О СИНГУЛЯРНОСТИ ДВИЖУЩЕЙСЯ КОНТАКТНОЙ ЛИНИИ

Р. Кречетников

Представлено академиком РАН В.А. Левиным 25.06.2018 г.

Поступило 20.06.2018 г.

Учтя, что контактная линия между жидкостью и твёрдой фазами может двигаться независимо от того, насколько пренебрежимо малы шероховатость поверхности, проскальзывание Навье, летучесть жидкости, присутствие примесей, отклонение реологии жидкости от ньютоновской и другие зависящие от физической системы параметры, мы рассматриваем здесь задачу с чисто гидродинамической точки зрения. На основании простых логических соображений автор предлагает новую идею о том, как можно устранить сингулярность движущейся контактной линии. В поддержку этой идее также предоставляются оценки задействованных физических величин и аналитическое локальное решение.

Ключевые слова: сингулярность, контактная линия.

DOI: https://doi.org/10.31857/S0869-56524843285-288

Начав с работ [1, 2] хорошо известно, что течение жидкости в достаточно близости к движущейся контактной линии происходит в режиме Стокса. В клинообразной конфигурации (рис. 1) соображения симметрии диктуют единственное решение в виде функции тока для соответствующей краевой задачи \(\psi = U r f(\theta) \), которая приводит к проработке \(r^{-1} \) сингулярности в сдвиговом напряжении и давлении, тем самым делая их непрерывными на твёрдую поверхность (подложку), так и скорость вязкой диссипации, т.к. функциональная диссипация логарифмически расходящаяся. Ранее были предложены различные способы для устранения сингулярности, в частности основанные либо на фактическом, либо на эффективном (для шероховатых подложек) проскальзывании или существовании прекурсорной плёнки. Известно, что шероховатость подложки может быть уменьшена до субнанометровых масштабов, и существует много ситуаций, когда нет ни прекурсионной плёнки, ни измеримого проскальзывания при разумных скоростях сдвига. Также расстояние, на котором может происходить проскальзывание, определяется балансом межмолекулярных взаимодействий \(O(A/l) \) с вязкими силами \(O(\mu^2 \dot{\gamma}) \), где \(\mu \) — динамическая вязкость, \(A = 10^{-19} \) Дж — константа Гамакера и \(l = 0,3 \) нм — типичный размер молекулы воды. В результате скорость сдвига \(\dot{\gamma} = 10^{12} \) с\(^{-1} \), откуда для скорости контактной линии \(U = 1 \) мм/с находим критическое расстояние от вершины клина \(r^* = 10^{-15} \) м, которое значительно меньше \(l \) и фактически порядка диаметра водородного ядра. Следовательно, в типичной ситуации нельзя полагаться на проскальзывание, чтобы разрешить сингулярность. Аналогично предполагаем, что жидкость ведёт себя как ньютоновская при повышенных значениях сдвиговых напряжений, что происходит, когда характерное время течения становится сравнимым с релаксацией \(\tau \sim \mu / K \), при которой жидкости начинают вести себя как твёрдые тела (и, следовательно, появляются ньютоновские эффекты); здесь \(K \) — модуль объёмной упругости, как правило, того же порядка, что и модуль сдвига \(G \). Следовательно, для воды мы находим \(T = 10^{-12} \) с. Сравнивая с \(\dot{r} / U \) для того же значения \(U \), снова получаем \(r^* = 10^{-15} \) м.

Таким образом, мы имеем дело с ситуацией, когда, несмотря на прилипание к подложке, контактная линия воды способна двигаться. Единственный разумный логический вывод состоит в том, что сингулярность является следствием предположенной заострённой геометрии клина на рис. 1.

University of Alberta, Edmonton, Canada
E-mail: krechet@ualberta.ca

Рис. 1. Клиновидная конфигурация.
Поскольку природа не допускает неразрешённых особенностей, следующим шагом является отказ от этой геометрической конфигурации, т.е. мы должны предположить, что вершина клина не является идеально острой и жидкость должна встречать границу раздела с твёрдым телом под углом \(\theta = \pi \), — в этом случае расходящиеся напряжения и давление, ранее вычисленные [1, 2], обнуляются и, таким образом, сингулярность контактной линии удаляется. Учитывая, что кажущийся макроскопический угол смачивания \(\alpha \), как правило, отличается от \(\pi \), единственный способ согласовать его с микроскопическим углом смачивания \(\pi \) заключается во введении значительно изогнутой области, как на рис. 2, которая должна быть очень малой, учитывая, что она не наблюдается на макроскопическом уровне. Естественным кандидатом для сглаживания заострения клина является поверхностное натяжение, что, естественно, приводит к изменению кривизны темплотой, вызванной вязкой диссипацией в области дисперсионных напряжений типа, показанной на рис. 2, и \(s \) — длина дуги. Из баланса тангентиального напряжения и градиентов марангони

\[
\mu \frac{d\alpha}{d\theta} - \frac{d\sigma}{dT} = \frac{d\sigma}{ds},
\]

