A new upper limit on the total neutrino mass from the 2dF Galaxy Redshift Survey

R. De Propris

8

Department of Physics, University of Durham, South Road, Durham DH1 3LE, UK

12 School of Physics & Astronomy, University of Nottingham, Nottingham NG7 2RD, UK

13 School of Physics & Astronomy, University of Nottingham, Nottingham NG7 2RD, UK

1 Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA, UK

2 Institute for Astronomy, University of Edinburgh, Royal Observatory, Blackford Hill, Edinburgh EH9 3HJ, UK

3 Department of Physics, University of Durham, South Road, Durham DH1 3LE, UK

5 Anglo-Australian Observatory, P. O. Box 296, Epping, NSW 2121, Australia

6 Research School of Astronomy & Astrophysics, The Australian National University, Weston Creek, ACT 2611, Australia

7 Astrophysics Research Institute, Liverpool John Moores University, Twelve Quays House, Birkenhead, L14 1LD, UK

8 Department of Astrophysics, University of New South Wales, Sydney, NSW 2052, Australia

9 Department of Physics, University of Oxford, Keble Road, Oxford OX1 3RH, UK

10 School of Physics and Astronomy, University of St. Andrews, North Haugh, St. Andrews, Fife, KY6 9SS, UK

11 Department of Astronomy, California Institute of Technology, Pasadena, CA 91125, USA

12 Department of Physics, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK

Whether neutrinos are massive or not has been an open question for a long time, but the recent data from atmospheric and solar neutrino experiments [1–7] are most naturally interpreted in terms of neutrino oscillations, which implies that not all neutrinos are massless [8–10]. However, since the oscillation probability depends on the mass-squared differences, and not on the absolute masses, the oscillation experiments cannot provide absolute masses for neutrinos. The mass scale can in principle be obtained from e.g. the energy spectrum in the beta-decay of 3H [11]. At the present, cosmological data [12,13] provide stronger constraints on the total neutrino mass than particle physics experiments. Since neutrinos with masses of the order of a few tenths of an electron volt (eV) can have a significant effect on the formation of large-scale structures in the Universe, observations of the distribution of galaxies can provide us with an upper bound on the density of massive neutrinos. We will in this paper use data from the 2dF Galaxy Redshift Survey (2dFGRS), which is the largest existing redshift survey [12][13], to obtain an upper bound on the sum of the neutrino masses.

Massive neutrinos make up part of the dark matter in the Universe. In the cosmological model favoured by data on large-scale structure and the observed fluctuations in the Cosmic Microwave Background (CMB) [18][20], the Universe is flat, and the contributions to the mass-energy density in units of the critical density are $\Omega_{\Lambda} \approx 0.7$ from vacuum energy or a ‘quintessence’ field, and $\Omega_{m} \approx 0.3$ from matter. Baryons make up only $f_{b} \equiv \Omega_{b}/\Omega_{m} \approx 0.15$ of the matter contribution [19][21], most of the remaining being in the form of cold dark matter (CDM), the exact nature of which is still unknown. ‘Cold’ in this context means that the particles were moving at non-relativistic speeds when they dropped out of thermal equilibrium. Particles drop out of equilibrium roughly when their interaction rate falls below the expansion rate of the Universe. For neutrinos with masses in the eV range this happened when they were still relativistic, and so they will be a ‘hot’ component of the dark matter (HDM). This has implications for large-scale structure, since the neutrinos can free-stream over large distances and erase small-scale structures (see e.g. [22] for an overview). As a result, mass fluctuations are suppressed at comoving wavenumbers greater than $k_{m} = 0.026(m_{\nu}/1\text{ eV})^{1/2}\Omega_{m}^{1/2} h^{-3} \text{ Mpc}^{-1}$ [22], where m_{ν} is the neutrino mass of one flavour. The neutrino contribution to the total mass-energy density, Ω_{ν}, in units of the critical density needed to close the Universe, is given by

\[
\Omega_{\nu} < 1.5 \times 10^{-4} \text{ eV}^{-1}.
\]
\[\Omega_{\nu} h^2 = \frac{m_{\nu,\text{tot}}}{94 \text{ eV}}, \]
\[(1) \]

where \(m_{\nu,\text{tot}} \) is the sum of the neutrino mass matrix eigenvalues, and the Hubble parameter \(H_0 \) at the present epoch is given in terms of \(h \) as \(H_0 = 100h \text{ km s}^{-1} \text{ Mpc}^{-1} \).

