On perfect packings in dense graphs

József Balogh,* Alexandr V. Kostochka† and Andrew Treglown‡

August 22, 2011

Abstract

We say that a graph \(G \) has a perfect \(H \)-packing if there exists a set of vertex-disjoint copies of \(H \) which cover all the vertices in \(G \). We consider various problems concerning perfect \(H \)-packings: Given \(n, r, D \in \mathbb{N} \), we characterise the edge density threshold that ensures a perfect \(K_r \)-packing in any graph \(G \) on \(n \) vertices and with minimum degree \(\delta(G) \geq D \). We also give two conjectures concerning degree sequence conditions which force a graph to contain a perfect \(H \)-packing. Other related embedding problems are also considered. Indeed, we give a degree sequence condition which forces a graph to contain a copy of \(K_r \), thereby strengthening the minimum degree version of Turán’s theorem. We also characterise the edge density threshold that ensures a graph \(G \) contains \(k \) vertex-disjoint cycles.

1 Introduction

Given two graphs \(H \) and \(G \), a perfect \(H \)-packing in \(G \) is a collection of vertex-disjoint copies of \(H \) which cover all the vertices in \(G \). Perfect \(H \)-packings are also referred to as \(H \)-factors or perfect \(H \)-tilings. Hell and Kirkpatrick [7] showed that the decision problem whether a graph \(G \) has a perfect \(H \)-packing is NP-complete precisely when \(H \) has a component consisting of at least 3 vertices. So for such graphs \(H \), it is unlikely that there is a complete characterisation of those graphs containing a perfect \(H \)-packing. Thus, there has been significant attention on obtaining sufficient conditions that ensure a graph \(G \) contains a perfect \(H \)-packing.

A seminal result in the area is the Hajnal-Szemerédi theorem [6] which states that a graph \(G \) whose order \(n \) is divisible by \(r \) has a perfect \(K_r \)-packing provided that \(\delta(G) \geq (r-1)n/r \). Kühn and Osthus [10, 11] characterised, up to an additive constant, the minimum degree which ensures a graph \(G \) contains a perfect \(H \)-packing for an arbitrary graph \(H \).

It is easy to see that the minimum degree condition in the Hajnal-Szemerédi theorem cannot be lowered. Of course, this does not mean that one cannot strengthen this result. Ore-type degree conditions consider the sum of the degrees of non-adjacent vertices in a graph. The following Ore-type result of Kierstead and Kostochka [8] implies the Hajnal-Szemerédi theorem.

*University of Illinois, Urbana-Champaign, USA and University of California, San Diego, USA, jobal@math.uiuc.edu. This author is supported by NSF CAREER Grant DMS-0745185, UIUC Campus Research Board Grant 11067, and OTKA Grant K76099.

†University of Illinois, Urbana-Champaign, USA and Institute of Mathematics, Novosibirsk, Russia, kostochk@math.uiuc.edu. This author is supported in part by NSF grant DMS-0965587 and by grant 09-01-00244-a of the Russian Foundation for Basic Research.

‡University of Birmingham, Birmingham, UK, treglowa@maths.bham.ac.uk
Theorem 1 (Kierstead and Kostochka [8]) Let \(n, r \in \mathbb{N} \) such that \(r \) divides \(n \). Suppose that \(G \) is a graph on \(n \) vertices such that for all non-adjacent \(x \neq y \in V(G) \),

\[
d(x) + d(y) \geq 2(1 - 1/r)n - 1.
\]

Then \(G \) contains a perfect \(K_r \)-packing.

Kühn, Osthus and Treglown [12] characterised, asymptotically, the Ore-type degree condition which ensures a graph \(G \) contains a perfect \(H \)-packing for an arbitrary graph \(H \).

1.1 Degree sequence conditions forcing a perfect \(K_r \)-packing

Chvátal [3] gave a condition on the degree sequence of a graph which ensures Hamiltonicity: Suppose that \(G \) is a graph on \(n \) vertices and that the degrees of the graph are \(d_1 \leq \cdots \leq d_n \). If \(n \geq 3 \) and \(d_i \geq i + 1 \) or \(d_{n-i} \geq n - i \) for all \(i < n/2 \) then \(G \) is Hamiltonian. So in the case when \(n \) is even, this degree sequence condition ensures that \(G \) has a perfect \(K_2 \)-packing (i.e. a perfect matching). We propose the following conjecture on the degree sequence of a graph which forces a perfect \(K_r \)-packing.

Conjecture 2 Let \(n, r \in \mathbb{N} \) such that \(r \) divides \(n \). Suppose that \(G \) is a graph on \(n \) vertices with degree sequence \(d_1 \leq \cdots \leq d_n \) such that:

\[(\alpha) \quad d_i \geq (r - 2)n/r + i \text{ for all } i < n/r; \]

\[(\beta) \quad d_{n/r+1} \geq (r - 1)n/r. \]

Then \(G \) contains a perfect \(K_r \)-packing.

Note that Conjecture 2, if true, is much stronger than the Hajnal-Szemerédi theorem since the degree condition allows for \(n/r \) vertices to have degree less than \((r - 1)n/r\). Further, Proposition 14 in Section 5 shows that the condition on the degree sequence in Conjecture 2 is essentially “best possible”. Chvátal [3] proved Conjecture 2 in the case when \(r = 2 \). We prove the conjecture in the case when \(G \) is additionally \(K_{r+1} \)-free (see Section 6).

It is also of interest to establish degree sequence conditions which force a single copy of \(K_r \) in a graph \(G \). In Section 7 we give such a result, which is a consequence of the following structural theorem.

Theorem 3 Suppose that \(n, r \in \mathbb{N} \) such that \(n \geq r \) and so that \(r \) divides \(n \). Let \(G \) be a \(K_{r+1} \)-free graph on \(n \) vertices whose degree sequence \(d_1 \leq \cdots \leq d_n \) is such that \(d_{n/r} \geq (r - 1)n/r \). Then \(G \subseteq T(n,r) \).

(Here \(T(n,r) \) denotes the complete \(r \)-partite Turán graph on \(n \) vertices; so each vertex class has size \([n/r]\) or \([n/r]\).)

1.2 Perfect packings in dense graphs of low minimum degree

In Section 3 we consider the following natural problem: Let \(n, r \in \mathbb{N} \) such that \(r \) divides \(n \). Given some \(D \in \mathbb{N} \), what edge density condition ensures that any graph \(G \) on \(n \) vertices and of minimum degree \(\delta(G) \geq D \) contains a perfect \(K_r \)-packing? In Section 4.1 we deal with the case when \(r = 2 \). The following result completely answers this question for \(r \geq 3 \).
Theorem 4 Let $n, r \in \mathbb{N}$ such that $r \geq 3$ and r divides n. Given any $D \in \mathbb{N}$ such that $r - 1 \leq D \leq (r - 1)n/r - 1$ define

$$g(n, r, D) := \max \left\{ \left(\frac{n}{2} - \frac{n/r + 1}{2} \right), D(n - D) + \left(\frac{n - 1 - D}{2} \right) + e(T(D, r - 2)) \right\}.$$

Suppose that G is a graph on n vertices with $\delta(G) \geq D$ and $e(G) > g(n, r, D)$. Then G contains a perfect K_r-packing. Moreover, there exists a graph G' on n vertices with $\delta(G') \geq D$ and $e(G') = g(n, r, D)$ but such that G' does not contain a perfect K_r-packing.

