Spatiotemporal variation of shallow water fish assemblages along the coastline of Çanakkale, Turkey

Aytac Altin1, Ozcan Ozen2, Hakan Ayyildiz2

1Gökçeada School of Applied Sciences, Department of Fisheries Technology, Çanakkale Onsekiz Mart University, Çanakkale 17760, Turkey
2Faculty of Marine Sciences and Technology, Çanakkale Onsekiz Mart University, Çanakkale 17100, Turkey

ARTICLE INFO

Keywords:
Fish species richness
Shallow water
Çanakkale Strait
North Aegean Sea
Sea of Marmara
Seasonal variation
Biogeographical differences

ABSTRACT

Objective: To determine the shallow water fish species richness of Çanakkale and to analyse the spatiotemporal variations of these fish assemblages.

Methods: Samplings were carried out monthly with a beach seine between January and December 2007. Samples were collected from 6 stations (No. 1, 2, 3, 4, 5, 6). Stations 1 and 4 located in the Çanakkale Strait, 2 and 5 in North Aegean Sea, 3 and 6 in Sea of Marmara.

Results: A total of 112 fish species were sampled and the two most common species were Atherina boyeri and Pomatoschistus marmoratus. A total of 93 species were sampled in the Çanakkale Strait, 85 in the Aegean Sea, and 77 in the Sea of Marmara. Shannon diversity index was the highest in the Aegean Sea. Dominant species were caused significant differences of both regional and seasonal fish assemblage fluctuations. Species richness and abundances decreased significantly in winter. Although more species were caught at night and a greater abundance of fishes was obtained during the day, no significant differences were found between day and night in terms of species richness and abundance.

Conclusions: The results supported the biogeographical differences between the Aegean Sea, the Çanakkale Strait and the Sea of Marmara in terms of the shallow water fish community. The inventory in the current study can serve as baseline data prior to management strategies to ensure sustainable conservation of the area.

1. Introduction

The coastline of Çanakkale consists of 3 different regions: the North Aegean Sea, the Çanakkale Strait, and the Sea of Marmara. The Aegean Sea is connected directly to the Sea of Marmara through the Çanakkale Strait and thus connected indirectly to the Black Sea via the Istanbul Strait[1]. The straits are a channel for low salinity and relatively cold waters originating Black Sea to flow into the Aegean Sea and also, are conduit for high salinity water and relatively warm waters moving from the Aegean Sea to the Sea of Marmara. These synchronized variations caused opposite contributions to the density by temperature and salinity. In addition, on the annual basis, the Black Sea influx is about 4 times greater than the nutrient outflow by temperature and salinity. In addition, on the annual basis, the Black Sea influx is about 4 times greater than the nutrient outflow.

Shallow waters are proper as shelter and foraging sites for juvenile fish[6]. Many fish species are using the shallow waters in the early part of their lives. Additionally, these species settle in shallow waters and undertake ontogenetic migrations towards deeper waters as they grow[7]. These areas are highly diverse ecosystems, and thus ideally suited for advancing our understanding of diversity patterns[8]. Information of the fish species richness of the shallow waters in the North Aegean Sea and the Sea of Marmara, where fisheries source are heavily exploited, is particularly scarce. Few studies were conducted focused on fish species richness in the shallow waters of the South Aegean Sea[9,10] and north entrance of the Istanbul Strait[11]. Although, demersal fish richness and distributions have been studied from the deeper waters in the North Aegean Sea[12-
and the Sea of Marmara\[16,17\], no study has been conducted on shallow waters' fish species richness in the North Aegean Sea and the Sea of Marmara. In addition, there is no information on biogeographical differences in the shallow waters between the North Aegean Sea, the Çanakkale Strait and the Sea of Marmara. The aim of this study was twofold: first, to determine the shallow water fish species richness of Çanakkale, and second, to analyse the spatiotemporal variations of these fish assemblages.

