Sharp eigenvalue enclosures for the perturbed angular Kerr–Newman Dirac operator

Lyonell Boulton¹ and Monika Winklmeier²

¹Department of Mathematics and Maxwell Institute for the Mathematical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, UK
²Departamento de Matemáticas, Universidad de Los Andes, Cra. 1a No 18A-70, A. A. 4976 Bogotá, Colombia

We examine a certified strategy for determining sharp intervals of enclosure for the eigenvalues of matrix differential operators with singular coefficients. The strategy relies on computing the second-order spectrum relative to subspaces of continuous piecewise linear functions. For smooth perturbations of the angular Kerr–Newman Dirac operator, explicit rates of convergence linked to regularity of the eigenfunctions are established. Numerical tests which validate and sharpen by several orders of magnitude the existing benchmarks are also included.

1. Introduction

The Kerr–Newman space–time describes a stationary electrically charged rotating black hole. In this regime, the Dirac equation for an electron takes the form

\[(\hat{A} + \hat{R})\Phi = 0,\]

where \(\Phi\) is a four components spinor that describes the wave function of the electron. The operators \(\hat{A}\) and \(\hat{R}\) are complicated \(4 \times 4\) differential expressions in \((r_+, \infty) \times (0, \pi) \times (-\pi, \pi) \times \mathbb{R}\), [1]. From the ansatz

\[\Phi(r, \theta, \phi, t) = e^{-i\omega t} e^{-ik\phi} \Phi(r, \theta)\]

with a suitable four-component function \(\Phi\), two eigenvalue equations are obtained

\[\left(\mathfrak{R}_k - \omega\right)\rho = 0 \quad \text{and} \quad \left(\mathfrak{A}_k - \lambda\right)\psi = 0.\]

The radial part \(\mathfrak{R}_k\) comprises only derivatives with respect to the radial coordinate \(r\) and the angular part \(\mathfrak{A}_k\) has only derivatives with respect to the angular coordinate \(\theta\). Note that \(\theta = 0\) and \(\theta = \pi\) indicate the...
direction parallel to the axis of rotation of the black hole. The eigenvalue \(\omega \) in the radial equation corresponds to the energy of the electron. These two equations are not completely separated as they are still coupled by the angular momentum of the rotating black hole which is given by a real parameter \(a \).

The Cauchy problem associated with the full Kerr–Newman Dirac operator has been considered in references [2–5], whereas the radial part of the system has been thoroughly examined in references [6,7]. In this paper, we focus on the eigenvalue problem associated with the angular part which in suitable coordinates can be written as

\[
A_\kappa = \begin{pmatrix}
- am \cos \theta & \frac{d}{d\theta} + \frac{\kappa}{\sin \theta} + a\omega \sin \theta \\
\frac{d}{d\theta} + \frac{\kappa}{\sin \theta} + a\omega \sin \theta & \frac{am \cos \theta}{\kappa}
\end{pmatrix}, \quad 0 < \theta < \pi.
\]

(1.1)

The only datum inherent to the black hole in this expression is the coupling parameter \(a \). The other physical quantities are the mass of the electron \(m \), its energy \(\omega \) and \(\kappa \in \mathbb{Z} + \frac{1}{2} \).

The operator which will be associated with (1.1) below is self-adjoint, it has a compact resolvent and it is strongly indefinite in the sense that the spectrum accumulates at \(\pm \infty \). Various attempts at computing its spectrum have been considered in the past. Notably, a series expansion for \(\lambda \) in terms of \(a(m + \omega) \) and \(a(m - \omega) \) was derived in reference [8] by means of techniques involving continued fractions, see also [9]. A further asymptotic expansion in terms of \(a\omega \) and \(m/\omega \) was reported in reference [10]. In both cases, however, no precise indication of the orders of magnitude of a reminder term was given.

A simple explicit expression for the eigenvalues appears to be available only for the case \(am = \pm a\omega \). By invoking an abstract variational principle on the corresponding operator pencil, coarse analytical enclosures for these eigenvalues in the case \(am \neq \pm a\omega \) were found in references [7,11]. Our aim is to sharpen these enclosures by several orders of magnitude via a projection method.

Techniques for determining enclosures for eigenvalues of indefinite operator matrices via variational formulations have been examined by many authors in the past [12–18]. These are strongly linked with the classical complementary bounds for eigenvalues by Temple and Lehmann [19, theorem 4.6.3], which played a prominent role in the early days of quantum mechanics (see [20,21]). The so-called quadratic method, developed by Davies [22], Shargorodsky [23] and others [24,25], is an alternative to these approaches. As we shall demonstrate in the following, an application of this method leads to sharp eigenvalue bounds for the operator associated with \(A_\kappa \). Recently, the quadratic method was applied successfully to crystalline Schrödinger operators [26], the hydrogenic Dirac operator [27] and models from magnetohydrodynamics [28].

The concrete purpose of this paper is to address the numerical calculation of intervals of enclosure for the eigenvalues of \(A_\kappa \) with the possible addition of a smooth perturbation. We formulate an approach which is certified up to machine precision and is fairly general in character. We also find explicit rates for its convergence in terms of the regularity of the eigenfunctions. In the case of the unperturbed \(A_\kappa \), we perform various numerical tests that validate and sharpen existing benchmarks by several orders of magnitude.

In §2, we present the operator theoretical setting of the eigenvalue problem. Lemma 2.3 and corollary 2.4 are devoted to explicit smoothness properties and boundary behaviour of the eigenfunctions. We include a complete proof of the first statement in appendix A. In §3, we formulate the quadratic method on trial subspaces of piecewise linear functions. Theorem 3.3 establishes concrete rates of convergence for the numerical approximation of eigenvalues. A proof of this crucial statement is deferred to §4. The main ingredients of this proof are the explicit error estimates for the approximation of eigenfunctions by continuous piecewise linear functions in the graph norm which are presented in theorem 4.3. Various numerical tests can be found in §5. We begin that section by describing details of the previous calculations reported in references [8,10]. These tests address the following: validity of the numerical values from references [8,10], sharpening of the eigenvalue bounds in the context of the quadratic method and optimal order of convergence.
(a) Notational conventions and basic definitions

In the following, we employ calligraphic letters to refer to operator matrices. We denote by \(\text{dom}(A) \) the domain of the linear operator \(A \). The Hilbert space \(L^2(0, \pi)^2 \) is that consisting of two-component vector-valued functions \(u : (0, \pi) \rightarrow \mathbb{C}^2 \) such that

\[
\|u\| = \left(\int_0^\pi |u(\theta)|^2 \, d\theta \right)^{1/2} = \left(\int_0^\pi |u_1(\theta)|^2 + |u_2(\theta)|^2 \, d\theta \right)^{1/2} < \infty.
\]

Let \(u \in L^2(0, \pi)^2 \) and denote its Fourier coefficients in the sine basis by

\[
\hat{u}_n = \sqrt{\frac{2}{\pi}} \int_0^\pi u(\theta) \sin(n\theta) \, d\theta \in \mathbb{C}^2, \quad n \in \mathbb{N}.
\]

Let \(\langle n \rangle = (1 + n^2)^{1/2} \). Let \(r > 0 \). The fractional Sobolev spaces \(H^r(0, \pi) \) will be, by definition, the Hilbert space

\[
H^r(0, \pi) = \left\{ u \in L^2(0, \pi)^2 : \sum_{n \in \mathbb{N}} \langle n \rangle^{2r} |\hat{u}_n|^2 < \infty \right\}.
\]

Here, the norm is given by the expression

\[
\|u\|_r = \left(\sum_{n \in \mathbb{N}} \langle n \rangle^{2r} |\hat{u}_n|^2 \right)^{1/2}.
\]

Note that an analogous definition can be made if we instead consider the Fourier coefficients of \(u \) in the cosine basis.

If \(r \in \mathbb{N} \), we recover the classical Sobolev spaces, where the norm has also the representation

\[
\|u\|_r = \left(\sum_{j=0}^r \|u^{(j)}\|^2 \right)^{1/2}.
\]

We set \(H^1_0(0, \pi) \) to be the completion of \([C^\infty_0(0, \pi)]^2 \) in the norm of \(H^1(0, \pi) \).

2. A concrete self-adjoint realization and regularity of the eigenfunctions

Here and throughout the text, \(\kappa \) will be a real parameter satisfying \(|\kappa| \geq \frac{1}{2} \) and \(V = [v_{ij}]_{i,j=1}^2 \) will be a hermitian matrix potential with all its entries being complex analytic functions in a neighbourhood of \([0, \pi]\). The operator theoretical framework of the spectral problem associated with matrices of the form

\[
\mathfrak{A}_\kappa = \begin{pmatrix} 0 & \frac{d}{d\theta} + \frac{\pi \kappa}{\theta(\pi - \theta)} \\ -\frac{d}{d\theta} + \frac{\pi \kappa}{\theta(\pi - \theta)} & 0 \end{pmatrix} + V
\]

(2.1)

can be set by means of well establish techniques [29]. Our first goal is to identify a concrete self-adjoint realization of the differential expression (2.1) in \(L^2(0, \pi)^2 \).

Remark 2.1. The spectral problem associated with the angular Kerr–Newman Dirac operator (1.1) fits into the present framework by taking

\[
V(\theta) = \kappa \begin{pmatrix} \frac{1}{\sin(\theta)} & -\pi \frac{1}{\theta(\pi - \theta)} \\ 0 & 1 \end{pmatrix} + \begin{pmatrix} -am \cos(\theta) & a\omega \sin(\theta) \\ a\omega \sin(\theta) & am \cos(\theta) \end{pmatrix}.
\]

(2.2)

Note that \(V \) has an analytical continuation to a neighbourhood of \([0, \pi]\).

