\(\Upsilon \) and \(\eta_b \) mass shifts in nuclear matter and the \(^{12}\text{C} \) nucleus bound states

G. N. Zeminiani\(^{a,*}\), J. J. Cobos-Martínez\(^b\) and K. Tsushima\(^a\)

\(^{a}\)Laboratório de Física Teórica e Computacional, Universidade Cidade de São Paulo (UNICID), and Universidade Cruzeiro do Sul, 01506-000, São Paulo, SP, Brazil

\(^b\)Departamento de Física, Universidad de Sonora, Boulevard Luis Encinas J. y Rosales, Colonia Centro, Hermosillo, Sonora 83000, México

E-mail: guilherme.zeminiani@gmail.com, jesus.cobos@fisica.uson.mx, kazuo.tsushima@cruzirodosul.edu.br

This is a contribution for the PANIC 2021 Proceedings based on the articles, Eur. Phys. J. A 57, 259, 2021 (2021) and the accompanied article \([\text{arXiv:2109.08636 [hep-ph]}]\) (Hadron 2021 contribution). We have estimated for the first time the mass shifts of the \(\Upsilon \) and \(\eta_b \) mesons in symmetric nuclear matter by an SU(5) flavor symmetric effective Lagrangian approach, as well as the in-medium mass of \(B^* \) meson by the quark-meson coupling (QMC) model. The attractive potentials for the \(\Upsilon \)- and \(\eta_b \)-nuclear matter are obtained, and one can expect for these mesons to form nuclear bound states. We have indeed found such nuclear bound states with \(^{12}\text{C} \) nucleus, where the results for the \(^{12}\text{C} \) nucleus bound state energies are new, and we report here for the first time.
1. Introduction

By studying the Υ- and ηb-nucleus interactions, one can advance in understanding the heavy meson and heavy quark interactions with nucleus based on quantum chromodynamics (QCD). For a possible mechanism of the bottomonium interaction with the nuclear medium (nucleus), we apply here, via the excitations of the intermediate state hadrons which contain the light quarks u and d.

We first calculate the in-medium B and B^* meson masses, then we estimate the mass shifts of the Υ and η_b mesons through the excitations of intermediate state B and B^* mesons in the Υ and η_b self-energies. The estimates will be made by an SU(5) effective Lagrangian which contains both the Υ and η_b mesons with one universal coupling constant. Thus, we need to know better the B and B^* meson properties in medium. For this purpose we use the quark-meson coupling (QMC) model invented by Guichon [1], which has been successfully applied for various studies [2, 3].

The interesting question is, whether or not the attractive Υ- and η_b-nuclear matter interactions are strong enough to form nuclear bound states. Thus, we study the Υ- and η_b-12C bound states for the first time.

2. Υ and η_b mass shifts in symmetric nuclear matter

We calculated the effective masses (Lorentz scalar) of the B and B^* mesons in symmetric nuclear matter using the QMC model, where that of the B^* meson was the first time [4].

As shown in Fig. 1, the QMC model predicts a similar amount of the B and B^* mass shifts. The mass shifts predicted are, respectively, $(m_B^* - m_B) = -61$ MeV and $(m_{B^*}^* - m_{B^*}) = -61$ MeV at $\rho_0 = 0.15$ fm$^{-3}$, with the difference in the next digit. To calculate the Υ and η_b meson self-energies in symmetric nuclear matter via the B and B^* meson loops, we use the obtained in-medium masses shown in Fig. 1.

![Figure 1: B and B^* meson effective masses (Lorentz scalar) in symmetric nuclear matter.](image)

The Υ and η_b mass shifts in medium come from the modifications of the BB, BB^* and B^*B^* meson loop contributions to their self-energies, relative to those in free space, where the self-energies are calculated based on an effective flavor SU(5) symmetric Lagrangian, with the one SU(5) universal coupling constant value determined by the vector meson dominance (VMD) hypothesis (model) with the experimental data for $\Gamma(\Upsilon \to e^+e^-)$ [4]. We use phenomenological
form factors to regularize the self-energy integrals, which are dependent on the cutoff $\Lambda_B = \Lambda_{B^*}$ values in the range $2000 \text{ MeV} \leq \Lambda_{B,B^*} \leq 6000 \text{ MeV}$.

