Membrane fusion is fundamental to biological processes as diverse as membrane trafficking or viral infection. Proteins catalyzing membrane fusion need to overcome energy barriers to induce intermediate steps in which the integrity of bilayers is lost. Here, we investigate the structural features of tightly docked intermediates preceding hemifusion. Using lipid vesicles in which progression to hemifusion is arrested, we show that the metastable intermediate does not require but is enhanced by divalent cations and is characterized by the absence of proteins and local membrane thickening. Molecular dynamics simulations reveal that thickening is due to profound lipid rearrangements induced by dehydration of the membrane surface.
Fusion of biological membranes is fundamental for the functioning of all living organisms ranging from the cell entry of enveloped viruses to the exocytotic release of neurotransmitters. While the proteins mediating fusion are evolutionarily unrelated and structurally diverse, the merger of two bilayers appears to follow a common pathway involving a sequence of structurally distinct intermediates. These begin by loose protein-mediated membrane contact and is followed by tight apposition of the membranes while still maintaining bilayer integrity. Then, membrane structure is disrupted by the merger of the proximal leaflets, resulting in a fusion stalk or a hemifusion diaphragm. This is followed by the rupture of the diaphragm (fusion pore) that then expands, thus completing membrane merger.

While the pathway outlined above is supported by an increasing body of experimental evidence and theoretical modeling, there are still crucial gaps in knowledge, in particular with respect to the steps immediately before the first bilayer disruption. Importantly, these are also the steps on which proteins regulating final progression to fusion operate. Thus, we need to clarify the structural and energetic details of these intermediates to precisely understand the molecular mechanisms of such regulatory proteins (e.g., synaptotagmins) that are controversially discussed since more than 20 years.

Here we focus on the tightly docked intermediate in which membranes are apposed to each other with a distance of <1 nm. While this state is well known from cryo-electron microscopy (cryoEM) studies in events as diverse as fusion of organelles, fusion of mitochondria, or cell entry of influenza virus, its biophysical features have remained largely enigmatic. To reach such state, repulsive forces between negatively charged lipid headgroups and the energy barrier involved in dehydration need to be overcome. It is unclear, which forces are countering (headgroup chelation by divalent cations, van der Waals and hydrophobic forces, protein “clamps”), if and how proteins are cleared from these contact sites, and how the subsequent transition to stalk formation is facilitated.

Here we have used an in vitro system in which fusion of artificial membranes is mediated by SNARE (soluble N-ethylmaleimide-sensitive-factor attachment receptor) proteins involved in neuronal exocytosis. SNARE proteins contain conserved structures of 60–70 residues belonging to four subfamilies, termed Qa-, Qb-, Qc-, and R-SNARE motifs. These proteins are known to fuse membranes by a consecutive assembly of complementary SNAREs (one SNARE motif of each subfamily) that is initiated at the N-terminal ends and progresses towards the C-terminal membrane anchors, referred to as SNARE zippering. The in vitro system was optimized for studying fusion intermediates by omitting all upstream steps regulating initial assembly and consists of an activated Q-SNARE complex in the one membrane and the R-SNARE in the other membrane. We have shown previously that in this system the tightly docked state can be stably reproduced as a fusion intermediate and furthermore, that it can be arrested in this state by a point mutation in the R-SNARE synaptobrevin.

Examples (from >5 independent experiments) of a loosely docked (top left) and a tightly docked (bottom left) state are shown in Fig. 1a. In the loosely docked state, membranes are still separated by a hydrated gap, while in the tightly docked state membranes are apposed to each other with a distance of <1 nm. Source data are provided as a Source Data file.

Discussion

Localization of SNARE proteins at membrane docking sites. To allow for using light microscopic techniques for the characterization of the intermediates, we adapted this system by using GUVs (giant unilamellar vesicles) instead of large unilamellar vesicles. Two sets of GUVs were reconstituted with complementary sets of SNARE proteins—synaptobrevin-2 (syb) that in neurons resides on synaptic vesicles and a stabilized complex containing syntaxin-1A and SNAP25a that are naturally present on the plasma membrane. In this system, syb contains a single residue deletion (∆84) that is known to trap fusing membranes at the tightly docked state.

