Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Beneficial non-specific effects of live vaccines against COVID-19 and other unrelated infections

Peter Aaby, Mihai G Netea, Christine S Benn

Live attenuated vaccines could have beneficial, non-specific effects of protecting against vaccine-unrelated infections, such as BCG protecting against respiratory infection. During the COVID-19 pandemic, testing of these effects against COVID-19 was of interest to the pandemic control programme. Non-specific effects occur due to the broad effects of specific live attenuated vaccines on the host immune system, relying on heterologous lymphocyte responses and induction of trained immunity. Knowledge of non-specific effects has been developed in randomised controlled trials and observational studies with children, but examining of whether the same principles apply to adults and older adults was of interest to researchers during the pandemic. In this Personal View, we aim to define a framework for the analysis of non-specific effects of live attenuated vaccines against vaccine-unrelated infections with pandemic potential using several important concepts. First, study endpoints should prioritise severity of infection and overall patient health rather than incidence of infection only (eg, although several trials found no protection of the BCG vaccine against COVID-19 infection, it is associated with lower overall mortality than placebo). Second, revaccination of an individual with the same live attenuated vaccine could be the most effective strategy against vaccine-unrelated infections. Third, coadministration of several live attenuated vaccines might enhance beneficial non-specific effects. Fourth, the sequence of vaccine administration matters; the live attenuated vaccine should be the last vaccine administered before exposure to the pandemic infection and non-live vaccines should not be administered afterwards. Fifth, live attenuated vaccines could modify the immune response to specific COVID-19 vaccines. Finally, non-specific effects of live attenuated vaccines should always be analysed with subgroup analysis by sex of individuals receiving the vaccines.

Introduction

Live attenuated vaccines have been linked to beneficial non-specific effects, such as reductions in mortality that are not explained by preventing the vaccine-targeted disease.1,4 Randomised clinical trials (RCTs) have repurposed measles vaccines, the BCG vaccine against tuberculosis, and oral polio vaccine (OPV) to reduce child mortality by providing protection against vaccine-unrelated infections.15,16 Immunological studies of BCG have shown that two main mechanisms could mediate the non-specific effects of live attenuated vaccines. First, heterologous T-cell immunity can induce responses against the non-target pathogens through molecular mimicry (eg, there is 80% similarity between SARS-CoV-2 open reading frame 7a protein epitope with the human poliovirus type 3 Sabin strain epitope).7 Second, many live attenuated vaccines can induce long-term functional reprogramming of innate immune cells due to epigenetic and metabolic rewiring of immune cell progenitors, leading to enhanced antimicrobial function known as trained innate immunity.8,9 Induction of trained immunity is also associated with decreased systemic inflammation,10 and induction of tolerogenic effects could be responsible for some of the protection reported against sepsis and COVID-19.11

Beneficial non-specific effects that reduce infections with unrelated pathogens are precisely what could help to control infections that have the potential to become pandemics until novel specific vaccines are built, tested, and distributed. Although non-specific effects will not provide full protection from the pandemic infection, they might reduce susceptibility, limit transmission, and reduce severity.13 These effects could slow pandemics and minimise damage to health and society, thus increasing the time in which disease-specific treatments and vaccines can be developed. Therefore, many research groups have studied potential effects of BCG against COVID-19 early in the COVID-19 pandemic.14,15 Importantly, more than 20 RCTs were initiated; most tested BCG,16,17 but RCTs of OPV and vaccines for measles, mumps, and rubella (MMR) were also initiated.18

COVID-19 vaccines were quickly developed after the COVID-19 pandemic began, so the urgency to use live attenuated vaccines against COVID-19 mostly disappeared. However, even if booster vaccines of COVID-19 provide satisfactory long-term protection, live attenuated vaccines should continue to be studied as a potential tool for future pandemics. New infections will continue to be identified in the future, and some will develop into pandemics. It might not be possible to develop vaccines for all emerging pathogenic threats at the same speed as was done with COVID-19 vaccines and it would be desirable to have some temporary vaccines that could provide at least partial protection in the beginning of a pandemic.

There are fundamental differences between testing vaccines against a specific disease and testing their potential non-specific effects. In this Personal View, we present a framework for the optimal assessment of the non-specific effects of live attenuated vaccines against COVID-19 and other vaccine-unrelated infections. We summarise important principles for non-specific effects to help define which factors might modify them, as well as how to test them in more depth.
Non-specific effects of vaccines are affected by factors affecting the general immune system.

Context-dependence of non-specific effects

It is simple to test whether a vaccine induces protective immune responses or prevents the target infection in real-life settings if vaccine efficacy can be measured. Testing a specific vaccine is thus context-independent (figure).

