Protocol for Measurement of Oxygen Consumption Rate In Situ in Permeabilized Cardiomyocytes

Analysis of mitochondrial respiration function represented by the oxygen consumption rate is necessary for assessing mitochondrial respiration function. This protocol describes steps to evaluate the respiration function of mitochondria in situ in saponin-permeabilized cardiomyocytes. In permeabilized cells, mitochondria are in a relatively integrated cellular system, and mitochondrial respiration is more physiologically relevant than isolated mitochondria.
Protocol for Measurement of Oxygen Consumption Rate In Situ in Permeabilized Cardiomyocytes

Meng Gao,1,3,* Anqi Li,1 Yuan Qin,1,2 Bilin Liu,1 and Guohua Gong1,4,*

1Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
2Department of Pharmacy, Shanghai East Hospital, Tongji University, Shanghai 200120, China
3Technical Contact
4Lead Contact
*Correspondence: meng_gao1993@163.com (M.G.), guohgong@tongji.edu.cn (G.G.)
https://doi.org/10.1016/j.xpro.2020.100072

SUMMARY
Analysis of mitochondrial respiration function represented by the oxygen consumption rate is necessary for assessing mitochondrial respiration function. This protocol describes steps to evaluate the respiration function of mitochondria in situ in saponin-permeabilized cardiomyocytes. In permeabilized cells, mitochondria are in a relatively integrated cellular system, and mitochondrial respiration is more physiologically relevant than isolated mitochondria.
For complete details on the use and execution of this protocol, please refer to Gong et al. (2015a) and Gong et al. (2015b).

BEFORE YOU BEGIN
© Timing: 0.2–3 days

1. Prepare freshly isolated or cultured cardiomyocytes according to our step-by-step STAR protocol (Tian et al., 2020) or other protocols before you start the diagnostic study.

Adult cardiomyocytes were cultured in serum-free M199 medium, supplemented with 10 mM glutathione, 26.2 mM sodium bicarbonate, 5 mM creatine, 2 mM L-carnitine, 5 mM taurine, 0.1% insulin-transferrin-selenium-X, 0.02% bovine serum albumin, 50 U/mL penicillin-streptomycin, and 5% fetal bovine serum, for up to 3 days (depend on experiment). Change medium every 2 days.

Note: The protocol is primarily for adult cardiomyocytes. Cardiomyocyte cell lines and other cell types can also be assessed following this protocol, but the concentration of saponin needs to be rigorously screened.

2. Prepare necessary solutions before the respirometric measurements. Refer to Key Resources Table and Materials and Equipment sections for a complete list of materials and equipment.

3. Prepare several microsyringes by cutting off the long needle according to the length of the Transparent polycarbonate plunger (Figure 1).

Note: The length of the needle is 0.5–1 mm longer than the plunger. Too long will reach to the electrode and damage it.
KEY RESOURCES TABLE

REAGENT or RESOURCE	SOURCE	IDENTIFIER
Chemicals, Peptides, and Recombinant Proteins		
M199	Sigma-Aldrich	Cat# M2520
Glutathione	Sigma-Aldrich	Cat# G6013
NaHCO₃	Sigma-Aldrich	Cat# V900182
Creatine	Sigma-Aldrich	Cat# C3630
L-carnitine	Sigma-Aldrich	Cat# C0158
Insulin-transferrin-selenium-X	Thermo Fisher Scientific	Cat# 51500056
Fetal bovine serum	Thermo Fisher Scientific	Cat# 12483020
Pen/Strep (100×)	Thermo Fisher Scientific	Cat# 10378016
Glutamic acid (Glutamate)	Sigma-Aldrich	Cat# C27647
L-Malic acid (Malate)	Sigma-Aldrich	Cat# M1000
ADP	Sigma-Aldrich	Cat# A5285
TMPD	Sigma-Aldrich	Cat# T3134
L-Ascorbic acid (Ascorbate)	Sigma-Aldrich	Cat# A4034
Oligomycin A	Sigma-Aldrich	Cat# O4876
FCCP	Sigma-Aldrich	Cat# C2920
Cytochrome c	Sigma-Aldrich	Cat# C2506
Pyruvate	Sigma-Aldrich	Cat# P2256
EGTA	Sigma-Aldrich	Cat# E3889
MgCl₂·6H₂O	Sigma-Aldrich	Cat# V900020
Taurine	Sigma-Aldrich	Cat# T8691
KH₂PO₄	Sigma-Aldrich	Cat# V900041
HEPES	Sigma-Aldrich	Cat# V900477
BSA	Sigma-Aldrich	Cat# A6003
Potassium lactobionate	Bio-sugars	Cat# 69313
Mannitol	Sigma-Aldrich	Cat# M9546
Dithiothreitol	Sigma-Aldrich	Cat# V900830

