Cytotoxic compounds from marine actinomycetes: sources, structures and bioactivity

Ziyan Qiu a,1, Yinshuang Wu a,1, Kunyan Lan b, Shiyi Wang a, Huilin Yu a, Yufei Wang a, Cong Wang a, *, Shugeng Cao b, * aKey Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530006, China bDepartment of Pharmaceutical Sciences, Daniel K. Inouye College of Pharmacy, University of Hawai‘i at Hilo, 200 W. Kawili St., Hilo, HI 96720, USA 1Ziyan Qiu and Yinshuang Wu contributed to the manuscript equally. *Correspondence: wangcong123206@163.com (C. Wang); scao@hawaii.edu (S. Cao) Received: 11 August 2022; Revised: 16 October 2022; Accepted: 28 October 2022 Published online: 15 November 2022 DOI 10.15212/AMM-2022-0028

ABSTRACT

Marine actinomycetes produce a substantial number of natural products with cytotoxic activity. Actinomycete strains have been isolated from sources including fishes, coral, sponges, seaweeds, mangroves and sediments. These cytotoxic compounds can be broadly categorized into four classes: polyketides; non-ribosomal peptides and hybrids; isoprenoids and hybrids; and others, among which the majority are polyketides (146 of 254). Twenty-two of the 254 compounds show potent cytotoxicity, with IC50 values at the ng/mL or nM level. This review highlights the sources, structures and antitumor activity of 254 natural products isolated from marine actinomycetes and first reported between 1989 and 2020.

Keywords: marine actinomycetes, marine natural products, chemical structures, antitumor bioactivity

1. INTRODUCTION

The oceans occupy more than two-thirds of the Earth’s surface and contain more than four-fifths of the world’s plant and animal species, in addition to a vast number of microorganisms [1]. Marine natural products usually refer to compounds isolated from marine microorganisms and phytoplankton, algae, sponges, cnidarians, bryozoans, mollusks, tunicates, echinoderms, mangroves, and other intertidal plants and microorganisms [2]. The discovery rate of new marine natural products has increased since the advent of this field and has continued at a substantial rate despite the ever-increasing number of reported natural products [3]. To date, 17 marine-derived drugs have been approved for clinical use: cytarabine (Cytosar-U®), vidarabine (Arasena A®), ziconotide (Prialt®), eicosapentaenoic acid ethyl ester (Vascepa®), omega-3-carboxylic acid (Epanova®), omega-3-acid ethyl esters (Lovaza®, whose status is currently debated), eribulin mesylate (ET389, Halaven®), trabectedin (ET-743, Yondelis®), panobinostat (Farydak®), plitidepsin (Aplidin®), lurbinectin (Zepzelca™), belantamab mafodotin-blmf (Blenrep™), brentuximab vedotin (SGN-35, Adcetris®), polatuzumab vedotin (DCDS-4501A, Polivy™), enfortumab vedotin-ejfv (PADCEV™), disitamab vedotin (Aidixi™) and tisotumab vedotin-tftv (Aidixi™) [4]. More marine natural products are highly likely to be developed for clinical use. Some of the lead compounds developed into the above-mentioned clinical drugs are likely to be produced by microorganisms including actinomycetes, given the growing recognition in recent decades that metabolic processes in microorganisms including actinomycetes are the most productive source of unique secondary metabolites [5]. Actinomycetes are a diverse family of filamentous bacteria that produce a plethora of natural products with relevance to agriculture, biotechnology and medicine, including most antibiotics approved by the U.S. Food and Drug Administration [6]. In the 1940s, actinomycetes were first discovered for their antibiotic functions [7]. Subsequently, secondary metabolites of actinomycetes were widely exploited as antitumor drugs in the
pharmaceutical industry. Several anticancer drugs have been developed from enediyne, such as gemtuzumab ozogamicin (Mylotarg®) and inotuzumab ozogamicin (Besponsa®) [8, 9]. However, the high toxicity, undesirable adverse effects and extensive drug resistance of current treatments have increased the demand for novel antimut drugs. Marine actinomycetes are a valuable source of biologically active secondary metabolites. According to a statistical analysis, marine-derived actinomycetes account for the production of 39% of all bioactive microbial metabolites [10]. This review describes the sources, chemical structures and cytotoxic activities of 254 compounds derived from marine actinomycetes, reported from 1989 to 2020.

2. STRUCTURAL CLASSES OF ANTITUMOR SECONDARY METABOLITES FROM MARINE ACTINOMYCETES

2.1 Polyketides

2.1.1 Macrolides (lactones), lactams and αβ-pyrones.

Two new kijanimicin derivatives, lobophorins C (1) and D (2), have been purified from Streptomyces carni- sus A2517 (Figure 1). Compounds 1 and 2 each have a unique β-keto-γ-spiro-γ-lactone moiety with a double bond at the α-position. Compound 1 showed cytotoxicity toward the 7402 human breast cancer cell line and MDA-MB 435 human breast cancer cells with IC_{50} values of 0.6 μg/mL and 61.8 μM, respectively, while compound 2 was toxic against the same two cancer cell lines with IC_{50} values of 723.1 μg/mL and 7.5 μM, respectively [11]. Octalactin A (3), a fully saturated eight-membered lactone, has been isolated from a marine bacterium, Streptomyces sp. PG-19. Compound 3 displays inhibitory activity toward the B-16-F10 and HCT-116 cell lines, with IC_{50} values of 7.2 and 500 ng/mL, respectively [12]. The macrolides PM100117 (4) and PM100118 (5) have been obtained from Streptomyces caniferus GUA-06-05-006A [13]. Compounds 4 and 5 each have a 36-membered macrolide ring system together with three six-membered hemiketal rings and a napthoquinone moiety on the bulky tail. Compound 4 displays cytotoxicity toward A549, MDA-MB-231 and HT29 cell lines, with GI_{50} values of 1.3, 2.7 and 3.8 μM, respectively, and compound 5 is active toward these three cell lines, with GI_{50} values of 0.83, 1.7 and 9.2 μM, respectively. A 16-membered diene macrolide, bafilomycin M (6), has been obtained from Streptomyces sp. GI10-1, which has been isolated from the Theonella marine sponge species [14]. Compound 6 exhibits potent anticancer activity toward HL-60, SUPT-1, K-562 and LNCAp cells, with IC_{50} values of 11, 47, 60 and 389 ng/mL, respectively. The cytotoxic bafilomycin analogs bafilomics N (7) and O (8) have been obtained from Streptomyces sp. GI10-1 [15]. Compound 7 is cytotoxic to LNCAp, SUP-T1, MOLT-4 and K562 cells, with IC_{50} values of 3.9, 6.0, 0.01 and 31.8 nM, respectively, and compound 8 is active toward the same cancer cell lines, with IC_{50} values of 118.6, 64.4, 389.6 and 54.2 nM, respectively. The new compound lobophorin K (9) has been separated from the culture of Streptomyces sp. M-207 isolated from the cold-water coral Lophelia pertusa [16]. Compound 9 exhibits cytotoxicity toward THLE-2, MCF-7 and MiaPaca-2, with IC_{50} values of 6.3 ± 8.2, 23.0 ± 8.9 and 34.0 ± 85.1 μM, respectively. A new spirotetronate lobophorin F (10) has been isolated from Streptomyces sp. SCIO 01127 and shown activity toward the SF-268, MCF-7 and NCI-H460 cell lines, with IC_{50} values of 6.82, 2.93 and 3.16 μM, respectively [17].

The new αβ-pyrene derivatives violapyrones H (11) and I (12) have been obtained from Streptomyces sp. isolated from the crown-of-thorns starfish, Acanthaster planci [18]. Compounds 11 and 12 are cytotoxic toward HCT-15, HCT-116, MDA-MB-231, NCI-H23, NCI-H460, NUGC-3, Hep-G2 and PC-3 cells, with IC_{50} values in the range of 1.10 to 25.05 μM. Nocardiosis sp. NHF48 has been found to produce a new αβ-pyrene compound (13) exhibiting cytotoxic activity toward the melanoma cell line B16, with a GI_{50} value of 61.7 μg/mL [19]. From Streptomyces sp. HKI0576, ansa-macrolides divergolides A–D (14–17) have been obtained [20]. Compound (17) displays cytotoxicity toward lung cancer (LXFA 629L), pancreatic cancer (PANC-1), renal cancer (RKF 486L) and sarcoma (Saos-2) cells, with IC_{50} values in the range of 1.0 to 2.0 μM. Aureoverticillactam (18), a 22-atom macrocyclic lactam incorporating both triene and tetrane conjugated olefins, has been obtained from Streptomyces aureoverticillatus NPS001583, and has shown cytotoxicity toward HT-29, B16-F10 and Jurkat cells, with EC_{50} values of 3.6, 2.2 and 2.3 μM, respectively [21]. Two new 16-membered macrolides, 21,22-en-bafilomycin D (19) and 21,22-en-9-hydroxybafilomycin D (20), have been purified from the seaweed-derived Streptomyces sp. HZP-2216E [22]. Compound 19 displays cytotoxicity toward U251 and C6 glioma cell lines, with IC_{50} values of 1.08 and 0.21 μM, respectively, and compound 20 is toxic toward the same cell lines, with IC_{50} values of 0.36 and 0.12 μM, respectively. A 42-membered macrolide, desertomycin G (21), has been obtained from cultures of the marine actinomycete Streptomyces altithiopticus MSM3 isolated from samples of Ulva sp. intertidal seaweed collected in the Cantabrian Sea (Northeast Atlantic Ocean) [23]. Bioevaluation results have indicated that, at day 3, DLD-1 and MCF-7 cancer cell lines show a decrease in viability to approximately 50% that of controls after treatment with 2.5 and 5.0 μM desertomycin G (21). From a mangrove actinomycete strain, Streptomyces sp. 219807, which produces a high yield (4,486 mg/L) of elaiophylins, has been isolated [24]. A new elaiophyllin derivative, halichoblelide D (22), has been obtained and identified from 219807 [24]. Compound 22 exhibits cytotoxic activity toward MCF-7 and HeLa cells, with IC_{50} values of 0.33 and 0.30 μM, respectively.

Compound 23 is composed of four partial structures: cyclopenta[a]indene, 3′-chloro-5′-hydroxy-β-tyrosine, benzoxazine and amino sugar. Compound
Figure 1 | Structures of compounds 1–27.
23 shows cytotoxicity toward MDA-MB231, HCT-116, A549, SNU638, K562 and SK-HEP1, with IC50 values of 0.9, 2.7, 14.7, 9.8, 25.1 and 7.9 μM, respectively [25]. Compound 23 shows cytotoxicity toward MCF-7, with an IC50 of 27.0 μg/mL. Four new nonacyclic dilactones, antimycins E–H (24–27), have been obtained from Streptomyces sp. TH5-55 [26]. Compounds 24–27 each contain a N-[3-(acetylamino)-2-hydroxybenzoyl] moiety. Compounds 24–26 are cytotoxic to Sih, K562, HL-60 and 293T cancer cell lines, with IC50 values of 0.8–13.8 μM. Two new benzamido nonacyclic dilactones, neoantimycins A (28) and B (29), have been obtained from Streptomyces antibioticus H12-15 (Figure 2) [27]. The actinomycete strain S. antibioticus H12-15 has been isolated from a sea sediment in a mangrove district. Compounds 28 and 29 exhibit anticancer activity toward SF-268 cells, with IC50 values of 68.7 and 87.6 μM, respectively. Three new 4H-chromen-4-one polyketides, phaeochromycins F–H (30–32), have been separated from Streptomyces sp. D5S-18, a strain isolated from a deep-sea sediment collected from the western Pacific [28]. Compounds 30–32 are active toward HeLa cells, with inhibition rates of 9.4%, 1.0% and 46.0% at 10 μM, respectively.

Tartrolon D (33), a cytotoxic macrolide with two hemiketal rings, has been separated from Streptomyces sp. MDG-04-17-06 isolated by spreading a marine sediment collected near the east coast of Madagascar on 1728 modified agar medium plates supplemented with nalidixic acid (1%) [29]. Compound 33 has cytotoxic activity toward A549, HT29 and MDA-MB-231 cells, with GI50 values of 0.16, 0.31 and 0.79 μM, respectively. Two new macrocyclic lactones, azolomycin F4a 2-ethylpentyl ester (34) and azolomycin F5 2-ethylpentyl ester (35), have been separated from a culture of Streptomyces sp. 211726 isolated from a mangrove rhizosphere soil sample [30]. Compounds 34 and 35 are cytotoxic toward HCT-116 cells, with IC50 values of 5.64 μg/mL and 2.58 μg/mL, respectively. Seven new azolomyacin F analogs (36–42) have been obtained from Streptomyces sp. 211726 [31]. These macrolides (36–42) display inhibitory activity toward HCT-116 cells, with IC50 values ranging from 1.81 to 5.00 μg/mL.

Six new polycyclic tetramate macrolactams, pactamides A–F (43–48), have been purified from the marine-derived strain Streptomyces pactum SC51002999, and have shown cytotoxicity toward four cancer cell lines (MCF-7, SF-268, Hep-G2 and NCI-H460), with IC50 values ranging from 0.24 to 25.47 μM [32].

