ELEMENTARY PROOF OF LOGARITHMIC SOBOLEV INEQUALITIES FOR GAUSSIAN CONVOLUTIONS ON \mathbb{R}

DAVID ZIMMERMANN

Abstract. In a 2013 paper, the author showed that the convolution of a compactly supported measure on the real line with a Gaussian measure satisfies a logarithmic Sobolev inequality (LSI). In a 2014 paper, the author gave bounds for the optimal constants in these LSIs. In this paper, we give a simpler, elementary proof of this result.

1. Introduction

A probability measure μ on \mathbb{R}^n is said to satisfy a logarithmic Sobolev inequality (LSI) with constant $c \in \mathbb{R}$ if

$$\text{Ent}_\mu(f^2) \leq c \mathcal{E}(f, f)$$

for all locally Lipschitz functions $f : \mathbb{R}^n \to \mathbb{R}_+$, where Ent_μ, called the entropy functional, is defined as

$$\text{Ent}_\mu(f) := \int f \log f \, d\mu d\mu$$

and $\mathcal{E}(f, f)$, the energy of f, is defined as

$$\mathcal{E}(f, f) := \int |\nabla f|^2 d\mu,$$

with $|\nabla f|$ defined as

$$|\nabla f|(x) := \limsup_{y \to x} \frac{|f(x) - f(y)|}{|x - y|}$$

so that $|\nabla f|$ is defined everywhere and coincides with the usual notion of gradient where f is differentiable.

LSIs are a useful tool that have been applied in various areas of mathematics, cf. [1, 2, 4, 5, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20]. In [21], the present author showed that the convolution of a compactly supported measure on \mathbb{R} with a Gaussian measure satisfies a LSI, and an application of this fact to random matrix theory was given. In [22, Thms. 2,3], bounds for the optimal constants in these LSIs were given, and the results were extended to \mathbb{R}^n. Those results are stated as Theorems 1 and 2 below. (See [17] for statements about LSIs for convolutions with more general measures).

Theorem 1. Let μ be a probability measure on \mathbb{R} whose support is contained in an interval of length $2R$, and let γ_δ be the centered Gaussian of variance $\delta > 0$, i.e., $d\gamma_\delta(t) = (2\pi\delta)^{-1/2} \exp(-\frac{t^2}{2\delta}) \, dt$. Then for some absolute constants K_i, the optimal log-Sobolev constant $c(\delta)$ for $\mu * \gamma_\delta$ satisfies

$$c(\delta) \leq K_1 \frac{\delta^{3/2} R}{4 R^2 + \delta} \exp \left(\frac{2 R^2}{\delta} \right) + K_2 \left(\sqrt{\delta} + 2R \right)^2.$$

In particular, if $\delta \leq R^2$, then

$$c(\delta) \leq K_3 \frac{\delta^{3/2}}{R} \exp \left(\frac{2 R^2}{\delta} \right).$$

The K_i can be taken in the above inequalities to be $K_1 = 6905, K_2 = 4989, K_3 = 7803$.

Theorem 2. Let μ be a probability measure on \mathbb{R}^n whose support is contained in a ball of radius R, and let γ_δ be the centered Gaussian of variance δ with $0 < \delta \leq R^2$, i.e., $d\gamma_\delta(x) = (2\pi\delta)^{-n/2} \exp(-\frac{|x|^2}{2\delta}) \, dx$. Then for some absolute constant K, the optimal log-Sobolev constant $c(\delta)$ for $\mu * \gamma_\delta$ satisfies

$$c(\delta) \leq K R^2 \exp \left(20n + \frac{5 R^2}{\delta} \right).$$

K can be taken above to be 289.
Theorem 4 was proved in [22] using the following theorem due to Bobkov and Götze [3] p.25, Thm 5.3:

