Antimicrobial resistance of *Escherichia coli* isolated from retail foods in northern Xinjiang, China

Yingjiao Li | Mei Zhang | Juan Luo | Jiluan Chen | Qingling Wang | Shiling Lu | Hua Ji

School of Food Science and Technology, Shihezi University, Shihezi, China

Correspondence
Hua Ji, Department of Food Safety, School of Food Science and Technology, Shihezi University, No. 221 North Fourth Road, Shihezi 832000, China. Email: jihua229@126.com

Abstract
To determine antimicrobial resistance, 431 samples of retail foods purchased at different supermarkets in Northern Xinjiang were examined in this study. There were 112 *Escherichia coli* strains that were isolated, with approximately 26% of the samples contaminated by *E. coli*. The detection rate of *E. coli* isolated from pork was the highest (59.6%), followed by mutton (52.6%), retail fresh milk (52.4%), duck (36.4%), beef (35.3%), chicken (33.3%), and ready-to-eat food (12.9%); the *E. coli* detection rate for fish and vegetables was <11%. The result showed that the 112 isolates were mostly resistant to tetracycline (52%), followed by ampicillin (42%), compound trimethoprim/sulfamethoxazole (37%), amoxicillin (33%), and nalidixic acid (32%); imipenem resistance was not detected. One hundred isolates carried at least one antimicrobial resistance gene. The detection rate of resistance genes of our study was as follows: *tetA* (38%), *tetB* (27%), *bla*_{OXA} (40%), *bla*_{TEM} (20%), *floR* (20%), *sul1* (16%), *sul2* (27%), *aad_{Ala}* (19%), *aadB* (11%), *strA* (28%), and *strB* (24%); *tetC* and *bla*_{PSE} were not detected. Virulence genes *fimC*, *agg*, *stx2*, *fimA*, *fyuA*, *papA*, *stx1*, and *eaeA* were found in 52, 34, 21, 19, 6, 3, 2, and 2 isolates, respectively; *papC* was not detected. There was a statistically significant association between *fimC* and resistance to ciprofloxacin (*p* = .001), gentamicin (*p* = .001), amikacin (*p* = .001), levofloxacin (*p* = .001), and streptomycin (*p* = .001); between *fimA* and resistance to tetracycline (*p* = .001), ampicillin (*p* = .001), compound trimethoprim/sulfamethoxazole (*p* = .001), and amoxicillin (*p* = .003); between *agg* and resistance to gentamicin (*p* = .001), tetracycline (*p* = .001), ciprofloxacin (*p* = .017), and levofloxacin (*p* = .001); and between *stx2* and resistance to ampicillin (*p* = .001), tetracycline (*p* = .001), compound trimethoprim/sulfamethoxazole (*p* = .002), and amoxicillin (*p* = .015).

KEYWORDS
Escherichia coli, multidrug resistance, resistance gene, virulence gene
1 | INTRODUCTION

It is well known that *Escherichia coli* mainly exists in the human and animal gastrointestinal tract. It also occurs in the natural environment, especially in soil, water, and plants (Katarzyna & Anna, 2016). Therefore, it is not surprising that some of the *E. coli* in the environment reinfects humans through vegetable- or animal-derived foods.

Escherichia coli is a highly diverse virulent species that is widely distributed in open systems, is easy to spread in the environment, and can be harmful to human health (Tenaillon, Skurnik, Picard, & Denamur, 2010). Drug resistance genes carried by *E. coli* can be transferred to other pathogenic bacteria, and, due to the excessive use of antibiotics, selection pressure is very high, resulting in bacterial strains resistant to a variety of drugs. Multi-drug-resistant strains are characterized by the presence of multiple genes conferring drug resistance, which results in insensitivity to many different drug groups (Hu, Yang, & Li, 2016; Rasheed, Thajuddin, Ahamed, Teklemariam, & Jamil, 2014).

Genetic mutations or genetic acquisition of antibiotic resistance genes (ARG) through horizontal gene transfer might also result in the occurrence of antibiotic-resistant bacteria (ARB) throughout the environment (Céline & David, 2015). This has resulted in the emergence of many different ARG, including the *drf* and *sul* genes related to trimethoprim and sulfamethoxazole resistance, respectively (Chang, Lin, Chang, & Lu, 2007; Ho, Wang, Chow, & Que, 2009), and other genes, such as *ampC*, *oxa2*, and *tetA*.

The ever-increasing threat of ARB may be associated with enhanced virulence (Guillard, Pons, Roux, Pier, & Skurnik, 2016; Roux et al., 2015), and with the increase in antibiotic resistance, an increase in virulence may naturally evolve. Therefore, when controlling the spread of antibiotic resistance, we must also control the spread of virulence (Meredith, Brooks, & Brooks, 2017). Although the profile of virulence and antimicrobial resistance genes of *E. coli* from foods has been reported (Luo, Ji, & Wang, 2016), the data elucidating the association between these two gene sets are lacking.

In Xinjiang, China, a previous study conducted antibiotic resistance research on foodborne *E. coli* based on samples from slaughterhouses, butcher shops, and farms (Xia, Xiang, & Guo, 2014; Yao, Long, Kuerbannaimu, Wang, & Xia, 2017). However, little is known about the resistance of those bacteria in retail foods.

There have been some reports describing the antimicrobial resistance and virulence of *E. coli*, such as Arisoy, Rad, Akin, and Akar (2008), who showed that the virulence genes *afaI*, *pap*, *hly*, *aer*, and *sfa* were increased in sensitive strains. However, detailed information on the relationship between antimicrobial resistance genes and virulence genes of *E. coli* isolated from retail foods in Xinjiang is scarce.

The purpose of this study was to evaluate the drug resistance of *E. coli* strains isolated from retail foods in northern Xinjiang, identify their virulence genes, and determine the possible relationship between the virulence genes and drug resistance.

2 | MATERIALS AND METHODS

2.1 | Sampling and *E. coli* isolation

A total of 431 food samples were purchased at supermarkets in Shihezi, Kuitun, and Urumqi, in northern Xinjiang, China, from 2014 to 2016, and each type of sample and its number are listed in Table 1. Each sample weighed 25 g and was placed in a sterile plastic bag containing 225 ml of sterilized sodium chloride solution (0.85%) and then homogenized for 90 s using a BagMixer 400 CC beating homogenizer. Lauryl Sulfate Tryptose (LST) broth was inoculated with 1 ml of homogenate and incubated for 48 hr at 37 ± 1°C. Gas-positive tubes were inoculated into 100 ml of *E. coli* (EC) broth and incubated at 44 ± 0.5°C for 48 hr (Wang, Sun, & Ji, 2014). After that, one loopful from each gas-positive tube was streaked onto eosin methylene blue agar. Presumptive *E. coli* colonies were streaked onto Luria–Bertani nutrient agar and incubated for 12–48 hr at 36 ± 1°C. Each culture was confirmed as *E. coli* through an IMViC test. *E. coli* ATCC 25922 was used as a positive control for polymerase chain reaction (PCR) of *UidA*. Template was prepared via the boiling method, for the amplification of selected *UidA* genes in *E. coli* using PCR (Heijnen & Medema, 2006). The oligonucleotide sequences used and the predicted sizes of PCR amplification products of genes are listed in Table 2.

2.2 | Antimicrobial susceptibility testing

Antimicrobial susceptibility testing was performed utilizing the disk-diffusion method as recommended by the Clinical and Laboratory Standards Institute (CLSI, 2015). The following antibiotics were used: ampicillin (AMP: 10 μg/p), cefotaxime (CTX: 30 μg/p), ceftazidime (CAZ: 30 μg/p), gentamicin (GEN: 10 μg/p), imipenem (IPM: 10 μg/p), ciprofloxacin (CIP: 5 μg/p), levofloxacin (LEV: 5 μg/p), tetracycline (TET: 30 μg/p), chloramphenicol (CHL: 30 μg/p), amikacin (AMK: 30 μg/p), piperacillin (PIP: 100 μg/p), compound trimethoprim/sulfamethoxazole (T/S: 23.75 μg/1.25 μg/p), erythromycin (ERY: 15 μg/p), amoxicillin (AMX: 10 μg/p), streptomycin (STR: 10 μg/p), nalidixic acid (NAL: 30 μg/p), and polymyxin B (PB: 300 μg/p). Standard strain *E. coli* ATCC 25922 was used as a quality control. Strains were classified as either susceptible, intermediate, or resistant strains (CLSI, 2015).

