Effect of plant extracts on Alzheimer’s disease: An insight into therapeutic avenues

M Obulesu, Dowlathabad Muralidhara Rao

Capital College, Garden City Group of Institutions, Bangalore, ¹Srikrishnadevaraya University, Anantapur, India.

ABSTRACT

Alzheimer’s disease (AD) is a devastative neurodegenerative disorder which needs adequate studies on effective treatment options. The extracts of plants and their effect on the amelioration of AD symptoms have been extensively studied. This paper summarizes the mechanisms like acetylcholinesterase (AChE) inhibition, modification of monoamines, antimyloid aggregation effect, and antioxidant activity which are actively entailed in the process of amelioration of AD symptoms. These effects are induced by extracts of a few plants of different origin like Yizhi Jiannao, Moringa oleifera (Drumstick tree), Ginkgo Biloba (Ginkgo/Maidenhair tree), Cassia obtisufolia (Sicklepod), Desmodium gangeticum (Sal Leaved Desmodium), Melissa officinalis (Lemon Balm), and Salvia officinalis (Garden sage, common sage).

Keywords: Alzheimer’s disease, antimyloid aggregation, antioxidants, acetyl choline esterase inhibitors, plant extracts.

Introduction

Alzheimer’s association estimated that one in eight Americans above age of 65 years and half of the Americans above age of 85 years have been presently suffering from this devastative neurodegenerative disorder.[1] According to this estimation, the number of patients may reach 16 million by 2050[1-4] thus augmenting the economic cost of Alzheimer’s disease (AD) health care system, which is 80–100 billion dollars presently.[1] Loss of cholinergic synapses in hippocampus and neocortex has been a consistent finding in AD, thus accentuating the need to employ a substantial strategy that regulates the AChE function to combat this defect.[1] Tacrine, donepezil, and rivastigmine are a few AChE inhibitors approved by U.S. Food and Drug Administration for the amelioration of AD symptoms.[1,5,6] Although advent of such inhibitors has been effective in function yet there has been augmenting need to quest for new drugs.[1] In the light of this fact, polyphenolic compounds from fruits and vegetables have been exploited because of their potential antioxidative properties.[1,7-12] There has been growing focus on traditional herbal medicines presently since the failure of existing treatments.[13] The first neurotransmitter found to be involved in AD is acetylcholine.[14] Therefore, there have been manifold studies to employ AChE inhibitors.

Plants provide wealth of bioactive compounds, which exert a substantial strategy for the treatment of neurological disorders such as Alzheimer’s disease.[15] It has been recently shown that a Chinese herb, Yizhi Jiannao Granules is effective in improving AD symptoms, and it also aggravates such amelioration when combined with acupuncture.[16] Zeatin has been found to have a protective role against Aβ-induced neurotoxicity in PC12 cells and ameliorate scopolamine-induced amnesia in ICR mice.[17]

Cholinesterase Inhibition

Growing lines of evidence suggests that among 73 native and naturalized plants collected from the central region of Argentina, organic fractions obtained from extracts of Achyrocline tomentosa (Marcela) (Asteraceae), Eupatorium viscidum (Common boneset) (Asteraceae), Ruprechtia apetala (manzano del campo) (Polygonaceae), Trichocline reptans (arnica) (Asteraceae), and Zanthoxylum...
Moringa oleifera (MO) which belongs to the family Moringaceae, is prevalent almost all over the Asian and African countries. Its fruit and leaves which show anti-inflammatory and hypotensive effects are consumed as food by the people. [27-29] It has been found recently that Moringa oleifera leaf extract which is not toxic even at higher concentration levels, enhances memory via nootropics activity and provides substantial antioxidants like vitamin C and E to combat oxidative stress in AD. [13] Moreover, they can improve memory impairment via AChE inhibition. [13,21] Flavonoids, a group of phenolic compounds which demonstrate antimutagenic, anticarcinogenic, and antiageing properties [22,23,24,25] may be responsible for neuroprotective role of Cassia obtusifolia extracts. [13] Dried ginger has been shown to induce Ca2+ antagonistic activity and butylcholinesterase inhibitory activity which are effective in AD treatment. [26]

