Interactions of Thrombospondin with Extracellular Matrix Proteins: Selective Binding to Type V Collagen

SUSANNE M. MUMBY, GREGORY J. RAUGI, and PAUL BORNSTEIN
Departments of Biochemistry and Medicine, University of Washington, Seattle, Washington 98195

ABSTRACT

Thrombospondin (TS), a protein first described in platelets, was recently shown to be synthesized and secreted by endothelial cells, fibroblasts, and smooth muscle cells. The presence of TS in the extracellular matrix of cultured cells has prompted us to examine the associations of this protein with matrix macromolecules. Interactions of TS with both matrix and serum proteins were tested using an enzyme-linked immunosorbent assay. With this assay we assessed the binding of TS in solution to proteins adsorbed to polystyrene microtiter plates. Among collagens, platelet TS bound to type V but not to types I, III, or IV. This selective interaction was confirmed in experiments using proteins linked to cyanogen bromide-activated Sepharose. TS released from platelets in response to thrombin activation, as well as that secreted by endothelial cells in culture, bound to type V but not to type I collagen-Sepharose. No binding was observed to denatured type V collagen-Sepharose. The binding region for type V collagen was located in a chymotrypsin-produced fragment of TS with chains of $M_r = 70,000$, after reduction. Interactions of TS with a number of other proteins, including fibronectin, fibrinogen, and laminin, could be demonstrated using the enzyme-linked immunosorbent assay technique but the interpretation of these findings is difficult since comparable binding to protein-Sepharose was not always observed. Our findings suggest that both the extravascular distribution and function of TS in vivo may involve an interaction with type V collagen.

Thrombospondin (TS) is a glycoprotein consisting of three, possibly identical, disulfide-bonded chains of $\sim 140,000$ mol wt (25, 31). The protein was initially described in platelets and was shown to be released from storage in α-granules by the action of thrombin (2, 18). A fraction of the secreted TS binds to the platelet surface (15, 39). Subsequently TS, or a protein very similar to it, was shown to be secreted by endothelial cells (9, 34, 36, 42, 45) and by various other cells in culture, including fibroblasts (21, 40), smooth muscle cells (40), and granular pneumocytes (43). The observation by immunofluorescence of TS in a fibrillar extracellular meshwork in cultured cells (21, 40) suggested that TS may function as a normal component of the extracellular matrix in vivo.

It has been proposed that TS acts as an endogenous lectin in platelet aggregation by binding to fibrinogen associated with the activated platelet surface (20). Support for this proposal has come from the observation that fibrinogen in solution can form a complex with TS adsorbed to a plastic surface (26). In addition, Lahav et al. (22) have provided evidence for the interaction of TS with fibronectin during platelet adhesion and aggregation. Using a radioactive cross-linking agent, an interaction was observed between TS released from activated platelets and fibronectin or collagen adsorbed to a glass surface (22).

In view of the synthesis of TS by a variety of cells and its location in the extracellular milieu, we thought it likely that its function in the extracellular matrix would involve interactions with matrix proteins. We therefore tested the interaction of TS with various purified extracellular matrix proteins, as well as with representative serum and intracellular proteins, by an enzyme-linked immunosorbent assay (ELISA) method. Further testing of positive interactions was performed by examination of the binding of 125I-TS to proteins coupled to

1 Abbreviations used in this paper: ELISA, enzyme-linked immunosorbent assay; TS, thrombospondin.
Interaction of Thrombospondin with Type V Collagen

Preparation and Modification of Thrombospondin:

