Target proteins of ganoderic acid DM provides clues to various pharmacological mechanisms

Jie Liu1,2, Kuniyoshi Shimizu1, Akinobu Tanaka1, Wakako Shinobu5, Koichiro Ohnuki2, Takanori Nakamura4 & Ryuichiro Kondo1

1Department of Agro-environmental Sciences, Faculty of Agriculture, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581 Japan, 2Department of Forestry and Environmental Resources, College of Natural Resources, North Carolina State University, 3Faculty of Food and Nutrition, Kyushu Nutrition Welfare University, 5-1-1 Shimoitazou, Kokurakita-ku, Kitakyushu-shi, Fukuoka 803-8511 Japan, 4Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582 Japan, 5Nihon Dempa Kogyo Co., Ltd., 1-3-1, Kashiwadai-minami, Chitose-shi, Hokkaido 066-0009 Japan.

Ganoderma fungus (Ganodermataceae) is a multifunctional medicinal mushroom and has been traditionally used for the treatment of various types of disease. Ganoderic acid DM (1) is a representative triterpenoid isolated from G. lingzhi and exhibits various biological activities. However, a universal starting point that triggers multiple signaling pathways and results in multifunctionality of 1 is unknown. Here we demonstrate the important clues regarding the mechanisms underlying multi-medicinal action of 1. We examined structure–activity relationships between 1 and its analogs and found that the carbonyl group at C-3 was essential for cytotoxicity. Subsequently, we used 1-conjugated magnetic beads as a probe and identified tubulin as a specific 1-binding protein. Furthermore, 1 showed a similar Kd to that of vinblastine and also affected assembly of tubulin polymers. This study revealed multiple biological activities of 1 and may contribute to the design and development of new tubulin-inhibiting agents.

Ganoderma fungous (Ganodermataceae) is a multifunctional medicinal mushroom and has been traditionally used for the treatment of various types of disease. Ganoderic acid DM (1) is a representative triterpenoid isolated from G. lingzhi and exhibits various biological activities. However, a universal starting point that triggers multiple signaling pathways and results in multifunctionality of 1 is unknown. Here we demonstrate the important clues regarding the mechanisms underlying multi-medicinal action of 1. We examined structure–activity relationships between 1 and its analogs and found that the carbonyl group at C-3 was essential for cytotoxicity. Subsequently, we used 1-conjugated magnetic beads as a probe and identified tubulin as a specific 1-binding protein. Furthermore, 1 showed a similar Kd to that of vinblastine and also affected assembly of tubulin polymers. This study revealed multiple biological activities of 1 and may contribute to the design and development of new tubulin-inhibiting agents.

Received 20 August 2012
Accepted 22 October 2012
Published 30 November 2012

Correspondence and requests for materials should be addressed to K.S. (shimizu@agr.kyushu-u.ac.jp)

SUBJECT AREAS:
CELL GROWTH
TUMOUR SUPPRESSORS
CELL BIOLOGY
TOXICOLOGY

Ganoderma fungous (Ganodermataceae) is a multifunctional medicinal mushroom and has been traditionally used for the treatment of various types of disease. Ganoderic acid DM (1) is a representative triterpenoid isolated from G. lingzhi and exhibits various biological activities. However, a universal starting point that triggers multiple signaling pathways and results in multifunctionality of 1 is unknown. Here we demonstrate the important clues regarding the mechanisms underlying multi-medicinal action of 1. We examined structure–activity relationships between 1 and its analogs and found that the carbonyl group at C-3 was essential for cytotoxicity. Subsequently, we used 1-conjugated magnetic beads as a probe and identified tubulin as a specific 1-binding protein. Furthermore, 1 showed a similar Kd to that of vinblastine and also affected assembly of tubulin polymers. This study revealed multiple biological activities of 1 and may contribute to the design and development of new tubulin-inhibiting agents.

While screening mushrooms, we discovered that ethanol extracts of G. lingzhi showed the strongest 5α-reductase inhibitory activity among 19 species of mushrooms. Furthermore, treatment with the fruit body of G. lingzhi itself, or its ethanol extracts, significantly inhibited testosterone induced growth of the ventral prostate in rats8,10. Our group previously isolated a series of triterpenoids from G. lingzhi. These compounds suppressed the proliferation of androgen-dependent and androgen-independent prostate cancer cell lines11 and estrogen-dependent MCF-7 cells12, and inhibited osteoclastic differentiation13. Among these triterpenoids, we found that only ganoderic acid DM (1, Fig. 1) had multiple functions, such as 5α-reductase inhibition, androgen receptor binding activity, prostate cancer cell, and proliferation and osteoclast differentiation11-14. Although 1 affects different signaling pathways in different cell lines and has multiple functions, we have identified its target proteins, which explain and clarify the universal mechanism of its medicinal efficacy.

