Running heading

The arabidopsis proliferative endosperm transcriptome

Corresponding Author

Richard Macknight
Department of Biochemistry
University of Otago
PO Box 56
Dunedin
Phone +64 3 479 5149
Fax +64 3 479 7866

Journal Area

Genome Analysis
Transcriptome analysis of proliferating arabidopsis endosperm reveals biological implications for the control of syncytial division, cytokinin signalling, and gene expression regulation

Robert C Day¹, Rowan P Herridge¹, Barbara A Ambrose², and Richard C Macknight¹§

¹Department of Biochemistry, University of Otago, PO Box 56, Dunedin, NZ
²Institute of Molecular BioSciences, Massey University, Private Bag 11222, Palmerston North, NZ
§Corresponding author

Email addresses:

richard.macknight@otago.ac.nz
Abstract

During the early stages of seed development, *Arabidopsis thaliana* (arabidopsis) endosperm is syncytial and proliferates rapidly through repeated rounds of mitosis without cytokinesis. This stage of endosperm development is important in determining final seed size and is a model for studying aspects of cellular and molecular biology, such as the cell cycle and genomic imprinting. However, the small size of arabidopsis seed makes high-throughput molecular analysis of the early endosperm technically difficult. Laser capture microdissection enabled high-resolution transcript analysis of the syncytial stage of arabidopsis endosperm development four days after pollination. Analysis of gene ontology representation revealed a developmental programme dominated by the expression of genes associated with cell cycle, DNA processing, chromatin assembly, protein synthesis, cytoskeletal and microtubule related processes, and cell/organelle biogenesis and organisation. Analysis of core cell-cycle genes implicates particular gene-family members as playing important roles in controlling syncytial cell division. Hormone marker analysis indicates predominance for cytokinin signalling during early endosperm development. Comparisons with publicly available microarray data revealed that ~800 putative early seed-specific genes were preferentially expressed in the endosperm. Early seed expression was confirmed for 71 genes using quantitative RT-PCR with 27 transcription factors being confirmed as early seed specific. Promoter-reporter lines confirmed endosperm-preferred expression at four days after pollination for five transcription factors, which validates the approach and suggests important roles for these genes during early endosperm development. In summary, the data generated provides a useful resource providing novel insight into early seed development and identifies new target genes for further characterisation.

(248/250 words)
Introduction

Most of the world's food calories come from seed and extensive research has been directed at improving nutritional value and traits such as seed size and number. However, seed are complex organs and improvement by rational design requires an understanding of the contribution of specific tissues during important stages of seed development.

Seed development in most angiosperms begins with double fertilisation where the haploid egg cell and the double haploid central cell are both fertilised by identical haploid sperm cells contributed from a single pollen grain. This generates the diploid embryo and the triploid endosperm, respectively. The embryo and the endosperm grow rapidly in a coordinated manner that is heavily influenced by the surrounding maternal integument tissues that later form the seed coat (Olsen, 2004; Garcia et al., 2005). During early stages of seed development, maternal resources are mainly used for rapid cell division and growth of new tissues. Once cell division slows, the seed enters a maturation phase during which resources are reallocated to the synthesis of storage compounds, such as starch followed by accumulation of oils and proteins. Biosynthetic activity then slows as the seed moves through a late maturation phase and prepares to desiccate prior to dormancy.

The developing endosperm plays several important roles during seed development (Berger, 2003; Olsen, 2004). In many plant species, including arabidopsis, the triploid primary endosperm nucleus undergoes several rounds of free-nuclear division, growing rapidly as a syncytium (Olsen, 2001). During the first phase of endosperm development nuclei divisions are synchronous but by the fourth division three mitotic domains are apparent that differ with regard to the rate of nuclei divisions (Boisnard-Lorig et al., 2001; Brown et al., 2003). These are termed the micropylar endosperm (MPE), which surrounds the embryo, the peripheral endosperm (PEN) that lines the wall of the developing embryo sac, and the chalazal endosperm (CZE) which develops adjacent to the vascular connection with the seed parent (Boisnard-Lorig et al., 2001). Nuclear division continues through a third phase of endosperm development, which is marked by a migration of nuclei to the chalazal region leading
to the formation of chalazal-nodules and -cysts. Towards the end of this phase the endosperm consists of approximately 200 nuclear-cytoplasmic domains and the embryo reaches the globular stage of development. Phase four sees the initiation of endosperm cellularisation and reduced rates of mitosis (Scott et al., 1998; Boisnard-Lorig et al., 2001; Ingouff et al., 2005).

A role for endosperm in supporting the formation and growth of the embryo during early stages of development is suggested by the positioning of the CZE endosperm and by the fact that seed with severely defective endosperm cannot complete development (Scott et al., 1998). During the maturation stages, endosperm cellularises and storage reserves are produced that accumulate in the endosperm cells (Sorensen et al., 2002). In plants that have ephemeral endosperms, such as arabidopsis and oilseed rape, the embryo develops at the expense of the endosperm and absorbs these reserves, storing them in the cotyledons (Scott et al., 1998; Olsen, 2004). Seeds that generate large endosperms during the early stages of development produce large embryos at maturity. The early proliferation of the endosperm is therefore associated with the growth of seed and final seed size (Scott et al., 1998; Bushell et al., 2003). The alteration of the rate and duration of cell division in the endosperm has been proposed as a biotechnological strategy for altering seed size (Tiwari et al., 2006).

Arabidopsis provides an important model system for studying the underlying mechanisms of early seed development. Extensive and rapid analysis of many aspects of seed biology can be conducted in arabidopsis due to the established protocols for producing and analysing mutant and transgenic lines, and the availability of a genome sequence facilitating the generation of tools for high throughput molecular analysis. However, a major drawback to studying seed biology in arabidopsis is its very small seeds. Laser microdissection (LM) is an important method for obtaining individual tissues or cell types for biochemical analysis. Originally developed for isolating cancerous cells from normal tissue (Emmert-Buck et al., 1996), LM has been used successfully to obtain DNA, RNA, proteins and metabolites from a range of plant species and tissue types (reviewed in Day et al., 2005; 2007a; Nelson et al., 2006). It therefore provides an ideal tool for analysing gene expression changes in specific cell types during the early stages of arabidopsis seed development (Spencer et al., 2007).
In a previous study, we compared different methods of transcriptome amplification from small amounts of RNA for use with printed long-oligonucleotide microarrays (Day et al. 2007b). A two round IVT based amplification was selected and used to obtain array data for proliferating syncytial endosperm 4 days after pollination (DAP). This corresponded to the end of the third phase of endosperm development where the syncytial endosperm contains many nuclear-cytoplasmic domains but is prior to cellularisation at 5-6 DAP (Scott et al., 1998; Boisnard-Lorig et al., 2001; Ingouff et al., 2005). The microarray data that formed the basis of this study were generated by hybridising LCM endosperm derived target alongside target from similarly treated silique tissues using a two colour microarray approach (Day et al., 2007b). 18,220 unique probes gave signal higher than two-fold background and t-testing identified 12,710 probes as being significantly differentially expressed between the whole silique and endosperm samples using a p-value cut-off of <0.05. Analysis of embryo, seed coat and endosperm markers within the data indicated that a 2-fold differential expression in the endosperm direction provided a stringent cut-off for identification of endosperm-preferred expression (Day et al., 2007b). This procedure identified 2,568 individual loci as being preferentially expressed in the endosperm.

Here, we present extensive validation of the LCM endosperm array data by qRT-PCR and GUS reporter lines and provide a comprehensive analysis of the endosperm transcriptome in the context of existing online resources. The analysis has enabled novel insight into early endosperm development and has identified 793 genes as having early seed-specific and endosperm-preferred expression.
Results

Microarray analysis from laser microdissected endosperm reliably identifies differential expression in the endosperm.

To ensure that the microarray platform was correctly measuring differential expression between the endosperm and silique samples sixteen differentially expressed genes from the array data were selected for concurrent qRT-PCR analysis. Excess amplified RNA produced during the microarray target preparation was used to provide template for the qRT-PCR. The expression ratios produced by qRT-PCR and the microarray experiments were very similar (Table I) and all genes were confirmed as preferentially expressed in the endosperm sample by both the microarray and qRT-PCR.

Identification of endosperm-preferred genes specifically expressed during early seed development using online datasets

To help identify genes with early endosperm specific roles, we searched three online datasets that included a wide range of different tissues and at least one early seed or silique sample. This identified many genes with apparent early silique/seed-specific expression.

MPSS data available from http://mpss.udel.edu/at/GeneQuery.php (Meyers et al., 2004), includes two independent silique libraries (1-2 DAP) that are consistent with the early proliferative stage of endosperm development as well as data for inflorescences, leaves, roots and germinating seedlings. We identified 200 genes that showed enrichment in the silique libraries. Of these, 68 were preferentially expressed in the endosperm and were MPSS silique library specific. A summary of the 35 endosperm-preferred genes with the highest MPSS tag frequencies and silique specific MPSS profiles are given in Figure S1.

The AtGenExpress developmental series (Schmid et al., 2005) uses Affymetrix Genechip technology to profile arabidopsis transcripts from different organs and at different stages of development. This library contains data for seeds dissected from the silique 6 DAP onwards but the earlier stages (2-3, 3-4 and 4 DAP) use whole silique material. *SUC5* has strong endosperm-preferred expression during the
proliferative stages of seed development (Baud et al., 2005) and was used as an expression template to pull out 196 genes with similar expression (based on an r value cut-off of 0.75) (Table S1). This list was filtered based on endosperm-preferred expression in our data, a median expression level in AtGenExpress <100 units in non-seed containing tissues and a median expression of >100 across the seed series to generate entries for Figure 1.

A more recent Affymetrix Genechip dataset profiles a range of tissues including ovules and seed dissected from gynoecia and siliques, respectively (available at http://estdb.biology.ucla.edu/genechip/). This dataset includes immature seed at 1, 3-4 and 7-8 DAP and was generated in the Goldberg (UCLA) and Harada (UC Davis) laboratories by Brandon Le (UCLA), Anhthu Bui (UCLA), and Julie Pelletier (UC Davis). We refer to it in this manuscript as GHL data. We identified genes with similar expression patterns to early endosperm markers (see materials and methods) and cross-referenced this to genes with differential expression from our arrays. This created a subgroup of 2,608 putative early seed-specific genes (Table S2).

Partitioning the data for further analysis.

To gain insight into the differential processes in operation during early silique and endosperm development at 4 DAP, we analysed endosperm preferred (EP; >2-fold differentially expressed in the endosperm sample compared to the silique sample) or other silique tissue preferred (OST; >2-fold differentially expressed in the silique sample compared to the endosperm sample) gene groups. We also looked at subgroups containing genes that were thought to be early seed specific from our analysis of the GHL data that we termed ESS-EP and ESS-OST. The GHL data was found to be the most reliable source for identifying early seed-specific expression since it displayed high sensitivity towards known endosperm markers compared to the AtGenExpress data (see Materials and Methods and Figure S2). The lists of AGI numbers used for each partition are available in Table S3.

Analysis of representation of gene ontologies and functional categories.

The arabidopsis genome has been extensively annotated. TAIR, as part of the Gene Ontology Consortium (Rhee et al., 2003) and the Munich Information Centre for Protein Sequences (MIPS) (Mewes et al., 2008) both provide annotation schemes that
use controlled vocabularies aimed at providing descriptions of the roles of genes that are applicable to all organisms. We identified statistically significant enrichment of annotation terms using both the TAIR GO or FunCat schemes. Since both gave a similar insight into our microarray data, we present the analysis based only on the TAIR GO terms. However, complete analysis using both vocabularies, including AGI identifiers for each gene present in a significantly enriched group, are provided in Tables S4 to 7. Analysis of the EP partition indicated enrichment for GO terms associated with the rapidly proliferating nature of the endosperm at 4 DAP i.e. molecular biosynthesis, protein formation, the cell cycle, DNA metabolism and replication and microtubule based movement (Tables S4 to 7).

The OST partition represents genes that are predominantly expressed in non-endosperm tissues of the silique. The less proliferative nature of the growth and development of the majority of non-endosperm tissues manifest as an enrichment of GO terms for growth, development, cell communication, signal transduction and hormone-mediated signalling (Table S4). We also saw an enrichment of a large number of GO terms associated with endogenous and environmental stimuli that presumably reflect the need for the silique to provide a buffered environment for immature seed to develop. Unlike the syncytial endosperm, the non-endosperm tissues of the silique are mostly comprised of cells encased in a cell wall matrix, a difference that is corroborated in our data by enrichment for cell wall organisation/biogenesis and cell wall loosening. Also enriched in this partition are terms for carbohydrate metabolism and biomolecular transport (Table S4).

