Designing The Improvement of SPAM UNS Water Dispenser Service Quality

Yosua Natalianto1*, Eko Pujiyanto1b, Wahyudi Sutopo1c

Abstract. SPAM (Sistem Pengolahan Air Minum or Drinking Water Treatment System) UNS was established in 2015 to meet the drinking water needs of the UNS academic community by providing 129 dispensers and water tap machines spread across buildings at UNS. A survey conducted by UNS students in 2017 showed that 54 % of students were not sure of UNS SPAM water quality. So the service quality questionnaire was distributed to 160 UNS students randomly, and it was found that only 3 % of respondents stated that they used SPAM UNS water dispenser very often. Processing results have shown the highest gap value is in the reliability dimension, with CTS, namely cleanliness and flow of water. From the survey regarding the cleanliness and flow of the water carried out, the DPMO value of the process was 332,589 (1.930 sigmas). Recommendations for improvement are in the form of several SOPs to improve the cleanliness and quality of SPAM UNS water dispenser services.

Keywords: service quality, six sigma, water services

I. INTRODUCTION

Humans need water in various aspects of their lives, and water consumption cannot be separated from one's daily activities (Rahayu, 2004). Biologically, water plays a role in all processes in the human body, such as digestion, metabolism, transportation, regulating body balance (Guyton, 1987).

SPAM UNS or UNS Drinking Water Treatment System was established in 2015 to provide UNS academics with ready to drink water needs through water dispensers spread over 129 points on UNS. In addition, the existence of SPAM UNS is also in line with the green campus principles adopted by UNS by reducing the waste of disposable bottled drinking water.

A survey showed that 54% of students were unsure of UNS SPAM water, so an initial study was conducted to find out how many students still used UNS SPAM water dispensers. The survey showed that only 3% of students are very often used water dispenser SPAM UNS, as in Figure 1.

From the diagram, it can be seen that the use of SPAM UNS water dispensers in the UNS campus environment is not yet optimal, which is caused by the mismatch of consumer expectations with the services received.

![Frequency of Use of Water Dispenser SPAM UNS](image)

Figure 1. Frequency of Use

Service quality cannot be separated from customer satisfaction. According to Crosby (1979), quality is "conformance to requirements," i.e., conformity to what is required or standardized. In 1993 Lewis and Booms define that service quality was a measure of how well the level of service provided was in line with customer expectations.

Sulistyowati et al. (2008) examined consumer satisfaction with the services provided by PT. PLN...
APJ Surabaya Selatan-UPJ Ngagel by integrating the servqual, lean, and six sigma methods. From the research conducted, it is known that the most significant gap value in the 24-hour disturbance officer alert attribute is a value of -0.0479. The 24-hour disturbance officer alert attributes are further analyzed using process capability analysis and waste analysis.

Nurwulan et al. (2014) conducted a PAM JAYA consumer satisfaction study by compiling a questionnaire consisting of 39 variables and distributed to 100 respondents. By using gap analysis, 11 variables with negative values are obtained to indicate consumer dissatisfaction with the services provided, so that the proposed improvement is based on the 11 improvement priorities.

Setyawan et al. (2017) develop research variables from 5 service quality dimensions on PDAM service quality in Kab. Cianjur. By distributing questionnaires obtained servqual values in each dimension, which are then plotted in a Cartesian diagram with importance-performance analysis.

The Servaqua concept was mentioned by Peter Prevos (2015) as a service quality model that has been developed for reticulated water services. In this model, the dimensions of reticulated water service are divided into two types, core services, and supplementary services. Core services are services provided to customers in the form of tangible water quality. In contrast, supplementary services complement the primary services offered, where Prevos mentions supplementary services using a uni-dimensional model by Babakus (1993).

Some of the above studies use six sigma and servqual in various service industries. In comparison, this study uses six sigma and servqual in examining consumer satisfaction to SPAM UNS water dispenser services and reducing defects that cause consumer dissatisfaction.

II. RESEARCH METHOD

In this study, a questionnaire prepared based on the Servaqua model was distributed to UNS students to determine the level of consumer satisfaction to SPAM UNS water dispenser services.

Application of Six Sigma uses four steps: (1) Define, (2) Measure, (3) Analyze, and (4) Improve. This step is used to reduce the number of defects in the service, resulting in low customer satisfaction.

