Imaging diagnosis of colorectal liver metastases

Ling-Hui Xu, San-Jun Cai, Guo-Xiang Cai, Wei-Jun Peng

Abstract

Rapid advances in imaging technology have improved the detection, characterization and staging of colorectal liver metastases. Multi-modality imaging approach is usually the more useful in diagnosis colorectal liver metastases. It is well established that hepatic resection improves the long-term prognosis of many patients with liver metastases. However, incomplete resection does not prolong survival, so knowledge of the extent of intra-hepatic disease is crucially important in determining patient management and outcome. The diagnosis of liver metastases relies first and totally on imaging to decide which patients may be surgical candidates. This review will discuss the imaging options and their appropriate indications. Imaging and evaluating of colorectal liver metastases (CRLM) have been performed with contrast-enhanced ultrasound, multi-detector computed tomography, magnetic resonance imaging (MRI) with extra-cellular contrast media and liver-specific contrast media MRI, and positron emission tomography/computed tomography. This review will concentrate on the imaging approach of CRLM, and also discuss certain characteristics of some liver lesions. We aim to highlight the advantages of each imaging technique, as well as underscoring potential pitfalls and limitations.

INTRODUCTION

Metastatic disease to the liver is a very common clinical situation in oncology. The liver is one of the most common sites of metastatic spread of epithelial cancers, second only to regional lymph nodes. Colorectal cancer is one of a few malignant tumors in which the presence of limited synchronous liver metastases or metachronous metastases need surgical resection\(^1\). Colorectal liver metastases (CRLMs) develop during the course of colorectal cancer in up to 50%-70% of patients\(^2\). Metastases are confined to the liver in 30%-40% of patients at the time of detection and are potentially resectable in about 20%-30% of the cases\(^3\). Hepatic resection is the only potentially curative treatment for these colorectal liver metastases and in selected groups, the 5-year median survival has been reported to be up to 30% (range 15%-67\%)\(^4\). Patients with untreated but potentially resectable metastases show a median survival of 8 mo and the 5-year survival rate...
of these patients is less than 5%\cite{6,7}. Eligibility for surgical treatment requires strict criteria. Besides an adequate clinical condition, all liver lesions have to be completely resectable. The diagnosis of liver metastases relies first and totally on imaging to decide which patients may be surgical candidates. Thus, the imaging technique able to demonstrate the exact number, regional distribution, size of metastases and the volume of the remaining liver is crucial to determine resectability.

In many centers, imaging and evaluating of CRLM have been performed with contrast-enhanced ultrasound (CEUS), multi-detector computed tomography (MDCT), magnetic resonance imaging (MRI) with extra-cellular contrast media and liver-specific contrast media MRI, and positron emission tomography/computed tomography (PET/CT). This review will concentrate on the imaging approach of CRLM, and also discuss certain characteristics of some liver lesions. We aim to highlight the advantages of each imaging technique, as well as underscoring potential pitfalls and limitations.

### IMAGING MODALITY PERFORMANCE

#### CEUS

The development of CEUS has dramatically increased the potential of sonography in the assessment of focal liver lesions. The use of contrast agents allows perfusion mapping of focal lesions, thus enabling characterization of focal lesions. Bernatik et al\cite{8} investigated the diagnostic yield of CEUS vs helical CT in the detection of liver metastases (no histological diagnosis), CEUS showed 97% of lesions seen by CT.

Although CEUS is widely used to assess the liver, it has some limitations: it needs considerable operator expertise and often reveals equivocal results in patients with chemotherapy-induced fatty infiltration of the liver. Due to the limitations in the visualization of segmental distribution and 3D-shape of metastases, it is limited in the preoperative assessment of patients with colorectal liver metastases.

#### MDCT

Nowadays MDCT is the mainstay of staging and follow-up of these patients, because it provides good coverage of the liver and the complete abdomen and the chest in one session. MDCT scanner has the capability for high-resolution studies with sub-millimetre slice thickness resulting in isotropic pixel sizes, which enable images to be reformatted in various planes that still have the same resolution as the axial images. This may improve detection of small lesions. High-resolution scans with maximum intensity technique and volumetric three-dimensional rendering enable accurate segmental localization and delineation of tumour\cite{20,21}. Vascular reconstruction enables the demonstration of the hepatic arterial and portal venous anatomy obviating the need for conventional angiography in surgical planning of tumour resection\cite{10}. Volumetric measurement of tumour size and normal liver is also more accurate\cite{13}.

