Origin of rice (Oryza sativa L.) domestication genes

Peter Civañ · Terence A. Brown

Received: 8 September 2016 / Accepted: 19 April 2017 / Published online: 17 May 2017
© The Author(s) 2017. This article is an open access publication

Abstract A number of genes that contribute to the domestication traits of cultivated rice have been identified. These include Sh4, Rc, PROG1 and LABA1, which are associated with non-shattering rachis, white pericarp, erect growth and barbless awns, respectively. The mutations giving rise to the “domestication alleles” of these genes are either invariable in cultivated rice, or have variability that is strictly associated with the phenotypic trait. This observation forms the basis to those current rice domestication models that envisage a single origin for the domesticated phenotype. Such models assume that the domestication alleles are absent or rare in wild rice, emerged under cultivation and spread across all rice groups by introgressive hybridization. We examined whole-genome sequencing datasets for wild and cultivated rice to test the former two assumptions. We found that the rc and laba1 alleles occur in wild rice with broad geographical distribution, and reach frequencies as high as 13 and 15%, respectively. These results are in agreement with previous observations of the prog1 and sh4 domestication alleles in wild populations. We also show that the diversity of the genomic regions surrounding the rc, laba1, prog1 and sh4 alleles in wild accessions is greater than that in cultivated rice, suggesting that these alleles emerged prior to domestication. Our findings indicate that the possibility that independent rice groups obtained identical domestication alleles directly from the wild population needs to be considered.

Keywords Cultivated rice · Domestication genes · Origins of cultivation · Oryza sativa · Whole-genome sequence data · Wild rice

Introduction

Cultivated Asian rice (Oryza sativa L.) can be divided into several groups based on different culinary properties, ecology and genetics—O. sativa subsp. indica Kato; subsp. japonica Kato (with tropical and temperate subgroups); aromatic rice with specific flavours popular in India and Pakistan (basmati) and Iran (sadri), usually treated as a subgroup of subsp. japonica; and aus rice consisting of early-maturing, draught-tolerant ecotypes previously considered to be a subgroup of subsp. indica (Garris et al. 2005; Zhao et al. 2011; Civañ et al. 2015). Current ideas regarding the domestication of O. sativa are strongly driven by analyses of so called “domestication genes”, i.e. genes contributing to the domestication phenotype of cultivated rice. The domestication phenotype is a set of
characteristics differentiating cultivated rice from its wild progenitor *O. rufipogon* Griff., resulting from selective pressures imposed by humans during domestication. The most prominent of these changes are growth habit, reduction of seed dormancy, overall yield, quality of rachis, hulls and awns, adaptations to diverse habitats, and the culinary properties of the grain. Although most of these traits are quantitative in nature and hence controlled by a network of genes interacting with the environment, several major genes determining alternative modes of phenotypic variability in cultivated rice have been identified. Well-characterised examples of such major genes are *Sh4* (Li et al. 2006), *Rc* (Sweeney et al. 2006), PROG1 (Tan et al. 2008) and LABA1 (Hua et al. 2015), whose recessive alleles are associated with non-shattering rachis, white pericarp, erect growth and barbless awns, respectively. Functional polymorphisms associated with the phenotypic changes have been identified as either microdeletions disrupting the open reading frame of the coding sequence (rc, laba1), a mutation causing an amino acid change in the protein (*sh4*), or a set of candidate mutations in the coding sequence and promoter region (*prog1*). These mutations are either variable in cultivated rice (*sh4*, *prog1*), or their variability is strictly associated with the phenotypic trait (*rc*, *laba1*). For example, all cultivated rice with a white pericarp (with exceptions in *aus*) has a 14 bp deletion in the *Rc* coding sequence, while all cultivated rice with a red pericarp has the reading frame uninterrupted by the deletion (Sweeney et al. 2007). Since the red grain colour is ubiquitous in *O. rufipogon*, Sweeney et al. (2007) did not search for the 14 bp deletion in wild populations and assumed that the *rc* allele emerged under cultivation. Based on this assumption, they compared the *Rc* haplotypes found in red *japonica* and red *indica* cultivars and concluded that the *rc* variant emerged in subsp. *japonica* and was transferred to subsp. *indica* and partially also to *aus* by introgressive hybridization (Sweeney et al. 2007). Similarly, Oikawa et al. (2015) assumed that the allelic variant of the *Kala4* gene responsible for black pigmentation in some rice cultivars emerged during or after domestication, and did not examine genotypes in wild populations (where black pigmentation has not been found).

