The Effect of SIN1 and Microtubules on Insulin Induced PKC ζ Activation

ABCEF Xiang Yingying*
ACDE Wang Caijuan*
D Yue Yan
D Tang Yuqin
D Cai Xueqin
ADEFG Wu Zhongming

* Equal contributors

Corresponding Author: Wu Zhongming, e-mail: wuzhongming@tmu.edu.cn
Source of support: This work was supported by the National Natural Science Foundation of China (Grant 81671835)

Background: Protein kinase C zeta (PKC ζ) plays an important role in insulin induced glycometabolism and insulin receptor (IR) associated signaling pathways. The full activation of PKC ζ depends on its translocation from cytosol to membrane and phosphorylation at Thr410. However, the mechanism of PKC ζ activation remains elusive. In this study, the effect of SIN1 and microtubules on insulin-induced PKC ζ activation was investigated.

Material/Methods: HepG2 cells were stimulated with insulin for co-immunoprecipitation (co-IP) assay. The immunocomplex was captured by using anti-PKC ζ, anti-SIN1 or anti-FLAG antibodies and was subjected to western blotting analysis for detecting PKC ζ, SIN1, and β-tubulin protein expression level. The cells were intervened by small interfering RNA (siRNA) that targeted exon regions of SIN1. Then the glucose uptake ratio after cells were stimulated by insulin was measured. The PKC ζ insulin receptor levels in the membranes were analyzed. Cells stained with anti-PKC ζ, anti-SIN1 antibodies and probed with molecular probes were observed by immunofluorescence confocal microscopy.

Results: SIN1 interacted and co-located with PKC ζ by pleckstrin homology (PH) domain. Downregulation of SIN1 severely impaired PKC ζ translocation and phosphorylation induced by insulin. PKC ζ co-immunoprecipitated with β-tubulin at different intervals upon insulin stimulus, and the activation of PKC ζ was affected by paclitaxel and nocodazole.

Conclusions: PKC ζ translocated from cytosol to membrane depending on SIN1, which suggested that PKC ζ may be activated directly by PI3K and the reaction probably carried out on microtubules in HepG2 cells.

MeSH Keywords: Insulin • Microtubules • Protein Kinase C

Full-text PDF: http://www.medscimonit.com/abstract/index/idArt/905555

Key Laboratory of Hormones and Development (Ministry of Health), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Metabolic Diseases Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, P.R. China

This work is licensed under Creative Common Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)
Background

Insulin resistance is a ubiquitous pathological process in patients with type 2 diabetes; the term refers to insulin target organs (e.g., muscle and liver) that are not sensitive to insulin stimulus, which leads to a disorder in glucose uptake and utilization [1]. As the incidence of type 2 diabetes is increasing rapidly [2,3], exploring the mechanism of insulin resistance becomes important. Atypical protein kinase C (PKC) isoform PKC zeta (PKC ζ) has been reported to be activated in insulin-stimulated glucose transport through the PI3K/PKC ζ pathway [4–7]. Inhibition of the PKC ζ enzyme inhibits insulin-stimulated glucose transport while activation of PKC ζ increases glucose transport and ameliorates hepatic steatosis in obese diabetic mice [8,9]. One study found that PI3K subunit p85 transferred from cytosol to the cytomembrane within one minute under 10⁻³ mol/L insulin stimulus in rat fibroblasts in which insulin receptor (IR) was highly expressed, while PKC ζ transferred from cytosol to the cytomembrane within one to 10 minutes [10], which suggested that PI3K activation occurred prior to PKC ζ, and PI3K may regulate PKC ζ directly in the cytomembrane. In a resting state, inactive PKC ζ locates in the cytoplasm, while it translocates to the cell membrane and becomes active upon stimulus [11]. However, how PKC ζ translocates from cytosol to the cytomembrane remains unclear.

