Deletion Operations on Deterministic Families of Automata

Joey Eremondia,2, Oscar H. Ibarrab,1, Ian McQuillanc,2

aDepartment of Information and Computing Sciences
Utrecht University, P.O. Box 80.089 3508 TB Utrecht, The Netherlands
bDepartment of Computer Science
University of California, Santa Barbara, CA 93106, USA
cDepartment of Computer Science, University of Saskatchewan
Saskatoon, SK S7N 5A9, Canada

Abstract

Many different deletion operations are investigated applied to languages accepted by one-way and two-way deterministic reversal-bounded multicounter machines, deterministic pushdown automata, and finite automata. Operations studied include the prefix, suffix, infix and outfix operations, as well as left and right quotient with languages from different families. It is often expected that language families defined from deterministic machines will not be closed under deletion operations. However, here, it is shown that one-way deterministic reversal-bounded multicounter languages are closed under right quotient with languages from many different language families; even those defined by nondeterministic machines such as the context-free languages. Also, it is shown that when starting with one-way deterministic machines with one counter that makes only one reversal, taking the left quotient with languages from many different language families — again including those defined by nondeterministic machines such as the context-free languages — yields only one-way deterministic reversal-bounded multicounter languages (by increasing the number of counters). However, if there are two more reversals on the counter, or a second 1-reversal-bounded counter, taking the left quotient (or even just the suffix operation) yields languages that can neither be accepted by deterministic reversal-bounded multicounter machines, nor by 2-way nondeterministic machines with one reversal-bounded counter.

Keywords: Automata and Logic, Counter Machines, Deletion Operations, Reversal-Bounds, Determinism, Finite Automata

1. Introduction

This paper involves the study of various types of deletion operations applied to languages accepted by one-way deterministic reversal-bounded multicounter machines (DCM). These are machines that operate like finite automata with an additional fixed number of counters, where there is a bound on the number of times each counter switches between increasing and decreasing \cite{1,2}. The family DCM\((k,l)\) consists of languages accepted by machines with \(k\) counters that are \(l\)-reversal-bounded. DCM languages have many decidable properties, such as emptiness, infiniteness, equivalence, inclusion, universe, and disjointness \cite{2}. These machines have been studied in a variety of different applications, such as to membrane computing \cite{3}, verification of infinite-state systems \cite{4,5,6,7}, and Diophantine equations \cite{7}.
Recently, in [8], a related study was conducted for insertion operations; specifically operations defined by ideals obtained from the prefix, suffix, infix, and outfix relations, as well as left and right concatenation with languages from different language families. It was found that languages accepted by one-way deterministic reversal-bounded counter machines with one reversal-bounded counter are closed under right concatenation with \(\Sigma^* \), but having two 1-reversal-bounded counters and right concatenating \(\Sigma^* \) yields languages outside of both DCM and 2DCM(1) (languages accepted by two-way deterministic machines with one counter that is reversal-bounded). It also follows from this analysis that the right input end-marker is necessary for even one-way deterministic reversal-bounded counter machines, when there are at least two counters. Furthermore, concatenating \(\Sigma^* \) to the left of some one-way deterministic 1-reversal-bounded one counter languages yields languages that are neither in DCM nor 2DCM(1). Other recent results on reversal-bounded multicounter languages include a technique to show languages are outside of DCM [9]. Closure properties of some variants of nondeterministic counter machines under deletion operations were studied in [10].

In this paper we investigate closure properties of types of deterministic machines. In Section 2 preliminary background and notation are introduced. In Section 3 erasing operations where languages from different language families. It was found that languages accepted by one-way deterministic reversal-bounded counter machines are closed under right concatenation with a variety of different families of languages accepting semilinear languages. In Section 4 non-closure of DCM under erasing operations are studied. It is shown that the set of suffixes, infixes, or outfixes of a language is not closed under prefix or suffix, and the set of non-negative integers is denoted by \(\mathbb{N} \). Next, we will give some notation used in the paper. The empty word is denoted by \(\lambda \). If \(\Sigma \) is a finite alphabet, then \(\Sigma^* \) is the set of all words over \(\Sigma \) and \(\Sigma^+ = \Sigma^* \setminus \{ \lambda \} \). For a word \(w \in \Sigma^* \), if \(w = a_1 \cdots a_n \) where \(a_i \in \Sigma \), \(1 \leq i \leq n \), the length of \(w \) is denoted by \(|w| = n \), and the reversal of \(w \) is denoted by \(w^R = a_n \cdots a_1 \), which is extended to reversal of languages in the natural way. A language over \(\Sigma \) is any subset of \(\Sigma^* \). Given a language \(L \subseteq \Sigma^* \), the complement of \(L \), \(\Sigma^* \setminus L \) is denoted by \(\overline{L} \). Given two languages \(L_1, L_2 \), the left quotient of \(L_2 \) by \(L_1 \), \(L_1^{-1} L_2 = \{ y \mid xy \in L_2, x \in L_1 \} \), and the right quotient of \(L_1 \) by \(L_2 \) is \(L_1 L_2^{-1} = \{ x \mid xy \in L_1, y \in L_2 \} \). A \textit{full trio} is a language family closed under homomorphism, inverse homomorphism, and intersection with regular languages [11].

A language \(L \) is \textit{word-bounded} or simply \textit{bounded} if \(L \subseteq w_1^* \cdots w_k^* \) for some \(k \geq 1 \) and (not-necessarily distinct) words \(w_1, \ldots, w_k \). Further, \(L \) is \textit{letter-bounded} if each \(w_i \) is a letter. Also, \(L \) is \textit{bounded-semilinear} if \(L \subseteq w_1^* \cdots w_k^* \) and \(Q = \{(i_1, \ldots, i_k) \mid w_1^{i_1} \cdots w_k^{i_k} \in L \} \) is a semilinear set [12].

We now present notation for common word and language operations used throughout the paper.

Definition 1. For a language \(L \subseteq \Sigma^* \), the prefix, suffix, infix, and outfix operations are defined by:

- \(\text{pref}(L) = \{ w \mid wx \in L, x \in \Sigma^* \} \),
- \(\text{succ}(L) = \{ w \mid wx \in L, x \in \Sigma^* \} \),
- \(\text{inf}(L) = \{ w \mid xy \in L, x, y \in \Sigma^* \} \),
- \(\text{outf}(L) = \{ xyw \mid xyw \in L, w \in \Sigma^* \} \).

2
Note that \(\text{pref}(L) = L(\Sigma^*)^{-1} \) and \(\text{suff}(L) = (\Sigma^*)^{-1} L \).

The outfix operation has been generalized to the notion of embedding \([13]\):

Definition 2. The \(m \)-embedding of a language \(L \subseteq \Sigma^* \) is the following set:
\[
\text{emb}(L, m) = \{w_0 \cdots w_m \mid w_0x_1 \cdots x_{m-1}x_mw_m \in L, \ x_i \in \Sigma^*, 0 \leq i \leq m, \ x_j \in \Sigma^*, 1 \leq j \leq m\}.
\]

Note that \(\text{outf}(L) = \text{emb}(L, 1) \).