Clearly a graph G of minimum degree $\delta(G) < r - 1$ cannot contain a perfect K_r-packing. Further, regardless of edge density, every graph G whose order n is divisible by r and with $\delta(G) \geq (r - 1)n/r$ contains a perfect K_r-packing. Thus, Theorem 4 considers all values of D where our problem was not solved previously. We prove Theorem 4 in Section 3. In Section 2 we prove the ‘moreover’ part of Theorem 4. That is, we show that the edge density condition in Theorem 4 is best possible for all values of D such that $r - 1 \leq D \leq (r - 1)n/r - 1$.

An equitable k-colouring of a graph G is a proper k-colouring of G such that any two colour classes differ in size by at most one. Let $n, r \in \mathbb{N}$ such that r divides n. Notice that a graph G on n vertices has a perfect K_r-packing if and only if the complement \overline{G} of G has an equitable n/r-colouring. So, for example, the Hajnal-Szemerédi theorem can be stated in terms of equitable colourings. Here we also find it more convenient to work with equitable colourings. Indeed, rather than prove Theorem 1 directly, Kierstead and Kostochka proved the equivalent statement for equitable colourings. Here we also find it more convenient to work with equitable colourings. Thus, instead of proving Theorem 4 directly we prove the following equivalent result.

Theorem 5 Let $n, r \in \mathbb{N}$ such that $r \geq 3$ and r divides n. Given any $D \in \mathbb{N}$ such that $n/r \leq D \leq n - r$ define

$$f(n, r, D) := \min \left\{ \left(\frac{n/r + 1}{2} \right), D + e(T(n - D - 1, r - 2)) \right\}.$$

Suppose that G is a graph on n vertices with $\Delta(G) \leq D$ and $e(G) < f(n, r, D)$. Then G has an equitable n/r-colouring. Moreover, there exists a graph G' on n vertices with $\Delta(G') \leq D$ and $e(G') = f(n, r, D)$ but such that G' does not have an equitable n/r-colouring.

(Note that here $\overline{T(n, r)}$ denotes the complement of the Turán graph $T(n, r)$.)

1.3 Vertex-disjoint cycles in dense graphs

Given $k \in \mathbb{N}$, Corrádi and Hajnal [5] proved that every graph G on $n \geq 3k$ vertices and of minimum degree $\delta(G) \geq 2k$ contains at least k vertex-disjoint cycles. So when $n = 3k$, the Corrádi-Hajnal theorem is precisely the Hajnal-Szemerédi theorem in the case when $r = 3$. Recently, Allen, Böttcher, Hladký and Piguet (see [1]) characterised the density threshold that ensures a sufficiently large n-vertex graph G contains at least k vertex-disjoint triangles where $0 \leq k \leq n/3$. As an application of Theorem 4 we characterise the density threshold that ensures an n-vertex graph G contains at least k vertex-disjoint cycles where $n \geq 7k/2$.

3
Theorem 6 Let \(n, k \in \mathbb{N} \) such that \(n \geq 7k/2 \). Suppose that \(G \) is a graph on \(n \) vertices so that
\[
e(G) > (2k - 1)(n - k).
\]
Then \(G \) contains \(k \) vertex-disjoint cycles. Moreover, there exists a graph \(G' \) on \(n \) vertices with \(e(G') = (2k - 1)(n - k) \) such that \(G' \) does not contain \(k \) vertex-disjoint cycles.

We prove Theorem 6 in Section 4.2. Notice that \(G' := K_n - E(K_{n-2k+1}) \) does not contain \(k \) vertex-disjoint cycles and \(e(G') = (2k - 1)(n - k) \).

2 The extremal examples for Theorems 4 and 5

In this section we will give the extremal examples for Theorem 5. Since Theorems 4 and 5 are equivalent, the complements of the extremal graphs for Theorem 5 are the extremal graphs for Theorem 4.

Proposition 7 Suppose that \(n, r \in \mathbb{N} \) such that \(r \geq 3 \) and \(r \) divides \(n \). Then there exists a graph \(G_1 \) on \(n \) vertices such that \(\Delta(G_1) = n/r \),
\[
e(G_1) = \binom{n/r + 1}{2},
\]
but such that \(G_1 \) does not have an equitable \(n/r \)-colouring.

Proof. Let \(G_1 \) denote the disjoint union of a clique \(V \) on \(n/r + 1 \) vertices and an independent set \(W \) of \((1 - 1/r)n - 1 \) vertices. So every independent set in \(G_1 \) contains at most one vertex from \(V \). But since \(|V| = n/r + 1\), \(G_1 \) does not have an equitable \(n/r \)-colouring. Further, \(\Delta(G_1) = n/r \) and \(e(G_1) = \binom{n/r + 1}{2} \). \(\square \)

Proposition 8 Suppose that \(n, r \in \mathbb{N} \) such that \(r \geq 3 \) and \(n = kr \) for some \(k \geq 2 \). Further, let \(D \in \mathbb{N} \) such that \(n/(r-1) \leq D \leq n - r \). Then there exists a graph \(G_2 \) on \(n \) vertices such that \(\Delta(G_2) = D \),
\[
e(G_2) = D + e(T(n-D-1,r-2)),
\]
but such that \(G_2 \) does not have an equitable \(n/r \)-colouring.

Proof. Let \(G_2 \) denote the disjoint union of a copy \(K \) of \(K_{1,D} \) and a copy of \(T(n-D-1,r-2) \). So \(|G| = n\). Let \(v \) denote the vertex of degree \(D \) in \(K \). The largest independent set in \(G_2 \) that contains \(v \) is of size \(r - 1 \). Thus, \(G_2 \) does not have an equitable \(n/r \)-colouring. Further, \(e(G_2) = D + e(T(n-D-1,r-2)) \).

Since \(n/(r-1) \leq D \) we have that \(n - 1 \leq (r-1)D \). Thus,
\[
\left\lfloor \frac{n-D-1}{r-2} \right\rfloor - 1 \leq \frac{n-D-1}{r-2}
\]
This implies that \(\Delta(G_2) = D \). \(\square \)
Clearly Propositions 7 and 8 show that one cannot lower the edge density condition in Theorem 5 in the case when \(n/(r-1) \leq D \leq n-r \). The following result, together with Proposition 7, shows that Theorem 5 is best possible in the case when \(n/r \leq D \leq n/(r-1) \).

Proposition 9 Let \(n, r \in \mathbb{N} \) such that \(r \geq 3 \) and \(r \) divides \(n \geq 2r \). Suppose that \(D \in \mathbb{N} \) such that \(n/r \leq D \leq n/(r-1) \). Then

\[
f(n, r, D) = \left(\frac{n/r + 1}{2} \right).
\]

The following simple consequence of Turán’s theorem will be used in the proof of Theorem 5.

Fact 10 Let \(n, r \in \mathbb{N} \) such that \(r \leq n \). Then

\[
e(T(n, r)) \leq \left(1 - \frac{1}{r} \right) \frac{n^2}{2} \quad \text{and thus} \quad e(T(n, r)) \geq \frac{n^2}{2r} - \frac{n}{2}.
\]

We will also require the following easy result.

Lemma 11 Let \(n, r \in \mathbb{N} \) such that \(r \geq 4 \) and \(r \) divides \(n \geq 3r \). Suppose that \(D \in \mathbb{N} \) such that \(n/r \leq D < (n + r)/(r-1) \). Then

\[
f(n, r, D) = \left(\frac{n/r + 1}{2} \right).
\]

3 Proof of Theorem 5

3.1 Preliminaries

Suppose for a contradiction that the result is false. Let \(G \) be a counterexample with the fewest vertices. That is, \(n = |V(G)| = rk \) for some \(k \in \mathbb{N} \), \(\Delta(G) \leq D \) for some \(D \in \mathbb{N} \) such that \(n/r \leq D \leq n-r \), \(e(G) < f(n, r, D) \) and \(G \) has no equitable \(n/r \)-colouring. By the Hajnal-Szemerédi theorem, \(\Delta(G) \geq n/r \). Notice that given fixed \(n \) and \(r \), \(f(n, r, D) \) is non-increasing with respect to \(D \). Thus, we may assume that \(\Delta(G) = D \).

