INTRODUCTION

Diabetes mellitus (DM), as the most prevalent metabolic diseases, is a major public health problem worldwide. Its morbidity and mortality rates have increased rapidly over recent decades. According to the reports from the International Diabetes Federation (IDF), approximately 451 million diabetes cases and 5 million deaths worldwide were occurred in 2017, and expected to increase to 693 million cases by 2045 (Cho et al., 2018). Type 2 diabetes mellitus (T2DM) is the most prevalent form of DM, accounting for more than 90% of DM (Chen, Magliano, & Zimmet, 2011). It is a hypothesis

Quantitative assessment of TLR4 gene polymorphisms and T2DM risk: A meta-analysis

Jinzhuo Fan1 | Renxian Liang2

1Department of Traditional Chinese Medicine and Acupuncture, Hainan Hospital of General Hospital of Chinese PLA, Sanya, China
2Department of Cardiovascular and Endocrinology, Beibei Traditional Chinese Medicine Hospital, Chongqing, China

Correspondence
Renxian Liang, Department of Cardiovascular and Endocrinology, Beibei Traditional Chinese Medicine Hospital, No. 380, Jiangjun Road, Beibei District, Chongqing 400700, China.
Email: liangrenxian82@163.com

Abstract

Background: Numerous studies have evaluated the association between TLR4 gene polymorphisms and T2DM risk. However, the findings were inconsistent and controversial.

Methods: In order to drive a more precise estimation, we carried out a meta-analysis based on 41 studies involving 23,250 cases and 24,760 controls. Pooled odds ratios (ORs) with 95% confidence intervals (CIs) were calculated to assess the strength of association.

Results: Our meta-analysis provides evidence that rs4986790 polymorphism was associated with an increased risk of T2DM in Asian (AG vs. AA, OR = 1.23, 95% CI = 1.01–1.50, p = 0.042; G vs. A, OR = 1.21, 95% CI = 1.01–1.44, p = 0.041). Rs4986791 polymorphism was related to an increased risk of T2DM both in Asian (AG vs. AA, OR = 1.76, 95% CI = 1.11–2.80, p = 0.017; G vs. A, OR = 1.63, 95% CI = 1.04–2.55, p = 0.034) and Caucasian (GG vs. AA, OR = 2.42, 95% CI = 1.23–4.75, p = 0.010). Rs11536889 polymorphism may have a protective effect on T2DM in Chinese populations (CC vs. GG, OR = 0.62, 95% CI = 0.40–0.96, p = 0.031; GC vs. GG, OR = 0.77, 95% CI = 0.61–0.98, p = 0.034; CC vs. GC/GG, OR = 0.81, 95% CI = 0.69–0.96, p = 0.013; C vs. G, OR = 0.76, 95% CI = 0.59–0.97, p = 0.027), whereas rs1927911 may have no impact.

Conclusions: These findings supported that rs4986790, rs4986791, and rs11536889 may contribute to the risk of T2DM.

KEYWORDS
meta-analysis, polymorphism, risk, T2DM, TLR4

1 INTRODUCTION

Diabetes mellitus (DM), as the most prevalent metabolic diseases, is a major public health problem worldwide. Its morbidity and mortality rates have increased rapidly over recent decades. According to the reports from the International Diabetes Federation (IDF), approximately 451 million diabetes cases and 5 million deaths worldwide were occurred in 2017, and expected to increase to 693 million cases by 2045 (Cho et al., 2018). Type 2 diabetes mellitus (T2DM) is the most prevalent form of DM, accounting for more than 90% of DM (Chen, Magliano, & Zimmet, 2011). It is a hypothesis
suggest that T2DM is a disease of the innate immune system related to obesity and insulin resistance (Pickup & Crook, 1998). However, the etiology underlying T2DM is still unclear. Accumulating evidence support that the genetic factors may contribute to the development of T2DM. In a nationwide T2DM study with a cohort of 13,888 Finnish twin pairs, the concordance rate for T2DM was much higher among monozygotic twins compared with dizygotic twins (Kaprio et al., 1992). Meanwhile, an increasing number of genetic loci were investigated to be associated with the risk of T2DM (Gaulton, 2017).

