Habitat Disturbance Linked with Host Microbiome Dispersion and *Bd* Dynamics in Temperate Amphibians

Wesley J. Neely1 · Sasha E. Greenspan1 · Leigha M. Stahl1 · Sam D. Heraghty1 · Vanessa M. Marshall1 · Carla L. Atkinson1 · C. Guilherme Becker1

Received: 31 July 2021 / Accepted: 8 October 2021 / Published online: 20 October 2021
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021

Abstract
Anthropogenic habitat disturbances can dramatically alter ecological community interactions, including host–pathogen dynamics. Recent work has highlighted the potential for habitat disturbances to alter host-associated microbial communities, but the associations between anthropogenic disturbance, host microbiomes, and pathogens are unresolved. Amphibian skin microbial communities are particularly responsive to factors like temperature, physiochemistry, pathogen infection, and environmental microbial reservoirs. Through a field survey on wild populations of *Acris crepitans* (Hylidae) and *Lithobates catesbeianus* (Ranidae), we assessed the effects of habitat disturbance and connectivity on environmental bacterial reservoirs, *Batrachochytrium dendrobatidis* (*Bd*) infection, and skin microbiome composition. We found higher measures of microbiome dispersion (a measure of community variability) in *A. crepitans* from more disturbed ponds, supporting the hypothesis that disturbance increases stochasticity in biological communities. We also found that habitat disturbance limited microbiome similarity between locations for both species, suggesting greater isolation of bacterial assemblages in more disturbed areas. Higher disturbance was associated with lower *Bd* prevalence for *A. crepitans*, which could signify suboptimal microclimates for *Bd* in disturbed habitats. Combined, our findings show that reduced microbiome stability stemming from habitat disturbance could compromise population health, even in the absence of pathogenic infection.

Keywords Anthropogenic disturbance · *Batrachochytrium dendrobatidis* · Chytridiomycosis · Disease ecology · Dysbiosis · Skin microbiome

Introduction
Anthropogenic habitat alterations such as deforestation can lead to instability and decline of animal populations by disrupting ecological interactions [1–7]. For example, habitat disturbance can influence interactions between predators and prey [8], plants and pollinators [9], and hosts and pathogens [10, 11]. The effects of habitat disturbance on disease dynamics are often nuanced and the driving mechanisms may vary among landscapes and pathogen transmission types [12, 13]. Some of these factors include increased population density which could concentrate susceptible hosts, reduced ecosystem complexity which could increase encounter rate between susceptible hosts and pathogens, and increased host stress which could reduce immune function [14–16]. Additionally, habitat alterations can lead to changes in terrestrial and aquatic microbial communities, with downstream effects on host-associated microbiomes, defined as microbial communities and their metabolic products [17–19]. Temperature variation, habitat connectivity, and aquatic soil influx, which are key variables affected by anthropogenic habitat disturbance, have all been correlated with host microbiome composition [20–22]. Consequential changes to host microbiome composition following habitat disturbances can have sub-lethal negative impacts on host immunity, potentially increasing disease susceptibility and threatening host health [23].

Host microbiomes play vital roles in organism functions like metabolism and immunity [24–26]. While many studies have found that higher microbiome diversity confers beneficial effects to the host through increases in host immune function and direct defense against invading pathogens...
[27–30], more diverse microbiomes are also more likely to include pathogenic taxa, or may indicate a disrupted state [31–33]. Microbiomes can enter a state of dysbiosis when beneficial microbes are depleted, pathogenic microbes are enriched, or overall diversity is reduced [27, 31, 34, 35], but classifying microbiome dysbiosis can be difficult as it varies between hosts and systems. In some systems, higher variance in the microbiome of individuals can be used to identify microbiomes in a state of dysbiosis [31]. Variance can be represented by greater dispersion, which is the average distance from data points to the group centroid in the consolidated microbial community data represented by principal coordinates. This has been dubbed the “Anna Karenina principle,” where microbial communities become more variable between hosts under stress, leading to greater spread along principal component axes [31]. This principle is supported by recent studies on corals [18], anemones [36], frogs [21, 37], and humans [38, 39].

Relatively few studies have examined interactions between habitat disturbance, host microbiome composition, and invading pathogens. Amphibians often require multiple habitat types to complete their life cycle. They are particularly responsive to anthropogenic habitat disturbances that may alter biotic and abiotic environmental conditions and influence their movement. A recent study found that proximity to anthropogenic development was associated with higher dispersion and altered function of the microbiome of a neotropical frog species [37]. Recent work has also revealed associations between the composition of the amphibian skin microbiome and the outcome of infection with *Batrachochytrium dendrobatidis* (*Bd*), a waterborne fungal pathogen that is transmitted between hosts sharing the same habitat [26, 30, 40–44]. In line with work on the microbiome of other organisms, classifying protective aspects of the amphibian microbiome is complex and often conflicting between host species and study systems [45–47]. The outcome of pathogen infection may, therefore, be determined by the function of key members in the skin microbiome, and the composition of the microbiome as a whole. Disturbed habitats likely impose multiple correlated and contrasting challenges on amphibians, their skin microbiomes, and disease resistance, so studies combining multiscale measures of disturbance are needed.

In this study, we use a *Bd*-enzootic system in southeastern USA to determine the influences of habitat disturbance on microbiome-*Bd* dynamics. In line with recent studies [21, 31, 36–39], we hypothesized that habitat disturbance, connectivity, and associated pond water physiochemistry would drive bacterial assembly in the environment, which together would shape the composition of the amphibian skin microbiome. We proposed two contrasting predictions for how habitat disturbance would impact *Bd*: (1) disturbance could directly reduce *Bd* prevalence and infection loads by shifting optimal microclimates for *Bd* [48, 49] or (2) disturbance could increase stochasticity in the microbiome, which could reduce host-protective effects of the microbial community and therefore indirectly increase *Bd* prevalence and loads. Through this study, we shed light on the links connecting landscape change to microbiome disruption and disease in temperate amphibian populations.