Since it has been shown that gene variants beneficial for cultivation can be selected from the standing variation of the progenitor (Weber et al. 2007, 2008; Studer et al. 2011) and that the genotype-phenotype association in wild populations may be obscured by interacting genes (Zhu et al. 2012), the assumption that any domestication allele emerged under cultivation is rather risky. Examination of allelic variability in wild populations has been conducted for other rice genes, although with various sample sizes. Hua et al. (2015) examined 43 *O. rufipogon* accessions and did not find a single case with the *laba1* deletion. However, Tan et al. (2008) sequenced the *PROG1* coding sequence in 30 accessions of wild rice with prostrate growth and found 14 cases where the wild haplotypes are identical or similar to the uniform allele of cultivated rice. This led the authors to conclude that other gene(s) may be involved in control of prostrate growth in wild rice. A similar conclusion has been reached regarding the *sh4* gene since multiple other loci affecting the degree of seed shattering have been discovered (Konishi et al. 2006; Subudhi et al. 2014; Yao et al. 2015) and it has been shown that the “non-shattering” *sh4* allele is relatively common in wild populations, being present in 44 of 166 wild accessions tested by Zhu et al. (2012).

Knowing if the recessive variants of the *Sh4*, *PROG1*, *Rc* and *LABA1* genes naturally occur in wild populations is crucial for interpretation of the rice domestication process. Absence of these alleles in wild populations would indicate that the mutations indeed emerged during domestication. Allelic uniformity in cultivated rice would then imply either a single origin of *O. sativa*, or spread of the domestication alleles among different groups of *O. sativa* by introgressive hybridization, as has been suggested (Sweeney et al. 2007; Fujino et al. 2010; Hua et al. 2015; Oikawa et al. 2015; Si et al. 2016). However, if the association between the mutations and the phenotype is not strict in *O. rufipogon*, and the “domestication alleles” are found in wild populations—as is the case with *sh4* and *prog1*—then it is more difficult to make conclusions about the origin of those alleles in different cultivated groups. For example, subsp. *indica* could have received a domestication allele from subsp. *japonica* by introgressive hybridization (or vice versa), or both groups could have outsourced the allele from their wild progenitors in separate domestication events. Despite the fact that the *prog1* and *sh4* alleles are found in *O. rufipogon* and the occurrence of other domestication alleles in wild rice has not been thoroughly checked, models proposing a single origin...
of cultivated alleles followed by spread of the domestica-
tion alleles by introgressive hybridization have becomewidely accepted (Kovach et al. 2007; Sang and Ge 2007; Izawa 2008; Huang et al. 2012; Gross and Zhao 2014). Here we examine the occurrence of the \(sh4\), \(prog1\), \(rc\) and \(laba1\) alleles in \(O. rufipogon\) by searching published whole-genome sequencing data-
sets, and based on our findings suggest that the possibility that independent rice groups obtained
equal domestication alleles directly from the wild
population needs to be considered.

Methods

We downloaded raw sequence data for 1543 wild and
cultivated rice accessions (Huang et al. 2012) from the
Sequence Read Archive (ERP001143, ERP000729,
ERP000106) and converted each file into FASTQ
format using the fastq-dump command in sratoolkit
2.3.5. The full FASTQ dataset consisted of 9.174
billion Illumina reads totalling 2.129 TB and was
processed on a Linux platform. Low-quality regions
were removed by Trimmomatic-0.33 (Bolger et al.
2014).

