Role of phytobiotics in relieving the impacts of Aeromonas hydrophila infection on aquatic animals: A mini-review

Zulhisyam Abdul Kari1, Wendy Wee2, Suniza Anis Mohamad Sukri3, Hasnita Che Harun1, Mohd Farhan Hanif Reduan3, Martina Irwan Khoo4, Hien Van Doan5,6*, Khang Wen Goh7* and Lee Seong Wei1*

Aeromonas hydrophila is a ubiquitous bacterium with various hosts that causes mass mortality in farm-raised fish species and significant economic losses. The current antibiotic treatment is ineffective in controlling this bacterium infection in aquaculture species. Therefore, an evaluation of potential phytobiotics is needed to find an alternative antimicrobial agent to reduce the over-reliance on antibiotics in aquaculture and safeguard public and environmental health. Furthermore, the rise in antibiotic resistance cases among pathogenic bacteria indicates an urgent need for new fish and shellfish health management solutions. In this context, phytobiotics applications in aquaculture can be defined as any medicinal plant-based antimicrobial agent used in fish and shellfish species against MAS and the combination of phytobiotics with other antimicrobial and therapeutic agents against MAS.

KEYWORDS
motile aeromonad septicemia (MAS), plant extract, anti-bacterial activity, innate immunity, disease resistance, synergistic

Introduction

The aquaculture industry is essential in sustaining more than 1 billion population worldwide who depends on fish as their primary source of protein (1, 2). This fast-growing industry (3, 4) recorded an all-time high production, with a total live weight of 114.5 million tons (5). As aquaculture intensifies, diseases have become a major
constraint for the industry, i.e., Motile Aeromonad Septicemia (MAS) caused by *Aeromonas hydrophila*. *A. hydrophila* can be found in various environments such as marine, freshwater, brackish water, water supplies, and incredibly abundant during the warmer seasons (6). The hosts of *A. hydrophila* are vast, ranging from freshwater to marine aquatic species (7). This bacterium was also reported to be coinfected with epizootic ulcerative syndrome (EUS) (8). Thus, this highly virulent microorganism may cause mass mortality of aquaculture species on farm sites (9).

Aquatic animals infected by MAS exhibit symptoms such as cloacal hemorrhage (10), ascites (11), gastroenteritic hemorrhage (12), and septicemia ulceration on the skin (13). Furthermore, the *A. hydrophila* strain will determine the appearance of the symptoms in the infected fish (14). Serine protease (ser), cytotoxins and aerolysin (aer) are the common virulence factors that contribute to *A. hydrophila* pathogenicity (15). In addition, lipase (lip), cytotoxic enterotoxins (act, alt, ast), polar flagella (fla), DNases (exu), type III secretion system (ascV), cholesterol acyltransferase (gcaT), and elastase (ahyB) have been associated with *A. hydrophila* pathogenicity (16–18). These virulence factors, in combination with other factors, will lead to the pathogenicity of *A. hydrophila* (19).

Traditionally, fish farmers use antibiotics as prevention and treatment for aquaculture species health management. However, the misuse and overexploitation of antibiotics have led to increasing antibiotic resistance cases among pathogenic bacteria from aquaculture sites (20). For example, *A. hydrophila*, isolated from Nile tilapia, *Oreochromis niloticus*, was resistant to ampicillin and amoxicillin (21). Therefore, fish farmers have no choice but to increase antibiotic dosages to treat diseases in aquaculture. A study suggests a combination of two different antibiotics, thiamphenicol, and florfenicol, were effective at lower dosages against *A. hydrophila* infection in Nile tilapia (22). Consequently, studies are ongoing to find alternative treatments such as vaccination programs (23) and phytobiotics applications (24–28). Various studies have revealed the potential of phytobiotics as an alternative to antibiotics, thus, minimizing antibiotics usage in aquaculture. Phytobiotics contain bioactive compounds such as alkaloids, sterol, flavonoids, saponins, and tannins that possess bactericidal properties and stimulatory effects (29). For example, miswak, and *Salvadora persica*, contain broad spectrum bactericidal compounds such as benzyl isothiocyanate, salvadourea, salvadoreine (29), and vitamin C that can promote healing and tissue repair (30).

This review summarized the impacts of MAS caused by *A. hydrophila* in aquaculture, phytobiotics preparation for aquaculture uses, the antibiotic activity of medicinal herbs in aquaculture, phytobiotics-activated innate immunity in aquaculture species, phytobiotics enhanced tolerance of aquaculture species toward MAS caused by *A. hydrophila* and phytobiotics in combination with other antimicrobial and therapeutic agents against MAS caused by *A. hydrophila*.

Impacts of MAS caused by *A. hydrophila* in aquaculture

Disease outbreak is a major constraint to the growth of the aquaculture industry. One of the sources of diseases is *A. hydrophila*, an opportunistic pathogen associated with secondary infection (31) and outbreaks (see Table 1). Fish infected with MAS will exhibit symptoms such as lose appetite, skin ulcerations, pale gills, swollen abdomen, and abnormal swimming pattern. Antibiotics such as oxytetracycline and terramycin were commonly used for treatment. *A. hydrophila* can cause MAS that has detrimental impacts on aquaculture, such as devastating fish farms, causing economic losses, and pose a threat to public health and environmental safety. This disease was first reported by Llobrera and Gacutan (32) in snakehead, catfish, carp and goby in Laguna de Bay, Philippines, where the infected species exhibited lesions and necrotic ulcers. Many studies reported that MAS was responsible for the mass mortality of aquaculture species. For instance, a mass mortality of Channel catfish, *Ictalurus punctatus*, in commercial fish farms in the Southeastern USA (31). Furthermore, the total loss of this outbreak in commercial fish farms amounted to millions of USD, leading to numerous fish farm closures (33).

