Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Original article

Impact of the COVID-19 pandemic on the health care of >1,000 People living with multiple sclerosis: A cross-sectional study

Andre C. Vogela, Hollie Schmidtb, Sara Loudb, Robert McBurneyb, Farrah J. Mateenb,c,⁎

a Massachusetts General Hospital, Department of Neurology, Boston, MA, USA
b Accelerated Cure Project, Waltham, MA, USA
c Harvard Medical School, Boston, MA, USA

ARTICLE INFO

Keywords:
COVID-19
Multiple sclerosis
Immunosuppression
Cohort
Health behavior

ABSTRACT

Background: People with multiple sclerosis (PwMS) experienced changes in health behaviors and access to MS care due to the COVID-19 pandemic. The USA has the highest recognized number of Covid19 infections globally. The extent of the impact of COVID-19 has not been well characterized in large samples of PwMS to date. The MS patient perspective on COVID-19 would complement the physician-reported cases of MS and COVID-19 in the literature.

Methods: A cross-sectional survey of adult PwMS was performed online, using the U.S.-based patient-powered iConquerMS™ platform, in April 2020.

Results: There were 1,145 respondents (response rate: 20%). 1,019 had a diagnosis of MS and responded completely (average age: 54.2 years, range: 20-81; 79% female; 64% relapsing remitting, 22% secondary progressive, 12% primary progressive; 88% in the USA). 748 (73%) used a DMT in the last year, primarily higher-efficacy therapies: ocrelizumab (n=238), dimethyl fumarate (n=85), fingolimod (n=80). The most frequent comorbidities were depression (41%), hypertension (26%), and asthma (12%). Women were more worried than men about COVID-19 (p=0.001); non-white-identifying PwMS believed it was a greater danger to their health than white-identifying PwMS (p=0.002). Through the continuum of symptoms to care, 61% of PwMS (n=617) reported symptoms associated with COVID-19, 39% (n=395) knew someone exposed to COVID-19, 4% (n=38) were aware of a personal COVID-19 exposure, 13% (n=128) wanted testing for COVID-19 but could not access it, and 4% (n=43) were tested. Specific to their MS care, 64% (n=650) canceled a medical visit, 22% (n=222) canceled a neurologist visit, 11% (n=112) canceled an MRI, 21% (n=212) canceled a laboratory test, and 10% (n=98) changed their DMT in some way due to COVID19 including delaying at least one dose. 37% (n=382) had a telehealth visit due to COVID-19. 37% of PwMS (n=374) experienced employment changes, most commonly working from home (n=194) and having work hours reduced (n=65) while 32 lost their jobs. Of the 7 cases who tested positive for COVID-19 (<1% of participants) (5 female; age range: 29-64 years), DMTs included dimethyl fumarate (n=2), ocrelizumab (n=1), rituximab (n=1), and a clinical trial drug (n=1).

Conclusions: A majority of people with MS reported interruptions to their MS care along the MS care pathway alongside limited access to COVID-19 testing. Postponements and delays in care were common with 10% of participants reporting a change in their DMT administration. Less than 1% of this self-referred convenience online cohort had a positive test for COVID-19 although more than half reported symptoms that are associated with COVID-19.

1. Introduction

The COVID-19 pandemic has evolved rapidly since its initial presentation in December 2019 (World Health Organization, 2020). The first U.S. case was confirmed on January 19th, 2020 (Holshue et al., 2020) with pandemic status declared on March 11th. (World Health Organization, 2020) By mid-April, SARS-CoV-2 was detected in 185 countries, had infected at least 19 million people worldwide, and linked to >700,000 deaths. (Johns Hopkins University, 2020) Multiple sclerosis (MS) affects more than three-quarters of a million adults in the USA. People with MS (PwMS) on higher efficacy disease modifying therapies (DMTs) may be at an increased risk of infection or serious...
complications due to COVID-19. Some expert groups have recommended delaying or modifying administration of DMTs for patients on alemtuzumab, cladribine, ocrelizumab, or rituximab during COVID-19. (National Multiple Sclerosis Society, 2020; Multiple Sclerosis Society, 2020; MS International Federation, 2020; MS Australia, 2020; Brownlee et al., 2020) More recent data suggest that not all cases of COVID-19 are severe, even while taking some of the high-efficacy therapies for MS (Meca-Lallana et al., 2020).

