Approximate Distance Oracles Subject to Multiple Vertex Failures

Ran Duan *, Yong Gu †, and Hanlin Ren‡

1Institute for Interdisciplinary Information Sciences, Tsinghua University

February 18, 2020

Abstract

Given an undirected graph $G = (V, E)$ of n vertices and m edges with weights in $[1, W]$, we construct vertex sensitive distance oracles (VSDO), which are data structures that preprocess the graph, and answer the following kind of queries: Given a source vertex u, a target vertex v, and a batch of d failed vertices D, output (an approximation of) the distance between u and v in $G - D$ (that is, the graph G with vertices in D removed). An oracle has stretch α if it always holds that $\delta_{G-D}(u, v) \leq \delta(u, v) \leq \alpha \cdot \delta_{G-D}(u, v)$, where $\delta_{G-D}(u, v)$ is the actual distance between u and v in $G - D$, and $\delta(u, v)$ is the distance reported by the oracle.

In this paper we construct efficient VSDOs for any number d of failures. For any constant $c \geq 1$, we propose two oracles:

- The first oracle has size $n^{2+1/c}(\log n/c)^{O(d)} \cdot \log W$, answers a query in poly($\log n, d^c, \log \log W, \epsilon^{-1}$) time, and has stretch $1 + \epsilon$, for any constant $\epsilon > 0$.
- The second oracle has size $n^{2+1/c} \cdot \text{poly}(\log(nW), d)$, answers a query in poly($\log n, d^c, \log \log W$) time, and has stretch $\text{poly}(\log n, d)$.

Both of these oracles can be preprocessed in time polynomial in their space complexity. These results are the first approximate distance oracles of poly-logarithmic query time for any constant number of vertex failures in general undirected graphs. Previously there are $(1 + \epsilon)$-approximate d-edge sensitive distance oracles [Chechik et al. 2017] answering distance queries when d edges fail, which have size $O(n^2(\log n/c)^d \cdot d \log W)$ and query time poly($\log n, d, \log \log W$).

*duanran@mail.tsinghua.edu.cn.
†guyong12@mails.tsinghua.edu.cn.
‡rhl16@mails.tsinghua.edu.cn.
1 Introduction

Real-life networks are prone to failures. Usually, there can be several failed nodes or links, but the graph topology will not deviate too much from the underlying failure-free graph. This motivates the d-failure model, in which we should preprocess a graph, such that upon a small number (d) of failures, we can “recover” from these failures quickly. A typical application is network routing: given nodes u, v and a set of failed nodes or links D, we would like to find the shortest path from u to v that does not go through D.

In their pioneering work, Demetrescu and Thorup [29] designed a data structure that can maintain all-pairs shortest paths under one edge failure. In other words, for each triple (u, v, f) where u, v are vertices and f is a failed edge, the data structure can output the length of the shortest path from u to v that does not go through f, in $O(\log n)$ query time. A subsequent work [30] extends the structure to also handle vertex failures, and improves the query time to $O(1)$.

The one-failure case is studied extensively in literature [8,11–13,26,35,38,39,64]. Less is known about handling multiple failures. For undirected graphs, we can answer connectivity queries under d edge failures [33, 34, 53] and d vertex failures [33, 34] in poly($d, \log n$) time. Chechik et al. [24] designed a data structure that maintains $O(d)$-approximate shortest paths under d edge failures in an undirected graph, and Bilò et al. [14] improved the approximation ratio to $2d + 1$. For any $\epsilon > 0$, Chechik et al. [23] designed a data structure that $(1 + \epsilon)$-approximates shortest paths under d edge failures in an undirected graph, but the space complexity of their data structure is exponential in d, and becomes super-polynomial when $d = \omega(\log n / \log \log n)$.

However, despite much effort, it was not known if one can maintain (approximate) shortest paths under multiple vertex failures. This problem was addressed as an open problem in [8,23,24], and also in Chechik’s PhD thesis [22].

In this paper we build efficient data structures that answer approximate distance queries under multiple vertex failures for general undirected graphs, answering the above question in the affirmative. A vertex-sensitive distance oracle (VSDO) for a weighted undirected graph $G = (V, E)$ is a data structure that given a set of failed vertices $D \subseteq V$ and $u, v \in V \setminus D$, outputs (an estimate of) the length of the shortest path from u to v that avoids all vertices in D. We will be concerned with the following parameters of a VSDO:

- Space complexity, i.e. the amount of space that the data structure occupies.
- Query time, i.e. the time needed to answer one query (u, v, D).
- Approximation ratio, a.k.a. stretch: A VSDO has stretch α if it always holds that $\delta_{G-D}(u, v) \leq \hat{\delta}(u, v) \leq \alpha \cdot \delta_{G-D}(u, v)$, where $\delta_{G-D}(u, v)$ is the actual distance between u and v in $G - D$ (i.e. G with D disabled), and $\hat{\delta}(u, v)$ is the output of the VSDO.

We will not be particularly interested in the preprocessing time of VSDOs; nevertheless, all VSDOs in this paper can be preprocessed in time polynomial in their space complexity.

In this paper, n and m denote the number of vertices and edges respectively. Let W be the ratio of the largest edge weight to the smallest edge weight. W.l.o.g. we can assume that edge weights are real numbers in $[1, W]$.

\[\text{We can also use dynamic connectivity structures with poly-logarithmic worst case update time [37, 44, 63] to handle } d \text{ edge failures.}\]
1.1 Our results

We provide the first constructions of approximate VSDOs for general undirected graphs with polylogarithmic query time. Our main results are as follows:

Theorem 1.1 (main). For any constants \(c \geq 1 \) and \(\epsilon > 0 \), we can construct VSDOs for undirected graphs with:

\[
\begin{align*}
&\text{(a) space complexity } n^{2+1/c} \log W \cdot (\epsilon^{-1} \log n)^{O(d)}, \text{ query time } \tilde{O}(d^{2c+6} \epsilon^{-1} \log \log W), \text{ and stretch } 1 + \epsilon; \\
&\text{(b) space complexity } \tilde{O}(n^{2+1/c} d^3 \log(nW)), \text{ query time } \tilde{O}(d^{2c+9} \log \log(nW)), \text{ and stretch } O(d^{c+2} \log^6 n).
\end{align*}
\]

Each oracle can be preprocessed in time polynomial in their space complexity. The preprocessing and query algorithms for oracle (a) are deterministic, and the preprocessing algorithm for (b) is randomized but the query algorithm is deterministic, so w.h.p. we obtain an oracle which always gives the correct answer. Our constructions also allow an actual approximate shortest path to be retrieved in an additional time of \(O(\ell) \), where \(\ell \) is the number of edges in the reported path.

Using existing structures, we need either \(n^{\Omega(d)} \) space or \(\Omega(n) \) query time. Thus our results are the first of its kind.

1.2 A brief overview

In this section, we briefly sketch the ideas behind our new data structures. We will first discuss about the previous works \([23,33]\) that we depend on, and also the obstacles we need to overcome in order to adapt these ideas to a vertex-failure approximate distance oracle. Then we will introduce our new ideas that bypass these obstacles.

The edge-failure distance sensitivity oracle of \([23]\). Our first oracle depends on \([23]\), which handles \(d \) edge failures. It may be helpful to think of their query algorithm as a recursive one.

Given \(u, v \in V \) and a set \(D \) of \(d \) edge failures, let \(P_{\text{ans}} \) be the shortest \(u-v \) path in \(G - D \), which we are searching for. The oracle first partitions the shortest path \(P \) from \(u \) to \(v \) in \(G \) (which may go through failures) into \(\tilde{O}(\epsilon^{-1} \log W) \) short segments. Consider a segment \(s \) that contains some failed edges. If \(P_{\text{ans}} \) does not go through \(s \), then we can “preprocess” the graph \(G - s \) and search for \(P_{\text{ans}} \) in \(G - s \). Otherwise, if \(P_{\text{ans}} \) goes through some vertex \(x \in s \), then we can pick an arbitrary vertex \(w \in s \) such that there are no failed edges between \(x \) and \(w \), and pretend that \(P_{\text{ans}} \) passes through \(w \). In other words, we recursively find the shortest path in \(G - D \) from \(u \) to \(w \) and from \(w \) to \(v \) and concatenate them. It is easy to see that this brings an additive error of at most \(2|s| \) to our solution.

What is the “recursion depth” of the algorithm? In \([23]\), the oracle always chooses \(w \) as some vertex incident to some failed edge. Since there are only \(2d \) such vertices, the number of possible \(w \)'s is at most \(2d \), and the query time is polynomial in the number of such \(w \)'s.

Note that, for the sake of intuition, we have omitted some important details, such as how to “preprocess” \(G - s \) (by a decision tree structure) and how to implement the query algorithm (non-recursively).

2 \(\tilde{O} \) hides \(\text{poly}(\log n) \) factors.
3 See Table 3 in Appendix A for precise time bounds.
4 We can use the \(d \)-fault tolerant spanner \([16,18,21,31]\) with the brute-force query algorithm, build \(n^{d-2} \) two-failure distance oracles \([32]\), use the dynamic shortest path algorithms \([1,60]\), or use the oracle \([62]\) which also works for directed graphs. But none of these solutions provide both \(n^{\Omega(d)} \) space and \(o(n) \) query time.
Obstacles. The obvious difficulty of handling vertex failures is the presence of failed vertices with very high degrees. If every failed vertex has degree $\leq \Delta$, we can simply simulate an edge-failure distance oracle \cite{23,24} and delete at most $d \cdot \Delta$ edges from it. However, the techniques of \cite{23,24} do not seem to work for high-degree vertex failures. For example, techniques in \cite{24} only guarantees a stretch of $\geq \Delta$, and techniques in \cite{23} requires poly(Δ) query time, therefore both are unsatisfactory when $\Delta = \Omega(n)$.

The high-degree hierarchy of \cite{33}. In \cite{33}, the authors introduced the “high-degree hierarchy” to handle connectivity queries under multiple vertex failures. In short, this structure partitions the graph into $O(\log n)$ levels, such that the degree of every failure in each level is small. It is then easy to maintain “intra-level” connectivity, i.e. the set of vertex pairs connected by paths that only go through one level. Then \cite{33} uses additional data structures to maintain “inter-level” connectivity, i.e. paths that go through multiple levels. Unfortunately, these additional structures seem to break down completely in our scenario, where we need to maintain approximate distances.

Our solution. The high level strategy is to adapt the hierarchy in \cite{33} to implement the “recursive” algorithm in \cite{23} in vertex-failure case. In particular, the new hierarchy structure is used to find the intermediate vertices w (see above discussion). However, to make this approach viable, one, the following new ideas are needed.

First, we plug the tree covers\footnote{In this section, readers unfamiliar with tree covers can think it as spanners.} of \cite{61} (see also \cite{54}) into our new hierarchy, and “extend” the ranges of these tree covers to the whole graph (instead of inside some level as in \cite{33}). Hence these tree covers are automatically capable of maintaining inter-level paths. However, we can no longer bound the degrees of failed vertices in the tree covers. Instead, we can only guarantee that the degrees of failed vertices w.r.t. the trunk parts (i.e. within the specific level) of the tree covers are small. For comparison, the hierarchy structure in \cite{33} maintains a connectivity certificate (i.e. spanning forest) inside each level, so the degrees of failed vertices are indeed small, but it needs additional structures to maintain inter-level paths.

Second, we argue that the number of intermediate vertices (i.e. w’s) are indeed small (which is not trivial at all since the tree covers are “extended”). In particular, we show that given a vertex x and a “nearby” failure f, (under certain conditions,) we can always find a vertex w “close to” x. Moreover, this vertex w is either the parent, or a trunk neighbor of some failure f' in some tree cover, so we have a good upper bound on the number of different possible w’s. Note that we find this w in the tree cover, so it does not necessarily lie on the path from x to f, which is different from \cite{23}. This argument is illustrated in the proof of Lemma 3.5.

To reduce the space complexity of our data structure by a factor of $n^{1-o(1)}$, we also prove a structural theorem (Theorem 4.3) for shortest paths under failed vertices. (The corresponding theorem \cite[Theorem 3.1]{23} does not hold for vertex failures.) Curiously, the proof of this theorem also relies on the above argument (i.e. Lemma 3.5).

The stretch $1 + \epsilon$. One may be curious about how we can achieve a stretch of $1 + \epsilon$, given that tree covers in \cite{61} only guarantee a stretch of ≥ 3. In the query algorithm of \cite{23}, each “recursion” brings an additive error of $2|s|$ to the answer, where $|s|$ is the length of some segment. Since the number of recursions is bounded, if we partition the paths into sufficiently short segments, we can control the stretch to be $1 + \epsilon$. In our case it is similar, but the vertex w is found in our tree

\footnote{We actually set parameters so that the tree covers have a stretch of $\Theta(\log n)$.}
covers, so the additive error becomes \((4k - 2)|s|\) (where the stretch of the tree cover is \(2k - 1\)). Nevertheless, we can still achieve \((1 + \epsilon)\)-approximation by adjusting the lengths of the segments.

On oracle (b). Although oracle (b) has a larger stretch compared to oracle (a), we think it is also of interest, since it is the first oracle that handles \(\omega(\log n)\) failures in polynomial space and \(\text{poly}(\log n)\) query time, within a reasonable stretch.\(^7\) Note that setting \(\epsilon = \omega(1)\) (e.g. \(\epsilon = \log n\)) in oracle (a) does not improve its space complexity to \(n^2 \log \omega(d) n\), so oracle (b) is not a direct corollary of oracle (a).

1.3 More related work

Sensitivity oracles. For the case of two vertex failures, Duan and Pettie \[32\] showed that exact distances in a directed weighted graph can be queried in \(O(\log n)\) time, with an oracle of size \(O(n^2 \log^3 n)\), and Choudhary \[25\] designed an oracle of \(O(n)\) size that handles single source reachability queries in directed graphs in \(O(1)\) time.

The general problem of \(d\) failures has also received attention on planar graphs: Borradaile et al. \[19\] constructed a data structure that maintains connectivity under \(d\) vertex failures, and Charalampopoulos et al. \[20\] designed a data structure that answers exact distance queries under \(d\) vertex failures.

In a recent breakthrough, van den Brand and Saranurak \[62\] gave an oracle that handles an arbitrary number \(d\) of edge failures in directed graphs. Their oracle can answer reachability queries in \(O(d^\omega)\) time, and exact distance queries in \(n^{2-\Omega(1)}\) time (for small integer weights), where \(\omega < 2.3728639\) is the matrix-multiplication exponent \[27, 46, 58, 65\].

We summary the sensitivity connectivity/distance oracles in Table 2 of Appendix A.

Fault-tolerant structures. A related concept is fault-tolerant (FT) spanners: a subgraph \(G'\) of \(G\) is a \(d\)-FT spanner if, after removing any \(d\) vertices, the remaining parts of \(G'\) is a spanner of the remaining parts of \(G\). It might be a priori surprising that sparse FT spanners exist, but Chechik et al. \[21\] gave the first construction of \(d\)-FT \((2k - 1)\)-spanners with \(O(d^2 k^{d+1} n^{1+1/k} \log^{1-1/k} n)\) edges. Subsequent papers \[16, 18, 31\] improved the number of edges to \(O(n^{1+1/k} d^{1-1/k})\), which is optimal assuming the girth conjecture of Erdős \[36\].

Besides FT spanners, there are many other kinds of fault-tolerant structures, e.g. \[14, 15, 17, 47, 49, 52\]. We refer the reader to the excellent survey of \[48\].

Dynamic shortest path. There are dynamic all-pairs shortest path structures handling vertex updates. Thorup \[60\] gave a fully dynamic all-pairs shortest paths structure with worst-case update time \(\tilde{O}(n^{2.75})\), and Abraham et al. \[1\] gave a randomized worst-case update time bound \(\tilde{O}(n^{2+2/3})\). Other fully or partial dynamic shortest path structures include \[2, 10, 28, 41, 43, 45, 55, 57, 59\].

1.4 Notation

In this paper, \(\log x = \log_2 x, \ln x = \log_e x\). For a set \(S\) and an integer \(k\), \(|S|\) is the cardinality of \(S\), and we denote \(\binom{S}{k} = \{S' \subseteq S : |S'| = k\}\), and \(\binom{S}{< k}, \binom{S}{> k}\) are defined analogously. For two sets \(X\) and \(Y\), define their Cartesian product as \(X \times Y = \{(x, y) : x \in X, y \in Y\}\). We use \(\circ\) as the concatenation operator for paths or sequences. For paths \(P_1, P_2\), if \(u\) is the last vertex in \(P_1\) and \(v\) is the first vertex in \(P_2\), then \(P_1 \circ P_2\) is well-defined if \(u = v\) or \((u, v)\) is an edge in \(G\).

\(^7\)It seems that even \(O(\sqrt{n})\) stretch was open before this result.
For a graph H and $u, v \in V(H)$, $w_H(u, v)$ denotes the length of the edge between u and v ($w_H(u, v) = +\infty$ if such an edge does not exist), $\delta_H(u, v)$ denotes the length of the shortest path in H from u to v, and $\pi_H(u, v)$ denotes the corresponding shortest path. If $S \subseteq V(H)$ is a subset of vertices, then $\delta_H(u, S) = \min\{\delta_H(u, v) : v \in S\}$, $(\delta_H(u, \emptyset) = +\infty)$. We omit the subscript H if $H = G$ is the input graph. We define $H[S]$ as the subgraph induced by S, and $H - S = H[V(H) \setminus S]$. We use nW as an upper bound of the diameter of any (connected) subgraph of G. In Section 4, by slightly perturbing edge weights randomly, we can assume that the shortest path between every pair of vertices in any subgraph is unique (see [30]).

For a path P and $u, v \in P$, define $P[u, v]$ as the portion from u to v in P, and sometimes this notation emphasizes the direction from u to v. Let $(u = x_0, x_1, \ldots, x_{\ell-1}, x_\ell = v)$ denote the path $P[u, v]$, then we define $P(u, v) = P[x_1, v], P(u, v) = P[u, x_{\ell-1}]$ and $P(u, v) = P[x_1, x_{\ell-1}]$. Define $|P|$ as the length of path P. For a tree T rooted at r and a vertex $x \in V$, define the depth of x, denoted by $\text{dep}_T(x)$, as the (weighted) distance from x to r in T.

In this paper, D denotes the set of $\leq d$ failed vertices. For convenience, we always assume $n \geq 3$ and $d \geq 2$.

Note that we also define some more notation in the end of Section 2.2, which is relevant to the “high-degree hierarchy”. Table 1 in Appendix A summarizes some nonstandard notation in this paper.

2 Source-Restricted Tree Covers in High-Degree Hierarchy

Our VSDO is based on a variant of the high-degree hierarchy of [33], which we equip with the source-restricted tree covers of [54,61] to approximately preserve distances.

