EFEITOS DA REDE DE POSICIONAMENTO NOS PARÂMETROS CLÍNICOS DE PREMATUROS ADMITIDOS EM UNIDADE DE TERAPIA INTENSIVA NEONATAL: UMA REVISÃO SISTEMÁTICA

Effects of hammock positioning on clinical parameters in preterm infants admitted to a Neonatal Intensive Care Unit: a systematic review

Janaina de Lima Menger¹, Letícia Reck Mafaldo², Daniele Schiwe³, Camila Wohlgemuth Schaand⁴, João Paulo Heinzmann-Filho⁵,*

RESUMO

Objetivo: Revisar os efeitos da rede de posicionamento nos parâmetros clínicos de recém-nascidos pré-termo (RNPT) admitidos em Unidade de Terapia Intensiva Neonatal (UTIN).

Fontes de dados: Trata-se de uma revisão sistemática realizada na PubMed, na Literatura Latino-Americana e do Caribe em Ciências da Saúde (Lilacs), na Biblioteca Eletrônica Científica Online (SciELO) e na Base de Dados em Evidências em Fisioterapia (PEDro). Selecionaram-se estudos de intervenção, nos idiomas inglês, português e espanhol, que avaliaram os efeitos da rede de posicionamento sobre parâmetros clínicos de RNPT admitidos em UTIN. Foram utilizadas três estratégias de busca: 1) hammock positioning OR patient positioning AND intensive care units AND infant, newborn; 2) hammock positioning OR patient positioning AND intensive care units, neonatal. Não houve restrição quanto ao ano de publicação dos artigos. A qualidade metodológica foi avaliada pela escala PEDro.

Síntese dos dados: De um total de 597 artigos, apenas seis foram incluídos. As amostras totalizaram 139 neonatos, com idade gestacional entre 26 e 37 semanas e média de peso gestacional <2240 g. Quatro estudos incluíram pacientes sem nenhuma patologia associada, e a maioria dos neonatos foi posicionada supina. A duração da intervenção variou de 15 a 180 minutos, e a maioria aplicou essa intervenção em apenas um momento. Foi observada melhora na frequência cardíaca (FC), respiratória (RR) e de oxigênio sanguíneo (SpO2) (2/4 estudos). Only 3/4 estudos registrarão melhora na frequência cardíaca (FC).

ABSTRACT

Objective: To review the effects of the hammock positioning on clinical parameters of preterm newborn infants (PTNB) admitted to the Neonatal Intensive Care Unit (NICU).

Data sources: This was a systematic review performed by searching the PubMed, Lilacs, SciELO and PEDro databases. Intervention studies in English, Portuguese and Spanish that evaluated the effects of hammock positioning on clinical parameters of PTNB admitted to the NICU were selected. Three search strategies were used: 1) hammock positioning OR patient positioning AND intensive care units AND infant, newborn; 2) hammock positioning OR patient positioning AND intensive care units, neonatal. There was no restriction on the year of publication of the articles. Methodological quality was assessed by the PEDro scale.

Data synthesis: Among 597 articles, only six were included and 139 neonates with gestational ages between 26 and 37 weeks and an average gestational weight <2240g were analyzed. Four studies included patients without any associated pathology and most of them placed the PTNB supine in hammock positioning. The duration of the intervention ranged from 15 to 180 minutes and most applied it at just one moment. There was an improvement in heart rate (HR), respiratory rate (RR) and pain (3/4 studies), as well as gains in peripheral oxygen saturation (SpO2) (2/4 studies). Only
INTRODUÇÃO
A teoria síncrono-ativa da organização neurocomportamental do recém-nascido, proposta por Heidelise Als no ano de 1982, descreve a organização comportamental do neonato e o seu desenvolvimento quanto ao equilíbrio entre a interação da criança com o ambiente e os subsistemas neurocomportamentais. Os subsistemas abrangem o sistema autônomo, o sistema motor, o estado comportamental, a atenção-interação e o sistema regulador, tendo eles amadurecimento sequencial e interdependente.1,2

Os recém-nascidos pré-termo (RNPT) internados em Unidade de Terapia Intensiva Neonatal (UTIN) podem apresentar modificação na organização neurocomportamental, já que são expostos à luminosidade, a ruídos, aos manejos e às intervenções dolorosas. Isso é capaz de provocar desorganização fisiológica, gasto energético, instabilidade hemodinâmica, alteração da pressão intracraniana e comprometimento do sistema nervoso central.3-7 Estratégias comportamentais de posicionamento e de estimulação sensorial são necessárias em UTIN, a fim de minimizar os prejuízos desencadeados por esses mecanismos estressores e para promover conforto.4,7