A nondeterministic multicontainer machine is a finite automaton augmented by a fixed number of counters. The counters can be increased, decreased, tested for zero, or tested to see if the value is positive. A multicontainer machine is reversal-bounded if every counter makes a fixed number of changes between increasing and decreasing.

Formally, a one-way \(k \)-counter machine is a tuple \(M = (k, Q, \Sigma, <, \delta, q_0, F) \), where \(Q, \Sigma, <, q_0, F \) are respectively the finite set of states, the input alphabet, the initial state in \(Q \), and the set of final states that is a subset of \(Q \). The transition function \(\delta \) (defined as in \([2]\) except with only a right end-marker since we only use one-way inputs) is a mapping from \(Q \times (\Sigma \cup \{<\}) \times \{0, 1\}^k \) into \(Q \times \{S, R\} \times \{-1, 0, +1\}^k \), such that if \(\delta(q, a, c_1, \ldots, c_k) \) contains \((p, d, d_1, \ldots, d_k) \) and \(c_i = 0 \) for some \(i \), then \(d_i \geq 0 \) to prevent negative values in any counter. The direction of the input tape head movement is given by the symbols \(S \) and \(R \) for either stay or right respectively. The machine \(M \) is deterministic if \(\delta \) is a function.

A configuration of \(M \) is a \(k+2 \)-tuple \((q, w<, c_1, \ldots, c_k)\) for describing the situation where \(M \) is in state \(q \), with \(w \in \Sigma^* \) still to read as input, and \(c_1, \ldots, c_k \in \mathbb{N}_0 \) are the contents of the \(k \) counters. The derivation relation \(\vdash_M \) is defined between configurations, where \((q, aw, c_1, \ldots, c_k) \vdash_M (p, w', c_1 + d_1, \ldots, c_k + d_k), \) if \((p, d_1, \ldots, d_k) \in \delta(q, a, \pi(c_1), \ldots, \pi(c_k)) \) where \(d \in \{S, R\} \) and \(w' = aw \) if \(d = S \), and \(w' = w \) if \(d = R \). Extended derivations are given by \(\vdash_{M}^{\ast} \), the reflexive, transitive closure of \(\vdash_M \). A word \(w \in \Sigma^* \) is accepted by \(M \) if \((q_0, w<, 0, \ldots, 0) \vdash_{M}^{\ast} (q, <, c_1, \ldots, c_k), \) for some \(q \in F \), and \(c_1, \ldots, c_k \in \mathbb{N}_0 \). The language accepted by \(M \), denoted by \(L(M) \), is the set of all words accepted by \(M \). The machine \(M \) is \(l \)-reversal bounded if, in every accepting computation, the count on each counter alternates between increasing and decreasing at most \(l \) times.

We denote by \(\text{NCM}(k, l) \) the family of languages accepted by one-way nondeterministic \(l \)-reversal-bounded \(k \)-counter machines. We denote by \(\text{DCM}(k, l) \) the family of languages accepted by one-way deterministic \(l \)-reversal-bounded \(k \)-counter machines. The union of the families of languages are denoted by \(\text{NCM} = \bigcup_{k,l \geq 0} \text{NCM}(k, l) \) and \(\text{DCM} = \bigcup_{k,l \geq 0} \text{DCM}(k, l) \). Further, \(\text{DCA} \) is the family of languages accepted by one-way deterministic one counter machines (no reversal-bound). We will also sometimes refer to a multicontainer machine as being in \(\text{NCM}(k, l) \) (\(\text{DCM}(k, l) \)), if it has \(k \) \(l \)-reversal bounded counters (and is deterministic).

We denote by \(\text{REG} \) the family of regular languages, by \(\text{NPDA} \) the family of context-free languages, by \(\text{DPDA} \) the family of deterministic pushdown languages, by \(\text{DPDA}(l) \) the family of \(l \)-reversal-bounded deterministic pushdown automata (with an upper bound of \(l \) on the number of changes between non-increasing and non-decreasing the size of the pushdown), by \(\text{NPCM} \) the family of languages accepted by nondeterministic pushdown automata augmented by a fixed number of \(l \)-reversal bounded counters \([2]\), and by \(\text{DPCM} \) the deterministic variant. We also denote by \(\text{2DCM} \) the family of languages accepted by two-way input, deterministic finite automata (both a left and right input tape end-marker are required) augmented by \(l \)-reversal-bounded counters, and by \(\text{2DCM}(1), \text{2DCM} \) with one \(l \)-reversal bounded counter \([14]\). A machine of this form is said to be finite-crossing if there is a fixed \(c \) such that the number of times the boundary between any two adjacent input cells is crossed is at most \(c \). A machine is finite-turn if the input head makes at most \(k \) turns on the input, for some \(k \). Also, \(\text{2NCM} \) is the family of languages accepted by two-way nondeterministic machines with a fixed number of \(l \)-reversal bounded counters, while \(\text{2DPCM} \) is the family of two-way deterministic pushdown machines augmented by a fixed number of \(l \)-reversal bounded counters.

The next result proved in \([12]\) gives examples of weak and strong machines that are equivalent over word-bounded languages.

Theorem 3. \([12]\) The following are equivalent for every word-bounded language \(L \):

1. \(L \) can be accepted by an \(\text{NCM} \).
2. \(L \) can be accepted by an \(\text{NPCM} \).
3. \(L \) can be accepted by a finite-crossing 2NCM.

4. \(L \) can be accepted by a DCM.

5. \(L \) can be accepted by a finite-turn 2DCM(1).

6. \(L \) can be accepted by a finite-crossing 2DPCM.

7. \(L \) is bounded-semilinear.

We also need the following result in [14]:

Theorem 4. [14] Let \(L \subseteq a^* \) be accepted by a 2NCM (not necessarily finite-crossing). Then \(L \) is regular, hence, semilinear.

3. **Closure of DCM Under Erasing Operations**

First, we discuss the left quotient of DCM with finite sets.

Proposition 5. DCM is closed under left quotient with finite languages.

Proof. It is clear that DCM is closed under left quotient with a single word. Then the result follows from closure of DCM under union [2].

This is in contrast to DPDA, which is not even closed under left quotient with sets of multiple letters. Indeed, the language \(\{\#a^n b^n \mid n > 0\} \cup \{\$a^n b^{2n} \mid n > 0\} \) is a DPDA language, but taking the left quotient with \(\{\$, \#\} \) produces a language which is not a DPDA language [16].

Next, we show the closure of DCM under right quotient with any nondeterministic reversal-bounded machine, even when augmented with a pushdown store.

Proposition 6. Let \(L_1 \in \text{DCM} \) and let \(L_2 \in \text{NPCM} \). Then \(L_1 L_2^{-1} \in \text{DCM} \).

Proof. Consider a DCM machine \(M_1 = (Q_1, \Sigma, \epsilon, \delta_1, s_0, F_1) \) and NPCM machine \(M_2 \) over \(\Sigma \) with \(k_2 \) counters where \(L(M_1) = L_1 \) and \(L(M_2) = L_2 \). A DCM machine \(M' \) will be constructed accepting \(L_1 L_2^{-1} \).

