A STUDY OF TRIPLE ASSESSMENT OF BREAST CANCER PATIENTS IN A TERTIARY CARE HOSPITAL OF CENTRAL INDIA
Jyoti Valecha¹, Vivek Gupta², Jharna Mishra³, Roshan Chanchlani⁴

HOW TO CITE THIS ARTICLE:
Jyoti Valecha, Vivek Gupta, Jharna Mishra, Roshan Chanchlani. "A Study of Triple Assessment of Breast Cancer Patients in a Tertiary Care Hospital of Central India". Journal of Evolution of Medical and Dental Sciences 2014; Vol. 3, Issue 19, May 12; Page: 5190-5195, DOI: 10.14260/jemds/2014/2572

ABSTRACT: BACKGROUND AND AIMS: The study was done to know the accuracy of Triple assessment and management strategies for breast cancer patients. MATERIALS AND METHODS: Patients with carcinoma breast were analyzed in a tertiary care hospital of central India from January 2012 to June 2013. Thorough Clinical and physical examination was done, mammography, USG and FNAC was used for diagnosis of cancer Breast. RESULTS: maximum cases (90%) were diagnosed clinically & by FNAC. USG was more sensitive for dense breasts of young patients, whereas mammography was more sensitive for breasts of older patients. Among pathological diagnosis Trucut biopsy was more sensitive than FNAC having diagnostic accuracy of 100% as compared to FNAC whose diagnostic accuracy was 90%. Diagnostic accuracy of triple assessment was 100% for diagnosing carcinoma breast. CONCLUSION: Most common symptom was lump in breast among postmenopausal women from urban area. Lack of education was responsible for their delayed presentation. Left upper and outer quadrant being the commonest site, Infiltrating duct carcinoma was the most common type, diagnostic accuracy of triple modality i.e. clinical, radiological and pathological assessment was 100%. KEYWORDS: Breast cancer, FNAC, Mammography, triple assessment, Ultrasonography.

INTRODUCTION: The World Cancer Report issued by the International Agency for Research on Cancer (IARC), tells us that cancer rates are set to increase at an alarming rate globally. Cancer rates could increase by 50% to 15 million new cases in the year 2020.¹ Worldwide breast cancer is the most frequent cancer in women and represents the second leading cause of cancer death among women (after lung cancer).² ³ Presently, 75, 000 new cases occur in Indian women every year.⁴ This figure must be viewed against the backdrop that the National Cancer Registry and the Hospital-based Tumor Registries hardly sample 3% of the total population. Locally advanced breast cancer (LABC) constitutes more than 50 to 70% of the patients presenting for treatment.⁴ Late diagnoses is a major factor for increased mortality as the majority of the patients present in advanced or metastatic stage. This is primarily attributed to lack of access to medical facilities, virtually non-existent breast cancer screening programs, lack of awareness and social-cultural attitudes. Accordingly, five-year survival rates have been poorer, reported as 42% and 48% in two population-based studies.⁵ ⁶ Early breast cancer (EBC) constitutes about 30% of the breast cancer load in our country.⁷ There is no published case series on EBC from India.

MATERIAL AND METHODS: After ethical approval, this hospital based longitudinal study was carried out in 130 cases of lump in breast patients coming for the examination over a one-year period (January 2012 - June 2013), in different surgical and oncosurgery wards of a tertiary care center in central India. The breast cancer patients already treated by mastectomy outside were excluded. After
the informed consent the study subjects were subjected to thorough clinical examination, diagnostic & routine investigation and treatment as required necessary. To diagnose cancer breast mammography, USG and FNAC was used and only those subject were included in the study group, when FNAC was suggestive of cancer, when FNAC was suspicious trucut biopsy was applied. There were total 50 cases suggestive of cancer breast in FNAC and consenting to participate, were finally included in the study. Patients were followed up post operatively for 1 month to 24 months. On follow-up mammography was done to exclude local recurrence. If mammography was positive, they were advised FNAC.

STATISTICAL ANALYSIS: The data collected was entered in to Microsoft office excel 2007. The quantitative variables were summarized as mean and standard deviation while qualitative variables as percentage and proportion. The statistical package used was SPSS 17.