Nos últimos 15 anos, iniciativas de humanização da assistência dentro da UTIN têm enfatizado a importância desse tipo de estratégia, articulando a qualidade técnica da assistência, as tecnologias de acolhimento, o suporte aos pacientes e aos familiares. Essas iniciativas têm se apresentado em diversos campos, mas foram implementadas a priori na atenção ao parto e ao recém-nascido. Entre essas ações, destacam-se o parto humanizado, o método canguru, a imersão na água, a musicoterapia e a rede de posicionamento.8-11

A rede de posicionamento é um método considerado simples e de baixo custo, consistindo no posicionamento do RNPT em uma rede commonemente confeccionada de tecido, com formato retangular e fixada nas extremidades das incubadoras.9 A posição terapêutica com esse método simula potencialmente o ambiente intrauterino, proporcionando relaxamento e o desenvolvimento de habilidades motoras espontâneas e funcionais, além de minimizar anormalidades posturais e assimetrias relacionadas com a prematuridade e a permanência na UTIN.5,7,12,13 No Brasil, é utilizado principalmente na Região Nordeste e, apesar da sua aplicabilidade, existe pouca evidência no que se refere à sua indicação. A rede de posicionamento vem sendo estudada em RNPT e em nascidos a termo estáveis hemodinamicamente e sem necessidade de oxigenoterapia.8,14

Bottos et al., em 1985,15 foram os primeiros pesquisadores que compararam algum desfecho cardiorrespiratório em RNPT e em nascidos a termo com o uso da rede de posicionamento ou na posição supina. Todos os sujeitos da investigação foram colocados em incubadoras por 23 minutos, alternadamente nas duas posições. Nesse estudo, não se encontraram mudanças significativas na saturação periférica de oxigênio (SpO2) entre os pacientes submetidos às duas estratégias, mesmo estratificando-os no tocante ao peso ao nascimento (≥2.000 g) e à idade gestacional (≥35 semanas).15 Com o passar do tempo, outros estudos foram surgindo, e, em alguns deles, observou-se melhora no sono,4 no relaxamento,16 no desenvolvimento neuropsicomotor,17 na diminuição do gasto energético18 e no estresse.19 Além do mais, uma pesquisa recente3 demonstrou que o peso de RNPT em UTIN posicionados na rede foi maior na alta hospitalar em relação aos que receberam o método canguru.

Portanto, levando em consideração os frequentes fatores estressores de RNPT em UTIN e as diferentes estratégias de cuidado humanizado, principalmente manejo simples como a rede de posicionamento,9 justifica-se a investigação dos possíveis efeitos desse método. Ademais, até o presente momento, não foi encontrada nenhuma revisão crítica nem sistemática sobre o assunto. Assim, o objetivo do presente estudo foi revisar sistematicamente os efeitos da rede de

na frequência respiratória (FR) e na dor (3/4 estudos), além de ganhos na saturação periférica de oxigênio (SpO2) (2/4 estudos). Apenas um artigo relatou piora da SpO2 com a intervenção. A qualidade metodológica foi classificada como baixa.

Conclusões: Embora a rede de posicionamento pareça causar melhora na FC, na FR e na dor em RNPT, a baixa qualidade metodológica torna inconsistentes os resultados.

Palavras-chave: Recém-nascido prematuro; Posicionamento do paciente; Unidades de Terapia Intensiva Neonatal.

one study reported worsening of SpO2 with the intervention. The methodological quality of the studies was classified as low.

Conclusions: Although this review suggests improvement with hammock positioning in HR, RR and pain in PTNB, the low methodological quality makes the results inconsistent.

Keywords: Premature newborn; Patient positioning; Neonatal Intensive Care Units.
posicionamento sobre parâmetros clínicos de RNPT admitidos em UTIN.

MÉTODO

A revisão sistemática foi realizada de acordo com as recomendações da Preferred Reporting Items for Systematic Reviews and Meta-Analyses21 e por meio de pesquisa nas bases de dados PubMed via Sistema Online de Busca e Análise de Literatura Médica (MEDLINE), Literatura Latino-Americana e do Caribe em Ciências da Saúde (LILACS), Biblioteca Eletrônica Científica Online (SciELO) e Base de Dados em Evidências em Fisioterapia (PEDro).

Foram selecionados estudos de intervenção (ensaio clínico e/ou quase-experimental) nos idiomas inglês, português e espanhol, sem filtro quanto à idade e ao ano de publicação dos artigos. O período de seleção dos estudos foi entre maio e setembro de 2019.

