Cross-sectional Study

Variability in tuition and curriculum among allopathic and osteopathic medical schools in the United States

I-Chun Lin, Brendon Sen-Crowe, Anthony Pasarin, Mark McKenney, Adel Elkbuli

Department of Surgery, Division of Trauma and Surgical Critical Care, Kendall Regional Medical Center, Miami, FL, USA

ABSTRACT

Background: Medical school tuition has increased dramatically. We aimed to characterize allopathic and osteopathic medical school tuition and its association with geographic region, pre-clerkship and clerkship curriculums, and compare tuition between allopathic and osteopathic schools.

Methods: US allopathic and osteopathic in-state tuition were extracted from the AAMC and AACOM databases and adjusted for cost-of-living. Schools were divided by geographic regions (West, Midwest, South, Northeast). Pre-clerkship and clerkship curricula characteristics were collected from school websites. Pre-clerkship curricula were categorized into one of six categories: 1) discipline-based, 2) organ system-based, 3) combined discipline/organ system based, 4) team-based learning, 5) mixed, and 6) other. Clerkship curricula characteristics collected included; required research block, out-of-state elective option, and global health (international) elective option. This study was reported according to STROCSS guidelines.

Results: For allopathic schools, unadjusted and adjusted tuition was significantly higher in the Northeast. After adjusting for cost of living, the West displayed significantly larger in-state tuition than the South. No association was seen between tuition and pre-clerkship curriculum. Of the clerkship characteristics, presence of a required research block or global health electives corresponded to higher tuitions. For osteopathic schools, tuition in the West was significantly higher than the South and Midwest. Schools that offered a discipline-based pre-clerkship curriculum had higher tuitions than other curricula. Clerkship characteristics were not associated with tuition variation.

Conclusions: US medical school tuition is highly variable, demonstrating associations with geographic regions and curriculum characteristics. There is increasing value in team-based learning modalities in improving professional communication skills.

1. Introduction

The decision to train as a physician has always been an investment of hard work, personal sacrifice, and, increasingly so, finances. Since the 2013–2014 school year, tuition has increased by 22.5% and, in the past year alone, by 10.3% [1,2]. The average medical student debt is $200,000 and projected to reach $750,000 by 2033 [2–4].

For many potential applicants, tuition is an important consideration. For some, it will be the ultimate barrier to pursuing a medical education. Tuition has been shown to be variable across the United States (US) resulting in an uneven financial burden on medical students. Studies have demonstrated correlations with region and medical school ranking [5,6]. However, given recent uptrends in tuition, current factors contributing to tuition variation need to be further explored.

High levels of indebtedness among graduates are matters of concern to the community. From a purely financial standpoint, current educational financing may not withstand debt levels above a certain ceiling [7]. Further, high debt has been shown to influence graduates’ choice of specialty [8,9]. Studies have shown that students with higher debt levels placed more importance on future income [10] and were less likely to pursue a career in primary care despite recent policies providing financial incentive to do so [11–13].

Medical student debt has repeatedly been shown to be negatively associated with mental well-being and academic outcomes [14]. Therefore, it is important to objectively characterize the reason for such variability and growth in medical school tuition and increase
transparency.

One of the main selling points of medical schools is its curriculum. In recent years, medical schools have been moving from the traditional Flexner model, consisting of two years of discipline-based didactics and two years of clerkships, to an integrated or mixed curriculum [15]. Further, there has been an increased emphasis on team-based learning, whether in the classroom or other modalities, such as simulation. Schools also offer various elective options, such as research blocks or Global Health electives (GHE), which may influence a student’s decision to attend. Given the variety in curricula offered, medical school applicants must consider which seems more appropriate for their learning. Ultimately, if these elective options factor into higher tuition, applicants must carefully consider the cost-benefit. This, however, has not been addressed in the literature.

Existing literature has assessed variation in allopathic medical school tuition by region, ranking, and population density. However, no study has assessed tuition variability in osteopathic schools or compared tuition between allopathic and osteopathic schools, which could be an important consideration for applicants. Therefore, this study aims to analyze tuition variability in allopathic and osteopathic medical schools by geographic region, and analyze variability in tuition when adjusted for cost-of-living (COL).

There is an additional paucity of literature assessing type of curriculum and electives offered at allopathic medical schools in the US, and any correlation with tuition. Therefore, the second goal of this study was to assess the type of curriculum associated with variability in school tuition.

2. Methods

This is a cross-sectional study that includes all Liaison Committee on Medical Education (LCME)-accredited US medical schools in all 50 states, District of Columbia (DC), and Puerto Rico, and all osteopathic medical colleges as recognized by the American Association of Colleges of Osteopathic Medicine (AACOM). The study included all accredited schools under each respective organization (i.e. AAMC for allopathic schools, AACOM for osteopathic schools) and their satellite locations with unique tuitions to account for locational variability even within the same institution. US allopathic medical schools’ 2020–2021 academic year annual tuition public data was extracted from the Association of American Medical Colleges (AAMC) online Tuition and Student Fees Questionnaire. Osteopathic medical colleges’ 2020–2021 academic year annual tuition was extracted from the AACOM Annual Osteopathic Medical School Questionnaire. The in-state tuition was utilized.

All medical schools were categorized by geographic regions, as defined by the US Census Bureau (West, Midwest, South, Northeast). Tuition variability was analyzed separately by regions and by state through mean, median, and quartiles; allopathic and osteopathic medical school tuitions were then compared.

2.1. Adjusting for geographic differences in cost of living (COL)

In order to adjust for geographic differences in the cost of in-state tuition among medical schools, the 2020 American Chamber of Commerce Research Association Cost of Living Index (COLI) was obtained, where an index of 100 was treated as 1.00. Adjusted mean in-state tuition (MIST) was computed by multiplying the in-state tuition of each medical school by the corresponding state-level COLI and calculating their respective categorical averages.