Toll-like receptors (TLRs) are the family of the important pathogen recognition receptors involved in regulating the activation of the innate immune response and subsequent pro-inflammatory reactions (Akira, Uematsu, & Takeuchi, 2006). TLR4 (toll-like receptor-4), a key member of the TLRs family, initiates the production of pro-inflammatory cytokines on dendritic cells and macrophages (Zarember & Godowski, 2002). TLR4 plays an important role in the recognition and interaction with lipopolysaccharide (LPS), endogenous ligands, oxidized low-density lipoprotein (LDL), heat shock proteins (HSP) 60 and 70, fibrinogen, and fibronecthin (Peterson, Mart, & Bond, 2014; Rallabhandi et al., 2006). The human TLR4 gene (OMIM# 603030), encoding TLR4, is located on chromosome 9q32–33. Its genetic variations have been reported to modify the function of TLR4 recognition and interaction, and then, change the immune response in the development of T2DM (Armant & Fenton, 2002; Yin, Wang, Sun, Hu, & Liu, 2015). As the most common genetic variation, single nucleotide polymorphisms (SNPs) are becoming more and more popular in T2DM research. Numerous studies have evaluated the association between TLR4 polymorphisms and the risk of T2DM (Aioanei et al., 2019; Bagarolli, Saad, & Saad, 2010; Beijk et al., 2010; Buraczynska, Baranowicz-Gaszczyn, Tarach, & Ksiazek, 2009; Buraczynska, Zukowski, Ksiazek, Wacinski, & Dragan, 2016; Cai, Cai, & Tao, 2013; Degirmenci et al., 2019; Doody et al., 2017; Dzunhur et al., 2012; Gond, Singh, & Agrawal, 2018; Hernesniemi et al., 2006; Huang et al., 2015; Ilig et al., 2003; Jiang, Wang, Jia, Wang, & Liu, 2013; Khaghanzadeh et al., 2020; Kim et al., 2008; Kolek et al., 2004; Peng et al., 2015; Singh et al., 2014; Singh, Singh, Agrawal, Gupta, & Singh, 2013; Xu et al., 2015; Zaharieva, Kamenov, & Savov, 2017). However, these studies reported inconsistent results. This discrepancy may be due to relatively small sample size in each published study. Meta-analysis is an approach to combine various studies to drive more powerful evaluation of these associations. Till now, two meta-analysis explored the possible role of TLR4 polymorphisms and T2DM risk before 2015 (Belforte, 2013; Yin et al., 2015). One only focused on rs4986790 and rs4986791 and the other only on rs1927911. At least another seven studies were published about these two polymorphisms in recent several years. Moreover, we studied all the TLR4 polymorphisms on the risk of T2DM, and more than four publications focused on one polymorphism will be included in our study.

Therefore, we conducted this comprehensive meta-analysis to assess association between T2DM risk and four TLR4 polymorphisms (rs4986790, rs4986791, rs11536889, and rs1927911).

2 | MATERIALS AND METHODS

2.1 | Identification and eligibility of relevant studies

A systematic literature search was performed to identify relevant articles published on two widely used electronic literature databases (MEDLINE and EMBASE) up to 24 April 2020. The searching terms were as follows: “Toll-like receptors or Toll-like receptor 4 or TLR4,” “polymorphism or polymorphisms or variant or variation,” and “diabetes or diabetic or T2DM or T2D.” All eligible original studies and other relevant studies were searched manually.

2.2 | Inclusion criteria and exclusion criteria

We selected studies according to the following criteria: (1) evaluating the association between TLR4 polymorphisms and T2DM risk; (2) based on the case-control or cohort design; (3) with enough information to calculate odds rations (ORs) and 95% confidence intervals (CIs). Exclusion criteria were as follows: (1) reviews, meta-analyses, letters, case reports, and conference abstracts; (2) Non-case-control studies; (3) studies without sufficient data.

2.3 | Data extraction

Two investigators independently identified the articles for compliance with the inclusion criteria. The following information were extracted from each eligible study: first author’s surname, year of publication, country of origin, ethnicity, source of control, total number of cases and controls, genotype distribution in cases and controls, and Hardy–Weinberg equilibrium (HWE) in controls. Any disagreement was resolved by checking and discussion till consensus was reached. Meanwhile, we categorized ethnicity as Caucasian or Asian, including Indian and Chinese.

2.4 | Statistical analysis

The HWE for controls of each studies was checked by using a Chi-square test. The strength of association between four
TLR4 polymorphisms (rs4986790, rs4986791, rs11536889, and rs1927911) and T2DM risk was assessed by calculating ORs with the corresponding 95% CIs. For the rs4986790 A > G, the pooled ORs were estimated in homozygous model (GG vs. AA), heterozygous model (AG vs. AA), recessive model (GG vs. AG/AA), dominant model (AG/GG vs. AA), and allele model (G vs. A). As for rs4986791 A > G, rs11536889 G > C, and rs1927911 G > A polymorphism, similar five genetic models were also calculated. We applied Chi-square-based Q-test to assess heterogeneity between studies. A p value greater than 0.10 indicated a lack of heterogeneity, we chose the fixed-effects model (the Mantel–Haenszel method) (Mantel & Haenszel, 1959). Otherwise, we used the random-effects model (the DerSimonian and Laird method) (DerSimonian & Laird, 1986). Funnel plots and Egger’s regression test were applied to assess the publication bias. All the analyses were performed with the STATA software, version 11.0 (Stata Corporation, College Station, TX, USA). All the p values were two-sided and p values <0.05 were considered statistically significant.

