CURRY-HOWARD-LAMBEK CORRESPONDENCE FOR INTUITIONISTIC BELIEF*

Cosimo Perini Brogi
Department of Mathematics - University of Genova
perinibrogi@dima.unige.it

Abstract

This paper introduces a natural deduction calculus for intuitionistic logic of belief IEL^- which is easily turned into a modal λ-calculus giving a computational semantics for deductions in IEL^-. By using that interpretation, it is also proved that IEL^- has good proof-theoretical properties. The correspondence between deductions and typed terms is then extended to a categorial semantics for identity of proofs in IEL^- showing the general structure of such a modality for belief in an intuitionistic framework.

Keywords: Intuitionistic modal logic, epistemic logic, categorial proof theory, modal type theory, proofs-as-programs.

INTRODUCTION

Brouwer-Heyting-Kolgomorov (BHK) interpretation is based on a semantic reading of propositional variables as problems (or tasks), and of logical connectives as operations on proofs. In this way, it provides a semantics of mathematical statements in which the computational aspects of proving and refuting are highlighted.\(^1\)

In spite of being named after L.E.J. Brouwer, this approach is rather away from the deeply philosophical attitude at the origin of intuitionism: In BHK interpretation, reasoning intuitionistically is similar to a safe mode of program execution which always terminates; on the contrary, according to the founders of intuitionism, at the basis of the mathematical activity there is a continuous mental process of construction of objects starting with the flow of time underlying the chain of natural numbers, and intuitionistic reasoning is what structures that process.\(^2\)

This reading of the mathematical activity is formally captured by Kripke semantics for intuitionistic logic [9]: Relational structures based on pre-orders

\(^*\)Main preliminary results were presented in May 2019 during the Logic and Philosophy of Science Seminar at University of Florence (Italy). A refined presentation was given during the poster session of The Proof Society Summer School at Swansea University (UK) on September 9th, 2019. The present version was submitted for publication to Studia Logica in January 2020.

\(^1\)The reader is referred to [16] for an introduction.

\(^2\)For instance, Dummett’s [6] advocates a purely philosophical justification of the whole current of intuitionistic mathematics.
capture the informal idea of a process of growth of knowledge in time which characterises the mental life of the mathematician.

It is worth-noting that the focuses of these semantics are quite different: BHK interpretation stresses the importance of the concept of proof in the semantics for intuitionistic logic; Kripke’s approach highlights the epistemic process behind the provability of a statement.

In [2], Artemov and Protopopescu make use of the BHK interpretation to extend – in a sense – the epistemic realm of constructivism: In BHK interpretation we have an implicit notion of proof whose epistemic aspects are modelled by Kripke structures; the construction of a proof for a specific proposition that we carried out as a cumulative mental process gives us sufficient reason for (at least) believing that proposition. It is then possible to cover also traditional epistemic states of belief and knowledge within such a framework, once we recognise the correct clauses for corresponding modal operators.

In [2] the starting point is thus a BHK interpretation of epistemic statements in which knowledge and belief are considered as (different) results of a process of verification. In spite of this, that paper covers only axiomatic calculi and Kripke semantics for intuitionistic epistemic logics, so that the stimulating question of considering the computational aspects of epistemic states remained informal and at a very beginning stage.

The present paper, on the contrary, is committed to giving a precise, formal analysis of the computational content of intuitionistic belief.

In order to establish some clear facts, a natural deduction system IEL^- for the intuitionistic logic of belief is developed and designed with the intent of translating it into a functional calculus of IEL^--deductions. In a sense, we define a formal counterpart of Artemov and Protopopescu’s reading of the epistemic operator for belief by extending the Curry-Howard correspondence between intuitionistic natural deduction NJ and simple type theory, to a modal λ-calculus in which the modal connective on propositions behaves according to a single (term-)introduction rule.

Furthermore, we establish normalization for IEL^-, and, in spite of its simple grammar, we show that there is a surprisingly rich categorial structure behind the calculus: our λ-system for IEL^--deductions is sound and complete w.r.t. the class of bi-cartesian closed categories equipped with a monoidal pointed endofunctor whose point is monoidal.

Therefore, by adopting the proofs-as-programs paradigm to give a precise meaning to the motto “belief-as-verification” we succeed in:

- Designing a natural deduction calculus IEL^- for intuitionistic belief which is well-behaved from a proof-theoretic point of view;
- Proving that this calculus corresponds to a modal typed system in which every term has a unique normal form, and the epistemic modality acquires a precise functional interpretation;
- Developing a categorial semantics for intuitionistic belief which focuses on identity of proofs, and not simply on provability.

