NEWTONIAN FEW-BODY PROBLEM
CENTRAL CONFIGURATIONS WITH
GRAVITATIONAL CHARGES OF BOTH
SIGNS

E. PIÑA
Department of Physics
Universidad Autónoma Metropolitana - Iztapalapa,
P. O. Box 55 534, Mexico, D. F., 09340 Mexico
e-mail: pge@xanum.uam.mx

Dedicated to Prof. Jaume Llibre

ABSTRACT
The Newtonian n-Body Problem is modified assuming positive inertial masses
but different sign for the interacting force which is assumed with the pos-
sibility of two different signs for the gravitational masses, according to the
prescription two masses with same sign attract one to the other, two masses
of different sign repel one to the other. As in electrostatics the signed mass
is called charge. The inertial mass is always positive. The two body problem
behaves as the similar Coulomb problem of charged particles with two equal
charges. The solution is a central configuration with almost same behavior
that the Newton two-body problem for hyperbolic orbits. The 3-Body prob-
lem was found with collinear solutions. The four body case of charged central
configurations has only the planar [1] and collinear solutions.

Keywords Few-Body problem. Physical central configurations. Charges of
both signs

(2010) Mathematics Subject Classification Primary 70F10, Secondary
70F15

1
1 Introduction

In this paper we present the study of central configurations of few particles (2, 3, 4) that obey Newton’s three laws of motion and Newton’s gravitational force law [2], [3], assuming the possibility of gravitational charges of both signs, according to the prescription (which is opposite to that in electrostatics for electric charges where G would have a negative value) that the force between two masses with charge of the same sign is attractive, while the force between two masses with charge of opposite sign is repulsive. More explicitly, we assume the equations of motion

\[m_j \frac{d^2 \mathbf{r}_j}{dt^2} = \sum_{l \neq j} \frac{G e_j e_l}{r_{lj}^3} (\mathbf{r}_l - \mathbf{r}_j), \quad \forall j \]

(1)

where \(\mathbf{r}_j \) denotes the position vector of particle \(j \) in \(\mathbb{R}^3 \), \(m_j \) is its positive mass, \(G \) is the positive constant of universal gravitation, \(r_{lj} = |\mathbf{r}_l - \mathbf{r}_j| \) is the distance between particles \(j \) and \(l \), and \(e_j \) is the charge of particle \(j \) such that \(m_j = |e_j| \), with two possible choices of sign for the charge \(e_j \).

In the following we quote some fundamental equations of classical mechanics that are essential in Physics [2], [3].

Equation of motion (1) expresses Newton’s second law equating the positive inertial mass times the acceleration to Newton’s gravitational force. This force obeys the action-reaction law or Newton’s third law: the force vector that particle \(j \) exerts on particle \(l \) is of equal magnitude and opposite sign to the force that particle \(l \) exerts on particle \(j \). As a consequence, the sum over all \(j \) of the various equations of motion is the null vector

\[\sum_{\forall j} m_j \frac{d^2 \mathbf{r}_j}{dt^2} = \mathbf{0}. \]

(2)

The few bodies’ masses \(m_1, m_2, \ldots \) are positive and generally different in value, but some may be equal.

The total mass is

\[m = \sum_{\forall j} m_j, \]

(3)

The center of mass position is defined as

\[\mathbf{c} = \frac{1}{m} \sum_{\forall j} m_j \mathbf{r}_j. \]

(4)
Equation (2) implies
\[\frac{d^2 c}{dt^2} = 0 \, . \] (5)
which asserts that the center of mass moves with constant velocity.

With no loss of generality we assume in this paper that
\[\frac{dc}{dt} = 0 , \quad c = 0 , \quad \sum_{\forall j} m_j r_j = 0 . \] (6)
The center of mass is thus at the origin of the system of coordinates \(r_j \).

From equation (1) the conservation of total energy \(E \) follows, namely
\[\frac{1}{2} \sum_{\forall j} m_j \frac{dr_j}{dt} \cdot \frac{dr_j}{dt} - \sum_{l<j} \frac{G e_j e_l}{r_{lj}} = E . \] (7)
In this expression the first term on the left hand side is the kinetic energy, involving the positive inertial masses, while the second term is the potential energy, which depends on the gravitational charges.

Equation (1) also implies conservation of angular momentum
\[\frac{d}{dt} \sum_{\forall j} m_j r_j \times \frac{dr_j}{dt} = 0 , \] (8)
which again contains the inertial masses.

2 The integrable two body problem

In this section the positions of the two particles are written in terms of the relative position \(r = r_2 - r_1 \) as
\[r_1 = -\frac{m_2}{m} r , \quad r_2 = \frac{m_1}{m} r . \] (9)
The differential equations of motion are
\[\frac{dr}{dt} = v , \quad \frac{dv}{dt} = Gm \frac{1}{|r|^3} r . \] (10)
With the constants of motion of energy and angular momentum written in terms of, the specific energy
\[E = \frac{1}{2} |v|^2 + Gm \frac{1}{|r|} \] (11)
and the areal velocity
\[\mathbf{g} = \mathbf{r} \times \mathbf{v} = g(0, 0, 1), \]
(12)

where \(g \) is twice the magnitude of the areal velocity. This last implies the orbit (\(\mathbf{r} \) and \(\mathbf{v} \)) is in a plane orthogonal to the constant vector along \(\mathbf{g} \). Polar coordinates: \(r, \psi \), in this plane give us
\[\mathbf{r} = r(\cos \psi, \sin \psi, 0), \quad \mathbf{v} = \dot{r}(\cos \psi, \sin \psi, 0) + r\dot{\psi}(-\sin \psi, \cos \psi, 0), \]
(13)

where the dot on a letter denotes the time derivative, and
\[g = r^2 \dot{\psi}, \quad E = \frac{1}{2}(\dot{r}^2 + r^2 \dot{\psi}^2 + Gm \frac{1}{r}) = \frac{1}{2}(\dot{r}^2 + \frac{g^2}{r^2} + Gm \frac{1}{r}). \]
(14)