2.1 Source-restricted tree covers

A tree cover of a graph G is, informally, a set of trees such that every vertex $v \in V$ is in a small number of trees, and for every two vertices $u, v \in V$, there is a tree that approximately preserves their distance $\delta(u, v)$. In this paper, we relax the second condition, requiring it to hold only for every $u \in S, v \in V$, where S is some subset of V. Following terminologies of [54], we call such tree covers source-restricted.

Throughout this paper, $k = \ln n$.

We define source-restricted tree cover as follows.

Definition 2.1. Given $S \subseteq V$, an S-restricted tree cover is a set of rooted trees $\{T(s) : s \in S\}$, such that the following hold.

a) For every $s \in S$, there is exactly one tree $T(s)$ rooted at s, spanning a subset of V (which we denote as $V(T(s))$).

b) For every $u \in S, v \in V$, there is some $w \in S$ such that $u, v \in V(T(w))$, and $\text{dep}_{T(w)}(u) + \text{dep}_{T(w)}(v) \leq (2k - 1)\delta(u, v)$.

c) Every vertex $v \in V$ is in at most $kn^{1/k}(\ln n + 1) \leq 2e \ln^2 n$ trees.

In [61], Thorup and Zwick constructed approximate distance oracles, and they noticed that their constructions are also good tree covers. A simple modification of their construction yields

8 Our construction works for any parameter k, but the complexity is proportional to $kn^{1/k}$, so we minimize it by setting $k = \ln n$.

9 We only require that the distance between u and v in $T(w)$ approximates $\delta(u, v)$ well in Section 5. However, we will require that the sum of depths of u and v approximates $\delta(u, v)$ well in Section 5.
source-restricted tree covers. We provide a sketch of the construction here; we refer the interested reader to [61] for details of this construction. (See also [54].)

Theorem 2.2. Given a graph $G = (V, E)$ and $S \subseteq V$, we can compute in deterministic polynomial time an S-restricted tree cover $\mathcal{T}(S) = \{T(s) : s \in S\}$ such that for any $u \in S, v \in V$, the vertex w in Definition 2.1 such that $w \in \mathcal{T}(S)$ can be found in $O(k)$ time.

Proof Sketch. We start with a randomized construction. We construct a sequence of nested subsets $S = A_0 \supseteq A_1 \supseteq \cdots \supseteq A_k = \emptyset$, where each $A_i \ (1 \leq i < k)$ is constructed by independently sampling each vertex in A_{i-1} w.p. $n^{-1/k}$. Let $w \in S$, then there is some $0 \leq i < k$ such that $w \in A_i \setminus A_{i+1}$. We define a cluster $C(w)$ around w as follows:

$$C(w) = \{v \in V : \delta(v, w) < \delta(v, A_{i+1})\}.$$

That is, if v is closer to w than to every vertex in A_{i+1}, then $v \in C(w)$. Let $T(w)$ be the shortest path tree rooted at w spanning $C(w)$. The tree cover is $\mathcal{T}(S) = \{T(w) : w \in S\}$.

It is easy to see that the tree $T(w)$ only contains vertices in $C(w)$. Actually, let $v \in C(w), v'$ be a vertex on the shortest path from w to v, then $v' \in C(w)$, since

$$\delta(v', w) = \delta(v, w) - \delta(v, v')$$

$$< \delta(v, A_{i+1}) - \delta(v, v')$$

$$\leq \delta(v', A_{i+1}).$$

For every vertex $v \in V$, we also define a bunch $B(v)$ as follows. For $w \in A_i \setminus A_{i+1}$, if $\delta(v, w) < \delta(v, A_{i+1})$, then w is in the bunch $B(v)$. (For any v and i, let the vertex in A_i closest to v be u, then u must be in $A_j \setminus A_{j+1}$ for some $j \geq i$, so $u \in B(v)$.) It is easy to check that

$$B(v) = \{w \in S : v \in C(w)\}.$$

Now we derandomize the construction of A_i and justify [3]. For every vertex $v \in V$, since v is only in the trees rooted in $B(v)$, it suffices to prove that $|B(v)| \leq kn^{1/k} \ln n + 1$. Suppose we have constructed A_i and want to construct A_{i+1} now. For $v \in V$, let $N_{i+1}(v)$ be the set of the $n^{1/k} \ln n + 1$ closest vertices to v in A_i. By [61] Lemma 3.6, a hitting set A_{i+1} of the family $\{N_{i+1}(v) : v \in V\}$ can be found in polynomial time with $|A_{i+1}| \leq n^{-1/k} |A_i|$, and this finishes the construction of A_{i+1}. For each vertex $v \in V$ and level i, since $A_{i+1} \setminus N_{i+1}(v) \neq \emptyset$, we have that $|B(v) \cap (A_i \setminus A_{i+1})| \leq n^{1/k} \ln n + 1$. It follows that $|B(v)| \leq kn^{1/k} \ln n + 1$.

It remains to justify [3]. Fix $w \in S$ and $v \in V$.

- If $u \in B(v)$, then we can pick $w = u$, and $\text{dep}_{T(w)}(u) + \text{dep}_{T(w)}(v) = \delta(u, v)$.
- Otherwise, assume $u \in A_{i_0} \setminus A_{i_0+1}$, and let w_1 be the vertex in A_{i_0+1} closest to v. Then $\delta(w_1, v) \leq \delta(u, v)$, thus $\delta(w_1, u) \leq 2\delta(u, v)$. We also have that $w_1 \in B(v)$, i.e. $v \in C(w_1)$. If $w_1 \in B(u)$, then we can pick $w = w_1$, and $\text{dep}_{T(w)}(u) + \text{dep}_{T(w)}(v) \leq 3\delta(u, v)$.
- Otherwise $(w_1 \notin B(u))$, assume $w_1 \in A_{i_1} \setminus A_{i_1+1}$, and let w_2 be the vertex in A_{i_1+1} closest to u. Then $\delta(w_2, u) \leq \delta(w_1, u) \leq 2\delta(u, v)$, thus $\delta(w_2, v) \leq 3\delta(u, v)$. We also have that $w_2 \in B(u)$, i.e. $u \in C(w_2)$. If $w_2 \in B(v)$, then we can pick $w = w_2$, and $\text{dep}_{T(w)}(u) + \text{dep}_{T(w)}(v) \leq 5\delta(u, v)$.
- Otherwise $(w_2 \notin B(v))$...
- Repeat this procedure until we find a tree $T(w)$ containing both u and v.

The levels i_0, i_1, \ldots are strictly increasing, so we reach level $k - 1$ in $O(k)$ time (if we did not terminate before). For every $v \in V$, we have $A_{k-1} \subseteq B(v)$, so the procedure indeed terminates in $O(k)$ time. It is easy to see that the stretch is at most $2k - 1$. \qed
Figure 1: A sample tree in $\mathcal{T}(S)$. Black vertices are in S, green vertices are trunk vertices not in S, and bold edges denote the subtree induced by trunk vertices. We also include a table of degrees and pseudo-degrees of some sample vertices.

For $S \subseteq V$, we denote $\mathcal{T}(S)$ as the S-restricted tree cover constructed in Theorem 2.2. For $S, R \subseteq V$, we denote $\mathcal{T}_R(S)$ as the $(S \setminus R)$-restricted tree cover $\mathcal{T}(S \setminus R)$ in $G - R$.

For technical reasons (namely, we want the hierarchy structure in Section 2.2 to have a reasonable size), we need that the number of “high-degree” vertices in $\mathcal{T}(S)$ is only $o(|S|/d)$, where d is the number of failures. However, here we defined the tree cover $\mathcal{T}(S)$ to span not only S, but maybe some other vertices in V. So we can only prove degree bounds of the following form: the number of vertices with high degree w.r.t. the “trunk” parts of the tree cover is $o(|S|/d)$. The precise definitions are as follows.

Definition 2.3. Consider $S \subseteq V$, $T \in \mathcal{T}(S)$, $v \in V(T)$. We say v is a trunk vertex of T if there are $u, w \in S$ such that v lies on the path from u to w in T. The subtree (subgraph) of T induced by trunk vertices of T is denoted as $\text{Trunk}(T)$. The pseudo-degree of a vertex $v \in V(T)$, denoted as $\text{pdeg}_T(v)$, is the degree of v in $\text{Trunk}(T)$. If v is not a trunk vertex of T, then $\text{pdeg}_T(v) = 0$. Note that vertices in $\text{Trunk}(T)$ are not necessarily in S. See Fig. 1 as an example.

Let $s = 4e \cdot d^{c+1} \ln^2 n + 1$ be a degree threshold, where $c \geq 1$ is any constant. Define $\text{Hi}(\mathcal{T}(S))$ as the set of vertices in V that has pseudo-degree $> s$ in some tree in $\mathcal{T}(S)$. We prove our desired upper bound on $|\text{Hi}(\mathcal{T}(S))|$.

Lemma 2.4. For any $S \subseteq V$, $|\text{Hi}(\mathcal{T}(S))| \leq \frac{|S|}{2e^{c+1}}$.

Proof. For a tree T, let $\text{Leaf}(T)$ be the set of leaves of T. Then there are at most $\left\lfloor \frac{|\text{Leaf}(T)| - 2}{s-1} \right\rfloor$ vertices in T that has degree $> s$ [33, Lemma 3.1]. For any $T \in \mathcal{T}(S)$, $\text{Leaf}(\text{Trunk}(T)) \subseteq S$ by definition, thus

$$\sum_{T \in \mathcal{T}(S)} |\text{Leaf}(\text{Trunk}(T))| \leq \sum_{v \in S} |\{T \in \mathcal{T}(S) : v \in T\}|.$$

Since every $v \in S$ appears in $\leq 2e \ln^2 n$ trees in $\mathcal{T}(S)$, we have

$$\sum_{T \in \mathcal{T}(S)} |\text{Leaf}(\text{Trunk}(T))| \leq |S| \cdot 2e \ln^2 n,$$
thus
\[
|\text{Hi}(T(S))| \leq \sum_{T \in T(S)} \left\lfloor \frac{|\text{Leaf}(\text{Trunk}(T))|}{s-1} \right\rfloor
\]
\[
\leq \frac{|S| \cdot 2e \ln^2 n}{s-1}
\]
\[
= \frac{|S|}{2d^{c+1}}.
\]

2.2 The high-degree hierarchy

We use a simplified version of the high-degree hierarchy in [33]. Fix a parameter $c \geq 1$, the hierarchy structure is a set of $O(n^{1/c})$ representations of the graph, such that for every set of d failures, we can find some representation in which all failed vertices have low pseudo-degrees in their relevant tree covers.

Definition 2.5. The hierarchy tree is a rooted tree in which every node corresponds to a subset of V. The root corresponds to V. Each node U ($U \subseteq V$) stores a tree cover $T(U)$, and each edge (U, W), where U is the parent of W, stores a tree cover $T_W(U)$, which is $T(U \setminus W)$ in $G - W$. The tree is constructed as follows. Let U be any node. If $\text{Hi}(T(U)) = \emptyset$, then U is a leaf; otherwise let W_1, W_2, \ldots, W_d be its children, where
\[
W_1 = \text{Hi}(T(U)),
\]
\[
W_i = W_{i-1} \cup \text{Hi}(T_{W_{i-1}}(U)). \quad \text{(for } 2 \leq i \leq d)\]

Then we recursively deal with all W_1, W_2, \ldots, W_d.

There are two main differences compared with the hierarchy structure in [33].

- We simplified the definition of W_1 as in [1]. This change is not essential, but we feel that it could make the hierarchy tree easier to understand. As a consequence, a node is not necessarily a subset of its parent, which is different from [33].
- More importantly, we store in each node the source-restricted tree covers introduced in Section 2.1. By contrast, [33] only concerns about connectivity, so they used a (somewhat arbitrary) spanning forest instead.

The following lemmas assert that the hierarchy tree “is small, shallow and effectively represents the graph” [33].

Lemma 2.6 (Hierarchy Size and Depth). Consider the hierarchy tree constructed with high-degree threshold $s = 4e \cdot d^{c+1} \ln^2 n + 1$, then the following hold.

1. The depth of the hierarchy tree is at most $h \leq \left\lfloor \frac{1}{c} \log_d n \right\rfloor$ assuming the root has depth 0.
2. The number of nodes in the hierarchy tree is at most $O(n^{1/c})$.

Proof. Let U be a node in the hierarchy tree, W_1, W_2, \ldots, W_d be its children (if exist). By Lemma 2.4, we have $|W_1| = |\text{Hi}(T(U))| \leq \frac{|U|}{2d^{c+1}}$ and $|\text{Hi}(T_{W_i}(U))| \leq \frac{|U|}{2d^{c+1}}$ for any $0 \leq i < d$.

*We use “vertex” for nodes in the input graph, and “node” for nodes in the hierarchy tree.

*In subsequent sections we will write h as a shorthand of $O(\log n/\log d)$ in time/space bounds.
Algorithm 1 Path finding algorithm

1: \(U_1 \leftarrow V \)
2: for \(i \leftarrow 1 \) to \(h \) do
3: \hspace{1em} If \(U_i \) is a leaf then set \(p \leftarrow i \) and halt
4: \hspace{1em} Let \(W_1, W_2, \ldots, W_d \) be the children of \(U_i \) and artificially define \(W_0 = \emptyset, W_{d+1} = W_d \).
5: \hspace{1em} Let \(j \in [0, d] \) be minimal such that \(D \cap (W_{j+1} \setminus W_j) = \emptyset \)
6: \hspace{1em} If \(j = 0 \) then set \(p \leftarrow i \) and halt
7: \hspace{1em} Otherwise \(U_{i+1} \leftarrow W_j \)

It follows that \(|W_i| \leq i|U|/2d^{i+1} \) since \(W_{i+1} = W_i \cup \text{Hi}(T_{W_i}(U)) \). Therefore \(|W_i| \leq |U|/2d^c \) for all \(0 \leq i < d \). Any node at the \(k \)-th level is a subset of \(V \) with size at most \(n/(2d)^k \), therefore the depth of the hierarchy tree is at most \(h \leq \lfloor \log_{2d} n \rfloor \leq \lfloor \frac{1}{c} \log_d n \rfloor \). There are at most \(\sum_{i=0}^{h} d^i \leq 2dh = O(n^{1/c}) \) nodes in the hierarchy tree. \(\square \)

Lemma 2.7. For any set \(D \) of at most \(d \) failures, Algorithm 1 finds in \(O(hd) \) time a path \(U_1(= V), U_2, \ldots, U_p \) in the hierarchy tree from root to some node \(U_p \), such that for every tree \(T \in \bigcup_{1 \leq i \leq p} \mathcal{T}_{U_i}(U_i) \) and every \(f \in D \), \(f \) has pseudo-degree \(\leq s \) in \(T \). (Assume \(U_{p+1} = \emptyset \).)

Proof. Algorithm 1 executes at most \(h \) iterations since the hierarchy tree has depth at most \(h \). For every node \(U \) and vertex \(v \) in \(V \), we store the first child \(W_j \) of \(U \) (or none) that \(v \) appears in. It is then easy to implement each iteration in \(O(d) \) time. When Algorithm 1 halts at Line 3 or 6, either \(U_p \) is a leaf or \(D \cap W_1 = \emptyset \), where \(W_1 = \text{Hi}(T(U_p)) \) is the first child of \(U_p \). Clearly, in both cases we have \(D \cap \text{Hi}(T(U_p)) = \emptyset \).

For any \(1 \leq i < p \), since \(W_{d+1} = W_d \), Line 5 can always find such \(j \). Let \(U_{i+1} = W_j \) be the \(j \)-th child of \(U_i \). If \(j = d \), then \(D \cap (W_{j+1} \setminus W_j) \neq \emptyset \) for \(j = 0, \ldots, d - 1 \). Since \(|D| \leq d \), we have \(D \subseteq W_d \), thus \(D \cap \text{Hi}(T_{W_d}(U_i)) = \emptyset \). If \(1 \leq j < d \), then we have \(D \cap (W_{j+1} \setminus W_j) = \emptyset \). Since \(W_{j+1} = W_j \cup \text{Hi}(T_{W_j}(U_i)) \) and \(\text{Hi}(T_{W_j}(U_i)) \cap W_j = \emptyset \), we have \(D \cap \text{Hi}(T_{W_j}(U_i)) = \emptyset \). The lemma follows. \(\square \)

In Section 3, Section 4 and Section 5, we always deal with a path \(V = U_1, U_2, \ldots, U_p \) in the hierarchy tree from the root \(V \) to a node \(U_p \) (not necessarily a leaf node). Artificially define \(U_{p+1} = \emptyset \). In other words:

- We run the preprocessing algorithm for every possible such paths \(V = U_1, U_2, \ldots, U_p \), and we build a separate data structure for each path. The space complexity is then multiplied by a factor of \(O(n^{1/c}) \).
- In the query algorithm, given \(D \), we always begin by identifying a path \(V = U_1, U_2, \ldots, U_p \) using Lemma 2.7, then every failed vertex \(f \in D \) has pseudo-degree \(\leq s \) in every \(\mathcal{T}_{U_{i+1}}(U_i)(1 \leq i \leq p) \).

Fix a path \(V = U_1, U_2, \ldots, U_p \) in the hierarchy tree, and we assume \(U_{p+1} = \emptyset \). The following corollary of Theorem 2.2 will be important for us.

Corollary 2.8. Let \(x \in U_\ell \setminus U_{\ell+1} \) and \(y \in V \setminus U_{\ell+1} \). There is a tree \(T \in \mathcal{T}_{U_{\ell+1}}(U_\ell) \) such that

\[
\text{dep}_T(x) + \text{dep}_T(y) \leq (2k - 1)\delta_{G-U_{\ell+1}}(x, y).
\]

Moreover, the root of such a tree can be found in \(O(k) \) time.
We will denote this tree T as $T_i(x, y)$, and denote the path from x to y in T as $P_i(x, y)$.

The set of trees is denoted as $\mathcal{T} = \bigcup_{i=1}^{n} \mathcal{T}_{U_i}$. The proof of Lemma 2.6 shows that $|U_i| \leq |U_{i-1}|/2d^n$, therefore $|\mathcal{T}| \leq \sum_{i=1}^{n} |U_i| = O(n)$.

Define the level of v to be the largest integer l such that $v \in U_l$, denoted as $l(v)$. Define G_ℓ to be the subgraph of G induced by all vertices with level at most ℓ.

