Materials Research Express

PAPER

Investigation of magnesium addition in ZnO matrix using group II heptahydrate

Hadba Hussain 1,2,4,5, Hamad A Albrithen 1,2,3,4,8, Abeer Alshammari 1,◆, Ahmed Alyamani 1,◆, Nargis Bano 1,◆, Sarah Nasser Alyemni 1,6,◆, Shareefah Ayed AlAhmary 5, Ali Alanzi 6 and Baderah Awad Almutairy 7

1 Astronomy And Physics Department, Science College, King Saud University, Riyadh, Saudi Arabia
2 National Center for Nanotechnology, King Abdullah City for Science and Technology (KACST), Riyadh, Saudi Arabia
3 King Abdullah Institute for Nanotechnology, Riyadh, Saudi Arabia
4 Chemistry Department, Science College, King Saud University, Riyadh, Saudi Arabia
5 King Abdullah City for Atomic and Renewable Energy (K.A.CARE), Energy Research and Innovation Center, Riyadh, Saudi Arabia
6 Research Chair for Tribology, Surface, and Interface Sciences, Department of Physics and Astronomy, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
7 Author to whom any correspondence should be addressed.

E-mail: hhalqahtani@kacst.edu.sa and hadba.hussain.h@gmail.com

Keywords: co-precipitation method, zinc sulfate heptahydrate, doping, structure and optical properties, ZnO, nanoparticles

Abstract

ZnO and MgZnO nanoparticles were prepared by the co-precipitation method utilizing zinc sulfate heptahydrate and magnesium sulfate heptahydrate; structural measurements were also carried out. An x-ray diffraction (XRD) study indicated that no peaks for other possible phases such as MgO or MgZn intermetallic compounds indicating pure wurtzite structure. All nanoparticles crystallized in a hexagonal wurtzite structure with different orientation diffraction peaks; the main peaks were (100), (002), and (101). Grain size (D) increased with increasing Mg concentrations. A scanning electron microscopy (SEM) analysis revealed that nanoparticle size increased by increasing the Mg concentration in a good qualitative with Scherrer equation and not only the size even the grain shape changed. In addition, optical measurements were taken infer that the band gap energy concentration in a good qualitative with Scherrer equation and not only the size even the grain shape.

1. Introduction

In international research community zinc oxide (ZnO) in different forms has attracted much attention [1]. Zinc oxide has ~3.3 eV wide bandgap, wurtzite crystal structure, ~60 meV high exciton binding energy, and piezoelectric properties [2] with lattice parameters a = 3.296 Å and c = 5.2065 Å [3]. Zinc oxide is suitable for several applications such as piezoelectric [4], sensors [5], surface acoustic devices [6], transparent electrodes [7], UV absorber [8], light-emitting diodes (LED) [9–11], lasers [12], and solar cells [13]. At Room Temperature (RT), ultraviolet (UV) luminescence has been reported for nanoparticles (NPs) [14] and thin films (TFs) [15]. ZnO absorbs ultraviolet, transparent to visible light and its bandgap changes by doping with elements such as Mn [16] and Cd [17]. Several chemical sources are used to prepare ZnO including zinc chloride [18], zinc acetate [19], and zinc nitrate [20]; however, zinc sulfate is rarely used [21]. Several physical and chemical growth techniques such as radio frequency (RF) magnetron sputtering, chemical vapor deposition (CVD), electron-beam evaporation, spray pyrolysis, ion beam evaporation, and sol-gel process have been utilized for the synthesis of ZnO.

According to Mallika et al. [22], the crystal structure of Mg doped ZnO NPs has maintained its wurtzite arrangement for Mg content less than ~40% as the original structure, therefore the structure of MgZnO appeared without showing MgO rocksalt phase for such concentration. In general, Mg atoms substitute Zn lattice sites in the crystal [23]. Moreover, doping ZnO with Mg has been studied by different ways to various
objectives. The effect of doping has been found to influence optical, electrical, and magnetic properties. Doping ZnO by Mg increases the bandgap [19–21] while on the other hand some groups reported a bandgaps decrease [24–26] due to various reasons. The bandgap of the ZnO changed depending upon many factors such as the concentration of the doping, the molar of the solvent and the temperature degree of synthesis and annealing [24]. Doping ZnO allows to tune the luminescence to cover the ultra-violet and visible light, hence the whole optical properties including bandgap energy and absorption changed. The ZnO luminescence doped with Mg was reported in different wavelengths such as UV [27], blue [28], green [29, 30], orange [19] and red [31]. The ZnO spectrum has a strong absorption in a UV range [32]. The absorption of ZnO NPs has a blueshift with doping by Al [32], and according to Yung et al [33] has a redshift with doping by Sn. While the absorption spectrum of Mg doped ZnO NPs has a redshift [25] and in other hand, has a blueshift [34].

