Homogeneous Equations of Algebraic Petri Nets

Marvin T riebel1 and Jan Sürmeli2

1 Humboldt-Universität zu Berlin
triebel@hu-berlin.de
2 Humboldt-Universität zu Berlin
suermeli@hu-berlin.de

Abstract

Algebraic Petri nets are a formalism for modeling distributed systems and algorithms, describing control and data flow by combining Petri nets and algebraic specification. One way to specify correctness of an algebraic Petri net model N is to specify a linear equation E over the places of N based on term substitution, and coefficients from an abelian group G. Then, E is valid in N iff E is valid in each reachable marking of N. Due to the expressive power of Algebraic Petri nets, validity is generally undecidable. Stable linear equations form a class of linear equations for which validity is decidable. Place invariants yield a well-understood but incomplete characterization of all stable linear equations. In this paper, we provide a complete characterization of stability for the subclass of homogeneous linear equations, by restricting ourselves to the interpretation of terms over the Herbrand structure without considering further equality axioms. Based thereon, we show that stability is decidable for homogeneous linear equations if G is a cyclic group.

1998 ACM Subject Classification F.3.1 Specifying and Verifying and Reasoning about Programs, D.3.1 Formal Definitions and Theory

Keywords and phrases Algebraic Petri Nets, Invariants, Linear Equations, Validity, Stability

1 Introduction

The formalism of algebraic Petri nets (APNs) permits to formally model both control flow and data flow of distributed systems and algorithms, extending Petri nets with concepts from algebraic specification, namely a signature together with equality axioms. Thus, APNs combine the benefits of Petri nets, such as explicit modeling of concurrency and options for structural analysis, with the ability to describe data objects on a freely chosen level of abstraction. The price to pay for this expressive power is that many important behavioral properties, such as reachability of a certain marking, are undecidable. However, there are behavioral properties that can be proven based on structural properties, such as invariants.

In this paper, we study a particular class of behavioral properties, namely linear equations. Intuitively, a linear equation E formalizes a linear correlation between the tokens on different places, requiring that each reachable marking satisfies E. More formally, an APN N is defined over a signature Σ, and the tokens are ground terms over Σ. A linear equation E has the form $\sum_{p \in P} \gamma_p \kappa_p = b_1 \mu_1 + \ldots + b_n \mu_n$, where P is the set of places, each γ_p and b_i are coefficients stemming from an abelian group, each κ_p is a term over Σ, and each μ_i is a ground term over Σ. A marking satisfies E if substituting each variable in each κ_p with the tokens on p yields an equality. Validity of E in N requires that each reachable marking of N satisfies E. Case studies have shown that this class of properties permits to formalize important behavioral properties of distributed systems and algorithms. Unfortunately, verifying the

* This work was partially funded by the DFG Graduiertenkolleg 1651 (SOAMED).
validity of \(E \) in \(N \) is generally infeasible. However, if \(E \) is stable then validity of \(E \) becomes decidable. Stability requires the preservation of \(E \) along all—not necessarily reachable—steps, that is, if a marking satisfies \(E \), then firing a transition yields a marking satisfying \(E \). Now, if \(E \) is stable, validity of \(E \) coincides with the initial marking satisfying \(E \).

Place invariants yield a subclass of stable linear equations. Intuitively, a place invariant is a solution of a homogeneous system of linear equations given by the structure of \(N \), providing the coefficients \(\gamma_p \) and terms \(\kappa_p \)—the right hand side can be chosen arbitrarily. This characterization is known to be decidable but incomplete, that is, there are stable linear equations, such that the left hand side is not given by a place invariant. A decidable, complete characterization of stability—or an undecidability proof—is still an open problem.

In this paper, we contribute to this field of study as follows:

1. We show the undecidability of validity of homogeneous equations.
2. We provide a complete characterization of stability, restricting ourselves to homogeneous linear equations, that is, \(n = 1 \) and \(b_1 = 0 \), and the interpretation of terms in the Herbrand structure, that is, assuming coincidence of syntax and semantics of a term, without considering further equality axioms for terms.
3. We show that our characterization is decidable if the coefficients stem from a cyclic group.

Section 2 recalls required notions for equations of algebraic Petri nets. We summarize our main theorems in Section 3 and prove these theorems in Section 4 and Section 5. We discuss related work in Section 6 and conclude in Section 7. Missing proofs can be found in Section A of the appendix.

2 Formalization

2.1 Preliminaries

We write \(\mathbb{Z} \) for the set of all integers, and \(\mathbb{N} \) denotes the set \(\{0, 1, 2, \ldots\} \) of natural numbers including 0. Let \(z \in \mathbb{Z} \). Then, \(|z|\) denote the absolute value.

2.1.1 Polynomials over Abelian Groups

Polynomials over abelian groups serve as a common algebraic base to formalize APNs and linear equations of APNs.

> **Definition 1** (Abelian Group, Scalar Product). An abelian group \((G, \oplus)\) consists of a set \(G \), and an associative, commutative, binary operation \(\oplus \) on \(G \) with an identity \(0_G \), and inverses \(\ominus g \) for each \(g \in G \). Let \(z \in \mathbb{Z} \) and \(a \in G \). We define the scalar product \(za \in G \) by

\[
za := \begin{cases}
\bigoplus_{i=0}^{z} a & \text{if } z \geq 0 \\
\ominus (\ominus za) & \text{otherwise.}
\end{cases}
\]

\((G, \oplus)\) is cyclic iff there exists \(a \in G \), such that \(G = \{za \mid z \in \mathbb{Z}\} \).

Whenever clear from context, we simply write \(G \) for \((G, \oplus)\). Examples for abelian groups are the real numbers, rational numbers, integers, and the additive group \(\mathbb{Z}/n\mathbb{Z} \) of integers modulo some \(n \in \mathbb{N} \). The group \(\mathbb{Z} \) is infinite and cyclic, the group \(\mathbb{Z}/n\mathbb{Z} \) is finite and cyclic. In contrast to that, the group of rational numbers is not cyclic.
> **Definition 2** (Series, Polynomial, Monomial, Empty Polynomial). Let M be a set, G be an abelian group, and $f : M \to G$ be a function. Then, f is a (linear) series over M and G with support $\text{supp}(f) := \{ m \in M \mid f(m) \neq 0_G \}$. If $\text{supp}(f)$ is finite, then f is a polynomial. We write $G(M)$ for the set of all polynomials over M and G. If $\text{supp}(f)$ is singleton, f is a monomial, and we denote f by (m, a) where $\text{supp}(f) = \{ m \}$ and $f(m) = a$. If $\text{supp}(f) = \emptyset$, then f is empty, and we denote f by 0_G.

We lift \oplus and the scalar product to $G(M)$ by pointwise application:

> **Definition 3** (Addition of Polynomials). Let M be a set and G be an abelian group. For $p_1, p_2 \in G(M)$, $m \in M$, and $z \in \mathbb{Z}$, we define the polynomials $p_1 \oplus p_2$ and zp_1 over M and G by

$$
(p_1 \oplus p_2)(m) := p_1(m) \oplus p_2(m),
$$

$$
(zp_1)(m) := zp_1(m).
$$

We lift associative binary operations from M to $G(M) \times \mathbb{Z}(M)$ by applying the Cauchy product:

> **Definition 4** (Cauchy Product). Let \odot be an associative binary operation on a set M, G be an abelian group, $p_1 \in G(M)$, and $p_2 \in \mathbb{Z}(M)$. We define the series $p_1 \odot p_2$ over M and G by

$$
(p_1 \odot p_2)(m) := \bigoplus_{m = m_1 \odot m_2 \in G} Z(\mathbb{Z}) \left(\sum_{e \in \mathbb{Z}} p_2(2n) p_1(1m) \right).
$$

Because p_1 and p_2 are polynomials, the set $\text{supp}(p_1 \odot p_2) = \{ m_1 \odot m_2 \mid m_1, m_2 \in G, p_1(1m) \neq 0_G, p_2(2n) \neq 0 \}$ is finite, and thus $p_1 \odot p_2$ is again a polynomial over M and G.

2.1.2 Terms

For this paper, we fix a set of variables VAR, a non-empty, finite index set $\llbracket \rrbracket$, and a signature $\Sigma = (f_i, a_i)_{i \in \llbracket}$ consisting of $\llbracket \rrbracket$ distinct function symbols f_i with respective arity a_i.

> **Definition 5** (Term). For a set $V \subseteq \text{VAR}$, the set Θ_V of terms over variables V is the smallest set satisfying the following conditions:

1. $V \subseteq \Theta_V$.
2. Let $i \in \llbracket$, and $\theta_1, \ldots, \theta_n \in \Theta_V$. Then, $f_i(\theta_1, \ldots, \theta_n) \in \Theta_V$.

