The Potency of Plant Dye Extracts for Halal Detection on Consumed Animal Fats

Rurini Retnowati*, Hermin Sulistyarti, Suratmo
Department of Chemistry, Faculty of Science, Brawijaya University, Indonesia

*Corresponding author: rretnowati@ub.ac.id

Abstract. One point of the halal concepts is the food does not contain any lard or any pigs derivatives. UV-vis spectrophotometry using natural dyes, among other methods, can be developed for animal fat analysis. One factor that influence the analysis is the solubility of animal fats and natural dyes in organic solvents. This research was conducted to study the differences of UV-vis spectrum profile in animal fats (chicken, beef, lamb, pork) using various natural dyes (namely Curcuma longa Linn., Curcuma zanthorrhiza, Curcuma heyneana, Zingiber montanum, Uncaria, Caesalpinia sappan, and Areca catechu) in different type of solvents. The research consists of four main steps: 1) screening of plant dyes in several solvents with different polarity, 2) screening of animal fat in several solvents with different polarity, 3) screening of animal fats mixed with plant dyes in selected solvents, and 4) analysis of animal fats mixed with plant dyes in selected solvents by UV-Vis spectrophotometry. The results showed that plant dyes from C. longa Linn., C. zanthorrhiza, A. catechu, and Uncaria, well as all animal fats used in this work, were soluble in ethyl-acetate and isopropanol. UV-vis spectrum profile of the animal fats with turmeric dyes in ethyl-acetate for chicken, beef, pork, and lamb fats, shows peaks at λ of 484, 792, 488.5, and 741 nm with absorbance of 3.913, 0.816, 3.524, and 0.175 respectively. Meanwhile in isopropanol, the profile for chicken, beef, pork, and lamb fats have λ of 751, 787, 712, 499 nm with absorbance of 0.007, 1.012, 0.479, and 3.913, respectively. Therefore, the UV-vis spectrum profile of animal fat with C. longa Linn dyes in ethyl-acetate can distinguish lard from the beef and lamb fats. In isopropanol, the lard cannot be distinguished from the chicken and beef fats, but it can differentiate lard from the lamb fats. The C. zanthorrhiza dyes in ethyl-acetate cannot distinguish lard from the chicken, beef, and lamb fats, but C. zanthorrhiza dyes can distinguish lard from the beef fat using isopropanol as the solvent. For A. catechu and Uncaria dyes in ethyl-acetate and isopropanol, they all cannot distinguish lard from the chicken, beef and lamb fats.

1. Introduction
Exploration of animal fat analysis by UV and FTIR has been developed mainly because of the efficiency and simplicity of the procedure. However, these methods have limitations in which all UV spectrum profiles of animal fats are similar, as is the analysis with FTIR. Those analyses cannot identify the type and composition of each fatty acid component of a sample [1]. Fat consists of several kinds of fatty acids, both types and composition, including saturated fatty acids and unsaturated fatty acids. One type of fatty acid is distinguished by the number of carbon atoms (the length of the short chain of carbon atoms, the number of double bonds, structural configuration). The differences in the structure of these fatty acids cause differences in solubility in organic solvents with different polarity.
Fatty acid analysis can be done qualitatively by adding a fat-soluble diazonium dye, and the mixture of these compounds gives an orange to deep red color. Color intensity that occurs is proportional to the levels of unsaturated fatty acids in fatty acids. The color reaction is caused by the coupling reaction (merging) of diazonium with compounds in the samples that have double bonds. The azo-couple compound that produced is a compound which has an extension of π electron delocalization system and absorbs UV radiation in the visible area [2].

Preliminary research has been carried out for qualitative analysis of fatty acids in various vegetable fats (coconut, palm, soybean, corn, olive oils) using the diazonium reagent, producing an orange to orange-red colour. The increase in the intensity of the orange colour obtained is proportional to the levels of unsaturated fatty acids (oleic, linoleic, linolenic acids) in these vegetable fats, each of which are coconut, palm, soybean, corn and olive fat [3].

This analysis method was developed to identify animal fats that have different compositions in solvents with different polarity. To differentiate the absorption intensity, an analysis is performed by UV-vis spectrophotometry. However, this method has limitations in distinguishing color density with a short range [4]. In addition, the use of diazonium compounds as coloring reagents is carcinogenic, hence their use must be limited and reduced [5].