Eq. (1) assumes that all three neutrino flavours drop out approximately by (see e.g. [23]) epoch is given in terms of \(h \) as \(H_0 = 100h \text{ km s}^{-1} \text{ Mpc}^{-1} \). Therefore even a neutrino mass as small as 0.1 eV gives a reduction in power of 5-15%.

The 2dFGRS has now measured over 220 000 galaxy redshifts, with a median redshift of \(z_m \approx 0.11 \), and is the largest existing galaxy redshift survey [1]. A sample of this size allows large-scale structure statistics to be measured with very small random errors. An initial estimate of the convolved, redshift-space power spectrum of the 2dFGRS has been determined [18] for a sample of 160 000 redshifts. On scales \(0.02 < k < 0.15h \text{ Mpc}^{-1} \), the data are robust and the shape of the power spectrum is not affected by redshift-space or non-linear effects, though the amplitude is increased by redshift-space distortions. These data and their associated covariance matrix form the basis for our analysis.

For each model, we calculate its linear-theory matter power spectrum, and for the 2dFGRS power spectrum data it is sufficiently accurate to use the fitting formulae derived in [21]. The relation between the measured galaxy power spectrum and the calculated matter power spectrum is given by the so-called bias parameter \(b^2 \equiv \frac{P_m(k)}{P_o(k)} \). By definition, \(b \) is in principle a function of scale, and several biasing scenarios have been proposed [25]. This issue is of some importance for our analysis. For example, if the galaxy distribution is more biased on small scales than on large scales, a non-zero best-fit value for \(f_v \) may be obtained. However, on the scales we consider there are theoretical reasons to expect that \(b \) should tend to a constant [26]. For the 2dFGRS, a recent analysis [27] looking for deviations from linear biasing found no evidence for it. We will therefore in the following assume that the biasing is scale-independent. In particular two independent analyses [28,27] suggest that that the data are consistent with \(b \approx 1 \) on large scales. We choose to avoid the complications in the normalization of the power spectra caused by redshift-space distortions and the actual value of the bias parameter by leaving the amplitude of the power spectrum, from here on denoted by \(A \), as a free parameter, and then marginalize over it.

We shall consider here a model with four components: baryons, cold dark matter, massive neutrinos (hot dark matter) and a cosmological constant. As an illustration, we show in Fig. 2 the power spectra for \(\Omega_m = 0, 0.01, \) and 0.05 (all other parameters are fixed at their ‘concordance model’ values given in the figure caption), after they have been convolved with the 2dFGRS window function, and their amplitudes fitted to the 2dFGRS power spectrum data. For the 32 data points, the \(\Omega_m = 0 \)-model had \(\chi^2 = 32.9 \), \(\Omega_m = 0.01 \) gives \(\chi^2 = 33.4 \), whereas the model with \(\Omega_m = 0.05 \) provides a poor fit to the data with \(\chi^2 = 92.2 \).

Clearly, the inference of the neutrino mass depends on our assumptions (‘priors’) on the other parameters. We therefore add constraints from other independent cosmological probes. The Hubble parameter has been determined by the HST Hubble key project to be \(h = 0.70 \pm 0.07 \) [29], and Big Bang Nucleosynthesis gives a constraint \(\Omega_b h^2 \approx 0.020 \pm 0.002 \) on the baryon density [30]. For these parameters, we adopt Gaussian priors with the standard deviations given above.

Perhaps the least known prior is the total matter density \(\Omega_m \). The position of the first peak in the CMB power spectrum gives a strong indication that the Universe is spatially flat, i.e. \(\Omega_m + \Omega_\Lambda = 1 \) [42,43]. The CMB peak positions are not sensitive to neutrino masses, because the neutrinos were non-relativistic at recombination, and hence indistinguishable from cold dark matter. Although the shape of the power spectrum is independent of curvature, the curvature does affect the choice of priors on \(\Omega_m \), and we choose to consider flat models only. When the constraint of a flat universe is combined with surveys of high redshift Type Ia supernovae [31,32], one finds \(\Omega_m \approx 0.28 \pm 0.14 \). However, studies of the mass-to-light ratio of galaxy clusters find values of \(\Omega_m \) as low as 0.15 [33], whereas cluster abundances give a range of values \(\Omega_m \approx 0.3 - 0.9 \) [34,35]. Another measurement of \(\Omega_m \approx 0.25 \) which is independent of the power spectrum of mass fluctuations and the nature of dark matter has been derived from the baryon mass fraction in clusters of galaxies, coupled with priors on \(\Omega_b h^2 \) and \(h \) [44,45]. We will therefore use two different priors on \(\Omega_m \). The first is a Gaussian centered at \(\Omega_m = 0.28 \) with standard deviation 0.14, motivated by [31]. As an alternative, we use a uniform (‘top hat’) prior in the range \(0.1 < \Omega_m < 0.5 \). Given that we use the HST Key Project result [29] for \(h \), \(\Omega_m < 0.5 \) is required to be consistent with the age of the Universe [42] being greater than 12 Gyr.