The paper is then organised as follows: In Section 1, the axiomatic calculus IEL^- and its relational semantics are recalled. In Section 2, we introduce the natural deduction system IEL^- and prove – syntactically – that it is logically
equivalent to \mathbb{EL}^-; then we investigate its proof-theoretic properties, proving that detours can be eliminated from deductions by defining a λ-calculus with a modal operator which captures in a very natural way the behaviour of the epistemic modality on propositions. Finally, in Section 3, we give a categorial semantics for \mathbb{EL}^--deduction: After recalling the main lines of Curry-Howard-Lambek correspondence, we prove that deductions define – up to normalization – specific categorial structures which subsume Heyting algebras with operators and, at the same time, provide a proof-theoretic semantics for intuitionistic belief.

By means of these results we can also see that some claims in [2] concerning a type-theoretic reading of the epistemic operator as the truncation of types are not correct. The belief modality there defined is ‘weaker’ than $\text{inh} : \text{Type} \to \text{Type}$ because of its type-theoretic – hence syntactic – behaviour, validated also from a categorial – hence semantic – point of view: Types truncation equips bi-cartesian closed categories with an idempotent monad, while we show that the belief operator we are considering is a more general functor.\footnote{In fact even when thought of as a modal connective of our base language, the epistemic \boxdot is not an idempotent operator.}

1. Axiomatic calculus for intuitionistic belief

Let’s start by recalling the syntax and relational semantics for the logic of intuitionistic belief as introduced in [2].

1.1. System \mathbb{EL}^-

Definition 1.1.1. \mathbb{EL}^- is the axiomatic calculus given by:

- Axiom schemes for intuitionistic propositional logic;
- Axiom scheme $K : \Box(A \to B) \to \Box A \to \Box B$;
- Axiom scheme of co-reflection $A \to \Box A$;
- Modus Pones $A \to B \quad A \quad \text{MP}$ as the only inference rule.

We write $\Gamma \vdash_{\mathbb{EL}^-} A$ when A is derivable in \mathbb{EL}^- assuming the set of hypotheses Γ, and we write $\mathbb{EL}^- \vdash A$ when $\Gamma = \emptyset$.

We immediately have

Proposition 1.1.2. The following properties hold:

(i) Necessitation rule $\begin{array}{c} \Box A \\ \hline A \end{array}$ is derivable in \mathbb{EL}^-;
(ii) The deduction theorem holds in \mathbb{EL}^-;
(iii) \mathbb{EL}^- is a normal intuitionistic modal system.

Proof. See [2].

As stated before, this system axiomatizes the idea of belief as the result of verification within a framework in which truth corresponds to provability, accordingly to the Brower-Heyting-Kolgomorov interpretation of intuitionistic logic.\footnote{See e.g. [18].} Note also that, in this perspective, the co-reflection scheme is valid, while
its converse does not hold: If A is true, then it has a proof, hence it is verified; but A can be verified without disclosing a specific proof, therefore the standard epistemic scheme $\Box A \rightarrow A$ is not valid under this interpretation.\footnote{See Williamson’s system in \cite{20} for an intuitionistic epistemic logic in which the standard epistemic principle is valid; however it is worth noting that this specific logic is not based on the BHK-semantics.}

1.2. Kripke Semantics for IEL^-

Turning to relational semantics, in \cite{2} the following class of Kripke models is given.

Definition 1.2.1. A model for IEL^- is a quadruple (W, \leq, v, E) where

1. (W, \leq, v) is a standard model for intuitionistic propositional logic;
2. E is a binary ‘knowledge’ relation on W such that:
 - if $x \leq y$, then xEy; and
 - if $x \leq y$, then if yEz, xEz; graphically we have

 \[x \leq y \rightarrow E \rightarrow z \]

3. v extends to a forcing relation \models such that
 - $x \models \Box A$ iff $y \models A$ for all y such that xEy.

A formula A is true in a model iff it is forced by each world of that model; we write $\text{IEL}^- \models A$ iff A is true in each model for IEL^-. Note that this semantics assumes Kripke’s original interpretation of intuitionistic reasoning as a growing knowledge – or discovery process – for an epistemic agent in which the relation E defines an audit of ‘cognitively’ \leq-accessible states in which the agent can commit a verification.

This semantics is adequate to the calculus:

Theorem 1.2.2. The following hold:

(Soundness) If $\text{IEL}^- \vdash A$, then $\text{IEL}^- \models A$.

(Completeness) If $\text{IEL}^- \models A$, then $\text{IEL}^- \vdash A$.

Proof. Soundness is proved by induction on the derivation of A.

