Long-Term Oncologic Safety of Immediate Reconstructive Surgery in Patients with Invasive Breast Cancer: A Retrospective Matched-Cohort Study

Yanni Song (yannimd@126.com)
Tumor Hospital of Harbin Medical University

Shanshan Sun
Harbin Medical University Cancer Hospital

Dalin Li
Harbin Medical University Cancer Hospital

Jiguang Han
Harbin Medical University Cancer Hospital

Ming Niu
Harbin Medical University Cancer Hospital

Sai Luo
First Affiliated Hospital of Harbin Medical University

Haiqian Xu
First Affiliated Hospital of Harbin Medical University

Rui Huang
Second Affiliated Hospital of Harbin Medical University

Sihang Zhang
Peking University Health Science Center

Yang Wu
Harbin Medical University Cancer Hospital

Qiqi Wu
Harbin Medical University Cancer Hospital

Jing Xiong
Harbin Medical University Cancer Hospital

Lijun Hao
First Affiliated Hospital of Harbin Medical University
Abstract

Objective Immediate reconstruction (IR) is a safe and effective surgical treatment for patients with breast cancer. We aimed to assess the prognosis, aesthetic outcomes, and patient satisfaction of IR compared with breast conservation surgery (BCS) and total mastectomy (TM).

Methods In this retrospective matched-cohort study, we established two cohorts according to the tumor (T) size of breast cancer. In the T≤3cm group, cases (IR) and controls (BCS or TM) were matched for age, pathological tumor size and pathologic nodal status in a 1:1:1 ratio. In the T>3cm group, cases (IR) and controls (TM) were matched with the same factors and ratio. The primary outcome was the 5-year disease-free survival (DFS). The secondary outcome was patient satisfaction and quality of life.

Results Between May, 2005 and December, 2014, total 12,678 breast cancer patients were assessed, of which 587 were included (T≤3 cm group: 155 IR vs 155 BCS vs 155 TM; T>3cm group: 61 IR vs 61 TM). In the T≤3 cm cohort, patients underwent IR had no difference compared with those underwent BCS or TM regarding the 5-year DFS (P=0.539); however, an improved aesthetic satisfaction, psychosocial and sexual well-being were achieved in the IR group (P<0.001). In the T>3 cm cohort, IR group had a worse median 5-year DFS (P=0.044), especially for Her2+ or triple-negative breast carcinoma (TNBC) subtypes compared with TM group.

Conclusions IR improves aesthetic satisfaction, psychosocial and sexual well-being for breast cancer patients with T≤3 cm. However, Her2+ or TNBC predict a worse 5-year DFS in the T>3 cm group.

Introduction

Breast cancer is the most common malignant disease among women worldwide, with an incidence of 1.8 million cases worldwide per year (1). Once diagnosed with early-stage breast cancer, most women would undergo breast conservation surgery (BCS) or total mastectomy (TM) to either partially or completely remove the breast. However, no matter which surgical technique is used, patients will be suffering from breast loss and a decreased quality of life (2).

Immediate reconstructive (IR) surgery, performed simultaneously for patients who have undergone a radical mastectomy, has become increasingly important in recent years. IR is particularly an attractive strategy for breast cancer treatment when BCS is not applicable. IR can benefit patients both physically and psychologically when compared with TM and BCS. For example, IR will improve patients’ self-esteem and overall quality of life, reduce sexual dysfunction, and decrease body image anxieties (3–9). Survival has always been the primary objective for patients with breast cancer. A previous match-cohort study has identified several associated factors that can predict the prognosis of breast cancer for patients who underwent BCS (10). However, no studies systematically assessed the long-term oncologic follow-up outcomes of IR applied for patients with different lesion sizes. In addition, whether breast cancer patients with different molecular subtypes can benefit from IR remains unclear. Although some previous studies have reported improved quality of life and satisfying aesthetic outcomes for patients who underwent
either BCS or TM, no matter whether with or without reconstruction (11–15), direct comparisons with respect to survival and safety outcomes between IR, BCS and TM are scarce.

Therefore, we conducted this retrospective matched-cohort study to compare the prognosis, aesthetic outcomes and complication-related quality of life outcomes of IR, TM and BCS performed in patients with invasive ductal carcinomas (IDCs) with different tumor sizes. We also examined the association between cancer subtypes and the 5-year DFS of IR in both T ≤ 3 cm and T > 3 cm groups.

**Methods**

Study design and patients

We conducted this retrospective matched cohort study at the Harbin Medical University Cancer Hospital (HMUCH, Heilongjiang, China). Patients were selected from a standardized institutional database if they (1) had histologically or pathologically confirmed invasive breast cancer without distant metastasis or local relapses; (2) had surgical pathological specimens of the primary tumor available for review. Cancer stages were identified according to the American Joint Committee on Cancer [AJCC] TNM staging system (16). All patients were scheduled with IR. Exclusion criteria included in situ carcinoma, bilateral or multicentric breast cancer, recurrent cancer, metastatic breast cancer at presentation, a history of invasive breast cancer, other previous tumors and pregnancy. Patients who received neoadjuvant chemotherapy and intraoperative electron beam radiotherapy for cancer treatment were also excluded. Patients with T > 3 cm lesions were not included either if they undertook neoadjuvant chemotherapy before BCS. The study protocol was reviewed and approved by the Ethical Committee of HMUCH. We obtained written informed consent from all patients.

Procedures

We established two different study cohorts according to the tumor (T) size of breast cancer. Cases in the T ≤ 3 cm group were invasive ductal carcinomas patients who underwent IR. Controls were patients who underwent either BCS or TM, matching with cases for age, pathological tumor size (pT) and pathologic nodal status (pN) in a 1:1:1 ratio during the same study period. In the T > 3 cm group, we included patients who underwent IR as cases. Patients underwent TM were selected as controls, matching for age, pT and pN in a 1:1 ratio.