(Continued on next page)
MATERIALS AND EQUIPMENT

Solution Preparation

Note: Prepare all solutions using 18.2 Ω MilliQ sterilized H₂O or absolute ethanol. Aliquot these solutions and store at −20°C or −70°C.

- Mitochondrial respiration buffer (MRB)

Reagent	Final Concentration	Amount
EGTA	0.5 mM	0.19 g
MgCl₂·6H₂O	3 mM	0.61 g
Taurine	20 mM	2.502 g
KH₂PO₄	10 mM	1.361 g
HEPES	20 mM	4.77 g
BSA	0.1%	1.0 g
Potassium lactobionate	60 mM	23.93 g
Mannitol	110 mM	20.04 g
Dithiothreitol	0.3 mM	0.046 g
ddH₂O	n/a	~1,000 mL
Total	n/a	1,000 mL
Note: Adjust the pH to 7.4 with 5M KOH, filter with a 0.45 μm bottle top filter, dispense into 50 mL aliquots and store at −20°C.

△ CRITICAL: Ca^{2+} overload can cause the dysfunction of mitochondrial. EGTA is used to chelate Ca^{2+}.

- **5 M KOH:** Dissolve 14.02 g KOH in 50 mL ddH₂O. Store at room temperature (20°C–26°C).
- **0.05% trypsin-EDTA:** Dilute 0.25% trypsin-EDTA with PBS to 0.05%. Store at 4°C.
- **0.6 M MgCl₂:** Dissolve 2.44 g MgCl₂·6H₂O in 20 mL ddH₂O. Store at room temperature (20°C–26°C).
- **5 mM Oligmycin A:** Dissolve 5 mg Oligmycin A in 1.26 mL absolute ethanol. Dispense into aliquots and store at −20°C. Dilute to 100 μM with ddH₂O before use.
- **10 mM FCCP:** Dissolve 5 mg FCCP in 1.967 mL absolute ethanol. Dispense into aliquots and store at −20°C. Dilute to 20 μM with ddH₂O before use.
- **400 mM Glutamate:** Dissolve 0.748 g glutamate in 10 mL ddH₂O. Neutralize with 5 M KOH and check pH. Dispense into aliquots, store at −20°C.
- **20 mM TMPD solution**

Reagent	Final Concentration	Amount
TMPD	20 mM	4.74 mg
80 mM Ascorbate	1 mM	12.5 μL
ddH₂O	n/a	~987.5 μL
Total	n/a	1 mL

Note: Ascorbate is used to prevent the oxidation of TMPD.

- **20 mM ADP solution**

Reagent	Final Concentration	Amount
ADP	20 mM	20.04 mg
0.6 M MgCl₂	6 mM	20 μL
5 M KOH	~1.14 M	~18 μL
ddH₂O	n/a	~1,962 μL
Total	n/a	2,000 μL

Note: ADP is the crucial compound to trigger mitochondria respiration. Use MgCl₂ stock solution instead of powder because MgCl₂ dissolves in water will release heat, which will decrease the stability of ADP. Aliquot and store at −70°C.

STEP-BY-STEP METHOD DETAILS

Calibrating the Oxygen Electrodes

° Timing: 10 min

1. Turn on the Mitocell respirometry system (Figure 2).
Note: The MT200 mitocell respirometer only needs 100 µL of sample each time, which is far less than the traditional Clark oxygen electrode meter.

2. Turn on the 782 Oxygen system software and check the connection of oxygen meter.

 Note: The software cannot connect to the oxygen meter if you turn on the software before step 1.

