Data Article

Relative abundances of benthic foraminifera in response to total organic carbon in sediments: Data from European intertidal areas and transitional waters

Vincent M.P. Boucheta,*, Fabrizio Frontalinib, Fabio Francescangelic, Pierre-Guy Sauriaud, Emmanuelle Gesline, Maria Virginia Alves Martinsf,g, Ahuva Almogi-Labinh, Simona Avnaim-Katavi, Letizia Di Bellaj, Alejandro Carreterak, Rodolfo Coccionib, Ashleigh Costelloel, Margarita D. Dimizam, Luciana Ferraron, Kristin Haynerto, Michael Martínez-Colónp,q, Romana Melisr, Magali Schweizere, Maria V. Triantaphylloum, Akira Tsujimotos, Brent Wilsont, Eric Armynot du Châteletu

a University Lille, CNRS, Univ. Littoral Côte d’Opale, UMR 8187, LOG, Laboratoire d’Océanologie et de Géosciences, Station Marine de Wimereux, F 59000, Lille, France
b University Urbino Dipartimento di Scienze Pure e Applicate (DISPNA), Università degli Studi di Urbino “Carlo Bo”, Campus Scientifico Enrico Mattei, Località Crocicchia, 61029, Urbino, Italy
c University of Hamburg, Institute for Geology, Centre for Earth System Research and Sustainability, Bundesstraße, 5520146 Hamburg, Germany
d La Rochelle Université, CNRS, Littoral Environnement et Sociétés, UMR 7266 LIENSs, 2 rue Olympe de Gouges, 17000 La Rochelle, France
e UMR CNRS 6112 LPG-BIAF, University of Angers, 2 Bd Lavoisier, Angers Cedex 1, 49045, France
f Rio de Janeiro State University (UERJ), R. São Francisco Xavier, 524 - Lab 1006 - Maracanã, Rio de Janeiro 20550-900, Brazil
g Aveiro University, Department of Geosciences, GeoBioTec, Campus de Santiago, 3810-197 Aveiro, Portugal
h Geological Survey of Israel, Yehud Oﬃce, Jerusalem 9692100, Israel
i Israel Oceanographic and Limnological Research, Haifa, 3108001, Israel
j Dipartimento di Scienze Della Terra, Sapienza Università di Roma, Italy
k Departamento de Geología, Universidad del País Vasco UPV/EHU, Apartado 644, 48080 Bilbao, Spain
l BioStratigraphic Associates (Trinidad) Limited, 113 Frederick Settlement, Old Southern Main Rd., Caroni, Trinidad and Tobago
m National and Kapodistrian University of Athens, Faculty of Geology and Geoenvironment, Panepistimioupolis, 15784, Athens, Greece
n CNR, Institute of Marine Sciences, National Research Council of Italy, Calata Porta di Massa, Naples, Italy

* DOI of original article: 10.1016/j.marpolbul.2021.112071
* Corresponding author.
E-mail address: vincent.bouchet@univ-lille.fr (V.M.P. Bouchet).

https://doi.org/10.1016/j.dib.2021.106920
2352-3409/© 2021 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
We gathered total organic carbon (%) and relative abundances of benthic foraminifera in intertidal areas and transitional waters from the English Channel/European Atlantic Coast (587 samples) and the Mediterranean Sea (301 samples) regions from published and unpublished datasets. This database allowed to calculate total organic carbon optimum and tolerance range of benthic foraminifera in order to assign them to ecological groups of sensitivity. Optima and tolerance range were obtained by mean of the weighted-averaging method. The data are related to the research article titled “Indicative value of benthic foraminifera for biomonitoring: assignement to ecological groups of sensitivity to total organic carbon of species from European intertidal areas and transitional waters” [1].