Plant dyes can be used as natural dyes, an alternative for reducing the use of harmful synthetic dyes. Yellow fat-soluble dyes include curcumin and lutein, orange (zeaxanthin, α and β-carotene) and red (lycopene and fucoxanthin), while green ones are chlorophyll a and b and pheophytin a and b. The solubility of fat-soluble dyes in organic solvents corresponds to their polarity, and the difference in fat polarity is proportional to the levels of unsaturated fatty acids, the higher the levels of unsaturated fatty acids, the higher the polarity, thereby increasing the solubility of the dye in the polar solvent, which is also proportional to the increase in intensity. It is noticed that plant dyes have limitations in its stability. It is influenced by pH, oxidizing agents, light and storage time. In addition, the intensity range of the resulting mixture is relatively less sharp.

Preliminary results of qualitative analysis of fatty acids in vegetable oils, with different levels of saturated fatty acids (coconut and palm oils) using yellow, orange and red dye reagents from plant extracts have been carried out. The results showed a difference in color intensity that was proportional to the levels of unsaturated fatty acids [3]. These results will be applied to the fat of some meat sold in the market, which are known to have different levels of saturated fatty acids. In other words, it is expected to be used for the detection of halal animal meat.

This study aims to develop a new analytical technique for the detection of halal consumption of fatty meat with plant dye reagents using UV-vis spectrophotometry in several stages. Generally speaking, pork fat has relatively higher levels of unsaturated fatty acids than other consumed meat fats. The plant dyes produce sharp intensities and will be used for reagents in the qualitative analysis of consumed animal fats (chicken, beef, goat, pork). Fat extract was obtained from the extraction by the Folch method, using solvents with different polarity. Differences in color intensity from UV-vis spectrophotometry were analyzed. The differences in the profile of UV-vis spectrum (wavelength, intensity) of each selected animal fat in solvents with a certain polarity were used to distinguishing animal fat in a mixed meat fat [6]. In addition, digital image analysis is also performed, in which the color intensity profile of consumed animal fats, RGB values, and Gray Value digital imaging are discussed.

2. Experimental Details

2.1 Materials and Instrumentations

All chemicals are in analytical grade, namely methanol, ethanol, isopropanol, ethyl-acetate, n-hexane, and chloroform. A technical grade of isopropanol was also used as comparison. Natural dyes from several plants (Curcuma longa Linn – code A1, Curcuma zanthorriza – code A2, Curcuma heyneana – code A3, Zingiber montanum – code A4, Uncaria – code A5, Caesalpinia sappan – code A6, Areca...
catechu – code A7) and animal fats (chicken, beef, pork, lamb) were obtained from a local grocery store in Malang, Indonesia.

UV-vis spectrophotometer (Shimadzu 1601), 13 MP digital camera, and Image J 1.50i free software (Wayne Rasband, National Institution Institutions of Heath, USA) were used in this work.

2.2 Screening of natural plant dyes in several solvents with different polarity

The screening was done by dissolving the dyes in nonpolar (chloroform, n-hexane), semi-polar (ethyl-acetate) and polar (methanol, ethanol, isopropanol) solvents. A 2 g of each natural dyes powder (from A1 to A7) was added into Erlenmeyer flask and added with 20 mL of the solvent (chloroform, n-hexane, ethyl-acetate, methanol, ethanol, isopropanol). The solution was then homogenized using a vortex mixer and allowed to stand at room temperature for 1 hour. The solubility of each dye in each solvent was observed. The absorbance of each dye was then measured by UV-vis spectrophotometry to determine its maximum wavelength (λ_max). Next, the color stability of the dyes in several solvents was checked by measuring the absorbance at λ_max of each dye solution after one week, two weeks, and three weeks.

2.3 Screening of animal dyes with plant dyes in selected solvents

The screening was done by dissolving the animal fat in nonpolar (chloroform, n-hexane), semi-polar (ethyl-acetate) and polar (methanol, ethanol, isopropanol) solvents. A 2 mL of each animal fat (chicken, beef, pork, and lamb) was added into reaction tube and added with 4 mL of the solvent (ethyl-acetate and isopropanol) the solution was then homogenized using a vortex mixer and rested for 5 minutes. The solubility of each animal fat in ethyl-acetate and isopropanol solvent was observed. The absorbance of each animal fat was then measured by UV-vis spectrophotometry to determine its maximum wavelength (λ_max).