A busca utilizada para a seleção dos artigos foi baseada em seis palavras-chave, associadas com descritores booleanos. Foram empregadas três estratégias de busca em cada base de dados:

- Hammock positioning OR patient positioning AND intensive care units AND infant, newborn.
- Hammock positioning OR patient positioning AND intensive care units.
- Hammock positioning OR patient positioning AND intensive care units, neonatal.

Todos esses termos são descritores controlados, cadastrados nos Descritores em Ciências da Saúde (DeCS), com exceção da palavra-chave “hammock positioning”. Optou-se por deixá-la pelo fato de muitos estudos utilizarem esse termo nos resumos (abstracts). Todos os descritores deveriam constar, pelo menos, do título, do resumo ou das palavras-chave. Além disso, foram revisadas as referências dos estudos incluídos para verificar possíveis artigos para compor o presente trabalho (grey literature).

Incluíram-se estudos que avaliaram os efeitos da rede de posicionamento sobre parâmetros clínicos (sinais vitais, dor, estresse, sono/vigilia, temperatura, estado organizacional, maturidade neuromuscular, estabilidade autonômica e postura) de RNPT (<37 semanas), sem/com patologias associadas e internados em UTIN. Por outro lado, excluíram-se resumos, dissertações, teses, diretrizes clínicas, cartas editoriais, artigos de revisão, relatos de caso, opiniões de especialistas e estudos que envolviam lactentes em suas amostras.

Após identificar os descritores no título, no resumo e/ou nas palavras-chave, os artigos selecionados passaram por leitura dos resumos (abstracts), para avaliar a adequação quanto aos critérios de elegibilidade. Os estudos que apresentaram os critérios predeterminados tiveram o texto completo adquirido para análise detalhada e extração dos dados. A busca e a análise dos artigos foram conduzidas de forma independente por dois avaliadores, sendo qualquer divergência resolvida com um terceiro avaliador.

Coletaram-se as seguintes características dos estudos: nome do primeiro autor, ano de publicação do estudo, país (origem) da coleta de dados, tamanho amostral, objetivo do estudo, idade e peso gestacional, patologias associadas, parâmetros clínicos analisados, momentos da avaliação dos dados, tipo/característica da intervenção, frequência e duração da terapia, análise estatística e principais resultados.

A qualidade metodológica foi analisada por dois avaliadores, e qualquer problema de divergência foi resolvido por consenso. Utilizou-se a escala de PEDro, baseada no método Delphi, que tem por objetivo auxiliar os usuários quanto à qualidade metodológica dos ensaios clínicos (critérios 2 a 9 da escala) e da descrição estatística (critérios 10 e 11 da escala). Sua qualificação é dada pelo número de critérios cumpridos. O item 1 não é calculado na pontuação, por se tratar de um item que avalia a validade externa do estudo. Portanto, a pontuação fica entre 0 e 10, caracterizando a maior pontuação como melhor qualidade metodológica.22

RESULTADOS

De um total de 597 artigos identificados nas bases de dados, apenas seis foram incluídos na presente revisão (Figura 1). Quatro estudos (66,6%) foram conduzidos no Brasil, e dois (44,4%) são ensaios clínicos, controlados e randomizados (Tabela 1).

As amostras, cujo tamanho amostral variou entre 15 e 30 participantes, totalizaram 139 indivíduos. Elas continham neonatos com idade gestacional entre 26 e 37 semanas e peso gestacional <2,240 g. Dessas amostras, duas (44,4%) incluíram RNPT com displasia broncopulmonar e/ou síndrome do desconforto respiratório. As variáveis mais investigadas foram os sinais vitais (frequência cardíaca — FC, frequência respiratória — FR, saturação periférica de oxigênio — SpO₂) e a dor, em quatro (66,6%) estudos. Também, foram registradas as mudanças em relação aos estados comportamental, organizacional e maturacional, entre outros. Três artigos (50,0%) registraram as variáveis antes, ao longo e imediatamente depois das intervenções (Tabela 2).

A maioria (66,6%) dos estudos dispôs o recém-nascido em supino na rede de posicionamento, enquanto outra parcela (44,4%) o organizou em decúbito lateral. Em relação aos...
estudos que obtiveram grupo controle, dois dos pacientes foram colocados em prono (ninho) e outros dois em decúbito lateral no ninho. A duração do tempo de intervenção variou entre 15 e 180 minutos, e as intervenções foram realizadas em apenas um momento ou até em 10 dias. Entre os principais resultados observados, destacam-se a melhora dos sinais vitais (FC e FR) e da dor em 75% deles (3/4 estudos) e o aumento da SpO₂ em 50% (2/4 pesquisas). Houve ganhos nos estados comportamental, organizacional e maturacional, no entanto a intervenção com a rede de

Figura 1 Sistematização da seleção dos estudos nessa revisão.
posicionamento não modificou o ganho de peso, a temperatura corporal nem os níveis de pressão arterial. Apenas um estudo (16,6%) relatou piora da SpO₂ (Tabela 3).

