On the Back Reaction problem for Gravitational Perturbations

V. F. Mukhanov1, L. Raul W. Abramo2 and Robert H. Brandenberger2

1Institut für Theoretische Physik, ETH Zürich, CH-8093
Zürich, Switzerland

2Physics Department, Brown University, Providence, RI 02912,
USA

We derive the effective energy-momentum tensor for cosmological perturbations and prove its gauge-invariance. The result is applied to study the influence of perturbations on the behaviour of the Friedmann background in inflationary Universe scenarios. We found that the back reaction of cosmological perturbations on the background can become important already at energies below the self-reproduction scale.

PACS numbers: 98.80Cq
BROWN-HET-1045, September 1996

Introduction

It is well known that gravitational metric perturbations treated as propagating on a curved “background space-time” have an effect on the evolution of this “background”. This is due to the nonlinearity of the Einstein equations. A convenient way to describe the back reaction of fluctuations on the background is to consider the “effective” energy-momentum tensor (EMT) for these metric perturbations.

This problem has been studied by several authors in applications concerning gravity waves (see e.g.2 and references therein). One of the main puzzles in need to be solved is the problem of gauge invariance of the effective EMT. Namely, the effective EMT should be defined in a manner that the answer to the question “how important are perturbations for the evolution of a background?” does not depend on the choice of space-time coordinates (in other words, it should not depend on the gauge).

The issue of gauge invariance becomes critical when we attempt to analyze how gravitational waves and scalar metric perturbations produced in the early Universe influence the evolution of the background Friedmann-Robertson-Walker (FRW) Universe. The procedure suggested by Isaacson 2 defines a gauge-invariant EMT for small-wavelength, high-frequency perturbations, and is not applicable in our case for the following reason. In order to get the invariant EMT following this prescription, one should average terms in the Einstein equations which are quadratic in the perturbations over time intervals bigger than the typical inverse frequency of perturbations. Obviously, it is assumed that the time scale characterizing the background is much bigger than the period of the perturbations. Since in the early Universe inhomogeneities with scales bigger than the horizon scale are frozen, it means that their typical period is much bigger than the cosmic time scale and the procedure cannot be used.

In this Letter we consider perturbations about a FRW manifold and show how to define a gauge invariant EMT for metric perturbations which involves only spatial averaging on a hypersurface of constant time. This allows us to formulate the problem of back reaction of perturbations on the evolution of the background FRW Universe in a coordinate-independent manner at every moment in time.

We apply our framework to a chaotic inflationary model. Given the spectrum of linear cosmological perturbations generated during inflation, we evaluate their effective EMT and find that back reaction becomes important already at energy scales lower than those at which the stochastic driving terms dominate. This may have important consequences for the dynamics of chaotic inflationary models.

There has been recent work on the back reaction of density inhomogeneities in cosmology. Futamase 2 considered the problem of back reaction in harmonic gauge. Seljak and Hui 2 reconsidered this issue using a different gauge but obtained differing results, thus highlighting the need for a gauge-independent analysis. A similar problem was also addressed by Buchert and Ehlers in the context of Newtonian cosmology 2.

This Letter is organized as follows: In Section 2 we formulate some useful properties of the diffeomorphism transformations. The back reaction problem is set up in Section 3, where we show how to formulate it in terms of gauge-invariant quantities only. Section 4 contains an application of our results to study the back reaction problem in the chaotic inflationary scenario.

Diffeomorphism transformations

The gauge group of General Relativity is the group of diffeomorphisms. To define it we consider a smooth vector field ξ^α on the space-time manifold \mathcal{M}. The set of parametrized integral curves of ξ^α are given by solutions of the differential equations

$$\frac{d\chi^\alpha(\lambda)}{d\lambda} = \xi^\alpha [\chi^\beta(\lambda)] ,$$

(λ being an affine parameter) with initial conditions...
\(\chi^\alpha(\lambda = 0) = x^\alpha \) for every \(x^\alpha \). This induces a coordinate transformation on \(M \) (see also \[9\]):

\[
x^\alpha \rightarrow \tilde{x}^\alpha = \chi^\alpha(\lambda = 1) = e^{\xi} \frac{\partial}{\partial x^\alpha} x^\alpha
\]

\[
x^\alpha + \alpha^\alpha + \frac{1}{2} \xi^\alpha \xi^\beta + O(\xi^3)
\]