We collected patients’ demographic data, clinicopathological data, and immunohistochemistry (IHC) results regarding estrogen receptor (ER), progesterone receptor (PR), human epidermal growth factor receptor 2 (Her2), P53, Ki67, and prognosis information.

The analytical results of breast cancer subtypes have been described elsewhere (17). Subtypes in this study included luminal A (ER positive [+] and/or PR + and Her2- and Ki67 < 14%), luminal B (ER + and/or PR + and Her2- and Ki67 > 14%; ER + and/or PR + and Her2 + and Ki67 anyway), Her2 overexpression (ER negative [ ], PR- , and Her2+) and triple-negative breast carcinoma (TNBC [ER-, PR-, and Her2-]). However,
cases of Her2 with IHC (2+) and FISH (+) were excluded from the TNBC group. IHC was scored by two independent pathologists who were blinded to patient clinicopathological characteristics and outcomes. To eliminate nonspecific staining, a negative control was performed using Phate Buffered Saline (PBS).

All cases were evaluated by key stakeholders from a multidisciplinary consultation board with full adherence to updated international guidelines (18). The follow-up period for each patient was estimated from the date of diagnosis of cancer to January, 2020 (the end of the study). Patients in each cohort followed the same clinical follow-up protocols, which were scheduled every six months.

Recurrences include local recurrence (chest wall) and regional recurrence (the lymphatic region of the breast). Distant metastases of breast cancer occur most in bone, lung, liver and brain. Patients underwent BCS and IR received bilateral ultrasound and mammogram each year. Monolateral mammogram was scheduled annually for patients who underwent TM. Radiological examination plans would be adjusted accordingly in cases of any clinical suspicion. A radiological examination of the lung was routinely performed every six months. Liver function, bone and biological markers were checked every year.

Outcomes

The primary endpoint was 5-year disease-free survival (DFS), which was defined from the date of surgery until relapse or the date patients were last known to be alive. The secondary outcome was patient satisfaction and quality of life, which were evaluated with study-specific and health-related questionnaires administered during clinical follow-up. The study-specific questionnaire was concerned about the satisfaction with the choice of procedure and aesthetic result of the operation (19). Necrosis is a clinical manifestation of tissue death, most commonly due to alteration of cutaneous blood flow. Infection is a category of diseases caused by specific pathogens. Some pathogens cause local infections with symptoms confined to the skin. Hematoma/Seroma is the phenomenon of blood/uid accumulation in the cavity or under the skin. Prolonged wound healing is primary healing cannot be achieved. Such wounds heal by secondary intention and prolonged and complicated healing process.

Statistical analysis

We constructed Kaplan-Meier curves to estimate the 5-year DFS. The log-rank test was used to assess differences between groups. \( \chi^2 \) test was used to compare clinicopathological characteristics between two groups. Statistical analyses were performed using SPSS version 17.0 (IBM Corporation, Armonk, NY, USA) for Windows (Microsoft Corporation, Redmond, WA, USA). A P value less than 0.05 was considered statistically significant.

Results

Between May, 2005 and December, 2014, 12,678 consecutive breast cancer patients who underwent various surgical procedures were extracted from the HMUCH database for the eligibility assessment. A total of 216 cases underwent IR (155 cases in the \( T \leq 3 \text{ cm} \) group vs 61 cases in the \( T > 3\text{cm} \) group)
meeting the study criteria were included in the final analysis. 155 cases of BCS and 155 of TM were matched with 155 cases of IR in the T ≤ 3 cm group, of which 118 performed breast implant (IRBI) (Fig. 2A) and 37 performed autologous tissue (IRAT) (Fig. 2B). The study groups were similar at baseline. 155 patients underwent IR were included in the final analysis with a median age of 37.24 years old (range 21–55) and 70 (45.16%) of them aged under 35 (Table 1). 56 patients were diagnosed with stage I breast cancer and 99 were at stage II. Analytical results of pathology features showed the median tumor size was 2.0 cm (range, 0.4–3.0 cm). T1 (75 [48.39%]) and T2 (80 [51.61%]) were the most common size of the study group. 110 (70.97%) patients had PN0 and 45 (29.03%) patients had N1-2. More than half (104 [67.10%]) of the patients in the study group had histological grade (HG) II at diagnosis. IHC staining results for protein expression in the four subtypes (luminal A, luminal B, Her2 overexpression and TNBC) of breast cancer tissues were illustrated in Fig. 3. Luminal B (67 [43.23%]) was the most frequent subtype, followed by luminal A (55 [35.48%]), TN (17 [10.97%]), and Her2+ (16 [10.32%]). Of the 155 study participants, 105 cases received cytotoxic chemotherapy, 122 received hormone therapy (HT) and 19 underwent radiotherapy (RT). All these patients had at least four positive axillary lymph nodes.
Table 1
Patients’ clinicopathological features of IR, BCS and TM in T ≤ 3cm