Thrombospondin (TS) was isolated from platelets by the method of Lawler and Slater (24) as modified by Raugi et al. (40), with the following changes. In some experiments the EDTA in the platelet suspension buffer was replaced with 1 mM CaCl₂. Activation of platelets was accomplished by adding human thrombin (obtained from W. Kisiel, University of Washington) to a final concentration of 0.7 National Institutes of Health U/ml and the thrombin was inactivated by addition of phenylmethylsulfonyl fluoride to a final concentration of 2 mM. Whole or partially activated platelets in the platelet suspension buffer, the platelet aggregates, and plasma were then centrifuged and rehomogenized. The platelet aggregate was rapidly removed by centrifugation at 900 g for 2 min at 4°C (J. Lawler, personal communication). The supernatant was snap frozen and rewarmed at 37°C. Residual insoluble material was removed by centrifugation at 27,000 g for 20 min at 4°C (49). The protease inhibitor N-ethylmaleimide was added to the supernatant fraction to a final concentration of 1.25 mg/ml. The releaseate was then applied to a Sepharose CL-4B column (2.5 x 100 cm), equilibrated in a buffer containing 20 mM Tris-HCl, 150 mM NaCl, and either 2.5 mM EDTA or 1.0 mM CaCl₂, pH 7.5. The eluate was monitored by absorbance at 280 nm and fractions containing TS were pooled and passed over a column containing 5 ml of heparin-Sepharose 6B (Pharmacia, Inc., Piscataway, NJ). The column was washed with 20 mM phosphate buffer, pH 7.5, containing 150 mM NaCl, and either 25 mM EDTA or 50 mM CaCl₂. A further wash with the same buffer containing 300 mM NaCl was performed, before elution of TS with 20 mM phosphate buffer containing 600 mM NaCl and either 25 mM EDTA or 50 mM CaCl₂. Yields of up to 6 mg of TS were obtained from 4 U platelets, with a peak concentration of eluate from the heparin-Sepharose column of ~2 mg/ml. Bovine platelet TS was prepared by a previously published method (40). TS was iodinated with the Iodo-Gen reagent (1,3,4,6-tetrachloro-1', 3', 4', 6'-diphenyldiglycouril; Pierce Chemical Co., Rockford, IL) using the method of Salacinski et al. (48). 125I-TS was separated from free iodine by gel filtration on a column of G-25 (medium) Sephadex (Pharmacia, Inc.) equilibrated in PBS. Specific activities of 700-2,400 dpm/ng were obtained. After chromatography, BSA was added as a carrier to a final concentration of 1 mg/ml and the TS diluted (if necessary) to a maximum concentration of 100 μg/ml. Analysis showed >95% of the radioactivity to be precipitable in 10% trichloroacetic acid. SDS PAGE followed by autoradiography showed no discernible degradation of TS from all of the activity present in TS and in a small amount of a lower molecular weight derivative in the starting material. Chymotryptic fragments of TS were prepared as described by Raugi et al. (40), manuscript in preparation. Briefly, TS prepared in the presence of calcium was digested with α-chymotrypsin (three times crystallized, Worthington Diagnostics, Freehold, NJ) for 30 min at 37°C with an enzyme/substrate ratio of 1:200 (wt/wt). The reaction was terminated by adding diisopropylfluorophosphate (Aldrich Chemical Co., Milwaukee, WI) to a final concentration of 2 mM. Solutions of chymotryptic fragments were dialyzed against PBS; in some cases collagens were in 25 mM acetic acid. The gel was rocked end-over-end overnight. The remaining reactive groups were blocked by mixing the gel with 0.2 M glycine, pH 8.0, overnight. Control gels were mixed first with bicarbonate buffer lacking protein and then with bicarbonate buffer. The gels were rinsed extensively with the bicarbonate buffer alternating with 0.1 M acetate buffer, pH 4, containing 0.5 M NaCl. The efficiency of coupling for native collagen types I and V and phosphorylase b was ~50%. The efficiency of coupling for denatured collagen was 85%. Fibrinogen, catalase, and fibrinectin were coupled at >90% efficiency. The degree of coupling was determined by measuring protein concentration (29) of the coupling solution before and after the cross-linking reaction.

Preparation of Proteins Coupled to Sepharose:

Proteins were coupled to cyanogen-bromide-activated Sepharose (Pharmacia, Inc.) at 4°C following directions provided by the manufacturer. Briefly, proteins (2 mg/ml or 5 mg/ml) were solubilized into coupling buffer (0.1 M sodium bicarbonate, pH 8.3, containing 0.5 M NaCl). A protein solution twice the volume of the gel was rocked end-over-end overnight. The remaining reactive groups were blocked by mixing the gel with 0.2 M glycine, pH 8.0, overnight. Control gels were mixed first with bicarbonate buffer lacking protein and then with bicarbonate buffer. The gels were rinsed extensively with the bicarbonate buffer alternating with 0.1 M acetate buffer, pH 4, containing 0.5 M NaCl. The efficiency of coupling for native collagen types I and V and phosphorylase b was ~50%. The efficiency of coupling for denatured collagen was 85%. Fibrinogen, catalase, and fibrinectin were coupled at >90% efficiency. The degree of coupling was determined by measuring protein concentration (29) of the coupling solution before and after the cross-linking reaction.

**TS binding to ligand-Sepharose samples was assayed essentially as described by Lahay et al. (22). To a 0.1-ml sample of packed protein-coupled Sepharose was added either (a) 0.02 ml culture medium conditioned by endothelial cells; (b) 0.1 ml human platelet releasate (40); (c) 0.1 ml human platelet releasate (40); (d) TS at 10 μg/ml; (e) 0.25 ml of a chromatographic digest of human platelet TS at ~250 μg/ml. The solutions were allowed to incubate with the Sepharose samples at room temperature for 15 min, with brief vortexing every 5 min. The bound and unbound fractions were then analyzed by SDS PAGE. Those ligand-Sepharose samples used for TS-binding experiments were first rinsed with PBS containing 1 mg/ml BSA. After incubation with 125I-TS, small equal aliquots of the bound and unbound fractions were analyzed by counting in a gamma counter (Beckman Instruments, Fullerton, CA, Gamma 4000) as well as by SDS PAGE.

