Semi-empirical bound on the 37Cl solar neutrino experiment

Waikwok Kwong and S. P. Rosen

Department of Physics, University of Texas at Arlington
Arlington, Texas 76019-0059

ABSTRACT

The Kamiokande measurement of energetic 8B neutrinos from the sun is used to set a lower bound on the contribution of the same neutrinos to the signal in the 37Cl experiment. Implications for 7Be neutrinos are discussed.

Energetic 8B neutrinos from the sun have been detected in the Kamiokande experiment [1] at about one half the rate predicted by the Standard Solar Model (SSM) [2]. These same neutrinos must also interact with the 37Cl detector [3] and so it is important to understand their contribution to the measured 37Cl signal. By comparing this contribution to the total signal, we can extract information about other parts of the solar neutrino spectrum, especially 7Be.

We find that, even allowing for neutrino flavor oscillations, the Kamiokande experiment imposes a bound on the 37Cl signal that does not leave much room for a significant contribution from 7Be neutrinos. This finding is not inconsistent with the latest results from the 71Ga experiments [4,5], and so we may refine the statement of the solar neutrino problem to read: Where have all the 7Be neutrinos gone?

Since the basic physical process in the Kamiokande and 37Cl experiments are different, the former being neutrino–electron scattering and the latter neutrino capture on 37Cl, we must follow a semi-empirical method to relate them to one another. In Kamiokande, the calculated signal involves a convolution over $\phi(E_{\nu})$, the SSM spectrum of 8B neutrinos with energy E_{ν}, the differential cross section for scattered electrons with kinetic energy T, and the electron resolution function $\theta(T, T')$ which represents the probability that T will appears as T' in an actual measurement. We
call this function \(\phi \sigma(\nu_e; E_\nu) \) and plot in Fig. 1 its normalized shapes as a function of \(E_\nu \) for two choices of \(\theta(T, T') \): The first is a Gaussian shape that closely approximates the actual experimental resolution [6], the second is a \(\delta \)-function representing perfect resolution, and both assume \(7.5 \leq T' \leq 15 \) MeV. Notice that because of the experimental resolution, the first case has developed a significant tail below the 7.5 MeV threshold. Only the first case with the experimental resolution will be used for calculations below.

In the \(^{37}\text{Cl} \) experiment, the relevant quantity is the product of \(\phi(E_\nu) \) with the total capture cross section [7] for neutrinos of energy \(E_\nu \) on \(^{37}\text{Cl} \). We call this function \(\phi \sigma(^{37}\text{Cl}; E_\nu) \) and plot its normalized shape also in Fig. 1. The integral of \(\phi \sigma(^{37}\text{Cl}; E_\nu) \) gives the \(^{8}\text{B} \) contribution to the SSM signal in \(^{37}\text{Cl} \), \(R_{\text{SSM}}(^{7}\text{Be}; ^{37}\text{Cl}) \).

Comparing the normalized functions for the two experiments, we see that they are remarkably similar to one another, especially at the high energy end. We therefore write

\[
\frac{\phi \sigma(^{37}\text{Cl}; E_\nu)}{\int \phi \sigma(^{37}\text{Cl}; E_\nu) dE_\nu} = \alpha \frac{\phi \sigma(\nu_e; E_\nu)}{\int \phi \sigma(\nu_e; E_\nu) dE_\nu} + r(E_\nu) , \tag{1}
\]

where \(\alpha \) is a constant whose value is maximized subject to the condition that the remainder function \(r(E_\nu) \) be everywhere positive. It turns out that the largest value of \(\alpha \) is 0.93, and so we obtain an inequality

\[
\phi \sigma(^{37}\text{Cl}; E_\nu) \geq 0.93 \frac{R_{\text{SSM}}(^{8}\text{B}; ^{37}\text{Cl})}{R_{\text{SSM}}(\text{Kam})} \phi \sigma(\nu_e; E_\nu) . \tag{2}
\]

