Efficacy and safety of herbal medicines in treating gastric ulcer: A review

Wei-Ping Bi, Hui-Bin Man, Mao-Qiang Man

Abstract

Gastric ulcer is a common disorder of the digestive system. Current therapeutic regimens largely rely on Western medicine. However, numerous studies have demonstrated that herbal medicines can effectively treat gastric ulcer in humans and various animal models via divergent mechanisms. This review updates the efficacy and safety of herbal medicines in treating gastric ulcer, and the mechanisms of their action in humans and animal models. Studies have demonstrated that the efficacy of herbal medicines is comparable or superior to that of drugs such as omeprazole or cimetidine in humans and animal models, and herbal medicines display fewer adverse effects. The mechanisms by which herbal medicines benefit gastric ulcer include stimulation of mucous cell proliferation, anti-oxidation, and inhibition of gastric acid secretion as well as H(+)/K(+)-ATPase activity. Some herbal medicines also exhibit antimicrobial properties. Utilization of herbal medicines could be a valuable alternative to treat gastric ulcer in humans effectively, with few adverse effects.

INTRODUCTION

Gastric ulcer is the most common disorder of the upper digestive tract. The prevalence of gastric ulcer is 2.4% in the Western population[1] and annual incidence rates range from 0.10% to 0.19%[2]. In certain regions of Mainland China, the prevalence of gastric ulcer is as high as 6.07% in the general population, and 22.5% of patients with gastrointestinal symptoms have gastric ulcer[3,4]. Higher incidence usually occurs in people who smoke, use nonsteroidal anti-inflammatory drugs (NSAIDs), or consume alcohol[5,6]. The recurrence rate is as high as 60%[7]. Gastric ulcer has a significant economic impact on both individuals and society.
impact. Average annual medical costs are $23819 for gastric ulcer in the United States\[^9\]. In South Korea, the annual medical costs for gastric ulcer range from $959.6 to $2553.10\[^10\]. Although some studies have demonstrated that *Helicobacter pylori* (H. pylori) eradication therapy is cost-effective\[^12\] , a more systematic study indicated that there was no significant cost difference per subject between eradication therapy and placebo\[^13\]. Although conventional regimens are effective, their side effects are often inevitable and limit clinical utility\[^14\]-\[^16\]. However, both clinical and experimental studies have demonstrated that herbal medicines exhibit therapeutic benefit for gastric ulcer with fewer side effects. Moreover, the cost of herbal medicine for gastric ulcer is only about one-sixth of that of Western medicine\[^17\]. In this paper, the efficacy, safety and mechanisms of action of herbal medicines in treating gastric ulcer are reviewed.

Efficacy of Herbal Medicines

Animal models

The beneficial effects of herbal medicines in treating gastric ulcer are demonstrated primarily in various animal models, including ulcers induced by NSAIDs, ethanol, cold-restraint stress, pylorus ligation, as well as erosive agents. In each model, the therapeutic efficacy varies depending on the preparation and utilization of herbal medicines.

NSAID-induced gastric ulcer model: Induction of gastric ulcer is a major adverse effect caused by NSAIDs. Therefore, they have been used widely to establish animal models of gastric ulcer. A single dose of oral indomethacin can induce gastric ulcer-like damage in rats, which reaches a maximum 3 d after administration\[^18\]-\[^19\]. Oral administration of *Myristica malabarica* extract once daily for 3 d induced a > 60% reduction in macroscopic damage score\[^18\]. Similarly, oral *Piper betel* extract at a dose of 2 mg/kg per day for 7 d significantly reduced ulcer index in a rat model of indomethacin-induced gastric ulcer\[^20\]. Its efficacy was comparable to misoprostol, a conventional anti-ulcer drug. Mehrabani et al\[^21\] have reported that oral *Tencrium palium* extract lowered ulcer index in 24 h and induces a > 90% reduction in ulcer index. Likewise, oral administration of *Phyllanthus emblica* fruit extract for 7 d induced 79.39% inhibition of ulcer index\[^22\]. Moreover, oral beeswax extract for 5 d induced significant acceleration of ulcer healing in a rat model\[^23\]. These results suggest that herbal medicines could be useful in treating NSAID-induced gastric ulcer.