3 | RESULTS

3.1 | Characteristics of studies

As shown in Figure 1, 148 potentially relevant publications were identified through database review. Based on a review of title and abstract, 112 obviously irrelevant articles were removed. Of the remaining 36 publications, six were excluded for only case studies, four with insufficient data for further evaluation, and four focused on other polymorphisms because the number of studies on these polymorphisms were less than four. Finally, a total of 22 eligible articles were included in this meta-analysis, including 19 studies on rs4986790 polymorphism (Aioanei et al., 2019; Bagarolli et al., 2010; Beijk et al., 2010; Buraczynska et al., 2009, 2016; Cai et al., 2013; Degirmenci et al., 2019; Doody et al., 2017; Dzumhur et al., 2012; Gond et al., 2018; Hernesniemi et al., 2006; Illig et al., 2003; Jiang et al., 2013; Khaghanzadeh et al., 2020; Kim et al., 2008; Kolek et al., 2004; Singh et al., 2013, 2014; Zaharieva et al., 2017), 13 studies on rs4986791 polymorphism (Aioanei et al., 2019; Bagarolli et al., 2010; Cai et al., 2013; Degirmenci et al., 2019; Gond et al., 2018; Jiang et al., 2013; Kim et al., 2008; Singh et al., 2013, 2014; Zaharieva et al., 2017, Khaghanzadeh et al., 2020), four studies on rs11536889 polymorphism (Cai et al., 2013; Huang et al., 2015; Jiang et al., 2015; Peng et al., 2015), and five studies on rs1927911 polymorphism (Huang et al., 2015; Peng et al., 2015; Singh et al., 2013, 2014; Xu et al., 2015). The characteristics and genotype distributions of the eligible studies are listed in Table 1.

3.2 | Meta-analysis of TLR4 rs4986790 polymorphism and T2DM risk

About 19 studies involving 7150 cases and 9993 controls were included to evaluate the association between TLR4 rs4986790 polymorphism and T2DM risk. About 11 studies focused on Caucasian populations and eight on Asian populations. No significant associations were found between

FIGURE 1 Flow diagram of the study selection

Potential relevant publications identified through database searching (n=148)

Publications excluded after title and abstract review (n=112)

Publications for full text review (n=36)

Publications excluded (n=14)
6 only case study
4 without sufficient data
4 other SNPs for less than 4 studies

22 articles included in meta-analysis
19 articles for rs4986790 polymorphism
13 articles for rs4986791 polymorphism
4 articles for rs11536889 polymorphism
5 articles for rs1927911 polymorphism
Surname	Year	Country	Ethnicity	Source of controls	Cases	Controls	HWE						
					Total	AA	AG	GG	Total	AA	AG	GG	
					rs4986790								
Illig	2003	Germany	Caucasian	PB	217	196	21	0	229	207	20	2	0.068
Kolek	2004	USA	Caucasian	HB	333	315	18a	18a	1561	1410	151a		\
Hernesniemi	2006	Finland	Caucasian	HB	107	89	18a	18a	550	454	96a		\
Kim	2008	Korea	Asian	HB	225	225	0	0	153	153	0	0	0.069
Buraczynska	2009	Poland	Caucasian	PB	864	796	64	4	420	393	27		\
Bagarolli	2010	Brazil	Caucasian	PB	211	200	11	0	200	178	20	2	0.109
Beijk	2010	Netherlands	Caucasian	HB	466	411	55a	55a	2890	2530	360a		\
Dzumhur	2012	Croatia	Caucasian	PB	24	22	2	0	120	98	22		0.269
Cai	2013	China	Asian	HB	936	936	0	0	978	978	0	0	\
Jiang	2013	China	Asian	HB	822	822	0	0	835	835	0	0	0.069
Singh	2013	India	Asian	PB	125	83	41	1	130	101	29		0.152
Singh	2014	India	Asian	PB	378	287	89	2	320	247	73		0.021
Buraczynska	2016	Poland	Caucasian	PB	1090	987	98	5	716	658	57	1	0.839
Doody	2017	India	Asian	PB	199	153	40	6	203	147	48	8	0.118
Zaharijova	2017	Bulgaria	Caucasian	PB	113	105	8	0	28	26	2		0.845
Gond	2018	India	Asian	PB	642	476	158	8	260	211	47	2	0.725
Aioanei	2019	Romania	Caucasian	PB	198	150	39	9	200	143	47	10	0.026
Degimenci	2019	Turkey	Caucasian	HB	100	96	4	0	100	96	4		0.838
Khaqanizadeh	2020	Iran	Asian	HB	100	81	19	0	100	88	12		0.523
Kim	2008	Korea	Asian	HB	225	225	0	0	153	153	0	0	\
Buraczynska	2009	Poland	Caucasian	PB	864	800	62	6	420	394	26		0.513
Bagarolli	2010	Brazil	Caucasian	PB	211	208	3	0	200	189	11		0.689
Cai	2013	China	Asian	HB	936	936	0	0	978	978	0	0	\
Jiang	2013	China	Asian	PB	822	822	0	0	835	835	0	0	\
Singh	2013	India	Asian	PB	125	74	45	6	130	109	19	2	0.285
Singh	2014	India	Asian	PB	378	302	73	3	320	262	54	4	0.524
Buraczynska	2016	Poland	Caucasian	PB	1090	995	92	3	716	657	59		0.040
Zaharijova	2017	Bulgaria	Caucasian	PB	110	99	11	0	26	24	2		0.838
Gond	2018	India	Asian	PB	652	481	167	4	260	217	41	2	0.967

