Acute Hepatitis with Positive Autoantibodies: A Case of Natalizumab-Induced Early-Onset Liver Injury

Marlone Cunha-Silva*, Priscilla Brito Sena de Moraes*, Pedro Rodrigues de Carvalho, Larissa Bastos Eloy da Costa, Guilherme Rossi Assis-Mendonça, Cristina Alba Lalli, Gisele Conte Alves Fernandes, Fernanda Bocchi Monteiro, Gustavo Manginelli Lamas, Alfredo Damasceno, Daniel Ferraz de Campos Mazo, Tiago Sevá-Pereira

Patient: Female, 60-year-old
Final Diagnosis: Natalizumab-induced liver injury
Symptoms: Jaundice • pruritus
Medication: —
Clinical Procedure: Drug withdrawal
Specialty: Gastroenterology and Hepatology

Objective: Unusual clinical course
Background: Natalizumab is an anti-integrin monoclonal antibody used as an alternative treatment regimen for patients with autoimmune disorders, especially multiple sclerosis and Crohn’s disease. Natalizumab-induced liver injury has been rarely reported and may follow the first dose (with increases in liver enzymes usually after 6 or more days), or after multiple doses. In general, it is non-severe acute hepatitis (with a hepatocellular pattern) and autoantibodies can be positive, mainly anti-nuclear and anti-smooth muscle antibodies.

Case Report: We are reporting the case of a 60-year-old woman diagnosed with multiple sclerosis previously treated with interferon-beta, dimethyl fumarate, and fingolimod, who presented jaundice 1 day after the first infusion of natalizumab. She had an early-onset acute hepatitis with aminotransferases levels higher than 1000 IU/L and total bilirubin almost 41 mg/dL. Anti-nuclear and anti-smooth muscle antibodies were positive and the histopathological analysis of the liver showed intrahepatic cholestasis associated with moderate necroinflammation activity (subacute cholestatic hepatitis) and mild diffuse perisinusoidal fibrosis, which could be compatible with the hypothesis of drug-induced liver injury. The scenario of an autoimmune-like hepatitis led the medical team to start oral prednisone and she progressively improved in clinical and laboratory features. Serum levels of liver enzymes and bilirubin were normal within 3 months and there was no further increase after discontinuation of corticosteroid therapy.

Conclusions: Physicians should be aware of the risk of early-onset acute hepatitis in patients starting natalizumab, especially women with multiple sclerosis. Treatment with corticosteroid for a few months may be beneficial.

Keywords: Chemical and Drug Induced Liver Injury • Hepatitis • Multiple Sclerosis • Natalizumab

Full-text PDF: https://www.amjcaserep.com/abstract/index/idArt/936318

* Marlone Cunha-Silva and Priscilla Brito Sena de Moraes contributed equally

Financial support: None declared
Conflict of interest: None declared

1 Division of Gastroenterology (Gastrocentre), University of Campinas (Unicamp), Campinas, SP Brazil
2 Department of Internal Medicine, University of Campinas (Unicamp), Campinas, SP Brazil
3 Department of Pathology, University of Campinas (Unicamp), Campinas, SP Brazil
4 Division of Neurology, University of Campinas (Unicamp), Campinas, SP Brazil

This work is licensed under Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)
Background

Natalizumab is a monoclonal antibody with selective inhibition of the α-4 subunit of integrins. It is used as an alternative therapeutic regimen for autoimmune disorders, especially multiple sclerosis (MS) and Crohn’s disease [1,2]. Several adverse effects have already been described, such as rash, abdominal discomfort, gastroenteritis, nausea, urinary tract infection, depression, fatigue, and lower and upper respiratory tract infection. The most feared complication is progressive multifocal leukoencephalopathy, a serious neurological condition possibly associated with JC virus reactivation in the neural system [1-3].

Liver toxicity is not a common event and has an idiosyncratic autoimmune-like pattern, mainly described in subjects with MS. Most of them show signs of liver injury within 6 days following the first dose, or after multiple doses of natalizumab [1,4-6]. We report the case of a female patient who presented natalizumab-induced early-onset acute hepatitis with positive anti-nuclear and anti-smooth muscle antibodies.

Case Report

A 60-year-old woman was diagnosed with MS at age 52 and had undergone multiple therapies: 1) interferon-beta (interrupted due to skin lesions), 2) dimethyl fumarate (suspended due to drowsiness and weakness), and 3) fingolimod (withdrawn due to treatment failure). The medical staff then decided to perform pulse therapy with methylprednisolone and start natalizumab (300 mg intravenously).

