SPECTRAL COMPARISONS BETWEEN NETWORKS WITH DIFFERENT CONDUCTANCE FUNCTIONS

PALLE E. T. JORGENSEN and ERIN P. J. PEARSE

ABSTRACT. For an infinite network consisting of a graph with edge weights prescribed by a given conductance function c, we consider the effects of replacing these weights with a new function b that satisfies $b \leq c$ on each edge. In particular, we compare the corresponding energy spaces and the spectra of the Laplace operators acting on these spaces. We use these results to derive estimates for effective resistance on the two networks, and to compute a spectral invariant for the canonical embedding of one energy space into the other.

c\nc\n
1. Introduction

We begin with a network structure defined by a set of vertices G and a conductance function $c : G \times G \to \mathbb{R}^+$ which specifies the both the adjacency relation and the edge weights; two vertices x and y are neighbours if $c_{xy} > 0$. The case of primary interest is when G is infinite, in which case the Hilbert space \mathcal{H}_E (comprised of functions of finite Dirichlet energy) has a rich structure and the Laplace operator Δ corresponding to the network may be an unbounded...
operator on \mathcal{H}_E. (Precise definitions of these terms may be found in Definition 2.2, Definition 2.3, and Definition 2.4.)

The Hilbert space \mathcal{H}_E has a rather different geometry than the more familiar $\ell^2(G)$, and depends crucially on the choice of conductance function c. The same is true for the Laplacian Δ as a linear operator on \mathcal{H}_E. In this paper, we use the framework developed in earlier projects (see [JP12a, JP10a, JP11a, JP11b, JP12d, JP12b, JP13b, JP13a, JP10b, JP12c]) to compute certain spectral theoretic information, as well as resistance metrics on the underlying vertex set. In particular, we explore how certain quantities depend on the choice of c, in comparison to another conductance function, which we denote by b. It will be assumed that both b and c yield a connected weighted graph, although we allow for the case when $c_{xy} > 0$ and $b_{xy} = 0$ (so that x and y are neighbours in (G, c) but not in (G, b)). The data, defined from b and c, to be compared are as follows:

1. the energy forms $E^{(b)}$ and $E^{(c)}$, and the respective energy Hilbert spaces $\mathcal{H}_{E^{(b)}}$ and $\mathcal{H}_{E^{(c)}}$ that they define;
2. the systems of dipole vectors that form reproducing kernels for the two Hilbert spaces; see Definition 2.6;
3. the respective Laplace operators $\Delta^{(b)}$ and $\Delta^{(c)}$, and their spectra;
4. the spaces of finite-energy harmonic functions on $\mathcal{H}_{E^{(b)}}$ and $\mathcal{H}_{E^{(c)}}$; and
5. the effective resistance metrics on $\mathcal{H}_{E^{(b)}}$ and $\mathcal{H}_{E^{(c)}}$.

We focus our study on the case when one of the two energy-Hilbert spaces is contractively contained in the other, which corresponds to the inequality $b \leq c$. In this case, we believe that our results have applications to percolation theory and the study of random walks in random environments, as well as to dilation theory (see [Arv10]) and the contractive inclusion of Hilbert spaces (see [Sar94]).

Of special operator theoretic significance is the adjoint of the contractive inclusion mapping. The issues involved with the adjoint operator are subtle as the computation of the adjoint operator depends on the Hilbert-inner products used. It is the adjoint operator that allows one to compute the respective systems of dipole vectors that form reproducing kernels for the two Hilbert spaces; see Definition 2.6. We further derive an invariant (involving induced linear maps between the respective spaces of finite-energy harmonic functions) which distinguishes two networks when G is fixed and the conductance functions vary.

We also give a necessary and sufficient condition on a fixed conductance function c having its energy Hilbert space $\mathcal{H}_{E^{(c)}}$ boundedly contained in $\mathcal{H}_{E^{(b)}} (b = 1)$; i.e., contractive containment in the “flat” energy Hilbert space corresponding to constant conductance b. The significance of this is that computations in $\mathcal{H}_{E^{(b)}}$ are typically much easier, and that the conclusions obtained there may then be transferred to $\mathcal{H}_{E^{(c)}}$.

Our results are illustrated with concrete examples.
2. Basic terms and previous results

In this section, we introduce the key notions used throughout this paper: resistance networks, the energy form E, the Laplace operator Δ, and their elementary properties.

Definition 2.1. A (resistance) network is a connected graph (G, c), where G is a graph with vertex set G^0, and c is the conductance function which defines adjacency by $x \sim y$ iff $c_{xy} > 0$, for $x, y \in G^0$. We assume $c_{xy} = c_{yx} \in [0, \infty)$, and write $c(x) := \sum_{y \sim x} c_{xy}$. We require that the graph is locally finite, i.e., that every vertex has only finitely many neighbors.

In this definition, connected means simply that for any $x, y \in G^0$, there is a finite sequence $\{x_i\}_{i=0}^n$ with $x = x_0$, $y = x_n$, and $c_{x_{i-1}x_i} > 0$, $i = 1, \ldots, n$. We may assume there is at most one edge from x to y, as two conductors c_{1xy} and c_{2xy} connected in parallel can be replaced by a single conductor with conductance $c_{xy} = c_{1xy} + c_{2xy}$. Also, we assume $c_{xx} = 0$ so that no vertex has a loop.

Since the edge data of (G, c) is carried by the conductance function, we will henceforth simplify notation and write $x \in G$ to indicate that x is a vertex. For any network, one can fix a reference vertex, which we shall denote by o (for "origin"). It will always be apparent that our calculations depend in no way on the choice of o.

Definition 2.2. The Laplacian on G is the linear difference operator which acts on a function $v : G \to \mathbb{C}$ by

$$(\Delta v)(x) := \sum_{y \sim x} c_{xy}(v(x) - v(y)).$$

(2.1)

The domain of Δ is discussed in detail in (3.3), below. A function $v : G \to \mathbb{C}$ is harmonic iff $\Delta v(x) = 0$ for each $x \in G$.

It is clear from (2.1) that Δ commutes with complex conjugation and therefore the subspace of real-valued functions is invariant under Δ.

We have adopted the physics convention (so that the spectrum is nonnegative) and thus our Laplacian is the negative of the one commonly found in the PDE literature. The network Laplacian (2.1) should not be confused with the stochastically renormalized Laplace operator $c^{-1} \Delta$ which appears in the probability literature, or with the spectrally renormalized Laplace operator $c^{-1/2} \Delta c^{-1/2}$ which appears in the literature on spectral graph theory (e.g., [Chu96]).

