Cultivating stem cells for treating amyotrophic lateral sclerosis

Shengwen Calvin Li, Hong Zhen Yin, William G Loudon, John H Weiss

Abstract
This editorial addresses the current challenges and future directions in the use of stem cells as an approach for treating amyotrophic lateral sclerosis. A wide variety of literature has been reviewed to enlighten the reader on the many facets of stem cell research that are important to consider before using them for a cell based therapy.

© 2012 Baishideng. All rights reserved.

Key words: Stem cell therapy; Amyotrophic lateral sclerosis

Peer reviewer: Prashanth Asuri, Assistant Professor, Bioengineering, Santa Clara University, 500 El Camino Real, Santa Clara, CA 95053, United States

Li SC, Yin HZ, Loudon WG, Weiss JH. Cultivating stem cells for treating amyotrophic lateral sclerosis. World J Stem Cells 2012; 4(12): 117-119 Available from: URL: http://www.wjgnet.com/1948-0210/full/v4/i12/117.htm DOI: http://dx.doi.org/10.4252/wjsc.v4.i12.117

AMYOTROPHIC LATERAL SCLEROSIS

Amyotrophic lateral sclerosis (ALS), also known as Lou Gerhing disease/motor neuron disease is defined as the neuronal and muscular atrophy, loss of motor neurons. In the United States alone, ALS affects 30,000 individuals and death occurs 2-5 years post-diagnosis. Modalities including pharmacological, enzyme or genetic therapies have proven to be ineffective. New therapy is desperately needed. Promising results derived from animal models[1] prompted the first Food and Drug Administration (FDA) approved phase I safety trial of direct intraspinal transplantation of neural stem cells (NSCs) into patients in 2009[2]. Currently the FDA approved 18 clinical trials treating ALS (http://clinicaltrial.gov). However, no beneficial impact is shown in three completed clinical studies and the treated patients developed persistent dyskinesias in two studies[3]. The disappointment and anxiety prompt us to rethink about stem cell therapies. Here, we review the literature and address the challenges (cell types, preparations, routes of administration, mechanisms) and potentials (cytokine regulation, cell replacement, functional integration).

Multiple lines of stem cell types have been proposed for treating ALS: mesenchymal stromal cells (MSCs)[4-7], human skeletal muscle-derived stem cells with MSC-like characteristics[8], human NSCs[9-11], human embryonic stem cells (hESCs)[12,13], human cord blood mononuclear cells[9-11], and human induced pluripotent stem cells (hiPSCs)[14]. None of these cell types in their natural forms is ideal for ALS therapy because they do not naturally carry all the features suitable for therapeutic as described previously[15-17].
Different methods have been used in preparing stem cells with variation in efficacies[19]. Establishing standardized paradigms for culturing human stem cells may allow a more unified study with consistent efficacies, such as cultivating stem cells in the natural microenvironment[10,18].

It appears that there is an optimal point of time, named therapeutic window, in disease progression and such a therapeutic window, mirroring disease development, may exist in stem cell development, in which stem cells are most effective in targeting ALS[15]. Indeed, Hefferan et al[28] found that FK506 and mycophenolate can significantly improve survival of human spinal stem cells after intraspinal transplantation in SOD1(G93A) rats by employing monotherapy or combined immunosuppressive regimens only in certain points in time of postoperation. The pre-symptomatic phase in Wobbler mice is the most effective therapeutic window for stem cell therapy[18]. These imply that a disease state may dictate the choice of certain stem cell types, for example, the choice of NSCs for anti-inflammatory support or the choice of NSCs-generated motor neurons for cell replacement.

The route of administration of stem cells needs to be pre-determined: systemic[20], intracerebroventricular[21], and local injection[22,23]. Upon systemic injection, transplanted stem cells migrated to the damaged areas in SOD1G93A mice[22]. Neural precursor cells transplanted specifically into the cervical spinal cord ventral gray matter of both SOD1G93A rats survived[29]. Tracking administered stem cells is critical for stem cell therapies. We have proposed eight criteria for tracking stem cells[28-30]. Canzi’s group tracked stem cells at various times after intracerebroventricular injection by magnetic resonance imaging[29] and the method needs to be optimized for clinical setting.

