Evaluation of safety and efficacy of laparoscopic appendectomy during pregnancy

Hosam F. Abdelhameed*, Samir A. Abdelmageed

Department of Surgery, Sohag University Hospital, Sohag Faculty of Medicine, Egypt

Received: 08 July 2018
Accepted: 02 August 2018

*Correspondence:
Dr. Hosam F. Abdelhameed,
E-mail: hsrogy@yahoo.com

Copyright: © the author(s), publisher and licensee Medip Academy. This is an open-access article distributed under the terms of the Creative Commons Attribution Non-Commercial License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

ABSTRACT

Background: Optimal surgical approach for appendectomy during pregnancy remains controversial. The objective of this study is to evaluate (LA) during pregnancy as regard safety and outcome compared with open appendectomy (OA).

Methods: Patients with acute appendicitis during pregnancy who were admitted to Sohag University Hospital from August 2014 to April 2018 were randomized to 2 groups: Group A (OA, 22 patients) and group B (LA, 20 patients). The primary end point was incidence of fetal loss. Secondary endpoints comprised preterm delivery, operative time, length of hospital stay, conversion rate and surgical complications.

Results: Forty-two patients were enrolled after exclusion of three cases due to severe cardiac disease. Fourteen patients (33.3%) presented during first trimester 7 patients per group, 19 (45.2%) during second trimester 10 in group A (23.8%) and 9 in group B (21.4%) and 9 (21.4%) during third trimester 5 in group A (11.9%) and 4 in group B (9.5%). Mean maternal age was 22.3±4.2 (range, 18-38) years in group A and 21.3±3.6 (range, 17-35) years in group B. Fetal loss occurred in one patient in group A (4.5%) and in 2 patients in group B (10%). No pre-term delivery occurred in either group. Operative time was slightly longer in group A (mean op. time was 42±12 min vs. 40±11min) than in Group B. No intra operative complications occurred in either group. Hospital stay was significantly shorter in group A (1.2±1.8 days) while it was (3.6±1.1days) in group B. Wound infection occurred in two patients (10%) in group B while no post-operative complications occurred in group A.

Conclusions: Laparoscopic appendectomy was safe with no increase in fetal loss or pre-term delivery. It has the advantage of fewer post-operative wound complications, less pain and less hospital stay.

Keywords: Appendicitis, Appendectomy, Laparoscopy, Pregnancy

INTRODUCTION

Acute appendicitis when occurs during pregnancy is the most common non-obstetric cause requiring urgent surgical intervention.1 Diagnosis of acute appendicitis during pregnancy is much more difficult than in non-pregnant due to anatomical and physiological factors in addition to limitation of radiological study.2-3 The incidence of acute appendicitis in non-pregnant is the same as pregnant women.4,5

Open surgical procedure was the standard until recently and laparoscopic appendectomy (LA) has struggled to prove its superiority over the open technique, in contrast to laparoscopic cholecystectomy, which has become the gold standard for gallstone disease. Several prospective randomized studies, Meta analyses and systematic critical reviews that have been published on the topic of LA, have not allowed drawing definitive conclusions and generalizations.6-9 There is no sufficient data establishing the advantage of laparoscopic over open appendectomy in pregnant women. Old studies that compared the two
procedures came out that laparoscopic procedure does not endanger pregnancy as open one. All the studies that were made on this topic are making the decision about what is the optimal surgical approach for acute appendicitis in pregnant women conflicting.

METHODS

A total of 45 pregnant women with suspected acute appendicitis from August 2014 to April 2018, were admitted at Sohag University Hospital, surgery department. All patients were subjected to complete evaluation through detailed history, complete physical examination, laboratory investigations (CBC, LFTs, urea and creatinine), abdominal ultrasonography and ECO cardiograph for patients with cardiac disease. Three of 45 patients were excluded from the study due to severe cardiac disease with ejection fraction <35% while the other 42 patients were enrolled in the study. Ethical committee approval and written consent were taken before conducting the study. The patients were classified randomly into two groups: Group A (Odd numbers): 22 cases underwent LA and Group B (Even numbers): 20 cases underwent OA. Antibiotic prophylaxis was given at time of induction of general anesthesia. Laparoscopic and open appendectomies were performed under general anesthesia. A urinray catheter and Pneumatic compression devices were applied to all patients.