Two new macrolides, pulvovalycin B (49) and pulvovalycin D (50), have been discovered from an estuarine Streptomyces strain [33]. Compound 49 displays cytotoxic activity toward HT116, SNU638, SK-Hep-1 and MDA-MB-231 cells, with IC50 values in the range of 3.7–25 μM, whereas compound 50, which bears a 1,2-diketone functional group, strongly inhibits the same cancer cell lines, with IC50 values ranging from 0.21 to 0.40 μM. A new curvularin glycoside, curvularin-7-O-α-D-glucopyranoside (51), has been isolated from Pseudonocardia sp. H57 obtained from the cloacal aperture of the sea cucumber Holothuria moebii [34]. Compound 51 displays inhibitory activity against six cancer cell lines (HCT-15, C6, U251, SHG-44, U87-MG and SW620), with IC50 values in the range of 20.84 to 81.01 μM. Three new polyene macrolactams, kenalactams C–E (52–54), have been separated from Nocardiosis CG3 (DSM 106572) isolated from the siltpan of Kenada [35]. Compounds 52 and 53 show cytotoxicity toward L929, KB3.1, MCF-7, PC-3, A549 and SKOV-3 cells, with IC50 values ranging from 5.4 to 42.2 μM. Compound 54 is also active toward KB3.1, PC-3, SKOV-3 and A549 cells, with IC50 values ranging from 2.1 to 6.5 μM. Cultivation of Micromonospora sp. FIM05328 has yielded the macrolactam FW05328-1 (55) [36].

Compound 55 inhibits the KYSE30 and KYSE180 tumor cell lines, with IC50 values of 15.92 and 30.77 μM, respectively. Interestingly, compound 55 strongly inhibits the esophageal cancer EC109 cell line, with an IC50 value of 0.2 nM. The Micromonospora strain FIM07-0019 has yielded a new 20-membered macrolide, levantilide C (56) [37]. The strain FIM07-0019 has been recovered from shallow coastal water near the island of Chiloé, Chile. Compound 56 displays inhibitory activity toward HL-60, MDA-MB-231, SW620 and SMMC7721 cells, with IC50 values of 32.5, 26.8, 16.4 and 39.9 μM, respectively.

A polycyclic tetramate macrolactam, 16-hydroxymatophilin (57), isolated from Actinoalloteichus cyanogriseus WH1-2216-6, shows cytotoxicity toward BXPC-3, HCT-116, Jurkat, PAN-C1, A549, MCF-7 and L-02 cell lines, with IC50 values of 4.5, 5.7, 7.5, 7.9, 9.5, 9.7 and 235.9 μM, respectively [38].

2.1.2 Benzoquinones, naphthoquinones, anthraquinones and other aromatic compounds. One anthracycline, tetracenoquinocin (58), has been separated from a culture of Streptomyces sp. Sp080513GE-26 associated with a Haliclonia sp. marine sponge [39]. Compound 58 is cytotoxic toward HeLa and HL-60 cells, with IC50 values of 120 and 210 μM, respectively. The new salicylamide derivative JBIR-58 (59) has been obtained from Streptomyces sp. Spd081030ME-02 isolated from a demosponge class of marine sponge [40]. Compound 59 displays inhibitory activity toward HeLa cells, with an IC50 value of 28 μM. Streptomyces sp. HB202 has been found to produce the new benz[a]anthracene derivative mayamycin (60), which displays cytotoxicity toward HepG2, MAXF401NL, MEXF462NL, HT-29, GIX251L, LFX529L, PAXF1657L and RXF486L cells, with IC50 values ranging from 0.13 to 0.33 μM [41]. Streptomyces sp. BCC45596 has yielded three new C-glycosylated benz[a]anthraquinone derivatives: urdamycinone E (61), urdamycinone G (62) and dehydroxyaquayamycin (63) [42]. Compounds 61 and 62 display inhibitory activity toward KB, MCF-7 and NCI-H187 cancer cell lines, with IC50 values ranging from 0.092 to
Figure 2 | Structures of compounds 28-65.
0.45 μg/mL, whereas compounds 63 is much less active toward these three cancer cell lines, with IC50 values of 6.96, 3.41 and 3.97 μg/mL, respectively. All three compounds (61–63) are less toxic toward non-cancerous (Vero) cells than cancer cells, with IC50 values of 1.71, 3.05 and 10.07 μg/mL, respectively. Three angucycline derivatives, monacycline C (64), monacycline E (65) and monacycline F (66; Figure 3), have been purified from *Streptomyces* sp. M7_15 associated with the sponge *Scopalaria ruetzleri*, which displays inhibitory activity toward SJCRH30 cells, with IC50 values of 160, 270 and 0.73 μM, respectively [43]. The potent anticancer activity of compound 66 might be due to the two unique epoxide rings attached to the angucycline moiety. The chlorinated streptorhodinates A (67) and B (68) have been separated from the oligotrophic culture of a soft coral-associated actinomycete strain, *Streptomyces* sp. OUCMDZ-1703, and have shown cytotoxicity toward MCF-7 cells, with IC50 values of 9.9 and 20.2 μM, respectively [44]. Naquihexcin A (69), an 5-bridged pyranonaphthoquinone dimer bearing an unsaturated hexuronic acid moiety, has been obtained from the sponge-derived *Streptomyces* sp. HDN-10-293 [45]. Compound 69 is cytotoxic toward MCF-7 ADM, with an IC50 value of 16.1 μM. A coral-derived strain, *Streptomyces* sp. RKBB87, produces a new meroterpenoid with a sesterterpene skeleton, guanahanolide A (70), with cytotoxicity toward MCF-7, NCI-60, HCT-116, HTB-26 and Vero cells, with IC50 values of 7.8, 10.0, 11.9, 10.1, 23.7 μM, respectively [46]. *Streptomyces* sp. ZZ406 has yielded l-hydroxymethyl-8-hydroxy-angucycline-3-carboxylic acid (71) and a 2-methylchromone derivative, phaeochromycin I (72) [47]. Compound 71 displays inhibitory activity toward the glioma cells U251, U87MG and SHG, with IC50 values of 5.7, 4.7 and 8.1 μM, respectively, whereas compound 72 is less active toward U251, U87MG and SHG glioma cells, with IC50 values of 21.6, 25.7 and 25.8 μM, respectively. *Streptomyces* sp. CANU Fox 21-2-6a, isolated from the outer layer of driftwood material collected at the mouth of the Fox River on the West Coast of New Zealand, has yielded four new anthracycline derivatives: (7S*9R*10R*)-pyrroymycin (73), (7R*9R*10R*)-pyrroymycin (74), 1-hydroxyauramycin T (75), and 1-hydroxysulfurmycin T (76) [48]. Compounds 73–76 are cytotoxic toward the P388 tumor cell line, with IC50 values in the range of 0.04–0.6 μg/mL. A new anthracine, 1,8-dihydroxy-2-ethyl-3-methylantrachainone (77), has been separated from a fermentation of *Streptomyces* sp. FX58-1 isolated from the marine plant *Salicornia herbacea* collected in Qingdao, Shandong province, China [49]. Compound 77 is cytotoxic toward HL-60, BCTC-823 and MDA-MB-435 cells, with IC50 values of 6.83, 82.2 and 56.59 μg/mL, respectively. A culture of *Streptomyces* sp. B8652 has been found to produce parimycin (78) [50]. The strain B8652 has been isolated from a sediment of the Laguna de Terminos at the Gulf of Mexico. Compound 78 is cytotoxic toward LXFA629L, LXFL529L, MCF-7, MAXF401NL, MEXF462NL and MEXF 514L cells, with IC50 values in the range of 0.9–6.7 μg/mL. Fermentation of *Streptomyces* sp. M045 derived from a sediment collected at Jiaozhou Bay in China has led to the identification of chinikomycins A (79) and B (80) [51]. Compound 79 is a hydroquinone derivative, whereas compound 80 is a 1,4-benzoquinone analog, which might be oxidized from 79. Compound 79 is cytotoxic toward MAXF 401NL, MEXF 462NL and RXF 944L cells, with IC50 values of 2.41, 4.15 and 4.02 μg/mL, respectively, and compound 80 is active toward MAXF 401NL cells, with an IC50 value of 3.04 μg/mL. Two anthraquinones of the angucycline class, marmycins A (81) and B (82), have been obtained from *Streptomyces* sp. CNH990 [52]. Compound 81 is a monochloro derivative of compound 82. Compounds 81 and 82 show cytotoxicity toward HCT-116 cells, with IC50 values of 60.5 nM and 1.09 μM, respectively. Compound 81 shows cytotoxicity toward 12 human tumor cell lines (lung, colon, breast, prostate or leukemia) after 72 h drug exposure, with IC50 values ranging from 7 to 58 nM, but compound 82 shows cytotoxicity toward the above 12 human tumor cell lines, with IC50 values ranging from 1.0 to 4.4 μM. The results contrast with general observations that chlorination usually markedly enhances the pharmacological activity of compounds [53]. Three new anthramycin-type analogues, usabamycins A–C (83–85), have been purified from *Streptomyces* sp. NPS853, a bacterial strain found in a marine sediment [53]. Compounds 83–85 are pyrrolo[1,4]benzodiazepine derivatives that display weak inhibitory activity toward HeLa cells, with IC50 values of 106.6, 103.5 and 101.9 μM, respectively. A new anthrancene derivative, 3-hydroxy-1-oxo-3-methyl-8-methoxy-1,2,3,4-tetrahydro-benz[a]anthracene (86), has been isolated from the fermentation broth of *Streptomyces* sp. W007 [54]. In cytotoxicity tests, compound 86 shows no cytotoxicity toward the human leukaemic cell line HL-60 and weaker cytotoxicity toward the human hepatoma cell line BEL-7402 than adriamycin, but potent inhibitory activity toward the human lung adenocarcinoma cell line A549, with a rate of inhibition at 1 μM of 61.8%. Four angucycline C-glycosides, grincamycins B–E (87–90), have been isolated from *Streptomyces lusitanus* SCSIO LR32, an actinomycete of deep-sea origin [55]. The disaccharide moiety in compound 89 forms a 1,4-dioxane ring through 3-2' and 4-1' linkages. Compounds 87–90 show cytotoxicity toward MCF-7, Hela, HepG2, B16, NCI-H460 and SW-1990 cells, with IC50 values in the range of 2.1 to 31 μM. *Streptomyces* sp. SNE-011 has yielded the alylamine derivatives carptamides A (91) and C (92) [56]. Strain SNE-011 has been isolated from a marine sediment sample collected from South Carolina. Compound 91 exhibits inhibitory activity toward HCC366, A549 and HCC44 cells, with IC50 values of 2.8, 4.1 and 8.4 μM, respectively, and compound 92 inhibits HCC366 and A549 cells, with IC50 values of 2.2 and 3.7
Figure 3 | Structures of compounds 66–107.
μM, respectively. The compound (2S,3R)-L-threonine, N-[3-(formylamino)-2-hydroxybenzoyl]-ethyl ester (streptomyceamide C, 93) has been isolated from EtOH extract of the fermented mycelium of the marine-derived streptomycete strain H74-21 isolated from a sea sediment in a mangrove site [57]. Compound 93 shows cytotoxicity toward MCF-7, with an IC50 of 27.0 μg/mL. Deep-sea sediment-derived Streptomyces sp. SCSSIO 11594 has yielded an angucycline C-glycoside, marangucycline B (94), which displays cytotoxic activity toward A549, CNE2, MCF-7, HepG2 and HL7702 cells, with IC50 values of 0.45, 0.56, 0.24, 0.43 and 3.67 μM, respectively [58]. Compound 94, with a keto-sugar moiety and a 1,4-dioxane ring between sugars, is approximately 10–20-fold more potent than cisplatin. Elmonin (95) and elmenol B (96) have been separated from Streptomyces sp. IFM11490 and shown cytotoxicity toward the human gastric adenocarcinoma (AGS) cell line, with almost equal IC50 values of approximately 50.0 μM [59]. Cultivation of Streptomyces sp. 1825MLY has afforded two polycyclic anthraquinones, N-acetyl-N-demethylmayamycin (97) and streptaanthraquinone A (98) [60]. Compounds 97 and 98 display inhibitory activity toward C6, U251, U87-MG and SHG-44c cells, with IC50 values of 0.57/3, 0.7/3.3, 1.4/4.6 and 3.9/6.5 μM, respectively. The cell viability of normal human astrocytes from each tested concentration of both compounds 97 and 98 is 100%, and both compounds have IC50 values of 25 and 100 μM, respectively. Diazaquinomycin E (99) has been obtained from Streptomyces sp. F001 and has been found to display cytotoxicity toward OVCAR5, with an IC50 value of 9.0 μM [61]. A study of the Streptomyces griseus strain M268 has led to the identification of a unique cage-like compound, griseumycin (100), which is cytotoxic toward HL-60, with an IC50 value of 31.54 μM [62]. A novel dimeric diazobenzofluorene glycolide, lomavimicin A (101), has been obtained from a halophilic strain, Micromonaspora lomavitensiss LL-371366 [63]. Compound 101 is a dimeric benzofluorene glycolide attached to two diazo functional groups at C-5 and -5’, which shows potent cytotoxic activity toward several cancer cell lines, with IC50 values in the range of 0.01 to 98 ng/mL. The compounds (9R,14S)-epoxy-11-deoxyxifunicone (102) and (9S,14R)-epoxy-11-deoxyxifunicone (103) have been obtained from co-cultivation of Streptomyces fradiae 007 and Penicillium sp. WC-29-5 [64]. A racemic mixture of enantiomers 102 and 103 has been separated with chiral chromatography. Compound 102 inhibits H1975 cells, with an IC50 value of 3.97 μM, and compound 103 inhibits HL-60 and H1975 cells, with IC50 values of 3.73 and 5.73 μM, respectively. Deep-sea-derived Streptomyces lusitanus SCSSIO LR32 has been found to produce a new angucycline glycoside, designated grincamycin H (104), which is cytotoxic toward Jurkat T cells, with an IC50 value of 3.0 μM [65]. Two new angucycline glycosides, grincamycin I (105) and grincamycin J (106), are produced by marine-derived Streptomyces lusitanus SCSSIO LR32 [66]. Compound 105 displays inhibitory activity toward MDA-MB-435, MDA-MB-231, NCI-H460, HCT-116, HepG2, and MCF10A cells, with IC50 values of 10.20, 25.87, 11.87, 8.79, 9.41 and 2.90 μM, respectively, and compound 106 is active toward the same cancer cell lines, with IC50 values of 2.63, 4.68, 5.40, 2.63, 4.80 and 2.43 μM, respectively. A culture of Streptomyces sp. XMA39 has afforded two medermycin-type naphthoquinones, strepoxepinmycin C (107) and D (108); Figure 4), which show cytotoxic activity toward HCT116 cells, with IC50 values of 4.4 ± 0.1 and 2.9 ± 0.1 μM, respectively [67]. Lagumycin B (109) has been discovered from Micromonaspora sp. G039 [68]. Strain G039 has been isolated from a sediment sample collected by PONAR at a depth of 22 m, approximately 3.3 miles off the coast southeast of Cát Bà Peninsula in Vietnam. Compound 109 is cytotoxic to non-cancerous murine ovarian surface epithelial and murine oviductal epithelial cell lines, with IC50 values of 9.80 μM and 10.8 μM, respectively. Investigation of a bacterial strain from the South China Sea, Micromonaspora echinospora SCSSIO 04089, has led to the discovery of homophanathroviridone (110), homophanathridonamide (111) and nenesophanol (112) [69]. Compound 110 shows cytotoxicity toward the SF-268, MCF-7 and HepG2 cell lines, with IC50 values of 5.4 ± 0.4, 6.8 ± 0.3 and 1.4 ± 0.1 μM, respectively. Compound 111 is also active toward SF-268, MCF-7 and HepG2 cell lines, with IC50 values of 7.6 ± 0.9, 10.4 ± 0.5 and 8.1 ± 0.4 μM, respectively. Saccharothrix sp. 10-10 has yielded a new tetacenomycin analogue, saccharothrixone D (113), which exhibits cytotoxicity toward HepG2 cells, with an IC50 value of 7.5 μM [70]. Akazamicin (114), a new aromatic polyketide, has been obtained from the liquid culture of Nonomuraea sp. AKA32 was isolated from deep-sea water collected from a depth of 800 m in Sagami Bay, Japan, and compound 114 shows cytotoxicity toward murine B16 melanoma, Hep G2 and Caco-2 cells, with IC50 values of 1.7, 75 and 185 μM, respectively [71].

