PRESSURE PULSES AT VOYAGER 2: DRIVERS OF INTERSTELLAR TRANSIENTS?

J. D. Richardson, C. Wang, Y. D. Liu, J. Šafránková, Z. Němec, and W. S. Kurth

1. INTRODUCTION

The Voyager spacecraft are making the first in situ observations of the local interstellar medium (LISM) and heliosheath. Both are headed roughly toward the nose of the heliosphere, with V1 at 35° N heliolatitude and V2 at 31° S heliolatitude. They are separated by 43° in longitude. In mid-2016 V1 was at 135 au and V2 at 111 au. V1 has been in the LISM since 2012 (Gurnett et al. 2013) and V2 in the heliosheath since 2007 (Richardson et al. 2008).

The crossing of the heliopause had many surprises; one was the lack of rotation of the magnetic field at the boundary (Burlaga et al. 2013b). The crossing of the heliopause was only confirmed after plasma waves were observed and indicated that the densities outside the heliopause were those expected in the LISM (Gurnett et al. 2013).

Heliospheric radio waves were first observed by the Voyagers in 1983 and have been observed after every subsequent solar maximum (Gurnett et al. 2013). The first two events, in 1983–84 and 1992–94, occurred about 400 days after intense solar activity caused two of the largest Forbush decreases ever observed (Gurnett et al. 1993). The generally accepted scenario for the generation of the radio waves was that large solar transients form merged interaction regions (MIRs) that pass through the heliopause, collide with the heliopause, and drive shocks that propagate in the LISM. Electron beams ahead of the shocks generate plasma oscillations and radio waves. The rising frequencies often observed in these events were attributed to an increase in the LISM density away from the heliopause (Gurnett et al. 1993).

These hypotheses have generally proven correct. V1 has observed four plasma wave events associated with radio emissions (Gurnett et al. 2015). In three of these cases the waves are associated with shocks in the LISM, two forward shocks and one reverse shock. These shocks are very weak, with compression ratios near 1.1 (Burlaga & Ness 2016), consistent with predictions (Zank & Muller 2003). The frequencies and thus plasma densities increase away from the heliopause. The wave events are usually preceded by increases in the cosmic-ray intensities and may be associated with cosmic-ray anisotropies in which the perpendicular cosmic-ray intensities decrease (Gurnett et al. 2015).

Model predictions are also consistent with this interpretation; large ram pressure increases in the solar wind drive the termination shock outward and generate high ram and thermal pressure pulses that propagate through the heliosheath (Steinolfson & Gurnett 1995; Story & Zank 1997; Zank & Muller 2003; Washimi et al. 2007, 2011, 2012; Zank 2015). These pressure pulses may be partially reflected near the heliopause and again encounter the termination shock, moving it inward (Washimi et al. 2007, 2011). They also drive weak shock waves into the LISM (Zank & Muller 2003).

Several papers tie individual LISM wave events to CMEs on the Sun. The 2013 April–May plasma wave event is linked to a series of CMEs in 2012 March (Gurnett et al. 2013; Liu et al. 2014). These attempts are hampered by the distance from V1 to data at the V1 location and the uncertainties in the transient propagation speeds, particularly in the heliosheath. In this paper we report that during solar maximum MIRs are common in the heliosheath. These V2 MIRs are investigated to see whether they drive the transients observed by V1 in the LISM.

2. OBSERVATIONS

2.1. MIRs

MIRs are characterized by large increases in the magnetic field magnitude formed by the coalescence of multiple interplanetary coronal mass ejections (Burlaga 1995). MIRs generally are associated with increases in the plasma speed, density, and dynamic pressure and a decrease in the galactic cosmic-ray (GCR) intensity. MIRs dominate the structure of the solar wind in the outer heliosphere near solar maximum (Richardson et al. 2003). The Voyager mission allows study of how these features effect the heliosheath and LISM.