where \(\xi \) should be considered small if we want to use a perturbative expansion in \(\xi \). Now let us take two different points \(P \) and \(\tilde{P} \) of the manifold \(M \) having the same coordinate values \(x_0^a \) in the two distinct coordinate frames \(x \) and \(\tilde{x} \), that is, \(x_0^a = x_0^a \) and \(\tilde{x}_0^a = x_0^a \). We want to express the value of an arbitrary tensor field \(\tilde{F} \) of the metric we can express \(\tilde{F} \) at point \(\tilde{P} \) in the coordinate system \(\tilde{x} \) in terms of \(F \) and its derivatives at point \(P \) in the coordinate system \(x \). The answer is well known and is given by the Lie derivative:

\[
\tilde{F}(x_0) = (e^{-\xi} F)(x_0)
\]

\[
= F(x_0) - L_\xi F(x_0) + \frac{1}{2} L_\xi L_\xi F(x_0) + O(\xi^3)
\]

This Lie operator obeys an important property, which we exemplify below in the case of the Einstein tensor \(G \). We can express \(G \) as a function of the metric and its derivatives:

\[
G(x) \equiv G \left[\frac{\partial}{\partial x} g(x) \right].
\]

Since the diffeomorphism transformation \[3\] does not effect the derivatives one can write

\[
(e^{-\xi} G)(x) = G \left[\frac{\partial}{\partial x}, (e^{-\xi} g)(x) \right]
\]

Regarding \(G(x) \) as a functional of the metric we can expand \[3\] in terms of functional derivatives and obtain for example the following property of the Lie derivative:

\[
L_\xi G(x) = \int d^4x' \frac{\delta G(x)}{\delta g(x')} L_\xi g(x')
\]

where \(\delta G(x)/\delta g(x') \) is the functional derivative of the Einstein tensor with respect to the metric. Formulas similar to \[3\] are true also for the EMT and in fact for arbitrary tensor fields which can be considered as local functionals of other tensor fields and their derivatives.

Back Reaction and Gauge Invariance

We consider a FRW Universe with small perturbations. This means one can find a coordinate system \((t,x')\) in which the metric \((g_{\mu\nu})\) and matter fields \((\varphi)\), denoted for brevity by the collective variable \(q^a \equiv (g_{\mu\nu}, \varphi) \), can be written as

\[
q^a(t,x') = q_0^a(t) + \delta q^a(t,x')
\]

where \(q_0^a(t) \) depends only on the time variable and \(|\delta q^a| \ll |q_0^a| \). It is also assumed that the spatial average of \(\delta q^a \) over hypersurfaces \(t = \text{const} \) with respect to the induced “homogeneous” part of the 3-metric vanishes.

The Einstein equations

\[
G_{\mu\nu} - 8\pi T_{\mu\nu} := \Pi_{\mu\nu} = 0
\]

can be expanded in a functional power series in \(\delta q^a \) about the background \(q_0^a(t) \) if we treat \(G_{\mu\nu} \) and \(T_{\mu\nu} \) as functionals of \(q^a \), namely

\[
\Pi(q_0^a) + \Pi_{,a} \delta q^a + \frac{1}{2} \Pi_{,ab} \delta q^a \delta q^b + O(\delta q^3) = 0
\]

(omitting tensor indices). From now on we adopt Witt’s condensed notation \[10\], i.e. assume that continuous variables \((t,x')\) are included with the field indices \(a, b, ... \), so that, for instance, \(q^a \equiv q^a(t',x') \) and \(\Pi_{,a} = \delta \Pi/\delta q^a |_{q_0} \) etc. In addition, the summation over repeated indices is understood to include integration over time and/or space.

To lowest order, the background \(q_0^a(t) \) and the perturbations \(\delta q^a \) satisfy, respectively, the equations

\[
\Pi(q_0^a) = 0 \quad \text{and} \quad \Pi_{,a} \delta q^a = 0.
\]

However, it is clear from \[3\] that to next order in \(\delta q \) the perturbations also contribute to the evolution of the background homogeneous mode of the metric and matter fields \(q_0^a \). To see this, we take the average of \[3\] over a \(t = \text{const} \) hypersurface, and obtain the following “corrected” equations for the evolution of the background:

\[
\Pi(q_0^a) = -\frac{1}{2} \langle \Pi_{,ab} \delta q^a \delta q^b \rangle
\]

where brackets \(\langle \rangle \) denote spatial averaging. At first glance, it seems natural to identify the quantity on the right hand side of Eq. \[11\] with the effective EMT of perturbations which describes the back reaction of perturbations on the homogeneous background. However, this expression is not invariant with respect to diffeomorphism transformations and, for instance, does not vanish for “metric perturbations” induced in Minkowski spacetime by a coordinate transformation.

