Putative New Lineage of West Nile Virus, Spain

Ana Vázquez, María Paz Sánchez-Seco, Santiago Ruiz, Francisca Molero, Lourdes Hernández, Juana Moreno, Antonio Magallanes, Concepción Gómez Tejedor, and Antonio Tenorio

To ascertain the presence of West Nile virus (WNV), we sampled mosquitoes in 2006 in locations in southern Spain where humans had been infected. WNV genomic RNA was detected in 1 pool from unfed female *Culex pipiens* mosquitoes. Phylogenetic analysis demonstrated that this sequence cannot be assigned to previously described lineages of WNV.

West Nile virus (WNV) has been described in Africa, Europe, the Middle East, Asia, Australia, and, most recently, the Americas. Over the last few years, many reports about WNV have been published after the outbreaks in Romania, Morocco, Italy, Russia, and Israel, but especially with the introduction and spread of the virus in the Americas. Currently, the virus has a wide geographic distribution, and WNV infection is considered an emerging zoonosis (1).

Although only WNV lineage 1 is present in the Americas, ≥ 5 lineages of the virus seem to circulate in the Old World (2). In 2008, several countries in Europe reported WNV activity due to different lineages. WNV lineage 1 was isolated from horses and birds in northern Italy, and WNV infection was described in 6 persons (3). The Austrian veterinary authorities reported 2 outbreaks of WNV in wild birds, 1 in northern Austria, and 1 in the region of Vienna. The virus isolated from these birds, sparrow hawks, was WNV lineage 2 and was very homologous to 2 strains previously found in goshawks in Hungary in 2004 and 2005. These reports represented the emergence of a WNV lineage 2 strain outside Africa for the first time (4). Migratory birds that overwintered in central Africa may have recently introduced this exotic strain in the wetlands of different eastern European countries. Consequently, this neurotropic, exotic WNV strain may become a resident pathogen in Europe with public health consequences.

A new lineage of WNV (named Rabensburg virus), of as yet unknown human pathogenicity, was isolated from *Culex pipiens* mosquitoes in 1997 and 1999 on the Czech Republic–Austria border, only a few hundred kilometers from the region where WNV emerged in Hungary (5). The Rabensburg isolate 97–103, obtained from *Cx. pipiens* mosquitoes (1997) in Czech Republic (6), and LEIVKrnd88–190, isolated from *Dermacentor marginatus* ticks in a valley in the northwestern Caucasus Mountains in 1998 (7), have been proposed to be novel variants of WNV. These isolates are genetically different from viruses of lineage 1 and 2 and have been proposed as members of lineages 3 and 4, respectively. Moreover, 2 other related viruses show no clear relationships with WNV, the strain KUN MP502–66 from Malaysia, and Koutango (KOUV), an African virus, with poor statistical support for clustering with either of the WNVs, which suggests that they represent 2 single-isolate lineages (8).

Previous serologic surveys conducted with small rodents and humans in different areas of Spain have shown evidence of WNV circulation (9). Although no neurologic illness outbreaks have been documented in Spain, recent studies indicate that WNV is circulating in the southern part of the country, close to the areas of the recent foci in Portugal and Morocco. This part of Spain contains several wetlands, which have high densities of migratory birds and mosquitoes. WNV activity has been reported in this region on the basis of serologic surveys in birds, horses, and humans (10–12). Moreover, the first clinical case of WNV infection in Spain was reported in 2004 in a patient visiting southwestern Spain (13), and WNV lineage 1 was detected and further isolated in free-living and captive Spanish golden eagles in south-central Spain (14). Following up these results, we collected mosquito samples especially from areas from which positive serum samples had been obtained to look for WNV in its vector.

