Nitrate Uptake Affects Cell Wall Synthesis and Modeling

Simone Landi and Sergio Esposito *

Dipartimento di Biologia, Università degli Studi di Napoli Federico II, Complesso Universitario di Monte Sant’Angelo, Napoli, Italy

Nowadays, the relationship(s) about N assimilation and cell wall remodeling in plants remains generally unclear. Enzymes involved in cell wall synthesis/modification, and nitrogen transporters play a critical role in plant growth, differentiation, and response to external stimuli. In this review, a co-expression analysis of nitrate and ammonium transporters of Arabidopsis thaliana was performed in order to explore the functional connection of these proteins with cell-wall related enzymes. This approach highlighted a strict relationship between inorganic nitrogen transporters and cell wall formation, identifying a number of co-expressed remodeling enzymes. The enzymes involved in pectin and xyloglucan synthesis resulted particularly co-regulated together with nitrate carriers, suggesting a connection between nitrate assimilation and cell wall growth regulation. Major Facilitator Carriers, and one chloride channel, are similarly co-expressed with pectin lyase, pectinacetylesterase, and cellulose synthase. Contrarily, ammonium transporters show little or no connection with those genes involved in cell wall synthesis. Different aspects related to plant development, embryogenesis, and abiotic stress response will be discussed, given the importance in plant growth of cell wall synthesis and nitrate uptake. Intriguingly, the improvement of abiotic stress tolerance in crops concerns both these processes indicating the importance in sensing the environmental constraints and mediating a response. These evaluations could help to identify candidate genes for breeding purposes.

Keywords: abiotic stress, Arabidopsis, ammonium, tomato, xyloglucane synthesis, pectin synthesis, cellulose synthesis, nitrogen assimilation

INTRODUCTION

Cell wall development and remodeling are crucial processes for plants. The molecular and biochemical modifications of cell wall play critical roles in various aspects of plant physiology such as, differentiation, senescence, abscission, plant–pathogen interactions, abiotic stress response, plant growth, and others (Marowa et al., 2016). Cell wall is a necessary plant characteristic, mainly composed by polysaccharides, such as, cellulose and hemicellulose; pectins; lignin, and structural proteins (Guerriero et al., 2014, 2016). A major feature of the cell wall is its dynamic and active structure, remodeled during key stages of development, and in response to external stimuli. Therefore, during the plants life there is an incessant assembly, disassembly, and re-arrangement of the cell wall (Marowa et al., 2016). These processes are critical for plant development and acclimation, because the cell wall loosening is a direct cause of cells expansion and plant growth (Fukuda, 2014).
An interesting example is the cell wall remodeling during the stress response, by the activation of a wide range of enzymes involved in cell wall loosening (Tenhaken, 2015). This regulation represents a crucial point for tolerance to drought and salinity in crops (e.g., tomato; rice), when huge number of genes was differentially expressed upon stress (Iovieno et al., 2011; Landi et al., 2017b). Furthermore, cell wall is differently modified by biotic stress and pathogen attacks, revealing its functional plasticity (Bellincampi et al., 2014).

Among the mechanic modifications required for cell wall remodeling, the enzymes mainly involved include xiloglucan endotransglucosylase/hydrolase, expansines, enzymes involved in pectin modification (e.g., pectinesterase; pectin lyase), peroxidase (Tenhaken, 2015; Franciosini et al., 2017; Landi et al., 2017b). These enzymes are consistently regulated during nutrient deficiency (as nitrogen and/or sulfur deprivation), in order to allow the correct uptake of these elements (Fernandes et al., 2013). Particularly, N deficiency induces cell wall loosening: N is mainly assimilated in plants as nitrate (NO$_3^-$) by specific transporters (Fan et al., 2017). This family includes a number of carriers generally described as low or high affinity transporters, playing different roles depending on the soil availability of N. In addition, plants can assimilate N as ammonium (NH$_4^+$) by specific channels (Glass et al., 2002).

In the present study, an overview of the relationship between cell wall remodeling and nitrogen uptake will be provided. The co-expression analysis of *Arabidopsis thaliana* nitrate and ammonium transporters will be explored, in order to identify how cell wall enzymes relate to N assimilation, and clarify the concurrent processes involved in cell wall re-organization. A final survey with a perspective on the importance of N assimilation and cell wall modification upon abiotic stress will be given.

N UPTAKE AND CELL WALL REMODELING: A CO-EXPRESSION ANALYSIS

The relationships between N accumulation and plant cell wall remodeling are argument of debate. The molecular cross-interactions between these processes are still unclear: therefore, nitrogen and ammonium transporters were identified in *A. thaliana*, and co-expression analysis was made using the ATTED-II software version 8.0 at http://atted.jp (Aoki et al., 2016).

In detail, six low affinity nitrate transporters (At1g12110, At1g69850, At1g32450, At1g27080, At1g69870, At4g16680), two “major facilitator super family” proteins (At1g52190, At3g16180), seven high affinity nitrate transporters (At1g08090, At1g08100, At5g60780, At5g60770, At1g12940, At3g45060, At5g14570), and six ammonium transporters (At4g13510, At1g64780, At1g64780, At4g21680, At3g24290, At2g38290) were co-expressed with nitrate transporters shown similar number and type of cell wall related co-expressed genes. Otherwise, ammonium transporters showed a lower co-expression with cell wall related genes; this would probably suggest minor, or absent relationship(s) with cell wall remodeling.