The GO analysis was refined to only include genes expressed specifically during the early stages of seed development. The ESS-EP partition was heavily enriched for genes associated with aspects of the cell cycle, DNA and chromatin biochemistry, microtubule associated processes and protein synthesis. The ESS-OST partition was enriched for relatively few GO terms (development, ovule development, carpel development, gynoecium development and organ development) consistent with a less proliferative type of tissue development in non-endosperm seed tissues (ESS-EP and ESS-OST GO analysis shown in Table II).
Representation analysis of selected gene families

Several gene families of interest have been characterised in the recent literature or collected in online resources. Representation analyses of selected gene families are summarised in Table III and details are given below. Significance during this stage of the analysis was based on a *p*-value cut-off of <0.005, unless otherwise stated.

Analysis of cell cycle genes

Plant syncytial development requires a rapid progression through the cell cycle, suppression of phragmoplast formation and an uncoupling of cytokinesis from mitosis (Otegui and Staehelin, 2000). To gain further insights into this process, we analysed our data to identify endosperm-preferred genes that have been implicated in controlling cell cycle progression (Table IV). The core cell cycle genes of Arabidopsis (Vandepoele et al., 2002) and genes shown to be regulated by the E2F members of this family were overrepresented in the EP data (Table IV and Table S8). Motifs associated with E2F binding were also highly enriched in this partition, such that the “E2FAT” motif (TYTCCCGCC) was enriched at the *p*-value <1x10⁻⁵ level in both the EP and ESS-EP partitions and the “E2F binding site motif “ (TTTCCCGC) was enriched in the EP and ESS-EP partitions at the *p*-value <1x10⁻⁹ and *p*-value <1x10⁻¹⁰ levels, respectively.

Progression through the cell cycle occurs via coordinated sequential activation of distinct phases. M-phase specific expression is associated with an M-specific activator sequence (MSA) in the promoter region of a gene. 161 differentially expressed genes from our array analysis contained the MSA sequence in the 500bp upstream of the ATG. Of these putative M phase-specific genes, 27 were in the EP partition and 16 in the ESS-EP partition (Table S8). Hypergeometric testing of these putative M phase specific transcripts indicated significant enrichment in the EP and ESS-EP partitions at the *p*-value <0.01 and *p*-value <0.0005 level, respectively.

Analysis of hormone response pathways

The varied distributions of phytohormones and their well-documented ability to regulate growth and development of the seed make them obvious candidates for identifying important components in the control of early endosperm development (Lur and Setter, 1993; Yang et al., 2002; 2006). A recent study by Nemhauser et al. (2006)
used the AtGenExpress hormone series to identify genes that were only expressed in response to particular hormones, suggesting these genes can be used as markers for hormone action. To gain insight into the influence of plant hormones in the developing silique at 4 DAP, we looked for the presence of these markers in our gene groups. The OST partition (representing many tissues) was significantly enriched for hormone markers, whereas the EP partition (single tissue) had significant under representation (Table III).

Analysis of the full lists of genes responsive to the hormones ethylene, abscisic acid, brassinosteroid, cytokinin, gibberellinin, auxin and jasmonate (ACC, ABA, BL, CK, GA, IAA and MJ) showed that all but one of the hormone responsive gene groups (GA) were significantly enriched in the OST partition (Table III and Table S9), reinforcing the observations made using the marker list. The ACC, ABA and GA responsive genes were well represented in the endosperm-preferred partition but only the CK responsive genes were significantly enriched (Table III). Endosperm-preferred genes involved in cytokinin signalling are given in Table V.

The hormone responsive gene lists include genes that are up-regulated, down-regulated, or have a complex regulatory pattern, in response to exogenous hormone application. The distribution of up, down and complex CK regulated genes in the data partitions were compared using a chi-square test. Significant differences from the expected distribution for CK regulated genes were seen for both the EP and OST partitions. The EP partition included a much larger than expected number of CK up-regulated (observed 94% and expected 66%) and fewer than expected CK down-regulated genes (observed 4% and expected 32%). Conversely, in the OST partition, we saw a much larger than expected number of CK down-regulated (observed 52% and expected 32%) and fewer than expected CK up-regulated genes (observed 47% and expected 66%).

Interestingly, none of the 48 ARF and AUX-IAA transcription factors represented in the differentially expressed gene list gave evidence for endosperm-preferred expression (data not shown). Conversely, 19 of these transcription factors were present in the OST partition. Interactions between these two groups of proteins mediate auxin-dependent transcriptional regulation and when taken together as an
“Auxin signalling group” (ARFs plus Aux-IAAs), hypergeometric testing showed that the under representation in the EP partition was significant (p-value =0.0032).

Analysis of chromatin related and DNA methylation sensitive genes

Transcriptional regulation is closely related to chromatin structure and during syncytial development endosperm has a high proportion of euchromatin, with small chromocenters and distinct heterochromatic foci (Baroux et al., 2007). Euchromatin is associated with active transcription and alterations in chromatin structure have been associated with the onset of cell division, morphogenesis and differentiation (Zhao et al., 2001; Berger and Gaudin, 2003; Williams et al., 2003; Baroux et al., 2007; De Veylder et al., 2007). Enrichment analysis revealed a significant overrepresentation of chromatin related genes (obtained from ChromDB-http://www.chromdb.org/) in the endosperm (Table III; Table S10).

Dynamic changes in chromatin structure are associated with epigenetic alterations, such as DNA methylation and histone modifications. DNA methylation tends to be associated with transcriptional repression and a recent study has identified a number of genes that appear to have methylation sensitive transcription (Zhang et al., 2006). Enrichment analysis of the methylation sensitive genes in our partitioned data generated a similar distribution pattern to that observed for transcription factors (Table III; Table S11) which implies DNA methylation is a widespread form of transcriptional control throughout developing siliques.

Analysis of transcription factors

The Database of Arabidopsis Transcription Factors (DATF-http://datf.cbi.pku.edu.cn/) includes information about 1922 transcription factors, classified into 64 families (Guo et al., 2005). Our analysis identified differential expression for 943 of these, 187 of which were endosperm preferred (Table S12). Furthermore, 71 transcription factors were found to be endosperm preferred and early seed specific (Table S12). Table VI highlights the transcription factors that our analysis validates (see below) to be early seed specific with strong evidence for endosperm-preferred expression from the microarrays. To see if any transcription factor families were overrepresented in the EP and ESS-EP lists, we calculated the frequency of each family in our data (our analysis was limited to the 28 families that
had 10 or more members showing differential expression in our array data). However, little evidence for enrichment of particular types of transcription factors was observed (data not shown).

Evidence for biological significance of protein interactions for MADS box transcription factors expressed during proliferative endosperm development.

Twelve MADS-box genes were found in the EP partition and interestingly, all but one were type I MADS box genes (Table VII). MADS-box proteins often form homo- and hetero-dimers and a comprehensive analysis using yeast two-hybrid technology, has identified interactions within the members of the arabidopsis family (de Folter et al., 2005). By combining this data with our cell-type specific experiments, we can help infer *in planta* biological significance during endosperm development for the following MADS-box transcription factor interactions: AGL45:AGL40, AGL40:PHE2, AGL40:PHE1, PHE2:AGL62, AGL62:PHE1, AGL62:AGL36, PHE1:AGL99, AGL99:AGL78, AGL78:AGL102, AGL86:AGL23 and AGL86:AGL40 (Table VII and Figure 2). We also identified seven MADS-box genes that gave strong evidence for endosperm specific expression at 4 DAP (AGL35, PHE1, PHE2, AGL33, AGL40, AGL62 and AGL91) (Table VII and Figure 2).

Validation of early seed and early seed-specific expression

All the endosperm-preferred genes discussed in detail as part of our analysis had their expression levels assessed in different plant tissues by qRT-PCR (Figure 3). Samples were taken from leaves, stems, roots, flower buds, whole siliques and seed dissected from 4 DAP siliques. All genes detected showed higher expression in the seed sample than in whole siliques, consistent with the original LCM endosperm array data. Data analysis also predicted early seed-specific expression for a number of transcription factors (Table VI). Of the 25 novel candidates in Table VI only two (At4g23750 and At5g11510) showed significant transcript expression in a non-seed tissue sample (Figure 3). Both were only additionally expressed in the flower buds, perhaps suggesting prior expression in the male and/or female gametophytes prior to fertilisation. At4g00140 was not detected in any conventional samples by qRT-PCR.
Identification of promoters driving expression in the early endosperm.

GUS reporter constructs were made for a selection of transcription factors to assess their use as markers for early endosperm development (Figure 4). The promoter for At1g65300 (AGL38/PHE2) drove expression during very early embryo and endosperm development but became restricted to the chalazal endosperm region around the late globular stage of embryo development. Expression was also seen in pollen. The At1g49190 (ARR19) promoter was expressed specifically in the chalazal endosperm during globular and early heart stages of seed development with some evidence of expression in stomatal guard cells of the silique. The At4g21080 (DOF4.5; Yanagisawa, 2002) promoter showed very strong chalazal specific expression at globular stage, but then became more widespread throughout the endosperm with the intensity of staining decreasing around heart stage. The At4g18870 (Hsf-14; Guo et al., 2008) promoter also had very strong expression in the chalazal endosperm plus strong expression in the peripheral endosperm but staining was not apparent in the micropylar domain. At around heart stage expression became restricted to the chalazal endosperm. Expression was also apparent in the cotyledons of the embryo during the mature green stages of seed development. At5g60440 (AGL62) was expressed specifically throughout the early developing endosperm at low levels but staining was not apparent from heart stage (Figure 4).
DISCUSSION

Using laser microdissection and microarray analysis, we have obtained the transcriptome of the syncytial endosperm (Day et al., 2007b). Here, we present a detailed analysis of the transcriptome, focusing on the genes differentially expressed in the endosperm compared with other silique tissues. We also identified subset of ~800 of these genes that are specifically expressed in the seed and therefore probably play key roles in seed development. Analysis of our data was consistent with the idea that the syncytial endosperm at 4 DAP is locked into a proliferative state dominated by transcripts associated with the regulation of the cell cycle, DNA processes, chromatin assembly, protein synthesis, cytoskeletal/ microtubule related processes, and cell/organelle biogenesis and organisation. In the discussion below, we focus on biological significance of the endosperm-preferred expression of particular genes involved in the cell cycle, hormone biology, transcriptional regulation, and early endosperm development.

Analysis of cell cycle genes suggest roles for gene-family members in the regulation of syncytial division

In arabidopsis, eight mitotic divisions occur during the syncytial phase of development until there are ~200 nuclei (Boisnard-Lorig et al., 2001). Plant syncytial development requires a rapid progression through the cell cycle, suppression of phragmoplast formation and an uncoupling of cytokinesis from mitosis (Otegui and Staehelin, 2000). To gain further insights into this process, we analysed our data to identify endosperm-expressed genes that have been implicated in controlling cell cycle progression.

Cyclin dependent kinase/cyclin regulation of the cell cycle. The components of the cell cycle are largely conserved across the eukaryotes (Mironov et al., 1999). Fluctuations of distinct combinations of cyclin-dependent kinases (CDKs) and cyclins are necessary for progression through the different phases of the cell cycle (Gutierrez, 2005; De Veylder et al., 2007). In arabidopsis, there are 12 CDKs and at least 49 cyclins divided into 9 classes (Vandepoele et al., 2002; Wang et al., 2004). Different CDK/cyclin heterodimer combinations phosphorylate different protein targets which...
then coordinate entry into the next phase of the cell cycle. A- and B-type CDKs are the main drivers of the plant cell cycle and \(CDKB1;1, CDKB1;2, CDKB2;2, \) and \(CDKD1;1 \) (\(CDKD3 \) is just below the 2-fold cut-off) are present in the endosperm-preferred partition and probably play a key role in controlling endosperm proliferation (Table IV).

A most striking aspect of our analysis of core cell cycle genes (Vandepoele et al., 2002) is the predominance of cyclin-A and -B genes in the endosperm-preferred partition. Five of the seven A-type cyclins (\(CYCA1;1, CYCA1;2, CYCA2;1, CYCA2;2, CYCA3;1 \)) and all six of the B-type cyclins (\(CYCB1;1, CYCB1;2, CYCB1;3, CYCB2;1, CYCB2;3, CYCB3;1 \)) with differential expression on our arrays were endosperm-preferred (Table IV). In contrast to the A and B type, only one out of seven D-type cyclins present on the array (\(CYCD3;3 \)) (Vandepoele et al., 2002) was detected in the endosperm-preferred partition. Both A and B type cyclins are associated with mitotic cycles and it has been predicted that cyclin accumulation is part of the overall programme responsible for syncytial development (Boisnard-Lorig et al., 2001). The \textit{Zea mays} \(CYCA1 \) is concentrated in the phragmoplast during cytokinesis (John et al., 2001). The arabidopsis \(CYCA1 \) orthologue is endosperm preferred in our analysis, yet the precise nuclear localization of \(CYCA1 \) is not known and formation of the phragmoplast is suppressed during syncytial endosperm development. \(CYCB1;1 \) has been studied extensively during early endosperm development (Boisnard-Lorig et al., 2001) and \(CYCB1;1-3 \) are endosperm preferred in our analysis. It has been shown that a non-degradable form of \(CYCB1 \) suppresses phragmoplast formation at the end of each nuclear division (Weingartner et al., 2004). Therefore studies on the regulation of \(CYCB1 \) genes should provide further insights into their possible role in syncytial endosperm development.