2.2. Curriculum

Each medical school’s curriculum was classified by predominant learning modality, defined as the type of curriculum used during at least two of the pre-clerkship semesters, as collected from medical school’s websites (curriculum roadmaps, academic calendar, and course catalogs) and divided into pre-clerkship and clerkship. Pre-clerkship curricula were classified by six categories: 1) discipline-based, 2) organ system-based, 3) combined discipline and organ system-based, 4) team-based learning, 5) mixed, and 6) other [17]. The curricula sub-types were obtained from the AAMC Curriculum Directories and prior literature [18], with the addition of team-based learning and a combined discipline and organ system-based curriculum. Curricula were categorized as mixed if they were composed of two or more of the pre-defined categories (1–4) and as other if they were completely unique and did not fall under the pre-defined categories (1–4). Clerkship characteristics, including presence of a required research/scholarly block, out-of-state (OOS) elective option, and option for GHEs (international) were recorded. This study is reported according to STROCSS guidelines [16] and was registered in research registry under identifying number researchregistry6981.

2.3. Statistical analysis

IBM SPSS Statistics v26.0 (Armonk, NY) was used for statistical analysis. ANOVA test was used to evaluate the MIST (and adjusted MIST) and corresponding Census regions and pre-clerkship curricula. The Bonferroni post-hoc test was used when analyzing and comparing mean tuition by region in order to correct for multiple testing. Independent-sample t-tests were used to evaluate the difference in MIST (and adjusted MIST) between allopathic and osteopathic medical schools. In addition, independent-sample t-tests were utilized to evaluate significant differences between the MIST of allopathic and osteopathic medical schools and the presence/absence of corresponding pre-clerkship curricula features (e.g. required research, GHE, etc.) Two-tailed p-values were used in each analysis. Significance was defined as p < 0.05. This study was conducted in compliance with ethical standards, used publicly available data and deemed exempt by our Institutional Review Board.

3. Results

Out of a total of 151 allopathic medical schools, the average in-state tuition was $41,741 (median: $40,479) and the mean adjusted in-state tuition was $45,117 (median: $46,323). Out of a total of 37 osteopathic medical schools with 41 unique tuitions, the average in-state tuition was larger than allopathic schools’ even after adjusting for COL.

3.1. Allopathic medical schools

The South region harbored the most allopathic medical schools at 57 (37.8%) schools, followed by the Northeast, Midwest, and West region (Table 1a). The South region exhibited the lowest MIST, followed by the West, Midwest, and Northeast (Table 1a). The Northeast displayed a significantly larger mean tuition than the West (p < 0.001), Midwest (p = 0.026), and South (p < 0.001) regions. The Midwest displayed a significantly larger MIST than the South (p = 0.007) region (Table 1).

Out of 151 total allopathic medical schools, 146 contained sufficient information about their curriculum to be included in this analysis. The most prevalent curriculum type among allopathic schools was organ system-based (44.5%), followed by mixed organ system/discipline-based (24.0%), team-based (18.5%), primarily discipline-based (11.0%), and “other” (2.1%). Team-based was the only curriculum type implemented at a medical school that did not charge tuition. There was no significant correlation between MIST and curriculum type (Table 1b, eTable 2).

However, allopathic programs that offered a required research/scholarly project exhibited a significantly larger MIST than those that did not (p < 0.001). In addition, allopathic medical schools that offered a GHE in their curriculum demonstrated significantly larger MIST than those that did not (p = 0.017) (Table 1c).
3.2. Osteopathic medical schools

The South harbored 17 (40.5%) osteopathic schools, followed by 9 (21.4%) in the Northeast region, and 8 (19.0%) in each the West and Midwest region (Table 2a). The West region displayed the largest MIST, followed by the Midwest region, Northeast region, and South region (Table 2a). Only one significant difference in MIST for osteopathic schools was observed between the West ($59,341) and the South ($44,686) (p = 0.016) (eTable 3).

Out of 42 total osteopathic medical schools, 41 contained adequate information regarding their curriculum to be included in this analysis. The most prevalent curriculum type among osteopathic medical schools was organ system-based (51.2%), followed by team-based (17.1%), mixed organ system/discipline-based (14.6%), “other” curriculum (9.8%), and primarily discipline-based (7.3%) (Table 2b). Osteopathic schools offering a discipline-based curriculum displayed a significantly higher MIST than those that offer a team-based curriculum. There were no significant differences by curriculum type otherwise (Table 2c) (eTable 4).

3.2.1. Mean in-state tuition adjusted for cost of living

Overall, osteopathic medical schools displayed a significantly higher MIST than did allopathic medical schools (p < 0.001). Likewise, after adjusting for differences in geographical COL, osteopathic medical schools exhibited a significantly larger MIST than did allopathic medical schools (p = 0.024).

3.3. Allopathic medical schools

The Northeast exhibited the largest adjusted MIST, followed by the West, the Midwest, and the South region (eTable 5). In comparison to the unadjusted MIST of allopathic medical schools, after adjusting for state COL, the Northeast remained the highest tuition; however, the West became the second-highest adjusted MIST (Table 1a, eTable 1).

Table 1a
In-state mean tuition of U.S. Allopathic medical schools by region.

U.S. Region	Number of Allopathic Medical Schools	Mean Tuition ($)	Standard Deviation	95% Confidence Interval of Mean	Minimum	Maximum
All	151	$41,742	14,771	39,367 – 44,117	0	65,566
West	23	$37,353	15,515	30,644 – 44,062	0	64,538
Midwest	35	$44,151	11,949	40,046 – 48,255	29,680	65,476
South	57	$34,876	14,532	31,020 – 38,731	0	62,060
Northeast	36	$53,075	8936	50,052 – 56,098	36,030	65,566

Table 1b
Comparison of the mean Tuition and preclerkship curriculum of allopathic medical schools.