3 An $(1 + \epsilon)$-Stretch Oracle with $n^{3+1/c+o(1)}$ Space

In this section we present an oracle with

- space complexity $n^{3+1/c} \cdot (\epsilon^{-1} \log(nW))^{O(d)}$,
- query complexity $\text{poly}(\log(nW), \epsilon^{-1}, d)$,
- stretch $1 + \epsilon$,

for any $\epsilon > 0$. In this paper (except Section 5 and Section 4.5), we may assume $d = o\left(\frac{\log n}{\log \log n}\right)$, $W = \text{poly}(n)$, so we can simplify the notation for space complexity to $n^{3+1/c+o(1)}$. We will show how to reduce the space complexity to $n^{2+1/c+o(1)}$ in Section 4.

3.1 Data structure

Let $\epsilon_1 = \epsilon/(2 + \epsilon), \epsilon_2 = \epsilon_1/(2k - 1)$, so $\epsilon_1 < 1$. We first define a decomposition of a path P into $O(\log |P|/\epsilon_2)$ segments. This definition has the same spirit as [23, Definition 2.1], but it partitions the vertices (excluding u, v), rather than edges, into segments.

Definition 3.1 (ϵ_2-segments). Consider a path $P = (u = v_0, v_1, v_2, \ldots, v_\ell = v)$. For every $1 \leq i, j < \ell$, we say v_i and v_j are in the same segment if one of the two conditions hold:

- $|P[u, v_i]|, |P[u, v_j]| \leq |P|/2$ and $|\log_{1+\epsilon_2} P[u, v_i]| = |\log_{1+\epsilon_2} P[u, v_j]|$.
- $|P[v_i, v]|, |P[v_j, v]| < |P|/2$ and $|\log_{1+\epsilon_2} P[v_i, v]| = |\log_{1+\epsilon_2} P[v_j, v]|$.

![Diagram of path decomposition](image)

Figure 2: An illustration of path decomposition, where each rounded rectangle denotes a segment.

It is easy to verify that being in the same segment is indeed an equivalence relation, and each equivalence class is indeed a contiguous segment of the path. There are $O(\log |P|/\epsilon_2)$ different segments. For a vertex v_i on P, define $\text{seg}(v_i, P)$ as the segment it belongs to. More precisely, $\text{seg}(v_i, P) = P[v_i, v_r]$ where v_l is the leftmost (closest-to-u) vertex in the segment, and v_r is the rightmost (closest-to-v) vertex in the segment. Define $\text{seg}(P)$ as the set of segments on P. Note that u and v do not belong to any segment.

Lemma 3.2. Let P be a path from u to v, $x \in P \setminus \{u, v\}$, then $|\text{seg}(x, P)| \leq \epsilon_2 \cdot \min\{|P[u, x]|, |P[x, v]|\}$.

Proof. If $|P[u, x]| \leq |P|/2$, $|P[u, x]| \leq |P[x, v]|$ and $\text{seg}(x, P)$ is defined in the first way. Let $i = \lfloor \log_{1+\epsilon_2} |P[u, x]| \rfloor$. For any $y \in \text{seg}(x, P)$, $(1 + \epsilon_2)^i \leq |P[u, y]| < (1 + \epsilon_2)^{i+1}$. Thus $|\text{seg}(x, P)| \leq (1 + \epsilon_2)^{i+1} - (1 + \epsilon_2)^i = \epsilon_2 (1 + \epsilon_2)^i \leq \epsilon_2 |P[u, x]|$. The case that $P[x, v] < |P|/2$ is symmetric. \[\square\]
Recall that we build a data structure for every node U_p in the hierarchy tree. Let the path from the root V to U_p be $U_1(= V), U_2, \ldots, U_p$ and $U_{p+1} = \emptyset$. The data structure for U_p consists of decision trees $FT(u, v)$ for every pair of vertices $u, v \in V$, which is constructed as follows:

- Each node $\alpha \in FT(u, v)$ is associated with a set $\text{avoid}(\alpha) \subseteq V$ of vertices that we avoid.
- Denote the root of $FT(u, v)$ as $\text{root}(u, v)$, and let $\text{avoid}(\text{root}(u, v)) = \emptyset$.
- For each node $\alpha \in FT(u, v)$, we store the path $P_\alpha = \pi_{G - \text{avoid}(\alpha)}(u, v)$, i.e. the shortest u-v path in G not passing through $\text{avoid}(\alpha)$. If u, v are not connected in $G - \text{avoid}(\alpha)$, we assume that P_α is a path with length $+\infty$.
- For each node α of depth $< d$ (the root has depth 0), each segment $s \in \text{seg}(P_\alpha)$, and each $1 \leq i \leq p$, we create a child $ch(\alpha, s, i)$ of α, in which

\[
\text{avoid}(ch(\alpha, s, i)) = \text{avoid}(\alpha) \cup (s \cap U_i).
\]

The decision tree has depth d, and each non-leaf node has $O(p \cdot \log |P|/\epsilon_2) = O(h \epsilon^{-1} \log n \log(nW))$ children. (Recall $h = O(\log n/\log d)$ and $\epsilon_2 = \epsilon/(2 + \epsilon)(2k - 1) = \epsilon/\Theta(\log n)$. We store in each node α the path P_α as well as a table of $\text{seg}(v, P_\alpha)$ for each $v \in P_\alpha$, so that we can quickly locate any vertex in P_α. Therefore one decision tree occupies $n \cdot O(h \epsilon^{-1} \log n \log(nW))^d$ space. As there are $n^{1/c}$ nodes in the hierarchy tree, and for each node we need to store $O(n^2)$ decision trees, the total space complexity is $n^{3+1/c} \cdot O(h \epsilon^{-1} \log n \log(nW))^d$.

3.2 Query algorithm

Given u, v and a set of failed vertices D, by Lemma 2.7, we first find a path $U_1(= V), U_2, \ldots, U_p$ in the hierarchy tree, and set $U_{p+1} = \emptyset$. Let $T = \bigcup_{i=1}^p T_{U_{i+1}}(U_i)$, then by Lemma 2.7, the pseudo-degrees of all $f \in D$ in every tree in T is bounded by s.

The query algorithm builds an auxiliary graph H specified in Definition 3.3, and outputs $|\pi_H(u, v)|$ as an $(1 + \epsilon)$-approximation of $|\pi_{G-D}(u, v)|$.

Definition 3.3. (Graph H)

- For a failure $f \in D$ and a tree $T \in T$, if $f \in V(T)$, then we define the neighbors of f in T as

\[N_T(f) = \{\text{parent}_T(f)\} \cup (\text{children}_T(f) \cap \text{Trunk}(T)).\]

In other words, $N_T(f)$ consists of the parent of f in T, and the set of children of f in T which are trunk vertices. (Note that if $f \in V(T) \setminus \text{Trunk}(T)$, then it is possible that $\text{parent}_T(f) \notin \text{Trunk}(T)$.)
- Define

\[N(f) = \bigcup_{T \in T} N_T(f).\]

That is, $N(f)$ is the union of $N_T(f)$’s over all trees $T \in T$ such that $f \in T$.
- The vertex set of the auxiliary graph H is

\[V(H) = \left(\{u, v\} \cup \bigcup_{f \in D} N(f)\right) \setminus D.\]

For each $x, y \in V(H)$, the weight of the edge (x, y) in H is equal to $\text{DecTree}(x, y, D)$, as defined in Algorithm 2.

12Recall that we use “vertex” for nodes in the input graph, and “node” for nodes in the decision tree and hierarchy tree.
Note that in $V(H)$, vertices except u and v are defined independently from u and v. By Lemma 2.7 for every $f \in D$ and $T \in \mathcal{T}$ containing f, we have $|N_T(f)| \leq s + 1$. Therefore $|V(H)| \leq dp \cdot 2e \ln^2 n \cdot (s + 1) + 2 = O(d^{c+2}h\log^4 n)$.

Algorithm 2 Algorithm DecTree

```python
1: function DecTree($u, v, D$)
2:   $\alpha \leftarrow \text{root}(u, v)$
3:   while $D \cap P_\alpha \neq \emptyset$ do
4:     $D \leftarrow D \cap P_\alpha$ with the highest level, breaking ties arbitrarily
5:     $\alpha \leftarrow \text{ch}(\alpha, \text{seg}(f, P_\alpha), l(f))$ \Comment{$l(f)$ is the level of $f$, i.e. the largest $l$ s.t. $f \in U_l$.}
6:   return $|P_\alpha|$
```

Consider Algorithm 2. After each iteration, the set $D \cap \text{avoid}(\alpha)$ will contain at least one new vertex (namely f). When $|D \cap \text{avoid}(\alpha)| = d$, we will have that $D \cap P_\alpha = \emptyset$, and the algorithm terminates. Thus the algorithm executes at most d iterations. It is easy to see that each iteration only requires $O(d)$ time, thus the time complexity of Algorithm 2 is $O(d^2)$.

It takes $O(|V(H)|^2d^2)$ time to build the graph H, and $O(|V(H)|^2)$ time to compute $|\pi_H(u, v)|$. Therefore, the query algorithm runs in $O(|V(H)|^2d^2) = O(d^{2c+6}h^2\log^8 n)$ time.

Since finally $D \cap P_\alpha = \emptyset$, we have the following observation:

Observation 3.4. For all $u, v \in V(H)$, $\text{DecTree}(u, v, D) \geq |\pi_{G-D}(u, v)|$.

For every α and f considered in Algorithm 2, let $\alpha_{\text{next}} = \text{ch}(\alpha, \text{seg}(f, P_\alpha), l(f))$ be the next decision tree node the algorithm considers. If the optimal path $\pi_{G-D}(u, v)$ never intersects the set $\text{avoid}(\alpha_{\text{next}}) \setminus \text{avoid}(\alpha)$ in any iteration, then DecTree(u, v, D) would indeed return the optimal path $\pi_{G-D}(u, v)$. However, if $\pi_{G-D}(u, v)$ goes through some non-failure vertex $x \in \text{avoid}(\alpha_{\text{next}}) \setminus \text{avoid}(\alpha)$, we will show that there is some $w \in V(H)$ close to x, so the optimal path can be approximated by $\pi_{G-D}(u, w) \circ \pi_{G-D}(w, v)$. This is illustrated in the following important lemma. Notice that $\text{avoid}(\alpha_{\text{next}}) \setminus \text{avoid}(\alpha) = \text{seg}(f, P_\alpha) \cap U_l(f)$, so in this case, the level of x is no less than the level of f, i.e. $l(x) \geq l(f)$.

Lemma 3.5. Given a failed vertex f and a non-failure vertex x such that $l(x) \geq l(f)$, if there is a path P in G between x and f which contains no other failed vertices, then there is a vertex $w \in V(H)$ such that $|\pi_{G-D}(x, w)| \leq (2k - 1)|P|$.

Proof. Let y be the vertex with the highest level on $P(x, f)$, and suppose $j = l(y)$. Then $l(y) = j \geq l(x) \geq l(f)$. Since there are no vertices on P with level $> j$, P is in $G - U_{j+1}$. Let $T_j(y, f)$ be the tree in the tree cover $T_{U_{j+1}}(U_j)$, such that the distance between y and f in $T_j(y, f)$ is at most $(2k - 1)|\pi_{G-U_{j+1}}(y, f)|$. Let $P' = P_j(y, f)$ be the path between y and f in $T_j(y, f)$. Let f' be the first failed vertex on $P'[y, f]$, and consider the predecessor w of f' on the path $P'[y, f]$. (That is, $P'[y, w]$ is intact from failures.) Since P' is a path on the tree $T_j(y, f)$, w is either the parent of f' or a child of f' in this tree.

- If w is the parent of f', then $w \in V(H)$ by the definition of $V(H)$.

12
• If w is a child of f', then y is a descendant of w and f'. Since $l(y) = j$, y is a trunk vertex in $T_j(y, f)$. It follows that w, as an ancestor of y, is also a trunk vertex in $T_j(y, f)$, therefore $w \in V(H)$.

Therefore, in either case, we have $w \in V(H)$. Since

$$|\pi_{G-D}(x, w)| \leq |P(x, y)| + |P'[y, w]|$$
$$\leq |P(x, y)| + |P'|$$
$$\leq |P(x, y)| + (2k-1)|\pi_{G-U_{j+1}}(y, f)|$$
$$\leq |P(x, y)| + (2k-1)|P[y, f]|$$
$$\leq (2k-1)|P|,$$

the lemma is true. □

Remark 3.6. From the proof we can see the reason that we need to include the parents of each failures in $V(H)$, no matter trunk or not.

3.3 Proof of correctness

In this section, we show that $|\pi_H(u, v)| \leq (1 + \epsilon)|\pi_{G-D}(u, v)|$, proving the correctness of the query algorithm.

From the algorithm DecTree(u, v, D), the path we get is the shortest path between u and v in the graph $G - avoid(\alpha_{\text{last}})$, where α_{last} is the last visited decision tree node of the algorithm. As we discussed before, if the real shortest path $\pi_{G-D}(u, v)$ does not go through any vertex in $\text{avoid}(\alpha_{\text{last}})$, then DecTree($u, v, D$) will return the correct answer. Otherwise, as $\text{avoid}(\alpha_{\text{last}})$ is the union of $\leq d$ sets of the form $\text{seg}(f, P_\alpha) \cap U_i$, $\pi_{G-D}(u, v)$ must go through some vertex x in a set $\text{seg}(f, P_\alpha) \cap U_i$. We can show that such x will be “close” to a vertex w in $V(H)$ (by Lemma 3.5), so we can use the vertices in $V(H)$ as intermediate vertices to obtain an approximate shortest path.

Lemma 3.7. In the query algorithm DecTree(u, v, D), let α be a decision tree node it encounters, $f \in D$ be the failed vertex which is selected in Line 4 and $i = l(f)$. (That is, f is the vertex in $D \cap P_\alpha$ with the highest level.) For any non-failure vertex x in $\text{seg}(f, P_\alpha) \cap U_i$, there is a vertex $w \in V(H)$ such that $|\pi_{G-D}(x, w)| \leq \epsilon_1 \min\{|P_\alpha[u, x]|, |P_\alpha[x, v]|\}$.

![Diagram](image)

Proof. Let $f' \in D$ be the failed vertex closest to x on the segment $\text{seg}(x, P_\alpha)$, then there are no failed vertices in $P_\alpha[x, f']$ or $P_\alpha(f', x)$. (W.l.o.g. we assume it is $P_\alpha[x, f']$.) We have $l(f) \geq l(f')$ by Algorithm 2. As $x \in U_i = U_l(f)$, we have $l(x) \geq l(x)$, hence $l(x) \geq l(f')$. By Lemma 3.5, there is a vertex $w \in V(H)$ such that $|\pi_{G-D}(x, w)| \leq (2k-1)|P_\alpha[x, f']|$. Since $|P_\alpha[x, f']| \leq \epsilon_2 \min\{|P_\alpha[u, x]|, |P_\alpha[x, v]|\}$ and $\epsilon_2 = \epsilon_1/(2k-1)$, the lemma holds. □

We show that for $u, v \in V(H)$, if the optimal path $\pi_{G-D}(u, v)$ is not found by DecTree(u, v, D), then we can indeed find some $w \in V(H)$ such that $\pi_{G-D}(u, w) \circ \pi_{G-D}(w, v)$ is a good approximation of $\pi_{G-D}(u, v)$. Moreover, one of $\pi_{G-D}(u, w)$ and $\pi_{G-D}(w, v)$ can be dealt with by Algorithm 2, therefore we only need to “recurse” on the other one.
Lemma 3.8. Let \(u, v \in V(H) \) and \(P = \pi_{G-D}(u, v) \). If \(\text{DecTree}(u, v, D) > |P| \), there exist \(x \in P \setminus \{ u, v \}, y \in \{ u, v \}, w \in V(H) \) such that

\[
(a) |\pi_{G-D}(x, y)| \leq \frac{1}{2}|\pi_{G-D}(u, v)|,
(b) |\pi_{G-D}(x, w)| \leq \epsilon_1|\pi_{G-D}(x, y)|, \text{ and}
(c) \text{DecTree}(y, w, D) \leq |\pi_{G-D}(y, x)| + |\pi_{G-D}(x, w)|, \text{ which is smaller than } |\pi_{G-D}(u, v)|.
\]

Proof. First we prove that there exist a triple \((x, y, w) \) that satisfies (a) and (b).

Let \(\alpha \) be the last decision tree node visited by \(\text{DecTree}(u, v, D) \) such that \(\text{avoid}(\alpha) \cap P = \emptyset \). Since \(\text{DecTree}(u, v, D) > |P| \), the procedure \(\text{DecTree}(u, v, D) \) does not terminate at \(\alpha \), i.e. it visited a child \(\alpha_{\text{next}} \) of \(\alpha \) such that \(P \setminus \text{avoid}(\alpha_{\text{next}}) \neq \emptyset \). Recall that \(\text{avoid}(\alpha_{\text{next}}) \) is the failure selected by Line 1 of Algorithm 2. Therefore \(P \) reaches some vertex \(x \in \text{seg}(f, P_\alpha) \cap U_{\{f\}} \). Since \(P_\alpha \) is the shortest \(u-v \) path in \(G - \text{avoid}(\alpha) \) and \(P \) is some \(u-v \) path in \(G - \text{avoid}(\alpha) \), we know that \(|P_\alpha[u, x]| \leq |P[u, x]| \) and \(|P_\alpha[x, v]| \leq |P[x, v]| \).

By Lemma 3.7, there is a vertex \(w \in V(H) \) such that

\[
|\pi_{G-D}(x, w)| \leq \epsilon_1 \min\{|P_\alpha[u, x]|, |P_\alpha[x, v]| \} \leq \epsilon_1 \min\{|P[u, x]|, |P[x, v]| \}.
\]

Let \(y \) be the endpoint in \(\{ u, v \} \) that is closer to \(x \), then \((x, y, w) \) satisfies (a) and (b).

Among all triples \(x \in P \setminus \{ u, v \}, y \in \{ u, v \}, w \in V(H) \) satisfying (b), we pick a triple minimizing \(|\pi_{G-D}(x, y)| \), and in case of a tie choose a triple minimizing \(|\pi_{G-D}(x, w)| \). It is easy to see that (a) is also satisfied. In the following we prove that (b) is satisfied.