The mTOR complex 2 (mTORC2) also plays a pivotal role in cell metabolism, growth, proliferation, and survival [12,13]. mTORC2-deficient hepatocytes display loss of glucokinase activity in the liver, which leads to constitutive gluconeogenesis, and impair glycolysis and lipogenesis [14]. mTORC2 regulates glycometabolism through downstream substrates and an abundance of evidence demonstrates that mTORC2 phosphorylates and activates AGC kinase family members, including the PKC family [15,16]. SIN1, as a unique subunit of mTORC2, is ubiquitous in all eukaryotic species and has a tissue expression pattern similar to that of mTOR [17]. It has a conserved region that occurs prior to PKC ζ, and PI3K may regulate PKC ζ directly in the cytomembrane. In a resting state, inactive PKC ζ locates in the cytoplasm, while it translocates to the cell membrane and becomes active upon stimulus [11]. However, how PKC ζ translocates from cytosol to the cytomembrane remains unclear.

Material and Methods

Plasmid construction

The full-length pCMV-SIN1-FLAG (nucleotide ID of SIN1: NM_001006617.1) was constructed by PCR cloning into pCMV5; the C-terminal truncated (ΔPH) SIN1 (1–382) was constructed using pCMV-SIN1-FLAG as template.

Cell culture and transfection

HepG2 cells were obtained from the American Type Culture Collection, where they were characterized by DNA profiling. HepG2 cells were cultured in DMEM (Gibco, 25 mM glucose) with 10% FBS (HyClone) at 37°C in 5% CO₂. The cell lines were passaged for less than six months in this study. Lipofectamine 2000 (Invitrogen) was used for transient transfection according to the manufacturer’s instructions.

siRNA interfering

Three stealth siRNAs were designed to target different exon regions of human SIN1 with the sequences as follows: (#1: 5’-CAGUCACGGCAAUUUAAATTUUAUAUAUUUGCGUGACUGTT-3’; #2: 5’-GGGAAGCAGUCGAUUAUUAUTTAAUAAUUCGCACUCCTT-3’; #3: 5’-CUGCUACCGU CAAUUGAATTUUCCAUUGAGCAGCAGTT-3’) and a scrambled (Scr) siRNA were synthesized by GenePharma. The molar concentration of SIN1 and Scr were the same in this study.

Co-immunoprecipitation (co-IP) assay

Co-IP was performed as previously described [22]. Briefly, HepG2 cells were seeded in 10 cm dishes and grown to 80% to 90% confluence. After 12 hours of non-serum starvation, cells were either left unstimulated or stimulated with 100 nmol/L insulin (Novolin R, Novo Nordisk) for 10 minutes, lastly for 30 minutes for co-IP with β-tubulin (Affinity, T0023). After washing three times with PBS, cells were lysed in 1 mL of ice-cold cell lysis buffer (0.3% CHAPS, 1.5 mmol/L Na₂VO₄, 40 mmol/L HEPES, 120 mmol/L NaCl, 10 mmol/L pyrophosphate, 10 mmol/L glycero-phosphate, 50 mmol/L NaF, 1 mmol/L EDTA, and complete protease inhibitor cocktail (Roche), pH 7.5) on ice for 30 minutes. After centrifugation at 12,000×g for 10 minutes, supernatants were removed and precleared by adding 50 μL of protein G (Novex) for one hour. Supernatants were immunoprecipitated by using anti-PKC ζ (Santa Cruz, Sc-216), anti-SIN1 (Millipore, #05-1044) or anti-FLAG antibodies (Proteinteck). The immunocomplex was captured by adding 50 μL of protein G and subjected to western blotting analysis (anti-SIN1 antibody dilute rate 1: 400, anti-PKC ζ antibody 1: 1,000, and anti-tubulin β antibody 1: 3,000).
Glucose uptake

