Dichroic Optical Diode Transmission in Two Dislocated Parallel Metallic Gratings

Pengwei Xu1, Xuefeng Lv1, Jing Chen1,2*, Yudong Li1,2, Jun Qian1, Zongqiang Chen1, Jiwei Qi1,2, Qian Sun1,2,3* and Jingjun Xu1,2

Abstract
An optical diode structure with two dislocated parallel metallic gratings is proposed and investigated numerically. Dichroic optical diode transmission is realized in this structure, i.e., optical diode effect is observed in two wavebands corresponding to inverse transmission directions. In the structure, two parallel metallic gratings with different grating constants are separated by a dielectric slab in between. The first illuminated grating acts as a selector for exciting surface plasmons at a proper wavelength. The other grating acts as an emitter to realize optical transmission. When the incident direction is reversed, the roles of two gratings exchange and surface plasmons are excited at another wavelength. In dichroic transmission wavebands, the optical diode structure exhibits extraordinary transmission and possesses high optical isolation up to 1. Furthermore, the operating wavebands can be modulated by changing structure parameters.

Keywords: Dichroic optical diode, Metallic gratings, Diffraction, Surface plasmons

Introduction
Optical diode, which transmits photons toward one direction and forbids the transmission in the reverse direction, has attracted considerable attention by virtue of the unidirectional transmission property [1]. Optical diode phenomena can be observed when time-reversal symmetry of light-matter interaction is broken. External magnetic field [2], bias voltage [3], acoustic wave [4], or time-dependent modulation [5, 6] can be applied to achieve the optical diode effect. In addition, the structure of spatial inversion symmetry breaking is an alternative choice, such as asymmetric multilayer structures [7], asymmetric photonic crystals [8], and asymmetric gratings [9]. In recent decades, metallic micro-nano structures gained great interest due to the promising properties of surface plasmons (SPs). Plasmonic devices are proposed in many research fields such as metasurface holography [10–14], refractive index sensor [15, 16], and filter [17, 18]. Plasmonic devices can strongly modify the interaction of electromagnetic fields in nanoscale [19]. The modulation on SPs can be realized through changing the surrounding dielectric environment and geometric parameters of metallic structures [20, 21]. Optical diodes composed of nanoscale metallic structures, for example, plasmonic layer sandwiched gratings [22, 23], cascaded plasmonic gratings [24, 25], plasmonic nano-holes [26], plasmonic slot waveguide [27], and plasmonic nanoparticle aggregates [28], are widely investigated for the purpose of optical information processing.

In this paper, dichroic optical diode transmission is obtained in two dislocated parallel metallic gratings sandwiching a dielectric slab. Both transmission enhancement and high isolation contrast ratio are achieved in the two operating wavebands with reverse transmission directions, because metallic gratings consisting of narrow slits exhibit extraordinary light transmission [29, 30] and asymmetric structures realize unidirectional transmission [27–31]. According to the illuminated order, two metallic gratings with different grating constants act as a selector and an emitter respectively. The selector selects the resonance wavelength by exciting SPs and, with the contribution of SPs, the emitter realizes light transmission. When the incident direction is reversed, the roles of two gratings exchange and SPs are excited at another wavelength. Therefore, the dichroic optical diode transmission is obtained. The thickness of the optical diode structure proposed in this paper is as

*Correspondence: jingchen@nankai.edu.cn; qiansun@nankai.edu.cn
1MOE Key Laboratory of Weak Light Nonlinear Photonics, Tianjin Key Laboratory of Photonics and Technology of Information Science, School of Physics, Nankai University, Tianjin 300071, China
Full list of author information is available at the end of the article

© The Author(s). 2018 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
small as 160 nm. With the development of nanofabrication technologies, many methods can be applied to the fabrication of metallic gratings structures, such as ultraviolet nanoimprint lithography [32], laser-direct-writing lithography [33], and electron-beam lithography [34]. The optical diode character is independent of the incident intensity. These properties imply that our structure has extensive potentials in optical integration.

Methods
The scheme of optical diode structure is shown in Fig. 1. The structure consists of two silver gratings \(G_1 \) and \(G_2 \) sandwiching a silica layer. The thickness of silica layer is denoted as \(d \). \(G_1 \) and \(G_2 \) have the same slit width \(s \), the same thickness \(h \), and different grating constants \(\Lambda_i \) (\(i = 1, 2 \)). The structure is translational symmetric and the unit cell contains 2 units of \(G_1 \) and 3 units of \(G_2 \). \(\Delta \) denotes the lateral relative position of \(G_1 \) and \(G_2 \) in a unit cell. Drude model [35] is used to describe the dielectric function of silver. The refractive index of silica is 1.5, ignoring its dispersion. The surrounding dielectric is air and its refractive index is 1. Normal incident plane wave of \(p \)-polarization is employed to investigate the optical diode effect.

