Invasion of the Brain by Listeria monocytogenes Is Mediated by InlF and Host Cell Vimentin

Citation
Ghosh, Pallab, Elizabeth M. Halvorsen, Dustin A. Ammendolia, Nirit Mor-Vaknin, Mary X. D. O’Riordan, John H. Brumell, David M. Markovitz, and Darren E. Higgins. 2018. “Invasion of the Brain by Listeria monocytogenes Is Mediated by InlF and Host Cell Vimentin.” mBio 9 (1): e00160-18. doi:10.1128/mBio.00160-18. http://dx.doi.org/10.1128/mBio.00160-18.

Published Version
doi:10.1128/mBio.00160-18

Permanent link
http://nrs.harvard.edu/urn-3:HUL.InstRepos:35982046

Terms of Use
This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA

Share Your Story
The Harvard community has made this article openly available. Please share how this access benefits you. Submit a story.

Accessibility
Invasion of the Brain by *Listeria monocytogenes* Is Mediated by InlF and Host Cell Vimentin

Pallab Ghosh, Elizabeth M. Halvorsen, Dustin A. Ammendolia, Nirit Mor-Vaknin, Mary X. D. O’Riordan, John H. Brumell, David M. Markovitz, Darren E. Higgins

ABSTRACT *Listeria monocytogenes* is a facultative intracellular bacterial pathogen that is frequently associated with food-borne infection. Of particular concern is the ability of *L. monocytogenes* to breach the blood-brain barrier, leading to life-threatening meningitis and encephalitis. The mechanisms used by bacterial pathogens to infect the brain are not fully understood. Here we show that *L. monocytogenes* is able to utilize vimentin for invasion of host cells. Vimentin is a type III intermediate filament protein within the cytosol but is also expressed on the host cell surface. We found that *L. monocytogenes* interaction with surface-localized vimentin promoted bacterial uptake. Furthermore, in the absence of vimentin, *L. monocytogenes* colonization of the brain was severely compromised in mice. The *L. monocytogenes* virulence factor InlF was found to bind vimentin and was necessary for optimal bacterial colonization of the brain. These studies reveal a novel receptor-ligand interaction that enhances infection of the brain by *L. monocytogenes* and highlights the importance of surface vimentin in host-pathogen interactions.

IMPORTANCE *Listeria monocytogenes* is an intracellular bacterial pathogen that is capable of invading numerous host cells during infection. *L. monocytogenes* can cross the blood-brain barrier, leading to life-threatening meningitis. Here we show that an *L. monocytogenes* surface protein, InlF, is necessary for optimal colonization of the brain in mice. Furthermore, in the absence of vimentin, a cytosolic intermediate filament protein that is also present on the surface of brain endothelial cells, colonization of the brain was significantly impaired. We further show that InlF binds vimentin to mediate invasion of host cells. This work identifies InlF as a bacterial surface protein with specific relevance for infection of the brain and underscores the significance of host cell surface vimentin interactions in microbial pathogenesis.

KEYWORDS InlF, *Listeria monocytogenes*, adhesion, brain, invasion, meningitis, vimentin
exists for *L. monocytogenes*, and the ability of bacteria to effectively invade host cells may uniquely aid in the systemic dissemination necessary to cross the blood-brain barrier (BBB) and colonize the brain.

L. monocytogenes is capable of invading numerous nonprofessional phagocytic host cells through the interactions of bacterial surface proteins with host cell surface receptors (6). Two of the best-characterized interactions facilitating *L. monocytogenes* invasion of host cells involve the internalin family proteins InlA and InlB and their host cell receptors E-cadherin and the Met receptor, respectively (7, 8). Nonetheless, a role for the majority of the >25 internalin family members has yet to be determined (8–11). Prior studies have shown that InlB is required for invasion of cultured human brain microvascular endothelial cells (HBMEC), while deletion of *inlA* had no effect on HBMEC infection (12, 13). However, InlA and InlB do not appear to play a role in direct infection of the brain *in vivo* (14–17), suggesting that E-cadherin and the Met receptor may not contribute to penetration of the BBB. Thus, the identity of specific factors necessary to facilitate *L. monocytogenes* infection of the brain has remained unclear.