Completeness is proved by a standard construction of a canonical model. See \cite{2} for the details. \hfill \Box
2. Natural Deduction for intuitionistic belief

We want to develop a semantics of proofs for the logic of intuitionistic belief. In order to do that, we now introduce a natural deduction system which is logically equivalent to IEL^-, but which is also capable of a computational reading of the epistemic operator and of proofs involving this kind of modality.

Accordingly, the starting point is proving that the calculus IEL^- of natural deduction is sound and complete w.r.t. IEL^-; then, we prove that proofs in IEL^- can be named by means of λ-terms as stated in the proofs-as-programs paradigm for intuitionistic logic also known as Curry-Howard correspondence. By using this formalism, we prove a normalization theorem for IEL^- stating that detours can be eliminated from all deductions.

In the next section, we extend such a correspondence to category theory for showing the underlying structure of the operator for intuitionistic belief.

2.1. System IEL^-

Definition 2.1.1. Let IEL^- be the calculus extending the propositional fragment of NJ – the natural deduction calculus for intuitionistic logic\(^6\) – by the following rule:

\[
\begin{array}{c}
\Gamma_1 \cdot \cdots \cdot \Gamma_n [A_1, \cdots, A_n], \Delta \\
\vdots \quad \vdots \quad \vdots \\
\square A_1 \quad \cdots \quad \square A_n \\
B \\
\end{array}
\]

\[\square \text{ -- intro} \]

where Γ and Δ are sets of occurrences of formulae, and all A_1, \cdots, A_n are discharged.\(^7\)

Let’s immediately check that we are dealing with the same logic:

Lemma 2.1.2. $\Gamma \vdash_{IEL^-} A$ iff $\Gamma \vdash_{IEL^-} A$.

Proof. Assume $\Gamma \vdash_{IEL^-} A$. We proceed by induction on the derivation.

- Intuitionistic cases are dealt with NJ propositional rules:
 \[[A \rightarrow B, A] \]

- **K:**
 \[
 \begin{array}{c}
 \square (A \rightarrow B) \\
 \square A \\
 \vdots \\
 B \\
 \end{array}
 \]

 \[\square \text{ -- intro} \]

- **co-reflection:**
 \[
 \begin{array}{c}
 [A]_1 \\
 \square A \\
 \end{array}
 \]

 \[\square \text{ -- intro} \]

 \[A \rightarrow \square A \rightarrow \text{intro} \].

\(^6\)See [17] for an introduction.

\(^7\)This calculus differs from the system introduced in [5] by allowing the set Δ of additional hypotheses is the subdeduction of B. A different calculus, considering the original \square-intro rule in [5] and a further rule $\Gamma \vdash \square A$, even though more symmetric, seems to lack some important computational properties, like uniqueness of normal proofs.
Conversely, assume $\Gamma \vdash_{\text{IEL}} A$. We consider only the \Box-intro rule:

By induction hypothesis, we have $\Gamma_1 \vdash_{\text{IEL}} \Box A_1, \ldots,\Gamma_n \vdash_{\text{IEL}} \Box A_n$, and $A_1,\ldots, A_n, \Delta \vdash_{\text{IEL}} B$. Then we have $\Gamma_1,\ldots,\Gamma_n \vdash_{\text{IEL}} \Box A_1,\ldots,\Box A_n$, and, by the deduction theorem for IEL^- and ordinary logic, $\Delta \vdash_{\text{IEL}} A_1 \land \cdots \land A_n \rightarrow B$.

By co-reflection $\text{IEL}^- \vdash (A_1 \land \cdots \land A_n \rightarrow B) \rightarrow \Box (A_1 \land \cdots \land A_n \rightarrow B)$, and by K-scheme $\text{IEL}^- \vdash \Box (A_1 \land \cdots \land A_n \rightarrow B) \rightarrow \Box (A_1 \land \cdots \land A_n) \rightarrow \Box B$. Hence we have $\Delta \vdash_{\text{IEL}} \Box (A_1 \land \cdots \land A_n) \rightarrow \Box B$, whence, by modal logic, we obtain $\Delta \vdash_{\text{IEL}} \Box A_1 \land \cdots \land \Box A_n \rightarrow \Box B$, which gives $\Gamma_1,\ldots,\Gamma_n, \Delta \vdash_{\text{IEL}} \Box B$, as desired.