How many scans are necessary for a CT examination of the liver? In patients with colorectal cancer, liver metastases are calcified in 11% at initial presentation\cite{12}. These lesions with calcification are much better seen on unenhanced scans than on portal-venous phase scans. Small CRLM often are hyperattenuating during the hepatic arterial phase whereas larger lesions will often show a hyperattenuating rim during the hepatic arterial phase and a hypoattenuating centre representing diminished vascularity and/or tumour necrosis\cite{13}, and larger lesions usually are detected as hypoattenuating lesions during the portal venous phase\cite{14}. However the vascularity and therefore enhancement characteristics can be widely variable for reasons that are poorly understood\cite{15-17}.

Meijerink et al\cite{9} concluded 50 patients suspected of CRLM, they found adding rigid-body co-registered subtraction CT images to a conventional 4-phase CT protocol for pre-operative detection and characterization of CRLM seems of no value. Wicherts et al\cite{9} found Arterial and equilibrium phase have no incremental value compared to hepatic venous phase CT in the detection of CRLM. Venous phase is still the most significant timing to detect liver metastases.

Several studies have assessed the value of using thin slices to improve detection of small metastases. Two point five mm or 3.75 mm thick slices were significantly superior to 5, 7.5 and 10 mm thick slices\cite{20,21}. When the slice thickness is decreased to 1 mm, no further improvement in lesion detection is seen, but there is a considerable increase in image noise with subsequent degradation of image quality\cite{20}. Therefore a slice thickness of 2-4 mm is recommended for axial viewing.

Although MDCT is the modality of choice for staging colorectal cancer, up to 25% of liver metastases may still be missed\cite{22,23}. Extra care has to be taken for patients with contrast allergies or with renal impairment.

#### CT with arteriportography

In CT with arteriportography (CTAP), CT scanning of the liver is performed during contrast agent injection into either the superior mesenteric artery or splenic artery via a percutaneously placed catheter. It provides maximum tumor-to-liver contrast by enhancing the liver parenchyma alone as in the portal phase and depicts tumor deposits as areas of perfusion defects. This is based on the fact that metastases are almost exclusively fed via the hepatic artery. CTAP was usually reserved for imaging candidates prior to surgical hepatic resection as it provided an accurate segmental localization of liver metastases and excellent depiction of liver vasculature. This invasive technique is less routinely performed with the advent of MDCT and MRI with liver-specific contrast agents, which are as accurate in lesion detection but with much lower false positive rates\cite{24}.

#### MRI

The standard MRI protocol should always include un-
enhanced T1- and T2-weighted and contrast-enhanced pulse sequences. In liver MR imaging a set of T1-weighted in-phase and opposed-phase gradient-recalled echo gradient-recalled echo images is acquired to assess the parenchyma for the presence of fatty infiltration or focal sparing of diffuse fatty infiltration. For T2-weighted imaging, the turbo-spin echo (TSE) or the fast spin echo with fat suppression are preferred over the single-shot TSE pulse sequences. In addition, heavily T2-weighted pulse sequences with a time of echo of approximately 160-180 ms may help in differentiation between solid (metastasis, hepatocellular carcinoma (HCC), etc.) and non-solid lesions (e.g., haemangiomma, cyst).

After the acquisition of unenhanced pulse sequences, contrast-enhanced pulse sequences are always obtained. Nowadays, two different groups of MR contrast agents for liver imaging are available: first, the non-specific gadolinium chelates and second the liver-specific MR contrast agents. The latter group can be divided into two subgroups, the hepatobiliary contrast agents, and the reticulo-endothelial (or Kupffer cell) contrast agents.

**NON-SPECIFIC GADOLINIUM CHELATES**

The liver and liver-lesion enhancement patterns obtained with non-specific gadolinium chelates (extracellular contrast agents) are similar to those obtained with iodinated contrast agents used in CT. Several agents with similar properties are on the market, including gadopentetate dimeglumine (Schering, Berlin, Germany), Gd-DTPA-BMA (GE Healthcare, Oslo, Norway), Gd-DOTA (Guerbet, Aulnay-sous-Bois, France), and Gado-teridol (Bracco, Milan, Italy).