2.1.3 Decalin derivatives. Nahuic acid A (115) has been obtained from Streptomyces sp. RJA2928 and found to inhibit SETD8 activity, with an IC50 value of 6.5 μM [72]. Nahuic acids B–E (116–119) have been purified from the same strain, and 116–119 have been found to inhibit SETD8 activity with IC50 values of 27, 41, 76 and 13 μM, respectively [73]. The compound (1α,4α,5c,7β,8β)-5,8a-dimethyl-decahydro-pha-thalene-1,4a,7-triol (120) has been isolated from Streptomyces sp. 0616208 and has shown moderate inhibitory effects toward SMMC-7721 cells [74].

2.1.4 Polyenes. Piericidins C7 (121) and C8 (122) have been obtained from the culture of Streptomyces sp. YM14-060 isolated from unidentified greenish ascidians
Figure 4 | Structures of compounds 108–148.
collected at Iwayama Bay, Palau [75]. Compounds 121 and 122 show cytotoxicity toward RG-E1A-7 and Neuro-2a cells, with IC50 values of 1.5 and 0.83, and 0.21 and 0.45 nM, respectively. A new nitro-tetraene spiro-β-lactone-γ-γ-lactam, lajollamycin (123), has been isolated from Streptomyces nodosus (NPS007994) [76]. The strain NPS007994 has been isolated from a marine sediment sample collected at Scripps Canyons, La Jolla, California. Compound 123 exhibits cytotoxic activity toward the B16-F10 cell line, with an EC50 value of 9.6 μM. Piericidin F (124) has been isolated from the fermentation broth of Streptomyces sp. CHQ-64 and has shown cytotoxicity toward HeLa, NB4, H1975 and A549 cell lines, with IC50 values of 3, 37, 490 and 560 nM, respectively [77].

Four new pyrones, PM050514 (125), PM050463 (126), PM060054 (127) and PM060431 (128), have been isolated and identified from Streptomyces albus (Por-04-15-053. Compounds 125 and 128 show strong inhibition against MDA-MB-231, HT-29 and A549 cells, with IC50 values ranging from 0.24–0.69 μM [78]. Glucopiericidin C (129) has been isolated from an extract of a cultured Streptomyces sp. B8112 and found to display a concentration-dependent cytotoxicity toward a panel of 36 human tumor cell lines, with a mean IC50 of 2.0 μM (mean IC50 1.6 μM). [79]. Pterocidin (130) has been isolated and identified from Streptomyces sp. TP-A0879 isolated from a sediment sample collected at a depth of 44.5 m in Ottsu Bay, Iwate, Japan by using the Smith–McIntyre isolation method [80]. Compound 130 exhibits cytotoxic activity toward 26-L5 cells, with an IC50 value of 0.25 μM. Succinilenne A (131) has been identified from Streptomyces strain SAK1 collected in the southern area of Jeju Island, Republic of Korea [81]. Compound 131 shows cytotoxicity toward SNU638 cells, with an IC50 value of 12.1 μg/mL (27.6 μM). The compound (2E,4Z,6E,8Z)-5,9-dimethyl-10-oxodec-2,4,6,8-tetraenoic acid (132), a polyunsaturated acid, has been obtained from the liquid culture of Streptomyces violans HTTA-F0412 and has shown cytotoxicity toward A2780 cells, with an IC50 value of 4.36 μM [82]. Separacene A (133) has been isolated from Streptomyces sp. SNU210 and found to display weak inhibitory activity toward HCT116 and A549 cells, with IC50 values of 14.0 μg/mL and 37.6 μg/mL, respectively [83].

2.1.5 Other polyketides. Daryamides A (134), B (135) and C (136), and (2E,4E)-7-methylocta-2,4-dienoic acid amide (137) have been discovered from Streptomyces sp. CNQ-085; these compounds exhibit cytotoxicity toward HCT116 cells, with IC50 values of 3.15, 9.99, 10.03 and 21.69 μg/mL, respectively [84]. Streptomyces sp. NPS-643 has yielded the tricyclic polypropionate indoxamycin A (138) and indoxamycin F (139), which exhibit cytotoxicity toward human colon adenocarcinoma HT-29 cells, with IC50 values of 0.59 and 0.31 μM, respectively [85]. Cyclizidines C (140) and D (141), each with a cyclopropane ring, have been isolated from Streptomyces sp. HNA39. Compound 140 shows cytotoxicity toward PC3, HCT116 and ROCK2 cells, with IC50 values of 0.52 ± 0.03, 8.3 ± 0.1 and 7.0 ± 0.8 μM, respectively. Compound 141 is much less active toward PC3 and HCT116 cells, with IC50 values of 33± 1 and 40 ± 1 μM, respectively [86].

A new hydroxamate derivative, MBJ-0003 (142), has been isolated from Micromonospora sp. 29867 and has shown cytotoxic activity toward the SKOV-3 cell line, with an IC50 value of 11 μM [87]. Paulomycin G (143) has been discovered from Micromonospora matsumotoensense M-412 isolated from Cantabrian Sea sediments collected at 2,000 m depth; this compound exhibits cytotoxicity toward pancreatic adenocarcinoma (MiaPaca2), MCF-7 and HepG2 cells, with IC50 values of 2.70, 1.58 and 4.30 μM, respectively [88]. An extract of Verrucosipora sp. SCSIO 07399 has yielded three new kendomycin analogues, kendomycins B–D (144–146) [89]. Compounds 144–146 are macrocyclic polyketides, each containing a benzofuran-(6(2H)-one connected to a tetrahydropyran moiety at C-4 of benzofuran-(6(2H)-one). One compound 144–146 shows cytotoxicity toward MGC803, A549, HeLa, HepG2, MCF-7 and KRO cells, with IC50 values ranging from 2.2 to 44 μM.

Among these 146 polyketides (1–146), compounds 3 [12], 6–8 [14], 55 [38], 73–76 [49], 81 [53], 101 [63], 121 and 122 [75], and 124 [77] show substantial cytotoxicity, with IC50 values at the ng/mL (or nM) level. Compounds 1, 2, 9, 10, 93, 101, 123, 140, 141 and 144–146 are structurally interesting. Notably, compound 101 is not only structurally unique but also cytotoxically potent. The structure of compound 101 is complex, and this molecule shows promise in anticancer drug development.

2.2 Non-ribosomal peptides and hybrids of polyketides and peptides

Streptomyces sp. LS298, obtained from the marine sponge Geilliodes carnosa, has produced a new analogue of echinomycin, quinomycin G (147), an octapeptide (Val-Cys-Ala-Ser-Val-Cys-Ala-Ser) cyclized between cysteine moieties with two quinoxalines attached to serine moieties [90]. Compound 147 shows cytotoxicity toward ACHN, 786-O, U87 MG, Jurkat, SW1990, HepG2, MDA-MB-231 and A549 cells, with IC50 values of 5.52, 0.721, 0.827, 0.414, 2.56, 4.75, 5.17, 8.16 and 3.90 μM, respectively [91]. Streptomyces sp. SB7348 from the Mediterranean sponge Petrosia fici-formis has yielded a new cyclic dipeptide (hypogallate-Orn-Leu), petrocidin A (148), which exhibits cytotoxicity toward HT-29 and HL-60 cells, with IC50 values of 5.3 and 3.9 μg/mL, respectively [91]. Streptomyces sp. SNJ013 isolated from a deep-sea sediment collected off Jeju Island, Korea, has produced a new lasso peptide, sungsanpin [149, Figure 5] [92]. Compound 149 contains 15 amino acid units, composed of an eight-amino-acid macrocyclic ring (8-8-Gly-Phe-Gly-Ser-Lys-Pro-Ile-Aspβ9) and a seven-amino-acid chain (88-Ser-Phe-Gly-Leu-Ser-Trp-Leu15). Compound 149 displays inhibitory activity in cell invasion assays toward the human lung cancer cell line A549. The cyclic peptides omhyungasamycins A
(150) and B (151) have been found to be produced by Streptomyces sp. SNJ042 isolated from Shinyang Beach on Jeju Island [93]. Compounds 150 and 151 each contain 12 amino acid units with 10 amino acids in the ring (10-11Val-Phe-Val-Trp-Val-Leu-Val-Thr-Thr) and two on the side chain (11Val-Val). Compound 150 exhibits cytotoxic effects against HCT116, A549, SNU-638, MDAMB-231 and SKHEP-1 cells, with IC\textsubscript{50} values of...
G2 cell lines, with IC50 values of 1.73 ± 0.9, 6.44 ± 0.6 μM, respectively. A new cyclic lipopeptide, iturin A6 (M, respectively. A new cyclic hexapeptide, nocardiotide A (154), has been isolated from Streptomyces sp. SSA 13 isolated from the Arabian Sea [95]. Compound 154 is a cyclic lipopeptide containing a C16-β-amino fatty acid chain attached to a hydrophilic heptapeptide ((fatty acid)CO-Asn-Tyr-Asn-Gln-Pro-Asn-Ser-NH(amide) of seven α-amino acids. Compound 154 displays cytotoxicity toward HeLa, MCF-7 and Hep-G2 cell lines, with IC50 values of 1.73 ± 0.9, 6.44 ± 0.6 and 8.9 ± 1.09 μg/mL, respectively. Three new 2,5-diketopiperazines, 3-(3-hydroxy-4-methoxybenzyl)-6-isobutyl-2,5-diketopiperazine (155), 3-(1,3-benzodioxol-5-yl-methyl)-6-isobutyl-2,5-diketopiperazine (156) and 3-(1,3-benzodioxol-5-ylmethyl)-6-isopropyl-2,5-diketopiperazine (157), have been obtained from Streptomyces sp. MNU FJ-36 [96]. All three new compounds, 155–157, exhibit cytotoxic activity toward A-549 cells, with IC50 values of 89.4, 35.4 and 28.4 μg/mL, respectively. Compounds 156 and 157 inhibit the growth of HCT116 cells, with IC50 values of 75.4 and 45.4 μg/mL, respectively. The compounds (S)-6-(sec-butyl)-3-isopropylpyrazin-2(1H)-one (158) and (S)-6-(sec-butyl)-3-isobutylpyrazin-2(1H)-one (159) have been discovered from a tunicate-derived strain, Streptomyces sp. Did-27, and found to exhibit cytotoxicity toward HCT-166 cells with the same IC50 value of 30 μg/mL [97]. Compounds 158 and 159 show inhibitory effects toward MCF-7 cells, with IC50 values of 25 and 35 μg/mL, respectively. A new cyclic hexapeptide, nocardiotide A (160), has been isolated from the culture broth of Nocardiopsis sp. UR67 associated with the marine sponge Callyspongia sp. from the Red Sea [98]. However, the configuration of the amino acids in 160 has not been determined. Compound 160 inhibits the growth of human Hepa liver carcinoma, murine CT26 colon carcinoma and human MM.15 multiple myeloma cell lines, with IC50 values of 11, 12 and 8 μg/mL, respectively. Investigation of Nocardiopsis luenctensis CNR-712 has led to the discovery of two new 3-methyl-4-ethylideneproline-containing (Leu/Trp-Pro-HomoArg) tripeptides, lucentamycins A and B (161 and 162), which show cytotoxicity toward the HCT-116 cell line, with IC50 values of 0.20 and 11 μM, respectively [99]. Two tyrosine-derived diketopiperazines, nocazines F (163) and G (164), have also been obtained by culture of Nocardiopsis sp. YIM M13066 [100]. Compound 163 is cytotoxic to H1299, HeLa, HL7702, MCF-7, PC3 and U251 cells, with IC50 values of 3.87, 4.47, 7.10, 3.86, 8.17 and 22.5 μM, respectively, and compound 164 shows cytotoxicity toward H1299, HeLa, HL7702, MCF-7 and PC3 cells, with IC50 values of 2.60, 3.97, 8.73, 6.67 and 16.7 μM, respectively. Two new peptatibols, microbactin A (165) and B (166), have been obtained from Microbacterium sediminis sp. nov. YLB-01(T) [101]. Compound 165 is toxic toward HCT-8, Bel-7402, BGC-823, A549 and A2780 cells, with IC50 values of >10, 1.98, 2.11, 2.30 and >30 μM, respectively. Compound 166 displays cytotoxicity toward the same cell lines, with IC50 values of 5.93, 1.94, 1.03, 2.08 and 3.79 μM, respectively. Streptomyces sp. CNQ-593, isolated from a sediment sample collected at a depth of approximately 20 m near the island of Guam, has yielded three hexadepsipeptides (AMDA-γOHpip-HAA-αMeserγOHpip-γCipip), piperazimycins A–C (167–169) [102]. Compounds 167–169 exhibit cytotoxicity toward HCT-116 cells, with the same GI50 value of 76 ng/mL. Compound 167 also displays significant cytotoxicity toward 60 tumor cell lines. One 15-membered depsipeptide, rakicidin D (170), has been isolated from Streptomyces sp. MWV064 from a marine sediment sample collected in Samut Sakhon province, Thailand [103]. Compound 170 contains an N-Me glycine moiety, a β-hydroxyasparagine moiety, 2,4-dimethyl-3-hydroxydecanoic acid moiety and γ-amino-2,4-pentadienoic moiety. However, the stereochemistry of compound 170 has not been investigated. Compound 170 shows cytotoxicity toward murine carcinoma colon 26-L5 cells, with an IC50 value of 6.7 μM. Two newly modified linear tetrapeptides, padanamides A (171) and B (172), have been isolated from Streptomyces sp. RJA2928 [104]. Compound 171 is composed of a 2-methoxyacetic acid (Maa), 3-hydroxyleucine (Hleu), piperazic acid (Pip), 4-amino-3-hydroxy-2-methyl-5-phenylpentanoic acid (Ahpmp) and 3-amino-2-oxypyrrolidine-1-carboxamide (Aopc) residue. Compound 172 is almost the same as 171 except for an Aopc in 172 instead of an Aopc in 171. Compounds 171 and 172 show weak antioxidant activity toward Jurkat T lymphocyte cells (ATCC TIB-152), with IC50 values of 60 and 20 μg/mL, respectively. A new thiodepsipeptide, verrucosamide (173), has been isolated from Verrucosispora sp. CNX-026 [105]. Compound 173 is a cyclic octapeptide ((cyclo-(Gly-Cys-Ala-Cys-Gly-Cys-Ala-Cys-Gly)) connected to two 3-hydroxyquininal acid moieties. Compound 173 shows activity toward MDA-MB-468 breast carcinoma and COLO 205 colon adenocarcinoma cells, with LD50 values of 1.26 and 1.4 μM. Compound 173 displays moderate cytotoxicity toward NCI 60.