2.3 | PCR amplification of antimicrobial resistance and virulence genes

Genomic DNA for PCR was extracted by the boiling method. Tables 2 and 3 list the oligonucleotide sequences of different antimicrobial and virulence genes in *E. coli* and the predicted sizes after PCR amplification.

The presence of genes associated with resistance to tetracycline (*tetA*, *tetB*, and *tetC*), β-lactams (*bla*_{TEM}, *bla*_{PSE}, and *bla*_{OXA}), aminoglycosides (*aadA₁*, *aadB*, *strA*, and *strB*), chloramphenicol (*floR*), and sulfonamide (*Sul1* and *Sul2*) and virulence-encoding genes were detected...
TABLE 1 The original number of samples

Number	Sampling number	Origin	Number	Sampling number	Origin	Number	Sampling number	Origin
1	K1	Pig heart	145	K3	Celery	289	K15	Duck
2	K2	Pork	146	K5	Broccoli	290	K16	Duck
3	K4	Pork liver	147	K7	Lettuce	291	K17	Duck leg
4	K6	Pork	148	K11	Tomato	292	K19	Duck
5	K8	Pork	149	K12	Pepper	293	K20	Duck
6	K9	Pork	150	K14	Cabbage	294	K24	Duck
7	K10	Pork stuffing	151	K21	Ginger	295	K25	Duck
8	K13	Porcine blood	152	K22	Celery	296	K27	Duck
9	K18	Pork	153	K23	Pepper	297	K35	Duck
10	K33	Porcine blood	154	K26	Cabbage	298	W7	Duck
11	K34	Pork	155	W1	Broccoli	299	W12	Duck
12	K40	Pork liver	156	W4	Lettuce	300	N4	Fish
13	W2	Pork intestine	157	W5	Pepper	301	N5	Fish
14	W3	Pork liver	158	N1	Ginger	302	N8	Fish
15	W6	Porcine blood	159	N2	Broccoli	303	N14	Fish
16	W8	Pigtail	160	N3	Eggplant	304	N15	Fish
17	W9	Pork	161	S18	Spinach	305	N16	Crustacean
18	W10	Pork fillet	162	S19	Celery	306	N17	Fish
19	W11	Pork liver	163	N6	Shallot	307	W17	Fish
20	W13	Pork	164	N7	Tomato	308	W18	Fish
21	W14	Pork	165	N9	Lettuce	309	W61	Fish
22	W15	Pork	166	W21	Tomato	310	W62	Fish
23	W16	Pork	167	H11	Ginger	311	W63	Fish
24	W19	Pork	168	N52	Cowpea	312	K36	Fish
25	W20	Pork	169	H14	Spinach	313	K37	Fish
26	W25	Porcine blood	170	H15	Broccoli	314	S1	Fish
27	W26	Porcine blood	171	H16	Pepper	315	S2	Fish
28	S5	Pork	172	H17	Shallot	316	S3	Fish
29	S8	Pig heart	173	Tomato	317	S4	Fish	
30	S9	Pork stuffing	174	W22	Eggplant	318	W64	Fish
31	S10	Pork fillet	175	W23	Spinach	319	W65	Fish
32	S12	Pork liver	176	W24	Tomato	320	W66	Fish
33	S14	Pig hind leg	177	W67	Celery	321	W69	Fish
34	S15	Pork	178	W68	Ginger	322	W72	Fish
35	S16	Pork liver	179	W70	Shallot	323	W73	Fish
36	S17	Pork	180	W71	Cowpea	324	W75	Fish
37	H2	Pork intestine	181	W74	Tomato	325	W54	Fish
38	H4	Pork	182	W76	Pepper	326	W55	Fish
39	H5	Pork	183	K38	Broccoli	327	W56	Fish
40	H6	Porcine blood	184	K39	Ginger	328	S6	Fish
41	H7	Pig trotters	185	K41	Shallot	329	S7	Fish
42	H8	Porcine blood	186	W77	Lettuce	330	S11	Brine shrimp
43	H9	Pork	187	W78	Cowpea	331	N10	Bean curd skin
44	H12	Porcine blood	188	W79	Spinach	332	N11	Marinated tofu
45	H13	Pork	189	W80	Eggplant	333	N12	Stewed chicken leg

(Continues)
TABLE 1 (Continued)

Number	Sampling number	Origin	Number	Sampling number	Origin	Number	Sampling number	Origin
46	H23	Porcine blood	190	S13	Tomato	334	N13	Stewed beef
47	H24	Pork liver	191	H1	Shallot	335	N51	Red oil chicken gizzards
48	H27	Pork	192	H3	Celery	336	K42	Hot and sour gluten
49	H28	Pork	193	H10	Ginger	337	K43	Marinated chicken leg
50	H30	Pork	194	W28	Pepper	338	K45	Cold bamboo shoots
51	H33	Pork	195	W29	Broccoli	339	K74	Soy sauce pickles
52	H34	Pork	196	W34	Tomato	340	K75	Spiced gizzard
53	K28	Celery	197	H66	Lettuce	341	K76	Beef salad
54	K29	Shallot	198	H67	Shallot	342	K77	Beef tendon in cold sauce
55	K30	Spinach	199	H68	Eggplant	343	K78	Cold bamboo shoots
56	N46	Potato	200	H69	Ginger	344	K79	Bean salad
57	N47	Eggplant	201	H70	Spinach	345	S22	Fungus salad
58	N48	Spinach	202	H71	Cowpea	346	S23	Kelp salad
59	N49	Shallot	203	H72	Tomato	347	K80	Bean curd skin in cold sauce
60	W52	Cowpea	204	H73	Coriander	348	K81	Kelp salad
61	W53	Bitter gourd	205	H74	Snow pea	349	W32	Shredded lotus root slice
62	W57	Eggplant	206	H75	Lettuce	350	W33	Spiced gizzard
63	S20	Flammulina velutipes mushroom	207	N18	Drumsticks	351	H18	Pea noodles
64	S21	Celery	208	N19	Chicken wings	352	H19	Dried bean curd
65	S24	Zhaer root	209	N20	Drumsticks	353	H20	Bean curd
66	S25	Lettuce	210	N21	Chicken gizzard	354	H26	Red ear silk
67	S26	Chinese cabbage	211	N22	Chicken	355	H29	Chicken salad
68	S27	Bok choy	212	H21	Drumsticks	356	H30	Sweet potato
69	S28	Ginger	213	H22	Chicken wings	357	S95	Chinese wolfberries
70	S47	Tomato	214	K44	Chicken gizzard	358	S96	Cold bean curd
71	S48	Bitter gourd	215	K46	Chicken	359	S97	Bean curd skin
72	S49	Black fungus	216	H23	Chicken wing	360	S98	Gluten
73	S50	Garlic sprouts	217	S53	Drumsticks	361	S99	Cold pig ears
74	S51	Chive	218	N53	Chicken	362	S100	Peanut salad
75	S52	Coriander	219	N54	Chicken wing	363	H76	Cold bamboo shoots
76	N55	Broccoli	220	S64	Drumsticks	364	H77	Marinated tofu
77	N56	Celery	221	S65	Chicken gizzard	365	H78	Spicy dried tofu
78	S61	Pepper	222	S66	Chicken	366	K47	Spicy dried tofu
79	S62	Coriander	223	S67	Drumsticks	367	K64	Red oil ear silk
80	S63	Green Chinese onion	224	S68	Chicken wings	368	K65	Cold bean curd stick
81	H24	Bitter gourd	225	W25	Drumsticks	369	K66	Dried vegetables
82	H25	Lentinus edodes mushroom	226	W38	Chicken wings	370	K67	Brine shrimp
83	H27	Pepper	227	S69	Drumsticks	371	K71	Bean curd skin
84	H28	Kelp	228	S70	Chicken gizzard	372	K72	Chicken skewer