Regulation of CDK/cyclin complexes through the cell cycle is also mediated through inhibitors of cyclin dependent kinases (CKI). In plants, inhibitors of cyclin dependent kinases are more similar to Kip protein (KRP; Kip related protein) (De Veylder et al., 2001). There are seven KRPs present in the arabidopsis genome. The putative arabidopsis inhibitory protein KRP4 is endosperm preferred (Table IV), which is consistent with its reported expression in mitotically active cells (Ormenese et al., 2004).
indicates that genes capable of negatively regulating the cell cycle are also present in the EP partition.

Regulation of G2-M phase expression by MYB3R genes. Proliferating plant cells show periodic transcription of a large portion of their genes (Breyne et al., 2002). In tobacco, M phase specific expression is regulated by *Myb3R* genes, with *Myb3RA1* and *Myb3RA2* showing phase dependent transcription and their proteins bind M-specific activator (MSA) sequences in the promoter region of their target genes (Ito et al., 1998; 2001). The third tobacco gene, *Myb3RB*, which is thought to antagonise *Myb3RA* to control expression of the G2-M phase specific genes, is expressed at a constant level during the cell cycle and is incapable of activating MSA-containing promoters (Araki et al., 2004). All five arabidopsis *Myb3R* genes show evidence of endosperm expression in our data and *AtMyb3R2* and *AtMyb3R4* have endosperm-preferred expression suggesting they play an important role in the regulation of G2-M phase specific genes in the syncytial endosperm. Furthermore, transcripts of their putative M phase specific target genes were enriched in the endosperm. Analysis of reporter constructs during early endosperm development should help elucidate the role of individual *AtMyb3R* genes, such that phase dependent expression would indicate an MSA activating role and phase independent expression an inhibitory role.

E2F transcription factors. The orderly fluctuation of particular CDK/cyclins is required for progression through the cell cycle. These fluctuations are mediated in part by E2F transcription factors (Otegui and Staehelin, 2000; Kosugi and Ohashi, 2002; Mariconti et al., 2002). Consistent with a pronounced role during early endosperm development, E2F target genes (and upstream E2F binding motifs) were significantly enriched in the EP and ESS-EP groups indicating that some E2F responsive genes have endosperm specific roles (Table III). All six arabidopsis E2F transcription factors (E2Fa-c and DEL1-3) gave signals consistent with endosperm expression, although data for E2Fb and DEL1 was relatively variable. E2Fa-c have important roles regulating transcription during the G1-S transition, with E2Fa and E2Fb acting as positive regulators of the cell cycle (De Veylder et al., 2002; Kosugi and Ohashi, 2003; Sozzani et al., 2006) activating targets that are necessary for DNA replication during S phase (Ramirez-Parra et al., 2003; del Pozo et al., 2006) and E2Fc suppressing cell division by acting as a transcriptional repressor (del Pozo et al.,
2002; Vandepoele et al., 2005). E2F-DP-Retinoblastoma protein complexes bind but do not activate the expression of S phase factor targets, until the retinoblastoma protein becomes phosphorylated by a G1 specific cyclin/CDK (Nakagami et al., 2002).

Unlike E2Fa-c, DEL1-3 do not interact with DPa and DPb and bind E2F binding sites in a monomeric form (Kosugi and Ohashi, 2002; De Veylder et al., 2007). The DEL proteins have been shown to be abundant in meristematic cells and were thought to balance the activities of E2Fa/bDPa/b transcription factors by restraining cell proliferation (Ohashi-Ito et al., 2002). DEL3 and DEL2 were present in the endosperm (Table IV), indicating a role for DEL proteins during proliferative syncytial endosperm development where repeated rounds of mitosis occur in the absence of cytokinesis and cell wall formation. Indeed, recent data suggests DEL genes function as important negative regulators of cell differentiation (Ramirez-Parra et al., 2004; Vlieghe et al., 2005) consistent with a role during the syncytial phase of endosperm development. Intriguingly, DEL1 inhibits the endocycle and preserves the mitotic state of proliferating cells and DEL3 represses transcripts associated with cell wall biosynthesis and expansion (Ramirez-Parra et al., 2004; Vlieghe et al., 2005).

In summary, analysis of the core cell-cycle genes and their putative downstream targets reveals genes that appear to play important roles in the proliferation of the endosperm. Further insight into the role of particular cell-cycle genes, such as DEL2 and KRP4, in the endosperm could be obtained using reporter constructs, in situ hybridization or region specific endosperm LCM to associate gene expression with either the proliferating or endoreduplicating domains of the endosperm (Boisnard-Lorig et al., 2001).

Analysis of hormone markers indicates an important role for cytokinins in the proliferating endosperm

Analysis of hormone responsive genes showed that only the CK responsive genes were significantly enriched in the EP partition (Table III). This is consistent with studies in rice and maize that show significant correlations between CK levels and the rate of cell division in the early endosperm (Lur and Setter, 1993; Yang et al., 2002). Moreover, the early endosperm appears to be a site of CK biosynthesis with major
components of the CK biosynthetic pathway (Isopententyltransferase genes 4 and 8) being specifically expressed in the chalazal endosperm during early seed development (Miyawaki et al., 2006 and Table I).

Cytokinin signalling genes are expressed in the early endosperm. The enrichment of CK responsive genes and the presence of CK biosynthesis genes in the EP partition indicate that CK signalling is important during the early stages of Arabidopsis endosperm development (Table V). CK perception and signalling are similar to two-component phosphorelays in bacteria (Müller and Sheen, 2007). AHK4 shows evidence for endosperm expression in our data and is an example of a sensor histidine kinase (AHKs) that is able to initiate a phosphorelay when bound to CKs. Arabidopsis Histidine-containing phosphotransfer proteins (AHPs) are subsequently phosphorylated and translocated to the nucleus where they transfer their phosphate to Arabidopsis type-B Response Regulators (ARRs) (Müller and Sheen, 2007). These mediate the transcriptional response to CKs, which includes inducing the primary response genes, the type-A ARR, that act as negative regulators of the primary signal transduction pathway, likely via interaction with the AHP (Dortay et al., 2006). AHP genes have functional overlap, with only multiple AHP mutants displaying a reduced sensitivity to CKs. The AHP1-5 quintuple knockout plants show multiple abnormalities in growth and development, including seeds with uneven size and some seed abortion (Hutchison et al., 2006). The average size of non-abortive seed was about 20% larger than wild type, although this might be a consequence of increased maternal resource (de Jong and Scott, 2007). Similar variation in seed development was seen in the AHP2, 3, 5 triple mutant, which indicated these AHPs have roles during seed development (Hutchison et al., 2006). Interestingly, of the AHPs in the list of differentially expressed genes, AHP2 and 5 are very close to the arbitrary 2-fold cut off (1.99 and 1.89, respectively; Table V) indicating relatively high expression in the endosperm compared to other silique tissues. This suggests that the reduced seed set and abortion in the triple mutant might be as a result of aberrant endosperm development.

CK responsive genes were significantly overrepresented in both the EP partition and the OST partition (Figure 4) but further analysis suggested a very different response to CK in the endosperm than in the other silique tissues with CK predominantly
activating genes in the EP group and down regulating genes in the OST group. A
differential response to CK in the endosperm compared to other silique tissues was
also evident in our analysis of the ARR genes in the EP and OST partitions (Table V).
The EP partition included three ARRs (ARR18, 19 and 21), all of which are B-type
ARRs that act as transcriptional activators during CK signalling. In contrast, the
majority of A-type ARRs (negative regulators) in our data were distributed in the
OST partition and perhaps indicates a more inhibitory regulation of CK signalling in
other silique tissues compared to endosperm at 4 DAP.

Recently, a second group of transcription factors, termed the cytokinin response
factors (CRFs), have been shown to act as part of the CK two component pathway and
require the action of both the AHK and AHP genes to mediate a CK response
(Rashotte et al., 2006). CRFs mediate a large fraction of the cytokinin transcriptional
response that functionally overlaps with the B-type ARR response. Five of the six
CRFs are present in our data, confirming an important role for this gene family in
developing siliques at 4 DAP. CRF5/6 double mutant embryos fail to develop past the
early heart stage (Rashotte et al., 2006). This suggests that CRF5 and 6 are embryo
expressed during early seed development, which is consistent with the presence CRF5
in our OST partition. The four other CRFs (CRF1-4) are included in our EP partition
indicating a role in early endosperm development (Table V). The role of CRF1 and 3
is unclear as these genes show little or no response to cytokinin (Rashotte et al.,
2006). However, like CRF5, CRF2 is heavily unregulated by cytokinin in a B-type
ARR dependent manner and likely plays an important role in CK dependent
transcriptional activation in the endosperm. CRF2 and the B-type response regulators,
ARR18, 19 and 21, are present in our ESS-EP partition indicating a seed specific role
for these components of CK signalling.

In a study that characterised the expression of B-type ARRs, RT-PCR analysis
showed that ARR19 and 21 are expressed specifically in silique tissues, although this
expression was not detected using promoter-GUS reporter constructs (Mason et al.,
2004). However, alternative promoter-GUS constructs (ARR21 in Tiwari et al.,
(2006) and ARR19 in Figure 4 of this study) indicate expression in the chalazal
endosperm during early endosperm development. Interestingly, over expression
experiments show that ARR21 induces expression of the key CK biosynthesis gene
IPT4 (Kiba et al., 2005). As IPT4 is also expressed in the chalazal endosperm (Miyawaki et al., 2004), it seems likely therefore that ARR21 and perhaps ARR19 act to ensure IPT gene expression and therefore CK biosynthesis during early wild-type seed development.

Although our analysis indicates that the chalazal endosperm plays an important role in directing proliferation of the endosperm via CK signalling, the chalazal endosperm does not appear to undergo mitosis and shows evidence of endoreduplication (Boisnard-Lorig et al., 2001). This is contrary to current thinking that high levels of CKs exist in mitotically dividing cells, the suggested sites of de novo CK biosynthesis (Moncaleán et al., 2001; Friml, 2003; Nordstrom et al., 2004; He et al., 2005). Another important function for CKs may be determining cell fate, as a Sinapis alba MADS-box gene (Bonhomme et al., 2000) and a maize homologue of arabidopsis KNAT1, important in the development and maintenance of the SAM (Hewelt et al., 2000), are induced by CK treatment.

Auxin signalling and auxin responsive genes are underrepresented in the proliferating endosperm.

Whilst our data suggests a primary role for CK signalling during syncytial endosperm development, there is likely to be significant interplay with other phytohormones. It is well documented that the ratio of auxins and cytokinins play an important role in controlling tissue proliferation and differentiation. A study of maize endosperm showed CK levels were high at 9 DAP, which corresponded to the maximal cell division rate in the endosperm, and reduced sharply as auxin levels increased towards the mid-to late-stages of endosperm development. This is consistent with other studies on grain development where CK levels are maximal during early stages and auxin levels reach maximal levels later in seed development (Mengel et al., 1985; Lur and Setter, 1993). Furthermore, auxin has been shown to have a rapid negative control on CK levels by suppressing its biosynthesis (Nordstrom et al., 2004). Our data indicate strong CK-associated and weak auxin-associated transcriptional responses in the syncytial endosperm at 4 DAP (Table III) along with significant under representation of auxin signalling genes in the EP partition. A hypothesis that is consistent with these observations is that at 4 DAP of endosperm development auxin levels are low,
enabling increased CK biosynthesis and high rates of cell division; subsequent increases in auxin might then promote endosperm cellularisation.

The role of other hormones during endosperm development is indicated through the representation of ethylene, ABA, and GA related genes and the under-representation of brassinosteroid responsive genes.