| Characteristic | IR (N = 155) | BCS (N = 155) | TM (N = 155) | P |
|---------------|-------------|--------------|--------------|---|
|               | n (%)       | n (%)        | n (%)        |   |
| Age           |             |              |              |   |
| ≤ 35          | 70 (45.16)  | 70 (45.16)   | 70 (45.16)   |   |
| > 35          | 85 (54.84)  | 85 (54.84)   | 85 (54.84)   |   |
| pT            |             |              |              |   |
| T1(≤ 2cm)     | 75 (48.39)  | 75 (48.39)   | 75 (48.39)   |   |
| T2(2-3cm)     | 80 (51.61)  | 80 (51.61)   | 80 (51.61)   |   |
| pN            |             |              |              |   |
| N0            | 110 (70.97) | 110 (70.97)  | 110 (70.97)  |   |
| N1-2          | 45 (29.03)  | 45 (29.03)   | 45 (29.03)   |   |
| Stage         |             |              |              |   |
| I             | 56 (36.13)  | 51 (32.91)   | 45 (29.03)   | 0.210 |
| IIA           | 74 (47.74)  | 77 (49.68)   | 70 (45.16)   |   |
| IIB           | 25 (16.13)  | 27 (17.41)   | 40 (25.81)   |   |
| HG            |             |              |              | 0.906 |
| I             | 38 (24.52)  | 42 (27.10)   | 41 (26.45)   |   |
| II            | 104 (67.10) | 101 (65.16)  | 98 (63.23)   |   |
| III           | 13 (8.39)   | 12 (7.74)    | 16 (10.32)   |   |
| ER            |             |              |              | 0.186 |
| ER (+)        | 113 (72.90) | 101 (65.16)  | 99 (63.87)   |   |
| ER (-)        | 42 (27.10)  | 54 (34.84)   | 56 (36.13)   |   |
| PR            |             |              |              | 0.520 |
| PR (+)        | 106 (68.39) | 99 (63.87)   | 108 (69.68)  |   |
| PR (-)        | 49 (31.61)  | 56 (36.13)   | 47 (30.32)   |   |

Abbreviations: pT = Pathological tumor size; pN = Pathological Nodal status; HG = histological grade; ER = Estrogen receptor; PR = Progesterone receptor; TN = Triple negative; IR = Immediate reconstruction; BCS = Breast conservation surgery; TM = Total mastectomy.
| Characteristic Feature | IR (N = 155) | BCS (N = 155) | TM (N = 155) | P       |
|------------------------|-------------|--------------|-------------|---------|
|                       | n (%)       | n (%)        | n (%)       |
| Her2                  |             |              |             | 0.266   |
| Her2 (+)              | 36 (23.23)  | 46 (29.68)   | 48 (30.97)  |
| Her2 (-)              | 119 (76.77) | 109 (70.32)  | 107 (69.03) |
| Ki67                  |             |              |             | 0.318   |
| Ki67 (≤ 14%)          | 76 (49.03)  | 67 (43.23)   | 80 (51.61)  |
| Ki67 (> 14%)          | 79 (50.97)  | 88 (56.77)   | 75 (48.39)  |
| Subtype               |             |              |             | 0.990   |
| Luminal A             | 55 (35.48)  | 57 (36.77)   | 51 (32.90)  |
| Luminal B             | 67 (43.23)  | 62 (40.00)   | 67 (43.23)  |
| Her2+                 | 16 (10.32)  | 18 (11.61)   | 18 (11.61)  |
| TN                    | 17 (10.97)  | 18 (11.61)   | 19 (12.26)  |
| Chemotherapy          |             |              |             | 0.686   |
| Yes                   | 102 (65.81) | 100 (64.52)  | 107 (69.03) |
| No                    | 53 (34.19)  | 55 (35.48)   | 48 (30.97)  |
| Hormone therapy       |             |              |             | 0.917   |
| Yes                   | 122 (78.71) | 120 (77.42)  | 119 (77.77) |
| No                    | 33 (21.29)  | 35 (22.58)   | 36 (23.23)  |
| Anti-Her2 therapy     |             |              |             | 0.940   |
| Yes                   | 31 (86.11)  | 39 (84.78)   | 40 (83.33)  |
| No                    | 5 (13.89)   | 7 (15.22)    | 8 (16.67)   |
| Local recurrence      |             |              |             | 0.919   |
| Yes                   | 12 (7.74)   | 13 (8.38)    | 14 (9.03)   |
| No                    | 143 (92.26) | 142 (91.62)  | 90.97       |
| Distant metastasis    |             |              |             | 0.531   |

Abbreviations: pT = Pathological tumor size; pN = Pathological Nodal status; HG = histological grade; ER = Estrogen receptor; PR = Progesterone receptor; TN = Triple negative; IR = Immediate reconstruction; BCS = Breast conservation surgery; TM = Total mastectomy.
| Characteristic | IR (N = 155) | BCS (N = 155) | TM (N = 155) | P |
|---------------|-------------|---------------|--------------|---|
|               | n (%)       | n (%)         | n (%)        |   |
| Yes           | 10 (6.45)   | 11 (7.09)     | 15 (9.67)    |   |
| No            | 145 (93.55) | 144 (92.91)   | 140 (90.33)  |   |

Abbreviations: pT = Pathological tumor size; pN = Pathological Nodal status; HG = histological grade; ER = Estrogen receptor; PR = Progesterone receptor; TN = Triple negative; IR = Immediate reconstruction; BCS = Breast conservation surgery; TM = Total mastectomy.

