An improved model for the nonlinear velocity power spectrum

Elise Jennings

1 The Kavli Institute for Cosmological Physics, University of Chicago, 5640 South Ellis Avenue, Chicago, IL 60637, U. S.
2 The Enrico Fermi Institute, University of Chicago, 5640 South Ellis Avenue, Chicago, IL 60637, U. S.

ABSTRACT

The velocity divergence power spectrum is a key ingredient in modelling redshift space distortion effects on quasi-linear and nonlinear scales. We present an improved model for the $z = 0$ velocity divergence auto and cross power spectrum which was originally suggested by Jennings et al. 2011. Using numerical simulations we measure the velocity fields using a Delaunay tessellation and obtain an accurate prediction of the velocity divergence power spectrum on scales $k < 1 h^{-1} \text{Mpc}$). We use this to update the model which is now accurate to 2% for both $P_{\theta \theta}$ and $P_{\theta \delta}$ at $z = 0$ on scales $k < 0.65 h^{-1} \text{Mpc}$ and $k < 0.35 h^{-1} \text{Mpc}$ respectively. We find that the formula for the redshift dependence of the velocity divergence power spectra proposed by Jennings et al. 2011 recovers the measured $z > 0 P(k)$ to markedly greater accuracy with the new model. The nonlinear $P_{\theta \theta}$ and $P_{\theta \delta}$ at $z = 1$ are recovered accurately to better than 2% on scales $k < 0.2 h^{-1} \text{Mpc}$. Recently it was shown that the velocity field shows larger differences between modified gravity cosmologies and $\Lambda$CDM compared to the matter field. An accurate model for the velocity divergence power spectrum, such as the one presented here, is a valuable tool for analysing redshift space distortion effects in future galaxy surveys and for constraining deviations from general relativity.

Key words: Methods: $N$-body simulations - Cosmology: theory - large-scale structure of the Universe

1 INTRODUCTION

In the hierarchical model of structure formation, gravitational collapse and the accelerating cosmic expansion are two competing effects which determine the rate at which structures, such as galaxies and clusters, grow in the Universe. In addition to the Hubble flow, galaxies possess peculiar velocities, arising from inhomogeneities in the local density field, which can be used to probe the growth rate of structure (Percival et al. 2007; Guzzo et al. 2008; Blake et al. 2010, 2011; Schlegel et al. 2007; Beutler et al. 2012). These peculiar velocities distort the clustering signal along the line of sight giving rise to redshift space distortions (see e.g. Kaiser 1987; Hamilton 1998). It has been shown that a key ingredient to improve models of the power spectrum in redshift space is the inclusion of the nonlinear velocity divergence power spectrum (Scoccimarro 2004; Jennings, Baugh & Pascoli 2011a). In this paper we present an improvement to the model for both the auto and cross velocity divergence power spectrum presented in Jennings, Baugh & Pascoli (2011a). The refinement of the model is driven by using a volume weighted Delaunay tesselation method to measure the nonlinear velocity fields to greater accuracy and to smaller scales then presented in Jennings, Baugh & Pascoli (2011a).

Measurements of the growth rate of structure can be used to determine if the accelerating expansion is the result of a dark energy component which behaves as a repulsive form of gravity or if Einstein’s theory of gravity breaks down on cosmological scales (see e.g. Bertschinger & Zukin 2008). Independent measurements of the growth rate can be obtained by measuring the clustering of galaxies in redshift space and recently there has been renewed interest in improving the models for the clustering signal in redshift space (Scoccimarro 2004, Percival & White 2007, Taruya et al. 2010; Jennings, Baugh & Pascoli 2011a; Seljak & McDonald 2011; Tang et al. 2011; Reid & White 2011; Kwan, Lewis & Linden 2011). Also recently it has been pointed out that the velocity divergence power spectrum is a more sensitive probe of modified gravity than the nonlinear matter power spectrum (Jennings et al. 2012) but models for the 2D redshift space power spectrum are currently not

* E-mail: ejennings@kicp.uchicago.edu
2 MEASURING $P_{\theta\theta}$ AND $P_{\delta\delta}$ FROM N-BODY SIMULATIONS

In section 2.1, we present the details of the N-body simulations carried out and discuss several methods which can be used to measure the velocity divergence power spectrum in Section 2.2. We focus on a Delaunay tesselation approach and show the accuracy which with this method can recover $P_{\theta\theta}$ and $P_{\delta\delta}$.