Let \(V = 0 \). In this case, the fundamental solutions of \(\mathfrak{A}_\kappa \psi = 0 \) can be found explicitly. The differential expression \(\mathfrak{A}_\kappa \) is in the limit point case for \(|\kappa| \geq \frac{1}{2} \) and in the limit circle case for \(|\kappa| < \frac{1}{2} \).
Thus, for $|\kappa| \geq \frac{1}{2}$, the maximal operator

$$A_{\kappa} = \mathcal{A}_{\kappa} |_{\text{dom}(\mathcal{A}_{\kappa})} = \{ \Psi \in L_2(0, \pi)^2 : \mathcal{A}_{\kappa} \Psi \in L_2(0, \pi)^2 \}$$

(2.3)

is self-adjoint in $L_2(0, \pi)^2$.

By virtue of the particular block operator structure of the matrix in (2.1), $\text{dom}(\mathcal{A}_{\kappa}) = \mathcal{D}_1 \oplus \mathcal{D}_2$, where

$$D_1 = \left\{ f \in L_2(0, \pi) : \int_0^\pi \left| \frac{d}{d\theta} + \frac{\pi \kappa}{\theta (\pi - \theta)} \right|^2 |f(\theta)|^2 d\theta < \infty \right\}$$

and

$$D_2 = \left\{ f \in L_2(0, \pi) : \int_0^\pi \left| \frac{d}{d\theta} + \frac{\pi \kappa}{\theta (\pi - \theta)} \right|^2 |f(\theta)|^2 d\theta < \infty \right\}.$$

Thus, the operators

$$B_{\kappa} = \frac{d}{d\theta} + \frac{\pi \kappa}{\theta (\pi - \theta)}, \quad \text{dom}(B_{\kappa}) = D_2$$

(2.4)

and

$$B_{\kappa}^* = -\frac{d}{d\theta} + \frac{\pi \kappa}{\theta (\pi - \theta)}, \quad \text{dom}(B_{\kappa}^*) = D_1,$$

(2.5)

are adjoint to one another and

$$A_{\kappa} = \begin{pmatrix} 0 & B_{\kappa} \\ B_{\kappa}^* & 0 \end{pmatrix}.$$

Both B_{κ} and B_{κ}^* have empty spectrum. The resolvent kernel of these expressions is square integrable, so they have compact resolvent. Therefore, A_{κ} also has a compact resolvent.

Now, consider $V \neq 0$. We define the corresponding operator associated with (2.1) also by means of (2.3). As V is bounded, it yields a bounded self-adjoint matrix multiplication operator in $L_2(0, \pi)^2$. Routine perturbation arguments show that also in this case A_{κ} is a self-adjoint operator with compact resolvent. Note that $\text{dom}(A_{\kappa})$ is independent of V.

Remark 2.2. The spectrum of A_{κ} consists of two sequences of eigenvalues. One non-negative, accumulating at $+\infty$, and the other one negative accumulating at $-\infty$. An explicit analysis involving the Frobenius method (see remark A.2) shows that no eigenvalue of A_{κ} has multiplicity greater than one.

As we shall see next, any eigenfunction of A_{κ} is regular in the interior of $[0, \pi]$. Moreover, it has a boundary behaviour explicitly controlled by $|\kappa|$. Identity (2.6) in the following will play a crucial role later on.

Lemma 2.3. Let $|\kappa| \geq \frac{1}{2}$. Let $u \neq 0$ be an eigenfunction of A_{κ}. Then, there exists a unique vector-valued function q which is complex analytic in a neighbourhood of $[0, \pi]$ such that

$$u(\theta) = \theta^{|\kappa|}(\pi - \theta)^{|\kappa|}q(\theta).$$

(2.6)

Proof. Included in appendix A. ■

This implies that every eigenfunction u of A_{κ} belongs to $\text{dom}(\mathcal{D})$ and $\text{dom}(\mathcal{S}_{\kappa})$ and therefore

$$A_{\kappa} u = \mathcal{D} u + \mathcal{S}_{\kappa} u + V u,$$

(2.7)

where

$$\mathcal{D} = \begin{pmatrix} 0 & \frac{d}{d\theta} \\ -\frac{d}{d\theta} & 0 \end{pmatrix}, \quad \mathcal{S}_{\kappa} = \begin{pmatrix} 0 & \frac{\pi \kappa}{\theta (\pi - \theta)} \\ \frac{\pi \kappa}{\theta (\pi - \theta)} & 0 \end{pmatrix}.$$

(2.8)

We now summarize three key properties of regularity for eigenfunctions which will be important in the following.
Corollary 2.4. Let \(|\kappa| > \frac{1}{2}\). Let \(u\) be an eigenfunction of \(A_\kappa\). The following properties hold true.

(a) \(u \in H^1_0(0, \pi)\).
(b) \(u\) has a bounded \(r\)-th derivative for every \(r \in \mathbb{N}\) satisfying \(1 \leq r \leq |\kappa|\).
(c) \(u \in H^r(0, \pi)\) for every \(r < |\kappa| + \frac{1}{2}\).

Proof. Statements (a) and (b). They follow directly from lemma 2.3.

Statement (c). Let \(\ell \in \mathbb{N} \cup \{0\}\) and \(\epsilon \in (0, 1]\) be such that \(|\kappa| = \ell + \epsilon\). Let

\[
\tau(x) = \begin{cases}
\sin(x), & \text{if } \ell \equiv 2 \mod 4, \\
\cos(x), & \text{if } \ell \equiv 2 \mod 4.
\end{cases}
\]

Let

\[
\hat{u}_n = \sqrt{\frac{2}{\pi}} \int_0^\pi u(\theta) \tau(\epsilon \theta) \sin(\theta) \, d\theta,
\]

be the Fourier coefficients of \(u\) in \(\tau(n\theta)\). Then, \(u \in H^r(0, \pi)\) if and only if

\[
\sum_{n=1}^{\infty} (n)^{2r} |\hat{u}_n|^2 < \infty.
\]

Note that \(n = 0\) can be omitted here, because \(u\) is always a bounded function. Let \(r < |\kappa| + \frac{1}{2} = \ell + \epsilon + \frac{1}{2}\) and choose \(0 < \epsilon' < \epsilon\) such that \(r < \ell + \epsilon' + \frac{1}{2}\). We show that (2.10) holds true.

Integrating by parts \(\ell + 2\) times in (2.9) gives

\[
|\hat{u}_n| = \frac{1}{n^{\ell+2}} \sqrt{\frac{2}{\pi}} \left| \left[u^{(\ell+1)}(\theta) \sin(\theta) \right]_{\theta=\pi}^{\theta=0} - \int_0^\pi u^{(\ell+2)}(\theta) \sin(\theta) \, d\theta \right|.
\]

By virtue of (2.6),

\[
u^{(\ell+1)}(\theta) = \theta^{-1+\epsilon}(\pi - \theta)^{-1+\epsilon} q_{\ell+1}(\theta) \quad \text{and} \quad u^{(\ell+2)}(\theta) = \theta^{-2+\epsilon}(\pi - \theta)^{-2+\epsilon} q_{\ell+2}(\theta),
\]

where the \(q_j\) are analytical functions in a neighbourhood of \([0, \pi]\). Then, taking the limit as \(\theta \to 0\) and \(\theta \to \pi\), gives

\[
[u^{(\ell+1)}(\theta) \sin(\theta)]_{\theta=0}^{\theta=\pi} = 0.
\]

Hence,

\[
|\hat{u}_n| \leq \frac{c_1}{n^{\ell+2}} \sqrt{\frac{2}{\pi}} \left| \int_0^\pi \theta^{-2+\epsilon}(\pi - \theta)^{-2+\epsilon} q_{\ell+2}(\theta) \sin(\theta) \, d\theta \right| \leq \frac{c_2}{n^{\ell+2}} \max_{0 \leq \theta \leq \pi} |\theta^{-1+\epsilon}(\pi - \theta)^{-1+\epsilon} \sin(\theta)| \int_0^\pi \theta^{-1+\epsilon}(\pi - \theta)^{-1+\epsilon} \, d\theta
\]

\[
= \frac{c_2}{n^{\ell+2}} \max_{0 \leq \theta \leq \frac{\pi}{2}} |\theta^{-1+\epsilon} \sin(\theta)| \leq \frac{c_2}{n^{\ell+1+\epsilon}} |\sin(t)| \leq \frac{c_2}{n^{\ell+1+\epsilon}},
\]

where \(c_i\) are constants independent of \(n\). Hence,

\[
\sum_{n=1}^{\infty} (n)^{2r} |\hat{u}_n|^2 \leq c_2 \sum_{n=1}^{\infty} (n)^{2r} \leq c_2 \sum_{n=1}^{\infty} (n)^{2r}.
\]

As \(2r - (2\ell + 2 + 2\epsilon') < 1\), the summation on the right-hand side converges.

Remark 2.5. We believe that, whenever \(|\kappa| > \frac{1}{2}\) is not an integer, an optimal threshold for regularity is \(u \in H^r(0, \pi)\) for all \(r < |\kappa| + 1\). The proof of the latter may be achieved by interpolating the spectral projections of the operator \(A_\kappa\) between suitable Sobolev spaces for \(\kappa\) in an appropriate segment of the real line. However, for the purpose of the linear interpolation setting presented below, this refinement is not essential.
3. The second-order spectrum and eigenvalue approximation

The self-adjoint operator A_{κ} is strongly indefinite. Therefore, standard techniques such as the classical Galerkin method are not directly applicable for the numerical estimation of bounds for the eigenvalues of A_{κ} owing to variational collapse. As we shall see in the following, the computation of two-sided bounds for individual eigenvalues can be achieved by means of the quadratic method [22–24], which is convergent [25,30,31] and is known to avoid spectral pollution completely.