Extracellular gadolinium chelates are used extensively for liver MRI. Following intravenous injection of a gadolinium-based agent, typically three phases of contrast enhancement are imaged: the arterial, portal venous phase and the equilibrium phase. During the arterial phase, most of the liver does not enhance as the majority of the liver’s blood supply is via the portal vein. Enhancement patterns of liver lesions are similar to those demonstrated on CEUS and contrast-enhanced CT. The equilibrium phase or delayed phase is useful for helping with lesion differentiation (e.g., haemangiomma vs metastasis). In addition, washout of contrast from HCC and peripheral or heterogeneous washout from liver metastases are characteristic findings on delayed imaging.

**LIVER-SPECIFIC CONTRAST AGENTS**

**Hepatobiliary agents**

Hepatobiliary agents represent a heterogeneous group of paramagnetic molecules of which a fraction is taken up by hepatocytes and excreted into the bile. Mangafodipir trisodium (Teslascan®, GE Healthcare) is taken up by hepatocytes and results in signal intensity increase on T1-weighted images (a so-called “T1 enhancement”) and a fraction is also taken up by the pancreas, which has been used for pancreatic MR imaging. Focal non-hepatocellular lesions (i.e., metastases) do not enhance post-contrast, resulting in improved lesion conspicuity. Mangafodipir-enhanced MRI has been shown to be superior to unenhanced MRI and helical CT for detection of liver metastases.

Gd-BOPTA (Multihance®, Bracco) is a liver-targeted paramagnetic contrast agent and unlike conventional Gadolinium chelates, has almost two-fold greater T1 relaxivity which improves image contrast and detection of liver lesions, due to its high T1-relaxing effect and hepatocyte binding capability.

Gd-EOB-DTPA (Primovist®, Schering) and Gd-BOPTA are hybrid contrast agents, which carry a lipophilic ligand. After intravenous bolus injection these agents show biphasic liver enhancement with a rapid T1 enhancement of the liver similar to that seen with non-specific extracellular gadolinium agents. Then hepatic signal intensity continues to rise for 20-40 min (Gd-EOB-DTPA) and 60-90 min (Gd-BOPTA), reaching a plateau after about 2 h because of hepatocytic uptake. This results in increasing contrast between liver and non-hepatocellular tumors.

**Reticuloendothelial agents**

All reticuloendothelial system (RES) agents are superparamagnetic iron oxide-based contrast agents (SPIO). SPIO particles are taken up by RES cells (so-called Kupffer cells) of normal liver parenchyma, as also by macrophages of the spleen and lymph nodes. They shorten T2 and T2* relaxation times in the liver tissue, and resulting in a loss of signal intensity in normal liver parenchyma. Despite of this, malignant liver lesions do not have a substantial number of RES cells and appear as hyperintense lesions with distinct borders in contrast to the hypointense liver parenchyma after application of SPIO on T2-weighted MR images.

There are some published studies comparing some methods reporting varying sensitivity. Some have reported that SPIO-enhanced MRI has better diagnostic efficacy for liver lesions over that of Gadolinium-enhanced MRI, Gd-BOPTA-enhanced MRI and dynamic CT imaging with high sensitivity values. Another study has claimed equal sensitivity between SPIO-enhanced MRI and Gd-BOPTA-enhanced MRI in the delayed hepatocyte phase for the detection of LMs. Mainenti et al. found Gd- and SPIO-enhanced MRI had equal performance and were shown to perform significantly better than the other modalities on a per lesion basis. These data were similar to previous studies comparing Gd- and SPIO-enhanced MRI each other or with MDCT or PET/CT. Based on Zech et al. experience and the existing literature, imaging using Gd-EOB-DTPA-enhanced MR can be expected to be superior to the using standard gadolinium chelates or to spiral CT, especially for the differential diagnosis of hypervascular lesions.

Blyth et al. suggest that MRI is a highly sensitive method of pre-operative imaging of colorectal liver me-
tastases and should be considered the “gold standard”. Except contraindications to MRI include pacemakers, implantable cardiac defibrillators, cochlear implants and metallic orbital foreign bodies. MR imaging is still limited in the anatomic coverage, although the recent introduction of multi-channel MR coils with wider coverage and the moving-table MR technique has re-established the “competitiveness” of MR with MDCT with regard to patient throughput. One of the advantages of MR in liver imaging is the better soft tissue contrast, which reveals better characterization of focal liver lesions in question. The development of a liver-specific MR contrast agent has further improved the diagnostic yield of MRI in lesion detection and characterization.

