Role of regenerating islet-derived proteins in inflammatory bowel disease

Jodi-Ann Edwards, Nicholas Tan, Nadlie Toussaint, Peiqi Ou, Cathy Mueller, Albert Stanek, Vladimir Zinsou, Sean Roudnitsky, Michelle Sagal, Lisa Dresner, Alexander Schwartzman, Chongmin Huan

ORCID number: Jodi-Ann Edwards (0000-0003-4721-1713); Nicholas Tan (0000-0002-7362-0038); Nadlie Toussaint (0000-0001-7421-4333); Peiqi Ou (0000-0001-8392-971X); Cathy Mueller (0000-0002-1081-7095); Albert Stanek (0000-0002-9371-6926); Vladimir Zinsou (0000-0003-3121-3124); Sean Roudnitsky (0000-0002-3802-4214); Michelle Sagal (0000-0003-4154-260X); Lisa Dresner (0000-0001-7059-720X); Alexander Schwartzman (0000-0003-3041-1006); Chongmin Huan (0000-0002-0779-1613).

Author contributions: Edwards JA, Tan N, Toussaint N and Huan C conceptualized, designed and drafted the manuscript; Edwards JA, Tan N, Toussaint N, Ou P, Mueller C, Stanek A, Zinsou V, Roudnitsky S, Sagal M and Huan C reviewed the literature; Edwards JA, Toussaint N, Ou P, Mueller C, Stanek A, Dresner L, Schwartzman A and Huan C discussed and edited the manuscript; Huan C directed the study.

Conflict-of-interest statement: There is no conflict of interest associated with the senior author or other coauthors contributed their efforts in this manuscript.

Open-Access: This article is an open-access article that was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution-NonCommercial (CC BY-NC 4.0)

Abstract

Inflammatory bowel disease (IBD) is an inflammatory disorder of the gastrointestinal tract that affects millions of patients worldwide. It has a complex and multifactorial etiology leading to excessive exposure of intestinal epithelium to microbial antigens, inappropriate activation of the immune system and ultimately to the damage of intestinal tissues. Although numerous efforts have been made to improve the disease management, IBD remains persistently recurring and beyond cure. This is due largely to the gaps in our understanding of the pathogenesis of IBD that hamper the development of timely diagnoses and effective treatment. However, some recent discoveries, including the beneficial effects of interleukin-22 (IL-22) on the inflamed intestine, have shed light on a self-protective mechanism in IBD. Regenerating islet-derived (REG/Reg) proteins are small secretory proteins which function as IL-22’s downstream effectors. Mounting studies have demonstrated that IBD patients have significantly increased REG expressions in the injured intestine, but with undefined mechanisms and roles. The reported functions of REG/Reg proteins in intestinal homeostasis, such as those of antibacterial, anti-inflammatory and tissue repair, lead us to discuss their potential mechanisms and clinical relevance in IBD in order to advance IBD research and management.

Key words: Regenerating islet-derived proteins; Inflammatory bowel disease; Crohn’s disease; Ulcerative colitis; Interleukin-22; Intestinal bacteria
INTRODUCTION

Regenerating islet-derived (REG/Reg) proteins are small secretory C-type-like lectins. In 1979, De Caro et al[1] found that pancreatic stones in patients with chronic calcifying pancreatitis were made largely of a type of proteins. This pancreatic stone protein was later independently reported as pancreatic thread protein by Gross et al[2] in 1985, and as regenerating islet-derived protein by Terazono et al[3] in 1988. After the recognition of its different isoforms and the corresponding homologs across species in mammals, it was given the current name REG1α in a sequence and structure-based classification of the family proteins[4-5]. The tissue distributions and physiological activities of this protein family are studied primarily in humans and mice. The human REG family consists of REG1α, REG1β, REG3α, REG3γ and REG4, and these family members share between 30 to 80 percent homologous sequences. In mice, the family members of Reg1, Reg2, Reg3α, Reg3β, Reg3γ, Reg3δ and Reg4 share more than 50 percent homologous sequences, and are structurally and functionally conserved with their human counterparts[6]. Studies of REG/Reg proteins have focused on their functions in the pancreas and intestine since REG/Reg proteins are predominantly expressed in these two digestive organs. We and others have shown that in acute pancreatitis, the production of REG/Reg proteins is significantly induced in pancreatic acinar cells to inhibit inflammatory cell infiltration and to promote tissue repair[6-11]. In the inflamed intestine, REG/Reg expression is highly upregulated in different crypt cells including Paneth cells, deep secreting cells and enteroendocrine cells, and extend to other intestinal epithelial cells depending on the isoform[12-20]. Although the precise roles of REG proteins in human inflammatory bowel disease (IBD) have not been defined, mouse studies have confirmed that Reg proteins are required to maintain intestinal homeostasis in both physiological and pathological conditions.

Ose et al[13] reported that Reg1 deficient mice had reduced stem cell proliferation in the crypts and impaired epithelial migration along the villi in the small intestine, revealing the role of Reg1 in the preservation and renewal of intestinal villous structure. In line with these findings, Sun et al[14] showed that Reg1 protein protected against intestinal damage caused by indomethacin, a nonsteroidal anti-inflammatory drug. In the same disease model, Kitayama et al[15] found that Reg1 deficiency severely attenuated the expression of tight junction proteins including claudins 3 and 4. Therefore, in addition to promoting the recovery of villous structure, Reg1 may enhance the integrity of the epithelial barrier during intestinal injury.

Like Reg1 protein, Reg3 proteins also have a protective role in injured intestine. Studies showed that Reg3β and Reg3γ could promote the growth of cultured colonic epithelial cells[16], and their intestinal expression was highly upregulated in dextran sulfate sodium (DSS)- or pathogenic bacteria-induced mouse colitis[17,18,21,22]. Reg3β deficiency consistently exacerbated symptoms of colitis in DSS-treated mice[22]. Similarly, in a mouse model of graft-vs-host disease, intestinal expressions of Reg3α and Reg3γ were upregulated in response to IL-22 signaling to enhance the survival of intestinal stem cells and Paneth cells[22,24]. Furthermore, compensation of Reg3γ deficiencies in IL-22 deficient mice by intraperitoneal injections of REG3γ or Reg3γ blocked the intestinal epithelial invasion of orally introduced C. rodentium and saved the animals’ lives[25].
Notably, in addition to Reg3 proteins’ trophic effect on the epithelial barrier, the contribution of their direct inhibitory effect on bacterial invasiveness cannot be excluded\[26-27\]. Cash et al\[28\] showed that Reg3γ and its human counterpart REG3α are antimicrobial proteins that bind to the peptidoglycan carbohydrate on Gram-positive bacteria. Further studies showed that the interaction was mediated by a Glu-Pro-Asn motif in the long loop region of REG3α\[29\]. Upon interacting with peptidoglycan, REG3α oligomerizes to form hexameric transmembrane pores that kill bacteria by increasing their membrane permeability\[29\]. Consistently, Reg3γ deficient mice have more Gram-positive bacteria in the intestinal mucosa\[30\]. In contrast to REG3α/Reg3γ, Reg3β may attach to lipopolysaccharide to cause osmotic rupture in Gram-negative bacteria\[31,32,33\], in line with the increased proportion of intestinal Gram-negative bacteria in Reg3β deficient mice\[30\].

Unlike the expressions of Reg1/3 proteins in both the small and large intestines, Reg4 proteins are distributed predominantly in the colon. It has been shown that Reg4 is produced by deep crypt secretory cells and intestinal enteroendocrine cells, and expands to epithelial cells of the upper colonic crypts during inflammation\[34,35\].

