Acknowledgments

We thank other members of the ANTRES Study Group for their support: Ruth Arias, Vieri Boddi, Paolo Bonanni, Blanca Huapaya, Oscar Lanza Van den Bergh, Mattias Larsson, Luis Pacheco, Victor Suarez, Esteban Salazar, and Christian Trigosó. We thank Stefano Rosignoli for assisting with statistical analysis.

The study was carried out within the research activities of the ANTRES project, supported by the European Commission, International Scientific Cooperation Projects for Developing Countries program, Contract ICA4-CT-2001-10014.

References

1. World Health Organization. Global strategy for containment of antimicrobial resistance [cited 2006 Nov 10]. Geneva: The Organization; 2001. Available from http://www.who.int/drugresistance/en
2. Bartoloni A, Pallecchi L, Benedetti M, Fernandez C, Vallejos Y, Guzman E, et al. Multidrug-resistant commensal Escherichia coli in children, Peru and Bolivia. Emerg Infect Dis. 2006;12:907–13.
3. Pallecchi L, Bartoloni A, Fiorelli C, Mantella A, Di Maggio T, Gamboa H, et al. Rapid dissemination and diversity of CTX-M extended-spectrum β-lactamase genes in commensal Escherichia coli from healthy children from low-resource settings of Latin America. Antimicrob Agents Chemother; 2007;51:2720–5
4. Paterson DL. Resistance in gram-negative bacteria: Enterobacteriaceae. Am J Med. 2006;119:S20–8.
5. Robicsek A, Jacoby GA, Hooper DC. The worldwide emergence of plasmid-mediated quinolone resistance. Lancet Infect Dis. 2006;6:629–40.
6. Johnson JR, Kuskowski MA, Menard M, Gajewski A, Xerecins M, Garau J. Similarity between human and chicken Escherichia coli isolates in relation to ciprofloxacin resistance status. J Infect Dis. 2006;194:71–8.
7. Lautenbach E, Fishman NO, Metlay JP, Mao X, Bilker WB, Tolomeo P, et al. Phenotypic and genotypic characterization of fecal Escherichia coli isolates with decreased susceptibility to fluoroquinolones: results from a large hospital-based surveillance initiative. J Infect Dis. 2006;194:79–85.
8. Rodriguez-Baño J, Paterson DL. A change in the epidemiology of infections due to extended-spectrum beta-lactamase-producing organisms. Clin Infect Dis. 2006;42:935–7.
9. Ben-Ami R, Schwaiber MJ, Navon-Venezia S, Schwartz D, Giladi M, Chmelitsky L, et al. Influx of extended-spectrum β-lactamase-producing Enterobacteriaceae into the hospital. Clin Infect Dis. 2006;42:925–34.
10. Collignon P, Angulo FJ. Fluoroquinolone-resistant Escherichia coli: food for thought. J Infect Dis. 2006;194:8–10.

Address for correspondence: Alessandro Bartoloni, Dipartimento Area Critica Medico Chirurgica, Clinica Malattie Infettive, Università di Firenze, Ospedale di Careggi, Viale Morgagni 85, I-50134, Firenze, Italy; email: bartoloni@unifi.it

Plasmid-mediated Quinolone Resistance in Salmonella enterica, United Kingdom

To the Editor: Fluoroquinolones are broad-spectrum antimicrobial drugs used to treat many clinical infections. Salmonellosis is treated with fluoroquinolones only in elderly or immunocompromised patients, but these drugs are also used for treating patients with enteric fever, invasive disease, or long-term salmonellae carriage. High-level fluoroquinolone resistance is uncommon, but reduced susceptibility is increasing.

Since 1998, plasmid-mediated quinolone resistance encoded by qnr genes A, B, and S that confer low-level resistance to nalidixic acid and reduced susceptibility to ciprofloxacin has been identified in several enterobacterial species, including Salmonella. Their clinical importance is in facilitating resistance to potentially lethal levels of quinolone. Additionally, qnr genes are often associated with strains that produce extended-spectrum β-lactamases.

We recently reported identification of qnr genes in Salmonella in the United Kingdom (1). Most isolates were associated with the Far East. Two isolates of S. Virchow were part of an outbreak associated with imported cooked chicken from Thailand. During October 2006–April 2007, we monitored qnr genes in nontyphoidal salmonellae isolated in the United Kingdom that expressed reduced susceptibility to ciprofloxacin (MIC 0.125–1.0 µg/mL) with concomitant susceptibility to nalidixic acid (MIC <16 µg/mL). This resistance phenotype is a useful marker for the qnr gene as the sole quinolone resistance determinant (1).

