Energy Efficiency On Smart Street Lighting Using Raspberry Pi Based On Scada And Internet Of Things (IoT)

Murie Dwiyaniti*, Kendi Moro Nitiasmita, Tohazen

1,2,3Electrical Department, Politeknik Negeri Jakarta, Indonesia

*murie.dwiyaniti@elektro.pnj.ac.id

Abstract. One of the criteria of a city categorized as Smart city is the ability to manage infrastructure, property and human resources intelligently. A reliable, sustainable and customizable electric energy source is an absolute requirement for a smart city. However, the management of electrical energy must be economically so that it does not burden the local government budget. From a number of infrastructures that consume a lot of electrical energy under the authority of the responsibility of the local government, namely Public Street Lighting (PSL). Lighting from PLS that emits too much light when unnecessary is useless. At present, conventional PLS systems are synonymous with energy waste. Monitors and controls only do locally without having the ability to monitor and control remotely so that if there is damage or theft, it is slow to handle. The solution is to build a smart PSL system and its management. This paper presents a real-world proven solution that relies on a Raspberry Pi, SCADA, and Internet of Things (IoT). This system provides an energy efficiency. Smart PSL will work intelligently in accordance with their environmental conditions. Lighting and illumination are arranged based on the presence of people and vehicles so that they can avoid over lighting and glare. SCADA and IoT technologies are used for work process monitoring systems and data viewers that are carried out continuously and in real time. The result is the smart PLS mode is 43% more efficient than conventional PLS modes.

1. Introduction

Public Street Lighting (PSL) is one of the infrastructures in smart cities that consume a lot of electricity. This is because PSL lighting emits too much light when and where it is not needed. Waste of energy has enormous economic and environmental consequences. Examples of cases in the United States, in one year the average outdoor lighting uses about 120 hours of energy, mostly to illuminate the road and parking lot. Whereas, that energy enough to fill New York City’s total electricity needs for two years. An estimated 30 percent of all PSL energy in the US is wasted (http://www.darksky.org). In addition, the use of quality PSL lamps will increase air pollution in the form of carbon dioxide release.

This also happens in Indonesia, which still uses conventional PSL systems. With operating hours from 5pm to 6am, it continues without stopping even if no person or vehicle passes, causing waste of energy. In terms of security, PSL is often the object of vandalism and theft. In short, the conventional PSL system is synonymous with energy waste. Monitoring and controlling PSL only local without
having the ability to be done remotely, slow to handle if there is damage due to multiple malfunction systems or due to criminal actions. The existence of a smart PSL system that is able to cover system shortages conventional becomes urgent.

At present, smart PSL system consist of LED lights to saving energy [1], [2], [3], [4], [5], various sensors, display monitored[6] and integration of multimedia communication to transfer data [7], [8], [9],[10], [2],[11],[12]. However, management of PSL based on IoT[13], [14], [15], [16]is still in the early and wide-open stage to be developed.

This paper presents a real-world proven solution that relies on a Raspberry Pi, SCADA, and IoT. Management of PSL arrange by an IoT-based SCADA system to produce measurable, holistic and efficient solutions. Any disruption in the PSL system monitored through monitoring and mobile device centers, whether internet-based or not. This system produce energy saving solution.

2. Methodology
The specific objective of this research is to build a smart PSL system that can work automatically and can be monitored (work processes and electrical parameters) remotely through SCADA and IoT. The capability of this smart PSL will contribute to the efficiency of energy consumption and ease of maintenance. A general description of the PSL smart system is in Figure 1.

![Figure 1. A general description of the PSL smart system](image)

The form of this research is a miniature PSL consisting of five LED lights. Each lamp is fitted with current, voltage, PIR, infrared and LDR sensors. All sensors are integrated to read environmental conditions. Data from sensors displayed on SCADA, smartphone and IoT through a Wi-Fi / wireless connection. The system block diagram is in Figure 2.
To find out energy efficiency, we simulate the miniature PSL in two modes, namely
1. Conventional mode (12-hour mode), where the PSL starts to light up at 6:00 a.m. and off at 6:00 a.m.
2. Smart mode, where PSL starts to turn on if the LDR sensor has not detected sunlight. If the PIR sensor detects something, the sensor will give a signal to the PSL to light up 100% while the other lights turn dim. The intensity of light will increase along with the vehicle journey.

