Article

Genetic diversity and population structure of a Rhodes grass (*Chloris gayana*) collection

Alemayehu Teressa Negawo¹, Meki Shehabu Muktar¹, Yilikal Assefa¹, Jean Hanson¹, Alieu M. Sartie², Ermias Habte¹, Chris S. Jones¹,³ *

¹Feed and Forage Development Program, International Livestock Research Institute, Addis Ababa, Ethiopia; A.teressa@cgiar.org (A.T.N.); M.Shehabu@cgiar.org (M.S.M.); Y.Assefa@cgiar.org (Y.A.); jeanhanson2010@gmail.com (J.H.); e.habte@cgiar.org (E.H.).

²Current address: The Pacific Community (SPC), Suva, Fiji; sartiealieu@hotmail.com (A.M.S.).

³Feed and Forage Development Program, International Livestock Research Institute, Nairobi, 00100, Kenya

Corresponding author: c.s.jones@cgiar.org (C.S.J)

Abstract

Rhodes grass (*Chloris gayana* Kunth) is one of the most important forage grasses used throughout the tropical and subtropical regions of the world. Enhancing the conservation and use of genetic resources requires the development of knowledge and understanding about the existing global diversity of the species. In this study, 104 Rhodes grass accessions, held in trust in the ILRI forage genebank, were characterized using DArTSeq markers to evaluate the genetic diversity and population structure, and to develop representative subsets, of the collection. The genotyping produced 193,988 SNP and 142,522 SilicoDArT markers with an average polymorphic information content of 0.18 and 0.26, respectively. Hierarchical clustering using selected informative markers showed the presence of two and three main clusters using SNP and SilicoDArT markers, respectively, with a cophenetic correction coefficient of 82 %. Bayesian population structure analysis also showed the presence of two main subpopulations using both marker types indicating the existence of significant genetic variation in the collection. A representative subset, containing 21 accessions from diverse origins, was developed using the SNP markers. In general, the results revealed substantial genetic diversity in the Rhodes grass collection and the generated molecular information, together with the developed subset, should help enhance the management, use and improvement of Rhodes grass germplasm in the future.
Keywords: DArTSeq markers; genetic diversity; Rhodes grass (*Chloris gayana*); subset

Introduction

Rhodes grass (*Chloris gayana* Kunth) is an important tropical C4 grass widely used throughout the tropical and subtropical regions of the world [1-3]. It is either an annual or perennial, high yielding and good quality forage grass that is also used as a cover crop to improve soil fertility and reduce soil nematodes [1,2].

Rhodes grass is a primarily cross-pollinated diploid or tetraploid (with a basic chromosome number, \(x = 10\)) highly polymorphic forage grass species [2]. It has a deep root system and can withstand extended periods of drought [1], and grows in a wide range of ecologies and soil types [1,2] with no known economically important biotic stressor [2]. It is reported to be a salt-excluding halophyte that secretes excess salts transported into the leaves [4] and this characteristic makes this grass species one of the most important candidate forages for economic utilization in saline environments such as in saline affected irrigation farming [4-6]. Several cultivars with improved performance, particularly in drought and low temperature prone areas, have been developed and commercialized [2]. A few cultivars have also been reported to be frost tolerant [1,2]. Diploid cultivars have been reported to be more resistant/tolerant to drought, salt, low temperatures, pests and diseases than the higher producing tetraploid cultivars [1,7,8]. For example, tetraploids are more susceptible to root-knot nematode than diploids [7]. In general, Rhodes grass has some good agronomic and morphological characteristics that makes it a resilient forage crop to consider under the current dynamics of climate change to increase the availability of feed resources for sustainable livestock production.

Conventional molecular marker technologies, such as inter simple sequence repeats (ISSR), amplified fragment length polymorphisms (AFLP), sequence-related amplified polymorphisms (SRAP) and restriction fragment length polymorphisms (RFLP), have been used to study a few known Rhodes grass cultivars [8-13]. Despite its potential economic importance in drought and saline affected environments and the fact that it is a genetically polymorphic species, genomic studies have been limited making Rhodes grass one of the orphan crops in the application of molecular genetics. This has constrained the opportunity for further use of germplasm and enhanced genetic gains through molecular breeding and related technologies. The International Livestock Research Institute (ILRI) maintains 106 Rhodes grass accessions in its genebank in Addis Ababa,
Ethiopia [14]. Besides ILRI, there are other significant collections, for example the Genetic Resources Research Institute (GeRRI) (Kenya), United States Department of Agriculture (USDA), International Center for Biosaline Agriculture (ICBA) (United Arab Emirates, UAE), Australian Pastures Genebank (APG, Australia) hold 1,196, 132, 116 and 103 accessions, respectively [14]. The Rhodes grass accessions in the ILRI collection were collected from different parts of Africa and from India and contains some improved cultivars. With the exception of some basic characterization data collected during routine field conservation operations, the collection has not been well studied in the past and thus little is known about the genetic diversity, population structure or genomic information available in the collection. The only reported study was performed by Ponsens and colleagues who indicated the presence of genetic variation in the collection based on agro-morphological traits [15]. Here we report on the development of genomic information, which reveals the genetic diversity and population structure of the collection, and identify a subset using the genotyping-by-sequencing (GBS) approach of the DArTSeq platform.

Materials and Methods

Materials

A total of 104 Rhodes grass accessions, maintained in the ILRI forage genebank, were used in this study. Leaf samples could not be obtained for two accessions in the collection. These accessions were collected from 14 African countries and one from India (figure 1, supplementary table 1). The origin of six accessions was unknown.
Figure 1. Rhodes grass accessions assessed, by country of origin.