Here, we report that a member of the internalin family of surface proteins, InlF, plays a role in *L. monocytogenes* colonization of the brain *in vivo*. Previous *L. monocytogenes* infection studies using mice did not reveal a general virulence defect of an *inlF* deletion mutant (Δ*inlF*) in systemic dissemination and colonization of the liver and spleen (9, 18). Here, we have determined that InlF is necessary for efficient colonization of the brain during *in vivo* infection in mice. Additionally, we have shown biochemically, by using affinity chromatography/mass spectrometry and immunoprecipitation analyses, that purified InlF can interact with host cell vimentin. Using immunofluorescence confocal microscopy, we have shown that InlF-expressing *L. monocytogenes* binds to cell surface vimentin to mediate adhesion of mammalian brain endothelial cells. Furthermore, during *in vivo* infection, *L. monocytogenes* is deficient in colonization of the brains of vimentin knockout mice. To our knowledge, these studies represent the first reported interaction of a host cell receptor and an *L. monocytogenes* surface protein with specific relevance to colonization of the brain during infection.

RESULTS

InlF mediates *L. monocytogenes* invasion of the brain *in vivo*. We hypothesized that InlF may play a role in *L. monocytogenes* dissemination and the colonization of specific organs during *in vivo* infection. To test this hypothesis, we infected mice by intravenous injection of wild-type *L. monocytogenes* 10403S or an isogenic deletion mutant lacking InlF (Δ*inlF*). The number of bacteria present in the liver, spleen, and brain of each mouse was determined 72 h postinfection. We discovered that InlF is necessary for efficient colonization of the brain (Fig. 1A). The bacterial burden was reduced by ~1 log specifically in the brains of mice infected with the Δ*inlF* mutant. This defect could be complemented when InlF was expressed in trans from a plasmid in the Δ*inlF* mutant strain (Δ*inlF*/pAM-*inlF*) (Fig. 1A). In contrast to colonization of the brain, InlF did not have a significant role in colonization of the other organs examined. These findings reveal that InlF has a specific role in colonization of the brain by *L. monocytogenes*.

The brain is highly vascularized, and *L. monocytogenes* is known to infect cell types present in the blood (1, 19). Therefore, it was conceivable that the observed role for InlF in colonization of the brain was due to a necessity of InlF for colonization of the blood. To test this possibility, we examined the bacterial burden in the blood of infected mice. We observed no difference in bacterial numbers in the blood between the strains examined (Fig. 1A). In separate experiments, we performed whole-body perfusion of mice to remove blood from organs (Fig. 1B). Perfusion of animals did not significantly affect the bacterial burden in the brain or liver (Fig. 1C). Thus, the defect in colonization of the brain by the Δ*inlF* mutant was not due to a defect in the ability of Δ*inlF* mutant bacteria to colonize the blood.

Histopathological analyses of brain tissue from mice infected with wild-type bacteria revealed inflammation of the lateral ventricles (see Fig. S1B in the supplemental
material) characteristic of L. monocytogenes meningoencephalitis (20). These histological changes were not observed in the brains of uninfected control animals or in ΔinlF mutant-infected mice (Fig. S1A and C). Gram-positive bacteria were detected in the periventricular brain stem parenchyma of wild-type-infected mice (Fig. S1B). Overall, these findings indicate that InlF plays a significant role in L. monocytogenes infection of the brain during systemic infection.

InlF binds host cell vimentin. To identify the host cell protein(s) that interacts with InlF, affinity chromatography was performed. Purified InlF protein bound to an affinity matrix was incubated with lysates of L2 cells treated with the ROCK inhibitor Y27632, a condition known to promote InlF-mediated bacterial invasion (18). Host proteins that bound immobilized InlF were eluted and subjected to mass spectrometry analysis. We identified three potential host cell proteins that interact with InlF: vimentin, Spfq splicing factor, and AHNAK nucleoprotein (Table S1). Of these proteins, vimentin, a type III intermediate filament protein, had the highest sequence coverage at 52.1%. Vimentin is broadly expressed in mesenchymal cells and regulates cell adhesion, transcellular migration, and cellular signaling (21). Interestingly, vimentin is also expressed on the surface of various brain cells (e.g., brain microvascular endothelial cells and astrocytes) (22). Apart from a role for vimentin in the maintenance of cytoskeletal architecture,
recent studies have suggested that viruses are capable of interacting with vimentin as a component of the cellular adherence mechanism (23). Bacteria such as *E. coli* K1 and group A streptococci also use vimentin as a ligand for host cell attachment to mediate pathogen entry into host cells (24, 25).

