We have shown that isotopic cross inverse property loops (CIPL) are isomorphic for WIP loops. Under the sufficient condition called the T condition, Artzy’s result that isotopic CIPLs are isomorphic is proved for WIP loops.

1 Introduction

Michael K. Kinyon [12] gave a talk on Osborn Loops and proposed the open problem: “Is every Osborn Loop universal?” which is obviously true for universal WIP loops and universal CIP loops. A popular isotopy-isomorphy condition in loops is the Wilson’s identity ([5]) and a loop obeying it is called a Wilson’s loop by Goodaire and Robinson [6, 5] and they proved that a loop is a Wilson loop if and only if it is a conjugacy closed loop (CC-loop) and a WIPL. Our aim in this work is to prove some isotopy-isomorphy conditions, different from those of J. M. Osborn [15] and Wilson [17] (i.e. the loop not necessarily a CC-loop), for a WIPL and see if the result of Artzy [2] that isotopic CIPLs are isomorphic is true for WIP loops or some specially related WIPLs (i.e. special isoto pes). But before these, we shall take few basic definitions and concepts in loop theory which are needed here.

Let L be a non-empty set. Define a binary operation (\cdot) on L: If $x \cdot y \in L$ for all $x, y \in L$, (L, \cdot) is called a groupoid. If the system of equations $a \cdot x = b$ and $y \cdot a = b$ have
unique solutions for \(x \) and \(y \) respectively, then \((L, \cdot)\) is called a quasigroup. Furthermore, if there exists a unique element \(e \in L \) called the identity element such that for all \(x \in L \), \(x \cdot e = e \cdot x = x \), \((L, \cdot)\) is called a loop. For each \(x \in L \), the elements \(x^\rho, x^\lambda \in L \) such that \(xx^\rho = e = x^\lambda x \) are called the right, left inverses of \(x \) respectively. \(L \) is called a weak inverse property loop (WIPL) if and only if it obeys the weak inverse property (WIP); \(xy \cdot z = e \) implies \(x \cdot yz = e \) for all \(x, y, z \in L \) while \(L \) is called a cross inverse property loop (CIPL) if and only if it obeys the cross inverse property (CIP); \(xy \cdot x^\rho = y \).

According to [3], the WIP is a generalization of the CIP. The latter was introduced and studied by R. Artzy [1] and [2] while the former was introduced by J. M. Osborn [15] who also investigated the isotopy invariance of the WIP. Huthnance Jr. [7] did so as well and proved that the holomorph of a WIPL is a WIPL. A loop property is called universal(or at times a loop is said to be universal relative to a particular property) if the loop has the property and every loop isotope of such a loop possesses such a property. A universal WIPL is called an Osborn loop in Huthnance Jr. [7] but this is different from the Osborn loop of Kinyon [12] and Basarab. The Osborn loops of Kinyon and Basarab were named generalised Moufang loops or M-loops by Huthnance Jr. [7] where he investigated the structure of their holomorphs while Basarab [4] studied Osborn loops that are G-loops. Also, generalised Moufang loops or M-loops of Huthnance Jr. are different from those of Basarab. After Osborn’s study of universal WIP loops, Huthnance Jr. still considered them in his thesis and did an elaborate study by comparing the similarities between properties of Osborn loops(universal WIPL) and generalised Moufang loops. He was able to draw conclusions that the latter class of loops is large than the former class while in a WIPL the two are the same.

But in this present work, two distinct isotopy-isomorphy conditions, different from that of Osborn [15] and Wilson [17], for a weak inverse property loop(WIPL) are shown. Only one of them characterizes isotopy-isomorphy in WIPLs while the other is just a sufficient condition for isotopy-isomorphy. Under the sufficient condition called the \(T \) condition, Artzy [2] result that isotopic cross inverse property loops(CIPL) are isomorphic is proved for WIP loops.