Theorem 3 (Bobkov, Götze). Let μ be a Borel probability measure on \mathbb{R} with distribution function $F(x) = \mu((\infty, x])$. Let p be the density of the absolutely continuous part of μ with respect to Lebesgue measure, and let m be a median of μ. Let

$$D_0 = \sup_{x < m} \left(F(x) \cdot \log \frac{1}{F(x)} \int_x^m \frac{1}{p(t)} dt \right),$$

$$D_1 = \sup_{x > m} \left((1 - F(x)) \cdot \log \frac{1}{1 - F(x)} \cdot \int_x^m \frac{1}{p(t)} dt \right),$$

defining D_0 and D_1 to be zero if $\mu((\infty, m)) = 0$ or $\mu((m, \infty)) = 0$, respectively, and using the convention $0 \cdot \infty = 0$. Then the optimal log Sobolev constant c for μ satisfies $\frac{1}{150} (D_0 + D_1) \leq c \leq 468(D_0 + D_1)$.

Theorem 5 was proved in [22] using the following theorem due to Cattiaux, Guillin, and Wu [6] Thm. 1.2:

Theorem 4 (Cattiaux, Guillin, Wu). Let μ be a probability measure on \mathbb{R}^n with $d\mu(x) = e^{-V(x)} dx$ for some $V \in C^2(\mathbb{R}^n)$. Suppose the following:

1. There exists a constant $K \leq 0$ such that $\text{Hess}(V) \geq K I$.
2. There exists a $W \in C^2(\mathbb{R}^n)$ with $W \geq 1$ and constants $b, c > 0$ such that

$$\Delta W(x) - (\nabla V, \nabla W)(x) \leq (b - c|x|^2)W(x)$$

for all $x \in \mathbb{R}^n$.

Then μ satisfies a LSI.

The goal of the present paper is to provide an elementary proof of Theorem 4. The result proved is the following:

Theorem 5. Let μ be a probability measure on \mathbb{R} whose support is contained in an interval of length $2R$, and let γ_δ be the centered Gaussian of variance $\delta > 0$, i.e., $d\gamma_\delta(t) = (2\pi\delta)^{-1/2} \exp\left(-\frac{t^2}{2\delta}\right) dt$. Then the optimal log-Sobolev constant $c(\delta)$ for $\mu \ast \gamma_\delta$ satisfies

$$c(\delta) \leq \max \left(2\delta \exp \left(\frac{4R^2}{\delta} + 4R \sqrt{\delta} + \frac{1}{4} \right), 2\delta \exp \left(\frac{24R^2}{\delta} \right) \right).$$

In particular, if $\delta \leq 16R^2$, we have

$$c(\delta) \leq 2\delta \exp \left(\frac{24R^2}{\delta} \right).$$

The bound in Theorem 5 is worse than the bound in Theorem 4 for small δ, but still has an order of magnitude that is exponential in R^2/δ. (It is shown in [22] Example 21] that one cannot do better than exponential in R^2/δ for small δ.)

2. Proof of Theorem 5

The proof of Theorem 5 is based on two facts: first, the Gaussian measure γ_1 of unit variance satisfies a LSI with constant 2. Second, Lipshitz functions preserve LSIs. We give a precise statement of this second fact below.

Proposition 6. Let μ be a measure on \mathbb{R} that satisfies a LSI with constant c, and let $T : \mathbb{R}^n \to \mathbb{R}^n$ be Lipshitz. Then the push-forward measure $T_*\mu$ also satisfies a LSI with constant $c |T|_{\text{Lip}}^2$.

Proof. Let $g : \mathbb{R}^n \to \mathbb{R}$ be locally Lipschitz. Then $g \circ T$ is locally Lipschitz, so by the LSI for μ,

$$\int (g \circ T)^2 \log \frac{(g \circ T)^2}{\int (g \circ T)^2} d\mu \leq c \int |\nabla (g \circ T)|^2 d\mu.$$

But since T is Lipschitz,

$$|\nabla (g \circ T)| \leq (|\nabla g| \circ T)|T|_{\text{Lip}}.$$

So by a change of variables, (1) simply becomes

$$\int g^2 \log \frac{g^2}{\int g^2} dT_*\mu \leq c |T|_{\text{Lip}}^2 \int |\nabla g|^2 dT_*\mu,$$

as desired. □
Lemma 7. For K and Λ and $\delta = 1$ (the general case will be handled at the end of the proof by a scaling argument).