The elements of Θ_\emptyset are called ground terms.

As usual, if $a_i = 0$, we abbreviate $f_i(\cdot)$ as f_i. We abbreviate the set Θ_{VAR} of all terms as Θ.

A substitution maps each variable to a term. A substitution is an assignment if it maps each variable to a ground term.

> **Definition 6** (Substitution, Assignment). Every function $\sigma : \text{VAR} \to \Theta$ is a substitution. Let $\theta \in \Theta$. The term $\theta \sigma$ is defined by:

$$
\theta \sigma := \begin{cases}
\sigma(\theta) & \text{if } \theta \in \text{VAR} \\
 f_i(\theta_1 \sigma, \ldots, \theta_n \sigma) & \text{if } \theta = f_i(\theta_1, \ldots, \theta_n), i \in \llbracket.
\end{cases}
$$

If $\sigma(x) \in \Theta_\emptyset$ for each $x \in \text{VAR}$, then σ is an assignment, and we also write $\llbracket \theta \rrbracket_\sigma$ instead of $\theta \sigma$.

Obviously, if σ is an assignment, then $[\theta]_\sigma \in \Theta_\sigma$ for all $\theta \in \Theta$.

Unification is the problem of applying a substitution to terms, such that the resulting terms become identical.

- **Definition 7** (Unification problem, unifier, solvable). A unification problem U is a finite subset $\{(\theta_1, \theta'_1), \ldots, (\theta_n, \theta'_n)\}$ of $\Theta \times \Theta$, also denoted by $\{\theta_1 \equiv \theta'_1, \ldots, \theta_n \equiv \theta'_n\}$. A substitution σ is a unifier for U iff for all $1 \leq i \leq n$: $\theta_i \sigma = \theta'_i \sigma$. If there exists a unifier for U, then U is solvable.

It is known that every solvable unification problem has a most general unifier (up to variants) that subsumes all other unifiers:

- **Lemma 8.** Let U be a solvable unification problem. Then, there exists a unifier $\hat{\sigma}$ for U, such that: For each unifier σ for U, there exists a substitution σ' with $\sigma(x) = \hat{\sigma}(x)\sigma'$ for all $x \in \text{VAR}$.

We define a product on terms by means of term substitution: The product of θ and θ' is defined by substituting every occurrence of any variable in θ by θ'.

- **Definition 9** (Term Product). Let $\theta, \theta' \in \Theta$ be terms, and σ be the substitution with $\sigma(x) = \theta$ for all $x \in \text{VAR}$. Then, $\theta \odot \theta := \theta \sigma$ is the product of θ and θ'.

We observe that \odot is associative. If $\theta \in \Theta_\sigma$, then $\theta \odot \theta = \theta$.

We lift substitutions from terms to polynomials over terms and abelian groups by pointwise substitution and subsequent “simplification” of the polynomial:

- **Definition 10** (Substitutions in Polynomials over Terms). Let G be an abelian group, and $p \in G(\Theta)$. Let σ be a substitution. We define $p \sigma \in G(\Theta)$ by

$$p\sigma(\theta) := \bigoplus_{\theta = \theta'} p(\theta').$$

If σ is an assignment, we also write $[p]_\sigma$ instead of $p\sigma$.

We observe $(\theta \odot \theta')\sigma = \theta \odot \theta' \sigma$ for all $\theta, \theta' \in \Theta$, and $(p_1 \odot p_2)\sigma = p_1 \odot p_2 \sigma$ for all $p_1, p_2 \in G(\Theta)$. Moreover, if σ is an assignment then $\text{supp}([p]_\sigma) \subseteq \Theta_\sigma$.

2.1.3 Vectors

In this paper, a P-vector is a mapping from a set P into polynomials over terms and an abelian group.

- **Definition 11** (P-vector). Let P be a set, (G, \oplus) be an abelian group, and $\hat{k} : P \to G(\Theta)$. Then, \hat{k} is a P-vector over G. We write $G(\Theta)^P$ for the set of all P-vectors over G. If $\hat{k}(p)$ is a monomial for each $p \in P$, then \hat{k} is simple. If $G = \mathbb{Z}$, and $\hat{k} \geq 0 (\hat{k} \leq 0)$, then \hat{k} is semi-positive (semi-negative).

In order to simplify notation, we lift the basis notions from polynomials to P-vectors:

- **Definition 12** (P-vectors: Support, emptiness, addition, Cauchy product, and assignments). Let P be a set, (G, \oplus) be an abelian group, $\hat{k}, \hat{k}_1, \hat{k}_2 \in G(\Theta)^P$, and $\hat{k}' \in Z(\Theta)^P$.

$\text{supp}(\hat{k}) := \bigcup_{p \in P} \text{supp}(\hat{k}(p))$ is the support of \hat{k}.

If $\hat{k}(p) = 0_G$ for all $p \in P$, then \hat{k} is the empty P-vector, also denoted by 0_G.

We define $(\hat{k}_1 \oplus \hat{k}_2)(p) := \hat{k}_1(p) \oplus \hat{k}_2(p)$ for all $p \in P$,.
2.1.4 Algebraic Petri Nets

An algebraic Petri net structure consists of places P and transitions T. A place $p \in P$ describes a token store, and a transition t is given by two semi-positive P-vectors \vec{t}^- and \vec{t}^+, describing token consumption and production, respectively.

Definition 13 (Transition, algebraic Petri net structure). Let $P \not\models \emptyset$ be a set. A transition $t = (\vec{t}^-; \vec{t}^+)$ over P consists of two semi-positive simple P-vectors \vec{t}^- and \vec{t}^+ over \mathbb{Z}. We define the effect $\vec{t}^\Delta \in \mathbb{Z}(\Theta)^P$ of t by $\vec{t}^\Delta := -\vec{t}^- + \vec{t}^+$. Let T be a set of transitions over P. Then, (P, T) is an algebraic Petri net structure (APNS). We write $\text{pre}(t)$ for $\{p \in P \mid \vec{t}^-(p) > 0\}$.

Figure 2 shows an example of an APNS S_1 with transition t, places A, B, C, D and E and signature using two unary function symbols f and \hat{g} and the constant c. Transition t consists of $\vec{t}^- = (\hat{g}(W), f(Y), W, 2Z, 0)$ and $\vec{t}^+ = (0, 0, 0, 0, f(W))$.

A token is a ground term, a marking maps each place to a multiset of tokens:

Definition 14 (Marking). Let (P, T) be an APNS. Let $\vec{m} \in \mathbb{Z}(\Theta)^P$ be a semi-positive P-vector over \mathbb{Z} with $\text{supp}(\vec{m}) \subseteq \Theta_G$. Then, \vec{m} is a marking of (P, T). We write $\mathbb{Z}(\Theta_G)^P_\geq$ for the set of all markings of (P, T).

Algebraic Petri net semantics are defined by the notion of a step based on the effect of a transition, and the notion of a firing mode:

Definition 15 (Step). Let (P, T) be an APNS, $\vec{m}, \vec{m}' \in \mathbb{Z}(\Theta_G)^P_\geq$, $t \in T$, and σ be an assignment, such that $\vec{m} \geq [\vec{t}^-]_\sigma$ and $\vec{m}' = \vec{m} + [\vec{t}^\Delta]_\sigma$. Then, \vec{m} enables transition t in firing mode σ, denoted by $\vec{m} \{[\sigma] t \}$, and $(\vec{m}, t, \sigma, \vec{m}')$ is a step of (P, T), denoted by $\vec{m} \{[\sigma] t \} \vec{m}'$.

We remark that our definition of enabling does not consider additional equality axioms; permitting such axioms is left for future work.

An algebraic Petri net APN is an APNS together with an initial marking. Subsequent steps from the initial marking are runs, the resulting markings are reachable:
Definition 16 (Algebraic Petri net, run, reachable). Let \((P,T)\) be an APNS, and \(\vec{m}_0 \in \mathbb{Z}\langle \Theta \rangle_{\mathbb{G}}\). Then, \((P,T,\vec{m}_0)\) is an algebraic Petri net (APN). Let \(\vec{m}_0[t_1 \sigma_1] \vec{m}_1 \cdots \vec{m}_{n-1}[t_n \sigma_n] \vec{m}_n\) be a sequence of steps. Then, \((t_1, \sigma_1) \cdots (t_n, \sigma_n)\) is a run of \((P,T,\vec{m}_0)\) and \(\vec{m}_n\) is reachable in \((P,T,\vec{m}_0)\).