Examples of cell wall remodeling genes which appear related to nitrogen transport are pectinase, involved in pectin degradation, such pectin lyase (At4g23820, At3g07010, At3g16850, At5g48900, At5g14650, At3g57790, At3g16850), pectinacylesterase (At1g09550, At5g23870), or pectin methylesterase (At3g14310). Particularly, the cleavage of homogalacturonans by pectinestersases produces substrates for polygalacturonase and pectin lyase, acting in the cleavage of the polygalacturonic acid (Sun and Nocker, 2010).

These genes are important members of fruits’ maturation network (Marín-Rodríguez et al., 2002), and previous studies described their involvement in the abiotic stress response (Hong et al., 2010; Tenhaken, 2015; Landi et al., 2017b). It has been proposed that pectins are able to form gel structures that increase cell wall consistency (Fernandes et al., 2016).

The activation of pectinase(s) together with nitrogen transporters could induce the relaxation of the cell wall.

Other important actions associated with nitrogen uptake are the modification of xylolucans. A number of enzymes involved in this process were co-expressed with xylolucan-endotransglucosylases/hydrolases (XTH—e.g., At3g44990, At3g48580, At2g06850), xylolucan-endon/transglycosylase (XTR—e.g., At4g25810), and expansins (e.g., At1g20190–At2g04061). Xylolucans are the major hemicellulosic polymers of dicot plants, playing a critical role in cellulose fibrils connection. Modification in their content is an important process regulating several physiological plant responses by the cell wall remodeling (Tenhaken, 2015; Marowa et al., 2016). It was proposed that xylolucan regulation by expansins could improve the efficiency of nutrient uptake. In fact, several types of expansins respond to different nutrient...
TABLE 1	Co-expression analysis of *Arabidopsis* nitrogen and ammonium transporters, obtained using the ATTED-II database.

A. *THALIANA* LOW AFFINITY NITRATE TRANSPORTER

Co-expressed genes	MR								
PMA2	4	FMO	4.6	HAD	1	CE3A10	3.2	Major facilitator	1.4
NIR1	7.1	Hydrolyase	8.4	PHO1	2.8	UGT76A3	6.9	LTP	1.7
NR1	7.9	Transcription	8.4	At2g29870	3.9	TLP	6.9	Lipase	5.5
RGF1	13.2	CNGC	15	UMAW718	4.9	RAP2.6L	2.6	GSR1	5.7
GSR2	16.3	TBL4	18.9	MYB90	5.3	TIP	7.3	Ceramidase	4.4
UGT72E1	18.4	ACR6	20.4	DUF599	5.5	XTH27	8.8	EXO70B2	3.5
SLT1R:2	19.6	Plant	22.2	Glycine-rich	6.3	SPS2	7.8	SPS2	5.7
PSY1R	21.4	XPH1	22.3	UMAW729	6.7	Glycine-rich	10.4	EXO70B2	3.5
FMO-GS-OX5	29.7	PSY1R	31	DUF716	8.1	cPT4	7.3	Kinase	9.4
GTPR2	37.1	XLG1	35.6	MYB48	8.7	XTH171	16.3	Kinase	9.4
TIP2	39.4	ACR1-1	38.4	HMA4	9.2	CNGC	11.5	Kinase	9.4
G6PD	40.1	Galactose-oxidase	49.1	Oxidoreductase	10.6	Oxidoreductase	12.7	XTH171	12.4
CYT17B1	41.4	TET5	52.8	RA2	10.9	Zeaxanthin-like	16.3	XTH171	12.4
Chaperonin	46	XTH27	54.4	Endopeptidase	11.5	Serine	9.8	Oxidoreductase	10.6
Transcription	48.1	PXK1	57.3	At2g15560	11.8	Transferring	18.2	Oxidoreductase	10.6
CA4	52	UGE1	57.8	UMAW717	12.2	TRV	2.3	Oxidoreductase	10.6
UPM1	55	STP4	58.7	MT	12.4	Hydrolyase	23.8	Oxidoreductase	10.6
NR2	56.4	Leucine-rich repeat	58.8	DUF959	13	OPR5	24.7	Oxidoreductase	10.6
Zinc finger	58.6	SET179	59	UMAW731	13.1	DUF579	25.7	SWEET4	25.7
AAP5	59.7	Protein-kinase	59.3	SBAH1	13.4	MES19	27.8	UGT76E11	22.6
KT1	59.1	At5g2240	62.6	UMAW730	13.9	At2g29870	28.8	Transporter	23.8
Oxidoreductase	67.5	Related to AP2:2	69.5	Major facilitator	14.5	Psath6-cytochrome	30.3	Oxidoreductase	10.6
TBL27	69.2	NPC1	70.3	ACR9	14.9	PSY1	70.4	Glycine-rich	14.9
LEA	71.6	PMT1	70.4	Glycine-rich	14.9	SHP2	30.9	MATE efflux	30.9
Transformer	72.8	Duplication	72.4	Transporter	15	Rossmann-fold	31.2	DUF10	33.3
UGT84A4	75.9	DUF946	37.3	At2g46300	15	Inhibitor	32.8	DUF56	35.4
Transferee	76.2	Fragile-X-F-associates	77.1	DNA-binding	15.2	PT6	34.2	Major facilitator	35.8
EFE	82.8	At2g7710	77.5	UMAW728	15.3	MES9	34.4	CCT motif	36.4
HAD	80.5	SEC14 cytosolic factor	80.5	UMAW720	16	TT12	36.5	RLP53	37.6
CBY4	88.4	PSA1	88.4	UMAW711	17.8	Peroxidase	37.1	NAC019	38.8
(Continued)									