The plasma data are available at the MIT Space Plasma Group Voyager Plasma Science Experiment Web site (http://web.mit.edu/space/www/voysier.html), the magnetic field data are from the NASA Space Physics Data Facility (spdf.gsfc.nasa.gov), and the Cosmic Ray Subsystem data are from voyager.gsfc.nasa.gov. We first show the MIRs observed near solar maximum in the solar wind upstream of the termination
shock. Figure 1 shows the dynamic pressure \(P \) at \(V_2 \) from 2000 to the termination shock at 2007.7, the monthly sunspot number, the magnetic field magnitude \(B \), and the GCR counting rate. We do not shift the sunspot numbers to account for the propagation time from the Sun; for the large MIR in 2006 the propagation time is about 6 months (Richardson et al. 2007), while for 400 km s\(^{-1}\) solar wind it is almost a year. The region from 2000 to 2004.5 roughly corresponds to solar maximum and the descending phase of the solar cycle at \(V_2 \) and is dominated by MIRs. These MIRs show simultaneous increases in \(B \) and \(P \). Most of the MIRs produce decreases in the GCR counting rates since the enhanced \(B \) field reduces inward transport. The GCR rates initially rise ahead of the MIR (or peak field) as reflection concentrates GCRs ahead of the shock, the snow plow effect (McDonald et al. 2000). The GCR intensities generally peak just before the maximum in magnetic field and then decrease as transport across the high field region is reduced. Starting in mid-2004, the effects of solar minimum are apparent; the average \(B \) is less, the GCR counts increase, and the number of MIRs is greatly reduced. The only significant MIR after 2004.5 is in 2006 March.

The **Voyager** spacecraft entered the heliosheath near solar minimum at a time of low solar activity. Only one MIR was reported at \(V_1 \) in the heliosheath (Burlaga et al. 2008), in mid-2006 at 99 au. An extended period of high \(B \), \(>0.2 \) nT, persisted for 3–4 months and was accompanied by a cosmic-ray intensity decrease. As discussed below, this MIR was likely the same event observed by \(V_2 \) in 2006 March.

Figure 2 shows the \(V_2 \) heliosheath data in the same format as Figure 1. We label the six broad dynamic pressure increases after 2011 from A to G. The first \(V_2 \) MIR (C in Figure 2) was observed in 2012 (Burlaga et al. 2016); Figure 2 shows that \(B \) and \(P \) increase in the MIR and the GCR flux decreases. Burlaga et al. (2016) show that the plasma density, speed, and temperature all increase in this MIR. Note that while \(V_1 \) was in the heliosheath, \(V_2 \) observed few large dynamic pressure pulses except those near to, and likely associated with, the termination shock. These increases (from 2007.7 to 2008.7) are much narrower than the MIRs and do not show the same correlation between \(B \) and \(P \). The two dynamic pressure increases at 2011.5 (A) and 2012.0 (B) do not have
corresponding B increases or GCR intensity decreases, so these events are not MIRs. The magnetic field data are not yet available after 2012, so we use the P increases and GCR intensity decreases as proxies to identify potential MIRs. At 2013.5 (D) and 2014.2 (E) the dynamic pressure increases by 75% and 50%, respectively, and small GCR intensity decreases are observed. Near 2015.8 P increases by almost a factor of three and the GCR intensity drops by 10%. This event (F) is the largest MIR observed to date in the heliosheath. Another double-peaked MIR is observed near 2016.3 (G), with a 75% increase in P and a GCR decrease. The top panel of Figure 2 shows that the sunspot number jumps upward in 2011; since the transit time of the solar wind to V2 is of the order of a year, the onset of these MIRs is likely due to the solar cycle increase in solar activity as occurred in the last solar maximum (Figure 1).

Figure 3 compares the plasma parameters in two MIRs from 2002 in the supersonic solar wind in the last solar maximum to those in two MIRs in the heliosheath in the current solar maximum. The left panel shows daily averages of plasma radial speed V_R, density N, temperature T, and P for the 2015.8 and 2016.3 V2 MIRs, and the right panel shows the same parameters for the two 2002 MIRs. As in the 2012 MIR (Burlaga et al. 2016), the plasma V_R, N, T, and P all increase in the heliosheath MIRs, consistent with model predictions (Steinolfson & Gurnett 1995; Story & Zank 1997; Zank & Muller 2003; Washimi et al. 2007, 2011). In the 2002 MIRs V_R, N, and P increase but T does not. In the heliosheath the increases and decreases in solar wind parameters are gradual; there are no sudden jumps suggestive of a shock. In contrast, the supersonic solar wind MIRs are often initiated with shocks. In the supersonic solar wind at solar maximum eight MIRs are observed from 2000 to 2004. In the heliosheath five possible MIRs are observed from 2012.5 to 2016.5. Changes in the plasma parameters are less in the heliosheath than in the supersonic solar wind. V_R increases by 20% in the biggest heliosheath MIR and up to 30% in the supersonic solar wind, N increases by a factor of 2 in the heliosheath and a factor of 4 in the supersonic solar wind, and P increases by a factor of up to 3 in the heliosheath and by a factor of 10 in the supersonic solar wind. Assuming that the supersonic solar wind MIRs were similar in both solar maxima, the termination shock has reduced the plasma variations and made the transitions smoother in the heliosheath.
2.2. V2 MIRs and V1 Observations