на свободной поверхности в предположении линейной зависимости поверхностного напряжения от температуры \(\sigma = \sigma_0 - \gamma \Delta T \) (где \(\gamma > 0 \) для нормальных веществ) мы находим

\[
\frac{\mu L}{L} - \gamma \Delta T \Rightarrow \Delta T = \frac{\mu U}{\gamma},
\]

что подразумевает уравновешивание вязкого напряжения в “квадратной” области \(L \times L \) напряжениями марангони. Уравнение баланса энергии для нежищемого потока имеет вид

\[
\rho c_p \nabla T = \kappa \nabla^2 T + \frac{\mu}{2} \epsilon_{ik} \epsilon_{ik},
\]

где \(\epsilon_{ik} \) — тензор скорости деформации. Поскольку сама теплопроводность не приводит к конечному распределению температуры при наличии точечного источника темп (последнего слагаемого в уравнении энергии), единственный способ получить конечный характерный масштаб длины \(L \) для изменения температуры \(\Delta T \) — это путём баланса адvectionи и теплопроводности:

\[
\rho c_p U \frac{\Delta T}{L} - \kappa \frac{\Delta T}{L^2} \Rightarrow L = \frac{\kappa}{U c_p p}.
\]

Именно на этом пространственном масштабе эффекты адvectionи в (4) уравновешиваются диффузией. На более коротких масштабах диффузия доминирует и в этой двумерной задаче приводит к логарифмическому распределению температуры (т.е. фундаментальному решению уравнения Лапласа с точечным источником), которое не устанавливает какой-либо характерной длины. На более длинных мас-
штабах распределение температуры экспоненциаль
но выравнивается из-за адvection, как следует
из уравнения (4). Тогда радиус кривизны R особой
области определяется из баланса производства теп-
ловой энергии в этой области и последующего пе-
реноса на большую область размера L (см. рис. 2):

$$\mu \left(\frac{U}{R} \right)^2 + \kappa \frac{dT}{L},$$

(6)

t.e. последний член в уравнении (4) действует как
точечный источник, $R \ll L$. Из (3), (5), (6) мы при-
ходим к

$$L - \frac{\kappa}{Upc_p}, \Delta T - \frac{\mu U}{\gamma}, R - \frac{1}{pc_p} \sqrt{\frac{\kappa}{U}}.$$

(7)

Используя значения параметров для воды ($\gamma = 4185,5$ Дж/(кг·К)), $\kappa = 0,56$ Вт/(м·К), $c_p = 3,9\times10^3$ Дж/(кг·К), $\rho = 10^3$ кг/м3, $\mu = 1,002$ мПа·с, $U = 10^{-3}$ м/с), можем оценить:

$$L = 0,1 \text{ мм, } R = 0,1 \text{ кмм, } \Delta T = 10^{-2} \text{ К.}$$

(8)

Хотя вариация температуры невелика, её градиент равен $O(10^2)$ К/м, что на порядок выше, чем тот, что требуется для появления конвекции Рэлея—Бенара в слое воды толщиной 1 см. Изменение температуры ΔT также сравнимо с оценкой молекулярной дина-
мики, а именно когда молекула воды со средней
скоростью $\langle v \rangle = 500$ м/с отражается от вершины
клина, движущегося со скоростью U, она приобретает кинетическую энергию $-2\langle v \rangle U$ (на массу мо-
лекулы), которая по сравнению со средней кинети-
ческой энергией при комнатной температуре даёт

$$\Delta T = 2 \cdot 10^{-3} \text{ К.}$$

Мы можем получить ещё несколько важных све-
дений о задаче, обобщая решение Моффата [1]
на случай с напряжениями Марангони. Из конфи-
гурации на рис. 1 ясно, что решение соответствую-
щей задачи Стокса по-прежнему имеет вид

$$\psi = Uf(\theta),$$

tак что компоненты скорости даются выражениями

$$u = r^{-1} \psi_r = Uf' (\theta), v = - \psi_\theta = -Uf(\theta).$$

Соответствующие граничные условия в виде функций потока даются в виде

$$\theta = -\alpha: f'(-\alpha) = 0, f'(-\alpha) = 1,$$

(9a)

$$\theta = 0: f(0) = 0, f''(0) = \tau,$$

(9b)

gде $\tau = C_a^{-1} \sigma r$, и выражение в тангенциальном ба-
лансе для удобства обезразмеренно, $r \rightarrow Lr$, с по-
мощью L, введённого ранее, здесь $Ca = \mu U/\sigma_0$ — ка-
пиллярное число. Поскольку $\sigma_0 = \sigma_T T_0$, едини-
ственное условие, при котором может выполняться
граничное условие (9b), — это $\Delta T - \ln r$ (для пред-
полагаемой линейной зависимости поверхностного
натяжения от температуры), которая эффективно
dелает поле скорости независимым от уравнения
энергии (4); такое естественное появление логариф-
мического решения согласуется с предыдущими
выходами. Заметим, что поскольку (из физических
соображений)

$$\frac{\partial \sigma}{\partial r} > 0 \ (\tau > 0) \text{ и } \frac{\partial \sigma}{\partial T} < 0, \text{ то } \frac{\partial T}{\partial r} < 0 \text{ и, следовательно, изменение температуры } \Delta T - \ln r \text{ должно иметь отрицательный знак (соответству-
ующий уменьшению температуры), так как аргумент } r < 1 \text{ после обезразмеривания на } L.$$