3. Result and Discussion
3.1 Miniature of PSL
PSL smart system is applied in miniature form. Miniature size refers to SNI 7391: 2008 concerning Specifications for Street Lighting in Urban Areas. It is assumed that the position of PSL is in the traffic lane (artery) in the residential area. In accordance with SNI, light intensity is 11 Lux, pole height is 10 m, Distance per pole is 30 m and road width is 4 m. Therefore, the miniature scale is 1:100, as shown in figure 3.
3.2 Wiring Sensor Diagram

Each sensor is connected to the controller according to the addressing as in Table 1. One example of a sensor-wiring diagram is in Figure 4.

Table 1. Address miniature PSL

No	TAG NAME	MODBUS ADDRESS	WEB IOT		
		HMI Droid	SCADA	DATA TYPE	
1	LDR	0	00000	DIGITAL	GPIO17
2	PROXIMITY_1	1	00001	DIGITAL	GPIO18
3	PROXIMITY_2	2	00002	DIGITAL	GPIO27
4	PROXIMITY_3	3	00003	DIGITAL	GPIO22
5	PROXIMITY_4	4	00004	DIGITAL	GPIO23
6	PROXIMITY_5	5	00005	DIGITAL	GPIO24
7	PIR_1	6	00006	DIGITAL	GPIO25
8	PIR_2	7	00007	DIGITAL	GPIO5
9	PIR_3	8	00008	DIGITAL	GPIO6
10	PIR_4	9	00009	DIGITAL	GPIO13
11	PIR_5	10	00010	DIGITAL	GPIO19
12	LED_1	11	00011	DIGITAL	GPIO12
13	LED_2	12	00012	DIGITAL	GPIO16
14	LED_3	13	00013	DIGITAL	GPIO20
15	LED_4	14	00014	DIGITAL	GPIO26
16	LED_5	15	00015	DIGITAL	GPIO21
17	INDIKA_PIR	-	00016	DIGITAL	-
18	INDIKA_PROXIMITY	-	00017	DIGITAL	-
19	INDIKA_LDR	-	00018	DIGITAL	-
20	INDIKA_SAVPO	-	00019	DIGITAL	-
21	STSP_12H	20	00020	DIGITAL	-
22	STSP_Smart	21	00021	DIGITAL	-
23	STSP_LDR	22	00022	DIGITAL	-
24	ShutDown	23	00023	DIGITAL	-
25	Reboot	24	00024	DIGITAL	-
26	RECORD	-	00025	DIGITAL	-
27	VOL_INA1	0	40000	INTEGER	-
28	AMP_INA1	1	40001	INTEGER	-
29	VOL_INA2	2	40002	INTEGER	-
30	AMP_INA2	3	40003	INTEGER	-
31	VOL_INA3	4	40004	INTEGER	-
32	AMP_INA3	5	40005	INTEGER	-
33	VOL_INA4	6	40006	INTEGER	-
Table:

No	TAG NAME	MODIFY ADDRESS	SCADA	DATA TYPE	WEB IOT
34	AMP_INA4	7	40007	INTEGER	-
35	VOL_INA5	8	40008	INTEGER	-
37	AMP_INA5	9	40009	INTEGER	-
38	ON_JAM	10	40010	INTEGER	-
39	ON_MNT	11	40011	INTEGER	-
40	OFF_JAM	12	40012	INTEGER	-
41	OFF_MNT	13	40013	INTEGER	-

Figure 4. Wiring Sensor LDR diagram

3.3 Display Of SCADA, Smartphone, And Web IoT

To turn on the PSL, you must first select the mode manually through the SCADA or Smartphone screen, as shown in Figure 5. After selecting the mode, a display will appear like Figure 6 on the SCADA screen and smartphone.
For display on the IoT website, use two web platforms, namely Cayyane, (Figure 7) for sensor indicators and Thingspeak, (Figure 8) to display data in graphical form.