Transmittance \(T \) of the optical diode structure is defined as follows:

\[
T = \frac{P_o}{P_i},
\]

where \(P_i \) is the incident power and \(P_o \) is the output power. \(T \) is simulated numerically by using finite-difference time-domain (FDTD) method [36]. Periodic boundary conditions are employed to the left and right sides, and perfect matching layer boundaries are applied to the top and bottom sides of our simulation model. \(T_D \) and \(T_U \) represent the transmittance for downward incidence and upward incidence, respectively. The optical diode property is described by isolation contrast ratio \(\eta \):

\[
\eta = \frac{|T_D - T_U|}{T_D + T_U}.
\]

Hence, \(\eta = 1 \) means the best optical diode performance.

Results and Theoretical Analyses
The transmittance and isolation contrast ratio of the optical diode structure are shown in Fig. 2. \(T_D \) is different to \(T_U \) when the incident wavelength is smaller than \(\lambda_C \). \(T_D \) reaches the maximum value 0.73 and \(T_U \) is \(3.7 \times 10^{-3} \) at \(\lambda_D \) (1315 nm). Whereas \(T_U \) reaches the maximum value 0.82 and \(T_D \) is \(3.6 \times 10^{-4} \) at \(\lambda_U \) (921 nm). The isolation contrast ratios at \(\lambda_D \) and \(\lambda_U \) are 0.990 and 0.999, respectively. Figure 2 shows that optical diode effect is obtained at around \(\lambda_D \) and \(\lambda_U \) and the two wavebands have reverse transmission directions. In the dichroic diode operating wavebands, the structure exhibits extraordinary transmission.

In order to understand the dichroic optical diode transmission, the electric field intensity \(|E|^2 \) at two operating wavebands are simulated. As shown in Fig. 3a, d, electric field is enhanced between two gratings when light transmits through the optical diode structure. Meanwhile, Fig. 3b, c show the reverse blocking status. The enhancement of electromagnetic field between two gratings is due to the SPs at two adjacent silver/silica interfaces. The types of SPs at two gratings are different, which are classified as structured SPs (SSPs) and induced SPs (ISPs) respectively. SSPs is excited and generates at the first illuminated grating (selector). ISPs is induced at the latter grating (emitter) by the coupling between SSPs and the adjacent silver/silica interface. Due to SSPs and ISPs, light transmits through the optical diode structure.

Surface charge density on the silver/silica interface and \(E_y \) component of the electric field distribution are illustrated in Fig. 4 to reveal the SPs coupling functions. In
Fig. 4a, G_1 and G_2 have opposite charges on their adjacent surfaces, which is similar to flat plate capacitor. Under the condition of downward incidence, G_1 acts as a selector to excite SSPs at λ_D. The periodic surface charge density distribution represents that SSPs is determined by grating constant of G_1. G_2 supports the ISPs induced by SSPs and performs as an emitter for transmission. E_y between G_1 and G_2 is enhanced due to the coupling between SPPs and ISPs, as shown in Fig. 4b. For upward incident condition shown in Fig. 4c, d, G_2 acts as the selector and G_1 acts as the emitter.

As can be seen from Fig. 4, the transmission field is periodic and nonuniform in the horizontal (x-axis) direction. The period Λ ($\Lambda = 2\Lambda_1 = 3\Lambda_2$) of the transmission filed distribution is modulated by the integral optical diode structure and satisfies $2\pi/\Lambda = |g_1-g_2|$, here g_i is the grating vector of G_i ($i = 1, 2$). The grating diffraction efficiency is increased for the existence of SPs. The lateral wave vector κ of transmitted light derives from the superposition of g_1 and g_2:

$$\kappa = \pm \frac{2\pi}{\Lambda} = \pm |g_1-g_2|, \quad (3)$$

And it decides the critical wavelength λ_C ($\lambda_C = 2\pi/|\kappa|$) for $T_D \neq T_U$. According to Eq. (3), λ_C is 1800 nm for our structure mentioned above, which is in good agreement with the simulation results $\lambda_C = 1806$ nm shown in Fig. 2. Optical diode effects appear in the range of $\lambda < \lambda_C$. According to the simulation results, the period of the integrated gratings (1800 nm) is larger than the diode operating wavelengths (1315 nm and 921 nm). Multi-order diffraction components can be obtained with light scattering from the integrated gratings. Thus, the transmission field is not uniform along the direction parallel to gratings, even when the light is transmitted to the far field.