The distribution of both ACC and ABA responsive genes indicate that both ethylene and ABA signalling systems are active during early silique development and have a role during endosperm development (Table III and Table S9). In a recent study, Yang et al., (2006) made direct comparisons of both ethylene and ABA levels with endosperm cell division in spikelets of rice. They concluded that cell division and grain filling rates were positively associated with ABA and negatively associated with ethylene. However, during the earliest stages of endosperm development (0-12 days post anthesis) their data show that ethylene evolution rates and ACC content of the rice spikelets were at their highest. Conversely, ABA levels were low at anthesis and slowly increased to peak values at 12 DAP or later depending on the cultivar. These observations are consistent with the idea that during the early syncytial stage of development (0-4 days in rice) ethylene levels are high which may inhibit ABA biosynthesis (Ghassemian et al., 2000; del Pozo et al., 2005). It remains to be elucidated whether ethylene and ABA have an antagonistic effect during early endosperm development. The finding that the *NCED6* gene, which cleaves *cis*-epoxycarotenoids in the first step of ABA biosynthesis, has early endosperm specific expression suggests an important role for ABA synthesis during the proliferative stage of endosperm development in Arabidopsis (Table I and Lefebvre et al., 2006).

The other hormones BLs, MJs and GAs play important roles in various aspects of plant development (del Pozo et al., 2005) and our silique/endosperm data would suggest a stronger influence for GAs on transcription in the endosperm than either BLs and MJs (Table III and Table S9). This is consistent with observations that jasmonic acid has a negative effect on G1/S and G2/M transitions (Świątek et al., 2004) and that GAs stimulate cell division (Fabian et al., 2000). However, the under-representation of BL responsive genes was unexpected since BLs have been shown to promote cell division and are able to up-regulate the expression of CYCD3;1 and CDKB1;1 (Yoshizumi et al., 1999; Hu et al., 2000). It is possible that the under
representation of BL responsive genes in the endosperm is in some way related to the under representation of auxin genes, since auxin and BLs can cooperate to promote organ growth via cell cycle activation (Bao et al., 2004).

Identification of putative early seed specific transcription factors with endosperm preferred expression

Seventy-one transcription factors were found to be endosperm preferred and early seed specific. These genes likely play important roles within the endosperm and representative genes were further characterised using promoter-GUS reporter lines (Figure 4). This both implicates the genes (At1g65300, At1g49190, At4g21080 At4g18870 and At5g60440) as being important during proliferative endosperm development but also provide tools to mis-express genes which may promote endosperm proliferation as a rational approach to generate larger seed.

Analysis suggests important roles for type-I MADS-box genes during endosperm development

A family of transcription factors that include key regulators of proliferation of the syncytial endosperm in arabidopsis are the MADS-box genes. The best-known MADS-box transcription factors have roles in flower development and flowering time and are classified as type II MADS-box genes. However, although more than half of the MADS-box transcription factors are type I, little is known about their roles in plant development (Parenicova et al., 2003). Of the 12 MADS-box genes in endosperm-preferred list, 11 are type I (Table VII). Recently, AGL23 has been shown to play a role in female gametophyte and embryo development (Colombo, 2008). AGL23-GUS lines show AGL23 is expressed throughout female gametophyte development and in the developing peripheral and chalazal endosperm, consistent with our expression data. Our ability to infer biological significance to the interactions predicted by de Folter et al., (2005) using yeast-two hybrid will guide future studies of type I MADS-box genes and help elucidate their roles in endosperm development. For example, of the seven MADS-box genes that are strongly endosperm preferred at 4 DAP, only four interact with other endosperm-preferred MADS-box genes. Analysis of the MADS-box interactome indicates that Type I heterodimer formation requires a member of the Mα subclass (de Folter et al., 2005). Of the four endosperm specific MADS-box genes that can form dimers, two are Mα (AGL40 and AGL62) and the
other two are Mγ sub-class genes (PHE1 and PHE2). AGL40 and AGL62 do not form heterodimers together in yeast but both PHE1 and PHE2 can form heterodimers with both AGL40 and/or AGL62 (Figure 2).

Since a prolonged syncytial growth pattern is limited to early endosperm development in Arabidopsis, it follows that key developmental switches that define syncytial competency are also early seed specific. This is the case for AGL62 that is required for normal syncytial endosperm development since disruption of the AGL62 gene results in very early cellularisation of the endosperm approximately 24 h after fertilisation (Kang et al., 2008). Both the Drews laboratory AGL62-GFP reporter line (Kang et al., 2008) and the AGL62-GUS reporter presented in this study confirm that AGL62 expression is specific to the syncytial endosperm. AGL62 interacts in vitro with many seed expressed MADS-box genes that may help mediate its ability to enable syncytial proliferation (which requires inhibition of cytokinesis and cell wall formation). As mentioned, AGL62 can form a heterodimer with PHE1, which has also been implicated as a positive regulator of endosperm proliferation and has endosperm specific expression at 4 DAP (this study and Köhler et al., 2003). PHE2 has 72% homology to PHE1 at the amino acid level and has been reported to have a very similar expression pattern, although no data was provided to substantiate this claim (Köhler et al., 2003). Our PHE2 promoter-GUS analysis confirms that PHE2 expression is largely equivalent to PHE1 during wild type seed development.

Transcription of both AGL62 and PHE1 appear to be regulated by members of the fertilisation independent seed polycomb (FIS-PcG) complex since levels of both AGL62 and PHE1 are increased and persist longer in fertilisation independent seed (FIS) than during wild-type seed development (Köhler et al., 2003). Developing seed of the FIS class mutant mea abort during heart stage, which coincides with an over proliferated endosperm. Abortion of mea seed is partly due to abnormally high levels of PHE1 since reducing PHE1 transcript in mea using an antisense construct can rescue the abortion phenotype. Like PHE1, PHE2 expression was also reported to be increased in mea seeds, which is suggestive of similar regulation and perhaps a redundant function. Alternatively PHE2 may be an antagonist of PHE1 that competes to form heterodimers with AGL62 thus acting to reduce the rate of syncytial proliferation. Our data also predicts that the other endosperm specific Mα MADS-box
gene AGL40 plays an important role in the molecular control circuit that enables syncytial proliferation of the early endosperm perhaps by mediating the levels of PHE1 and/or PHE2 proteins available to form heterodimers with AGL62.

Genes involved in important early developmental processes are expressed at 4 DAP.

Pagnussat et al. (2005) identified 130 mutants in an extensive screen for female gametophytic mutants, some of which had aberrant endosperm. Sixty-one of the genes identified as having female gametophytic phenotypes are present in our differentially expressed gene list at 4 DAP. Eleven are in the EP partition suggesting an important role during the proliferative stage of endosperm development at 4 DAP, as well as their prior roles in enabling fertilisation (At5g02100), embryo sac development (At4g14790, At2g35950), fusion of the polar nuclei (At2g20490, At1g72440, At4g00140) and very early embryo and endosperm formation (At2g15890, At4g13380, At2g34880, At4g01560).

Seedgenes.org (http://www.seedgenes.org/index.html), a database of arabidopsis seed mutants, contains six genes described as having female gametophytic inheritance patterns (where siliques produce ~50% mutant seeds following pollination of heterozygotes, regardless of pollen genotype) (Tzafrir et al., 2003). These include the components of the FIS-PcG complex MEA, FIS2, FIE and MSI1 and the DNA glycosylase DME. The sixth gene, *EMB2220* (At5g12840) is not early seed specific but is approximately twofold enriched in our endosperm sample, similar to *FIE* (which is also not seed specific). *EMB2220* mutants have not been fully characterised, but it is tempting to speculate that this gene is also involved in endosperm development.

The FIS-PcG complex is involved in repressing seed development prior to fertilisation, the formation of distinct mitotic domains during syncytial endosperm development and the timing of endosperm cellularisation (Köhler and Makarevich, 2006). Histone modifications via the FIS-PcG complex and DNA methylation via the DNA methylase MET1 have been shown to be important components of allele specific repression of imprinted genes in arabidopsis (Feil and Berger, 2007). The DNA glycosylase DME is involved in activation of the maternal allele of the
imprinted genes *MEA*, *FWA* and *FIS2* (Feil and Berger, 2007). This parent of origin dependent differential repression and activation of alleles appears to be limited to the endosperm in plants (Feil and Berger, 2007). Concordantly, all confirmed imprinted genes in arabidopsis i.e., *PHE*, *MEA*, *FIS2*, *FWA* (Köhler et al., 2005; Luo et al., 2000; Kinoshita et al., 2004) are present in our EP partition. It is therefore likely that our EP partition is enriched for imprinted genes and provides a shortlist for identifying new members of this gene family.

Conclusions

The use of laser assisted microdissection (LAM) technology has enabled the isolation and high-resolution transcript analysis of early endosperm. This, and work by Casson et al. (2005), Day et al. (2007b), Le et al. (2007) and Spencer et al. (2007), demonstrate the power of LAM for studying tissue specific expression during early seed development, even in arabidopsis which has relatively small seeds. The proliferative stage of endosperm development is unusual in that rapid nuclear division occurs in the absence of cell division. Since the proliferative stage of endosperm development is important for determining final seed size, understanding the processes that control endosperm proliferation should lead to novel ways of improving seed yield. The data generated provides a useful resource enabling novel insight into this process, as illustrated by the examples discussed here, and provides a starting point for further study.
MATERIALS AND METHODS

LCM endosperm microarray data

The LCM endosperm microarray data analysed in this study has been described in (Day et al., 2007) deposited at the NCBI gene expression omnibus (http://www.ncbi.nlm.nih.gov/geo) under accession number GSE6703.

Preparation of qRT-PCR cDNA template and PCR cycling conditions for analysis of LCM derived samples.

Total RNA was obtained from LCM dissected endosperm was obtained as described (Day et al., 2007) and total RNA was obtained using the Picopure RNA isolation kit (Arcturus) with optional on column DNase step (Qiagen). The purified total RNA was quantified using the Ribogreen RNA quantification kit (Invitrogen) according to the manufacturers’ instructions. IVT based amplifications were carried out using the Message Amp II aRNA kit (Ambion) following the manufacturers’ instructions. Comparisons between the ability of qRT-PCR and the microarrays to measure differential expression of seventeen genes in the same samples used cDNA made from aRNA generated using one round of IVT. The remaining first round product was then used as the basis for a second round of IVT which generated target for the microarray study. For the qRT-PCR the aRNA was primed with random hexamers and first strand cDNA was synthesised using Superscript III (Invitrogen) according to the manufacturers’ instructions. Realtime qRT-PCR was carried out using reagents from the LightCycler FastStart DNA MasterPlus SYBR Green I kit (Roche) in 20 µL volumes using a LightCycler 1.0 (Roche). The amplification conditions for qPCR were: Denature: 95°C for 10 min; Cycling 94°C for 5 s, 58°C for 17 s, 72°C for 10 s (single acquire); Melt: 95°C for 0 s, 55°C for 20 s, 95°C for 0 s with ramp 0.2°C /s (continuous acquire); Cool: 40°C for 20 s. Reaction products were confirmed by melting curve analysis and by running out the product on a 1.2% agarose gel. The primers used for qRT-PCR are provided in Table S13.
Preparation of qRT-PCR cDNA template and PCR cycling conditions for analysis of conventional fresh tissue samples.

RNA was extracted from fresh arabidopsis tissues using the Qiagen Plant RNeasy kit as per the manufacturers’ instructions with some alterations for the seed samples. Disruption of the siliques, stem, leaf, root and flower bud tissues was carried out by harvest into 1.5 ml Eppendorf tubes and flash freezing in liquid nitrogen. Tissues were then quickly ground to a powder in the Eppendorf tubes using a pre-cooled plastic pestle on dry ice. RNA extraction reagent was added before the samples thawed. For the dissected seed samples, developing siliques were removed from plants using tweezers and cut open under a dissecting microscope with a hypodermic needle being careful not to damage the seed within. The majority of seed were scrapped onto the back of the needle and deposited into a pre-cooled Eppendorf tube on dry ice. Frozen seed were transferred to pre-cooled plastic bags embedded in dry ice and RNA extraction reagent was pipetted into the frozen bag and allowed to thaw. Individual developing seed (visualised through the plastic using a dissecting microscope) were completely disrupted using pressure from the tip of blunt tweezers and used as input for the Plant RNeasy kit.

RNA was quantified using a Nanodrop spectrophotometer and cDNA was generated using the VILO cDNA synthesis kit (Invitrogen) using the manufacturers instructions. Realtime qRT-PCR was carried out using reagents from the ExpressSYBR GreenER mastermix kit (Invitrogen) in 7 µL volumes using a LightCycler 480 (Roche). The amplification conditions for qPCR were: Denature: 95°C for 10 min; Cycling 94°C for 5 s, 61 or 58°C for 17 s, 72°C for 10 s (single acquire); Melt: 95°C for 0 s, 55°C for 20 s, 95°C for 0 s with ramp 0.2°C /s (continuous acquire); Cool: 40°C for 20 s. Reaction products were confirmed by melting curve analysis and by 1.2% agarose gel electrophoresis. The primers used for qRT-PCR are provided in Table S13.

