Proteomic sensing associated with terpenoid biosynthesis of *Artemisia annua* L. in response to different artificial light spectra

Darunmas Sankhuan, Sittiruk Roytrakul, Masaru Nakano and Kanyaratt Supaibulwatana

Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok, Thailand; Functional Ingredients and Food Innovation Research Group, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand

ABSTRACT

Artificial light has been used to control plant growth and secondary metabolite production. *Artemisia annua* L. plants were illuminated with three light-emitting diode (LED) spectra to investigate proteomic and biochemical responses. After 7 days, proteomic data revealed different protein numbers in leaves, stems, and roots under particular treatments. Results demonstrated increased accumulation of several proteins, including secondary metabolite-related proteins. The red light (R) (660 nm) highly induced terpenoid proteins. Similar biochemical profiles were observed in white light (W) (445, 544 nm) and blue light (B) (445 nm) conditions, while profiles from R treatment were different. Functional proteins of W and B treatments were involved in the MVA and MEP pathways and sesquiterpene biosynthesis. By contrast, unique proteins in R treatment were mainly expressed in sesquiterpene and tetraterpene biosynthesis. Specific relationships between biosynthetic proteins and sesquiterpenes were observed, suggesting the indispensable role of the light spectrum in regulating terpenoid biosynthesis.

Introduction

Qinghao (*Artemisia annua* L.), also known as sweet wormwood, is an important Chinese herb used to treat many infectious diseases (Graziose et al. 2010; Chang 2016). The plant extract exhibited wide-ranging pharmacological properties including antioxidant, antimicrobial, antiparasitic, and antiviral activities (Efferth et al. 2001; Cai et al. 2004; Sharopov et al. 2020). Phytochemical analyses revealed that leaves and crude extracts of *A. annua* contained several useful compounds including terpenoids, flavonoids, coumarins, sterols, phenols, lipids, and other hydrocarbons (Bhakuni et al. 2001; Czechowski et al. 2018). Among these, terpenoids are the largest and most diverse group, consisting of more than 40,000 plant secondary compounds (Bohlmann and Keeling 2008). Artemisinin, a useful sesquiterpene compound found in leaves of *A. annua*, plays a central role in combating the malaria-causing parasite *Plasmodium falciparum* (Klayman 1985; Dondorp et al. 2009), while the triterpene squalene showed a synergistic effect with artemisinin to promote *anti-falciparum* activity (Karaket et al. 2014).

Terpenoids contain unit(s) of 5-carbon isoprene and can be classified as hemi- (C5: isoprene), mono- (C10), sesqui- (C15), di- (C20), sester- (C25), tri- (C30), and tetr- (C40: carotenoids) terpenoids (Yazaki et al. 2017). Biosynthesis of terpenoid compounds requires the common precursor isopentenyl diphosphate (IPP) that can be synthesized by two different pathways involving mevalonic acid (MVA) and 2-C-methyl-D-erythritol 4-phosphate (MEP). The MVA pathway operates in cytosol, while the MEP pathway is localized in plastids. Crosstalk and exchange of IPP between these two pathways have been investigated in many plant species (Lange and Croteau 1999; Hemmerlin et al. 2003; Laule et al. 2003; Opitz et al. 2014). Biosynthesis of mono-, di- and tetraterpenes occurs in plastids, while cytosol is mainly responsible for sesquiterpene and tetraterpene biosynthesis (Muhlemann et al. 2014; Abbas et al. 2017). Alteration of the terpenoid biosynthetic pathway affects the target and also other related compounds.

Plants grown in their natural habitats spontaneously encounter a variety of stresses including light stresses from sunlight radiation. To maintain cellular activity and survival, plants employ molecular mechanisms underlying plant responses involving the activity of metabolic enzyme networks associated with responsive proteins (Kong and Oka-jima 2016; Chi et al. 2019). Previous studies indicated the influence of light signals on biosynthesis of secondary metabolites in several plant species. High light emission enhanced accumulation of coniferin, syringin, and flavonoids in *Arabidopsis* roots (Hemm et al. 2004), while the presence of light increased levels of several terpenoids, indole alkaloids, and loganin in *Catharanthus roseus* L. plants (Yu et al. 2018). Cited reports suggested positive impacts of light on improving plant metabolite production; however, inappropriate light supply ultimately destroyed plant photosynthetic apparatus and induced the accumulation of reactive oxygen species (ROS), leading to alterations in plant growth and development or even death (Li et al. 2009; Xie et al. 2014; Huang et al. 2019). The role of light signals in regulating metabolite production was also demonstrated in *A. annua*. Levels of bioactive compounds such as artemisinin were promoted at more than 1.5 times the control when UV-B and UV-C were irradiated before transplantation (Rai et al. 2011). Improvement in bioactive compounds occurred, with significant induction of key genes in the biosynthetic pathway after UV irradiation.

CONTACT Kanyaratt Supaibulwatana kanyaratt.sup@mahidol.ac.th Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand

Supplemental data for this article can be accessed at https://doi.org/10.1080/17429145.2021.2009582
Blue and red spectra irradiation increased the contents of artemisinin and its derivatives via upregulation of biosynthesis genes and suppression of enzymes in the competitive pathway (Zhang et al. 2018).

The implication of light quality provided a method for significant improvement of bioactive and other useful compounds in plants. Effects of different light wavelengths on transcriptomic responses of biosynthetic genes have previously been reported but data on proteomic responses of plants to light signals remain limited. Previous studies mainly emphasized the role of light in regulating light sensory proteins (photoreceptor proteins) such as UV-A/blue light receptors (Fuglevand et al. 1996; Lin 2002), red/far-red photoreceptors (Sharrock 2008; Legris et al. 2019), and UV-B photoreceptors (Hejde and Ulm 2012; Jenkins 2014), while the impacts of light signals on biosynthetic proteins have not been investigated in A. annua. Hence, here, comprehensive analyses of proteomic expression and the phytochemical fingerprint of volatile terpenoid compounds in A. annua were conducted to examine the proteomic and metabolomic responses of the plant to different light signals. Relationships between unique terpenoid proteins and putative terpenoid compounds in each specific light spectrum were also investigated.

Materials and methods

Plant material, growth conditions, and LED spectra irradiation

Artemisia annua seeds have been kindly provided by Dr. Chalermpol Kirdmanee (BIOTEC, NSTDA) since the year 2000, under the cooperative research project between Mahidol University and the National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Thailand (Supaibulwatana et al. 2004). The seeds were germinated and subsequently multiplied in the tissue culture lab at the Faculty of Science, Mahidol University. Seedlings of A. annua L. were maintained in vitro in solidified Murashige and Skoog (1962) medium supplied with 3% (w/v) sucrose and incubated at 25 ± 2°C and 50 ± 5% relative humidity and 200 ± 10 μmol m⁻² s⁻¹ light intensity with 16 h photoperiod. After 15 days, the plantlets were transferred to pots containing vermiculite, supplemented with sugar-free MS medium, and cultivated under 80 ± 5 μmol m⁻² s⁻¹ light intensity with 16 h photoperiod. Fresh leaves were harvested on day 7 and stored at −80°C until required for further analysis.

GeLC-MS/MS shotgun proteomics

Total protein was prepared using the modified protocol from Bryant et al. (2016). Protein content was determined by Bradford assay (1976) and 15 μg of total protein was used for gel packing with 12.5% polyacrylamide. The gel pieces were subjected to dehydration in 100% acetonitrile (ACN) and incubated with 10 mM dithiothreitol (DTT) in 10 mM ammonium bicarbonate (AmBic) at 56°C for 1 h. For the alklylation step, 100 mM iodoacetamide in 10 mM AmBic was added to the samples and incubated in the dark at room temperature (RT) for 45 min. Samples were then dehydrated with 100% ACN by shaking at RT for 5 min. Sequencing-grade trypsin (Promega, Germany) was added to the gels and incubated at 37°C overnight for in-gel digestion. Peptide products were extracted from the samples by adding 50% (v/v) ACN in 0.1% (v/v) formic acid, incubated at RT for 10 min, and dried at 45°C for 4 h. Tryptic peptides were protonated with 0.1% (v/v) formic acid before operating LC-MS/MS. The analysis was performed with three experimental replications and all experiments were conducted in duplicate.