Everywhere in the following, we consider the simplest possible trial subspaces so that the discretization of A_{κ} is achievable in a few lines of computer code. The various benchmark experiments reported in §5 indicate that, remarkably, this simple choice already achieves a high degree of accuracy for the angular Kerr–Newman Dirac operator whenever $|\kappa| > \frac{1}{2}$.

Set $n \in \mathbb{N}$, $h = \pi / n$ and $\theta_j = j\pi / n$ for $j = 0, \ldots, n$. Here and elsewhere in the following, L_h denotes the trial subspace of continuous piecewise linear functions on $[0, \pi]$ with values in \mathbb{C}^2, vanishing at 0 and π, such that their restrictions to the segments $[\theta_j, \theta_{j+1}]$ are affine. Without further mention, we will always assume that $n \geq 4$, so that $0 < h < 1$.

It is readily seen that L_h is a linear subspace of $\text{dom}(A_{\kappa})$ of dimension $2(n - 1)$ and that

$$L_h = \text{Span}\left\{ \left[\begin{array}{c} b_j \\ 0 \end{array} \right], \left[\begin{array}{c} 0 \\ b_j \end{array} \right] \right\} \quad j = 1, \ldots, n - 1,$$

where

$$b_j(\theta) = \begin{cases} \theta - \theta_{j-1}, & \theta_{j-1} \leq \theta \leq \theta_j, \\ \theta_j - \theta_{j-1}, & \theta_j \leq \theta \leq \theta_{j+1}, \\ 0, & \text{otherwise}, \\ \end{cases} \quad j = 1, \ldots, n - 1.$$

For any given $u \in H^1(0, \pi)$, $u_h \in L_h$ will be the unique (nodal) interpolant which satisfies the condition $u_h(\theta_j) = u(\theta_j)$ for $j = 1, \ldots, n - 1$.

Set

$$Q^h = [Q^h_{jk}]_{j,k=1}^{n-1}, \quad Q^h_{jk} = \left[\begin{array}{c} \langle A_{\kappa} \left[\begin{array}{c} b_j \\ 0 \end{array} \right], A_{\kappa} \left[\begin{array}{c} b_k \\ 0 \end{array} \right] \rangle \\ \langle A_{\kappa} \left[\begin{array}{c} 0 \\ b_j \end{array} \right], A_{\kappa} \left[\begin{array}{c} 0 \\ b_k \end{array} \right] \rangle \end{array} \right],$$

$$R^h = [R^h_{jk}]_{j,k=1}^{n-1}, \quad R^h_{jk} = \left[\begin{array}{c} \langle A_{\kappa} \left[\begin{array}{c} b_j \\ 0 \end{array} \right], A_{\kappa} \left[\begin{array}{c} b_k \\ 0 \end{array} \right] \rangle \\ \langle A_{\kappa} \left[\begin{array}{c} 0 \\ b_j \end{array} \right], A_{\kappa} \left[\begin{array}{c} 0 \\ b_k \end{array} \right] \rangle \end{array} \right],$$

$$S^h = [S^h_{jk}]_{j,k=1}^{n-1}, \quad S^h_{jk} = \left[\begin{array}{c} \langle \left[\begin{array}{c} b_j \\ b_k \end{array} \right], \left[\begin{array}{c} b_j \\ b_k \end{array} \right] \rangle \\ \langle \left[\begin{array}{c} 0 \\ b_j \end{array} \right], \left[\begin{array}{c} 0 \\ b_k \end{array} \right] \rangle \end{array} \right].$$

These are the $2(n - 1) \times 2(n - 1)$ bending, stiffness and mass matrices, associated with A_{κ} for the trial subspace L_h. A complex number z is said to belong to the second-order spectrum of A_{κ} relative to L_h, $\text{spec}_2(A_{\kappa}, L_h)$, if and only if there exists a non-zero $u \in \mathbb{C}^{2(n-1)}$ such that

$$(Q^h - 2zR^h + z^2S^h)u = 0.$$
All the matrix coefficients of this quadratic matrix polynomial are hermitian, therefore, the non-real points in $\text{spec}_2(A_k, L_h)$ always form conjugate pairs.

For $a < b$ denote by
\[
\mathbb{D}(a, b) = \left\{ z \in \mathbb{C} : \left| z - \frac{a + b}{2} \right| < \frac{b - a}{2} \right\}
\]
the open disc whose diameter is the segment (a, b). The following crucial connection between the second-order spectra and the spectrum allows computation of numerical bounds for the eigenvalues of A_k. See [23] or [24], also [31, lemma 2.3].

Lemma 3.1. If $(a, b) \cap \text{spec}(A_k) = \emptyset$, then $\mathbb{D}(a, b) \cap \text{spec}_2(A_k, L_h) = \emptyset$.

A first crucial consequence of lemma 3.1 is that
\[
z \in \text{spec}_2(A_k, L_h) \Rightarrow [\text{Re}(z) - |\text{Im}(z)|, \text{Re}(z) + |\text{Im}(z)|] \cap \text{spec}(A_k) \neq \emptyset. \tag{3.1}
\]
That is, segments centred at the real part of conjugate pairs in the second-order spectrum are guaranteed intervals of enclosure for the eigenvalues of A_k.

Moreover, if we possess rough \textit{a priori} certified information about the position of the eigenvalues of A_k, the enclosure can be improved substantially. To be precise [26,28]
\[
(a, b) \cap \text{spec}(A_k) = \{ \lambda \} \quad \text{then} \quad \text{Re}(z) - \frac{|\text{Im}(z)|^2}{b - \text{Re}(z)} < \lambda < \text{Re}(z) + \frac{|\text{Im}(z)|^2}{\text{Re}(z) - a}. \tag{3.2}
\]
Both (3.1) and (3.2) will be employed for concrete calculations in §5. The segment in (3.2) will have a smaller length than that in (3.1) only if $z \in \text{spec}(A_k, L_h)$ is very close to the real line. As we shall see next, this will be ensured if the angle between $\ker(A_k - \lambda)$ and L_h is small. For a proof of this technical statement, see [32, theorem 3.2 and 33]. See also [31]. Recall that all the eigenvalues are simple, remark 2.2.

Lemma 3.2. Let $u \in \ker(A_k - \lambda)$ be such that $\|u\| = 1$. There exist constants $K > 0$ and $\epsilon_0 > 0$ ensuring the following. If
\[
\min_{v \in L_h}(\|u - v\| + \|A_k(u - v)\|) < \epsilon \tag{3.3}
\]
for some $\epsilon < \epsilon_0$, then we can always find $\lambda_h \in \text{spec}_2(A_k, L_h)$ such that
\[
|\lambda_h - \lambda| < K\epsilon^{1/2}. \tag{3.4}
\]

As it has been observed previously in references [25,31], most likely the term $\epsilon^{1/2}$ in (3.4) can be improved to ϵ^1. The results of our numerical experiments are in agreement with this conjecture, see §5c and figure 1.

A concrete estimate on the convergence of the second-order spectra to the real line, and hence the spectrum, follows.

Theorem 3.3. Let $|\kappa| > \frac{1}{2}$. Fix $0 < r < |\kappa| - \frac{1}{2}$ and let
\[
p(\kappa) = \begin{cases}
0, & |\kappa| \in (\frac{1}{2}, \frac{3}{2}] \setminus \{1\}, \\
1, & \text{otherwise}.
\end{cases}
\]
Let $\lambda \in \text{spec}(A_k)$. There exist constants $h_0 > 0$ and $K > 0$ such that
\[
|\lambda_h - \lambda| < Kh^{1/2}p(\kappa), \quad 0 < h < h_0, \tag{3.5}
\]
for some $\lambda_h \in \text{spec}_2(A_k, L_h)$.

The proof of this statement is presented separately in the next section. Roughly speaking, it reduces to finding suitable estimates for the left-hand side of (3.3) from specific estimates on the residual in the piecewise linear interpolation of the eigenfunctions of A_k. These estimates are of the order $h^{p(\kappa)}$, so that a direct application of lemma 3.2 will lead to the desired conclusion. See §5c.
Figure 1. A numerical approximation of the optimal exponent in theorem 3.3.

Remark 3.4. An explicit expression for K can be determined by examining closely the proof of reference [32, theorem 3.2] and carefully following track of the different constants that will appear in §4.

4. The proof of theorem 3.3

The next inequalities are standard in the theory of piecewise linear interpolation of functions in one dimension [34, remark 1.6 and proposition 1.5]:

$$
\|u - u_h\| \leq h\|u\| \quad \text{for } u \in H^1(0, \pi), \\
\|u - u_h\| \leq h^2\|u''\| \quad \text{for } u \in H^2(0, \pi)
$$

and

$$
\|(u - u_h)'\| \leq h\|u''\| \quad \text{for } u \in H^2(0, \pi).
$$

We will employ these identities in the following, as well as the inequality

$$
\|(u - u_h)'\| \leq 2\|u'\| \quad \text{for } u \in H^1(0, \pi). \quad (4.4)
$$

The proof of (4.4) can be achieved as follows. Let $u \in H^1(0, \pi)$. Because $(u_h)'$ is constant along (θ_j, θ_{j+1}) and $u'(\theta) = h^{-1}(u(\theta_{j+1}) - u(\theta_j))$ for every $\theta \in (\theta_j, \theta_{j+1})$, then

$$
\int_{\theta_j}^{\theta_{j+1}} |(u_h)'(\theta)|^2 \, d\theta = h^{-1}|u_h(\theta_{j+1}) - u_h(\theta_j)|^2 = h^{-1}|u(\theta_{j+1}) - u(\theta_j)|^2
$$

$$
= h^{-1} \int_{\theta_j}^{\theta_{j+1}} u'(\theta) \, d\theta \leq \int_{\theta_j}^{\theta_{j+1}} |u'(\theta)|^2 \, d\theta.
$$

In the last step, we invoke Hölder’s inequality. Adding up each side for j from 0 to $n - 1$ and then taking the square root gives $\|(u_h)'\| \leq \|u'\|$. By virtue of the triangle inequality, (4.4) follows.

