Existence and uniqueness of functional differential equations with n delay

Bahloul Rachid
Faculty of Sciences and Technology, Fez, Morocco
bahloulr33@hotmail.com

Abstract

In this paper we give a necessary and sufficient conditions for the existence and uniqueness of periodic solutions of functional differential equations with n delay \(\frac{d}{dt}x(t) = Ax(t) + \sum_{j=1}^{n} Bx(t - r_j) + f(t) \). The conditions are obtained in terms of R-boundedness of operator valued Fourier multipliers.

Mathematics Subject Classification: xxxxx

Keywords: functional differential equations with n delay, R-bounded.

1 Introduction

Let A and B be two closed linear operators defined on a Banach space X with domains D(A) and D(B), respectively such that \(D(A) \subset D(B) \). In this paper we show existence and uniqueness of solutions for the following differential equation with n delay

\[
\begin{cases}
\frac{d}{dt} x(t) = Ax(t) + \sum_{j=1}^{n} Bx(t - r_j) + f(t) \\
x(0) = x(2\pi).
\end{cases}
\] (1)

where \(f \in L^p([-r_{2\pi}, 0], X) \) for some \(1 \leq p < \infty, r_{2\pi} = 2\pi N (N \in \mathbb{N}) \) and we suppose B is bounded. The theory of operator-valued Fourier multipliers has attracted the attention of many papers in recent years. For example, this theory was used in [1] to obtain results about equations \(\frac{dx(t)}{dt} = Ax(t) + f(t) \), and in [11] to obtain results about delay equation \(\frac{dx(t)}{dt} = Ax(t) + F(x_t) + f(t) \). In [6], S.Bu studied \(L^p \)-Maximal Regularity of Degenerate delay Equations with Periodic Conditions. We note that in the special case when \(B = 0 \), maximal regularity of Eq. (1) has been studied by Arendt and Bu in \(L^p \)-spaces case and Besov spaces case [[1], [2]], Bu and Kim in TriebelLizorkin spaces case [8]. The corresponding integro-differential equations were treated by Keyantuo
and Lizama [[17], [18]], Bu and Fang [7]. In this paper, we characterize the existence and uniqueness for the n delay equation (1) under the condition that X is a UMD space. Here the operator A is not necessarily the generator of a C_0-semigroup. We use the operator valued multiplier Fourier method. The organisation of this work is as follows: In section 2, we present preliminary results on UMD spaces and L^p-multiplier. In section 3, we study the existence of periodic strong solution for Eq. (1) with finite delay. In section 4, we give the main abstract result (theorem [4.2]) of this work.

1) for every $f \in L^p(T; X); 1 < p < \infty$, there exists a unique 2π-periodic strong L^p-solution of Eq. (1).

2) $(ikI - A - \sum_{j=1}^{n} B_{j,k})$ has bounded invertible for all $k \in \mathbb{Z}$ and $\{ik(ikI - A - \sum_{j=1}^{n} B_{j,k})^{-1}\}_{k \in \mathbb{Z}}$ is R-bounded.

2 Preliminary Notes

Let X be a Banach Space. Firstly, we denote By \mathbb{T} the group defined as the quotient $\mathbb{R}/2\pi \mathbb{Z}$. There is an identification between functions on \mathbb{T} and 2π-periodic functions on \mathbb{R}. We consider the interval $[0, 2\pi)$ as a model for \mathbb{T}.

Definition 2.1. A Banach space X is said to be UMD space if the Hilbert transform is bounded on $L^p(\mathbb{R}, X)$ for all $1 < p < \infty$.

Example 2.2. [9]
1. Any Hilbert space is an UMD space.
2. $L^p(0, 1)$ are UMD spaces for every $1 < p < \infty$.
3. Any closed subspace of a UMD space is a UMD space.

Definition 2.3. [1]
A family of operators $T = (T_j)_{j \in \mathbb{N}^*} \subset B(X, Y)$ is called R-bounded (Rademacher bounded or randomized bounded), if there is a constant $C > 0$ and $p \in [1, \infty)$ such that for each $n \in \mathbb{N}, T_j \in T, x_j \in X$ and for all independent, symmetric, $\{-1, 1\}$-valued random variables r_j on a probability space (Ω, M, μ) the inequality

$$\left\| \sum_{j=1}^{n} r_j T_j x_j \right\|_{L^p(0, 1; Y)} \leq C \left\| \sum_{j=1}^{n} r_j x_j \right\|_{L^p(0, 1; X)}$$

is valid. The smallest C is called R-bounded of $(T_j)_{j \in \mathbb{N}^*}$ and it is denoted by $R_p(T)$.