Por fim, a média da qualidade metodológica foi de 5,33, variando entre 3 e 8 pontos. Apenas dois estudos (33,3%) tiveram pontuação >7, enquanto as demais (66,6%) foram classificadas com baixa qualidade metodológica. Os documentos perderam pontuações principalmente nos itens acerca da alocação oculta/aleatória, dos avaliadores/terapeutas cegos e da homogeneidade dos grupos investigados (Tabela 4).

Tabela 1 Identificação dos estudos incluídos nessa revisão.

Autores	País	Tamanho amostral	Delineamento	Objetivo do estudo
Ribas et al.23	Brasil	26	ECR	Avaliar os efeitos da rede de posicionamento na redução da dor e na melhora do estado de sono/vigília e dos sinais vitais
Jesus et al.4	Brasil	28	Quase-experimental	Avaliar os efeitos da rede de posicionamento no estado comportamental, na dor e nos sinais vitais
Queiroz et al.14	Brasil	20	Quase-experimental com cross-over	Verificar a utilização das redes de descanso e do posicionamento em prono no alívio da dor e no comportamento dos sinais vitais
Costa et al.8	Brasil	30	Quase-experimental com cross-over	Comparar os efeitos da rede de posicionamento e do ninho no nível de dor, postura e estado organizacional
Keller et al.19	Israel	20	ECR	Examinar os efeitos da rede de posicionamento no crescimento, na estabilidade autonômica e na maturidade neuromuscular
Zanardo et al.24	Itália	15	Quase-experimental	Avaliar os efeitos da rede de posicionamento na saturação periférica de oxigênio

ECR: ensaio clínico controlado e randomizado.

Tabela 2 Características das amostras avaliadas.

Autores	Idade (semanas)	Peso gestacional (g)	Patologias associadas	Variáveis avaliadas	Momento da avaliação
Ribas et al.23	30 a 37	1620±0,51*	Nenhuma	Dor, FC, FR, SpO₂ e sono/vigília	10 minutos antes e depois da intervenção
Jesus et al.4	28 a 36	<1500	Nenhuma	Dor, FC, FR, SpO₂ e estado comportamental	10 minutos antes e ao longo da intervenção (2, 20, 40, 60 minutos) e após 10 minutos
Queiroz et al.14	32+	1932$	SDR e DBP	Dor, FC, FR, SpO₂, PAS, PAD, PAM e temperatura corporal	Antes e depois da intervenção$
Costa et al.8	32 a 35	1400–1800	Nenhuma	Dor, postura flexora e estado organizacional	Após a troca de fraldas$
Keller et al.19	26 a 30	< 1500	Nenhuma	FC, FR, ganho de peso e maturação neuromuscular	Antes, ao longo e depois da intervenção$
Zanardo et al.24	27 a 30	970–2240	DBP	SpO₂	15 minutos antes, ao longo e depois da intervenção

*Média de idade gestacional do grupo avaliado; *média de peso do grupo rede de posicionamento; $média do peso gestacional do grupo avaliado; SDR: síndrome do desconforto respiratório; DBP: displasia broncopulmonar; FC: frequência cardíaca; FR: frequência respiratória; SpO₂: saturação periférica de oxigênio; PAS: pressão arterial sistólica; PAD: pressão arterial diastólica; PAM: pressão arterial média; *estudo não especificou o tempo exato das mensurações.
Tabela 3 Principais resultados dos estudos incluídos nessa revisão.

Autores	Tipo de intervenção	Frequência	Duração	Análise estatística	Dor	FC	FR	SpO₂	Outros desfechos
Ribas CG et al.²³	Rede de posicionamento em DL Posicionamento no ninho em DL	5 dias	120 minutos	Intergrupos	↓	↓	↓	↑	↑ Sono e vigília
Jesus VR et al.³	Rede de posicionamento em supino	1 momento	60 minutos	Intragrupos	↔	↓	↓	↔	↑ Estado comportamental
Queiroz CMB et al.¹⁴	Rede de posicionamento em DLD Posicionamento no ninho em DLD	1 momento	40 minutos	Intragrupos	↓	↓	↔	↑	↔ PAS, PAD, PAM Temperatura corporal
Costa KSF et al.⁵	Rede de posicionamento em supino Posicionamento no ninho em supino	1 momento	40 minutos	Intragrupos	↓	-	-	-	↑ Postura flexora Estado organizacional
Keller A et al.¹⁹	Rede de posicionamento em supino Posicionamento no ninho em prono	10 dias	180 minutos	Intergrupos	-	↓	↓	-	↑ Maturação neuromuscular Peso corporal
Zanardo V et al.²⁴	Rede de posicionamento em supino	1 momento	15 minutos	Intragrupos	-	-	-	↓	-