Interaction of TS with Type V Collagen

Proteins were resolved by DEAE cellulose (DE52, Whatman Laboratory Products, Inc.) and hydroxylapatite (Bio-Rad Laboratories, Richmond, CA) chromatography (34) and amino purine was determined both by Coomassie Blue staining and fluorography of SDS polyacrylamide gels (37). Protein concentrations were determined by the method of Bradford (5) or Lowry et al. (28) using bovine pancreas α-chymotrypsin as a standard (Worthington Diagnostics).

RESULTS

A number of proteins were tested for their ability to bind TS, as detected by a specific antisera to TS in an ELISA. The assay has the advantage of using submicrogram quantities of...
proteins and is easy to perform in an automated manner. The results of a large number of experiments that tested for the ability of TS to bind to proteins adsorbed to polystyrene are summarized in Table I. Similar results were obtained with human and bovine platelet TS. Purification of TS in the presence of Ca\(^{2+}\) is believed to preserve a more native structure of the protein (23). However, no differences were observed between the binding of human platelet TS purified in the presence of either 50 \(\mu M\) Ca\(^{2+}\) or EDTA (unpublished experiments).

A striking selective binding of TS to type V collagen was observed (Table I). However, no interaction between TS and types I, III, and IV collagens could be demonstrated. This distinction was not due to the lack of binding of the latter collagens to plastic since their presence was readily demonstrated by an ELISA using the appropriate specific antisera (data not shown). Collagens at 5 \(\mu g/ml\), in PBS or 25 mM acetic acid, exhibited the same selective binding of TS to type V collagen. TS was also bound to heat-denatured type V collagen-coated wells. Prior digestion of type V collagen with highly purified bacterial collagenase abolished the binding of TS (data not shown).

TS also bound to the basement membrane protein, laminin. Among serum proteins, TS bound to fibronectin, fibrinogen, von Willebrand factor, factors IXa, and Xa, and low-density lipoprotein. TS did not bind to albumin, high density lipoprotein or IgG (Table I). The interaction with fibrinogen agrees with the finding reported by Leung and Nachman (26). In some instances quantitative differences in the extent of binding of TS may be due to differences in the amount of the protein ligand bound to plastic. However, the distinction between TS binding to low and high density lipoproteins cannot be attributed to lack of binding of the latter to plastic since specific antibodies were used in an ELISA to demonstrate adsorption of each lipoprotein (data not shown).

In view of the large number of positive interactions observed for TS with other proteins, we tested two cytoplasmic proteins, catalase and phosphorylase b, which we had expected to serve as negative controls. However, both of these proteins bound TS as extensively as did type V collagen (Table I). Some indication of the nature of the interaction of TS with proteins was obtained by altering the composition of the ELISA buffer. The effects of a higher concentration of Tween-20, high ionic strength, urea, and SDS on the binding of TS to several proteins are shown in Fig. 1. An increase in the concentration of Tween-20 to 1%, from the normal level of 0.05%, had no effect on TS binding (the extent of binding in lanes 1, Fig. 1, were the same at both detergent concentrations). 1 M NaCl nearly abolished binding to type V collagen but had little effect on the binding of TS to fibrinogen or phosphorylase b. 4 M urea reduced binding to all three proteins but, again, the effect was most substantial for type V collagen. Finally, 0.1% SDS reduced the binding of TS to all the proteins tested. These findings suggest that the nature of the association of TS with type V collagen differs in its properties from the binding to fibrinogen or phosphorylase b.

To investigate further the specificity of binding, interactions of TS with proteins linked to Sepharose were tested (Table II). Iodinated TS was not bound significantly above background to either native or denatured type I collagen or denatured type V collagen. In contrast, highly significant binding to native type V collagen-Sepharose was observed. This binding was as extensive as that to heparin. Human platelet type V TS bound equally well to type V collagen isolated from either human or bovine tissues (data not shown). Binding of TS to fibrinogen was modest but significant, and no binding to fibronectin above control levels was detected (Table II). It was of considerable interest that neither catalase nor phosphorylase b could bind TS significantly when these proteins were linked to Sepharose.