"Lingzhi" in China and "reishi" in Japan, is a wood-rotting Ganoderma mushroom (Ganodermataceae) generally found growing on tree stumps. The anticancer activities of Ganoderma mushroom include inhibition of tumor growth, angiogenesis and metastasis, and immune enhancement1,2. Among these, the cytotoxic effects of Ganoderma triterpenoids and the immunoregulatory activities of Ganoderma polysaccharides have been of particular interest. Over one hundred oxygenated triterpenoids have been isolated from Ganoderma mushrooms3. These compounds display a wide range of biological activities resulting in prevention effect of diabetes mellitus4, cytotoxicity1 and antitumor activity2 and the inhibition of histamine release5 angiotensin converting enzyme release6 and cholesterol synthesis7.

It should be noted that molecular studies in recent years have revealed that the commercially cultivated ‘Ganoderma lucidum’ “Lingzhi” in East Asia is a different species from the true G. lucidum which originally described from Europe. Dai et al8 proposed a new species Ganoderma lingzhi Sheng H. Wu, Y. Cao & Y. C. Dai for “Lingzhi”, which has an East Asia distribution. Considering the characteristics of Ganoderma mushroom used in our study, we herein revised the scientific name of used mushroom from ‘G. lucidum’ to ‘G. lingzhi’ although we described ‘G. lucidum’ in our all previous papers9-14.

While screening mushrooms, we discovered that ethanol extracts of G. lingzhi showed the strongest 5α-reductase inhibitory activity among 19 species of mushrooms. Furthermore, treatment with the fruit body of G. lingzhi itself, or its ethanol extracts, significantly inhibited testosterone induced growth of the ventral prostate in rats8,10. Our group previously isolated a series of triterpenoids from G. lingzhi. These compounds suppressed the proliferation of androgen-dependent and androgen-independent prostate cancer cell lines11 and estrogen-dependent MCF-7 cells12, and inhibited osteoclastic differentiation13. Among these triterpenoids, we found that only ganoderic acid DM (1, Fig. 1) had multiple functions, such as 5α-reductase inhibition, androgen receptor binding activity, prostate cancer cell, and proliferation and osteoclast differentiation11-14. Although 1 affects different signaling pathways in different cell lines and has multiple functions, we have identified its target proteins, which explain and clarify the universal mechanism of its medicinal efficacy.
Initially, we investigated structure–activity relationships of 1 by synthesizing four analogs (Analogs 2–5; Fig. 1) and evaluated their anti-proliferative activity in PC-3 cells. The results clearly indicate that substituents on C-3 and/or C-26 affect the antiproliferative activity of the parent compound 1 (Fig. 1). Among these five compounds, ganoderic acid DM methyl ester (3) showed the strongest antiproliferative activity. Compound 1 blocked 50% of cell proliferation at 40 μM, whereas 7-Oxo-ganoderic acid Z (2), 7-oxo-ganoderic acid Z methyl ester (4), and lucidadiol (5) all failed to inhibit cell proliferation to 50%, even at 50 μM. In contrast, the half inhibitory concentration (IC50) of compound 3 was only 3 μM. Hence, these compounds can be ranked in terms of their antiproliferative activity as follows: 3 > 1 > 4, 5 and 2. It can be concluded that the carbonyl group at C-3 is essential for eliciting the antiproliferative activity of ganoderic acid DM analogs.

Compounds 1 and 3 showed quite different solubility in cell culture medium. It should be noted that the poor aqueous solubility of 3 prevented investigation at concentrations greater than 50 μM. Thus, we became aware that the inhibitory activity of 3 on cell proliferation may be related to lipophilicity and cell membrane permeability. In general, the dissociated form of the carboxylic acid moiety on ganoderic acids improves aqueous solubility but hampers penetration of the plasma membrane lipid bilayer. At neutral pH conditions of cell medium, only a small amount of the dissociated form of 1 may enter into the cytoplasm of PC-3 cells to inhibit cell proliferation. If the specific part of the lanostane moiety in 1 is essential for inhibiting proliferation (not the carboxyl moiety at C-26), the change to the undissociated form of the carboxyl moiety, more specifically 3, should result in a more potent inhibitory activity than 1. Furthermore, structural modification of C-3 functional group of lanostane moiety of 1 decreases its inhibitory activity.