(Continues)
Number	Sampling number	Origin	Number	Sampling number	Origin	Number	Sampling number	Origin
85	H31 Pepper	229	S71	Chicken	373	K73	Hot and sour gluten	
86	S72 Bean sprouts	230	S29	Chicken wings	374	W36	Marinated tofu	
87	S73 Coprinus comatus mushroom	231	S30	Chicken	375	W37	Stewed pork liver	
88	S74 Romaine lettuce	232	H41	Chicken wings	376	S34	Stewed beef	
89	S75 Coriander	233	H42	Drumsticks	377	S35	Stewed chicken leg	
90	S76 Tomatoes	234	H43	Drumsticks	378	S36	Marinated tofu	
91	S77 Pepper	235	H44	Chicken wings	379	S54	Brine shrimp	
92	S78 Celery	236	H60	Chicken gizzard	380	S55	Bean curd skin	
93	S79 Lotus root	237	S81	Drumsticks	381	S56	Chicken skewer	
94	S80 Cabbage	238	S82	Chicken	382	S57	Marinated chicken leg	
95	S89 Cucumber	239	S83	Chicken gizzard	383	N34	Marinated tofu	
96	S90 Celery	240	S84	Chicken wings	384	N35	Stewed beef	
97	S91 Garlic sprouts	241	S85	Chicken gizzard	385	N36	Stewed beef	
98	S92 Spinach	242	S86	Drumsticks	386	N37	Hot and sour gluten	
99	S93 Towel gourd	243	S87	Drumsticks	387	N38	Marinated chicken leg	
100	S94 Peas	244	S88	Drumsticks	388	N45	Stewed chicken leg	
101	K48 Chives	245	K32	Chicken wings	389	N50	Stewed pork liver	
102	K49 Garlic sprouts	246	W27	Chicken	390	K61	Marinated tofu	
103	K52 Lettuce	247	W30	Drumsticks	391	K62	Stewed pork liver	
104	K68 Pepper	248	W31	Chicken wings	392	K63	Lamb tripe	
105	K69 Cucumber	249	K53	Chicken	393	K31	Mutton	
106	K70 Lettuce	250	K54	Chicken	394	W39	Mutton	
107	H40 Cucumber	251	K59	Drumsticks	395	W46	Mutton	
108	H45 Pepper	252	K60	Chicken gizzard	396	W51	Sheep heart	
109	H48 Peas	253	W47	Chicken gizzard	397	W63	Mutton	
110	H50 Cucumber	254	W48	Drumsticks	398	W64	Mutton	
111	H56 Lettuce	255	K50	Beef	399	W65	Mutton	
112	H57 Towel gourd	256	K51	Beef	400	W66	Mutton	
113	H58 Pepper	257	W47	Beef	401	S39	Mutton	
114	H59 Peas	258	W48	Beef stuffing	402	S40	Mutton	
115	W40 Chives	259	N23	Beef	403	S41	Mutton	
116	W43 Spinach	260	N24	Beef	404	S44	Mutton	
117	W45 Pepper	261	N25	Beef	405	S58	Mutton	
118	W60 Towel gourd	262	N26	Beef	406	S59	Mutton	
119	W61 Spinach	263	N27	Beef	407	S60	Mutton	
120	W62 Cucumber	264	H32	Beef	408	N31	Mutton	
121	S42 Celery	265	H33	Beef	409	N32	Mutton	
122	S43 Chives	266	H34	Beef	410	N33	Mutton	
123	N28 Peas	267	H61	Beef	411	R1	Retail fresh milk	
124	N29 Lettuce	268	H62	Beef	412	R2	Retail fresh milk	
by PCR. The PCR products were electrophoresed for 40 min at 90 V in 1% agarose gel containing 0.5 µg/ml of ethidium bromide, and then, the gels were visualized on a Gel Doc 2000 transmittance apparatus (Kerrn, Klemmensen, Frimodt-Møller, & Espersen, 2002). Target fluorescent bands were removed from the gel with a razor blade. The DNA fragments were purified with a MIDI gel purification kit and then sequenced. The DNA sequence data were compared with the data in the GenBank database.

2.4 | Statistical analysis

SPSS v.17.0 software was used to analyze the data. Logistical regression analysis was used to analyze the correlation between variables. $p < .05$ was considered statistically significant.

3 | RESULTS AND CONCLUSIONS

3.1 | E. coli isolated from retail foods

A total of 112 strains of E. coli were isolated from 431 random samples, with 26% of the samples testing positive for contamination. The overall incidence was higher than 14.7% reported elsewhere (Rasheed et al., 2014). As shown in Table 4, pork was most frequently contaminated with E. coli (59.6%). The detection rates of E. coli were 52.6%, 52.4%, 36.4%, 35.3%, and 33.3% in mutton, retail fresh milk, duck, beef, and chicken, respectively, followed by ready-to-eat food (12.9%), vegetables (11%), and fish (10%).

Several studies have documented antibiotic-resistant E. coli and other coliforms in raw meat (Srinivasa, Gill, Ravi, & Sandeep, 2011), poultry (Nuno et al., 2016), eggs (Arathy, Vanpee, Belot, DeAllie, & Sharma, 2011), milk (Alharbi & Khaled, 2018), and vegetables (Rasheed et al., 2014). Whether there is a link between high contamination rates and high antibiotic resistance rates for E. coli in food remains to be determined.

In both developed and developing countries, antibiotic resistance has been recognized as a problem in the field of human and veterinary medicine (Bottacini et al., 2018; Zhang et al., 2017). There is ample evidence that the widespread use of antibiotics in agriculture and medicine is the main reason for the high resistance rate of Gram-negative bacteria (Bothyna & Randa, 2018). Various food and environmental sources contain bacteria resistant to one or more antimicrobial agents used in human or veterinary medicine and animal food production (Hinthong, Pumipuntu, & Santajit, 2017).

3.2 | Antimicrobial resistance profiles of E. coli isolates

Antibiotic resistance in E. coli is of particular concern because it is the most common Gram-negative pathogen in humans, the most

Number	Sampling number	Origin	Number	Sampling number	Origin	Number	Sampling number	Origin
125	N30	Pepper	269	H63	Beef	413	R3	Retail fresh milk
126	S31	Towel gourd	270	H64	Beef	414	R4	Retail fresh milk
127	S32	Pepper	271	H65	Beef	415	R5	Retail fresh milk
128	S33	Lettuce	272	W44	Beef stuffing	416	R6	Retail fresh milk
129	W41	Cucumber	273	S37	Beef stuffing	417	R7	Retail fresh milk
130	W42	Peas	274	S38	Beef	418	R8	Retail fresh milk
131	N39	Lettuce	275	S45	Beef	419	R9	Retail fresh milk
132	N40	Lettuce	276	S46	Beef	420	R10	Retail fresh milk
133	K55	Pepper	277	S50	Beef	421	R11	Retail fresh milk
134	K57	Chives	278	S51	Beef	422	R12	Retail fresh milk
135	S47	Towel gourd	279	S53	Beef	423	R13	Retail fresh milk
136	S48	Lettuce	280	K56	Beef	424	R14	Retail fresh milk
137	S52	Cucumber	281	K58	Beef	425	R15	Retail fresh milk
138	N41	Spinach	282	S49	Beef	426	R19	Retail fresh milk
139	N42	Pepper	283	H36	Beef	427	R20	Retail fresh milk
140	N43	Cucumber	284	H37	Beef	428	R21	Retail fresh milk
141	N44	Cucumber	285	W59	Beef	429	R23	Retail fresh milk
142	W49	Chives	286	W60	Beef	430	R26	Retail fresh milk
143	W50	Spinach	287	H38	Beef	431	R31	Retail fresh milk
144	H35	Towel gourd	288	H39	Beef	432		

Note: H, supermarket sampling in Shihezi; K, samples collected from Kuitun; N, sampling in cooperation with Inspection Institute; R, retail fresh milk collected from Shihezi; S, samples collected from Shihezi; W, samples collected from Urumqi.
common cause of urinary tract infections, and a frequent cause of community and hospital-acquired bacteremia (Bothyna & Randa, 2018) and diarrhea (Jessica, Lashaunda, & Levens, 2016).

Worldwide data have shown that resistance to traditional drugs is increasing, and resistance is also being encountered against newer and more effective antibiotics (Sara, Mohammad, & Sadegh, 2014). As in this study, the most frequent resistance was seen for third-generation cephalosporin–ceftazidime (22%) and tetracyclines (52%; Table 5). A comparative study by Dominguez et al. (2018) showed that high resistance rates (76.5%–79.4%) were observed in oxyimino-cephalosporins (cefotaxime, ceftriaxone, and ceftiofur) and ceftepime (70.6%). This phenomenon requires additional study and sustained data support.

