Predicting geometric parameters of assemblies with neural network models

M A Bolotov¹, V A Pechenin¹, N V Ruzanov¹ and I A Grachev¹

¹Samara National Research University, Moskovskoe Shosse 34, Samara, Russia, 443086

Abstract. The prediction models of assembly processes for critical parts will enable ensuring adaptive control of assembly based on the measured information. Direct simulation of the mating process with employing computational mating models and finite element models of assemblies requires considerable computational resources and is frequently accompanied by the solution convergence problem. To solve the above problems, neural network models may be employed, which describe basic regularities for the mating process based on the cumulative results. The work describes the technique for predicting the mating precision of parts based on real geometric models of surfaces. Real models of parts represents dot arrays of their surfaces. The technique employs the developed model, allowing to calculate the assembly geometric parameters of parts. The results of mating simulation for the disk and the spacer of the turbine rotor are considered. To predict the parameter of “radial run-out” depending on the value and nature of form deviation and tension of mating surfaces, a radial-base neural network was developed and trained.

1. Introduction

Complex industrial and science-intensive products involve high requirements to the geometric accuracy of parts and assembly units. These products include modern aircraft engines, which require high reliability, minimum weight, efficiency and service life. The above characteristics are ensured, among other things, by improving the manufacturing technology for parts and assemblies. Dimensional accuracy is ensured in manufacturing and assembly. The ways to achieve dimensional accuracy are determined at the stage of the manufacturing design engineering [1,2,3]. The solution of these problems at each stage can be simplified due to the availability of mathematical models [4] and tools allowing to predict and determine the actual values of geometric parameters [5,6] characterizing the achievable accuracy.

The technique for estimating the probability spatial mating parameters of parts should allow for evaluating the impact of the geometrical accuracy of surfaces of parts on the accuracy of mating and assembly of parts between each other. The developed technique shall be implemented as a program library. The work suggests a model and software implementation of the “virtual assembly” of assembly units of complex products, which allows modelling the mating process of flat and cylindrical surfaces of parts with the dimensions characteristic for parts of gas turbine engines and calculate the assembly parameters.
2. Object of research
The assembly of parts of the turbine disk and spacer shall represent the object of research. The sketch of the spacer and disc containing the controlled geometric parameters is given in fig. 1. and fig. 2.

For the “spacer” part, the controlled geometric parameters are: linear dimension 101 with a tolerance of -0.14 mm, a perpendicularity of 0.03 mm of the surface D relative to G, a parallelism of 0.03 mm of the end surface mating with the disc relative to the surface G and a radial run-out of 0.03 mm of the opening mating with the disk with respect to the surface D. The disc has is a cylindrical surface B mating with the spacer and the end, whose beating should not exceed 0.02 mm. In addition, the surfaces are rated with respect to the form deviation \(\delta_f \) (cylindricity and flatness deviation) within 0.03 mm. To calculate the resulting assembly parameters, a mathematical model shall be developed for assembling parts by surfaces that have geometric deviations. After assembly, the following assembly parameters are calculated: radial run-out of the disk relative to the surface D \(\Delta r_d \); the parallelism of the end of the disk relative to G \(\Delta_{par,d} \); disc concentricity relative to D \(\Delta_{as,c} \); deviation of the axial clearance \(\Delta_{ag} \). Concentricity influences the unevenness of the end clearance between the disk blades and the motor housing, which should be 0.3-0.5 mm for all stages. In this regard, it is more convenient to operate with the radius-vector of the disk centre deviation, therefore the centre point coordinates are more convenient to be converted into the polar coordinate system \((\rho_{as,c}, \beta_{as,c}) \).

3. Virtual assembly technique and algorithms
In general, the contact of respectively mating surface pairs of flat and cylindrical surfaces occurs over a finite set of points [7]. Such points are contact points [8]. Analytic solutions of contact problems for surfaces without form deviation are known. In general, for simulating contact problems of surfaces with form deviation, the finite elements method is used. The above method allows to take into account features of surface geometry, solve assembly prediction and tolerance analysis problems [9, 10], contact and strength problems [11].

To simulate mating of parts, a technique has been developed that includes the following steps:
1. Development of real models of parts, assembly forming. Real models of parts represents dot arrays of their surfaces.
2. Setting the calculation model:
 a. Developing triangulation grids on the surfaces of parts.
 b. Setting the contact pairs of surfaces.
 c. Setting the part displacement limitations.
3. Calculation, result saving.
4. Development of a model for processing of calculation results allowing to determine the geometric assembly parameters based on the coordinates of the finite element (triangulation) grid and the displacement, deformation and stress matrices.
5. Calculation of statistical indicators.

