Kinetically Modified Non-Minimal Chaotic Inflation

CONSTANTINOS PALLIS
Department de Física Teòrica and IFIC, Universitat de València-CSIC, E-46100 Burjassot, SPAIN

ABSTRACT: We consider supersymmetric (SUSY) and non-SUSY models of chaotic inflation based on the ϕ^n potential with $2 \leq n \leq 6$. We show that the existence of a nonminimal coupling to gravity $f_R = 1 + c_R \phi^{n/2}$ with a kinetic mixing of the form $f_K = c_K f_R^n$ can accommodate values of the spectral index, n_s, and the tensor-to-scalar ratio, r, favored by the BICEP2/Keck Array and Planck results for $0 \leq m \leq 4$ and $2.5 \cdot 10^{-4} \leq r_{IK} = c_K/c_K^{1/4} \leq 1$. Inflation can be attained for subplanckian inflaton values with the corresponding effective theories retaining the perturbative unitarity up to the Planck scale.

PACS numbers: 98.80.Cq, 04.50.Kd, 12.60.Jv, 04.65.+e

INTRODUCTION – It is well-known [1–3] that the presence of a non-minimal coupling function

$$f_R(\phi) = 1 + c_R \phi^{n/2}, \quad (1)$$

between the inflaton ϕ and the Ricci scalar R, considered in conjunction with a monomial potential of the type

$$V_{CI}(\phi) = \lambda^2 \phi^n/2n^n, \quad (2)$$

provides, at the strong c_R limit with $\phi < 1$ (in the reduced Planck units with $m_p = 1$) an attractor [3] towards the values

$$n_s \approx 1 - 2/\tilde{N}_s = 0.965 \quad \text{and} \quad r \approx 12/\tilde{N}_s^2 = 0.0036, \quad (3)$$

for $\tilde{N}_s = 55$ e-foldings with negligible n_s running, a_s. Although perfectly consistent with the present combined BICEP2/Keck Array and Planck results [4, 5].

$$n_s = 0.968 \pm 0.0045 \quad \text{and} \quad r = 0.048^{+0.035}_{-0.032}, \quad (4)$$

r in Eq. (3) lies well below its central value in Eq. (4) and the sensitivity of the present experiments searching for primordial gravity waves [6, 7]. Nonetheless, this model – called henceforth non-minimal Chaotic Inflation (nMCI) – exhibits also a weak c_R regime, with $\phi > 1$ and c_R-dependent observables [3] approaching for decreasing c_R's their values within minimal chaotic inflation (MCI) [8]. Focusing on this regime, we would like to emphasize that solutions covering nicely the 1-σ domain of the present data in Eq. (4) can be achieved, even for $\phi < 1$, by introducing a suitable non-canonical kinetic mixing $f_K(\phi)$. For this reason we can call this type of nMCI kinetically modified. Although a new parameter c_K, included in f_K, may take relatively high values within this scheme, no problem with the perturbative unitarity arises.

NON-SUSY FRAMEWORK – nMCI is formulated in the Jordan frame (JF) where the action of ϕ is given by

$$S = \int d^4x \left(-\frac{1}{2} \hat{g} \hat{R} + \frac{f_K}{2} g^{\mu\nu} \partial_\mu \hat{\phi} \partial_\nu \hat{\phi} - V_{CI}(\hat{\phi})\right). \quad (5)$$

