Upregulation of distinct collagen transcripts in post-surgery scar tissue: a study of conjunctival fibrosis

Li-Fong Seet1,2,3,*, Li Zhen Toh1, Stephanie W. L. Chu1, Sharon N. Finger1, Jocelyn L. L. Chua4 and Tina T. Wong1,2,3,4,5,*

ABSTRACT

Excessive accumulation of collagen is often used to assess the development of fibrosis. This study aims to identify collagen genes that define fibrosis in the conjunctiva following glaucoma filtration surgery (GFS). Using the mouse model of GFS, we have identified collagen transcripts that were upregulated in the fibrotic phase of wound healing via RNA-seq. The collagen transcripts that were increased the most were encoded by Col8a1, Col11a1 and Col8a2. Further analysis of the Col8a1, Col11a1 and Col8a2 transcripts revealed their increase by 67-, 54- and 18-fold, respectively, in the fibrotic phase, compared with 12-fold for Col1a1, the most commonly evaluated collagen gene for fibrosis. However, only type I collagen was significantly upregulated at the protein level in the fibrotic phase. Type VIII and type I collagens colocalized in fibrous structures and in ACTA2-positive pericytes, and appeared to compensate for each other in expression levels. Type XI collagen showed low colocalization with both type VIII and type I collagens but can be found in association with macrophages. Furthermore, we show that both mouse and human conjunctival fi broblasts expressed elevated levels of the most highly expressed collagen genes in response to TGFβ2 treatment. Importantly, conjunctival tissues from individuals whose GF surgeries have failed due to scarring showed 3.60- and 2.78-fold increases in type VIII and I collagen transcripts, respectively, compared with those from individuals with no prior surgeries. These data demonstrate that distinct collagen transcripts are expressed at high levels in the conjunctiva after surgery and their unique expression profiles may imply differential influences on the fibrotic outcome.

KEY WORDS: Collagen, Fibrosis, Conjunctiva

INTRODUCTION

Fibrosis, or scarring when it occurs in response to injury, is commonly defined as the development of excessive fibrous connective tissue. As collagens are the major fibrous proteins found in connective tissue (Muiznieks and Keeley, 2013), the measurement or visualization of collagen deposition is commonly used to assess fibrosis in a myriad of disorders involving the heart (Lijnen et al., 2012), liver (Liu et al., 2012) and kidney (Farris and Colvin, 2012), as well as complex multi-system diseases such as scleroderma (Balbir-Gurman and Braun-Moscovici, 2012). Type I collagen, which is the major component of extracellular matrix (ECM) and the most abundant form of collagen in the body, is the most frequently measured collagen component of scar proteins.

Collagen deposition is used to evaluate surgical failure in glaucoma filtration surgery (GFS), also known as trabeculectomy. GFS is performed to lower high intraocular pressure, a major risk factor associated with the development and progression of glaucoma (Sawchyn and Slabaugh, 2016). GFS increases the outflow of fluid from the eye via a sclerostomy. However, GFS can fail, due primarily to subconjunctival and episcleral fibrosis, which develops over the sclerostomy site (Radcliffe, 2010). Collagen accumulation, as an indicator of scarring, is generally evaluated via visualization of histochemically stained tissue sections in studies of GFS outcomes in humans (Molteno et al., 2013) and experimental large animal models of GFS (SooHoo et al., 2012; Ekinci et al., 2014). This approach is far from being quantitative, given the potential variability in staining methods, imaging quality, number of sections analysed and selection of areas for examination.

The development of a mouse model of GFS (Seet et al., 2010) enables a quantitative assessment of fibrotic development through molecular analyses (Seet et al., 2013). This mouse model responded to mitomycin C (MMC), a commonly applied adjunctive antifibrotic therapy in clinical GFS, in a similar manner to that observed in patients (Seet et al., 2011). The fibrotic phase in this mouse model, which is measurable on day 7 post-experimental surgery, is marked by increased expression of extracellular matrix genes, including type I collagen (Coll1a1) (Seet et al., 2013). Coll1a1 expression, as a quantitative marker for conjunctival fibrosis, can be measured at both the mRNA and protein levels via real-time quantitative polymerase chain reaction (qPCR) and immunoblotting techniques in the mouse model. Both techniques are independently quantitative and have the capacity to assess the entire scarring area (Seet et al., 2013).

Besides type I collagen, other collagen genes may potentially provide complementary signals for the development of fibrosis in the post-surgical conjunctival tissue. An unbiased, global discovery of these genes is not feasible with human subjects as conjunctival biopsies, if taken from patients whose surgeries have failed due to fibrosis, would be heterogeneous, having been previously exposed to a variety of anti-hypertensive and anti-fibrotic drug therapies. However, with the help of the mouse model of GFS, we were able to uncover additional collagen genes that may refine our understanding of the development of fibrosis in the post-operative conjunctiva. We
performed transcriptome profiling of the wound-healing phases to reveal the identities of collagen genes that were induced in fibrosis. Localization of the top-ranked collagen genes in fibrotic phase tissues demonstrated potentially unique roles of these proteins in fibrosis. We also ascertained that the top-ranked collagen transcripts were induced in response to profibrogenic TGFβ2 in conjunctival fibroblasts, which are the main effector cells implicated in eliciting the fibrotic response in GFS (Hitchings and Grierson, 1983; Skuta and Parrish, 1987; Jampel et al., 1988). We further confirmed the human relevance of the top-ranked type VIII collagen by analyses of human Tenon’s fibroblasts, as well as through comparison of conjunctival tissues obtained from patients whose previous surgeries have failed against those with no prior GFS. Taken together, we demonstrate that scarring in GFS is characterized by the high induction of selective collagen transcripts with potentially distinct roles in fibrosis.