The real parts models were developed out in the following sequence. At the first stage, the nominal models of mating parts were developed. At the second stage, the real (model) mating surfaces were calculated from a finite set of points based on nominal equations, form deviation functions and location deviation parameters. One of the methods for formalizing the surface form deviations is the modal approach [12].

The point coordinate of the measured model surface may be determined from the formula:

$$p_m = \left(p_n + n \cdot \delta_f \right) \cdot R + \vec{t},$$

where

- \(p_m, p_n \) – point coordinate vector \((x, y, z)\) of the measured (simulated) and nominal (CAD) surface, respectively;
- \(n \) - normal vector in the point \(p_n \);
- \(\delta_f \) - form deviation value in the point \(p_n \);
- \(R, \vec{t} \) – rotation matrix and transposition vector of point coordinates \(p_n \) characterizing position deviation.

In the problem being solved comprising the disk and the spacer, a finite element grid was developed, in which a high partition density was set at the contacting end and cylindrical surfaces. The contact parameters were set for the connections: plane-plane (clearance \(G_2 \)) and cylinder-cylinder (clearance \(G_1 \)). The limiting conditions were set for six degrees of freedom for the “Spacer” part. To solve the contact problem using the developed finite element model, an iterative algorithm was developed that allows calculating the mating of parts without taking into consideration the deformation of parts during the assembly process described in detail in [13]. The algorithm for finding the mating state assumes the iterative transposition of one mating surface relative to the other with the surface assembly force vector \(\vec{D}_f \). The notion of clearance function \(G(\vec{V}) \) was introduced characterizing the achievement of the mating state of the surfaces of parts and depending on the relative position vector of the surfaces \(\vec{V} \). To calculate the function \(G(\vec{V}) \) at each stage, the best alignment of the mating surfaces is made. To perform the best alignment procedure, the iterative nearest-point algorithm (ICP) is used [14, 15]. According to this algorithm, the angles for rotation and displacement along the coordinate axes are calculated at each iteration by non-linear optimization search methods. To avoid intersections of two surfaces, the system of inequalities presented in [16] is used, which imposes restrictions on the gap function \(G(\vec{V}) \). Based on the algorithm, the rotation matrix and displacement vector of the moving part are calculated, which determine the transformation of its initial coordinate system into a coordinate system in the assembled state:

$$p_{as} = p_p \cdot R_{as} + \vec{t}_{as},$$

where \(p_{as}, p_p \) – point coordinate vector \((x, y, z)\) parts after assembly and in the initial condition, respectively; \(R_{as}, \vec{t}_{as} \) – rotation matrix and displacement vector of the point coordinates characterizing the part displacement during assembly.

The developed technique and the iterative algorithm were used to calculate the mating accuracy of the assembly unit, including the disk and the spacer in the turbine of the aircraft engine (Figures 1 and 2). Mating of the mentioned parts by plane-cylinder surfaces is considered. A similar connection is considered in the work [17].
4. Virtual assembly application results for predicting assembly parameters

To evaluate the dimensional accuracy parameters of the disk and turbine spacer assembly (radial run-out and parallelism of the disk end), simulation of 72 mating surfaces of parts was performed, for each of which the assembly was simulated in different positions (6 cases for each surface due to different angular positions of the disk). Cylindrical surfaces were set by 720 uniformly distributed points in the cross section \(XOY\) in ten sections, flat mating surfaces were set by points in ten sections. The sections represent the polar distance of the polar surface representation system, the points in the sections are the polar angle. The magnitude of the form deviation amplitude varied according to the normal distribution law.

The limiting values of the parameters of the geometric errors used in simulation of the measured surfaces are given in Table 1.

Table 1. The limit values of error parameters in experiments.

Parameter	\(D\)	\(G\)	Spacing opening	Spacer end	Disc cylindrical surface	Disc end surface
Measurement error			1.7(2.5)+L/333 [\(\mu m\)]			
Non-perpendicularity	0.03 [mm]	None	None	None	None	None
Non-parallelism	None	None	Base	0.03 [mm]	None	None
Dimensional deviation	None	-0.06 [mm]	Base	0.14 [mm]	None	None
Radial run-out	Base	0.03 [mm]	None	None	None	None
Face run-out	None	None	None	None	None	None
Number of points in cross-section						720
Number of points in longitudinal section						10

In the connection between the disc and spacer, the maximum tension of 0.09 shall be ensured subject to the drawing conditions. In this connection, the spacer opening diameter has the tolerance of -0.06 mm, the diameter of the mating cylinder surface of the disc is up to +0.03 mm.