DNA extraction and genotyping

Leaf samples were collected from plants growing in the ILRI Zwai field Genebank site, Oromia, Ethiopia. DNA was extracted from freeze dried leaf samples using a DNeasy Plant Mini kit (Cat No./ID:69106) according to the manufacturer’s instruction. DNA quality and quantity were assessed using a DeNovix DS-11 spectrophotometer. DNA samples were diluted to a concentration of 50–100 ng/µL, and 25 µL of the diluted DNA samples was aliquoted into 96-well fully skirted plates, packed, and shipped for genotyping.

Genotyping was performed using the DArTSeq platform at Diversity Arrays, Canberra, Australia. The DArTSeq (Single nucleotide polymorphism (SNP) and SilicoDArT) marker data were generated according to the DArTSeq protocol as described elsewhere [16]. The sequence fragments of the generated markers were aligned onto the reference genomes of closely related species. The reference genomes were selected from public genome databases based on phylogenetic relationship and basic chromosome number.

Data analysis

The genotyping data were analysed using different R software packages (https://www.r-project.org/). Data missing percentage, allele frequency, polymorphic information content (PIC)
and genetic distance were calculated using the R base function. The fragment lengths of the markers was summarized using the stringr R package [17]. The PIC value was calculated using the formula $\text{PIC} = 1 - \sum p_i^2$ where p_i is the frequency of alleles at each locus [18]. The markers were filtered first for missing percentage ($\leq 20\%$) and then for the level of informativeness ($\text{PIC} \geq 0.2$) using a locally written script in the R statistical software (https://www.r-project.org/). To study the genetic relatedness among the accessions, Euclidean genetic distance and hierarchical cluster (hclust object) were calculated using the dist () and hclust () functions, respectively, in the R software. The hclust objects were converted into dendrogram objects using the R package dendextend [19] and the phylogenetic tree was visualized using the plot () function of the R software. The dendrograms from the SNP and SilicoDArT markers were visualized side by side using the tanglegram function while the cophenetic correlation coefficient between the dendrograms was calculated using the cor.cophenetic function of dendextend [19].

The optimal number of clusters was determined using the find.clusters function of the R package adegenet [20]. The discriminant analysis of principal components (DAPC) function of adegenet [20] was used to select the top 1,000 markers contributing to the population diversity and to infer cluster membership probability and assign individual accessions into the different clusters. The cluster groups were visualized using the fviz_cluster function of the R package factoextra [21]. Analysis of molecular variance (AMOVA) was conducted using GenAlEx software [22] with 9,999 permutations to partition the genetic variations between and within clusters.

Population structure was analysed using the admixture model in STRUCTURE software [23,24] and the probability of two to 20 subpopulations (K) was estimated using the admixture model, 100,000 Markov Chain Monte Carlo (MCMC) repetitions and a 100,000 burn-in period. The result of the run was uploaded online to the software “STRUCTURE HARVESTER” [25] and the optimal number of subpopulations was determined using the Evanno delta K method [26]. AMOVA was used to partition the genetic variation into among and within subpopulation variations using the GenAlEx software with 9,999 permutations [22].

Finally, the 1,000 selected SNP markers were used to develop a subset using the R package Core Hunter v.3.1[27]. The subset contained 20 % of the collection representing the maximum diversity
of the collection. AMOVA was used to assess the representativeness of the developed subset using GenAlEx 6.5 software [22].

Results

Informativeness and diversity of the markers

Genotyping data of 193,988 SNP and 142,522 SilicoDArT markers was generated for 104 Rhodes grass accessions. After filtering the data with missing percentage ($\leq 20\%$) and PIC (≥ 0.2), 30,279 and 59,164 SNP and SilicoDArT markers, respectively, were retained for preliminary analysis to select the top 1,000 markers contributing to genetic differentiation among the accessions. The PIC values ranged from 0.01 to 0.50 and 0.02 to 0.50 with an average of 0.18 and 0.26 for SNP and SilicoDArT markers, respectively (figure 2).

The markers’ sequence length ranged from 20-69 base pairs (bp) with an average of 65 bp and 63 bp for SNP and SilicoDArT markers, respectively. Over 80 and 78 % of the SNP and SilicoDArT markers, respectively, had a fragment length of 69 bp. Among the SNP variations, transitions (57.3 %) were more frequent than transversions (42.7 %) (figure 3). The proportion of polymorphisms due to G/A (15.74%) and C/T (15.44%) transitions and T/C (13.03%) and A/G (13.06 %) transitions were similar. The proportion of polymorphisms due to different transversions ranged from 4.81% to 5.95%.

![Figure 2. Number of markers by PIC values.](image-url)
Figure 3. Proportion of SNP markers by transition and transversion polymorphisms.

Genome mapping of the DArTSeq markers onto reference genomes and selection of genome-wide representative markers

Rhodes grass belongs to the subfamily *Chloridoideae* of the *Poaceae* grass family. In the *Chloridoideae* subfamily, the reference genomes of four grass species, namely tef (*Eragrostis tef*) (https://www.ncbi.nlm.nih.gov/genome/?term=Eragrostis+tef) [28], Manila grass (*Zoysia matrella*) (https://www.ncbi.nlm.nih.gov/genome/?term=Zoysia+matrella) [29], finger millet (*Eleusine coracana*) (https://www.ncbi.nlm.nih.gov/genome/?term=Eleusine+coracana) [30] and *Oropetium thomaeum* (https://www.ncbi.nlm.nih.gov/genome/?term=Oropetium+thomaeum) [31], are available. All of these reference genomes are yet to be assembled to the chromosome level. Of these species, tef and Manila grass have a similar basic chromosome number, \(x = 10\), as Rhodes grass while finger millet and *Oropetium thomaeum* have a basic chromosome number \(x = 9\). Figure 4 shows the phylogenetic relationship of Rhodes grass and the selected grasses with reference genomes available in the public domain. Based on the phylogenetic relationship and the similarity of basic chromosome number, the reference genomes of tef and Manila grass were selected as good candidates to map the genome-wide distribution of the generated DArTSeq markers. In addition, the reference genome of foxtail millet (*Setaria italica*) (https://www.ncbi.nlm.nih.gov/genome/?term=Setaria+italica) [32-34], a model species for grass
genomic studies, and finger millet were used to map the genome distribution of the markers. The reference genome of *Oropetium thomaeum* was not used for mapping the generated markers. Table 1 shows the number of markers mapped onto the selected reference genomes. Relatively more markers were mapped onto the finger millet genome followed by the tef genome. The least number of markers mapped onto the foxtail millet genome.