Let \(\Gamma = \{a_1, \ldots, a_{k_2}\} \) be new symbols. For each \(q \in Q_1 \), let \(M_c(q) \) be an interim \(k_1 + k_2 \) counter (plus a pushdown) NPCM machine over \(\Gamma \) constructed as follows: on input \(a_1^{p_1} \cdots a_{k_1}^{p_k} \), \(M_c(q) \) increments the first \(k_1 \) counters to \((p_1, \ldots, p_{k_1}) \). Then \(M_c(q) \) nondeterministically guesses a word \(x \in \Sigma^* \) and simulates \(M_1 \) on \(x \in \) starting from state \(q \) and from the counter values of \((p_1, \ldots, p_{k_1}) \) using the first \(k_1 \) counters, while in parallel, simulating \(M_2 \) on \(x \) using the next \(k_2 \) counters and the pushdown. This is akin to the product automaton construction described in [2] showing NPCM is closed under intersection with NCM. Then \(M_c(q) \) accepts if both \(M_1 \) and \(M_2 \) accept.

Claim 1. Let \(L_c(q) = \{a_1^{p_1} \cdots a_{k_1}^{p_1} \mid \exists x \in L_2 \text{ such that } (q, x \in, p_1, \ldots, p_{k_1}) \vdash^*_{M_1} (q_f, \in, p'_1, \ldots, p'_{k_1}), p'_i \geq 0, 1 \leq i \leq k_1, q_f \in F_1\}. \) Then \(L(M_c(q)) = L_c(q) \).

Proof. Consider \(w = a_1^{p_1} \cdots a_{k_1}^{p_1} \in L_c(q) \). Then there exists \(x \) where \(x \in L_2 \) and \((q, x \in, p_1, \ldots, p_{k_1}) \vdash^*_{M_1} (q_f', \in, p'_1, \ldots, p'_{k_1}) \), where \(q_f' \in F_1 \). There must then be some final state \(q_{f_i}' \in F_2 \) reached when reading \(x \in \) in \(M_2 \). Then, \(M_c(q) \), on input \(w \) places \((p_1, \ldots, p_{k_1}, 0, \ldots, 0) \) on the counters and then can nondeterministically guess \(x \) letter-by-letter and simulate \(x \) in \(M_1 \) from state \(q \) on the first \(k_1 \) counters and simulate \(x \) in \(M_2 \) from its initial configuration on the remaining counters and pushdown. Then \(M_c(q) \) ends up in state \((q_f', q_{f_1}')\), which is final. Hence, \(w \in L(M_c(q)) \).

Consider \(w = a_1^{p_1} \cdots a_{k_1}^{p_1} \in L(M_c(q)) \). After adding each \(p_i \) to counter \(i \), \(M_c(q) \) guesses \(x \) and simulates \(M_1 \) on the first \(k_1 \) counters from \(q \) and simulates \(M_2 \) on the remaining counters from an initial configuration. It follows that \(x \in L_2 \) and \((q, x \in, p_1, \ldots, p_{k_1}) \vdash^*_{M_1} (q_{f_1}', \in, p'_1, \ldots, p'_{k_1}), p'_i \geq 0, 1 \leq i \leq k_1, q_{f_1}' \in F_1 \). Hence, \(w \in L_c(q) \). \[\square \]
Since for each \(q \in Q_1, M_1(q) \) is in NPCM, it accepts a semilinear language \([3]\), and since the accepted language is bounded, it is bounded-semilinear and can therefore be accepted by a DCM-machine by Theorem \([3]\) Let \(M'_1(q) \) be this DCM machine, with \(k' \) counters, for some \(k' \).

Thus, a final DCM machine \(M' \) with \(k+ k' \) counters is built as follows. In it, \(M' \) has \(k+1 \) counters used to simulate \(M_1 \), and also \(k' \) additional counters, used to simulate some \(M'_1(q) \), for some \(q \in Q_1 \). Then, \(M' \) reads its input \(x \prec \), where \(x \in \Sigma^* \), while simulating \(M_1 \) on the first \(k_1 \) counters, either failing, or reaching some configuration \((q, \prec, p_1, \ldots, p_{k_1}) \), for some \(q \in Q_1 \), upon first hitting the end-marker \(\prec \). If it does not fail, we then simulate the DCM-machine \(M'_1(q) \) on input \(a_1 \cdots a_{k_1} \), but this simulation is done deterministically by subtracting 1 from the first \(k_1 \) counters, in order, until each are zero instead of reading input characters, and accepts if \(a_1 \cdots a_{k_1} \in L(M'_1(q)) = L_c(q) \). Then \(M' \) is deterministic, and accepts

\[
\{ x \mid \text{either } (s_0, x \prec, 0, \ldots, 0) \vdash_{M_1} (q', a \prec, p'_1, \ldots, p'_{k_1}) \vdash_{M_1} (q, \prec, p_1, \ldots, p_{k_1}), \\
a \in \Sigma, \text{ or } (s_0, x \prec, 0, \ldots, 0) = (q, \prec, p_1, \ldots, p_{k_1}), \text{ s.t. } a_1 \cdots a_{k_1} \in L_c(q) \}
\]

\[
= \{ x \mid \text{either } (s_0, x \prec, 0, \ldots, 0) \vdash_{M_1} (q', a \prec, p'_1, \ldots, p'_{k_1}) \vdash_{M_1} (q, \prec, p_1, \ldots, p_{k_1}), \\
a \in \Sigma, \text{ or } (s_0, x \prec, 0, \ldots, 0) = (q, \prec, p_1, \ldots, p_{k_1}), \text{ s.t. } \exists y \in L_2 \text{ s.t. } \\
(q, y \prec, p_1, \ldots, p_{k_1}) \vdash_{M_1} (q_f, \prec, p'_1, \ldots, p'_{k_1}), q_f \in F_1 \}
\]

\[
= \{ x \mid xy \in L_1, y \in L_2 \}
\]

\[
= L_1L_2^{-1}.
\]

This immediately shows closure for the prefix operation.

Corollary 7. If \(L \in DCM \), then \(\text{pref}(L) \in DCM \).

We can modify this construction to show a strong closure result for one-counter languages that does not increase the number of counters.

Proposition 8. Let \(l \in \mathbb{N} \). If \(L_1 \in DCM(1, l) \) and \(L_2 \in NPCM \), then \(L_1L_2^{-1} \in DCM(1, l) \).

Proof. The construction is similar to the one in Proposition \([9]\). However, we note that since the input machine for \(L_1 \) has only one counter, \(L_c(q) \) is unary (regardless of the number of counters needed for \(L_2 \)). Thus \(L_c(q) \) is unary and semilinear, and Parikh’s theorem states that all semilinear languages are letter-equivalent to regular languages \([17]\), and all unary semilinear languages are regular. Thus \(L_c(q) \) is regular, and can be accepted by a DFA.

We can then construct \(M' \) accepting \(L_1L_2^{-1} \) as in Proposition \([9]\), without requiring any additional counters or counter reversals, by transitioning to the DFA accepting \(L_c(q) \) when we reach the end of input at state \(q \).

\[\square\]

Corollary 9. Let \(l \in \mathbb{N} \). If \(L \in DCM(1, l) \), then \(\text{pref}(L) \in DCM(1, l) \).