Methods

Sample Sites and Study Design

From 22 April to 8 May 2019, we sampled 30 permanent ponds in Tuscaloosa County, AL (Fig. S1), collecting data on frog skin microbial diversity, *Bd* infection, and environmental parameters. We captured sufficient sample sizes of frog species at 19 of the sites, but we used all 30 ponds for environmental analyses (Table S1). For each sampling site, we calculated the percent of anthropogenic and natural landcover within a 500-m radius of each pond using ArcGIS (version 10.5.1). We used GAP Land Cover Data [50] to classify land cover as either natural (aquatic vegetation, forest and woodland, introduced and semi natural vegetation, nonvascular and sparse vascular rock vegetation, or shrubland and grassland), disturbed (agricultural vegetation, developed and other human use, or recently disturbed or modified), or open water at 30-m resolution. For statistical analysis, we used continuous (percentage) and binary (high >45% or low <45% as in [20]) measures of habitat disturbance. Of the 19 sites, 10 had relatively low levels of disturbance and 9 had high levels of disturbance.

Based on initial surveys, we focused on 2 common frog species: the northern cricket frog (*Acris crepitans*) and the American bullfrog (*Lithobates catesbeianus*). These two species are both native to Alabama and while occupying similar habitats are from distinct families (Hylidae vs. Ranidae, respectively). This provides the opportunity to study the responses of diverse taxa to disturbance. At each site, we sampled up to 20 frogs of the most abundant species, resulting in 156 *A. crepitans* from 10 sites (6 high disturbance, 4 low disturbance) and 100 *L. catesbeianus* from 9 sites (3 high disturbance, 6 low disturbance), with no overlapping sites between frog species. We captured an additional 7 *A. crepitans* at a local lake that we use in our habitat connectivity analysis but excluded from other analyses due to the differences in lake water parameters.

We conducted nocturnal surveys by searching along pond edges and captured frogs using dipnets or by hand. Sampling was random with regard to sex and size. All *A. crepitans* were similar in size, while *L. catesbeianus* varied (see Supplemental Data). Dipnets were rinsed between individuals and new plastic bags were placed over the searcher’s hand.
Field equipment (boots, waders, and nets) were sterilized with bleach between sample sites to prevent the spread of microorganisms. We temporarily held frogs in plastic bags until processing. Each individual was weighed, measured (snout-vent length), and swabbed, then released at the location of capture. We rinsed amphibians with sterile distilled water prior to swabbing to reduce sampling of unassociated environmental microbes. Individuals were swabbed using a sterile swab (Medical Wire) 5 times on the underside of each foot and 5 times on each side of the venter for a total of 30 passes [51]. We dry-stored swabs in sterile tubes on ice while in the field and moved them to a −20 °C freezer upon return to the lab, where they remained until DNA extraction.

During each sampling trip, we also collected a range of water quality parameters from surface water at 3 locations in each pond (Table S1). Using a YSI Pro Plus multiparameter meter (Yellow Springs Inc., Yellow Springs, OH), we measured temperature, pH, dissolved oxygen (DO), and conductivity. We measured turbidity using the Aquafour handheld fluorometer/turbidimeter (Turner Designs), which was rinsed between each measurement. From the same 3 locations where we measured water parameters, we also collected 500 mL of surface water to assess nutrient levels and characterize environmental bacteria communities. We collected water in sterile, acid-washed, and autoclaved polyethylene bottles (Nalgene) and flushed the bottles 3 times in pond water prior to sample collection. Water samples were stored on ice until returning to the lab where they were refrigerated and filtered within 24 h. In the lab, we homogenized each water sample separately through gentle inversion, then vacuum filtered 200 mL through a 0.45-µm mixed cellulose ester filter using acid-washed Erlenmeyer flasks and magnetic filter funnels (Pall). Filters were cut into four wedges to increase DNA yield [52], and we doubled all vortex times prior to DNA extraction.

Using the Qiagen DNeasy Blood & Tissue Kit following a modification of the standard protocol. After the addition of proteinase K, we incubated at 56 °C for 12 h instead of 4 h to increase DNA yield [52], and we doubled all vortex times for water filters to increase the removal of bacteria from filter fibers. We included negative controls of sterile water to monitor potential contamination of extraction reagents.

For qPCR analysis of Bd from skin swab DNA, we diluted DNA 1:10 to reduce reaction inhibition and quantified Bd loads using Taqman qPCR assays on Bd-specific ITS and 5.8S genes [53] and used gBlock synthetic Bd standards (Integrated DNA Technologies) diluted from 10^6 to 10^2 gene copies (g.c.). We ran plates in duplicate, with mismatching samples run in triplicate. Only samples that were positive on 2 plates were recorded as positive. Bd loads were averaged across the duplicate plates and log10-transformed to correct for non-normal residual distributions. Because our two host species vary substantially in average body mass, we divided Bd loads by individual body mass to reduce the influence of swab area on Bd loads.

For metabarcoding bacterial communities from skin swabs and water samples, we followed the Earth Microbiome Project 16S Illumina Amplicon Protocol [54, 55], which targets the V4 region of the bacterial 16S rRNA gene using a dual-index approach with 515F and 806R barcoded primers. We PCR-amplified extracted bacterial DNA in duplicate using the following recipe per sample: 12.2 µL of UltraPure water, 4 µL of 5X Phire reaction buffer (Thermo Scientific), 0.4 µL of 10-mM dNTPs (Invitrogen), 0.4 µL of Phire Hot Start II DNA Polymerase (Thermo Scientific), 0.5 µL each of 10-µM barcoded forward and reverse primers (Integrated DNA Technologies), and 2 µL of sample DNA. We ran duplicate PCR plates on SimpliAmp thermal cyclers (Thermo Scientific) according to the following protocol: 98 °C for 3 min, 38 cycles of 98 °C for 5 s, 50 °C for 5 s, and 72 °C for 15 s, then 72 °C for 3 min before holding at 12 °C. After optimization trials, we diluted DNA from water filters 1:100 prior to PCR amplification to reduce inhibition. PCR inhibition was not observed with skin swabs, negating the need for dilution. We included negative controls (water without template DNA) to monitor any potential contamination of PCR reagents. We combined duplicate plates and visualized amplicons in 1% agarose gel to confirm DNA amplification, then pooled 2 µL of each sample into two amplicon libraries, with samples randomly allocated to each library. We purified the libraries using the QIAquick Gel Extraction Kit (Qiagen), then measured DNA concentration using the Qubit 2.0 fluorometer with a dsDNA Broad-Range Assay Kit (Invitrogen). Concentrations of the purified libraries were 42.5 and 21.8 ng/µL. The 16S libraries were sequenced using Illumina MiSeq at Tufts University Core Facility (TUCF Genomics), Boston, MA, USA. All bacterial sequences were deposited in the NCBI Sequence Read Archive (BioProject PRJNA761342).