Modification of Monoamines

Moringa oleifera (MO) which belongs to the family Moringaceae, is prevalent almost all over the Asian and African countries. Its fruit and leaves which show anti-inflammatory and hypotensive effects are consumed as food by the people. [27-29] It has been found recently that Moringa oleifera leaf extract which is not toxic even at higher concentration levels, enhances memory via nootropics activity and provides substantial antioxidants like vitamin C and E to combat oxidative stress in AD. [27,30-32] Wealth of studies substantiated that monoamines entailed in the memory loss are altered by Moringa oleifera leaf extracts [Table 1]. [27,33] Several lines of evidence also suggest that colchicines-induced AD can be ameliorated by ethanolic extract of Moringa oleifera by modifying the brain monoamines (norepinephrine, dopamine, and serotonin) and electrical activity in a rat model. [27]

Antiamyloid Aggregation Effect

Ginkgo biloba being a potential store house of antioxidants offers ample of health benefits to AD patients like antiamyloid aggregation effect [Table 1]. [34-36] Extensive studies on Ginkgo biloba revealed that 240 mg of Ginkgo biloba per day can decrease the incidence of AD. [34] Although there are a few substantial studies on Ginkgo biloba to ameliorate AD symptoms and worldwide sales of it exceed $249 million annually in the United States, [34] yet there has been augmenting need to initiate more promising clinical trials in this direction. [34] It has been found that the Ginkgo biloba extracts ameliorate cognitive defects in a mouse model of AD (Tg2576). [37,38] Manifold clinical trials proved amelioration of AD symptoms [39,40] and the clinical evaluation of EGb 761 that is widely used for dementia in many countries and an extensively used dietary supplement in the United States for memory enhancement. [41-44] is presently in progress. [45] Although in vivo mechanism for EGb 761 is elusive yet it has been found to ameliorate AD symptoms both in vivo (AD mice Tg 2576) [46] and in vitro. [36,37,47-51] Uregulation of a small APP release, a nontoxic, nonamyloidogenic metabolite of APP, via a PKC-independent manner in hippocampi and cortices of EGB761-treated rats has been studied. [37,52]

Antioxidants

Desmodium gangeticum generally known as Salparni, is prevalent in India and has significant medicinal use as a bitter tonic, febrifuge, digestive, antcatarrhal, antiemetic, [53,54] and anti-inflammatory conditions. [53,55] Moreover, it has been extensively used in ayurveda for the amelioration of neurological symptoms. [53] Its extracts employed in mice to evaluate the efficacy in amelioration of AD symptoms via nootropic activity and deterioration of AChE activity yielded considerable outcome. [56] It also possesses antioxidative property [Table 1]. [53,56]

Rosmarinic acid isolated from Salvia officinalis, attenuates a number of events provoked by Aβ-like reactive oxygen species formation, lipid peroxidation, DNA fragmentation, caspase-3 activation, and tau protein hyperphosphorylation. [57,58] Despite a few pharmacological activities of sage attributed [59] to AD include antioxidant activity, [60] anti-inflammatory effects [61] and cholinesterase inhibition, [62] yet the mode

Table 1: Neuroprotective mechanisms exerted by various plant extracts
Mechanism

Cholinesterase inhibition
Modification of monoamines
Antiamyloid aggregation effect
Antioxidant activity
of sage-protective action is unclear. Rosmarinic acid has been known to initiate antioxidant, anti-inflammatory, antimutagen, antibacterial, and antiviral properties. Rosmarinic acid effectively inhibits hallmark events of AD-like formation of fibrils from Aβ, ameliorating preformed Aβ fibrils in vitro and tau hyperphosphorylation.

Neuroprotective Effect of Traditional Japanese-Chinese, Korean, and European Plant Extracts

Khi-to, a traditional Japanese-Chinese traditional medicine, shows significant amelioration of Aβ(25–35)-induced impairments in memory acquisition, memory retention, and object recognition memory in mice. It also attenuates neuritic, synaptic, and myelin losses in the cerebral cortex, hippocampus and striatum. Khi-to also effectively attenuates the calpain augmentation in the cerebral cortex and hippocampus. Abundance of research revealed that among several traditional Chinese medicines, Ginseng Radix and Astragali Radix demonstrated potential axonal extension activity against amyloid β (Aβ) (25–35)-induced axonal atrophy.