© 2021 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
Value of the Data

- The data of relative abundances of living benthic foraminifera in European intertidal areas and transitional waters allows assessing the response of the species to total organic carbon contained in the sediment over a large geographical scale.
- The assignment of benthic foraminiferal species to ecological groups of sensitivity to total organic carbon have further implication for environmental monitoring.
- In the present study database, foraminiferal species names and data format were standardized to species concept from the World Register of Marine Species and to relative abundances, respectively.
- These data might be re-used to further assess and improve our understanding of the biogeographical distribution patterns of benthic foraminifera in European intertidal areas and transitional waters over a large latitudinal range.

1. Data Description

The present study database (available in Mendeley: http://dx.doi.org/10.17632/stjfr9xvxg.1), composed of primary and secondary data, summarizes the total organic carbon content in sediment (%) and the relative abundances (%) of benthic foraminiferal species in European intertidal areas and transitional waters (French coast of the English Channel, European Atlantic Coast and the Mediterranean Sea) extracted from 35 primary peer-reviewed articles and seven unpublished grey literature that met the inclusion criteria for the related meta-analysis [1] (see meta-data in Table 1). In the English Channel/European Atlantic Coast, selected study sites included eight classical estuaries, four coastal freshwater/brackish water plumes, two artificial water bodies and two Rias (Fig. 1; see definition of each body type in Table 1 in [1] according to [9,10]). In the Mediterranean Sea, one delta, six lentic non-tidal lagoons, four lentic tidal lagoons, one artificial water body, seven semi-enclosed bays and one classical estuary were considered (Fig. 1).

Secondary data - When available, relative abundances data were downloaded from online sources where the study was published. When only raw counts or abundances were published, foraminiferal data were transformed to relative abundances.

We standardized species names according to the World Registry of Marine Species (WoRMS). All data processing and analysis was done in the open-source software R.

Data source location

Secondary data sources: The full list of data sources is available at https://data.mendeley.com/datasets/stjfr9xvxg/1

Data accessibility

The database is available on Mendeley: Bouchet, Vincent; Frontalini, Fabrizio; Francescangeli, Fabio; Sauriau, Pierre-Guy; Geslin, Emmanuelle; Martins, Virginia; Almogi-Labin, Ahuva; Avnaim-Katav, Simona; Di Bella, Letizia; Cearreta, Alejandro; Coccioni, Rodolfo; Costelloe, Ashleigh; Dimiza, Margarita; Ferraro, Luciana; Haynert, Kristin; Martinez-Colon, Michael; Melis, Romana; Schweizer, Magali; Triantaphyllou, Maria; Tsujimoto, Akira; Wilson, Brent; Armnont du Châtelet, Eric (2021). “Living foraminifera relative abundances and total organic carbon in European Atlantic intertidal and transitional areas”, Mendeley Data, V1, http://dx.doi.org/10.17632/stjfr9xvxg.1

http://dx.doi.org/10.17632/stjfr9xvxg.1

Related research article

V.M.P. Bouchet, F. Frontalini, F. Francescangeli, P.-G. Sauriau, E. Geslin, M.V.A. Martins, A. Almogi-Labin, S. Avnaim-Katav, L. Di Bella, A. Cearreta, R. Coccioni, A. Costelloe, M.D. Dimiza, L. Ferraro, K. Haynert, M. Martinez-Colón, R. Melis, M. Schweizer, M.V. Triantaphyllou, A. Tsujimoto, B. Wilson, E. Armynont du Châtelet, Indicative value of benthic foraminifera for biomonitoring: assignment to ecological groups of sensitivity to total organic carbon of species from European intertidal areas and transitional waters, Mar. Poll. Bull. 164 (2021) 112071. https://doi.org/10.1016/j.marpolbul.2021.112071

This database was built to assign benthic foraminiferal species to ecological groups of sensitivity to total organic carbon (see [1] for more details). Because of the particular characteristics of foraminiferal habitats and communities, we decided to present the database split in two: one for the English Channel/European Atlantic and one for the Mediterranean region. The overall aim of this paper is to provide foraminiferal ecologists with a ready-to-use database detailing foraminiferal species relative abundances and total organic content (%) in the studied sampling sites to be used for ecological, biogeographical and environmental monitoring purposes.