Molecular Methods

We extracted DNA from skin swabs and water filters using the Qiagen DNeasy Blood & Tissue Kit following a...
We received demultiplexed bacterial sequences, then imported forward reads for each sample into Quantitative Insights into Microbial Ecology II (QIIME2 version 2019.10). We used QIIME2 to generate OTU tables and extract metrics of alpha and beta diversity for frog and water bacterial microbiomes. Prior to analyzing sequence data, we trimmed sequences to 150 bp, filtered by quality score [56], and then used the deblur pipeline to cluster sequences into operational taxonomic units (OTUs) based on 97% similarity. Taxonomy was assigned to OTUs using the Greengenes 13.8 reference sequence database. We removed chloroplast and mitochondrial sequences and removed reads from any OTUs contributing less than 0.005% of total reads [56], then rarefied the OTU table to 4000 reads based on rarefaction curves (Fig. S2). This resulted in 99 of 414 samples being excluded, including all extraction and PCR negative controls. For frog and water samples, we used the Shannon diversity index and the number of OTUs as metrics of alpha diversity and Bray–Curtis dissimilarity matrices as a metric of beta diversity. We used principal coordinates (PCo) to visualize patterns in beta diversity. The number of OTUs was highly correlated with Faith’s phylogenetic diversity index ($R^2 = 0.95, P < 0.0001$) and moderately correlated with unweighted UniFrac PCo1 ($R^2 = 0.39, P < 0.0001$), so patterns in the number of OTUs represent patterns in all three metrics.

Statistical Analyses

We calculated microbiome dispersion (distance from centroid) for each sample using the betadisper function in Program R (vegan package; [57]). We calculated dispersion based on Bray–Curtis dissimilarity matrices grouped by host species. Higher values indicate samples that are further from the average community composition. Sampling was random by sex and body mass. This metric provides an indication of disruption to the frog skin microbiome, with higher values indicating higher stochasticity, a higher likelihood of containing transient pathogens, and perhaps, lower community stability [21, 31, 34, 58].

We reduced our measures of water quality to two variables using principal component analysis (PCA) in JMP [59]. Water quality PC1 comprised 38% of the total variability and was positively associated with pH, orthophosphate, DO, and conductivity and negatively associated with ammonia. Water quality PC2 comprised 25.6% of the total variability and was positively associated with nitrate, ammonia, conductivity, and orthophosphate and negatively associated with DO. Thus, PC1 generally indicates changes in basic water physiochemistry, while PC2 indicates a gradient in nitrogen levels (Fig. S3).

To compare metrics of diversity (Shannon index, number of OTUs, Bray–Curtis dispersion) between host species, we ran independent general linear mixed models (GLMM) with sample site as a random effect.

We used model selection interfaces in JMP to parse out key variables explaining Bd infection and microbiome dispersion. We analyzed data separately for host species at the “site” level, averaging all pathogen, microbiome, and environmental variables by sample site (10 sites for $A. crepitans$, 9 for $L. catesbeianus$). We used Bd prevalence, loads, and microbiome dispersion (Bray–Curtis) separately as responses and included the following predictors in each model: number of OTUs on frogs, environmental bacteria PCo1 (Bray–Curtis), water quality PC1, water quality PC2, habitat disturbance (continuous %), and temperature. We looked at all possible models explaining Bd infection or microbiome dispersion with a limit of up to 5 predictors.

We then selected the model with the lowest AICc score, and if more than one model was within 2 AAIc’s of the top model, we selected the model with the highest R^2 coefficient (Table S2; [60, 61]). We used a generalized linear model with a binomial distribution for the model on Bd prevalence and general linear models with a Gaussian distribution for Bd loads and microbiome dispersion. Pearson correlations were used to compare Bd infection and microbiome dispersion.

Using the same variables analyzed using model selection, we conducted structural equation models in R (piecewiseSEM package; [62]) to test for significant associations while taking into account indirect effects among variables. We looked at links between Bd prevalence, microbiome dispersion, environmental bacteria PCo1, water quality PC1 and PC2, habitat disturbance (continuous %), and temperature. For each analysis, we started with the full model containing all ecologically relevant links and consecutively pruned the model to remove unsupported links and improve AICc model fit.

We used PermANOVA in R (adonis function in vegan package; [57]) to analyze differences in microbiome composition between sites with high (>45% disturbed) and low (<45% disturbed) habitat disturbance for $A. crepitans$, $L. catesbeianus$, and water samples separately. We also analyzed differences between frog and water bacterial communities. For each model, we controlled for sample site using the “strata” argument.

We calculated spatial connectivity between sites using the same landcover data acquired to measure habitat disturbance [50], and the ArcMap Circuitscape add-on (version 4.0.5; [63]). We coded disturbed habitat pixels with resistance of 5 (moderate resistance) and natural habitat pixels as 1 (low resistance). We then calculated pairwise resistance to movement between sites for both frog species and aquatic bacteria individually. We used partial mantel tests (mantel.partial function in the vegan package, [57]) to analyze the correlation between microbial similarity matrices.
(Bray–Curtis) and landscape resistance matrices for both species, controlling for Euclidean distances between sites.