The arrival of solar maximum at V2 coincided with the observation of MIRs propagating through the heliosheath. In this section we try to connect the V2 MIRs in the solar wind and heliosheath to the V1 MIR in the heliosheath and to the V1 transients in the LISM. Propagation of V2 events outward through the heliosheath and LISM to V1 has many uncertainties. The propagation speed of shocks in the solar wind is measured, so we know the speed out to the termination shock. The termination shock location, however, is a function of time and location. At V1 it moved at 94 au and at V2 at 84 au; this 10 au difference is probably partly due to the heliosphere being asymmetric and partly to time dependence (Richardson et al. 2008; Washimi et al. 2011). For the 2006 event, where V2 observes an MIR in the supersonic solar wind, we use a model of the termination shock based on solar wind pressure at 1 au (Richardson & Wang 2012).

We assume that disturbances propagate through the solar wind at the fast-mode speed (Washimi et al. 2007). Thus, their total speed is the solar wind speed plus the fast-mode speed. The fast-mode speed in the heliosheath is determined by the pickup ions that dominate the thermal pressure (Richardson et al. 2008) but not directly measured, so this speed is uncertain. Previous work gives heliosheath speeds for these pressure pulses that range from a dramatic slowing to a small decrease in speed (Steinolfson & Gurnett 1995; Washimi et al. 2012; Zank 2015). Studies of solar wind shocks hitting Earth’s bow shock suggest that the propagation speed through Earth’s magnetosheath is 0.7–1 times the upstream shock speed (Szabo et al. 2003; Koval et al. 2006; Pallocchia et al. 2010). Based on Earth observations and heliosheath models, for a 400 km s$^{-1}$ upstream speed the heliosheath shock speed is probably 280–400 km s$^{-1}$. We use a value of 320 km s$^{-1}$ in the calculations below.

The next uncertainty is in the heliopause location. Models show that the steady-state heliopause moves by only a few au over a solar cycle and that pressure changes on shorter timescales have even less effect (Liewer et al. 1996; Wang & Belcher 1998, 1999; Zank & Muller 2003; Pogorelov et al. 2014). V1 crossed the heliopause at 121.7 au, 28 au beyond the termination shock. V2 was 28 au beyond the termination shock in late 2016 but has observed no heliopause precursors. This difference could be temporal or spatial or both. The V1 heliosheath was thinner than expected and had a different flow profile than expected; heliopause instabilities may provide an explanation of these observations. Some models predict that these instabilities could produce large (tens of au) shifts in the heliopause position (Borovikov et al. 2012). Since the propagation speed is much lower in the LISM than in the heliosheath, the uncertainty in the heliopause position is probably the greatest source of error in propagating events from V2 to V1. In the calculations shown below we put the heliopause at the observed value in the V1 direction, 121.7 au.

In the LISM the fast-mode speed is determined mainly by the Alfvén speed and is about 40 km s$^{-1}$ (Burlaga et al. 2013a). V1 moves outward at about 17 km s$^{-1}$. The undisturbed LISM moves toward the nose of the heliosphere at about 26 km s$^{-1}$, but near the heliopause it slows and is deflected around the heliosphere. The speeds in the LISM are not measured by V1. In the calculations below we assume that the transients move through the heliosheath at the fast-mode speed.

