Recurrent Neural Networks for Stochastic Control in Real-Time Bidding

Nicolas Grislain
Verizon Media
nicolas.grislain@verizonmedia.com

Nicolas Perrin
Verizon Media
nicolas.perrin@verizonmedia.com

Antoine Thabault
Verizon Media
antoine.thabault@verizonmedia.com

ABSTRACT

Bidding in real-time auctions can be a difficult stochastic control task; especially if underdelivery incurs strong penalties and the market is very uncertain.

Most current works and implementations focus on optimally delivering a campaign given a reasonable forecast of the market. Practical implementations have a feedback loop to adjust and be robust to forecasting errors, but no implementation, to the best of our knowledge, uses a model of market risk and actively anticipates market shifts.

Solving such stochastic control problems in practice is actually very challenging. This paper proposes an approximate solution based on a Recurrent Neural Network (RNN) architecture that is both effective and practical for implementation in a production environment. The RNN bidder provisions everything it needs to avoid missing its goal. It also deliberately falls short of its goal when buying the missing impressions would cost more than the penalty for not reaching it.

CCS CONCEPTS

• Mathematics of computing → Probability and statistics; • Applied computing → Online auctions.

KEYWORDS

Ad-tech, Auctions, Real-Time Bidding, Recurrent Neural Network, Stochastic Control, RNN, RTB

ACM Reference Format:

Nicolas Grislain, Nicolas Perrin, and Antoine Thabault. 2019. Recurrent Neural Networks for Stochastic Control in Real-Time Bidding. In KDD '19: ACM SIGKDD Conference On Knowledge Discovery and Data Mining, June 04–08, 2019, Anchorage, Alaska – USA. ACM, New York, NY, USA, 9 pages. https://doi.org/10.1145/3292500.3330750

1 INTRODUCTION

Since its advent in 2009, Real-Time Bidding (RTB), a.k.a. programmatic media buying, has been growing very fast. In 2018, more than 80% of digital display ads are bought programmatically in the US [eMarketer 2018].

RTB is allowing advertisers (buyers) to buy ad-spaces to digital publishers (sellers) at a very fine-grained level, down to the user and the particular ad impression. The problem of using all the information available about each user exposed to some ad-placement to deliver a certain amount of impressions, clicks or viewable impressions, in an optimal way, is called the optimal bidding problem.

The optimal bidding problem may come in different flavors. It may be about maximizing a given Key Performance Indicator (KPI): impressions, clicks or views, given a certain budget, or about minimizing the cost of reaching some KPI goal. It is often formulated in a second price auction setup, but different setups, like first price auction or other exotic setups, are common on the market.

In this paper, we focus on the problem of optimizing one campaign, competing with the market in second price auctions. The campaign is aiming at a daily KPI goal, with a penalty for falling short of the goal. This restriction does not harm the generality of this work as most of it is generalizable to other sorts of goals and time spans. The campaign is small enough so that the impact of its delivery on the market is negligible.

Market data is eventually observable, which means it is possible to know, after some time (possibly hours), at what price a given impression would have been bought even if it was lost. This last assumption is valid in our practical setup where a company controls both an inventory and a bidder buying its own inventory on behalf of external advertisers, possibly in competition with third party bidders. This assumption can be relaxed though, at the cost of a more complex training process.

This paper puts a strong emphasis on the way market uncertainty is handled in a context where a fixed goal is to be achieved despite the stochastic nature of the market. Without uncertainty, our problem reduces to a relatively simple optimal control problem, adding randomness makes it an intractable stochastic control problem.

In this paper we propose a characterization of the solution in terms of a Partial Differential Equation (PDE) and an approximate solution using a Recurrent Neural Network (RNN) representation.

The main contributions of this paper can be summarized as follows:

(1) It formalizes in section 3 the optimal bidding problem as a stochastic control problem, where market volume and prices are stochastic.

(2) It solves numerically a simple case in section 4 and comments qualitatively the solutions.

(3) It builds a practical RNN that approximate the theoretical solution in section 5.

(4) The RNN is trained and tested at scale on a major ad-exchange as described in section 6.
2 RELATED PAPERS

A description of the various challenges brought by the impression-level user-centric bidding compared to bulk, inventory-centric-buying is done in [Yuan et al. 2013].

[Zhang 2016; Zhang et al. 2014] gives a very broad overview of the optimal bidding problem.