2. Materials and methods

2.1. Study area and field sampling

This study was carried out in the shallow waters (0–2 m) of Çanakkale which has 671 km coastline that includes the North Aegean Sea, the Çanakkale Strait and the Sea of Marmara (Figure 1). The Çanakkale Strait which is a part of the Turkish Straits system, is 62 km long with a mean depth of 55 m.

![Figure 1. Sampling stations including the Çanakkale Strait, the North Aegean Sea, and the Sea of Marmara, Turkey.](image)

Samples were collected monthly from 6 stations (No. 1, 2, 3, 4, 5, 6) with a beach seine with a total wing length of 32 m, a height of 2 m and a 2 m long bag with 13 mm stretch mesh size at wing, and 5 mm stretch mesh at bag between January and December 2007 (Figure 1). Stations 1 and 4 located in the Çanakkale Strait, 2 and 5 in the North Aegean Sea, 3 and 6 in the Sea of Marmara. Beach seine operations were carried out according to Able et al.[18] and Wilber et al.[19]. The hauls were made parallel to the shore with two times both day and night, randomly and at least 100 m apart from each other. The surface water temperature and salinity were measured with a Hach Lange HQ40d probe at each station during the samplings.

Fish were killed with an overdose of quinaldine and stored in 4% formaldehyde with sea water. Fish identifications have been made according to Whitehead et al.[20] and Mäter et al.[21].

2.2. Data analysis

Species diversity was given by the number of taxa (S) and the Shannon index (H)[22]. The Dominance (D) index and the Simpson (1-D) index were also calculated. In the “season” scaling factor, winter represents December, January and February, spring represents March, April and May, summer represents June, July and August, and autumn represents September, October and November 2007. The effects of the temperature and salinity on stations (1, 2, 3, 4, 5 and 6) and seasons (winter, spring, summer and autumn) were analysed by repeated measures ANOVA with a least significant difference test. The relationship between environmental factors, the seas and species were determined using Pearson correlation coefficient. The analytical determinations were performed in triplicate and differences were considered to be significant for P < 0.05 and P < 0.01. All analytical determinations of the temperature and salinity were performed in triplicate and differences were considered to be significant when P < 0.05[23]. The software used was PASW® Statistics 18 for Windows (IBM SPSS Inc., Chicago, IL).

A analysis of similarities (ANOSIM) and similarity percentage (SIMPER) statistical analyses were used in order to determine similarities of the stations, day-night, and seasonal species richness.

Catch per unit effort (CPUE) was calculated by dividing total catch of a species by the number of the beach seine hauls during the sampling period. Correspondence analysis was executed with seasonal CPUE values of the species. These statistical analyses were performed with PAST version 2.17c package program[24]. Statistical significance level (α) was set at 0.05.

3. Results

A total of 66,381 fish belonging to 112 species were collected during the samplings. The six most common species were Atherina boyeri (Risso, 1810) (A. boyeri), Pomatoschistus marmoratus (Risso, 1810) (P. marmoratus), Liza aurata (Risso, 1810) (L. aurata), Mullus surmuletus (Linnaeus, 1758) (M. surmuletus), Diplodus vulgaris (Geoffroy Saint-Hilaire, 1817) (D. vulgaris) and Diplodus annularis (Linnaeus, 1758) (D. annularis) which comprised 79.83% of the total catch. The remaining species constituted only 20.17% of the total catch. In addition, 10 species were represented by only one individual each (Table 1). A total of 101 species were caught during the night against 98 species during the day. The maximum amount of fish were captured in the day period (CPUE = 170.12). Contrary to this, the Shannon index and the Simpson index reached their highest value in the night. Furthermore, the Dominance index was the highest (0.31) for the day (Table 2). The ANOSIM analyses did not show any significant differences between day and night (R = 0.3333; P > 0.05).