In one vesicle set, membrane of a GUV was labeled allowing to control localization of lipids as well as making sure that no hemifusion has occurred. In the other set of vesicles, syb was labeled to allow for monitoring of protein behavior at the interface. When mixed together, these vesicles would interact with each other, fuse, or

![Fig. 1 Distribution of SNARE proteins at the docking interface differs between loose and tight docking states.](image-url)
get stalled at one of the fusion intermediates such as docking or hemifusion. The low curvature of the GUV membrane leads to a higher energy barrier for membrane merger, thereby increasing the probability of obtaining arrested docked states.

If, as we suggested previously, SNAREs are excluded from tight docking interfaces, the protein density is expected to decrease in the membrane contact area. Conversely, at arrested loose docking interfaces, fusion complexes in trans will get trapped and thus accumulate over time, visible as increased protein signal at the interface. Indeed, with our experimental system we were able to demonstrate two distinct docking states preceding hemifusion, which are characterized by either protein accumulation at the docking interface (loose docking, Fig. 1b) or protein depletion from the membrane-membrane contact site (tight docking, Fig. 1c). Moreover, in some rare cases, we were also able to observe transition of these trapped intermediates to full fusion as shown in Fig. 2a, b (see also Supplementary Movies S1–S2) confirming that the tightly docked state is an intermediate step in the fusion pathway.

Divalent cations regulate tight docking state formation. To better understand the forces that initiate and stabilize the tightly docked state we examined to which extent the formation of loose and tight docking interfaces, respectively, depends on the presence of divalent cations (Ca\(^{2+}\) or Mg\(^{2+}\)). While increasing concentrations of both Ca\(^{2+}\) and Mg\(^{2+}\) augment the frequency of tightly docked intermediates, these intermediates also form in their absence (Fig. 2c). Intriguingly, very little difference between Ca\(^{2+}\) and Mg\(^{2+}\) was observed. Moreover, inclusion of the negatively charged lipid phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) in one of the docking membranes (as present on the plasma membrane) moderately reduces the frequency of tight docking interfaces indicating a somewhat higher energy barrier due to electrostatic repulsion (Fig. 2c right). Using fluorescently labeled variants of the acidic membrane lipids (PS-TMR or PI(4,5)P2-TMR) we found that these lipid species are not depleted from the docking interfaces (Fig. 2d, e). Rather, a slight enrichment of PI(4,5)P2 was observed in the loose docking state (Fig. 2e), probably due to its binding to SNARE proteins (specifically syntaxin-1) accumulating at the interface. Together, these
Altered membrane thickness at tight docking interfaces. Previously9 different membrane-membrane distances were observed between docked vesicles by cryoEM. Specifically, in tightly docked membranes with extended, flat docking interfaces (up to 100 nm-long for LUVs9) signals coming from lipid headgroups of proximal leaflets would blend together into one, thin line (see also Fig. 3a). We wanted to further characterize structural rearrangements of the membranes trapped in the tightly docked state and analyzed membrane thicknesses at docking interfaces in comparison to free membranes (Fig. 3a–c). Strikingly, we observed profound membrane thickening localized directly at the tight docking interfaces (Fig. 3). These structural changes were absent from free membranes and were also not observed at the interface of vesicle pairs classified as loosely docked (see Supplementary Information and Supplementary Fig. 1 for more details on the thickness measurements).

Increased bilayer thickness is caused by surface dehydration. To confirm that membrane thickening at close distances is due to membrane intrinsic properties, and to reveal the underlying molecular mechanism, we performed unbiased atomistic simulations of two opposing membranes at varying distances (Supplementary Fig. 2a, Supplementary Movie 3), mimicking the experimental conditions but in the absence of proteins. Indeed, for distances below 1.5 nm, significant thickening of the membranes was observed in the simulations, independent of the lipid composition (Fig. 4a and Supplementary Fig. 3). We also observed shrinkage of the membrane area (Fig. 4b), which raises the question which of the two changes is the primary cause. To answer this question, Fig. 4c shows that the volume of the membrane decreases with the membrane distance. Because the membrane behaves as a nearly incompressible fluid, this finding suggests that area shrinkage drives membrane thickening, as otherwise the volume should increase. Indeed, inducing a similar area shrinkage by increasing the lateral membrane pressure in additional simulations (Fig. 4d, black) quantitatively reproduces the thickening (gray).

