Identification of the CAB2/hCOS16 Gene Required for the Repair of DNA Double-strand Breaks on a Core Amplified Region of the 17q12 Locus in Breast and Gastric Cancers

Masahiko Nezu,1,2 Michiko Nishigaki,1 Tomoki Ishizuka,1 Yoshitaka Kuwahara,1 Chikako Tanabe,1 Kazuhiko Aoyagi,1 Hiromi Sakamoto,1 Yasushi Saito,2 Teruhiko Yoshida,1 Hiroki Sasaki1 and Masaaki Terada1,3

1Genetics Division, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045 and 2The Second Department of Internal Medicine, Chiba University School of Medicine, 1-8-1 Inohana, Chuo-ku, Chiba 260-0856

We previously reported that CAB1 and c-ERBB-2 genes were found to be located in a core amplified region of the 17q12 locus, which is frequently amplified in various cancers. During identification of this core region, CAB2, a human homologue of the yeast COS16 required for the repair of DNA double-strand breaks was cloned. Autofluorescence analysis of cells transfected with its GFP fusion protein demonstrated that CAB2 translocates into vesicles, suggesting that overexpression of CAB2 may decrease intercellular Mn2+ by accumulating it in the vesicles, in the same way as yeast COS16. This is the first report identifying all of the genes on the core amplified region of the 17q12 locus in breast and gastric cancers.

Key words: Gene amplification — CAB2/hCOS16 — 17q12

Amplification of various oncogenes has been examined in different types of human cancers, and in some cases a good correlation between oncogene amplification and the prognosis of particular types of cancer has been demonstrated.11 We previously reported that HST1 and INT2 on chromosome 11q13 were amplified in about 40% of esophageal cancers.2–4 By cosmid walking and exon trapping, we further demonstrated that this amplicon contained at least five genes, HST1, INT2, MB38, EXP1, and cyclin D1.5,6 It was reported by other laboratories that the N-MYC locus at 2p24, frequently amplified in neuroblastoma, contained the DEAD box gene, HuDBP-RB/DDX1,7 that the 12q13-14 locus amplified in human sarcoma or glioma contained six genes including CDK4, SAS and MDM2,8,9 and that the 20q12-13 locus amplified in breast and ovarian cancers contained the BTAK and AIB1 genes.10,11 Amplification of c-ERBB-2 was found in various cancers including well-differentiated types of gastric cancers.12 We previously cloned four genes, CAB1, GRB7, A39 and C51, from 500 kb of yeast artificial clone (YAC) DNA containing the c-ERBB-2 gene located on the 17q12 locus.13,14 These facts, together with the results from our laboratory and those of other laboratories, established that there are usually multiple expressed genes in a single amplicon, providing a growth advantage to cells. Therefore the identification of genes with increased expression in a core amplified region will be required.

The predicted amino acid sequence of the CAB1 gene had significant homology to the steroidogenic acute regulatory protein, StAR, which has an essential role in cholesterol transport to mitochondria. GRB7 is an SH2 domain protein, and may be a signaling adaptor molecule of receptor-type tyrosine kinases.15–17 A putative gene, C51 has been found to be derived from an alternative transcript of c-ERBB-2, transcribed from a novel promoter.18 These two genes, CAB1 and c-ERBB-2, were reported to be always amplified in DNA samples of well-differentiated gastric cancer and breast cancer, demonstrating that they are present in a core amplified region on the 17q12 locus.13,14 The gene map is shown in Fig. 1A. During the identification of a major transcriptional start site of the novel promoter of the c-ERBB-2 gene, approximately 3 kb and 4 kb mRNAs that hybridized with a DNA fragment containing an unknown exon were found to be overexpressed in 5 cancer cell lines, UACC-893, UACC-812, BT-474, SKBR-3 and SKOV-3, with amplification of both CAB1 and c-ERBB-2, but not in 6 other cancer cell lines, BT-20, MDA-MB-436, ZR75-1, T47-D, MCF-7 and OVCA-3 without amplification (Fig. 1B), demonstrating that a novel gene is present between CAB1 and c-ERBB-2. This novel amplified gene, which must transcribe in the opposite direction to the c-ERBB-2 gene, was designated as CAB2 (a gene co-amplified with c-ERBB-2).