Identification of genes with evidence of early silique/seed-specific expression

We selected the top ~3,200 genes that reported preferred endosperm expression in our array data to manually search the arabidopsis MPSS database. This database contains libraries of signatures generated from several tissue types and each containing ~2 million signature tags (Meyers et al., 2004). These libraries are normalized so that
transcript abundance can be compared between libraries. At the time of query, the database could be searched using several AGI locus identifiers per search. The resulting output was used to create a summary file that was imported into The Institute for Genomic Research (TIGR) Multiexperiment Viewer (MeV) 3.0 software and searched using pattern matching (Pavlidis and Noble, 2001).

To identify genes with early endosperm specific expression, we used the known marker genes FIS2, FWA, PHE1 and SUC (Luo et al., 2000; Kinoshita et al., 2004; Baud et al., 2005; Köhler et al., 2005) as bait to search the AtGenExpress developmental series (arabidopsis transcripts profiles from different organs and at different stages of development determined using Affymetrix Genechip technology) using the Expression Angler (BAR-http://bar.utoronto.ca/). The software calculates the similarity of expression patterns to the marker genes for the other genes in the database using a Pearson correlation coefficient (r value). FIS2, FWA and PHE1 had very few genes correlated with their expression patterns probably caused by ill defined expression patterns. In contrast, SUC5, which has strong endosperm-preferred expression during the proliferative stages of development (Baud et al., 2005), gave a well-defined pattern in the AtGenExpress seed data. The SUC5 expression template was used to identify genes similarly expressed during early seed development in the ATGenExpress data. This list was then entered into the BAR-DataMetaformatter tool (http://bar.utoronto.ca/) to create a heat map of probe intensities for genes in the AtGenExpress seed development series.

The GHL Affymetrix Genechip datasets were downloaded from the NCBI expression omnibus (GEO-http://www.ncbi.nlm.nih.gov/geo/), imported into TIGR MeV software and screened using the pattern matching function to identify those genes with similar expression patterns to the early endosperm markers SUC5, PHE1, FWA and FIS2 (Table S2). Pattern matched genes for all markers were combined and cross-referenced to genes with differential expression on our arrays. This ESS subgroup was used in subsequent analysis due to its enhanced sensitivity towards known endosperm markers. For example, Figure S2 shows a heat map of normalised intensity data from both the GHL Genechip data and the AtGenExpress seed development series. Negligible signal was apparent for the known endosperm markers PHE1, IPT8, FWA, FIS2 and MEA in the AtGenExpress data, whereas expression of all these markers
was easily apparent in the GHL data. This likely reflects the fact that the GHL data was derived from seed removed from the surrounding silique tissues, whereas the samples representing early seed development in the AtGenExpress data included the whole silique.

Other data processing and analysis

The Bio-array Resource for Arabidopsis Functional Genomics (BAR- http://bar.utoronto.ca/) duplicate remover, DataMetaFormatter, Expression Angler, and Arabidopsis Interactions Viewer (Toufighi et al., 2005) were used for list processing, heat map generation, pattern matching, and interaction plot generation, respectively. The Arabidopsis Information Resource (TAIR- http://www.arabidopsis.org/) was used to gather gene annotation information and to assemble some gene lists. Hormone responsive genes were obtained from Nemhauser et al., (2006). Arabidopsis transcription factors were obtained from the Database of Arabidopsis Transcription Factor database (DATF-http://datf.cbi.pku.edu.cn/). Core cell cycle genes were obtained from TAIR (Vandepoele et al., 2002), E2F regulated genes were obtained from Vandepoele et al., 2005. We assessed the representation of E2F target genes in our data using a list of genes shown to be 1) induced by ectopic expression of E2Fa and DPa transcription factors, 2) contain a distinctive cis-acting element in their promoters (E2F box), and 3) have rice orthologues which also have promoters containing an E2Fbox (Vandepoele et al., 2005). Arabidopsis genes which contain the MSA sequence in the 500bp upstream of the ATG were identified using the Patmatch tool from the TAIR website (Garcia-Hernandez et al., 2002). The Athena promoter analysis database (http://www.bioinformatics2.wsu.edu/cgi-bin/Athena/cgi/home.pl) (O'Connor et al., 2005) was used to assess for enrichment of E2F binding motifs in the 500 bp upstream regions of our EP and ESS-EP partitions. Genes with methylation sensitive transcription were obtained from (Zhang et al., 2006). Chromatin related genes were obtained from ChromDB (http://www.chromdb.org/). In some instances a particular loci was represented by more than one probe on our array. In a few cases different probes for the same locus were observed in different partitions since cut-off values were based on a specific signal ratio. For subsequent analysis, we therefore included the locus identifier in both partitions.
TAIR gene ontology and MIPS Functional category enrichment analysis was performed using the Virtual Plant 0.9 website (http://virtualplant-prod.bio.nyu.edu/cgi-bin/virtualplant.cgi). This enabled us to calculate the frequency of genes with a particular gene ontology (TAIR-GO) or functional category (MIPS-FunCat), as a percentage of the whole genome. If a subgroup of genes contains significantly different proportions of a GO or FunCat, biological importance can be inferred. To assess the presence of inherent bias in the GO or FunCat groups represented by the probes on our array platform, we queried the whole genome with the list of loci on the array. This analysis revealed that several GO and FunCat groups were already over represented on our arrays (data not shown). To get an accurate assessment of the representation of biological processes in our partitioned data, we therefore used our array list as the background population. t-tests were carried out in MeV with no correction for multiple testing.

Construction and analysis of GUS reporter lines

Five promoters were selected to validate the endosperm-preferred expression of the downstream genes predicted by the LCM endosperm microarray data. The genomic regions between the 2356, 2089, 1110 and 582 nucleotide positions upstream of the translational start codons were amplified by PCR for At1g65300/PHE2, At1g49190/ARR19, At4g21080 and At4g18870, respectively. These fragments were cloned upstream of the uidA gene in the binary vector pCAMBIA1391-Z (CAMBIA, Australia) and transformed into Agrobacterium tumefaciens strain GV3101. The genomic region between -1453 and +787 of At5g60440/AGL62 (relative to the translational start codon) was amplified and cloned in-frame upstream of the uidA gene in the binary vector pCAMBIA1381xc (CAMBIA, Australia) and transformed into Agrobacterium tumefaciens strain LBA4404. A list of the primers used is provided in Table S13. Arabidopsis thaliana was transformed using the standard floral dipping protocol (Clough and Bent, 1998). Developing seeds from hygromycin resistant primary transformants were assessed for GUS activity essentially following (Stangeland and Salehian, 2002). Briefly, fruits at various stages of development were dissected and placed GUS staining buffer (50mM phosphate buffer [pH 7.2], 0.5mM potassium ferri/ferro cyanide and 1mg/ml X-Gluc) overnight at 37˚C. Younger fruits were cleared in Hoyer’s medium (100g chloral hydrate in 30mL H2O) for 2-4 hours.
Older fruits were placed in 3:1 ethanol:acetic acid for 4-8 h and cleared overnight in Hoyer’s medium. Developing seeds were fully dissected from the fruits and mounted in Hoyer’s mounting media with a cover slip. Prepared slides were viewed under DIC optics on an Olympus BX51 microscope equipped with an Optronics Magnafire 2.1A digital imaging system.

Supplemental Files

Figure S1. Heat map showing endosperm-preferred genes in MPSS data.

Figure S2. Heat maps comparing endosperm marker detection in online datasets.

Table S1. Genes with AtGenExpress expression profile correlating with the early endosperm specific gene SUC5.

Table S2. List of putative early seed-specific genes (ESS) from the GHL data.

Table S3. AGI lists for gene partitions.

Tables S4 to S7. Frequency of genes within a particular gene ontology (TAIR-GO) or functional category (MIPS-FunCat) from the different partitions.

Table S8. The representation of putative M phase specific and E2F target genes within the different partitions.

Table S9. Lists of hormone responsive genes in each partition.

Table S10. List of chromatin related genes (obtained from ChromDB-http://www.chromdb.org/) in each partition.

Table S11. List of genes affected by reduced methylation in each partition.

Tables S12. List of transcription factor genes in each partition.

Table S13. Sequences of the primers used for qRT-PCR and to generation of the genomic fragments for the GUS constructs.
ACKNOWLEDGEMENTS

Thanks to Peter Stockwell for formatting MPSS data for pattern matching and R. Kaji for making the AGL62-GUS plants.
CITED LITERATURE

Araki S, Ito M, Soyano T, Nishihama R, Machida Y (2004) Mitotic cyclins stimulate the activity of c-Myb-like factors for transactivation of G2/M phase-specific genes in tobacco. J Biol Chem 279: 32979-32988

Bao F, Shen J, Brady SM, Muday GK, Asami T, Yang Z (2004) Brassinosteroids interact with auxin to promote lateral root development in Arabidopsis. Plant Physiol 134: 1624-1631

Baroux C, Pien S, Grossniklaus U (2007) Chromatin modification and remodeling during early seed development. Curr Opin Genet Dev 17: 473-479

Baud S, Wuilleme S, Lemoine R, Kronenberger J, Caboche M, Lepiniec L, Rochat C (2005) The AtSUC5 sucrose transporter specifically expressed in the endosperm is involved in early seed development in Arabidopsis. Plant J 43: 824-836

Berger F (2003) Endosperm: the crossroad of seed development. Curr Opin Plant Biol 6: 42-50

Berger F, Gaudin V (2003) Chromatin dynamics and Arabidopsis development. Chromosome Res 11: 277-304

Boisnard-Lorig C, Colon-Carmona A, Bauch M, Hodge S, Doerner P, Bancharel E, Dumas C, Haseloff J, Berger F (2001) Dynamic analyses of the expression of the HISTONE::YFP fusion protein in arabidopsis show that syncytial endosperm is divided in mitotic domains. Plant Cell 13: 495-509

Bonhomme F, Kurz B, Melzer S, Bernier G, Jacqmard A (2000) Cytokinin and gibberellin activate SaMADS A, a gene apparently involved in regulation of the floral transition in Sinapis alba. Plant J 24: 103-111

Breyne P, Dreesen R, Vandepoele K, De Veylder L, Van Breusegem F, Callewaert L, Rombouts S, Raes J, Cannooot B, Engler G, Inzé D, Zabeau M (2002) Transcriptome analysis during cell division in plants. Proc Natl Acad Sci USA 99: 14825-14830

Brown RC, Lemmon BE, Nguyen H (2003) Events during the first four rounds of mitosis establish three developmental domains in the syncytial endosperm of Arabidopsis thaliana. Protoplasma 222:167-74

Casson S, Spencer M, Walker K, Lindsey K (2005) Laser capture microdissection for the analysis of gene expression during embryogenesis of Arabidopsis. Plant J 42: 111-23

Bushell C, Spielman M, Scott RJ (2003) The basis of natural and artificial postzygotic hybridization barriers in Arabidopsis species. Plant Cell 15: 1430–1442

Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16: 735-743

Colombo M, Masiero S, Vanzulli S, Lardelli P, Kater MM, Colombo L (2008) AGL23, a type I MADS-box gene that controls female gametophyte and embryo development in Arabidopsis. Plant J 23: 1037 - 1048

Day RC, McNoe L, Macknight R (2007a) Transcript analysis of laser microdissected plant cells. Physiol Plant 129: 267-282

Day RC, McNoe L, Macknight R (2007b) Evaluation of global RNA amplification and its use for high-throughput transcript analysis of laser-microdissected endosperm. Int J Plant Genomics 2007: 17

de Folter S, Immink RG, Kieffer M, Parenicová L, Henz SR, Weigel D, Busscher M, Kooiker M, Colombo L, Kater MM, Davies B, Angenent GC (2005)
Comprehensive interaction map of the *Arabidopsis* MADS Box transcription factors. Plant Cell **17**: 1424-1433

de Jong TJ, Scott RJ (2007) Parental conflict does not necessarily lead to the evolution of imprinting. Trends Plant Sci **12**: 439-443

De Veylder L, Beeckman T, Beemster GT, de Almeida Engler J, Ormenese S, Maes S, Naudts M, Van Der Schueren E, Jacqmard A, Engler G, Inzé D (2002) Control of proliferation, endoreduplication and differentiation by the *Arabidopsis* E2Fa-DPa transcription factor. EMBO J **21**: 1360-1368

De Veylder L, Beeckman T, Beemster GT, Kroks L, Terras F, Landrieu I, van der Schueren E, Maes S, Naudts M, Inzé D (2001) Functional analysis of cyclin-dependent kinase inhibitors of *Arabidopsis*. Plant Cell **13**: 1653-1668

De Veylder L, Beeckman T, Inzé D (2007) The ins and outs of the plant cell cycle. Nat Rev Mol Cell Biol **8**: 655-665