PET/CT

The recent introduction of PET/CT hybrid scanners enables seamless and accurate fusion of the high resolution anatomic localisation of CT with the functional data of FDG-PET. A combination of FDG-PET and CT scanning characteristics seems promising, and integrated PET/CT is becoming more widely available, although the exact clinical value and efficacy is not yet fully established. Due to restricted availability, high cost and an additional radiation exposure, PET/CT should be used in selected patients where the diagnosis is not clear following conventional diagnostic modalities.

TRUE ACCURACY OF IMAGING AND FUTURE DEVELOPMENTS

Twenty to twenty-five percent of patients with known solid malignant tumors have hepatic metastases at the time of diagnosis. The incidence of solid benign liver tumors is around 20%[49], thus in patients with known malignancy, 20%-25% of lesions under 2 cm are benign[50]. The most frequent benign lesion is hemangioma with a prevalence of 7%-21%, followed by focal nodular hyperplasia with a prevalence of up to 3%; other benign lesions are far rarer.

In two studies showed that 24%[51] and 18%[52] of lesions 1 cm or smaller were not detected by any imaging technique. Which imaging modality is the best model in the detection of CRLM? The issue of when to use which imaging technique is still not solved. The answer likely depends on local equipment, availability, and operator expertise.

Contrast-enhanced intra-operative US (CE-IOUS) is considered the gold standard thereby achieving universal usage and should arguably be considered the final diagnostic procedure[52-55]. Several studies have shown thatIOUS still has a higher sensitivity and specificity than the noninvasive techniques, such as helical CT and MRI[54,56-59]. However, there have been few studies on CE-IOUS in literature and CE-IOUS is not widely used among hepatic surgeons.

CT liver imaging offers increased sensitivity and may also be able to assess extrahepatic disease but is inferior to MRI scanning in direct comparisons[59-62]. CTAP is considered by many to be the “gold standard” for hepatic imaging but it is an invasive technique with a high (up to 15%) false-positive rate[63].

Hekimoglu et al[37] could detect lesions CRLM over 1 cm by all the 3 imaging modalities including SPIO-enhanced MRI, Gd-enhanced dynamic MRI and dynamic CT imaging also with a high sensitivity. However, only SPIO-enhanced MRI detected LMs less than 1 cm with 100% sensitivity which has not been reported until today. So, He therefore, recommend SPIO-enhanced MRI for patients with colorectal carcinoma with suspected small sized LMs. MRI provides a sensitive, non-invasive method of assessing liver lesions and direct comparison between CTAP and MRI shows that MRI is better at identifying and characterising liver lesions[63-65].

Kinkel et al[66] performed a meta-analysis including papers published between 1985 and 2000 and concluded that, at equivalent specificity, PET/CT is more sensitive than US, CT and MRI for the detection of hepatic metastases from gastro-esophageal and colorectal cancers. Subsequently Bipat et al[67] performed a meta analysis including papers published between 1990 and 2003 and concluded that PET/CT is the most sensitive diagnostic tool for the detection of hepatic metastases from colorectal cancer on a per patient basis, but not on a per lesion basis. Mainenti et al[44] found PET/CT shows a trend to perform better than the other modalities in the identification of patients with CRLM.

The combination of PET and CT is a perfect solution. On theoretical grounds, it is preferable to combine PET with (functional) MRI, for better soft tissue evaluation with a relatively low radiation burden. An excellent example of the application of PET/MRI fusion is accurate delineation of malignant lesions in the liver, to allow optimally guided locoregional therapeutic intervention[67]. It is expected that integrated PET/MRI scanners will become clinically available in the next few years.

Clearly, continuing improvements in imaging are allowing metastases to be identified at an earlier stage but a different approach is needed to improve the detection of metastases smaller. A multi-modality strategy is recommended since no single modality can accurately detect all colorectal liver metastases[66].

