some infections have been found, more deadly, especially viral pathogens. These pathogens have resisted in majority of cases to all kinds of medical treatment. Synthesizing drugs against rapidly replicated viruses resulting in acute syndromes is a laborious and time-consuming procedure, requires a lot of financial aid. However, the natural compounds are lying around on the earth on land and water (Abdelli et al., 2020; Das et al., 2020; Islam et al., 2020; Kumar et al., 2020; Sinha et al., 2020; Umesh et al., 2020; Wahedi et al., 2020) that could be screened for potential compounds against SARS-CoV-2 main targets.

Over a 1000 of novel marine compounds isolated from marine organisms are being pharmacologically tested, and over 40 are being existed in the medicine market. In modern pharmacological industry, marine products are paving the way for a new trend (Ahmadi et al., 2015; Che, 1991; Gogineni et al., 2015; Khan et al., 2019; Moghadamtousi et al., 2015; Raveh et al., 2013; Sagar et al., 2010; Uzair et al., 2011; Vijayakumar & Menakha, 2015).
Interactions of five marine natural products have been shown (Figures 2 and 3). Residues Thr24, Leu27, His41, Phe140, Cys145, His163, Met165, Pro168, and His172 are present in the active site and its surrounding (Wu et al., 2020). The drug C1 shows good binding affinity, forming many hydrogen and hydrophobic interactions. Compound C2 also exhibited interactions with active site of M pro, creating a catalytic dyad, consist of Cys145 and His41, where the cysteine is a nucleophile in the proteolytic process (Figure 3).

The best interacting pose was selected based on E_refine and E_score2. The more negative score shows a good ligand and protein complex (Table 2).

Natural products may provide lead compounds, especially as antimicrobial agents (Dias et al., 2012; Hu et al., 2015; Newman & Cragg, 2016). A large range of marine products displays chemical structures with good biological activities to discover drug like for various human diseases caused by virus, including COVID-19. An additional advantage of marine
products, as most of them has the property of drug-likeness with high degrees of bioavailability, and effective drugs against viral diseases shortly.

Mpro (3CLpro) monomer has three domains: domain I, domain II, and domain III containing residues 8–101, residues 102–184, and residues 201–303 respectively, and a long loop (residues 185–200) connects domains III and II (Wu et al., 2020). The active site (Cys145 and His41) is located in the gap between domains I and II, while hydrophobic amino acids, T24, L27, H41, F140, C145, H163, M165, P168, and H172 also form a hydrophobic surrounding in the pocket (Yang et al., 2003). The identification of compounds fitting in the pockets is one of the fundamental step in structure-based drug design. The recent progress and developments of the computational analysis of pockets have been found useful to screen potent inhibitors (Zheng et al., 2013). Analysis of Mpro complex with C1 shows many hydrogen and hydrophobic interaction (Figure 4). The compound exhibited affinity with SARS-CoV-2 Mpro from all sides, showing its best fitting in the pocket. Drug interactions and fitting in the pocket is essential for drug designing and lead optimization. It is also important to identify the locations of binding sites to infer protein–ligand binding or protein–protein interaction.

In addition to hydrogen bonds, hydrophobic and electrostatic interactions are also important. The hydrogen bonds may play as an ‘anchoring’ role, defining the spatial location of the druggable compounds in the binding pocket, facilitating the electrostatic and hydrophobic interactions. In rational drug design, it is equally essential to recognize the hydrophobic groups of the compound and receptor, facing to each other upon binding. These interactions have been detected while analyzing the Connolly surface (Connolly, 1993) of the complex of SARS-CoV Mpro and marine compounds. It is the steric complementarity between the ligand and receptor site that performs the role of the principal driving force for mechanical interlocking (Chou et al., 2009; Sirois et al., 2007; Wei et al., 2006).

RMSD and RMSF are calculated in MD simulations to infer the stability and flexibility, a fundamental property of biomolecules. High deviation and fluctuation of proteins during a simulation may show weak stability and stability in thermodynamics (Chen & Shen, 2009). SARS-CoV-2 Mpro in complexed with C1 exhibited a stable RMSD between 0.2 and 0.45 nm (Figure 5) and the initial and final RMSDs during the whole simulation period were not found in the significance difference (0.2 and 0.3 nm). This shows a stable binding of

