Seroprevalence of Toxoplasma gondii in wild boars, red deer and roe deer in Poland

Lucjan Witkowski1,*, Michał Czopowicz1, Dan Alexandru Nagy2, Adrian Valentin Potarniche3, Monica Adriana Aoanei3, Nuriddin Imomov4, Marcin Mickiewicz1, Miroslaw Welz5, Olga Szalus-Jordanow6, and Jaroslaw Kaba1

1 Laboratory of Veterinary Epidemiology and Economics, Faculty of Veterinary Medicine, Warsaw University of Life Sciences, Warsaw, Poland
2 Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Romania
3 ERASMUS Student from Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Romania
4 Veterinary, Zootecnics and Lambling Faculty, Samarkand Agriculture University, Uzbekistan
5 Voivodeship Veterinary Inspectorate in Krosno, Poland
6 Division of Small Animal Infectious Diseases, Department of Small Animal Diseases with Clinic, Warsaw University of Life Sciences-SGGW, Poland

Received 14 April 2015, Accepted 5 May 2015, Published online 20 May 2015

Abstract – Little is known about the prevalence of Toxoplasma gondii in wild life, particularly game animals in Poland. Meat juice collected during the 2009/2010 and 2010/2011 hunting seasons from 552 red deer (Cervus elaphus), 367 wild boars (Sus scrofa) and 92 roe deer (Capreolus capreolus) was tested for T. gondii antibodies using the multi-species ID Screen Toxoplasmosis Indirect kit (IDvet, Montpellier, France). Antibodies to T. gondii were detected in 24.1% of red deer (95% CI: 20.7%, 27.8%), 37.6% of wild boar (95% CI: 32.8%, 42.7%) and 30.4% of roe deer (95% CI: 22.0%, 40.5%). To the authors’ best knowledge, this is the first epidemiological report of T. gondii prevalence in red deer, roe deer and wild boars in Poland. T. gondii is present in wildlife animal tissues and consumption of the game may be a potential source of infection for humans.

Key words: Toxoplasmosis, Wildlife, Game, Epidemiology, Meat juice, ELISA.

Résumé – Séroprévalence de Toxoplasma gondii chez les sangliers, cerfs élaphe et chevreuils en Pologne.

On en sait peu sur la prévalence de Toxoplasma gondii chez les animaux sauvages, en particulier le gibier, en Pologne. Le jus de viande recueilli au cours des saisons de chasse 2009/2010 et 2010/2011 de 552 cerfs élaphe (Cervus elaphus), 367 sangliers (Sus scrofa) et 92 chevreuils (Capreolus capreolus) a été testé pour les anticorps de T. gondii en utilisant le kit indirect de toxoplasmose multi-espèces ID Screen (IDvet, Montpellier, France). Les anticorps dirigés contre T. gondii ont été détectés chez 24.1 % des cerfs élaphe (IC à 95 % : 20.7 %, 27.8 %), 37.6% de sangliers (IC à 95 % : 32.8 %, 42.7 %) et 30.4 % de chevreuils (IC à 95 % : 22.0 %, 40.5 %). À la connaissance des auteurs, cette est le premier rapport épidémiologique sur la prévalence de T. gondii chez le cerf, le chevreuil et le sanglier en Pologne. T. gondii est présent dans les tissus des animaux sauvages et la consommation du gibier peut être une source potentielle d’infection pour l’homme.

Introduction

The protozoan Toxoplasma gondii infects a wide range of mammal and avian species. Infection in humans may occur through the ingestion of uncooked or undercooked meat containing tissue cysts, through the ingestion of food or water contaminated by oocysts excreted in feline feces, and by mother-to-child transmission during pregnancy. T. gondii infection is common in many domesticated and wild animals used for food production and the European Food Safety Authority (EFSA) has recommended the surveillance and monitoring of toxoplasmosis in humans, animals and foodstuffs. There are numerous surveys worldwide documenting the prevalence of T. gondii in food animals. Compared with domestic

*Corresponding author: lucjan_witkowski@sggw.pl

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
livestock species, little is known about *T. gondii* prevalence in wildlife, particularly in Poland [10, 12, 13, 21, 31].

The aim of the study was to assess the seroprevalence of *T. gondii* in carcasses of wild boar, red deer and roe deer intended for human consumption in Poland.

