CANCER PREVENTION AND CONTROL

Review Articles

Conceptual Framework for Cancer Care During a Pandemic Incorporating Evidence From the COVID-19 Pandemic

Vivienne Milch, MBBS, MHPol1,2; Anne E. Nelson, PhD3; Melissa Austen, BScSc1; Debra Hector, PhD, MPH1; Scott Turnbull, PhD1; Rahul Sathiaraj, MPH1; Carolyn Der Vartanian, MM1; Rhona Wang, MPH1; Cleola Anderiesz, PhD, GCHEcon, MBA4,5; and Dorothy Keefe, PSM, MD1

Abstract

Purpose

With successive infection waves and the spread of more infectious variants, the COVID-19 pandemic continues to have major impacts on health care. To achieve best outcomes for patients with cancer during a pandemic, efforts to minimize the increased risk of severe pandemic infection must be carefully balanced against unintended adverse impacts of the pandemic on cancer care, with consideration to available health system capacity. Cancer Australia’s conceptual framework for cancer care during a pandemic provides a planning resource for health services and policy-makers that can be broadly applied globally and to similar pandemics.

Methods

Evidence on the impact of the COVID-19 pandemic on cancer care and health system capacity to June 2021 was reviewed, and the conceptual framework was developed and updated.

Results

Components of health system capacity vary during a pandemic, and capacity relative to pandemic numbers and severity affects resources available for cancer care delivery. The challenges of successive pandemic waves and high numbers of pandemic cases necessitate consideration of changing health system capacity in decision making about cancer care. Cancer Australia’s conceptual framework provides guidance on continuation of care across the cancer pathway, in the face of challenges to health systems, while minimizing infection risk for patients with cancer and unintended consequences of delays in screening, diagnosis, and cancer treatment and backlogs because of service interruption.

Conclusion

Evidence from the COVID-19 pandemic supports continuation of cancer care wherever possible during similar pandemics. Cancer Australia’s conceptual framework, underpinned by principles for optimal cancer care, informs decision making across the cancer care continuum. It incorporates consideration of changes in health system capacity and capacity for cancer care, in relation to pandemic progression, enabling broad applicability to different global settings.

JCO Global Oncol 8:e2200043. © 2022 by American Society of Clinical Oncology

Creative Commons Attribution Non-Commercial No Derivatives 4.0 License

Introduction

The COVID-19 pandemic is currently continuing worldwide, with successive infection waves and the spread of new variants of coronavirus SARS-CoV-2, such as the more infective Delta and Omicron variants.1,2 At early April 2022, more than 490 million confirmed COVID-19 cases and more than 6.1 million deaths have been reported globally.3 The pandemic continues to have major impacts on health care including potentially overwhelming health systems, with significant impacts on cancer care,4 defined as care across the cancer pathway from prevention and early detection to survivorship and end-of-life care. Changes in cancer care delivery have included changes in use of telehealth, innovative care models, and impacts on cancer research and clinical trials.4 Adverse impacts of the pandemic on cancer care may be more prolonged and greater in low- and middle-income countries (LMICs).6

Patients with cancer may be at increased risk from a pandemic infection because of factors such as older age; comorbidities such as cardiovascular disease, diabetes, and chronic lung disease; and immunosuppressed state because of the underlying cancer or anticancer treatments.7,8 Patients with cancer have high levels of interaction with health care providers and may need frequent hospital admissions and visits, presenting another potential risk for pandemic infection. Patients with cancer are heterogenous, so individual factors that enable assessment of risk, including the type and stage of cancer and treatment type, also need to be considered.10

Throughout the COVID-19 pandemic, Cancer Australia has actively monitored emerging international evidence and clinical guidance on COVID-19 infection and cancer. In May 2020, Cancer Australia published a conceptual framework for the management of cancer...
© 2022 by American Society of Clinical Oncology

Relevance

Patients with cancer are at increased risk of severe COVID-19 disease and worse outcomes, so minimizing the risk of exposure to and harm from COVID-19 disease must be considered in cancer care. However, evidence from the COVID-19 pandemic supports the continuation of cancer care wherever possible during this, and similar pandemics, to achieve the best outcomes for patients with cancer and minimize adverse impacts of the pandemic on cancer care, including delays in screening, diagnosis, and treatment.

Knowledge Generated

Cancer Australia has developed a conceptual framework as an evidence-based planning resource to support optimal cancer care during a pandemic for multiple stakeholders including health services and policy-makers.

CONTEXT

Key Objective
Cancer Australia has developed a conceptual framework as an evidence-based planning resource to support optimal cancer care across the continuum during the COVID-19 pandemic and future similar pandemics.

Knowledge Generated
Patients with cancer are at increased risk of severe COVID-19 disease and worse outcomes, so minimizing the risk of exposure to and harm from COVID-19 disease must be considered in cancer care. However, evidence from the COVID-19 pandemic supports the continuation of cancer care wherever possible during this, and similar pandemics, to achieve the best outcomes for patients with cancer and minimize adverse impacts of the pandemic on cancer care, including delays in screening, diagnosis, and treatment.

Relevance
Cancer Australia’s conceptual framework reflects changing health system capacity, enabling its broad applicability to different global contexts, and is underpinned by principles for optimal cancer care. The framework provides guidance for cancer care during a pandemic for multiple stakeholders including health services and policy-makers.

during a pandemic as a thought piece for optimal cancer care during a pandemic. It provided a framework for system-wide approaches to cancer management and decision making about modifications to cancer care, in accordance with the principles of the Optimal Care Pathways (OCPs) for people with cancer.

The scenarios or phases of the pandemic underpinning Cancer Australia’s initial framework were based on acute and recovery phases described by the American College of Surgeons across modeled scenarios of COVID-19 cases in relation to whether health system capacity limits were being approached or exceeded. The steps of the cancer care pathway (from prevention and early detection, through to survivorship and end-of-life care) were those defined in the Australian OCPs.

Since the publication of Cancer Australia’s initial conceptual framework, the COVID-19 pandemic has undergone successive waves and COVID-19 vaccination has become available. The aim of this review is to investigate the evidence of the impact of the COVID-19 pandemic on health system capacity and on cancer care and to further develop and update Cancer Australia’s conceptual framework for cancer care during a pandemic.

The conceptual framework does not include management of the pandemic-related illness, such as COVID-19 disease. The intended audience includes health services, health professionals, cancer organizations, and policy-makers.

Abstraction of evidence for the initial conceptual framework was repeated for the updated framework, with input from secondary evidence reviewers. There was an extensive internal Cancer Australia review with a consensus approach used. The conceptual framework was updated on the basis of the evidence identified, current international and national guidance, recommendations, and
position statements, broadly similar in principle to a meta-guideline approach. This pragmatic approach enabled the timely incorporation of international and national guidance.