Dividing the second equation in (10) by the first equation in (14) one has
\[\frac{d\mathbf{v}}{d\psi} = \frac{1}{\psi} \frac{d\mathbf{v}}{dt} = \frac{Gm}{g}(\cos \psi, \sin \psi, 0), \]
(15)

which is integrated into
\[\mathbf{v} = \frac{Gm}{g}(\sin \psi, -\cos \psi, 0) + \mathbf{h}, \]
(16)

where \(\mathbf{h} \) is a constant vector of integration, the Hamilton vector [4], in the plane of the orbit. Vector \(\mathbf{v} - \mathbf{h} \) traces a circle in velocity space with center at \(\mathbf{h} \) and radius \(\frac{Gm}{g} \).

It is useful define the constant of motion called the Laplace-Runge-Lenz vector defined here in terms of other constants of motion as
\[\mathbf{e} = \frac{1}{Gm} \mathbf{h} \times \mathbf{g} = \frac{1}{Gm} \mathbf{v} \times \mathbf{g} + \frac{\mathbf{r}}{r} = \epsilon(1, 0, 0), \]
(17)

which defines the direction of one coordinate axis in the plane of the orbit. Projecting vector \(\mathbf{r} \) in this direction (in polar coordinates) lead to the orbit equation
\[\epsilon r \cos \psi = \frac{g^2}{Gm} + r, \]
(18)

which is a hyperbola with \(\epsilon > 1 \), the eccentricity and with \(p = \frac{g^2}{Gm} \), the latus rectum. The specific energy becomes \(E = \frac{Gm}{2a} \).
3 Central configurations of few charged masses.
Are there equilateral few body central configurations?

We define a central configuration as one in which the particle positions, defined up to rotation around the center of mass and uniform dilata tions, obey the equation

$$B m_j r_j = \sum_{l \neq j} \frac{G e_i e_j}{r_{ij}^3} (r_l - r_j), \quad \forall j,$$

where B is the same quantity for all the particles. In the right side we have the gravitational force acting on particle j due to the other charges. Using the fact that the sum of forces is the zero vector, we recover the third element of hypothesis (6): the origin of coordinates r_j is at the center of mass.

For the particular case of the previous section with just two particles the allowed hyperbolic motion is at any moment in a central configuration with $B = \frac{G m}{r^3}$. In the following, one considers the cases with three and four particles.

The force of the right hand side of (19) is the gradient of the potential energy

$$\sum_{l \neq j} \frac{G e_i e_j}{r_{ij}^3} (r_l - r_j) = \frac{\partial}{\partial r_j} \sum_{l < k} \frac{G e_l e_k}{r_{lk}}.$$ (20)

The left hand side of (19) is related with the gradient of the total moment of inertia, I,

$$m_j r_j = \frac{\partial}{\partial r_j} \frac{1}{2} \sum_{v_k} m_k r_k \cdot r_k,$$ (21)

which may be written in terms of the relative distances as

$$I = \frac{1}{2} \sum_{v_k} m_k r_k \cdot r_k = \frac{1}{2m} \sum_{k \neq l} m_k m_l r_{kl}^2.$$ (22)

It follows that the condition for central configurations of few particles in three dimensions may be expressed in terms of derivatives with respect to the relative distances r_{ij}^2 in the form

$$\frac{e_i e_j}{r_{ij}^3} = \sigma m_l m_j,$$ (23)
where σ is a quantity containing B and G. The left hand side of this equation is the derivative of the potential energy with respect to the square of the distance r_{lj}^2, while the right hand side is proportional to the derivative of the total moment of inertia with respect to the same variable r_{lj}^2.

Theorem 1

Equilateral central configurations do not exist for three or four particles with gravitational charges of different sign (the proof for four particles is at [1]).

Proof: Equation (23) can not possibly be satisfied for all combinations of indexes because the left hand side takes different signs and the right hand side has the sign of σ because the m’s are positive. One concludes that there is no equilateral central configuration for particles with different charges. Thus, the Lagrange equilateral triangle solution [5], and the Lehman-Filhés equilateral tetrahedron solution [6] valid for positive charges are not a central configuration for the case of positive and negative charges. □

4 Collinear Three-Body and planar Four-Body central configurations for masses of different charge

Consider now the question of possible collinear/planar configurations for Three/Four-Bodies. The modified Dziobek equations for collinear/planar central configurations of positive and negative charges are

$$\frac{e_le_j}{r_{lj}^3} = \sigma m_l m_j + \lambda S_l S_j,$$

(24)

where λ is a new parameter and S_k are the directed distances/areas of the segments/triangles having at their vertexes the two/three particles different from k. With respect to equation (23), the additional term takes into account the zero area/volume restriction necessary for collinear/planar configurations: $S_l S_k$ is a constant times the derivative with respect to r_{lk}^2 of the square of the area/volume of the triangle/tetrahedron formed by the three/four particles, which is expressed as the square of the Heron’s equation/as the so-called Cayley-Menger determinant. A similar equation was obtained by Dziobek [7], but although the two terms on the right hand side
of this equation are the same as in Dziobek’s paper, in the left hand side the charges are replaced by masses.