These data sets have low sequencing depth (mean
1\(\times\) and 2\(\times\) for \(O. sativa\) and \(O. rufipogon\), respec-
tively; Huang et al. 2012) which does not allow
reconstruction of entire genes or ungapped haplotypes.
Nonetheless, known single nucleotide polymorphisms
(SNPs) or indel variants can be scored in a subset of
the samples where sequencing reads are available for
the particular locus. Given the sample size (460
accessions of wild rice; 519 subsp. \(indica\); 482 subsp.
\(japonica\); 30 \(aus\); 5 \(aromatic\); 47 other/unassigned),
estimates of allelic frequencies can be obtained for
subsp. \(indica\), subsp. \(japonica\) and wild rice, despite
the prevalence of missing data.

To determine indel variants of the \(Rc\) gene, we searched each of the 1543 trimmed FASTQ datasets
using the \(grep\) command with 30 bp words (perfect match) spanning the 14 bp indel site in the \(Rc\) gene (5\(^\prime\)-
AAAGGCACGTAATGCATCCAAGGTGA-
3\(^\prime\) and reverse complement, matching the variant with
deletion; 5\(^\prime\)-CAAGTGGAACGCGAAAAGTCGGT
GCCATCC-3\(^\prime\) and reverse complement, matching
the wild type). Identified matches were further verified
by aligning reads to reference sequences of the \(Rc\)
genome with and without the deletion. We also searched
for reads perfectly matching a 30 bp sequence span-
nning the 1 bp indel site in the \(LABAl\) coding sequence
(5\(^\prime\)-AGCCATGGCTCTACTCAGTCTCGGTTCAG
G-3\(^\prime\) and reverse complement, matching the variant
with deletion; 5\(^\prime\)-AGCCATGGCTCTACTCAGT
CTCGGTTCAG-3\(^\prime\) and reverse complement, match-
ing the wild type), and verified these matches against
the reference sequences for the \(LABAl\) gene.

To obtain diversity estimates for the \(rc\), \(laba1\), \(sh4\)
and \(prog1\) haplotypes, we searched for variability in
10 kb windows surrounding the causative mutations
utilising the SNP matrix published by Huang et al.
(2012) (downloaded from the Rice Haplotype Map
Project database). The diversity was calculated as the
average number of polymorphic sites in a 10 kb
window surrounding the causative mutation, weighted
per examined accession and the proportion of non-
missing data. A maximum-parsimony tree of the \(Sh4\)
locus was constructed from the data published by Zhu
et al. (2012) using dnapars program in the PHYLIP
package with default parameters (Felsenstein 2005).
Only the parsimony-informative sites were used and
>1 bp gaps were recoded as single events. A majority
consensus tree was constructed from 5171 equally
consensus trees.

Results and discussion

We found one or more reads exactly matching the
causative indel position in the \(Rc\) gene for 255
accessions of wild rice (Table 1; Table S1). In 33
cases (12.9\%), the \(rc\) variant with the deletion was
detected. Although we do not posses detailed pheno-
typic information about the wild accessions, we
assume that all of them have pigmented pericarp.
We therefore show that the \(rc\) allele does exist in wild
rice in moderate frequency and is not necessarily
associated with white pericarp, similar to the situation
previously reported for the \(sh4\) and \(prog1\) alleles.
Consequently, the conclusion of Sweeney et al. (2007)
that the \(rc\) allele originated in subsp. \(japonica\) and later
spread to subsp. \(indica\) by introgressive hybridization
is questioned, and the possibility that all cultivated rice
groups obtained the \(rc\) allele directly from their wild
progenitors has to be considered.

In the case of the \(LABAl\) gene, we found perfect
matches for the indel position in 215 wild accessions.
In 33 of those (~15\%), the variant with the deletion
was detected. In contrast, Hua et al. (2015) did not find a single case of the \textit{laba1} allele in their smaller sample of 43 \textit{O. rufipogon} accessions.

Plots of the geographical locations of the wild accessions carrying the \textit{rc} and \textit{laba1} alleles show that both alleles have a relatively broad distribution (Fig. 1). This is consistent with the results of Liu et al. (2015), who found no correlation between genetic groups and geographic regions in wild rice, and ascribed the absence of a phylogeographic pattern to repeated extinctions and re-colonizations of wild populations during Quaternary glacial-interglacial cycles. If this explanation is correct, it may imply that both mutations emerged prior to the last glaciation.