2 Preliminaries

Definition 2.1 Let \((L, \cdot),(G, \circ)\) be two distinct loops. The triple \(\alpha = (U, V, W) : (L, \cdot) \rightarrow (G, \circ) \) such that \(U, V, W : L \rightarrow G \) are bijections is called a loop isotopism \(\Leftrightarrow \ xU \circ yV = (x \cdot y)W \ \forall \ x, y \in L. \) Hence, \(L \) and \(G \) are said to be isotopic whence, \(G \) is an isotope of \(L. \)

Definition 2.2 Let \(L \) be a loop. A mapping \(\alpha \in S(L) \) (where \(S(L) \) is the group of all bijections on \(L \)) which obeys the identity \(x^\rho = [(x\alpha)^\rho] \alpha \) is called a weak right inverse permutation. Their set is represented by \(S^\rho(L) \).

Similarly, if \(\alpha \) obeys the identity \(x^\lambda = [(x\alpha)^\lambda] \alpha \) it is called a weak left inverse permutation. Their set is represented by \(S^\rho(L) \).

If \(\alpha \) satisfies both, it is called a weak inverse permutation. Their set is represented by \(S^\rho(L). \)
It can be shown that $\alpha \in S(L)$ is a weak right inverse if and only if it is a weak left inverse permutation. So, $S'(L) = S_\rho(L) = S_\lambda(L)$.

Remark 2.1 Every permutation of order 2 that preserves the right(left) inverse of each element in a loop is a weak right (left) inverse permutation.

Example 2.1 If L is an extra loop, the left and right inner mappings $L(x, y)$ and $R(x, y)$ $\forall x, y \in L$ are automorphisms of orders 2 ([13]). Hence, they are weak inverse permutations by Remark 2.1

Throughout, we shall employ the use of the bijections; $J_\rho : x \mapsto x^\rho$, $J_\lambda : x \mapsto x^\lambda$, $L_x : y \mapsto xy$ and $R_x : y \mapsto yx$ for a loop and the bijections; $J'_\rho : x \mapsto x'^\rho$, $J'_\lambda : x \mapsto x'^\lambda$, $L'_x : y \mapsto xy$ and $R'_x : y \mapsto yx$ for its loop isotope. If the identity element of a loop is e then that of the isotope shall be denoted by e'.

Lemma 2.1 In a loop, the set of weak inverse permutations that commute form an abelian group.

Remark 2.2 Applying Lemma 2.1 to extra loops and considering Example 2.1, it will be observed that in an extra loop L, the Boolean groups $\text{Inn}_\lambda(L), \text{Inn}_\rho \leq S'(L)$. $\text{Inn}_\lambda(L)$ and $\text{Inn}_\rho(L)$ are the left and right inner mapping groups respectively. They have been investigated in [14] and [13]. This deductions can’t be drawn for CC-loops despite the fact that the left(right) inner mappings commute and are automorphisms. And this is as a result of the fact that the left(right) inner mappings are not of exponent 2.

Definition 2.3 (T-condition)

Let (G, \cdot) and (H, \circ) be two distinct loops that are isotopic under the triple (A, B, C). (G, \cdot) obeys the T_1 condition if and only if $A = B$. (G, \cdot) obeys the T_2 condition if and only if $J'_\rho = C^{-1}J_\rho B = A^{-1}J_\rho C$. (G, \cdot) obeys the T_3 condition if and only if $J'_\lambda = C^{-1}J_\lambda A = B^{-1}J_\lambda C$. So, (G, \cdot) obeys the T condition if and only if it obey T_1 and T_2 conditions or T_1 and T_3 conditions since $T_2 \equiv T_3$.

It must here be noted that the T-conditions refer to a pair of isotopic loops at a time. This statement might be omitted at times. That is whenever we say a loop (G, \cdot) has the T-condition, then this is relative to some isotope (H, \circ) of (G, \cdot)

Lemma 2.2 ([16]) Let L be a loop. The following are equivalent.

1. L is a WIPL
2. $y(xy)^\rho = x^\rho \forall x, y \in L$.
3. $(xy)^\lambda x = y^\lambda \forall x, y \in L$.

Lemma 2.3 Let L be a loop. The following are equivalent.

1. L is a WIPL
2. $RyJ_\rho L_y = J_\rho \forall y \in L$.
3. $L_xJ_\lambda R_x = J_\lambda \forall x \in L$.

3
3 Main Results

Theorem 3.1 Let (G, \cdot) and (H, \circ) be two distinct loops that are isotopic under the triple (A, B, C).

