Weight change during long-term treatment with lurasidone: pooled analysis of studies in patients with schizophrenia
Jonathan M. Meyera, Yongcai Maob, Andrei Pikalovb, Josephine Cucchiarob and Antony Loebelb

The objective of this analysis was to evaluate the effect of 12 months of treatment with lurasidone on weight in patients with schizophrenia. Post-hoc, observed-case analysis included pooled data from six studies on 40–160 mg/day lurasidone; two studies included active comparators (2–6 mg/day risperidone or 200–800 mg/day quetiapine XR). Overall, 593 patients completed 12 months of treatment (N = 471 lurasidone, N = 89 risperidone, N = 33 quetiapine XR). The mean baseline weight was 72.8, 80.8, and 72.4 kg in the lurasidone, risperidone, and quetiapine XR groups, respectively. The mean weight change at month 12 was 0.4 kg with lurasidone, +2.6 kg with risperidone, and +1.2 kg with quetiapine XR. Weight gain of at least 7% from study baseline was observed in 16.0, 25.8, and 15.2% of patients, and weight loss of at least 7% was seen in 18.5, 6.7, and 9.1% of patients treated with lurasidone, risperidone, and quetiapine XR, respectively. A shift from normal/underweight baseline BMI status to overweight/obese at month 12 occurred in 10.2, 27.6, and 15.0% of patients in the lurasidone, risperidone, and quetiapine XR groups, respectively. Conversely, 14.3, 1.7, and 7.7% of patients, respectively, shifted from overweight/obese to normal/underweight. In summary, a low potential for clinically significant weight gain was observed in patients with schizophrenia treated continuously with lurasidone for 12 months. Int Clin Psychopharmacol 00:000–000 Copyright © 2015 Wolters Kluwer Health, Inc. All rights reserved.

International Clinical Psychopharmacology 2015, 00:000–000

Keywords: antipsychotic agents, drug therapy, lurasidone, obesity, schizophrenia, weight

aDepartment of Psychiatry, University of California, San Diego, California and bSunovion Pharmaceuticals Inc., Fort Lee, New Jersey, USA

Correspondence to Jonathan M. Meyer, MD, 4225 Executive Square, Suite 1130, San Diego, CA 92037, USA
Tel: +1 858 864 0777; fax: +1 858 228 9776; e-mail: jmmeyer@ucsd.edu

Received 21 January 2015 Accepted 17 June 2015

Introduction

According to recent estimates, more than one-third of adults in the USA are obese (BMI ≥ 30 kg/m2; Flegal \textit{et al.}, 2012; Ogden \textit{et al.}, 2012). Obesity and other cardiovascular disease risk factors are more prevalent in individuals with schizophrenia than in the general population (McEvoy \textit{et al.}, 2005; Goff \textit{et al.}, 2005a, 2005b; McElroy, 2009; De Hert \textit{et al.}, 2009b; Correll \textit{et al.}, 2010; Casey \textit{et al.}, 2011). Increased body weight is associated with elevated risk of developing hypertension, dyslipidemia, metabolic syndrome, type 2 diabetes mellitus, and coronary heart disease (Must \textit{et al.}, 1999; Nguyen \textit{et al.}, 2008, 2010). Two recent meta-analyses demonstrated that longer duration of illness was associated with the development of metabolic syndrome and increased cardiovascular risk in patients with schizophrenia (Mitchell \textit{et al.}, 2013a, 2013b).

Atypical antipsychotic medications vary in their propensity for causing weight gain and metabolic disturbances (American Diabetes Association, American Psychiatric Association, American Association of Clinical Endocrinologists, North American Association for the Study of Obesity, 2004; Newcomer, 2005; Henderson, 2007; Newcomer, 2007). A recent meta-analysis of 212 short-term trials comprising more than 40 000 patients with schizophrenia or related disorders found that the mean weight gain was generally higher for olanzapine, clozapine, and iloperidone; intermediate for quetiapine, risperidone, and paliperidone; and lower for lurasidone, asenapine, amisulpride, aripiprazole, and ziprasidone (Leucht \textit{et al.}, 2013). A similar pattern has been observed in controlled studies of longer-term treatment (12 months or more; Csernansky \textit{et al.}, 2002; Kasper \textit{et al.}, 2003; Meltzer \textit{et al.}, 2010; Pappadopulos \textit{et al.}, 2012) and large, ‘real-world’ effectiveness studies of long-term therapy (up to 36 months; Lieberman \textit{et al.}, 2005; Bushe \textit{et al.}, 2012).