Species No.	Species	N	%	CPUE
1	A. sphinx	2	0.00	0.01
2	A. bacesci	2	0.00	0.01
3	A. kessler	58	0.09	0.23
4	A. latera	6	0.01	0.02
5	A. boyeri	33032	49.76	132.13
6	A. hepsetus	1053	1.59	4.21
7	B. belone	323	0.49	1.29
8	B. boops	2	0.00	0.01
9	B. latum	2	0.00	0.01
10	C. lyra	15	0.02	0.06
11	C. parvus	12	0.02	0.05
12	C. rio	43	0.06	0.17
13	C. lucerna	27	0.04	0.11
14	C. labroas	865	1.30	3.46
15	C. argantus	153	0.23	0.61
16	C. conger	11	0.02	0.04
17	C. julus	3	0.00	0.01
18	C. galerta	1	0.00	0.00
19	D. dentex	11	0.02	0.04

(continued on next page)
Table 1 (continued)

Species No.	Species	N	N%	CPUE
20	Dicentrarchus labrax	185	0.28	0.74
21	D. annularis	1849	2.79	7.40
22	Diplodus puntazzo	52	0.08	0.21
23	Diplodus sargassoglossus	220	0.33	0.88
24	D. vulgaris	1799	2.70	7.16
25	Echidna pucerata	19	0.03	0.08
26	Engraulis encrasicoilis	2	0.00	0.01
27	Etrigla gurnardus	1	0.00	0.00
28	Gaidropsarus mediterraneus	55	0.08	0.22
29	Gasterosteus aculeatus aculeatus	1	0.00	0.00
30	Gobius bucichhi	40	0.06	0.16
31	Gobius cotita	39	0.06	0.16
32	Gobius couchi	2	0.00	0.01
33	Gobius geniporus	145	0.22	0.58
34	Gobius Niger	70	0.11	0.28
35	Gobius pagannellus	213	0.32	0.85
36	Gobius sp.	11	0.02	0.04
37	Hippocampus hippocampus	3	0.00	0.01
38	Labrus meula	1	0.00	0.00
39	Labrus viridis	82	0.12	0.33
40	Lepidogaster lepagonaster	8	0.01	0.03
41	Lepidorthomus whitfieldi	2	0.00	0.01
42	Lipophrys canaeae	1	0.00	0.00
43	Lipophrys trigloides	2	0.00	0.01
44	Lithognathus mormyrus	268	0.55	1.47
45	L. aurata	2786	4.20	11.14
46	Liza ramada	454	0.68	1.82
47	L. saliens	1070	1.61	4.28
48	Liza sp.	26	0.04	0.10
49	Merlangius merlangus	12	0.02	0.05
50	Microchirus ocellatus	4	0.01	0.02
51	Microchirus variegatus	2	0.00	0.01
52	Microlophistus dalmatinus	28	0.04	0.11
53	Millerigobius macrocephalus	1	0.00	0.00
54	Mugil cephalus	3	0.00	0.01
55	M. muraletus	1912	2.88	7.65
56	Myliobatis aquila	21	0.03	0.08
57	Nerophis ophidion	125	0.19	0.50
58	Oblada melanura	6	0.01	0.02
59	Odaleichthys labio	8	0.01	0.03
60	Ophidion barbatum	38	0.06	0.15
61	Ophidion rochei	38	0.04	0.12
62	Pagellus acarne	427	0.64	1.71
63	Pagellus hogaresco	140	0.21	0.56
64	Paralabroscopus gattorugine	21	0.03	0.08
65	Parablennius incognitus	31	0.05	0.12
66	Parablennius sanguinolentus	117	0.18	0.47
67	Parablennius maculatus	98	0.15	0.39
68	Pegusa laevis	97	0.15	0.39
69	Platichthys flesus	8	0.01	0.03
70	Pomatoschistus bathi	618	0.93	2.47
71	P. marmoratus	11619	17.50	46.48
72	Pomatoschistus minutus	131	0.20	0.52
73	Pomatoschistus pictus	27	0.04	0.11
74	Raja mirelatus	3	0.00	0.01
75	Raja radiata	6	0.01	0.02

