A Structured Perspective of Volumes on Active Learning

Xiaofeng Cao, Ivor W. Tsang, Guandong Xu

Abstract—Active Learning (AL) is a learning task that requires learners interactively query the labels of the sampled unlabeled instances to minimize the training outputs with human supervision. In theoretical study, learners approximate the version space which covers all possible classification hypothesis into a bounded convex body and try to shrink the volume of it into a half-space by a given cut size. However, only the hypersphere with finite VC dimensions has obtained formal approximation guarantees that hold when the classes of Euclidean space are separable with a margin. In this paper, we approximate the version space to a structured hypersphere that covers most of the hypotheses, and then divide the available AL sampling approaches into two kinds of strategies: Outer Volume Sampling and Inner Volume Sampling. For the outer volume, it is represented by a circumscribed hypersphere which would exclude any outlier (non-promising) hypothesis from the version space globally. While for the inner volume, it is represented by many inscribed hyperspheres, which cover all feasible hypotheses within the outer volume. After providing provable guarantees for the performance of AL in version space, we aggregate the two kinds of volumes to eliminate their sampling biases via finding the optimal inscribed hyperspheres in the enclosing space of outer volume. To touch the version space from Euclidean space, we propose a theoretical bridge called Volume-based Model that increases the “sampling target-independent”. In non-linear feature space, spanned by kernel, we use sequential optimization to globally optimize the original space to a sparse space by halving the size of the kernel space.

Index Terms—Active learning, version space, hypothesis, hypersphere, outer volume, inner volume

I. INTRODUCTION

Collecting adequate training inputs with the annotation help of the domain experts is often expensive and time consuming in many real-world applications. This motivates the key idea of Active Learning (AL) [1] [4], which trains the classifiers interactively after updating the labeled set by accepting annotation with sampling guidance. Generally, state of the art AL approaches are hypothesis-based or labeled-based sampling strategies that query the instances which maximize the “distance” between the current and updated classification hypotheses after adding new instances to the training set. Therefore, AL is a supervised learning task and benefits the work in text processing [35], image annotation [34], multi-label classification [11] [18], and so on. Since the learner samples the instances strategically, the number of training outputs to learn an strong learning hypothesis can often be much smaller than the number required in a standard supervised learning. However, the labeled data often are available but inadequate in real applications, and how to minimize the amount of prior labeled data to improve the “sampling target-independent” [10] still remains to be studied.

In AL, theoretical learners usually use the notion of version space [39] to greedily improve the performance of the current hypothesis via increasing the size of training inputs, where the set which includes all possible hypotheses is the version space. Therefore, the hypothesis which can maximize the hypothesis distance between the current and updated hypothesis should be the primary sampling target. To find this target hypothesis, the approach which heuristically searched the whole version space to evaluate which data was the most highly informative, had attracted the attention of learners, and this approach was called “uncertainty sampling”. However, the cost of this greedy strategy is expensive. To reduce the volume of the version space, [39] utilized the approach of convex optimization to approximate the version space to a hyperellipsoid which can

Figure 1: This illustration shows the fresh perspective of approximating the version space as an enclosing sphere, and we show one half-space of it in three dimensional space, in which the enclosing space of the hemisphere with a radius of R_T represents the Inner Volume of the half-space, and the enclosing space between it and another hemisphere with a radius of R_O represents the Outer Volume of the half-space.
enlarge most of the hypotheses tightly \([2] \). Then, they cut the hyperellipsoid into a half-space that included any instance whose class label could not evidently be inferred from the hypothesis trained so far, rather than focusing upon maximal uncertainty instances. Although it has attracted the eyes of learners, the hyperellipsoid still has been primarily of theoretical interest since there is not enough evidences are discovered to convince us in the infinite dimension space. Different from it, the hypersphere has obtained more provable guarantees in version space description, such as \([25] [56] [57] [26] \), etc.

In this paper, these evidences motivate us to use the hypersphere to approximate the version space in high dimension space for a theoretical description. By scaling the AL sampling issue of Euclidean space into a hypothesis update problem in the version space, we observe there are two criteria for the AL sampling process: maximizing the hypothesis update, and minimizing an enclosing set with high representation to the version space. The former takes the “highly informative” \([10] \) data as the sampling targets, and while the latter considers the representative data as the sampling targets. Interestingly, the hypotheses that nearest to the optimal classification hypothesis lie on the surface of the version space, and the hypotheses that have high similarity to its local lie inside the version space. To describe these earlier AL studies, we take a fresh perspective on them and define the surface part of the version space as \(\text{Outer Volume} \) and the internal part of the version space as \(\text{Inner Volume} \), respectively (see Figure 1). Meanwhile, we define the informativeness evaluation approaches of AL as \(\text{Outer Volume Sampling} \) strategy, and the representation sampling approaches of AL as \(\text{Inner Volume Sampling} \) strategy.

However, the optimal performance of one classification learning model is not easy to obtain, such as no learners know which hyperplane of SVM classifier is the best, although some of them obtain high accuracies on the prediction results. Usually, machine learning community tries to train a \(\epsilon \)-optimal hypothesis with finite VC dimension, where \(\epsilon \leq 1 \) \([58] [59] [60] \). Therefore, the optimal hypothesis is outside the version space and may have multiple possible positions which surrounds the version space (see Theorem 1 and Remark 2). To circumvent the limitation of this uncertainty, the outer volume is represented by the surface of the version space (see Figure 2(a)), which excludes any outlier (non-promising) hypotheses from the version space globally, and the inner volume is represented by many inscribed hyperspheres, which cover all feasible hypotheses within the outer volume (see Figure 2(b)). Since the AL based on the two kinds of volumes may have sampling biases in terms of noises, overlapping classes, and local convergence, we use both of them to represent the version space to ignore the non-promising hypothesis globally and cover all local hypothesis locally (see Figure 2(c)). To obtain this structured representation, we find the optimal representation inscribed hyperspheres in the enclosing space of outer volume, in which each hypersphere is represented by its local hypersphere center. As described in this representation sampling process, we propose a theoretical framework called \textit{Volume-based AL Model}.

To generalize this theoretical framework in the real world AL tasks, we firstly use the transductive experimental design of statistics regression to globally map the data space to a sparse space which excludes all outlier hypotheses and shrinks the number of candidate sampling set into a half. After obtaining the sparse structure of data space, the Expectation Maximization (EM) model which returns local centers can provide an effective local representation to the enclosing set of outer volume, i.e., the current inner volume of data space. Finally, we propose the Volume-based Active Learning (VAL) algorithm. Contributions of this paper are described as follows:

- We approximate the version space into a hypersphere and divide it into two parts: outer volume and inner volume.
- We provide a theoretical guarantee for dividing the earlier AL approaches into two kinds: \textit{Outer Volume Sampling} and \textit{Inner Volume Sampling}.
- We design a theoretical AL framework termed “Volume-based AL Model” in the version space, which consists of the outer and inner volumes to find an optimal representation for version space globally and locally.
- To generalize this theoretical description, we provide an \textit{easy-to-implement} algorithm called VAL (Volume-based Active Learning) in Euclidean space.
- The proposed VAL algorithm is a “target-independent” sampling algorithm without prior labels which results in a faster error rate decline, compared with other AL approaches.

The remainder of the paper is structured as follows. Section II presents the related work including AL in version space, and descriptions of outer volume and inner volume. Section III then introduces the notions of version space and we divide the available AL models into two categories of strategies. In Section IV, we present the motivation of this paper by discussing the relationship between the AL models and volumes in version space. In Section V, we propose a Volume-based AL Model which is a theoretical framework in version space. To implement it, we propose a Volume-based AL algorithm by sequential and expectation maximization optimizations in Euclidean space. The experiments are reported in Section VII. We conclude this paper in Section VIII.

