Poekilloptera phalaenoides (Hemiptera: Flatidae) on Abarema villosa (Fabales: Fabaceae) in Diamantina, Minas Gerais State, Brazil

Authors: Claubert Wagner Guimarães de Menezes, Sollano Rabelo Braga, Sebastião Lourenço de Assis Júnior, Marcus Alvarenga Soares, Wiane Meloni Silva, et al.

Source: Florida Entomologist, 101(1) : 128-130
Published By: Florida Entomological Society
URL: https://doi.org/10.1653/024.101.0123
Poekilloptera phalaenoides (Hemiptera: Flatidae) on Abarema villosa (Fabales: Fabaceae) in Diamantina, Minas Gerais State, Brazil

Claubert Wagner Guimarães de Menezes,¹ Sollano Rabelo Braga,² Sebastião Lourenço de Assis Júnior,³ Marcus Alvarenga Soares,³ Wiane Meloni Silva,⁴ Wagner de Souza Tavares,⁵ * José Cola Zanuncio⁶

Abarema Pittier (Fabales: Fabaceae) is a genus with 35 species described in the Amazonia and another 15 in other biomes in Brazil including the Cerrado (Barneby & Grimes 1996). The medicinal use of Abarema plants in Brazil is due to their analgesic, anti-inflammatory, and antioxidant actions (Silva et al. 2010; Dias et al. 2013) as well as beneficial effects on skin lesions and some snake bites (Sánchez-Fidalgo et al. 2013; Saturnino-Oliveira et al. 2014). Abarema roots are colonized by nitrifying bacteria, which can improve soil properties (Barrett & Parker 2005; Parker 2015).

Abarema villosa Iganci & M. P. Morim (Fabales: Fabaceae) is a small tree, attaining heights of about 4.0 m, and flowering and fruiting between Nov and May (Iganci & Morim 2012). This plant was described in 2009 from specimens collected in the Espírito Santo, Minas Gerais, and Rio de Janeiro states, Brazil (Iganci & Morim 2009). It occurs in isolated groups due to degradation of its environment resulting from anthropogenic activities, including mining. This plant is considered at risk of extinction (Iganci & Morim 2012).

Poekilloptera phalaenoides L. (Hemiptera: Flatidae) has been reported in Bahia, Goiás, Mato Grosso, Minas Gerais, Pará, Paraíba, Rio de Janeiro, Rio Grande do Sul, Roraima, São Paulo, and Sergipe states, Brazil (Pires et al. 2011). Poekilloptera phalaenoides adults have yellow wings with black spots (Fig. 1A). This insect ingests plant sap and excretes honeydew, which is used as a food source by fungi that, in turn, reduce the rate of photosynthesis of the host plant (de Menezes et al. 2012).

Hundreds of adults and nymphs of P. phalaenoides were observed on 2. A. villosa plants (Fig. 1A) spaced about 1.0 m apart. These plants were in a garden with Cerrado plants in the campus of the Federal University of the Jequitinhonha and Mucuri Valleys (UFVJM) in Diamantina, Minas Gerais State, Brazil (18.3000°S and 43.6000°W; 1,250 masl; average annual rainfall of 1,082 mm; average annual temperature of 19.4 °C). The P. phalaenoides were feeding on the vascular tissues of A. villosa branches, and adults were displaying parental care behavior when observed during the last week of Apr 2015, at the end of the rainy season in Diamantina (Vieira et al. 2010). Powdery whitish filaments were observed terminally at the abdomen of P. phalaenoides nymphs (Fig. 1B). These filaments are composed of hydrophobic wax that provides protection to these insects against contamination by their own excrement (Rakitov & Gorb 2013).