1. If the pair of (G, \cdot) and (H, \circ) obey the T condition, then (G, \cdot) is a WIPL if and only if (H, \circ) is a WIPL.

2. If (G, \cdot) and (H, \circ) are WIPLs, then $J_\lambda R_x J_\rho B = C J_\lambda R'_x A J'_\rho$ and $J_\rho L_x J_\lambda A = C J'_\rho L'_x B J'_\lambda$ for all $x \in G$.

Proof

1. $(A, B, C) : G \rightarrow H$ is an isotopism if $x A \circ y B = (x \cdot y) C \iff y B L'_x A = y L_x C \iff B L'_x A = L_x C \iff L'_x A = B^{-1} L_x C$.

 \[L_x = B L'_x A C^{-1} \] (1)

 Also, $(A, B, C) : G \rightarrow H$ is an isotopism if $x A R'_y B = x R_y C \iff R'_y B = A^{-1} R_y C \iff R'_y B = A^{-1} R_y C$.

 \[R_y = A R'_y B C^{-1} \] (2)

 Applying (1) and (2) to Lemma 2.3 separately, we have:

 $R_y J_\rho L_y = J_\rho$.

 $L_x J_\lambda R_x = J_\lambda \iff (AR'_x B C^{-1}) J_\rho (B L'_x A C^{-1}) = J_\rho$, $B L'_x A C^{-1} J_\lambda (A R'_x B C^{-1}) = J_\lambda \iff A R'_x B (C^{-1} J_\rho B) L'_x A C^{-1} = J_\rho$, $B L'_x A (C^{-1} J_\lambda A) R'_x B C^{-1} = J_\lambda$.

 \[R'_x B (C^{-1} J_\rho B) L'_x A = A^{-1} J_\rho C, \; L'_x A (C^{-1} J_\lambda A) R'_x B = B^{-1} J_\lambda C. \] (3)

 Let $J'_\rho = C^{-1} J_\rho B = A^{-1} J_\rho C$, $J'_\lambda = C^{-1} J_\lambda A = B^{-1} J_\lambda C$. Then, from (3) and by Lemma 2.3 H is a WIPL if $x B = x A$ and $J'_\rho = C^{-1} J_\rho B = A^{-1} J_\rho C$ or $x A = x B$ and $J'_\lambda = C^{-1} J_\lambda A = B^{-1} J_\lambda C$.

 2. If (H, \circ) is a WIPL, then

 \[R'_y J_\rho L'_y = J'_y, \; \forall \; y \in H \] (4)

 while since G is a WIPL,

 \[R_x J_\rho L_x = J_\rho, \; \forall \; x \in G. \] (5)

 The fact that G and H are isotopic implies that

 \[L_x = B L'_x A C^{-1} \; \forall \; x \in G \; \text{and} \]

 \[R_x = A R'_x B C^{-1} \; \forall \; x \in G. \] (6)
Table 1: A commutative weak inverse property loop

\[
\begin{array}{cccccc}
0 & 1 & 2 & 3 & 4 \\
0 & 0 & 1 & 2 & 3 & 4 \\
1 & 1 & 3 & 0 & 4 & 2 \\
2 & 2 & 0 & 4 & 1 & 3 \\
3 & 3 & 4 & 1 & 2 & 0 \\
4 & 4 & 2 & 3 & 0 & 1 \\
\end{array}
\]

From (4),
\[
R_y' = J'_{\rho} L_y'^{-1} J'_{\lambda} \quad \forall \ y \in H \quad \text{and} \quad \ (8)
\]
while from (5),
\[
L'_y = J'_{\lambda} R_y'^{-1} J'_{\rho} \quad \forall \ y \in H \quad \ (9)
\]

From (6),
\[
J'_{\lambda} R_x J_{\rho} = C J'_{\lambda} R_x J_{\rho} A \quad \forall \ x \in G \quad \ (12)
\]
while using (8) and (10) in (7) we get
\[
J_{\rho} L_x J_{\lambda} A = C J_{\rho} L_x J_{\lambda} A B \quad \forall \ x \in G \quad \ (13)
\]

Remark 3.1 In Theorem 3.1, a loop is a universal WIPL under the \(T \) condition. But the converse of this is not true. This can be deduced from a counter example.