61 cases of TM were matched with 61 cases of IR in the T > 3cm group (Fig. 1 and Fig. 2A-D). Analyses of clinicopathological features were summarized in Table 2. 33 (54.10%) women aged under 35 years old. 21 patients were diagnosed with stage II breast cancer and 40 were at stage III. The median tumor size was 4.0 cm (range, 3.1 – 5.6 cm). 45 (74.77%) patients had PN1-2 and 16 (26.23%) had N0. More than half of the patients in the study group had HG II at diagnosis (77.05% [n = 47]). Luminal B (24 [39.34%]) was the most frequent subtype, followed by TN (14 [22.95%]), Her2+ (13 [21.31%]), and luminal A (10 [16.39%]). Most patients underwent chemotherapy with HT and RT.
Table 2
Patients’ clinicopathological features of IR and TM in T > 3cm

| Characteristic | IR (N = 61) | TM (N = 61) | P |
|----------------|-------------|-------------|---|
| Feature        | n (%)       | n (%)       |   |
| Age            |             |             |   |
| ≤ 35           | 33 (54.10)  | 33 (54.10)  |   |
| > 35           | 28 (45.90)  | 28 (45.90)  |   |
| pT             |             |             |   |
| T2(> 3cm, ≤ 5cm)| 46 (75.41)  | 46 (75.41)  |   |
| T3(> 5cm)      | 15 (24.59)  | 15 (24.59)  |   |
| pN             |             |             |   |
| N0             | 16 (26.23)  | 16 (26.23)  |   |
| N1-3           | 45 (73.77)  | 45 (73.77)  |   |
| Stage          |             |             | 0.706 |
| II             | 21 (34.43)  | 23 (37.70)  |   |
| III            | 40 (65.57)  | 38 (62.30)  |   |
| HG             |             |             | 0.820 |
| I              | 6 (9.84)    | 7 (11.48)   |   |
| II             | 47 (77.05)  | 44 (72.13)  |   |
| III            | 8 (13.11)   | 10 (16.39)  |   |
| ER             |             |             | 0.691 |
| ER (+)         | 44 (72.13)  | 42 (68.85)  |   |
| ER (-)         | 17 (27.87)  | 19 (31.15)  |   |
| PR             |             |             | 0.455 |
| PR (+)         | 36 (59.02)  | 40 (65.57)  |   |
| PR (-)         | 25 (40.98)  | 21 (34.43)  |   |

Abbreviations: pT = Pathological tumor size; pN = Pathological Nodal status; HG = histological grade; ER = Estrogen receptor; PR = Progesterone receptor; TN = Triple negative; IR = Immediate reconstruction; BCS = Breast conservation surgery; TM = Total mastectomy.
| Characteristic Feature | IR (N = 61) | TM (N = 61) | P |
|------------------------|-------------|-------------|---|
|                       | n (%)       | n (%)       |   |
| Her2 (+)               | 21 (34.43)  | 19 (31.15)  |   |
| Her2 (-)               | 40 (65.57)  | 42 (69.85)  |   |
| Ki67                   |             |             | 0.817 |
| Ki67 (≤ 14%)           | 11 (16.39)  | 12 (19.67)  |   |
| Ki67 (> 14%)           | 50 (83.61)  | 49 (80.33)  |   |
| Subtype                |             |             | 0.986 |
| Luminal A              | 10 (16.39)  | 9 (36.77)   |   |
| Luminal B              | 24 (39.34)  | 25 (40.98)  |   |
| Her2+                  | 13 (21.31)  | 14 (22.95)  |   |
| TN                     | 14 (22.95)  | 13 (21.31)  |   |
| Chemotherapy           |             |             | 0.638 |
| Yes                    | 49 (65.81)  | 51 (83.61)  |   |
| No                     | 12 (34.19)  | 10 (16.31)  |   |
| Hormone therapy        |             |             | 0.691 |
| Yes                    | 42 (68.85)  | 44 (72.13)  |   |
| No                     | 19 (31.15)  | 17 (27.87)  |   |
| Radiotherapy           |             |             | 0.277 |
| Yes                    | 29 (47.54)  | 35 (57.38)  |   |
| No                     | 32 (52.46)  | 26 (42.62)  |   |
| Anti-Her2 therapy      |             |             | 0.894 |
| Yes                    | 18 (85.71)  | 16 (84.21)  |   |
| No                     | 3 (14.29)   | 3 (15.79)   |   |
| Local recurrence       |             |             | 0.126 |
| Yes                    | 12 (19.67)  | 6 (9.83)    |   |

Abbreviations: pT = Pathological tumor size; pN = Pathological Nodal status; HG = histological grade; ER = Estrogen receptor; PR = Progesterone receptor; TN = Triple negative; IR = Immediate reconstruction; BCS = Breast conservation surgery; TM = Total mastectomy.
| Characteristic | IR (N = 61) | TM (N = 61) | P  |
|---------------|------------|------------|----|
|               | n (%)      | n (%)      |    |
| No            | 49 (80.33) | 55 (90.16) |    |
| Distant metastasis |  |           | 0.408 |
| Yes           | 9 (14.75)  | 6 (9.83)   |    |
| No            | 52 (85.25) | 55 (90.17) |    |

Abbreviations: pT = Pathological tumor size; pN = Pathological Nodal status; HG = histological grade; ER = Estrogen receptor; PR = Progesterone receptor; TN = Triple negative; IR = Immediate reconstruction; BCS = Breast conservation surgery; TM = Total mastectomy.