The MAS is also reported to alter the appearance of an aquaculture species, contributing to the losses in market value. For example, Dierckens et al. (35) claimed that the Fairy shrimp, *Branchinecta gigas* (Lynch), infected with MAS appeared black, causing a substantial price drop. Furthermore, the risk of mass mortality among aquaculture species due to this disease forced fish farmers to harvest and sell their products in the market immediately to reduce losses. Moreover, disease control via antibiotics administration without adequately assessing the effectiveness of the treatments contributes to the infiltration of residues in the environment and microflora breakdown in the area (46), besides posing a threat to public health and the environment.

Phytobiotics vs. commercially developed vaccines against MAS

Fish vaccination was developed more than 50 years ago (41) and reported to be effective in disease control. The vaccines in aquaculture can be administered via immersion or intraperitoneal injection. In addition, live vaccines were reported to be highly effective in stimulating vigorous antibody activity in fish when administered orally or by immersion. An ideal vaccine is safe for the fish, environmentally friendly, cost-effective, user friendly, and highly effective with little or no side effects (41). In a recent study, fish vaccination has been improved by dissolving microneedle patches. Yun et al. (42) developed this novel vaccination administration to prevent *A. hydrophila* infection in fish. Dissolving microneedle patches
TABLE 1 Impacts of MAS in aquaculture.

Aquatic species	Impacts	Prophylactic measures	Location	References
Freshwater Murray cod, Maccullochella peeli	Tail rot disease, mass mortality	Cephalosporin, chloromycetin, glycopeptides, macrolides, nitrofurans and penicillin drugs	Shanghai, China	(34)
Channel catfish, Ictalurus punctatus	Mottle Aemonad Septicemia (MAS)	Probiotic, vaccination	Southeastern USA	(31)
Catfish, Clarias gariepinus	80–100% mortality in 2 weeks	Maintain good water quality for prevention of MAS infection	Surabaya, Indonesia	(35)
Freshwater cultured whiteleg shrimp, Litopenaeus vannamei	Emerging causative agent; mass mortality of shrimp	Combination florfenicol and Punica granatum	Fengxian, Shanghai, China	(36)
Nile tilapia Oreochromis niloticus	Mass mortality	Not mentioned	São Paulo, Brazil	(37)
Nile tilapia, O. niloticus	High mortality	Maintain good water quality for prevention of MAS infection	Egypt	(38)
Nile tilapia, O. niloticus	35–50% mortality; A. hydrophila carrying the antibiotic resistance gene	Ciprofloxacin	Egypt	(21)

were more effective and can be an alternative to injection in fish vaccination. Currently, the commercial vaccine (Alphaject Panga 2) is used against MAS, in stripped catfish farming in Vietnam (41). However, there are several issues with using the vaccine in aquaculture. High cost and labor intensive are two major factors to be considered by the fish farmer where these factors will hinder vaccines applied extensively in aquaculture.

On the other hand, phytobiotics are plants or plant-based bioactive compounds beneficial for farmers, animals and humans. Examples of phytobiotics are essential oil, legumes, herbs, fruits and vegetables, alkaloids, carotenoids, and phenolic compounds (43, 44). These phytobiotics are widely used in aquaculture feed additives to enhance the immune system and protect aquatic animals against MAS. Since phytobiotics are abundant and inexpensive, fish farmers utilized this treatment as a vaccine replacement in aquaculture health management.

Phytobiotics preparation for aquaculture uses

There are several methods to prepare phytobiotics for aquaculture uses, such as aqueous extracts, methanol extract, and powder form. Methanol is a universal solvent used to extract polar compounds, especially in plants (45), whereas aqueous extracts derive non-polar compounds in phytobiotics. Several studies utilize methanol as a polar aqueous solvent for non-polar extraction in phytobiotics preparation. For example, Wei et al. (46) and Zhou et al. (36) compared the efficacy of bacterial inhibition between methanolic and aqueous extracts. Most studies used methanol in phytobiotics preparation since this solvent was found effectively derives all the properties in the sample (45), Sheikhlar et al. (47), Lee et al. (20), Sheikhlar et al. (48), Bao et al. (49), and Rashmeei et al. (50). The extracts were then used as feed additives in the feeding trials.

Phytobiotics can also be prepared in powder form. For example, Thanikachalam et al. (51) prepared dried garlic peel powder before being incorporated into fish feed for a feeding trial. Similarly, phytobiotics are prepared as feed additives using Rosemary leaf (52), Psidium guajava L. leaf (53, 54), and Spirulina (Arthrospira platensis) (55). Furthermore, some phytobiotics can be commercially available such as tapioca (56), curcumin (57), origanum essential oil (38), and thyme, red thyme and pepper rosemary essential oil (58). Recently, studies have utilized the polysaccharide derived from Pistacia vera hulls (59) or fermentation in preparing phytobiotics (60).

Antibacterial activity of medicinal herbs in aquaculture

Despite the rapid action of antibiotics in controlling a disease outbreak, the residues can disrupt the natural microflora by seeping into the surrounding sediment and water bodies (61). Furthermore, antibiotics such as oxolinic acid, flumequine, oxytetracycline, and sulfadiazine are stable for up to 3 months in soil (62). Thus, there is a dire need for an alternative antimicrobial agent for aquaculture uses.