Protein identification and bioinformatics

Data were quantified by MaxQuant 1.6.1.12 using the Andromeda search engine to correlate MS/MS spectra to the UniProt/Viridiplantae protein database (Bryant et al. 2016). A unique peptide with at least seven amino acids was required for protein identification and further quantification analysis. Biological relationships between proteomic data obtained from different LED treatments were analyzed using a Venn diagram (http://jvenn.toulouse.inra.fr/app/index.html) (Bardou et al. 2014). The non-overlapping proteins were further subjected to functional identification and classification based on their biological process and molecular function using UniProt identifiers (https://www.uniprot.org). The raw data were deposited in the jPOST repository (Okuda et al. 2016) under reference number PXD027227.

Phytochemical analysis of A. annua leaves by gas chromatography-mass spectrometry (GC-MS)

Fresh leaves of A. annua were ground into a fine powder in liquid nitrogen using a pestle and mortar. The sample powder was transferred to 10 mL glass tubes containing 2 mL of dichloromethane. After mixing, each glass tube containing a sample was sonicated for 15 min and centrifuged at 5000 rpm for 5 min. The supernatant was filtrated with a 0.45 μm syringe filter membrane and stored at −80°C until required for analysis. Phytochemical analysis of the leaf extract was performed by GC-MS under the following condition: the oven was programmed at 100°C for 1 min, then at 5°C/min to 150°C, at 2°C/min to 200°C, at 15°C/min to 300°C, and held for 15 min. Compounds were identified by comparison of retention time and fragments with standards. Mass spectral information was extracted and compared with the Wiley No.7 database to identify unknown compounds. Compounds with at least 80% match quality were relatively quantified against the internal standard (methyl heptadecanoate, C17) and represented as average relative contents (μg mL⁻¹).

Clustering analysis of terpenoid proteins and plant metabolites

To examine the correlation between the abundance of terpenoid compounds and unique terpenoid proteins under a particular light spectrum, hierarchical clustering analysis (HCA) was performed using MultiExperiment Viewer (MeV)
version 4.9.0 (Saeed et al. 2003). Relative contents of terpenoid compounds were obtained from GC-MS data and normalized to the amount of internal standard, while protein levels were obtained from maximum intensity of LC-MS/MS, normalized to log2 values. Grouping results were used to construct a dendrogram, with a heatmap representing the levels of proteins and terpenoid compounds.

Results

Differential expression of proteins in leaves, stems and roots of A. annua under different LED light spectra

GeLC-MS/MS shotgun proteomics were performed to examine how A. annua plants responded to LED light qualities and the number of proteins in leaves, stems, and roots of 7-day light-treated plants were investigated. The analysis revealed more than 20,000 proteins in each treatment. Highest total number of proteins was detected under red spectrum (25,987 proteins), followed by blue spectrum (24,556 proteins) and white spectrum (22,863 proteins). Comparative analysis using Venn diagrams revealed that numbers of proteins in leaves, stems and roots under white light condition were different. The highest proportion of protein (54.73%) was recorded in leaves of A. annua grown under white light; however, 3282 proteins were also found in stems and roots (Figure 1(a)). Among the total proteins, 2964, 4414, and 3701 were uniquely detected in leaves, stems, and roots, respectively. Leaves of blue light-treated plants also showed the highest protein response with 66.59% of total proteins detected. Under blue spectrum, 3744 proteins were commonly observed in all organs with 2368, 3522, and 2414 proteins uniquely expressed in leaves, stems, and roots, respectively. Similar to white and blue spectra, 81.53% of total proteins were reported in leaves of red light treatment. A Venn diagram demonstrated that leaves, stems, and roots of A. annua from red light treatment shared 14,462 common proteins with 2644 proteins only detected in leaves. Smaller numbers of organ-specific proteins were found in stems and roots of A. annua.

Functional analysis of uniquely expressed proteins in different organs of A. annua treated with different LED light spectra

Uniquely expressed proteins from each treatment were further characterized for their functional identifications and protein classifications using UniProt identifiers (https://www.uniprot.org). Proteins were classified based on their biological process and molecular function. Results revealed abundances of light-responsive proteins, photosynthetic proteins, and secondary metabolism-related proteins (Figure 1(b)). Light-responsive proteins comprised those with light stimulus-response [GO:0009416, GO:0071482], photosynthesis [GO:0015979], light reaction of photosynthesis [GO:0019684], red or far-red light signaling pathway [GO:0010017], blue light signaling pathway [GO:0009785], UV-B response [GO:0010224], and light intensity response [GO:0071484]. The highest number of proteins in this group was reported in stems of A. annua grown under white and blue spectra. By contrast, leaves showed the highest number of proteins when exposed to red spectrum. Photosynthetic proteins are the largest subdivision of light-responsive proteins, and light has been widely recognized for its central role in the photosynthesis process. Proteins involved in photosynthesis [GO:0015979], dark reaction [GO:0019685], light reaction [GO:0019684], light harvesting in photosystem I [GO:0009786], and the light-independent chlorophyl biosynthetic process [GO:0036068] were assembled in this group. Results revealed the presence of 100–200 photosynthetic proteins in leaves, stems, and roots of A. annua in each treatment. Expression patterns were similar to the spectral response of light-responsive proteins, with the highest numbers found in stems of A. annua under white and blue treatments but not in red treatment. Moreover, proteins related to oxidative stress response [GO:0006979] such as catalase (EC 1.11.1.6), glutathione S-transferase (EC 2.5.1.18), peroxidase (EC 1.11.1.7), superoxide dismutase (EC 1.15.1.1), and other scavenging enzymes were also detected, especially in stems of A. annua.

Proteins involved in plant metabolite production were also explored. This group included sterol [GO:0016126], alkaloid [GO:0009821], flavonoid [GO:0009813], and terpenoid [GO:0016114] biosynthetic proteins. Responses differed among the organs and light spectra. Under white light, leaves showed the highest number of non-overlapping proteins, while stems and roots expressed a similar number. Under blue spectrum, secondary metabolic proteins were highly expressed in stems followed by roots and leaves, respectively. In red light treatment, the highest number was found in leaves, with fewer proteins in stems and roots. Based on biological process and molecular function in UniProt protein identifiers, a total of 502 proteins found in all organs under all light conditions were classified as terpenoid proteins, consisting of 50 proteins in the MVA and MEP pathways, an isoprene synthase, 62 monoterpene synthases, 149 sesquiterpene synthases, 75 diterpene synthases, 74 triterpene synthases, 74 tetrasporene synthases, and 17 other terpene synthases (Table S1). Leaves of A. annua showed 45 unique proteins under white light treatment, while the other organs gave reduced numbers. Expression patterns of terpenoid proteins under blue spectrum were similar to those of secondary metabolic proteins, with the highest number of non-overlaps (49 proteins) found in stems, while red light showed the highest number of terpenoid proteins in leaves.