3. Fill the chamber with MilliQ water using a rinse bottle, and discard the water with a vacuum pump, rinse 3 times (Figures 3A and 3B).

 Note: The tip must be inserted against the wall of the oxygen electrode chamber, otherwise it can easily damage the membrane of the electrode.

4. Fill air-saturated water (MilliQ water in contact with air) into the oxygen electrode chamber.
5. Put a micro-magnetic stirrer into the oxygen electrode chamber of MT200 respirometer with a plastic forceps, and start stirring (Figure 3C).

 Note: Keep eyes on the tiny magnetic stirrer because it is easily aspirated on the tip. Prepare a big magnetic to find the lost magnetic stirrer.

6. Click on “Calibration high” of calibration panel to start calibrating the high value of the electrode. Please wait until the process is completed.
7. Add a small amount (3–5 mg) of sodium sulfite into the air-saturated water in the oxygen electrode chamber and click on “Calibration zero” to calibrate the zero value of the electrode (Figure 3D).
8. Rinse the chamber 6–10 times to wash out the sodium sulfite. Now, the oxygen meter is ready for use.

 Note: Please rinse more times if the sloped basal line occurred.

Pause Point: The calibrated oxygen meter could wait for a break of 2–3 h.
9. Wash cardiomyocytes twice with 5 mL PBS, detach cells using 1 mL 0.05% trypsin digesting 2–3 min and pipette 5–8 times, and collected cardiomyocytes through 80 g, 2 min centrifugation, and discard the supernatant.

Note: The ability of attachment of adult cardiomyocytes is weaker than the cell lines.

10. Resuspend cells in 1–2 mL mitochondrial respiration medium B (MRB).
11. Pipette the cells well and use one drop to count the number of cells with an automatic cell counter.
12. Dilute the cells to 5×10^5 cells per mL with MRB and keep on ice.

△ CRITICAL: Appropriate cell number is very important for measurement. Too many cells will cause the quick decline of the basal line without enough time to treat the cells with substrates and inhibitors. Also, few cells will lead to a weak response.
Measuring Mitochondrial Respiration

Timing: 15–20 min

13. Add 100 μL cell suspension (5 × 10^4 cells) using a pipette to oxygen electrode chambers. Close the oxygen electrode chamber with the Transparent polycarbonate plunger, equilibrate again for 3–5 min.

Note: keep the cardiomyocytes, mitochondrial electron transport chain substrates and inhibitors on the ice during measurement.

14. Start recording oxygen consumption. After 2–3 min of basal line recording, add 5 μL saponin (final concentration is ~50 μg/mL) using a 25 μL microsyringe for cell membrane permeabilization, and continue recording (Figure 4).

Note: Add the solution of saponin, substrates, or inhibitors slowly; otherwise, it will cause bubbles to disrupt the trace.

△ CRITICAL: 1–2 min is enough for complete cell membrane permeabilization. Excess of saponin (more than 100 μg/mL) can damage the mitochondrial membrane (Kuznetsov et al., 2008). The permeabilization conditions should be strictly optimized for different cell types to preserve mitochondrial intactness. To check whether the mitochondrial outer membrane is damaged, we can assess the oxygen consumption of TMPD/Ascorbate/ADP and cytochrome c (Please refer to the section of Troubleshooting 2)

15. 1–2 min later, add 5 μL Glutamate/Malate solution (final concentration is ~10 mM glutamate, ~5 mM malate) to the chamber and record 2 min of resting complex I-supported respiration.

Note: Make a mixed Glutamate/Malate substrate solution by mixing 400 mM Glutamate and 200 mM malate in a 1:1 ratio. Alternatively, you can use 10 mM Pyruvate instead of Glutamate.

16. Add 5 μL 20 mM ADP (final concentration is ~1 mM) to the chamber, incubate for 3–5 min and record the respiration.
Note: If the slope of trace (state 3) only slightly increases (the ratio of respiration rate of control cells before and after the addition of ADP is less than 2), it indicates that the mitochondria may be damaged by permeabilization. Please perform the oxygen consumption of TMPD/Ascorbate/ADP and cytochrome c (Please refer to the section of Troubleshooting 2).