Medicinal herbs are extensively used as a treatment for human diseases. The whole plant or part of the herbaceous plant, such as twigs, roots, stem, flower, and fruit, are subjected to the extraction process for bioactive compound derivation (63).
Bioactive compounds include terpenoids, tannins, alkaloids, and flavonoids, which possess antibacterial properties (64). Furthermore, numerous studies have revealed the potential of medicinal herbs for aquaculture uses; thus, researchers have developed new and improved approaches for antibacterial discoveries from plants. For instance, antibacterial properties were characterized in polysaccharides derived from macroalgae, Chaetomorpha aerea (65) and nanoscale silver particles of butter fruit, Persea americana (66). These studies highlighted future research prospects for plant-based polysaccharide-derived compounds and nano-synthetic substances.

Based on the literature, many medicinal herbs were reported to demonstrate antibacterial properties against A. hydrophila. For instance, Murraya koenigii, Pandanus odoratissimus (46), Colocasia esculenta (67), and Euphorbia hirta (48) inhibited the growth of A. hydrophila (Table 2). These medicinal herbs contain bioactive compounds, such as carbazole alkaloids (68), phenolic compounds (69), polypeptides (70), and alkaloids (71), that was responsible for the antibacterial activities. Moreover, recent studies showed that pomegranate, Punica granatum (Peel), Prunus mume (fruit), Fructus toosendan (fruit), Artemisia argyi (leaves), Polygonum aviculare (leaves), Cephalanoplos segetum (leaves), and Artemisia capillaries (leaves) demonstrated the ability to inhibit A. hydrophila activities (36). Similarly, Piper betle, Piper sarmentosum, and Piper nigrum demonstrated inhibitory activities, as reported by Anjur et al. (72).

Phytobiotics activated the innate immunity of aquaculture species

Antibiotics are essential for aquaculture species health management (40, 75, 76). Nevertheless, antibiotic action is not limited to the target bacteria but also other microorganisms in aquatic animals and the environment (77). Moreover, antibiotic residues in the environment contribute to the development of resistance genes in the microorganisms (78). Vivekanandhan et al. (79) reported that almost 99% of A. hydrophila isolated from seafood (fish and prawn) in the wet market of South India were resistant to novobiocin, bacitracin, rifampicin, and mexiticillin. Meanwhile, De Silva et al. (80) have revealed that all A. hydrophila isolated from Yesso scallop, Patinopecten yessoensis were resistant to ampicillin, colistin, vancomycin, and cephalothin. Therefore, phytobiotics offer an alternative solution in aquaculture species health management to overcome antibiotic resistance.

Phytobiotics can also activate the innate immunity of aquaculture species to stimulate disease resistance. Many studies have proven the potential of phytobiotics as an alternative antimicrobial agent for aquaculture uses. For instance, Boswellia serrata resin extract was reported can be phytobiotic to enhance the immune system of Nile tilapia and Oreochromis niloticus against Staphylococcus aureus infection (81). In the study, B. serrata resin extract can activate the innate immune system of O. niloticus via the immune response assay, disease resistance assay and growth performance experiment. Similar findings were reported on Spopora flavescens (82), peppermint (Mentha piperita) (83), Aloe vera powder (84), Spirulina platensis (85), citrus lemon peel essential oil (86). The mentioned phytobiotics can improve aquaculture species’ growth performance and activate their innate immune system against diseases.

Phytobiotics also stimulate mucus production on fish skin, which acts as a non-specific immunity. Fish skin mucus serves as a primary physical defense against various pathogens. A recent study showed that feeding Siberian sturgeon (Acipenser baeri) with barley fruit extract for 56 days caused a remarkable improvement in the skin mucus bactericidal activity against A. hydrophila, where the bacterial inhibition zone diameter is higher compared to the fish fed with unsupplemented diet (control group) (87). Another phytobiotics mechanism is through immune cells improvement and macrophages activation, as reported by Chen et al. (88), where Salvia miltiorrhiza polysaccharide exhibited the ability to modulate the disease resistance of sturgeon against A. hydrophila infection. In addition, phytobiotics from plant secondary metabolites such as saponin, essential oils, phenolic compounds, polysaccharides, and polypeptides demonstrated the potential to treat the bacterial infection with low toxicity (89). The phytobiotics can also act as active site modulators, enzymes as catalytic sites, receptors and proteins for disease treatments (90).

Phytobiotics enhanced aquaculture species tolerance against MAS

Existing studies indicated that fish farmers utilize antibiotics, chemicals, phytobiotics, probiotics, prebiotics, yeast extract, vaccine, and disinfectants to control MAS caused by Aeromonas hydrophila in commercial farms (91). Nonetheless, these treatments have been proven unsustainable in preventing MAS caused by A. hydrophila. This catastrophic bacterial disease is responsible for the mass mortality of aquaculture species and significant economic losses. Nevertheless, excessive antibiotic usage will increase antibiotic resistance among pathogenic bacteria, leading to its inefficacy in aquaculture disease control. Therefore, fish farmers must be given more options to use other antimicrobial agents instead of over-relying on antibiotics. Recent studies showed promising findings on phytobiotics in controlling A. hydrophila infection in aquaculture species. The phytobiotics were used as a feed additive given together with feed to aquaculture species for some time can activate and enhance the immune system of aquaculture species against A. hydrophila. For example, Zhang et al. (92) revealed that 1–2% of Flos populi extract incorporated in feed and given to Goldfish (Carassius auratus) for 45 consecutive days could enhance medicated fish growth, antioxidative status, non-specific immunity, and...
disease resistance to A. hydrophila infection (Table 3). Many other studies have shown a similar trend of findings in the literature. Therefore, there is no doubt phytobiotics can enhance the tolerance of aquaculture species against Motile Aeromonas Septicemia.

