Average position in quantum walks with a U(2) coin

Min Li, Yong-Sheng Zhang and Guang-Can Guo
Key Laboratory of Quantum Information, University of Science and Technology of China, CAS, Hefei, 230026, People’s Republic of China

(Dated: May 3, 2014)

We investigated discrete-time quantum walks with an arbitrary unitary coin. Here we discover that the average position \(\langle x \rangle = \max\langle x \rangle \sin(\alpha + \gamma) \), while the initial state is \(1/\sqrt{2} | 0L \rangle + i | 0R \rangle \). We prove the result and get some symmetry properties of quantum walks with a U(2) coin with \(| 0L \rangle \) and \(| 0R \rangle \) as the initial state.

I. INTRODUCTION

Quantum walks (QWs) were first introduced in 1993 \(^1\) as a generalization of classical random walks. According to the time evolution, QWs can be divided into discrete-time and continuous-time \(^2\) QWs. Recently, both continuous-time \(^3\) and discrete-time \(^4\) QWs are found to be universal for quantum computation. A number of quantum algorithms based on QWs have already been proposed in \(^3\)–\(^10\). In addition, QWs in graph \(^11\), on a line with a moving boundary \(^12\), with multiple coins \(^13\) or decoherent coins \(^14\) have been discussed also.

QWs using a SU(2) coin was introduced by Chan-drakshar, et al. \(^15\), where the standard deviation and measurement entropy properties were discussed. Here we discuss the symmetry and average position properties for the QWs with a U(2) coin.

II. HADAMARD QUANTUM WALKS

In this paper, we always discuss within the discrete-time QWs. The total Hilbert space for QWs is given by \(\mathcal{H} = \mathcal{H}_P \otimes \mathcal{H}_C \), where \(\mathcal{H}_P \) is spanned by the orthonormal states \(\{|x\} \) and \(\mathcal{H}_C \) is the two-dimensional coin space spanned by two orthonormal states \(|L\rangle \) and \(|R\rangle \).

Each step of the QWs can be split into two operations: the evolution of coin state and the particle movement according to the coin state.

Here the Hadamard walk, the coin is evolved by applying the Hadamard operation:

\[
H = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix},
\]

the particle movement operator is given by

\[
S = e^{ip\sigma_z} = \sum_x S_x,
\]

where \(p \) is the momentum operator, \(\sigma_z \) is the Pauli-\(z \) operator.

III. GENERALIZED DISCRETE TIME QUANTUM WALKS

An arbitrary one-qubit unitary operation can be written as a U(2) matrix:

\[
U_{\alpha,\beta,\gamma,\theta} = e^{i\theta} \begin{pmatrix} e^{i\alpha} \cos \beta, & -e^{-i\gamma} \sin \beta \\ e^{i\gamma} \sin \beta, & e^{-i\alpha} \cos \beta \end{pmatrix}
\]

For example, the Hadamard operator can be described in the form \(H = U_{\pi/4,\pi/2,0,\pi/4} \). By replacing the Hadamard coin with an operator \(U_{\alpha,\beta,\gamma,\theta} \), we can obtain the generalized QWs \(^15\), which can be written as

\[
|\Psi_t\rangle = [S(I_P \otimes H_C)]^t |\Psi_0\rangle
\]

Lemma 1. The quantum walks have the same probability distribution with a U(2) coin or a SU(2) coin which has the same parameters \(\alpha, \beta \) and \(\gamma \) in the U(2) matrix.

Proof. The SU(2) coin operator can be written as

\[
U_{\alpha,\beta,\gamma}^S = \begin{pmatrix} e^{i\alpha} \cos \beta, & -e^{-i\gamma} \sin \beta \\ e^{i\gamma} \sin \beta, & e^{-i\alpha} \cos \beta \end{pmatrix}
\]

Then the U(2) coin \(U_{\alpha,\beta,\gamma,\theta} = e^{i\theta} U_{\alpha,\beta,\gamma}^S \). The probability distribution for QWs with a U(2) coin after \(t \) steps:

\[
P(x,t) = |\langle x|\Psi_t\rangle|^2 = |e^{i\theta} \langle x| \Psi_t^S \rangle|^2
\]

\[
\equiv P^S(x,t),
\]

where \(|\Psi_t^S\rangle \) and \(P^S(x,t) \) are the state and the probability distribution for QWs with a SU(2) coin after \(t \) steps respectively.

\[\square\]
Corollary 2. The average position is the same in quantum walks with a $U(2)$ coin and a $SU(2)$ coin if the two coins have the same parameters α, β and γ with the $U(2)$ coin.