(Continues)
Surname	Year	Country	Ethnicity	Source of controls	Cases	Controls	HWE
Aioanei	2019	Romania	Caucasian	PB	198	200	<0.001
Degirmenci	2019	Turkey	Caucasian	HB	100	100	0.838
Khaghanzadeh	2020	Iran	Asian	HB	100	100	0.677

rs11536889

Source of controls	Total GG	GC	CC	Total GG	GC	CC	HWE
Aioanei	198	126	50	22	200	152	35
Degirmenci	100	95	5	0	100	96	4
Khaghanzadeh	100	90	10	0	100	92	8

rs1927911

Source of controls	Total GG	GA	AA	Total GG	GA	AA	HWE	
Cai	936	675	215	46	978	605	284	
Jiang	822	616	180	26	835	527	247	
Huang	545	306	204	35	550	290	232	
Peng	3387	2014	1206	167	3385	1967	1203	215

Abbreviations: HB, Hospital based; HWE: Hardy–Weinberg equilibrium; PB, Population based.

*The number of the combined AG and GG genotypes, and these studies only involved in the analysis under dominant model.
TABLE 2

Meta-analysis of the association between TLR4 polymorphisms and T2DM risk

Variables	rs4986790	rs4986791	rs11536889	rs1927911
N	Overall 19,715/9993	Overall 13,581/4438	Chinese 4,5690/5748	Overall 5,4599/4581
Homozygous	N/A	GG vs. AA	CC vs. GG	AA vs. GG
OR (95% CI)	1.09 (0.65–1.82)	2.00 (1.17–3.41)	0.62 (0.40–0.96)	0.89 (0.59–1.36)
p	0.545	0.438	0.001	0.001
Heterozygous	N/A	AG vs. AA	GC vs. GG	GA vs. GG
OR (95% CI)	1.10 (0.95–1.27)	1.38 (1.02–1.86)	0.77 (0.61–0.98)	0.96 (0.72–1.28)
p	0.186	0.007	<0.001	<0.001
Recessive	N/A	GG vs. AG/AA	CC vs. GC/GG	AA vs. GA/GG
OR (95% CI)	1.17 (0.68–2.02)	1.47 (0.73–2.97)	0.81 (0.69–0.96)	1.05 (0.93–1.18)
p	0.873	0.440	0.183	0.455
Dominant	N/A	AG/GG vs. AA	GC/CC vs. GG	GA/AA vs. GG
OR (95% CI)	1.01 (0.95–1.07)	1.01 (0.92–1.11)	0.95 (0.90–1.10)	1.00 (0.93–1.18)
p	1.00	0.984	0.426	<0.001
Allele	N/A	G vs. A	C vs. G	A vs. G
OR (95% CI)	1.09 (0.96–1.25)	1.40 (1.07–1.82)	0.76 (0.59–0.97)	0.95 (0.77–1.19)
p	0.064	0.010	<0.001	<0.001

Abbreviations: CI, confidence interval; OR, odds ratio.