Preclerkship Curriculum	Number of Allopathic Medical Schools	Mean Tuition ($)	Standard Deviation	95% Confidence Interval of Mean	Minimum	Maximum
All	146	$42,126	14,523	39,751 – 44,502	0	65,566
Primary Discipline	16	$40,881	14,281	35,968 – 51,657	18,593	62,980
Primarily Organ System	65	$44,509	14,786	37,342 – 44,420	11,442	65,566
Mixed Organ System/	35	$43,264	13,907	39,430 – 49,589	15,566	63,776
Discipline						
Team-Based (PBL/TBL)	27	$22,069	10,786	37,763 – 48,766	0	65,476
Other	3	$43,812	14,523	–4725 – 48,863	0	65,476

Table 1c
Comparison of curriculum feature and mean tuition in allopathic medical schools.

Curriculum Feature	N	Mean Tuition ($)	Standard Deviation	95% Confidence Interval	Significance (2-tailed)
Required Research/Scholarly Project	Yes	43	48,561	4773 – 48,884	<0.001
	No	103	38,732	41,087 – 37,482	
OOS Non-Sub-I-Clerships	Yes	62	41,956	4016 – 5752	0.726
	No	85	41,087	15,478	
Global Health	Yes	96	43,820	1081 – 10,869	0.017
	No	54	37,845	15,488	

Abbreviations: PBL/TBL = Problem-based Learning/Team-based Learning; OOS = Out-of-state.
The Northeast continued to display a significantly larger MIST than the Midwest and South (p < 0.001, respectively) and the West (p = 0.008) regions. The South no longer exhibited a significantly larger MIST than the Midwest region, however, the West region exhibited a significantly larger MIST (p = 0.040) than the South region after adjusting for COL (eTable 8).

After adjusting for geographical COL, allopathic medical schools that offered a mixed organ system/discipline-based curriculum displayed the largest MIST, followed by primarily discipline-based, organ system-based, team-based, and finally, “other” curricula (eTable 7). MIST did not differ significantly by curriculum type after adjusting for COL (p = 0.440) (eTable 9).

Allopathic medical schools that offered a required research/scholarly project displayed significantly larger adjusted MIST as compared to those that did not (p < 0.001) (eTable 5). In addition, allopathic medical schools that offered a GHE demonstrated significantly larger adjusted MIST than those that did not (p = 0.020) (eTable 5). Finally, no significant difference in adjusted MIST was found between allopathic medical schools that did and did not offer out-of-state (OOS) non-subintern clerkships (p = 0.440) (eTable 5).

Table 2b
Comparison of the Mean In-State Tuition and Preclerkship Curriculum of Osteopathic Medical Schools. *41out of 42 total osteopathic schools contained sufficient information about their curriculum to be included in this analysis.

Table 2c
Comparison of curriculum feature and mean in-state tuition in osteopathic medical schools.

4. Discussion

Our study demonstrates that medical school tuition across the US is highly variable for both allopathic and osteopathic schools, even when adjusted for COL. However, the contributing factors and ramifications for such variation are poorly understood [1–3,13]. Existing literature has demonstrated significant variability in tuition for allopathic schools, even within the same city [5,6]. One key factor observed in this study was geographic region, with allopathic medical school tuition being highest in the Northeast. This finding is consistent with those in prior literature. In 2020, Ginocchio et al. published a retrospective study investigating factors associated with patterns in 2018–2019 U.S. medical school tuition, including total enrollment, establishment year, and other characteristics extracted from the AAMC online Medical School Admission Requirement database [3]. The study found that for the included 148 schools, tuition was significantly correlated with geographic region and highest in the Northeast ($49,662), even after adjusting for cost-of-living. In addition, tuition demonstrated positive correlations with medical schools’ regional population density and years since establishment and negative correlations with US News rank and NIH rank (more expensive for higher ranked schools). This trend has remained constant over time; a retrospective analysis by Gil et al. published in 2015 containing all 123 AAMC-accredited allopathic medical schools also demonstrated significantly higher tuition in the Northeast ($45,892) than any of the other three regions [6]. Variation in the reported in-state tuition among allopathic medical schools may be influenced by differences in in-state tuition reported by the AAMC vs. U.S. News and World Report, and changes in tuition over time [5,6]. However, these findings may reflect a true difference in tuition by geographic region, which could be explained by a concentration of high population density areas in the Northeast when compared to other geographic regions, which would disproportionately increase tuition. A geographic analysis of areas of population density correlated with locations of medical schools would provide interesting insight into this potential contributing factor.

Unlike previous studies [5,6], there was no significant variation in the West, Midwest, and South regions, demonstrating some evening out of tuition in those regions. When adjusted for COL, tuition in the
Northwest was even higher, suggesting a disproportionately high tuition. Furthermore, the West exhibited a significantly higher MIST (p = 0.040) than the South region after adjusting for COL. In contrast, the MIST of the Midwest region was no longer significantly greater than the South region as in the unadjusted analysis. It has been previously demonstrated that the strongest independent predictor of tuition is US News & World rank [5]. However, the US News ranking system is largely based on a qualitative assessment of the medical school itself, utilizing peer and residency director assessment scores as a surrogate for quality of the medical school education [19]. The quantitative assessment lies with undergraduate statistics, such as MCAT scores and ‘undergraduate achievement’, as well as acceptance rate, faculty-to-student ratio, and research productivity of the institution. None of these factors actually measure the quality of the medical school curriculum. The schools are also not ranked based on other factors that may indicate successful medical training, such as rates of residency matching and the quality of the programs that respective graduates match into, which may be helpful objective measures of quality medical training. Further, factors such as faculty-to-student ratio and research productivity may be influenced by school funding, faculty is significantly less likely to stay at an institution if there are fewer opportunities for promotion and reduced support for scholarly activities [20]. This gives an inherent ranking advantage to those institutions that are long-established and have broader networks, without active assessment of educational quality itself. As our study did not find a significant correlation between curriculum type and tuition, further investigation assessing curriculum types by institutional ranking may be helpful in providing more objective contributions to higher tuition. Prior literature has further cited increased demand for and potential quality of educators at more highly ranked institutions as reasons for higher tuitions [5]. However, faculty at institutions are largely ranked through academic productivity, which is a poor surrogate for actual teaching ability. Again, it is important to create objective measures to quantify the quality of medical education. Although some may use Step 1 scores as a benchmark, the USMLE has indicated that scores will be reported as pass/fail as of January 2022. Therefore, other measures should be established. Our study did find regional differences in tuition; based on these findings, it may be interesting to assess the geographic distribution of highly ranked institutions and whether it correlates with geographic trends in tuition.