Acetic acid-induced gastric ulcer model: A gastric ulcer model can be established by injection or topical application of acetic acid solution into the stomach. Oral *Qualea grandiflora* extract once daily for 14 d accelerated ulcer healing in an acetic acid-induced gastric ulcer model (ulcer area 6.86 ± 1.46 mm\(^2\) for control, 1.13 ± 1.3 mm\(^2\) for *Qualea grandiflora* extract, and 1.63 ± 1.11 mm\(^2\) for cimetidine\[^24\]). Oral *Centella asiatica* for only 3 d also resulted in dose-dependent acceleration of ulcer healing\[^25\]. Dharmani et al\[^26\] reported that oral administration of *Ocimum sanctum* Linn at a daily dose of 100 mg/kg for 10 d achieved a comparable efficacy to omeprazole in ulcer healing in an acetic acid-induced gastric ulcer model. In some cases, the efficacy of herbal medicines is superior to that of conventional drugs. For example, oral *Alchornea glandulosa* extract at a dose of 250 mg/kg per day for 14 d achieved a higher curative rate than cimetidine\[^27\]. Moreover, administration of extract of herbal mixture also benefited ulcer healing\[^28\] and reduced recurrence rates\[^29\]. Oral *Baopra monnieri* or *Azadirachta indica* extract for 5 d not only accelerated gastric ulcer healing in normal rats, but also in rats with type 2 diabetes mellitus\[^30\]. The efficacy of herbal extracts on ulcer healing varies with molecular size. For instance, lower molecular weight chitosan is more potent than high molecular weight chitosan in treating gastric ulcer induced by acetic acid\[^31\]. One study showed that following induction of gastric ulcer, rats were given oral *Salvia miltiorrhiza* at 840 mg/d for 5 d, followed by 410 mg/d for 25 d. Cimetidine was used as a positive control. Ulcer index was significantly lower in *Salvia miltiorrhiza*-treated than cimetidine-treated rats. Further improvement in ulcer was observed 3 mo after *Salvia miltiorrhiza* treatment\[^32\]. Herbal medicines that benefit gastric ulcer are listed in Table 1\[^18\]-\[^51\].

Other gastric ulcer models: Water immersion restraint stress results in formation of gastric ulcer via oxidative stress\[^52\]-\[^54\]. Ohta et al\[^51\] reported that oral extracts of several herbal mixtures for 3 h markedly reduced ulcer indices in gastric ulcer models induced by water immersion restraint stress. Similarly, oral curcumin resulted in a dose-dependent reduction of ulcer indices in a pylorus ligation-induced gastric ulcer model\[^55\]. These results demonstrate that herbal extracts of single ingredients or mixtures are beneficial in gastric ulcer healing.

Patients with gastric ulcer

Herbal medicines have been used to treat human gastric ulcer for millennia. Several controlled clinical studies have demonstrated that herbal medicines are effective in treating human gastric ulcer (Table 2). He et al\[^56\] reported that > 86% of patients with gastric ulcer showed improvement after orally given a herbal mixture three times daily for 6 wk. Similarly, oral herbal mixtures two or three times daily for 2 mo induced a > 90% improvement in patients with gastric ulcer\[^57\]-\[^59\]. Improvement of clinical symptoms occurred as early as 3 d after oral herbal medicines\[^59\]. The efficacy of herbal medicines in treating gastric ulcer is comparable to that of famotidine, a histamine H2-receptor antagonist\[^60\]-\[^62\]. Studies have demonstrated that herbal medicine is comparable or superior to cimetidine in treating either gastric\[^61\]-\[^64\] or duodenal\[^61\]-\[^62\] ulcers. One study showed that oral herbal medicines for 4 wk achieved superior efficacy to cimetidine in treating gastric and duodenal ulcers, as well as gastritis\[^65\]. Moreover,
Bi WP et al. Herbal medicines benefit gastric ulcer

Table 1 Efficacy and safety of herbal medicines for gastric ulcer in animal models and possible mechanisms

