Assessment of the effect of estradiol on biochemical bone turnover markers among postmenopausal women

Konrad Jamka1,A-F, Piotr Adamczuk1,B-C, Agata Skowrońska1,B, Iwona Boja1,2,B-C,E, Grzegorz Raszewski1,A,C-F

1 Department of Toxicology and Food Safety, Institute of Rural Health, Lublin, Poland
2 Department for Women’s Health, Institute of Rural Health, Lublin, Poland

A – Research concept and design, B – Collection and/or assembly of data, C – Data analysis and interpretation, D – Writing the article, E – Critical revision of the article, F – Final approval of article

Abstract

Introduction. Estrogen deficiency found in postmenopausal women may lead to disturbances in the balance of bone metabolism. Study of the influence of estradiol on markers of bone turnover may help to understand the mechanisms of bone metabolism and to monitor osteoporosis therapy in postmenopausal women at high risk of fractures. The aim of the study was evaluation of the effect of estradiol on the basic markers of bone turnover in postmenopausal women.

Materials and method. The study was conducted in a group of 92 postmenopausal women, divided into two groups: Gr-1 with low estradiol levels ≤ 10 pg/ml and Gr-2 with reference estradiol levels ≥ 25 pg/ml. Basic markers of bone turnover were examined: Ctx (C-terminal cross-linked telopeptide of type I collagen alpha chain) and OC (osteocalcin); pro-resorptive cytokines: IL-6 and TNF-α; vitamin 25(OH)D3 and lipid profile. Women was also analyzed according to demographic and clinical data.

Results. A positive relationship was found between estradiol and the main bone formation marker – OC (p=0.041, r=0.213) and IL-6, TNF-α (p=0.007, r=0.281 and p=0.018, r=0.246, respectively, but only in the group with a reference hormone level. Moreover, the main markers of bone turnover: Ctx and OC showed a mutual positive correlation (p=0.013; r=0.257) in women with reference estradiol levels. Relationships between markers of bone remodeling, pro-resorptive cytokines and vitamin D3 depending on the level of estradiol showed no statistically significant correlation.

Conclusions. The study showed that only in women with the reference estradiol level (≥ 25 pg/ml) were the bone formation and resorption processes balanced.

Keywords
estradiol, bone turnover markers, postmenopausal, osteoporosis

INTRODUCTION

Osteoporosis is defined as a systemic skeletal disorder characterized by low bone mass and disorganization of the internal microarchitecture of bone tissue [1]. The most severe clinical symptom of osteoporosis are bone fractures, and due to the treatment-related costs osteoporosis has become an important medical, social, and economic problem [2].

In mature skeleton the dominant process is bone remodelling. Processes of bone formation and resorption are mutually closely related, and in a healthy individual they remain in a relatively balanced state [3]. The amount of bone tissue that is resorbed is equal to the amount which is subsequently formed in each unit of bone remodelling. This process enables continuous bone renewal, while maintaining a relatively constant mass and resistance [3].

After menopause, the normal cycle of bone turnover is disturbed by estrogen deficiency caused by the loss of hormonal function of the ovaries observed in women at that time. Osteoclastic resorption activity increases while osteoblastic activity decreases. As a result, the amount of the resorbed bone exceeds the amount of bone embedded in the remodelling units, which leads to net bone loss. An increase in overall bone resorption is caused by inhibited bone resorption due to decreased availability of estrogen in both osteoclastogenesis and osteoclast activity [4].

Healthy bone requires constant remodelling which is the key process for maintaining its proper density. It is estimated that nearly 10% of bone mass is remodelled annually [4]. Metabolism of bone tissues and the process of bone remodelling are regulated by many factors, to which belong mainly hormones, as well as local growth factors and physical factors. Osteoclasts (bone breakers) and osteoblasts (bone builders) play a crucial role in the process of bone remodelling. These are two types of cells which basically form a multicellular unit of bone, coordinating the balance between bone formation and bone resorption. Cell differentiation towards osteoblasts and osteoclast is strictly controlled by both local and systemic factors [5], a regulated by several hormones, including parathyroid hormone, calcitonin, vitamin D₃, and estrogen [4].