To confirm the interaction of vimentin with InlF, we performed an immunoprecipitation assay with purified, His₆-tagged InlF and mCherry (red fluorescent protein [RFP])-vimentin from host cell extracts (Fig. S2). Western blot analysis indicated that, contrary to the immobilized RFP control, a significantly larger amount of InlF was recovered following incubation with mCherry-vimentin, demonstrating an InlF-vimentin interaction. The difference in InlF recovery was not attributed to a lower transfection efficiency of the RFP control vector, as the ratio of anti-His to anti-RFP signals determined by densitometry was >5-fold higher in the mCherry-vimentin sample (Fig. S2). Collectively, these studies suggest an important role for vimentin as a conserved host receptor for pathogen adhesion and internalization. Therefore, the role of vimentin was further examined to determine its importance for *L. monocytogenes* invasion of host cells.

L. monocytogenes invasion of host cells is mediated by vimentin. Withaferin A (WFA) is a natural steroidal lactone that binds vimentin and can function as an inhibitor of vimentin activity. WFA treatment of mammalian cells leads to cleavage of vimentin and reorganization of vimentin intermediate filaments (24–27). Prior studies have shown that HBMEC treated with WFA blocked the invasion of *E. coli* K1, suggesting that vimentin is required for *E. coli* K1 invasion (24). To examine whether *L. monocytogenes* uptake by nonprofessional phagocytic cells is dependent on vimentin, we performed *L. monocytogenes* invasion studies by using gentamicin protection assays with L2 and Neuro-2a cells treated with WFA. As shown in Fig. S3A and B, treatment of host cells with WFA decreased *L. monocytogenes* invasion in a dose-dependent manner. In addition, we tested if there was any effect of WFA on bacterial viability and growth *in vitro*. No difference in the growth of wild-type *L. monocytogenes* was observed during exposure to WFA (5 or 10 μM) compared to a nontreated control culture (Fig. S3C). These data suggest that vimentin is involved in *L. monocytogenes* invasion of host cells.

Several studies have suggested that bacterial pathogens use vimentin as a receptor for host cell adherence to mediate pathogen entry into host cells or to cross host barriers (24, 25, 28–30). To examine the importance of vimentin for *L. monocytogenes* invasion *in vitro*, we performed gentamicin protection assays with MFT-6 (Vim⁺/⁺) and MFT-16 (Vim⁻/⁻) mouse embryo fibroblasts (31). As shown in Fig. 2A, infection of MFT-16 cells, which lack vimentin, resulted in a >2-fold decrease in intracellular bacteria compared to infection of vimentin-expressing MFT-6 cells. To investigate if *L. monocytogenes* utilizes vimentin as a receptor for host cell invasion, we initially determined whether *L. monocytogenes* invasion could be inhibited by blocking surface vimentin. Anti-vimentin polyclonal antibody was incubated with L2 fibroblasts to prevent bacterial binding to cell surface vimentin. Anti-vimentin antibody pretreatment significantly reduced (3-fold) wild-type *L. monocytogenes* invasion of L2 cells compared to treatment with an isotype control antibody (Fig. 2B). Moreover, in contrast to the observed 3-fold reduction of invasion in L2 cells pretreated with anti-vimentin antibody by wild-type bacteria, no reduction in bacterial invasion was observed in L2 cells pretreated with anti-vimentin antibody and infected with ΔinlF mutant bacteria (Fig. 2C). Importantly, to determine if vimentin is important for bacterial invasion of endothelial cells relevant to brain infection, we determined whether *L. monocytogenes* invasion of human cerebral microvascular endothelial cells (hCMEC) (32) would be inhibited by blocking surface vimentin. Anti-vimentin antibody pretreatment also significantly reduced (~3-fold) wild-type *L. monocytogenes* invasion of hCMEC compared to treatment with the isotype control antibody (Fig. 2D). Collectively, these results demonstrate a role for surface vimentin in *L. monocytogenes* invasion of host cells, including cell types relevant to infection of the BBB and brain, and suggest that...
InlF mediates invasion of host cells through an interaction with surface-localized vimentin.

InlF facilitates L. monocytogenes association with host cell surface vimentin.