[Chen et al. 2011] solves a bidding problem with multiple campaigns and from the perspective of the publisher using linear programming and duality. A similar question is solved in [Balseiro et al. 2014; Jauvion and Grislain 2018]. In those papers, the publisher wants to allocate impressions to campaigns in competition with third party RTB campaigns. [Jauvion and Grislain 2018] allows for underdelivery by introducing a penalty for underdelivery in its optimization program.

[Chen et al. 2011] solves a bidding problem with multiple campaigns and from the perspective of the publisher using linear programming and duality. A similar question is solved in [Balseiro et al. 2014; Jauvion and Grislain 2018]. In those papers, the publisher wants to allocate impressions to campaigns in competition with third party RTB campaigns. [Jauvion and Grislain 2018] allows for underdelivery by introducing a penalty for underdelivery in its optimization program.

[Chen et al. 2011] solves a bidding problem with multiple campaigns and from the perspective of the publisher using linear programming and duality. A similar question is solved in [Balseiro et al. 2014; Jauvion and Grislain 2018]. In those papers, the publisher wants to allocate impressions to campaigns in competition with third party RTB campaigns. [Jauvion and Grislain 2018] allows for underdelivery by introducing a penalty for underdelivery in its optimization program.

[Chen et al. 2011] solves a bidding problem with multiple campaigns and from the perspective of the publisher using linear programming and duality. A similar question is solved in [Balseiro et al. 2014; Jauvion and Grislain 2018]. In those papers, the publisher wants to allocate impressions to campaigns in competition with third party RTB campaigns. [Jauvion and Grislain 2018] allows for underdelivery by introducing a penalty for underdelivery in its optimization program.

[Chen et al. 2011] solves a bidding problem with multiple campaigns and from the perspective of the publisher using linear programming and duality. A similar question is solved in [Balseiro et al. 2014; Jauvion and Grislain 2018]. In those papers, the publisher wants to allocate impressions to campaigns in competition with third party RTB campaigns. [Jauvion and Grislain 2018] allows for underdelivery by introducing a penalty for underdelivery in its optimization program.

[Chen et al. 2011] solves a bidding problem with multiple campaigns and from the perspective of the publisher using linear programming and duality. A similar question is solved in [Balseiro et al. 2014; Jauvion and Grislain 2018]. In those papers, the publisher wants to allocate impressions to campaigns in competition with third party RTB campaigns. [Jauvion and Grislain 2018] allows for underdelivery by introducing a penalty for underdelivery in its optimization program.

3 THE BIDDING PROBLEM UNDER UNCERTAINTY

In this section, the bidding problem is considered in the specific context of a bidder aiming at delivering campaigns in competition with the market, on media owned by itself. This does not harm the generality of the work, but explains the availability of sell-side data for training and the kind of objective considered: number of impression at minimum cost. Without sell-side data, the training of the model exposed below would be made more complex by the censorship of market data for lost auctions.

3.1 Formal statement of the bidding problem

In this presentation, let \((\Omega, \mathcal{F}, \mathbb{P})\) be a probability space equipped with a filtration \((\mathcal{F}_t)_{t \geq 0}\). A bidder is assumed to bid against the market representing all the competition. Let \((\mathcal{H}_t)_{t \geq 0}\) denote the sub-filtration encoding the restricted information accessible to the bidder.

All bidders receive ad requests modeled by the jumps of a Poisson process \((I_t)_{t \geq 0}\) with intensity \(\nu_t\). For each impression opportunity \(i\), happening at \(t_i\) the bidder receives \(x_i\), the current features of the impression: timestamp, auction_id, user_id, placement_id, url, device, os, browser or geolocation.

Based on \(x_i\) and, more generally, on all past history \(H_t \in \mathcal{H}_t\) a bid \(a_i\) is chosen \(a_i = a(H_t)\). The bidder wins the auction whenever \(a_i > b_j\), where \(b_j\) is the highest of the other bids in the market.

Each impression has some value \(u_i\) to the bidder. When trying to buy clicks, \(u_i = 0\) or 1 depending on the occurrence of a click. The bidder is assumed to know its expected value \(e_i = E(u_i | H_t)\).

In this paper, the bidder is assumed not to have a significant influence on the market. The bidder has also access to some distribution of \(b_i\) conditional on \(H_t\).

This paper characterizes an optimal bidding strategy \(a(H_t)\).