S	E_place	E_score1	E_refine	E_score2
-7.58	-84.29	-7.82	-46.55	-7.58
-7.55	-85.64	-8.22	-44.93	-7.55
-7.54	-77.91	-8.73	-44.70	-7.54
-7.26	-62.71	-8.39	-43.95	-7.26
-7.22	-77.08	-8.60	-43.06	-7.22
5.86	-55.39	-6.97	-28.48	-5.86
5.73	-62.11	-7.06	-28.53	-5.73
5.50	-70.48	-7.93	-25.24	-5.50
5.22	-70.33	-8.13	-22.25	-5.22
5.21	-71.26	-6.90	-26.29	-5.21
5.16	-37.99	-6.90	-23.32	-5.16
5.09	-41.22	-7.20	-23.20	-5.09
5.09	-35.11	-6.61	-21.29	-5.09
5.08	-29.77	-6.34	-24.76	-5.08
5.06	-31.38	-7.00	-21.46	-5.06
5.42	-32.23	-7.39	-28.69	-5.42
5.39	-25.44	-7.81	-26.96	-5.39
5.29	-24.91	-7.40	-23.56	-5.29
5.22	-33.38	-7.69	-24.96	-5.22
5.03	-35.70	-8.80	-27.37	-5.03
5.27	-28.55	-7.35	-26.48	-5.27
5.13	-42.11	-7.75	-25.53	-5.13
5.07	-37.36	-6.29	-20.07	-5.07
5.04	-34.24	-8.03	-24.74	-5.04
-4.96	-20.93	-7.26	-24.26	-4.96

Figure 4. Interaction of C1 after MD simulation. Residues, Ser46, Met49, Asp187, Gln192, Ala194, Thr169, and Gln189, are involved in hydrogen bonding.
Figure 5. RSMD and RMSF of Mpro in complex with C1 compound. The complex exhibited a stable RMSD and RMSF during a 100 ns MD simulation period.

Figure 6. RMSD and RMSF of compound C1.
C1 with M^{pro} that might be a useful as a good inhibitor. Moreover, residues fluctuations were also observed, not too flexible in motion (0.05–0.36 nm). Both, RMSD and RMSF stabilities are essential to infer good binding affinities (Doniach & Eastman, 1999; Dubey et al., 2013; Figure 6).

The initial and final RMSD of C1 atoms is almost similar. The residues atoms fluctuations have been detected in a range of 0.2–0.5 nm. However, the majority of C1 atoms exhibited RMSF below 0.3 nm.

The average distance of C1 and M^{pro} is approximately in range, with little fluctuation during the simulation period. However, the final and initial distance is almost similar (Figure 7). The distant matrix signifies the C1 and M^{pro} distance stability during the simulation period. This approach might be useful to infer the strong binding affinity during the simulation period (Ernst et al., 2015; Khan, Ashfaq-Ur-Rehman et al., 2020). The average distance is commonly affected when a variant occurs at the active site of target proteins during the course of therapy, causing drug resistance (Figure 8).

The degree of compactness and folding is plotted against time, which is commonly measured through the radius of gyration (Rg). A long range variations in proteins show their weak folding (Lobanov et al., 2008; Smilgies & Foltas-Stogniew, 2015). A stable Rg value shows compactness and stable folding maintains a steady value of Rg, required for proper function, whereas in case of misfolding, the Rg will show a long range of variation over time.

In conclusion, marine natural product is the most diverse group, containing potential inhibitors against RNA viruses. Among marine natural products, C1 forming many interactions with Thr24, Leu27, His41, Phe140, Cys145, His163, Met165, Pro168, and His172, present in the active site and its surrounding. These compounds have been observed as best fitting in the binding pocket, that might be good inhibitor of SARS-CoV-2 M^{pro} for better management of COVID-19.

Disclosure statement

No potential conflict of interest was reported by the authors.

Acknowledgements

The current study as technically supported by Director PTRL KP, Peshawar, Dr. Sajid Ali, Molecular biologist, and Anwar Sheed Khan, microbiologist. Conceptualization was carried out by DQW, GS, and MTK; data curation by MTK, AA, QW, and SC; experimental work by MTK, QW, AA, and AK; formal analysis by AA, SC, and MTK; funding acquisition by DQW and approval by DQW and GS.

Funding

Dong-Qing Wei is supported by the grants from the Key Research Area Grant 2016YFA0501703 of the Ministry of Science and Technology of China, the National Natural Science Foundation of China (Contract no. 61832019, 61503244), the Science and Technology Commission of Shanghai Municipality (Grant: 19430750600), the Natural Science Foundation of Henan Province (162300410060), and Joint Research
Funds for Medical and Engineering and Scientific Research at Shanghai Jiao Tong University (1G2017ZD14). The computations were partially performed at the Peng Cheng Lab and the Center for High-Performance Computing, Shanghai Jiao Tong University.