2.2. Normalization

In order to eliminate potential detours from IEL^--deduction we introduce the following proof rewritings:

\[
\begin{array}{c}
\Gamma \\
\vdots \\
\Box A \quad [A] \quad \sim \\
\hline
\Box A \quad \Box \text{-intro} \\
\hline
\Gamma \\
\vdots \\
\end{array}
\]

\[
\begin{array}{c}
\Gamma \quad [A]^1, \bar{C} \\
\vdots \\
\Box A \quad B \quad \Box \text{-intro:1} \\
\hline
\Box B \quad \Box \text{-intro:2} \\
\hline
[A]^1 \\
\vdots \\
\end{array}
\]

Note that (i) eliminates a useless application of \Box-intro, while (δ) collapses two \Box-intros into a single one.
Remark 1 (Proofs-as-programs). Curry-Howard correspondence permits a functional reading of proofs in NJ, once one recognises the following mapping:

\[
\begin{align*}
& f \equiv A & \mapsto x^A, & \text{where } i \text{ is the parcel of the hypothesis } A \\
& f_1, f_2 \quad \quad \quad A \land B & \mapsto \langle t^A, s^B \rangle, & \text{where } t^A, s^B \text{ correspond to } f_1 \text{ and } f_2 \text{ resp.} \\
& f' \equiv A \land B \quad \frac{A}{x} & \mapsto \pi_1 t^{A \times B}, & \text{where } t^{A \times B} \text{ corresponds to } f' \\
& f' \equiv A \land B \quad \frac{B}{y} & \mapsto \pi_2 t^{A \times B}, & \text{where } t^{A \times B} \text{ corresponds to } f' \\
& f' \equiv B \quad \frac{A \to B}{A} & \mapsto \lambda x^A t^B, & \text{where } t^B \text{ corresponds to } f' \text{ and } i \text{ is the parcel of discharged hypotheses } A \\
& f_1, f_2 \quad \quad \quad \frac{A \to B}{A} & \mapsto t^{A \to B} s^A, & \text{where } t^{A \to B}, s^A \text{ correspond to } f_1 \text{ and } f_2 \text{ resp.} \\
& f' \equiv A \quad \frac{A \lor B}{x} & \mapsto \text{in}_1 t^A, & \text{where } t^A \text{ corresponds to } f' \\
& f' \equiv B \quad \frac{A \lor B}{y} & \mapsto \text{in}_2 s^B, & \text{where } s^B \text{ corresponds to } f' \\
& f' \equiv A \lor B \quad \frac{A \lor B}{C} & \mapsto C(t; \langle x^A, t_1 \rangle, \langle y^B, t_2 \rangle) & \text{where } C \text{ bounds all occurrences of } x \text{ in } t_2 \text{ and all occurrences of } y \text{ in } t_2, \text{ and } t, t_1, t_2 \text{ correspond to } f', \text{ the subduction of } C \text{ from } A, \text{ and the subduction of } C \text{ from } B, \text{ resp.} \\
& f' \equiv 1 \quad \frac{A}{A} & \mapsto E_A t & \text{where } t \text{ corresponds to } f' \\
& f' \equiv \bot \quad \frac{A}{A} & \mapsto (\bot t) & \text{where } t \text{ correspond to } f'.
\end{align*}
\]

By imposing specific rewritings we obtain the complete engine of λ-calculus associated to the propositional fragment of NJ.\footnote{\textnormal{8}See \cite{7} for a clear introduction to the topic.}

Since IEL^- consists also of rules for \square, we need to extend the grammar of such a typed λ-calculus as follows:

\[
T ::= 1 \mid 0 \mid p \mid A \to B \mid A \times B \mid A + B \mid \square A
\]
As for NJ, a modal λ-calculus is obtained by decorating IEL−-deductions with proof names. Proof rewritings can be then expressed by imposing appropriate reductions of λ-terms:

\[
\text{box}[\vec{x} : \vec{A}]t : \vec{B} \text{ in } (s : B) : \Box B .
\]

Assuming this reading of deductions as programs, normalization now becomes just the execution of a program written in our modal λ-calculus; normalization then assures consistency of IEL−, its analyticity, and hence its decidability. However, the quest for normalizing natural deduction systems is not limited to the proofs-as-programs paradigm, and its origins are actually at the very core of proof theory: We refer the reader to [12] and [19] for the technical and historical aspects of the research field, respectively.

We write \(\triangleright \) for the transitive closure of the relation obtained by combining \(\triangleright_\iota \) and \(\triangleright_\delta \). An algebra of λ-terms is then obtained by considering the reflexive, symmetric, transitive closure \(\trianglerighteq \) of \(\triangleright \), i.e. by combining the reflexive, symmetric, transitive closure \(\iotaeq \) and \(\deltaeq \) of \(\triangleright_\iota \) and \(\triangleright_\delta \), respectively.\(^9\)

We can now prove that every deduction in IEL− can be uniquely reduced to a proof containing no detours.

Theorem 2.2.1. Strong normalization holds for IEL−.