We first show that \(k \geq 4 \). Indeed, if \(n = 2r \) then \(f(n, r, D) \leq \left(\frac{3}{2} \right) = 3 \). But it is easy to see that every graph \(G_1 \) on \(2r \) vertices and with \(e(G_1) \leq 2 \) has an equitable 2-colouring. If \(n = 3r \) then \(f(n, r, D) \leq \left(\frac{4}{3} \right) = 6 \). Consider any graph \(G_1 \) on \(3r \) vertices with \(e(G_1) \leq 5 \) and \(3 \leq \Delta(G_1) \leq 5 \). Let \(x \) denote the vertex in \(G_1 \) where \(d_{G_1}(x) = \Delta(G_1) \). Since \(3 \leq d_{G_1}(x) \leq 5 \), \(x \) lies in an independent set \(I \) in \(G_1 \) of size \(r \). But then \(G_1 - I \) contains \(2r \) vertices and at most \(2 \) edges. So \(G_1 - I \) has an equitable 2-colouring and hence \(G_1 \) has an equitable 3-colouring.

Let \(v \in V(G) \) such that \(d_G(v) = D \). Set \(G^* \) := \(G - (N_G(v) \cup \{v\}) \). Since \(f(n, r, D) \leq D + e(T(n-D-1, r-2)) \) we have that \(e(G^*) \leq e(T(n-D-1, r-2)) \). Thus, by Turán’s theorem, \(G^* \) contains an independent set of size \(r-1 \). Hence, \(v \) lies in an independent set in \(G \) of size \(r \). Amongst all such independent sets of size \(r \) that contain \(v \), choose a set \(I = \{x_1, \ldots, x_{r-1}\} \) such that \(d_{G_1}(x_1) + \cdots + d_{G_1}(x_{r-1}) \) is maximised.

Set \(G' := G - I \), \(n' := |V(G')| = n-r \) and \(D' := \Delta(G') \leq D \). Notice that \(D' \geq n'/r \). (Indeed, if not, then by the Hajnal-Szemerédi theorem \(G' \) contains an equitable \(n'/r \)-colouring. Thus, as \(I \) is an independent set in \(G \) this gives us an equitable \(n/r \)-colouring of \(G \), a contradiction.) Furthermore, \(D' \leq n' - r \). If not then

\[
e(G) \geq D + D' \geq 2(n' - r + 1) = 2n - 4r + 2.
\]
Thus, we have that
\[e(G) < f(n, r, D) \leq f(n, r, n - 2r + 1) \leq (n - 2r + 1) + e(\overline{T}(2r - 2, r - 2)) \leq (n - 2r + 1) + (r + 3) = n - r + 4. \]
Therefore, \(2n - 4r + 2 < n - r + 4 \) and so \(n < 3r + 2 \) a contradiction since \(n = kr \geq 4r \).

Since \(n' / r \leq D' \leq n' - r \), if \(e(G') < f(n', r, D') \) then the minimality of \(G \) implies that \(G' \) has an equitable \(n'/r \)-colouring. This then implies that \(G \) has an equitable \(n/r \)-colouring, a contradiction.

Thus,
\[e(G') \geq f(n', r, D'). \tag{1} \]

We now split our argument into three cases.

3.2 **Case 1:** \(f(n', r, D') = \binom{n'/r + 1}{2} \).

By (1), \(e(G') \geq \binom{n'/r + 1}{2} = \binom{n/r}{2} \). Since \(d_G(v) = D \geq n/r \),
\[e(G) \geq \frac{n}{r} + \binom{n/r}{2} = \binom{n/r + 1}{2} \geq f(n, r, D), \]
a contradiction, as desired.

3.3 **Case 2:** \(D' \leq D - 1 \) and \(f(n', r, D') = D' + e(\overline{T}(n' - D' - 1, r - 2)) \).

The following claim will be useful.

Claim 12 \(D' < \frac{r - 1}{2r - 3}n - \frac{(r^2 - r + 1)}{2r - 3} \).

Proof. Note that
\[D + D' + e(\overline{T}(n' - D' - 1, r - 2)) \leq e(G) < f(n, r, D) \leq D + e(\overline{T}(n - D - 1, r - 2)). \tag{2} \]
Since \(D' \leq D - 1 \), clearly \(e(\overline{T}(n' - D, r - 2)) \leq e(\overline{T}(n' - D' - 1, r - 2)) \). Thus, (2) implies that
\[D' + e(\overline{T}(n' - D, r - 2)) < e(\overline{T}(n - D - 1, r - 2)). \tag{3} \]
One can obtain \(\overline{T}(n - D - 1, r - 2) \) from \(\overline{T}(n' - D, r - 2) \) by adding \(r - 1 \) vertices and at most
\[(n' - D) + \frac{n - D - 2}{r - 2} \]
edges. \tag{4}
Hence (3) and (4) give
\[D' < n' - D + \frac{n - D - 2}{r - 2}. \]
Rearranging, and using that \(D' \leq D - 1 \) and \(n' = n - r \) we get that
\[\left(2 + \frac{1}{r - 2} \right) D' < \left(1 + \frac{1}{r - 2} \right) n - \frac{(r^2 - r + 1)}{r - 2}. \]
Thus,
\[D' < \frac{r - 1}{2r - 3}n - \frac{(r^2 - r + 1)}{2r - 3}, \]
as desired. \(\square \)
Since we are in Case 2 we have that
\[D' + e(\mathcal{T}(n - r - D' - 1, r - 2)) \leq \binom{n'/r + 1}{2} = \binom{n/r}{2}. \] (5)

Notice that for fixed \(n \) and \(r \), \(D' + e(\mathcal{T}(n - r - D' - 1, r - 2)) \) is non-increasing as \(D' \) increases. Hence, \((5) \) and Claim 12 imply that
\[D'' + e(\mathcal{T}(n - r - D'' - 1, r - 2)) \leq \frac{n^2}{2r^2} - \frac{n}{2r} \] (6)
where \(D'' := \lfloor (n - 1)n/(2r - 3) - (r^2 - r + 1)/(2r - 3) \rfloor \). Note that
\[n - r - \frac{r - 1}{2r - 3} - \frac{(r^2 - r + 1)}{2r - 3} = \frac{r - 2}{2r - 3} + \frac{4 - r^2}{2r - 3}. \]

So Fact 10 and (6) imply that
\[
\left(\frac{r - 1}{2r - 3} - \frac{(r^2 - r + 1)}{2r - 3} - \frac{(2r - 4)}{2r - 3} \right) + \frac{1}{2(r - 2)} \left(\frac{r - 2}{2r - 3} + \frac{4 - r^2}{2r - 3} \right)^2 - \frac{1}{2} \left(\frac{r - 2}{2r - 3} + \frac{4 - r^2}{2r - 3} \right) \leq \frac{n^2}{2r^2} - \frac{n}{2r}.
\]

Next we will move all terms from the previous equation to the left hand side and simplify. The coefficient of \(n^2 \) is
\[\frac{r - 2}{2(2r - 3)^2} - \frac{1}{2r^2} = \frac{r^3 - 6r^2 + 12r - 9}{2r^2(2r - 3)^2}. \] (7)