Our simulations also showed that with decreasing distance, lipid chain order (Supplementary Fig. 2b) as well as headgroup tilt of the opposing membrane leaflets increase (Fig. 4e, black), whereas the outwards facing leaflets (Fig. 4e, gray) are nearly unaffected (see Supplementary Movie 4). The strong electrostatic dipole moment of the lipid headgroups suggests16 electrostatic interactions as the primary cause. In particular, the larger tilt of the lipid headgroups should allow for an electrostatically more favorable antiparallel arrangement. Indeed, the electrostatic interaction energy within the atoms of the inner leaflets decrease upon approach, whereas electrostatic interactions within the outer leaflets show only little change (Supplementary Fig. 2c).

To confirm that lipid headgroup tilting is the actual cause of area shrinkage, we enforced them to tilt in further simulations, which indeed reduced the membrane area (Supplementary Fig. 2d). We attribute these electrostatic effects to reduced shielding caused by dehydration, which was also seen in our simulations (Supplementary Fig. 2c). Independent support is provided by the timing of events, which follows the proposed causal chain (Fig. 4f and Supplementary Fig. 2e, f). Indeed, lipid headgroup tilting precedes area shrinkage, which precedes membrane thickening. Figure 4g summarizes the causal chain of events revealed by our atomistic simulations: Due to reduced electrostatic shielding, dehydration of the inner leaflet surfaces tilts the lipid headgroups, which laterally contracts the membrane. This contraction causes increases lipid ordering and, ultimately, drives thickening of the membrane.

Discussion

Taken together, we now provide a coherent description of a metastable docking state that constitutes an intermediate with unique properties in the pathway leading to membrane fusion. Despite growing experimental evidence, it has so far been difficult to reconcile such a tightly docked intermediate with standard concepts in membrane biophysics. Current fusion models agree on the notion that due to electrostatic repulsion membrane contact destabilizes the membranes before the formation of a fusion stalk2. To minimize the energetic penalty of close membrane contact, many models imply that the contact area is limited by the formation of point-like membrane protrusions with fusion being facilitated by lipid packing defects at the apex of a highly deformed membrane4. Accordingly, tightly docked membrane-membrane interfaces reported in cryoEM studies8–10 were considered to be stalled, off-pathway states.

Our results significantly contribute to our understanding of the energy landscape governing the early steps of membrane fusion (Fig. 4h). After exergonic assembly of SNARE proteins17 a metastable state is reached where the membranes are still several
Fig. 4 Membrane thickening at close distances is caused by dehydration-driven electrostatically-induced headgroup tilt and area compression.

Atomistic molecular dynamics simulations show changes in membrane thicknesses (a), area (b), and volume (c) when two membranes with three different lipid compositions are apposed to each other at various distances. d Enforced membrane area compression reproduces membrane thickening at close distances. e Lipid headgroups within the inner membrane leaflet at the docking interface exhibit higher tilt (cosϕ) upon close approach. Data points (a-e) are averages from 19000 points (190 ns) ± SD as described in Methods. f Change of headgroup tilt, area, and thickness over time during equilibration to a double-membrane stack (average over all 500 simulation runs; for easier comparison, all values were normalized to a range between 0 and 1). Accordingly, a value of 0 corresponds to equilibrated single bilayers and a value of 1 corresponds to equilibrated double bilayers. Data ± SD. g Scheme proposing order of events resulting in membrane thickening. h Cartoon showing a simplified energy landscape for membrane fusion. The energy barriers and minima are defined by observations of arrested intermediate states, their magnitude being arbitrary. Scaling on the y-axis is arbitrary. Source data are provided as a Source Data file.