REFERENCES

1. Schima W, Kulinnia C, Langenberger H, Ba-Salamah A. Liver metastases of colorectal cancer: US, CT or MR? Cancer Imaging 2005; 5 Spec No A: S149-S156
2. Jemal A, Siegel R, Ward E, Murray T, Xu J, Smigal C, Thun MJ. Cancer statistics, 2006. CA Cancer J Clin 2003; 56: 106-130
3. Baker ME, Pelley R. Hepatic metastases: basic principles and implications for radiologists. Radiology 1995; 197: 329-337
4. Bipat S, van Leeuwen MS, Comans EF, Pijl ME, Bossuyt PM, Zwinderman AH, Stoker J. Colorectal liver metastases. CT, MR imaging, and PET for diagnosis—meta-analysis. Radiology 2005; 237: 123-131
5. Simmonds PC, Primrose JN, Colquitt JL, Garden OJ, Poston GJ, Rees M. Surgical resection of hepatic metastases from colorectal cancer: a systematic review of published studies.
Xu LH et al. Imaging diagnosis of colorectal liver metastases

6 Simmonds PC. Palliative chemotherapy for advanced colorectal cancer: systematic review and meta-analysis. Colorectal Cancer Collaborative Group. BMJ 2000; 321: 531-535
7 Lodge JP. Modern surgery for liver metastases. Cancer Imaging 2000; 1: 77-85
8 Bernatik T, Strobel D, Hahn EG, Becker D. Detection of liver metastases: comparison of contrast-enhanced wide-band harmonic imaging with conventional ultrasonography. J Ultrasound Med 2001; 20: 509-515
9 Kamel IR, Georgiades C, Fishman EK. Incremental value of advanced image processing of multislice computed tomography data in the evaluation of hypervascular liver lesions. J Comput Assist Tomogr 2003; 27: 652-656
10 Sahani D, Mehta A, Blake M, Prasad S, Harris G, Saini S. Preoperative hepatic vascular evaluation with CT and MR angiography: implications for surgery. Radiographics 2004; 24: 1367-1380
11 Yim PJ, Vora AV, Raghavan D, Prasad R, McAuliffe M, Ohman-Strickland P, Nosher JL. Volumetric analysis of liver metastases in computed tomography with the fuzzy C-means algorithm. J Comput Assist Tomogr 2006; 30: 212-220
12 Hale HL, Husbands JF, Gossios K, Norman AR, Cunningham D. CT of calcified liver metastases in colorectal carcinoma. Clin Radiol 1998; 53: 735-741
13 Miles KA, Hayball MP, Dixon AK. Functional images of hepatic perfusion obtained with dynamic CT. Radiology 1993; 188: 405-411
14 Ch’ee DVW, Katz DS, Jeffrey RB, Daniel BL, Li KC, Beaufiel CF, Minkeldun RE, Yao D, Olcott EW. Do arterial phase helical CT images improve detection or characterization of colorectal liver metastases? J Comput Assist Tomogr 1997; 21: 391-397
15 Kopp AF, Heuschmid M, Clausen CD. Multidetector helical CT of the liver for tumor detection and characterization. Eur Radiol 2002; 12: 745-752
16 Oliver JH, Baron RL. Helical biphasic contrast-enhanced CT of the liver: technique, indications, interpretation, and pitfalls. Radiology 1996; 201: 1-14
17 Platt JF, Francis IR, Ellis JH, Reige KA. Liver metastases: early detection based on abnormal contrast material enhancement at dual-phase helical CT. Radiology 1997; 205: 49-53
18 Meijerink MR, van Waesberghe JH, Golding RP, van der Heide L, van den Tol P, Meijer S, van Kuijk C. Subtraction-contrast biphasic helical CT imaging of hepatic veinous phase compared to hepatic venous phase CT in the preoperative staging of colorectal liver metastases: an evaluation with different reference standards. Eur Radiol 2011; 37: 305-311
19 Weg N, Scheer MR, Gabor MP. Liver lesions: improved detection with dual-detector-array CT and routine 2.5-mm thin collimation. Radiology 1998; 209: 417-426
20 Kopka L, Grabbe E. [Biphasic liver diagnosis with multiplanar-detector spiral CT]. Radiol Clin 1999; 39: 971-978
21 Kulinna C, Helmerter B, Kessler M, Reiser M. [Improvement in diagnosis of liver metastases with the multi-detector CT]. Radiologe 2001; 41: 16-23
22 Scott DJ, Guthrie JA, Arnold P, Ward J, Atchley J, Wilson D, Robinson PJ. Dual phase helical CT versus portal venous phase CT for the detection of colorectal liver metastases: correlation with intra-operative sonography, surgical and pathological findings. Clin Radiol 2001; 56: 235-242