Finally, the CMB data [20,43,44] are consistent with the scalar spectral index of the primordial power spectrum being \(n = 1 \), but we also quote results for \(n = 0.9 \) and \(n = 1.1 \), and for the case when we marginalize over \(n \) with a Gaussian prior \(n = 1.0 \pm 0.1 \), motivated by the latest data from VSA and CBI [33,44].

Results will be presented for the case of \(N_\nu = 3 \) equal-mass neutrinos, but the derived upper bound on the total neutrino mass is only marginally different for \(N_\nu = 1 \) or 2. For each set of parameters, we computed the-the-
theoretical matter power spectrum, and obtained the \(\chi^2 \) for the model given the 2dFGRS power spectrum. We then calculated the joint probability distribution function for \(f_\nu \) and \(\Gamma = \Omega_m h \) (which represents the shape of the CDM power spectrum) by marginalizing over \(A, h \) and \(f_\nu \) weighted by the priors given above. For \(A \) we used a uniform prior in the interval 0.5 < \(A < 10 \), where \(A = 1 \) corresponds to the normalization of the ‘concordance model’, discussed in [23]. Using instead a prior uniform in log \(A \), or fixing \(A \) at the best-fit value had virtually no effect on the results. We evaluated the likelihood on a grid with 0.1 < \(\Omega_m h < 0.5 \), 0 \(\leq f_\nu < 0.3 \), 0 < \(f_\nu < 0.3 \), 0.4 < \(h < 0.9 \), and 0.5 < \(A < 10 \). In [18] it was found that the 2dFGRS data alone allow a solution with a high baryon density \(f_\nu = 0.4 \), in addition to a low density-low baryon density solution. However, given the above priors, the solution with high baryon density gets little weight and the fitting formulæ in [24] are sufficiently accurate for the measured BBN baryon density.

The results are shown in Fig. 3 for the cases of no prior on \(\Omega_m \) (left panel) and with the uniform prior 0.1 < \(\Omega_m < 0.5 \) (right panel). Marginalizing the distributions in the right panel of Fig. 3 over \(\Omega_m h \), we get the one-dimensional distribution for \(f_\nu \) given by the solid line in Fig. 3 and an upper limit \(f_\nu < 0.13 \) at 95% confidence. For comparison, marginalizing without any priors, the limit becomes \(f_\nu < 0.24 \). Adding just a prior on \(\Omega_m \), we find \(f_\nu < 0.15 \), so this is clearly the most important prior. Marginalizing with just a prior on \(h \) or on \(\Omega_b h^2 \), the 95% confidence limit becomes \(f_\nu < 0.20 \). As a further test of the stability of our analysis, we used the full set of priors, but only the power spectrum data at scales \(k < 0.1 h \text{Mpc}^{-1} \). In this case the limit increases to \(f_\nu < 0.20 \).

There is a further degeneracy of \(f_\nu \) with the scalar spectral index \(n \), since increasing \(n \) increases power on small scales and leaves more room for suppression by the massive neutrinos. Also shown in Fig. 3 are the distributions for the cases \(n = 0.9 \) (dotted line) and \(n = 1.1 \) (dashed line). With \(n = 1.1 \), the 95% confidence limit on \(f_\nu \) increases slightly to 0.16. The results are summarized in Fig. 3 and in Table I. Also included in the this table are the results obtained using the Type Ia supernova prior, and it is seen that the results for the two different choices are almost identical. Running a grid of models with \(n \) as an added parameter, and marginalizing with a prior \(n = 1.0 \pm 0.1 \), consistent with the CMB data [13,14], we find \(f_\nu < 0.16 \) at 95% confidence.