It could be argued that the observation of the “domestication” alleles in wild populations does not necessarily reject the hypothesis of their origin under cultivation. Each of the recessive alleles could have emerged during the domestication process and escaped into wild populations by gene flow. This possibility needs to be evaluated critically. Gene flow from \textit{O. sativa} to its wild relatives has been well documented due to concerns of transgene escape from genetically modified rice (Song et al. 2003; Chen et al. 2004; Wang et al. 2006; Shivrain et al. 2007). The recessive alleles of the \textit{Sh4, PROG1, Rc} and \textit{LABA1} genes can be transferred by gene flow just like any other genomic segment. However, these alleles are either neutral (if no phenotypic change is manifested) or disadvantageous in wild populations. In the absence of positive selection, it is difficult to conceive that gene flow and retention of the alleles in the wild would occur to the extent resulting in the frequencies reported for \textit{sh4} (\textasciitilde 26\%; Zhu et al. 2012), \textit{rc} and \textit{laba1} (\textasciitilde 13 and 15\%, respectively; this study). Moreover, high fixation index (\textit{F}_{ST}) values indicate that the reproductive barrier between cultivated rice and \textit{O. rufipogon} is relatively strong. For example, Huang et al. (2012) calculated that the \textit{F}_{ST} between subsp. \textit{japonica} and its assumed progenitor population is 0.36, which means that \textit{japonica} rice and its wild progenitor—although sympatric—share less genetic variability than East-Asians do with people from sub-Saharan Africa (\textit{F}_{ST} = 0.19; Nelis et al. 2009).

The above considerations suggest that the presence of domestication alleles in wild rice is not wholly explained by gene flow from \textit{O. sativa}, but empirical data are needed to confirm this point. One way of addressing the question is by exploration of associated diversity. If the domestication alleles found in \textit{O. rufipogon} are derived from cultivated rice, then their nucleotide diversity in wild populations would not be expected to exceed their diversity in \textit{O. sativa}. On the other hand, if the emergence of the causative mutations pre-dates domestication, then the domestication alleles found in \textit{O. rufipogon} would have higher diversity compared to \textit{O. sativa}. Our estimates of nucleotide diversity indicate that the latter interpretation is correct. The 10 kb regions surrounding the causative deletion contain \textasciitilde 4\times more polymorphisms in \textit{rc}-type and \textit{laba1}-type \textit{O. rufipogon} than they do in \textit{O. sativa} (Table 1). For the \textit{sh4} allele, it can be directly demonstrated that the causative G \textasciitilde T substitution changing asparagine for lysine in the protein product emerged in wild rice prior to domestication. This is established by a gene tree constructed

\begin{table}
\centering
\begin{tabular}{|l|c|c|c|c|c|}
\hline
 & \textit{Rc} & \textit{rc} (14 bp deletion) & \textit{rc} diversity & \textit{LABA1} & \textit{labal} (1 bp deletion) & \textit{labal} diversity \\
\hline
\textit{subsp. japonica} (tropical) & 7 (31.8\%) & 15 (68.2\%) & 0.42 & 0 & 24 (100\%) & 0.44 \\
\textit{subsp. japonica} (temperate) & 15 (11.6\%) & 114 (88.4\%) & \cite{O. sativa} & 50 (58.1\%) & 36 (41.9\%) & \cite{O. sativa} \\
\textit{indica}a & 65 (28.5\%) & 167 (73.2\%) & 3 (2.3\%) & 130 (97.7\%) & \\
\textit{aus} & 7 (100\%) & 0 & 8 (66.7\%) & 4 (33.3\%) & \\
\textit{aromatic} & 0 & 2 (100\%) & 0 & 3 (100\%) & \\
\textit{o. rufipogon}b & 218 (87.2\%) & 33 (13.2\%) & 1.69 & 185 (86.0\%) & 33 (15.3\%) & 2.07 \\
\hline
a Four subsp. \textit{indica} accessions were found with both \textit{Rc} alleles (heterozygotes) b One \textit{o. rufipogon} accession was found with both \textit{Rc} alleles, while three accessions had matches with both \textit{LABA1} alleles
\end{tabular}
\caption{Summary of the \textit{Rc} and \textit{LABA1} alleles detected in cultivated groups and wild populations}
\end{table}
from the polymorphism data in the Sh4 exon, partial intron and ~1.5 kb flanking region published by Zhu et al. (2012). The phylogenetic tree shows that most haplotypes with the G → T substitution form a clade where the sequences found in O. rufipogon occupy both the basal and sister positions in respect to the haplotypes found in O. sativa (Fig. 2). Furthermore, in the SNP matrix by Huang et al. (2012) we found a polymorphic site approximately 1 kb downstream of the Sh4 coding sequence (chromosome 4; IRGSP4 position 34,628,688). All 99 subsp. indica accessions with data have A at this position, while 46 out of 67 non-missing japonica data points are C (68.7%). Both variants are found in O. rufipogon (Table S1), indicating that the sh4 haplotypes of O. sativa do not originate from a single wild genotype.