Lemma 4.1. Let D be as in (2.8). Let $\alpha \in [0, 1]$. If $u \in H^{1+\alpha}(0, \pi)$ and u_h is its nodal interpolant, then

$$
\|D(u - u_h)\| \leq 2^{1-\alpha} h^\alpha \|u\|_{1+\alpha}. \quad (4.5)
$$
Proof. By virtue of (4.4), for all \(u \in H^1(0, \pi) \),

\[
\|D(u - u_h)\| = \left\| \begin{pmatrix} 0 & \frac{d}{d\theta} \\ \frac{d}{d\theta} & 0 \end{pmatrix} (u - u_h) \right\| \leq \left\| \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} (u - u_h)' \right\| \leq 2\|u'\|. \quad (4.6)
\]

If additionally \(u \in H^2(0, \pi) \), then the same argument combined with (4.3) yields

\[
\|D(u - u_h)\| \leq h\|u''\|. \quad (4.7)
\]

Define the linear operators

\[
T_1 : H^1(0, \pi) \to L^2(0, \pi), \quad u \mapsto D(u - u_h),
\]

\[
T_2 : H^2(0, \pi) \to L^2(0, \pi), \quad u \mapsto D(u - u_h).
\]

From (4.6) and (4.7), it follows that \(\|T_1\| \leq 2 \) and \(\|T_2\| \leq h \). Hence, by complex interpolation, for every \(0 \leq \alpha \leq 1 \)

\[
T_{1+\alpha} : H^{1+\alpha}(0, 1) \to L^2(0, 1), \quad u \mapsto D(u - u_h)
\]

is a bounded operator with norm \(\|T_{1+\alpha}\| \leq 2^{1-\alpha} h^\alpha \). See [35, appendix to IX.4 and problem 36].

Recall the decomposition of \(A_k u \) given in (2.7) and the representation of the eigenfunctions in (2.6).

Lemma 4.2. Let \(|\kappa| > \frac{1}{2} \). Let \(u \) be an eigenfunction of \(A_k \) and let \(q \) be related to \(u \) by means of (2.6). Set

\[
d_1(u) = \sqrt{2|\kappa|} \left[4\pi^{2|\kappa|} \frac{2|\kappa|}{2|\kappa| - 1} \max_{0 \leq \theta \leq \pi} |q(\theta)|^2 + \frac{1}{4} \max_{0 \leq \theta \leq \pi} |u''|^2 \right]^{1/2},
\]

\[
d_2(u) = \sqrt{2|\kappa|} \left[4\pi^{2|\kappa|} \frac{2|\kappa|}{2|\kappa| - 1} \max_{0 \leq \theta \leq \pi} |q(\theta)|^2 + \frac{b(u)^2(6 - 2|\kappa|)}{4(5 - 2|\kappa|)} \right]^{1/2},
\]

\[
b(u) = \max_{0 \leq \theta \leq \pi/2} |u''(\theta)| + \max_{\pi/2 \leq \theta \leq \pi} |u''(\theta)| / (\pi - \theta)^{|\kappa| - 2}.
\]

Then

\[
\|S_k(u - u_h)\| \leq d_1(u)h^{3/2}, \quad |\kappa| \geq 2 \text{ or } |\kappa| = 1 \quad (4.8)
\]

and

\[
\|S_k(u - u_h)\| \leq d_2(u)h^{|\kappa| - 1/2}, \quad \frac{1}{2} \leq |\kappa| \leq 2 \quad (4.9)
\]

Proof. First, observe that

\[
\|S_k(u - u_h)\|^2 = \int_0^\pi \left(\frac{\pi \kappa}{\theta(\pi - \theta)} \right)^2 \left(\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} (u - u_h)(\theta) \right)^2 d\theta \\
\leq \pi^2 \kappa^2 \int_0^\pi (\theta(\pi - \theta))^{-2} |(u - u_h)(\theta)|^2 d\theta = \pi^2 \kappa^2 (J_1 + J_2 + J_3 + J_4), \quad (4.10)
\]

where

\[
J_\ell = \int_{\alpha_{\ell - 1}}^{\alpha_\ell} (\theta(\pi - \theta))^{-2} |(u - u_h)(\theta)|^2 d\theta, \quad (\alpha_\ell)_{\ell=0}^4 = \left(0, h, \frac{\pi}{2}, \pi - h, \pi \right).
\]
The interpolant u_h has the form $u_h(\theta) = \frac{\theta}{\pi} u(h) = \theta h |\pi - h| (\pi - h) |q(h)|$ for $\theta \in [0, h]$. Therefore,

\[
J_1 = \int_0^h \theta^2 (\pi - \theta)^{-2} |q(\theta)| \theta h |\pi - h| |q(h)|^2 \, d\theta \\
\leq 2 \int_0^h \theta^2 |\pi - \theta|^2 |q(\theta)|^2 + h^2 |\pi - h|^2 |q(h)|^2 \, d\theta \\
\leq \frac{2h^2 |\pi - h|^2}{2 |\pi| - 1} \max_{0 \leq \theta \leq h} ((\pi - \theta)^2 |q(\theta)|^2 + 2h^2 |\pi - h|^2 |q(h)|^2) \\
\leq 2h^2 |\pi - h|^2 \max_{0 \leq \theta \leq \pi/2} (2|\pi - \theta|^2 |q(\theta)|^2)^\left(\frac{1}{2 |\pi| - 1} + 1\right).
\]

Now, $(\pi - \theta)^2 |q(\theta)|^2 = (\pi - \theta)^2 |\pi - h|^2 |\pi - h|^2 - 2 \pi^2 |\pi - h|^2$ for any $0 \leq \theta \leq \pi/2$. Thus, setting

\[
c_1(u) = 4\pi^2 |\pi - h|^2 \left|\frac{2|\pi|}{2 |\pi| - 1}\right| \max_{0 \leq \theta \leq \pi} \{|q(\theta)|^2\},
\]

\[
J_1 \leq h^2 |\pi - h|^2 c_1(u).
\]

Analogously, one can show

\[
J_4 \leq h^2 |\pi - h|^2 c_1(u).
\]

Now, we estimate J_2 and J_3. Note that u is C^∞ in the open interval $(0, \pi)$ and for $1 \leq j < k \leq n/2$, we have

\[
|u(\theta) - u_h(\theta)| \leq \frac{\sqrt{2} h^2}{8} \max_{\theta \in [0, \pi]} |u''(\theta)| \quad \text{for } \theta \in [\theta_j, \theta_k].
\]

First, assume that $|\pi| \geq 2$ (or $|\pi| = 1$). According to corollary 2.4(b) (or lemma 2.3), u has a bounded second derivative, and therefore, (4.14) yields $|u(\theta) - u_h(\theta)| \leq \sqrt{2} h^2 / 8 \max_{\theta \in [0, \pi]} |u''|$ in $[0, \pi]$. So

\[
J_2 \leq \frac{h^4}{32} \max_{\theta \in [0, \pi]} |u''|^2 \int_{\pi/2}^{\pi/2} (\theta (\pi - \theta) - 2)^{-2} \, d\theta \\
\leq \frac{h^4}{8\pi^2} \max_{\theta \in [0, \pi]} |u''|^2 \int_{\pi/2}^{\pi} \theta^{-2} \, d\theta \leq \frac{h^4}{8\pi^2} \max_{\theta \in [0, \pi]} |u''|^2.
\]

If we perform the analogous calculations for J_3, we conclude

\[
J_2 \leq c_2(u) h^3, \quad J_3 \leq c_2(u) h^3 \quad \text{for } |\pi| > 2,
\]

where $c_2(u) = (1 / 8\pi^2) \max_{\theta \in [0, \pi]} |u''|^2$.