DL: decúbito lateral; DLD: decúbito lateral direito; intragrupos: comparação dos resultados antes e depois da intervenção dentro do grupo; intergrupos: comparação dos resultados da intervenção entre os diferentes grupos; FC: frequência cardíaca (batimentos por minuto); FR: frequência respiratória (respiração por minuto); SpO₂: saturação periférica de oxigênio; ↑: aumento; ↓: redução; ↔: sem alteração; -: não avaliado; PAS: pressão arterial sistólica; PAD: pressão arterial diastólica; PAM: pressão arterial média.

Tabela 4 Avaliação da qualidade metodológica dos estudos incluídos nessa revisão.

Critérios avaliados	Ribas CG et al.²³	Jesus VR et al.³	Queiroz CMB et al.¹⁴	Costa KSF et al.⁵	Keller A et al.¹⁹	Zanardo V et al.²⁴
Critérios de elegibilidade*	+	+	+	+	+	+
Alocação aleatória	+	-	-	-	+	-
Alocação oculta	-	-	-	-	-	-
Grupos semelhantes	+	-	-	-	+	-
Participantes cegos	+	+	+	+	+	+
Terapeutas cegos	-	-	-	-	-	-
Avaliadores cegos	+	-	-	-	-	-
Acompanhamento adequado	+	+	+	+	+	+
Análise da intenção de tratamento	+	+	+	+	+	-
Comparações entre grupos	+	-	+	+	+	-
Estimativas pontuais e variabilidade	+	+	+	+	+	+
Escore total	8/10	4/10	5/10	5/10	7/10	3/10

*O item dos critérios de elegibilidade não contribui para a pontuação total; +: sim; -: não.
DISCUSSÃO

Na presente revisão foram selecionados seis estudos, que avaliaram os efeitos da rede de posicionamento sobre alguns parâmetros clínicos, como dor e sinais vitais de RNPT admitidos em UTIN. Apesar de a rede de posicionamento parecer causar melhora na FC, na FR e nos níveis de dor, ainda são necessários mais ensaios clínicos randomizados para confirmar esses achados terapêuticos. Até o presente momento, a baixa qualidade metodológica dos estudos selecionados torna inconsistentes os resultados reportados nessa revisão, limitando sua recomendação na prática clínica profissional.

A rede de posicionamento é uma das estratégias de humanização dentro da UTIN, com base na teoria síncrono-ativa da organização neurocomportamental do recém-nascido, considerando que objetiva otimizar a interação da criança com o ambiente e os subsistemas neurocomportamentais. Nossos achados evidenciaram que quase todos os estudos observaram efeitos positivos da rede sobre os parâmetros vitais, incluindo a FC e a FR. De acordo com alguns autores, essa intervenção simula o ambiente intrauterino por meio do posicionamento fisiológico e pelo pequeno balanço gerado nesse dispositivo com a ajuda dos movimentos corporais e respiratórios do neonato. Fisiologicamente, isso poderia impactar de maneira positiva no sistema autônomo, regulando os movimentos respiratórios e o ritmo cardíaco.

Os prematuros possuem imaturidade das vias inibitórias descendentes da dor, por causa da maturação incompleta do sistema nervoso central. Uma pesquisa recente ressaltou que os RNPT sentem dor durante os procedimentos invasivos na UTIN, sendo a aspiração de tubo otorraqueal e/ou da via aérea o principal motivo dessa dor. Além do mais, a rotina de procedimentos e os estímulos dolorosos dentro da unidade corroboram cada vez mais o manuseio mínimo desses pacientes. Recursos não farmacológicos e de baixo risco que promovam a redução dos níveis de estresse e dor em RNPT devem ser estimulados, como a rede de posicionamento. Nessa revisão, três estudos relataram que tal intervenção gerou redução dos níveis de dor, utilizando diferentes ferramentas de avaliação. De maneira geral, essas escalas avaliam os aspectos comportamentais, fisiológicos e contextuais de ocorrência de dor. Somente a pesquisa de Jesus et al. não apontou mudança nos níveis desse desfecho. Tal resultado pode ser atribuído ao fato de o grupo estudado estar constituído de RNPT com maior imaturidade das vias neurais da dor, considerando menores idade gestacional (28 a 36 semanas) e peso ao nascimento (≤1.500 g) de sua amostra.

