Musculoskeletal Pathology

Inclusion Body Myositis

Laser Microdissection Reveals Differential Up-Regulation of IFN-γ Signaling Cascade in Attacked versus Nonattacked Myofibers

Jana Ivanidze,*† Reinhard Hoffmann,‡ Hanns Lochmüller,§ Andrew G. Engel,¶ Reinhard Hohlfeld,*† and Klaus Dornmair*†

From the Institute of Clinical Neuroimmunology,* Ludwig Maximilians University, Munich, Germany; the Department of Neuroimmunology,‡ Max-Planck-Institute of Neurobiology, Martinsried, Germany; the Institute for Medical Microbiology, Immunology and Hygiene,‡ Technische Universität Munich, Munich, Germany; The Institute of Human Genetics,§ Newcastle University, International Centre for Life, Newcastle upon Tyne, United Kingdom; and the Neuromuscular Research Laboratory,¶ Mayo Clinic and Foundation, Rochester, Minnesota

Sporadic inclusion body myositis (IBM) is a muscle disease with two separate pathogenic components, degeneration and inflammation. Typically, nonnecrotic myofibers are focally surrounded and invaded by CD8⁺ T cells and macrophages. Both attacked and nonattacked myofibers express high levels of human leukocyte antigen class I (HLA-I) molecules, a prerequisite for antigen presentation to CD8⁺ T cells. However, only a subgroup of HLA-I⁺ myofibers is attacked by immune cells. By using IHC, we classified myofibers from five patients with sporadic IBM as attacked (AIBM) or nonattacked (NIBM) and isolated the intracellular contents of myofibers separately by laser microdissection. For comparison, we isolated myofibers from control persons (HCTRL). The samples were analyzed by microarray hybridization and quantitative PCR. HLA-I up-regulation was observed in AIBM and NIBM, whereas HCTRL were negative for HLA-I. In contrast, the inducible chain of the interferon (IFN) γ receptor (IFNGR2) and several IFN-γ–induced genes were up-regulated in AIBM compared with NIBM and HCTRL fibers. Confocal microscopy confirmed segmental IFNGR2 up-regulation on the membranes of AIBM, which positively correlated with the number of adjacent CD8⁺ T cells. Thus, the differential up-regulation of the IFN-γ signaling cascade observed in the attacked fibers is related to local inflammation, whereas the ubiquitous HLA-I expression on IBM muscle fibers does not require IFNGR expression. (Am J Pathol 2011, 179:1347–1359; DOI: 10.1016/j.ajpath.2011.05.055)

Sporadic inclusion body myositis (sIBM) is the most common inflammatory myopathy in adults >50 years presenting with progressive weakness and atrophy of both proximal and distal muscle groups and leading to disability within 5 to 10 years after diagnosis.¹,² Because sIBM, in contrast to polymyositis (PM) or dermatomyositis (DM), is notoriously refractive to immnosuppressive therapies,³,⁴ it is assumed that sIBM is not a primary autoimmune myopathy but that the inflammatory changes are secondary to as yet unknown viral or degenerative triggers.⁵ Therefore, sIBM is regarded as the paradigm of a myopathy with distinct degenerative and inflammatory pathogenetic components.¹,⁶

The mechanism of inflammatory myofiber injury is unique in that CD8⁺ T cells and macrophages focally surround and invade initially nonnecrotic myofibers.⁷ Several articles⁶,⁸,⁹ provide a review of this information. The myoinvasive CD8⁺ cytotoxic T cells likely recognize (still unknown) antigens presented by HLA class I (HLA-I) molecules on the myofiber surface.¹⁰ Antigen-driven recruitment of the myocytotoxic CD8⁺ T cells is supported by evidence that the T cells are clonally expanded, using a restricted repertoire of T-cell

Supported by a scholarship from the Gerhard C. Starck Foundation, Düsseldorf, Germany (J.I.). H.L. is an investigator at the MRC Centre for Neuromuscular Diseases and at TREAT-NMD (EC, 6th FP, proposal 036825).

Accepted for publication May 31, 2011.

R.Hoh. and K.D. contributed equally to this work.

Supplemental material for this article can be found at http://ajp.amjpathol.org or at doi:10.1016/j.ajpath.2011.05.055.

Address reprint requests to Reinhard Hohlfeld, M.D., or Klaus Dornmair, Ph.D., Institute of Clinical Neuroimmunology, Ludwig Maximilians University, D-81377 Munich, Germany. E-mail: reinhard.hohlfeld@med.uni-muenchen.de or dornmair@neuro.mpg.de.
receptors\(^{11–15}\) and persisting over time in individual patients.\(^{12,15,16}\) Moreover, the CD8\(^+\) T cells form specific immunological synapses with vectorial excretion of perforin toward the attacked myofibers.\(^{17}\) This cytotoxicity cannot be assessed in \textit{in vitro} co-culturing experiments because only alloreactive CD8\(^+\) T cells were strongly cytotoxic to allogeneic myotubes in co-cultures.\(^{18,19}\)

HLA-I is not detectable on myofibers of healthy subjects.\(^{20}\) In sIBM, HLA-I is uniformly up-regulated on all myofibers\(^{21–24}\); however, CD8\(^+\) T cells attack myofibers in a strictly focal pattern.\(^{25}\) Obviously, HLA-I expression is only a necessary, but not sufficient, precondition for a myofiber to be attacked. There seem to be additional factors rendering muscle fibers susceptible to inflammatory attack. The aim of the present study was to identify molecular patterns that are differentially regulated in invaded versus noninvaded muscle fibers, focusing on the pathways of antigen presentation and processing.

To address the question of why certain myofibers are attacked, whereas others are spared, we used the unique properties of the distinct morphological characteristics of myofibers that remain clearly distinguishable, even under conditions required for laser microdissection (ie, nonembedded tissue and short incubation times, as described in Materials and Methods). We separately laser microdissected attacked and nonattacked muscle fibers while excluding inflammatory cells. We compared attacked myofibers from IBM muscle (A\(_ {IBM}\)), nonattacked sIBM myofibers (N\(_ {IBM}\)), and healthy control myofibers (H\(_ {CTRL}\)) using microarray transcriptome analysis, quantitative PCR (qPCR), and confocal microscopy. PM or DM could not serve as controls because PM is heterogeneous\(^{26}\) and DM lacks CD8\(^+\)-mediated immunopathological features. We found that the attacked muscle fibers in sIBM differentially overexpressed members of the interferon (IFN) \(\gamma\) signaling cascade. The signature of these molecular changes suggests that they are induced by locally secreted pro-inflammatory cytokines and, therefore, are a consequence, rather than the cause, of the focal inflammatory attack. In contrast, the ubiquitous up-regulation of HLA-I on all IBM myofibers seems to be independent of IFN-\(\gamma\)-mediated signaling and, therefore, triggered before inflammation by as yet unknown mechanisms.