Hepatocytes glucose uptake assay was done according to “National operation regulations for clinical examination” in China. At first, cells were intervened by DMEM containing 0.6 mmol/L palmitic acid for 12 hours. Then supernatant was collected at prescribed times and supernatant glucose concentrations were measured via Glucose Oxidase Method [23,24]. The supernatant for Scr cells and siRNA cells in 6 cm dishes were removed and changed with phenol red-free DMEM (Gibco) with 10% FBS. Cells were either left unstimulated or stimulated with 100 nmol/L insulin (Sigma) for 24 hours. After intervention, the cell supernatant was collected in a tube, centrifugation at 12,000×g for 10 minutes; then 5 μL of supernatant was added into 195 μL of working solution (Glucose Oxidase Method Kit; Applygen, Beijing), 37°C for 20 minutes; the OD value was measured at 550 nm wave length. The supernatant glucose concentration was calculated as follows: supernatant glucose concentration (mmol/L)=standard concentration×(unknown OD–blank OD)/(standard OD–blank OD)

Membrane fraction isolation

A protease inhibitor cocktail and phosphatase inhibitor cocktail tail were added to the cell lysis buffer before protein extraction. To isolate membrane fraction, cells were resuspended in 500 μL of subcellular fractionation buffer (250 mmol/L sucrose, 20 mmol/L HEPES, 10 mmol/L KCl, 1.5 mmol/L MgCl₂, 1 mmol/L EGTA, 1 mmol/L EDTA, and protein inhibitor cocktail) at 4°C and lysed through a 25-gauge needle 10 times using a 1 mL syringe. Lysates were centrifuged at 1,000×g for 10 minutes to remove nuclear pellets, and supernatants were centrifuged again at 100,000×g for one hour. The supernatant was the cytosol fraction. The pellet was the membrane fraction and it was washed and resuspended in the lysis buffer with 10% glycerol and 0.2% SDS for further analysis. Antibodies against insulin receptor were from Affinity Biosciences (AF6099, dilute rate 1:600).

Immunofluorescence confocal microscopy

HepG2 cells were plated in 12-well plates containing sterile coverslips, allowed for 12 hours growth, and starved in serum-free DMEM for at least 12 hours. After stimulation with 100 nmol/L insulin for 10 minutes, cells were fixed with 4% paraformaldehyde, quenched with 50 mmol/L. NH₄Cl, permeabilized in 0.2% Triton X-100 in PBS, and blocked in 3% bovine serum albumin. Cells were stained with anti-PKC ζ (1: 50) and anti-SIN1 (1: 20) antibodies (β-tubulin 1: 200) and probed with either an Alexa Fluor 568 (Molecular Probes, A-11011) or an Alexa Fluor 488 (Molecular Probes, A-11001) conjugated secondary antibody (1: 200). Coverslips were mounted and cells visualized with confocal laser scanning microscopy (Leica TCS SP5).

The rest of reagents

Paclitaxel (PTX) was obtained from DaLian Meilun Biotech Co., Ltd. (Dalian, China) and nocodazole (NDZ) were purchased from Sigma-Aldrich (Merck, USA); anti p-cofilin antibody from Santa Cruz (Sc-12912-R, dilute rate 1: 1,000); and antibodies to phospho-PKC ζ from Cell Signaling Technology (#9378, dilute rate 1: 1,000).

Statistical analysis

Results were expressed as mean ±SEM. Student-Newman-Keuls were used to examine differences in response to treatments between groups. Statistical evaluation was performed using SPSS13.0. The significance level was set at p<0.05 (*), p<0.001 (**), and “NS” was no significance. All assays were repeated at least three times and protein concentrations were measured by BCA protein assay.

Results

SIN1 downregulation impaired glucose uptake in HepG2 cells

To downregulate SIN1, all of the three stealth sequences severely decreased the expression of SIN1 in HepG2 cells, whereas the scrambled had no effect (Figure 1A). SIN1 downregulation decreased the ratio of glucose uptake in HepG2 cells in both 100 nmol/L insulin stimulus cells and non-insulin stimulus cells, approximately 27% and 20% with or without insulin stimulus, respectively (Figure 1B). Since the three siRNAs had similar phenotypes, the results of #3 were presented as the representative (siSIN1).