Here \hat{g} is the determinant of the background Friedmann-Robertson-Walker metric, $g^{\mu\nu}$ with signature (+, -, -, -) and we allow for a kinetic mixing through the function $f_K(\phi).$ By performing a conformal transformation [2] according to which we define the Einstein frame (EF) metric $\hat{g}_{\mu\nu} = f_R g_{\mu\nu},$ we can write S in the EF as follows

$$S = \int d^4x \left(-\frac{1}{2} \hat{R} + \frac{1}{2} \hat{g}^{\mu\nu} \partial_\mu \hat{\phi} \partial_\nu \hat{\phi} - \hat{V}_{CI}(\hat{\phi})\right), \quad (6a)$$

where hat is used to denote quantities defined in the EF. We also introduce the EF canonically normalized field, $\hat{\phi}$, and potential, \hat{V}_{CI}, defined as follows:

$$\frac{d\hat{\phi}}{d\phi} = J = \sqrt{\frac{f_K}{f_R} + \frac{3}{2} \left(\frac{f_K}{f_R}\right)^2} \quad \text{and} \quad \hat{V}_{CI} = \frac{\hat{V}_{CI}}{f_R^2}, \quad (6b)$$

r and ϕ asymptote their values in Eq. (3).

Inspired by Ref. [9, 10], where non-canonical kinetic terms assist in obtaining inflationary solutions for $\phi < 1$, we liberate c_R from its first role above implementing it by a kinetic function of the form

$$f_K(\phi) = c_K f_R^m \quad \text{with} \quad c_K = (c_R/r_{IK})^{4/n}. \quad (7)$$

Plugging Eqs. (7) into Eq. (6b) we obtain

$$j^2 = \frac{c_K}{f_R^{1-m}} + \frac{3n^2 c_K^2 \phi^{n-2}}{8 f_R f_K^{1-m}} \simeq \frac{c_K}{f_R^{1-m}} \quad \text{and} \quad \hat{V}_{CI} = \frac{\lambda^2 \phi^n}{2n^2 f_R^2} \quad (8)$$

assuming $c_K \gg c_R$. In contrast to Ref. [10] the presence of both f_K and f_R plays a crucial role within our proposal.

SUPERGRAVITY EMBEDDING – The supersymmetrization of the above models requires the use of two gauge singlet chiral superfields, i.e., $z^{\alpha} = \Phi, S$, with Φ, $\Phi = (\alpha = 1)$ and S ($\alpha = 2$) being the inflaton and a “stabilized” field respectively. The EF action for z^{α}'s within Supergravity (SUGRA) [11] can be written as

$$S = \int d^4x \left(-\frac{1}{2} \hat{R} + K_{\alpha\beta} \hat{g}^{\mu\nu} \partial_\mu z^\alpha \partial_\nu z^\beta - \hat{V} \right), \quad (9a)$$

where summation is taken over the scalar fields z^{α}, K is the Kähler potential with $K_{\alpha\beta} = K_{\alpha\beta} = K_{z^\alpha z^\beta}$ and $K_{\alpha\beta} K_{\beta\gamma} = \delta^\gamma_\alpha$.

arXiv:1503.05887v1 [hep-ph] 19 Mar 2015
Also \hat{V} is the EF F–term SUGRA potential given by
\[
\hat{V} = e^K \left(K^{\alpha \beta} (D_{\alpha} W)(D_{\beta} W^*) - 3 |W|^2 \right),
\] (9b)
where $D_{\alpha} W = W,_{\alpha} + K,_{\alpha} W$ with W being the superpotential. Along the inflationary track determined by the constraints
\[
S = 0 \quad \text{and} \quad \Phi = \Phi^*, \quad \text{or} \quad s = \bar{s} = \theta = 0
\] (10)
if we express Φ and S according to the parametrization
\[
\Phi = \phi e^{i\theta}/\sqrt{2} \quad \text{and} \quad S = (s + i\bar{s})/\sqrt{2},
\] (11)
V_{CI} in Eq. (2) can be produced, in the flat limit, by
\[
W = \lambda S \Phi^{n/2}.
\] (12)
The form of W can be uniquely determined if we impose two symmetries: (i) an R symmetry under which S and Φ have charges 1 and 0; (ii), a global $U(1)$ symmetry with assigned charges -1 and 2/n for S and Φ.