We cloned three cDNAs with the size of about 3 kb from a size-fractionated cDNA library of UACC-812 cells, and sequenced them. The full-length CAB2 cDNA (AB088396) was found to consist of 2733 bp, encoding a
319-amino-acid protein. Interestingly, CAB2 was conserved among the amino acid sequences of the *Saccharomyces cerevisiae* gene COS16 (AL355013) and *Caenorhabditis elegans* (NM072166) with 39% and 28% overall sequence identity, respectively (Fig. 2). We also found homologous sequences in a plant, *Arabidopsis thaliana* (AAAB01008960), with 38% identity, and *Drosophila melanogaster* (NM136379) with 37% identity (data not shown). By Southern blot analysis of the newly isolated cDNA, amplified signals were detected not only in cancer cell lines, but also in primary gastric cancer tissues with amplification of both *CAB1* and c-ERBB-2 (data not shown), and 4 exons were identified in the 5'-upstream region of the novel promoter of c-ERBB-2 (Fig. 1A), which has been sequenced previously.18) These data clearly showed that CAB2 is transcribed from the downstream region of the novel promoter of c-ERBB-2 in the reverse direction (Fig. 1A). Expression of CAB2 was examined in 21 adult human tissues: adrenal medulla, thyroid, adrenal cortex, stomach, spleen, thymus, prostate, ovary, small intestine, colon, peripheral blood leukocytes, heart, brain, placenta, lung, liver, skeletal muscle, kidney, pancreas and mammary gland, and 4 fetal tissues: brain, lung, liver and kidney. Ubiquitous expression was observed, and the expression was high in the thyroid and placenta out of the 21 adult tissues and in all 4 fetal tissues (data not shown).

The yeast gene *COS16* has recently been isolated as a recessive suppressor gene of *cdc1* (Ts) temperature-sensitive growth, and it encodes a vacuolar membrane protein that appears to regulate intercellular Mn2+ homeostasis.19) To compare the structures of COS16, CAB2 and a candidate homologue of *C. elegans*, transmembrane domains were predicted according to the Kyte and Doolittle hydrophathy algorithm.20) As shown in Fig. 3A, CAB2 and the candidate homologue for *C. elegans* are probably membrane proteins with about 10 transmembrane domains. Although overall sequence similarity among these three genes was not high, several key features such as size, membrane topology and some highly conserved amino acid sequences (for example, QFHGKWPF) were retained. Thus, we concluded that CAB2 is a good candidate for a
A New Amplified Gene CAB2/hCOS16

human homologue of the yeast COS16 gene. To examine the subcellular localization of the CAB2/hCOS16 protein, we expressed the full-size of CAB2/hCOS16 fused in-frame to green fluorescent protein (GFP) and monitored the cellular localization of the fusion products. Autofluorescence analysis of SKBR-3 cells transfected with a vector encoding the GFP fusion protein demonstrated that CAB2/hCOS16 translocates to and accumulates in vesicles, but not in either the cell membrane or the nucleus (Fig. 3B). This is analogous to the finding that yeast COS16 accumulates in the vacuole, and suggests that overexpression of CAB2/hCOS16 may decrease intercellular Mn$^{2+}$ by accumulating it in the vesicles. The yeast CDC1 protein has been reported to be a small subunit of DNA polymerase δ. Cdcl mutants were sensitive to killing by the DNA-damaging agent methyl methane sulfonate (MMS) and γ-irradiation, and showed a low efficiency for the repair of DNA double-strand breaks. Key molecules, including ataxia-telangiectasia mutated (ATM) kinase family members and DNA-activated protein kinase catalytic polypeptides, for the repair of DNA double-strand breaks have been reported to be Mn$^{2+}$-dependent enzymes. Therefore, overexpression of CAB2/hCOS16 may increase the sensitivity of the cells to DNA damage, and cause chromosome instability.