In fact, the constructions of Propositions \([6, 9]\) can be generalized from NPCM to any class of automata that can be defined using Definition \([10]\). These classes of automata are described in more detail in \([18]\). We only define it in a way specific to our use in this paper. Only the first two conditions are required for Corollary \([11]\), while the third is required for Corollary \([13]\).

Definition 10. A family of languages \(\mathcal{F} \) is said to be reversal-bounded counter augmentable if

- every language in \(\mathcal{F} \) is effectively semilinear,
- given DCM machine \(M_1 \) with \(k \) counters, state set \(Q \) and final state set \(F \), and \(L_2 \in \mathcal{F} \), we can effectively construct, for each \(q \in Q \), the following language in \(\mathcal{F} \),

\[\{ a_1^{p_1} \cdots a_k^{p_k} \mid \exists x \in L_2 \text{ such that } (q, x \prec, p_1, \ldots, p_k) \vdash_{M_1} (q_f, \prec, p'_1, \ldots, p'_k), \]

\[p'_i \geq 0, 1 \leq i \leq k, q_f \in F \},\]
• given DCM machine M_1 with k counters, state set Q, initial state q_0, and $L_2 \in \mathcal{F}$, we can effectively construct, for each $q \in Q$, the following language in \mathcal{F},

$$\{a_1^{p_1} \cdots a_k^{p_k} \mid \exists x \in L_2 \text{ such that } (q_0, x, 0, \ldots, 0) \vdash_{M_1}^* (q, \lambda, p_1, \ldots, p_k)\}.$$

Corollary 11. Let $L_1 \in \text{DCM}$ and $L_2 \in \mathcal{F}$, a family of languages that is reversal-bounded counter augmentable. Then $L_1L_2^{-1} \in \text{DCM}$. Furthermore, if $L_1 \in \text{DCM}(1,l)$ for some $l \in \mathbb{N}$, then $L_1L_2^{-1} \in \text{DCM}(1,l)$.

There are many reversal-bounded counter augmentable families that L_2 could be from in this corollary, such as:

• MPCA’s: one-way machines with k pushdowns where values may only be popped from the first non-empty stack, augmented by a fixed number of reversal-bounded counters [18].

• TCA’s: nondeterministic Turing machines with a one-way read-only input and a two-way read-write tape, where the number of times the read-write head crosses any tape cell is finitely bounded, again augmented by a fixed number of reversal-bounded counters [18].

• QCA’s: NFA’s augmented with a queue, where the number of alternations between the non-deletion phase and the non-insertion phase is bounded by a constant [18], augmented by a fixed number of reversal-bounded counters.

• EPDA’s: embedded pushdown automata, modelled around a stack of stacks, introduced in [19] augmented by a fixed number of reversal-bounded counters. These accept the languages of tree-adjoining grammars, a semilinear subset of the context-sensitive languages. As was stated in [18], we can augment this model with a fixed number of reversal-bounded counters and still get an effectively semilinear family.

Finally, the construction of Proposition [8] can be used to show that deterministic one counter languages (non-reversal-bounded) are closed under right quotient with NCM.

Proposition 12. Let $L_1 \in \text{DCA}$, and let $L_2 \in \text{NCM}$. Then $L_1L_2^{-1} \in \text{DCA}$.

Proof. Again, the construction is similar to Proposition [8]. However, since the input machine for L_1 has only one counter, $L_c(q)$ is unary (regardless of the number of counters needed for L_2). Then $L_c(q)$ is unary and is indeed an NPCM language, as $M_c(q)$ simulates M_1, this time using the unrestricted pushdown to simulate the potentially non-reversal-bounded counter of M_1, while simulating M_2 on the reversal-bounded counters. Thus, because NPCM accept only semilinear languages [2], $L_c(q)$ is in fact a regular language and can be accepted by a DFA. M' can then be constructed to accept $L_1L_2^{-1}$ without requiring any additional counters or counter reversals by transitioning to the DFA accepting $L_c(q)$ when we reach the end of input at state q. \qed

Next, for the case of one-counter machines that makes only one counter reversal, it will be shown that a DCM-machine that can accept their suffix and infix languages can always be constructed. However, in some cases, these resulting machines often require more than one counter. Thus, unlike prefix, DCM$(1,1)$ is not closed under suffix, left quotient, or infix. But, the result is in DCM.

As the proof is quite lengthy, we will give some intuition for the result first. First, DCM is closed under union [2] (following from closure under intersection and complement) and so the second statement of Proposition [18] follows from the first. For the first statement, an intermediate NPCM machine is constructed from L_1 and L that accepts a language L_c. This language contains words of the form qa^i where there exists some word w such that both $w \in L_1$, and also from the initial configuration of M (accepting L), it can read w and reach state q with i on the counter. Then, it is shown that this language is actually a regular language, using the fact that all semilinear unary languages are regular. Then, DCM$(1,1)$ machines are created for every state q of M. These accept all words w such that $qa^i \in L_c$, and in M, from state q and counter i with w to read as input, M can reach a final state while emptying the counter. The fact that L_c is regular allows these machines to be created.
Proposition 13. Let \(L \in \text{DCM}(1, 1), L_1 \in \text{NPCM} \). Then \(L_1^{-1}L \) is the finite union of languages in \(\text{DCM}(1, 1) \). Furthermore, it is in \(\text{DCM} \).

Proof. For the first statement, let \(M_1 \) be an NPCM machine accepting \(L_1 \), and let \(M = (1, Q, \Sigma, \prec, \delta, q_0, F) \) be a 1-reversal bounded, 1-counter machine accepting \(L \). Let \(Q_1 \) be those states that \(M \) can be in after the counter reversal, plus those states that \(M \) can be in one transition before the counter reversal (for example, \((p, -1, T) \in \delta(q, c, 1) \) implies \(q, p \in Q_1 \)). Let \(Q_1 = Q - Q_1 \). We can assume without loss of generality that for all \(q \in Q_1 \), there is an increase in counter possible from any state reachable from \(q \) (if for example \(\delta(q, d, +) \) decreases and \(\delta(q, c, +) \) increases, then add a new state \(p \) and transition \((p, 0, S) \in \delta(q, d, +) \), and then \(p \in Q_1 \) and \(q \in Q_1 \)). Also, assume that for all states \(q \in Q_1 \) all stay transitions defined on \(q \) (except on \(\delta(q, \prec, 0) \)) change the counter (any stay transition that does not change the counter can be skipped over to either a right transition or a decrease transition). We can also assume that all \(q \in Q_1 \) are only used before a counter reversal. Lastly, assume without loss of generality that \(\delta(q, d, +) \) is defined for all \(q \in Q, d \in \Sigma \), and that the counter always empties before accepting.

