Sodium-glucose co-transporter-2 inhibitor-associated euglycemic diabetic ketoacidosis that prompted the diagnosis of fulminant type-1 diabetes: A case report

Taro Yasuma, Yuko Okano, Soichiro Tanaka, Kota Nishihama, Kazuhito Eguchi, Chisa Inoue, Kanako Maki, Akihiro Uchida, Mei Uemura, Toshinari Suzuki, Corina N D’Alessandro-Gabazza, Esteban C Gabazza, Yutaka Yano

Abstract

BACKGROUND

Fulminant type 1 diabetes mellitus (FT1DM) is a subtype of type 1 diabetes mellitus characterized by an abrupt onset and a rapid and complete functional loss of islet β cells. It is a very rare disease generally associated with ketoacidosis and the absence of circulating pancreatic islet-related autoantibodies. Diabetic ketoacidosis with normal blood glucose levels has been reported during sodium-glucose co-transporter 2 (SGLT2) inhibitor therapy.

CASE SUMMARY

The patient was a 43-year-old woman that consulted a medical practitioner for malaise, thirst, and vomiting. Blood analysis showed high blood glucose levels (428 mg/dL), a mild increase of hemoglobin A1c (6.6%), and increased ketone bodies in urine. The patient was diagnosed with type 2 diabetes mellitus. The patient was initially treated with insulin, which was subsequently changed to an
INTRODUCTION

Fulminant type 1 diabetes mellitus (FT1DM) is a rare subtype of type 1 diabetes mellitus. Abrupt onset of the disease with a rapid and complete loss of islet β cell function is a characteristic finding of FT1DM. Although this metabolic disorder’s clinical manifestations are nonspecific, it can lead to diabetic ketoacidosis and increase death risk if not promptly diagnosed and treated with insulin. Unlike patients with acute-onset type 1 diabetes mellitus, patients with FT1DM are negative for circulating autoantibodies and treated with an oral sodium-glucose co-transporter-2 inhibitor-associated euglycemic diabetic ketoacidosis that prompted the diagnosis of fulminant type-1 diabetes: A case report. World J Clin Cases 2021; 9(13): 3163-3169

Core Tip: Fulminant type 1 diabetes mellitus (FT1DM) is characterized by a rapid functional loss of islet β cells and ketoacidosis. Herein, we report a rare case of FT1DM wrongly diagnosed by a medical practitioner as a type 2 diabetes mellitus for the absence of circulating autoantibodies and treated with an oral sodium-glucose co-transporter 2 (SGLT2) inhibitor. This treatment was associated with diabetic symptoms and euglycemic diabetic ketoacidosis. Insulin therapy and SGLT2 inhibitor withdrawal ameliorated the patient's clinical condition. This case report underscores the importance of considering FT1DM in patients with negative circulating autoantibodies and hyperglycemia that develop euglycemic diabetic ketoacidosis following treatment with a SGLT2 inhibitor.

Conflict-of-interest statement: Yano reports receiving lecture fees from Novo Nordisk; and Gabazza EC received grants from Shionogi Corporation and Asahi Kasei. Other authors declared no conflict of interest concerning this case report.

CARE Checklist (2016) statement: The authors have read the CARE Checklist (2016), and the manuscript was prepared and revised according to the CARE Checklist (2016).

Open-Access: This article is an open-access article that was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution NonCommercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/License s/by-nc/4.0/

Manuscript source: Unsolicited manuscript

Specialty type: Medicine, research and experimental

Country/Territory of origin: Japan

Peer-review report’s scientific quality classification

Grade A (Excellent): 0
Grade B (Very good): B
Grade C (Good): 0
Grade D (Fair): 0
Grade E (Poor): 0

Received: December 8, 2020
Peer-review started: December 8, 2020
First decision: January 24, 2021
Revised: January 26, 2021
Accepted: March 11, 2021
Article in press: March 11, 2021
Published online: May 6, 2021