Results

All ranges are ± standard error unless otherwise specified. *Bd* prevalence was 35% ± 0.80% for *A. crepitans* and 44% ± 1.30% for *L. catesbeianus* across all sampling locations. *Bd* loads were 2621 ± 1133 g.c. and 2354 ± 2089 g.c. for *A. crepitans* and *L. catesbeianus*, respectively. We found 882 OTUs from *A. crepitans* and 971 OTUs from *L. catesbeianus*. We recorded 850 OTUs from water samples across the 30 sites. The dominant phyla detected on both frogs and in water samples were Proteobacteria, Actinobacteria, Bacteroidetes, and Firmicutes. When comparing alpha diversity metrics among host species, the number of OTUs and Shannon diversity were different between the two species (OTUs: $\beta = -36.21 \pm 6.74$, $R^2 = 0.45$, $P < 0.0001$; Shannon: $\beta = -0.52 \pm 0.11$, $R^2 = 0.21$, $P = 0.0002$) with both metrics being higher in *L. catesbeianus* (OTUs: 177 ± 8, Shannon: 4.26 ± 0.20) than *A. crepitans* (OTUs: 99 ± 4, Shannon: 3.21 ± 0.07). We found that Bray–Curtis dispersion was higher in *L. catesbeianus* than that in *A. crepitans* ($\beta = -0.10 \pm 0.01$, $R^2 = 0.46$, $P < 0.0001$).

Through model selection, we found that higher levels of habitat disturbance were associated with higher skin microbiome dispersion in *A. crepitans* ($\beta = 0.51 \pm 0.14$, $P = 0.007$; Table S3). For *L. catesbeianus*, we found that higher water temperatures were associated with lower *Bd* prevalence ($\beta = -0.20 \pm 0.10$, $P = 0.032$), and we detected a positive relationship between skin microbiome dispersion and water chemistry PC2 ($\beta = 0.02 \pm 0.01$, $P = 0.062$; Table S3). We found no significant correlation between skin microbiome dispersion and *Bd* prevalence (*A. crepitans*: Pearson $r = -0.05$, $P = 0.887$; *L. catesbeianus*: Pearson $r = -0.45$, $P = 0.226$) or loads (*A. crepitans*: Pearson $r = -0.31$, $P = 0.260$; *L. catesbeianus*: Pearson $r = -0.26$, $P = 0.500$), but all correlations trended negative with higher dispersion associated with lower *Bd* prevalence and loads.

The structural equation model for *A. crepitans* revealed a positive effect of habitat disturbance on skin microbiome dispersion ($\beta = 0.51 \pm 0.14$, $P = 0.007$) and a negative effect of habitat disturbance on *Bd* prevalence ($\beta = -1.29 \pm 0.44$, $P = 0.026$; Fig. 1; Table S4). Environmental bacteria community composition predicted *Bd* prevalence ($\beta = -0.62 \pm 0.24$, $P = 0.042$; Fig. 1). For *L. catesbeianus*, we did not detect any significant influences of environmental parameters on *Bd* prevalence or skin microbiome dispersion (Table S4).

Using PermANOVA, we found that microbiome composition of *A. crepitans* differed between sites with high and low habitat disturbance (Bray–Curtis: $F_{(1,126)} = 3.38$, $R^2 = 0.03$, $P = 0.005$; Fig. 2). Microbiome composition of *L. catesbeianus* showed no difference among sites with high and low disturbance (Bray–Curtis: $F_{(1,85)} = 1.53$, $R^2 = 0.02$, $P = 0.080$; Fig. S4). Water samples showed significant differentiation between sites with high and low habitat disturbance (Bray–Curtis: $F_{(1,85)} = 2.24$, $R^2 = 0.03$, $P = 0.003$; Fig. S5). Microbiomes of frogs were significantly different from the aquatic reservoir of bacteria (Bray–Curtis: $F_{(1,303)} = 100.69$, $R^2 = 0.25$, $P = 0.001$; Fig. S6).

Using partial mantel tests, we found that habitat connectivity (or its inverse, greater resistance to movement via increased disturbance) was positively correlated with microbiome similarity (Bray–Curtis) between sites for *A. crepitans* (Mantel $r = 0.546$, $P = 0.044$; Fig. 3) and *L. catesbeianus* (Mantel $r = 0.501$, $P = 0.048$; Fig. 3). Habitat connectivity was not correlated with environmental bacterial similarity between sites (Mantel $r = -0.041$, $P = 0.614$, Mantel $r = 0.111$, $P = 0.208$).

Discussion

We found strong links between habitat disturbance, microbiome composition, and *Bd* infection in *A. crepitans*. Habitat disturbance was associated with higher dispersion of the skin microbiome, but also lower *Bd* prevalence. We originally predicted that habitat disturbance would either directly reduce *Bd* prevalence and loads as expected based on shifts in microclimate, or indirectly increase *Bd* prevalence through disruption to the skin microbiome. Our results indicate that despite the strong influence of habitat disturbance on microbiome dispersion, *Bd* prevalence was primarily driven by direct effects of disturbance on abiotic conditions, consistent with previous studies [48, 49, 64, 65]. We also found lower *Bd* prevalence at sites with warmer water temperatures for *L. catesbeianus*. As water temperatures at our sites ranged from 20 to 28 °C, which exceeds the known thermal maximum of *Bd* in culture (25 °C; [66, 67]), this is further support of a strong role of abiotic habitat in determining *Bd* infection dynamics.

Generally, *Bd* exhibits low pathogenicity in amphibians of the southeastern USA [68, 69], indicating that frogs in this temperate climate are tolerant to infection or *Bd* in this system may have low virulence. This is further supported by high pathogen loads recorded in *Acris* sp. in past studies [70, 71] and high *Bd* prevalence in our two aquatic-associated species without signs of disease. Even in the absence of *Bd*-associated disease, however, microbiome disruption through proxy of dispersion can be seen as an indicator of negative health in situations of environmental stress like habitat degradation. This is in line with the Anna Karenina principle put forth by Zaneveld et al. [31], proposing that microbiomes under stress will exhibit higher variability than microbiomes of healthy individuals. This principle
has been demonstrated in many different taxa, including the coral species *Aiptasia* where heat stress was found to increase microbiome dispersion [36]. Similarly, another study found that temperature stress increased dispersion in the gut microbiome of tadpoles, which negatively impacted growth [21]. Furthermore, a recent study on endangered frogs from Costa Rica found skin microbiomes of frogs from sites with greater human disturbance had higher dispersion than those of frogs from natural sites [37]. Jiménez et al. [37] also found higher numbers of *Bd*-inhibitory OTUs on frogs at more disturbed sites, possibly indicating stress-associated selection on the microbiome to increase protective effects. Our findings reveal the potential for habitat disturbance to increase microbiome variability, providing support for the Anna Karenina principle when host health is subsequently affected. Our results were inconsistent between host species, likely due to morphological and life history differences between *A. crepitans* and *L. catesbeianus*. These two host species use the same habitat and are active during the same time of day, although *Acris* spp. are known to avoid forest cover [72]. Additionally, *L. catesbeianus* are large-bodied and known to be resistant and tolerant to *Bd* infection [73–75]. Although not significant, we found a positive trend between water quality PC2, associated with nutrient...
levels, and skin microbiome dispersion for *L. catesbeianus*. While our metric of habitat disturbance was not directly correlated with nutrient levels, elevated nutrient levels in aquatic systems are often linked with disturbance-associated runoff [19]. Therefore, elevated nutrient levels in our study could indicate indirect habitat disturbance beyond our direct measurement of habitat composition. Past findings show that elevated nutrient runoff can lead to pathogenic bacterial blooms and subsequently elevated disease in frogs [33]. As dispersion is often used as a metric of dysbiosis [31], elevated microbiome dispersion in our study could point to similar health concerns.