A. *THALIANA* AMMONIUM TRANSPORTER

Co-expressed genes	MR														
At1g13510 AMT 1.1															
At1g67800 AMT 1.2															
At4g87000 AMT 1.4															
At2g92900 AMT 2															
Plasma membrane															
Endodermal and cortical cells of root															
Plasma membrane and cytoplasm															

(Continued)
Table 1 (Continued)

Major Facilitator Super Family	A. Thaliana High Affinity Nitrate Transporter	Chloride Channel																
Plasma membrane—leaf phloem	**Co-expressed genes**	**MR**																
Pectin lyase-like	TU65	4.2	PP2C	1	Nitrates transporter 2.4	1.4	At5g08320	2	PP2C	6	GND1:4	1	Nitrates transporter 2.3	3.5	GDSL-like	6.6	VAC1:IN1	1.4
NIA1	4.9	VSP2	13.4	At5g10350	1	Toxins	21.1	PIP1B	1	NIT1	13	ACR6	1	NIT1	76.7	ACR6	1.1	
Domain	18.9	TUB1	6	MBD3	2.6	PIP1A	38.6	NRT2;1	1.9	ACR6	1	NIT1	76.7	ACR6	1.1			
Glycosylase	3.5	DUF1645	13.4	RPL4	17.7	RPL1	9.2	ACR6	1	NIT1	76.7	ACR6	1.1					
Pectin lyase-like	4.2	DRT100	12.3	ASML2	11.2	ASML2	12.4	RPL1	9.2	ACR6	1	NIT1	76.7	ACR6	1.1			
LUP1	4.4	PGP19	12.7	GSTF14	12.2	GSTF14	12.4	RPL1	9.2	ACR6	1	NIT1	76.7	ACR6	1.1			
PHS2	4.6	Transferase	15.2	WR3	13.8	WR3	13.8	RPL1	9.2	ACR6	1	NIT1	76.7	ACR6	1.1			
PIN7	4.9	ERD3	15.4	NAS2	18.5	NAS2	18.5	RPL1	9.2	ACR6	1	NIT1	76.7	ACR6	1.1			
P1R1	5.7	Transferase	15.9	PP2A-A3	19.3	Transferase	60.2	GND1:4	1	NIT1	76.7	ACR6	1.1					
BEE2	6.0	DNA-binding	17.9	At1g02100	20.4	LEA3	120.1	Transposable	120.1	Transposable	120.1	Transposable	120.1	Transposable	120.1			
DGR2	6.9	Glycosylase	18.8	Kinase	28.6	Transposable	72.2	Transposable	72.2	Transposable	72.2	Transposable	72.2					
TOP15	7.3	Pectin lyase-like	18.9	TIR-NBS-UFR	34.6	GETU2	100.5	DNA-binding	100.5	DNA-binding	100.5	DNA-binding	100.5					
At1g67050	7.6	Kinase	20.7	Pectin lyase-like	37.1	Glutamate receptor	101.5	PP2C	2.5	NIT1	76.7	ACR6	1.1					
DW3	7.8	LYK3	21.9	Glutamate receptor	37.2	TIR-NBS-UFR	101.5	DNA-binding	101.5	DNA-binding	101.5	DNA-binding	101.5					
DUF642	9.5	TRM2	22.2	Major facilitator	46.9	DNA-binding	105.7	RPL27	2.4	NIT1	76.7	ACR6	1.1					
GUS6	9.9	Major facilitator	24.2	DNA-binding	48.4	DNA-binding	116.4	UNM312	13.1	Transporter	94.5	DNA-binding	120.1	DNA-binding	120.1			
PPA1-F1	11.5	Pectinmethylesterase	24.3	Protease	48.8	Cysteine/ Histidine-rich	118.5	HDG4	151.6	Cysteine/ Histidine-rich	118.5	HDG4	151.6	Cysteine/ Histidine-rich	118.5			
WA15	12.0	PRT73	25.1	RNAG-Ubox	49.5	At5g08000	127.1	F-box	154.6	Oxydo-reductase	105.7	Kinase	87.7	Major facilitator	105.7			
TIP2:1	12.2	Gibberellin-regulated	26.8	Kinase	53.5	Transposable	128.1	Transposable	128.1	Transposable	128.1	Transposable	128.1					
Phosphoesterases	12.4	PHOS-ALPHA	27.5	POM	55.5	At1g19610	129.1	F-box	186.1	Oxydo-reductase	105.7	Kinase	87.7	Major facilitator	105.7			
Pectin lyase-like	14.7	At1g32500	27.8	Peroxidase	57.8	At1g00250	130.2	At5g48200	200.8	Peroxidase	125.7	Cysteine/ Histidine-rich	125.7	Cysteine/ Histidine-rich	125.7			
EXP11	14.5	Homeodomain-like	29.1	CA-depolymer-binding	60.3	Kinase	132.5	Transposable	132.5	Transposable	132.5	Transposable	132.5					
PIN4	14.6	FRUCTS	29.6	TAC1	60.7	TAC1	139.5	At5g28000	211.6	Cysteine/ Histidine-rich	125.7	Cysteine/ Histidine-rich	125.7	Cysteine/ Histidine-rich	125.7			
Phosphoesterases	14.7	GA14	31.4	Kinase	60.8	At1g02640	141	At4g10900	211.8	Peroxidase	125.7	Cysteine/ Histidine-rich	125.7	Cysteine/ Histidine-rich	125.7			
DUF117	16.4	PAME3	33.9	TIR-NBS	61.5	Kinase	157	At4g11000	211.8	Peroxidase	125.7	Cysteine/ Histidine-rich	125.7	Cysteine/ Histidine-rich	125.7			
EXP15	16.9	TUB6	35.1	SAUR-like	64.5	C2	161.5	Transposable	161.5	Transposable	161.5	Transposable	161.5					
Pectin lyase-like	17.7	TET7	36.3	GIDPD3	71.3	At3g44140	173.9	Galactose oxidase	237.3	Peroxidase	125.7	Cysteine/ Histidine-rich	125.7	Cysteine/ Histidine-rich	125.7			
Interestingly, co-expression analysis, and shown on the right side of each column. Cell wall related genes (yellow highlighting genes) were identified by Gene Ontology.

