INTRODUCTION: Tuberculosis (TB) is one of the oldest diseases caused by Mycobacterium tuberculosis (MTB) in the world associated with high morbidity and mortality. India accounts for one-fourth of the global TB burden (2.7 million cases).

Material and methods: A total 1056 patients were included in this study. All patients were requested to give two sputum samples, spot sputum sample (at the time of visit) and early morning sputum for mycobacterial testing. All spot samples tested with smear microscopy and Xpert MTB/Rif assay. Rifampicin resistant samples compared with conventional method.

Results: Out of 1056 sputum samples GeneXpert MTB Rif assay detected positive 204 (19.3%), not detected 827 (78.31%). There is significant difference found for positivity in spot samples and early morning sputum samples (P = 0.0026). Rifampicins resistant were 8 (3.9%) and shown 100% sensitivity, specificity with Conventional method.

Conclusion: For diagnosing tuberculosis and detecting Rifampicin resistance GeneXpert MTB/RIF has been especially recommended.

KEYWORDS

XpertMTB/Rif, pulmonary tuberculosis, Rifampicin resistance

ABSTRACT

Tuberculosis is one of the oldest diseases caused by Mycobacterium tuberculosis (MTB) in the world associated with high morbidity and mortality. India accounts for one-fourth of the global TB burden (2.7 million cases).

Material and methods: A total 1056 patients were included in this study. All patients were requested to give two sputum samples, spot sputum sample (at the time of visit) and early morning sputum for mycobacterial testing. All spot samples tested with smear microscopy and Xpert MTB/Rif assay. Rifampicin resistant samples compared with conventional method.

Results: Out of 1056 sputum samples GeneXpert MTB Rif assay detected positive 204 (19.3%), not detected 827 (78.31%). There is significant difference found for positivity in spot samples and early morning sputum samples (P = 0.0026). Rifampicins resistant were 8 (3.9%) and shown 100% sensitivity, specificity with Conventional method.

Conclusion: For diagnosing tuberculosis and detecting Rifampicin resistance GeneXpert MTB/RIF has been especially recommended.

INTRODUCTION:

Tuberculosis (TB) is one of the oldest diseases caused by Mycobacterium tuberculosis (MTB) in the world associated with high morbidity and mortality. India accounts for one-fourth of the global TB burden with an estimated 2.7 million incident cases (1). Although it most commonly presents as pulmonary TB (80% of patients), up to 1 in 5 patients present with extra-pulmonary manifestations, including miliary TB, bone and joint TB and TB meningitis. Tuberculosis normally progresses slowly from the latent stage (infection without active disease) to active TB disease, except in HIV co-infected patients where progression can be rapid and fatal.

Rapid tuberculosis diagnosis can be difficult in clinical practice and early pulmonary TB detection continues to be challenging for clinicians. Prompt diagnosis of active pulmonary TB is a priority for tuberculosis control, both for treating the individual and for public health intervention to reduce further spread in the community (2).

Mycobacterial culture is the gold standard for diagnosis of tuberculosis infection and is the first step in detecting drug resistant. However this approach is relatively complex and time consuming (2 months). Sputum acid fast staining is a rapid inexpensive technique to pulmonary tuberculosis but sensitivity specificity low compared to culture. And also pauci-bacillary forms of TB are more commonly pulmonary tuberculosis but sensitivity specificity low compared to culture. And also pauci-bacillary forms of TB are more commonly

Statistical analysis: All data arranged in excel spread sheets. Age wise and sex wise distribution compared. Mcnemars test and Chisquare test used to calculate the p value.
RESULTS:
A total of 1056 patient's samples with suspected TB infection were used to detect TB using GeneXpert and other common methods. Out of 1056 patients 66.4% were males, 33.6% were females.

All Spot sputum samples and early morning sputum samples were processed for acid fast staining. There is significant difference found for positivity in spot samples and early morning sputum samples (P =0.0026).(Table 1).

Table 1: Comparison of positivity among spot samples and early morning sputum samples.

ZN STAIN	EARLY MORNING SAMPLE	Statistics
SPOT SAMPLES	NEGATIVE	POSITIVE
	885	11
NEGATIVE	0	160

Out of 1056 sputum samples Gene Xpert MTB Rif assay Detected positive 204 (19.3%), Not detected 827 (78.31%), Error- 18 (1.7%) and Invalid 7 (0.66%)(Figure:1).

Figure 1: Gene Xpert MTB Rif assay results.

Highest positivity shown in age group range from 21 to 60 years by Gene Xpert Rif assay (Figure 2). Out of 204 GeneXpert positive cases 153 (75%) were males and 51 (25%) were females.

Figure 2: Age wise distribution of all GeneXpert positive cases.

Table 2: Comparison of positivity by ZN stain and Xpert MTB Rif assay.