Proof. We define a translation\(^10\) \(| - | \) from the λ-calculus of IEL−-deductions to typed λ-calculus with products, sums, empty and unit types:

\[
|0| := 0 \\
|1| := 1 \\
|p| := p \\
|A \rightarrow B| := |A| \rightarrow |B| \\
|A \times B| := |A| \times |B| \\
|A + B| := |A| + |B| \\
|\Box A| := (|A| \rightarrow q) \rightarrow q
\]

\(^9\)Note that \(\iotaeq \) is just a special case of \(\deltaeq \). We decide to adopt this redundant system of rewriting since \(\iotaeq \) has a straightforward interpretation in category theory: see Section 3.2.

\(^{10}\)This function is introduced in [8] to prove detour-elimination for the implicational fragment of basic intuitionistic modal logic IK by reducing the problem to normalization of simple type theory. Here we adopt the mapping to consider also product, co-product, empty, and unit types, keeping the original strategy due to [8]. A different proof based on Tait’s computability method [15] should also be possible and is under development by the author.
\[|x| := x \]
\[|c| := c \]
\[E(t) := E(|t|) \]
\[U(t) := U(|t|) \]
\[\lambda x.t := \lambda x.|t| \]
\[|s| := |t||s| \]
\[(t, s) := (|t|, |s|) \]
\[\pi_i(t) := \pi_i(|t|) \]
\[C(t, x.t_1, y.t_2) := C(|t|, x.|t_1|, y.|t_2|) \]
\[in_0(t) := in_0(|t|) \]
\[\text{box}[|x_1|, \ldots, |x_n|, |t_1|, \ldots, |t_n|] : s := \lambda k.|t_1|(|\lambda x_1, \ldots, |t_1|(|\lambda x_n, |k||s|)\ldots) \]

where \(q \) is specific atom type. Then it is easy to see that \(\not\Rightarrow \) is preserved by this mapping.\(^{11}\) Therefore, since typed \(\lambda \)-calculus with products, sums, empty and unit types is strongly normalizing,\(^{12}\) so is our modal \(\lambda \)-calculus, and \(\mathcal{IEL}^- \) also.\(^{13}\)

Lemma 2.2.2. The modal \(\lambda \)-calculus of \(\mathcal{IEL}^- \)-deductions has the Church-Rosser property.

Proof. It is straightforward to prove weak Church-Rosser property for our calculus. By Theorem 2.2.1, the modal \(\lambda \)-calculus of \(\mathcal{IEL}^- \)-deductions has the Church-Rosser property.\(^{14}\)

Corollary 2.2.3. Every \(\mathcal{IEL}^- \)-deduction reduces uniquely to a deduction without detours.

Proof. By Theorem 2.2.1 and Lemma 2.2.2, any term of the modal \(\lambda \)-calculus of \(\mathcal{IEL}^- \)-deductions has a unique normal form.\(\)\(\)

3. **Categorial Semantics for intuitionistic belief**

If \(\lambda \)-calculus gives a computational semantics of proofs in \(\mathcal{NJ} \) – and, as we showed in the previous section, in \(\mathcal{IEL}^- \) also – category theory furnishes the tools for an ‘algebraic’ semantics which is *proof relevant* – i.e. contrary to traditional algebraic semantics based on Heyting algebras and to relational semantics based on Kripke models, it focuses on the very notion of proof, distinguishing between different deductions of the same formula.

In this perspective, the correspondence between proofs and programs is extended to consider arrows in categories which have enough structure to capture the behaviour of logical operators. The so-called Curry-Howard-Lambek correspondence can be then summarized by the following table

\(^{11}\)This means that if \(t \not \Rightarrow t' \) in one step, then \(|t| \gg |t'| \), where \(\gg \) indicates the usual \(\beta \eta \)-reductions with permutations.

\(^{12}\)See \([\underline{7}]\) and \([\underline{1}]\).

\(^{13}\)In other terms, if \(\mathcal{IEL}^- \) was not normalizing, then we would have an infinite \(\not\Rightarrow \)-reduction starting from, say, \(t : A \). By the previous note, this would lead to an infinite \(\gg \)-reduction starting from \(|t| : |A| \), contradicting strong normalization of typed \(\lambda \)-calculus with \(\times, +, 1, 0 \).

\(^{14}\)See \([\underline{14}]\) for the general result relating strong normalization and Church-Rosser theorem.
Here we see that cartesian product models conjunction, and exponential models implication. Any category having products and exponentials for any of its objects is called cartesian closed (CCCat); moreover, if it has also coproducts – modelling disjunction – it is called bi-cartesian closed (bi-CCCat).15 The reader is referred to the classic [10] for the details of such completeness result.