Among these 27 non-ribosomal peptides and hydribs of polyketides and peptides (147–173), compounds 167–169 show potent cytotoxicity, with IC50 values at ng/mL (nM) levels. In the past few decades, scientists have been overcoming the well-known limitations of bioactive...
peptides as therapeutics. More peptides or peptide derivatives have been approved for clinical use. Hence, these three cyclic peptides (167–169), each with three piperezic acid units, are worthy of further investigation.

2.3 Isoprenoids, terpenoids, sterols and hybrids of isoprenoids and peptides (or polyketides)

A new sesquiterpene, 15-hydroxy-T-muurolol (174), produced by Streptomyces sp. M491, has been found to exhibit weak cytotoxic effects toward 37 human tumor cell lines, with a mean IC50 value of 6.7 μg/mL [106]. A new ergosterol, ananstrep C (175), has been isolated from Streptomyces anandii H41-59 and found to display cytotoxic activity toward SF-268, MCF-7 and NCI-H460 cells, with IC50 values of 13.0, 18.1 and 23.5 μg/mL, respectively [107]. The culture of Actinomadura sp. SBSm009 has afforded a 3-keto sterol compound, bendigole D (176), which shows cytotoxic activity toward L929 cells, with an IC50 value of 30 μM [108].

Streptomyces sp. NBRCl05896 has been found to produce a new teleocidin analog, JBI-R31 (177) [109]. Compound 177 is composed of a monoterpenoid moiety, N-methyl valine moiety and tryptophan moiety. Compound 177 displays cytotoxicity toward HeLa and ACC-MESO-1 cells, with IC50 values of 49 and 88 μM, respectively. Streptomyces sp. CHQ-64 has been found to produce drimentine I (178) [110]. Compound 178 is a hybrid of a sesquiterpenoid and a diketopiperazine (ValTrp), possessing a rare heptacyclic skeleton. Compound 178 shows cytotoxicity toward HeLa cells, with an IC50 value of 16.73 μM.[110]

Streptomyces sp. CNQ-027 has afforded a new mero-

2.4 Heterocyclic, (hetero)aromatic and other compounds

Two new 3,6-disubstituted indoles (196 and 197) have been obtained from Streptomyces sp. BL49-58-005 [117]. Compound 196 shows cytotoxicity toward the KS62 cell line, with a GI50 value of 8.46 μM. Compound 197 exhibits activity with GI50 values within the micromolar range against LN-caP, HMEC1, K-562, PANC1, LOVO and LOVO-DOX, and slightly higher values against other tumor cell lines, without any particular specificity. A 10H-phenoxyazaine derivative, strepoxazine A (198), has been identified from the solid culture of Streptomyces sp. SBT345 and found to exhibit cytotoxicity toward HL-60, with an IC50 of 8 μM [118]. Two pentacyclic indoloseriqui-

203

© 2022 The Authors. Creative Commons Attribution 4.0 International License

Acta Materia Medica 2022, Volume 1, Issue 4, p. 445-475

457
Figure 6 | Structures of compounds 183–242.
Compounds Streptomyces sp. CNQ-418, also produces marinopyrrole-fused indole alkaloids, spiroindimicins B–D (221–223) [130]. Strain SNA-020 has been isolated from a sediment sample collected at Sweetings Cay, Bahamas. Compound 226 displays cytotoxic activity toward Mia PaCa-2 cells, with an IC$_{50}$ value of 3.2 µM. Streptocarbazoles A and B (227 and 228) have been isolated from Streptomyces sp. FMA [134]. Compounds 227 and 228 are staurosporine analogs with differences at C-3–C-5 in the amino sugar moiety. Compound 227 shows cytotoxicity toward HL-60, A549, P388 and Hela cell lines, with IC$_{50}$ values of 1.4, 5.0, 18.9 and 34.5 µM, respectively. Compound 228 is active toward P388 and Hela cell lines, with IC$_{50}$ values of 12.8 and 22.5 µM. An aminophenoxazine alkaloid, maroxazinone (229), has been discovered from Streptomyces sp. Eg25, and shown activity against MCF-7, HEPG-2 and HCT-116 cells, with IC$_{50}$ values of 4.32, 2.90 and 8.51 µg/mL, respectively [135]. Streptomyces niveus SCSIO 3406 has produced two new geranylated phenazines, phenaziterpene A (230) and phenaziterpene B (231). [113] Compounds 230 and 231 are hybrids of a monoterpenoid and a phenazine moiety, probably derived from choricomic acid. Both 230 and 231 show cytotoxicity toward SF-268, MCF-7 and HEPG-2 cells, with IC$_{50}$ values ranging from 10.2 to 52.7 µM, and 230 is weakly active toward NCI-H460, with an IC$_{50}$ value of 68.9 µM. Streptomyces sp. CNS284 has afforded two phnazinones (232 and 233), which induce apoptosis in HL-60 cells [136]. Two new hexahydro-1H-pyrrolizine dimers, dibohemamines B and C (234 and 235), have been isolated from an extract of a cultured marine-derived Streptomyces spinoverrucosus SNB-032 [137]. Compounds 234 and 235 exhibit cytotoxic activity toward the A549 cell line, with IC$_{50}$ values of 0.140 and 0.145 µM, respectively. Compounds 234 and 235 also show inhibitory activity toward HCC1171 cells, with IC$_{50}$ values of 3.9 and 1.2 µM, respectively. In addition, compounds 234 and 235 inhibit HCC44 and HCC566 cells, respectively, with IC$_{50}$ values of 12.0 and 6.7 µM, respectively. An unique molecule composed of a pyrrolo[2,1-a]isoindole and a pyrrolizine moieties, chlorizidine A (236), has been isolated from Streptomyces sp. CNH-287.
and found to inhibit HCT-116 cells, with an IC50 value of 3.2–4.9 μg/mL [138]. Four new cyclic bipyridine glycosides, cyanogriseids E–H (237–240), have been isolated from Actinomalloteichus cyanogriseus WH1-2216-6 [139]. Compounds 237 and 240 show cytotoxicity toward K562 cells, with IC50 values of 6.0 and 0.8 μM, respectively. Compounds 238 and 239 inhibit A549, K562, HeLa, HCT116 and HL-60 cells, with IC50 values of 33.1/42.0, 13.6/23.6, 26.5/44.1, 0.8/3.6 and 3.1/2.0 μM, respectively. Saccharomonospora sp. UR66 co-culture [140]. Compound 241 is a brominated oxo-indole alkaloid connected to a 4-methoxy (hetero)aromatic and other (hetero)aromatic moieties.

3. CONCLUSION

From 1989 until the end of 2020, 254 new cytotoxic compounds have been obtained from marine actinomycetes. This review summarized the structures, strain sources, and cytotoxicity of these secondary metabolites (Table 1). Most of the compounds (206) were reported from 2010 to 2020 (Figure 8). The numbers of newly reported compounds have increased since 1989, peaked in the mid-2010s (2013–2017) and decreased in the following years. However, we expect the numbers to increase after the COVID-19 pandemic ends. Of these 254 compounds, most are moderately active, but approximately 20 compounds show potent cytotoxicity with IC50 values at the ng/mL/nM level (see the Prospects section). The articles reporting these compounds have been published in 30 different journals, and the “Journal of Natural Products” (72) published more articles than any other single journal, followed by “Marine Drugs” (36), “Organic Letters” (27), the Journal of Antibiotics” (21), and the “Journal of Organic Chemistry” (18; Figure 9). Interestingly, beyond these prominent natural-product journals, “Phytochemistry” published seven articles, although it is a peer-reviewed scientific journal covering pure and applied plant chemistry, plant biochemistry and molecular biology. This review classified the compounds into four classes: polyketides; non-ribosomal peptides, and hybrids of polyketides and peptides; isoprenoids, terpenoids, steroids, and hybrids of isoprenoids and peptides (or polyketides); and heterocyclic, (hetero) aromatic and other compounds. These cytotoxic compounds have diverse chemical structures, and most are polyketides (146) making up 58% of the 254 new antitumor compounds (Figure 10). Among these 146 polyketides, most are categorized as either macrolides (lactones), lactams and α/γ-pyrones (57), or benzoquinones, naphthoquinones, anthraquinones and other aromatic compounds (57), which together accounted for 45% of the total 254 compounds.