Definition 2.4. [11]
For $1 \leq p < \infty$, a sequence $\{M_k\}_{k \in \mathbb{Z}} \subset B(X, Y)$ is said to be an L^p-multiplier if for each $f \in L^p(\mathbb{T}, X)$, there exists $u \in L^p(\mathbb{T}, Y)$ such that $\hat{u}(k) = M_k \hat{f}(k)$ for all $k \in \mathbb{Z}$.

Proposition 2.5. [1, Proposition 1.11] Let X be a Banach space and \(\{ M_k \}_{k \in \mathbb{Z}} \) be an \(L^p \)-multiplier, where \(1 \leq p < \infty \). Then the set \(\{ M_k \}_{k \in \mathbb{Z}} \) is R-bounded.

Theorem 2.6. (Marcinkiewicz operator-valued multiplier Theorem). Let \(X, Y \) be UMD spaces and \(\{ M_k \}_{k \in \mathbb{Z}} \subset \mathcal{B}(X,Y) \). If the sets \(\{ M_k \}_{k \in \mathbb{Z}} \) and \(\{ k(M_{k+1} - M_k) \}_{k \in \mathbb{Z}} \) are R-bounded, then \(\{ M_k \}_{k \in \mathbb{Z}} \) is an \(L^p \)-multiplier for \(1 < p < \infty \).

We observe that the condition of R-boundedness for \((M_k)_{k \in \mathbb{Z}} \) is necessary.

Remark 2.7. [13] Let \(f \in L^1(\mathbb{T}; X) \). If \(g(t) = \int_0^t f(s)ds \) and \(k \in \mathbb{Z}, k \neq 0 \), then
\[
\hat{g}(k) = \frac{i}{k} \hat{f}(0) - \frac{1}{k} \hat{f}(k).
\]

3 A criterion for periodic solutions

Definition 3.2. Let \(f \in L^p(\mathbb{T}; X) \). A function \(x \in H^1_p(\mathbb{T}; X) \) is said to be a \(2\pi \)-periodic strong \(L^p \)-solution of Eq. (1) if \(x(t) \in D(A) \) for all \(t \geq 0 \) and Eq. (1) holds almost everywhere.

Lemma 3.3. [1, Lemme 2.1] Let \(1 \leq p < \infty \) and \(u, v \in L^p(\mathbb{T}; X) \). Then the following assertions are equivalent:
(i) \(\int_0^{2\pi} v(s)ds = 0 \) and there exists \(x \in X \) such that \(u(t) = x + \int_0^t v(s)ds \).
(ii) \(\hat{v}(k) = ik \hat{u}(k) \) for any \(k \in \mathbb{Z} \).

Definition 3.4. For \(1 \leq p < \infty \), we say that a sequence \(\{ M_k \}_{k \in \mathbb{Z}} \subset \mathcal{B}(X,Y) \) is an \((L^p, H^1_p) \)-multiplier, if for each \(f \in L^p(\mathbb{T}, X) \) there exists \(u \in H^1_p(\mathbb{T}, Y) \) such that \(\hat{u}(k) = M_k \hat{f}(k) \) for all \(k \in \mathbb{Z} \).

Lemma 3.5. Let \(1 \leq p < \infty \) and \((M_k)_{k \in \mathbb{Z}} \subset \mathcal{B}(X) \) (\(\mathcal{B}(X) \) is the set of all bounded linear operators from \(X \) to \(X \)). Then the following assertions are equivalent:
(i) \((M_k)_{k \in \mathbb{Z}} \) is an \((L^p, H^1_p) \)-multiplier.
(ii) \((ikM_k)_{k \in \mathbb{Z}} \) is an \((L^p, L^p) \)-multiplier.