Table 2

Parameter	Taxa	Individual CPUE	D	H	1-D	P > 0.05
Station	1 (CST)	9335	37.34	0.22	2.47	0.78
	2 (AS)	3720	14.88	0.22	2.19	0.78
	3 (SM)	7891	31.56	0.42	1.75	0.58
	4 (CST)	30154	120.62	0.39	1.40	0.61
	5 (AS)	12133	48.53	0.14	2.62	0.86
	6 (SM)	3148	12.59	0.78	0.69	0.22
Season	Winter	8240	32.96	0.25	2.47	0.78
	Spring	11835	47.34	0.30	2.07	0.75
	Summer	34035	136.14	0.33	1.80	0.78
	Autumn	12271	49.08	0.22	2.27	0.67
Day-night	Day	42531	170.12	0.31	1.99	0.69
	Night	23850	95.40	0.24	2.27	0.76

D: Dominance index; H: Shannon index; 1-D: Simpson index; CST: The Çanakkale Strait; AS: The Aegean Sea; SM: The Sea of Marmara.

Monthly average sea surface water temperature ranged between 11.5 °C (January) and 29.4 °C (June) in the shallow waters of Çanakkale between January and December 2007. The minimum and the maximum surface water temperature were recorded as 8.8 °C and 32.4 °C. In all stations, temperature showed decreased trend in the winter while increased trend in the summer (Figure 2). In terms of temperature, no significant differences were found among stations throughout the year (P > 0.05). However, repeated
values in the same season. Additionally, the Dominance index was higher in summer than other seasons, due to the contribution of the most abundance species *A. boyeri* and *P. marmoratus* (Table 4). The most important change of the Shannon index was observed from summer to autumn. The Shannon index peaked (2.27) in autumn whereas species richness and abundance were decreased in the same season. On the other hand, the minimum number of individuals was found in winter (Table 2).

Mean salinity values were recorded between 27.5 (February) and 36.0 (December) during the sampling period. The minimum and the maximum salinity values were measured as 18.8 and 39.8 g/kg, respectively (Figure 2). There was a significant difference between salinity levels for the North Aegean Sea, the Çanakkale Strait, and the Sea of Marmara (*P* < 0.05) according to least significance test. The highest number of fish species were caught from Station 1 (77 species) while the maximum amount of fish were obtained from Station 4 (*n* = 30 154, CPUE = 120.62). Both stations were located in the Çanakkale Strait and a total of 93 species were sampled in these stations. In the North Aegean Sea, a total of 85 species were obtained (Stations 2 and 5), while catches in the Sea of Marmara comprised 77 species (Stations 3 and 6). The Shannon and the Simpson indices reached their highest value (2.62 and 0.86, respectively) in Station 5, located in the North Aegean Sea. The highest value of the Dominance index and the lowest value of the Shannon index and the Simpson index were determined from Station 6, located in the Sea of Marmara (Table 2). Statistically significant differences in species richness among stations were found (*R* = 0.5957; *P* < 0.05). The SIMPER showed that dominant species, *A. boyeri* and *P. marmoratus* had the greatest effect in emergence of the species richness variation in the stations (Table 4).

In addition, as shown in Table 3, positive correlation was found between species number and temperature in all region. Species richness and abundance were significant different among seasons (*R* = 0.5957; *P* < 0.05). Differences of the fish assemblages were mainly caused by change in occurrence of the dominant species (Table 4). The correspondence analyses showed that seasons had an important effect on the existence of fish species in the shallow waters. *A. boyeri* and *P. marmoratus* had the greatest effect in emergence of the species richness variation in the stations (Table 4).

Table 3

Locations	Temperature	Salinity	Species
CST	1.000	0.262	0.762
AS	0.975	-0.417	0.364
SM	0.986	-0.647	0.602
CSt: The Çanakkale Strait; AS: The Aegean Sea; SM: The Sea of Marmara.			