Non-specific effects of vaccines were discovered in RCTs and observational studies of paediatric vaccinations. Live attenuated vaccines reduced mortality more than was explained by protection against the vaccine-targeted disease; thus, live attenuated vaccines were known to confer protection against unrelated pathogens. Mechanisms that could explain this protection include trained innate immunity and heterologous T-cell immunity. Trained immunity means increased responsiveness towards unrelated pathogens generated by epigenetic reprogramming of innate immune cells. In addition, vaccines might introduce heterologous T-cell responses that generate increased production of host defence factors, such as interferon γ in response to cytokine release by innate immune cells. The ability of live attenuated vaccines to induce stronger non-specific effects than non-live vaccines might be because live attenuated vaccines mimic an infection in a more natural way that a non-live vaccine. Many live attenuated vaccines are also their own adjuvants that more broadly stimulate innate and adaptive immune cells, whereas many currently used adjuvants (eg, alum) have very restricted activity on stimulating B-cell responses. Some adjuvanted non-live vaccines, such as the influenza vaccine or the varicella-zoster vaccine, also display heterologous effects.

As non-specific effects occur due to modulations of the immune system, their magnitude can be changed by other interventions or contextual factors that affect the immune system. Non-specific effects are context-dependent (figure). For example, in RCTs the relative mortality of the live attenuated vaccines and control groups can change completely due to other interventions (appendix pp 2–3). Epidemiological studies gradually identified interactions that changed the overall non-specific effects of measles vaccines in different contexts (appendix pp 5, 6). In the past 2 years, an understanding has emerged of some important principles of non-specific effects and how other interventions or contextual factors might modify them.

Vaccine studies typically focus on outcomes, such as antibody titres or clinical protection against a specific infection. By contrast, the non-specific effects of live attenuated vaccines have been shown to reduce general mortality and protect against infections other than those caused by the vaccine pathogen. These non-specific effects are not fully protective against vaccine-unrelated infections and might depend on other factors that affect health. Therefore, studies of non-specific effects that evaluate them in the typical context-independent way might incorrectly dismiss an effect. However, non-specific effects can provide important benefits through partial protection against infections for which effective vaccines and treatments might not be available. Thus, it is essential that studies of live attenuated vaccines against COVID-19 assess their results in relation to existing knowledge about the context-dependence of outcomes.

Key principles of non-specific effects and implications for ongoing studies

Live attenuated vaccines have beneficial non-specific effects

Beneficial non-specific effects have been seen in humans for BCG, measles vaccines, MMR, OPV, and smallpox vaccines (appendix pp 2–3). By contrast, six non-live vaccines, although protecting against the target infection, are associated with increased mortality in female individuals (possibly linked to induction of innate immune tolerance). The duration of non-specific effects is poorly defined as they can change when another vaccine is administered (eg, the birth dose of BCG only has beneficial non-specific effects until diphtheria-tetanus-pertussis vaccine [DTP] is administered at around age 6 weeks). Measles vaccines could have beneficial non-specific effects for up to 2 years if non-live vaccines are not administered afterwards.

BCG, OPV, and measles vaccines with beneficial non-specific effects in children are currently being assessed to establish whether they have beneficial effects against pandemic infections in adults. Studies of adults or individuals older than 65 years should analyse potential timing effects to establish a better understanding of how long non-specific effects could last and when additional doses of vaccines might be needed. Other live attenuated vaccines could also be tested for beneficial non-specific effects, such as yellow fever, rotavirus, varicella, live
It could be useful to test several doses of whichever live attenuated vaccine is being used to protect against COVID-19. We predict that when one dose of BCG is tested against COVID-19, it will work better among people with no previous BCG vaccination.39 With the potential importance of revaccinations, BCG scars should be registered in adult studies so whether a vaccine is a primary or a booster dose of BCG can be assessed.

To enhance protection against future pandemics, we might benefit from testing multidose schedules with BCG, OPV, MMR, or other live attenuated vaccines (table 2) and examining whether BCG in childhood and a current BCG has the same effect as two current doses of BCG. Similar studies should be done for MMR and OPV.

Revaccination with live attenuated vaccines might enhance beneficial non-specific effects

The first dose of a live attenuated vaccine is usually protective against death from the target infection and additional doses should not further reduce mortality. However, beneficial boosting effects on overall mortality have been found for all live attenuated vaccines (ie, BCG, vaccinia vaccine, measles vaccine, MMR, and OPV; table 1).45 For example, additional doses of campaign OPV in an individual reduced child mortality by 14% (8–19%) in Guinea-Bissau,33,37 and BCG treatment for bladder cancer had better effects in individuals who had previously been vaccinated with BCG than in individuals with no previous BCG vaccination.39

Some observational studies suggest that the non-live vaccines against influenza and herpes zoster could have non-specific effects against COVID-19.24,27,28 Due to possible bias and confounding in these observational studies, RCTs are needed.