The selective binding of TS to type V collagen was demonstrated by incubating the complex mixture of proteins secreted by thrombin-activated platelets with type V collagen-Sepharose. In addition, control Sepharose, type I collagen-
and heparin-Sepharose were used. The results, as analyzed by SDS PAGE, are shown in Fig. 2. Of the mixture of proteins released by platelets only TS was bound to a significant extent by type V-collagen Sepharose. TS, as well as other proteins, were bound to heparin-Sepharose whereas no platelet proteins were bound to type I collagen-Sepharose or control Sepharose. In the case of both type I and type V collagen-Sepharose, the hot SDS PAGE sample buffer used to elute proteins from the ligand-Sepharose also dissociated a fraction of type I and type V collagen, respectively (Fig. 2, lanes 2 and 3). It should be noted that less of the TS in the platelet releasate bound to type V collagen than to heparin-Sepharose (Fig. 2) whereas iodinated TS bound equally well to the two ligands (Table II). It is possible that other proteins in the platelet releasate may have interfered with the ability of TS to bind to the type V collagen-Sepharose.

The selectivity of binding of TS to type V collagen was shown in yet another way by testing for the ability of type V collagen-Sepharose to bind TS secreted by endothelial cells into the culture medium. For comparison, control, ovalbumin, and type I collagen-derivatized Sepharose samples were used. Conditioned culture medium from endothelial cells labeled with [35S]methionine was run over a denatured type I collagen-Sepharose column to remove fibronectin. The pretreated medium was incubated with the derivatized Sepharose samples and the interactions were analyzed by SDS PAGE and autoradiography. Binding of TS was detectable for type V collagen-Sepharose only (Fig. 3). Bands representing other proteins after removal of fibronectin. Endothelial cell proteins were metabolically labeled with [35S]methionine in the presence of 1 mg/ml BSA and were then passed over a denatured type I collagen-Sepharose column to remove fibronectin. Equal portions of conditioned medium proteins were then assayed with various ligand-Sepharose preparations. Unbound (A) and bound (B) samples were analyzed by SDS PAGE (6 and 10% composite gel) in the presence of dithiothreitol and Coomassie Blue staining. (A) Unbound platelet proteins; (B) proteins bound to ligand-Sepharose samples. Lanes 1, control Sepharose; lanes 2, type I collagen-Sepharose; lanes 3, type V collagen-Sepharose; lanes 4, heparin-Sepharose. Arrows indicate the positions of migration of thrombospondin (TS), type V collagen α-chains [α1(V), α2(V)], and type I collagen α-chains [α1(I), α2(I)]. Collagen chains were dissociated from the collagen-Sepharose samples by the hot SDS PAGE sample buffer used to elute bound proteins.

![Figure 2](image2.png)

Figure 2 Binding of secreted platelet proteins to Sepharose-bound ligands. Proteins secreted by thrombin-activated platelets were incubated with samples of ligand-Sepharose and equal portions of the unbound and bound proteins were analyzed by SDS PAGE (6 and 10% composite gel) in the presence of dithiothreitol and Coomassie Blue staining. (A) Unbound platelet proteins; (B) proteins bound to ligand-Sepharose samples. Lanes 1, control Sepharose; lanes 2, type I collagen-Sepharose; lanes 3, type V collagen-Sepharose; lanes 4, heparin-Sepharose. Arrows indicate the positions of migration of thrombospondin (TS), type V collagen α-chains [α1(V), α2(V)], and type I collagen α-chains [α1(I), α2(I)]. Collagen chains were dissociated from the collagen-Sepharose samples by the hot SDS PAGE sample buffer used to elute bound proteins.

![Figure 3](image3.png)

Figure 3 Ligand-Sepharose binding of endothelial cell secreted proteins after removal of fibronectin. Endothelial cell proteins were metabolically labeled with [35S]methionine in the presence of 1 mg/ml BSA and were then passed over a denatured type I collagen-Sepharose column to remove fibronectin. Equal portions of conditioned medium proteins were then assayed with various ligand-Sepharose preparations. Unbound (A) and bound (B) samples were analyzed by SDS PAGE (6 and 10% composite gel) in the presence of dithiothreitol, and autoradiography. Lanes 1, control-Sepharose; lanes 2, ovalbumin-Sepharose; lanes 3, type I collagen-Sepharose; lanes 4, type V collagen-Sepharose. The arrow indicates the position of migration of thrombospondin (TS).
in TS, the protein was cleaved with chymotrypsin under conditions that lead to the production of two stable fragments with chain molecular weights of 70,000 and 28,000 after reduction (Raugi, G. J., S. M. Mumby, and P. Bornstein, manuscript in preparation). The chain \(M_r = 28,000 \)-fragment binds to heparin (Raugi, G. J., S. M. Mumby, and P. Bornstein, manuscript in preparation) and is presumably similar to the chain \(M_r \approx 30,000 \) heparin-binding fragment of TS described by others (8, 24). As shown in Fig. 4, purified TS bound almost quantitatively to type V collagen-Sepharose (lanes 2) but not to control Sepharose (lanes 1). When a chymotryptic digest of TS was incubated with type V collagen-Sepharose, selective binding of the larger fragment, composed of \(M_r = 70,000 \) chains, was observed; essentially no binding of the heparin-binding fragment occurred (lanes 4). Control Sepharose bound neither of the fragments (lanes 3). These experiments provide preliminary evidence for a domain structure with multiple binding sites for TS, analogous to that described for fibronectin (19).