Osteopathic medical school tuition was highest in the West, and significantly higher in the West than in the Midwest and South when adjusted for COL. The variation could be in part due to the type of curriculum offered, as observed. Although it has not been studied, osteopathic tuition may also correlate with school rankings. If so, the geographic distribution of highly ranked osteopathic schools may also be worthwhile to investigate. More likely, the West contains several desirable locations to live, including three of the top 5 best states (Washington, at number 1; Utah at 3; Idaho at 5) according to U.S. News [20]. This demonstrates significant overlap with the best states for young adults, including Utah at 1 and Idaho at 5, all of which may create higher demand for schools located within these states. However, prior literature has further demonstrated variation within localities, indicating that location is only one contributing factor and does not justify such tuition variability [5].

Our study also demonstrated that osteopathic medical school tuition was significantly higher than that of allopathic medical schools, with and without adjusting for COL. It is unlikely that this discrepancy is due to medical school rankings differences per U.S. News rankings, osteopathic schools do not disproportionately constitute the higher rankings. This specific variation is most likely due to the majority of osteopathic schools being private institutions [21], although this variation was largely accounted for by only comparing in-state tuitions. It may also be that there are fewer osteopathic schools but a higher demand proportional to that of allopathic medical schools, resulting in increased tuitions.

Our study is also the first to characterize allopathic and osteopathic medical school curricula. There was no association between type of allopathic medical school pre-clerkship curriculum and tuition. Interestingly, there was a significant difference in the mean tuition of osteopathic medical schools by pre-clerkship curriculum, with those utilizing a discipline-based curriculum demonstrating significantly higher tuition. Discipline-based curricula have been around since the 1900s and are the traditional type of curriculum [22]. Institutions that offer discipline-based curricula may be longer established. Length of establishment has been previously hypothesized to correlate with higher medical school rankings; based on the U.S. News ranking criteria, as mentioned previously, this may be the case. Peers and program directors may be more inclined to view well-established and longer-established institutions more favorably. This, however, requires more granular investigation as similar trends were not demonstrated for allopathic schools. This trend may also have only been demonstrated for osteopathic schools given the smaller sample size. Otherwise, medical school applicants may be more inclined to apply to those osteopathic schools offering the tried and true discipline-based curricula, which would increase demand.

However, it may be worthwhile for applicants to strongly consider schools that offer team-based learning, for a variety of reasons. First and foremost, medicine is increasingly a team-based practice, and requires professional intra- and inter-disciplinary communication. The AMA endorses the most effective way to practice medicine is as part of a physician-led team, allowing for maximization of all healthcare skillsets [23]. Communication is also important in a patient-physician relationship. Team-based learning allows trainees to practice these communication skills in a variety of settings and on a variety of topics. A quasi-experimental study by Faezi et al. found that a cohort of 84 third-year medical students who participated in team-based learning demonstrated higher engagement, higher satisfaction, and better long-term learning that those who participated in traditional didactics-based learning over the course of three 3-h weekly rheumatology learning sessions [24].

This study also looked at three clerkship curricula characteristics: a required research/scholarly project block, out-of-state electives (non-Sub-Internship), and presence of a GHE. For allopathic medical schools, adjusted tuition was significantly higher for those schools that require a research block and those that offered a GHE, and there was no significant difference for osteopathic schools. These electives offer trainees the opportunity to become not only more well-rounded physicians but also more well-rounded academicians. Research experience in training as a medical student can also translate to more job opportunities in academic medicine after residency. Learning how to conduct research as a student can provide tremendous benefit when conducting more autonomous research as a resident and beyond. Global health opportunities are also important, as cultural competency and sensitivity are highly valued in a physician [25]. Therefore, this finding could indicate that a research block and GHE cost more for schools to offer. For example, medical students attending a GHE often undergo training prior to departure and may incur additional costs on the school and may be reflected in the tuition [26]. Future studies may consider investigating any variations in tuition between schools that offer full vs. partial stipends for GHEs. Alternatively, it could indicate that schools that offer the two are more highly sought after by medical students, and so tuition is driven up by demand.

As our study demonstrated, tuition variability is still significant across geographic regions, although less so than previous years. High costs could play a barrier to potential medical school applicants. Additionally, a longstanding concern in the medical community has been the role of debt in choice of specialty. The AAMC concluded that education debt does not seem to play a major role in specialty choice [4]. Despite this, there is a lack of accountability governing medical school tuition, which seem to be largely unrelated to type of curriculum offered.

Some medical schools have taken steps to alleviate the increasing financial burden on medical students. One medical school has offered free tuition to all its students, with the goals of reducing debt, increasing
students who choose primary care specialties, and increasing the socioeconomic diversity of the student body [27]. Eight US medical schools have implemented three-year programs to combat rising debt and a predicted physician shortage [28]. The current Biden administration has proposed plans for student loan forgiveness and extension of student loan forbearance. Other efforts include no-loan financial aid packages, fully paid tuition and fees for physician-scientists, and merit-based scholarships [29].

This study has several limitations. First, this study did not include costs of medical education outside of tuition (e.g. student health insurance and additional fees). Second, the curriculum for each medical school was collected from each school’s website. Schools are not required to advertise GHEs or research opportunities on their website; therefore, our analysis likely falls short of the true number of schools offering either research or GHEs. Our study also did not assess all aspects of the curricula completely so there is room for further granularity. Finally, we were unable to assess other variables that likely factor into a school’s MIST, such as academic match results, research and academic productivity, academic funding/resources and quality of life.

Future studies should investigate the effects of the variability in tuition as a potential barrier to medical education. This is of particular importance to underrepresented racial/ethnic minorities, as they are overrepresented in lower socioeconomic status [30]. The magnitude and variability of tuition across regions is likely to create additional financial barriers for underrepresented minorities. Therefore, we recommend increased transparency from medical schools regarding factors that determine tuition, as further granularity in various curricula and associated administrative costs may provide more insight into the inconsistencies seen in medical school tuition.