Maternal priming might enhance non-specific effects of subsequent BCG and measles vaccinations in offspring

The benefits of BCG or measles vaccines in infancy are increased if the mother has a BCG scar or the offspring has maternal measles antibodies at the time of measles vaccination.33,34,41 Therefore, maternal priming has a

Table 1: Studies of revaccination with live attenuated vaccines against overall mortality or severe morbidity

Vaccine	Main outcome	Design	Age interval	Percentage of deaths to person-years of observation (n/N)	Mortality or morbidity RR* (95% CI)
BCG					
Alger (1935–52)29	Oral BCG2	Mortality	1 year to 2 years	5.9% BCG2 (1721/29 310); 7.1% no BCG (1919/27 233)	0.83 (0.78–0.89)
Alger (1935–52)29	Oral BCG3	Mortality	3 years to 4 years	1.0% BCG3 (243/25 444); 1.8% no BCG (414/23 034)	0.53 (0.45–0.62)
Guinea-Bissau (2002–06)30	Intradermal BCG	Mortality	19 months to 5 years	0.4% BCG2 (5/1393); 1.0% no BCG (14/1406)	0.36 (0.13–0.99)
Measles vaccine					
Guinea-Bissau (1980–82)31	Measles vaccine	Mortality	9 months to 60 months	Not provided	0.41 (0.19–0.75)
Guinea-Bissau (1992–94)32	Measles vaccine	Mortality	9 months to 18 months	0% MV2 (0/72 4) vs 2.8% MV1 (2/70 3)	0 (0–3.95)
Guinea-Bissau (2003–09)33	Measles vaccine	Mortality	9 months to 19 months	1.1% MV2 (8/713 9) vs 2.9% MV1 (39/1370 5)	0.39 (0.18–0.83)
Guinea-Bissau (2016–19)34	Measles vaccine	Severe morbidity (mortality and admissions to hospital)	18 months to 48 months	2.6% MV2 (18/690); 3.6% control individuals (25/690)	0.72 (0.38–1.38)
OPV					
Guinea-Bissau (2002–14)35	OPV	Mortality after OPV campaign vs mortality before OPV campaign	1 day to 3 years	OPV-only campaigns: effect of each additional dose of OPV was measured	0.86 (0.81–0.92)
Bangladesh (2004–19)36	OPV	Mortality after OPV campaign vs mortality before OPV campaign	1 day to 3 years	OPV-only campaigns: effect of each additional dose of OPV was measured	0.94 (0.87–1.02)

BGCG2=second dose of BCG. BCG3=third dose of BCG. DTP=diphtheria-tetanus-pertussis vaccine. DTP3=third dose of diphtheria-tetanus-pertussis vaccine. MV1=first dose of measles vaccine. MV2=second dose of measles vaccine. OPV=oral polio vaccine. RCT=randomised clinical trial. RR=risk ratio. *Morbidity risk ratio or mortality risk ratio as indicated in the main outcome column.
boosting effect for the offspring. In Denmark, BCG vaccine administered at birth had no beneficial effect if the mother had not been BCG vaccinated, whereas BCG administered at birth was associated with 35% (range 6–55) fewer infectious-disease hospital admissions at ages 0–14 months if the mother was BCG vaccinated. Paternal priming could also enhance non-specific effects of BCG vaccination of the offspring. Therefore, if infants are severely affected by new infections, maternal priming with BCG or measles vaccine and subsequent early offspring vaccination with these live attenuated vaccines could increase the resistance of children to a new pandemic infection.

Coadministration of live attenuated vaccines might enhance beneficial non-specific effects

Two RCTs have tested coadministration of live attenuated vaccines. One tested BCG and OPV versus BCG only; BCG and OPV was associated with a 32% (range 0–55) reduction in infant mortality until individuals received campaign OPV. In the other, coadministration of OPV and measles vaccine reduced diarrhoea morbidity compared with receiving only measles vaccine. Different live attenuated vaccines probably affect the immune system in different ways.

Although data are scarce, it could be important to examine whether coadministration of multiple live attenuated vaccines will enhance protection against infections compared with just one live attenuated vaccine.

Sequence of vaccinations

Epidemiological studies of DTP, inactivated polio vaccine, and hepatitis B vaccine have shown that non-live vaccines administered after live attenuated vaccines reduce the beneficial non-specific effects of the live attenuated vaccines. For example, DTP administered simultaneously with live attenuated vaccines will enhance protection against infections compared with just one live attenuated vaccine.
after measles vaccine is associated with double the mortality than measles vaccine administered after DTP (appendix pp 2–3). After the last vaccine in a sequence of vaccinations has the strongest non-specific effects, administering a live vaccine last is associated with the highest child survival. Most vaccines for older adults are non-live, such as the influenza vaccine, pneumococcal conjugate vaccine, or the shingles vaccine. To optimise the use of live attenuated vaccines against pandemic threats, they should be administered after non-live vaccines recommended in this age group (eg, influenza vaccine). Furthermore, when assessing live attenuated vaccines in RCTs, for the most accurate assessment of the potential of the live attenuated vaccine for future pandemic control, follow-up for the main outcome should continue only until a non-live vaccine is administered to an individual (table 2).