2.1 Simulation details

We use the N-body simulations carried out by Li et al. (2012). These simulations were performed at the Institute of Computational Cosmology using a modified version of the mesh-based N-body code RAMSES (Teyssier 2002). Assuming an LCDM cosmology, the following cosmological parameters were used in the simulations: $\Omega_m = 0.24$, $\Omega_{DE} = 0.76$, $h = 0.73$ and a spectral tilt of $n_s = 0.961$ (in agreement with e.g. Sánchez et al. 2009). The linear theory rms fluctuation in spheres of radius $8\, h^{-1}\, \text{Mpc}$ is set to be $\sigma_8 = 0.769$.

The simulations use $N = 1024^3$ dark matter particles to represent the matter distribution in a computational box of comoving length $1500h^{-1}\, \text{Mpc}$. The initial conditions were generated at $z = 49$ using the MPgrafic code. Note the non-linear matter power spectrum is measured from the simulations by assigning the particles to a mesh using the cloud in cell (CIC) assignment scheme and performing a fast Fourier transform (FFT) of the density field. To compensate for the mass assignment scheme, we perform an approximate deconvolution following Baumgart & Fry (1993).

Throughout this paper, the velocity divergence is normalized to $\theta = -\nabla \cdot v/(aHf)$, where $v$ is the peculiar velocity, $f = \delta d\ln\delta/d\ln a$ is the linear growth rate, $H$ is the Hubble parameter, and $a$ is the scale factor. Using this normalization $\theta$ is dimensionless, and $\theta$ is the scale factor. Using this normalization $\theta$ is dimensionless and $\theta$ is the scale factor. Using this normalization $\theta$ is dimensionless.

2.2 Measuring the velocity divergence field

Measuring the velocity divergence field accurately from numerical simulations on small scales can be difficult if a mass weighted approach is used as in Scoccimarro (2004); Pueblas & Scoccimarro (2009); Jennings, Baugh & Pascoli (2011, for example). Some volume weighted measures of the velocity field have also been developed (see e.g. Bernardeau & van de Weygaert 1996; Colombi, Chodorowski & Teyssier 2007) including the Delaunay tesselation field estimator (DTFE) method (Schaap & van de Weygaert 2000; van de Weygaert & Schaap 2000, 2011). In the mass weighted approach, simply interpolating the velocities to a grid, as suggested by Scoccimarro (2004), gives the momentum field which is then Fourier transformed and divided by the Fourier transform of the density field, which results in a mass weighted velocity field on the grid. One of the main problems with this approach is that the velocity field is artificially set to zero in regions where there are no particles, as the density is zero in these empty cells. Pueblas & Scoccimarro (2009) also found that this method does not accurately recover the input velocity divergence power spectrum on scales $k > 0.2h\, \text{Mpc}^{-1}$ interpolating the velocities of $640^3$ particles to a $200^3$ grid. Using simulations of $1024^3$ particles in a $1.5h^{-1}\, \text{Gpc}$ box, Jennings, Baugh & Pascoli (2011a) found that the maximum grid size that could be used was $350^3$ without reaching the limit of empty cells.

The limit on the maximum grid size which can be used in a mass weighted estimate of $\theta$ means that the velocity divergence $P(k)$ presented in Jennings, Baugh & Pascoli (2011) is only accurate on large scales $k < 0.2h\, \text{Mpc}^{-1}$. 

© 2012 RAS, MNRAS 000.
An improved model for the nonlinear velocity power spectrum

Figure 1. Left panel: Ratios of the $z = 0$ nonlinear matter, $P_{\delta\delta}$, and velocity divergence, $P_{\theta\theta}$, power spectra to the matter power spectrum at $z = 4$, $P_{\delta\delta}(z = 4)$, scaled using the ratio of the square of the linear growth factor at $z = 4$ and $z = 0$ for ΛCDM, measured from six simulations are shown as filled blue circles and empty green diamonds respectively. The ratio of the $P_{\theta\theta}/P_{\delta\delta}$ measured from the simulations at $z = 0$ is shown as empty purple squares. The shaded grey region shows the errors on this ratio measured from the scatter amongst six simulations. Right panel: Similar to the left panel. The ratios $P_{\theta\delta}(z = 0)/P_{\delta\delta}(z = 0)$ and $P_{\theta\delta}(z = 0)/P_{\delta\delta}(z = 0)$ are shown as empty green diamonds and purple squares respectively. Note $\theta = -\nabla \cdot v/(aHf)$.

Figure 2. Left panel: The ratio of the fitting formula given in Eq. 1 for the velocity divergence $P(k)$ to the measured power spectrum, $P_{\theta\theta}^{fit}/P_{\theta\theta}^{sim}$, at $z = 0$ (green solid), $z = 0$ (red dashed) and $z = 1$ (blue dot dashed). Right panel: Similar results as shown in the left panel but for the cross power spectrum $P_{\theta\delta}$. The horizontal dotted grey lines show a region of 2% accuracy in the fit.