For $1 \leq |\pi| < 2$ (except for the case $|\pi| = 1$), the second derivative of u diverges as $\theta \to 0$ of order $|\pi| - 2$ and the calculations above cannot be performed. However, u'' is analytic in $(0, \pi)$ because

\[
u''(\theta) = \theta |\pi| |q(h)| + 2|\pi| \theta |\pi - h|^2 |q(h)|' + |\pi| \theta |\pi - h|^2 |q(h)|''.
\]
Hence, $|u''(\theta)| \leq b(u)\theta^{|k|-2}$ for $\theta \in (0, \pi/2]$. Because $|k| - 2 \leq 0$, the function $\theta \mapsto \theta^{2|k|-4}$ is positive non-increasing in the segment $[h, \pi/2]$. Therefore, from (4.14), we estimate J_2 as follows.

$$J_2 = \sum_{j=1}^{n/2-1} \int_{\theta_j}^{\theta_{j+1}} \theta^{-2}(\pi - \theta)^{-2}(u - u_h)(\theta)\,d\theta$$

$$\leq \frac{b(u)h^4}{32} \sum_{j=1}^{n/2-1} \int_{\theta_j}^{\theta_{j+1}} \theta^{-2}(\pi - \theta)^{-2} \max_{\theta \in [\theta_j, \theta_{j+1}]} \{|u''(\theta)|\} \,d\theta$$

$$\leq \frac{b(u)h^4}{32} \sum_{j=1}^{n/2-1} \theta_j^{2|k|-4}(\theta_j^{-1} - \theta_{j+1}^{-1})$$

$$= \frac{b(u)h^4}{8\pi^2} \sum_{j=1}^{n/2-1} (j\theta_j)^{2|k|-4} \frac{1}{h(j+1)} < \frac{b(u)h^2|k|-1}{8\pi^2} \sum_{j=1}^{n/2-1} j^{2|k|-6}$$

$$\leq \frac{b(u)h^2|k|-1}{8\pi^2} \left[1 + \int_1^\infty t^{2|k|-6} \,dt\right]$$

$$= \frac{b(u)h^2|k|-1}{8\pi^2} \left[1 + \frac{1}{5 - 2|k|}\right].$$

Set $c_2(u) = (b(u)^2/8\pi^2)[1 + 1/(5 - 2|k|)]$. Then, performing similar computations for J_3, we obtain

$$J_2 \leq c_2(u)h^2|k|-1, \quad J_3 \leq c_2(u)h^2|k|-1 \quad \text{for} \quad \frac{1}{2} < |k| \leq 2.$$ (4.16)

Inserting (4.12), (4.13), (4.15) and (4.16) respectively into (4.10) yields

$$\|S_k(u - u_h)\| \leq \pi^2 \kappa^2 \sqrt{2c_1(u)h^2|k|-1 + 2c_2(u)h^2|k|-1} \leq d_1(u)h|k|-1/2, \quad \frac{1}{2} < |k| \leq 2$$

$$\|S_k(u - u_h)\| \leq \pi^2 \kappa^2 \sqrt{2c_1(u)h^2|k|-1 + 2c_2(u)h^3} \leq d_2(u)h^{3/2}, \quad |k| > 2 \text{ or } |k| = 1.$$ (4.18)

The next statement ensures the validity of theorem 3.3.

Theorem 4.3. Let $|k| > \frac{1}{2}$. Let $\lambda \in \text{spec}(A_k)$ and $u \in \text{dom}(A_k)$ be an eigenpair for A_k. Assume that $\|u\| = 1$. Then, there exists a constant $c > 0$ ensuring the following. For every $h > 0$,

$$\|u - u_h\| + \|A_k u - A_k u_h\| \leq c h, \quad |k| > \frac{3}{2} \text{ or } |k| = 1,$$ (4.17)

and

$$\|u - u_h\| + \|A_k u - A_k u_h\| \leq c h^r, \quad |k| \in \left(\frac{1}{2}, \frac{3}{2}\right) \setminus \{1\}, \ r < |k| - \frac{1}{2}.$$ (4.18)

Proof. Using (2.7), we obtain

$$\|u - u_h\| + \|A_k u - A_k u_h\| \leq (1 + ||V||)\|u - u_h\| + \|D(u - u_h)\| + \|S_k(u - u_h)\|.$$ (4.18)

Part (c) of corollary 2.4 ensures that $u \in H^2(0, \pi)$ if $|k| > \frac{3}{2}$, and $u \in H^r(0, \pi)$ for any $r < |k| + \frac{1}{2}$ if $\frac{1}{2} < |k| \leq \frac{3}{2}$. The statements (4.17) and (4.18) follow from (4.1), (4.2), lemmas 4.1 and 4.2. See table 1.

5. Numerical benchmarks

We now determine various numerical approximations of intervals of enclosure for the eigenvalues of the angular Kerr–Newman Dirac operator (1.1) by means of suitable combinations of (3.1) and (3.2). In order to implement (3.2), we consider the analytic enclosures derived in references [7,11].
Table 1. A summary of the different estimates for the powers of h employed in the proof of theorem 4.3. See (4.1), (4.2), (4.5), (4.8) and (4.9). Also corollary 2.4. The term of lowest order is shaded.

| $\frac{1}{2} < |\kappa| < 1$ | $\kappa = 1$ | $1 < |\kappa| \leq \frac{3}{2}$ | $\frac{3}{2} < |\kappa| \leq 2$ | $|\kappa| > 2$ |
|-----------------------------|-------------|-----------------------------|-----------------------------|-----------------------------|
| $\|u - u_h\|$ | 1 | 2 | 1 | 2 | 2 |
| $\|S_\kappa (u - u_h)\|$ | $|\kappa| - \frac{1}{2}$ | $\frac{1}{2}$ | $|\kappa| - \frac{1}{2}$ | $|\kappa| - \frac{1}{2}$ | $\frac{1}{2}$ |
| $\|D_\kappa (u - u_h)\|$ | $< |\kappa| - \frac{1}{2}$ | 1 | $< |\kappa| - \frac{1}{2}$ | 1 | 1 |

Our purpose here is twofold. On the one hand, we verify the numerical quantities reported in references [8,10]. On the other hand, we establish new sharp benchmarks for the eigenvalues of A_κ.

Denote by $\lambda_n \equiv \lambda_n(\kappa; am, a\omega)$, where

$$\lambda_n(\kappa; am, a\omega) = \pm \frac{1}{2} + \sign(n) \sqrt{\left(\lambda_n(\kappa, 0, 0) \mp \frac{1}{2} \right)^2 + 2kam + (am)^2},$$

where

$$\lambda_n(\kappa, 0, 0) = \sign(n) \left(|\kappa| - \frac{1}{2} + |n| \right), \quad n \in \mathbb{Z} \setminus \{0\}.$$

See [9, formula (45)]. For $am \neq \pm a\omega$, the two canonical references on numerical approximations of $\lambda_n(\kappa; am, a\omega)$ are [8,10].

Suffern et al. [8] derived an asymptotic expansion of the form

$$\lambda_n = \sum_{r,s} C_{r,s}^n (m - \omega)^r (m + \omega)^s.$$

The coefficients $C_{r,s}^n$ can be determined from a suitable series expansion of the eigenfunctions in terms of hypergeometric functions. On the other hand, Chakrabarti [10] wrote the eigenfunctions in terms of spin weighted spherical harmonics and derived an expression for the squares of the eigenvalues in terms of $a\omega$ and ω/m. The tables reported in references [10, tables 1–3] include predictions for the values of λ_1^2 and λ_2^2 for various ranges of $\kappa, a\omega$ and am. It has been shown [9, formula (45) and remark 2] that [10, formula (54)] and (5.1) differ in the case $a\omega = am$, and that the correct expression turns out to be the latter. See table 2.

In both [8,10], the numerical estimation of λ_n is achieved by means of a series expansions in terms of certain expressions involving $a\omega$ and am, so it is to be expected that the approximations in both cases become less accurate as $|a\omega|$ and $|am|$ increase. However, no explicit error bounds are given in these papers and they seem to be quite difficult to derive.

In all the calculations reported here, the relative tolerance of the eigenvalue solver and integrators was set to 10^{-12}. All the numerical quantities included in the tables below are correct to the number of digits shown.

(a) The paper of Chakrabarti

Our first experiment consists of assessing the quality of the numerical approximations reported in reference [10, table 2b] for $a\omega \neq am$, by means of a direct application of (3.1). For this purpose, we fix $h = 0.001$.

<ref>http://rspa.royalsocietypublishing.org/Downloaded from on July 19, 2018</ref>
$a\omega$	$m/\omega = 0$	$m/\omega = 0.2$	$m/\omega = 0.4$	$m/\omega = 0.6$	$m/\omega = 0.8$	$m/\omega = 1.0$
0.1	2.080309	2.076445	2.072607	2.068795	2.065008	2.061246
0.2	2.080800	2.076988	2.073223	2.068438	2.064580	2.060848
0.3	2.161189	2.153720	2.146351	2.139083	2.131917	2.124853
0.4	2.161402	2.153942	2.146739	2.139365	2.131707	2.124694
0.5	2.242573	2.231734	2.222119	2.210730	2.200569	2.190635
0.6	2.243517	2.232029	2.221225	2.210305	2.200683	2.190910
0.7	2.324395	2.310402	2.296806	2.283610	2.270815	2.258419
0.8	2.328011	2.310847	2.292791	2.280703	2.271254	2.258304
0.9	2.406589	2.386942	2.373312	2.357605	2.342520	2.328049
1.0	2.407244	2.390309	2.374042	2.358325	2.341884	2.326265
1.1	2.489091	2.469373	2.450543	2.432607	2.415559	2.399378
1.2	2.490049	2.470148	2.451655	2.435700	2.416545	2.400186
1.3	2.571837	2.549517	2.528407	2.508514	2.489817	2.472724
1.4	2.572723	2.551207	2.530790	2.509118	2.483131	2.474002
1.5	2.654763	2.628996	2.606820	2.585231	2.565189	2.546616
1.6	2.655946	2.632332	2.602282	2.587907	2.565170	2.548117
1.7	2.737803	2.710374	2.685987	2.662669	2.641580	2.622994
1.8	2.740348	2.710606	2.680866	2.667883	2.645818	2.628391
1.9	2.820892	2.791662	2.764958	2.740745	2.718899	2.699206
2.0	2.824294	2.791640	2.764976	2.744849	2.722445	2.701730

$a\omega$	$m/\omega = 0$	$m/\omega = 0.2$	$m/\omega = 0.4$	$m/\omega = 0.6$	$m/\omega = 0.8$	$m/\omega = 1.0$
0.1	1.920331	1.924477	1.928648	1.932845	1.937067	1.941315
0.2	1.920516	1.924559	1.928320	1.932653	1.937249	1.941975
0.3	1.841373	1.849972	1.858576	1.867484	1.876395	1.885406
0.4	1.845365	1.850292	1.858284	1.867523	1.876543	1.885593
0.5	1.763193	1.776858	1.790217	1.804084	1.818181	1.832498
0.6	1.763586	1.775623	1.790285	1.804100	1.818236	1.832569
0.7	1.685863	1.704417	1.723408	1.742821	1.762635	1.782831
0.8	1.686883	1.703772	1.723119	1.742931	1.762002	1.782753
0.9	1.690449	1.697053	1.695834	1.704831	1.728997	1.746651
1.0	1.690933	1.697141	1.695760	1.704641	1.728138	1.746258
1.1	1.534014	1.564156	1.595324	1.627446	1.660439	1.694209
1.2	1.536718	1.565534	1.594804	1.626455	1.665983	1.705364
1.3	1.459615	1.496266	1.534344	1.573721	1.614248	1.655756
1.4	1.459107	1.492386	1.530882	1.571072	1.612485	1.654261

(Continued.)
Table 2. (Continued.)

