THE BLOW-UP PROBLEM FOR A SEMILINEAR PARABOLIC EQUATION WITH A POTENTIAL

CARMEN CORTAZAR, MANUEL ELGUETA, AND JULIO D. ROSSI

Abstract. Let Ω be a bounded smooth domain in \mathbb{R}^N. We consider the problem $u_t = \Delta u + V(x)u^p$ in $\Omega \times [0,T)$, with Dirichlet boundary conditions $u = 0$ on $\partial \Omega \times [0,T)$ and initial datum $u(x,0) = M\varphi(x)$ where $M \geq 0$, φ is positive and compatible with the boundary condition. We give estimates for the blow up time of solutions for large values of M. As a consequence of these estimates we find that, for M large, the blow up set concentrates near the points where $\varphi^{p-1}V$ attains its maximum.

1. INTRODUCTION

In this paper we study the blow-up phenomena for the following semilinear parabolic problem with a potential

$$u_t = \Delta u + V(x)u^p \quad \text{in} \quad \Omega \times (0,T),$$

$$u(x,t) = 0 \quad \text{on} \quad \partial \Omega \times (0,T),$$

$$u(x,0) = M\varphi(x) \quad \text{in} \quad \Omega.$$

First, let us state our basic assumptions. They are: Ω is a bounded, convex, smooth domain in \mathbb{R}^N and the exponent p is subcritical, that is, $1 < p < (N+2)/(N-2)$. The potential V is Lipschitz continuous and there exists a constant $c > 0$ such that $V(x) \geq c$ for all $x \in \Omega$. As for the initial condition we assume that $M \geq 0$ and that φ is a smooth positive function compatible with the boundary condition. Moreover, we impose that

$$M\Delta \varphi + \min_{x\in\Omega} V(x) \geq 0.$$

Key words and phrases. Blow-up, semilinear parabolic equations.

Supported by Universidad de Buenos Aires under grant TX048, by ANPCyT PICT No. 03-00000-00137 and CONICET (Argentina) and by Fondecyt 1030798 and Fondecyt Coop. Int. 7050118 (Chile).

2000 Mathematics Subject Classification 35K57, 35B40.
We note that (1.2) holds for M large if $\Delta \varphi$ is nonnegative in a neighborhood of the set where φ vanishes.

It is known that, and we will prove it later for the sake of completeness, once φ is fixed the solution to (1.1) blows up in finite time for any M sufficiently large. By this we understand that there exists a time $T = T(M)$ such that u is defined in $\Omega \times [0, T)$ and
\[
\lim_{t \to T} \|u(\cdot, t)\|_{L^\infty(\Omega)} = +\infty.
\]

The study of the blow-up phenomena for parabolic equations and systems has attracted considerable attention in recent years, see for example, [B], [BB], [GK1], [GK2], [GV], [HV1], [HV2], [M], [Z] and the corresponding references. A good review in the topic can be found in [GV2]. When a large or small diffusion is considered, see [IY], [MY].

Important issues in a blow-up problem are to obtain estimates for the blow-up time, $T(M)$, and determine the spatial structure of the set where the solution becomes unbounded, that is, the blow-up set. More precisely, the blow-up set of a solution u that blows up at time T is defined as
\[
B(u) = \{x/ \text{there exist } x_n \to x, t_n \nearrow T, \text{ with } u(x_n, t_n) \to \infty\}.
\]

The problem of estimating the blow-up time and the description and location of the blow-up set has proved to be a subtle problem and has been addressed by several authors. See for example [SGKM], [GV2] and the corresponding bibliographies.