Therefore, this research will prepare ZnO and Mg-doped ZnO NPs with different concentrations (x = 10% and 20%) utilizing zinc sulfate heptahydrate by the co-precipitation method. Then, the research will investigate the effect of high Mg concentration in the structure and optical properties for ZnO and Mg doped ZnO NPs. There is no research work on high Mg concentration with using a co-precipitation method, to the best of our Knowledge. Also, there is no research work on zinc sulfate heptahydrate as a source for preparing ZnO.

2. Experimental method

2.1. Materials

For the preparation of our particles the following materials were used: zinc sulfate heptahydrate [zinc sulfate-7-waterAR] [ZnSO₄,7H₂O] (Avonchem Ltd), extra pure sodium hydroxide [NaOH] (laboratory regent and fine chemical) pellets, cetrimonium bromide [C₁₉H₄₂BrN] (CTAB) (Central Drug House (CDH)), magnesium sulfate heptahydrate [magnesium sulfate-7-waterAR] [MgSO₄,7H₂O], and distilled water.

2.2. Procedure

To prepare ZnO NPs, a 100 ml of 0.2 M NaOH (dissolved in distilled water) was added dropwise into a solution containing 100 ml of 0.1 M Zinc sulfate heptahydrate (dissolved in distilled water) under constant stirring. A capping agent of 10 mg of CTAB, inhibiting the anomalous growth of magnesium hydroxide crystals [21], was added during the precipitation. The resulting solution was then kept at RT for at least 18 h under constant stirring. The precipitates obtained, a white precipitate, was filtered, washed several times with distilled water and then with ethanol. It was then dried at 100 °C in an oven for 4 h and calcined in air at 500 °C for 4 h.

To prepare Mg-doped ZnO NPs, NaOH was added to a mixture of 0.1 (0.01 mol) M zinc sulfate heptahydrate and a 0.01 M (1.11 × 10⁻³ mol) magnesium sulfate heptahydrate solution. The same procedure was repeated to obtain the other sample with different Mg concentrations by following equation (1) to calculate the percentage of Mg in a sample. The obtained samples were calcined in air at 500 °C for 4 h to obtain the Mg-ZnO NPs.

\[
x(\text{content of Mg in a sample}) = \frac{\text{mol of Mg}}{(\text{mol of Mg} + \text{mol of Zn})}
\]

(1)

3. Results

3.1. XRD analysis

XRD peaks are observed in all the sample patterns corresponding to different orientation shown in figure 1 with mainly 100, 002, 101. All XRD has a similar behavior, therefore, the reflection planes indicate that the prepared samples are of a hexagonal wurtzite ZnO structure. No peaks have been seen for other possible phases such as MgO or MgZnO intermetallic compounds indicating pure wurtzite structure. Most of the nanoparticles have their strongest reflection on the 101 plane. This indicates that the preferential orientation is the 101 plane for all samples [1, 35, 36], as seen in figure 1. The peaks positions of the planes (100), (002) and (101) of the samples shows in figure 2. Notably, a small shift moved toward low angle side in sample doped by Mg, the evidence that the structure includes Mg²⁺ ions in the hexagonal wurtzite ZnO structure [37].

3.2. Grain size

The average grain size (D) was calculated using the Debye–Scherrer equation (2) and depending on (100), (002) and (101) planes which is the three highest peaks.
Where k is a constant equal 0.9, λ is the wavelength of the x-ray ($\lambda = 1.5405$ Å), β is the Full Width at Half Maximum (FWHM), and θ is the diffraction angle.

The average grain size (D) increased with increasing the Mg concentration, in the 10%Mg doped sample and increased again in the 20%Mg doped sample as shown in table 1. The relation between the grain size and Mg concentration illustrated in figure 3. However, the average FWHM (β) decreased with increasing Mg concentration. This result agrees with the Debye–Scherrer equation, where β is inversely proportional to D.