Accumulation of terpenoid-related proteins in leaves of A. annua under different light spectra

Different light qualities induced different numbers of terpenoid proteins in A. annua, and effects of light qualities were highlighted in leaves where terpenoid compounds were mainly produced. Analysis revealed a total of 422 terpenoid-related proteins. Leaves of A. annua exhibited high sensitivity to red LED light and 335 proteins (79.38% of total terpenoid proteins) were detected. The smallest number (260 proteins) was observed under blue LED light, approximately 61.6% of the total terpenoid proteins in leaves. A Venn diagram revealed 144 common proteins in all light treatments (Figure 1(c)), with 20, 31, and 53 proteins explicitly expressed under white, blue, and red spectra, respectively. Under white LED condition, 20 unique proteins were reported (Table 1), with a high proportion of MVA and MEP pathway-related proteins (25.0%) followed by sesquiterpene synthases (20.0%) and monoterpene synthases.
Out of five proteins in the MVA and MEP pathways, three related to the cytosolic MVA pathway and one was localized in the plastidic MEP pathway, while the rest were involved in the exchange of the common precursor between both pathways. Among these, diphosphomevalonate decarboxylase (Acc. No. O23722), reported in *Arabidopsis thaliana* (Cordier et al. 1999), presented at the highest level (Table 2). This protein catalyzes the first committed step in isopentenyl diphosphate (IPP) biosynthesis, leading to biosynthesis of isoprene-containing compounds such as sterols and terpenoids (Henry et al. 2015). The MEP-related protein, 2-C-methyl-D-erythritol 2,4-cyclodiphosphate synthase (Acc. No. Q6EPN6) involved in the formation of isoprenoid intermediates, IPP and dimethylallyl diphosphate (DMAPP) via the MEP pathway (Huang et al. 2018), was also detected with relative expression value of 14.01. The highest level of isopentenyl diphosphate (IPP) biosynthesis, leading to biosynthesis of isoprene-containing compounds such as sterols and terpenoids (Henry et al. 2015). The MEP-related protein, 2-C-methyl-D-erythritol 2,4-cyclodiphosphate synthase (Acc. No. Q6EPN6) involved in the formation of isoprenoid intermediates, IPP and dimethylallyl diphosphate (DMAPP) via the MEP pathway (Huang et al. 2018), was also detected with relative expression value of 14.01. The highest level of
terpenoid synthase was vetispiradiene synthase 2 (Acc. No. Q39979) that showed relative expression value of 19.19.

Light spectrum interfered with the numbers of unique terpenoid proteins, suggesting the role of this spectrum in regulating terpenoid proteins. Among several groups of terpenoid proteins, isoprene synthase (Acc. No. Q8S4Y1) was only detected under this spectrum. This protein is responsible for the conversion of DMAPP to isoprene, a building block of the MVA biosynthetic pathway. High numbers of functional proteins were involved in the biosynthesis of sesquiterpenes and tetraterpenes. Alpha-bisabolol synthase (Acc. No. E3W206) showed the highest protein level among sesquiterpene synthases. This protein was cloned and characterized from Santalum spicatum and showed its role in the formation of α-, β-, α-bisabolol, α-bisabolene and also farnesene isomers from FPP intermediate (Jones et al. 2011). A high proportion of tetraterpene synthases including phytoene synthase, 15-cis-phytoene desaturase, lycopene beta cyclase, beta-carotene 3-hydroxylase, and zeta-carotene desaturase were also detected in this condition.

Table 1. Numbers and proportions of unique terpenoid proteins detected in leaves of A. annua grown under white (W), blue (B) and red (R) light spectra.

Protein group	W (445, 554 nm)	B (445 nm)	R (660 nm)
MVA and MEP pathways	5 (25.0%)	7 (22.6%)	8 (15.1%)
Isoprene synthases	-	-	1 (1.9%)
Monoterpene synthases	3 (15.0%)	3 (9.7%)	5 (9.4%)
Sesquiterpene synthases	4 (20.0%)	6 (19.4%)	11 (20.8%)
Diterpene synthases	2 (10.0%)	4 (12.9%)	7 (13.2%)
Triterpene synthases	2 (10.0%)	4 (12.9%)	7 (13.2%)
Tetraterpene synthases	2 (10.0%)	4 (12.9%)	10 (18.9%)
Other terpene synthases	2 (10.0%)	3 (9.7%)	4 (7.5%)
Total proteins	20 (100%)	31 (100%)	53 (100%)

Light spectrum interfered with the numbers of terpenoid proteins as well as the production of terpenoid compounds. Variations in proteins and terpenoids were observed among different light conditions. Therefore, we presumed that the light spectrum regulated the terpenoid biosynthetic pathway through the activation of particular proteins. To clarify the effect of light spectrum on alteration of terpenoid biosynthesis, localizations of functional proteins were illustrated in the MVA, MEP, and terpenoid biosynthetic pathways of A. annua plants under a particular light spectrum (Figures 2–4).

LED spectra affected plant metabolite production in leaves of A. annua

Light qualities have shown their important role in regulating plant metabolite production in several plant species. Numbers of metabolic proteins were reported to be influenced by light spectra. Here, we determined how plant metabolite production responded to light signals. The presence of mono-, sesqui-, di- and triterpenoids was analyzed by GC-MS. Phytochemical profiles differed depending on light compositions. Analysis results revealed 28 volatile terpenoid compounds with more than 80% match quality to the Wiley 7 No.1 Library, comprising 8 monoterpenes, 11 sesquiterpenes, 2 diterpenes and 7 triterpenes (Table 3).

Similar numbers of monoterpenoid compounds were observed in all light spectra; however, camphor content was high (23.5 µg mL⁻¹ relative content), especially under blue spectrum. Maximum total content of sesquiterpenes was obtained from blue light treatment. Germacrene-D was the most abundant compound with 24.5 µg mL⁻¹ relative content, approximately 2 times the lowest content under red LED treatment. Variations were observed among the C15 compounds as the artemisinin derivative deoxyqinghaosu only found under blue spectrum irradiation. Two diterpenes, neop孵化dene and phyto, also showed highest contents under this spectrum. Similar to other terpenoids, highest content of triterpenoids was found in blue light treatment. Among seven triterpenes reported in this study, beta-amesone was found with greatest abundance under blue light followed by white and red spectra, respectively. Correlation between the abundance of volatile terpenoids and light spectrum was assessed by hierarchical clustering analysis (HCA) with Pearson correlation (Figure 1(d)). The heatmap showed that terpenoid profiles of A. annua grown under white and blue spectra were strongly clustered, while the red spectrum profile was separately clustered.

Distribution of functional proteins in artemisinin biosynthetic pathway of A. annua

Light spectrum interfered with the numbers of terpenoid proteins as well as the production of terpenoid compounds. Variations in proteins and terpenoids were observed among different light conditions. Therefore, we presumed that the light spectrum regulated the terpenoid biosynthetic pathway through the activation of particular proteins. To clarify the effect of light spectrum on alteration of terpenoid biosynthesis, localizations of functional proteins were illustrated in the MVA, MEP, and terpenoid biosynthetic pathways of A. annua plants under a particular light spectrum (Figures 2–4).

LED spectra affected plant metabolite production in leaves of A. annua

Light qualities have shown their important role in regulating plant metabolite production in several plant species. Numbers of metabolic proteins were reported to be influenced by light spectra. Here, we determined how plant metabolite production responded to light signals. The presence of mono-, sesqui-, di- and triterpenoids was analyzed by GC-MS. Phytochemical profiles differed depending on light compositions. Analysis results revealed 28 volatile terpenoid compounds with more than 80% match quality to the Wiley 7 No.1 Library, comprising 8 monoterpenes, 11 sesquiterpenes, 2 diterpenes and 7 triterpenes (Table 3).

Similar numbers of monoterpenoid compounds were observed in all light spectra; however, camphor content was high (23.5 µg mL⁻¹ relative content), especially under blue spectrum. Maximum total content of sesquiterpenes was obtained from blue light treatment. Germacrene-D was the most abundant compound with 24.5 µg mL⁻¹ relative content, approximately 2 times the lowest content under red LED treatment. Variations were observed among the C15 compounds as the artemisinin derivative deoxyqinghaosu only found under blue spectrum irradiation. Two diterpenes, neop孵化dene and phyto, also showed highest contents under this spectrum. Similar to other terpenoids, highest content of triterpenoids was found in blue light treatment. Among seven triterpenes reported in this study, beta-amesone was found with greatest abundance under blue light followed by white and red spectra, respectively. Correlation between the abundance of volatile terpenoids and light spectrum was assessed by hierarchical clustering analysis (HCA) with Pearson correlation (Figure 1(d)). The heatmap showed that terpenoid profiles of A. annua grown under white and blue spectra were strongly clustered, while the red spectrum profile was separately clustered.
Table 2. Identification of uniquely expressed terpenoid proteins and their expression levels in leaves of A. annua grown under different light spectra.