The coefficient of \(n \) is
\[\frac{r - 1}{2r - 3} - \frac{(r - 2)}{2(2r - 3)} + \frac{1}{2r} + \frac{(4 - r^2)}{(2r - 3)^2} = \frac{r^2 - 4r + 9}{2r(2r - 3)^2}. \] (8)

The constant term is
\[-\frac{(r^2 + r - 3)}{2r - 3} + \frac{(r^2 - 4)^2}{2(2r - 2)(2r - 3)^2} + \frac{(r^2 - 4)}{2(2r - 3)} = \frac{-r^4 + 3r^3 + 4r^2 - 26r + 28}{2(r - 2)(2r - 3)^2}. \] (9)

Since \(n \geq 4r \), (7)–(9) imply that
\[\frac{8(r^3 - 6r^2 + 12r - 9)}{(2r - 3)^2} + \frac{2(r^2 - 4r + 9)}{(2r - 3)^2} + \frac{-r^4 + 3r^3 + 4r^2 - 26r + 28}{2(r - 2)(2r - 3)^2} \leq 0. \] (10)

Multiplying (10) by \(2(r - 2)(2r - 3)^2 \) we get
\[15r^4 - 121r^3 + 364r^2 - 486r + 244 \leq 0. \]

This yields a contradiction, since it is easy to check that
\[15r^4 - 121r^3 + 364r^2 - 486r + 244 > 0 \]
for all \(r \in \mathbb{N} \) such that \(r \geq 3 \).
3.4 Case 3: $D' = D$ and $f(n', r, D') = D' + e(\overline{T}(n' - D' - 1, r - 2))$.

By (1) we have that

$$e(G') \geq f(n', r, D') = D' + e(\overline{T}(n' - D' - 1, r - 2)).$$

(11)

Consider any vertex $x \in V(G')$ such that $d_{G'}(x) = D'$. Since $\Delta(G) = D$, x is not adjacent to any vertex in $I = \{v, x_1, \ldots, x_r\}$. Further, I was chosen such that $d_G(x_1) + \cdots + d_G(x_{r-1})$ is maximised. Thus, $d_G(x_1) = \cdots = d_G(x_{r-1}) = D$. Together with (11) this implies that

$$e(G) \geq (r + 1)D + e(\overline{T}(n' - D - 1, r - 2)).$$

(12)

Since $e(G) < f(n, r, D) \leq D + e(\overline{T}(n - D - 1, r - 2))$, (12) implies that

$$rd + e(\overline{T}(n' - D - 1, r - 2)) < e(\overline{T}(n - D - 1, r - 2)).$$

(13)

One can obtain $\overline{T}(n - D - 1, r - 2)$ from $\overline{T}(n' - D - 1, r - 2)$ by adding r vertices and at most

$$(n' - D - 1) + \frac{2(n - D - 3)}{r - 2} + 1 \text{ edges.}$$

(14)

Thus, (13) and (14) imply that

$$rd < n - r - D + \frac{2(n - D - 3)}{r - 2}$$

and so

$$\left(r + 1 + \frac{2}{r - 2}\right)D < \left(1 + \frac{2}{r - 2}\right)n + \frac{(-r^2 + 2r - 6)}{r - 2} < \left(1 + \frac{2}{r - 2}\right)n.$$

(15)

If $r = 3$ then (15) implies that

$$D < \frac{n}{2}.$$

Since $f(n', 3, D) = \min\{(n'/2+1)/(n' - D - 1)\}$ it is easy to see that if $f(n', 3, D) = D + (n' - D - 1)/(n' - 2)$ then $D \geq 2n'/3 + 1 = 2n/3 - 1$. Thus, $2n/3 - 1 \leq D < n/2$, a contradiction since $n \geq 4r = 12$.

If $r \geq 4$ then (15) implies that

$$D < \frac{n}{r - 1} = \frac{n'}{r - 1} + \frac{r}{r - 1}.$$

Since $n' \geq 3r$, Lemma 11 implies that $f(n', r, D') = (n'/r + 1)$ and so we are in Case 1, which we have already dealt with.

4 Perfect matchings and cycles in dense graphs

4.1 Perfect matchings in dense graphs

In this section we establish the density threshold that ensures every graph G on an even number n of vertices and of minimum degree $\delta(G) \geq d$ contains a perfect matching. Note that we only
consider values of \(d \) such that \(1 \leq d < n/2 \), since if \(\delta(G) \geq n/2 \) then \(G \) has a perfect matching, regardless of the edge density.

For a positive even \(n \) and an integer \(0 \leq d < n/2 \), let \(A, B \) and \(C \) be disjoint sets with \(|A| = d+1 \), \(|B| = d \), \(|C| = n - 2d - 1 \). Let \(H = H(n, d) \) be the graph with the vertex set \(A \cup B \cup C \) such that \(H[B \cup C] = K_{n-d-1} \), and each vertex in \(A \) is adjacent to each vertex in \(B \) and to no vertex in \(C \). So \(H \) does not contain a perfect matching. Let

\[
h(n, d) := |E(H(n, d))| = \left(\frac{n-d-1}{2} \right) + d(d+1).
\]

Note that for a fixed even \(n \), \(h(n, d) \) decreases with \(d \) in the interval \([0, n/3 - 5/6]\) and increases with \(d \) in \([n/3 - 5/6, 0.5n - 1]\).

Proposition 13 For an even positive \(n \) and integer \(1 \leq d < n/2 \), let \(f(2, n, d) \) denote the maximum integer \(c \) such that some \(n \)-vertex graph with minimum degree at least \(d \) and at least \(c \) edges has no perfect matching. Then

\[
f(2, n, d) = \max \{ h(n, d), h(n, 0.5n - 1) \}.
\]

Proof. The examples of \(H(n, d) \) show that \(f(2, n, d) \geq \max \{ h(n, d), h(n, 0.5n - 1) \} \). If \(G \) is an \(n \)-vertex graph with \(\delta(G) \geq n/2 \), then \(G \) has a perfect matching. Thus, it is enough to prove that if an \(n \)-vertex graph \(G \) with \(d \leq \delta(G) < n/2 \) has no perfect matching, then

\[
e(G) \leq h(n, d') \text{ for some } d \leq d' < 0.5n.
\]
4.2 Proof of Theorem 6

Suppose for a contradiction that the result is false. Then there is a graph G on $n \geq 7k/2$ vertices with

$$e(G) > (2k - 1)(n - k)$$

(19)

but such that G does not contain k vertex-disjoint cycles.

Let $v_1 \in V(G)$ such that $d_G(v_1) = \delta(G)$. If $\delta(G) \geq 2k$ then the Corrádi-Hajnal theorem implies that G contains k vertex-disjoint cycles, a contradiction. So $d_G(v_1) \leq 2k - 1$. Let $v_2 \in V(G - v_1)$ such that $d_{G-v_1}(v_2) = \delta(G - v_1)$. Again we may assume that $d_{G-v_1}(v_2) \leq 2k - 1$. Repeating this argument we obtain distinct vertices v_1, \ldots, v_{n-3k} so that $G' := G - \{v_1, \ldots, v_{n-3k}\}$ is a graph on $3k$ vertices with $\delta(G') \leq 2k - 1$. The choice of v_1, \ldots, v_{n-3k} and (19) implies that

$$e(G') > (2k - 1)(n - k) - (2k - 1)(n - 3k) = 2k(2k - 1).$$

(20)

If $k = 1$ this implies that $|G'| = 3$ and $e(G') > 2$, a contradiction. When $k = 2$ we have that $|G'| = 6$ and $e(G') > 12$. But then G' contains two vertex-disjoint triangles, a contradiction. Thus, $k \geq 3$.

