Detecting population stratification using related individuals

Anthony L. Hinrichs
Washington University School of Medicine in St. Louis

Robert Culverhouse
Washington University School of Medicine in St. Louis

Carol H. Jin
Washington University School of Medicine in St. Louis

Brian K. Suarez
Washington University School of Medicine in St. Louis

Follow this and additional works at: https://digitalcommons.wustl.edu/open_access_pubs

Recommended Citation

Hinrichs, Anthony L.; Culverhouse, Robert; Jin, Carol H.; and Suarez, Brian K., "Detecting population stratification using related individuals." BMC Proceedings. 3,Suppl 7. S106. (2009).
https://digitalcommons.wustl.edu/open_access_pubs/288

This Open Access Publication is brought to you for free and open access by Digital Commons@Becker. It has been accepted for inclusion in Open Access Publications by an authorized administrator of Digital Commons@Becker. For more information, please contact vanam@wustl.edu.
Detecting population stratification using related individuals
Anthony L Hinrichs*1, Robert Culverhouse2, Carol H Jin1 and Brian K Suarez1,3

Addresses: 1Department of Psychiatry, Washington University School of Medicine, 660 South Euclid, Campus Box 8134, St. Louis, Missouri 63110 USA, 2Department of Medicine, Washington University School of Medicine, 660 South Euclid, St. Louis, Missouri 63110 USA and 3Department of Genetics, Washington University School of Medicine, 660 South Euclid, St. Louis, Missouri 63110 USA

E-mail: Anthony L Hinrichs* - tony@silver.wustl.edu; Robert Culverhouse - rculverh@im.wustl.edu; Carol H Jin - carolj@nackles.wustl.edu; Brian K Suarez - bks@themfs.wustl.edu

*Corresponding author

from Genetic Analysis Workshop 16
St Louis, MO, USA 17-20 September 2009

Published: 15 December 2009
BMC Proceedings 2009, 3(Suppl 7):S106 doi: 10.1186/1753-6561-3-S7-S106

This article is available from: http://www.biomedcentral.com/1753-6561/3/S7/S106

© 2009 Hinrichs et al; licensee BioMed Central Ltd.

This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract
Although identification of cryptic population stratification is necessary for case/control association analyses, it is also vital for linkage analyses and family-based association tests when founder genotypes are missing. However, including related individuals in an analysis such as EIGENSTRAT can result in bias; using only founders or one individual per pedigree results in loss of data and inaccurate estimates of stratification. We examine a generalization of principal-component analyses to allow for the inclusion of related individuals by down-weighting the significance of individual comparisons.

Background
At the heart of all genetic case/control association analyses lies estimation of allele frequencies. For linkage analyses and pedigree-based association analyses, allele frequency estimates are used when a parental genotype is missing. Because cryptic population stratification results in misestimates of allele frequency, this can lead to false positives for any type of analysis with missing founder genotypes [1,2]. Current methods for identifying and controlling population stratification rely on unrelated individuals. When they are applied to pedigree data, only the founders are analyzed. This suggests that the situation in which detection of population stratification is most needed is the least tractable with current methods.

Several methods for detecting population stratification exist. Two of the most common methods are implemented in STRUCTURE and EIGENSTRAT [3,4]. The program STRUCTURE uses a Markov-chain Monte Carlo (MCMC) method to identify natural population clusters based on multilocus genotypes. It provides probability of membership for each sample that provides a very natural interpretation. However, it is too computationally intensive to be used on genome-wide association study (GWAS) data involving hundreds of thousands or millions of markers [4]. To handle this volume of data, a more computationally simple method is required. The program EIGENSTRAT uses a very fast linear algorithm to identify population structure. In particular, it
performs a principal-component analysis (PCA) on a matrix X, an $M \times N$ matrix (where M is the number of markers and N is the number of individuals). An eigenvalue decomposition is then performed on the $N \times N$ correlation matrix and population membership is inferred from the eigenvectors. One determines how many natural ethnicities are present by examining the sizes of the eigenvalues using a graphical scree analysis or a numeric approach (such as the recently developed “acceleration factor” [5]).

However, the nature of the eigenvalue decomposition introduces problems when individuals are related. Because biologically related individuals are already genetically correlated, this can bias the decomposition, especially in the presence of a large number of related individuals (such as in large pedigrees). Using only unrelated individuals limits the analysis to either the founders or a sampling of unrelated individuals. Although the founders provide all of the genetic variation present in the subsequent generations and therefore represent all available information, using randomly sampled unrelated individuals results in a loss of information.