RESULTS
Expression of distinct collagen transcripts in the late phase of conjunctival wound healing

To determine the gene expression profiles in the early and fibrotic phases of wound healing in GFS, we performed experimental surgery in the mouse and analysed the day 2 and day 7 operated tissues by high-throughput next-generation mRNA sequencing. Eighteen collagen genes were significantly upregulated in the late-phase transcriptome by at least twofold relative to unoperated tissues (Fig. 1A). The three collagen transcripts that were overexpressed the most in the fibrotic phase were Col1a1, Col11a1 and Col8a2, while Col1a1 transcript was ranked 7th (Fig. 1B).

The ten top-ranked collagen transcripts in the late-phase transcriptome were further verified by real-time PCR. Similar expression profiles were observed for the day 2 and day 7 time points (Fig. 2A). Additional examination of the mRNA expression profiles at the later time points of days 14 and 21 post-surgery revealed that expression of the collagen genes in the operated conjunctival tissues generally peak on day 7, where mean fold increases from the unoperated baseline levels were significantly higher than the mean fold increases at all the other time points (Fig. 2A). These data suggest that an active increase in expression of collagen genes in the operated tissue is likely to peak in the first week after surgery followed by a return to normal expression thereafter.

The expression of the top three collagen genes, including type I collagen, was also evaluated at the protein level. As Col1a1 and Col8a2 encode the two polypeptide subunits of type VIII collagen, we analysed COL8A1 as representative of type VIII collagen protein expression. Using immunoblotting, we observed that only type I collagen was significantly induced on both day 2 and day 7 following experimental surgery when compared with their respective unoperated controls (Fig. 2B). Hence, type I collagen remains the most stably induced collagen protein in the late phase of conjunctival wound healing (Fig. 2B).

Differential localization of COL8A1, COL11A1 and COL1A1 in the fibrotic phase of conjunctival wound healing

To determine potentially unique roles of type VIII, type XI and type I collagen in the fibrotic phase of conjunctival wound healing, we examined their localization in triple-immunostained tissues. At first glance, COL8A1 seemed to colocalize with COL1A1, particularly in association with long fibrous structures (Fig. 3A). On closer examination, it can be discerned that COL8A1 expression appeared high where COL1A1 was detected at very low levels (Fig. 3A,B).

![Fig. 1. Upregulated collagen transcripts in the day 2 and day 7 post-experimental GFS transcriptomes.](image-url)

(A) Collagen genes are ranked in descending order from the highest to lowest transcript induction on day 7. Three paired groups at each time point were analysed (n=3). Each paired group consisted of 10 operated tissues from the left eyes pooled together for comparison with 10 unoperated tissues from the contralateral right eyes similarly pooled together. FC, mean fold-change of three groups comparing operated against paired unoperated conjunctival tissues. P values shown have been adjusted using the Benjamini-Hochberg False Discovery Rate (FDR) method. Fold, fold-change between day 2 and day 7 (day 7 FC/day 2 FC); *, P<0.05 (not significant); ECM, extracellular matrix; FACIT, fibril-associated collagens with interrupted helices. (B) The 10 collagen transcripts that were expressed at the highest levels in the day 2- and day 7-operated conjunctival transcriptomes, calculated relative to the unoperated counterparts (n=3). Day 2 expression is represented by white diamonds, whereas day 7 expression is represented by coloured diamonds. Day 2 expression levels that were not significantly different from the respective unoperated baselines are not presented in the plot.
and vice versa (Fig. 3A,B). By contrast, COL11A1 appeared to have very little colocalization with COL1A1. Interestingly, COL11A1 expression was adjunctive to that of COL8A1, appearing to localize in the periphery of areas where COL8A1 was detected (Fig. 3A).

To probe whether COL8A1 is present in pericytes surrounding vascular endothelial cells, we co-immunostained the day 7 operated tissues to detect α-smooth muscle actin (ACTA2) expression (Skalli et al., 1989). COL8A1 was observed to partially colocalize with ACTA2, as did COL1A1 (Fig. 3B). Again, COL8A1 appeared to be expressed at higher levels in ACTA2-positive areas where COL1A1 expression was apparently low in expression (Fig. 3B) and vice versa (Fig. 3B). These observations suggest that both COL8A1 and COL1A1 are components of pericytes that wrap around vascular endothelial cells.

As COL11A1 appeared to be mainly expressed in non-fibrous structures in the fibrotic phase, we probed the possibility that this collagen may be associated with pro-inflammatory cells such as macrophages. In areas heavily populated with cells, including F4/80+ macrophages, COL11A1 was also present and could be detected in association with macrophages (Fig. 3C). Taken together, these data suggest that COL8A1, COL11A1 and COL1A1 have unique localizations and may perform different functions in the fibrotic process in the post-surgical conjunctiva.

Induction of collagens by profibrotic TGFβ2 in conjunctival fibroblasts

As TGFβ2 is likely to play important roles during late-phase fibrosis (Seet et al., 2013), we next investigated the capacity of this cytokine to induce the expression of the top ten collagen genes in primary...
conjunctival fibroblasts. The cells responded to TGFβ2 by increasing the expression of all the collagen genes examined at the mRNA level (Fig. 4A). However, the profiles of induction of the top three collagen transcripts by TGFβ2 did not mirror that observed in the operated conjunctival tissues in the fibrotic phase of wound healing (Fig. 2A). In the mouse conjunctival fibroblasts, Col8a2 transcripts were the most highly induced, followed by Col11a1, whereas the remaining collagen mRNAs were generally induced by twofold or less (Fig. 4A). At the protein level, only Col1A1 was significantly elevated by TGFβ2 treatment (Fig. 4B).

