PURSUIT-EVASION GAME WITH HYBRID SYSTEM OF DYNAMICS

MEHDI SALIMI

CENTER FOR DYNAMICS AND INSTITUTE FOR ANALYSIS, DEPARTMENT OF
MATHEMATICS, TECHNISCHE UNIVERSITÄT DRESDEN, 01062 DRESDEN, GERMANY

1. Formulation of the problem and result

In the space l_2 consisting of elements $a = (a_1, a_2, \ldots, a_m, \ldots)$, with $\sum_{m=1}^{\infty} a_m^2 < \infty$, and inner product $(a, b) = \sum_{m=1}^{\infty} a_m b_m$, the motions of the countably many pursuers P_i and the evader E are defined by the hybrid system of differential equations

$$
P : \dot{p} = \mu, \quad p(0) = p_0, \\
E : \ddot{e} = \nu, \quad \dot{e}(0) = e^1, \quad e(0) = e^0,$$

where $p, p_0, e, e^0, e^1, \nu \in l_2$, $\mu = (\mu_1, \mu_2, \ldots, \mu_m, \ldots)$ is the control parameter of the pursuer P_i, and $\nu = (\nu_1, \nu_2, \ldots, \nu_m, \ldots)$ is that of the evader E. Let φ be a given positive number.

A ball of radius δ and center at the point x_0 is denoted by $B(x_0, \delta) = \{x \in l_2 : \|x - x_0\| \leq \delta\}$.

Definition 1.1. A function $\mu(\cdot), \mu : [0, \varphi] \to l_2$, such that $\mu_m : [0, \varphi] \to \mathbb{R}^1$, $m = 1, 2, \ldots$, are Borel measurable functions and

$$
\|\mu(\cdot)\|_2 = \int_{0}^{\varphi} \|\mu(s)\|^2 ds \leq \Gamma^2, \quad \|\mu\|^2 = \sum_{m=1}^{\infty} \mu_m^2,
$$

where Γ is a given positive number, is called an *admissible control of the pursuer*.

Definition 1.2. A function $\nu(\cdot), \nu : [0, \varphi] \to l_2$, such that $\nu_m : [0, \varphi] \to \mathbb{R}^1$, $m = 1, 2, \ldots$, are Borel measurable functions and

$$
\|\nu(\cdot)\|_2 = \int_{0}^{\varphi} \|\nu(s)\|^2 ds \leq \Upsilon^2, \quad \|\nu\|^2 = \sum_{m=1}^{\infty} \nu_m^2,
$$

where Υ is a given positive number, is called an *admissible control of the evader*.

Key words and phrases. Differential Game; Hybrid System; Pursuer; Evader; Winning Strategy.

E-mail addresses: mehdi.salimi@tu-dresden.de.
Once the players’ admissible controls $\mu(\cdot)$ and $\nu(\cdot)$ are chosen, the corresponding motions $p(\cdot)$ and $e(\cdot)$ of the players are defined as

\[
p(t) = (p_1(t), p_2(t), \ldots, p_m(t), \ldots), \quad e(t) = (e_1(t), e_2(t), \ldots, e_k(t), \ldots),
\]

\[
p_m(t) = p_m^0 + \int_0^t \mu_m(s) \, ds, \quad e_m(t) = e_m^0 + t \epsilon_m + \int_0^s \nu_m(r) \, dr \, ds.
\]

One could observe that $p(\cdot), e(\cdot) \in C(0, \varphi; l_2)$, where $C(0, \varphi; l_2)$ is the space of functions $f(t) = (f_1(t), f_2(t), \ldots, f_m(t), \ldots) \in l_2, \quad t \geq 0,$ such that the following properties are valid.

1. $f_m(t), \quad 0 \leq t \leq \varphi, \quad m = 1, 2, \ldots$, are absolutely continuous functions;
2. $f(t), \quad 0 \leq t \leq \varphi,$ is a continuous function in the norm of l_2.