Our interest here is the description of the asymptotic behavior of the blow-up time, $T(M)$, and of the blow-up set, $B(u)$, as $M \to \infty$. It turns out that their asymptotics depend on a combination of the shape of both the initial condition, φ, and the potential V. Roughly speaking one expects that if $\varphi \equiv 1$ then the blow-up set should concentrate near the points where V attains its maximum. On the other hand if $V \equiv 1$ the blow-up set should be near the points where φ attains its maximum. Just to see what to expect, if we drop the laplacian, we get the ODE $u_t = V(x) u^p$ with initial condition $u(x, 0) = M \varphi(x)$. Here x plays the role of a parameter. Direct integration gives $u(x, t) = C(T - t)^{-1/(p-1)}$ with
\[
T = \frac{M^{1-p}}{(p - 1)V(x)\varphi^{p-1}(x)}.
\]

Hence, blow-up takes place at points x_0 that satisfy $V(x_0)\varphi^{p-1}(x_0) = \max_x V(x)\varphi^{p-1}$. Therefore, we expect that the quantity that plays a major role is $(\max_x V(x)\varphi^{p-1}(x))$.
Theorem 1.1. There exists \(\bar{M} > 0 \) such that if \(M \geq \bar{M} \) the solution of (1.1) blows up in a finite time that we denote by \(T(M) \). Moreover, let

\[
A = A(\varphi, V) := \frac{1}{(\max_x \varphi^{p-1}(x)V(x))}
\]

then there exist two positive constants \(C_1, C_2 \), such that, for \(M \) large enough,

\[
(1.3) \quad -\frac{C_1}{M^{\frac{p-1}{4}}} \leq T(M)M^{p-1} - \frac{A}{p-1} \leq \frac{C_2}{M^{\frac{p-1}{4}}},
\]

and the blow-up set verifies,

\[
(1.4) \quad \varphi^{p-1}(a)V(a) \geq \frac{1}{A} - \frac{C}{M^{\gamma}}, \quad \text{for all } a \in B(u),
\]

where \(\gamma = \min\left(\frac{p-1}{4}, \frac{1}{3}\right) \).

Note that this result implies that

\[
\lim_{M \to \infty} T(M)M^{p-1} = \frac{A}{p-1}.
\]

Moreover, it provides precise lower and upper bounds on the difference \(T(M)M^{p-1} - \frac{A}{p-1} \).

We also observe that (1.4) shows that the set of blow-up points concentrates for large \(M \) near the set where \(\varphi^{p-1}V \) attains its maximum.

If in addition the potential \(V \) and the initial datum \(\varphi \) are such that \(\varphi^{p-1}V \) has a unique non-degenerate maximum at a point \(\bar{a} \), then there exist constants \(c > 0 \) and \(d > 0 \) such that

\[
\varphi^{p-1}(\bar{a})V(\bar{a}) - \varphi^{p-1}(x)V(x) \geq c|\bar{a} - x|^2 \quad \text{for all } x \in B(\bar{a}, d).
\]

Therefore, according to our result, if \(M \) is large enough one has

\[
|\bar{a} - a| \leq \frac{C}{M^{\gamma}} \quad \text{for any } a \in B(u),
\]

with \(\gamma = \min\left(\frac{p-1}{4}, \frac{1}{3}\right) \).

Throughout the paper we will denote by \(C \) a constant that does not depend on the relevant parameters involved but may change at each step.

2. Proof of Theorem 1.1

We begin with a lemma that provides us with an upper estimate of the blow-up time. This upper estimate gives the upper bound for \(T(M)M^{p-1} \) in (1.3) and will be crucial in the rest of the proof of Theorem 1.1.
Lemma 2.1. There exist a constant $C > 0$ and $M_0 > 0$ such that for every $M \geq M_0$, the solution of (1.1) blows up in a finite time that verifies

$$T(M) \leq A \frac{1}{M^{p-1}(p-1)} + C \frac{1}{M^{\frac{p-1}{3}}M^{p-1}}. \tag{2.1}$$

Proof: Let $\bar{a} \in \Omega$ be such that

$$\varphi^{p-1}(\bar{a})V(\bar{a}) = \max_x \varphi^{p-1}(x)V(x),$$

L the constant of Lipschitz continuity of V, and K an upper bound for the first derivatives of φ and L.