The Study

The area of study included 2 wetlands: Marismas del Odiel (tidal marshes) and Doñana (freshwater marshes), both located in southwestern Spain. Mosquitoes were captured in 2006 with U.S. Centers for Disease Control and Prevention light traps supplied with CO₂ and with gravid traps, which were used in the field during the late afternoon and retrieved the following morning. Mosquitoes were pooled by species, sex, collecting site, and date. The number of mosquitoes per pool ranged from 1 to 50. Mosquitoes/pools were homogenized in a range of 500–700 μL of minimal essential medium supplemented with 200 U/mL of antimicrobial drugs (penicillin/streptomycin) and 10% of fetal bovine serum and then were stored at −80°C until
A fragment of 1,813 nt from the nonstructural protein 5 (NS5) gene from this WNV genome (GenBank accession no. GU047875) was amplified by using 3 WNV-specific nested-PCRs designed in this study. The phylogenetic analysis resulted in a tree in which, as expected, this sequence fell under the branch of WNV, with a value of 99% certainty (Figure, panel A). A common evolutionary branch between the Spanish strain and lineage 4 was identified (Figure, panel B). A tree was also obtained to test if the positive pool was diluted 1:20 in the minimal essential medium, and 200 μl were injected onto C6/36 (Aedes albopictus cells), RK-13 (rabbit kidney cells), and Vero (African green monkey cells) monolayer cells grown at a constant temperature for each cell line (33°C, 37°C, and 37°C, respectively). Cell cultures were incubated under the same conditions for 7 days, and 3 blind passages were carried out. Signs of cytopathic effect were checked daily, and the culture supernatants were tested by...
reverse transcription–PCR. Neither cytopathic effect nor amplification was obtained. No virus was isolated from any of the 3 cell cultures.

Conclusions

The phylogenetic analysis performed on a 1,813-nt fragment of the NS5 gene clearly shows that the sequence recovered in Spain grouped within the branch of WNV with high values of certainty (100%). The tree topology shows a common evolutionary branch between the Spanish WNV genome (HU2925/06) and lineage 4, which clusters close to lineage 3. The lineages 3 and 4 were detected recently in Europe (1997 and 1998, respectively), and they have not been previously associated with natural disease in vertebrates. In addition, the phylogenetic analysis performed on 800 nt fragments of the NS5 gene indicated that the Spanish strain was not the same that KUN MP502–66 and KOUV, and that KUN MP502–66 seems to be a different lineage.

This report and the recent description of WNV lineage 1 in wild birds (14) demonstrate the circulation of both WNV lineages in Spain. This finding should lead to the analysis of serologic evidence of WNV infections in birds, horses, and humans in Spain and surrounding countries, where the highly pathogenic WNV strains sporadically cause clinical infections. An explanation for the high WNV seroprevalence levels found in birds, horses, and humans in the absence of neuropathologic disease in Spain could be that this new lineage infects birds and protects them from most pathogenic strains of WNV.

Acknowledgments

We are grateful to Gema Rojo, Rubén Villalba, Azucena Sánchez, Tomás Mayoral, and Montserrat Agüero for their help and technical support. We also thank Hervé Zeller for providing an aliquot of virus from Malaysia (isolate KUN MP502–66).

This work is part of the multidisciplinary network Enfermedades Viricas Transmitidas por Artrópodos y Roedores (funded by Instituto de Salud Carlos III [ISCHI] G03/059). It has been supported in part by the European Commission (contract 010284-2, Emerging Diseases in a Changing European Environment Project contribution EDEN0157), and grants FIS PI07/1308, Red de Investigación de Centros de Enfermedades Tropicales RD06/0021, and the agreement signed between the Institute of Health Carlos III and the Spanish Ministry of Health and Social Policy for the surveillance of imported viral hemorrhagic fevers.

Dr Vázquez is a postdoctoral researcher at the Spanish Institute of Health Carlos III. Her research interests include emerging arboviruses transmitted by mosquitoes, especially flaviviruses.