URL IoT website:
- https://cayenne.mydevices.com/cayenne/dashboard/project/c71d6aa8-8257-46b1-af0e-6b409970fdd0
- https://thingspeak.com/channels/539095

Figure 5. Display application for selecting PSL mode on SCADA and smartphone

Figure 6. Display of PSL applications on SCADA and smartphones
3.4 System Testing

Testing of PSL miniature systems consist of two setting modes:

- Conventional mode (12 hours)
 The test was carried out for 30 minutes starting at 7:00 p.m. until 7:30 p.m. WIB. The controller per 2 seconds sends data to the Thingspeak data logger. The results of reading data shown in Table 2. Miniature images of PSL when on and off can be seen in Figures 9 and 10.
Table 2. Data Logger Testing Results for the 12-hour mode

Time	Logger Thingspeak Mode 12 hour			
	(KWh	Current (A)	Voltage (V)	Power (W)
06/08/2018 19:01	2.52	0.165	195.8	29.4
06/08/2018 19:03	2.521	0.17	202.2	31.4
06/08/2018 19:05	2.523	0.17	199.7	30.7
06/08/2018 19:07	2.523	0.169	197.2	30.1
06/08/2018 19:09	2.524	0.175	202.2	31.1
06/08/2018 19:11	2.528	0.166	200.1	29.3
06/08/2018 19:13	2.529	0.156	201.8	29.1
06/08/2018 19:15	2.529	0.169	202.2	29.5
06/08/2018 19:17	2.53	0.166	201.2	29.6
06/08/2018 19:19	2.53	0.163	201.7	29.7
06/08/2018 19:21	2.53	0.166	203.1	29.8
06/08/2018 19:23	2.531	0.167	204.2	30.2
06/08/2018 19:25	2.532	0.219	203.2	43.1
06/08/2018 19:27	2.533	0.218	202.7	42.9
06/08/2018 19:29	2.533	0.219	204.2	43.5

Figure 9. PSL Condition Off
Figure 10. PSL Condition On

- **Smart Mode**
The test start at 8:00 p.m. until 08.28 WIB. The simulation of the existence of objects / people is assumed to occur only eight times in the period of testing. The controller per 2 seconds sends data to the Thingspeak data logger. The results of reading the data shown in Table 3. A miniature image of PSL when the PIR sensor detects that a vehicle is passing shown in Figures 11 and 12.

Time	Logger KWh	Thingspeak Current (A)	Voltage (V)	Power (W)
06/08/2018 20:00	2,524	0.153	187.2	25.9
06/08/2018 20:02	2,526	0.16	188.0	25.1
06/08/2018 20:04	2,528	0.16	189.9	25.7
06/08/2018 20:06	2,528	0.151	188.5	25.2
06/08/2018 20:08	2,539	0.158	189.3	25.5
06/08/2018 20:10	2,539	0.158	190.3	25.8
06/08/2018 20:12	2,535	0.155	190.5	25.6
06/08/2018 20:14	2,535	0.159	190.3	25.6
06/08/2018 20:16	2,543	0.162	192.7	27.5
06/08/2018 20:18	2,548	0.165	193.5	28.0
06/08/2018 20:20	2,549	0.166	192.6	27.8
06/08/2018 20:22	2,550	0.172	192.9	29.0
06/08/2018 20:24	2,553	0.163	191.0	26.8
06/08/2018 20:26	2,555	0.158	191.1	27.2
06/08/2018 20:28	2,555	0.166	191.5	27.1
From these two modes, the smart mode is more efficient in energy consumption. Within 30 minutes, conventional mode consumes an average of 32.67 W, while in smart mode consumes an average of 24.70 W.

3.5 Connectivity Testing

Based on the tests to determine the speed of data transfer, the results is in Table 4. Data transfer times have delays or delays from Real data transfer times, on SCADA, HMI Droid, Cayanne and ThingspeakIoT.
Table 4. Result of Connectivity Testing

Mode	Time Delay Monitoring (ms)				
	Real	SCADA	HMI Droid	IoT Cayanne	IoT Thingspeak
Conventional	±0	±1	±1	±2	±2
Smart	±0	±1	±1	±2	±2

4. Conclusion

The intelligent PSL system in miniature form operates according to the desired description. Monitoring of sensor indicators and parameter data proven that shown through SCADA, mobile and IoT websites. Although there is still a delay when displaying data for 2 seconds for IoT websites, and one second for smartphones and SCADA. When viewed from energy efficiency, during a 30-minute trial, smart mode proved to be more economical in energy consumption when compared to conventional mode by 43%.