Vimentin is a cytoplasmic intermediate filament protein (33). However, multiple studies indicate that vimentin can also be present on the surface of numerous cell types, including skeletal muscle cells, activated macrophages, vascular endothelial cells, and brain cells (22, 24, 25, 34, 35). Indeed, in agreement with these prior studies, we observed robust expression of vimentin on the surface of bEnd.3 mouse brain endothelial cells, as detected by immunofluorescence staining of nonpermeabilized cells (Fig. 3A and B). We hypothesized that *L. monocytogenes* associates with surface-expressed vimentin to promote subsequent invasion of host cells. To test this hypothesis, we pretreated bEnd.3 cells with cytochalasin D (CytoD) prior to infection. CytoD treatment prevents actin-mediated entry of *L. monocytogenes* into host cells (7) but does not affect the expression of host cell vimentin (36, 37). CytoD-treated bEnd.3 cells were incubated with wild-type *L. monocytogenes* 10403S, and confocal immunofluorescence microscopy experiments were performed to visualize the surface localization of *L. monocytogenes* and host cell surface vimentin (Fig. 3C and D). Colocalization of bacteria with vimentin on the surface of bEnd.3 cells was observed, consistent with a role for vimentin in promoting the uptake of *L. monocytogenes* by host cells (Fig. 3C and D).

Next, we examined the role of InlF in the targeting of *L. monocytogenes* to host cell surface vimentin. We observed that association of the ΔinlF mutant with cell surface vimentin was significantly reduced compared to that of wild-type bacteria (Fig. 4A, B, and E). These findings indicate that InlF mediates the association of *L. monocytogenes* with host cells via cell surface vimentin. It is known that *L. monocytogenes* can invade host cells via InlA and InlB, which bind to their host cell receptors E-cadherin and the Met receptor, respectively (7, 8). It was conceivable that InlF binding to vimentin was facilitated by interaction of InlA or InlB with host cell surface receptors. To test this possibility, we generated a triple knockout strain lacking all three internalins (ΔinlAB ΔinlF). Very little association of ΔinlAB ΔinlF mutant bacteria with cell surface vimentin was observed (Fig. 4C and F). However, complementation of the ΔinlAB ΔinlF mutant by expression of InlF from a plasmid (ΔinlAB ΔinlF/pAM-inlF) led to ~4-fold greater...
colocalization with vimentin compared to that of the ΔinlAB ΔinlF mutant (Fig. 4D and F). Thus, InlF can mediate bacterial association with host cell surface vimentin independently of InlA and InlB. Taken together, these results further indicate that InlF mediates the adherence of host cells through an interaction with surface-localized vimentin.

Vimentin is required for efficient invasion of the brain by L. monocytogenes in vivo. Vimentin has been shown to be present on the surface of various cell types in the brain, including brain microvascular endothelial cells (22, 24). Therefore, we investigated the impact of vimentin on L. monocytogenes infection of the brain in vivo. Vimentin knockout mice (38) were infected by intravenous injection of wild-type
The number of bacteria present in the spleen and brain of each mouse was determined 48 h postinfection. Vimentin knockout mice infected with wild-type *L. monocytogenes* showed a ~2-log decrease in colonization of the brain compared to the bacterial burden in control mice (Fig. 5). There was also a significant (~1-log) decrease in colonization of the spleen in vimentin knockout mice compared to that in control mice. These data demonstrate that vimentin is important for *L. monocytogenes* infection *in vivo* and in particular for successful colonization of the brain.

DISCUSSION

The identities of specific factors necessary to facilitate bacterial infection of the brain *in vivo* have remained unclear. Here we report the discovery that both vimentin and InlF are required for efficient colonization of the brain by *L. monocytogenes*. In *vivo* infection