P-Reviewer: Anyfantakis D

oral SGLT2 inhibitor. Antibodies to glutamic acid decarboxylase were negative. Four days after receiving oral SGLT2 inhibitor, she consulted at Mie University Hospital, complaining of fatigue and vomiting. Laboratory analysis revealed diabetic ketoacidosis with almost normal blood glucose levels. The endogenous insulin secretion was markedly low, and the serum levels of islet-related autoantibodies were undetectable. We made the diagnosis of FT1DM with concurrent SGLT2 inhibitor-associated euglycemic diabetic ketoacidosis. The patient's general condition improved after therapy with intravenous insulin and withdrawal of oral medication. She was discharged on day 14 with an indication of multiple daily insulin therapy.
CASE PRESENTATION

Chief complaints
The patient was a 43-year-old woman that consulted the Mie University Hospital because of fatigue and vomiting.

History of present illness
The patient first consulted a medical practitioner because of sudden malaise, thirst, and vomiting in April 2019. A laboratory analysis disclosed increased blood glucose levels (428 mg/dL), a mild increase of hemoglobin A1c (6.6%), and increased ketone bodies in urine. She received insulin therapy for four days. Because the serum anti-glutamic acid decarboxylase antibody was negative, she was diagnosed with type 2 diabetes mellitus. The treatment was then switched from insulin therapy to oral medication with metformin 500 mg/d, empagliflozin 10 mg/d, and vildagliptin 100 mg/d. The patient's general condition improved, and she was discharged two days after switching to oral treatment when her one-point blood glucose level decreased to 203 mg/dL.

Two days after discharge from the medical practitioner's clinic, she consulted Mie University Hospital's outpatient department complaining of fatigue and vomiting. The clinical findings on examination were as follows: Height 159.3 cm; body weight 58.6 kg, body mass index 23.0 kg/m², blood pressure 128/83 mmHg, heart rate 107 beats/min, body temperature 37.4 °C, and peripheral oxygen saturation (SpO2; normal level > 95%) at room air 98 %.

History of past illness
She had no medical history of any disease.

Physical examination
The patient's physical examination showed notable dryness of the oral cavity.

Laboratory examinations
Table 1 showed the results of the laboratory analysis performed at Mie University Hospital. Arterial blood gases demonstrated metabolic acidosis (pH, 7.18; pCO₂, 18 mmHg; HCO₃, 6.6 mEq/L; base excess, -19.3 mmol/L; A-gap, 27.6 mmol/L), with normal level of lactic acid (1.0 mmol/L). Fasting blood glucose (184 mg/dL) was mildly elevated with increased glycated hemoglobin/hemoglobin A1c (HbA1c) (7.3%). Urinalysis showed high levels of glucose (2000 mg/dL) and ketone bodies (3+). The plasma levels of 3-hydroxybutyric acid (6585 μmol/L) were markedly high. The renal function markers (blood urea nitrogen 9.1 mg/dL; serum creatinine 0.40 mg/dL) were within the normal range. These findings were compatible with the diagnosis of diabetic ketoacidosis with mild hyperglycemia.

Further diagnostic work-up
Additional laboratory analysis showed reduced urinary C-peptide level (8.6 μg/d) and decreased fasting serum C-peptide level (0.3 ng/mL). However, islet-related autoantibodies, including anti-glutamic acid decarboxylase antibody, insulin autoantibody, islet cell antibody, insulinoma-associated protein-2 antibody, and zinc transporter-8 autoantibody, were undetectable. An abdominal computed tomography showed a normal pancreas, and the blood level of pancreas exocrine enzymes, including amylase and lipase, were within the normal range.

FINAL DIAGNOSIS
We made the diagnosis of FT1DM based on the laboratory findings at Mie University Hospital and the severe hyperglycemia (≥ 16.0 mmol/L), and a mild increase in HbA1c (< 8.7%) observed at the medical practitioner's clinic.

TREATMENT
On the first day of hospitalization at Mie University Hospital, besides suspending oral antidiabetic agents, the patient received intravenous fluid infusion (1500 mL),
including 20 g of dextrose and 2 units of regular insulin. After this treatment, her metabolic acidosis substantially (pH, 7.32; pCO₂, 25.9 mmHg; HCO₃⁻, 12.9 mmol/L) improved. Because the patient had reduced blood potassium levels (2.8 mEq/L), 10 mEq/d potassium was administered together with 2000 mL/d of intravenous fluid infusion, including 60 g dextrose and 6 units of regular insulin. Blood glucose level fluctuated between 156 mg/dL and 195 mg/dL during the first two days after hospitalization. On the third day of hospitalization, oral food intake and multiple daily injections of insulin were initiated together with a gradual reduction in fluid administration. Urinary ketone bodies became negative on day 7.