DISCUSSION

The identification of TS in the extracellular matrix of cultured cells (21, 40) has led us to examine whether specific interactions with matrix macromolecules could be demonstrated. Such interactions might provide information regarding the distribution and function of TS in vivo. We initially chose the ELISA method to detect protein interactions because of its economy in use of protein, ease, and speed. A striking selectivity for binding of type V collagen, to the exclusion of types I, III, and IV, was observed (Table I). However, a perplexing number of positive reactions with other proteins was observed. In the cases of fibrinogen and fibronectin, interactions with TS had been reported under different experimental conditions (22, 25); however, with cytoplasmic proteins such as catalase and phosphorylase b, an association was not expected.

It seemed possible that the adsorption of proteins to a plastic surface might permit anomalous interactions. We attempted to inhibit such possibly adventitious interactions, unsuccessfully, by increasing the concentration of detergent during the TS binding phase of the ELISA assay (Fig. 1). Indeed, the interaction of phosphorylase b with TS withstood high ionic strength whereas that of type V collagen did not (Fig. 1). We therefore assessed the ability of a number of different proteins, coupled in solution to Sepharose, to bind TS. Selective binding of \(^{125}\)I-TS to type V collagen was maintained under these conditions (Table II). Some indication of specificity was provided by the finding that binding was abolished when type V collagen was heat denatured prior to linkage to Sepharose. It therefore appears that the native structure of the triple helix is required for the complex formation between TS and type V collagen coupled to Sepharose.

Additional support for the interaction of TS and type V collagen came from the demonstration that TS could be selectively bound to type V collagen-Sepharose from a complex mixture of proteins present in the supernatant fraction of thrombin-activated platelets (Fig. 2) or in the conditioned medium of endothelial cells. In the latter case more extensive binding could be shown when fibronectin was removed prior to the interaction (Fig. 3). Increased interaction of TS with type V collagen caused by removal of fibronectin could be indicative of TS and fibronectin binding to the same site on the collagen molecule.

No interaction of platelet \(^{125}\)I-TS or endothelial cell TS with catalase- or phosphorylase-Sepharose was observed (Table II and unpublished observations), although platelet TS did bind to the enzymes when they were adsorbed to plastic (Table I). The interaction of TS with the cytosolic enzymes was not expected and may not be physiologically relevant. We have also detected binding of fibrinogen, von Willebrand factor, and type V collagen to phosphorylase b adsorbed to plastic. Adsorption of the enzymes to plastic may cause a conformational change resulting in the exposure of nonspecific protein binding sites. It has been demonstrated that adsorption of fibronectin to hydrophobic polystyrene causes conformational changes in the fibronectin molecule as determined by assay of biological activity and reactivity with antifibronectin (16, 17). These findings, together with a recently published study of the binding of proteoglycan link protein to collagens (6), indicate that the ELISA technique may be useful as a screening procedure but that positive interactions should be confirmed by another binding assay.

The structural basis for the selective binding of TS to type V collagen, as opposed to other closely related collagens such as types I or III, is not known. However, type V collagen differs from other interstitial collagens in possessing (a) a markedly reduced susceptibility to vertebrate collagenase (44), (b) a higher proportion of larger hydrophobic amino acids (35), and (c) different fibril-forming capability (7). If a limited TS-binding domain can be defined in type V collagen, its structure would be of interest. An analysis of the binding of TS to type V procollagen, secreted by A204 rhabdomyosarcoma cells (1), would also be informative.

We have preliminary evidence that the region of TS responsible for binding to type V collagen differs in location from the heparin-binding site. As shown in Fig. 4, a large
chymotryptic fragment of TS with chains of $M_r = 70,000$ after reduction bound to type V collagen, whereas the smaller chymotryptic fragment did not. The $M_r = 28,000$ chymotryptic fragment binds to heparin (Raugei, G. J., S. M. Mumby, and P. Bornstein, manuscript in preparation) and is presumably similar to the heparin-binding fragment generated by thrombin, plasmin, trypsin, or thermolysin (8, 24). These findings suggest that thrombospondin may be another example of a modular protein, such as fibronectin, in which discrete, relatively protease-resistant binding domains are separated by more flexible protease-sensitive regions (19, 41).