Proposition 3.6. Let \(A \) be a closed linear operator defined on an UMD space \(X \). Suppose that \(\sigma_Z(\Delta) = \phi \). Then the following assertions are equivalent:
(i) \(\{ ik(ikI - A - \sum_{j=1}^n B_{j,k})^{-1} \}_{k \in \mathbb{Z}} \) is an \(L^p \)-multiplier for \(1 < p < \infty \).
(ii) \(\{ ik(ikI - A - \sum_{j=1}^n B_{j,k})^{-1} \}_{k \in \mathbb{Z}} \) is R-bounded.
Proof. By [1, Proposition 1.11] it follows that (i) implies (ii). Conversely, define \(M_k = ik(C_k - A)^{-1} \), where \(C_k = ik - \sum_{j=1}^{n} B_{j,k} \). By Theorem 2.6 it is sufficient to prove that the set \(\{k(M_{k+1} - M_k)\}_{k \in \mathbb{Z}} \) is R-bounded. We claim first that the set \(\{\sum_{j=1}^{n} B_{j,k}\}_{k \in \mathbb{Z}} \) is R-bounded.

since given \(x_j \in D(A) \) we have :

\[
\left\| \sum_{l=1}^{m} r_l(\sum_{j=1}^{n} B_{j,l})x_l \right\|_{L^p(0,1;X)}^p = \int_0^1 \left\| \sum_{l=1}^{m} r_l(t)B(\sum_{j=1}^{n} e^{-ir_jx_l}) \right\|_{X}^p dt
\]

\[
= \int_0^1 \left\| B(\sum_{l=1}^{m} r_l(t) \sum_{j=1}^{n} e^{-ir_jx_l}) \right\|_{X}^p dt
\]

\[
\leq ||B||^p \int_0^1 \left\| \sum_{l=1}^{m} r_l(t) \sum_{j=1}^{n} e^{-ir_jx_l} \right\|_{X}^p dt
\]

By (Lemma 1.7, [1]) we obtain that

\[
\left\| \sum_{l=1}^{m} r_l(\sum_{j=1}^{n} B_{j,l})x_l \right\|_{L^p(0,1;X)}^p \leq 2n^p||B||^p \int_0^1 \left\| \sum_{l=1}^{m} r_l(t)x_l \right\|_{X}^p dt
\]

We conclude that

\[
\left\| \sum_{l=1}^{m} r_l(\sum_{j=1}^{n} B_{j,l})x_l \right\|_{L^p(0,1;X)} \leq 2^{1/p}n||B||.
\]

and the claim is proved. Next. We note the following identities

\[
k [M_{k+1} - M_k] = k [i(k+1)(C_{k+1} - AD)^{-1} - ik(C_k - AD)^{-1}]
\]

\[
= k(C_{k+1} - AD)^{-1}[i(k+1)(C_k - AD) - ik(C_{k+1} - AD)](C_k - AD)^{-1}
\]

\[
= k(C_{k+1} - AD)^{-1}[ik(C_k - C_{k+1}) + i(C_k - A)][(C_k - AD)^{-1}
\]

\[
= k(C_{k+1} - AD)^{-1}[ik(C_k - C_{k+1})(C_k - AD)^{-1} + iI]
\]

\[
= \frac{-ik}{k+1} M_{k+1}(C_k - C_{k+1}) M_k + \frac{k}{k+1} M_{k+1}.
\]

We have

\[
C_k - C_{k+1} = -iI + \sum_{j=1}^{n} B e^{-ir_j}(1 - e^{-ir_j}).
\]

Since products and sums of R-bounded sequences is R-bounded [11, Remark 2.2]. Then \(\{k(M_{k+1} - M_k)\}_{k \in \mathbb{Z}} \) is R-bounded and by theorem 2.6, \(\{M_k\}_{k \in \mathbb{Z}} \) is an \(L^p \)-multiplier. \(\square \)

Theorem 3.7. Let \(X \) be a Banach space. Suppose that for every \(f \in L^p(\mathbb{T}; X) \) there exists a unique strong solution of Eq. (1) for \(1 \leq p < \infty \). Then
1. for every \(k \in \mathbb{Z} \) the operator \(\Delta_k = (ikI - A - \sum_{j=1}^{n} B_{j,k}) \) has bounded inverse

2. \(\{ik\Delta_k^{-1}\}_{k \in \mathbb{Z}} \) is R-bounded.