RESULTS

The conceptual framework:

1. Incorporates consideration of changes in health system capacity and capacity for cancer care during a pandemic.
2. Is informed by evidence on the effects of COVID-19 disease in patients with cancer.
3. Is informed by evidence on the impacts of the pandemic on cancer care.
4. Is underpinned by principles for optimal cancer care.

Health System Capacity During a Pandemic

Health system capacity. Components of health system capacity relevant to a pandemic similar to the COVID-19 pandemic (listed in Table 1) include availability of resources such as hospital beds and supplies (personal protective equipment [PPE], oxygen, medications, blood, etc); availability of skilled health care staff, intensive care unit (ICU) and ventilator capacity; and access to pathology and imaging services. Health system capacity components are dynamic and may increase or decrease during a pandemic, as described in Table 1. These components may vary in an asynchronous manner during a pandemic, and some may increase, whereas others decrease.

Capacity may vary during successive waves of infection because of factors such as preparations undertaken between waves and the relative numbers of infected cases and may vary on a local basis. Measures to maintain or increase health system capacity during a pandemic and mitigate potential shortages include the following: adapting existing hospital beds and ICU capacity;

mitigating health care staff shortages; implementing protocols to reduce the risk of pandemic infection for health care workers including nosocomial transmission; maximizing supply of ventilators; and planning logistics for surge capacity.

Health system capacity and impacts of the COVID-19 pandemic vary globally with greater impacts in LMICs. LMICs have lower ratio of hospital beds, ICU, and ventilator capacity relative to the population, compared with higher-income countries and have reported worse impacts of the pandemic on cancer care capacity, including significantly greater shortages of PPE and medications, and less availability of virtual clinics (telehealth) and remote care.

Progression of a pandemic and pandemic phases. Epidemiologic curves, on the basis of the evidential progression of the pandemic under different scenarios of pandemic numbers and severity, can be used to predict the effects of mitigation strategies such as quarantine, social distancing, contact tracing, and lockdowns in subsequent episodes.

In Figure 1, the progression of a pandemic is shown as the demand on the health system related to the pandemic infection, and health system capacity as a band, with dashed lines representing its range during a pandemic because of multiple components that could increase or decrease at any time (detailed in Table 1). Figure 1A shows phases where the pandemic demands are within, or exceed, health system capacity in an uncontrolled (rapidly increasing) or mitigated (flattened) pandemic scenario. In repeat pandemic waves (Fig 1B), health system capacity may be exceeded at different times. The pandemic curves will also be influenced by rates of vaccination, which may vary locally and globally between low-resource and high-resource countries, and by efficacy of the vaccine.

As health system capacity and the demands of pandemic infection vary during the different stages and scenarios of a pandemic, so do the resources available for cancer care delivery. At each step on the cancer care continuum, decisions on cancer care should include consideration of health system capacity and capacity for cancer care, in relation to the progression of the pandemic. Incorporating this consideration into the conceptual framework for cancer care enables its broad application to different pandemic settings and to different health services and global contexts.

Acute and recovery pandemic phases, which incorporate both changing health system capacity and the progression of the pandemic, are used in this conceptual framework:

- **Acute phase I:** Semieurgent setting. Few pandemic infection patients and numbers not rapidly escalating; demand is within health system capacity; hospital supplies and health care staff resources are not exhausted; hospitals still have ICU capacity.
- **Acute phase II:** Urgent setting. Rapidly escalating numbers of pandemic infection patients, approaching limits of health system capacity; hospital supplies and health care staff resources are limited because of factors such as redeployment to pandemic-related activities; ICU capacity increasingly limited.
- **Acute phase III:** Emergency setting. High numbers of pandemic infection patients, health system capacity exceeded; hospital supplies and health care staff resources are overwhelmed or exhausted by pandemic-related activities with no spare capacity; no spare ICU capacity.
- **Recovery phases.** Past the peak of pandemic infection with fewer new daily cases, health system capacity not exceeded; hospital supplies and health care staff resources are more available, including hospital and ICU beds, healthy staff, PPE, and critical testing.
Within these phases, there may be transitions, such as from a preparatory phase with low numbers to a phase with more rapidly increasing numbers during acute phase I. These phases may be repeated during successive waves of infection and with new pandemic variants.

Evidence of Effects of COVID-19 Disease in Patients With Cancer

Risk of COVID-19 disease in patients with cancer. Early reports and a US retrospective case-control study of electronic health records have indicated that patients
with cancer might have increased risk of COVID-19 disease. Although the large case-control study had limitations such as those inherent to electronic health records and testing differences between groups, patients with cancer especially those diagnosed within the past year were at significantly increased risk compared with those who never had cancer, and the associations were strongest for those patients with recently diagnosed leukemia, non-Hodgkin lymphoma, and lung cancer.31

Severity and complications of COVID-19 disease in patients with cancer. An increased risk of severe complications of COVID-19 disease or ICU admission for COVID-19 disease patients with cancer compared with COVID-19 disease patients without cancer has been reported in several meta-analyses with increased risks ranging from 1.56 to 2.97.

Increased severity of COVID-19 disease has been reported for patients with hematologic malignancies (leukemia, lymphoma, and myeloma) compared with patients with solid organ tumors and for patients with lung cancer compared with other cancers.37-39

Mortality because of COVID-19 disease in patients with cancer. There is an increased risk of death in patients with COVID-19 disease who have cancer compared with those without cancer, with increased risks ranging from 1.66 to 2.97 reported in meta-analyses. Mortality rates have been reported to be higher for patients with cancer who have COVID-19 disease with hematologic malignancies and with lung cancer compared with other cancers.

Severity of COVID-19 disease and risk of mortality in cancer patients with COVID-19 disease receiving systemic anticancer treatment or radiation therapy. Recent anticancer treatment before COVID-19 disease has been associated with increased severity of COVID-19 disease or mortality in some studies, but not in others. The review by the National Institute for Health and Care Excellence (February 2021) indicated there was, on balance, no difference in all-cause mortality for patients with cancer and COVID-19 disease with any of the systemic anticancer treatments (chemotherapy, targeted therapy, immunotherapy, or hormone therapy) received.
In recent meta-analyses, chemotherapy, surgery, or other anticancer treatments were not associated with increased risk of COVID-19 disease severity or deaths in cancer patients with COVID-19 disease.