Also, it is not clear on what scales the discrepancy between the actual and measured velocity divergence power spectrum, which was found by Pueblas & Scoccimarro (2009) on scales $k < 0.02h\text{Mpc}^{-1}$ (see Figure 13 in that paper), is present in the velocity $P(k)$ measured by Jennings, Baugh & Pascoli (2011a). However, Jennings, Baugh & Pascoli (2011a) find that the measured $P_{\theta\theta}$ and $P_{\theta\delta}$ agree with the linear continuity equation on large scales within the errors from eight simulations (see Figure 3 in that work).

The limitations of using the mass weighted method to measure $P_{\theta\theta}$ implies that the fitting formula presented in Jennings, Baugh & Pascoli (2011a) is only valid over a limited range of scales. The main aim of this paper is to present an improved version of the formula for $P_{\theta\theta}$ and $P_{\theta\delta}$ given by Jennings, Baugh & Pascoli (2011a) by fitting to power spectra which have been measured using the DTFE method. This code constructs the Delaunay tessellation from a discrete set of points and interpolates the field values onto a user defined grid. For the $L_{\text{box}} = 1500h^{-1}\text{Mpc}$ simulation we generate the velocity auto, $P_{\theta\theta}$, and cross power spectrum, $P_{\theta\delta}$, on a $1024^3$ grid. The velocity divergence field is interpolated onto the grid by randomly sampling the field values at a given number of sample points within the Delaunay cells and than taking the average of those values. The resolution of the mesh used in this study means that mass assignment effects are negligible on the scales of interest here.

In Fig. 4 we show the ratios of $P_{\delta\delta}(z = 0)/P_{\delta\delta}(z = 4)$ and $P_{\theta\theta}(z = 0)/P_{\theta\theta}(z = 4)$ which represent the average ratio measured from six simulations as filled blue circles and empty green diamonds respectively. Here $P_{\delta\delta}(z = 4)$ has been scaled using the ratio of the square of the linear growth factor at $z = 4$ and $z = 0$ for ΛCDM. Plotting the ratio in this way removes the sampling variance (Baugh & Efstathiou 1994) and shows the agreement of the measured velocity and matter $P(k)$ with the predictions of the linear continuity equation on large scales, $k < 0.02h\text{Mpc}^{-1}$ for $P_{\theta\theta}(z = 0)/P_{\delta\delta}(z = 4)$ and $k <
0.09 h Mpc^{-1} for \( P_{b\delta}(z = 0)/P_{\delta\delta}(z = 4) \). This result agrees with similarly measured ratios from simulations for the matter (see e.g. [Angulo et al. 2008]) and the velocity divergence power spectrum [Jennings, Baugh & Pascoli 2011b, Jennings et al. 2012, Li et al. 2012].

The ratio of \( P_{b\theta}(z = 0)/P_{\delta\delta}(z = 0) \) is plotted in the left panel of Fig. 1 as empty purple circles. The grey shaded region shows the errors measured from the scatter amongst six simulations. In the right panel of Fig. 1 we plot similar ratios as in the left panel but for the velocity divergence cross power spectrum \( P_{b\delta} \). Note the increase in the ratio of \( P_{b\delta}(z = 0)/P_{\delta\delta}(z = 4) \) on scales \( k > 0.1 h \) Mpc^{-1} which is due to the nonlinear growth in the matter field on these scales. Overall the results plotted in Fig. 1 show that the velocity divergence field computed using the DTFE method agrees with the predictions of linear theory on extremely large scales and allows us to accurately measure the power spectra on nonlinear scales provided we use a large enough grid to interpolate the velocities. We have checked that the effect on the measured velocity power spectra using smaller grid sizes such as 256^3 and 512^3 and find excellent agreement between the \( P(k) \) measured using a 512^3 and 1024^3 grid on scales \( k < 1 h \) Mpc^{-1}; the \( P(k) \) measured using a 256^3 grid shows deviations at \( k \sim 0.7h \) Mpc^{-1}.