Estrogens play a key role in the maintenance of bone mass and stabilization of bone metabolism [6]. Estrogens exert a direct effect on the maintenance of bone mineral density through a variety of mechanisms in osteoclasts, osteoblasts and osteocytes, and other cells by binding to...
The study was conducted in a selected group of 92 postmenopausal women, based on face-to-face interview and a survey. The criteria for inclusion into the study were age between 50–65 and absence of menstrual periods for at least two years, whereas the criteria of exclusion were active cancerous diseases within five years prior to recruitment, an active inflammatory condition and alcohol abuse. Based on the determined estradiol level, this group was subsequently divided into two study groups: Group 1 – women with a decreased serum estradiol level ≤ 10 pg/ml (Gr-1), n=52, and Group 2 – women with normal serum estradiol level ≥ 25 pg/ml (Gr-2), n=40 (referential values).

Basic markers of bone tissue metabolism were examined: C-terminal cross-linked telopeptide of the type I collagen alpha chain (Ctcx) – as a marker of bone resorption, and osteocalcin (OC) – as a marker of bone formation; vitamin 25(OH)D3; pro-resorptive cytokines: interleukin 6 (IL-6) and tumour necrosis factor-alpha (TNF-α), and lipid levels (total cholesterol, triglycerides, HDL-cholesterol and LDL-cholesterol). The examined group of women was also analyzed according to age, BMI, education level (incomplete primary, primary, vocational, secondary school, university); place of residence (city, town, rural); type of occupation performed (manual, non-manual, both manual and non-manual).

Serum levels of: OC, Ctx, vitamin 25(OH)D3, cytokines IL-6 and TNF-α were determined using the following tests: Osteocalcin ELISA assay; Serum CrossLaps One Step ELISA assay (Bioscience A/S, Denmark); 25(OH)D EIA assay Kit (R&D Systems, USA); Quantikine HS IL-6 and TNF-α ELISA Kit (R&D Systems, USA).

Lipid levels were determined by means of an automated chemistry analyzer (Express Plus Analyzer, Chiron, USA), and Siemens reagents (Siemens Healthcare Diagnostics, USA). All determinations were performed in accordance with procedures provided by the producers of the reagents and tests.

Statistical analysis. Statistical and graphic analyses were performed using the software GraphPad Prism 5. The results were presented as the mean value (x) ± standard deviation (SD), or as % of a given population. Statistical differences were investigated using: for variables with normal distribution – t-Student test, and for variables with non-parametric distribution – Mann-Whitney U test. In regression analysis, Pearson’s correlation coefficient was calculated. In all statistical analyses the p values p ≤ 0.05 were considered statistically significant.

RESULTS

Table 1 presents the collected demographic and clinical data concerning the examined women.

The mean age of women participating in the study was 56.54 ± 3.76 years, BMI 26.2 ± 4.4, they had mainly higher education (44.6%) and secondary school education (42.4%), and lived in large cities (58.7%). The mean level of estradiol was 20.9 ± 21.0 pg/ml; 5.6 ± 2.3 pg/ml in Group 1 and 40.8 ± 17.3 pg/ml in Group 2 (Tab. 1).

The determined levels of vitamin D3; Ctx; OC; cytokines IL-6 and TNF-α, and lipids: total-cholesterol; HDL-cholesterol; LDL-cholesterol and triglycerides was: 21.9 ± 13.6; 0.54 ± 0.16 µg/L; 10.7 ± 3.7 µg/L; 2.05 ± 1.87 pg/ml; 3.13 ± 1.69 pg/ml; and 224.7 ± 44.8; 53.7 ± 13.0; 141.4 ± 44.7 and 148.2 ± 64.4, respectively (Tab. 1).

No statistically significant differences in demographic data, level of vitamin 25(OH)D3, pro-resorptive cytokines:
Table 1. Respondents’ characteristics