SSPs of the silver grating are similar to SPs on planar silver/silica interface except that SSPs are radiative mode [37], while SPs are completely surface-bound modes. SSPs can be treated as SPs on planar silver/silica interface approximately when the slits of gratings are extremely narrow. So, the dispersion relation of SSPs can be written as [38] follows:

$$\beta = k_0 \sqrt{\frac{\epsilon_m \epsilon_d}{\epsilon_m + \epsilon_d}} \quad (4)$$

where k_0 is the free space wave vector and ϵ_m and ϵ_d are the dielectric coefficient of silver and silica, respectively. The dispersion relation described by Eq. (4) is illustrated in Fig. 5. Dispersion curve calculated by using...
Drude model parameters [35] in this paper fits well with that calculated by using Johnson and Christy's optical constant data sets [39] when photon energy is below 2.75 eV (\(\lambda > 450\) nm). In Fig. 5, the vertical red and black dash lines represent \(|g_1|\) and \(|g_2|\), respectively. SSPs is excited by the grating when the vector matching condition [40] is satisfied:

\[
\beta = k_0 \sin \theta \pm Ng_i (N = 1, 2, 3...). \tag{5}
\]

For normal incidence (\(\theta = 0^\circ\)), the first-order (\(N = 1\)) diffraction of a grating has the highest diffraction efficiency, i.e., the largest excitation efficiency for SSPs. Thus, Eq. (5) is fulfilled at the red and black points shown in Fig. 5:

\[
|\beta| = |g_i|. \tag{6}
\]

In the optical diode structure, \(G_1\) is the selector to excite SSPs for downward incidence and \(G_2\) is the selector for upward incidence. \(G_1\) and \(G_2\) have different grating constants, so SSPs are excited at different wavelengths for reverse incident directions. In Fig. 5, the photon energy at the red point is 0.91 eV and the wavelength is 1365 nm, which is corresponding to \(\lambda_D\) (1315 nm) shown in Fig. 2. Similarly, the photon energy indicated by the black point is 1.04 eV and its wavelength is 924 nm, corresponding to \(\lambda_U\) (921 nm) in Fig. 2. As the approximation of grating to plate, the SSPs resonance wavelengths calculated by using Eq. (4) and Eq. (6) are not exactly equal to the ones simulated by using FDTD methods shown in Fig. 2.

Equation (5) indicates that incident angle \(\theta\) influences the wave vector matching condition of grating to SSPs.
With the changing of \(\theta \), the transmittance and isolation contrast ratio at \(\Lambda_D \) (1315 nm) and \(\lambda_U \) (921 nm) are simulated and shown in Fig. 6a, b, respectively. With \(\theta \) increasing from 0° to 10°, \(T_D \) at \(\lambda_D \) and \(T_U \) at \(\lambda_U \) decrease for the wave vector mismatching between \(g_i \) and SSPs. (\(T_D \) at \(\lambda_D \) decreases to 0 when \(\theta = 40° \) and \(T_U \) at \(\lambda_U \) decreases to 0 when \(\theta = 35° \)). In incident angle range of \(0° \leq \theta \leq 5° \), \(T_D \) at \(\lambda_U \) and \(T_U \) at \(\lambda_D \) are almost 0, and \(\eta \) always keeps larger than 0.98 at both \(\lambda_U \) and \(\lambda_D \). Figure 6 demonstrates that the structure displays good optical diode effect at \(\lambda_D \) and \(\lambda_U \) under small-angle incidence.

Investigation and Discussion

In this section, we investigate the influence of structure parameters on transmission spectra and isolation contrast ratio.