3 RESULTS

Using the measured nonlinear velocity divergence auto and cross power spectrum on a 1024^3 grid presented in Section 2.2 and the nonlinear matter power spectrum measured from the simulations at \( z = 0 \), we can fit for new parameters in the following model [Jennings, Baugh & Pascoli 2011a]:

\[
P_{xy}(k) = g(P_{\delta\delta}(k)) = \frac{\alpha_0 \sqrt{P_{\delta\delta}(k)} + \alpha_1 P_{\delta\delta}(k)}{\alpha_2 + \alpha_3 P_{\delta\delta}(k)},
\]

where \( P_{\delta\delta} \) is the nonlinear matter power spectrum. We obtain the following:

- \( P_{xy} = P_{\delta\delta} \):
  - \( \alpha_0 = -12483.8 \), \( \alpha_1 = 2.554 \), \( \alpha_2 = 1381.29 \), \( \alpha_3 = 2.540 \);
- \( P_{xy} = P_{\theta\theta} \):
  - \( \alpha_0 = -12480.5 \), \( \alpha_1 = 1.824 \), \( \alpha_2 = 2165.87 \), \( \alpha_3 = 1.796 \);

all points were weighted equally in the fit. Note the parameters \( \alpha_{0-3} \) are not dimensionless and in this work their units differ from those quoted in [Jennings, Baugh & Pascoli 2011a] as the best fit parameters presented here generate velocity divergence power spectra which are normalized as \( \theta = \nabla \cdot v / (aHf) \). Note the growth rate at \( z = 0 \) for the ΛCDM cosmology considered in this work is \( f = 0.452 \). We do not give the units of \( \alpha_{0-3} \) here but these can be easily found given this normalisation for \( \theta \). The power spectra used for this fit are the average \( \overline{P}_{\theta\theta}, \overline{P}_{\delta\delta} \) and \( \overline{P}_{\delta\delta} \) measured from six ΛCDM simulations.

In Fig. 2 we plot the ratio of \( \overline{P}_{\theta\theta} / \overline{P}_{\delta\delta} \) and \( \overline{P}_{\delta\delta} / \overline{P}_{\delta\delta} \) in the left and right panels respectively at \( z = 0 \) as a green solid line. Here the prefix ‘fit’ denotes the velocity divergence power spectrum found using the new best fit parameters and the nonlinear matter \( P(k) \) measured from the simulations in Eq. 1. The prefix ‘sim’ denotes the nonlinear velocity divergence measured directly from the simulations using the DTFE. The formula given in Eq. 1 is accurate to 2% (shown as the region enclosed by the dotted gray lines in Fig. 2) on scales \( k < 0.65 h \) Mpc^{-1} for \( P_{\theta\theta} \) and \( k < 0.35 h \) Mpc^{-1} for \( P_{\delta\delta} \) at \( z = 0 \). Note the lower limit for the domain of the function given in Eq. 1 is \( k \geq 0.006 h \) Mpc^{-1}. Although the values for \( \alpha_{0-3} \) were obtained by fitting to a ΛCDM simulation with a particular set of cosmological parameters [Jennings, Baugh & Pascoli 2011a] found that this relation between the density and velocity power spectra is quite insensitive to both the cosmological model, for smooth dark energy models such as quintessence, and the choice of cosmological parameters. These results agree with previous studies such as [Bernardeau 1992] and [Bauchet et al. 1997].

The redshift dependence of \( P_{\theta\theta} \) and \( P_{\delta\delta} \) can be described using the following formula [Jennings, Baugh & Pascoli 2011a]:

\[
P_{xy}(k, z') = \frac{g(P_{\delta\delta}(k, z = 0)) - P_{\delta\delta}(k, z = 0)}{c^2(z, z')} + P_{\delta\delta}(k, z'),
\]

where \( g(P_{\delta\delta}) \) is the function in Eq. 1, and \( P_{xy} \) is either the nonlinear cross or auto power spectrum, \( P_{\theta\theta} \) or \( P_{\delta\delta} \) and the function \( c \) is given by

\[
c(z, z') = \frac{D(z) + D^2(z) + D^3(z)}{D(z') + D^2(z') + D^3(z')},
\]

and \( D(z) \) is the linear growth factor.

In Fig. 2 we show the ratio of \( P_{\theta\theta} \) from Eqns. 1 & 2 to the measured velocity divergence power spectrum \( P_{\theta\theta}^{\text{num}} \) at \( z = 0.4 \) (red dashed) and \( z = 1 \) (blue dot dashed). All of the results shown in this plot represent the average over six ΛCDM simulations. It is clear from Fig. 2 that the model given in Eq. 1 is accurate to better than 2% on scales \( k < 0.2 h \) Mpc^{-1} and to 20% for \( 0.2 < k (h \) Mpc^{-1} < 0.4 at \( z = 1 \).