As shown in Table 5, our study revealed that 87 (77.7%) isolates (n = 112) were resistant to one or more antimicrobials, including tetracycline (52%), ampicillin (42%), compound trimethoprim/sulfamethoxazole (37%), amoxicillin (33%), and nalidixic acid (32%). No resistance to imipenem was observed. Among those isolates, two strains (E24 and E53) isolated from chicken and one strain (E56) from mutton were resistant to 13 antimicrobial agents. There were two strains (E36, E37) isolated from chicken and one strain (E38) isolated from mutton were resistant to 11 antimicrobials, including tetracycline (52%), ampicillin (42%), compound trimethoprim/sulfamethoxazole (37%), amoxicillin (33%), and nalidixic acid (32%). No resistance to imipenem was observed. Among those isolates, two strains (E24 and E53) isolated from chicken and one strain (E56) isolated from fish resistant to 11 antimicrobial agents. The specific
multiple drug resistance rate is shown in Table 6, and the pattern of antibiotic resistance in those isolates is shown in Table 7.

The incidence of multidrug resistance is a compelling issue, as there is a repository of antimicrobial resistance genes in the community, and drug resistance genes and plasmids can easily be transferred to other strains. The high resistance to tetracycline and ampicillin may be due to the easy availability and low cost of those medications. Although these antibiotics have been banned, the bans have not been effectively implemented by the relevant regulatory bodies. Another explanation for a strain’s high resistance rate is its contact with environmental microorganisms that produce natural antibiotics, or with soil contaminated by wildlife feces carrying antibiotic-resistant microorganisms.

TABLE 3 Primers used for detection of genes encoding resistance to different virulence

Gene	Primer	DNA sequence (5’ → 3’)	Size (bp)	Thermocycling conditions	References
stx1	stx1-F	5’-ACACTGGATGATCCTCAGTG-3’	244	95°C for 5 min, 35 cycles of 94°C for 1 min, 60°C for 1 min, 72°C for 1 min, final extension at 72°C for 10 min	Moses, Garbati, and Egwu (2006)
	stx1-R	5’-CTGATCCCACACCTGCTATTG-3’			
stx2	stx2-F	5’-CCATGACACCCAGACAGATT-3’	255	95°C for 5 min, 30 cycles of 94°C for 30 s, 52°C for 30 s, 72°C for 45 s, and final extension at 72°C for 10 min	Moses et al. (2006)
	stx2-R	5’-CCTGTCAACTGAGACCGTATG-3’			
agg	agg-F	5’-AAGAAAAGAAGTAGACAAA-3’	400	95°C for 5 min, 30 cycles of 94°C for 30 s, 52°C for 30 s, 72°C for 45 s, and final extension at 72°C for 10 min	Pass, Odedra, and Batt (2000)
	agg-R	5’-AAACGGCAAGGAAAGATAA-3’			
eaeA	eae-F	5’-AACCGACTGAGGTCACT-3’	384	95°C for 5 min, 30 cycles of 94°C for 30 s, 52°C for 30 s, 72°C for 45 s, and final extension at 72°C for 10 min	Lopez et al. (2003)
	eae-R	5’-ACGCTGCTACTAGATG-3’			
fyuA	fyu-F	5’-ACACGGCTTATATCTTGGGC-3’	235	95°C for 5 min, 30 cycles of 94°C for 30 s, 52°C for 30 s, 72°C for 45 s, and final extension at 72°C for 10 min	Viktoria, Lionel, and Per (2008)
	fyu-R	5’-GGCATATTGACGATTAACGA-3’			
fimA	fimA-F	5’-CTGTGACGGTCTCGGACTAC-3’	352	95°C for 5 min, 30 cycles of 94°C for 30 s, 52°C for 30 s, 72°C for 45 s, and final extension at 72°C for 10 min	Rawool et al. (2015)
	fimA-R	5’-GCTGTGGATATGATTAAC-3’			
papC	papC-F	5’-GACGGCTGCTACTGAGGTCGCGG-3’	234	95°C for 5 min, 30 cycles of 94°C for 30 s, 52°C for 30 s, 72°C for 45 s, and final extension at 72°C for 10 min	Xia et al. (2011)
	papC-R	5’-ATATCCTTCTGTGACGATTCG-3’			
papA	papA-F	5’-GGAACGCAAGCAGACGGCCG-3’	374	95°C for 5 min, 30 cycles of 94°C for 30 s, 52°C for 30 s, 72°C for 45 s, and final extension at 72°C for 10 min	Xia et al. (2011)
	papA-R	5’-CGCAATGGCTCTGCTAAACGG-3’			
fimC	fimC-F	5’-TAAGGAAATCGCAGGACAGG-3’	337	95°C for 5 min, 30 cycles of 94°C for 30 s, 52°C for 30 s, 72°C for 45 s, and final extension at 72°C for 10 min	Antonio et al. (2007)
	fimC-R	5’-GCTGTGGATATGATTAAC-3’			

TABLE 4 Samples and isolates from different food origins

Products	No. of samples	No. of samples positive for E. coli	Positive rate (%)
Pork	52	31	59.6
Chicken	48	16	33.3
Duck	11	4	36.4
Fish	30	3	10.0
Retail fresh milk	21	11	52.4
Beef	34	12	35.3
Mutton	19	10	52.6
Vegetables	154	17	11.0
Ready-to-eat food	62	8	12.9
Total	431	112	26.0

Note: n = 112: No. of samples positive for E. coli.

TABLE 5 The reactions of E. coli to 17 antibacterial agents

Antimicrobials	Resistant (n = 112)	Susceptible (n = 112, %)	
AMP	47 (42%)	23 (20)	
CTX	12 (11%)	34 (30)	
CAZ	25 (22%)	38 (34)	
IPM	0	112 (100)	
PIP	31 (28%)	40 (36)	
AMX	37 (33%)	35 (31)	
PB	2 (2%)	72 (64)	
CIP	18 (16%)	48 (43)	
LEV	12 (11%)	50 (45)	
NAL	36 (32%)	34 (30)	
GEN	12 (11%)	50 (45)	
AMK	10 (9%)	55 (49)	
STR	24 (21%)	44 (39)	
TET	58 (52%)	22 (20)	
CHL	30 (27%)	38 (34)	
T/S	41 (37%)	32 (29)	
ERY	12 (11%)	38 (34)	
Resistance type	The number of multi-drug-resistant strain	The rate of multi-drug-resistant strains (%)	n = 112
-----------------	--	---	--------
AMP CTX GEN CIP LEV TET CHL AMK PIP T/S AMX STR NAL	E36	3 (2.7)	
AMP CTX CAZ GEN CIP LEV TET CHL AMK PIP T/S AMX NAL	E37	5 (4.5)	
AMP CTX CAZ CIP LEV TET CHL AMK PIP T/S AMX NAL	E38	1 (0.9)	
AMP CTX CAZ CIP TET CHL T/S ERY NAL	E48	6 (5.4)	
AMP CAZ TET CHL PIP T/S AMX CIP	E28	12 (11)	
AMP CAZ TET CHL AMK T/S ERY AMX	E31	11 (10)	
AMP TET T/S CAZ CHL AMX STR NAL	E47	1 (0.9)	
AMP CIP LEV TET T/S AMX STR NAL	F38	3 (2.7)	
AMP TET PIP T/S ERY AMX NAL	E9	5 (4.5)	
AMP CAZ GEN PIP T/S AMX AMK	E23	1 (0.9)	
AMP CAZ TET PIP AMX CIP LEV	E41	6 (5.4)	
CAZ TET CHL T/S AMX STR NAL	E46	1 (0.9)	
CAZ TET PIP T/S AMX STR NAL	E49	1 (0.9)	
TET NAL T/S AMP PIP AMX CHL	F21	1 (0.9)	
TET CHL T/S NAL CIP	E5	11 (10)	
AMP TET CHL T/S STR	E8	1 (0.9)	
AMP TET PIP AMX NAL	E43	6 (5.4)	
GEN TET CHL T/S AMX	E51	5 (4.5)	
NAL T/S AMP LEV CHL	F10	1 (0.9)	
TET NAL AMP PIP LEV	F18	1 (0.9)	
TET AMP PIP AMX CHL	F19	1 (0.9)	
TET NAL T/S AMP LEV	F24	1 (0.9)	
AMP PIP AMX CHL STR	F30	1 (0.9)	
TET NAL T/S GEN STR	F32	1 (0.9)	
NAL PIP AMX STR ERY	F56	1 (0.9)	

(Continues)
3.3 Antimicrobial resistance genotypes of *E. coli* isolates

We detected 11 of the 13 resistance genes (tetA, tetB, *bla*_{TEM}, *bla*_{OXA}, *floR*, *aad_{Ala}*, *aadB*, sul1, sul2, strA, and strB), and one hundred isolates carried one or more antimicrobial genes. Resistance genes were not detected in twelve strains of *E. coli*. The resistance genotypes of *E. coli* isolates are shown in Table 7.

