In this research, the effect of treated, sterilized effluent was investigated in the DNA of *Rhizobium leguminosarum* bacterial isolates and *Vicia faba* plants. In this study, sterilized treated effluent was used to irrigate seeds of *Vicia faba* for 45 days. The results by Gel electrophoresis and Fluorescence Spectrometer suggested that the wastewater has damage effect on DNA in *Rhizobium leguminosarum* and *Vicia faba*, possibly due to the effect of mutagenicity and toxicity of heavy metals of effluent and it has a hazardous effect compared with control (bacteria were grown on media with tap and plant irrigated with tap water).

Introduction:

Wastewater contains nutrients which can stimulate the growth of marine plants. It may also contain toxic compounds that are potentially considered mutagenic or carcinogenic. Microbiological and biochemical techniques such as RNA and DNA typing are being used to identify the active mass in biological treatment of wastewater sample (George et al. 2003).

This was extended to test the harm occurred to DNA molecules of effectual microbes (EMs) by heavy metal ions As\(^{3+}\), Cd\(^{2+}\), Cr\(^{3+}\), Cu\(^{2+}\), Hg\(^{2+}\), Pb\(^{2+}\)and Zn\(^{2+}\), as well as the effects of EM on wastewater treatment when their DNA damaged were recorded. It was also focused on investigating the damage of (EM) DNA in wastewater with diverse concentrations of heavy metal ions As\(^{3+}\), Cd\(^{2+}\), Cr\(^{3+}\), Cu\(^{2+}\), Hg\(^{2+}\), Pb\(^{2+}\)and Zn\(^{2+}\), and the effect of these heavy metals on chemical oxygen demand (COD) degrading ability in wastewater was also studied (Zhou et al. 2008).

Similar studies investigated cytotoxic, mutagenic and genotoxic special effects of diverse concentrations of wastewater as the phosphoric gypsum store near the factory of fertilizing agents. The ames analysis was performed on *Salmonella typhimurium* TA98 and TA100 strains. In the existence of S9 mix, glutathione and solution respectively, no mutagenic effects of phosphoric gypsum on *Salmonella typhimurium* strains in the presence of S9 mix, GSH or PBS were observed. On the other hand, strong cytotoxic effect was observed on both human cell lines when they were treated with diverse concentrations of wastewater. The harm was not repaired, but increased through the time of incubation. The results of the alkaline comet assay show considerable possible DNA damaging effect of wastewater on human leukocytes. Since phosphoric gypsum move water in its present composition and acidity is highly toxic and acts as pro-oxidant, causing free radicals creation and DNA damage. This requires cleansing by urgent neutralization of wastewater to a level that is suitable for disposal into the environment (Durgo et al. 2009).
The obtained effect was a result of both (single and double strand DNA breaks) and roundabout effects (oxidative damage) caused through the united effects of all contaminants found in the tested water samples (Zlatko et al. 2011).

Samples of River Damodar were tested, microbes and chemical waste unnecessary in the river. The objective was to study the damage occurring in DNA is synthesized by industrial wastewater. In steel and iron industries, a large number of industrial wastewater pollutants were detected display a strong mutagenic effect. Wastewater on the DNA synthesis and a difference in the optical density of the acid (DNA) was observed, which could possibly be due to the aromatic toxic heavy metals and phenolic compounds found in the water (Aamir et al. 2013).

Common effluent treatment plant (CETP) uses to reduce the genotoxicity from the raw effluent. In this study, the authors investigated the genotoxic effects of the tannery effluent in mung bean. The Untreated and treated tannery of CETP were collected, India, were grown mung bean seeds in the soil irrigated for 15 days with different concentrations of tannery effluents (0.25, 0.75, 100%). The inhibition of seed germination 90% of the untreated effluent of 25% and 75% of treated water, compared to the Control Plants. Plant growth was 51% and 41% when irrigated with untreated effluent or treated at a concentration of 25% compared with the control plants. This shows that the treated effluent is less genotoxic than without treatment. Similarly, genetic indicators calculated between treatments and control plants showed the plants irrigated with tannery effluent had a similarity index of 0.75, control plants and plants irrigated with untreated is 0.65, and 0.68 between treatments. It was and conclude that each of untreated sewage or treated contains genotoxic substances that cause DNA damage to the beans. CETP removes some, but not all, of genotoxic substances from the tannery effluent (Abhay et al. 2014).

This research aims to study the effect of treated effluent in the DNA of *Vicia faba* plants as eukaryote and *Rhizobium leguminosarum* bacterial isolates as prokaryote, and the effect of effluent in the DNA of *Vicia faba* plant and *Rhizobium leguminosarum* when treated alone and together with sterilized treated effluent compared with control (tap water). For this purpose, treated effluent is used to irrigate seeds of *Vicia faba* for 45 days.