$a \omega$	$m/\omega = 0$	$m/\omega = 0.2$	$m/\omega = 0.4$	$m/\omega = 0.6$	$m/\omega = 0.8$	$m/\omega = 1.0$
0.8	1.386295	1.429994	1.475600	1.522898	1.571636	1.621537
	1.385929	1.426745	1.473535	1.521432	1.569272	1.620172
0.9	1.314077	1.365418	1.419230	1.475166	1.522828	1.571636
	1.312561	1.365785	1.416230	1.473732	1.521391	1.569782
1.0	1.242955	1.302592	1.365353	1.407029	1.499032	1.566699
	1.240951	1.300425	1.365723	1.429572	1.492759	1.561752

Table 2 contains computations of $|\lambda_{-1}(\pm \frac{3}{2}, am, a \omega)|$ for the range $a \omega \in \{0.1, 0.2, \ldots, 1.0\}$, $\frac{\omega}{m} \in \{0, 0.1, \ldots, 1.0\}$.

On the top of each row, we have reproduced the positive square root of the original numbers from [10, table 2b]. On the bottom of each row, we show the corresponding correct eigenvalue enclosures with upper and lower bounds displayed in small font. These bounds were obtained from (3.1), by computing the conjugate pairs $z, \bar{z} \in \text{spec}_2(A_\kappa, L_{0.001})$ near the segment $(-3, 3)$.

Only for $a \omega = 0.1, 0.2, 0.3$ (and the pair $(a \omega, m/\omega) = (0.4, 0)$ when $\kappa = -\frac{3}{2}$), the predictions made in reference [10] are inside the certified enclosures. For $\kappa = \frac{3}{2}$, they are always above the corresponding enclosure, and for $\kappa = -\frac{3}{2}$, they are always below it. We have highlighted the relative degree of disagreement with the other quantities in different shades of colour.

(b) The paper of Sufferen et al. and sharp eigenvalue enclosures

In this next experiment, we validate the numbers reported in reference [8] by means of sharpened eigenvalue enclosures determined from (3.2). This requires knowing beforehand some rough information about the position of the eigenvalues and the neighbouring spectrum. For this purpose, we have employed a combination of the analytical inclusions found in references [7,11], and numerically calculated inclusions determined from (3.1). This technique allows reducing by roughly two orders of magnitude the length of the segments of eigenvalue inclusion.

The columns in table 3 marked as ‘A’ are analytic upper and lower bounds for the eigenvalues calculated following [11, theorem 4.5, 7, remarks 6.4 and 6.5]. For our choices of the physical parameters, we always find that the upper bound for the nth eigenvalue is less than the lower bound for the $(n+1)$th eigenvalue, so each one of these segments contains a single non-degenerate eigenvalue of A_κ. The columns marked as ‘N’ were determined by fixing $h = 0.001$ and applying directly (3.1) in a similar fashion as for the previous experiment. When these are contained in the former, which is not always the case (see the rows corresponding to $\kappa = \pm \frac{1}{2}$ for $am = 0.005$ and $aw = 0.015$), it is guaranteed that there is exactly one eigenvalue in each one of these smaller segments.

Remark 5.1. The approach employed in references [7,11] involves a perturbation from the case $am = aw = 0$. Not surprisingly, for $am = 0.005, aw = 0.015$ and the critical cases $\kappa = \pm \frac{1}{2}$, where convergence of the numerical method seems to be lost (see §5c), the analytical bounds are sharper than the numerically computed bounds.

From the data reported in table 3, we can implement (3.2) and compute sharper intervals of enclosure for λ_1 and λ_2. Note that we always need information on adjacent eigenvalues: an upper bound for the one below and a lower bound for the one above. In order for the enclosures on the right-hand side of (3.2) to be certified, we also need to ensure that the condition on the left-hand side, there holds true. For the data reported in table 4, this is always the case.
Table 3. Analytic (A) and numeric (N) bounds for the eigenvalues of A_{κ}. The range of κ, n, a_m and a_o employed corresponds to analogous calculations in reference [8, table II]. Here the numerical bounds were determined directly from (3.1) and their computation does not use any input from the analytical bounds.

$n = -1$	$n = 1$	$n = 2$	$n = 3$
$a_m = 0.005$, $a_o = 0.015$	$a_m = 0.25$, $a_o = 0.75$		

In table 4, we show improved inclusions, computed both from the analytical bound and from the numerical bound. Some of these improved inclusions do not differ significantly, even when the quality of one of the a priori bounds from table 3 appears to be far lower than the other. See for example the rows corresponding to $|\kappa| \approx \frac{3}{2}$. In these cases, the factor $|\text{Im}(z)|^{-2}$ turns out to be far smaller than the coefficient corresponding to the distance to the adjacent points in the spectrum. By contrast, for the case $|\kappa| = \frac{1}{2}$, a sharp a priori localization of the adjacent eigenvalues (such as $\kappa = -\frac{1}{2}$, $a_m = 0.25$ and $a_o = 0.75$) is critical, because $|\text{Im}(z)|$ is not very small.

(c) Optimality of the exponent in theorem 3.3

We now test optimality of the leading order of convergence $p(\kappa)$ given in theorem 3.3 (figure 1).

For this purpose, we have computed residuals of the form

$$r_\kappa(h) = |\lambda_1(\kappa, \frac{1}{2}, h) - \lambda_h|$$

In these cases, $\lambda_1(\kappa, \frac{1}{2}, h)$ refers to the 1st eigenvalue of the problem

$$-\frac{1}{2} \frac{\partial^2}{\partial x^2} u(x) + \kappa u(x) = -\lambda u(x), \quad u(-1) = \frac{\partial u}{\partial x}(-1) = u(1) = \frac{\partial u}{\partial x}(1) = 0.$$
Table 4. Improved numerical enclosures for the eigenvalues originally reported in reference [8, table II]. These improved bounds were found from the data in table 3, analytical or numerical as appropriate, and by means of an implementation of (3.2). Values from reference [8] that are over or under-shot are highlighted in colour.

n = 1	n = 2						
from A	from N	[8]	from A	from N	[8]		
$am = 0.005$, $\omega = 0.015$			$am = 0.25$, $\omega = 0.75$				
κ			κ				
-4.5	4.9859^3	4.9859^3	4.98581	4.9883^3	4.9883^3		
-3.5	3.9861^3	3.9861^3	3.98611	4.9890^3	4.9890^3	4.98905	
-2.5	2.9864^2	2.9864^2	2.98643	3.990^{10}_8	3.990^{10}_8	3.99009	
-1.5	1.9870^1	1.9870^1	1.98700	2.9918^5	2.9918^5	2.99187	
-0.5	1.0624^1	0.9506^2	0.98843	2.06215	2.07515	2.07512	1.99567
0.5	2.0130^1	0.9506^2	2.01300	3.008^{11}_7	3.008^{11}_7	3.00815	
1.5	3.0138^8	3.0138^8	3.01357	4.009^{12}_5	4.009^{12}_5	4.00993	
2.5	4.013^{10}_{88}	4.013^{10}_{88}	4.01389	5.0109^{13}_5	5.0109^{13}_5	5.01096	
3.5	5.014^{15}_{98}	5.014^{15}_{98}	5.01409	6.0116^{16}_5	6.0116^{16}_5	6.01165	
4.5							

for $h \in \{10^{-3}, 10^{-2.8}, \ldots, 10^{-2}\}$. Here $\tilde{\lambda}_h$ is the nearest point (conjugate pair) in $\text{spec}_2(A_h, L_h)$ to $\lambda_1(\kappa, \frac{1}{4}, \frac{1}{4})$. According to (5.1),

$$\lambda_1 \left(\kappa, \frac{1}{4}, \frac{1}{4} \right) = \frac{1}{2} + \sqrt{\left| \kappa \right|^2 + 2 \kappa \frac{1}{4} + \frac{1}{16}}.$$

We have then approximated slopes of the lines $l_v(\log(h)) = \log(r_v(h))$.

In figure 1, we have depicted these slopes, for 49 equally spaced $\kappa \in (\frac{1}{4}, 3)$. Various conclusions about theorem 3.3 can be derived from this figure. Taking into account remark 2.5, it appears that an optimal version of (3.5) for $|\kappa| \neq 1$ is

$$|\lambda_h - \lambda| = O(h^{|1/2, |\kappa| - 1/2|}), \quad h \to 0.$$

This is in agreement to the conjecture that the term $\epsilon^{1/2}$ in (3.4) can be improved to ϵ^{1}. In such a case, the above conjectured exponent appears to be optimal, in the range $|\kappa| \not\in \{1, \frac{3}{2}\}$.