For specific systemic treatments, a cohort study (4,966 patients with cancer and COVID-19 disease) showed that the anticancer therapies: rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisone; platinum combined with etoposide; and DNA methyltransferase inhibitors, were associated with high 30-day all-cause mortality. In another large cohort study (63,413 patients with cancer and COVID-19 disease), recent (within 30 days) cytotoxic therapy was associated with increased risk of all-cause mortality, hazard ratio (HR) = 1.5 (95% CI, 1.1 to 2.1), whereas mortality risk was not increased for patients who had received recent immunotherapies or targeted therapies.43

Some studies have reported worse outcomes for cancer patients with COVID-19 disease treated with immune checkpoint inhibitors (ICIs), whereas other studies have reported no difference in outcomes. In a meta-analysis (11 studies with 2,826 cancer patients with COVID-19 disease), prior ICI treatment was not associated with higher mortality risk or with disease severity; however concomitant use of ICI and chemotherapy may be linked to higher COVID-19 severity (odds ratio = 8.19; 95% CI, 2.67 to 25.08, with a small sample size).58

Evidence on the Impacts of the Pandemic on Cancer Care

Delays in screening, diagnosis, and treatment of patients with cancer during the COVID-19 pandemic. During the COVID-19 pandemic, delays and disruptions to cancer care have included the following: decreases in screening rates; delays in diagnosis; reduction in number of cancer surgeries; delay in radiotherapy or use of other regimens and alternate systemic regimens; and delay, rescheduling, or cancellation of outpatient visits.20,28,59-61

Cancer screening programs, such as for breast, cervical, and colorectal cancers, have been disrupted to varying degrees during the COVID-19 pandemic. Some screening programs such as breast screening were suspended during peaks of pandemic infection in some countries.60,62,63 The disruptions to cancer screening during the COVID-19 pandemic and strategies for maintaining or resuming cancer screening are affected by health system capacity and whether it is exceeded during the varying phases of a pandemic.64,65

In 2020 during the COVID-19 pandemic in Australia, cancer-related diagnostic procedures for 14 cancer types were approximately 8% lower than expected (more than 160,000 fewer services) and therapeutic procedures were approximately 9% lower (more than 14,000 fewer services).5 In the United States, reductions of 46% in the total weekly number of newly diagnosed breast, colorectal, lung, pancreatic, gastric, and esophageal cancers (in the period from March 1 to April 18, 2020) were reported.66

Interruption in cancer treatment was reported by up to 77.5% of patients responding to surveys in a systematic review of 62 studies from Europe, the United States, Asia, and the Middle East. In a global cross-sectional, questionnaire-based study (356 oncology centers from 54 countries), 88% of centers reported reduction in their usual level of cancer care (including surgery, systemic therapy, radiotherapy, and palliative care).67

Impacts on cancer outcomes of delays in cancer screening, testing, and treatment during the COVID-19 pandemic. The impacts of disruptions to cancer screening because of the COVID-19 pandemic have been estimated by modeling studies for different countries with different screening programs.67-69 Disruption of breast cancer screening programs has been estimated to have varying short- and long-term outcomes, including increased tumor size, stage shifts to higher-stage cancer, increased mortality, and increased public health burden.67 In the Netherlands, suspension of the breast cancer screening program and a later restart at reduced capacity resulted in a reduction of screen-detected breast cancers by 67% during February to August 2020, equating to an estimated 2000 delayed screen-detected cancers.62 It has been estimated that cervical cancer screening disruption in high-income countries will increase cervical cancer cases (2020-2030) by up to 5%-6%, with the greatest impact among women age <50 years in 2020.68 Disruptions in colorectal cancer screening were estimated to result in additional colorectal cancer deaths in the long term (eg, for 6-month disruption without catch-up screening, 1,961 additional deaths in 2020-2050 in Australia, 678-881 in the Netherlands, and 1,319 in Canada).69 However, the impact would be minimized by catch-up screening,69 and in Australia, there was no suspension of the National Bowel Cancer Screening Program.63

Delays in diagnosis because of pandemic lockdown measures have been estimated to result in substantial additional cancer deaths in England.70 Across breast, colorectal, lung, and esophageal cancers, 3,291-3,621 additional deaths within 5 years were estimated after diagnostic delays from March 2020 over 12 months, with increased deaths ranging from 4.8% for lung cancer to 16.6% for colorectal cancer.70 A consistent effect of delay in cancer treatment on increased mortality has been estimated in a meta-analysis of 34 studies (all retrospective comparative observational studies) published from 2000 to 2020 on seven major cancer types (bladder, breast, colon, head and neck, nasopharyngeal, cervical, and non–small-cell lung cancer) and surgery, systemic treatment, and radiotherapy treatments.71 Mortality risk for each 4-week delay for surgery was HR = 1.06-1.08, and for systemic treatment, it was HR = 1.01-1.28. For radiotherapy, there was evidence of a mortality impact because of delay in adjuvant radiation therapy for head and neck cancers and for cervical cancer.71 Interruptions to cancer treatment during the
Principle of the OCP	Application of the Principle in a Pandemic
Principle 1: Patient-centered care	In a pandemic, treatment should be individualized and treatment decisions should be made on a case-by-case basis, with input from both patients and the MDT. The risks and benefits of any changes to treatment plans should be discussed with patients and their families and caregivers, and a shared decision is reached. If required, prioritization decisions should be made as part of a MDT and each patient should be considered on an individual basis, with the reasoning behind every decision documented and clearly communicated to patients, families, and caregivers.
Principle 2: Safe and quality care	During a pandemic, a key consideration is that care should be provided in the safest way possible and that delays in diagnosis and treatment are minimized as much as possible given other considerations. Strategies for providing safe care include optimizing telehealth services when available and appropriate, to minimize the need for in-person services and following government-recommended infection control practices. Infection control practices to prevent transmission of infectious agents include screening all patients for signs and symptoms of the pandemic infection, universal source control (eg, use of masks by everyone in a health care facility), and infection control practices specific to the pandemic infection and specific to particular settings. Clear information and communication on infection control practices should be provided to patients and health care staff.
Principle 3: Multidisciplinary care	In a pandemic, multidisciplinary planning, which may be accomplished by virtual meetings, is of paramount importance. Treatment planning can be affected by delays or limited availability of diagnostic and therapeutic procedures and surgeries. Multidisciplinary discussions to guide treatment planning, starting from the time of diagnosis, are key to adjusting to changes and coordinating treatment, such as the timing and sequence of systemic therapy, radiation therapy and surgery, and supportive care. In circumstances of limited access to resources such as surgery and normal pathways of care not being possible, early multidisciplinary discussion can tailor multimodal therapy to mitigate the risk of tumor progression.
Principle 4: Supportive care	Evidence from the COVID-19 pandemic indicates that patients with cancer may experience psychosocial impacts during a pandemic, including increased distress, depression and anxiety, and unmet information needs. Strategies to address supportive care needs for patients with cancer during a pandemic include the following: increased psychosocial support; extra vigilance to screen for the presence of anxiety and/or depression symptoms, especially in those with a history of mental health concerns; improved communication of changes to cancer care plans; provision of timely information and guidance, including links to telephone and online support; and improved communication of virus control measures operationalized in health care settings. It is important to recognise increased levels of distress that patients with cancer and their families may face during a pandemic, and over and above that in relation to their cancer diagnosis and treatment, and to have supports in place in cancer programs to assess the level of distress and intervene appropriately.
Principle 5: Care coordination	In a pandemic, coordinated care with clear documentation is especially important for cancer treatment and treatment planning in circumstances such as limited access to resources, adjusting to any changes in cancer treatment, change in the patient’s usual health professional, or change in location where care is delivered. Increased use of teleshare also necessitates robust note-keeping and consideration of privacy and security.
Principle 6: Communication	In a pandemic, truthful, compassionate, and honest communication is essential and clinicians need to communicate directly with patients and their families about patients’ values and goals of care at all stages of cancer treatment. Information regarding the pandemic infection and cancer treatment should be readily available, and communication should be rapid and effective. There should be communication and discussion with patients on any changes in their cancer treatment that include the benefits and risks and individual factors such as patient preferences.
Principle 7: Research and clinical trials	There are challenges to research and clinical trials during a pandemic such as the risk of infection, shortage of clinical care resources, management of participants with COVID-19 disease, and protocol violations, that have resulted in suspension or disruption of many trials. Guidance on the conduct of research and clinical trials during the COVID-19 pandemic from the Australian Government Department of Health includes the following principles: The conduct of research related to COVID-19 disease is a significant priority; however, the initiation and continuation of other ongoing and proposed research may also be critical for the well-being of patients, participants, communities, and the research sector. Compliance with or adherence to regulations, guidelines, codes, policies, and other standards remains necessary. However, interpretation of research responsibilities in the context of a crisis such as COVID-19 should be informed by flexibility, consultation, and good sense so as to retain the focus on the safety and well-being of those most at risk in our institutions and communities. Guidance on clinical trials for patients with cancer has been provided by ASCO and ESMO.