On the other hand, the derivation of \hat{V}_{CI} in Eq. (8) via Eq. (9b) requires a judiciously chosen K. Namely, along the track in Eq. (10) the only surviving term in Eq. (9b) is
\[
\hat{V}_{CI} = \hat{V}(\theta = s = \bar{s} = 0) = e^K K^{SS*} |W, S|^2.
\] (13)
The incorporation f_{IR} in Eq. (1) and f_K in Eq. (7) dictates the adoption of a logarithmic K [11] including the functions
\[
F_{IR}(\Phi) = 1 + 2\pi^2 \Phi^2 c_{IR} \quad \text{and} \quad F_K = (\Phi - \Phi^*)^2.
\] (14a)
Here F_{IR} is an holomorphic function reducing to f_{IR}, along the path in Eq. (10), and F_K is a real function which assists us to incorporate the non-canonical kinetic mixing generating by f_K in Eq. (7). Indeed, F_K lets intact \hat{V}_{CI}, since it vanishes along the trough in Eq. (10), but it contributes to the normalization of Φ – contrary to the naive kinetic term $|\Phi|^2/3$ [11] which influences both J and \hat{V}_{CI} in Eq. (6b). Although F_K is employed in Ref. [3] too, its importance in implementing non-minimal kinetic terms within $nMCI$ has not been emphasized so far. We also include in K the typical kinetic term for S,
\[
F_S = |S|^2/3 - k_S |S|^4/3,
\] (14b)
considering the next-to-minimal term for stability reasons [11] – see below. Taking for consistency all the possible terms up to fourth order, K is written as
\[
K = -3 \ln \left(\frac{F_K}{2m_0^2} (F_{IR} + F_K)^n F_K \right) + \frac{1}{2} (F_{IR} + F_K^*) - F_S + \frac{k_{SS}}{6} F_K^2 - \frac{k_{SS}}{3} F_K |S|^2
\] (14c)
Our models are completely natural in the ’t Hooft sense because, in the limits $c_{IR} \to 0$ and $\lambda \to 0$, the theory enjoys the following enhanced symmetries – cf. Ref. [12]:
\[
\Phi \to \Phi^*, \quad \Phi \to \Phi + c \quad \text{and} \quad S \to e^{i\alpha S},
\] (15)

| TABLE I: Mass spectrum along the path in Eq. (10) |
|-----------------|-----------|-----------------|
| **FIELDS** | **EINGESTATES** | **MASS SQUARED** |
| 1 real scalar | θ | $\hat{m}_{\theta}^2 = 4V_{CI}/3 \approx 4H_{CI}^2$ |
| 2 real scalars | s, \bar{s} | $\hat{m}_{s, \bar{s}}^2 = 2(6k_s f_s - 1)\hat{V}_{CI}/3$ |
| 2 Weyl spinors ($\hat{\psi}_s + \hat{\psi}_{\bar{s}})/\sqrt{2}$ | $\hat{m}_{\hat{\psi}_{s, \bar{s}}}^2 = n^2\hat{V}_{CI}/2c_k\delta^2f_{\text{IR}}^{m-i}$ |

where c is a real number. Therefore, the terms proportional to c_{IR} can be regarded as a gravity-induced violation of the symmetries above.

To verify the appropriateness of K in Eq. (14c), we can first remark that, along the trajectory in Eq. (10), it is diagonal with non-vanishing elements $K_{\Phi,\Phi^*} = J^2$, where J is given by Eq. (8), and $K_{SSS^*} = 1/f_{IR}$. Upon substitution of $K_{SSS^*} = f_{IR}$ and $\exp K = f_{IR}^{3}$ into Eq. (13) we easily deduce that \hat{V}_{CI} in Eq. (8) is recovered. If we perform the inverse of the conformal transformation described in Eqs. (6a) and (5) with frame function $\Omega/3 = - \exp (-K/3)$ we end up with the JF potential $V_{CI} = 1/2^2\hat{V}_{CI}/9$ in Eq. (2). Moreover, the conventional Einstein gravity at the SUSY vacuum, $(S) = (\Phi) = 0$, is recovered since $-\langle S \rangle/3 = 1$.