Mechanisms of action for stem cell therapies need to be defined for ALS. Human skeletal muscle-derived stem cell-treated Wobbler mice (ALS model) led to improve mouse behavior (forepaw adduction)[9]. This effect of stem cell transplantation proved to be through anti-inflammatory cytokines. Similar studies supported this notion[28,31,32]. Stem cell-derived motor neurons are ideal for cellular replacement in ALS. Using transcriptional coding for generating electrophysiologically-active motor neurons from hESCs and hiPSCs significantly reduces the time required to by approximately 30 d in comparison to conventional differentiation techniques[11,12]. However, these electrophysiologically-active motor neurons remain to be elucidated for the functional integration in vivo.

Addressing these issues could provide a successful framework for developing stem cell therapy of ALS. Advancing research on understanding ALS mechanisms (including genomic and epigenomic approach), developing new drugs, and conducting cell therapies may help herald a new era in managing the unmet medical need of other neurodegenerative diseases.

REFERENCES

1. Rossi SL, Nistor G, Wyatt T, Yin HZ, Poole AJ, Weiss JH, Gardener MJ, Dijkstra S, Fischer DF, Keirstead HS. Histological and functional benefit following transplantation of motor neuron progenitors to the injured rat spinal cord. PLoS One 2010; 5: e11852.
2. Boullis NM, Federici T, Glass JD, Lunn JS, Sakowski SA, Feldman EL. Translational stem cell therapy for amyotrophic lateral sclerosis. Nat Rev Neurol 2011; 8: 172-176.
3. Feng Z, Gao F. Stem cell challenges in the treatment of neurodegenerative disease. CNS Neurosci Ther 2012; 18: 142-148.
4. Forestsyk S, Jendelova P, Kapcalova M, Arboleda D, Sykova E. Mesenchymal stromal cells prolong the lifespan in a rat model of amyotrophic lateral sclerosis. Cytotherapy 2011; 13: 1036-1046.
5. Kim NH, Park KS, Cha SK, Yoon JH, Yeh BI, Han KH, Kong SD. Src family kinase potentiates the activity of nicotinic acetylcholine receptor in rat autonomic ganglion innervating urinary bladder. Neurosci Lett 2011; 494: 190-195.
6. Mazzini L, Ferrero I, Luparello V, Rustichelli D, Gunetti M, Mareschi K, Testa L, Stecco A, Tarlletti R, Miglioretti M, Fava E, Nasuelli N, Cisari C, Massara M, Vercelli R, Oggioni GD, Carriero A, Cantello R, Monaco E, Fagioli F. Mesenchymal stem cell transplantation in amyotrophic lateral sclerosis: A Phase I clinical trial. Exp Neurol 2010; 223: 229-237.
7. Zhao CP, Zhang C, Zhou SN, Xie YM, Wang YH, Huang H, Shang YC, Li WY, Zhou C, Yu MJ, Feng SW. Human mesenchymal stromal cells ameliorate the phenotype of SOD1-G93A ALS mice. Cytotherapy 2007; 9: 414-426.
8. Canzi L, Castellana V, Navone S, Nava S, Dossena M, Zucca I, Mennini T, Bigini P, Parati EA. Human skeletal muscle stem cell antiinflammatory activity ameliorates clinical outcome in amyotrophic lateral sclerosis models. Mol Med 2012; 18: 401-411.
9. de Filippis L. Neural stem cell-mediated therapy for rare brain diseases: perspectives in the near future for LSDs and MNDs. Histo Histopathol 2011; 26: 1093-1109.
10. Lee JC, Jin Y, Jin J, Kang BG, Nam DH, Joo KM, Cha CI. Functional neural stem cell isolation from brains of adult mutant SOD1 (SOD1(G93A)) transgenic amyotrophic lateral sclerosis (ALS) mice. Neurot Res 2011; 33: 33-37.
11. Lepore AC. Intraspinal cell transplantation for targeting cervical ventral horn in amyotrophic lateral sclerosis and traumatic spinal cord injury. J Vis Exp 2011; (55) pii: 3069.
12. Hester ME, Murtha MJ, Song S, Rao M, Miranda CJ, Meyer K, Tian J, Boulling G, Schafter DV, Zhu MX, Pfaff SL, Gage FH, Kaspar BK. Rapid and efficient generation of functional motor neurons from human pluripotent stem cells using gene delivered transcription factor codes. Mol Ther 2011; 19: 1905-1912.
