A local proof of the dimensional Prékopa’s theorem

Van Hoang Nguyen

School of Mathematical Sciences, Tel Aviv University, Tel Aviv 69978, Israel

1. Introduction

Prékopa’s theorem [11] says that marginals of log-concave functions are log-concave, i.e., if \(\varphi : \mathbb{R}^{n+1} \to \mathbb{R} \) is convex, then the function \(\phi \) defined by

\[
\phi(t) = -\log \left(\int_\mathbb{R^n} e^{-\varphi(t,x)} \, dx \right)
\]

is convex on \(\mathbb{R} \). By modifying \(\varphi \) if necessary, we can replace \(\mathbb{R}^{n+1} \) by any of its open convex subsets \(\Omega \), and the integration in (1.1) is taken in the section \(\Omega(t) = \{ x \in \mathbb{R}^n : (t,x) \in \Omega \} \). Prékopa’s theorem is a direct consequence of the Prékopa–Leindler inequality which can be seen as the functional form of the Brunn–Minkowski inequality (see [6]). The Brunn–Minkowski inequality is known to be one of the most important tools in analysis and geometry. It states that if \(A, B \) are non-empty measurable subsets of \(\mathbb{R}^n \) then

\[
|A + B|^{\frac{1}{n}} \geq |A|^{\frac{1}{n}} + |B|^{\frac{1}{n}}.
\]
where $A + B = \{ a + b : a \in A, b \in B \}$ and $|\cdot|$ denotes the Lebesgue measure of the measurable set (see [4,6,8,9] for the proofs and applications of the Brunn–Minkowski inequality).

A new proof of the Prékopa theorem is recently given in [1,2]. In these papers, the authors proved a local formulation for the second derivative of the function ϕ above. By using the convexity of φ, they show that ϕ'' is nonnegative. This local approach was also used by D. Cordero-Erausquin (see [5]) to generalize a result of Berndtsson concerning Prékopa’s theorem for plurisubharmonic functions (see [3]).

In this paper, we adapt the local approach given in [1,2] to find an expression for the second derivative of the function ϕ defined by

$$
\phi(t) = \left(\int_V \varphi(t, x)^{-\beta} \, dx \right)^{-\frac{1}{\beta n}}, \quad \beta \neq n,
$$

where $U \subset \mathbb{R}$ and $V \subset \mathbb{R}^n$ are open bounded subsets, boundary of V is C^∞-smooth, and $\varphi : U \times V \to \mathbb{R}_+$ is a C^2-smooth function on $U \times V$. For this purpose, we denote for each $t \in U$

$$
d\mu_t = \frac{\varphi(t, x)^{-\beta} \, dx}{\int_V \varphi(t, x)^{-\beta} \, dx}
$$

the probability measure on V. We also denote the corresponding symmetric diffusion operation with the invariant measure μ_t by

$$
L_t u(x) = \Delta u(x) - \beta \frac{\langle \nabla_x \varphi(t, x), \nabla u(x) \rangle}{\varphi(t, x)},
$$

where u is any function in $C^2(V)$. By using integration by parts, we have

$$
\int_V L_t u(x)v(x) \, d\mu_t(x) = - \int_V \langle \nabla u(x), \nabla v(x) \rangle \, d\mu_t(x) + \int_{\partial V} v(x) \frac{\partial u}{\partial \nu}(x) \, d\mu_t(x),
$$

where $\nu(x) = (\nu_1(x), \cdots, \nu_n(x))$ is the outer normal vector to $x \in \partial V$.

Since ∂V is C^∞-smooth, then ν is C^∞-smooth on ∂V and it can be extended to a C^∞-smooth map on a neighborhood of ∂V. Hence the second fundamental form II of ∂V at $x \in \partial V$ is defined by

$$
II_x(X, Y) = \sum_{i,j=1}^n X_iY_j \partial_i(\nu_j)(x),
$$

for any two vector fields $X = (X_1, \cdots, X_n)$ and $Y = (Y_1, \cdots, Y_n)$ in ∂V.

In the sequel, we denote by ∇f and $\nabla^2 f$ the gradient and Hessian matrix of a function f, respectively. We also denote by $\| \cdot \|_{HS}$ the Hilbert–Schmidt norm on the space of square matrices. When f is function of the variables t and x, we write $\nabla_x f$ and $\nabla^2_x f$ for the gradient and Hessian matrix of f which are taken only on x, respectively.