23 Valls C, Andia E, Sanchez A, Gumà A, Figueras J, Torres J, Serrano T. Hepatic metastases from colorectal cancer: preoperative detection and assessment of resectability with helical CT. Radiology 2001; 218: 55-60
24 Ong KO, Leen E. Radiological staging of colorectal liver metastases. Surg Oncol 2007; 16: 7-14
25 Schima W, Saini S, Echeverri JA, Hahn PF, Harisinghani M, Mueller PR. Focal liver lesions: characterization with conventional spin-echo versus fast spin-echo T2-weighted MR imaging. Radiology 1997; 201: 389-393
26 Bennett GL, Peterseen A, Mayo-Smith WW, Hahn PF, Schima W, Saini S. Addition of gadolinium chelates to heavily T2-weighted MR imaging: limited role in differentiating hepatic hemangiomas from metastases. AJR Am J Roentgenol 2000; 174: 477-485
27 Ariff B, Lloyd CR, Khan S, Shariff M, Thillainayagam AV, Bansal DS, Khan SA, Taylor-Robinson SD, Lim AK. Imaging of liver cancer. World J Gastroenterol 2009; 15: 1290-1300
28 Semelka RC, Helmberger TJ. Contrast agents for MR imaging of the liver. Radiology 2001; 218: 27-38
29 Elizondo G, Fretz CJ, Stark DD, Rocklage SM, Quay SC, Wohr D, Tsang YM, Chen MC, Ferrucci JT. Preclinical evaluation of MnDPDP: new paramagnetic hepatobiliary contrast agent for MR imaging. Radiology 1991; 178: 73-78
30 Gehl HB, Uzhran H, Bohndorf K, Klever P, Hauptmann S, Lodemann KP, Matern S, Schumpelick V, Gunther RW. MnDPDP in MR imaging of pancreatic adenocarcinoma: initial clinical experience. Radiology 1993; 186: 795-798
31 Schima W, Függer R, Schoter E, Oettl C, Wamser P, Graevenöger F, Ryan JM, Novacek G. Diagnosis and staging of pancreatic cancer: comparison of mangafodipir trisodium-enhanced MR imaging and contrast-enhanced helical hydroxy-CT. AJR Am J Roentgenol 2002; 179: 717-724
32 Mann GN, Marx HF, Lai IL, Wagman LD. Clinical and cost-effectiveness of a new hepatocellular MRI contrast agent, mangafodipir trisodium, in the preoperative assessment of liver resectability. Ann Surg Oncol 2001; 8: 573-579
33 Kirchin MA, Pirovano GP, Spinazzia A. Gadobenate dimeglumine (Gd-BOPTA). An overview. Invest Radiol 1998; 33: 798-809
34 Hamm B, Staks T, Mühlter A, Bollow M, Taupitz M, Frenzel T, Wolf KJ, Weinmann HJ, Lange L. Phase I clinical evaluation of Gd-EOB-DTPA as a hepatobiliary MR contrast agent: safety, pharmacokinetics, and MR imaging. Radiology 1995; 195: 785-792
35 Caudana R, Morana G, Pirovano GP, Nicoli N, Portuese A, Spinazzia A, Di Rito R, Pistolesi GF. Focal malignant hepatic lesions: MR imaging enhanced with gadolinium benzoyloxypropionictetra-acetate (BOPTA)—preliminary results of phase II clinical application. Radiology 1996; 199: 513-520
36 Hekimoglu K, Ustundag V, Dusak A, Kalaycioglu B, Besir H, Engin H, Erdem O. Small colorectal liver metastases: detection with SPIO-enhanced MRI in comparison with gadobenate dimeglumine-enhanced MRI and CT imaging. Eur J Radiol 2011; 77: 468-472
37 Kopp AF, Laniado M, Dannmann F, Stern W, Grönwäller E, Balzer T, Schimpfky C, Clausen CD. MR imaging of the liver with the Resovist: safety, efficacy, and pharmacodynamic properties. Radiology 1997; 204: 749-756
38 Ward J, Robinson PJ, Guthrie JA, Downing S, Wilson D, Lodge JP, Prasad KR, Toogood GJ, Wyatt JL. Liver metastases in candidates for hepatic resection: comparison of helical CT and gadolinium- and SPIO-enhanced MR imaging. Radiology 2005; 237: 170-180
39 Kim MJ, Kim JH, Chung JJ, Park MS, Lim JS, Oh YT. Focal hepatic lesions: detection and characterization with combination gadolinium- and superparamagnetic iron oxide-enhanced MR imaging. Radiology 2003; 228: 719-726
40 del Frate C, Bazzocchi M, Mortele KJ, Zuliani C, Londero V, Como G, Zanardi R, Ros PR. Detection of liver metastases: comparison of gadobenate dimeglumine-enhanced and ferumoxides-enhanced MR imaging examinations. Radiology 2002; 225: 766-772
41 Soyer P, Pocard M, Boudiaf M, Abitbol M, Hamzi L, Panis Y, Vallee F, Rymer R. Detection of hypovascular hepatic metastases at triple-phase helical CT: sensitivity of phases
Xu LH et al. Imaging diagnosis of colorectal liver metastases