Materials and Methods

Patients and Healthy Controls

Muscle biopsy specimens were obtained from five patients with sIBM (IBM-1 to IBM-5) and three healthy controls (C-1 to C-3) (Table 1). IBM biopsy samples were obtained at the Neuromuscular Laboratory, Mayo Clinic, Rochester, MN (A.G.E.). The study was approved by the local Institutional Review Board (approval no. 1278–03). Patients’ consent was obtained according to the Declaration of Helsinki.\(^{27}\) None of the five patients with IBM had received prior anti-inflammatory treatment. The diagnosis of definitive IBM was made according to published criteria.\(^{28}\) Congophilic deposits were visualized in Congo red–stained sections viewed under rhodamine optics.

Three individuals who had clinically presented with nonspecific myalgia, but had normal serum creatine kinase values and normal diagnostic biopsy findings (H.L., University of Munich, Munich, Germany), served as controls. C-1 had clinically silent leukocytosis with slight C-reactive protein elevation at biopsy. All muscle blocks were stored at \(-80^\circ\)C. We did not include healthy individuals. For the experiments performed herein, it is absolutely essential that the samples are shock frozen immediately after surgery because otherwise the RNA quality will not be sufficient anymore. RNA, in contrast to DNA or proteins, is degraded rapidly. Therefore, we were limited to diagnostic biopsy material. Samples from autopsy cases or from accidents would not fulfill the listed requirements.

Antibodies

The following antibodies were used in this study. Mouse anti-human CD8\(_\alpha\) antibody clone LT8 (Serotec, Oxford, UK), which we had previously labeled with the
The figures in the image are not included in the text. The text describes the procedures and results of a study involving the analysis of muscle biopsy samples from patients with inflammatory muscle diseases, focusing on the detection of CD8+ T cells and HLA-ABC expression.

Materials and Methods

Before the experiments, the RNA quality of each biopsy was assessed by Agilent Bioanalyzer 2100 following the recommendations of the manufacturer (Agilent Technologies, Palo Alto, CA). RNA was heat denatured at 70°C and diluted to concentrations of 5 to 15 ng/μL. RNA, 1 μL, was then used for the Agilent Bioanalyzer chip (Agilent Technologies, Böblingen, Germany). We used a staining and laser microdissection protocol similar to our previously published method.

Briefly, 10-μm cryostat sections from muscle biopsy specimens of patients 1 to 5 and healthy controls 1 to 3 were double stained for CD8α and HLA-ABC with the antibodies previously described. To inhibit RNase activity, all aqueous solutions were pretreated with diethylpyrocarbonate and contained 3 U/μL Protector RNase inhibitor (Roche, Mannheim, Germany) and 2% purified bovine serum albumin (B4287; Sigma). Sections were mounted on positron emission tomographic films (P.A.L.M. Microlaser, Bernried, Germany) that had previously been baked at 180°C for 4 hours, UV irradiated, and coated with poly-L-lysine. Mounted sections were stored at −80°C. After drying in a desiccator, dehydrating in PBS for 10 seconds, and blocking by PBS with 2% bovine serum albumin for 3 minutes, the sections were co-incubated for 5 minutes with the Cy3-mAb Labeling Kit (GE/Amersham, Freiburg, Germany), which was used at 2 μg/mL. Mouse anti-human HLA–avidin-biotin complex (ABC) antibody clone W6/32 (directly labeled with Alexa 488 by the manufacturer; AbD Serotec, Düsseldorf, Germany) was used at 0.5 μg/mL. Rabbit anti-human IFNGR2 antibody, polyclonal (order no. HPA001535; Sigma, Deisenhofen, Germany), was used at 1.6 μg/mL with a goat anti-rabbit Alexa 594-labeled secondary antibody (order no. A-11037; Invitrogen, Darmstadt, Germany) at 4 μg/mL. When unlabeled mouse anti-human CD8α antibody clone LT8 was used (dilution, 10 μg/mL; Serotec), a secondary goat anti-mouse Alexa 488-labeled antibody (order no. A-11029; Invitrogen) was used at 2 μg/mL. For negative controls, we used isotype-matched IgGs [mouse IgG1, order no. 555746 (BD Pharmingen, Heidelberg, Germany); mouse IgG2a, order no. MCA929XZ (AbD Serotec)] for monoclonal antibodies and purified IgG (IgG from rabbit serum, order no. I5006; Sigma) for polyclonal antibodies.

Laser Microdissection

The numbers in the yellow fields A and C show the total area (μm²) of AIBM and NIBM myofibers that was sampled from each patient with sIBM (attacked and nonattacked) and each control subject. To minimize contamination with inflammatory cells, we assessed the dried sections for artifacts by comparing them with

(Caption for Figure 1)

Figure 1. Experimental approach for separate analysis of attacked and nonattacked myofibers in sIBM. A: The focal nature of inflammatory infiltrates in IBM. Muscle tissue was stained with anti-CD8 (red) and anti-HLA-ABC (green) antibodies, as described in Materials and Methods. A shows a confocal image, C shows unembedded dry tissue. All myofibers are HLA-ABC positive, but only some are attacked by CD8+ T cells. B: Double immunostaining for HLA-ABC (green) and CD8 (red), according to the protocol described in Materials and Methods. Only myofiber tissue (star) was isolated, avoiding surrounding lymphocytes (red). D: Corresponding bright-light image after the myofiber was dissected and catapulted out of the tissue. C and D: The numbers in the yellow fields refer to apparatus parameters. Scale bars = 50 μm (A and C).