Resistance type	The number of multi-drug-resistant strain	The rate of multi-drug-resistant strains (%; n = 112)
GEN CIP TET AMX	E3	9 (8)
AMP TET CHL T/S	E12	
CAZ TET AMX STR	E19	
CIP ERY AMX NAL	E20	
TET NAL PIP AMK	E26	
CAZ TET AMX NAL	E27	
TET T/S CIP AMK	E33	
TET AMP PIP STR	F45	
TET NAL AMP STR	F47	
CAZ TET CIP	E18	10 (9)
CTX CAZ CHL	E39	
TET AMX CHL	E40	
AMP CTX CAZ	E45	
TET T/S AMP	F9	
CHL STR ERY	F23	
TET NAL AMP	F35	
T/S AMX STR	F49	
CHL ERY STR	F53	
CHL GEN STR	F55	
TET T/S	E1	16 (14)
AMP CAZ	E15	
AMP CIP	E16	
CAZ NAL	E17	
AMP TET	E21	
PB CIP	E25	
AMP AMX	F4	
AMP PIP	F6	
AMP PIP	F15	
AMP STR	F17	
TET STR	F28	
TET NAL	F29	
NAL T/S	F31	
AMP GEN	F39	
GEN STR	F42	
TET STR	F44	

Among 58 tetracycline-resistant *E. coli* isolates, tetA was found in 43 isolates and tetB in 30 isolates, although tetC was not detected in any. One of the beta-lactam resistance genes, *bla*_{TEM}, was detected in 23 *E. coli* isolates, *bla*_{OXA} was detected in 45, and *bla*_{PSE} was not detected. Other resistance genes such as *floR*, sul1, sul2, *aad_{Ala}*, *aadB*, strA, and strB were detected in 22, 18, 30, 21, 12, 31, and 27 isolates, respectively. The detection rate of resistance genes of our study was as follows: tetA (38%, 43/112), tetB (27%, 30/112),
Sampling number	Origin	Strain number	Resistance to antimicrobial agent	Resistance gene(s)
K2	Pork	E1	TET-T/S	tetA, bla\text{oxa}, bla\text{TEM}
K13	Pork tenderloin	E2	AMP-CIP-TET-CHL-PIP-T/S	tetA, floR
N19	Chicken wings	E3	GEN-CIP-TET-AMX	tetA
K50	Beef	E4	–	–
K34	Pork	E5	TET-CHL-T/S-NAL-CIP	tetA, bla\text{oxa}, floR, ada\text{TEM}, Sul1
K46	Chicken	E6	AMP-TET-CHL-PIP-T/S-AMX	blao\text{oxa}, blao\text{TEM}, Sul1, sul2, strB
K51	Beef	E7	–	adaB
K17	Duck leg	E8	AMP-TET-CHL-T/S-STR	floR, Sul1, sul2, strA, strB
S24	Zhaer root leaf vegetable	E9	AMP-TET-PIP-T/S-ERY-AMX-NAL	tetA, floR, Sul1, strA
S99	Cold pig ears	E10	–	–
S100	Peanut salad	E11	–	–
H8	Porcine blood	E12	AMP-TET-CHL-T/S	adaB, strA
H22	Chicken wings	E13	–	–
W41	Mutton	E14	–	strA
N23	Beef	E15	AMP-CAZ	–
S25	Lettuce	E16	AMX-CIP	strA
K14	Chinese cabbage	E17	CAZ-NAL	tetA
H23	Chicken wings	E18	CAZ-TET-CIP	tetA
H76	Cold bamboo shoots	E19	CAZ-TET-AMX-STR	tetB, Sul1, sul2, strA, strB
S65	Chicken breast	E20	CIP-ERY-AMX-NAL	strA
S49	Black fungus	E21	AMP-TET	tetA
H32	Beef	E22	AMP-CTX-CAZ-PIP-NAL-PB	tetA, blao\text{oxa}, blao\text{TEM}
W9	Pork	E23	AMP-CAZ-GEN-PIP-T/S-AMX-AMK	tetB, blao\text{oxa}, ada\text{TEM}
S55	Chicken wings	E24	CAZ-CIP-LEV-TET-CHL-PIP-T/S-ERY-AMX-STR-NAL	floR, Sul1, sul2, ada\text{TEM}, strA, strB
H33	Beef	E25	PB-CIP	tetA, blao\text{oxa}, strA
W39	Mutton	E26	TET-NAL-PIP-AMK	tetA, tetB, adaB
W46	Mutton	E27	TET-CHL-NAL-PIP-AMK	blao\text{TEM}, strA
K4	Pork liver	E28	AMP-CAZ-TET-CHL-PIP-T/S-AMX-CIP	tetA, blao\text{oxa}, floR, sul2, ada\text{TEM}, strA, strB
H65	Beef hind legs	E29	AMX	–
H61	Dried beef	E30	–	blao\text{TEM}
H13	Pork	E31	AMP-CAZ-TET-CHL-AMK-T/S-ERY-AMX	blao\text{oxa}, floR, ada\text{TEM}
N11	Marinated tofu	E32	AMP-CTX-CAZ-TET-PIP-T/S	blao\text{TEM}
S66	Chicken	E33	TET-T/S-CIP-AMK	tetA, ada\text{TEM}
H27	Pork	E34	AMP-CAZ-TET-PIP-NAL-CHL	floR, blao\text{oxa}
K47	Spicy dried tofu	E35	TET	tetA, tetB
W38	Chicken wings	E36	AMP-CTX-GEN-CIP-LEV-TET-CHL-AMK-PIP-T/S-AMX-STR-NAL	blao\text{oxa}, blao\text{TEM}, floR, sul2, strA, strB, tetA
S70	Chicken gizzard	E37	AMP-CTX-CAZ-GEN-CIP-LEV-TET-CHL-AMK-PIP-T/S-AMX-STR-NAL	tetA, tetB, floR, sul2, strA, strB
S39	Mutton	E38	AMP-CTX-CAZ-GEN-CIP-LEV-TET-CHL-AMK-PIP-T/S-AMX-STR-NAL	adaB, tetA, tetB
K40	Pork liver	E39	CTX-CAZ-CHL	blao\text{oxa}
W2	Pork	E40	TET-AMK-CHL	tetA, blao\text{TEM}
S71	Chicken	E41	AMP-CAZ-TET-PIP-AMX-CIP-LEV	tetB, blao\text{oxa}, sul2, adaB, strA, strB
H24	Pork liver	E42	AMP-CAZ-TET-CHL-PIP-T/S-ERY-LEV	tetA, tetB, blao\text{oxa}
H60	Chicken gizzard	E43	AMP-TET-PIP-AMX-STR	tetA, tetB, blao\text{TEM}
K33	Porcine blood	E44	AMP-CAZ-TET-CHL-T/S-AMX	tetA, blao\text{TEM}, floR
H78	Spicy dried tofu	E45	AMP-CTX-CAZ	tetA