Note the invariance of the modified Dziobek’s equations with respect to a sign change of all the charges, as well as their invariance with respect to a sign change of the directed distances/areas

$$e_j \rightarrow -e_j, \quad S_j \rightarrow -S_j.$$

In order to prove that these equations are equivalent to the equations defining the central configurations, we need the collinear/planar conditions \cite{7, 8}

$$\sum_{\forall j} S_j = 0, \quad \sum_{\forall j} S_j r_j = 0. \quad (25)$$

Substituting the left hand side of \eqref{24} by the right hand side in \eqref{19}, one obtains

$$B m_j r_j = G \sum_{l \neq j}^4 (r_l - r_j) [\sigma m_l m_j + \lambda S_l S_j] = -G \sigma m_j r_j, \quad (26)$$

where we used the conditions \cite{6} that the center of mass is at the origin, and the planar configuration properties \eqref{25}. Thus from \eqref{26} we obtain that

$$B = -G \sigma m. \quad (27)$$

In addition, one has the property

$$\sum_{l=1}^4 \sum_{j=1}^4 S_t S_k r_{lj}^2 = \sum_{l=1}^4 \sum_{j=1}^4 S_l S_j (r_l^2 - 2 r_l \cdot r_j + r_j^2) = 0, \quad (28)$$

where we use the collinear/planar configuration conditions \eqref{25}. Note that the terms with $j = l$ in these summations are zero; therefore if we multiply both sides of equation \eqref{24} by r_{lj}^2 and we sum over all l and j with $l \neq j$ one obtains

$$\sum_{l,j,l \neq j} \frac{e_l e_j}{r_{lj}} = \sigma \sum_{l,j,l \neq j} m_l m_j r_{lj}^2. \quad (29)$$

In this case σ has not a definite sign because of the presence of charges with both signs.
5 Three-Body collinear central configurations

We ordered the coordinates of three particles as $x_1 < x_2 < x_3$. The Dziobek equations (24) for the collinear Three-Body Problem central configurations are

\[
\frac{e_1 e_2}{m_1 m_2 (x_2 - x_1)^3} = \sigma + \beta \frac{m_3}{x_2 - x_1} \quad (30)
\]
\[
\frac{e_2 e_3}{m_2 m_3 (x_3 - x_2)^3} = \sigma + \beta \frac{m_1}{x_3 - x_2} \quad (31)
\]
\[
\frac{e_3 e_1}{m_3 m_1 (x_3 - x_1)^3} = \sigma + \beta \frac{m_2}{x_1 - x_3} \quad (32)
\]

where β is

\[
\beta = \lambda \frac{(x_3 - x_2)(x_2 - x_1)(x_1 - x_3)}{m_1 m_2 m_3} \quad (33)
\]

Theorem 2

It is impossible to have a collinear Three-Body central configuration of different charges with the middle charge equal to one of the other charges.

Proof: Assume the different charge is $e_3 = -m_3$. The previous equations (30-32) are in such a case

\[
\frac{1}{(x_2 - x_1)^3} = \sigma + \beta \frac{m_3}{x_2 - x_1} \quad (34)
\]
\[
\frac{-1}{(x_3 - x_2)^3} = \sigma + \beta \frac{m_1}{x_3 - x_2} \quad (35)
\]
\[
\frac{-1}{(x_3 - x_1)^3} = \sigma + \beta \frac{m_2}{x_1 - x_3} \quad (36)
\]

Canceling σ between (34) and (36) we have

\[
\frac{1}{(x_2 - x_1)^3} + \frac{1}{(x_3 - x_1)^3} = \beta \left(\frac{m_2}{x_3 - x_1} + \frac{m_3}{x_2 - x_1} \right) \quad (37)
\]

that implies $\beta > 0$.

Canceling σ between (36) and (35) we have

\[
\frac{1}{(x_3 - x_2)^3} - \frac{1}{(x_3 - x_1)^3} = -\beta \left(\frac{m_2}{x_3 - x_1} + \frac{m_1}{x_3 - x_2} \right) \quad (38)
\]
that implies $\beta < 0$, which is a contradiction. □

On the contrary, when the middle charge is the one that has the opposite sign, the previous equations (30)-(32) are

$$-\frac{1}{(x_2-x_1)^3} = \sigma + \beta \frac{m_3}{x_2-x_1} \quad (39)$$
$$-\frac{1}{(x_3-x_2)^3} = \sigma + \beta \frac{m_1}{x_3-x_2} \quad (40)$$
$$\frac{1}{(x_3-x_1)^3} = \sigma + \beta \frac{m_2}{x_1-x_3}. \quad (41)$$

Canceling σ and β among these three equations we have the equation for collinear central configurations

$$m_2(x_3-x_1)^2(x_2-x_1)^3 + m_3(x_2-x_1)^2(x_3-x_2)^3 + m_3(x_2-x_1)^2(x_3-x_1)^3 =$$
$$m_2(x_3-x_1)^2(x_3-x_2)^3 + m_1(x_3-x_2)^2(x_3-x_1)^3 + m_1(x_3-x_2)^2(x_2-x_1)^3. \quad (42)$$