Materials and methods

The study was approved by the 3rd Local Commission for Ethics in Animal Experiments (Decision No. 44/2009). Wildlife animal population size was estimated on the basis of the results of monitoring carried out by the Polish Hunting Association in the 2009/2010 hunting season. Estimated population sizes of wild boars, roe deer and red deer were 250,000, 757,000 and 145,000 individuals, respectively. During this season, 197,000 wild boars, 162,000 roe deer, and 41,100 red deer were hunted [6]. A minimum sample size of 97 was determined for each animal species in order to estimate the prevalence with at least 10% precision at 50% expected prevalence and 95% level of confidence. The calculations were performed in EpiTools [30]. The 95% confidence intervals (95% CI) were calculated for prevalence using the Wilson score method [1].

According to Polish legal regulations, all carcasses of hunted animals are collected by several authorized companies. The animals were hunted in various regions, in 12 of 16 voivodships of Poland. The samples of meat from masseter tissue were obtained from carcasses accepted for human consumption collected in facilities belonging to two companies during hunting seasons 2009/2010 and 2010/2011. All samples were stored at −20 °C until testing. Thawed samples (approx. 1 g) were centrifuged and the meat juice was tested using a commercially available ELISA test (the multi-species ID Screen °Toxoplasmosis Indirect kit, IDvet, Montpellier, France) according to the manufacturer’s instructions.

Results and discussion

T. gondii antibodies were detected in 24.1% (133/552) of red deer (95% CI: 20.7%, 27.8%), 37.6% (138/367) of wild boar (95% CI: 32.8%, 42.7%) and 30.4% (28/92) of roe deer (95% CI: 22.0%, 40.5%).

This is the first epidemiological report of *T. gondii* prevalence in red deer, roe deer and wild boars in Poland. These results show that *T. gondii* is widespread in game from Poland. The seroprevalence of *T. gondii* in wild boar in Poland (37.6%) is similar to recent data from Latvia (33%) [11] and Finland (33%) [19]. It is much higher compared to most European countries where it ranged from 6% to 25% [4, 5, 7, 9, 14, 23, 25, 26, 28]. Prevalence over 50% has been reported only twice in Europe [27, 34].

In addition, the prevalence of *T. gondii* in the Polish population of roe deer (30.4%) is relatively high compared to Italy (2.4%) [14] and Spain (14%) [24]. However, similar prevalence was described in Sweden (34%) [22] and even higher in France (46%) [8].

Little is known about prevalence of *T. gondii* in red deer in Europe. In the present study, 24.1% of investigated animals were positive. In other European studies, antibodies against *T. gondii* were found in 7.7% red deer in Norway [32], 15.6% in Spain [17] and 45% in the Czech Republic [3]; however no positive animals were found in Italy [14].

No attempt has been made to compare the results of this study with other worldwide reports because many factors could influence these results, e.g. variable densities of domestic cats and environmental oocyst contamination. Furthermore, age-related differences in seroprevalence have been reported in some studies [34]. There are also significant differences in numbers of investigated samples, e.g. a previous report from Poland described *T. gondii* in only three roe deer [31]. Moreover, publications differ in terms of samples tested and assays used. In the present study, like in many others [2, 5, 11, 27, 29], meat juice was used. Several methods have been proposed for the detection of antibodies to *T. gondii* and there is a wide range of serological assays available commercially. However, none is a gold standard [2, 16]. The modified agglutination test (MAT) has been most commonly employed but several ELISA kits have also been used previously to detect *T. gondii* antibodies. High agreement between MAT and ELISA has been documented in most investigated animal species and both tests are suitable for epidemiological studies [15, 18, 20, 33, 34].

Conclusions

To the authors’ best knowledge, this is the first epidemiological report of *T. gondii* prevalence in red deer, roe deer and wild boars in Poland. It shows that *T. gondii* is present in wildlife animal tissues in Poland and their consumption may be a potential source of infection for humans.

Acknowledgements. The work was partially supported by a grant from the National Science Center in years 2010-2013 under research project No. N N308 131638.

Conflict of interest

The authors declare that they have no conflict of interest.

References

1. Altman D, Machin D, Bryant T, Gardner M. 2000. *Statistics with confidence: confidence intervals and statistical guidelines*, 2nd ed. BMJ Books: Bristol. p. 254.