INCREASED EXPRESSIONS OF REG PROTEINS IN IBD PATIENTS

IBD comprises two major disorders: Crohn’s disease (CD) and ulcerative colitis (UC). CD and UC share the features of chronic and destructive mucosal inflammation, but they are pathogenically and clinically distinct. CD patients have abdominal cramps, pain, diarrhea and weight loss, and their intestinal injury is characterized by transmural and segmental lesions that may occur at any level of the gastrointestinal tract “from mouth to anus”. UC patients frequently present with bloody stools and diarrhea, and their intestinal inflammation is localized to the colonic mucosa. However, the mechanisms underlying the different pathogenesis in CD and UC remain poorly understood\[36-37\].

Over the past decade, increased REG expression has been detected by various techniques in both CD and UC patients\[12,14,36-37\] (Table 1). Interestingly, the increased levels of different REG isoforms vary significantly in CD and UC, and in active and remissive phases of each disease, which could be attributed to the different transcriptional regulations of REG isoforms by inflammatory cytokines such as IL-22 and TGFβ illustrated in Figure 1. CD and UC are characterized by different cytokine responses. In CD, the T-helper type 1 (Th1) cytokine interferon-γ and the Th17 cytokines IL-17/IL-22 are the main inflammation regulators. In contrast, UC has a Th2-like cytokine response that activates IL-13/IL-5, producing natural killer T cells\[38\]. These distinct cytokine patterns are associated with relatively high IL-22 levels in patients with CD compared to those with UC\[34-35\]. Animal studies have shown comparable results. For example, in the Th17 response-mediated mouse model of CD generated by the transfer of CD45RB^{high} T cells, IL-22 levels are high; but in the Th2 response-regulated UC model of T cell receptor α-chain deficient mice, IL-22 levels are low\[38\]. A recent study by Leung et al\[39\] provided an explanation. They showed that in active UC, a Th22 subset of helper T cells that produces IL-22, but not IL-17, was generated by the transfer of CD45RB^{high} cells. These distinct cytokine patterns are associated with relatively high IL-22 levels in patients with CD compared to those with UC\[34-35\].

Tsuchida et al\[40\] showed that REG1α, REG1β, and REG4 were all highly overexpressed in CD, while only REG4 was significantly overexpressed in UC. This could be caused by the limited IL-22 production in the colon because IL-22 signaling is essential for transcriptional activation of REG1/3 genes\[12,14,36-38\], while REG4 transcription could be driven by the mechanisms other than IL-22 signaling\[39\]. For example, REG4 transcription is known to be activated by caudal type homeobox 2 (CDX2), a transcription factor that regulates multiple genes for maintaining intestinal homeostasis in response to the Toll-like receptor signaling\[40,41\]. Interestingly in this regard, CDX2 expression has been found to be inhibited by phosphoinositide 3-kinase\[40\], which can be activated by exostosin-like glycosyltransferase 3 (EXTL3), a cell surface enzyme expressed in multiple organs including the intestine\[42-43\]. Since EXTL3 has been identified as a receptor for REG1/Reg1 and REG3/Reg3 proteins\[44-47\], it is possible that as illustrated in Figure 1, CDX2-activated colonic REG4 transcription is inhibited in CD, but activated in UC, due to higher REG1/3 levels in CD than UC. In addition, GATA binding proteins (GATA3s) could possibly regulate REG genes transcription in an IL-22 independent manner. Studies have shown that Reg1/3 transcription can be activated by GATA4, which is normally expressed in the proximal small intestine\[48-49\], but abnormally expressed in the inflammatory lesions of the distal small intestine and colon\[50\]. On the other hand, REG4 transcription is specifically activated by GATA6\[50-51\], which is expressed in both the small and large
Table 1 Reported REG expressions in inflammatory bowel disease patients

Ref	REGs	Samples (size)	Relevant findings
Lawrence et al[38], 2001	REG1α/1β/3α	CD (6) UC (6) control (6)	Increased intestinal REG1α/1β/3α in IBD detected by microarray
Shinozaki et al[39], 2001	REG1α	CD (9) UC (21) control (5 non-IBD, 6 normal)	Increased intestinal REG1α in IBD detected by RT-PCR and ISH
Desjeux et al[40], 2002	REG3α	CD (124) normal control (54)	Increased serum REG3α in active CD detected by ELISA
Dieckgraefe et al[41], 2002	REG1α/1β/3γ	CD (3) UC (5) control (4)	Increased intestinal REG1α/1β/3γ in IBD detected by microarray and IHC
Ogawa et al[42], 2003	REG3α	CD (20) UC (23) control (18)	Increased intestinal REG3α in IBD detected by ISH and Northern blot
Kämäräinen et al[43], 2003	REG4	CD (N/A) UC (N/A)	By ISH and IHC, REG4 constitutively expressed in neuroendocrine cells, and upregulated in inflamed epithelial cells
Gironsella et al[44], 2005	REG3α	IBD (171) control (14 non-IBD, 29 normal)	Increased serum REG3α correlated with IBD severity detected by ELISA. Higher REG3α in CD than UC. REG3α localized to colonic Paneth cells
Wu et al[45], 2007	REG1β/REG3α	CD (9) UC (5) control (4)	Increased intestinal REG1β in CD and REG3α in CD and UC detected by microarray
Nanakin et al[46], 2007	REG4	UC (22) normal control (5)	Increased intestinal REG4 in UC detected by RT-PCR, ISH and IHC
Sekikawa et al[47], 2010	REG1α	UC (60) control (10)	Increased intestinal REG1α in UC detected by RT-PCR and IHC
Tanaka et al[48], 2011	REG1α	UC (31) control (5)	Increased intestinal REG1α in UC detected by IHC
Granlund et al[49], 2011	REG1α/1β/3α/4	CD/control (12/21) UC/control (32/34)	Increased intestinal REG1α/1β/3α/4 in IBD detected by microarray. Different cellular localizations of REG1α and REG4 detected by IHC
van Beelen Granlund et al[50], 2013	REG1α/1β/3α/4	CD (N/A) UC (N/A)	By ISH, REG1α/1β/3α/4 localized to Paneth cells in the crypt base, REG4 localized to enteroendocrine cells towards the luminal face
Planell et al[51], 2013	REG1α/4	Microarray: UC (15 active/8 remissive), Non-IBD (13); RT-PCR: UC (8 active/12 remissive), non-IBD (10)	Comparably increased intestinal REG4 in active and remissive UC, and significantly increased REG1α in active UC but not in remissive UC, detected by microarray and RT-PCR
Marafini et al[52], 2014	REG3α	CD (72) UC (22)	Infliximab treatment decreased the high serum REG3α in CD and UC
Nunes et al[53], 2014	REG3α	CD (66) UC (74)	Increased serum REG3α in active CD but not UC detected by ELISA
Tsuchida et al[54], 2017	REG1α/1β/3α/4	CD (49) UC (39 control (44)	Increased intestinal REG1α/1β/3α/4 in CD, and REG4 in UC detected by RT-PCR

IHC: Immunohistochemistry; ISH: In situ hybridization; RT-PCR: Reverse transcription-polymerase chain reaction; ELISA: Enzyme-linked immunosorbent assay. N/A: Not available.

intestines[48]. Deficiency of GATA4 or GATA6 causes abnormal alterations in intestinal cells including Paneth cells, enteroendocrine and goblet cells[72,73]. Both GATA4- and GATA6-regulated REG transcriptions could be mediated by inflammation in IBD. Haveri et al[69] suggested the upregulation of GATA4 in inflamed intestine by activated signaling of TGFβ, whose expression is elevated in active but not remissive CD and UC[74,75]. This explains the significant increase of intestinal REG1α in active phase but not remissive phase of UC, which is in contrast to the disease status-independent increase of REG4 in UC[49]. As discussed before, REG4 transcription could be activated by CDX2 in UC when IL-22 is diminished. In addition, the activation of GATA6 by inflammation also possibly contributes to REG4 expression in UC (Figure 1). In support of this view, Mustfa et al[76] showed that in IBD, inflammation globally
increased interleukin-22 induced transcriptions of REG1/3 in Crohn’s disease (orange solid arrows) are relatively attenuated in ulcerative colitis (orange dotted arrows), leading to CDX2-activated REG transcriptions in ulcerative colitis (black solid arrows), but not in Crohn’s disease (black dotted arrows). IL: Interleukin; TGF: Transforming growth factor; TLR: Toll-like receptor.

decreased SUMOylation, a post-translational modification that inhibits GATA6 transcription, in colonic cells[7]. Of note, other factors, such as exclusive enteral nutrition diet commonly recommended for CD patients, influence the bacteria population, inflammation and mucosal healing in IBD[78]. Therefore, they could also have a direct and/or indirect regulatory effect on intestinal REG expressions, which should be investigated in future studies.