ORCID

Muhammad Tahir Khan http://orcid.org/0000-0003-1158-2133

References

Aanouz, I., Belhassan, A., Khatabi, K. E., Lakhfi, T., Idrissi, M. E., & Bouachrine, M. (2020). Moroccan medicinal plants as inhibitors of COVID-19: Computational investigations. *Journal of Biomolecular Structure and Dynamics*, 0(1a), 1–12. https://doi.org/10.1080/07391102.2020.1758790

Abdelli, I., Hassani, F., Brikci, S. B., & Ghalem, S. (2020). In silico study the inhibition of Angiotensin converting enzyme 2 receptor of COVID-19 by *Amooides verticillata* components harvested from western Algeria. *Journal of Biomolecular Structure and Dynamics, 0*(ja), 1–17. https://doi.org/10.1080/07391102.2020.1763199

Ahmadi, A., Zorofchian Moghadamtousi, S., Abubakar, S., & Zandi, K. (2015). Antiviral potential of algae polysaccharides isolated from marine sources: A review. *BioMed Research International*, 2015, 825203. https://doi.org/10.1155/2015/825203

Ahmed, S. F., Quadeer, A. A., & McKay, M. R. (2020). Preliminary identification of potential vaccine targets for the COVID-19 Coronavirus (SARS-CoV-2) based on SARS-CoV immunological studies. *Viruses, 12*(3), 254. https://doi.org/10.3390/v12030254

Anand, K., Yang, H., Bartlam, M., Rao, Z., & Hilgenfeld, R. (2005). A proteome wide perspective [Text]. https://www.ingentaconnect.com/content/ben/cp/2005/00000009/00000004/art00004

Chou, K.-C., Wei, D.-Q., Du, Q.-S., Sirois, S., Shen, H.-B., & Zhong, W.-Z. (2009). Study of inhibitors against SARS coronavirus by computational approaches. In U. Lendeckel & N. M. Hooper (Eds.), *Viruses and Dynamics* (pp. 1–23). Springer. https://doi.org/10.1007/978-90-481-2384-3_1

Chen, J., Shen, B. (2009). Computational analysis of amino acid mutation: A proteome wide perspective [Text]. https://www.ingentaconnect.com/content/ben/cp/2009/00000006/00000004/art00004

Chou, K.-C., Wei, D.-Q., Du, Q.-S., Sirois, S., Shen, H.-B., & Zhong, W.-Z. (2009). Study of inhibitors against SARS coronavirus by computational approaches. In U. Lendeckel & N. M. Hooper (Eds.), *Viruses and Dynamics* (pp. 1–23). Springer. https://doi.org/10.1007/978-90-481-2384-3_1

Chu, L.-H. M., Choy, W.-Y., Tsai, S.-N., Rao, Z., & Ngi, S.-M. (2006). Rapid peptide-based screening on the substrate specificity of severe acute respiratory syndrome (SARS) coronavirus 3C-like protease by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. *Protein Science: A Publication of the Protein Society, 15*(4), 699–709. https://doi.org/10.1111/j.1949-8504.2006.tb02387.x

Das, S., Sarmah, S., Lyndem, S., & Roy, A. S. (2020). An investigation into the identification of potential inhibitors of SARS-CoV-2 main protease using molecular docking study. *Journal of Biomolecular Structure and Dynamics, 0*(ja), 1–18. https://doi.org/10.1080/07391102.2020.1763201

DeGoe, D. A., Chen, H.-J., Cox, P. B., & Wendt, M. D. (2018). Beyond the Rule of 5: Lessons learned from AbbVie’s drugs and compound collection. *Journal of Medicinal Chemistry, 61*(7), 2636–2651. https://doi.org/10.1021/acs.jmedchem.7b00717

Das, D. A., Urban, S., & Roessner, U. (2012). A historical overview of natural products in drug discovery. *Metabolites, 2*(2), 303–336. https://doi.org/10.3390/metabo2020303

Doniach, S., & Eastman, P. (1999). Protein dynamics simulations from nanoseconds to microseconds. *Current Opinion in Structural Biology, 9*(2), 157–163. https://doi.org/10.1006/cosb.1999.990220-0