Herbal extracts	Model	Treatment course (d)	Efficacy	Possible mechanisms	Adverse effects	Ref.
Myristica malabarica	NSAID	3	62%-86%1	↑ Mucus content, ↑ proliferation	None [18]	
Piper betel	NSAID	7	93.4%2	↑ Proliferation, ↑ inflammation	N/D [20]	
Teucrium polium	NSAID	28	90%2	Antioxidant, ↓ mucus content	N/D [21]	
Phyllanthus emblica fruits	NSAID	7	80%2	Antioxidant	N/D [22]	
Beeswax	Acetic acid 3 h for 5 d	56%-8% for Acetic acid	65.8% for Acetic acid	↑ Mucus production, ↑ Proliferation, ↓ acid secretion	N/D [23]	
Qualea grandiflora	Acetic acid 14	83%4	76%4	↑ Mucus production	N/D [24]	
Centella asiatica	Acetic acid 7	50%4	N/D	↑ Proliferation, ↓ acid secretion	N/D [25]	
Ocimum sanctum Linn.	Acetic acid 20	92.75%3	87%3	↑ Mucus content, ↑ proliferation, ↓ acid secretion	N/D [26]	
Alchornea glandulosa	Acetic acid 14	43%4	16%4	↑ Proliferation, ↓ acid secretion	None [27]	
Radix Bupleuri, Radix Codonopsis, radix paeoniae alba, rhizoma cordatula, rhizoma bletilla, margarita, indigo naturalis, radix glycyrrhizae	Acetic acid 7-92	56%3 for 12 d	27%4 for 7 d	↑ Proliferation, ↑ inflammation, ↑ Microvasculature density, ↑ NF-kB mRNA and protein	N/D [28,29]	
Bacopa monniera	Acetic acid 10	85.9%2 in normal; 52.5%2 in diabetes rats	68%3 in normal; 41.8%4 in diabetes rats	↑ Microvasculature density, ↑ NF-kβ mRNA and protein	None [30]	
Azadirachta indica	Acetic acid 10	65.6%2 in normal; 71.5%4 in diabetic rats	68%3 in normal; 41.8%4 in diabetic rats	↑ Microvasculature density	N/D [30]	
Chitonan, chinin	Acetic acid 14	60%2	46%2	↑ Acid secretion, ↑ mucus	N/D [31]	
Salvia miltiorrhiza	Acetic acid 5-30	31% for 5 d	19% for 5 d	↑ Proliferation	N/D [32]	
Canodontera lucidum	Acetic acid 14	55.9%3	82.8%2	↑ Mucus content, ↑ PGE2	N/D [33]	
Tea catechin	Acetic acid 14	66%4	59%7%3	Antioxidant	N/D [34]	
Solanum nigrum	Acetic acid 7	70.1%3	75.7%2	H/K-ATPase activity, ↓ gastrin, ↓ acid secretion	None [35]	
Cachinchina momordica seed	Acetic acid 14	71.2%3	N/D	↑ VEGF (protein and mRNA), ↑ Microvasculature density	N/D [36]	
Rhizoma Copitis Chinensis	Acetic acid 10	53.86%3	36.47%2	↓ Acid secretion	N/D [37]	
Glycyrrhetic acid, β-sitosterol, berberine, baicalin and ginsenoside	Acetic acid 10	86.05%4	82.42%4	↓ iNOS, ↓ acid secretion, ↓ inflammation	N/D [38]	
Curcumin and bisdemethoxycurcumin	Acetic acid 10	51.9%4	83.3%4	↑ Mucus content, ↑ gastric secretion, ↓ acid secretion	N/D [40]	
Bupleureum falcatum L.	Acetic acid 10	77.9%3	76.2%2	None	None [41]	
Plantago lanceolata L.	Acetic acid 14	55%3	N/D	↑ Bacterial colonization, ↑ MPO, ↓ iNOS, ↓ inflammation	N/D [42]	
Croton lechleri	Acetic acid 7	7%4	N/D	↑ Proliferation, ↑ NO, ↑ EG	N/D [43]	
Panax notoginseng, rhizoma bletilla, Poria cocos, Taraxacum mongolicum Hand	Acetic acid 10	36%3	48%3	↑ Proliferation, ↑ mucus content	N/D [44]	
Tuberosia avellanoidae	Acetic acid 14	80%3	70%3	↑ Plasma EGF, ↑ EGFR, ↑ PCNA	N/D [45]	
Sea buckthorn bark	Acetic acid 10	93.5%3	N/D	Antioxidant, ↓ inflammation	N/D [46]	
Astaxanthin	Acetic acid 3-7	95%3 for 3 d, 62% for 7 d	N/D	↑ Mucus content	N/D [47]	
Angelica sinensis	Acetic acid 16	N/D	N/D	↑ Proliferation	N/D [48]	
Radix Aristolochiae, Potentilla bifurca L, Resina Draconis, Taraxacum mongolicum Hand, radix paeoniae alba, Sinusareas costus (Falcat.) Lipech, radix glycyrrhizae	Acetic acid 14	45.15%4	72.12%4	↑ Serum EGF, ↑ serum no, ↓ Acid secretion	N/D [49]	
Rhiizma Atractlodis macrocephalae, Radix Linderae, Rhiizoma Dioscoreae, rhizoma bletilla, Pericarpium Citri Reticulatae Viride, Rhiizoma Alpiniae Officinarum, Radix Paeoniae Rubra, Herba Agrimoniae	Acetic acid 10	55%-60%3	N/D	↓ Inflammation	N/D [50]	
Bi WP et al. Herbal medicines benefit gastric ulcer