Methods

To allow for the analysis of related individuals, we will apply a recently developed method of linear dimensionality reduction [6]. This method can be considered a generalization of PCA, or “weighted” PCA. In particular, consider a re-formulation of PCA as linear projection from a higher dimensional to a lower dimension space in which we maximize the sum of projected pairwise squared distances:

$$\sum_{i \neq j} (\text{dist}_{i,j})^2.$$

If we instead consider a system of weights w, we can instead maximize

$$\sum_{i \neq j} w_{i,j}(\text{dist}_{i,j})^2,$$

providing a weighted version of PCA. In particular, we define the Laplacian to be an $N \times N$ matrix such that

$$L_{i,j} = \begin{cases} \sum_{j=1}^{N} w_{i,j} & i = j \\ -w_{i,j} & i \neq j \end{cases}.$$

One then performs an eigenvalue decomposition on the matrix

$$XLX^T.$$

The use of the Laplacian causes an important change in the process. The PCA is normally computed on the matrix

$$X^TX,$$

an $N \times N$ symmetric matrix of the pairwise genetic covariance between subjects. However, since the Laplacian is an $N \times N$ matrix placed within the covariance calculation, we then produce an $M \times M$ symmetric matrix of the weighted pairwise covariance between markers. With dense SNP genotyping, we typically see more markers than individuals by several orders of magnitude, and this computation would be nearly intractable. However, since the Laplacian matrix is positive semi-definite, we can compute a Cholesky decomposition such that

$$U^T U = L.$$

And thus,

$$XLX^T = XU^T U X^T = (UX^T)^T(UX^T).$$

Let

$$Y = UX^T.$$

We then see that

$$XLX^T = Y^TY.$$

But then we can compute the eigenvalue decomposition of

$$YY^T = UX^T XU^T.$$

This is much more manageable. Further, the eigenvalues for these two are the same and the eigenvectors of the original formulation are simply the product of Y^T and the second set of eigenvectors (followed by normalization) [7].

For our analyses, we use a weight based on work by McPeek and colleagues [8]. In particular, they demonstrate the use of the kinship matrix to derive the best linear unbiased estimate (BLUE) of allele frequencies in samples of related individuals.

For N individuals, let K be the $N \times N$ kinship matrix and let 1 denote a column vector of length N of 1 values. Then the vector

$$W = (1^T K^{-1} 1)^{-1} 1^T K^{-1}.$$
provides the best linear weights to compute allele frequencies for related individuals. In a fully typed pedigree, each founder is given a weight “1” and all other individuals are given weight “0.” In any pedigree with a single typed individual, that individual is given weight “1.” In the simple case of a nuclear pedigree with S children without genotyped parents, each child is given weight 2/(S+1). Note that as the number of typed children increase, the sum of the weights tends toward 2 - precisely the number of founders of the pedigree. This generalizes to any sized pedigree; namely, the total of the weights cannot be larger than the number of founders, since the founders were the only source of genetic material in the pedigree.

For pairwise weights between two individuals, we use the product of the individual weights. In particular, we derive L from the weight matrix

\[W^T W. \]

We test this method compared with the standard EIGENSTRAT method using the Framingham Heart Study data. After cleaning, the Framingham Heart Study data consists of 1180 pedigrees, including 418 singletons. The remaining 762 pedigrees have an average of 8.3 genotyped individuals, including 9 pedigrees with more than 50 genotyped individuals. The best standard of comparison would be an analysis using all founder genotypes, but because not all founder genotypes are available, we apply an algorithm to identify the maximal set of unrelated individuals. We consider five data sets for PCA: MaxUnrel, maximum number of unrelateds; Singletons, individuals without genotyped relatives; One per, one individual per pedigree chosen at random; Full, all individuals without weighting; and Weighted, all individuals with weighted PCA as described above. Table 1 reports number of individuals and scaled values of the first three principal components (scaled so PC1 = 1.0). Note that for the two smallest samples, there is evidence of two separate axes of stratification, but this disappears for the larger samples.

Figure 1 shows a plot of the first PC for MaxUnrel compared to the other four samples after scaling to mean zero and SD 1. Only individuals used directly are plotted. Note that the smallest sample (Singletons) shows a clear bias compared with MaxUnrel. We also see handfuls of outliers for all samples, but the weighted method stays closest to MaxUnrel.