Location deviations were simulated using the definitions from GOST R 53442-2009 [18] through rotation and transposition (displacement) of the points of planes and cylindrical surfaces with the help of rotation matrices and the transposition vector from (1). In simulating the assembly, the disc took different positions relative to the spacer by rotating about the rotation axis in 60 degree increments. An iterative mating algorithm was implemented in the software package MATLAB. The surface models were developed considering the form and location deviations. As a result of mating simulation, the positions of the disk relative to the spacer were determined without taking into consideration the deformations of the parts during the assembly process. The limiting deviation of the form of the mating surfaces of the disc and the spacer was 0.03 mm, the limiting tension in the mating of spacer opening - disc cylindrical surface amounted to 0.08 mm.

Table 2 shows the mathematical expectation \(\mu\), mean square deviation \(\sigma\), minimum and maximum value of deviation of the assembly parameters with the confidence factor of 99.73%.

Let’s consider the degree of influence of the form deviation parameters (described by polynomial equations with degrees \(c_\lambda\) for cylindrical surfaces and \(e_\lambda\) for end surfaces) and the tension values in the mating between the disk and the spacer on the errors of the assembly parameters. The degree and nature of the impact may be calculated using the correlation factors between the uncertainty values and measurement parameters. Table 3 shows the correlation factors between the dimensional accuracy parameters of parts and assembly parameters.
Figure 3. Error histograms of assembly parameters: Δ_{r-d} (a); Δ_{par-d} (b); ρ_{as-c} (c); Δ_{ag} (d).

Table 2. Deviation parameters for form and location of the disc-spacer assembly.

Parameter	μ, μm	σ, μm	Min., μm	Max., μm
Δ_{r-d}	17.29	6.95	3.69	44.88
Δ_{par-d}	6.33	3.65	0.20	20.33
Δ_{as-c}	1.79	1.53	0.05	13.21
Δ_{ag}	29.71	23.87	-9.82	86.48

Table 3. Correlation factors for assembly parameter errors.

Parameter	Geometric deviations of disc, mm			
	Δ_{r-d}	Δ_{par-d}	ρ_{as-c}	Δ_{ag}
Tension G_z	0.02	-0.03	-0.07	0.00
Form deviation in cylinder	0.75	-0.22	-0.03	-0.12
Form deviation in ends	0.67	-0.06	-0.08	-0.17
Polynomial degree for cylinders λ_c	0.02	-0.24	-0.02	-0.04
Polynomial degree for ends λ_e	0.56	-0.22	-0.24	-0.19

The form deviation parameters of the mating surfaces have a strong influence on the radial run-out of the disk. The nature of the form deviation at the ends also has an average value of the correlation relationship with the parameter and a weak connection with the remaining parameters. As follows from the results of the correlation analysis, the value is quite strongly interrelated with the form deviations on the mating surfaces, and hence it may be predicted from these parameters.

Based on the above, to predict the parameter Δ_{r-d} measurement uncertainty, the following regression expression may be used:

$$\Delta_{r-d} = f(G, 0.\Delta_f, \lambda),$$ \hspace{1cm} (3)

The next step in developing a regression model is to develop a model for uncertainty dependencies on the listed parameters. To solve the set task for predicting uncertainties, the Generalized Regression Neural Networks (GRNN) were employed.
A radial-base neural network was developed, having 2 layers – a hidden radial base layer with \(Q \) neurons, and an output linear layer with \(S \) neurons. Schematically, it is represented in fig. 4. The radial-base neuron transforms the distance from the given input vector to its corresponding “centre” through some non-linear law (Gaussian function).

The number of neurons of the input layer \(P \) is equal to the number of parameters used for prediction: the tension in the connection of cylindrical surfaces; total form deviation of cylindrical surfaces; total form deviation of the end surfaces; the polynomial degree describing the deviation on cylindrical surfaces; the polynomial degree describing the deviation on the end planes. The number of neurons of the radial basis layer \(Q \) is equal to the number of elements of the training set, that is, the number of assembly cases employed for training the network. The number of neurons in the second, linear layer is equal to the number of predicted parameters. In our case, it is the parameter.

Based on the simulation results (Tables 1 and 2, Figure 3), a base neural network was developed and trained in the MATLAB software package. To train the network, 66 assembly cases were employed (in each case there were 6 possible positions, so the resulting value was chosen as the average of the 6 positions). The prediction was made for the remaining 6 cases, as a result of which the run-out values are calculated \(\Delta_{r_{\text{pr}}} \). The values of relative errors for determining the “radial run-out” values were calculated \(\Delta_{\text{rel}} \) using the formula:

\[
\Delta_{\text{rel}} = \left(\Delta_{r_{\text{d}_{\text{pr}}}} - \Delta_{r_{\text{d}}} \right) / \Delta_{r_{\text{d}}} \cdot 100\%,
\]

Table 4 shows the moment characteristics (mathematical expectation, \(\mu \) standard deviation \(\sigma \)), as well as the minimum and maximum relative errors in predicting the parameter \(\Delta_{r_{\text{d}}} \).