Table 1 explains that interviews and observations are needed to identify the observed service processes in the define phase.

At the measure phase, the Servaqua questionnaire and gap analysis are used to determine the value of the gap in services. The questionnaire was compiled from a combination of several previous studies and real case observations that occurred in the SPAM UNS water dispenser service. Pareto diagrams are needed to obtain improvement priorities in this service, where the dimension has the highest negative gap value. Furthermore, critical to satisfaction was developed in the SPAM UNS water dispenser service based on the priority of improvements obtained in the Pareto diagram.

In the analysis phase, the defect per million

Table 1. Six Sigma Framework

Phase	Activity	Tools
Define	Identification of observed service processes	Interview and Observation
Measure	Calculating the gap from the value of expectations and perceived of customer	Servaqua, Gap Analysis
	Identify the most influential attributes found in the dimensions of consumer satisfaction	Pareto Diagram
	Determine the critical to satisfaction	
Analyze	Capability Process Analysis	DPMO
	Build a root cause analysis	Fishbone Diagram
Improve	Provide suggestions for improving service quality	
opportunities (DPMO) calculation is used to calculate the capacity of the process, and the fishbone diagram is used to develop the root cause analysis.

In the improvement phase, the researchers compiled an improvement plan based on priority problems that occur in the SPAM UNS water dispenser service.

III. RESULT AND DISCUSSION

Step 1: Define

At the defined stage, the service process observed is observed along with the limitations of the problem to be examined. In this study, researchers focused on water dispenser services provided by SPAM UNS.

SPAM UNS	Consumer
Start	
Ground Water	
Pumping	
Media Filter	
Carbon Filter	
Break Tank	
Micro Filter	
Ultra Filter	
UV Radiation	
Pumping to the water tower	
Distribution to machines dispenser at UNS	
UV radiation	
Water is ready to drink by consumers	Turn on the water dispenser
Water flows from the water dispenser	

Figure 2. SPAM UNS Water Treatment Flowchart

The processed water from SPAM UNS is distributed through a free dispenser service throughout the UNS campus, and bottled drinking water is traded on the UNS campus.

The SPAM UNS drinking water treatment process is carried out independently in an office, which is also a production site within the UNS campus. The explanation process is presented in Figure 2.

The picture above shows that there are three main processes in SPAM UNS water treatment: the process of pumping water from the ground, the filtering process, and the process of distributing it to the dispenser machines spread across the UNS campus.

Step 2: Measure

To measure the gap, a questionnaire was prepared with statements combined from various previous studies and the real case in the SPAM UNS service. Table 2. displays the questionnaire design that has been developed.

In the questionnaire, there were 17 statements tangibles (code T), 2 statements of reliability (code RE), 3 statements of responsiveness (code RP), 1 statement of empathy (code E), and 2 statements of communication (code C).

Furthermore, the questionnaire was tested for validity and reliability by distributing questionnaires to 30 respondents. The validity test results show as in Table 3.

From the results of the validity test, all attributes in the questionnaire are valid because they have Rcount>Rtable.

Whereas the reliability test with SPSS shows that all the attributes of the questionnaire are reliable because they have a Cronbachs Alpha>Rtable value of 0.951.

By using the Slovin formula, obtained a minimum sample size of respondents as many as 100 people.

\[n = \frac{N}{1 + Ne^2} \]

Where,

\[N = 33282 \]
\[e = 0.1 \]
\[n = \frac{33282}{1 + (33282) (0.1)^2} \]
\[n = 99.7 \]
Table 2. Questionnaire Design

Code	Attribute
T1	I can easily find a water dispenser at UNS
T2	Water dispenser at UNS is located in a shady place
T3	Water dispenser at UNS is located in a dust-free place
T4	Water dispenser at UNS works well
T5	Water dispensers at UNS are well cared
T6	Water dispenser at UNS has an attractive design
T7	Water dispenser at UNS has an attractive color
T8	Water dispenser at UNS is clean
T9	There is information about using a water dispenser
T10	Existing features on the dispenser machine are interesting
T11	Water dispenser at UNS can be used easily
T12	There is always available drinking water in a water dispenser
T13	Discharge of water that comes out of the normal dispenser machine
T14	Water from the water dispenser does not smell
T15	The water from the water dispenser is colorless
T16	The water from the water dispenser is tasteless
T17	Drinking water from a dispenser is healthy
RE1	There are officers who do engine maintenance
RE2	There are officers who routinely clean the engine
RP1	SPAM UNS is swift in responding to consumer complaints
RP2	SPAM UNS is swift in repairing and maintaining pipes/dispenser machines
RP3	Officials from SPAM UNS are able to answer information related to drinking water that is channeled
E1	If water does not come out of the dispenser or other disturbances, I can easily contact UNS SPAM
C1	There is information on the dispenser machine in case of damage or interference
C2	There is information on the dispenser machine related to drinking water quality assurance