Proof. From Lemma 1 we can know that the average position for a $U(2)$ coin $(x) = \sum_x xP(x,t) = \sum_x xP^S(x,t) \equiv \langle x \rangle^S$, where $\langle x \rangle^S$ is the average position for QWs with a $SU(2)$ coin.

With corollary 2 if we want to know the average position property in QWs with an arbitrary unitary operator, we only need to study the quantum walk with a $SU(2)$ coin instead, for the rest part of this paper, we always use the $SU(2)$ coin as denoted in Eq. 4.

Following the analysis in Ref. [16], the state after t steps QWs with a $SU(2)$ coin

$$\Psi_t = [S(I_P \otimes U^S_{\alpha,\beta,\gamma})]_t \Psi_0,$$

the spatial Fourier transformation for of the wave function $\Psi(x,t)$ over Z is given by

$$\tilde{\Psi}(k,t) = \sum_{x=-\infty}^{\infty} \Psi(x,t)e^{ikx},$$

where $k \in [-\pi, \pi]$. We can know

$$\tilde{\Psi}(k,t) = (M_k)^t \tilde{\Psi}(k,0),$$

where

$$M_k = e^{ik}M_+ + e^{-ik}M_- = (e^{-i(k-\alpha)} \cos \beta, -e^{-i(k+\gamma)} \sin \beta, e^{i(k-\alpha)} \cos \beta).$$

The eigenvalues of M_k is

$$\lambda_a = e^{-i\omega},$$

$$\lambda_b = e^{i\omega},$$

where $\cos \omega = \cos(k-\alpha) \cos \beta$. And the eigenstates

$$\begin{align*}
\tilde{\Psi}_k^a &= \frac{1}{c_k} \begin{pmatrix} P_k \\ Q_k^a \end{pmatrix}, \\
\tilde{\Psi}_k^b &= \frac{1}{c_k} \begin{pmatrix} P_k \\ Q_k^b \end{pmatrix},
\end{align*}$$

where

$$\begin{align*}
P_k &= -e^{-i(k+\gamma)} \sin \beta, \\
Q_k^a &= -i \sin \omega_k + i \sin(k-\alpha) \cos \beta, \\
Q_k^b &= i \sin \omega_k + i \sin(k-\alpha) \cos \beta.
\end{align*}$$

IV. THE AVERAGE POSITION IN QUANTUM WALKS

Fig. 1 and Fig. 2 show the average position after $t = 100$ steps QWs with a $SU(2)$ coin in the case of $\beta = \pi/6$, while the initial state is $\ket{1/L} + i \ket{0R}$). From Fig. 1 we can know that $\langle x \rangle$ only depends on the sum of α and γ. Fig. 2 shows that the actual $\langle x \rangle$ exactly match the function of $f(\phi) = \max(\langle x \rangle) \sin(\phi)$, then we conject that $\langle x \rangle = G(\beta, t) \sin(\alpha + \gamma)$.

$$C_k^b = \sqrt{P_k^* P_k + (Q_k^*)^* Q_k^b}$$

$$= \sqrt{2(\sin^2 \omega_k - \cos \beta \sin(k-\alpha) \sin \omega_k)}.$$
V. PROOF IN MATHEMATICS

Theorem 3. The probability distribution for quantum walks with a SU(2) coin is independent of the parameter \(\alpha \) and \(\gamma \), when the initial state is \(|0L \rangle \) or \(|0R \rangle \). i.e.

\[
\begin{align*}
P_{|0L\rangle}(\alpha, \beta, \gamma, x, t) &= P_{|0L\rangle}(\beta, x, t) \\
P_{|0R\rangle}(\alpha, \beta, \gamma, x, t) &= P_{|0R\rangle}(\beta, x, t) ,
\end{align*}
\]

(17)

for any \(\alpha \) and \(\gamma \).