For our calculus, in order to capture the behaviour of the epistemic modality, some more structure is required: In the following subsections some basic definitions are recalled and then used to provide IEL- with an adequate categorial semantics.

3.1. Monoidal Functors, Pointed Functors, and Monoidal Natural Transformations

Definition 3.1.1. Given a CCCat \mathcal{C}, an endofunctor $\mathfrak{F} : \mathcal{C} \to \mathcal{C}$ is *monoidal* when

- there exists a natural transformation $m_{A,B} : \mathfrak{F} A \times \mathfrak{F} B \to \mathfrak{F} (A \times B)$;

- there exists a morphism $m_1 : 1 \to \mathfrak{F} 1$,

preserving the monoidal structure of \mathcal{C}.16

These are called *structure morphisms* of \mathfrak{F}.

It is quite easy to see that a monoidal endofunctor on the category of logical formulas induces a modal operator satisfying K-scheme, as proved in [5].

Definition 3.1.2. Given any category \mathcal{C}, an endofunctor $\mathfrak{F} : \mathcal{C} \to \mathcal{C}$ is *pointed* iff there exists a natural transformation

\begin{align*}
\pi : \text{Id}_C &\Rightarrow \mathfrak{F} \\
\pi_A &: A \to \mathfrak{F} A \\
A &\xrightarrow{\pi_A} \mathfrak{F} A \\
\downarrow f &\quad \downarrow \mathfrak{F} f \\
B &\xrightarrow{\pi_B} \mathfrak{F} B
\end{align*}

π is called the *point* of \mathfrak{F}.

15⊤ and ⊥ correspond to empty product – the *terminal object* 1 – and empty coproduct – the *initial object* 0.

16See [11] for the corresponding commuting diagrams and the definition of monoidal category.
In the present setting, a pointed endofunctor on the category of logical formulas ‘represents’ the co-reflection scheme.

Since we want to give a semantics of proofs – and not simply of derivability – in IEL−, we need a further notion from category theory.

Definition 3.1.3. Given a monoidal category \(C \), and monoidal endofunctors \(F, G : C \to C \), a natural transformation \(\kappa : F \Rightarrow G \) is **monoidal** when the following commute:

\[
\begin{array}{c}
\kappa_A \times \kappa_B & \xrightarrow{m_{A,B}} & \kappa_{A \times B} \\
\downarrow & & \downarrow \\
F(A) \times B & \xrightarrow{m_{F,A,B}} & F(A \times B) \\
\end{array}
\]

and

\[
\begin{array}{c}
1 \xrightarrow{m_1^F} F(1) \\
\downarrow & & \downarrow \\
1 \xrightarrow{m_1^G} G(1) \\
\end{array}
\]

3.2. **Categorial Completeness**

Finally, we introduce the models by which we want to capture IEL−.

Definition 3.2.1. An IEL−-category is given by a bi-CCCat \(C \) together with a monoidal pointed endofunctor \(\mathfrak{F} \) whose point \(\kappa \) is monoidal.

Now we can check adequacy of these models.

Theorem 3.2.2 (Soundness). Let \(C \) be an IEL−-category. Then there is a canonical interpretation \(\llbracket - \rrbracket \) of IEL− in \(C \) such that

- a formula \(A \) is mapped to a \(C \)-object \(\llbracket A \rrbracket \);
- a deduction \(t \) of \(A_1, \ldots, A_n \vdash_{\text{IEL}^-} B \) is mapped to an arrow \(\llbracket t \rrbracket : \llbracket A_1 \rrbracket \times \cdots \times \llbracket A_n \rrbracket \to \llbracket B \rrbracket \);
- for any two deductions \(t \) and \(s \) which are equal modulo \(\equiv \), we have \(\llbracket t \rrbracket = \llbracket s \rrbracket \).

Proof. By structural induction on \(f : \tilde{A} \vdash_{\text{IEL}^-} B \). The intuitionistic cases are interpreted according to the remarks about CCCats at the beginning of this section. We overload the notation using \(\langle \Box, m, \kappa \rangle \) for the monoidal pointed endofunctor of \(C \), its structure morphisms, and its point.