Table 1. The number of markers mapped onto the selected reference genomes.

Reference Genome	Number of Markers Mapped
Finger millet	More
Tef	Relatively more
Foxtail millet	Least
Rice	
Sorghum	
Triticum	
Hordeum	
Brachypodium	
Aegilops	
Triticum	
Hordeum	
Eragrostis tef	
Zoysia matrella	
Chloris gayana	
Oropetium thomaeum	
Eleusine coracana	

Figure 4. The phylogenetic relationship of the Rhodes grass and selected grass species in the *Poaceae* family with reference genomes available in the public domain. *Chloris gayana* has no reference genome.
Table 1. Number of markers mapped onto the different reference genomes.

Reference genomes	Number of markers mapped	Remark	
	SilicoDArT*	SNP*	
Finger millet (*Eleusine coracana*)	1518 (0.8 %)	7846 (5.5 %)	Scaffolds
Tef (*Eragrostis tef*)	986 (0.5 %)	4008 (2.8 %)	Scaffolds
Manila grass (*Zoysia matrella*)	817 (0.4 %)	3554 (2.5 %)	Scaffolds
Foxtail millet (*Setaria italica*)	212 (0.1 %)	1354 (1 %)	Chromosomes, scaffolds, and plastid

*Number in parentheses is the percentage of mapped markers.

Genetic diversity and relationship of the Rhodes grass collection

A preliminary analysis was conducted using markers containing ≤20 % missing data and PIC values of ≥0.2 using the DAPC function of adegenet. Based on the loading score, the top 1,000 markers contributing to the diversity were selected for further in-depth analyses. Accordingly, the selected markers had an average PIC value of 0.37 and 0.36 for the SNP and SilicoDArT markers (figure 5), respectively.

Figure 5. PIC values of the top 1,000 SNP and SilicoDArT markers.

Using the genetic dissimilarity matrix, the genetic relationship between accessions was analysed based on hierarchical clustering. Figure 6 (and supplementary table 2) shows the hierarchical clustering of the collection. A strong cophenetic correlation of 82 % was observed between hierarchical clustering using the SNP markers and the SilicoDArT markers. Using the SNP markers, the collection was grouped into two main clusters. The first cluster contained 79 accessions with their origin traced to different countries including Kenya (25 accessions), Tanzania (16 accessions),
Ethiopia (8 accessions), Zimbabwe and Malawi (6 accessions each), Uganda (5 accessions), Rwanda (3 accessions), South Africa (2 accessions), Zambia and India (1 accession each). The cluster also contained six accessions of unknown origin. The second cluster contained 25 accessions originating from South Africa (6 accessions), Congo and Zimbabwe (3 accessions each), Ethiopia and Kenya (4 accessions each), Senegal, Sudan, Tanzania, Burundi, and Uganda (1 accession each). The first cluster was subdivided into three sub-groups while the second cluster was subdivided into two sub-groups.

Using the SilicoDArT markers, the collection was grouped into three clusters. The first cluster contained 72 accessions from Kenya (20 accessions), Tanzania (13 accessions), Ethiopia (10 accessions), Zimbabwe and Malawi (6 accessions each), Uganda (5 accessions), Rwanda (3 accessions), South Africa (2 accessions), and Congo, Zambia, and India (1 accession each). Four accessions of unknown origin were also contained this cluster. The second cluster contained 10 accessions from Kenya and Tanzania (3 accessions each), Zimbabwe and Uganda (1 accession each) and two accessions of unknown origin. The third cluster contained 22 accessions with their origin traced to different countries. The three main clusters were further subdivided into smaller sub-groups.

Figure 6. Hierarchical clustering of Rhodes grass accessions using SNP and SilicoDArT markers.
Cluster analysis of the collection

For population cluster analysis, the optimum number of clusters and cluster membership of each accession were estimated using the ‘find.clusters’ and ‘DAPC’ functions of adegenet [20]. The fviz_cluster function of the R package factoextra [21] was used to visualize the cluster plot. Figure 7 shows the optimal number of clusters for both marker types. Figure 8 shows the cluster plots based on the estimated number of clusters. For the SNP markers, the first and second dimensions accounted for 25.9% of the total genetic variation and grouped the accessions into two main groups. The first cluster contained 77 accessions while the second cluster contained 27 accessions. In the case of the SilicoDArT markers, the first two dimensions accounted for 20.5% of the total genetic variation and grouped the accessions into three clusters, each cluster containing 10, 23 and 71 accessions, respectively. In line with the cluster analysis, the accessions were assigned to the different clusters with clear membership probability (figure 9). Analysis of molecular variance (AMOVA) showed that the ‘among clusters’ variation accounted for 24% and 19% of the total genetic diversity while the ‘within cluster’ variation accounted for 76% and 81% of the total genetic diversity for SNP and SilicoDArT markers, respectively (table 2).