Particular collinear central configurations are

$$\frac{x_2-x_1}{x_3-x_2} = 2, \quad m_1 = 34 \quad m_2 = 10, \quad m_3 = 5.$$
$$\frac{x_2-x_1}{x_3-x_2} = \frac{3}{2}, \quad m_1 = 105 \quad m_2 = 84, \quad m_3 = 20.$$

6 Four-Body planar solutions

Write equation (24) divided by the product of masses m_lm_j as

$$\frac{e_le_j}{m_lm_j r_{lj}^2} = \sigma + \lambda A_lA_j, \quad (43)$$

where $A_j = S_j/m_j$ denotes, as in [8], weighted area. Noting that the square of $\frac{e_le_j}{m_lm_j}$ equals positive one, this equation may also be written as

$$\left(\frac{e_le_j}{m_lm_j r_{lj}}\right)^3 = \sigma + \lambda A_lA_j, \quad (44)$$
A similar equation is the basic tool to compute central configurations in reference [8] from the given weighted areas A_j. The difference is the replacement of distance r_{lj} by a sort of charged distance $r_{lj} - e_l e_j r_{lj}$. (45)

The algorithm presented in [8] is also useful for the present case if allowance is made for these positively or negatively charged distances in the numerical computation. In that paper the algorithm to compute planar central configurations starting from the weighted areas was applied to several examples with positive charges. Since the areas of the triangles having its vertices at the positions of the particles were computed by Heron’s formula in terms of the square of this distances, they are not modified by the extra factor $(m_l m_j)/(e_l e_j)$. At the end of the present paper the modified algorithm is used to obtain some numerical examples of central configurations combining it with the new algorithm recently proposed to compute central configurations from given masses [9] based on a new system of coordinates [10] which will be described in the next section. We refer the reader to those references for a more detailed account.

Subtracting term by term equation (43) with subscripts l,j and l,k, and with subscripts n,j and n,k, with all subscripts different, yields

$$e_l e_j \frac{1}{m_l m_j r_{lj}^3} - e_k e_l \frac{1}{m_l m_k r_{lk}^3} = \lambda A_l (A_j - A_k),$$

(46)

$$e_n e_j \frac{1}{m_n m_j r_{nj}^3} - e_k e_n \frac{1}{m_n m_k r_{nk}^3} = \lambda A_n (A_j - A_k).$$

(47)

Elimination of λ between these two equations gives the fundamental relation

$$S_n e_l \left(\frac{e_j m_k}{r_{lj}^3} - \frac{e_k m_j}{r_{lk}^3} \right) = S_l e_n \left(\frac{e_j m_k}{r_{nj}^3} - \frac{e_k m_j}{r_{nk}^3} \right).$$

(48)

The same equation was obtained directly from two of the defining equations for planar central configurations [19]. A similar calculation may be found in reference [8].
Theorem 3

A planar central configuration of four particles with one charge opposite in sign to the other three leads to a concave configuration with the different sign charge in the convex hull of the other three (the same proof is at \[1\]).

Proof: Assume that the charge of particle 1 is of opposite sign to the charge of the other three particles. Using equation (48) with \(j = 1\), we note that the quantity in the two parenthesis have the same sign and therefore

\[
\frac{S_2}{S_3} > 0, \quad \frac{S_3}{S_4} > 0, \quad \frac{S_4}{S_2} > 0.
\] (49)

From the above equation we prove with no loss of generality that the sign of the charge of any particle may be made to coincide with the sign of the corresponding area.

\[
S_2 > 0, \quad S_3 > 0, \quad S_4 > 0, \quad S_1 < 0. \square
\] (50)

Theorem 4

A planar central configuration of four particles with two pairs of particles of different sign leads to a convex configuration with charges of the same sign located at the ends of the two diagonals (the same proof is at \[1\]).

Proof: Consider now the case in which particles 1 and 2 have charges of one sign and particles 3 and 4 of the opposite sign. Again using equation (48) with charge \(j\) of one sign and charge \(k\) of the opposite sign, the quantity in the parenthesis have the same sign, so that

\[
\frac{S_1}{S_3} < 0, \quad \frac{S_1}{S_4} < 0, \quad \frac{S_2}{S_3} < 0, \quad \frac{S_2}{S_4} < 0.
\] (51)

With no loss of generality we take

\[
S_1 > 0, \quad S_2 > 0, \quad S_3 < 0, \quad S_4 < 0. \square
\] (52)

As a consequence, the quotient \(S_k/e_k\) may be considered to be always positive.
Theorem 5
To have a Four-Body central configuration determined by Dziobek-like equation (24), parameter λ is positive (the same proof is at [1]).

Proof: Divide both members of equation (24) by the product of charges e_le_j to yield

$$\frac{1}{r_{lj}^3} = \sigma \frac{m_lm_j}{e_le_j} + \lambda \frac{S_lS_j}{e_le_j}.$$

Choosing two of these equations, with subscripts say l,j and l,k, such that the term containing σ in each is of opposite sign, adding member by member we obtain

$$\left(\frac{1}{r_{lj}^3} + \frac{1}{r_{lk}^3}\right) = \lambda \left(\frac{S_lS_j}{e_le_j} + \frac{S_lS_k}{e_le_k}\right).$$

Since the quantities in the parentheses are both positive, we have proved that

$$\lambda > 0.$$

□

7 New coordinates in the Four-Body Problem

This section reviews the main ideas and results of the new four-body coordinates of [10], slightly expanded at a few spots but condensed to the minimum necessary. This coordinate system has been used to compute several central configurations with gravitational charges of both signs.