REG PROTEINS ARE POTENTIALLY PROTECTIVE IN IBD

Studies have supported that IBD progression is driven by defective bacterial clearance, aberrant immune responses, and impaired epithelial barrier[37]. Notably, REG proteins appear to have the corresponding protective effects that can counteract these defects in IBD as illustrated in Figure 2.

In line with REG/Reg proteins’ bactericidal activities, mice carrying genetically modified REG/Reg genes have altered compositions of intestinal bacterial microbiota[16,31,35,79,80] (Table 2), indicating the regulatory roles played by REG/Reg proteins in the gut microbiome. Notable among these are that mice with REG3α overexpression and mice with Reg4 deficiency were resistant to DSS-induced colitis, suggesting the importance of REG/Reg-regulated intestinal microbiota in IBD pathogenesis[16,79]. Furthermore, mice with Reg3γ overexpression had an enriched fraction of beneficial *Lactobacilli* in the gut microbiome, suggesting the positive selection of “good bacteria” by Reg3γ[80]. In support of the importance of an altered intestinal microbiome in IBD pathogenesis, a systematic review and meta-analysis of CD and UC patients showed different intestinal microbiome compositions in patients with active disease as compared to those in remission[81]. Given the fact that patients with active IBD have higher levels of REG proteins, further studies are needed to define the significance between increased REG expression and altered microbiome composition observed in these patients.

In addition to their bactericidal activities, REG3/Reg3 proteins are anti-inflammatory since they can inhibit proinflammatory cytokine secretion, inflammatory cell activation and infiltration in inflammatory diseases including IBD[8-10,12,82-84]. REG3α incubation inhibited the proinflammatory cytokine secretion in intestinal mucosa harvested from patients with active CD in a dose dependent manner, and decreased the adhesive molecules, such as E-selectin, ICAM-1 and VCAM-1, which were found to be upregulated on endothelial cells to promote inflammatory infiltration[12]. Additionally, REG3/Reg3 proteins regulate the activities of macrophages, which regulate inflammatory injury in IBD[84-87]. It is thus possible that REG3/Reg3 proteins may also alleviate IBD inflammation via macrophages.

As previously mentioned, REG/Reg proteins have trophic effects on intestinal epithelium in both physiological and pathological conditions. These trophic effects have been attributed to the activation of pro-survival and pro-proliferative signaling pathways, such as MEK1/2, ERK1/2, phosphoinositide 3-kinase-Akt and JAK2-
STAT3\cite{5}. Therefore, the direct tissue protection and repair of mucosa in IBD by REG/Reg proteins cannot be excluded. Indeed, transgenic overexpression of REG3α or intrarectal administration of REG3α alleviated the epithelial damage in 2,4,6-trinitrobenzene sulphonic acid-induced mouse colitis\cite{79}, while Reg3β deficiency worsen DSS colitis in mice\cite{22}. Similarly, administration of REG3γ/Reg3γ improved epithelial integrity in C. rodentium-induced mouse colitis\cite{25}. Additionally, Reg4+ deep crypt secretory cells promoted the formation of organoids derived from Lgr5+ colonic stem cells, and Reg4 stimulated the growth of colonic organoids isolated from mice with DSS-induced colitis\cite{15,16}.

REG PROTEINS’ PROSPECTIVE CLINICAL RELEVANCE IN IBD

Despite the recent advancements, there are unmet needs in current IBD management, particularly including disease activity detection and treatment\cite{88,89}. REG proteins have been considered as potential diagnostic markers and/or therapeutic targets for immune-mediated diseases\cite{90}. The recognized upregulation of REG proteins in IBD and REG proteins’ beneficial activities provide unique opportunities to address some of these unmet needs for improving IBD management, such as serving as biomarkers for disease activity, shifting the composition of bacterial microbiota, and enhancing the repair of intestinal epithelium.

The clinical diagnosis of IBD remission/relapse depends on the endoscopic biopsy, which has its own limitations including invasiveness, financial burden and inter-user variability. Non-invasive imaging such as ultrasound, and CT and MR enterography are useful modalities but also have drawbacks such as inter-operator variability, radiation exposure, and financial burden\cite{91,92}. Therefore, efforts have been made to study potential IBD biomarkers in serum and feces including C-reactive protein (CRP), anti-Saccharomyces cerevisiae antibody, which is chiefly linked with CD, and perinuclear antineutrophil cytoplasmic antibody, which is linked with UC\cite{93-96}. However, these biomarkers have high specificities but limited sensitivities. Of note, inhibition of tumor necrosis factor alpha by Infliximab reduced serum REG3α levels in CD and UC patients\cite{50}, supporting the potential use of REG3α for evaluating the response of treatment. Furthermore, a multicenter prospective study showed increased serum REG3α with 94% specificity and 60% sensitivity for active CD\cite{38}. Similarly, a recent study showed increased serum REG3α in CD patients 3 mo prior to relapse but with only 73% specificity and 50% sensitivity explained that the lower specificity and sensitivity in their study compared with those from the previously mentioned report was likely due to the patients’ mild disease activity and low relapse rate. Given the functional redundancy among REG family members and confirmed upregulated REG1α/β in CD patients (Table 1), it is possible that CD patients with lower REG3α levels may have higher serum REG1α/β levels. If so, combining REG3α and REG1α/β measurements in each CD patient could collectively improve the sensitivity for evaluating the relapse. On the other hand, this study showed that serum REG3α levels were not correlative with UC activity\cite{51}. This could be due to the relatively attenuated upregulation of REG3 in UC (Figure 1). Therefore,
Class	Order	Family	Genera
Actinobacteria	Bifidobacteriales	Bifidobacteriaceae	Bifidobacterium ↑
Coriobacteriales			
Eggerthellales			
Alphaproteobacteria	Caulobacteriales	Caulobacteriaceae	Bacteroides ↑
Bacilli	Bacillales		
Bacteroidia	Bacteroidales ↑↑↑↑↑↑↑		
Betaproteobacteria	Burkholderiales		
Clostridia ↑↑	Clostridiales ↑↑		
Delta Proteobacteria	Desulfovibrionales ↑↑		
Epsilonproteobacteria	Campylobacteriales		
Erysipelotrichia	Erysipelotrichales ↑↑		
Gammaproteobacteria	Enterobacterales		
Negativicutes	Acidaminococcus		
Verrucomicrobia	Verrucomicrobiae		

Increased (↑), decreased (↓) and unaltered (−) intestinal bacterial proportions are indicated in:
1 hepatocyte specific REG3α transgenic mice[80].
2 intestinal cell specific Reg4 knockout mice[16].
3 intestinal cell specific REG3γ transgenic mice[80].
4 the intestinal mucosa of Reg3γ knockout mice[80].
5 the intestinal mucosa of Reg3β knockout mice[35].

it would be more informative to assess the use of REG4 as a biomarker for UC, since it is more specific and highly upregulated in UC[45,49,52].