ZN stain	GENEXPERT	STATISTICS
SPOT SPUTUM	POSITIVE	NEGATIVE
	159	0
NEGATIVE	45	827

Total 192 (18.8%) HIV positive cases noted among 1056 patients. Among all HIV Positive cases 15 patients showed positive by GeneXpert and Microscopy, 157 patients shown negative by both methods. 13 Sputum samples from HIV positive patients shown positivity by GeneXpert and negative by sputum microscopy, significant p value noted for this comparison (P=0.0006249).

DISCUSSION:
Rapid and accurate diagnosis of tuberculosis is a challenge in developing countries (9). Commonly used conventional methods detecting Mycobacterium tuberculosis complex (MTBC) are low sensitivity in clinical specimens (10,11). Smear microscopy is the current frontline diagnostic test, but lacks sensitivity. Due to the slow growth of Mycobacterium tuberculosis and need for sophisticated lab facility, culture is available in reference laboratories. A large number of pulmonary tuberculosis cases remain undiagnosed by traditional sputum microscopy, i.e. diagnostic delays in detection of smear negative suspected pulmonary tuberculosis samples is of major concern. Quality of Sputum has long been assumed to be as a main important predictor of the performance characteristics of diagnostic microbiologic tests, particularly those used to diagnose lower respiratory tract infections. While a recent systematic review found no studies on the influence of sputum quality on the performance of Xpert®MTB/RIF assay for diagnosis of pulmonary tuberculosis [12]. So Many studies have been done by using molecular techniques for the detection of MTBC, indicating that PCR is a useful and convenient method for rapid diagnosis of tuberculosis from clinical specimens. It is also remarkable method but this method also has some limitations, including the extraction method and PCR inhibitors are associated in some clinical samples.

This study was aimed at carrying out comparative analysis of Ziehl-Neelsen and GeneXpert techniques along with culture for the diagnosis of tuberculosis and detection of rifampicin detection in patients with pulmonary tuberculosis.

For testing of pulmonary tuberculosis, collection of two sputum samples for tuberculosis (TB) diagnosis, with at least one being an early morning (EM) using smear microscopy is recommended by World Health Organization (WHO). In this study we evaluated smear microscopy by spot sputum and early morning sputum samples. There is a significant difference found in both samples (P=0.0000001),i.e. Early sputum sample is mostly preferable to Microscopic examination for detection Pulmonary tuberculosis.(Table:1)

A highly sensitive and specific tuberculosis diagnostic test would contribute immensely to achieve the 90% reduction in tuberculosis incidence by 2035 as established by the End-TB strategy [13].

In our study, out of 1056 samples 204 (19.31%) samples detected as positive by GeneXpert. Previous studies showed that Xpert®MTB/RIF assay of respiratory samples in the diagnosis of pulmonary TB had a sensitivity of 89% (95% CI: 85%–92%) and specificity of 99% (95% CI: 98%–99%) (10,14). In this study sensitivity and specificity of GeneXpert shown 100%. Tuberculosis can affect any group, in our study 21 – 60 years age groups noted highest positivity by GeneXpert.(Figure:2)

GeneXpert may also be valuable as an add-on test following microscopy for patients who have previously been found to be smear negative [15]. Studies have shown that the test accurately detects 98.2% of smear positive and 72.5% of smear negative cases (16, 17). Smear-negative TB patients could benefit from GeneXpert particularly in those areas where no culture is available. In this study 100% positive for smear positive cases and 22.5% smear negative cases.(Table:2.)

Early determination of rifampicin sensitivity is important for the timely detection of multidrug resistant tuberculosis and timely initiation of appropriate therapy in order to reduce the risk of spread and poor outcome. Rifampicin resistant Among 204 GeneXpert positive were 8 (3.9%), Similar studies shown 3% to 10% (10,18,19). All rifampicin resistant GeneXpert samples showed positive 100% by conventional proportion method for drug susceptibility testing.

In our study a total of 192 (18.8%) HIV positive cases noted, 38 patients shown positive by GeneXpert and only 15 shown positive by smear microscopy. Due to paucibacilliary nature of M. tuberculosis in Immune suppressed (HIV) patients, smear microscopy examination failed to detect MTB in sputum samples (20).

The main limitation of our study was the relatively low number of samples processed for culture and drug susceptibility testing.

CONCLUSION:
In conclusion, early morning sputum culture has a high incremental diagnostic yield for suspected pulmonary tuberculosis patients. For
diagnosing tuberculosis and detecting rifampicin resistant strains the GeneXpert MTB/RIF is an assay with a high overall specificity and sensitivity. It is a rapid method that could complement the reference methods. Due to paucibacillary nature of mycobacterium tuberculosis commonly identified in patients with HIV-seropositive and sputum acid fast bacilli (AFB) smear negative cases GeneXpert has been especially recommended.