![Figure 7. Determining optimal number of clusters using (a) SNP and (b) SilicoDArT markers.](image-url)
Figure 8. Cluster plots showing population clusters using (a) SNP and (b) SilicoDArT markers.
Figure 9. Accessions cluster membership probability and assignment of accessions to each cluster based on (a) SNP and (b) SilicoDArT markers.
Table 2. Analysis of molecular variance (AMOVA) of clusters identified using high throughput DArTSeq markers.

Marker type	Source of variation	Degree of freedom	Sum of Square	Mean Sum of square	Estimation variation	Percentage of variation	PhiPT	P values
SNP	Among clusters	1	4094.732	4094.732	97.418	33%	0.328	0.000
SNP	Within clusters	102	20389.393	199.896	199.896	67%		
SNP	Total	103	24484.125		297.314	100%		
SilicoDArT	Among clusters	2	4595.581	2297.791	84.988	30%	0.303	0.000
SilicoDArT	Within clusters	101	19711.217	195.161	195.161	70%		
SilicoDArT	Total	103	24306.798		280.148	100%		

Population structure analysis of the germplasm collection

The population structure analysis based on Bayesian inference was undertaken using the software STRUCTURE and the delta K result suggested the presence of two main subpopulations using both marker types (figure 10). Based on the SNP markers, the first subpopulation contained 30 accessions while the second subpopulation contained 74 accessions originating from different countries. There was a second peak at K=6 suggesting a further subgrouping of the subpopulations. Similarly, using the SilicoDArT markers, the first subpopulation contained 28 accessions while the second subpopulation contained 76 accessions. Table 3 shows the AMOVA result partitioning the total variation into among and within subpopulation variations. The among subpopulation variation contributed 30% and 19 % (for SNP and SilicoDArT markers, respectively) of the total genetic variation while the within subpopulation variation contributed 70% and 81% (for SNP and SilicoDArT markers, respectively) of the total genetic variation in the population structure.
Figure 10. Bayesian assignment of population structure of 104 Rhodes grass accessions: ΔK (ΔK) for K=2 to 20 subpopulations using SNP (a) and SilicoDArT (b) markers. The STRUCTURE barplot of the estimated membership coefficient (Q) of each accession for K=2 for SNP (c) and SilicoDArT (d) markers. Each bar represents the Q of an individual accession.

Table 3. Analysis of molecular variance (AMOVA) of the genetic variation among and within the 104 Rhodes grass subpopulations collection using high throughput DArTSeq markers.

Marker type	Source of variation	Degree of freedom	Sum of Square	Mean sum of square	Estimation variation	Percentage of variation	PhiPT	P values
SNP	Among subpopulation	1	3888.551	3888.551	86.352	30%	0.299	0.000
	Within subpopulation	102	20601.23	201.973	201.973	70%		
	Total	103	24489.78	288.325	100%			
SilicoDArT	Among subpopulation	1	2309.165	2309.165	51.157	19%	0.192	0.000
	Within subpopulation	102	21997.63	215.663	215.663	81%		
	Total	103	24306.79	266.820	100%			
Subset development

A subset containing representative diversity of the collection was developed using SNP markers (table 4). The subset contained 21 accessions which originated from different countries such as Congo, Ethiopia, India, Kenya, Malawi, Tanzania, South Africa, Zimbabwe and 1 accession of unknown origin. The AMOVA result (table 5) showed that there was no significant difference between the developed subset and the rest of the population in term of genetic diversity. The within groups diversity contributed almost 100% the genetic variation.

Table 4. List of accessions, origin, and cluster groups contained in subset developed using SNP markers.

Accession #	Doi	Cluster	Origin
680	10.18730/G6099	I	Tanzania
890	10.18730/G7KA0E	I	Tanzania
895	10.18730/G7KF0K	I	Tanzania
1118	10.18730/FQ2D0	II	Congo
6627	10.18730/G5WP05	I	South Africa
6628	10.18730/G5WQ06	I	Unknown
6633	10.18730/G5WVA	I	Tanzania
6634	10.18730/G5WWB	I	Unknown
10097	10.18730/FP5R6	II	Ethiopia
13487	10.18730/FS6BT	II	Ethiopia
15576	10.18730/FTPU00	II	Ethiopia
19554	10.18730/FYA0EQ	I	Tanzania
19557	10.18730/FYAHT	I	Kenya
19558	10.18730/FYA0JV	II	Congo
19563	10.18730/FYA0Q*	I	Zimbabwe
19568	10.18730/FYA0W0	II	Kenya
19572	10.18730/FYB04	I	India
19581	10.18730/FYB0D	I	Tanzania
19583	10.18730/FYBBF	I	Malawi
19584	10.18730/FYBCG	I	Kenya
19590	10.18730/FYBJP	I	Kenya

Table 5. AMOVA result between the subsets and the rest of the population.

Marker type	Source of variation	Degree of freedom	Sum of Square	Mean Sum of square	Estimation variation	Percentage of variation	PhiPT	P values
SNP	Between groups	1	245.363	245.363	0.229	0.10%	0.001	0.311
	Within groups	102	2424.425	237.690	0.229	99.90%		
	Total	103	24489.788	237.919	100.00%			
Discussion

Genotyping and marker diversity

Here we report on the development of high throughput DArTSeq markers for a Rhodes grass collection. Large numbers of SNP and SilicoDArT markers were generated and used to assess the genetic diversity and population structure in the collection. The generated SNP and SilicoDArT markers had an average PIC value of 0.180 and 0.256, respectively. To our knowledge, this is the first report of its kind in Rhodes grass, both in terms of the number of markers as well as the number of accessions studied.