Let F and G be the cumulative distribution functions of γ_1 and $\mu * \gamma_1$, i.e.,

$$F(x) = \int_{-\infty}^{x} p(t) \, dt, \quad G(x) = \int_{-\infty}^{x} q(t) \, dt,$$

where

$$p(t) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{t^2}{2}\right) \quad \text{and} \quad q(t) = \int_{-\infty}^{R} p(t - s) \, d\mu(s).$$

Notice that q is smooth and strictly positive, so that $G^{-1} \circ F$ is well-defined and smooth. It is readily seen that $(G^{-1} \circ F)_* (\gamma_1) = \mu * \gamma_1$, so to establish the theorem we simply need to bound the derivative of $G^{-1} \circ F$.

Now

$$(G^{-1} \circ F)'(x) = \frac{1}{G((G^{-1} \circ F)(x))} \cdot F'(x) = \frac{p(x)}{q((G^{-1} \circ F)(x))}.$$

We will bound the above derivative in cases — when $x \geq 2R$, when $-2R \leq x \leq 2R$, and when $x \leq -2R$.

We first consider the case $x \geq 2R$. Define

$$\Lambda(x) = \int_{-R}^{R} e^{xs} \, d\mu(s), \quad K(x) = \log \Lambda(x) + \frac{R}{x}.$$

Note Λ and K are smooth for $x \neq 0$.

Lemma 7. For $x \geq 2R$,

$$\exp\left(-2R^2 - 2R - \frac{1}{8}\right) \cdot p(x) \leq q(x + K(x)) \leq e^{-R} \cdot p(x).$$

Proof. By definition of q, p, Λ, and K,

$$q(x + K(x)) = \int_{-R}^{R} p(x + K(x) - s) \, d\mu(s) = p(x) \cdot e^{-xK(x)} \int_{-R}^{R} \exp\left(-\frac{(K(x) - s)^2}{2}\right) \cdot e^{xs} \, d\mu(s)$$

$$= \frac{e^{-R} \cdot p(x)}{\Lambda(x)} \int_{-R}^{R} \exp\left(-\frac{(K(x) - s)^2}{2}\right) \cdot e^{xs} \, d\mu(s)$$

$$\leq \frac{e^{-R} \cdot p(x)}{\Lambda(x)} \int_{-R}^{R} e^{xs} \, d\mu(s)$$

$$= e^{-R} \cdot p(x).$$

To get the other inequality, first note that $e^{-Rx} \leq \Lambda(x) \leq e^{Rx}$. (These are just the maximum and minimum values in the integrand defining Λ.) This implies that $-R + R/x \leq K(x) \leq R + R/x$, so for $-R \leq s \leq R$ and $x \geq 2R$, we have

$$-2R - \frac{R}{x} \leq K(x) - s \leq 2R + \frac{R}{x}$$

so that

$$\exp\left(-\frac{(K(x) - s)^2}{2}\right) \geq \exp\left(-\frac{(2R + R/x)^2}{2}\right) \geq \exp\left(-\frac{(2R + R/(2R))^2}{2}\right) = \exp\left(-2R^2 - R - \frac{1}{8}\right).$$

Therefore

$$q(x + K(x)) = \frac{e^{-R} \cdot p(x)}{\Lambda(x)} \int_{-R}^{R} \exp\left(-\frac{(K(x) - s)^2}{2}\right) \cdot e^{xs} \, d\mu(s) \geq e^{-2R^2 - 2R - \frac{1}{8}} \cdot p(x).$$

\square
Lemma 8. \(K'(x) \leq R \) for \(x \geq 2R \).