For our predictions, we take the minimum meson loop contributions, namely, that is estimated by including only the BB meson loop for the Υ self-energy, and only the BB^* meson loop for the η_b self-energy. This is necessary, because the unexpectedly larger contribution from the heavier B^*B^* meson loop was observed\cite{4}. Note that, we ignore the possible widths, or the imaginary parts in the self-energies in the present study. We plan, however, to include the effects of the widths into the calculation in the near future.

The calculated mass shifts of the Υ and η_b mesons are shown in Fig. 2. As one can see in the left panel for the Υ, the effect of the decrease in the B meson in-medium mass yields a negative mass shift of the Υ. The decrease of the B meson mass in nuclear matter enhances the BB meson loop contribution for the Υ in-medium self-energy in such a way to yield a negative mass shift, which is also dependent on the cutoff mass value Λ_B. Namely, the amount of the mass shift increases as Λ_B increases, ranging from -16 to -22 MeV at symmetric nuclear matter saturation density, ρ_0. For the η_b mass shift, which is estimated by including only the BB^* meson loop (right panel), it ranges from -75 to -82 MeV at ρ_0 for the five cutoff mass values, the same as those for the Υ.

As one can see, the mass shift of η_b is larger than that of the Υ. This reflects the fact that the η_b interaction Lagrangian has a larger number of interaction terms contributing to the self-energy, and results to yield more contribution than that of the Υ. The use of the SU(5) symmetric couplings also gives an impact on the calculated η_b mass shift, as well as on the ^{12}C nucleus bound states energies to be given in the next section.

![Figure 2: BB loop contribution to the Υ mass shift (left) and BB^* loop contribution to the η_b mass shift (right) for five different values of the cutoff mass Λ_B ($= \Lambda_{B^*}$).](image)

3. Υ- and η_b-nucleus bound states with ^{12}C

We consider the situation that an Υ or an η_b meson is produced inside a ^{12}C nucleus with nearly zero relative momentum to ^{12}C, where the ^{12}C has baryon density distribution $\rho_{^{12}\text{C}}(r)$, and we follow the procedure of Refs. [5, 6]. In Ref. [7] we have presented the result for the ^{4}He case, where the density profile was parameterized and taken from [8]. However, for the ^{12}C nucleus in the present case, the density profile is calculated by the QMC model. We also use a local density approximation to obtain the Υ and η_b nuclear potentials inside the ^{12}C nucleus, which are shown in
Fig. 3 for five values of \(\Lambda_B \). The potentials are both attractive, with their depths depending on the cutoff mass values, namely, the deeper the larger \(\Lambda_B \).

The \(\Upsilon \)- and \(\eta_b \)-\(^{12}\text{C} \) bound state energies are then calculated by solving the Klein-Gordon equation using the nuclear potentials shown in Fig. 3. Although \(\Upsilon \) is a spin-1 particle, we make an approximation that the transverse and longitudinal components in the Proca equation are expected to be very similar for the \(\Upsilon \) nearly at rest, hence it is reduced to one component, which corresponds to the Klein-Gordon equation. The bound state energies are calculated for the same values of the cutoff mass \(\Lambda_B \) used in the previous section, and the results are given in Table. 1. Note that, due to the large number of the \(\eta_b \) bound states found for \(^{12}\text{C} \), we have not shown the shallower bound state energies explicitly for the \(\eta_b \) in the table. The results indicate that both the \(\Upsilon \) and \(\eta_b \) are expected to form bound states with the \(^{12}\text{C} \) nucleus. We will consider other nuclei in the upcoming study [9]. We emphasize that, even though the values of the bound state energies vary according to the chosen values of the cutoff mass, the prediction that the \(\Upsilon \) and \(\eta_b \) are expected to form bound states with the \(^{12}\text{C} \) nucleus, is independent of the values chosen. By ignoring the widths, the experimental observation of the predicted bound states could be an issue, but the present study primarily focuses on the existence of the bound states. We plan to include the effects of the widths in the future study [9] to see the impact of them on the results.