Our first main theorem of this paper is the following:

Theorem 1.1. Suppose that V has C^∞-smooth boundary, and φ is C^∞-smooth up to boundary of $U \times V$. Let ϕ be defined by (1.2) then
\[
\frac{\phi''(t)}{\phi(t)} = \frac{\beta}{\beta - n} \int_V \frac{((\nabla_t \phi)X, X)}{\varphi} \, d\mu_t + \frac{\beta^2}{\beta - n} \int_V \left(\|\nabla^2 u\|_{HS}^2 - \frac{1}{n}(\Delta u)^2 \right) \, d\mu_t \\
+ \frac{\beta}{|\beta - n|} \int_V \left(\sqrt{|\beta - n|} \Delta u - \text{sign}(\beta - n) \sqrt{\frac{n}{|\beta - n|}} \int_V \frac{\partial_t \varphi}{\varphi} \, d\mu_t \right)^2 \, d\mu_t \\
+ \frac{\beta^2}{\beta - n} \int_{\partial V} H(\nabla u, \nabla u) \, d\mu_t,
\]

(1.3)

where \(u \) is the solution of the equation

\[
L_t u = \frac{\partial_t \varphi(t, \cdot)}{\varphi(t, \cdot)} - \int_V \frac{\partial_t \varphi(t, x)}{\varphi(t, x)} \, d\mu_t(x) \quad \text{and} \quad \frac{\partial u(x)}{\partial \nu(x)} = 0, \quad x \in \partial V,
\]

(1.4)

and \(X \) denotes the vector field \((1, \beta \nabla u(x))\) in \(\mathbb{R}^{n+1} \).

Since \(\frac{\partial u(x)}{\partial \nu(x)} = 0 \) for every \(x \in \partial V \), hence \(\nabla u(x) \in T_x(\partial V) \) (the tangent space to \(\partial V \) at \(x \in \partial V \)). This implies that \(H(\nabla u, \nabla u) \) is well-defined on \(\partial V \). Theorem 1.1 is proved in the next section. We will need the following classical fact about the existence of the solution of the elliptic partial differential equation (see [7] and references therein):

Lemma 1.2. If \(V \) has \(C^\infty \)-smooth boundary \(\partial V \), and \(\varphi \) is \(C^\infty \)-smooth up to boundary of \(V \), then for any function \(f \in C^\infty(\nabla V) \), \(\int_V f(x) \, d\mu_t(x) = 0 \) there exists a function \(u \in C^\infty(\nabla V) \) such that \(L_t u = f \) and \(\frac{\partial u(x)}{\partial \nu(x)} = 0 \) on \(\partial V \).

Our second main theorem of this paper is the dimensional Prékopa’s theorem which is considered as a direct consequence of Theorem 1.1 and stated in the following theorem. The first part of this theorem concerns the convex case, and the second part concerns the concave case.

Theorem 1.3. Let \(\Omega \subset \mathbb{R}^{n+1} \) be a convex open subset, and let \(\varphi : \Omega \to \mathbb{R}_+ \) be a \(C^2 \)-smooth function up to boundary of \(\Omega \). For \(t \in \mathbb{R} \), we define the section \(\Omega(t) = \{ x \in \mathbb{R}^n : (t, x) \in \Omega \} \). Then the following assertions hold:

(i) If \(\varphi \) is convex on \(\Omega \), and \(\beta > n \), then the function \(\phi \) defined by

\[
\phi(t) = \left(\int_{\Omega(t)} \varphi(t, x)^{-\beta} \, dx \right)^{-\frac{1}{n-\beta}},
\]

is convex on \(\mathbb{R} \).

(ii) If \(\varphi \) is concave on \(\Omega \), and \(\beta > 0 \), then the function \(\phi \) defined by

\[
\phi(t) = \left(\int_{\Omega(t)} \varphi(t, x)^\beta \, dx \right)^{\frac{1}{n+\beta}},
\]

is concave on \(\mathbb{R} \).

Finally, we remark that Prékopa’s theorem can be deduced from Theorem 1.3 by letting \(\beta \) tend to infinity since
\[
\begin{align*}
\lim_{\beta \to \infty} (\beta - n)[\left(\int_{\Omega(t)} \left(1 + \frac{\varphi(t,x)}{\beta} \right) - \beta \right)^{\frac{1}{\beta - n}} - 1] &= -\log \left(\int_{\Omega(t)} e^{-\varphi(t,x)} \, dx \right), \\
\lim_{\beta \to \infty} (\beta + n)[\left(\int_{\Omega(t)} \left(1 - \frac{\varphi(t,x)}{\beta} \right) + \beta \right)^{\frac{1}{\beta + n}} - 1] &= \log \left(\int_{\Omega(t)} e^{-\varphi(t,x)} \, dx \right),
\end{align*}
\]

where \(a_+ = \max\{a, 0\} \) denotes the positive part of \(a \).