(Continues)
Sampling number	Origin	Strain number	Resistance to antimicrobial agent	Resistance gene(s)
H28	Pork liver	E46	CAZ-TET-CHL/T/S-AMX-STR-NAL	tetA, bla_TEM, sul1, sul2, aadB, strA, strB
H30	Pork	E47	AMP-TET/T/S-CAZ-CHL-AMX-STR-NAL	tetA, tetB, sul1, sul2, strB
H34	Pork liver	E48	AMP-CTX-CAZ-CIP-TET-CHL/T/S-ERY-NAL	tetA, tetB, sul1, sul2, strA, strB
S10	Pork fillet	E49	CAZ-TET-PIP-T/S-AMX-STR-NAL	tetA, sul1, sul2, strA, strB
N31	Mutton	E50	–	bla_TEM
K10	Pork stuffing	E51	GEN-TET-CHL/T/S-AMX	tetA, bla_TEM
W3	Pork	E52	AMP-CTX-PIP-T/S-AMX	tetA, tetB, bla_TEM, aadA
S30	Chicken	E53	CTX-GEN-TET-CHL-AMK-PIP-T/S-ERY-AMX-STR-NAL	tetA, tetB, sul1, sul2, strA, strB
H64	Beef hind legs	E54	AMP-CTX-TET-T/S-NAL	tetA, tetB, strA, strB
K64	Red oil ear silk	E55	AMP-TET-CHL-AMK-T/S-NAL	sul2
N5	Fish	E56	AMP-CTX-CAZ-CIP-LEV-TET-T/S-ERY-AMX-STR-NAL	tetA, sul1, sul2, strB
N16	Crustacean	F1	TET-NAL/T/S-AMP-PIP-AMX	strA, strB, bla_OKA, tetA, floR, Sul1, sul2
R1	Retail fresh milk	F2	–	tetB
S27	Bok choy	F3	TET-NAL-T/S-AMP-PIP-AMX	strA, strB, sul2, bla_OKA, tetA, bla_TEM, aadA, floR
S56	Broccoli	F4	AMP-AMX	tetB
S96	Cold bean curd stick	F5	–	–
W51	Sheep heart	F6	AMP-PIP	strA, strB, bla_TEM, aadA, floR, Sul1, sul2
S72	Bean sprouts	F7	TET	bla_OKA
H4	Pork	F8	TET	strA, strB, sul2, bla_OKA, tetA, bla_TEM
H9	Pork	F9	TET-T/S-AMP	tetA
N22	Chicken	F10	NAL-T/S-AMP-LEV-CHL	strB, aadA1a, floR, Sul1, sul2
R2	Retail fresh milk	F11	TET-NAL-T/S-AMP-PIP-AMX	bla_OKA
N30	Pepper	F12	–	–
W8	Pig tail	F13	T/S	bla_OKA, tetB, aadA
R5	Retail fresh milk	F14	T/S	tetB
R7	Retail fresh milk	F15	AMP-PIP	floR
R8	Retail fresh milk	F16	–	bla_OKA, aadB
S38	Beef	F17	AMP-STR	strB, sul2, bla_OKA
K44	Chicken gizzard	F18	TET-NAL-AMP-PIP-LEV	bla_OKA
W47	Beef	F19	TET-AMP-PIP-AMX-CHL	strA, strB, sul2, bla_OKA, aadA
R8	Retail fresh milk	F20	–	bla_OKA
H9	Pork	F21	TET-NAL-T/S-AMP-PIP-AMX-CHL	strA, strB, sul2, bla_OKA, tetA, tetB, bla_TEM, floR, aadB
K28	Celery	F22	–	bla_OKA
H33	Pork	F23	CHL-STR-ERY	strA, strB, bla_OKA, aadA, sul1, sul2, aadB
S68	Chicken wings	F24	TET-NAL-T/S-AMP-LEV	strA, strB, Sul1, sul2, tetA, bla_TEM, aadA
S79	Lotus root	F25	ERY	tetB
S80	Cabbage	F26	–	bla_OKA
S89	Cucumber	F27	TET	bla_OKA, tetA, tetB
S58	Sheep fat	F28	TET-STR	bla_OKA, tetB, aadA
K60	Chicken gizzard	F29	TET-NAL	tetB
S8	Pig heart	F30	AMP-PIP-AMX-CHL-STR	strA, strB, bla_OKA, tetA, bla_TEM, aadA, Sul1
W13	Pork	F31	NAL-T/S	bla_OKA
W14	Pork	F32	TET-NAL-T/S-GEN-STR	bla_TEM, aadA, aadB
K26	Carrot	F33	–	–
R9	Retail fresh milk	F34	–	sul2, bla_OKA
S60	Mutton	F35	TET-NAL-AMP	tetA, tetB, bla_OKA

(Continues)
We found that the detection rate of pork was more than that of chicken, duck, and beef, but there are fewer resistance genes in pork as compared to chicken. Ayoyi, Bii, and Okemo (2008) showed that multi-drug resistance is closely related to different farm management treatments, and statistical significance ($p \leq .001$) was found between them.
Chickens are more likely to get sick than pigs, and in large-scale chicken breeding operations, farmers will use a large number of antibiotic and antiviral drugs for the prevention and treatment of chicken diseases. The antibiotics used include enrofloxacin, amikacin, colistin, ciprofloxacin, azithromycin, doxycycline hydrochloride, levofloxacin, lincomycin, doxycycline, gentamicin, gentamicin, levofloxacin, neomycin sulfate, ceftriaxone sodium, cefotaxime sodium, penicillin, sulfachloropyridine, and sulfquinoloxide sodium.

3.4 | Virulence genes of E. coli isolates

Table 8 shows that among the nine tested virulence genes, fimC, agg, stx2, fimA, fyuA, papA, stx1, and eaeA were found in 52, 34, 21, 19, 6, 3, 2, and 2 isolates, respectively, papC was not detected. Two strains (F6, F52) carried five virulence genes, and six strains (F5, F11, F12, F14, F50, and F51) also carried four virulence genes. Detailed results are shown in Table 9.
The emergence of virulence is mainly due to the presence of multiple virulence genes in E. coli pathogenicity islands. \textit{fyuA} is highly pathogenic and is often used as an indication of the presence or absence of high pathogenicity islands (HPI; Paniagua et al., 2017). We detected \textit{fyuA} virulence genes in six isolates (5.4%), compared to 83.3% found by Laupland, Gregson, Church, Ross, and Pitout (2008).

Bacterial pili and fimbriae are important structures for bacterial pathogenicity, and it has been suggested that type I fimbriae function primarily in the initial pathogenic phase of avian pathogenic \textit{E. coli} (APEC) infection. P-type fimbriae are also thought to contribute to bacterial pathogenicity (Paniagua et al., 2017). The \textit{fimC} virulence gene encodes a protein necessary for the biosynthesis of type I fimbriae. The \textit{papA} virulence gene encodes the main protein component of P-type fimbriae, and P-type fimbriae are encoded by the nine-gene \textit{pap} operon, which includes \textit{papA}, \textit{papB}, \textit{papC}, \textit{papD}, \textit{papE}, \textit{papF}, \textit{papG}, \textit{papH}, and \textit{papI}. Sequence analysis showed that there is sufficient homology between P fimbriae in humans and chickens to indicate that they share some common antigen (Laupland, Kibsey, & Gregson, 2013). We detected the \textit{fimC} gene in 46.4% of isolates, and the \textit{papA} gene was detected in 2.7%; \textit{papC} was not detected. This suggests that APEC in the Xinjiang region is mainly caused by a type I fimbriae.

In the current study, strong associations were found between the presence of \textit{fimC} and resistance to ciprofloxacin, gentamicin, amikacin, levofloxacin, and streptomycin; between the presence of \textit{fimA} and resistance to tetracycline, ampicillin, compound trimethoprim/sulfamethoxazole, and amoxicillin; between the presence of \textit{agg} resistance to gentamicin, tetracycline, ciprofloxacin, and levofloxacin; and between the presence of \textit{stx2} and resistance to ampicillin, tetracycline, compound trimethoprim/sulfamethoxazole, and amoxicillin.

Based on statistical analysis, the following correlations were identified: (a) expression of the \textit{fimC} gene and resistance to ciprofloxacin (\(p = .001\)), gentamicin (\(p = .001\)), amikacin (\(p = .001\)), levofloxacin (\(p = .001\)), and streptomycin (\(p = .001\)); (b) expression of the \textit{fimA} gene and resistance to tetracycline (\(p = .001\)), ampicillin (\(p = .001\)), compound trimethoprim/sulfamethoxazole (\(p = .001\)), and amoxicillin (\(p = .003\)); (c) expression of the \textit{agg} gene and resistance to gentamicin (\(p = .001\)), tetracycline (\(p = .001\)), ciprofloxacin (\(p = .017\)), and levofloxacin (\(p = .001\)); and (d) expression of the \textit{stx2} gene and resistance to ampicillin (\(p = .001\)), tetracycline (\(p = .001\)), compound trimethoprim/sulfamethoxazole (\(p = .002\)), and amoxicillin (\(p = .015\); Table 10).

3.5 The relationship between virulence genes and antibiotic resistance

Arisoy et al. (2008) showed that there was a correlation between antibiotic sensitivity and virulence factors (VFs) of \textit{E. coli} isolates causing pyelonephritis. They reported an increased presence of virulence genes \textit{pap}, \textit{sfa}, \textit{afai}, \textit{hly}, and \textit{aer} in sensitive strains. Horcajada et al. (2005) showed that a significant correlation was found between nalidixic acid resistance and the decreased prevalence of three VFs: \textit{sfa}, \textit{hly}, and \textit{cnf-1}.