Table 1: \(^{12}\text{C} \) and \(\eta_b \)-\(^{12}\text{C} \) bound state energies. When \(|E| < 10^{-1} \) MeV we consider there is no bound state, which we denote with “n”. All dimensioned quantities are in MeV. The shallower bond states for the \(\eta_b \) are not shown explicitly.

Bound state energies	\(n\ell \)	\(\Lambda_B = 2000 \)	\(\Lambda_B = 3000 \)	\(\Lambda_B = 4000 \)	\(\Lambda_B = 5000 \)	\(\Lambda_B = 6000 \)
\(^{12}\text{C} \)	1s	-10.6	-11.6	-12.8	-14.4	-16.3
	1p	-6.1	-6.8	-7.9	-9.3	-10.9
	1d	-1.5	-2.1	-2.9	-4.0	-5.4
	2s	-1.6	-2.1	-2.8	-3.8	-5.1
	2p	n	n	n	-0.1	-0.7
\(\Upsilon \)	1s	-63.8	-67.2	-69.0	-71.1	-73.4
	1p	-57.0	-58.4	-60.1	-62.1	-64.3
	1d	-47.5	-48.8	-50.4	-52.3	-54.4

\(\eta_b \)	1s	n	n	n	-0.2	-1.2
4. Summary and Conclusion

We have estimated for the first time the B^*, Υ and η_b mass shifts in symmetric nuclear matter, as well as the Υ- and η_b-^{12}C bound state energies neglecting any possible widths of the mesons, assuming each meson is produced inside the ^{12}C nucleus with nearly zero relative momentum.

The in-medium B and B^* meson masses necessary to evaluate the Υ and η_b self-energies are calculated by the quark-meson coupling model. Our predictions, taking only the BB meson loop contribution for the Υ mass shift, and only the BB^* meson loop contribution for the η_b mass shift, give the Υ mass shift that varies from -16 MeV to -22 MeV at symmetric nuclear matter saturation density ($\rho_0 = 0.15 \text{ fm}^{-3}$) for the cutoff mass values in the range from 2000 MeV to 6000 MeV, while for the η_b it ranges from -75 to -82 MeV at ρ_0 for the same cutoff mass value range.

For the $\eta_b BB^*$ coupling constant value, we have used the SU(5) universal coupling constant and the value determined by the ΥBB coupling constant by the vector meson dominance model with the experimental data.

For the Υ or η_b meson produced inside the ^{12}C nucleus with nearly zero relative momentum to ^{12}C, their attractive interactions are strong enough to form bound states with the ^{12}C nucleus. The bound state energies have been calculated by solving the Klein-Gordon equation, with the nuclear potentials obtained using a local density approximation, and the nuclear density distribution calculated by the quark-meson coupling model.

We plan to elaborate the present study in the near future by including the effects of the widths, as well as using different regularization methods and/or form factors in the Υ and η_b self-energies.

Acknowledgements:

This work was supported by CAPES-Brazil (GNZ), CNPq-Brazil, Process, No. 313063/2018-4, process, No. 426150/2018-0, and FAPESP-Brazil, Process, No. 2019/00763-0 (KT), and was also part of the projects INCT-FNA-Brazil, Process, No. 464898/2014-5.