Among the 90 traditional Korean tea plants, methanolic extracts of *Pueraria thunbergiana* (Kudzu) rich in Daidzein (4,7 dihydroxy isoflavone), are actively entailed in the amelioration of scopolamine induced amnesia in mice. Abundance of research unraveled the neuroprotective effect of Gossypium Herbaceum extracts against ibotenic acid induced learning and memory impairment in rats.

Melissa officinalis extract has been proven to ameliorate mild to moderate AD. Among the European herbs *M. officinalis* and another herb in the labiatae family, *S. officinalis*, might present a natural treatment for AD by amelioration of cognition. This herb actively amends mood and cognitive ability during acute administration in healthy young volunteers and has no side effects or symptoms of toxicity. *S. triloba* (Greek Sage) and *Teucrium polium* (Cat Thyme) are also effective in amelioration of AD symptoms.

Ayurvedic Plants and AD

Formulation of some Indian medicinal plants classified in Ayurveda, the classic Indian system of medicine, as Medhyarasayas or drugs considerably ameliorates memory and intellect. Studies on rats demonstrated that the oral administration of Trasina, a herbal formulation, once daily for 21 days can effectively ameliorate colchicine induced effects like reduced frontal, cortical and hippocampal acetylcholine (Ach) concentrations, choline acetyltransferase (ChAT) activity, and muscarinic cholinergic receptor (MCR) binding. It has been reported recently that alcoholic extract of *Bacopa monnieri* (Water Hyssop) significantly improves escape latency time in Morris water maze test and ameliorates reduction of neurons and cholinergic neuron densities in Wistar rats which are employed as AD animal models. Anwala churna (*Emblica officinalis* Gaertn.), an Ayurvedic preparation showed an exemplary improvement in memory and brain cholinesterase activity, thus ameliorating the scopolamine induced amnesia in young and aged mice.

Curcumin

Curcuma longa (Turmeric) has been the source of Curcumin (diferuloylmethane), an orange–yellow component of turmeric or curry powder. This being a potential polyphenol natural product has been predominantly used in some medicinal preparation or used as a food-coloring agent. Wealth of studies substantiated that curcumin has anticancer, antiviral, antiarthritic, anti-amyloid, antioxidant, and anti-inflammatory properties. The molecular underpinnings of these effects have been found to involve the regulation of diverse molecular targets, including transcription factors (such as nuclear factor-κB), growth factors (such as vascular endothelial cell growth factor), inflammatory cytokines (such as tumor necrosis factor, interleukin 1 and interleukin 6), protein kinases (such as mammalian target of rapamycin, mitogen-activated protein kinases, and Akt) and other enzymes (such as cyclooxygenase 2 and 5 lipoxygenase). Its ability to regulate multiple targets and its safety for human use, made curcumin an amenable therapeutic agent for the prevention and/or treatment of various malignant diseases, arthritis, allergies, AD, and other inflammatory illnesses.

Recent studies on cultured astrocytes obtained from pregnant Sprague-Dawley (SD) rat and neonatal 0–2-day-old SD rats showed improved neuronal survival by curcumin treatment in NMDA toxicity through the activation of PI3K/MAPK signaling pathways. Studies employing surface plasm membrane resonance experiments, unraveled that the liposomes exposing the curcumin derivative (maintaining the planarity) demonstrate considerable affinity for Aβ1-42 fibrils (1–5 nM), through the exhibition of multivalent interactions, thus opening an amenable therapeutic avenue unlike the nonplanar curcumin.
Conclusion

There have been manifold studies to combat this dreadful neurodegenerative disorder for a few decades. Although a few drugs are available today for the management of AD and many plants and their extracts are extensively employed in animal studies and AD patients, yet no substantial drug or plant extract is able to reverse the AD symptoms adequately. The intervention of phytotherapy, which entails the use of herbal medicines may be a potential corner stone based on which treatment strategies can be streamlined.[14,84-86] It is tangible that there has been augmenting need for such therapeutic intervention.