FIG 4 Requirement of InlF for *L. monocytogenes* interaction with cell surface vimentin. CytoD-treated bEnd.3 cells were infected at an MOI of 25 with *L. monocytogenes* 10403S wild-type (WT) (A), ΔinlF mutant (B), ΔinlA ΔinlF mutant (C), or ΔinlA ΔinlF/pAM-inlF mutant (D) bacteria for 2 h. The nonpermeabilized, fixed cells were then immunostained as described in the legend to Fig. 3. Representative confocal z-stacks are shown. Arrowheads magnified to the right indicate bEnd.3 cell surface vimentin colocalization with wild-type, ΔinlF mutant, ΔinlA ΔinlF mutant, or ΔinlA ΔinlF/pAM-inlF mutant bacteria. Arrows indicate ΔinlF or ΔinlA ΔinlF mutant bacteria that are not associated with cell surface vimentin. (E, F) Quantification of vimentin colocalization with wild-type and ΔinlF mutant bacteria (E) or ΔinlA ΔinlF and ΔinlA ΔinlF/pAM-inlF mutant bacteria (F). Colocalization of surface vimentin with *L. monocytogenes* was assessed from 10 to 15 different confocal image fields examining ~400 bacteria of each strain. Bars represent the mean ± the standard error of the mean. *P* < 0.05; **P** < 0.001.
experiments with vimentin knockout mice (Fig. 5) and infection of wild-type mice with ΔinlF mutant bacteria (Fig. 1A) suggested that the presence of vimentin and expression of InlF by *L. monocytogenes* are necessary for maximal colonization of the brain in mice. To our knowledge, InlF and vimentin are the first bacterial surface protein and host cell receptor, respectively, to be identified with specific relevance for *L. monocytogenes* infection of the brain *in vivo*. Given our additional *in vitro* data demonstrating vimentin-dependent host cell invasion by *L. monocytogenes* (Fig. 2) and the InlF-dependent colocalization of bacteria with surface-associated vimentin (Fig. 3 and 4), we propose a model in which *L. monocytogenes* uses InlF to directly interact with surface vimentin to penetrate host cells and colonize the brain. Thus, the InlF-vimentin interaction represents a novel step in the pathogenesis of *L. monocytogenes* leading to bacterial meningitis. However, we noticed that the complete inhibition of host cell invasion by *L. monocytogenes* was not achieved when using the vimentin null cells and that confocal immunofluorescence microscopy showed a low level of *L. monocytogenes* interaction with host cell surface vimentin in the absence of InlF. These observations support an additional mechanism(s) of *L. monocytogenes* invasion of host cells besides the InlF-vimentin interaction.

While *L. monocytogenes* encodes >25 internalin family members, a role for the majority of these determinants in either tissue- or species-specific pathogenesis has not been shown (39). The well-studied *L. monocytogenes* invasion proteins InlA and InlB do not appear to play a significant role in direct infection of the brain *in vivo* (14–16). Recently, a previously uncharacterized internalin family member, InlP, was shown to play an important role in *L. monocytogenes* infection of the placenta in guinea pigs and mice (40). Expression of InlP caused a 3-log increase in the bacterial burden in the placenta while having a minor effect on the colonization of other maternal organs. Our identification of InlF as a novel virulence factor for colonization of the brain strengthens a model in which *L. monocytogenes* encodes numerous internalin family members to facilitate tissue-specific invasion of host cells through interactions with host cell-specific receptors. The InlF protein has many features characteristic of internalin proteins, such as a signal sequence, two repeat regions, an LPXTG motif, and a C-terminal cell wall anchor. However, the *inlF* gene is neither located in an operon nor controlled by the known *L. monocytogenes* regulators PrfA, *α*², or VirR (9, 41, 42). The *inlF* gene is conserved among the most common pathogenic lineages of *L. monocytogenes*, including all sequenced lineage II strains of *L. monocytogenes*, and has 75 to 80% sequence identity to the lineage I strains (43).

Vimentin has historically been viewed as a cytosolic intermediate filament protein that forms static cytoskeletal networks important for cell structural integrity (44). However, numerous studies have now shown that vimentin plays a more dynamic function in multiple cellular processes, including autophagy, cell adhesion, and innate immune signaling (33). Many of these cellular functions are important for host-

FIG 5 Requirement of vimentin for *in vivo* virulence of *L. monocytogenes*. Vimentin knockout (Vim⁻/⁻) and control (Vim⁺/⁺) mice were infected intravenously with wild-type (WT) *L. monocytogenes* 10403S bacteria (1 × 10⁷/animal). At 48 h postinfection, the spleen and brain of each mouse were collected and the bacterial burden was determined. Horizontal lines indicate median values. The log₁₀ reduction values are indicated. *P* represents the statistical significance of the difference between bracketed groups.
pathogen interactions during bacterial infections. Indeed, an increasing number of reports have demonstrated a diverse role for vimentin in bacterial infections, primarily in innate host cell defense mechanisms and pathogen adhesion and invasion (45). Vimentin has been shown to be an important invasion receptor for the lbeA protein of meningitic E. coli K1 and to facilitate invasion of the brain by E. coli K1 in vivo (24, 28, 46). We have shown for the first time that vimentin is exploited by L. monocytogenes for invasion and colonization of the brain in vivo. In addition, we have shown that L. monocytogenes InlF facilitates bacterial association with surface vimentin and mediates colonization of the brain in vivo. Our studies, along with others, may indicate that vimentin is a central meningitic factor utilized by multiple bacterial pathogens to facilitate crossing of the BBB and colonization of the brain. Because L. monocytogenes is a model organism for elucidating the mechanisms of intracellular pathogenesis and invasion of the central nervous system, a greater understanding of InlF-vimentin interactions may prove highly applicable to other pathogens and provide significant insight and possible targets for the development of novel therapeutics for meningitic infections.