Protein type	Accession number	Protein name	445, 554 nm	445 nm	660 nm	Previous report of identified protein found in plants
MEP and MVA pathways	O64967	3-hydroxy-3-methylglutaryl-coenzyme A reductase 2	13.91	–	–	Gossypium hirsutum*
	P48020	3-hydroxy-3-methylglutaryl-coenzyme A reductase 1	15.00	–	–	Arabidopsis thaliana (Cordier et al. 1999)
	Q23722	Diphosphomevalonate decarboxylase	18.22	–	–	Arabidopsis thaliana (Choi et al. 1992)
	Q6EPN6	2-C-methyl-D-erythritol 2,4-cyclodiphosphate synthase	–	14.01	–	Oriza sativa subsp. japonica (International Rice Genome Sequencing Project and Sasaki 2005)
	Q39471	Isopentenyl-diphosphate Delta-isomerase II	–	14.31	–	Clarkia breweri*
Isoprene synthases	P46086	Mevalonate kinase	–	14.43	–	Arabidopsis thaliana (Riou et al. 1994)
	Q24594	3-hydroxy-3-methylglutaryl-coenzyme A reductase	–	14.46	–	Zea mays*
	Q41437	3-hydroxy-3-methylglutaryl-coenzyme A reductase 2	–	15.30	–	Solanum tuberosum (Korth et al. 1997)
	Q01559	3-hydroxy-3-methylglutaryl-coenzyme A reductase	–	15.71	–	Nicotiana sylvestris (Genschik et al. 1992)
Monoterpene synthases	Q854Y1	Acetyl-CoA acetyltransferase	–	15.99	–	Arabidopsis thaliana (Lluch et al. 2000)
	Q39664	Isopentenyl-diphosphate Delta-isomerase II	–	11.82	–	Clarkia xantiana*
	Q8W250	1-deoxy-D-xylulose 5-phosphate reductoisomerase	–	12.20	–	Oriza sativa subsp. japonica (Yu et al. 2005)
Sesquiterpene synthases	F4JCU3	Diphosphomevalonate decarboxylase	–	–	13.12	Arabidopsis thaliana (Henry et al. 2015)
	P54873	Hydroxymethylglutaryl-CoA synthase	–	–	13.57	Arabidopsis thaliana (Montant et al. 1995)
	Q00583	3-hydroxy-3-methylglutaryl-coenzyme A reductase 3	–	–	14.57	Hevea brasiliensis (Chye et al. 2001)
	Q41438	3-hydroxy-3-methylglutaryl-coenzyme A reductase 3	–	–	16.69	Solanum tuberosum (Korth et al. 1997)
	P56848	4-diphosphocytidyl-2-C-methyl-D-erythritol kinase	–	–	16.77	Mentha piperita (Lange and Croteau 1999)
	Q48965	Isopentenyl-diphosphate Delta-isomerase II	–	–	15.97	Camptotheca acuminata*
	P93841	4-diphosphocytidyl-2-C-methyl-D-erythritol kinase	–	–	16.39	Solanum lycopersicum (Rohdich et al. 2000)
	Q6AVG6	4-hydroxy-3-methylbut-2-enyl diphosphate reductase	–	–	18.30	Oriza sativa subsp. japonica (Okada et al. 2007)
Diterpene synthases	Q50L36	Isoprene synthase	–	–	16.99	Populus alba (Sasaki et al. 2005)
	Q947B7	Menthofuran synthase	13.84	–	–	Mentha piperita (Bertia et al. 2001)
	Q5UB07	Tricyclene synthase TP54	15.51	–	–	Medicago truncatula (Gomez et al. 2005)
	Q5SSP2	Endo-fenchol synthase	16.27	–	–	Ocimum basilicum (Iijima et al. 2004)
	Q6WQJ0	Pulegone reductase	–	15.39	–	Mentha piperita (Ringer et al. 2003)
	Q4A757	Pinene synthase	–	15.74	–	Abies grandis (Bolhmann et al. 1997)
	P0C565	Chrysanthemol synthase	–	16.36	–	Tanacetum cinerariifolium (Rivera et al. 2001)
	F1C06	Carene synthase 1	–	–	14.10	Picea sitchensis (Hall et al. 2011)
	F1C09	Carene synthase 3	–	–	14.98	Picea sitchensis (Hall et al. 2011)
	Q8AKL3	Pinene synthase	–	–	15.18	Pinus taeda (Phillips et al. 2003)
	Q8AN49	Tricyclene synthase 1e20	–	–	16.47	Anarthria magnus (Dudareva et al. 2003)
	Q5SSP8	Terpinolene synthase	–	–	17.26	Ocimum basilicum (Iijima et al. 2004)
	C75W0	beta-farnesene synthase	13.33	–	–	Zea perennis (Kollner et al. 2009)
	DS9U8	Germacrene A hydroxylase	14.55	–	–	Lactuca sativa (Nguyen et al. 2010)
	Q5GJ60	5(-)-beta-macrocarpene synthase	16.91	–	–	Zea mays (Kollner et al. 2008)
	Q3P979	Vetispiradiene synthase 2	19.19	–	–	Hyoscyamus muticus (Back and Chappell 1995)
	I6QPS3	Germacrene D synthase	–	13.23	–	Matricaria chamomilla var. recutita (Linnisch et al. 2012)
	GSCV46	Viridiflorene synthase	–	13.72	–	Solanum lycopersicum (Bleecker et al. 2011)
	B7PQ6	Beta-cubebene synthase	–	13.82	–	Magnolia grandiflora (Lee and Chappell 2008)
	O48261	Germacrene C synthase	–	13.91	–	Solanum lycopersicum (Colby et al. 1998)
	P49352	Farnesy1 pyrophosphate synthase 2	–	15.32	–	Lupinus albus (Attucci et al. 1995)
	Q4LF0	5-epi-alocholesterol synthase 2	–	15.54	–	Nicotiana attenuate (Bolhmann et al. 2002)
	Q67NN7	Farnesol kinase	–	13.41	–	Arabidopsis thaliana (Fitzpatrick et al. 2011)
	D8RNZ9	(3S,6E)-nerolidol synthase 1	–	14.97	–	Selaginella moellendorffii (Li et al. 2012)
	Q67L0	Longifolene synthase	–	–	15.10	Picea abies (Martin et al. 2004)
	F6M8H4	Probable sesquiterpene synthase	–	15.33	–	Santalum album (Jones et al. 2011)
	JTLH11	(+-e)-alpha-bisabolyl synthase	–	15.33	–	Phyla dulcis (Atta et al. 2012)
	Q95PS6	Germacrene D synthase 2	–	15.68	–	Pogostemon cablin (Deguerry et al. 2006)
	Q3P978	Vetispiradiene synthase 1	–	16.00	–	Syzygium muticu (Back and Chappell 1995)
	F6M8H7	Probable sesquiterpene synthase	–	–	17.05	Santalum murrayanum (Jones et al. 2011)
	B6SCF6	Germacrene A synthase	–	17.51	–	Humulus lupulus (Wang et al. 2008)
	P0CV96	(3S,6E)-nerolidol synthase 1	–	–	17.57	Fragaria vesca (Aharoni et al. 2004)
	E3W206	Alpha-bisabolyl synthase	–	–	18.09	Santalum spicatum (Jones et al. 2011)
	A4KAG8	Epi-isokaur-15-ene synthase	–	12.42	–	Oriza sativa subsp. japonica (Xu et al. 2007)
	Q69SX8	Geranylgeranyl pyrophosphate synthase synthase 11	–	15.37	–	Arabidopsis thaliana (Cheng et al. 2017)

(Continued)
induced by red spectrum. Furthermore, 10 proteins involved in carotenoid biosynthesis were explicitly expressed in this condition. Proteins in the MVA and MEP pathways and di- and triterpene biosynthesis were also induced under this particular wavelength.