Proof. Recall that \(e^{-Rx} \leq \Lambda(x) \). (Again, \(e^{-Rx} \) is the minimum value in the integrand defining \(\Lambda \)). We therefore have

\[
K'(x) = \frac{\Lambda'(x)}{x\Lambda(x)} - \frac{\log \Lambda(x)}{x^2} - \frac{R}{x^2} = \frac{\int_{-R}^{0} e^{xs} d\mu(s)}{x\Lambda(x)} - \frac{\log \Lambda(x)}{x^2} - \frac{R}{x^2} \leq \frac{R \int_{-R}^{0} e^{xs} d\mu(s)}{x\Lambda(x)} + \frac{Rx}{x^2} - \frac{R}{x^2} \leq \frac{2R}{x} - \frac{R}{x^2}.
\]

By elementary calculus, the above has a maximum value of \(R \).

Lemma 9. For \(x \geq 2R \),

\[
x - R \leq (G^{-1} \circ F)(x) \leq x + K(x).
\]

Proof. Since \(G \) and \(G^{-1} \) are increasing, the lemma is equivalent to

\[
G(x - R) \leq F(x) \leq G(x + K(x)).
\]

The first inequality follows from the definition of \(G \) and the Fubini-Tonelli Theorem:

\[
G(x - R) = \int_{-\infty}^{x-R} q(t) \, dt = \int_{-\infty}^{x} \int_{-R}^{R} p(t-s) \, d\mu(s) \, dt = \int_{-R}^{R} \int_{-\infty}^{x-R} p(t-s) \, dt \, d\mu(s) = \int_{-R}^{R} \int_{-\infty}^{x-R+s} p(u) \, du \, d\mu(s) \leq \int_{-R}^{R} \int_{-\infty}^{x} p(u) \, du \, d\mu(s) = F(x).
\]

To establish the other inequality, we use Lemmas 1 and 8

\[
1 - G(x + K(x)) = \int_{x+K(x)}^{\infty} q(t) \, dt = \int_{x}^{\infty} q(u + K(u))(1 + K'(u)) \, du \leq \int_{x}^{\infty} p(u) e^{-R}(1 + R) \, du \leq \int_{x}^{\infty} p(u) \, du \leq 1 - F(x),
\]

so that \(F(x) \leq G(x + K(x)) \), as desired.

We are almost ready to bound \((G^{-1} \circ F)'(x)\) for \(x \geq 2R \). The last observation to make is that \(q \) is decreasing on \([R, \infty)\) since

\[
q'(t) = \int_{-R}^{R} p'(t-s) \, d\mu(s) = \int_{-R}^{R} -(t-s)p(t-s) \, d\mu(s) \leq 0 \quad \text{for } t \geq R.
\]

So for \(x \geq 2R \) we have, by lemma 3

\[
q((G^{-1} \circ F)(x)) \geq q(x + K(x)).
\]

Combining this with Lemma 7 we get

\[
(G^{-1} \circ F)'(x) = \frac{p(x)}{q((G^{-1} \circ F)(x))} \leq \frac{p(x)}{q(x + K(x))} \leq \exp\left(2R^2 + 2R + \frac{1}{8}\right)
\]