Counter Example Let \(G = \{0, 1, 2, 3, 4, \} \). From the Table \(\) \((G, \cdot) \) is a WIPL.

Let
\[
A = \begin{pmatrix} 0 & 1 & 2 & 3 & 4 \\ 1 & 3 & 0 & 4 & 2 \end{pmatrix} \quad \text{and} \quad B = \begin{pmatrix} 0 & 1 & 2 & 3 & 4 \\ 2 & 0 & 4 & 1 & 3 \end{pmatrix}
\]
Then, \((A, B, I) \) is an isotopism from \((G, \cdot) \) to itself. But \(A \neq B \) so the \(T \) condition does not hold for \((G, \cdot) \).

Theorem 3.2 Let \((G, \cdot) \) be a WIPL with identity element \(e \) and \((H, \circ) \) be an arbitrary loop isotope of \((G, \cdot) \) with identity element \(e' \) under the triple \(\alpha = (A, B, C) \). If \((H, \circ) \) is a WIPL then

1. \((G, \cdot) \cong (H, \circ) \Leftrightarrow (J_{\lambda} R_a J_{\rho}, J_{\lambda} R_b J_{\rho}, I) \in \text{AUT}(G, \cdot) \) where \(a = e' A^{-1}, b = e' B^{-1} \).
Hence, \((J_{\lambda} R_a J_{\rho}, J_{\lambda} R_b J_{\rho}, R_a L_b) \in \text{AUT}(G, \cdot) \). Furthermore, if \((G, \cdot) \) is a loop of exponent 2 then, \((R_a, L_b, R_a L_b) \in \text{AUT}(G, \cdot) \).
2. \((G, \cdot) \cong^C (H, \circ) \iff (J_p' L_{\alpha'}, J'_{\lambda}, J'_{\lambda}, R_{a'}, J_{\rho}, I) \in AUT(H, \circ)\) where \(a' = eA, b' = eB\). Hence,
\((J_p' R_{a'}, J'_{\lambda}, J'_{\lambda}, R_{a'}, L_{\alpha'}) \in AUT(H, \circ)\). Furthermore, if \((H, \circ)\) is a loop of exponent 2 then, \((R_{a'}, L_{\alpha'}, R_{a'}, L_{\alpha'}) \in AUT(H, \circ)\).

3. \((G, \cdot) \cong^C (H, \circ) \iff (L_b, R_a, I) \in AUT(G, \cdot)\), \(a = eA^{-1}, b = e'B^{-1}\) provided \((x \cdot y)^\rho = x^{\rho} \cdot y^{\lambda}\) or \((x \cdot y)^\lambda = x^{\lambda} \cdot y^{\rho}\ \forall\ x, y \in G\). Hence, \((G, \cdot)\) and \((H, \circ)\) are isomorphic CIP loops while \(R_a L_b = I, ba = e\).

4. \((G, \cdot) \cong^C (H, \circ) \iff (L_{\beta'}, R_{a'}, I) \in AUT(H, \circ)\), \(a' = eA, b' = eB\) provided \((x \circ y)^\nu = x^{\nu} \circ y^{\nu}\) or \((x \circ y)^\lambda = x^{\lambda} \circ y^{\lambda}\ \forall\ x, y \in H\). Hence, \((G, \cdot)\) and \((H, \circ)\) are isomorphic CIP loops while \(R_{a'} L_{\beta'} = I, b'a' = e'\).