Lurasidone is an atypical antipsychotic agent that acts as an antagonist with high affinity for dopamine D\textsubscript{2A}, 5-hydroxytryptamine (5-HT\textsubscript{2A})\textsubscript{2A}, and 5-HT\textsubscript{7} receptors, and as a partial...
agonist with moderate to high affinity for 5-HT₁A receptors (Ishibashi et al., 2010). Notably, lurasidone demonstrates weak affinity for 5-HT₂C receptors and no appreciable affinity for muscarinic M₁ and histamine H₁ (Ishibashi et al., 2010). The negligible activity at 5-HT₂C and H₁ receptors suggests that lurasidone may have a low propensity for causing weight gain (Kroeze et al., 2003).

In five double-blind, placebo-controlled, 6-week studies, lurasidone has demonstrated efficacy at fixed daily doses of 40, 80, 120, and 160 mg in the treatment of schizophrenia (Nakamura et al., 2009; Meltzer et al., 2011; Nasrallah et al., 2013; Ogasa et al., 2013; Loebel et al., 2013a). The mean change in weight from baseline to study endpoint in short-term studies was +0.43 kg for lurasidone-treated patients (20–160 mg/day, N = 1486) and −0.02 kg for patients receiving placebo (N = 696); the proportion of patients with at least 7% weight gain was 4.8% for lurasidone and 3.3% for placebo (Sunovion Pharmaceuticals Inc., 2013). The present analysis pooled data from six long-term clinical studies to evaluate change in weight and BMI in patients with schizophrenia who received 12 months of treatment with lurasidone at doses of 20–160 mg/day.

Methods

Study design

The lurasidone clinical trial database includes six studies of at least 12 months in duration in patients with schizophrenia or schizoaffective disorder (Table 1). In this post-hoc analysis, individual patient data from all six of these long-term studies were pooled for lurasidone; data for risperidone and extended-release quetiapine (quetiapine XR) were from one study each. The dose range of lurasidone in these studies was 20–160 mg/day, whereas risperidone was flexibly dosed between 2 and 6 mg/day, and quetiapine XR was flexibly dosed between 200 and 800 mg/day. Study medication was taken once daily with a meal or within 30 min of eating. Patients were instructed to take the study medication in the morning in three of the studies and in the evening in one study; timing of administration was not specified in the other two studies (Table 1).

All study protocols were approved by an independent ethics committee or institutional review board, and written informed consent was provided by all patients before initiation of study procedures. All studies were conducted in accordance with the International Conference on Harmonization Good Clinical Practice guidelines and with the ethical principles of the Declaration of Helsinki.

Patients

Eligible patients were adults aged between 18 and 75 years with a diagnosis of schizophrenia (all studies) or schizoaffective disorder (Citrome et al., 2012). Other, more specific inclusion criteria, such as duration of illness and baseline disease severity, varied among studies. Patients were excluded if they presented with an acute or unstable medical condition, a recent history of substance abuse, evidence of tardive dyskinesia or another severe, chronic movement disorder, or were judged to be at imminent risk of injury to self or others. Patients with BMI less than 18.5 kg/m² or greater than 40 kg/m² were excluded from three of the studies (Table 1).

Statistical analysis

The analysis population included all patients who completed 12 months of study treatment in any of the included studies. Duration of exposure was calculated from the first dose of active study medication. Intermediate visits were assigned to the closest assessment time point (3, 6, 9, or 12 months). Month 3 was operationally defined as study days 61–151, month 6 as days 152–242, month 9 as days 243–333, and month 12 as days 334–424. These assessment windows were selected to accommodate differences in the timing of assessments across studies.

Standard criteria for BMI categories were applied: underweight was defined as BMI less than 18.5 kg/m², normal weight was defined as BMI of at least 18.5 kg/m² and less than 25 kg/m², overweight defined as BMI of at least 25 kg/m² and less than 30 kg/m², and obese was defined as BMI of at least 30 kg/m² (Centers for Disease Control and Prevention, 2015).