3.2 The bidding problem over a short period of time

The bidder’s spend follows the process:

\[
dS_t = b_i \mathbf{1}_{a(H_t) > b_i} \, dt,
\]

and the cumulative value follows:

\[
dV_t = \int \mathbf{1}_{a(H_t) > b_i} \, dt.
\]

Let us consider a short period of time \(\delta\) such that conditionally on \(H_t\), \(t\) is predictable with average value \(t\) and \(x_t, b_t, u_t\) are independent, identically distributed (IID) over \([t, t + \delta]\). Let us consider that \(\delta\) and \(t\) are such that \(\delta \cdot t\) is large and its relative standard deviation small\(^2\):

\[
\frac{1}{\sqrt{\delta \cdot t}} < 1.
\]

Over a period of time \([t, t + \delta]\), the set of impression is noted \(I_t\) and the number of impression is almost deterministic \(I_t = \delta \cdot t\). Because \(x_t, b_t, u_t\) are IID, each auction is brand new and the only

\(^1\)Variables \(X\) are indifferently noted \(X_{a_t}\) or \(X_t\).

\(^2\)In practice \(\delta\) would be in the order of magnitude of 100 seconds while \(t\) close to 1000 events per second so the relative error would be around 1%.
Recurrent Neural Networks for Stochastic Control in Real-Time Bidding

relevant information for the bidder is \(x_t \), that is \(a(H_t) = a(x_t) \). In a
Second Price Auction setup\(^3\), the spend is

\[
S_f(a) = \sum_{i \in I} b_i 1_{a(x_i) > b_i}
\]

and the value is

\[
V_f(a) = \sum_{i \in I} u_i 1_{a(x_i) > b_i}.
\]

Because the \(x_t, b_i \) and \(u_i \) are IID and the values summed over a large number of impressions, everything becomes deterministic and reduces to

\[
S_f(a) \approx I \cdot E_x \left[\int_0^a f(b;x) \, db \right]
\]

and

\[
V_f(a) \approx I \cdot E_x \left[v(x) F(a(x);x) \right],
\]

where \(f(b;x) \) is the Probability Density Function (PDF) of \(b \) conditional on \(x \) and \(F(b;x) \) is the Cumulative Density Function (CDF) associated.

The optimization program of the bidder can be written

\[
\min C(a) = \min_a \left[S_f(a) + K \max \{0, G - V_f(a)\} \right].
\]

It can be read: the bidder chooses a bidding strategy \(a \) such that
its overall cost \(C \) is minimized, while its goal \(G \) (in number of impressions of clicks) is reached. The cost is composed of the spend \(S_f \) incurred by the purchase of impressions, and a possible linear penalty \(K \{G - V_f(a)\} \) paid if once fails short of the goal \(G \).\(^4\) This is not the most common formulation of the problem but it suits the practical need described above\(^5\). The Karush-Kahn-Tucker (KKT) conditions give the following\(^6\):

\[
a(x)f(a(x);x) = \lambda v(x)f(a(x);x), \quad \forall x,
\]

\[
a(x) = \lambda v(x), \quad \forall x,
\]

with \(\lambda \in [0,K] \).

This means that the optimal strategy is to bid a value proportional to \(v(x) \). If we restrict to the case where the bidder tries to buy a certain amount of impression at the best possible price, then the optimal strategy is to bid a constant bid. For the rest of this work, and without loss of generality, the bidder aims at buying a certain amount of impression, hence all \(u_i \) are 1, \(v(x) = 1 \) and

\[
a(x) = \lambda \in [0,K], \quad \forall x.
\]

Most of these results do not hold for longer than \(\delta \) if the auctions are no longer IID or \(t_f \) non-predictable. In practice, random external factors affect the total volume of impressions \(t_f \) in unpredictable ways. The market conditions is also prone to large shifts, e.g. when a

\(^3\)See, e.g., [Roughgarden 2016] for an introduction to second price auctions.

\(^4\)Note that the penalty does not have to be paid at the end of the short period of time, because the goal is additive, this short period of time can be combined with other periods of time as in the next section.

\(^5\) A more common formulation would be to maximize the value, with a penalty for exceeding some budget:

\[
\max_a U(a) = \max_a V_f(a) - L \min \{0, S_f(a) - B\}.
\]

This is equivalent in the sense that very similar first order conditions are derived from both approaches.

\(^6\) KKT covers the case when the goal is attained, the more general result would be derived from first order sub-gradient condition for convex minimization.

very large campaign crowds out the other campaigns on a particular inventory.

As much as it is safe to assume everything is usually well predictable for the next few minutes, it is no longer the case for longer timescales.