PwMS are also vulnerable to the economic, lifestyle, and social upheaval caused by COVID-19. Essential services for PwMS have been interrupted, discontinued, or transformed. A longitudinal care approach with MRIs, laboratory tests, and outpatient follow-up visits is integral to optimized MS care but became variably accessed and available during the height of the pandemic (Rae-Grant et al., 2018). There are now multiple impacts to PwMS with widespread social distancing orders, closures of outpatient clinics, joblessness, and disruptions to major public services such as public transit. Since PwMS already experienced high rates of unemployment, prior to COVID-19, new joblessness became an added risk.

Advocacy for digitalization of MS services predates COVID-19, given its foreseen benefits to PwMS, (Lavorgna et al., 2018) but impetus to implement telehealth services for PwMS has never been as profound across locations as during COVID-19. The use of tele-health can mitigate some aspects of disruptions to MS care. The extent of its uptake during COVID-19 in the USA has not been well characterized.

Given the anecdotal experiences of PwMS and their barriers to care during COVID-19, we wrote and deployed a large-scale internet-based survey to determine the real-world impact of the COVID19 pandemic on PwMS. This survey was rapidly disseminated during the early height of epidemic in the USA to specifically probe knowledge, attitudes, and practices as they intersect between MS and COVID-19. Since the USA has more COVID-19 cases than any other country worldwide, we hope that our experiences provide lessons learned by PwMS. Such lessons could be used to identify and maintain the most essential MS services, support patients psychologically with new resources, and improve future epidemic responses in the context of specialty MS care.

2. Methods

2.1. Ethical approval and procedures

The study was approved by the Partners Healthcare Inc. Human Research Committee. The non-governmental organization Accelerated Cure Project (ACP) received independent ethics approval. Participants were members of ACP’s iConquerMS™ research network who have previously provided informed consent to participate in surveys through the network. We adopted the STROBE guidelines for conducting and reporting observational studies (von Elm et al., 2014).

2.2. Survey instrument

A new survey instrument to assess the knowledge, attitudes, and practices of PwMS related to COVID-19 and explore the impact on health, medical care, and daily life was designed by the authors. Baseline demographic, income, and MS disease variables were included from the iConquerMS semi-annual data collection process and confirmed where needed. The approximately 75-question instrument was piloted by the authors and MS patient advocates. The final survey included multiple choice, open-ended, and ordinal rating questions (Appendix 1).

Four themes were emphasized: (1) SARS-CoV-2 awareness, including symptoms of COVID19 and information sources; (2) experience with COVID-19, including exposed contacts, symptoms, access to testing, and worry; (3) healthcare changes, including DMT use, delays in treatment and care seeking, comfort in visiting health care centers; and (4) effects on daily life, including job changes, access to food, and ability to exercise.

PwMS were queried on current clinical, demographic, and MS disease state variables, including duration of disease, and current DMT use. Current functional status was measured via the Patient Determined Disease Steps (PDDS) scale, a patient-reported metric of disability in MS ranging from 0 (no disability) to 8 (bedridden) (Learmonth et al., 2013). Subjective measures (i.e. worry about COVID-19) were evaluated on a 7-point scale where 1 corresponded to “low” and 7 to “high” degrees of a value.

2.3. Recruitment, distribution, enrollment

PwMS were recruited via the iConquerMS platform (https://www.acceleratedcure.org/iconquerms), a patient-designed and patient-governed research network based in Massachusetts that reaches adults with MS in all 50 US states as well as worldwide. PwMS who were 21 years and older and registered with the network received e-mail invitations to participate in the study on April 3, 2020 with reminders sent until April 30, 2020. At the time of survey administration, iConquerMS included 5,700 PwMS. Advertisements were made through the iConquerMS website, social media, and emails as well as web posts and emails from social influencers and partner organizations including the MS Association of America, the National Multiple Sclerosis Society, and the MS Foundation.

Surveys were filled on the iConquerMS platform in a cross-sectional design. Participants were considered to be enrolled until either 1) survey completion or 2) drop-out, defined as having incomplete survey at the pre-specified time of analysis (May 1, 2020).

2.4. Data analysis

Quality control included removal of respondents who self-declared that they did not have MS or did not answer two or more key variables, such as both MS disease phase and age. Responses to variables of interest were displayed graphically. Variables were reported as means and ranges or medians and interquartile ranges, as appropriate. For questions with multiple-choice options, results were calculated as counts and percentages. Missing responses were assumed to be missing completely at random.