Induction of collagens in human conjunctival fibroblasts by TGFβ2 and in tissues of individuals requiring repeat surgical procedure

To determine the relevance of the collagen genes for detecting fibrosis in human tissues, we measured the response of primary human conjunctival fibroblasts to TGFβ2 stimulation. The three most highly expressed collagen genes in the mouse transcriptome as well as COL1A1 were significantly induced in the presence of TGFβ2 at the mRNA level (Fig. 5A). However, the profile in the human cells did not exactly resemble that in mouse tissues or their...
cells. In human conjunctival fibroblasts, COL8A1 transcript was the most highly induced by TGFβ2, followed by COL8A2 and, finally, COL11A1 mRNAs (Fig. 5A). At the protein level, both COL11A1 and COL1A1 levels were significantly increased by TGFβ2 treatment (Fig. 5B).

We further determined the expression of collagen transcripts in the conjunctiva of glaucoma patients who required GFS treatment. The quantity of conjunctival tissues that can be retrieved from patients undergoing GFS is extremely limited and sufficient only for the analysis of a few genes. We therefore prioritized the analyses of top-ranked COL8A1, as well as COL1A1, the most commonly analysed gene. The transcript levels of these two collagen genes were measured in conjunctival tissues from patients who had undergone prior surgeries that had failed due to scarring and from those who had not undergone the procedure before. Tissues were obtainable from the former group of patients as repeat surgery is used to manage a previous filtration surgery that has failed due to fibrosis (Radcliffe, 2010). COL8A1 and COL1A1 mRNAs were significantly increased in the conjunctival tissues from patients whose prior surgeries had failed compared with those from patients who had not previously undergone surgery by 3.60- and 2.78-fold, respectively (Fig. 5C). The elevation of two transcripts may therefore be indicative of excessive scarring after surgery which may contribute to surgery failure. Taken together, these data support the findings in the mouse model that the top-ranked collagen transcripts may also contribute to the profibrotic response in patients.

DISCUSSION

To our knowledge, this is the first study that reveals the potential involvement of distinct collagen genes in fibrosis after GFS. By transcriptome profiling of the wound-healing response in the mouse model of GFS, we have identified type VIII collagen as the top-ranked upregulated gene followed by type XI collagen. Conjunctival tissues from glaucoma patients whose surgeries have failed also registered increased type I and type VIII collagen transcripts, supporting the relevance of these collagens in the development of fibrosis after GFS.

The contribution of type VIII collagen to tissue fibrosis is unclear. Type VIII collagen is a member of the short-chain non-fibrillar collagen family and comprises α1 and α2 chains, both found in our study to represent the highest and third highest, respectively, upregulated collagen transcripts following experimental surgery. Type VIII collagen may be produced by macrophages and smooth muscle cells, and is inducible by growth factors and cytokines (Sibinga et al., 1997; Plenz et al., 2003;
Upregulation of type VIII collagen was observed in kidney biopsies from individuals with diabetic nephropathy where tubulointerstitial fibrosis is a pathological hallmark (Gerth et al., 2007). Conversely, lack of type VIII collagen conferred renoprotection in a mouse model of diabetic nephropathy (Hopfer et al., 2009), modulated TGFβ1 signalling (Loeffler et al., 2011) and resulted in abnormal development of the anterior segment of the eye, including the cornea (Hopfer et al., 2005). Defects in vessel wall thickening and remodelling, as well as fibrous cap formation in the injured femoral artery, a condition associated with reduced fibrillar type I collagen accumulation, were also noted (Lopes et al., 2013). We too observed close association of type VIII with type I collagen in the operated conjunctival tissue, especially in pericytes that make up the outer walls of blood vessels, supporting a role of the two collagens in the fibrotic phase of the operated tissue (Bergers and Song, 2005). The two collagens seemingly substituted for each other when either expression was low, suggesting that an intimate supportive interaction exists between the two. Determining whether type I and VIII collagens serve unique or redundant roles in this context requires further experimentation. Given that type VIII collagen is reported to be associated with other collagens, elastin, microfibrillar proteins and proteoglycans (Sawada and Konomi, 1991; Sutmuller et al., 1997), a role for type VIII collagen in matrix assembly seems likely. The relatively lower protein induction of type VIII collagen compared with type I collagen in the operated tissues in the fibrotic phase of wound healing may suggest that type VIII collagen is highly potent, and therefore highly regulated at either the translational level and/or subject to protease digestion in the tissue environment undergoing active wound healing. Indeed, type VIII collagen has been shown to be rapidly degraded by neutrophil elastase, in apparent contrast to type I collagen, which was resistant (Kittelberger et al., 1992). Hence, we believe that ultra-high upregulation of type VIII collagen at the transcript level, but not the protein, is a more accurate indicator of the fibrotic phase response.