Definition 2.3. The energy of functions $u, v : G \to \mathbb{C}$ is given by the (closed, bilinear) Dirichlet form

$$E(u, v) := \frac{1}{2} \sum_{x, y \in G} c_{xy}(\overline{u}(x) - \overline{u}(y))(v(x) - v(y)),$$

(2.2)
with the energy of u given by $\mathcal{E}(u) := \mathcal{E}(u, u)$. The domain of the energy form is

$$\text{dom} \mathcal{E} = \{ u : G \to \mathbb{C} : \mathcal{E}(u) < \infty \}. \quad (2.3)$$

Note that (2.2) converges if it converges absolutely, by the Schwarz inequality, so this summation is well defined. Since $c_{xy} = c_{yx}$ and $c_{xy} = 0$ for nonadjacent vertices, the initial factor of $\frac{1}{2}$ in (2.2) implies there is exactly one term in the sum for each edge in the network.

2.1. The energy space \mathcal{H}_E

The energy form \mathcal{E} is sesquilinear and conjugate symmetric on $\text{dom} \mathcal{E}$ and would be an inner product if it were positive definite.

Definition 2.4. Let 1 denote the constant function with value 1 and recall that $\ker \mathcal{E} = \mathbb{C}1$. Then $\mathcal{H}_E := \text{dom} \mathcal{E}/\mathbb{C}1$ is a Hilbert space with inner product and corresponding norm given by

$$\langle u, v \rangle_E := \mathcal{E}(u, v) \quad \text{and} \quad \|u\|_E := \mathcal{E}(u, u)^{1/2}. \quad (2.4)$$

We call \mathcal{H}_E the energy (Hilbert) space.

Remark 2.5. Since G is connected, it is possible to show (with the use of Fatou’s lemma) that $\ker \mathcal{E}/\mathbb{C}1$ is complete; see [JP12a,JP12c] for further details regarding this point.

Definition 2.6. Let v_x be defined to be the unique element of \mathcal{H}_E for which

$$\langle v_x, u \rangle_E = u(x) - u(o), \quad \text{for every } u \in \mathcal{H}_E. \quad (2.5)$$

The existence and uniqueness of v_x for each $x \in G$ is implied by the Riesz lemma. It follows from (2.5) that $\{v_x\}_{x \in G}$ forms a reproducing kernel for \mathcal{H}_E (called the energy kernel; see [JP12a, Cor. 2.7]) and that $\text{span}\{v_x\}_{x \in G}$ is dense in \mathcal{H}_E.

Note that v_o corresponds to a constant function, since $\langle v_o, u \rangle_E = 0$ for every $u \in \mathcal{H}_E$. Therefore, v_o may often be safely ignored or omitted during calculations.

Definition 2.7. A dipole is any $v \in \mathcal{H}_E$ satisfying the pointwise identity $\Delta v = \delta_x - \delta_y$ for some vertices $x, y \in G$. One can check that $\Delta v_x = \delta_x - \delta_o$; cf. [JP12a, Lemma 2.13].

Note that dipoles always exist for any pair of vertices $x, y \in G$, by Riesz’s Lemma, as in Definition 2.6.

Definition 2.8. For $v \in \mathcal{H}_E$, one says that v has finite support if there is a finite set $F \subseteq G$ for which $v(x) = k \in \mathbb{C}$ for all $x \notin F$. The set of functions of finite support in \mathcal{H}_E is denoted $\text{span}\{\delta_x\}$, where δ_x is the Dirac mass at x, i.e., the element of \mathcal{H}_E containing the characteristic function of the singleton $\{x\}$. It is immediate from (2.2) that $\mathcal{E}(\delta_x) = c(x)$, whence $\delta_x \in \mathcal{H}_E$. Define \mathcal{F}_fin to be the closure of $\text{span}\{\delta_x\}$ with respect to \mathcal{E}.
Definition 2.9. The set of harmonic functions of finite energy is denoted

\[\mathcal{H}_{\text{arm}} := \{ v \in \mathcal{H}_E : \Delta v(x) = 0, \text{ for all } x \in G \}. \] (2.6)

It may be the case that the only harmonic functions of finite energy are constant (and hence trivial in \(\mathcal{H}_E \)). This is true, for example, on any finite network.

Lemma 2.10 ([JP12a, 2.11]). For any \(x \in G \), one has \(\langle \delta_x, u \rangle_E = \Delta u(x) \).

The following result follows easily from Lemma 2.10; cf. [JP12a, Thm. 2.15].

Theorem 2.11 (Royden decomposition). \(\mathcal{H}_E = \mathcal{F}_{\text{in}} \oplus \mathcal{H}_{\text{arm}} \).

Remark 2.12. The Royden decomposition illustrates one of the advantages of working with \(\langle u, v \rangle_E \), as opposed to the inner product on \(\ell^2(G) \) or the grounded energy product \(\langle u, v \rangle_o := \langle u, v \rangle_E + u(o)v(o) \). Another advantage is the following: by combining (2.5) and the conclusion of Lemma 2.10, one can reconstruct the network \((G, c)\) (or equivalently, the corresponding Laplacian) from the dual systems (i) \((\delta_x)_{x \in X} \) and (ii) \((v_x)_{x \in X} \). Indeed, from (ii), we obtain the (relative) reproducing kernel Hilbert space \(\mathcal{H}_E \) and from (ii), we get an associated operator \((\Delta u)(x) = \langle \delta_x, u \rangle_E \) for \(u \in \mathcal{H}_E \).

Definition 2.13. Denote the (free) effective resistance from \(x \) to \(y \) by

\[R(x, y) := R^f(x, y) = \mathcal{E}(v_x - v_y) = \|v_x - v_y\|_E^2. \] (2.7)

This quantity represents the voltage drop measured when one unit of current is passed into the network at \(x \) and removed at \(y \), and the central equality in (2.7) is proved in [JP10a] and elsewhere in the literature; see [LP, Kig03] for different formulations.

The following results will be useful in the sequel; for further details, please see [JP12a, JP10a, JP11a, JP10b] and [JP12c].

Lemma 2.14 ([JP12a, Lem 2.23]). Every \(v_x \) is \(\mathbb{R} \)-valued, with \(v_x(y) - v_x(o) > 0 \) for all \(y \neq o \).