The other major assumption in these propagation calculations is that the MIRs are large compared to the Voyager separations. The initial discovery of the heliospheric radio emissions linked them to large MIRs in the inner heliosphere, implying a large angular extent. A 3D model of the 2003 Halloween CMEs shows that the effects of this event cover longitude and latitude ranges larger than the Voyager separations (Intriligator et al. 2005). We expect the MIRs to be large to survive into the heliosheath, but speeds could be different toward each spacecraft.

The V1 heliosheath MIR was observed near 2006.5 at 99 au (Burlaga et al. 2008), about 100 days after the MIR observed in 2006.2 by V2 in the solar wind at 79 au. The speed of the shock leading this V2 MIR was near 500 km s$^{-1}$. If the termination shock were at 90 au in the V1 direction as predicted (Richardson & Wang 2012), it would take 35 days to reach the termination shock. At 320 km s$^{-1}$ in the heliosheath the MIR would take another 45 days to reach V1, or 80 days total. Given the large uncertainties and spacecraft separations, a 20-day difference between predicted (80 days) and observed (100 days) times is consistent with these MIRs being the same event.

V1 observed four plasma wave events in the LISM in less than four years after crossing the heliopause. The thin lines in Figure 4 show the times of the plasma wave events (Gurnett et al. 2015). These waves are thought to be driven by electron beams that move ahead of shocks (Gurnett et al. 2013). Forward shocks are observed at the end of the first event and in the middle of the third event; these shocks are weak (Burlaga et al. 2016). A possible reverse shock (RS) with a sharp speed decrease was observed at the end of the second event (Figure 4). The forward shocks are presumably driven by solar transients that push the heliopause rapidly outward and generate outward-moving shocks (Zank & Muller 2003). V2 is in the heliosheath when the wave events are detected, so we look at the V2 pressure profile for events that could drive the V1 shocks. The first two heliosheath dynamic pressure pulses at V2 peak at
The largest pressure pulse (F) observed by V2 in the heliosheath was at 2015.7 at 109 au and had a factor of three increase in pressure. If this pressure pulse were a global event, this MIR could produce the strongest shock and plasma wave event at V1 to date. Again we calculate the time at which it is expected to arrive at V1. The 12 au to the heliopause would take 60 days, at which time V1 would be at 134 au, 13 au ahead of V2. If we ignore the LISM speed, the shock speed is about 40 km s\(^{-1}\) and the V1 speed 17 km s\(^{-1}\), so the MIR overtakes V1 at 23 km s\(^{-1}\) and will catch up 900 days after it crosses the heliopause. Thus, we do not expect to see effects of this MIR until early 2018. If the LISM \(V_R\) is significant, the time for this event to reach V1 would be longer.

Table 1 summarizes these results for the one predicted and four observed plasma wave events. Each row shows the wave event start and end time and the time and type of shock, if any, associated with each event. Also listed is the time of the V2 MIR and the shock at V1, and the predicted propagation time. The uncertainties in the predicted propagation times are large as discussed above. A change in the heliopause position means more (or less) propagation distance at the slow speeds in the LISM plasma. The uncertainty of the propagation speed through the heliosheath is at least 30%. The assumption that the MIRs are global and have similar properties in the V1 and V2 directions could easily be invalid. The flow speed in the LISM is also uncertain. We acknowledge these uncertainties, but with reasonable assumptions we are able to correlate the plasma events with V2 pressure pulses. Moreover, we make a prediction of a large plasma wave event that will occur in or after the beginning of 2018 when the largest heliosheath MIR observed reaches V1.

3. SUMMARY

The arrival of solar maximum in the heliosheath has been accompanied by the observations by V2 of five possible MIRs in the 4 yr period 2012.5–2016.5. These MIRs have pressure increases ranging from 50% to 300% and are accompanied by GCR intensity decreases, implying \(B\) (not yet available after 2012) increases. These pressure increases occur at a similar frequency to the transients observed in the LISM by V1. Although V1 and V2 are far apart in azimuth and latitude and the uncertainties in propagation speeds of these MIRs through the heliosheath and LISM are large, the data seem consistent with the hypothesis that the pressure pulses observed at V2 are driving the transients observed in the LISM by V1.