There were no pre-specified hypotheses. The survey was intended to depict the range of experiences of COVID-19 in PwMS residing predominantly in the USA. When comparisons were made post hoc, a p-value of <0.05 was considered statistically significant. All analyses were performed using R (Vienna, Austria).

3. Results

3.1. Sample determination

1,145 people responded to the survey (response rate 20%). Participants were excluded from analysis if they did not have MS (n = 21) or did not answer two or more key variables (n = 105), yielding 1,019 analyzed PwMS.

3.2. Characteristics of participants

The average age of participants was 54.2 years old (range 20–81) (Table 1). The majority identified as white (n = 964, 95%), female (n = 810, 79%), and were diagnosed with relapsing remitting MS (n = 653, 64%). Most participants were from the USA (n = 900, 88%) representing 49 of the 50 states (Fig. 1). 36 participants (4%) were from Canada, 27 (3%) from the United Kingdom, and 56 participants came from various countries globally (Appendix 2). The modal household income was 50,001-100,000 USD per year with most participants having a Bachelor's degree or above.

Nearly three-quarters of participants (n = 748, 73%) took a DMT for
morbidities included hypertension (n = 2), diabetes mellitus (n = 3), and heart disease (n = 1) (Table 3).

617 participants (61%) reported experiencing at least one symptom associated with COVID-19 since February 2020. 395 participants (39%) reported knowing somebody who was exposed to COVID-19 and 38 (4%) reported being personally exposed to someone with COVID-19. Participants who knew somebody exposed to COVID-19 were younger than those who did not (average age of 52.8 years vs. 55.5 years, p = <0.001); this was also the case for participants who had been personally exposed to COVID-19 compared to those who had not (average age 48.8 years vs. 54.4 years, p = 0.01).

Participants who knew someone exposed to COVID-19 were significantly more worried about COVID-19 than those who did not know someone exposed (mean 4.8 vs. 4.4 points out of 7; p = 0.002). A higher proportion of participants who knew someone exposed to COVID-19 reported canceling neurologists’ visits, MRIs, non-neurologists’ medical visits, and laboratory tests compared to those who did not know someone exposed to COVID-19.

3.4. Testing access and availability

Most respondents had not been tested for COVID-19 (n = 975, 96%), although two-thirds of those who had not been tested stated they did not want to be tested (651/975, 67%). By contrast, 128 participants (13%) wanted to be tested but were unable to do so, including 46 (36% of 128) who replied that the tests were unavailable and 23 (18%) who replied that their doctor did not offer the test. An additional 27 participants (21%) explained their inability to be tested in open response questions, which largely included that the participants were either self-isolating and did not want to leave their house or were asymptomatic (Table 3).

3.5. Changes to MS care due to COVID-19

98 participants (10%) reported making a change to their DMT, dose, or dosing schedule due to COVID-19; of these, the most common change was to delay at least one dose of DMT (n = 65, 66% of 98). For PwMS who made DMT changes, 25 (26%) reported making the change without the input of their neurologist or physician. The most common DMT with an altered dosing regimen was ocrelizumab (n = 37, 38%) (Table 4).

110 participants (11% of 1,019) reported experiencing difficulties and delays in accessing DMTs. For these participants, ocrelizumab was the most difficult to access and delayed DMT, with a total of 42 (38%) participants describing difficulties related to the drug (2 with prescription, 19 with infusion, and 21 with monitoring tests). 14 participants reported difficulties with dimethyl fumarate (5 with prescription, 9 with safety visits), and 8 reported difficulties with rituximab (1 with prescription, 5 with infusion, and 2 with monitoring visits).

PwMS reported delays and difficulties in other aspects of their care: 186 (18% of 1,019) in non-MS related medical procedures, 177 (17%) in accessing complementary and alternative medical services, and 77 (8%) in accessing non-DMT medications.

650 participants (64%) reported canceling or postponing medical visits. 222 (34% of 650) reported canceling a neurologist’s visit, 112 (17%) an MRI, 499 (77%) a non-neurologist medical visit, and 212 (33%) a laboratory visit. Of these 650 participants, 138 (21% of 650) took ocrelizumab, 52 (8%) took glatiramer acetate, 50 (8%) took dimethyl fumarate, 50 (8%) took fingolimod, 39 (6%) took natalizumab, and 23 (4%) took rituximab. The proportion of female respondents who reported canceling or postponing medical visits was greater than the proportion of male respondents who reported doing so (Table 4).