The questionnaire was filled out by 160 UNS students. The recapitulation of the questionnaire, along with the weighted servqual value calculation, is explained in Table 4.

From this table, the priority of improvement is determined by using the Pareto diagram. Pareto diagrams are presented in Figure 3. The Pareto diagram shows that the reliability dimension occupies the number 1 improvement priority in SPAM UNS services with an effect of 28%.

Table 3. Validity Test

Code	R_{table}	R_{count}	Validity
T1	0.419		Valid
T2	0.414		Valid
T3	0.683		Valid
T4	0.733		Valid
T5	0.865		Valid
T6	0.42		Valid
T7	0.444		Valid
T8	0.768		Valid
T9	0.366		Valid
T10	0.483		Valid
T11	0.567		Valid
T12	0.795		Valid
T13	0.3061	0.618	Valid
T14	0.617		Valid
T15	0.633		Valid
T16	0.639		Valid
T17	0.688		Valid
RE1	0.787		Valid
RE2	0.764		Valid
RP1	0.833		Valid
RP2	0.836		Valid
RP3	0.574		Valid
E1	0.679		Valid
C1	0.765		Valid
C2	0.768		Valid

The reliability dimension has two attributes: some officers do engine maintenance, and there are officers who routinely clean dispenser machines. From these two attributes, it is developed critical to satisfaction.
From the development of critical to satisfaction, the flow of water, and the cleanliness of the dispenser machine are chosen to be a defect that will be calculated on the DPMO calculation.

Researchers conducted a sampling survey on the dispenser machine at UNS, with the following sampling calculations,

\[N = 129 \]
\[e = 0.1 \]
\[n = \frac{129}{1 + (129)(0.1)^2} \]

n = 56

By generating 56 random numbers from 1-129, 56 samples of dispenser machines at UNS were obtained randomly. The survey was conducted by asking directly to people around the dispenser machine or people who often use the dispenser machine to find out how they think about the cleanliness of the dispenser machine and the smooth flow of water.

Step 3: Analyze

Data on consumer's perceptions of the impurity of dispenser machines and irregular flow of water is a defect in DPMO processing. After the processing, DPMO results are converted into a sigma level to determine the process's ability. DPMO processing is shown in Table 5.

From this conversion, it is known that the

Code	Perceived Values	Expected Values	Gap	Weight	Weighted Servqual
Tangible					
T1	2,8400	3,3667	-0,5267	0,0212	-0,0112
T2	3,0533	3,2067	-0,1533	0,0062	-0,0009
T3	2,3200	3,6000	-1,2800	0,0515	-0,0659
T4	2,3000	3,5467	-1,2467	0,0501	-0,0625
T5	2,0200	3,6867	-1,6667	0,0670	-0,1117
T6	2,4067	2,7533	-0,3467	0,0139	-0,0048
T7	2,2667	2,5667	-0,3000	0,0121	-0,0036
T8	2,2333	3,7467	-1,5133	0,0609	-0,0921
T9	2,7333	3,2667	-0,5333	0,0214	-0,0114
T10	2,4133	2,8200	-0,4067	0,0164	-0,0067
T11	3,0800	3,4333	-0,3533	0,0142	-0,0050
T12	2,2333	3,6667	-1,4333	0,0576	-0,0826
T13	2,6733	3,6667	-0,9933	0,0399	-0,0397
T14	2,8333	3,7000	-0,8667	0,0349	-0,0302
T15	3,0400	3,6933	-0,6533	0,0263	-0,0172
T16	2,7133	3,7000	-0,9867	0,0397	-0,0391
T17	2,4600	3,7200	-1,2600	0,0507	-0,0638
	43,6200	58,1400	-14,5200	0,5839	-0,0381
Reliability					
RE1	2,1133	3,5800	-1,4667	0,0590	-0,0865
RE2	2,0933	3,6200	-1,5267	0,0614	-0,0937
	4,2067	7,2000	-2,9933	0,1204	-0,0901
Responsiveness					
RP1	2,2067	3,4333	-1,2267	0,0493	-0,0605
RP2	2,1400	3,5133	-1,3733	0,0552	-0,0758
RP3	2,3467	3,2200	-0,8733	0,0351	-0,0307
	6,6933	10,1667	-3,4733	0,1397	-0,0557
Empathy					
E1	2,1067	3,4733	-1,3667	0,0550	-0,0751
	2,1067	3,4733	-1,3667	0,0550	-0,0751
Communication					
C1	2,2267	3,4133	-1,1867	0,0477	-0,0566
C2	2,2067	3,5333	-1,3267	0,0534	-0,0708
	4,4333	6,9467	-2,5133	0,1011	-0,0637
Dirty Dispenser Machine