2. Proof of main theorems

We begin this section by giving the proof of Theorem 1.1. Our proof is direct and similar to the method used in [10].

Proof of Theorem 1.1. If \(\beta = 0 \), then (1.3) is evident since \(\phi \) is a constant function.

If \(\beta \neq 0 \), then (1.3) is equivalent to

\[
\frac{\beta - n \phi''(t)}{\beta \phi(t)} = \int_V \frac{\langle \nabla_x^2 \varphi, X \rangle}{\varphi} \, d\mu_t + \beta \int_V \left(\frac{\|\nabla^2 u\|_{HS}^2}{\varphi} - \frac{1}{n} \frac{(\Delta u)^2}{\varphi} \right) \, d\mu_t \\
+ \text{sign}(\beta - n) \int_V \left(\sqrt{\frac{\beta - n}{n}} \Delta u - \text{sign}(\beta - n) \sqrt{\frac{n}{\beta - n}} \int_V \frac{\partial \varphi}{\varphi} \, d\mu_t \right)^2 \, d\mu_t \\
+ \beta \int_{\partial V} \langle \nabla_x (\partial_t \varphi) \rangle \varphi \, d\mu_t. \tag{2.1}
\]

By a direct computation, we easily get

\[
\frac{\beta - n \phi''(t)}{\beta \phi(t)} = \int_V \frac{\partial^2 \varphi(t,x)}{\varphi(t,x)} \, d\mu_t(x) - (\beta + 1) \var_{\mu_t} \left(\frac{\partial \varphi(t, \cdot)}{\varphi(t, \cdot)} \right) \\
+ \frac{n}{\beta - n} \left(\int_V \frac{\partial \varphi(t, x)}{\varphi(t, x)} \, d\mu_t(x) \right)^2, \tag{2.2}
\]

where \(\var_{\mu_t}(f) := \int_V f^2 \, d\mu_t - (\int_V f \, d\mu_t)^2 \) denotes the variance of any function \(f \) on \(V \) with respect to \(\mu_t \).

Let \(u \in C^\infty(V) \) be the solution of Eq. (1.4). Since \(\mu_t \) is a probability measure on \(V \), then we have

\[
\var_{\mu_t} \left(\frac{\partial \varphi(t, \cdot)}{\varphi(t, \cdot)} \right) = -\int_V (L_t u)^2 \, d\mu_t + 2 \int_V \left(\frac{\partial \varphi}{\varphi} - \int_V \frac{\partial \varphi}{\varphi} \, d\mu_t \right) L_t u \, d\mu_t.
\]

Using integration by parts and the fact \(\int_V L_t u \, d\mu_t = 0 \), we get

\[
\int_V \left(\frac{\partial \varphi}{\varphi} - \int_V \frac{\partial \varphi}{\varphi} \, d\mu_t \right) L_t u \, d\mu_t = -\int_V \frac{\nabla_x (\partial \varphi), \nabla u}{\varphi} \, d\mu_t + \int_V \frac{\partial \varphi}{\varphi} \frac{\nabla_x \varphi, \nabla u}{\varphi} \, d\mu_t. \tag{2.3}
\]
It follows from integration by parts (see also the proof of Theorem 1 in [10]) that
\[
\int_V (L_t u)^2 \, d\mu_t = \int_V \|\nabla^2 u\|^2_{HS} \, d\mu_t + \beta \int_V \left\langle \frac{(\nabla_x^2 \varphi) \nabla u}{\varphi}, \nabla u \right\rangle \, d\mu_t
\]
\[- \beta \int_V \frac{\langle \nabla_x \varphi, \nabla u \rangle^2}{\varphi^2} \, d\mu_t - \int_{\partial V} \left\langle \frac{(\nabla_x^2 \varphi) \nabla u}{\varphi}, \nu \right\rangle \, d\mu_t.
\]
(2.4)