(Caption for Figure 2)

Figure 2. Laser capture microdissection of sIBM. A: The protocol for laser capture microdissection (LCM) of sIBM muscle tissue with antibodies against HLA-ABC (green) and CD8 (red). B: A portion of a muscle section stained with antibodies against HLA-ABC (green) and CD8 (red). C: The sections were immediately stored on dry ice. D: The numbers in the yellow fields C, A, and B show the total area (μm²) of AIBM and NIBM myofibers that was sampled from each patient with sIBM (attacked and nonattacked) and each control subject. To minimize contamination with inflammatory cells, we assessed the dried sections for artifacts by comparing them with

(Caption for Figure 3)

Figure 3. Experimental approach for separate analysis of attacked and nonattacked myofibers in sIBM. A: The focal nature of inflammatory infiltrates in IBM. Muscle tissue was stained with anti-CD8 (red) and anti-HLA-ABC (green) antibodies, as described in Materials and Methods. A shows a confocal image, C shows unembedded dry tissue. All myofibers are HLA-ABC positive, but only some are attacked by CD8+ T cells. B: Double immunostaining for HLA-ABC (green) and CD8 (red), according to the protocol described in Materials and Methods. Only myofiber tissue (star) was isolated, avoiding surrounding lymphocytes (red). D: Corresponding bright-light image after the myofiber was dissected and catapulted out of the tissue. C and D: The numbers in the yellow fields refer to apparatus parameters. Scale bars = 50 μm (A and C).
embedded tissue (stained under the same conditions and embedded with Fluorescent Mounting Medium; Dako, Glostrup, Denmark). Moreover, we checked for possible contamination by examining our microarray data for the expression of lymphocyte-, monocyte-, and macrophage-specific transcripts (see Supplemental Table S1 at http://ajp.amjpathol.org).

RNA Isolation and Linear Transcriptome Amplification

After obtaining 100,000 μm² of each group of myofibers, the samples were pooled according to their classification. RNA was then extracted using the TRIzol method, the samples were pooled according to their classification, and some modifications as recommended by the linear amplification protocol. Three rounds of linear T7-based amplification were performed using the Ex-amplicon protocol. RNA was then extracted using the TRIzol method, and the samples were pooled according to their classification.

Microarray Hybridization and Analysis

Amplified cDNA, 15 μg, was biotinylated and concomitantly transcribed into aRNA using the BioArray High Yield RNA labeling kit (Enzo Life Sciences, Plymouth Meeting, PA). Biotinylated aRNA was hybridized to HG U133 GeneChip arrays (Affymetrix, High Wycombe, UK). All chips were normalized using the robust multiarray average or the GeneChip robust multiarray average procedure in R packages from Bioconductor (Fred Hutchinson Center, Seattle, WA) (http://www.bioconductor.org, last accessed December 2008). For each probe set, the q values were calculated. The q values mirror the false discovery rate and illustrate the degree of heterogeneity between different samples (ie, herein, between different patients). Thus, a low q value reflects a high significance of a particular expression change across all samples. To achieve a high concordance across all patients, we considered only transcripts with a q value of ≤20%.

TaqMan Real-Time qPCR

Expression levels of the following genes were measured in all 13 samples (attacked and nonattacked myofibers from each of the five patients and C-1 to C-3) by real-time qPCR using the 5700 Real-Time PCR System (Applied Biosystems, Foster City, CA): HLA-A, HLA-B, HLA-C, HLA-E, HLA-F, HLA-G, IFN-γ receptor α chain (IFNGR1), IFN-γ receptor β chain (IFNGR2), STAT1, class II trans-activator (CIITA), proteasome subunit β-type 8 (PSMB8), HLA-DRA, HLA-DRB, HLA-DPA, HLA-DPB, HLA-DOB, CCL5, and STAT3. aRNA was reverse transcribed into cDNA using primer D from the ExpressArt-mRNA Amplification Kit. Three replicates per sample were assayed for each gene in a 96-well format plate. For data normalization across samples, cyclophilin was used as a housekeeping gene. Normalization of the Cₚ values of each gene and determination of fold changes in gene expression were calculated according to the comparative Cₚ method, also

Table 2. Genes Analyzed with TaqMan qPCR
Gene
HLA-A
IFNGR1
PSMB8

*Classic and nonclassic HLA-I genes were analyzed, as were the major HLA-II genes DR, DP, and DO. Moreover, we examined the expression of genes downstream of IFN-γ. Forward and reverse primers, and FAM/TAMRA-labeled probes, are listed. All primer/probe sets were designed by us, with the exceptions of IFNYR1 and CIITA. For forward, GAPDH, glyceraldehyde-3-phosphate dehydrogenase; P, probe; PPA, cyclophilin; Rev, reverse.
known as the $2^{-\Delta\Delta Ct}$ method. For some genes, TaqMan gene expression assays (Applied Biosystems) were used; others were analyzed using custom-made primers and probes (Metabion, Martinsried, Germany). Table 2 lists the primers and probes used in this study.

Histological Features and Confocal Microscopy

To demonstrate CD8$^+$ T-cell interaction with HLA-I–positive myofibers, we used 10-µm cryosections fixed in ice-cold acetone. To block nonspecific binding, sections

Probe set ID	Gene title	Raw expression values	Fold change
205132_at	Actin, α, cardiac muscle 1	9926.55 5275.13 338.44 0.00	29.33 1.88 15.59
201891_s_at*	-2-Microglobulin	12,436.09 11,093.17 101.36 0.00	19.33 1.52 12.76
216526_x_at*	MHC class I, A; MHC class I, C; MHC class II polypeptide-related sequence A; MHC class II polypeptide-related sequence B	8959.71 7976.71 705.27 0.00	12.70 1.12 11.31
209140_x_at*	MHC class I, B; MHC class I, C; MHC class I polypeptide-related sequence A; MHC class I polypeptide-related sequence B	9521.19 613.20 4.05 0.00	432.37 2.86 151.40
217456_x_at*	MHC, class I, E	1503.90 827.43 75.69 0.00	19.87 1.82 10.93
209040_s_at*	Proteasome (prosome, macropain) subunit, type, 8 (large multifunctional peptidase 7)	605.96 373.82 25.70 5.12	23.58 1.62 14.55
211071_s_at*	Myeloid/lymphoid or mixed-lineage leukemia (trithorax homologue, Drosophila), translocated to 11	250.88 163.19 12.87 0.00	19.49 1.54 12.68
202296_s_at*	RER1 retention in endoplasmic reticulum 1 homolog (Saccharomyces cerevisiae)	7963.49 6296.56 94.89 0.00	83.92 1.26 66.35
221875_x_at*	Apolipoprotein L, 3	1944.88 1365.55 21.27 5.12	91.44 1.42 64.20
213932_x_at*	MHC, class I, A	9857.13 7352.34 2127.78 8.84	4.63 1.34 3.46
201137_s_at*	MHC, class II, DP β 1	1817.92 684.36 37.08 8.84	49.02 2.66 18.46
225061_at	DnaJ (Hsp40) homologue, subfamily A, member 4	9337.35 6540.77 430.46 5.12	21.69 1.43 15.19
211528_x_at*	Proteasome (prosome, macropain) activator subunit 1 (PA28α)	9521.19 613.20 4.05 0.00	432.37 2.86 151.40
200887_s_at*	STAT 1, 91 kDa	7963.49 6296.56 94.89 0.00	83.92 1.26 66.35
201137_s_at*	MHC, class II, DP β 1	1817.92 684.36 37.08 8.84	49.02 2.66 18.46
225061_at	DnaJ (Hsp40) homologue, subfamily A, member 4	9337.35 6540.77 430.46 5.12	21.69 1.43 15.19
211528_x_at*	Proteasome (prosome, macropain) activator subunit 1 (PA28α)	9521.19 613.20 4.05 0.00	432.37 2.86 151.40
200887_s_at*	STAT 1, 91 kDa	7963.49 6296.56 94.89 0.00	83.92 1.26 66.35
201137_s_at*	MHC, class II, DP β 1	1817.92 684.36 37.08 8.84	49.02 2.66 18.46
225061_at	DnaJ (Hsp40) homologue, subfamily A, member 4	9337.35 6540.77 430.46 5.12	21.69 1.43 15.19
211528_x_at*	Proteasome (prosome, macropain) activator subunit 1 (PA28α)	9521.19 613.20 4.05 0.00	432.37 2.86 151.40
200887_s_at*	STAT 1, 91 kDa	7963.49 6296.56 94.89 0.00	83.92 1.26 66.35
201137_s_at*	MHC, class II, DP β 1	1817.92 684.36 37.08 8.84	49.02 2.66 18.46
225061_at	DnaJ (Hsp40) homologue, subfamily A, member 4	9337.35 6540.77 430.46 5.12	21.69 1.43 15.19
211528_x_at*	Proteasome (prosome, macropain) activator subunit 1 (PA28α)	9521.19 613.20 4.05 0.00	432.37 2.86 151.40