Defining the canonically normalized fields via the relations
\[
d\hat{\phi}/d\phi = \sqrt{K_{\Phi,\Phi^*}} = J, \quad \hat{\theta} = J\theta, \quad \hat{\phi} = \sqrt{K_{SSS^*}}(s, \bar{s})
\] (16)
and $(\hat{\phi}, \hat{\theta}, \hat{\phi})$ we can verify that the configuration in Eq. (10) is stable w.r.t the excitations of the non-inflaton fields. Taking the limit $c_{IR} \gg c_{IR}$ we find the expressions of the masses squared $\hat{m}_{\phi, \bar{\phi}}^2$ (with $\phi^2 = \theta$ and $\bar{\phi}^2 = \bar{\theta}$) arranged in Table I, which approach rather well the quite lengthy, exact expressions taken into account in our numerical computation. These expressions assist us to appreciate the role of $k_S > 0$ in retaining positive \hat{m}_{ϕ}^2. Also we confirm that $\hat{m}_{\phi, \bar{\phi}}^2 \gg \hat{H}_{CI}^2 = \hat{V}_{CI}/3$ for $\phi \leq \phi \leq \phi^*$. In Table I we display the masses $\hat{m}_{\phi, \bar{\phi}}^2$ of the corresponding fermions too. We define $\hat{\psi}_s = \sqrt{K_{SSS^*}}\psi_s$ and $\hat{\psi}_{\bar{s}} = \sqrt{K_{SSS^*}}\psi_{\bar{s}}$ where ψ_s and $\psi_{\bar{s}}$ are the Weyl spinors associated with S and Φ respectively.

Inserting the derived mass spectrum in the well-known Coleman-Weinberg formula, we can find the one-loop radiative corrections, $\Delta \hat{V}_{CI}$ to \hat{V}_{CI}. It can be verified that our results are immune from $\Delta \hat{V}_{CI}$, provided that the renormalization group mass scale Λ, is determined by requiring $\Delta \hat{V}_{CI}(\phi_s) = 0$ or $\Delta \hat{V}_{CI}(\phi_{\bar{s}}) = 0$. The possible dependence of our results on the choice of Λ can be totally avoided if we confine ourselves to $k_{SS} \sim 1$ and $k_S \sim (0.5 - 1.5)$ resulting to $\Lambda \simeq (1 - 5) \cdot 10^{14}$ GeV – cf. Ref. [2, 13]. Under these circumstances, our results in the SUGRA set-up can be exclusively reproduced by using \hat{V}_{CI} in Eq. (8).

INFLATION ANALYSIS – The period of slow-roll $nMCI$ is determined in the EF by the condition
\[
\max(|\dot{\epsilon}(\phi)|, |\ddot{\eta}(\phi)|) \leq 1,
\] (17a)
where the slow-roll parameters $\dot{\epsilon}$ and $\ddot{\eta}$ read
\[
\dot{\epsilon} = \left(\frac{\dot{V}_{CI, \dot{\phi}}}{\sqrt{2}\hat{V}_{CI}} \right)^2 \quad \text{and} \quad \ddot{\eta} = \frac{\ddot{V}_{CI, \ddot{\phi}}}{\hat{V}_{CI}}
\] (17b)
and can be derived employing \(J \) in Eq. (6b), without express explicitly \(\hat{V}_{\text{CI}} \) in terms of \(\dot{\varphi} \). Our results are

\[
\tilde{c} = \frac{n^2}{2\phi^2 c_K f_{1/m}^2}; \quad \tilde{n} = 2 \left(\frac{1}{n} - \frac{n(1+m)}{2n} \right) c_R \phi^\frac{n}{2};
\]

(18)

Given that \(\phi \ll 1 \) and so \(f_R \simeq 1 \), Eq. (17a) is saturated at the maximal \(\phi \) value, \(\phi_t \), from the following two values

\[
\phi_{1t} \simeq n/\sqrt{2c_K} \quad \text{and} \quad \phi_{2t} \simeq \sqrt{(n-1)n/c_K},
\]

(19)

where \(\phi_{1t} \) and \(\phi_{2t} \) are such that \(\tilde{c}(\phi_{1t}) \simeq 1 \) and \(\tilde{n}(\phi_{2t}) \simeq 1 \).