No statistical differences were observed in terms of 5-year DFS for the three different surgical techniques performed in patients with T ≤ 3 cm lesions (Table 3, Fig. 4A). In addition, patients of luminal A, luminal B, Her2 overexpression and TNBC subtype had similar 5-year DFS rates (Fig. 4B-E).
Table 3
Kaplan–Meier analysis for 5-Year DFS based on 4 different subtypes on IR, BCS and TM (log-rank test) in $T \leq 3\text{cm}$ group

|                | 5-Y DFS | Median 5-Y DFS |
|----------------|---------|----------------|
|                | %       | Months         | 95%CI           | P     |
| Total          |         |                |                | 0.539 |
| IR             | 85.2%   | 57.73          | 56.65–58.80     |       |
| BCS            | 83.2%   | 57.16          | 55.87–58.46     |       |
| TM             | 80.6%   | 56.44          | 55.02–57.86     |       |
| Luminal A      |         |                |                | 0.680 |
| IR             | 94.5%   | 59.42          | 58.66–60.18     |       |
| BCS            | 93.0%   | 59.23          | 58.36–60.10     |       |
| TM             | 90.2%   | 58.74          | 57.41–60.07     |       |
| Luminal B      |         |                |                | 0.559 |
| IR             | 89.6%   | 58.67          | 57.44–59.91     |       |
| BCS            | 85.5%   | 57.75          | 56.05–59.45     |       |
| TM             | 83.6%   | 56.40          | 54.14–58.67     |       |
| Her2 +         |         |                |                | 0.890 |
| IR             | 62.5%   | 53.89          | 48.88–58.91     |       |
| BCS            | 55.6%   | 52.11          | 46.12–58.09     |       |
| TM             | 61.1%   | 54.04          | 49.17–58.92     |       |
| TN             |         |                |                | 0.738 |
| IR             | 58.8%   | 52.14          | 46.57–57.71     |       |
| BCS            | 72.2%   | 53.64          | 47.70–59.57     |       |
| TM             | 63.2%   | 52.69          | 47.22–58.16     |       |

IR = Immediate reconstruction; BCS = Breast conservation surgery; TM = Total mastectomy; TN = Triple negative.

However, patients with $T > 3\text{cm}$ who received IR had an overall worse median 5-year DFS than those who received TM (52.28 months, 95% CI [48.99–55.58] vs 57.32 months, 95% CI [55.59–56.26]; P < 0.044; Fig. 5A and Table 4). The difference in the median 5-year DFS in the Her2 + cohort was marginally significant (57.23 months 95% CI [53.86–60.60] in the TM group vs 43.41 months 95% CI [34.19–52.64]
in the IR group; P = 0.046; Fig. 5D). Patients in the TNBC cohort had a longer median 5-year DFS (57.14 months 95% CI [53.55–60.73] in the TM group vs 45.20 months 95% CI [37.72–52.68] in the IR group; P = 0.042; Fig. 5E).

Table 4
Kaplan–Meier analysis for 5-Year DFS based on 4 different subtypes on IR, BCS and TM (log-rank test) in T > 3cm group

| Subtype | 5-Y DFS | Median 5-Y DFS | P     |
|---------|---------|----------------|-------|
|         | %       | Months         | 95%CI     |
| Total   | 67.2%   | 52.28          | 48.99–55.58 | 0.044 |
| IR      | 67.2%   | 52.28          | 48.99–55.58 |       |
| TM      | 82.0%   | 57.32          | 55.59–56.26 |       |
| Luminal A | 80.0%   | 58.39          | 56.21–60.57 | 0.653 |
| IR      | 80.0%   | 58.39          | 56.21–60.57 |       |
| TM      | 88.9%   | 58.10          | 54.59–61.61 |       |
| Luminal B | 87.5%   | 57.37          | 54.33–60.41 | 0.704 |
| IR      | 87.5%   | 57.37          | 54.33–60.41 |       |
| TM      | 84.0%   | 55.44          | 51.04–59.84 |       |
| Her2 +  | 46.2%   | 43.41          | 34.19–52.64 | 0.046 |
| IR      | 46.2%   | 43.41          | 34.19–52.64 |       |
| TM      | 78.6%   | 57.23          | 53.86–60.60 |       |
| TN      | 76.9%   | 57.14          | 53.55–60.73 | 0.042 |
| IR      | 42.9%   | 45.20          | 37.72–52.68 |       |
| TM      | 76.9%   | 57.14          | 53.55–60.73 |       |

IR = Immediate reconstruction; BCS = Breast conservation surgery; TM = Total mastectomy; TN = Triple negative.

Aesthetic outcomes

Of the 155 eligible patients, the overall response rates were 82.58% (128), 83.87% (130) and 77.42% (120) respectively for patients in the IR, BCS and TM group (Fig. 1 and Table 5). Patients underwent IR were more satisfied than those who underwent BCS or TM in terms of skin quality/color (P < 0.001). Satisfaction scores regarding symmetry (P < 0.001), breast contour/size/position (P < 0.001) and nipple contour/size/position (P < 0.001) were also different among the three comparing groups. In addition, statistical differences were observed in terms of psychosocial well-being (P < 0.001) and sexual well-
being ($P < 0.001$) among patients who underwent IR, BCS and TM (Table 5). IR and BCS preserved improved aesthetic satisfaction, psychosocial well-being and sexual well-being in patients with lesions size of $\leq 3$ cm. However, there was no significant difference in complications (including Necrosis, infection, hematoma/seroma and prolonged wound healing) and impact on the detection of local recurrence among the three groups.
Table 5
Aesthetic and complications related Quality-of-life outcomes according to IR, BCS and TM in T ≤ 3cm

