Hörmann, Günther
Dirac and normal states on Weyl-von Neumann algebras. (English) [Zbl 1462.81115]
Lett. Math. Phys. 111, No. 1, Paper No. 26, 24 p. (2021).

Summary: We study particular classes of states on the Weyl algebra \(W \) associated with a symplectic vector space \(S \) and on the von Neumann algebras generated in representations of \(W \). Applications in quantum physics require an implementation of constraint equations, e.g., due to gauge conditions, and can be based on the so-called Dirac states. The states can be characterized by nonlinear functions on \(S \), and it turns out that those corresponding to non-trivial Dirac states are typically discontinuous. We discuss general aspects of this interplay between functions on \(S \) and states, but also develop an analysis for a particular example class of non-trivial Dirac states. In the last part, we focus on the specific situation with \(S = L^2(\mathbb{R}^n) \) or test functions on \(\mathbb{R}^n \) and relate properties of states on \(W \) with those of generalized functions on \(\mathbb{R}^n \) or with harmonic analysis aspects of corresponding Borel measures on Schwartz functions and on temperate distributions.

MSC:

81S10 Geometry and quantization, symplectic methods
53D50 Geometric quantization
46L30 States of selfadjoint operator algebras
81R10 Infinite-dimensional groups and algebras motivated by physics, including Virasoro, Kac-Moody, \(W \)-algebras and other current algebras and their representations
81R25 Spinor and twistor methods applied to problems in quantum theory
46F05 Topological linear spaces of test functions, distributions and ultradistributions
46F10 Operations with distributions and generalized functions

Keywords:

Weyl algebra; quantization with constraints; measures on non-locally compact groups; generalized functions

Full Text: DOI arXiv

References:

[1] Bellissard, J.: \((K)\)-theory of \((C^\ast, \ast)\)-algebras in solid state physics. In: Statistical Mechanics and Field Theory: Mathematical Aspects (Groningen, 1985), pp. 99-156 (1986)
[2] Benatti, F.; Narnhofer, H.; Sewell, GL. Errata: “a noncommutative version of the Arnol’ d cat map”, Lett. Math. Phys., 22, 1, 81 (1991). doi:10.1007/BF00408390
[3] Benatti, F.; Narnhofer, H.; Sewell, GL. A noncommutative version of the Arnol’ d cat map, Lett. Math. Phys., 21, 2, 157-172 (1991). Zbl 0722.46033. doi:10.1007/BF00401650
[4] Bogachev, VI, Measure Theory (2007), Berlin: Springer, Berlin. doi:10.1007/978-3-540-45114-4
[5] Bratteli, O., Robinson, D.W.: Operator algebras and quantum statistical mechanics. In: Texts and Monographs in Physics. Equilibrium States. Models in Quantum Statistical Mechanics, 2nd edn, vol. 2, Springer, Berlin (1997). Zbl 0903.46066
[6] Chasco, MJ; Dikranjan, D.; Martín-Peinador, E., A survey on reflexivity of abelian topological groups, Topol. Appl., 159, 9, 2290-2309 (2012). Zbl 1247.22001. doi:10.1016/j.topol.2012.04.012
[7] Colombeau, JF, New Generalized Functions and Multiplication of Distributions (1984), Amsterdam: North-Holland, Amsterdam. Zbl 0532.46019
[8] Conway, JB, A Course in Functional Analysis, Graduate Texts in Mathematics (1990), New York: Springer, New York
[9] Conway, JB, A Course in Operator Theory, Graduate Studies in Mathematics (2000), Providence: American Mathematical Society, Providence
[10] Dieudonné, J., Grundzüge der Modernen Analysis (1985), Braunschweig: Vieweg, Braunschweig. Zbl 0208.31801
[11] Gårding, L.; Wightman, A., Representations of the commutation relations, Proc. Nat. Acad. Sci. U. S. A., 40, 622-626 (1954). Zbl 0057.09604. doi:10.1073/pnas.40.7.622
[12] Gel’Fand, I.M., Vilenkin, N.Y.: Generalized Functions, vol. 4. AMS Chelsea Publishing, Providence, RI, Applications of harmonic analysis, Translated from the 1961 Russian original [MR0146653] by A. Feinstein, Reprint of the 1964 English
[13] Glimm, J.; Jaffe, A., Quantum Physics, A Functional Integral Point of View (1987), New York: Springer, New York - Zbl 0461.46051
[14] Groisser, M.; Kunzinger, M.; Oberguggenberger, M.; Steinbauer, R., Geometric Theory of Generalized Functions, with Applications to Relativity (2001), Dordrecht: Kluwer, Dordrecht - doi:10.1007/978-94-015-9845-3
[15] Grundling, H., Systems with outer constraints. Gupta-Bleuler electromagnetism as an algebraic field theory, Commun. Math. Phys., 114, 1, 69-91 (1988) - Zbl 0659.46060 - doi:10.1007/BF01218289
[16] Grundling, H., Quantum constraints, Rep. Math. Phys., 57, 1, 97-120 (2006) - Zbl 1110.81136 - doi:10.1016/S0034-4877(06)80011-X
[17] Grundling, H.; Hurst, CA, The quantum theory of second class constraints: kinematics, Commun. Math. Phys., 119, 1, 75-93 (1988) - Zbl 0691.46044 - doi:10.1007/BF01218291
[18] Grundling, HBGS; Hurst, CA, Algebraic quantization of systems with a gauge degeneracy, Commun. Math. Phys., 98, 3, 369-390 (1985) - Zbl 0578.46064 - doi:10.1007/BF01205789
[19] Grundling, HBGS; Hurst, CA, A note on regular states and supplementary conditions, Lett. Math. Phys., 15, 3, 205-212 (1988) - Zbl 0655.46062 - doi:10.1007/BF00398589
[20] Hörmander, L., The Analysis of Linear Partial Differential Operators (1990), Berlin: Springer, Berlin - Zbl 0687.35002
[21] Hörmann, G.: The Weyl-algebra on the two-torus. In: NTZ/INTSEM-Nr.34/1991 Preprint of the Workshop “Entropie und Dynamische Entropie in der Mathematischen Physik”. University of Leipzig (1991)
[22] Hörmann, G.: Representations of the infinite dimensional Heisenberg group, Doctoral thesis, University of Vienna (1993)
[23] Hörmann, G., Regular Weyl-systems and smooth structures on Heisenberg groups, Commun. Math. Phys., 184, 51-63 (1997) - Zbl 0873.46036 - doi:10.1007/s002200050052
[24] Kadison, RV; Ringrose, JR, Fundamentals of the Theory of Operator Algebras: Advanced Theory (1986), New York: Academic Press, New York - Zbl 0601.46054
[25] Kirillov, A.A.: Elements of the Theory of Representations. Springer, Berlin. Translated from the Russian by Edwin Hewitt, Grundlehren der Mathematischen Wissenschaften, Band 220 (1976) - Zbl 0342.22001
[26] Kriegl, A.; Michor, PW, The convenient setting of global analysis, Math. Surv. Monogr., I, 53 (1997) - Zbl 0889.58001
[27] Pedersen, G.K.: \(C^\ast\)-algebras and their automorphism groups. In: Pure and Applied Mathematics (Amsterdam). Academic Press, London. Second edition of [MR0548006]. Edited and with a preface by Søren Eilers and Dorte Olesen (2018)
[28] Petz, D.: An invitation to the algebras of canonical commutation relations. In: Leuven Notes in Mathematical and Theoretical Physics. Series A: Mathematical Physics, p. 2. Leuven University Press, Leuven (1990) - Zbl 0704.46045
[29] Sławiński, J., On factor representations and the \(\mathcal{C}^\ast\text{-algebra}\) of canonical commutation relations, Commun. Math. Phys., 24, 151-170 (1972) - Zbl 0225.46068 - doi:10.1007/BF01878451
[30] Smith, MF, The Pontrjagin duality theorem in linear spaces, Ann. Math., 2, 56, 248-253 (1952) - Zbl 1176.46002 - doi:10.2307/1969708
[31] Thirring, W., Narnhofer, N.: Covariant QED Without Indefinite Metric, pp. 197-211. Special issue dedicated to R. Haag on the occasion of his 70th birthday (1992) - Zbl 0774.46043
[32] Trèves, F.: Topological Vector Spaces, Distributions and Kernels. Dover Publications, Inc., Mineola, NY. Unabridged republication of the 1967 original (2006) - Zbl 1111.46001

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.