We transform from the inertial referential system to the frame of principal axes of inertia by means of a three dimensional rotation G parameterized by three independent coordinates. In addition to this rotation, three more coordinates are introduced, as scale factors R_1, R_2, R_3, which are three directed distances closely related to the three principal moments of inertia through

$$I_1 = \mu (R_2^2 + R_3^2), \quad I_2 = \mu (R_3^2 + R_1^2), \quad \text{and} \quad I_3 = \mu (R_1^2 + R_2^2),$$

where μ is the mass

$$\mu = \sqrt[3]{\frac{m_1 m_2 m_3 m_4}{m_1 + m_2 + m_3 + m_4}}.$$
The first rotation changes nothing and after the scale change the resulting four-body configuration has a moment of inertia tensor with the three principal moments of inertia equal. The second rotation G' does not change this property.

The cartesian coordinates of the four particles, with the origin at the center of gravity, written in terms of the new coordinates are

$$
\begin{pmatrix}
 x_1 & x_2 & x_3 & x_4 \\
 y_1 & y_2 & y_3 & y_4 \\
 z_1 & z_2 & z_3 & z_4
\end{pmatrix}
= G
\begin{pmatrix}
 R_1 & 0 & 0 \\
 0 & R_2 & 0 \\
 0 & 0 & R_3
\end{pmatrix}
G'^T
\begin{pmatrix}
 a_1 & a_2 & a_3 & a_4 \\
 b_1 & b_2 & b_3 & b_4 \\
 c_1 & c_2 & c_3 & c_4
\end{pmatrix},
$$

where G and G' are two rotation matrices, each a function of three independent coordinates such as the Euler angles, and where the column elements of the constant matrix

$$E = \begin{pmatrix} a_1 & a_2 & a_3 & a_4 \\ b_1 & b_2 & b_3 & b_4 \\ c_1 & c_2 & c_3 & c_4 \end{pmatrix},$$

are the coordinates of the four vertexes of a rigid orthocentric tetrahedron [11], having its center of mass at the origin of coordinates, namely:

$$a_1m_1 + a_2m_2 + a_3m_3 + a_4m_4 = 0,$$
$$b_1m_1 + b_2m_2 + b_3m_3 + b_4m_4 = 0,$$
$$c_1m_1 + c_2m_2 + c_3m_3 + c_4m_4 = 0,$$

We introduce the mass matrix

$$M = \begin{pmatrix}
 m_1 & 0 & 0 & 0 \\
 0 & m_2 & 0 & 0 \\
 0 & 0 & m_3 & 0 \\
 0 & 0 & 0 & m_4
\end{pmatrix}.$$

An equivalent condition for having three equal moments of inertia for the rigid tetrahedron is expressed as

$$E M E^T = \mu \begin{pmatrix}
 1 & 0 & 0 \\
 0 & 1 & 0 \\
 0 & 0 & 1
\end{pmatrix}$$

The system of coordinates for measuring the G' rotation can be chosen in various ways, from which we prefer to use the same coordinates as in reference
[9], namely, particle with mass \(m_1 \) along coordinate axis 3, the other three in a plane parallel to the coordinate plane containing axes 1 and 2 but that does not include the particle of mass \(m_1 \); the particle with mass \(m_2 \) on an orthogonal coordinate plane that contains the first particle and the center of mass, and the other two particles on a line that is parallel to coordinate axis 1 and perpendicular to the coordinate plane containing the first two particles. Particle 1 thus has coordinates

\[
(a_1, b_1, c_1) = \left(0, 0, \sqrt{\frac{\mu (m - m_1)}{m_1 m}} \right). \tag{63}
\]

Particle 2 has coordinates

\[
(a_2, b_2, c_2) = \left(0, \sqrt{\frac{\mu (m_3 + m_4)}{m_2 (m - m_1)}}, -\sqrt{\frac{\mu m_1}{(m - m_1) m}} \right). \tag{64}
\]

Particle 3 has coordinates

\[
(a_3, b_3, c_3) = \left(\sqrt{\frac{\mu m_4}{m_3 (m_3 + m_4)}}, -\sqrt{\frac{\mu m_2}{(m_3 + m_4) (m - m_1)}}, -\sqrt{\frac{\mu m_1}{(m - m_1) m}} \right). \tag{65}
\]

Particle 4 has coordinates

\[
(a_4, b_4, c_4) = \left(-\sqrt{\frac{\mu m_3}{m_4 (m_3 + m_4)}}, -\sqrt{\frac{\mu m_2}{(m_3 + m_4) (m - m_1)}}, -\sqrt{\frac{\mu m_1}{(m - m_1) m}} \right). \tag{66}
\]

Note that \(b_3 = b_4 \) and \(c_2 = c_3 = c_4 \), as they should.

This rigid tetrahedron is the generalization of the rigid triangle of the Three-Body problem with the center of mass at the orthocenter discussed previously in [12]. The same triangle was used with different purposes by C. Simo [13].