The number of e-foldings \(\hat{N}_s \) that the scale \(k_s = 0.05/\text{Mpc} \) experiences during this nMCI and the amplitude \(A_s \) of the power spectrum of the curvature perturbations generated by \(\dot{\varphi} \) can be computed using the standard formula

\[
\hat{N}_s = \int_{\phi_i}^{\phi_s} d\tilde{\varphi} \left(\frac{\tilde{V}_{\text{CI}}}{\tilde{V}_{\text{CI},\phi}} \right) \quad \text{and} \quad A_s^{1/2} = \frac{1}{2\sqrt{5\pi}} \left(\frac{\tilde{V}_{\text{CI}}^{3/2}(\phi_s)}{\tilde{V}_{\text{CI}}(\phi_i)} \right),
\]

(20)

where \(\phi_s \) are the values of \(\tilde{\varphi} \) when \(k_s \) crosses the inflationary horizon. Since \(\phi_s \gg \phi_t \), from Eq. (20) we find

\[
\hat{N}_s = \frac{c_K \phi^2}{2n} 2 F_1 \left(-m, 4/n; 1 + 4/n; -c_R \phi^2/n^2 \right),
\]

(21)

where \(2 F_1 \) is the Gauss hypergeometric function [14] which reduces to unity for \(m = 0 \) (and any \(n \)) or to the factor \((f_{1/m}^2 - 1)/c_R (1 + m) \) for \(n = 4 \) (and any \(m \)). Concentrating on these cases, we solve Eq. (21) w.r.t \(\phi_s \) with result

\[
\phi_s \simeq \begin{cases}
\sqrt{2n\hat{N}_s/c_K} & \text{for } n = 0, \\
\sqrt{m - 1} / \sqrt{r_{\text{RR}} c_K} & \text{for } n = 4,
\end{cases}
\]

(22)

where \(f_{1/m}^2 = 1 + 8(m + 1)r_{\text{RR}} \hat{N}_s \). In both cases there is a lower bound on \(c_K \), above which \(\phi_s < 1 \) and so, our proposal can be stabilized against corrections from higher order terms. From Eq. (20) we can also derive a constraint on \(\lambda \) and \(c_K \) i.e.

\[
\lambda = \sqrt{3A_s \pi} \left(\frac{c_K/n\hat{N}_s}{2} \right)^{\frac{3}{4}} \left(2n f_{m*}/\hat{N}_s \right)^{\frac{3}{4}} \left(f_{1/m} - 1 \right)^{\frac{1}{2}} \left(f_{m*} \right)^{\frac{3}{4}} \quad \text{for } m = 0, \\
16c_K r_{\text{RR}}^2 \left(f_{m*} - 1 \right)^{\frac{1}{2}} \left(f_{m*} \right)^{\frac{3}{4}} \quad \text{for } n = 4.
\]

(23)

where the variables with subscript \(s \) are evaluated at \(\phi = \phi_s \) and \(\xi = \hat{V}_{\text{CI},\phi} \hat{V}_{\text{CI},\phi\phi} / \hat{V}_{\text{CI}} \). For \(m = 0 \) we find

\[
n_s = 1 - (4 + n + n/f_{m*}) / 4\hat{N}_s, \quad r = 4n/f_{m*} \hat{N}_s,
\]

(25a)

\[
a_s = (n^2 - n + 4) f_{m*} - 4(n + 4) f_{m*}^2 / 16 f_{m*}^2 \hat{N}_s^2.
\]

(25b)