The interlayer thickness \(d \) and gratings lateral relative position \(\Delta \) are limited by fabrication accuracy. The influence of \(d \) and \(\Delta \) on transmission spectra and the isolation contrast ratios are shown in Figs. 7 and 8, respectively. Figure 7 shows that the operating wavebands of optical diode exhibit a slight redshift when \(d \) increases. Meanwhile, the maximum value of \(T_D \) decreases very little, but the maximum value of \(T_U \) decreases significantly. The increase of \(d \) will lengthen the light transmission distance through the structure, weaken the electromagnetic interaction between \(G_1 \) and \(G_2 \), and impair the charge density induced at the surface of emitter. As seen in Fig. 4, charges distributed at slit corners of emitter act as electric dipoles sources of the transmission field. Charge density at slit corners of the emitter \(G_2 \) (Fig. 4a) is much greater than that at slit corners of the emitter \(G_1 \) (Fig. 4c), so \(d \) influences less on the maximum value of \(T_D \) than that of \(T_U \). Besides, with the increase of \(d \), small peaks marked as FP1 and FP2 appear in \(T_U \) and the transmission peak of FP1 exhibits a large redshift. Electric field intensity \(|E|^2 \) distributions prove that FP1 and FP2 result from Fabry-Perot resonances.

As shown in Fig. 1, the optical diode structure is periodic and it has the same unit cell when \(\Delta = a \pm M\Lambda_D/2 \) (0 nm < \(a < \Lambda_D/2 \) and \(M = 0, 1, 2 \ldots \)). Besides, the unit cell of \(\Delta = a \) is left-right flip symmetric with that of \(\Delta = -a \pm M\Lambda_D/2 \) and they can realize the same transmission effect. So, the transmittance of the optical diode structure is affected by \(\Delta \) as: \(T(\Delta) = T(\Delta + \Lambda_D/2) = T(-\Delta + \Lambda_D/2) \). As shown in Fig. 8, optical diode effect at \(\lambda \approx 921 \) nm turns on and off within a period of \(\Lambda_D/2 \) as \(\Delta \) increases. However, transmission peak of \(T_D \) exhibits a slight blueshift and the optical diode effect at \(\lambda \approx 1315 \) nm is always on when \(\Delta \) increases. Seen in Fig. 8a, a new transmission peak at \(\lambda_N \) emerges in \(T_U \) curve near \(\lambda_U \). When \(\Delta \) increases from \(\Lambda_D/2 \) to \(\Lambda_D/6 \), the peak at \(\lambda_N \) exhibits a blueshift while the peak at \(\lambda_U \) exhibits a redshift (Fig. 8a, b). \(E_y \) distributions for transmission resonances at \(\lambda_U \) and \(\lambda_N \) are inserted in Fig. 8b. According to the simulation results, the resonance at \(\lambda_N \) is because of the energy splitting. When \(\Delta \) increases to \(\Lambda_D/4 \), shown in Fig. 8c, \(T_U \) is suppressed and two transmission resonances disappear, which makes the optical diode effect turn off at \(\lambda \approx 921 \) nm.

According to the theory analysis, the operating waveband of optical diode can be obtained in a certain range by optimizing grating parameters. Figure 9 shows that the dichroic optical diode transmission is achieved in visible light range with structure parameters \(d = 100 \) nm, \(\Lambda_1 = 450 \) nm, \(\Lambda_2 = 300 \) nm, \(s = h = 30 \) nm, and \(\Delta = 0 \) nm. The maximum transmittances of dichroic diode transmission wavebands are 80% (at 522 nm for upward incidence) and 71% (at 732 nm for downward incidence), and the corresponding isolation contrast ratios \(\eta \) are 0.998 and 0.993.

Furthermore, the component of the unit cell in our structure also influences the optical diode phenomena. According to Eq. (5), the wavebands of diode effect depend on \(\Lambda_1 \) and \(\Lambda_2 \). In our research, we select the unit cell consisting of 2 units of \(G_1 \) and 3 units of \(G_2 \), i.e., \(2\Lambda_1 = 3\Lambda_2 \), in order to get high transmittances and good isolation contrast ratios in the optical diode wavebands simultaneously. For example, Fig. 10 shows the dichroic transmission of the optical diode structure with its unit cell consisting of 3 units of \(G_1 \) and 4 units of \(G_2 \). The optical diode effects are obtain at 530 nm with \(T_{\lambda_U} = 72\% \).
Fig. 7 The influence of d on transmission spectra and the isolation contrast ratio. $d = 220$ nm (a), $d = 240$ nm (b), and $d = 260$ nm (c) when $s = h = 50$ nm, $\Lambda_1 = 900$ nm, $\Lambda_2 = 600$ nm, and $\Delta = 0$ nm. The insets are distributions of electric field intensity $|E|^2$ for upward transmission resonances.

