Efficacy of recombinant human fibroblast growth factor 2 impregnated absorbable collagen membrane in the treatment of Miller’s Class I and II gingival recession defects: Preliminary results from the first in human clinical trial

Rampalli Viswa Chandra, Kidambi Sneha, Sabbani Pushpalatha, Yarabham Chakravarthy

Abstract:
Aims: This study was a single-arm trial to obtain preliminary data on the efficacy of collagen membranes impregnated with recombinant human fibroblast growth factor-2 (rhFGF-2) in the treatment of Miller’s Class I and II gingival recessions. Materials and Methods: Twenty-one individuals (34 sites) presenting with localized Miller’s Class I and II gingival recessions were included in this study. Following a standard surgical protocol, rhFGF-2-impregnated membranes were placed in sites with gingival recession. Clinical parameters such as width of keratinized gingiva (wKG), recession depth (RD), and probing depth were measured at baseline and after therapy completion at 3 and 6 months. Results: Most of the sites exhibited favorable clinical healing; the most common complications were persistent edematous and inflamed gingivae beyond 1 week (n = 3), development of residual periodontal pockets (n = 2), and no reduction in RDs (n = 2). Significant improvements in wKG and RD were noted from baseline to 6 months. Conclusion: rhFGF-2-impregnated collagen membranes showed promising results in terms of increasing the wKG and recession coverage. A comparison with other standard therapies and agents in subsequent trials may shed more light on the clinical efficacy of this material.

Key words: Fibroblast growth factor-2, gingival recession, periodontal atrophy

INTRODUCTION

Gingival recession is the apical displacement of gingival margin resulting in exposure of root surface;[1] the etiology of the condition is multifactorial and may include periodontal disease, microbial deposits, inflammation, improper flossing, aggressive toothbrushing, incorrect occlusal relationships, and anatomical deformities.[2] It was suggested by several authors that gingival recession occurs in patients with a thin gingival biotype.[3,4] Seibert and Lindhe[5] classified the gingiva into “thick-flat” and “thin-scalloped” biotypes. A gingival thickness of greater than 2 mm is considered as a thick tissue biotype and vice versa.[6,7]

Soft tissues can be regenerated to cover root exposure, and a thin biotype can be converted into a thick biotype using recombinant human growth factor technology.[1,8] A recent review stated that growth factors could enhance soft-tissue regeneration which includes restoration of mucogingival architecture and regeneration of periodontal hard and soft tissues including bone, cementum, and periodontal ligament fibers.[1,8,9]
Fibroblast growth factor-2 (FGF-2), a heparin-binding cytokine with strong angiogenic activity, stimulates the proliferation of undifferentiated mesenchymal cells. These functions can be applied in mucogingival surgery as FGF-2 promotes bone and cementum formation and exhibits an increased potential to promote periodontal regeneration in recession defects.

However, to the authors’ knowledge, the treatment of gingival recession using recombinant human FGF-2 (rhFGF-2) in humans has not been reported. The aim of this study was to evaluate and validate the clinical efficacy of rhFGF-2-impregnated absorbable collagen membrane in the treatment of Miller’s Class I and II gingival recession defects.

MATERIALS AND METHODS

Sample size
From pilot trials, changes in width of keratinized gingiva (wKG) by the membrane as compared to a surgical control at 1 month were utilized to calculate the sample size. A mean difference (µ) of 1.02 mm was seen at 1 month between both the groups with a standard deviation (SD) (σ) of 0.46 mm. Mean differences by their SD. The effect size through \(\frac{\mu}{\sigma} \) was 2.2; the minimum sample size for the given clinically significant effect size was calculated through the formula \(N = \frac{AB}{(E/S)^2} \) = 21 where \(A = (1/q_1 + 1/q_0) = 67.682 \) (q1 and q2 are the proportion of participants in the membrane/control groups in pilot trial); B = \((Z_A + Z_B)^2 \) = 7.849 where \(Z_A = 1.960 \) and \(Z_B = 0.842 \) are normal deviations for \(\alpha \) and \(\beta \); E = 2.3; and S = SD = 0.46 mm. Thus, a minimum sample size of 21 sites was required to discern an effect of 1 mm at all time frames.