Our coordinates are now adapted to the important and old subject [7] of planar configurations, with the four particles in a constant plane. Since the z-component of the four particles equals zero, the first rotation is just by one angle in the plane of motion and the scale factor associated with the third coordinate is zero, namely

\[
\begin{pmatrix}
 x_1 & x_2 & x_3 & x_4 \\
 y_1 & y_2 & y_3 & y_4 \\
 0 & 0 & 0 & 0
\end{pmatrix}
\]
This equation simplifies to
\[
\begin{pmatrix}
 x_1 & x_2 & x_3 & x_4 \\
y_1 & y_2 & y_3 & y_4
\end{pmatrix} =
\begin{pmatrix}
 \cos \psi & -\sin \psi & 0 \\
 \sin \psi & \cos \psi & 0 \\
 0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
 R_1 & 0 & 0 \\
 0 & R_2 & 0 \\
 0 & 0 & 0
\end{pmatrix}
\begin{pmatrix}
 G' \end{pmatrix}^T
\begin{pmatrix}
 a_1 & a_2 & a_3 & a_4 \\
b_1 & b_2 & b_3 & b_4 \\
c_1 & c_2 & c_3 & c_4
\end{pmatrix},
\]
(67)
in terms of six degrees of freedom.

The corresponding expression for the four directed areas in terms of these coordinates is
\[
\begin{pmatrix}
 S_1 \\
 S_2 \\
 S_3 \\
 S_4
\end{pmatrix} = C M E^T G'
\begin{pmatrix}
 0 \\
 0 \\
 0
\end{pmatrix},
\]
(68)
where \(C \) is a constant with units of area divided by mass. Note that Equations (25) are satisfied from this expression of the directed areas since substitution of equations (68) and (69) in equations (25), and application of equation (62), yields an identity, independent of coordinates.

For \(G' \) two rotation angles are needed, for which we chose those required to express the unit vector in spherical coordinates
\[
G' \begin{pmatrix}
 0 \\
 0 \\
 1
\end{pmatrix} = \begin{pmatrix}
 \sin \theta \cos \phi \\
 \sin \theta \sin \phi \\
 \cos \theta
\end{pmatrix},
\]
(70)
where \(\theta \) and \(\phi \) are the spherical coordinates determining this vector. Given the four masses, the four directed areas are functions, up to a multiplicative constant \(C \) depending on the choice of physical units, of this unit vector direction only.

The non-collinear planar central configurations are characterized in our coordinates by constant values of the \(G' \) matrix and of the constant value of the ratio \(R_1/R_2 \), which are not arbitrary, but they are determined by three independent quantities as discussed in the following.
Figure 1: Stereographic projection of the hemisphere of the two angles motion of the orthocentric tetrahedron. The great circles represent the positions where three particles are collinear. The four spherical triangles are concave open sets labeled by the particle at the interior of the triangle. The spherical quadrilateral open sets correspond to convex configurations with the same order that the neighboring triangles. The isolated points are at the angles where a charged central configuration has been computed in [1]. The values of the masses are $m_1 = 10, m_2 = 13, m_3 = 15, m_4 = 17$. The sign of the charges is opposite for the position inside a concave spherical triangle set and apposite for the two particles along each diagonal when the particle is inside a rectangular convex region.
From (69) follows that in a planar solution the weighted directed areas are expressed as

\[
\begin{pmatrix}
A_1 \\
A_2 \\
A_3 \\
A_4
\end{pmatrix} = C \mathbf{E}^T \mathbf{G}' \begin{pmatrix} 0 \\
0 \\
1 \end{pmatrix} = C \mathbf{E}^T \begin{pmatrix}
\sin \theta \cos \phi \\
\sin \theta \sin \phi \\
cos \theta
\end{pmatrix}.
\]

(71)

Therefore, the weighted directed areas are up to a normalization factor equal to the third rotated coordinate of the rigid tetrahedron. In terms of the vectors (63-66) and the angles \(\theta\) and \(\phi\) this equation is expressed simply as

\[
A_j = C(a_j \sin \theta \cos \phi + b_j \sin \theta \sin \phi + c_j \cos \theta).
\]

(72)

Choosing \(C = \sqrt{(m - m_1) / \mu}\) we have explicitly

\[
A_1 = \frac{m - m_1}{\sqrt{m_1 m}} \cos \theta,
\]

\[
A_2 = -\sqrt{\frac{m_1}{m} \cos \theta + \frac{m_3 + m_4}{m_2} \sin \theta \sin \phi},
\]

\[
A_3 = -\sqrt{\frac{m_1}{m} \cos \theta - \frac{m_2}{m_3 + m_4} \sin \theta \sin \phi + \frac{m_4(m - m_1)}{m_3(m_3 + m_4)} \sin \theta \cos \phi}
\]

\[
A_4 = -\sqrt{\frac{m_1}{m} \cos \theta - \frac{m_2}{m_3 + m_4} \sin \theta \sin \phi - \frac{m_3(m - m_1)}{m_4(m_3 + m_4)} \sin \theta \cos \phi}.
\]

(73)

Note that a sign change of the unit vector (47) produces a simultaneous sign change in these four \(A_j\)’s which does not to give a different central configuration. Therefore, it suffices to consider only the hemisphere \(0 \leq \theta \leq \pi/2\).

8 Computing central configurations for positive and negative charges

In the case of positive charges, since the lengths and masses are defined up to arbitrary units, with no loss of generality we assumed in [8] that the...
parameter σ equals plus one. However, central configurations with charges of different sign obtained numerically always yield a negative σ, so that for those cases we used $\sigma = -1$ as follows

$$\frac{e_j e_k}{m_j m_k} r_{jk}^{-3} = -1 + \lambda A_j A_k \quad (j \neq k).$$

(74)

We recall that in the paper by Piña and Lonngi [8] the assumption that the directed weighted areas are known as four given constants was made. The equation which corresponds to (51) then gives the distances as functions of the unknown parameter λ. Through them, the areas of the four triangles become functions of λ, that should satisfy restrictions (25) for a planar solution. These restrictions allow in many cases to determine the value of λ and hence the values of the six distances and the four masses. This is an implicit way to deduce planar central configurations with four masses.