Thus it is clear that if we want to clarify how important physical perturbations are for the background evolution we need a diffeomorphism independent (gauge invariant) measure characterizing the strength of perturbations.

The coordinate transformations \[3\] induce diffeomorphism transformations \[12\] on \(\delta q \) which, in linear order, take the form

\[
\delta q^a \rightarrow (\delta \tilde{q}^a) = \delta q^a - L_\xi q_0^a,
\]

where \(\langle \xi \rangle = 0 \). To second order, the background variables \(q_0^a \) are not gauge invariant either but change as
\[q_0^a \rightarrow \tilde{q}_0^a = \langle e^{-\mathcal{L}_\xi (q_0^a + \delta q^a)} \rangle \]
\[= q_0^a - \langle \mathcal{L}_\xi \delta q^a \rangle + \frac{1}{2} \langle \mathcal{L}_\xi^2 \delta q_0^a \rangle. \]

Let us write the metric for a perturbed flat FRW Universe
\[ds^2 = N^2(t)\left(1 + 2\phi\right)dt^2 - 2a^2(t)(B_i - S_i)dx^i dt - a^2(t)\left[\left(1 - 2\psi\right)\delta_{ij} + 2E_{ij} + F_{ij} + h_{ij}\right]dx^i dx^j, \]
where the 3-scalars \(\phi, B, \psi, E \) characterize scalar perturbations, \(S_i \) and \(F_i \) are transverse 3-vectors and \(h_{ij} \) (gravity waves) is a traceless transverse 3-tensor.

Under a gauge transformation \([12] \), the quantity \(X^\mu \equiv \{a^2(t)\}^{-1}(B - \tilde{E}), -E_i - F_i \) with a “dot” denoting time derivative, changes as
\[X^\mu \rightarrow \tilde{X}^\mu = X^\mu + \xi^\mu. \]

This quantity will be treated formally as a 4-vector in Lie derivatives below. Using \(X^\mu \) one can form gauge invariant quantities characterizing both background and linear perturbations: \(Q = e^{\mathcal{L}_X q} \), that is
\[\delta Q^a = \delta q^a + \mathcal{L}_X q_0^a \]
and
\[Q_0^a = \delta q_0^a = \langle e^{\mathcal{L}_X q_0^a} \rangle. \]

It is easy to verify that the \(\delta Q^a \) correspond to the set of Bardeen’s gauge invariant variables \([3] \). The \(Q_0^a \) actually change under diffeomorphism transformations as
\[Q_0^a \rightarrow \tilde{Q}_0^a = Q_0^a + \frac{1}{2} \mathcal{L}_\xi \tilde{q}_0^a, \]
where \(\xi, X \) is the commutator of the vectors \(\xi \) and \(X \).

For uncorrelated \(\xi \) and \(X \) we have \(\langle \xi, X \rangle = 0 \), and therefore the last term in \([13] \) vanishes (see Ref. [3] for a detailed discussion of this term).

Our goal is to rewrite Equation \([11] \) in terms of quantities which are gauge invariant up to second order in perturbations. It is easy to see from Identity \([3] \) that if Einstein’s equations are valid for the set of variables \(q \), then
\[e^{\mathcal{L}_X} \Pi(q) = \Pi(e^{\mathcal{L}_X} q) = \Pi(Q) = 0. \]

Expanding \([19] \) to second order in \(\delta Q \) and taking the spatial average of the result yields
\[\Pi(Q_0) = -\frac{1}{2} \langle \Pi_{ab} \delta Q^a \delta Q^b \rangle, \]
which is the desired gauge invariant form of the back-reaction equation. Note that in deriving \([20] \) we made use of the equations of motion for \(q \). Finally, Equation \([20] \) can be written as
\[G_{\mu\nu}(Q_0) = 8\pi[T_{\mu\nu}(Q_0) + \tau_{\mu\nu}(\delta Q)], \]
where
\[\tau_{\mu\nu}(\delta Q) \equiv -\frac{1}{16\pi} \langle \Pi_{ab} \delta Q^a \delta Q^b \rangle \]
can be interpreted as the gauge invariant effective EMT for perturbations. Therefore if we want to find out if the back reaction of perturbations is important we should compare \(\tau_{\mu\nu}(\delta Q) \) of perturbations with \(T_{\mu\nu}(Q_0) \). Note that none of the terms in Equation \([20] \) depends on the specific coordinate system used to evaluate them.