Gartner et al. (12) have reported that an endogenous lectin, secreted by activated platelets, binds to fibronogen on the platelet surface. It has been suggested by Jaffe et al. (20) that TS functions as such a lectin. In their view platelets interact with each other by intercellular bridges of multivalent TS anchored to fibronogen. This model is supported by the recent demonstration that fibronogen in solution binds to TS adsorbed to a plastic surface (26). In our experience the inverse reaction, i.e., binding of TS to adsorbed fibronogen, also occurs (Table I). An interaction between 125I-TS and fibronogen-Sepharose could also be demonstrated, although the extent of the interaction was not as great as that between TS and type V collagen or heparin (Table II).

The interactions between TS and type V collagen or fibrinogen should be considered in the context of the interactions with other proteins that have been detected, using the modified ELISA technique alone. The interaction with von Willebrand factor may be physiologically significant in that the protein is thought to play a role in platelet aggregation and adhesion, particularly at sites of vascular injury (11, 47). It should be noted, however, that Leung and Nachman (26) were unable to demonstrate an interaction of fluid phase von Willebrand factor with adsorbed TS. The binding of TS to factors IX, X, and XI may be a consequence of the ability of these serine proteases to cleave TS (Raugi, G. J., S. M. Mumby, and P. Bornstein, manuscript in preparation). TS could also play a structural role in association with lammin in basement membranes. The reason for the binding of TS to low density lipoprotein, yet to be confirmed by other means, is currently not understood. It is, however, interesting that TS has been shown by immunofluorescence techniques to be located in some basement membranes and in the thickened intima of atherosclerotic aorta (Wight, T., G. J. Raugi, S. M. Mumby, and P. Bornstein, manuscript in preparation), regions in which association with laminin or low density lipoprotein respectively, would be possible.

A role for TS and fibronectin in platelet adhesion or aggregation has been suggested by Lahav et al. (22). Using a radioactive cross-linking agent, these workers showed an interaction of TS on the surface of platelets with fibronectin or type I collagen adsorbed to glass. Binding of endothelial cell TS to plasma fibronectin coupled to Sepharose was also demonstrated. We were unable to observe binding of endothelial cell TS to fibronectin-Sepharose, although fibronectin in the culture medium of endothelial cells bound to TS-Sepharose (unpublished data). A moderate interaction of platelet TS with fibronectin bound to plastic was also shown by the ELISA method (Table I). Although an interaction between type I collagen and TS on the platelet surface was observed by Lahav et al. (22), we did not detect binding of purified TS to type I collagen adsorbed to plastic (Table I) or coupled to Sepharose (Figs. 2 and 3). It is possible that other factors on the platelet surface are required for an interaction between the two proteins to occur.

The selective binding of TS to type V collagen raises the possibility that this interaction may provide a clue to the extravascular location and function of TS. Type V collagen has been variously described as existing in or adjacent to basement membranes (3, 29), in the pericellular matrix (13, 14), in the renal interstitium in close apposition to basement membranes (32), and in the extracellular matrices of dense connective tissues (27). Since both endothelial and smooth muscle cells synthesize type V collagen (30, 33, 46) it is also likely to exist in blood vessels. Parsons et al. (38) have recently shown that platelets adhere very poorly to type V collagen bound to plastic. The possibility exists that in vivo adhesion of platelets to a subendothelial matrix may be promoted by the presence of TS. The role that TS plays in connective tissues at a distance from blood vessels will require further study. We are currently examining the location of TS in tissues by immunofluorescence techniques in an attempt to answer such questions.

We thank Ann Gauger for excellent technical assistance, Drs. Helene Sage and Beat Trueb for helpful discussions, Dr. Richard Counts of the Puget Sound Blood Bank for providing platelet-rich plasma, and Edmond Fischer, Atsuhiko Oohira, John Lehman, and Stephen Schwartz for generous gifts of some of the proteins and cells used in this study.

This work was supported in part by National Institutes of Health Grants AM 11248, AM 28540, DE 02600, and HL 18645, and by a grant from R. J. Reynolds Industries, Inc. S. M. Mumby is a recipient of Public Health Service National Research Service Award GM 07270 from the National Institutes of Health.

Received for publication 8 August 1983, and in revised form 11 October 1983.

Note Added In Proof: We have preliminary evidence that the ability of TS to bind to type V collagen may be enhanced by preparation of TS in the relatively low ($<50 \mu M$) Ca$^2+$ concentrations used in these experiments.