for \(x \geq 2R \).
In the case where \(-2R \leq x \leq 2R\), first note that for all \(x\),
\[
x - R \leq (G^{-1} \circ F)(x) \leq x + R;
\]
the first inequality above was done in Lemma \(\text{[9]}\) and the second inequality is proven in the same way. So
\[
\sup_{-2R \leq x \leq 2R} (G^{-1} \circ F)'(x) = \sup_{-2R \leq x \leq 2R} \frac{p(x)}{q((G^{-1} \circ F)(x))} \leq \sup_{-R \leq y \leq R} \frac{p(x)}{q(x + y)} = \left(\inf_{-2R \leq x \leq 2R} \frac{q(x + y)}{p(x)} \right)^{-1}.
\]
For convenience, let \(S = \{(x, y) : -2R \leq x \leq 2R, -R \leq y \leq R\}\). Now
\[
\inf_{(x, y) \in S} \frac{q(x + y)}{p(x)} = \inf_{(x, y) \in S} \frac{1}{p(x)} \int_{-R}^{R} p(x + y - s) \, d\mu(s).
\]
Since \(p\) has no local minima, the minimum value of the above integrand occurs at either \(s = R\) or \(s = -R\). Without loss of generality, we assume the minimum is achieved at \(s = R\) (otherwise, we can replace \((x, y)\) with \((-x, -y)\) by symmetry of \(S\) and \(p\)). So
\[
\inf_{(x, y) \in S} \frac{q(x + y)}{p(x)} \geq \inf_{(x, y) \in S} \frac{1}{p(x)} \cdot p(x + y + R).
\]
Elementary calculus shows that the above infimum is equal to \(e^{-12R^2}\) (achieved at \(x = 2R, y = R\)). Therefore
\[
\sup_{-2R \leq x \leq 2R} (G^{-1} \circ F)'(x) = \left(\inf_{(x, y) \in S} \frac{q(x + y)}{p(x)} \right)^{-1} \leq e^{12R^2}.
\]
The case \(x \leq -2R\) is dealt with in the same way as the case \(x \geq 2R\), the analogous statements being:
\[
\exp \left(-2R^2 - 2R - \frac{1}{8} \right) p(x) \leq q(x + K(x)) \leq e^{-R} p(x),
\]
\[
K'(x) \leq R,
\]
\[
x + K(x) \leq (G^{-1} \circ F)(x) \leq x + R,
\]
and \(q\) is increasing for \(x \leq -2R\). The upper bound for \((G^{-1} \circ F)'(x)\) obtained in this case is the same as the one in the case \(x \geq 2R\).
We therefore have
\[
||G^{-1} \circ F||_{\text{Lip}} \leq \max \left(\exp \left(2R^2 + 2R + \frac{1}{8} \right), e^{12R^2} \right).
\]
So by Proposition \(\text{[9]}\) \(\mu \ast \gamma_1\) satisfies a LSI with constant \(c(1)\) satisfying
\[
c(1) \leq 2||G^{-1} \circ F||_{\text{Lip}}^2 \leq \max \left(2 \exp \left(4R^2 + 4R + \frac{1}{4} \right), 2 e^{24R^2} \right).
\]
This proves the theorem for the case \(\delta = 1\).

To establish the theorem for a general \(\delta > 0\), first observe that
\[
\mu \ast \gamma_\delta = (h_\sqrt{\delta})_* \left(((h_1/\sqrt{\delta}), \mu) \ast \gamma_1 \right),
\]
where \(h_\lambda\) denotes the scaling map with factor \(\lambda\), i.e., \(h_\lambda(x) = \lambda x\). Now \((h_1/\sqrt{\delta}), \mu\) is supported in \([-R/\sqrt{\delta}, R/\sqrt{\delta}]\), so by the case \(\delta = 1\) just proven, \(((h_1/\sqrt{\delta}), \mu) \ast \gamma_1\) satisfies a LSI with constant
\[
\max \left(2 \exp \left(4(R/\sqrt{\delta})^2 + 4(R/\sqrt{\delta}) + \frac{1}{4} \right), 2 e^{24(R/\sqrt{\delta})^2} \right).
\]
Finally, since \(||h_1/\sqrt{\delta}||_{\text{Lip}} = \delta\), we have by Proposition \(\text{[9]}\)
\[
c(\delta) \leq \max \left(2\delta \exp \left(4R^2 + \frac{4R}{\sqrt{\delta}} + \frac{1}{4} \right), 2\delta \exp \left(\frac{24R^2}{\delta} \right) \right).
\]
In particular, when \(\delta \leq 16R^2\), we have
\[
2\delta \exp \left(\frac{4R^2}{\delta} + \frac{4R}{\sqrt{\delta}} + \frac{1}{4} \right) \leq 2\delta \exp \left(\frac{24R^2}{\delta} \right).
\]
so the above bound on $c(\delta)$ simplifies to

$$c(\delta) \leq 2\delta \exp \left(\frac{24R^2}{\delta} \right).$$

\[\square \]

Acknowledgements

The author would like to thank his Ph.D. advisor, Todd Kemp, for his valuable insights and discussions regarding this topic.

References

[1] Bakry, D.: *L’hypercontractivité et son utilisation en theorie des semigroupes*. Lectures on probability theory (Saint-Flour, 1992), 1–114, Lecture Notes in Math., 1581, Springer, Berlin, 1994.