2.2 Homogeneous Linear Equations of APNs

A homogeneous \((linear)\) \(P\)-equation over a set \(P\) of places has the form \(\sum_{p \in P} \gamma_p \kappa_p = 0_\mathbb{G}\), where \(\gamma_p, \kappa_p \in \mathbb{G}\) \((p \in P)\) are elements of an abelian group \(\mathbb{G}\) with \(0_\mathbb{G}\) as neutral element and each \(\kappa_p\) \((p \in P)\) is a term. Formally, a homogeneous \(P\)-equation is given by a simple \(P\)-vector.

Definition 17 (Homogeneous \(P\)-equation). Let \(P\) be a set, \(\mathbb{G}\) be an abelian group and \(\vec{k} \in \mathbb{G} \langle \Theta \rangle^P\) be simple. Then, \(\vec{k}\) induces a homogeneous \(P\)-equation over \(\mathbb{G}\).

Figure 2 shows two equations \(E_1\) and \(E_2\). \(E_1\) is over the group of integer \(\mathbb{Z}\) and \(E_2\) is over the group of integers modulo 7, \(\mathbb{Z}/7\mathbb{Z}\). The table shows the simple \(P\)-vectors. For instance, \(k_1(\mathbb{A}) \odot X_\mathbb{A}\) is the monomial \((f(\mathbb{A}), 4)\).

A marking \(\vec{m}\) satisfies \(E\) if replacing \(P\) by \(\vec{m}\) yields an identity. A homogeneous \(P\)-equation is valid in an APN if it is satisfied by each reachable marking.

Definition 18 (Satisfaction, validity). Let \((P,T)\) be an APNS, \(\vec{m}\) be a marking, \(\mathbb{G}\) be an abelian group, and \(E\) be a homogeneous \(P\)-equation over \(\mathbb{G}\) given by the simple \(P\)-vector \(\vec{k} \in \mathbb{G} \langle \Theta \rangle^P\). If \(\vec{k} \odot \vec{m} = 0_\mathbb{G}\), then \(\vec{m}\) satisfies \(E\). If each reachable marking of \((P,T,\vec{m})\) satisfies \(E\), then \(E\) is valid in \((P,T,\vec{m})\).

A homogeneous \(P\)-equation is stable if satisfaction is preserved by all steps:

Definition 19 (Stability). Let \((P,T)\) be an APNS, \(t \in T\), \(\mathbb{G}\) be an abelian group, and \(E\) be a homogeneous \(P\)-equation over \(\mathbb{G}\). Then, \(E\) is \(t\)-stable in \((P,T)\) iff for each step \(\vec{m} \langle t \sigma \rangle \vec{m}'\) of \((P,T)\): If \(\vec{m}\) satisfies \(E\), then \(\vec{m}'\) satisfies \(E\).

Stability together with satisfaction in the initial marking yields validity:

Lemma 20. Let \((P,T,\vec{m})\) be an APN, \(\mathbb{G}\) be an abelian group, and \(E\) be a homogeneous \(P\)-equation over \(\mathbb{G}\) given by a simple \(P\)-vector \(\vec{k} \in \mathbb{G} \langle \Theta \rangle^P\). If \(E\) is \(t\)-stable for each \(t \in T\), and \(\vec{m}\) satisfies \(E\), then \(E\) is valid in \((P,T,\vec{m})\).

A place invariant \(\vec{k}\) is a simple \(P\)-vector such that for each \(t \in T\), we have \(\vec{k} \odot \vec{t}_\mathbb{A} = 0_\mathbb{G}\). Then, the homogeneous equation induced by \(\vec{k}\) is stable:

Lemma 21. Let \((P,T)\) be an APN, \(\mathbb{G}\) be an abelian group, and \(E\) be a homogeneous \(P\)-equation over \(\mathbb{G}\) given by a simple \(P\)-vector \(\vec{k} \in \mathbb{G} \langle \Theta \rangle^P\). Let \(t \in T\) and \(\vec{k} \odot \vec{t}_\mathbb{A} = 0_\mathbb{G}\). Then, \(E\) is \(t\)-stable in \((P,T)\).

3 Contributions

We summarize our contributions in the form of two main theorems which we prove in the subsequent sections. Our first contribution is a proof that validity of a given \(P\)-equation in an APN is undecidable. The proof can be found in Section 4 and bases on a reduction of the halting problem of Minsky machines.

Theorem 22. Let \((P,T,\vec{m})\) be an APN and \(E\) a homogeneous \(P\)-equation. Then, validity of \(E\) in \((P,T,\vec{m})\) is undecidable.
Proof. Follows from Lemma 25 and Lemma 29.

Our second contribution is a decidability proof for the stability of a homogeneous P-equation in an APNS under the assumption that the coefficients stem from a cyclic group. Here, we develop a decidable, necessary and sufficient criterion, generalizing the invariant theorem (cf. Lemma 21), in Section 5.

Theorem 23. Let (P,T) be an APNS and E be a homogeneous P-equation over a cyclic group, then stability of E in (P,T) is decidable.

Proof. Follows from Lemma 44 and Lemma 46.

4 Undecidability of Validity of Homogeneous Equations

In this section, we give short description how to encode a Minsky Machine [10] M into an APN N_M using the Herbrand structure. Then, the halting problem in the Minsky Machine reduces to validity of an equation. This proof technique has been used before for Petri Nets, for example in [12]. First, we recall the required notions of a Minsky machine, its states and its steps:

Definition 24 (Minsky machine). A Minsky Machine $M = (I, R)$ consists of number of registers $R \in \mathbb{N}$ and a sequence $I = I_1, \ldots, I_n$ of instructions, where each instruction $I_i \in \{INC(r, z) \mid 1 \leq r \leq R, 1 \leq z \leq n\} \cup \{JZ(r, z_1, z_2) \mid 1 \leq r \leq R, 1 \leq z_1 \leq n-1, 1 \leq z_2 \leq n-1\}$ and $I_0 = HALT$.

Every tuple $(\rho, \ell) \in \mathbb{N}^R \times \{1, \ldots, n\}$ is a state of M. If $I_\ell = INC(r, z)$, then $(\rho, \ell) \rightarrow (\rho', z)$ is a step in M with $\rho'(r) = \rho(r) + 1$ and $\rho'(q) = \rho(q)$ for all $q \neq r$. If $I_\ell = JZ(r, z_1, z_2)$ and $\rho(r) > 0$, then $(\rho, \ell) \rightarrow (\rho', z_1)$ is a step in M with $\rho'(r) = \rho(r) - 1$ and $\rho'(q) = \rho(q)$ for all $q \neq r$. If $I_\ell = JZ(r, z_1, z_2)$ $\rho(r) = 0$, then $(\rho, \ell) \rightarrow (\rho, z_2)$ is a step. We denote the reflexive transitive closure of \rightarrow with $\rightarrow^*.$

We recall that the halting problem for Minsky machines is undecidable:

Lemma 25 [10]. Let M be a Minsky Machine. It is undecidable, whether M halts, i.e., the following problem is undecidable: $\exists \rho \in \mathbb{N}^R$ such that $(0, 1) \rightarrow^* (\rho, n)$.

To reduce the halting problem, we encode a Minsky Machine into an APNS.

Definition 26 (Encoding of Minsky Machine). Let M be a Minsky Machine M, then the APNS N_M encodes M, if:

- The signature is $\Sigma_M = \{f, c, 0\}$,
- the set of places is $P = \{p_r \mid 1 \leq r \leq R\} \cup \{q_i \mid 1 \leq i \leq n\}$,
- for every INC-instruction I_i, let t_i be the transition with the pattern shown in Figure 3a
- and for every JZ-instruction I_i let t'_i be the transitions following the pattern shown in Figure 3b.

Definition 27. Let $(\rho, \ell) \in \mathbb{N}^R$ be a state of M. For $x \in \mathbb{N}$, we define $\theta_x \in \Theta$ by

$$\theta_x := \begin{cases} c & \text{if } x = 0 \\ f(\theta_{x-1}) & \text{otherwise.} \end{cases}$$
Then, we define the marking \(\vec{m}_\ell^P \in \mathbb{Z}(\Theta_\Sigma)^P_\Theta \) of \(N_M \) as follows for \(p \in P \) and \(\theta \in \Theta \):

\[
\vec{m}(p) := \begin{cases}
(\ell, 1) & \text{if } p = q_\ell \\
(\theta_{p(r), 1}) & \text{if } p = p_r \\
0 & \text{otherwise}
\end{cases}
\]

Now, we can relate the steps of a Minsky Machine \(M \) to the steps of the encoding \(N_M \).

> **Lemma 28.** Let \((p, \ell), (p', \ell') \) be states of \(M \) with \((p, \ell) \to (p', \ell') \). Then:

1. There exists a step \(\vec{m}_\ell^P \cdot [t \sigma] \vec{m}' \) of \(N_M \).
2. If \(\vec{m}_\ell^P \cdot [t \sigma] \vec{m}' \) is a step of \(N_M \), then \(\vec{m}' = \vec{m}_\ell^P \).

