The Relationship between Inflation and Inflation Uncertainty: Empirical Evidence from Turkey

Abdul Qahar Khatır1,∗ Burcu Güvenek2 Fatih Mangır2

1 Institute of Social Sciences, Selçuk University, Konya, Turkey
2 Department of Economics, Selçuk University, Konya, Turkey

Received: 21.11.2020 Accepted: 30.12.2020 This article was checked by intihal.net

Abstract

In our paper, we research the relationship between inflation and inflation uncertainty of Turkish economy for the period of (2005:01-2020:05) using ARMA-GARCH model. There are several theoretical and methodological studies conducted in this topic. Although some of the empirical studies support the Friedman-Ball hypothesis of positive effect of inflation-on-inflation volatility, some of them support Cukierman & Meltzer hypothesis that inflation uncertainty contributes to higher inflation, and finally rest of their findings corroborate Holland hypothesis indicating that uncertainty trigger to decrease potential inflation. In our study inflation causes, an increase in uncertainty in all four five conditions of lag selection, which supports the Friedman-Ball hypothesis. Inflation uncertainty does not cause an increase in inflation, which does not support the Cukierman & Meltzer hypothesis and Holland hypothesis. Therefore, it is concluded that The Central Bank of the Republic of Turkey should respond to stabilize the inflation uncertainty by implementing the inflation targeting policy successfully.

Keywords: Turkey, Inflation, Uncertainty, ARCH, GARCH,

Khatır, A. Q., Güvenek, B. & Mangır, F. (2020). "The Relationship between Inflation and Inflation Uncertainty: Empirical Evidence from Turkey", Journal of Academic Value Studies, 6(4) 331-340 (http://dx.doi.org/10.29228/javs.47782).

1. Introduction

Inflation is a definition of the continual increase in market prices. This means that the purchasing power of national economy declines day by day in an unbalanced and distrustful economy and in a market that is affected by inflation. Defined as one of the fundamental economic problems, inflation has several severe impacts on the households and all the other players in the economy. The process of the price instability known as inflation uncertainty has tended to reduce economic activity and contribute the high unemployment by affecting the function of the price mechanism.

The decision of household and business can be affected by inflation uncertainty, which has negative impact on the macro level of economy (Golob, 1994: 27). The academic studies on inflation have been received much attention since Okun and later continued by Friedman studies (Erdem and Yamak, 2014: 246).

The studies of M. Friedman have two points to emphasize. Firstly, they pointed to the positive relations between the degree of the inflation and the uncertainty. Secondly, they emphasized that higher inflation causes to distort the price information quality that is important in the resource allocation. Later, the relationship between inflation and inflation uncertainty has been tested by many scholars empirically and obtained mixed results due to model specifications and the proxies for inflation uncertainty (Caglayan, Ozge and Kostas, 2011: 45).

∗ E-mail address: akhatir890@gmail.com (Corresponding author)
In this study we are going to investigate the relationship between inflation and inflation uncertainty to know whether inflation caused of uncertainties or not. For the mentioned purpose we used the Consumer Price Index (C.P.I.) as a monthly percentage change obtained from The Central Bank of Republic of Turkey (TCMB), and for inflation uncertainty we will use the conditional variance of inflation through GARCH model.

Our study is divided into four sections. Section one is specified for introduction in the section two we have literature review, data and methodology belong to section three and in the last section we have conclusion and policy implication.

2. Literature

Empirically we can review all studies in the literature into three categories: (1) supporting Friedman-Ball hypothesis (inflation causes of uncertainty), (2) Cukierman & Meltzer Hypothesis (1986) (Uncertainty Causes Positively Inflation), (3) Holland Hypothesis (1995), (uncertainty lower the average inflation).

Below, we review 13 studies we found that analyzed the relation between inflation and inflation uncertainty. Each of them has different results on the validity of Friedman-Ball, Cukierman & Meltzer and Holland hypothesis. We summarize all the methods and results each of studies in Table 1.