In order to get the upper estimate let M be fixed and $\varepsilon = \varepsilon(M) > 0$ to be defined latter, small enough so all functions involved are well defined. Pick

$$\delta = \frac{\varepsilon}{2K},$$

then

$$V(x) \geq V(\bar{a}) - \frac{\varepsilon}{2} \quad \text{and} \quad \varphi(x) \geq \varphi(\bar{a}) - \varepsilon \quad \text{for all } x \in B(\bar{a}, \delta).$$

Let w be the solution of

$$w_t = \Delta w + \left(V(\bar{a}) - \frac{\varepsilon}{2}\right)w^p \quad \text{in } B(\bar{a}, \delta) \times (0, T_w),$$

$$w = 0 \quad \text{on } \partial B(\bar{a}, \delta) \times (0, T_w),$$

$$w(x, 0) = M(\varphi(\bar{a}) - \varepsilon), \quad \text{in } B(\bar{a}, \delta)$$

and T_w its corresponding blow up time. A comparison argument shows that $u \geq w$ in $B(\bar{a}, \delta) \times (0, T)$ and hence

$$T \leq T_w.$$

Our task now is to estimate T_w for large values of M. To this end, let $\lambda_1(\delta)$ be the first eigenvalue of $-\Delta$ in $B(\bar{a}, \delta)$ and let ϕ_1 be the corresponding positive eigenfunction normalized so that

$$\int_{B(\bar{a}, \delta)} \phi_1(x) \, dx = 1.$$
Then $\Phi(t)$ satisfies $\Phi(0) = M(\varphi(\bar{a}) - \varepsilon)$ and
\[
\Phi'(t) = \int_{B(\bar{a}, \delta)} w(x, t) \phi_1(x) \, dx \\
= \int_{B(\bar{a}, \delta)} \left(\Delta w(x, t) \phi_1(x) + \left(V(x_1) - \frac{\varepsilon}{2} \right) w^p(x, t) \phi_1(x) \right) \, dx \\
\geq -\lambda_1(\delta) \int_{B(\bar{a}, \delta)} w(x, t) \phi_1(x) \, dx \\
+ \left(V(\bar{a}) - \frac{\varepsilon}{2} \right) \left(\int_{B(\bar{a}, \delta)} w(x, t) \phi_1(x) \, dx \right)^p \\
= -\lambda_1(\delta) \Phi(t) + \left(V(\bar{a}) - \frac{\varepsilon}{2} \right) \Phi(t)^p.
\]

Let us recall that there exists a constant D, depending on the dimension only, such that the eigenvalues of the laplacian scale according to the rule $\lambda_1(\delta) = D\delta^{-2}$.

Now, we choose ε such that
\[
\lambda_1(\delta) = D\delta^{-2} = D \left(\frac{\varepsilon}{2K} \right)^{-2} = \frac{\varepsilon}{2}(M(\varphi(\bar{a}) - \varepsilon))^{p-1}.
\]
So, ε is of order
\[
\varepsilon \sim \frac{C}{M^{\frac{p-1}{p}}}
\]
Choose M_0 such that for $M \geq M_0$ the resulting ε is small enough. Then for any $M \geq M_0$ we have that
\[
(2.2) \quad \Phi'(t) \geq (V(\bar{a}) - \varepsilon) \Phi(t)^p,
\]
for all $t \geq 0$ for which Φ is defined.

Since $\Phi(0) = M(\varphi(\bar{a}) - \varepsilon)$ and T_w is less or equal than the blow up time of Φ integrating (2.2) it follows that
\[
T_w \leq \frac{1}{M^{p-1}(p-1)(V(\bar{a}) - \varepsilon)(\varphi(\bar{a}) - \varepsilon)^{p-1}} \\
\leq \frac{1}{M^{p-1}(p-1)V(\bar{a})\varphi(\bar{a})^{p-1}} + \frac{C}{M^{\frac{p-1}{p}} M^{p-1}},
\]
for all $M \geq M_0$. \square

Now we prove a lemma that provides us with an upper bound for the blow up rate. We observe that this is the only place where we use hypothesis (1.2).