Finally, we reduce the halting problem for \(M \) to the validity of the homogeneous \(P \)-equation \(q_n = 0 \) in \((N_M, \vec{m}_0) \). The \(P \)-vector over \(\mathbb{Z} \) that induces the \(P \)-equation is zero for all places \(p \in P \setminus \{ q_n \} \) and 1 for \(q_n \). Inductively applying Lemma 28 reduces reachability of the \(HALT \) state in \(M \) to non-emptiness of the place \(q_n \) in \((N_M, \vec{m}_0) \) and thus to validity of \(q_n = 0 \).

> **Lemma 29.** The equation \(q_n = 0 \) is valid in \((N_M, \vec{m}_0) \) if and only if the Minsky Machine \(M \) does not halt.

5 Deciding Stability of Homogeneous Equations over Cyclic Groups

In this section, we show that stability of a homogeneous \(P \)-equation \(E \) given by a simple \(P \)-vector \(\vec{k} \) in an APNS \(N = (P, T) \) is decidable, if \(G \) is a cyclic group. To this end, we identify a decidable, necessary and sufficient condition for stability, which generalizes the necessary but not sufficient condition given by the classical invariant theorem (cf. Lemma 21). We develop our condition based on the following lemma, which directly follows from applying additivity arguments to the definition of stability:

> **Lemma 30.** Let \(t \in T \) be a transition. Then, the following statements are equivalent:

1. \(E \) is \(t \)-stable.
2. For all steps \(\vec{m} \cdot [t \sigma] \vec{m}' \): If \(\vec{k} \otimes \vec{m} = 0_G \), then \(\vec{k} \otimes \vec{f}^2 \cdot [\sigma] = 0_G \).

Lemma 30 generalizes Lemma 21 in the sense that we can derive Lemma 21 from Lemma 30 but not vice versa. However, the condition stated in Lemma 30 does not directly infer a decision procedure, because the set of steps \(\vec{m} \cdot [t \sigma] \vec{m}' \) with \(\vec{k} \otimes \vec{f}^2 \cdot [\sigma] = 0_G \) is infinite, that is, one has to reason about infinitely many markings \(\vec{m} \) and firing modes \(\sigma \). Our approach copes with this challenge by applying symbolic techniques, that is, we finitely characterize
the infinite set of all such \(m \) and \(\sigma \) conveniently for computation. Figure 5a summarizes the notions applied in our proof: We first symbolically describe the set of \(E \)-satisfying markings by means of zeros and their implementations. Then, we derive symbolically described firing modes from zeros, and characterize stability by means of realizability.

In order to simplify notation, we fix for this section an APNS \((P,T)\), an abelian group \(G \), and a homogeneous \(P \)-equation \(E \) given by a simple vector \(\vec{k} \in G(\Theta)^P \). Moreover, we assume that for each \(p \in P \), \(\vec{k}(p) \) is the monomial \((\kappa_p, \gamma_p)\), that is, \(\gamma_p = \vec{k}(p)(\kappa_p) \in G \) is the coefficient of the only term \(\kappa_p \) in \(\text{supp}(\vec{k}(p)) \).

Our first goal is to abstractly characterize infinite sets of \(E \)-satisfying markings by means of a zero. Intuitively, an \(E \)-satisfying marking assigns “right number” of a “right kind of tokens” to each place.

Definition 31 (Zero). Let \(\nu : P \to \mathbb{N} \) such that \(\sum_{p \in P} \nu(p)\gamma_p = 0 \). If the unification problem \(U = \{ \kappa_p \equiv \kappa_{p'} \mid p, p' \in P, \gamma_p, \gamma_{p'}, \nu(p), \nu(p') \neq 0 \} \) is solvable, \(\nu \) is a zero of \(E \), and we write \(\nu \) for the most general unification of \(U \).

We observe that \(0 \) is always a zero. Furthermore, the sum of two zeros \(\nu_1, \nu_2 \) yield again \(\sum_{p \in P} (\nu_1(p) + \nu_2(p)) = 0 \), but the unification problem is not necessarily solvable. However, a zero may be the sum of other zeros.

Figure 5a shows some examples for zeros using the net structure and equations shown in Figure 2. In this section, we ignore the place \(t \), as it is irrelevant for enabling \(t \). \(\nu_1 \) is a zero of \(E_1 \) as \(3 - 3 = 0 \), and \(\vec{g}(B) \not\equiv D \) can be unified with \(D \Rightarrow \vec{g}(B) \). \(\nu_2 \) is a zero of \(E_1 \) as \(20 - 20 = 0 \) and \(A \Rightarrow \vec{g}(C) \) unifies \(\vec{f}(A) \not\equiv \vec{f}(\vec{g}(C)) \). For \(\nu_4 \) and \(E_1 \) we have \(4 + 3 - 5 - 2 = 0 \), but it is not a zero of \(E_1 \) as \(\vec{f}(A) \not\equiv \vec{g}(B) \) cannot be unified. \(\nu_5 \) is not a zero for \(E_1 \) as \(8 - 4 \neq 0 \). Regarding \(E_2 \), \(\nu_1 \) and \(\nu_2 \) aren’t zeros as \(6 \not\equiv 7 \) and \(15 \not\equiv 0 \). \(\nu_4 \) is a zero for \(E_2 \) as \(3 + 4 \equiv 7 \) and \(D \Rightarrow \vec{e} \) unifies \(\vec{e} \equiv \vec{D} \). Finally, \(\nu_5 \) is also a zero of \(E_2 \), as \(6 + 8 \equiv 7 \) and as for \(\nu_4 \) the unification problem is solvable as for \(\nu_4 \).

Because \(\nu \) is a unifier, applying \(\nu \) to \(\kappa_p \) yields the same result for every \(p \in P \) satisfying \(\gamma_p \not\equiv 0 \) and \(\nu(p) \neq 0 \).

Lemma 32. Let \(\nu \) be a zero. The set \(\{ \kappa_p | p \in P, \gamma_p \not\equiv 0, \nu(p) \neq 0 \} \) is singleton.

Definition 33 (Result of the unification). We define \(g(\nu) \) by \(\{ g(\nu) \} = \{ \kappa_p \nu | p \in P, \gamma_p \not\equiv 0, \nu(p) \neq 0 \} \)

Intuitively, an implementation of a zero \(\nu \) is a marking which satisfies \(E \) “in the same way” as \(\nu \). Formally, we define this based on an assignment transforming the result of the unification
Homogeneous Equations of Algebraic Petri Nets

(a) Zeros $\nu_1, \ldots, \nu_5 \in \mathbb{N}^P$

A	B	C	D	Zero of E_1?	Zero of E_2?	$g(\nu_i)$
ν_1	0	1	0	yes	no	$g(B)$
ν_2	5	0	4	yes	no	$f(g(C))$
ν_3	0	2	0	yes	no	$g(B)$
ν_4	1	1	1	no	yes	c
ν_5	2	0	0	no	yes	c

(b) Implementations of zeros ν_1 (w.r.t. E_1), ν_2 (w.r.t. E_1) and ν_5 (w.r.t. E_2)

A	B	C	D	Impl. ν_1 for E_1?	Impl. ν_2 for E_1?	Impl. ν_5 for E_2?
\bar{m}_1	0	\bar{c}	0	yes	no	
\bar{m}_2	0	$2\bar{f}(\bar{c})$	0	yes	no	
\bar{m}_3	5$\bar{g}(\bar{c})$	0	$4\bar{c}$	no	yes	
\bar{m}_4	2$\bar{g}(\bar{c})$	0	0	no	yes	

Figure 7 Examples for zeros, realizations, and implementations

A marking.

- **Definition 34** (Implementation of a zero). Let $\bar{m} \in \mathbb{Z}^{\Theta_E}$ be a marking and ν be a zero for E. Then, \bar{m} implements ν, or: \bar{m} is an implementation of ν, if for all $p \in P$ with $\nu(p) \neq 0$ and $\gamma_p \neq 0$:
 1. $\nu(p) = \sum_{\theta \in \text{supp}(\bar{m}(p))} \bar{m}(p)(\theta)$, and
 2. there exists an assignment σ, such that $\{\nu(\sigma)\} = \text{supp}(\bar{k}(p) \otimes \bar{m}(p))$.