Discussion

Light signals play important roles in regulating terpenoid production of *A. annua*, which could be monitored in terms of transcriptomic expressions correlated with target terpenoid compounds (Zhang et al. 2018; Lopes et al. 2020), however, there has no obvious report on enzymes (proteins) involved in the metabolic flux of cytosolic MVA and plastidic MEP pathways of terpenoid biosynthesis. Zhang et al. (2018) previously described the effect of LED spectra at 470 and 670 nm on promoting artemisinin and artemisinic acid contents over those illuminated with 545, 445, and 660 nm respectively. Previous report of identified protein found in plants (Swaminathan et al. 2009) and (Cheng et al. 2017).

Table 2. Continued.

Protein type	Accession number	Protein name	Relative expression (log2) 445, 554 nm	Relative expression (log2) 445 nm	Relative expression (log2) 660 nm	Previous report of identified protein found in plants
Triterpene synthases	Q9FH66	Cytochrome P450 71A16 (Marneral oxidase)	–	15.86	–	15.82
	F8WQD0	Shionone synthase	15.91	–	–	–
	A0A125XN3	Cycloartenol synthase LCA	–	12.14	–	–
	O65727	Squalene monoxygenase 1,1	–	12.87	–	–
	E2UJ7	Gliotanol synthase	–	13.47	–	–
	AR9C80	Geranial synthase	–	15.22	–	–
	G0Y286	Precalane diphenol synthase	–	13.60	–	–
	Q9FJ0	Marneral synthase	–	14.53	–	–
	Q9FZ02	Lupenol synthase 5	–	15.20	–	–
	Q9LHR7	Mixed-amyrin synthase	–	15.44	–	–
	A0A125XN11	Pre-alpha-tocorin synthase LLC	–	16.55	–	–
	Q95LP9	Cycloartenol synthase	–	17.09	–	–
	Q6BE25	Cycloartenol synthase	–	17.66	–	–
Tetraterpene synthases	P49293	Phytene synthase	14.65	–	–	–
	Q52Q93	Prolycopene isomerase 1	18.32	–	–	–
	P37273	Phytene synthase 2	13.77	–	–	–
	Q40424	Lycopene beta cyclase	14.48	–	–	–
	P37271	Phytene synthase	14.51	–	–	–
	Q39982	Beta-carotene ketolase	15.50	–	–	–
	D9L23	Lycopene beta cyclase	11.03	–	–	–
	Q5S3M3	Zeta-carotene desaturase	14.05	–	–	–
	P80003	15-cis-phytoene desaturase	14.71	–	–	–
	Q40406	15-cis-phytoene desaturase	14.72	–	–	–
Other synthases	B9DFU2	Cytochrome P450 71A1	15.45	–	–	–
	B9PR03	Probable terpen synthase 9	18.22	–	–	–
	B9RZ03	Probable terpen synthase 12	15.52	–	–	–
	Q9LH31	Terpenoid synthase 30	16.13	–	–	–
	Q9LUE2	Terpenoid synthase 18	17.15	–	–	–
	B9SIN2	Probable terpen synthase 8	13.51	–	–	–
	Q9LVY7	Cytochrome P450 71A1	–	14.93	–	–
	Q9C748	Terpenoid synthase 28	–	15.16	–	–
	Q9FF52	Terpenoid synthase 2	–	18.26	–	–

Note: Protein identification and annotation were analyzed by UniProt identifiers (https://www.uniprot.org). * Protein was registered in UniProt protein identifiers but not published in PubMed.
Note: The metabolites detected from 7-day-treated leaves were determined by GC-MS and quantitatively analyzed by comparison with the internal standard (methyl heptadecanoate, C17) and represented as average relative contents (µg mL⁻¹). Only compounds with more than 80% match to the Wiley No.7 database were shown. W; leaf extract from PFAL with white spectrum (445, 554 nm), B; leaf extract from PFAL with blue spectrum (445 nm), R; leaf extract from PFAL with red spectrum (660 nm).

Terpene types	Compound name	Light spectrum of LED lamp		
Monoterpene (C10)	α-pinene	0.8 ± 0.0	0.4 ± 0.1	1.0 ± 0.1
Camphene	2.9 ± 0.1	2.1 ± 0.1	2.2 ± 0.2	
2-β-pinene	1.5 ± 0.2	0.7 ± 0.1	1.2 ± 0.2	
Cymene	1.5 ± 0.1	0.6 ± 0.2	1.3 ± 0.1	
Eucalyptol	2.0 ± 0.3	2.2 ± 0.1	1.2 ± 0.2	
Camphor	17.0 ± 0.7	23.5 ± 1.8	18.5 ± 0.7	
Bornol	2.3 ± 0.2	3.8 ± 0.1	1.2 ± 0.1	
Santolina triene	1.5 ± 0.2	1.3 ± 0.2	1.0 ± 0.1	
β-Caryophyllene	1.1 ± 0.2	1.0 ± 0.2	1.1 ± 0.1	
Caryophyllene	10.0 ± 0.8	7.2 ± 0.7	10.4 ± 1.4	
Sesquiterpene (C15)	Germacrene D (I)	1.8 ± 0.3	1.9 ± 0.3	1.2 ± 0.3
Germacrene D (II)	0.8 ± 0.0	0.6 ± 0.1	0.6 ± 0.1	
Germacrene B	3.2 ± 0.2	3.7 ± 0.9	1.8 ± 0.4	
β-Caryophyllene	1.7 ± 0.0	1.7 ± 0.2	1.0 ± 0.1	
Trans-β-Farnesene	11.3 ± 0.7	16.3 ± 2.0	9.6 ± 0.9	
Beta-caryophyllene	1.5 ± 0.1	-	-	
Germacrene D (III)	21.6 ± 1.5	24.5 ± 1.9	11.9 ± 1.3	
Aromadendrene	0.9 ± 0.1	0.5 ± 0.1	0.7 ± 0.0	
Germacrene B	3.2 ± 0.2	3.7 ± 0.9	1.8 ± 0.4	
o-Cedrol	-	-	1.0 ± 0.1	
Deoxyginghaosus	-	5.8 ± 0.8	-	
Diterpene (C20)	Neophytadiene	4.7 ± 0.5	6.3 ± 0.1	2.2 ± 0.1
Phytol	4.1 ± 0.5	3.7 ± 0.9	3.4 ± 0.2	
Triterpene (C30)	Squalene	3.3 ± 0.3	2.7 ± 0.7	2.3 ± 0.4
Ergosterol	0.7 ± 0.1	0.9 ± 0.2	1.0 ± 0.1	
Stigmastanol	4.7 ± 0.5	5.1 ± 0.6	4.8 ± 0.4	
o-Amyrene	11.4 ± 0.6	14.5 ± 0.8	12.0 ± 1.2	
β-Amyrene	21.2 ± 1.7	23.4 ± 2.0	18.2 ± 1.3	
o-Amyrone	1.1 ± 0.3	0.8 ± 0.3	1.4 ± 0.2	
Lupeol	1.1 ± 0.2	0.3 ± 0.0	1.1 ± 0.3	

Table 3. Phytochemical proles obtained from leaf extracts of A. annua grown under white (W), blue (B) and red (R) LED spectra.

Our study firstly demonstrated the evidence of enzymes (proteins) involved in the metabolic flux of cytosolic MVA and plastidic MEP pathways of terpenoid biosynthesis. The different numbers of proteins were detected in leaves, stems, and roots of A. annua at 7 days after LED light exposure (Figure 1(a)). As expected, variations in proteomic profiles were observed among different organs of A. annua treated with different light spectra. Fully exposed leaves exhibited the highest total number of proteins under LED light spectra irradiation, suggesting leaves as the most responsive organ in response to light exposure. Our results demonstrated that proteins involved in the molecular mechanism of light-sensing and light response such as photoreceptors and photosynthesis were mainly expressed. Although light is an important factor for plant growth and development, the adverse effect of light as an oxidative stress-inducing factor was also reported (Barber and Anderson 1992; Li et al. 2009; Dinakar et al. 2012). The high presence of detoxification enzymes in all light conditions suggested the role of LED spectra as stress-inducing factors. However, oxidative stress that occurred in this study did not interfere with physiological processes since proteins involved in photosynthesis were also noticed.