4 CONCLUSIONS

Differences in the pathogenicity of \textit{E. coli} and its susceptibility to antimicrobial agents were detected in different retail foods. This must be taken into account in developing guidelines for retail food management. Periodic review and formulation of antibiotic consumption policies are required to control the spread and acquisition of antibiotic resistance. Because most isolates express several types of VFs at the same time, it is necessary to further study the interaction between different VFs at the molecular level.
In conclusion, *E. coli* has become a potential source of foodborne illness due to the possibility of horizontal transfer of drug-resistant genes, high drug resistance rate, and the correlation between the resistance to some antibiotics and several virulence factors. As those problems become more and more serious, we need to strengthen the supervision of veterinary drugs used in the raising of livestock. At the same time, the detection and monitoring of antimicrobial agents in animal foods can help to reveal the ongoing use of prohibited animal husbandry practices.

ACKNOWLEDGMENTS
This work was supported by grants from the National Natural Science Foundation of China—Xinjiang Joint Fund Project (No. U1703119), National Natural Science Foundation of China (No. 31301469), Projects of Innovation and Development Pillar Program for Key Industries in Southern Xinjiang of Xinjiang Production and Construction Corps (No. 2018DB002), and Shihezi University Major Science and Technology Research Project (gxjs2015-zdgg05).

CONFLICT OF INTEREST
The authors declare that they do not have any conflicts of interest.

ETHICAL STATEMENTS
This study did not involve any human or animal testing.

ORCID
Yingjiao Li https://orcid.org/0000-0003-2105-3745

REFERENCES
Alharbi, N. S., & Khaled, J. M. (2018). Prevalence of *Escherichia coli* strains resistance to antibiotics in wound infections and raw milk. *Saudi Journal of Biological Sciences*, 26(7), 1557-1562. https://doi.org/10.1016/j.sjbs.2018.11.016

Antonio, C., Elena, C., Davide, G., Donato, P., Patrizia, B., Evelyn, C., ... Silvia, T. (2007). Avian pathogenic *Escherichia coli* in Audouin gulls (*Larus audouinii*) could they affect the surviving of the bird colonies? *Italian Journal of Animal Science*, 6, 317–320. https://doi.org/10.4081/ijas.2007.317

Arathy, D. S., Vanpee, G., Belot, G., DeAllie, C., & Sharma, R. (2011). Antimicrobial drug resistance in *Escherichia coli* isolated from commercial chicken eggs in Grenada, West Indies. *West Indian Medical Journal*, 60, 53–56. https://doi.org/10.2298/WIMJ1101081P

Ariso, M., Rad, A. Y., Akin, A., & Akar, N. (2008). Relationship between susceptibility to antimicrobials and virulence factors in paediatric *Escherichia coli* isolates. *International Journal of Antimicrobial Agents*, 31(51), 4–8. https://doi.org/10.1016/j.ijantimicag.2007.07.030

Ayoii, A. O., Bii, C. C., & Okemo, P. (2008). Detection of antibiotic resistance and virulence related factors in *Escherichia coli* isolates from broiler chicken in Limuru, Kenya. *International Journal of Infectious Diseases*, 12(1), e109–e110. https://doi.org/10.1016/j.ijid.2008.05.274

Bothyna, G., & Randa, N. H. (2018). Multiple drug resistance and biocide resistance in *Escherichia coli* environmental isolates from hospital and household settings. *Antimicrobial Resistance and Infection Control*, 7, 47. https://doi.org/10.1186/s13756-018-0339-8

Bottacini, F., Morrissey, R., Roberts, R. J., James, K., van Breen, J., Egan, M., ... van Sinderen, D. (2018). Comparative genome and methylome analysis reveals restriction/modification system diversity in the gut commensal *Bifidobacterium breve*. *Nucleic Acids Research*, 46(4), 1860–1877. https://doi.org/10.1093/nar/gkx1289

Céline, B. A., & David, M. (2015). Horizontal gene transfer in microbial ecosystems. *Environmental Microbiology: Fundamentals and Applications*, 48, 445–481. https://doi.org/10.1051/vetres:2001125

Chang, L. L., Lin, H. H., Chang, C. Y., & Lu, P. L. (2007). Increased incidence of class 1 integrons in trimethoprim/sulfamethoxazole-resistant clinical isolates of *Stenotrophomonas maltophilia*. *Journal of Antimicrobial Chemotherapy*, 59, 1038–1039. https://doi.org/10.1093/jac/dkm034

CLSI (2015). *Performance Standards for Antimicrobial Susceptibility Testing* (25th ed.). CLSI Supplement M100. Clinical and Laboratory Standards Institute, Wayne, PA. Retrieved from https://clsi.org/standards/products/microbiology/documents/m100/

Dominguez, J. E., Redondo, L. M., Figueroa Espinosa, R. A., Cajas, D., Gutkind, G. O., Chacana, P. A., ... Fernández Miyakawa, M. E. (2018). Simultaneous carriage of *mcr-1* and other antimicrobial resistance determinants in *Escherichia coli* from poultry. *Frontiers in Microbiology*, 9, 1–10. https://doi.org/10.3389/fmicb.2018.01679

Guerra, B., Junker, E., Schroeter, A., Malorny, B., Lehmann, S., & Helmuth, R. (2003). Phenotypic and genotypic characterization of antimicrobial resistance in German *Escherichia coli* isolates from cattle, swine and poultry. *International Journal of Infectious Diseases*, 52(3), 489–492. https://doi.org/10.1016/j.ijicid.2018.0362

Guillard, T., Pons, S., Roux, D., Pier, G. B., & Skurnik, D. (2016). Antibiotic resistance and virulence: Understanding the link and its consequences for prophylaxis and therapy. *BioEssays*, 38, 682–693. https://doi.org/10.1002/bies.201500180

Heijnen, L., & Medema, G. (2006). Quantitative detection of *E. coli*, *E. coli* O157 and other shiga toxin producing *E. coli* in water samples using a culture method combined with real-time PCR. *Journal of Water and Health*, 4(4), 487–498. https://doi.org/10.2166/wh.2006.0032

Hinthong, W., Pumipuntu, N., & Santajit, S. (2017). Detection and drug resistance profile of *Escherichia coli* from subclinical mastitis cows and water supply in dairy farms in Saraburi Province, Thailand. *Peer J*, 5, e3431.

Ho, P. L., Wang, R. C., Chow, K. H., & Que, T. L. (2009). Distribution of integron-associated trimethoprim-sulfamethoxazole resistance determinants among *Escherichia coli* from humans and food-producing animals. *Letters in Applied Microbiology*, 49(5), 627–634. https://doi.org/10.1111/j.1472-765X.2009.02717.x

Horcajada, J. P., Soto, S., Gajewski, A., Smithson, A., Jiménez de Anta, M. T., Mensa, J., ...Johnson, R. J. (2005). Quinolone-resistant uropathogenic *Escherichia coli* strains from phylogenetic group B2 have fewer virulence factors than their susceptible counterparts. *Journal of Clinical Microbiology*, 43(6), 2962–2964. https://doi.org/10.1128/JCM.43.6.2962-2964.2005

Hu, Y., Yang, X., & Li, J. (2016). The transfer network of bacterial mobile resistome connecting animal and human microbiome. *Applied and Environmental Microbiology*, 82, 6672–6681. https://doi.org/10.1128/AEM.01802-16

Jessica, C., Lashaunda, B., & Levens, J. (2016). Longitudinal comparison of antibiotic resistance in diarrheagenic and non-pathogenic *Escherichia coli* from young Tanzanian children. *Frontiers in Microbiology*, 7, 1420. https://doi.org/10.3389/fmicb.2016.01420

Katarzyna, W. K., & Anna, L. B. (2016). Phenotypic and molecular assessment of drug resistance profile and genetic diversity of waterborne *Escherichia coli*. *Water, Air, & Soil Pollution*, 227, 142. https://doi.org/10.1007/s11270-016-2833-z

Kerrn, M. B., Klemmensen, T., Frimodt-Møller, N., & Espersen, F. (2002). Susceptibility of Danish *Escherichia coli* strains isolated from urinary tract infections and bacteremia, and distribution of sul genes conferring sulphonamide resistance. *Journal of Antimicrobial Chemotherapy*, 50(4), 513–516. https://doi.org/10.1093/jac/dkf1164