3.3 The bidding problem over a full day

Because the market is unpredictable, the bidder knows that no matter what he plans based on \(H_t \in H_T \), he has to adjust constantly to new available information to reach its daily goal. For this reason, the bidding strategy is now modeled as a Markov Decision Process (MDP) as in [Cai et al. 2017; Gallego and Van Ryzin 1994; Karlson 2014, 2016, 2018, Wu et al. 2018], see Figure 1.

![Figure 1: In the MDP approach all the information available, e.g. all past spends \(S \) and volume purchased \(V \), is embedded into the state \(H_t \), the bid \(a(H) \) is built out of \(H \) and submitted to the market \(M \). Market response \((S \) and \(V) \) is fed back to the bidder and constitutes the reward/cost \(c \), adding up to the total cost \(C \).](image)

The full day is split in \(T \) periods of duration \(\delta \). For each period, the bidder sets \(a \) based on \(t \), the remaining goal \(G_t \) and a state \(H_t \) coding for everything he learnt from past experience that is relevant, and he observes the common distribution of all \(H_t \) whose PDF and CDF are noted \(f(b;H_t) \) and \(F(b;H_t) \). Note that the bid distribution is fully determined by the current state \(H_t \).

The expected spend given knowledge of the state \(H_t \) is

\[
S(H_t,a) = I(H_t) \cdot \int_0^a f(b;H_t) \, db,
\]

and the expected volume of impression is:

\[
V(H_t,a) = I(H_t) \cdot \int_0^a f(b;H_t) \, db = I(H_t) \cdot F(a;H_t).
\]

Let \(C_t(G,H) \) be the lowest cost achievable to deliver \(G \) impressions over \([t,T]\) given knowledge \(H \).

\[
C_t(G,H) = \min_{(a_s)_{s \leq t}} E_t \left[\sum_{1 \leq t \leq T} S(H_t,a_s) + K \max \left\{0, G - \sum_{s \geq t} V(H_t,a_s)\right\} \right].
\]

\(C_t(G,H) \) is simply the sum of all spends \(S \) plus the penalty \(K \) times the shortfall given the optimal bidding strategy.

The optimal control is therefore fully characterized by the following Bellman equation:

\[
\begin{align*}
C_T(G,H) &= K \max \{0, G\}, \\
C_t(G,H) &= \min_{(a_s)_{s \leq t}} E_t \left[S(H_t,a) + C_{t+1} \left(G - V(H_t,a), T_{t+1}(H) \right) \right].
\end{align*}
\]

(1)
where T_t is the transition function, taking the current state H_t and returning the next state $H_{t+1} = T_t(H_t, a_t)$. Because a has no impact on the market, the transition function can be noted $H_{t+1} = T_t(H_t)$.

The first order condition on a gives:

$$a_t (G, H) = E_t \left[\frac{\partial}{\partial a} C_{t+1} \left(G - V(H, a_t (G, H)) , T_t (H) \right) \right].$$

It can be noted that at each period t, the bidder optimizes for the current period, knowing it has to optimize for the remaining periods, up to T. Also, the optimal a is chosen equal to the marginal expected cost. When the goal is far from being reached, a will be high, else it will be low.

It can also be proved that a is in the interval $[0, K]$. It is clearly the case for $t = T$, but it is also the case for t as long as it is true for $t + 1$, because C_t as a function of G is a mixture of C_{t+1}, which suffices to show

$$a_t \in [0, K], \quad \forall t.$$

In the special case where δ is small enough and H_t continuous, the problem can be usefully expressed in continuous time.

3.4 Solution in continuous time

Let us solve the optimal bidder problem in a continuous time setting with a simple Brownian motion model of available volume:

$$dH_t = \mu(t, H_t) \, dt + \sigma(t, H_t) \, dW_t,$$

where W_t is a one-dimensional Wiener process. The spend intensity at t is

$$S(H_t, a) = I(H_t) \cdot \int_0^a b f(b) \, db$$

and the volume intensity is

$$V(H_t, a) = I(H_t) \cdot \int_0^a f(b) \, db = I(H_t) \cdot F(a).$$

In this model, the available volume is stochastic but the bid distribution is constant.

The minimization problem writes

$$C(t, G, H) = \min_{(a_t)_{t \leq T}} \mathbb{E}_t \left[\int_t^T S(H_s, a_s) \, ds + \right.$$

$$\left. + K \max \left(0, G - \int_t^T V(H_s, a_s) \, ds \right) \right].$$

The Hamilton-Jacobi-Bellman (HJB) equation states that

$$\frac{\partial C}{\partial t} + \frac{\partial C}{\partial H} \mu(t, H_t) + \frac{1}{2} \frac{\partial^2 C}{\partial H^2} \sigma^2(t, H_t) + \min_{a_t} \left[S(H_t, a_t) - \frac{\partial C}{\partial G} V(H_t, a_t) \right] = 0,$$

with the limit condition $C(T, G, H) = K \max(0, G)$.