Abbreviations: ESMO, European Society for Medical Oncology; MDT, multidisciplinary team; OCP, Optimal Care Pathway.
COVID-19 pandemic were further affected by the kinetics of rapid shutting down followed by slower ramping up later, for example, in Canada, where an immediate 60% decrease in mean surgical volume was followed by a slow 6% weekly increase, and may result in large backlogs of cases. Treatment delays and modifications may be prolonged and negatively affect patient care and outcomes, as it will take considerable time for cancer care to resume capacity and adjust models in response to the pandemic.28

In a global study of the impact of the COVID-19 pandemic on cancer care (356 centers from 54 countries), the magnitude of the impact on reduction or disruption of cancer care and reported estimates of harm to patients were more pronounced in lower-resource countries, for example, impacts of the pandemic on cancer surgery reduction have been greater in lower-income countries.72

Impacts of the COVID-19 pandemic on follow-up and supportive care. The impacts on follow-up care for patients with cancer during the COVID-19 pandemic include the following: delays or cancellations of follow-up appointments, modifications of follow-up plans (eg, suspension or postponement of imaging and physical examinations and of exercise programs), and increased use of telehealth.73,74 Although telehealth has replaced many face-to-face appointments, barriers to its implementation include variable access to technology and concerns about anxiety and distress in some patients with cancer related to telehealth.73,74 Changes in follow-up care may include models such as shared care, nurse-led or GP-led care.4,73,75

Patients with breast cancer in Australia have reported concerns around missing social supports from family and friends, lack of access to social support services, and hospital restrictions on visitors during treatment.76 It has been suggested that closer consideration is given during the COVID-19 pandemic to maintaining inclusion of caregivers, who are an integral component of a patient’s care team, in appointments and hospital visits.77

Impacts of the COVID-19 pandemic on oncology health professionals. Negative impacts of the COVID-19 pandemic on oncology professionals reported in an international survey in April/May 2020 (1,520 participants from 101 countries) included being at risk of distress (25%), feeling burnout (38%), and not being able to perform their job compared with the pre–COVID-19 period (66%).78 In other international surveys, negative impacts of the pandemic on mental health and well-being were reported by approximately 50% of oncologists (surveys from the Middle East, North Africa, Brazil, and the Philippines79 and from Europe, Australasia, and Asia80). Psychological distress, fatigue, and disrupted practice have also been experienced by cancer care clinicians in Australia.81

Burnout and fatigue experienced by oncology health professionals because of the COVID-19 pandemic can lead to decreased health care staff capacity (refer Table 1).

Principles Underpinning Optimal Cancer Care During a Pandemic

Seven key principles underpin the OCPs for people with cancer in Australia: patient-centered care, safe and quality care, multidisciplinary care, supportive care, care coordination, communication, and research and clinical trials.12

The guidance and evidence identified in the current review support the importance and relevance of these principles during a pandemic (described in Table 2), including provision of safe and quality care by minimizing the risk of pandemic infection for patients with cancer and health care staff82,83, patient-centered and multidisciplinary care for individualized treatment and treatment decisions73,82, and care coordination and communication, which are essential especially for changes in cancer treatment and treatment planning.82,90

Supportive care can assist with the psychosocial impacts of a pandemic.88,90 New opportunities for research and clinical trials, such as those based on large registries, have become available during the COVID-19 pandemic.93

Evidence on health system capacity and capacity for delivery of cancer care during a pandemic and the impact of the COVID-19 pandemic on cancer care have informed the updating of the content of the conceptual framework. Key areas where the framework was updated included the
TABLE 3. Detailed Conceptual Framework: Cancer Care During the Acute and Recovery Phases of a Pandemic

Phase	Prevention and Early Detection	Presentation, Initial Investigations, and Referral	Diagnosis, Staging, and Treatment Planning	Treatment	Care After Initial Treatment and Recovery	Managing Recurrent, Residual, or Metastatic Disease	End-of-Life Care	
Acute phase I	Continue population-based cancer screening^{84, 83}	Continue HPV vaccination if available	Use telehealth where possible* to assess patients with symptoms suspicious for cancer	Priority diagnostic procedures for patients with symptoms and test results suspicious for cancer^{90, 96}	Prioritize surgical management for patients with refractory disease requiring admission to hospital or before invasive procedures regardless of symptoms, if considered at high risk of mortality from the infection^{96, 101}	Delay face-to-face follow-up appointments (as well as any hospital imaging and/or blood tests) for patients where feasible⁹²	Consider delaying commencement of IV treatment for patients with refractory/ resistant disease or palliative regimens with a low likelihood of response/benefit⁹⁰	
Semiurgent setting	Encourage community members to continue to present to GP with red flag symptoms of cancer	Use telehealth where possible* to assess patients with symptoms suspicious for cancer	Appropriately investigate and refer patients with symptoms suspicious for cancer to a specialist linked to a multidisciplinary team⁹⁶	Surgery: Consider delaying surgery for patients not predicted to have a negative outcome if surgery is delayed for 3 months¹³	Maximize the number of reviews performed by telehealth where possible^{92, 90, 96, 106}	Minimize commencement of palliative regimens with high risk of complications requiring admission	Maximize communication by telehealth where possible⁹⁰	
Few pandemic infection patients and numbers not rapidly escalating, demand is within health system capacity, hospital supplies and health care staff resources are not exhausted; hospitals still have ICU and ventilator capacity	Continue HPV vaccination if available	Consider social distancing in planning screening appointments^{96, 99}	Follow up abnormal screening results identified in patients already screened, prioritizing those suspicious for cancer⁹⁵				Consider early referral and communication with community palliative care services⁹⁰	
								Empower patients and caregivers to manage symptoms at home, eg, provide access to subcutaneous treatments¹⁰⁷
								Enhance provision of supportive and palliative care through innovative models of care, eg, virtual palliative care through hospitals delivering care in the home⁹⁰
								Prioritize management of patients with urgent symptomatic need^{90, 107}
								Advance care planning and goals of care should be discussed with patients and appropriately documented (eg, by using an Advanced Care Directive)^{90, 108}