SIN1 associated with PKC ζ and co-localization with PKC ζ via its PH domain

The interaction between SIN1 and PKC ζ was examined by co-IP assays. As shown in Figure 2A and 2B, SIN1 and PKC ζ coprecipitated with each other in vitro, suggesting SIN1 may bind PKC ζ to form a complex. Next, we investigated the possibility that SIN1 interacts with PKC ζ in hepatocytes. Confocal microscopy analysis showed that both SIN1 and PKC ζ were distributed in the cytosol of resting cells, consistent with previous reports. On stimulation with 100 nmol/L insulin for 10 minutes, both PKC ζ and SIN1 proteins were enriched along the plasma membrane, suggesting activation of both proteins (Figure 2C), and SIN1 colocalized with PKC ζ on the plasma membrane. Taken together, the results suggested that SIN1 may bind PKC ζ to form a stable complex. In order to find the binding region of SIN1 with PKC ζ, two plasmids expressing wild SIN1 and C-terminal truncated SIN1 (1~382), respectively,
Figure 1. SIN1 downregulation impaired glucose uptake in HepG2 cells. (A) HepG2 cells were transfected by three different sequences of siRNAs, and SIN1 expression was measured by western blotting. (B) After transfer by three siRNAs of SIN1 #1, #2, #3, HepG2 cells were cultured for 24 hours with or without 100 nmol/L insulin respectively and the glucose uptake ratio was compared by Glucose Oxidase Method Kit.

Figure 2. SIN1 co-localization with PKC ζ via its PH domain. (A) After stimulation with 100 nmol/L insulin for 10 minutes and co-immunoprecipitation of PKC ζ in cell lysis buffer, the expression of SIN1 was measured by western blotting. Nonimmune IgG was used as a control. (B) Using the same method, co-immunoprecipitation of SIN1 in lysis buffer, the expression of PKC ζ was measured by western blotting. (C) The co-localization relationship of SIN1 with PKC ζ in cytosol and on membranes was tested by confocal microscopy. (D) Sketch map of FLAG tag fused SIN1-Wild and SIN1-ΔPH proteins. (E) Co-IP using FLAG antibody, the expression of PKC ζ antibody was tested by western blotting. (F) Co-IP using PKC ζ antibody, the expression of FLAG was tested by western blotting.
Insulin stimulus was carried out. As shown in Figure 4B, the interaction between PKCζ and the microtubule involved in PKCζ activation. To detect the relationship between PKCζ and tubulin in the insulin signal pathway, co-IP using PKCζ antibody at different points in time after insulin stimulus was carried out. As shown in Figure 4B, the interaction between β-tubulin and PKCζ became weak from five minutes to 20 minutes and recovered at 30 minutes after stimulated by insulin, while the combination of SIN1 and PKCζ was independent of insulin stimulus. PTX was the microtubule stabilizer drug that we used to inhibit microtubule dynamics and NDZ was used to depolymerize the microtubule. When treated with 10 nM PTX and 10 µM NDZ for four hours, respectively, insulin-induced PKCζ membrane translocation was significantly decreased (Figure 4C). Insulin-induced PKCζ phosphorylation at Thr410 was slightly inhibited, and the phosphorylation of its downstream effect factor, cofilin, was also affected (Figure 4D). These results indicated that microtubules may affect the activation of PKCζ. Confocal microscopy analysis showed that PKCζ may be divorced from microtubules and transferred to the plasma membrane on stimulation with 100 nmol/L insulin for 10 minutes (Figure 4E).

Downregulating SIN1 reduced PKCζ translocation and phosphorylation

The membrane translocation of PKCζ was analyzed in knockdown cells. Knockdown of SIN1 inhibited insulin-induced translocation from cytosol to membrane of PKCζ. The quantity of PKCζ in the membrane was significantly reduced under the stimulus of insulin (Figure 3A). Furthermore, insulin induced phosphorylation of PKCζ at Thr410 was severely inhibited in siSIN1 cells (Figure 3B). These results indicated that SIN1 was required for full activation of PKCζ.