42.7 Cysteine/...Beeckman Plant invertase

108.5 SnRK3.17 33

Zhou et al., 2014; Minoia et al., 2015; Almagro et al., 2008

This evidence corroborated

202.1

20.8

Guo XTH4 Pectin

Boursiac et al.,...assimilation in both normal and high salinity conditions, (HSP–At5g13110), heat shock proteins (HSP–At5g02480),

particularly, their action appears critical for high-nitrate-enhanced shoot growth, and for nitrate translocation from old to young leaves. These processes represent key points affecting biomass production, and crop yield (Hsu and Tsay, 2013).

Finally, nitrate transporter and cell wall related processes are connected also during embryogenesis. The AtNRT1.6 is expressed in reproductive tissues, namely vascular tissue of the silique and funiculus. This transporter plays a critical role during early embryogenesis phase (Almagro et al., 2008): interestingly, this gene was co-expressed with cellulose synthase A (CESA−At2g25540). Previous studies reported that several members of this family are necessary for a correct embryogenesis (Beeckman et al., 2002; Goubet et al., 2003). This evidence corroborated the idea of a strict connection between nitrogen uptake and cell wall regulation in various aspects of plant development and morphogenesis.

THE RELATIONSHIP BETWEEN NITROGEN TRANSPORTER AND CELL WALL UPON ABIOTIC STRESS

It is worth to point out that both nitrate transporters and cell wall remodeling enzymes play crucial roles in response to various abiotic stresses (Tenhaken, 2015; Fernandes et al., 2016; Fan et al., 2017; Landi et al., 2017b).

Among nitrate transporters, AtNRT1.1 (At1g12110) was identified as a salt and drought stress responsive gene (Guo et al., 2003; Álvarez-Aragón and Rodriguez-Navarro, 2017). This gene is expressed in guard cells and plays an important role in stomata opening: AtNRT1.1 mutants showed an enhanced drought tolerance (Guo et al., 2003).

Further, AtNRT1.1 plays a major role in Na+ and Cl− assimilation in both normal and high salinity conditions, suggesting its role in salt stress tolerance (Álvarez-Aragón and Rodriguez-Navarro, 2017). Interestingly, co-expression analysis showed this gene less co-expressed with cell wall related genes (Table 1): this confirms that cell wall remodeling genes were diversely down-regulated during abiotic stress in order to limit the damage (Leucci et al., 2008). Intriguingly, AtNRT1.1 showed a number of stress-related coexpressed genes such as, tonoplast intrinsic protein (TIP−At4g17340), glucose-6P dehydrogenase (G6PDH−At1g3110), heat shock proteins (HSP−At1g02480), late embryogenesis proteins (LEA−At3g52470; Boursiac et al., 2005; Ma et al., 2006; Basile et al., 2011; Esposito, 2016; Landi...
et al., 2017a), thus highlighting its role in abiotic stress response (Table 1).