Bold values are statistically significant, if the 95% CI excluded 1 or **p** < 0.05.
3.3 Meta-analysis of rs4986791 polymorphism and T2DM risk

About 13 studies involving 5811 cases and 4438 controls were included to evaluate the association between TLR4 rs4986791 polymorphism and T2DM risk. Six studies focused on Caucasian populations and seven on Asian populations. The pooled analysis indicated that rs4986791 A > G was related to increased T2DM risk in homozygous, heterozygous, and allelic model (GG vs. AA, OR = 2.00, 95% CI = 1.17–3.41, p = 0.011; AG vs. AA, OR = 1.38, 95% CI = 1.02–1.86, p = 0.035; G vs. A, OR = 1.40, 95% CI = 1.07–1.82, p = 0.013). In a subgroup analysis by ethnicity, a significantly increased association with T2DM risk was found in Caucasian (GG vs. AA, OR = 2.42, 95% CI = 1.23–4.75, p = 0.010) and also in Asian (GG vs. AA, OR = 1.76, 95% CI = 1.11–2.80, p = 0.017; G vs. A, OR = 1.63, 95% CI = 1.04–2.55, p = 0.034) (Table 2 and Figure 2b). No significant publication bias was found in the current meta-analysis by the Egger’s test (GG vs. AA, p = 0.743; AG vs. AA, p = 0.772; GG vs. AG/AA, p = 0.495; AG/GG vs. AA, p = 0.131; G vs. A, p = 0.614, Figure 3b).

3.4 Meta-analysis of rs11536889 polymorphism and T2DM risk

Four studies involving 5690 cases and 5748 controls were included to evaluate the association between TLR4 rs11536889 polymorphism and T2DM risk. These four studies all focused on Chinese populations. A significantly decreased association was observed between rs11536889 G > C and T2DM risk.
risk in the Chinese populations (CC vs. GG, OR = 0.62, 95% CI = 0.40–0.96, p = 0.031; GC vs. GG, OR = 0.77, 95% CI = 0.61–0.98, p = 0.034; CC vs. GC/GG, OR = 0.81, 95% CI = 0.69–0.96, p = 0.013; C vs. G, OR = 0.76, 95% CI = 0.59–0.97, p = 0.027) (Table 2 and Figure 2c). Egger’s test indicated no sign of any publication bias (CC vs. GG, p = 0.701; GC vs. GG, p = 0.139; CC vs. GC/GG, p = 0.763; GC/CC vs. GG, p = 0.152; C vs. G, p = 0.327, Figure 3c).

3.5 | Meta-analysis of rs1927911 polymorphism and T2DM risk

Five studies involving 4599 cases and 4581 controls were included to evaluate the association between TLR4 rs1927911 polymorphism and T2DM risk. All the studies focused on Asian populations, including two on Indian populations and three on Chinese populations. No significant association was found between rs1927911 G > A polymorphism and T2DM risk in any genetic models. In the further subgroup analysis by ethnicity, we also did not detect any significant relationship in Indian and Chinese populations (Table 2 and Figure 2d). Meanwhile, no obvious publication bias could be found (AA vs. GG, p = 0.343; GA vs. GG, p = 0.742; AA vs. GA/GG, p = 0.117; GA/AA vs. GG, p = 0.725; A vs. G, p = 0.461, Figure 3d).

4 | DISCUSSION

TLR4 gene, encoding TLR4 protein, has been investigated as a key role in the innate immune response in the metabolic syndrome and induction of insulin resistance. TLR4 not only recognizes the LPS, but also interacts with endogenous ligands, oxidized LDL, HSP 60 and 70, fibrinogen and fibronectin (Peterson et al., 2014; Rallabhandi et al., 2006). Therefore, TLR4 is increasingly being studied for its association with inflammatory diseases, including T2DM. Polymorphisms in TLR4 gene are potential factors in the change in function of its transcription.