Raw expression values are provided along with fold expression changes showing regulation of transcripts in AIBM vs HCTRL, AIBM vs NIBM, and NIBM vs HCTRL. The q value mirrors the false discovery rate. The lower the q value, the higher the significance of the results across all samples (see Materials and Methods). Herein, we show transcripts that were expressed with a q value of ≤20%.

*Among these 34 transcripts, 19 can be attributed to components of the classic and nonclassic HLA-I, HLA-II, IFN-γ-inducible genes and immunoproteasome components.

MHC, major histocompatibility complex; RER, retention in endoplasmic reticulum.
were incubated with 2% bovine serum albumin and 2% mouse serum in PBS. Then, we stained for CD8α and HLA-ABC using the antibodies previously described. To confirm IFNGR2 expression on the protein level, we fixed the tissue in 4% paraformaldehyde at room temperature and washed with PBS, then blocked unspecific binding with 2% bovine serum albumin–2% goat serum in PBS, and subsequently stained for CD8α (same as previously described, unlabeled) and rabbit anti-human IFNGR2 antibody (Sigma). After washing in PBS, sections were incubated with goat anti-mouse Alexa 488–labeled antibody and goat anti-rabbit Alexa 594–labeled antibody (both from Invitrogen). For negative controls, we used isotype-matched IgGs (mouse IgG1 for anti-CD8 and mouse IgG2a for anti-HLA-ABC) for monoclonal antibodies and purified IgG (rabbit IgG) for polyclonal antibodies. The staining was visualized using a Zeiss Axiovert 200M inverted microscope (Zeiss, Göttingen, Germany). For confocal microscopy, a Leica TCS SP2 system was used (Leica Microsystems, Wetzlar, Germany). For image analysis, we used the ImageJ software written by Wayne Rasband at the US NIH, version 1.42m (http://rsbweb.nih.gov/ij/index.html, last accessed September 2010).

Quantitative Analysis of IFNGR2 Signal Distribution

Cryosections were stained for IFNGR2 and CD8 and imaged as previously described. Myofibers were photographically documented and classified into four groups according to their extent of membrane circumference positivity for IFNGR2: group 1, >80%; group 2, 50% to 80%; group 3, 20% to 50%; and group 4, <20%. For each myofiber, we counted the number of adjacent CD8+ T cells and calculated the medians. Two investigators (J.I. and Ingrid Eigei) independently performed this analysis for each patient. A Mann-Whitney U-test was performed to determine whether the medians of adjacent CD8+ T cells of group 1 (>80% IFNGR2 positivity) and group 4 (<20% IFNGR2 positivity) differed significantly. The two-tailed P value was calculated, as was the Mann-Whitney U-test value. This analysis was performed for four of five patients with sIBM because of lack of biopsy material from patient 4.

Results

Hints from Microarray Analysis of Attacked and Nonattacked Myofibers

We isolated AIBM, NIBM, and HCTRL myofibers from five patients and three control individuals, as described in Materials and Methods and illustrated in Figure 1. At least 100,000 μm² of total myofiber area was isolated from each fiber subset of each patient and from each control. We amplified RNA from these laser-microdissected samples and hybridized the aRNA to HG U133 GeneChip microarrays. The microarray data were cross-checked for inadvertent sampling of inflammatory cells (see Supplemental Table S1 at http://ajp.amjpathol.org). We focused on transcripts that were regulated with q values of ≤20% (Table 3) to ensure that interpatient variation is minimized. Of the 34 transcripts with a q value of ≤20%, 19 belonged to HLA-I, HLA-II, or inflammatory signaling genes. Next, we explored whether these molecules are differentially expressed in AIBM versus NIBM versus HCTRL myofibers. Of these 34 transcripts, six were polymorphic HLA-I (ie, HLA-A, HLA-B, or HLA-C). Both AIBM and NIBM myofibers showed a strong up-regulation of HLA-ABC expression compared with HCTRL myofibers (average fold change for AIBM/HCTRL = 16.78, NIBM/HCTRL = 12.95, and AIBM/NIBM = 1.29). Moreover, seven nonpolymorphic HLA-I...
(ie, HLA-E, HLA-F, or HLA-G) transcripts were up-regulated, with low q values (average fold change for AIBM/HCTRL = 23.63, NIBM/HCTRL = 13.74, and AIBM/NIBM = 1.62).

Two probe sets of STAT1, a mediator of IFN signaling, were regulated, with a q value of 0%, thus being highly significant across all patients. STAT1 was strongly expressed in AIBM and NIBM and undetectable in HCTRL. HLA-DPB1 was the only HLA-II transcript with a q value <20%. In contrast to HLA-I, HLA-DPB1 was up-regulated 2.66-fold in AIBM versus NIBM myofibers. PSMB8, a major constituent of the immunoproteasome, had a q value of 0% as well and was differentially regulated in AIBM versus NIBM (fold change = 2.86).