SNPs, as a common source of genetic variation, are important markers for genomic studies [35]. The SNPs could affect the process of gene expression [36] and thereby be responsible for phenotypic variation (e.g., stress tolerance/resistance, yield performance, etc.) among genotypes in crops. Besides the type of SNP variation, it is also crucial to know the location of the SNP in the genome, for example whether the SNP is in the coding region, regulatory region, or other part of the genome and how the variation affects functional gene and phenotypic expression [37]. SNPs are created due to base substitutions which can be categorized as transitions or transversions [38]. Transition is a substitution within pyrimidine or purine nitrogen bases while transversion is a substitution between pyrimidine and purine nitrogen bases [38]. Reports show that there is a bias towards more transition than transversion variations in the genome of organisms [35,38,39]. In line with this, we used the SNP data to determine the proportion of variation due to transitions and transversions. The result showed that the proportion of SNP variation due to transitions (57.3%) was higher than that transversions (42.7 %). A similar trend in SNP variation has been reported in other plant species, including Arabidopsis, maize and rice [38,40-42]. The generated SNP variations could be useful in future genomic studies to study trait association and understand their effect on the molecular processes responsible for phenotypic traits of interests (e.g. drought and salt tolerance) in Rhodes grass and related grass species. In addition, the generated information could be used as a baseline to design further studies to determine the genome location of these SNP variations, their effect on gene and trait expression and general crop performance, and to identify diagnostic markers for selection.
Genome wide mapping of markers

In genomic studies, a reference genome is considered very important to select genome wide markers for genetic diversity and population structure analyses as well as to study markers linked with genes regulating traits of agronomic importance. Following recent advances in the genomic toolbox, reference genomes have been developed for many crops [43-45]. However, a lack of reference genomes is one of the main challenges in the genomic studies of many orphan crops which include most tropical forages. Due to this limitation, we assessed the opportunity to use reference genomes of closely related species to advance our genomic studies. Phylogenetic analysis and basic chromosome number were used as criteria to select among candidate reference genomes for Rhodes grass. Similar approaches have been used to select reference genomes for Buffelgrass and Napier grass [46,47] which enabled the selection of representative sets of genome wide markers for diversity and population structure analyses. Accordingly, we initially selected the reference genomes of tef [28] and Manila grass [29] to map the generated markers with the aim of selecting genome wide representative markers for in depth diversity and population structure analyses. However, only a small proportion of the generated DArTSeq markers were able to be mapped onto the selected reference genomes. In an effort to identify the genome position of more markers, we also mapped the generated markers onto the reference genomes of foxtail millet [32-34] and finger millet [30], but the number of mapped markers was few, particularly onto the foxtail millet reference genome. The observed low number of mapped markers could be attributed to the limited genomic information of the reference genomes, as the sequences are yet to be assembled to the chromosome level particularly for the closely related species (tef and Manila grass), which is the case in many orphan crops, resulting in the mapping of only a small proportion of the generated markers. The other reason could be the existence of a weak level of synteny between the genome of Rhodes grass and the selected reference genomes. Similar results were reported in Buffelgrass and Napier grass using reference genomes of closely related species. In buffelgrass, only 12 % of the SNP markers were mapped using the *Setaria italica* reference genome [46]. In Napier grass, initially only 17 % and 33 % of the SilicoDArT and SNP markers, respectively, were mapped using the pearl millet genome [47]. However, more than 80% of the markers were subsequently mapped onto the Napier grass genome [48]. In addition, except for *Setaria italica*, the reference genomes were not assembled at the chromosome level. This has hindered the effort of mapping the markers onto known genomic positions of the reference genomes. As a result, we were not able to select...
genome wide mapped representative markers for further genetic analyses such as LD and LD decay. Due to this challenge, we chose markers for diversity analysis and population structure based on the loading score obtained by DAPC analysis. As a future perspective, it will be useful to generate a reference genome for Rhodes grass which will enhance the opportunity to use genomic technologies to support the future development of this forage species, including resolving the challenge of selecting sufficient genome wide markers for in-depth diversity, LD, LD decay and QTL identification studies.

Genetic diversity and population structure

The generated markers were used to study the genetic diversity and population structure of the Rhodes grass collection. The results revealed the presence of a broad range of diversity as demonstrated by the hierarchical clustering as well as Bayesian population structure analysis. In the hierarchical analyses, two and three clusters were observed using SNP and SilicoDArT markers, respectively, with a moderately high level of cophenetic correlation coefficient. In the case of the Bayesian population structure analysis, the delta K suggested the presence of two subpopulations in the collection using both marker types. The AMOVA result supported the clustering and population structure by partitioning the total variation into among and within clusters and there was a significant difference in terms of genetic content among the clusters and subpopulations identified using cluster and population structure analyses, respectively. The results of the current study are broadly in line with previous report based on agronomic and morphological traits which indicated the rich diversity in the collection as revealed by grouping of 62 accessions into six clusters [15]. The agronomic traits which classified the accessions included plant height, yield and the percentage of leaves to total biomass while the morphological traits included plant height, growth habit, stolons, internode length, leaf length and width, hairiness of leaf, ligule and awn, flowering characters and culm thickness [15]. However, there was no correlation between the agro-morphological and molecular analyses, with accessions from the different groups identified using agro-morphological traits distributed among the clusters identified using the molecular data.