Postmenopausal women	Total	Group-1	Group-2
n=92	n=52	n=40	
Age, years, mean ± (SD)	56.54 (3.76)	56.81 (3.80)	56.20 (3.73)
Education; %; primary	4.3	2.0	7.5
vocational	8.7	9.6	7.5
secondary school	42.4	42.3	42.5
university	44.6	46.1	42.5
BMI, kg/m²; mean ± (SD); %	26.2 (4.4)	26.2 (4.4)	26.2 (4.4)
<18.5 (underweight)	16.9 (4.1); 2.2	16.9 (1.5); 3.8	0.0
18.5 – 25 (normal weight)	22.5 (4.5); 40.2	22.4 (1.4); 32.7	22.4 (1.3); 50.0
25 – 30 (overweight)	27.4 (3.1); 37.0	27.2 (1.3); 44.2	27.9 (1.2); 27.5
>30 (obesity)	32.6 (2.9); 20.6	33.1 (3.6); 19.3	31.9 (1.8); 22.5
Place of residence; %; City	58.7	51.9	67.5
Town	21.7	26.9	15.0
Rural	19.6	21.2	17.5
Vitamin D₃, ng/ml; mean ± (SD)	21.9 (13.0)	20.2 (13.2)	24.2 (12.6)
Estradiol, pg/ml, mean ± (SD)	20.9 (21.0)	5.6 (2.3)	40.8 (17.3)
Ctx, µg/L; mean ± (SD)	0.54 (0.16)	0.55 (0.2)	0.54 (0.15)
Osteocalcin, µg/L; mean ± (SD)	10.7 (3.7)	10.1 (3.5)	11.5 (3.8)
IL-6, pg/ml; mean ± (SD)	2.05 (1.87)	1.97 (1.9)	2.18 (1.8)
TNF-α, pg/ml; mean ± (SD)	3.13 (1.69)	3.22 (1.76)	3.01 (1.60)
Lipids; mg/ml; mean ± (SD)	Total cholesterol: 224.7 (44.8); 225.5 (47.7); 223.7 (41.2)		
	HDL-cholesterol: 53.7 (13.0); 54.7 (13.1); 52.6 (13.0)		
	Triglycerides: 148.2 (61.4); 148.5 (63.2); 147.9 (59.6)		
	LDL-cholesterol: 141.4 (44.7); 141.4 (48.3); 141.5 (40.0)		

Figure 1. Correlation between osteocalcin (OC) and estradiol in the examined groups of women: 1A Total; 1B Women with a low level of estradiol (Gr-1 ≤ 10 pg/ml)

Estrogens may exert an indirect effect on the bone tissue through local secretion of pro-resorptive cytokines: IL-6 and TNF-α, as well as vitamin D₃. In order to verify this hypothesis, the mutual effect of these factors was evaluated in the examined women. Positive correlations were confirmed between estradiol and the levels of TNF-α and IL-6 (p=0.007, r=0.281 (Fig. 3A) and p=0.018, r=0.246 (Fig. 3B), respectively).

IL-6 and TNF-α, and lipids levels were observed between the examined groups according to estradiol level.

Figure 2. Correlation between C-terminal cross-linked telopeptide of the type I collagen alpha chain (Ctx) and osteocalcin (OC) in the examined groups of women: 1A Total; 1B Women with a low level of estradiol (Gr-1 ≤ 10 pg/ml)

However, in women with a low estradiol level, no such relationship was found. Also, no relationship was observed between the level of estradiol in the examined groups and the level of vitamin D₃ (results not shown).

In the subsequent part of the analysis, mutual correlations were assessed between biochemical markers of bone metabolism. A significant positive correlation was found between Ctx and OC levels (p=0.013; r=0.257(Fig. 2A). However, no such relationship was discovered in women with a low level of estradiol (p=0.141; r=0.207 (Fig. 2B).

Figure 3. Correlation between C-terminal cross-linked telopeptide of the type I collagen alpha chain (Ctx) and osteocalcin (OC) in the examined group of women (Total): 1A – tumour necrosis factor-alpha (TNF-α); 1B – interleukin 6 (IL-6)

Table 2. Correlation between C-terminal cross-linked telopeptide of the type I collagen alpha chain (Ctx) and osteocalcin (OC), and levels of vitamin D₃

Postmenopausal women	Total	Group-1	Group-2
n=92	n=52	n=40	
TNF-α	2.013	0.257	0.011
r=0.042	r=0.071	r=0.074	r=0.078
p=0.119	p=0.119	p=0.119	p=0.119
IL-6	0.010	0.325	0.152
r=0.001	r=0.001	r=0.001	r=0.001
p=0.578	p=0.578	p=0.578	p=0.578
Ctx	0.212	0.041	0.060
r=0.707	r=0.707	r=0.707	r=0.707
p=0.250	p=0.250	p=0.250	p=0.250
Osteocalcin	0.283	0.032	0.333
r=0.118	r=0.223	r=0.207	r=0.149
p=0.929	p=0.929	p=0.929	p=0.929
Vitamin D₃	0.272	0.044	0.010
r=0.011	r=0.080	r=0.158	r=0.230
p=0.844	p=0.844	p=0.844	p=0.844
	0.258	0.032	0.002
r=0.038	r=0.038	r=0.038	r=0.038

Table 3. Correlation between C-terminal cross-linked telopeptide of the type I collagen alpha chain (Ctx) and osteocalcin (OC), and levels of pro-resorptive cytokines: tumour necrosis factor-alpha (TNF-α) and interleukin 6 (IL-6)
DISCUSSION

The main cause of osteoporosis occurring after menopause is estrogen deficiency, mainly of 17 beta-estradiol by loss of hormonal function of the ovaries. In postmenopausal women the measured levels of estradiol may considerably differ; for example, in a study conducted by Baczyk [13] the level of estradiol was from an undetectable level up to approx. 55 pg/ml.