For the prog1 allele, the causative mutation has not been unambiguously identified from the set of candidate polymorphisms (Tan et al. 2008), and we therefore could not sort the wild population into prog1/PROG1 classes. Nonetheless, we identified variability that indicates independent genealogical histories in different groups of O. sativa. A SNP located 230 bp upstream from the PROG1 start codon (chromosome 7; IRGSP4 position 2,872,361) is uniform in subsp. indica (all 127 accessions with data have C; Table S1) but variable in subsp. japonica (58.9% C and 41.1% A; 129 accessions with data). A short distance further upstream—780 bp away from the PROG1 start codon (chromosome 7; IRGSP4 position 2,872,911)—another polymorphic position was found, this time monomorphic in subsp. japonica (all 128 accessions with data have C) and polymorphic in subsp. indica (77.6% C and 22.4% T; 143 accessions with data). Both of these positions are variable in O. rufipogon. Thus, we observe two haplotypes in subsp. indica (TC-prog1 and CC-prog1) and two haplotypes in subsp. japonica (CC-prog1 and CA-prog1). Subsp. indica could not have obtained the TC-prog1 haplotype from subsp. japonica since it does not occur there, and similarly, subsp. japonica could not have obtained the CA-prog1 haplotype from subsp. indica. However, both groups could have obtained both haplotypes from wild rice, which is the most parsimonious explanation.

The diversity associated with prog1 and sh4 therefore indicates different genealogical histories for these alleles in subsp. indica and subsp. japonica, but unfortunately, the whole-genome data sets do not allow conclusions to be drawn about the aus group. Interestingly, Sweeney et al. (2007) reported a second mutation disrupting the open reading frame of the Rc gene and leading to white pericarp in some aus varieties. Similarly, Hua et al. (2015) found several aus varieties with the LABA1 (wild type) allele but barbless awns. These observations indicate that alternative mutations underlie the domesticated phenotype of some aus cultivars, in agreement with our previous suggestion that this group has a unique domestication history (Civánˇ et al. 2015).

In conclusion, we show that the rc, lab1, prog1 and sh4 alleles are moderately frequent in O. rufipogon
populations, where they display higher associated diversity than that present in O. sativa. This evidence suggests that the causative mutations determining white pericarp, barbless awns, erect growth and non-shattering ear in O. sativa each emerged in wild rice prior to domestication. Since these mutations are not associated with the domesticated phenotype in wild rice, a group of interacting genes is probably responsible for the phenotypic trait in each case. The implication is that, for each of these traits, selection in cultivated rice acts on a network of alleles rather than at an individual locus. A single gene can still determine the alternative phenotypes, but only in the appropriate allelic background.