Vaccination, if vaccination against the pandemic pathogen is available, should be offered to patients with cancer, with consideration of any vaccine contraindications, type of cancer, type and timing of treatment, and level of immunocompromise⁹⁷⁻¹⁰⁰
Supportive care interventions should be provided for chemotherapy complications such as anemia, febrile neutropenia, thrombocytopenia-related complications, thromboembolic events, and chemotherapy-induced nausea and vomiting, to minimize patients’ risk of infection and need for hospitalization.104,105

Consider using alternate systemic anticancer therapy regimens with fewer visits, less frequent IV administration, and shorter duration, when there are acceptable alternatives.82,90

Consider postponing/omitting supportive care treatments that are not time-critical (eg, zoledronic acid for bone metastases) or switching to oral options to avoid hospital visits.90,104

Testing for the pandemic infection should be undertaken if feasible for patients with cancer requiring admission to hospital regardless of symptoms if considered at high risk of mortality from the infection or before starting immunosuppressive therapy (eg, cytotoxic chemotherapy, stem-cell transplantation, and biologic therapy) or invasive procedures.90,106,107

Reduce patient visitors or support persons in hospitals.

Vaccination, if vaccination against the pandemic pathogen is available, should be offered to patients with cancer, with consideration of any vaccine contraindications, type of cancer, type and timing of treatment, and level of immunocompromise.97-100

(Continued on following page)
TABLE 3. Detailed Conceptual Framework: Cancer Care During the Acute and Recovery Phases of a Pandemic (Continued)

Phase	Prevention and Early Detection	Presentation, Initial Investigations, and Referral	Diagnosis, Staging, and Treatment Planning	Treatment	Care After Initial Treatment and Recovery	Managing Recurrent, Residual, or Metastatic Disease	End-of-Life Care	
Acute phase II	Consider reduction of routine population-based cancer screening if resource availability is limited (eg, staff deployed elsewhere), but for the least possible time during prolonged acute phases	Encourage community members to continue to present to GP with red flag symptoms of cancer	Prioritize diagnostic procedures for patients with symptoms suspicous for cancer	Surgery:	Delay face-to-face follow-up appointments (as well as any hospital imaging and/or blood tests) for patients where feasible	Minimize commencement of IV treatment for patients with refferal resistant disease or palliative treatments with a low likelihood of response/benefit	Maximize communication by telehealth where possible	
	Rapidly escalating numbers of pandemic infection patients, demand is approaching limits of health system capacity; hospital supplies and health care staff resources are limited because of factors such as redeployment to pandemic-related activities; ICU and ventilator capacity is increasingly limited	Use telehealth where possible to assess patients with symptoms suspicious for cancer	Appropriately investigate and refer patients with symptoms suspicious for cancer to a specialist linked to a multidisciplinary team	Testing for the pandemic infection should be undertaken if feasible for patients with cancer requiring admission to hospital or before invasive procedures regardless of symptoms, if considered at high risk of mortality from the infection	Consider arranging for blood tests and scans to be performed locally rather than at hospital facilities, especially for patients being reviewed by telehealth where possible	Consider deferring palliative radiation therapy treatments, except where these are for life-threatening or urgent conditions (such as hemorrhage, superior vena cava obstruction, or malignant spinal cord compression)	Consider early referral and communication with community palliative care services	
								Empower patients and caregivers to manage symptoms at home, eg, provide access to subcutaneous treatments
								Enhance provision of supportive and palliative care through innovative models of care, eg, virtual hospitals delivering care in the home
								Prioritize management of patients with urgent symptomatic need
								Advance care planning and goals of care should be discussed with patients and appropriately documented (eg, by using an Advanced Care Directive)

(Continued on following page)
TABLE 3. Detailed Conceptual Framework: Cancer Care During the Acute and Recovery Phases of a Pandemic (Continued)

Phase	Prevention and Early Detection	Presentation, Initial Investigations, and Referral	Diagnosis, Staging, and Treatment Planning	Treatment	Care After Initial Treatment and Recovery	Managing Recurrent, Residual, or Metastatic Disease	End-of-Life Care
				When modifying an individual patient’s radiotherapy treatment plans, take their clinical circumstances into account, involve the multidisciplinary team, and record the reasoning behind each decision.			
				Systemic treatments:	Transition patients from IV treatments to subcutaneous or oral chemotherapeutic medications if there are acceptable alternatives.		
				Consider ways of reducing exposure for patients as a consequence of treatment.			
				Consider ceasing treatment for patients where the goals of treatment are limited; defer IV/IP treatments for patients with refractory/resistant disease.			
				Consider postponing/omitting supportive care treatments that are not time-critical, e.g., zoledronic acid for bone metastases, or switching to oral options to avoid hospital visits.			
				Delay concurrent chemoradiation or adjuvant chemotherapy unless proven survival benefit for the addition of chemotherapy.			
				Consider less toxic regimens where efficacy advantage is minimal/unproven. Consider using less frequent immunotherapy regimens and consider the potential harms and benefits of therapy for each patient.			

(Continued on following page)
TABLE 3. Detailed Conceptual Framework: Cancer Care During the Acute and Recovery Phases of a Pandemic (Continued)

Phase	Prevention and Early Detection	Presentation, Initial Investigations, and Referral	Diagnosis, Staging, and Treatment Planning	Treatment	Care After Initial Treatment and Recovery	Managing Recurrent, Residual, or Metastatic Disease	End-of-Life Care

Testing for the pandemic infection should be undertaken if feasible for patients with cancer requiring admission to hospital regardless of symptoms if considered at high risk of mortality from the infection or before starting immunosuppressive therapy (e.g., cytotoxic chemotherapy, stem-cell transplantation, and biologic therapy) or invasive procedures.95,96,101

Supportive care interventions should be provided for chemotherapy complications such as anemia, febrile neutropenia, thrombocytopenia-related complications, thromboembolic events, and chemotherapy-induced nausea and vomiting to minimize patients’ risk of infection and need for hospitalization.104,105

Limit patient visitors or support persons in hospitals (except at end of life)

Vaccination, if vaccination against the pandemic pathogen is available, should be offered to patients with cancer, with consideration of any vaccine contraindications, type of cancer, type and timing of treatment, and level of immunocompromise.97-100