II. RELATED WORK

Active learners tend to select the informative instances that split the version space into two parts, in which the external part contains the sparse examples that lie on the surface of the version space, called \textit{Outer volume} of the version space. The internal part contains most volume of the version space, called \textit{Inner volume}.

To present our fresh perspective, Section II.A describes the AL in structured version space which contains all feasible classification hypotheses, then Section II.B and II.C explain the outer and inner volume sampling in AL, respectively.

A. Active learning in version space

Learning a hypothesis from labeled instances is not a universally applicable paradigm \([54] \). Many natural learning tasks involved with sampling new unlabeled examples are not simply passive, but instead make use of at least some form of AL strategies to examine the proposed problem domain.
By active learning, any form of learning task can have some control over the inputs on which it trains. Then, the sampling outputs using the greedy learning strategy become possible.

In such learning problems, Mitchell [36] described the learning task based on the partial ordering of original inputs in version space. It required the learners to do active learning by examining the sampled target instances whether fall in the “difference” hypothesis regions. Before learning a new hypothesis, learners firstly examine the information already given and then evaluate the uncertainty of a candidate region. To reduce the label complexity, a series of approaches of partitioning version space were proposed, in which a theoretical foundation was that the objective learning function could be perfectly expressed by one hypothesis in the version space. Under this policy, reducing the volume of version space becomes a theoretical description for AL.

However, calculating the volume of a convex body is hard because of the computationally intractable [55]. To study the target hypothesis distribution, we observe that the highly informative hypothesis are far away the most hypotheses, and they are distributed on the surface of the convex body, and a highly representative hypothesis is distributed in a dense internal region of the convex body.

In the geometric approximation description of machine learning, Enclosing Cylinder (EC), Enclosing Ball (EB), Minimum-Width Annullus (MWA) [15] are the three spatial geometry description tools. Of them, EB attracts most attention and obtains provable guarantees. By extracting the core sets [51] [52] that “represents” the data space, [43] [44] [45] [40] have utilized EB to improve the performances of SVM and clustering in high dimensional space. In addition to this, the surprising properties of hypersphere are independent of the dimension and have been widely used in gap tolerant classifiers [47], KNN search, 1-cylinder problem [49], sphere trees [50] and so on. Therefore, we use the hypersphere to describe the version space.

B. Outer volume of version space

There are two fundamental propositions in AL theory: (1) maximizing the hypothesis update by iterative sampling, and (2) representation sampling. Usually, the hypothesis or local distribution that farthest to the current hypothesis or distribution lie on the surface of the version space. Therefore, the sampling targets of these labeled-based AL approaches lie on the Outer Volume of version space and these labeled-based AL sampling are called Outer Volume Sampling.

For the outer volume sampling, lack of rich prior experience transferred learners’ attention on the available labeled resource and then motivated the learning approaches of pool-based AL [7]. In this learning framework, they selected the unlabeled data independently from the candidate pool via observing their underlying hypothesis or distribution update after querying. As one of the important pool-based model, [25] designed a relevance feedback strategy that measured the uncertain class assignments of unlabeled data in each iteration. The idea of iterative sampling then was used in [12], [13], [18], [26], [4], etc., which set the unlabeled data into a pool to wait for picking out based on a given sampling strategy trained by the current classification hypothesis or labeled data. However, the error rate curve could not decline significantly in case of a very small amount of sampling number or labeled data.

C. Inner volume of version space

Different from outer volume, representation sampling is to optimize an effective mapping structure for the original version space and the potential learning rule is to keep the diameters of arbitrary local spaces whatever in hypothesis or distribution metric. Therefore, the sampled hypothesis must lie inside the version space and this type of approach is called Inner Volume Sampling.

Compared with the outer volume sampling, clustering-based approaches is one branch of inner volume sampling since it studies the clustering structure to get help from the hypothesis that lie inside the version space. For example, [8] actively labeled the credible sub clustering trees with root node’s label by a probability discriminant model. While it showed negative
Table I: A summary of notations

Notation	Definition
\(\mathcal{X} \)	data space/set
\(x_i \)	the \(i \)th data point of \(\mathcal{X} \)
\(D \)	distribution assumption over \(\mathcal{X} \)
\(\mathcal{H} \)	hypothesis set over \(\mathcal{X} \)
\(h_i \)	the \(i \)th hypothesis of \(\mathcal{H} \)
\(n, k, \mathcal{K}, c, \sigma, m, n \)	constants
\(E \)	hypothesis space
\(\ell(\cdot) \)	metric function
\(Vol(\cdot) \)	the geometric volume of the input object
\(d \)	diameter of \(E \)
\(h^* \)	the optimal hypothesis
\(h_{<,>} \)	a hypothesis with special setting
\(\mathcal{O} \)	outer volume of \(\mathcal{H} \)
\(I \)	inner volume of \(\mathcal{H} \)
\(B(\cdot,\cdot) \)	the enclosing ball with special radius and center settings
\(\mathcal{R}_{<,>} \)	radius of hypersphere with special setting
\(\mathcal{C}_{<,>} \)	center of hypersphere with special setting
\(B^*, B^\dagger \)	enclosing balls with special settings
\(S^+, S^- \)	half-spaces of \(\mathcal{H} \)
\(Pr(\cdot) \)	conditional probability
\(\theta_{<,>} \)	vector angle with special setting
\(\mathcal{L} \)	loss function
\(A, B, K, V \)	matrices

AL performances in the terms of clustering result with high error rate, unstructured data space, and so on. An important potential reason was lack of labeled data for querying and then led to an inevitable poor performance in AL tasks. Such situation also appeared in references of [14], [22], [23], etc. But actually these approaches were still labeled-based.

Moreover, less support from the labeled data may lead to the performance decrease of AL, and the need of the priori label amount at the beginning of training is seriously underestimated. Besides it, there are many existing AL approaches that could not be adopted well in a learning task with insufficient amount of labels, such as Margin [25], Hierarchical [68], Quire [17], Re-active [19], [26]. Considering to reduce the dependence to label amount, [20], [23], [30], [33], [27], [51] used the approach of representation sampling to map the original version space. To keep a low loss mapping, [26] measured the diameter of the version space and then mapped a representation space with the similar space diameter. However, they neglected the importance of local metric in space mapping process.

III. VERSION SPACE AND ACTIVE LEARNING STRATEGIES

We are the first to propose the fresh perspective of considering the AL as finding the most informative or representative hypothesis from the huge version space which covers all possible hypothesis. This theoretical description aims to improve the reliability for any possible AL framework by volume.

As we observe that the current AL sampling targets can lie on the surface or in the internal of version space, we divide the version space into two parts: “Outer Volume” and “Inner Volume”. In this section, Section III.A describes the version space, and Section III.B divides the AL into two kinds of strategies, where the used main notations are described in Table 1.

A. Version space

Consider a data space \(\mathcal{X} \) with \(n \) points \(\{x_1, x_2, \ldots, x_n\} \), a distribution assumption \(D \) over \(\mathcal{X} \), and a classification hypothesis set \(\mathcal{H} \) with finite VC dimension, where \(x_i = [x_{i1}, x_{i2}, \ldots, x_{im}], \mathcal{H} = \{h_1, h_2, \ldots, h_k\} \).

Assumption 1. Some theoretical descriptions of version space are based on the parameter space of classification hyperplane in Euclidean space. Our definition is based on the VC dimension. Since there are no specified description about this notation, we will learn from some characteristics of Euclidean space in this paper.

Definition 1. Version space [36], [39]. The graph \(G \) which connects all possible hypothesis is the version space, and it is an ordered triple,

\[
G = \{V, E, \ell\}
\]

and

\[
V_i = h_i, \forall \ i = 1, 2, \ldots, n
\]

\[
E_{ij} = \{h_i, h_j\}, i, j \in (1, k)
\]

where \(E \) represents the hypothesis space, \(E_{ij} \) is the edge of \(i \)th and \(j \)th hypothesis, and \(\ell \) is the metric function. In this graph, any two vertices have an edge and their distance metric is defined as follows.