De Veylder L, Joubès J, Inzé D (2003) Plant cell cycle transitions. Curr Opin Plant Biol **6**: 536-543

del Pozo JC, Boniotti MB, Gutierrez C (2002) *Arabidopsis* E2Fc functions in cell division and is degraded by the ubiquitin-SCF(AtSKP2) pathway in response to light. Plant Cell **14**: 3057-3071

del Pozo JC, Díaz-Trivino S, Cisneros N, Gutierrez C (2006) The balance between cell division and endoreplication depends on E2FC-DPB, transcription factors regulated by the ubiquitin-SCFSKP2A pathway in *Arabidopsis*. Plant Cell **18**: 2224-2235

del Pozo JC, Lopez-Matas MA, Ramírez-Parra E, Gutierrez C (2005) Hormonal control of the plant cell cycle. Physiologia Plantarum **123**: 173-183

Dortay H, Mehnert N, Bürkle L, Schmülling T, Heyl A (2006) Analysis of protein interactions within the cytokinin-signaling pathway of *Arabidopsis thaliana*. FEBS J **273**: 4631-4644

Emmert-Buck MR, Bonner RF, Smith PD, Chuaqui RF, Zhuang Z, Goldstein SR, Weiss RA, Liotta LA (1996) Laser capture microdissection. Science **274**: 998-1001

Fabian T, Lorbiecke R, Umeda M, Sauter M (2000) The cell cycle genes cycA1;1 and cdc2Os-3 are coordinately regulated by gibberellin in planta. Planta **211**: 376-383

Feil R, Berger F (2007) Convergent evolution of genomic imprinting in plants and mammals. Trends Genet **23**: 192-199

Friml J (2003) Auxin transport - shaping the plant. Curr Opin Plant Biol **6**: 7-12

Garcia D, Fitz Gerald JN, Berger F (2005) Maternal control of integument cell elongation and zygotic control of endosperm growth are coordinated to determine seed size in *Arabidopsis*. Plant Cell **17**: 52-60

Garcia-Hernandez M, Berardini TZ, Chen G, Crist D, Doyle A, Huala E, Knee E, Lambrecht M, Miller N, Mueller LA, Mundodi S, Reiser L, Rhee SY, Scholl R, Tacklind J, Weems DC, Wu Y, Xu I, Yoo D, Yoon J, Zhang P (2002) TAIR: a resource for integrated *Arabidopsis* data. Funct Integr Genomics **2**: 239-253

Ghassemian M, Nambara E, Cutler S, Kawaide H, Kamiya Y, McCourt P (2000) Regulation of abscisic acid signaling by the ethylene response pathway in *Arabidopsis*. Plant Cell **12**: 1117-1126

Guo A, He K, Liu D, Bai S, Gu X, Wei L, Luo J (2005) DATF: a database of *Arabidopsis* transcription factors. Bioinformatics **21**: 2568-2569
Guo J, Wu J, Ji Q, Wang C, Luo L, Yuan Y, Wang Y, Wang J (2008) Genome-wide analysis of heat shock transcription factor families in rice and Arabidopsis. J Genet Genomics 35: 105-18

Gutierrez C (2005) Coupling cell proliferation and development in plants. Nat Cell Biol 7: 535-541

Han S, Kim D (2006) AtRTPrimer: database for Arabidopsis genome-wide homogeneous and specific RT-PCR primer-pairs. BMC Bioinformatics 7: 179

He SS, Hoelscher A, Liu J, O’Neill, Layton J, al. e (2005) Cell cycle specific isopentenyl transferase expression led to coordinated enhancement of cell division, cell growth and plant development in transgenic Arabidopsis. Plant Biotechnology 22: 261-270

Hewelt A, Prinsen E, Thomas M, Van Onckelen H, Meins F (2000) Ectopic expression of maize knotted1 results in the cytokinin-autotrophic growth of cultured tobacco tissues. Planta 210: 884-889

Hu Y, Bao F, Li J (2000) Promotive effect of brassinosteroids on cell division involves a distinct CycD3-induction pathway in Arabidopsis. Plant J 24: 693-701

Hutchison CE, Li J, Argueso C, Gonzalez M, Lee E, Lewis MW, Maxwell BB, Perdue TD, Schaller GE, Alonso JM, Ecker JR, Kieber JJ (2006) The Arabidopsis histidine phosphotransfer proteins are redundant positive regulators of cytokinin signaling. Plant Cell 18: 3073-3087

Ingouff M, Haseloff J, and Berger F (2005) Polycomb group genes control developmental timing of endosperm. Plant Journal 42, 663–674

Ito M, Araki S, Matsunaga S, Itoh T, Nishihama R, Machida Y, Doonan JH, Watanabe A (2001) G2/M-phase-specific transcription during the plant cell cycle is mediated by c-Myb-like transcription factors. Plant Cell 13: 1891-1905

Ito M, Iwase M, Kodama H, Lavisse P, Komamine A, Nishihama R, Machida Y, Watanabe A (1998) A novel cis-acting element in promoters of plant B-type cyclin genes activates M phase-specific transcription. Plant Cell 10: 331-341

John PC, Mews M, Moore R (2001) Cyclin/Cdk complexes: their involvement in cell cycle progression and mitotic division. Protoplasma 216: 119-142

Kang IH, Steffen JG, Portereiko MF, Lloyd A, Drews GN (2008) The AGL62 MADS domain protein regulates cellularization during endosperm development in Arabidopsis. Plant Cell 20: 635-47

Kiba T, Naitou T, Koizumi N, Yamashino T, Sakakibara H, Mizuno T (2005) Combinatorial microarray analysis revealing arabidopsis genes implicated in cytokinin responses through the His->Asp Phosphorelay circuitry. Plant Cell Physiol 46: 339-355

Kinoshita T, Miura A, Choi Y, Kinoshita Y, Cao X, Jacobsen SE, Fischer RL, Kakutani T (2004) One-way control of FWA imprinting in Arabidopsis endosperm by DNA methylation. Science 303: 521-523

Köhler C, Hennig L, Spillane C, Pien S, Gruissem W, Grossniklaus U (2003) The Polycomb-group protein MEDEA regulates seed development by controlling expression of the MADS-box gene PHERESI. Genes Dev 17: 1540-1553

Köhler C, Makarevich G (2006) Epigenetic mechanisms governing seed development in plants. EMBO Rep 7: 1223-1227

Köhler C, Page DR, Gagliardini V, Grossniklaus U (2005) The Arabidopsis thaliana MEDEA Polycomb group protein controls expression of PHERESI by parental imprinting. Nat Genet 37: 28-30
Kosugi S, Ohashi Y (2002) E2Ls, E2F-like repressors of Arabidopsis that bind to E2F sites in a monomeric form. J Biol Chem 277: 16553-16558
Kosugi S, Ohashi Y (2003) Constitutive E2F expression in tobacco plants exhibits altered cell cycle control and morphological change in a cell type-specific manner. Plant Physiol 132: 2012-2022.
Le BH, Wagmaister JA, Kawashima T, Bui AQ, Harada JJ, Goldberg RB (2007) Using genomics to study legume seed development. Plant Physiol 144: 562-574
Lefebvre V, North H, Frey A, Sota B, Seo M, Okamoto M, Nambara E, Marion-Poll A (2006) Functional analysis of Arabidopsis NCED6 and NCED9 genes indicates that ABA synthesized in the endosperm is involved in the induction of seed dormancy. Plant J 45: 309-319
Luo M, Bilodeau P, Dennis ES, Peacock WJ, Chaudhury A (2000) Expression and parent-of-origin effects for FIS2, MEA, and FIE in the endosperm and embryo of developing Arabidopsis seeds. Proc Natl Acad Sci U S A 97: 10637-10642
Lur HS, Setter TL (1993) Role of auxin in maize endosperm development (timing of nuclear DNA endoreduplication, zein expression, and cytokinin). Plant Physiol 103: 273-280
Mariconti L, Pellegrini B, Cantoni R, Stevens R, Bergounioux C, Cella R, Albani D (2002) The E2F family of transcription factors from Arabidopsis thaliana. Novel and conserved components of the retinoblastoma/E2F pathway in plants. J Biol Chem 277: 9911-9919
Mason MG, Li J, Mathews DE, Kieber JJ, Schaller GE (2004) Type-B response regulators display overlapping expression patterns in Arabidopsis. Plant Physiol 135: 927-37
Mengel K, Friedrich B, Judel GK (1985) Effect of light intensity on the concentrations of phytohormones in developing wheat grains. J Plant Physiol 120: 255-266.
Mewes HW, Dietmann S, Frishman D, Gregory R, Mannhaupt G, Mayer KF, Münsterkötter M, Ruepp A, Spannagl M, Stümpflen V, Rattei T (2008) MIPS: analysis and annotation of genome information in 2007. Nucleic Acids Res 36: D196-201
Meyers BC, Vu TH, Tej SS, Ghazal H, Matvienko M, Agrawal V, Ning J, Haudenschild CD (2004) Analysis of the transcriptional complexity of Arabidopsis thaliana by massively parallel signature sequencing. Nat Biotechnol 22: 1006-1011
Mironov V, I DV, MV, Inze D (1999) Cyclin-dependent kinases and cell division in plants- the nexus. Plant Cell 11: 509-522
Miyawaki K, Matsumoto-Kitano M, Kakimoto T (2004) Expression of cytokinin biosynthetic isopentenyltransferase genes in Arabidopsis: tissue specificity and regulatin by auxin, cytokinin, and nitrate. Plant J 37: 128-138
Miyawaki K, Tarkowski P, Matsumoto-Kitano M, Kato T, Sato S, Tarkowska D, Tabata S, Sandberg G, Kakimoto T (2006) Roles of Arabidopsis ATP/ADP isopentenyltransferases and tRNA isopentenyltransferases in cytokinin biosynthesis. Proc Natl Acad Sci USA 103: 16598-16603
Moncaleán P, López-Iglesias C, Fernández B, Rodríguez A (2001) Immunocytochemical location of endogenous cytokinins in buds of kiwifruit (Actinidia deliciosa) during the first hours of in vitro culture. Histochemical J 33: 403-411
Müller B, Sheen J (2007) Arabidopsis cytokinin signaling pathway. Sci STKE 2007: cm5

Nakagami H, Kawamura K, Sugisaka K, Sekine M, Shinmyo A (2002) Phosphorylation of retinoblastoma-related protein by the cyclin D/cyclin-dependent kinase complex is activated at the G1/S-phase transition in tobacco. Plant Cell 14: 1847-1857

Nelson T, Tausta SL, Gandotra N, Liu T (2006) Laser microdissection of plant tissue: what you see is what you get. Annu Rev Plant Biol 57: 181-201

Nemhauser JL, Hong F, Chory J (2006) Different plant hormones regulate similar processes through largely nonoverlapping transcriptional responses. Cell 126: 467-475

Nordstrom A, Tarkowski P, Tarkowska D, Norbaek R, et al. (2004) Auxin regulation of cytokinin biosynthesis in Arabidopsis thaliana: A factor of potential importance for auxin-cytokinin-regulated development. Proc Natl Acad Sci USA 101: 8039-8044

O'Connor TR, Dyreson C, Wyrick JJ (2005) Athena: a resource for rapid visualization and systematic analysis of Arabidopsis promoter sequences. Bioinformatics 21: 4411-4413

Ohashi-Ito K, Demura T, Fukuda H (2002) Promotion of transcript accumulation of novel zinnia immature xylem-specific HD-Zip III homeobox genes by brassinosteroid. Plant Cell Physiol 43: 1146-1153

Olsen OA (2004) Nuclear endosperm development in cereals and Arabidopsis thaliana. Plant Cell 16: S214-227

Ormenese S, de Almeida Engler J, De Groodt R, De Veylder L, Inze D, Jacqmard A (2004) Analysis of the spatial expression pattern of seven Kip related proteins (KRPs) in the shoot apex of Arabidopsis thaliana. Ann Bot (Lond) 93: 575-580

Otegui M, Staehelin LA (2000) Syncytial-type cell plates: a novel kind of cell plate involved in endosperm cellularization of Arabidopsis. Plant Cell 12: 933-947

Pagnussat GC, Yu HJ, Ngo QA, Rajani S, Mayalagu S, Johnson CS, Capron A, Xie LF, Ye D, Sundaresan V (2005) Genetic and molecular identification of genes required for female gametophyte development and function in Arabidopsis. Development 132: 603-614

Parenicová L, de Folter S, Kieffer M, Horner DS, Favalli C, Busscher J, Cook HE, Ingram RM, Kater MM, Davies B, Angenent GC, Colombo L (2003) Molecular and phylogenetic analyses of the complete MADS-box transcription factor family in Arabidopsis: new openings to the MADS world. Plant Cell 15: 1538-51