4 SUMMARY

Measuring the growth of structure using the anisotropic clustering signal in redshift space is an important tool for discriminating between dynamical dark energy or modified gravity and the standard ΛCDM cosmological model. The velocity divergence power spectrum has been shown to be an important ingredient in modelling redshift space distortions [Scoccimarro 2004, Jennings, Baugh & Pascoli 2011a] and shows larger deviations between modified gravity cosmologies and ΛCDM than the differences found in the nonlinear matter power spectrum using numerical simulations (see e.g. Schmidt et al. 2009a, Jennings et al. 2012, Li et al. 2012).

In this paper we present an improved model for the \( z = 0 \) velocity divergence auto and cross power spectrum which was originally suggested by [Jennings, Baugh & Pascoli 2011a]. By measuring the velocity fields using a Delaunay tessellation we obtain an accurate prediction of the velocity \( P(k) \) to \( 1 h \) Mpc^{-1} which we use to update the parameters for the fitting formula given in Eq. 1. We find that this model is accurate to 2% on scales \( k < 0.65 h \) Mpc^{-1} for \( P_{\theta\theta} \) and \( k < 0.35 h \) Mpc^{-1} for \( P_{\delta\delta} \) at \( z = 0 \). We find that the formula for the redshift dependence of the velocity power spectra given in [Jennings, Baugh & Pascoli 2011a] recovers \( z > 0 P(k) \) to markedly greater accuracy with the new parameters. This model for the redshift evolution of \( P_{\theta\theta} \).
An improved model for the nonlinear velocity power spectrum

and $P_{\theta\delta}$, given in Eq. 4, is accurate to less than 2% on scales $k < 0.2h\text{Mpc}^{-1}$ and to 20% for $0.2 < k(h\text{Mpc}^{-1}) < 0.4$ at $z = 1$.

The improved model presented here accurately describes the nonlinear density velocity relation and allows the velocity divergence power spectra to be easily and accurately predicted over a range of scales $k < 0.2h\text{Mpc}^{-1}$ and redshifts $z < 1$. This model will be useful for analysing measurements of peculiar velocities at high and low redshifts (e.g. Hudson & Turnbull 2012) and for studying the redshift space clustering signal in galaxy redshift surveys. This improved model has already been implemented in the analysis of the 6dF galaxy redshift survey (Beutler et al. 2012).

ACKNOWLEDGMENTS

We would like to thank Baojiu Li for allowing us to use the simulations presented in this study and Carlton Baugh and Martin Crocce for useful comments and discussions. EJ acknowledges the support of a grant from the Simons Foundation, award number 184549. This work was supported in part by the Kavli Institute for Cosmological Physics at the University of Chicago through grants NSF PHY-0114422 and NSF PHY-0551142 and an endowment from the Kavli Foundation and its founder Fred Kavli. The calculations for this paper were performed on the ICC Cosmology Machine, which is part of the DiRAC Facility jointly funded by STFC, the Large Facilities Capital Fund of BIS, and Durham University.

REFERENCES

Angulo, R. E., Baugh, C. M., Lacey, C. G. & Frenk C. S., 2008, MNRAS, 383, 755
Baugh C. M., Efstathiou G., 1994, MNRAS, 270, 183
Baumgart D. J. & Fry J. N., 1991, APJ, 375, 25
Bernardeau F., 1992, APJL, 300, L61
Bernardeau F. & van de Weygaert R., 1996, MNRAS, 270, 693
Bertschinger, E. and Zukin, P., 2008, PRD, 78, 2
Beutler, F., Blake, C., Colless, M., Jones, D. H., Staveley-Smith, L., Poole, G. B. Campbell, L., Parker, Q., Saunders, W., Watson, F., 2012, MNRAS, 423, 3430
Bilicki M. & Chodorowski M. J., 2008, MNRAS, 391, 1796
Blake C. et al., 2010, MNRAS, 776
Blake C. et al., 2011, MNRAS, 415, 2876
Bouchet F. R., Colombi S., Hivon E., Juszkiewicz R., 1995, AA, 296, 575
Cautun M. C., van de Weygaert R., 2011, arXiv:1105.0370
Chodorowski M. J. & Lokas E.L., 1997, MNRAS, 287, 591
Ciecielg, P. & Chodorowski M. J., 2004, MNRAS, 349, 945
Colombi S., Chodorowski M. J. & Teyssier R., 2007, MNRAS, 370, 348
Guzzo, L., et al., 2008, Nature, 451, 541
Hamilton A. J. S., 1998, ASSL, 231, 185
Hudson M. J. & Turnbull S. J., 2012, APJL, 751, L30
Jennings E., Baugh C. M., Pascoli S., 2011a, MNRAS, 410, 2081
Jennings E., Baugh C. M., Pascoli S., 2011b, ApJ, 727, L9

This paper has been typeset from a \TeX/ \LaTeX file prepared by the author.