On the day after the first dose of natalizumab, she reported jaundice with progressive worsening. A week later, she was admitted to the hospital with jaundice, fecal acholia, nausea, and itching. There was no fever, myalgia, diarrhea, or abdominal pain. She denied risky sexual exposure, recent trips, alcohol intake, use of illicit drugs, other medications, and herbal products. On physical examination, she was overweight (body-mass index=29.3 kg/m²) and there was no flapping or features of chronic liver disease. Laboratory test results are described in Table 1. She had non-severe acute hepatitis with a pattern of hepatocellular injury and positive anti-smooth muscle and anti-nuclear antibodies (cytoplasmic pattern). Abdominal ultrasound showed a liver with normal morphology, cholelithiasis with no signs of cholecystitis, and no dilatation of the biliary tract. During hospitalization, it was necessary to prescribe cholestyramine and hydroxyzine for pruritus.

The autoimmune hepatitis diagnostic score was 7 points (unlikely diagnosis). Therefore, the main diagnostic hypothesis

Table 1. Initial laboratory tests.

Blood tests	Patient	Normal range	Immunology
Hemoglobin	15.8	12-16 g/dL	HBsAg
Leucocytes	11,630	4000-10,000/mm³	Anti-HBc
Platelets	154,000	150,000-400,000/mm³	Anti-HBs
ALT	1151	<35 U/L	Anti-HAV IgG
AST	1790	<35 U/L	Anti-HAV IgM
AP	315	<104 U/L	Anti-HCV
GGT	151	<40 U/L	Anti-HIV
Total bilirubin	35.9	0.3-1.2 mg/dL	Cytomegalovirus IgG
Direct bilirubin	26.5	<0.2 mg/dL	Cytomegalovirus IgM
Albumin	3.1	3.5-5.2 g/dL	Syphilis
INR	1.27	<1.25	Epstein-Barr virus IgM
Urea	17	17-43 mg/dL	Anti-smooth muscle AB
Creatinine	1.0	<0.9 mg/dL	Anti-mitochondrial AB
IgG	552	950-1500 mg/dL	Anti-nuclear AB
Ceruloplasmin	45	20-60 mg/dL	RT-PCR-SARS-CoV2

ALT – alanine aminotransferase; AST – aspartate aminotransferase; AP – alkaline phosphatase; GGT – gamma-glutamyl transferase; INR – international normalized ratio; IgG – immunoglobulin G; IgM – immunoglobulin M; HAV – hepatitis A virus; HCV – hepatitis C virus; HIV – human immunodeficiency virus; AB – antibody; RT-PCR-SARS-CoV-2 – reverse transcriptase-polymerase chain reaction test for severe acute respiratory syndrome coronavirus 2.
was natalizumab-induced liver injury. Ten days after hospital admission, serum liver enzymes had a partial improvement: alanine aminotransferase (from 1151 U/L to 540 U/L) and aspartate aminotransferase (from 1790 U/L to 794 U/L); but there was an increase in total bilirubin levels (from 35.9 mg/dL to 40.9 mg/dL) (Figure 1). Coagulation tests and platelets count remained normal, so the medical staff performed ultrasound-guided percutaneous liver biopsy and started empirical treatment with oral prednisone 40 mg/day. She was then discharged from the hospital for outpatient follow-up.

There was a progressive improvement in symptoms and laboratory test results (Figure 1) and the dosage of corticosteroid has been progressively reduced in the outpatient follow-up. Histopathological analysis of the liver showed intrahepatic cholestasis associated with moderate necroinflammatory activity (subacute cholestatic hepatitis) and mild diffuse perisinusoidal fibrosis, which could be compatible with the hypothesis of drug-induced liver injury (DILI) (Figure 2). Liver enzymes and bilirubin levels were normal 3 months after starting oral prednisone and there was no subsequent increase after corticosteroid withdrawal.

Discussion

Natalizumab-induced liver toxicity is rare and may occur since the first or second dose or after multiple infusions. It is usually non-severe acute hepatitis and resolves spontaneously [1]. Time to normalization of liver parameters is variable since the
The detection of positive autoantibodies in patients with DILI is not uncommon and has been described with several drugs, including nitrofurantoin, hydralazine, alpha-methyldopa, and amoxicillin/clavulanate [8,9]. It is also possible and even frequent in patients with natalizumab-induced liver injury, and it may become negative after drug discontinuation [1,4-6]. It is important to highlight that some individuals with MS may have positive liver autoantibodies that are investigated only after a suspected event of liver toxicity [10].

Compiling the reported cases, most patients with natalizumab-induced liver injury were women diagnosed with MS and previously treated with interferon-beta, as natalizumab is used as an alternative therapeutic regimen [5,11]. Our patient was older than the mean age described (60 years vs 41 years), and her total bilirubin levels were higher (41 vs 25 mg/dL). Symptoms of liver damage started the day after the first dose (earlier than all reported cases).