Next, we create a NPCM machine \(M' \) that accepts

\[
L' = \{ qa^i | \exists w \in L_1, (q_0, w, 0) \triangleright_M (q, \lambda, i) \},
\]

where \(a \) is a new symbol not in \(\Sigma \). Indeed, \(M' \) operates by nondeterministically guessing a word \(w \), simulating in parallel, the NPCM machine \(M_1 \) using the pushdown and a set of counters, as well as simulating \(M \) on \(w \) on an additional counter. Then, after reading the last letter of the guessed \(w \), whenever \(M \) is in state \(q \), verify that the contents of the counter of \(M \) is \(i \) and that \(w \) is in \(L_1 \) by continuing the simulation of \(M_1 \) on the end-marker. Then, for each \(q \in Q \), the set \(q^{-1}L' \) is a unary NPCM language. Indeed, every NPCM language is semilinear \([2] \), and it is also known that every unary semilinear language is regular \([17] \), and effectively constructible. Thus, \(L' = \bigcup_{q \in Q} (q(q^{-1}L')) \) is regular as well. Let \(L^c = (Q', \Sigma \cup \{a\}, \delta', s_0', F') \) be a DFA accepting \(L' \). Assume without loss of generality that \(\delta' \) is a complete DFA.

We will create three sets of \(\text{DCM}(1, 1) \) machines and languages as follows:

1. \(M_0^q \), for all \(q \in Q \), and \(L_0^q = L(M_0^q) \). We will construct it such that

\[
L_0^q = \{ w | (q, w, <, 0) \triangleright_M (q_f, <, 0), q_f \in F, qa^0 = q \in L' \}. \tag{1}
\]

2. \(M_1^q \), for all \(q \in Q_1 \), and \(L_1^q = L(M_1^q) \). We will construct it such that

\[
L_1^q = \{ w | \exists i > 0, (q, w, <, i) \triangleright_M (q_f, <, 0), q_f \in F, qa^i \in L' \}. \tag{2}
\]

3. \(M_2^q \), for all \(q \in Q_1 \), and \(L_2^q = L(M_2^q) \). We will construct it such that

\[
L_2^q = \{ w | \exists i > 0, (q, w, <, i) \triangleright_M (q_f, <, 0), q_f \in F, qa^i \in L' \}. \tag{3}
\]

It is clear that

\[
L_1^{-1}L(M) = \bigcup_{q \in Q} L_0^q \cup \bigcup_{q \in Q_1} L_1^q \cup \bigcup_{q \in Q_2} L_2^q,
\]

and thus it suffices to build the \(\text{DCM}(1, 1) \) machines and show Equation (1), (2) and (3) hold.

First, for (1), construct \(M_0^q \) for \(q \in Q \) as follows: \(M_0^q \) operates just like \(M \) starting at state \(q \) if \(q \in L' \), and if \(q \not\in L' \), then it accepts \(\emptyset \). Hence, (1) is true.

Next, we will show (3) is true. It will be shown that \(L_2^q \) is a regular language. Then the construction and proof of correctness of (3) will be used within the proof and construction of (2). A slight generalization of (3) will be used in order to accommodate its use for (2). Despite the languages being regular, DCM machines will be constructed instead of finite automata, but without ever changing the counter, in order to maintain consistency and for ease of using the machines within the construction of (2). In fact, we will first construct intermediate \(\text{NCM}(1, 1) \) machines that do not use the counter accepting each \(L_2^q \) for each \(q \in Q_1 \). Therefore,
an NFA can be built accepting the same language, which can then be converted to a DFA accepting the same language using the subset construction, which could then be converted to a DCM(1,1) machine that never changes the counter. Intuitively, the machine will simulate M, but since M only uses transitions that either decrease or not change the counter, the NCM(1,1) machine keeps track of the number of decreases on the counter by using the DFA MF. That is, instead of decreasing from the counter, it instead reads the letter a from M in parallel. If M is in a final state, then the counter could be zero and reach that configuration. But the simulated machine M may only accept from configurations with larger counter values. Thus, the new machine uses nondeterminism to try every possible configuration where zero could occur on the counter, trying each to see if the rest of the input accepts (by directly simulating M).

We will give the construction here, then the proof of correctness of the construction. All the machines $M_i^{q,q'} \in \text{NCM}(1,1)$, for each $q \in Q_1, q' \in Q$ will have the same set of input alphabets, states, transitions, and final states, with only the initial state differing.

Formally, let $q \in Q_1, q' \in Q, q_0 = \hat{\delta}(s_0, q')$. Then $M_i^{q,q'} = (Q_i, P_i, \lesssim, \delta_i, s_i^{q,q'}, F_i)$, where $P_i = (Q \times Q_i) \cup Q_i, s_i^{q,q'} = (q, q_0), F_i = F$.

The transitions of δ_i are created (none using the counter) by the following algorithm:

1. For all transitions $(p, -1, S) \in \delta(r, d, 1), p, r \in Q_1, d \in \Sigma \cup \{<\}$, and all $r^c \in Q^c$, create
 $$((p, \delta^c(r^c, a)), 0, S) \in \delta_i((r, r^c), d, 0),$$
 and if $\delta^c(r^c, a) \in F^c$, create
 $$(p, 0, S) \in \delta_i((r, r^c), d, 0).$$
2. For all transitions $(p, 0, R) \in \delta(r, d, 1), p, r \in Q_1, d \in \Sigma$, and all $r^c \in Q^c$, create
 $$((p, r^c), 0, R) \in \delta_i((r, r^c), d, 0).$$
3. For all transitions $(p, -1, R) \in \delta(r, d, 1), p, r \in Q_1, d \in \Sigma$, and all $r^c \in Q^c$, create
 $$((p, \delta^c(r^c, a)), 0, R) \in \delta_i((r, r^c), d, 0),$$
 and if $\delta^c(r^c, a) \in F^c$, create
 $$(p, 0, R) \in \delta_i((r, r^c), d, 0).$$
4. For all transitions $(p, 0, R) \in \delta(r, d, 0), p, r \in Q_1, d \in \Sigma$, create
 $$(p, 0, R) \in \delta_i(r, d, 0).$$
5. For all transitions $(p, 0, S) \in \delta(r, <, 0), p, r \in Q_1$, create
 $$(p, 0, S) \in \delta_i(r, <, 0).$$

Claim 2. For all $q \in Q_1, q' \in Q$,

$$\{ w \mid \exists i > 0, (q, w, <, i) \vdash_M^* (q_f, <, 0), q_f \in F, q' a_i \in L^c \} \subseteq L(M_i^{q,q'}).$$

Proof. Let $q \in Q_1, q' \in Q$. Let w be such that there exists $i > 0, q_f \in F, q' a_i \in L^c$, and $(q, w, <, i) \vdash_M^* (q_f, <, 0)$. Let $p_j, x_j, 0 \leq j \leq m$ be such that $p_0 = q, w = w_0, x_0 = i, q_f = p_m, w_m = \lambda, x_m = 0$ and $(p_i, w_i <, x_i) \vdash_M (p_{i+1}, w_{i+1} <, x_{i+1}), 0 \leq i < m$, via transition t_{i+1}. Then

$$(p_0, w_0 <, x_0) \vdash_M^* (p_1, w_1 <, x_1) \vdash_M^* (p_m, w_m <, x_m),$$

where γ is the smallest number such that $x_\gamma < i$ (it exists since $i > 0$), and μ the smallest number greater than or equal to γ such that $x_\mu = 0$. 8
The transitions \(t_1, \ldots, t_{\gamma-1} \) are of the form, for \(0 \leq l < \gamma - 1 \), \((p_{l+1}, q_{l+1}, T_{l+1}) \in \delta(p_l, d_l, 1)\), where \(i \) is on the counter on all \(x_0, \ldots, x_{\gamma-1} \) (since \(x_0 = i \), and \(x_{\gamma} \) is the first counter value less than \(\gamma \)), and \(y_0, \ldots, y_{\gamma-1} \) are all equal to 0. These must all be right transitions since they do not change the counter and so they create transitions in step 2 of the construction, of the form

\[
((p_{l+1}, q_{l+1}^0), 0, R) \in \delta_1((p_l, q_l^0), d_l, 0),
\]

for \(0 \leq l < \gamma - 1 \). Then,

\[
((p_0, q_0^0), w_0 \prec, x_0 - i = 0) \vdash_{M_q^0} ((p_{\gamma-1}, q_{\gamma-1}^0), w_{\gamma-1} \prec, x_{\gamma-1} - i = 0).
\]