Pavlidis P, Noble WS (2001) Analysis of strain and regional variation in gene expression in mouse brain. Genome Biol 2: RESEARCH0042

Ramirez-Parra E, Frundt C, Gutierrez C (2003) A genome-wide identification of E2F-regulated genes in Arabidopsis. Plant J 33: 801-811

Ramirez-Parra E, Lopez-Matas MA, Frundt C, Gutierrez C (2004) Role of an atypical E2F transcription factor in the control of Arabidopsis cell growth and differentiation. Plant Cell 16: 2350-2363

Rashotte AM, Mason MG, Hutchison CE, Ferreira FJ, Schaller GE, Kieber JJ (2006) A subset of Arabidopsis AP2 transcription factors mediates cytokinin responses in concert with a two-component pathway. Proc Natl Acad Sci USA 103: 11081-11085
Rhee SY, Beavis W, Berardini TZ, Chen G, Dixon D, Doyle A, Garcia-Hernandez M, Huala E, Lander G, Montoya M, Miller N, Mueller LA, Mundodi S, Reiser L, Tacklind J, Weems DC, Wu Y, Xu I, Yoo D, Yoon J, Zhang P (2003) The Arabidopsis Information Resource (TAIR): a model organism database providing a centralized, curated gateway to Arabidopsis biology, research materials and community. Nucleic Acids Res 31: 224-228

Schmid M, Davison TS, Henz SR, Pape UJ, Demar M, Vingron M, Scholkopf B, Weigel D, Lohmann JU (2005) A gene expression map of Arabidopsis thaliana development. Nat Genet 37: 501-506

Scott RJ, Spielman M, Bailey J, Dickinson HG (1998) Parent-of-origin effects on seed development in Arabidopsis thaliana. Development 125: 3329-3341

Sorensen MB, Mayer U, Lukowitz W, Robert H, Chambrier P, Jürgens G, Somerville C, Lepiniec L, Berger F (2002) Cellularisation in the endosperm of Arabidopsis thaliana is coupled to mitosis and shares multiple components with cytokinesis. Development 129: 5567-5576

Sozzani R, Maggio C, Varotto S, Canova S, Borgounioux C, Albani D, Cell R (2006) Interplay between Arabidopsis activating factors E2Fb and E2Fa in cell cycle progression and development. Plant Physiol 140: 1355-1366

Spencer MW, Casson SA, Lindsey K (2007) Transcriptional profiling of the Arabidopsis embryo. Plant Physiol 143: 924-940

Stangeland B, Salehian Z (2002) An improved clearing method for GUS assay in Arabidopsis endosperm and seeds. Plant Mol Biol Reporter 20: 107-114

Tiwari S, Spielman M, Day RC, Scott RJ (2006) Proliferative phase endosperm promoters from Arabidopsis thaliana. Plant Biotechnol J 4: 393-407

Toufighi K, Brady SM, Austin R, Ly E, Prokart NJ (2005) The botany array resource: e-northerns, expression angling, and promoter analyses. Plant J 43: 153-163

Tzafir I, Dickerman A, Brazhnik O, Nguyen Q, McElver J, Frye C, Patton D, Meinke D (2003) The Arabidopsis SeedGenes Project. Nucleic Acids Res 31: 90-93

Vandepoele K, Raes J, De Veylder L, Rouzé P, Rombauts S, Inzé D (2002) Genome-wide analysis of core cell cycle genes in Arabidopsis. Plant Cell 14: 903-916

Vandepoele K, Vliegh K, Florquin K, Hennig L, Beemster GT, Gruissem W, Van de Peer Y, Inze D, De Veylder L (2005) Genome-wide identification of potential plant E2F target genes. Plant Physiol 139: 316-328

Vliegh K, Boudolf V, Beemster GT, Maes S, Magyar Z, Atanassova A, de Almeida Engler J, De Grooth R, Inze D, De Veylder L (2005) The DP-E2F-like gene DEL1 controls the endocycle in Arabidopsis thaliana. Curr Biol 15: 59-63

Wang G, Kong H, Sun Y, Zhang X, Zhang W, Altman N, DePamphilis CW, Ma H (2004) Genome-wide analysis of the cyclin family in Arabidopsis and comparative phylogenetic analysis of plant cyclin-like proteins. Plant Physiol 135: 1084-1099

Weingartner M, Criqui MC, Mészáros T, Binarova P, Schmit AC, Helfer A, Derevier A, Erhardt M, Bögre L, Geschik P (2004) Expression of a nondegradable cyclin B1 affects plant development and leads to endomitosis by inhibiting the formation of a phragmoplast. Plant Cell 16: 643-657

Williams L, Zhao J, Morozova N, Li Y, Avivi Y, Grafi G (2003) Chromatin reorganization accompanying cellular dedifferentiation is associated with
modifications of histone H3, redistribution of HP1, and activation of E2F-target genes. Dev Dyn 228: 113-120

Yanagisawa S (2002) The Dof family of plant transcription factors. Trends Plant Sci. 7: 555-60

Yang J, Zhang J, Huang Z, Wang Z, Zhu Q, Liu L (2002) Correlation of cytokinin levels in the endosperms and roots with cell number and cell division activity during endosperm development in rice. Ann Bot (Lond) 90: 369-377

Yang J, Zhang J, Wang Z, Liu K, Wang P (2006) Post-anthesis development of inferior and superior spikelets in rice in relation to abscisic acid and ethylene. J Exp Bot 57: 149-160

Yoshizumi T, Nagata N, Shimada H, Matsui M (1999) An Arabidopsis cell cycle-dependent kinase-related gene, CDC2b, plays a role in regulating seedling growth in darkness. Plant Cell 11: 1883-1896

Zhang X, Yazaki J, Sundaresan A, Cokus S, Chan SW, Chen H, Henderson IR, Shinn P, Pellegrini M, Jacobsen SE, Ecker JR (2006) Genome-wide high-resolution mapping and functional analysis of DNA methylation in arabidopsis. Cell 126: 1189-1201

Zhao J, Morozova N, Williams L, Libs L, Avivi Y, Grafi G (2001) Two phases of chromatin decondensation during dedifferentiation of plant cells: distinction between competence for cell fate switch and a commitment for S phase. J Biol Chem 276: 22772-22778
Table I. Validation of array results by qPCR and marker distribution.

Type	Locus	Description	Log ratio array	Log ratio qPCR
MV1	At1g19320	thaumatin family protein	3.11	3.78
MV2	At1g65300	MADS-box transcription factor (PHE2/AGL38)	2.97	3.3
MV3	At3g23060	zinc finger (C3HC4-type RING finger) family	2.91	1.7
MV4	At5g27000	kinesin-like protein (ATK4)	2.78	3.91
M1	At1g65330	MADS-box transcription factor (PHE1/AGL37)	2.45	ND
M5	At2g32460	R2R3 MYB transcription factor (MYB101)	2.45	3.98
M2	At4g25530	homeodomain-containing transcription factor (FWA)	2.43	3.16
MV6	At2g32370	homeodomain-containing transcription factor	2.37	2.59
M3	At3g24220	9-cis-epoxycarotenoid dioxygenase (NCED6)	2.24	ND
M4	At1g71890	sucrose-proton symporter (SUC5)	2.17	ND
MV7	At1g09500	alcohol dehydrogenase	1.89	2.69
MV8	At3g05310	GTP and calcium ion binding protein	1.88	2.35
M5	At2g35670	C2H2 transcription factor (FIS2)	1.83	ND
MV9	At3g54560	histone H2a protein (HTA11)	1.76	2.73
M6	At1g02580	polycomb family protein (MEA)	1.74	1.68
MV10	At1g69770	chromomethylase family protein (CMT3)	1.55	2.86
MV11	At3g11400	G subunit of eukaryotic initiation factor (EIF3)	1.16	1.48
MV12	At1g17130	cell cycle control protein-related	1.13	2.95
MV13	At3g55010	cyclo-ligase (PUR5)	1.12	1.2
M7	At3g19160	cytokinin synthase (IPT8)	1.12	ND
MV14	At4g28840	unknown protein	1.06	2.11
MV15	At3g61300	C2 domain-containing protein	1.05	0.74
MV16	At5g65710	ATP binding kinase (HSL2)	0.86	0.33

* MV1-16 are genes that gave a range of differential expression in the array data and M1-7 are endosperm marker genes identified from the literature.

* Log ratio array and Log ratio qPCR correspond to log2 values for the ratio of expression between whole silique and LCM endosperm samples.

* Relative expression by qRT-PCR was calculated by comparison to the *ACTIN 2* (At3g18780) reference gene.
Table II. GO analysis of early seed-specific endosperm preferred genes.

TAIR GO terms showing significant enrichment in the early seed-specific endosperm-preferred (ESS-EP) and early seed-specific other silique tissue preferred (ESS-OST) partitions using a p-value cut-off of < 0.01 and without correction for multiple testing.

Term	Observed\(^a\)	Expected\(^b\)	p-value
TAIR-ESS-EP partition			
organelle organization and biogenesis	8.10%	2.20%	0.0000
DNA metabolism	6.60%	1.50%	0.0000
DNA replication	2.90%	0.40%	0.0000
cell cycle	3.20%	0.60%	0.0000
cell organization and biogenesis	10.70%	4.80%	0.0000
chromosome organization and biogenesis	3.20%	0.60%	0.0000
microtubule-based process	2.40%	0.40%	0.0000
microtubule-based movement	1.90%	0.20%	0.0000
cytoskeleton-dependent intracellular transport	2.00%	0.30%	0.0000
protein biosynthesis	6.10%	2.50%	0.0000
cytoskeleton organization and biogenesis	2.90%	0.70%	0.0000
chromatin assembly or disassembly	2.00%	0.40%	0.0000
DNA-dependent DNA replication	1.50%	0.20%	0.0000
chromosome organization and biogenesis (sensu Eukaryota)	2.40%	0.60%	0.0000
DNA packaging	2.30%	0.50%	0.0000
establishment and/or maintenance of chromatin architecture	2.30%	0.50%	0.0000
regulation of progression through cell cycle	1.80%	0.40%	0.0001
regulation of cell cycle	1.80%	0.40%	0.0001
nucleobase, nucleoside, nucleotide and nucleic acid			
metabolism	16.40%	10.80%	0.0001
chromatin assembly	1.60%	0.30%	0.0002
macromolecule biosynthesis	6.60%	3.20%	0.0003
intracellular transport	4.30%	1.80%	0.0003
establishment of cellular localization	4.30%	1.80%	0.0004
cellular localization	4.30%	1.80%	0.0004
nucleosome assembly	1.40%	0.30%	0.0019
macromolecule metabolism	24.20%	18.30%	0.0028
M phase	1.00%	0.20%	0.0080
TAIR-ESS-OST partition			
ovule development	1.10%	0.00%	0.0001
carpel development	1.10%	0.10%	0.0015
gynoecium development	1.10%	0.10%	0.0021
development	7.50%	3.40%	0.0031
organ development	2.70%	0.60%	0.0063

\(^a\) The frequency of occurrence of a GO term in the tested gene list

\(^b\) The frequency of occurrence of a GO term in the list of genes for which probes were present on the array.
Table III. Representation analysis of selected gene families.

Differential representation of selected gene families in the endosperm preferred (EP) and other sique tissue preferred (OST) gene groups. The under- (↓), over- (↑), or not significantly different (↔) representation was calculated by hyper-geometric testing using a *p*-value of <0.005. ACC, ABA, BL, CK, GA, IAA and MJ represent ethylene, abscisic acid, brassinosteroid, cytokinin, gibberellicin, auxin and methyl-jasmonate, respectively.