The contribution of type XI collagen to tissue fibrosis is equally nebulous. Like type I collagen, type XI collagen belongs to the fibril-forming group. However, while type I collagen is considered to be a major fibrillar collagen, type XI collagen is a minor fibrillar collagen based on abundance in the collagen fibrils of normal tissues (Shoulders and Rainez, 2009). Although type XI collagen is quantitatively a minor collagen, it is known to co-assemble with collagen I or II to form heterotypic fibrils in a regulated tissue-specific manner (Birk and Bruckner, 2011) and to have been implicated in the regulation of fibril assembly by nucleating fibril formation (Wenstrup et al., 2011) and/or regulation of collagen fibril diameter. The latter is supported by observations that mice carrying homozygous mutations for Col11a1 have bone defects associated with thickened and shorter cartilage collagen fibrils (Seegmiller et al., 1971; Li et al., 1995; Fernandes et al., 2007). Similarly,
mutations in COL11A1 in humans caused fibrochondrogenesis, a potentially lethal disorder (Tompson et al., 2010; Akawi et al., 2012; Hufnagel et al., 2014). Mutations in the COL11A1 gene are also associated with the autosomal dominant type II Stickler syndrome, which features a variable phenotype, including visual disturbances such as type 2 vitreous anomaly, childhood-onset myopia, glaucoma, cataracts and retinal detachment (Snead et al., 1996; Richards et al., 2013). Recent reports have established an association between Col11a1 expression and cancer, a process that encompasses many parallels with wound healing (Schäfer and Werner, 2008). Uprogulation of COL11A1 has been described in several cancers, including colorectal (Fischer et al., 2001), breast (Freire et al., 2014) and non-small cell lung cancer (Chong et al., 2006). In head and neck squamous cell carcinoma cells, COL11A1 facilitated their proliferation, migration and invasion (Sok et al., 2006). In ovarian cancer, COL11A1 mRNA levels correlated with disease progression and survival, and its expression is thought to mediate tumour invasiveness (Wu et al., 2014). One speculation is that type XI collagen may facilitate tumour metastasis by promoting fibrillogenesis, as collagen is known to play an integral role in tumour metastasis (Zhang et al., 2013). In the operated mouse conjunctiva, we did not observe an obvious colocalization between type I and XI collagens. However, we did observe an association between type XI collagen and F4/80+ macrophages in the operated conjunctival tissue, suggesting that this collagen may be induced in macrophages that participate in the wound-healing process. Macrophages are known to express virtually all known collagen genes (Schnoor et al., 2008). As with type VIII collagen, the protein levels of type XI collagen in the late-phase operated tissues did not reflect the high transcript expression. Again, this may be due to type XI collagen being susceptible to degradation by proteases such as cathepsin (Maciewicz et al., 1990), which is expressed in the eye (Wassélius et al., 2003). Hence, type XI collagen may also be highly regulated at the protein level, which may be vital for reining in its activity if it has potent effects on fibrosis.

TGFβ is a well-established profibrotic cytokine that is implicated in mediating fibrosis in the mouse model of GFS (Seet et al., 2013) and GFS failure in patients (Saika, 2006; CAT-152 0102 Trabeculectomy study group et al., 2007). Although the listed collagen genes were induced in mouse conjunctival fibroblasts upon stimulation with TGFβ2, the profiles were not similar to those observed in the operated tissues. One possible explanation may be that conjunctival fibroblasts, which reliably induce type I collagen upon stimulation, are not principal producers of other collagen types. The association of type VIII and type XI collagens with pericytes and macrophages is a strong indication that other cell types are involved in producing these collagens. Indeed, type VIII collagen induction was associated with stimulated vascular smooth muscle cells (Sibinga et al., 1997). Moreover, other profibrogenic agonists other than TGFβ2 are expected to play important roles in inducing these collagen genes in fibroblasts and other cell types in vivo. Hence, where expression of collagen genes is concerned, it may not be possible to accurately extrapolate in vitro behaviour based on a single cell type or agonist to the in vivo tissue response involving many cell types and profibrogenic factors simultaneously.

Collectively, we have identified additional collagen genes in addition the commonly measured type I collagen that were expressed at high levels in the mouse and human conjunctiva after GFS. It is potentially possible to derive a quantitative correlation between the elevation of these transcripts and the severity of fibrosis to identify patients at risk for surgery failure. Moreover, their high inductions and unique expression profiles may reveal variations in the scarring process between surgery repeats, paving the way for more effective customized treatment. Furthermore, as glaucoma surgery is often performed in the presence of antifibrotic agents (Radcliffe, 2010), these collagens may also serve as indicators of the effectiveness and efficiency of alternative adjunctive anti-fibrotic therapies, and perhaps even throw light on the mechanisms involved.

MATERIALS AND METHODS

Mouse model of GFS

All experiments with animals were approved by the Institutional Animal Care and Use Committee (IACUC) and treated in accordance with the Association for Research in Vision and Ophthalmology (ARVO) Statement on the Use of Animals in Ophthalmic and Vision Research. Eight- to 10-week-old male and female 129SVE mice were used to validate the RNAseq results. Experimental surgery was performed as described previously on one eye while the contralateral unoperated eye was used as baseline for comparison (Seet et al., 2010). Operated and unoperated tissues were harvested at the indicated time points, with day 2 and day 7 representing the early and fibrotic phases of wound healing, respectively (Seet et al., 2013).