OUTCOME AND FOLLOW-UP

The patient was discharged on day 14 with the therapeutic indication of subcutaneous injection of insulin glargine (18 U) before sleep and subcutaneous injection of insulin aspart (12U-6U-10U) before each meal.
DISCUSSION

F1DM is a severe subtype of type 1 diabetes mellitus characterized by extremely rapid and almost complete destruction of pancreatic β-cells that may eventually lead to diabetic ketoacidosis1. It was first reported in Japan by Imagawa et al3, and since then, it has been mainly reported in East Asia. Approximately 20% of acute-onset type 1 diabetes in Japan is F1DM. The Committee of the Japan Diabetes Society reported the diagnostic criteria of FT1DM in 20121–4. There are three criteria for the diagnosis of FT1DM: (1) Occurrence of diabetic ketoacidosis or ketosis (soon within seven days) after the onset of hyperglycemic symptoms, including elevation of urinary and serum ketone bodies during the first visit; (2) Plasma glucose level of ≥16.0 mmol/L (288 mg/dL) and HbA1c level of <8.7% during the first visit; and (3) Urinary C-peptide excretion of <10 μg/d or fasting serum C-peptide level of <0.3 ng/mL (0.10 nM) and <0.5 ng/mL (0.17 nM) after intravenous glucagon (or 2 h after a meal) load6. Circulating pancreatic islet-related autoantibodies are generally negative in FT1DM3.

At the medical practitioner’s clinic, the patient showed an extremely high blood glucose level and a slight increase of HbA1c with a trace of ketone bodies in urine. Symptoms improved after starting insulin therapy. Subsequent laboratory analysis showed a negative test for circulating anti-glutamic acid decarboxylase antibodies. Based on this negative test, the patient was wrongly diagnosed with type 2 diabetes mellitus. Therefore, insulin therapy was stopped, and oral administration of biguanide, dipeptidyl peptidase-4 inhibitor, and SGLT2 inhibitor was initiated. However, discontinuation of insulin and therapy with oral SGLT2 led to the development of diabetic ketoacidosis. During the first visit of the patient at the medical practitioner’s clinic, the laboratory findings of severe hyperglycemia (≥16.0 mmol/L), a slight increase of HbA1c (<8.7%), and ketosis (urinary ketones) are compatible with the diagnosis of F1DM. However, the patient was not diagnosed with F1DM at the first clinic she consulted, probably because the data on C-peptide levels in blood and urine were unavailable. Once admitted to Mie University Hospital, laboratory analysis showed abnormal levels of urinary C-peptide, indicating a remarkable decrease of endogenous insulin secretion, thus strongly suggesting the diagnosis of F1DM. Pancreatic swelling and elevated blood levels of pancreatic enzymes have also been reported in patients with F1DM2,4. However, the pancreas CT findings and the blood levels of pancreas exocrine enzymes were normal. It is worth noting that in the present case, diabetic ketoacidosis occurred despite the slight increase in blood glucose level during the treatment with an SGLT2 inhibitor.