Lemma 2.2. Assume (1.2). Then there exists a constant C independent of M such that
\[
u(x, t) \leq C(T - t)^{-\frac{1}{p-1}}.
\]
Proof: Let $m = \min_{x \in \Omega} V$. Following ideas of [FMc], set

$$v = u_t - \frac{m}{2} u^p.$$

Then v verifies

$$v_t - \Delta v - V(x)pu^{p-1}v = \frac{m}{2} p(p - 1)u^{p-2}|\nabla u|^2 \geq 0 \quad \text{in } \Omega \times (0, T),$$

$$v = 0 \quad \text{on } \partial \Omega \times (0, T),$$

$$v(x, 0) = M\Delta \varphi + \left(V(x) - \frac{m}{2} \right) M^p \varphi^p \geq 0 \quad \text{in } \Omega.$$

Therefore $v \geq 0$ and hence

$$u_t \geq \frac{m}{2} u^p.$$

Integrating this inequality from 0 to T we get

$$u(x, t) \leq 2^{\frac{1}{p-1}} \frac{1}{(m(p-1)(T-t))^{\frac{1}{p-1}}} \equiv C(T-t)^{-\frac{1}{p-1}},$$

as we wanted to prove. \qed

We are now in a position to prove Theorem 1.1.

Proof of Theorem 1.1: The idea of the proof is to combine the estimate of the blow-up time proved in Lemma 2.1 with local energy estimates near a blow-up point a, like the ones considered in [GK1] and [GK2], to obtain an inequality that forces $\varphi^{p-1}(a) V(a)$ to be close to $\max_x \varphi^{p-1} V$.

Let us now proceed with the proof of the estimates on the blow-up set. We fix for the moment M large enough such that u blows up in finite time $T = T(M)$ and let $a = a(M)$ be a blow up point. As in [GK2], for this fixed a we define

$$w(y, s) = (T - t)^{\frac{1}{p-1}} u(a + y(T - t)^{\frac{1}{p}}, t)|_{t = T(1 - e^{-s})}.$$

Then w satisfies

$$(2.3) \quad w_s = \Delta w - \frac{1}{2} y \cdot \nabla w - \frac{1}{p - 1} w + V(a + ye^{-s})w^p,$$

in $\cup_{s \in [0, \infty)} \Omega(s) \times \{s\}$ where $\Omega(s) = \Omega_d(s) = \{y : a + ye^{-s} \in \Omega\}$ with $w(y, 0) = T^{\frac{1}{p-1}} \varphi(a + yT^{\frac{1}{2}})$. The above equation can rewritten as

$$w_s = \frac{1}{r} \nabla (\rho \nabla w) - \frac{1}{p - 1} w + V(a + ye^{-s})w^p$$

where $\rho(y) = \exp(-\frac{|y|^2}{4})$.

Consider the energy associated with the "frozen" potential

\[V \equiv V(a), \]

that is

\[E(w) = \int_{\Omega(s)} \left(\frac{1}{2} |\nabla w|^2 + \frac{1}{2(p-1)} w^2 - \frac{1}{p+1} V(a) w^{p+1} \right) \rho(y) dy. \]

Then, using the fact that \(\Omega \) is convex, we get

\[\frac{dE}{ds} \leq - \int_{\Omega(s)} (w_s)^2 \rho(y) dy + \int_{\Omega(s)} (V(a + y Te^{-\frac{s}{T}}) - V(a)) w^p w_s \rho(y) dy. \]

Since \(V(x) \) is Lipschitz and \(w \) is bounded due to Lemma 2.2, then there exists a constant \(C \) depending only on \(N, p \) and \(V \), recall that the constant in Lemma 2.2 does not depend on \(M \), such that

\[\frac{dE}{ds} \leq - \int (w_s)^2 \rho(y) dy + Ce^{-\frac{s}{T}} T \left(\int (w_s)^2 \rho(y) dy \right)^{1/2}. \]

Maximizing the right hand side of the above expression with respect to \(\int (w_s)^2 \rho(y) dy \) we obtain

\[\frac{dE}{ds} \leq Ce^{-s} T^2 \]

and integrating is \(s \) we get

(2.4) \[E(w) \leq E(w_0) + CT^2. \]

Since \(w \) is bounded and satisfies (2.3), following the arguments given in [GK1] and [GK2], one can prove that \(w \) converges as \(s \to \infty \) to a non trivial bounded stationary solution of the limit equation

(2.5) \[0 = \Delta z - \frac{1}{2} y \cdot \nabla z - \frac{1}{p-1} z + V(a) z^p \]

in the whole \(\mathbb{R}^N \).