Several transcripts important for inflammatory signaling and antigen presentation were overexpressed in global microarrays from sIBM biopsy specimens by other researchers (see Supplemental Table S2 at http://ajp.amjpathol.org). Although only some of the transcripts had significantly low q values, our results allow us to attribute these regulation patterns to specific myofiber subsets. On the other hand, Ig genes were absent in our myofiber-specific microarray studies (see Supplemental Table S1 at http://ajp.amjpathol.org). This ensures that cells of the B lineage, and not myofibers, are the source of Igs in sIBM tissue.35,36

TaqMan qPCR Confirms Global HLA-I Up-Regulation in sIBM Muscle Fibers

We analyzed aRNA from laser-microdissected AIBM, NIBM, and HCTRL myofibers using TaqMan qPCR. Relative expression values were calculated for all TaqMan results using the 2^{ΔΔCT} method.31,32

We found that all members of the HLA-I family were up-regulated in both AIBM and NIBM compared with HCTRL myofibers (Figure 2). This agrees with our microarray data and with previous immunohistological studies21 and supports the overall validity of our experimental approach.

Differential Regulation of IFN-γ Downstream Signaling Pathways

We found several IFN-γ-inducible molecules to be differentially up-regulated in AIBM versus NIBM and HCTRL myofibers. To see whether myofibers are susceptible to IFN-γ, we analyzed the expression of both chains of IFNGR and its major downstream mediator STAT1 in AIBM versus NIBM and HCTRL myofibers with TaqMan qPCR. Both IFNGR1 and IFNGR2 were overexpressed in AIBM. In NIBM and HCTRL myofibers, the expression of both IFNGR chains ranged below the detection limit in most cases (Figure 3, A and B). STAT1 was up-regulated in AIBM and below the detection limit in NIBM and HCTRL (Figure 3C). Two other major downstream effector proteins of IFN-γ, the immunoproteasome component PSMB837 and CIITA,38 were up-regulated in AIBM compared with NIBM and HCTRL (Figure 3, D and E). In one patient, the levels of all three downstream transcripts (ie, STAT1, PSMB8, and CIITA) were particularly high compared with the other patients. This reflects a certain interindividual variability that is to be expected in such a cohort.
Next, we investigated whether IFN-γ cascade up-regulation results in effective HLA-II overexpression in AIBM. We looked at the expression of the respective α and β chains of HLA-DR, HLA-DP, and HLA-DQ. HLA-DRA and HLA-DRB were up-regulated in AIBM compared with NIBM and HCTRL myofibers (Figure 3, F and G). In the case of HLA-DPA and HLA-DPB, the difference in overexpression between AIBM and NIBM was less striking (Figure 3, H and I). HLA-DQA and HLA-DQB showed the same tendency, albeit with lower expression levels (Figure 3, J and K).

Because tumor necrosis factor (TNF)-α induces chemokine ligand (CCL) 5 [regulated on activation normal T-cell expressed and secreted (RANTES)] via STAT3 in vascular smooth muscle cells and many other nonlymphoid cell types,39 we investigated the transcriptional activity of the CCL5-STAT3 system in our laser-microdissected myofiber subsets from patients with sIBM. Although RANTES and STAT3 levels were generally low, and the expression patterns were heterogeneous across all patients and controls, median values indicate a tendency for higher CCL5 expression in attacked myofibers compared with nonattacked myofibers and healthy controls (Figure 3, L and M).

Confocal Microscopy Confirms Differential IFNGR2 Expression in AIBM versus NIBM Myofibers

On binding of IFN-γ, IFNGR1 is internalized in a complex with STAT1, whereas IFNGR2, also known as the inducible chain of the IFN-γ receptor, remains on the cell surface.40 To evaluate IFNGR2 expression on the protein level, we double stained cryosections from five patients with sIBM and three controls for IFNGR2 and CD8. We found that a proportion of myofibers of patients with sIBM stained positive for IFNGR2. The IFNGR2 was not uniformly distributed in patients with sIBM. Some myofibers were positive for IFNGR2 along their entire surface. Other myofibers showed only partial segmental membrane staining, and yet others were entirely negative. This variability of IFNGR2 membrane staining was similar in all five patients with sIBM who were included in our study. By

![Image](image_url)
contrast, myofibers from healthy controls did not stain positive for IFNGR2 (Figure 4).

We then asked whether the extent of IFNGR2 expression might be related to the extent of inflammatory changes around individual fibers. To this end, we classified myofibers into four groups according to the extent of IFNGR2 surface expression as follows: group 1, >80%; group 2, 50% to 80%; group 3, 20% to 50%; and group 4, <20% surface staining (Figure 5). Control sections stained in the same experiment were uniformly negative for IFNGR2 (Figure 4). Two independent observers (J.I. and Ingrid Eiglmeier) evaluated the numbers of attacking CD8⁺ T cells that were in direct contact with each myofiber for each classified myofiber (Figure 6). A Mann-Whitney U-test was performed to determine whether the distributions of adjacent CD8⁺ T-cell numbers per myofiber in groups 1 and 4 differed significantly in all analyzed patients (Figure 6). In patient IBM-1, the median CD8⁺ T-cell numbers were 5 and 1 (observer Ingrid Eiglmeier: Mann-Whitney U-test = 9.5, \(P < 0.0001 \)) and 6 and 1 (observer J.I.: Mann-Whitney U-test = 5.5, \(P < 0.0001 \)), respectively. In patient IBM-2, the median CD8⁺ T-cell numbers were 4 and 0 (observer I.E.: Mann-Whitney U-test = 0, \(P < 0.0278 \)) and 5 and 0.5 (observer J.I.: Mann-Whitney U-test = 0, \(P < 0.0223 \)), respectively. In patient IBM-3, the median CD8⁺ T-cell numbers were 5 and 1 (observer Ingrid Eiglmeier: Mann-Whitney U-test = 3, \(P < 0.0072 \)) and 5.5 and 1 (observer J.I.: Mann-Whitney U-test = 5.5, \(P < 0.0011 \)) respectively. In patient IBM-5, the median CD8⁺ T-cell numbers were 6 and 0 (observer I.E.: Mann-Whitney U-test = 13, \(P < 0.0001 \)) and 7 and 0 (observer J.I.: Mann-Whitney U-test = 10.5, \(P < 0.0001 \)), respectively. (All \(P \) values were two tailed.) The results reveal a positive correlation between the density of the focal inflammatory infiltrate and the extent of IFNGR2 surface expression, indicating that IFNGR2 is up-regulated on myofibers by locally produced pro-inflammatory cytokines.