Lemma 2.15 ([JP11a, Lem 6.9]). Every \(v_x \) is bounded. In particular, if we define

\[\|u\|_{\infty} := \sup_{x, y \in G} |u(x) - u(y)|. \] (2.8)

then we always have \(\|v_x\|_{\infty} \leq R(x, o) \).

Lemma 2.16 ([JP11a, Lem 6.8]). If \(v \in \mathcal{H}_E \) is bounded, then \(P_{\tau_w}v \) is also bounded.

Definition 2.17. Let \(p(x, y) := \frac{c_{xy}}{c(o)} \) so that \(p(x, y) \) defines a random walk on the network, with transition probabilities weighted by the conductances. Then let

\[\mathbb{P}[x \to y] := \mathbb{P}_x(\tau_y < \tau_x^+) \] (2.9)

be the probability that the random walk started at \(x \) reaches \(y \) before returning to \(x \). In (2.9), \(\tau_z \) is the hitting time of the vertex \(z \) and \(\tau_x^+ := \min\{\tau_x, 1\} \).
Corollary 2.18 ([JP10a, Cor. 3.13 and Cor. 3.15]). For any $x \neq o$, one has
\[P[x \rightarrow o] = \frac{1}{c(x)R(x, o)}. \] (2.10)

3. Comparing different conductance functions

Given a network (G, c), we will be interested in comparing its energy space $\mathcal{H}_c = \mathcal{H}^{(b)}_c$ and Laplace operator $\Delta_c = \Delta^{(c)}$ with those corresponding to a different conductance function b. To be clarify dependence on the conductance functions, we use scripts to distinguish between objects corresponding to different underlying conductance functions. For example, $\Delta^{(c)} = \Delta$ in (2.1) and $E^{(c)} = E$ in (2.2), as opposed to
\[(\Delta^{(b)}v)(x) := \sum_{y \in x} b_{xy}(v(x) - v(y)). \] (3.1)

and
\[E^{(b)}(u, v) = \langle u, v \rangle_{E^{(b)G}} = \frac{1}{2} \sum_{x,y \in G} b_{xy}(\overline{u}(x) - \overline{u}(y))(v(x) - v(y)), \] (3.2)

with domain $\text{dom} E^{(b)} = \{ u : G \rightarrow \mathbb{C} : E^{(b)}(u) < \infty \}$. It is clear that $\mathcal{H}^{(b)}_c$ also depends on b, and so too does the energy kernel $\{ \psi^{(b)}_x \}_{x \in G}$. We will take the domains to be
\[\text{dom} \Delta^{(b)} = \text{span}\{ \psi^{(b)}_x \}_{x \in G} \quad \text{and} \quad \text{dom} \Delta^{(c)} = \text{span}\{ \psi^{(c)}_x \}_{x \in G}. \] (3.3)

Remark 3.1. Given a network (G, c) and a new conductance function $b \leq c$, it may be that $b_{xy} = 0$ even though $c_{xy} > 0$, and consequently the edge structure of (G, b) may be very different from (G, c). However, we will always make the assumption that (G, b) is connected, so that Lemma 3.5 may be applied.

Definition 3.2. Let $b : G^0 \times G^0 \rightarrow [0, \infty)$ be a symmetric function satisfying
\[b_{xy} \leq c_{xy}, \quad \text{for all } x, y \in G^0. \]

In this case, we write $b \leq c$. Note that we will always assume (G, b) is connected; see Remark 3.1.

Lemma 3.3. Inclusion gives natural contractive embedding $I : \mathcal{H}^{(b)}_c \hookrightarrow \mathcal{H}^{(b)}_c$.

Proof. Since $b \leq c$, one has
\[E^{(b)}(u) = \frac{1}{2} \sum_{x,y \in G} b_{xy}|u(x) - u(y)|^2 \leq \frac{1}{2} \sum_{x,y \in G} c_{xy}|u(x) - u(y)|^2 = E^{(c)}(u) \] (3.4)

for any function $u : G \rightarrow \mathbb{R}$, and hence $\|I u\|_{\mathcal{H}^{(b)}} \leq \|u\|_{\mathcal{H}^{(b)}}$. \qed

Lemma 3.4. $I(\text{Fin}^{(b)}) \hookrightarrow \text{Fin}^{(b)}$ and $I^*(\text{Harm}^{(b)}) \hookrightarrow \text{Harm}^{(c)}$.

Proof. The first follows from the fact that $I(\delta_x) = \delta_x$, whence the second follows because adjoints preserve the orthocomplements (see Theorem 2.11), i.e.,

$$I^* \left(\text{Harm}^{(b)} \right) = I^* \left((\text{Fin}^{(b)})^\perp \right) \subseteq (\text{Fin}^{(c)})^\perp = \text{Harm}^{(c)}. \quad \Box$$

Lemma 3.5 clarifies the nature of the blanket assumption that (G, b) is connected; see Remark 3.1.

Lemma 3.5. If (G, c) is a network and $b \leq c$, then the following are equivalent:

(i) (G, b) is connected.

(ii) $\ker \mathcal{E}^{(b)} = \ker \mathcal{E}^{(c)} = \mathcal{C}1.$

(iii) $\ker I = 0.$

Proof. To see (i) \iff (ii), observe that $\mathcal{E}^{(b)}(u)$ is given by a sum of nonnegative terms and hence vanishes if and only if each summand does. Thus $\mathcal{E}^{(b)}(u) = 0$ if and only if each summand does. Thus $\mathcal{E}^{(b)}(u) = 0$ if and only if each summand does. Hence that u is a constant function, whence $u = 0$ in \mathcal{H}_G. For (ii) \Rightarrow (iii), suppose (G, b) is not connected, and define $u = 1$ on one component and $u = 0$ on the complement. Then $|I(u)|_{g^b} = 0$ but $u \neq 0$ in \mathcal{H}_G. \quad \Box

Lemma 3.6. $I^* v^{(b)}_x = v^{(c)}_x$, and for general $u \in \mathcal{H}_G$, one can compute I^* via

$$(I^* u)(x) - (I^* u)(y) = \frac{b_{xy}}{c_{xy}}(u(x) - u(y)). \quad \text{(3.5)}$$

Proof. For $u \in \mathcal{H}_G \subseteq \mathcal{H}_G$,

$$\langle I^* v^{(b)}_x, u \rangle_{g^b} = \langle v^{(b)}_x, I u \rangle_{g^b} = u(x) - u(y) = \langle v^{(c)}_x, u \rangle_{g^b}. \quad \text{(3.6)}$$

Now for $u \in \mathcal{H}_G$ and $v \in \mathcal{H}_G$, the latter claim follows from the fact that

$$\langle u, I v \rangle_{g^b} = \frac{1}{2} \sum_{x,y \in G} b_{xy}(u(x) - u(y))(v(x) - v(y))$$

is equal to

$$\langle I^* u, v \rangle_{g^b} = \frac{1}{2} \sum_{x,y \in G} c_{xy}(I^* u)(x) - (I^* u)(y))(v(x) - v(y)). \quad \Box$$

Corollary 3.7. I is injective.