MATERIALS AND METHODS

For a detailed description of the materials and methods used in this study, see Text S1 in the supplemental material.

Bacterial strains and media. L. monocytogenes strains were grown in brain heart infusion (BHI) medium (Difco, Detroit, MI). Chloramphenicol was used at 7.5 µg/ml for selection of plasmids pAM401spacOid-BamHI, pAM-InlF, and pAM-InlF-His in L. monocytogenes (18). InlF-His6 protein expression and purification. The InlF gene was cloned into plasmid pAM401spacOid-BamHI (18). To express InlF-His6, the resulting plasmid, pAM-inlF-His, was introduced into wild-type L. monocytogenes 10403S by electroporation to generate strain DH-L1899. DH-L1899 was grown for 15 h at 37°C in BHI medium containing 7.5 µg/ml chloramphenicol. The DH-L1899 culture was pelleted, the supernatant was supplemented with 10 mM imidazole, and the pH was adjusted to 8.0. The supernatant was then filtered through a 0.2-µm filter flask (MilliPore, Billerica, MA). The filtered supernatant containing secreted InlF-His6 was cycled over Ni-nitrilotriacetic acid (NTA) resin (Qiagen, Valencia, CA) at 4°C. For affinity chromatography, and samples were prepared in accordance with the manufacturer’s recommendations. Details are provided in Text S1.

In vivo virulence studies. For animal infections with L. monocytogenes, female BALB/c mice (6 to 8 weeks of age) were purchased from Jackson Laboratory (Bar Harbor, ME). Vimentin knockout mice were housed at the University of Michigan (49, 50). Mice were injected intravenously with the wild-type 10403S, ΔinlF mutant, or ΔinlF/pKM-dinlF mutant strain at 1 × 10^8 to 2 × 10^8 or 1 × 10^9 bacteria/animal. At 48 or 72 h postinfection, mice were humanely euthanized by exposure to CO_2, followed by cervical dislocation. Blood was collected by cardiac puncture with a 1-ml syringe preloaded with 50 µl of 4% sodium citrate to prevent coagulation. In some experiments, euthanized mice were perfused through the heart with 20 ml of PBS containing 10 mM EDTA. The number of CFU per organ or milliliter of blood was determined by plating dilutions of the blood or organ homogenates. All animal care and experiments were conducted in compliance with the Institutional Animal Care and Use Committee and all federal, state, and local laws.

Statistical analysis. Statistical analysis of gentamicin protection assay results was performed with the Student t test (two tailed, unpaired). Statistical analysis of in vivo virulence study results was performed with the Mann-Whitney U test. Differences were considered significant at P < 0.05.

SUPPLEMENTAL MATERIAL

Supplemental material for this article may be found at https://doi.org/10.1128/mBio.00160-18.
REFERENCES

1. Drevets DA, Leenen PJ, Greenfield RA. 2004. Invasion of the central nervous system by intracellular bacteria. Clin Microbiol Rev 17:323–347. https://doi.org/10.1128/CMR.17.2.323-347.2004.

2. Huang SH, Stins MF, Kim KS. 2000. Bacterial penetration across the blood-brain barrier during the development of neonatal meningitis. Microbes Infect 2:1237–1244. https://doi.org/10.1016/S1286-4579(00)01277-6.

3. Brouwer MC, Tunkel AR, van de Beek D. 2010. Epidemiology, diagnosis, and antimicrobial treatment of acute bacterial meningitis. Clin Microbiol Rev 23:467–492. https://doi.org/10.1128/CMR.00070-09.

4. Thigpen MC, Whitney CG, Messonnier NE, Zell ER, Lynfield R, Hadler JL, Harrison LH, Farley MM, Reingold A, Bennett NM, Craig AS, Schaffner W, Thomas A, Lewis MM, Scallan E, Schuchat A, Emerging Infections Programs Network. 2011. Bacterial meningitis in the United States, 1998–2007. N Engl J Med 364:2016–2025. https://doi.org/10.1056/NEJMoa1005384.

5. Durand ML, Calderwood SB, Weber DJ, Miller SI, Southwick FS, Caviness VS, Jr., Swartz MN. 1993. Acute bacterial meningitis in adults. A review of 493 episodes. N Engl J Med 328:21–28. https://doi.org/10.1056/NEJM199301073280104.