Table 4

Species	Contribution (%)	Average dissimilarity	Stations
A. boyeri	25.31	38.69	*P. marmoratus*
P. marmoratus	10.30	15.75	*L. aurata*
L. aurata	4.48	6.85	*M. surmuletus*
M. surmuletus	3.34	5.10	*D. annularis*
D. annularis	2.07	3.16	*L. saliens*
L. saliens	2.04	3.12	*D. vulgaris*
D. vulgaris	1.72	2.63	*S. mossaei*
S. mossaei	1.51	2.38	*S. roissali*

measure ANOVA analysis showed that sea surface temperatures were significantly different between seasons (*P* < 0.05).

Figure 2. Mean monthly salinity and temperature values taken from the Aegean Sea, the Çanakkale Strait and the Sea of Marmara. CSt: The Çanakkale Strait; AS: The Aegean Sea; SM: The Sea of Marmara.

The Shannon index has the lowest value (1.80) in summer whereas species richness and abundance were reached the highest values in the same season. Additionally, the Dominance index was
4. Discussion

A total of 512 native fish species have been reported in the Turkish seas[25]. In this study, a total of 112 species were obtained from the coastline of Çanakkale which comprised 21.8% of the total marine fish fauna of Turkey. The less saline and nutrient-rich the Black Sea inflow[1] likely explain the higher overall species richness in this study than found by the other researchers in the shallow waters: 54 species (3 m)[9] and 61 species in the South Aegean Sea (3–6 m) [10]. Also, 25 species have been reported from the shallow waters of Istanbul Straits[11].

The dynamic nature of the fish community of the shallow waters results from an interaction between seasonal and diurnal changes in species richness and relative abundances. Some species tend to move regularly from shallow to deeper waters or from deeper to shallow waters during the night for feeding. The migration is associated with trophic structure of fish species. On the other hand, dominance index reached its highest value (primarily caused by the dominant species, A. boyeri) in the Sea of Marmara. Keskin et al.[31] and Rodrigues and Vieira[32] found that the mean species richness and abundances in the Sea of Marmara were lower than the North Aegean Sea due to the barrier effect of Turkish Straits system. However, we found that the highest species richness and abundance were obtained from the Çanakkale Strait. The Aegean Sea is connected to the Sea of Marmara by the Çanakkale Strait. The strait is an important migration route of many fish assemblage undergoes a strong seasonal variation in abundance and species richness in the study area. This difference could be caused by temperature fluctuations during the year. The results of this study indicate that fish species richness and abundance were increased in summer season. This finding is in agreement with the studies of Harmelin-Vivien et al.[33] and Rodrigues and Vieira[32] which showed that juvenile abundance of the most fish species increases in summer season. On the other hand, most of the marine species were strongly associated with higher salinity[33]. In the current study, salinity was found significantly different among the North Aegean Sea, the Çanakkale Strait and the Sea of Marmara. Mean salinity values showed an increasing trends from the Sea of Marmara to the North Aegean Sea. Species richness of these areas was significantly different from each other. Less abundant but more diverse fish communities were observed in the North Aegean Sea than that of in the Sea of Marmara. A decrease in species richness also has been reported between the North Aegean Sea and the Sea of Marmara, from west to east[2,16], Aiso, the Shannon and the Simpson indices reached their highest values in the North Aegean Sea. In contrast to this, both indices reached their lowest levels and the Dominance index reached its highest value (primarily caused by the dominant species, A. boyeri) in the Sea of Marmara. The survey area is very important for the demersal and small-scale fisheries in the Aegean Sea and the Sea of Marmara[30,35].
The present results describe the fish species richness and abundance in the coastline of Çanakkale. The results support the biogeographical differences between the Aegean Sea, the Çanakkale Strait and the Sea of Marmara in terms of the littoral fish community. The inventory in the current study can serve as baseline data prior to management strategies to ensure sustainable conservation of the area.