There are only a few reports on the application of conventional molecular markers to Rhodes grass genetic studies. ISSR, SRAP and AFLP markers have been used to study diploid and tetraploid cultivars [9,13]. A genetic linkage map of Rhodes grass was developed using AFLP and RFLP markers [12]. However, in most cases, the markers were used to differentiate a small number of
known cultivars [8-13]. In addition, as only a few cultivars were included, the scope of these studies was limited to inferring how the results would apply to the wider genetic diversity and population structure in the Rhodes grass germplasm from around the world. In-depth genetic diversity, population structure and genomic studies are limited in the species. In the current study, 104 accessions, mostly from different African countries, were included and the observed clusters demonstrated the embedded diversity in the collection. However, there are significant gaps in the ILRI collection which lacks germplasm from other countries where Rhodes grass is native. Some of the African countries where Rhodes grass is native but not represented in the in trust collection include Angola, Benin, Botswana, Cameroon, Chad, Djibouti, Egypt, Eritrea, Gambia, Ghana, Lesotho, Mali, Morocco, Mozambique, Namibia, Niger, Nigeria, Somalia and Tunisia [2,3]. The crop is also native to Bahrain, Oman, and Saudi Arabia in Asia, and to Portugal and Spain in Europe [2,3]. Germplasm from these countries could provide a distinct addition to broaden the diversity of the collection. Hence, the generated markers could be used to identify these gaps and enable the introduction of potentially distinct materials into the collection. In addition, these markers could be used to study the genetic diversity of Rhodes grass collections maintained in other centres such as GeRRI (Kenya), USDA and ICBA (UAE), to identify unique material or duplicates among the collections and to develop a representative core collection for the global germplasm held in the different centres. In general, this study has generated large sets of markers as well as useful genetic information on a relatively large number of Rhodes grass accessions.

Representative subset development

 Besides the lack of information on diversity, it would be labour intensive and expensive to use the whole ILRI collection for research and development to, for example, select promising lines for different agro-ecologies. This challenge can be managed by developing a subset which is representative of the full genetic diversity held in the collection. Taking this challenge into account, we used the generated SNP markers to develop a representative subset, containing 20% of the total number of accessions in the collection. The subset contained 21 accessions which originated from various countries. The AMOVA result showed that there was no significant genetic variation between the developed subset and the whole of the collection. Thus, the developed subset will provide an opportunity to use a representative set of the collection for future improvement of Rhodes grass which could enhance the use of the rich diversity held in the ILRI Genebank and
thereby contribute to the improvement of smallholder farmers’ livelihood dependent on livestock production in tropical and subtropical environment.

Conclusion

High throughput DArTSeq markers were generated and used for genetic diversity and population structure analyses of a Rhodes grass collection held in the ILRI genebank. The results revealed the rich genetic diversity held in the collection as demonstrated by cluster and structure analyses. A subset, representative of the collection’s diversity, was developed which could enhance the use of the collection for research and development and support the selection of improved climate resilient Rhodes grass varieties for different agro-ecologies.

Supplementary Materials:

Table S1: Passport data of Rhodes grass collection
Table S2: Cluster group of individual accession

Author Contributions: Conceptualization, A.T.N., J.H. and C.S.J.; Data curation, A.T.N.; Formal analysis, A.T.N.; Funding acquisition, A.M.S. J.H. and C.S.J.; Investigation, A.T.N. and C.S.J.; Methodology, A.T.N. and Y.A.; Resources, A.T.N., A.M.S., C.S.J. and J.H.; Supervision, A.M.S. and C.S.J.; Visualization, A.T.N.; Writing – original draft, A.T.N.; Writing – review & editing, A.T.N., A.M.S., C.S.J., E.H., J.H. and M.S.M.

Funding: This research was funded by the Genebank Platform “use module” and Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ), “attributed funding”.

Data Availability Statement: All data generated in this study are freely available as international public goods.

Acknowledgments: The authors would like to thank the ILRI Genebank staff, Ato Tsige and Zeyede, for helping with leaf sample collection at the Zwai field Genebank site.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Heuzé, V.; Tran, G.; Boudon, A.; Lebas, F. Rhodes grass (Chloris gayana). Feedipedia, a programme by INRAE, CIRAD, AFZ and FAO. https://www.feedipedia.org/node/480 Last updated on April 15, 2016, 14:23. . 2016.
2. Cook, B.G.; Pengelly, B.C.; Schultze-Kraft, R.; M, T.; Burkart, S.; Cardoso Arango, J.A.; González Guzmán, J.J.; Cox, K.; Jones, C.; Peters, M. Tropical Forages: An interactive selection tool. 2nd and Revised Edn. International Center for Tropical Agriculture (CIAT), Cali, Colombia and International Livestock Research Institute (ILRI), Nairobi, Kenya. www.tropicalforages.info, 2020.
3. Rojas-Sandoval, J. *Chloris gayana* (Rhodes grass). Invasive species compendium. Wallingford, UK: CABI. https://www.cabi.org/isc/datasheet/13115. 2020.

4. Lifshitz, N.; Adiva, S.I.; Eshel, A.; Waisel, Y. Salt glands on leaves of *Rhodes grass (Chloris gayana Kth.)*. *Annals of Botany* 1974, 38, 459-462.

5. Suttie, J.M. *Hay and straw conservation: for small-scale farming and pastoral conditions*. Food & Agriculture Org.: 2000.

6. Masters, D.; Norman, H.; Dynes, R. Opportunities and limitations for animal production from saline land. *Asian Australasian Journal of Animal Sciences* 2001, 14, 199-211.

7. York, P.A. Range of susceptibility within and between diploid and tetraploid strains of *Chloris gayana* (Rhodes grass) to *Meloidogyne javanica*. *Revue de Nématologie* 1990, 13, 45-50.

8. Pérez, Bravo; Ongaro; Castagnaro; Seffino, L.G.; Taleisnik. *Chloris gayana* cultivars: RAPD polymorphism and field performance under salinity. *Grass and Forage Science* 1999, 54, 289-296.