Study methodology
Figure 1 depicts the follow-up scenario and the number of participants at each stage of the study. The trial was planned as a single-arm trial to obtain preliminary data on the efficacy of collagen membranes impregnated with rhFGF-2. Thirty-six systemically healthy controls between 20 and 55 years presenting with Miller’s Class I or II gingival recession were initially screened by the study team [Figure 2a]. Exclusion criteria comprised (1) recessions associated with root demineralization/caries, deep cervical abrasion, or pulpal pathology; (2) patients with a history of systemic conditions affecting the periodontium; and (3) smokers. From this initial patient pool, 34 sites in 21 individuals satisfying the inclusion criteria were selected from the outpatient section of the department of periodontology. All participants provided informed consent, and the study protocol was approved by the institutional ethics committee.

Preparation of the material
Collagen membranes incorporating 10 ng/ml human recombinant basic FGF (FGF‑2/bFGF) were prepared as follows. Briefly, standard collagen suspension was produced from type I collagen from bovine Achilles tendon by homogenizing the material in 10 mM Na-butyrate solution (Pro Lab Marketing Pvt. Ltd., New Delhi, India). bFGF was reconstituted in 0.1M phosphate buffer and was added to the suspension. Cross-linking of collagen was promoted by adding 0.16% of glutaraldehyde aqueous solution (Sigma Aldrich Chemicals Pvt. Ltd., Bangalore, India), and the resultant solution was placed in individual 1.5 cm × 1.5 cm and 3 cm × 2 cm vats which were maintained at 4°C for 12 h for gelatin cross-linking. The impregnated and cross-linked membranes were dried and placed in ethylene oxide sterilizer (EtO sterilizer, Krishna Engineering, Ahmedabad, India).

Figure 1: Flowchart depicting the follow-up scenario and the number of participants at each stage of the study. n – number
for EtO degassing. Aseptic packaging was done as follows; the sterilized scaffolds were freeze-dried in a commercially available laboratory freeze dryer (Lyophilization Systems Pvt. Ltd., Hyderabad, India). After 3 days of Lyophilization, the materials were packaged into sizes 1.5 cm × 1.5 cm and 3 cm × 2 cm.

Procedure
A single designated operator (reverse voice channel) performed all surgical procedures for the sake of uniformity. Two weeks after the completion of initial therapy, the surgical procedure was planned under local anesthesia. A full-thickness mucoperiosteal flap preserving the buccal interdental papillae were raised [Figure 2b]. De-epithelization of the papillae was done. The rhFGF-2-impregnated membrane was placed upon the recession site [Figure 2c] and was stabilized by suturing it to the lingual papillae using 4-0 absorbable sutures [Figure 2d]. The flap was coronally advanced as far as possible to cover the membrane [Figure 2e] and was sutured to the buccal interdental papillae with 4-0 absorbable sutures [Figure 2f].

measurement of the parameters
The following parameters were measured at each site: \(F \) (1) \(\text{wKG} \) – to assess the wKG, the mucogingival junction was identified visually as the border between the movable (alveolar mucosa) and immovable tissues (gingiva). The distance from the gingival margin to the mucogingival junction was considered as the wKG; (2) the distance from the cement-enamel junction to most apical extension of gingival margin was the recession depth (RD); and (3) probing depth (PD) was the distance from the gingival margin to the bottom of the gingival sulcus. All parameters were measured at baseline (before surgery) and at 3 and 6 months after the procedure using a graduated periodontal probe. \(^{[12,13]}\) The baseline and postoperative outcomes were recorded by three calibrated investigators (YSHSC, KS, and SP); their mean weighted inter-examiner kappa scores were \(0.70 \) \((F=2.02; P=0.04), \) \(0.79 \) \((F=6.89; P=0.006), \) and \(0.80 \) \((F=1.69; P=0.05) \) for wKG, RD, and PD from 10 standardized sites, respectively. As this is a single-arm study, masking was not possible as all investigators were periodontists and sites would be distinct enough to identify interventions.