REFERENCES

1. Altman, K., R. Myllylä, H. Sage, P. Pritzl, A. Valeri, and P. Bornstein. 1982. Biosynthesis of type V procollagen by A204, a human rhabdomyosarcoma cell line. J. Biol. Chem. 257:5016-5024.
2. Barziiger, N. L., G. N. Brodie, and P. W. Majerus. 1972. Isolation and properties of a thrombin-sensitive protein of human platelets. J. Biol. Chem. 247:2723-2731.
3. Beppu, L., R. Morecki, C. H. Wu, M.-A. Giambrone, and M. Rokjind. 1980. Immunochemical localization of type B collagen. A component of basement membrane in human liver. Am. J. Path. 98:591-602.
4. Bornstein, P., and K. A. Piek. 1966. The nature of the intramolecular crosslinks in collagen: the separation and characterization of peptides from the crosslink region of rat skin collagen. Biochemistry. 5:3460-3473.
5. Bradford, M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72:248-254.
6. Chandrasekhar, S., H. K. Kleinman, and J. R. Hasse1. 1983. Interaction of link protein with collagen. J. Biol. Chem. 258:6226-6231.
7. Chiang, T. M., C. L. Maiardi, J. M. Seyer, and A. H. Kang. 1980. Collagen-plasmin interaction: type V (A-B) collagen induces plasmin aggregation. J. Lab. Clin. Med. 95:99-107.
8. Dixit, V. M., G. A. Grant, S. A. Santoro, and W. A. Frazier. 1983. Isolation of a heparin-binding domain from proteolytic digests of platelet thrombospondin. Fed. Proc. 42:1993.
9. Doyle, M. J., D. F. Mosher, and E. A. Jaffe. 1980. Endothelial cells synthesize and secrete thrombospondin. J. Cell Biol. 87:306a (Abstr.).
10. Engvall, E., and E. Ruoslahti. 1977. Binding of a soluble form of fibroblast surface protein, fibronectin, to collagen. Int. J. Cancer 20:1-5.
11. Faubel, F., M. E. Grant, Y. J. Legrand, H. Souchon, G. Tobelem, D. S. Jackson, and J. P. Caen. 1983. Interaction of blood platelets with a microfibrillar extract from adult bovine aorta: requirement for von Willebrand factor. Proc. Natl. Acad. Sci. USA. 80:551-554.
12. Gartner, T. K., J. M. Gerrard, J. G. White, and D. C. Williams. 1981. Fibronogen is the receptor for the endogenous lectin of human platelets. Nature (Lond.). 289:688-690.
13. Gay, S. A., Martinez-Hernandez, R. K. Rhodes, and E. J. Miller. 1981. The collagenous exocytoskeleton of smooth muscle cells. Collagen Related Res. 1:377-384.

14. Gay, S. A., R. K. Rhodes, R. E. Gay, and E. J. Miller. 1981. Collagen molecules comprised of αVβchains (B-chains): an apparent localization in the exocytoskeleton. Collagen Related Res. 1:53-58.

15. George, J. N., R. M. Lyons, and R. K. Morgan. 1980. Membrane changes associated with platelet activation. Exposure of actin on the platelet surface after thrombin-induced secretion. J Clin Invest. 66:1-9.

16. Grinnell, F., and M. K. Feld. 1981. Adsorption characteristics of plasma fibronectin in relation to biological activity. J Biomed Mater. Res. 15:363-381.

17. Grinnell, F., and M. K. Feld. 1982. Fibronectin adsorption on hydrophilic and hydrophobic surfaces detected by antibody binding and analyzed during cell adhesion in serum-containing medium. J Biol Chem. 257:4888-4893.

18. Hagen, J. 1975. Effects of thrombin on washed, human platelets: changes in the subcellular fractions. Biochim Biophys. Acta. 392:242-254.

19. Hynes, R. O., and K. M. Yamada. 1982. Fibronectins: multifunctional modular glycoproteins. J Cell Biol. 93:369-377.

20. Jaffe, E. A., M. K. Leung, M. J. Doyle, P. J. McKeeen-Longo, and D. F. Mosher. 1983. Cultured human fibroblasts synthesize and secrete thrombospondin and incorporate it into extracellular matrix. Proc. Natl. Acad. Sci. USA. 80:998-1002.

21. Lahav, J., M. A. Schwartz, and R. O. Hynes. 1982. Analysis of platelet adhesion with a radioactive chemical crosslinking reagent: interaction of thrombospondin with fibronectin and collagen. Cell. 31:653-662.