References

1. Hubálek Z, Halouzka J. West Nile fever—a reemerging mosquito-borne viral disease in Europe. Emerg Infect Dis. 1999;5:643–50. DOI: 10.3201/eid0505.990505
2. Bondre VP, Jadi RS, Mishra AC, Yergolkar PN, Arankalle VA. West Nile virus isolates from India: evidence for a distinct genetic lineage. J Gen Virol. 2007;88:875–84. DOI: 10.1099/vir.0.82403-0
3. Gobbi F, Napolitano G, Piovesan C, Russo F, Angebraen A, Rossana A, et al. Where is West Nile fever? Lessons learnt from recent human cases in northern Italy. Euro Surveill. 2009;14:pii:19143.
4. Bakonyi T, Ivancics E, Erdélyi K, Ursu K, Ferenczi E, Weissenböck H, et al. Lineage 1 and 2 strains of encephalitic West Nile virus, Central Europe. Emerg Infect Dis. 2006;12:618–23.
5. Bakonyi T, Hubálek Z, Rudolf I, Nowotny N. Novel flavivirus or new lineage of West Nile virus, central Europe. Emerg Infect Dis. 2005;11:225–31.
6. Hubálek Z, Halouzka J, Juricova Z, Sebesta O. First isolation of mosquito-borne West Nile virus in the Czech Republic. Acta Virol. 1998;42:119–20.
7. Lvvov DK, Butenko AM, Gromashovsky VL, Kovytnov AI, Philippov AG, Kinney R, et al. West Nile virus and other zoonotic viruses in Russia: examples of emerging–reemerging situations. Arch Virol Suppl. 2004;18:85–96.
8. Scherret JH, Poindger M, Mackenzie JS, Broom AK, Deubel V, Lipkin WI, et al. The relationships between West Nile and Kunjin viruses. Emerg Infect Dis. 2001;7:697–705. DOI: 10.3201/eid0704.010418
9. Filipe AR, de Andrade HR. Arboviruses in the Iberian Peninsula. Acta Virol. 1990;34:582–91.
10. Bernabeu-Wittel M, Ruiz-Pérez M, del Toro MD, Aznar J, Munain A, de Orf F, et al. West Nile virus past infections in the general population of southern Spain. Enferm Infecc Microbiol Clin. 2007;25:561–5. DOI: 10.1157/13111181

Table 2. Sequence differences between HU2925/06 and other strains representing previously described West Nile virus lineages or related flaviviruses*

Lineages	Nucleotide difference, %	Amino acid difference, %						
	HU2925/06	JEV	USUV					
1a	1b	2	3	4	5			
1b	11.1	4.8	8.8	7.6	5.6	8.3	17.8	16.5
2	20	21.4	5.5	6.1	6.7	7.7	18.5	17.6
3	21.6	22.2	20.8	–	6.8	7.8	18.1	18.1
4	21.8	22.2	22.2	22.6	–	9.5	19.6	19.1
5	19.6	20.2	21.3	22.3	23.4	23.4	18.4	17.1
HU2925/06	22.5	22.4	22.2	22.6	23.4	23.4	23.4	19.2
JEV	27.3	28.2	27.1	26.9	29.1	28.1	27.6	14.3
USUV	26.1	26.8	27.8	29.1	28.1	27.6	28.2	25

*Values of nucleotide and amino acid differences were calculated by p distance and multiplied by 100. JEV, Japanese encephalitis virus; USUV, Usutu virus.
11. Figuerola J, Jiménez-Clavero MA, Rojo G, Gómez-Tejedor C, Soriguer R. Prevalence of West Nile virus neutralizing antibodies in colonial aquatic birds in southern Spain. Avian Pathol. 2007;36:209–12. DOI: 10.1080/03079450701332329

12. Jiménez-Clavero MA, Gómez-Tejedor C, Rojo G, Soriguer R, Figuerola J. Seorsurvey of West Nile virus antibodies in equids and bovids in Spain. Vet Rec. 2007;161:212.

13. Kaptoul D, Viladrich PF, Domingo C, Niubó J, Martínez-Yélamos S, de Ory F, et al. West Nile virus in Spain: report of the first diagnosed case (in Spain) in a human with aseptic meningitis. Scand J Infect Dis. 2007;39:70–1. DOI: 10.1080/00365540600740553

14. Jiménez-Clavero MA, Sotelo E, Fernandez-Pinero J, Llorente F, Blanco JM, Rodriguez-Ramos J, et al. West Nile virus in golden eagles, Spain, 2007. Emerg Infect Dis. 2008;14:1489–91. DOI: 10.3201/eid1409.080190

15. Sánchez-Seco MP, Rosario D, Domingo C, Hernandez L, Valdes K, Guzmán MG, et al. Generic RT-nested-PCR for detection of flaviviruses using degenerated primers and internal control followed by sequencing for specific identification. J Virol Methods. 2005;126:101–9. DOI: 10.1016/j.jviromet.2005.01.025

Address for correspondence: Ana Vázquez, González Laboratory of Arboviruses and Imported Viral Diseases, National Centre for Microbiology, Institute of Health Carlos III, Madrid, Spain; email: a.vazquez@isciii.es

Use of trade names is for identification only and does not imply endorsement by the Public Health Service or by the U.S. Department of Health and Human Services.