References

[1] P. A. Guichon, Phys. Lett. B 200, 235 (1988).
[2] K. Saito, K. Tsushima and A. W. Thomas, Prog. Part. Nucl. Phys. 58, 1 (2007).
[3] G. Krein, A. W. Thomas and K. Tsushima, Prog. Part. Nucl. Phys. 100, 161-210 (2018).
[4] G. N. Zeminiani, J. J. Cobos-Martínez and K. Tsushima, Eur. Phys. J. A 57, 259 (2021).
[5] K. Tsushima, D. H. Lu, G. Krein and A. W. Thomas, Phys. Rev. C 83, 065208 (2011).
[6] J. J. Cobos-Martínez, K. Tsushima, G. Krein and A. W. Thomas, Phys. Lett. B 811, 135882 (2020).
[7] G. N. Zeminiani, J. J. Cobos-Martínez and K. Tsushima, [arXiv:2109.08636 [hep-ph]].
[8] K. Saito, K. Tsushima and A. W. Thomas, Phys. Rev. C 56, 566 (1997).
[9] J.J. Cobos-Martínez, G. N. Zeminiani, and K. Tsushima, in preparation.
Y and \(\eta_b \) mass shifts in nuclear matter and the nucleus bound states

G. N. Zeminiani,\(^1\) J. J. Cobos-Martínez,\(^2\)* and K. Tsushima\(^3\),†

\(^1\)Laboratório de Física Teórica e Computacional,
Universidade Cidade de São Paulo (UNICID), 01506-000, São Paulo, SP, Brazil
\(^2\)Departamento de Física, Universidad de Sonora, Boulevard Luis Encinas J. y Rosales,
Colonia Centro, Hermosillo, Sonora 83000, México
\(^3\)Laboratório de Física Teórica e Computacional,
Universidade Cidade de São Paulo (UNICID) and
Universidade Cruzeiro do Sul, 01506-000, São Paulo, SP, Brazil

We estimate for the first time the mass shifts (scalar potentials) in symmetric nuclear matter of the \(Y \) and \(\eta_b \) mesons using an effective Lagrangian approach, as well as the in-medium mass of the \(B^* \) meson by the quark-meson coupling model. The attractive potentials of both \(Y \) and \(\eta_b \) are expected to be strong enough for these mesons to be bound to the \(^4 \text{He} \) nucleus, and we have obtained such nuclear bound state energies.

I. INTRODUCTION

By studying the interactions of bottomonium states, such as \(Y \) and \(\eta_b \) with nuclei, we can advance in understanding the hadron properties and strongly interacting systems based on quantum chromodynamics (QCD). A possible mechanism for the bottomonium interaction with the nuclear medium is through the excitation of the intermediate state hadrons which contain light quarks.

First we calculate the in-medium \(B \) and \(B^* \) meson masses, then we estimate the mass shifts of the \(Y \) and \(\eta_b \) mesons in terms of the excitations of intermediate state hadrons with light quarks in their self-energies. The estimates will be made using an SU(5) effective Lagrangian density which contains both the \(Y \) and \(\eta_b \) mesons with one universal coupling constant. Then, the present study can also provide information on the SU(5) symmetry breaking. Thus, we need to have better knowledge on the in-medium properties (Lorenz-scalar and Lorentz-vector potentials) of the \(B \) and \(B^* \) mesons. For this purpose we use the quark-meson coupling (QMC) model invented by Guichon \([1]\), which has been successfully applied for various studies.

Another interesting question is whether or not the strengths of the bottomonium-nuclear matter interactions are strong enough to form bound states. We then use the density profiles of the \(^4 \text{He} \) nucleus, together with the mass shifts of both \(Y \) and \(\eta_b \) to estimate the scalar \(Y \)- and \(\eta_b \)-nucleus potentials using a local density approximation.

II. \(Y \) AND \(\eta_b \) MASS SHIFTS

We have calculated the Lorentz-scalar effective masses of the \(B \) and \(B^* \) in symmetric nuclear matter \([2]\) using the QMC model, with the in-medium \(B^* \) meson mass having not been calculated nor presented in the past.