Changes from baseline in weight, BMI, and waist circumference were summarized by treatment group at each time point, and comparisons of lurasidone (pooled) with risperidone, as well as with quetiapine XR, were conducted using t-tests with P-values unadjusted for multiple comparisons. The proportion of patients with an increase or decrease in weight of at least 7% from baseline was compared for lurasidone (pooled) versus risperidone and for lurasidone (pooled) versus quetiapine XR using Fisher’s exact tests. Comparisons of risperidone versus quetiapine XR were not performed. The proportion of patients with a shift in BMI category (normal/underweight, overweight/obese) was calculated from baseline (start of active study medication) to month 12 for each treatment group.

Classification and regression tree (CART) analysis and stepwise multiple regression analysis were used to investigate patient age, sex, race, and duration of illness as potential predictors of change in body weight during treatment with lurasidone. CART analysis assessed the impact of the input variables (age, sex, race, and duration of illness) on the dichotomous outcome of at least 7% weight gain (yes vs. no). In the stepwise regression analysis, these variables were examined as predictors of weight change measured as a continuous variable.

Results

This analysis included 593 patients who completed 12 months of treatment (N = 471 lurasidone, N = 89 risperidone, N = 33 quetiapine XR; Fig. 1). Study completion rates
Study number/phase	Dates and locations	Study design/duration	Study medication	Patients in analysis (N)	Patient characteristics	Entry criteria
Study 1 (D1050199) NCT00088621	May 2004–October 2005 22 sites in the USA	12-month open-label extension of 6-week double-blind study (D1050196)	Lurasidone 80 mg/day Fixed dose Taken in the morning	7	18–65 years	Completed double-blind study (D1050196) or discontinued because of lack of efficacy after ≥ 2 weeks of double-blind treatment
Study 2 (D1001036)*	August 2005–June 2007 50 sites in Japan	44-week open-label extension of 8-week double-blind study (D1001001)	Lurasidone 20–120 mg/day Flexible dosed Timing of administration not specified	63	18–65 years	Completed 8-week double-blind study (D1001001)
Study 3 (D1001048)*	January 2007–April 2009 38 sites in Japan	Open-label study 12 months	Lurasidone 40–120 mg/day Flexible dosed Timing of administration not specified	80	18–65 years	Initial episode or relapse (acute exacerbation)
Study 4 (D1050229 Ext) NCT00549718	October 2007–October 2010 Multinational 48 sites (21 in the USA)	22-month open-label extension of 6-week double-blind study	Lurasidone 40–120 mg/day Flexible dosed Taken in the morning	67	18–75 years	Completed 6-week double-blind study (D1050229)
Study 5 (D1050237) (Citrome et al., 2012) NCT00641745	March 2008–July 2010 Multinational 68 sites (40 in the USA)	12-month randomized, double-blind parallel-group, active-controlled study	Lurasidone 40–120 mg/day, risperidone 2–6 mg/day Flexible dosed Taken in the morning	147	18–75 years	Clinically stable for ≥ 8 weeks
Study 6 (D1050234)Loebel et al., 2013b) NCT00789698	October 2008–June 2011 Multinational 59 sites (21 in the USA)	12-month randomized, double-blind, parallel-group, active-controlled continuation study	Lurasidone 40–160 mg/day, quetiapine XR 200–800 mg/day Flexible dosed Taken in the evening	107	18–75 years	Completed 6-week, placebo-controlled study (D1050233)

DSM-IV, Diagnostic and Statistical Manual of Mental Disorders, 4th edition; ICD, International Statistical Classification of Diseases and Related Health Problems, 10th revision.

*The FDAAA 801 requirements for registering clinical trials did not apply to these studies, which were conducted entirely at sites in Japan before lurasidone was approved for any indication in the USA.

*Patients with BMI < 18.5 kg/m² or > 40 kg/m² were excluded.
were 38.2% for the lurasidone group, 44.1% for the risperidone group, and 38.8% for the quetiapine XR group. The average age and sex were similar across the lurasidone, risperidone, and quetiapine XR groups; however, differences were observed in patients’ racial backgrounds (Table 2). The mean weight and BMI at baseline were higher in the risperidone group (80.8 kg and 27.8 kg/m², respectively) compared with the lurasidone group (72.8 kg and 25.6 kg/m², respectively) and the quetiapine XR group (72.4 kg and 25.4 kg/m², respectively).