Data accessibility. All the numerical quantities reported in this paper are accurate up to the last digit shown, which is rounded to the nearest integer. In the online version, available at (http://arxiv.org/abs/1410.5357),
we have included fully reproducible computer codes which can be employed to verify the calculations reported.

Competing interests. We have no competing interests.

Funding. The British Engineering and Physical Sciences Research Council (EP/100761X/1), FAPA Facultad de Ciencias de la Universidad de los Andes (PI160322022), the Carnegie Trust for the Universities of Scotland (31741), the London Mathematical Society (41347) and the Edinburgh Mathematical Society Research Support Fund.

Acknowledgements. The authors express their gratitude to P. Chigüiro for insightful comments during the preparation of this manuscript. This research was initiated as part of the programme Spectral Theory of Relativistic Operators held at the Isaac Newton Institute for Mathematical Sciences in July 2012.

Disclaimer. Both authors contributed to all components of the research reported in this paper in equal manner.

Appendix A. Proof of lemma 2.3

According to reference [36, theorem 4.1 in ch. 4], the following holds true.

Theorem A.1. Let \(z_0 \in \mathbb{C} \). Let \(V \) be a complex analytic matrix-valued function in a neighbourhood of \(z_0 \). If \(W \) is a constant \(2 \times 2 \) matrix and the eigenvalues of \(W \), \(\mu \) and \(\nu \), are such that \(|\mu - \nu| \notin \mathbb{N}\), then the differential equation

\[
\left(\frac{d}{dz} + (z - z_0)^{-1} W + V \right) u = 0
\]

has a fundamental system of the form

\[
U(z) = (z - z_0)^{-W} P(z),
\]

where \(P \) is complex analytic in a neighbourhood of \(z_0 \), \(P(z_0) = I_{2\times2} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \) and \((z - z_0)^{-W} := e^{-\ln(z-z_0)W}\) as in [36, (1.2) in ch. 4].

Proof of lemma 2.3. Without loss of generality, we may assume that \(\kappa \geq \frac{1}{2} \). The proof of the case \(\kappa \leq -\frac{1}{2} \) is analogous. First, suppose that \(2\kappa \notin \mathbb{N} \). Let \(\lambda \) be an eigenvalue of \(A_\kappa \) and let \(U \) be a fundamental system of \((A_\kappa - \lambda)U = 0\). Multiplying this on the left by \(\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \) gives

\[
\begin{pmatrix} \frac{d}{d\theta} + \left(\frac{1}{\theta} + \frac{\pi}{\theta - \pi} \right) \begin{pmatrix} -\kappa & 0 \\ 0 & \kappa \end{pmatrix} + \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} (V - \lambda) \end{pmatrix} U = 0, \quad \theta \in (0, \pi).
\]

(A 1)

By theorem A.1, (A 1) has fundamental systems

\[
U_0(\theta) = \begin{pmatrix} \theta^{-\kappa} & 0 \\ 0 & \theta^\kappa \end{pmatrix} P_0(\theta), \quad U_\pi(\theta) = \begin{pmatrix} (\pi - \theta)^{-\kappa} & 0 \\ 0 & (\pi - \theta)^\kappa \end{pmatrix} P_\pi(\theta)
\]

(A 2)

where \(P_0 \) is analytic in a neighbourhood of \([0, \pi]\), \(P_\pi \) is analytic in a neighbourhood of \((0, \pi]\) and \(P_0(0) = P_\pi(\pi) = I_{2\times2} \).

Let \(u \) be an eigenfunction. As \(u \in L_2(0, \pi)^2 \), it follows that there are constants \(c_0 \) and \(c_\pi \) such that

\[
u(\theta) = \begin{pmatrix} \theta^{-\kappa} & 0 \\ 0 & \theta^\kappa \end{pmatrix} P_0(\theta) \begin{pmatrix} c_0 \\ 0 \end{pmatrix} = \begin{pmatrix} (\pi - \theta)^{-\kappa} & 0 \\ 0 & (\pi - \theta)^\kappa \end{pmatrix} P_\pi(\theta) \begin{pmatrix} 0 \\ c_\pi \end{pmatrix}, \quad \theta \in (0, \pi).
\]

This gives (2.6) under the assumption that \(2\kappa \notin \mathbb{N} \).

Now assume that \(2\kappa \in \mathbb{N} \). We follow a recursive argument. Set

\[
W_0(\theta) = \begin{pmatrix} a_0(\theta) & b_0(\theta) \\ c_0(\theta) & d_0(\theta) \end{pmatrix} = \frac{1}{\pi - \theta} \begin{pmatrix} -\kappa & 0 \\ 0 & \kappa \end{pmatrix} + \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} (V(\theta) - \lambda).
\]

Then, \(a_0, b_0, c_0, d_0 \) are analytic functions in \([0, \pi]\). Let

\[
S(\theta) = \begin{pmatrix} \theta & 0 \\ 0 & 1 \end{pmatrix} \quad \text{so that} \quad S^{-1}(\theta)S'(\theta) = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \quad \theta \in (0, \pi).
\]

(A 3)
The equation (A 1) can be transformed into

\[
0 = S^{-1} \left[\frac{d}{d\theta} + \frac{1}{\theta} \begin{pmatrix} -\kappa & 0 \\ 0 & \kappa \end{pmatrix} + W_0 \right] SS^{-1}U
\]

\[
= \left[\frac{d}{d\theta} + S^{-1}S' + \frac{1}{\theta} \begin{pmatrix} -\kappa & 0 \\ 0 & \kappa \end{pmatrix} + S^{-1}W_0S \right] S^{-1}U
\]

\[
= \left[\frac{d}{d\theta} + \frac{1}{\theta} \begin{pmatrix} -\kappa + 1 & 0 \\ 0 & \kappa \end{pmatrix} + \begin{pmatrix} a_0 & \theta^{-1}b_0 \\ \theta c_0 & d_0 \end{pmatrix} \right] S^{-1}U
\]

\[
= \left[\frac{d}{d\theta} + \frac{1}{\theta} \begin{pmatrix} -\kappa + 1 & b_0(0) \\ 0 & \kappa \end{pmatrix} + \begin{pmatrix} a_0 & \beta_0 \\ \theta c_0 & d_0 \end{pmatrix} \right] S^{-1}U,
\]

(A 4)

where \(\beta_0(\theta) = \theta^{-1}(b_0(\theta) - b_0(0)) \) is analytic in a neighbourhood of \([0, \pi]\). In order to diagonalize \(W_1 \), let \(T_1 = \begin{pmatrix} 1 & b_0(0) \\ 0 & 2\kappa - 1 \end{pmatrix} \). A further transformation of (A 4) gives

\[
0 = T_1^{-1} \left[\frac{d}{d\theta} + \frac{1}{\theta} \begin{pmatrix} -\kappa + 1 & b_0(0) \\ 0 & \kappa \end{pmatrix} + \begin{pmatrix} a_0 & \beta_0 \\ \theta c_0 & d_0 \end{pmatrix} \right] T_1T_1^{-1}S^{-1}U
\]

\[
= \left[\frac{d}{d\theta} + \frac{1}{\theta} \begin{pmatrix} -\kappa + 1 & b_0(0) \\ 0 & \kappa \end{pmatrix} + \begin{pmatrix} a_1 & b_1 \\ c_1 & d_1 \end{pmatrix} \right] T_1T_1^{-1}S^{-1}U
\]

where \(a_1, b_1, c_1, d_1 \) are analytic. By repeating this process \(2\kappa - 1 \) times, we get

\[
0 = \left[\frac{d}{d\theta} + \frac{1}{\theta} \begin{pmatrix} \kappa & b_{2\kappa - 1}(0) \\ 0 & \kappa \end{pmatrix} + \begin{pmatrix} a_{2\kappa - 1} & b_{2\kappa - 1} \\ c_{2\kappa - 1} & d_{2\kappa - 1} \end{pmatrix} \right] T_1T_1^{-1}S^{-1} \cdots T_1T_1^{-1}S^{-1}U,
\]

(A 5)

where \(a_{2\kappa - 1}, b_{2\kappa - 1}, c_{2\kappa - 1}, d_{2\kappa - 1} \) are analytic in \([0, \pi]\) and \(T_j = \begin{pmatrix} 1 & b_{j-1}(0) \\ 0 & 2\kappa - j \end{pmatrix} \). A final transformation of (A 5) with \(S \) yields

\[
0 = \left[\frac{d}{d\theta} + \frac{1}{\theta} \begin{pmatrix} \kappa & b_{2\kappa - 1}(0) \\ 0 & \kappa \end{pmatrix} + \begin{pmatrix} a_{2\kappa - 1} & \beta_{2\kappa - 1} \\ \theta c_{2\kappa - 1} & d_{2\kappa - 1} \end{pmatrix} \right] S_1^{-1}S_2^{-1} \cdots S_1^{-1}S_2^{-1}U.
\]