Statistical analysis
Data were analyzed by Prism 6.0® (GraphPad, La Jolla, USA) and SAS 9.3® (SAS, Mumbai, India). Data were summarized by mean ± SD for continuous data, and a comparison between different time points was done by analysis of one-way repeated measures test. \(P < 0.05 \) was considered as statistically significant and \(P < 0.001 \) was considered highly statistically significant.

RESULTS
Clinical observations
All treated sites exhibited favorable clinical healing with no suppuration or abscess formation [Figures 2f and 3]. Most of the sites exhibited favorable clinical healing; the most common complications were persistent edematous and inflamed gingivae beyond 1 week \((n=3) \), development of residual periodontal pockets \((n=2) \), and no reduction in RDs \((n=2) \). Table 1 summarizes the baseline data, effects of the intervention at 3 and 6 months, and the reported complications. In all the participants, there was an uneventful resolution of inflammation and restoration of normal architecture.

![Figure 2](Image 315x121 to 450x223)

Figure 2: Preoperative view of the site (a) a full-thickness mucoperiosteal flap preserving the buccal interdental papillae was raised; (b) de-epithelization of the papillae was done; the recombinant human fibroblast growth factor-2-impregnated membrane was placed upon the recession site (c) and was stabilized by suturing it to the lingual papillae (d); the flap was coronally advanced as far as possible to cover the membrane (e) and was sutured to the buccal interdental papillae; most of the sites exhibited favorable clinical healing; the most common complications were persistent edematous and inflamed gingivae beyond 1 week (f).

![Figure 3](Image 543x140 to 297x408)

Figure 3: Observable outcomes from the procedure. Sites with gingival recession (a; upper right lateral incisor as an example) after therapy with recombinant human fibroblast growth factor-2-impregnated membranes showed the development of keratinized tissue over the treated sites (b; typical blanching on pressure) by 3 months. Closure of the recession almost to the level of the CEJ was seen at 6 months in most of the cases (c).
Intragroup comparisons

The wKG at baseline, 3 months, and 6 months was 1.18 ± 0.64, 2.00 ± 0.82, and 2.55 ± 0.85 mm, respectively. A significant increase \((P = 0.007) \) in the wKG was noted from baseline to 6 months. The RD at baseline, 3 months, and 6 months was 3.50 ± 1.36, 2.16 ± 0.99, and 1.13 ± 0.26 mm, respectively. A highly significant decrease \((P = 0.0001) \) in RD was noted from baseline to 6 months. The PD at baseline, 3 months, and 6 months was 1.47 ± 0.32, 1.42 ± 0.48, and 1.39 ± 0.08 mm, respectively [Figure 4]. There was no significant change in PD from baseline to 6 months \((P = 0.02) \).

DISCUSSION

This study was designed as a single-arm trial to obtain preliminary data on the efficacy of collagen membranes impregnated with rhFGF-2 in the treatment of Miller’s Class I and II gingival recessions. rhFGF-2 stimulates the proliferation and migration of mesenchymal cells which later differentiate into cementoblasts, osteoblasts, and collagen-forming cells.\[14-17\] Recently, a large-scale multicenter randomized clinical trial reported that the application of FGF-2 was efficacious in the regeneration of human periodontal tissue.\[18\] Collagen-based biomaterials are commonly used as delivery vehicles for

![Figure 4: Comparisons at different time frames of the changes in width of keratinized gingiva and recession depth. **Highly significant \((P \leq 0.001) \), *Significant \((P \leq 0.05) \), wKG – width of keratinized gingiva.](image-url)
protein drugs, including FGF-2, because they can form a stable
polyanionic complex with FGF-2.[19] Similarly, in the present
trial, cross-linked collagen membrane was utilized as a carrier
for rhFGF-2.

Studies on rhFGF-2 have focused on hard-tissue regeneration,
where results have been weighed in terms of bone and
cementum regeneration.[10,14-16] Whereas, the present study
evaluated the efficacy of rhFGF-2 on soft-tissue regeneration
in sites with Miller’s Class I and II gingival recessions. There is
a paucity of data regarding the use of FGF-2 in root coverage.
Cha et al.[14] investigated the effect of FGF-2 in combination with
porcine collagen matrix for coverage of root recession defects
in dogs and observed that FGF-2 showed a higher amount of
root coverage at 4 weeks and over 80% of mean root coverage
could be achieved in 16 weeks.[12] This is in agreement with the
present study where a statistically significant amount of root
coverage as evidenced by an increase in wKG and a decrease
in RD was achieved by 3 months and remained stable until
the end of the study period.