References

1. Kim JK, Bae H, Kim MJ, Choi SJ, Cho HY, Hwang HJ, et al. Inhibitory effect of ponceur trifluorate on acetyl cholinesterase and attenuating activity against trimethyltin induced learning and memory impairment. Biosci Biotechnol Biochem 2009;73:1105-12.
2. Heo HJ, Kim MJ, Lee JH, Choi SJ, Cho HY, Hong BS, et al. Naringin from Citrus junos has an inhibitory effect on acetylcholinesterase and a mitigating effect on amnesia. Dement. Geriatr. Cogn. Disord. 2004;17:151-7.
3. Prasad KN, Hovland AR, Cole WC, Prasad KC, Nahreini P, Edwards- et al. Inhibitory activity of citrus limonoids, flavonoids, and coumarins. J Agric Food Chem 2005;53:2009-14.
4. Terry RD, Masliah E. Physical basis of cognitive alterations in Alzheimer's disease: Synapse loss is the major correlate of cognitive impairment. Ann Neurol 1991;30:572-80.
5. Candy JW, Perry RH, Perry EK, Irving D, Blessed G, Fairbairn AF. Pathological changes in the nucleus of Meynert in Alzheimer's and Parkinson's diseases. J Neurol Sci 1983;59:277-89.
6. Loizzo MR, Tundis R, Menichini F, Menichini F. Natural products and their derivatives as cholinesterase inhibitors in the treatment of neurodegenerative disorders: An update. Curr Med Chem 2008;15:232-13.
7. Terry RD, Maslahah E. Physical basis of cognitive alterations in Alzheimer's disease: Synapse loss is the major correlate of cognitive impairment. Ann Neurol 1991;30:572-80.
8. Candy JW, Perry RH, Perry EK, Irving D, Blessed G, Fairbairn AF. Pathological changes in the nucleus of Meynert in Alzheimer's and Parkinson's diseases. J Neurol Sci 1983;59:277-89.
9. Loizzo MR, Tundis R, Menichini F, Menichini F. Natural products and their derivatives as cholinesterase inhibitors in the treatment of neurodegenerative disorders: An update. Curr Med Chem 2008;15:232-13.
10. Ak T, Gulcin I. Antioxidant and radical scavenging properties of curcumin. Chem Biol Interact 2008;174:27-37.
11. Gulcin I. Antioxidant activity of caffeic acid (3,4-dihydroxybenzilic acid). Toxicology 2006;217:213-20.
12. Burda S, Oleszczuk W. Antioxidant and antiradical activities of flavonoids. J Agric Food Chem 2001;49:2774-9.
13. Cardenas M, Marder M, Blank VC, Roguin LP. Antitumor activity of some natural flavonoids and synthetic derivatives on various human and murine cancer cell lines. Biogro Med Chem 2006;14:2966-71.
14. Li N, Liu JH, Zhang J, Yu BY. Comparative evaluation of cytotoxicity and antioxidant activity of 20 flavonoids. J Agric Food Chem 2008;56:3876-83.
15. Kris-Etherton PM, Hecker KD, Bonanome A, Coval SM, Binkoski AE, Hilpert KE, et al. Bioactive compounds in foods: Their role in the prevention of cardiovascular disease and cancer. Am J Med 2002;113:718-88.
16. Dreyer BD, Anderson WG, Riedel, G, Kim DH, Ryu JH, Choi DY, et al. The seed extract of cassia obtusifolia offers neuroprotection to mouse hippocampal cultures. J Pharmacol Sci 2008;107:380-92.
17. Akhondzadeh S, Norouzian M, Mohammadi M, Oltadina S, Jamshidi AH, Kiani M. Melissa officinalis extract in the treatment of patients with mild to moderate Alzheimer's disease: A double blind, randomised, placebo controlled trial. J Neurol Neurosurg Psychiatry 2003;74:863-6.
18. Carpinella MC, Androne DG, Ruiz G, Palacios SM. Screening for acetylcholinesterase inhibitory activity in plant extracts from Argentina. Phytother Res 2009;24:259-63.
mouse model of Alzheimer's disease. FASEB J 2007;21:2400-8.