2. Arousii A, Vignoles P, Dalmay L, Wirme ML, Mercier A, Ajzenberg D. 2015. Detection of *Toxoplasma gondii* DNA in horse meat from supermarkets in France and performance evaluation of two serological tests. Parasite, 22, 14.

3. Bartova E, Sedlak K, Pavlik I, Literak I. 2007. Prevalence of *Neospora caninum* and *Toxoplasma gondii* antibodies in wild ruminants from the countryside or captivity in the Czech Republic. *Journal of Parasitology*, 93(5), 1216–1218.

4. Beral M, Rossi S, Aubert D, Gasqui P, Terrier ME, Klein F, Villena I, Abril D, Gilot-Fromont E, Richomme C, Hars J, Jourdain E. 2012. Environmental factors associated with the seroprevalence of *Toxoplasma gondii* in wild boars (*Sus scrofa*), France. *Ecohealth*, 9(3), 303–309.
5. Berger-Schoch AE, Bernet D, Doher MG, Gottstein B, Frey CF. 2011. Toxoplasma gondii in Switzerland: A serosurvey based on meat juice analysis of slaughtered pigs, wild boar, sheep and cattle. Zoonoses and Public Health, 58(7), 472–478.

6. Budny M, Panek M, Bresinski W, Kamieniarz B, Maka H. 2010. Sytuacja zwierząt lowych w Polsce – sezon lowicki 2009/2010. Biuletyn Stacji Badawczej PZŁ w Czempinu nr 7: Czempin.

7. Calero-Bernal R, Saugar JM, Frontera E, Perez-Martin JE, Habela MA, Serrano FJ, Reina D, Fuentes I. 2015. Prevalence and genotype identification of Toxoplasma gondii in wild animals from Southwestern Spain. Journal of Wildlife Diseases, 51(1), 233–238.

8. Candela MG, Serrano E, Sevila J, Leon L, Caro MR, Verheyden H. 2014. Pathogens of zoontotic and biological importance in roe deer (Capreolus capreolus): Seroprevalence in an agro-system population in France. Research in Veterinary Science, 96(2), 254–259.

9. Coelho C, Vieira-Pinto M, Faria AS, Vale-Goncalves H, Veloso O, Paiva-Cardoso M, Mesquita JR, Lopes AP. 2014. Serological evidence of Toxoplasma gondii in hunted wild boar from Portugal. Veterinary Parasitology, 202(3–4), 310–312.

10. Czopowicz M, Kaba J, Szalus-Jordanow O, Nowicki M, Witkowski L, Frymus T. 2011. Seroprevalence of Toxoplasma gondii and Neospora caninum infections in goats in Poland. Veterinary Parasitology, 178(3–4), 339–341.

11. Deksnie G, Kirjusina M. 2013. Seroprevalence of Toxoplasma gondii in domestic pigs (Sus scrofa domestica) and wild boars (Sus scrofa) in Latvia. Journal of Parasitology, 99(1), 44–47.

12. Dubey JP. 2010. Toxoplasmosis of animals and humans. 2nd ed., CRC Press: Boca Raton, Florida.

13. EFSA. 2007. Surveillance and monitoring of Toxoplasma gondii in Switzerland: A serosurvey based on meat juice analysis of slaughtered pigs, wild boar, sheep and cattle. Zoonoses and Public Health, 58(7), 472–478.

14. Dubey JP. 2010. Toxoplasmosis of animals and humans. 2nd ed., CRC Press: Boca Raton, Florida.

15. EFSA. 2007. Surveillance and monitoring of Toxoplasma gondii in Switzerland: A serosurvey based on meat juice analysis of slaughtered pigs, wild boar, sheep and cattle. Zoonoses and Public Health, 58(7), 472–478.

16. Gardner IA, Greiner M, Dubey JP. 2010. Statistical evaluation of test accuracy studies for Toxoplasma gondii in food animal intermediate hosts. Zoonoses and Public Health, 57(1), 82–94.

17. Gauss CBL, Dubey JP, Vidal D, Cabezon O, Ruiz-Fons F, Vicente J, Marco J, Lavin S, Gortazar C, Almeria S. 2006. Prevalence of Toxoplasma gondii antibodies in red deer (Cervus elaphus) and other wild ruminants from Spain. Veterinary Parasitology, 136(3–4), 193–200.