Table 1
Meta-data of the different selected studies. Full details of primary and secondary data sources are available at https://data.mendeley.com/datasets/stjfr95xvxx/1.
Region	Country	Local study area	Related Ecological study	Related Local Organisms study	Sample code description	Total conditions	Year of sampling	Time of the year	Future size fractions	TNC method	Data available with original publications	Sediment type	Sampling device
Fig. 1. Map showing the geographical distribution of the 42 studies according to the water body type (see definition of each body type in Table 1 in [1] according to [9] and [10]) used to assign the species from the English Channel/European Atlantic coast and the Mediterranean Sea intertidal and TWs. Numbers are the same as in Table 1.
Fig. 2. Caterpillar plot showing the optimum (green dots) and tolerance range (bars) to TOC of benthic foraminiferal species in the English Channel/European Atlantic intertidal areas and transitional waters.
Fig. 3. Caterpillar plot showing the optimum (green dots) and tolerance range (bars) to TOC of benthic foraminiferal species in the Mediterranean Sea intertidal areas and transitional waters.
2. Experimental Design, Materials and Methods

Data acquisition: Data of benthic foraminifera relative abundances and related TOC contents (%) in the sediment are mainly from published literature, obtained from data tables in the publication or provided by the authors if not published (database available in Mendeley: http://dx.doi.org/10.17632/stjfr9xvxs.1). To select the relevant studies, the following criteria scheme was followed: only studies on living foraminifera (not dead neither total assemblages), only samples with >50 living specimens and contemporaneous TOC and foraminifera sampling. In total, it was possible to include in the data 587 samples from the English Channel/European Atlantic Coast and 301 from the Mediterranean Sea.

Data computation: When raw counts or abundances were provided, we standardised it to relative abundances. The optimos.prime R package [4] was used to calculate the weighted averaging optimum and tolerance level [2,3] of each species to TOC (Figs. 2 and 3).

In order to illustrate the typical response of species from each ecological group along the TOC gradient, a locally weighted scatterplot smooth line (LOESS) was fitted through each scatter plot (see Fig. 5–6 in [1]). Marginal plots were added to each scatter plot to show the frequency of distribution of occurrences along the TOC gradient. The median of the distribution of the occurrences was also computed. The R code (supplementary materials) includes the following packages: ggrepur, ggExtra, cowplot, mgcv.

CRediT Author Statement

Vincent M.P. Bouchet: Conceptualization, Supervision, Investigation, Data curation, Formal analysis, Visualization, Writing – original draft; Fabrizio Frontalini: Investigation, Writing – Review & Editing; Fabio Francescangeli: Visualization – Writing – Review & Editing; Pierre-Guy Sauriau: Formal analysis, Writing – Review & Editing; Emmanuelle Geslin: Supervision, Writing – Review & Editing; Virginia Martins: Investigation, Writing – Review & Editing; Ahuva Almog-Labin: Writing – Review & Editing; Simona Avnaim-Katav: Investigation, Writing – Review & Editing; Letizia Di Bella: Writing – Review & Editing; Alejandro Carreata: Investigation, Writing – Review & Editing; Rodolfo Coccioni: Writing – Review & Editing; Ashleigh Costelloe: Writing – Review & Editing; Margarita D. Dimiza: Writing – Review & Editing; Luciana Ferraro: Investigation, Writing – Review & Editing; Kristin Haynaert: Writing – Review & Editing; Michael Martínez-Colón: Writing – Review & Editing; Romana Melis: Investigation, Writing – Review & Editing; Magali Schweizer: Writing – Review & Editing; Maria V. Triantaphyllou: Investigation, Writing – Review & Editing; Akira Tsujimoto: Writing – Review & Editing; Brent Wilson: Writing – Review & Editing; Eric Armynot du Châtelet: Supervision, Investigation, Writing – Review & Editing.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships which have or could be perceived to have influenced the work reported in this article.