The QMC model predicts a similar amount in the decrease of the in-medium effective Lorentz-scalar masses of the \(B \) and \(B^* \) mesons in symmetric nuclear matter as shown in Fig. \([3]\). At \(\rho_0 = 0.15 \text{ fm}^{-3} \) the mass shifts of the \(B \) and \(B^* \) mesons are respectively, \((m_B^* - m_B) = -61 \text{ MeV}\) and \((m_{B^*}^* - m_{B^*}) = -61 \text{ MeV}\), the difference in their mass shift values appears in the next digit. To calculate the \(Y \) and \(\eta_b \) meson self-energies in symmetric nuclear matter by the excited \(B \) and \(B^* \) meson intermediate states in the loops, we use the calculated in-medium masses of them shown in Fig. \([4]\).

The \(Y \) and \(\eta_b \) mass shifts in medium come from the modification of the \(BB \), \(BB^* \) and \(B^*B^* \) meson loop contributions to their the self-energies relative to those in free space,

\[
V = m_{Y,\eta_b}^* - m_{Y,\eta_b},
\]

*Electronic address: guilherme.zeminiani@gmail.com
†Electronic address: j.j.cobos.martinez@gmail.com, jesus.cobos@fisica.uson.mx
‡Electronic address: kazuo.tsushima@gmail.com, kazuo.tsushima@cruzirodosul.edu.br
with the free space physical Υ and η_b masses being reproduced first by,

\[m_{\Upsilon,\eta_b}^2 = (m_{\Upsilon,\eta_b}^0)^2 + \Sigma_{\Upsilon,\eta_b}(k^2 = m_{\Upsilon,\eta_b}^2), \]

(2)

(the in-medium masses, \(m_{\Upsilon,\eta_b}^* \), are calculated likewise, by the total self-energies in medium using the medium-modified \(B \) and \(B^* \) meson masses with the same \(m_{\Upsilon,\eta_b}^0 \) values fixed in free space,) where \(m_{\Upsilon,\eta_b}^0 \) are the bare masses, and the self-energies \(\Sigma_{\Upsilon,\eta_b} \) are calculated based on an effective flavor SU(5) symmetry Lagrangian,

\[\mathcal{L} = \mathcal{L}_0 + ig \text{Tr} (\partial_{\mu} P [P, V_{\mu}]) - \frac{g^2}{4} \text{Tr} \left([P, V_{\mu}]^2 \right)
+ ig \text{Tr} (\partial^\mu V_{\nu} [V_{\mu}, V_{\nu}]) + \frac{g^2}{8} \text{Tr} \left([V_{\mu}, V_{\nu}]^2 \right), \]

(3)

in which

\[\mathcal{L}_0 = \text{Tr} \left(\partial_{\mu} P^\dagger \partial^\mu P \right) - \frac{1}{2} \text{Tr} \left(F_{\mu\nu}^\dagger F^{\mu\nu} \right), \]

(4)

with

\[F_{\mu\nu} = \partial_{\mu} V_{\nu} - \partial_{\nu} V_{\mu}, \]

where \(P \) and \(V \) are, respectively, the 5 \times 5 pseudoscalar and vector meson matrices in SU(5), and minimal substitutions are introduced to obtain the couplings (interactions) between the pseudoscalar mesons and vector mesons

\[\partial_{\mu} P \rightarrow \partial_{\mu} P - \frac{ig}{2} [V_{\mu}, P], \]

(5)

\[F_{\mu\nu} \rightarrow \partial_{\mu} V_{\nu} - \partial_{\nu} V_{\mu} - \frac{ig}{2} [V_{\mu}, V_{\nu}]. \]

(6)

We have used an SU(5) universal coupling constant obtained by the vector meson dominance (VMD) hypothesis (model) using the experimental data for \(\Gamma(\Upsilon \rightarrow e^+ e^-) \) [2],

\[g_{\Upsilon BB} = g_{\eta_b B B^*} = \frac{5g}{4\sqrt{10}} = 13.2228 \approx 13.2. \]

(7)