Consider the case when $\delta(G') \geq k - 1 \geq 2$. It is easy to check that $g(3k, 3, k-1) = \left(\frac{3k}{2}\right) - \left(\frac{k+1}{2}\right) = 2k(2k - 1)$. Since G' does not contain a perfect K_3-packing, Theorem 4 implies that

$$e(G') \leq 2k(2k - 1),$$

a contradiction to (20), as desired.

Now consider the case when $s := \delta(G') \leq k - 2$. For $2 \leq s \leq k - 2$, $g(3k, 3, s) = \left(\frac{3k}{2}\right) - \left(\frac{s}{2}\right) - (3k - 1 - s)$. Since G' does not contain a perfect K_3-packing, Theorem 4 implies that

$$e(G') \leq \left(\frac{3k}{2}\right) - \left(\frac{s}{2}\right) - (3k - 1 - s).$$

(21)

If $s = 0, 1$ then it is easy to see that (21) also holds. (In this case, $\left(\frac{s}{2}\right) := s(s-1)/2 = 0$.)

If k is even then, since $\delta(G') = s$, v_{n-3k} must have at most $s + 1$ neighbours in $V(G')$, v_{n-3k-1} has at most $s + 2$ neighbours in $V(G') \cup \{v_{n-3k}\}$ and so on until $v_{n-7k/2+1}$ has at most $s + k/2$ neighbours in $V(G') \cup \{v_{n-3k}, \ldots, v_{n-7k/2+2}\}$. Hence, (21) implies that

$$e(G) \leq \left(\frac{3k}{2}\right) - \left(\frac{s}{2}\right) - (3k - 1 - s) + (s + 1) + \cdots + (s + k/2) + (n - 7k/2)(2k - 1).$$

Comparing with (19), after rearranging and simplifying we get

$$\frac{5k}{2}(2k - 1) < \frac{3k(3k - 1)}{2} - \frac{s(s-1)}{2} - 3k + 1 + s + \frac{s k}{2} + \frac{k^2}{8} + \frac{k}{4}.$$

This implies that

$$\frac{3k^2}{4} + \frac{7k}{2} < -s^2 + s(3 + k) + 2.$$

(22)

Note that $-s^2 + s(3 + k) + 2$ is maximised when $s = (3 + k)/2$. So (22) implies that

$$\frac{3k^2}{4} + \frac{7k}{2} < \frac{(3 + k)^2}{4} + \frac{(3 + k)^2}{2} + 2,$$

and therefore

$$2k^2 + 8k < 17,$$

a contradiction as $k \geq 3$. The case when k is odd is similar.
5 The extremal examples for Conjecture 2

Proposition 14 Suppose that \(n, r, k \in \mathbb{N}\) such that \(r \geq 2\) divides \(n\) and \(1 \leq k < n/r\). Then there exists a graph \(G\) on \(n\) vertices whose degree sequence \(d_1 \leq \cdots \leq d_n\) satisfies

- \(d_i = (r - 2)n/r + k - 1\) for all \(1 \leq i \leq k\);
- \(d_i = (r - 1)n/r\) for all \(k + 1 \leq i \leq (r - 2)n/r + k\);
- \(d_i = n - k - 1\) for all \((r - 2)n/r + k + 1 \leq i \leq n - k + 1\);
- \(d_i = n - 1\) for all \(n - k + 2 \leq i \leq n\),

but such that \(G\) does not contain a perfect \(K_r\)-packing.

Proof. Let \(G'\) denote the complete \((r - 2)\)-partite graph whose vertex classes \(V_1, \ldots, V_{r-2}\) each have size \(n/r\). Obtain \(G\) from \(G'\) by adding the following vertices and edges: Add a set \(V_{r-1}\) of \(2n/r - 2k + 1\) vertices to \(G'\), a set \(V_r\) of \(k\) vertices and a set \(V_0\) of \(k\) vertices. Add all edges from \(V_0 \cup V_{r-1} \cup V_r\) to \(V_1 \cup \cdots \cup V_{r-2}\). Further, add all edges with both endpoints in \(V_{r-1} \cup V_r\). Add all possible edges between \(V_0\) and \(V_r\).

So \(V_0\) is an independent set, and there are no edges between \(V_0\) and \(V_{r-1}\). This implies that any copy of \(K_r\) in \(G\) containing a vertex from \(V_0\) must also contain at least one vertex from \(V_r\). But since \(|V_0| > |V_r|\) this implies that \(G\) does not contain a perfect \(K_r\)-packing. Furthermore, \(G\) has our desired degree sequence. \(\square\)

Notice that the graphs \(G\) considered in Proposition 14 satisfy (\(\beta\)) from Conjecture 2 and only fail to satisfy (\(\alpha\)) in the case when \(i = k\) (and in this case \(d_k = (r - 2)n/r + k - 1\)).

Let \(n, r \in \mathbb{N}\) such that \(r\) divides \(n\). Denote by \(T^*(n, r)\) the complete \(r\)-partite graph on \(n\) vertices with \(r - 2\) vertex classes of size \(n/r\), one vertex class of size \(n/r - 1\) and one vertex class of size \(n/r + 1\). Then \(T^*(n, r)\) does not contain a perfect \(K_r\)-packing. Furthermore, \(T^*(n, r)\) satisfies (\(\alpha\)) but condition (\(\beta\)) fails; we have that \(d_{n/r + 1} = (r - 1)n/r - 1\) here. Thus, together \(T^*(n, r)\) and Proposition 14 show that, if true, Conjecture 2 is essentially best possible.

6 Some special cases of Conjecture 2

The following is a simple consequence of Chvátal’s theorem.

Theorem 15 (Chvátal [3]) Suppose that \(G\) is a graph on \(n \geq 2\) vertices and the degrees of the graph are \(d_1 \leq \cdots \leq d_n\). If

\[
d_i \geq i \quad \text{or} \quad d_{n-i+1} \geq n-i \quad \text{for all} \quad 1 \leq i \leq n/2
\]

then \(G\) contains a Hamilton path.

It is easy to see that Theorem 15 implies Conjecture 2 in the case when \(r = 2\). We now give a simple proof of Conjecture 2 in the case when \(G\) is \(K_{r+1}\)-free.

Theorem 16 Let \(n, r \in \mathbb{N}\) such that \(r \geq 2\) divides \(n\). Suppose that \(G\) is a graph on \(n\) vertices with degree sequence \(d_1 \leq \cdots \leq d_n\) such that:

\[
\text{\textit{\(d_i \geq i\)} \quad \text{or} \quad \text{\(d_{n-i+1} \geq n-i\)} \quad \text{for all} \quad 1 \leq i \leq n/2
}
\]
Thus assume that further suppose that no vertex $x \in V(G)$ of degree less than $(r - 1)n/r$ lies in a copy of K_{r+1}. Then G contains a perfect K_r-packing.