Fig. 8 The influence of Δ on transmission spectra and the isolation contrast ratio. $\Delta = 50$ nm $= \Lambda_2/12$ (a), $\Delta = 100$ nm $= \Lambda_2/6$ (b), and $\Delta = 150$ nm $= \Lambda_2/4$ (c) when $d = 200$ nm, $s = h = 50$ nm, $\Lambda_1 = 900$ nm, and $\Lambda_2 = 600$ nm. The insets in (b) are E_y distributions for upward transmission resonances.
and 659 nm with $T_{\mu} = 76\%$. The isolation contrast ratios at the two wavelengths are reduced to 0.912 and 0.987, because the difference of $|g_1|$ and $|g_2|$ is small and the grating acting as a selector can excite the SSPs of both gratings at different efficiencies. In addition, when $\Lambda_1 = 2 \Lambda_2$, the SPs transmission resonance in the optical diode structure caused by the first-order diffraction of G_2 can also be excited by the second-order diffraction of G_1 for $2g_1 = g_2$, which would reduce the isolation contrast ratio. So, the good optical diode property requires that two grating constants should have a sufficient difference and avoid the integer multiple relationship.

Conclusions
The dichroic optical diode transmission based on SPs is realized in our structure, which consists of two dislocated parallel silver gratings and a silica interlayer. The first illuminated metallic grating selects the transmission waveband by exciting SSPs, and the other metallic grating emits electromagnetic energy forward through the surficial electrons oscillations. When the incident direction of light is reversed, the roles of two gratings exchange and another optical diode transmission waveband appears. The optical isolation ratio can almost reach up to 1. Optical diode transmission wavebands can be adjusted to be in different regions by changing the structure parameters. The optical diode operating wavebands and transmittance are independent of the incident intensity. The thickness of the structure is only a few hundred nanometers. These properties of our structure provide a wide range of applications in integrated circuits.

Abbreviations
ISPs: Induced surface plasmons; SPs: Surface plasmons; SSPs: Structured surface plasmons

Acknowledgements
Not applicable.

Funding
National Natural Science Foundation of China (11504185, 61178004, 11874229); Fundamental Research Funds for the Central Universities; Natural Science Foundation of Tianjin City (06JYTJJC13500); Science and Technology Commission of Tianjin Binhai New Area (BHRKJXM-PT-ZJSHJ-2017003).

Availability of Data and Materials
The datasets supporting the conclusions of this article are included within the article.

Authors’ Contributions
PX, QS, and JC initiated the idea. JQ provided FDTD Solutions for simulation and provided technical help. PX built the basic model and performed the simulations. PX, XL, JC, and QS participated in the analyses and discussion. PX and JC prepared the manuscript. All authors contributed to the revision of the manuscript. All authors read and approved the final manuscript.

Competing Interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Author details
1MOE Key Laboratory of Weak Light Nonlinear Photonics, Tianjin Key Laboratory of Photonics and Technology of Information Science, School of Physics, Nankai University, Tianjin 300071, China. 2Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, Shanxi, China. 3College of Environmental Science and Engineering/Sino-Canada R&D Center on Water and Environmental Safety, Nankai University, Tianjin 300071, China.

Received: 9 October 2018 Accepted: 23 November 2018
Published online: 04 December 2018

References
1. Fan L, Wang J, Vargheset LT, Shen H, Niu B, Xuan Y, Weiner AM, Qi MH (2012) An all-silicon passive optical diode. Science. https://doi.org/10.1126/science.1214383
2. Shoji Y, Mizumoto T, Yokoi H, Hsieh IW (2008) Magneto-optical isolator with silicon waveguides fabricated by direct bonding. Appl Phys Lett. https://doi.org/10.1063/1.2884855
3. Song MH, Park B, Takanishi Y, Ishikawa K, Nishimura S, Toyooka T, Takezoe H (2006) Simple electro-tunable optical diode using anisotropic liquid crystal films. Thin Solid Films. https://doi.org/10.1016/j.tsf.2005.09.010

4. Wang Q, Xu F, Yu ZY, Qian XS, Hu XK, Lu YQ, Wang HT (2010) A bidirectional tunable optical diode based on periodically poled LiNbO3. Opt Express. https://doi.org/10.1364/OE.18.020730

5. Sounas DL, Alù A (2017) Non-reciprocal photonics based on time-reversal symmetry. Nat Photonics. https://doi.org/10.1038/natphot.2017.31

6. Wang DW, Zhou HT, Guo MI, Zhang JX, Evers J, Zhu SY (2013) Optical diode made from a moving photonic crystal. Phys Rev Lett. https://doi.org/10.1103/PhysRevLett.110.093901