In subsequent experiments, PC-3 cells were treated with compounds 1 or 3 for 3 days, and the concentration of compounds 1 and 3 in cell culture medium and in cells was analyzed by HPLC. After treatment with 1, only compound 1 was detected in the cells. However, following treatment with 3, compound 1 was detected in cells, whereas 3 was only detected in the culture medium (Fig. 2). This indicated that 3 effectively penetrates membranes and is metabolized completely to 1 by prostate cancer cells. On the other hand, when cells were treated with 1, only 1 could be found in the cell. These data confirm the superior membrane penetration of 3 and subsequent metabolism to 1, which elicits potent antiproliferative activity. Combined with the results of structure–activity analyses, it

Figure 1 | Chemical structures and antiproliferative activity of ganoderic acid DM (1) and its analogs (2–5).

Compound	R1	R2	IC50 (μM)	Cell viability at 50 μM (%)
1	= O	COOH	40 ± 2	41.2
2	OH	COOH	>50	70.8
3	= O	COOCH3	3 ± 0.3	30.3
4	OH	COOCH3	>50	52.6
5	OH	CH3OH	>50	55.5

Figure 2 | HPLC analysis of ganoderic acid DM methyl ester (3) in cell extracts and culture medium. Compound concentration: 20 μM; control (culture medium of wells without cells); cell medium (culture medium with cells); cells (cell extract).
can be concluded that the carbonyl group at C-3 is essential for the inhibiting cell proliferation and that the methyl group at C-26 enhances penetration of cell membranes.

Recently, proteomic characterization of the cytotoxic mechanism of ganoderic acid D was investigated. Furthermore, protein expression profiles in HeLa cells treated for 48 h with ganoderic acids F, K, B, D, and AM1 at 15 μM were examined using two-dimensional electrophoresis and MALDI-TOF MS/MS. This study identified target-related proteins, including human interleukin-17E, eukaryotic translation initiation factor 5A, Cu/Zn-superoxide dismutase, 14-3-3ζ, K, B, D, and AM1 isoforms. Furthermore, proteomic characterization of the cytotoxic mechanism of ganoderic acid D was investigated. Furthermore, protein expression profiles in HeLa cells treated for 48 h with ganoderic acids F, K, B, D, and AM1 at 15 μM were examined using two-dimensional electrophoresis and MALDI-TOF MS/MS. This study identified target-related proteins, including human interleukin-17E, eukaryotic translation initiation factor 5A, Cu/Zn-superoxide dismutase, 14-3-3ζ, K, B, D, and AM1 isoforms. Furthermore, proteomic characterization of the cytotoxic mechanism of ganoderic acid D was investigated. Furthermore, protein expression profiles in HeLa cells treated for 48 h with ganoderic acids F, K, B, D, and AM1 at 15 μM were examined using two-dimensional electrophoresis and MALDI-TOF MS/MS. This study identified target-related proteins, including human interleukin-17E, eukaryotic translation initiation factor 5A, Cu/Zn-superoxide dismutase, 14-3-3ζ, K, B, D, and AM1 isoforms. Furthermore, proteomic characterization of the cytotoxic mechanism of ganoderic acid D was investigated. Furthermore, protein expression profiles in HeLa cells treated for 48 h with ganoderic acids F, K, B, D, and AM1 at 15 μM were examined using two-dimensional electrophoresis and MALDI-TOF MS/MS. This study identified target-related proteins, including human interleukin-17E, eukaryotic translation initiation factor 5A, Cu/Zn-superoxide dismutase, 14-3-3ζ, K, B, D, and AM1 isoforms.

Figure 3 | SDS page image showing specific binding of cell protein to ganoderic acid DM (1) fixed with magnetic beads. (A) Diagrams for ganoderic acid DM (1) fixation to the magnetic beads by reaction and amidation of the carboxylic group in the side chain of 1. (B) Lane 1: protein marker; lane 2: cytosolic protein incubated with FG beads; lane 3: cytosolic protein incubated with 1 (0.4 mM) bound FG beads; lane 4: cytosolic protein incubated with 1 (2 mM) bound FG beads; lane 5: cytosolic protein incubated with 1 (10 mM) bound FG beads. A specific binding protein of 46–58 kDa emerges with increased concentration of 1.