In the limit \(r_{\text{RR}} \to 0 \) or \(f_{m*} \to 1 \) the results of the simplest power-law MCI, Eq. (2), are recovered – cf. Ref. [8]. The formulas above are also valid for the original nMCI [3], for \(c_K = 1 \) and \(r_{\text{RR}} = c_R \) lower than the one needed to reach the attractor’s values in Eq. (3). In this limit our results are in agreement with those displayed in Ref. [15] for \(n = 4 \). Furthermore, for \(n = 4 \) (and any \(m \)) we obtain

\[
n_s = 1 - 8r_{\text{RR}}^{2} m - 1 - (m + 2) f_{m*},
\]

(26a)

\[
r = \frac{128r_{\text{RR}}^{2/3} f_{m*}^{1+m} (1 + m)}{(f_{m*} - 1)^{2} f_{m*}^{4+1+m}}.
\]

(26b)

\[
f_{m*}^{2} \left(f_{m*} - 1 \right)^{2} f_{m*}^{4+1+m} \left(f_{m*} - 1 \right)^{2} f_{m*}^{4+1+m}.
\]

(26b)

For \(n = 4 \) and \(m = 1, 2, 4 \) the outputs of Eqs. (25a)-(26b) are specified in Table II after expanding the relevant formulas for \(1/\hat{N}_s \ll 1 \). We can clearly infer that increasing \(m \) for fixed \(r_{\text{RR}} \), both \(n_s \) and \(r \) increase. Note that this formulae, based on Eq. (22), is valid only for \(r_{\text{RR}} \gg 0 \) (and \(m \neq 0 \)).

These conclusions can be verified and extended to other \(n \)'s and \(m \)'s numerically. In particular, confronting the quantities in Eq. (20) with the observational requirements [4]

\[
\hat{N}_s \simeq 55 \quad \text{and} \quad A_s^{1/2} \simeq 4.627 \cdot 10^{-5},
\]

(27)

we can restrict \(\lambda \) and \(\phi \) and compute the model predictions via Eqs. (24a) and (24b), for any selected \(m, n, c_K, \) and \(r_{\text{RR}} \). The outputs, encoded as lines in the \(n_s-r \) plane, are compared against the observational data [4, 5] in Fig. 1 for \(m = 0, 1, 2, \) and 4 and \(n = 2 \) (dashed lines), \(n = 4 \) (solid lines), and \(n = 6 \) (dot-dashed lines). The variation of \(r_{\text{RR}} \) is shown along each line. To obtain an accurate comparison, we compute \(r_{0.002} = \tilde{c}(\phi_{0.002}) \) where \(\phi_{0.002} \) is the value of \(\phi \) when the scale \(k = 0.002/\text{Mpc} \), which undergoes \(\hat{N}_{0.002} = \hat{N}_s + 3.22 \) e-foldings during nMCI, crosses the horizon of nMCI. For low enough \(r_{\text{RR}} \)'s – e.g. \(r_{\text{RR}} = 10^{-7}, 10^{-4} \), and 0.001 for \(n = 6, 4, \) and 2 the various lines converge to the \((n_s, r) \)'s obtained within MCI. At the other end, these lines terminate for \(r_{\text{RR}} = 1 \), beyond which the theory ceases to be unitarity safe – see below. For \(m = 0 \) we reveal the results of Ref. [3],

\[
\begin{array}{c|c|c}
\text{Table II: Inflationary predictions for } n = 4 \text{ and } m = 1, 2, 4.
\end{array}
\]
i.e., the displayed lines are almost parallel for \(r \geq 0.01 \) and converge even at \(r_{\text{RK}} = 1 \). For \(m > 0 \) the curves move to the right and span more densely the 1-\(\sigma \) ranges in Eq. (4) for quite natural \(r_{\text{RK}} \)'s – e.g. \(0.005 \lesssim r_{\text{RK}} \lesssim 0.1 \) for \(m = 1 \) and \(n = 4 \). It is worth emphasizing that the requirement \(r_{\text{RK}} \lesssim 1 \) provides a lower bound on \(r \), which ranges from 0.0032 (for \(m = 0 \) and \(n = 4 \)) to 0.019 (for \(m = 4 \) and \(n = 2 \)). Note, finally, that our estimations in Eqs. (25a)–(25b) are in agreement with the numerical results for any \(r_{\text{RK}} \) and \(n = 2 \) or \(r_{\text{RK}} \lesssim 0.002 \) [0.05] and \(n = 6 \) [4]. For \(m > 0 \) (and \(n = 4 \)) our findings in Eqs. (26a)–(26b) (and Table II) approximate fairly the numerical outputs for 0.003 \(\lesssim r_{\text{RK}} \lesssim 1 \).