We compare the path \(P' = \pi_{G-D}(y, x) \circ \pi_{G-D}(x, w) \) between \(y \) and \(w \), with the path returned by \(\text{DecTree}(y, w, D) \). For the sake of contradiction, suppose \(|P'| < |\text{DecTree}(y, w, D)| \). Let \(\alpha' \) be the last decision tree node visited in \(\text{DecTree}(y, w, D) \) such that \(\text{avoid}(\alpha') \cap P' = \emptyset \). We can also see that \(P' \) reaches some vertex \(x' \in \text{seg}(f', P_{\alpha'}) \cap U_{\{f'\}} \), where \(f' \) is the failure selected by Line 1. We use Lemma 3.7 again and conclude that there is a vertex \(w' \in V(H) \) such that

\[
|\pi_{G-D}(x', w')| \leq \epsilon_1 \min\{|P_{\alpha'}[y, x'], |P_{\alpha'}[x', w']| \} \leq \epsilon_1 \min\{|P'[y, x'], |P'[x', w']| \}.
\]

Since \(x' \in P' = P'[y, x] \circ P'[x, w] \), there are two cases. (See Fig. 3)

- If \(x' \in P'[y, x] \), then \(|\pi_{G-D}(x', y)| \leq \epsilon_1|\pi_{G-D}(x', y)| \), i.e. the triple \((x', y, w') \) also satisfies (b). Since \(|\pi_{G-D}(x', y)| < |\pi_{G-D}(x, y)| \), this contradicts our choice of \((x, y, w) \).
- If \(x' \in P'[x, w] \), then \(|\pi_{G-D}(x, w')| \leq |P'[x, x']| + |\pi_{G-D}(x', w')| \leq |P'[x, x']| + \epsilon_1|P'[x', w']| \). As \(\epsilon_1 < 1 \), we have \(|\pi_{G-D}(x, w')| < |\pi_{G-D}(x, w)| \), and \((x, y, w) \) also satisfies (b), contradicting our choice of \((x, y, w) \).
Hence it must be true that $|P'| \geq \text{DecTree}(y, w, D)$.

By these lemmas, we can now prove our desired approximation ratio.

Theorem 3.9. For every pair $u, v \in V(H)$, the query algorithm in Section 3.2 returns an $(1 + \epsilon)$-approximation of $|\pi_{G-D}(u, v)|$.

Proof. It is easy to see that $|\pi_H(u, v)| \geq |\pi_{G-D}(u, v)|$ for every $u, v \in V(H)$. We prove $|\pi_H(u, v)| \leq (1 + \epsilon)|\pi_{G-D}(u, v)|$ below.

We sort all pairs of vertices $u, v \in V(H)$ by increasing order of $|\pi_{G-D}(u, v)|$, and prove by induction that $|\pi_H(u, v)| \leq (1 + \epsilon)|\pi_{G-D}(u, v)|$ on this order. For the u, v having the smallest $|\pi_{G-D}(u, v)|$, if DecTree(u, v, D) > $|\pi_{G-D}(u, v)|$, from Lemma 3.8, there exist $u, v \in V(H)$ so that $|\pi_{G-D}(u, v)| < |\pi_{G-D}(u, v)|$, which is a contradiction. Therefore $|\pi_H(u, v)| = \text{DecTree}(u, v, D) = |\pi_{G-D}(u, v)|$.

Fix some $u, v \in V(H)$, assume that for all pairs $u', v' \in V(H)$ such that $|\pi_{G-D}(u', v')| < |\pi_{G-D}(u, v)|$, it is true that $|\pi_H(u', v')| \leq (1 + \epsilon)|\pi_{G-D}(u', v')|$. If DecTree($u, v, D$) = $|\pi_{G-D}(u, v)|$, then $|\pi_H(u, v)| \leq (1 + \epsilon)|\pi_{G-D}(u, v)|$ follows trivially. Otherwise we use Lemma 3.8 to obtain a triple (x, y, w), where $x \in \pi_{G-D}(u, v) \setminus \{u, v\}$, $y \in \{u, v\}$, and $w \in V(H)$. We assume w.l.o.g. $y = u$, then $|\pi_{G-D}(w, x)| \leq \epsilon_1|\pi_{G-D}(u, x)|$. Since $\epsilon_1 < 1$, $|\pi_{G-D}(w, v)| \leq |\pi_{G-D}(w, x)| + |\pi_{G-D}(x, v)| \leq \epsilon_1|\pi_{G-D}(u, x)| + |\pi_{G-D}(x, v)| < |\pi_{G-D}(u, v)|$, thus $|\pi_H(w, v)| \leq (1 + \epsilon)|\pi_{G-D}(w, v)|$ by induction hypothesis. We have:

$$|\pi_H(u, v)| \leq \text{DecTree}(u, w, D) + |\pi_H(w, v)|$$

$$\leq |\pi_{G-D}(u, x)| + |\pi_{G-D}(x, w)| + (1 + \epsilon)|\pi_{G-D}(w, v)|$$

$$\leq |\pi_{G-D}(u, x)| + \epsilon_1|\pi_{G-D}(u, x)| + (1 + \epsilon)(\epsilon_1|\pi_{G-D}(u, x)| + |\pi_{G-D}(x, v)|)$$

$$\leq (1 + \epsilon_1 + (1 + \epsilon)\epsilon_1)|\pi_{G-D}(u, x)| + (1 + \epsilon)|\pi_{G-D}(x, v)|$$

$$\leq (1 + \epsilon)|\pi_{G-D}(u, v)|.$$

We conclude that there is a VSDO with

- space complexity $n^{3+1/c} \cdot O(\epsilon^{-1} \log^2 n \log(nW)/\log d)^d$,
- query complexity $O(d^{2c+6} \log^4 n/\log^2 d)$,
- stretch $1 + \epsilon$.

In Section 2, we will improve the space complexity to $n^{2+1/c+o(1)}$, while increasing the query time slightly.

4 An $n^{2+1/c+o(1)}$-Space $(1 + \epsilon)$-Stretch oracle

In this section, we discuss the modifications needed to reduce the space complexity to $n^{2+1/c+o(1)}$. Here we set $\epsilon_3 = \frac{4}{\pi \sqrt{|HT|}}$, and $\epsilon_4 = \epsilon_3/(4k-2)$. We assume that ϵ is small enough, in particular that $\epsilon < 1$ and $\epsilon_4 < \sqrt{2} - 1$.

4.1 A structural theorem

Similar to [23], the main idea is, instead of storing the paths P_α as-is in every node α of $FT(u, v)$, we store an implicit representation of these paths. If the representation has size $\text{poly}(\log(nW), \epsilon^{-1})$ instead of $\Omega(n)$, then our data structure has space complexity $n^{2+1/c+o(1)}$.
Figure 4: If \(P \) is far away from \(V(H) \), it means that a certain “diamond”-shaped area does not contain vertices \(w \in V(H) \).

In [23], the authors defined \(k \)-decomposable paths, which are paths that can be represented as the concatenation of at most \(k + 1 \) shortest paths in \(G \), interleaved with at most \(k \) edges. They relied on the fact (Theorem 2 of [3]) that any \(k \)-edge-failure shortest path is a \(k \)-decomposable path in \(G \), therefore has a succinct representation. Unfortunately, the analogue of this statement in [23] in case of vertex failures does not hold. Even if we only remove one vertex (i.e., \(|D| = 1 \)), a shortest path in \(G - D \) might not be a \(k \)-decomposable path for \(k = o(n) \).13

In this section, we prove a structural theorem similar to the above fact used in [23]. Before we proceed, we need some definitions.

From Lemma 3.8 we can see that for any \(u, v \in V(H) \), if the path \(\pi_{G-D}(u, v) \) is \(\epsilon_1 \)-far away from \(V(H) \) in the following sense, then DecTree\((u, v, D)\) indeed finds the distance between \(u \) and \(v \) in \(G - D \):

Definition 4.1. We say that a path \(P \) from \(u \) to \(v \) is \(\epsilon \)-far away from \(V(H) \) if there are no vertices \(x \in P \setminus \{u, v\}, w \in V(H) \) such that \(|\pi_{G-D}(x, w)| \leq \epsilon \cdot \min\{|P[u, x]|, |P[x, v]|\} \). (See Fig. 4)

Instead of considering all \(d \)-failure shortest paths, we only study the ones which are \(\epsilon_3 \)-far away from \(V(H) \). We will use the concept of \(\epsilon \)-expath as in [23] and re-define it as \(\epsilon_4 \)-segment expath. Also, instead of considering the concatenation of at most \(k + 1 \) shortest paths in the original graph \(G \), every segment here is a shortest path in some \(G_i \). (Recall that \(G_i \) is the induced subgraph of \(G \) on all vertices of level \(\leq i \).)

Definition 4.2. A path \(P \) in \(G \) is an \(\epsilon \)-segment expath if the following holds. If we partition \(P \) into \(\epsilon \)-segments as in Definition 3.1, then for every segment \(P[x, y] \), there is some \(1 \leq i \leq p \) such that \(P[x, y] \) is a shortest path in \(G_i \).

The following structural theorem for shortest paths \(\epsilon \)-far away from \(V(H) \) will be crucial to us. Interestingly, it is a consequence of Lemma 3.5.

Theorem 4.3. For \(u, v \in V(H) \), if \(\pi_{G-D}(u, v) \) is \(\epsilon_3 \)-far away from \(V(H) \), then it is an \(\epsilon_4 \)-segment expath.

13Consider an unweighted graph \(G = (V, E_1 \cup E_2) \) where \(V = \{v_i : 0 \leq i \leq n\} \), \(E_1 = \{(v_i, v_{i+1}) : 1 \leq i \leq n\} \) and \(E_2 = \{(v_0, v_1) \} \). Then \(\pi_{G-(v_0)}(v_1, v_n) \) is not a 0.1n-decomposable path.
be \(i = l(z) \). Then \(P[x, y] \) is a path in \(G_i \). If it is not the shortest path \(\pi_{G_i}(x, y) \), then \(\pi_{G_i}(x, y) \) must go through some failed vertex in \(D \). (Since otherwise we can find a path in \(G - D \) shorter than \(\pi_{G-D}(u, v) \).) Let \(P' = \pi_{G_i}(x, y) \) and \(f \) be the failed vertex on \(P' \) closest to \(x \).

Since \(f \) is in the graph \(G_i \), we have \(l(f) \leq i = l(z) \). There is a path \(P'' = P[z, x] \circ P'[x, f] \) connecting \(z \) and \(f \) that does not go through other failed vertices. By Lemma 3.5, there is a vertex \(w \in V(H) \) such that \(|\pi_{G-D}(z, w)| \leq (2k - 1)|P''| \). We have

\[
|\pi_{G-D}(z, w)| \leq (2k - 1)(|P[z, x]| + |P'[x, f]|)
\leq 2(2k - 1)|P[x, y]|
\leq 2(2k - 1)\epsilon_4|P[u, x]|
\leq \epsilon_3|P[u, z]|,
\]

which contradicts that \(\pi_{G-D}(u, v) \) is \(\epsilon_3 \)-far away from \(V(H) \). Therefore, \(P[x, y] \) is a shortest path in \(G_i \).

\[\Box\]

4.2 New data structure

We generalize the concept of \(\epsilon_4 \)-segment expath to \(\epsilon_4 \)-expath by adding more flexibility.

Definition 4.4. Let \(B = \lceil \log_{1+\epsilon_4}(nW) \rceil \). An \(\epsilon_4 \)-expath \(P \) from \(u \) to \(v \) in \(G \) is a path which is a concatenation of subpaths \(P_0, \ldots, P_{2B+1} \) interleaved with at most \(2B + 3 \) edges\(^{14}\) such that the following hold.

- For every \(P_k = P[u_k, v_k] \) (\(0 \leq k \leq 2B + 1 \)), \(P_k \) is either empty, or a shortest path in \(G_i \) for some level \(1 \leq i \leq p \).
- If \(k < B + 1 \), then \(|P[u, v_k]| \leq (1 + \epsilon_4)^k \); if \(k \geq B + 1 \), then \(|P[u_k, v]| \leq (1 + \epsilon_4)^{2B+1-k} \).

Lemma 4.5. An \(\epsilon_4 \)-segment expath \(P \) from \(u \) to \(v \) is an \(\epsilon_4 \)-expath.

Proof. Let \(j = \lceil \log_{1+\epsilon_4}(|P|/2) \rceil + 1 \), since \(1 + \epsilon_4 < 2 \), we have \(j < B + 1 \). Let \(P_1, \ldots, P_j \) be the \(\epsilon_4 \)-segments (possibly empty) in the first half of \(P \) such that for every \(1 \leq k \leq j \) and \(x \in P_k = P[u_k, v_k] \), \(|\log_{1+\epsilon_4}|P[u, x]| = k - 1 \). Then \(|P[u, v_k]| \leq (1 + \epsilon_4)^k \), which satisfies the definition of \(\epsilon_4 \)-expath. The second half of \(P \) is symmetric. \(\Box\)

Recall that our data structure in Section 3 consists of \(O(n^2) \) decision trees, one for each pair \(u, v \in V \). Each decision tree node \(\alpha \) stores a path \(P_\alpha \), a subset \(\text{avoid}(\alpha) \) of \(V \), and the links to its children. The query algorithm builds an auxiliary graph \(H \) on the vertex set \(V(H) \) defined in Definition 3.3 and uses Algorithm 2 to determine the edge weights in \(H \). At last we output \(|\pi_H(u, v)| \) as the approximation of \(|\pi_{G-D}(u, v)| \). Our improved data structure also fits into this high-level description, but there are some small changes:

- For every \(1 \leq i \leq p \), we also store the shortest path distance matrix of \(G_i \).
- We use \(\epsilon_4 \) in the definition of segments.
- In every node \(\alpha \in FT(u, v) \), we store the shortest \(\epsilon_4 \)-expath (instead of the general shortest path) from \(u \) to \(v \) in \(G - \text{avoid}(\alpha) \), still denoted as \(P_\alpha \). To save space, for every subpath \(P_k = [u_k, v_k] \) which is a shortest path in some \(G_i \), we only need to store a triple \((u_k, v_k, i)\).
- To check whether \(f \) is in a path \(P_\alpha \), for every subpath \(P_k = [u_k, v_k] \) which is a shortest path in some \(G_i \), we check whether \(|\pi_{G_i}(u_k, f)| + |\pi_{G_i}(f, v_k)| = |\pi_{G_i}(u_k, v_k)| \). By the uniqueness assumption of shortest paths (see 30), this method can locate a vertex in \(P_\alpha \).

\(^{14}\)That is, the concatenation of \(e_0, P_0, e_1, P_1, \ldots, P_{2B+1}, e_{2B+2} \) where each \(e_i \) is either empty or an edge.
We now prove the correctness of this data structure, i.e. $|\pi_H(u, v)|$ is always an $(1 + \epsilon)$-approximation of $|\pi_{G-D}(u, v)|$.

First, it is easy to check that Lemma 3.7 holds for parameter $(2k - 1)\epsilon_4 = \epsilon_3/2$, as follows.

Reminder of Lemma 3.7 In the query algorithm DecTree(u, v, D), let α be a decision tree node it encounters, $f \in D$ be the failed vertex which is selected in Line 4, and $i = l(f)$. (That is, f is the vertex in $D \cap P_\alpha$ with the highest level.) For any non-failure vertex x in seg$(f, P_\alpha) \cap U_i$, there is a vertex $w \in V(H)$ such that $|\pi_{G-D}(x, w)| \leq (\epsilon_3/2) \min\{|P_\alpha[u, x]|, |P_\alpha[x, v]|\}$.

Recall that Lemma 3.8 shows that, in the data structure in Section 3, any shortest path ϵ_1-far away from $V(H)$ can be found by DecTree. We show that this is also true in the new data structure, where “ϵ_1-far away” is changed to “ϵ_3-far away”.

Lemma 4.6. Let $u, v \in V(H)$, and $P = \pi_{G-D}(u, v)$. If $\text{DecTree}(u, v, D) > |P|$, then P is not ϵ_3-far away from $V(H)$.

Proof. For the sake of contradiction, assume P is ϵ_3-far away from $V(H)$. By Theorem 4.3, P is an ϵ_4-segment expath.

Let α be the last decision tree node visited by DecTree(u, v, D) such that avoid$(\alpha) \cap P = \emptyset$. Since DecTree$(u, v, D) > |P|$, P reaches some vertex $x \in \text{avoid}(\alpha_{\text{next}}) \setminus \text{avoid}(\alpha)$, where α_{next} is the next decision tree node visited by DecTree(u, v, D) after α. Recall that $\text{avoid}(\alpha_{\text{next}}) \setminus \text{avoid}(\alpha) = \text{seg}(f, P_\alpha) \cap U_{l(f)}$, where f is the failed vertex chosen in Line 4 of Algorithm 2. By Lemma 3.7, there is a vertex $w \in V(H)$ such that $|\pi_{G-D}(x, w)| \leq (\epsilon_3/2) \min\{|P_\alpha[u, x]|, |P_\alpha[x, v]|\}$.

As P_α is the shortest ϵ_4-expath from u to v in $G - \text{avoid}(\alpha)$, and P is some such path, we have $|P| \geq |P_\alpha|$. We will prove $|P_\alpha[u, x]| \leq 2|P[u, x]|$ and $|P_\alpha[x, v]| \leq 2|P[x, v]|$, then it will follow that $|\pi_{G-D}(x, w)| \leq \epsilon_3 \min\{|P[u, x]|, |P[x, v]|\}$, contradicting that P is ϵ_3-far away from $V(H)$. We only need to prove $|P_\alpha[u, x]| \leq 2|P[u, x]|$ and $|P_\alpha[x, v]| \leq 2|P[x, v]|$ is symmetric.

Suppose $|P[u, x]| < |P_\alpha[u, x]|/2$, we claim that the path $P[u, x] \circ P_\alpha[x, v]$ is a valid ϵ_4-expath. Since $|P[u, x]| < |P_\alpha|/2 \leq |P|/2$, x is closer to u than to v in P. Suppose P_α is composed of subpaths P_0, \ldots, P_{2B+1} interleaved with $\leq 2B + 3$ edges, and P is composed of segments P_1, \ldots, P_t. Recall from the proof of Lemma 4.5 that, if x is in the first half of P, and $x \in P_k$, then $\lfloor \log_{1+\epsilon_4} |P[u, x]| \rfloor = k - 1$.

- Let $x \in P_j$, then $j \geq \lfloor \log_{1+\epsilon_4} |P_\alpha[u, x]| \rfloor$. This is because if $j < B + 1$ (recall that $B = \lfloor \log_{1+\epsilon_4} (nW) \rfloor$ as in Definition 4.4), then $|P_\alpha[u, x]| \leq (1 + \epsilon_4)^j$.
- Let $x \in P_{j'}$, then $j' = \lfloor \log_{1+\epsilon_4} |P_\alpha[u, x]| \rfloor + 1$. Since $(1 + \epsilon_4)^2 < 2 \leq |P_\alpha[u, x]|/|P[u, x]|$, we have $j' \leq \lfloor \log_{1+\epsilon_4} |P_\alpha[u, x]| \rfloor - 1 \leq j - 1$.