Dubey, K. D., Tiwari, R. K., & Ojha, R. P. (2013). Recent advances in protein-ligand interactions: Molecular dynamics simulations and binding free energy. *Current Opinion in Aided Drug Design*, 9(4), 518–531. https://doi.org/10.2174/1759499910906600036

Elifyki, A. A. (2020a). SARS-CoV-2 RNA dependent RNA polymerase (RdRp) targeting: An in silico perspective. *Journal of Biomolecular Structure and Dynamics, 0*(ja), 1–15. https://doi.org/10.1080/07391102.2020.1761882

Elifyki, A. A. (2020b). Natural products may interfere with SARS-CoV-2 attachment to the host cell. *Journal of Biomolecular Structure and Dynamics, 0*(ja), 1–16. https://doi.org/10.1080/07391102.2020.1761881

Elifyki, A. A., & Azzam, E. B. (2020). Novel guanosine derivatives against MERS CoV polymerase: An in silico perspective. *Journal of Biomolecular Structure and Dynamics, 0*(0), 1–9. https://doi.org/10.1080/07391102.2020.1758799

Elmezayen, A. D., Al-Obaidy, A., Şahin, A. T., & Yelekçi, K. (2020). Drug repurposing for coronavirus (COVID-19): in silico screening of known drugs against coronavirus 3CL hydrolyase and protease enzymes. *Journal of Biomolecular Structure and Dynamics, 0*(0), 1–13. https://doi.org/10.1080/07391102.2020.1758791

Enayatkhani, M., Hasaniazaad, M., Faezi, S., Guklani, H., Davoodian, P., Ahmadi, N., Einakian, M. A., Karmostaji, A., & Ahmadi, K. (2020). Repurposing of vaccine approach to design a novel multi-epitope vaccine candidate against COVID-19: An in silico study. *Journal of Biomolecular Structure and Dynamics, 0*(0), 1–16. https://doi.org/10.1080/07391102.2020.1756411

Enmohzi, S. K., Raja, K., Sebastiani, I., & Joseph, J. (2020). Andrographolide as a potential inhibitor of SARS-CoV-2 main protease: An in silico approach. *Journal of Biomolecular Structure and Dynamics, 0*(ja), 1–10. https://doi.org/10.1080/07391102.2020.1760136

Ernst, M., Sittel, F., & Stock, G. (2015). Contact- and distance-based principal component analysis of protein dynamics. *Journal of Chemical Physics, 143*(24), 244114. https://doi.org/10.1063/1.4938249

Felix, C. R., Gupta, R., Geden, S., Roberts, J., Winder, P., Pomponti, S. A., Diaz, M. C., Reed, J. K., Wright, A. E., & Rohde, K. H. (2017). Selective killing of dormant mycobacterium tuberculosis by marine natural products. *Antimicrobial Agents and Chemotherapy, 61*(8), e00743–17. https://doi.org/10.1128/AAC.00743-17

Gajula, M., Kumar, A., & Ijaq, J. (2016). Protocol for molecular dynamics simulations of proteins. *Bio-Protocol, 6*(23), e2051. https://doi.org/10.21769/BioProtoc.2051

Gan, Y.-R., Huang, H., Huang, Y.-D., Rao, C.-M., Zhao, Y., Liu, J.-S., Wu, L., & Wei, D.-Q. (2006). Synthesis and activity of an octapeptide inhibitor designed for SARS coronavirus main protease. *Peptides, 27*(4), 622–625. https://doi.org/10.1016/j.peptides.2005.09.006
Khan, S. A., Zia, K., Ashraf, S., Uddin, R., & Ul-Haq, Z. (2020). Identification of new anti-nCoV drug chemical compounds from Indian spices exploiting SARS-CoV-2 main protease as target. Journal of Biomolecular Structure and Dynamics, 0(0), 1–9. https://doi.org/10.1080/07391102.2020.1762302

Lobanov, M. Y., Bogatyrevna, N. S., & Galizitkaya, O. V. (2008). Radius of gyration as an indicator of protein structure compactness. Molecular Biology, 42(4), 623–628. https://doi.org/10.1134/S0026893308040195

Mani, D., Wadhawan, A., & Krishnamurthy, P. T. (2019). Drug repurposing in antiviral research: A current scenario. Journal of Young Pharmacists, 11(2), 117–121. https://doi.org/10.5550/jyp.2019.11.26