(Continued on following page)
Phase	Prevention and Early Detection	Presentation, Initial Investigations, and Referral	Diagnosis, Staging, and Treatment Planning	Treatment	Care After Initial Treatment and Recovery	Managing Recurrent, Residual, or Metastatic Disease	End-of-Life Care							
Acute phase III	Emergency setting	High numbers of pandemic infection patients, health system capacity exceeded; hospital supplies and health care staff resources are overwhelmed or exhausted by pandemic-related activities with no spare capacity; there is no spare ventilator or ICU capacity	Consider reduction or deferral of routine population-based cancer screening but for the least possible time during prolonged acute phases	Follow up abnormal screening results identified in patients that are highly suspicious for cancer	Encourage community members to continue to present to GP with red flag symptoms of cancer	Use telehealth where possible to assess patients with symptoms suspicious for cancer	Appropriately investigate and refer patients with symptoms suspicious for cancer to a specialist linked to a multidisciplinary team	Surgery: Prioritize urgent/emergency surgery for life-threatening conditions such as bowel obstruction, bleeding and regional and/or localized infection, and permanent injury/clinical harm from progression of conditions such as spinal cord compression. Testing for the pandemic infection should be undertaken if feasible for patients with cancer requiring admission to hospital or before invasive procedures regardless of symptoms, if considered at high risk of mortality from the infection. Nonsurgical options such as neoadjuvant treatment may be considered if appropriate, with input from a multidisciplinary team if the outcomes are similar. \[\text{95,101}\] Limit patient visitors or support persons in hospitals (except at end of life)	Delay face-to-face follow-up appointments (as well as any hospital imaging and/or blood tests) and use telehealth for patients where possible. Consider innovative models of care, eg, shared care with GP.	Minimize commencement of IV treatment for patients with refractory/resistant disease or palliative regimens with a low likelihood of response/benefit. Limit patient visitors or support persons in hospitals (except at end of life)	Consider ceasing palliative treatments that have minimal chance of substantial benefit. Prioritize management of patients with urgent symptomatic need. Enhance provision of supportive and palliative care through innovative models of care, eg, virtual hospitals delivering care in the home.	\[\text{90,107}\] Advance care planning and goals of care should be discussed with patients and appropriately documented (eg, by using an Advanced Care Directive).	\[\text{90,108}\]	
							Health care providers should be vigilant in psychosocial screening for signs of anxiety, depression, and distress and should ensure that psychosocial support is provided.							(Continued on following page)
Phase	Prevention and Early Detection	Presentation, Initial Investigations, and Referral	Diagnosis, Staging, and Treatment Planning	Treatment	Care After Initial Treatment and Recovery	Managing Recurrent, Residual, or Metastatic Disease	End-of-Life Care							
-------	--------------------------------	---	---	----------	--	---	-----------------							
					Discuss the risks and benefits of changing treatment schedules or interrupting treatment with patients and their families and caregivers, and record the reasoning behind the decision. 102									
When modifying individual patient’s radiotherapy treatment plans, take their clinical circumstances into account, involve the multidisciplinary team, and record the reasoning behind each decision. 102														
Systemic treatments: Discuss the risks and benefits of starting, continuing, or deferring systemic treatment, including discussion of risk factors for serious pandemic infection, any uncertainty about the effect of systemic treatments, and goals of treatment with patients and their families and caregivers, and reach a shared decision, documenting the reasoning behind the decision. 102														
If systemic treatments need to be prioritized, make prioritization decisions as part of a multidisciplinary team on an individual basis and communicate clearly with patients, documenting the reasoning behind the decision. 102														
Consider using less frequent immunotherapy regimens and consider the potential harms and benefits of therapy for each patient. 82,108														
	(Continued on following page)				(Continued on following page)									
Phase	Prevention and Early Detection	Presentation, Initial Investigations, and Referral	Diagnosis, Staging, and Treatment Planning	Treatment	Care After Initial Treatment and Recovery	Managing Recurrent, Residual, or Metastatic Disease	End-of-Life Care							
---	---	---	---	---	---	---	---	---						
			Consider deferring commencement of regimens associated with high risk of needing admission\(^{90}\)		Consider starting with a less toxic regimen, reducing the use of combination immunotherapy agents that, although can have survival advantages, have a much higher risk of toxicity (including pneumonitis) requiring hospital admission\(^{90,108}\)	Testing for the pandemic infection should be undertaken if feasible for patients with cancer requiring admission to hospital regardless of symptoms if considered at high risk of mortality from the infection or before starting immunosuppressive therapy (eg, cytotoxic chemotherapy, stem-cell transplantation, or biologic therapy) or invasive procedures\(^{90,96,105}\)	Supportive care interventions should be provided for chemotherapy complications such as anemia, febrile neutropenia, thrombocytopenia-related complications, thromboembolic events, and chemotherapy-induced nausea and vomiting to minimize patients’ risk of infection and need for hospitalization\(^{104,105}\)	Limit patient visitors or support persons in hospitals (except at end of life)						
Recovery phase	Considerations for reintroduction of services should include the local levels of pandemic infection transmission, the local or regional health system capacity, and availability of resources. These considerations may change over time and vary by service type and setting\(^{85,91}\)													

(Continued on following page)
TABLE 3. Detailed Conceptual Framework: Cancer Care During the Acute and Recovery Phases of a Pandemic (Continued)

Phase	Prevention and Early Detection	Presentation, Initial Investigations, and Referral	Diagnosis, Staging, and Treatment Planning	Treatment	Care After Initial Treatment and Recovery	Managing Recurrent, Residual, or Metastatic Disease	End-of-Life Care
Recovery phase Past the peak of pandemic infection with fewer new daily cases, health system capacity not exceeded; hospital supplies and healthcare staff resources are more available, including hospital and ICU beds, ventilators, blood, healthy staff, PPE, and critical testing	Gradual reintroduction of routine population-based cancer screening with consideration of local conditions and resource availability, including high-risk patients. Consider social distancing in planning screening appointments and delivering screening interventions.	Encourage community to continue to present to GP with red flag symptoms of cancer. Appropriately investigate and refer patients with symptoms suspicious for cancer to a specialist linked to a multidisciplinary team.	Prioritize diagnostic procedures for patients with symptoms and test results suspicious for cancer, including colonoscopy for positive bowel cancer screening, and use telehealth where possible.	Surgery: Gradual reintroduction of routine surgery, up to the limit of capacity/resources, according to jurisdictional guidelines. Nonsurgical options such as neoadjuvant treatment may be considered if appropriate, with input from a multidisciplinary team if the outcomes are similar.	Prioritize follow-up appointments (as well as any hospital imaging and/or blood tests) for high-risk patients and patients whose appointments were delayed during acute phases.	Gradual reintroduction of the standard of care according to perceived risk; prioritizing high-risk patients, depending on the environmental circumstances and each individual patient’s risk of exposure to the pandemic infection because of the resumption of care.	Gradual reintroduction of face-to-face care according to perceived risk; prioritizing high-risk patients, depending on the environmental circumstances and each individual patient’s risk of exposure to the pandemic infection because of the resumption of care.