The next step of the argument is to note that the actual quantity measured in these experiments involves the product of \(\phi \sigma \) with an electron-neutrino “survival probability” \(P(E_\nu) \) which, in general, may be a function of the neutrino energy \(E_\nu \). If \(P(E_\nu) \) represents some, possibly energy-dependent, reduction of the \(^{8}\text{B} \) spectrum, or an oscillation into a sterile neutrino, then we find from Eq. (2) that

\[
\int \phi \sigma(^{37}\text{Cl}; E_\nu) P(E_\nu) dE_\nu \geq 0.93 \frac{\int \phi \sigma(\nu_e; E_\nu) P(E_\nu) dE_\nu}{R_{\text{SSM}}(\text{Kam})} R_{\text{SSM}}(^{8}\text{B}; ^{37}\text{Cl})
\]

or

\[
R(^{8}\text{B}; ^{37}\text{Cl}) \geq 0.93 (0.50 \pm 0.08) (6.1 \text{ SNU}) = (2.84 \pm 0.45) \text{ SNU} , \tag{3}
\]

where we have used the most recent result from the Kamiokande experiment [1]. This falls within the errors of the twenty-year average of the Davis value [3]

\[
\langle R_{\text{Davis}} \rangle = 2.32 \pm 0.23 \text{ SNU} , \tag{4}
\]
but is somewhat on the high side. Note that the bound in Eq. (3) also holds in the simple case of a reduction of the total 8B flux with no change in the spectral shape.

Next, consider the case of oscillations of solar electron-neutrinos into ν_μ or ν_τ, or some combination thereof. The signal observed in Kamiokande is then given by

$$R(\text{Kam}) = \int \left(\phi \sigma(\nu_e; E_\nu) P(E_\nu) + [1 - P(E_\nu)] \phi \sigma(\nu_\mu e; E_\nu) \right) dE_\nu ,$$

where we must now distinguish between the cross sections for electron-neutrinos and muon- or tau-neutrinos. As is well known [7] the latter cross section lies somewhere between 1/6 and 1/7 of the former in magnitude and is very similar in shape for energetic neutrinos. For our case it is an extremely good approximation to set

$$\sigma(\nu_\mu e; E_\nu) = 0.148 \sigma(\nu_e e; E_\nu).$$

We can then rewrite Eq. (5) in the form

$$\int \phi \left(\sigma(\nu_e e; E_\nu) - \sigma(\nu_\mu e; E_\nu) \right) P(E_\nu) dE_\nu = R(\text{Kam}) - \int \phi \sigma(\nu_\mu e; E_\nu) dE_\nu ,$$

or

$$0.852 \int \phi \sigma(\nu_e e; E_\nu) P(E_\nu) dE_\nu = R(\text{Kam}) - 0.148 R_{SSM}(\text{Kam}) .$$

From Eqs. (2) and (7) and the Kamiokande data [1], we see that the contribution of the 8B neutrinos must be bounded in the case of flavor oscillations by

$$R(\text{Kam}) \geq 0.93 \frac{\int \phi \sigma(\nu_e e; E_\nu) P(E_\nu) dE_\nu}{R_{SSM}(\text{Kam})} R_{SSM}(^8\text{B}; ^{37}\text{Cl})$$

$$= 0.93 \frac{(0.50 \pm 0.08) - 0.148}{0.852} (6.1 \text{ SNU})$$

$$= (2.34 \pm 0.53) \text{ SNU} .$$

To show that the above argument really does provide lower bounds on the 7Be neutrino contribution to the 37Cl experiment, we consider the special case in which, inspired by the non-adiabatic MSW solution [8], we take the electron-neutrino survival probability to be [9]

$$P(E_\nu) = e^{-C/E_\nu} ,$$

where C is a constant to be determined by fitting the Kamiokande data. When there is either no oscillation, or oscillation into a sterile neutrino, we find

$$C = 6.9^{+1.8}_{-1.5} \text{ MeV} \quad \text{and} \quad R(\text{Kam}) = 3.0 \pm 0.5 \text{ SNU} .$$
Allowing for neutrino oscillations, we find instead

\begin{equation}
C = 8.8^{+2.6}_{-2.0} \text{ MeV} \quad \text{and} \quad R(^8\text{B},^{37}\text{Cl}) = 2.5 \pm 0.5 \text{ SNU}.
\end{equation}

(11)

Both rates are larger than the corresponding lower bounds in Eqs. (8) and (8) respectively.