High rates of prior antipsychotic use (within 30 days of starting study medication) were observed: 90.7% for patients in the lurasidone group (pooled), 91.0% for patients in the risperidone group, and 81.8% for patients in the quetiapine XR group (Table 3). No patients had taken clozapine for at least 30 days before study entry. The distribution of patients who had taken other antipsychotic agents associated with increased risk of weight gain (e.g. olanzapine, quetiapine) was similar across the pooled treatment groups, except for a lower rate of prior quetiapine use in the lurasidone and quetiapine groups compared with the risperidone group. Across the 12-month study period, the mean modal daily doses of study medication were 90.6 mg lurasidone, 4.4 mg risperidone, and 660.6 mg quetiapine XR.

Table 2 Demographics and baseline clinical characteristics

Characteristics	Lurasidone (N = 471)	Risperidone (N = 89)	Quetiapine XR (N = 33)
Age [mean (SD)] (years)	41.4 (11.7)	42.7 (11.3)	39.8 (9.5)
Men [n (%)]	318 (67.5)	61 (68.5)	21 (63.6)
Race [n (%)]			
White	162 (34.4)	36 (40.4)	24 (72.7)
Black	96 (20.4)	44 (49.4)	3 (9.1)
Asian	198 (42.0)	1 (1.1)	5 (15.2)
Other	15 (3.2)	8 (9.0)	1 (3.0)
Weight (kg)			
Mean (SD)	72.8 (17.8)	80.8 (18.1)	72.4 (12.8)
Median	71.2	79.1	70.9
BMI (kg/m²)			
Mean (SD)	25.6 (5.1)	27.8 (5.6)	25.4 (4.0)
Median	24.5	272	24.6
BMI category [n (%)]			
Underweight	14 (3.0)	1 (1.1)	0 (0)
Normal	239 (50.7)	28 (31.5)	20 (60.6)
Overweight	131 (27.8)	31 (34.8)	8 (24.2)
Obese	87 (18.5)	29 (32.6)	15 (45.5)
Waist circumference (cm)			
Mean (SD)	95.7 (14.6)	96.1 (13.9)	84.8 (11.7)
Median	88.0	96.0	82.5

Table 3 Prior antipsychotic medications (≥10% of patients in any group)

Antipsychotic medicine	Lurasidone (N = 471)	Risperidone (N = 89)	Quetiapine XR (N = 33)
Any previous antipsychotic medication			
Risperidone	181 (38.4)	0 (0)	12 (36.4)
Haloperidol	144 (30.6)	16 (18.0)	12 (36.4)
Quetiapine	115 (24.4)	59 (66.3)	0 (0)
Olanzapine	118 (25.1)	21 (23.6)	6 (18.2)
Aripiprazole	64 (13.6)	32 (36.0)	1 (3.0)
Chlorpromazine	73 (15.5)	2 (2.2)	8 (24.2)
Trifluoperazine	51 (10.8)	5 (5.6)	15 (45.5)
Ziprasidone	34 (7.2)	19 (21.3)	1 (3.0)
Paliperidone	26 (5.5)	4 (4.5)	4 (12.1)
Amsulpride	27 (5.7)	0 (0)	5 (15.2)
Promazine	1 (0.2)	9 (10.1)	0 (0)

*Underweight, BMI < 18.5 kg/m²; normal weight, BMI ≥ 18.5 kg/m² and < 25.0 kg/m²; overweight, BMI ≥ 25.0 kg/m² and < 30.0 kg/m²; obese, BMI ≥ 30.0 kg/m².

*Waist circumference was not assessed in studies 1–3; N = 315 for lurasidone, N = 83 for risperidone, N = 33 for quetiapine XR.

*Taken within 30 days before the first dose of study medication.
illness on the proportion of patients with at least 7% weight gain at month 12, but Asian patients were significantly more likely to experience weight gain than patients of other races (Fig. 4). After 12 months of treatment with lurasidone, weight gain of at least 7% was observed in 12.4% of whites, 12.5% of blacks, and 21.2% of Asians (28.8% of Asian women and 16.8% of Asian men). In the stepwise regression analysis, age and baseline weight were found to be significant predictors of weight gain at month 12; younger age ($P=0.040$) and lower baseline body weight ($P=0.002$) were associated with greater weight gain.