At the minimum a_t verifies the first order condition

$$I(H_t) \cdot a_t f(a_t) = \frac{\partial C}{\partial G} (t, G_t, H_t) I(H_t) \cdot f(a_t),$$

which reduces to:

$$a_t = \frac{\partial C}{\partial G} (t, G_t, H_t).$$

The HJB equation can be solved in $a(t, G, H)$:

$$\frac{\partial a}{\partial t} + \frac{\partial a}{\partial H} \mu(t, H) + \frac{1}{2} \frac{\partial^2 a}{\partial H^2} \sigma^2(t, H) - I(H_t) \cdot F(a) \frac{\partial a}{\partial G} = 0,$$

with the limit conditions:

$$a(T, G, H) = 0, \quad \text{if } G < 0,$$

$$a(T, G, H) \in [0, K], \quad \text{if } G = 0,$$

$$a(T, G, H) = K, \quad \text{if } G > 0.$$

4 A NUMERICAL RESOLUTION

In the special case where $\mu(t, H) = 0$, $\sigma(t, H) = \sigma$, $I(H) = H$ and F is the CDF of a gaussian distribution, a solves the partial differential equation

$$\frac{\partial a}{\partial t} + \frac{1}{2} \frac{\partial^2 a}{\partial H^2} - H \cdot F(a) \frac{\partial a}{\partial G} = 0,$$

which can be solved numerically for various levels of uncertainty.

![Figure 2: The resolution of Eq. 4 with $\sigma = 0$. The blue curve shows the remaining goal to achieve across time. The orange curve shows the bid level. One can notice the sharp increase in bid after the shock and the goal shortfall.](image-url)

The numerical solutions in Fig. 2 and Fig. 3 show that the introduction of uncertainty $\sigma = 3$ in the market induces some provisioning behavior in the optimal strategy. This provisioning for risk is materialized by a decreasing bid with time whenever the risk does not materialize, which is the case in those simulations where H is constant except for a shock at the end of the day.

The MDP approach solves the bidding problem under uncertainty in a satisfactory way, but in the general case the relevant information in all the information available: H, is not obviously observable and using all H requires working in spaces too large to be practical.

The general case can be approximated. Such an approximation needs to be chosen in a functional space rich enough to capture the desired features. In Section 5, RNNs are tested to this end.
5 PRACTICAL MDP BIDDING

As demonstrated above, a robust bidding strategy should adjust its bidding behavior continuously based on the last information available, but also based on the fact it has to adjust in the future.

Building such a system is complex. Let us say a bidder records the history of all the bids \(b_t \), spends \(S_t \), purchased volumes \(V_t \) and any other relevant information \(x_t \) for each auction \(t \). This sequence is noted

\[
H_t = (X_0, X_1, \ldots, X_{t-1}, X_t) \in \mathcal{X}^t,
\]

where \(X_t = (b_t, S_t, V_t, x_t) \in \mathcal{X} \).

A bidding strategy should be a function \(a(t, G, H) \) of time, remaining goal and the finite sequences \(H \in \mathcal{X}^t \) to \(\mathbb{R} \). Solving a minimization problem on such a space is largely intractable, even numerically, so we rely on some finite dimensional representation \(\hat{H} \in \mathbb{R}^n \) of \(H \), enabling a fair approximation of the solution:

\[
\hat{a}(t, G, \hat{H}) \approx a(t, G, H).
\]

The state \(\hat{H}_t \) is not updated for every auction, but instead at a regular pace. It is computed based on \(\hat{H}_{t-1} \), the remaining time to deliver \(T - t \), the remaining volume to reach \(G_t = G_{t-1} - V_{t-1} \) and the last spend \(S_{t-1} \):

\[
\hat{H}_t = T(\hat{H}_{t-1}, V_{t-1}, S_{t-1}; \theta).
\]

The transition function \(T(\cdot; \theta) \) is trained to minimize the cost of the campaign (cf. Fig. 4).

In the next two sections, two different practical implementations of a bid controller to provide an approximation of the solution are presented: the Proportional Integral controller in Section 5.1, and the Recurrent Neural Network controller in Section 5.2.