Table 1 Tubulin Kd and reaction concentration of test compounds

Concentration [μM]	Vinblastine	1	2	Paclitaxel
53.3	0.2978	0.2901		
106.5	0.19	0.1671		
213	0.1415	0.148		
0.1	0.101	0.160		
Kd [μM]				
	0.0153	0.0259		
polymer and protects it from disassembly. This blocks progression of mitosis, prolongs activation of the mitotic checkpoint, and triggers apoptosis or reversion to the G-phase of the cell cycle without cell division. In support of our results, compound 1 was also shown to cause G1 cell cycle arrest and apoptosis in human breast cancer cells. Tubulin-targeting by 1 triggers other signaling pathways in various cell types, explaining why this compound has multiple functions in prostate cancer cells and osteoclasts and induces benign prostate hyperplasia.

Discussion
Cancer is a general term used to describe many disease states, each of which is characterized by abnormal cell proliferation. The causes of abnormal cellular behavior are specific to each type of cancer. Tubulin polymerizes into long chains or filaments that form microtubules, which are hollow fiber structures that serve as a skeletal system for living cells. Microtubules have the ability to shift through various formations, which enables a cell to undergo mitosis or to regulate intracellular transport. Binding to tubulin and causing the protein to lose its flexibility prevent a cell from dividing. These molecules inhibit cell mitosis by binding to tubulin in the mitotic spindle and preventing polymerization or depolymerization in microtubules. Thus, tubulin binding molecules have anticancer property and have generated significant interest in clinical oncology.

In this study, we investigated structure–activity relationships of cytotoxic compound 1 and its analogs (2–5) in androgen-independent prostate cancer (PC-3) cells. Then we used affinity matrices, termed FG beads, to identify possible target proteins of 1. Tubulin was identified as a specific 1-binding protein using LC-MS/MS and showed a similar KD to that of vinblastine; a famous tubulin-inhibiting agent. Compound 1 also increased the assembly of tubulin polymers. This study reveals that 1 targets tubulin to achieve multifunctional biological activities and anticancer activity. Furthermore, the results of our study seem to be consistent in part with those of previous proteomic studies of ganoderic acid D with the carbonyl group at C-3. They reported that microtubule-associated protein RP/EB family members such as cytoskeleton 19, cytoskeleton 1, and calumenin are possible ganoderic acid D target-related proteins. We speculate that binding to α, β-tubulin by 1 and other Ganoderma triterpenoids leads to a change in microtubule-related proteins and brings about abnormal cell proliferation. Though further research is required, the findings of this study provide important clues about the anticancer mechanism(s) of Ganoderma triterpenoids and should lead to the development of new chemotherapeutic agents based on the antitubulin activity of ganoderic acid DM and other Ganoderma triterpenoids.

Methods
Materials. Magnetic FG beads were obtained from Tamagawa Seiki Co., Kanagawa, Japan. Unless otherwise stated, all chemicals were purchased from Wako Co., Japan. The ProteoExtract subcellular proteome extraction kit was purchased from Merck Co., Japan. Vinblastin sulfate salt was obtained from Sigma-Aldrich, St. Louis, MO, USA. Tubulin (99% pure from porcine brain) was obtained from Cytoskeleton Inc., St. Denver, CO, USA. Ganoderic acid DM (1) is available from our previous works.

Preparation of analogs (2–5) of ganoderic acid DM (1). 7-Oxo-ganoderic acid Z (2): Conversion of the C-3 carbonyl group of 1 to a C-3 hydroxyl group was performed by reduction with NaBH₄. In brief, NaBH₄ (10 mg) was added to 1 (10 mg) in methanol (3 mL) at room temperature. The mixture was stirred for 30 min at room temperature and the reaction was stopped by adding acetic acid (1 mL). The mixture was concentrated, and preparative HPLC (column, Inertsil ODS-3, 20 mm i.d. × 250 mm; methanol:water, 80:20; flow rate: 10 ml/min) afforded 2 (Rt, 10 min) as a white powder. The molecular formula of 2 was determined to be C₃₀H₄₆O₃ based on the ion peak at m/z 471.3508 [M+H⁺]⁺ in LC-MS-IT-TOF spectra.