Definition 2. Hypothesis distance [26], [37], [38]. Given hypothesis \(h_i \) and \(h_j \) (\(i, j \in (1, k) \)), the distance between them is:

\[
\ell(h_i, h_j) = \{h_i(x_i) \neq h_j(x_i), \forall \ i = 1, 2, \ldots, k\}
\]

where \(\ell(\cdot, \cdot) \) denotes the distance between the two inputs.

Definition 3. Diameter of the version space [37], [38]. The edge with the maximum hypothesis distance of \(E \) denotes the diameter of the version space, that is to say,

\[
d = \text{argmax}_{i,j \in (1, k)} \{E_{ij}\}
\]

where \(d \) denotes the diameter of \(E \).

B. Active learning strategies

In the data space \(\mathcal{X} \) with \(n \) samples, the hypothesis number of querying \(k \) data is \(C_k^m \). However, no learner knows how to obtain the optimal hypothesis \(h^* \). Here we discuss the hypothesis number of classifying \(m \) classes:

Theorem 1. The VC dimension [58], [59], [60] of \(\mathcal{H} \) is about \(2^n \), i.e., there are approximately \(2^n \) hypotheses in the version space.

Proof. Assume the querying number \(\rho \leq K \leq n \) in a \(\rho \)-class setting, here we obtain:

\[
VC(\mathcal{H}) = C_n^\rho + C_n^{\rho+2} + \cdots + C_n^n
\]

\[
= 2^n - \sum_{i=1}^{\rho-1} C_n^i
\]

\[
= 2^n - \varepsilon
\]
Remark 1. This theorem shows the solution of an arbitrary classification issue is “unclosed-form” although the hypothesis could lead to a perfect classification accuracy. In the goal of the advanced AL theory, the learner would try to produce an “closed-form” sampling set which is independent on classifier category and parameter space.

Therefore, we have (the following remark will be used in Lemma 7)

Remark 2. The optimal hypothesis is not contained in the version space, that is to say

\[h^* \notin \mathcal{H} \tag{6} \]

Definition 4. Active Learning. AL sampling helps to minimize the difference between the optimal hypothesis and the final hypothesis, that is to say

\[\min_{h_f} \ell(h_f, h^*) \tag{7} \]

where \(h_f \) represents the classification hypothesis trained on the final labeled set after sampling, and \(h^* \notin \mathcal{H} \).

Generally, the learners iteratively sample the data point which can maximize the hypothesis update in the version space. Then, we have

Definition 5. Active Learning Sampling. Let \(C_0 \) be the initialization training set, AL is to find the data \(\Phi(x) \) which changes the current hypothesis greatly:

\[\arg\max_{\Phi(x)} \ell(h_{C_0}, h_{C_0'}^{\Phi(x)}) \tag{8} \]

where \(h_{C_0} \) represents the current classification hypothesis, \(h_{C_0'}^{\Phi(x)} \) represents the updated hypothesis after adding \(\Phi(x) \) to training set \(C_0 \), and \(C_0' = [C_0, \Phi(x)] \).

From the above definition, we highlight two AL strategies corresponding to hypothesis update and representation sampling:

Strategy 1. Maximizing the hypothesis update. Learners should identify pairs of hypothesis in the hypothesis space \(E \) with maximum distance,

\[E' = \{\{h_1, \hat{h}_1\}, \{h_2, \hat{h}_2\}, ..., \{h_k, \hat{h}_k\} \} \tag{9} \]

where \(\ell(h_i, \hat{h}_i) \leq \ell(h_j, h_j), \forall i, j \in (1, k) \), and it is used in [25], [12], [13], [18], [26], [4], etc.

Strategy 2. Representation sampling. Minimizing a sub version space of \(D' \) which is similar with \(D \), that is to say,

\[\ell(D, D') \rightarrow 0 \tag{10} \]

where \(D' \subset D \), and this strategy is used in [24], [17], [9], [29], etc.

IV. Motivation

AL theory studies the classification hypothesis (Section II.A) issue via iteratively sampling a data which can maximize the hypothesis update (Strategy 1) or minimizing a sub set with high representation to the original space (Strategy 2). Observing the two strategies, we find the Strategy 1 favours to sample the hypothesis lie on the surface of version space since they are close to the optimal hypothesis, but Strategy 2 tends to select the hypothesis lying inside the version space since the local representation is the default sampling rule. Therefore, Strategy 1 is the AL approach based on Outer Volume Sampling, and Strategy 2 is the AL approach based in Inner Volume Sampling.

To prove this perspective, this section will discuss their potential distributions of the sampling targets of the two different strategies to support our division, where Section IV.A describes the volume of version space and divides the volume of the version space into two parts—outer and inner volume, and Section IV.B presents our perspective involved with the distribution of the target hypothesis of AL sampling. Then, Section IV.C and D present theoretical understanding on this perspective.

A. Volumes of version space

Volume is a theoretical notion for the size of the version space. To describe this high dimensional space, we approximate it to a hypersphere, and divide it into two parts: outer volume and inner volume. In this section, we show that the relationship between the two kinds of volumes.

Let \(O \) and \(I \) represent the outer and inner volume respectively, here we remark:

Remark 3. The geometric volume of the version space is the volume sum of \(O \) and \(I \), i.e.,

\[\text{Vol}(O) + \text{Vol}(I) = \text{Vol}(\mathcal{H}) \tag{11} \]

where \(\text{Vol}(\cdot) \) denotes the geometric volume of the input objective.

Assume \(O \) and \(I \) can be described as the MEB (Minimum EB) issues of \(B(R_O, C_O) \) and \(B(R_I, C_I) \), we remark

Remark 4. \(O \) and \(I \) are two concentric hyperspheres which satisfy

\[R_O = (1 + \epsilon)R_I \]
\[C_O = C_I \]

where \(\epsilon \) is an infinitesimal constant.

We then need the following theorems to understand the outer and inner volume.

Theorem 2. Let \(Z \) be the largest hypersphere contained \(X \), then,

\[R_Z \leq \frac{R_X}{m(1 + \epsilon)} \tag{13} \]

Proof. To obtain the upper bound on \(\tau = \frac{R_X}{R_Y} \), we consider the volumes of \(Z \) and \(O \). The plainly

\[\frac{R_O^m}{R_Z^m} \leq \frac{\text{Vol}(O)}{\text{Vol}(Z)} \tag{14} \]
Following [51] [53], they have proved τ is $\frac{1}{m}$, thus
\[
\frac{\mathcal{R}_{\tau}^+}{\mathcal{R}_{\tau}^-} \leq \frac{1}{(m(1+\epsilon))^m}
\] (15)
and so
\[
\frac{\mathcal{R}_I}{\mathcal{R}_Z} \leq \frac{1}{d(1+\epsilon)}
\] (16)
as stated.

Theorem 3. Assume that the ball \mathcal{O} is exactly tight. For any closed half-space B' that contains the center $\mathcal{C}_\mathcal{O}$ in $B(\mathcal{R}_\mathcal{O}, \mathcal{C}_\mathcal{O})$, it must contain at least one point from \mathcal{H} that is at distance $\mathcal{R}_\mathcal{O}$ from the center $\mathcal{C}_\mathcal{O}$.