and comparison with surgical and histopathologic findings. Radiology 2004; 231: 413-420

Kim YK, Lee JM, Kim CS, Chung GH, Kim CY, Kim IH. Detection of liver metastases: gadobenate dimeglumine-enhanced three-dimensional dynamic phases and one-hour delayed phase MR imaging versus superparamagnetic iron oxide-enhanced MR imaging. Eur Radiol 2005; 15: 220-228

Mainenti PP, Mancini M, Mainolfi C, Camera L, Maurea S, Manchia A, Tanga M, Persico F, Addeo P, D’Antonio D, Speranza A, Bucci L, Persico G, Pace L, Salvatore M. Detection of colorectal liver metastases: prospective comparison of contrast enhanced US, multidetector CT, PET/CT, and 1.5 Tesla MR with extracellular and reticulo-endothelial cell specific contrast agents. Abdom Imaging 2010; 35: 511-521

Kim YK, Ko SW, Hwang SB, Kim CS, Yu HC. Detection and characterization of liver metastases: 16-slice multidetector computed tomography versus superparamagnetic iron oxide-enhanced magnetic resonance imaging. Eur Radiol 2006; 16: 1337-1345

Rappeport ED, Loft A, Berthelsen AK, von der Recke P, Larsen PN, Mogensen AM, Wettergren A, Rasmussen A, Hillingsoe J, Kirkegaard P, Thomsen C. Contrast-enhanced FDG-PET/CT vs. SPION-enhanced MRI vs. FDG-PET vs. CT in patients with liver metastases from colorectal cancer: a prospective study with intraoperative confirmation. Acta Radiol 2007; 48: 369-378

Zech CJ, Herrmann KA, Reiser MF, Schoenberg SO. MR imaging in patients with suspected liver metastases: value of liver-specific contrast agent Gd-EOB-DTPA. Magn Reson Med Sci 2007; 6: 43-52

Blyth S, Blakeborough A, Peterson M, Cameron IC, Majeed AW. Sensitivity of magnetic resonance imaging in the detection of colorectal liver metastases. Ann R Coll Surg Engl 2008; 90: 25-28

Karhunen PJ. Benign hepatic tumours and tumour like conditions in men. J Clin Pathol 1986; 39: 183-188

Jones EC, Chezmar JL, Nelson RC, Bernardino ME. The frequency and significance of small (less than or equal to 15 mm) hepatic lesions detected by CT. AJR Am J Roentgenol 1992; 158: 535-539

Ward J, Guthrie JA, Wilson D, Arnold P, Lodge JP, Toogood GJ, Wyatt JJ, Robinson PJ. Colorectal hepatic metastases: detection with SPION-enhanced breath-hold MR imaging—comparison of optimized sequences. Radiology 2003; 228: 709-718

Conlon R, Jacobs M, Dasgupta D, Lodge JP. The value of intraoperative ultrasound during hepatic resection compared with improved preoperative magnetic resonance imaging. Eur J Ultrasound 2003; 16: 211-216

Jarnagin WR, Bach AM, Winston CB, Hahn LE, Hefferman N, Loumeau T, DeMatteo RP, Fong Y, Blumgart LH. What is the yield of intraoperative ultrasonography during partial hepatectomy for malignant disease? J Am Coll Surg 2001; 192: 577-583