Conflict of interest statement

We declare that we have no conflict of interest.

Acknowledgments

We are especially indebted to A. Oztekin and A. Erdem for logistical support in the field and to M. Bilecenoglu for his help in the laboratory. This study was funded by The Scientific and Technological Research Council of Turkey (Grant No. 106T123).

References

[1] Beşiktepe Ş, Ö兹soy E, Ünlüata Ü. Filling of the Marmara Sea by the Dardanelles lower layer inflow. Deep-Sea Res 1993; 40(9): 1815-38.
[2] Bianchi CN. Biodiversity issues for the forthcoming tropical Mediterranean Sea. Hydrobiologia 2007; 580: 7-21.
[3] Oğuz T, Öztürk B. Mechanisms impeding natural Mediterranean process of Black Sea fauna. J Black Sea/Medit Environ 2011; 17(3): 233-53.
[4] Chapin FS, Zavaleta ES, Eviner VT, Naylor RL, Vitousek PM, Reynolds HL, et al. Consequences of changing biodiversity. Nature 2000; 405: 234-42.
[5] Mariani S. Can spatial distribution of ichthyofauna describe marine influence on coastal lagoons? A Central Mediterranean case study. Estuar Coast Shelf Sci 2001; 52: 261-7.
[6] Ayvazian SG, Deegan LA, Finn JT. Comparison of habitat use by estuarine fish assemblages in the Acardian and Virginian zoogeographic provinces. Estuaries 1992; 15(3): 368-83.
[7] Mapherson E, Duarte CM. Bathymetric trends in demersal fish size: is there a general relationship? Mar Ecol Prog Ser 1991; 71: 103-12.
[8] Beck MW, Heck KL, Able KW, Childers DL, Eggleston DB, Gillanders BM, et al. The role of nearshore ecosystems as fish and shellfish nurseries. Issues Ecol 2003; 1: 11-12.
[9] Giakoumi S, Kokkoris GD. Effects of habitat and substrate complexity on shallow sublittoral fish assemblages in the Cyclades Achipelago, North-eastern Mediterranean Sea. Mediterr Mar Sci 2013; 14(1): 58-68.
[10] De Raedemaeker F, Miliou A, Perkins R. Fish community structure on littoral rocky shores in the Eastern Aegean Sea: effects of exposure and substratum. Estuar Coast Shelf Sci 2010; 90(1): 35-44.
[11] Keskin Ç. A preliminary study on juvenile fishes in the Istanbul Strait (Bosphorus). J Black Sea/Medit Environ 2012; 18(1): 58-66.
[12] Labropoulou M, Papakostantinou C. Community structure of deep-sea demersal fish in the North Aegean Sea (Northeastern Mediterranean). Hydrobiologia 2000; 440(1-3): 281-96.
[13] Kılhaniotis A, Vidoris P, Sylaioi G. Fish species assemblages and geographical sub-areas in the North Aegean Sea, Greece. Fish Res 2004; 68(1-3): 171-87.
[14] Keskin Ç. Composition of species and biomass of coastal fish around Gökçeada Island. J Black Sea/Medit Environ 2004; 10: 187-200.
[15] Labropoulou M, Damalas D, Papakostantinou C. Bathymetric trends in distribution and size of demersal fish species in the North Aegean Sea. J Nat Hist 2008; 42(5-8): 673-86.
[16] Keskin Ç, Ordines F, Guirarro B, Massuti E. Comparison of fish assemblages between the Sea of Marmara and the Aegean Sea (North-Eastern Mediterranean). J Mar Biol Assoc UK 2011; 91(6): 1307-18.
[17] Koç TH, Üstün F, Erdoğan Z, Arzu M. Species composition of benthic fish fauna in the Sea of Marmara, Turkey. J Appl Ichthyol 2012: doi: 10.1111/j.1439-0426.2012.02037.x.