5. Conclusions

US medical school tuition is highly variable and is highest in the Northeast and in the West region for allopathic and osteopathic medical schools, respectively. Greater tuition is associated with some elements of curriculum, including discipline-based curriculum for osteopathic schools and some electives (research and global health) in allopathic schools. However, there are other contributory factors, such as geographic distribution of highly ranked schools, that require further investigation. Despite limited literature assessing the effectiveness of various curriculum types, there are benefits to the newer team-based curricula, including more opportunities to practice communication. Tuition continues to be a significant consideration and potential barrier for medical school applicants; while some schools have taken measures to bridge this gap, efforts to continue improving access to medical education should continue. Additional studies allowing for objective quantification of curricular quality and quality of overall medical education will help enhance transparency and provide further understanding of tuition variability.

eTable 1
Comparison of the Mean In-State Tuition of U.S. Allopathic Medical Schools by Region.

Census Region	Mean Difference ($)	95% Confidence Interval of Mean	Significance
	Lower Bound	Upper Bound	
West	−6798	−16,116	0.318
South	2477	11,053	1.000
Northeast	−15,722	−6455	<0.001
Midwest	6798	16,116	0.318
West	−2477	−683	0.026
South	9275	16,730	0.007
Northeast	−8924	0.0001	−<0.001
South	−2477	16,116	0.0001
Midwest	−9275	16,730	0.007
Northeast	−18,199	−10,809	<0.001
Midwest	15,722	24,989	<0.001
South	8924	17,165	0.026
West	18,199	25,590	<0.001
South	18,199	25,590	<0.001
eTable 2
Comparison of the Mean Tuition and Preclerkship Curriculum of Allopathic Medical Schools. Abbreviation: PBL = Problem Based Learning; TBL = Team Based Learning.

Preclerkship Curriculum(I, J)	Mean Difference ($) (I – J)	95% Confidence Interval	Significance	
		Lower Bound	Upper Bound	
Primarily Discipline				
Primarily Organ System	2931	–8128	13,991	0.949
Mixed Organ System/Discipline	–697	–12,656	11,262	1.000
Team-Based (PBL/TBL)	548	–11,955	13,051	1.000
Other	21,743	–3190	46,676	0.119
Primarily Organ System				
Primarily Organ System	–2931	–13,991	8128	0.949
Mixed Organ System/Discipline	–3629	–11,957	4680	0.747
Team-Based (PBL/TBL)	–2383	–11,457	6690	0.950
Other	18,812	–4590	42,214	0.178
Mixed Organ System/Discipline				
Primarily Organ System	697	–11,262	12,656	1.000
Mixed Organ System/Discipline	3629	–8906	11,396	0.997
Team-Based (PBL/TBL)	2383	–11,957	6690	0.950
Other	22,440	–1400	46,281	0.076
Team-Based (PBL/TBL)				
Primarily Organ System	–548	–13,051	11,262	1.000
Mixed Organ System/Discipline	–1245	–8906	11,396	0.997
Team-Based (PBL/TBL)	–21,195	–2922	45,313	0.114
Other	–21,743	–46,676	3190	0.119
Other				
Primarily Organ System	21,743	–2922	45,313	0.114
Mixed Organ System/Discipline	22,440	–46,281	1400	0.076
Team-Based (PBL/TBL)	–21,195	–45,313	2922	0.114

eTable 3
Comparison of the Mean In-State Tuition of U.S. Osteopathic Medical Schools by Region.

Census Region	Mean Difference ($)	95% Confidence Interval	Significance	
		Lower Bound	Upper Bound	
West	6361	–8426	21,147	1.000
Midwest	14,655	1976	27,335	0.016
Northeast	11,135	–3235	25,505	0.224
South	8295	–4385	20,974	1.000
Midwest	4775	–9595	19,145	1.000
Northeast	3520	–15,711	8671	1.000
Northeast	–14,655	–27,335	1976	0.016
Midwest	–8295	–20,974	4385	0.676
Northeast	–3520	–15,711	8671	1.000
South	–14,655	–27,335	1976	0.016
Northeast	–8295	–20,974	4385	0.676
Mixed Organ System/Discipline	3520	–15,711	8671	1.000
Primarily Organ System	929	–12,753	14,611	1.000
Mixed Organ System/Discipline	6166	–12,913	25,244	0.884
Team-Based (PBL/TBL)	10,427	–7,500	23,326	0.162
Other	5237	–10,888	21,361	0.882

eTable 4
Comparison of the Difference in Mean In-State Tuition and Preclerkship Curriculum of Osteopathic Medical Schools. Abbreviation: PBL = Problem Based Learning; TBL = Team Based Learning.

Preclerkship Curriculum(I, J)	Mean Difference ($) (I – J)	95% Confidence Interval	Significance	
		Lower Bound	Upper Bound	
Primarily Discipline				
Primarily Organ System	16,675	–1568	34,918	0.087
Mixed Organ System/Discipline	15,746	–5154	36,646	0.217
Team-Based (PBL/TBL)	27,101	6706	47,497	0.004
Other	21,911	–662	44,486	0.061
Primarily Organ System				
Primarily Organ System	–16,675	–34,918	1568	0.087
Mixed Organ System/Discipline	–929	–14,611	12,753	1.000
Team-Based (PBL/TBL)	10,427	–2473	23,326	0.162
Other	5237	–10,888	21,361	0.882
Mixed Organ System/Discipline				
Primarily Organ System	–15,746	–36,646	5154	0.217
Mixed Organ System/Discipline	929	–12,753	14,611	1.000
Team-Based (PBL/TBL)	11,356	–5088	27,799	0.295
Other	6166	–12,913	25,244	0.884
Team-Based (PBL/TBL)				
Primarily Organ System	–27,102	–47,497	–6706	0.004
Mixed Organ System/Discipline	–10,427	–23,326	2473	0.162
Other	–11,356	–27,799	3088	0.295
Other				
Primarily Organ System	–21,912	–44,486	662	0.061
Mixed Organ System/Discipline	–5237	–21,361	10,888	0.882
Team-Based (PBL/TBL)	–6166	–25,244	12,913	0.884
Other	–5190	–13,336	23,715	0.928
eTable 5a

Adjusted* Mean In-State Tuition of U.S. Allopathic Medical Schools by Region.