Estrogen deficiency occurring in women during this period of life may lead to disturbances in the balance of bone metabolism, and reduction in bone mass and bone density which may result in osteoporosis [6, 14]. Biochemical bone turnover markers (BTM), i.e. bone formation marker (osteocalcin) and bone resorption marker (Ctx), which allow assessment of the current state of bone metabolism, may be used in the evaluation of the risk of fractures. Therefore, an early measurement of BTMs in postmenopausal women may be useful in identification of the risk of osteoporosis and application of hormone replacement therapy [9].

In the current study of postmenopausal women, it was found that the basic bone formation marker – osteocalcin, was weakly positively related to the level of estradiol. Nevertheless, in the group of women with low estradiol level (5.6 ± 2.3 pg/ml) this relationship was not observed. Also, no relationship was noted between bone resorption marker Ctx and the level of estradiol. In addition, the determined levels of OC and Ctx in the groups of women with low and normal estradiol levels did not show any differences. These results are in accordance with the studies by other researchers. In a cross-sectional study including 92 healthy women after menopause (mean age 56.2 and 7.2 years after menopause) no relationship was found between the serum levels of OC and Ctx, and the levels of estradiol [15]. Also, other reports concerning postmenopausal women confirmed the lack of relationship between markers of bone turnover and levels of estradiol. However, while interpreting these results it should be kept in mind that, e.g. the level of Ctx is characterized by a significant circadian rhythm, and many diseases and methods of treatment affect BTM [16, 17].

The study confirmed a positive correlation between the levels of two main markers of bone turnover: Ctx and osteocalcin (OC), which may evidence that in the examined women after menopause, the processes of bone formation and resorption were balanced. However, this process was not observed in women with a low estradiol level. Similar results were obtained by Li et al. [18] in a study conducted among healthy Chinese postmenopausal women. In other studies [19], a positive correlation between Ctx and OC was also observed in all examined groups of postmenopausal women, also in a group of women with osteoporosis which was probably characterized by low estradiol level.

Some studies indicate the effect of estradiol on the production of pro-inflammatory cytokines in postmenopausal women [20]. Estrogens attenuate the production of cytokine TNF-α, and its deficiency associated with the menopausal period may stimulate pro-resorptive cytokines, such as TNF-α and IL-6. These results have been confirmed in studies which indicated a decrease in TNF-α, together with an increase in the level of estrogens and a negative correlation between IL-6 and a estradiol in the serum of postmenopausal women [20, 21]. In the current study, both lower levels of TNF-α and a negative correlation between estradiol and pro-resorptive cytokines were observed in the group of women with low levels of estradiol; however, they were statistically insignificant.

Pro-resorptive cytokines TNF-α and IL-6 may exert an effect on the differentiation, proliferation, and apoptosis of osteoblasts and osteoclasts, through autocrine and paracrine action, in this way regulating bone metabolism [14]. Therefore, in the presented study, the relationship was investigated between the main markers of bone resorption Ctx and OC formation, and the pro-resorptive markers TNF-α and IL-6. The analysis performed confirmed a negative correlation between Ctx and TNF-α, and a positive correlation between OC and IL-6. No effect of estradiol on these relationships was noted. Different results were presented by Chen YN et al. [22], who indicated that the serum level of Ctx was positively related with both TNF-α and IL-6. In addition, they confirmed an increase in the levels of bone turnover markers Ctx and OC, and pro-inflammatory cytokines TNF-α and IL-6 in the examined postmenopausal women. These differences may result from the characteristics of the examined women which differed from those in the presented study. In a study by Chen YN et al., in which participated women diagnosed with osteoporosis and additional, accompanying diseases, including pro-inflammatory cardiovascular diseases [22].

Deficiency of vitamin D3 is a common phenomenon concerning the whole population. The main causes are primarily an inadequately balanced diet, differences in exposure to sunlight, age, gender, body weight, ethnic origin, genetic predisposition [23], as well as the concentration of DBP – Vitamin D-binding Protein [24]. The concentration of DBP depends on the level of estradio, as demonstrated in the study by Pop LC et al. [24], in which the authors showed a correlation between the level of estradiol and DBP, as well as the level of total 25(OH)D3 vitamin.