To summarize, we have analyzed the shape of the 2dFGRS power spectrum to obtain an upper bound on the fractional contribution of massive neutrinos to the total mass density, \(f_\nu \), and found an upper limit \(f_\nu < 0.13 \) at 95% confidence for \(0.1 < \Omega_m < 0.5 \) and the scalar spectral index \(n = 1 \). This translates into a constraint on the sum of the neutrino mass matrix eigenvalues \(m_{\nu,\text{tot}} < 1.8 \text{eV} \) for \(\Omega_m h^2 = 0.15 \). With marginaliza-

1. S. Fukuda et al., Phys. Rev. Lett. 85 (2000) 3999.
2. M. Ambrosio et al., Phys. Lett. B 517 (2001) 59.
3. B. T. Cleveland et al., Ap. J. 496 (1998) 505.
4. The Gallex collaboration, Phys. Lett. B 447 (1999) 127.
5. J. N. Abdurashitov et al., Phys. Rev. C 60 (1999) 055801.
6. M. Altmann et al., Phys. Lett. B 490 (2000) 16.
7. Q. R. Ahmad et al., Phys. Rev. Lett. 87 (2001) 71301.
8. P. Creminelli, G. Signorelli, and A. Strumia, JHEP 0105 (2001) 52.
9. G. L. Fogli, E. Lisi, D. Montanino, and A. Palazzo, Phys. Rev. D 64 (2001) 93007.
10. J. N. Bahcall, M. C. Gonzalez-Garcia, and C. Penagaray, JHEP 0108 (2001) 14.
11. J. Bonn et al., Nucl. Phys. Proc. Suppl. 91 (2001) 280.
12. H. V. Klapdor-Kleingrothaus et al., Eur. Phys. J. A 12 (2001) 147.
13. H. V. Klapdor-Kleingrothaus et al., Mod. Phys. Lett. A 37 (2001) 2409.
14. M. Fukugita, G-C. Liu, and N. Sugiyama, Phys. Rev. Lett. 84 (2000) 1082.
15. R. A. C. Croft, W. Hu, and R. Davé, Phys. Rev. Lett. 83 (1999) 1092.
16. E. Gawiser and J. Silk, Science 280 (1998) 1405.
17. M. Colless et al., MNRAS 328 (2001) 1039.
FIG. 1. Power spectra for $\Omega_\nu = 0$ (solid line), $\Omega_\nu = 0.01$ (dashed line), and $\Omega_\nu = 0.05$ (dot-dashed line) with amplitudes fitted to the 2dFGRS power spectrum data (vertical bars) in redshift space. We have fixed $\Omega_m = 0.3$, $\Omega_\Lambda = 0.7$, $h = 0.7$, $\Omega_b h^2 = 0.02$. The vertical dashed lines limit the range in k used in the fits.
FIG. 2. 68 (solid line), 95 (dashed line) and 99% (dotted line) confidence contours in the plane of $f_\nu \equiv \Omega_\nu/\Omega_m$ and $\Gamma \equiv \Omega_m h$, with marginalization over h and $\Omega_b h^2$ using Gaussian priors, and over A using a uniform prior in $0.5 < A < 10$. The left panel shows the case of no prior on Ω_m, and the right panel the case of a uniform ‘top hat’ prior on Ω_m in $0.1 < \Omega_m < 0.5$.

![Confidence Contours](image)

FIG. 3. Probability distributions, normalized so that the area under each curve is equal to one, for f_ν with marginalization over the other parameters, as explained in the text, for $N_\nu = 3$ massive neutrinos and $n = 0.9$ (dotted line), 1.0 (solid line), and 1.1 (dashed line).

n	f_ν	$m_{\nu,\text{tot}}$ (eV)	f_ν	$m_{\nu,\text{tot}}$ (eV)
0.9	0.12	1.5	0.11	1.5
1.0	0.14	1.8	0.13	1.8
1.1	0.16	2.1	0.16	2.2

TABLE I. Summary of 95% confidence upper bounds on f_ν with our two chosen priors on Ω_m. The conversion of f_ν to $m_{\nu,\text{tot}}$ is for $h = 0.7$ and the central values of $\Omega_m = 0.28$ (SN Ia case) and $\Omega_m = 0.30$ (uniform prior case).