Let \(P' = P[u, x] \circ P_\alpha[x, v] \), Consider the following representation of \(P' \) as \(P_0', P_1', \ldots, P_{2B+1}' \):

(i) For \(0 \leq i < j' \), \(P_i' = P_i \).
(ii) For \(i = j' \), \(P_j' = \{ u_j, x \} \), where \(u_j \) is the endpoint of \(P_j' \) that lies on \(P[u, x] \).
(iii) For \(j' < i < j \), \(P_i' = P_0 \).
(iv) For \(i = j \), \(P_j' = \{ x, v \} \), where \(v \) is the endpoint of \(P_\alpha \) that lies on \(P_{\alpha}[x, v] \).
(v) For \(j < i \leq 2B+1 \), \(P_i' = P_i^\alpha \).

We need to verify that the representation \(P_0', P_1', \ldots, P_{2B+1}' \) satisfies the definition of \(\epsilon_4 \)-expath. Let \(u, v \) be the endpoints of \(P_i' \), i.e. \(P_i' = P[u, v] \), then:

- Case I: \(i \leq j' \) (i.e. Items (i) and (ii)). In this case, \(i < B + 1 \), as \(P_i' \) lies in the first half of \(P \). Since \(|P'[u, v]| = |P[u, v]| \leq (1 + \epsilon_4)^i \), Definition 4.4 is satisfied.
- Case II: \(j \leq i < B + 1 \). In this case, \(|P'[u, v]| = |P[u, x]| + |P_\alpha[x, v]| < |P_\alpha[u, v]| \leq (1 + \epsilon_4)^i \), thus Definition 4.4 is satisfied.
- Case III: \(j \geq B + 1 \). In this case, \(|P'[u, v]| = |P_\alpha[u, v]| \leq (1 + \epsilon_4)^{2B+1-i} \), thus Definition 4.4 is satisfied.

We conclude that \(P' \) is a valid \(\epsilon_4 \)-expath. Since \(|P'| < |P_\alpha| \), this contradicts the choice of \(P_\alpha \). Therefore \(|P_\alpha[u, x]| \leq 2|P[u, x]| \), and by symmetry, \(|P_\alpha[x, v]| \leq 2|P[x, v]| \). It follows that \(P \) is not \(\epsilon_3 \)-far away from \(V(H) \).

We prove the following theorem that immediately implies the approximation ratio of the algorithm.

Theorem 4.7. For every pair \(u, v \in V(H) \), \(|\pi_H(u, v)| \leq (1 + \epsilon)|\pi_{G-D}(u, v)| \).

Proof. For the purpose of the proof, we construct a subgraph \(H' \) of \(H \) on the same set of vertices (i.e. \(V(H) \)), but only keep the edges \((u, v) \) where \(\pi_{G-D}(u, v) \) is \(\epsilon_3 \)-far away from \(V(H) \). By Lemma 4.6, the weight of every single edge \((u, v)\) in \(H' \) is exactly \(|\pi_{G-D}(u, v)| \).

We sort all pairs of vertices \(u, v \in V(H) \) by nondecreasing order of \(|\pi_{G-D}(u, v)| \). For every \(u, v \in V(H) \), we define a \(u,v \) path in \(H' \) inductively in this order, and denote it as \(p(u, v) \). The path \(p(u, v) \) is defined as follows.

- If \(\pi_{G-D}(u, v) \) is \(\epsilon_3 \)-far away from \(V(H) \), \(p(u, v) \) consists of a single edge \((u, v)\).
- If \(\pi_{G-D}(u, v) \) is not \(\epsilon_3 \)-far away from \(V(H) \), there exist \(x \in \pi_{G-D}(u, v) \setminus \{u, v\}, w \in V(H) \) such that \(|\pi_{G-D}(x, w)| \leq \epsilon_3 \min\{|\pi_{G-D}(x, w)|, |\pi_{G-D}(x, v)|\} \). Since \(\epsilon_3 < 1 \), \(|\pi_{G-D}(u, w)| \) and \(|\pi_{G-D}(w, v)| \) are both smaller than \(|\pi_{G-D}(u, v)| \), so \(p(u, w) \) and \(p(w, v) \) are both well-defined. We concatenate these paths to form \(p(u, v) \), i.e. we define \(p(u, v) = p(u, w) \circ p(w, v) \).

Let \(k(u, v) \) be the number of edges in \(p(u, v) \). We prove that for every \(u, v \in V(H) \),

\[|\pi_{H'}(u, v)| \leq (1 + \epsilon_3)^{k(u, v)} |\pi_{G-D}(u, v)|. \]
We proceed by induction on $k(u, v)$. When $k(u, v) = 1$, $|\pi_{H'}(u, v)| = |\pi_{G-D}(u, v)|$. Assume this is true for all pairs (u, v) such that $k(u, v) < j$, consider some (u, v) such that $k(u, v) = j$. Let x, w be the vertices selected in the construction of $p(u, v)$, then both $k(u, w)$ and $k(w, v)$ are less than j. As $|\pi_{G-D}(x, w)| \leq (\epsilon_j/2)|\pi_{G-D}(u, v)|$, We have

\[
|\pi_{H}(u, v)| \leq |\pi_{H'}(u, w)| + |\pi_{H'}(w, v)| \\
\leq (1 + \epsilon_j)^{j-1}(|\pi_{G-D}(u, w)| + |\pi_{G-D}(w, v)|) \\
\leq (1 + \epsilon_j)^{j-1}(|\pi_{G-D}(u, v)| + 2|\pi_{G-D}(x, w)|) \\
\leq (1 + \epsilon_j)^{j-1}(|\pi_{G-D}(u, v)| + 2\frac{\epsilon_j}{2}\pi_{G-D}(u, v)) \\
\leq (1 + \epsilon_j)^j|\pi_{G-D}(u, v)|.
\]

Thus, for every $u, v \in V(H)$,

\[
|\pi_{H}(u, v)| \leq |\pi_{H'}(u, v)| \\
\leq \left(1 + \frac{\epsilon}{2|V(H)|}\right)^{|V(H)|}|\pi_{G-D}(u, v)| \\
\leq e^{\frac{\epsilon}{2}}|\pi_{G-D}(u, v)| \\
< (1 + \epsilon)|\pi_{G-D}(u, v)|.
\]

(since $\epsilon < 1$)

Each ϵ_4-expath can be stored in $O(\epsilon_4^{-1}\log(nW))$ space. Each non-leaf node in the decision tree has $O(h\epsilon_4^{-1}\log(nW))$ children. Thus we have a VSDO of

- space complexity $n^{2+1/c}\epsilon_4^{-1}\log(nW) \cdot O(h\epsilon_4^{-1}\log(nW))^d$,
- query complexity $O(d^2|V(H)|^2 \cdot \epsilon_4^{-1}\log(nW))$,
- stretch $1 + \epsilon$.

As $\epsilon_4^{-1} = O(|V(H)| \cdot \epsilon^{-1}\log n) = O(\epsilon^{-1}h^{-1}\log n)$, the VSDO is of

- space complexity $n^{2+1/c} \cdot (\epsilon^{-1}d^c \log(nW))^{O(d)}$,
- query complexity $O(\epsilon^{-1}d^{3c+8}\log W)$,
- stretch $1 + \epsilon$.

We improve both the space complexity and query time in the next subsection.

4.3 An improvement

In Section 4.2 we use ϵ_4-segments in the decision tree. Therefore, each decision tree node that is not a leaf has $O(\epsilon_4^{-1} \cdot h \log(nW))$ children, and each decision tree node occupies $O(\epsilon_4^{-1} \cdot \log(nW))$ space. As $\epsilon_4^{-1} = \Theta(|V(H)| \cdot \epsilon^{-1}\log n)$, this ϵ_4^{-1} factor may seem too large. In this section, we show that the $|V(H)|$ factor in ϵ_4^{-1} can be shaved.

Let $\epsilon_1 = \epsilon/(2 + \epsilon)$ as in Section 4 and $\epsilon_5 = \epsilon_1/(4k - 2)$. We will use $O(\epsilon_5^{-1}\log(nW))$ space to represent a node in the decision tree $FT(u, v)$. A first attempt would be to store the shortest ϵ_5-expath in each node α, but we face a technical problem as follows. Suppose DecTree(u, v, D) does not capture the shortest path $P = \pi_{G-D}(u, v)$, then by Lemma 3.8, P is not far from $V(H)$. In other words, there are vertices $x \in P$ and $w \in V(H)$ such that $\pi_{G-D}(x, w) \leq \epsilon_1 |P|u, x||$. (Here we assume w.l.o.g. that x is closer to u.) Let $P_1 = \pi_{G-D}(u, x) \circ \pi_{G-D}(x, w)$, and $P_2 = \pi_{G-D}(w, v)$, we “recursively” find P_1 and P_2 and concatenate them as an approximation of P. The proof of
Lemma 3.3 shows that \(P_1 \) is far away from \(V(H) \), so we may attempt to use Lemma 4.6 to conclude that \(|\text{DecTree}(u, w, D)| \leq |P_1|\), and we only need to “recurse” on \(P_2 \). However, Lemma 4.6 relies on Theorem 4.3 which requires \(P_1 \) to be a shortest path in \(G - D \), while \(P_1 = \pi_{G-D}(u, x) \circ \pi_{G-D}(x, w) \) is not necessarily the shortest \(u-w \) path.

The solution is simple. If \(P_1 \) is \(\epsilon_1 \)-far from \(V(H) \), we can use the same proof method of Theorem 4.3 to prove that each segment of \(P_1 = \pi_{G-D}(u, x) \circ \pi_{G-D}(x, w) \) is the concatenation of at most two shortest paths in some \(G_i \) and \(G_j \). (The original Theorem 4.3 proved that each segment of \(\pi_{G-D}(u, v) \) is a shortest path in some \(G_i \).) Therefore, we define segment bipaths, in which each segment is the concatenation of two shortest paths in \(G_i \) and \(G_j \), rather than one shortest path in \(G_i \) as in segment expaths.

Definition 4.8. A path \(P \) in \(G \) is an \(\epsilon_5 \)-segment bipath if the following holds. If we partition \(P \) into \(\epsilon_5 \)-segments as in Definition 3.1, for every segment \(P[u_k, v_k] \), there exist two levels \(i, j \) and a vertex \(z \in P[u_k, v_k] \) such that \(P[u_k, v_k] = \pi_{G_i}(u_k, z) \circ \pi_{G_j}(z, v_k) \).

The following theorem can be proved by similar arguments as Theorem 4.3.

Theorem 4.9. For \(u, v, w \in V \), let \(P = \pi_{G-D}(u, v) \circ \pi_{G-D}(v, w) \). If \(P \) is \(\epsilon_1 \)-far away from \(V(H) \), then it is an \(\epsilon_5 \)-segment bipath.

Proof Sketch. Let \(P[x, y] \) be a segment of \(P \). If \(v \not\in P[x, y] \) then the argument of Theorem 4.3 applies to \(P[x, y] \), and there is some \(1 \leq i \leq p \) such that \(P[x, y] = \pi_{G_i}(x, y) \). If \(v \in P[x, y] \), then \(P[x, v] \) and \(P[v, y] \) are shortest paths in \(G - D \) respectively. Let \(z_1 \) be the vertex with the highest level in \(P[x, v] \), and \(z_2 \) be the vertex with the highest level in \(P[v, y] \). We proceed with the same argument as in Theorem 4.3, and we can see that \(P[x, v] \) is the shortest \(x-v \) path in \(G_i(z_1) \), and \(P[v, y] \) is the shortest \(v-y \) path in \(G_i(z_2) \).

Similarly we can define \(\epsilon_5 \)-bipaths:

Definition 4.10. Let \(B = \lceil \log_{1+\epsilon_5}(nW) \rceil \). An \(\epsilon_5 \)-bipath \(P \) from \(u \) to \(v \) in \(G \) is a path which is a concatenation of subpaths \(P_0, \ldots, P_{2B+1} \) interleaved with at most \(2B + 3 \) edges, such that the following hold.

- For every \(P_k = P[u_k, v_k] \) \((0 \leq k \leq 2B + 1)\), either \(P_k \) is empty, or there exists a vertex \(z \in P[u_k, v_k] \) and two levels \(1 \leq i, j \leq p \), such that \(P[u_k, v_k] = \pi_{G_i}(u_k, z) \circ \pi_{G_j}(z, v_k) \).
- If \(k < B + 1 \), then \(|P[u, v_k]| \leq (1 + \epsilon_5)^k \); if \(k \geq B + 1 \), then \(|P[u, v_k]| \leq (1 + \epsilon_5)^{2B+1-k} \).

We use \(\epsilon_5 \) in the definition of segments when constructing decision trees \(FT(u, v) \). In each node \(\alpha \in FT(u, v) \), we store the shortest \(\epsilon_5 \)-bipath from \(u \) to \(v \) as the path \(P_\alpha \). Lemma 3.7 still holds (for parameter \((2k - 1)\epsilon_5 = \epsilon_1/2\)).

Reminder of Lemma 3.7. In the query algorithm \(\text{DecTree}(u, v, D) \), let \(\alpha \) be a decision tree node it encounters, \(f \in D \) be the failed vertex which is selected in Line 4 and \(i = l(f) \). (That is, \(f \) is the
vertex in \(D \cap P_\alpha \) with the highest level.) For any non-failure vertex \(x \) in \(\text{seg}(f, P_\alpha) \cap U_i \), there is a vertex \(w \in V(H) \) such that \(|\pi_{G-D}(x,w)| \leq (\epsilon_1/2) \min\{|P_\alpha[u,x]|, |P_\alpha[x,v]|\} \).

It is easy to verify that the counterparts of Lemma 4.5 and Lemma 4.6 also hold for (segment) bipaths.

Lemma 4.11. An \(\epsilon_5 \)-segment bipath \(P \) from \(u \) to \(v \) is an \(\epsilon_5 \)-bipath.

Lemma 4.12. (Assume \(1 + \epsilon_5 < \sqrt{2} \).) Let \(y, w \in V(H) \), \(x \in V \), and \(P = \pi_{G-D}(y,x) \circ \pi_{G-D}(x,w) \). If \(\text{DecTree}(y,w,D) > |P| \), then \(P \) is not \(\epsilon_1 \)-far away from \(V(H) \).

Proof Sketch of Lemma 4.11 and Lemma 4.12. The arguments are essentially the same as Lemmas 4.5 and 4.6 except that each subpath in \(P \) and \(P_\alpha \) is now a concatenation of two shortest paths in \(G_i \) and \(G_{\nu} \). This does not affect the calculation of lengths of paths in the proofs. In particular, in Lemma 4.6 the representation of \(P[u,x] \circ P_\alpha[x,v] \) as \(\epsilon_5 \)-bipath remains exactly the same, and it is easy to verify the validity of \(P[u,x] \circ P_\alpha[x,v] \) as an \(\epsilon_5 \)-bipath.

Recall that the query algorithm builds the graph \(H \) on vertex set \(V(H) \), adds an edge of weight \(\text{DecTree}(x,y,D) \) for each \(x, y \in V(H) \), and outputs the value \(|\pi_H(u,v)| \). We now prove that the query algorithm has stretch \(1 + \epsilon \).

Theorem 4.13. For every \(u, v \in V(H) \), \(|\pi_H(u,v)| \leq (1 + \epsilon)|\pi_{G-D}(u,v)| \).

Proof. For all pairs \(u, v \in V(H) \), we sort the lengths \(|\pi_{G-D}(u,v)|\) in ascending order, and use induction on this order. For each \(u, v \in V(H) \), if \(\pi_{G-D}(u,v) \) is \(\epsilon_1 \)-far away from \(V(H) \), by Lemma 4.12 DecTree\((u,v,D) = |\pi_{G-D}(u,v)| \) and we are done. Otherwise let \(P = \pi_{G-D}(u,v) \), then there are vertices \(x \in P \setminus \{u, v\}, y \in \{u, v\} \) and \(w \in V(H) \) such that \(|\pi_{G-D}(x,w)| \leq \epsilon_1 |P[x,y]| \).

Among all such triples \((x,y,w)\), we choose the triple that minimizes \(|P[x,y]|\), and in case of ties choose the triple that minimizes \(|\pi_{G-D}(x,w)|\). W.l.o.g. assume \(y = u \). Let \(P' = \pi_{G-D}(u,x) \circ \pi_{G-D}(x,w) \) if \(P' \) is not \(\epsilon_1 \)-far away from \(V(H) \), then there are vertices \(x' \in P' \setminus \{u, w\}, y' \in \{u, w\} \) and \(w' \in V(H) \) such that \(|\pi_{G-D}(x',w')| \leq \epsilon_1 |P'[x',y']| \). The same argument as Lemma 3.8 shows that this is a contradiction to the choice of \((x,y,w)\):

- If \(x' \in P'[u,x] \), then the triple \((x',y,w')\) also satisfies that \(|\pi_{G-D}(x',w')| \leq \epsilon_1 |P'[x',y']| \), and \(|P'[x',y']| < |P[x,y]| \). So we should have chosen the triple \((x',y,w')\) instead of \((x,y,w)\).
- If \(x' \in P'[x,w] \), then \(|\pi_{G-D}(x,w)| \leq |P'[x,x']| + |\pi_{G-D}(x',w')| \leq |P'[x,x']| + \epsilon_1 |P'[x',w]| < |\pi_{G-D}(x,w)| \) as \(\epsilon_1 < 1 \). So we should have chosen the triple \((x,y,w')\) instead of \((x,y,w)\).

It follows that \(P' \) is \(\epsilon_1 \)-far away from \(V(H) \). By Lemma 4.12 we have \(\text{DecTree}(u,w,D) \leq |P'| = |\pi_{G-D}(u,x)| + |\pi_{G-D}(x,w)| \). It is easy to see that \(|\pi_{G-D}(w,v)| < |\pi_{G-D}(u,v)| \), thus by induction hypothesis \(|\pi_H(u,v)| \leq (1 + \epsilon)|\pi_{G-D}(u,v)| \).

We have

\[
|\pi_H(u,v)| \leq |\pi_H(u,w)| + |\pi_H(w,v)| \\
\leq |\pi_{G-D}(u,x)| + |\pi_{G-D}(x,w)| + (1 + \epsilon)(|\pi_{G-D}(w,x)| + |\pi_{G-D}(x,v)|) \\
\leq |\pi_{G-D}(u,x)|(1 + \epsilon_1 + (1 + \epsilon)\epsilon_1) + (1 + \epsilon)|\pi_{G-D}(x,v)| \\
= (1 + \epsilon)|\pi_{G-D}(u,v)| .
\]
Since an ϵ_5-bipath occupies $O(\epsilon_5^{-1} \log(nW))$ space, and each non-leaf node has $O(h\epsilon_5^{-1} \log(nW))$ children, we have a VSDO of

\[
\begin{align*}
\text{space complexity} & \quad n^{2+1/c} \epsilon_5^{-1} \log(nW) \cdot O(h\epsilon_5^{-1} \log(nW))^d, \\
\text{query complexity} & \quad O(d^2|V(H)|^2 \cdot \epsilon_5^{-1} \log(nW)), \\
\text{stretch} & \quad 1 + \epsilon.
\end{align*}
\]

As $\epsilon_5^{-1} = O(\epsilon^{-1} \log n)$, the VSDO is of

\[
\begin{align*}
\text{space complexity} & \quad n^{2+1/c} \cdot (\log d / \log n) \cdot O(\epsilon^{-1} \log^2 n \log(nW) / \log d)^{d+1}, \\
\text{query complexity} & \quad O(\epsilon^{-1} d^{2c+6} \log^{11} n \log(nW) / \log^2 d), \\
\text{stretch} & \quad 1 + \epsilon.
\end{align*}
\]

4.4 Implementation details

Preprocessing. Given a subgraph G' of G, vertices $s, t \in V$ and $\epsilon' > 0$, we show that the shortest ϵ'-expath from s to t in G' can be computed in polynomial time.