Again by the results of [GK1] and [GK2], since \(p \) is subcritical, \(1 < p < (N + 2)/(N - 2) \), the only non trivial bounded positive solution of (2.5) with \(V(a) = 1 \) is the constant \((p - 1)^{-\frac{1}{p-1}} \). A scaling argument gives that the only non trivial bounded positive solution of (2.5) is the constant \(k = k(a) \) given by

\[k(a) = \frac{1}{(V(a)(p-1))^{\frac{1}{p-1}}}. \]

Therefore, we conclude that

\[\lim_{s \to \infty} w = k(a) \]
if a is a blow-up point. Also by the results of [GK1], [GK2] we have

$$E(w(\cdot, s)) \rightarrow E(k(a)) \quad \text{as} \quad s \rightarrow \infty,$$

where

$$E(k(a)) = \int \left(\frac{1}{2(p-1)}(k(a))^2 - \frac{1}{p+1} V(a)(k(a))^{p+1} \right) \rho(y) \, dy$$

$$= (k(a))^2 \left(\frac{1}{2(p-1)} - \frac{1}{(p+1)(p-1)} \right) \int \rho(y) \, dy.$$

By (2.4) and (2.6) we obtain that, if a is a blow-up point, then

$$E(k(a)) \leq E(w_0) + CT^2.$$

where $w_0(y) = w(y, 0) = T^{\frac{1}{p-1}} M \varphi(a + y T^{\frac{1}{2}})$.

As φ is smooth, $y \rho(y)$ integrable, and $T^{\frac{1}{p-1}} M$ is bounded by Lemma 2.1, there are constants C independent of a such that for $M \geq M_0$

$$E(w(\cdot, 0)) = \int_{\Omega(0)} \left(\frac{1}{2} |\nabla w_0(y)|^2 + \frac{1}{2(p-1)} w_0^2(y) \right) \rho(y) \, dy$$

$$- \int_{\Omega(0)} \left(\frac{1}{p+1} V(a)w_0^{p+1}(y) \right) \rho(y) \, dy$$

$$\leq \int_{\Omega(0)} \left(\frac{1}{2} (T^{\frac{1}{p-1}} M)^2 T |\nabla \varphi(a)|^2 \right) \rho(y) \, dy$$

$$+ \int_{\Omega(0)} \left(\frac{1}{2(p-1)} (T^{\frac{1}{p-1}} M \varphi(a))^2 \right) \rho(y) \, dy$$

$$- \int_{\Omega(0)} \left(\frac{1}{p+1} V(a)(T^{\frac{1}{p-1}} M \varphi(a))^{p+1} \right) \rho(y) \, dy$$

$$+ CT^{\frac{1}{2}} + CT^\frac{1}{2}.$$

Therefore, since $|\nabla \varphi|$ is bounded,

$$E(w(\cdot, 0)) \leq \int_{\Omega(0)} \left(\frac{1}{2(p-1)} (T^{\frac{1}{p-1}} M \varphi(a))^2 \right) \rho(y) \, dy$$

$$- \int_{\Omega(0)} \left(\frac{1}{p+1} V(a)(T^{\frac{1}{p-1}} M \varphi(a))^{p+1} \right) \rho(y) \, dy$$

$$+ CT^{\frac{1}{2}} + CT^\frac{1}{2}.$$

Or, since $T \leq 1$ for M large

$$E(w(\cdot, 0)) \leq E(T^{\frac{1}{p-1}} M \varphi(a)) + CT^\frac{1}{2}.$$

Hence we arrive to the following bound for $E(k(a))$

(2.7) \hspace{1cm} E(k(a)) \leq E(w(\cdot, 0)) + CT^2 \leq E(T^{\frac{1}{p-1}} M \varphi(a)) + CT^\frac{1}{2}.
Observe that if \(b \) is a constant then the energy can be written as
\[
E(b) = \Gamma F(b),
\]
where \(\Gamma \) is the constant
\[
\Gamma = \int \rho(y) \, dy
\]
and \(F \) is the function
\[
F(z) = \left(\frac{1}{2(p-1)} z^2 - \frac{1}{p+1} V(a) z^{p+1} \right).
\]

