groups, only KYN correlated with SERT in the midbrain in HC (p=0.544, p=0.001). A further analysis showed that, at TBI > 0.06, midbrain SERT correlated with TRP (p=0.900, p=0.037). KYN (p=0.900, p=0.037), and TBI (p=0.900, p=0.037) in HC. However, this could not be replicated in DMD.

Conclusion: Our results are the first to demonstrate complicated interactions between TRP metabolism and SERT in different brain regions. The significance of the association between TRP metabolism and SERT in HC, in particular at different levels of TBI, is warrant for further study.

PS193

MicroRNAs as biomarkers for treatment-resistant depression

A Gururajan1, ME Naughton2, KA Scott1, G Moloney1, G Clarke2-3, J Dowling4, A Walsh1, F Ismail2, G Shorten1, L Scott1, DM McLoughlin5,6, TG Dinan2,3

1. Department of Anatomy & Neuroscience, University College Cork, Ireland
2. Department of Psychiatry & Neurobehavioural Science, University College Cork, Ireland
3. APC Microbiome Institute, University College Cork, Ireland
4. Department of Anaesthesia & Intensive Care Medicine, University College Cork, Ireland
5. St. Patrick’s University Hospital, Dublin, Ireland
6. Trinity College Institute of Neuroscience, Trinity College of Dublin, Ireland.

Abstract

There is an unmet need to improve the diagnosis of treatment-resistant depression (TRD). Current diagnostic metrics fail to accurately identify patients who will not respond to first-line and subsequent therapeutic strategies. However, there is increasing evidence to support the concept of biomarkers as a means to improve diagnostic precision and refine treatment options for TRD. MicroRNAs are small nucleotide sequences that regulate gene expression and accumulation of evidence has linked their presence in the periphery to the pathophysiology of depression. Thus, we hypothesised that microRNAs could serve as biomarkers for TRD. We further proposed that baseline microRNA expression could predict remission with ketamine infusions (KET) or electroconvulsive therapy (ECT).

To test these hypotheses, we studied the peripheral microRNA expression profiles of healthy controls (n=17) and patients (n=30) with TRD who received treatment with infusions of KET (0.5mg/kg IV over 40min) or ECT (average of 8.9 sessions per patient). Remission following treatments was defined as at least a 50% reduction in the Hamilton Depression Rating Scale scores.

Results: We identified a serum biomarker panel consisting of six proteins: apolipoprotein D, apolipoprotein B, vitamin D3-binding protein, ceruloplasmin, hornerin, and profilin 1, which could be used to distinguish MDD patients from controls with 68% diagnostic accuracy. Our results suggest that modulation of the immune and inflammatory systems and lipid metabolism are involved in the pathophysiology of MDD.

Conclusions: Our findings of functional proteomic changes in the peripheral blood of patients with MDD further clarify the molecular biological pathway underlying depression. Further studies using larger, independent cohorts are needed to verify the role of these candidate biomarkers for the diagnosis of MDD.

Key words: Major depressive disorder, proteomics, immune system, inflammation, lipid metabolism

PS194

Discovery of serum protein biomarkers in drug-free patients with major depressive disorder

Eun Young Kim1, Yong Min Ahn2, Myung Jae Baik3, Min Young Lee3

Sanggye Paik Hospital, Inje University College of Medicine, Republic of Korea, 1Seoul National University Hospital, Republic of Korea, 2Mental Health Center, The Armed Forces Capital Hospital, Republic of Korea, 3Kyung Hee University, Republic of Korea

Abstract

Objective: Major depressive disorder (MDD) is a systemic and multifactorial disorder involving complex interactions between genetic predisposition and disturbances of various molecular pathways. Its underlying molecular pathophysiology remains unclear, and no valid and objective diagnostic tools for the condition are available.

Methods: We performed large-scale proteomic profiling to identify novel peripheral biomarkers implicated in the pathophysiology of MDD in 25 drug-free female MDD patients and 25 healthy controls. First, quantitative serum proteome profiles were obtained and analyzed by liquid chromatography–tandem mass spectrometry using serum samples from 10 MDD patients and 10 healthy controls. Next, candidate biomarker sets, including differentially expressed proteins from the profiling experiment and those identified in the literature, were verified using multiple-reaction monitoring in 25 patients and 25 healthy controls. The final panel of potential biomarkers was selected using multiparametric statistical analysis.

Results: We identified a serum biomarker panel consisting of six proteins: apolipoprotein D, apolipoprotein B, vitamin D3-binding protein, ceruloplasmin, hornerin, and profilin 1, which could be used to distinguish MDD patients from controls with 68% diagnostic accuracy. Our results suggest that modulation of the immune and inflammatory systems and lipid metabolism are involved in the pathophysiology of MDD.

Conclusions: Our findings of functional proteomic changes in the peripheral blood of patients with MDD further clarify the molecular biological pathway underlying depression. Further studies using larger, independent cohorts are needed to verify the role of these candidate biomarkers for the diagnosis of MDD.

Key words: Major depressive disorder, proteomics, immune system, inflammation, lipid metabolism

PS195

Reduced cerebrospinal fluid ethanolamine concentration in major depressive disorder

Shintaro Ogawa1, Kotaro Hattori2, Teruhiko Higuchi3, Hiroaki Hori1, Hiroshi Kunugi1, Ryo Matsumura1, Junko Matsuo4, Nobutaka Motohashi1, Takamasa Noda1, Yoshiaki Ohashi2, Miho Ota2, Daimei Sasayama1, Hajime Sato1, Toshiya Teraishi1, Yuki Yokota1, Sumiko Yoshida1

1. National Center of Neurology and Psychiatry, Japan
2. National Institute of Neuroscience, Japan
3. University of Yamanashi, Japan
4. Human Metabolome Technologies, Inc., Japan

Abstract

Amino acids play key roles in the function of the central nervous system, and their alterations are implicated in psychiatric disorders. In the search for a biomarker for major depressive disorder (MDD), we used high-performance liquid chromatography to measure amino acids and related molecules in the cerebrospinal fluid (CSF) of 52 patients.