38. Augustin S, Rimbach G, Augustin K, Schlich B, Woflram S, Cermak R. Effect of a short- and long-term treatment with Ginkgo biloba extract on amyloid precursor protein levels in a transgenic mouse model relevant to Alzheimer's disease. Arch Biochem Biophys 2009;481:177-82.

39. DeFeudis FV, Drieu K. Ginkgo biloba extract (EGB 761) and CNS functions: basic studies and clinical applications. Curr Drug Targets 2000;1:25-58.

40. Smith JV, Luo Y. Studies on molecular mechanisms of Ginkgo biloba extract. Appl Microbiol Biotechnol 2004;64:465-72.

41. Le Bars PL, Katz MM, Berman N, Itil TM, Freedman AM, Schatzberg AF. A placebo-controlled, double-blind, randomized trial of an extract of Ginkgo biloba for dementia: North American EGb Study Group. J Am Med Assoc 1997;278:1327-32.

42. Oken BS, Storzicz DB, Kaye JA. The efficacy of Ginkgo biloba on cognitive function in Alzheimer disease. Arch Neurol 1998;55:1409-15.

43. Mix JA, David Crews W Jr. A double-blind, placebo-controlled, randomized trial of Ginkgo biloba extract EGb 761(R) in a sample of cognitively intact older adults: Neuropsychological findings. Hum Psychopharmacol 2002;17:1267-77.

44. Mazza M, Capuano A, Bria P, Mazza S. Ginkgo biloba and donepezil: A study in mild-to-moderate Alzheimer's disease. J Alzheimers Dis 2004;1:25-58.

45. Spencer JP, Rice-Evans C, Williams RJ. Modulation of pro-survival Akt/ protein kinase B and ERK1/2 signaling cascades by quercetin and its in vivo metabolites underlie their action on neuronal viability. J Biol Chem 2003;278:34783-93.

46. Goihl K, Packer L. Bioflavonoid-rich botanical extracts show antioxidant and gene regulatory activity. Ann N Y Acad Sci 2002;957:70-7.

47. Bastianetto S, Zheng WH, Quirion R. The Ginkgo biloba extract (EGB 761) protects and rescues hippocampal cells against nitric oxide-induced toxicity: Involvement of its flavonoid constituents and protein kinase C. J Neurochem 2000;74:2688-77.

48. Yao Z, Rastogi S, Shirwaikar A, Rawat AK, et al. Topical anti-inflammation of Melissa officinalis L. leaves: The relevance of ursolic acid. J Ethnopharmacol 2001;75:125-32.

49. Perry N, Court G, Bidet N, Court J, Perry E. European herbs with cholinergic activities: potential in dementia therapy. Int J Geriatr Psychiatry 1999;16:1063-9.

50. Petersen M, Simmonds MS. Rosmarinic acid. Phytochemistry 2003;62:121-5.

51. Ono K, Hasegawa K, Naiki H, Yamada M. Curcumin has potent antiinflammatory effects for Alzheimer's beta-amyloid fibrils in vitro. J Neurosci Res 2004;75:76-8.

52. Tohda C, Naito R, Iwasaki E. Kibi-to, a herbal traditional medicine, improves a beta (25-35)-induced memory impairment and losses of neurits and synapses. BMC Comp Altern Med 2008;8:49.

53. Tohda C, Matsumoto N, Zou K, Meselhy MR, Komatsu K. Axonal and dendritic extension by protoxanthanol-type saponins from ginseng in rats. J Pharmacol Exp Ther 2002:290:234-62.

54. Tohda C, Matsumoto N, Zou K, Komatsu K. Aji(25-35)-induced memory impairment, axonal atrophy, and synaptic loss are ameliorated by M1, a metabolite of protoxanthanol-type saponins. Neuropsychopharmacology 2004;29:860-8.

55. Tohda C, Tamura T, Matsuyama S, Komatsu K. Promotion of axonal maturation and prevention of memory loss in mice by extracts of Astragalus mongholicus. Br J Pharmacol 2006;149:532-41.