Materials and Methods:-

Bacterial Samples:-

This includes bacteria used in this study: *Rhizobium leguminosarum* bacteria were grown in Yeast extract Mannitol Broth (YEMB) with treated effluent and with tap water as a control. The same bacterial isolates used to inoculate *Vicia faba* seeds, and five colonies from (each treatment) root nodules of *Vicia faba* plant used in this study were isolated.

Isolation of Bacteria from Root Nodules of Vicia Faba:-

Five root nodules from (each treatment) plants were carefully excised from the roots of *Vicia Faba* irrigated with sterilized treated effluent and tap water and washed several times with sterilized water from adherent soil nodules. They were surface-sterilized by 0.1% HgCl₂ solution for 4 to 5 minutes and treated with ethyl alcohol (95%) for 3 minutes. Nodules were washed several times with sterile distilled water. The surface sterilized nodules of each plant were crushed in 500µl of sterilized distilled water in a sterile Petri-dish. One loopful of the nodule suspension was streaked on yeast extract mannitol agar (YEMA) containing Congo Red (three plates) for each. Well isolated colonies, characteristic of *Rhizobium*, the colonies with a diameter ranging from 1-5 mm were picked up with circular entire or smooth margins, flexible, shiny and raised, which shows production of gumy, in YEMA at 28°C.

Media:-

Yeast extract Mannitol Broth (YEMB), Yeast Mannitol Agar (YEMA) and YEMA containing Congo Red (Somasegaran and Hoben, 1985)

Determination of purity and identification of bacterial isolates

Morphological Characteristics of Isolates Cultures:-

a. Isolates colonies morphological characteristics were identified as described by Lupwayi and Haque (1994).

b. Gram Stain and the mobility test

Biochemical and Physiological Characteristics:-

a. Acid-base production (Jordan, 1984).
b. Oxidase and Catalase tests (Benson, 1994).

Plant Growth and Conditions:-
Vicia faba seeds were inoculated by Rhizobium leguminosarum bacteria after surface sterilization with 0.1% HgCl₂ for 5 min. washed twice by distilled water. Sterilized treated effluent used to irrigate seeds of Vicia faba for 45 days. The plant seeds irrigated with tap water used as control. Each treatment was triple pots with 5 seeds for each.

Bacterial DNA Extraction:
Procedures of bacterial DNA extraction from bacteria (colonies) isolated from plant nodules were according to DNA extraction mini kit Intron Biotechnology Cat. No (17361)

Plant DNA Extraction:
Nuclear DNA extraction was performed to isolate DNA from the treated and non-treated plants 45 days. It has been carried out according to the procedures shown by Dehestani and Kazemi (2007) with some modifications.

Agarose Gel Electrophoresis:
The extracted DNA was electrophoresed in a 1% agarose gel for 30 min. according to known standard procedures

Fluorescence Spectrometer:
Fluorescence Spectrometer is used to detect DNA damage in various organisms. The fluorescence of Eth-B alone is less than 1/10 the Eth-B-DNA complex fluorescence. Various UV sources of fluorescent used to detect Eth-B-DNA complexes. Solution of DNA with Eth-B was measured immediately. In this study Fluorescence Spectrometer (LS 45) used to measure DNA (2µl from the sample were with 2ml deionized water) in a quartz cuvette, and measured the same sample in the presence of 1µl (1µg/ml) of Ethidium Bromide measured directly at 300 nm.

Results and Discussion:

Identification and Characterization of Bacterial Isolates:
YEMA media with Congo Red, the coloring of the bacterial colonies were milky translucent (white) and circular in shape. The colonies with circular entire or smooth margins, flexible, shiny and raised, which shows production of gumy, after 2 days on YEMA at 28°C., with a diameter ranging from 1-5 mm were picked up. Gram stain and the mobility test, the studied colonies were gram-negative, rod-shaped singly or in pairs, motile and changed the YEMA-BTB (bromothymol blue) to yellow, the colonies were bacteria produce acid. All isolates colonies were oxidase and catalase positive, a positive oxidase test will result in a change color N, N-dimethyl-p-phenylenediamine (DMPD) from violet to purple, confirmed from the bubbling of oxygen around the bacterial colonies respectively. These observations were confirmed by (Somasegaran and Hoben, 1994), (Singh et al. 2008) and (Lupwayi and Haque 1994).