Estudos prévios têm demonstrado que os diferentes posicionamentos influenciam de forma positiva nos RNPT, contribuindo para menor gasto energético, melhora na oxigenação, redução de episódios de refluxo gastroesofágico e menor assinronismo toracoabdominal. Muitos dispositivos, tanto artesnais quanto comerciais, estão disponíveis para auxiliar nesse posicionamento, favorecendo a flexão corporal, incluindo o hinio e a rede de posicionamento, fato documentado aqui. Embora o posicionamento terapêutico seja considerado um manejo comum dentro da UTIN, ele pode alternar de decúbito, dependendo do local, do recurso terapêutico e da patologia de base. Cientificamente, a posição prona é documentada como mais benéfica em comparação à postura supina. Isso ocorre em razão da maior estabilidade de caixa torácica e do melhor comprimento para a fibra muscular diafragmática, que potencializa sua ação. No entanto, como os resultados do presente trabalho estão direcionados ao uso da rede, nenhum estudo utilizou esse posicionamento.

Embora o posicionamento terapêutico tenha relação positiva com a SpO₂, apenas duas pesquisas relataram mudanças significativas nessa variável com o uso da rede de posicionamento, enquanto outras duas reportaram não modificar a causa piora clínica. A falta de benefícios nesses dois estudos poderia ser explicada, pelos menos em parte, pela maior gravidade das amostras, incluindo o muito/extremo baixo peso, a instabilidade hemodinâmica e a displasia broncopulmonar. Alguns estudos realizados em crianças e adultos evidenciaram maiores benefícios na saturação e na pressão parcial de oxigênio na posição prona comparada à supina, sendo essa melhoria mais evidente na presença de doença pulmonar. Isso poderia explicar o fato da piora terapêutica dos RNPT no estudo de Zanardo et al., já que os pacientes foram posicionados em supino nessa intervenção. Além do mais, sabe-se que uma das estratégias ventilatórias para minimizar a lesão pulmonar na displasia broncopulmonar é o uso da posição em prona, diferentemente da postura utilizada pela sua amostra. Recomenda-se que essa terapêutica seja avaliada e empregada por profissionais treinados, não devendo ser aplicada de forma indiscriminada, sem acompanhamento e de preferência por fisioterapeutas.

Na prática assistencial, a presença de dor e de desconforto causa alterações na pressão arterial de RNPT em função dos diferentes mecanismos regulatórios. Entre eles, estão os mecanismos neurais ligados ao sistema nervoso autônomo e ao sistema hormonal relacionado à renina-angiotensina. No entanto, nessa revisão, apenas um estudo relatou não haver mudanças significativas na pressão arterial nem na temperatura corporal com o uso da rede de posicionamento. Embora não justificado na literatura científica, parece que a rede quando aplicada apenas em um único momento e por período curto de tempo não impacta sobre esses parâmetros, diferentemente dos desfechos FC, FR e dor, porém esses marcadores clínicos podem ser...
modificados com outros recursos, como, por exemplo, o berço aquecido, as medicações antipiréticas e reguladoras de pressão arterial, entre outros.36-39

O presente estudo apresenta algumas limitações. Uma delas é o fato de termos incluído RNPT com doenças associadas, além da prematuridade,14,24 no entanto optou-se por deixá-los na amostra pelo fato de a maioria dos pacientes admitidos na UTIN apresentar outras comorbidades na prática clínica.40 Além disso, os efeitos investigados neste trabalho refletem mais mudanças clínicas em curto prazo (60 minutos),4,8,14,24 já que a maior parte dos estudos avaliou os efeitos em apenas um momento.3,8,14,24 A baixa qualidade metodológica das pesquisas incluídas nessa revisão constitui a maior restrição do estudo. Apenas dois trabalhos19,23 obtiveram qualidade metodológica ≥7 pontos na escala PEDro. A ausência de alocação oculta4,8,14,19,24 e de cegamento de terapeutas4,8,14,19,23,24 e de avaliadores4,8,14,19,24 e a falta de grupo controle4,24 torna frágil os resultados aqui reportados.

Em conclusão, embora a rede de posicionamento pareça causar melhora sobre alguns parâmetros clínicos, principalmente FC, FR e dor em RNPT, a baixa qualidade metodológica dos estudos selecionados torna inconsistentes os resultados reportados aqui. Dessa forma, são necessários novos ensaios clínicos randomizados para confirmar esses achados terapêuticos, com o intuito de, futuramente, avaliar se existe evidência suficiente para a recomendação desse método em UTIN.

Financiamento
O estudo não recebeu financiamento.

Conflito de interesses
Os autores declararam não haver conflito de interesses.