Radix Codonopsis, Radix Adenophorae, Radix Angelica Sinensis, Rhizoma Chuanxiong, radix paeniae alba, Portia, Rhizoma Atractylodis macrocephalae, Radix Bupleuri, Radix Scutellariae, Rhizoma Coptidis, Fructus Aurantii Immaturus, Radix Salviae Militirrhiza, Taraxacum mongolicum Hand, rhizoma corydali, Panax notoginseng, Radix Glycyrrhizae.

Preparata

Bacopa monniera

Acetic acid 14 49%[^1] 30%[^3] ↑ Serum and mucosal EGF, ↑ Proliferation, antioxidant (only lipoperoxidation, no change in reduced glutathione content), ↑ EGFR

Azadirachta indica

HCl 10 91.8%[^2] in normal; 76.2%[^2] in diabetes 92.5%[^2] in normal; 71.5%[^2] in diabetes N/D N/D [30]

Prunus amygdalus wood and bark

Acetic acid 14 92.5%^4 79.6%^4 N/D N/D [52]

Bupleuri Radix, Pinelliae Tuber, Scutellariae Radix Glycyrrhizae, Radix Cinnamomi Cortex, Gingseng Radix, Paeniae Radix, Zizyphi Fructus, Zingiberis Rhizoma

Cold water restraint stress 3 h 24%^2 N/D PGE2 N/D N/D [54]

Aurantii Fructus Immaturus

Cold water restraint stress 3 h 62%^2 N/D Antioxidant N/D [54]

Bupleuri Radix, Paeniae Radix, Aurantii Fructus Immaturus, Glycyrrhizae Radix

Cold water restraint stress 3 h 20%^2 N/D N/D [54]

Curcumin

pyloric ligation 19 h 90.79%^3 N/D Antioxidant, ↓ acid secretion, ↓ inflammation N/D [55]

[^1]: Reduction in macroscopic damage score; ^[^2]: Reduction in ulcer index; ^[^3]: Cure rate. BFGF: Basic fibroblast growth factor; MPO: Myeloperoxidase; N/D: Not determined; None: Not toxic; PGE2: Prostaglandin E2; VEGF: Vascular endothelial growth factor.

combination of herbal medicine and ranitidine exhibited a synergistic effect in treating gastric ulcer[^6^-^8]. Herbal medicines effectively cure gastric ulcer and prevent its recurrence. For example, one study showed that oral herbal tablets induced a 62.4% cure rate while the recurrence rate was 17.7% after 1-year follow-up. In contrast, treatment with ranitidine only achieved a 50.7% cure rate, and the recurrence rate was 54.1%^[^9]. Likewise, oral combination of omeprazole and herbal medicine for 4 wk significantly reduced gastric ulcer recurrence rate (25%) compared with omeprazole alone (57.1%) after 6 mo follow-up[^10]. Taken together, these results demonstrate that herbal medicines alone are effective in treating gastric ulcer and preventing recurrence. Combination of herbal medicines and conventional regimens exhibits a synergistic effect in the management of gastric ulcer. Although all mixtures listed in Table 2 are effective for gastric ulcer, herbal medicines should be given according to each patient’s internal conditions as defined by the theory of traditional Chinese medicine in order to gain an optimal benefit.