A study by Ishii et al.[17] on the effect of FGF-2 and beta-tricalcium
phosphate (β-TCP) on root coverage in dogs raised questions
on the limited soft-tissue regeneration seen during the trial.
Enhanced bone and cementum formation were observed in this
study, which, however, could not translate into satisfactory root
coverage[17] histological evaluation was not a part of our study
design, and a comparison of our results with the above study is
not possible. Contrary to the above, clinically, rhFGF2 impregnated
in membrane form has shown an adequate gain in wKG from
baseline to 6 months. The results are similar to the findings of
Shujaa Addin et al.[4] who evaluated rhFGF-2 in a gelatin/β-TCP
sponge in canine-gingival recession defects with an 8-week
biopsy interval. Gelatin/β-TCP/rhFGF-2 sites exhibited more
regression, characterized by larger amounts of new
bone and new cementum when compared to gelatin/β-TCP
sites. In this study, complete root coverage has been observed in
8 weeks,[11] a finding that was seen in this study as well through a
significant increase in wKG and a higher amount of root coverage
with rhFGF-2 membrane from baseline to 12 weeks/3 months.
The resolution of factors implicated in gingival recession may
also have contributed to these positive findings as well: (1) the
absence of calculus, restorations, or necrotic cementum on the
root surface,[6,13] (2) the increased keratinized gingiva brought
because of the healing effects of rhFGF-2,[14-17] and (3) exposure
of biomaterial could be a risk factor for its low predictability;
however, we feel that the biological behavior of the material
effectively counteracts this effect.[14-17]

Healing was largely uneventful; only four participants showed
residual periodontal pockets and no reduction in RDs at
the end of the study period. rhFGF-2 initiates soft-tissue
healing by periosteum formation, local neovascularization,
and hypercellularity[14] and promotes new attachment to the
root surface by cementum formation,[11,12,14-19] all of which
contribute to adequate soft-tissue regeneration and root
coverage.[14,8,11,12] Edematous and inflamed gingivae beyond
1 week were the most common side effect seen; this may
be explained by increased vascularity and tissue cellularity
because of rhFGF-2.[1]

This study has some limitations worth noting. Rather than a
single-arm trial, an active-controlled trial comparing
rhFGF-2 with an existing “gold standard” protocols such as
mucogingival procedures with or without growth factor
additives would have validated the efficacy of the material
better. The study design was an open-label single-arm trial
as our primary aim was to demonstrate the clinical impact
of rhFGF-2-impregnated absorbable collagen membrane in
the treatment of gingival recession defects. No measurement
of gingival thickness nor any form of histologic evaluation
was done; hence, the microscopic behavior of rhFGF-2 on
the recession site remains unknown though previous studies
have established de novo cementum and collagen formation in
transplanted sites.[6,11,12,14-18]

CONCLUSION

This trial showed that sites treated with rhFGF-2-impregnated
absorbable collagen membrane showed a significant
improvement in measures of gingival recession. The prospect
of harnessing the potential of rhFGF-2 to influence periodontal
wound healing in different surgical procedures is an exciting
possibility that deserves further study.

Financial support and sponsorship
Nil.

Conflicts of interest
There are no conflicts of interest.