Moreover, the annealing temperatures supported the increase in the grain size of the ZnO and Mg-doped ZnO samples; these results agreed with published work [38].

The grain size of Mg-doped ZnO NPs varied as some authors observed increasing grain size [39, 40], while others a decreasing grain size [41–43]. Furthermore, some studies had a non-systematic orientation [22, 38, 44–46]. The reason for the decreasing grain size is the retarding force. The retarding force increased when the number of obstacles per unit volume adhered further to the ZnO surface. For this reason, the grain size of Mg-doped ZnO NPs decreased when the Mg ions increased [42]. On the other hand, the increase in grain size may be due to the accommodation of Mg to the ZnO lattice.

3.3. Lattice constant

ZnO has a wurtzite structure with lattice parameters $a = 3.24$ Å and $c = 5.20$ Å [47]. Equation (3) can be used to calculate the hexagonal structure measured by XRD as follows [48]:

$$\sin^2 \theta = \frac{\lambda^2}{4a^2} \left\{ \frac{4}{3} (h^2 + hk + k^2) + \left(\frac{a}{c} \right)^2 l^2 \right\},$$

where θ is the Bragg diffraction angle; the source of the x-ray wavelength is $\lambda(Cu) = 1.5406$ Å; a and c are the lattice parameters; and h, k, and l are Miller indices. The lattice parameters were calculated for the (100) and (002) planes. The lattice constant a, can be calculated by equation (4) and the lattice constant c, can be calculated by equation (5):

For (100): $a = \frac{\lambda}{\sqrt{3}} \sin \theta_{100},$

For (002): $c = \frac{\lambda}{\sin \theta_{002}}.$

The lattice parameters a and c, and the ratio between c and a are shown in table 1. From table 1 the lattice parameters a and c in undoped ZnO NPs were 3.2425 Å and 5.1935 Å, respectively. On increasing Mg content
during the synthesis, the values of lattice constants a and c very slightly increased while the ratio c/a remained almost constant. A similar result was observed in other Mg-doped ZnO [40, 46]. This results of an alteration in its lattice parameter confirm again to that the Mg$^{2+}$ ions set inside the ZnO structure [25]. In addition, the reason behind the slightly increasing in the lattice constant for high Mg concentration (≥8%) is due to the anion-cation Zn–O bond length accordance with Vegard’s law [49].

Figure 2. Diffraction peak positions of (a) (100), (b) (002) and (c) (101) planes of undoped and Mg doped ZnO with Mg concentration (x = 0, 10% and 20%) NPs.

Sample	Grain size (nm)	Energy gap (eV)	Lattice constant a (Å)	Lattice constant c (Å)	c/a (Å)	The strain ε
ZnO	49.45	3.255	3.2425	5.1936	1.60173	0.00244
Mg-ZnO 10%	57.09	3.165	3.24525	5.1987	1.60194	0.00209
Mg-ZnO 20%	73.99	3.169	3.2459	5.1992	1.60177	0.00163
3.4. Average strain
The average strain was calculated using the Stokes-Wilson equation (6)

\[
\epsilon = \frac{\beta \cos \theta}{4 \sin \theta}
\]

Where \(\beta \) in radian. The strain for (100), (002) and (101) and the average strain for the ZnO and Mg doped ZnO NPs is mentioned in table 1. As shown in the table that the average strain decreases with increasing Mg concentration. As a result of increasing the grain size, \([50] \) observed the same result.

3.5. Morphology studies
The SEM images in figure 4 show that the surface morphology of the NPs is strongly dependent on the concentration of the dopant. These particles have different shapes and sizes in the prepared ZnO. In case of undoped ZnO, quasi-spherical grains were found to have regular distribution with some irregular shape grains. After Mg doping, the emergence of increasing grain was noticed followed by the agglomeration of crystallites. Different morphology of the NPs and some hexagonal crystal-shaped were observed due to the defects created by the Mg doping. As the Mg-doping concentration increased, the crystallinity of the NPs significantly increased along with the grain size. The grain size increased as the Mg content increased in accordance with the grain size obtained by the XRD analysis \([39] \).

3.6. Optical studies
The optical properties of the ZnO and Mg-doped ZnO NPs were determined from the absorption spectra in the wavelength range of 200–800 nm and are presented in figure 5. The bandgap energy was calculated using Tauc’s plot depending on the absorption wavelength in figure 6. As the photoluminescence (PL) properties of the ZnO are very sensitive to oxygen vacancies, the PL spectra of the ZnO and Mg-doped ZnO NPs have been measured in figure 7.