To conclude this section, we will derive the effective EMT for scalar cosmological perturbations about a spatially flat FRW Universe. Since the results do not depend on the gauge, we can calculate the EMT using longitudinal gauge \([3] \), in which
\[ds^2 = (1 + 2\phi)dt^2 - a^2(t)(1 - 2\psi)dx^i dx^j, \]
and the matter perturbation (taking matter to be a scalar field) is \(\delta \phi \). For many types of matter (scalar fields included) \(T_{ij} \) is diagonal in linear order in \(\delta q \), which implies that \(\phi = \psi \) \([1] \). By evaluating the functional derivatives in \([11] \) (see also \([3] \)) one can derive the following expression for \(\tau_{\mu\nu} \):
\[\tau_{00} = \frac{1}{8\pi} \left[+12H\langle \delta \phi^2 \rangle - 3\langle \delta \phi^2 \rangle + 9a^{-2}\langle (\nabla \delta \phi)^2 \rangle \right] \]
\[+ \frac{1}{2} \langle (\delta \phi^2) \rangle + \frac{1}{2} a^{-2} \langle (\nabla \delta \phi)^2 \rangle \]
\[+ \frac{1}{2} V_{\phi\phi\phi}(\varphi_0)(\delta \phi^2) + 2V_{\phi\phi}(\varphi_0)(\delta \phi \delta \varphi) \]
\[\tau_{ij} = a^2 \delta_{ij} \left\{ \frac{1}{8\pi} \left[(24H^2 + 16\dot{H})\langle \delta \phi^2 \rangle + 24H\langle \delta \phi \rangle \right. \right. \]
\[+ \langle \langle \delta \phi \rangle^2 \rangle + 4\langle \delta \phi \rangle - \frac{4}{3} a^{-2} \langle (\nabla \delta \phi)^2 \rangle \right] + 4\varphi_0^2 \langle \phi^2 \rangle \]
\[+ \frac{1}{2} \langle (\delta \phi^2) \rangle - \frac{1}{2} a^{-2} \langle (\nabla \delta \phi)^2 \rangle - 4\varphi_0(\delta \phi \delta \varphi) \]
\[- \frac{1}{2} V_{\phi\phi}(\varphi_0)(\delta \phi^2) + 2V_{\phi\phi}(\varphi_0)(\delta \phi \delta \varphi) \right\}, \]
where \(H = \dot{a}/a \) is the Hubble parameter and \(\tau_{0i} = \tau_{ij} = 0 \) (\(i \neq j \)).

Back Reaction in Stochastic Inflation

As an application of the formalism developed in the previous sections, we will evaluate the order of magnitude of back reaction effects in the chaotic inflationary scenario \([12][13]\), for simplicity taking a massive scalar field as the inflaton. In this model, quantum fluctuations of the scalar field \(\varphi \) certainly dominate the dynamics of the background when the field is above the self-reproduction scale \(\varphi_{sf} \sim m^{-1/2} \) (in Planck units), and space on scales
of the particle horizon is completely inhomogeneous, consisting of many bubble Universes. It is usually supposed that in spatial regions where the scalar field at some point drops below \(\varphi_{\text{sf}} \), the evolution proceeds classically and the metric fluctuations generated are not very important for the evolution of the homogeneous background. We will show below that this is not really the case.

In a chaotic inflationary universe scenario, linear perturbations on a fixed comoving scale \(k \) are completely specified by the function \(\phi_k \) (for a review, see \([9]\)). This is due to the fact that \(\psi = \phi \) and that the metric and matter perturbation variables \(\phi \) and \(\delta \varphi \) are anti-correlated for \(ka \ll H \), i.e. \(\delta \varphi_k \approx -\varphi_0 \phi_k \). Hence, all terms in the effective energy-momentum tensor \(\tau_{\mu \nu} \) can be expressed through the various correlators of \(\phi_k \). The amplitudes of \(\phi_k \) are known from the theory of linear cosmological perturbations. Using the results for \(\phi_k \) valid during inflation \([9]\) we obtain for instance the regularized correlator

\[
\langle \phi^2 \rangle = \int_{k_i}^{k_f} \frac{dk}{k} |\langle \phi \rangle|^2 = \frac{m^2}{32\pi^4 \varphi_0^2(t_i)} \int_{k_i}^{k_f} \frac{dk}{k} \left[\ln \frac{H(t)a(t)}{k} \right]^2 \sim m^2 \varphi_0^2(t_i) \varphi_0^2(t_f)
\]

where \(t \) denotes physical time, \(t_i \) is the time when inflation started and the inflaton potential is \(V = 1/2 m^2 \varphi^2 \). The IR and UV physical cut-offs \(k_i \) and \(k_f \) are given, respectively, by the scale of the largest wavelength perturbation (created when inflation started at time \(t_i \)), i.e. \(k_i = H(t_i)a(t_i) \), and by the scale \(k_f = H(t)a(t) \) of the shortest classical perturbation, which is just the scale of the Hubble distance.

