Supporting Information

Modeling Kinetics and Thermodynamics of Guest Encapsulation into [M₄L₆]¹²⁻ Supramolecular Organometallic Cage

Gantulga Norjmaa, a Pietro Vidossich, b Jean-Didier Maréchal a* and Gregori Ujaque a*

a Departament de Química and Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universitat Autònoma de Barcelona, Cerdanyola del Valles, 08193 Barcelona, Catalonia, Spain
b Laboratory of Molecular Modeling and Drug Discovery, Istituto Italiano di Tecnologia, Via Morego 30, 16163, Genova, Italy

Contents:
1. Behavior of the metallocage 1 in solution .. S2
2. Correlations for binding energies ... S3
3. Snapshots of the APR simulations .. S5
4. Analysis of the encapsulation process ... S6
5. APR simulation detail and setup ... S8
6. Force field parameters and charges derived in implicit water solvent and in gas phase ... S10
7. Cartesian coordinates of the metallocage and NEt₄⁺ encapsulated in the metallocage optimized at DFT level .. S26
1. Behavior of the metallocage 1 in solution

Figure S1. Optimized geometries of (a) metallocage, 1, and (b) NEt₄⁺ encapsulated in the metallocage with implicit solvent. In both cases, 11 K⁺ ions (purple spheres) were added explicitly in order to neutralize the system.

Figure S2. The number of K⁺ < 11 Å from the center of mass of the metallocage 1 during classical molecular dynamic simulation.
Figure S3. Cavity volume of the $2 \subset 1$ system in water solvent.

2. Correlations for binding energies

Figure S4. Plot of the computed vs experimental binding Gibbs energies.
Figure S5. Correlation between binding Gibbs energy and the cavity volume of the metallocage of the host-guest complexes.

\[y = 0.048x - 20.343 \]
\[R^2 = 0.309 \]

Figure S6. Correlation between binding Gibbs energy and the guest volume of the metallocage of the host-guest complexes.

\[y = 0.031x - 328.04 \]
\[R^2 = 0.001 \]
Table S1. Evaluation of the average number of water molecules inside the cavity along with the substrate, V_{cavity} and packing coefficients for the guests+solvent encapsulated system.

Host-guest complexes	V_{guest}	200ns of classical plain MDs	H2O inside	V cavity	PC %
2 in 1	$[\text{Et}_4\text{N}]^+$	142.2	2	324	56%
3 in 1	$[\text{Me}_4\text{N}]^+$	78.61	4	279	56%
4 in 1	$[\text{Et}_4\text{P}]^+$	154.6	2	306	63%
5 in 1	$[\text{5spiro}]^+$	122.4	3	297	61%
6 in 1	$[\text{Pr}_4\text{N}]^+$	204	0	456	45%
7 in 1	$[\text{Me}_2\text{Pr}_2\text{N}]^+$	141.3	2	325	55%

3. Snapshots of the APR simulations

Figure S7. MD snapshots from APR simulations of 2 \subset 1.
4. Analysis of the encapsulation process

(a) COM distance: 6.6 Å (ion-pair intermediate)
(b) 3.9 Å (before TS for encapsulation)
(c) COM distance: 3.3 Å (TS region)
(d) 3.1 Å (after TS for encapsulation)

Figure S8. Encapsulation event of 2 into the metallocage 1 in water solvent. K⁺ counter ions are in purple sphere and explicit solvent water molecules are in white surface.
Figure S9. Cavity volumes and packing coefficients of the metallocage during the encapsulation process.

Figure S10. Snapshot of the most populated structure of the encapsulated state of 6 < 1 complex from APR simulations for binding free energy calculations.
Table S2. Comparison of calculated ΔΔG.

Guest relative to NEt₄⁺	APR	Experiment	FEP	Full QM
	ΔΔG	ΔΔG	ΔΔG	ΔΔE
NMe₄⁺	5.13 ± 0.99	2.87 ± 0.01	6.30 ± 0.05	15.9
PEt₄⁺	-2.04 ± 0.84	-0.64 ± 0.04	-0.27 ± 0.01	-1.6
NPr₃⁺	5.66 ± 0.92	3.46 ± 0.04	5.07 ± 0.10	-0.3
NMe₂Pr₂⁺	0.42 ± 1.12	1.41 ± 0.04	3.19 ± 0.11	4.9

Figure S11. Calculated ESP centers (yellow dots) obtained from QM ESP calculation.

5. APR simulation detail and setup

MD simulations in each APR window:
1. Minimizing 50000 cycles,
2. Running 1ps NVT at 10 K,
3. Heating the system from 10 K to 298.15 K in 100 ps,
4. Equilibrating the system under constant pressure, 50 NPT cycle,
5. NPT Production from 2.5 ns to 25 ns depending on the standard error of the mean (SEM) of the restraint forces, the SEM threshold is 0.100.

The cutoff for non-bonding interactions: 9 Å
The approach employed for computing the electrostatic forces and potential: The Particle Mesh Ewald (PME) method
The type of thermostat: Langevin
The type of barostat: Monte Carlo
The time step: 4 fs (hydrogen mass repartitioning was used)
Figure S12. Schematic representation of the APR simulations in this study.

Table S3. Comparison between calculated binding Gibbs energies of the NEt₄⁺ in the metallocage obtained using atomic charges derived with implicit solvent and without implicit solvent.

	Atomic charges of [Ga₄L₆]¹²⁻ and NEt₄⁺	
	Geometry optimization in	charge derivation in
	implicit solvent	implicit solvent
	implicit solvent	vacuum
Calculated ∆Gᵦ.bind	-6.3 ± 0.6	2.7 ± 0.5
Experimental ∆Gᵦ.bind	-6.2 ± 0.01	

Figure S13. The number of K⁺ in less than 5 Å from the center of mass of the metallocage during 400 ns classical molecular dynamic simulation of the metallocage.
Figure S14. The number of K^+ in less than 5 Å from the center of mass of the metallocage (a) during umbrella sampling simulations and (b) during the APR simulations.

6. Force field parameters and charges derived in implicit water solvent

BOND

Bond	BONDI-M4	CHARGED	Source	created by
A1-M4	52.7	1.9974	SOURCE4_SOURCE5	17 0.0088
A2-M4	24.6	2.0712	Created by Seminario method using MCPB.py	
A3-M4	46.8	2.0187	Created by Seminario method using MCPB.py	
A4-M4	46.9	2.0131	Created by Seminario method using MCPB.py	
A5-M4	40.9	2.0296	Created by Seminario method using MCPB.py	
A6-M4	60.4	1.9850	Created by Seminario method using MCPB.py	
Y1-M1	50.2	2.0040	Created by Seminario method using MCPB.py	
Y2-M1	44.0	2.0236	Created by Seminario method using MCPB.py	
Y3-M1	43.7	2.0256	Created by Seminario method using MCPB.py	
Y4-M1	57.5	1.9869	Created by Seminario method using MCPB.py	
Y5-M1	51.3	1.9990	Created by Seminario method using MCPB.py	
Y6-M1	31.0	2.0520	Created by Seminario method using MCPB.py	
Y7-M2	28.2	2.0631	Created by Seminario method using MCPB.py	
Y8-M2	57.5	1.9891	Created by Seminario method using MCPB.py	
Y9-M2	28.2	2.0633	Created by Seminario method using MCPB.py	
Z1-M2	60.6	1.9835	Created by Seminario method using MCPB.py	
Z2-M2	48.2	2.0048	Created by Seminario method using MCPB.py	
Z3-M2	52.8	2.0065	Created by Seminario method using MCPB.py	
Z4-M3	22.2	2.0778	Created by Seminario method using MCPB.py	
Z5-M3	51.0	2.0026	Created by Seminario method using MCPB.py	
Z6-M3	46.7	2.0180	Created by Seminario method using MCPB.py	
Z7-M3	41.7	2.0263	Created by Seminario method using MCPB.py	
Z8-M3	65.9	1.9725	Created by Seminario method using MCPB.py	
Z9-M3	41.5	2.0321	Created by Seminario method using MCPB.py	
ca-A1	598.1	1.2358	SOURCE4_SOURCE5	17 0.0088