2.4 Digital image profile of halal detection of plant dyes extracts in various animal fats

Each solution of a mixture of animal fat and each natural dye extract which was dissolved in ethyl-acetate and isopropanol is captured using a digital camera with 13 Megapixel resolution. The results of digital images are stored in computer data and saved in JPEG (Joint Photographic Experts Group) file format. The digital images were analyzed using the free Image J 1.50i software (Wayne Rasband, National Institutional Institutions of Heath, USA). The color parameters obtained from this software are the average value of RGB (Red Green Blue). The RGB value is obtained through plugins> analyze> RGB Measure (Ferreira and Rasband, 2011). The percentage of each value of R, G, and B is calculated using the formula: % R = ((mean R / (mean R + mean G + mean B)) x 100%, percentages G and% B are obtained in the same above. Digital RGB values used to determine the difference in color intensity of a mixture of animal fat solutions and natural dyes extracts based on the range of RGB values.

3. Results and Discussion

3.1 The solubility screening of natural dyes in non-polar, semi-polar and polar solvents

The solubility of natural dyes was carried out using non-polar, semi-polar and polar solvents. The results showed that the non-polar chloroform dissolves more natural dyes compared to that of n-hexane. Solubility test using semi-polar solvents shows that all-natural dyes have good solubility in ethyl-acetate. As for polar solvents, all-natural dyes have good solubility in methanol and ethanol, as well as in isopropanol. However, the A5 natural dye was slightly soluble in isopropanol.

Solubility of natural dyes in various solvents can be identified from the intensity of the color produced. Thus, from the screening results (Table 1), it is found that natural dyes are soluble in several solvents, namely methanol, ethanol, isopropanol and ethyl acetate.
Table 1. Solubility of natural dyes in several solvents.

Plant Dyes	n-Hexane	Chloroform	Ethyl-acetate	Methanol	Ethanol (technical)	Isopropanol (technical)	Isopropanol (analytical)
1	A1	Slightly soluble	Soluble	Soluble	Soluble	Soluble	Soluble
	A2	Slightly soluble	Soluble	Soluble	Soluble	Soluble	Soluble
	A3	Slightly soluble	Soluble	Soluble	Soluble	Soluble	Slightly soluble
	A4	Insoluble	Soluble	Soluble	Soluble	Slightly soluble	Slightly soluble
	A5	Insoluble	Slightly soluble	Soluble	Soluble	Slightly soluble	Slightly soluble
	A6	Slightly soluble	Slightly soluble	Soluble	Soluble	Slightly soluble	Slightly soluble
	A7	Slightly soluble	Slightly soluble	Soluble	Soluble	Soluble	Soluble

Note: A1 = C. longa Linn., A2 = C. zanthorriza, A3 = C. heyneana, A4 = Z. montanum, A5 = Uncaria, A6 = C. sappan, A7 = A. catechu.

Analysis of natural dye extracts using UV-vis spectrophotometer produces the maximum wavelength (λ_{max}) and absorbance data of each extract of natural dyes using n-hexane and chloroform as the solvent, as presented in Table 2. The natural dyes extract in n-hexane has λ_{max} range of 580-670 nm with the highest λ_{max} was detected in C. zanthorriza (745 nm with absorbance of 0.011). The natural dyes extract in chloroform has λ_{max} range of 665-670 nm. In addition, λ_{max} of natural dyes extracts in chloroform has a close difference of λ_{max} among each other.

Table 2. Absorbance and λ_{max} results of extracts by UV-vis.

No	Solvent	Sample	λ_{max} (nm)	Abs.	No	Solvent	Sample	λ_{max} (nm)	Abs.
1	n-Hexane (3)	A1.1	748.4	0.018					
		A2.1	746.8	0.019					
		A3.1	722	0.038					
		A4.1	725.6	0.012					
		A5.1	663.8	0.109					
		A6.1	747	0.015					
		A7.1	739	0.565					
2	Chloroform (7)	A1.2	748.6	0.008					
		A2.2	745	0.011					
		A3.2	570	0.091					
		A4.2	727.0	0.008					
		A5.2	665.2	0.085					
		A6.2	569.4	0.182					
		A7.2	569.8	0.918					
3	Ethyl-acetate (6)	A1.4	747.2	0.008					
		A2.4	746.2	0.008					
		A3.4	741.4	0.012					
		A4.4	744.2	0.019					
		A5.4	665.6	0.125					
		A6.4	547.5	0.286					
		A7.4	741	0.083					

Stability test of natural dyes extract in various solvents was carried out to determine the maximum wavelength (λ_{max}) and absorbance values of each natural dye extract in weeks 1, 2 and 3. Table 3 and
Figure 1 showed that the natural dyes were stable in n-hexane, chloroform, ethyl-acetate, methanol, ethanol and isopropanol was stable until the 2nd week.