Let $\pi'_{G'}(s, t)$ be the shortest path of the form $\pi'_{G'}(s, t)$ which is completely contained in G'. Let $\pi(s, t, j)$ be the shortest s-t path P in G' such that the following hold.

- P is the concatenation of subpaths P_0, \ldots, P_j interleaved with $\leq j + 1$ edges. Moreover, denote $P_k = P[u_k, v_k]$, where u_k, v_k are endpoints of P_k and u_k is the closer-to-u one, then $v_k = t$, but there might be an edge between s and u_0. (That is, P is the concatenation of $e_0, P_0, e_1, P_1, \ldots, e_j, P_j$ where each e_i is an edge and each P_i is a subpath.)
- For every $0 \leq k \leq j$, P_k is either empty or a shortest path in G_i for some level $1 \leq i \leq p$.
- For every $0 \leq k \leq j$, $|P[s, v_k]| \leq (1 + \epsilon')^k$.

We use a dynamic programming algorithm to compute $|\pi(s, t, k)|$ for all $k \leq B$. To start with, we artificially define $|\pi(s, t, -1)|$ as:

\[
|\pi(s, t, -1)| = \begin{cases} 0 & \text{if } s = t \\ +\infty & \text{if } s \neq t. \end{cases}
\]

Given $\{|\pi(s, t, j - 1)|\}$ for all $s, t \in V$, we compute $|\pi(s, t, j)|$ as follows:

\[
|\pi(s, t, j)| = \begin{cases} |\tilde{\pi}(s, t, j)| & \text{if } |\tilde{\pi}(s, t, j)| \leq (1 + \epsilon')^j \\ +\infty & \text{otherwise} \end{cases},
\]

where

\[
|\tilde{\pi}(s, t, j)| = \min_{(u,v)}\{|\pi(s, u, j - 1)| + w(u, v) + |\pi'_{G'}(v, t)|\}.
\] (3)

Then the length of shortest ϵ'-expath is

\[
\min_{(u,v)}\{|\pi(s, u, B)| + w(u, v) + |\pi(t, v, B)|\}.
\]

Here $w(u, v)$ is the weight of the edge between u and v. If $u = v$ then we assume $w(u, v) = 0$.

We can easily adapt the algorithm to obtain the actual shortest ϵ'-expath.

If we replace the term $\pi'_{G'}(s, t)$ in (3) by $\pi''_{G'}(s, t)$, which is defined as the shortest concatenated path of the form $\pi'_{G'}(s, u) \circ \pi''_{G'}(u, t)$, then we can also compute shortest ϵ'-bipaths in polynomial time. Once we have a polynomial-time algorithm for computing the shortest ϵ'-expath or ϵ'-bipath in a subgraph G', it is easy to see that the whole preprocessing time is polynomial in the space complexity.
Query. An ϵ'-expath from u to v is stored as $O(\epsilon'^{-1} \log(nW))$ triples (x, y, l), where each triple denotes a subpath $\pi(x, y)$. To check whether a failed vertex f is in an ϵ'-expath P_α, we check every subpath $\pi(x, y)$ whether it contains f by checking whether $\pi(x, f) + \pi(f, y) = \pi(x, y)$. The correctness of this method relies on the uniqueness assumption of shortest paths. If f is in P_α, we can also find the segment it is in, by computing $|\log_{1+\epsilon'} |P_\alpha[u, f]|$ or $|\log_{1+\epsilon'} |P_\alpha[f, v]|$.

If we store the distance matrices of each G_i during preprocessing, then every operation (i.e. checking if $f \in P_\alpha$ and locating $seg(f, P_\alpha)$) can be done in $O(\epsilon'^{-1} \log(nW))$ time. Therefore the time complexity of Algorithm 2 becomes $O(\epsilon'^{-1} \log(nW) \cdot d^2)$. Similar arguments also apply to ϵ'-bipaths.

4.5 A reduction from arbitrary weights to bounded weights

If $W = n^{\omega(1)}$, then we may be unsatisfied with the $\log^d(nW)$ factor in the space complexity of our oracle. We can replace the $\log^d(nW)$ factor by $\log W \log^{d-1} n$ in the space complexity of our data structure, via a reduction from arbitrary weights to bounded weights. This reduction appears in [23] Lemma 4.1 and we notice that it also holds for vertex failures.

Lemma 4.14 (Lemma 4.1 of [23], rephrased). Suppose we have a VSDO for undirected graphs with edge weights in $[1, n^3]$, which occupies S space, needs Q query time and has stretch A. Then we can build a VSDO for undirected graphs with edge weights in $[1, W]$, which occupies $O(S \log W / \log n)$ space, needs $O(Q \log \log W)$ query time and has stretch $(1 + 1/n)A$.

Proof. For every $0 \leq i \leq \frac{\log W}{\log n}$, we build a VSDO O^i on the graph \tilde{G}^i, which is defined as follows: $V(\tilde{G}^i) = V(G)$ and for each edge (u, v) of weight w in G, if $w \leq n^{i+1}$, then we have an edge (u, v) of weight $\lceil w \cdot n^{-(i-2)} \rceil$ in \tilde{G}^i. Note that the graphs \tilde{G}^i are monotone in the sense that, if an edge appears in \tilde{G}^i, then it also appears (albeit with a different weight) in \tilde{G}^{i+1}. Also note that the edge weights in every \tilde{G}^{i+1} is at most n^3.

Given a query (u, v, D), we can use binary search to find the smallest integer i such that s and t are connected in $\tilde{G}^i - D$. Then we use the oracle O^i and O^{i+1} to compute an A-approximation of the value $ans = \min \{ \delta_{\tilde{G}^{i+1} - D}(u, v) \cdot n^{i-2}, \delta_{\tilde{G}^{i}}(u, v) \cdot n^{i-1} \}$.

It remains to prove that $\delta_{\tilde{G}^{i+1} - D}(u, v) \leq ans \leq (1 + 1/n)\delta_{\tilde{G}^{i+1} - D}(u, v)$. That $\delta_{\tilde{G}^{i+1} - D}(u, v) \leq ans$ is trivial. Let \tilde{W} be the largest edge weight in $\pi(u, v)$, and $i = \lfloor \log \tilde{W} \rfloor$. Since $\tilde{W} \leq n^{i+1}$, u, v are connected in \tilde{G}^i. On the other hand, every edge in G that appears in \tilde{G}^{i+2} has weight at most n^{i+1}, thus if v and u are connected in \tilde{G}^{i+2}, then $\delta_{G^{i+2}}(u, v) \leq (n - 1)n^{i+1} < n^i$, contradicting the definition of i. Therefore $i - 1 \leq i \leq i + 1$.

We have $ans \leq \delta_{\tilde{G}^{i+1} - D}(u, v) \cdot n^{i-2}$. For every edge $e \in E(G)$ with weight w, if e appears in the graph \tilde{G}^i, then $\lceil w \cdot n^{-(i-2)} \rceil \leq \delta_{\tilde{G}^i}(u, v) \leq w + n^{i-2}$, i.e. every such edge is “overestimated” by an additive error of at most n^{i-2}. It follows that $ans \leq \delta_{G^{i+2}}(u, v) + (n - 1)n^{i+1}$. Since $\delta_{G^{i+2}}(u, v) \geq n^i$, we have $ans \leq (1 + 1/n)\delta_{G^{i+2}}(u, v)$.

As our new oracle computes an A-approximation of ans, its stretch is $(1 + 1/n)A$. \qed

Assuming $\epsilon > 2/n$, Lemma 4.14 transforms the VSDO in Section 3 into a VSDO of

space complexity	$n^{3+1/c} (\log W / \log n) \cdot O(\epsilon^{-1} \log^3 n / \log d)^d$,
query complexity	$O(d^{2c+6} \log^{10} n \log W / \log^2 d)$,
stretch	$1 + \epsilon$,
and the VSDO in Section 4 into a VSDO of

\[
\text{space complexity } \quad n^{2+1/c}(\log W \log d / \log^2 n) \cdot O(\epsilon^{-1} \log^3 n / \log d)^{d+1},
\]

\[
\text{query complexity } \quad O(\epsilon^{-1} d^{2c+6} \log^{12} n \log \log W / \log^2 d),
\]

\[
\text{stretch } \quad 1 + \epsilon.
\]

5 A poly(log n, d)-Stretch Oracle

We present an oracle of space complexity \(n^{2+1/c} \text{poly}(\log(nW), d)\) that achieves poly(log n, d) stretch and poly(log(nW), d) query time. We actually consider a decision version of our problem, namely:

a) It is given a parameter \(\rho\).

b) If \(\delta_{G-D}(u, v) \leq \rho\), the data structure outputs Yes.

c) For some \(A = \text{poly}(\log n, d)\), if \(\delta_{G-D}(u, v) > \rho \cdot A\), then the data structure outputs No.

A standard binary search argument shows that if the above decision version can be solved in space \(S\), query time \(Q\) and stretch \(A\), then there is a VSDO of size \(O(S \log(nW))\), query time \(O(Q \log \log(nW))\) and stretch \(2A\). (See also [24].) Let \(O_\rho\) be the oracle solving the decision version, and we build a VSDO \(O^*\) as follows. The new oracle \(O^*\) consists of \(O(\log(nW))\) old oracles \(\{O_{2^i} : 0 \leq i \leq \lceil \log_2(nW) \rceil \}\). For convenience we assume \(O_{2^{-1}}\) always outputs No and \(O_{2^{\lceil \log_2(nW) \rceil + 1}}\) always outputs Yes.

On a query \(u, v, D\), the oracle \(O^*\) finds some \(i (0 \leq i \leq \lceil \log_2(nW) \rceil + 1)\) such that \(O_{2^{-1}}\) outputs No and \(O_{2^i}\) outputs Yes, and outputs \(ans = A \cdot 2^i\). Such \(i\) always exists and can be found in \(O(\log \log(nW))\) oracle calls by binary search.\(^{15}\) Since \(O_{2^{-1}}\) outputs No, we have \(\delta_{G-D}(u, v) \geq 2^{i-1}\) by (b), so \(ans \leq 2A \cdot \delta_{G-D}(u, v)\). Since \(O_{2^i}\) outputs Yes, we have \(\delta_{G-D}(u, v) \leq A \cdot 2^i\) by (c), so \(ans \geq \delta_{G-D}(u, v)\). Thus \(O^*\) is indeed a VSDO with stretch \(2A\).

5.1 Preliminaries

5.1.1 k-covering sets

Denote \([l, r] = \{l, l + 1, \ldots, r\}\) and \([n] = \{1, n\}\). An interval is a set of the form \([l, r]\). Given a universe \([n]\), a set of intervals \(\mathcal{I}\) is a \(k\)-covering set of \([n]\) if for every \(1 \leq l \leq r \leq n\), there are at most \(k\) intervals \(I_1, I_2, \ldots, I_k \in \mathcal{I}\) such that \(\bigcup_{i=1}^{k} I_i = [l, r]\).

The notion of \(k\)-covering sets arise from the study of the semigroup range query problem \(^{5,66}\), which is a generalization of the range minimum query problem \(^{4,9,10}\). For example, by constructing an interval tree over \([n]\), it is easy to see that there is an \(O(\log n)\)-covering set of \([n]\) whose size is \(O(n)\). We use the following (stronger) results of \(^{5,66}\):

Theorem 5.1. There exists a polynomial-time computable \(O(\alpha(n))\)-covering set \(\mathcal{I}\) of \([n]\) with \(|\mathcal{I}| = O(n)\), where \(\alpha(n)\) is the inverse-Ackermann function. Moreover, for any interval \([l, r]\), we can find \(O(\alpha(n))\) intervals whose union is \([l, r]\) in \(O(\alpha(n))\) time.

5.1.2 Euler tours

For a tree \(T\) rooted at \(s \in V\), we perform a depth-first search on \(T\) starting at \(s\), and record every vertex at the first time it is encountered. The sequence of encountered vertex is called the Euler

\(^{15}\)We maintain an interval \([l, r]\) such that on this query, \(O_{2^i}\) outputs No and \(O_{2^j}\) outputs Yes. Initially \(l = -1\) and \(r = \lceil \log_2(nW) \rceil + 1\). In each iteration, let \(m = [(l + r)/2]\), and we query \(O_{2^m}\). If \(O_{2^m}\) returns No, we set \(l \leftarrow m\), otherwise we set \(r \leftarrow m\). After \(O(\log \log(nW))\) oracle calls, we have \(r - l = 1\) and we are done.
Figure 5: Left: a sample tree T. A possible Euler tour of T is v_1, v_2, \ldots, v_{23}. We delete the vertices \{v_1, v_5, v_9, v_{11}, v_{14}\} from T, and the connected component containing v_2 is marked as green. Right: the green component is a big interval (corresponding to the subtree of v_2) subtracting 4 smaller intervals (subtrees of v_5, v_9, v_{11} and v_{14}), thus the union of ≤ 5 intervals.

tour of T, denoted as ET(T). The Euler tour has a nice property, namely that every subtree of T rooted at $x \in V(T)$ corresponds to an interval of the sequence ET(T). As a corollary, if we remove d vertices D from T, every connected component in $T - D$ (which is a smaller tree) corresponds to the union of $O(d)$ such intervals. (See Fig. 5 for an illustration.)

Lemma 5.2. Let D be a subset of $V(T)$ such that $|D| \leq d$, S be any connected component of $T - D$, then S is the union of $O(d)$ intervals of ET(T). Moreover these intervals can be found in $O(d \log d)$ time.

Proof. Let $I(x)$ denote the interval of ET(T) corresponding to the subtree rooted at x. Let h be the highest vertex in S, then $S = I(h) \setminus \bigcup_{f \in D} I(f)$, which is a big interval subtracting d smaller intervals. By sorting the endpoints of $\{I(f) : f \in D \cup \{h\}\}$, we can express S as the union of $O(d)$ intervals.

5.2 Preprocessing algorithm

In the preprocessing algorithm, (for each path $V = U_1, U_2, \ldots, U_p$ of the hierarchy tree,) we prune the trees and construct auxiliary data structures H, E' as follows.

Pruning the trees. Recall that we consider the trees in $\mathcal{T} = \bigcup_{i=1}^p \mathcal{T}_{U_{i+1}}(U_i)$, and we have a distance parameter ρ. We prune off vertices of large depth in every tree in \mathcal{T} and $v \in V(T)$, if $\text{dep}_T(v) > (2k - 1)\rho$, we delete v from T. There are two reasons to perform this step:

- If for some $u \in V$, $\delta(u, v) \leq \rho$ and u, v are covered by T (i.e. $\text{dep}_T(u) + \text{dep}_T(v) \leq (2k - 1) \cdot \delta(u, v)$), then $\text{dep}_T(v) \leq (2k - 1)\rho$, hence the pruning would not affect any distance of $\leq \rho$;
- After the pruning, every tree in \mathcal{T} has diameter at most $(4k - 2)\rho$.

In the rest of this section, we assume that all trees in \mathcal{T} are pruned.
The auxiliary DAG H. We list the trees as $T = \{T_1, T_2, \ldots, T_{|\mathcal{T}|}\}$, and concatenate their Euler tours as a list $\Lambda = \text{ET}(T_1) \circ \text{ET}(T_2) \circ \cdots \circ \text{ET}(T_{|\mathcal{T}|})$. Recall that $|\mathcal{T}| = O(n)$ and every vertex appears in $O(h \log^2 n)$ trees, where $h = O(\log n / \log d)$. Therefore $|\Lambda| = O(nh \log^2 n)$ and $\alpha(|\Lambda|) = O(\alpha(n))$. Let \mathcal{I} be an $O(\alpha(n))$-covering set of Λ, so every interval of Λ can be expressed as the union of $O(\alpha(n))$ intervals in \mathcal{I}. We make two copies $\mathcal{I}_1, \mathcal{I}_2$ of \mathcal{I}, two copies $\mathcal{T}_1, \mathcal{T}_2$ of \mathcal{T}, and one copy V_1 of V. For $I \in \mathcal{I}$, let I_1, I_2 be its copies in $\mathcal{I}_1, \mathcal{I}_2$ respectively; T_1, T_2, v_1 are similarly defined.

We define a DAG H with $V(H) = \mathcal{I}_1 \cup \mathcal{T}_1 \cup V_1 \cup \mathcal{T}_2 \cup \mathcal{I}_2$, and $E(H)$ defined as follows (where $(a \to b)$ denotes a directed edge from a to b):

1. Let $I \in \mathcal{I}, T \in \mathcal{T}$, if there is an edge from some vertex in I to some vertex in T with weight $\leq \rho$, then we have edges $(I_1 \to T_1)$ and $(T_2 \to I_2)$ in $E(H)$;
2. Let $T \in \mathcal{T}, u \in V(T)$ (after the pruning), then we have edges $(T_1 \to u_1)$ and $(u_1 \to T_2)$ in $E(H)$.

In the query algorithm, we use the graph H to capture the paths only “involved” with unaffected trees, which are trees that do not intersect D (see Definition 5.3). Therefore, we need to remove $\mathcal{T}_1 \cup \mathcal{T}_2$ from H, where \mathcal{T}^* is the set of affected trees, and $\mathcal{T}_1^*, \mathcal{T}_2^*$ are copies of \mathcal{T}^* in $\mathcal{T}_1, \mathcal{T}_2$ respectively. Suppose we can upper bound the number of affected trees as $|\mathcal{T}^*| \leq K$. We are interested in the following kind of queries on H: “Given $I_1 \in \mathcal{I}_1, I_2 \in \mathcal{I}_2$, can I_1 reach I_2 in $H - T_1^* - T_2^*$?” We claim that, since the depth of H is a constant, such queries can be answered efficiently.