Discussion

Treatment with lurasidone was associated with a low potential for clinically significant weight gain over a 12-month period in this observed-case analysis of pooled data from six longer-term clinical trials in patients with schizophrenia. Treatment with risperidone and quetiapine XR was associated with modest weight gain (a mean change at month 12 of +2.6 kg and +1.2 kg, respectively). At month 12, a similar proportion of patients treated with lurasidone (16.0%) and quetiapine XR (15.2%) experienced weight gain of at least 7%; however, weight loss of at least 7% was observed in twice as many patients receiving lurasidone (18.5%) as those receiving quetiapine XR (9.1%). In comparison, the risperidone group had the largest proportion of patients with weight gain of at least 7% at month 12 (25.8%) and the smallest proportion of patients with weight loss of at least 7% (6.7%). We note that the baseline weight was, on average, 8 kg greater in the risperidone group compared with the lurasidone (pooled) and quetiapine XR groups; this may have reduced estimates of weight change associated with risperidone in comparison with lurasidone and quetiapine XR treatment. Patients treated with lurasidone for 12 months were more likely to experience a shift from a higher BMI category (overweight/obese) to a lower BMI category (normal/underweight) compared with patients treated with risperidone or quetiapine XR.

Results of this analysis suggest that lurasidone has a lower liability for long-term weight gain than several other atypical antipsychotic agents, which is consistent with previous pooled analyses of short-term studies on lurasidone in patients with schizophrenia (Citrome, 2012; Sunovion Pharmaceuticals Inc., 2013). Reflecting these findings, a recent comprehensive meta-analysis of short-term clinical studies on 15 antipsychotic agents in patients with schizophrenia found that lurasidone was one of only three agents (along with haloperidol and ziprasidone) that did not produce more weight gain than placebo (Leucht et al., 2013).

Overweight and obesity not only increase the risk for metabolic syndrome, diabetes, and cardiovascular disease (Nguyen et al., 2008, 2010; Mitchell et al., 2013b) but may have additional negative consequences in patients with schizophrenia, including decreased quality of life.
increased stigma and social discrimination, and reduced adherence to antipsychotic treatment (Weiden et al., 2004b; Kolotkin et al., 2008; Monteleone et al., 2009). Weight gain has been shown to be a predictor of medication nonadherence in patients with schizophrenia (Weiden et al., 2004b; Velligan et al., 2009; Wong et al., 2011), despite the increased risk of relapse associated with discontinuing treatment (Perkins, 2002; Weiden et al., 2004a).

Younger, treatment-naive patients and patients belonging to certain racial and ethnic groups (e.g., black and Hispanic patients) appear to be at greater risk for antipsychotic-related weight gain (Meyer et al., 2009; Salimi et al., 2009; Maayan and Correll, 2011). In the present analysis, younger age was significantly associated with weight gain during lurasidone treatment; however, weight gain of at least 7% was observed in a similar proportion of white patients and black patients taking lurasidone for 12 months. Asian patients (particularly Asian women) were significantly more likely than patients of other races to experience at least 7% weight gain, which is consistent with previous reports that Asian patients may be more likely to experience adverse effects of antipsychotic medications (Bond, 1991). Genetic factors may account for differences in medication-related weight gain based on race or ethnicity (Lett et al., 2012). A recent meta-analysis found a significant association between the leptin −2548A allele and the risk for antipsychotic-induced weight gain in Asian patients with schizophrenia (Shen et al., 2014).
The development of antipsychotic agents with lower metabolic risk, an increased clinical awareness of antipsychotic-related metabolic problems, and the incorporation of physical health management concerns into treatment guidelines (American Diabetes Association, American Psychiatric Association, American Association of Clinical Endocrinologists, North American Association for the Study of Obesity, 2004; De Hert et al., 2009a) have provided greater impetus for clinicians to consider switching medication to reduce the likelihood of metabolic adverse effects. Studies investigating the effects of a medication switch have shown that switching patients to atypical antipsychotic agents with lower metabolic liability (e.g. aripiprazole, lurasidone, or ziprasidone) generally resulted in weight loss and improvement in metabolic indices, without compromising treatment efficacy (Casey et al., 2003; Weiden et al., 2003a, 2003b, 2008; Newcomer et al., 2008; Alptekin et al., 2009; Barak and Aizenberg, 2011; Ganguli et al., 2011; Stroup et al., 2011; Stahl et al., 2013). In an open-label study of patients with schizophrenia or schizoaffective disorder who were transitioned to lurasidone from other antipsychotic agents, improvement was observed in weight and metabolic parameters after 6 weeks (McEvoy et al., 2013) and 6 months (Citrome et al., 2014) of treatment. Similarly, patients with schizophrenia who were treated with open-label lurasidone for up to 6 months after completing 6 weeks of double-blind treatment with olanzapine experienced a mean weight loss of 1.9 kg after switching to lurasidone, with sustained therapeutic efficacy (Stahl et al., 2013).