The absorbance of the ZnO NPs changed with the Mg doping percentage. As shown in figure 5, in the visible region, the absorbance value of ZnO and Mg-doped ZnO NPs decreased as the Mg doping concentration increased. This indicates that by increasing Mg doping, the band edge of the ZnO shifts to a higher wavelength side (longer wavelength). The absorption spectra show that the ZnO and Mg-doped ZnO have a UV absorption edge in the region 350–400 nm. This absorption edge was redshifted with the increase of Mg doping concentrations in the ZnO, as in figure 5. The reason of increasing the absorption might be due to defect in the grain sizes, particle size and oxygen deficiency \([51] \).

The UV absorption edge is directly linked to the optical band gap \((E_g) \). The optical band gap is an important parameter for Mg-doped ZnO nanoparticles in various optical applications. ZnO is a direct band gap semiconductor. The band gap can be estimated from the absorption edge by applying Tauc’s relationship. Based on the absorption edge in figure 5, the optical \(E_g \) was estimated by assuming a direct transition between the valence and conduction bands from the equation (7):
Figure 4. SEM Images (65 nm width × 56 nm height) with scale bar at 100 nm and ×50,000 magnification of (a) ZnO, (b) 10% Mg and (d) 20% Mg-doped ZnO NPs.
As the transition in the ZnO is direct, \(n \) is set equal to \(1/2 \):
\[
\alpha h \nu = A (h \nu - E_g)^n
\]
(7)

where \(A \) is an energy-independent constant, \(h \) is Planck’s constant, \(h \nu \) is the photon energy, \(\alpha \) is the absorption coefficient of the NPs, and \(E_g \) is the band gap energy. The \(E_g \) was obtained by extrapolating the linear portion of the plot \((\alpha h \nu)^2 \) versus the \((h \nu) \) plot. Tauc’s plot is illustrated in figure 6. The NPs absorption coefficient was calculated using Beer–Lambert’s law in equation (9):
\[
\alpha = \frac{2.303}{t} \times A
\]
(9)

where \(t \) is the thickness of the samples in a UV–vis powder holder (1 mm) and \(A \) is the NPs absorbance.

As seen in figure 6, the calculated optical \(E_g \) of the prepared ZnO and Mg-doped ZnO NPs varies between 3.255 and 3.169 eV. We observe a general decrease in the optical \(E_g \) through the Mg doping. First, the band gap energy decreased from 3.255 eV for pure ZnO to 3.165 eV for the 10% and followed by an increase to 3.169 eV for the 20% Mg concentration. The reason behind decreasing bandgap energy with high Mg content is the strong quantum confinements and enhancement the surface area to volume ratio, [52]. The decreasing in \(E_g \) and enhancement of redshift confirm the presence of Mg\(^{2+}\) in some sites in the ZnO structure [52].
Figure 7 shows the PL spectra for ZnO and Mg-doped ZnO NPs upon 345 nm and 500 nm excitations, respectively. The emission spectrum of the NPs indicates a UV region near 380 nm and a broad deep level emission in the visible region at 500 nm. The spectra showed that the annealing temperature increased the PL peak intensity \[53\]. Moreover, figure 7 indicates that the intensity increases by increasing the Mg concentration \[8\]. ZnO PL spectra at RT as usually known are three major peaks: first emission peak at UV near-band-edge around 380 nm, the second one at green emission peak around 520 nm, and the last one in red or orange emission peak around 600 nm \[54, 55\]. Therefore, UV emission in figure 7 is attributed to the radiative recombination of excitons (exciton emission) which is one of the band-edge emissions. Whereas the two broad visible bands are generally attributed to deep-level defects in ZnO crystal, like vacancies and interstitials of zinc and oxygen which is surface anion vacancies. This may be due to the tunneling of surface-bound electrons through preexisting trapped holes. The right shift in the PL peaks (wavelength shift to 500 nm) is due to the addition of Mg, increasing the energy of the vacancy formation and increasing the stability of the oxygen \[25, 54, 56–58\].