Before to give the proof of Theorem (3.7), we need the following Lemma.

Lemma 3.8. if \((ikI - A - \sum_{j=1}^{n} B_{j,k}(x)) = 0 \) for all \(k \in \mathbb{Z} \), then \(u(t) = e^{ikt}x \) is a \(2\pi \)-periodic strong \(L^p \)-solution of the following equation (1) corresponding to the function \(f = 0 \).

Proof. \((ikI - A - \sum_{j=1}^{n} B_{j,k}(x)) = 0 \Rightarrow ikx = Ax + \sum_{j=1}^{n} B_{j,k}x. \)

We have \(u(t) = e^{ikt}x \) then

\[
u'(t) = ike^{ikt}x = e^{ikt}(ikx) = e^{ikt}[Ax + \sum_{j=1}^{n} B_{j,k}x] = Au(t) + \sum_{j=1}^{n} Bu(t - r_j).
\]

Proof of Theorem 3.7 1) Let \(k \in \mathbb{Z} \) and \(y \in X \). Then for \(f(t) = e^{ikt}y \), there exists \(x \in H^{1,p}(\mathbb{T}; X) \) such that:

\[
\frac{d}{dt} x(t) = Ax(t) + \sum_{j=1}^{n} Bx(t - r_j) + f(t)
\]

Taking Fourier transform, by Lemma 3.3 we have:

\[
\hat{x}'(k) = ik\hat{x}(k) = A\hat{x}(k) + \sum_{j=1}^{n} B_{j,k}\hat{x}(k) + \hat{f}(k).
\]

Then we obtain: \((ikI - A - \sum_{j=1}^{n} B_{j,k})\hat{x}(k) = \hat{f}(k) = y \Rightarrow (ikI - A - \sum_{j=1}^{n} B_{j,k}) \) is surjective.

If \((ikI - A - \sum_{j=1}^{n} B_{j,k})u = 0 \), then by Lemma 3.8 \(x(t) = e^{ikt}u \) is a \(2\pi \)-periodic strong \(L^p \)-solution of Eq. (1) corresponding to the function \(f = 0 \) Hence \(x(t) = 0 \) and \(u = 0 \) then \((ikI - A - \sum_{j=1}^{n} B_{j,k}) \) is injective.

2) Let \(f \in L^p(\mathbb{T}, X) \). By hypothesis, there exists a unique \(x \in H^{1,p}(\mathbb{T}, X) \) such that the Eq. (1) is valid. Taking Fourier transforms, we deduce that \(\hat{x}(k) = (ikI - A - \sum_{j=1}^{n} B_{j,k})^{-1} \hat{f}(k) \) for all \(k \in \mathbb{Z} \). Hence

\[
 ik\hat{x}(k) = ik(ikI - A - \sum_{j=1}^{n} B_{j,k})^{-1} \hat{f}(k)
\]

On the other hand, since \(x \in H^{1,p}(\mathbb{T}, X) \), there exists \(v \in L^p(\mathbb{T}, X) \) such that \(\hat{v}(k) = ik\hat{x}(k) = ik(ikI - A - \sum_{j=1}^{n} B_{j,k})^{-1} \hat{f}(k) \) i.e \(\{ik\Delta_k^{-1}\}_{k \in \mathbb{Z}} \) is an \(L^p \)-multiplier. Then \(\{ik\Delta_k^{-1}\}_{k \in \mathbb{Z}} \) is R-bounded. \(\square \)
4 Existence of mild solutions of Eq. (1)

It is well known that in many important applications the operator A is the infinitesimal generator of C_0-semigroup $(T(t))_{t \geq 0}$ on the space X. Let A be a generator of a C_0-semigroup $(T(t))_{t \geq 0}$.