It can be checked that the main contribution to the EMT of cosmological perturbations \(\tau_{\mu \nu} \) comes from terms proportional to the above correlator. Therefore one finds that at the end of inflation (when \(\varphi_0 \sim 1 \)) the energy density of perturbations is about

\[
|\tau_{00}| \sim m^4 [\varphi_0(t_i)]^6.
\]

Comparing the above result (27) with the background energy density at the same moment of time, we conclude that if at the beginning of inflation

\[
\varphi_0(t_i) > \varphi_{\text{br}} \sim m^{-1/3},
\]

then back reaction becomes important before the end of inflation (\(\varphi_0 \sim 1 \)).

It is important to note that \(\varphi_{\text{br}} \) is smaller than the value \(\varphi_{\text{sf}} \sim m^{-1/2} \) when stochastic source terms from quantum fluctuations start to dominate. A more detailed discussion of back reaction will be the subject of a forthcoming publication \([1]\).

Acknowledgements

R.A. and R.B. thank Fabio Finelli for many fruitful discussions, and Bill Unruh, Christoph Schmid and Matt Parry for useful conversations. R.A. is supported by CNPq (Research Council of Brazil), award 20.0727/93.1; R.A. and R.B. are partially financed by U.S. DOE, Contract DE-FG0291ER40688, Task A; V.M. thanks the SNF and the Tomalla foundation for financial support; the authors also acknowledge support by NSF collaborative research award NSF-INT-9312335.

* Email: mukhanov@itp.phys.ethz.ch
† Email: abramo@het.brown.edu
‡ Email: rhb@het.brown.edu

[1] L. Landau and E. M. Lifshitz, “The Classical Theory of Fields”, 4th Ed. (Pergamon Press, Oxford 1975).
[2] C. W. Misner, K. S. Thorne and J. A. Wheeler, “Gravitation” (W. H. Freeman, New York 1973).
[3] D. Brill and J. Hartle, Phys. Rev. 135, 1 (1964), B271-278.
[4] R. Isaacson, Phys. Rev. 166, 2 (1968), 1263-1271 and 1272-1280. See also M. A. H. MacCallum and A. H. Taub, Comm. Math. Phys. 30 (1973), 153-169 and Y. Choquet-Bruhat, Commun. Math. Phys. 12 (1969), 16-35.
[5] T. Futamase, Phys. Rev. Lett. 61, 2175 (1988); T. Futamase, Mon. Not. R. astr. Soc. 237, 187 (1989). See also S. Bildhauer and T. Futamase, Gen. Rel. Grav. 23, 1251 (1991).
[6] U. Seljak and L. Hui, “Global Expansion in an Inhomogeneous Universe”, MIT preprint, unpublished (1995).
[7] T. Buchert and J. Ehlers, astro-ph/9510056 (1995), subm. to Mon. Not. R. astr. Soc..
[8] A. H. Taub, J. Math. Phys. 2, (1961) 787 .
[9] V. F. Mukhanov, R. H. Brandenberger and H. Feldman, Phys. Rep. 215, (1992), 203-333.
[10] B. DeWitt, “Dynamical Theory of Groups and Fields” (Gordon and Breach, New York 1965.)
[11] L. R. W. Abramo, R. H. Brandenberger and V. F. Mukhanov, Brown preprint BROWN-HET-1046 (1996).
[12] A. A. Starobinsky, in “Current Topics in Field Theory, Quantum Gravity and Strings”, ed. H. J. de Vega and N. Sánchez, Lecture Notes in Physics Vol. 246 (Springer-Verlag, Berlin 1982.)
[13] A. S. Goncharov, A. D. Linde and V. F. Mukhanov, Int. J. Mod. Phys. A2, (1987), 561-591; A. D. Linde, “Particle Physics and Inflationary Cosmology” (Harwood, Chur 1990); A. D. Linde, Phys. Scr. T36, (1991) 30.