Design of an all-fiber broadband mid-IR source through wavelength translation

A. Barh, S. Ghosh*, R. K. Varshney and B. P. Pal*
Department of Physics, Indian Institute of Technology Delhi, New Delhi 110016, INDIA
Tel: +91-11-26591327, Fax: +91-11-26581114, e-mail: bishnupal@gmail.com

Abstract: We report design of an efficient ~ 50 cm long all-fiber compact microstructured optical fiber-based 3-4.25 µm mid-IR light source with power conversion efficiency > 28% by exploiting FWM with Er^3+-doped ZBLAN fiber as the pump.

1. Introduction
Recent rapid advancement in fiber fabrication techniques and development of suitable relatively low-loss materials of good transparency have opened up a new platform for mid-IR photonics in the wavelength range 2 - 5 µm [1, 2]. Within this mid-IR window, wavelength range 3 - 4.2 µm is an attractive window for atmospheric transmission. This window can be explored to detect traces of environmental and toxic vapors as low as parts per billion for atmospheric, security and industrial applications. However, over the years it has been a challenge to develop simple but efficient scheme(s) to produce laser radiation to cover this relatively high-pass atmospheric transmission window. To meet this demand for a high-power, compact, efficient and reliable CW/ pulse laser sources in this mid-IR region, we propose an integrated all-fiber scheme exploiting four-wave mixing (FWM) for wavelength translation using the commercially available CW Er^3+-doped ZBLAN fiber as the pump ($\lambda_p \sim 2.8 \mu m$). This superior FWM bandwidth (BW) was obtained through precise tailoring of the fiber’s dispersion profile so as to realize positive quartic dispersion at the pump wavelength (λ_p). The fiber length was also optimized to ~ 0.5 m in order to achieve efficient phase matching between the propagating waves and the generated FWM signal.

2. Fiber design and wavelength translation
Among various nonlinear (NL) phenomena, FWM is the dominant mechanism for wavelength translation provided certain phase matching condition is satisfied. Under the degenerate FWM process, pump photons of frequency ω_p get converted to a signal photon ($\omega_s < \omega_p$) and an idler photon ($\omega_i > \omega_p$) according to the energy conservation relation ($2\omega_p = \omega_s + \omega_i$) where, subscripts s, i and p stands for signal, idler, and pump, respectively. In a highly NL single-mode fiber, the maximum frequency shift (Ω_s) depends on both the magnitude and sign of its GVD parameters. On one hand, positive β_4 leads to broad-band and flat gain whereas negative β_4 reduces the flatness and BW of FWM output. Thus higher order dispersion management is very crucial in such fiber designs to achieve a targeted output. This positive β_4 value in the vicinity of low negative β_2 could be achieved by suitably reducing the core cladding index difference (Δn). In our proposed fiber design, up to fourth order dispersion term is taken into account.

To achieve such application-specific fiber design, we focus on an arsenic sulphide (As$_2$S$_3$)-based microstructured optical fiber (MOF) geometry with a solid core and holey cladding, consisting of 4 rings of hexagonally arranged holes embedded in As$_2$S$_3$ matrix (Fig. 1(a)). In order to reduce Δn, we choose thermally compatible borosilicate glass rods to fill the holes. To limit confinement loss ($\alpha_c < 1$dB/m) and to tune dispersion curve accordingly, we have chosen the sizes of rods in the 2nd cladding ring (radius r_2) different from the surrounding rings. After optimization we have fixed fiber parameters as $d/\Lambda = 0.5$, $\Lambda = 2.5 \mu m$ and $r_2 = 0.635 \mu m$. To attain sufficient signal amplification factor (AF_s), which is a measure of the achievable gain over the targeted wavelength regime of 3 ~ 4.2 µm, we have assumed 10 W of input pump power (P_0). In order to suppress other NL effects, short fiber length is considered and optimized to ~ 50 cm. For this fiber structure dispersion (D) and β_2 variation is shown in Fig. 1(b). It can be seen that the zero dispersion wavelength in the designed fiber is 2.788 µm.