The deduction

\[
f_1 : \Gamma_1 \vdash A_1 \\ \vdots \\ f_n : \Gamma_n \vdash A_n \\ g : [A_1, \ldots, A_n], C_1, \ldots, C_m \vdash B
\]

is mapped to

\[
(\Box[\llbracket g \rrbracket]) \circ m_{[A_1], \ldots, [A_n],[C_1],\ldots,[C_m]} \circ [f_1] \times \cdots \times [f_n] \times \kappa[C_1] \times \cdots \times \kappa[C_m],
\]

11
where m_{X_1, \ldots, X_n} is defined inductively as

$$m_{X_1, \ldots, X_{n-1}, X_n} := m_{X_1 \times \cdots \times X_{n-1}, X_n} \circ (m_{X_1, \ldots, X_{n-1}}) \times id_{X_n}.$$

It is straightforward to check that the categorification of \triangleright holds by functoriality of \Box.

The relation \triangleright is also valid by naturality of m and κ: The reader is invited to check that κ must be monoidal in order to model correctly the following special case:

\[
\begin{array}{c}
\Gamma_1 & \Gamma_n & [A_1, \ldots, A_n],[C_1, \ldots, C_m] \\
\vdots & \vdots & \\
\Box A_1 & \Box A_n & B \ \\
\Box B & \\
\end{array}
\]

\[
\begin{array}{c}
\Gamma_1 & \ldots & \Gamma_n \\
\vdots & \vdots & \\
A_1 & \ldots & A_n & C_1, \ldots, C_m \\
\vdots & \\
B & \Box B & \Box \text{intro} \\
\end{array}
\]

It remains to show that this interpretation is also complete.

Theorem 3.2.3 (Completeness). If the interpretation of two IEL$^-$-deductions is equal in all IEL$^-$-categories, then the two deductions are equal modulo \triangleright.

Proof. We proceed by constructing a term model for the modal λ-calculus for IEL$^-$-deductions. Consider the following category \mathcal{M}:

- its objects are formulae;
- an arrow $f : A \rightarrow B$ is an IEL$^-$-deduction of B from A;
- identities are given by assuming a hypothesis;
- composition is given by transitivity of deductions.

Then \mathcal{M} has a bi-cartesian closed structure given by the properties of conjunction, implication, and disjunction in NJ.

Moreover, the modal operator \Box induces a functor \mathcal{R} by mapping A to $\Box A$, and

\[
\begin{array}{c}
A_1, \ldots, A_n & [A_1 \land \cdots \land A_n] \\
\vdots & \vdots \\
B & \Box (A_1 \land \cdots \land A_n) \ \\
\Box B & \Box \text{intro} \\
\end{array}
\]

\footnote{Everything reduces to long categorial calculations.}
which preserves identities by \(\xi \), and preserves composition as a special case of \(\delta \).

The structure morphism is given by

\[
\begin{array}{ccc}
\square A \land \square B & \rightarrow & \square A \\
\square A \land \square B & \rightarrow & \square B \\
\square(A \land B) & \rightarrow & A \land B
\end{array}
\]

whose properties follow as a special case of \(\delta \).

The point is given by \(\frac{A}{\square A} \) and its characteristic property is given as a special case of \(\delta \). Finally such a point is monoidal by \(\delta \) up to \(\land \)-detours.

Then if an equation between interpreted \(\text{IEL}^- \)-deductions holds in all \(\text{IEL}^- \)-categories, then it holds also in \(\mathcal{M} \), so that those deductions are equal w.r.t. \(\boxtimes \).

Remark 2 (Belief and truncation). In [3], truncation – there called “bracket types” – is defined in a first order calculus with types, and showed to behave like a monad. Similarly, in [13], \((n-)\text{truncation}\) is defined as a monadic idempotent modality within the framework of homotopy type theory.

We have just seen that despite the truncation does eliminate all computational significance to an inhabitant of a type – turning then a proof of a proposition into a simple verification of that statement – the belief modality defined in [2] does not correspond to that operator on types.

Actually, after considering the potential applications of \(\text{IEL}^- \)-prospected by Artemov and Protopopescu outside the realm of mathematical statements, that should be not surprising at all: The categorial semantics of \(\text{IEL}^- \)-deductions subsumes the interpretation of truncation as an idempotent monad, since such a functor is just a special case of monoidal pointed endofunctor with monoidal point.

It might be interesting thus to consider the relationship between truncation and the belief modality from a purely syntactic perspective, by comparing the structural properties of a potential simple type theory with bracket types and our modal \(\lambda \)-calculus for intuitionistic belief.\(^{18}\)

Conclusion

Our original intent has been to make precise the computational significance of the motto “belief-as-verification” which leads in [2] to the introduction of epistemic modalities in the framework of BHK interpretation. In particular, despite some claims contained in that paper, we were not sure how to relate the belief operator with type truncation.

In the present paper, we have addressed these questions and have developed a ‘proof-theoretically tractable’ system for intuitionistic belief that can be easily turned into a modal \(\lambda \)-calculus, showing that the epistemic operator behaves differently from truncation.