As an example, in Figure 7a, the marking \bar{m}_1 implements ν_1 for E_1 as for assignment σ_1 with $\sigma_1(B) = \bar{c}$ we have $[B]_{\sigma_1} = \bar{c} = D \otimes g(\bar{c})$. \bar{m}_2 implements ν_1 for E_1, because for assignment σ_2 with $\sigma_2(B) = f(\bar{c})$, we have $[B]_{\sigma_2} = D \otimes f(g(\bar{c}))$. \bar{m}_3 implements ν_2 for E_1, because for assignment σ_3 with $\sigma_3(C) = \bar{c}$, we have $[f(g(C))]_{\sigma_2} = f(g(C)) = f(A) \otimes g(\bar{c}) = f(g(C)) \otimes \bar{c}$. Moreover, \bar{m}_4 implements ν_5 for E_2 as for assignment σ_4 with $\sigma_4(D) = \bar{c}$ we have $[\bar{c}]_{\sigma_4} = \bar{c} \otimes g(\bar{c}) = D \otimes \bar{c}$.

Next, we show that the set of all zeros exactly characterizes the set of all E-satisfying markings: For every term ω used by an E-satisfying marking \bar{m} we can identify an implementation \bar{m}_ω of a zero. Because the set of E-satisfying markings is closed under addition, the converse also holds.

- **Lemma 35.** Let \bar{m} be a marking, the following are equivalent:
 1. $\bar{k} \otimes \bar{m} = 0_{\mathbb{C}}$.
 2. There exist zeros ν_1, \ldots, ν_n of E, and markings $\bar{m}_1, \ldots, \bar{m}_n$, such that: $\bar{m} = \sum_{1 \leq i \leq n} \bar{m}_i$ and \bar{m}_i implements ν_i for all $i = 1, \ldots, n$.

Our next goal is to abstractly describe sets of firing modes *derivable* from a set of zeros. Formally, we describe such a set of derived firing modes by a substitution, abstractly describing a way of enabling a transition.

- **Definition 36** (Derivable). Let $t \in T$. Let S be a set of zeros. For every $q \in \text{pre}(t)$ let $X_q \in \text{VAR}$ be a fresh variable, such that X_q does not occur in E or t and $X_q = X'_q$ implies $q = q'$. Let $\nu_q \in S$ be a zero with $\nu_q(q) \geq 1$. Let $U = \{g(\nu_q) \otimes X_q \in \mathbb{C} \mid q \in \text{pre}(t)\}$,
There exists a realization of Lemma 40. Derivable from some E_j, $k_j ∩ (\tilde{t}^\Lambda \delta_i)$

| δ_1 | X_C | X_B | $\bar{g}(X_B)$ | yes, for $j = 1$ | $-f(\bar{g}(X_C)) + \bar{g}(X_B)$ | $(j = 1)$ |
| δ_2 | X_C | X_B | \bar{c} | yes, for $j = 2$ | 0 | $(j = 2)$ |

Figure 8 Derivable substitutions δ_1 and δ_2, and a realization σ_1 of δ_1

where $\{\theta_{q,t}\} = \text{supp}(\tilde{r}(q))$. Let U be solvable by most general unification δ. Then, δ is derivable from S.

In the example of Figure 8, we can derive δ_1 for E_1 with $\nu_A = \nu_C = \nu_1$ and $\nu_B = \nu_D = \nu_1$. For E_2, we can derive δ_2 with $\nu_A = \nu_B = \nu_C = \nu_D = \nu_5$.

A realization is an assignment which refines a derivable substitution:

- Definition 37 (Realization). Let S be a set of zeros and δ be derivable from S. Then, σ is a realization of δ, if there exists an assignment σ' with $\sigma(X) = [\bar{g}(X)]_{\sigma'}$ for all $X \in \text{VAR}$.

The assignment σ_1 shown in Figure 8 is a realization of δ_1. The assignment σ with $\sigma(X_C) = \sigma(X_B) = \bar{c}$ gives $\sigma(A) = [X_A]_\sigma = \bar{c}$, $\sigma(B) = [X_B]_\sigma = \bar{c}$ and $\sigma_1(C) = [\bar{g}(X_B)]_\sigma = \bar{g}(\bar{c})$.

Next, we show that the derived substitutions from the set of all zeros exactly characterize the set of E-satisfying, t-enabling markings: If an E-satisfying marking \tilde{m} enables t in firing mode σ, then σ is a realization of some derivable substitution, and vice versa:

- Lemma 38. Let S be the set of all zeros and σ be an assignment. Then, the following two statements are equivalent:
 1. There exists a marking \tilde{m} with: $\tilde{m} \geq [\tilde{t}]_\sigma$ and $\tilde{k} ∩ \tilde{m} = 0_G$.
 2. There exists a δ that is derivable from S and σ is a realization of δ.

A derivable substitution δ generally has infinitely many realizations. We show that the choice of the realization does not matter for deciding stability.

- Lemma 39. Let S be a set of zeros and δ be derivable from S. Then, the following two statements are equivalent:
 1. $\tilde{k} ∩ (\tilde{t}^\Lambda \delta) = 0$
 2. $\tilde{k} ∩ [\tilde{t}^\Lambda]_\sigma = 0$ for all σ that are realizations of δ.

Our proof of “$2. \Rightarrow 1.$” utilizes the existence of a realization σ preserving the distinctness of terms in $\tilde{k} ∩ \tilde{t}^\Lambda$, that is, if two terms θ_1, θ_2 occur in $\tilde{k} ∩ \tilde{t}^\Lambda$ with $\theta_1 \delta \neq \theta_2 \delta$, then $[\theta_1]_\sigma \neq [\theta_2]_\sigma$.

Now, we prove that t-stability can be characterized by the set of all derivable substitutions:

- Lemma 40. Let S be the set of all zeros. The following are equivalent:
 1. E is t-stable.
 2. For all δ derivable from S holds: $\tilde{k} ∩ (\tilde{t}^\Lambda \delta) = 0$.

In the example shown in Figure 2, E_1 is not stable. Consider the marking $\tilde{m}_3 := \tilde{m}_1 + \tilde{m}_2 + \tilde{m}_3$. There, t is enabled. But, for the firing mode σ_1, we have $\tilde{k}_1 ∩ \sigma_1 \neq 0$. On the other hand, E_2 is stable, although we have $\tilde{k}_2 ∩ \tilde{t}^\Lambda \neq 0$.

The following lemma proves a closure property for the derived substitutions: If one combines zeros from a set S to a new zero ν, then for every realizable substitution derivable from $S \cup \{\nu\}$, there exists a realizable substitution derivable from S.

| σ_1 | \bar{c} | \bar{c} | $\bar{g}(\bar{c})$ | δ_1 | $-f(\bar{g}(\bar{c})) + \bar{g}(\bar{c})$ |

| W | Y | Z | Derivable from some E_j? | $k_j ∩ (\tilde{t}^\Lambda \delta_i)$ | $\tilde{k}_i ∩ [\tilde{t}^\Lambda]_{\sigma_1}$ | Realization of | $\tilde{k}_i ∩ [\tilde{t}^\Lambda]_{\sigma_1}$ |

| δ_1 | X_C | X_B | $\bar{g}(X_B)$ | yes, for $j = 1$ | $-f(\bar{g}(X_C)) + \bar{g}(X_B)$ | $(j = 1)$ |
| δ_2 | X_C | X_B | \bar{c} | yes, for $j = 2$ | 0 | $(j = 2)$ |

| σ_1 | \bar{c} | \bar{c} | $\bar{g}(\bar{c})$ | δ_1 | $-f(\bar{g}(\bar{c})) + \bar{g}(\bar{c})$ |
Lemma 41. Let \(S \) be a set of zeros and \(\nu \notin S \) with \(\nu = \sum_{i=1}^{n} \nu_i \) where \(\nu_i \in S \). Let \(\delta \) be derivable from \(S \cup \{ \nu \} \) and \(\sigma \) be assignments that realizes \(\delta \). Then, there exists \(\delta' \) such that: \(\delta' \) is derivable from \(S \) and \(\sigma \) realizes \(\delta' \).

We observe that we can only derive finite sets of substitutions from finite sets of zeros.

Lemma 42. Let \(S \) be a finite set of zeros. The set \(\{ \delta : \text{VAR} \rightarrow \Theta \mid \delta \text{ is derivable from } S \} \) is finite and computable.

Our next goal is to combine Lemma 41 and Lemma 42. To this end, we first define the notion of a spanning set of zeros: A set capable of generating all zeros by means of addition.

Definition 43 (Spanning Set). Let \(S \) be a set of zeros of \(E \), such that for each zero \(\nu \) of \(E \), there exist \(\nu_1, \ldots, \nu_n \in S \), with \(\nu(p) = \sum_{i=1}^{n} \nu_i(p) \) for all \(p \in P \). Then, \(S \) is a spanning set (of zeros) of \(E \).