Proof. We prove the theorem by induction on n. In the case when $n = r$ then $d_{n/r+1} = d_2 \geq (r - 1)r/r = r - 1$. This implies that every vertex in G has degree $r - 1$. Hence $G = K_r$ as desired. So suppose that $n > r$ and the result holds for smaller values of n. Let $x_1 \in V(G)$ such that $d_G(x_1) = d_1 \geq (r - 2)n/r + 1$. If $d_G(x_1) \geq (r - 1)n/r$ then $\delta(G) \geq (r - 1)n/r$. Thus G contains a perfect K_r-packing by the Hajnal-Szemerédi theorem. So we may assume that $(r - 2)n/r + 1 \leq d_G(x_1) < (r - 1)n/r$. In particular, x_1 does not lie in a copy of K_{r+1}. We first find a copy of K_r containing x_1. If $r = 2$, x_1 has a neighbour and so we have our desired copy of K_2. So assume that $r \geq 3$. Certainly $N_G(x_1)$ contains a vertex x_2 such that $d_G(x_2) \geq (r - 1)n/r$. Thus, $[N_G(x_1) \cap N_G(x_2)] \geq (r - 3)n/r + 1 > 0$. So if $r = 3$ we obtain our desired copy of K_r. Otherwise, we can find a vertex $x_3 \in N_G(x_1) \cap N_G(x_2)$ such that $d_G(x_3) \geq (r - 1)n/r$. We can repeat this argument until we have obtained vertices x_1, \ldots, x_r that together form a copy K'_r of K_r.

Let $G' := G - V(K'_r)$ and set $n' := n - r = |V(G')|$. Since G does not contain a copy of K_{r+1} containing x_1, every vertex $x \in V(G') \setminus V(K'_r)$ sends at most $r - 1$ edges to K'_r in G. Thus, $d_{G'}(x) \geq d_G(x) - (r - 1)$ for all $x \in V(G')$. So if $d_G(x) \geq (r - 1)n/r$ then $d_{G'}(x) \geq (r - 1)n/r - (r - 1) = (r - 1)n'/r$ for all $x \in V(G')$. If a vertex $y \in V(G')$ does not lie in a copy of K_{r+1} in G then clearly y does not lie in a copy of K_{r+1} in G'. This means that no vertex $y \in V(G')$ of degree less than $(r - 1)n'/r$ lies in a copy of K_{r+1}.

Let $d'_1 \leq \cdots \leq d'_{n'}$ denote the degree sequence of G'. It is easy to check that $d'_i \geq (r - 2)n'/r + i$ for all $i < n'/r$ and that $d'_{n'/r+1} \geq (r - 1)n'/r$. Indeed, since $x_1 \in V(K'_r)$ where $d_G(x_1) = d_1$, we have that $d'_i \geq d_{i+1} - (r - 1)$ for all $1 \leq i \leq n'$. Thus, for all $1 \leq i < n'/r = n/r - 1$, $d'_i \geq d_{i+1} - (r - 1) \geq (r - 2)n/r + (i + 1) - (r - 1) = (r - 2)n'/r + i$. Similarly, $d'_{n'/r+1} = d'_{n/r} \geq d_{n/r+1} - (r - 1) \geq (r - 1)n/r - (r - 1) = (r - 1)n'/r$. Hence, by induction G' contains a perfect K'_r-packing. Together with K'_r this gives us our desired perfect K_r-packing in G.

7 Degree sequences forcing a copy of K_r in a graph

Proof of Theorem 3. Consider any $x_1 \in V(G)$ such that $d_G(x_1) \geq (r - 1)n/r$. Since $d_{n/r} \geq (r - 1)n/r$ we can greedily select vertices x_2, \ldots, x_{r-1} such that

- x_1, \ldots, x_{r-1} induce a copy of K_{r-1} in G;
- $d_G(x_i) \geq (r - 1)n/r$ for all $1 \leq i \leq r - 1$.

Note that since G is K_{r+1}-free, $\cap_{i=1}^{r-1} N_G(x_i)$ is an independent set. The choice of x_1, \ldots, x_{r-1} implies that $|\cap_{i=1}^{r-1} N_G(x_i)| \geq n/r$. Let V_1 denote a subset of $\cap_{i=1}^{r-1} N_G(x_i)$ of size n/r. Thus V_1 contains a vertex x_1^1 of degree at least $(r - 1)n/r$.

As before we can find vertices x_2^1, \ldots, x_{r-1}^1 such that

- x_1^1, \ldots, x_{r-1}^1 induce a copy of K_{r-1} in G;
- $d_G(x_i^1) \geq (r - 1)n/r$ for all $1 \leq i \leq r - 1$.

12
So \(\cap_{i=1}^{r-1} N_G(x_i^1) \) is an independent set of size at least \(n/r \). Let \(V_2 \) denote a subset of \(\cap_{i=1}^{r-1} N_G(x_i^1) \) of size \(n/r \). Note that \(N_G(x_1^1) \cap V_1 = \emptyset \) since \(x_1^1 \in V_1 \) and \(V_1 \) is an independent set. Thus as \(V_2 \subseteq N_G(x_1^1) \), \(V_1 \cap V_2 = \emptyset \).

Our aim is to find disjoint sets \(V_1, \ldots, V_r \subseteq V(G) \) of size \(n/r \) and vertices \(x_1^1, \ldots, x_r^1, x_1^2, \ldots, x_r^2, \ldots, x_1^{r-1}, \ldots, x_r^{r-1} \) with the following properties:

- \(G[V_j] \) is an independent set for all \(1 \le j \le r \);
- Given any \(1 \le j \le r - 1 \), \(x_k^j \in V_k \) for each \(1 \le k \le j \);
- \(d_G(x_k^j) \ge (r-1)n/r \) for all \(1 \le j \le r - 1 \) and \(1 \le k \le r - 1 \);
- \(x_1^j, \ldots, x_r^j \) induce a copy of \(K_{r-1} \) in \(G \) for all \(1 \le j \le r - 1 \).

Clearly finding such a partition \(V_1, \ldots, V_r \) of \(V(G) \) implies that \(G \subseteq T(n, r) \).

Suppose that for some \(1 < j < r \) we have defined sets \(V_1, \ldots, V_j \) and vertices \(x_1^1, \ldots, x_j^1, \ldots, x_j^{j-1}, \ldots, x_r^{r-1} \) with our desired properties. Since \(d_{n/r} \ge (r-1)n/r \) and \(V_1, \ldots, V_j \) are independent sets of size \(n/r \) we can choose vertices \(x_1^j, \ldots, x_j^j \) such that for all \(1 \le k \le j \),

- \(x_k^j \in V_k \) and \(d_G(x_k^j) \ge (r-1)n/r \).

This degree condition, together with the fact that \(x_1^1, \ldots, x_j^j \) lie in different vertex classes, implies that these vertices form a copy of \(K_j \) in \(G \). We now greedily select further vertices \(x_{j+1}^j, \ldots, x_{r-1}^j \) such that

- \(x_1^j, \ldots, x_{r-1}^j \) induce a copy of \(K_{r-1} \) in \(G \);
- \(d_G(x_k^j) \ge (r-1)n/r \) for all \(j+1 \le k \le r - 1 \).

So \(\cap_{i=1}^{r-1} N_G(x_i^j) \) is an independent set of size at least \(n/r \). Let \(V_{j+1} \) denote a subset of \(\cap_{i=1}^{r-1} N_G(x_i^j) \) of size \(n/r \). Note that, for each \(1 \le k \le j \), \(N_G(x_k^j) \cap V_k = \emptyset \) since \(x_k^j \in V_k \) and \(V_k \) is an independent set. Thus as \(V_{j+1} \subseteq N_G(x_k^j) \) for each \(1 \le k \le j \), \(V_{j+1} \) is disjoint from \(V_1 \cup \cdots \cup V_j \).

Repeating this argument we obtain our desired sets \(V_1, \ldots, V_r \subseteq V(G) \) and vertices \(x_1^1, \ldots, x_r^1, x_1^2, \ldots, x_r^2, \ldots, x_1^{r-1}, \ldots, x_r^{r-1} \).

The following consequence of Theorem 3 gives a condition on the degree sequence of a graph \(G \) that forces \(G \) to contain a copy of \(K_{r+1} \).