On a scale of 1 (“not comfortable”) to 7 (very comfortable), participants reported discomfort with the idea of going to the hospital for emergencies (median score: 3, 1st quartile: 1, 3rd quartile: 5) and infusions (median: 2, 1st quartile: 1, 3rd quartile: 4); however, in both cases, men reported a higher mean level of comfort (emergency: 4 vs.
3.3, \(p < 0.001 \); infusion: 3.5 vs. 2.8, \(p < 0.001 \) (Fig. 2). 382 participants (37%) had telemedicine visits due to COVID-19.

3.6. COVID-19 awareness and concern

There was an overall high degree of worry about COVID-19 and belief that it presents a major danger to one’s health (Fig. 2). A small number (\(n = 37, 4\% \)) of participants reported never having heard of the virus prior to the survey. 916 participants (90%) reported that there had been a case of COVID-19 in their city/town.

Most participants recognized that fever and dry cough are symptoms of COVID-19; however, only 65% of participants correctly identified pneumonia as a possible symptom of the disease. 80% of participants recognized that issues with smell and taste are a symptom. Participants reported receiving news about COVID-19 from a variety of sources, including TV news (\(n = 729, 73\% \)), internet news sites like the New York Times (\(n = 663, 65\% \)), and national- and state-level government websites (\(n = 606, 59\%; 580, 57\%; \) respectively). Social media sites such as Facebook, Twitter, and Reddit were less commonly used (24%, 9%, and 2%, respectively). Participants reported being confident in their knowledge of the guidelines for immunocompromised patients in the setting of COVID-19, the number of cases in their area, how to protect against COVID-19, what to do if infected, when to be tested, and what to do if positive. Participants reported less confidence on MS-specific guidelines in the setting of COVID-19, where to get tested, and which drugs could potentially exacerbate or ameliorate the disease (Appendix 3).

3.7. Personal and lifestyle effects of COVID-19

374 participants (37% of 1,019) reported that they had experienced employment changes as a result of COVID-19. The most common change was now working from home (\(n = 196, 52\% \) of 374), although 65 reported that their hours had been reduced, and 33 reported losing their job. A higher proportion of women of all ages reported losing their jobs compared to men (4% vs. 2%, \(p = 0.39 \)) (Appendix 4).

COVID-19 was overall thought not to have a major negative impact on diet, exercise, or personal finances; however, women reported a significantly more negative impact of the virus on their diet than did men (scores from 1 (“no negative impact”) to 7 (“significant negative impact”), F: 3.1 vs. M: 2.6, \(p = 0.0013 \)). Participants believed COVID-19 presents a major danger to their health and reported being generally highly worried about the disease. Men reported being less worried about COVID-19 than women (average worry: 4.2 vs. 4.7, \(p = 0.001 \)) (Fig. 2). Non-white respondents reported believing that COVID-19 presents a significantly greater danger to their health than white
Table 2
Clinical data and medical history (n = 1019 People with multiple sclerosis), stratified by age.

Age group (years)	<= 55 years	>55 years
n (%)	552 (50%)	507 (50%)
CS	10 (2)	8 (2)
RRMS	408 (80)	245 (48)
SPMS	66 (13)	155 (31)
PPMS	26 (5)	92 (18)
Not Quinquagenarian	0 (0)	7 (1)
Patient-determined disease step (PDSS) score, median (1st quartile, 3rd quartile)	2 (0, 4)	4 (2, 5)
Taken DMT within past year	Yes	417 (81)
	No	88 (17)
Don’t know	7 (1)	10 (2)
DMTsa		
Glatiramer acetate	35 (7)	48 (9)
Interferon-beta-1	21 (4)	23 (5)
Peginterferon beta-1	3 (0.6)	4 (0.8)
Fingolimod	58 (11)	23 (5)
Siponimod	3 (0.6)	5 (3)
Dimethyl fumarate	52 (10)	35 (7)
Diroximel fumarate	0 (3.0)	3 (0.6)
Teriflunomide	20 (4)	25 (5)
Cladribine	6 (1)	4 (0.8)
Natalizumab	44 (9)	23 (5)
Rituximab	21 (4)	17 (3)
Ocrelizumab	134 (26)	104 (21)
Alemtuzumab	7 (1)	0
Otherb	5 (1)	5 (0.9)
MS relapse in last month	Yes	49 (6)
	No	415 (81)
Don’t Know	51 (10)	33 (7)
Hospitalized due to MS in 2019	Yes	24 (5)
	No	156 (30)
Don’t Know	3 (0.6)	0
Ever hospitalized due to MS	Yes	183 (36)
	No	322 (63)
Don’t Know	5 (1)	6 (1)
Needed steroids in the last month	Yes	396 (77)
	No	109 (21)
Don’t Know	7 (1)	2 (0.4)
In-person neurologist visit in last 6 months	Yes	83 (16)
	No	480 (94)
Don’t Know	5 (1)	6 (1)