Now, we show that given a finite spanning set of zeros, we can decide \(t \)-stability.

Lemma 44. Given a finite spanning set \(S \) of zeros, \(t \)-stability of \(E \) is decidable.

Proof. By Lemma 41 for every \(\delta \) that is derivable from the set of zeros, there exists a \(\delta' \) derivable from \(S \). By Lemma 42 the set of all these \(\delta' \) is finite and computable. By Lemma 41 \(E \) is stable if and only if for every \(\delta' \) we have \(\kappa \delta' = 0 \), which is computable.

The last step in our proof of Theorem 23 is showing that a finite spanning set of zeros can be computed if \(G \) is cyclic. For infinite cyclic groups, we apply that there exists a computable isomorphism into the integers. As a prerequisite, we observe that every spanning set contains every indecomposable zero, i.e., a zero which cannot be written as a sum of other zeros. For example, consider the zeros \(\nu_1, \nu_2 \) and \(\nu_3 \) from Figure 2, \(\nu_1 \) and \(\nu_2 \) are indecomposable, but \(\nu_3 = \nu_1 + \nu_2 \) is not. Thus, we show that there exists an upper bound for the coefficients of indecomposable zeros. To this end, we first show an auxiliary lemma, based on the maximum coefficient \(\gamma_1 \), and the absolute value \(\gamma \) of the minimal coefficient in \(\gamma \). In the example equation \(E_1 \) from Figure 2 we have \(\gamma_1 = 4 \) and \(\gamma = 5 \). Intuitively, if the maximum constituent in a zero \(\nu \) over places with negative (resp. positive) coefficients is less than \(\gamma_1 \) (resp. \(\gamma \)), then the sum of the constituents in \(\nu \) is bounded by \(2|P|\gamma_1 \). For \(E_1 \), the upper bound is \(2 \cdot 5 \cdot 4 \cdot 5 = 200 \).

Lemma 45. Let \(\nu \in \mathbb{N}^P \). Let \(\eta \in \mathbb{Z}^P \) be mixed with \(\sum_{p \in P} \nu(p) \cdot \eta(p) = 0 \). Let \(\eta := \max \{ \eta(p) \mid p \in P \} \) and \(\eta := \max \{|\eta(p)| \mid \eta(p) < 0, p \in P \} \) with:
1. \(\max \{ \nu(p) \mid \eta(p) < 0, p \in P \} < \gamma_1 \)
2. \(\max \{|\nu(p)| \mid \eta(p) > 0, p \in P \} < \gamma \).

Then, \(\sum_{p \in P} \nu(p) < 2|P|\gamma_1 \).

Finally, we show the computability of a finite spanning set of zeros. To this end, we utilize Lemma 45 to show that the sum of constituents of each indecomposable zero is bounded by \(2|P|\gamma_1 \): We assume a zero \(\nu \) with \(\sum_{p \in P} \nu(p) \geq 2|P|\gamma_1 \), and show that \(\nu \) decomposes into two zeros \(\hat{\nu} \) and \(\nu - \hat{\nu} \). Thus, extracting all zeros from the finite set of all \(\nu \in \mathbb{N}^P \) with \(\sum_{p \in P} \nu(p) < 2|P|\gamma_1 \) yields a set of zeros containing all indecomposable zeros, and hence a finite spanning set.

Lemma 46. If \(G \) is cyclic, a finite spanning set \(S \) of zeros is computable.

Proof. Assume \(\kappa \) is semi-positive or semi-negative, then \(0 \) is the only zero. In the following, we assume \(\kappa \) to have mixed coefficients. We distinguish the cases whether \(G \) is finite or infinite.
First case: G is infinite. Thus, G is cyclic, there exists a computable isomorphism to \mathbb{Z} (see for instance [14]). Let $\overrightarrow{\gamma} := \max\{\gamma(p) \mid p \in P\}$ and $\gamma := \max\{|\gamma(p)| \mid \gamma(p) < 0, p \in P\}$. Let ν be a zero with $\sum_{p \in P} \nu(p) < 2 |P| |\overrightarrow{\gamma}|$ (\dagger). We show that there exist $p, p', p'' \in P$ with: $\overrightarrow{\gamma} > 0 \land \gamma_p < 0 \land \nu(p') \geq |\gamma_p| \lor \nu(p'') \geq |\overrightarrow{\gamma}|$. Assume the opposite: Then, $\max\{|\nu(p)| \mid \gamma_p < 0, p \in P\} < |\overrightarrow{\gamma}|$ or $\max\{|\nu(p)| \mid \gamma_p > 0, p \in P\} < |\overrightarrow{\gamma}|$. By Lemma [9] then $\sum_{p \in P} \nu(p) < 2 |P| |\overrightarrow{\gamma}|$, which contradicts ($\dagger$).

Now, let $\hat{\nu} : P \rightarrow \mathbb{N}$ with:

$$\hat{\nu}(p) = \begin{cases} \gamma_p & \text{if } p = \overrightarrow{p} \\ \gamma_p & \text{if } p = p' \\ 0 & \text{otherwise} \end{cases}$$

By definition, we have $\hat{\nu} \leq \nu$, moreover as $\sum_{p \in P} \hat{\nu}(p) < \sum_{p \in P} \nu(p)$, we have $\hat{\nu} < \nu$.

Let $\nu' = \nu - \hat{\nu}$. Then, $\nu' : P \rightarrow \mathbb{N}$ and $\nu' > 0$.

Now we show that $\hat{\nu}$ and ν' are zeros. For $\hat{\nu}$ we have $\sum_{p \in P} \nu(p) = |\gamma_p| |\overrightarrow{\gamma}| + \gamma_p |\overrightarrow{\gamma}| = 0$ and accordingly $\sum_{p \in P} \nu(p) = \sum_{p \in P} \hat{\nu}(p) + \sum_{p \in P} \nu'(p) = 0 + \sum_{p \in P} \nu'(p)$. It remains to show that the unification problems of $\hat{\nu}$ and ν' are solvable. We observe $\hat{\nu} \leq \nu (\nu' \leq \nu)$ implies that unification problem of $\hat{\nu}$ (ν') is a subset of the unification problem of ν. Thus, ν is a sum of the zeros ν' and $\hat{\nu}$.

Now, we see that $\sum_{p \in P} \hat{\nu}(p) < 2 |P| |\overrightarrow{\gamma}|$. Assume additionally $\sum_{p \in P} \nu'(p) \leq 2 |P| |\overrightarrow{\gamma}|$, then we can continue. Otherwise, if $\sum_{p \in P} \nu'(p) > 2 |P| |\overrightarrow{\gamma}|$, we can apply induction, as $\nu' < \nu$.

Hence, ν is the sum of the other zeros ν_1, \ldots, ν_n, where for each $1 \leq i \leq n$: $\sum_{p \in P} \nu_i(p) \leq 2 |P| |\overrightarrow{\gamma}|$. Finally, $\{\nu \in \mathbb{N}^P \mid \sum_{p \in P} |\nu(p)| \leq 2 |P|^2 |\overrightarrow{\gamma}|$ and ν is zero is finite, spanning and computable.

Second Case: Let G be finite with order $o \in \mathbb{N} \setminus \{0\}$. As G is cyclic, there exists the generator $e \in G$. Let $g \in G$. Then, it holds that $g + oe = g$. Thus, for every $\nu : P \rightarrow \mathbb{N}$, and $p \in P$ with $\nu(p) > o$, we have $\nu(p) |\gamma_p| = (\nu(p) - o) |\gamma_p|$. Hence, for every zero ν we can find a zero ν' with $\nu'(p) \leq o$ and $\sum_{p \in P} \gamma_p \nu'(p) = \sum_{p \in P} \gamma_p \nu(p)$. Therefore, $\{\nu \in \mathbb{N}^P \mid \nu(p) \leq o$ and ν is zero $\}$ is finite, spanning and computable.

6 Related Work

APNs or similar “high level net”-formalisms are an established, expressive modeling language for distributed systems [11, 2]. Moreover, tools for Colored Petri Nets support simulation and (partial) verification [7, 8]. The idea to prove stable properties in Petri nets that use distinguishable tokens has been pursued at least since the early 80s [5]. Ever since, the class of invariants became a substantial part of Petri Net analysis [9, 2]. Other stable properties for Algebraic Petri Nets have been studied in the context of Traps/Co-Traps [13]. In elementary Petri Nets (P/T-Nets), stable properties such as traps and co-traps have been studied [11] and been shown as useful for verification [11, 4]. Compared to this, the number of publications regarding stable properties in APNs is comparatively small. In the last years, Petri Net variants with distinguishable tokens gained more attention to model data in distributed systems and applying analytic methods such as [4, 5, 10].