Another interesting nitrate transporter involved in abiotic stress response is AtNRT1.8 (At4g21680): cadmium (Cd$$^{2+}$$) stress strongly stimulated the accumulation of this transporter in roots, and A. thaliana plants with mutated AtNRT1.8 showed increased sensitivity to Cd$$^{2+}$$ stress (Gojon and Gaymard, 2010). Intriguingly, as showed in Table 1, AtNRT1.8 is co-expressed with a number of cell wall related genes, namely XTH11 (xylolglucan-endotransglucosylases/hydrolases), XTR6 (xylolglucan-endotransglycosilase), and PRX52 (peroxidase superfamily). Particularly, peroxidase activity was assisted by a number of antioxidant enzymes such as, glutathione S-transferase (GSTU4), NAD(P)-linked oxidoreductase (AKRA4C8), and others (Table 1). This could be necessary to regulate the increased of reactive oxygen species (e.g., H$_2$O$_2$), enhancing the mechanical stability of the cell wall, and thus stress tolerance (Tenhaken, 2015).

Further, CLCA (At5g40890) is a chloride channel that plays a role as NO$_3^-$/H$_2$O$_3$ exchanger, useful to accumulate nitrate in vacuoles (De Angeli et al., 2006). Recently, this transporter was reported as related to PP2A-C5 (At1g69960) during salt stress response (Hu et al., 2017); the co-expression analysis showed a relationship with cell wall related proteins such as, pectin lyase (At3g57790 and At3g16850); cellulose synthase C; and with aquaporins such TIPs (tonoplast intrinsic proteins) and PIPs (Plasma membrane intrinsic proteins). The co-expression of TIP2 (At3g26520) and TIP2.1 (At3g16240) confirms the critical role of CLCA in nitrate translocation into the vacuoles as well. Interestingly, NTR1.1 is co-expressed with tonoplast intrinsic protein TIP2.2 (At4g17340). Particularly, nitrate allocation from/to vacuoles suggested a central role during plant adaption in N-rich and N-deficient environments (Fan et al., 2017). Recent evidence indicated the role of phosphatidylinositol-3,5-bisphosphate as signal for nitrate translocation in vacuoles by the activation of CLCA (Carpaneto et al., 2017).

Further, the regulation of the nitrate allocation into the vacuoles was assisted by peptide transporters (PPTs), such as, AtPPT4 (At2g02020) and AtPPT6 (At1g62200); these proteins showed vacuole specific localization, thus playing a role in nitrate storage in the plant cell (Weichert et al., 2012). Fan et al. (2017) reported that NRT2.1 plays an important role in resistance to drought. This action was reported in different species such as, Arabidopsis and Brassica, together with NRT1.1 and NRT1.5 (Goel and Singh, 2015; Fan et al., 2017). Other authors reported that NRT2.1 regulated root hydraulic conductivity, by altering NO$_3^-$ accumulation (Li et al., 2016). Furthermore, this nitrate transporter positively regulates the translational levels of PIPs; the bioinformatic analysis highlights the co-expression of this transporter with cell wall related genes, such pectin lyase and peroxidase; and with abiotic stress related genes such protein phosphatase 2C (PP2C), glutathione S-transferase (GST), G6PDH, and others, thus confirming that nitrogen transporters, cell wall remodeling enzymes, and others genes together contributes for abiotic stress tolerance.

TRANSCRIPTOMIC MODIFICATION IN ADVERSE ENVIRONMENT: NITRATE AND CELL WALL CANDIDATES GENES FOR TOLERANCE IN CROPS

Nowadays, next generation sequencing (NGS) provides for new insight into crops genetic breeding, generating huge amount of data, mapping across crops population, and discovering useful genes, QTL and genomic traits (Cobb et al., 2013).

The improvement of tolerance in crops vs. abiotic stress remains today an important focus for plant biology researchers because this reduces plant growth, development, and productivity (Reynolds and Tuberosa, 2008; Cardi et al., 2015; Ruggiero et al., 2017). This promising strategy can be prosecuted by applying modern molecular and -omics techniques, together with the study and the analysis of traditional landraces (Van Oosten et al., 2016; Landi et al., 2017a,b). In the last years, many researchers investigated this topic using NGS; in tomato (Solanum lycopersicum), 966 differential expressed genes (DEGs) have been identified upon drought; among these, at least 50 genes involved in cell wall remodeling and nitrate transport were identified. Particularly, 20 clusters of genes were grouped, and their transcripts show similar expression trends (Iovieno et al., 2011).

Some clusters showed interesting correlations: in cluster 4, expansin (Soly06g049050), nitrate transporter (Soly07g020650), cellulose synthase (Soly04g071650), and XTH (Soly07g020650); in cluster 5, cellulose synthase (Soly04g077470), expansins (Soly02g088100), nitrate transporter (Soly03g113250), and XTH (Soly07g052980).

Similarly to other abiotic stress, nutrient deprivation negatively influences crops yield. Nitrogen deficiency is a critical cause of yield loss, but N fertilizer consumption has become one of the major costs of crop production (Zhao et al., 2015).