OBSERVATIONS: A majority of the patients (72.8%) were in the age group of 41–60 years. The youngest patient was 28 and the oldest was 85 years old. The mean age was 44.19±9.80 years. Urban and rural background ratio was 1.8:1. Table: 1 shows the lump in breast as the dominant clinical presentation among the study subject (74%). Upper and outer quadrant of breast was the most common site of cancer breast among majority study subjects 56%, followed by upper quadrant (13.4%). The duration of presenting complaints as recorded is shown in Table 2. 71.33% had less than three children, while 16.72% (n=49) were nulliparous. On menstrual status 60.76% were postmenopausal and 39.24% were premenopausal.

No patient had a positive family history of breast cancer. Fine needle aspiration cytology (FNAC) was done in 130 patients; it was positive for malignancy in 45(34.61%) and either negative or inconclusive in 5(3.84%) patients. These patients later on underwent trucut or excision biopsy for confirmation of diagnosis. Table no. 3 shows maximum cases (86%) were diagnosed by mammography in which most common finding (36%) was both microcalcifications & density lesions (masses, architectural distortion & asymmetry) together.

Table no. 4 shows in USG 82% cases were diagnosed malignant. Other malignant conditions were diagnosed by USG as solid benign (3 case malignancies) and intermediate (6 cases). Table no. 5 shows maximum (45) cases were diagnosed by FNAC as Infiltrating duct carcinoma (IDC [NOS]) and suspicious (4) cases were sent for Trucut biopsy. Suspicious smears were having some of the character of malignant as well as of benign cells. Of the 04 suspicious cases 02 were malignant on trucut biopsy and later biopsy of Lumpectomy specimen, 01 showed atypical ductal hyperplasia and 01 showed DCIS (Comedo type). Unsatisfactory smears were due to scanty aspirate, in which cellular details could not be made. Later biopsy of lumpectomy specimen revealed intense desmoplasia in both the cases. Table no. 6 shows that maximum cases (90%) were diagnosed clinically & by FNAC. USG was more sensitive for dense breasts of young patients, whereas mammography was more sensitive for breasts of older patients.

Among pathological diagnosis Trucut biopsy was more sensitive than FNAC having diagnostic accuracy of 100% as compared to FNAC whose diagnostic accuracy was 90%. When clinical examination, radiological diagnosis (USG/ mammography) and pathological diagnosis (FNAC/ Trucut biopsy) were considered together so called in TRIPLE ASSESMENT the diagnostic accuracy increased to 100% for diagnosing carcinoma breast. Different modes of treatment were given to the patients of
cancer breast according to staging, prognostic factors and ER-PR status. In early cases of breast cancer 7(14%) neoadjuvant hormonal therapy (NHT) + MRM and adjuvant chemotherapy (ACT)/adjuvant hormonal therapy (AHT) was given.

Survival was 100% and no case of local recurrence and/or systemic metastasis was reported during the follow up period of 1 year. In 10 (20.0%) operable locally advanced breast cancer (LABC) cases NCT/ NHT + MRM + ACT/ AHT was used. Survival was 90%, with local recurrence in 1 case reported in 1 year follow up period. Among 23(46%) inoperable LABC cases NCT/ NHT + MRM/ Toilet mastectomy + ACT/ AHT were done. Survival for 1 year was 82% with local recurrence in 4 cases and systemic metastasis in 1 case during 1 year follow up period. In 10(20%) metastatic cases different modes of treatment were given to the study subject. In 1st group (3 cases) hormonal therapy + palliative surgery + chemotherapy were used. Survival was 66.66% for 1 year.

In 2nd group of patients with metastatic diseases (3 cases) chemotherapy+surgery+hormonal therapy was used. Survival was 66.66% for 1 year during follow up. 3rd group of patients with metastatic cases (4 cases) received hormonal therapy + chemotherapy + surgery + chemotherapy/ RT. Survival was 50% in 1 year follow up. Overall survival for stage IV was 60% for 1 year follow up.

DISCUSSION: The aim of this study was to study the epidemiology of breast cancer at a tertiary care hospital in North India. A majority of the patients (77.9%) were in the fourth to sixth decade of their life, as also reported in studies from India and other Asian countries. However, reports from the western world show that female breast carcinoma is predominantly seen in the fifth and sixth decade. Our study showed more cases were from urban area, reports from India as well as United States show higher incidence in urban population compared to the rural population.