Proof

Consider the second part of Theorem 3.1

1. Let \(y = xA\) in \((12)\) and replace \(y\) by \(e'\). Then \(J_{\lambda} R_{e' A^{-1}} J_{\rho} B = C \Rightarrow C = J_{\lambda} R_{a} J_{\rho} B \Rightarrow B = J_{\lambda} R_{a} J_{\rho} C\). Let \(y = xB\) in \((13)\) and replace \(y\) by \(e'\). Then \(J_{\lambda} L_{e' B^{-1}} J_{\lambda} A = C \Rightarrow C = J_{\lambda} L_{B} J_{\lambda} A \Rightarrow A = J_{\lambda} L_{B}^{-1} J_{\lambda} C\). So, \(\alpha = (A, B, C) = (J_{\lambda} L_{B}^{-1} J_{\lambda} C, J_{\lambda} R_{a} J_{\rho} C, C) = (J_{\lambda} L_{B}^{-1} J_{\lambda}, J_{\lambda} R_{a} J_{\rho} I)(C, C, C)\). Thus, \(J_{\lambda} L_{B} J_{\lambda}, J_{\lambda} R_{a} J_{\rho} I) \in AUT(G, \cdot) \iff (G, \cdot) \cong^C (H, \circ)\).

Using the results on autotopisms of WIP loops in [Lemma 1, [15]], \((J_{\lambda} R_{a} J_{\rho}, I, L_{b}), (I, J_{\lambda} L_{B} J_{\lambda}, R_{a}) \Rightarrow (J_{\lambda} R_{a} J_{\rho}, J_{\lambda} L_{B} J_{\lambda}, R_{a} L_{b}) \in AUT(G, \cdot)\). The further conclusion follows by breaking this

2. This is similar to (1) above but we only need to replace \(x\) by \(e\) in \((12)\) and \((13)\).

3. This is achieved by simply breaking the autotopism in (1) and using the fact that a WIPPL with the A. I. P. is a CIPPL.

4. Do what was done in (3) to (2).

Corollary 3.1 Let \((G, \cdot)\) and \((H, \circ)\) be two distinct loops that are isotopic under the triple \((A, B, C)\). If \(G\) is a WIPPL with the \(T\) condition, then \(H\) is a WIPPL:

1. there exists \(\alpha, \beta \in S'(G)\) i.e \(\alpha\) and \(\beta\) are weak inverse permutations and

2. \(J'_{\rho} = J'_{\lambda} \iff J_{\rho} = J_{\lambda}\).

Proof

By Theorem 3.1 \(A = B\) and \(J'_{\rho} = C^{-1} J_{\rho} B = A^{-1} J_{\rho} C\) or \(J'_{\lambda} = C^{-1} J_{\lambda} A = B^{-1} J_{\lambda} C\).

1. \(C^{-1} J_{\rho} B = A^{-1} J_{\rho} C \iff J_{\rho} B = CA^{-1} J_{\rho} C \iff J_{\rho} = CA^{-1} J_{\rho} CB^{-1} = CA^{-1} J_{\rho} CA^{-1} = \alpha J_{\rho} \alpha\) where \(\alpha = CA^{-1} \in S(G, \cdot)\).

2. \(C^{-1} J_{\lambda} A = B^{-1} J_{\lambda} C \iff J_{\lambda} A = CB^{-1} J_{\lambda} C \iff J_{\lambda} = CB^{-1} J_{\lambda} CA^{-1} = CB^{-1} J_{\lambda} CB^{-1} = \beta J_{\lambda} \beta\) where \(\beta = CB^{-1} \in S(G, \cdot)\).
3. \(J_\rho' = C^{-1}J_\rho B, \ J'_\lambda = C^{-1}J_\lambda A. \ J'_\rho = J'_\lambda \Leftrightarrow C^{-1}J_\rho B = C^{-1}J_\lambda A = C^{-1}J_\lambda B \Leftrightarrow J_\lambda = J_\rho. \)

Lemma 3.1 Let \((G, \cdot)\) be a WIPL with the \(T\) condition and isotopic to another loop \((H, \circ)\). \((H, \circ)\) is a WIPL and \(G\) has a weak inverse permutation.

Proof
From the proof of Corollary 3.1 \(\alpha = \beta \), hence the conclusion.

Theorem 3.3 With the \(T\) condition, isotopic WIP loops are isomorphic.

Proof
From Lemma 3.1 \(\alpha = I \) is a weak inverse permutation. In the proof of Corollary 3.1 \(\alpha = CA^{-1} = I \Rightarrow A = C \). Already, \(A = B \), hence \((G, \cdot) \cong (H, \circ)\).