Disturbance was also linked with distinct bacterial community assembly, indicating that in this instance higher dispersion signifies a shift in community composition in addition to increased stochasticity. While we found no relationship between microbes in frog versus water samples, we did find significant differences in aquatic microbes between sites with high and low disturbance. This indicates that disturbance could be influencing the microbial pools available for recruitment to frog skin microbiomes. As we only sampled the aquatic bacteria at three aquatic points within the 500-m radius, it is possible that other sources of bacteria, such as soil reservoirs, follow the expected trend with disturbance. Amphibians in the temperate southeast breed in late April through May, months when temperatures are still relatively mild. Based on temperature logging a week before sampling, average water temperatures at all sites (20–24 °C) were within the optimal range for *Bd* (15 and 25 °C; [66, 67]). Through cyclic seasonal patterns in infection [76], with higher infections in the fall and spring months, amphibians in this area likely have immune responses primed for *Bd* infection [77].

We found strong support for microbiome differentiation based on habitat connectivity for both *A. crepitans* and *L. catesbeianus*, even after controlling for the relationship between microbiome dissimilarity and Euclidean distance between sites. These species are closely tied to bodies of water during the breeding season [78–80], which indicates that aquatic reservoirs of bacteria are the primary determinants of skin microbial composition. The link between microbiome similarity and habitat connectivity could therefore indicate that natural habitats are allowing greater connectivity between environmental reservoirs of bacteria [81], leading to greater similarity on frogs. Our analysis comparing aquatic bacterial similarity to habitat connectivity did not support this hypothesis, which indicates that both

Fig. 3 Panels showing habitat connectivity maps (shown as the inverse, resistance) (1) for *A. crepitans* (A) and *L. catesbeianus* (B), and the correlations between resistance/distance and microbiome similarity based on Bray–Curtis dissimilarity matrices (2) for *A. crepitans* (a–b) and *L. catesbeianus* (c–d). Trendlines do not represent linear regression fit.
reservoir connectivity and host movement between habitats may be influential in microbiome assembly.

With exponentially increasing development of natural habitats, understanding the impacts of habitat disturbance on wildlife populations is vital. Past studies have shown that *Bd* infection risk is generally lower for generalist frogs that use disturbed habitats [48, 49], but amphibians may still be negatively affected despite pathogen reduction in warmer open environments [82]. Our results suggest that even in the absence of disease, microbiome disruption can occur in conjunction with habitat disturbance. Other factors not measured in this study like immune function and stress response are likely influenced by habitat integrity [70, 83] and may be mediating links between habitat disturbance and the skin microbiome. Additional experimental work tracking recruitment of environmental bacteria to the microbiome would be valuable in disentangling which habitat parameters are most likely connected to changes in the skin microbiome. Studies focusing on immune modulation by habitat change would also be valuable in determining how much of the microbiome response is mediated by the immune system and vice versa. Our work adds support to a growing body of literature showing that disturbance in many forms can influence the assembly of animal microbiomes in a stochastic manner [21, 31, 36–39]. With so many contemporary threats facing amphibian populations, understanding the influences of habitat disturbance on all aspects of amphibian health is vital in detecting cryptic threats to seemingly stable populations.

Data and Code Availability

Raw data and the R code used for analyses are available online in supplemental files.

Supplementary Information The online version contains supplementary material available at https://doi.org/10.1007/s00248-021-01897-3.

Acknowledgements We thank the landowners around Tuscaloosa that allowed access to their properties for sampling. We thank Sela McDonald, Meghan Yap-Chiongco, Sommer Starr, Jacob Feiler, Cailee Nelson, and Sarah Hughes Berheim for assistance with field work and Dr. Julie Olson for laboratory accommodations. We thank Anne Bell for conducting nutrient analyses on water samples. We thank Brandon LaBumbard for assistance with qPCR standards.

Author Contributions Conceptualization: WJN and CGB; methodology: WJN, SEG, LMS, CLA, and CGB; field work: WJN, SEG, LMS, SDH, VMM, and CGB; lab work: WJN, LMS, VMM, and CLA; analysis: WJN, SEG, and CGB; first draft: WJN, SEG, and CGB; critical revision: WJN, SEG, LMS, SDH, VMM, CLA, and CGB.

Funding Funding for this project was provided by the University of Alabama, Department of Biological Sciences, and the Alabama Audubon Walter F. Coxe Research Fund.

Declarations

Ethics Approval All work was conducted under appropriate state permits (Alabama Scientific Collecting Permit #2019069449668680) and institutional animal care and use approval (IACUC #18–11-1721).

Consent to Participate Not applicable.

Consent for Publication Not applicable.

Conflict of Interest The authors declare no competing interests.