ANGL

ANGL	ANGULARI A-M2	CHARGED	Source	created by
A1-M4-A2	85.30	81.38	Created by Seminario method using MCPB.py	
A1-M4-A3	33.20	95.49	Created by Seminario method using MCPB.py	
A1-M4-A4 60.35 89.89 Created by Seminario method using MCPB.py				
A1-M4-A5 65.00 170.39 Created by Seminario method using MCPB.py				
A1-M4-A6 46.37 94.74 Created by Seminario method using MCPB.py				
A2-M4-A3 46.08 83.68 Created by Seminario method using MCPB.py				
A2-M4-A4 85.81 161.51 Created by Seminario method using MCPB.py				
A2-M4-A5 46.96 90.09 Created by Seminario method using MCPB.py				
A2-M4-A6 49.11 95.05 Created by Seminario method using MCPB.py				
A3-M4-A4 74.59 80.95 Created by Seminario method using MCPB.py				
A3-M4-A5 48.24 87.89 Created by Seminario method using MCPB.py				
A3-M4-A6 55.36 169.38 Created by Seminario method using MCPB.py				
A4-M4-A5 51.64 99.53 Created by Seminario method using MCPB.py				
A4-M4-A6 68.53 101.93 Created by Seminario method using MCPB.py				
A5-M4-A6 70.35 81.56 Created by Seminario method using MCPB.py				
Y1-M1-Y2 20.08 170.54 Created by Seminario method using MCPB.py				
Y1-M1-Y3 67.84 96.08 Created by Seminario method using MCPB.py				
Y1-M1-Y4 39.55 95.47 Created by Seminario method using MCPB.py				
Y1-M1-Y5 32.02 98.02 Created by Seminario method using MCPB.py				
Y1-M1-Y6 45.05 90.73 Created by Seminario method using MCPB.py				
Y2-M1-Y3 32.10 93.97 Created by Seminario method using MCPB.py				
Y2-M1-Y4 42.68 172.17 Created by Seminario method using MCPB.py				
Y2-M1-Y5 26.10 86.04 Created by Seminario method using MCPB.py				
Y3-M1-Y4 73.41 82.43 Created by Seminario method using MCPB.py				
Y3-M1-Y5 78.09 80.16 Created by Seminario method using MCPB.py				
Y3-M1-Y6 42.67 82.80 Created by Seminario method using MCPB.py				
Y4-M1-Y5 37.28 94.82 Created by Seminario method using MCPB.py				
Y4-M1-Y6 21.45 85.86 Created by Seminario method using MCPB.py				
Y7-M2-Z1 62.05 169.59 Created by Seminario method using MCPB.py				
Y7-M2-Z2 42.08 92.21 Created by Seminario method using MCPB.py				
Y7-M2-Z3 35.35 97.42 Created by Seminario method using MCPB.py				
Y8-M2-Z1 31.38 97.96 Created by Seminario method using MCPB.py				
Y8-M2-Z2 37.98 85.86 Created by Seminario method using MCPB.py				
Z1-M2-Z2 52.17 92.21 Created by Seminario method using MCPB.py				
Z1-M2-Z3 27.43 97.42 Created by Seminario method using MCPB.py				
Z2-M2-Z3 72.57 82.22 Created by Seminario method using MCPB.py				
Z4-M3-Z5 78.09 80.16 Created by Seminario method using MCPB.py				
Z4-M3-Z6 42.67 82.80 Created by Seminario method using MCPB.py				
Z4-M3-Z7 78.68 160.54 Created by Seminario method using MCPB.py				
Z4-M3-Z8 36.45 98.03 Created by Seminario method using MCPB.py				
Z4-M3-Z9 47.53 97.04 Created by Seminario method using MCPB.py				
Reaction	Energy	Reaction Energy	Source(s)	Charge(s)
---	---	---	---	---
Z5-M3-Z6	37.52	95.08	Source4	35
Z5-M3-Z7	55.98	90.12	Source4	35
Z5-M3-Z8	63.21	94.85	Source4	35
Z5-M3-Z9	36.09	175.87	Source4	35
Z6-M3-Z7	76.87	99.57	Source4	35
Z6-M3-Z8	47.46	170.03	Source4	35
Z6-M3-Z9	45.11	87.55	Source4	35
Z7-M3-Z8	35.88	93.43	Source4	35
Z7-M3-Z9	33.09	93.43	Source4	35
Z8-M3-Z9	74.00	82.49	Source4	35

Charges:

1 C1 3.8930 3.0180 0.2580 ca 1 BOX -0.118210
2 H1 4.4740 2.6430 1.0920 ha 1 BOX 0.097843
3 C2 2.3130 3.8290 -1.9420 ca 1 BOX 0.014595
4 C3 3.7300 2.2060 -0.8420 ca 1 BOX -0.204358
5 H2 4.1880 1.2260 -0.8590 ha 1 BOX 0.157942
6 C4 2.9470 2.5980 -1.9450 ca 1 BOX -0.138191
7 H3 2.8030 1.9140 -2.7660 ha 1 BOX 0.146863
8 C5 3.3310 4.3250 0.2700 ca 1 BOX 0.051206
9 C6 2.5510 4.7550 -0.8610 ca 1 BOX 0.051206
10 C7 3.5440 5.2520 1.3540 ca 1 BOX 0.014595
59	C40	9.1010	2.0680	-1.7650	ca	1 BOX	-0.254700			
60	H20	9.8030	2.3980	-2.5270	ha	1 BOX	0.154515			
61	C41	8.1170	1.1450	-2.0820	ca	1 BOX	-0.200037			
62	H21	8.0410	0.7340	-3.0840	ha	1 BOX	-0.071397			
63	C42	2.1280	-7.2340	-2.0180	c	1 BOX	0.423034			
64	C43	1.0720	-7.8760	-2.8450	ca	1 BOX	-0.254700			
65	C44	0.9870	-9.2920	-2.8130	ca	1 BOX	-0.071397			
66	H22	1.5870	-9.8290	-2.0860	ha	1 BOX	0.123842			
67	C45	0.1840	-9.9740	-3.7100	ca	1 BOX	0.222567			
68	H23	0.1210	-11.0590	-3.6720	ha	1 BOX	0.154515			
69	C46	-0.5270	-9.2710	-4.7050	ca	1 BOX	-0.191262			
70	H24	-1.1160	-9.8040	-5.4480	ha	1 BOX	0.119344			
71	C47	-0.4700	-7.8810	-4.7690	ca	1 BOX	0.222567			
72	H25	0.1720	2.3030	-0.9230	ha	1 BOX	0.157942			
73	C48	0.4430	0.5060	-2.0730	ca	1 BOX	0.157942			
74	H26	1.4030	0.2880	-1.6310	ha	1 BOX	0.146863			
75	C49	-1.4910	1.9650	-2.2170	ca	1 BOX	-0.118210			
76	H27	-2.0100	2.8610	-1.8960	ha	1 BOX	0.097843			
77	C50	-0.0730	-0.3370	-3.0410	ca	1 BOX	0.014595			
78	C51	-2.0900	1.0880	-3.1630	ca	1 BOX	0.051206			
79	C52	-1.3950	-0.1040	-3.5690	ca	1 BOX	0.051206			
80	C53	-3.3850	1.3570	-3.7220	ca	1 BOX	0.014595			
81	C54	-2.0450	1.0880	-3.1630	ca	1 BOX	0.051206			
82	C55	-2.0900	1.0880	-3.1630	ca	1 BOX	0.051206			
83	C56	-3.3850	1.3570	-3.7220	ca	1 BOX	0.014595			
84	C57	-4.9780	0.6380	-4.9540	ha	1 BOX	0.146863			
85	C58	-3.3240	-0.7580	-4.9010	ca	1 BOX	-0.204358			
86	H30	-3.8130	-1.4690	-5.5600	ha	1 BOX	0.157942			
87	C59	-5.2980	2.8640	-3.2160	c	1 BOX	0.423034			
88	C60	-5.6550	4.2950	-3.0180	ca	1 BOX	-0.071397			
89	C61	-7.0300	4.6000	-2.8500	ca	1 BOX	-0.200037			
90	H32	-7.4510	5.9020	-2.6470	ca	1 BOX	-0.254700			
91	C62	-8.5080	6.1220	-2.5200	ha	1 BOX	0.154515			
92	C63	-6.5110	6.9510	-2.6070	ca	1 BOX	-0.191262			
93	H33	-6.8300	7.9790	-2.4520	ha	1 BOX	0.119344			
94	C64	-5.1520	6.6940	-2.7670	ca	1 BOX	0.222567			
95	C65	-4.7020	5.3420	-2.9660	ca	1 BOX	0.064252			
96	H34	-2.0190	-1.4860	-3.7480	c	1 BOX	0.423034			
97	C66	2.4980	-2.6570	-4.5380	ca	1 BOX	-0.071397			
98	C67	1.6310	-3.5540	-5.2010	ca	1 BOX	0.064252			
99	C68	3.8980	-2.8610	-4.6290	ca	1 BOX	-0.200037			
100	C69	4.5550	-2.1690	-4.1160	ha	1 BOX	0.123842			
101	C70	4.4110	-3.9400	-5.3270	ca	1 BOX	-0.254700			
102	C71	5.4860	-4.0960	-5.3710	ha	1 BOX	0.154515			
103	C72	2.1680	-4.6820	-5.9100	ca	1 BOX	0.222567			
---	---	---	---	---	---					
107 C72	-3.5490	-4.8590	-5.9600 ca	1 BOX	-0.191262					
108 H36	3.9470	-5.7190	-6.4930 ha	1 BOX	0.119344					
109 C73	-1.5300	-2.4660	-0.4230 ca	1 BOX	-0.204358					
110 H37	-0.7970	-1.7590	-0.7930 ha	1 BOX	0.157942					
111 C74	-1.5700	-2.7800	0.9540 ca	1 BOX	-0.204358					
112 H38	-0.7970	-1.7590	-0.7930 ha	1 BOX	0.157942					
113 C75	-1.5700	-2.7800	0.9540 ca	1 BOX	-0.138191					
114 H39	-0.7970	-1.7590	-0.7930 ha	1 BOX	0.157942					
115 C76	-2.4240	-3.0450	-1.2950 ca	1 BOX	-0.118210					
116 C77	-2.5340	-3.6340	1.4510 ca	1 BOX	0.014595					
117 C78	-3.4320	-3.9280	-0.8190 ca	1 BOX	0.051206					
118 C79	-3.5220	-4.2010	0.5870 ca	1 BOX	0.051206					
119 C80	-4.4010	-4.5200	-1.6960 ca	1 BOX	0.014595					
120 H40	-4.7040	-5.1360	2.1460 ha	1 BOX	0.097843					
121 C81	-5.4510	-5.2580	-1.1810 ca	1 BOX	-0.138191					
122 H41	-6.1810	-5.6910	-1.8550 ha	1 BOX	0.146863					
123 C82	-5.5560	-5.4680	0.2110 ca	1 BOX	-0.204358					
124 H42	-6.3980	-6.0350	0.5980 ha	1 BOX	0.157942					
125 C83	-5.1070	-4.1980	-4.0690 c	1 BOX	0.423034					
126 C84	-4.5450	-4.1500	-5.4480 ca	1 BOX	-0.071397					
127 C85	-3.1800	-4.3930	-5.7370 ca	1 BOX	0.064252					
128 C86	-5.4330	-3.8610	-6.5130 ca	1 BOX	-0.200037					
129 H43	-6.4730	-3.6630	-6.2780 ha	1 BOX	0.123842					
130 C87	-4.9830	-3.8320	-7.8220 ca	1 BOX	-0.254700					
131 H44	-5.6710	-3.6000	-8.6310 ha	1 BOX	0.154515					
132 C88	-3.6340	-4.1180	-8.1190 ca	1 BOX	-0.191262					
133 H45	-3.2800	-4.1180	-9.1470 ha	1 BOX	0.119344					
134 C89	-2.7320	-4.4140	-7.1000 ca	1 BOX	0.222567					
135 C90	-2.3630	-5.0150	3.5050 c	1 BOX	0.423034					
136 C91	-2.4660	-4.9600	4.9930 ca	1 BOX	-0.071397					
137 C92	-2.2120	-6.1350	5.7430 ca	1 BOX	-0.200037					
138 H46	-1.9000	-7.0310	5.2170 ha	1 BOX	0.123842					
139 C93	-2.8500	-3.7890	5.6820 ca	1 BOX	0.064252					
140 C94	-2.3670	-6.1390	7.1200 ca	1 BOX	-0.254700					
141 H47	-2.1630	-7.0440	7.6870 ha	1 BOX	0.154515					
142 C95	-2.8130	-4.9840	7.8010 ca	1 BOX	-0.191262					
143 H48	-2.9680	-5.0030	8.8770 ha	1 BOX	0.119344					
144 C96	-3.0770	-3.8100	7.1000 ca	1 BOX	0.222567					
145 C97	-0.5890	2.5330	1.5940 ca	1 BOX	-0.138191					
146 H49	0.4240	2.9050	1.6950 ha	1 BOX	0.146863					
147 C98	-0.8790	1.1770	1.8630 ca	1 BOX	-0.204358					
148 H50	-0.0710	0.5130	2.1410 ha	1 BOX	0.157942					
149 C99	-1.5820	3.3740	1.1390 ca	1 BOX	0.014595					
150 C100	-2.1650	0.6960	1.7760 ca	1 BOX	-0.118210					
151 H51	-2.3710	-0.3430	2.0090 ha	1 BOX	0.097843					
152 C101	-2.9190	2.8880	0.9380 ca	1 BOX	0.051206					
153 C102	-3.2180	1.5380	1.3230 ca	1 BOX	0.051206					
154 C103	-3.9420	3.6870	0.3590 ca	1 BOX	-0.118210					
ID	Lat.	Long.	Area	Type	Box	Notes				
-----	--------	--------	-------	-------	-------	-------				
H52	-3.7340	4.7030	0.0470	ha	1 BOX	0.097843				
C104	-4.5700	7.0690	0.9740	ca	1 BOX	-0.071397				
C105	-5.2050	3.1670	0.1710	ca	1 BOX	-0.204358				
H53	-5.9760	3.7760	-0.2910	ha	1 BOX	0.157942				
C106	-5.5310	1.8680	0.6080	ca	1 BOX	-0.138191				
H54	-6.5450	1.5030	0.5050	ha	1 BOX	0.146863				
C107	-0.7900	5.7000	1.5690	c	1 BOX	0.423034				
C108	-0.8490	7.0690	1.0740	c	1 BOX	0.014595				
C109	-1.2030	7.3180	-0.3020	ca	1 BOX	0.064252				
C110	-0.2280	8.1360	1.6630	ca	1 BOX	-0.200037				