Multiple clinical trials have shown that fecal microbiota transplantation is a promising treatment to induce remission in active UC[97-100]. However, the specific...
bacteria that protect against UC have not been identified. Studying altered intestinal bacteria populations in DSS colitis resistant REG3α transgenic mice and REG4 deficient mice therefore could help to identify the protective bacteria and associated REG/Reg regulation in UC.[16,78]. Bowel resection is considered for the patients that are refractory to medical therapy or with serious complications of the medications[101-109]. However, in addition to the risk of short bowel syndrome, septic complications are commonly associated with anastomotic leaks[103]. The early diagnosis of anastomotic leaks enables a timelier intervention essential for a better outcome. It has been shown that a low CRP on postoperative day 4 is a reliable biomarker for excluding postoperative infectious complications in abdominal surgery, while high CRP levels should prompt aggressive imaging for possible anastomotic failure[108]. Like CRP, REG/Reg proteins have been considered to be acute phase proteins that could be used as markers of septic complications in patients including those undergoing abdominal surgery[102-104]. Therefore, determining whether REG proteins can serve as a more sensitive and specific sensor of postoperative anastomotic leak could have significant clinical potential.

It is also worthy of note that Reg proteins do not lead to immune suppression or immunogenicity, the side-effects that are associated with risks of infection and immune dysregulation in some agents used in IBD treatment[88,89]. Given that REG proteins have bactericidal, anti-inflammatory and tissue repair functions in the inflamed intestine (Figure 2), the use of REG proteins as an adjunct to reduce the doses of current medications for IBD could potentially minimize complications. Despite these benefits, however, concerns of long-term application of REG proteins remain. For example, REG/Reg proteins may potentially overactivate the oncogenic STAT3 signaling pathway[105], even though the gastrointestinal tract administration[5,27] of Reg1 as an activator of stellate cells, the predominant producer of collagen in pancreatitis[90], may decrease the oncogenic risk in other organs. Additionally, CD patients are prone to bowel stricturing/stenosis formation[111]. Based on our finding of Reg1 as an activator of stellate cells, the predominant producer of collagen in pancreatitis[90], the potential of REG1 for bowel stricturing/stenosis formation could be clarified, which could argue against its use in patients with CD.

CONCLUSION

IBD remains a significantly challenging disorder due to as yet unresolved issues in its pathogenesis, diagnosis and clinical management. In this review, by discussing the expressions and activities of REG proteins in the inflamed intestine, we have attempted to illuminate potential applications of these REG proteins that may help to improve detection and treatment of the disease, but further comprehensive studies are necessary to clarify and confirm these benefits in IBD.

REFERENCES

1. De Caro A, Lobese J, Sarles H. Characterization of a protein isolated from pancreatic calcui of men suffering from chronic calcifying pancreatitis. Biochem Biophys Res Commun 1979; 87: 1176-1182 [PMID: 111670 DOI: 10.1016/s0006-291x(79)80031-5]
2. Gross J, Carlson RI, Brauer AW, Margolies MN, Warshaw AL, Wands JR. Isolation, characterization, and distribution of an unusual pancreatic human secretory protein. J Clin Invest 1985; 76: 2115-2126 [PMID: 3908488 DOI: 10.1172/JCI112216]
3. Terazono K, Yamamoto H, Takasawa S, Shiga K, Yonemura Y, Tochino Y, Okamoto H. A novel gene activated in regenerating islets. J Biol Chem 1988; 263: 2111-2114 [PMID: 2965000]
4. Parikh A, Stephan AF, Tzanakakis ES. Regenerating proteins and their expression, regulation and signaling. Biol J 2012; 3: 57-70 [PMID: 22582090 DOI: 10.1515/bij.2011.055]
5. Chen Z, Downing S, Tzanakakis ES. Four Decades After the Discovery of Regenerating Islet-Derived (Reg) Proteins: Current Understanding and Challenges. Front Cell Dev Biol 2019; 7: 235 [PMID: 31696115 DOI: 10.3389/fcell.2019.00235]
6. Orelle B, Keim V, Masciotta L, Dagorn JC, Iovanna JL. Human pancreatitis-associated protein. Messenger RNA cloning and expression in pancreatic diseases. J Clin Invest 1992; 90: 2284-2291 [PMID: 1469087 DOI: 10.1172/JCI116115]
7. Kemppainen E, Sand J, Puolakkainen P, Laine S, Hedström J, Sainio V, Haapiainen R, Nordback I. Pancreatitis associated protein as an early marker of acute pancreatitis. Gut 1996; 39: 675-678 [PMID: 9026481 DOI: 10.1136/gut.39.5.675]
8. Zhang H, Kandrilli, Yin YY, Levi G, Zenilman ME. Targeted inhibition of gene expression of pancreatitis-associated proteins exacerbates the severity of acute pancreatitis in rats. Scand J Gastroenterol 2004; 39: 870-881 [PMID: 15513386 DOI: 10.1080/00365520410006477]
9. Gironealla M, Folch-Puig E, LeGoffic A, Garcia S, Christa L, Smith A, Tebar L, Hunt SP, Bayne R, Smith AJ, Dagorn JC, Closa D, Iovanna JL. Experimental acute pancreatitis in PAP/HP knock-out mice. Gut 2007; 56: 1091-1097 [PMID: 17409121 DOI: 10.1136/gut.2006.116087]
10. Lin YY, Viterbo D, Mueller CM, Stanek AE, Smith-Norowitz T, Drew H, Wadgaonkar R, Zenilman ME,
Bluth MH. Small-interference RNA gene knockdown of pancreatitis-associated proteins in rat acute pancreatitis. Pancreas 2008; 36: 402-410 [PMID: 18437087 DOI: 10.1097/MPA.0b013e3181593393]

Hassanain E, Huan C, Mueller CM, Stanek A, Quan W, Viterbo D, Bluth MH, Zenman ME. Pancreatitis-associated proteins’ regulation of inflammation is correlated with their ability to aggregate. Pancreas 2011; 40: 1151-1153 [PMID: 21926556 DOI: 10.1097/MPA.0b013e3182218006]

Ogawa H, Fukushima K, Naito H, Funayama Y, Unno M, Takahashi K, Kitayama T, Matsuno S, Ohtani H, Takasawa S, Okamoto H, Sasaki I. Increased expression of HIP/PAP and regenerating gene III in human inflammatory bowel disease and a murine bacterial reconstitution model. Inflamm Bowel Dis 2003; 9: 162-170 [PMID: 12792221 DOI: 10.1002/ibd.10305]

Ose T, Kadowski Y, Fukuhara H, Kazumori H, Ishiihara S, Udagawa J, Otani H, Takasawa S, Okamoto H, Kinoshita Y. Reg I-knockout mice reveal its role in regulation of cell growth that is required in generation and maintenance of the villous structure of small intestine. Oncogene 2007; 26: 349-359 [PMID: 16999126 DOI: 10.1038/sj.onc.1209799]

Granlund AV, Beisvag V, Torp SH, Fløberg A, Kleveland PM, Østvik AE, Waldum HL, Sandvik AK. Activation of Reg family proteins in colitis. Scand J Gastroenterol 2011; 46: 1316-1323 [PMID: 21992413 DOI: 10.3109/00365521.2011.605463]

Sasaki N, Sachs W, Niewoehn K, Ellenbroek SI, Fumagalli A, Lyubimova A, Begthel H, van den Born M, van Es JH, Karthaus WR, Li VS, López-Iglesias C, Peters PJ, van Rheenen J, van Oudenaarden A, Clevers H. Reg4 positively upregulates crypt fate and is essential for crypt regeneration. Proc Natl Acad Sci USA 2016, 113: E5399-E5407 [PMID: 27573849 DOI: 10.1073/pnas.1607237113]

Xiao Y, Lu Y, Wang Y, Yan W, Cai W. Deficiency in intestinal epithelial Reg1 ameliorates intestinal inflammation and alters the colonic bacterial composition. Mucosal Immunol 2012; 9: 191-929 [PMID: 20953901 DOI: 10.1038/s41385-019-0161-5]

Sun C, Fukui H, Hara K, Kitayama Y, Eda H, Yang M, Yamagishi H, Tomita T, Oshima T, Watari J, Takasawa S, Chiba T, Miwa H. Expression of Reg family genes in the gastrointestinal tract of mice treated with indomethacin. Am J Physiol Gastrointest Liver Physiol 2015; 308: G730-G744 [PMID: 25743353 DOI: 10.1152/ajpgi.00362.2014]