Histological changes, as well as clinical, laboratory, immunological features, and the evolution are compatible with DILI. The temporal relationship between the initiation of natalizumab and the problem of jaundice (in the absence of other hepatotoxic drugs) is sufficient to establish the diagnosis of natalizumab-induced liver injury. The summary of previous reports is shown in Table 2.

Corticosteroids are generally not chosen as a treatment for DILI; however, physicians may prescribe prednisone/methylprednisolone or even immunosuppressants for a few months to shorten the recovery period [1,12], especially in an autoimmune environment, as suggested by a recent systematic review [13].

Conclusions

Patients starting natalizumab therapy need to be informed about the symptoms of liver toxicity and failure. Since most

Table 2. Main features of our case and others previously published.

Age	Gender	Doses to the event	Days after the first dose	Previous therapies beyond CE	Antibodies	Author
60	F	1	1	IFN-β, DMF, FLM	ANA, ASMA	Our case
51	F	33	–	–	ASMA	Martínez-Lapiscina [4]
26	F	2	–	–	ASMA	Antezana [5]
31	F	2	–	–	ANA	Lisotti [6]
26	F	1	Na	Na	Na	Kader [11]
52	F	2	–	Na	Na	Kader [11]
26	F	1	6	Na	Na	Bezabeh [1]
43	M	5	–	Na	ANA	Bezabeh [1]
33	F	1	18	IFN-β	ASMA	Bezabeh [1]
59	F	1	8	Na	Na	Bezabeh [1]
50	F	1	~14	IFN-β, GAC	ASMA, ANA, AMA	Bezabeh [1]
58	M	12	–	IFN-β	Na	Bezabeh [1]

F – female; M – male; CE – corticosteroids, IFN-β – interferon-beta; DMF – dimethyl fumarate; FLM – fingolimod; Na – not available; ANA – anti-nuclear antibody; ASMA – anti-smooth muscle antibody; AMA – anti-mitochondrial antibody; GAC – glatiramer acetate.
cases have been reported after the first or second dose, physi-
icians should request appropriate laboratory exams and be
aware of the risk of early-onset acute hepatitis. A good recov-
ery is expected after discontinuation of natalizumab and us-
ing corticosteroids.

References:

1. Bezabeh S, Flowers CM, Kortepeter C, et al. Clinically significant liver injury in
patients treated with natalizumab. Aliment Pharmacol Ther. 2010;31:1028-35
2. Niino M, Bodner C, Simard ML, et al. Natalizumab effects on immune cell
responses in multiple sclerosis. Ann Neurol. 2006;59(5):748-54
3. Stuve Q, Marra CM, Jerome KR, et al. Immune surveillance in multiple scler-
osis patients treated with natalizumab. Ann Neurol. 2006;59(5):743-47
4. Martinez-Lapiscina EH, Lacruz F, Bolado-Concejo F, et al. Natalizumab-
induced autoimmune hepatitis in a patient with multiple sclerosis. Mult
Scler. 2013;19(9):1234-35
5. Antezana A, Sigal S, Herbert J, et al. Natalizumab-induced hepatic injury: A
report and review of literature. Mult Scler Relat Disord. 2015;4(6):495-98
6. Lisotti A, Azzaroli F, Brilli S, et al. Severe acute autoimmune hepatitis after
natalizumab treatment. Dig Liver Dis. 2012;44(4):356-57
7. Hillen ME, Cook SD, Samanta A, et al. Fatal acute liver failure with hepatic B virus infection during natalizumab treatment in multiple sclerosis. Neurol Neuroimmunol Neuroinflamm. 2015;2(2):e72
8. Lammert C, Zhu C, Lian Y, et al. Exploratory study of autoantibody profil-
ing in drug-induced liver injury with an autoimmune phenotype. Hepatol Commun. 2020;4(11):1651-63
9. Gerussi A, Natalini A, Antonangeli F, et al. Immune-mediated drug-in-
duced liver injury: Immunogenetics and experimental models. Int J Mol Sci.
2021;22(9):4557
10. Tsouris Z, Laskos C, Dardiotis E, et al. A comprehensive analysis of anti-
gen-specific autoimmune liver disease related autoantibodies in patients
with multiple sclerosis. Auto Immun Highlights. 2020;11(1):7
11. Kader ME, Mayes T, Katzman P, et al. Acute liver dysfunction after addition
of natalizumab to interferon in two patients with MS. Am J Gastroenterol.
2007;102(2):309 abstr. 524
12. Stine JG, Northup PG. Autoimmune-like drug-induced liver injury: A
review and update for the clinician. Expert Opin Drug Metab Toxicol
2016;12(11):1291-301
13. Björnsson ES, Vucic V, Stirmann G, Robles-Díaz M. Role of corticoste-
roids in drug-induced liver injury. A systematic review. Front Pharmacol.
2022;13:820724