Acknowledgements

Gratitude to such kind of programs which are supported by Decentralization Research “Skim Penelitian Produk Terapan” in which is allocation for Polytechnic State of Jakarta under contract number: 4368/PL3.18/SPK/2018, that makes this research could be realized and released. The author’s sincerely thank to Bastian Misbah, Chandra Gunawan, and Dwi Prasetyo for the help and time support given.

References

[1] Y. Wu, C. Shi, X. Zhang and W. Yang, "Design of new intelligent street light control system," in IEEE ICCA 2010, Xiamen, China, 2010.
[2] P. Elejoste, I. Angulo, A. Perallos, A. Chertudi, I. J. G. Zuazola, A. Moreno, L. Azpilicueta, J. J. Astrain, F. Falcone and J. Villadangos, "An Easy to Deploy Street Light Control System Based on Wireless Communication and LED Technology," Sensors, vol. 1, no. 1, pp. 6492-6523, 2013.
[3] K. Nanavatia, P. desai and K. Umaria, "Street Light Control System Using Sun Tracking Solar Panel Review," International Journal of Innovative and Emerging Research in Engineering, vol. 3, no. 4, pp. 9-12, 2016.
[4] A. TIWARI, C. VARSHNEY and A. SHUKLA, "Concept of Smart Solar Street Light," International Advanced Research Journal in Science, Engineering and Technology (IARJSET), vol. 2, no. 1, pp. 152-154, 2015.
[5] E. Alsakkaf, "An Automatic Off-grid Solar Street Lighting System," International Journal of Innovative Research in Electrical, Electronics, Instrumentation and Control Engineering, vol. 4, no. 3, pp. 1-3, 2016.
[6] S.B.Mohamed, M.Minhat, M. Kasim, M. Adam, M. Sulaiman and Z. Rizman, "An Intelligent Lighting Control System (ILCS) Using LabVIEW," Journal of Fundamental and Applied Sciences, vol. 9, no. 2, pp. 602-615, 2017.
[7] F. Lecceese, "Remote-control System of High Efficiency and Intelligent Street Lighting using a Zigbee network of devices and sensors," IEEE Trans. Power Deliv, vol. 28, no. 1, pp. 21-28, 2013.
[8] A. J. R and A. Vijayan, "Intelligent Street Lighting System," IJETEMAS, vol. 3, no. 7, pp. 132-137, 2015.
[9] K. D, "Wireless Streetlight Control System," International Journal Computer Application, vol. 4, no. 1, pp. 1-7, 2012.
[10] M. R. H. A.T, M. S. MJ and C. N, "A Novel Design of an Automatic Lightsin Control System for a wireless sensor network with increased sensor lifetime and reduced sensor number," Sensors, vol. 11,
[11] M. J. Hartman, B. G. Barnett, J. E. Hershey, M. J. Dellanno and S. Soro, "Street Lighting Control monitoring, and data transportation system and metode". United State Patent PCT/US2014/066927, May 2014.

[12] anonim, "www.osram.com," 2017. [Online]. Available: http://www.osram.com/media/resource/HIRES/341262/6195320/street-light-control-innovative-light-control.pdf. [Accessed 9 Juni 2017].

[13] N. Ouerhani, N. Pazos, M. Aeberli and M. Muller, "IoT-based dynamic street light control for smart cities use cases," in International Symposium on Networks, Computers and Communications (ISNCC), Yasmine Hammamet, Tunisia, 2016.

[14] A. Gehlot, R. Singh, R. G. Mishra, A. Kumar and S. Choudhury, "IoT and Zigbee based Street Light Monitoring System with LabVIEW," International Journal of Sensor and Its Applications for Control System, vol. 4, no. 2, pp. 1-8, 2016.

[15] M. Dwiyani and K. M. Nitisasmita, "Desain dan Implementasi Remote Terminal Unit (RTU) berbasis Arm Cortex pada Simulator Distribusi Air," Jurnal Nasional Teknik Elektro (JNTE), vol. 5, no. 2, 2016.

[16] H. Deng, X. Xie, W. z. Ma and Y. Han, "A LED Street Lamp Monitoring System Based on Bluetooth Wireless Network and LabVIEW," in 2nd IEEE International Conference on Computer and Communications, China, 2016.