Neural Program Repair:
Systems, Challenges and Solutions

Wenkang Zhong, Chuanyi Li, Jidong Ge, Bin Luo
State Key Laboratory for Novel Software Technology
Nanjing University
What is NPR (Neural Program Repair)?

• APR (Automated Program Repair) aims to fix bugs automatically.
• NPR is an emerging direction of APR that apply neural models.
• Generally, NPR frames APR as a bug-to-patch translation.

```java
static Map<Object, Object> getRegistry()
{
    return REGISTRY.get() != null?
        REGISTRY.get() : Collections.<Object, Object>emptyMap();
}
```

```
static Map<Object, Object> getRegistry()
{
    return REGISTRY.get();
}
```

end-to-end
Why focusing on NPR?

Recently, more and more researchers are paying attention to NPR.

• Advantages of NPR techniques
 • Remarkable performance
 • Accessible resources for training

However, understanding NPR systems is not easy.

• Requires expertise in both APR and Deep Learning field
What we provide in this paper

• An in-detail review of previous NPR systems
• To make NPR systems more understandable,
 • decompose NPR systems into a 4-phase pipeline.
• To mine potential improvements,
 • analyze design choices on each phase.
 • identify three challenges, discuss the current solutions.
NPR Systems – Included Studies

Time	System	Publication Channel	Evaluated Language
2020	ICSE	DLFix	Java
2021	ICSE	CURE	Java
2022	ICSE	RewardRepair	Java
2021	PMLR	TFix	JavaScript
2020	ICML	DrRepair	C, C++
2019	TOSEM	Tufano	Java
2019	TOSEM	CODIT	Java
2019	TSE	SequenceR	Java
2020	ICLR	Hoppity	JavaScript
2019	ICLR	Vasic	C#, python
2020	ASE	PatchEdits	Java
2020	ISSTA	CoCoNut	Java, C, Python
2021	MSR	CodeBERT-ft	Java
2021	ACL(Findings)	Grammar-Transformer	Java
2017	AAAI	DeepFix	C
2021	FSE	Recoder	Java

16 systems in total

Compile Error: 2
Common Error: 14

Java: 11
C: 3
JavaScript: 2
Python: 2
C#: 1
C++: 1
Generally, NPR approaches can be decomposed into 4 phases:

- **Preprocessing**
 - transform original programs into forms that are acceptable by neural models

- **Input Representation**
 - encode processed input into vectors

- **Output Searching**
 - estimate the probability of patches

- **Patch Ranking**
 - reduce the size of candidates
NPR Systems – Design Space

Preprocessing
- Context Extraction
 - Context Scope
- Code Tokenization
 - Tokenize Type
- Code Abstraction
 - Renaming Scope
- Feature Construction
 - Feature Content