Numbers of studies have been carried out to evaluate the association between TLR4 polymorphisms and T2DM risk, and two meta-analyses focused on only two polymorphisms (rs4986790 and rs4986791) before 2015 (Belforte et al., 2013; Yin et al., 2015). However, the results are still inconsistent even in these two studies. Using rs4986790 polymorphism as an example, Yin et al. found no significant association between this polymorphism and T2DM risk (Yin et al., 2015). However, this polymorphism was found to be associated with decreased metabolic disorders risk including T2DM and metabolic syndrome from Belforte et al (Belforte et al., 2013; Rallabhandi et al., 2006). Therefore, it is necessary to conduct this updated meta-analysis.
To the best of our knowledge, this is the first comprehensive meta-analysis to investigate the associations between the TLR4 polymorphisms (rs4986790, rs4986791, rs11536889, and rs1927911) and T2DM risk. We observed some new findings. For rs4986790 polymorphism, there was different results in the previous meta-analysis, and neither did the further subgroup analysis in Asian. However, it was observed to associate to an increased risk in Asian in our study (Figure 2a). The discrepancy may be due to the different sample sizes. Our updated study was the largest and latest including another seven recent studies. For rs4986791 polymorphism, only one previous meta-analysis included eight publications with 4231 cases and 3224 controls showed no association and not do the further subgroup analysis by ethnicity (Yin et al., 2015). In our study, after further adding six more articles with 2250 cases and 1402 controls, we came to a different conclusion that rs4986791 was related to increased T2DM risk under homozygous, heterozygous, and allelic model. Similarly, subgroup analyses indicated that rs4986791 was also related to increased T2DM risk in Caucasian under homozygous model, and in Asian under heterozygous and allelic model. The rs4986790 and rs4986791 have been widely studied in T2DM. However, these two polymorphisms are not polymorphic in Chinese populations, and very low in Asian, but are common among Caucasian ancestry (Yin et al., 2015). This different genetic background may lead to the different results in subgroup analyses. For rs11536889 and rs1927911 polymorphisms, no one has ever performed meta-analysis to drive more precise findings like this before. Huang et al. found neither rs11536889 and rs1927911 related to the risk of T2DM in a case-control study (Huang et al., 2015). However, rs11536889 polymorphism was observed to a significantly decreased in T2DM cases in Jiang’s study (Jiang et al., 2013), and rs1927911 polymorphism was also showed to decrease the risk of T2DM in a study from Xu et al. (Xu et al., 2015). Therefore, it is necessary to perform a meta-analysis to assess the association of the two polymorphism and T2DM. Our findings indicated that rs1927911 polymorphism seem not to be associated with T2DM, but rs11536889 polymorphism associated with decreased risk of T2DM.

Although we included the latest studies for TLR4 polymorphism and T2DM risk, several limitations in this meta-analysis should be addressed. First, only four studies for rs11536889 and five for rs1927911 included in the evaluating of these association of T2DM risk. Second, the sample size of most of these studies are relatively small, especially in the subgroup analysis. Third, we just searched the literatures from MEDLINE and EMBASE database, which may have missed studies for other languages. Forth, lack of the original information, such as age, sex, BMI, smoking, and drinking, limited the further adjusted analyses of these potentially factors.

In conclusion, our meta-analysis provides evidence that rs4986790 polymorphism was associated with an increased risk of T2DM in Asian. Rs4986791 polymorphism was related to an increased risk of T2DM both in Asian and Caucasian. Rs11536889 polymorphism may have a protective effect on T2DM in Chinese populations, whereas rs1927911 may have no impact. Further studies involving different ethnicities and large sample size are warranted to validate our findings.

CONFLICT OF INTEREST

The authors declare no conflicts of interest.

AUTHOR CONTRIBUTIONS

Conceived and designed the study: Renxian Liang. Selected the studies and collected the data: Jinzhuo Fan and Renxian Liang. Analyzed the data: Jinzhuo Fan and Renxian Liang. Drafted the paper: Renxian Liang. Revised the draft paper: Jinzhuo Fan and Renxian Liang.

ORCID

Renxian Liang https://orcid.org/0000-0003-3988-6008

REFERENCES

Aioanei, C. S., Ilies, R. F., Bala, C., Petrisor, M. F., Porojan, M. D., Popp, R. A., & Catana, A. (2019). The role of adiponectin and toll-like receptor 4 gene polymorphisms on non-proliferative retinopathy in Type 2 diabetes mellitus patients. A case-control study in Romanian Caucasians patients. Acta Endocrinologica (Bucharest), 15, 32–38.

Akira, S., Uematsu, S., & Takeuchi, O. (2006). Pathogen recognition and innate immunity. Cell, 124, 783–801.

Armant, M. A., & Fenton, M. J. (2002). Toll-like receptors: A family of pattern-recognition receptors in mammals. Genome Biology, 3, REVIEWS3011.

Bagarolli, R. A., Saad, M. J., & Saad, S. T. (2010). Toll-like receptor 4 and inducible nitric oxide synthase gene polymorphisms are associated with Type 2 diabetes. Journal of Diabetes and Its Complications, 24, 192–198.

Beijk, M. A., Boekholdt, S. M., Rittersma, S. Z., Pons, D., Zwinderman, A. H., Doevendans, P. A., … de Winter, R. J. (2010). Toll-like receptor 4 gene polymorphisms show no association with the risk of clinical or angiographic restenosis after percutaneous coronary intervention. Pharmaco genetics and Genomics, 20, 544–552.