Proof. $\ker I = \{0\}$ because $\text{span} \{v^{(c)}_x\} = \text{ran} I^*$ is dense in \mathcal{H}_{g^b}. \quad \Box

Remark 3.8. Corollary 3.7 may appear trivial, but it is not. Suppose H_1 and H_2 are two Hilbert spaces with the same underlying vector space V, but different inner products for which $||v||_2 \leq ||v||_1$, for all $v \in V$. Then the identity map $\iota : V \rightarrow V$ induces an embedding $H_1 \hookrightarrow H_2$ which can fail to be injective. For example, take H_2 to be the Hardy space $H_a(D)$ on the unit disk and take H_1 to be $u(z)H_a(D)$.
the image of H_2 under the operation of multiplication by the function $u \in H^\infty(\mathbb{D})$. That is,

$$H_1 = \{uh : h \in H_2\}, \quad ||uh||_1 := ||h||_2.$$

There are functions $u \in H^\infty(\mathbb{D})$ for which $||uh||_1 \neq 0$ and $||uh||_2 = 0$, even when h is a nonzero element of H_2; see [Sar94] for details.

Lemma 3.9. If δ_{xy} is the Kronecker delta, then

$$\langle v_x^{(b)}, \Delta^{(b)} v_y^{(b)} \rangle_{E^b} = \delta_{xy} + 1 = \langle v_x^{(c)}, \Delta^{(c)} v_y^{(c)} \rangle_{E^c}, \quad \forall x, y \in G \setminus \{o\}. \quad (3.6)$$

Proof. Note that

$$\langle v_x^{(b)}, \Delta^{(b)} v_y^{(b)} \rangle_{E^b} = (\Delta^{(b)} v_y^{(b)})(x) - (\Delta^{(b)} v_y^{(b)})(o) = \langle \delta_x, v_y^{(b)} \rangle_{E^b} - \langle \delta_o, v_y^{(b)} \rangle_{E^b},$$

because $\delta_x \in H_{E^b}$ and $\langle \delta_x, u \rangle_{E^b} = \Delta^{(b)} u(x)$. Now the result follows via

$$\langle \delta_x, v_y^{(b)} \rangle_{E^b} - \langle \delta_o, v_y^{(b)} \rangle_{E^b} = (\delta_x(y) - \delta_x(o)) - (\delta_o(y) - \delta_o(o)) = \delta_{xy} + 1,$$

since $x, y \neq o$. \qed

Lemma 3.10. For $1 < b \leq c$, one has $\Delta^{(b)} = I \Delta^{(c)} I^*$.

Proof. Applying Lemma 3.9 and Lemma 3.6,

$$\langle v_x^{(b)}, \Delta^{(b)} v_y^{(b)} \rangle_{E^b} = \langle v_x^{(c)}, \Delta^{(c)} v_y^{(c)} \rangle_{E^c} = \langle I^* v_x^{(b)}, \Delta^{(c)} v_y^{(c)} \rangle_{E^c} = \langle v_x^{(b)}, I \Delta^{(c)} I^* v_y^{(b)} \rangle_{E^c}.$$

Thus we have a commuting square

$$\begin{array}{ccc}
\mathcal{H}_{E^b} & \xrightarrow{I^*} & \mathcal{H}_{E^c} \\
\downarrow & & \downarrow \\
\mathcal{H}_{E^c} & \xrightarrow{I} & \mathcal{H}_{E^b} \\
\Delta^{(c)} & = & \Delta^{(b)} = I \Delta^{(c)} I^*
\end{array} \quad (3.7)$$

Note that one can recover the dipole property of $v_x^{(b)}$ from Lemma 3.6 and Lemma 3.10: $\Delta^{(b)} v_x^{(b)} = I \Delta^{(c)} I^* v_x^{(b)} = I \Delta^{(c)} v_x^{(c)} = I (\delta_x - \delta_o) = \delta_x - \delta_o$.

Corollary 3.11. $I^* \in \text{Hom}(\text{Harm}^{(b)}, \text{Harm}^{(c)})$ is a spectral invariant.

Proof. This is basically a restatement of Lemma 3.4. \qed

This spectral invariant is also apparent from the formula $\Delta^{(b)} = I \Delta^{(c)} I^*$ of Lemma 3.10. While I is not a norm-preserving map, it is standard from spectral theory that one can write I in terms of its polar decomposition as $I = UP$ and then $\Delta^{(b)} = I \Delta^{(c)} I^*$ implies that a unitary equivalence is given by $\Delta^{(b)} = U \Delta^{(c)} U^*$.

In the case when \(\text{dim } \mathcal{H}^{(b)} = \text{dim } \mathcal{H}^{(c)} = 1 \), the spectral invariant of Corollary 3.11 is just a number. This is computed explicitly for the geometric integers in Example 5.1.

Remark 3.12 (Open Question). For a fixed conductance function \(b : G^0 \times G^0 \rightarrow [0, \infty) \), what are the closed subspaces \(\mathcal{K} \subseteq \mathcal{H}_{(b)} \) such that \(\mathcal{K} \equiv \mathcal{H}_{(b)} \) for some conductance functions \(c \) with \(b \leq c \)?

Corollary 3.13. If \(b \leq c \) and \(\Delta^{(c)} \) is bounded on \(\mathcal{H}_{(b)} \), then \(\Delta^{(b)} \) is bounded on \(\mathcal{H}_{(b)} \).

Proof. Lemma 3.10 immediately implies \(\|\Delta^{(b)}\|_{\mathcal{H}_{(b)} \rightarrow \mathcal{H}_{(b)}} \leq \|\Delta^{(c)}\|_{\mathcal{H}_{(b)} \rightarrow \mathcal{H}_{(b)}} \).