Kitayama Y, Fukui H, Eda H, Eda H, Kodani M, Yang M, Sun C, Yamagishi H, Tomita T, Oshima T, Watari J, Takasawa S, Miwa H. Role of regenerating gene I in claudin expression and barrier function in the small intestine. Transl Res 2016; 173: 92-100 [PMID: 27055226 DOI: 10.1016/j.trsl.2016.03.007]

Moucadel V, Soubeyran P, Vasseur S, Dussiet NJ, Dagon JC, Iovanna JL. Cdx1 promotes cellular growth of epithelial intestinal cells through induction of the secretory protein PAP. Eur J Cell Biol 2002; 81: 156-163 [PMID: 11305250 DOI: 10.1078/0171-2335-00148]

Pull SI, Doherty JM, Mills JC, Gordon J, Stappenbeck TS. Activated macrophages are an adaptive element of the colonic epithelial progenitor niche necessary for regenerative responses to injury. Proc Natl Acad Sci USA 2005; 102: 99-104 [PMID: 15615857 DOI: 10.1073/pnas.0405979102]

Kellbaugh SA, Shin ME, Banchereau R, McVay LD, Boyko N, Artis D, Cebra JJ, Wu GD. Activation of RegIIbeta/gamma and interferon gamma expression in the intestinal tract of SCID mice: an innate response to bacterial colonisation of the gut. Gut 2005; 54: 623-629 [PMID: 15831905 DOI: 10.1136/gut.2004.056028]

Shindo R, Katagiri T, Komazawa-Sakon S, Ohmura M, Takeda W, Nakagawa Y, Nakagata N, Sakuma T, Yamauchi T, Nishiyama T, Yamazaki S, Ho P, Partch CL, Mukherjee S, Cash HL, Goldman WE, Gardner KH, Hooper LV. Regenerating islet-derived 3-alpha is a biomarker of gastrointestinal graft-versus-host disease. J Clin Investig 2010; 120: 7722-7727 [PMID: 20947993 DOI: 10.1172/JCI42961]

Mukherjee S, Hooper LV. Antimicrobial defense of the intestine. Nat Med 2004; 10: 282-289 [PMID: 15189270 DOI: 10.1038/nm1270]

Zhao D, Kim YH, Jeong S, Greenson JK, Chaudhry MS, Hoepting M, Anderson ER, van den Brink MR, Teshima T, Yamamoto T, Nishiyama C, Nishina T, Yamazaki S, Kameda H, Nakano H. Regenerating islet-derived 3gammaB promotes intestinal epithelial cell proliferation and maintains the villous structure of small intestine. Gut 2007; 54: 99-104 [PMID: 15615857 DOI: 10.1073/pnas.0405979102]

Proc Natl Acad Sci USA 2005; 102: 99-104 [PMID: 15615857 DOI: 10.1073/pnas.0405979102]

Zheng Y, Valdez PA, Danilenko DM, Hu Y, Su SM, Gong Q, Abbas AR, Morodeszan Z, Ghiardi N, de Sauvage FJ, Ouyang W. Interleukin-22 mediates early host defense against attaching and effacing bacterial pathogens. Nat Med 2008; 14: 282-289 [PMID: 18264109 DOI: 10.1038/nm.1720]

Mukherjee S, Hooper LV. Antimicrobial defense of the intestine. Immunity 2015; 42: 28-39 [PMID: 25607457 DOI: 10.1016/j.immuni.2014.12.028]

Shin JH, Seeley RJ. Reg3 Proteins as Gut Hormones? Endocrinology 2019; 160: 1506-1514 [PMID: 31070724 DOI: 10.1210/endo.2019-00073]

Cash HL, Whitham CV, Behrendt CL, Hooper LV. Symbiotic bacteria direct expression of an intestinal bactericidal lectin. Science 2006; 313: 1126-1130 [PMID: 16931762 DOI: 10.1126/science.1127199]

Lehotzky RE, Partch CL, Mukherjee S, Cash HL, Goldman WE, Gardner KH, Hooper LV. Molecular basis for peptidoglycan recognition by a bactericidal lectin. Proc Natl Acad Sci USA 2010; 107: 7722-7727 [PMID: 20632664 DOI: 10.1073/pnas.0909949107]

Mukherjee S, Zheng H, Derbee MG, Cullenberg KM, Partch CL, Rollins D, Propheretic DC, Rizo J, Grabe M, Jiang QX, Hooper LV. Antibacterial membrane attack by a pore-forming intestinal C-type lectin. Nature 2014; 505: 103-107 [PMID: 24256734 DOI: 10.1038/nature12729]

Vaishnava S, Yamamoto M, Severson KM, Ruhn KA, Yu X, Koren O, Lii VS, Ohtani H, Takasawa S, Okamoto H, Konings I, Vink C, Iovanna J, Chamaillard M, Dekker J, van der Meer R, Wells JM, Bovee-Oudenhoven HM. Intestinally secreted C-type lectin Reg3b attenuates salmonellosis but not listeriosis in mice. Infect Immun 2012; 80: 1115-1120 [PMID: 22252663 DOI: 10.1128/IAI.06165-11]
like receptors with bacterial components induces expression of CDX2 and MUC2 in rat biliary epithelium.

References

Shimozaki S, Nakamura T, Iimura M, Kato Y, Iizuka B, Kobayashi M, Hayashi N. Up-regulation of Reg Iαpha and GW112 in the epithelium of inflamed colonic mucosa. Gut 2001; 48: 623-629 [PMID: 11029578 DOI: 10.1136/gut.48.5.623]

Desjeux A, Barthet M, Barthellemys, Dagorn JC, Hastier P, Heresbach D, Bernard JP, Grimaud JC. Serum measurements of pancreatitis associated protein in active Crohn's disease with ileal location. Gastroenterology Clin Biol 2002; 26: 23-28 [PMID: 11938036]

Dieckgraefe BK, Crummins DL, Landy V, Houschen C, Anani S, Porche-Sorbet R, Ladensohn J. Expression of the regenerating gene family in inflammatory bowel disease mucosa: Reg Iαpha upregulation, processing, and antiapoptotic activity. J Investig Med 2002; 50: 421-434 [PMID: 12425429 DOI: 10.1136/jim.50.06-02]

Kämäränem M, Heiskala K, Kruuttila S, Heiskala M, Winqvist O, Andersson LC. RELP, a novel human REG-like protein with up-regulated expression in inflammatory and metaplastic gastrointestinal mucosa. Am J Pathol 2003; 163: 11-20 [PMID: 12819006 DOI: 10.1016/S0002-9440(10)63625-5]

Gironella M, Iovanna JL, Sans M, Gil F, Peñalva M, Closa D, Miquel R, Piqué JM, Panés J. Anti-inflammatory effects of pancreatitis associated protein in inflammatory bowel disease. Gut 2005; 54: 1244-1255 [PMID: 15870231 DOI: 10.1136/gut.2004.036509]

Wu F, Dasopoulos T, Cope L, Maitra A, Brant SR, Harris ML, Bayless TM, Parmigiani G, Chakravarti S. Genome-wide gene expression differences in Crohn's disease and ulcerative colitis from endoscopic pinch biopsies: insights into distinct pathogenesis. Inflamm Bowel Dis 2007; 13: 807-821 [PMID: 17268212 DOI: 10.1002/ibd.10110]

Nanakin A, Fukui H, Fujii S, Sekikawa A, Kanda N, Hısıtsune H, Seno H, Konda Y, Fujimori T, Chiba T. Expression of the REG IV gene in ulcerative colitis. Lab Invest 2007; 87: 304-314 [PMID: 17260007 DOI: 10.1038/labinvest.3700507]