Proof. Let us use B represent $B(\mathcal{R}_\mathcal{O}, \mathcal{C}_\mathcal{O})$, and suppose there exist κ points in the closed half-space B'. Then, there must have a point $h_{\kappa'}$ which satisfies
\[
\mathcal{R}_I \leq \ell(h_{\kappa'}, \mathcal{C}_\mathcal{O}) = \mathcal{R}_\mathcal{O}
\] (17)
Otherwise, $\text{Vol}(B') < \text{Vol}(B)/2$, and there will exist a tighter MEB B^* for containing \mathcal{H}, i.e., $\exists B^*$ which satisfies $\text{Vol}(B^*) < \text{Vol}(B)$. The theorem follows.

B. Active learning by volumes

Considering the hypothesis with the maximum distance to the current hypothesis is located in the outer volume of the version space, and the representation hypothesis is located inside the version space, i.e., the inner volume, we present our structured perspective as below.

Theorem 4. The hypothesis that farthest to the current hypothesis must lie in the outer volume of the version space, that is to say,
\[
\hat{h}_i \in \mathcal{O} \quad \forall i = 1, 2, ..., n
\] (18)
where \mathcal{O} represents the hypothesis set of the outer volume.

Theorem 5. h_c lies in the inner volume of the version space, that is to say,
\[
h_c \in \mathcal{I}
\] (19)
where h_c represents the center hypothesis of an arbitrary inscribed hypersphere, and \mathcal{I} represents the hypothesis set of inner volume of the version space.

C. Outer volume sampling

To prove Theorem 4, we need the following lemmas to discuss the upper and lower bounds of $\ell(\hat{h}_i, h_t)$ and $\ell(h^*, h_t)$, where h_t represents the target hypothesis when observing the underlying distribution of h^*.

Lemma 6. The bound of $\ell(\hat{h}_i, h_t)$ is $\sqrt{||\ell(h_i, h_t)||^2 - \mathcal{R}_{\mathcal{O}}^2} \leq 2\mathcal{R}_{\mathcal{O}}$ s.t. $h_t \mathcal{H}_\mathcal{O} \cdot \hat{h}_i \mathcal{H}_\mathcal{O} = 0$, where $h_t \in \mathcal{O}$, and h_c represents the hypothesis of $\mathcal{C}_\mathcal{O}$.

Proof. Upper bound. Suppose that the diameter through h_i is d', here we divide d' into two parts: d'^+ and d'^-, where we set $h_t \in d'^-$. Based on the characteristics, we have the following results:
\[
0 \leq \ell(h_i, h_t) \leq \mathcal{R}_\mathcal{O}, \forall h_t \in \mathcal{S}^-
\]
\[
\mathcal{R}_\mathcal{O} \leq \ell(h_i, h_t) \leq 2\mathcal{R}_\mathcal{O}, \forall h_t \in \mathcal{S}^+
\] (20)
where \mathcal{S}^- and \mathcal{S}^+ represents the half-space which contains d'^- and d'^+, respectively. Then the upper bound of $\ell(h_i, h_t)$ as stated.

Lower bound. Suppose the vector $\mathcal{h}_t \mathcal{h}_\Lambda$ tangent to d', where $\mathcal{h}_t, \mathcal{h}_\Lambda \in \mathcal{O}$, then we have $\mathcal{R}_\mathcal{O}^2 + ||\ell(h_\Lambda, h_i)||^2 = ||\ell(h_t, h_i)||^2 +, \forall h_t \in \{h_\Omega, h_\Lambda\}$. Then, the lower bound of the lemma follows.

Lemma 7. As claimed of Theorem 4, $\ell(h_i, h_t)_{max} = \ell(h_\Omega, h_t) + \mathcal{R}_\mathcal{O}$.

Proof. Following Lemma 6, $\hat{h}_i \in \mathcal{S}^+$. Give an arbitrary hypothesis $h_\Omega \in \mathcal{S}^+$, then by the triangle inequality, we have
\[
\ell(h_\Omega, h_t) \leq \ell(h_\Omega, h_t) + \mathcal{R}_\mathcal{O}
\] (21)
Here we find when $\sin < \mathcal{h}_t \mathcal{h}_\Omega, \mathcal{h}_t \mathcal{h}_\Gamma > = 0$ we have the maximum of $\ell(h_i, h_t)$, where $h_t = h_\Omega \in \mathcal{O}$. Then the lemma follows.

Lemma 8. Let h_i be the target hypothesis and h^*, the bound of $\ell(h_i, h^*)$ is $\ell(h^*, h_\Psi) \leq \ell(h_i, h^*) \leq 2\mathcal{R}_\mathcal{O} + \ell(h^*, h_\Psi)$, where h_Ψ is the nearest intersection between $h^* h_t \mathcal{E}$.

Proof. By the triangle inequality, we have
\[
\ell(h_t, h_\Psi) - \ell(h^*, h_\Psi) \leq \ell(h_t, h^*) \leq \ell(h^*, h_\Psi) + \ell(h_t, h_\Psi)
\] (22)
When $\ell(h_t, h_\Psi) = \mathcal{R}_\mathcal{O}$, $\ell(h^*, h_\Psi) + \ell(h_t, h_\Psi)$ will have $\ell(h_t, h_\Psi)_{max} = 2\mathcal{R}_\mathcal{O} + \ell(h^*, h_\Psi)$. When $h_t = h_\Psi$, we will have $\ell(h_t, h_\Psi)_{min} = \ell(h^*, h_\Psi)$. Therefore, lemma 8 follows.

D. Inner volume sampling

To prove Theorem 5, we need to discuss why the target hypothesis h_t are distributed inside the local hypersphere. In the following propositions, we use the probability distribution by taking different hypotheses as priori observation hypothesis, and then we set the MMD metric as distribution measurement to further explain our perspective.

Proposition 1. Assume the local hypersphere B' has infinite hypotheses with uniform distribution, h_Γ is distributed on the surface of B' and h_Λ is located inside B'. Let h_t be an arbitrary hypothesis in B', we can find $\sum_{h_t \in B'} P_{h_t \in B'}(h_t|h_t) \leq \sum_{h_t \in B'} P_{h_t \in B'}(h_t|h_\Gamma)$.

Proof. Let us discuss the bounds of $\ell(h_t, h_\Gamma)$ and $\ell(h_t, h_\Lambda)$:
\[
0 \leq \ell(h_t, h_\Gamma) \leq 2\mathcal{R}', \text{ and } 0 \leq \ell(h_t, h_\Lambda) \leq 2\mathcal{R}', \text{ where } \mathcal{R}' \text{ is the local radius of } B'. \text{ Assume the distance metric matrices of } h_\Gamma \text{ and } h_\Lambda \text{ to } B' \text{ respectively are } \mathcal{A} \text{ and } \mathcal{B}, \text{ we can find } \mu(\mathcal{A}) \leq \mu(\mathcal{B}) \text{ and } \sigma(\mathcal{A}) \leq \sigma(\mathcal{B}). \text{ Then, the lemma is as stated and } h_c \text{ should be located inside } B'. \]
Proposition 2. Let MMD be the distribution metric, then the distribution distance of representation hypothesis and original local hypothesis ball meets: \(\ell(h_{I^*}, B^I) > \ell(h_{O^*}, B^O) \).

Proof. Let \(F \) be a class of functions \(f: \mathcal{X} \rightarrow \mathbb{R} \), and \(X \) and \(Y \) are two distributions with \(m^I \) and \(n^I \) samples, respectively. Then, the distance between the two distributions is estimated as:

\[
MMD(F, X, Y) := \sup_{f \in F} \left(\frac{1}{m} \sum_{i=1}^{m^I} f(x_i) - \frac{1}{n} \sum_{i=1}^{n^I} f(y_i) \right)
\]

(23)

Since \(\ell(h_{I^*}, B^I) = \ell(h_{O^*}, h_{B^I}) > \ell(h_{B^I}, h_{I^*}) \), we have \(MMD(h_{I^*}, B^I) > MMD(h_{O^*}, B^O) \). Then, the lemma is as stated and \(h_c \) should be close to the center of \(B^I \).