Corollary 3.14. If \(c = 1 \) and \(\Delta^{(c)} \) is bounded on \(\mathcal{H}_{(b)} \), then \(\Delta^{(b)} \) is bounded on \(\mathcal{H}_{(b)} \) for any bounded conductance function \(b \).

Proof. Writing \(\|b\|_{\infty} \) for the supremum of \(b \), we have

\[
b_{xy} \leq \|b\|_{\infty} c_{xy} = \|b\|_{\infty},
\]

so Corollary 3.13 applies to the network with conductances all equal to \(\|b\|_{\infty} \).

Theorem 3.15. Let \(c \) be an arbitrary conductance function, and let \(1 \) be the conductance function which assigns a conductance of 1 to every edge. Then \(\mathcal{H}_{(c)} \) is contained in \(\mathcal{H}_{(b)} \) if and only if there is an \(\varepsilon > 0 \) such that \(c_{xy} \geq \varepsilon \) for all \(x, y \in G \) with \(c_{xy} > 0 \).

Proof. For the forward direction, suppose \(K < \infty \) satisfies \(\|u\|_{\mathcal{H}_{(b)}}^2 \leq K \|u\|_{\mathcal{H}_{(c)}}^2 \), for all \(u \in \mathcal{H}_{(c)} \). Note that \(\mathcal{E}_{(c)}^{(c)}(\delta_x) = c(x) \) follows directly from (2.2), so

\[
c(x) = \|\delta_x\|_{\mathcal{H}_{(c)}}^2 \geq \frac{1}{K} \|\delta_x\|_{\mathcal{H}_{(b)}}^2 \geq \frac{1}{K}
\]

since \(\|\delta_x\|_{\mathcal{H}_{(b)}} \geq 1 \) by the connectedness of the network.

For the converse,

\[
\|u\|_{\mathcal{H}_{(c)}}^2 = \frac{1}{2} \sum_{x,y \in G} (u(x) - u(y))^2 \leq \frac{1}{2} \sum_{x,y \in G} \frac{c_{xy}}{\varepsilon} (u(x) - u(y))^2 = \frac{1}{\varepsilon} \|u\|_{\mathcal{H}_{(b)}}^2,
\]

so \(I : \mathcal{H}_{(c)} \rightarrow \mathcal{H}_{(b)} \) is a bounded operator with \(\|I\|_{\mathcal{H}_{(c)} \rightarrow \mathcal{H}_{(b)}} \leq \frac{1}{\sqrt{\varepsilon}} \).

Example 3.16 (Horizontally connected binary tree). This example shows that the boundedness of the conductance function is not sufficient to imply boundedness of the Laplacian, and illustrates the interplay between spectral reciprocity and effective resistance (see also [JP11b]). To begin, let \((G, b) \) be the binary tree where every edge has conductance \(c_{xy} = 1 \). Now let \((G, c) \) be the network obtained by connecting all vertices at level \(k \) with an edge of conductance \(c_k \) as in Figure 1.

The resulting network is no longer a tree, but we call it the horizontally connected binary tree for lack of a better name. Note that \(b \leq c \).

Suppose that \(c_k = 1 \) for each \(k \), so \(c_{xy} \) is globally constant on \(G^1 \). However, \(c(x) = 2^k + 2 \) for \(x \) in level \(k \), so \(c(x) \) is clearly unbounded on \(G^0 \). (As usual, level \(k \)}
consists of all vertices in \((G, b)\) for which the shortest path to \(o\) contains exactly \(k\) edges.) Let \(K_n\) be the complete graph on \(n\) vertices. Using Schur complements (for example, as in \([JP10a, JP12c]\) or \([Kig01, Kig03]\)), one can compute \(R_{K_n}(x, y) = 2^{ \frac{n}{3} - 1} \) for any \(x, y \in K_n\). Consequently, it is easy to see that \(R_{(G, c)}(x, y)\) can be made arbitrarily small by choosing \(x, y\) in level \(k\), for sufficiently large \(k\). By spectral reciprocity (see \([JP11b]\)), this implies that \(\Delta^{(c)}\) is unbounded on \(\mathcal{H}_{G^0}\). Thus, this network provides an example of how boundedness of \(c_{xy}\) does not imply boundedness of \(\Delta\) on other spaces, see \([Woj07]\).

Suppose that we choose \(c_k\) so as to make \(c(x)\) bounded on \(G^0\). Then we must have \(c_k = O(2^{-k})\) as \(k \to \infty\), so define \(c_k = 2^{-k}\). Using this, one can compute that \(R_{G_k}(x, y) = 1\) for \(x, y\) in level \(k\) of \(G_k\), for every \(k\).

Lemma 3.17. Suppose \(b \leq c\). If \(\Delta^{(c)}\) is self-adjoint, then \(\Delta^{(b)}\) is self-adjoint also.

Proof. Take adjoints on both sides of \(\Delta^{(b)} = I \Delta^{(c)} I^*\) (see Lemma 3.10). Note that the domains are as in (3.3). □

Example 3.18 (Geometric integers). For a fixed constant \(c > 1\), let \((\mathbb{Z}, c^n)\) denote the network with integers for vertices, and with geometrically increasing conductances defined by \(c_{n-1,n} = c^{\max(|n|,|n-1|)}\) so that the network under consideration is

\[
\ldots c^3 - 2 c^2 - 1 c 0 c 1 c^2 2 c^3 3 c^4 \ldots
\]

as in \([JP12a, Ex. 6.2]\), and fix \(\sigma = 0\). It is shown in \([JP11b, \S 4.2]\) that \(\Delta^{(c)}\) is not self-adjoint, and a defect vector \(\varphi \in \mathcal{H}_{G^0}\) is constructed which satisfies
\[\Delta^{(c)} \varphi = -\varphi. \] (3.8)

However, for \(b \equiv 1 \), \(\Delta^{(b)} \) is bounded and Hermitian, and thus clearly self-adjoint.

This example shows that the converse of Lemma 3.17 does not hold. Using Fourier theory, one can show that \(\mathcal{H}_{b^{(b)}} \cong L^2((-\pi, \pi), \sin^2(\frac{x}{2})) \); see [JP12d, §6.3], for example.