Corollary 17 Suppose that \(n, r \in \mathbb{N} \) where \(n \ge r \ge 2 \). Let \(n = mr + s \) where \(m, s \in \mathbb{N} \) such that \(0 \le s \le r - 1 \). Let \(G \) be a graph on \(n \) vertices whose degree sequence \(d_1 \le \cdots \le d_n \) satisfies the following conditions:

(a) \(d_{m+s} \ge n-m \);

(b) \(d_n \ge n - m + 1 \).

Then \(G \) contains a copy of \(K_{r+1} \).
Further, can be lowered here. Indeed, the Turán graph T_r shows that we cannot have a lower value in the second part of the condition in Question 19. Note that Theorem 15 answers this question in the affirmative when $d_1 = 2$. The following example shows that we cannot omit condition (b). Further, $T^*(n, r)$ does not contain a copy of K_{r+1} but satisfies (b) and only just fails to satisfy (a).

(Recall that the graph $T^*(n, r)$ was defined in Section 5.)

8 Possible extensions of Conjecture 2

If one can prove Conjecture 2, it seems likely it can be used to prove the following conjecture.

Conjecture 18 Suppose $\gamma > 0$ and H is a graph with $\chi(H) = r$. Then there exists an integer $n_0 = n_0(\gamma, H)$ such that the following holds. If G is a graph whose order $n \geq n_0$ is divisible by $|H|$, and whose degree sequence $d_1 \leq \cdots \leq d_n$ satisfies

- $d_i \geq (r - 2)n/r + i + \gamma n$ for all $i < n/r$,

then G contains a perfect H-packing.

We also suspect that the following ‘Chvátal-type’ degree sequence condition forces a graph to contain a perfect K_r-packing.

Question 19 Let $n, r \in \mathbb{N}$ such that $r \geq 2$ divides n. Suppose that G is a graph on n vertices with degree sequence $d_1 \leq \cdots \leq d_n$ such that for all $i \leq n/r$:

- $d_i \geq (r - 2)n/r + i$ or $d_{n-i(r-1)+1} \geq n - i$.

Does this condition imply that G contains a perfect K_r-packing?

Note that Theorem 15 answers this question in the affirmative when $r = 2$. The following example shows that we cannot have a lower value in the second part of the condition in Question 19.

Proposition 20 Suppose that $n, r, k \in \mathbb{N}$ such that $r \geq 2$ divides n and $1 \leq k \leq n/r$. Then there exists a graph G on n vertices whose degree sequence $d_1 \leq \cdots \leq d_n$ satisfies

- $d_{n-i(r-1)+1} \geq n - i$ for all $i \in [n/r] \setminus \{k\}$;
\[d_{n-k(r-1)+1} = n - k - 1, \]

but such that \(G \) does not contain a perfect \(K_r \)-packing.

Proof. Let \(G \) be the graph on \(n \) vertices with vertex classes \(V_1, V_2 \) and \(V_3 \) of sizes \(k, (r-1)k-1 \) and \(n-rk+1 \) respectively and with the following edges: There are all possible edges between \(V_1 \) and \(V_2 \) and between \(V_2 \) and \(V_3 \). Further add all possible edges in \(V_2 \) and all edges in \(V_3 \). Thus, \(V_1 \) is an independent set and there are no edges between \(V_1 \) and \(V_3 \).

The degree sequence of \(G \) is

\[\begin{align*}
(r-1)k - 1, \ldots, (r-1)k - 1, & \quad n - k - 1, \ldots, n - k - 1, \\
n - rk + 1 \times & \quad n - \times, \ldots, n - 1, \\
(r-1)k - 1 \times & \quad n - rk + 1 \times \end{align*} \]

Hence \(G \) satisfies our desired degree sequence condition. Every copy \(K'_r \) or \(K_r \) in \(G \) that contains a vertex from \(V_1 \) must contain \(r-1 \) vertices from \(V_2 \). But since \(|V_1|(r-1) > |V_2| \) this implies that \(G \) does not contain a perfect \(K_r \)-packing. \(\square \)

The \(r \)th power of a Hamilton cycle \(C \) is obtained from \(C \) by adding an edge between every pair of vertices of distance at most \(r \) on \(C \). Seymour [13] conjectured the following strengthening of Dirac’s theorem.

Conjecture 21 (Pósa-Seymour, see [13]) Let \(G \) be a graph on \(n \) vertices. If \(\delta(G) \geq \frac{r}{r+1}n \) then \(G \) contains the \(r \)th power of a Hamilton cycle.

Pósa (see [4]) had earlier proposed the conjecture in the case of the square of a Hamilton cycle (that is, when \(r = 2 \)). Komlós, Sárközy and Szemerédi [9] proved Conjecture 21 for sufficiently large graphs. More recently, Chau, DeBiasio and Kierstead [2] proved Pósa’s conjecture for graphs of order at least \(2 \times 10^8 \).

In the case when \(r+1 \) divides \(|G| \), a necessary condition for a graph \(G \) to contain the \(r \)th power of a Hamilton cycle is that \(G \) contains a perfect \(K_{r+1} \)-packing. Further, notice that the minimum degree condition in Conjecture 21 is the same as the condition in the Hajnal-Szemerédi theorem with respect to perfect \(K_{r+1} \)-packings. Thus an obvious question is whether the condition in Conjecture 2 forces a graph to contain the \((r-1) \)th power of a Hamilton cycle. Interestingly though, when \(r = 3 \), this is not the case.

Proposition 22 Suppose that \(C, n \in \mathbb{N} \) such that \(C \ll n \) and \(3 \) divides \(n \). Then there exists a graph \(G \) whose degree sequence \(d_1 \leq \cdots \leq d_n \) satisfies

\[d_i \geq \frac{n}{3} + C + i \quad \text{for all } 1 \leq i \leq \frac{n}{3} \]

but such that \(G \) does not contain the square of a Hamilton cycle.

Proof. Choose \(C, K, n \in \mathbb{N} \) so that \(C \ll K \ll n \). Let \(G \) denote the graph on \(n \) vertices consisting of three vertex classes \(V_1 = \{v\}, V_2 \) and \(V_3 \) where \(|V_2| = n/3 + C + 1 \) and \(|V_3| = 2n/3 - C - 2 \) which contains the following edges:

- All edges from \(v \) to \(V_2 \);
- All edges between \(V_2 \) and \(V_3 \) and all possible edges in \(V_3 \);
Figure 1: The example from Proposition 22 in the case when $K = 2$ and $|V_2| = 8$.

- There are K vertex-disjoint stars in V_2, each of size $\lceil |V_2|/K \rceil$, $\lfloor |V_2|/K \rfloor$, which cover all of V_2 (see Figure 1).

Let $d_1 \leq \cdots \leq d_n$ denote the degree sequence of G. There are $n/3 + C - K + 1 \leq n/3 - 2C - 1$ vertices in V_2 of degree $2n/3 - C$. Since $C \ll K \ll n$, the remaining K vertices in V_2 have degree at least $2n/3 - C - 2 + \lceil |V_2|/K \rceil \geq 2n/3 + C + 1$. Since $d_G(v) = n/3 + C + 1$ and $d_G(x) = n - 2$ for all $x \in V_3$, we have that $d_i \geq \frac{n}{3} + C + i$ for all $1 \leq i \leq \frac{n}{3}$.

A necessary condition for a graph G to contain the square of a Hamilton cycle is that, for every $x \in V(G)$, $G[N(x)]$ contains a path of length 3. Note that $N(v) = V_2$ and $G[V_2]$ does not contain a path of length 3. So G does not contain the square of a Hamilton cycle. □

Notice that we can set $C = o(\sqrt{n})$ in Proposition 22. We finish by raising the following question.