The Effective Cut-Off Scale – The selected \(f_K \) in Eq. (7) not only reconciles nMCI with the 1-\(\sigma \) ranges in Eq. (4) but also assures that the corresponding effective forms for \(r_{\text{RK}} \) and \(f_{\text{RK}} \) are bounded, see Ref. [10, 13, 18].

To clarify further this point we determine the **ultraviolet** (UV) cut-off scale \(\Lambda_{\text{UV}} \) of our models analyzing their small-field behavior in the EE. We focus on the second term in the right-hand side of Eq. (9a) for \(\mu = \nu = 0 \) and expand it about \(\langle \phi \rangle = 0 \) in terms of \(\hat{\phi} \) – see Eq. (6b). Our result for \(m = 0 \) and \(n = 2, 4, \) and \(6 \) can be written as

\[
J^2 \dot{\phi}^2 = \left(1 - r_{\text{RK}} \ddot{\phi} + \frac{3n^2}{8} r_{\text{RK}}^2 \dot{\phi}^{n-2} + r_{\text{RK}}^2 \dot{\phi}^n \cdots \right) \dot{\phi}^2.
\]

(28)

Similar expressions can be obtained for the other \(m \)'s too. Expanding similarly \(\tilde{V}_{\text{CI}} \), see Eq. (8), in terms of \(\hat{\phi} \) we have

\[
\tilde{V}_{\text{CI}} = \frac{\lambda^2 \dot{\phi}^n}{2^{n/2}} \left(1 - 2r_{\text{RK}} \ddot{\phi} + 3r_{\text{RK}}^2 \dot{\phi}^{n-2} - 4r_{\text{RK}}^2 \ddot{\phi}^n + \cdots \right)
\]

(29)

independently of \(m \). From the expressions above we conclude that \(\Lambda_{\text{UV}} = r_{\text{RK}}^{-2/n} m \) and therefore our models do not face any problem with the perturbative unitarity for \(r_{\text{RK}} \leq 1 \).
Conclusions – Prompted by the recent joint analysis of BiCER2/Keck Array and Planck which, although does not exclude inflationary models with negligible r’s, seems to favor those with r’s of order 0.01 we proposed a variant of nMCI which can safely accommodate r’s of this level. The main novelty of our proposal is the consideration of the non-canonical kinetic mixing in Eq. (7) – involving the parameters m and c_K – apart from the non-minimal coupling to gravity in Eq. (1) which is associated with the potential in Eq. (2). This setting can be elegantly implemented in SUGRA too, employing the super- and Kähler potentials given in Eqs. (12) and (14c). Prominent in this realization is the role of a shift-symmetric quadratic function F_K in Eq. (14a) which remains invisible in the SUGRA scalar potential while dominates the canonical normalization of the inflaton. Using $m \geq 0$ and confining r_{RK} to the range $(2.5 \cdot 10^{-4} - 1)$, we achieved observational predictions which may be tested in the near future and converge towards the “sweet” spot of the present data – the improvement compared to the trivial ($m = 0$) case, especially for $n = 4$ and 6, is evident from Fig. 1. These solutions can be attained even with subplanckian values of the inflaton requiring large c_K’s and without causing any problem with the perturbative unitarity. It is gratifying, finally, that a sizable fraction of the allowed parameter space of our model (with $n = 4$) can be studied analytically and rather accurately.