Microtubule involved in PKCζ activation

Most signaling proteins containing PH domain could be translocated to membrane responding to stimulus and activated on the microtubule. To detect whether microtubules were involved in PKCζ activation, co-IP was carried out, as shown in Figure 4A: β-tubulin and PKCζ coprecipitated with each other in resting condition in vitro, while the association was dim with downregulation of SIN1. These data suggested SIN1 may participate in PKCζ activation. To detect the relationship between PKCζ and tubulin in the insulin signal pathway, co-IP using PKCζ antibody at different points in time after insulin stimulus was carried out. As shown in Figure 4B, the interaction between β-tubulin and PKCζ became weak from five minutes to 20 minutes and recovered at 30 minutes after stimulated by insulin, while the combination of SIN1 and PKCζ was independent of insulin stimulus. PTX was the microtubule stabilizer drug that we used to inhibit microtubule dynamics and NDZ was used to depolymerize the microtubule. When treated with 10 nM PTX and 10 µM NDZ for four hours, respectively, insulin-induced PKCζ membrane translocation was significantly decreased (Figure 4C). Insulin-induced PKCζ phosphorylation at Thr410 was slightly inhibited, and the phosphorylation of its downstream effect factor, cofilin, was also affected (Figure 4D). These results indicated that microtubules may affect the activation of PKCζ. Confocal microscopy analysis showed that PKCζ may be divorced from microtubules and transferred to the plasma membrane on stimulation with 100 nmol/L insulin for 10 minutes (Figure 4E).

Discussion

Previous works showed that PKCζ played an important role in insulin-stimulated glucose transport through the PI3K/PKCζ pathway [5,6], and PKCζ may be activated directly by PI3K in the cytomembrane [10]. However, valid evidence is absent and the mechanism of PKCζ membrane translocation remains unclear. In this study, SIN1, a unique subunit of mTORC2 which could promote cells growth and metastasis [25], was found to affect insulin-induced glucose uptake. Among the results of co-IP with SIN1, PKCζ was identified. Besides, SIN1 could co-precipitate with PKCζ antibody independent of insulin. The co-localization of SIN1 and PKCζ in cytoplasm without insulin stimulus or cytomembrane with insulin stimulus, further confirmed the interaction between SIN1 and PKCζ. In another co-IP result, PKCζ could bind wild SIN1, but not SIN1 deleting PH domain, correlating with the results of C-terminal truncated SIN1β [26], which suggested SIN1 interacted with PKCζ via its PH domain. In further studies, knockdown of SIN1 inhibited PKCζ translocation and full activation. Considering
SIN1 contains a PH domain, which is used to translocate signal effectors to PI3K generally [19]. PKCζ probably realized its membrane translocation dealing with insulin stimulus through binding SIN1 and activated by PI3K directly.

The microtubule cytoskeleton is a highly dynamic, filamentous network underpinning cellular structure and function [27,28]. α- and β-tubulin polymerize into dynamic microtubules and provide platforms for intracellular transport. The microtubule has been proven to be involved in a variety of signaling pathway and many proteins are activated by second messengers on microtubules, including PI3K associated downstream effectors [29]. When HepG2 cells were treated with 100 nmol/L insulin for 0, 1, 5, 10, 20, and 30 minutes, the quantity of SIN1 that coprecipitated with PKCζ did not change, indicating the interaction between SIN1 and PKCζ was independent of insulin stimulus. However, the quantity of β-tubulin that coprecipitated with PKCζ severely declined from five minutes to 20 minutes, suggesting unactivated PKCζ had interaction with microtubules and activated PKCζ may be detached from microtubules. PTX is