[18] Able KW, Rowe P, Burlas M, Byrne D. Use of ocean and estuarine habitats by young-of-year bluefish (Pomatomus saltatrix) in the New York Bight. Fish B-Nowa 2003; 10(2): 201-14.
[19] Wilber DH, Clarke DG, Burlas M H, Ruben H, Will RJ. Spatial and temporal variability in surf zone fish assemblages on the coast of Northern New Jeresy. Estuar Coast Shelf Sci 2003; 56(2): 293-304.
[20] Whitehead P, Bauchot M, Hureau J, Nielsen J, Tortoneese F. Fishes of the North-Eastern Atlantic and the Mediterranean. Vol. 2. Paris: United Nations Educational Scientific and Cultural Organization; 1986, p. 1473.
[21] Matser S, Çoker T. [Ichthyoplankton atlas of Turkish seas]. Izmir: Ege University; 2004, p. 210. Supplementary Book No. 12. Turkish.
[22] Shannon CE. Weaver W. A mathematical theory of communication. Urbana: University of Illinois Press; 1971.
[23] Zar JH. Biostatistical analysis. 4th ed. Upper Saddle River: Prentice Hall PTR; 1999, p. 663.
[24] Hammer Ø, Harper DAT, Ryan PD. Past: paleontological statistics software package for education and data analysis. Palaeontologia Electronica 2001; 4(1): 1-9.
[25] Bilecenoglu M, Kaya M, Chingar B, Çiçek E. An updated checklist of the marine fishes of Turkey. Turk J Zool 2014; 38: 901-29.
[26] Andre P, Francisco A, Marcia A, Iracema G. Diel and seasonal changes in the distribution of fish on a southeast Brazil sandy beach. Mar Biol 2003; 143(6): 1047-55.
[27] Horn MH. Diel and seasonal-variation in abundance and diversity of shallow-water fish populations in Morro Bay, California. Fish B-Nowa 1980; 78(3): 759-70.
[28] Nash RDM, Santos RS. Seasonality in diel catch rate of small fishes in a shallow-water fish assemblage at Porto Pim Bay, Faral, Azores. Estuar Coast Shelf Sci 1998; 47(3): 319-28.
[29] Gibson RN, Ansell AD, Robb L. Seasonal and annual variations in abundance and species composition of fish and macrocrustacean communities on a Scottish sandy beach. Mar Ecol Prog Ser 1993; 98: 89-105.
[30] Stergiou KI, Pollard DA. A spatial analysis of the commercial fisheries catches from the Greek Aegean Sea. Fish Res 1994; 20: 109-35.
[31] Harmelin-Vivien ML, Bitar G, Harmelin JG, Monestiez P. The littoral fish community of the Lebanese rocky coast (Eastern Mediterranean) with emphasis on Red Sea immigrants. Biol Invas 2005; 7(4): 625-37.
[32] Rodrigues FL, Vieira JP. Surf zone fish abundance and diversity at two sandy beaches separated by long rocky jetties. J Mar Biol Assoc UK 2013; 93(4): 867-75.
[33] Akin S, Winemiller KO, Gelwick FP. Seasonal and spatial variations in fish and macrocrustacean assemblage structure in Mud island Marsh estuary, Texas. Estuar Coast Shelf Sci 2003; 57(1-2): 269-82.
[34] Dede A, Ozturk A A, Akamatsu T, Tonay A M, Ozturk B. Long-term passive acoustic monitoring revealed seasonal and diel patterns of cetacean presence in the Istanbul Strait. J Mar Biol Assoc UK 2014; 94(6): 1195-1202.
[35] Benli HA, Chingar B, Bızsıel KC. [Investigation on some demersal fishery resources in the Aegean Sea]. Istanbul: Istanbul University, Fisheries Faculty; 1999, p. 301-70. Turkish.