4. Conclusion

Mg-doped ZnO NPs with concentrations of 0%, 10% and 20% were prepared by a sol-gel method. The studies and investigations in this work focused on the effects of Mg-doping concentrations on the structural, morphological and optical properties of the NPs. The XRD study indicated that no peaks for other possible phases such as MgO or MgZn intermetallic compounds indicating pure wurtzite structure. All NPs crystallized in a hexagonal wurtzite structure with different orientation diffraction peaks; the main peaks were (100), (002), and (101). Grain size increased with the increasing Mg concentrations. SEM analysis revealed that the size of NPs increased by increasing the Mg concentrations agreed well with the XRD analysis. Optical measurements indicate that the \(E_g\) of the ZnO and Mg-doped ZnO with different Mg concentrations was found to be between 3.255 eV and 3.169 eV. The photoluminescence emission spectra show a peak (ultraviolet band near 380 nm and another peak near 500 nm (green band) for all NPs due to the surface defects in the ZnO such as oxygen vacancies and other impurities.

Acknowledgments

The authors thank the Deanship of Scientific Research and RSSU at King Saud University for their technical support; we also thank the Physics and Astronomy Department of Sciences College in King Saud University and King Abdulaziz City of Science and Technology (KACST).

Data availability statement

All data that support the findings of this study are included within the article (and any supplementary files).
References

[1] Das, K, Ray, S, Chaudhuri, S and Maity, A B 2009 Structural and luminescence properties of sol-gel derived Cu doped ZnO films K Indian Journal of Pure & Applied Physics 47 377–82 (https://www.semanticscholar.org/paper/Structural-and-luminescence-properties-of-sol-gel-Das-Ray/5c84740f7dabde4e181b1f9d6b475d30c70)

[2] Djurisić A B, Chen X, Leung Y H and Man Ching Ng A 2012 ZnO nanostructures: growth, properties and applications J. Mater. Chem. 22 6526–35

[3] Wang Z L 2004 Zinc oxide nanostructures: growth, properties and applications J. Phys.: Condens. Matter 16 R829–58

[4] Huang J Y, Lan J W and Lin C Y 2012 High C-axial ZnO thin-film for piezo-electric sensor application (Proceedings of IEEE Sensors) pp 1–4

[5] Gupta S K, Joshi A and Mammet K 2010 Development of gas sensors using ZnO nanostructures J. Chem. Sci. 122 57–62

[6] Du X Y et al 2007 ZnO film for application in surface acoustic wave device J. Phys. Conf. Ser. 76 1–6

[7] Mahajan C M, Pendharkar M, Chaudhuri Y A, Sawant S S, Ankanwar B and Takwale M G 2016 Spray deposited nanocrystalline ZnO transparent nanotubes: role of precursor solvent J. Nano- Electron. Phys. 8 1–5

[8] De Lima F J, Martins R F and Serra O A 2012 Transparent UV-absorbers thin films of zinc oxide: Ceria system synthesized via sol-gel process Opt. Mater. (Amst.) 35 56–60

[9] Alhassan A et al 2018 Development of high performance green c-plane III-nitride light-emitting diodes Opt. Express 26 5591

[10] Alhassan A et al 2016 High luminous efficacy green light-emitting diodes with AlGaN cap layer Opt. Express 24 17868–78

[11] Alhassan A et al 2018 Reduced-droop green III-nitride light-emitting diodes utilizing GaN tunnel junction Appl. Phys. Express 11 042101

[12] Huang J, Chu S, Kong J and Liu J 2013 ZnO p-n homojunction random laser based on nitrogen doped p-type nanowires 2013 IEEE Photonics Conf. IPC 2013 pp 155–6

[13] Wise G, Virt I, Sagan P, Potera P and Yavorskyy R 2017 Structural, optical and electrical properties of zinc oxide layers produced by pulsed laser deposition method Nanoscale Res. Lett. 12 6–0

[14] Vafae M and Chamarri M S 2007 Preparation and characterization of ZnO nanostructures by a novel sol-gel route Mater. Lett. 61 3265–8

[15] Fan Z and Lu J G 2005 Zinc oxide nanostructures: synthesis and properties J. Nanosci. Nanotechnol. 5 1561–73

[16] Ahmed S A 2017 Structural, optical, and magnetic properties of Mn-doped ZnO samples Results Phys. 7 604–10

[17] Suman, Sonia, Kumar V, Kumar S and Kumar D 2017 Synthesis and characterization of cadmium doped ZnO nanowires Springer Proc. in Physics vol 178 pp 211–21