Authors	Method	Period	Result
Elton, Atsuyuki and Benito (2005)	APGARCH	1957-2004	Support Friedman-Ball, Cukierman and Meltzer, and Holland
Erkam (2008)	ARCH, GARCH and PARCH	1982–2008	Support the Friedman-Ball
Fisunoğlu and Özdemir (2008)	GARCH	1987-2003	Support the Friedman-Ball and Cukierman and Meltzer
Fountas(2001)	GARCH	1885-1998	Support the Friedman-Ball
Kim(1993)	ARCH	1958–1990	Support the Friedman-Ball hypothesis
Kontonikas (2004)	GARCH-M models	1972-2002	Support the Friedman-Ball hypothesis
Orhan and Keske (2010)	GARCH-M	1984-2005	Support the Friedman-Ball hypothesis, and Holland hypothesis
Telatar and Telatar(2003)	Granger	1995–2000	Support the Friedman-Ball
Thornton (2007)	GARCH model	Period varies from country to country	Support Friedman-Ball, Cukierman and Meltzer, and Holland

a Friedman concluded that an increase in expected inflation causes confusion about how to fight future monetary policy, leading to large fluctuations in real and projected inflation, leading to economic inefficiency and lower production growth.

b A theoretical one is given by Cukierman and Meltzer (1986). Model that describes a causal effect like this. More inflation in the case of Uncertainty, the potential for less cautious central bankers to surprise Hoping for production gains, the public and generate unanticipated inflation.

Holland discovered that inflation in the United States increases inflation volatility and that higher inflation uncertainty contributes to lower average inflation, the so-called "stabilizing Fed assumption"
3. Data and Methodology

In this study, we investigated the relationship between inflation and inflation uncertainty for Turkey over the period of 2005:M1-2020:M5 for the inflation, we used the Consumer Price Index (C.P.I.) as a monthly percentage change obtained from The Central Bank of Republic of Turkey (TCMB). In order to attain the index of inflation uncertainty we will use the conditional variance of inflation through GARCH model, the method that we apply for our analysis is ARMA–EGARCH model, and then we investigate causality between two variables with Granger-causality test.

3.1. The Empirical Results

Table 2 summarizes the descriptive statistics of the inflation variable, CPI, from Turkey over the period of 2005-2020.

Table 2. Summary Statistics for CPI

	Mean	Skewness	Kurtosis	Jarque-Bera
Mean	0.762270	1.423253	10.12803	454.109
Median	0.650000			
Maximum	6.300000			
Minimum	-1.44			
Std. Dev.	0.892523			

The Table 2 shows the mean, median, standard deviation (std), minimum value (min), and maximum value (max) are 0.76, 0.65, 6.3, -1.44, 0.89 respectively, for the variable.

Prior to fitting the ARIMA ARCH model, series should be stationary, otherwise it should be converted into stationary series.

Table 3. Unit Root Test Results for CPI

ADF	ADF test statistic	Mac Kinnon Test critical values	Prob
	5.302232	1%	0.0000

	5%	10%	
	-3.467	-2.877	-2.575
The stationary properties of the CPI variable is investigated by ADF test. According to test results, the absolute value of test statistics is greater than critical value at 1%, 5% and 10%, and the probability value is also significant, which indicates that a series is I(0) which means stationary at level.

After all, the data are certainly stationary at further level (which means not necessary first difference) in determining the best model of ARMA (ARIMA will be used if the data is experiencing first difference when the unit root test.

In order to estimate ARMA model for our data, firstly we need to examine the correlogram of consumer price index monthly changes, which is provided in the following table.

Graph 1. Correlogram of CPI Monthly Changes

Autocorrelation	Partial Correlation	AC	PAC	Q Stat	Prob
1	2	0.247	0.247	11.467	0.001
2	0.195	0.231	9.044	0.000	
3	0.018	0.104	6.974	0.000	
4	-0.151	-0.217	15.227	0.000	
5	0.018	0.124	15.293	0.009	
6	0.152	0.053	25.854	0.000	
7	0.006	0.006	25.712	0.001	
8	-0.146	-0.263	26.999	0.000	
9	-0.068	-0.050	26.512	0.001	
10	0.061	0.050	26.512	0.001	
11	0.102	0.107	32.623	0.000	
12	0.037	0.180	50.689	0.000	
13	-0.047	-0.981	51.311	0.000	
14	-0.130	-0.051	54.711	0.000	
15	-0.010	0.004	54.711	0.000	
16	-0.002	0.007	54.943	0.000	
17	0.038	0.054	52.247	0.000	
18	0.147	0.013	50.689	0.000	
19	0.009	0.001	55.710	0.000	
20	-0.016	0.101	60.710	0.000	
21	0.039	0.030	60.107	0.000	
22	-0.005	-0.048	61.016	0.000	
23	0.113	0.130	63.731	0.000	
24	0.269	0.145	81.524	0.000	
25	-0.032	-0.051	81.759	0.000	
26	-0.076	-0.071	81.910	0.000	
27	-0.023	-0.031	82.219	0.000	
28	0.017	0.000	86.526	0.000	
29	0.035	0.000	86.526	0.000	
30	-0.023	-0.032	86.259	0.000	
31	-0.084	-0.074	86.829	0.000	
32	-0.185	-0.063	92.399	0.000	
33	-0.017	-0.020	92.642	0.000	
34	-0.086	-0.044	94.356	0.000	
35	0.026	0.040	96.020	0.000	
36	0.020	0.101	117.013	0.000	

The Graph 1 explains the autocorrelation and partial correlation of inflation and error terms respectively. The correlogram indicates the autocorrelation and partial correlation in the first lag. Furthermore the autocorrelation seen in the 12th lag and 24th lag, and partial correlation seems in the 2nd and third lag of the table.