Ganoderic acid DM methyl ester (3): Compound 1 (10 mg) in methanol (1 mL)-benzene (3 mL) was added to trimethylsilyldiazomethane (1.5 mL) at room temperature. The mixture was stirred for 30 min at room temperature, and preparative HPLC (column, Inertsil ODS-3; 20 mm i.d. × 250 mm; GL Science, Inc. USA; methanol:water, 80:20; flow rate: 10 ml/min) afforded 3 (Rt, 23 min). The molecular formula of 3 was determined to be C₃₁H₄₆O₄ on the basis of the ion peak at m/z 483.3469 [M+H⁺]⁺ in LC-MS-IT-TOF spectra.

7-Oxo-ganoderic acid Z methyl ester (4): Conversion of the C-3 carbonyl group of 3 to a C-3 hydroxyl group was performed by reduction with NaBH₄. In brief, NaBH₄ (10 mg) was added to 3 (10 mg) in methanol (3 mL) at room temperature. The mixture was stirred for 30 min at room temperature and the reaction was stopped by addition of acetic acid (1 mL). The mixture was concentrated, and preparative HPLC (column, Inertsil ODS-3; methanol:water, 80:20; flow rate: 10 ml/min) afforded 4 (Rt, 15 min) as a white powder. The molecular formula of 4 was determined to be C₃₁H₄₆O₄ on the basis of the ion peak at m/z 485.3504 [M+H⁺]⁺ in LC-MS-IT-TOF spectra.

Lucidadiol (5): Compound 5 was prepared from compound 2 by reduction with lithium aluminum hydride in anhydrous tetrahydrofuran (THF). In brief, a solution of 10 mg of 2 in dry THF (500 µL) was added slowly to a stirred dispersion of LiAlH₄ (2.5 equivalents) at 0°C. After the addition, the reaction was allowed to reach room temperature. The mixture was stirred for 30 min at room temperature and the reaction was stopped by adding acetic acid (1 mL). The mixture was concentrated, and preparative HPLC (column, Inertsil ODS-3; methanol:water, 80:20; flow rate: 10 ml/min) afforded 5 (Rt, 7 min) as a white powder. The molecular formula of 5 was determined to be C₃₁H₄₆O₄ on the basis of the ion peak at m/z 459.3034 [M+H⁺]⁺ in LC-MS-IT-TOF spectra.

Cell culture and cytotoxicity. Human prostate cancer (PC-3) cells were obtained from the American Type Culture Collection. The cells were cultured between passages 3 and 30, with a split ratio of 1:3 at each passage. The cells were plated into a 24-well plate with a 2 × 10⁶/well density and supplemented with 5% steroid-depleted (DCC-stripped) cFBS. Twenty-four hours later, the cells were treated with either a vehicle control or various concentrations of test compounds. After 24 h, the culture medium was collected for HPLC analysis. The NR extraction solution was freeze dried and extracted with ethyl acetate, dried over anhydrous Na₂SO₄, and the solvent was removed. New culture medium was added containing vehicle or various concentrations of test compounds. After 24 h, the culture medium was collected for HPLC analysis, NR solutions were added for 3 h at 37°C. NR solutions were then aspirated and the cells were washed with PBS twice. The NR extraction solution was freeze dried, then extracted with 500 µL methanol. Methanol was evaporated and resolved in 50 µL of solvent (methanol:water, 80:20). These samples were analyzed by HPLC (column, Inertsil ODS-3; methanol:water, 80:20; flow rate, 1 ml/min; λ, 254 nm).

Preparation of 1-immobilized beads. Magnetic FG beads (NH₂ beads; TASB848 Ni30; 5 mg) were incubated with 10 mM 1-hydroxybenzotriazole, 10 mM 1-ethyl-3-(3-dimethylaminopropyl)–carbodiimide HCl and various concentrations (0.4, 2, and 10 mM) of 1 in 1.5 mL of N,N-dimethylformamide for 4 h at room temperature. Unreacted residues were masked using 20% carbonic anhydride in N,N-dimethylformamide, and the resulting 1-immobilized beads (Fig. 3a) were stored at 4°C.