Recent studies showed that isolates of Salmonella spp. and Escherichia coli with decreased susceptibility to ciprofloxacin (MICs >0.06 µg/mL and 0.5 µg/mL, respectively), but with susceptibility or intermediate resistance to nalidixic acid (MIC 8–16 µg/mL and 4–8 µg/mL, respectively), all had qnrA or qnrS genes but lacked mutations in the topoisomerase genes (2,3). Strains with ciprofloxacin MICs >1 µg/mL were also included to monitor involvement of qnr genes in development of high-level ciprofloxacin resistance. Breakpoint concentrations used are based on long-term studies within the Health Protection Agency Laboratory of Enteric Pathogens. Ciprofloxacin Etest (AB Biodisk, Solna, Sweden) results were interpreted according to manufacturer’s procedures. A total of 45 Salmonella spp. strains were tested. Screening for qnr genes by multiplex PCR identified 37 isolates with qnrS and 2 carrying qnrB variants (Table) (4). However, the qnrB primer pair in this multiplex did not fully match all qnrB gene variants. PCR and sequencing using primers FQ1 and FQ2 (5) and qnrS-F and qnrS-R (1), were used to identify specific qnrB and qnrS gene variants.

The qnrS1-positive salmonellae belong to serotypes Typhimurium

340 Emerging Infectious Diseases • www.cdc.gov/eid • Vol. 14, No. 2, February 2008
Table. Isolates of *Salmonella enterica* with plasmid-mediated *qnr* genes, United Kingdom, October 2006–April 2007

Salmonella serotype	Phage type*	No. isolates	VNTR profile†	Ciprofloxacin MIC (μg/mL)‡	Additional resistance to antimicrobial drugs§	*qnr* identified
Corvallis	–	1	–	0.25	S, Su, T	*qnr* S1
Corvallis	–	2	–	0.38	S, Su, T	*qnr* S1
Corvallis	–	1	–	1.0	S, Su, T, Cf	*qnr* S1
Corvallis	–	1	–	0.25	None	*qnr* S1
Corvallis	–	1	–	0.38	None	*qnr* S1
Schwarzengrund	–	1	–	0.25	T	*qnr* B5
Typhimurum DT120	4	1–6–0–0–3	0.38	S, Su, T		*qnr* S1
Typhimurum DT120	3	1–6–0–0–3	0.50	S, Su, T		*qnr* S1
Typhimurum DT120	3	1–4–0–0–3	0.38	S, Su, T		*qnr* S1
Typhimurum DT120	1	1–4–0–0–3	0.38	S, Su, T		*qnr* S1
Typhimurum DT120	1	1–5–0–0–3	0.38	S, Su, T		*qnr* S1
Typhimurum DT120	1	1–6–0–0–3	0.50	S, Su, T		*qnr* S1
Typhimurum DT120	1	1–4–0–0–3	0.38	C, S, Su, Sp, T, Tm, Ak, Cx, Cr, Cf, Cx, Cx, Fu, Nx, Tm,	*qnr* S1	
Typhimurum DT120	1	1–4–0–0–3	0.38	S, Su, T		*qnr* S1
Typhimurum DT120	2	1–5–0–0–3	0.38	S, Su, T		*qnr* S1
Typhimurum DT120	1	1–4–0–0–3	0.50	A, S		*qnr* S1
Typhimurum 49b	1	1–4–19–1–3	0.25	A, G, Ne, K, S, Su, Sp, T, Tm, Ak, Cr, Cr, Cx, Cx, Cx, Fu,	*qnr* B2	
Typhimurum NC	1	1–4–0–0–3	0.25	S, Su, T		*qnr* S1
Typhimurum UT	1	3–8–19–1–2	>32	A, C, G, S, Su, Sp, T, Tm, Fu, Cx, Cr, Cx, Cx, Cx, Cx, Cx, Fu,	*qnr* S1	
Virchow	43	5	–	1.0	A, Fu, Nx	*qnr* S1
Virchow	43	2	–	1.5	A, Fu, Nx	*qnr* S1
Virchow	25a	1	–	0.75	Tm	*qnr* S1
Virchow	11	1	–	1.0	A, Fu, Nx	*qnr* S1
Virchow	NC	1	–	1.5	A, C, G, Ne, K, S, Su, Sp, T, Tm, Fu, Cx, Cr, Cx, Cx, Cx, Cx, Cx, Fu,	*qnr* S1