As the outer volume of the version space covers most of the hypotheses and we have set \(\epsilon \) as infinitesimal constant, the internal part of the local hypersphere should be located inside the outer volume. Then, Theorem 5 follows.

V. THEORETICAL ACTIVE LEARNING MODEL

Active learner of outer volume has formal the guarantees that hold when the approximated MEB (Minimum Enclosing Ball) of the version space is separable with margins. To implement this assumption, one would need to exclude all the outlier hypotheses. Returning to greedy selection of the outer volume in the version space, we could see that the underlying distribution over hypotheses that could not provide a margin-dependent approximation guarantee without labeled hypothesis as prior experience. Therefore, finding the optimal inscribed hyperspheres could reduce the dependence to labeled hypothesis.

In this section, a volume-splitting strategy termed Volume-based AL Model is presented to find the optimization representation for the original version space, where Section IV.A claims the motivation of this volume-splitting strategy, Section IV.B presents the methodology of excluding the outlier hypotheses, Section IV.C describes the finding process of the optimal inscribed hyperspheres, and Section IV.D proposes the Volume-based AL Model.

A. Motivation of volume-splitting

As we claimed, the version space is a theoretical approximation of data filed of Euclidean space. Therefore, we would discuss the relationship between the underlying distribution of the classification hyperplane by training the data of outer volume and inner volume in Euclidean space. Here we present our perspective.

Theorem 9. Hypothesis set lies in the outer volume of the class is the subset of its inner volume, that is to say,

\[
\mathcal{H}_O \subset \mathcal{H}_I
\]

(24)

where \(\mathcal{H} \) represents the hypothesis set of the input object.

To prove this theorem, we discuss it in settings of non-crossed MEBs and crossed MEBs in the following lemmas.

Lemma 10. Let \(\theta_O \) and \(\theta_I \) be the angles between the classification hyperplane and outer volume, inner volume, respectively. For a pair of non-crossed MEBs, the angle range of \(\theta_O \) is smaller than that of \(\theta_I \).

Proof. Given \(\beta^+_1 \) and \(\beta^-_1 \) are one pair of data points which has the smallest distances in Non-crossed MEBs, i.e., it satisfies the following assumption:

\[
\ell((\beta^+_1, \beta^-_2), \omega) < \ell((\beta^+_1, \beta^-_2), \omega), \text{ for all } i, j \Rightarrow B^+ = \{\beta^+_1, \beta^-_2, \ldots, \beta^-_n\}, B^- = \{\beta^+_1, \beta^-_2, \ldots, \beta^-_n\}
\]

where \(\eta \) and \(\eta' \) are the data number of the MEB \(B^+ \) and \(B^- \), respectively. Suppose \(\vec{W} \) be the parameter vector of the classification hyperplane \(h_w \), \(\nu \) be the intersection point of \(h_w \) and \(\beta^+_1, \beta^-_2, \mathcal{C}_O P_1 \) and \(\mathcal{C}_I P_2 \) be two vectors in the MEB with maximum volume, and

\[
\vec{W} \perp \mathcal{C}_O P_1 \text{ and } \vec{W} \perp \mathcal{C}_I P_2
\]

s.t. \(||\mathcal{C}_O - P_1||_2 = \mathcal{R}_O, ||\mathcal{C}_I - P_2||_2 = \mathcal{R}_I \)

Then, we can define

\[
\arcsin \frac{\mathcal{R}_O}{||\mathcal{C}_O - \nu||_2} \leq \theta_O \leq 2\pi - \arcsin \frac{\mathcal{R}_O}{||\mathcal{C}_O - \nu||_2}
\]

(27)

Similarly, we obtain the angle range of \(\theta_I \)

\[
\arcsin \frac{\mathcal{R}_I}{||\mathcal{C}_I - \nu||_2} \leq \theta_I \leq 2\pi - \arcsin \frac{\mathcal{R}_I}{||\mathcal{C}_I - \nu||_2}
\]

(28)

Because \(\mathcal{R}_O = (1 + \epsilon)\mathcal{R}_I \), we then have

\[
\arcsin \frac{\mathcal{R}_I}{||\mathcal{C}_I - \nu||_2} < \arcsin \frac{\mathcal{R}_O}{||\mathcal{C}_O - \nu||_2}
\]

(29)

So, the lemma follows.

Lemma 11. For crossed MEBs, training the data of outer volume may lead to a very high error rate in the hyperplane fitting. Suppose that the data are evenly distributed in the MEB, the error rate of classification on this pair of MEBs is at most \(\Omega(\frac{1}{1 + \epsilon}m) \).

Proof. By Remark 2, we know the parameter \(\epsilon \) decides the radius of \(B(\mathcal{R}_O, \mathcal{C}_O) \). Assume the data space is close to an normal distribution, we can find

\[
\frac{\text{Vol}(\mathcal{O}) - \text{Vol}(\mathcal{I})}{\text{Vol}(\mathcal{O})} \leq \frac{\text{Vol}(\mathcal{O}) - \frac{\text{Vol}(\mathcal{O})}{(1 + \epsilon)^m}}{\mathcal{O}} = \frac{1}{(1 + \epsilon)^m}
\]

(30)

So, the lemma follows. Because training the data of outer volume may lead to a high error rate, the classification hypothesis has a high probability to be a null hypothesis. Then, Theorem 9 follows.

B. Finding the optimal inscribed hypersphere

To represent the version space, we use MMD (Maximum Mean Discrepancy) as the metric function which can measure
the difference of two distributions. The kernel type of it is described as follows:
\[
\text{MMD}^2(F, X, Y) := \frac{1}{m} \sum_{i=1}^{m} k(x_i, x_j) - \frac{2}{mn} \sum_{i,j=1}^{mn} k(x_i, y_j) + \frac{1}{n^2} \sum_{i,j=1}^{n} k(y_i, y_j)
\]
(31)

where \(k(\cdot, \cdot) \) denotes the kernel metric of the two input objects. Suppose that the kernel function is bounded, i.e., \(k(\cdot, \cdot) \leq \kappa \), we have the following upper bound and lower bounds of kernel MMD,
\[
0 \leq \text{MMD}^2(F, X, Y) \leq (m+n)\kappa - \frac{2}{mn} \sum_{i,j=1}^{mn} k(x_i, y_j)
\]
\text{s.t.} \text{MMD}^2(F, X, Y) = 0, \text{iff} \; m = n
(32)

In AL sampling, the optimization objective is to minimize the original space \(\mathcal{H} \) and representation space \(\mathcal{D}' \),
\[
\min_{\mathcal{D}' \subset \mathcal{D}} \text{MMD}^2(\mathcal{D}, \mathcal{D}')
\]
(33)

Therefore, we need to minimize the upper bound of Eq. (32), that is to say,
\[
\min_{h_i \in \mathcal{D}', h_j \in \mathcal{D}} \frac{2}{mn} \sum_{i,j=1}^{mn} k(h_i, h_j)
\]
(34)

To minimize it, we need to optimize the local representation sampling process via associating \(y_i \) within the local space of \(x_i \). Assume the querying number is \(K \), the structure loss of representative space can be defined as:
\[
\min \left\{ \mathcal{L}(\mathcal{D}', \mathcal{D}) = \sum_{i}^{K} \text{MMD}(\mathcal{V}_i, B(\mathcal{C}_{\mathcal{V}_i}, \mathcal{R}_{\mathcal{V}_i})) \right\}
\]
(35)

where \(\mathcal{D}' = \{ \mathcal{V}_1, \mathcal{V}_2, ..., \mathcal{V}_K \} \) and \(B(\mathcal{C}_{\mathcal{V}_i}, \mathcal{R}_{\mathcal{V}_i}) \) is its local inscribed hypersphere of \(\mathcal{V}_i \).