Abbreviations: GP, general practitioner; HPV, human papillomavirus; ICU, intensive care unit; IP, intraperitoneal; IV, intravenous; PPE, personal protective equipment.

For telehealth services, videoconferencing is the preferred substitute for a face-to-face consultation.

Corporation for Cancer Care During a Pandemic

17
Principles Underpinning Optimal Cancer Care

Patient-Centered Care, Safety and Quality of Care, Multidisciplinary Care, Supportive Care, Care Coordination, Communication, and Research and Clinical Trials

Steps of the Cancer Care Continuum

Phase	Description	Considerations
Prevention and Early Detection	Incorporating changing health system capacity and pandemic progression	Continue population-based cancer screening with appropriate social distancing
Continue initial investigations with use of telehealth where possible, encourage community members to present to GP with red flag symptoms of cancer		
Presentation, Initial Investigations, and Referral	Continue initial investigations with use of telehealth where possible, encourage community members to present to GP with red flag symptoms of cancer	Prioritize diagnostic procedures for patients with symptoms and test results suspicious for cancer and use telehealth where possible
Diagnosis, Staging, and Treatment Planning	Determining if surgery is elective (can be delayed without a predicted negative outcome); consider modifications to radiotherapy (eg, hypofractionation) and to systemic treatments (eg, oral, short courses)	Consider shared follow-up care, using telehealth where possible; screen patients for distress and provide psychosocial support
Treatment	Emergency setting approaching limits and prioritize high-risk patients who were delayed due to pandemic circumstances and each individual patient’s risk of exposure to the pandemic infection because of the resumption of care;	Consider modifying treatments for patients with refractory/resistant disease or treatment breaks for patients with low-volume and/or stable metastatic disease considers

Pandemic Phase Incorporating Changing Health System Capacity and Pandemic Progression

Phase	Description	Considerations	
Acute Phase I	Semigent setting Few pandemic infection patients and numbers not rapidly escalating, demand within health system capacity	Continue population-based cancer screening with appropriate social distancing, encourage community members to present to GP with red flag symptoms of cancer	
Acute Phase II	Urgent setting Rapidly escalating numbers of pandemic infection patients, approaching limits of health system capacity	Consider reduction of routine population-based cancer screening according to resource availability, but for the least possible time during the prolonged acute phases	
Acute Phase III	Emergency setting High numbers of pandemic infection patients, health system capacity exceeded	Appropriately investigate and refer patients with symptoms, with the use of telehealth where possible, encourage community members to present to GP with red flag symptoms of cancer	
Recovery Phase	Past the peak of pandemic infection with fewer new daily cases, health system capacity not exceeded	Appropriately investigate and refer patients with symptoms, encourage community members to present to GP with red flag symptoms of cancer	

Considerations for reintroduction of service should include the local levels of pandemic infection transmission, the local or regional health system capacity, and availability of resources. These considerations may change over time and vary by service type and setting.

Gradually reintroduce the standard of care according to perceived risk, prioritizing patients at high risk (such as those most at risk for complications from delayed care or those with high risk of cancer progression or recurrence) with consideration of each individual patient’s risk of exposure to the pandemic infection because of the resumption of care.

Vaccination, if vaccination against pandemic pathogen is available, should be offered to patients with cancer with consideration of any vaccine contraindications, type of cancer, type and timing of treatment, and level of immunocompromise.

FIG 3. Summary of the conceptual framework for cancer care during a pandemic. *For telehealth services, videoconferencing is the preferred substitute for a face-to-face consultation.* GP, general practitioner; IV, intravenous.
Conceptual Framework for Cancer Care During a Pandemic

The COVID-19 pandemic has affected cancer care because of reduced health system resources available for cancer care and the need to minimize the risk of COVID-19 disease in patients with cancer. The ongoing progression of the pandemic has provided an opportunity to examine the evidence base and reflect on learnings from the COVID-19 pandemic and further develop a conceptual framework for cancer care.

The importance of preventing COVID-19 disease in patients with cancer is predicated by the evidence showing the increased impact of the pandemic infection among patients with compared with patients without cancer. However, the implications of reducing or delaying cancer care across the care continuum, including the impact of rapid shutdown and slow ramping up of services on patient backlogs, are substantial and significant.

Evidence from the COVID-19 pandemic supports the continuation of cancer care wherever possible during a similar pandemic to achieve the best outcomes for patients with cancer and the community and minimize the adverse impacts of the pandemic on cancer care. Underpinned by principles for optimal cancer care and informed by the evidence on cancer care during the COVID-19 pandemic, Cancer Australia’s conceptual framework provides detailed guidance on critical considerations and an evidence-based toolkit for cancer care during the current COVID-19 pandemic and future similar pandemics. It reflects changing health system capacity and capacity for cancer care delivery.

Vaccination for COVID-19 disease has become available, and cancer organizations have provided guidance that supports offering vaccination against COVID-19 disease to patients with cancer, with consideration of any contraindications and factors such as the type of cancer, type of treatment and timing, and counseling about effectiveness and ongoing prevention measures.

Emerging evidence will continue to inform the conceptual framework to guide cancer care during the current pandemic, whereas longer-term evidence and data will inform decisions when faced with another pandemic.

DISCUSSION

AFFILIATIONS

1Cancer Australia, Sydney, New South Wales, Australia
2The University of Notre Dame, Sydney, New South Wales, Australia
3Evidence Review Contractor, Sydney, New South Wales, Australia
4Centre for Health Policy, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia
5National Breast Cancer Foundation, Sydney, New South Wales, Australia

CORRESPONDING AUTHOR

Vivienne Milch, MBBS (Hons), MHPol, GAICD, Cancer Australia, Level 14, 300 Elizabeth St, Surry Hills NSW 2010, Locked Bag 3, Strawberry Hills NSW 2012, Sydney, NSW, Australia; e-mail: vivienne.milch@canceraustralia.gov.au.

PRIOR PRESENTATION

Presented as abstract at 2021 ASCO annual meeting, June 4-June 8, 2021, virtual.

AUTHOR CONTRIBUTIONS

Conception and design: Vivienne Milch, Melissa Austen, Debra Hector, Carolyn Der Vartanian, Rhona Wang, Cleola Anderiesz, Dorothy Keefe

Administrative support: Rhona Wang
Authors' Disclosures of Potential Conflicts of Interest

The following represents disclosure information provided by authors of this manuscript. All relationships are considered compensated unless otherwise noted. Relationships are self-held unless noted. I = Immediate Family Member, Inst = My Institution. Relationships may not relate to the subject matter of this manuscript. For more information about ASCO’s conflict of interest policy, please refer to www.asco.org/wcc or ascopubs.org/go/authors/author-center. Open Payments is a public database containing information reported by companies about payments made to US-licensed physicians (Open Payments).

Dorothy Keefe
Employment: Entrinsic Health Solutions
Stock and Other Ownership Interests: Entrinsic Health Solutions

No other potential conflicts of interest were reported.