So Lemma 3.10 gives \(\Delta^{(b)} = \mathcal{I} \Delta^{(c)} \mathcal{I}^* \), where \(\Delta^{(b)} \) is bounded and \(\Delta^{(c)} \) is unbounded and not self-adjoint. The inclusion \(\mathcal{I} : \mathcal{H}_{b^{(b)}} \to \mathcal{H}_{b^{(b)}} \) indicates that

\[\mathcal{H}_{b^{(b)}} = \mathcal{H}_{b^{(b)}} \ominus \mathcal{H}_{b^{(b)}}^{⊥} \]

where \(\mathcal{H}_{b^{(b)}}^{⊥} = \mathcal{H}_{b^{(b)}} \ominus \mathcal{H}_{b^{(b)}} \), and that \(\Delta^{(c)} \) is a matrix corner of \(\Delta^{(b)} \):

\[\Delta^{(b)} = \begin{bmatrix} \Delta^{(c)} & A \\ A^* & B \end{bmatrix}. \] (3.9)

This gives another way to relate the operators \(\Delta^{(b)} \) and \(\Delta^{(c)} \).

3.1. **The adjoint of \(\Delta^{(b)} \) with respect to \(\mathcal{E}^{(c)} \).** For the results in this section we consider the adjoint of \(\Delta^{(b)} \) with respect to \(\mathcal{E}^{(c)} \) and denote it by \(\Delta^{(b)}^* \), in other words, we are interested in

\[\langle \Delta^{(b)}^* u, v \rangle_{\mathcal{E}^{(c)}} = \langle u, \Delta^{(b)} v \rangle_{\mathcal{E}^{(c)}}. \]

It will be helpful to know the action of \(\mathcal{I}^* \) on \(\mathcal{F}^{(m)} \), as given in Lemma 3.19; this result also generalizes the dipole property \(\Delta v = \delta_x - \delta_y \) of Definition 2.7.

Lemma 3.19. For \(1 < b \leq c \), one has \(\text{span} \{ v^{(c)}_x \} \subseteq \text{dom} \Delta^{(b)}^* \) and

\[\Delta^{(b)}^* v^{(c)}_x = \mathcal{I}^* (\delta_x - \delta_y). \] (3.10)

Proof. For any fixed \(x \in \mathbb{G} \) and \(u \in \mathcal{H}_{b^{(b)}} \), we have the estimate

\[\langle v^{(c)}_x, \Delta^{(b)} u \rangle_{\mathcal{E}^{(b)}} = \Delta^{(b)} u(x) - \Delta^{(b)} u(0) = \langle \delta_x - \delta_0, u \rangle_{\mathcal{E}^{(b)}} \leq \| \delta_x - \delta_0 \|_{\mathcal{E}^{(b)}} \cdot \| u \|_{\mathcal{E}^{(b)}}, \]

by by Lemma 2.10 followed by (2.5). This shows \(\text{span} \{ v^{(c)}_x \} \subseteq \text{dom} \Delta^{(b)}^* \) and

\[\langle v^{(c)}_x, \Delta^{(b)} u \rangle_{\mathcal{E}^{(b)}} = \langle \delta_x - \delta_0, u \rangle_{\mathcal{E}^{(b)}}, \]

which gives (3.10). \(\Box \)

For Theorem 3.20, we need to define \(\Delta^{(c)^{-1}} \) via the spectral theorem. To this end, we introduce the following blanket assumption (which remains in place for the remainder of this paper).

Assumption 1. Suppose a conductance function \(c \) has been fixed. If the corresponding Laplace operator \(\Delta^{(c)} \) is not self-adjoint, then we replace it by the Friedrichs extension as described in [JP12d].
With Assumption 1 in place, we can work with $\Delta^{(c)}$ as a self-adjoint operator. Furthermore, we also have that $\mathcal{D}(\Delta^{(c)}) \subseteq \mathcal{D}(\Delta^{(c)}) = (0, \infty)$ such that
\[
\langle u, \psi(\Delta^{(c)}u) \rangle_{\mathcal{H}_\mathcal{E}(0)} = \int_0^\infty \psi(\lambda) d\mu^{(c)}_u(\lambda) = \int_0^\infty \psi(u) P(d\lambda) u \|^2_{\mathcal{L}(\mathcal{H}_\mathcal{E}(0))},
\]
where P is the projection-valued measure in the spectral resolution of $\Delta^{(c)}$. This will be useful for Theorem 4.2. Furthermore, we also have that
\[
\Delta^{(c)^{-1}} := \int_0^\infty e^{-\lambda \Delta^{(c)}} d\lambda.
\]
This definition of the inverse is a standard application of the spectral theorem, and is based on the fact that $\int_0^\infty e^{-\lambda \Delta^{(c)}} d\lambda = \frac{1}{\lambda}.$

Theorem 3.20. For $1 < b < c$, one has $\Delta^{(b)^*c} = \Delta^{(c)^{-1}} \Delta^{(b)} \Delta^{(c)}$, where $\Delta^{(c)^{-1}}$ is the inverse of the Friedrichs extension, defined as in (3.12).

Proof. We will first show $\Delta^{(c)} \Delta^{(b)^*c} = \Delta^{(b)} \Delta^{(c)}$, which is equivalent to $I(\Delta^{(c)} \Delta^{(b)^*c} - \Delta^{(b)} \Delta^{(c)}) = 0$ by Corollary 3.7. Applying Lemma 3.19 and Lemma 3.10, one has
\[\Delta^{(c)} \Delta^{(b)^*c} \mathcal{E}_x = I \Delta^{(c)} \Delta^{(b)^*c} \mathcal{E}_x = \Delta^{(c)} \mathcal{E}_x \mathcal{E}_x = \Delta^{(b)} (\delta_x - \delta_y) = \Delta^{(b)} (\delta_x - \delta_y).\]

Then using the dipole property $\Delta^{(c)} \mathcal{E}_x = \delta_x - \delta_y$ yields
\[
\Delta^{(b)} (\delta_x - \delta_y) = \Delta^{(b)} (\Delta^{(c)} \mathcal{E}_x) = \Delta^{(b)} (\Delta^{(c)} \mathcal{E}_x) = \Delta^{(b)} (\Delta^{(c)} \mathcal{E}_x).
\]
Now we have $\Delta^{(c)} \Delta^{(b)^*c} \mathcal{E}_x = \Delta^{(b)} \Delta^{(c)} \mathcal{E}_x$ for any x, whence $\Delta^{(c)} \Delta^{(b)^*c} = \Delta^{(b)} \Delta^{(c)}$ follows by the density of $\mathcal{D}(\mathcal{E}_x \mathcal{E}_y) \subseteq \mathcal{D}(\Delta^{(c)^{-1}})$ and so the proof is complete. \(\square\)

4. Moments of $\Delta^{(c)}$ and monotonicity of spectral measures

Note that we continue to assume $\Delta^{(c)}$ is a self-adjoint operator as discussed in Assumption 1.