Our results broaden the possible scope for models describing the events giving rise to the different groups of cultivated rice. The uniformity of the domestication alleles in cultivated rice has previously constrained those models, with focus largely on schemes in which the domestication phenotype originated in one type of rice and was subsequently transferred to other groups by introgressive hybridization (e.g. Sweeney et al. 2007; He et al. 2011; Huang et al. 2012; Yang et al. 2012; Hua et al. 2015; Oikawa et al. 2015). The underlying assumption on which these models are based, that the different groups of rice could not have acquired domestication alleles from standing variation in the wild population, is clearly incorrect. Conversely, models that propose independent domestications giving rise to subsp. indica, subsp. japonica and/or aus (e.g. Cíván et al. 2015) are not invalidated by the uniformity of the domestication alleles in these different groups.

Funding This work was supported by European Research Council grant 339941 awarded to TAB.

Compliance with ethical standards

Conflict of interests The authors declare that they have no conflict of interest.

Availability of data and materials In this article, data produced by third parties were used. The original data repositories are referenced in the text and our data extractions are summarised in the supporting file.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

References

Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:2114–2120

Chen LJ, Lee DS, Song ZP, Suh HS, Lu B-R (2004) Gene flow from cultivated rice (Oryza sativa) to its weedy and wild relatives. Ann Bot 93:67–73

Cíván P, Craig H, Cox CJ, Brown TA (2015) Three geographically separate domestications of Asian rice. Nat Plants 1:15164

Felsenstein J (2005) PHYLIP (phylogeny inference package) version 3.6. Distributed by the author. Seattle (WA): Department of Genome Sciences, University of Washington. http://evolution.genetics.washington.edu/phylip.html

Fujino K, Wu J, Sekiguchi H, Ito T, Izawa T, Matsumoto T (2010) Multiple introgression events surrounding the Hd1 flowering-time gene in cultivated rice, Oryza sativa L. Mol Genet Genomics 284:137–146

Garris AJ, Tai TH, Coburn J, Kresovich S, McCouch S (2005) Genetic structure and diversity in Oryza sativa L. Genetics 169:1631–1638

Gross BL, Zhao Z (2014) Archaeological and genetic insights into the origins of domesticated rice. Proc Natl Acad Sci USA 111:6190–6197

He Z, Zhai W, Wen H, Tang T, Wang Y, Lu X, Greenberg AJ, Hudson RR, Wu C-I, Shi S (2011) Two evolutionary histories in the genome of rice: the roles of domestication genes. PLoS Genet 7:e1002100

Hua L, Wang DR, Tan L, Fu Y, Liu F, Xiao L, Zhu Z, Fu Q, Sun X, Gu P, Cai H (2015) LABA1, a domestication gene associated with long, barbed awns in wild rice. Plant Cell 27:1875–1888

Huang X, Kurata N, Wei X, Wang Z-X, Wang A, Zhao Q, Zhao Y, Liu K, Lu H, Li W, Guo Y (2012) A map of rice genome variation reveals the origin of cultivated rice. Nature 490:497–503

Izawa T (2008) The process of rice domestication: a new model based on recent data. Rice 1:127–134
Konishi S, Izawa T, Lin SY, Ebana K, Fukuta Y, Sasaki T, Yano M (2006) An SNP caused loss of seed shattering during rice domestication. Science 312:1392–1396

Kovach MJ, Sweeney MT, McCouch S (2007) New insights into the history of rice domestication. Trends Genet 23:578–587

Li C, Zhou A, Sang T (2006) Rice domestication by reducing shattering. Science 311:1936–1939

Liu R, Zheng X-M, Zhou L, Zhou H-F, Ge S (2015) Population genetic structure of *Oryza rufipogon* and *Oryza nivara*: implications for the origin of *O. nivara*. Mol Ecol 24:5211–5228

Nelis M, Esko T, Mägi R, Zimprich F, Zimprich A, Toncheva D, Karachanak S, Piskačková T, Balaščak I, Peltonen L, Jakkula E (2009) Genetic structure of Europeans: a view from the north-east. PLoS ONE 4:e5472

Oikawa T, Maeda H, Oguchi T, Yamaguchi T, Tanabe N, Ebana K, Yano M, Ebitani T, Izawa T (2015) The birth of a black rice gene and its local spread by introgression. Plant Cell. doi:10.1105/tpc.15.00310