Definition 4.1. Assume that A generates a C_0-semigroup $(T(t))_{t \geq 0}$ on X. A function x is called a mild solution of Eq. (1) if:

$$x(t) = T(t)\varphi + \int_0^t T(t-s)\left(\sum_{j=1}^n Bx(s-r_j) + f(s)\right)ds \text{ for } 0 \leq t \leq 2\pi.$$

Remark 4.2. [14, Remark 4.2]

Let $(T(t))_{t \geq 0}$ be the C_0-semigroup generated by A. If $g : [0, a] \to X$ is a continuous function, then $\int_0^t \int_0^s T(t-\xi)g(\xi)d\xi ds \in D(A)$ and

$$A \int_0^t \int_0^s T(t-\xi)g(\xi)d\xi ds = \int_0^t (T(t-s) - I)g(s)ds \text{ for all } 0 \leq t \leq a.$$

Lemma 4.3. [10]

Assume that A generates a C_0-semigroup $(T(t))_{t \geq 0}$ on X, if x is a mild solution of Eq. (1) then

$$x(t) = \varphi + A \int_0^t x(s)ds + \int_0^t \left(\sum_{j=1}^n Bx(s-r_j) + f(s)\right)ds \text{ for } 0 \leq t \leq 2\pi.$$

Theorem 4.4. Assume that A generates a C_0-semigroup $(T(t))_{t \geq 0}$ on X and $f \in L^p(\mathbb{T}, X)$ for some $1 \leq p < \infty$, if x is a mild solution of Eq. (1). Then

$$(ikI - A - \sum_{j=1}^n B_{j,k})\hat{x}(k) = \hat{f}(k) \text{ for all } k \in \mathbb{Z}.$$

Proof. Let x be a mild solution of Eq. (1). Then by Lemma 4.3, we have

$$x(t) = \varphi + A \int_0^t x(s)ds + \int_0^t \left(\sum_{j=1}^n Bx(s-r_j) + f(s)\right)ds$$

For $t = 2\pi$, we have

$$x(2\pi) = \varphi + A \int_0^{2\pi} x(s)ds + \int_0^{2\pi} \left(\sum_{j=1}^n Bx(s-r_j) + f(s)\right)ds;$$
Since: \(x(2\pi) = \varphi \), then

\[
A \int_0^{2\pi} x(s)ds + \int_0^{2\pi} \left(\sum_{j=1}^n Bx(s - r_j) + f(s) \right) ds = 0
\]

\[
\Rightarrow \frac{1}{2\pi} A \int_0^{2\pi} x(s)ds + \frac{1}{2\pi} \int_0^{2\pi} \left(\sum_{j=1}^n Bx(s - r_j) + f(s) \right) ds = 0
\]

\[
\Rightarrow \frac{1}{2\pi} A \int_0^{2\pi} x(s)ds + \frac{1}{2\pi} \int_0^{2\pi} \sum_{j=1}^n Bx(s - r_j) ds + \frac{1}{2\pi} \int_0^{2\pi} f(s) ds = 0
\]

\[
\Rightarrow \frac{1}{2\pi} A \int_0^{2\pi} e^{-i0s} x(s) ds + \frac{1}{2\pi} \int_0^{2\pi} e^{-i0s} \sum_{j=1}^n Bx(s - r_j) ds + \frac{1}{2\pi} \int_0^{2\pi} e^{-i0s} f(s) ds = 0
\]

\[
\Rightarrow (0 - A - \sum_{j=1}^n B_{j,0}) \hat{x}(0) = \hat{f}(0),
\]

which shows that the assertion holds for \(k = 0 \).

Now, define

\[
v(t) = \int_0^t x(s) ds
\]

and

\[
g(t) = x(t) - \varphi - \int_0^t \left(\sum_{j=1}^n Bx(s - r_j) + f(s) \right) ds
\]

by Remark 2.7 We have:

\[
\hat{v}(k) = \frac{i}{k} \hat{x}(0) - \frac{i}{k} \hat{x}(k)
\]

\[
A\hat{v}(k) = \frac{i}{k} A\hat{x}(0) - \frac{i}{k} A\hat{x}(k)
\]

and

\[
\hat{g}(k) = \hat{x}(k) - \left[\frac{i}{k} G_0 \hat{x}(0) - \frac{i}{k} G_k \hat{x}(k) \right] - \left[\frac{i}{k} \hat{f}(0) - \frac{i}{k} \hat{f}(k) \right]
\]

\[
= \hat{x}(k) - \frac{i}{k} G_0 \hat{x}(0) + \frac{i}{k} G_k \hat{x}(k) - \frac{i}{k} \hat{f}(0) + \frac{i}{k} \hat{f}(k)
\]

\[
\square
\]

Corollary 4.5. Assume that \(A \) generates a \(C_0 \)-semigroup \((T(t))_{t \geq 0}\) on \(X \) and let \(f \in L^p(\mathbb{T}, X) : 1 \leq p < \infty \) and \(x \) be a mild solution of Eq. (1). If \((ikI - A - \sum_{j=1}^n B_{j,k})\) has a bounded inverse. Then \((ikI - A - \sum_{j=1}^n B_{j,k})\) is an \(L^p \)-multiplier.