Lump in the breast was the chief presenting complaint in a majority of the patients (74 %), as reported in various studies.

The incidence of breast carcinoma was more on the left side in the upper outer quadrant corroborating with the previous reports. The possible explanations are that the left breast is bulkier and the upper outer quadrant has a relatively larger volume of breast tissue. Delayed presentation was possibly related to their lack of education. Incidence of breast carcinoma was more in postmenopausal patients and age of menopause was in the range of 41 to 50 years in most of the patients. A similar finding of early age of menopause in Indian females in comparison to their western counterparts has been observed in the past. For the diagnosis of breast carcinoma, FNAC was done and a positive predictive value of 85.3% was obtained. FNAC is a useful diagnostic tool because it is rapid and cost effective.

In conclusion, the mean age of presentation for breast carcinoma is a decade earlier in our patients compared to patients from the west. Hence, mammography as a screening tool is less likely to be as effective, due to the following reasons.

Higher density of breast tissue at younger age decreases the sensitivity of mammography. When clinical examination, radiological diagnosis (USG/ mammography) and pathological diagnosis (FNAC/ Trucut biopsy) were considered together so called in TRIPLE ASSESMENT the diagnostic accuracy increased to 100% for diagnosing carcinoma breast which is similar to the findings of study done by Jan M, Mattoo JA, Salroo NA, Ahangar in Srinagar in 2010.

Although Breast Conservation Surgery (BCS) is gaining popularity worldwide, MRM still remains the gold standard for the management of breast carcinoma in the present circumstances, in
most parts of India. In view of the rising incidence of breast carcinoma and the prevailing controversies in its management, it is recommended that they should preferably be managed by surgical oncologists for improvement in the patient's outcome.

CONCLUSION: Most common symptom was lump in breast among postmenopausal women from urban area. Lack of education was responsible for their delayed presentation. Left upper and outer quadrant being the commonest site, diagnostic accuracy of triple modality i.e. clinical, radiological and pathological assessment was 100% Most patients in our set up are unable to afford mammography due to their poor socioeconomic background. Thus there is a need for developing other cost-effective screening modalities for breast cancer in addition to propagating breast self-examination in masses, for early detection.

REFERENCES:
1. Pal SK, Mittal B. Improving cancer care in India: Prospects and challenges. Asian Pac J Cancer Prev 2004; 5: 226-8.
2. Dumitrescu RG, Cotarla I. Understanding breast cancer risk-where do we stand in 2005? J Cell Mol Med 2005; 9: 208-21.
3. Chandra AB. Problems and prospects of cancer of the breast in India. J Indian Med Assoc 1979; 72: 43-5.
4. Chopra R. The Indian Scene. Journal of Clinical Oncology 2001; 19: S106-11.
5. Goel AK, Seenu V, Shukla NK, Raina V. Breast cancer presentation at a regional cancer center. Nati Med J India 1995; 8: 6-9.
6. Gajalakshmi CK, Shanta V, Swaminathan R, Sankaranarayanan R, Black RJ. A population-based survival study on female breast cancer in Madras, India. Br J Cancer 1997; 75: 771-5.
7. Nandakumar A, Anantha N, Venugopal TC, Sankaranarayanan R, Thimmasetty K, Dhar M. Survival in breast cancer: A population-based study in Bangalore, India. Int J Cancer 1995; 60: 593-6.
8. Gupta P, Sharma RG, Verma M. Review of breast cancer cases in Jaipur region. J Indian Med Assoc 2002; 100: 282-3, 286-7.
9. Malik IA. Clinico-pathological features of breast cancer in Pakistan. J Pak Med Assoc 2002; 52: 100-4.
10. Hospital Episode Statistics Vol. 2 1991/92. Department of Health. London: HMSO, 1995.
11. Anderson WF, Chatterjee N, Ershler WB, Brawley OW. Estrogen receptor breast cancer phenotypes in the Surveillance, Epidemiology, and End Results database. Breast Cancer Res Treat 2002; 76: 27-36.
12. Coughlin SS, Thompson TD, Hall HI, Logan P, Uhler RJ. Breast and cervical carcinoma screening practices among women in rural and nonrural areas of the United States, 1998-1999. Cancer 2002; 94: 2801-12.
13. Raina V, Bhutani M, Bedi R, Sharma A, Deo SV, Shukla NK, et al. Clinical features and prognostic factors of early breast cancer at a major cancer center in North India. Indian J Cancer 2005; 42: 36-41.
14. Nagpal BL, Singh A, Sehgal RK, Kaur P. Breast cancer in Punjab (a clinicopathological review of 640 cases). J Indian Med Assoc 1980; 75: 113-6.
15. Hussain MA, Ali S, Tyagi SP, Reza H. Incidence of cancer breast at Aligarh. J Indian Med Assoc 1994; 92: 296-7.