Figure 7 | Structures of compounds 243–254.
Compound	Producing strain	Strain source	Architectural feature	References
1-2	*Streptomyces carnosus* AZS17	Coastal waters of the East China Sea	Polyketides	[11]
3	*Streptomyces* sp. PG-19	Surface of the Sea of Cortez gorgonian octocoral *Pacifigorgia* sp.	Polyketides	[12]
4-5	*Streptomyces caniferus* GUA-06-05-006A	Marine-derived culture broth	Polyketides	[13]
6	*Streptomyces* sp. GIC10-1	Marine sponge collected off the coast of Kenting, Taiwan	Polyketides	[14]
7-8	*Streptomyces* sp. GIC10-1	Bacterial communities associated with the marine sponge *Theonella* sp.	Polyketides	[15]
9	*Streptomyces* sp. M-207	Cold-water coral *Lophelia pertusa*	Polyketides	[16]
10	*Streptomyces* sp. SCSIO 01127	South China Sea sediment	Polyketides	[17]
11-12	*Streptomyces* sp.	Crown-of-thorns starfish, *Acanthaster planci*	Polyketides	[18]
13	*Nocardiopsis* sp. NHF48	South China Sea sediments	Polyketides	[19]
14-17	*Streptomyces* sp. HKI0576	Marine sediment	Polyketides	[20]
18	*Streptomyces aureoverticillatus* NPS001583	Traditional Chinese medicine sea lettuce *Ulva pertusa* (family Ulvaceae)	Polyketides	[21]
19-20	*Streptomyces* sp. HZP-2216E	Intertidal seaweed *Ulva* sp., Cantabrian Sea (Northeast Atlantic Ocean)	Polyketides	[22]
21	*Streptomyces althioticus* MSM3	Mangrove soil from Sanya	Polyketides	[23]
22	*Streptomyces* sp. 219807	Surface sediment from the East Siberian continental margin	Polyketides	[24]
23	*Streptomyces* sp. ART5	Conserved mangrove in Hainan province, China	Polyketides	[25]
24-27	*Streptomyces* sp. THS-55	Sea sediment from a mangrove in the South China Sea	Polyketides	[26]
28-29	*Streptomyces antibioticus* H12-15	Deep-sea sediment from the West Pacific	Polyketides	[27]
30-32	*Streptomyces* sp. DSS-18	Marine sediment from the east coast of Madagascar, 30 m depth	Polyketides	[28]
33	*Streptomyces* sp. MDG-04-17-069	Mangrove rhizosphere soil	Polyketides	[29]
34-35	*Streptomyces* sp. 211726	Mangrove broth	Polyketides	[30]
36-42	*Streptomyces* sp. 211726	Estuary between the Yellow Sea and the Han River, Republic of Korea	Polyketides	[31]
43-48	*Streptomyces pactum* SCSIO02999	Cloacal aperture of the sea cucumber *Holothuria moebii*	Polyketides	[32]
49-50	*Pseudomonascia* sp. HS7	Saltpan of Kenada	Polyketides	[33]
51	*Nocardiopsis* CG3 (DSM 106572)	Soil sample from the East China Sea	Polyketides	[34]
52-54	*Micromonospora* strain FIM05328	Shallow coastal waters near the island of Chiloe, Chile	Polyketides	[35]
55	*Actinoalloteichus cyanogriseus* WH1-2216-6	Submarine sediment	Polyketides	[36]
Compound	Producing strain	Strain source	Architectural feature	References
----------	------------------	---------------	----------------------	------------
58	*Streptomyces* sp. Sp080513GE-26	*Haliclona* sp. marine sponge	Polyketides	[39]
59	*Streptomyces* sp. SpD081030ME-02	Demospongiaceae class of marine sponge, offshore of Ishigaki City, Okinawa Prefecture, Japan	Polyketides	[40]
60	*Streptomyces* sp. HB202	*Halichondria panicea* sponge	Polyketides	[41]
61–63	*Streptomyces* sp. BCC45596	Thailand	Polyketides	[42]
64–66	*Streptomyces* sp. M7_15	Caribbean sponges	Polyketides	[43]
67–68	*Streptomyces* sp. OUCMDZ-1703	Soft coral	Polyketides	[44]
69	*Streptomyces* sp. HDN-10-293	Sponge	Polyketides	[45]
70	*Streptomyces* sp. RKBHB7	*Eunicea* sp. unidentified octocoral	Polyketides	[46]
71–72	*Streptomyces* sp. ZZ406	*Haliplanella lineata* sea anemone	Polyketides	[47]
73–76	*Streptomyces* sp. (CANU Fox 21-2-6)	New Zealand micro-organisms	Polyketides	[48]
77	*Streptomyces* sp. FX-58	*Salicornia herbacea*	Polyketides	[49]
78	*Streptomyces* sp. B8652	Polyketides	[50]	
79–80	*Streptomyces* sp. M045	Marine sediments	Polyketides	[51]
81–82	*Streptomyces* sp. CNH990	Marine sediments	Polyketides	[52]
83–85	*Streptomyces* sp. NPS853	Marine sediments	Polyketides	[53]
86	*Streptomyces* sp. W007	Polyketides	[54]	
87–90	*Streptomyces* lusitanus SCSIO LR32	Marine sediments from South China Sea	Polyketides	[55]
91–92	*Streptomyces* sp. (strain SNE-011)	Sediment sample from Kiawah Island, South Carolina,	Polyketides	[56]
93	*Streptomyces* H74-21	Sea sediment in a mangrove site	Polyketides	[57]
94	*Streptomyces* sp. SCSIO 11594	South China Sea sediment, 2,403 m depth	Polyketides	[58]
95–96	*Streptomyces* sp. IFM11940	Soil and seawater samples from different areas of Japan.	Polyketides	[59]
97–98	*Streptomyces* sp. 182MMLY	Marine sediments	Polyketides	[60]
99	*Streptomyces* sp. F001	Polyketides	[61]	
100	*Streptomyces griseus* MZ68	Sediment from Kiaochow Bay, China	Polyketides	[62]
101	*Micromonospora lomaivitenensis* LL-371366	Polyketides	[63]	
102–103	*Streptomyces fradiae* 007	Polyketides	[64]	
104	*Streptomyces lusitanus* SCSIO LR32	Deep sea	Polyketides	[65]
105–106	*Streptomyces lusitanus* SCSIO LR32	Deep sea	Polyketides	[66]
Compound	Producing strain	Strain source	Architectural feature	References
----------	------------------	---------------	----------------------	------------
107–108	*Streptomyces* sp. XMA39		Polyketides	[67]
109	*Micromonaspora* sp. G039	Sediment from the Cát Bà peninsula, East Sea of Vietnam	Polyketides	[68]
110–112	*Micromonaspora* echinospora SCSIO 04089	Sediment from the northern South China Sea, 3,025 m depth	Polyketides	[69]
113	*Sacchararthrix* sp. 10-10		Polyketides	[70]
114	*Nanomurea* sp. AKA32	Deep-sea water from Sagami Bay, Japan, 800 m depth	Polyketides	[71]
115	*Streptomyces* sp. RJA2928		Polyketides	[72]
116–119	*Streptomyces* sp. RJA2928		Polyketides	[73]
120	*Streptomyces* sp. 0616208		Polyketides	[74]
121–122	*Streptomyces* sp. YM14-060		Polyketides	[75]
123	*Streptomyces* nodosus NPS007994	Marine sediment from Scripps Canyon, La Jolla, California	Polyketides	[76]
124	*Streptomyces* sp. CHQ-64		Polyketides	[77]
125–128	*Streptomyces* albus POR-04-15-053	Extracts of the air-breathing gastropod *Siphonaria diemensis*, a marine mollusk	Polyketides	[78]
129	*Streptomyces* sp. B8112		Polyketides	[79]
130	*Streptomyces* sp. TP-A0879	Stem of the bracken *Pteridium aquilinum*	Polyketides	[80]
131	*Streptomyces* sp. SAK1	Southern area of Jeju Island, Republic of Korea	Polyketides	[81]
132	*Streptomyces violans* HTTA-F04129	*Salicornia* sp. from the intertidal zone of Rushan County, Shandong Peninsula	Polyketides	[82]
133	*Streptomyces* sp. SNJ210	Deep-sea areas from Jeju Island, Korea	Polyketides	[83]
134–137	*Streptomyces* sp. CNQ-085	Marine sediment sample near Kochi Harbor, Japan, 30 m depth	Polyketides	[84]
138–139	*Streptomyces* sp. NPS-643		Polyketides	[85]
140–141	*Streptomyces* sp. HNA39		Polyketides	[86]
142	*Micromonaspora* sp. 29867	Suruga Bay, Shizuoka Prefecture, Japan	Polyketides	[87]
143	*Micromonaspora matsumotoense* M-412	Cantabrian Sea sediments, 2,000 m depth	Polyketides	[88]
144–146	*Verrucosispora* sp. SCSIO 07399	Deep-sea marine sediment	Polyketides	[89]
147	*Streptomyces* sp. LS298	*Gelidiodes carnosa* marine sponge from the South China Sea	Non-ribosomal peptides, and hybrids of polyketides and peptides	[90]
148	*Streptomyces* sp. SBT348	*Petrasia ficiformis* Mediterranean sponge from Milos, Greece	Non-ribosomal peptides, and hybrids of polyketides and peptides	[91]
Compound	Producing strain	Strain source	Architectural feature	References
----------	------------------------	--	--	------------
149	Streptomyces sp. SNJ013	Deep-sea sediment from Jeju Island, Korea	Non-ribosomal peptides, and hybrids of polyketides and peptides	[92]
150–151	Streptomyces sp. SNJ042	Sand beach at Jeju, a volcanic island in the Republic of Korea	Non-ribosomal peptides, and hybrids of polyketides and peptides	[93]
152–153	Streptomyces sp. P11-23B		Non-ribosomal peptides, and hybrids of polyketides and peptides	[94]
154	Streptomyces sp. SSA 13	Arabian Sea sediments from the eastern edge of the seashore	Non-ribosomal peptides, and hybrids of polyketides and peptides	[95]
155–157	Streptomyces sp. MNU FJ-36	Intestinal fabric of *Katsuwonus* sp.	Non-ribosomal peptides, and hybrids of polyketides and peptides	[96]
158–159	Streptomyces sp. Did-27	Marine microbial bioactive leads	Non-ribosomal peptides, and hybrids of polyketides and peptides	[97]
160	Nocardopsis sp. UR67	Red Sea	Non-ribosomal peptides, and hybrids of polyketides and peptides	[98]
161–162	*Nocardopsis* lucentensis (strain CNR-712)	Sediment from a shallow saline pond on the island of Little San Salvador, Bahamas.	Non-ribosomal peptides, and hybrids of polyketides and peptides	[99]
163–164	*Nocardopsis* sp. YIM M13066	Deep sea	Non-ribosomal peptides, and hybrids of polyketides and peptides	[100]
165–166	*Microbacterium sediminis* sp. nov. YLB-01(T)	Deep sea	Non-ribosomal peptides, and hybrids of polyketides and peptides	[101]
167–169	Streptomyces sp. CNQ-593	Marine sediments near the island of Guam	Non-ribosomal peptides, and hybrids of polyketides and peptides	[102]
170	Streptomyces sp. MWW064	Marine sediment from Samut Sakhon province, Thailand	Non-ribosomal peptides, and hybrids of polyketides and peptides	[103]
171–172	Streptomyces sp. RJA2928	Crude organic extracts from marine sediment collected near the passage Padana Nahua, Papua New Guinea	Non-ribosomal peptides, and hybrids of polyketides and peptides	[104]
173	*Verrucosispora* sp. CNX-026		Non-ribosomal peptides, and hybrids of polyketides and peptides	[105]
174	*Streptomyces* sp. M491	Sand sample from Qingdao (China)	Isoprenoids, terpenoids, sterols, and hybrids of isoprenoids and peptides (or polyketides)	[106]
175	*Streptomyces* anandii H41-59	Sea sediment from a mangrove district	Isoprenoids, terpenoids, sterols, and hybrids of isoprenoids and peptides (or polyketides)	[107]
Compound	Producing strain	Strain source	Architectural feature	References
----------	------------------	---------------	----------------------	------------
176	Actinomadura sp. SBMs009	New marine sponge	Isoprenoids, terpenoids, sterols, and hybrids of isoprenoids and peptides (or polyketides)	[108]
177	Streptomyces sp. NBRC105896	Haliclona sp.	Isoprenoids, terpenoids, sterols, and hybrids of isoprenoids and peptides (or polyketides)	[109]
178	Streptomyces sp. CHQ-64		Isoprenoids, terpenoids, sterols, and hybrids of isoprenoids and peptides (or polyketides)	[110]
179	Streptomyces sp. CNQ-027		Isoprenoids, terpenoids, sterols, and hybrids of isoprenoids and peptides (or polyketides)	[111]
180–182	Actinomycete family Streptomycetaceae CNQ-509	Marine sediment from La Jolla, California	Isoprenoids, terpenoids, sterols, and hybrids of isoprenoids and peptides (or polyketides)	[112]
183–186	Streptomyces niveus SCSIO 3406	South China Sea sediment, 3,536 m depth	Isoprenoids, terpenoids, sterols, and hybrids of isoprenoids and peptides (or polyketides)	[113]
187–190	Streptomyces sp. CNQ-329		Isoprenoids, terpenoids, sterols, and hybrids of isoprenoids and peptides (or polyketides)	[114]
191–194	Actinomycete strain CNQ525		Isoprenoids, terpenoids, sterols, and hybrids of isoprenoids and peptides (or polyketides)	[115]
195	Streptomyces sp. NPS008187	Marine sediment from Alaska	Isoprenoids, terpenoids, sterols, and hybrids of isoprenoids and peptides (or polyketides)	[116]
196–197	Streptomyces sp. BL-49-58-005	Unidentified marine invertebrate from Mexico	Heterocyclic, (hetero)aromatic and other compounds	[117]
198	Streptomyces sp. SBT345	Agelas oroides Mediterranean sponge	Heterocyclic, (hetero)aromatic and other compounds	[118]
199–200	Streptomyces sp. GT2002/1503	Stem of Bruguiera gymnorrhiza	Heterocyclic, (hetero)aromatic and other compounds	[119]
201	Streptomyces sioyaensis SA-1758	Sea mud from Gamo, Miyagi Prefecture, Japan	Heterocyclic, (hetero)aromatic and other compounds	[120]
202	Streptomyces sp. Q22	Mangrove soil	Heterocyclic, (hetero)aromatic and other compounds	[121]
Table 1 | Continued