Proof. If the initial state \(|\Psi_0\rangle = |0L\rangle \), then \(\tilde{\Psi}(k, 0) = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \). The probability of \(|x\rangle \) :

\[
P_{|0L\rangle}(\alpha, \beta, \gamma, x, t) = P_L(\alpha, \beta, \gamma, x, t) + P_R(\alpha, \beta, \gamma, x, t) \\
= \frac{1}{4\pi^2} \int_{-\pi}^{\pi} \int_{-\pi}^{\pi} g_L(k_1, k_2, \alpha, \beta, \gamma, x, t) dk_1 dk_2 + \frac{1}{4\pi^2} \int_{-\pi}^{\pi} \int_{-\pi}^{\pi} g_R(k_1, k_2, \alpha, \beta, \gamma, x, t) dk_1 dk_2 ,
\]

(18)

where \(g_j(k_1, k_2, \alpha, \beta, \gamma, x, t) = \tilde{\psi}_j^*(k_1, t) \tilde{\psi}_j(k_2, t) e^{i(k_1-k_2)x} \), \(j \in \{L, R\} \). If we set \(h = k + \alpha \), then we can know \(g_j(h_1, h_2, \alpha, \beta, \gamma, x, t) = g_j(h_1 + 2\pi, h_2, \beta, \gamma, x, t) \), and \(g_j(h_1, h_2, \beta, \gamma, x, t) = g_j(h_1 + 2\pi, h_2, \beta, \gamma, x, t) \).

\[
P_j(\alpha, \beta, \gamma, x, t) = \frac{1}{4\pi^2} \int_{-\pi}^{\pi} \int_{-\pi}^{\pi} g_j(h_1, h_2, \beta, x, t) dh_1 dh_2 \\
= \frac{1}{4\pi^2} \int_{-\pi}^{\pi} \int_{-\pi}^{\pi} g_j(h_1, h_2, \beta, x, t) dh_1 dh_2 \\
= P_j(\beta, x, t) .
\]

(19)

Further more we can know \(P_{|0L\rangle}(\alpha, \beta, \gamma, x, t) = P_{|0L\rangle}(\beta, x, t) \). In the same way, we can also get \(P_{|0R\rangle}(\alpha, \beta, \gamma, x, t) = P_{|0R\rangle}(\beta, x, t) \).

\[
\begin{align*}
\left\{ \begin{array}{l}
P^L(x) = |m|^2 P^L_{|0L\rangle} + |n|^2 P^L_{|0R\rangle} - (e^{-i(\alpha+\gamma)}m^*n + e^{i(\alpha+\gamma)}mn^*)G^L(\beta, x, t) \\
P^R(x) = |m|^2 P^R_{|0L\rangle} + |n|^2 P^R_{|0R\rangle} - (e^{-i(\alpha+\gamma)}m^*n + e^{i(\alpha+\gamma)}mn^*)G^R(\beta, x, t)
\end{array} \right. ,
\end{align*}
\]

(23)

where \(G^L \) and \(G^R \) are indepent of \(\alpha \) and \(\gamma \).

\[
P^L_{|0L\rangle+n|0R\rangle}(x) = \frac{1}{4\pi^2} \int \int \tilde{\psi}_L^*(k_1, t) \tilde{\psi}_L(k_2, t) e^{i(k_1-k_2)x} dk_1 dk_2 \\
= |m|^2 P^L_{|0L\rangle}(\beta, x, t) + |n|^2 P^L_{|0R\rangle}(\beta, x, t) \\
(\sum_{i=1}^{4} G_i + e^{i(\alpha+\gamma)}mn^* \sum_{i=1}^{4} G_i) ,
\]

(24)

Proof. The probability at state \(|xL\rangle \) after \(t \) steps:

\[
\begin{align*}
\left\{ \begin{array}{l}
\Psi^L_{|0L\rangle}(x, t) + \Psi^L_{|0R\rangle}(-x, t) = \Psi^L_{|0L\rangle}(x, t) \\
\Psi^R_{|0L\rangle}(x, t) - \Psi^R_{|0R\rangle}(-x, t) = \Psi^R_{|0L\rangle}(x, t) ,
\end{array} \right.
\end{align*}
\]

(20)

where \(\Psi^m(x, t) \) denotes the coefficient of the \(|x \rangle \) state after \(t \) steps quantum walk with the initial state \(|n \rangle \).