Input Representing
- Encoding
 - Encoder Architecture

Output Searching
- Decoding
 - Output Type
 - Decoder Architecture

Patch Ranking
- Candidates Ranking
 - Rank Strategy

Lexical or BPE
Summary of Design Choices

System	Context	Abstraction	Tokenization	Input	Encoder	Decoder	Output	Rank Strategy
CoCoNut	Method	Literal	Lexical+Camel	Code	FConv-context	FConv	Code	Beam Search
CODIT	Node Ancestor \	Lexical	Code	BiLSTM	BiLSTM+copy	Code	Code	Beam Search
Cure	Method	Literal	Camel+BPE	Code	PT-GPT+Fconv-context	PT-GPT+Fconv	Code	Code-aware
CodeBERT	Node Ancestor \	\	BPE	Code	CodeBERT	Transformer Dec.	Code	Beam Search
DeepFix	Method	\	Lexical	Code	GRU	GRU	Code	Beam Search
DLFix	Method	\	Lexical	AST	Tree-LSTM	Tree-LSTM	Node	DL-based
DrRepair	Method	\	Lexical	Code, NL	LSTM	LSTM+copy	Code	Beam Search
Hoppity	Method	\	Lexical	Graph	GNN	Edit Operator	Node Edit	Beam Search
PatchEdits	Line	\	BPE	Code	Transformer Enc.	Transformer Dec. +copy	Code Edit	Beam Search
Recoder	Method	Identifier	Lexical	Code, AST	Hybrid Reader	Modified TreeGen	Node Edit	Beam Search
RewardRepair	Class	\	BPE	Code	PT-T5	PT-T5	Code	Beam Search
Tufano	Method	Identifier,Literal	Lexical	Code	BiLSTM	BiLSTM	Code	Beam Search
SequenceR	Class	\	Lexical	Code, NL	BiLSTM	BiLSTM+copy	Code	Beam Search
TFix	Neighbor Lines \	\	BPE	Code, NL	PT-T5	PT-T5	Code	Beam Search
Tang	Method	\	Lexical	Code	Transformer Enc.	Grammar Decoder	CFG Rule	Beam Search
Vasic	Method	\	Lexical	Code	LSTM+copy	Linear	Positon+Code	Beam Search
NPR Systems – Challenges

What are motivations of various design choices?

Limit use of code-related information

Compared with natural languages, programming languages have richer information, such as the AST, Data Flow Graph, Control Flow Graph......

The OOV problem

NPR systems use a pre-defined vocab

Programming Languages have many natural elements that can be named by programmers such identifiers and literals

Large search space

Suppose: a 5000-word vocab, a 15-word output

Search space: 5000^{15}
Limit use of code-related information

The OOV problem

Large search space

Challenges

Influenced phases

Preprocessing

Input Representing

Preprocessing

Output Searching

Patch Ranking

Current solutions

add the context of the buggy program as inputs

extract additional features

use structural encoders (tree-based or graph-based)

renaming identifiers and literals

use BPE or Camel-aware tokenization

copy mechanism

code-aware filter or DL-based filter
Limit use of code-related information

Finding 1: The introduction of grammar rules is helpful for generating compilable patches.

Example: CODIT, Recoder, Tang

Limitation: Existing methods of introducing grammar rules are to model the input and output as CFG rules, not a human-like way.

Future direction: Let the model learn how to follow the syntax rules when outputting code tokens.
Limit use of code-related information

Finding 2: Structural models can be more precise at encoding structural inputs such as the AST.

Example: DLFix, Recoder, Hoppity

Limitation: Using structural models may decrease the applicability

Future direction: Investigating the performance differences between structured input and sequential input.
NPR Systems – Discussion of current solutions

The OOV problem

Finding 1: Abstraction of source programs can efficiently reduce the size of the vocabulary, thus mitigating the OOV problem.

Limitation: Abstraction of codes may decrease the recall rate of the NPR model.

Future Direction: More balanced abstraction methods

```
stream.flush();
stream.close();
```

......

```
VAR_1.METHOD_1;
VAR_1.METHOD_2;
```

......

What if the NPR system outputs a METHOD_3?

Identifier	ID
flush()	METHOD_1
close()	METHOD_2

Identifier-ID map
The OOV problem

Finding 2: BPE-based tokenization also works for mitigating the OOV problem.
Limitation: BPE produces long inputs and long outputs, which are not handled well by neural network models.
Future Direction: A combination of word-level tokenization and BPE

stream.flush(); → str ea m . flu sh (); → Unknown words ▼

BPE

Performance when dealing with long inputs ▼

str ea m . flu sh (); length: 9
stream . flush (); length: 6
Large search space

Finding 1: The number of candidates is not the more, the better.

Reason: Since NPR models are a kind of probability-estimation model, a larger candidate set will have a higher probability to contain a correct patch. However, the time and cost price of large candidate sets are usually ignored.

Future Direction: Investigating the performance-cost balance from an empirical perspective
Conclusion

• A decompose of previous NPR systems.
• An exploration of the design space.
• A summary of major challenges.
• Discussions of current solutions and possible improvements.

Future Work

• More rules when generating patches.
• Explicable NPR models.
• Multi-perspective evaluation.
• Thank you!

Q&A