Phytobiotics enhance the fish's immune system by increasing the presence of immune markers such as immunoglobulin M (IgM), nitric oxide and lysozyme. For example, Abdellatief et al. (108) revealed that a combination of sage (Salvia officinalis) and Spirulina platensis (Arthrospira platensis) can boost the immune system of Nile tilapia by increasing their immune response against Pseudomonas aeruginosa. Furthermore, phytobiotics, in the form of antioxidants such as phenols and polyphenols, are beneficial for fish health by improving the immune system of aquatic animals against A. hydrophila (109). For instance, Naiel et al. (52) revealed that 10 g/kg rosemary (Salvia rosmarinus) leaves enhanced Nile tilapia’s immune system and increased their disease resistance against A. hydrophila. Moreover, the phytobiotic promoted lysozyme and serum catalase activity in fish against MAS.

Overall, phytobiotics with low dose and shorter administration duration are the best candidate as antimicrobial agent to against MAS. Based on literature survey, phytobiotics such as polysaccharide of Ficus carica (106), essential oil of thyme, red thyme and pepper rosemary (58) and methanolic extract of Pepperomia pellucida (leaves) (20) were effective in controlling MAS infection as the duration of administration is shorter compared to other phytobiotics. Furthermore, low dose is needed for the mentioned phytobiotics. Further studies need to be carried out in the near future to reveal potential bioactive compounds that present in Gracilaria persica (107), Salvadoria persica (29), Andrographis paniculata (105), Curcumin (57), Morinda oleifera (60), and many more. The future study findings are important to understand the mechanisms of the bioactive compounds in mitigating A. hydrophila impacts on aquatic animals.

Phytobiotics combined with other antimicrobial agents/therapeutic agents against MAS

The emergence of antibiotic resistance among pathogenic bacteria from aquaculture sites revealed that antibiotics alone are not a sustainable antimicrobial agent (110). Therefore, researchers have proposed alternative solutions, such as phytobiotics. Several studies have also reported on the synergistic effects between phytobiotics and other supplements such as boron (94), probiotics (111, 112), Spirulina (113), and antibiotic (36) to relieve the impacts of A. hydrophila in aquaculture species (Table 4). Thus, these combinations are promising antimicrobial agents for cost-effective treatments in aquaculture disease management.

Conclusion and recommendation

In summary, MAS is a catastrophic disease in the aquaculture industry that can lead to significant economic losses and environmental and public health hazards. Antibiotics
TABLE 3 Medicinal herbs used to mitigate A. hydrophila impacts on aquatic animals.

Species	Medicinal herbs	Dose	Duration	References
Rohu, Labeo rohita	Garlic, *Allium sativum*	1–10 g per kg of fish	10 days	(93)
Nile tilapia, *O. niloticus*	*Psidium guajava* (Dried leaf powder)	1 feed: 4–24 *Psidium guajava* (dried leaf powder)	10 days	(54)
Nile tilapia, *O. niloticus*	Chinese medicinal herbs, *Astragalus membranaceus* and *Lonicera japonica*	*Astragalus 0.1% + Lonicera 0.1%*	28 days	(94)
African catfish, *Clarias gariepinus*	Powdered garlic peel	0.5% incorporated in fish feed	20 days	(51)
Goldfish, *Carassius auratus*	Mixed herbal extracts	400–800 mg/kg diet	4 weeks	(95)
Nile tilapia, *O. niloticus*	*Green tea, Camellia sinensis L.*	0.5 g/kg diet	12 weeks	(96)
Nile tilapia, *O. niloticus*	Cinnamon, *Cinnamomum zeylanicum*	1% g/kg diet	8 weeks	(97)
Nile tilapia, *O. niloticus*	*American ginseng, Panax quinquefolium*	1–5 g per kg diet	8 weeks	(98)
Nile tilapia, *O. niloticus*	Mistletoe, *Viscum album coloratum* powder	50 mg per kg diet	80 days	(99)
African catfish, *Clarias gariepinus*	Methanolic extract of *Morus alba* foliage	7 g per kg of feed	30 days	(47)
O. niloticus GIFT	Chinese herbal mixture (*Astragalus, angelica, hawthorn, licorice and honeysuckle*)	0.5–2%/kg diet	4 weeks	(100)
Labeo rohita	*Psidium guajava L.* (leaves)	0.5% of diet	60 days	(53)
L. rohita fingerling	Tapoca	C/N ratio 15	60 days	(56)
Crucian carp	Polysaccharides of *Ficus carica, Radix isatidis, Schisandra chinensis*	<0.8/kg diet	4 weeks	(101)
Catfish, *C. gariepinus*	Methanol extract of *Euphorbia hirta* (aerial part)	5 g/kg of fish	30 days	(48)
Silver catfish, *Rhamdia quelen*	*Aloysia triphylla* essential oil	2 ml/kg diet	21 days	(102)
Red hybrid tilapia,	Methanolic extract of *Pepperomia pellucida* (leaves)	25 ppm of feed	7 days	(20)
Oreochromis spp.	*Spirulina, Arthrophyta platensis*	13.53 g/100 g diet	46 days	(55)
Gibel carp, *Carassius auratus*	gibelio var. CAS III	Tetra, *Cotinus coggygria* and mallow, *Malva syvestris*	Tetra 1,000 mg/kg diet and mallow 500 mg/kg diet	(103)
Gilthead sea bream, *Sparus aurata*; European sea bass, *Dicentrarchus labrax*	*Tetra, Cotonus coggygria* and mallow, *Malva syvestris*	Tetra 1,000 mg/kg diet and mallow 500 mg/kg diet	(103)	
Common carp, *Cyprinus carpio* L.	*Ginkgo biloba leaf extract*	10 g/kg diet	8 weeks	(49)
Clarias gariepinus	*Piper beetle, Psidium guajava, Tithonia diversifolia*	8% per kg of fish feed	28 days	(104)
Nile tilapia, *O. niloticus*	*Pistacia vera-derived polysaccharide* (hull)	5–10 g/kg of feed	60 days	(59)
Common carp, *Cyprinus carpio* L.	*Origanum essential oil*	15 g/kg diet	8 weeks	(38)
Nile tilapia, *O. niloticus*	Rosemary leaf powder	10 g/kg diet	14 days	(52)
Goldfish, *Carassius auratus*	*Chasteberry, Vitex agnus-castus extract*	15 g/kg diet	8 weeks	(50)
Goldfish, *Carassius auratus*	Fermented moringa, *Moringa oleifera* Lam	40% replacement of fish meal	50 days	(60)
Grass carp.	Curcumin	438.20 mg/kg diet	60 days	(57)
Ctenopharyngodon idella	*Andrographis paniculata*	2% of fish body weight	60 days	(105)