In our design calculation, initially we have studied the FWM performance under lossless, undepleted pump condition, where P_0 is only transferred to λ_s and λ_i. We have also shown that launching of a weak idler ($P_{I,in}$) along with the pump improves the FWM efficiency through stimulated FWM. Variation of AF of output spectrum has been studied with different λ_p (as shown in Fig. 1(c)), where the required output BW (3 – 4.25 µm) with sufficient amplification (~ 38 dB) is achieved for a suitable choice of pump operating near $\lambda_p = 2.792 \mu m$.
In the next step, assuming quasi-CW conditions, we have studied the complex amplitudes $A_j(z)$ ($j = p, i, s$) and corresponding power (P_{out}) variations along the fiber length (L) to study the effect of pump depletion and spectral dependence material loss (α_j) by numerically solving the three coupled amplitude equations (Eq. 1 – 3) [4].

\[
\begin{align*}
\frac{dA_p}{dz} &= -\frac{\alpha_p A_p}{2} + \frac{in_p \omega}{c} \left[\left(f_{pp} |A_p|^2 + \sum_{k=p,i,s} f_{pk} |A_k|^2 \right) A_p + 2f_{ipk} A_i A_k e^{i\Delta \alpha z} \right] \\
\frac{dA_i}{dz} &= -\frac{\alpha_i A_i}{2} + \frac{in_i \omega}{c} \left[\left(f_{ii} |A_i|^2 + \sum_{k=p,i,s} f_{ik} |A_k|^2 \right) A_i + f_{ip} A_p A_i^* e^{-i\Delta \alpha z} \right] \\
\frac{dA_s}{dz} &= -\frac{\alpha_s A_s}{2} + \frac{in_s \omega}{c} \left[\left(f_{ss} |A_s|^2 + \sum_{k=p,i,s} f_{sk} |A_k|^2 \right) A_s + f_{ip} A_p A_s^* e^{-i\Delta \alpha z} \right]
\end{align*}
\]

where, n_2 is the NL index coefficient and $\Delta \alpha_k$ is the linear phase mismatch term, f_{lj} and f_{lij} are overlap integrals. We have fixed P_0 at 10 W and λ_p at 2.792 μm and optimized P_{in} as 20 mW. As a sample, for one set of λ_p (4.13 μm) and λ_i (2.11 μm) AF and P_{out} variations along L were studied (shown in Fig. 1(d) & (e), respectively). Optimum L becomes ~ 50 cm. Even after inclusion of pump depletion and loss, average $P_{\text{out}} > 2.83$ W is achievable with a conversion efficiency > 28%. The entire signal spectrum is shown in Fig. 1(f). It can be seen that the spectral BW is very similar to the undepleted case, the maximum AF_s however decreases to \approx 22 dB due to inclusion of pump depletion and loss. Such a fiber, if experimentally realized should be attractive as a mid-IR light source for a variety of applications.

Fig. 1: (a) Cross section of the designed MOF. Cladding consists of 4 rings of borosilicate rods (white circles) embedded in the As$_2$S$_3$ matrix (black background); (b) Dispersion (blue dotted) and β_2 (pink solid) variation, $\lambda_{\text{ZD}} = 2.788$ μm; (c) Variation of AF for different λ_p neglecting pump depletion and loss. With pumping at 2.792 μm (pink dotted), output signal spectrum is almost uniform with 3-dB BW ranging from 3 - 4.25 μm; (d) Variation of AF for λ_p, λ_i and λ_s along length including pump depletion and loss; (e) Output power (P_{out}) variation; (f) Optimum signal 3-dB BW (3 – 4.25 μm) with pump depletion and loss. Maximum AF_s is \approx 22 dB.

3. Conclusions and Acknowledgement

We report design of an all-fiber compact and efficient 3 - 4.25 μm light source based on a 50 cm long specialty MOF, in which achievable amplification is shown to be (> 20 dB) with a 2.79 μm pump of 10 W power. The achievable average power conversion efficiency is shown to be $> 28\%$. Thus our proposed fiber-based broad-band source should be useful to explore the new avenues of research in mid-IR photonics for military, spectroscopy as well as astronomical applications.
Govind Agrawal of University of Rochester is thanked for his advice and useful comments on our earlier related work in this area. This work relates to Department of the Navy Grant N62909-10-1-7141 issued by Office of Naval Research Global. The United States Government has royalty-free license throughout the world in all copyrightable material contained herein.

4. References

[1] J. S. Sanghera and I. D. Aggarwal, “Active and passive applications of chalcogenide glass fibers: a review,” J. Non-Cryst. Solids 6, 256-257 (1999).
[2] A. Barh, S. Ghosh, G. P. Agrawal, R. K. Vanshney, I. D. Aggarwal and B. P. Pal, “Design of an efficient mid-IR light source using chalcogenide holey fibers: A numerical study,” Journal of Optics (In press).
[3] S. D. Jackson, “Towards high-power mid-infrared emission from a fibre laser,” Review Articles - Nature Photonics 6, 423-431 (2012).
[4] G. P. Agrawal., Nonlinear Fiber Optics, 4th ed., Optics and Photonics Series (Academic, San Diego, Calif., 2007).