Discussion

In sIBM, essentially all muscle fibers express HLA-I.⁶ By contrast, the attacking CD8⁺ T cells follow a strictly focal pattern. In the present study, we sought to identify differences between the following: \(A_{ibm} \), \(N_{ibm} \), and \(H_{ctrl} \). We focused on the molecular pathways of antigen presentation. We did not investigate PM or DM because PM is heterogeneous⁶⁶ and DM lacks CD8⁺-mediated muscle fiber injury. We found high levels of HLA-I in both \(A_{ibm} \) and \(N_{ibm} \) myofibers. In contrast, the receptor for IFN-γ was overexpressed in \(A_{ibm} \) compared with \(N_{ibm} \) myofibers, indicating increased susceptibility of \(A_{ibm} \) to IFN-γ downstream signaling.

Ubiquitous Up-Regulation of HLA-I

Most tissues constitutively express HLA-I molecules. Muscle is an exception in that HLA-I is normally undeetectable but up-regulated in inflammatory myopathies.²¹,²⁴,⁴¹ In sIBM, HLA-I expression is essentially ubiquitous on all myofibers. Consistent with this well-
established histological feature, we observed up-regulation of classic and nonclassic HLA-I transcripts in both AIBM and NBM (Figure 7). This confirms and extends previous observations that nonclassic HLA-G is up-regulated on muscle fibers in inflammatory myopathies.42 Because up-regulation of HLA-I on sIBM myofibers is independent of the presence of local inflammatory cells,6 and because it may occur in the absence of an IFN-γ signature (as shown by our present results from NBM), it appears that HLA-I is induced by unknown triggers upstream of the IFN-γ-related changes. Other inflammatory mediators (eg, TNF-α) may precede and subsequently potentiate the IFN-γ cascade, as suggested by our findings on the up-regulation of CCL5-STAT3 in attacked myofibers, which is a TNF-α-inducible chemokine system.39 IFN-α is a further important inflammatory mediator implicated in the pathogenesis of inflammatory myopathies. In juvenile DM, IFN-α up-regulated HLA-I and several IFN-γ-inducible genes, possibly through up-regulation of IL1-α/β.33,44 The interplay between IFN-α and IFN-γ demonstrated in juvenile DM may play a role in sIBM as well.

The nonhistone nuclear protein alarmin high-mobility group box 1 protein may be a further important upstream inducer of HLA-I in sIBM. High-mobility group box 1 protein up-regulation has been demonstrated in myofibers of patients with inflammatory myopathies early in the disease course. Moreover, high-mobility group box 1 protein up-regulated HLA-I on muscle cells in vitro.45 Another possible explanation for IFN-γ-independent HLA-I induction may be a viral infection, given the known association of inflammatory myopathies with human T-lymphotropic virus I and HIV.46–48 Moreover, viral infection induced HLA-I on cultured human myoblasts independently of IFN-γ.49 Although there is no current evidence that HLA-I can be induced by degenerative factors, the HLA-I up-regulation in sIBM might be related to the observed degenerative changes.50–52 Amyloid-β precursor protein and embryonic myosin variants showed reasonable q values between 20% and 40% (data not shown). These findings, which need to be extended and confirmed in future studies, would be consistent with the concept that inflammatory and degenerative changes in sIBM are mutually related.53,54 An additional aspect not addressed in our study is the expression of αB-crystallin in so-called X fibers.55 Previous observations that X fibers are otherwise morphologically normal, and are not (yet?) attacked by inflammatory cells, suggested that αB-crystallin expression is induced in these fibers by an unknown proximal triggering event, perhaps infection with an unknown virus. It will be interesting to apply our microdissection approach to the investigation of X fibers in future studies.

The precise pathogenetic role of HLA-I overexpression remains uncertain. In animal models, overexpression of major histocompatibility complex I was associated with inflammatory and degenerative myopathic changes, possibly related to an endoplasmic reticulum stress response.56–58 Furthermore, HLA-I expression is definitively a prerequisite for CD8+ T-cell–mediated muscle fiber injury because CD8+ T cells recognize HLA-I-bound antigenic peptides. Previous studies59 have demonstrated HLA-I up-regulation in human myoblasts incubated by IFN-γ. The difference might be explained by the fact that mature myofibers differ from less differentiated myotubes and myoblasts. However, as supported by our findings, HLA-I is only a necessary, but by no means sufficient, precondition for a CD8+ T-cell–mediated attack, and HLA-I expression alone cannot explain the focal character of inflammation in sIBM.

Up-Regulation of IFN-γ Receptor in Attacked Myofibers

The crucial upstream protein required for initiation of downstream IFN-γ signaling is the IFN-γ receptor, which was expressed by AIBM but not NBM or HCTRL myofibers by qPCR (Figure 7). When IFN-γ binds to the IFN-γ receptor, the complex of IFN-γ, IFNGR1, and STAT1 translocates into the nucleus while IFNGR2 remains on the cell surface.40,60 In sIBM muscle, IFNGR2 protein expression,
as demonstrated by immunofluorescence staining, was heterogeneous and related to the presence of inflammatory cells. Quantitative analysis of the relationship between inflammatory cells and segmental IFNγR2 expression revealed a positive correlation between the extent of IFNγR2 surface expression on myofibers and the number of adjacent CD8⁺ T cells in all patients, confirming our qPCR findings.

Up-Regulation of IFN-γ-Induced Transcripts

An important downstream component of the IFN-γ signaling cascade is STAT1 (Figure 7). A role for STAT1 overexpression has been demonstrated for DM and PM.61 Our qPCR results revealed that STAT1 is differentially overexpressed in AIBM myofibers, which is consistent with our observation that IFNγR2 is preferentially expressed in AIBM myofibers.