REFERÊNCIAS

1. Als H. Toward a synactive theory of development: promise for the assessment of infant individuality. Infant Ment Health J. 1982;3:229-43. https://doi.org/10.1002/1097-0355(198224)3%3C229::AID-IMHJ2280030405%3E3.0.CO;2-H
2. Als H. A synactive model of neonatal behavioral organization: framework for the assessment of neurobehavioral development in the premature infant and for support of infants and parents in the neonatal intensive care environment. Phys Occup Ther Pediatr. 1986;6:3-53.
3. Walter-Nicolet E, Annequin D, Biran V, Mitanchez D, Tourniaire B. Pain management in newborns: from prevention to treatment. Pediatr Drugs. 2010;12:353-65. https://doi.org/10.1016/j.pedr.2010.03.002
4. Jesus VR, Oliveira PM, Azevedo VM. Effects of hammock positioning in behavioral status, vital signs, and pain in preterms: a case series study. Braz J Phys Ther. 2018;22:304-9. https://doi.org/10.1590/S1413-35552018000300013
5. Vignochi C, Teixeira PP, Nader SS. Effect of aquatic physical therapy on pain and state of sleep and wakefulness among stable preterm newborns in neonatal intensive care units. Braz J Phys Ther. 2010;14:214-20. https://doi.org/10.1590/S1413-35552010000300013
6. Monterosso L, Kristjanson L, Cole J. Neuromotor development and the physiologic effects of positioning in very low birth weight infants. J Obstet Gynecol Neonatal Nurs. 2002;31:139-46. https://doi.org/10.1111/j.1552-6909.2002.tb00033.x
7. Bezerra IF, Torres VB, Lopes JM, Baroni MP, Pereira SA. Assessment of the influence of the hammock on neuromotor development in nursing full-term infants. Rev Bras Crescimento Desenvolv Hum. 2014;24:106-11.
8. Costa, KF, Beleza LO, Souza LM, Ribeiro LM. Hammock position and nesting: comparison of physiological and behavioral effects in preterm infants. Rev Gaúcha Enferm. 2016;37:e62554. https://doi.org/10.1590/1983-1447.2016.esp.62554
9. Brazil - Ministério da Saúde. Secretaria de Atenção à Saúde. Departamento de Ações Programáticas Estratégicas. Humanized care low birth weight: Kangaroo Method: technical manual. Brasília: Ministério da Saúde; 2017.
10. Arnon S. Music therapy intervention in the neonatal intensive care unit environment. J Pediatr (Rio J). 2011;87:183-5. https://doi.org/10.1590/S0021-755720110000100001
11. Queiroz CM, Santos-de-Araújo AD, Ferreira LM, Silva JA, Bassi D, Souza CT, et al. Repercussions in newborns using hammocks and prone position. Rev Investig Bioméd. 2017;9:159-67. https://doi.org/10.24863/rivb.v9i2.127
12. Botos M, Pettenazzo A, Giancola G, Stefani D, Pettena G, Viscolani B, et al. The effect of a ‘containing’ position in a hammock versus the supine position on the cutaneous oxygen level in premature and term babies. Early Hum Dev. 1985;11:265-73. https://doi.org/10.1016/0378-3782(85)90080-5

Rev Paul Pediatr. 2021;39:e2019399
16. Pereira SA, Fonseca Filho GG, Holanda NS, Castro-Vieira DE, Moran CA. The hammock as a therapeutic alternative at the neonatal intensive care unit. Man Ther Posturology Rehabil. 2018;16:637. http://dx.doi.org/10.17784/mtprehabjournals.2018.16.637

17. Albuquerque TM, Albuquerque RC. Positioning strategies and containment newborn preterm used in neonatal intensive careunits. Rev Interinst Bras Ter Ocup (Rio de Janeiro). 2017;1:40-51.

18. Silva PS, Pereira AP, Matos MR, Teodoro EC. Bed positioning and oxygen saturation in preterm infants. Fisioter Bra. 2010;11:387-91. http://dx.doi.org/10.33233/fb.v11i5.1427

19. Keller A, Arbel N, Merlob P, Davidson S. Neurobehavioral and autonomic effects of hammock positioning in infants with very low birth weight. Pediatr Phys Ther. 2003;15:3-7. https://doi.org/10.1097/01.PEP.0000049507.48347.26

20. Lino LH, Coelho PG, Fonseca FL, Filippini R. The swing balance benefits in incubators with newborns on neonatal ICU: the humanization strategy. Rev Enferm. 2015;18:88-100.