Table 3. Stability test result of natural dyes extracts in several solvents.

Solvent	Sample Code	Week of observation					
			1	2	3	Abs	
		λ_{max} (nm)	Abs	λ_{max} (nm)	Abs	λ_{max} (nm)	Abs
n-Hexane	A1.3	389	1.698	389.4	0.895	406	2.555
	A2.3	745	0.011	388	1.553	491	0.365
	A3.3	581.6	0.009	286.4	2.698	681.5	0.025
	A4.3	324.8	3.104	315	3.740	315.6	3.559
	A5.3	669	0.020	222	2.507	408	0.234
	A6.3	593.8	0.004	229.8	3.025	404	0.104
	A7.3	653.4	0.020	350.2	2.619	548	1.673
Chloroform	A1.7	670.2	0.079	669.5	0.110	508	1.704
	A2.7	666.0	0.113	744.5	0.046	487.5	1.285
	A3.7	669.0	0.048	669	0.059	463	0.158
	A4.7	667.8	0.068	773	0.038	470.5	0.609
	A5.7	667.0	0.119	667.5	0.210	478	0.485
	A6.7	670.2	0.042	795	0.055	477.5	0.729
	A7.7	665.0	0.304	666.5	0.446	549	1.814
Ethyl-acetate	A1.6	465.2	3.436	464.5	3.436	470	3.374
	A2.6	473.8	0.012	474.5	3.612	471	3.436
	A3.6	570	0.091	406.5	2.960	410	2.872
	A4.6	451.6	0.018	406	3.175	406	3.135
	A5.6	665.2	0.085	664	0.725	665.5	0.308
	A6.6	569.4	0.182	426	2.069	426	2.094
	A7.6	569.8	0.918	396	3.763	529	1.860
Methanol	A1.1	748.4	0.018	507.5	3.913	506	3.957
	A2.1	746.8	0.019	455	3.311	457	3.175
	A3.1	722	0.038	491.5	3.612	457.5	3.135
	A4.1	725.6	0.012	453	3.311	663.5	0.124
	A5.1	663.8	0.109	664	0.148	491	3.436
	A6.1	747	0.015	484	3.612	489	3.436
	A7.1	739	0.565	496	4.000	499	3.913
Ethanol	A1.2	748.6	0.008	507	3.913	508	3.763
	A2.2	745	0.011	486.5	3.524	484	3.524
	A3.2	570	0.091	380.6	2.659	350.8	2.972
	A4.2	727.0	0.008	436.5	3.315	447	3.135
	A5.2	665.2	0.085	665.5	0.043	665.5	0.028
	A6.2	569.4	0.182	467.5	3.612	471.5	3.524
	A7.2	569.8	0.918	443.5	3.215	444	3.101
Isopropanol	A1.4	747.2	0.008	481	3.612	493	3.612
	A2.4	746.2	0.008	478	3.436	469.5	3.436
	A3.4	741.4	0.012	752	0.001	404.5	2.422
	A4.4	744.2	0.019	429	2.960	440.5	3.010
	A5.4	665.6	0.125	666.5	0.062	666	0.058
	A6.4	547.5	0.286	547.5	0.453	547	0.2898
	A7.4	741	0.083	420	1.542	419.5	1.527
Figure 1. Stability test of natural dyes in several solvents a. n-hexane; b. chloroform; c. ethyl-acetate; d. methanol; e. ethanol; f. isopropanol.

The solubility screening test of natural dye extracts were also conducted in various solvents (non-polar, semi-polar and polar). Based on the result (Table 4), it can be concluded that ethyl-acetate and isopropanol are suitable solvents to be used in the solubility of animal fats – natural dye extracts mixture due to its good solubility.

Table 4 shows that the C. longa Linn., C. heyneana, Uncaria, and A. catechu dye extracts have the best solubility in animal fat using ethyl-acetate, as observed from the fully dissolving of each natural dye extract and color changes in response to animal fats. Meanwhile, in isopropanol, the C. longa Linn, C. heyneana, C. sappan and A. catechu dye extracts are slightly soluble in animal fat and form 2 layers with a color change in the lower layer of each animal fat.