Vaccine combinations

Combining the administration of live attenuated vaccines with non-live vaccines could reduce morbidity and mortality compared with only having the non-live vaccine as the most recent vaccination. This principle is shown in BCG coadministered with DTP, which is associated with 40–50% lower child mortality than the WHO-recommended sequence of DTP administered after BCG (appendix p 7).

In future pandemics, whether coadministration of non-live vaccines and BCG (or another live attenuated vaccine) provides stronger non-specific effects for overall mortality than administering the live attenuated vaccine before the non-live vaccines should be assessed.

Live attenuated vaccines might modify the response to other vaccines

Live attenuated vaccines might enhance the immunological response to unrelated vaccines administered concurrently, shortly after, or shortly before them (eg, BCG enhanced responses to concurrent hepatitis B vaccine and OPV and previous BCG increased the functional antibody response to influenza vaccination). By contrast, concurrent OPV and BCG versus BCG only was associated with fewer positive purified protein derivative tests and reduced in-vitro cytokine responses to purified protein derivative stimulation.

For vaccines with short-lived immune responses or for individuals with immunosenescence, coadministration with a live attenuated vaccine might possibly enhance the duration of infection protection. For example, if BCG enhances the immune response to COVID-19 vaccines as it does for the influenza vaccine, the need for booster doses could be reduced. In RCTs testing BCG against COVID-19, BCG was administered before specific COVID-19 vaccines, so the understanding of adjuvant effects of BCG could be increased. One randomised clinical trial from Mexico suggests that BCG might boost the immune response to COVID-19 vaccination and that individuals infected with SARS-CoV-2 had better anti-COVID-19 responses when vaccinated with BCG than individuals not administered a BCG vaccination.

There are also biological and environmental factors that might modify how live attenuated vaccines train the immune system.

Sex and age might influence the non-specific effects of live attenuated vaccines

Vaccination programmes usually prescribe the same vaccination policy for both sexes. However, numerous studies have shown that non-specific effects are often sex differential. For example, BCG and measles vaccines have stronger beneficial non-specific effects for female individuals, whereas non-live vaccines are associated with higher mortality in female individuals than in male individuals.

A null result could conceal a beneficial effect for one sex and a negative effect for the other (eg, MMR had a protective effect against COVID-19 for men but not for women in a 2021 Swedish study). The effects might be different because COVID-19 has sex-differential effects, or because the vaccines have different non-specific effects for the two sexes. Hence, both specific effects and non-specific effects by sex should be analysed with subgroup analysis and reported in studies of pandemic interventions.

Biological age might also influence the non-specific effects, although it has been studied less than effects by sex. Administration of BCG, OPV, and measles vaccines at a young age increases the non-specific effects for child survival. This increase might happen because the effects of parental priming are strengthened if the live attenuated vaccine is administered to offspring at a young age. However, other age-related changes might occur in the immune system and affect the immune response to live attenuated vaccines.

Type of infection prevented

All five live attenuated vaccines have the strongest effect on respiratory infections, and BCG has a strong effect on sepsis. There has been little research into disease-differential effects of different live attenuated vaccines. Therefore, if new infections are not primarily respiratory or septic, the effect of the use of live attenuated vaccines might be restricted. The method of measurement of non-specific effects of live attenuated vaccines is also important.

Incidence, severity, and overall health

Ongoing RCTs are testing whether live attenuated vaccines reduce the incidence of COVID-19. However, the non-specific effects of live attenuated vaccines might have little effect on the risk of infection but change the severity of infection. For example, RCTs of BCG administered to newborn babies found little effect on hospital admissions for sepsis, but the case fatality was reduced by 42% (95% CI 6–65%). One RCT
assessing the effects of two doses of MMR in the same individual found no effect on risk of COVID-19 infection measured by a PCR test but found major reductions in severity of infection in MMR-vaccinated health-care workers.63

An emphasis on severity of infection as an outcome might have an increased chance to detect non-specific effects. However, it might be even more important to measure general health outcomes like all-cause hospitalisations and death than to measure incidence or severity of infection as live attenuated vaccines might have non-specific effects that affect infections other than the specific pandemic infection (table 3). For example, several RCTs among health-care workers or older adults have measured the effect of BCG versus placebo for respiratory infections or COVID-19 infections. The effect on COVID-19 infection has mostly been disappointing, but BCG apparently reduces all-cause mortality (table 3).

Discussion and conclusions

As results of RCTs of live attenuated vaccines against COVID-19 are published in the future, there will be unique opportunities to define the contexts in which non-specific effects are useful and how they are affected by context-dependent factors. It took 35 years to develop the concept of non-specific effects and the important principles for paediatric vaccines.1,18 The complexity of beneficial non-specific effects of live attenuated vaccines has been comprehensively shown as RCTs of BCG and measles vaccines have reported beneficial effects on non-tuberculosis or non-measles mortality. However, subsequent RCTs did not corroborate these findings.61,66 The factors that explain these opposite effects are possible to identify, typically because of other interventions that affect mortality in both vaccinated children and children who are not vaccinated (appendix pp 2–3, 7).