In women after menopause due to the cessation of hormonal ovarian function, and consequently, a decrease in the level of estrogens, a decrease occurs in the concentration of vitamin D3, which is responsible for the maintenance of calcium homeostasis. Its very low levels are associated with the occurrence of osteomalacia, while high levels may increase bone resorption and deteriorate mineralization; it is therefore very important to maintain it on a proper level [23].

Vitamin D3, opposite to osteocalcin, is less bone-specific. It has no basic effect on bone tissue and acts more like a hormone, and the results of some studies show that it may act on bones through osteocalcin [25]. These observations were confirmed in a study which included a group of 200 postmenopausal women, where a significant positive correlation was found between the level of vitamin D3 and osteocalcin [26]. Nevertheless, other studies did not confirm a significant effect of therapy with vitamin D on bone turnover evaluated using the markers Ctx and OC [27]. In the presented study, a positive correlation was confirmed between the level of vitamin D3 and estradiol in the total group of the examined women, including the group with a low level of estradiol. In turn, no correlation was observed between the level of vitamin D3 and bone turnover markers – Ctx and osteocalcin. Similarly, vitamin D supplementation had no additional effect on bone turnover markers in patients with serum concentration of 25(OH)D below 30ng/ml [27].

However, the current study has some limitations. Earlier, the associations between dietary patterns, bone turnover and bone mineral density (BMD) were shown. Unfortunately, in this study the participants were not examined to assess
bone mineral density. Bone density scanning, also called DXA (dual-energy x-ray absorptiometry), is effective in tracking the effects of treatment for osteoporosis and other conditions that cause bone loss. The DXA scan analysis is commonly used to diagnose osteoporosis and to assess an individual's risk for developing osteoporotic fractures. Also, the nutritional pattern of the postmenopausal women was not studied, although it is known that eating habits may influence both bone turnover and BMD.

CONCLUSIONS

Summing-up, the postmenopausal women in the study who had low level of estradiol were characterized by impaired bone turnover. A relationship was found between the level of estrogen and the concentration of pro-resorptive cytokines TNF-α and IL-6, and a relationship between TNF-α and bone resorption marker Ctx, and IL-6 and bone formation marker OC. Positive correlations were also observed between estradiol and vitamin D also in women with a low hormone level; however, no relationship was found between vitamin D and bone turnover markers Ctx and osteocalcin. Finally, no relationship was confirmed between body mass index (BMI) and the examined parameters of bone turnover.