C. Excluding the outlier hypotheses

However, there exists a sampling bias (see Figure 3 in Euclidean space). To describe this kind of situation, here we highlight it in the following remark.

Remark 5. An outlier hypothesis \(h_{\Phi} \) may lead to a fast local convergence when \(\mathcal{C}_{\mathcal{V}_i} = h_{\Phi}, \forall \mathcal{V}_i \).

To exclude the outlier hypotheses, we need to remove the hypotheses distributed outside the outer volume. By Lemma 10, we mark the hypotheses located outside the inner volume be outlier hypotheses, that is to say

Remark 6. For arbitrary hypothesis in the \(B(\mathcal{C}_{1}, \mathcal{R}_{1}) \), the hypothesis which satisfies Eq.(28) is a outlier hypothesis.

Considering these outlier hypotheses having low relevance to its local neighbor hypothesis, we observe the volume of the local inscribed hypersphere is bigger than the non-outlier hypotheses. Therefore, we propose the \(\epsilon' \) approximation split approach to define the outlier hypothesis:
\[
\frac{\text{Vol}(B(h_{\Phi}))}{\text{Vol}(O)} > \epsilon'
\]
(36)

where \(B(h_{\Phi}) \) represents the MEB that covers \(h_{\Phi} \). After the above discussion, we present our theoretical AL proposition.

Proposition 3. Let \(O' \) represent the enclosing space of \(O \) which has removed all outlier hypotheses, here we present our AL sampling objective function:
\[
\min \left\{ \mathcal{L}(\mathcal{D}', O') = \sum_{i}^{K} \text{MMD}(\mathcal{V}_i, B(\mathcal{C}_{\mathcal{V}_i}, \mathcal{R}_{\mathcal{V}_i})) \right\}
\]
(37)

D. Proposed active learning model

In this section, we present our theoretical AL model in algorithm 1. To exclude the outlier hypotheses, Step 4 to 9 remove the hypotheses that located outside the outer volume. Then, we find a local optimal representation for the current version space via an EM learning process in Step 11 to 16. Finally, we return the centers of each hypersphere as AL sampling examples.

Algorithm 1: Volum-based Active Learning Model

1. **Input:** Version space \(\mathcal{H} \)
2. **Volume-splitting parameter:** \(\epsilon' \)
3. **Begin:**
4. for \(l \leftarrow \Phi \) to \(k \) do
5. if \(\frac{\text{Vol}(B(h_{\Phi}))}{\text{Vol}(O)} > \epsilon' \) then
6. Remove \(h_{\Phi} \) from \(\mathcal{H} \).
7. Update \(\mathcal{H} \).
8. end
9. end
10. Obtain the enclosing space of \(O : O' \leftarrow \mathcal{H} \).
11. Initialize \(\mathcal{D}' \) by passive querying: \(\mathcal{D}' = \{ \mathcal{V}_1, \mathcal{V}_2, ..., \mathcal{V}_K \} \).
12. while \(\mathcal{L} - \mathcal{L}' \neq 0 \) do
13. Calculate the loss function \(\mathcal{L}(\mathcal{D}', O') = \sum_{i}^{K} \text{MMD}(\mathcal{V}_i, B(\mathcal{C}_{\mathcal{V}_i}, \mathcal{R}_{\mathcal{V}_i})) \).
14. Update their MEBs of \(\{ \mathcal{V}_1, \mathcal{V}_2, ..., \mathcal{V}_K \} \).
15. Update the loss function \(\mathcal{L}' \).
16. end
17. Return the centers of the final MEBs.

VI. EXPECTATION MAXIMIZATION IN SPARSE SPACE

Although half-space can reduce the volume of the version space, cutting which half-space is hard to decide whatever in the version space or Euclidean space since the number of half-space is infinite. However, shrinking the volume of the version space is effective. In this section, we propose a new shrinking method by reducing the number of candidate hypothesis set. In non-line feature space, spanned by kernel, we use sequential optimization to map the original kernel space into a spare
space by halving the size of kernel space. Compared with half-space, the sparse space has two advantages: exclude outlier hypotheses, and remove the similar hypotheses of arbitrary local spaces. For the sparse space, it optimizes a global representation in the enclosing space of outer volume of the data space. Then, we find that the EM model which returns the local centers can have an effective local representation optimization.

In this section, Section VI.A describes the global sparse space by halving the size of input space, Section VI.B discusses the effectiveness of EM model which returns the local centers for representation sampling, Section VI.C describes the Volume-based AL algorithm, and Section VI.D discusses the time and space complexities of VAL.

A. Global sparse by halving

In machine learning community there have been extensive experimental design approaches. Among them, transductive experimental design is one effective optimization scheme which acts on active learning issues.

Considering a linear function $f(x) = \mathbf{w}^T x$ from measurements $y_i = \mathbf{w}^T x_i + \epsilon_i$, where $\mathbf{w} \in \mathbb{R}^d$, and $\epsilon_i \sim \mathcal{N}(0, \sigma^2)$. AL sampling is to optimize a set of $\mathbf{V} = \{(x_1, y_1), (x_2, y_2), \ldots, (x_m, y_m)\}$ to represent x. Therefore, the MLE (maximum likelihood estimate) of \mathbf{w} is obtained by

$$\arg\min_{\mathbf{w}^*} \left\{ J(\mathbf{w}) = \sum_{i=1}^{n} (\mathbf{w}^T z_i - y_i) \right\}$$

and the error rate is

$$e = \mathbf{w} - \mathbf{w}^* \quad s.t. \mu(e) = 0, D(e) = \sigma^2 \mathbf{C}_w$$

where $\mu(\cdot)$ denotes the mean value of the input variable, $D(\cdot)$ denotes the covariance matrix of the input object, and

$$\mathbf{C}_w = \left(\frac{\partial^2 J}{\partial \mathbf{w} \partial \mathbf{w}^T} \right)^{-1} = (\mathbf{V} \mathbf{V}^T)^{-1}$$

Then the average expected square predictive error over \mathcal{X} can be wrote as

$$E(y_i - w^* x_i) = \sigma^2 + \sigma^2 \mathbf{Tr}(\mathbf{V} \mathbf{V}^T \mathbf{X})$$

Therefore, the optimization objective function is:

$$\arg\min_{\mathbf{V}, \mathbf{A}} \sum_{l=1}^{n} ||x_i - \mathbf{V} \alpha_i|| + \mu ||\alpha_i||$$

$$\mathbf{V} \subset \mathcal{X}, \mathbf{A} = [\alpha_1, \alpha_2, \ldots, \alpha_n]$$

After mapping the original input space into an non-linear kernel space, we iteratively project the top-$\lfloor n/2 \rfloor$ data with high confidence scores to a sparse space by sequential optimization, where the confidence score of the optimization is described as follows:

$$C(x_i) = \frac{||\mathbf{K}(l,:\mathbf{K}(:,l)||^2}{\mathbf{K}(l,l) + \mu}$$

$$\text{s.t. } \mathbf{K} \leftarrow \mathbf{K} - \frac{\mathbf{K}(l,:)\mathbf{K}(l,:)}{\mathbf{K}(l,l) + \mu}$$

where \mathbf{K} is the kernel matrix of \mathcal{X}, l represents the sequence position of x_i in \mathcal{X}, and l' represents the sequence position of the data with current highest confidence score in \mathcal{X}.