Human subjects

Patients were recruited from the glaucoma specialist clinics at the Singapore National Eye Centre between 2012 and 2014. This study was reviewed and approved by the institutional review and ethics board at the Singapore Eye Research Institute (SERI) and adhered to the tenets of the Declaration of Helsinki. Written informed consent was obtained from all subjects. Thirty-five eyes with medically uncontrolled primary glaucoma (primary open angle and primary closed angle glaucoma) demonstrating poorly controlled intraocular pressure (IOP) despite maximal medical therapy and/or progressive visual field loss and optic disc cupping, and requiring trabeculectomy or phacotrabeculectomy, were recruited. A medically uncontrolled primary glaucoma is defined as an IOP of >21 mmHg, despite maximal medical therapy in eyes with primary open angle or angle closure glaucoma. Of these 35 eyes, 20 had no prior trabeculectomy surgery, while the other 15 eyes had a prior failed trabeculectomy. Prior trabeculectomy was performed using mitomycin C (0.4 mg/ml)-soaked sponges applied intraoperatively in the subconjunctival space of the surgical site. The sponges were removed after 2 min followed by copious irrigation with 50 ml of balanced salt solution in the area treated with mitomycin C. If the eye was pseudophakic, the cataract surgery was performed at least 6 months prior to study recruitment. Prior to collecting the conjunctival tissue, the eye to be operated on was cleaned and draped. A partial thickness clear corneal 7/0 traction vycril suture was placed for good surgical exposure of the superior conjunctival space. A superior conjunctival peritomy was performed. A small amount of tenon tissue was then obtained from the site of conjunctival dissection and stored in RNAlater buffer (Thermo Fisher Scientific) and stored at −80°C prior to analysis.

Primary conjunctival fibroblast cell culture

Primary human conjunctival fibroblasts were cultured from cadaver conjunctival samples. Cadaver eyes with no known prior history of glaucoma were procured from the Lions Eye Institute for Transplant and Research (Tampa, FL, USA) with written consent from the next of kin and adherence to the principles outlined in the Declaration of Helsinki. Primary mouse conjunctival fibroblasts were cultured from the eyes of 129SVE mice. The cells were cultured as described previously (Seet et al., 2012, 2013). Cells of passage eight or under were used. Treatment with TGFβ2 (100-35B-5; PeproTech) was performed at 8 ng/ml for 72 h. Three repeats using independent primary cultures were performed for each in vitro experiment.

RNA sequencing and data analysis

Left, operated eyes of ten mice were pooled into one group, in a total of three groups per time point. The right, unoperated control eyes were similarly pooled as baselines for pair-wise comparisons. Tissues were harvested on either day 2 or day 7 post-surgery in RNAlater buffer (Thermo Fisher Scientific) and stored at −80°C prior to analysis.
Scientific) and lysed by freezing in liquid nitrogen followed by grinding with a micropestle for several cycles. The lysed tissue was then resuspended in RNeasy Lysis buffer (Qiagen) and further lysed by passing through a 23-gauge needle at least 10 times. Total RNA was then purified using the RNeasy kit (Qiagen). RNA samples were assessed with the Bioanalyser RNA 6000 nano kit (Agilent Technologies) for RNA integrity and Nanodrop (Thermo Fisher Scientific) for RNA quality. Good quality total RNA (1 μg per sample) was used and each library was tagged with unique indices for subsequent multiplexing sequencing. The size distribution of the final indexed libraries was checked using the Agilent Technologies DNA 1000 chip (Agilent Technologies). Sequencing was performed by Yourgene Bioscience using Illumina HiSeq2500. The samples were multiplexed and sequenced using 100 bp paired-end processing.

Trimming of adapter from raw reads was performed with Trim Galore version 0.3.7. The trimmed data were mapped or aligned to the mouse genome using TopHat2 version 2.0.9 aligner against the UCSC Reference sequence database (mm10). Gene expression data, mapped and filtered, was quantitated using Strand NGS 2.0. Normalization of read count values was applied using the DESeq package. At least 100 raw reads in all samples was the cut-off threshold for consideration in the analysis. A statistical test comprising t-test with Benjamini-Hochberg False Discovery Rate (FDR) (Benjamini and Hochberg, 1995) was performed and differentially expressed genes ($P<0.05$) were identified. A fold-change analysis was then performed to identify differentially expressed genes with a more than 2-fold change.

Real-time quantitative PCR analysis (qPCR)

Both mouse and human conjunctival fibroblasts and tissues were processed and analysed by qPCR, as described previously (Seet et al., 2012, 2013). For verification of RNA-seq data, left operated eyes of three mice were pooled into one group, in a total of five groups per time point. The right unoperated control eyes were similarly pooled for pair-wise comparisons. Tissues were harvested and processed as described previously (Seet et al., 2013). For cultured primary human and mouse conjunctival fibroblasts, three sets of independent experiments were performed. Untreated control and TGFβ2-treated cells were harvested and processed as mentioned previously (Seet et al., 2012). Tissue and whole-cell lysates were resolved by SDS-polyacrylamide gel electrophoresis followed by immunoblotting as previously described (Seet et al., 2013). For cultured cells, anti-type I (1:2000; H0001277-M01; 17251-1-AP) and -type XI (1:4000; NBPI-98463) collagen antibodies used were from Abnova, ProteinTech Group and Novus Biologicals, respectively. For mouse tissues, anti-type VIII collagen (1:2000; sc-99356) obtained from Santa Cruz Biotechnology was used. Horseradish peroxidase (HRP)-

Table 1. Primer sequences for quantitative real-time PCR analysis

Gene	Accession number	Sequence (5'→3')	Length (bp)
18S rRNA	NR003278	GATAACCGCTTGGAGCCATT	20
Rpl13a	NM009438.5	CCATCCAACTCGTGATAGGG	20
Col1a1	NM007742	TGCATCTGGCGCTTTTCTCT	20
Col3a1	NM009930.2	GAAGAGGAGATCAGGGGTCG	21
Col4a2	NM009932.3	GGTTGAAGACCACGGACT	20
Col5a2	NM007737.2	AACACGAGGAAATGACCGG	20
Col5a3	NM016919.2	AGGCCAACATCGTCTGTC	20
Col8a1	NM007739.2	ATGACCGACACCTAACCCTC	20
Col8a2	NM009473.2	TGCCGTAACCACTCTTCCCT	22
Col11a1	NM007729.2	TCTGACTATCCGACGGGGAC	20
Col15a1	NM009928.3	CGTTGCGAGATGTGGTGAAG	20
Col27a1	NM0025685.3	GAGGGAGAGGGACACAGG	20
RPL13A	NM012423.3	GCAGACATCTGTGGGAC	19
COL1A1	NM000088.3	CAGCCGCTTCCACCTACG	19
COL8A1	NM0020351.3	TTTTGTTATCAATCTGTGGG	25
COL8A2	NM001294347.1	TCAGAACAACCCCGAGTGGTCCAC	25
COL11A1	NM001190709.1	ATCACAAGGTATCCCAAGG	20