Lemma 4.1. For $u = \mathcal{E}_x - \mathcal{E}_y$ and $\psi(\lambda) = \lambda^k$, $k = 0, 1, 2$, we have
\[
k = 0 : \quad \langle u, u \rangle_{\mathcal{H}_\mathcal{E}(0)} = R^c(x, y),
k = 1 : \quad \langle u, \Delta^{(c)} u \rangle_{\mathcal{H}_\mathcal{E}(0)} = 2 - 2\delta_{xy},
k = 2 : \quad \langle \mathcal{E}_x^c, \Delta^{(c)^2} \mathcal{E}_x^c \rangle_{\mathcal{H}_\mathcal{E}(0)} = c(x) + 2c_{xy} + c(y).
\]

Proof. The case $k = 0$ follows immediately from (2.7). For $k = 1$, (3.6) gives
\[
\langle \mathcal{E}_x^c, \Delta^{(c)} \mathcal{E}_x^c \rangle_{\mathcal{H}_\mathcal{E}(0)} - \langle \mathcal{E}_x^c, \Delta^{(c)} \mathcal{E}_y^c \rangle_{\mathcal{H}_\mathcal{E}(0)} - \langle \mathcal{E}_y^c, \Delta^{(c)} \mathcal{E}_x^c \rangle_{\mathcal{H}_\mathcal{E}(0)} + \langle \mathcal{E}_y^c, \Delta^{(c)} \mathcal{E}_y^c \rangle_{\mathcal{H}_\mathcal{E}(0)}
\]
\[
= 2 - (\delta_{xy} + 1) - (\delta_{xy} + 1) + 2.
\]
For $k = 2$, we use the fact that the Friedrichs extension is self-adjoint and the dipole property (2.5) to compute
\[\langle v_x^{(c)}, \Delta^{(c)} v_x^{(c)} \rangle_{\mathcal{E}^{(c)}} = \langle \Delta^{(c)} v_x^{(c)}, \Delta^{(c)} v_x^{(c)} \rangle_{\mathcal{E}^{(c)}} = \langle \delta_x - \delta_y, \delta_x - \delta_y \rangle_{\mathcal{E}^{(c)}} = c(x) + 2c_{xy} + c(y). \]

For the last step, we used $\mathcal{E}(\delta_x) = c(x)$, which is immediate from (2.2). \qed

In Theorem 4.2, we use $\mu_u^{(c)}$ as given by (3.11). Also, let
\[m_k^{(c)}(u) := \int_0^\infty \lambda^k d\mu_u^{(c)} \quad (4.1) \]
be the kth moment of $\mu_u^{(c)}$, and similarly for $\mu_u^{(b)}$. We now consider the moments of Δ via spectral theory.

Theorem 4.2 (Monotonicity of spectral measures). Let (G, c) be a given network, and let $b \leq c$. Then
\[m_1^{(b)}(u) = m_1^{(c)}(I^* u) \quad \text{and} \quad m_2^{(b)}(u) \leq m_2^{(c)}(I^* u). \quad (4.2) \]

Proof. First, note that Lemma 3.10 gives
\[m_1^{(b)} = \langle u, \Delta^{(b)} u \rangle_{\mathcal{E}^{(b)}} = \langle u, I \Delta^{(c)} I^* u \rangle_{\mathcal{E}^{(c)}} = \langle I^* u, \Delta^{(c)} I^* u \rangle_{\mathcal{E}^{(c)}} = m_1^{(c)}. \]

For the second moments, using Lemma 3.10 again gives
\[m_2^{(b)} = \langle u, (\Delta^{(b)})^2 u \rangle_{\mathcal{E}^{(b)}} = \langle u, I \Delta^{(c)} I^* I \Delta^{(c)} I^* u \rangle_{\mathcal{E}^{(c)}} = \langle I^* u, I^* I \Delta^{(c)} I^* u \rangle_{\mathcal{E}^{(c)}}. \]

Since $I^* I$ is contractive by Lemma 3.3,
\[\langle \Delta^{(c)} I^* u, I^* I \Delta^{(c)} I^* u \rangle_{\mathcal{E}^{(c)}} \leq ||I^* I|| \cdot \langle \Delta^{(c)} I^* u, \Delta^{(c)} I^* u \rangle_{\mathcal{E}^{(c)}} \leq \langle u, I(\Delta^{(c)})^2 I^* u \rangle_{\mathcal{E}^{(c)}}, \]
whence $m_2^{(b)} \leq m_2^{(c)}. \quad \Box$

Remark 4.3. If $b_{xy} < c_{xy}$ for some edge (xy), then $m_2^{(b)}(v_x^{(b)}) < m_2^{(c)}(I^* v_x^{(c)})$.

5. **Examples**

Example 5.1 (Geometric integers). Let (Z, c^o) be the network whose vertices are the integers with conductances given by
\[c_{m,n} = \begin{cases} c^{\max(|m|,|n|)}, & |m - n| = 1 \\ 0, & \text{else}, \end{cases} \]
as in the following diagram:
We also thank the students and colleagues who have endured our talks on this material and raised fruitful questions.

The authors are grateful for stimulating comments, helpful advice, and valuable references from Dorin Dutkay, Paul Muhly, and others.

We acknowledge the support of the National Science Foundation through Grants DMS-1065231 and DMS-1651827.

Acknowledgements. The authors are grateful for stimulating comments, helpful advice, and valuable references from Dorin Dutkay, Paul Muhly, and others. We also thank the students and colleagues who have endured our talks on this material and raised fruitful questions.

It is known that \mathcal{H}_b is 1-dimensional for this network; see [JP12a]. It was also shown in [JP11b] that Δ is not essentially self-adjoint (as an operator on \mathcal{H}_c) for this network.