H55	0.1800	7.9470	2.6510	ha	1 BOX	0.123842				
C111	-0.0960	9.3800	1.0650	ca	1 BOX	0.154515				
H56	0.3810	10.1950	1.6040	ha	1 BOX	0.146863				
C112	-1.1620	8.5640	-0.9680	ca	1 BOX	0.222567				
C113	-0.5290	9.5870	-0.2630	ca	1 BOX	-0.191262				
H57	-0.3750	10.5460	-0.7520	ha	1 BOX	0.119344				
C114	-5.9080	-1.0050	1.4750	c	1 BOX	0.423034				
C115	-6.3130	-1.9910	2.5110	ca	1 BOX	-0.071397				
C116	-7.1910	-3.0280	2.1090	ca	1 BOX	-0.200037				
H58	-7.5040	-3.0620	1.0710	ha	1 BOX	0.157942				
C117	-5.8910	-1.9200	3.8620	ca	1 BOX	0.014595				
C118	-7.6110	-3.9940	3.0050	ca	1 BOX	-0.254700				
H59	-8.2740	-4.7920	2.6800	ha	1 BOX	0.154515				
C119	-6.3190	-2.9410	4.7820	ca	1 BOX	0.222567				
C120	-7.1660	-3.9560	4.3420	ca	1 BOX	-0.191262				
H60	-7.4780	-4.7160	5.0550	ca	1 BOX	0.119344				
C121	1.6320	-2.5640	3.8390	ca	1 BOX	-0.138191				
C122	1.9770	-3.5650	3.6270	ha	1 BOX	0.146863				
C123	0.3040	-2.3490	4.2570	ca	1 BOX	-0.204358				
H62	-0.3660	-3.1970	4.3330	ha	1 BOX	0.157942				
C124	-6.3190	-2.9410	4.7820	ca	1 BOX	0.222567				
C125	-7.1660	-3.9560	4.3420	ca	1 BOX	-0.191262				
H63	-7.4780	-4.7160	5.0550	ca	1 BOX	0.119344				
C126	1.6320	-2.5640	3.8390	ca	1 BOX	-0.138191				
C127	1.9770	-3.5650	3.6270	ha	1 BOX	0.146863				
C128	0.3040	-2.3490	4.2570	ca	1 BOX	-0.204358				
H64	-3.8330	0.8870	3.2610	ha	1 BOX	0.097843				
C129	0.2720	1.3700	4.8030	ca	1 BOX	0.014595				
C130	2.3770	2.2510	3.9880	ca	1 BOX	-0.204358				
H65	2.9920	3.1120	3.7620	ca	1 BOX	0.157942				
C131	1.1060	2.4510	4.5600	ca	1 BOX	-0.138191				
C132	0.7680	3.4530	4.7760	ha	1 BOX	0.146863				
C133	-1.8470	2.5980	5.3410	c	1 BOX	0.423034				
C134	-3.1790	2.3900	5.9790	ca	1 BOX	-0.071397				
C135	-3.6840	1.1230	6.3480	ca	1 BOX	0.064252				
C136	-4.9840	1.0140	6.9460	ca	1 BOX	0.222567				
C137	-5.7310	2.1660	7.1750	ca	1 BOX	-0.191262				
C138	-6.7130	2.0720	7.6320	ha	1 BOX	0.119344				
----	-----	-----	-----	-----	----	-----				
203	C136	-5.2210	3.4290	6.8120	ca	1 BOX	-0.254700			
204	H68	-5.8170	4.3190	6.9960	ha	1 BOX	0.154515			
205	C137	-3.9740	3.5380	6.2190	ca	1 BOX	-0.071397			
206	H69	-3.5810	4.5070	5.9310	ha	1 BOX	0.064252			
207	C138	4.4880	-2.7010	2.7840	c	1 BOX	0.423034			
208	C139	5.9510	-2.5280	2.5800	ca	1 BOX	-0.071397			
210	C140	6.6670	-1.3590	2.9350	ca	1 BOX	0.064252			
211	C141	8.0490	-1.2430	2.5610	ca	1 BOX	0.222567			
212	H70	9.7290	-2.1870	1.6320	ha	1 BOX	0.119344			
213	C143	7.9740	-3.4750	1.5980	ca	1 BOX	-0.254700			
214	H71	8.4790	-4.2890	1.0860	ha	1 BOX	0.154515			
215	C144	6.6320	-3.5820	1.9200	ca	1 BOX	-0.200037			
216	H72	6.0690	-4.4690	1.6500	ha	1 BOX	0.123842			
217	N1	1.4180	4.2450	-2.9410	n	1 BOX	-0.205011			
218	H73	0.7560	4.9860	-2.6950	hn	1 BOX	0.188275			
219	N2	4.3200	4.8210	2.4450	n	1 BOX	-0.205011			
220	H74	4.8710	3.9670	2.3360	hn	1 BOX	0.188275			
221	N3	2.2370	-5.8690	-2.1040	n	1 BOX	-0.205011			
222	H75	1.5330	-5.4150	-2.6960	hn	1 BOX	0.188275			
224	N6	5.4810	-0.8660	-0.4360	n	1 BOX	-0.205011			
225	H76	5.5990	-0.3600	0.4500	hn	1 BOX	0.188275			
226	N5	-4.8940	-0.1540	1.8290	n	1 BOX	-0.205011			
227	N9	-4.5550	-0.2820	2.7880	hn	1 BOX	0.188275			
228	N2	-1.3170	4.7130	0.7820	n	1 BOX	-0.205011			
229	N7	-1.7540	5.0610	-0.0780	hn	1 BOX	0.188275			
230	N4	2.6010	-3.8410	2.8530	n	1 BOX	-0.205011			
231	N8	-2.7710	-3.0310	3.4580	hn	1 BOX	0.188275			
232	H80	-4.1850	-4.3700	-3.0770	n	1 BOX	-0.205011			
233	N9	-3.2170	-4.4320	-3.4110	hn	1 BOX	0.188275			
234	H81	0.6620	-1.4300	-3.5350	n	1 BOX	-0.205011			
235	N10	0.1550	-2.1840	-4.0030	hn	1 BOX	0.188275			
236	H82	-1.0110	1.5090	5.3550	n	1 BOX	-0.205011			
237	N11	-1.4680	0.6640	5.7030	hn	1 BOX	0.188275			
238	H83	-3.9740	2.6070	-3.4470	n	1 BOX	-0.205011			
239	N12	-3.3650	3.4270	-3.3650	hn	1 BOX	0.188275			
240	H84	3.8580	-1.6450	3.3870	n	1 BOX	-0.205011			
241	O1	4.4950	-0.8730	3.6090	hn	1 BOX	0.188275			
242	O2	1.2880	-5.5260	-6.4790	Y1	1 BOX	-0.594030			
243	O3	0.3000	-3.4420	-5.2040	Y2	1 BOX	0.406087			
244	O4	-2.2530	-4.6310	-4.8090	Y3	1 BOX	0.406087			
245	O5	-1.4410	-4.7230	-7.3240	Y4	1 BOX	-0.594030			
246	O6	-1.0670	-7.1610	-5.7340	Y5	1 BOX	-0.594030			
247	O7	0.1920	-5.8350	-3.8120	Y6	1 BOX	0.406087			
248	O8	-0.6210	5.9270	-3.2440	Y7	1 BOX	0.406087			
249	O9	-2.2570	7.1910	-4.8650	Y8	1 BOX	-0.594030			
250	O10	-3.3900	5.1640	-3.0940	Y9	1 BOX	0.406087			
251	O11	-4.2220	7.6640	-2.7360	Z1	1 BOX	-0.594030			
---	---	---	---	---	---					
251	O11	-1.5740	8.6700	-2.2480 Z2	1 BOX	-0.594030				
252	O12	-2.1350	6.4310	-0.9720 Z3	1 BOX	-0.406087				
253	O13	6.1400	-0.2970	3.5600 Z4	1 BOX	-0.406087				
254	O14	8.6560	-0.0760	2.8330 Z5	1 BOX	-0.594030				
255	O15	6.4230	0.9550	1.1750 Z6	1 BOX	-0.594030				
256	O16	8.6560	-0.0760	2.8330 Z5	1 BOX	-0.594030				
257	O17	7.8170	1.9630	4.7590 Z7	1 BOX	-0.594030				
258	O18	5.8060	2.7470	3.2380 Z9	1 BOX	-0.406087				
259	O19	-5.8760	-2.8610	6.0460 A1	1 BOX	-0.594030				
260	O20	-5.1110	-0.9610	4.3590 A2	1 BOX	-0.406087				
261	O21	-3.0730	-2.6240	5.0850 A3	1 BOX	-0.406087				
262	O22	-3.5530	-2.6780	7.6570 A4	1 BOX	-0.594030				
263	O23	-3.0360	-0.0290	6.1610 A5	1 BOX	-0.406087				
264	O24	-5.4160	-0.2270	7.2440 A6	1 BOX	-0.594030				
265	O25	-6.4410	-0.9680	0.3480 o	1 BOX	-0.610825				
266	O26	-6.3290	-4.0870	-3.8410 o	1 BOX	-0.610825				
267	O27	-6.1560	1.9580	-3.1790 o	1 BOX	-0.610825				
268	O28	1.7580	2.6910	-4.6070 o	1 BOX	-0.610825				
269	O29	2.8090	-0.6200	-3.3260 o	1 BOX	-0.610825				
270	O30	6.0570	-0.7120	-2.6540 o	1 BOX	-0.610825				
271	O31	3.6860	6.3030	4.0900 o	1 BOX	-0.610825				
272	O32	3.8870	-3.7280	2.4100 o	1 BOX	-0.610825				
273	O33	-2.0900	-6.0690	2.8920 o	1 BOX	-0.610825				
274	O34	-0.2710	5.4760	2.6810 o	1 BOX	-0.610825				
275	O35	2.9150	-7.9070	-1.3200 o	1 BOX	-0.610825				
276	O36	-1.5200	3.6980	4.8580 o	1 BOX	-0.610825				
277	GA1	-0.5120	-5.2420	-5.6460 M1	1 BOX	0.689487				
278	GA2	-2.3770	6.9510	-2.8940 M2	1 BOX	0.689487				
279	GA3	7.2580	1.3520	2.9680 M3	1 BOX	0.689487				
280	GA4	-4.3730	-1.5550	6.2010 M4	1 BOX	0.689487				