Belforte, F. S., Coluccio Leskow, F., Poskus, E., & Penas Steinhardt, A. (2013). Toll-like receptor 4 D299G polymorphism in metabolic disorders: A meta-analysis. Molecular Biology Reports, 40, 3015–3020.

Buraczynska, M., Baranowicz-Gaszczyk, I., Tarach, J., & Ksiazek, A. (2009). Toll-like receptor 4 gene polymorphism and early onset of diabetic retinopathy in patients with type 2 diabetes. Human Immunology, 70, 121–124.

Buraczynska, M., Żukowski, P., Ksiazek, K., Wacinski, P., & Dragan, M. (2016). The effect of Toll-like receptor 4 gene polymorphism...
on vascular complications in type 2 diabetes patients. *Diabetes Research and Clinical Practice, 116*, 7–13.

Cai, H., Cai, J., & Tao, G. (2013). Association of toll-like receptor 4 polymorphisms with type 2 diabetes mellitus. *APMIS, 121*, 605–611.

Chen, L., Magliano, D. J., & Zimmet, P. Z. (2011). The worldwide epidemiology of type 2 diabetes mellitus—present and future perspectives. *Nature Reviews Endocrinology, 8*, 228–236.

Cho, N. H., Shaw, J. E., Karuranga, S., Huang, Y., Da Rocha Fernandes, J. D., Ohrooge, A. W., & Malanda, B. (2018). IDF diabetes atlas: Global estimates of diabetes prevalence for 2017 and projections for 2045. *Diabetes Research and Clinical Practice, 138*, 271–281.

Degirmenci, İ., Özbayer, C., Kebapci, M. N., Kurt, H., Colak, E., & Gunes, H. V. (2019). Common variants of genes encoding TLR4 and TLR4 pathway members TIRAP and IRAK1 are effective on MCP1, IL6, IL1beta, and TNFalpha levels in type 2 diabetes and insulin resistance. *Inflammation Research, 68*, 801–814.

Dersimonian, R., & Laird, N. (1986). Meta-analysis in clinical trials. *Controlled Clinical Trials, 7*, 177–188.

Doody, N. E., Dowejko, M. M., Akam, E. C., Cox, N. J., Bhatti, J. S., Singh, P., & Mastana, S. S. (2017). The role of TLR4, TNF-alpha and IL-1beta in Type 2 diabetes mellitus development within a North Indian population. *Annals of Human Genetics, 81*, 141–146.

Dzumhr, A., Zibar, L., Wagner, J., Simundic, T., Dembic, Z., & Barbic, J. (2012). Association studies of gene polymorphisms in toll-like receptors 2 and 4 in Croatian patients with acute myocardial infarction. *Scandinavian Journal of Immunology, 75*, 517–523.

Gaulton, K. J. (2017). Mechanisms of Type 2 diabetes risk loci. *Current Diabetes Reports, 17*, 72.

Gond, D. P., Singh, S., & Agrawal, N. K. (2018). Testing an association between TLR4 and CXCR1 gene polymorphisms with susceptibility to urinary tract infection in type 2 diabetes in north Indian population. *Gene, 641*, 196–202.

Hernesniemi, J., Lehtimaki, T., Rontu, R., Islam, M. S., Eklund, C., Mikkelsson, J., … Karhunen, P. J. (2006). Toll-like receptor 4 polymorphism is associated with coronary stenosis but not with the occurrence of acute or old myocardial infarctions. *Scandinavian Journal of Clinical and Laboratory Investigation, 66*, 667–675.

Huang, W. H., Nie, L. H., Zhang, L. J., Jing, L. P., Dong, F., Wang, M., … Jing, C. X. (2015). Association of TLR2 and TLR4 non-sense single nucleotide polymorphisms with type 2 diabetes risk in a southern Chinese population: A case-control study. *Genetics and Molecular Research, 14*, 8694–8705.

Illig, T., Bongardt, F., Schopfer, A., Holle, R., Muller, S., Rathmann, W., … Group, K. S. (2003). The endotoxin receptor TLR4 polymorphism is not associated with diabetes or components of the metabolic syndrome. *Diabetes, 52*, 2861–2864.

Jiang, Z. S., Wang, S. X., Jia, H. X., Wang, J., & Liu, Y. T. (2013). Association of toll-like receptor 4 polymorphisms with type 2 diabetes mellitus. *Inflammation, 36*, 251–257.