We use phenomenological form factors to make the regularization of the self-energy integrals, with those being dependent on a cutoff \(\Lambda_B = \Lambda_{B^*} \) with values between 2000 MeV \(\leq \Lambda_{B,B^*} \leq 6000 \) MeV

\[\omega_{B,B^*}(q^2) = \left(\frac{\Lambda_{B,B^*}^2 + m_{\Upsilon,\eta_b}^2}{\Lambda_{B,B^*}^2 + 4\omega_{B,B^*}^2(q^2)} \right)^2, \]

(8)

with \(\omega_{B,B^*} = (q^2 + m_{B,B^*}^2)^{1/2} \).
But we regard as our prediction for the mass shifts as taking the minimum meson loop contribution, namely, that is estimated by taking only the BB meson loop contribution for the Υ case and the BB^* for the η_b. This is necessary due to the unexpectedly large contribution from the heavier meson pairs. Therefore, we consider only the following interaction Lagrangians obtained from Eq. (3):

$$L_{TBB} = ig_{TBB} \Upsilon \left[\bar{B} \partial_\mu B - (\partial_\mu B) \right],$$

$$L_{\eta_b, BB^*} = ig_{\eta_b, BB^*} \left\{ (\partial_\mu \eta_b) \left[\bar{B} \partial_\mu B - \bar{B} \partial_\mu B \right] - \eta_b \left[\bar{B} \partial_\mu (\partial_\mu B) - (\partial_\mu \bar{B}) \right] \right\}. \tag{9}$$

Note that, we ignore the possible widths, or the imaginary parts in the self-energies in the present study. We plan, however, to include the effects of the widths into the calculation in the near future.

The results for the mass shifts of the Υ and η_b mesons are presented in Fig. 2. As one can see in the left panel for Υ, the effect of the decrease in the B meson in-medium mass yields a negative mass shift of the Υ. The decrease of the B meson mass in (symmetric) nuclear matter enhances the BB meson loop contribution, thus the self-energy contribution in the medium becomes larger than that in the free space. This negative shift of the Υ mass is also dependent on the value of the cutoff mass Λ_B, i.e., the amount of the mass shift increases as Λ_B value increases, ranging from -16 to -22 MeV at the symmetric nuclear matter saturation density, ρ_0. Now for the calculated η_b mass shift for including only the BB^* loop (right panel) at ρ_0 ranges from -75 to -82 MeV for five different cutoff mass values, the same as those applied for the Υ.

As one can see, the mass shift of η_b is different (higher) than that of Υ. This is due to the fact that the Lagrangian for the η_b case has a larger number of the interaction terms that contributes to the self-energy, as can be seen in Eq. (9), resulting in a larger total contribution in comparison to the Υ case. The use of SU(5) symmetry for the couplings also contributes to the difference in the mass shifts, with they becoming closer in a SU(5) symmetry breaking scenario. This will have an impact on the nuclear bound states in the next section.

FIG. 2: BB loop contribution to the Υ mass shift (left) and BB^* loop contribution to the η_b mass shift (right) versus nuclear matter density for five different values of the cutoff mass $\Lambda_B (= \Lambda_{B^*})$.

III. Υ- AND η_b-NUCLEUS BOUND STATES

To consider the case where the Υ and the η_b mesons are produced inside a ^4He nucleus with baryon density distribution $\rho_B^{4\text{He}}(r)$, we follow the procedure of Ref. [3]. The nuclear density distribution was obtained in Ref. [3], and we use a local density approximation to obtain the Υ and η_b nuclear potentials for the ^4He nucleus, which are presented in Fig. 3 for various values of the parameter Λ_B. The potentials are both attractive, with their depths dependent on the value of the cutoff mass, being deeper the larger Λ_B.