References

1. Tilman D, May RM, Lehman CL, Nowak MA (1994) Habitat destruction and the extinction debt. Nature 371:65–66. https://doi.org/10.1038/371065a0
2. Tong STY, Chen W (2002) Modeling the relationship between land use and surface water quality. J Environ Manage 66:377–393. https://doi.org/10.1006/jema.2002.0593
3. Al Bakri D, Rahman S, Bowling L (2008) Sources and management of urban stormwater pollution in rural catchments, Australia. J Hydrol 356:299–311. https://doi.org/10.1016/j.jhydrol.2008.04.017
4. Ogutu JO, Owen-Smith N, Piepho HP, Said MY (2011) Continuing wildlife population declines and range contraction in the Mara region of Kenya during 1977–2009. J Zool 285:99–109. https://doi.org/10.1111/j.1469-7998.2011.00818.x
5. Nagy RC, Lockaby BG, Kalin L, Anderson C (2012) Effects of urbanization on stream hydrology and water quality: the Florida Gulf Coast. Hydrol Process 26:2019–2030. https://doi.org/10.1002/hyp.8336
6. Torres A, Jaeger JAG, Alonso JC (2016) Assessing large-scale wildlife responses to human infrastructure development. Proc Natl Acad Sci U S A 113:8472–8477. https://doi.org/10.1073/pnas.1522488113
7. Wedge M, Anderson CJ (2017) Urban land use affects resident fish communities and associated salt marsh habitat in Alabama and West Florida, USA. Wetlands 37:715–727. https://doi.org/10.1007/s13157-017-0902-8
8. Dorrestein I, Schultz J, Nimmog DG, et al. (2015) Incorporating anthropogenic effects into trophic ecology: predator - prey interactions in a human-dominated landscape. Proc R Soc B Biol Sci 282. https://doi.org/10.1098/rspb.2015.1602
9. Ferreira PA, Boscolo D, Lopes LE et al (2020) Forest and connectivity loss simplify tropical pollination networks. Oecologia 192:577–590. https://doi.org/10.1007/s00442-019-04579-7
10. Laliberté E, Tylianakis JM (2010) Deforestation homogenizes tropical parasitoid-host networks. Ecology 91:1740–1747. https://doi.org/10.1890/09-1328.1
11. Becker CG, Rodriguez D, Longo AV et al (2016) Deforestation, host community structure, and amphibian disease risk. Basic Appl Ecol 17:72–80. https://doi.org/10.1016/j.baae.2015.08.004
12. Brearley G, Rhodes J, Bradley A et al (2013) Wildlife disease prevalence in human-modified landscapes. Biol Rev 88:427–442. https://doi.org/10.1111/brv.12009
13. DeVore JL, Shine R, Ducatez S (2020) Urbanization and translocation disrupt the relationship between host density and parasite abundance. J Anim Ecol 89:1122–1135. https://doi.org/10.1111/1365-2656.13175
14. Bradley CA, Altizer S (2007) Urbanization and the ecology of wildlife diseases. Trends Ecol Evol 22:95–102. https://doi.org/10.1016/j.tree.2006.11.001
Habitat Disturbance Linked with Host Microbiome Dispersion and Bd Dynamics in Temperate…

15. Johnson PTJ, Thielges DW (2010) Diversity, decoys and the dilution effect: how ecological communities affect disease risk. J Exp Biol 213:961–970. https://doi.org/10.1242/jeb.037721

16. Cable J, Barber I, Boag B, et al. (2017) Global change, parasite transmission and disease control: lessons from ecology. Philos Trans R Soc B Biol Sci 372.https://doi.org/10.1098/rstb.2016.0088

17. Wahl MH, McKellar HN, Williams TM (1997) Patterns of nutrient loading in forested and urbanized coastal streams. J Exp Mar Bio Ecol 213:111–131. https://doi.org/10.1016/S0022-0981(97)00012-9

18. Zaneveld JR, Burkepile DE, Shantz AA et al (2016) Overfishing and nutrient pollution interact with temperature to disrupt coral reefs down to microbial scales. Nat Commun 7:1–12. https://doi.org/10.1038/ncomms11833

19. Müller A, Osterlund H, Marsalek J, Viklander M (2020) The pollution conveyed by urban runoff: a review of sources. Sci Total Environ 709. https://doi.org/10.1016/j.scitotenv.2019.136125

20. Becker CG, Longo AV, Haddad CFB, Zamudio KR (2017) Land cover and forest connectivity alter the interactions among host, pathogen and skin microbiome. Proc R Soc B Biol Sci 284:1–8. https://doi.org/10.1098/rspb.2017.0582

21. Greenspan SE, Migliorini GH, Lyra ML et al (2020) Warming drives ecological community changes linked to host-associated microbiome dysbiosis. Nat Clim Chang. https://doi.org/10.1038/s41558-020-0899-5

22. Walke JB, Becker MH, Krinos A et al (2021) Seasonal changes and the unexpected impact of environmental disturbance on skin bacteria of individual amphibians in a natural habitat. FEBS Microbiol Ecol 97:1–14. https://doi.org/10.1093/femsec/ffaa248

23. Brand AB, Snodgrass JW, Gallagher MT et al (2010) Lethal and sublethal effects of embryonic and larval exposure of Hyla versicolor to stormwater pond sediments. Arch Environ Contam Toxicol 58:325–331. https://doi.org/10.1007/s00244-009-9373-0

24. Kau AL, Ahern PP, Griffin NW et al (2011) Human nutrition, the gut microbiome and the immune system. Nature 474:327–336. https://doi.org/10.1038/nature10213

25. Thaiss CA, Zmora N, Levy M, Elinav E (2016) The microbiome and innate immunity. Nature 535:65–74. https://doi.org/10.1038/nature18847

26. Rebullar EA, Martínez-Ugalde E, Orta AH (2020) The amphibian skin microbiome and its protective role against chytridiomycosis. Herpetobiolica 76:167. https://doi.org/10.1655/0018-0831-76.2.1667

27. Petersen C, Round JL (2014) Defining dysbiosis and its influence on host immunity and disease. Cell Microbiol 16:1024–1033. https://doi.org/10.1111/cmi.12308

28. Kueneman JG, Woodham DC, Harris R, et al (2016) Probiotic treatment restores protection against lethal fungal infection lost during amphibian captivity. Proc R Soc B Biol Sci 283. https://doi.org/10.1098/rspb.2016.1553

29. Piovia-Scott J, Rejmanek M, Woodham DC, et al (2017) Greater species richness of bacterial skin symbionts better suppresses the amphibian fungal pathogen Batrachochytrium dendrobatidis. Microb Ecol 74. https://doi.org/10.1007/s00248-016-0916-4