Hasson’s open approach through supraumbilical transverse incision (in early pregnancy) and 3-4 cm above the palpable uterine fundus in late pregnancy, opening the abdominal wall layers and peritoneum and 10 mm port was inserted. Tilting of the patient 20 to 30 degrees to the left side was done to create more space for laparoscopic approach and prevent inferior vena cava compression. Carbon dioxide gas was adjusted to be below 12 mmHg to avoid fetal hypercapnia. LA was done by the same surgical team using 3 ports, with 30° telescope positioned at the umbilicus. Two 10-mm ports were inserted in the left and right lower quadrants. Exploration of abdominal cavity to locate the appendix and rule out other possible causes was done. The mesoappendix was cauterized with harmonic scalpel and the base ligated with 2 vicryl loops. The appendix was removed in a laparoscopic bag. A drain was left in situ in cases of complicated appendicitis. Open appendectomies were performed through a McBurney’s incision that was modified (higher incision) with advanced gestational age. Prophylactic tocolysis was not given to any of our patients. The appendix was sent for histopathological examination. Both groups were compared as regard fetal loss, preterm delivery, and operative time, length of hospital stay, conversion rate and surgical complications.

Gathered data were processed using SPSS version 15 (SPSS Inc., Chicago, IL, USA). Quantitative data were expressed as mean±SD while qualitative data were expressed as numbers and percentages (%). Student t test was used to test significance of difference for quantitative variables while Chi square was used to test significance of difference for qualitative variables. A probability values (p-value) ≤0.05 was considered statistically significant.

RESULTS

This study included 42 patients out of 45 pregnant women presented to general Surgery department or referred to it from obstetrics and gynecology department because of suspected acute appendicitis. Three patients were excluded from the study due to severe cardiac disease with ejection fraction <35% while the other 42 patients were enrolled in the study.

The patients were classified randomly into two groups: Group A (odd numbers): 22 cases underwent LA and Group B (even numbers): 20 cases underwent OA. From the 42 patients 14 patients (33.3%) were in the first trimester, 7 patients (16.6%) in both groups and 19 (45.2%) patients were in the second trimester 10 in group A (23.8%) and 9 in group B (21.4%) while 9 (21.4%) patients were in the third trimester 5 in group A (11.9%) and 4 in group B (9.5%). The mean maternal age was 22.3±4.2 year (range, 18-38) in group A and 21.3±3.6 (range, 17-35) in group B (Table1).

Table 1: Patients characteristics in both groups.
Group

Age (yrs)
Mean
Range
Trimester
1st
2nd
3rd
ASA
1
11
111

P-Value: ≤0.05 = Significant

Operative time was slightly longer in group A (mean op. time was 42±12 min vs. 40±11min) than in Group B. No intra operative complications occurred in both groups. Wound infection occurred in one patient (5%) in group B while no post-operative complications occurred in group A. Fetal loss occurred in one patient in group A (4.5%) and in 2 patients in group B (10%), while no pre-term delivery occurred in both groups. Hospital stay was significantly shorter in group A (1.2±1.8 days) while it was (3.6±1.1days) in group B (Table 2).

Negative appendicitis was found in 2 cases in both groups, one case was in 1st trimester and the other in 3rd trimester in group A while they were in 3rd trimester in group B (Table 3).
The most accurate diagnosis for acute appendicitis was during first trimester, this was stated by Thomson et al, and Cheng et al. In this study none of the patients presented on the 1st trimester had a normal appendix on the postoperative pathology. Corneille et al, Zhang et al and Norman et al stated that laparoscopic appendectomy during pregnancy is technically feasible in all trimesters and is associated with the same benefits of laparoscopic surgery in non-pregnant patients, provided the specific recommendations for these types of patients are strictly followed and our results in this work came to agree with this opinion.

Implementation

In our department and for long time we are treating all patients with acute appendicitis during pregnancy through open approach, but these trends have changed after we found that no risk to do laparoscopic appendectomy during all the three trimesters of pregnancy neither on the mother nor in the fetus.

CONCLUSION

Laparoscopic appendectomy is safe during the three trimesters of pregnancy without increased risk neither on the mother nor on the fetus.

Funding: No funding sources
Conflict of interest: None declared
Ethical approval: The study was approved by the Institutional Ethics Committee