13. Wyatt TJ, Rossi SL, Siegenthaler MM, Frame J, Robles R, Nistor G, Keirstead HS. Human motor neuron progenitor transplantation leads to endogenous neuronal sparing in 3 models of motor neuron loss. Stem Cells Int 2011; 207230.
14. Dimos JT, Rodolfa KT, Niakan KK, Weisenthal LM, Mitsu moto H, Chung W, Croft GF, Saphier G, Leibel R, Goland R, Wichterle H, Henderson CE, Eggan K.Induced pluripotent stem cells generated from patients with ALS can be differentiated into motor neurons. Science 2008; 321: 1218-1221.
15. Li SC, Loudon WG. Stem cell therapy for paediatric malignant brain tumours: the silver bullet? Oncology News UK 2008; 3: 10-14.
16. Li SC, Loudon WG. A novel and generalizable organotypic slice platform to evaluate stem cell potential for targeting pediatric brain tumors. Cancer Cell Int 2008; 8: 9.
17. Li SC, Wang L, Jiang H, Acevedo J, Chang AC, Loudon WG. Stem cell engineering for treatment of heart diseases: potentials and challenges. Cell Biol Int 2009; 33: 255-267.
18. Li SC, Jin Y, Loudon WG, Song Y, Ma Z, Weiner LP, Zhong JF. Increase developmental plasticity of human keratinocytes with gene suppression. Proc Natl Acad Sci USA 2011; 108: 12793-12798.
19 Li SC, Han YP, Dethlefs BA, Loudon WG. Therapeutic window, a critical developmental stage for stem cell therapies. Curr Stem Cell Res Ther 2010; 5: 297-299
20 Hefferan MP, Johe K, Hazel T, Feldman EL, Lunn JS, Marsala M. Optimization of immunosuppressive therapy for spinal grafting of human spinal stem cells in a rat model of ALS. Cell Transplant 2011; 20: 1153-1161
21 Mitrecić D, Nicaise C, Gajović S, Pochet R. Distribution, differentiation, and survival of intravenously administered neural stem cells in a rat model of amyotrophic lateral sclerosis. Cell Transplant 2010; 19: 537-548
22 Bigini P, Vegliànese P, Andriolo G, Cova L, Grignaschi G, Caron I, Daleno C, Barbera S, Ottolina A, Calzarossa C, Lazzari L, Mennini T, Bendotti C, Silani V. Intracerebroventricular administration of human umbilical cord blood cells delays disease progression in two murine models of motor neuron degeneration. Rejuvenation Res 2011; 14: 623-639
23 Blaauwgeers HG, Vianney de Jong JM, Verspaget HW, van den Berg FM, Troost D. Enhanced superoxide dismutase-2 immunoreactivity of astrocytes and occasional neurons in amyotrophic lateral sclerosis. J Neurol Sci 1996; 140: 21-29
24 Aronov S, Aranda G, Behar L, Ginzburg I. Visualization of translated tau protein in the axons of neuronal P19 cells and characterization of tau RNP granules. J Cell Sci 2002; 115: 3817-3827
25 Madhusoodanan KS, Murad F. NO-cGMP signaling and regenerative medicine involving stem cells. Neurochem Res 2007; 32: 681-694
26 Silani V, Cova L, Corbo M, Ciammola A, Polli E. Stem-cell therapy for amyotrophic lateral sclerosis. Lancet 2004; 364: 200-202
27 Suzuki M, Svendsen CN. Combining growth factor and stem cell therapy for amyotrophic lateral sclerosis. Trends Neurosci 2008; 31: 192-198
28 Towne C, Setola V, Schneider BL, Aebischer P. Neuroprotection by gene therapy targeting mutant SOD1 in individual pools of motor neurons does not translate into therapeutic benefit in fALS mice. Mol Ther 2011; 19: 274-283
29 Lepore AC, Maragakis NJ. Stem cell transplantation for spinal cord neurodegeneration. Methods Mol Biol 2011; 793: 479-493
30 Li SC, Tachiki LM, Luo J, Dethlefs BA, Chen Z, Loudon WG. A biological global positioning system: considerations for tracking stem cell behaviors in the whole body. Stem Cell Rev 2010; 6: 317-333
31 Soler B, Fadic R, von Bernhardi R. [Stem cells therapy in amyotrophic lateral sclerosis treatment. A critical view]. Rev Neurol 2011; 52: 426-434
32 Karussis D, Karageorgiou C, Vaknin-Dembinsky A, Gowda-Kurkalli B, Gomori JM, Kassiss I, Bulle JW, Petrou P, Ben-Hur T, Abramsky O, Slavin S. Safety and immunological effects of mesenchymal stem cell transplantation in patients with multiple sclerosis and amyotrophic lateral sclerosis. Arch Neurol 2010; 67: 1187-1194

S-Editor Wen LL L-Editor A E-Editor Xiong L