Definition 1.3. A function $\Xi(t, p, e, \nu), \Xi : [0, \infty) \times l_2 \times l_2 \times l_2 \rightarrow l_2$, such that the system

\[
\begin{align*}
\dot{p} &= \Xi(t, p, e, \nu), \quad p(0) = p^0, \\
\dot{e} &= \nu, \quad e(0) = e^0, \quad \dot{e}(0) = e^1,
\end{align*}
\]

has a unique solution $(p(\cdot), e(\cdot))$, with $p(\cdot), e(\cdot) \in C(0, \varphi; l_2)$, for an arbitrary admissible control $\nu = \nu(t), \quad 0 \leq t \leq \varphi$, of the evader E, is called a *strategy of the pursuer* P. A strategy Ξ is said to be *admissible* if each control formed by this strategy is admissible.

For the admissible control $\nu(t) = (\nu_1(t), \nu_2(t), \ldots), \quad 0 \leq t \leq \varphi, \quad$ of the evader E, according to (1.1) we have

\[
e(\varphi) = e^0 + e^1 \varphi + \int_0^\varphi \int_0^t \nu(s) \, ds \, dt = e^0 + e^1 \varphi + \int_0^\varphi (\varphi - t) \nu(t) \, dt,
\]

and using (1.2) one can see

\[
e(\varphi) = e_0 + \int_0^\varphi (\varphi - t) \nu(t) \, dt = e^0 + e^1 \varphi + \int_0^\varphi (\varphi - t) \nu(t) \, dt.
\]

Therefore, instead of differential game described by (1.1) we can use an equivalent differential game with the same payoff function as the following:

\[
\begin{align*}
P : \dot{p}(t) &= \mu(t), \quad p(0) = p_0, \\
E : \dot{e}(t) &= (\varphi - t) \nu(t), \quad e(0) = e_0 = e^1 \varphi + e^0.
\end{align*}
\]

Proposition 1.4. The attainability domain of the pursuer P at time φ from the initial state p_0 at time $t_0 = 0$ is the closed ball $B(p_0, \Gamma \sqrt{\varphi})$.

Proof. By Cauchy-Schwartz inequality we obtain

\[\|p(\varphi) - p_0\| = \left\| \int_0^{\varphi} \mu(s) \, ds \right\| \leq \int_0^{\varphi} \|\mu(s)\| \, ds \leq \left(\int_0^{\varphi} 1^2 \, ds \right)^{1/2} \cdot \left(\int_0^{\varphi} \|\mu(s)\|^2 \, ds \right)^{1/2} \leq \Gamma \sqrt{\varphi}. \]

Let \(\bar{p} \in B(p_0, \Gamma \sqrt{\varphi}) \). If the pursuer \(P \) uses the control

\[\mu(t) = \frac{\bar{p} - p_0}{\varphi}, \quad 0 \leq t \leq \varphi, \]

then we obtain

\[p(\varphi) = p_0 + \int_0^{\varphi} \mu(t) \, dt = p_0 + \int_0^{\varphi} \frac{\bar{p} - p_0}{\varphi} \, dt = p_0 + \bar{p} - p_0 = \bar{p}. \]

The above pursuer’s control is admissible. Indeed,

\[\int_0^{\varphi} \|\mu(t)\|^2 \, dt = \int_0^{\varphi} \left(\frac{\bar{p} - p_0}{\varphi} \right)^2 \, dt = \frac{\|\bar{p} - p_0\|^2}{\varphi} \leq \frac{1}{\varphi} \Gamma^2 \varphi = \Gamma^2. \]

\[\square \]

Proposition 1.5. The attainability domain of the evader \(E \) at time \(\varphi \) from the initial state \(e_0 \) at time \(t_0 = 0 \) is the closed ball \(B \left(e_0, \Upsilon \sqrt{\frac{\varphi^3}{3}} \right) \).