5.1 The Proportional Integral controller

The Proportional Integral (PI) controller\(^7\) is widely used in various industries [Desborough and Miller 2002]. [Karlssoon 2016] propose to apply it to the bidding problem.

\(^7\) See Åström and Murray 2008, Chapter 10 for an introduction to the PI control.
suggests probable underfitting. Capacity can be added to the model by allowing adaptive gains, setting thresholds and special cases, but those are merely local patches.

To overcome these flaws, we introduce in the next section a new approach leveraging a Recurrent Neural Network to approximate the bidding problem solution. A PI controller is used as benchmark to the RNN approach.

5.2 The RNN controller

The Recurrent Neural Network (RNN)8 controller unit used in all the experiments presented in this paper is a Gated Recurrent Unit (GRU, see [Cho et al. 2014])9, with

\textbf{input:} a vector \(T - t, G_t, V_t, S_t \),

\textbf{state:} a vector \(\hat{H} \) with dimension \(16 10 \),

\textbf{activation:} a hyperbolic tangent function rescaled for the first component of the state \(\hat{H} \) to be between 0 and the penalty level \(K 11 \),

and where the bid level is given by the first component of the state \(\hat{H} \) of the GRU layer:

\[
\hat{a}(t, G_t, \hat{H}_t) = \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix} \cdot \hat{H}_t.
\] (8)

Through the recurrent connections the model can retain information about the past in its state, enabling it to discover temporal correlations between events and its interactions with the environment even when these are far away from each other in the data. Using a RNN allows to take advantage of a much richer family of functions to learn an approximate solution to the bidding problem.

6 EXPERIMENTS

6.1 Practical setting

In practice, the massive number of auctions occurring simultaneously makes unrealistic the resolution of the optimal control (1) for each auction and campaign. Fortunately, taking periodic control decisions (e.g. every 5 minutes) on aggregated feedback is sufficient. It is thus possible to handle a very large number of campaigns, with the following steps:

- at the beginning of each period, choose a level for the control variable \(a \),
- get an aggregated feedback (realized volume and spend) from the previous period in response to the level \(a \).

This kind of architecture introduces discontinuity in the response of the controlled advertising system. Yet, the problem can be turned into a continuous control problem (\textit{cf.} [Karlsson 2016, 2018]).

Furthermore, response curves exhibit discontinuities (\textit{cf.} Fig. 5, left plot). These discontinuities can be smoothed out (right part of Fig. 5) by not bidding a constant bid level during the time period but by drawing bid prices according to some distribution (e.g. log-normal, Gamma, etc.) around the control variable \(a \), such as proposed in [Karlsson 2014, 2018].

This leads to the following loop:

- at the beginning of each period, choose a level for the control variable \(a \),
- for each auction occurring in the period, draw a bid price according a distribution based on \(a \),
- get an aggregated feedback (realized volume and spend) from the previous period.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure5.png}
\caption{An example of bid level to volume mapping evolution through the day. Left: no noise (Dirac bids). Right: volume obtained by Gamma-distributed bids around each bid level.}
\end{figure}

Note that contrary to the general setup of the bidding problem that suffers from censorship due to the ad auction selection (\textit{cf.} [Zhang 2016]), one can alleviate this particular issue in this practical setup since publisher data is available. In the absence of uncensored data, the bid randomization would further help, by realizing some of the exploration effort in the explore vs exploit dilemma introduced by bid-dependent censorship.

6.2 Data used

Two types of datasets are used in the numerical experiments presented in this paper:

1. Simulated synthetic data sets, generated by applying various transformations (shocks or random walk) throughout time to a base linear volume curve, that helps in appreciating salient features of the RNN models.
2. Production RTB data, constituted by 5-minute snapshots of the actual price-volume mapping for all display ad placements with significant daily volume12 from large publishers on one of the leading Supply Side Platform (SSP) and Ad Exchange globally. The ad placements here can be seen as proxies of segments targeted by campaigns. In production,

8See [Goodfellow et al. 2016, Chapter 10].

9Long Short-Term Memory (LSTM, cf [Hochreiter and Schmidhuber 1997]) was also experimented with but the results were similar to the GRU ones.

10Simple trials were also conducted to assess the interest of using more neurons in recurrent units in the RNN architecture, be it wider or deeper. No significant gain was found, and a detailed assessment lies beyond the scope of this paper.

11K is the highest possible bid in an optimal strategy, cf Eq. (2)

12Restricted to the placements with a minimum of 1000 daily impressions.
the RNN would have to be trained on currently running campaigns.