9. Ribotta, A.N.; López Colomba, E.; Bollati, G.P.; Striker, G.G.; Carloni, E.J.; Griffa, S.M.; Quiroga, M.P.; Tommasino, E.A.; Grunberg, K.A. Agronomic and molecular characterization of *Chloris gayana* cultivars and salinity response during germination and early vegetative growth. *Tropical Grasslands-Forrages Tropicales* 2019, 7, 14-24.

10. Ubi, B.; Kölliker, R.; Fujimori, M.; Komatsu, T. Genetic diversity in diploid cultivars of Rhodes grass determined on the basis of amplified fragment length polymorphism markers. *Crop Science* 2003, 43, 1516-1522.

11. Ubi, B.E.; Fujimori, M.; Ebina, M.; Mano, Y.; Komatsu, T. AFLP variation in tetraploid cultivars of Rhodes grass (*Chloris gayana* Kunth). *Japanese Journal of Grassland Science* 2000, 46, 242-248.

12. Ubi, B.E.; Fujimori, M.; Mano, Y.; Komatsu, T. A genetic linkage map of rhodesgrass based on an F1 pseudo-testcross population. *Plant Breeding* 2004, 123, 247-253.

13. Ribotta, A.N.; Griffa, S.M.; Díaz, D.; Carloni, E.J.; Colomba, E.L.; Tommasino, E.A.; Quiroga, M.; Luna, C.; Grunberg, K. Selecting salt-tolerant clones and evaluating genetic variability to obtain parents of new diploid and tetraploid germplasm in rhodesgrass (*Chloris gayana* K.). *South African Journal of Botany* 2013, 84, 88-93.

14. Genesys PGR. Available online: https://www.genesys-pgr.org/. (Accessed on 03 May 2021).

15. Ponsens, J.; Hanson, J.; Schellberg, J.; Moeseler, B.M. Characterization of phenotypic diversity, yield and response to drought stress in a collection of Rhodes grass (*Chloris gayana Kunth*) accessions. *Field Crops Research* 2010, 118, 57-72.

16. Kilian, A.; Wenzl, P.; Hutten, E.; Carling, J.; Xia, L.; Blois, H.; Caig, V.; Heller-Ussynska, K.; Jaccoud, D.; Hopper, C.; Aschenbrenner-Kilian, M.; Evers, M.; Peng, K.; Cayla, C.; Hok, P.; Uszynski, G. Diversity arrays technology: a generic genome profiling technology on open platforms. *Methods in molecular biology* 2012, 888, 67-89.

17. Wickham, H. Stringr: Simple, consistent wrappers for common string operations. *R package version 2017, 1*.

18. Nei, M. Analysis of gene diversity in subdivided populations. *Proceedings of the National Academy of Sciences* 1973, 70, 3321-3323.

19. Galili, T. dendextend: an R package for visualizing, adjusting and comparing trees of hierarchical clustering. *Bioinformatics* 2015, 31, 3718-3720.
20. Jombart, T. adegenet: a R package for the multivariate analysis of genetic markers. *Bioinformatics* **2008**, *24*, 1403-1405.

21. Kassambara, A.; Mund, F. Factoextra: extract and visualize the results of multivariate data analyses (https://cran.r-project.org/web/packages/factoextra/factoextra.pdf). 2017.

22. Peakall, R.; Smouse, P.E. GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research--an update. *Bioinformatics (Oxford, England)* **2012**, *28*, 2537-2539.

23. Falush, D.; Stephens, M.; Pritchard, J.K. Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. *Genetics* **2003**, *164*, 1567-1587.

24. Pritchard, J.K.; Stephens, M.; Donnelly, P. Inference of population structure using multilocus genotype data. *Genetics* **2000**, *155*, 945-959.

25. Earl, D.A.; VonHoldt, B.M. STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. *Conservation Genet Resour* **2012**, *4*, 359.

26. Evanno, G.; Regnaut, S.; Goudet, J. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. *Mol Ecol* **2005**, *14*, 2611-2620.

27. De Beukelaer, H.; Davenport, G.F.; Fack, V. Core Hunter 3: flexible core subset selection. *BMC bioinformatics* **2018**, *19*, 1-12.

28. Cannarozzi, G.; Plaza-Wuthrich, S.; Esfeld, K.; Larti, S.; Wilson, Y.S.; Girma, D.; de Castro, E.; Chanyalew, S.; Blosch, R.; Farinelli, L.; Lyons, E.; Schneider, M.; Falquet, L.; Kuhlemeier, C.; Assefa, K.; Tadele, Z. Genome and transcriptome sequencing identifies breeding targets in the orphan crop tef (Eragrostis tef). *BMC Genomics* **2014**, *15*, 581.

29. Tanaka, H.; Hirakawa, H.; Kosugi, S.; Nakayama, S.; Ono, A.; Watanabe, A.; Hashiguchi, M.; Gondo, T.; Ishigaki, M.; Muguerza, M.; Shimizu, K.; Sawamura, N.; Inoue, T.; Shigeki, Y.; Ohno, N.; Tabata, S.; Akashi, R.; Sato, S. Sequencing and comparative analyses of the genomes of Zoysia grasses. *DNA Res* **2016**, *23*, 171-180.

30. Hittalmani, S.; Mahesh, H.B.; Shirke, M.D.; Biradar, H.; Uday, G.; Aruna, Y.R.; Lohithaswa, H.C.; Mohanrao, A. Genome and transcriptome sequence of Finger millet (*Eleusine coracana* (L.) Gaertn.) provides insights into drought tolerance and nutraceutical properties. *BMC Genomics* **2017**, *18*, 465.