Kaprio, J., Tuomilehto, J., Koskenuo, M., Romanov, K., Reunanen, A., Eriksson, J., … Kesaniemi, Y. A. (1992). Concordance for type 1 (insulin-dependent) and type 2 (non-insulin-dependent) diabetes mellitus in a population-based cohort of twins in Finland. *Diabetologia, 35*, 1060–1067.

Khaghanzadeh, N., Naderi, N., Pournasrollah, N., Farahbakhsh, E., Kheirandish, M., & Samiei, A. (2020). TLR4 polymorphisms (896A>G and 1196C>T) affect the predisposition to diabetic nephropathy in Type 2 diabetes mellitus. *Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy, 13*, 1015–1021.

Kim, Y. S., Hwang, Y. J., Kim, S. Y., Yang, S. M., Lee, K. Y., & Park, Ie, B. (2008). Rarity of TLR4 Asp299Gly and Thr399Ile polymorphisms in the Korean population. *Yonsei Medical Journal, 49*, 58–62.

Kolek, M. J., Carlquist, J. F., Muhlestein, J. B., Whiting, B. M., Horne, B. D., Bair, T. L., & Anderson, J. L. (2004). Toll-like receptor 4 gene Asp299Gly polymorphism is associated with reductions in vascular inflammation, angiographic coronary artery disease, and clinical diabetes. *American Heart Journal, 148*, 1034–1040.

Mantel, N., & Haenszel, W. (1959). Statistical aspects of the analysis of data from retrospective studies of disease. *Journal of the National Cancer Institute, 22*, 719–748.

Peng, D., Jiang, F., Zhang, R., Tang, S., Chen, M., Yan, J., … Jia, W. (2015). Association of Toll-like Receptor 4 Gene polymorphisms with susceptibility to type 2 diabetes mellitus in the Chinese population. *Journal of Diabetes, 7*, 485–492.

Peterson, J. M., Mart, R., & Bond, C. E. (2014). Effect of obesity and exercise on the expression of the novel myokines, Myonectin and Fibronectin type III domain containing 5. *PeerJ, 2*, e605.

Pickup, J. C., & Crook, M. A. (1998). Is type II diabetes mellitus a disease of the innate immune system? *Diabetologia, 41*, 1241–1248.

Rallabandi, P., Bell, J., Boukhvalova, M. S., Medvedev, A., Lorenz, E., Arditi, M., … Vogel, S. N. (2006). Analysis of TLR4 polymorphic variants: New insights into TLR4/MD-2/C1D4 stoichiometry, structure, and signaling. *The Journal of Immunology, 177*, 322–332.

Singh, K., Kant, S., Singh, V. K., Agrawal, N. K., Gupta, S. K., & Singh, K. (2014). Toll-like receptor 4 polymorphisms and their haplotypes modulate the risk of developing diabetic retinopathy in type 2 diabetes patients. *Molecular Vision, 20*, 704–713.

Singh, K., Singh, V. K., Agrawal, N. K., Gupta, S. K., & Singh, K. (2013). Association of Toll-like receptor 4 polymorphisms with diabetic foot ulcers and application of artificial neural network in DFU risk assessment in type 2 diabetes patients. *BioMed Research International, 2013*, 318686.

Xu, Y., Jiang, Z., Huang, J., Meng, Q., Coh, P., & Tao, L. (2015). The association between toll-like receptor 4 polymorphisms and diabetic retinopathy in Chinese patients with type 2 diabetes. *British Journal of Ophthalmology, 99*, 1301–1305.

Yin, Y. W., Wang, Q., Sun, Q. Q., Hu, A. M., & Liu, H. L. (2015). Toll-like receptor 4 gene Asp299Gly and Thr399Ile polymorphisms in type 2 diabetes mellitus: A meta-analysis of 15,059 subjects. *Diabetes Research and Clinical Practice, 107*, 338–347.

Zaharieva, E. T., Kamenov, Z. A., & Savov, A. S. (2017). TLR4 polymorphisms seem not to be associated with prediabetes and type 2 diabetes but predispose to diabetic retinopathy; TLR4 polymorphisms in glucose continuum. *Endocrine Regulations, 51*, 137–144.

Zaremba, K. A., & Godowski, P. J. (2002). Tissue expression of human Toll-like receptors 2 and 4 in Croatian patients with acute myocardial infarction. *Annals of Human Genetics, 81*, 1241–1248.

How to cite this article: Fan J, Liang R. Quantitative assessment of TLR4 gene polymorphisms and T2DM risk: A meta-analysis. *Mol Genet Genomic Med*. 2020;8:e1466. https://doi.org/10.1002/mgg3.1466