As \(F \) attains a unique maximum at \(k(a) \) and \(F''(k(a)) = -1 \) there are \(\alpha \) and \(\beta \) such that if \(|z - k(a)| \leq \alpha \) then
\[
F''(z) \leq -\frac{1}{2},
\]
and if \(|F(z) - F(k(a))| \leq \beta \) then
\[
|z - k(a)| \leq \alpha.
\]

From (2.7) we obtain
\[
F(k(a)) \leq F(T^{\frac{1}{p-1}} M \varphi(a)) + CT^{\frac{1}{2}}.
\]
If \(M_1 \) is such that \(C(T(M_1))^{\frac{1}{2}} = \beta \) then for \(M \geq \max(M_0, M_1) \)
\[
\beta \geq CT^{\frac{1}{4}} \geq F(k(a)) - F(T^{\frac{1}{p-1}} M \varphi(a)).
\]
Hence by the properties of \(F \),
\[
|k(a) - T^{\frac{1}{p-1}} M \varphi(a)| \leq \alpha.
\]
Therefore
\[
CT^{\frac{1}{4}} \geq F(k(a)) - F(T^{\frac{1}{p-1}} M \varphi(a)) \geq \frac{1}{4}(T^{\frac{1}{p-1}} M \varphi(a) - k(a))^2.
\]
So, using Lemma 2.1
\[
k(a) - CT^{\frac{1}{4}} \leq T^{\frac{1}{p-1}} M \varphi(a)
\]
(2.8)
\[
\leq \frac{\varphi(a)}{(p-1)^{\frac{1}{p-1}} V^{\frac{1}{p-1}}(\tilde{a}) \varphi(\tilde{a})} + C \varphi(a) M^{\frac{1}{2}} - \frac{1}{M^{\frac{1}{2}}}.
\]
where
\[
\theta(a) = \left(\frac{\varphi(a) V(a) r_{\tilde{a}}^{\frac{1}{p-1}}}{\varphi(\tilde{a}) V(\tilde{a}) r_{\tilde{a}}^{\frac{1}{p-1}}} \right)
\]
and \(\bar{a} \) is such that

\[
\varphi^{p-1}(\bar{a}) V(\bar{a}) = \max_x \varphi^{p-1}(x) V(x).
\]

Recall that

\[
T \leq \frac{C}{M^{p-1}}.
\]

Therefore, we get

\[
k(a)(1 - \theta(a)) \leq \frac{C\varphi(a)}{M^{\frac{1}{p}}} + \frac{C}{M^{\frac{p-1}{4}}} \leq \frac{C}{M^{\gamma}},
\]

with \(\gamma = \min(\frac{p-1}{4}, \frac{1}{3}) \).

As \(V \) is bounded we have that \(k(a) \) is bounded from below, hence

\[
(1 - \theta(a)) \leq \frac{C}{M^{\gamma}},
\]

that is,

\[
\theta(a) \geq 1 - \frac{C}{M^{\gamma}}
\]

and we finally obtain

\[
(2.9) \quad \varphi(a)V(a)^{\frac{1}{p-1}} \geq \varphi(\bar{a})V(\bar{a})^{\frac{1}{p-1}} - \frac{C}{M^{\gamma}}.
\]

This proves (1.4).

To obtain the lower estimate for the blow-up time observe that from (2.9) and the fact that \(V(a) \geq c > 0 \) we get

\[
(2.10) \quad \varphi(a) \geq \frac{\varphi(\bar{a})V(\bar{a})^{\frac{1}{p-1}}}{V(a)^{\frac{1}{p-1}}} - \frac{C}{V(a)^{\frac{1}{p-1}}M^{\gamma}}
\]

with \(\gamma = \min(\frac{p-1}{4}, \frac{1}{3}) \).