REFERENCES

1. Rizzolo R. Postmenopausal osteoporosis: Assessment and management. Best Pract Res Clin Endocrinol Metab. 2018; 32(5): 739–57. doi:10.1016/j. beem .2018.05.001
2. Janiszewska M, Barańska A, Jędrych T, Kulik T, Kasperek J, Drop B. The impact of selected factors on acceptance of illness and life satisfaction among female residents of rural areas treated for osteoporosis. Ann Agric Environ Med. 2019; 26(4): 592–599. doi:10.26444/aem/109960
3. Almeida M, Laurent MR, Dubois V, et al. Estrogens and Androgens in Skeletal Physiology and Pathophysiology. Physiol Rev. 2017; 97: 135–187. doi:10.1152/physrev.00033.2015
4. Katsimbri, P. The biology of normal bone remodelling. Eur J Cancer Care (Engl). 2017; 26(6): e12740. doi:10.1111/ecc.12740
5. Møller AMJ, Delaissé JM, Olesen JB, et al. Aging and menopause reprogram osteoclast precursors for aggressive bone resorption. Bone Res. 2020; 8: 27. doi:10.1038/s41413-020-0102-7
6. Levin VA, Jiang X, Kagan R. Estrogen therapy for osteoporosis in a nonfasting state. Bonekey.2014.68
7. Khalid AB, Krum SA Estrusen receptors alpha and beta in bone. Bone. 2016; 87: 130–135. doi:10.1016/j.bone.2016.03.016
8. Almeida M, Laurent MR, Dubois V, et al. Estrogens and Androgens in Skeletal Physiology and Pathophysiology. Physiol Rev. 2017; 97: 135–187. doi:10.1152/physrev.00033.2015
9. Eastell R, Szulc P. Use of bone turnover markers in postmenopausal osteoporosis. Lancet Diabetes Endocrinol. 2017; 5: 908–23. doi:10.1016/S2213-8587(17)30184-5
10. Szulc P, et al. Use of CTX-I and PINP as bone turnover markers: National Bone Health Alliance recommendations to standardize sample handling and patient preparation to reduce pre-analytical variability. Osteoporsis Int. 2017; 28: 2541–56. doi:10.1007/s00198-017-4082-4
11. Wheeler G, Elshahaly M, Tuck SP, et al. The clinical utility of bone marker measurements in osteoporosis. J Transl Med. 2013 Aug; 11: 201. doi:10.1186/1479-5876-11-201
12. Bojar I, Lyubinets O, Novotny J, et al. Intensification of menopausal symptoms among female inhabitants of East European countries. Ann Agric Environ Med. 2016; 23(3): 517–524. doi:10.5267/aarev/1239166.1219198
13. Baczyk G, Chuchracki M, Klejewski A. The relationship between selected biochemical parameters, clinical factors and bone mineral density in postmenopausal women with osteoporosis. Ginekol Pol. 2012 Mar; 83 (3): 194–201.
14. Park SG, Jeong SU, Lee JH, et al. The Changes of CTX, DPD, Osteocalcin, and Bone Mineral Density During the Postmenopausal Period. Ann Rehabil Med. 2018 Jun; 42(3): 441–448. https://doi.org/10.5535/ arm.2018.42.3.441
15. García-Martín A, Reyes-García R, García-Castro JM, et al. Role of serum FSH measurement on bone resorption in postmenopausal women. Endocrine. 2012 Apr; 41 (2): 302–308. doi:10.1007/s12020-011-9541-2
16. Pudhe BD, Pathak S, Bhetwal A, et al. Effect of age and estrogen on biochemical markers of bone turnover in postmenopausal women: a population-based study from Nepal. Int J Womens Health. 2017; 9: 781–788. doi:10.2147/IJWH.S145191
17. Gossiel F, Finigan J, Jacques R, et al. Establishing reference intervals for bone turnover markers in healthy postmenopausal women in a nonfasting state. Bonekey. Rep. 2014; 4: 573. doi:10.1038/ bonekey.2014.68
18. Li C, Chen P, Duan X, et al. Bioavailable 25(OH)D but Not Total 25(OH)D Is an Independent Determinant for Bone Mineral Density in Chinese Postmenopausal Women. EBioMedicine. 2017; 15: 184–192. doi.org/10.1016/j.ebiom.2016.11.029
19. Naeem ST, Hussain R, Raheem A, et al. Bone Turnover Markers for Osteoporosis Status Assessment at Baseline in Postmenopausal Pakistani Females. J Coll Physicians Surg Pak. 2016 May; 26(5): 408–412.
20. Liu Y-P, Li J, Xin S-B. Study the relevance between inflammatory factors and estradiol and their association with knee osteoarthritis in postmenopausal women. Eur Rev Med Pharmacol Sci. 2018; 22(2): 472–478. doi:10.26355/eurrev_201801_14197
21. Malutam AN, Dan M, Nicolea C, Carmen M. Proinflammatory and anti-inflammatory cytokine changes related to menopause. Prz Menopauzalny. 2014; 13(3): 162–18. doi:10.5114/pm.2014.43818
22. Chen YN, Wei P, Yu Ji, et al. Higher concentration of serum C-terminal cross-linking telopeptide of type I collagen is positively related with inflammatory factors in postmenopausal women with H-type hypertension and osteoporosis. Orthop Surg. 2019; 11(6): 1133–1141. doi:10.1111/os.12567
23. Kocka KH, Ślusarska BJ, Nowicki GJ, et al. Level of vitamin D and B group vitamins and functional efficiency among the chronically ill elderly in domiciliary care – a pilot study. Ann Agric Environ Med. 2016; 23(3): 517–524. doi.10.5604/12321966.1219198
24. Gossiel F, Finigan J, Jacques R, et al. Establishing reference intervals for bone turnover markers in healthy postmenopausal women in a nonfasting state. Bonekey. Rep. 2014; 4: 573. doi:10.1038/ bonekey.2014.68
25. Gosiewski K, Krawczyk A, Grzybowska K. The relationship between serum vitamin D and osteocalcin levels with healthy pre- and postmenopausal women: relationship with estradiol and progesterone. Osteoporos Int. 2017; 28: 2541–56. doi:10.1007/s00198-017-4082-4