REFERENCES

1. Pearl J, Price R, Richardson W. Guidelines for diagnosis, treatment, and use of laparoscopy for surgical problems during pregnancy. Surg Endosc. 2011;25:3479-92.
2. McGory ML, Zingmond DS, Tillou A. Negative appendectomy in pregnant women is associated with a substantial risk of fetal loss. J Am Coll Surg. 2007;205:534-40.
3. Yilmaz HG, Akgun Y, Bac B. Acute appendicitis in pregnancy - risk factors associated with principal outcomes: a case control study. Int J Surg. 2007;5:192-7.
4. Cox TC, Huntington CR, Blair LJ. Laparoscopic appendectomy and cholecystectomy versus open: a study in 1999 pregnant patients. Surg Endosc. 2016;30:593-602.
5. Corneille MG, Gallup TM, Bening T. The use of laparoscopic surgery in pregnancy: evaluation of safety and efficacy. Am J Surg. 2010;200:363-7.
6. Wilarsrusmee C, Sukrat B, McEvoy M, Attia J, Thakknistian. Systematic review and meta-analysis of safety of laparoscopic versus open appendicectomy for suspected appendicitis in pregnancy. Br J Surg. 2012;99(11):1470-8.
7. Guller U, Hervey S, Purves H, Muhlbaier LH, Peterson ED, Eubanks S, et al. Laparoscopic versus open appendectomy: outcomes comparison based on a large administrative database. Ann Surg. 2004;239:43-52.

8. Li X, Zhang J, Sang L, Zhang W, Chu Z, Li X, et al. Laparoscopic versus conventional appendectomy—a meta-analysis of randomized controlled trials. BMC Gastroenterol. 2010;10:129.

9. Corneille MG, Gallup TM, Bening T, Wolf SE, Brougher C, Myers JG, et al. The use of laparoscopic surgery in pregnancy: evaluation of safety and efficacy. The Am J Surg. 2010;200(3):363-7.

10. Walsh CA, Tang T, Walsh SR. Laparoscopic versus open appendicectomy in pregnancy: a systematic review. Int J Surg. 2008 Aug; 6(4):339-44.

11. Andersson RE, Lambe M. Incidence of appendicitis during pregnancy. Int J Epidemiol. 2001;30:1281-5.

12. Carver TW, Antevil J, Egan JC, Brown CV. Appendicectomy during early pregnancy: What is the preferred surgical approach? Am Surg. 2005;71:809-12.

13. Lyass S, Pikarsky A, Eisenberg VH, Elchalal U, Schenker JG, Reissman P. Is laparoscopic appendicectomy safe in pregnant women? Surg Endosc. 2001;15:377-379.

14. de Perrot MD, Jenny A, Morales M, Kohlik M, Morel P. Laparoscopic appendicectomy during pregnancy. Surg Laparosc Endosc Percutan Tech. 2000;10(6):368-71.

15. Andreoli M, Servakov M, Meyers P, Mann WJ. Laparoscopic surgery during pregnancy. J Am Assoc Gynecol Laparosc. 1999;6(2):229-33.

16. Alkatary MM, Bahgat NA. Laparoscopic versus open appendectomy during pregnancy. Int Surg J. 2017;4(8):2387-91.

17. Pedersen AG, Petersen OB, Wara P, Ronning H, Qvist N, Laurberg S. Randomized clinical trial of laparoscopic versus open appendicectomy. Br J Surg. 2001;88:200-5.

18. Eom JM, Hong JH, Jeon SW. Safety and clinical efficacy of laparoscopic appendectomy for pregnant women with acute appendicitis. Ann Acad Med Singapore. 2012; 41:82-6.

19. Ueberrueck T, Koch A, Meyer L, Hinkel M, Gastinger I. Ninety-four appendectomies for suspected acute appendicitis during pregnancy. World J Surg. 2004;28(5):508-11.

20. Cox TC, Huntington CR, Blair LJ. Laparoscopic appendectomy and cholecystectomy versus open: a study in 1999 pregnant patients. Surg Endosc. 2016;30:593-602.

21. Thomson JE, Kruger D, Jann-Kruger C. Laparoscopic versus open surgery for complicated appendicitis: a randomized controlled trial to prove safety. Surg Endosc. 2015;29:2027-32.

22. Cheng HT, Wang YC, Lo HC. Laparoscopic appendectomy versus open appendectomy in pregnancy: a population-based analysis of maternal outcome. Surg Endosc. 2015;29:1394-9.

23. Corneille MG, Gallup TM, Bening T. The use of laparoscopic surgery in pregnancy: evaluation of safety and efficacy. Am J Surg. 2010;200:363-7.

24. Zhang Y, Zhao YY, Qiao J, Ye RH, Günaydın B. Anesthetic management for non-obstetric surgery during pregnancy. Turk J Anaesthesiol Reanim. 2012;40(1):1-10.

25. Machado NO, Grant CS. Laparoscopic appendicectomy in all trimesters of pregnancy. JSLS. 2009;13:384-90.

Cite this article as: Abdelhameed HF, Abdelmageed SA. Evaluation of safety and efficacy of laparoscopic appendicectomy during pregnancy. Int Surg J 2018:5:2963-6.