Force field parameters and charges derived in gas phase

BOND

A1-M4 45.0 2.0010 Created by Seminario method using MCPB.py
A2-M4 15.0 2.0988 Created by Seminario method using MCPB.py
A3-M4 14.2 2.0806 Created by Seminario method using MCPB.py
A4-M4 46.6 1.9992 Created by Seminario method using MCPB.py
A5-M4 5.6 2.1491 Created by Seminario method using MCPB.py
A6-M4 44.8 2.0010 Created by Seminario method using MCPB.py
Y1-M1 48.3 1.9980 Created by Seminario method using MCPB.py
Y2-M1 15.5 2.0804 Created by Seminario method using MCPB.py
Y3-M1 8.0 2.1338 Created by Seminario method using MCPB.py
Y4-M1 52.3 1.9895 Created by Seminario method using MCPB.py
Y5-M1 48.9 1.9969 Created by Seminario method using MCPB.py
Y6-M1 4.5 2.1585 Created by Seminario method using MCPB.py
Y7-M2 6.3 2.1486 Created by Seminario method using MCPB.py
Y8-M2 44.0 2.0037 Created by Seminario method using MCPB.py
Y9-M2 8.9 2.1328 Created by Seminario method using MCPB.py
Z1-M2 48.7 1.9918 Created by Seminario method using MCPB.py
Z2-M2 45.8 1.9987 Created by Seminario method using MCPB.py
Z3-M2 21.8 2.0441 Created by Seminario method using MCPB.py
Z4-M3 48.7 1.9918 Created by Seminario method using MCPB.py
Z5-M3 45.8 1.9987 Created by Seminario method using MCPB.py
Z6-M3 10.8 2.1242 Created by Seminario method using MCPB.py
Z7-M3 46.8 1.9995 Created by Seminario method using MCPB.py
Z8-M3 47.2 2.0009 Created by Seminario method using MCPB.py
Z9-M3 12.0 2.1180 Created by Seminario method using MCPB.py
ca-A1 598.1 1.2358 SOURCE4_SOURCE5 17 0.0088

ANGL
A1-M4-A2 116.15 80.77 Created by Seminario method using MCPB.py
A1-M4-A3 54.66 92.38 Created by Seminario method using MCPB.py
A1-M4-A4 70.38 93.10 Created by Seminario method using MCPB.py
A1-M4-A5 89.64 168.75 Created by Seminario method using MCPB.py
A1-M4-A6 88.89 89.31 Created by Seminario method using MCPB.py
A2-M4-A3 61.57 96.81 Created by Seminario method using MCPB.py
A2-M4-A4 94.45 173.51 Created by Seminario method using MCPB.py
A2-M4-A5 64.27 96.62 Created by Seminario method using MCPB.py
A2-M4-A6 51.98 90.64 Created by Seminario method using MCPB.py
A3-M4-A4 121.35 81.23 Created by Seminario method using MCPB.py
A3-M4-A5 54.76 98.80 Created by Seminario method using MCPB.py
A3-M4-A6 94.73 172.53 Created by Seminario method using MCPB.py
A4-M4-A5 54.79 89.81 Created by Seminario method using MCPB.py
A4-M4-A6 79.77 91.42 Created by Seminario method using MCPB.py
A5-M4-A6 93.71 79.75 Created by Seminario method using MCPB.py
Y1-M1-Y2 121.57 81.57 Created by Seminario method using MCPB.py
Y1-M1-Y3 55.98 172.02 Created by Seminario method using MCPB.py
Y1-M1-Y4 72.22 91.77 Created by Seminario method using MCPB.py
Y1-M1-Y5 92.58 90.83 Created by Seminario method using MCPB.py
Y1-M1-Y6 59.44 87.47 Created by Seminario method using MCPB.py
Y2-M1-Y3 74.43 96.62 Created by Seminario method using MCPB.py
Y2-M1-Y4 54.16 91.28 Created by Seminario method using MCPB.py
Y2-M1-Y5 108.94 172.51 Created by Seminario method using MCPB.py
Y2-M1-Y6 51.72 97.32 Created by Seminario method using MCPB.py
Y3-M1-Y4 98.87 80.29 Created by Seminario method using MCPB.py
Y3-M1-Y5 65.73 88.55 Created by Seminario method using MCPB.py
Y3-M1-Y6 63.72 100.23 Created by Seminario method using MCPB.py
Y4-M1-Y5 84.37 91.69 Created by Seminario method using MCPB.py
Y4-M1-Y6 65.36 171.16 Created by Seminario method using MCPB.py
Y5-M1-Y6 90.80 79.51 Created by Seminario method using MCPB.py
Y7-M2-Y8 95.16 79.46 Created by Seminario method using MCPB.py
Y7-M2-Y9 63.48 100.54 Created by Seminario method using MCPB.py
Y7-M2-Z1 69.27 170.18 Created by Seminario method using MCPB.py
Y7-M2-Z2 42.20 86.63 Created by Seminario method using MCPB.py
Y7-M2-Z3 66.25 92.87 Created by Seminario method using MCPB.py
Edge	X1	X2	Created by Seminario method using MCPB.py
Y8-M2-Y9	64.08	90.03	
Y8-M2-Z1	86.64	90.75	
Y8-M2-Z2	93.78	91.84	
Y8-M2-Z3	117.75	170.78	
Y9-M2-Z1	100.54	80.09	
Y9-M2-Z2	56.04	172.81	
Y9-M2-Z3	76.68	96.46	
Z1-M2-Z2	68.34	92.94	
Z1-M2-Z3	63.23	96.80	
Z2-M2-Z3	122.74	82.53	
Z4-M3-Z5	112.58	80.39	
Z4-M3-Z6	58.53	96.35	
Z4-M3-Z7	106.35	169.34	
Z4-M3-Z8	57.07	92.68	
Z6-M3-Z7	105.38	80.02	
Z6-M3-Z8	91.88	170.96	
Z6-M3-Z9	68.21	98.96	
Z7-M3-Z8	86.91	91.00	
Z7-M3-Z9	60.35	91.62	
Z8-M3-Z9	109.04	80.02	
ca-A1-M4	55.32	111.39	
ca-A2-M4	48.52	108.72	
ca-A3-M4	46.98	110.68	
ca-A4-M4	57.93	112.89	
ca-A5-M4	59.65	109.91	
ca-A6-M4	58.83	110.22	
ca-A1-M1	58.91	112.57	
ca-A2-M1	50.12	110.10	
ca-A3-M1	57.90	108.64	
ca-A4-M1	55.51	112.84	
ca-A5-M1	52.71	112.72	
ca-Y2-M1	59.39	108.02	
ca-Y7-M2	54.62	108.65	
ca-Y8-M2	52.19	112.76	
ca-Y9-M2	55.63	108.73	
ca-Z1-M2	54.74	112.58	
ca-Z2-M2	59.83	111.73	
ca-Z3-M2	54.80	110.70	
ca-Z4-M3	49.78	110.53	
ca-Z5-M3	57.76	113.47	
ca-Z6-M3	53.64	108.88	
ca-Z7-M3	55.87	112.13	
ca-Z8-M3	55.77	112.04	
Charges:

1 C1	5.3900	5.8910	-1.6280 ca	1 BOX	-0.143496	
2 H1	6.2160	5.4540	-1.0780 ha	1 BOX	0.139616	
3 C2	3.1970	7.0220	-3.0500 ca	1 BOX	0.393566	
4 C3	5.5500	6.3950	-2.8970 ca	1 BOX	-0.195908	
5 H2	6.5290	6.3550	-3.3770 ha	1 BOX	0.135251	
6 C4	4.4690	6.9560	-3.6060 ca	1 BOX	-0.181359	
7 H3	4.6230	7.3590	-4.5970 ha	1 BOX	0.114661	
8 C5	4.1110	5.9140	-1.0180 ca	1 BOX	0.001430	
9 C6	2.9840	6.4760	-1.7280 ca	1 BOX	0.001430	
10 C7	3.9270	5.3870	0.3040 ca	1 BOX	0.393566	
11 C8	1.7120	6.4750	-1.0910 ca	1 BOX	-0.143496	
12 H4	0.8500	6.9220	-1.5780 ha	1 BOX	0.139616	
13 C9	2.6640	5.3780	0.8580 ca	1 BOX	-0.181359	
14 H5	2.5310	4.9760	1.8590 ha	1 BOX	0.114661	
15 C10	1.5560	5.9220	0.1640 ca	1 BOX	-0.195908	
16 H6	0.5800	5.9320	0.6420 ha	1 BOX	0.135251	
17 C11	5.8870	5.8030	1.7010 c	1 BOX	0.807075	
18 C12	6.8720	5.2730	2.6950 ca	1 BOX	-0.153938	
19 C13	7.1600	3.9040	2.9570 ca	1 BOX	0.213805	
20 C14	7.5330	6.2900	3.4490 ca	1 BOX	-0.301874	
21 H7	7.2760	7.3170	3.2080 ha	1 BOX	0.116258	
22 C15	8.1360	3.5930	4.0060 ca	1 BOX	0.263385	
23 C16	8.7410	4.6290	4.7210 ca	1 BOX	-0.230920	
24 H8	9.4560	4.3520	5.4980 ha	1 BOX	0.042985	
25 C17	8.4410	5.9810	4.4410 ca	1 BOX	-0.198917	
26 H9	8.9250	6.7800	5.0140 ha	1 BOX	0.028481	
27 C18	2.2510	8.5880	-4.7380 c	1 BOX	0.807075	
28 C19	1.0290	8.9840	-5.4920 ca	1 BOX	-0.153938	
29 C20	1.2530	9.9470	-6.5240 ca	1 BOX	-0.301874	
30 H10	2.2760	10.2860	-6.6630 ha	1 BOX	0.116258	
31 C21	-0.2860	8.4890	-5.2650 ca	1 BOX	0.213805	
32 C22	0.2200	10.4180	-7.3070 ca	1 BOX	-0.198917	
33 H11	0.4180	11.1460	-8.1010 ha	1 BOX	0.028481	
34 C23	-1.3800	9.0300	-6.0800 ca	1 BOX	0.263385	
35 C24	-1.1000	9.9600	-7.0830 ca	1 BOX	-0.230920	
36 H12	-1.9390	10.3270	-7.6770 ha	1 BOX	0.042985	
37 C25	4.7310	-6.3050	-2.4680 ca	1 BOX	0.393566	
38 C26	6.6540	-4.8240	-0.9630 ca	1 BOX	-0.143496	
39 H13	7.3780	-4.2560	-0.3930 ha	1 BOX	0.139616	
40 C27	6.7000	-6.1950	-1.0270 ca	1 BOX	-0.195908	
41 H14	7.4800	-6.7360	-0.4890 ha	1 BOX	0.135251	
42 C28	5.7610	-6.9340	-1.7740 ca	1 BOX	-0.181359	
43 H15	5.8360	-8.0080	-1.8270 ha	1 BOX	0.114661	
---	---	---	---	---		
44	C29	5.6210	-4.1260	-1.6380 ca	1 BOX	0.001430
45	C30	4.6240	-4.8610	-2.3850 ca	1 BOX	0.001430
46	C31	5.5510	-2.6920	-1.5660 ca	1 BOX	0.393566
47	C32	3.5680	-4.1310	-2.9950 ca	1 BOX	-0.143496
48	H16	2.8110	-4.6380	-3.5890 ha	1 BOX	0.139616
49	C33	4.4780	-2.0410	-2.1420 ca	1 BOX	-0.181359
50	H17	4.4200	-0.9580	-2.0780 ha	1 BOX	0.114661
51	C34	3.4890	-2.7620	-2.8490 ca	1 BOX	-0.195908
52	H18	2.6680	-2.2210	-3.3120 ha	1 BOX	0.135251
53	C35	7.8480	-1.8350	-1.4530 c	1 BOX	0.807075
54	C36	8.7710	-0.7960	-0.9050 ca	1 BOX	-0.153938
55	C37	8.5140	0.0700	0.1950 ca	1 BOX	0.213805
56	C38	9.5410	1.0520	0.5560 ca	1 BOX	0.263385
57	C39	10.7250	1.1200	-0.1820 ca	1 BOX	-0.230920
58	H19	11.4600	1.8700	0.1160 ha	1 BOX	0.042985
59	C40	10.9580	0.2480	-1.2690 ca	1 BOX	-0.198917
60	H20	11.8920	0.3190	-1.8370 ha	1 BOX	0.028481
61	C41	10.0050	-0.6870	-1.6160 ca	1 BOX	-0.301874
62	H21	10.1490	-1.3680	-2.4490 ha	1 BOX	0.116258
63	C42	3.9320	-8.3740	-3.6240 c	1 BOX	0.807075
64	C43	2.7660	-9.0530	-4.2560 ca	1 BOX	-0.153938
65	C44	2.9440	-10.4620	-4.4270 ca	1 BOX	-0.301874
66	H22	3.8830	-10.8820	-4.0800 ha	1 BOX	0.116258
67	C45	1.9700	-11.2500	-5.0000 ca	1 BOX	-0.198917
68	H23	2.1230	-12.3310	-5.1020 ha	1 BOX	0.028481
69	C46	0.7680	-10.6620	-5.4560 ca	1 BOX	-0.230920
70	H24	-0.0150	-11.2560	-5.9290 ha	1 BOX	0.042985
71	C47	0.5460	-9.2890	-5.3320 ca	1 BOX	0.263385
72	C48	1.5530	-8.4390	-4.6830 ca	1 BOX	0.213805
73	C49	-1.7160	0.5070	-4.1680 ca	1 BOX	-0.195908
74	H25	-1.7510	0.5920	-3.0850 ha	1 BOX	0.135251
75	C50	-1.1060	-0.6270	-4.7480 ca	1 BOX	-0.181359
76	H26	-0.6680	-1.3910	-4.1110 ha	1 BOX	0.114661
77	C51	-2.2480	1.5090	-4.9500 ca	1 BOX	-0.143496
78	H27	-2.7110	2.3750	-4.4870 ha	1 BOX	0.139616
79	C52	-1.0380	-0.7810	-6.1210 ca	1 BOX	0.393566
80	C53	-2.2170	1.4050	-6.3660 ca	1 BOX	0.001430
81	C54	-1.6270	0.2280	-6.9670 ca	1 BOX	0.001430
82	C55	-2.7990	2.4160	-7.2160 ca	1 BOX	0.393566
83	C56	-1.6920	0.0740	-8.3770 ca	1 BOX	-0.143496
84	H28	-1.2880	-0.8220	-8.8260 ha	1 BOX	0.139616
85	C57	-2.7840	2.2330	-8.5890 ca	1 BOX	-0.181359
86	H29	-3.2310	2.9910	-9.2190 ha	1 BOX	0.114661
87	C58	-2.2540	1.0570	-9.1580 ca	1 BOX	-0.195908
88	H30	-2.2890	0.9310	-10.2410 ha	1 BOX	0.135251
89	C59	-4.6510	4.0480	-7.1250 ca	1 BOX	0.807075
90	C60	-5.2380	5.2310	-6.4360 ca	1 BOX	-0.153938
91	C61	-6.5800	5.5270	-6.8250 ca	1 BOX	-0.301874
---	---	---	---	---	---	
92 H31	-7.0340	4.8680	-7.5590 ha	1 BOX	0.116258	
93 C62	-7.2690	6.5910	-6.2840 ca	1 BOX	-0.198917	
94 H32	-8.3040	6.7880	-6.5850 ha	1 BOX	0.028481	
95 C63	-6.6410	7.4260	-5.3330 ca	1 BOX	-0.230920	
96 H33	-7.1600	8.2780	-4.9240 ca	1 BOX	0.263385	
97 C64	-5.3270	7.1930	-7.7400 ca	1 BOX	-0.230920	
98 C65	-4.5860	6.0530	-5.4740 ca	1 BOX	0.213805	
99 C66	5.0820	-1.9980	-7.5680 c	1 BOX	0.807075	
100 C67	1.0830	-3.3420	-9.1520 ca	1 BOX	-0.153938	
101 C68	0.3870	-4.5810	-9.3460 ca	1 BOX	0.213805	
102 C69	1.9030	-2.3460	-9.860 ca	1 BOX	-0.301874	
103 H34	0.3140	-4.4460	-10.600 ha	1 BOX	0.028481	
104 C70	2.2120	-3.460	-10.320 ca	1 BOX	0.135251	
105 C71	2.4290	-5.7300	-9.1280 ca	1 BOX	-0.143496	
106 C72	2.4910	-6.680	-9.5520 ca	1 BOX	0.195908	
107 C73	-3.3720	-6.0070	1.5160 ca	1 BOX	0.001430	
108 C74	-3.3060	-6.9500	0.1000 ca	1 BOX	0.001430	
109 C75	-4.3360	-7.2160	1.9750 ca	1 BOX	0.139616	
110 C76	-4.5610	-7.3260	3.0260 ha	1 BOX	0.139616	
111 C77	-4.5130	-8.9380	1.4660 ca	1 BOX	0.135251	
112 C78	-3.4910	-8.3460	1.4660 ca	1 BOX	0.139616	
113 C79	-3.3720	-8.9500	0.7940 ca	1 BOX	0.139616	
114 C80	-3.4360	-7.1150	-4.5550 ca	1 BOX	-0.153938	
115 C81	-4.2920	-8.1250	-0.2750 ca	1 BOX	-0.181359	
116 C82	-4.5130	-9.3800	-0.9560 ha	1 BOX	0.114661	
117 C83	-4.5880	-8.2450	1.0970 ca	1 BOX	0.195908	
118 C84	-5.0240	-9.1750	1.4660 ca	1 BOX	0.135251	
119 C85	-6.0700	-7.2220	-3.0920 c	1 BOX	0.807075	
120 C86	-6.4350	-7.1150	-4.5550 ca	1 BOX	0.153938	
121 C87	-6.3090	-8.170	-5.1780 ca	1 BOX	0.213805	
122 C88	-6.4920	-7.3880	-5.3630 ca	1 BOX	-0.301874	
123 C89	-6.4190	-7.5990	-4.8400 ha	1 BOX	0.116258	
124 C90	-6.4250	-7.3850	-6.7390 ca	1 BOX	-0.198917	
125 C91	-6.3220	-7.5800	-7.3360 ha	1 BOX	0.028481	
126 C92	-4.1940	-7.1250	-7.3810 ca	1 BOX	-0.230920	
127 C93	-4.1030	-7.1270	-8.4680 ha	1 BOX	0.028481	
128 C94	-3.0390	-6.8600	-6.6430 ca	1 BOX	0.263385	
129 C95	-3.2750	-5.9070	4.7000 c	1 BOX	0.807075	
130 C96	-3.6290	-5.7090	6.1400 ca	1 BOX	-0.153938	
131 C97	-3.4250	-6.8580	6.9590 ca	1 BOX	-0.301874	
132 C98	-3.0030	-7.7340	6.4760 ha	1 BOX	0.116258	
133 C99	-4.1500	-4.5200	6.7160 ca	1 BOX	0.213805	
140	C94	-3.7570	-6.8540	8.2980 ca	1 BOX	-0.198917
-----	-----	---------	---------	----------	-------	------------
141	H47	-3.5940	-7.7480	8.9090 ha	1 BOX	0.028481
142	C95	-4.3050	-5.6910	8.8840 ca	1 BOX	-0.230920
143	H48	-4.5810	-5.6600	9.9400 ha	1 BOX	0.042985
144	C96	-4.5120	-4.5320	8.1310 ca	1 BOX	0.263385
145	H49	-3.3160	2.9650	0.0420 ca	1 BOX	-0.181359
146	C97	-2.7140	2.9960	-0.8630 ha	1 BOX	0.114661
147	C98	-3.7980	1.7290	0.5280 ca	1 BOX	-0.195908
148	H50	-3.5690	0.8200	-0.0230 ha	1 BOX	0.135251
149	C99	-3.5810	4.1480	0.7070 ca	1 BOX	0.393566
150	H51	-4.5390	1.6600	1.6870 ca	1 BOX	-0.143496
151	C100	-4.3820	4.1130	1.9070 ca	1 BOX	0.001430
152	C101	-4.8530	2.8430	-1.2970 ca	1 BOX	0.213805
153	H52	-4.4390	6.2550	2.0000 ha	1 BOX	0.139616
154	C102	-5.6720	2.8120	3.5900 ca	1 BOX	-0.153938
155	H53	-5.5640	5.2360	3.7060 ca	1 BOX	0.042985
156	C103	-6.0030	3.9970	4.2180 ca	1 BOX	-0.143496
157	H54	-2.3380	6.2970	-0.8000 c	1 BOX	0.116258
158	C104	-2.0630	7.5810	0.0860 ca	1 BOX	-0.153938
159	C105	-2.2690	7.8160	-1.2970 ca	1 BOX	0.213805
160	H55	-1.4770	9.9250	0.4320 ca	1 BOX	-0.198917
161	C106	-1.4610	8.4100	1.9720 ha	1 BOX	0.116258
162	H56	-1.4100	10.7320	1.0910 ha	1 BOX	0.028481
163	C107	-2.3380	6.2970	-0.8000 c	1 BOX	0.807075
164	C108	-2.0630	7.5810	0.0860 ca	1 BOX	-0.153938
165	C109	-2.2690	7.8160	-1.2970 ca	1 BOX	0.213805
166	H57	-1.6180	11.1930	-1.3460 ha	1 BOX	0.042985
167	C110	-7.5770	1.4160	4.2540 c	1 BOX	0.042985
168	C111	-8.0540	0.1280	4.8380 ca	1 BOX	-0.153938
169	C112	-9.4540	-0.1030	4.6930 ca	1 BOX	-0.198917
170	H58	-10.0230	-0.6520	4.1600 ha	1 BOX	0.116258
171	C113	-7.2500	-0.8230	5.5240 ca	1 BOX	0.213805
172	H59	-11.1250	-1.4050	5.0630 ha	1 BOX	0.028481
173	C114	-7.9050	-2.0030	6.0930 ca	1 BOX	0.263385
174	C115	-9.2770	-2.1870	5.9060 ca	1 BOX	-0.230920
175	H60	-9.7250	-3.0860	6.3310 ha	1 BOX	0.042985
176	C116	-2.0810	-0.2520	4.7760 ca	1 BOX	-0.181359
177	H61	2.5270	-0.2700	3.7850 ha	1 BOX	0.114661
178	C117	0.6840	-0.1090	4.9160 ca	1 BOX	-0.195908
179	H62	0.0730	0.0010	4.0240 ha	1 BOX	0.135251
180	C118	2.9020	-0.3880	5.8830 ca	1 BOX	0.393566
181	C119	0.0840	-0.1270	6.1570 ca	1 BOX	-0.143496
182	H63	-0.9930	-0.0220	6.2370 ha	1 BOX	0.139616
Number	Element	X-Coordinate	Y-Coordinate	Z-Coordinate	Box	Factor
--------	---------	--------------	--------------	--------------	-----	--------
236	H82	-1.7630	-0.6020	8.1640	1 BOX	0.582649
237	N11	-3.4310	3.5660	-6.6690	1 BOX	-0.990800
238	H83	-3.0020	4.1050	-5.9140	1 BOX	0.582649
239	N12	4.3060	-0.4970	5.6790	1 BOX	-0.990800
240	H84	4.7220	0.0020	4.8870	1 BOX	0.582649
241	O1	0.9590	-6.9500	-7.4200	1 BOX	-0.496622
242	O2	0.0840	-4.7240	-6.2440	1 BOX	-0.547732
243	O3	-1.9760	-6.5240	-4.5560	1 BOX	-0.547732
244	O4	-1.8810	-6.6380	-7.2130	1 BOX	-0.496622
245	O5	-0.5440	-8.7150	-5.7690	1 BOX	-0.496622
246	O6	1.2550	-7.1660	-4.5680	1 BOX	-0.547732
247	O7	-0.6170	7.5890	-4.3720	1 BOX	-0.547732
248	O8	-2.5920	8.6020	-5.8300	1 BOX	-0.496622
249	O9	-3.3580	5.8920	-5.0350	1 BOX	-0.547732
250	O10	-4.7130	7.9530	-4.0510	1 BOX	-0.496622
251	O11	-2.4000	9.3890	-3.0700	1 BOX	-0.496622
252	O12	-2.6020	6.8840	-2.1790	1 BOX	-0.547732
253	O13	6.4560	0.0940	3.9400	1 BOX	-0.547732
254	O14	9.0230	-0.3070	3.3770	1 BOX	-0.496622
255	O15	7.4270	0.0710	0.9370	1 BOX	-0.547732
256	O16	9.2960	1.8440	1.5710	1 BOX	-0.496622
257	O17	8.3970	2.3290	4.2360	1 BOX	-0.496622
258	O18	6.6350	2.8700	2.3330	1 BOX	-0.547732
259	O19	-7.1590	-2.8510	6.7590	1 BOX	-0.496622
260	O20	-5.9500	-0.7250	5.7190	1 BOX	-0.547732
261	O21	-4.3440	-3.3830	6.0730	1 BOX	-0.547732
262	O22	-5.0260	-3.4370	8.6400	1 BOX	-0.496622
263	O23	-3.7450	-0.8830	7.9980	1 BOX	-0.547732
264	O24	-6.3390	-0.8920	8.6040	1 BOX	-0.496622
265	O25	-8.3780	2.2950	3.8920	1 BOX	-0.677284
266	O26	-5.6970	-7.6490	-2.6700	1 BOX	-0.677284
267	O27	-5.2490	3.4930	-8.0640	1 BOX	-0.677284
268	O28	3.3480	9.1330	-4.9780	1 BOX	-0.677284
269	O29	1.0130	-0.9550	-8.0770	1 BOX	-0.677284
270	O30	8.1900	-2.5840	-2.3820	1 BOX	-0.677284
271	O31	5.7900	7.0190	1.4680	1 BOX	-0.677284
272	O32	4.6440	-2.3520	6.9790	1 BOX	-0.677284
273	O33	-2.6600	-6.9110	4.3150	1 BOX	-0.677284
274	O34	-1.9610	6.0990	1.9610	1 BOX	-0.677284
275	O35	4.9990	-8.9980	-3.4520	1 BOX	-0.677284
276	O36	-1.0720	1.1190	10.7330	1 BOX	-0.677284
277	GA1	-0.3600	-6.7330	-5.9340	1 BOX	0.839067
278	GA2	-2.7400	7.6830	-4.0560	1 BOX	0.839067
279	GA3	7.8150	1.1550	2.7230	1 BOX	0.839067
280	GA4	-5.4000	-2.0400	7.2610	1 BOX	0.839067