	EP	OST
Hormone markers		
ACC responsive	↔	↑
ABA responsive	↔	↑
BL responsive	↓	↑
CK responsive	↑	↑
GA responsive	↔	↔
IAA responsive	↓	↑
MJ responsive	↓	↑
Transcription factors		
DNA methylation sensitive	↔	↑
Chromatin related	↑	↓
Core cell cycle	↑	↔
E2F regulated	↑	↓
Table IV. *The distribution of core cell cycle genes in the endosperm preferred data*

Locus	Name	Description	p-value \(^a\)	Fold change \(^b\)
At5g14960	DEL2	DP-E2F-related 2	0.002	6.65
At1g16330	CYCB3;1	cyclin family	0.002	4.40
At5g06150	CYCB1;2	cyclin (cyc1b)	0.000	3.96
At5g25380	CYCA2;1	cyclin 3a (cyc3a)	0.001	3.56
At2g17620	CYCB2;1	cyclin, putative	0.004	3.40
At1g44110	CYCA1;1	cyclin, putative	0.001	2.98
At1g20610	CYCB2;3	cyclin, putative	0.000	2.92
At3g11520	CYCB1;3	cyclin, putative	0.002	2.87
At1g20930	CDKB2;2	cell division control protein, putative	0.001	2.78
At1g73690	CDKD;1	cell division protein kinase, putative	0.003	2.74
At4g37490	CYCB1;1	G2/mitotic-specific cyclin	0.005	2.63
At3g54180	CDKB1;1	cell division control protein (CDC2B)	0.008	2.55
At1g77390	CYCA1;2	cyclin, putative	0.000	2.48
At5g11300	CYCA2;2	cyclin, putative	0.007	2.31
At5g02470	DPa	DPA transcription factor	0.002	2.29
At2g32710	KRP4	Kip-related protein 4	0.000	2.15
At2g38620	CDKB1;2	cell division control protein, putative	0.000	2.12
At5g43080	CYCA3;1	cyclin, putative	0.012	2.12
At2g27970	CKS2	CDK-subunit 2	0.018	2.11
At3g50070	CYCD3;3	cyclin family	0.004	2.06
At1g18040	CDKD;3	cell division protein kinase, putative	0.022	1.99
At3g01330	DEL3	DP-E2F-related protein 3	0.026	1.87
At5g10270	CDKC;1	Cyclin-dependent kinase C;1	0.000	1.76
At5g64960	CDKC;2	Cyclin-dependent kinase C;2	0.001	1.69
At2g36010	E2Fa	E2FA transcription factor	0.022	1.69
At4g03270	CYCD6;1	cyclin family	0.024	1.62
At1g47870	E2Fc	E2FC transcription factor	0.020	1.45

\(^a\) Core cell cycle genes that showed consistent signal on the arrays were identified using a p-value of <0.05.

\(^b\) All fold changes represent differential expression in the endosperm direction. Dashed lines represent a fold change cut-off of 2.0.
Table V. Distribution of cytokinin signalling genes in the endosperm preferred data

Locus	Name	Type	p-value^a	Fold change^b
At5g07210	ARR21	B-type	0.001	5.19
At4g11140	CRF1/ERF response factor	0.000	3.93	
At1g49190	ARR19	B-type	0.035	3.62
At4g23750	CRF2/ERF response factor	0.000	3.60	
At5g53290	CRF3/ERF response factor	0.002	2.91	
At4g00760	APRR8	B-type	0.001	2.38
At5g58080	ARR18	B-type	0.002	2.28
At1g03430	AHP5	AHP	0.003	1.99
At3g29350	AHP2	AHP	0.006	1.89
At3g62670	ARR20	B-type	0.004	1.61

^a Cytokinin signalling genes that showed consistent signal on the arrays were identified using a *p*-value of <0.05.

^b All fold changes represent differential expression in the endosperm direction. Dashed lines represent a fold change cut-off of 2.0.
Table VI. Validated early seed-specific, endosperm-preferred transcription factors

Transcription factors (27) that were endosperm preferred in the LCM endosperm array data and called early seed specific by searching online data resources and then confirmed by qRT-PCR and/or reporter lines b.

Locus	Description	p value	Fold change a
At5g40430	myb family transcription factor (MYB22)	0.000	8.77
At1g65300	MADS-box protein (PHE2/AGL38) b	0.000	7.84
At5g26630	MADS-box protein (AGL35)	0.000	7.77
At5g14960	DP-E2F-related 2 (DEL2)	0.002	6.65
At3g56520	No apical meristem protein family	0.004	6.30
At4g18870	heat shock transcription factor family b	0.001	5.69
At1g65330	MADS-box protein (PHE1/AGL37)	0.002	5.48
At4g25530	homeodomain protein (FWA)	0.000	5.40
At5g07210	two-component response regulator protein (ARR21)	0.001	5.19
At2g32370	homeodomain protein b	0.000	5.19
At4g21080	Dof zinc finger protein b	0.001	5.10
At2g26320	MADS-box protein (AGL33)	0.006	4.97
At5g56200	C2H2-type zinc finger protein family	0.000	4.59
At2g15740	C2H2-type zinc finger protein family	0.024	4.51
At5g17800	myb family transcription factor (MYB56)	0.001	4.33
At4g11400	ARID/BRIGHT DNA-binding domain protein family	0.000	4.29
At2g01810	PHD finger protein family	0.000	4.23
At5g11510	myb family transcription factor (MYB3R4)	0.001	3.87
At3g27785	myb family transcription factor (MYB118)	0.010	3.86
At4g36590	MADS-box protein (AGL40)	0.000	3.85
At1g49190	response regulator protein family (ARR19) b	0.035	3.62
At4g23750	Cytokinin response factor (CRF2)	0.000	3.60
At5g60440	MADS-box protein (AGL62)	0.003	3.57
At2g35670	C2H2-type zinc finger protein (FIS2)	0.016	3.55
At4g38000	Dof zinc finger protein	0.000	3.50
At3g03260	homeodomain protein	0.021	3.46
At2g34880	maternal effect embryo arrest 27 (MEE27)	0.004	3.32

a All fold changes represent differential expression in the endosperm direction.

b Seed-specific genes for which promoter-GUS reporter gene analysis is shown in Figure 4.
Table VII. Distribution of MADS-box transcription factors in the endosperm-preferred data

Locus	Name	Type	p value	Fold change
At1g65300	AGL38/PHE2^c	I	0.000	7.84
At5g26630	AGL35^c	I	0.000	7.77
At1g65360	AGL23	I	0.001	6.45
At1g47760	AGL102	I	0.001	5.80
At1g65330	AGL37/PHE1^c	I	0.002	5.48
At2g26320	AGL33^c	II	0.006	4.97
At4g36590	AGL40^c	I	0.000	3.85
At5g60440	AGL62^c	I	0.003	3.57
At3g66656	AGL91^c	I	0.039	2.41
At1g31630	AGL86	I	0.000	2.23
At5g65330	AGL78	I	0.018	2.00
At5g26650	AGL36	I	0.004	2.00
At5g26320	AGL33^c	II	0.006	4.97
At4g36590	AGL40^c	I	0.000	3.85
At5g60440	AGL62^c	I	0.003	3.57
At3g66656	AGL91^c	I	0.039	2.41
At1g31630	AGL86	I	0.000	2.23
At5g65330	AGL78	I	0.018	2.00
At5g26650	AGL36	I	0.004	2.00

^a MADS-box genes showing consistent signal on the arrays were identified using a p-value of <0.05.

^b All fold changes represent differential expression in the endosperm direction. Dashed lines represent a fold change cut-off of 2.0.

^c MAD-box genes with seed-specific expression.
Figure legends

Figure 1. Heat map showing endosperm preferred genes in AtGenExpress seed data

This heat map includes genes with endosperm preferred expression from our arrays that correlate with *SUC5* expression (based on an r value cut-off of 0.75) across the AtGenExpress expression library using online tools provided at the University of Toronto BAR website. The DataMetaformatter tool created a heat map of probe intensities for genes in AtGenExpress seed development series and also calculated the median expression intensities in all other wild-type tissues. This heat map only includes genes that had a median expression level in AtGenExpress <100 units in non-seed containing tissues and a median expression of >100 across the seed series. Stages 3,4,5,6,7,8,9 and 10 correspond to siliques containing seeds 48-66 hours after flowering (HAF), siliques containing seeds 66-84 HAF, siliques containing seeds 84-90 HAF, isolated seeds 90-96 HAF, isolated seeds 96-108 HAF, isolated seeds 108-120 HAF, isolated seeds 120-144 HAF and isolated seeds 144-192 HAF, respectively.

Figure 2. Interaction summary of endosperm preferred MADS-box transcription factors

Interaction plot of endosperm preferred MADS-box transcription factors in the array data adapted from the output of the arabidopsis interactions viewer at http://bar.utoronto.ca/. Black outline corresponds to genes differentially expressed in our array data. Dark and pale green fill correspond to >2.0 fold endosperm enriched and 1.5-2 fold endosperm enriched transcripts, respectively. Grey outline represent genes not differentially expressed in the array data. Connecting lines indicate a protein:protein interaction is evident in the literature. The more red the line, the better the correlation for transcript expression across the AtGenExpress expression series as assessed by Pearson correlation.
Figure 3. Heat map showing qRT-PCR validation of early seed and/or early seed specific expression

The expression level of each transcript was calculated relative to Actin2. R, ST, L, FB, SIL, DS represents roots, stems, leaves, flower buds, siliques and dissected seed, respectively. Context relates to the section of the manuscript within which a particular gene is discussed.

Figure 4. Promoter-GUS expression during early seed development.

GUS reporter constructs were made for a selection of transcription factors to assess their use as markers for early endosperm development. A-E, Expression of the At1g65300 (AGL38/PHE2) construct was seen in mature pollen (B) and subsequently in the central cell post fertilisation (A). Expression then persisted in the very early embryo and endosperm (C) but became restricted to the endosperm around the late globular stage (D). Expression was then specific to the chalazal region during transition (E). F, The At1g49190 (ARR19) promoter was expressed in the chalazal endosperm during globular and early heart stages of seed development. G, The At5g60440 (AGL62) promoter was expressed throughout the syncytial endosperm albeit at low levels and is shown here during the globular stage. H, The At4g18870 (Hsf-15) promoter had very strong expression in the chalazal endosperm plus strong expression in the peripheral endosperm at the globular stage of development. Staining was not apparent in the micropylar domain. I-J, The At4g21080 (DOF4.5) promoter showed very strong chalazal specific expression at globular stage (I), with expression becoming more widespread in the endosperm at heart stage (J). The labels on (E) are; pe, peripheral endosperm; mpe, micropylar endosperm; em, embryo; and cze, chalazal endosperm.
Figure 1. Heat map showing endosperm-preferred genes in AtGenExpress seed data

The heat map includes genes with endosperm-preferred expression from our arrays that correlate with SUC5 expression (based on an r value cut-off of 0.75) across the AtGenExpress expression library identified using Expression Angler (http://bar.utoronto.ca/). DataMetaformatter (http://bar.utoronto.ca/) was used to create the heat map of probe intensities for genes in AtGenExpress seed development series and the median expression intensities in all other wild-type tissues. The heat map only includes genes that had a median expression level in AtGenExpress <100 units in non-seed containing tissues and a median expression of >100 across the seed series. Stages 3,4,5,6,7,8,9 and 10 correspond to siliques containing seeds 48-66 hours after flowering (HAF), siliques containing seeds 66-84 HAF, siliques containing seeds 84-90 HAF, isolated seeds 90-96 HAF, isolated seeds 96-108 HAF, isolated seeds 108-120 HAF, isolated seeds 120-144 HAF and isolated seeds 144-192 HAF, respectively.

![Heat Map](https://plantphysiol.org)
Figure 2. Interaction summary of endosperm preferred MADS-box transcription factors

Interaction plot of endosperm preferred MADS-box transcription factors in the array data adapted from the output of the arabidopsis interactions viewer at http://bar.utoronto.ca/. Black outline corresponds to genes differentially expressed in our array data. Dark and pale green fill correspond to > 2.0 fold endosperm enriched and 1.5-2 fold endosperm enriched transcripts, respectively. Grey outline represent genes not differentially expressed in the array data. Connecting lines indicate a protein:protein interaction is evident in the literature. The more red the line, the better the correlation for transcript expression across the AtGenExpress expression series as assessed by Pearson correlation.
Figure 3. Heatmap showing qRT-PCR validation of early seed and/or early seed specific expression

The expression level of each transcript was calculated relative to Actin2. R, ST, L, FB, SIL, DS represent roots, stems, leaves, flower buds, siliques and dissected seed, respectively. Context relates to the section of the manuscript within which a particular gene is discussed.
GUS reporter constructs were made for a selection of transcription factors to assess their use as markers for early endosperm development. A-E, Expression of the At1g65300 (AGL38/PHE2) construct was seen in mature pollen (B) and subsequently in the central cell post fertilisation (A). Expression then persisted in the very early embryo and endosperm (C) but became restricted to the endosperm around the late globular stage (D). Expression was then specific to the chalazal region during transition (E). F, The At1g49190 (ARR19) promoter was expressed in the chalazal endosperm during globular and early heart stages of seed development. G, The At5g60440 (AGL62) promoter was expressed throughout the syncytial endosperm albeit at low levels and is shown here during the globular stage. H, The At4g18870 (Hsf-15) promoter had very strong expression in the chalazal endosperm plus strong expression in the peripheral endosperm at the globular stage of development. Staining was not apparent in the micropylar domain. I-J, The At4g21080 (DOF4.5) promoter showed very strong chalazal specific expression at globular stage (I), with expression becoming more widespread in the endosperm at heart stage (J). The labels on (E) are; pe, peripheral endosperm; mpe, micropylar endosperm; em, embryo; and cze, chalazal endosperm.