7. Zhukovsky SV, Smirnov AG (2011) All-optical diode action in asymmetric nonlinear photonic multilayers with perfect transmission resonances. Phys Rev A. https://doi.org/10.1103/PhysRevA.83.023818

8. Serebryannikov AE, Cakmak AO, Ozbay E (2012) Multichannel optical diode with unidirectional diffraction relevant total transmission. Opt Express 20: 14980–14990

9. Li H, Deng Z, Huang J, Fu S, Li Y (2015) Slow-light all-optical soliton diode based on tailored Bragg-grating structure. Opt Lett 40:2572–2575

10. Deng Z-L, Deng J, Zhaung X et al (2018) Facile metagrating holograms with broadband and extreme angle tolerance. Light-Sci Appl 7:78

11. Deng Z-L, Deng J, Zhaung X et al (2018) Diatomic Metasurface for Vectorial holography. Nano Lett 18:2885–2892

12. Deng Z-L, Li G (2017) Metal-oxide subwavelength holographic structures. Mater Today Phys 3:16–32

13. Deng Z-L, Zhaung S, Wang GP (2016) Wide-angled off-axis achromatic metasurfaces for visible light. Opt Express 24:23118–23128

14. Deng Z-L, Zhaung S, Wang GP (2016) A facile grating approach towards broadband, wide-angle and high-efficiency holographic metasurfaces. Nanoscale 8:1588–1594

15. Wu D, Li R, Liu Y et al (2017) Ultra-narrow band perfect absorber and its application as Plasmonic sensor in the visible region. Nanoscale Res Lett 12:427

16. Chen C, Wang G, Zhang Z, Zhang K (2018) Dual narrow-band absorber based on metal–insulator–metal configuration for refractive index sensing. Opt Lett 43:3630–3633

17. Liang Y, Peng W, Lu M, Chu S (2015) Narrow-band wavelength tunable filter based on asymmetric double layer metallic grating. Opt Express 23:14434–14445

18. Kim H, Kim M, Chang T et al (2018) Bright and vivid plasmonic color filters having dual resonance modes with proper orthogonality. Opt Express 26:27403–27417

19. Davoyan AR, Engheta N (2013) Nonreciprocal rotating power flow within plasmonic nanostructures. Phys Rev Lett. https://doi.org/10.1103/PhysRevLett.111.047401

20. Hothenau A, Leitner A, Ausseneeg FR (2007) Near-field and far-field properties of nanoparticle arrays. In: Brongersma ML, Kik PG (eds) Surface plasmon nanophotonics. Springer, Dordrecht, pp 11–25

21. Chen Z-X, Chen J-H, Wu Z-J, Yu W, Zhang X-J, Lu Y-Q (2014) Tunable Fano resonance in hybrid graphene-metal gratings. Appl Phys Lett. https://doi.org/10.1063/1.4873541

22. Serebryannikov A, Ozbay E (2009) Isolation and one-way effects in diffraction on dielectric gratings with plasmonic inserts. Opt Express. https://doi.org/10.1364/OE.17.000278

23. Serebryannikov A, Ozbay E (2009) Unidirectional transmission in non-symmetric gratings containing metallic layers. Opt Express. https://doi.org/10.1364/OE.17.013335

24. Zhu Z, Liu K, Xu W, Luo Z, Guo C, Yang B, Ma T, Yuan X, Ye W (2012) One-way transmission of linearly polarized light in plasmonic subwavelength metallic grating cascaded with dielectric grating. Opt Lett. https://doi.org/10.1364/OL.37.004008

25. Xu J, Cheng C, Kang M, Chen J, Zheng Z, Fan YX, Wang HT (2011) Unidirectional optical transmission in dual-metal gratings in the absence of anisotropic and nonlinear materials. Opt Lett 36:1905–1907

26. Peng N, She W (2014) Asymmetric optical transmission through periodic arrays of cone air holes in a metal film. Opt Express. https://doi.org/10.1364/ OE.22.028452

27. Hu YX, Zhang YB, Xu XA, Gong QH (2011) Nanoscale surface plasmon all-optical diode based on plasmonic slot waveguides. Plasmonics. https://doi.org/10.1007/s11468-011-9243-2

28. Brullot W, Swusten T, Verbiest T (2015) Broadband nonreciprocal quadrupolarization-induced asymmetric transmission (Q-AT) in plasmonic nanoparticle aggregates. Adv Mater. https://doi.org/10.1002/adma.201405409