Sekikawa A, Fukui H, Suzuki K, Karibe T, Fujii S, Ichikawa K, Tomita S, Imura J, Shiratori K, Chiba T, Fujimori T. Involvement of the IL-22/REG Iαpha axis in ulcerative colitis. Lab Invest 2010; 90: 496-505 [PMID: 20065946 DOI: 10.1038/labinvest.2009.147]

Tanaka H, Fukui H, Fujii S, Sekikawa A, Yamagishi H, Ichikawa K, Tomita S, Imura J, Yasuda Y, Chiba T, Fujimori T. Immunohistochemical analysis of REG Iαpha expression in ulcerative colitis-associated neoplastic lesions. Digestion 2011; 83: 204-209 [PMID: 21266817 DOI: 10.1159/00032180]

van Beelen Granlund A, Ostvik AE, Bremoa O, Torg SH, Gustafsson BI, Sandvik AK. REG Iαpha gene expression in inflamed and healthy colon mucosa explored by in situ hybridisation. Cell Tissue Res 2013; 362: 639-646 [PMID: 23519454 DOI: 10.1007/s00441-013-1592-z]

Planell N, Lozano JJ, Mora-Buch R, Masamunt MC, Jimeno M, Ordià I, Esteller M, Ricart E, Piqué JM, Panés J, Salas A. Transcriptional analysis of the intestinal mucosa of patients with ulcerative colitis in remission reveals lasting epithelial cell alterations. Gut 2013; 62: 967-976 [PMID: 23135761 DOI: 10.1136/gut.2012-303353]

Marafini I, Di Sabatino A, Zorzi F, Monteleone I, Sedda S, Cupi ML, Antonucci C, Biancheri P, Giuffrida P, Di Stefano M, Corazza GR, Pallone F, Monteleone G. Serum generating islet-derived 3-alpha is a biomarker of mucosal enteropathies. Aliment Pharmacol Ther 2014; 40: 974-981 [PMID: 25112824 DOI: 10.1111/apt.12920]

Nunes T, Echevers MJ, Sandi MJ, Pinó Donnay S, Grandjean T, Pellisé M, Panés J, Ricart E, Iovanna JL, dagorn JC, Chamaillard M, Sans M. Pancreatitis-associated protein does not predict disease relapse in inflammatory bowel disease patients. PLoS One 2014; 9: e84957 [PMID: 24416322 DOI: 10.1371/journal.pone.0084957]

Tsushida C, Sakuramoto-Tsushima S, Takeda M, Itaya-Hironaka A, Yamazaki A, Misu M, Shobatake R, Uchiyama T, Makino M, Pujol-Autonell I, Vives-Pi M, Ohbayashi C, Takasawa S. Expression of REG Iαpha family genes in human inflammatory bowel diseases and its regulation. Biochem Biophys Rep 2017; 12: 198-205 [PMID: 29090282 DOI: 10.1016/j.bbrep.2017.10.003]

Struber W, Fuss IJ. Proinflammatory cytokines in the pathogenesis of inflammatory bowel diseases. Gastroenterology 2011; 140: 1756-1767 [PMID: 21530702 DOI: 10.1053/j.gastro.2011.02.016]

Andoh A, Zhang Z, Inatomi O, Fujino S, Deguchi Y, Araki Y, Tsujikawa T, Kitoh K, Kim-Mitsuyma S, Takayamani A, Shimizu N, Fujuya F. Interleukin-22, a member of the IL-10 subfamily, induces proinflammatory gene expression and intestinal epithelial cell migration. J Exp Med 2003; 198: 1130-1134 [PMID: 12625029 DOI: 10.1084/jem.20030117]

Brand S, Beigel F, Olzak T, Zittemann K, Eichhorst ST, Otte JM, Diepolder H, Marquardt A, Jugla W, Popp A, Leclair S, Herrmann K, Seiderer J, Ochsenkühn T, Göke B, Auernhammer CJ, Dambacker J. IL-22 is increased in active Crohn's disease and promotes proinflammatory gene expression and intestinal epithelial cell migration. J Am Physiol Gastrointest Liver Physiol 2006; 290: G827-G838 [PMID: 16573974 DOI: 10.1152/japphi.00513.2005]

Segimoto K, Ogawa A, Miziauchi E, Shimomura Y, Andoh A, Bann AK, Blumberg RS, Xavier RJ, Miziauchi A. IL-22 ameliorates intestinal inflammation in a mouse model of ulcerative colitis. J Clin Invest 2008; 118: 534-544 [PMID: 18172556 DOI: 10.1172/JC13194]

Leung JM, Davenport M, Wolff MJ, Wiens IE, Abidi WM, Poles MA, Cho I, Ullman T, Mayer L, Loke P. IL-22-producing CD4+ cells are depleted in actively inflamed colitis tissue. Mucosal Immunol 2014; 7: 124-133 [PMID: 23669516 DOI: 10.1038/mi.2013.31]

Sanos SL, Vorabou W, Cheng H, Juen W, Scherhag A, Diefenbach A. Control of epithelial cell function by interleukin-22-producing ROR... innate lymphoid cells. Immunology 2011; 132: 453-465 [PMID: 23191996 DOI: 10.1111/j.1365-2667.2011.03410.x]

Ikeda H, Sasaki M, Ichikawa A, Sato Y, Harada K, Zen Y, Kazumori H, Nakamura Y. Interaction of Toll-like receptors with bacterial components induces expression of CDX2 and MUC2 in rat biliary epithelium.
in vivo and in culture. Lab Invest 2007; 87: 559-571 [PMID: 17147665 DO: 10.1038/labinvest.3700556]

60 Coskun M, Troelsen JT, Nielsen OH. The role of CDX2 in intestinal homeostasis and inflammation. Biochim Biophys Acta 2011; 1812: 283-289 [PMID: 21265341 DO: 10.1016/j.bbadis.2010.11.008]

61 Koh I, Nosaka S, Sekine M, Sugimoto J, Hirata E, Kado Y. Regulation of REG Expression and Prediction of 5-Fluorouracil Sensitivity by CDX2 in Ovarian Mucinous Carcinoma. Cancer Genomics Proteomics 2019; 16: 481-490 [PMID: 31695102 DO: 10.21873/cgp.20151]

62 Naito Y, Oue N, Hinoi T, Sakamoto N, Sentani K, Ohdan H, Yanagihara K, Sasaki H, Yawas. Reg IV is a direct target of intestinal transcription factor CDX2 in gastric cancer. PLoS One 2012; 7: e47545 [PMID: 22133598 DO: 10.1371/journal.pone.0047545]

63 Kim S, Domon-Dell C, Wang Q, Chung DH, Di Cristofano A, Pandolfo PP, Freund JN, Evers BM. PTEN and TNF-alpha regulation of the intestinal-specific Cdx-2 homeobox gene through a PI3K, PKB/Akt, and NF-kappaB-dependent pathway. Gastroenterology 2002; 123: 1163-1178 [PMID: 12360479 DO: 10.1053/gast.2002.36043]

64 Kobayashi S, Akiyama T, Naka K, Abe M, Tajima M, Shervani NJ, Unno M, Matsuno S, Sasaki H, Takasawa S, Okamoto H. Identification of a receptor for reg (regenerating gene) protein, a pancreatic beta-cell regeneration regulator. J Biol Chem 2000; 275: 10723-10726 [PMID: 10753366 DO: 10.1074/jbc.275.15.10723]

65 Lai Y, Li D, Li C, Muehleisen B, Radek KA, Park HJ, Jiang Z, Li Z, Lei H, Quan Y, Zhang T, Wu Y, Kotol P, Morizane S, Hata TR, Iwatsuki T, Tang C, Gallo RL. The antimicrobial protein REG3A regulates keratinocyte proliferation and differentiation after skin injury. Immunity 2012; 37: 74-84 [PMID: 22727489 DO: 10.1016/j.immuni.2012.04.010]