3.2 Analysis of animal fats with plant dyes in selected solvents by UV-Vis spectrophotometry

The ethyl-acetate and isopropanol solvents which has good solubility in natural dye and fat extracts mixture were further used in the next stage. The extract of natural dyes – animal fat mixture in ethyl-acetate has λ_{max} range of 792-367 nm. Meanwhile in isopropanol, the λ_{max} was obtained in a range of 798-414 nm. The lowest λ_{max} was detected for A. catechu dyes which was 367.8 nm with an absorbance of 2.647. These results are presented in Table 5.
Table 4. Solubility test of animal fat in different dye extracts and solvents.

Solvent	Extracts	Solubility and Color of Animal Fat	Chicken	Beef	Pork	Lamb
Ethyl-acetate	A1	soluble, orange	soluble, orange	slightly soluble, pale yellow	slightly soluble, pale yellow	
	A2	soluble, orange	soluble, orange	slightly soluble, orange (2 layers)	slightly soluble, orange (2 layers)	
	A3	soluble, yellow	soluble, yellow	soluble, yellow	soluble, yellow	
	A4	soluble, yellow	soluble, yellow	soluble, yellow	soluble, yellow	
	A5	slightly soluble, pale yellow	soluble, pale yellow	slightly soluble, pale yellow	soluble, pale yellow	
	A6	soluble, yellow	soluble, yellow	soluble, yellow	soluble, yellow	
	A7	soluble, yellow	soluble, yellow	soluble, yellow	soluble, yellow	

Isopropanol	A1	soluble, orange	soluble, orange	slightly soluble, orange (2 layers)	soluble, orange
	A2	soluble, orange	soluble, orange	slightly soluble, orange (2 layers)	soluble, orange
	A3	slightly soluble, orange (2 layers)	light orange	slightly soluble, orange (2 layers)	soluble, orange
	A4	soluble, yellow	soluble, yellow	soluble, yellow	soluble, yellow
	A5	slightly soluble, pale yellow	soluble, pale yellow	slightly soluble, pale yellow	soluble, pale yellow
	A6	soluble, yellow	soluble, yellow	slightly soluble, orange (2 layers)	slightly soluble, orange (2 layers)
	A7	slightly soluble, yellow (2 layers)	slightly soluble, orange (2 layers)	slightly soluble, orange (2 layers)	slightly soluble, orange (2 layers)

Note: A1 = C. longa Linn., A2 = C. zanthorrhiza, A3 = C. heyneana, A4 = Z. montanum, A5 = Uncaria, A6 = C. sappan, A7 = A. catechu.

Table 5. UV-Vis results of animal fat mixed with natural dyes extracts in selected solvents

Solvent	Dyes	Animal Fat							
			Chicken	Beef	Pork	Lamb			
		λ_{max} (nm)	Abs.	λ_{max} (nm)	Abs.	λ_{max} (nm)	Abs.	λ_{max} (nm)	Abs.
Ethyl-acetate	A1	484	3.913	792	0.816	488.5	3.524	741	0.1755
	A2	742.5	0.056	487.5	4.000	782.5	1.489	780.5	2.613
	A3	484	3.763	445	3.436	436.5	3.135	454	3.436
	A4	411.5	3.311	789	0.067	440	3.135	789.5	0.384
	A5	667.5	0.109	666.5	0.309	662.5	0.085	665.5	0.734
	A6	639	0.026	753.5	0.071	745.5	0.046	464.5	3.612
	A7	376.8	3.101	387.2	3.311	367.8	2.647	394	3.763
Isopropanol	A1	751	0.007	787	1.012	712	0.479	499	3.913
	A2	754	0.048	471	4.000	752.5	0.063	771.5	0.042
	A3	797	0.796	460.5	3.913	760	0.270	762	0.170
	A4	783.5	0.692	749	0.024	783.5	1.459	750	0.310
	A5	794	0.602	766.5	2.237	777	0.471	661	1.086
	A6	793.5	0.815	476	4.000	784.5	0.663	791	0.138
	A7	794	1.043	460.5	3.913	788	0.276	774	0.319

Note: A1 = C. longa Linn., A2 = C. zanthorrhiza, A3 = C. heyneana, A4 = Z. montanum, A5 = Uncaria, A6 = C. sappan, A7 = A. catechu.
3.3 Digital image profile of halal detection of plant dye extracts in various animal fats
Digital image profiles were used to quantify and differentiate the % RGB values (red, green, blue) of animal fat mixed with plant dye extracts in ethyl-acetate and isopropanol solvents. Thus, it is expected to be able to determine the profile differences of digital image of animal fat mixed with plant dye extracts. The results of the % RGB values are presented in Table 6.