Sang T, Ge S (2007) Genetics and phylogenetics of rice domestication. Curr Opin Gen Dev 17:533–538

Sequence Read Archive. http://ncbi.nlm.nih.gov/Traces/sra/. Accessed Oct 2015

Shivrain VK, Burgos NR, Anders MM, Rajguru SN, Moore J, Sales MA (2007) Gene flow between Clearfield™ rice and red rice. Crop Prot 26:349–356

Si L, Chen J, Huang X, Gong H, Luo J, Hou Q, Zhou T, Lu T, Zhu J, Shangguan Y, Chen E (2016) OsSPL13 controls grain size in cultivated rice. Nat Genet 48:447–457

Song ZP, Lu B-R, Zhu YG, Chen JK (2003) Gene flow from cultivated rice to the wild species *Oryza rufipogon* under experimental field conditions. New Phytol 157:657–665

Studer A, Zhao Q, Ross-Ibarra J, Doebley J (2011) Identification of a functional transposon insertion in the maize domestication gene tb1. Nat Genet 43:1160–1165

Subudhi PK, Singh PK, DeLeon T, Parco A, Karan R, Biradar H, Cohn MA, Sasaki T (2014) Mapping of seed shattering loci provides insights into origin of weedy rice and rice domestication. J Hered 105:276–287

Sweeney MT, Thomson MJ, Pfeil BE, McCouch S (2006) Caught red-handed: *Re* encodes a basic helix-loop-helix protein conditioning red pericarp in rice. Plant Cell 18:283–294

Sweeney MT, Thomson MJ, Cho YG, Park YJ, Williamson SH, Bustamante CD, McCouch SR (2007) Global dissemination of a single mutation conferring white pericarp in rice. PLoS Genet 3:e133

Tan L, Li X, Liu F, Sun X, Li C, Zhu Z, Fu Y, Cai H, Wang X, Xie D, Sun C (2008) Control of a key transition from prostrate to erect growth in rice domestication. Nat Genet 40:1360–1364

The Rice Haplotype Map Project database. http://www.ncgr.ac.cn/RiceHap3. Accessed Dec 2014

Wang F, Yuan Q-H, Shi L, Qian Q, Liu W-G, Kuang B-G, Zeng D-L, Liao Y-L, Cao B, Jia S-R (2006) A large-scale field study of transgene flow from cultivated rice (*Oryza sativa*) to common wild rice (*O. rufipogon*) and barnyard grass (*Echinochloa crus-galli*). Plant Biotechnol J 4:667–676

Weber A, Clark RM, Vaughn L, Sánchez-Gonzalez JJ, Yu J, Yandell BS, Bradbury P, Doebley J (2007) Major regulatory genes in maize contribute to standing variation in teosinte (*Zea mays ssp. parviglumis*). Genetics 177:2349–2359

Weber AL, Briggs WH, Rucker J, Baltazar BM, Sánchez-Gonzalez JJ, Peng F, Buckler ES, Doebley J (2008) The genetic architecture of complex traits in teosinte (*Zea mays ssp. parviglumis*): new evidence from association mapping. Genetics 180:1221–1232

Yang C-C, Kawahara Y, Mizuno H, Wu J, Matsumoto T, Itoh T (2012) Independent domestication of Asian rice followed by gene flow from japonica to indica. Mol Biol Evol 29:1471–1479

Yao N, Wang L, Yan H, Liu Y, Lu B-R (2015) Mapping quantitative trait loci (QTL) determining seed-shattering in weedy rice: evolution of seed shattering in weedy rice through de-domestication. Euphytica 204:513–522

Zhao K, Tung C-W, Eizenga GC, Wright MH, Ali ML, Price AH, Norton GJ, Islam MR, Reynolds A, Mezey J, McClung AM (2011) Genome-wide association mapping reveals a rich genetic architecture of complex traits in *Oryza sativa*. Nat Commun 2:467

Zhu Y, Ellstrand NC, Lu B-R (2012) Sequence polymorphisms in wild, weedy, and cultivated rice suggest seed-shattering locus *sh4* played a minor role in Asian rice domestication. Ecol Evol 2:2106–2113