References

1. World Health Organization: Coronavirus Disease (COVID-19): Variants of SARS-COV-2. who.int
2. Haldane V, De Foor C, Abdalla SM, et al: Health systems resilience in managing the COVID-19 pandemic: Lessons from 28 countries. Nat Med 27:964-980, 2021
3. World Health Organization: WHO coronavirus (COVID-19) dashboard. 2021. https://covid19.who.int/
4. Milch V, Wang R, Der Vartanian C, et al: Cancer Australia’s consensus statement on COVID-19 and cancer care: Embedding high-value changes into practice. Med J Aust 215:479-484, 2021
5. Cancer Australia: The impact of COVID-19 on cancer-related medical services and procedures in Australia in 2020, 2021. https://www.canceraustralia.gov.au/the-impact-of-COVID-19-on-cancer-related-medical-services-and-procedures-in-Australia-in-2020
6. COVID Surg Collaborative: Effect of COVID-19 pandemic lockdowns on planned cancer surgery for 15 tumour types in 61 countries: An international, prospective, cohort study. Lancet Oncol 22:1507-1517, 2021
7. National Institute for Health and Care Excellence: Delivery of cancer treatment for non-COVID patients during the coronavirus pandemic. 2021. https://www.nice.org.uk/covid-19/specialty-guides/cancer
8. Ruthrich MM, Giessen-Jung C, Bögmann S, et al: COVID-19 in cancer patients: Clinical characteristics and outcome-an analysis of the LEOSs registry. Ann Hematol 100:383-393, 2021
9. Desai A, Gupta R, Advani S, et al: Mortality in hospitalized patients with cancer and coronavirus disease 2019: A systematic review and meta-analysis of cohort studies. Cancer 127:1459-1468, 2021
10. Bakouny Z, Hawley JE, Choueiri TK, et al: COVID-19 and cancer: Current challenges and perspectives. Cancer Cell 38:629-646, 2020
11. Cancer Australia: Cancer care in the time of COVID-19: A conceptual framework for the management of cancer during a pandemic. 2020. https://www.canceraustralia.gov.au/publications-and-resources/cancer-australia-publications/cancer-care-time-covid-19-conceptual-framework-management-cancer-during-pandemic
12. Cancer Council Victoria: Optimal care pathways. https://www.cancervic.org.au/for-health-professionals/optimal-care-pathways
13. American College of Surgeons: ACS guidelines for triage and management of elective cancer surgery cases during the acute and recovery phases of coronavirus disease 2019 (COVID-19) pandemic. 2020. https://www.facs.org/-/media/acs/programs/quality/specialty-guides/cancer
14. Australian Government Department of Health: Impact of COVID-19. Theoretical modelling of how the health system can respond. 2020. https://www.health.gov.au/resources/publications/impact-of-covid-19-in-australia-ensuring-the-health-system-can-respond
15. Stahl SM, Morriessette DA, Citrome L, et al: “Meta-guidelines” for the management of patients with schizophrenia. CNS Spectr 18:150-162, 2013
16. Australian Government Department of Health: Coronavirus (COVID-19) in Australia – pandemic health intelligence plan. 2020. https://www.health.gov.au/resources/publications/coronavirus-covid-19-in-australia-pandemic-health-intelligence-plan
17. Moss R, Wood J, Brown D, et al: Coronavirus disease model to inform transmission-reducing measures and health system preparedness, Australia. Emerg Infect Dis 26:2844-2853, 2020
18. McCabe R, Schmit N, Christen P, et al: Adapting hospital capacity to meet changing demands during the COVID-19 pandemic. BMC Med 18:329, 2020
19. Leung MST, Lin SQ, Chow J, et al: COVID-19 and oncology: Service transformation during pandemic. Cancer Med 9:7161-7171, 2020
20. Riera R, Bagattini AM, Pacheco RL, et al: Delays and disruptions in cancer health care due to COVID-19 pandemic: Systematic review and conceptual model. Int J Qual Health Care 33:1-12, 2021
21. Emanuel EJ, Persad G, Upshur R, et al: Fair allocation of scarce medical resources in the time of Covid-19. N Engl J Med 382:2049-2055, 2020
22. Centers for Disease Control and Prevention: Strategies to mitigate healthcare personnel staffing shortages. 2021. https://www.cdc.gov/coronavirus/2019-ncov/hcp/mitigating-staff-shortages.html
23. Quigley AL, Stone H, Nguyen PY, et al: Estimating the burden of COVID-19 on the Australian healthcare workers and health system during the first six months of the pandemic. Int J Nurs Stud 114:103811, 2021
24. Dar M, Swamy L, Gavin D, et al: Mechanical-ventilation supply and options for the COVID-19 pandemic. Leveraging all available resources for a limited resource in a crisis. Ann Am Thorac Soc 18:408-416, 2021
25. Erävä S, Hiekkinen A, Hanfling D, et al: Surge capacity logistics: Care of the critically ill and injured during pandemics and disasters. CHEST consensus statement. Chest 146:e17s-e41s, 2014
26. Walker PGT, Whittaker C, Watson OJ, et al: The impact of COVID-19 and strategies for mitigation and suppression in low- and middle-income countries. Science 369:413-422, 2020
27. Jazieh AR, Akbulut H, Curigliano G, et al: Impact of the COVID-19 pandemic on cancer care: A global collaborative study. JCO Glob Oncol 6:1428-1438, 2020
28. Powis M, Milley-Dagle C, Hack S, et al: Impact of the early phase of the COVID pandemic on cancer treatment delivery and the quality of cancer care: A scoping review and conceptual model. Int J Qual Health Care 33:1-12, 2021
106. American Society for Radiation Oncology: COVID-19 recommendations and information: Summary. 2021. https://www.astro.org/Daily-Practice/COVID-19-Recommendations-and-Information/Summary

107. European Society for Medical Oncology: Palliative care prioritisation during the COVID-19 crisis. 2020. https://www.esmo.org/guidelines/cancer-patient-management-during-the-covid-19-pandemic/palliative-care-in-the-covid-19-era

108. American Society of Clinical Oncology: Cancer treatment & supportive care. 2021. https://www.asco.org/asco-coronavirus-resources/care-individuals-cancer-during-covid-19/cancer-treatment-supportive-care

109. Royal Australian and New Zealand College of Radiologists: Safety must come first when resuming clinical radiology and radiation oncology services during COVID-19. 2020. https://www.ranzcr.com/whats-on/news-media/397-position-statement-safety-must-come-first-when-resuming-clinical-radiology-and-radiation-oncology-services-during-covid-19-1

110. Australian Government Department of Health: Coronavirus (COVID-19)—Telehealth items guide. 2020. https://www.health.gov.au/resources/publications/coronavirus-covid-19-telehealth-items-guide

111. Hall Dykgraaf S, Desborough J, de Toca L, et al: "A decade's worth of work in a matter of days": The journey to telehealth for the whole population in Australia. Int J Med Inform 151:104483, 2021