Comparing genomic DNA of Rhizobium leguminosarum isolates by gel electrophoresis:
Genomic DNA of Rhizobium leguminosarum bacteria affected by treated effluent when grown on YEMA media with effluent and the bacterial colonies isolated from nodules of Vicia faba plant irrigated with effluent compared with control (bacteria grown on YEMA media with tap water). Figure (1A) showed the effect of effluent on the DNA. The results showed damage of DNA of the treated bacteria grown alone on YEMA media with effluent compared with the bacterial colonies isolated from nodules of Vicia faba plant irrigated with effluent compared with control, the bacterial isolates colonies grown on YEMA media with effluent are more affected by effluent. Zhou et al. (2008) studied and tested the harm to the DNA of effectual microbes (EMs) by heavy metal ions as well as the effects of EM microorganisms on wastewater treatment ability when their DNA was damaged.

The effect of effluent on the DNA of Vicia faba plants by gel electrophoresis:
The genomic DNA of Vicia faba plants inoculated by Rhizobium leguminosarum bacteria after surface sterilization irrigated by sterilized treated effluent. when grown on sterilized soil and the Vicia faba plants alone irrigated with sterilized effluent were compared with control (Vicia faba plants grown on sterilized soil irrigated with tap water). Figure (1B) showed damage of DNA of the treated Vicia faba plants compared to control. Vicia faba plants alone irrigated with sterilized effluent are more affected by effluent. Effluent had genotoxic substances causing different levels of genotoxic effects that caused DNA damage to mung bean plant compared to control and treated plants. The DNA damage in mung bean plant is possibly due to toxic effect of heavy metals consequently, use of treated wastewater for irrigation poses health hazard to both human, microorganisms, animals and the environment (Abhay et al. 2014).
A study showed wastewater of great Swiss University hospital with the intention of primary DNA damage. Previously generated Ames and chromosomal aberration data of the same samples in Umweltbundesamt Texte were compared with the newly generated results. Neither the mutagenic effects detected by the Ames assay (8%, n = 25) nor the positive results (46%, n = 13) seemed to be caused by ciprofloxacin. Therefore, the Ames and results suggest the presence of additional mutagens that are yet to be identified (Hartmann et al. 1999).

Comparing genomic DNA of *Rhizobium leguminosarum* isolates by Fluorescence Spectrometer:-
The DNA from bacterial isolates colonies grown on media with effluent water are more affected and damaged than control (tap water). The DNA from bacteria growing on media with effluent water were more affected and damaged than bacterial isolates colonies from nodules of *Vicia faba* plants irrigated with effluent water compared with control (figure. 2) from 1 to 15 showed the effect of bacterial DNA.

The effect of effluent on the DNA of *Vicia faba* plant by Fluorescence Spectrometer:-
The DNA from *Vicia faba* plants irrigated with effluent are more damaged than control plants (irrigated with tap water). The DNA from plants irrigated with effluent are more damaged than the plants inoculated with bacteria (irrigated with effluent) (figure. 2) from 16 to 30 showed the effect of *Vicia faba* plants DNA. Symbiosis between plant and bacteria may be decreasing the harmful effect of effluent water on DNA compared with the DNA of the plants only treated with effluent and bacteria only treated with effluent.

In the exploratory measurement fluorescence spectrum examined the DNA from 100 ppm calf thymes (Hargis et al. 1995). In the same context, Sunita et al. (2008) mentioned that UV-A (315–400 nm) radiation is less efficient in inducing DNA damage because it is not absorbed by native DNA. The result of the sewage on DNA synthesis and the difference in the optical density of the DNA was also noted (Aamir et al. 2013).

Fig. 1: The effect of genomic DNA of *Rhizobium leguminosarum* (A), *Vicia faba*, (B) by gel electrophoresis

Fig. 1: A. The effect of treated effluent on the DNA of bacteria (1-5 control bacteria, 6-10 bacteria grown on YEMA media with effluent water, 11-15 bacterial colonies from nodules of plants irrigated with treated effluent)

Fig. 1: B. The effect of treated effluent on the DNA of *Vicia faba* plants, (1-5 control plants, 6-10 plants irrigated with effluent water, 11-15 plants irrigated with effluent symbiosis with bacteria)
Fig. 2: The effect of DNA on *Rhizobium leguminosarum* and *Vicia faba* determined by Fluorescence Spectrometer.
The Fluorescence Spectrometer peaks for DNA (blue line) and EthB-DNA (red line): 1-5 control bacteria, 6-10 bacterial colonies isolated from nodules of plants irrigated with treated effluent water, 11-15 bacteria grown on YEMA media with treated effluent water, 16-20 control plants, 21-25 plants irrigated with treated effluent water symbiosis with bacteria, 26-30 plants only irrigated with treated effluent water.