Proof.

\[
\begin{align*}
\Psi^L_{|0L\rangle}(x, t) &\pm \Psi^L_{|0R\rangle}(-x, t) \\
&= \frac{1}{2\pi} \int_{-\pi}^{\pi} \tilde{\psi}^L_{|0L\rangle}(k, t)e^{-ikx} dk + \frac{1}{2\pi} \int_{-\pi}^{\pi} \tilde{\psi}^L_{|0R\rangle}(k, t)e^{ikx} dk \\
&= \frac{1}{2\pi} \int_{-\pi}^{\pi} Q_k^\alpha [P_k e^{-ikx} \mp P_k e^{ikx}] [e^{-i\omega_k t} - e^{i\omega_k t}] dk ,
\end{align*}
\]

(22)

As \(Q_k^\alpha \in \mathbb{R} \), we can know \(\Psi^L_{|0L\rangle}(x, t) + \Psi^L_{|0R\rangle}(-x, t) \in \mathbb{R} \), and \(\Psi^L_{|0L\rangle}(x, t) - \Psi^L_{|0R\rangle}(-x, t) \in \mathbb{R} \). Similarly, we can get Eq. (21).

Corollary 5. The symmetry property of distribution between quantum walks with a U(2) coin in initial state \(|0L \rangle \) and \(|0R \rangle \): For an arbitrary \(t \), \(P^R_{|0L\rangle}(\beta, x, t) = P^L_{|0R\rangle}(\beta, x, t), P^L_{|0L\rangle}(\beta, x, t) = P^R_{|0R\rangle}(\beta, x, t) \).

Proof. We set \(\Psi^R_{|0L\rangle}(x) = C + Di \), where \(C, D \in \mathbb{R} \). From Theorem 4 we can know \(\Psi^L_{|0R\rangle}(-x) = C - Di \), then we can know \(P^R_{|0L\rangle}(\beta, x, t) = P^L_{|0R\rangle}(\beta, x, t) \). Similarly, we can also get \(P^R_{|0L\rangle}(\beta, x, t) = P^L_{|0R\rangle}(\beta, x, t) \).

Theorem 6. If the initial state \(|\Psi_0\rangle = m |0L \rangle + n |0R \rangle \), where \(|m|^2 + |n|^2 = 1 \), the probability at state \(|xL \rangle \) or \(|xR \rangle \) after \(t \) steps quantum walk is

\[
\begin{align*}
P^L(x) = |m|^2 P^L_{|0L\rangle} + |n|^2 P^L_{|0R\rangle} - (e^{-i(\alpha+\gamma)}m^*n + e^{i(\alpha+\gamma)}mn^*)G^L(\beta, x, t) \\
P^R(x) = |m|^2 P^R_{|0L\rangle} + |n|^2 P^R_{|0R\rangle} - (e^{-i(\alpha+\gamma)}m^*n + e^{i(\alpha+\gamma)}mn^*)G^R(\beta, x, t)
\end{align*}
\]
where
\[
G_1(\beta, x, t) = \frac{1}{4\pi^2} \int \int e^{i(\omega_{h_1} - \omega_{h_2})t} \frac{1}{(\omega_{h_1} - \omega_{h_2})^2} e^{i(h_1 - h_2)x} e^{-ih_1}(Q^b_{h_2})^* dh_1 dh_2
\]
\[
= \frac{1}{4\pi^2} \int \int \frac{Q^b_{h_2} \sin^3 \beta}{(\omega_{h_1} - \omega_{h_2})^2} \sin((\omega_{h_1} - \omega_{h_2}) + (h_1 - h_2) + (h_1 - h_2)x - h_1)|dh_1 dh_2| \in R.
\] (25)

As the same of \(G_1(\beta, x, t)\), we can know \(G_i(\beta, x, t) \in R\), where \(i \in \{1, 2, 3, 4\}\). So Eq. (24) can be written as
\[
P^L(x) = |m|^2 P^L_{|0L\rangle} + |n|^2 P^L_{|0R\rangle} - (e^{-i(\alpha+\gamma)}m^* n + e^{i(\alpha+\gamma)}mn^*)G^L(\beta, x, t),
\] (26)

where \(G^L(\beta, x, t) = \sum_{i=1}^4 G_i\). In the same way as \(P^L(x)\), we can get \(P^R(x)\) in Eq. (23).