Cervone A, Sardi A, Conaway GL. Intraoperative ultrasound (IOUS) is essential in the management of metastatic colorectal liver lesions. Am Surg 2000; 66: 611-615

Charnley RM, Morris DL, Dennison AR, Amar SS, Hardcastle JD. Detection of colorectal liver metastases using intra-operative ultrasonography. Br J Surg 1991; 78: 45-48

Solbiati L, Tonolini M, Cova L, Goldberg SN. The role of contrast-enhanced ultrasound in the detection of focal liver lesions. Eur Radiol 2001; 11 Suppl 3: E15-E26

Zacherl J, Scheuba C, Imhof M, Zacherl M, Längle F, Pokie- ser P, Wrbta F, Wenzl E, Mühlbacher F, Jakesz R, Steininger R. Current value of intraoperative sonography during surgery for hepatic neoplasms. World J Surg 2002; 26: 550-554

Schmidt J, Strotzer M, Franhofer S, Boedecker H, Zirngibl H. Intraoperative ultrasonography versus helical computed tomography and computed tomography with arteriportography in diagnosing colorectal liver metastases: lesion-by-lesion analysis. World J Surg 2000; 24: 43-47; discussion 48

Miller DL, Simmons JT, Chang R, Ward BA, Shawker TH, Doppman JL, Chang AE. Hepatic metastasis detection: comparison of three CT contrast enhancement methods. Radiol 1987; 165: 785-790

Soyer P, Levesque M, Elias D, Zeitoun G, Roche A. Detection of liver metastases from colorectal cancer: comparison of intraoperative US and CT during arterial portography. Radiology 1992; 183: 541-544

Ward J, Naik KS, Guthrie JA, Wilson D, Robinson PJ. Hepatic lesion detection: comparison of MR imaging after the administration of superparamagnetic iron oxide with dual-phase CT by using alternative-free response receiver operating characteristic analysis. Radiology 1999; 210: 459-466

Semelka RC, Shoenut JP, Ascher SM, Kroecker MA, Greenberg HM, Yaffe CS, Micflikier AB. Solitary hepatic metastasis: comparison of dynamic contrast-enhanced CT and MR imaging with fat-suppressed T2-weighted, breath-hold T1-weighted FLASH, and dynamic gadolinium-enhanced FLASH sequences. J Magn Reson Imaging 1994; 4: 319-323

Hagspiel KD, Neidl KF, Eichenberger AC, Weder W, Marinicke B. Detection of liver metastases: comparison of superparamagnetic iron oxide-enhanced and unenhanced MR imaging at 1.5 T with dynamic CT, intraoperative US, and percutaneous US. Radiology 1995; 196: 471-478

Semelka RC, Cance WG, Marcos HB, Mauro MA. Liver metastases: comparison of current MR techniques and spiral CT during arterial portography for detection in 20 surgically staged cases. Radiology 1999; 213: 86-91

Senèterre E, Taoureul P, Bouvier Y, Pradel J, Van Beers B, Daures JP, Frongot J, Mathieu D, Bruel JM. Detection of hepatic metastases: ferumoxides-enhanced MR imaging versus unenhanced MR imaging and CT during arterial portography. Radiology 1996; 200: 785-792

Kinkel K, Yaffe CS, Micflikier AB. Solitary hepatic metastasis: comparison of dynamic contrast-enhanced CT and MR imaging characteristic analysis. J Magn Reson Imaging 1999; 10: 382-387

Kinkel K, Yu B, Both M, Warren RS, Thoeni RF. Detection of hepatic metastases from cancers of the gastrointestinal tract by using noninvasive imaging methods (US, CT, MR imaging, PET): a meta-analysis. Radiology 2002; 224: 748-756

Sahani DV, Kalva SP, Fischman AJ, Kadavigere R, Blake M, Hahn PP, Saini S. Detection of liver metastases from adenocarcinoma of the colon and pancreas: comparison of manga- todipir trisodium-enhanced liver MRI and whole-body FDG PET. AJR Am J Roentgenol 2005; 185: 239-246

Sica GT, Ji H, Ros PR. CT and MR imaging of hepatic metastases. AJR Am J Roentgenol 2000; 174: 691-698

S- Editor Tian L E- Editor Xiong L