As per the results of the Graph 1 we are going to test the following tentative ARMA models. ARMA(1,1), ARMA(1,2), ARMA(1,4), ARMA(12,1), ARMA(12,2), ARMA(12,4), ARMA(24,1), ARMA(24,2), ARMA(24,4), ARMA(12-24,1-2-4).

The best model will be selected based on the Akaike info criterion, R-squared, significance number of coefficients.

Based on the lowest Akaike info criteria, we select the ARMA-GARCH using the following criteria: the lowest Akaike info criteria, appropriate R2 coefficient, and the significance of model.
The results of the test for the monthly inflation rates in Turkey can be seen in the Table 4 above. In the model AR (12,14) and moving average (1,2,4) satisfy the stationary conditions.

According to the Heteroskedasticity test, estimated P value is less than 5 and 10 percent in the 12th and 24th lags so we can reject the null hypothesis which means that there is ARCH effect. And then we decided to use the GARCH type model in order to generate the conditional variance for the inflation uncertainty as proxy.

There are lagged forms of the square error term in GARCH (p, q) and q Terms of variable variances lagged. It is assumed that the coefficients α_i and β_i are positive to ensure that the conditional variance is still positive. Thus, in a GARCH model, the conditional variance is defined as a function of the previous square error terms and the conditional variance of past periods. If the α_i and β_i sums are close to one, the variance is strongly constant and has a reversing mean property.
Table 6. GARCH ARMA Results

GARCH = C (7) + C(8) * RESID(-1)^2 + C(9) * GARCH(-1)

Variable	Coefficient	Std. Error	z-Statistic	Prob.
C	0.759337	0.130408	5.822800	0.0000
AR(12)	0.163811	0.070668	2.318018	0.0204
AR(24)	0.461818	0.079721	5.792919	0.0000
MA(1)	0.270886	0.103386	2.621017	0.0081
MA(2)	-0.177009	0.102787	-1.722101	0.0851
MA(4)	-0.191764	0.071015	-2.703017	0.0069

Variance Equation

	Coefficient	Std. Error	z-Statistic	Prob.
C	0.174577	0.089622	1.947925	0.0514
RESID(-1)^2	0.335285	0.119144	2.814116	0.0049
GARCH(-1)	0.332668	0.230306	1.444464	0.1486

R-squared 0.291245 Mean dependent var 0.771801
Adjusted R-squared 0.268382 S.D. dependent var 0.925224
S.E. of regression 0.791387 Akaike info criterion 2.138928
Sum squared resid 97.07559 Schwarz criterion 2.311181
Log likelihood -163.1837 Hannan-Quinn criter. 2.208870

The results show that volatility persistence to inflationary shocks. As the sum of ARCH and GARCH term are much lower than one, and at the same time the P-value of the GARCH term is nearly insignificant, these mean that there is a low degree of volatility persistence in response to inflationary shocks.

We compared different models, and based on the Akaike Information Criterion (AIC), R squared, number of significance coefficient, so we choose the GARCH ARMA model as the most appropriate model, where we have the lowest Akaike Info Criterion, almost all of the coefficient are significant and fair R squared besides these Durbin-Watson stat is also acceptable. All coefficients are significant in the mean equation, and in the variance equation just one is non-significant coefficient that we found.