Lemma 5.3. Let $H = (V, E)$ be a DAG, $V' \subseteq V$, $n = |V|$, x, y be integers and $q = \frac{(x+y)^2 + y+1}{x^2 y^3} \log n$. Suppose every path in H contains at most x vertices in V'. We can build a data structure of size $O(qn^2)$ which, given a subset $D \in \binom{V'}{\leq y}$ and two vertices $u, v \in V'$, in $O(q)$ query time, outputs 1 if u can reach v in $H - D$ and 0 otherwise. With high probability over the randomized preprocessing algorithm, the data structure is correct on every query.

The proof uses a clever trick of [31], which was inspired by color coding [6].

Let $\mathcal{U} = \{1, 2, \ldots, n\}$, \mathcal{S} be a family of subsets of \mathcal{U}. We say \mathcal{S} is an (x, y)-family if for every $X \in \binom{\mathcal{U}}{\leq x}, Y \in \binom{\mathcal{U}}{\leq y}$ such that $X \cap Y = \emptyset$, there is a set $S \in \mathcal{S}$ such that $X \subseteq S$ and $Y \cap S = \emptyset$.

Fixed X, Y, we randomly sample a subset S of \mathcal{U} by picking every element w.p. $\frac{x}{x+y}$. W.p. $p = \frac{x^2 y^3}{(x+y)^2 + y+1}$, the set S satisfies the condition that $X \subseteq S$ and $Y \cap S = \emptyset$. By a union bound over all X, Y’s, if we sample $O(p^{-1} \log(n^{x+y})) = O\left(\frac{(x+y)^2 + y+1}{x^2 y^3} \log n\right)$ such sets S, we obtain an (x, y)-family with high probability.

Remark 5.4. Unfortunately, we are not aware of efficient deterministic algorithms for constructing small (x, y)-families.

Proof of Lemma 5.3. Let \mathcal{S} be an (x, y)-family of V'. For every $S \in \mathcal{S}$, we store a reachability matrix of the induced subgraph $H[S \cup (V \setminus V')]$. On a query (u, v, D), the algorithm outputs 1 if and only if there is some $S \in \mathcal{S}$ such that $S \cap D = \emptyset$ and u can reach v in $H[S \cup (V \setminus V')]$.

The correctness of the algorithm follows directly from the definition of (x, y)-family. If u does not reach v in $H - D$, then for any S such that $S \cap D = \emptyset$, u does not reach v in $H[S \cup (V \setminus V')]$. If u can reach v in $H - D$, let P be the vertices in some specific path from u to v in $H - D$, then $|P \cap V'| \leq x$ by hypothesis. By the definition of (x, y)-family, there is a set $S_0 \in \mathcal{S}$ such that $P \cap V' \subseteq S_0$ and $D \cap S_0 = \emptyset$, and the algorithm detects that u can reach v in $G[S_0 \cup (V \setminus V')]$.
Let $x = 2, y = 2K, V' = T_1 \cup T_2$ and $q = \frac{(x+y)^2+y+1}{x^2y^2} \log |\Lambda| = O(K^3 \log n)$, Lemma 5.3 implies that we can maintain H in $O(q \cdot |\Lambda|^2)$ space and answer the above queries in $O(q)$ time.

The auxiliary table E'. Besides the main structure H, we also need to store a table E', specified as a subset of $\Lambda \times \Lambda$. For every $u, v \in V$ such that $u = v$ or (u, v) is an edge with weight $\leq \rho$ in E, for every occurrences u', v' of u, v in Λ respectively, there is an item $(u', v') \in E'$. There are no other items in E'.

Since every vertex occurs $O(h \log^2 n)$ times in Λ, we have $|E'| = O(mh^2 \log^4 n)$. We store E' by a 2D range search structure \cite{1} of size $O(mh^2 \log^5 n)$ such that given intervals I_1, I_2 of Λ, it can be queried if $E' \cap (I_1 \times I_2) = \emptyset$ in $O(\log \log n)$ time.

5.3 Query algorithm

Suppose we are given $u, v \in V$, $D \in \left(\frac{V}{\emptyset}d\right)$ and ρ. As described earlier, we have already found a path $V = U_1, U_2, \ldots, U_p$ in hierarchy tree where every vertex in D has low pseudo-degree in every tree.

Identify affected trees. We first identify the affected trees in T. After the removal of D, these trees split into several subtrees, some of which are called affected subtrees, and the others are ignored subtrees. A precise definition is as follows:

Definition 5.5. A tree $T \in \mathcal{T}$ is an affected tree if $V(T) \cap D \neq \emptyset$. For each affected tree $T \in \mathcal{T}$, the removal of D splits T into several subtrees $T^{(1)}, T^{(2)}, \ldots, T^{(s)}$. A subtree $T^{(i)}$ is an affected subtree if it contains some trunk vertex of T; otherwise it is an ignored subtree. A vertex $v \in V$ is an affected vertex if it is in some affected subtree; otherwise it is an unaffected vertex.

Remark 5.6. It is possible that an unaffected vertex belongs to some ignored subtree.

Lemma 5.7 (The Number of Affected (Sub)Trees). There are at most $O(dh \log^2 n)$ affected trees and $O(d^{c+2}h \log^4 n)$ affected subtrees.

Proof. Recall that $p = O(h)$ is the depth of the high-degree hierarchy. Every vertex in D is in at most $p \cdot 2e \log^2 n$ trees, so at most $O(dh \log^2 n)$ trees can be affected. Every vertex in D has pseudo-degree at most $s = O(d^{c+1} \log^2 n)$ in every tree, so these affected trees split into at most $O(d^{c+2}h \log^4 n)$ affected subtrees (and possibly many ignored subtrees).

The graph R. During the query algorithm, we construct an unweighted graph R whose vertex set is $V(R) = \{\{u\}, \{v\}\} \cup \mathcal{T}'$, where \mathcal{T}' is the set of affected subtrees. We output YES if and only if $\{u\}$ and $\{v\}$ are connected in R.

For every $X, Y \in V(R)$, we use the following procedure to determine if there is an edge between X and Y in $E(R)$. We consider X, Y as subsets of V. If X is an affected subtree which belongs to the affected tree T, then by Lemma 5.2, we can write X as the union of $O(d)$ intervals of ET(T). By Theorem 5.1, X is the union of $O(d \cdot \alpha(n))$ intervals in \mathcal{I}. If $X = \{u\}$ or $X = \{v\}$ then X is trivially an interval in \mathcal{I}. Similarly, X can also represent Y as the union of $O(d \cdot \alpha(n))$ intervals in \mathcal{I}. If there are two intervals $I^1, I^2 \in \mathcal{I}$, where I^1 is in the representation of X and I^2 is in the representation of Y, such that either I^1_1 can reach I^2_2 in $H - T^*_1 - T^*_2$ or $E' \cap (I^1 \times I^2) \neq \emptyset$, then we insert an edge in $E(R)$ between X and Y. Here T^*_1, T^*_2 denote the copies of affected trees in T_1, T_2 of $V(H)$ respectively.

The time complexity for the query algorithm is dominated by constructing $E(R)$. Since $|V(R)| = O(d^{c+2}h \log^4 n)$, and there are at most $K = O(dh \log^2 n)$ affected trees, the algorithm takes $O((d^{c+2}h \log^4 n)^2(d \cdot \alpha(n))^2(K^3 \log n + \log \log n)) = O(d^{2c+9} \alpha^2(n)h^5 \log^{15} n)$ time.
Justification. We justify the construction of graph \(R \). For \(X, Y \in V(R) \), there should be an edge between \(X \) and \(Y \) if there is an unaffected path of length at most \(\rho \) connecting them, defined as follows.

Definition 5.8. For \(X, Y \subseteq V \), an unaffected path in \(G - D \) connecting \(X \) and \(Y \) is a path \((v_0, \ldots, v_\ell) (\ell \geq 0)\) in \(G - D \) such that \(v_0 \in X, v_\ell \in Y \), and \(v_1, v_2, \ldots, v_{\ell-1} \) are unaffected vertices.

The following theorem justifies the definition of \(E(R) \).

Theorem 5.9. For \(X, Y \in V(R) \):

a) If there is an unaffected path of length \(\leq \rho \) connecting \(X \) and \(Y \), then \((X, Y) \in E(R)\).

b) If \((X, Y) \in E(R)\), then there is a path in \(G - D \), which starts at some vertex in \(X \), ends at some vertex in \(Y \), and has length at most \((8k-2)\rho\).

Proof. *Proof of a.** Let the path be \((v_0, v_1, \ldots, v_\ell)\) where \(v_0 \in I^1, v_\ell \in I^2 \), and \(I^1, I^2 \) are intervals in the representation of \(X, Y \) respectively. If \(\ell \leq 1 \), then we have \((I^1 \times I^2) \cap E' \neq \emptyset \). If \(\ell > 1 \), let \(v_j \) be the vertex in \(v_1, v_2, \ldots, v_{\ell-1} \) with the highest level, and \(i = l(v_j) \) be its level. Then the path does not intersect \(U_{i+1} \). Let \(T^1 = \text{Trunk}(v_j, v_1) \) be the tree in \(T_{U_{i+1}}(U_j) \) which approximates the distance \(\delta_{G-U_{i+1}}(v_j, v_1) \), then \(\text{dep}_{T^1}(v_1) + \text{dep}_{T^1}(v_j) \leq (2k-1)\rho \). Therefore \(v_1 \) and \(v_j \) are not pruned in \(T^1 \). If \(T^1 \) is an affected tree, then \(v_j \) is an unaffected vertex, it must lie in some ignored subtree of \(T^1 \), but this contradicts the fact that \(v_j \in \text{Trunk}(T^1) \). Therefore \(T^1 \) is not an affected tree. Similarly let \(T^2 = \text{Trunk}(v_j, v_{\ell-1}) \), then \(\text{dep}_{T^2}(v_{\ell-1}) + \text{dep}_{T^2}(v_j) \leq (2k-1)\rho \), and \(T^2 \) is not an affected tree. We conclude that there is a path \(I^1_1 \rightarrow T^1_1 \rightarrow (v_j)_{1} \rightarrow T^2_2 \rightarrow I^2_2 \) in \(H - T^*_1 - T^*_2 \).

*Proof of b.** Suppose that the interval \(I^1 \) is in the representation of \(X \), the interval \(I^2 \) is in the representation of \(Y \), and \(I^1, I^2 \) contributes to the edge \((X, Y)\). If \((I^1 \times I^2) \cap E' \neq \emptyset \), then either \(I^1 \cap I^2 \neq \emptyset \) or there is an edge \((u, v) \in E \) of length \(\leq \rho \) such that \(u \in I^1 \) and \(v \in I^2 \). In either case the lemma follows. On the other hand, if \(I^1_1 \) can reach \(I^2_2 \) in \(H - T^*_1 - T^*_2 \), and the corresponding path in \(H - T^*_1 - T^*_2 \) is \(I^1_1 \rightarrow T^1_1 \rightarrow v_1 \rightarrow T^2_2 \rightarrow I^2_2 \), then \(T^1 \) and \(T^2 \) are unaffected trees. Consider the following path \(p \), which starts from \(I^1_1 \), goes to an adjacent vertex in \(T^1 \) by an edge of weight \(\leq \rho \), walks along \(T^1 \) to reach \(v \), walks along \(T^2 \) to reach a vertex adjacent to \(I^2 \) by an edge of weight \(\leq \rho \), then goes to \(I^2_2 \). Since every tree has diameter at most \((4k-2)\rho \), the length of \(p \) is at most \((8k-2)\rho \). Since \(T^1 \) and \(T^2 \) are unaffected trees, \(p \) avoids \(D \), and the lemma follows.

Given Theorem 5.9, it is easy to prove that our algorithm achieves a stretch of \(O(k \cdot |V(R)|) = O(d^c+2h \log^n n) \).
Theorem 5.10 (Correctness). There is some $A = O(d^{k+2} h \log^5 n)$ such that for $u, v \in V$, $D \in (\frac{V}{\leq d})$:

a) If $\delta_{G-D}(u, v) \leq \rho$, then the algorithm outputs YES.

b) If the algorithm outputs YES, then $\delta_{G-D}(u, v) \leq \rho \cdot A$.

Proof. Proof of a). Suppose $p : (u = w_0, w_1, \ldots, w_\ell, w_\ell = v)$ is a path from u to v in $G - D$ with length at most ρ. For $1 \leq i < \ell$, let t_i be any affected subtree that w_i lies in; if w_i is an unaffected vertex then set $t_i = \emptyset$. Let $a(i)$ ($i \geq 1$) be the i-th index such that $t_{a(i)} \neq \emptyset$, and q be the maximum index such that $a(q)$ is defined. (For example, $t_j = \emptyset$ for every $1 \leq j < a(1)$ or $a(q) < j < \ell$, but $t_{a(1)} \neq \emptyset, t_{a(q)} \neq \emptyset$.) Artificially we define $t_0 = \{u\}, a(0) = 0, t_\ell = \{v\}$ and $a(q + 1) = \ell$. Then for every $0 \leq i \leq q$, we have an unaffected path $(w_{a(i)}, w_{a(i)+1}, \ldots, w_{a(i)+1})$ of length at most ρ connecting $t_{a(i)}$ and $t_{a(i+1)}$, thus $(t_{a(i)}, t_{a(i+1)}) \in E(R)$ by Theorem 5.9 a). We conclude that $\{u\}$ and $\{v\}$ are connected in R. Therefore the algorithm returns YES.

Proof of b). Suppose the algorithm returns YES. Then there is a simple path $\{u\} = t_0 \to t_1 \to \cdots \to t_\ell = \{v\}$ in R. By Theorem 5.9 b), there are vertices $u = u_0, v_1, u_1, \ldots, v_\ell-1, u_\ell-1, v_\ell = v$ such that:

- For every $1 \leq i < \ell$, $v_i, u_i \in t_i$.
- For every $0 \leq i < \ell$, $\delta_{G-D}(u_i, v_{i+1}) \leq (8k - 2)\rho$.

Since each tree has diameter at most $(4k - 2)\rho$, we can add that:

- For every $1 \leq i < \ell$, $\delta_{G-D}(v_i, u_i) \leq (4k - 2)\rho$.

Therefore $\delta_{G-D}(u, v) \leq \ell \cdot (8k - 2)\rho + (\ell - 1) \cdot (4k - 2)\rho = ((12k - 4)\ell - 4k + 2)\rho$. Since $\ell \leq |V(R)| = O(d^{k+2} h \log^4 n)$, we have $\delta_{G-D}(u, v) \leq O(d^{k+2} h \log^5 n) \cdot \rho$. \hfill \square

The space complexity of our oracle is dominated by the $O(n^{1/c} |A|^2)$ term, therefore our VSDO has

- space complexity $O(n^{2+1/c} d^3 \log^6 n \log(nW) / \log^5 d)$,
- query complexity $O(d^{2a+9} \alpha^2(n) \log^{20} n \log(nW) / \log^5 d)$,
- stretch $O(d^{c+2} \log^6 n / \log d)$.

Acknowledgements

We are grateful to anonymous referees for helpful comments and bringing [54] to our attention. We would like to thank Thatchaphol Saranurak for providing an early manuscript of [62], and Zhijun Zhang for helpful comments.

References

[1] Ittai Abraham, Shiri Chechik, and Sebastian Krinninger. Fully dynamic all-pairs shortest paths with worst-case update-time revisited. In Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’17, pages 440–452, Philadelphia, PA, USA, 2017. Society for Industrial and Applied Mathematics.

[2] Ittai Abraham, Shiri Chechik, and Kunal Talwar. Fully Dynamic All-Pairs Shortest Paths: Breaking the $O(n)$ Barrier. In Klaus Jansen, Joséd P. Rolim, Nikhil R. Devanur, and Cristopher Moore, editors, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2014), volume 28 of Leibniz International
[3] Yehuda Afek, Anat Bremler-Barr, Haim Kaplan, Edith Cohen, and Michael Merritt. Restoration by path concatenation: fast recovery of MPLS paths. *Distributed Computing*, 15(4):273–283, 2002.

[4] A. V. Aho, J. E. Hopcroft, and J. D. Ullman. On finding lowest common ancestors in trees. In Proceedings of the Fifth Annual ACM Symposium on Theory of Computing, STOC ’73, pages 253–265, New York, NY, USA, 1973. ACM.

[5] Noga Alon and Baruch Schieber. Optimal preprocessing for answering on-line product queries. Technical Report 71/87, Tel Aviv University, 1987.

[6] Noga Alon, Raphael Yuster, and Uri Zwick. Color-coding. *J. ACM*, 42(4):844–856, July 1995.

[7] S. Alstrup, G. Stolting Brodal, and T. Rauhe. New data structures for orthogonal range searching. In *Proceedings of the 41st Annual Symposium on Foundations of Computer Science*, FOCS ’00, pages 198–207, Washington, DC, USA, 2000. IEEE Computer Society.

[8] Surender Baswana and Neelesh Khanna. Approximate shortest paths avoiding a failed vertex: Near optimal data structures for undirected unweighted graphs. *Algorithmica*, 66(1):18–50, 2013.

[9] Michael A. Bender and Martín Farach-Colton. The LCA problem revisited. In Gaston H. Gonnet and Alfredo Viola, editors, *LATIN 2000: Theoretical Informatics*, pages 88–94, Berlin, Heidelberg, 2000. Springer Berlin Heidelberg.

[10] Aaron Bernstein. Fully dynamic \((2 + \epsilon)\) approximate all-pairs shortest paths with fast query and close to linear update time. In *Proceedings of the 2009 50th Annual IEEE Symposium on Foundations of Computer Science*, FOCS ’09, pages 693–702, Washington, DC, USA, 2009. IEEE Computer Society.

[11] Aaron Bernstein and David Karger. Improved distance sensitivity oracles via random sampling. In *Proceedings of the Nineteenth Annual ACM-SIAM Symposium on Discrete Algorithms*, SODA ’08, pages 34–43, Philadelphia, PA, USA, 2008. Society for Industrial and Applied Mathematics.

[12] Aaron Bernstein and David Karger. A nearly optimal oracle for avoiding failed vertices and edges. In *Proceedings of the Forty-first Annual ACM Symposium on Theory of Computing*, STOC ’09, pages 101–110, New York, NY, USA, 2009. ACM.

[13] Davide Bilò, Keerti Choudhary, Luciano Gualà, Stefano Leucci, Merav Parter, and Guido Proietti. Efficient oracles and routing schemes for replacement paths. In Rolf Niedermeier and Brigitte Vallée, editors, *35th Symposium on Theoretical Aspects of Computer Science, STACS 2018, February 28 to March 3, 2018, Caen, France*, volume 96 of LIPIcs, pages 13:1–13:15. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2018.