U.S. Region	Number of Allopathic Medical Schools	Mean Adjusted Tuition ($)	Standard Deviation	95% Confidence Interval of Mean	Minimum	Maximum
All	151	45,117	18,921	37,336 to 56,587	0	87,679
West	23	46,962	22,259	38,381 to 46,507	27,407	62,039
Midwest	35	42,444	11,828	31,028 to 40,848	0	96,380
South	57	35,856	18,195	57,164 to 65,234	44,715	83,220
Northeast	36	61,199	11,926	42,074 to 48,159	0	96,380

*Adjusted Mean Tuition refers to the mean in-state tuition after adjusting for geographical differences in COL. Adjusted mean in-state tuition was computed by multiplying the in-state tuition of each medical school by the corresponding state-level COLI and calculating their respective categorical averages. The COLI’s were obtained from the 2020 American Chamber of Commerce Research Association Cost of Living Index, where an index of 100 was treated as 1.00.

eTable 5b

Comparison of the Adjusted* Mean Tuition and Pre-clerkship Curriculum of Allopathic Medical Schools.

Preclerkship Curriculum	Number of Osteopathic Medical Schools	Mean Tuition ($)	Standard Deviation	95% Confidence Interval of Mean	Minimum	Maximum
All	146	45,637	18,768	42,567 to 48,707	0	96,380
Primary Discipline	16	47,989	19,172	37,773 to 58,206	17,991	81,632
Primarily Organ System	65	45,073	19,696	40,193 to 49,954	15,501	96,380
Mixed Organ System/Discipline	35	48,032	19,525	41,325 to 54,739	15,062	83,220
Team-Based (PBL/TBL)	27	44,693	14,672	38,889 to 50,497	0	69,601
Other	3	25,853	18,228	19,427 to 71,133	0	46,899

*Adjusted Mean Tuition refers to the mean in-state tuition after adjusting for geographical differences in COL. Adjusted mean in-state tuition was computed by multiplying the in-state tuition of each medical school by the corresponding state-level COLI and calculating their respective categorical averages. The COLI’s were obtained from the 2020 American Chamber of Commerce Research Association Cost of Living Index, where an index of 100 was treated as 1.00. Abbreviations: PBL/TBL = Problem-based Learning/Team-based Learning; OOS = Out-of-state, COLI = Cost of Living Index.

eTable 5c

Comparison of Preclerkship Curriculum Feature and Adjusted* Mean In-State Tuition of Allopathic Medical Schools.

Curriculum Feature	Number of Allopathic Medical Schools	Mean Tuition ($)	Standard Deviation	95% Confidence Interval of Mean	Minimum	Maximum
Required Research/Scholarly Project	Yes 43	54,752	19,901	7502 to 20,250	<0.001	
No	106	40,875	16,944			
OOS Non-Subl-Clerkships	Yes 62	46,483	19,164	−3839 to 8790	0.440	
No	85	44,007	19,103			
Global Health	Yes 96	47,780	18,690	1155 to 13,771	0.020	
No	54	40,318	18,724			

eTable 5d

Comparison of the Adjusted* Mean Tuition of U.S. Allopathic Medical Schools by Region.

Census Region	Mean Difference ($)	95% Confidence Interval of Mean	Significance (2-tailed)	
	Lower Bound	Upper Bound		
West	4518	−7201	16237 to 21891	1.000
South	11106	321	21891	0.040
Midwest	−14237	−25891	−2583 to 15963	0.008
West	−4518	−16237	7201	1.000
South	6588	−2788	15963	0.373
Northeast	−18755	−8391	−321 to −3939	<0.001
South	−11106	−21891	321	0.040
Midwest	−6588	−34637	−16048	<0.001
Northeast	−25343	−34637	2788	<0.001

*Adjusted Mean Tuition refers to the mean in-state tuition after adjusting for geographical differences in COL. Adjusted mean in-state tuition was computed by multiplying the in-state tuition of each medical school by the corresponding state-level COLI and calculating their respective categorical averages. The COLI’s were obtained from the 2020 American Chamber of Commerce Research Association Cost of Living Index, where an index of 100 was treated as 1.00.
eTable 7
Comparison of the Difference in Adjusted* Mean Tuition and Preclerkship Curriculum of Allopathic Medical Schools. Abbreviation: PBL = Problem Based Learning, TBL = Team Based Learning.

Preclerkship Curriculum (I, J)	Primarily Discipline	Mixed Organ System/Discipline	Team-Based (PBL/TBL)	Other
Lower Bound	2916	−43	3296	22,136
Upper Bound	11,543	17,376	19,642	54,733
95% Confidence Interval	−11,543	17,376	−13,050	19,642
Significance	0.981	1.000	0.981	0.335

*Adjusted Mean Tuition refers to the mean in-state tuition after adjusting for geographical differences in COL. Adjusted mean in-state tuition was computed by multiplying the in-state tuition of each medical school by the corresponding state-level COLI and calculating their respective categorical averages. The COLI’s were obtained from the 2020 American Chamber of Commerce Research Association Cost of Living Index, where an index of 100 was treated as 1.00.

eTable 8a
Adjusted* Mean In-State Tuition of U.S. Osteopathic Medical Schools by Region.