(Continued)
TABLE 3 (Continued)

Species	Medicinal herbs	Dose	Duration	References
Nile tilapia, *O. niloticus*	Essential oil of thyme, red thyme and pepper rosemary	1.2 mg per g of feed	20 days	(58)
Nile tilapia, *O. niloticus*	Miswak, *Salvadora persica* powder	2% of diet	8 weeks	(29)
Crucian carp	*Ficus carica* polysaccharides	0.4%/kg diet	4 weeks	(100)
Goldfish, *Carassius auratus*	*Flos populi* extract	1-2 g/kg diet	45 days	(92)
Persian sturgeon, *Acipenser persicus*	*Gracilaria persica*	2.5 g/kg diet	8 weeks	(107)

TABLE 4 Medicinal herbs and antimicrobial/therapeutic agents reduce the impacts of *A. hydrophila* on aquatic animals.

Species	Medicinal herbs	Supplements	Dose	Duration	References	
Nile tilapia, *O. niloticus*	Chinese medicinal herbs, *Astragalus membranaceus* and *Lonicera japonica*	Boron	*Astragalus membranaceus*	0.1% + 0.05% boron; *Lonicera japonica* 0.1% + 0.05% boron	4 weeks	(94)
Common carp, *Cyprinus carpio* L.	Triherbal extract	Triherbal extract	*Lactobacillus*	200 mg/kg diet—triherbal extract; 0.1 g/kg diet—probiotic	4 weeks	(112)
Nile tilapia, *O. niloticus*	Garlic powder	Spirulina platensis powder	*Spirulina platensis*	Garlic—5 g/kg diet; *Spirulina* 10 g/kg diet	8 weeks	(113)
Freshwater white leg shrimp, *Litopenaeus vannamei*	*Pomegranate, Punica granatum extract (peel)*	Florfenicol	*Florfenicol*	0.03 PPM	7 days	(36)
Nile tilapia, *O. niloticus*	Thyme, Cinnamon	Probiotic, *Bacillus subtilis*	*Bacillus subtilis*	Thyme, Cinnamon; 0.1 g/kg diet—probiotic	8 weeks	(111)

have been proven a short-term solution in managing bacterial disease in the aquaculture industry. Therefore, phytobiotics are a viable alternative for aquaculture species health management and for maintaining public health and environmental safety. Despite that, researchers must monitor phytobiotics toxicity as a prerequisite for aquaculture application. Numerous studies have demonstrated the potential of phytobiotics in activating the innate immune system and stimulating disease resistance of aquaculture species against MAS such as essential oil of thyme, red thyme and pepper rosemary whereas methanolic extraction was the best way in preparing phytobiotics. Besides, bioactive compound such as polysaccharide of *Ficus carica* can be effective phytobiotics. Furthermore, applying less ecological footprint antimicrobial agents like phytobiotics can gain consumer confidence in aquaculture products. Nevertheless, there is a gap between the scientific approach and practical use of phytobiotics in aquaculture that can be addressed through knowledge and technology transfer among aquaculturists. Moreover, phytobiotics application in aquaculture remains inconsistent in terms of dosage and duration. These factors are crucial in phytobiotics against MAS because different dosages and duration will lead to variable outcomes. Additionally, phytobiotics efficacy in controlling MAS depends on the source of phytobiotics and environmental conditions. Also, phytobiotics can be administered orally via incorporation in aquaculture feed, thus, a practical, non-stressful, and convenient administration of feed additives for various aquaculture species. Overall, phytobiotics are promising antimicrobial agents in controlling MAS. Most importantly, phytobiotics derived from agricultural wastes have been proven sustainable in aquaculture practices. Further studies need to be carried out in the near future to characterize bioactive compounds that present in phytobiotics and responsible to inhibitory activity against MAS. This is important to understand the mechanisms of the bioactive compounds. In addition, new potential phytobiotics can be explored from plant families such as Rutaceae, Fabaceae, and Moringaceae.
Author contributions

ZA: conceptualization, writing—review and editing, and writing—original draft. WW: writing—original draft and writing—review and editing. SM, HC, MH, MI and HV: writing—review and editing. KW: supervision and conceptualization. LS: project administration, writing—original draft, and writing—review and editing. All authors contributed to the article and approved the submitted version.