[14] Davide Bilò, Luciano Gualà, Stefano Leucci, and Guido Proietti. Multiple-Edge-Fault-Tolerant Approximate Shortest-Path Trees. In Nicolas Ollinger and Heribert Vollmer, editors, *33rd Symposium on Theoretical Aspects of Computer Science (STACS 2016)*, volume 47 of *Leibniz International Proceedings in Informatics (LIPIcs)*, pages 18:1–18:14, Dagstuhl, Germany, 2016. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.
[15] Davide Bilò, Luciano Gualà, Stefano Leucci, and Guido Proietti. Fault-tolerant approximate shortest-path trees. *Algorithmica*, 80(12):3437–3460, 2018.

[16] Greg Bodwin, Michael Dinitz, Merav Parter, and Virginia Vassilevska Williams. Optimal vertex fault tolerant spanners (for fixed stretch). In *Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms*, SODA ’18, pages 1884–1900, Philadelphia, PA, USA, 2018. Society for Industrial and Applied Mathematics.

[17] Greg Bodwin, Fabrizio Grandoni, Merav Parter, and Virginia Vassilevska Williams. Preserving Distances in Very Faulty Graphs. In Ioannis Chatzigiannakis, Piotr Indyk, Fabian Kuhn, and Anca Muscholl, editors, *44th International Colloquium on Automata, Languages, and Programming (ICALP 2017)*, volume 80 of *Leibniz International Proceedings in Informatics (LIPIcs)*, pages 73:1–73:14, Dagstuhl, Germany, 2017. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.

[18] Greg Bodwin and Shyamal Patel. A trivial yet optimal solution to vertex fault tolerant spanners. In Peter Robinson and Faith Ellen, editors, *Proceedings of the 2019 ACM Symposium on Principles of Distributed Computing, PODC 2019*, Toronto, ON, Canada, July 29 - August 2, 2019, pages 541–543. ACM, 2019.

[19] Glencora Borradaile, Seth Pettie, and Christian Wulff-Nilsen. Connectivity oracles for planar graphs. In Fedor V. Fomin and Petteri Kaski, editors, *Algorithm Theory - SWAT 2012 - 13th Scandinavian Symposium and Workshops, Helsinki, Finland, July 4-6, 2012. Proceedings*, volume 7357 of *Lecture Notes in Computer Science*, pages 316–327. Springer, 2012.

[20] Panagiotis Charalampopoulos, Shay Mozes, and Benjamin Tebeka. Exact distance oracles for planar graphs with failing vertices. In *Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms*, SODA ’19, pages 2110–2123, Philadelphia, PA, USA, 2019. Society for Industrial and Applied Mathematics.

[21] S. Chechik, M. Langberg, David Peleg, and L. Roditty. Fault-tolerant spanners for general graphs. In *Proceedings of the Forty-first Annual ACM Symposium on Theory of Computing*, STOC ’09, pages 435–444, New York, NY, USA, 2009. ACM.

[22] Shiri Chechik. *Fault-tolerant structures in graphs*. PhD thesis, Weizmann Institute of Science, June 2012.

[23] Shiri Chechik, Sarel Cohen, Amos Fiat, and Haim Kaplan. $(1+\epsilon)$-approximate f-sensitive distance oracles. In *Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms*, SODA ’17, pages 1479–1496, Philadelphia, PA, USA, 2017. Society for Industrial and Applied Mathematics.

[24] Shiri Chechik, Michael Langberg, David Peleg, and Liam Roditty. f-sensitivity distance oracles and routing schemes. *Algorithmica*, 63(4):861–882, 2012.

[25] Keerti Choudhary. An optimal dual fault tolerant reachability oracle. In Ioannis Chatzigiannakis, Michael Mitzenmacher, Yuval Rabani, and Davide Sangiorgi, editors, *43rd International Colloquium on Automata, Languages, and Programming, ICALP 2016, July 11-15, 2016, Rome, Italy*, volume 55 of *LIPIcs*, pages 130:1–130:13. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2016.
[26] Rezaul Alam Chowdhury and Vijaya Ramachandran. Improved distance oracles for avoiding link-failure. In Prosenjit Bose and Pat Morin, editors, Algorithms and Computation, 13th International Symposium, ISAAC 2002 Vancouver, BC, Canada, November 21-23, 2002, Proceedings, volume 2518 of Lecture Notes in Computer Science, pages 523–534. Springer, 2002.

[27] Don Coppersmith and Shmuel Winograd. Matrix multiplication via arithmetic progressions. J. Symb. Comput., 9(3):251–280, 1990.

[28] Camil Demetrescu and Giuseppe F. Italiano. Fully dynamic all pairs shortest paths with real edge weights. Journal of Computer and System Sciences, 72(5):813 – 837, 2006. Special Issue on FOCS 2001.

[29] Camil Demetrescu and Mikkel Thorup. Oracles for distances avoiding a link-failure. In Proceedings of the Thirteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’02, pages 838–843, Philadelphia, PA, USA, 2002. Society for Industrial and Applied Mathematics.

[30] Camil Demetrescu, Mikkel Thorup, Rezaul Alam Chowdhury, and Vijaya Ramachandran. Oracles for distances avoiding a failed node or link. SIAM J. Comput., 37(5):1299–1318, 2008.

[31] Michael Dinitz and Robert Krauthgamer. Fault-tolerant spanners: Better and simpler. In Proceedings of the 30th Annual ACM SIGACT-SIGOPS Symposium on Principles of Distributed Computing, PODC ’11, pages 169–178, New York, NY, USA, 2011. ACM.

[32] Ran Duan and Seth Pettie. Dual-failure distance and connectivity oracles. In Claire Mathieu, editor, Proceedings of the Twentieth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2009, New York, NY, USA, January 4-6, 2009, pages 506–515. SIAM, 2009.

[33] Ran Duan and Seth Pettie. Connectivity oracles for failure prone graphs. In Proceedings of the Forty-second ACM Symposium on Theory of Computing, STOC ’10, pages 465–474, New York, NY, USA, 2010. ACM.

[34] Ran Duan and Seth Pettie. Connectivity oracles for graphs subject to vertex failures. In Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’17, pages 490–509, Philadelphia, PA, USA, 2017. Society for Industrial and Applied Mathematics.

[35] Ran Duan and Tianyi Zhang. Improved distance sensitivity oracles via tree partitioning. In Faith Ellen, Antonina Kolokolova, and Jörg-Rüdiger Sack, editors, Algorithms and Data Structures - 15th International Symposium, WADS 2017, St. John’s, NL, Canada, July 31 - August 2, 2017, Proceedings, volume 10389 of Lecture Notes in Computer Science, pages 349–360. Springer, 2017.

[36] P. Erdős. Extremal problems in graph theory. In Proceedings of the Symposium on Theory of Graphs and its Applications, pages 29–36, 1964.

[37] David Gibb, Bruce M. Kapron, Valerie King, and Nolan Thorn. Dynamic graph connectivity with improved worst case update time and sublinear space. CoRR, abs/1509.06464, 2015.

[38] Fabrizio Grandoni and Virginia Vassilevska Williams. Improved distance sensitivity oracles via fast single-source replacement paths. In 53rd Annual IEEE Symposium on Foundations of Computer Science, FOCS 2012, New Brunswick, NJ, USA, October 20-23, 2012, pages 748–757. IEEE Computer Society, 2012.
[39] Manoj Gupta and Aditi Singh. Generic single edge fault tolerant exact distance oracle. In 45th International Colloquium on Automata, Languages, and Programming (ICALP 2018). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2018.

[40] Dov Harel and Robert Endre Tarjan. Fast algorithms for finding nearest common ancestors. SIAM J. Comput., 13(2):338–355, 1984.

[41] Monika Henzinger, Sebastian Krinninger, and Danupon Nanongkai. Sublinear-time decremental algorithms for single-source reachability and shortest paths on directed graphs. In Proceedings of the Forty-sixth Annual ACM Symposium on Theory of Computing, STOC ’14, pages 674–683, New York, NY, USA, 2014. ACM.

[42] Monika Henzinger, Sebastian Krinninger, and Danupon Nanongkai. A subquadratic-time algorithm for decremental single-source shortest paths. In Proceedings of the Twenty-fifth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’14, pages 1053–1072, Philadelphia, PA, USA, 2014. Society for Industrial and Applied Mathematics.

[43] Monika Henzinger, Sebastian Krinninger, and Danupon Nanongkai. Dynamic approximate all-pairs shortest paths: Breaking the $O(mn)$ barrier and derandomization. SIAM Journal on Computing, 45(3):947–1006, 2016.

[44] Bruce M. Kapron, Valerie King, and Ben Mountjoy. Dynamic graph connectivity in polylogarithmic worst case time. In Proceedings of the Twenty-fourth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’13, pages 1131–1142, Philadelphia, PA, USA, 2013. Society for Industrial and Applied Mathematics.

[45] Valerie King. Fully dynamic algorithms for maintaining all-pairs shortest paths and transitive closure in digraphs. In 40th Annual Symposium on Foundations of Computer Science, FOCS ’99, 17-18 October, 1999, New York, NY, USA, pages 81–91. IEEE Computer Society, 1999.

[46] François Le Gall. Powers of tensors and fast matrix multiplication. In Proceedings of the 39th International Symposium on Symbolic and Algebraic Computation, ISSAC ’14, pages 296–303, New York, NY, USA, 2014. ACM.

[47] Merav Parter. Dual failure resilient BFS structure. In Proceedings of the 2015 ACM Symposium on Principles of Distributed Computing, PODC ’15, pages 481–490, New York, NY, USA, 2015. ACM.

[48] Merav Parter. Fault-tolerant logical network structures. Bulletin of the EATCS, 118, 2016.

[49] Merav Parter. Vertex fault tolerant additive spanners. Distributed Computing, 30(5):357–372, 2017.

[50] Merav Parter and David Peleg. Fault tolerant BFS structures: A reinforcement-backup tradeoff. In Proceedings of the 27th ACM Symposium on Parallelism in Algorithms and Architectures, SPAA ’15, pages 264–273, New York, NY, USA, 2015. ACM.

[51] Merav Parter and David Peleg. Sparse fault-tolerant BFS structures. ACM Trans. Algorithms, 13(1):11:1–11:24, October 2016.

[52] Merav Parter and David Peleg. Fault-tolerant approximate BFS structures. ACM Trans. Algorithms, 14(1):10:1–10:15, January 2018.
[53] Mihai Pătraşcu and Mikkel Thorup. Planning for fast connectivity updates. In 48th Annual IEEE Symposium on Foundations of Computer Science (FOCS 2007), October 20-23, 2007, Providence, RI, USA, Proceedings, pages 263–271. IEEE Computer Society, 2007.

[54] Liam Roditty, Mikkel Thorup, and Uri Zwick. Deterministic constructions of approximate distance oracles and spanners. In Proceedings of the 32Nd International Conference on Automata, Languages and Programming, ICALP’05, pages 261–272, Berlin, Heidelberg, 2005. Springer-Verlag.

[55] Liam Roditty and Uri Zwick. Dynamic approximate all-pairs shortest paths in undirected graphs. In Proceedings of the 45th Annual IEEE Symposium on Foundations of Computer Science, FOCS ’04, pages 499–508, Washington, DC, USA, 2004. IEEE Computer Society.

[56] Liam Roditty and Uri Zwick. On dynamic shortest paths problems. Algorithmica, 61(2):389–401, October 2011.

[57] Piotr Sankowski. Subquadratic algorithm for dynamic shortest distances. In Lusheng Wang, editor, Computing and Combinatorics, pages 461–470, Berlin, Heidelberg, 2005. Springer Berlin Heidelberg.

[58] Andrew James Stothers. On the complexity of matrix multiplication. 2010.

[59] Mikkel Thorup. Fully-dynamic all-pairs shortest paths: Faster and allowing negative cycles. In Torben Hagerup and Jyrki Katajainen, editors, Algorithm Theory - SWAT 2004, pages 384–396, Berlin, Heidelberg, 2004. Springer Berlin Heidelberg.

[60] Mikkel Thorup. Worst-case update times for fully-dynamic all-pairs shortest paths. In Proceedings of the Thirty-seventh Annual ACM Symposium on Theory of Computing, STOC ’05, pages 112–119, New York, NY, USA, 2005. ACM.

[61] Mikkel Thorup and Uri Zwick. Approximate distance oracles. J. ACM, 52(1):1–24, 2005.

[62] Jan van den Brand and Thatchaphol Saranurak. Sensitive distance and reachability oracles for large batch updates. In David Zuckerman, editor, 60th IEEE Annual Symposium on Foundations of Computer Science, FOCS 2019, Baltimore, Maryland, USA, November 9-12, 2019, pages 424–435. IEEE Computer Society, 2019.

[63] Zhengyu Wang. An improved randomized data structure for dynamic graph connectivity. CoRR, abs/1510.04590, 2015.

[64] Oren Weimann and Raphael Yuster. Replacement paths and distance sensitivity oracles via fast matrix multiplication. ACM Trans. Algorithms, 9(2):14:1–14:13, March 2013.

[65] Virginia Vassilevska Williams. Multiplying matrices faster than Coppersmith-Winograd. In Howard J. Karloff and Toniann Pitassi, editors, Proceedings of the 44th Symposium on Theory of Computing Conference, STOC 2012, New York, NY, USA, May 19 - 22, 2012, pages 887–898. ACM, 2012.

[66] Andrew C. Yao. Space-time tradeoff for answering range queries (extended abstract). In Proceedings of the Fourteenth Annual ACM Symposium on Theory of Computing, STOC ’82, pages 128–136, New York, NY, USA, 1982. ACM.
A Additional Figures and Tables

Notation	Meaning	Remarks
◦	path/sequence concatenation operator	
$w_H(u,v)$	the weight of edge (u,v) in H	
$\delta_H(u,v)$	the distance between u and v in H	We omit H when $H = G$ is the input graph.
$\pi_H(u,v)$	the shortest u-v path in H	
$\delta_H(u,S)$	$\min\{\delta_H(u,v) : v \in S\}$	
$G[S]$	the subgraph of G induced by S	$S \subseteq V$.
$P[u,v]$	the portion between u and v of path P	Assume $P = (x_0, x_1, \ldots, x_{\ell-1}, x_\ell)$ where $x_0 = u, x_\ell = v$; These notations sometimes emphasize the direction of the path.
$P[u,x_{\ell-1}]$	$P[u,x_{\ell-1}]$	
$P[x_1,v]$	$P[x_1,v]$	
$P[x_1,x_{\ell-1}]$	$P[x_1,x_{\ell-1}]$	
$l(v)$	the level of v, or the largest i such that $v \in U_i$	
G_ℓ	the subgraph of G induced by vertices with level $\leq \ell$	
$P_\ell(x,y)$	the x-y path in $\mathcal{T}_{U_{\ell+1}}(U_{\ell})$ guaranteed by Corollary 2.8	$x \in U_{\ell} \setminus U_{\ell+1}, y \in V \setminus U_{\ell+1}$.
$T_\ell(x,y)$	the tree in $\mathcal{T}_{U_{\ell+1}}(U_{\ell})$ that contains $P_\ell(x,y)$	

Table 1: Notation in this paper
Table 2: previous results

failure	# fault	size	query time	stretch	ref	remarks
edge	1	$O(n^2 \log n)$	$O(\log n)$	1	29	directed
edge	1	$O(n^2 \log n)$	$O(1)$	1	26	directed
vertex	1	$O(n^2 \log n)$	$O(1)$	1	11	directed
vertex	1	$O(n^2 \log n)$	$O(1)$	1	12	directed
vertex	1	$O(k^s \epsilon^{-4} n^{1+1/k} \log^3 n)$	$O(k)$	$(2k - 1)(1 + \epsilon)$	8	unweighted
vertex	2	$O(n^2 \log d n)$	$O(\log n)$	1	32	directed
edge	d	$O(m)$	$O(d \log^2 n \log \log n)$	connectivity	53	
edge	d	$O(m \log n)$	$O(d^2 \log n)$	connectivity	33	
edge	d	$O(m)$	$O(d^2 \log^2 n)$	connectivity	33	
edge	d	$O(n^2 \log^2 n)$	$O(d \log d \log \log n)$	connectivity	34	
edge	d	$O(dk n^{1+1/k} \log(nW))$	$O(d \log^2 n \log \log n \log(nW))$	$(8k - 2)(d + 1)$	24	
edge	d	$O(d^2 \log^2 n)$	$O(d^2 \log^2 n)$	1	14	
edge	d	$O(n^2(\log n \epsilon)^d \log W \log n)$	$O(d^4 \log W)$	$1 + \epsilon$	23	
vertex	d	$O(n^2 \log^2 n \log \log(nW))$	$O(d^2 \log n \log \log n \log(nW))$	connectivity	33	$c \geq 1$
vertex	d	$O(m \log^6 n)$	$O(d^2 \log d \log^2 n \log \log n)$	connectivity	34	
vertex	d	$O(n/r)^{d+1} \sqrt{nd}$ + $O(n \log^2 n)$	$O(d \sqrt{\log^2 n})$	1	20	planar; $r \leq n/d$
edge	d	$O(W n^{2+\mu} \log n)$	$O(W n^{2-\mu} d^2 + W nd^\omega)$	1	62	directed; $\mu \in [0, 1]$
edge	d	$O(n^{2+\mu} \log n)$	$O(d^\omega)$	reachability	62	directed

Table 3: our results

failure	# fault	size	query time	stretch	ref	remarks
vertex	d	$n^{3+1/c} \cdot O \left(\epsilon^{-1} \log^2 n \log \log(nW) \right)^d \log_d$	$O \left(d^{2+\epsilon} \log^{10} n \log \log d \right)$	$1 + \epsilon$	this paper	$c \geq 1$
vertex	d	$n^{3+1/c} \log \log W \log n \cdot O \left(\epsilon^{-1} \log^3 n \log \log d \right)^d \log_d$	$O \left(d^{2+\epsilon} \log^{10} n \log \log W \log \log d \right)$	$1 + \epsilon$	this paper	$c \geq 1$
vertex	d	$n^{2+1/c} \log \log W \log \log n \cdot O \left(\epsilon^{-1} \log^2 n \log \log n \log \log W \log \log d \right)^d \log_d$	$O \left(d^{2+\epsilon} \log^{12} n \log \log W \log \log d \right)$	$1 + \epsilon$	this paper	$c \geq 1$
vertex	d	$n^{2+1/c} \log \log W \log \log \log n \cdot O \left(\epsilon^{-1} \log^4 n \log \log n \log \log W \log \log d \right)^d \log_d$	$O \left(d^{2+\epsilon} \log^{14} n \log \log W \log \log d \right)$	$1 + \epsilon$	this paper	$c \geq 1$
vertex	d	$O \left(n^{1+\epsilon} \log^2 n \log \log(nW) \log \log \log d \right)^d \log_d$	$O \left(d^{2+\epsilon} \log^{20} n \log \log W \log \log d \right)$	$1 + \epsilon$	this paper	$c \geq 1$

Table 3: our results

Unless stated in “remark” column, all data structures work on weighted undirected graphs.