Since the leaves were considered as the main sources of terpenoid production, the effect of the LED light spectrum on the number of terpenoid proteins in leaves of A. annua was highlighted. A total of 289, 260, and 335 terpenoid proteins were reported in leaves of A. annua treated with white, blue, and red spectra, respectively. Most terpenoid proteins...
responded to a particular light spectrum in a similar manner but differential proteins were noticeable for 20, 31, and 53 proteins uniquely expressed in white, blue, and red light treatments, respectively (Figure 1(c)). Interestingly, high numbers of MVA and MEP pathways-related proteins and sesquiterpene synthases were found under white and blue light treatments (Figures 2–3). The red spectrum influenced sesquiterpene and tetraterpene (carotenoid) biosynthesis (Figure 4). Our study demonstrated that the specific wavelength of 445 nm present in white and blue spectra exhibited similar terpenoid profiles, possibly due to the activity of photoreceptors in the explicit region of the light spectrum (Kong and Okajima 2016; Mawphlang and Kharshing 2017). Influences of LED light signals on expression patterns of biosynthetic proteins and terpenoid compounds were demonstrated. Among all LED spectra, the red spectrum was the most effective condition for regulating terpenoid proteins. HCA revealed that sesquiterpenes were
highly responsible for induction of terpenoid proteins in each light treatment. A bicyclic sesquiterpene, β-chamigrene, showed strong correlation with the expression level of terpenoid proteins under white spectrum (Figure 2(a,c)). This compound exhibited promising biological properties such as antibacterial activities and cytotoxic activities against HeLa and HEP-2 cancer cell lines (Dias et al. 2005; Antonsen et al. 2014). Deoxyxignhaosu positively correlated with the expression level of unique terpenoid proteins under blue spectrum (Figure 3(a,c)). Although it is an inactive form of artemisinin and has no antimalarial activity against Plasmodium berghei (Li 2012), our previous study revealed a strong correlation between deoxyxignhaosu and increased antimalarial activity against P. falciparum NF54 (unpublished data). Alpha cedrol was only detected in red light condition (Figure 4(a,c)). This compound has been found to exert antioxidant, anti-inflammatory, antimicrobial, and antifungal activities along with cytotoxic effects against some cancer cells (Loizzo et al. 2008; Khoury et al. 2014; Wang et al. 2019; Mishra et al. 2021). Accordingly, specific induction of terpenoid proteins and correlated sesquiterpenes were conceivably caused by LED spectra. These will provide more understanding of light signals on metabolic proteins in regulating the overall pathway of terpenoid biosynthesis under particular light signals. To support and further validate our results, a transcriptomic study of biosynthetic enzymes is required.

Conclusions
This study demonstrated the integration of metabolomic and proteomic analyses to investigate the responses of A. annua plants under different light spectra. An LC-MS/MS platform combined with functional analysis revealed differential inductions of light-responsive proteins, oxidative stress-related proteins, and metabolite biosynthetic enzymes in all tested organs. Among these, 422 terpenoid-related proteins were detected in leaves, with some unique proteins for each treatment. Twenty proteins were explicitly expressed under white spectrum, while 31 proteins were only found in blue spectrum treatment. Unexpectedly, red light had more extensive effects on terpenoid protein inductions, especially the protein involved in sesquiterpene and tetraterpene biosynthesis. Integrated metabolomics and proteomics revealed possible roles of the light spectrum in regulating production of sesquiterpenoid compounds. HCA revealed specific correlations between terpenoid proteins and sesquiterpenes under a particular light spectrum. Our results suggested light quality as an important factor for creating proteomic variations, leading to differences in terpenoid production. This information can be applied for the functional study of light-inducing proteins in terpenoid biosynthesis to provide improvement of important compounds for pharmaceutical use.

Acknowledgements
The authors thank Growlab Agritech Company Limited, Thailand for providing the LED lamps. Experimental facilities used in this research were supported by CIF, Faculty of Science, Mahidol University, Thailand and Agricultural Research Development Agency (ARDA) project no. CRP600502035. We also thank the Proteomics Research Laboratory, BIOTEC, NSTDA, Thailand for providing technical support and the facilities for proteomic analysis.

Data availability statement
All data generated in this study were deposited in the jPOST repository at https://repository.jpostdb.org/entry/JPST001250, reference number PXD027227.

Disclosure statement
No potential conflict of interest was reported by the author(s).

Funding
Royal Golden Jubilee Ph.D. Programme (RGJ-Ph.D) scholarship aims to produce highly qualified Ph.D. graduates through the high standards of RGJ management. The funding is supported by the Thailand Research Fund which covers the tuition fees, research fees, and salary of the RGJ-Ph.D. student and funding for overseas travels of the Thai advisor, RGJ-Ph.D. student, and foreign collaborator [grant number PHD/0200/2557].

Notes on contributors
Ms. Darnunma Sanikhuan is a doctoral candidate under the double degree program between Mahidol University, Thailand (Biotechnology) and Niigata University, Japan (Agriculture and Bioresources). Darnunma got a scholarship from RGJ (Royal Golden Jubilee) of Thailand Research Fund (TRF), as well as co-support from Niigata University under Global Circus program. Her special interest in metabolic bioengineering, transcriptomic analysis, proteomic analysis and plant metabolome.

Dr. Sittiruk Roytrakul is a head of Functional Ingredients and Food Innovation Research Group and Proteomics Research Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Thailand. He specializes in a range of platform to support various proteome-related researches from identification of single proteins to large-scale proteomic studies.

Prof. Dr. Masaru Nakano is working in areas of Agriculture and Bioresource at Department of Life and Food Science, Faculty of Agriculture, Niigata University, Japan. His researches are focusing on horticultural science, especially ornamental and floriculture crops using genetic transformation and molecular breeding technology.

Assoc. Prof. Dr. Kanyaratt Supaibulwatana has held the position of Director, School of Bioinnovation and Bio-based Product Intelligence and Director of Plant Physiology and Agri-Biotechnology lab., Department of Biotechnology, Faculty of Science, Mahidol University. Her research focuses on agricultural biotechnology, plant physiology under stresses, plant factories, micropropagation, mutation breeding and metabolic bioengineering of medicinal plants. In addition, Dr. Kanyaratt has actively involved in the initiative programs of public-private partnerships to promote innovation and entrepreneurial ecosystems by encouraging various activities including; setup of new graduate programs for R&D and industrialization quality system, joint innovation incubator, and establishment of in-campus Start Up facilities arising from scientific inventions to promote University-Industry Linkages. https://science.mahidol.ac.th/expertise/search.php?q=Kanyaratt%20Supaibulwatana.

ORCID
Sittiruk Roytrakul https://orcid.org/0000-0003-3696-8390
Kanyaratt Supaibulwatana https://orcid.org/0000-0003-1512-1959

References
Abbas F, Ke Y, Yu R, Yue Y, Amanullah S, Jahangir MM, Fan Y. 2017. Volatile terpenoids: multiple functions, biosynthesis, modulation and manipulation by genetic engineering. Planta. 246:803–816.

Abe S, Sado A, Tanaka K, Kisuji T, Asami K, Ota S, Kim HI, Yoneyama K, Xie X, Ohnishi T. et al. 2014. Carlactone is converted to carlactoic acid by MAX1 in Arabidopsis and its methyl ester can directly interact with AtD14 in vitro. PNAS. 111:18084–18089.

Aharoni A, Giri AP, Verstappen FW, Bertea CM, Sevenier R, Sun Z, Jongsma MA, Schwab W, Bouwmeester HJ. 2004. Gain and loss of
fruit flavor compounds produced by wild and cultivated strawberry species. Plant Cell. 16:3110–3111.

Antonsen S, Skattebøl L, Stenstrom Y. 2014. Synthesis of Racemic β-Chamigrene, a Spero[5.5]undecane Sesquiterpene. Molecules. 19:20664–20670.

Aracri B, Bartley GE, Scolnik PA, Giuliano G. 1994. Sequence of the phytoene desaturase locus of tomato. Plant Physiol. 106:789.