SGLT2 inhibitors are a new class of anti-hyperglycemic medications first introduced in 2013 to treat type 2 diabetes2,3. SGLT2 inhibitors lower the serum glucose levels by increasing urinary glucose clearance6–7. These therapeutic drugs may induce diabetic ketoacidosis3. In 2015, the United States Food and Drug Administration issued a warning statement regarding the risk of diabetic ketoacidosis during treatment with SGLT2 inhibitors9. Several mechanisms may explain the increase of blood ketone bodies by SGLT2 inhibitors. SGLT2 inhibitors stimulate glucagon secretion from pancreatic α cells by lowering blood glucose and binding directly to SGLT2 expressed in pancreatic α cells8,9. This hyperglucagonemia accelerates lipolysis leading to increased release of free fatty acids in the blood9. The amelioration of hyperglycemia by SGLT2 inhibitors also suppresses the endogenous secretion of insulin. Inhibition of hepatic acetyl-CoA carboxylase by the increased blood levels of glucagon and the decreased insulinemia decreases malonyl CoA, increases carnitine palmitoyltransferase type I, and accelerates β-oxidation leading to enhanced production of ketone bodies from free fatty acids9. The significant reduction of endogenous insulin secretion observed in our current case further increases the risk of developing diabetic ketoacidosis. A normal or mildly elevated blood glucose level referred to as euglycemic diabetic ketoacidosis is another characteristic finding in diabetic ketoacidosis induced by SGLT2 inhibitors9. This laboratory finding makes the diagnosis of diabetic ketoacidosis even more difficult, and it is a frequent cause of missed diagnosis or delayed treatment. In our present case, the discontinuation of insulin therapy and administration of SGLT2 inhibitor might have contributed to the acceleration of diabetic ketoacidosis.

CONCLUSION

Here, we report a case of F1DM with diabetic ketoacidosis. This case report underscores the importance of considering the diagnosis of F1DM in all patients with
severe hyperglycemia even in the absence of circulating autoantibodies and the possibility of euglycemic diabetic ketoacidosis in patients treated with SGLT2 inhibitors. SGLT2 inhibitors are frequently used as antidiabetic drugs for their cardiovascular\cite{2,3} and renal benefits\cite{4,5}. Recently, Japan approved the use of dapagliflozin and ipragliflozin in combination with insulin for type 1 diabetes, and in May 2020, the United States Food and Drug Administration approved the indication of dapagliflozin for heart failure. The major availability of SGLT2 inhibitors predicts an increase in the number of medical indications of SGLT2 inhibitors in the coming future. Therefore, major awareness of the potential adverse events of SGLT2 inhibitors is fundamental to avoid misdiagnosis in daily clinical practice.

REFERENCES

1. Imagawa A, Hanafusa T, Miyagawa J, Matsuzawa Y. A novel subtype of type 1 diabetes mellitus characterized by a rapid onset and an absence of diabetes-related antibodies. Osaka IDDM Study Group. N Engl J Med 2000; 342: 301-307 [PMID: 10655528 DOI: 10.1056/NEJM200002033420501]

2. Imagawa A, Hanafusa T, Uchigata Y, Kanatsuka A, Kawasaki E, Kobayashi T, Shimada A, Shimizu I, Toyoda T, Maruyama T, Makino H. Fulminant type 1 diabetes: a nationwide survey in Japan. Diabetics Care 2003; 26: 2345-2352 [PMID: 12882860 DOI: 10.2337/diacare.26.8.2345]

3. Imagawa A, Hanafusa T, Awata T, Ikegami H, Uchigata Y, Osawa H, Kawasaki E, Kawabata Y, Kobayashi T, Shimada A, Shimizu I, Takahashi K, Nagata M, Makino H, Maruyama T. Report of the Committee of the Japan Diabetes Society on the Research of Fulminant and Acute-onset Type 1 Diabetes Mellitus: New diagnostic criteria of fulminant type 1 diabetes mellitus (2012). J Diabetes Invest 2012; 3: 536-539 [PMID: 24843620 DOI: 10.1111/jdi.12024]

4. Kahara T, Takamura T, Sakurai M, Misu H, Usada R, Hayakawa T, Nishimura Y, Bando Y, Nagaoka T, Nagai Y, Kaneko S. Pancreatic exocrine and endocrine events occur concomitantly but independently during the course of fulminant type 1 diabetes. Diabetes Res Clin Pract 2006; 71: 241-246 [PMID: 16112239 DOI: 10.1016/j.diabres.2005.07.003]

5. Nakajima M, Shirokawa M, Nakano T, Goto H. Fulminant type 1 diabetes mellitus with remarkable elevation of serum pancreatic enzymes. Am J Emerg Med 2018; 36: e13-1326. e5 [PMID: 29685363 DOI: 10.1016/j.ajem.2018.04.026]