Knapp, C. W., Dolfing, J., Ehler, P., & Graham, D. W. (2010). Evidence of increasing antibiotic resistance gene abundances in archived soils
since 1940. *Environmental Science & Technology*, 44(2), 580–587. https://doi.org/10.1021/es901221x

Laupland, K. B., Gregson, D. B., Church, D. L., Ross, T., & Pitout, J. D. D. (2008). Incidence, risk factors and outcomes of *Escherichia coli* bloodstream infections in a large Canadian region. *Clinical Microbiology & Infection*, 14(11), 1041-1047. https://doi.org/10.1111/j.1469-0691.2008.02089.x

Laupland, K. B., Kibsey, P. C., & Gregson, D. B. (2013). Population-based laboratory assessment of the burden of community-onset bloodstream infection in Victoria. *Epidemiology and Infection*, 141(1), 174–180. https://doi.org/10.1017/S0950268812000428

Lopez, S. C., Cerna, J. F., Villegas, S. N., Thompson, R., Velazquez, F. R., Torres, J., ... Estrada, G. T. (2003). Single multiplex polymerase chain reaction to detect diverse loci associated with diarrheagenic *Escherichia coli*. *Emerging Infectious Diseases*, 9, 127–131. doi:https://doi.org/10.3201/eid0901.010507

Luo, J., Ji, H., & Wang, Q. L. (2016). Drug resistance of *Escherichia coli* isolated from different foods in Xinjiang. *Modern Food Science and Technology*, 32(8), 271-275. https://doi.org/10.13992/j.mfst.1673-9078.2016.8.041

Meredith, S., Brooks, B. D., & Brooks, A. E. (2017). The complex relationship between virulence and antibiotic resistance. *Genes*, 8, 1–3. https://doi.org/10.3390/genes8010039

Moses, A. E., Garbati, M. A., & Egwu, G. O. (2006). Detection of *E. coli* O157 and O25 serogroups in human immunodeficiency virus-infected patients with clinical manifestation of diarrhea in Maiduguri, Nigeria. *Journal of Research in Medical Science*, 1(4), 140–145.

Ng, L. K., Martin, I., Alfo, M., & Mulvey, M. (2001). Multiplex PCR for the detection of tetracycline resistance genes. *Molecular and Cellular Probes*, 15, 209–215. https://doi.org/10.1006/mcp.2001.0363

Nuno, M., Figueiredo, R., Mendes, C., Card, R., Anjum, M., & da Silva, G. (2016). Microarray evaluation of antimicrobial resistance and virulence of *Escherichia coli* isolates from Portuguese poultry. *Antibiotics*, 5(1), 4. https://doi.org/10.3390/antibiotics5010004

Paniagua, G. L., Monroy-Pérez, E., Rodríguez-Moctezuma, J. R., Domínguez-Trejo, P., Vaca-Paniagua, F., & Vaca, S. (2017). Virulence factors, antibiotic resistance phenotypes and O-serogroups of *Escherichia coli* strains isolated from community-acquired urinary tract infection patients in Mexico. *Journal of Microbiology, Immunology and Infection*, 50(4), 478–485. https://doi.org/10.1016/j.jmii.2015.08.005

Pass, M. A., Odeda, R., & Batt, R. M. (2000). Multiplex PCRs for identification of *Escherichia coli* virulence genes. *Journal of Clinical Microbiology*, 38, 2001–2004.

Rasheed, M. U., Thajuddin, N., Ahaled, P., Teklemariam, Z., & Jamil, K. (2014). Antimicrobial drug resistance in strains of *Escherichia coli* isolated from food sources. *Revista do Instituto de Medicina Tropical de São Paulo*, 56(4), 341–346. https://doi.org/10.1590/s0036-4665201400400012

Rawool, D. B., Vergis, J., Vijay, D., Dhaka, P., Negi, M., Kumar, M., ... Barbuddee, S. B. (2015). Evaluation of a PCR targeting fimbrial subunit gene (fimA) for rapid and reliable detection of Enteropathogenic *Escherichia coli* recovered from human and animal diarrhoeal cases. *Journal of Microbiological Methods*, 110, 45–48. https://doi.org/10.1016/j.mimet.2015.01.008

Rosengren, L. B., Waldner, C. L., & Reid-Smith, R. J. (2009). Associations between antimicrobial resistance phenotypes, antimicrobial resistance genes, and virulence genes of fecal *Escherichia coli* isolates from healthy grow-finish pigs. *Applied and Environmental Microbiology*, 75(5), 1373–1380. https://doi.org/10.1128/AEM.01253-08

Roux, D., Danilchanka, O., Guillon, T., Cattoir, V., Aschard, H., Fu, Y., ... Skurnik, D. (2015). Fitness cost of antibiotic susceptibility during bacterial infection. *Science Translational Medicine*, 7, 297. https://doi.org/10.1126/scitranslmed.aab1621

Sáenz, Y., Briñas, L., Domínguez, E., Ruiz, J., Zarazaga, M., Vila, J., & Torres, C. (2004). Mechanisms of resistance in multiple-antibiotic-resistant *Escherichia coli* strains of human, animal, and food origin. *Antimicrobial Agents and Chemotherapy*, 48(10), 3996–4001. https://doi.org/10.1128/AAC.48.10.3996-4001.2004

Sara, A., Mohammad, K., & Sadegh, G. (2014). The association of virulence determinants of uropathogenic *Escherichia coli* with antibiotic resistance. *Jundishapur Journal of Microbiology*, 7(5), e9936. https://doi.org/10.5812/jjm.9936

Srinivas, R. T., Gill, J. P. S., Ravi, K., & Sandeep, G. (2011). Multi drug resistance patterns of Shiga toxin producing *Escherichia coli* (STEC) and non-STEC isolates from meats, RTE meat foods, drinking water and human diarrheic samples of Punjab, India. *Archives of Clinical Microbiology*, 2, 1–12.

Tenaillon, O., Skurnik, D., Picard, B., & Denamur, E. (2010). The population genetics of commensal *Escherichia coli*. *Nature Reviews Microbiology*, 8(3), 207–217. https://doi.org/10.1038/nrsmicro2298

Viktoria, H., Lionel, F., & Per, K. (2008). The ferric yersiniabactin uptake receptor FyuA is required for efficient biofilm formation by urinary tract infectious *Escherichia coli* in human urine. *Microbiology*, 154, 167–175. https://doi.org/10.1099/mic.0.2007/011981-0

Wang, J. W., Sun, Y., & Ji, X. (2014). Isolation, identification and drug resistance analysis of *Escherichia coli* isolated from pigs in Changchun, China. *Journal of Veterinary Medicine*, 48(11), 14–18.

Xia, L. N., Xiang, F., & Guo, Q. Y. (2014). Drug resistance analysis of bovine *Escherichia coli* in different areas of Xinjiang. *Chinese Animal Husbandry and Veterinary Medicine*, 41(2), 203–207.

Xia, X., Meng, J., Zhao, S., Bodeis-jones, S., Gaines, S. A., Ayers, S. L., & McDermott, P. F. (2011). Identification and antimicrobial resistance of extraintestinal pathogenic *Escherichia coli* from retail meats. *Journal of Food Protection*, 74(1), 38–44. https://doi.org/10.4315/0362-028X.JFP-10-251

Yao, X. H., Long, M. J., Kuerbannaimu, K., Wang, K., & Xia, L. N. (2017). Antibiotic resistance of *Escherichia coli* from different animal sources. *Xinjiang Agricultural Science*, 54(12), 2314–2319. https://doi.org/10.6048/j.issn.1001-4330.2017.12.019

Zhang, P., Shen, Z., Zhang, C., Song, L. I., Wang, B., Shang, J., ... Wu, C. (2017). Surveillance of antimicrobial resistance among *Escherichia coli* isolated from different animal sources. *Xinjiang Agricultural Science*, 54(12), 2314–2319. https://doi.org/10.6048/j.issn.1001-4330.2017.12.019

Zhi, S., Xi, M. L., & Shen, J. L. (2009). The antibiotic resistance of food-borne *Escherichia coli*. *Acta Agriculturae Boreali-occidentalis Sinica*, 18(6), 377–381.

How to cite this article: Li Y, Zhang M, Luo J, et al. Antimicrobial resistance of *Escherichia coli* isolated from retail foods in northern Xinjiang, China. *Food Sci Nutr*. 2020;8: 2035–2051. https://doi.org/10.1002/fsn3.1491