Mayer, A. M. S., Guerrero, A. J., Rodriguez, A. D., Tagliatela-Scafati, O., Nakamura, F., & Fusetani, N. (2019). Marine pharmacology in 2014–2015: Marine compounds with antibacterial, antidiabetic, anti-fungal, anti-inflammatory, antiprotozoal, antituberculosis, antiviral, and antihelmintic activities; affecting the immune and nervous systems, and other miscellaneous mechanisms of action. Marine Drugs, 18(11), 5. https://doi.org/10.3390/md18100005

Moghadamtousi, S. Z., Nikzad, S., Kadir, H. A., Abubakar, S., & Zandi, K. (2015). Potential antiviral agents from marine fungi: An overview. Marine Drugs, 13(7), 4520–4538. https://doi.org/10.3390/md13074520

Muralidharan, N., Sakhthivel, R., Velmurugan, D., & Gromiha, M. M. (2020). Computational studies of drug repurposing and synergism of lopinavir, oseltamivir and ritonavir binding with SARS-CoV-2 protease against COVID-19. Journal of Biomolecular Structure and Dynamics, 0(0), 1–6. https://doi.org/10.1080/07391102.2020.1752802

Newman, D. J., & Cragg, G. M. (2016). Natural products as sources of new drugs from 1981 to 2014. Journal of Natural Products, 79(3), 629–669. https://doi.org/10.1021/acs.jnatprod.5b01055

Pant, S., Singh, M., Ravichandran, V., Murty, U. S. N., & Sivastava, H. K. (2020). Peptide-like and small-molecule inhibitors against Covid-19. Journal of Biomolecular Structure and Dynamics, 0(0), 1–15. https://doi.org/10.1080/07391102.2020.1757510

Pillayari, T., Manickam, M., Namasiyavam, Y., Hayashi, Y., & Jung, S.-H. (2016). An overview of severe acute respiratory syndrome-coronavirus (SARS-CoV)-3CL protease inhibitors: Peptidomimetics and small molecule chemotherapy. Journal of Medicinal Chemistry, 59(14), 6595–6628. https://doi.org/10.1021/acs.jmedchem.5b01051

Raveh, A., Deleka, P. C., Dobry, C. J., Peng, W., Schultz, P. J., Blakely, P. K., Tai, A. W., Matainaho, T., Irani, D. N., Sherman, D. H., & Miller, D. J. (2013). Discovery of potent broad spectrum antivirals derived from marine actinobacteria. PLoS One, 8(12), e82318. https://doi.org/10.1371/journal.pone.0082318

Roe, D. R., & Cheatham, T. E. (2013). PTRAJ and CPPTRAJ: Software for processing and analysis of molecular dynamics trajectory data. Journal of Chemical Theory and Computation, 9(7), 3084–3095. https://doi.org/10.1021/ct400341p

Sagar, S., Kaur, M., & Minneman, K. P. (2010). Antiviral lead compounds from marine sponges. Marine Drugs, 8(10), 2619–2638. https://doi.org/10.3390/md8102619

Sarma, P., Sekhar, N., Prajapat, M., Avti, P., Kaur, H., Kumar, S., Singh, S., Kumar, H., Prakash, A., Dhibar, D. P., & Medhi, B. (2020). In-silico homology assisted identification of inhibitor of RNA binding against 2019-nCoV N-protein (N terminal domain). Journal of Biomolecular Structure and Dynamics, 0(0), 1–11. https://doi.org/10.1080/07391102.2020.1753580

Sinha, S. K., Shyakha, A., Prasad, S. K., Singh, S., Gurav, N. S., Prasad, R. S., & Gaur, S. S. (2020). An in-silico evaluation of different Saikosaponins for their potency against SARS-CoV-2 using NSP15 and fusion spike glycoprotein as targets. Journal of Biomolecular Structure and Dynamics, 0(0), 1–13. https://doi.org/10.1080/07391102.2020.1762741

Sirois, S., Zhang, R., Gao, W., Gao, H., Li, Y., Zheng, H., Wei, D.-Q. (2007). Discovery of Potent Anti-SARS-CoV MPro Inhibitors. Bentham Science Publishers. https://www.ingentaconnect.com/content/ben/cad/2007/00000003/00000003/art00002

Smilgies, D.-M., & Folta-Stogniew, E. (2015). Molecular weight-gyration radius relation of globular proteins: A comparison of light scattering, small-angle X-ray scattering and structure-based data. Journal of Applied Crystallography, 48(Pt 5), 1604–1606. https://doi.org/10.1107/S1600576715013551