[2] Bakry, D.: *On Sobolev and logarithmic Sobolev inequalities for Markov semigroups*. New trends in stochastic analysis (Charingworth, 1994), 43–75, World Sci. Publ., River Edge, NJ, 1997.

[3] Bobkov, S. G.; Götze, F.: *Exponential Integrability and Transportation Cost Related to Logarithmic Sobolev Inequalities*, J. Funct. Anal. 163 (1999), 1–28.

[4] Bobkov, S.; Houdré, C.: *Some connections between isoperimetric and Sobolev-type inequalities*. Mem. Amer. Math. Soc. 129 no. 616 (1997)

[5] Bobkov, S.; Tetali, P.: *Modified logarithmic Sobolev inequalities in discrete settings*. J. Theoret. Probab. 19, no. 2, 289–336 (2006)

[6] Cattiaux, P.; Guillin, A.; Wu, L.: *A note on Talagrand’s transportation inequality and logarithmic Sobolev inequality*. Probab. Theory Relat. Fields 148, 285–304 (2010)

[7] Davies, E. B.: *Explicit constants for Gaussian upper bounds on heat kernels*. Amer. J. Math. 109, no. 2, 319–333 (1987)

[8] Davies, E. B.: *Heat kernels and spectral theory*. Cambridge Tracts in Mathematics, 92. Cambridge University Press, 1990.

[9] Davies, E. B., Simon, B.: *Ultracontractivity and the heat kernel for Schrödinger operators and Dirichlet Laplacians*. J. Funct. Anal. 59, 335–395 (1984)

[10] Diaconis, P., Saloff-Coste, L.: *Logarithmic Sobolev inequalities for finite Markov chains*. Ann. Appl. Probab. 6, 695–750 (1996)

[11] Gross, L.; Rothaus, O.: *Herbst inequalities for supercontractive semigroups*. J. Math. Kyoto Univ. 38, no. 2, 295–318 (1998)

[12] Guionnet, A.; Zegarlinski, B.: *Lectures on logarithmic Sobolev inequalities*. Séminaire de Probabilités, XXXVI, 1134, Lecture Notes in Math., 1648, Springer, Berlin, 2003.

[13] Ledoux, M.: *Isoperimetry and Gaussian analysis*. Lectures on probability theory and statistics. 165–294, Lecture Notes in Math. 1648, Springer, Berlin, 1996

[14] Ledoux, M.: *The concentration of measure phenomenon*. Mathematical Surveys and Monographs, 89. American Mathematical Society, Providence, RI, 2001.

[15] Ledoux, M.: *A remark on hypercontractivity and tail inequalities for the largest eigenvalues of random matrices*. Séminaire de Probabilités XXXVII, 360–369, Lecture Notes in Math., 1832, Springer, Berlin, 2003.

[16] Villani, C.: *Topics in optimal transportation*. Graduate Studies in Mathematics, 58. American Mathematical Society, Providence, RI, 2003.

[17] Wang, F.-Y.; Wang, J.: *Functional inequalities for convolution probability measures*. arXiv:1308.1713

[18] Yau, H.T.: *Logarithmic Sobolev inequality for the lattice gases with mixing conditions*. Commun. Math. Phys. 181, 367–408 (1996)

[19] Yau, H.T.: *Log Sobolev inequality for generalized simple exclusion processes*. Probab. Theory Related Fields 109, 507–538 (1997)

[20] Zegarlinski, B.: *Dobrushin uniqueness theorem and logarithmic Sobolev inequalities*. J. Funct. Anal. 105, 77–111 (1992)

[21] Zimmermann, D.: *Logarithmic Sobolev inequalities for mollified compactly supported measures*. J. Funct. Anal. 265, 1064–1083 (2013)

[22] Zimmermann, D.: *Bounds for logarithmic Sobolev constants for Gaussian convolutions of compactly supported measures*. arXiv:1405.2551

Department of Mathematics, University of California, San Diego 92093

E-mail address: dszimmer@math.ucsd.edu