[18] Oladiran A A and Olabisi A-M 2013 Synthesis and characterization of ZnO nanoparticles with zinc chloride as zinc source Asian J. Nat. Appl. Sci. 2 2186–8476 (https://citeseerx.ist.psu.edu/viewdoc/download;doit=10.1.1.1081.8209&rep=rep1&type=pdf)

[19] Chandrasekar P, Anandan P and Srinivasan N 2013 Structural and optical properties of sol-gel synthesised Zn 1-xMgO nanocrystals Spectrochim. Acta - Part A Mol. Biomol. Spectros. 116 511–6

[20] Sithichai S, Phurunrung A, Thongtem T and Thongtem S 2017 Influence of Mg dopant on photocatalytic properties of Mg-doped ZnO nanoparticles prepared by sol–gel method J. Ceram. Soc. Japan 125 122–4

[21] Viswanatha R, Venkatesh T G, Vidyasagar C and Anthotha Nayaka Y 2012 Preparation and characterization of ZnO and Mg–ZnO nanoparticle Arch. Appl. Sci. Res. 4 480–6 (http://www.solarscholarlibrary.com/aasr-vol4-iss1-AASR-2012-4-1-480-486.pdf)

[22] Mallika A N, Ramachandra Reddy A, Sowri Babu K, Sujatha C and Venugopal Reddy K 2014 Structural and photoluminescence properties of Mg substituted ZnO nanoparticles Opt. Mater. (Amst.) 36 873–78

[23] Tian F et al 2014 Miscibility and ordered structures of MgO–ZnO alloys under high pressure Sci. Rep. 4 1–5

[24] Raji R and Gopchandran K G 2017 Journal of Surface: advanced materials and devices ZnO nanostructures with tunable visible luminescence: effects of kinetics of chemical reduction and annealing J. Sci. Adv. Mater. Devices 2 51–8

[25] Pradeep Raj K et al 2018 Influence of Mg doping on ZnO nanoparticles for enhanced photocatalytic evaluation and antibacterial analysis Nanoscale Res. Lett. 13 229

[26] Anandan M, Dinesh S, Krishnakumar N and Balamurugan K 2016 Influence of Co doping on combined photocatalytic and antibacterial activity of ZnO nanoparticles Mater. Res. Express 3 1–12

[27] Shahine I et al 2019 Pure, Size Tunable ZnO nanocrystals assembled into large PMMA layer as efficient catalyst Catalysts 9 162

[28] Mahmou A et al 2019 Studies on structural, surface morphological, optical, luminescence and UV photodetection Properties of Sol–Gel Mg-doped ZnO thin films Surf. Rev. Lett. 26 1850167

[29] Kumar N and Srivastava A 2018 Green photoluminescence and photoconductivity from screen-printed Mg doped ZnO films J. Alloys Compd. 739 312–8

[30] Tachikawa S, Noguchi A, Tsuge T, Hara M, Odawara O and Wada H 2014 Optical Properties of ZnO Nanoparticles Capped with Polymers materials 4 1132–43

[31] Shi et al 2012 Red luminescent and structural properties of Mg-doped ZnO phosphors prepared by sol-gel method Mater. Sci. Eng. B Solid State Mater. Adv. Technol. 177 689–93

[32] Song Z et al 2011 Characterization of optical properties of ZnO nanoparticles for quantitative imaging of transdermal transport Biomed. Opt. Express 2 3321

[33] Yung K C, Liem H and Choy H S 2009 Enhanced redshift of the optical band gap in Sn-doped ZnO free standing films using the sol-gel method J. Phys. D: Appl. Phys. 42 185002

[34] Shan F et al 2004 Blueshift of near band edge emission in Mg doped ZnO thin films and aging J. Appl. Phys. 95 4772–6