Question 23 What can be said about degree sequence conditions which force a graph to contain the rth power of a Hamilton cycle? In particular, can one establish a degree sequence condition that ensures a graph G on n vertices contains the rth power of a Hamilton cycle and which allows for “many” vertices of G to have degree “much less” than $rn/(r + 1)$?

Acknowledgements

This research was carried out whilst the third author was visiting the Department of Mathematics of the University of Illinois at Urbana-Champaign. This author would like to thank the department for the hospitality he received. We would also like to thank Hal Kierstead for helpful discussions.

References

[1] P. Allen, J. Böttcher, J. Hladký and D. Piguet, A density Corrádi-Hajnal theorem, Electronic Notes in Discrete Mathematics, to appear.

[2] P. Chau, L. DeBiasio and H.A. Kierstead, Pósa’s Conjecture for graphs of order at least 2×10^8, Random Structures and Algorithms, to appear.
Appendix

Here we give proofs of Proposition 9 and Lemma 11. The following fact will be used in both of these proofs.

Fact 24 Fix \(n, r \in \mathbb{N}\) such that \(r \geq 3\) and \(r\) divides \(n \geq 2r\). Define

\[
h(x) := x + \frac{(n-x-1)^2}{2(r-2)} - \frac{1}{2}(n-x-1).
\]

Then \(h(x)\) is a decreasing function for \(x \in [0,n/(r-1)]\). Moreover, if \(n \geq 3r\) then \(h(x)\) is a decreasing function for \(x \in [0,(n+r)/(r-1)]\).

Proof. Notice that

\[
h'(x) = \frac{3}{2} - \frac{(n-x-1)}{r-2} = \frac{x}{r-2} + \frac{1-n}{r-2} + \frac{3}{2}.
\]
So for \(x \leq n/(r - 1) \),
\[
h'(x) \leq \frac{n}{(r - 1)(r - 2)} + \frac{1 - n}{r - 2} + \frac{3}{2} = -\frac{n}{r - 1} + \frac{1}{r - 2} + \frac{3}{2}.
\]
Note that \(3(r - 1)/2 + (r - 1)/(r - 2) < n \) since \(n \geq 2r \) and \(r \geq 3 \). Thus,
\[
h'(x) \leq -\frac{n}{r - 1} + \frac{1}{r - 2} + \frac{3}{2} < 0.
\]
If \(x \leq (n + r)/(r - 1) \) then
\[
h'(x) \leq \frac{n + r}{(r - 1)(r - 2)} + \frac{1 - n}{r - 2} + \frac{3}{2} = -\frac{n}{r - 1} + \frac{1}{r - 2} + \frac{r}{(r - 1)(r - 2)} + \frac{3}{2}.
\]
If \(n \geq 3r \) then \(n > 3r/2 + 4 \). So \(n > 3(r - 1)/2 + (2r - 1)/(r - 2) \). Thus,
\[
h'(x) \leq -\frac{n}{r - 1} + \frac{1}{r - 2} + \frac{r}{(r - 1)(r - 2)} + \frac{3}{2} < 0,
\]
as desired. \(\square \)

Proof of Proposition 9. We need to show that, for all \(D \in \mathbb{N} \) such that \(n/r \leq D \leq n/(r - 1) \),
\[
\frac{n^2}{2r^2} + \frac{n}{2r} = \left(\frac{n/r + 1}{2} \right) \leq D + e(\mathcal{T}(n - D - 1, r - 2)).
\]
Since \(D \leq n/(r - 1) \), Facts 10 and 24 imply that
\[
D + e(\mathcal{T}(n - D - 1, r - 2)) \geq D + \frac{(n - D - 1)^2}{2(r - 2)} - \frac{(n - D - 1)}{2} \geq \frac{n}{r - 1} + \frac{1}{2(r - 2)} \left[\frac{(r - 2)}{r - 1} n - 1 \right] - \frac{1}{2} \left[\frac{(r - 2)}{r - 1} n - 1 \right] \geq \frac{(r - 2)}{2(r - 1)^2} n^2 - \frac{(r - 2)}{2(r - 1)^2} n.
\]
Thus, it suffices to show that
\[
\frac{(r - 2)}{2(r - 1)^2} n - \frac{r - 2}{2(r - 1)} \geq \frac{n}{2r^2} + \frac{1}{2r}. \tag{23}
\]
Notice that
\[
\frac{r - 2}{2(r - 1)^2} - \frac{1}{2r^2} = \frac{(r - 2)^2 - (r - 1)^2}{2r^2(r - 1)^2} = \frac{r^3 - 3r^2 + 2r - 1}{2r^2(r - 1)^2} \tag{24}
\]
and
\[
\frac{r - 2}{2(r - 1)} + \frac{1}{2r} = \frac{r^2 - r - 1}{2r(r - 1)}.
\]
Since \(n \geq 2r \), (23) implies that it suffices to show that
\[
\frac{r^3 - 3r^2 + 2r - 1}{r(r - 1)^2} - \frac{r^2 - r - 1}{2r(r - 1)} \geq 0. \tag{25}
\]
Note that \(r^3 \geq 4r^2 - 4r + 3 \) as \(r \geq 3 \). Thus, \(2(r^3 - 3r^2 + 2r - 1) \geq (r^2 - r - 1)(r - 1) \). So indeed (25) is satisfied, as desired. \(\square \)
Proof of Lemma 11. We need to show that, for all \(D \in \mathbb{N} \) such that \(n/r \leq D < (n + r)/(r - 1) \),

\[
\frac{n^2}{2r^2} + \frac{n}{2r} = \left(\frac{n/r + 1}{2}\right) \leq D + e(T(n - D - 1, r - 2))
\]

Since \(D < (n + r)/(r - 1) \) we have that \(D \leq n/(r - 1) + 1 \). So Facts 10 and 24 imply that

\[
D + e(T(n - D - 1, r - 2)) \geq D + \frac{(n - D - 1)^2}{2(r - 2)} - \frac{(n - D - 1)}{2} \\
\geq \frac{n}{r - 1} + 1 + \frac{1}{2(r - 2)} \left[\frac{(r - 2)}{r - 1} n - 2 \right]^2 - \frac{1}{2} \left[\frac{(r - 2)}{r - 1} n - 2 \right]
\]

\[
\geq \frac{(r - 2)}{2(r - 1)^2} n^2 - \frac{(r - 2)}{2(r - 1)} n - \frac{n}{r - 1}
\]

Thus, it suffices to show that

\[
\frac{(r - 2)}{2(r - 1)^2} n^2 - \frac{(r - 2)}{2(r - 1)} n - \frac{n}{r - 1} \geq \frac{n}{2r^2} + \frac{1}{2r}
\]

(26)

Notice that

\[
\frac{r - 2}{2(r - 1)^2} + \frac{1}{r - 1} + \frac{1}{2r} = \frac{r^2 + r - 1}{2r(r - 1)}.
\]

Since \(n \geq 3r \), (24) and (26) imply that it suffices to show that

\[
\frac{3(r^3 - 3r^2 + 2r - 1)}{2r(r - 1)^2} - \frac{r^2 + r - 1}{2r(r - 1)} \geq 0.
\]

(27)

Note that \(2r^3 - 9r^2 + 8r - 4 \geq 0 \) as \(r \geq 4 \). Thus, \(3(r^3 - 3r^2 + 2r - 1) \geq (r^2 + r - 1)(r - 1) \). So indeed (27) is satisfied, as desired. \(\square \)