7. Cartesian coordinates:
#

NEt₄⁺ encapsulated in the metallocage (neutral complex with K⁺ counter ions)

320 atoms

C 0.406481 -1.268382 5.839094
H 0.611211 -2.330805 5.909344
C -0.047501 1.520207 5.754510
C 1.376728 -0.378129 6.241795
H 2.326579 -0.747956 6.610860
C 1.167531 1.013803 6.184148
H 1.958909 1.689095 6.472151
C -0.850929 -0.795243 5.370779
C -1.100607 0.622364 5.348816
C -1.889832 -1.691491 4.921930
C -2.375670 1.088263 4.917917
H -2.591570 2.145947 4.820643
C -3.115972 -1.189486 4.513678
H -3.886081 -1.864779 4.170136
C -3.351605 0.197293 4.528126
H -4.312547 0.569790 4.199452
C -2.477027 -4.117589 5.019310
C -1.854838 -5.471412 5.080822
C -0.465907 -7.10929 4.973289
C -2.729199 -6.570065 5.270999
H -3.792177 -6.373238 5.352619
C 0.032932 -7.053651 5.072062
C -0.859702 -8.107188 5.253972
H -0.465870 -9.119021 5.317781
C -2.242299 -7.863490 5.353119
H -2.925968 -8.695840 5.496646
C 0.314788 3.931634 6.348405
C -0.312273 5.278287 6.197419
C 0.386051 6.376228 6.756244
H 1.346721 7.191956 7.223835
C -1.560471 5.508101 5.574332
C -0.142887 7.655659 6.705351
H 0.409106 8.489953 7.129278
C -2.117851 6.827695 5.555534
C -1.397012 7.883073 6.111101
H -1.823752 8.882605 6.074524
C 4.566316 -1.527685 -1.234412
C 3.851782 -2.803329 1.181439
H 3.511152 -3.319321 2.073198
C 3.841747 -3.488669 -0.014361
H 3.552886 -4.532099 -0.030485
C 4.208597 -2.866050 -1.223669
H 4.203644 -3.430571 -2.144284
C 4.226149 -1.429160 1.220288
C 4.537532 -0.760240 -0.012729
C 4.305498 -0.680733 2.450226
C 4.815221 0.635681 0.014623
H 4.958386 1.203738 -0.896905
C 4.617374 0.667103 2.432550
H 4.646881 1.225633 3.356414
C 4.852596 1.320696 1.209388
H 5.041421 2.385227 1.205217
C 4.675673 -1.124259 4.873431
C 4.385609 -2.110878 5.955653
C 3.660264 -3.308249 5.757195
C 3.455762 -4.212932 6.849873
C 3.951536 -3.881909 8.109619
H 3.780655 -4.569510 8.934622
C 4.656739 -2.680813 8.307628
H 5.030487 -2.436169 9.298055
C 4.876575 -1.813287 7.250267
H 5.420110 -0.886493 7.395892
C 5.627834 -1.410786 -3.496720
C 6.184313 -0.419816 -4.462639
C 6.548110 -0.899326 -5.744393
H 6.457532 -1.961372 -5.943792
C 6.981150 -0.027855 -6.730647
H 7.246789 -0.406974 -7.713647
C 7.060686 1.352710 -6.472822
H 7.376438 2.046649 -7.248435
C 6.736705 1.860343 -5.214352
C 6.326487 0.956646 -4.180436
C 1.747809 5.788289 3.215660
H 1.548750 6.199388 4.200961
C 3.082980 5.508049 2.852603
H 3.886850 5.727237 3.539740
C 0.705909 5.590397 2.336431
H -0.299400 5.864602 2.637808
C 3.368747 4.984707 1.601325
C 0.953633 5.026728 1.053382
C 2.295831 4.659757 0.695034
C -0.094060 4.781881 0.100137
C 2.525897 3.978337 -0.530039
H -3.512402 3.632731 -0.809444
C 0.170321 4.088502 -1.064602
H -0.654849 3.823078 -1.710493
C 1.479052 3.678233 -1.370231
H 1.666504 3.103624 -2.264492
C -2.273222 5.816409 -0.470166
C -3.520491 6.348117 0.138035
C -4.408884 7.069339 -0.697683
Atoms	x	y	z
H	-4.12695	7.238904	-1.731192
C	-5.620556	7.531651	-0.212548
H	-6.293698	8.083233	-0.863316
C	-5.995535	7.279466	1.121626
H	-6.955404	7.620235	1.503042
C	-5.143956	6.587369	1.979562
C	-3.870358	6.137174	1.492064
C	-5.871634	4.804020	1.780423
C	-7.068230	4.610973	0.906885
C	-7.006835	4.154361	-0.431694
C	-8.324873	4.952390	1.457864
H	-8.357473	5.295565	2.486250
C	-9.484412	4.878690	0.701068
H	10.440087	5.152342	1.139262
C	8.204307	4.117532	-1.217318
C	9.426629	4.467376	-0.642761
H	10.324857	4.419438	-1.253970
C	3.125559	-1.413111	-6.056834
H	4.126024	-1.564961	-6.445791
C	2.185876	-2.461233	-6.152419
H	2.462023	-3.393884	-6.628453
C	2.784877	-0.195822	-5.507354
C	3.518808	0.601893	-5.461522
C	0.897744	-2.289875	-5.681487
C	1.483003	0.003239	-4.973256
C	0.515143	-1.061594	-5.041038
C	1.083697	1.239534	-4.366866
C	-0.777849	-0.869243	-4.475078
H	-1.528395	-1.648131	-4.527978
C	-0.153478	1.354639	-3.759455
H	-0.413092	2.271816	-3.250838
C	-1.085147	0.301054	-3.815144
H	-2.047890	0.423187	-3.337722
C	1.552237	3.603063	-4.827946
C	2.527546	4.706062	-4.698729
C	3.783727	4.556128	-4.063907
C	2.179220	5.963185	-5.257330
H	1.214897	6.066682	-5.743527
C	3.061763	7.027547	-5.202575
H	2.787721	7.985875	-5.635287
C	4.327410	6.874975	-4.599512
H	5.028284	7.706001	-4.564732
C	4.704877	5.658869	-4.038047
C	0.029707	-4.626481	-5.739983
C	-1.219945	-5.399821	-5.976537
C	-1.094988	-6.768605	-6.333650
H	-0.100272	-7.187162	-6.464170
C	-2.505751	-4.825250	-5.876115
Atoms	X	Y	Z
-------	-------	-------	-------
C	-1.41797	-5.083468	0.036929
C	-2.448831	-4.525389	-0.794358
C	-3.066674	-5.608943	1.736004
H	-0.985136	-6.027000	1.954284
C	-3.814576	-4.628480	-0.351465
C	-3.017353	-6.000009	2.716277
C	-4.102544	-5.134506	0.903879
C	-5.130393	-5.196669	1.235277
C	-6.883907	-3.420256	-2.201530
C	-6.335269	-3.218244	-3.486564
C	-7.204067	-2.922616	-4.593150
C	-8.575252	-2.801861	-4.372355
H	-9.220211	-2.567785	-5.216077
C	-9.117432	-2.999960	-3.087747
H	-10.191722	-2.931586	-2.940033
C	-8.288160	-3.307896	-2.019840
C	-8.709012	-3.537158	-1.044241
C	-1.878824	-6.515728	-0.145781
C	2.902389	-6.985946	0.822658
C	2.981914	-6.503090	2.148977
C	3.999139	-7.008953	3.025586
C	4.910150	-7.953066	2.555096
C	5.675556	-8.326107	3.232570
C	4.832424	-8.417796	1.226523
C	5.547948	-9.155275	0.873705
C	3.846276	-7.942982	0.377918
C	3.778704	-8.299245	-0.644330
N	-0.312486	2.901692	5.686234
H	-1.089585	3.208818	5.101975
N	-1.603051	-3.065034	4.905561
H	-0.624953	-3.352675	4.828219
N	4.985321	-0.870880	-2.403650
H	5.050815	0.145082	-2.372121
N	4.071314	-1.364457	3.659375
H	3.450498	-2.174927	3.652525
N	-4.370374	1.311533	-4.282917
H	-4.623626	0.323428	-4.364679
N	-5.236179	1.618732	1.816125
H	-4.749883	2.462153	2.136456
N	-0.093611	-3.272141	-5.864143
H	-1.065658	-2.958892	-5.908246
N	1.948950	2.361029	-4.420311
H	2.910436	2.292334	-4.072109
N	4.671443	4.787347	1.119439
H	4.764336	4.539060	0.134359
N	-4.823239	-4.260007	-1.261739
H -4.571355 -4.225313 -2.250987
N -1.392649 5.232946 0.395478
H -1.711223 5.217970 1.368185
O 8.081733 3.695781 -2.489222
O 5.886666 3.737408 -1.039143
O 4.188162 3.423459 -3.489991
O 5.904294 5.452463 -3.464488
O 6.785609 3.163100 -4.916400
O 6.103946 1.488329 -2.964065
O -2.303576 4.536608 5.011114
O -3.322343 6.981387 4.987891
O -3.074752 5.515754 2.370872
O -5.453703 6.310976 3.255139
O -5.174050 4.853726 5.726690
O -4.601914 3.474703 3.551213
O 2.158514 -5.860399 2.658055
O 4.032070 -6.507303 4.276616
O 3.164801 -3.682078 4.564792
O 2.787139 -5.346909 6.597397
O 1.359985 -7.232486 4.977427
O 0.442517 -4.742204 4.788689
O -4.434714 -2.512157 -7.634841
O -4.223094 -1.102095 -5.387325
O -2.715404 -3.559432 -5.512275
O -4.850682 -4.992249 -6.173812
O -5.029615 -3.305130 -3.745549
O -6.637920 -2.771108 -5.796695
O -3.170640 2.919755 -5.414408
O 0.404638 3.788471 -5.314498
O -2.042625 5.914213 -1.696834
O 1.323385 3.763634 7.054435
O 5.974337 5.002825 3.003361
O 5.442927 -0.165604 5.061182
O -3.710195 -3.964169 5.097444
O 1.864859 -6.916356 -1.331518
O 1.109660 -5.192195 -5.463863
O -7.006158 0.248647 2.283124
O 5.718763 -2.634622 -3.689077
O -6.479270 -3.515872 0.152628
Ga 6.136105 3.510434 -3.033566
Ga -3.963446 5.286090 4.134215
Ga 2.287192 -5.488418 4.658551
Ga -4.640538 -3.041445 -5.689978
N 0.144874 0.116862 1.135170
C -1.171678 0.579038 1.751749
H -1.910496 -0.179820 1.498485
H -1.018033 0.552475 2.826977
C 0.621690 1.123594 1.891001
H 1.620858 1.339286 2.158391
H 0.709209 1.350787 1.762808
H -0.342624 2.690029 0.729912
H -1.268080 2.195796 2.164179
H 0.204822 3.152349 2.343840
C -1.663408 1.953697 1.327106
H -1.910276 2.011019 0.264345
H -0.956394 2.746427 1.569958
H -2.572702 2.154745 1.897747
C 1.219058 1.196620 1.258829
H 0.924982 1.992734 0.578133
H 2.137708 0.752251 0.880100
C 1.445407 1.740895 2.661419
H 2.239416 2.490067 2.591230
H 1.777592 0.974818 3.363711
H 0.562390 2.233980 3.070855
C -0.085734 -0.180300 -0.347296
H -0.924917 -0.876847 -0.396346
H -0.407731 0.761636 -0.794560
C 1.117938 -0.733198 -1.097664
H 0.786087 -0.970426 -2.112281
H 1.505747 -1.653967 -0.655630
H 1.930605 -0.007154 -1.174923
K -0.691760 1.983946 -7.135697
K 5.784811 -4.516742 3.633564
K -5.915299 7.481917 5.659444
K -7.754018 -0.973639 0.080290
K 0.337959 -7.086737 -3.452386
K -3.462615 3.447851 7.336373
K -1.865627 4.896617 -4.108136
K 8.376182 5.304391 -4.693153
K -6.555179 -4.161499 -8.142938
K 7.989871 1.066682 -1.053439
K 3.436381 -7.989809 6.480901