\(^{18}\)As stated before, truncation has been considered only in a first-order context – i.e. working within dependent types. It should be possible, however, to define truncation for simple types by imposing further reductions to terms of the system mimicking the rules involving (intensional) equality in bracketed types.
Moreover, by extending some results concerning categorial semantics for the basic intuitionistic modal logic \mathbb{IK} in [5] and [8], we developed a proof-theoretic semantics for intuitionistic belief based on monoidal pointed endofunctors with monoidal points on bi-CCCats. Even from this ‘structural’ perspective, the modal operator differs from type-theoretic truncation, so that the reading of belief as the result of verification seems to be just a heuristic interpretation of that specific modality.

Having established so, some general questions naturally arise:

- how could be the original motivation of co-reflection scheme $A \rightarrow \Box A$ – i.e. the interpretation of \Box as a verification operator on propositions – correctly captured, from a computational point of view, by intuitionistic logic of belief?

- does the possible extension IEL of IEL^- obtained by adding the elimination rule $\Gamma \vdash \Box A \quad \Gamma \vdash \neg\neg A \quad \Gamma \vdash A$ recover the intuitionistic reading of epistemic states as results of verification in a formal way – i.e. as type-theoretic truncation?

In our opinion, these problems are strongly related: In fact, it seems plausible that the additional elimination rule provides IEL with an adjunction between \Box and $\neg\neg$ which has still to be checked and deserves a fine grained analysis and comparison with type truncation.

Moreover, it might be interesting to consider similar modalities in different settings, including first order logic and linear logics.

References

[1] Y. Akama, *On Mints’ reduction for ccc-calculus*, in International Conference on Typed Lambda Calculi and Applications, Springer, 1993, pp. 1–12.

[2] S. Artemov and T. Protopopescu, *Intuitionistic epistemic logic*, The Review of Symbolic Logic, 9.2 (2016), pp. 266–298.

[3] S. Awodey and A. Bauer, *Propositions as [types]*, Journal of Logic and Computation, 14(4) (2004), pp. 447–471.

[4] P. de Groote, *On the strong normalisation of intuitionistic natural deduction with permutation-conversions*, Information and Computation, 178.2 (2002), pp. 441–464.

[5] V. de Paiva and E. Ritter, *Basic constructive modality*, Logic without Frontiers: Festschrift for Walter Alexandre Carnielli on the occasion of his 60th Birthday, (2011), pp. 411–428.

[6] M. Dummett, *Elements of intuitionism*, Oxford University Press, 2000.

[7] J.-Y. Girard, P. Taylor, and Y. Lafont, *Proofs and types*, Cambridge University Press, 1989.

[8] Y. Kakutani, *Calculi for intuitionistic normal modal logic*, arXiv preprint arXiv:1606.03180, (2016).
[9] S. A. Kripke, *Semantical analysis of intuitionistic logic i*, in Studies in Logic and the Foundations of Mathematics, vol. 40, Elsevier, 1965, pp. 92–130.

[10] J. Lambek and P. J. Scott, *Introduction to higher-order categorical logic*, vol. 7, Cambridge University Press, 1988.

[11] S. Mac Lane, *Categories for the working mathematician*, vol. 5, Springer Science & Business Media, 2013.

[12] S. Negri, J. Von Plato, and A. Ranta, *Structural proof theory*, Cambridge University Press, 2008.

[13] E. Rijke, M. Shulman, and B. Spitters, *Modalities in homotopy type theory*, arXiv preprint arXiv:1706.07526, (2017).

[14] M. H. Sørensen and P. Urzyczyn, *Lectures on the Curry-Howard isomorphism*, vol. 149 of Studies in Logic and the Foundations of Mathematics, Elsevier, 2006.

[15] W. W. Tait, *Intensional interpretations of functionals of finite type i*, The Journal of Symbolic Logic, 32.2 (1967), pp. 198–212.

[16] A. Troelstra, *Principles of Intuitionism*, Springer, 1969.

[17] D. van Dalen, *Logic and Structure*, Springer, 4th ed., 2008.

[18] D. van Dalen and A. Troelstra, *Constructivism in Mathematics. An Introduction I*, vol. 121 of Studies in Logic and the Foundations of Mathematics, Elsevier, 1988.

[19] J. von Plato, *The development of proof theory*, in The Stanford Encyclopedia of Philosophy, E. N. Zalta, ed., Metaphysics Research Lab, Stanford University, winter 2018 ed., 2018.

[20] T. Williamson, *On intuitionistic modal epistemic logic*, Journal of Philosophical Logic, 21.1 (1992), pp. 63–89.