This work was supported in part by a Grant-in-Aid for the 2nd Comprehensive 10-Year Strategy for Cancer Control from the Ministry of Health, Labour and Welfare of Japan, by Grants-in-Aid from the Ministry of Health, Labour and Welfare of Japan, and by a grant for the Promotion of Fundamental Studies in Health Science from the Organization for Drug ADR Relief, R & D Promotion and Product Review of Japan. Nezu, M., Ishizuka, T., and Kuwahara, Y. were awardees of Research Resident Fellowships from the Foundation for Promotion of Cancer Research.

(Received July 24, 2002/Revised September 30, 2002/Accepted October 7, 2002)

REFERENCES

1) Brison, O. Gene amplification and tumor progression. Biochim. Biophys. Acta, 1155, 25–41 (1993).
2) Sakamoto, H., Mori, M., Taira, M., Yoshida, T., Matsukawa, S., Shimizu, K., Sekiguchi, M., Terada, M. and Sugimura, T. Transforming gene from human stomach cancers and a noncancerous portion of stomach mucosa. Proc. Natl. Acad. Sci. USA, 83, 3997–4001 (1986).
3) Yoshida, M., Wada, M., Sato, H., Yoshida, T., Sakamoto, H., Miyagawa, K., Yokota, J., Koda, T., Kakinuma, M., Sugimura, T. and Terada, M. Human HST1 (HSTF1) gene maps to chromosome band 11q13 and coamplifies with the INT2 gene in human cancer. Proc. Natl. Acad. Sci. USA, 85, 4861–4864 (1988).
4) Tsuda, T., Tahara, E., Kajiyama, G., Sakamoto, H., Terada, M. and Sugimura, T. High incidence of coamplification of hst-1 and int-2 genes in human esophageal carcinomas. Cancer Res., 49, 5505–5508 (1989).
5) Hamaguchi, M., Sakamoto, H., Tsuruta, H., Sasaki, H.
Muto, T., Sugimura, T. and Terada, M. Establishment of a highly sensitive and specific exon-trapping system. *Proc. Natl. Acad. Sci. USA*, 89, 9779–9783 (1992).

6) Kishi, T., Sasaki, H., Sakamoto, H., Hamaguchi, M., Ohmura, Y., Seto, M., Ueda, R., Hirai, H., Yazaki, Y., Sugimura, T. and Terada, M. Messenger RNA levels of five genes located at chromosome 11q13 in B-cell tumors with chromosome translocation t(11;14)(q13;q32). *Cancer Res.*, 54, 377–379 (1994).

7) Suire, J. A., Thorner, P. S., Weitzman, S., Maggi, J. D., Dirk, P., Doyle, J., Hale, M. and Godbout, R. Co-amplification of MYCN and a DEAD box gene (DDX1) in primary neuroblastoma. *Oncogene*, 10, 1417–1422 (1995).

8) Forus, A., Florenes, V. A., Maelandsmo, G. M., Meltzer, P. S., Fodstad, O. and Myklebost, O. Mapping of amplification of multiple genes from chromosome 12 in human sarcomas: some amplicons do not include MDM2. *Cell Growth Differ.*, 4, 1065–1070 (1993).

9) Reifenberger, G., Reifenberger, J., Ichimura, K., Meltzer, P. S. and Collins, V. P. Amplification of multiple genes from chromosomal region 12q13-14 in human malignant gliomas: preliminary mapping of the amplicons shows preferential involvement of CDK4, SAS, and MDM2. *Cancer Res.*, 54, 4299–4303 (1994).

10) Sen, S., Zhou, H. and White, R. A. A putative serine/threonine kinase encoding gene BTK on chromosome 20q13 is amplified and overexpressed in human breast cancer cell lines. *Oncogene*, 14, 2195–2200 (1997).

11) Anzick, S. L., Kononen, J., Walker, R. L., Azorsa, D. O., Tanner, M. M., Guan, X.-Y., Sauter, G., Kallioniemi, O.-A., Trent, J. M. and Meltzer, P. S. AIB1, a steroid receptor coactivator amplified in breast and ovarian cancer. *Science*, 277, 965–968 (1997).