We wish to acknowledge support from the International Space Science Institute for the team “Facing the Most Pressing Challenges to Our Understanding of the Heliosheath and Its
Outer Boundaries,” which spurred this work. We thank SPDF for the MAG data and CRS for providing GCR data through their Web site. J.D.R. was supported under NASA contract 959203 from the Jet Propulsion Laboratory to the Massachusetts Institute of Technology. J.S. and Z.N. thank the Czech Ministry of Education for support from grant LH15136. The research at the University of Iowa was supported by NASA through contract 1279980 with JPL.

REFERENCES

Borovikov, S. N., Pogorelov, N. V., & Ebert, R. W. 2012, ApJ, 750, 42
Burlaga, L. F. 1995, Interplanetary Magnetohydrodynamics (New York: Oxford Univ. Press)
Burlaga, L. F., & Ness, N. F. 2016, ApJ, 829, 134
Burlaga, L. F., Ness, N. F., Acuna, M. H., Wang, Y.-M., & Sheeley, N. R., Jr. 2008, JGR, 114, A06106
Burlaga, L. F., Ness, N. F., Gurnett, D. A., & Kurth, W. S. 2013a, ApJL, 778, L3
Burlaga, L. F., Ness, N. F., Richardson, J. D., Decker, R. B., & Krimigis, S. M. 2016, ApJ, 818, 147
Burlaga, L. F., Ness, N. F., & Stone, E. C. 2013b, Sci, 341, 147
Gurnett, D. A., Kurth, W. S., Allendorf, S. C., & Poynter, R. L. 1993, Sci, 262, 199
Gurnett, D. A., Kurth, W. S., Burlaga, L. F., & Ness, N. F. 2013, Sci, 341, 1498
Gurnett, D. A., Kurth, W. S., Stone, E. C., et al. 2015, ApJ, 809, 121
Intriligator, D. S., Sun, W., Dryer, M. C., et al. 2005, JGR, 110, A09S10
Koval, A., Šafráňková, J., Němeček, Z., & Přech, L. 2006, AdSpR, 38, 552
Liewer, P. C., Karmesin, S. R., & Brackbill, J. U. 1996, JGR, 101, 17119
Liu, Y. D., Richardson, J. D., Wang, C., & Luhmann, J. G. 2014, ApJL, 788, L28
McDonald, F. B., Burlaga, L. F., McGuire, R. E., & Ness, N. F. 2000, JGR, 195, 20997
Pallocchia, G., Samsonov, A. A., Bavassano Cattaneo, M. B., et al. 2010, AnGeo, 28, 1141
Pogorelov, N. V., Borovikov, S. N., Heerikhuisen, J., Kim, T. K., & Zank, G. P. 2014, in ASP Conf. Ser. 488, 8th Int. Conf. of Numerical Modeling of Space Plasma Flows (ASTRONUM 2013), ed. N. V. Pogorelov, E. Audit, & G. P. Zank (San Francisco, CA: ASP), 167
Richardson, J. D., Kasper, J. C., Wang, C., Belcher, J. W., & Lazarus, A. J. 2008, Natur, 464, 63
Richardson, J. D., Liu, Y., Wang, C., et al. 2007, GeoRL, 33, L23107
Richardson, J. D., & Wang, C. 2012, ApJL, 759, L19
Richardson, J. D., Wang, C., & Burlaga, L. F. 2003, GeoRL, 23, 2207
Steinolfson, R. S., & Gurnett, D. A. 1995, GeoRL, 22, 651
Story, T. R., & Zank, G. P. 1997, JGR, 102, 17381
Szabo, A., Smith, C. W., & Skoug, R. M. 2003, in AIP Conf. Proc. 679, Solar Wind Ten, ed. M. Velli, R. Bruno, & F. Malara (Melville, NY: AIP), 782
Wang, C., & Belcher, J. W. 1998, JGR, 103, 247
Wang, C., & Belcher, J. W. 1999, JGR, 104, 549
Washimi, H., Webber, W., Zank, G. P., et al. 2012, ApJL, 757, L2
Washimi, H., Zank, G. P., & Hu, Q. 2011, MNRAS, 416, 1475
Washimi, H., Zank, G. P., Hu, Q., Tanaka, T., & Munakata, K. 2007, ApJL, 670, L139
Zank, G. P. 2015, ARA&A, 53, 449
Zank, G. P., & Muller, H.-R. 2003, JGR, 108, 1240