a Participants answered this question with open responses. Responses included patients not wanting to leave the house and not exhibiting enough symptoms to qualify for a test.

4. Discussion

Considerable attention has been paid to the impact of COVID-19 among those with the disease; however, the widespread implications of COVID-19, including the measures taken by society and health systems have also profoundly affected people living with chronic diseases. Particularly in April 2020, it was unclear which forms and doses of immunosuppression confer added risks to PwMS on both becoming infected with SARS-CoV-2 and having a worse prognosis if infected. Although less than 1 percent of our participants had COVID-19, the high impact of COVID-19 on health behaviors, MS care access, alterations in DMT use, and impact on work are notable. Our study occurred at the first height of the COVID-19 pandemic in the USA (April 2020). During these weeks, particularly in the Northeastern part of the USA, non-COVID-19 health care services shut down, including reduced in-person access to clinics, laboratories, MRI suites, and primary care offices. In several locations, hospitals were overwhelmed by the need to care for COVID-19 patients, and MS physicians and nurses were redeployed to work outside of their usual practices. In many cases, practices shut down and/or moved all care to telemedicine. In cases where services remained in place, self-limited withdrawal from health services occurred due to worry, anxiety, and fear by PwMS. Taken together, even these weeks of disruption to care may have impacts to PwMS for many months to come in the form of changing immunosuppressive drug doses, deferred or avoided laboratory monitoring of existing treatment, and limited access to health providers.