In contrast, in reference [1], as well as in reference [9], we assume that the four masses are known from the beginning. The four weighted areas are then determined by expressions (73) in terms of the two tuning variables θ and ϕ. Particular values of these two angles determine the four constants A_j, up to a multiplicative factor, which in turn produce a central configuration with computed distances and masses. The computed masses are in general not equal (or proportional) to the starting values used to build the orthocentric tetrahedron. The two angles are then tuned until a numerical match is produced between the given and the computed masses. The distances between particles, computed for this central configuration, correspond to the given masses.

For the arbitrarily chosen values of the masses $m_1 = 10, m_2 = 13, m_3 = 15, m_4 = 17$ seven central configurations were found in [1] which are represented in Figure 1.

9 Collinear Four-Body central configurations

The collinear case is very similar to the planar case. Assume the particles are ordered in the line with coordinates: $r_1 < r_2 < r_3 < r_4$. In this case the configuration is determined by three distances between particles $a = r_2 - r_1, b = r_3 - r_2, c = r_4 - r_3$. Using the fact that the coordinates are defined with respect to the center of mass: $m_1 r_1 + m_2 r_2 + m_3 r_3 + m_4 r_4 = 0$, it is possible
Figure 2: The set of the four-body collinear configurations in the central circle by the stereographic projection of the hemisphere of the two angles position of the orthocentric tetrahedron. The great circles represent the r_i positions where two particles have the same coordinate. Each point on the hemisphere represent a different collinear configuration. The particular permutation is determined by the inequalities of the coordinates associated to two masses on both sides of the great circles. Each of the interior of the twelve spherical triangles represent the set of different collinear configurations with the same permutation order. The values of the masses are $m_1 = 20, m_2 = 13, m_3 = 7, m_4 = 6$. The inequalities between coordinates in figure are labeled with the numerical value of the corresponding masses. To simplify compilation the r’s in figure are not italic fonts.
to write the positions r_j in terms of the masses and the distances a, b, c

\[
\begin{pmatrix}
 r_1 \\
 r_2 \\
 r_3 \\
 r_4
\end{pmatrix} =
\begin{pmatrix}
 0 & -a & -(a + b) & -(a + b + c) \\
 a & 0 & -b & -(b + c) \\
 a + b & b & 0 & -c \\
 a + b + c & b + c & c & 0
\end{pmatrix}
\begin{pmatrix}
 m_1 \\
 m_2 \\
 m_3 \\
 m_4
\end{pmatrix}.
\] (75)

The 4×4 matrix

\[
A =
\begin{pmatrix}
 0 & -a & -(a + b) & -(a + b + c) \\
 a & 0 & -b & -(b + c) \\
 a + b & b & 0 & -c \\
 a + b + c & b + c & c & 0
\end{pmatrix}
\] (76)

is skew-symmetric with zero determinant. It is expressed in terms of the orthogonal vectors

\[
A = \begin{pmatrix}
 1/2 & -3a/2 - b - c/2 \\
 2/1 & a/2 - b - c/2 \\
 1/2 & a/2 + b - c/2 \\
 1/2 & a/2 + b + 3c/2
\end{pmatrix}^T
= \begin{pmatrix}
 -3a/2 - b - c/2 \\
 a/2 - b - c/2 \\
 a/2 + b - c/2 \\
 a/2 + b + 3c/2
\end{pmatrix}^{1/2}
\] (77)

In order to have a collinear central configuration vector with entries r_j, or the parallel F with entries $\frac{F_j}{m_j}$, will be perpendicular to two linearly independent vectors orthogonal to the vectors in this equation. Two particular, linearly independent vectors are any two of the vectors

\[
k_1 = \begin{pmatrix}
 c \\
 0 \\
 -(a + b + c) \\
 a + b
\end{pmatrix},
\quad
k_2 = \begin{pmatrix}
 0 \\
 c \\
 -(b + c) \\
 b
\end{pmatrix},
\quad
k_3 = \begin{pmatrix}
 -b \\
 a + b + c \\
 -(a + b + c) \\
 b
\end{pmatrix},
\] (78)

which are linearly dependent according to

\[
bk_1 + ck_3 = (a + b + c)k_2.
\] (79)

Theorem 6

It is impossible to have a collinear Four-Body central configuration with a different charge outside the other three charges.
Proof: Assume the different charge is at \(r_4 \), then the forces in terms of masses and distances are

\[
\frac{F_1}{m_1 G} = \frac{m_2}{a^2} + \frac{m_3}{(a + b)^2} - \frac{m_4}{(a + b + c)^2} \quad (80)
\]
\[
\frac{F_2}{m_2 G} = -\frac{m_1}{a^2} + \frac{m_3}{b^2} - \frac{m_4}{(b + c)^2} \quad (81)
\]
\[
\frac{F_3}{m_3 G} = -\frac{m_1}{(a + b)^2} - \frac{m_2}{b^2} - \frac{m_4}{c^2} \quad (82)
\]
\[
\frac{F_4}{m_4 G} = \frac{m_1}{(a + b + c)^2} + \frac{m_2}{(b + c)^2} + \frac{m_3}{c^2}. \quad (83)
\]

Interior product of \(\mathbf{F} \) with the vector \(\mathbf{k}_1 \) is always positive, all the negative terms are exactly canceled by positive terms. It can never been zero. \(\square \)

Theorem 7

It is impossible to have a collinear Four-Body central configuration with two charges of one sign on one side of the line and two charges of opposite sign on the other side.