nm apart from each other. This is followed by an energy barrier (Fig. 4h): Water and ions must be removed from the membrane contact zone, and the electrostatic repulsion between opposite lipid headgroups needs to be overcome12, possibly further assisted by membrane stretching generated by SNARE complexes. We now demonstrate that a metastable state follows that is characterized by a partially dehydrated and tight adhesion between membranes. The contact zone is free of proteins, does not require, albeit being stabilized, by divergent cations, and is associated with dehydration and a change in lipid organization, resulting in membrane thickening. Progression towards stalk formation probably requires tail splaying of membrane lipids9 which may be facilitated by the increased hydrophobicity and the changed lipid head geometry at the contact site. Probably, stalks are initiated at the edge of the membrane contact zone where increased curvature may cause lipid packing defects facilitating such transitions and assisted by assembly of SNARE complexes located at the rim9. Furthermore, we propose that in secretory cells such as neurons fusion may be arrested at this state. It is conceivable that the energy barrier separating this state from stalk formation and subsequent fusion is moderate (since energy barrier due to water and ions between membranes is not present any more) and can easily be overcome by accessory proteins perturbing lipid packing at the membrane surface, such as synaptotagmins.

Methods

Materials. Lipids: DOPC (1,2-dioleoyl-sn-glycero-3-phosphocholine), DOPE (1,2-dioleoyl-sn-glycero-3-phosphoethanolamine), DOPS (1,2-dioleoyl-sn-glycero-3-phosphoethanolamine-N-(cap biotinyl)), DOPE (1,2-dioleoyl-sn-glycero-3-phospho-L-serine), cholesterol (ovine wool), P(4,5)P2 (L-α-phosphatidylinositol-4,5-bisphosphate, brain, porcine), TopFluor TMR (1-oleoyl-2-(6-((4,4-difluoro-1,3-dimethyl-5-(4-methoxyphenyl)-4-bora-3a,4a-diazas-indacene-2-propionyl) amino)hexanoyl)-sn-glycero-3-phospho-L-serine), P(4,5)P2 and PS were purchased from Avanti Polar Lipids. Lipophilic tracer DiD, NeutrAvidin, biotinylated bovine serum albumin, were from Thermo Fisher Scientific.
In order to determine the time sequence of headgroup tilt, area shrinkage and bilayer thickening, we carried out 500 independent non-equilibrium simulations, of the 2-frame transition of two bilayered membranes in close contact to an equilibrated, i.e., thickened, double-membrane. 500 start structures were obtained by taking snapshots every 1 ns from a seeding trajectory of a single bilayer. The bilayers were then doubled as described above to obtain non-equilibrated double-membranes at a distance of 0.5 nm, and each replica was simulated without any biasing potential. A simulation time of 1 ns proved to be sufficient to identify the sequence of headgroup tilt, area shrinkage, and thickening (see Fig. 4f). To allow analysis of the equilibration process, trajectory coordinates were stored every 0.1 ps.

To determine the timescales of headgroup tilt, area, and thickness changes, exponential relaxations of the form $f(t) = x_a + (x_b - x_a)e^{-\frac{t}{\tau}}$ were fitted to the data of each replica. Here, x_a denotes the initial value of the observable (e.g., bilayer thickness at the beginning of the simulation), x_b is the mean in the double-membrane equilibrium, and τ is the relaxation time. The values obtained for x_a, x_b, and τ yield the time sequence of headgroup tilt, area shrinkage, and bilayer thickening, as shown in Supplementary Figure 2f, e.

Headgroup tilts, measured using the angle θ between N and P atoms of each lipid and the membrane normal (z-axis), were enforced by adding the angle-restraint term $k(1 - \cos(\theta - \phi))$ to the force field. To bias separated bilayers towards more tilted headgroups, the minimum of the potential ϕ was placed at 90°. Similarly, the potential minimum was placed at 0° to bias double bilayers at close distance (0.5 nm) towards less tilted head groups. In both cases, the force constant was varied between 0.5 and 30 kJ mol$^{-1}$, depending on the desired biasing strength, and each simulation lasted 200 ns.

Data availability
Data supporting the findings of this manuscript are available from the corresponding authors upon reasonable request. A reporting summary for this Article is available as a Supplementary Information file. Source data are provided with this paper.