The first trials of live attenuated vaccines against COVID-19 mostly tested BCG against SARS-CoV-2, and reasons other than immunosenescence might explain why these RCTs were non-conclusive or showed null-effects. BCG might influence severity rather than incidence of infection.13 BCG might also need a booster response, so an effect might not be seen in populations in which few people have previously been administered with BCG. Furthermore, different BCG strains might have different non-specific effects.48 Non-live COVID-19, influenza, or pneumococcal vaccines might interact with BCG if administered after BCG, so no beneficial effect of BCG is seen.

Null-effects of BCG against COVID-19 have been reported from the Netherlands and South Africa (table 3). By contrast, a Greek RCT showed protective effects of BCG in older adults.63 The lack of effect in some RCTs could be related to a lack of previous BCG vaccination and the rapid implementation of COVID-19 vaccines. Importantly, all RCTs suggested a beneficial effect of BCG on overall survival (table 3).

Observational studies have supported the idea that revaccinations could be important. In the United Arab Emirates, BCG revaccination in the same individual had a strong protective effect against COVID-19.19 In Türkiye, severity of COVID-19 infection was related to number of BCG scars.70 One clinical study of patients with bladder cancer in Chile reported that numerous BCG vaccinations were associated with reduced risk of severe COVID-19,71 and patients with bladder cancer in Iran who had received BCG therapy within the last year reported less frequent and milder COVID-19 infection than those who had not

Table 3: RCTs in different countries of BCG versus placebo against COVID-19 or severe morbidity: the effect on mortality

Population; length of follow-up	Age groups	Effect on main outcome	Mortality (deaths [n]/total [N])	Mortality RR (95% CI)		
Greece63	BCG vs placebo at hospital discharge; 12 months	Mean age: 80 years	Increased time to first infection after discharge	10/72	14/78	0.77 (0.37–1.63)
Greece64	BCG vs placebo at hospital discharge; 6 months	≥50 years	68% (range 21–87) reduction in COVID-19 clinical and microbiological diagnoses	0/148	3/153	0 (undefined)
Netherlands65	BCG vs placebo in older adults with comorbidity; 12 months	≥60 years	No effect on COVID-19 infection	13/3058	18/3054	0.72 (0.35–1.47)
Netherlands67	BCG vs placebo in older adults; 12 months	≥60 years	No effect on respiratory tract infections, including COVID-19 infection	2/1008	3/1006	0.67 (0.11–3.97)
South Africa61	BCG vs placebo in health-care workers; 12 months	Median age: 39 years	Did not protect against COVID-19 infection or hospitalisation	0/500	4/500	0 (undefined)
Combined analysis	NA	NA	NA	NA	NA	0.61 (0.38–0.99)

NA=not available. RCT=randomised clinical trial. RR=risk ratio.
received BCG therapy within the last year. The same effects are seen for other live attenuated vaccines; risk or severity of COVID-19 infection was reduced by MMR revaccination. Furthermore, OPV revaccination of adults has been reported to have beneficial effects against COVID-19 infection in Russia.

Knowledge of conditions that enhance or reduce beneficial non-specific effects of live attenuated vaccines should be obtained. The important principles are that: study design should prioritise severity of infection and overall health rather than incidence of infection; revaccination might be the most effective strategy against vaccine-unrelated infections; coadministration of several live attenuated vaccines might enhance the overall beneficial non-specific effects; live attenuated vaccines should be the last vaccine administered during the observation period; live attenuated vaccines might modify the response to specific COVID-19 vaccines; and results of the use of live attenuated vaccines should always be reported by sex (table 2).

Although the current focus of live attenuated vaccine research is the COVID-19 pandemic, the non-specific effects of live attenuated vaccines could be used for other important infections like influenza in older adults or malaria in Africa. Studies of whether live attenuated vaccines reduce incidence or severity of influenza and associated mortality would be particularly important for future pandemic preparedness. Use of live attenuated vaccines against common infections would increase the knowledge of how much control can be obtained with the non-specific effects of different live attenuated vaccines.

Emphasising non-specific effects in disease control implies that research should focus on what produces a strong resilient immune system rather than focusing on vaccines against specific infections. From this perspective, health is defined as a well trained immune system and not as the absence of all infections. Studies of non-specific effects have shown that presence of BCG scars, compared with no BCG scars, among infants vaccinated with BCG is associated with a 40% reduction in child mortality. Similarly, smallpox vaccination scars were associated with a 40–46% reduction in overall adult mortality, and an increased number of vaccinia scars led to strong beneficial effects. By detecting these markers of a strong immune system, we can improve our knowledge of the interventions that will strengthen the general capacity of the immune system to fight pandemic infections.