Proof. We have

\[\|e(\varphi) - e_0\| = \left\| \int_0^{\varphi} (\varphi - t) \nu(t) \, dt \right\| \leq \int_0^{\varphi} \|(\varphi - t) \nu(t)\| \, dt \leq \left(\int_0^{\varphi} (\varphi - t)^2 \, dt \right)^{1/2} \cdot \left(\int_0^{\varphi} \|\nu(t)\|^2 \, dt \right)^{1/2} \leq \Upsilon \sqrt{\frac{\varphi^3}{3}}. \]

Let \(\bar{e} \in B \left(e_0, \Upsilon \sqrt{\frac{\varphi^3}{3}} \right) \). If the evader \(E \) uses the control
\[\nu(t) = 3(\varphi - t) \frac{\bar{e} - e_0}{\varphi^3}, \quad 0 \leq t \leq \varphi, \]

then we obtain

\[e(\varphi) = e_0 + \int_0^\varphi (\varphi - t) \nu(t) \, dt = e_0 + 3 \frac{\bar{e} - e_0}{\varphi^3} \int_0^\varphi (\varphi - t)^2 \, dt = e_0 + \bar{e} - e_0 = \bar{e}. \]

The above evader’s control is admissible. Indeed,

\[\int_0^\varphi \|\nu(t)\|^2 \, dt = \int_0^\varphi \|3(\varphi - t) \frac{\bar{e} - e_0}{\varphi^3}\|^2 \, dt = 9 \frac{\|\bar{e} - e_0\|^2}{\varphi^6} \int_0^\varphi (\varphi - t)^2 \, dt \leq \frac{9}{\varphi^6} \frac{\gamma^2}{3} \frac{\varphi^3}{3} = \gamma^2. \]

\[\square \]

The problem is to construct a winning strategy for the pursuer in the game (1.1) that guarantees the equality \(p(\varphi) = e(\varphi) \), for any admissible control of the evader.

Theorem 1.6. Let

\[Z = \left\{ \zeta \in l^2 : 2(e_0 - p_0, \zeta) \leq \varphi \left(\Gamma^2 - \frac{\varphi^5}{5} \right) + \|e_0\|^2 - \|p_0\|^2, \ e_0 \neq p_0 \right\}. \]

If \(e(\varphi) \in Z \) (phase constraint), then the pursuer has a winning strategy.

Proof. Let’s define the following strategy as a winning strategy for the pursuer.

\[\Xi(t) = \frac{e_0 - p_0}{\varphi} + (\varphi - t) \nu(t), \quad 0 \leq t \leq \varphi. \]

Let’s show that the above strategy is admissible. Since the evader is satisfied to the phase constraint, we have

\[2(e_0 - p_0, e(\varphi)) \leq \varphi \left(\Gamma^2 - \frac{\varphi^5}{5} \right) + \|e_0\|^2 - \|p_0\|^2. \]

Using above inequality we have the following:

\[2 \left(e_0 - p_0, \int_0^\varphi (\varphi - t) \nu(t) \, dt \right) \leq \varphi \left(\Gamma^2 - \frac{\varphi^5}{5} \right) - \|e_0 - p_0\|^2. \]
Indeed,

\[
2 \left(e_0 - p_0, \int_0^\varphi (\varphi - t)\nu(t) \, dt \right) = 2 (e_0 - p_0, e(\varphi) - e_0) = 2 (e_0 - p_0, e(\varphi)) - 2 (e_0 - p_0, e_0) = 2 (e_0 - p_0, e(\varphi)) - 2\|e_0\|^2 + 2 (p_0, e_0) \\
\leq \varphi \left(\Gamma^2 - \Upsilon^2 \sqrt{\frac{\varphi^5}{5}} \right) + \|e_0\|^2 - \|p_0\|^2 - 2\|e_0\|^2 + 2 (p_0, e_0) \\
\leq \varphi \left(\Gamma^2 - \Upsilon^2 \sqrt{\frac{\varphi^5}{5}} \right) - \|e_0\|^2 - \|p_0\|^2 + 2 (p_0, e_0) \\
\leq \varphi \left(\Gamma^2 - \Upsilon^2 \sqrt{\frac{\varphi^5}{5}} \right) - \|e_0\|^2 - \|p_0\|^2 + 2 (p_0, e_0) \\
\leq \varphi \left(\Gamma^2 - \Upsilon^2 \sqrt{\frac{\varphi^5}{5}} \right) - \|e_0 - p_0\|^2.
\]