Solvent	Extract	RGB	RGB Mean Values of Animal Fat			
			Chicken	Beef	Pork	Lamb
Ethyl-acetate	A1	Red	144.958	170.304	166.824	166.419
		Green	80.881	107.123	102.184	98.486
		Blue	31.273	31.053	36.838	41.636
		% Red	56.38	55.21	54.55	54.29
		% Green	31.46	34.73	33.41	32.13
		% Blue	12.16	10.07	10.07	13.58
	A3	Red	146.510	148.386	140.660	140.794
		Green	90.595	82.817	75.025	77.078
		Blue	5.448	4.671	5.656	4.860
		% Red	60.40	62.91	63.55	63.21
		% Green	37.35	35.11	33.90	34.61
		% Blue	2.25	1.98	2.56	2.18
Isopropanol	A1	Red	171.853	184.926	149.552	162.023
		Green	81.853	122.917	52.456	72.023
		Blue	26.043	20.840	4.945	19.371
		% Red	62.78	56.32	72.26	63.94
		% Green	29.90	37.44	25.35	28.42
		% Blue	7.32	6.24	2.39	7.64
	A3	Red	170.304	176.042	143.217	157.533
		Green	81.199	94.542	44.049	71.616
		Blue	15.083	21.458	5.236	17.074
		% Red	63.88	60.28	74.40	63.98
		% Green	30.46	32.37	22.88	29.09
		% Blue	5.66	7.35	2.72	6.93

Table 6 showed that the %RGB mean values of each animal fat – plant dye extract in ethyl-acetate and isopropanol are distinguishable. The percentage of the RGB value showed the intensity of the color produced after the addition of extracts of natural dyes on each animal fat. However, not all plant extracts have the potential to be halal detectors for animal fat due to the difference of each extract dye. From the result, C. longa Linn and C. heyneana extracts have the potential as halal detectors for consumed animal fats in isopropanol solvent. However, consumed animal fats were less soluble in isopropanol. Lard (fat of pork) has the highest %RGB value as shown by the digital image of C. longa Linn and C. heyneana extracts in isopropanol. Meanwhile, the highest %RGB was shown only on C. heyneana in ethyl-acetate.

4. Conclusion
This research result showed that the extract of plant dyes from A1 (C. longa Linn) and A3 (C. heyneana) in ethyl-acetate and isopropanol solvents, by combination of UV-vis and digital image spectrophotometer methods, can be developed to distinguish halal fats (chicken, beef, lamb) from a non-halal fats (lard or fat of pork).
Acknowledgment
The author would like to thank the Professor and Doctor Research Grant Program 2019 (Brawijaya University) for the research funding and the organizing committee of the 2nd IC2MS for the assistance.

References
[1] Ardilla, D., Taufik, M., Tarigan, D., Thamrin, M., Razali, M., & Siregar, H. 2018 Analisis Lemak Babi Pada Produk Pangan Olahan Menggunakan Spektroskopi UV-Vis. Jurnal Teknologi Pangan Dan Hasil Pertanian, 1(2), 111–116.
[2] McMurry, John 1999 Organic Chemistry (Fifth Edit). America: Thomson Learning Brooks/Cole.
[3] Rurini, R., Effendi, M. H., and Kurniawan, F 2019. Pengaruh Pelarut pada Identifikasi Profil Lemak Hewani Menggunakan Spektrofotometri UV-Vis-Citra Digital Untuk Deteksi Produk Halal.
[4] Prabawati, S. and Fajriati, I. 2019 Analisis Lemak Sapi Dan Lemak Babi Menggunakan Gas Chromatography (Gc) Dan Fourier Transform Infra Red Spectroscopy Second Derivative (Ftir-2d) Untuk Autentifikasi Halal. 8.
[5] Othman, R., Zaifuddin, F. A. M., and Hassan, N. M. 2015 Potential Sources For Lipid Soluble Food Colorants From Selected Malaysian Traditional Vegetables. 19(7).
[6] Berhe, D. T., Eskildsen, C. E., Lametsch, R., Hviid, M. S., van den Berg, F., & Engelsen, S. 2016 Prediction of total fatty acid parameters and individual fatty acids in pork backfat using Raman spectroscopy and chemometrics: Understanding the cage of covariance between highly correlated fat parameters. Meat Science 111 18–26.