Visualization of photoacoustic images in a limited-View measuring system using eigenvalues of a photoacoustic transmission matrix (Abstract_要旨)

AUTHOR(S): Abe, Hiroshi

CITATION: Abe, Hiroshi. Visualization of photoacoustic images in a limited-View measuring system using eigenvalues of a photoacoustic transmission matrix. 京都大学, 2018, 博士(人間健康科学)

ISSUE DATE: 2018-03-26

URL: https://doi.org/10.14989/doctor.k21037

RIGHT:
京都大学 博士（人間健康科学） 氏名 阿部 浩

論文題目 Visualization of photoacoustic images in a limited-View measuring system using eigenvalues of a photoacoustic transmission matrix (Limited-view 下における光音響透過行列の固有値に基づく光音響イメージング)。

（論文内容の要旨）
光超音波イメージングは、励起光を吸収した光吸収体が光音響効果により放出する超音波信号を受信して、光吸収体（生体においてはメラニンやヘモグロビン）の分布を画像化する技術である。従来のイメージング機の機能はそのままに、光の波長操作などにより光吸収体へエネルギーを選択的に作用させることができる。さらに、直進性の高い超音波を発生・受信用で、深度を向上させる画像を得ることができる。そこで現在、動物実験から臨床試験まで幅広く臨床応用が試みられている。

しかし、生成する超音波を全周囲から観測しなければ再構成画像で画像欠損が生じることが、Limited-view 問題と呼ばれる。臨床応用を加速するためには、観察機器として商用化されている超音波診断機のプローブを利用することが望ましいが、1D プローブでは開口を広く計測することが難しく、欠損した画像が生成されることになる。

そこで、エネルギーを伝送する光に波面制御の技術を導入することで、光超音波診断装置の 1D プローブ計測下でも画像欠損が生じない計測方法の開発が図られた。まずレーザー光を分割して波面制御を行うことで、光吸収体でのレーザー光の位相応答をレーザーのスペクルサイズで各領域に誘起する。次に、レーザー光と超音波の線形変換を光吸収体からの超音波を受信する。本研究では、その超音波に変換された位相応答を複数回受信して画像化し、各領域を透過行列として観察することで、その行列の特異値から吸収体の有無を画像化する手法を考案した。

検討はシミュレーション環境下で事前検討を行おうと、ファントムに対し実際に計測し、その結果を検証した。実計測においては、照明光を基準位相領域および、位相変調領域 8×8 の領域に分配して各符号パターンに位相変調をpi/2 ずつ 4 位相加えた。位相変調領域は効率化のため Hadamard 行列を用いて符号化を行い、計 256 回の計測を実施した。計測した超音波信号はそれぞれ画像再構成し、後処理することで各再構成ビクセルサイズの光の位相応答性を算出した。その結果、超音波診断装置の 1D プローブを用いた Limited-view 環境下において、従来法では欠損していた画像を再構成することで、より高画質の画像が得られた。その後、得られた画像から、輝度を変化させた状態での画像を生成し、SN を上げた画像を得ることができた。

以上の結果から、位相変調を用いた Limited-view 環境下での光音響計測の有効性が検証された。一方で、残された課題として計測回数の増加に伴う計測時間の短縮化と、生体深部でのレーザーのコヒーレンシーの担保をすることが求められる。

以上のような分析に基づき、本論文は博士(人間健康科学)の学位論文として価値あるものと認める。なお、本学位授与申請者が、平成 30 年 1 月 25 日実施の、論文内容とそれに関連した試問を受け、合格と認められたものである。