| Aesthetic satisfaction                                      | IR (N = 128) | BCS (N = 130) | TM (N = 120) | P     |
|-----------------------------------------------------------|--------------|---------------|--------------|-------|
| Skin quality/color                                        |              |               |              | p < 0.001|
| Satisfactory                                              | 106 (82.81)  | 99 (76.15)    | 69 (57.51)   |       |
| Medium                                                    | 14 (10.94)   | 19 (14.62)    | 22 (18.33)   |       |
| Unsatisfactory                                            | 8 (6.25)     | 12 (9.23)     | 29 (24.16)   |       |
| Symmetry                                                  |              |               |              | p < 0.001|
| Satisfactory                                              | 118 (92.19)  | 122 (93.84)   | 2 (1.67)     |       |
| Medium                                                    | 6 (4.69)     | 5 (3.85)      | 8 (6.67)     |       |
| Unsatisfactory                                            | 4 (3.12)     | 3 (2.31)      | 110 (91.66)  |       |
| Breast contour/size/position                              |              |               |              | p < 0.001|
| Satisfactory                                              | 116 (90.62)  | 120 (92.31)   | 1 (0.83)     |       |
| Medium                                                    | 7 (5.47)     | 6 (4.61)      | 7 (5.84)     |       |
| Unsatisfactory                                            | 5 (3.91)     | 4 (3.08)      | 112 (93.33)  |       |
| Nipples contour/size/position                             |              |               |              | p < 0.001|
| Satisfactory                                              | 101 (78.91)  | 110 (84.62)   | 1 (0.83)     |       |
| Medium                                                    | 12 (9.37)    | 11 (8.46)     | 5 (4.17)     |       |
| Unsatisfactory                                            | 15 (11.72)   | 9 (6.92)      | 114 (95.00)  |       |
| Complications                                             |              |               |              |       |
| Necrosis                                                  |              |               |              | 0.621 |
| Yes                                                       | 4 (3.22)     | 2 (1.54)      | 4 (3.33)     |       |
| No                                                        | 124 (96.88)  | 128 (98.46)   | 116 (96.67)  |       |
| Infection                                                 |              |               |              | 0.761 |
| Yes                                                       | 6 (4.68)     | 5 (3.85)      | 7 (5.83)     |       |
| No                                                        | 122 (95.32)  | 125 (96.15)   | 113 (94.17)  |       |

IR = Immediate reconstruction; BCS = Breast conservation surgery; TM = Total mastectomy
|                          | IR (N = 128) | BCS (N = 130) | TM (N = 120) |
|--------------------------|--------------|---------------|--------------|
| Hematoma/Seroma          | 0.981        |               |              |
| Yes                      | 11 (8.59)    | 12 (9.23)     | 11 (9.17)    |
| No                       | 117 (91.41)  | 118 (90.77)   | 109 (90.83)  |
| Prolonged wound healing  | 0.459        |               |              |
| Yes                      | 4 (3.22)     | 2 (1.54)      | 5 (4.17)     |
| No                       | 124 (96.88)  | 128 (98.46)   | 115 (95.83)  |
| Psychosocial well-being  | 0.001        |               |              |
| Good                     | 91 (71.09)   | 106 (81.54)   | 15 (12.50)   |
| Medium                   | 27 (21.09)   | 17 (13.08)    | 26 (21.67)   |
| poor                     | 10 (0.78)    | 7 (5.38)      | 79 (65.83)   |
| Sexual well-being        | 0.001        |               |              |
| Good                     | 90 (70.31)   | 95 (73.07)    | 11 (9.17)    |
| Medium                   | 26 (20.31)   | 25 (19.23)    | 21 (17.50)   |
| poor                     | 12 (9.38)    | 10 (7.69)     | 88 (73.33)   |

IR = Immediate reconstruction; BCS = Breast conservation surgery; TM = Total mastectomy

**Discussion**

This retrospective match-cohort study has provided information on long-term oncologic follow-up outcomes for 587 patients with invasive breast cancer at the Harbin Medical University Cancer Hospital in China. Despite the advances and developments in BCS, a recent trend towards patient’s preference for TM or IR has emerged in some countries (20). Our study highlights that patients underwent IR at a relatively young age, meaning IR is particularly applicable in young patients who are urgently willing to have their breast reconstructed after mastectomy. Results of our study showed that IR technique is a safe and reliable surgical treatment for managing $T \leq 3$ cm invasive breast cancers lesion. However, since tumor size $>3$ cm is associated with an increase of local recurrence, especially in those with TNBC and Her2+ subtypes, IR surgical technique applies to breast cancer patients with $T > 3$ cm lesions should be with great caution.

Survival rate and recurrence rate are important indicators of oncological safety. As adjuvant therapies continue to improve and long-term survival rates increase, patient preferences and quality of life indicators have become increasingly important determinants for treatment options (21). Surgical procedures of IR, which include more excision of the skin and glands, are typically complicated for
patients with breast cancer lesions > 3 cm. This will subsequently increase the risk of complications associated with additional adjuvant therapies and local recurrence. In this study, we reported a stratified analysis of the 5-year DFS of IR according to patient age, tumor size, cancer stage and molecular subtype. Results showed that patients of Her2 + or TNBC who underwent TM had a longer median 5-year DFS compared with those underwent IR. To the best of our knowledge, our study was the first one to examine the survival rate of four different subtypes of breast cancer patients who underwent IR. These subgroup analyses enabled us to precisely identify the population that are most suitable for IR.

One of the major strengths of our study is, there was only one study to date using pair-matched study design to compare TM with BCS in patients with tumor size > 2 cm (22). However, no long-term oncological follow-up and comparison with patients undergoing IR have been published. Our study was the first to directly compare IR with BCS and TM in consecutive IDC patients who underwent surgery during similar time periods.

Patients underwent IR can achieve satisfactory oncological and cosmetic outcomes even with a lesion > 2 cm tumor size (23). IR allows all breast excisions and prevents breast deformities by wide resection defects, therefore it improves patients’ cosmetic outcomes (24, 25). Based on our observation, improved aesthetic satisfaction, and psychosocial and sexual well-being were obtained in those who underwent IR and BCS in the T ≤ 3 cm group.