SAFETY

Although herb-drug interactions have raised safety concerns[^7^-^13], and some herbs can cause severe side effects[^14^-^16], herbal medicines used to treat gastric ulcer are generally safe in both animal models and humans. For instance, *Myristica malabarica* extract at a daily dosage of 40 mg/kg accelerated ulcer healing in a mouse model of indomethacin-induced gastric ulcer[^18^-^19]. However, mice treated with oral *Myristica malabarica* extract at a dose of 500 mg/kg daily for 1 mo showed no observable physical sign of adverse effects. In addition, the histology and function of mouse liver and kidneys appeared normal[^20]. Likewise, oral *Gualda grandiflora* extract at a dose of 500 mg/kg for 14 d induced an 83% cure rate of gastric ulcer induced by acetic acid[^21]. Mice fed oral *Gualda grandiflora* extract at a dose of 5 g/kg per day for 14 d showed no significant differences in the weight of the heart, liver, kidney or lungs compared with those of the control group. None of the treated mice died during the 14 d of observation[^22]. Again, methanolic extract of *Alchornea glandulosa* at a dose of 250 mg/kg per day was more potent than cimetidine in treating acetic acid-induced gastric ulcer[^23]. Oral *Alchornea glandulosa* at 5 g/kg daily for 14 d caused no significant changes in weight of several organs, such as the liver, kidneys, heart, lungs, as well as spleen. Moreover, there were no dramatic differences in liver and renal function between control and herbal treatment[^24]. Furthermore, oral *Solanum nigrum* extract at a daily dose of 200 mg/kg for 7 d significantly reduced ulcer index (10.1 ± 0.91 for herbal extract vs 16.9 ± 1.4 for controls[^25]). However, oral administration of *Solanum nigrum* extract...
at dose of 4 g/kg per day for 14 d caused no changes in red blood cell count, white blood cell count, hemoglobin, hematocrit, or mean corpuscular volume\cite{13}. Finally, a number of clinical studies have demonstrated that herbal medicines are safe for humans. As seen in Table 2, only minimal adverse effects occur following herbal treatment in humans. Although these results indicate that herbal medicines are safe for treating gastric ulcer, special caution should be taken when using herbal medicines because of the potential adverse effects and herb-drug interactions.

MECHANISMS OF ACTION

Studies in humans and animal models suggest that herbal medicines exert their beneficial effects on gastric ulcer via multiple mechanisms, including antioxidant activity, stimulation of mucosal proliferation, inhibition of acid production and secretion, increased mucus production, as well as inhibition of inflammation (Figure 1).

Antioxidant activity

The link of oxidative stress and gastric ulcer is well recognized\cite{115}. That some herbal medicines benefit gastric ulcer is likely due to their antioxidant properties. In indomethacin-induced gastric ulcer models, the gastric levels of malondialdehyde (MDA) were increased while the levels of superoxide dismutase (SOD) and catalase (CAT) were decreased\cite{20,48,49,77,78}. \textit{Piper betel} leaf extract treatment not only normalized MDA levels, but also significantly increased the levels of SOD and CAT with a comparable efficacy to misoprostol\cite{20}. Oral \textit{Phyllanthus emblica} fruit extract for 7 d dramatically lowered gastric MDA levels and elevated the contents of reduced glutathione and CAT\cite{20}. Likewise, oral administration of astaxanthin for 10 d not only reduced ulcer area, but also lowered MDA levels, while the activities of mucosal SOD, CAT and glutathione peroxidase (GSH-Px) were significantly increased\cite{20}. Regarding the involvement of NO (a reactive oxygen species), the results were controversial. Some studies showed that herbs that benefit gastric ulcer increased NO content in gastric tissue\cite{69,70,71,72,73}, while others demonstrated that herbal extracts reduced inducible NO synthase\cite{69,41} and NO production\cite{15}. Moreover, oral ethanol extract of