Code availability
Code used for cryoEM image analysis is available on Zenodo.44 All molecular dynamics simulations were carried out with the publicly available GROMACS software (www.gromacs.org). Input parameter files, analysis scripts as well as the code to produce Supplementary Figure 1 are available on Githlab: https://github.com/ihein/membrane-thickness-at-close-distance.

Received: 24 January 2021; Accepted: 11 May 2021; Published online: 14 June 2021

References
1. Hernández, J. M. & Podbielwicz, B. The hallmarks of cell-cell fusion. Dev. Camb. Engl. 144, 4481–4495 (2017).
2. Leikin, S. L., Kozlov, M. M., Chernomordik, L. V., Markin, V. S. & Chizmadzhev, Y. A. Membrane fusion: overcoming the hydration barrier and local restructuring. J. Theor. Biol. 129, 411–425 (1987).
3. Riselada, H. J., Kutzner, C. & Grubmüller, H. Caught in the act: visualization of SNARE-mediated fusion events in molecular detail. Chembiochem Eur. J. Chem. Biol. 12, 1049–1055 (2011).
4. Kozlov, M. M. & Chernomordik, L. V. Membrane tension and membrane fusion. Curr. Opin. Struct. Biol. 33, 61–67 (2015).
5. Jahn, R. & Fasshauer, D. Molecular machines governing exocytosis of synaptic vesicles. Nature 490, 201–207 (2012).
6. Ruo, J. & Xu, J. The synaptic vesicle release machinery. Annu. Rev. Biophys. 43, 339–367 (2015).
7. Chang, S., Trimbach, T. & Rosenmund, C. Synaptotagmin-1 drives synchronous Ca$^{2+}$–triggered fusion by C 2 B-domain-mediated synaptic-vesicle–membrane attachment. Nat. Neurosci. 21, 33–40 (2018).
8. Hernández, J. M. et al. Membrane fusion intermediates via directional and full assembly of the SNARE complex. Science 336, 1581–1584 (2012).
9. Yavuz, H. et al. Arrest of trans-SNARE zipper uncovers loosely and tightly docked intermediates in membrane fusion. J. Biol. Chem. 293, 8645–8655 (2018).
10. Imlay, C. et al. The morphological and molecular nature of synaptic vesicle priming at presynaptic active zones. Neuron 84, 416–431 (2014).
11. Brandt, T., Cavallini, L., Kühlbrandt, W. & Cohen, M. M. A mitofusin-dependent docking ring complex triggers mitochondrial fusion in vitro. eLife 5, e16418 (2016).
12. Gui, L., Ebner, J. L., Mileant, A., Williams, J. A. & Lee, K. K. Visualization and sequencing of membrane remodeling leading to influenza virus fusion. J. Virol. 90, 6948–6962 (2016).
13. Shrestha, B. R. & Banquy, X. Hydration forces at solid and fluid biointerfaces. Biointerphases 11, 018907 (2016).
14. Pobbati, A. V., Stein, A. & Fasshauer, D. N- to C-terminal SNARE complex assembly promotes rapid membrane fusion. Science 313, 673–676 (2006).
15. Kanduč, M., Schneck, E. & Netz, R. R. Hydration interaction between phospholipid membranes: insights into different measurement ensembles from atomistic molecular dynamics simulations. Langmuir 29, 9126–9137 (2013).
16. Witkowska, A., Spindler, S., Mahmoodabadi, R. G., Sandoghdar, V. & Jahn, R. Differential diffusional properties in loose and tight docking prior to membrane fusion. Biophys. J. 119, 2431–2439 (2020).
17. Schuect, C. G. et al. Determinants of liposome fusion mediated by synaptic SNARE proteins. Proc. Natl Acad. Sci. USA 101, 2858–2863 (2004).
18. Fasshauer, D., Antonin, W., Margittai, M., Pabst, S. & Jahn, R. Mixed and non-cognate SNARE complexes. Characterization of assembly and biophysical properties. J. Biol. Chem. 274, 15440–15446 (1999).
19. Siddiqui, T. J. et al. Determinants of synaptobrevin regulation in membranes. Mol. Biol. Cell 18, 2037–2046 (2007).
20. Witkowska, A., Jablonski, L. & Jahn, R. A convenient protocol for generating giant unilamellar vesicles containing SNARE proteins using electroformation. Sci. Rep. 8, 9422 (2018).
21. Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012).
22. Eaton, J. W., Bateman, D., Hauberg, S. & Wehbring, R. GNU Octave version 4.4.0 manual: a high-level interactive language for numerical computations (2018).
23. Witkowska, A., Spindler, S., Mahmoodabadi, R. G., Sandoghdar, V. & Jahn, R. Mixed and non-cognate SNARE complexes: algorithms for highly efficient, load-balanced, and scalable molecular simulation. J. Chem. Theory Comput. 4, 435–447 (2008).
24. Pronk, S. et al. GROMACS 4.5: a high-throughput and highly parallel open source molecular simulation toolkit. Bioinformatics Osf. Engl. 29, 845–854 (2013).
25. Macke rrell, A. D. et al. All-atom empirical potential for molecular modeling and dynamics studies of proteins. J. Phys. Chem. B 102, 3586–3616 (1998).
26. Huang, J. et al. CHARMM36m: an improved force field for folded and intrinsically disordered proteins. Nat. Methods 14, 71–73 (2017).
27. Miyamoto, S. & Kollman, P. A. Settle: an analytical version of the SHAKE and RATTLE algorithm for rigid water models. J. Comput. Chem. 13, 952–962 (1992).
28. Hess, B., Kutzner, C., van der Spoel, D. & Lindahl, E. LINCS: a linear constraint solver for molecular simulations. J. Comput. Chem. 18, 1463–1472 (1997).
29. Darden, T., York, D. & Pedersen, L. Particle mesh Ewald: An N-log(N) method for Ewald sums in large systems. J. Chem. Phys. 98, 10089–10092 (1993).
30. Jones, J. E. & Chapman, S. On the determination of molecular fields. —II. From the equation of state of a gas. Proc. R. Soc. Lond. Ser. Contain. Pap. Math. Phys. Character 106, 463–473 (1924).
31. Russi, G., Donadio, D. & Parrinello, M. Canonical sampling through velocity rescaling. J. Chem. Phys. 126, 014101 (2007).
32. Andersen, H. C. Molecular dynamics simulations at constant pressure and/or temperature. J. Chem. Phys. 72, 2384–2393 (1980).
33. Parrinello, M. & Rahman, A. Polymorphic transitions in single crystals: a new molecular dynamics method. J. Appl. Phys. 52, 7182–7190 (1981).
34. Ghahremanpour, M. M., Arab, S. S., Aghazadeh, S. B., Zhang, J. & van der Spoel, D. MemBuilder: a web-based graphical interface to build heterogeneously mixed membrane bilayers for the GROMACS biomolecular simulation program. Bioinformatics 30, 439–441 (2014).
35. Stein, A., Weber, G., Wälti, M. C. & Jahn, R. Helical extension of the neuronal SNARE complex into the membrane. Nature 460, 525–528 (2009).

Acknowledgements
The cryoEM dataset was initially collected for Yavuz et al., JBC, 2018 in the group of Stefan Raunser (Max Planck Institute for Molecular Physiology, Dortmund, Germany). We would like to thank Erwin Neher and Holger Stark (Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany) for discussions. This work was supported by funds from the Max Planck Society (to R.J. and H.G.), US National Institutes of Health grant No. 2 P01 GM072694 (to R.J.). L.H. has been supported by the International Max Planck Research School for Physics of Biological and Complex Systems.

Author contributions
A.W. and R.J. designed the study. A.W. performed experiments and analyzed EM data. L.P.H. performed and analyzed simulations. H.G. performed, supervised, and analyzed simulations. A.W. drafted initial version of the paper. All authors revised and edited the paper.

Funding
Open Access funding enabled and organized by Projekt DEAL.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains supplementary material available at https://doi.org/10.1038/s41467-021-23722-8.

Correspondence and requests for materials should be addressed to A.W. or R.J.

Peer review information Nature Communications thanks Maria Bykhovskaia, Josep Rizo and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

© The Author(s) 2021