From (2.3) and (2.4), we get an expression of \(\text{Var}_{\mu_t} (\partial_t \varphi(t, \cdot))/\varphi(t, \cdot) \) as follows
\[
\text{Var}_{\mu_t} \left(\frac{\partial_t \varphi(t, \cdot)}{\varphi(t, \cdot)} \right) = -2 \int_V \frac{\langle \nabla_x (\partial_t \varphi), \nabla u \rangle}{\varphi} \, d\mu_t + 2 \int_V \frac{\partial_t \varphi \langle \nabla_x \varphi, \nabla u \rangle}{\varphi} \, d\mu_t
\]
\[- \int_V \|\nabla^2 u\|^2_{HS} \, d\mu_t - \beta \int_V \left\langle \frac{(\nabla_x^2 \varphi) \nabla u, \nabla u}{\varphi} \right\rangle \, d\mu_t
\]
\[+ \beta \int_V \frac{\langle \nabla_x \varphi, \nabla u \rangle^2}{\varphi^2} \, d\mu_t + \int_{\partial V} \left\langle \frac{(\nabla_x^2 \varphi) \nabla u}{\varphi}, \nu \right\rangle \, d\mu_t.
\]
(2.5)

It follows from the definition of \(L_t \) that
\[
\beta^2 \int_V \frac{\langle \nabla_x \varphi, \nabla u \rangle^2}{\varphi^2} \, d\mu_t = \int_V [(L_t u)^2 + (\Delta u)^2] \, d\mu_t - 2 \int_V \Delta u L_t u \, d\mu_t.
\]
(2.6)

Plugging (2.4) and (1.4) into (2.6), we obtain
\[
\beta (\beta + 1) \int_V \frac{\langle \nabla_x \varphi, \nabla u \rangle^2}{\varphi^2} \, d\mu_t = \int_V \|\nabla^2 u\|^2_{HS} \, d\mu_t + \int_V (\Delta u)^2 \, d\mu_t
\]
\[+ \beta \int_V \frac{\langle (\nabla_x^2 \varphi) \nabla u, \nabla u \rangle}{\varphi} \, d\mu_t - 2 \int_V \frac{\partial_t \varphi}{\varphi} \Delta u \, d\mu_t
\]
\[+ 2 \int_V \Delta u \left(\int_V \frac{\partial_t \varphi}{\varphi} \, d\mu_t \right) \, d\mu_t - \int_{\partial V} \left\langle \frac{(\nabla_x^2 \varphi) \nabla u, \nu}{\varphi} \right\rangle \, d\mu_t.
\]
(2.7)

Moreover, using again integration by parts, we have
\[
\int_V \frac{\partial_t \varphi}{\varphi} \left\langle \nabla_x \varphi, \nabla u \right\rangle \, d\mu_t = -\frac{1}{\beta} \int_V \frac{\partial_t \varphi(t, x)}{\varphi(t, x)} \langle \nabla_x (\varphi(t, x)^{-\beta}), \nabla u(x) \rangle \, dx
\]
\[= \frac{1}{\beta} \int_V \frac{\langle \nabla_x (\partial_t \varphi), \nabla u \rangle}{\varphi} \, d\mu_t - \frac{1}{\beta} \int_V \frac{\partial_t \varphi \langle \nabla_x \varphi, \nabla u \rangle}{\varphi} \, d\mu_t
\]
\[+ \frac{1}{\beta} \int \frac{\partial_t \varphi}{\varphi} \Delta u \, d\mu_t.
\]
(2.8)
Plugging (2.5), (2.7), and (2.8) into (2.2), we obtain
\[
\frac{\beta - n \phi''(t)}{\beta \phi(t)} = \int_V \frac{\nabla_{\beta}^2 \phi}{\phi} \, d\mu_t + 2\beta \int_V \frac{\nabla_x(\partial_t \phi), \nabla u}{\phi} \, d\mu_t + \beta^2 \int_V \frac{\langle \nabla_{\beta}^2 u, \nabla u \rangle}{\phi} \, d\mu_t
\]
\[+\beta \int_V \left\| \nabla^2 u \right\|_{HS}^2 \, d\mu_t - 2 \int_V \Delta u \left(\int_V \frac{\partial_t \phi}{\phi} \, d\mu_t \right) \, d\mu_t - \int_V (\Delta u)^2 \, d\mu_t
\]
\[+\frac{n}{\beta - n} \left(\int_V \frac{\partial_t \phi(t, x)}{\phi(t, x)} \, d\mu_t(x) \right)^2 - \beta \int_V \langle \nabla^2 u, \nabla u, \nu \rangle \, d\mu_t
\]
\[= \int_V \frac{\partial_t \phi}{\phi} \, d\mu_t + 2\beta \int_V \frac{\nabla_x(\partial_t \phi), \nabla u}{\phi} \, d\mu_t + \beta^2 \int_V \frac{\langle \nabla_{\beta}^2 u, \nabla u \rangle}{\phi} \, d\mu_t
\]
\[+\beta \int_V \left(\left\| \nabla^2 u \right\|_{HS}^2 - \frac{1}{n} (\Delta u)^2 \right) \, d\mu_t + \frac{\beta - n}{n} \int_V (\Delta u)^2 \, d\mu_t
\]
\[+2 \int_V \Delta u \left(\int_V \frac{\partial_t \phi}{\phi} \, d\mu_t \right) \, d\mu_t + \frac{n}{\beta - n} \left(\int_V \frac{\partial_t \phi(t, x)}{\phi(t, x)} \, d\mu_t(x) \right)^2
\]
\[= \beta \int_V \langle \nabla^2 u, \nabla u, \nu \rangle \, d\mu_t.
\]