Parameter	\(\mu \), %	\(\sigma \), %	Minimum, %	Maximum, %
Training	0.00	0.00	0.00	0.00
Prediction	-3.24	4.27	-9.08	2.77

As it follows from the results, prediction errors are within 10%.

5. Conclusion
The work describes the technique for predicting the mating precision of parts based on real geometric models of surfaces. The results of mating simulation for the disk and the spacer of the turbine rotor are considered. The analysis of the degree of influence of the form deviations and dimensions of the mating surfaces on the assembly parameters of the product was performed. The data obtained through simulation are used to develop and teach a radial-base neural network allowing to predict errors in the
assembly parameters of a disc by a set of geometry deviation parameters of the measured surfaces of parts.

6. References

[1] Soifer V A, Kazanskiy N L and Kharitonov S I 1998 Synthesis of a binary DOE focusing into an arbitrary curve, using the electromagnetic approximation Optics and Lasers in Engineering 29(4-5) 237-247

[2] Kazansky N L, Stepanenko I S, Khaimovic A I, Byzov E V and Moiseev M A 2016 Injectionalmultilens molding parameters optimization Computer Optics 40(2) 203-214 DOI: 10.18287/2412-6179-2016-40-2-203-214

[3] Doskolovich L L, Kazanskij N L, Pavel’ev V S and Soifer V A 1995 Calculation of diffraction optical elements for focusing in out-axis radial focal regions Optoelectronics, Instrumentation and Data Processing 1 114-119

[4] Deng X and Wang J 2017 Research on the manufacturing of mechanical parts based on the theory of space symmetry group Academic Journal of Manufacturing Engineering 15(1) 64-71

[5] Zakharov O V and Kochetkov A V 2016 Minimization of the systematic error in centerless measurement of the roundness of parts Measurement Techniques 58(12) 1317-1321

[6] Pechenkin M V, Abzalov A R and Shustov V E 2017 To the question of developing a technique for measuring the parameters of gears with a hyperboloidal dividing surface and assigning the accuracy standards Bulletin of IzhSTU 20(2) 87-90

[7] Imkamp D, BertholdJ, Heizmann M, Kniel K, Manske E, Peterm M, Schmitt R, Seidler J and Sommer K-D 2016 View Correspondence (jump link) Challenges and trends in manufacturing measurement technology - The "industrie 4.0" concept Journal of Sensors and Sensor Systems 5(2) 325-335

[8] Kovalenko P, Perenelkina S and Korahkanov T 2017 Investigation of tribological properties of friction pairs duralumin – fluoropolymer used for design and manufacturing of biomechatronic devices Tribology in Industry 39(2) 192-197

[9] Anwer N, Schleich B, Mathieu L, Wartzack S 2014 From solid modelling to skin model shapes: shifting paradigms in computer-aided tolerancing CIRP Annals – Manufacturing Technology 63 137-140

[10] Schleich B, Anwer N, Mathieu L and Wartzack S 2016 Status and Prospects of Skin Model Shapes for Geometric Variations Management 14th CIRP Conference on Computer Aided Tolerancing (CAT) Procedia CIRP 43 154-159

[11] Zubanov V, Shabliy L and Krivcov A 2014 Centrifugal kerosene pump CFD-modeling Research Journal of Applied Sciences 9(10) 629-634

[12] Homri L, Goka E, Levassuer G and Dantant J-Y 2017 Tolerance analysis – Form defects modeling and simulation by modal decomposition and optimization Computer-Aided Design 91 46-59

[13] Bolotov M A, Pechenin V A and Murzin S P 2016 Method for uncertainty evaluation of the spatial mating of high-precision optical and mechanical parts Computer Optics 40(3) 360-369 DOI: 10.18287/2412-6179-2016-40-3-360-369

[14] Besl P J and Mckay N D 1992 A method for registration of 3-D shapes IEEE Transactions on Pattern Analysis and Machine Intelligence 14(2) 239-256

[15] Tian H, Yang P, Su C and Dong 2015 Z ICP registration technology based on the coordinate system direction fit International Journal of Security and its Applications 9(12) 47-56

[16] Pierce R S and Rosen D 2007 Simulation of mating between nonanalytical programing formulation Journal of Computing and Information Science in Engineering 7(4) 314-321

[17] Schleich B and Wartzack S 2015 Approaches for the assembly simulation of skin model shapes Computer-Aided Design 65 18-33
[18] GOST R (State Standards) 53442-2009:2010 *The basic norms of interchangeability. Product characteristics are geometric. Tolerances of shape, orientation, location and heartbeat* (Moscow: STANDARTINFORM)

Acknowledgements

This work is supported by the Ministry of Education and Science of the Russian Federation in the framework of the implementation of the Program State Assignment for 2018. The project code is 9.11560.2018 / 10.11.