Compound	Producing strain	Strain source	Architectural feature	References
203	*Streptomyces* sp. KORDI-3238	Deep-sea sediment	Heterocyclic, (hetero)aromatic and other compounds	[122]
204-205	*Streptomyces* sp. CNQ-418	Marine sediment from La Jolla, California, 51 m depth	Heterocyclic, (hetero)aromatic and other compounds	[123]
206-209	*Streptomyces* sp. CNQ-418	Marine sediment from La Jolla, California, 51 m depth	Heterocyclic, (hetero)aromatic and other compounds	[124]
210-211	*Streptomyces* sp. CNQ-617	Marine sediment from La Jolla, California, 51 m depth	Heterocyclic, (hetero)aromatic and other compounds	[125]
212-213	*Streptomyces* sp. CNR-698	Bahamas	Heterocyclic, (hetero)aromatic and other compounds	[126]
214-216	*Streptomyces* sp. Mei37	Muddy sediment from Jade Bay, southern German North Sea coast	Heterocyclic, (hetero)aromatic and other compounds	[127]
217	*Streptomyces* sp. WuXin	Deep-sea sediment	Heterocyclic, (hetero)aromatic and other compounds	[128]
218-220	*Streptomyces* fradiae 007M135	Sediment from Jiaozhou Bay, Shandong Province, China	Heterocyclic, (hetero)aromatic and other compounds	[129]
221-223	*Streptomyces* sp. SCSIO 03032	Deep-sea sediment	Heterocyclic, (hetero)aromatic and other compounds	[130]
224	*Streptomyces* sp. QD518	Deep-sea sediment	Heterocyclic, (hetero)aromatic and other compounds	[131]
225	*Streptomyces* sp. SCSIO 03032	Deep-sea sediment	Heterocyclic, (hetero)aromatic and other compounds	[132]
226	*Streptomyces* variabilis SNA-020	Deep-sea sediment	Heterocyclic, (hetero)aromatic and other compounds	[133]
227-228	*Streptomyces* sp. FMA	Mangrove soil from Sanya, Hainan province, China	Heterocyclic, (hetero)aromatic and other compounds	[134]
229	*Streptomyces* sp. Eg25	Deep-sea sediment	Heterocyclic, (hetero)aromatic and other compounds	[135]
230-231	*Streptomyces* niveus SCSIO 3406	South China Sea sediment, 3,536 m depth	Heterocyclic, (hetero)aromatic and other compounds	[113]
232-233	*Streptomyces* sp. CNS284	Deep-sea sediment	Heterocyclic, (hetero)aromatic and other compounds	[136]
234-235	*Streptomyces* spinoverrucosus strain SNB-032	Deep-sea sediment	Heterocyclic, (hetero)aromatic and other compounds	[137]
Compound	Producing strain	Strain source	Architectural feature	References
----------	------------------	---------------	----------------------	------------
Streptomyces sp. strain CNH-287	Heterocyclic, (hetero)aromatic and other compounds	Red Sea sponge *Callyspongia siphonella*	[138]	
Actinoboleichos cyanogriseus WH-2216-6	Heterocyclic, (hetero)aromatic and other compounds	Saint Peter and Saint Paul Archipelago, Brazil	[139]	
Saccharomonospora sp. UR22 and Dietzia sp. UR66	Heterocyclic, (hetero)aromatic and other compounds	Sea mud from the coastal area of Putuo, Zhoushan, China	[140]	
Amycolatopsis sp.	Heterocyclic, (hetero)aromatic and other compounds	Sponge	[142]	
Actinoalloteichus sp. ZZ1866	Heterocyclic, (hetero)aromatic and other compounds	Sea mud from the coastal area of Putuo, Zhoushan, China	[143]	

Marine actinomycetes produce different biologically active secondary metabolites. In 2012, Subramani and Aalbersberg published an article in "Microbiological Research" indicating that marine actinomycetes are an ongoing source of novel bioactive metabolites [144]. In 2009, a review article reported antitumor compounds from marine actinomycetes [145]. In 2020 and 2021, we reported the sources of marine actinomycetes, chemical structures and biological activities of 127 halogenated compounds and 313 antimicrobial compounds from multiple marine actinomycetes [146, 147]. Marine actinomycetes are a promising source of lead compounds for drug discovery.

Despite the discovery of many cytotoxic compounds from marine actinomycetes, several drawbacks of natural product anticancer drug discovery exist. Some cytotoxic compounds have been obtained through assay-guided separation, but in many cases, no assay-guided separation was performed, and cytotoxic compounds were identified simply through purification followed by cytotoxic evaluation. Most of the cytotoxic compounds have not been tested for their selectivity toward different cancer cell lines and normal human cell lines, mainly because of insufficient financial support to researchers. Bioassay-guided separation is sometimes very tedious, and dereplication does not always work well, as researchers expect. Because naturally occurring compounds in their original forms may not always be patentable in the USA, although simple derivatives can be patent protected, natural product chemists' enthusiasm for anticancer drug discovery from natural sources has been diminished.

Selection of strains, culturing strategies and analytical techniques for natural-product-library establishment and natural-product dereplication will be of great help in anticancer drug discovery from marine actinomycetes. A future direction may involve advancing genome mining and gene manipulation, as discussed below.

4. PROSPECTS

Some of the reviewed compounds have demonstrated potent cytotoxic activity, with IC₅₀ values at ng/mL or nM levels, for example, compounds 3 [12], 6–8 [14], 55 [38], 73–76 [49], 81 [53], 101 [63], 121 and 122 [75], 124 [77], 167–169 [102], 212 and 213 [126], 216 [127] and 224 [131]. However, the selectivity of some potent cytotoxic compounds has not been investigated. Selectivity study is important, because identifying cytotoxic drugs with a high selectivity toward cancer cells is critical to increase the low survival rates of patients with cancer. One approach to avoiding adverse effects of cytotoxic agents is targeted drug delivery. For instance, a cytotoxic drug can be hung on an antibody scaffold to form an antibody–drug conjugate. Subsequently, the complex targeted agent can overcome the unspecific toxic effects of conventional drug delivery, thereby decreasing the amount of drug required for therapeutic efficacy.
Figure 8 | Numbers of antitumor compounds isolated from marine actinomycetes each year (1989 to 2020).

Figure 9 | Journals publishing, and numbers of articles describing, antitumor compounds from marine actinomycetes.
Most of the secondary metabolites reviewed herein have been evaluated for their antimicrobial and cytotoxic activities. Other biological properties could be identified through testing of actinomycete secondary metabolites in other biological settings. For example, the fungal metabolites sinuxylamides A and B have shown no antibacterial activity or cytotoxicity at 40 μM, but when tested for their antithrombotic activity, have demonstrated strong inhibition of the binding of fibrinogen to purified integrin IIb/IIIa in a dose-dependent manner, with IC50 values of 0.89 and 0.61 μM, respectively [148].

Novel molecules with unprecedented structural and/or functional attributes usually have unique bioactivities. Some of the reviewed compounds in this article have unique structures, for example, compounds 1, 2, 9, 10, 23, 101, 123, 140, 141, 144–146 and most of the compounds classified as heterocyclic, (hetero)aromatic and other compounds (196–254). Compounds 101, 212, 213 and 224 are not only structurally interesting (particularly 101) but also exhibit potent cytotoxicity. The cytotoxicity of 101 arises from the induction of double-strand breaks in DNA [149]. Compound 101 has a molecular formula of C38H26N4O14. Its molecular weight is 762 Daltons, and the numbers of hydrogen-bond donors and acceptors in the molecule clearly violate Lipinski’s role of five; these findings, together with the compound’s structural complexity, suggest low druggability of 101. However, structural modification and/or formulation have made many undruggable compounds druggable. For example, halichondrin B (molecular formula: C60H86O19; molecular weight: 1111 Daltons) is a complex polyether macrolide originally isolated from the marine sponge Halichondria okadai [150], which was believed to be undruggable by many researchers. However, Eisai Co. has structurally simplified halichondrin B, and eribulin (brand name Halaven) was approved by the U.S. Food and Drug Administration on November 15, 2010, with an indication to treat metastatic breast cancer [151].

Most of these 254 compounds are analogs of previously reported molecules. In general, structurally unique compounds represent a decreasing percentage of the total number of compounds isolated from natural sources in the past few decades. However, exploring unexplored and unusual source organisms, or those from unique environments, could provide opportunities for finding novel natural products.

Currently, the genomes of actinomycete strains are routinely sequenced, and a host of bioinformatics tools are increasingly available for identifying potential biosynthetic gene clusters of actinomycete natural products. Developing universal expression systems for small-molecule biosynthesis with high yield, constructing genetic tools to access the biosynthetic potential of cultured marine actinomycetes and awakening “silent” biosynthetic pathways will be important approaches for discovery of small molecules from marine actinomycetes. Investigations aimed at understanding how the biosynthetic pathways operate at the genetic and biochemical levels in marine actinomycetes will open new doors to designing molecules with improved anticancer properties.

![Figure 10 | Structural classes of antitumor compounds from marine actinomycetes.](image-url)
REFERENCES

[1] Cappello E, Nieri P: From Life in the Sea to the Clinic: The Marine Drugs Approved and Under Clinical Trial. Life (Basel) 2021, 11:1390.

[2] Carroll AR, Copp BR, Davis RA, Keyzers RA, Prinsep MR: Marine Natural Products. Natural Product Reports 2022, 39:1122–1171.

[3] Pye R, Bertin MJ, Lokey RS, Gerwick WH, Linnington RG: Retrospective Analysis of Natural Products Provides Insights for Future Discovery Trends. Proceedings of the National Academy of Sciences 2017, 114:5601–5606.

[4] The marine pharmacology/pharmaceutical pipeline website (https://www.marinepharmacology.org/ approved) Accessed on date July 13, 2022.

[5] Gerwick WH, Moore BS: Lessons from the Past and Charting the Future of Marine Natural Products Drug Discovery and Chemical Biology. Chemistry & Biology 2012, 19:85–98.

[6] van der Meij A, Worsley SF, Hutchings MI, van Wezel GP: Chemical Ecology of Antibiotic Production by Actinomycetes. FEMS Microbiology Reviews 2017, 41:392–416.

[7] Donald L, Pipite A, Subramani R, Owen J, Keyzers RA, Taufa T: Streptomyces: Still the Biggester Producer of New Natural Secondary Metabolites, A Current Perspective. Microbiology Research 2022, 13:418–465.

[8] Joubert N, Beck A, Dumontet C, Denevault-Sabourin GP: Chemical Ecology of Antibiotic Production by Actinomycetes. Angewandte Chemie International Edition 2011, 50:1630–1634.

[9] Mitchell SS, Nicholson B, Teisan S, Lam KS, Potts BCM: Aureoverticillactam, a Novel 22-Atom Macrocyclic Lactam from the Marine Actinomycete Streptomyces aureoverticillatus. Journal of Natural Products 2004, 67:1400–1402.

[10] Shen HJ, Lee HS, Lee J, Lee MA, Lee HS, et al.: Lipolysisyrones H and I, New Cytotoxic Compounds Isolated from Streptomyces sp. Associated with the Marine Starfish Acanthaster planci. Marine Drugs 2014, 12:3283–3289.

[11] Li H, Li S, Chen Y, Tian X, Zhang H, Zhang G, et al.: Lobophorins E and F, New Spirotetronate Antibiotics from a South China Sea-Derived Streptomyces sp. SC510127. Journal of Antibiotics 2011, 64:711–716.

[12] Chen YH, Yang JC, Lu MC, Weng CF, Su YD, Kuo J, et al.: Bafilomycins N and O, Novel Cytotoxic Bafilomycin Analogues Produced by Streptomyces sp. GIC10-1 Isolated from Marine Sponge Theonella sp. Tetrahedron 2017, 73:5170–5175.

[13] Braña AF, Sarmiento-Vizcaíno A, Oset M, Perea-Victoria I, Martín J, Pedro ND, et al.: Lobophorin K, A New Natural Product with Cytotoxic Activity Produced by Streptomyces sp. M-207 Associated with the Deep-Sea Coral Lophelia pertusa. Marine Drugs 2017, 15:144.

[14] Niu S, Li S, Chen Y, Tian X, Zhang H, Zhang G, et al.: Lobophorins E and F, New Spirotetronate Antibiotics from a South China Sea-Derived Streptomyces sp. SC510127. Journal of Antibiotics 2011, 64:711–716.

[15] Zhang X, Chen L, Chai W, Lian XY, Zhang Z: A Unique Indolizinium Alkaloid Streptoperusacin A and Bioactive Bafilomycins from Marine-Derived Streptomyces sp. HZP-2216E. Phytochemistry 2017, 144:119–126.

[16] Shin HJ, Lee HS, Lee J, Shin H, Lee MA, Lee HS, et al.: Lipolysisyrones H and I, New Cytotoxic Compounds Isolated from Streptomyces sp. Associated with the Marine Starfish Acanthaster planci. Marine Drugs 2014, 12:3283–3289.

[17] Yang N, Song F: Bioprospecting of Novel and Bioactive Compounds from Marine Actinomycetes Isolated from South China Sea Sediments. Current Microbiology 2018, 75:142–149.

[18] Ding L, Maier A, Fiebig HG, Göröls H, Lin WH, Peschel G, et al.: Divergolides A-D from a Mangrove Endophyte Reveal an Unparalleled Plasticity in Ansa-Macrolide Biosynthesis. Angewandte Chemie International Edition 2011, 50:1630–1634.