Our study had several limitations. First, the single-center study design and a relatively small sample size limited the generalization of the conclusions, therefore more data are needed to confirm the results. However, despite no statistical difference, we did find that patients underwent IR had a marginally longer 5-year DFS compared with TM and BCS in the T ≤ 3cm group, which probably due to the small sample size either. Potential clinical significance might be observed in the future long-term practice. Second, insufficient cases limited our analysis of the difference between recurrence and metastasis in different surgical methods. Finally, the study population was restricted to female, and therefore our findings cannot be directly generalizable to male patients.

Conclusion

Immediate reconstruction offers improved aesthetic outcomes, psychosocial and sexual well-being to patients with T ≤ 3 cm invasive breast cancer. IR had no superior prognosis compared with TM and BCS for patients with T > 3 cm, but can decrease patients’ 5-year DFS and increase local recurrence, especially for patients with TNBC or Her2 + subtypes.

Abbreviations

IR
Immediate reconstruction; BCS = Breast conservation surgery; TM = Total mastectomy; pT = Pathological tumor size; TN = Triple negative; pN = Pathological Nodal status; HG = histological grade; ER = Estrogen
Declarations

Acknowledgements

We would like to thank Shaohua Ding and Mingguang Yang for assistance with immunohistochemistry staining analysis and Cheng Ma and Yang Jiang technical assistance.

Authors’ contributions

Conceptualization, Yanni Song; Formal analysis: Sansan Sun and Yang Wu; Investigation: Sai Luo and Rui Huang; Methodology: Ming Niu; Resources: Dalin Li and Jiguang Han; Software: Haiqian Xu, Shuo Wang and Qiqi Wu; Supervision: Lijun Hao; Validation: Sihang Zhang; Visualization: Jing Xiong.

Funding

This work was supported by grants from National Natural Science Foundation of China (No. 81302286/H1622), China Postdoctoral Science Foundation (No. 2016M590209). Heilongjiang Natural Science Foundation of China (No. LH2020H120). Ministry of Education Chunhui Project Cooperative Research Project (No. HLJ2019010). Haiyan Fund of Harbin Medical University Cancer Hospital (No. JJZD2020-04).

Availability of data and materials

The raw data of this manuscript are available upon reasonable request from the corresponding author.

Ethics approval and consent to participate

The local ethics board at the Harbin Medical University Cancer Hospital gave ethical approval of retrospective studies. The establishment of this database was approved by the Research Ethics Committee of the hospital. Informed consent individual patients were waived because of the retrospective nature of the analysis.

Consent for publication

Not applicable.

Competing interests

Authors declare that they have no conflicts of interest.

References
1. Dikmans RE, Negenborn VL, Bouman MB, et al Two-stage implant-based breast reconstruction compared with immediate one-stage implant-based breast reconstruction augmented with an acellular dermal matrix: an open-label, phase 4, multicentre, randomised, controlled trial. *Lancet Oncol* (2017) 18(2):251–258. doi: 10.1016/S1470-2045(16)30668-4.

2. Jeevan R, Cromwell DA, Trivella M, et al Reoperation rates after breast conserving surgery for breast cancer among women in England: retrospective study of hospital episode statistics. *Bmj* (2012) 345:e4505. doi: 10.1136/bmj.e4505.

3. Rowland JH, Desmond KA, Meyerowitz BE, Belin TR, Wyatt GE, Ganz PA. Role of breast reconstructive surgery in physical and emotional outcomes among breast cancer survivors. *Journal of the National Cancer Institute* (2000) 92:1422-29. doi: 10.1016/j.ejso.2011.08.126.

4. Heneghan HM, Prichard RS, Lyons R, et al. Quality of life after immediate breast reconstruction and skin-sparing mastectomy - a comparison with patients undergoing breast conserving surgery. *European journal of surgical oncology* (2011) 37:937 – 43. doi: 10.1016/j.ejso.2011.08.126.

5. Elder EE, Brandberg Y, Bjorklund T, et al Quality of life and patient satisfaction in breast cancer patients after immediate breast reconstruction: a prospective study. *Breast* (2005) 14:201-8. doi: 10.1016/j.breast.2004.10.008.

6. Neto MS, de Aguiar Menezes MV, Moreira JR, Garcia EB, Abla LE, Ferreira LM. Sexuality after breast reconstruction post mastectomy. *Aesthetic plastic surgery* (2013) 37:643-7. doi: 10.1007/s00266-013-0082-8.

7. Burwell SR, Case LD, Kaelin C, Avis NE. Sexual problems in younger women after breast cancer surgery. *Journal of clinical oncology* (2006) 24:2815-21. doi: 10.1200/jco.2005.04.2499.

8. Al-Ghazal SK, Fallowfield L, Blamey RW. Comparison of psychological aspects and patient satisfaction following breast conserving surgery, simple mastectomy and breast reconstruction. *European journal of cancer* (2000) 36:1938-43. doi: 10.1016/s0959-8049(00)00197-0.

9. Cordeiro PG. Breast reconstruction after surgery for breast cancer. *The New England journal of medicine* (2008) 359:1590 – 601. doi: 10.1056/nejmct0802899.

10. De Lorenzi F, Hubner G, Rotmensz N, et al. Oncological results of oncoplastic breast-conserving surgery: Long term follow-up of a large series at a single institution: A matched-cohort analysis. European journal of surgical oncology (2016) 42:71–7. doi:10.1016/j.ejso.2015.08.160.

11. Tenofsky PL, Dowell P, Topalovski T, Helmer SD. Surgical, oncologic, and cosmetic differences between oncoplastic and nononcoplastic breast conserving surgery in breast cancer patients. *American journal of surgery* (2014) 207:398–402; discussion 402.

12. Kramer S, Darsow M, Kummel S, Kimmig R, Rezai M. Breast-conserving treatment of breast cancer-oncological and reconstructive aspects. *Gynakologisch-geburthilfliche Rundschau* (2008) 48:56–62. doi: 10.1016/j.amjsurg.2013.09.017.