Proof: Assume charges 1 and 2 are positive and charges 3 and 4 are negative. The forces for this distribution of charges are

\[
\frac{F_1}{m_1 G} = \frac{m_2}{a^2} - \frac{m_3}{(a + b)^2} - \frac{m_4}{(a + b + c)^2} \quad (84)
\]
\[
\frac{F_2}{m_2 G} = -\frac{m_1}{a^2} - \frac{m_3}{b^2} - \frac{m_4}{(b + c)^2} \quad (85)
\]
\[
\frac{F_3}{m_3 G} = \frac{m_1}{(a + b)^2} + \frac{m_2}{b^2} + \frac{m_4}{c^2} \quad (86)
\]
\[
\frac{F_4}{m_4 G} = \frac{m_1}{(a + b + c)^2} + \frac{m_2}{(b + c)^2} - \frac{m_3}{c^2}. \quad (87)
\]

The interior product of \(\mathbf{F} \) with the vector \(\mathbf{k}_2 \) is always positive definite. It can never been zero. \(\square \)

Theorem 8

It is impossible to have a collinear Four-Body central configuration with two charges of one sign inside the two charges of opposite sign.
Proof: Assume charges 1 and 4 are with different sign than charges 2 and 3. The forces for this distribution of charges are

\[
\frac{F_1}{m_1G} = -\frac{m_2}{a^2} - \frac{m_3}{(a + b)^2} + \frac{m_4}{(a + b + c)^2}
\]
\((88) \)

\[
\frac{F_2}{m_2G} = \frac{m_1}{a^2} + \frac{m_3}{b^2} - \frac{m_4}{(b + c)^2}
\]
\((89) \)

\[
\frac{F_3}{m_3G} = \frac{m_1}{(a + b)^2} - \frac{m_2}{b^2} - \frac{m_4}{c^2}
\]
\((90) \)

\[
\frac{F_4}{m_4G} = -\frac{m_1}{(a + b + c)^2} + \frac{m_2}{(b + c)^2} + \frac{m_3}{c^2}
\]
\((91) \)

The interior product of \(\mathbf{F} \) with the vector \(k_3 \) is always positive definite, all the negative terms are exactly canceled by positive terms. It can never been zero. \(\square \)

The possibility of collinear central configuration of gravitational charges of both signs is discovered by numerical computation of several cases, by means of the algorithm published in [14] using the same coordinate system. The possible particular permutation of coordinates is limited to a spherical triangle as represented in figure 2. Many central configuration with two particles of one charge and the other with different charge have been computed when the sign of the charges alternates in the line: \(r_1 \) and \(r_3 \) of one sign, \(r_2 \) and \(r_4 \) of the opposite sign. Collinear central configurations with one charge different of the other has been computed in several cases when the different charge is located between two of the opposite charged particles. The presence of one different charge perturb the positions of the three others which expand when the value of the different charge increases. Numerical examples will be e-mailed by request.

References

[1] E. Piña and P. Lonngi *Central configurations of Four Bodies with Gravitational Charges of Both Signs*, Qualitative Theor. of Dyn. Sys. Vol. 11, Pags. 215-229 (2012). Published online (28 october 2011) DOI: 10.1007/s 12346-011-0057-6.

[2] S. T. Thornton & J. B. Marion *Classical Dynamics of Particles and Systems* 5th edition (Thomson Brooks/Cole, Mexico, 2004).
[3] J. V. Jose & E. J. Saletan *Classical Mechanics, A Contemporary Approach* (Cambridge University Press, Cambridge, 1998).

[4] J. Milnor *On the geometry of the Kepler Problem*, American Mathematical Monthly **80** 353-365 (1983).

[5] J.-L. Lagrange *Essai sur le Problème des Trois Corps* (Œuvres VI 292 (1772)

[6] R. Lehman-Filhés, *Über swei Fälle des Vielkörpersproblems* Astr. Nachr. **127** 137-144 (1891).

[7] O. Dziobek, *Über einer welk würdigen Fall des Vielkörpersprobloms* Astr. Nachr. **152** 33-46 (1900).

[8] E. Piña and P. Lonngi *Central configurations for the planar Newtonian Four-Body Problem* Cel. Mech. & Dyn. Astr. **108** 73-93 (2010).

[9] E. Piña, *Algorithm for planar 4-Body Problem central configurations with given masses* ArXiv 1006.2430 (2010)

[10] E. Piña, *New coordinates for the Four-Body Problem* Rev. Mex. Fis. **56** 195-203 (2010).

[11] N. A. Court *Notes on the orthocentric tetrahedra*, The American Mathematical Monthly **41** (1934) 499-502

[12] E. Piña and A. Bengochea *Hyperbolic Geometry for the Binary Collision Angles of the Three-Body Problem in the Plane*, Qualitative Theor. of Dyn. Sys. Vol. 8, Pags. 399-417 (2009). Published online (09 February 2010).

[13] C. Simó El conjunto de bifurcación en el problema espacial de tres cuer- pos. In: Acta I Asamblea Nacional de Astronomía y Astrofísica. Instituto de Astrofísica. (Univ. de la Laguna. Spain, 1975) pp. 211-217

[14] E. Piña, *Computing collinear Four-Body central configurations with given masses* DCDS-A **33** 1215-1230 (2013).