Conclusion:

Effect of treated effluent in DNA *Vicia faba* plants as eukaryote and *Rhizobium leguminosarum* bacterial isolates as prokaryote. The damage determined quality by gel electrophoresis and quantity by Fluorescence Spectrometer. The effect of treated effluent on plants and bacteria when treated alone were more than the effect of effluent in the DNA of *Vicia faba* plant and *Rhizobium leguminosarum* when treated together with sterilized treated effluent (symbiosis between plant and bacteria may be decreasing the harmful effect of treated effluent water on DNA). In both Effect of treated effluent in *Vicia faba* plants DNA as eukaryote were more than *Rhizobium leguminosarum* bacterial DNA as prokaryote, compared with control.

Acknowledgments

We would like to thank Dr/ Ayman Eldergamy lecture of biochemistry, Environmental Biotechnology Dept., Genetic Engineering and Biotechnology Research Institute, Sadat City University, Egypt for his helpful
References:
1. Aamir J., Anup B., Ishwarya.M.S, Firoz A. and Hidayatullah Md. (2013). Bioremediation of industrial reffluents of asanso LD urgapur industri zone and its effect on DNA. G.J.B.B., 2 (2): 215-226 ISSN 2278–9103.
2. Abhay R., Sharad K., Izhurul H. and Mahadeo K. (2014) Detection of Tannery Effluents Induced DNA Damage in Mung Bean by Use of Random Amplified Polymorphic DNA Markers. ISRN Biotech., 1-8.
3. Benson, H. J. (1994): Microbiological Applications. 6th Ed., Wm. C. Brown Pub., Dubuque, Iowa, Oxford.
4. Dehestani A. and Kazemi S.K. (2007). A Rapid Efficient Method for DNA Isolation from Plants with High Levels of Secondary Metabolites. Asian J. Plant Sci. 6 (6) : 977-981.
5. Durgo K., Orescanin V., Lulić S., Kopjar N., Eljezić DZ. And Colić JF. (2009). The Assessment of Genotoxic Effects of Wastewater From a Fertilizer Factory. J. Appl Toxicol. Jan; 29 (1): 42-51.
6. George T., Franklin L. Burton, H. and David L. (2003).Wastewater Engineering Treatment and Reuse. (Fourth Edition).
7. Hargis P.J., Soboring T.J., Tisone G.C. and Wagner J.S. (1995). Ulraviolet Fluoresce Detection and Identification of Protein , DNA and Bacteria. SPIE: 2366. 147-153.
8. Hartmann A., Golet E. M., Gartiser S., Alder A. C., Koller T. and Widmer R. M. (1999). Primary DNA Damage But Not Mutagenicity Correlates with Ciprofloxacin Concentrations in German Hospital Wastewaters. Arch. Environ. Contam. Toxicol., 36 (2): 115-119.
9. Jordan, D.C. (1984). Family III. Rhizobiaceae. In: Bergeys Manual of Systematic Bacteriology, 234-254, (Krieg, N. R. and Holt, J. G. eds). The WillLong, S. R. (1989). Rhizobium Genetics. Annual Review of Genetics. 23: 483–506.
10. Lupwayi, N. and Haque, I. (1994). Legume-Rhizobium Technology Manual. Environmental Sciences Division International Livestock Center for Africa. Addis Ababa, Ethiopia. 1-93.
11. Singh, B., Kaur, R.and Singh, K. (2008). Characterization of Rhizobium Strain Isolated From Trigonella foenumgraecum (Fenugreek). Africa. J. Biotech. 7:3671-3676.
12. Somasegaran P. and Hoben H. J. (1985). Methods in Legume Rhizobium Technology. IFTAL, Paia, Moui. HI, USA.
13. Sunita K., Rajesh P., Kanchan L., Singh, Shailendra P. and Rajeshwar P. (2008). DNA Damage: Detection Strategies.Excli J. 2008; 7: 44-62 – ISSN 1611-2156.
14. Somasegaran P., and Hoben Heinz J. (1994), Handbook for Rhizobia Methods in Legume-Rhizobium Technology. Springer – Verlag, New York, 1-441.
15. Zhou S., Wei C., Liao C. and Wu H. (2008). Damage to DNA of Effective Microorganisms by Heavy Metals: impact on wastewater treatment. J. Environ. Sci (China). 20(12): 1514-518.
16. Zlatko M., Ivanˇc’ica T., Igor S. k., Marija I., Davor Z., Marin M., and Nevenka K. (2011). Assessment of Genotoxic Potency of Sulfate-Rich Surface Waters on Medicinal Leech and Human Leukocytes Using Different Versions of The Comet Assay. Ecotoxicol. and Environ. Saf., 74: 1416–1426.