Notably, women reported a significantly more negative impact from...
COVID-19 than men across multiple self-reported domains. This occurred with both higher levels of worry and less comfort related to COVID-19, as well as changes in health seeking behaviors, including cancelations and postponements of medical visits. The gendered effects of viral epidemics have been explored in COVID-19. For instance, cancelations and postponements of medical visits. The gendered effects of viral epidemics have been explored in COVID-19. For instance, cancelations and postponements of medical visits. The gendered effects of viral epidemics have been explored in COVID-19. For instance, cancelations and postponements of medical visits. The gendered effects of viral epidemics have been explored in COVID-19. For instance, cancelations and postponements of medical visits. The gendered effects of viral epidemics have been explored in COVID-19. For instance, cancelations and postponements of medical visits. The gendered effects of viral epidemics have been explored in COVID-19. For instance, cancelations and postponements of medical visits. The gendered effects of viral epidemics have been explored in COVID-19. For instance, cancelations and postponements of medical visits. The gendered effects of viral epidemics have been explored in COVID-19. For instance, cancelations and postponements of medical visits. The gendered effects of viral epidemics have been explored in COVID-19. For instance, cancelations and postponements of medical visits. The gendered effects of viral epidemics have been explored in COVID-19. For instance, cancelations and postponements of medical visits. The gendered effects of viral epidemics have been explored in COVID-19. For instance, cancelations and postponements of medical visits. The gendered effects of viral epidemics have been explored in COVID-19. For instance, cancelations and postponements of medical visits. The gendered effects of viral epidemics have been explored in COVID-19. For instance, cancelations and postponements of medical visits. The gendered effects of viral epidemics have been explored in COVID-19. For instance, cancelations and postponements of medical visits. The gendered effects of viral epidemics have been explored in COVID-19. For instance, cancelations and postponements of medical visits. The gendered effects of viral epidemics have been explored in COVID-19. For instance, cancelations and postponements of medical visits. The gendered effects of viral epidemics have been explored in COVID-19. For instance, cancelations and postponements of medical visits. The gendered effects of viral epidemics have been explored in COVID-19. For instance, cancelations and postponements of medical visits. The gendered effects of viral epidemics have been explored in COVID-19. For instance, cancelations and postponements of medical visits. The gendered effects of viral epidemics have been explored in COVID-19. For instance, cancelations and postponements of medical visits. The gendered effects of viral epidemics have been explored in COVID-19. For instance, cancelations and postponements of medical visits. The gendered effects of viral epidemics have been explored in COVID-19. For instance, cancelations and postponements of medical visits. The gendered effects of viral epidemics have been explored in COVID-19. For instance, cancelations and postponements of medical visits. The gendered effects of viral epidemics have been explored in COVID-19. For instance, cancelations and postponements of medical visits. The gendered effects of viral epidemics have been explored in COVID-19. For instance, cancelations and postponements of medical visits. The gendered effects of viral epidemics have been explored in COVID-19. For instance, cancelations and postponements of medical visits. The gendered effects of viral epidemics have been explored in COVID-19. For instance, cancelations and postponements of medical visits. The gendered effects of viral epidemics have been explored in COVID-19. For instance, cancelations and postponements of medical visits. The gendered effects of viral epidemics have been explored in COVID-19. For instance, cancelations and postponements of medical visits. The gendered effects of viral epidemics have been explored in COVID-19. For instance, cancelations and postponements of medical visits. The gendered effects of viral epidemics have been explored in COVID-19. For instance, cancelations and postponements of medical visits. The gendered effects of viral epidemics have been explored in COVID-19. For instance, cancelations and postponements of medical visits. The gendered effects of viral epidemics have been explored in COVID-19. For instance, cancelations and postponements of medical visits. The gendered effects of viral epidemics have been explored in COVID-19. For instance, cancelations and postponements of medical visits. The gendered effects of viral epidemics have been explored in COVID-19. For instance, cancelations and postponements of medical visits. The gendered effects of viral epidemics have been explored in COVID-19. For instance, cancelations and postponements of medical visits. The gendered effects of viral epidemics have been explored in COVID-19. For instance, cancelations and postponements of medical visits. The gendered effects of viral epidemics have been explored in COVID-19. For instance, cancelations and postponements of medical visits. The gendered effects of viral epidemics have been explored in COVID-19. For instance, cancelations and postponements of medical visits. The gendered effects of viral epidemics have been explored in COVID-19. For instance, cancelations and postpone...
for innovations in care including home-based infusions and tests. Beyond these clinical needs, the use of an established platform that serves PwMS and centralizes data collection, prior to pandemics, are highly useful for understanding the scope of unanticipated events in the MS community. Although our study represents a convenience cohort, high numbers of PwMS are unlikely to be surveyed in real time without the presence of existing infrastructure.

Digitalization of MS services, through teleneurology and remote evaluation of MS patients is an important way forwards to address both ongoing disease management as well as neurorehabilitation. Pre-visit surveys to patients including modified scales for self-assessment and patient-reported outcome measures may empower PwMS and streamline patient-physician encounters (Kobelt et al., 2017). Digital triage of PwMS would most benefit from in-person visits based on standardized questionnaires could be rapidly and widely deployed (Mecia et al., 2020). One group has proposed the SAFE protocol based on the Italian experience during COVID-19. This includes standardizing protocols for Screening [for COVID-19 associated symptoms], Access [to MS care], Face [coverings] and E-health [options for MS] (Bunonomo et al., 2020). A “massive investment” for dedicated resources and human and technological services has been called for in the case of neurorehabiliation in particular, even while recognizing that remote evaluations have clear limitations (Leocani et al., 2020). Since our study’s respondents required computer and internet access to complete the survey, it is presumed that these same PwMS are capable of participating in tele-neurology services. According to the U.S. Federal Communications Commission, however, more than 19 million Americans, 14.5 million of whom reside in rural areas, still lack broadband internet access in 2020 (Federal Communications Commission, 2020). Our study respondents thus reflect a group of PwMS with at least some access to technologies and internet services and would not reflect the most disadvantaged populations in the USA who still lack this access.