6. Pizarro-Cerdá J, Kühbacher A, Cossart P. 2012. Entry of Listeria monocytogenes in mammalian epithelial cells: an updated view. Cold Spring Harb Perspect Med 2:a001009. https://doi.org/10.1101/cshperspect.a001009.

7. Mengaud J, Ohayon H, Gounon P, Mege R-M, Cossart P. 1996. E-cadherin is the receptor for internalin, a surface protein required for entry of L. monocytogenes into epithelial cells. Cell 84:923–932. https://doi.org/10.1016/0092-8674(96)01070-3.

8. Shen Y, Naujokas M, Park M, Ireton K. 2000. InIB-dependent internalization of Listeria. Science 292:1722–1725. https://doi.org/10.1126/science.1059852.

9. Bakardjiev AI, Stacy BA, Fisher SL, Portnoy DA. 2004. Listeriosis in the pregnant guinea pig: a model of vertical transmission. Infect Immun 72:489–497. https://doi.org/10.1128/IAI.72.1.489-497.2004.

10. Greiffenberg L, Goebel W, Kim KS, Weigelin I, Bubert A, Engelbrecht F, Stins M, Kuhn M. 1998. Interaction of Listeria monocytogenes with human brain microvascular endothelial cells: an electron microscopic study. Infect Immun 66:3260–3267.

11. Greiffenberg L, Goebel W, Kim KS, Daniels J, Kuhn M. 2000. Interaction of Listeria monocytogenes with human brain microvascular endothelial cells: a stereotypical myonecrosis: increased vimentin expression after skeletal-
muscle injury mediates the binding of Streptococcus pyogenes. J Infect Dis 193:1685–1692. https://doi.org/10.1086/504261.

26. Bargagna-Mohan P, Hamza A, Kim YE, Khuan Abhy Ho Y, Mor-Vaknin N, Wendischlag N, Liu J, Evans RM, Markovitz DM, Zhan CG, Kim KB, Mohan R. 2007. The tumor inhibitor and antiangiogenic agent withaferin A targets the intermediate filament protein vimentin. Chem Biol 14: 623–634. https://doi.org/10.1016/j.chembiol.2007.04.010.

27. Grim B, Mahammad S, Wedig T, Cleland MM, Tsai L, Herrmann H, Goldmann RD. 2012. Withaferin a alters intermediate filament organization, cell shape and behavior. PLoS One 7:e39065. https://doi.org/10.1371/journal.pone.0039065.

28. Huang SH, Chi F, Peng L, Bo T, Zhang B, Liu LQ, Wu X, Mor-Vaknin N, Markovitz DM, Cao H, Zhou YH. 2016. Vimentin, a novel NF-kappaB regulator, is required for meningitic Escherichia coli K1-induced pathogen invasion and PMN transmigration across the blood-brain barrier. J Pathol 237:231–240. https://doi.org/10.1002/path.4592.

29. Tahoun A, Mahajan S, Paxton E, Malterer G, Donaldson DS, Wang D, Tan A, Gillespie TL, O’Shea M, Roe AJ, Shaw DJ, Gally DL, Lengeling A, Mabbott NA, Haas J, Mahajan A. 2012. Salmonella transforms follicle-associated epithelial cells into M cells to promote intestinal invasion. Cell Host Microbe 12:645–656. https://doi.org/10.1016/j.chom.2012.10.009.

30. Murli S, Watson RO, Galán JE. 2001. Role of tyrosine kinases and the tyrosine phosphatase SptP in the interaction of Salmonella with host cells. Cell Microbiol 3:795–810. https://doi.org/10.1046/j.1462-5822.2001.00158.x.

31. Holwell TA, Schweitzer SC, Evans RM. 1997. Tetracycline regulated expression of vimentin in fibroblasts derived from vimentin null mice. J Cell Sci 110:1947–1956.

32. Weksler B, Romero IA, Couraud PO. 2013. The hCMEC/D3 cell line as a model of the human blood brain barrier. Fluids Barriers CNS 10:16. https://doi.org/10.1186/2045-8118-10-16.

33. Herrmann H, Aebi U. 2016. Intermediate filaments: structure and assembly. Cold Spring Harb Perspect Biol 8a018242. https://doi.org/10.1101/cshperspect.a018242.

34. Mor-Vaknin N, Punturieri A, Sitwala K, Markovitz DM. 2003. Vimentin is secreted by activated macrophages. Nat Cell Biol 5:99–63. https://doi.org/10.1038/ncb898.