We compare (\mathcal{Z}, b^n) and (\mathcal{Z}, c^n), where $1 < b \leq c$. In this case, $\dim \mathcal{H}_b = 1$ and we can compute the (numerical) spectral invariant of Corollary 3.11. Choose unit vectors $h_b \in \mathcal{H}_b$ and $h_c \in \mathcal{H}_c$.

$$h_b(n) = \frac{\text{sgn}(n)}{2 \sqrt{b} - 1} \left(1 - \frac{1}{b^n}\right), \quad h_c(n) = \frac{\text{sgn}(n)}{2 \sqrt{c} - 1} \left(1 - \frac{1}{c^n}\right).$$

Now since $\langle I^* h_b, u \rangle_{\mathcal{G}^0} = \langle h_b, u \rangle_{\mathcal{G}^0}$ for all $u \in \mathcal{H}_{\mathcal{G}^0}$, we have

$$\langle h_b, v^{(c)}_n \rangle_{\mathcal{G}^0} = \langle I^* h_b, v^{(c)}_n \rangle_{\mathcal{G}^0} = \langle Kh_v, v^{(c)}_n \rangle_{\mathcal{G}^0} = K(h_v, v^{(c)}_n)_{\mathcal{G}^0},$$

following the ansatz that I^* should be just a numerical constant (scaling factor). Suppose for simplicity that $n > 0$, as the other computation is similar. On the left side of (5.2), we can compute directly from (2.2):

$$\langle h_b, v^{(c)}_n \rangle_{\mathcal{G}^0} = 2 \sum_{j=1}^{\infty} b^j \left(\frac{1 - b^{-j}}{2 \sqrt{b} - 1} - \frac{1 - b^{1-j}}{2 \sqrt{b} - 1}\right) \left(v^{(c)}_n(j) - v^{(c)}_n(j-1)\right)$$

$$= \sqrt{b} - 1 v^{(c)}_n(n) = \sqrt{b} - 1 \sum_{j=1}^{n} \frac{1}{c^j} = \sqrt{b} - 1 \frac{1 - c^{-n}}{c - 1},$$

Meanwhile, on the right side of (5.2), the reproducing property gives

$$\langle h_c, v^{(c)}_n \rangle_{\mathcal{G}^0} = h_c(n) - h_c(o) = \frac{1}{2 \sqrt{c} - 1} \left(1 - \frac{1}{c^n}\right).$$

Substituting (5.3) and (5.4) into (5.2) gives

$$\sqrt{b} - 1 \frac{1 - c^{-n}}{c - 1} = K \frac{1}{2 \sqrt{c} - 1} \left(1 - \frac{1}{c^n}\right),$$

and so the corresponding spectral invariant is

$$K = \|I^*|_{\mathcal{H}_b}\| = \sqrt{\frac{1 - b}{1 - c}},$$

and this is the factor by which I^* scales the basis vector h_b; see Corollary 3.11.
REFERENCES

[Arv10] William Arveson. Dilation theory yesterday and today. In *A glimpse at Hilbert space operators*, volume 207, pages 99–123. Birkhäuser Verlag, Basel, 2010. Oper. Theory Adv. Appl.

[Chu96] Fan Chung. *Spectral Graph Theory*, volume 92 of *Regional Conference Series in Mathematics*. Amer. Math. Soc., Providence, RI, 1996.

[JP10a] Palle E. T. Jorgensen and Erin P. J. Pearse. A Hilbert space approach to effective resistance metrics. *Complex Anal. Oper. Theory*, 4(4):975–1030, 2010. arXiv:0906.2535.

[JP10b] Palle E. T. Jorgensen and Erin P. J. Pearse. Resistance boundaries of infinite networks. In *Progress in Probability: Boundaries and Spectral Theory*, volume 64, pages 113–143. Birkhäuser, 2010. arXiv:0909.1518.

[JP11a] Palle E. T. Jorgensen and Erin P. J. Pearse. Gel’fand triples and boundaries of infinite networks. *N. Y. J. Math.*, 17:745–781, 2011. arXiv:0906.2745.

[JP11b] Palle E. T. Jorgensen and Erin P. J. Pearse. Spectral reciprocity and matrix representations of unbounded operators. *J. Funct. Anal.*, 261(3):749–776, 2011. arXiv:0911.0185.

[JP12a] Palle E. T. Jorgensen and Erin P. J. Pearse. A discrete Gauss-Green identity for unbounded Laplace operators and transience of random walks. To appear: *Israel J. Math.*, 2012. 25 pages. arXiv:0909.1586.

[JP12b] Palle E. T. Jorgensen and Erin P. J. Pearse. Multiplication operators on the energy space. To appear: *Journal of Operator Theory*, 2012. 25 pages. arXiv:1007.3516.

[JP12c] Palle E. T. Jorgensen and Erin P. J. Pearse. Operator theory and analysis of infinite resistance networks. To appear: Universitext. Springer, 2012. 384 pages. arXiv:0806.3881.

[JP12d] Palle E. T. Jorgensen and Erin P. J. Pearse. Self-adjoint extensions of network Laplacians and applications to resistance metrics. 2012. 24 pages. In review. arXiv:1103.5792.

[JP13a] Palle E. T. Jorgensen and Erin P. J. Pearse. Interpolation on resistance networks. 2013. 14 pages. In preparation.

[JP13b] Palle E. T. Jorgensen and Erin P. J. Pearse. Scattering theory on resistance networks. 2013. 13 pages. In preparation.

[Kig01] Jun Kigami. *Analysis on fractals*, volume 143 of *Cambridge Tracts in Mathematics*. Cambridge University Press, Cambridge, 2001.

[Kig03] Jun Kigami. Harmonic analysis for resistance forms. *J. Funct. Anal.*, 204(2):399–444, 2003.

[LP] Russell Lyons and Yuval Peres. *Probability on Trees and Graphs*. Unpublished.

[Sar94] Donald Sarason. *Sub-Hardy Hilbert spaces in the unit disk*. University of Arkansas Lecture Notes in the Mathematical Sciences, 10. John Wiley & Sons Inc., New York, 1994. A Wiley-Interscience Publication.

[Woj07] Radosław K. Wojciechowski. Stochastic completeness of graphs. *Ph. D. Dissertation*, 2007. 72 pages. arXiv:0712.1578.

PALLE E. T. JORGENSEN, UNIVERSITY OF IOWA, IOWA CITY, IA 52246-1419 USA
E-mail address: palle-jorgensen@uiowa.edu

ERIN P. J. PEARSE, CALIFORNIA POLYTECHNIC UNIVERSITY, SAN LUIS OBISSO, CA 93407-0403 USA
E-mail address: epearse@calpoly.edu