REFERENCES

1. World Health Organization. Global Tuberculosis Report. Geneva, Switzerland: World Health Organization, 2017.

2. World Health Organization. Early detection of tuberculosis: an overview of approaches, guidelines and tools [Internet] Geneva: World Health Organization; 2011. Available from: http://www.who.int/iris/handle/10665/70824tshash.TNsanAfr.dpdf. [Google Scholar]

3. Elliott AM, Halwiindi B, Hayes RJ, Luo N, Tembo G, Machiels L, et al. The impact of human immunodeficiency virus on presentation and diagnosis of tuberculosis in a cohort study in Zambia. J Trop Med Hyg, 1993; 96(1):1-11.

4. Elliott AM, Namaambo K., Allen B. W., Luo N., Hayes R. J., Pobee J. O. M., et al. Negative sputum smear results in HIV-positive patients with pulmonary tuberculosis in Lusaka, Zambia. Tubercle and Lung Disease, 1993; 74(3):191-4.

5. Getahun H, Harrington M, O'Brien R, Nunn P. Diagnosis of smear-negative pulmonary tuberculosis in people with HIV infection or AIDS in resource-constrained settings: informing urgent policy changes. The Lancet. 2007; 369(9578):2042-9.

6. Lawn SD, Mwaba P, Bates P, Mpiak B, Alexander H, Marais BJ, et al. Advances in tuberculosis diagnostics. The Xpert MTB/RIF assay and future prospects for a point-of-care test. Lancet Infect Dis. 2013;13(8):349-61.

7. Xpert MTB RIF kit insert http://www.cepheid.com/manageddownloads/xpert-mtb-rif-english-package-insert-301-1404-rev-b-february-2015.pdf.

8. Tuberculosis Research Centre, Chennai. Standard Operating Procedures for Mycobacteriology Laboratory. Tuberculosis Research Centre (Indian Council of Medical Research), Chennai, India. 2010.

9. Parson L.M, Somoskovi Á, Gutierrez C, Lee E, Paramasivan CV, Abimiku A, et al. Laboratory diagnosis of tuberculosis in resource-poor Countries: Challenges and opportunities. J Infect Dev Ctries 2011;5(3):314–50.

10. Bajrami R, Mulliqi G, Kurti A, Lila G, Raka L. Comparison of GeneXpert MTB/RIF and conventional methods for the diagnosis of tuberculosis in Kosovo. J Infect Dev Ctries 2016;10:418-22.

11. Centers for Disease Control and Prevention (CDC). Updated guidelines for the use of nucleic acid amplification tests in the diagnosis of tuberculosis. MMWR Morb Mortal Wkly Rep 2009;58:7-10.

12. Ho J, Marks GB, Fox GJ. The impact of sputum quality on tuberculosis diagnosis: a systematic review. International Journal Tuberculosis and Lung Disease. 2015; 19(5):537-44.

13. Uplekar M, Diana W, Knut L, (2015) WHO New End -TB Strategy. Lancet 385: 1799-1801.

14. Steingart KR, Sohn H, Schiller I, Kloba LA, Boehme CC, Pai M, Dendukari N. Xpert® MTB/RIF assay for pulmonary tuberculosis and rifampicin resistance in adults. Cochrane Database Syst Rev 2013;1:1-131.

15. Stangari KR, Sohn H, Schiller I (2013) Xpert MTB/RIF assay for pulmonary tuberculosis and rifampicin resistance in adults. Cochrane database Syst Rev 1 CD 009593 Pub 2.

16. Agrawal M, Bajaj A, Bhatia V, Dutt S. Comparative study of GeneXpert withZN stain culture in samples of suspected pulmonary tuberculosis. J Clin Diagnostic Res. 2016;10(5):09-12.

17. Boehme CC, Nabeta P, Hillmann D, Nisal MP, Shenai S, Krupp F, Allen J, et al. Rapid molecular detection of tuberculosis and rifampicin resistance. N Engl J Med. 2010;363:1105-15.

18. Steingart KR, Schiller I, Horne DJ, Pail M, Boehme CC, Dendukari N. Xpert® MTB/RIF assay for pulmonary tuberculosis and rifampicin resistance in adults. Cochrane database Syst Rev. 2014;1(1).

19. Maynard-Smith L, Lark N, Peters JA, Lawn SD. Diagnostic accuracy of the Xpert MTB/RIF assay for extrapulmonary and pulmonary tuberculosis when testing non-respiratory samples: A systematic review. BMC Infect Dis. 2014;14(1).

20. Getahun H, Harrington M, O'Brien R, Nunn P. Diagnosis of smear-negative pulmonary tuberculosis in people with HIV infection or AIDS in resource-constrained settings: informing urgent policy changes. The Lancet. 2007; 369(9578):2042-9.