Table 2 Efficacy and safety of herbal medicines for gastric ulcer in humans

Herbal extracts	No. of patients (M/F)	Treatment course (d)	Efficacy	Adverse effects	Ref.	
Rhizoma Coptidis, Radix Sanguisorbae, radix paonae alba, rhizoma bletilla, Chickens Gizzard membrane	60 (41/19)	42	Cure rate: 20%	Cure rate: 10%	None	[56]
Radix Astragali, Radix Aucklandiae, Fructus Aurantii Immaturus, Cortex Magnoliifoliae Officinalis, Chickens Gizzard membrane, radix notoginseng, radix paonae alba, Radix Scutellariae, Radix Glycyrrhizae	50 (35/25)	60	Cure rate: 72%	Cure rate: N/D	Vomiting in one case	[57]
Radix Astrogali, radix codonopsis, poria, Rhizoma Atractylodis Macrocephalae, dried orange peel, Radix Glycyrrhizae	84 (43/41)	60	Cure rate: 92.9%	Cure rate: N/D	None	[58]
Radix Bupleuri, Radix Codonopsis, radix paonae alba, rhizoma corydalis, rhizoma bletilla, margarita, indigo naturalis, radix glycyrrhize	26 (15/11)	28	Effective rate: 92.3%	Effective rate: 92.3%	Temporary diarrhea at beginning	[60]
Margarita, herba, Rhizoma Coptidis, rhizoma bletilla, indigo naturalis, amber	90 (N/D)	30	Cure rate: 88.9%	Cure rate: 82.8%	None	[61]
Rhizoma curcaselignis, Herba Epimedi, Radix Astragali, rhizoma bletilla, poria, Fructus Anomi, Radix Glycyrrhizae	62 (44/18)	30	Cure rate: 82.3%	Cure rate: 81.4%	5 cases had dry mouth; 7 cases had constipation	[62]
Radix Codonopsis, Herba Taraxaci, Radix Salviae miltiorrhize, Rhizoma Atractylodis alba, Radix Glycyrrhizae	30 (22/8)	56	Cure rate: 50%	Cure rate: 40%	N/D	[63]
Ramulus Cinnamomi, Radix Paonae Alba, Radix Glycyrrhizae Preparata, Rhizoma Zingiberis Recens, Fructus Jujubae, Saussurium Cramorum, Radix Cynanchi Paniculati	80 (58/22)	28	Effective rate: 86.7%	Effective rate: 70%	N/D	[64]
Radix Astragali, Taraxacum mongolicum Hand, tokyo violet herb, Balbus Lii, Radix Lindereae, Radix Salviae miltiorrhize, radix paonae alba, Radix Glycyrrhizae	12 (ND)	28	Cure rate: 100%	Cure rate: 62.5%	N/D	[65]

\(1\) Including gastritis; \(2\) Including 41 cases of duodenal ulcer and 4 cases of gastric and duodenal ulcers. M: Male; F: Female; Cure: Clinical symptoms improved; Disappearance of ulcer; Effective: Clinical symptoms improved; N/D: Not determined.

Bi WP et al. Herbal medicines benefit gastric ulcer

WJG | www.wjgnet.com 17024 December 7, 2014 | Volume 20 | Issue 45
Table 1. Herbs and herbal ingredients that show anti-ulcer activity. The numbers represent the percentage of studies showing efficacy. The rows of the table are listed in descending order of efficacy.

Herb/Herbal Mixture	Percentage of Studies	Notes
Croton lechleri	100%	Anti-inflammatory, antimicrobial properties.
Tabebuia avellanedae	75%	Antimicrobial properties, reduces gastric acid secretion.
Solanum nigrum	50%	Anti-inflammatory, antimicrobial properties.
Ocimum sanctum	25%	Anti-inflammatory, antimicrobial properties.

Figure 1 Schematic diagram of possible mechanisms by which herbal medicines benefit gastric ulcer.