Our study had several notable strengths. We depict the situation of a large number of PwMS from all U.S. states except Alaska and across different stages of disease, ages, and socioeconomic backgrounds. Our respondents answered the survey at the early peak of the COVID-19 pandemic in the USA. We therefore present data collected in real-time during the pandemic and its response. We present comprehensive data on the MS history, disability level, and economic situation. We included survey questions that sought direct information and allowed free text responses. Our survey also queried participants if they had COVID-19, whether they had experienced symptoms typical of COVID-19, and if they had not been tested but wanted to be. These remain salient public policy issues in the controversial U.S. response to Covid19. Finally, the iConquerMS platform allows for longitudinal follow up in practices and attitudes as they change over time, creating a foundation for measurement of future health behavior changes, expectations, and opinions.

Our study also had several limitations. This is not a population-based sample and is subject to several forms of bias. Participation is likely biased towards more informed PwMS who are cognizant of current research into the disease and favors wealthier patients with access to a computer and time available to answer an unpaid survey. Survey respondents were mostly white and on average age in the mid-50s, limiting the generalizability of our findings to minority populations, the youngest PwMS, and non-English speakers. For respondents who participated fully, we rely on the self-report with regards to factual details, such as DMT use and MS subtype. We did not independently verify the diagnosis of MS or the phase of MS through independent medical records or MRI review. PwMS who are very ill from COVID-19 are obviously less likely to reply to online surveys, biasing our results towards overall healthier respondents.

Finally, the COVID-19 epidemic is evolving, with new information emerging constantly. We provide a snapshot in time of a longer-term and complex situation for PwMS with the goal to capture a notable moment at the cross-roads of U.S. health care and the public health response to a global pandemic.

Funding

Mr. Vogel and Dr. Mateen were supported by an unrestricted grant from Biogen, Inc. The Accelerated Cure Project’s COVID-19 efforts are supported in part by a grant from Genentech, a member of the Roche Group. iConquerMS was partially funded through a PCORI Award (PPRN-1306-04704).
decision to publish this manuscript.

CRediT authorship contribution statement

Andre C. Vogel: Conceptualization, Formal analysis, Visualization, Data curation, Writing - original draft, Writing - review & editing.

Hollie Schmidt: Conceptualization, Methodology, Data curation, Writing - review & editing.

Sara Loud: Funding acquisition, Project administration.

Robert McBurney: Resources, Methodology, Project administration.

Farrah J. Mateen: Conceptualization, Funding acquisition, Writing - original draft, Writing - review & editing, Supervision.

Declaration of Competing Interest

The authors have nothing to report.

Supplementary materials

Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.msard.2020.102512.

References

Brownlee, W., Bourdette, D., Broadley, S., Killestein, J., Ciccarelli, O., 2020. Treating multiple sclerosis and neuromyelitis optica spectrum disorder during the COVID-19 pandemic. Neurology 94 (22), 949–952.

Bunonomo, A., Brescia Morra, V., Zappulo, E., et al., 2020. COVID-19 prevention and multiple sclerosis management: the SAFE pathway for the post-peak. Mult. Scler. Relat. Disord. 44, 102282.

Federal Communications Commission. Eighth broadband report. Last accessed online 22 August 2020 at: https://www.fcc.gov/reports-research/reports/broadband-progress-reports/eighth-broadband-progress-report.

Grebecicová, E., Pruitt, A., 2017. Infections in patients receiving multiple sclerosis disease-modifying therapies. Curr. Neurol. Neurosci. Rep. 17 (11), 88.

Holshue, M.L., DeBolt, C., Lindquist, S., et al., 2020. Washington State 2019-nCoV case investigation team. First case of 2019 novel coronavirus in the United States. N. Engl. J. Med. 382 (10), 929–936.

Hsu, J.J., Gaynor, P., Kamath, M., et al., 2020. COVID-19 in a high-risk dual heart and kidney transplant recipient. Am. J. Transplant. 20 (7), 1911–1915.

Lenk, J.S., Miles, L., Moccia, M., 2018. e-Health and multiple sclerosis: an update. Mult. Scler. 24 (13), 1657–1664.

Learmonth, V.C., Moli, R.W., Sandroff, B.M., Pula, J.H., Cadavid, D., 2013. Validation of patient determined disease steps (PDDS) scale scores in persons with multiple sclerosis. BMC Neurol. 13, 37.

Leocani, L., Diserens, K., Moccia, M., Calzagione, C., 2020. Disability through COVID-19 pandemic: neurorehabilitation cannot wait. Eur. J. Neurol. https://doi.org/10.1111/ene.14320. Online ahead of print.