30. Woodham DC, Collins-Smith LA, Reinert LK et al (2020) Probiotics modulate a novel amphibian skin defense peptide that is antifungal and facilitates growth of antifungal bacteria. Microb Ecol 79:192–202. https://doi.org/10.1007/s00248-019-01385-9

31. Zaneveld JR, McRinds R, Vega Thurber R, Thurber RV (2017) Stress and stability: applying the Anna Karenina principle to animal microbiomes. Nat Microbiol 2:17121. https://doi.org/10.1038/nmicrobiol.2017.121

32. Greenspan SE, Lyra ML, Migliorini GH et al (2019) Arthropod–bacteria interactions influence assembly of aquatic host microbiome and pathogen defense. Proc R Soc B Biol Sci 286:20190924. https://doi.org/10.1098/rspb.2019.0924

33. Preuss JF, Greenspan SE, Rossi EM et al (2020) Widespread pig farming practice linked to shifts in skin microbiomes and disease in pond-breeding amphibians. Environ Sci Technol. https://doi.org/10.1021/acs.est.0c03219

34. Jin Song S, Woodham DC, Martino C et al (2019) Engineering the microbiome for animal health and conservation. Exp Biol Med 244:494–504. https://doi.org/10.1177/1537370219830075

35. Aceves AK, Johnson PD, Atkinson CL et al (2020) Digestive gland microbiome of Pleurobema cordatum: mesocosms induce dysbiosis. J Molluscan Stud 86:280–289. https://doi.org/10.1093/mollus/eyaa024

36. Ahmed HI, Herrera M, Liew YJ, Aranda M (2019) Long-term temperature stress in the coral model Aiptasia supports the “Anna Karenina principle” for bacterial microbiomes. Front Microbiol 10:1–11. https://doi.org/10.3389/fmicb.2019.00975

37. Jiménez RR, Alvarado G, Sandoval J, Sommer S (2020) Habitat disturbance influences the skin microbiome of a rediscovered neotropical–montane frog. BMC Microbiol 20:1–14

38. Armour CR, Nayfach S, Pollard KS, Sharpton TJ (2019) A metagenomic meta-analysis reveals functional signatures of health and disease in the human gut microbiome. mSystems 4:1–15. https://doi.org/10.1128/mSystems.00332-18

39. Ma Z (2020) Testing the Anna Karenina principle in human microbiome-associated diseases. iScience 23:101007. https://doi.org/10.1016/j.isci.2020.101007

40. Longo AV, Savage AE, Hewson J, Zamudio KR (2015) Seasonal and ontogenetic variation of skin microbial communities and relationships to natural disease dynamics in declining amphibians. R Soc Open Sci 2:140377. https://doi.org/10.1098/rsos.140377

41. Rebollar EA, Hughey MC, Medina D et al (2016) Skin bacterial diversity of Panamanian frogs is associated with host susceptibility and presence of Batrachochytrium dendrobatidis. ISME J 10:1682–1695. https://doi.org/10.1038/ismej.2015.234

42. Walke JB, Belden RK (2016) Harnessing the microbiome to prevent fungal infections: lessons from amphibians. PLoS Pathog 12:6–11. https://doi.org/10.1371/journal.ppat.1005796

43. Longo AV, Zamudio KR (2017) Environmental fluctuations and host skin bacteria shift survival advantage between frogs and their fungal pathogen. ISME J 11:349–361. https://doi.org/10.1038/ismej.2016.138

44. Kueneman JG, Bletz MC, McKenzie VJ et al (2019) Community richness of amphibian skin bacteria correlates with bioclimate at the global scale. Nat Ecol Evol 3:381–389. https://doi.org/10.1038/s41559-019-0798-1

45. Becker MH, Walke JB, Cikanek S, et al (2015) Composition of symbiotic bacteria predicts survival in Panamanian golden frogs infected with a lethal fungus. Proc R Soc B Biol Sci 282. https://doi.org/10.1098/rspb.2014.2881

46. Becker CG, Bletz MC, Greenspan SE et al (2019) Low-load pathogen spillover predicts shifts in skin microbiome and survival of a terrestrial-breeding amphibian. Proc R Soc B 286:20191114

47. Bernardo-Cravo AP, Schmeller DS, Chatzinotas A, et al (2020) Environmental factors and host microbiomes shape host-pathogen dynamics. Trends Parasitol 1–18. https://doi.org/10.1016/j.pt.2020.04.010

48. Becker CG, Zamudio KR (2011) Tropical amphibian populations experience higher disease risk in natural habitats. Proc Natl Acad Sci 108:9893–9898. https://doi.org/10.1073/pnas.1014497108

49. Becker CG, Rodriguez D, Longo AV et al (2012) Disease risk in temperate amphibian populations is higher at closed-canopy sites. PLoS ONE 7:1–7. https://doi.org/10.1371/journal.pone.0048205

50. Homer CG, Dewitz JA, Yang L et al (2015) Completion of the 2011 National Land Cover Database for the conterminous United States.
States—representing a decade of land cover change information. Photogramm Eng Remote Sensing 81:345–354

51. Hyatt A, Boyle D, Olsen V et al (2007) Diagnostic assays and sampling protocols for the detection of Batrachochytrium dendrobatidis. Dis Aquat Organ 73:175–192. https://doi.org/10.3354/dao073175

52. Caligiuri LG, Sandoval AE, Miranda JC et al (2019) Optimization of DNA extraction from individual sand flies for PCR amplification. Methods Proteo 2:1–15. https://doi.org/10.3390/mps20020036

53. Boyle DG, Boyle DB, Olsen V et al (2004) Rapid quantitative detection of chytridiomycosis (Batrachochytrium dendrobatidis) in amphibian samples using real-time Taqman PCR assay. Dis Aquat Organ 60:141–148. https://doi.org/10.3354/dao060141

54. Caporaso JG, Lauber CL, Walters WA et al (2012) Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME J 6:1621–1624. https://doi.org/10.1038/ismej.2012.8

55. Kozich JJ, Westcott SL, Baxter NT et al (2013) Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the miseq illumina sequencing platform. Appl Environ Microbiol 79:5112–5120. https://doi.org/10.1128/AEM.01043-13

56. Bokulich NA, Subramaniam S, Faith JJ et al (2013) Quality-filtering vastly improves diversity estimates from Illumina amplicon sequencing. Nat Methods 10:57–59. https://doi.org/10.1038/nmeth.2276. Quality-filtering