[19] Mitchell SS, Nicholson B, Teisan S, Lam KS, Potts BCM: Aureoverticillactam, a Novel 22-Atom Macrocyclic Lactam from the Marine Actinomycete Streptomyces aureoverticillatus. Journal of Natural Products 2004, 67:1400–1402.

[20] Zhang X, Chen L, Chai W, Lian XY, Zhang Z: A Unique Indolizinium Alkaloid Streptoperusacin A and Bioactive Bafilomycins from Marine-Derived Streptomyces sp. HZP-2216E. Phytochemistry 2017, 144:119–126.

[21] Braña AF, Sarmiento-Vizcaíno A, Perea-Victoria I, Martín J, Otero L, Palacios-Gutiérrez JJ, et al.: Desertomycin G, a New Antibiotic with Activity Against Mycobacterium Tuberculosis and Human Breast Tumor Cell Lines Produced by Streptomyces athlioticus MSM3, Isolated from the Cantabrian Sea Intertidal Macroalgae Ulva sp. Marine Drugs 2019, 17:114–123.

[22] Han Y, Tian E, Xu D, Ma M, Deng Z, Hong K: Halichoblelide D, a New Elaiophylin Derivative with Potent Cytotoxic Activity from Mangrove-Derived Streptomyces sp. 219807. Mycochemical Reports 2017, 7:1–14.

[23] Moon K, Ahn CH, Shin Y, Won TH, Ko K, Lee SK, et al.: New Benzoxazine Secondary Metabolites from an Arctic Actinomycete. Marine Drugs 2014, 12:2526–2538.

[24] Zhang W, Che Q, Tan H, Qi X, Li J, Li D, et al.: Marine Streptomycetes sp. Derived Antimycins Analogues Suppress HeLa Cells via Depletion HPV E6/E7 Mediated by ROS-dependent Ubiquitin-Proteasome System. Scientific Reports 2017, 7:1–14.

[25] Hu C, Zhou SW, Chen F, Zheng XH, Shen HF, Lin BR, et al.: Neoantimycins A and B, Two Unusual Benzamido Nine-Membered Dilactones from Marine-Derived Streptomyces Antibiotics H12-15. Molecules 2017, 22:557–566.

[26] Li J, Lu CH, Zhao BB, Zheng ZH, Shen YM: Phaeochromycins F–H, Three New Polyketide Metabolites from Streptomyces sp. DSS-18. Beilstein Journal of Organic Chemistry 2008, 4:46.

[27] Li J, Lu CH, Zhao BB, Zheng ZH, Shen YM: Phaeochromycins F–H, Three New Polyketide Metabolites from Streptomyces sp. DSS-18. Beilstein Journal of Organic Chemistry 2008, 4:46.
Review Article

[29] Pérez M, Crespo C, Schleissner C, Rodríguez P, Zuñiga P, Reyes F: Tartrolon D, a Cytotoxic Macrolide from the Marine-Derived Actinomycete Streptomyces sp. MDG-04-17-069. Journal of Natural Products 2009, 72:2192–2194.

[30] Yuan G, Lin H, Wang C, Hong K, Liu Y, Li J: ¹H and ¹³C Assignments of Two New Macroyclic Lactones Isolated from Streptomyces sp. 211726 and Revised Assignments of Azalomyccins f3a, f4a and f5a. Magnetic Resonance in Chemistry 2011, 49:30–37.

[31] Yuan G, Hong K, Lin H, She Z, Li J: New Azalomyccin F Analogos From Mangrove Streptomyces sp. 211726 with Activity against Microbes and Cancer Cells. Marine Drugs 2013, 11:817–829.

[32] Saha S, Zhang W, Zhang G, Zhu Y, Chen Y, Liu W, et al.: Activation and Characterization of a Cryptic Gene Cluster Reveals a Cyclization Cascade for Polycyclic Tetramate Macrolactams. Chemical Science 2017, 8:1607–1612.

[33] Moon K, Kim J, Kim E, Riandi ES, Park SH, Byun WS, et al.: Structures and Biosynthetic Pathway of Pulvumycins B–D: 22-Membered Macrolides from an Estuarine Streptomyces sp. Organic Letters 2020, 22:5358–5362.

[34] Ye X, Anjum K, Song T, Wang W, Yu S, Huang H: A New Curvulin Glucoside and its Cytotoxic and Antibacterial Analogues from Marine Actinomycete Pseudonocardia sp. H57. Natural Product Research 2016, 30:1156–1161.

[35] Messaoudi O, Sudarman E, Bendahou M, Jansen R, Studler M, Wink J: Kenalactams A–E. Polycyclic Macrolactams Isolated from Nocardiosis CG3. Journal of Natural Products 2019, 82:1081–1088.

[36] Nol JL, Wu YD, Wang CX, Lin R, Xie Y, Fang DS: Structure Elucidation and Antitumour Activity of a New Macrolactam Produced by Marine-Derived Actinomycete Micromonospora sp. FIM05328. Natural Product Research 2018, 32:2133–2138.

[37] Fei P, Chuan-Xi W, Yang X, Hong-Lei J, Fiebig HH, Laatsch H: Parvicolin: Isolation and Structure Elucidation of a Novel Cytotoxic 2,3-Dihydroquinazolin analogue of γ-Indolocinom from a Marine Streptomyces isolate. The Journal of Antibiotics 2002, 55:1031–1035.

[38] Li F, Maskey RP, Qin S, Sattler I, Maier A, et al.: Chinkomycins A and B: Isolation, Structure Elucidation, and Biological Activity of Novel Antibiotics from a Marine Streptomyces sp. Isolate M045. Journal of Natural Products 2005, 68:349–353.

[39] Martin GDA, Tan LT, Jensen PR, Dimayuga RE, Fairchild CR, Raventos-Suarez C, et al.: Marmycins A and B, Cytotoxic Pentacyclic C-Glycosides from a Marine Sediment-Derived Actinomycete Related to the Genus Streptomyces. Journal of Natural Products 2014, 77:1245–1248.

[40] Sato S, Iwata F, Yamada S, Kawahara H, Katayama M, Usabamycins A–C: New Anthramycin-Type Analogues from a Marine-Derived Actinomycete. Bioorganic & Medicinal Chemistry Letters 2011, 21:7099–7101.

[41] Zhang H, Wang H, Cui H, Li Z, Xie Z, Pu Y, et al.: A New Anthracene Derivative from Marine Streptomyces sp. W007 Exhibiting Highly and Selectively Cytotoxic Activities. Marine Drugs 2011, 9:1502–1509.

[42] Huang H, Yang T, Ren X, Liu J, Song Y, Sun A, et al.: Cytotoxic Angucycline Class Glycosides from the Deep Sea Actinomycete Streptomyces lusitanus SCSIO LR32. Journal of Natural Products 2012, 75:202–208.

[43] Fu P, Johnson M, Chen H, Posner BA, MacMillan JB: Carpatamides A–C, Cytotoxic Arylamidine Derivatives from a Marine-Derived Streptomyces sp. Journal of Natural Products 2014, 77:1245–1248.

[44] Fu S, Wang F, Li H, Bao Y, Yang Y, Shen H: Secondary Metabolites from Marine-Derived Streptomyces Antibiotic Strain H74-21. Natural Product Research 2016, 30:2460–2467.

[45] Song Y, Liu G, Li J, Huang H, Zhang X, Zhang H, et al.: Cytotoxic and Antibacterial Angucycline-and Prodigiosin-Analogues from the Deep-Sea Derived Streptomyces sp. SC1011594. Marine Drugs 2015, 13:1304–1316.
[59] Tsukahara K, Toume K, Ishikawa N, Abdelfattah MS, Ishibashi M: Novel Cytotoxic Isobenzofuran Derivatives from Streptomyces sp. IFM 11490. *Tetrahedron Letters* 2015, 56:6345–6347.

[60] Liang Y, Xie X, Chen L, Yan S, Ye X, Anjum K, et al.: Bioactive Polycyclic Quinones from Marine Streptomyces sp. 1825MLY. *Marine Drugs* 2016, 14:10.

[61] Mollowney MW, Ō hAminhre E, Shaikh A, Wei X, Tanouye U, Santasiero BD, et al.: Diazaquinocinys E-G, Novel Diaz-Antirhacene Analogs from a Marine-Derived Streptomyces sp. *Marine Drugs* 2014, 12:3574–3586.

[62] Xie Z, Zhou L, Guo L, Yang X, Wu C, et al.: Grisemycin, a Bridged Angucycline with a Methylsulfinyl Moiety from a Marine-Derived Streptomyces sp. *Organic Letters* 2016, 18:1402–1405.

[63] He H, Ding WD, Bernan AD, Ireland CM, Greenstein M, et al.: Lomaviticins A and B, Potent Antitumor Antibiotics from *Micromonaspora lomavitienis*. *Journal of the American Chemical Society*. 2001, 123:5362–5363.

[64] Wang Y, Wang L, Zhuang Y, Kong F, Zhang C, Zhu W: Phenolic Polypeptides from the Co-Cultivation of Marine-Derived Penicillium sp. WC-29-5 and Streptomyces fradiae 007. *Marine Drugs* 2014, 12:2079–2088.

[65] Zhu X, Duan Y, Cui Z, Wang Z, Li Z, Zhang Y, et al.: Cytotoxic Rearranged Angucycline Glycosides from Deep Sea-Derived Streptomyces *lujianos* SCsIO LR32. *The Journal of Antibiotics (Tokyo)* 2017, 70:819–822.

[66] Lai Z, Yu J, Ling H, Song Y, Yuan J, Ju J, et al.: Grincamycins I-K, Cytotoxic Angucycline Glycosides Derived from Marine-Derived Actinomycete *Streptomyces lujianos* SCsIO LR32. *Planta Medica* 2018, 84:201–207.

[67] Jiang YJ, Zhang DS, Zhang HJ, Li JQ, Zhang HJ, Ma ZJ: Cyclizidine Produced in Culture by a *Streptomyces* sp. Isolated from a Marine Sediment and Evidence for the Inhibition of the Histone Methyl Transferase SETD8 in Human Cancer Cells by Nahuoc Acid A. The *Journal of Organic Chemistry* 2016, 81:1324–1332.

[68] Xie XC, Mei WL, Zhao YX, Hong K: A New Degraded Sesquiterpene from Marine Actinomycete *Streptomyces* sp. 0616208. *Chinese Chemical Letters* 2006, 17:1463–1465.

[69] Hayakawa Y, Shirasaka S, Shiba S, Kawasaki T, Matsu G, Adachi K, et al.: Pieridicins C7 and C8, New Cytotoxic Antibiotics Produced by a Marine *Streptomyces* sp. *The Journal of Antibiotics* 2007, 60:196–200.

[71] Schleissner C, Pérez M, Rosada A, Rodríguez P, Crespo C, Zühiga P, et al.: Antitumor Actinopyrpyrones Produced by Streptomyces albus POR-04-15-053 Isolated from Marine Sediment. *Journal of Natural Products* 2011, 74:1590–1596.

[72] Shaaban KA, Hameke E, Kelter G, Fiebig HH, Lahacht H: Glucopiericidin C: A Cytotoxic Piericidin Glucoside Antibiotic Produced by a Marine *Streptomyces* isolate. *The Journal of Antibiotics* 2011, 64:205–209.

[73] Igarashi Y, Asano D, Furihata K, Oku N, Miyanaga S, Sakurai H, et al.: Absolute Configuration of Pterocidin, a Potent Inhibitor of Tumor Cell Invasion from a Marine-Derived *Streptomyces*. *Tetrahedron Letters* 2012, 53:654–656.

[74] Rhee M, Park SH, Kwon Y, Lee SK, Shin J, Nam JW, et al.: QM-HilSA/aided Structure Determination of Succinilenes AD, New Triene Polyols from a Marine-Derived *Streptomyces* sp. Marine Drugs 2017, 15:E38.

[75] Huang H, Cao Y, Tian L, Lin W, Zhang K: A New Polysaturated Acid from the Marine-Derived *Streptomyces* violans Strain CNQ-085. *Journal of Natural Products* 2018, 81:394–399.

[76] Asolkar RN, Jensen PR, Kauffman CA, Fenical W: Daryamides A−C, Weakly Cytotoxic Polyketides from a Marine-Derived Actinomycete *Streptomyces* sp. *Marine Drugs* 2014, 13:5815–5827.

[77] Williams DE, Daisay DS, Li F, Amphlett J, Maneerat W, Havez MAG, et al.: Nahuoc Acid A Produced by a *Streptomyces* sp. Isolated from a Marine Sediment is a Selective SAM-Competitive Inhibitor of the Histone Methyltransferase SETD8. *Organic Letters* 2013, 15:414–417.

[78] Williams DE, Izard F, Arnould S, Daisay DS, Tangapakul C, Maneerat W, et al.: Structures of Nahuoc Acids B–E from *Micromonaspora* sp. 29867. *Journal of Antibiotics* 2014, 67:261–263.
[88] Sarmiento-Vizcalino A, Braña AF, Pérez-Victoria I, Martín J, Pedro ND, Cruz MD, et al.: Paulomycin G, A New Natural Product with Cytotoxic Activity Against Tumor Cell Lines Produced by Deep-Sea Sediment Derived Micromonospora matsumotoense M-412 from the Aviles Canyon in the Cantabrian Sea. Marine Drugs 2017, 15:271–279.

[89] Zhang S, Xie Q, Sun C, Tian X, Gui C, Qin X, et al.: Cytotoxic Kendomycins Containing the Carbacyclincansa Scaffold from the Marine-Derived Verrucosporispora sp. SC8999. Journal of Natural Products 2019, 82:3366–3371.