A huge transcriptomic modification in durum wheat (Triticum turgidum) upon nitrogen starvation highlighted 4,626 DEGs in different organs such as, roots, leaves, stems, and spikes (Curci et al., 2017). An interesting enrichment of GO categories related to “Cell Wall Biogenesis” and “Cellulose metabolism” in leaves was reported, highlighting the relationship between nitrogen nutrition and regulation of the integrity of cell wall. Also, a number of up-regulated high affinity nitrate transporters in root and flag leaf (e.g., NT2.3 and NT2.5) were found, while numerous cell wall related genes showing a transcriptional regulation induced by nitrogen starvation. Examples of these are pectin lyase, expansin, and wall associated kinase (WAK). Particularly, WAKs play critical roles in root growth under N limitation (Kiba and Krapp, 2016). Intriguingly, the correlation among WAKs and nitrogen deficiency was also observed in two lines of Tibetan barley (Hordeum vulgare) expressing nitrogen transporter with genomic variants (Quan et al., 2016).

Moreover, nitrogen starvation was studied in rice (Oryza sativa; Yang et al., 2015). This stress induced the modification in the expression of 1,158 genes in leaves, and 492 in roots. Part of these were identified as cell wall related genes: in roots it has been reported the expression of few genes involved
in cell wall degradation, such as fasciclin-like arabinogalactan protein (Os10t0524300) and sulfated surface glycoprotein (Os10t0524300). On the contrary, in leaves a higher number of DEGs related to various aspects of cell wall regulation was reported, such as fasciclin-like arabinogalactan protein (Os01t0668100), beta-galactosidase (Os06t0573600), UDP-glucuronic acid decarboxylase (Os03t0278000), and expansin (Os10t0555900, Os10t0556100).

Recently, Zhao et al. (2015) reported interesting results about the response of cucumber (Cucumis sativus) at early nitrogen shortage. Among the top enriched GO categories, the presence of genes encoding for proteins and enzymes involved in xyloglucan transferase activity were reported, underlining their role(s) in cell wall synthesis and remodeling. Further, a number of genes involved in cell wall loosening, cell expansion or cell wall component synthesis, including pectin lyases (Csa1G049960), XTH (Csa1G188680), pectinesterases (Csa7G447990; Csa7G343850), and expansin (Csa5G517210) were grouped in different expression clusters, and regulated during the early stage of N deficiency response. Thus, pectins breakdown under N deficiency would provide substrates to other biological processes, compensating for the depressed photosynthetic carbon assimilation. In addition, a connection between cell wall degradation and ascorbic acid metabolism can be hypothesized, in order to provide an improvement of fruit quality upon N deficiency (Zhao et al., 2015).

Interestingly, cell wall related and nitrate transporter genes interact also during heavy metal stress such as, aluminum excess (Li et al., 2017). It has been reported a critical role for the STOP1/ART1, a zinc finger transcription factor, which induced the expression of a number of genes related to the aluminum toxicity tolerance in crops (Yamaji et al., 2009).

The effectors of STOP1/ART1 suggest a correlation in tea plants (Camellia sinensis) among cell wall related enzymes (e.g., expansin and polygalacturonase); membrane proteins (e.g., magnesium transporter, UDP-glucosyl transferase, and potassium transporter); detoxification proteins (e.g., Heat shock protein 20) and nitrate transporters. Therefore, a major role in the aluminum allocation for tolerance, or accumulation, has been proposed for this protein network (Li et al., 2017). A schematic summary, describing the key events during drought, salt and N starvation responses, and their relationships between nitrogen uptake and cell wall remodeling, is proposed in Figure 1.

CONCLUSIONS

This review provided an updated survey between the correlation of nitrogen assimilation and cell wall related genes. These genes contribute together in several aspects of plant growth, physiology, and response to external stimuli. Evidences here described strongly support the notion of an involvement of NT and cell wall remodeling genes (e.g., pectin lyase, XTH, expansin) as a part of complex machinery involved in abiotic stress response in crops.

Further, cell wall related genes play a role in N starvation inducing cell wall relaxation and helping N assimilation.

FIGURE 1 | Main effects induced by drought, salinity and nitrogen starvation on nitrogen assimilation and cell wall remodeling in plants.
Therefore, these gene families could represent promising traits for genetic improvement in abiotic stress tolerance.

AUTHOR CONTRIBUTIONS

SL and SE conceived the idea and wrote the manuscript.

REFERENCES

Almagro, A., Lin, S. H., and Tsay, Y. F. (2008). Characterization of the Arabidopsis nitrate transporter NRT1.6 reveals a role of nitrate in early embryo development. Plant Cell. 20, 3289–3299. doi: 10.1105/tpc.107.056788

Aoki, Y., Okamura, Y., Tadaka, S., Kinoshita, K., and Obayashi, T. (2016). ATTED-II in 2016: A plant co expression database towards lineage-specific co-expression. Plant Cell Physiol. 57:e5. doi: 10.1093/pcp/pcv165

Álvarez-Aragón, R., and Rodríguez-Navaoro, A. (2017). Nitrate-dependent shoot sodium accumulation and osmotic functions of sodium in Arabidopsis under saline conditions. Plant J. 91, 208–219. doi: 10.1111/tpj.13556