The concept of stability has been used in other areas of research; the most similar maybe being abstract interpretation as a technique for verification of iterative programs [11]. In the context of data-aware business processes, stability has been used in a similar context, following a graph-oriented approach focusing on data modeling [14].
7 Concluding Remarks

Throughout this paper, we applied three restrictions: First, we only considered the interpretation of terms in the Herbrand structure, second, we only considered homogeneous \(P \)-equations, and third, we required for the decidability proof that the group of coefficients is cyclic.

If one chooses another structure for the interpretation of terms than the Herbrand structure, one can observe that validity and stability are preserved in one direction: If a \(P \)-equation is valid (stable) w.r.t. the Herbrand structure, then it is valid (stable) w.r.t. every generated structure. Because the Herbrand structure is a specific structure, the undecidability result (Theorem 22) could be generalized by allowing an arbitrary, but not fixed, structure. For the decidability result (Theorem 23), we observe that we can use our decision procedure as a sufficient but not necessary criterion for an arbitrary fixed structure.

The restriction to homogeneous \(P \)-equations yields that satisfying markings are closed under addition, which is not the case if one allowed arbitrary constants on the right hand side. Here, our approach of finding a finite spanning set symbolically describing all satisfying markings does not work. The main challenge for generalizing our approach is that markings have natural numbers as coefficients (in contrast to integers).

For our decidability result, we require that the coefficients stem from a cyclic group. Here, we explicitly exploit in the proofs that there exist a distinct generator element, and an isomorphism to the integers, or the integers modulo some natural number \(n \).

References

1 Ahmed Bouajjani, Cezara Drăgoi, Constantin Enea, Ahmed Rezine, and Mihaela Sighireanu. Computer Aided Verification: 22nd International Conference, CAV 2010, Edinburgh, UK, July 15-19, 2010. Proceedings, chapter Invariant Synthesis for Programs Manipulating Lists with Unbounded Data, pages 72–88. Springer Berlin Heidelberg, Berlin, Heidelberg, 2010.
2 Hartmut Ehrig and Wolfgang Reisig. An algebraic view on petri nets. Bulletin of the EATCS, 61, 1997.
3 Javier Esparza and Philipp Hoffmann. Reduction rules for colored workflow nets. In Perdita Stevens and Andrzej Wasowski, editors, Fundamental Approaches to Software Engineering - 19th International Conference, FASE 2016, Held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2016, Eindhoven, The Netherlands, April 2-8, 2016, Proceedings, volume 9633 of Lecture Notes in Computer Science, pages 342–358. Springer, 2016.
4 Javier Esparza, Ruslán Ledesma-Garza, Rupak Majumdar, Philipp J. Meyer, and Filip Niksic. An smt-based approach to coverability analysis. In Armin Biere and Roderick Bloem, editors, Computer Aided Verification - 26th International Conference, CAV 2014, Held as Part of the Vienna Summer of Logic, VSL 2014, Vienna, Austria, July 18-22, 2014, Proceedings, volume 8559 of Lecture Notes in Computer Science, pages 603–619. Springer, 2014.
5 H.J. Genrich and K. Lautenbach. Special issue semantics of concurrent computation system modelling with high-level petri nets. Theoretical Computer Science, 13(1):109 – 135, 1981.
6 Piotr Hofman, Slawomir Lasota, Ranko Lazic, Jérôme Leroux, Sylvain Schmitz, and Patrick Totzke. Coverability trees for petri nets with unordered data. In Foundations of Software Science and Computation Structures - 19th International Conference, FOSSACS 2016, Held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2016, Eindhoven, The Netherlands, April 2-8, 2016, Proceedings, pages 445–461, 2016.
Proof of Lemma 20 (page 6). Let \(\bar{m} \) be a reachable marking. Then, there exists a sequence of steps \(\bar{m}_0, \bar{m}_1, \ldots, \bar{m}_n \) with \(\bar{m}_n = \bar{m} \). If \(n = 0 \), then \(\bar{m} = \bar{m}_0 \) and thus \(\bar{k} \odot \bar{m} = \bar{0} \). Otherwise, by induction we have \(\bar{k} \odot \bar{m}_{n-1} = \bar{0} \) and as \(E \) is \(t_n \)-stable, satisfaction is preserved along \(\bar{m}_{n-1}, \bar{m}_n \) and thus \(\bar{k} \odot \bar{m}_n = \bar{0} \) and hence \(\bar{k} \odot \bar{m} = \bar{0} \).

Proof of Lemma 21 (page 6). Let \(\bar{m}(\sigma) \bar{m}' \) be a step with \(\bar{k} \odot \bar{m} = \bar{0} \). Then, \(\bar{k} \odot [\bar{I}^2]_{\sigma} = [\bar{k} \odot \bar{I}^2]_{\sigma} = [0_{\bar{k}}]_{\sigma} = 0_{\bar{k}} \). We conclude that \(\bar{k} \odot \bar{m}' = \bar{k} \odot (\bar{m} + [\bar{I}^2]_{\sigma}) = \bar{k} \odot \bar{m} + \bar{k} \odot [\bar{I}^2]_{\sigma} = 0_{\bar{k}} + 0_{\bar{k}} = 0_{\bar{k}} \). Hence, \(\bar{m}' \) satisfies \(E \) and \(E \) is \(t \)-stable in \((P,T) \).

Proof of Lemma 28 (page 8). By Definition 27, \(\bar{m}_{i}(p_{r}) \) is the monomial \((\theta_{P(r)})_{1}, 1)\), and \(\bar{m}(q_{j})(c) = 0 \) for all \(k \neq \ell \). We distinguish based on the type of \(I_{i} \).

- Let \(I_{i} = INC(r,z) \). We observe \(\bar{t}_{i}(p_{r}) \) is the monomial \((X,1)\), and for all \(1 \leq s \leq \mathcal{R}, s \neq r: \bar{t}_{i}(q_{j}) = 0 \). Furthermore, \(\bar{t}_{i}(q_{j}) \) is the monomial \((\bar{c},1)\) and \(\bar{t}_{i}(q_{j}) = 0 \) for all \(1 \leq j \leq n, j \neq i \). Hence, \(t_{i} \) is enabled in firing mode \(\sigma \) with \(\sigma(X) = \theta_{P(r)} \): \(\bar{m}_{i}(p_{r}) = \theta_{P(r)} \) and \(\bar{m}_{i}(p_{r}) \) is the monomial \((\bar{c},1)\). Because \(\bar{t}_{i}(p_{r}) \) is the monomial \((f(X),1)\), we conclude \(\bar{m}_{i}(p_{r}) \) is the monomial \((f(\theta_{P(r)}),1) = (\theta_{P(r)+1},1) \). Because \(\bar{t}_{i}(q_{j}) \) is the monomial \((\bar{c},1)\), \(\bar{m}_{i}(q_{j}) = 0 \). Because \(\bar{t}_{i}^2(q_{j}) \) is the monomial \((\bar{c},1)\), \(\bar{m}_{i}(q_{j}) = 0 \). Therefore, \(\bar{m}_{i} = \bar{m}_{i}' \).

- Let \(I_{i} = JZ(r,z_{1},z_{2}) \). We distinguish between \(P(r) = 0 \) and \(P(r) > 0 \).
Let $\rho(r) = 0$. Then, $\bar{m}_i^\rho(p_r)$ is the monomial $((\theta_0, 1), (\hat{c}, 1))$. Because $\bar{v}_i^\rho(p_r)$ and $\bar{v}_i^\rho(q_i)$ each are the monomial $(\hat{c}, 1)$, \bar{t}_i^ρ is enabled in any firing mode σ. Because $\bar{v}_i^{\Delta}(p_r) = 0$, we conclude $\bar{m}'(p_r)$ is the monomial $(\theta_0, 1) = (\theta_{p(r)}, 1)$. Because $\bar{v}_i^{\Delta}(q_i)$ is the monomial $(\hat{c}, -1)$, $\bar{m}'(q_i) = 0$. Because $\bar{v}_i^{\Delta}(q_{z_2})$ is the monomial $(\hat{c}, 1)$, $\bar{m}'(q_i) = 0$. Therefore, $\bar{m}' = \bar{m}''$.

Let $\rho(r) > 0$. Then, the proof is symmetrical to the case $I_i = INC(r, z_1)$.

Proof of Lemma 29 (page 8). Inductively applying Lemma 28 (page 8), we conclude that for every state (ρ, t) of M: $(0, 1) \rightarrow^* (\rho, t)$ iff \bar{m}_i^ρ is reachable in (N_M, \bar{m}_i^0). Therefore, there exists ρ with $(0, 1) \rightarrow^* (\rho, n)$ iff marking \bar{m}_i^n is reachable. Obviously, $q_n = 0$ is valid iff for all reachable markings \bar{m}_i^n, $\ell \neq n$. Hence, $q_n = 0$ is valid iff M does not halt.