REFERENCES

1. Groenen MJ, Kuipers EJ, Hansen BE, Ouwendijk RJ. Incidence of duodenal ulcers and gastric ulcers in a Western population: back to where it started. *Can J Gastroenterol* 2009; 23: 604-608 [PMID: 19816622]
2. Sung JJ, Kuipers EJ, El-Serag HB. Systematic review: the global incidence and prevalence of peptic ulcer disease. *Aliment Pharmacol Ther* 2009; 29: 938-946 [PMID: 19220208 DOI: 10.1111/j.1365-2036.2009.03960.x]
3. Dong WG, Cheng CS, Liu SP, Yu JP. Epidemiology of peptic ulcer disease in Wuhuan area of China from 1997 to 2002. *World J Gastroenterol* 2004; 10: 3377-3379 [PMID: 15484323]
4. Li Z, Zou D, Ma X, Chen J, Shi X, Gong Y, Man X, Gao L, Zhao Y, Wang R, Yan X, Dent J, Sung JJ, Wernersson B, Johansson S, Liu W, He J. Epidemiology of peptic ulcer disease: endoscopic results of the systematic investigation of gastrointestinal disease in China. *Am J Gastroenterol* 2010; 105: 2570-2577 [PMID: 20736940 DOI: 10.1038/ajg.2010.324]
5. Maity P, Biswas K, Roy S, Banerjee RK, Bandyopadhyay U. Smoking and the pathogenesis of gastroduodenal ulcer--recent mechanistic update. *Mol Cell Biochem* 2003; 253: 329-338 [PMID: 14619984 DOI: 10.1023/A:1026040723669]
6. García Rodríguez LA, Hernández-Díaz S. Risk of uncomplicated peptic ulcer among users of aspirin and nonaspirin nonsteroidal anti-inflammatory drugs. *Am J Epidemiol* 2004; 159: 23-31 [PMID: 14693656 DOI: 10.1093/aje/kwh005]
Antioxidant effect of Phyllanthus emblica fruits on healing of indomethacin induced gastric ulcer in rats. *Indian J Clin Biochem* 2003; 18: 15-21 [PMID: 23105366 DOI: 10.1007/BF02867660]

23 Molina V, Carabajal D, Arruzazabala L, Más R. Therapeutic effect of D-002 (abexol) on gastric ulcer induced experimentally in rats. *J Med Food* 2005; 8: 59-62 [PMID: 15857211 DOI: 10.1089/jmf.2005.8.59]

24 Hiruma-Lima CA, Santos LC, Kushima H, Pellizzon PC, Villegas W, Brito AR. Qualea grandiflora, a Brazilian "Cerrado" medicinal plant presents an important antulcer activity. *J Ethnopharmacol* 2006; 104: 207-214 [DOI: 10.1016/j.epletrace.2005.09.002]

25 Cheng CL, Guo JS, Luk J, Koo MW. The healing effects of Centella extract and asiaticoside on acetic acid induced gastric ulcers in rats. *Life Sci* 2004; 74: 2237-2249 [PMID: 14987949 DOI: 10.1016/j.lfs.2003.09.055]

26 Dharmani P, Kuchibhotla VK, Maurya R, Srivastava S, Sharma S, Palit G. Evaluation of anti-ulcerogenic and ulcer-healing properties of Ocimum sanctum Linn. *J Ethnopharmacol* 2004; 93: 197-206 [DOI: 10.1016/j.epletrace.2004.02.029]

27 Calvo TR, Lima ZP, Silva JS, Ballesteros KV, Pellizzon CH, Hiruma-Lima CA, Tamashiro J, Brito AR, Takahira RK, Villegas W. Constituents and antulcer effect of Alchornea glandulosa: activation of cell proliferation in gastric mucosa during the healing process. *Bio Pharm Bull* 2007; 30: 451-459 [PMID: 17329837 DOI: 10.1248/bpb.30.451]

28 Dai XP, Li JB, Liu ZQ, Ding X, Huang CH, Zhou B. Effect of Jianweiyuyang granule on gastric ulcer recurrence and expression of VEGF mRNA in the healing process of gastric ulcer in rats. *World J Gastroenterol* 2005; 11: 5480-5484 [PMID: 16222740]

29 Ling JH, Li JB, Shen DZ, Zhou B. [Nuclear factor-kappaB mRNA and protein expression in stomach tissue of rats with gastric ulcer recurrence and effect of jianwei yuyang granule on its expression]. *Zhongguo Zhongyi Xie He Za Zhi* 2006; 26: 228-231 [PMID: 16613268]

30 Dorababu M, Prabha T, Priyambada S, Agrawal VK, Aryya NC, Goei RK. Effect of Bacopa monniera and Azadirachta indica on gastric ulceration and healing in experimental NIDDM rats. *Indian J Exp Biol* 2004; 42: 389-397 [PMID: 15088689]