Basile, A., Sorbo, S., Golia, B., Montanari, S., Castaldo-Cobianchi, R., and Esposito, S. (2011). Antioxidant activity in extracts of Leptodictyum riparium (Bryophyta), stressed by heavy metal, heat shock, and salinity. Plant Biosyst. 145, 77–80. doi: 10.1080/11263504.2010.509935

Beeckman, T., Przemeck, G. K., Stamiatiu, G., Laut, R., Teryn, N., De Rycke, R., et al. (2002). Genetic complexity of cellulose synthesis a gene function in Arabidopsis embryogenesis. Plant Physiol. 130, 1883–1893. doi: 10.1104/pp.0101603

Bellincampi, D., Cervone, F., and Lionetti, V. (2014). Plant cell wall dynamics and wall-related susceptibility in plant-pathogen interactions. Front. Plant Sci. 5:228. doi: 10.3389/fpls.2014.00228

Boursiac, Y., Chen, S., Lus, D. T., Sonieul, M., van den Dries, N., and Maurel, C. (2005). Early effects of salinity on water transport in Arabidopsis roots. Molecular and cellular features of aquaporin expression. Plant Physiol. 139, 790–805. doi: 10.1104/pp.105.065029

Cardi, M., Castiglia, D., Ferrara, M., Guerriero, G., Chiurazzi, M., and Esposito, S. (2015). The effects of salt stress cause a diversion of basal metabolism in barley roots: possible different roles for glucose-6-phosphate dehydrogenase isoforms. Plant Biochem. 86, 44–54. doi: 10.1016/j.plaphy.2014.11.001

Carpaneto, A., Boccaccio, A., Lagostena, L., Di Zanni, E., and Scholz-Starke, J. (2017). The signaling lipid phosphatidylinositol-3,5-bisphosphate targets plant CLC-a anion/H+ activity. EMBO Rep. 18, 1110–1117. doi: 10.15252/embr.201643814

Cobb, J. N., Declerck, G., Greenberg, A., Clark, R., and McCouch, S. (2013). Next-generation phenotyping: requirements and strategies for enhancing our understanding of genotype-phenotype relationships and its relevance to crop improvement. Theor. Appl. Genet. 126, 867–887. doi: 10.1007/s00122-013-2066-0

Curci, P. L., Aiessa Cigliano, R., Zuluga, D. L., Janni, M., Sansevero, W., and Sonnanate, G. (2017). Transcriptomic response of durum wheat to nitrogen starvation. Sci Rep. 7:1176. doi: 10.1038/s41598-017-01377-0

De Angeli, A., Monachello, D., Ephritikhine, G., Frachisse, J. M., Thominé, S., Gambale, F., et al. (2006). The nitrate/proton antiporter AtCLCa mediates nitrate accumulation in plant vacuoles. Nature 442, 939–942. doi: 10.1038/nature05013

Esposito, S. (2016). Nitrogen assimilation, abiestic stress and glucose-6-phosphate dehydrogenase: the full circle of reductants. Plants 5:24. doi: 10.3390/plants5020024

Fan, X., Niz, M., Fan, X., Xuan, W., Miller, A. J., and Xu, G. (2017). Plant nitrate transporters: from gene function to application. J. Exp. Bot. 68, 2463–2475. doi: 10.1093/jxb/erx011

Fernandes, J. C., García-Angulo, P., Goulao, L. F., Abebes, J. L., and Amâncio, S. (2013). Mineral stress affects the cell wall composition of grapevine (Vitis vinifera L.) callus. Plant Sci. 205–206, 111–120. doi: 10.1016/j.plantsci.2013.01.013

Therefore, these gene families could represent promising traits for genetic improvement in abiotic stress tolerance.

ACKNOWLEDGMENTS

SE acknowledges funding by “Benessere dalle BioTecnologie: Nuovi Processi e Prodotti per la Nutraceutica, la Cosmeceutica e la Nutrizione umana (BEnTeN)” by Regione Campania – D.R. n° 199 26Oct2011; and 254/2011.

SE acknowledges funding by “Benessere dalle BioTecnologie: Nuovi Processi e Prodotti per la Nutraceutica, la Cosmeceutica e la Nutrizione umana (BEnTeN)” by Regione Campania – D.R. n° 199 26Oct2011; and 254/2011.
cultivars varying in drought tolerance. *J. Plant Physiol.* 165, 1168–1180. doi: 10.1016/j.jplph.2007.09.006

Li, G., Tillard, P., Gojon, A., and Maurel, C. (2016). Dual regulation of root hydraulic conductivity and plasma membrane aquaporins by plant nitrate accumulation and high-affinity nitrate transporter NRT2.1. *Plant Cell Physiol.* 57, 733–742. doi: 10.1093/pcp/pcw022

Li, X., Zhao, J., Walk, T. C., and Liao, H. (2014). Characterization of soybean β-expansin genes and their expression responses to symbiosis, nutrient deficiency and hormone treatment. *Appl. Microbiol. Biotechnol.* 98, 2805–2817. doi: 10.1007/s00253-013-5240-z