Полученное решение для поля скоростей имеет вид

$$f(\theta) = \frac{\alpha \cos \theta \sin \alpha - \alpha \cos \alpha \sin \theta}{\sin \alpha \cos \alpha - \alpha} + \frac{\alpha \theta \sin \alpha \sin (\alpha + \theta) - \alpha (\alpha + \theta) \sin \theta}{2 \sin \alpha \cos \alpha - \alpha},$$

(10)

gде первый член тот же, что и в решении Моффа-
та [1], а последний член связан с вкладом эффекта
Марангони. Тогда скорость на свободной поверх-
ности $u_s = Uf'(0)$ не зависит от r. Так как $\tau > 0$, то на-
прижение Марангони частично подавляет изна-
чально существующий скачок скорости от $-U/2$
на свободной границе раздела до U на твёрдой под-
ложке.

В пределе, когда $\alpha = \pi$, так что свободная поверх-
ность раздела подходит к подложке тангенциальни,
как показано на рис. 2, решение (10) сводится к

$$f(\theta) = -\sin \theta + \frac{\tau}{2} (\pi + \theta) \sin \theta.$$

(11)

Примечательно, что в отличие от [1] одно из вязких
напряжений и градиенты давления не обусловливаются
в точке контакта:

$$\sigma_\theta = \frac{\alpha \cos \theta}{r}, \quad \frac{\partial \rho}{\partial r} = -\frac{\alpha \sin \theta}{r^2}, \quad \frac{\partial \rho}{\partial \theta} = \frac{\alpha \cos \theta}{r}.$$

(12)

Это означает, опять же из принципа, согласно ко-
торому прибор не позволяет неразрешённые осо-
бенности, что температура должна иметь экстрем-
ум, т.e. $\tau = 0$. Согласно определению τ оно обра-
щается в ноль быстрее, чем r при $r \rightarrow 0$, и, следо-
вательно, на контактной линии нет особенности.
Другой способ посмотреть на проблему — это на-
чать с ситуации сингулярного напряжения (12), что
неизбежно подразумевает экстремум вязкой дис-
сипации и, следовательно, $\tau = 0$ при $r = 0$, в свою
очередь, это противоречит тому факту, что могут
существовать особые напряжения. Этот саморегу-
лируемый эффект допускает существование реше-
ния на рис. 2.
Другим эффектом, который способствует решению на рис. 2, является изгиб свободной поверхности — механизм, который также можно прояснить с помощью (10). В отсутствие градиентов поверхностного натяжения тангенциальное напряжение на свободной границе исчезает, как и в решении Моффата для клина. Это также можно видеть из (16) после линеаризации для малых h, приводящей к $u_0 = 0$. Если исключительно нет кривизны свободной границы, $\mathbf{V} \cdot \mathbf{n} = 0$, как в геометрии клина на рис. 1, наличие градиентов поверхностного натяжения приводит к тому, что вязкое напряжение отклоняется от нуля $u_s < 0$, следовательно, $f''(0) > 0$. Тогда, согласно линеаризации (1a), давление должно увлекаться от атмосферного $p_a = 0$

$$p = -\frac{h}{r^3}[f + f''|_{f=0}] > 0,$$

так как $f''(0) > 0$, $f(0) = 0$ и $h < 0$ (см. рис. 2), что приводит к выпусчиванию свободной поверхности из-за неуравновешенности с атмосферным давлением. Выпучивание продолжается до тех пор, пока капиллярное давление $\sigma \mathbf{V} \cdot \mathbf{n}$ не уравновешивается с вязкими напряжениями в (1a).

Таким образом, оба эффекта — максимальная диссипация на контактной линии и изгиб свободной поверхности — обеспечивают механизм формирования стационарного решения на рис. 2. Принятие такой точки зрения, основанной на нестационарном процессе, позволяет осуществить правильный переход от статической контактной линии ($U = 0$) к её движению с рассматриваемой здесь макроскопической скоростью U, а также объясняет особый характер предела $U \to 0$ в (7): если в статическом случае мы начинаем с острой геометрии клина ($R = 0$), R динамически увеличивается до значения, оценённого в (7), не расходящегося до бесконечности, если бы мы подставили $U = 0$ в формулу (7) для R.

Автор признателен А. Зельникову, В. Ажаеву и Дж. Хомси за интерес к представленной работе.

Список литературы
1. Moffatt H.K. Viscous and Resistive Eddies near a Sharp Corner // J. Fluid Mech. 1964. V. 18. P. 1–18.
2. Huh C., Scriven L.E. Hydrodynamic Model of Steady Movement of a Solid/Liquid/Fluid Contact Line // J. Colloid Interface Sci. 1971. V. 35. P. 85–101.