Graph 2. Correlogram of Standardized Residual

Autocorrelation	Partial Correlation	AC	PAC	Q-Stat	Prob*
1	0.022	0.022	0.0767		
2	0.074	0.073	0.9701		
3	0.053	0.051	1.4416		
4	-0.002	-0.009	1.4422		
5	-0.049	-0.057	1.8432		
6	0.101	0.102	3.5727	0.059	
7	-0.017	-0.013	3.6235	0.163	
8	-0.010	-0.019	3.6397	0.303	
9	-0.074	-0.084	4.5834	0.393	
10	-0.031	-0.026	4.7507	0.447	
11	0.027	0.054	4.8827	0.559	
12	-0.074	-0.077	5.8380	0.559	
13	0.008	0.007	5.8481	0.664	
14	0.035	0.036	6.0614	0.734	
15	0.144	0.170	9.7792	0.460	
16	0.091	0.091	11.290	0.419	
17	-0.043	-0.102	11.633	0.476	
18	-0.007	-0.028	11.641	0.557	
19	0.016	0.021	11.686	0.632	
20	0.121	0.164	14.429	0.493	
21	0.127	0.096	17.433	0.358	
22	0.016	0.054	17.484	0.422	
23	0.028	0.023	17.631	0.480	
24	-0.170	-0.165	23.144	0.231	
As indicated in Graph 2, all P values more than 5% indicate there is no serial correlations between the variables, which represents good performance for our model.

Graph 3. Correlogram of Standardized Residual Squared

Autocorrelation	Partial Correlation	AC	PAC	Q-Stat	Prob*
1		0.008	0.008	0.0099	0.921
2		0.125	0.125	2.5947	0.273
3		0.024	0.023	2.6903	0.442
4		0.055	0.039	3.1881	0.527
5		-0.034	-0.041	3.3799	0.642
6		0.057	0.047	3.9384	0.685
7		-0.077	-0.072	4.9468	0.666
8		-0.105	-0.120	6.8428	0.554
9		-0.075	-0.058	7.8229	0.552
10		0.117	0.148	10.190	0.424
11		0.038	0.075	10.444	0.491
12		-0.105	-0.141	12.383	0.415
13		0.000	-0.018	12.383	0.497
14		-0.113	-0.097	14.680	0.400
15		0.007	0.014	14.689	0.474
16		-0.138	-0.149	18.144	0.316
17		-0.048	-0.059	18.569	0.354
18		-0.003	0.105	18.571	0.419
19		0.023	0.066	18.667	0.479
20		0.030	0.004	18.839	0.532
21		0.065	-0.011	19.638	0.544
22		-0.047	-0.043	20.061	0.579
23		-0.078	-0.116	21.213	0.568
24		-0.004	-0.036	21.216	0.626

*Probabilities may not be valid for this equation specification.

Graph 3 shows the correlogram of standardized residual squared and as it can be seen, the error term exhibits no autocorrelation.

Graph 2. Histogram Normality Test

In the graph of the histogram and normality test (Graph 4), it looks like a normal distribution model since the probability value is more than 10%, and skewness is between 0.5 and -0.5.
The Table 7 shows the results of autoregressive conditional heteroskedasticity in terms of by using lagrange multiplier (LM), as it is seen that in all orders of lag the P value is greater than 5%.

The next step is Granger Causality Test. In order to perform the Granger Causality test through VAR model between inflation and inflation uncertainty firstly, we need to have data. For inflation, we have data, and inflation uncertainty we gain conditional variance as inflation uncertainty through GARCH model.

Table 8 reports for all the lags that inflation causes of inflation uncertainty, strong support for the Friedman-Ball hypothesis. The null hypothesis that inflation uncertainty does not Granger Cause of inflation is not rejected across all signs and lags. The result did not validate the Cukierman-Meltzer hypothesis.

Given the dedication to inflation targeting Turkey's central bank firmly exits its causality relationship between inflation volatility during the period of 2005M01-2020M05. However, in our model the volatility persistence in response to inflationary shocks is limited.

4. Conclusion and Policy Implication

Inflation is a definition of the continual increase in market prices. Inflation has several severe impacts on households and all the other players in the economy. It has tended to reduce economic activity. In this study, we modeled the relationship between inflation and inflation uncertainty of the Turkish economy over the period of 2005M01-2020M05. There are many theoretical and empirical studies performed in this topic. While some of the empirical studies support the Friedman-Ball hypothesis of positive impact of inflation-on-inflation uncertainty, some
of them support Cukierman & Meltzer hypothesis that inflation uncertainty leads to higher inflation, and finally rest of their results corroborate Holland hypothesis suggesting that uncertainty causes to decrease future inflation.

In this study, inflation uncertainty is firstly proxied by the GARCH model, and then the conditional variance based on this estimation is used as proxy for the inflation. Later, we proceeded to Granger Causality test between two variables. As per the findings, there is a limited degree of persistence of volatility in response to inflationary shocks. Moreover, the Granger causality test conducted indicated that high inflation Granger causes inflation uncertainty, which strongly agrees with the Friedman (1977)and Ball (1992) postulations as cited in (Ran, Zheng-Zheng, Xiao-Lin, and SU, 2018: 41). There was no sufficient evidence in support of the Cukierman-Meltzer hypothesis, as revealed by the causality test results.