B. Center representation by EM

Interestingly, the above optimization is a global optimization scheme which satisfies:

$$\arg\min_{\mathbf{V}} \quad MMD(\mathbf{V}, \mathcal{X})$$

Figure 3: (a) This illustration is an example of noise bias of AL by inner volume, where the three green points are the representation hypothesis of the original version space, and the there rectangle areas are their local spaces. Intuitively, the noises will make the classifier hard to separate the two classes and then lead to a high error rate AL result. (b) This illustration shows the representation sampling result by inner and outer volumes, where the two circles represent the outer volume of the original version space, and the three green points are the representation hypothesis within the enclosing space of outer volume. By observation, we could find this learning way smooth the noises bias and can provide a better AL sampling guidance since it removes the outliers before finding representation samples.
Algorithm 2: Volume-based AL

1. **Input:**
 - \mathcal{X}: data set with size of $n \times m$.
 - K: number of queries.

2. **Initialize:**
 - K: the kernel matrix of \mathcal{X}.
 - Sparse matrix \mathcal{X}^t: ← \mathcal{X}^*.
 - Initialize t: t ← $t + 1$.

3. **Begin:**
 - Calculate the kernel matrix K of \mathcal{X}.
 - while $t \leq \lceil n/2 \rceil$ do
 - for each data point $x_i \in \mathcal{X}$ do
 - Calculate the confidence score of x_i:
 $$\mathcal{C}(x_i) = \frac{||K(l;:,k) - K(l,l)||^2}{K(l,l) + \mu}$$
 - Select the data point with the highest confidence score and add it to matrix \mathcal{X}^*.
 - Update K by $K ← K - \frac{K(l,l)}{K(l,l) + \mu}$.
 - end
 - Update t: t ← $t + 1$.
 - end

4. **End:**
 - Initialize $U = \{C_1, C_2, ..., C_K\}$ by passive sampling in \mathcal{X}^*.
 - while j do
 - Divide the local space to K parts by the model Θ:
 - $B = \{B_1, B_2, ..., B_K\}$.
 - Update $U' = \{\hat{u}_1, \hat{u}_2, ..., \hat{u}_K\}$.
 - Calculate the loss functions of U and U' by
 $$\mathcal{L}_j = \sum_{i=1}^{K} \ell(\hat{u}_i, B_i)$$
 $$\mathcal{L}_{j+1} = \sum_{i=1}^{K} \ell(\hat{u}_i, B_i).$$
 - if $\mathcal{L}_j - \mathcal{L}_{j+1} \rightarrow 0$ then
 - break
 - end
 - Update j: j ← $j + 1$.
 - end

5. **End:**
 - Query the labels of U and store them in matrix y.
 - Train the classification model h on (U, y).
 - Predict \mathcal{X} on h.

6. **Return** error rate on \mathcal{X}.

And it cannot guarantee a local optimization solution which satisfies:

$$\operatorname{argmin}_V MMD(V, \mathcal{X}) + \frac{1}{K} \sum_{i=1}^{K} MMD(v_i, S_i)$$

where S_i is the represented local space of S_i.

Considering the MMD metric learning, we observe that

Theorem 12. Center representation can meet the optimization requirement of Eq. (39).

Proof. Let

$$v_i = \sum_{x_i \in S_i} x_i$$

By this setting, we have the following results: $MMD(v_i, S_i) = 0, \forall i$, and $\frac{1}{K} \sum_{i=1}^{K} MMD(v_i, S_i) = 0$, then $MMD(V, \mathcal{X}) = 0$. Therefore, Eq. (45) will be zero and it is the lower bound.

In order to minimize Eq. (45), here we propose the objective function of our representative learning approach:

$$\theta^* = \arg\min_{\Theta, \ell} \left\{ \mathcal{L} = \sum_{i=1}^{K} \Theta(\mathcal{X}^*, \ell, k) \right\}$$

where Θ represent the metric model of local space division, ℓ is the local measurement of data points, and K is the querying number of AL.

C. Proposed VAL algorithm

Based on the above model definitions and analysis, we design an executable algorithm in this section, called VAL. To remove the non-promising hypotheses and have a global representation for original data space, Step 10 to 17 use the sequential optimization to reduce the number of data set into a half, in which the method favours to select the data with the highest confidence score in the current kernel matrix.

After obtaining the sparse space \mathcal{X}^*, Step 18 to 27 use the EM iteration to minimize the local representation loss. In the iteration process, we define the model Θ as $||\ldots||_2^2$ to classify the current data sets to K local areas, and we define the metric function of the loss function as $\ell = ||\ldots||_2^2$. After the convergence, we use the centers of final local segmentation areas for AL sampling. Finally, Step 28 queries the labels of representation set U, Step 29 trains a classifier on it, and then Step 30 to 31 return the prediction error rate on \mathcal{X}.

D. Time and space complexities

The general AL strategies, which use the prior labeled set to guide the unseen process of sampling, depends heavily on the size of initialization input. Then, the time cost of outputting the label space is decided by classifier and input set. For example, let T be the sample number of input space, and SVM be the classifier, then the time cost of one training will be $O(T^2)$ to $O(T^3)$. To select K samples, the time cost can be loosely described as $O(KT^2)$ to $O(KT^3)$. Moreover, the space cost of SVM is $O(T^2)$ to $O(T^3)$, and this consumption might be the minimum space cost of the AL. Therefore, the time and space complexities of the AL strategies which depend on training model and labeled set are “uncertain”.

However, our VAL algorithm is a target-independence approach which does not depend on the labeled set and classifiers, and its time and space complexities are “certain”. In its two main steps, the kernel matrix costs a time complexity of $O(n^2)$, and the EM model approximately costs a time complexity of $O(n^2)$. In space consumption, the space price is about $O(n^2)$.

VII. Experiments

Because the proposed VAL algorithm is based on structured version space theory, this section will report the comparison experiments on some structured data sets (classical clustering data sets) and observe its performance in an unstructured data set (letter image recognition data set letter). Related baseline approaches which compare VAL are introduced as follows:
Random: takes the idea of random sampling and can be adapted in any data setting, but not stable.

Margin: selects the data point with the closest distance to the current classification model from the pool in each iterative sampling. It is a classical AL algorithm based on SVM.

Hierarchical: judgments the cluster subtree whether can be labeled with the root node’s label based on a probability function. It is clustering-based AL, and it connects the unsupervised learning in AL.

TED: prefers the data points that are on the one side hard-to-predict and on the other side representative for the rest of the pool. It is Transductive Experimental Design work in statistics AL. Similar works can be seen in Optimum Experimental Design (OED), D, A, and E-optimal Design.

Re-active: selects the data points which have the biggest influence on current prediction model after querying. It maximizes the model differences to sample. Whatever kinds of classifiers could be trained in the relabelling learning.

In addition, error rate is used to evaluate the classification result in this paper and the lowest classification error rates of each algorithm are reported in Figure 6, where LIBSVM is the trained classifier. Before the experiments, we give two examples for our representation approach.

A. Examples of representation results

TED is a good representative learning approach for global optimization. Our VAL is based on global and local optimization. The difference between the two algorithms is whether the whole geometric structure of the data is represented and mapped. To get a good visual result of how they perform differently, Figure 4 shows two examples on two clustering data sets. As seen, TED loses the representative structure in classes with weak clustering features, but our algorithm has a better represent since it further considers the local optimization. Figure 5 also reports a group sampling process by finding the optimal representation of VAL. It will help us to understand the sampling process of our proposed AL approach.

B. Performance on structured data sets

Eight classical two-dimension clustering data sets are tested in this section. They are challenging clustering tasks with one or more characteristics of adjacent classes, a lot of noises, linear inseparable, multi-density, etc. To run the approaches which need the support of labeled data, annotating one data point from each class is our special data preprocessing work that aims to provide various label information. Otherwise, missing one or more kinds of labels will lead to a biased supervised learning. Therefore, avoiding the negative influence of label kinds in our data preprocessing method is necessary for optimizing Margin, Hierarchical, Re-active.

Figure 4: Representation structure of Pathbased and Aggregation data sets by TED and VAL. The green points are the representation data points, and the line represents the space structure. The observation shows our proposed VAL algorithm has a better space representation than that of TED since TED only considers the global representation, while VAL uses global and local optimizations for the representation.