Lack of communication between SPAM UNS with the authorities
Documents which are containing the transfer of authority does not reach the authorities
There is no cleanliness control card on the dispenser machine
There is no cleaning SOP for dispenser machine

Machine

Lack of communication between SPAM UNS and the authorities
Documents which are containing the transfer of authority do not reach the authorities
There is no cleanliness control card on the dispenser machine
There is no cleaning SOP for dispenser machine

Machine

Unconsciousness of the importance of cleanliness of dispenser machine
Janitors not clean the dispenser machine
Do not know how to clean dispenser machine

Unconsciousness of the importance of cleanliness of dispenser machine

Machine

Environment

Dirt of SPAM water
The use of dispenser machines for purposes other than take drinking water
Absence of regulations or appeal for use

Environment

Man

Figure 4. Dirty Dispenser Fishbone Diagram

SPAM UNS water dispenser service has a 1.930 sigma level. This value indicates that the company's ability to carry out the process following the required standards and does not produce defects is still low.

Because of the low capability of the service process, a fishbone diagram was developed to find out the cause of the problems experienced in this service. The development of the problem is done by conducting discussions with related parties on this issue. Fishbone diagrams are presented in Figure 4 and Figure 5.

Figure 5. Dispenser Machine's Water Flow Fishbone Diagram

Step 4: Improve

The various causes that have been compiled on the fishbone diagram have proposed improvements to improve service quality, so that customer satisfaction to the SPAM UNS water dispenser service also increases.

Some suggested improvements are as follows:
1. SOP for SPAM UNS Dispenser Cleaning Machine
2. SOP for Warning Letter regarding Cleanliness of SPAM UNS Dispenser Machine
3. SOP for Checking the water flow of SPAM UNS Dispenser Machine
4. SOP Installation of "In Repair" Sign for the Dispenser Machine that is damaged.

IV. CONCLUSION

The case study of this research identified the dissatisfaction of SPAM UNS consumers, as indicated by the gap value of the five dimensions used in the questionnaire.

The highest gap value is in the reliability dimension as supplementary services with critical to satisfaction cleanliness and smooth flow of SPAM UNS water dispenser. From the survey conducted, it was found that the capability of the process in the freshness and smooth flow of water was only 1,930 sigma. So it can be concluded that consumers are still not satisfied with the SPAM UNS water dispenser service.

Table 5. DPMO Calculation

No.	Defect	DPMO	Sigma Level
2	8	500000	1,500
3	7	437500	1,657
4	7	437500	1,657
7	8	500000	1,500
10	5	312500	1,989
11	7	437500	1,657
12	8	500000	1,500
14	5	312500	1,989
17	8	500000	1,500
21	5	312500	1,989
23	5	312500	1,989
25	5	312500	1,989
26	5	312500	1,989
28	5	312500	1,989
32	5	312500	1,989
34	4	250000	2,174
38	7	437500	1,657
39	6	375000	1,819
42	3	187500	2,387
43	1	62500	3,034
46	1	62500	3,034
47	4	250000	2,174
50	7	437500	1,657
52	7	437500	1,657
53	7	437500	1,657
56	6	375000	1,819
58	4	250000	2,174
59	8	500000	1,500
60	8	500000	1,500
65	2	125000	2,650
67	6	375000	1,819
69	2	125000	2,650
70	7	437500	1,657
71	7	437500	1,657
72	8	500000	1,500
73	8	500000	1,500
75	8	500000	1,500
76	4	250000	2,174
79	5	312500	1,989
87	4	250000	2,174
92	4	250000	2,174
93	5	312500	1,989
98	6	375000	1,819
99	6	375000	1,819
100	4	250000	2,174
101	4	250000	2,174
102	3	187500	2,387
105	5	312500	1,989
106	4	250000	2,174
110	5	312500	1,989
112	7	437500	1,657
115	3	187500	2,387
117	1	62500	3,034
118	5	312500	1,989
123	5	312500	1,989
129	4	250000	2,174
Average	332589	1,930	