66 Acquatella-Tran Van B, Marchal S, François F, Silhol M, Lleres C, Michel B, Benyamin Y, Verdier JM, Troussle F, Marcilhac A. Regenerating islet-derived 1 (Reg-1) protein is a novel neuronal secreted factor that stimulates neurite outgrowth via exostosin Tumor-like 3 (EXTL3) receptor. J Biol Chem 2012; 287: 4726-4739 [PMID: 22158612 DO: 10.1074/jbc.M111.260349]

67 LaFonte MW, Stanek A, Mueller C, Zenilman ME, Sugawara A, Alfonso AE, Huan C. Identification of Reg1 as a novel stellate cell activator in regenerating pancreas. J Am Coll Surg 2013; 217: 518 [DOI: 10.1016/j.jamcollsurg.2013.07.023]

68 Lentjes MH, Niessen HE, Akiyama Y, de Bruijne AP, Melotte V, van Engeland M. The emerging role of CDX transcription factors in development and disease. Expert Rev Mol Med 2016; 18: e3 [PMID: 26953528 DO: 10.1017/erm.2016.2]

69 Lepage D, Bruneau J, Brouillard G, Jones C, Lussier CR, Rémiard A, Lenneix É, Asselin C, Boudreau F. Identification of GATA-4 as a novel transcriptional regulatory component of regenerating islet-derived family members. Biochim Biophys Acta 2015; 1859: 1411-1422 [PMID: 26747749 DO: 10.1016/j.bbagen.2015.10.011]

70 Haveri H, Ashorn M, Iltanen S, Wilson DB, Andersson LC, Heinikheimo M. Enhanced expression of transcription factor GATA-4 during fetal pancreas development and its down-regulation by TGF-beta1. J Clin Immunol 2009; 29: 444-453 [PMID: 19353247 DO: 10.1007/s10875-009-9292-x]

71 Kawasaki Y, Matsumura K, Miyamoto M, Tsuji S, Okuno M, Suda S, Hiyoshi M, Kitayama J, Akiyama T. REG is a transcriptional target of GATA6 and is essential for colorectal tumorigenesis. Sci Rep 2015; 5: 14291 [PMID: 26387746 DO: 10.1038/srep14291]

72 Beuling E, Baflour-Awuah NY, Stapleton KA, Aromon BE, Noah TK, Shroyer NF, Duncan SA, Fleet JC. Krasinski SD. GATA factors regulate proliferation, differentiation, and gene expression in small intestine of mature mice. Gastroenterology 2011; 140: 1219-1229.e1-2 [PMID: 21262227 DO: 10.1053/j.gastro.2011.01.033]

73 Bosse T, Piascycky CM, Burghard E, Fialkovich JJ, Rajagopal S, Pu WT, Kransinski SD. Gata4 is essential for the maintenance of jejunal-ileal identities in the adult mouse small intestine. Mol Cell Biol 2006; 26: 9060-9070 [PMID: 16940177 DO: 10.1128/MCB.00124-06]

74 Babayatsky MW, Rossiter G, Podolsky DK. Expression of transforming growth factors alpha and beta in colonic mucosa in inflammatory bowel disease. Gastroenterology 1996; 110: 975-984 [PMID: 8613031 DO: 10.1016/S0016-5085(96)70600-5]

75 McCabe RP, Secrett H, Boney M, Egan M, Peters MG. Cytochrome mRNA expression in intestine from normal and inflammatory bowel disease patients. Clin Immunol Immunopathol 1993; 66: 52-58 [PMID: 8440073 DO: 10.1006/clim.1993.1007]

76 Mustfa SA, Singh M, Suhail A, Mohapatra G, Verma S, Rana S, Rampal R, Dhar A, Saha S, Ahuja V, Srikarsh CV. SUMOylation pathway alteration correlated with downregulation of SUMO1,2,3 and downstream enzyme at mucosal epithelium modulates inflammation in inflammatory bowel disease. Open Biol 2017; 7 [PMID: 28659381 DO: 10.1098/rsob.170024]

77 Kang X, Qi Y, Zuo Y, Wang Q, Zou Y, Schwartz RJ, Cheng J, Yeh ET. SUMO-specific protease 2 is essential for suppression of polycomb group protein-mediated gene silencing during embryonic development. Mol Cell 2010; 38: 191-201 [PMID: 20471598 DO: 10.1016/j.molcel.2010.03.005]

78 Damas OM, Garcia L, Abreu MT. Diet as Adjunctive Treatment for Inflammatory Bowel Disease: Review and Update of the Latest Literature. Curr Treat Options Gastroenterol 2019; 17: 313-325 [PMID: 30968340 DO: 10.1007/s11938-019-00231-8]

79 Darnaud M, Dos Santos A, Gonzalez P, Augui S, Lacoste C, Desterke C, De Hertogh G, Valentino E, Braun E, Zheng J, Boisgard R, Neut C, Chiappinini F, Lepage D, Piaseckyj CM, Burghard E, Fialkovich JJ, Rajagopal S, Pu WT, Krasinski SD, Gata4 is essential for the maintenance of jejunal-ileal identities in the adult mouse small intestine. Mol Cell Biol 2006; 26: 9060-9070 [PMID: 16940177 DO: 10.1128/MCB.00124-06]

80 Yang Y, Qi H, Zhang Z, Wang E, Yun H, Yan H, Su X, Liu Y, Tang Z, Guo Y, Shang W, Zhou J, Wang T, Che Y, Zhang Y, Yang R. Gut REG3-Associated Macrophages to Maintain Adipose Tissue Homeostasis. Front Immunol 2017; 8: 1063 [PMID: 28928739 DO: 10.3389/fimmu.2017.01063]

81 Prosberg MB, Bendersen F, Vind I, Petersen AM, Glud LL. The association between the gut microbiota and the inflammatory bowel disease activity: a systematic review and meta-analysis. Gastroenterology 2016; 51: 1407-1415 [PMID: 27687331 DO: 10.1053/j.gastro.2016.12.087]

82 Yang X, Jin H, Liu K, Gu Q, Xu XA. A novel peptide derived from human pancreatitis-associated protein inhibits inflammation in vivo and in vitro and blocks NF-kappa B signaling pathway. PLoS One 2011; 6: e29155 [PMID: 22195011 DO: 10.1371/journal.pone.0029155]

83 Folch-Pay E, Granell S, Dogan JC, Iovanna JL, Coss D. Pancreatitis-associated protein 1 suppresses NF-kappa B activation through a JAK/STAT-mediated mechanism in epithelial cells. J Immunol 2006; 176: 2712

WJG | https://www.wjgnet.com

June 7, 2020 Volume 26 Issue 21
Vasseur S, Folch-Puy E, Hlouschek V, Garcia S, Fiedler F, Lerch MM, Dagorn JC, Closa D, Iovanna JL. p8 improves pancreatic response to acute pancreatitis by enhancing the expression of the anti-inflammatory protein pancreatitis-associated protein I. J Biol Chem 2004; 279: 7199-7207 [PMID: 14666681 DOI: 10.1074/jbc.M309152200]

Viterbo D, Bluth MH, Lin YY, Mueller CM, Wadgaonkar R, Zenilman ME. Pancreatitis-associated protein 2 modulates inflammatory responses in macrophages. J Immunol 2008; 181: 1948-1958 [PMID: 18461332 DOI: 10.4049/jimmunol.181.3.1948]

Viterbo D, Bluth MH, Mueller CM, Zenilman ME. Mutational characterization of pancreatitis-associated protein 2 domains involved in mediating cytokine secretion in macrophages and the NF-kappaB pathway. J Immunol 2008; 181: 1959-1968 [PMID: 18641333 DOI: 10.4049/jimmunol.181.3.1959]

Na YR, Stakenborg M, Seok SH, Matteo G. Macrophages in intestinal inflammation and resolution: a potential therapeutic target in IBD. Nat Rev Gastroenterol Hepatol 2019; 16: 531-543 [PMID: 31126042 DOI: 10.1038/s41575-019-0172-4]