Luna, G., Alipio, F., Burman, J., et al., 2020. Infection risks among patients with multiple sclerosis treated with fingolimod, natalizumab, rituximab, and injectable therapies. JAMA Neurol. 77 (2), 184–191.

Mathies, D., Rauschning, D., Wagner, U., et al., 2020. A case of SARS-CoV-2-pneumonia with successful antiviral therapy in a 77-year-old male with heart transplant. Am. J. Transplant. 20 (7), 1925–1929.

Meca-Lallana, V., Aguirre, C., Río, B., Cardeñosa, L., Alarcon, T., Vivancos, J., 2020. Mult. Scler. Relat. Disord. 44, 102306.

Moccia, M., Lanzillo, R., Brescia Morra, V., et al., 2020. Assessing disability and relapses in multiple sclerosis on telem-urology. Neurol. Sci. 41 (6), 1369–1371.

MS Australia. COVID-19 information for people with MS. https://www.msaustralia.org.au/about-ms/covid-19-information-people-ms. Last accessed: 8 August, 2020.

MS International Federation. The coronavirus and MS – global advice. https://www.msfif.org/news/2020/02/10/the-coronavirus-and-ms-what-you-need-to-know/. Last accessed: 8 August, 2020.

Multiple Sclerosis Society. COVID-19 coronavirus and MS treatments. https://www.msssociety.org.uk/about-ms/treatments-and-therapies/disease-modifying-therapies/covid-19-coronavirus-and-ms#high-risk. Last accessed: 8 August, 2020.

National Multiple Sclerosis Society. What you need to know about coronavirus (COVID-19). https://www.nationalmssociety.org/What-you-need-to-know-about-Coronavirus-(COVID-19). Last accessed: 8 August, 2020.

Novi, G., Mikulska, M., Briano, F., et al., 2020. COVID-19 in a MS patient treated with ocrelizumab: does immunosuppression have a protective role? Mult. Scler. Relat. Disord. 42, 102120.

Rae-Grant, A., Day, G.S., Marrie, R.A., et al., 2018. Practice guideline recommendations summary: disease-modifying therapies for adults with multiple sclerosis: report of the Guideline Development, Dissemination, and Implementation Subcommittee of the American Academy of Neurology. Neurology 90 (17), 777–788.

UN Secretary-General. The UN Secretary-General’s Policy Brief: the impact of COVID-19 on women. 2020. https://www.unwomen.org/en/digital-library/publications/2020/04/policy-brief-the-impact-of-covid-19-on-women. Last accessed: 8 August, 2020.

U.S. Bureau of Labor Statistics. Unemployment rate. https://data.bls.gov/timeseries/LNS14000000. Last accessed: 8 August, 2020.

von Elm, E., Altman, D.G., Egger, M., Pocock, S.J., Gøtzsche, P.C., Vandebroucke, J.P., et al., 2007. The strengthening the reporting of observational studies in epidemiology (STROBE) statement: guidelines for reporting observational studies. PLoS Med. 4 (10), e296.

Wenham, C., Smith, J., Morgan, R., 2020. Gender and COVID-19 working group. COVID-19: the gendered impacts of the outbreak. Lancet 395 (10227), 846–848.

Wijnands, J.M.A., Zhu, F., Kingwell, E., et al., 2018 Oct. Disease-modifying drugs for multiple sclerosis and neuromyelitis optica spectrum disorder during the COVID-19 pandemic. Mult. Scler Relat. Disord. 44, 102282.

World Health Organization. WHO Director-General’s opening remarks at the media briefing on COVID-19 - 11 March 2020. https://www.who.int/dg/speeches/detail/who-director-general-s-opening-remarks-at-the-media-briefing-on-covid-19—11-march-2020. Last accessed: 8 August, 2020.

World Health Organization. Pneumonia of unknown cause - China. 2020 Jan 1. https://www.who.int/csr/don/05-january-2020-pneumonia-of-unknown-cause-china/en/. Last accessed: 8 August, 2020.

Zhu, L., Gong, N., Liu, B., et al., 2020. Coronavirus disease 2019 pneumonia in immunosuppressed renal transplant recipients: a summary of 10 confirmed cases in Wuhan, China. Eur. Urol. 77 (6), 748–754.