Proof of Lemma 35 (page 10). 1. \Rightarrow 2.: Let $\Omega = \{\omega \in \Theta \mid \exists p \in P: \exists q \in \text{supp}(\bar{m}_i(p)) : \omega = k_p \circ \rho$ and $\gamma_p \neq 0\}$. For every $\omega \in \Omega$ we identify a zero ν_ω as follows: $\nu_\omega(p) = \sum_{\omega \circ \theta \circ q} \bar{m}(p)(\theta)$. Furthermore, let \bar{m}_ω be a marking with:

$$
\bar{m}_\omega(p)(\theta) = \begin{cases}
\bar{m}(p)(\theta) & \text{if } \rho \circ \theta = \omega \\
0 & \text{otherwise}
\end{cases}
$$

Additionally, let \bar{m}_0 be the marking with $\bar{m}_0(p) = \begin{cases}
\bar{m}(p) & \text{if } \gamma_p = 0 \\
0 & \text{otherwise}
\end{cases}$ for every $p \in P$.

We observe that $\bar{m}_\omega(p)(\theta) \neq 0$ implies $\bar{m}_\omega(p)(\theta) = 0$ for every $p \in P$, $\theta \in \Theta$, $\omega' \in \Omega$, $\omega' \neq \omega$. Hence, $\bar{m}_\omega = \sum_{\omega \in \Omega} \bar{m}_\omega + \bar{m}_0$. \bar{m}_0 implements any zero, especially the trivial zero. Next, we show that \bar{m}_ω implements a zero ν_ω, defined by $\nu_\omega(p) = \sum_{\theta \in \Theta} \bar{m}(p)(\theta)$. First, for every ν_ω we see: $0 = (k \circ \bar{m})(\omega) = \sum_{p \in P} \sum_{\omega \circ \theta \circ q} a_p \bar{m}(p)(\theta)$. By the definition of ν_ω, the unification problem is solvable, as all terms may unify to ω. Thus, each ν_ω is a zero and each \bar{m}_ω implements ν_ω.

2. \Rightarrow 1.: $\bar{k} \circ \bar{m}_i = \bar{k} \circ \sum_{1 \leq i \leq n} \bar{m}_i = \sum_{1 \leq i \leq n} \bar{k} \circ \bar{m}_i$. As \bar{m}_i implements a zero ν_i, we have $(\bar{k} \circ \bar{m}_i)(\nu_i) = 0$. Moreover, we have $\bar{k} \circ \bar{m}_i = 0$ and thus $\bar{k} \circ \bar{m}_i = 0$.

Proof of Lemma 38 (page 11). For this proof, let $\theta_{q,t} \in \Theta$ with $\{\theta_{q,t}\} = \text{supp}(\bar{f}(\gamma_q - q))$ for all $q \in \text{pre}(t)$.

1. \Rightarrow 2.: By Lemma 35 (page 10) there exist markings $\bar{m}_1, \ldots, \bar{m}_n$ and zeros ν_1, \ldots, ν_n with $\bar{m} = \bar{m}_1 = \bar{m}_2 = \ldots = \bar{m}_n$ implements zero ν_i (for $i = 1, \ldots, n$). For every $q \in \text{pre}(t)$, there exists a \bar{m}_i with $\bar{m}_i(q)(\theta_{q,t}) \geq 1$. Moreover, σ solves the unification problem for respective \bar{m}_i. Hence, σ is a realization of some derivation δ.

2. \Rightarrow 1.: As δ is derivable from S, there exist zeros ν_q for every $q \in \text{pre}(t)$ with $\nu_q(q) \geq 1$ and there exists a marking \bar{m}_q that implements ν_q with $\bar{m}_q(q)(\theta_{q,t}) \geq 1$ for σ. Thus, $\bar{m} = \sum_{q \in \text{pre}(t)} (\bar{f}(\theta_{q,t}))(\bar{m}_q(q))$ enables t. And, as for every \bar{m}_q, $\bar{k} \circ \bar{m}_q = 0$, we have $\bar{k} \circ \bar{m}_i = 0$.

Proof of Lemma 39 (page 11). 1. \Rightarrow 2.: As σ realizes δ, there exists a σ' with $\sigma(X) = [\delta(X)]_{\sigma'}$. Thus, $[\bar{f}(\delta)]_{\sigma'}$. Moreover, we have $\bar{k} \circ [\bar{f}(\delta)]_{\sigma'} = [\bar{k} \circ \bar{f}(\delta)]_{\sigma'} = [0]_{\sigma'} = 0$.

2. \Rightarrow 1.: Let σ' be an assignment with $[\theta]_{\sigma'} = [\theta']_{\sigma'}$ implies $\theta = \theta'$ for all $\theta, \theta' \in \text{supp}(\bar{f}(\delta))$. Such an assignment exists as Θ is finite. Then $[\bar{f}(\delta)]_{\sigma'} = [\bar{f}(\delta)]_{\sigma'}$ for all $\theta \in \Theta$. Let $\sigma(X) = [\delta(X)]_{\sigma'}$ for all $X \in \text{VAR}$ and $\bar{k} \circ [\bar{f}(\delta)]_{\sigma'} = 0$. Let $\theta \in \Theta$. Then $\bar{k} \circ (\bar{f}(\delta)(\theta)) = \bar{k} \circ [\bar{f}(\delta)]_{\sigma'}([\theta]_{\sigma'}) = 0$.

**
Let ν denote: $\sum \nu \gamma$.

By Lemma 41 (page 12), for every ν is derivable from νS.

Proof of Lemma 41 (page 12). Let ν be a marking and σ be an assignment with: $\tilde{k} \circ \nu = 0$ and $\tilde{m} \geq [\tilde{t}]_{\sigma}$. By Lemma 35 (page 11), we have that $\tilde{k} \circ (\tilde{t} \sigma) = 0$. Then, ν is derivable from νS.

Proof of Lemma 42 (page 12). By Lemma 42 (page 12), the set of all these δ' is a subset of the unification problem of ν. Thus, there exists a substitution π with $\rho(\nu_i) \pi = \rho(\nu)$ and thus there exists a δ' that is derivable from νS and σ is realizable from δ'.

Proof of Lemma 44 (page 12). By Lemma 44 (page 12), for every ν that is derivable from the set of zeros, there exists a δ' derivable from νS.

Proof of Lemma 45 (page 12). We denote: $\bar{P} := \{ p \in P | \gamma_p > 0 \}$, $\bar{P} := \{ p \in P | \gamma_p < 0 \}$, $\nu := \max_{p \in \bar{P}} \nu(p)$ and $\bar{P} := \max_{p \in \bar{P}} \nu(p)$. As ν is a zero, we have $\sum_{p \in \bar{P}} \nu(p) = \sum_{p \in \bar{P}} \nu(p) + \sum_{p \in \bar{P}} \nu(p)$ and hence $\sum_{p \in \bar{P}} \nu(p) = \sum_{p \in \bar{P}} \nu(p)$ (**). We distinguish two cases whether 1. is true or 2. is true.

1. $\sum_{p \in \bar{P}} \nu(p) = \sum_{p \in \bar{P}} \nu(p) + \sum_{p \in \bar{P}} \nu(p) \leq \sum_{p \in \bar{P}} \gamma_p \nu(p) + \sum_{p \in \bar{P}} \gamma_p \nu(p) = 2 \sum_{p \in \bar{P}} \gamma_p \nu(p)$

2. $\sum_{p \in \bar{P}} \nu(p) = \sum_{p \in \bar{P}} \nu(p) + \sum_{p \in \bar{P}} \nu(p) \leq \sum_{p \in \bar{P}} \gamma_p \nu(p) + \sum_{p \in \bar{P}} \gamma_p \nu(p) = 2 \sum_{p \in \bar{P}} \gamma_p \nu(p)$

Proof of Lemma 46 (page 12). For every pre-place of t, we choose one zero. Thus, the number of derivable δ is limited by: $|\{ \delta \mid \delta \text{ is derivable from } \nu S \}| \leq |S|_{\text{pre}(t)} < \infty$. The set may be computed by enumerating all possible candidates to the bound.

Proof of Lemma 47 (page 12). By Lemma 47 (page 12), for every δ that is derivable from the set of zeros, there exists a δ' derivable from νS.

Proof of Lemma 48 (page 12). The proof of Lemma 42 (page 12) also shows that the set may be computed by enumerating all possible candidates to the bound. By Lemma 49 (page 11), E is stable if and only if for every δ we have $\tilde{k} \circ \tilde{t} \delta = 0$, which is computable.