REFERENCES

Babakus, E. (1993). Measuring service quality in the public utilities: the case of electric, gas and water services. *Journal of Nonprofit & Public Sector Marketing, 1*(1), 33-49.

Berry, L.L., Zeithaml, V.A., Parasuraman, A. (1985). Quality counts in services too. *Business Horizons, 28*(3), 44-52.

Budihardjo, I.M. (2014). *Panduan Praktis Menyusun SOP RAS.*

Firdian, E., Santoso, P.B. (2013). Aplikasi Metode Servqual dan Six Sigma Dalam Menganalisis Kualitas Layanan PT. PLN (Persero) Unit Pelayanan Jaringan (UPJ) Dinoyo Malang. Magister Thesis, Universitas Brawijaya.

Franceschini, F., Galetto, M., Turina, E. (2010). Water and sewage service quality: a proposal of a new multi-questionnaire monitoring tool. *Water Resources Management, 24*(12), 3033-3050.

Furterer, S.L. (2016). *Lean Six Sigma in service: applications and case studies.* CRC press.
Grönroos, C. (1984). A service quality model and its marketing implications. *European Journal of Marketing, 18*(4), 36-44.

Guyton, A.C. 1987. *Fisiologi Kedokteran*. Jakarta: EGC.

Han, S., Koo, D., Kim, Y., Kim, S., Park, J. (2017). Gap analysis based decision support methodology to improve level of service of water services. *Sustainability, 9*(9), 1578.

Lewis, R.C., Booms, B.H. (1983). 'The Marketing Aspects of Service Quality,' in L. Berry, L. Shostack and G. Upah, (eds), *Emerging Perspectives on Services Marketing*, Chicago, IL.

Nurwulan, F.A., Desrianty, A., Fitria, L. (2014). Analisis pelayanan jasa pada perusahaan daerah air minum (PDAM) DKI Jakarta dengan menggunakan metode service quality. *Reka Integra, 2*(1).

Parasuraman, A., Zeithaml, V.A., Berry, L.L. (1985). A Conceptual Model of Service Quality and its Implications for Future Research. *Journal of Marketing, 49*(1), 41 - 50.

Prevos, P. (2016). *Servaqua: Towards a Model for Service Quality in Potable Reticulated Water Services*. In *Looking Forward, Looking Back: Drawing on the Past to Shape the Future of Marketing*. Springer, Cham.

Setyawan, W., Sutoni, A., Erfasa, N.Z. (2017). Analisis kepuasan pelanggan terhadap kualitas pelayanan menggunakan metode service quality dan importance performance analysis. *Jurnal Industrial Services, 3*(1a).

Sugiyono. (2014). *Memahami Penelitian Kualitatif*. Bandung: Alfabeta.

Sulistiyowati, W., Supriyanto, H., Suef, M. (2008). *Integrasi Metode Servqual, Lean dan Six Sigma Implementasi: PT. PLN (Persero) Distribusi Jawa Timur, API Surabaya Selatan–UPJ Ngagel*. In *Prosiding Seminar Nasional Manajemen Teknologi*. Sutrisno, T., Sucianstuti, E. 1991. *Teknologi Penyediaan Air Bersih*. Jakarta: Bina Aksara.

Tjiptono, F., Chandra, G. (2011). *Service, Quality & Satisfaction* (3). Yogyakarta: ANDI.

Voehl, F., Harrington, H.J., Mignosa, C.; Charron, R. (2013). *The Lean Six Sigma Black Belt Handbook: Tools and Methods for Process Acceleration*. Productivity Press.