Proof. Let \(f \in L^p(\mathbb{T}, X) \) then from Theorem (4.4) we have:

\[
\hat{x}(k) = (ikD_k - AD_k - G_k)^{-1} \hat{f}(k)
\]

for all \(f \in L^p(\mathbb{T}, X) \), then \((ikI - A - \sum_{j=1}^n B_{j,k})^{-1}\) is an \(L^p \)-multiplier. \(\square \)
5 Main Result

Our main result in this work is to establish that the converse of theorem (3.7) and corollary (4.5) is true, provided X is an UMD space.

Theorem 5.1. *(Fejer Theorem)*: Let $f \in L^p(\mathbb{T}, X)$. Then

$$f = \lim_{n \to +\infty} \sigma_n(f)$$

where $\sigma_n(f) = \frac{1}{n+1} \sum_{m=0}^{n} \sum_{k=-m}^{m} e_k \hat{f}(k)$, with $e_k(t) = e^{ikt}$.

Theorem 5.2. Let X be an UMD space and $A : D(A) \subset X \to X$ be a closed linear operator. Then the following assertions are equivalent for $1 < p < \infty$.

1) for every $f \in L^p(\mathbb{T}, X)$ there exists a unique strong L^p-solution of Eq.(1).

2) $\sigma_{Z}(\Delta) = \phi$ and $\{ik\Delta_k^{-1}\}_{k \in \mathbb{Z}}$ is R-bounded.

Proof. $1 \Rightarrow 2)$ see Theorem 3.7.

$1 \Leftarrow 2)$ Let $f \in L^p(\mathbb{T}; X)$. Define $\Delta_k = (ikI - A - \sum_{j=1}^{n} B_j) e_k \hat{f}(k)$,

By Proposition 3.6, the family $\{ik\Delta_k^{-1}\}_{k \in \mathbb{Z}}$ is an L^p-multiplier it is equivalent to the family $\{\Delta_k^{-1}\}_{k \in \mathbb{Z}}$ is an L^p-multiplier that maps $L^p(\mathbb{T}; X)$ into $H^{1,p}(\mathbb{T}; X)$, namely there exists $x \in H^{1,p}(\mathbb{T}, X)$ such that

$$\hat{x}(k) = \Delta_k^{-1} \hat{f}(k) = (ikI - A - \sum_{j=1}^{n} B_j) \hat{f}(k)$$ (2)

In particular, $x \in L^p(\mathbb{T}; X)$ and there exists $v \in L^p(\mathbb{T}; X)$ such that $\hat{v}(k) = ik\hat{x}(k)$

$$\hat{x}'(k) := \hat{v}(k) = ik\hat{x}(k)$$ (3)

By Theorem 5.1 we have for $j \in \{1...n\}$

$$x(t - r_j) = \lim_{l \to +\infty} \frac{1}{l+1} \sum_{m=0}^{l} \sum_{k=-m}^{m} e^{ikt} e^{-ikr_j} \hat{x}(k)$$

Then, since B is bounded linear

$$\sum_{j=1}^{n} Bx(t - r_j) = \lim_{l \to +\infty} \frac{1}{l+1} \sum_{m=0}^{l} \sum_{k=-m}^{m} e^{ikt} (\sum_{j=1}^{n} B_j \hat{x}(k))$$

By (2) and (3) we have:

$$\hat{x}'(k) = ik\hat{x}(k) = A\hat{x}(k) + \sum_{j=1}^{n} B_{j,k}\hat{x}(k) + \hat{f}(k), \text{ for all } k \in \mathbb{Z}$$
Then using that \(A \) and \(B \) are closed we conclude that \(x(t) \in D(A) \) [[1], Lemma 3.1] and from the uniqueness theorem of Fourier coefficients that

\[
x'(t) = Ax(t) + \sum_{j=1}^{n} B x(t - r_j) + f(t).
\]