This analysis has several limitations, including its post-hoc nature and the lack of a placebo control group. This observed-case analysis included only patients who completed 12 months of treatment. The number of patients treated with quetiapine XR for 12 months (N=33) was relatively small compared with the other treatment groups. Between-group differences in dropout rates could have influenced the magnitude of weight change observed at month 12, to the extent that treatment discontinuation was associated with weight change; however, the proportion of patients in the underlying studies who discontinued study medication was similar for lurasidone, risperidone, and quetiapine XR. In addition, detailed information was not collected with regard to prior antipsychotic treatment (e.g. dose, duration of treatment, impact on weight). Thus, the magnitude of antipsychotic-induced weight gain that may have occurred before the patients’ enrollment in the studies included in this analysis is unknown. The effect of antipsychotic medication dose on weight gain was not evaluated in this analysis because five of six longer-term studies used flexible dosing.

In summary, the results of this post-hoc, pooled analysis of 593 patients with schizophrenia who completed 12 months of study treatment suggest that lurasidone, in the dose range of 40–160 mg/day, is associated with a low potential for long-term weight gain. Consistent with prior reports, Asian patients appeared to be more susceptible to weight gain during antipsychotic therapy. The findings of this analysis suggest that lurasidone may be an important treatment option for patients judged to be at higher risk for weight gain, those who present with cardiovascular risk factors, or those who have experienced weight gain or metabolic disturbances on their current treatment regimen. Regular monitoring of metabolic parameters (including weight, lipid levels, and glycemic control) is now considered the standard of care for patients with schizophrenia and may help limit the effects of long-term antipsychotic treatment on weight and metabolic parameters.

Acknowledgements
Nancy Holland, PhD, Synchrony Medical Communications, LLC, provided medical writing and editorial assistance for this manuscript under the direction of the authors. Financial support for this writing and editorial assistance from Synchrony Medical Communications, LLC, were provided by Sunovion Pharmaceuticals Inc., Marlborough, Massachusetts, USA. Clinical research was sponsored by Sunovion Pharmaceuticals Inc. The sponsor was involved in the study design, data collection, and analysis of data.

Conflicts of interest
The studies and this analysis were sponsored by Sumitomo Dainippon Pharma Co. Ltd., Osaka, Japan, and Sunovion Pharmaceuticals Inc., Marlborough, Massachusetts, USA, a wholly-owned US subsidiary of Sumitomo Dainippon Pharma Co Ltd. Dr Meyer reports having received research support from Bristol-Myers Squibb, National Institutes of Health (as General Clinical Research Center support), National Institute of Mental Health, and Pfizer Inc., and speaking or advising fees from Alkemnes, Arbor Scientia, Bristol-Myers Squibb Company, Forum Pharmaceuticals Inc., Genentech, Neuroscience Education Institute, Otsuka America Inc., and Sunovion Pharmaceuticals Inc. Drs Mao, Pikalov, Cucchiaro, and Loebel are employees of Sunovion Pharmaceuticals Inc.

References
Alptekin K, Hafez J, Brook S, Akkaya C, Tzebelikos E, Ucok A, et al. (2009). Efficacy and tolerability of switching to ziprasidone from olanzapine, risperidone or haloperidol: an international, multicenter study. Int Clin Psychopharmacol 24:229–238. American Diabetes Association, American Psychiatric Association, American Association of Clinical Endocrinologists, North American Association for the Study of Obesity (2004). Consensus development conference on antipsychotic drugs and obesity and diabetes. J Clin Psychiatry 65:267–272. Barak Y, Aizenberg D (2011). Switching to aripiprazole as a strategy for weight reduction: a meta-analysis in patients suffering from schizophrenia. J Obes 2011:pii:898013. Bond WS (1991). Ethnicity and psychotropic drugs. Clin Pharm 10:467–470. Bushe CJ, Sullof CJ, Haddad PM, Karagianis JL (2012). Weight change from 3-year observational data: findings from the worldwide schizophrenia outpatient health outcomes database. J Clin Psychiatry 73(8):e749–e755. Casey DE, Carson WH, Saha AR, Liebeskind A, Ali MW, Jody D, Ingenito GG, Aripiprazole Study Group (2003). Switching patients to aripiprazole from other antipsychotic agents: a multicenter randomized study. Psychopharmacology (Berl) 166:391–399. Casey DA, Rodriguez M, Northcott C, Vickar G, Shihabuddin L (2011). Schizophrenia: medical illness, mortality, and aging. Int J Psychiatry Med 41:245–251.
Centers for Disease Control and Prevention (2015). About BMI for adults (last updated 23 February 2015). Available at: http://www.cdc.gov/healthyweight /assessment/bmi/adult_bmi/index.html. [Accessed 10 June 2015].