To finish our proof, we need to treat the term on boundary in (2.9). Since \(\frac{\partial u}{\partial \nu} = 0 \) on \(\partial V \), then \(\nabla u(x) \in T_x(\partial V) \) for every \(x \in \partial V \), and
\[
\langle \nabla^2 u(x), \nabla u(x), \nu(x) \rangle = -II_x(\nabla u(x), \nabla u(x)), \quad x \in \partial V.
\]
Combining (2.9) and (2.10), and denoting \(X(t, x) = (1, \beta \nabla u(x)) \) with \((t, x) \in U \times V \), we get (2.1). Then Theorem 1.1 is completely proved. \(\square \)

In the following, we use Theorem 1.1 to prove the dimensional Prékopa’s theorem (Theorem 1.3).

Proof of Theorem 1.3. By using an approximation argument, we can assume that \(\Omega \) is bounded and \(\varphi \) is \(C^\infty \)-smooth up to boundary of \(\Omega \).

Part (i): We first prove when \(\Omega = U \times V \) with \(U \subset \mathbb{R} \), and \(V \subset \mathbb{R}^n \) has \(C^\infty \)-smooth boundary \(\partial V \). Since \(\beta > n \), then applying Theorem 1.1, we have
\[
\frac{\beta - n \phi''(t)}{\beta \phi(t)} = \int_V \langle \nabla_{\beta}^2 u, X, X \rangle \, d\mu_t + \beta \int_V \left(\left\| \nabla^2 u \right\|_{HS}^2 - \frac{1}{n} (\Delta u)^2 \right) \, d\mu_t
\]
\[+\beta \int_V \left(\sqrt{\frac{\beta - n}{n}} \Delta u - \sqrt{\frac{n}{\beta - n}} \int_V \frac{\partial_t \phi}{\phi} \, d\mu_t \right)^2 \, d\mu_t
\]
\[+\beta \int_{\partial V} II(\nabla u, \nabla u) \, d\mu_t,
\]
where \(II \) denotes the second fundamental form of \(\partial V \), and \(u \) is the \(C^\infty \)-smooth solution of Eq. (1.4) with \(L_t = \Delta - \beta \langle \nabla x \varphi, \cdot \rangle \varphi \), and \(X \) denotes the vector field \((1, \beta \nabla u) \) in \(\mathbb{R}^{n+1} \).
We have \(II_x(\nabla u(x), \nabla u(x)) \geq 0 \), \(x \in \partial V \) because of the convexity of \(V \). By the Cauchy–Schwartz inequality, we have

\[
\|\nabla^2 u\|_{HS}^2 \geq \frac{1}{n} (\Delta u)^2.
\]

As a consequence of the convexity of \(\varphi \), we obtain \(\nabla^2 \varphi \geq 0 \) in the sense of symmetric matrix. All the integrations on the right hand side of (2.11) hence are nonnegative. This implies that \(\phi'' \geq 0 \), or \(\phi \) is convex.