CIITA (Figure 7) is the most important transcription factor for the induction of HLA-II.62 To some extent, CIITA can induce HLA-I as well.63 CIITA is strongly regulated by IFN-γ, which can induce CIITA in nonlymphoid cells.38 We show, for the first time to our knowledge, an up-regulation of CIITA in CD8⁺ T-cell–attacked myofibers of patients with sIBM. Literature on the expression of HLA-II in sIBM is controversial. Global tissue profiling has demonstrated an increase of HLA-DP, HLA-DQ, and HLA-DR in sIBM; however, the cellular source remained uncertain.35 Immunohistochemical studies addressing the expression of HLA-II on myofibers in inflammatory myopathies are sparse. One study64 analyzed the expression of HLA-II in DM and PM and provided evidence that the HLA-DR expression is independent of inflammatory infiltrates. However, in sIBM, we found differential HLA-DR overexpression in CD8⁺ T-cell–attacked myofibers (Figure 7). This discrepancy might be related to differences between the different myopathies, with IM being dominated by CD8⁺ T cells and DM by CD4⁺ T cells; PM is a heterogeneous disease. The pathogenic relevance of IFN-γ–induced HLA-II expression is unknown, probably initiated by TNF-α.55 However, (auto-) antigen presentation to CD4⁺ T cells is unlikely because the endomysial inflammatory infiltrate in sIBM consists mainly of CD8⁺ T cells.7

The IFN-γ–inducible catalytic immunoproteasome subunit PSMB8 (LMP-2) generates peptides with an increased affinity for HLA-I.35 Previous global microarray profiling studies35,36 showed a strong overexpression of PSMB8 in inflammatory myopathies, without revealing the cellular source. Our microarray and qPCR data attribute the previously described Ig overexpression to tissue-invading B cells (see Supplemental Table S1 at http://ajp.amjpathol.org). By comparison, our study allows changes of expression patterns, in particular the overexpression of IFN-γ–inducible transcripts, to be attributed, for the first time to our knowledge, to particular subgroups of fibers. On the other hand, our data attribute the previously described Ig overexpression to tissue-invading B cells (see Supplemental Table S1 at http://ajp.amjpathol.org).36,73

Conclusion and Model

In conclusion, we found that the receptor for IFN-γ is selectively up-regulated in attacked IBM myofibers (Figure 7). This raises the crucial question of what comes first: focal inflammation or focal induction of antigen presentation and processing pathways in the attacked muscle fiber? Although we have not yet identified the initial trigger that leads to the up-regulation of HLA-I expression, we may delineate the sequence of later events.

Our findings suggest a scenario that helps explain the focal nature of the inflammatory attack in IBM muscle. First, ubiquitous HLA-I expression is induced on essentially all myofibers by unknown, possibly infectious or inflammatory, proximal triggers, thereby providing a necessary precondition for antigen recognition by CD8⁺ T cells. Second, a CD8⁺ T cell recognizes a surface-exposed HLA-I–bound antigen on a myofiber. This initial
encounter with antigen occurs as a random event. However, once such a contact is established, a specific immunological synapse is formed, with vectorial orientation of perforin toward the area of contact. On antigen recognition and activation, the T cell starts to secrete pro-inflammatory cytokines and chemokines, thereby attracting and activating additional inflammatory cells, including macrophages, dendritic cells, and B cells. The cytokines produced by the inflammatory cells induce IFN-γ receptor expression on the attacked and perhaps adjacent muscle fibers, which thereby become susceptible to IFN-γ-mediated stimulation. IFN-γ-mediated signaling induces a cascade of secondary changes in the attacked fibers, increasing their susceptibility to inflammatory attack. In this way, an initial antigen recognition event by a CD8+ T cell on an HLA-I–positive myofiber would be amplified, leading to strong focal inflammatory changes.

Acknowledgments

We thank Joachim Malotka and Ingrid Eiglmeier for excellent technical assistance and Drs. Dieter Jenne and Naoto Kawakami for helpful discussion of the manuscript.