Ten adult P. phalaenoides (sex not determined) were collected with a fabric insect net and brought to the laboratory where they were mounted, labeled, and deposited. The wing morphology of the individuals collected was analyzed and the insects were identified as Poekilloptera phalaenoides L. (Hemiptera: Flatidae) by comparing them with specimens previously identified (de Oliveira & Frizzas 2015) by Dr. Stephen W. Wilson, Department of Agriculture, Central Missouri University, Warrensburg, Missouri, USA. Abarema villosa was identified by Dr. Evandro L. M. Machado, of the Forestry Engineering Department at the UFVJM, Diamantina, Minas Gerais, Brazil, by comparing branch samples collected in Diamantina with dried samples deposited in the UFVJM herbarium, with photographs sent by curators of other herbaria, and with taxonomic descriptions (Iganci & Morim 2009).

Poekilloptera phalaenoides also has been observed in Jun and Jul 2012, during a dry period, on Sclerolobium paniculatum Vogel (Fabales: Fabaceae), a plant used for firewood and coal production, in Sinop, Mato Grosso State, Brazil (Manica et al. 2012), about 2,215 Km from Diamantina (Almeida et al. 2011). This insect also has been reported on Acacia podalyrifolia A. Cunn. (Fabales: Fabaceae) in an urban square in Viçosa, Minas Gerais State, Brazil, about 510 Km from Diamantina, in Oct 2007 (Pires et al. 2011) at the beginning of the rainy season (Freitas et al. 2013). The occurrence of P. phalaenoides on A. villosa at the end of the rainy season in April 2015 in Diamantina corresponds with its occurrence on Mimosa caesalpinieaefolia Bent (Fabales: Fabaceae), used for live fences, in Oct 2011 in Diamantina (de Menezes et al. 2012) at the beginning of the rainy season (Vieira et al. 2010). In Planaltina, Federal District, Brazil, 743 Km from Diamantina, P. phalaenoides was reported on Maprounea gua-
Summary

Abarema villosa Iganci & M. P. Morim (Fabales: Fabaceae) is a medicinal and ornamental plant in the Cerrado biome of Brazil. *Poekilloptera phalaenoides* L. (Hemiptera: Flatidae) is a polyphagous pest that imbibes plant sap. This insect was observed on *A. villosa* plants in Diamantina, Minas Gerais State, Brazil. *Poekilloptera phalaenoides* uses *A. villosa* plants as a site for shelter, feeding, and reproduction. This is the first report of *A. villosa* as a host of *P. phalaenoides*.

Key Words: Auchenorrhyncha; Fulgoroidea; Ingeae; Mimosoideae; pest

Acknowledgments

We thank the Brazilian institutions “Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq),” “Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES),” “Fundaçao de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG),” and “Programa Cooperativo sobre Proteçao Florestal/PROTEF do Instituto de Pesquisas e Estudos Florestais/IPEF” for financial support. Dr. Phillip John Villani (The University of Melbourne, Australia) revised and corrected the English language used in this manuscript.

References Cited

Almeida COS, Amorim RSS, Couto EG, Eltz FLF, Borges LEC. 2011. Erosive potential of rainfall in Cuiabá, MT: Distribution and correlation with rainfall. Revista Brasileira de Engenharia Agrícola e Ambiental 15: 178–184.

Barney RC, Grimes JW. 1996. Silk tree, guanacaste, monkey’s earring: A generic system for the synandrous Mimosaceae of the Americas. Part I. Abarema, Albizia and allies. Memoirs of the New York Botanical Garden 74: 284–292.

Barrett CF, Parker MA. 2005. Prevalence of *Burkholderia* sp. nodule symbionts on four mimosoid legumes from Barro Colorado Island, Panama. Systematic and Applied Microbiology 28: 57–65.

de Menezes CWG, Soares MA, de Assis Júnior SL, Fonseca AJ, Zanuncio JC. 2012. First record of *Poekilloptera phalaenoides* (Hemiptera: Flatidae) hosting *Mimosa caesalpiniaefolia* (Mimosoideae) in Diamantina, Minas Gerais State, Brazil. Forest Research 1: 2–4.

de Oliveira CM, Frizzas MR. 2015. Bio-ecology of *Poekilloptera phalaenoides* (Hemiptera: Flatidae) under the influence of climatic factors in the Brazilian Cerrado. Annals of the Entomological Society of America 108: 263–271.