6. Nafl S, Wilding JP. Sodium glucose cotransporter 2 inhibitors as a new treatment for diabetes mellitus. J Clin Endocrinol Metab 2010; 95: 34-42 [PMID: 19892839 DOI: 10.1210/jc.2009-0473]

7. Tahraani AA, Bailey CJ, Del Prato S, Barnett AH. Management of type 2 diabetes: new and future developments in treatment. Lancet 2011; 378: 182-197 [PMID: 21705062 DOI: 10.1016/S0140-6736(11)60207-9]

8. Ogawa W, Sakaguchi K. Euglycemic diabetic ketoacidosis induced by SGLT2 inhibitors: possible mechanism and contributing factors. J Diabetes Invest 2016; 7: 135-138 [PMID: 27042263 DOI: 10.1111/jdi.12401]

9. U. S. Food and Drug Administration. FDA warns that SGLT2 inhibitors for diabetes may result in a serious condition of too much acid in the blood, 2015. [cited 10 October 2020] Available from: https://www.fda.gov/downloads/drugs/drugsafety/ucm446954.pdf

10. Bonner C, Kerr-Conste J, Gmyr V, Queniat G, Moerman E, Thévenet J, Beaucamps C, Delalleau N, Popescu I, Malaise WJ, Senor A, Deprez B, Abderrahmani A, Staelens B, Pattou F. Inhibition of the glucose transporter SGLT2 with dapagliflozin in pancreatic alpha cells triggers glucagon secretion. Nat Med 2015; 21: 512-517 [PMID: 25894829 DOI: 10.1038/nm.3828]

11. Peters AL, Buschur EO, Buse JB, Cohan P, Diner JC, Hirsch BJ. Euglycemic Diabetic Ketoacidosis: A Potential Complication of Treatment With Sodium-Glucose Cotransporter 2 Inhibition. Diabetes Care 2015; 38: 1687-1693 [PMID: 26078479 DOI: 10.2337/dc15-0843]

12. Neal B, Perkovic V, Matthews DR. Canagliflozin and Cardiovascular and Renal Events in Type 2 Diabetes. N Engl J Med 2017; 377: 2099 [PMID: 29166232 DOI: 10.1056/NEJMec1712572]

13. Wiviott SD, Raz I, Bonaca MP, Mosenzon O, Kato ET, Cahn A, Silverman MG, Zelniker TA, Kuder JF, Murphy SA, Bhatt DL, Leiter LA, McGuire DK, Wilding JPH, Ruif CT, Guein-Nilsson IAM, Pedirksso M, Johansson PA, Langkilde AM, Sabatinie MS, DEACIRE–TIMI 58 Investigators. Dapagliflozin and Cardiovascular Outcomes in Type 2 Diabetes. N Engl J Med 2019; 380: 347-357 [PMID: 30415602 DOI: 10.1056/NEJMoa1812389]

14. Zimman B, Wanner C, Lachin JM, Fitchett D, Bluhmki E, Hantel S, Matthews M, Devins T, JouHansen OE, Woerle HJ, Broedl UC, Inzucchi SE; EMPA-REG OUTCOME Investigators. Empagliflozin, Cardiovascular Outcomes, and Mortality in Type 2 Diabetes. N Engl J Med 2015; 373: 2117-2128 [PMID: 26378978 DOI: 10.1056/NEJMoa1504720]

15. Perkovic V, de Zeeuw D, Mahaffey KW, Flichter G, Erondu N, Shaw W, Barrett TD, Weidner-Wells M, Deng H, Matthews DR, Neal B. Canagliflozin and renal outcomes in type 2 diabetes: results from the CANTAS Program randomised clinical trials. Lancet Diabetes Endocrinol 2018; 6: 691-704 [PMID: 29937267 DOI: 10.1016/S2213-8587(18)30141-4]

16. Wanner C, Inzucchi SE, Lachin JM, Fitchett D, von Eynatten M, Matthews M, Johansen OE, Woerle HJ, Broedl UC, Zimman B; EMPA-REG OUTCOME Investigators. Empagliflozin and Progression of
Kidney Disease in Type 2 Diabetes. *N Engl J Med* 2016; **375**:323-334 [PMID: 27299675 DOI: 10.1056/NEJMoa1515920]