Region	Number of Allopathic Medical Schools	Mean Tuition ($)	Standard Deviation	95% Confidence Interval of Mean			
All	42	51,486	14,910	Lower Bound	Upper Bound	Minimum	Maximum
West	8	70,051	7449	46,839	56,132	12,656	81,039
Midwest	8	50,184	11,327	40,714	49,248	12,656	56,169
South	17	42,897	12,353	36,545	49,248	12,656	56,169
Northeast	9	52,364	13,015	42,360	56,132	12,656	81,039

*Adjusted Mean Tuition refers to the mean in-state tuition after adjusting for geographical differences in COL. Adjusted mean in-state tuition was computed by multiplying the in-state tuition of each medical school by the corresponding state-level COLI and calculating their respective categorical averages. The COLI’s were obtained from the 2020 American Chamber of Commerce Research Association Cost of Living Index, where an index of 100 was treated as 1.00.

eTable 8b
Comparison of the Adjusted* Mean Tuition and Pre-clerkship Curriculum of Osteopathic Medical Schools. Abbreviations: PBL/TBL = Problem-based Learning/Team-based Learning, COL = Cost of Living.

Preclerkship Curriculum	Number of Osteopathic Medical Schools	Adjusted Mean Tuition ($)	Standard Deviation	95% Confidence Interval of Mean			
All	41	51,078	14,857	Lower Bound	Upper Bound	Minimum	Maximum
Primary Discipline	3	65,801	12,477	34,805	55,767	12,656	81,039
Primarily Organ System	21	53,626	14,935	46,827	60,424	21,472	81,039
Mixed Organ System/	6	51,230	9501	41,260	61,200	38,790	65,525
Discipline	Team-Based (PBL/TBL)	40,093	13,798	46,388	55,767	12,656	54,188
Other	4	45,654	15,425	21,109	70,198	34,229	67,593

*Adjusted Mean Tuition refers to the mean in-state tuition after adjusting for geographical differences in COL. Adjusted mean in-state tuition was computed by multiplying the in-state tuition of each medical school by the corresponding state-level COLI and calculating their respective categorical averages. The COLI’s were obtained from the 2020 American Chamber of Commerce Research Association Cost of Living Index, where an index of 100 was treated as 1.00.
eTable 9
Comparison of the Adjusted* Mean In-State Tuition of U.S. Osteopathic Medical Schools by Region.

Census Region	Mean Difference ($)	95% Confidence Interval of Mean	Significance	
	Lower Bound	Upper Bound		
West Midwest	19867	3770	35964	0.009
South	27154	13351	40967	-0.001
Northeast	17687	2043	33330	0.019
Midwest West	-19867	-35964	-3770	0.009
South	7287	-6516	21090	0.900
Northeast	-2180	-17090	5616	0.900
South	9467	-13463	21090	0.900

*Adjusted Mean Tuition refers to the mean in-state tuition after adjusting for geographical differences in COL. Adjusted mean in-state tuition was computed by multiplying the in-state tuition of each medical school by the corresponding state-level COLI and calculating their respective categorical averages. The COLI’s were obtained from the 2020 American Chamber of Commerce Research Association Cost of Living Index, where an index of 100 was treated as 1.00. Abbreviation COL = Cost of Living.

eTable 10
Comparison of the Difference in Adjusted* Mean Tuition and Pre-clerkship Curriculum of Osteopathic Medical Schools.

Pre-clerkship Curriculum (I, J)	Mean Difference (I – J) ($)	95% Confidence Interval	Significance	
	Lower Bound	Upper Bound		
Primarily Discipline	12,175	-12,673	37,024	0.627
Mixed Organ System/Discipline	14,571	-13,896	43,039	0.588
Team-Based (PBL/TBL)	25,708	-20,74	53,489	0.081
Other	20,147	-10,601	50,896	0.546
Primarily Organ System	-12,175	-37,024	12,673	0.627
Mixed Organ System/Discipline	2396	-16,241	21,032	0.996
Team-Based (PBL/TBL)	13,522	-40,308	31,103	0.199
Other	7972	-13,991	29,935	0.834
Mixed Organ System/Discipline	-14,571	-43,039	13,896	0.588
Primarily Organ System	-2396	-21,032	16,241	0.996
Team-Based (PBL/TBL)	11,137	-11,261	33,535	0.615
Other	5576	-20,411	31,563	0.972
Team-Based (PBL/TBL)	-25,708	-53,489	20,74	0.081
Other	-13,532	-31,103	40,38	0.199
Mixed Organ System/Discipline	-11,137	-33,535	11,261	0.615
Primarily Organ System	5576	-30,749	19,673	0.969
Other	-5561	-30,749	19,673	0.969

*Adjusted Mean Tuition refers to the mean in-state tuition after adjusting for geographical differences in COL. Adjusted mean in-state tuition was computed by multiplying the in-state tuition of each medical school by the corresponding state-level COLI and calculating their respective categorical averages. The COLI’s were obtained from the 2020 American Chamber of Commerce Research Association Cost of Living Index, where an index of 100 was treated as 1.00. Abbreviations: PBL/TBL = Problem-based Learning/Team-based Learning, COL = Cost of Living.

eTable 11
Comparison of Preclerkship Curriculum Feature and Adjusted* In-State Tuition in Osteopathic Medical Schools.

Curriculum Feature	N	Adjusted Mean Tuition ($)	Standard Deviation	95% Confidence Interval	Significance (2-tailed)	
	Lower Bound	Upper Bound				
Required Research/Scholarly Project	Yes 5	47,352	3020	-19,151	9768	0.118
No 37	52,044	15,795	-17,844	3042	0.160	
OOS Non-Sub-Clerkships	Yes 31	49,547	15,431	-12,515	6573	0.533
No 11	56,948	12,356	-3,901	1,000	0.900	
Global Health	Yes 25	50,283	16,298	-3,901	1,000	0.900
No 17	53,254	12,872	-3,901	1,000	0.900	

*Adjusted Mean Tuition refers to the mean in-state tuition after adjusting for geographical differences in COL. Adjusted mean in-state tuition was computed by multiplying the in-state tuition of each medical school by the corresponding state-level COLI and calculating their respective categorical averages. The COLI’s were obtained from the 2020 American Chamber of Commerce Research Association Cost of Living Index, where an index of 100 was treated as 1.00. Abbreviations: OOS = Out-of-state, COL = Cost of Living.
Declaration of competing interest

None.