Dias AS, Lima AC, Santos AL, Rabelo TK, Serafini MR, Andrade CR, Fernandes XA, Moreira JC, Gelain DP, Estevam CS, Araujo BS. 2013. Redox properties...
of Abarema cochliacarpos (Gomes) Barneby & Grime (Fabaceae) stem bark ethanol extract and fractions. Natural Product Research 27: 1479–1483.
Freitas JPO, Dias HCT, Barroso THA, Poyares LBQ. 2013. Rainfall distribution in the Atlantic Rainforest. Revista Ambiente & Água 8: 100–108.
Iganci JRV, Morim MP. 2009. Abarema (Leguminosae, Mimosoideae) in Rio de Janeiro State, Brazil. Rodriguesia 60: 581–594.
Iganci JRV, Morim MP. 2012. Abarema (Fabaceae, Mimosoideae) in the Atlantic Domain, Brazil. Botanical Journal of the Linnean Society 168: 473–486.
Manica CLM, Mochko ACR, Soares MA, Pires EM. 2012. Sclerolobium paniculatum Vogel (Leguminosae: Caesalpinioideae), a new host plant for Poekilloptera phalaenoides (Linneaus, 1758) (Hemiptera: Auchenorrhyncha: Flatidae). Forest Research 1: 1–3.
Oliveira LFC, Cortês FC, Wehr TR, Borges LB, Sarmento PHL, Griebeler NP. 2005. Intensity-duration-frequency relationship of intensive rainfall for sites in Goiás state and Federal District. Pesquisa Agropecuária Tropical 35: 13–18.
Parker MA. 2015. The spread of Bradyrhizobium lineages across host legume clades: From Abarema to Zygia. Microbial Ecology 69: 630–640.
Pires EM, Da Silva IM, Pereira AE, Zanuncio JC. 2011. Occurrence of Poekilloptera phalaenoides (Hemiptera: Flatidae) on Acacia podalyriaefolia (Mimosoideae) in Viçosa, Minas Gerais, Brazil. Revista Colombiana de Entomología 37: 80–81.
Rakitov R, Gorb SN. 2013. Brochosomes protect leafhoppers (Insecta, Hemiptera, Cicadellidae) from sticky exudates. Journal of the Royal Society Interface 10: 1–5.
Sánchez-Fidalgo S, Silva MS, Cárdeno A, Aparicio-Soto M, Salvador MJ, Frankland Sawaya AC, Souza-Brito AR, de la Lastra CA. 2013. Abarema cochliacarpos reduces LPS-induced inflammatory response in murine peritoneal macrophages regulating ROS-MAPK signal pathway. Journal of Ethnopharmacology 149: 140–407.
Saturnino-Oliveira J, Santos DC, Guimarães AG, Dias AS, Tomaz MA, Monteiro-Machado M, Estevam CS, Lucca Júnior W, Maria DA, Melo PA, Araújo AAS, Santos MRV, Almeida JRG, Oliveira RCM, Oliveira AP, Quintans Júnior LJ. 2014. Abarema cochliacarpos extract decreases the inflammatory process and skeletal muscle injury induced by Bothrops leucurus Venom. BioMed Research International 2014: 1–9.
Silva MS, Almeida AC, Faria FM, Luiz-Ferreira A, da Silva MA, Vilegas W, Pellizzon CH, Brito AR. 2010. Abarema cochliacarpos: Gastroprotective and ulcer-healing activities. Journal of Ethnopharmacology 132: 134–142.
Vieira JPG, Souza MJH, Teixeira JM, Carvalho FP. 2010. Study of monthly precipitation during the rainy season in Diamantina, Minas Gerais. Revista Brasileira de Engenharia Agrícola e Ambiental 14: 762–767.