All primer sets were used under identical cycling conditions. Sequences were obtained from GenBank and Accession numbers are indicated. F, forward; R, reverse.

Immunoblotting

For analyses of post-operative response on day 2 and day 7, the left operated eye of five mice were pooled into one group, in a total of three groups per time point. The right unoperated control eyes were similarly pooled for pair-wise comparisons. Tissues were harvested and processed as described previously (Seet et al., 2013). For cultured primary human and mouse conjunctival fibroblasts, three sets of independent experiments were performed. Untreated control and TGFβ2-treated cells were harvested and processed as mentioned previously (Seet et al., 2012). Tissue and whole-cell lysates were resolved by SDS-polyacrylamide gel electrophoresis followed by immunoblotting as previously described (Seet et al., 2013). For cultured cells, anti-type I (1:2000; H0001277-M01; 17251-1-AP) and -type XI (1:4000; NBPI-98463) collagen antibodies used were from Abnova, ProteinTech Group and Novus Biologicals, respectively. For mouse tissues, anti-type VIII collagen (1:2000; sc-99356) obtained from Santa Cruz Biotechnology was used. Horseradish peroxidase (HRP)-
References

Akawi, N. A., Al-Gazali, L. and Ali, B. R. (2012). Clinical and molecular analysis of UAE sibrochondrogenesis patients expands the phenotype and reveals two COL11A1 homoyzygous null mutations. Clin. Genet. 82, 147-156.

Andersen, C. L., Jensen, J. L. and Ørntoft, T. F. (2004). Normalization of real-time quantitative reverse transcription-PCR data, a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res. 64, 5249-5250.

Balbir-Gurman, A. and Braun-Moscovici, Y. (2012). Scleroderma-new aspects in pathogenesis and treatment. Best Pract. Res. Clin. Rheumatol. 26, 13-24.

Benjamini, Y. and Hochberg, Y. (1995). Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. Series B Stat. Methodol. 57, 289-300.

Bergers, G. and Song, S. (2003). The role of pericytes in blood-vessel formation and maintenance. Neuro. Oncol. 7, 452-464.

Birk, D. E. and Bruckner, P. (2011). Collagens, suprastructures, and collagen fibril assembly. In The Extracellular Matrix: an Overview (ed. R. P. Mecham), pp. 77-155. New York: Springer-Verlag New York Inc.

CATT-152 0102 Trabeculocytosis study group. Khaw, P., Grehn, F., Hölzl, G., Overton, E., Wilson, R., Vogel, R. and Smith, Z. (2007). A phase III study of subconjunctival human anti-transforming growth factor beta(2) monoclonal antibody (CATT-152) to prevent scarring after first-time trabeculocytectomy. Ophthalmol. 114, 1822-1830.

Cherepanova, O. A., Pidkovka, N. A., Sarmento, O. F., Yoshida, T., Gan, Q., Adiguzel, E., Bendek, M. P., Berlinger, J., Leitinger, N. and Owens, G. K. (2009). Oxidized phospholipids induce type VII collagen expression and vascular smooth muscle cell migration. Circ. Res. 104, 609-618.

Chong, I. W., Chang, M. Y., Chang, H. C., Yu, Y. P., Sheu, C. C., Tsai, J. R., Hung, J. Y., Chou, S. H., Tsai, M. S., Hwang, J. J. et al. (2006). Great potential of a panel of multiple IMMT1, SPD, ITGAX11 and COL11A1 markers for diagnosis of patients with non-small cell lung cancer. Oncol. Rep. 16, 981-988.

Ekinci, M., Cagatay, H. H., Ceylan, E., Keles, S., Koban, Y., Gokce, G., Huseyinoglu, U., Ozcan, E. and Oba, M. E. (2014). Reduction of conjunctival fibrosis after trabeculocytectomy using topical a-licopic in rabbit eyes. J. Glaucoma 23, 372-379.

Farris, A. B. and Colvin, R. B. (2012). Renal interstitial fibrosis: mechanisms and evaluation. Curr. Opin. Nephrol. Hypertens. 21, 289-300.

Fernandes, R. J., Weis, M., Scott, M. A., Seegmiller, R. E. and Eyre, D. R. (2007). Collagen XI chain misassembly in cartilage of the chondrodysplasia (cho) mouse. Matrix Biol. 26, 597-603.

Fischer, H., Salahshor, S., Stenling, R., Björk, J., Lindmark, G., Iselius, L., Rubio and Lindblom, A. (2001). COL11A1 in FAP polys and in sporic colorectal tumors. BMC Cancer 1, 17.

Freire, J., Dominguez-Hormaez, S., Pereda, S., De Juan, A., Vega, A., Simón, L. and Gómez-Román, J. (2014). Collagen, type XI alpha 1: an accurate marker for differential diagnosis of breast carcinoma invasiveness in core needle biopsies. Pathol. Res. Pract. 210, 879-884.