Umesh, K. D., Selvaraj, C., Singh, S. K., & Dubey, V. K. (2020). Identification of new anti-nCoV drug chemical compounds from Indian spices exploiting SARS-CoV-2 main protease as target. Journal of Biomolecular Structure and Dynamics, 0(0), 1–9. https://doi.org/10.1080/07391102.2020.1763202
Uzair, B., Mahmood, Z., & Tabassum, S. (2011). Antiviral activity of natural products extracted from marine organisms. *BioImpacts*, 1(4), 203–211. https://doi.org/10.5681/bi.2011.029

Vijayakumar, S., & Menakha, M. (2015). Pharmaceutical applications of cyanobacteria—A review. *Journal of Acute Medicine*, 5(1), 15–23. https://doi.org/10.1016/j.jacme.2015.02.004

Vilar, S., Cozza, G., & Moro, S. (2008). Medicinal chemistry and the molecular operating environment (MOE): Application of QSAR and molecular docking to drug discovery. *Current Topics in Medicinal Chemistry*, 8(18), 1555–1572. https://doi.org/10.2174/156802608786786624

Vo, T.-S., & Kim, S.-K. (2010). Potential Anti-HIV Agents from Marine Resources: An Overview. *Marine Drugs*, 8(12), 2871–2892. https://doi.org/10.3390/md8122871

Wahedi, H. M., Ahmad, S., & Abbasi, S. W. (2020). Stilbene-based natural compounds as promising drug candidates against COVID-19. *Journal of Biomolecular Structure and Dynamics*, 0(ja), 1–16. https://doi.org/10.1080/07391102.2020.1762743

Wei, D.-Q., Zhang, R., Du, Q.-S., Gao, W.-N., Li, Y., Gao, H., Wang, S.-Q., Zhang, X., Li, A.-X., Siros, S., & Chou, K.-C. (2006). Anti-SARS drug screening by molecular docking. *Amino Acids*, 31(1), 73–80. https://doi.org/10.1007/s00726-006-0361-7

WHO COVID-19 Dashboard. (n.d.). Retrieved May 5, 2020, from https://covid19.who.int/

Wittine, K., Satić, L., Persurić, Z., & Kraljević Pavelić, S. (2019). Novel antiretroviral structures from marine organisms. *Molecules*, 24(19), 3486. https://doi.org/10.3390/molecules24193486

Wrapp, D., Wang, N., Corbett, K. S., Goldsmith, J. A., Hsieh, C.-L., Abiona, O., Graham, B. S., & McLellan, J. S. (2020). Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. *Science*, 367(6483), 1260–1263. https://doi.org/10.1126/science.abb2507

Wu, C., Liu, Y., Yang, Y., Zhang, P., Zhong, W., Wang, Y., Wang, Q., Xu, Y., Li, M., Li, X., Zheng, M., Chen, L., & Li, H. (2020). Analysis of therapeutic targets for SARS-CoV-2 and discovery of potential drugs by computational methods. *Acta Pharmaceutica Sinica B*. https://doi.org/10.1016/j.apsb.2020.02.008

Yang, H., Xie, W., Xue, X., Yang, K., Ma, J., Liang, W., Zhao, Q., Zhou, Z., Pei, D., Ziebuhr, J., Hilgenfeld, R., Yuen, K. Y., Wong, L., Gao, G., Chen, S., Chen, Z., Ma, D., Bartlam, M., & Rao, Z. (2005). Design of wide-spectrum inhibitors targeting coronavirus main proteases. *PLoS Biology*, 3(10), e324https://doi.org/10.1371/journal.pbio.0030324

Yang, H., Yang, M., Ding, Y., Liu, Y., Lou, Z., Zhou, Z., Sun, L., Mo, L., Ye, S., Pang, H., Gao, G. F., Anand, K., Bartlam, M., Hilgenfeld, R., & Rao, Z. (2003). The crystal structures of severe acute respiratory syndrome virus main protease and its complex with an inhibitor. *Proceedings of the National Academy of Sciences of the United States of America*, 100(23), 13190–13195. https://doi.org/10.1073/pnas.1835675100

Zhang, L., & Liu, Y. (2020). Potential interventions for novel coronavirus in China: A systemic review. *Journal of Medical Virology*, 92(5), 479–490. https://doi.org/10.1002/jmv.25707

Zheng, X., Gan, L., Wang, E., & Wang, J. (2013). Pocket-based drug design: Exploring pocket space. *AAPS Journal*, 15(1), 228–241. https://doi.org/10.1208/s12248-012-9426-6