The production dataset is created using logs from actual RTB auctions run on around 1000 ad placements over 8 days, containing about 115M won impressions. All these impressions are used to build winning bid distributions for 5-minutes periods over a full day ($T = 288$) of each ad placement. The winning bid distributions are discretized on a CPM bid scale with 100 exponential increments between 0.01 and 100.

For offline training and evaluation purposes on production data, a bidding problem instance is comprised of a random draw of an actual bid-volume mapping process and of a random volume goal, uniformly drawn between 10 and 1000. The controller therefore is exposed to scenarios with not enough of volume to meet the target given the penalty level, as well as scenarios where enough volume was available.

The production data is split into non-overlapping training, validation and evaluation datasets using different days. The training set of models on production data contains 1 million different bidding problems and evaluation is performed on a set of around 110K bidding problems of increasing difficulty. For the simulated case study, given the simplified setting, training is stopped after learning from 20K bidding problems.

6.3 Training and evaluation

The implementation of both the benchmark (PI controller) and the RNN controller is done in TensorFlow [Abadi et al. 2015]. The input data instances are randomly shuffled and processed by batches of size 100.

The aim is to minimize the total cost of a campaign, so the training loss C is composed of the sum of the spend and the penalty terms over a full day:

$$ C := \sum_{t=0}^{T} S_t + K \max \left(0, G - \sum_{s=0}^{T} V_s \right) $$

where the spend S_t and volume won V_t are computed from the bid level a_t of the MDP bidding controller by simulating the feedback using the input bid distribution at each time step and propagating the state over the full sequence of time periods.

Models are trained using Stochastic Gradient Descent (SGD) with an inverse-time decay of the learning rate\[13\]. To help alleviate possible exploding gradients issues, gradient clipping is used as described in [Pascanu et al. 2012]. Other more sophisticated optimization methods have been tried without significant impact on the results.

Cross-validation is performed regularly during the training on a fixed set of validation bidding problems and the optimal model parameters are picked as the best evaluation seen on the validation set during the training. In practice, no model presented any overfitting issue as performance results generalized well to unseen data.

6.4 Numerical results

\[13\]The learning rate schedule is the following: $\alpha(t) = \frac{\alpha_0}{1 + \eta \cdot \frac{t}{N}}$ with initial learning rate $\alpha_0 = 0.1$, decay rate $\eta = 0.5$, and decay steps $N = 400$.

6.4.1 Simulated case study

A first experimental setup on simulated data goes back to the simplified setting from Section 4. Figure 6 displays the bid level, volume and spend during the day, along with the final delivery cost decomposed into the final spend and penalty for five different RNN models. Each RNN model is trained on a simulated dataset for which the volume process follows Eq. 3 with a different level of noise (and no drift term). Each column evaluates the same model on six cases without noise, for which a permanent shock in the available volume happens for all dates $t \geq 65$. A shock factor of δ means that after the shock the available volume given the same bid level is divided by δ.

Note that the RNN model is able to learn a good approximation of the optimal strategy derived theoretically. The RNN controller exhibits the same behavior as the one evidenced in Figures 2 and 3 by exact resolutions of the control problem. Indeed, the bid strategy is constant when noise is absent during the training. Hence the volume acquired and spent linearly grow through time in the scenario without any shock in the available volume. In scenarios with permanent shock factors, this model carries on bidding at the same level, thus falling short of the volume target of 100 impressions. As the final volume shortfall grows with the shock factor, the bigger the shock occurs, the bigger the end penalty is.

One can observe that the more noise a RNN controller model was trained with, the higher it starts bidding and the easier it absorbs shocks in the available volume. The models trained with more uncertainty in the available volume tend to provision for the shortfall risk by bidding higher and earlier than the optimal level in the absence of noise. To the extreme, the optimal solution is to buy as fast as one can (without bidding higher than the penalty). This obviously entails a higher spend when the risk does not materialize. However, the more risk was anticipated by a model through its training, the lower the final spend and penalty are when risk do realize, demonstrated here by increasing level of permanent shocks.

In a second experimental setup on simulated data, two RNN models were trained with either a low or high\[14\] level of noise and evaluated under both a low or high noise scenario. Main results are shown in Table 1. The experiment shows as expected that for both models the cost of delivery and the bidding problem difficulty (probability of shortfall) are higher in the evaluation scenario with high noise. However, given an evaluation scenario, i.e. an amount of noise that realizes, the delivery cost is lower for the model that has been trained on data with the same amount of uncertainty.