Acknowledgments

Maria-Belen Sathicq helped V.M.P.B. in handling the optimos.prime R package. The authors are grateful to the Swiss National Science Foundation, the Agence de l’Eau Artois-Picardie, the Communauté d’Agglomération du Boulonnais, the Université de Lille, the Université du Littoral Côte d’Opale, the Laboratoire d’Océanologie et de Géosciences for their financial support to FOBIMO workshops in Fribourg (Switzerland), Wimereux (France) and Texel (The Netherlands);
and to Silvia Spezzaferri and Henko de Stigter for organizing and hosting the workshops in Fris- bourg and Texel. Additional funding was provided by Spanish MINECO (RTI2018-095678-B-C21, MCIU/AEI/FEDER, UE). The authors would like to thank the scientific editor and the anonymous reviewer for their comments that contributed to improve the manuscript.

Supplementary Materials

Supplementary material associated with this article can be found in the online version at doi: 10.1016/j.dib.2021.106920.

References

[1] V.M.P. Bouchet, F. Frontalini, F. Francescangeli, P.-G. Sauriau, E. Geslin, M.V.A. Martins, A. Almogi-Labin, S. Avnaim-Katav, L. Di Bella, A. Cearreta, R. Coccioni, A. Costelloe, M.D. Dimiza, L. Ferraro, K. Haynert, M. Martínez-Colón, R. Melis, M. Schweizer, M.V. Triantaphyllou, A. Tsujimoto, B. Wilson, E. Armanyot du Châtelet, Indicative value of benthic foraminifera for biomonitoring: assignment to ecological groups of sensitivity to total organic carbon of species from European intertidal areas and transitional waters, Mar. Poll. Bull. 164 (2021) 112071, doi:10.1016/j.marpolbul.2021.112071.

[2] H.J.B. Birks, J.M. Line, S. Juggins, A.C. Stevenson, C.J.F. Ter Braak, Diatoms and pH reconstruction, Phil. Trans. R. Soc. Lond. B 327 (1990) 263–278, doi:10.1098/rstb.1990.0062.

[3] C.J.F.Ter Braak, Unimodal models to relate species to environment (Doctoral thesis), University of Wageningen, 1987.

[4] M.B. Sathicq, M.M. Nicolosi Gelis, J. Cocher, Calculating autoecological data (optima and tolerance range) for multiple species with the ’optimos.prime’ R package, Austral Ecol 45 (2020) 845–850, doi:10.1111/aec.12868.

[5] A. Borja, J. Franco, V. Pérez, A marine biotic index to establish the ecological quality of soft-bottom benthos within European estuarine and coastal environments, Mar. Pollut. Bull. 40 (2000) 1100–1114, doi:10.1016/S0002-526X(00)00061-8.

[6] R. Core Team, R: A Language and Environment for Statistical Computing, 2020 https://www.R-project.org/.

[7] A.-L. Barillé-Boyer, L. Barillé, H. Massé, D. Razet, M. Héral, Correction for particulate organic matter as estimated by loss on ignition in estuarine ecosystems, Estuar. Coast. Shelf Sci. 58 (2003) 147–153, doi:10.1016/S0272-7714(03)00069-6.

[8] G. Frangipane, M. Pistolato, E. Molinarolli, S. Guerzoni, D. Tagliapietra, Comparison of loss on ignition and thermal analysis stepwise method for determination of sedimentary organic matter, Aquatic Conserv: Mar. Fresh. Ecosyst. 19 (2009) 24–33.

[9] D.S. McLusky, M. Elliott, Transitional waters: a new approach, semantics or just muddying the waters? Estuar. Coast. Shelf Sci. 71 (2007) 359–363, doi:10.1016/j.ecss.2006.08.025.

[10] European Communities, Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 establishing a framework for Community action in the field of water policy, Off. J. Eur. Commun. 43 (L327) (2000) 75.