The transitions \(t_\gamma, \ldots, t_\mu \) are of the form, for \(\gamma - 1 \leq l < \mu \), \((p_{l+1}, y_{l+1}, T_{l+1}) \in \delta(p_l, d_l, 1)\), and for \(\gamma - 1 \leq l < \mu - 1 \) \((t_\mu \) is the last decreasing transition\), creates transitions in steps 1 or 2 and 3 of the form

\[
((p_{l+1}, q_{l+1}^\mu), 0, T_{l+1}) \in \delta_1((p_l, q_l^\mu), d_l, 0),
\]

for some \(q_l^\mu, q_{l+1}^\mu \in Q^c \).

Then,

\[
((p_{\gamma-1}, q_{\gamma-1}^0), w_{\gamma-1} \prec, 0) \vdash_{M_q^0} \cdots \vdash_{M_q^0} ((p_{\mu-1}, q_{\mu-1}^0), w_{\mu-1} \prec, 0),
\]

where there are exactly \(i - 1 \) decreasing transitions being simulated in this sequence. From \(q_{\mu-1}^\mu \), reading one more \(a \), \(\delta^r(q_{\mu-1}^\mu, a) \in F^c \) since \(q^a \in F^c \), and thus \((p_{l+1}, y_{l+1}, T_{l+1}) \in \delta(p_{\mu-1}, d_{\mu-1}, 1)\) creates \((p_{l+1}, y_{l+1}, T_{l+1}) \in \delta_1((p_{\mu-1}, q_{\mu-1}^\mu), d_{\mu-1}, 0)\) in step 1 or 2.

Then there remains transitions \(t_{\mu+1}, \ldots, t_m \), for \(\mu \leq l < m \) of the form \((p_{\mu+1}, 0, T_{l+1}) \in \delta(p_l, d_l, 0)\). These transitions are all in \(\delta^r \) and thus

\[
(p_{\mu}, w_{\mu} \prec, 0) \vdash_{M_q^0} (p_{\mu} = q_f, \prec, 0),
\]

and hence \(w \in L(M_q^0) \).

\[\square\]

Claim 3. For all \(q \in Q_1, q' \in Q \),

\[
L(M_q^0) \subseteq \{ w \mid \exists i > 0, (q, w \prec, i) \vdash^{*}_M (q_f, \prec, 0), q_f \in F, q' a^i \in L^c \}.
\]

Proof. Let \(w \in L(M_q^0), q \in Q_1, q' \in Q \). Let \(\mu (\mu \) is the last position of the derivation with an ordered pair as state\), \(p_l, w_l, 0 \leq l \leq m \), and \(q_{\mu}, 0 \leq j \leq \mu \) be such that \(p_0 = q, w_0 = w, w_m = \lambda, q_m \in F \), and

\[
((p_{l+1}, q_{l+1}^0), w_{l+1} \prec, 0) \vdash_{M_q^0} ((p_{l+1}, q_{l+1}^0), w_{l+1} \prec, 0),
\]

for \(0 \leq l < \mu \), via transition \(t_{l+1} \) of the form \((p_{l+1}, q_{l+1}^\mu), 0, T_{l+1}) \in \delta_1((p_l, q_l^\mu), d_l, 0)\), and

\[
((p_{\mu}, q_{\mu}^0), w_{\mu} \prec, 0) \vdash_{M_q^0} (p_{\mu+1}, w_{\mu+1} \prec, 0),
\]

via transition \(t_{\mu+1} \) of the form \((p_{\mu+1}, 0, T_{\mu+1}) \in \delta_1((p_{\mu}, q_{\mu}^\mu), d_{\mu}, 0)\) and

\[
(p_{l+1}, w_{l+1} \prec, 0) \vdash_{M_q^0} (p_{l+1}, w_{l+1} \prec, 0),
\]

for \(\mu + 1 \leq l < m \) via transitions \(t_{l+1} \) of the form \((p_{l+1}, 0, T_{l+1}) \in \delta_1(p_l, d_l, 0)\). Let \(i \) be the number of times transitions created in step 1 or 2 are applied. Then by the transition \(t_{\mu+1} \), this implies \(q' a^i \in F^c \). Then, this implies that there are transitions \((p_{l+1}, y_{l+1}, T_{l+1}) \in \delta(p_l, d_l, 1)\), for all \(l, 0 \leq l \leq \mu \), with \(i \) decreasing transitions and \((p_{l+1}, 0, T_{l+1}) \in \delta(p_l, d_l, 0)\), for all \(l, \mu + 1 \leq l < m \), by the construction. Hence, the claim follows. \[\square\]
We let $M^{q,q'} = (1, Q^{q,q'}, <, \Sigma, \delta^{q,q'}, s^{q,q'}, F^{q,q'})$ be a DCM$(1, 1)$ machine (that is hence deterministic) accepting $L(M^{q,q'})$ that never uses the counter, which can be created since it is regular. Assume all the sets of states of different machines $Q^{q,q'}$ are disjoint.

Then, to prove Equation (3), only sets $L^{q}_\downarrow = q \in Q_\downarrow$ need to be considered, and they are all indeed regular.

The construction for M_1^{q} will be given next, and it will use the transitions from the machines $M^{q,q}_t$ within it. Intuitively, M_1^{q} will simulate computations that would start from configuration $(q, u \prec i, i)$ by starting instead at 0, all transitions that occurred in M from i to the maximum value of the counter, α, and back to i again after the reversal, M_1^{q} simulates from $(q, u \prec 0, i)$ to a maximum of $\alpha - i$, back to 0 again at a configuration $(r, u'\prec 0)$. Then, M_1^{q} uses the machine $M^{q,q}_t$ to test if the rest of the input can be accepted starting at r with any counter value that can reach q by using words in L^c that start with q.

Formally, for $q \in Q_q$, $M_1^{q} = (1, P_1, <, \Sigma, \delta_t, s_t, F_t)$, where $P_1 = Q \cup \bigcup_{q \in Q_\downarrow} Q^{q,q}_r$, $F_t = \bigcup_{q \in Q_\downarrow} F^{r,q}_t$, where Q is disjoint from other states.