17. Add 5 μL 100 μM Oligomycin A (final concentration is ~ 5 μM) to the chamber, to inhibit ATP synthase and reduce oxygen consumption rate. Incubate for 2–3 min, and record the respiration.

18. Add 5 μL 20 μM FCCP (final concentration is ~ 1 μM) to the chamber to uncouple oxygen consumption from ATP production, and trigger the maximal oxygen consumption, record the respiration until it reaches zero.

Cleaning the Oxygen Electrode Chambers

© Timing: 35 min

19. Rinse the chamber with MilliQ H2O for several times. Then sterilize with 70% ethanol for 30 min after each experiment.

EXPECTED OUTCOMES

The goal of the method is for analyzing mitochondrial respiration function in permeabilized cardiomyocytes. In our protocol, we evaluate mitochondrial respiration function in permeabilized cardiomyocytes using an MT200 mitocell respirometer. Only 100 μL of the sample (5 × 10⁴ myocytes) is needed each time, which can save precious samples. The mitochondrial respiration is more physiologically relevant than isolated mitochondria due to preserving their essential interactions with other intracellular systems. At the same time, the mitochondria in situ are usually more stable than isolated mitochondria. A typical oxygen concentration traces for successfully permeabilized cardiomyocytes are shown in figure (Figure 5).

LIMITATIONS

The permeabilization method, not specific target to cytoplasm membrane, may also cause damage to the mitochondrial membrane. The permeabilization conditions must be strictly optimized for
different cell types to preserve mitochondrial intactness. The cell number is also need be optimized for different cell types. This method is not able to separately investigate distinct mitochondrial subpopulations.

TROUBLESHOOTING

Problem 1
The rates of initial respiration before the addition of ADP is high

Potential Solutions
Wash glassware with RMB supplemented with EGTA to remove the calcium. Decrease the cell number.

Problem 2
ADP-stimulated respiration is too low.

Potential Solutions
First, perform the oxygen consumption of TMPD/Ascorbate/ADP followed with cytochrome c addition (Figure 6). If cytochrome c markedly increases the oxygen consumption triggered by TMPD/Ascorbate/ADP, please decrease the concentration of saponin to avoid damaging mitochondrial outer membrane. Slightly increase the concentration of saponin if cytochrome c does not affect oxygen consumption.

RESOURCE AVAILABILITY

Lead Contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Guohua Gong (guohgong@tongji.edu.cn).

Materials Availability
This study did not generate new unique reagents.

Data and Code Availability
This study did not generate any unique datasets or code.
ACKNOWLEDGMENTS

This work was supported partly by the National Key Research and Development Program of China (no. 2018YFA0107102 to G.G.), the National Natural Science Foundation of China (no. 31901044, 31771524 to G.G. and no. 81970333 to Y.Q.), and the Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning (no. TP2017036 to G.G.).

AUTHOR CONTRIBUTIONS

G.G. conceived, designed, and supervised the project. M.G. and A.L. conducted most of the experiments and performed data analysis. L.-B.L. maintained the Clark electrode. Y.Q. provided valuable suggestions. G.G. and M.G. wrote the manuscript.

DECLARATION OF INTERESTS

The authors declare that they have no competing interests.

REFERENCES

Gong, G., Song, M., Csordas, G., Kelly, D.P., Matkovich, S.J., and Dorn, G.W., 2nd (2015a). Parkin-mediated mitophagy directs perinatal cardiac mitochondrial metabolic maturation in mice. Science 350, aad2459.

Gong, G.H., Liu, X.Y., Zhang, H.L., Sheu, S.S., and Wang, W. (2015b). Mitochondrial flash as a novel biomarker of mitochondrial respiration in the heart. Am. J. Physiol. Heart Circ. Physiol. 309, H1166–H1177.

Tian, X.G., Gao, M., Li, A.Q., Liu, B.L., Jiang, W.T., Qin, Y., and Gong, G.H. (2020). Isolation of viable adult rat cardiomyocytes with high yield. STAR Protoc. 1, 100045.

Kuznetsov, A.V., Veksler, V., Gellerich, F.N., Saks, V., Margreiter, R., and Kunz, W.S. (2008). Analysis of mitochondrial function in situ in permeabilized muscle fibers, tissues, and cells. Nat. Protoc. 3, 967–976.