Acknowledgments – The author acknowledges useful discussions with G. Lazarides and financial support from the Generalitat Valenciana under grant PROMETEOII/2013/017.

References

[1] D. S. Salopek, J. R. Bond and J.M. Bardeen, *Phys. Rev. D* 40, 1753 (1989); F.L. Bezrukov and M. Shaposhnikov, *Phys. Lett. B* 659, 703 (2008) [arXiv:0710.3755].
[2] C. Pallis, *Phys. Lett. B* 692, 287 (2010) [arXiv:1002.4765]; C. Pallis and Q. Shafi, *Phys. Rev. D* 86, 023523 (2012) [arXiv:1204.0252]; C. Pallis and Q. Shafi, *J. Cosmol. Astropart. Phys.* 03, 023 (2015) [arXiv:1412.3757].
[3] R. Kallosh, A. Linde and D. Roest, *Phys. Rev. Lett.* 112, 011303 (2014) [arXiv:1310.3950].
[4] *Planck* Collaboration, arXiv:1502.02114.
[5] P.A.R. Ade et al. [BiCER2/Keck Array and Planck Collaborations], *Phys. Rev. Lett.* 114, 101301 (2015) [arXiv:1502.00612].
[6] J. Tauber et al. [Planck Collaboration], astro-ph/0604069.
[7] D. Baumann et al. [CMBPol Study Team Collaboration], *AIP Conf. Proc.* 1141, 10 (2009) [arXiv:0811.3919].
[8] A.D. Linde, *Phys. Lett. B* 129, 177 (1983).
[9] F. Takahashi, *Phys. Lett. B* 693, 140 (2010) [arXiv:1006.2801]; K. Nakayama and F. Takahashi, *J. Cosmol. Astropart. Phys.* 11, 009 (2010) [arXiv:1008.2956].
[10] H.M. Lee, *Eur. Phys. J. C* 74, 3022 (2014) [arXiv:1403.5602].
[11] M.B. Einhorn and D.R.T. Jones, *J. High Energy Phys.* 03, 026 (2010) [arXiv:0912.2718]; H.M. Lee, *J. Cosmol. Astropart. Phys.* 08, 003 (2010) [arXiv:1005.2735]; S. Ferrara et al., *Phys. Rev. D* 83, 025008 (2011) [arXiv:1008.2942]; C. Pallis and N. Toumbas, *J. Cosmol. Astropart. Phys.* 02, 019 (2011) [arXiv:1101.0325].
[12] R. Kallosh, A. Linde and T. Rube, *Phys. Rev. D* 83, 043507 (2011) [arXiv:1011.5945].
[13] C. Pallis, *J. Cosmol. Astropart. Phys.* 04, 024 (2014) [arXiv:1312.3623]; C. Pallis, *J. Cosmol. Astropart. Phys.* 08, 057 (2014) [arXiv:1403.5486]; C. Pallis, *J. Cosmol. Astropart. Phys.* 10, 058 (2014) [arXiv:1407.8522].
[14] http://functions.wolfram.com.
[15] N. Okada, M.U. Rehman, and Q. Shafi, *Phys. Rev. D* 82, 043502 (2010) [arXiv:1005.5161]; N. Okada, V.N. Şenoğuz and Q. Shafi, arXiv:1403.6403.
[16] J.L.F. Barbon and J.R. Espinosa, *Phys. Rev. D* 79, 081302 (2009) [arXiv:0903.0355]; C.P. Burgess, H.M. Lee and M. Trott, *J. High Energy Phys.* 07, 007 (2010) [arXiv:1002.2730].
[17] A. Kehagias, A.M. Dizgah and A. Riotto, *Phys. Rev. D* 89, 043527 (2014) [arXiv:1312.1155].
[18] G.F. Giudice and H.M. Lee, *Phys. Lett. B* 733, 58 (2014) [arXiv:1402.2129].