13. Johns N, Dixon JM. Should patients with early breast cancer still be offered the choice of breast conserving surgery or mastectomy? *European journal of surgical oncology* (2016) 42:1636-41. doi: 10.1016/j.ejso.2016.08.016.
14. Moffat FL Jr, Yakoub D. Bilateral mastectomy and the retreat from breast-conserving surgery. *Breast cancer research and treatment* (2016) 159:15–30. doi: 10.1007/s10549-016-3909-6.

15. Kelemen P, Pukancsik D, Ujhelyi M, et al Comparison of clinicopathologic, cosmetic and quality of life outcomes in 700 oncoplastic and conventional breast-conserving surgery cases: A single-centre retrospective study. *European journal of surgical oncology* (2019) 45: 118 – 24. doi: 10.1016/j.ejso.2018.09.006.

16. American Joint Committee on Cancer. Updated breast chapter for 8th edition. https://cancerstaging.org/references-tools/deskreferences/Pages/Breast-Cancer-Staging.aspx. Accessed February 8, 2018.

17. Kneubil MC, Brollo J, Botteri E, et al Breast cancer subtype approximations and loco-regional recurrence after immediate breast reconstruction. *European journal of surgical oncology* (2013) 39: 260-5. doi: 10.1016/j.ejso.2012.12.004.

18. Coates AS, Winer EP, Goldhirsch A, et al Tailoring therapies–improving the management of early breast cancer: St Gallen International Expert Consensus on the Primary Therapy of Early Breast Cancer 2015. *Annals of oncology* (2015) 26:1533-46. doi: 10.1093/annonc/mdv221.

19. Isern AE, Tengrup I, Loman N, Olsson H, Ringberg A. Aesthetic outcome, patient satisfaction, and health-related quality of life in women at high risk undergoing prophylactic mastectomy and immediate breast reconstruction. *J Plast Reconstr Aesthet Surg.* (2008):61 1177-87. doi:10.1016/j.bjps.2007.08.006.

20. Sakr RA, Poulet B, Kaufman GJ, Nos C, Clough KB. Clear margins for invasive lobular carcinoma: a surgical challenge. *European journal of surgical oncology* 2011;37:350-6. doi: 10.1016/j.ejso.2011.01.010.

21. Moran MS, Schnitt SJ, Giuliano AE, et al Society of Surgical Oncology-American Society for Radiation Oncology consensus guideline on margins for breast-conserving surgery with whole-breast irradiation in stages I and II invasive breast cancer. *Annals of surgical oncology* (2014) 21:704 – 16. doi: 10.1245/s10434-014-3481-4.

22. De Lorenzi F, Loschi P, Bagnardi V, et al Oncoplastic Breast-Conserving Surgery for Tumors Larger than 2 Centimeters: Is it Oncologically Safe? A Matched-Cohort Analysis. *Annals of surgical oncology* (2016) 23:1852-9. doi: 10.1245/s10434-016-5124-4.

23. Bogusevicius A, Cepuliene D, Sepetauskiene E. The integrated evaluation of the results of oncoplastic surgery for locally advanced breast cancer. *The breast journal* (2014)20:53–60. doi: 10.1111/tbj.12222.

24. Clough KB, Kaufman GJ, Nos C, Buccimazza I, Sarfati IM. Improving breast cancer surgery: a classification and quadrant per quadrant atlas for oncoplastic surgery. *Annals of surgical oncology* (2010) 17:1375-91. doi: 10.1245/s10434-009-0792-y.

25. Santos G, Urban C, Edelweiss MI, et al Long-Term Comparison of Aesthetical Outcomes After Oncoplastic Surgery and Lumpectomy in Breast Cancer Patients. *Annals of surgical oncology* (2015) 22:2500-8. doi: 10.1245/s10434-014-4301-6.
Study object. Patients were selected from the database of Breast Cancer Center between 2005 and 2014. IR: Immediate reconstruction; IRBI: Immediate reconstruction of breast implants; IRAT: Immediate reconstruction of autologous tissue; BCS: Breast conserving surgery; TM: Total mastectomy.

Figure 1
Figure 2

Post-operative positive photos. a Immediate reconstruction of breast implants (IRBI); b Immediate reconstruction of autologous tissue (IRAT); c Breast conserving surgery (BCS); d Modified radical mastectomy (TM).

Figure 3

Expression of ER, PR, Her2 and Ki-67 by Immunohistochemical staining in Luminal A, Luminal B, Her2+ and TN breast cancer (the same patient with the same lesion site of each type). Positive expression of ER, PR and Ki67 revealed nuclear staining, original magnification×100. Positive expression of Her2 revealed membrane staining, original magnification×100.
Figure 4

Survival curves in T≤3cm group. a Kaplan-Meier analysis for 5-Year DFS curves based on IR (N=155), BCS (N=155) and TM (N=155) in T≤3cm group; b 5-Year DFS curves stratified by four subtypes in Luminal A; c 5-Year DFS curves stratified by four subtypes in Luminal B; d 5-Year DFS curves stratified by four subtypes in Her2+; e 5-Year DFS curves stratified by four subtypes in TN.
Figure 5

Survival curves in T>3cm group. a Kaplan-Meier analysis for 5-Year DFS curves based on IR (N=61) and TM (N=61) in T>3cm group; b 5-Year DFS curves stratified by four subtypes in Luminal A; c 5-Year DFS curves stratified by four subtypes in Luminal B; d 5-Year DFS curves stratified by four subtypes in Her2+; e 5-Year DFS curves stratified by four subtypes in TN.