References

[1] Association of American Medical Colleges, Tuition and Student Fees for First Year Students: Summary Statistics for Academic Years 2013-2014 through 2020-2021. AAMC Tuition and Student Fees Questionnaire.
[2] R. Edeen, R. Alazalon, S. Carmichael, M. McKean, J. Mahajan, K. Spina, M. Caulfield, C. Kays, J. Azadi, J. Olges. The High Price of a Dream Job: A Four Year Look at the Rising Costs of Medical Education, Funding, and the Role of the Medical Student. AAMC-OSR Student Affairs Committee and OSR Administrative Board.
[3] R.M. Doroghazi, J.S. Alpert, A medical education as an investment: financial food for thought, Am. J. Med. 127 (2014) 7–11.
[4] J. Youngclaus, J. Fresne, Physician Education Debt and the Cost to Attend Medical School: 2020 Update, Association of American Medical Colleges, 2020.
[5] L.A. Ginocchio, A.B. Rosenkrantz, Exploring which medical schools cost the most: an assessment of medical school characteristics associated with school tuition, Curr. Probl. Diagn. Radiol. 49 (2) (2020) 85–88.
[6] J.A. Gil, S.H. Park, A.H. Daniels, Variability in United States allopathic medical school tuition, Am. J. Med. 128 (11) (2015) 1257–1262.
[7] S.R. Greysen, C. Chen, F. Mullan, A history of medical student debt: observations and implications for the future of medical education, Acad. Med. 86 (7) (2011) 840–845.
[8] W.L. Colquitt, et al., Effect of debt on U.S. medical school graduates’ preferences for family medicine, general internal medicine, and general pediatrics, Acad. Med. 71 (4) (1996) 399–411.
[9] E.M. Fritz, S. van den Hoogenhof, J.P. Braman, Association between medical student debt and choice of specialty: a 6-year retrospective study, BMC Med. Educ. 19 (1) (2019) 395.
[10] M.S. Grayson, D.A. Newton, L.F. Thompson, Payback time: the associations of debt and income with medical student career choice, Med. Educ. 46 (10) (2012) 983–991.
[11] R.A. Rosenblatt, C.H.A. Andrilla, The impact of U.S. medical students’ debt on their choice of primary care careers: an analysis of data from the 2002 medical school graduation questionnaire, Acad. Med. 80 (9) (2005) 815–819.
[12] Furman McDonald, M.D. MPH, Colin West, M.D. PhD, Carol Popkave, Joseph Kolars, Educational debt and reported career plans among internal medicine residents, Ann. Intern. Med. 149 (6) (2008) 416–420.
[13] R.B. Hackey, V. Grasso, M. LaRochele, K. Seaver, Rethinking the shortage of primary care physicians, J. Am. Acad. PAs 31 (6) (2018) 47–50.
[14] M.S. Pisaniello, et al., Effect of medical student debt on mental health, academic performance and specialty choice: a systematic review, BMJ Open 9 (7) (2019), e029980.
[15] R.L. Drake, A retrospective and prospective look at medical education in the United States: trends shaping anatomical sciences education, J. Anat. 224 (3) (2014) 256–260.
[16] R. Agha, A. Abdall-Razak, E. Cromley, et al., STROCSS 2019 Guideline: strengthening the reporting of cohort studies in surgery, Int. J. Surg. 72 (2019) 156–165, https://doi.org/10.1016/j.ijsu.2019.11.002.
[17] K. Hecker, C. Violato, Medical school curricula: do curricular approaches affect competence in medicine? Fam Med. 41 (6) (2009) 420–426.
[18] D.K. Parmeelee, D. DeStephen, N.J. Borges, Medical students’ attitudes about team-based learning in a pre-clinical curriculum, Med. Educ. Online 14 (1) (2009), https://doi.org/10.3402/mo.v14i1.50280. Published 2009 Jan 7.
[19] R. Morse, J. Vega-Rodriguez, A. Cantonguay, E. Brooks, K. Hines, Methodology: 2022 best medical schools rankings. U.S. News. https://www.us-news.com/education/best-graduate-schools/articles/medical-schools-methodology, 2021.
[20] E. Davis, U.S. News ranks the best states in America. U.S. News. https://www.us-news.com/news/best-states/articles/us-news-releases-best-states-rankings, 2021.
[21] AACOM, Choose DO explorer registration. AACOM. https://choosedo.org/explore/.
[22] B. Dubin, Innovative curriculum prepares medical students for a lifetime of learning and patient care, Mo. Med. 113 (3) (2016) 170–173.
[23] K. Horvath, Physician-led team-based care, AMA Scope of Practice, 2015. https://www.ama-assn.org/practice-management/ scope-practice/physician-led-team-based-care.
[24] S.T. Faeezi, K. Moradi, A. Ghafar Rahimi Amin, M. Akhlaghi, F. Keshmiri, The effects of team-based learning on learning outcomes in a course of rheumatology, J. Adv. Med. Educ. Prof. 6 (1) (2018) 22–30.
[25] R. Fox, Cultural competence and the culture of medicine, N. Engl. J. Med. 353 (13) (2005) 1316–1319.
[26] J. Youngclaus, J. Fresne, Physician Education Debt and the Cost to Attend Medical School: 2020 Update, Association of American Medical Colleges, 2020.
[27] B. Thomas, Free medical school tuition: will it accomplish its goals? J. Am. Med. Assoc. 321 (2) (2019) 143–144.
[28] Sr Raymond Jr., J.E. Kerschner, W.J. Hueston, C.A. Maurant, The merits and challenges of three-year medical school curricular time for an evidence-based discussion, Acad. Med. 90 (10) (2015) 1318–1323.
[29] M. Korn, NYU Makes Tuition Free for All Medical Students, Wall Street J, 2018.
[30] D.A. Mitchell, S.L. Lassiter, Addressing health care disparities and increasing workforce diversity: the next step for the dental, medical, and public health professions, Am. J. Publ. Health 96 (12) (2006) 2093–2097.