Figure 2 shows the mean number of individuals used for each analysis compared with number of genotyped individuals. The novel weighting method shows a clear advantage, especially when pedigrees are very large. This is still substantially less than the “Possible” (the total number of founders, typed or untyped), but much better

Table 1: Number of effective individuals for five samples and scaled principal components

Data set	Individuals	PC1	PC2	PC3
MaxUnrel	2014	1.0000b	0.5113	0.405
Singletons	418	1.0000	0.7045	0.4808
OnePer	1180	1.0000	0.7074	0.4475
Full	6757	1.0000	0.4002	0.3717
Weighted	2898.7	1.0000	0.4147	0.3652

MaxUnrel, maximum number of unrelateds; Singletons, individuals without genotyped relatives; One per, one individual per pedigree chosen at random; Full, all individuals without weighting; and Weighted, all individuals with weighted PCA.

bBold components were found significant by the acceleration method.
than using only the typed founders or finding a maximal set of unrelated individuals.

Discussion
We propose the use of weighted PCA implemented through the presence of a Laplacian matrix to allow detection of stratification in related individuals. Our results indicate the methodology developed by McPeek and colleagues to compute allele frequencies in related individuals can be extended to detection of ethnic stratification. This method uses all available genotypic data, with an effective sample size that approaches the number of founders in the pedigrees. This exceeds other methods of selecting unrelated individuals. Furthermore, we see evidence of bias and outliers when using small subsets of individuals. Using too few individuals for stratification may also artificially inflate evidence of stratification. It does appear that the presence of related individuals in a very large sample seems to have little effect on the stratification analysis, but this might not hold in other circumstances. Furthermore, this method has only been tested on a European American sample with a single principal component (probably identifying a continuous population spread such as northern to southern European). Because the Framingham data does not have any obvious discrete clusters, this method still must be tested in a more diverse population.

List of abbreviations used
GWAS: Genome-wide association study; MCMC: Markov-chain Monte Carlo; PCA: Principal component analysis.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
ALH developed the method and performed analyses. RC and BKS assisted in design and methodology. CHJ assisted in statistics and data management. All authors read and approved the final manuscript.

Acknowledgements
This article has been published as part of BMC Proceedings Volume 3 Supplement 7, 2009: Genetic Analysis Workshop 16. The full contents of the supplement are available online at http://www.biomedcentral.com/1753-6561/3?issue=S7.

References
1. Curtis D and Sham PC: Population stratification can cause false positive linkage results if founders are untyped. Ann Hum Genet 1996, 60:261–263.
2. Hinds DA, Stokowski RP, Patil N, Konvicka K, Kershrenobich D, Cox DR and Ballinger DG: Matching strategies for genetic association studies in structured populations. Am J Hum Genet 2004, 74:317–325.
3. Pritchard JK, Stephens M and Donnelly P: Inference of population structure using multilocus genotype data. Genetics 2000, 155:945–959.
4. Price AL, Patterson NJ, Plenge RM, Weinblatt ME, Shadick NA and Reich D: Principal components analysis corrects for stratification in genome-wide association studies. Nat Genet 2006, 38:904–909.
5. Raiche G, Riopel M and Blais JG: Non graphical solutions for the Cattell’s scree test. International Annual Meeting of the Psychometric Society, Montreal 2006 http://www.er.uqam.ca/nobel/r17165/recherchécommunications/.
6. Koren Y and Carmel L: Robust linear dimensionality reduction. IEEE Trans Vis Comput Graph 2004, 10:459–470.
7. Chatfield C and Collins AJ: Introduction to Multivariate Analysis. London, Chapman & Hall; 1980.
8. McPeak MS, Wu X and Ober C: Best linear unbiased allele-frequency estimation in complex pedigrees. Biometrics 2004, 60:359–367.

Publish with BioMed Central and every scientist can read your work free of charge
"BioMed Central will be the most significant development for disseminating the results of biomedical research in our lifetime."
Sir Paul Nurse, Cancer Research UK
Your research papers will be:
• available free of charge to the entire biomedical community
• peer reviewed and published immediately upon acceptance
• cited in PubMed and archived on PubMed Central
• yours — you keep the copyright

Submit your manuscript here:
http://www.biomedcentral.com/info/publishing_adv.asp