Having multiple lockdowns during several years while waiting for effective and safe specific vaccines to be developed should not be the only strategy to fight the next pandemic. Increased pandemic preparedness requires that we systematically explore the potential beneficial non-specific effects of live attenuated vaccines, establish how they strengthen the general capacity of the immune system, and define the contexts in which they are most effective.

Contributors
All authors developed the idea and wrote the paper.

Declaration of interests
We declare no competing interests.

Acknowledgments
Stanley Plotkin kindly provided extensive comments on a previous version of this paper.

References
1. Benn CS, Fisker AB, Rieckmann A, Sørup S, Aaby P. Vaccinology: time to change the paradigm? J Infect Dis 2020; 20: e274–83.
2. Aaby P, Martins CL, Garly ML, et al. Non-specific effects of standard measles vaccine at 4–5 and 9 months of age on childhood mortality: randomised controlled trial. BMJ 2010; 341: c6495.
3. Lund N, Andersen A, Hansen AS, et al. The effect of oral polio vaccine at birth on infant mortality: a randomized trial. Clin Infect Dis 2015; 61: 1504–11.
4. Aaby P, Roth A, Ravn H, et al. Randomized trial of BCG vaccination at birth to low-birth-weight children: beneficial nonspecific effects in the neonatal period? J Infect Dis 2011; 204: 455–2.
5. Biering-Sørensen S, Aaby P, Lund N, et al. Early BCG-Denmark and neonatal mortality among infants weighing <2500 g: a randomized controlled trial. Clin Infect Dis 2017; 65: 1183–90.
6. Prentice S, Nunnally B, Webb EL, et al. BCG-induced non-specific effects on heterologous infectious disease in Ugandan neonates: an investigator-blind randomised controlled trial. Lancet Infect Dis 2021; 21: 993–1003.
7. Haddad-Boubaker S, Oltmann H, Tousat R, et al. In silico comparative study of SARS-CoV-2 proteins and antigenic proteins in BCG, OPV, MMR and other vaccines: evidence of a possible putative protective effect. BMC Bioinformatics 2021; 22: 163.
8. Netea MG, Joosten LA, Latz E, et al. Trained immunity: a program of innate immune memory in health and disease. Science 2016; 352: aaf1098.
9. Arts RJW, Moorlag SJCFM, Novakovic B, et al. BCG vaccination protects against experimental viral infection in humans through the induction of cytokines associated with trained immunity. Cell Host Microbe 2018; 23: 89–100.
10. Blok BA, de Bree LCJ, Divatopoulos DA, et al. Interacting, nonspecific, immunological effects of Bacille Calmette-Guérin and tetanus-diphtheria-pertussis inactivated polio vaccinations: an explorative, randomized trial. Clin Infect Dis 2020; 70: 455–63.
11. Koeken VA, de Bree LCJ, Mourits VP, et al. BCG vaccination in humans inhibits systemic inflammation in a sex-dependent manner. J Clin Invest 2020; 130: 5591–602.
12. Fidel PL, Noverr MC. Could an unrelated live attenuated vaccine serve as a preventive measure to dampen septic inflammation associated with COVID-19 infection? Mbio 2020; 11: e00900–20.
13. Schultz-Buchholzer F, Biering-Sørensen S, Lund N, et al. Early BCG vaccination, hospitalizations, and hospital deaths: analysis of a secondary outcome in 3 randomized trials from Guinea-Bissau. J Infect Dis 2019; 219: 624–32.
14. Moorlag SJCFM, van Deuren RC, van Werkhoven CH, et al. Safety and COVID-19 symptoms in individuals recently vaccinated with BCG: a retrospective cohort study. Cell Rep Med 2020; 1: 100071.
15. Rivas MN, Ehinger JE, Wu M, et al. BCG vaccination history associated with decreased SARS-CoV-2 seroprevalence across a diverse cohort of health care workers. J Clin Invest 2021; 131: e145157.
16. Chumakov K, Benn CS, Aaby P, Kotttít G, Gallo R. Can existing live vaccines prevent COVID-19? Science 2020; 368: 1187–88.
17. Szigiét R, Kellermayer R. Natural unblinding of BCG vaccination trials. Vaccine 2021; 39: 2017–19.
18. Aaby P, Benn CS. Developing the concept of beneficial non-specific effect of live vaccines with epidemiological studies. Clin Microbiol Infect 2019; 25: 1459–67.
19. Aaby P, Samb B, Simondon F, Seck AM, Knudsen K, Whittle H. Non-specific beneficial effect of measles immunization: analysis of mortality studies from developing countries. BMJ 1995; 311: 481–85.
20. Martins CL, Benn CS, Andersen A, et al. A randomized trial of a standard dose of Edmonton-Zagreb measles vaccine given at 4–5 months of age: effect on total hospital admissions. J Infect Dis 2014; 209: 1731–38.
Selin LK, Varga SM, Wong IC, Welsh RM. Protective heterologous antiviral immunity and enhanced immunopathogenesis mediated by memory T cell populations. J Exp Med 1998; 188: 1703–15.