Funding

This project was funded by the Ministry of Education, Malaysia, under the Fundamental Research Grant Scheme (FRGS/1/2022/STG03/UMK/03/1), Niche Research Grant Scheme (NRGS) (R/NRGS/A0.700/00387/A006/2014/00152), and Universiti Malaysia Kelantan Matching Grant (Grant no: R/UMK MATCH/A0.700/00387/A008/2022). This research work was partially supported by Chiang Mai University.

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

References

1. Kari ZA, Kabir MA, Dawood MA, Razab MKAA, Ariff NSNA, Sarkar T, et al. Effect of fish meal substitution with fermented soy pulp on growth performance, digestive enzyme, amino acid profile, and immune-related gene expression of African catfish (Clarias gariepinus). Aquaculture. (2022) 546:737418. doi: 10.1016/j.aquaculture.2022.737418
2. Obi F, Ugwuodu R, Nwaikwu J. Agricultural waste concept, generation, utilization and management. Niger J Technol. (2016) 35:957–64. doi: 10.4334/ntj.v35i4.34
3. Akmal M, Rahimi-Midani A, Haferz-ur-Rehman M, Hussain A, Choi T-J. Isolation, characterization, and application of a bacteriophage infecting the fish pathogen Aeromonas hydrophila. Pathogens. (2020) 9:215. doi: 10.3390/pathogens9030215
4. Kari ZA, Kabir MA, Mat K, Rusli ND, Razab MKAA, Ariff NSNA, et al. The possibility of replacing fish meal with fermented soy pulp on the growth performance, blood biochemistry, liver, and intestinal morphology of African catfish (Clarias gariepinus). Aquacult Rep. (2021) 21:100815. doi: 10.1016/j.aqrep.2021.100815
5. FAO F. The State of World Fisheries and Aquaculture. Opportunities and Challenges. Rome: Food and Agriculture Organization of the United Nations (2020).
6. Jiravanichpaisal P, Roos S, Eismeier L, Liu H, Söderhäll K. A highly virulent pathogen, Aeromonas hydrophila, from the freshwater crayfish Pacifastacus leniusculus. J Invertebr. Pathol. 101:56–66. doi: 10.1016/j.jip.2009.02.002
7. Larsen J, Jensen N. An Aeromonas species implicated in ulcer-disease of the cod (Gadus morhua). Nord Vet Med. (1977) 29:199–211.
8. Roberts R. Epizootic ulcerative syndrome—the current position. Dis Asian Aquacult. (1990) 431–6.
9. Jun JW, Kim JH, Shin SP; Han JE, Chai JY, Park SC. (2013). Protective effects of the Aeromonas phages pAh1-C and pAh6-C against mass mortality of the cyprinid loach (Misgurnus anguillicaudatus) caused by Aeromonas hydrophila. Aquac. 416:289–95. doi: 10.1016/j.aquaculture.2013.09.045
10. Zhanq X, Wu W, Li L, Ma X, Chen J. Genetic variation and relationships of seven sturgeon species and ten interspecific hybrids. Genet Sel Evol. (2013) 45:21. doi: 10.1186/1297-9686-45-21
11. Pidgeon J, Klesius P. Molecular identification and virulence of three Aeromonas hydrophila isolates cultured from infected channel catfish during a disease outbreak in west Alabama (USA). Dis Aquia Org (2011) 94:249–53. doi: 10.3354/da02332
12. Elsheshtawy A, Yahia N, Elkemary M, Soliman H. Investigation of Nile tilapia summer mortality in Kafi El-Sheikh Governorate, Egypt. Genet Aqua Org. (2019) 3:17–25. doi: 10.4194/2459-1831-v3_1_03
13. El-Son MA, Abdelhakel NK, El-Ashtram AM, Zaki VH. Phenotypic and biochemical detection of Aeromonas hydrophila isolated from cultured Oreochromis niloticus during disease outbreaks. Int J Fish Aquac. (2019) 1:197–202.
14. Bakiev Y, Izat S, Irina Z, Sadima K, Nurlan S, Gaia A, et al. Isolation, identification, and characterization of pathogenic Aeromonas hydrophila from critically endangered Aescaper bueri. Aquacult Rep. (2022) 26:101293. doi: 10.1016/j.aqrep.2022.101293
15. Li J, Ni XD, Liu YL, Lu CP. Detection of three virulence genes ahp, ahpC and aerA in Aeromonas hydrophila and their relationship with actual virulence to zebrafish. J Appl Microbiol. (2011) 110:823–30. doi: 10.1111/j.1365-2672.2011.04944.x
16. Pattananyak S, Priyadararsin S, Paul A, Kumar PR, Sahoo PK. Diversity of virulence-associated genes in pathogenic Aeromonas hydrophila isolates and their in vivo modulation at varied water temperatures. Micro Patho. (2020) 147:104424. doi: 10.1016/j.micpath.2020.104424.
17. Rasmussen CRI, Figueras MJ, McGregor D, Liles MR. Virulence factors of Aeromonas hydrophila: in the wake of reclassification. Front Microbiol. (2016) 7:1337. doi: 10.3389/fmicb.2016.01337
18. Allan BJ, Stevenson RM. Extracellular virulence factors of Aeromonas hydrophila in fish infections. Can J Microbiol. (1981) 27:1114–22. doi: 10.1139/m81-174
19. Zhao XL, Wu G, Chen H, Li L, Kong XH. Analysis of virulence and immunogenic factors in Aeromonas hydrophila: towards the development of live vaccines. J Fish Dis. (2020) 43:74–55. doi: 10.1111/jfd.13174
20. Lee S, Sim K, Wendy W, Zulfiqaran A. Peperomia pellucida leaf extract as immunostimulator in controlling motile aeromonad septicemia due to Aeromonas hydrophila in red hybrid tilapia, Oreochromis spp. farming. Vet World. (2016) 9:231. doi: 10.14202/vetworld.2016.231-234
21. Tartor YH, EL-Naenaeey E-SY, Abdallah HM, Samir M, Yassen MM, Abdelwahab AM. Virulotyping and genetic diversity of Aeromonas hydrophila isolated from Nile tilapia (Oreochromis niloticus) in aquaculture farms in Egypt. Aquaculture. (2021) 541:736781. doi: 10.1016/j.aquaculture.2021.536781
22. Assane IM, Gozi KS, Valladao GMR, Pilarski F. Combination of antimicrobials as an approach to reduce their application in aquaculture: emphasis on the use of thiamphenicol/terbinafine against Aeromonas hydrophila. Aquaculture. (2019) 507:238–45. doi: 10.1016/j.aquaculture.2019.04.021
23. Kayansamruaj P, Areechoon N, Unajak S. Development of fish vaccine in Southeast Asia: a challenge for the sustainability of SE Asia aquaculture. Fisch Shif Fish Immunol. (2020) 103:73-87. doi: 10.1016/j.fsi.2020.04.031.