Figure 4. Microtubule involved in PKCζ activation. (A) In resting condition, co-immunoprecipitation of PKCζ in Scr and siSIN1 cells lysis buffer, and the expression of β-tubulin was measured by western blotting. Nonimmune IgG was used as a control. (B) SIN1 and β-tubulin co-IP with PKCζ antibody at different intervals stimulated by 100 nmol/L insulin. (C) After being treated with 10 nM PTX and 10 μM NDZ for four hours, membrane translocation of PKCζ induced by insulin was tested. (D) After being treated by 10 nM PTX and 10 μM NDZ, phosphorylation of PKCζ and downstream cofilin induced by insulin was measured. (E) The relationship of microtubules with PKCζ was tested by confocal microscopy before and after 100 nmol/L insulin stimulation.
usually used to inhibit microtubular dynamics and then affect intracellular transport [30], while NDZ is used to depolymerize microtubules [31]. In our study, when treated with PTX or NDZ, the membrane translocation and phosphorylation of PKCζ were both impaired. The phosphorylation of coflin, serving as downstream effector of PKCζ, was also decreased, which further confirmed the inactivation of PKCζ induced by PTX and NDZ. These results suggested that microtubules probably served as the platform for the activation of PKCζ by PI3K.

Conclusions

Our results revealed a novel mechanism of PKCζ membrane translocation induced by insulin through binding SIN1 in HepG2 cells and its activation by PI3K on the platform of microtubules. In addition, the role of SIN1 in glycometabolism of human hepatocytes was further illustrated. SIN1 may be used as a novel biomarker or target to develop new metastasis therapy.

Acknowledgements

We thank the Basic Medical Research Center of Tianjin Medical University for providing technical assistance. We also thank Dr. Wang for modification of our manuscript.

Conflicts of interest

None.

References:

1. Taylor R: Insulin resistance and type 2 diabetes. Diabetes, 2012; 61(4): 778–79
2. Zhang P, Zhang X, Brown J et al: Global healthcare expenditure on diabetes for 2010 and 2030. Diabetes Res Clin Pract, 2010; 87(3): 293–101
3. Gueritu GA, Whiting DR, Hambleton J et al: Global estimates of diabetes prevalence for 2013 and projections for 2035. Diabetes Res Clin Pract, 2014; 103(2): 137–49
4. Mendez R, Kollmroen G, Rhoads RE: Requirement of protein kinase C zeta for stimulation of protein synthesis by insulin. Mol Cell Biol, 1997; 17(9): 5184–92
5. Bandypadhyay G, Standaert ML, Kikkawa U et al: Effects of transiently expressed atypical zeta (lambda), conventional (alpha, beta) and novel (delta, epsilon) protein kinase C isoforms on insulin-stimulated translocation of epothee-tagged GLUT4 transporters in rat adipocytes: Specific interchangeable effects of protein kinases C-zeta and C- lambda. Biochem J, 1999; 337(Pt 3): 461–70
6. Liu LZ, Cheung SC, Lan LL et al: The pivotal role of protein kinase C zeta (PKCζeta) in insulin- and AMP-activated protein kinase (AMPK)-mediated glucose uptake in muscle cells. Cell Signal, 2010; 22(10): 1513–22
7. Liu LZ, Zhao HL, Zuo J et al: Protein kinase Czeta mediates insulin-induced glucose transport through actin remodeling in L6 muscle cells. Mol Biol Cell, 2006; 17(5): 2322–30
8. Bandypadhyay G, Saajan MP, Kanoh Y et al: PKCζeta mediates insulin effects on glucose transport in cultured preadipocyte-derived human adipocytes. J Clin Endocrinol Metab, 2002; 87(2): 716–23
9. Goo H, Li D, Ling W et al: Anthocyanin inhibits high-glucose-induced hepatic mGAT1 activation and prevents fatty acid synthesis through PKCζeta. J Lipid Res, 2011; 52(5): 908–22
10. Mosthaf L, Kellerer M, Muhlofer A et al: Insulin leads to a parallel translocation of PI-3-kinase and protein kinase C zeta. Exp Clin Endocrinol Diabetes, 1996; 104(1): 19–24
11. Zhang H, Yang J, Wang GH et al: Role of PKCζeta translocation in the development of type 2 diabetes in rats following continuous glucose infusion. Diabetes Metab Res Rev, 2010; 26(1): 59–70
12. Laplante M, Sabatini DM: mTOR signaling in growth control and disease. Cell, 2012; 149(2): 274–93
13. Cota D: mTORC2, the “other” mTOR, is a new player in energy balance regulation. Mol Metab, 2014; 3(4): 349–50
14. Hagiwara A, Connu M, Cybulski N et al: Hepatic mTORC2 activates glycolysis and lipogenesis through AKT, glucokinase, and SREBP1c. Cell Metab, 2012; 15(5): 725–38
15. Gueritu DA, Stevens DM, Thoreen CC et al: Ablation in mice of the mTORC components raptor, rictor, or mLST8 reveals that mTORC2 is required for signaling to Akt-FOXO and PKCalpha, but not S6K1. Dev Cell, 2006; 11(6): 859–71
16. Thomanetz V, Angliker N, Coetta D et al: Ablation of the mTORC2 component rictor in brain or Purkinje cells affects size and neuron morphology. J Cell Biol, 2013; 201(2): 293–308
17. Wilkinson MG, Pino TS, Tournier S et al: Sin1: An evolutionarily conserved component of the eukaryotic SAKP pathway. EMBO J, 1999; 18(15): 4210–21
18. Schroder WA, Buck M, Cloonan N et al: Human Sin1 contains Ras-binding and pleckstrin homology domains and suppresses Ras signalling. Cell Signal, 2007; 19 (6): 1279–89
19. Yuan HK, Guan KL: The SIN1-PH domain connects mTORC2 to PI3K. Cancer Discov, 2015; 5(11): 1127–29
20. Jacobs AR, LeRoith D, Taylor SI: Insulin receptor substrate-1 pleckstrin homology and phosphoryrosine-binding domains are both involved in plasma membrane targeting. J Biol Chem, 2001; 276(44): 40795–802
21. Yao L, Kawakami Y, Kawakami T: The pleckstrin homology domain of Bruton tyrosine kinase interacts with protein kinase C. Proc Natl Acad Sci USA, 1994; 91(19): 5175–79
22. Zhang F, Zhang X, Li M et al: mTOR complex component Rictor interacts with PKCζeta and regulates cancer cell metastasis. Cancer Res, 2010; 70(22): 9360–70
23. Pardeshi P, Rao KK, Balaji PV: Rv3634c from Mycobacterium tuberculosis H37RV encodes an enzyme with UDP-Gal/Glc and UDP-GalNAc 4-epimerase activities. PLoS One, 2017; 12(4): e0175193
24. Shen X, Zhou N, Mi L et al: Phloretin exerts hypoglycemic effect in streptozotocin-induced diabetic rats and improves insulin resistance in vitro. Drug Des Devel Ther, 2017; 11: 313–24
25. Hu Z, Wang Y, Wang Y et al: Epigenetic activation of SIN1 promotes NSCLC cell proliferation and metastasis by affecting the epithelial-mesenchymal transition. Biochem Biophys Res Commun, 2017; 483(1): 645–51
26. Yuan Y, Pan B, Sun H et al: Characterization of Sin1 isoforms reveals an mTOR-dependent and independent function of Sin1gamma. PLoS One, 2015; 10(8): e0135017
27. Quraishi S, Sealey M, Cranfield L, Mudher A: Microtubule stabilising peptides rescue tau phenotypes in vivo. Sci Rep, 2016; 6: 38224
28. De S, Tsimoulikis A, Chen X, Rotenberg SA: Phosphorylation of alpha-tubulin by protein kinase C stimulates microtubule dynamics in human breast cancer cells. Cytoskeleton (Hoboken, N.J.), 2014; 71(4): 257–72
29. Vale RD: The molecular motor toolbox for intracellular transport. Cell, 2003; 112(4): 467–80
30. Sung M, Giannakakou P: BRCA1 regulates microtubule dynamics and taxane-induced apoptotic cell signaling. Oncogene, 2014; 33(11): 1418–28
31. Kitase Y, Shuler CF: Microtubule disassembly prevents palatal fusion and alters regulation of the E-cadherin/catenin complex. Int J Dev Biol, 2013; 57(1): 55–60