Figure 5: An example of representation process of VAL, where K is the sampling number. We can observe that the representation results are very effective no matter how many sampling numbers we set since VAL optimizes the representation process globally and locally.
In the reported results of Figure 6(a)-(h), Random is stable but not prominent under a random sampling strategy through observing that its error rate curve is located in the middle position of the six curves. Margin is easy to be influenced by the noises located near the classification model with fuzzy labels according to the bad performance in this group of experiment. Hierarchical clustering provides other prior knowledge of class structure for the future probability model of active annotating. However, this approach depends on the clustering results, and the error rate will increase quickly if the precision rate of clustering is low. TED has a stable representative sampling strategy and shows low error rates in this group experiment. But the sensitivity of parameters setting is higher than others. Re-active observes the model parameter change when annotating the unlabeled data in positive or negative label and then selects the data which can maximize this
difference. While noises always misled their choice because they may change the training model seriously with a fuzzy class label. Therefore, it performs not well in the clustering data sets with a lot of noises. For VAL, it performs best in the seven clustering data sets, compared with others, since the representation space has a high effective representation of original space after removing all outliers.

C. Performance on unstructured data sets

This data set is to identify the 26 capital letters in the type of black-and-white rectangular pixel with the total number of 20,000 images that are converted into 20,000×16 numerical matrix and each element is scaled to fit into a range of integer values from 0 through 15. But it does not have clear cluster structures and we have used different unsupervised clustering approaches to test them. Before this group of experiments, we select 5 and 7 groups letters as binary classification, multi-class tasks, respectively. The curves of each baselines’ lowest classification error rate on this group of experiment have been drawn in Figure 6(i)-(l).

By observing the error rate curves of the seven different approaches in the two-classification experiments, their difference increases clearly in the high dimensional space, compared with the low dimensional experiments of previous section. In the drawn curves, Random and Margin still keep their characteristics, and their performance are similar with the last group of experiment. But Hierarchical performs badly since there are no clear cluster structures. Lack of the correct guidance of clustering results, its probability evaluation model is unstable and then leads to a wrong active annotating result. For TED, the error rate of it also begins to raise in this unstructured data space. But in the results of Re-active and VAL, their error rates decline rapidly in these noiseless data sets, but the advantage of the latter is more outstanding.

The change of the drawn curves in Figure 6(m)-(p) shows the classification results of different baselines in the multi-class setting, where our proposed VAL algorithm shows significant advantage since the local optimization still works in the unstructured data set. This group of experiment evaluates that our proposed VAL algorithm can reduce the error rate rapidly with low querying cost whatever in two or multi-classification problem.

VIII. Conclusion

Lack of enough label support motivated different types of AL sampling strategies to query more labels of unlabeled data to improve the training, such as iterative sampling by uncertainty evaluation and maximization of model hypothesis. However, available algorithms are in a supervised way which requires enough label information in terms of a task specific setting. To reduce the target-dependence of labeled set, it motivates us to consider which sampled data can maximize the classification hypothesis or distribution update in the version space after adding them to training set.

In this paper, we study the outer and inner volumes of version space, where the hypothesis set of outer volumes could maximize the hypothesis distance between current and updated classification hypothesis, and the hypothesis set of inner volume represents the learned representation structure of data distribution. While neither outer volume or inner volume can produce a highly representation to version space, we find the optimal representation of inner volume in the enclosing space of outer volume, and further proposed the VAL algorithm. Experimental results of the proposed algorithm have shown that it can reach the optimal prediction rapidly with a few number of queries and the decline rate of error rate is faster than the other compared approaches. In future work, we will further study the relationship of outer and inner volumes in the version space.

REFERENCES

[1] B. Settles, “Active learning,” Synthesis Lectures on Artificial Intelligence and Machine Learning, vol. 6, no. 1, pp. 1-114, 2012.
[2] Y. Li, T. Tsang, J. Kwok, and Z. Zhou, “Tighter and Convex Maximum Margin Clustering,” Proc. 12th Int’l Conf. Artificial Intelligence and Statistics, pp. 344-351, 2009.
[3] X. Xu, W. Li, D. Xu, and I. W. Tsang, “Co-labeling for multi-view weakly labeled learning,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 38, no. 6, pp. 1113–1125, 2016.
[4] P. Bachman, A. Sordoni, and A. Trischler, “Learning algorithms for active learning,” In ICM, pp. 301-310, 2017.
[5] S. Bai, X. Yang, G. Zha, D. Fang, and J. Huang, “Generalized knights tour on 3d chessboards,” Discrete Applied Mathematics, vol. 158, no. 16, pp. 1727-1731, 2010.
[6] C. Chang, and C. Lin, “Libsvm: a library for support vector machines,” ACM transactions on intelligent systems and technology (TIST), vol. 2, no. 3, pp. 27, 2011.
[7] N. Cuong, N. Ye, and W. Lee, “Robustness of bayesian pool-based active learning against prior misspecification,” In AAAI, pp. 1512-1518, 2016.
[8] Y. Guo, G. Ding, Y. Gao, and J. Wang, “Semi-supervised active learning with cross-class sample transfer,” In IJCAI, pp. 1526-1532, 2016.
[9] Y. Guo, G. Ding, Y. Gao, and J. Han, “Active learning with cross-class similarity transfer,” In AAAI, pp. 1338-1344, 2017.
[10] W. Hu, W. Hu, N. Xie, and S. Maybank, “Unsupervised active learning based on hierarchical graph-theoretic clustering,” IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), vol. 39, no. 5, pp. 1147-1161, 2009.
[11] T.M. Chan, “Approximating the Diameter, Width, Smallest Enclosing Cylinder, and Minimum-Width Annulus,” Int’l J. Computational Geometry and Applications, vol. 12, no. 1-2, pp. 67-85, 2002.
[12] X. Huang and H. Lin, “A novel uncertainty sampling algorithm for cost-sensitive multiclass active learning,” In ICDM, pp. 925-930, 2016.
[13] S. Huang, R. Jin, and Z. Zhou, “Active learning by querying informative and representative examples,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 10, no. 36, pp. 925-949, 2014.
[14] S. Huang, J. Chen, X. Mu, and Z. Zhou, “Cost-effective active learning from diverse labelers,” In IJCAI, pp. 1879-1885, 2017.
[15] C. Lin, M. Mauam, and D. Welsh, “Re-active learning: Active learning with relabeling,” In AAAI, pp. 1845-1852, 2016.
[16] A. McCallum and K. Nigamy, “Employing em and pool-based active learning for text classification,” In ICML, pp. 359-367, 1998.
[17] S. Mohamad, A. Bouchachia, and M. Sayed-Mouchaweh, “A bicriteria active learning algorithm for dynamic data streams,” IEEE transactions on neural networks and learning systems, vol. 2016.
[18] H. Nguyen and A. Smeuler, “Active learning using pre-clustering,” In ICML, pp. 79, 2004.
Guandong Xu is Associate Professor and Program Leader at School of Software and Advanced Analytics Institute, University of Technology Sydney and he received PhD degree in Computer Science from Victoria University, Australia. His research interests cover Data Science, Data Analytics, Recommender Systems, Web Mining, User Modelling, NLP, Social Network Analysis, and Social Media Mining. He has published three monographs in Springer and CRC press, and 180+ journal and conference papers including TOIS, TIST, TNNLS, TSC, TIFS, IEEE-IS, Inf. Sci., KAIS, WWWJ, KBS, Neurocomputing, ESWA, Inf. Retr., IJCAI, AAAI, WWW, ICDM, ICDE, CIKM. He is the assistant Editor-in-Chief of World Wide Web Journal and Software, World Wide Web Journal, Multimedia Tools and Applications, and Online Information Review.