[35] Ahn C H and Choi J-W 2004 Microfluidics and their applications to Lab-on-a-Chip Springer Handbook of Nanotechnology (Berlin, Heidelberg: Springer Berlin Heidelberg) pp 253–78
[36] Ghafouri V, Ebrahimzad A and Shariati M 2013 The effect of annealing time and temperature on morphology and optical properties of ZnO nanostructures grown by a self-assembly method Sci. Iran. 20 1039–48
[37] Rao L S, Rao T V, Naheed S and Rao P V 2018 Structural and optical properties of zinc magnesium oxide nanoparticles synthesized by chemical co-precipitation Mater. Chem. Phys. 203 133–40
[38] Mutharasan M A D and Shamuganan S 2015 Structural parameters analysis of Mg Doped ZnO nano particles for various Mg concentrations Int. J. Eng. Trends Technol. 28 27–36
[39] Suwanboon S and Amornpitoksuk P 2012 Preparation of Mg-doped ZnO nanoparticles by mechanical milling and their optical properties Procedia Eng. 32 821–6
[40] Mia M N H et al 2017 Influence of Mg content on tailoring optical bandgap of Mg-doped ZnO thin film prepared by sol-gel method Results Phys. 7 2683–91
[41] Ansari M M, Arshad M and Tripathi P 2015 Study of ZnO and Mg doped ZnO nanoparticles by sol-gel process AIP Conf. Proc. vol 1665, p 050123
[42] Suwanboon S, Amornpitoksuk P and Sukolrat A 2011 Dependence of optical properties on doping metal, crystallite size and defect concentration of M-doped ZnO nanopowders (M = Al, Mg, Ti) Ceram. Int. 37 1359–65
[43] Arshad M et al 2015 Band gap engineering and enhanced photoluminescence of Mg doped ZnO nanoparticles synthesized by wet chemical route J. Lumin. 161 275–80
[44] Yousefi R, Zak A K and Jamali-Sheini F 2013 Growth, x-ray peak broadening studies, and optical properties of Mg-doped ZnO nanoparticles Mater. Sci. Semicond. Process. 16 771–7
[45] Wu Y, Yun J, Wang L and Yang X 2013 Structure and optical properties of Mg-doped ZnO nanoparticles by polyacrylamide method Cryst. Res. Technol. 48 145–52
[46] Fang D, Li C, Wang N, Li P and Yao P 2013 Structural and optical properties of Mg-doped ZnO thin films prepared by a modified Pechini method Cryst. Res. Technol. 48 265–72
[47] Morkoç H and Özgür Ü 2009 Zinc Oxide: Fundamentals, Materials and Device Technology (New York: Wiley)
[48] Suryanarayana C and Norton M G 1998 Crystal structure determination: II. Hexagonal Structures Springer US pp 123–52
[49] Sagheer R, Khalil M, Abbas V, Kayani Z N, Tariq U and Ashraf F 2020 Effect of Mg doping on structural, morphological, optical and thermal properties of ZnO nanoparticles Optik (Stuttg.) 200 163428
[50] Rouchdi M, Salmani E, Fares B, Hassanain N and Mzerd A 2017 Synthesis and characteristics of Mg doped ZnO thin films: experimental and ab-initio study Results Phys. 7 620–7
[51] Mir F A and Batoo K M 2016 Effect of Ni and Au ion irradiations on structural and optical properties of nanocrystalline Sb–doped SnO2 thin films Appl. Phys. A Mater. Sci. Process. 122 2287
[52] Khajuria S, Sanotra S, Ladol J and Sheikh H N 2015 Synthesis, characterization and optical properties of cobalt and lanthanide doped CdS nanoparticles J. Mater. Sci.: Mater. Electron. 26 7073–80
[53] Ivetić T B et al 2014 Effect of annealing temperature on structural and optical properties of Mg-doped ZnO nanoparticles and their photocatalytic efficiency in alprazolam degradation Ceram. Int. 40 1545–52
[54] Studenikin S A, Golego N, Cocivera M, Studenikin S A, Golego N and Cocivera M 1998 Fabrication of green and orange photoluminescent, undoped ZnO films using spray pyrolysis J. Appl. Phys. 84 2287–94
[55] Djuric A B, Ng A M C and Chen X Y 2010 ZnO nanostructures for optoelectronics: Material properties and device applications Prog. Quantum Electron. 34 191–259
[56] Jena P, Khanna S N and Rao B K 1999 Cluster and Nanostructure Interfaces. (Virginia, USA: World Scientific Publishing Co. Pte Ltd.)
[57] Padmavathy N and Vijayaraghavan R 2008 Enhanced bioactivity of ZnO nanoparticles—an antimicrobial study Sci. Technol. Adv. Mater. 9 035004
[58] Layek A, Mannu B and Chowdhury A 2012 Carrier recombination dynamics through defect states of ZnO nanocrystals: from nanoparticles to nanorods Chem. Phys. Lett. 539–540 133–8