Our findings suggest that central bank in Turkey should aim at achieving and sustaining low average inflation rate consistent with targeted economic growth, in order to eliminate the negative effects of inflation uncertainty on macroeconomic activity.

References

Ball, L. (1992). Why does high inflation raise inflation uncertainty? Journal of Monetary Economics, 29, 371-388.

Caglayan, M., Kandemir, O., & Mouratidis, K. (2011). Real effects of inflation uncertainty in the US. Unpublished manuscript, Department of Economics university of Sheffield, 9 Mappin Street, Sheffield.

Cukierman, A. & Meltzer, A. (1986). A theory of ambiguity, credibility, and inflation under discretion and asymmetric information. Econometrica, 54(5), 1099-1128.

Friedman, M. (1977). Inflation and unemployment, Journal of Political Economy 85: 451–472.

Elton, D., Atsuuyuki, N., & Benito, S (2005). Re-examining inflation and inflation uncertainty in developed and emerging countries. Economics Letters, 89(2), 180-186.

Erdem, H. & Yamak, R. (2014). The Relationship Between Inflation And Inflation Uncertainty In Turkey. Economy of Region, 2014, 246-254.

Erkam, S. (2008). Inflation and inflation uncertainty in Turkey. Sosyo-Ekonomi, 4(7), 157-174.(In Turkish).

Farzinvash, A., Elaahi, N., Kaihalosseini, S. & Haashemi D. A. (2016). Granger Causality between Inflation and Inflation Uncertainty in Iran: A MSVAR Approach. Quarterly Journal of Applied Theories of Economics, Faculty of Economics, Management and Business, University of Tabriz, 3(2), 23-48.

Fisunoğlu, M. &Özdemir, Z. A. (2008). On the inflation-uncertainty hypothesis in Jordan, Philippines and Turkey: A long memory approach. International Review of Economics and Finance, 17, 1 – 12.

Fountas, S. (2001). The relationship between inflation and inflation uncertainty in the UK: 1885–1998. Economics Letters, 74(1), 77-83.

Golob, E. J. (1994). Does Inflation Uncertainty Increase with Inflation. ECONOMIC REVIEW, 3, 27-38.

Holland, S. (1995). Inflation and uncertainty: tests for temporal ordering. Journal of Money, Credit, and Banking, 27, 827-837.

Jiranyakul, K. (2020). The Linkages between Inflation and Inflation Uncertainty in Selected Asian Economies: Evidence from Quantile Regression. Available at SSRN: https://ssrn.com/abstract=3586151 or http://dx.doi.org/10.2139/ssrn.3586151.

Keskek, S. and, Orhan, M. (2010). Inflation and inflation uncertainty in Turkey. Applied Economics, 42(10), 1281-1291.
Kim, C.-J. (1993). Unobserved-Component Time Series Models With Markov-Switching Heteroscedasticity: Changes in Regime and the Link Between Inflation Rates and Inflation Uncertainty. Journal of Business & Economic Statistics, 11(3), 341-349.

Kontonikas, A. (2004). Inflation and inflation uncertainty in the United Kingdom, evidence from GARCH modelling. Economic Modelling, 21(3), 525 - 543.

Munir, K., & Riaz, N. (2020). Dynamics of inflation and inflation uncertainty in Pakistan. International Journal of Monetary Economics and Finance, 13(2), 130-145.

Payne, J. (2008). Inflation and inflation uncertainty: evidence from the Caribbean region. Journal of Economic Studies, 35(6), 501-511.

Pindyck, R. (1991). Irreversibility, uncertainty, and investment. Journal of Economic Literature, 29, 1110–1148.

Ran, T., Zheng-Zheng, L., Xiao-Lin, L., & Chi-Wei, S. (2018). A Reexamination of Friedmanball’s Hypothesis In Slovakia - Evidence From Wavelet Analysis. Romanian Journal of Economic Forecasting, 21(5), 41-54.

Telatar, F., and Telatar, E. (2003). The relationship between inflation and different sources of inflation uncertainty in Turkey. Applied Economics Letters, 10(7), 431-435.

Thornton, J. (2007). The Relationship between Inflation and Inflation Uncertainty in Emerging Market Economies. 73(4), 858-870.

Wilson, B. K. (2006). The links between inflation, inflation uncertainty and output growth: New time series evidence from Japan. Journal of Macroeconomics, 28(3), 609 - 620.