Li, Y., Huang, J., Song, X., Zhang, Z., Jiang, Y., Zhu, Y., et al. (2017). An RNA-Minoia, S., Boualem, A., Marcel, F., Troadec, C., Quemener, B., Cellini, F., Ma, C., Haslbeck, M., Babujee, L., Jahn, O., and Reumann, S. (2006). Identification of soybean β-expansin genes and their expression responses to symbiosis, nutrient deficiency and hormone treatment. *Appl. Microbiol. Biotechnol.* 98, 2805–2817. doi: 10.1007/s00253-013-5240-z

Li, Y., Huang, J., Song, X., Zhang, Z., Jiang, Y., Zhu, Y., et al. (2017). An RNA-Seq transcriptome analysis revealing novel insights into aluminum tolerance and accumulation in tea plant. *Planta* 246, 91–103. doi: 10.1007/s00248-017-2688-6

Ma, C., Haslbeck, M., Babujee, L., Jahn, O., and Reumann, S. (2006). Identification and characterization of a stress-inducible and a constitutive small heat-shock protein targeted to the matrix of plant peroxisomes. *Plant Physiol.* 141, 47–60. doi: 10.1104/pp.105.073841

Marin-Rodríguez, M. C., Orchard, J., and Seymour, G. B. (2002). Pectate lyases, cell wall degradation and fruit softening. *J. Exp. Bot.* 53, 2115–2119. doi: 10.1093/jxb/erf089

Marow, P., Ding, A., and Kong, Y. (2016). Expansins: roles in plant growth and potential applications in crop improvement. *Plant Cell Rep.* 35, 949–965. doi: 10.1007/s00299-016-1948-4

Minoia, S., Boualem, A., Marcel, F., Troade, C., Quemener, B., Cellini, F., et al. (2015). Induced mutations in tomato SlExp1 alter cell wall metabolism and delay fruit softening. *Plant Sci.* 242, 1–8. doi: 10.1016/j.plantsci.2015.07.001

Quan, X., Zeng, J., Ye, L., Chen, G., Han, Z., Munawar, J., et al. (2016). Transcriptome profiling analysis for two Tibetan wild barley genotypes in responses to low nitrogen. *BMC Plant Biol.* 16:30. doi: 10.1186/s12870-016-0721-8

Reynolds, M., and Tuberosa, R. (2008). Translational research impacting on crop productivity in drought-prone environments. *Curr. Opin. Plant Biol.* 11, 171–179. doi: 10.1016/j.pbi.2008.02.005

Ruggiero, A., Punzo, P., Landi, S., Costa, A., Van Oosten, M., and Grillo, S. (2017). Improving plant water use efficiency through molecular genetics. *Horticulturae* 3:31. doi: 10.3390/horticulturae3020031

Sun, L., and Nocker, S. (2010). Analysis of promoter activity of members of the PECTATE LYASE-LIKE (PLL) gene family in cell separation in Arabidopsis. *BMC Plant Biol.* 10:152. doi: 10.1186/1471-2229-10-152

Tenhaken, R. (2015). Cell wall remodeling under abiotic stress. *Front. Plant Sci.* 5:771. doi: 10.3389/fpls.2014.00771

Van Oosten, M., Costa, A., Punzo, P., Landi, S., Ruggiero, A., Batelli, G., et al. (2016). “Genetics of drought stress tolerance in crop plants,” in *Drought Stress Tolerance in Plants*. Vol. 2, eds M. A. Hossain, S. H. Wani, S. Bhattachajee, D. Burritt, and L. Phan tran (Berlin: Springer), 39–70.

Weichert, A., Brinkmann, C., Komarova, N. Y., Dietrich, D., Thor, K., Meier, S., et al. (2012). AtPTR4 and AtPTR6 are differentially expressed, tonoplast-localized members of the peptide transporter/nitrate transporter 1 (PTR/NRT1) family. *Planta* 235, 311–323. doi: 10.1007/s00425-011-1508-7

Yamaji, N., Huang, C. F., and Nagao, S. (2009). A zinc finger transcription factor ART1 regulates multiple genes implicated in aluminum tolerance in rice. *Plant Cell* 21, 3339–3349. doi: 10.1105/tpc.109.070771

Yang, W., Yoon, J., Choi, H., Fan, Y., Chen, R., and An, G. (2015). Transcriptome analysis of nitrogen-starvation-responsive genes in rice. *BMC Plant Biol.* 15:31. doi: 10.1186/s12870-015-0425-5

Zhao, W., Yang, X., Yu, H., Jiang, W., Sun, N., Liu, X., et al. (2015). RNA-Seq-based transcriptome profiling of early nitrogen deficiency response in cucumber seedlings provides new insight into the putative nitrogen regulatory network. *Plant Cell Physiol.* 56, 455–467. doi: 10.1093/pcp/pcu172

Zhou, J., Xie, J., Liao, H., and Wang, X. (2014). Overexpression of b-expansin gene GmEXPB2 improves phosphorus efficiency in soybean. *Physiol. Plant.* 150, 194–204. doi: 10.1111/ppl.12077

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2017 Landi and Esposito. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.