Araki T, Saga Y, Muramugi M, Otaka J, Araya H, Sató K, Yamazaki M, Suzuki H, Kusihiro T. 2016. Oncorcin biosynthesis requires two highly dedicated triterpene cyclases in a fern Lycopsium clavatum. ChemBioChem. 17:288–290.

Attia M, Kim SU, Ro DK. 2012. Molecular cloning and characterization of (+)-epi-a-bisabolol synthase, catalyzing the first step in the biosynthesis of the natural sweetener, hernandulcin, in Lippia dulsia. Arch. Biochem Biophys. 527:37–44.

Attucci S, Aitken SM, Gulick PJ, Ibrahim RK. 1995. Farnesyl pyrophosphate synthase from white lupin: molecular cloning, expression, and purification of the expressed protein. Arch Biochem Biophys. 321:493–500.

Aubourg S, Lecharny A, Bohlmann J. 2002. Genomic analysis of the terpenoid synthase (AITPS) gene family of Arabidopsis thaliana. Mol Genet Genom. 267:730–745.

Bartley GE, Scolnik PA. 1993. cDNA cloning, expression during development, and genome mapping of PSY2, a second tomato gene for photosynthesis. Trends Biochem Sci. 17:61–66.

Bardou P, Mariette J, Escudié F, Djemiel C, Klopp C. 2014. jvenn: an interactive Venn diagram viewer. BMC Bioinformatics. 15:1.

Bartley GE, Scolnik PA. 1993. cDNA cloning, expression during development, and genome mapping of PSY2, a second tomato gene for photosynthesis. Trends Biochem Sci. 17:61–66.

Bardou P, Mariette J, Escudié F, Djemiel C, Klopp C. 2014. jvenn: an interactive Venn diagram viewer. BMC Bioinformatics. 15:1.

Bartley GE, Scolnik PA. 1993. cDNA cloning, expression during development, and genome mapping of PSY2, a second tomato gene for photosynthesis. Trends Biochem Sci. 17:61–66.

Bardou P, Mariette J, Escudié F, Djemiel C, Klopp C. 2014. jvenn: an interactive Venn diagram viewer. BMC Bioinformatics. 15:1.

Bartley GE, Scolnik PA. 1993. cDNA cloning, expression during development, and genome mapping of PSY2, a second tomato gene for photosynthesis. Trends Biochem Sci. 17:61–66.

Bardou P, Mariette J, Escudié F, Djemiel C, Klopp C. 2014. jvenn: an interactive Venn diagram viewer. BMC Bioinformatics. 15:1.

Bartley GE, Scolnik PA. 1993. cDNA cloning, expression during development, and genome mapping of PSY2, a second tomato gene for photosynthesis. Trends Biochem Sci. 17:61–66.

Bardou P, Mariette J, Escudié F, Djemiel C, Klopp C. 2014. jvenn: an interactive Venn diagram viewer. BMC Bioinformatics. 15:1.

Bartley GE, Scolnik PA. 1993. cDNA cloning, expression during development, and genome mapping of PSY2, a second tomato gene for photosynthesis. Trends Biochem Sci. 17:61–66.

Bardou P, Mariette J, Escudié F, Djemiel C, Klopp C. 2014. jvenn: an interactive Venn diagram viewer. BMC Bioinformatics. 15:1.

Bartley GE, Scolnik PA. 1993. cDNA cloning, expression during development, and genome mapping of PSY2, a second tomato gene for photosynthesis. Trends Biochem Sci. 17:61–66.
D. SANKHUAN ET AL.

Husselstein-Müller T, Schaller H, Benveniste P. 2001. Molecular and biochemical analysis of (+)-3-carene biosynthesis in Sitka spruce (Picea sitchensis) genotypes that are resistant or susceptible to white pine weevil. Plant J. 65:936–948.

Hayashi H, Huang P, Inoue K, Hiraoaka N, Ikeshiro Y, Yasaki K, Tanaka S, Kusshiro T, Shibuya M, Ebizuka Y. 2001. Molecular cloning and characterization of isomultifloreno synthase, a new triterpene synthase from Luffa cylindrica, involved in biosynthesis of byronic acid. FEBS 268:6311–6317.

Heijde M, Ulm R. 2012. UV-B photoreceptor-mediated signalling in plants. Trends Plant Sci. 17:230–237.

Hemm MR, Rider SD, Ogas J, Murry DJ, Chapple C. 2004. Light induces phenylpropanoid metabolism in Arabidopsis roots. Plant J. 38:765–778.

Hemmerlin A, Hoefler JF, Meyer O, Tretisch D, Kagan IA, Grosemange-Billard C, Rohmer M, Bach TJ. 2003. Cross-talk between the cytosolic mevalonate and the plastidial methylerythritol phosphate pathways in tobacco bright yellow-2 cells. J Biol Chem. 278:26666–26676.

Henry LK, Gutensohn M, Thomas ST, Noel JP, Dudareva N. 2015. Orthologs of the archaean isopentenyl phosphate kinase regulate terpenoid production in plants. PNAS. 112:10050–10055.

Hieber AD, Mudalige-Jayawickrama RG, Kuehne AR. 2006. Color genes in the orchid Oncidium Gower Ramsey: identification, expression, and potential genetic instability in an interspecific cross. Planta. 223:521–531.

Huang H, Ullah F, Zhou D-X, Yi M, Zhao Y. 2019. Mechanisms of ROS-based phototropism: functional evaluation of structural implications. PLoS one. 12:e0187628.

Kajiwara S, Kakizono T, Saito T, Kondo K, Ohtani T, Nishio N, Nagai S, Jones CG, Moniodis J, Zulak KG, Staeheli P, Fiebrig H, Walter J, et al. 2018. A single nucleotide mutation of IspF gene involved in isoprenoid biosynthesis in Arabidopsis thaliana. J Plant Physiol. 223:20779–20788.

Kong SG, Okajima K. 2016. Diverse photoreceptors and light responses in plants. J Plant Res. 129:111–114.

Korth KL, Stemmer BA, Bhattacharyya MK, Dixon RA. 1997. HMGCoA reductase gene families that differentially accumulate transcripts in potato tubers are developmentally expressed in floral tissues. Plant Mol. Biol. 33:545–551.

Koschmieder J, Pehling-Kaschek M, Schaub P, Ghisla S, Brauermann A, Timmer J, Beyer P. 2017. Plant-type phytoene desaturase: functional evaluation of structural implications. Arch Biochem Biophys. 617:80–88.

Kranz-Finger S, Mahmoud O, Ricklefs E, Ditz N, Bakkes PJ, Urlacher VB. 2018. Insights into the functional properties of the mannino-oxidade CYP71A16 from Arabidopsis thaliana. Biochem Biophys Acta. 1866:2–10.

Lange BM, Croteau R. 1999. Isopentenyl diphosphate biosynthesis via a mevalonate-independent pathway: Isopentenyl monophosphate kinase catalyzes the terminal enzymatic steps. PNAS. 96:13714–13719.

Laule O, Fürholz A, Chang H-S, Zhu T, Wang X, Heifetz PB, Gruissem W, Lange M. 2003. Crosstalk between cytosolic and plastidial pathways of isoprenoid biosynthesis in Arabidopsis thaliana. PNAS. 100:6686–6671.

Lee S, Chappell J. 2008. Biochemical and genomic characterization of terpenoid synthases in Magnolia grandiflora. Plant Physiol. 147:1017–1033.

Legris M, Ince YC, Fankhauser C. 2019. Molecular mechanisms underlying phytochrome-controlled morphogenesis in plants. Nat Commun. 10:5219.

Li G, Kollner TG, Yin Y, Jiang Y, Chen H, Yu Y, Gershenzon J, Pichersky E, Chen F. 2012. Nonseed plant Selaginella moellendorffii has both seed plant and microbial types of terpene synthases. PNAS. 109:14711–14715.

Li Y. 2012. Qinghaosu (artemisinin): chemistry and pharmacology. Acta Pharmacol Sin. 33:1141–1146.