When compared with the Davis result of Eq. (4), our bounds on the energetic \(^8\text{B}\) neutrino contribution in Eq. (3) and (8) do not leave much room for the 1.8 SNU coming from all other sources, or the 1.1 SNU from \(^7\text{Be}\) neutrinos alone. Indeed, the contribution from all other sources, call them \(X\), is given in the two cases we have considered by

\[
R(X,^{37}\text{Cl}) \leq \begin{cases}
-0.52 \pm 0.51 \text{ SNU} & \text{(no oscillations)}, \\
-0.02 \pm 0.58 \text{ SNU} & \text{(with oscillations)}.
\end{cases}
\]

(12)

At the 95\% confidence limit, this means

\[
R(X,^{37}\text{Cl}) \leq \begin{cases}
0.32 \text{ SNU} & \text{(no oscillations)}, \\
0.93 \text{ SNU} & \text{(with oscillations)}.
\end{cases}
\]

(13)

Assuming that the \(^7\text{Be}\) contribution is approximately 1.1/1.8, or 60\% of this, we find it to be:

\[
R(^7\text{Be},^{37}\text{Cl}) < \begin{cases}
0.20 \text{ SNU} & \text{(no oscillations)}, \\
0.57 \text{ SNU} & \text{(with oscillations)}.
\end{cases}
\]

(14)

To pursue this line of argument further, we can set lower bounds on the contribution of the \(^8\text{B}\) neutrinos to the \(^{71}\text{Ga}\) experiments. Replacing the absorption cross section of \(^{37}\text{Cl}\) by that of \(^{71}\text{Ga}\) everywhere [10], we obtain an inequality similar to Eq. (3) but with \(\alpha = 0.81\). The bounds on the \(^8\text{B}\) contribution to the \(^{71}\text{Ga}\) experiments are

\[
R(^8\text{B},^{71}\text{Ga}) \geq \begin{cases}
5.7 \pm 0.9 \text{ SNU}, & \text{(no oscillations)}, \\
4.7 \pm 1.1 \text{ SNU}, & \text{(with oscillations)}.
\end{cases}
\]

(15)

The corresponding values in the \(e^{-C/E}\) model,

\[
R(^8\text{B},^{71}\text{Ga}) = \begin{cases}
6.6 \pm 1.1 \text{ SNU}, & \text{(no oscillations)}, \\
5.5 \pm 1.3 \text{ SNU}, & \text{(with oscillations)},
\end{cases}
\]

(16)

are again larger than their counterparts in Eq. (13).
Combining the bounds of Eq. (15) with the latest ^{71}Ga results [4,5],

$$R(^{71}\text{Ga}) = \begin{cases} 79 \pm 12 \text{ SNU}, & \text{GALLEX} \\ 73 \pm 19 \text{ SNU}, & \text{SAGE} \\ 77 \pm 10 \text{ SNU}, & \text{(combined)} \end{cases}$$

we find an interesting situation, namely that the sum of the signals from pp neutrinos, ^7Be neutrinos, and other non-^8B sources is very close to the SSM prediction of ^{71}SNU for pp neutrinos alone:

$$R(^{71}\text{Ga}) - R(^8\text{B}, ^{71}\text{Ga}) \leq \begin{cases} 72 \pm 12 \text{ SNU}, & \text{(no oscillations)} \\ 73 \pm 12 \text{ SNU}, & \text{(with oscillations)} \end{cases}$$