35. Xu B, deWaal RM, Mor-Vaknin N, Hibbard C, Markovitz DM, Kahn ML. 2004. The endothelial cell-specific antibody PA-E identifies a secreted form of vimentin in the blood vasculature. Mol Cell Biol 24:9198–9206. https://doi.org/10.1128/MCB.24.20.9198-9206.2004.

36. Shankar J, Nabi IR. 2015. Actin cytoskeleton regulation of epithelial mesenchymal transition in metastatic cancer cells. PLoS One 10:e0119954. https://doi.org/10.1371/journal.pone.0119954.

37. Meriane M, Mary S, Comunale F, Vignal E, Fort P, Gauthier-Rouvière C. 2000. Cdcd24Hs and Rac1 GTPases induce the collapse of the vimentin intermediate filament network. J Biol Chem 275:33046–33052. https://doi.org/10.1074/jbc.M001566200.

38. Eckes B, Colucci-Guyon E, Smola H, Dodder S, Babinet C, Krieg T, Martin P. 2000. Impaired wound healing in embryoic and adult mice lacking vimentin. J Cell Sci 113:2455–2462.

39. Bierne H, Sabet C, Personnic N, Cossart P. 2007. Internalins: a complex family of leucine-rich repeat-containing proteins in Listeria monocytogenes. Microbes Infect 9:1156–1166. https://doi.org/10.1016/j.micinf.2007.05.003.

40. Faralla C, Rizotto GA, Lowe DE, Kim B, Cooke K, Shioi LR, Bakardjiev AI. 2016. InIP, a new virulence factor with strong placental tropism. Infect Immun 84:3584–3596. https://doi.org/10.1128/IAI.00625-16.

41. McGann P, Wiedmann M, Boor KJ. 2007. The alternative sigma factor sigmaB and the virulence gene regulator PrfA both regulate transcription of Listeria monocytogenes internalins. Appl Environ Microbiol 73: 2919–2930. https://doi.org/10.1128/AEM.02664-06.

42. Mandin P, Fish H, Dussurget O, Vergassola M, Milohanic E, Toledo-Arana A, Lasa I, Johansson J, Cossart P. 2005. VirB, a response regulator critical for Listeria monocytogenes virulence. Mol Microbiol 57:1367–1380. https://doi.org/10.1111/j.1365-2958.2005.04776.x.

43. Tsai YH, Orsi RH, Nightingale KK, Wiedmann M. 2006. Listeria monocytogenes internalins are highly diverse and evolved by recombination and positive selection. Infect Genet Evol 6:378–389. https://doi.org/10.1016/j.meegid.2006.01.004.

44. Helfand BT, Chang L, Goldman RD. 2004. Intermediate filaments are dynamic and motile elements of cellular architecture. J Cell Sci 117: 133–141. https://doi.org/10.1242/jcs.009396.

45. Mak TN, Brüggemann H. 2016. Vimentin in bacterial infections. Cells 5:E18. https://doi.org/10.3390/cells5020018.

46. Zou Y, He L, Huang SH. 2006. Identification of a surface protein on human brain microvascular endothelial cells as vimentin interacting with Escherichia coli invasion protein IbeA. Biochem Biophys Res Commun 351:625–630. https://doi.org/10.1016/j.bbrc.2006.10.091.

47. Alberti-Segui C, Goeden KR, Higgins DE. 2007. Differential function of internalins are highly diverse and evolved by recombination and positive selection. Infect Genet Evol 6:378–389. https://doi.org/10.1016/j.meegid.2006.01.004.

48. Koudelka KJ, Destito G, Plummer EM, Trauger SA, Siuzdak G, Manchester M. 2009. Endothelial targeting of cowpea mosaic virus (CPMV) via surface vimentin. PLoS Pathog 5:e1000417. https://doi.org/10.1371/journal.ppat.1000417.

49. Colucci-Guyon E, Portier MM, Dunia L, Paulin D, Pourrin S, Babinet C. 1994. Mice lacking vimentin develop and reproduce without an obvious phenotype. Cell 79:679–694. https://doi.org/10.1016/0092-8674(94)90553-3.

50. Mor-Vaknin N, Legendre M, Yu Y, Serezani CH, Garg SK, Jatzek A, Swanson MD, Gonzalez-Hernandez MJ, Teitz-Tennenbaum S, Punturieri A, Angleberg NC, Banerjee R, Peters-Golden M, Kao JY, Markovitz DM. 2013. Murine colitis is mediated by vimentin. Sci Rep 3:1045. https://doi.org/10.1038/srep01045.