Thus, taking contribution of above inequality

\[
\int_0^\varphi \|\Xi(t)\|^2 \, dt = \int_0^\varphi \frac{\|e_0 - p_0\|^2}{\varphi} + (\varphi - t)\nu(t)\|\|^2 \, dt \\
= \int_0^\varphi \left(\frac{\|e_0 - p_0\|^2}{\varphi} + 2 \left(\frac{e_0 - p_0}{\varphi}, (\varphi - t)\nu(t) \right) + \|\varphi - t\|\nu(t)\|\|^2 \right) \, dt \\
= \int_0^\varphi \frac{\|e_0 - p_0\|^2}{\varphi^2} \, dt + 2 \int_0^\varphi \left(\frac{e_0 - p_0}{\varphi}, (\varphi - t)\nu(t) \right) \, dt + \int_0^\varphi (\varphi - t)\|\nu(t)\|^2 \, dt \\
\leq \frac{\|e_0 - p_0\|^2}{\varphi} + 2 \varphi \left(e_0 - p_0, \int_0^\varphi (\varphi - t)\nu(t) \, dt \right) \\
+ \left(\int_0^\varphi (\varphi - t)^4 \, dt \right)^{\frac{1}{2}} \left(\int_0^\varphi \|\nu(t)\|^4 \, dt \right)^{\frac{1}{2}} \\
\leq \frac{\|e_0 - p_0\|^2}{\varphi} + \frac{1}{\varphi} \left(\varphi \left(\Gamma^2 - \Upsilon^2 \sqrt{\frac{\varphi^5}{5}} \right) - \|e_0 - p_0\|^2 \right) + \Upsilon^2 \sqrt{\frac{\varphi^5}{5}} \\
\leq \Gamma^2,
\]

and therefore the strategy \(\Xi \) is admissible.
Now we show that Ξ is a winning strategy for the pursuer. Indeed,

$$p(\varphi) = p_0 + \int_0^\varphi \left(\frac{e_0 - p_0}{\varphi} + (\varphi - t)\nu(t) \right) ds$$

$$= p_0 + \int_0^\varphi \left(\frac{e_0 - p_0}{\varphi} \right) ds + \int_0^\varphi (\varphi - t)\nu(t) ds$$

$$= p_0 + e_0 - p_0 + \int_0^\varphi (\varphi - t)\nu(t) ds = e(\varphi).$$

□

REFERENCES

[1] Ferrara, M., Ibragimov, G., Alias, I.A., Salimi, M., Pursuit Differential Game of Many Pursuers with Integral Constraints on Compact Convex Set, Bulletin of the Malaysian Mathematical Sciences Society, 43, 2929-2950 (2020)

[2] Ibragimov, G.I., Optimal pursuit with countably many pursuers and one evader, Differential Equations, 41(5), 627-635, (2005)

[3] Ibragimov, G.I., Salimi, M., Pursuit-evasion differential game with many inertial players, Mathematical Problems in Engineering, vol. 2009, Article ID 653723, 15 pages, (2009)

[4] Ibragimov, G.I., Salimi, M., Amini, M., Evasion from many pursuers in simple motion differential game with integral constraints, European Journal of Operational Research, 218, 505-511, (2012)

[5] Isaacs, R., Differential Games, John Wiley & Sons, New York, NY, USA, (1965)

[6] Petrosyan, L.A., Differential Pursuit Games, Izdat. Leningrad. Univ., Leningrad, (1977)

[7] Salimi, M., A research contribution on an evasion problem, SeMA Journal, 75(1), 139-144, (2018)

[8] Salimi, M., Ferrara, M., Differential game of optimal pursuit of one evader by many pursuers, International Journal of Game Theory, 48(2), 481-490, (2019)

[9] Salimi, M., Ibragimov, G., Siegmund, S., Sharifi, S., On a fixed duration pursuit differential game with geometric and integral constraints, Dynamic Games and Applications 6(3), 409-425, (2016)