We have \(x \in H^{1,p}(\mathbb{T}, X) \) then by lemma 3.3, \(x(0) = x(2\pi) \), then the Eq. (1) has a unique \(2\pi \)-periodic strong \(L^p \)-solution. \(\square \)

Theorem 5.3. Let \(1 \leq p < \infty \). Assume that \(A \) generates a \(C_0 \)-semigroup \((T(t))_{t \geq 0} \) on \(X \). If \(\sigma_Z(\Delta) = \emptyset \) and \((ikI - A - \sum_{j=1}^{n} B_{j,k})^{-1} \) is an \(L^p \)-multiplier then there exists a unique mild solution periodic of Eq. (1).

Proof. For \(f \in L^p(\mathbb{T}; X) \) we define

\[
f_l(t) = \frac{1}{l+1} \sum_{m=0}^{l} \sum_{k=-m}^{m} e^{ikt} \hat{f}(k)
\]

By the Fejér Theorem we can assert that \(f_l \to f \) as \(l \to \infty \) for the norm in \(L^p(\mathbb{T}; X) \). We have \((ikI - A - \sum_{j=1}^{n} B_{j,k})^{-1} \) is an \(L^p \)-multiplier then there exists \(x \in L^p(\mathbb{T}; X) \) such that \(\hat{x}(k) = (ikI - A - \sum_{j=1}^{n} B_{j,k})^{-1} \hat{f}(k) \)

put

\[
x_l(t) = \frac{1}{l+1} \sum_{m=0}^{l} \sum_{k=-m}^{m} e^{ikt} (ikI - A - \sum_{j=1}^{n} B_{j,k})^{-1} \hat{f}(k)
\]

Using again the Fejér Theorem we obtain that \(x_n(t) \to x(t) \) (as \(n \to \infty \)) and \(x_n(t) \) is strong \(L^p \)-solution of Eq. (1) and \(x_n(t) \) verified

\[
x_l(t) = T(t) \varphi_l + \int_{0}^{t} T(t-s) \left(\sum_{j=1}^{n} B x_l(s - r_j) + f_l(s) \right) ds \quad (4)
\]

With \(t = 2\pi \) we obtain

\[
x_l(2\pi) = T(2\pi) \varphi_l + \int_{0}^{2\pi} T(2\pi-s) \left(\sum_{j=1}^{n} B x_l(s - r_j) + f_l(s) \right) ds.
\]

from which we infer that the sequence \((\varphi_l)_n \) is convergent to some element \(\varphi \) as \(l \to \infty \)(\(\varphi_l = x_l(0) = x_l(2\pi) \)). Moreover, \(\varphi \) satisfies the condition

\[
\varphi = T(2\pi) \varphi + \int_{0}^{2\pi} T(2\pi-s) \left(\sum_{j=1}^{n} B x(s - r_j) + f(s) \right) ds. \quad (5)
\]
Taking the limit as \(l \) goes to infinity in (4), we can write

\[
x(t) = T(t)\varphi + \int_0^t T(t-s)\left(\sum_{j=1}^n Bx(s-r_j) + f(s)\right)ds := g(t)
\]

\[
g(2\pi) = T(2\pi)y + \int_0^{2\pi} T(2\pi-s)\left(\sum_{j=1}^n Bx(s-r_j) + f(s)\right)ds \rightarrow \varphi = g(0) \tag{5}
\]

Then \(x(2\pi) = \varphi \Rightarrow x(2\pi) = x(0) \), we conclude that \(x \) is a \(2\pi \)-periodic mild solution of Eq. (1).

Acknowledgements. This is a text of acknowledgements.

References

[1] W.Arend and S.Bu, The operator-valued Marcinkiewicz multiplier theorem and maximal regularity, Math.Z. 240, (2002), 311-343.

[2] W. Arendt, S. Bu, Operator-valued Fourier multipliers on periodic Besov spaces and applications, Proc. Edinburgh Math. Soc. 47, (1), (2004), 15-33.