Garvey, S. M., Sinden, D. S., Schoop Bortz, P. D. and Wamhoff, B. R. (2010). Cyclosporine up-regulates Krüppel-like factor-4 (KLF4) in vascular smooth muscle cells and drives phenotypic modulation in vivo. J. Pharmacol. Exp. Ther. 333, 34-42.

Gerth, J., Cohen, C. D., Hopfer, U., Lindemeyer, M. T., Sommer, M., Gröne, H. J. and Wolf, G. (2007). Collagen type VIII expression in human diabetic nephropathy. Eur. J. Clin. Invest. 37, 767-773.

Hitchings, R. A. and Grierson, I. (1983). Clinico pathological correlation in eyes with failed fistulizing surgery. Trans. Ophthalmol. Soc. UK 103, 84-98.

Hopfer, U., Fukai, N., Hopfer, H., Wolf, G., Joyce, N., Li, E. and Olsen, B. R. (2005). Targeted disruption of Colla1 and Colla2 genes in mice leads to anterior segment abnormalities in the eye. FASEB J. 19, 1232-1244.

Hopfer, U., Hopfer, H., Meyer-Schwesinger, C., Loeffer, I., Fukai, N., Olsen, B. R., Stahl, R. A. and Wolf, G. (2009). Lack of type VIII collagen in mice ameliorates diabetic nephropathy. Diabetes 58, 1672-1681.

Hufnagel, S. B., Weaver, K. N., Hufnagel, R. B., Bader, P. I., Schorry, E. K. and Hopkin, R. J. (2014). A novel dominant COL11A1 mutation resulting in a severe skeletal dysplasia. Am. J. Med. Genet. A 164, 2607-2612.

Jampel, H. D., McGuiigan, L. B., Dunkelberger, G. R., L’Hernault, N. L. and Quigley, H. A. (1988). Cellular proliferation after experimental glaucoma filtration surgery. Arch. Ophthalmol. 106, 89-94.

Kittelberger, R., Neale, T. J., Francky, K. T., Greenhill, N. and Gibson, G. J. (1992). Cleavage of type VIII collagen by human neutrophil elastase. J. Clin. Invest. 89, 105-117.

Li, Y., Lacerda, D. A., Warman, M. L., Beier, D. R., Yoshioka, H., Ninomiya, Y., Oxford, J. T., Morris, N. P., Andrikopoulos, K., Ramirez, F. et al. (1995). A fibrillar collagen gene, Colla11a1, is essential for skeletal morphogenesis. Cell 80, 423-430.

Lijnen, P. J., Maharani, T., Finahari, N. and Prihadi, J. S. (2012). Cleavage of type VIII collagen by human neutrophil elastase. J. Am. Soc. Nephrol. 23, 2607-2612.

Liu, T., Wang, X., Karsdal, M. A., Leeming, D. J. and Genovese, F. (2012). Cellaroseamy linear markers and heart failure. Cardiovasc. Hematol. Disord. Drug Targets 12, 51-65.

Liu, T., Wang, X., Karsdal, M. A., Leeming, D. J. and Genovese, F. (2012). Molecular serum markers of liver fibrosis. Biomark. Insights 7, 105-117.

Loeffler, I., Hopfer, U., Koczcan, D. and Wolf, G. (2011). Type VIII collagen modulates TGF-β1-induced proliferation of mesangial cells. J. Am. Soc. Nephrol. 22, 654-663.

Lopes, J., Adiguzel, E., Gu, S., Liu, S.-L., Hou, G., Hesimer, S., Assoian, R. and Bendek, M. P. (2013). Type VIII collagen mediates vessel wall remodeling after arterial injury and fibrous cap formation in atherosclerosis. Am. J. Pathol. 182, 2241-2253.

Macklinie, R., Wotton, S. F., Etherington, D. J. and Duance, V. C. (1990). Susceptibility of the cartilage collagen types II, IX and XI to degradation by the cysteine proteinases, cathepsin B and L. FEBS Lett. 269, 189-193.
Molteno, A. C. B., Bevin, T. H., Dempster, A. G., Sarris, M. and McCluskey, P. (2013). Otago glaucoma surgery outcome study: cytology and immunohistochemistry of trabeculectomy blebs. Invest. Ophthalmol. Vis. Sci. 54, 4991-4999.

Muiznieks, L. D. and Keeley, F. W. (2016). Innovations and adaptations in trabeculectomy. Curr. Mol. Med. 15, 577-580.

Sawchyn, A. K. and Slabaugh, M. A. (2010). Trabeculectomy revision as a treatment for failed trabeculectomy. Glaucoma Today Fall, 25-28. glaucomatoday.com/pdfs/gt1010_peerreview.pdf

Richards, A. J., Fincham, G. S., McInch, A., Hill, D., Poulsen, A. V., Castle, B., Lees, M. M., Moore, A. T., Scott, J. D. and Sneed, M. P. (2013). Alternative splicing modifies the effect of mutations in COL11A1 and results in recessive type 2 Stickler syndrome with profound hearing loss. J. Med. Genet. 50, 765-771.

Saika, S. (2006). TGFβ pathobiology in the eye. Lab. Invest. 86, 106-115.

Sawada, H. and Konomi, H. (1991). The alpha 1 chain of type VIII collagen is associated with many but not all microfibrils of elastic fiber system. Cell Struct. Funct. 16, 455-466.

Sawchyn, A. K. and Slabaugh, M. A. (2016). Innovations and adaptations in trabeculectomy. Curr. Opin. Ophthalmol. 27, 158-163.