Correll CU (2012). Lupus erythematosus for the acute management of adults with schizophrenia: what is the number needed to treat, number needed to harm, and likelihood to be helped or harmed? Clin Schizophr Relat Psychoses 6:76–85.

Citrone L, Cucchiaro J, Sarma K, Phillips D, Silva R, Tsuchiya S, Loebel A (2012). Long-term safety and tolerability of lurasidone in schizophrenia: a 12-month, double-blind, active-controlled study. Int Clin Psychopharmacol 27:165–176.

Citrone L, Medved E, McEvoy JP, Correll CU, Cucchiaro J, Hsu J, et al. (2014). Effectiveness of lurasidone in schizophrenia or schizoaffective patients switched from other antipsychotics: a 6-month, open-label, extension study. CNS Spectr 19:330–339.

Correll CU, Druss BG, Lombardo I, O Maayan L, Correll CU (2011). Weight gain and metabolic risks associated with other antipsychotics: a randomized, 6-week, open-label, extension study. J Clin Psychiatry 72:170–179.

De Hert M, Vancampfort D, Van Rinkel K, Yu W, De Hert M (2013a). Is the prevalence of metabolic syndrome and metabolic abnormalities increased in early schizophrenia? A comparative meta-analysis of first episode, untreated and treated patients. Schizophr Bull 39:295–305.

De Hert M, Schreurs V, Vancampfort D, Van Winkel R (2009b). Metabolic syndrome in people with schizophrenia: a review. World Psychiatry 8:15–22.

Flegal KM, Carroll MD, Kit BK, Ogden CL (2012). Prevalence of obesity, and trends in the distribution of body mass index among US adults, 1999–2010. JAMA 307:491–497.

Gangulí R, Brar JS, Garbut R, Chang CC, Basu R (2011). Changes in weight and other metabolic indicators in persons with schizophrenia following a switch to olanzapine, aripiprazole, and placebo- and olanzapine-controlled study. Am J Psychiatry 168:597–607.

Goff DC, Cather C, Evins AE, Henderson DC, Freudenreich O, Copeland PM (2011). Medical morbidity and mortality in schizophrenia: guidelines for psychiatrists. J Clin Psychiatry 66:183–194. Quiz 147, 273–4. 2005b. A comparison of risperidone and haloperidol for the prevention of relapse in patients with schizophrenia. N Engl J Med 346:16–22.

Goff DC, Sullivan LM, McEvoy JP, Meyer JM, Nasrallah HA, Daumit GL, et al. (2005a). A comparison of risperidone and haloperidol for the prevention of relapse in patients with schizophrenia. N Engl J Med 346:16–22.

Goff DC, Sullivan LM, McEvoy JP, Meyer JM, Nasrallah HA, Daumit GL, et al. (2005b). A comparison of risperidone and haloperidol for the prevention of relapse in patients with schizophrenia. N Engl J Med 346:16–22.

Goff DC, Sullivan LM, McEvoy JP, Meyer JM, Nasrallah HA, Daumit GL, et al. (2005b). A comparison of risperidone and haloperidol for the prevention of relapse in patients with schizophrenia. N Engl J Med 346:16–22.

Goff DC, Sullivan LM, McEvoy JP, Meyer JM, Nasrallah HA, Daumit GL, et al. (2005b). A comparison of risperidone and haloperidol for the prevention of relapse in patients with schizophrenia. N Engl J Med 346:16–22.

Goff DC, Sullivan LM, McEvoy JP, Meyer JM, Nasrallah HA, Daumit GL, et al. (2005b). A comparison of risperidone and haloperidol for the prevention of relapse in patients with schizophrenia. N Engl J Med 346:16–22.

Goff DC, Sullivan LM, McEvoy JP, Meyer JM, Nasrallah HA, Daumit GL, et al. (2005b). A comparison of risperidone and haloperidol for the prevention of relapse in patients with schizophrenia. N Engl J Med 346:16–22.