18. Halos L, Thebault A, Aubert D, Thomas M, Perret C, Geers R, Alliot A, Escotte-Binet S, Azjenberg D, Darde ML, Durand B, Boireau P, Villena I. 2010. An innovative survey underlining the significant level of contamination by Toxoplasma gondii of ovine meat consumed in France. International Journal for Parasitology, 40(2), 193–200.

19. Jokelainen P, Nareaho A, Halli O, Heinonen M, Sukura A. 2012. Farmed wild boars exposed to Toxoplasma gondii and Trichinella spp. Veterinary Parasitology, 187(1–2), 323–327.

20. Mainar-Jaime RC, Barbera M. 2007. Evaluation of the diagnostic accuracy of the modified agglutination test (MAT) and an indirect ELISA for the detection of serum antibodies against Toxoplasma gondii in sheep through Bayesian approaches. Veterinary Parasitology, 148(2), 122–129.

21. Majewska AC, Werner A, Cabaj W, Moskwa B. 2014. The first report of Toxoplasma gondii antibodies in free-living European bison (Bison bonasus bonasus Linnaeus). Folia Parasitologica, 61(1), 18–20.

22. Malmsten J, Jakubek EB, Bjorkman C. 2011. Prevalence of antibodies against Toxoplasma gondii and Neospora caninum in moose (Alces alces) and roe deer (Capreolus capreolus) in Sweden. Veterinary Parasitology, 177(3–4), 275–280.

23. Opstegh M, Swart A, Fonville M, Dekkers L, van der Giessen J. 2011. Age-related Toxoplasma gondii seroprevalence in Dutch wild boar inconsistent with lifelong persistence of antibodies. PLoS One, 6(1), e16240.

24. Panadero R, Painceira F, Moretti A, Branciari R, Miraglia D, Manfredi MT, Piergili Fioretti D. 2013. Seroprevalence of Toxoplasma gondii in wild boars (Sus scrofa) from Central Italy. Parasite, 20, 48.

25. Richomme C, Afonso E, Tolon V, Ducrot C, Halos L, Alliot A, Perret C, Thomas M, Boireau P, Gilot-Fromont E. 2010. Seroprevalence and factors associated with Toxoplasma gondii infection in wild boar (Sus scrofa) in a Mediterranean island. Epidemiology & Infection, 138(9), 1257–1266.

26. Richomme C, Aubert D, Gilot-Fromont E, Azjenberg D, Mercier A, Ducrot C, Ferté H, Delorme D, Villena I. 2009. Genetic characterization of Toxoplasma gondii from wild boar (Sus scrofa) in France. Veterinary Parasitology, 164(2–4), 296–300.

27. Roqueplo C, Halos L, Cabre O, Davoust B. 2011. Toxoplasma gondii in wild and domestic animals from New Caledonia. Parasite, 18(4), 345–348.

28. Sergeant E. 2015. Epitools epidemiological calculators. AusVet Animal Health Services and Australian Biosecurity Cooperative Research Centre for Emerging Infectious Disease, http://epitools.ausvet.com.au.

29. Sroka J. 2000. Seroepidemiology of toxoplasmosis in the Lublin region. Annals of Agricultural and Environmental Medicine, 8(1), 25–31.

30. Vikoren T, Tharaldsen J, Fredriksen E, Handeland E. 2004. Prevalence of Toxoplasma gondii antibodies in wild red deer, roe deer, moose, and reindeer from Norway. Veterinary Parasitology, 120(3), 159–169.

31. Villena I, Durand B, Aubert D, Blaga R, Geers R, Thomas M, Perret C, Alliot A, Escotte-Binet S, Thebault A, Boireau P, Halos L. 2012. New strategy for the survey of Toxoplasma gondii in meat for human consumption. Veterinary Parasitology, 183(3–4), 203–208.

32. Wallander C, Frossling J, Vagsholm I, Uggla A, Lundén A, 2014. Toxoplasma gondii seroprevalence in wild boars (Sus scrofa) in Sweden and evaluation of ELISA test performance. Epidemiology & Infection, in press, DOI: 10.1017/S0950268814002891.