The Υ- and η_b-nucleus bound state energies for the ^4He nucleus are then calculated by solving the Klein-Gordon equation using the nuclear potentials above (Since Υ is a spin-1 particle, we make an approximation where the transverse and longitudinal components in the Proca equation are expected to be very similar for Υ at rest, hence it is reduced to only one component, which corresponds to the Klein-Gordon equation). The bound state energies are calculated for the same values of the cutoff parameter Λ_B used in the previous calculations, and are listed in Table 1. The results indicate that both Υ and η_b are expected to form bound states with the ^4He nucleus. It will be considered other nuclei for the study in an upcoming publication [3]. Note that even though the values of the bound state energies vary according the chosen value for the cutoff parameter, the overall prediction that Υ and η_b shall form bound states with the ^4He nucleus is independent of this choice. By ignoring the widths, the observation of the predicted bound states could be an issue, but the present study is primarily concerned on predicting the existence of bound states. Furthermore, we plan to include the effects of the widths in the future, to see how much it will impact on the results.
FIG. 3: Υ- and ηb-nucleus potential for the ^4He nucleus.

TABLE I: ^4He and $^4\eta_b$ He bound state energies. When $|E| < 10^{-1}$ MeV we consider there is no bound state, which we denote with “n”. All dimensioned quantities are in MeV.

State	$\Lambda_B = 2000$	$\Lambda_B = 3000$	$\Lambda_B = 4000$	$\Lambda_B = 5000$	$\Lambda_B = 6000$
^4He ls	-5.6	-6.4	-7.5	-9.0	-10.8
$^4\eta_b$ ls	-65.1	-64.7	-66.7	-69.0	-71.5
1p	-40.6	-42.0	-43.7	-45.8	-48.0
1d	-17.2	-18.3	-19.7	-21.4	-23.2
2s	-15.6	-16.6	-17.9	-19.4	-21.1
2p	n	n	-0.3	-0.9	-1.7

IV. CONCLUSION

We have estimated for the first time the B^*, Υ and ηb mass shifts in symmetric nuclear matter, as well as the Υ-nucleus and ηb-nucleus bound state energies, neglecting any possible widths of the mesons. The in-medium B and B^* meson masses necessary to evaluate the Υ and ηb self-energies in symmetric nuclear matter, are calculated by the quark-meson coupling model. We regard our prediction as taking the minimum meson loop contribution, namely, that is estimated by taking only the BB meson loop contribution for the Υ mass shift, and only the BB^* meson loop contribution for the mass shift of ηb.

Our prediction by this only BB-loop, gives the in-medium Υ mass shift that varies from -16 MeV to -22 MeV at the symmetric nuclear matter saturation density ($\rho_0 = 0.15$ fm$^{-3}$) for the cutoff mass values in the range from 2000 MeV to 6000 MeV, while the obtained ηb mass shift at symmetric nuclear matter saturation density ranges from -75 to -82 MeV for the same ranges of the cutoff mass values used for the Υ mass shift. For the $\eta_b B B^*$ coupling constant, we have used the SU(5) universal coupling constant determined by the Υ $B B$ coupling constant by the vector meson dominance model with the experimental data.

For the Υ and ηb mesons produced within the ^4He nucleus, the mass shifts obtained are strong enough to form bound states. These bound state energies have been obtained by solving the Klein-Gordon equation, with the nuclear potentials obtained using a local density approximation, and the nuclear density distribution is taken from Ref. [4]. (But for the other nuclei, the density distribution profiles will be calculated within the QMC model).

In the future we plan to perform a study to include the effects of the widths into the calculation, as well as to try alternative regularizations to be able to study including the effects of all loop contributions in our predictions.

[1] P. A. Guichon, Phys. Lett. B 200, 235 (1988).
[2] G. N. Zeminiani, J. J. Cobos-Martínez and K. Tsushima, Eur. Phys. J. A 57, 259 (2021).
[3] J. J. Cobos-Martínez, K. Tsushima, G. Krein and A. W. Thomas, Phys. Lett. B 811, 135882 (2020).
[4] K. Saito, K. Tsushima and A. W. Thomas, Phys. Rev. C 56, 566 (1997).
[5] Υ- and ηb-nucleus bound states, G. N. Zeminiani, J.J. Cobos-Martínez and K. Tsushima, In preparation.