Theorem 7. If the initial state \(|\Psi_0\rangle = 1/\sqrt{2}(|0L\rangle + i |0R\rangle)\). The average position after \(t\) steps quantum walk:
\[
\langle x \rangle = G(\beta, t)\sin(\alpha + \gamma), \text{ where } G(\beta, t) \text{ only depends on } \beta \text{ and } t.
\]

Proof. From Corollary 5, we can know
\[
\sum_{x=-t}^t x[P^R_{|0L\rangle}(\beta, x, t) + P^L_{|0L\rangle}(\beta, x, t)] = 0
\]
and
\[
\sum_{x=-t}^t x[P^L_{|0L\rangle}(\beta, x, t) + P^R_{|0L\rangle}(\beta, x, t)] = 0.
\] (27)

Using Eq. (27) and Theorem 6, we can know
\[
\langle x \rangle = \sum_{x=-t}^t x(P^L(\alpha, \beta, \gamma, x, t) + P^R(\alpha, \beta, \gamma, x, t))
\]
\[
= G(\beta, t)\sin(\alpha + \gamma),
\] (28)
where \(G(\beta, t) = -\sum_{x=-t}^t x[G^L(\beta, x, t) + G^R(\beta, x, t)]\) only depends on \(\beta \) and \(t\), regardless of \(\alpha \) or \(\gamma\).

VI. CONCLUSIONS

In this paper, we discussed the properties of the average position in QWs with an arbitrary unitary coin. With a SU(2) coin, if the initial state is \(|0L\rangle \) or \(|0R\rangle\), the probability distribution is independent on \(\alpha \) and \(\gamma\). Some symmetry properties between different initial states \(|0L\rangle \) and \(|0R\rangle\) were proved, we get that \(P^R_{|0L\rangle}(\beta, x, t) = P^L_{|0R\rangle}(\beta, -x, t)\) and \(P^L_{|0L\rangle}(\beta, x, t) = P^R_{|0R\rangle}(\beta, -x, t)\). If the initial state \(|\Psi_0\rangle = 1/\sqrt{2}(|0L\rangle + i |0R\rangle)\), we can know the average \(\langle x \rangle = G(\beta, t)\sin(\alpha + \gamma)\), so if we replace the Hadamard operator with an arbitrary unitary operator, the average position is always not equal to 0, unless \(\alpha + \beta = n\pi, n \in \mathbb{Z}\).

ACKNOWLEDGMENTS

This work was supported by the National Natural Science Foundation of China (Grant No. 10974192, 61275122), the National Fundamental Research Program of China (Grant No. 2011CB921200, 2011CBA00200), K. C. Wong Education Foundation and CAS.

[1] Y. Aharonov, L. Davidovich, and N. Zagury, Phys. Rev. A 48, 1687 (1993).
[2] E. Farhi, and S. Gutmann, Phys. Rev. A 58, 915 (1998)
[3] A. M. Childs, Phys. Rev. Lett. 102, 180501 (2009).
[4] N. B. Lovett, S. Cooper, M. Everitt, M. Trevers, and V. Kendon, Phys. Rev. A 81, 042330 (2010)
[5] A. M. Childs, R. Cleve, E. Deotto, E. Farhi, S. Gutmann, and D. A. Spielman, Proceedings of the 35th ACM symposium on Theory of computing (ACM Press, New York), (2003), pp. 59-68.
[6] N. Shen, J. Kempe, and K. Birgitta Whaley, Phys. Rev. A 67, 052307 (2003).
[7] A. M. Childs, E. Farhi, and S. Gutmann, Quantum Information Processing, Vol. 1, pp. 35-43 (2002).
[8] A. M. Childs and J. Goldstone, Phys. Rev. A 70, 022314 (2004).
[9] A. Ambainis, arXiv:quant-ph/0403120
[10] A. Ambainis and J. Kempe, In Proceedings of the 16th ACM-SIAM symposium on Discrete algorithms, pp. 1099–1108, (2005).
[11] D. Aharonov, A. Ambainis, J. Kempe, U. Vazirani, Proceeding STOC ’01 Proceedings of the thirty-third annual ACM symposium on Theory of computing, pp. 50 - 59 (2001).
[12] L. C. Kwek and Setiawan, Phy. Rev A 84, 032319 (2011).
[13] T. A. Brun, H. A. Carteret, and A. Ambainis, Phys. Rev. A 67, 052317 (2003).
[14] T. A. Brun, H. A. Carteret, and A. Ambainis, Phys. Rev. A 67, 032304 (2003).
[15] C. M. Chandrashekar, R. Srikanth, and R. Laflamme, Phy. Rev. A 77, 032306 (2008).
[16] A. Nayak and A. Vishwanath, Technical Report, Center for Discrete Mathematics & Theoretical Computer Science (2000).