Scaling up the ^7Be neutrino bounds in Eq. (14) by the ratio of the capture cross sections on ^{71}Ga and ^{37}Cl, we find that the bounds on the ^7Be neutrino contribution to the ^{71}Ga signals are:

$$R(^{7}\text{Be}, ^{71}\text{Ga}) < \begin{cases} 6.0 \text{ SNU}, & \text{(no oscillations)} \\ 17.4 \text{ SNU}, & \text{(with oscillations)} \end{cases}$$

at the 95% confidence level. It will be interesting to test these bounds by direct observation of the ^7Be, or pp neutrinos themselves.

This work was supported in part by the U. S. Department of Energy grant DE-FG05-92ER40691. The authors are grateful to Serguey Petcov and Gene Beier for helpful conversations. One of the authors (SPR) would like to thank Prof. W. C. Haxton for the hospitality of the Institute for Nuclear Theory at the University of Washington, where part of this work was carried out.

Note added: After this work was completed, the authors learned from Prof. David Schramm that he had obtained a bound in the non-oscillation case similar to that in Eq. (3).

References

1. K. Hirata et al., Phys. Rev. D 44, 2241 (1991) and Y. Suzuki, in Frontiers of Neutrino Astrophysics, Proceedings of the International Symposium on Neutrino Astrophysics, edited by Y. Suzuki and N. Nakamura (Universal Academic Press, Tokyo, 1993) p. 61. For the most recent results see Y. Suzuki, 6th International Workshop on “Neutrino Telescopes,” February 22–24, 1994, Venice,
Italy; and International Topical Workshop on the Solar Neutrino Problem: Astrophysics or Oscillations? 28 February–1 March 1994, Laboratori Nazionali del Gran Sasso, L’Aquila, Italy.

2. J. N. Bahcall and M. Pinsonneault, Rev. Mod. Phys. 64, 885 (1992); J. N. Bahcall, Neutrino Astrophysics (Cambridge University Press, New York, 1993).

3. Ray Davis, in Frontiers of Neutrino Astrophysics, Proceedings of the International Symposium on Neutrino Astrophysics, edited by Y. Suzuki and N. Nakamura (Universal Academic Press, Tokyo, 1993) p. 47; and 6th International Workshop on “Neutrino Telescopes,” February 22–24, 1994, Venice, Italy; and International Topical Workshop on the Solar Neutrino Problem: Astrophysics or Oscillations? 28 February–1 March 1994, Laboratori Nazionali del Gran Sasso, L’Aquila, Italy.

4. GALLEX Collaboration, P. Anselmann et al., Report No. GX 44-1994 (submitted to Physics Letters B, February 1994).

5. J. N. Abdurashitov et al., Los Alamos Report No. LA-UR 94-1113 (submitted to Physics Letters B, April 1994).

6. J. N. Bahcall, Neutrino Astrophysics (Cambridge University Press, New York, 1993).

7. Reference 6, Section 8.2, p. 214-243.

8. For recent discussions of MSW solutions, see S. Bludman, N. Hata, D. Kennedy, and P. Langacker, Phys. Rev. D 47, 2220 (1993); N. Hata and P Langacker, University of Pennsylvania Preprint No. UPR-0592T (Nov. 1993); P. I. Krastev and S. Petcov, Phys. Lett. B 299, 99 (1993); and L. Krauss, E. Gates, and M. White, Phys. Rev. Lett. 70, 375 (1993).

9. See for example H. A. Bethe and J. N. Bahcall, Phys. Rev. D 44, 2962 (1991).

10. Reference 6, p. 209.

11. GALLEX Collaboration, P. Anselmann et al., Phys. Lett. B 285, 376 (1992) and ibid. B 314, 445 (1993).

Figure caption

Fig. 1. Normalized shapes of $\phi \sigma$ for various experiments.
This figure "fig1-1.png" is available in "png" format from:

http://arxiv.org/ps/hep-ph/9404308v1