Goff DC, Sullivan LM, McEvoy JP, Meyer JM, Nasrallah HA, Daumit GL, et al. (2005b). A comparison of risperidone and haloperidol for the prevention of relapse in patients with schizophrenia. N Engl J Med 346:16–22.

Goldman RD, Kaukinen J, Holmberg JW (2006). Risk factors for cholesterol, triglyceride, and high-density lipoprotein cholesterol in adults treated with olanzapine in the CATIE study and matched controls. J Clin Psychiatry 67:951–958.

Goldman RD, Kaukinen J, Holmberg JW (2006). Risk factors for cholesterol, triglyceride, and high-density lipoprotein cholesterol in adults treated with olanzapine in the CATIE study and matched controls. J Clin Psychiatry 67:951–958.

Goldman RD, Kaukinen J, Holmberg JW (2006). Risk factors for cholesterol, triglyceride, and high-density lipoprotein cholesterol in adults treated with olanzapine in the CATIE study and matched controls. J Clin Psychiatry 67:951–958.

Goldman RD, Kaukinen J, Holmberg JW (2006). Risk factors for cholesterol, triglyceride, and high-density lipoprotein cholesterol in adults treated with olanzapine in the CATIE study and matched controls. J Clin Psychiatry 67:951–958.

Goldman RD, Kaukinen J, Holmberg JW (2006). Risk factors for cholesterol, triglyceride, and high-density lipoprotein cholesterol in adults treated with olanzapine in the CATIE study and matched controls. J Clin Psychiatry 67:951–958.

Goldman RD, Kaukinen J, Holmberg JW (2006). Risk factors for cholesterol, triglyceride, and high-density lipoprotein cholesterol in adults treated with olanzapine in the CATIE study and matched controls. J Clin Psychiatry 67:951–958.

Goldman RD, Kaukinen J, Holmberg JW (2006). Risk factors for cholesterol, triglyceride, and high-density lipoprotein cholesterol in adults treated with olanzapine in the CATIE study and matched controls. J Clin Psychiatry 67:951–958.

Goldman RD, Kaukinen J, Holmberg JW (2006). Risk factors for cholesterol, triglyceride, and high-density lipoprotein cholesterol in adults treated with olanzapine in the CATIE study and matched controls. J Clin Psychiatry 67:951–958.
Stroup TS, McEvoy JP, Ring KD, Hamer RH, LaVange LM, Swartz MS, et al. (2011). A randomized trial examining the effectiveness of switching from olanzapine, quetiapine, or risperidone to aripiprazole to reduce metabolic risk: comparison of antipsychotics for metabolic problems (CAMP). Am J Psychiatry 168:947–956.

Sunovion Pharmaceuticals Inc. (2013). Latuda® (lurasidone hydrochloride) tablets, for oral use [package insert]. Marlborough, MA: Sunovion Pharmaceuticals Inc.

Velligan DI, Weiden PJ, Sajatovic M, Scott J, Carpenter D, Ross R, Docherty JP, Expert Consensus Panel on Adherence Problems in Serious and Persistent Mental Illness (2009). The expert consensus guideline series: adherence problems in patients with serious and persistent mental illness. J Clin Psychiatry 70 (Suppl 4):1–46.

Weiden PJ, Daniel DG, Simpson G, Romano SJ (2003a). Improvement in indices of health status in outpatients with schizophrenia switched to ziprasidone. J Clin Psychopharmacol 23:595–600.

Weiden PJ, Simpson GM, Potkin SG, O’Sullivan RL (2003b). Effectiveness of switching to ziprasidone for stable but symptomatic outpatients with schizophrenia. J Clin Psychiatry 64:580–588.

Weiden PJ, Kozma C, Grogg A, Locklear J (2004a). Partial compliance and risk of rehospitalization among California Medicaid patients with schizophrenia. Psychiatr Serv 55:886–891.

Weiden PJ, Mackell JA, McDonnell DD (2004b). Obesity as a risk factor for antipsychotic noncompliance. Schizophr Res 66:51–57.

Weiden PJ, Newcomer JW, Loebel AD, Yang R, Lebovitz HE (2008). Long-term changes in weight and plasma lipids during maintenance treatment with ziprasidone. Neuropsychopharmacology 33:985–994.

Wong MM, Chen EY, Lui SS, Tso S (2011). Medication adherence and subjective weight perception in patients with first-episode psychotic disorder. Clin Schizophr Relat Psychoses 5:135–141.