[3] R.Bahloul, M.Bahaj and O.Sidki, Periodic solutions of degenerate equations with finite delay in UMD space, Journal of Advances in Dynamical Systems and Application. ISSN 0973-5321, Volume 10, Number 1, (2015) pp. 23-31.

[4] R.Bahloul, Periodic solutions of differential equations with two variables in vector-valued function space, Asian Journal of Mathematics and Computer Research, 12(1): 44-53, 2016 ISSN: 2395-4205 (P), ISSN: 2395-4213 (O).

[5] K. Ezzinbi, R.Bahloul and O.Sidki, Periodic Solutions in UMD spaces for some neutral partial function differential equations, Advances in Pure Mathematics, (2016), 6, 713-726, http:dx.doi.org/10.4236/apm.2016.61008

[6] S.Bu, “\(L^p \)-Maximal regularity of degenerate delay equations with Periodic Conditions.”, Banach J.Math.Anal. 8(2014), no. 2, 49-59;

[7] S. Bu and Y. Fang, Maximal regularity for integro-differential equations on periodic Triebel-Lisorkin spaces, Taiwanese J. Math. 12 (2009), no.2, 281292.

[8] S. Bu and J. Kim, Operator-valued Fourier multipliers on peoriodic Triebel spaces, Acta Math. Sinica, English Series 17 (2004), 1525.
[9] J.Bourgain, Some remarks on Banach spaces in which martingale differences sequences are unconditional. Arkiv Math. 21, (1983), 163-168.

[10] Butzer P.L. and Westphal, An access to fractional differentiation via fractional difference quotients, Lecture Notes in Math. 457, 116-145, 1975.

[11] C.Lizama, Fourier multipliers and periodic solutions of delay equations in Banach spaces, J.Math.Anal.Appl. 324,(2) (2006), 921-933.

[12] C.Lizama and V. Poblete, Periodic Solutions of Fractional Differential Equations With Delay, J.Evol.Equ.11, (2011), 57-70.

[13] Hernan R.Henriquez, Michelle Pierri and Andrea Prokopczyk Periodic Solutions of abstract neutral functional differential equations, J. Math. Ana. Appl. 385, (2012), 608 - 621

[14] M. Girardi, L. Weis, Criteria for R-boundedness of operator families, in : Evolution Equations, in : Lect. Notes Pure Appl. Math., vol. 234, Dekker, New York, 2003, pp. 203221.

[15] Y.Hino, T.Naito,N. Van Minh and J.S.Shin, Almost periodic solution of Differential Equations in Banach Spaces, Taylor and Francis, London,2002.

[16] V. Keyantuo and C. Lizama, Fourier multipliers and integro-differential equations in Banach spaces, J. London Math. Soc. 69 (2004), 737750.

[17] V. Keyantuo and C. Lizama, Maximal regularity for a class of integro-differential equations with infinite delay in Banach spaces, Studia Math.168 (2005), 2550.

[18] V. Keyantuo, C. Lizama, Mild well-posedness of abstract differential equations, in : H. Amann, W. Arendt, M. Hieber, F. Neubrander, S.Nicaise, J. von Below (Eds.), Functional Analysis and Evolution Equations, Birkhuser, Basel, 2008, pp. 371387.

[19] A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag, 1983.

[20] H. Triebel, Fractals and Spectra. Related to Fourier Analysis and Function Spaces, Monogr. Math., vol. 78, Birkhuser, Basel,1983.

[21] H. Triebel, Theory of Function Spaces, Monogr. Math., vol. 91, Birkhuser, Basel, 1997.

[22] J.Wu, Theory and Applications of Partial Differential Equations, Appl, Math .Sci. 119, Springer-verlag, 1969.
[23] L. Weis, Operator-valued Fourier multiplier theorems and maximal Lp-regularity, Math. Ann. 319 (2001) 735-758.

[24] C. Yu, G. Gao. Some results on a class of fractional functional differential equations. Commun. Appl. Nonlinear Anal., 11 (3) (2004) 67-75.

[25] X. Zhang. Some results of linear fractional order time-delay system. Appl. Math. Comput. 197 (2008), 407-411.

[26] F. Zimmermann, On vector-valued Fourier multiplier theorems, Studia Math. 93 (1989) 201-222.

Received: Month xx, 20xx