16. Perkins CI, Hotes J, Kohler BA, Howe HL. Association between breast cancer laterality and tumor location, United States, 1994-1998. Cancer Causes Control 2004; 15: 637-45.

17. Bharadwaj JA, Kendurkar SM, Vaidya PR. Age and symptomatology of menopause in Indian women. J Postgrad Med 1983; 29: 218-22.

18. Oyama T, Koibuchi Y, McKee G. Core needle biopsy (CNB) as a diagnostic method for breast lesions: Comparison with fine needle aspiration cytology (FNA). Breast Cancer 2004; 11: 339-42.

19. Jan M, Mattoo JA, Salroo NA, Ahangar S. Triple assessment in the diagnosis of breast cancer in Kashmir. Indian J Surg. 2010; 72 (2):97-103.

Presentation	n	%
Isolated lump in breast	37	74.0
Fungating/ ulcerative growth	8	16.0
Combination	2	4.0
Isolated nipple discharge	2	4.0
Isolated pain in breast	1	2.0
Total	50	100.0

Table 1: Clinical presentation of Study subject

Duration	n	%
<15 days	1	2.0
15-30 days	2	4.0
1-2 months	6	12.0
2-3 months	5	10.0
3-6 months	11	22.0
6 months - 1 year	18	36.0
> 1 year	7	14.0
Total	50	100.0

Table 2: Duration of Symptoms

Types of lesions	Malignancy diagnosed	Suspicious		
	Microcalcifications only	Density lesions	Both calcification & density lesion	
No. of cases	13	12	18	07
Percentage	26	24	36	14

Table 3: Mammographic findings in diagnosing breast carcinoma cases
Table 4: USG findings in carcinoma breast cases

USG findings	Solid Benign	Intermediate	Malignant
No. of cases	03	06	41
Percentage	06	12	82

Table 5: Various histological types as seen on FNAC in the study (n=50)

Histological types	Total no. of cases	Percentage
IDC(NOS)	45	90%
Invasive Lobular Carcinoma	2	4%
Colloid Carcinoma	1	2%
Metaplastic Carcinoma	1	2%
DCIS	1	2%

Table 6: Diagnostic accuracy of different methods in diagnosing carcinoma breast

Methods of diagnosis	No. of cases diagnosed as carcinoma breast	Accuracy (%)
Clinical	45	90
USG	41	82
Mammography	43	86
FNAC	45	90
Trucut biopsy	05	100
TRIPLE ASSESSMENT	50	100

AUTHORS:
1. Jyoti Valecha
2. Vivek Gupta
3. Jharna Mishra
4. Roshan Chanchlani

PARTICULARS OF CONTRIBUTORS:
1. Assistant Professor, Department of Radiology, Chirayu Medical College and Hospital, Bhopal.
2. Assistant Professor, Department of Radiology, Chirayu Medical College and Hospital, Bhopal.
3. Assistant Professor, Department of Pathology, Chirayu Medical College and Hospital, Bhopal.
4. Associate Professor, Department of Surgery, Chirayu Medical College and Hospital, Bhopal.

NAME ADDRESS EMAIL ID OF THE CORRESPONDING AUTHOR:
Dr. Roshan Chanchlani,
1/6 - Idgah Kothi, Doctors Enclave,
Near Filter Plant, Idgah Hills,
Bhopal – 462001, M. P.
E-mail: roshanchanchlani@gmail.com

Date of Submission: 21/04/2014.
Date of Peer Review: 22/04/2014.
Date of Acceptance: 25/04/2014.
Date of Publishing: 09/05/2014.