In the general case, there exists an increasing sequence of \(C^\infty \)-smooth open convex \(\Omega_k \) such that

\[
\Omega_k = \{(t, x) : \rho_k(t, x) < 0\},
\]

where \(\rho_k \in C^\infty(\mathbb{R}^{n+1}) \), \(k = 1, 2, \ldots \), are convex functions, and \(\Omega = \bigcup_k \Omega_k \). Hence, by using an approximation argument, we can assume that

\[
\Omega = \{(t, x) : \rho(t, x) < 0\}
\]

with a \(C^\infty \)-smooth convex function \(\rho \), and \(\varphi \) is defined in a neighborhood of \(\Omega \). Since the convexity is local, it is enough to prove that \(\phi \) is convex in a neighborhood of each \(t \). Fix \(t_0 \), choose a small enough neighborhood \(U \) of \(t_0 \) such that

\[
(U \times \mathbb{R}^n) \cap \overline{\Omega} \subset U \times V
\]

and \(\rho, \varphi \) are defined in \(U \times V \), where \(V \) is convex subset of \(\mathbb{R}^n \) and has \(C^\infty \)-smooth boundary \(\partial V \). Define \(\rho_0 = \max\{\rho, 0\} \), then \(\rho_0 \) is a convex function in \(U \times V \). With \(N > 0 \), we know that the function

\[
\phi_N(t) = \left(\int_V (\varphi(t, x) + N \rho_0(t, x))^{-\beta} \, dx \right)^{-\frac{1}{\beta}}
\]

is convex in \(U \). Moreover, \(\phi_N(t) \to \phi(t) \) in \(U \) as \(N \) tends to infinity, then \(\phi \) is convex in \(U \). This finishes the proof of the convexity of \(\phi \).

Part (ii): As explained in the proof of the part (i) above, it suffices to prove the part (ii) in the case \(\Omega = U \times V \) where \(U \subset \mathbb{R} \) and \(V \subset \mathbb{R}^n \) are bounded open convex subsets, and \(\partial V \) is \(C^\infty \)-smooth. Since \(\beta > 0 \), by applying Theorem 1.1 to \(-\beta \) instead of \(\beta \), we have

\[
\frac{\beta + n}{\beta} \phi''(t) = \int_V \frac{((\nabla^2 (t,x)\varphi) X, X)}{\varphi} \, d\mu_t - \beta \int_V \left(\|\nabla^2 u\|_{HS}^2 - \frac{1}{n} (\Delta u)^2 \right) \, d\mu_t
\]

\[
- \int_V \left(\sqrt{\frac{\beta + n}{n}} \Delta u + \sqrt{\frac{n}{\beta + n}} \int_V \frac{\partial_t \varphi}{\varphi} \, d\mu_t \right)^2 \, d\mu_t
\]

\[
- \beta \int_{\partial V} II(\nabla u, \nabla u) \, d\mu_t.
\]

Using the arguments in the proof of part (i) and the concavity of \(\varphi \), we get \(\phi''(t) \leq 0 \) from (2.12), or \(\phi \) is concave. \(\square \)
Acknowledgment

The author would like to sincerely thank anonymous referee for many useful and valuable comments which improved the quality of this paper.

References

[1] S. Artstein, K. Ball, F. Barthe, A. Naor, Solution of Shannon’s problem on the monotonicity of entropy, J. Amer. Math. Soc. 17 (2004) 975–982.
[2] K. Ball, F. Barthe, A. Naor, Entropy jumps in the presence of a spectral gap, Duke Math. J. 119 (1) (2003) 41–63.
[3] B. Berndtsson, Prékopa’s theorem and Kiselman’s minimum principle for plurisubharmonic functions, Math. Ann. 312 (1998) 785–792.
[4] H.J. Brascamp, E.H. Lieb, On extensions of the Brunn–Minkowski and Prékopa–Leindler theorems, including inequalities for log concave functions, and with an application to the diffusion equation, J. Funct. Anal. 22 (4) (1976) 366–389.
[5] D. Cordero-Erausquin, On Berndtsson’s generalization of Prékopa’s theorem, Math. Z. 249 (2005) 401–410.
[6] R.J. Gardner, The Brunn–Minkowski inequality, Bull. Amer. Math. Soc. 39 (3) (2002) 355–405.
[7] A.V. Kolesnikov, E. Milman, Poincaré and Brunn–Minkowski inequalities on weighted Riemannian manifolds with boundary, arXiv:1310.2526 [math.DG].
[8] M. Ledoux, The Concentration of Measure Phenomenon, American Mathematical Society, Providence, RI, 2001.
[9] B. Maurey, Inégalités de Brunn–Minkowski–Lusternik, et autres inégalités géométriques et fonctionnelles, in: Séminaire Bourbaki, Novembre 2003.
[10] V.H. Nguyen, Dimensional variance inequalities of Brascamp–Lieb type and a local approach to dimensional Prékopa’s theorem, J. Funct. Anal. 266 (2014) 931–955.
[11] A. Prékopa, On logarithmic concave measures and functions, Acta Sci. Math. (Szeged) 34 (1973) 335–343.