56. Naito R, Tohda C. Characterization of anti-neurodegenerative effects of Polygala tenuifolia in Aji(25-35)-treated cortical neurons. Biol Pharm Bull 2006;29:1892-6.

57. Heo HJ, Suh YM, Kim MJ, Choi SJ, Mun NS, Kim HK, et al. Daidzein activates ecdyone cholinesterase transferase from me-IXC cells and improves drug-induced amnesia. Biosci Biotechnol Biochem 2006;70:107-11.

58. JI C, Li Q, Aisa H, Yang N, Dong YL, Liu YY, et al. Gossypium herbaeaceum extracts attenuate ibotenic acid-induced excitotoxicity in rat hippocampus. J Alzheimers Dis 2009;16:331-9.

59. Perry EK, Pilker AT, Wang WW, Houghton P, Perry NS. Medicinal plants and Alzheimer's disease: Integrating ethnobotanical and contemporary scientific evidence. J Altern Complement Med 1998;4:419-28.

60. Schultze V, Hansel R, Tyler V. Rational phytotherapy: A physician's guide to herbal medicine. New York: Springer-Verlag; 1998.

61. Wake G, Court J, Pilker A, Lewis R, Wilkins R, Perry E. CNS acetylcholine receptor activity in European medicinal plants traditionally used to improve failing memory. J Ethnopharmacol 2000;69:105-14.

62. Kennedy DO, Scholey AB, Tildesley NT, Perry EK, Wesnes KA. Modulation of mood and cognitive performance following acute administration of Melissa officinalis (lemon balm). Pharmacol Biochem Behav 2002;72:953-64.

63. Orhan I, Aslan M. Appraisal of scopolamine-induced antiinflammatory effect in mice and in vitro antiacetylcholinesterase activity and antioxidant activities of some traditionally used Lamiaceae plants. J Ethnopharmacol 2009;122:327-32.

64. Bhattacharya SK, Kumar A. Effect of Trasina, an ayurvedic herbal formulation, on experimental models of Alzheimer's disease and central cholinergic markers in rats. J Altern Complement Med 1997;3:327-36.

65. Kumar V. Potential medicinal plants for CNS disorders: An overview. Altern Med Rev 2002;7:226-38.

66. Vasudevan M, Parle M. Memory enhancing activity of Anwala churna (Trapa bispinosa (Lehm): An Ayurvedic preparation. Physiol Behav 2007:91:46-54.

67. Zhou H, Beevers CS, Huang S. The targets of erekumin. Curr Drug Targets 2011;12:332-47.

68. Lin MS, Hung KS, Chiu WT, Sun YY, Tsai SH, Lin JW, et al. Curcumin enhances neuronal survival in N-methyl-D-aspartic acid toxicity by
83. Mourtas S, Canovi M, Zona C, Aurilia D, Niarakis A, La Ferla B, et al. Curcumin-decorated nanoliposomes with very high affinity for amyloid-β1-42 peptide. Biomaterials 2011;32:1635-45.
84. Akhondzadeh S, Noroozian M. Alzheimer's disease: Pathophysiology and pharmacotherapy. I Drugs 2002;4:1167-72.
85. Bullock R. New drugs for Alzheimer's disease and other dementias. Br J Psychiatry 2002;180:135-9.
86. Bullock R. Drug treatment in dementia. Curr Opin Psychiatry 2001;14:349-53.

Source of Support: Nil, Conflict of Interest: None declared.

Staying in touch with the journal

1) Table of Contents (TOC) email alert
Receive an email alert containing the TOC when a new complete issue of the journal is made available online. To register for TOC alerts go to www.ruralneuropractice.com/signup.asp.

2) RSS feeds
Really Simple Syndication (RSS) helps you to get alerts on new publication right on your desktop without going to the journal's website. You need a software (e.g. RSSReader, Feed Demon, FeedReader, My Yahoo!, NewsGator and NewzCrawler) to get advantage of this tool. RSS feeds can also be read through Firefox or Microsoft Outlook 2007. Once any of these small (and mostly free) software is installed, add www.ruralneuropractice.com/rssfeed.asp as one of the feeds.