Schäfer, M. and Werner, S. (2008). Cancer as an healing wound: an old hypothesis revisited. Nat. Rev. Mol. Cell Biol. 9, 628-638.

Schnoor, M., Cullen, P., Lorkowski, J., Stolle, K., Robenek, H., Troyer, D., Rauterberg, J. and Lorkowski, S. (2008). Production of type VI collagen by human macrophages: a new dimension in macrophage functional heterogeneity. J. Immunol. 180, 5707-5719.

Seegmiller, R., Fraser, F. C. and Sheldon, H. (1971). A new chondrodystrophic mutant in mice. Electron microscopy of normal and abnormal chondrocytes. J. Cell Biol. 48, 580-593.

Seet, L.-F., Su, R., Barathi, V. A., Lee, W. S., Poh, R., Heng, Y. M., Manser, E., Vithana, E. N., Auang, T., Weaver, M. et al. (2010). SPARC deficiency results in improved surgical survival in a novel mouse model of glaucoma filtration surgery. PLoS ONE 5, e9415.

Seet, L.-F., Lee, W. S., Su, R., Finger, S. N., Crouch, J. G. and Wong, T. T. (2011). Validation of the glaucoma surgical mouse model for anti-fibrotic drug evaluation. Mol. Med. 17, 557-567.

Seet, L.-F., Su, R., Finger, S. N., Crouch, J. G. and Wong, T. T. (2012). In vitro analyses of the anti-fibrotic effect of SPARC silencing in human Tenon’s fibroblasts: comparisons with mitomycin C. J. Cell. Mol. Med. 16, 1245-1259.

Seet, L.-F., Finger, S. N., Chu, S. W. L., Toh, L. Z. and Wong, T. T. (2013). Novel insight into the inflammatory and cellular responses following experimental glaucoma surgery: a roadmap for inhibiting fibrosis. Curr. Mol. Med. 13, 911-928.

Shoulders, M. D. and Rainey, R. T. (2009). Collagen structure and stability. Annu. Rev. Biochem. 78, 929-958.

Sibinga, N. E. S., Foster, L. C., Hsieh, C.-M., Perrella, M. A., Lee, W.-S., Endge, W. O., Sage, E. H., Lee, M.-E. and Haber, E. (1997). Collagen VIII is expressed by vascular smooth muscle cells in response to vascular injury. Circ. Res. 80, 532-541.

Skalli, O., Pelte, M. F., Peclet, M. C., Gabbiani, G., Gugliotta, P., Bussolati, G., Ravazzola, M. and Ordi, L. (1989). Alpha-smooth muscle actin, a differentiation marker of smooth muscle cells, is present in microfibrillar bundles of pericytes. J. Histochem. Cytochem. 37, 315-321.

Skuta, G. L. and Parrish, R. K.J. (1987). Wound healing in glaucoma filtering surgery. Surv. Ophthalmol. 32, 149-170.

Sneed, M. P., Yates, J. R. W., Williams, R., Payne, S. J., Pope, F. M. and Scott, J. D. (1996). Stickler syndrome type 2 and linkage to the COL11A1 gene. Ann. N. Y. Acad. Sci. 785, 331-332.

Sok, J. C., Lee, J. A., Dasari, S., Joyce, S., Contrucci, S. C., Egloff, A. M., Trevelline, B. K., Joshi, R., Kumari, N., Grandis, J. R. et al. (2013). Collagen type XI α1 facilitates head and neck squamous cell cancer growth and invasion. Br. J. Cancer 109, 3049-3056.

SooHoo, J. R., Sebold, L. K., Laing, A. E. and Kahook, M. Y. (2012). Bleb morphology and histology in a rabbit model of glaucoma filtration surgery using Ouzerex® or mitomycin-C. Mol. Vis. 18, 714-719.

Sutmuller, M., Brujin, J. A. and de Heer, E. (1997). Collagen types VIII and X, two non-fibrillar, short-chain collagens. Structure homologies, functions and involvement in pathology. Histol. Histopathol. 12, 557-566.

Tompson, S. W., Bacinco, C. A., Safina, N. P., Bober, M. B., Proud, V. K., Funari, T., Wanger, M. F., Nevarez, L., Ala-Kokko, L., Wilcox, W. R. et al. (2010). Fibrochondrogenesis results from mutations in the COL11A1 type XI collagen gene. Am. J. Hum. Genet. 87, 708-712.

Wassélius, J., Wallin, H., Abrahamsson, M. and Ehringer, B. (2003). Cathepsin B in the rat eye. Graefe’s Arch. Clin. Exp. Ophthalmol. 241, 934-942.

Wenstrup, R. J., Smith, S. M., Florer, J. B., Zhang, G., Beason, D. P., Seegmiller, R. E., Soslowsky, L. J. and Birk, D. E. (2011). Regulation of collagen fibril nucleation and initial fibril assembly involves coordinate interactions with collagens V and XI in developing tendons. J. Biol. Chem. 286, 20455-20465.

Wu, Y.-H., Chang, T.-H., Huang, Y.-F., Huang, H.-D. and Chou, C.-Y. (2014). COL11A1 promotes tumor progression and predicts poor clinical outcome in ovarian cancer. Oncogene 33, 3432-3440.

Zhang, K., Corsa, C. A., Ponik, S. M., Prior, J. L., Piwnica-Worms, D., Eliezeri, K. W., Keely, P. J. and Longmore, G. D. (2013). The collagen receptor discoidin domain receptor 2 stabilizes SNAIL1 to facilitate breast cancer metastasis. Nat. Cell Biol. 15, 677-687.