6.4.2 Training on production data

Performance results on actual market data are available in Table 2. As a benchmark, a PI controller

\[14\]The high noise scenario is calibrated to be consistent with the average level of daily noise observed on our real data, its interquartile range being [7, 18]. So the low noise scenario does represent a situation where risk is deeply underestimated.

Evaluation scenario	$\sigma = 0.1$	$\sigma = 10$
Learning	$\sigma = 0.1$	$\sigma = 10$
$\sigma = 0.1$	$\text{271 ($13), 5\%}$	$\text{915 ($516), 82\%}$
$\sigma = 10$	$\text{431 ($9), 0\%}$	$\text{764 ($405), 57\%}$
Table 1: Simulation results of RNN models trained and evaluated under high or low noise scenarios.		
Figure 6: Bid strategy of RNN controller models trained with an increasing level of noise, and their reaction to permanent volume shock scenarios. Each column shows the bid level, volume and spend throughout time as well as the final cost (sum of spend and penalty) of the same RNN model trained on simulated data with an increasing level of noise. Columns 1 to 5 respectively correspond to standard deviations of 0, 0.2, 1, 5, and 10 during the training. The models are here evaluated on deterministic data without noise. In each column, the six lines or bars represent various shock factors impacting the available volumes for all dates \(t \geq 65 \). A shock factor of \(x \) means that after the shock the available volume given the same bid level is divided by \(x \). The bottom row decomposes the final cost incurred into the spend for buying the final impressions (bottom dark-colored bars) and the penalty that may be received if the volume target is not reached (light-colored stacked bars).

is tuned to follow a reference pacing curve fitted on the training data. Indeed, a good approximation of the internet traffic intraday seasonality can be obtained using a model with only two harmonics [Karlsson 2014].

Table 2 details the average total cost of delivering campaigns of increasing daily volume goals for both the PI model and the RNN model. Overall, the RNN model is able to reduce delivery cost by about 20% compared to the PI model. As the volume target increases, so does the bidding problem difficulty as the total available volume under the penalty level is constraining the bid strategy for a larger share of the dataset. Eventually, for very large volume goals the optimal strategy is to bid the penalty level, capturing all the volume below this level and paying the penalty for each missed impression. Thus lower performance improvements are expected for the larger goals, relative to the size of the targeting.

7 CONCLUSION AND FUTURE WORKS

The RNN controller model proposed in this paper provides both an effective and practical method to solve the optimal bidding problem. It has the advantage not to rely on manually engineered features
Recurrent Neural Networks for Stochastic Control in Real-Time Bidding

Table 2: Model performance comparison on actual market data.

Goal (imps)	Delivery cost ($CPM)	PI	RNN	RNN/PI
100	1.02	0.82	0.80	
500	1.28	1.02	0.79	
1000	1.60	1.27	0.80	
1500	2.06	1.76	0.85	

KDD ’19, August 04–08, 2019, Anchorage, Alaska – USA

To represent knowledge about the current state or history that could be leveraged in a bidding strategy, but instead infers it from the data. For instance, a more advanced, adaptive, PI controller could be employed to tackle the control problem, e.g. by using splines modeling the price-volume mapping to efficiently store the response gain at various price points. However, such a model would still lack useful elements from the very complex state space it evolves in, mainly because it overlooks the impact that uncertainty about future market volume and bid landscape has on the optimal strategy.

Numerical experiments demonstrate that the proposed approach is able to improve significantly on existing bidding controllers, while being trainable and usable at production scale. The approximation of the state and space transition provided by the RNN leads to a solution that captures a key aspect of the solution, namely provisioning against the risk of underdelivery.

This work could be extended in many ways:

- The observability of all bids including those of lost auctions is convenient in the case of our work. This assumption could nevertheless be relaxed. The reconstruction of bid distributions for training would probably be more complex and the noise added to the bid would need to be used as an exploration device.
- In practice, setting multiple goals would be an interesting feature to add, e.g. buying impressions with some guarantee of viewability. The equations would be marginally changed.
- The first price and exotic auction cases add a significant amount of complexity to this approach, however those questions would be resolved at the impression scale, while the macroscopic (5 min) scale control problem would probably hold in a similar way.
- Giving the RNN some more feedback, based on the noise injected in the bid could probably help.

More generally, this paper shows how RNNs can be applied to complex control problem with success.

REFERENCES

Martin Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunatha Kudlur, Josh Levenberg, Dandelion Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris Olah, Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals, Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. 2015. TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. https://www.tensorflow.org/
Software available from tensorflow.org.