The transitions of δ_t are created by the following algorithm:

1. For all transitions $(p, y, T) \in \delta_t(r, d, 1), p, r \in Q, \alpha \in \Sigma \cup \{\prec\}, T \in \{S, R\}, y \in \{-1, 0, 1\}$, create $(p, y, T) \in \delta_t(r, d, e), e = 0$ if $r \in Q_1$,

2. Create $(s^{q,q}_t, 0, S) \in \delta_t(r, d, 0)$, for all $d \in \Sigma \cup \{\prec\}$, and for all $r \in Q_4$,

3. Add all transitions from $M^{q,q}_t, s \in Q_4$. Indeed, M_1^{q} is deterministic as those transitions created in step 1 are in M, and $M^{q,q}_t$ is deterministic, for all s, p.

Claim 4. For all $q \in Q_1$,

$$\{ w \mid \exists i > 0, (q, w \prec i, i) \vdash M^t (q_f, \prec, 0), q_f \in F, qa^i \in L^c \} \subseteq L_1^q.$$

Proof. Let $q \in Q_1$. Let w be such that there exists $i > 0, q_f \in F, qa^i \in L^c$, and $(q, w \prec, i) \vdash M (q_f, \prec, 0)$. Let $p_0, w_\beta, x_j, 0 \leq j \leq m$ be such that $p_0 = q, w = w_0, x_0 = i, q_f = p_m, \lambda = w_m, x_m = 0$ and $(p_i, w_i \prec, x_i) \vdash M^t (p_{i+1}, w_{i+1} \prec, x_{i+1}), 0 \leq i \leq m$, via transition t_{i+1}. Assume that there exists $\alpha > 1$ such that $x_\alpha > i$, and let α be the smallest such number. Then, there exists $(p_0, w_0 \prec, x_0) \vdash M^t (p_\alpha, w_\alpha \prec, x_\alpha) \vdash M^t (p_\beta, w_\beta \prec, x_\beta) \vdash M^t (p_m, w_m \prec, x_m)$, where β is smallest number bigger than α such that $x_\beta = i$. In this case, in step 1 of the algorithm, transitions t_1, \ldots, t_α of the form $(p_i, y_i, T_i) \in \delta_t(p_{i-1}, d_{i-1}, 1), 0 < l \leq \alpha$, create transitions of the form $(p_i, y_i, T_i) \in \delta_t(p_{i-1}, d_{i-1}, 0)$, and thus $(p_0, w_0 \prec, x_0 - i = 0) \vdash M^t (p_{\alpha-1}, w_{\alpha-1} \prec, x_{\alpha-1} - i = 0) \vdash M^t (p_m, w_m \prec, x_m)$, where $x_m - i > 0$.

In step 1 of the algorithm, transitions $t_{\alpha+1}, \ldots, t_\beta$ of the form $(p_i, y_i, T_i) \in \delta_t(p_{i-1}, d_{i-1}, 1), \alpha < l \leq \beta$ create transitions of the form $(p_i, y_i, T_i) \in \delta_t(p_{i-1}, d_{i-1}, 1)$. Thus, $(p_0, w_0 \prec, x_0 - i) \vdash M^t (p_\beta, w_\beta \prec, x_\beta - i = 0)$, since $x_\alpha - i, \ldots, x_\beta - i$ are all greater than 0. Then, using transitions of type 2 $(p_\beta, w_\beta \prec, x_\beta) \vdash M^t (s^{q,q}_t, w_\beta \prec, x_\beta \prec, 0)$. Then since $(p_\beta, w_\beta \prec, x_\beta) \vdash M (p_m, \prec, 0, p_m \in F$, and $p_\beta \in Q_4, qa^i \in L^c$, then $w \in L_4^{q,q}_t$, by Claim 2. Hence,

$$(s^{q,q}_t, w_\beta \prec, 0) \vdash M^{q,q}_t (q_f', \prec, 0).$$
Let $q_f' \in F$, and therefore, this occurs in M_1^c as well.

Lastly, the case where there does not exist an $\alpha > i$ such that $x_\alpha > i$ (thus i is the highest value in counter) is similar, by applying transitions of type 1 until the transitions before the first decrease (the first time a state from Q_1 is reached), then a transitions of type 2 followed by a sequence of type 3 transitions as above.

Claim 5. For all $q \in Q_1$,
\[
L_q^2 \subseteq \{w \mid \exists i > 0, (q, w \leq i, i) \vdash^*_{M} (q_f, \ell, 0), q_f \in F, qa^i \in L^c\}.
\]

Proof. Let $w \in L(M_2^q)$. Then
\[
(q, w \leq i, 0) \vdash^*_{M} (q', w' \leq i, 0) \vdash^*_{M^q} ((q', \delta^c(s_0, q)), w' \leq i, 0) \vdash^*_{M} (q_f', \ell, 0),
\]
where $q_f' \in F^q\alpha$. Let $p_i, p, w_i, x_i, 0 \leq l \leq \beta$ be such that $p_0 = q, w_0 = w, x_0 = 0, q' = p_\beta, w' = w_\beta, x_\beta = 0$ such that $(p_i, w_i \leq x_i) \vdash^*_{M^q} (p_{i+1}, w_{i+1} \leq x_{i+1}), 0 \leq l < \beta$.

Then $w' \in L_q^2$, and therefore by Claim 3 there exists $i > 0$ such that $(q', w' \leq i, i) \vdash^*_{M} (q_f, \ell, 0), q_f \in F, qa^i \in L^c$. By the construction in step 1
\[
(p_0, w_0 \leq x_0 + i) \vdash^*_{M} \cdots \vdash^*_{M} (p_\beta, w_\beta \leq x_\beta + i),
\]
and since $x_0 = x_\beta = 0$ and $w' = w_\beta$ and $q' = p_\beta$, then $(q, w \leq i, i) \vdash^*_{M} (q_f, \ell, 0)$ and $qa^i \in L^c$ and the claim follows.

Hence, Equation 2 holds.

It is also known that DCM is closed under union (by increasing the number of counters). Therefore, the finite union is in DCM.

From this, we obtain the following general result.

Theorem 14. Let $L \in \text{DCM}(1, 1), L_1, L_2 \in \text{NPCM}$. Then both $(L_1^{-1}L)L_2^{-1}$ and $L_1^{-1}(L_2L_2^{-1})$ are a finite union of languages in DCM$(1, 1)$. Furthermore, both languages are in DCM.

Proof. It will first be shown that $(L_1^{-1}L)L_2^{-1}$ is the finite union of languages in DCM$(1, 1)$. Indeed, $L_1^{-1}L$ is the finite union of languages in DCM$(1, 1), 1 \leq i \leq k$ by Proposition 10 and so $L_1^{-1}L = \bigcup_{i=1}^{k} X_i$ for $X_i \in \text{DCM}(1, 1)$. Further, for each $i, X_iL_2^{-1}$ is the finite union of DCM$(1, 1)$ languages by Proposition 8.

It remains to show that $\bigcup_{i=1}^{k} X_iL_2^{-1} = (L_1^{-1}L)L_2^{-1}$. If $w \in \bigcup_{i=1}^{k} X_iL_2^{-1}$, then $w \in X_iL_2^{-1}$ for some $i, 1 \leq i \leq k$; then $w_1 \in X_i, y \in L_2$. Then $w_1 \in L_1^{-1}L$, and $w \in (L_1^{-1}L)L_2^{-1}$. Conversely, if $w \in (L_1^{-1}L)L_2^{-1}$, then $w_1 \in L_1^{-1}L$ for some $y \in L_2$. So $w_1 \in X_i$ for some $i, 1 \leq i \leq k$, and thus $w \in X_iL_2^{-1}$.