12) Yokota, J., Yamamoto, T., Miyajima, N., Toyoshima, K., Nomura, N., Sakamoto, H., Yoshida, T., Terada, M. and Sugimura, T. Genetic alterations of the c-erbB-2 oncogene occur frequently in tubular adenocarcinoma of the stomach and are often accompanied by amplification of the v-erbA homologue. *Oncogene*, 2, 283–287 (1988).

13) Kishi, T., Sasaki, H., Akiyama, N., Ishizuka, T., Sakamoto, H., Aizawa, S., Sugimura, T. and Terada, M. Molecular cloning of human GRB-7 co-amplified with CAB1 and c-ERBB-2 in primary gastric cancer. *Biochem. Biophys. Res. Commun.*, 232, 5–9 (1997).

14) Akiyama, N., Sasaki, H., Ishizuka, T., Kishi, T., Sakamoto, H., Onda, M., Hirai, H., Yazaki, Y., Sugimura, T. and Terada, M. Isolation of a candidate gene, CAB1, for cholesterol transport to mitochondria from the c-ERBB-2 amplicon by a modified cDNA selection method. *Cancer Res.*, 57, 3548–3553 (1997).

15) Stein, D., Wu, J., Fuqua, S., Roonprapunt, C., Yajnik, V., D’Eustachio, P., Moskov, J. J., Buchberg, A. M., Osborne, C. K. and Margolis, B. The SH2 domain protein GRB-7 is co-amplified, overexpressed, and in a tight complex with HER2 in breast cancer. *EMBO J.*, 13, 1331–1340 (1994).

16) Yokote, Y., Margolis, B., Heldin, C. H. and Claesson-Welsh, L. Grb7 is a downstream signaling component of platelet-derived growth factor α- and β-receptors. *J. Biol. Chem.*, 271, 30942–30949 (1996).

17) Fiddes, R. J., Champbell, D. H., Janes, P. W., Sivertsen, S. P., Sasaki, H., Wallasch, C. and Daly, R. J. Analysis of Grb7 recruitment by heregulin-activated erbB receptors reveals a novel target selectivity for erbB3. *J. Biol. Chem.*, 273, 7717–7724 (1998).

18) Nezu, M., Sasaki, H., Kuwahara, Y., Ochiya, T., Yamada, Y., Sakamoto, H., Tashiro, H., Yamazaki, M., Ikeuchi, T., Saito, Y. and Terada, M. Identification of a novel promoter and exons of the c-ERBB2 gene. *Biochem. Biophys. Res. Commun.*, 258, 499–505 (1999).

19) Paidhungat, M. and Garrett, S. Cdc1 and the vacuole coordinately regulate Mn2+ homeostasis in the yeast *Schizosaccharomyces pombe*. *Genetics*, 148, 1787 (1998).

20) Kyte, J. and Doolittle, R. F. A simple method for displaying the hydropathic character of a protein. *J. Mol. Biol.*, 157, 105 (1982).

21) MacNeill, S. A., Moreno, S., Reynolds, N., Nurse, P. and Fantes, P. A. The fission yeast Cdc1 protein, a homologue of the small subunit of DNA polymerase delta, binds to Pol3 and Cdc27. *EMBO J.*, 15, 4613–4628 (1996).

22) Zuo, S., Gibbs, E., Kelman, Z., Wang, T. S., O’Donnell, M., MacNeill, S. A. and Hurwitz, J. DNA polymerase delta isolated from *Schizosaccharomyces pombe* contains five subunits. *Proc. Natl. Acad. Sci. USA*, 84, 11244–11249 (1997).

23) Halfbrook, J. and Hoeckstra, M. F. Mutations in the *Saccharomyces cerevisiae* CDC1 gene affect double-strand-break-induced intrachromosomal recombination. *Mol. Cell. Biol.*, 14, 8038 (1994).

24) Kim, S. T., Lim, D. S., Canman, C. E. and Kastan, M. B. Substrate specificities and identification of putative substrates of ATM kinase family members. *J. Biol. Chem.*, 274, 37538–37543 (1999).