Benn CS, Netea MG, Selin LK, Aaby P. A small jab – a big effect: nonspecific immunomodulation by vaccines. Trends Immunol 2013; 34: 431–39.

Wimmers F, Donato M, Kuo A, et al. The single-cell epigenomic and transcriptional landscape of immunity to influenza vaccination. Cell 2021; 184: 3915–35.

Bratuvoor KJ, Ackerson B, Sy LS, et al. Recombinant adjuvanted zoster vaccine and reduced risk of coronavirus disease 2019 diagnosis and hospitalization in older adults. J Infect Dis 2022; 225: 1915–22.

Aaby P, Jensen H, Samb B, et al. Differences in female male mortality after high-titre measles vaccine and association with subsequent vaccination with diphtheria-tetanus-pertussis and inactivated poliovirus: reanalysis of west African studies. Lancet 2003; 361: 2381–88.

Cauchi S, Locht C. Non-specific effects of live attenuated pertussis vaccine against heterologous infectious and inflammatory diseases. Front Immunol 2018; 9: 287.

Sardinha DM, Lohota DDC, Ferreira AL, Lima KVB, Guimarães R, Lima LNCG. Analysis of 472,688 severe cases of COVID-19 in Brazil showed lower mortality in those vaccinated against influenza. World J Vaccines 2021; 11: 28–32.

Galan A, Ashur C, Washer L, Eagle KA, Hoffmann Bowman MA. Impact of the influenza vaccine on COVID-19 infection rates and severity. Am J Infect Control 2021; 49: 694–700.

Sergent E, Catalanu A, Ducas-Rougébrief H. Prémunrition antituberculeuse par le BCG, campagne passeivue depuis 1935 sur 21 244 nouveau-nés vaccins et 20 063 non vaccins. Arch Inst Pasteur Alger 1954; 32: 1–8.

Roth AE, Benn CS, Ravn H, et al. Effect of revaccination with BCG in early childhood on mortality: randomised trial in Guinea-Bissau. BMJ 2015; 340: e0718.

Aaby P, Andersen M, Sodemann M, Jakobsen M, Gomes J, Fernandes M. Reduced childhood mortality after standard measles vaccination at 4–8 months compared with 9–11 months of age. BMJ 1993; 307: 1308–11.

Benn CS, Aaby P, Balé C, et al. Randomised trial of effect of vitamin A supplementation on antibody response to measles vaccine in Guinea-Bissau, west Africa. Lancet 1997; 350: 101–05.

Benn CS, Fisker AB, Whittle HC, Aaby P. Revaccination with live BCG, DTP, and measles containing vaccines with childhood mortality: systematic review. BMJ 2016; 355: i5704.

Hanifi SMA, Fisker AB, Wolga P, et al. Diphtheria-tetanus-pertussis (DTP) vaccine is associated with increased female male mortality. Studies of DTP administered before and after measles vaccine. J Infect Dis 2021; 223: 1984–91.

Shann F. A live-vaccine last schedule: saving an extra million lives a year? Clin Infect Dis 2021; 72: 1429–36.

Ota MOC, Vekemans J, Schlegel SE, et al. Influence of Mycobacterium bovis bacillus Calmette-Guérin on antibody and cytokine responses to human neonatal vaccination. J Infect Dis 2002; 186: 119–25.

Leentjens J, Kox M, Stokman R, et al. BCG vaccination enhances the immunogenicity of subsequent influenza vaccination in healthy volunteers: a randomized, placebo-controlled pilot study. J Infect Dis 2015; 212: 1930–18.

Sartono E, Lisse IM, Terveer EM, et al. Oral polio vaccine influences the immune response to BCG vaccination. A natural experiment. PLoS One 2010; 5: e10328.

Jensen KJ, Karkov HS, Lund N, et al. The immunological effects of oral polio vaccine provided with BCG vaccine at birth: a randomised trial. Vaccine 2014; 32: 5949–56.

Ramos-Martínez E, Faltán-Valencia R, Pérez-Rubio G, et al. Effect of BCG revaccination on occupationally exposed medical personnel vaccinated against SARS-CoV-2. Cells 2021; 10: 3179.

Mootlag SJCFM, Taks E, ten Doesschate T, et al. Efficacy of BCG vaccination against respiratory tract infections in older adults during the coronavirus disease 2019 pandemic. Clin Infect Dis 2021; cic832.

Lundberg L, Bygdell M, von Feilitzen GS, et al. Recent MMR vaccination in health care workers and Covid-19: a test negative case-control study. Vaccine 2021; 39: 4414–18.

Aaby P, Martins CL, Ravn H, Rodrigues A, Whittle HC, Benn CS. Is early measles vaccination better than later measles vaccination? Trans R Soc Trop Med Hyg 2015; 109: 16–28.

Storgaard L, Rodrigues A, Martins C, et al. Development of BCG scar and subsequent morbidity and mortality in rural Guinea-Bissau. Clin Infect Dis 2015; 61: 950–59.