31 Ito M, Ban A, Ishihara M. Anti-ulcer effects of chitin and chitosan, healthy foods, in rats. *Jpn J Pharmacol* 2000; 82: 218-225 [PMID: 10887952 DOI: 10.1254/jjp.82.218]

32 Wang GZ, Xu R, Ding LB. Short term effect of Salvia miltiorrhiza in treating rat acetic acid chronic gastric ulcer and long term effect in preventing recurrence. *World J Gastroenterol* 1998; 4: 169-170 [PMID: 11812966]

33 Gao Y, Tang W, Gao H, Chan E, Lan J, Zhou S. Ganoderma lucidum polysaccharide fractions accelerate healing of acetic acid-induced ulcers in rats. *J Med Food* 2004; 7: 417-421 [PMID: 15671683 DOI: 10.1089/jmf.2004.7.417]

34 Hamashi K, Kojima R, Ito M. Anti-ulcer effect of tea catechin in rats. *Bio Pharm Bull* 2006; 29: 2206-2213 [PMID: 17077516 DOI: 10.1248/bpb.29.2206]

35 Jainu M, Devi CS. Antiulcerogenic and ulcer healing effects of Solanum nigrum (L) on experimental ulcer models: possible mechanism for the inhibition of acid formation. *J Ethnopharmacol* 2006; 104: 156-163 [PMID: 16202548 DOI: 10.1016/j.epletrace.2005.08.064]

36 Kang JK, Kim N, Kim B, Kim JH, Lee BY, Park JH, Lee MK, Lee HS, Kim JS, Jung HC, Song IS. Enhancement of gastric ulcer healing and angiogenesis by cochinchina Momordica seed extract in rats. *J Koran Med Sci* 2010; 25: 875-881 [PMID: 20514308 DOI: 10.3346/jkms.2010.25.6.875]

37 Li B, Shang JC, Zhou QX. [Study of total alkaloids from Rhi zoma Coptis Chinensis on experimental gastric ulcers]. *Chin J Integr Med* 2005; 11: 217-221 [PMID: 16181538 DOI: 10.1007/BF02836308]
Bi WP et al. Herbal medicines benefit gastric ulcer

healing quality and recurrence rate of peptic ulcer. Zhongguo Zhongxiyi Jiehe Zazhi 2009; 29: 1081-1084 [PMID: 20214327]

71 Chen XW, Sneed KB, Pan SY, Cao C, Kanwar JR, Chew H, Zhou SF. Herb-drug interactions and mechanistic and clinical considerations. Curr Drug Metab 2012; 13: 640-651 [PMID: 22292789 DOI: 10.2174/1389200211209050640]

72 Remirez D, Avila Pérez J, Jiménez López G, Jacobo OL, O’ Brien PJ. Interactions between herbal remedies and medicinal drugs—considerations about Cuba. Drug Metab Drug Interact 2009; 24: 183-194 [PMID: 20408499 DOI: 10.1515/DMDI.2009.24.2-4.183]

73 Movahedian A, Asgary S, Mansorokhani HS, Keshvari M. Hepatotoxicity effect of some Iranian medicinal herbal formulation on rats. Adv Biomed Res 2014; 3: 12 [PMID: 24592365 DOI: 10.4103/2277-9175.124641]

74 Niggemann B, Grüber C. Side-effects of complementary and alternative medicine. Allergy 2003; 58: 707-716 [PMID: 12859546 DOI: 10.1034/j.1398-9995.2003.00219.x]

75 Venables CW. Mucus, pepsin, and peptic ulcer. Gut 1986; 27: 233-238 [PMID: 3084339 DOI: 10.1136/gut.27.3.233]

76 Xie JH, Chen YL, Wu QH, Wu J, Su JY, Cao HY, Li YC, Li YS, Liao JB, Lai XP, Huang P, Su ZR. Gastroprotective and anti- Helicobacter pylori potential of herbal formula HZJW: safety and efficacy assessment. BMC Complement Altern Med 2013; 13: 119 [PMID: 23721522 DOI: 10.1186/1472-6882-13-119]

P- Reviewer: Rodrigo L, Saha L, Sugimoto M S- Editor: Ma YJ L- Editor: Wang TQ E- Editor: Wang CH