Click B, Regueiro M. A Practical Guide to the Safety and Monitoring of New IBD Therapies. Inflamm Bowel Dis 2019; 25: 831-842 [PMID: 30312391 DOI: 10.1093/ibd/iyz313]

Su HJ, Chiu YT, Chiu CT, Lin YC, Wang CY, Hislop JY, Wei SC. Inflammatory bowel disease and its treatment in 2018: Global and Taiwanese status updates. J Formos Med Assoc 2019; 118: 1083-1092 [PMID: 30054112 DOI: 10.1016/j.jfma.2018.07.005]

Takasawa S. Regenerating gene (REG) product and its potential clinical usage. Expert Opin Ther Targets 2016; 20: 541-550 [PMID: 26589103 DOI: 10.1517/14728222.2016.1123691]

Dietrich CF. Significance of abdominal ultrasound in inflammatory bowel disease. Dig Dis 2009; 27: 482-493 [PMID: 19979664 DOI: 10.1159/000232327]

Deepak P, Fletcher JG, Filider JL, Bruning DH. Computed Tomography and Magnetic Resonance Enterography in Crohn's Disease: Assessment of Radiologic Criteria and Endpoints for Clinical Practice and Trials. Inflamm Bowel Dis 2016; 22: 2280-2288 [PMID: 27505813 DOI: 10.1097/MIB.0000000000000841]

Norouzinia M, Chaleshi Y, Alizadeh AHM, Zali MR. Biomarkers in inflammatory bowel diseases: insight into diagnosis, prognosis and treatment. Gastroenterol Hepatol Bed Bench 2017; 10: 155-167 [PMID: 29118930]

Iskandar HN, Ciobra MB. Biomarkers in inflammatory bowel disease: current practices and recent advances. Transl Res 2012; 159: 313-325 [PMID: 22424834 DOI: 10.1016/j.trsl.2012.01.001]

Rogler G, Biedermann L. Clinical Utility of Biomarkers in IBD. Curr Gastroenterol Rep 2015; 17: 26 [PMID: 26122247 DOI: 10.1007/s11894-015-0449-x]

Bennike T, Birkeland S, Stensballe A, Andersen V. Biomarkers in inflammatory bowel diseases: current status and proteomics identification strategies. World J Gastroenterol 2014; 20: 3231-3244 [PMID: 24696607 DOI: 10.3748/wjg.v20.i12.3231]

Mouayedi P, Surette MG, Kim PT, Libertucci J, Wolfe M, Onischi C, Armstrong D, Marshall JK, Kassam Z, Reinisch W, Lee CH. Fecal Microbiota Transplantation Induces Remission in Patients With Active Ulcerative Colitis in a Randomized Controlled Trial. Gastroenterology 2015; 149: 102-109.e6 [PMID: 25857665 DOI: 10.1053/j.gastro.2015.04.001]

Paramothys S, Kamm MA, Kasokhousi NO, Walsh AJ, van den Bogaerde J, Samuel D, Leong RWL, Connor S, Ng W, Paramothys R, Xuan W, Lin E, Mitchell HM, Borody TJ. Multidonor intensive faecal microbiota transplantation for active ulcerative colitis: a randomised placebo-controlled trial. Lancer 2017; 389: 1218-1228 [PMID: 28214091 DOI: 10.1016/S0140-6736(17)30182-4]

Costello SP, Hughes PA, Waters O, Bryant RV, Vincent AD, Blatchford P, Katsikeros R, Mckay K, Campbell MA, Mavrangelos C, Rosewarne CP, Bickley C, Peters C, Schoeman MN, Conlon MA, Roberts-Thomson IC, Andrews JM. Effect of Fecal Microbiota Transplantation on 8-Week Remission in Patients With Ulcerative Colitis: A Randomized Clinical Trial. JAMA 2019; 321: 156-164 [PMID: 30644982 DOI: 10.1001/jama.2018.20046]

Narula N, Kassam Z, Yuan Y, Colombel JF, Ponsioen C, Reinisch W, Mouayedi P. Systematic Review and Meta-analysis: Fecal Microbiota Transplantation for Treatment of Active Ulcerative Colitis. Inflamm Bowel Dis 2017; 23: 1702-1709 [PMID: 28966291 DOI: 10.1097/MIB.00000000000001228]

Feinberg AE, Valente MA. Elective Abdominal Surgery for Inflammatory Bowel Disease. Surg Clin North Am 2019; 99: 1123-1140 [PMID: 31676052 DOI: 10.1016/j.suc.2019.08.008]

Fuglestad MA, Thompson JS. Inflammatory Bowel Disease and Irritable Bowel Syndrome. Surg Clin North Am 2019; 99: 1209-1221 [PMID: 31676059 DOI: 10.1016/j.suc.2019.08.010]

Hwang JM, Varma MG. Surgery for inflammatory bowel disease. World J Gastroenterol 2008; 14: 2678-2690 [PMID: 18461553 DOI: 10.3748/wjg.v14.i27.2678]

Adamina M, Steffen T, Tarantino I, Beutner U, Schindlm B, Warschow R. Meta-analysis of the predictive value of C-reactive protein for infectious complications in abdominal surgery. Br J Surg 2015; 102: 590-598 [PMID: 25776855 DOI: 10.1002/bjs.9756]

Fishman OM, Berkerder CE, Raptis DA, Coll S, Becir C, Schiesser M, Graf R. Pancreatic stone protein (PSP) and pancreatitis-associated protein (PAP): a protocol of a cohort study on the diagnostic efficacy and prognostic value of PSP and PAP as postoperative markers of septic complications in patients undergoing abdominal surgery (PSP study). BMJ Open 2014; 4: e004914 [PMID: 24604486 DOI: 10.1136/bmjopen-2014-004914]

Klein HJ, Cordsa A, Falk V, Slankamenac K, Rudiger A, Schonerath F, Rodriguez Cetina Biefer H, Starck CT, Graf R. Pancreatic stone protein predicts postoperative infection in cardiac surgery patients irrespective of cardiopulmonary bypass or surgical technique. PLoS One 2015; 10: e0120276 [PMID: 25729700 DOI: 10.1371/journal.pone.0120276]

Reding T, Palmiere C, Pazhepuracel C, Schiesser M, Bimmler D, Schlegel A, Sissi U, Steiner S, Mancina L, Seleznik G, Graf R. The pancreas responds to remote damage and systemic stress by secretion of the pancreatic secretory proteins PSP/regI and PAP/regIII. Oncotarget 2017; 8: 30162-30174 [PMID: 28415799 DOI: 10.18632/oncotarget.16282]

Rass AA, Talat MA, Arafah MA, El-Saadany HF, Amin AK, Abdelsalam MM, Mansour MA, Khalifa NA, Kamel LM. The Role of Pancreatic Stone Protein in Diagnosis of Early Onset Neonatal Sepsis. Biomed Res Int 2016; 2016: 1035856 [PMID: 27689072 DOI: 10.1155/2016/1035856]

Keel M, Häuter L, Reding T, Sun LK, Hersberger M, Seifert B, Bimmler D, Graf R. Pancreatic stone protein is highly increased during posttraumatic sepsis and activates neutrophil granulocytes. Crit Care Med 2009; 37: 1642-1646 [PMID: 19252491 DOI: 10.1097/CCM.0b013e3181d67d76]
Que YA, Delodder F, Guessous I, Graf R, Bain M, Calandra T, Liaudet L, Eggimann P. Pancreatic stone protein as an early biomarker predicting mortality in a prospective cohort of patients with sepsis requiring ICU management. *Crit Care* 2012; 16: R114 [PMID: 22748193 DOI: 10.1186/cc11406]

Bettenworth D, Nowacki TM, Cordes F, Buerke B, Lenze F. Assessment of stricturing Crohn's disease: Current clinical practice and future avenues. *World J Gastroenterol* 2016; 22: 1008-1016 [PMID: 26811643 DOI: 10.3748/wjg.v22.i3.1008]