DT, definitive type; NC, does not conform to a recognized pattern; UT, untypeable.
†VNTR, variable number tandem repeat. Loci of the VNTR profiles are presented in the following order: STTR9-STTR5-STTR6-STTR10pl-STTR3. The number 0 in the VNTR profile represents cases with no amplification of PCR product.
‡Determined by Etest.
§Antimicrobial drugs (breakpoint final concentrations): S, streptomycin (16 mg/L); Su, sulfonamide (64 mg/L); T, tetracycline (8 mg/L); Cf, cefuroxime (1 mg/L); C, chloramphenicol (8 mg/L); Sp, spectinomycin (64 mg/L); Tm, trimethoprim (2 mg/L); A, ampicillin (8 mg/L); G, gentamicin (4 mg/L); Ne, neomycin (8 mg/L); Ak, amikacin (4 mg/L); K, kanamycin (8 mg/L); Cx, cefalexin (16 mg/L); Cr, cefradine (16 mg/L); Cn, ceftriaxone (16 mg/L); Ct, cefotaxime (1 mg/L); Fu, furazolidone (8 mg/L); Nx, nalidixic acid (16 mg/L).

(21 isolates), Virchow (10), and Corvallis (6). Most *S. Typhimurium* isolates were either definitive phage type 120 or 193, and most *S. Virchow* isolates were phage type 43 (Table). Thirteen *qnr*S1-positive isolates were from patients who reported recent travel to Egypt, India, Malaysia, Morocco, Thailand, or an undisclosed destination.

Twelve isolates from patients who had not traveled abroad were assumed to be from UK-acquired infections. *S. Virchow* isolates had been associated with cooked chicken from Thailand (1), and *qnr*S1 has recently been described in *S. Corvallis* strains from humans in Denmark or isolated in Thailand from humans, chicken, pork, and beef (3). Comparison of pulsed-field gel electrophoresis patterns and resistance phenotypes of *qnr*S1-positive *S. Corvallis* strains identified common types, suggesting that some UK patients may have acquired *S. Corvallis* from chicken from Thailand.

Thirteen isolates showed resistance to ceftriaxone, cefotaxime, or ampicillin. Plasmids with *qnr* genes have been found to co-transfer TEM, SHV, and CTX-M genes (1, 5, 6). Co-transmission of fluoroquinolone and β-lactamase resistance is clinically important because co-selection of resistance by use of either drug may occur.

Twenty-one *qnr*S1-positive *S. Typhimurium* were subtyped by variable number tandem repeat (VNTR) analysis to determine whether the increase was caused by spread of ≥1 distinct strains (7). Twenty isolates produced 1 of 3 related profiles (loci of VNTR profiles are ordered STTR9-STTR5-STTR6-STTR10pl-STTR3): 1–4–0–0–3, 9 isolates; 1–5–0–0–3, 3 isolates; or 1–6–0–0–3, 8 isolates. Alleles 4 and 5, and 5 and 6 at locus STTR5 only differed by an extra 6-bp repeat, which suggests a clonal relationship between the *qnr*S1-positive *S. Typhimurium* in this study (Table) (8). *S. Typhimurium* isolates with the 1–6–0–0–3 profile have been isolated from tourists returning from Asia (7), which suggests that the UK *qnr*S1-positive *S. Typhimurium* isolates have originated in the Far East.

These findings show increased occurrence of *qnr* genes, particularly
qnrS1, in nontyphoidal salmonellae in the United Kingdom. These data are in contrast to those of recent studies in the United States and France, which show low incidences of qnrS genes in larger strain collections (9,10). The qnr phenotype is in contrast to resistance mediated by mutations in the topoisomerase genes whereby 1 mutation confers low-level resistance to fluoroquinolones and full resistance to nalidixic acid. Our previous study demonstrated that qnrS1 was sufficient to cause decreased susceptibility to ciprofloxacin in the absence of mutations in gyrA (1). In this study, a qnr gene was sufficient to increase the ciprofloxacin MIC to 0.38–0.75 μg/mL. In addition, a qnr gene contributed to high-level ciprofloxacin resistance in 10 isolates, thereby potentially jeopardizing first-line treatment of vulnerable patient groups with ciprofloxacin.

This study was supported by the Department of Environment, Food and Rural Affairs, United Kingdom, project VM02205.