Metallo cage (with 11 K⁺ counter ions)

291 atoms

C 0.523963 -1.204699 5.989125
H 0.672772 -2.273763 6.076401
C 0.167263 1.593481 5.890522
C 1.403247 -0.358779 6.625055
H 2.237149 -0.770254 7.183266
C 1.239352 1.039833 6.571880

S33
H	1.937533	1.683877	7.085455
C	-0.561466	-0.681043	5.235544
C	-0.748383	0.742799	5.168881
C	-1.501564	-1.539001	4.559028
C	-1.848931	1.252190	4.419165
H	-2.001155	2.318429	4.286974
C	-2.567762	-1.002042	3.860920
H	-3.259663	-1.657596	3.347479
C	-2.732565	0.395824	3.796420
H	-3.554750	0.809522	3.227160
C	-2.226234	-3.893367	4.904011
C	-1.683351	-5.220509	5.318469
C	-0.303348	-5.492682	5.445679
C	-2.608530	-6.247788	5.625502
H	-3.667687	-6.032025	5.534075
C	0.145461	-6.790925	5.856763
C	-0.795313	-7.774267	6.148731
H	-0.449646	-8.757812	6.458414
C	-2.172640	-7.497825	6.034897
H	-2.894501	-8.276121	6.267063
C	0.251321	3.900896	6.869169
C	-0.363427	5.254133	6.735681
C	0.149816	6.269934	7.579783
H	0.990939	6.030221	8.220867
C	-1.456273	5.552276	5.887179
C	-0.407597	7.537043	7.589921
H	0.003503	8.308898	8.234839
C	-2.047405	6.857296	5.929380
C	-1.512121	7.830471	6.769758
H	-1.966590	8.818594	6.777674
C	4.159223	-2.130566	-1.562370
C	3.880386	-3.128007	1.064197
H	3.743620	-3.521857	2.064354
C	4.670211	-3.781817	0.144052
H	5.185768	-4.697956	0.413566
C	4.844447	-3.266377	-1.156908
H	5.549067	-3.740026	-1.829940
C	3.193492	-1.939672	0.695186
C	3.259176	-1.466984	-0.658089
H	2.481102	-1.146665	1.651496
C	2.501142	0.316543	-1.027793
H	2.521065	0.032008	-2.053167
C	1.752803	-0.047585	1.263535
H	1.219130	0.525405	2.011944
C	1.746115	0.359252	-0.092006
H	1.174221	1.234064	-0.381125
C	3.778412	1.007588	3.687460
C	4.068551	-1.662661	4.992112
H 7.765454 4.063135 2.991680			
C 9.147979 3.656289 1.388577			
H 10.029827 3.883485 1.981462			
C 8.186255 2.980897 -0.741860			
C 9.301585 3.278766 0.039288			
H 10.290548 3.210174 -0.408090			
C 2.875667 -0.233847 -5.953124			
H 3.796167 -0.193811 -6.525063			
C 2.032704 -1.357232 -6.083896			
H 2.304870 -2.160913 -6.756624			
C 2.553532 0.796952 -5.096805			
H 3.231927 1.632579 -4.970620			
C 0.848549 -1.438989 -5.370766			
C 1.344619 0.745982 -4.345813			
C 0.457831 -0.377203 -4.485515			
C 0.983729 1.789961 -3.403682			
C -0.752821 -0.392426 -3.733748			
H -1.459597 -1.206326 -3.840506			
C -0.160991 1.706241 -2.673120			
H -0.369967 2.471863 -1.929536			
C -1.038986 0.612590 -2.836943			
H -1.938830 0.563645 -2.239606			
C 1.841793 3.950341 -4.160062			
C 3.066561 4.770538 -4.231879			
C 4.306230 4.287245 -3.751886			
C 2.987318 6.086247 -4.751021			
H 2.031966 6.445892 -5.120160			
C 4.104912 6.904529 -4.749397			
H 4.038603 7.917541 -5.137049			
C 5.333554 6.441759 -4.229856			
C 6.203665 7.094399 -4.208915			
C 5.453715 5.147702 -3.726833			
C 0.346621 -3.861355 -5.522298			
C -0.768401 -4.831818 -5.652395			
C -0.450137 -6.171835 -5.984287			
H 0.594615 -6.452060 -6.072235			
C -2.124005 -4.455462 -5.522805			
C -1.455819 -7.092347 -6.231073			
H -1.205313 -8.117544 -6.490359			
C -2.809379 -6.703025 -6.171510			
H -3.601336 -7.415660 -6.390978			
C -3.159632 -5.396487 -5.837286			
C -4.547006 -0.098884 0.615534			
H -4.542218 -0.658897 1.546008			
C -4.229054 -0.742972 -0.599001			
H -3.968174 -1.793622 -0.591628			
C -4.860083 1.248660 0.632634			
C -4.231525 -0.044093 -1.786284			
Atom	X	Y	Z
---	---	---	---
H	-3.991023	-0.569990	-2.703083
C	-4.800376	2.029004	-0.568037
C	-4.492390	1.354997	-1.800426
C	-5.033187	3.431682	-0.573996
H	-5.261167	3.950902	0.350899
C	-4.447952	2.130627	-3.007465
C	-4.979051	4.139442	-1.755613
H	-5.172187	5.205958	-1.754087
C	-4.699311	3.490583	-2.977620
H	-4.721027	4.048769	-3.907932
C	-6.164012	1.410336	2.716366
C	-6.342171	2.181607	3.972590
C	-5.469449	3.220286	4.369616
C	-7.450151	1.859108	4.791708
H	-8.108780	1.056323	4.478126
C	-7.699102	2.557940	5.961901
H	-8.556367	2.302975	6.578599
C	-5.743154	3.950084	5.575314
C	-6.847358	3.608281	6.355675
H	-7.034463	4.165173	7.271345
C	-3.432032	1.841378	-5.264668
C	-3.434713	0.918786	-6.430322
C	-3.033602	1.432516	-7.692161
H	-2.829991	2.496775	-7.782968
C	-3.834720	-0.432747	-6.331846
C	-3.014061	0.616585	-8.813794
H	-2.720729	1.024360	-9.777326
C	-3.834149	-1.267859	-7.503366
C	-3.402597	-0.734159	-8.717479
H	-3.96598	-1.374665	-9.596243
C	0.503925	-3.973106	-1.195642
H	1.540396	-3.787848	-1.448048
C	-0.526890	-3.437849	-1.991199
H	-0.264936	-2.877704	-2.879800
C	0.208888	-4.710660	-0.064876
C	-1.849611	-3.621114	-1.650215
H	-2.616617	-3.193016	-2.285019
C	-1.150539	-4.849734	0.376211
C	-2.195702	-4.318792	-0.458203
C	-1.490202	-5.481317	1.604197
H	-0.716899	-5.888177	2.246824
C	-3.562097	-4.523071	-0.052543
C	-2.807783	-5.576666	1.994521
H	-3.056613	-6.045948	2.940273
C	-3.849792	-5.113613	1.165280
H	-4.879855	-5.255919	1.463863
C	-5.851698	-3.763113	-0.716836
C	-6.700113	-3.527399	-1.917538
	O	O	O
---	------	------	------
	-2.025081	4.660270	5.056220
	-3.115037	7.078732	5.146424
	-2.981589	5.733883	2.435230
	-5.329712	6.370036	3.513813
	-4.869700	4.919492	5.908488
	-4.375257	3.576906	3.692791
	2.019855	-5.999207	3.105318
	4.068048	-6.636351	4.667926
	3.168673	-3.780642	4.280445
	3.319436	-4.808303	6.715982
	1.476437	-6.987696	5.920620
	0.654602	-4.596230	5.187694
	-4.253829	-2.527958	-7.357774
	-4.242576	-0.993867	-5.193828
	-2.513035	-3.235514	-5.145063
	-4.428874	-4.956526	-5.794141
	-4.854017	-3.210136	-3.439941
	-6.480789	-2.934088	-5.526152
	-2.756688	2.900046	-5.264805
	0.806142	4.206490	-4.833126
	-2.256503	6.459770	-1.663181
	1.006450	3.623945	7.816277
	5.269223	3.893108	3.058647
	4.491978	-0.090956	3.225640
	-3.449640	-3.675820	4.830085
	2.447365	-6.150915	-1.100214
	1.540425	-4.226690	-5.459753
	-6.862808	0.406283	2.458898
	4.974684	-3.255813	-4.138487
	-6.301077	-3.599882	0.439671
Ga	6.395811	2.638300	-2.863208
Ga	-3.731632	5.400681	4.256511
Ga	2.424364	-5.478458	5.013199
Ga	-4.475557	-2.978726	-5.386465
K	-0.184935	2.391535	-6.700787
K	5.951587	-4.563916	4.017920
K	-5.710014	7.509713	5.922948
K	-7.681219	-1.179292	0.559498
K	3.030881	-5.153012	-3.505377
K	-3.327431	2.830499	6.918142
K	-1.618697	4.759244	-3.593188
K	9.074107	4.157802	-4.141220
K	-6.152892	-4.377734	-7.839305
K	5.545565	0.423264	0.674284
K	3.823899	-7.417848	7.262625