Serup S, Benn CS, Poulsen A, Krause TG, Aaby P, Ravn H. Live vaccine against measles, mumps, and rubella and the risk of hospital admissions for nontargeted infections. JAMA 2014; 311: 826–35.

Serup S, Stensballe LG, Krause TG, Aaby P, Benn CS, Ravn H. Oral polio vaccination and hospital admissions with non-polio infections in Denmark: nationwide retrospective cohort study. Open Forum Infect Dis 2015; 3: oef204.

Nielsen S, Stuæj HM, Benn CS, Aaby P, Hanifi SMA. Oral polio vaccine campaigns may reduce the risk of death from respiratory infections. Vaccines (Basel) 2021; 9: 1133.

Fedrizzi EN, Gironi JR, Sarker TM, et al. Efficacy of the measles-mumps-rubella (MMR) vaccine in reducing the severity of COVID-19: an interim analysis of a randomised controlled clinical trial. J Clin Trials 2022; 15: 004.

Tsikila M, Taks E, Dolanitis K, et al. Activate-2: a double-blind randomized trial of BCG vaccination against COVID-19 in individuals at risk. Front Immunol 2022; 13: 873067.
64 Upton CM, van Wijk RC, Mockeliusas L, et al. Safety and efficacy of BCG re-vaccination in relation to COVID-19 morbidity in healthcare workers: a double-blind, randomised, controlled, phase 3 trial. EClinicalMedicine 2022; 48: 101414.
65 Schaltz-Buchholzer F, Øland CB, Berendsen M, et al. Maternal BCG primes for enhanced health benefits in the newborn. J Infect 2022; 84: 321–28.
66 Giamarellos-Bourboulis EJ, Tsilika M, Moorlag S, et al. Activate: randomized clinical trial of BCG vaccination against infection in the elderly. Cell 2020; 183: 315–23.
67 Werkhoven H. Randomized clinical trial of BCG vaccination against COVID in the elderly. BCG conference; Nov 17–19 2021.
68 Jayaraman K, Adhisivam B, Nallasivan S, et al. Two randomized trials of the effect of the Russian strain of Bacillus Calmette-Guérin alone or with oral polio vaccine on neonatal mortality in infants weighing <2000g in India. Pediatr Infect Dis J 2019; 38: 198–202.
69 Amirlak L, Haddad R, Hardy JD, Khaleed NS, Chung MH, Amirlak B. Effectiveness of booster BCG vaccination in preventing COVID-19 infection. Hum Vaccin Immunother 2021; 17: 3913–15.
70 Gulen TA, Bayraktar M, Yaksi N, Kayahas U. Is the course of COVID-19 associated with tuberculin skin test diameter? A retrospective study. J Med Virol 2022; 94: 1020–26.
71 Gallegos H, Rojas PA, Sepúlveda F, Zúñiga Á, San Francisco IF. Protective role of intravesical BCG in COVID-19 severity. BMC Urol 2021; 21: 50.
72 Moghadam SO, Abbasi B, Nowroozi A, et al. A possible protective role for Bacillus Calmette-Guérin therapy in urinary bladder cancer in the era of COVID-19: a brief report. Clin Exp Vaccine Res 2021; 10: 191–95.
73 Larenas-Linnemann DE, Rodriguez-Monroy F. Thirty-six COVID-19 cases preventively vaccinated with mumps-measles-rubella vaccine: all mild course. Allergy 2021; 76: 910–14.
74 Yengil E, Onlen Y, Ozger C, Hambolat M, Ozdogan M. Effectiveness of booster measles-mumps-rubella vaccination in lower COVID-19 infection rates: a retrospective cohort study in Turkish adults. Int J Gen Med 2023; 14: 1757–62.
75 López-Martín I, Esteban EA, García-Martínez FJ. Relationship between MMR vaccination and severity of COVID-19 infection. Survey among primary care physicians. Med Clin (Barc) 2021; 156: 140–41.
76 Yogovkina NV, Zheleznov LM, Subbotina KA, et al. Vaccination with oral polio vaccine reduces COVID-19 incidence. Front Immunol 2022; 13: 907341.
77 Berendsen MIT, van Gijzel SWL, Smits J, et al. BCG vaccination is associated with reduced malaria prevalence in children under the age of 5 years in sub-Saharan Africa. BMJ Glob Health 2019; 4: e001862.
78 Benn CS, Roth A, Garly M-L, et al. BCG scarring and improved child survival: a combined analysis of studies of BCG scarring. J Intern Med 2020; 288: 614–24.
79 Rieckmann A, Villumsen M, Jensen ML, et al. The effect of smallpox and Bacillus Calmette-Guérin vaccination on the risk of human immunodeficiency virus-1 infection in Guinea-Bissau and Denmark. Open Forum Infect Dis 2017; 4: ofx130.

Copyright © 2022 Elsevier Ltd. All rights reserved.