References

1. Dalakas MC: Sporadic inclusion body myositis: diagnosis, pathogenesis and therapeutic strategies. Nat Clin Pract Neurol 2006, 2:437–447
2. Dalakas MC: Immunotherapy of myositis: issues, concerns and future prospects. Nat Rev Rheumatol 2010, 6:129–137
3. Griggs RC: The current status of treatment for inclusion-body myositis. Neurology 2006, 66:S30–S32
4. Wiendl H: Idiopathic inflammatory myopathies: current and future therapeutic options. Neurotherapeutics 2008, 5:548–557
5. Hilton-Jones D, Miller A, Parton M, Holton J, Sewry C, Hanna MG: Inclusion body myositis: MRC Centre for Neuromuscular Diseases, IBM workshop, London, 13 June 2006. Neuromuscul Disord 2010, 20:142–147
6. Dalakas MC: Inflammatory muscle diseases: a critical review on pathogenesis and therapies. Curr Opin Pharmacol 2010, 10:346–352
7. Engel AG, Arahata K: Monoclonal antibody analysis of mononuclear cells in myopathies, I: phenotypes of autoinvasive cells in polymyositis and inclusion body myositis. Ann Neurol 1984, 16:209–215
8. Stangel M, Mix E, Zettel UK, Gold R: Oxides and apoptosis in inflammatory myopathies. Microsc Res Tech 2001, 55:249–258
9. Dalakas MC: Inflammatory, immune, and viral aspects of inclusion-body myositis. Neurology 2006, 66:S33–S38
10. Dustin ML, Long EO: Cytotoxic immunological synapses. Immunol Rev 2010, 235:24–34
11. Lindberg C, Oldfors A, Tarkowski A: Restricted use of T cell receptor V genes in endomyosial infiltrates of patients with inflammatory myopathies. Eur J Immunol 1994, 24:2659–2663
12. Amemiya K, Granger RP, Dalakas MC: Clonal restriction of T-cell receptor expression by infiltrating lymphocytes in inclusion body myositis persists over time: studies in repeated muscle biopsies. Brain 2000, 123(Pt 10):2030–2039
13. Bender A, Behrens L, Engel AG, Höflerfeld R: T-cell heterogeneity in muscle lesions of inclusion body myositis. J Neuromuscul 1998, 84:86–91
14. Seitz S, Schneider CK, Malotka J, Nong X, Engel AG, Wekerle H, Höflerfeld R, Dormann K: Reconstitution of paired T cell receptor alpha- and beta-chains from microdissected single cells of human inflammatory tissues. Proc Natl Acad Sci U S A 2006, 103:12367–12362
15. Hofbauer M, Wiesener S, Babbe H, Roers A, Wekerle H, Dormann K, Höflerfeld R, Goebels N: Clonal tracking of autoaggressive T cells in polymyositis by combining laser microdissection, single-cell PCR, and CDR3-spectratype analysis. Proc Natl Acad Sci U S A 2003, 100:4090–4095
16. Dimitri D, Benveniste O, Dubourgu M, Maisonneve T, Eymard B, Amoura Z, Jean L, Tiev K, Pfitze JC, Klatzmann D, Herson S, Boyer O: Shared blood and muscle CD8+ T-cell expansions in inclusion body myositis. Brain 2006, 129:986–995
17. Goebels N, Michaelis D, Engelhardt M, Huber S, Bender A, Pongratz D, Johnson MA, Wekerle H, Tschopp J, Jenne D, Höflerfeld R: Differential expression of perforin in muscle-infiltrating T cells in polymyositis and dermatomyositis. J Clin Invest 1996, 97:2905–2910
18. Höflerfeld R, Engel AG: Lysis of myotubes by alloreactive cytotoxic T cells and natural killer cells: relevance to myoblast transplantation. J Clin Invest 1990, 86:370–374
19. Höflerfeld R, Engel AG: Coculture with autologous myotubes of cytotoxic T cells isolated from muscle in inflammatory myopathies. Ann Neurol 1991, 29:498–507
20. McDouall RM, Dunn MJ, Dubowiz V: Expression of class I and class II MHC antigens in neuromuscular diseases. J Neurol Sci 1989, 89:213–226
21. Karpati G, Poulou Y, Carpenter S: Expression of immunoreactive major histocompatibility complex products in human skeletal muscles. Ann Neurol 1988, 23:64–72
22. Bartocciuno E, Gallucci S, Scudieri F, Ricci E, Servidei S, Broccoli A, Tonelli P: MHC class I, MHC class II and intercellular adhesion molecule-1 (ICAM-1) expression in inflammatory myopathies. Clin Exp Immunol 1994, 95:166–172
23. Jain A, Sharma MC, Sarkar C, Bhatia R, Singh S, Handa R: Major histocompatibility complex class I and II detection as a diagnostic tool in idiopathic inflammatory myopathies. Arch Pathol Lab Med 2007, 131:1070–1076
24. Emslie-Smith AM, Arahata K, Engel AG: Major histocompatibility complex class I antigen expression, immunolocalization of interferon subtypes, and T cell-mediated cytotoxicity in myopathies. Hum Pathol 1989, 20:224–231
25. Arahata K, Engel AG: Monoclonal antibody analysis of mononuclear cells in myopathies, I: quantitation of subsets according to diagnosis and sites of accumulation and demonstration and counts of muscle fibers invaded by T cells. Ann Neurol 1984, 16:193–208
26. Chahin N, Engel AG: Correlation of muscle biopsy, clinical course, and outcome in PM and sporadic IBM. Neurology 2008, 70:418–424
27. Lyne N, Sandlund M, Dahlqvist G, Jacobsson L: Informed consent: study of quality of information given to participants in a clinical trial. BMJ 1991, 303:610–613
28. Dalakas MC: Clinical, immunopathologic, and therapeutic considerations of inflammatory myopathies. Clin Immunol Rev 1992, 15:327–361
29. Junker A, Ivanidze J, Malotka J, Eiglmeier I, Lassmann H, Wekerle H, Meini E, Höflerfeld R, Dormann K: Multiple sclerosis: T-cell receptor expression in distinct brain regions. Brain 2007, 130:2789–2799
30. Storey JD, Tibshirani R: Statistical methods for identifying differentially expressed genes in DNA microarrays. Methods Mol Biol 2003, 224:149–157
31. Schmittgen TD, Livak KJ: Analyzing real-time PCR data by the comparative (Ct) method. Nat Protoc 2008, 3:1101–1108
32. Livak KJ, Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001, 25:402–408
33. Wang Y, Liu D, Chen P, Koeffler HP, Tong X, Xie D: Negative feedback regulation of IFN-gamma pathway by IFN regulatory factor 2 in esophageal cancers. Cancer Res 2008, 68:1136–1143
34. Butticé G, Miller J, Wang L, Smith BD: Interferon-gamma induces major histocompatibility class II transactivator (CIITA), which mediates collagen repression and major histocompatibility class II activation by a human aortic smooth muscle cells. Circ Res 2006, 98:472–479
56. Nagaraju K, Casciola-Rosen L, Lundberg I, Rawat R, Cutting S, Thapliyal R, Chang J, Dwivedi S, Mitsak M, Chen YW, Plotz P, Rosen A, Hoffman E, Raben N: Activation of the endoplasmic reticulum stress response in autoimmune myositis: potential role in muscle fiber damage and dysfunction. Arthritis Rheum 2005, 52:1824–1835

57. Li CK, Knopp P, Moncierie H, Singh B, Shah S, Nagaraju K, Varsani H, Gao B, Wedderburn LR: Overexpression of MHC class I heavy chain protein in young skeletal muscle leads to severe myositis: implications for juvenile myositis. Am J Pathol 2009, 175:1030–1040

58. Hohlfeld R, Engel AG: HLA expression in myoblasts. Neurology 1991, 41:2015

59. Ahmed CM, Johnson HM: IFN-gamma and its receptor subunit IFNFR1 are recruited to the IFN-gamma-activated sequence element at the promoter site of IFN-gamma-activated genes, evidence of transactivational activity in IFNFR1. J Immunol 2006, 177:315–321

60. Illa I, Gallardo E, Gimeno R, Serrano C, Ferrer I, Juarez C: Signal transducer and activator of transcription 1 in human muscle: implications in inflammatory myopathies. Am J Pathol 1997, 151:81–88

61. Leibundgut-Landmann S, Waldburger JM, Krawczyk M, Otten LA, Suter T, Fontana A, Acha-Orbea H, Reith W: Mini-review: specificity and expression of CIITA, the master regulator of MHC class II genes. Eur J Immunol 2004, 34:1513–1525

62. Golbin SJ, Peijnenshoven A, van Eggermond M, van Zutphen M, van der Ploeg EN, Brooklokk S, Lundberg IE: Skeletal muscle fibers express major histocompatibility complex class II antigens independently of inflammatory infiltrates in inflammatory myopathies. Am J Pathol 2001, 159:1263–1273

63. Keller CW, Fokken C, Turville SG, Lünenmann A, Schmidt J, Münz C, Lünenmann JD: TNF-alpha induces macroautophagy and regulates MHC class II expression in human skeletal muscle cells. J Biol Chem 2011, 286:3970–3980

64. Lee AH, Hong JH, Seo YS: Tumour necrosis factor-alpha and interferon-gamma synergistically activate the RANTES promoter through nuclear factor kappaB and interferon regulatory factor 1 (IRF-1) transcription factors. Biochem J 2000, 350(Pt 1):131–138

65. Hilgendorf E, Lindersko E, Klareskog L, Lundberg IE: Constitutive and CIITA-mediated transactivation of MHC class I and beta2-microglobulin genes. Immunity 1998, 9:531–541

66. Englund P, Brooklokk S, Otten LA, Klareskog L: Autoimmune myositis in patients with sporadic inclusion-body myositis. Acta Neuropathol 2009, 117:569–574

67. Karpati G, O’Ferrall EK: Sporadic inclusion body myositis: pathogenic considerations. Ann Neurol 2009, 65:7–11