31. VanBuren, R.; Bryant, D.; Edger, P.P.; Tang, H.; Burgess, D.; Challabathula, D.; Spittle, K.; Hall, R.; Gu, J.; Lyons, E.; Freeing, M.; Bartels, D.; Ten Hallers, B.; Hastie, A.; Michael, T.P.; Mockler, T.C. Single-molecule sequencing of the desiccation-tolerant grass *Oropetium thomaeum*. *Nature* **2015**, *527*, 508-511.

32. Bennetzen, J.L.; Schmutz, J.; Wang, H.; Percifield, R.; Hawkins, J.; Pontaroli, A.C.; Estep, M.; Feng, L.; Vaughn, J.N.; Grimwood, J.; Jenkins, J.; Barry, K.; Lindquist, E.; Hellsten, U.; Deshpande, S.; Wang, X.; Wu, X.; Mitros, T.; Triplett, J.; Yang, X.; Ye, C.Y.; Mauro-Herrera, M.; Wang, L.; Li, P.; Sharma, M.; Sharma, R.; Ronald, P.C.; Panaud, O.; Kellogg, E.A.; Brutnell, T.P.; Doust, A.N.; Tuskan, G.A.; Rokhsar, D.; Devos, K.M. Reference genome sequence of the model plant *Setaria*. *Nat Biotechnol* **2012**, *30*, 555-561.

33. Doust, A.N.; Kellogg, E.A.; Devos, K.M.; Bennetzen, J.L. Foxtail millet: a sequence-driven grass model system. *Plant Physiol* **2009**, *149*, 137-141.

34. Lowe, T.M.; Eddy, S.R. tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. *Nucleic Acids Res* **1997**, *25*, 955-964.
35. Wondji, C.S.; Hemingway, J.; Ranson, H. Identification and analysis of single nucleotide polymorphisms (SNPs) in the mosquito Anopheles funestus, malaria vector. *BMC Genomics* 2007, 8, 5.

36. Robert, F.; Pelletier, J. Exploring the Impact of single nucleotide polymorphisms on translation. *Frontiers in Genetics* 2018, 9.

37. Morgil, H.; Gercek, Y.; Tulum, I. Single nucleotide polymorphisms (SNPs) in plant genetics and breeding. In *The Recent Topics in Genetic Polymorphisms*; Caliskan, M., Erol, O., Oz, G.C. Eds.; InTech Open: London, UK, 2020.

38. Zhao, H.; Li, Q.; Li, J.; Zeng, C.; Hu, S.; Yu, J. The study of neighboring nucleotide composition and transition/transversion bias. *Science in China. Series C, Life sciences* 2006, 49, 395-402.

39. Rosenberg, M.S.; Subramanian, S.; Kumar, S. Patterns of Transitional Mutation Biases Within and Among Mammalian Genomes. *Molecular Biology and Evolution* 2003, 20, 988-993.

40. Parida, S.K.; Mukerji, M.; Singh, A.K.; Singh, N.K.; Mohapatra, T. SNPs in stress-responsive rice genes: validation, genotyping, functional relevance and population structure. *BMC Genomics* 2012, 13, 426-426.

41. Feltus, F.A.; Wan, J.; Schulze, S.R.; Estill, J.C.; Jiang, N.; Paterson, A.H. An SNP resource for rice genetics and breeding based on subspecies indica and japonica genome alignments. *Genome Res* 2004, 14, 1812-1819.

42. Mammadov, J.; Chen, W.; Mingus, J.; Thompson, S.; Kumpatla, S. Development of versatile gene-based SNP assays in maize (Zea mays L.). *Mol Breeding* 2012, 29, 779-790.

43. Bohra, A.; Chand Jha, U.; Godwin, I.D.; Kumar Varshney, R. Genomic interventions for sustainable agriculture. *Plant Biotechnology Journal* 2020, 18, 2388-2405.

44. Thudi, M.; Palakurthi, R.; Schnable, J.C.; Chitikineni, A.; Dreisigacker, S.; Mace, E.; Srivastava, R.K.; Satyavathi, C.T.; Odeny, D.; Tiwari, V.K.; Lam, H.M.; Hong, Y.B.; Singh, V.K.; Li, G.; Xu, Y.; Chen, X.; Kaila, S.; Nguyen, H.; Sivasankar, S.; Jackson, S.A.; Close, T.J.; Shubo, W.; Varshney, R.K. Genomic resources in plant breeding for sustainable agriculture. *Journal of Plant Physiology* 2021, 257, 153351.

45. Michael, T.P.; Jackson, S. The first 50 plant genomes. *The Plant Genome* 2013, 6, plantgenome2013.2003.0001in.

46. Negawo, A.T.; Assefa, Y.; Hanson, J.; Abdena, A.; Muktar, M.S.; Habte, E.; Sartie, A.M.; Jones, C.S. Genotyping-by-sequencing reveals population structure and genetic diversity of a Buffelgrass (*Cenchrus ciliaris* L.) collection. *Diversity* 2020, 12, 88.

47. Muktar, M.S.; Teshome, A.; Hanson, J.; Negawo, A.T.; Habte, E.; Domelevo Entfellner, J.-B.; Lee, K.-W.; Jones, C.S. Genotyping by sequencing provides new insights into the diversity of Napier grass (*Cenchrus purpureus*) and reveals variation in genome-wide LD patterns between collections. *Sci Rep* 2019, 9, 6936-6936.

48. Muktar, M.S.; Habte, E.; Teshome, A.; Assefa, Y.; Negawo, A.T.; Lee, K.-W.; Zhang, J.; Jones, C.S. Insights into the genetic architecture of complex traits in Napier grass (*Cenchrus purpureus*) and QTL regions governing forage biomass yield, water use efficiency and feed quality traits. *bioRxiv* 2021, 2021.03.2015.435454.