24. Maulo S, Lang S, Hasimouf OJ, Mijinshoun D, Munganga RP, Hampowo BM, et al. Recent advances in the utilization of insects as an ingredient in aquafeeds: a review. Animal Nutr. (2022). doi:10.1016/j.anima.2022.07.013.

25. Kari ZA, Koh KW, Edinur HA, Mat K, Khalid HM-N, Rusli ND, et al. Palm date meal as a non-traditional ingredient for feeding aquatic animals: a review. Aquacult Rep. (2022) 25:101233. doi: 10.1016/j.aqrep.2022.101233.

26. Kari ZA, Wee W, Hamid NKA, Mat K, Rusli ND, Khalid HN-M, et al. Recent advances of phytobiotic utilization in carp farming: a review aquaculture. Nutrition. (2022). doi: 10.11522/2022/7662675.

27. Dawood MA, Habotta OA, Elshabagh M, Azra MN, Van Doan H, Kari ZA, et al. Feat. processing by-products in the aquafeed industry: a feasible strategy for aquaculture sustainability. Rev Aquacult. (2022). doi: 10.1111/raq.12680.

28. Dawood MA, Basunji MFE, Yilmaz S, Abdul-Latif HM, Kari ZA, Abdul Razah MKA, et al. Selenium nanoparticles as a natural antioxidant and metabolic regulator in aquaculture: a review. Antioxidants. (2021) 10.3390/antiox10090.

29. Abdul El-latif AM, Abd El-Gawad EA, Soror EI, Shourbela RM, Zahr an E. Fruit processing by-products in the aquafeed industry: a feasible strategy for enhancing the intestinal morphometry and hepato-renal functions of Ictalurus punctatus. Rev Aquacult. (2021). doi: 10.1155/2021/7626675.

30. Dawood MA, Elshabagh M, Wee W, Khalid HNM, et al. Experimental induction of motile Aeromonas hydrophila sp. on catfish (Ictalurus punctatus) after infection with virulent Aeromonas hydrophila. Aquacult Rep. (2016) 3:18-23. doi: 10.1016/j.aqrep.2015.11.003.

31. Dzuzi D, De Rezende RAE, Soares MP, Sampaio FG, Cardoso IL, Ishikawa MM, et al. White mulberry (Morus alba) foliage methanolic extract can alleviate Aeromonas hydrophila infection in African Catfish (Clarias gariepinus). Sci World J. (2014). doi: 10.1155/2014/592709.

32. Zhang X, Sen Z, Cai J, Wang J, Wang G, Zhu Z, et al. Effects of dietary fish meal replacement by fermented moringa (Moringa oleifera Lam.) leaves on growth performance non-specific immunity and disease resistance against Aeromonas hydrophila in juvenile gibel carp (Carassius auratus gibelio var CAS III). Fish Shellfish Immunol. (2020) 102:430–9. doi: 10.1016/j.fsi.2020.04.051.

33. Zhang Q-W, Lin L-G, Ye W-C. Techniques for extraction and isolation of natural products: a comprehensive review. Chin Med. (2018) 13:1-26. doi: 10.1186/s13020-018-0177-x.

34. Wei LS, Musa N, Sengg CT, Wee W, Shazli NAM. Antimicrobial properties of tropical plants against 12 pathogenic bacteria isolated from aquatic organisms. Afr J Biotechnol. (2008) 7:2275-78.

35. Sheikhlar A, Alimon AR, Daud H, Saad CR, Webster CD, Meng GY, et al. White mulberry (Morus alba) foliage methanolic extract can alleviate Aeromonas hydrophila infection in African Catfish (Clarias gariepinus). Sci World J. (2014). doi: 10.1155/2014/592709.

36. Zhou H, Gai C, Ye G, An J, Liu K, Xu L, et al. Recent advances of phytobiotic utilization in carp farming: a review aquaculture. Nutrition. (2022). doi: 10.11522/2022/7662675.

37. Ma J, Bruce TJ, Jones EM, Cain KD. A review of fish vaccine development strategies: conventional methods and modern biotechnological approaches. Microorganisms. (2019) 7:450. doi: 10.3390/microorganisms7040450.

38. Estrada MM, Alareini SA. A review of the therapeutic effects of using miswak (Salvadora persica) on oral health. J Saudi Med. (2015) 36:530. doi: 10.1016/j.jsm.2015.10.0785.