Katie L. Hopkins,* Martin Day,* and E. John Threlfall*

*Health Protection Agency Centre for Infections, London, United Kingdom

References

1. Hopkins KL, Wootton L, Day M, Threlfall EJ. Plasmid-mediated quinolone resistance determinant qnrS1 found in Salmonella enterica strains isolated in the UK. J Antimicrob Chemother. 2007;59:1071–5.
2. Cavaco LM, Hansen DS, Frieis-Møller A, Aarestrup FM, Hasman H, Friimodt-Møller N. First detection of plasmid-mediated quinolone resistance (qnrA and qnrS) in Escherichia coli strains isolated from humans in Scandinavia. J Antimicrob Chemother. 2007;59:804–5.
3. Cavaco LM, Hendriksen RS, Aarestrup FM. Plasmid-mediated quinolone resistance determinant qnrS1 detected in Salmonella enterica serovar Corvallis strains isolated in Denmark and Thailand. J Antimicrob Chemother. 2007;60:704–6.
4. Robicsek A, Strahilevitz J, Sahm DF, Jacoby GA, Hooper DC. qnr prevalence in cefazidime-resistant Enterobacteriaceae isolates from the United States. Antimicrob Agents Chemother. 2006;50:2872–4.
5. Jacoby GA, Walsh KE, Mills DM, Walker VJ,OH, Robicsek A, et al. qnrB, another plasmid-mediated gene for quinolone resistance. Antimicrob Agents Chemother. 2006;50:1178–82.
6. Jacoby GA, Chow N, Waite KB. Prevalence of plasmid-mediated quinolone resistance. Antimicrob Agents Chemother. 2003;47:559–62.
7. Lindstedt BA, Torpdahl M, Nielsen EM, Vardund T, Aas L, Kapperud G. Harmonization of the multiple-locus variable-number tandem repeat analysis method between Denmark and Norway for typing Salmonella Typhimurium isolates and closer examination of the VNTR loci. J Appl Microbiol. 2007;102:728–35.
8. Hopkins KL, Maguire C, Best E, Liebana E, Threlfall EJ. Stability of multiple-locus variable-number tandem repeats in Salmonella enterica serovar Typhimurium. J Clin Microbiol. 2007;45:3058–61.
9. Gay K, Robicsek A, Strahilevitz J, Park CH, Jacoby G, Barrett TJ, et al. Plasmid-mediated quinolone resistance in non-Typhi serotypes of Salmonella enterica. Clin Infect Dis. 2006;43:297–304.
10. Cattoir V, Weill FX, Poirel L, Fabre L, Soussy CJ, Nordmann P. Prevalence of qnr genes in Salmonella in France. J Antimicrob Chemother. 2007;59:751–4.

Address for correspondence: Katie L. Hopkins, Diagnostic and Specialist Identification Unit, Department of Gastrointestinal, Emerging and Zoonotic Infections, Laboratory of Enteric Pathogens, Health Protection Agency Centre for Infections, 61 Colindale Ave, London NW9 5EQ, United Kingdom; email: katie.hopkins@hpa.org.uk

Saksenaea vasiformis Infection, French Guiana

To the Editor: The Zygomycetes are a class of filamentous fungi that are ubiquitous in the environment. Most of the species known to cause human or animal infections belong to a few genera within the order Mucorales. Saksenaea vasiformis, isolated from soil in India and described by Saksena in 1953, was reported to cause human infection for the first time by Ajello et al. (1). We report a case of a cutaneous lesion caused by S. vasiformis in French Guiana.

A nonimmunocompromised 47-year-old woman with a long history of non–type 1 diabetes mellitus, who had lived in French Guiana for many years, was admitted to Cayenne Hospital on November 18, 2005, with a cutaneous lesion of the abdominal wall and a fever that had lasted for 5 days before she was hospitalized. A skin biopsy specimen was obtained, and the first surgical debridement was performed on day 4 of hospitalization. A diagnosis of zygomycosis was made after direct examination and histopathologic examination of the tissue samples. Treatment was initiated on day 8, beginning with liposomal amphotericin B and itraconazole for 10 days, followed by liposomal amphotericin B alone for 12 days. Persistence of necrotic tissues at the infection site required additional surgical debridement on day 10. Histopathologic examination of the resected tissues showed damaged hyphae of zygomycetes. Resolution of clinical signs was excellent. Additional biopsy specimens taken by the end of treatment on day 21 were negative for fungi by direct examination and culture. Finally, a cicatrix was formed.

Histologic examination of the initial excised tissues showed a localized periumbilical cutaneous lesion of...