22. Lawler, J. W., F. C. Chao, and C. M. Cohen. 1982. Evidence for calcium-sensitive structure in platelet thrombospondin. Isolation and partial characterization of thrombospondin in the presence of calcium. J Biol Chem. 257:1257-1266.

23. Lawler, J. W., and H. S. Slattery. 1981. The release of heparin-binding peptides from platelet thrombospondin by proteolytic action of thrombin, plasmin, and trypsin. Thromb. Res. 22:267-279.

24. Lawler, J. W., H. S. Slattery, and J. E. Coligan. 1978. Isolation and characterization of a high molecular weight glycoprotein from human platelet plasma. J Biol Chem. 253:8609-8616.

25. Lawler, J. W., and H. S. Slattery. 1981. Evidence of a proteinase, 1,3,4,6-tetrachloro-3a,6a-diphenylglucouril (lodogen). Anal. Biochem. 117:136-146.

26. Lawler, J. W., and H. S. Slattery. 1982. Characterization of the collagen chains of type V collagen in rat kidney. J Cell Biol. 82:343-349.

27. Martinez-Hernandez, A., S. Gay, and E. J. Miller. 1982. Ultrastructural localization of type V collagen in rat kidney. J Cell Biol. 82:343-349.

28. Mayne, R. M. S. Vali, and E. J. Miller. 1978. Characterization of the collagen chains synthesized by cultured smooth muscle cells derived from rhesus monkey thoracic aorta. Biochemistry. 17:464-465.

29. McPherson, J., H. Sage, and P. Bornstein. 1981. Isolation and characterization of a glycoprotein secreted by aortic endothelial cells in culture: apparent identity with platelet thrombospondin. J Biol Chem. 256:11330-11336.

30. Miller, E. J., S. Gay, M. A. Harlason, A. Martinez-Hernandez, and R. K. Rhodes. 1982. Chemistry and biology of the type V collagen system. In New Trends in Basement Membrane Research. K. Kuehn, H. Schoene, and R. Timpl, editors. Raven Press, New York. 99-105.

31. Mosher, D. F., M. J. Doyle, and E. A. Jaiff. 1982. Synthesis and secretion of thrombospondin by cultured human endothelial cells. J Cell Biol. 93:343-348.

32. Oshita, A., T. N. Wight, J. McPherson, and P. Bornstein. 1982. Biochemical and ultrastructural studies of proteoglycans synthesized by PYS-2, a basement membrane-producing cell line. J Cell Biol. 92:357-367.

33. Parsons, T. J., D. L. Hayer, J. C. Hoak, and J. Sage. 1983. Diminished platelet adherence to type V collagen. Arteriosclerosis. 3:389-398.

34. Phillips, D. R., L. K. Jennings, and H. R. Prasanna. 1980. Ca** mediated association of glycoprotein G (thrombin-sensitive protein, thrombospondin) with human platelets. J Biol Chem. 255:11625-11632.

35. Raugi, G. J., S. M. Murthy, D. Abbot-Brown, and P. Bornstein. 1982. Thrombospondin: synthesis and secretion by cells in culture. J Cell Biol. 95:351-354.

36. Rouseabi, E., E. Engvall, and E. G. Hayman. 1981. Fibronectin: Current concepts of its structure and function. Collagen Rel. Res. 1:95-128.

37. Sage, H., E. Crouch, and P. Bornstein. 1979. Collagen synthesis by bovine aortic endothelial cells in culture. Biochemistry. 18:5433-5442.

38. Sage, H., F. H. Faris, G. E. Striker, and A. B. Fisher. 1983. Granular proteocyes in primary culture secrete several major components of the extracellular matrix. Biochem. 22:2148-2155.

39. Sage, H., P. Pritzl, and P. Bornstein. 1981. Susceptibility of type V collagen to neutral proteases: evidence that the major molecular species is a thrombin-sensitive heteropolypeptide [alpha(V)]beta(V). Biochemistry. 20:3778-3784.

40. Sage, H., P. Pritzl, and P. Bornstein. 1981. Secretory phenotypes of endothelial cells in culture: a comparison of aortic, venous, capillary, and corneal endothelium. Arteriosclerosis. 1:427-442.

41. Sage, H., P. Pritzl, and P. Bornstein. 1981. Characterization of cell matrix associated collagens synthesized by aortic endothelial cells in culture. Biochemistry. 20:436-442.

42. Saloskis, P. Z., A. B. Dreyer, F. A. Putnick, and H. Furtmayer. 1980. The collagenous components of the subendothelium. Correlation of structure and function. Lab. Invest. 43:303-315.

43. Margossian, S., S. J. W. Lawler, and H. S. Slattery. 1981. Physical characterization of platelet thrombospondin. J Biol Chem. 256:7495-7500.