39. Kari ZA, Goh KW, Edinur HA, Mat K, Khalid H-NM, Rusli ND, et al. Palm leaf powder-supplemented diet enhances performance, antioxidant properties, immune status, and resistance against bacterial diseases in Nile Tilapia (Oreochromis niloticus). Aquaculture. (2020) 526:735570. doi: 10.1016/j.aquaculture.2020.735570.

40. Abdel-Latif HM, Abdel-Tawwab M, Khafaga AF, Dawood MA. Potential of Pistum guajava supplementated fish diets in controlling Aeromonas hydrophila infection in tilapia (Oreochromis niloticus). J Aquat Anim Health. (2017) 29:225-35. doi: 10.1080/08997659.2017.1374310.

41. Liu RH. Potential synergy of phytochemicals in cancer prevention: mechanism of action. J Nutr. (2004) 134:3479-85. doi: 10.1093/jn/134.12.34795.
100. Tang J, Cai J, Liu R, Wang J, Lu Y, Wu Z, et al. Immunostimulatory effects of artificial feed supplemented with a Chinese herbal mixture on Oreochromis niloticus against Aeromonas hydrophila. Fish Shellfish Immunol. (2014) 39:401-6. doi: 10.1016/j.fsi.2014.05.028

101. Wang E, Chen X, Wang K, Wang J, Chen D, Geng Y, et al. Plant polysaccharides used as immunostimulants enhance innate immune response and disease resistance against Aeromonas hydrophila infection in fish. Fish Shellfish Immunol. (2016) 59:196-202. doi: 10.1016/j.fsi.2016.10.039

102. Dos Santos AC, Sutili FJ, Heinzmann BM, Canha MA, Brusque JC, Baldisserotto B, et al. Aloysia triphylla essential oil as additive in silver catfish diet: blood response and resistance against Aeromonas hydrophila infection. Fish Shellfish Immunol. (2017) 62:213-6. doi: 10.1016/j.fsi.2017.01.032

103. Bilen S, Kenanoglu ON, Terzi E, Ozdemir RC, Sonmez AY. Effects of tetra (Cotinus coggyria) and common mallow (Malva sylvestris) medicinal plants on growth performance and immune response in Gilthead Sea bream (Sparus aurata) and European Sea bass (Dicentrarchus labrax). Aquaculture. (2019) 512:734251. doi: 10.1016/j.aquaculture.2019.734251

104. Nafiqoh N, Zairin M, Lusiastuti A, Sarter S, Caruso D, Avarre J-C. Antimicrobial properties against Aeromonas hydrophila and immunostimulant effect on Clarias gariepinus of Piper betle, Psidium guajava, and Tithonia diversifolia plants. Aquacult Int. (2020) 28:1-13. doi: 10.1007/s10499-019-0349-6

105. Maiti S, Saha S, Jana P, Chowdhury A, Khutia S, Ghosh TK. Effect of dietary Andrographis paniculata leaf extract on growth, immunity, and disease resistance against Aeromonas hydrophila in Pangasianodon hypophthalmus. J Appl Aquicult. (2021) 1-25. doi: 10.1070/01454438.2021.1959861

106. Wang E, Chen X, Liu T, Wang K. Effect of dietary Ficus carica polysaccharides on the growth performance, innate immune response and survival of crucian carp against Aeromonas hydrophila infection. Fish Shellfish Immunol. (2021) 120:434-40. doi: 10.1016/j.fsi.2021.12.018

107. Fahimeh S, Milad A, Shekarabi SPH, Dawood MAO, Amin G. Effects of dietary Gracilaria persica on the intestinal microflora, thyroid hormones, and resistance against Aeromonas hydrophila in Persian sturgeon (Acipenser persicus). Ann Animal Sci. (2022) 22:1057–62. doi: 10.2478/aoas-2022-0003

108. Abdellatief SA, Abdel Rahman AN, Abdallah FD. Evaluation of immunostimulant activity of Spirulina platensis (Arthrospira platensis) Sage (Salvia officinalis) in Nile tilapia (Oreochromis niloticus). Zagazig Vet J. (2018) 46:25-36. doi: 10.21608/zvjp.2018.7621

109. Sultana B, Anwar F, Ashraf M. Effect of extraction solvent/technique on the antioxidant activity of selected medicinal plant extracts. Molecules. (2009) 14:2167–80. doi: 10.3390/molecules14062167

110. Cheesman M, Elsko A, Blomk B, Cock I. Pharmacognosy reviews developing new antimicrobial therapies: are synergistic combinations of plant extracts/compounds with conventional antibiotics the solution. Pharmacogn Rev. (2017) 11:57–72. doi: 10.4103/phrev.phrev_21_17

111. Ali GI, Abeer E-KM, El-Shenway AM, Naena NA. Using of some phytobiotics and probiotics as promotors to cultured Nile Tilapia. Int J Fisheries Aquatic Stud. (2020) 8:148–59.

112. Harikrishnan R, Balasundaram C, Heo M-S. Potential use of probiotic and triherbal extract-enriched diets to control Aeromonas hydrophila infection in carp. Dis Aquat Organ. (2010) 92:41–9. doi: 10.3354/dao02240

113. Abu-Elala N, Galal M, Abd-Elalim R, Mohy-Elsaed O, Ragaa N. Effects of dietary supplementation of Spirulina platensis and garlic on the growth performance and expression levels of immune-related genes in Nile tilapia (Oreochromis niloticus). J Aquacult Res Dev. (2016) 7:433-42. doi: 10.4172/2155-9546.1000433