The eigenvalues of \(W_{2\kappa} \) do not differ by a positive integer; therefore, the differential equation

\[
\left[\frac{d}{d\theta} + \frac{1}{\theta} \begin{pmatrix} \kappa & b_{2\kappa - 1}(0) \\ 0 & \kappa \end{pmatrix} + \begin{pmatrix} a_{2\kappa - 1} & \beta_{2\kappa - 1} \\ \theta c_{2\kappa - 1} & d_{2\kappa - 1} \end{pmatrix} \right] Y = 0
\]

has a fundamental system of the form \(Y(\theta) = \theta^{-\kappa}P_0(\theta) \) for \(P_0 \) analytic in \([0, \pi]\) and \(P_0(0) = I_{2\times 2} \). Hence, a fundamental system of (A 1) is given by

\[
U_0(\theta) = ST_1ST_2 \cdots ST_{2\kappa - 1} SY
\]

\[
= \theta^{-\kappa} \begin{pmatrix} \theta & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & b_0(0) \\ 0 & 2\kappa - 1 \end{pmatrix} \begin{pmatrix} \theta & 0 \\ 0 & 1 \end{pmatrix} \cdots \begin{pmatrix} 1 & b_{2\kappa - 2}(0) \\ 0 & 1 \end{pmatrix} \begin{pmatrix} \theta & 0 \\ 0 & 1 \end{pmatrix} P_0(\theta)
\]

\[
= \theta^{-\kappa} \begin{pmatrix} \theta^{2\kappa} & p_0(\theta) \\ 0 & (2\kappa - 1)! \end{pmatrix} P_0(\theta) = \begin{pmatrix} \theta^{\kappa} & \theta^{-\kappa}p_0(\theta) \\ 0 & \theta^{-\kappa}(2\kappa - 1)! \end{pmatrix} P_0(\theta),
\]

(A 6)

where \(p_0 \) is a polynomial of degree \(\leq 2\kappa - 1 \).
Now, we can repeat a similar argument at $\theta = \pi$ instead, and find another fundamental system of (A 1) for the segment $[0, \pi]$ of the form

$$U_\pi(\theta) = \begin{pmatrix} (\pi - \theta)^{-\kappa} (2\kappa - 1)! & 0 \\ (\pi - \theta)^{-\kappa} P_\pi(\theta) & (\pi - \theta)^{\kappa} \end{pmatrix} P_\pi(\theta),$$

where P_π is a suitable polynomial in $(\pi - \theta)$ of degree $\leq 2\kappa - 1$ and P_π is analytic in a neighbourhood of $(0, \pi]$. If u is an eigenfunction of A_κ, then there are constants c_1, c_2, d_1 and d_2 such that $u = U_0 (\zeta) = U_\pi \left(\frac{d_1}{d_2} \right)$. By (A 6), and the analogous equation at π, it follows that, for u to be square integrable, it is necessary that $c_2 = d_1 = 0$.

Remark A.2. The proof shows that all eigenvalues of A_κ are simple. Any other solution of $(A_\kappa - \lambda)u = 0$ would diverge of order $-|\kappa|$ for $\theta \to 0$ or $\theta \to \pi$.

References

1. Chandrasekhar S. 1998 *The mathematical theory of black holes*. Oxford Classic Texts in the Physical Sciences. New York, NY: The Clarendon Press Oxford University Press. Reprint of the 1992 edition.

2. Finster F, Kamran N, Smoller J, Yau S-T. 2000 Nonexistence of time-periodic solutions of the Dirac equation in an axisymmetric black hole geometry. *Commun. Pure Appl. Math.* 53, 902–929. (doi:10.1002/(SICI)1097-0312(200007)53:7<929::AID-CPA6>3.0.CO;2-4)

3. Finster F, Kamran N, Smoller J, Yau S-T. 2000 Erratum: nonexistence of time-periodic solutions of the Dirac equation in an axisymmetric black hole geometry. *Commun. Pure Appl. Math.* 53, 1201. (doi:10.1002/1097-0312(200009)53:9<1201::AID-CPA6>3.0.CO;2-T)

4. Batic D, Schmid H. 2006 The Dirac propagator in the Kerr–Newman metric. *Prog. Theor. Phys.* 116, 517–544. (doi:10.1143/PTP.116.517)

5. Winklmeier M, Yamada O. 2009 A spectral approach to the Dirac equation in the non-extreme Kerr–Newman metric. *J. Phys. A* 42, 295204. (doi:10.1088/1751-8113/42/29/295204)

6. Schmid H. 2004 Bound state solutions of the Dirac equation in the extreme Kerr geometry. *Math. Nachr.* 274/275, 117–129. (doi:10.1002/mana.200410205)

7. Winklmeier M. 2005 The angular part of the Dirac equation in the Kerr–Newman metric: estimates for the eigenvalues. PhD thesis, Universität Bremen.

8. Suffern KG, Fackerell ED, Cosgrove CM. 1983 Eigenvalues of the Chandrasekhar–Page angular functions. *J. Math. Phys.* 24, 1350–1358. (doi:10.1063/1.525820)

9. Batic D, Schmid H, Winklmeier M. 2005 On the eigenvalues of the Chandrasekhar–Page angular equation. *J. Math. Phys.* 46, 012504. (doi:10.1063/1.1818720)

10. Chakrabarti SK. 1984 On mass-dependent spheroidal harmonics of spin one-half. *Proc. R. Soc. Lond. A* 391, 27–38. (doi:10.1098/rspa.1984.0002)

11. Winklmeier M. 2008 A variational principle for block operator matrices and its application to the angular part of the Dirac operator in curved spacetime. *J. Diff. Equ.* 245, 2145–2175. (doi:10.1016/j.jde.2007.08.013)

12. Griesemer M, Lewis RT, Siedentop H. 1999 A minimax principle for eigenvalues in spectral gaps: Dirac operators with Coulomb potentials. *Doc. Math.* 4, 275–283. (doi:10.1112/s0024610799007930)

13. Dolbeault J, Esteban MJ, Séré E. 2000 Variational characterization for eigenvalues of Dirac operators. *Calc. Var. Partial Diff. Equ.* 10, 321–347. (doi:10.1007/s005260010321)

14. Langer H, Langer M, Tretter C. 2002 Variational principles for eigenvalues of block operator matrices. *Indiana Univ. Math. J.* 51, 1427–1460. (doi:10.1512/iumj.2002.51.2286)

15. Kraus M, Langer M, Tretter C. 2004 Variational principles and eigenvalue estimates for unbounded block operator matrices and applications. *J. Comput. Appl. Math.* 171, 311–334. (doi:10.1016/j.cam.2004.01.024)

16. Langer M, Tretter C. 2006 Variational principles for eigenvalues of the Klein–Gordon equation. *J. Math. Phys.* 47, 103506. (doi:10.1063/1.2345108)

17. Tretter C. 2008 *Spectral theory of block operator matrices and applications*. London, UK: Imperial College Press.

18. Boulton L, Strauss M. 2012 Eigenvalue enclosures and convergence for the linearized MHD operator. *BIT* 52, 801–825. (doi:10.1007/s10543-012-0389-x)
19. Davies EB. 1995 *Spectral theory and differential operators*. Cambridge, UK: Cambridge University Press.

20. Zimmermann S, Mertins U. 1995 Variational bounds to eigenvalues of self-adjoint eigenvalue problems with arbitrary spectrum. *Z. Anal. Anwend.* 14, 327–345. (doi:10.4171/ZAA/677)

21. Davies EB, Plum M. 2004 Spectral pollution. *IMA J. Numer. Anal.* 24, 417–438. (doi:10.1093/imanum/24.3.417)

22. Davies EB. 1998 Spectral enclosures and complex resonances for general self-adjoint operators. *LMS J. Comput. Math.* 1, 42–74. (doi:10.1112/S1461157000000140)

23. Shargorodsky E. 2000 Geometry of higher order relative spectra and projection methods. *J. Operator Theory* 44, 43–62.

24. Levitin M, Shargorodsky E. 2004 Spectral pollution and second-order relative spectra for self-adjoint operators. *IMA J. Numer. Anal.* 24, 393–416. (doi:10.1093/imanum/24.3.393)

25. Boulton L. 2006 Limiting set of second order spectra. *Math. Comp.* 75, 1367–1383. (doi:10.1090/S0025-5718-06-01830-8)

26. Boulton L, Levitin M. 2007 On approximation of the eigenvalues of perturbed periodic Schrödinger operators. *J. Phys. A* 40, 9319–9329. (doi:10.1088/1751-8113/40/31/010)

27. Boulton L, Boussaïd N. 2009 Non-variational computation of the eigenstates of Dirac operators with radially symmetric potentials. *LMS J. Comput. Math.* 1–30.

28. Strauss M. 2011 Quadratic projection methods for approximating the spectrum of self-adjoint operators. *IMA J. Numer. Anal.* 31, 40–60. (doi:10.1093/imanum/drp013)

29. Weidmann J. 1987 *Spectral theory of ordinary differential operators*. Lecture Notes in Mathematics, vol. 1258. Berlin, Germany: Springer.

30. Boulton L. 2007 Non-variational approximation of discrete eigenvalues of self-adjoint operators. *IMA J. Numer. Anal.* 27, 102–121. (doi:10.1093/imanum/drl015)

31. Boulton L, Strauss M. 2011 On the convergence of second-order spectra and multiplicity. *Proc. R. Soc. A* 467, 264–284. (doi:10.1098/rspa.2010.0233)

32. Boulton L, Hobiny A. In press. On the convergence of the quadratic method. *IMA J. Numer. Anal.* (doi:10.1093/imanum/drv036)

33. Hobiny A. 2014 Enclosures for the eigenvalues of self-adjoint operators and applications to Schrödinger operators. PhD Thesis, Heriot-Watt University.

34. Ern A, Guermond J-L. 2004 *Theory and practice of finite elements*. Applied Mathematical Sciences, vol. 159. New York, NY: Springer.

35. Reed M, Simon B. 1980 *Methods of modern mathematical physics*, vol. II. San Diego, CA: Academic Press.

36. Coddington EA, Levinson N. 1955 *Theory of ordinary differential equations*. New York, NY: McGraw-Hill Book.