REFERENCES
1. Shujaa Addin A, Akizuki T, Hoshi S, Matsuura T, Ikawa T,
Fukuba S, et al. Biodegradable gelatin/beta-tricalcium phosphate
sponges incorporating recombinant human fibroblast growth
factor-2 for treatment of recession-type defects: A split-mouth
study in dogs. J Periodontal Res 2017;52:863-71.
2. Seibert JL, Lindhe J. Esthetics and periodontal therapy.
In: Lindhe J. Textbook of Clinical Periodontology, 2nd ed.
Copenhagen: Munksgaard; 1989: 477-514.
3. Kao RT, Fagan MC, Conte CJ. Thick vs. thin gingival
biotypes: A key determinant in treatment planning for dental
implants. J Calif Dent Assoc 2008;36:193-98.
4. Claffey N, Shanley D. Relationship of gingival thickness and
bleeding to loss of probing attachment in shallow sites following
nonsurgical periodontal therapy. J Clin Periodontol 1986;13:654-7.
5. Saito E, Saito A, Kato H, Shibukawa Y, Inoue S, Yuge F, et al.
A novel regenerative technique combining bone morphogenetic
protein-2 with fibroblast growth factor-2 for circumferential
defects in dog incisors. J Periodontal 2016;87:1067-74.
6. Cairo F, Nieri M, Pagliaro U. Efficacy of periodontal plastic
surgery procedures in the treatment of localized facial gingival
recessions. A systematic review. J Clin Periodontal 2014;41 Suppl
15:544-62.
7. Vignoletti F, Nunez J, Sanz M. Soft tissue wound healing at teeth,
dental implants and the edentulous ridge when using barrier
membranes, growth and differentiation factors and soft tissue
substitutes. J Clin Periodontol 2014;41 Suppl 15:523-35.
8. Susin C, Fiorini T, Lee J, De Stefano JA, Dickinson DP, Wikesjö UM.
Wound healing following surgical and regenerative periodontal
therapy. Periodontol 2000 2015;68:83-98.
9. McGuire MK, Scheyer ET, Snyder MB. Evaluation of recession
defects treated with coronally advanced flaps and either
recombinant human platelet-derived growth factor-BB plus β-tricalcium phosphate or connective tissue: Comparison of clinical parameters at 5 years. J Periodontol 2014;85:1361-70.

10. Hoshi S, Akizuki T, Matsuura T, Ikawa T, Kinoshita A, Oda S, et al. Ridge augmentation using recombinant human fibroblast growth factor-2 with biodegradable gelatin sponges incorporating β-tricalcium phosphate: A preclinical study in dogs. J Periodontal Res 2016;51:77-85.

11. Cha JK, Sun YK, Lee JS, Choi SH, Jung UW. Root coverage using porcine collagen matrix with fibroblast growth factor-2: A pilot study in dogs. J Clin Periodontol 2017;44:96-103.

12. Ishii Y, Fujita T, Okubo N, Ota M, Yamada, S, Saito A. (2013) Effect of basic fibroblast growth factor (FGF-2) in combination with beta tricalcium phosphate on root coverage in dog. Acta Odontol Scand 2013;71:325-32.

13. Wang HL, Bunyaratavej P, Labadie M, Shyr Y, MacNeil RL. Comparison of 2 clinical techniques for treatment of gingival recession. J Periodontol 2001;72:1301-11.

14. Murakami S, Takayama S, Ikezawa K, Shimabukuro Y, Kitamura M, Nozaki T, et al. Regeneration of periodontal tissues by basic fibroblast growth factor. J Periodontal Res 1999;34:425-30.

15. Takayama S, Murakami S, Shimabukuro Y, Kitamura M, Okada H. Periodontal regeneration by FGF-2 (bFGF) in primate models. J Dent Res 2001;80:2075-9.

16. Murakami S, Takayama S, Kitamura M, Shimabukuro Y, Yanagi K, Ikezawa K, et al. Recombinant human basic fibroblast growth factor (bFGF) stimulates periodontal regeneration in class II furcation defects created in beagle dogs. J Periodontal Res 2003;38:97-103.

17. Murakami S. Periodontal tissue regeneration by signaling molecule(s): What role does basic fibroblast growth factor (FGF-2) have in periodontal therapy? Periodontol 2000 2011;56:188-208.

18. Kitamura M, Akamatsu M, Machigashira M, Hara Y, Sakagami R, Hirofuji T, et al. FGF-2 stimulates periodontal regeneration: Results of a multi-center randomized clinical trial. J Dent Res 2011;90:35-40.

19. Hong KS, Kim EC, Bang SH, Chung CH, Lee YL, Hyun JK, et al. Bone regeneration by bioactive hybrid membrane containing FGF2 within rat calvarium. J Biomed Mater Res A 2010;94:1187-94.