Remark 3.2 Theorem 3.2 and Theorem 3.3 describes isotopic WIP loops that are isomorphic by

1. an autotopism in either the domain loop or the co-domain loop and
2. the \(T\) condition(for a special case).

These two conditions are completely different from that shown in [Lemma 2, [15]] and [Theorem 4, [17]]. Furthermore, it can be concluded from Theorem 3.2 that isotopic CIP loops are not the only isotopic WIP loops that are isomorphic as earlier shown [Theorem 1, [2]]. In fact, isotopic CIP loops need not satisfy Theorem 3.3(i.e the \(T\) condition) to be isomorphic.

4 Conclusion and Future Study

Karklinš and Karkliņš [8] introduced \(m\)-inverse loops i.e loops that obey any of the equivalent conditions

\[(xy)J_\rho^m \cdot xJ_\rho^{m+1} = yJ_\rho^m\quad \text{and} \quad xJ_\lambda^{m+1} \cdot (yx)J_\lambda^m = yJ_\lambda^m.\]

They are generalizations of WIPLs and CIPLs, which corresponds to \(m = -1\) and \(m = 0\) respectively. After the study of \(m\)-loops by Keedwell and Shcherbacov [9], they have also generalized them to quasigroups called \((r, s, t)\)-inverse quasigroups in [10] and [11]. It will be interesting to study the universality of \(m\)-inverse loops and \((r, s, t)\)-inverse quasigroups. These will generalize the works of J. M. Osborn and R. Artzy on universal WIPLs and CIPLs respectively.

References

[1] R. Artzy (1955), *On loops with special property*, Proc. Amer. Math. Soc. 6, 448–453.

[2] R. Artzy (1959), *Crossed inverse and related loops*, Trans. Amer. Math. Soc. 91, 3, 480–492.
[3] R. Artzy (1960), *Relations between loops identities*, Proc. Amer. Math. Soc. 11,6, 847–851.

[4] A. S. Basarab (1994), *Osborn’s G-loop*, Quasigroups and Related Systems 1, 51–56.

[5] E. G. Goodaire and D. A. Robinson (1982), *A class of loops which are isomorphic to all loop isotopes*, Can. J. Math. 34, 662–672.

[6] E. G. Goodaire and D. A. Robinson (1990), *Some special conjugacy closed loops*, Canad. Math. Bull. 33, 73–78.

[7] E. D. Huthnance Jr. (1968), *A theory of generalised Moufang loops*, Ph.D. thesis, Georgia Institute of Technology.

[8] B. B. Karklišus and V. B. Karkliņš (1976), *Inverse loops*, In 'Nets and Quasigroups', Mat. Issl. 39, 82-86.

[9] A. D. Keedwell and V. A. Shcherbacov (2002), *On m-inverse loops and quasigroups with a long inverse cycle*, Australas. J. Combin. 26, 99-119.

[10] A. D. Keedwell and V. A. Shcherbacov (2003), *Construction and properties of (r, s, t)-inverse quasigroups I*, Discrete Math. 266, 275-291.

[11] A. D. Keedwell and V. A. Shcherbacov, *Construction and properties of (r, s, t)-inverse quasigroups II*, Discrete Math. 288 (2004), 61-71.

[12] M. K. Kinyon (2005), *A survey of Osborn loops*, Milehigh conference on loops, quasigroups and non-associative systems, University of Denver, Denver, Colorado.

[13] M. K. Kinyon, K. Kunen (2004), *The structure of extra loops*, Quasigroups and Related Systems 12, 39–60.

[14] M. K. Kinyon, K. Kunen, J. D. Phillips (2004), *Diassociativity in conjugacy closed loops*, Comm. Alg. 32, 767–786.

[15] J. M. Osborn (1961), *Loops with the weak inverse property*, Pac. J. Math. 10, 295–304.

[16] H. O. Pflugfelder (1990), *Quasigroups and loops : Introduction*, Sigma series in Pure Math. 7, Heldermann Verlag, Berlin, 147pp.

[17] E. Wilson (1966), *A class of loops with the isotopy-isomorphy property*, Canad. J. Math. 18, 589–592.