21. Moher D, Liberati A, Tetzlaff J, Altman DG, PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med. 2009;6:e1000097. https://doi.org/10.1371/journal.pmed.1000097

22. Shiwa S, Costa L, Moser A, Aguiar I, Oliveira L. PEDro: the physiotherapy evidence database. Fisioter Mov. 2011;24:523-33. http://dx.doi.org/10.1590/S0104-07072011000300017

23. Ribas CG, Andreazza MG, Neves VC, Valderramas S. Effectiveness of hammock positioning in reducing pain and improving sleep-wakefulness state in preterm infants. Respir Care. 2019;64:384-9. https://doi.org/10.4187/respcare.06265

24. Zanardo V, Trevisanuto D, Dani C, Bottos M, Cuglielemi A, Cantarutti F. Oxygen saturation in premature neonates with bronchopulmonary dysplasia in a hammock. Biol Neonate. 1995;67:54-8. https://doi.org/10.1159/000244143

25. Fernandes GA, Santos TB. Evaluation of signs of stress in newborn preterm placed in rocking network neonatal intensive care unit: experimental clinical study with blinded evaluator. São Paulo: SMS; 2014.

26. Cruz CT, Gomes JS, Kirchner RM, Stumm EM. Evaluation of pain of neonates during invasive procedures in intensive care. Rev DoR. 2016;17:197-200. http://dx.doi.org/10.5935/1806-0013.20160070

27. Cabral L, Velloso M. Comparing the effects of minimal handling protocols on the physiological parameters of preterm infants receiving exogenous surfactant therapy. Braz J Phys Ther. 2014;18:152-64. http://dx.doi.org/10.1590/S1413-35522012005000154

28. Ammari A, Schulze KF, Ohira-Kist K, Kashyap S, Fifer WP, Myers MM, et al. Effects of body position on thermal, cardiorespiratory and metabolic activity in low birth weight infants. Early Hum Dev. 2009;85:497-501. https://doi.org/10.1016/j.earlhumdev.2009.04.005

29. Brunherotti M, Martínez FE. Response of oxygen saturation in preterm infants receiving rib cage stabilization with an elastic band in two body positions: a randomized clinical trial. Braz J Phys Ther. 2013;17:105-11. https://doi.org/10.1590/S1413-35522012005000082

30. Tosso BR, Viera CS, Valter JM, Delatore S, Barreto GM. Validation of newborn positioning protocol in Intensive Care Unit. Rev Bras Enferm. 2015;68:1147-53. http://dx.doi.org/10.1590/0034-7167.2015680621i

31. Monte LF, Silva Filho LV, Miyoshi MH, Rozov T. Bronchopulmonary dysplasia. J Pediatr (Rio J.). 2005;81:99-110.

32. Wells DA, Gillies D, Fitzgerald DA. Positioning for acute respiratory distress in hospitalised infants and children. Cochrane Database Syst Rev. 2005;7:CD003645. https://doi.org/10.1002/14651858.CD003645.pub2

33. Oliveira LC, Rugolo LM. The effect of saturation postura de O2 in new-born of Intensive Care Units Neonatal. Fisioter Mov. 1994;6:54-64.

34. Cordeiro RA, Costa R. Non-pharmacological methods for relief of discomfort and pain in newborns: a collective nursing construction. Texto Contexto-Enferm. 2014;23:185-92. https://doi.org/10.1590/0104-07072014000100022

35. Mauad H, Cabral AM, Vasquez EC. Blood pressure control. Rev Bras Hipertens. 1997;4:206-13.

36. Sepúlveda C, Urquidi C, Pittaluga E, Iñiguez G, Avila A, Carrasco F, et al. Differences in body composition and resting energy expenditure in childhood in preterm children born with very low birth weight. Horm Res Paediatr. 2013;79:347-55. https://doi.org/10.1159/000351466

37. Shankaran S, Bell EF, Laptook AR, Saha S, Newman NS, Kazzi SN, et al. Weaning of moderately preterm infants from the incubator to the crib: a randomized clinical trial. J Pediatr. 2019;204:96-102.e4. https://doi.org/10.1016/j.jpeds.2018.08.079

38. Di Biase M, Casani A, Orfeo L. Invasive arterial blood pressure in the neonatal intensive care: a valuable tool to manage very ill preterm and term neonates. Ital J Pediatr. 2015;41(Suppl 1):A9. https://doi.org/10.1186/1824-7288-41-S1-A9

39. Zubrow AB, Hulman S, Kushner H, Falkner B. Determinants of blood pressure in infants admitted to neonatal intensive care units: a prospective multicenter study. Philadelphia Neonatal Blood Pressure Study Group. J Perinatol. 1995;15:470-9.

40. Damian A, Waterkemper R, Paludo CA. Profile of neonates hospitalized at a neonatal intensive care unit: a cross-sectional study. Arq Ciênc Saúde. 2016;23:100-5.