Li Z, Wakao S, Fischer BB, Niyogi KK. 2009. Sensing and responding to excess light. Annu Rev Plant Biol. 60:239–260.

Li ZH, Matthews PD, Burr B, Wurzel ET. 1996. Cloning and characterization of a maize cDNA encoding phytoene desaturase, an enzyme of the carotenoid biosynthetic pathway. Plant Mol. Biol. 30:269–279.

Lin C. 2002. Blue light receptors and signal transduction. Plant Cell. 14:1162–1171.

Luch MA, Masferrer A, Arró M, Boronat A, Ferrer A. 2000. Molecular cloning and expression analysis of the mevalonate kinase gene from Arabidopsis thaliana. Plant Mol Biol. 42:365–376.

Loizzo MR, Tundis R, Menichini F, Saab AM, Statti GA, Menichini F. 2008. Antiproliferative effects of essential oils and their major constituents in human renal adenocarcinoma and amelanotic melanoma cells. Cell Prolif. 41:1002–1012.

Loureiro LM, Guimarães-Dias F, Gama TdSS, Macedo AL, Valverde AL, Lopes EM, Guimarães-Dias F, Gama TdSS, Macedo AL, Valverde AL, Tavares ES, et al. 2020. Artemisia annua L. and anatomical effects of essential oils and their major constituents in human renal adenocarcinoma and amelanotic melanoma cells. Cell Prolif. 41:1002–1012.

Mishra SK, Bae YS, Lee Y-M, Kim J-S, Oh SH, Kim HM. 2021. Sesquiterpene alcohol cedrol chemosensitizes human cancer cells and suppresses cell proliferation by destabilizing plasma membrane lipid rafts. Front Cell Dev. 8. 30:1162–1163.
Montmatat F, Guillotin M, Karst F, Delrot S. 1995. Isolation and character-
tization of a cDNA encoding Arabidopsis thaliana 3-hydroxy-3-
methylglutaryl-coenzyme A synthase. Gene. 167:197–201.

Morita M, Shibuya M, Kusunoki T, Masuda K, Ebizuka Y. 2000.
Molecular cloning and functional expression of triterpene synthases
from peas (Pisum sativum) new alpha-amyrin-producing enzyme is
a multifunctional triterpene synthase. FEBS. 267:3453–3460.

Muhlemann JK, Kleimpfen A, Dudaeva N. 2014. Isolation and charac-
tization of isoprene synthase from Arabidopsis thaliana and Brassica
napus. Plant Mol Biol. 39:721–731.

Scheppmann HG, Panz J, Matsuda SP. 2001. Cloning and character-
ization of Ginkgo biloba leopomaradiene synthase which catalyzes
the first committed step in ginkgole biosynthesis. Arch Biochem
Biophys. 392:263–269.

Sharopov FS, Salimov A, Numonov S, Safomuddin A, Bakri M, Salimov
T, Setzer WN, Habasi M. 2020. Chemical composition, antioxid-
tant, and antimicrobial activities of the essential oils from Artemisia
annua L. growing wild in Tajikistan. Nat Prod Commun.
15:19345783X2927814.

Sharrock RA. 2008. The phytochrome red/far-red photoreceptor super-
family. Genome Biol. 9:230.

Supapibulwatana K, Banyai W, Cheewasakulyong P, Kirdmanee C,
Kamchonwongpaisan S, Yuthavong Y. 2004. Effect of culture condi-
tions, elicitation and induced mutagenesis on plant growth and pro-
ductions of antimarial agents in Artemisia annua L. In: Jonas
R, Pandy A, Tharun G, editors. Proceedings of the biotechnological
advances and application in bioconversion of renewable raw
materials; Braunschweig, Germany. p. 240–249.

Swaminathan S, Morrone D, Wang Q, Fulton DB, Peters RJ. 2009.
CYP76M7 is an ent-cassadiene C11a-hydroxylase defining a
second multifunctional diterpenoid biosynthetic gene cluster in
rice. Plant Cell. 21:3315–3325.

Takaya A, Zhang YW, Asawatrayaratanakul K, Wittiswannakul D,
Takahashi S, Koyama T. 2003. Cloning, expression and character-
ization of a functional CDA clone encoding geranylgeranyldiphosphate synthase of Hevea brasiliensis. Biochim
Biophys Acta. 1625:214–220.

Wang G, Tian L, Aziz N, Broun P, Dai X, He J, King A, Zhao PX, Dixon
RA. 2008. Terepene biosynthesis in glandular trichomes of hop. Plant
Physiol. 148:1254–1266.

Wang J-w, Chen S-s, Zhang Y-m, Guan J, Su G-Y, Ding M, Li W, Zhao
Y-Q. 2019. Anti-inflammatory and analgesic activity based on
polysomophism of cedrol in mice. Environ Toxicol Pharmacol.
68:13–18.

Wang Q, Jia M, Huh JH, Muchlinski A, Peters RJ, Tholl D. 2016.
Identification of a Dolabellane type Diterpene synthase and other
root-expressed Diterpene synthases in Arabidopsis. Front Plant
Sci. 7:1761.

Wang Z, Yeats T, Han H, Jetter R. 2010. Cloning and character-
ization of oxidosqualene cyclases from Kalanchoe daigremontiana:
enzymes catalyzing up to 10 rearrangement steps yielding
friedelien and other triterpenoids. J Biol Chem.
285:29703–29712.

Wu Y, Wang Q, Hillwig ML, Peters RJ. 2013. Picking sides: distinct
roles for CYP76M6 and CYP76M8 in rice oryzalexin biosynthesis.
Biochem J. 454:209–216.

Xie H-T, Wan Z-Y, Li S, Zhang Y. 2014. Spatiotemporal production of
reactive oxygen species by NADPH oxidase is critical for tapetal pro-
grammed cell death and pollen development in arabiadopsis. Plant
Cell. 26:2007–2023.

Xie K, Kirby J, Keasling JD. 2012. Functional characterization of four
sesquiterpene synthases from Rcinus communis (castor bean).
Phytochemistry. 76:30–218.

Xu M, Wilderman PR, Morrone D, Xu J, Roy A, Margis-Pinheiro M,
Upadhyaya NM, Coates RM, Peters RJ. 2007. Functional charac-
terization of the rice kaurene synthase-like gene family.
Phytochemistry. 68:312–326.

Yamaguchi S, Fukushima EO, Soki H, Muranaka T. 2016. Novel triter-
pene oxidizing activity of Arabidopsis thaliana CYP716A subfamily
enzymes. FEBS Let. 590:533–540.

Yazaki K, Arimura G-i, Ohnishi T. 2017. ‘Hidden’ terpenoids in plants:
their biosynthesis, localization and ecological roles. Plant Cell
Physiol. 58:1615–1621.

Yu B, Liu Y, Pan Y, Liu J, Wang H, Tang Z. 2018. Light enhanced the
biosynthesis of terpenoid indole alkaloids to meet the opening of
cotyledons in process of photomorphogenesis of *Catharanthus roseus*. Plant Growth Regul. 84:617–626.
Yu J, Wang J, Lin W, Li S, Li H, Zhou J, Ni P, Dong W, Hu S, Zeng C, et al. 2005. The genomes of *Oryza sativa*: a history of duplications. PLoS Biol. 3:e38.
Zhang D, Sun W, Shi Y, Wu L, Zhang T, Xiang L. 2018. Red and blue light promote the accumulation of artemisinin in *Artemisia annua* L. Molecules. 23:1329.
Zhou X, Welsch R, Yang Y, Álvarez D, Riediger M, Yuan H, Fish T, Liu J, Thannhauser TW, Li L. 2015. Arabidopsis OR proteins are the major posttranscriptional regulators of phytoene synthase in controlling carotenoid biosynthesis. PNAS. 112:3558–3563.
Zhu C, Yamamura S, Nishihara M, Koiba H, Sandmann G. 2003. cDNAs for the synthesis of cyclic carotenoids in petals of *Gentiana lutea* and their regulation during flower development. Biochim Biophys Acta. 1625:305–308.