[90] Zhen X, Gong T, Liu F, Zhang PC, Zhou WQ, Li Y, et al.: A New Analogue of Echinomycin and a New Cyclic Dipeptide from a Marine-Derived Streptomyces sp. LS298. Marine Drugs 2015, 13:6947–6961.

[91] Cheng C, Othman EM, Stopper H, Edrada-Ebel R, Hentschel U, Abdelmohsen UR: Isolation of Petrocidin A, a New Cytotoxic Cyclic Dipeptide from the Marine Sponge-Derived Bacterium Streptomyces sp. SB7348. Marine Drugs 2017, 15:E383.

[92] Um S, Kim YJ, Kwon H, Wen H, Kim SH, Kwon HC, et al.: Sungsanpin, A Lasso Peptide from a Deep-Sea Streptomyces sp. Journal of Natural Products 2013, 76:873–879.

[93] Um S, Choi TJ, Kim H, Kim BY, Kim SH, Lee SK, et al.: Ohmyungamycins A and B: Cytotoxic and Antimicrobial Cyclic Peptides Produced by Streptomyces sp. from a Volcanic Island. The Journal of Organic Chemistry 2013, 78:12321–12329.

[94] Ye X, Anjum K, Song T, Wang W, Liang Y, Chen M, et al.: Antiproliferative Cyclodepsipeptides from the Marine Actinomycete Streptomyces sp. P11-23B Downregulating the Tumor Metabolic Enzymes of Glycolysis, Glutaminolysis, and Lipogenesis. Phytochemistry 2017, 135:151–159.

[95] Aftab U, Sajid I: Antitumor Peptides from Streptomyces sp. SSA 13, Isolated from Arabian Sea. International Journal of Peptide Research and Therapeutics 2017, 23:199–211.

[96] Ou YX, Huang JF, Li XM, Kang QJ, Pan YT: Three New 2,5-Diketopiperazines from the Fish Intestinal Microbacterins A and B, New Peptaibols from the Deep Sea Actinomycete sp. Nov. YLB-01(T). Organic Letter 2015, 17:1220–1223.

[97] Miller ED, Kauffman CA, Jensen PR, Fenical W: Piperazimycins: Cytotoxic Hexadepsipeptides from a Marine-Derived Bacterium of the Genus Streptomyces. The Journal of Organic Chemistry 2007, 72:323–330.

[98] Igarsashi Y, Shimasaki R, Miyanaga S, Oku N, Onaka H, Sakurai H, et al.: Rakicidin D, An Inhibitor of Tumor Cell Invasion from Marine-Derived Streptomyces sp. The Journal of Antibiotics 2010, 63:563–565.

[99] Williams DE, Dalisay DS, Patrick BO, Matainaho T, Andrusiak K, Deshpande R, et al.: Padanamides A and B, Highly Modified Linear Tetrapeptides Produced in Culture by a Streptomyces sp. Isolated from a Marine Sediment. Organic Letters 2011, 13:3936–3939.

[100] Nair V, Kim MC, Golen JA, Rheingold AL, Castro GA, Jensen PR, et al.: Verrucosamide, A Cytotoxic 1,4-Thiazepane-Containing Thiodepsipeptide from a Marine-Derived Actinomycete. Marine Drugs 2020, 18:549.

[101] Ding L, Pföh R, Ruhl S, Qin S, Laatsch H: T-Muurolol Sesquiterpenes from the Marine Streptomyces sp. M491 and Revision of the Configuration of Previously Reported Amorphanes. Journal of Natural Products 2009, 72:99–101.

[102] Zhang YM, Li HY, Hu C, Sheng HF, Zhang Y, Lin B, et al.: Ergosterols from the Culture Broth of Marine Streptomyces anandii H41-59. Marine Drugs 2016, 14:84.

[103] Simmons L, Kaufmann K, Garcia R, Schwar G, Huch V, Muller R: Benidigoles D-F, Bioactive Sterols from the Marine Sponge-Derived Actinomadura sp. SBM609. Bioorganic & Medicinal Chemistry 2011, 19:6570–6575.

[104] Izumikawa M, Khan ST, Komaki H, Takagi M, Shin-ya K: JBIR-31, A New Teleocidin Analog, Produced by Salt-Requiring Streptomyces sp. NRBC 105896 Isolated from a Marine Sponge. The Journal of Antibiotics 2010, 63:33–36.

[105] Che Q, Li J, Li D, Gu Q, Zhu T: Structure and Absolute Configuration of Drimentin, An Alkaloid from a Marine-Derived Actinomycete. Marine Drugs 2020, 18:473.
[117] Sánchez López JM, Martinez Insua M, Pérez Baz J, Fernandez Puentes JL, Canedo Hernandez LM: New Cytotoxic Indolic Metabolites from a Marine Streptomyces. Journal of Natural Products 2003, 66:863–864.

[118] Cheng C, Othman EM, Fekete A, Krischke M, Stopper H, Edrada-Ebel R, et al.: Streptoxazone A, a New Cytotoxic Phenoxazin from the Marine Sponge-Derived Bacterium Streptomyces sp. SBT345. Tetrahedron Letters 2016, 57:4196–4199.

[119] Ding L, Münch J, Goerls H, Maier A, Fiebig HH, Lin WH, et al.: Xiamycin, a Pentacyclic Indolosesquiterpene with Selective Anti-HIV Activity from a Bacterial Mangrove Endophyte. Bioorganic & Medicinal Chemistry Letters 2010, 20:6685–6687.

[120] Takahashi A, Kurasawa S, Ikeda D, Okami Y, Takeuchi T: Altemicidin, a New Acaricidal and Antitumor Substance I. Taxonomy, Fermentation, Isolation and Physico-Chemical and Biological Properties. The Journal of Antibiotics 1989, 42:1556–1561.

[121] Chen L, Chai W, Wang W, Song T, Lian XY, Zhang Z: Cytotoxic Bagremycins from Mangrove-Derived Streptomyces sp. Q22. Journal of Natural Products 2017, 80:1450–1456.

[122] Jeong SY, Shin HJ, Kim TS, Lee HS, Park S, Kim HM: Streptokordin, a New Cytotoxic Compound of the Methylpyridine Class from a Marine-Derived Streptomyces sp. KORDI-3238. The Journal of Antibiotics 2006, 59:234–240.

[123] Hughes CC, Prieto-Davo A, Jensen PR, Fenical W: The Marinopyrroles, Antibiotics of an Unprecedented Structure Class from a Marine Streptomyces sp. Organic Letters 2008, 10:629–631.

[124] Hughes CC, Kauffmann CA, Jensen PR, Fenical W: Structures, Reactivities, and Antibiotic Properties of the Marinopyrroles A–F. The Journal of Organic Chemistry 2010, 75:3240–3250.

[125] Boonlappradab C, Kauffmann CA, Jensen PR, Fenical W: Marineoxins A and B, Cytotoxic Spiroaminals from a Marine-Derived Actinomyces. Organic Letters 2008, 10:5505–5508.

[126] Hughes CC, MacMillan JB, Gaudêncio SP, Jensen PR, Fenical W: The Ammosamides: Structures of Cell Cycle Modulators from a Marine-Derived Streptomyces Species. Angewandte Chemie International Edition 2009, 48:725–727.

[127] Hawas UW, Shaaban M, Shaaban KA, Speitling M, Maier A, Kelter G, et al.: Mansouramycins A–D, Cytotoxic Isoquinolinequinones from a Marine Streptomyces. Journal of Natural Products 2009, 72:2120–2124.

[128] Li B, Chen G, Bai J, Jing YK, Pei YH: A Bisamide and Four Diketopiperazines from a Marine-Derived Streptomyces sp. Journal of Natural Products Annual Research Projects 2011, 13:1146–1150.

[129] Fu P, Zhuang Y, Wang Y, Liu P, Qi X, Gu K, et al.: New Indolocarbazoles from a Mutant Strain of the Marine-Derived Actinomyces 007M135. Organic Letters 2012, 14:6194–6197.

[130] Zhang W, Liu Z, Li S, Yang T, Zhang Q, Ma L, et al.: Spiroindimicins A–D: New Bisindole Alkaloids from a Deep-Sea-Derived Actinomyces. Organic Letters 2012, 14:3364–3367.

[131] Wu SJ, Fotos S, Li F, Qin S, Kelter G, Fiebig HH, et al.: N-Carboxamido-Staurosporine and Selina-4 (14), 7 (11)-Diene-8, 9-Diol, New Metabolites from a Marine Streptomyces sp. The Journal of Antibiotics 2006, 59:331–337.

[132] Zhang W, Ma L, Li S, Liu Z, Chen Y, Zhang H, et al.: Indimicrocins A–E, Disindole Alkaloids from the Deep-Sea-Derived Streptomyces sp. ECSIO 03032. Journal of Natural Products 2014, 77:1887–1892.

[133] Pan E, Jamison M, Yousufuddin M, MacMillan JB: Ammosamide D, an Oxidatively-Ring Opened Ammosamide Analog from a Marine-Derived Streptomyces variabilis. Organic Letters 2012, 14:2390–2393.

[134] Fu P, Yang C, Wang Y, Liu P, Ma Y, Xu L, et al.: Streptocarbazoles A and B, Two Novel Indolocarbazoles from the Marine-Derived Actinomyces Strain Streptomyces sp. FMA. Organic Letters 2012, 14:2422–2425.

[135] Abdelfattah MS: A New Bioactive Aminophenoxazinone Alkaloid from a Marine-Derived Actinomyces. Natural Product Research 2013, 27:2126–2131.

[136] Kondratyuk TP, Park EJ, Yu R, Van Bremen RB, Asolkar RN, Murphy BT, et al.: Novel Marine Phenazines as Potential Cancer Chemopreventive and Anti-Inflammatory Agents. Marine Drug 2012, 10:451–464.

[137] Fu P, Legako A, La S, MacMillan JB: Discovery, Characterization, and Analogue Synthesis of Bioheramine Dimers Generated by Non-Enzymatic Biosynthesis. Chemistry—A European Journal 2016, 22:3491–3495.

[138] Alvarez-Mico X, Jensen PR, Fenical W, Hughes CC: Chlorizidine, A Cytotoxic 5H-Pyrrolo[2,1-a]sindol-5-one-Containing Alkaloid from a Marine Streptomyces sp. Organic Letters 2013, 15:988–991.

[139] Fu P, Zhu Y, Mei X, Wang Y, Jia H, Zhang C, et al.: Acyclic Congeners from Actinoalloteichus Cyanogriseus Provide Insights into Cyclic Bipyrindine Glycoside Formation. Organic Letters 2014, 16:4264–4267.

[140] El-Hawy SS, Sayed AM, Mohammed R, Khanfar MA, Rateb ME, Mohammed TA, et al.: New Pim-1 Kinase Inhibitor from the Co-Culture of Two Sponge-Associated Actinomycetes. Frontiers in Chemistry 2018, 6:538.

[141] Silva AE, Guimaraes LA, Ferreira EG, Torres MCM, Silva AB, Branco PC, et al.: Biopropecticing Anticancer Compounds From the Marine-Derived Actinobacteria Actinomadura sp. Collected at the Saint Peter and Saint Paul Archipelago (Brazil). Journal of the Brazilian Chemical Society 2017, 28:465–474.

[142] Kwon Y, Kim SH, Shin Y, Bae M, Kim BY, Lee SK, et al.: A New Benzofuran Glycoside and Indole Alkaloids from a Sponge-Associated Rare Actinomycete, Amycolatopsis sp. Marine Drugs 2014, 12:2326–2340.

[143] Qin L, Yi W, Lian XY, Zhang Z: Bioactive Alkaloids from the Actinomycete Actinoalloteichus sp. ZZ1866. Journal of Natural Products 2020, 83:2686–2695.

[144] Subramani R, Aalbersberg W: Marine Actinomycetes: An Ongoing Source of Novel Bioactive Metabolites. Microbiological Research 2012, 167:571–580.

[145] Olano C, Méndez C, Salas JA: Antitumor Compounds from Actinoalloteichus Cyanogriseus Provide Insights into Cyclic Bipyrindine Glycoside Formation. Organic Letters 2013, 15:988–991.

[146] Wang C, DU, WU, LU H, LAN J, LIANG K, CAO, S: A Review: Halogenated Compounds from Marine Actinomycetes. Molecules 2021, 26:2754.

[147] Wang C, LU Y, CAO S: Antimicrobial Compounds from Marine Actinomycetes. Archives of Pharmacal Research 2020, 43:677–704.

[148] Uz Zaman KHA, Park JH, DeVine L, HU Z, WU X, Kim HS, et al.: Secondary Metabolites from the Leather
Coral-Derived Fungal Strain *Xylaria* sp. FM1005 and Their Glycoprotein IIb/IIIa Inhibitory Activity. *Journal of Natural Products* 2021, 84:466–473.

[149] Colis LC, Woo CM, Hegan DC, Li Z, Glazer PM, Herzon SB: The Cytotoxicity of (-)-Lomaiviticin A Arises from Induction of Double-Strand Breaks in DNA. *Nature Chemistry* 2014, 6:504–510.

[150] Hirata Y, Uemura D: Halichondrins - antitumor polyether macrolides from a marine sponge. *Pure and Applied Chemistry* 1986, 58:701–710.

[151] Yu MJ, Zheng W, Seletsk BM: From micrograms to grams: scale-up synthesis of eribulin mesylate. *Natural Product Reports* 2013, 30:1158–1164.