57. Oksanen J, Blanchet FG, Friendly M, et al (2017) Vegan: community ecology package

58. Kriss M, Hazleton KZ, Nubscher NM et al (2018) Low diversity gut microbiota dysbiosis: drivers, functional implications and recovery. Curr Opin Microbiol 44:34–40. https://doi.org/10.1016/j.mib.2018.07.003

59. JMP® (2019) JMP®

60. Anderson C (2008) The data deluge makes the scientific method obsolete. Wired Mag 16(7):10–12

61. Burnham KP, Anderson DR (2002) Model selection and multimodel inference; a practical information-theoretic approach

62. Lefcheck JS (2016) piecewiseSEM: Piecewise structural equation modeling in R for ecology, evolution, and systematics. Methods Ecol Evol 7:573–579. https://doi.org/10.1111/2041-210X.12512

63. Shah VB, McRae BH (2008) Circuitscape: a tool for landscape ecology. In: Varaquaux G, Vaught T, Millman J (eds) Proceedings of the 7th Python in Science Conference (SciPy 2008), pp 62–66

64. Rumschlag SL, Boone MD (2020) Amphibian infection risk changes with host life stage and across a landscape gradient. J Herpetol 54:347–354. https://doi.org/10.1670/19-107

65. Lamberti C, Becker CG, Belesan AM et al (2021) Biotic and abiotic determinants of Batrachochytrium dendrobatidis infections in amphibians of the Brazilian Atlantic Forest. Fungal Ecol 49:100995. https://doi.org/10.1016/j.funeco.2020.100995

66. Piotrowski JS, Annis SL, Longcore JE (2004) Physiology of Batrachochytrium dendrobatidis, a chytrid pathogen of amphibians. Mycologia 96:9–15. https://doi.org/10.1080/15572536.2005.11832990

67. Stevenson LA, Alford RA, Bell SC et al (2013) Variation in thermal performance of a widespread pathogen, the amphibian chytrid fungus Batrachochytrium dendrobatidis. PLoS ONE 8:1–14. https://doi.org/10.1371/journal.pone.0073830

68. Rollins A, Copeland J, Barker H, Satterfield D (2013) The distribution of Batrachochytrium dendrobatidis across the southern Appalachian states, USA. Mycosphere 4:250–254. https://doi.org/10.5943/mycosphere/4/2/7

69. Moffitt D, Williams LA, Hastings A et al (2015) Low prevalence of the amphibian pathogen Batrachochytrium dendrobatidis in the southern appalachian mountains. Herpetol Conserv Biol 10:123–136

70. Krynak KL, Burke DJ, Benard MF (2016) Landscape and water characteristics correlate with immune defense traits across Blan- chard’s cricket frog (Acris blanchardi) populations. Biol Conserv 193:153–167. https://doi.org/10.1016/j.biocon.2015.11.019

71. Sonn JM, Utz RM, Richards-Zawacki CL (2019) Effects of latitudinal, seasonal, and daily temperature variations on chytrid fungal infections in a North American frog. Ecosphere.10 https://doi.org/10.1002/ecs2.2892

72. Youngs MB, Boone MD (2014) Movement of amphibians through agricultural landscapes: the role of habitat on edge permeability. Biol Conserv 175:148–155. https://doi.org/10.1016/j.biocon.2014.04.028

73. Gahl MK, Longcore JE, Houlanah JE (2012) Varying responses of northeastern North American amphibians to the chytrid pathogen Batrachochytrium dendrobatidis. Conserv Biol 26:135–141. https://doi.org/10.1111/j.1523-1739.2011.01801.x

74. Greenspan SE, Calhoun AJK, Longcore JE, Levy MG (2012) Transmission of Batrachochytrium dendrobatidis to wood frogs (Lithobates sylvaticus) via a bullfrog (L. catesbeianus) vector. J Wildl Dis 48:575–582. https://doi.org/10.7589/0090-3558.48.3.575

75. Ribeiro LP, Carvalho T, Becker CG et al (2019) Bullfrog farms release virulent zoosporangia of the frog-killing fungus into the natural environment. Sci Rep 9:13422. https://doi.org/10.1038/s41598-019-49674-0

76. Petersen CE, Lovich RE, Phillips CA et al (2016) Prevalence and seasonality of the amphibian chytrid fungus Batrachochytrium dendrobatidis along widely separated latitudes across the United States. EcoHealth 13:368–382. https://doi.org/10.1007/s10393-016-1101-4

77. Grogan LF, Humphries JE, Robert J et al (2020) Immunological aspects of chytridiomycosis. J Fungi 6:1–24. https://doi.org/10.3390/jof6040234

78. Smith MA, Green DM (2005) Dispersal and the metapopulation paradigm in amphibian ecology and conservation: are all amphibian populations metapopulations? Ecography (Cope) 28:110–128. https://doi.org/10.1111/j.0906-7590.2005.04042.x

79. Baldwin RF, Calhoun AJK, DeMa et al (2010) Conservation planning for amphibian species with complex habitat requirements: a case study using movements and habitat selection of the Wood Frog Rana sylvatica. J Herpetol 40:442–453. https://doi.org/10.1670/0022-1511(2006)040[442:CPFA52.0.CO;2

80. Powell R, Conant R, Collins JT (2016) Peterson field guide to reptiles and amphibians of eastern and central North America, Fourth. Houghton Mifflin Harcourt

81. Liu S, Wang H, Deng Y et al (2018) Forest conversion induces seasonal variation in microbial β-diversity. Environ Microbiol 20:111–123. https://doi.org/10.1111/1462-2900.14017

82. Becker CG, Fonseca CR, Haddad CFB, Prado PI (2010) Habitat split as a cause of local population declines of amphibians with aquatic larvae: contributed paper. Conserv Biol 24:287–294. https://doi.org/10.1111/j.1523-1739.2009.01324.x

83. Trujillo AL, Hoffman EA, Becker CG, Savage AE (2021) Spatiotemporal adaptive evolution of an MHC immune gene in a frog-fungus disease system. Heredity (Edinb) 1–16. https://doi.org/10.1038/s41437-020-00402-9

 Springer