Cell fractionation. The ProteoExtract subcellular proteome extraction kit (S-PEK) was used in cell fractionation according to the manufacturer’s instruction. S-PEK

Figure 4 | The effect of ganoderic acid DM (1) on tubulin polymer assembly. 1 at 100 µM; paclitaxel at 30 µM; 1 at 50 µM; control; vinblastine at 30 µM.
takes advantage of the different solubility of certain subcellular compartments in the four selected reagents. In this experiment, the procedure was performed directly in PC-3 culture dishes without the need for cell removal. Cells or the parts of the cells remain attached to the plate during sequential extraction of subcellular compartments until the appropriate extraction reagent is used. This procedure delivered four distinct protein fractions from PC-3. The four protein fractions were cytosolic fraction (F1), membrane protein fraction (F2), nuclear protein fraction (F3), and cytoskeletal fraction (F4).

Purification and identification of 1-binding protein

Compound 1-immobilized beads (the final concentrations of I were 0.4, 2, and 10 mM) and FG beads (without I) were equilibrated with 0.5% NP-40/lysis buffer containing 50 mM Tris-HCl (pH 8.0), 150 mM NaCl, and 0.5% NP-40. Cell protein fractions prepared from PC-3 were incubated with beads for 4 h at 4°C. Beads were washed five times with 100 mM KCl (200 μl). Then beads were washed with 1 M KCl (30 μl). This fraction was subjected to SDS-PAGE on a 10% gel. After performing silver staining of the gel (Wako, silver stain MS kit), the 50-kDa band in the cytosolic fraction was cut and treated with trypsin. Protein sequencing using mass spectrometry was performed as follows. Recovered peptides were analyzed using an electrospray ion trap mass spectrometer (LCQ, Finnigan MAT, San Jose, CA, USA) coupled on-line with nano-scale HPLC to a C18 column to acquire MS/MS spectra. A 0.1 × 5 mm MAGICMS C18 column (5 μm particle diameter; 200 Å pore size) with mobile phases of A (methylene-water-acetic acid, 5:94:1) and B (methylene-water-acetic acid, 85:14:1) was used. Peptide mass fingerprinting was used for protein identification from tryptic fragment sizes using the Mascot search engine (http://www.matrixscience.com) querying to the entire NCBI database of theoretical human peptide masses.

QCM system

The affinity of compounds 1 and 2 for tubulin protein was tested using a QCM system. All compounds were dissolved in 50% EtOH. Paclitaxel and vinblastine sulfate salt (Sigma-Aldrich, St. Louis, MO, USA) were used as stabilizing and destabilizing controls, respectively. The effects of these compounds against tubulin protein was investigated using a NAPiCOS QCM system (Nihon Densya Kogyo Co. Ltd.) with a 30 MHz AT cut crystal sensor (Nihon Dempa Kogyo Co. Ltd.)

As the sensor has two gold surface electrodes on one crystal, tubulin was physiologically fixed on one electrode (ch1) and the other one was absolutely blocked (ch2). The differential frequency shift between ch1 and ch2 was obtained. Kd values were calculated by standard scatchard analysis with frequency changes from several concentrations of compounds.

Tubulin polymerization assay

The effects of test compounds on tubulin polymerization were monitored using the standard assay protocol of a porcine tubulin based commercial kit (Tubulin Polymerization Assay Kit, Cytoskeleton Inc., Denver, CO, USA), which utilizes fluorescent reporter enhancement. Fluorescence was measured using FlexStation3 (Molecular Devices, USA) and the test substance (dissolved in DMSO) was evaluated at 50 and 100 μM. The experiment was performed twice (mean values are presented). Paclitaxel (Wako Co., Japan) was used as a positive control, and vinblastine sulfate salt (Sigma-Aldrich, St. Louis, MO, USA) was used as a negative control.

Acknowledgments

This study was supported by Kyushu University Interdisciplinary Programs in Education and Projects in Research Development (No.21306). The cost of publication was supported in part by the Research Grant for Young Investigators of Faculty of Agriculture, Kyushu University. We are grateful of Dr. H. Suhara and Mr. Kaneko for improving the manuscript.

Author contributions

Jie Liu and Kunyoshi Shimizu contributed equally to this work.

Additional information

Competing Financial Interests: The authors declare no competing financial interests.

License: This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/

How to cite this article: Liu, J. et al. Target proteins of ganoderic acid DM provides clues to various pharmacological mechanisms. Sci. Rep. 2, 905; DOI:10.1038/srep00905 (2012).