Inequality (2.8) gives us

\[
\frac{1}{(V(a)(p-1))^{\frac{1}{p-1}}} - CT^{\frac{1}{4}} \leq T^{\frac{1}{p-1}}M\varphi(a).
\]

Hence

\[
\frac{1}{\varphi(a)(V(a)(p-1))^{\frac{1}{p-1}}} - \frac{CT^{\frac{1}{4}}}{\varphi(a)} \leq T^{\frac{1}{p-1}}M.
\]

By (2.10) and \(\varphi^{p-1}(\bar{a})V(\bar{a}) = \max_x \varphi^{p-1}(x)V(x) \) we get

\[
\frac{1}{\varphi(\bar{a})(V(\bar{a})(p-1))^{\frac{1}{p-1}}} - CT^{\frac{1}{4}} \leq T^{\frac{1}{p-1}}M
\]
and using

\[T \leq \frac{C}{M^{p-1}} \]

we obtain

\[\frac{1}{\varphi(\bar{a})V(\bar{a})(p-1))^{\frac{1}{p-1}}} - \frac{C}{M^{\frac{p-1}{c}}} \leq T^{\frac{1}{p-1}}M \]

as we wanted to prove. \qed

References

[B] J. Ball. Remarks on blow-up and nonexistence theorems for nonlinear evolution equations. Quart. J. Math. Oxford, Vol. 28, (1977), 473–486.

[BB] C. Bandle and H. Brunner. Blow-up in diffusion equations: a survey. J. Comp. Appl. Math. Vol. 97, (1998), 3–22.

[FMc] A. Friedman and J. B. McLeod. Blow up of positive solutions of semilinear heat equations. Indiana Univ. Math. J., Vol. 34, (1985), 425–447.

[GV] V. A. Galaktionov and J. L. Vázquez. Continuation of blow-up solutions of nonlinear heat equations in several space dimensions. Commun. Pure Applied Math. 50, (1997), 1–67.

[GV2] V. A. Galaktionov and J. L. Vázquez. The problem of blow-up in nonlinear parabolic equations. Discrete Contin. Dynam. Systems A. Vol 8, (2002), 399–433.

[GK1] Y. Giga and R. V. Kohn. Nondegeneracy of blow up for semilinear heat equations. Comm. Pure Appl. Math. Vol. 42, (1989), 845–884.

[GK2] Y. Giga and R. V. Kohn. Characterizing blow-up using similarity variables. Indiana Univ. Math. J. Vol. 42, (1987), 1–40.

[HV1] M. A. Herrero and J. J. L. Velazquez. Flat blow up in one-dimensional, semilinear parabolic problems. Differential Integral Equations. Vol. 5(5), (1992), 973–997.

[HV2] M. A. Herrero and J. J. L. Velazquez. Generic behaviour of one-dimensional blow up patterns. Ann. Scuola Norm. Sup. di Pisa, Vol. XIX (3), (1992), 381–950.

[IY] K. Ishige and H. Yagisita. Blow-up problems for a semilinear heat equation with large diffusion. J. Differential Equations. Vol. 212(1), (2005), 114–128.

[M] F. Merle. Solution of a nonlinear heat equation with arbitrarily given blow-up points. Comm. Pure Appl. Math. Vol. XLV, (1992), 263–300.

[MY] N. Mizoguchi and E. Yanagida. Life span of solutions for a semilinear parabolic problem with small diffusion. J. Math. Anal. Appl. Vol. 261(1), (2001), 350–368.

[SGKM] A. Samarski, V. A. Galaktionov, S. P. Kurdyumov and A. P. Mikhailov. Blow-up in quasilinear parabolic equations. Walter de Gruyter, Berlin, (1995).

[Z] H. Zaag. One dimensional behavior of singular N dimensional solutions of semilinear heat equations. Comm. Math. Phys. Vol. 225 (3), (2002), 523–549.
Departamento de Matemática, Universidad Católica de Chile, Casilla 306, Correo 22, Santiago, Chile.
E-mail address: ccortaza@mat.puc.cl, melgueta@mat.puc.cl

Instituto de Matemáticas y Física Fundamental
Consejo Superior de Investigaciones Científicas
Serrano 123, Madrid, Spain,
on leave from Departamento de Matemática, FCEyN UBA (1428)
Buenos Aires, Argentina.
E-mail address: jrossi@dm.uba.ar