For $L_1^{-1}(L_2L_2^{-1})$, it is true that $L_2L_2^{-1}$ is in DCM$(1, 1)$ by Proposition 8. Then $L_1^{-1}(L_2L_2^{-1})$ is the finite union of DCM$(1, 1)$ by Proposition 13.

It is also known that DCM is closed under union (by increasing the number of counters). Therefore, both finite unions are in DCM.

And, as with Corollary 11, this can be generalized to any language families that are reversal-bounded counter augmentable.
Corollary 15. Let \(L \in \mathrm{DCM}(1,1) \), \(L_1 \in \mathcal{F}_1 \), \(L_2 \in \mathcal{F}_2 \), where \(\mathcal{F}_1 \) and \(\mathcal{F}_2 \) are any families of languages that are reversal-bounded counter augmentable. Then \((L_1^{-1})L_2^{-1}\) and \(L_1^{-1}(LL_2^{-1})\) are both a finite union of languages in \(\mathrm{DCM}(1,1) \). Furthermore, both languages are in \(\mathrm{DCM} \).

As a special case, when using the fixed regular language \(\Sigma^* \) for the right and left quotient, we obtain:

Corollary 16. Let \(L \in \mathrm{DCM}(1,1) \). Then \(\text{suffix}(L) \) and \(\text{inf}(L) \) are both \(\mathrm{DCM} \) languages.

It is however necessary that the number of counters increase to accept \(\text{suffix}(L) \) and \(\text{inf}(L) \), for some \(L \in \mathrm{DCM}(1,1) \). The result also holds for the outfix operator.

Proposition 17. There exists \(L \in \mathrm{DCM}(1,1) \) where all of \(\text{suffix}(L), \text{inf}(L), \text{outfix}(L) \) are not in \(\mathrm{DCM}(1,1) \).

Proof. Assume otherwise. Let \(L = \{a^nb^nc^n \mid n \geq 0\}, L_1 = \{a^nb^nc^k \mid n, k \geq 0\}, L_2 = \{a^nb^mc^m \mid n, m \geq 0\} \). Let \(\Sigma = \{a, b, c\} \) and \(\Gamma = \{d, e, f\} \).

It is well-known that \(L \) is not a context-free language, and therefore is not a \(\mathrm{DCM}(1,1) \) language. However, each of \(L_1, L_2, L_3 \) are \(\mathrm{DCM}(1,1) \) languages, and therefore, so are \(L_1 \cap L_2, L_2 \cap L_3, L_1 \cap L_3 \) (all complements over \(\Sigma^* \)). It can also be seen that \(L = L_1 \cup L_2 \cup L_3 \).

But \(\text{suffix}(L') \cap \#_1 \Sigma^* \#_2 \neq \text{inf}(L') \cap \#_1 \Sigma^* \#_2 = \text{outfix}(L') \cap \#_1 \Sigma^* \#_2 = \#_1 L \#_2 \), and since \(\mathrm{DCM}(1,1) \) is closed under intersection with regular languages and left and right quotient by a symbol, and complement, this implies \(L \) is a \(\mathrm{DCM}(1,1) \) language, a contradiction. \(\square \)

4. Non-Closure Under Suffix, Infix and Outfix for Multi-Counter and Multi-Reversal Machines

In \([8]\), a technique was used to show languages are not in \(\mathrm{DCM} \) and \(\mathrm{2DCM}(1) \) simultaneously. The technique uses undecidable properties to show non-closure. As \(\mathrm{2DCM}(1) \) machines have two-way input and a reversal-bounded counter, it is difficult to derive “pumping” lemmas for these languages. Furthermore, unlike \(\mathrm{DCM} \) and \(\mathrm{NCM} \) machines, \(\mathrm{2DCM}(1) \) machines can accept non-semilinar languages. For example, \(L_1 = \{a^ib^i \mid i \geq 2, i \text{ divides } k\} \) can be accepted by a \(\mathrm{2DCM}(1) \) whose counter makes only one reversal. However, \(L_2 = \{a^ib^ic^k \mid i, j, k \geq 2, k = ij\} \) cannot be accepted by a \(\mathrm{2DCM}(1) \) \([14]\). This technique from \([8]\) works as follows. The proof uses the fact that there is a recursively enumerable but not recursive language \(L_{\text{re}} \subseteq \mathbb{N}_0 \) that is accepted by a deterministic 2-counter machine \([20]\). Thus, the machine when started with \(n \in \mathbb{N}_0 \) in the first counter and zero in the second counter, eventually halts (i.e., accepts \(n \in L_{\text{re}} \)).

Examining the constructions in \([20]\) of the 2-counter machine demonstrates that the counters behave in a regular pattern. Initially one counter has some value \(d_1 \) and the other counter is zero. Then, the machine’s operation can be divided into phases, where each phase starts with one of the counters equal to some positive integer \(d_i \) and the other counter equals 0. During the phase, the positive counter decreases, while the other counter increases. The phase ends with the first counter containing 0 and the other counter containing \(d_{i+1} \). In the next phase, the modes of the counters are interchanged. Thus, a sequence of configurations where the phases are changing will be of the form:

\[(q_1, d_1, 0), (q_2, 0, d_2), (q_3, d_3, 0), \ldots\]

where the \(q_i \)'s are states, with \(q_1 = q_0 \) (the initial state), and \(d_1, d_2, d_3, \ldots \) are positive integers. The second component of the configuration refers to the value of the first counter, and the third component refers to the value of the second. Also, notice that in going from state \(q_i \) in phase \(i \) to state \(q_{i+1} \) in phase \(i + 1 \), the 2-counter machine goes through intermediate states.

For each \(i \), there are 5 cases for the value of \(d_{i+1} \) in terms of \(d_i \): \(d_{i+1} = d_i, 2d_i, 3d_i, d_i/2, d_i/3 \) (the division operation only occurs if the number is divisible by 2 or 3, respectively). The case applied is determined by \(q_i \). Hence, a function \(h \) can be defined such that if \(q_i \) is the state at the start of phase \(i \), \(d_{i+1} = h(q_i)d_i \), where \(h(q_i) \) is one of 1, 2, 3, 1/2, 1/3.

Let \(T \) be a 2-counter machine accepting a recursively enumerable language that is not recursive. Assume that \(q_1 = q_0 \) is the initial state, which is never re-entered, and if \(T \) halts, it does so in a unique state \(q_h \). Let \(Q \) be the states of \(T \), and 1 be a new symbol.
In what follows, \(\alpha \) is any sequence of the form \(#1\#1\# \cdots \#1#m\#\) (thus we assume that the length is even), where for each \(i, 1 \leq i \leq 2m \), \(I_i = q1^k \) for some \(q \in Q \) and \(k \geq 1 \), represents a possible configuration of \(T \) at the beginning of phase \(i \), where \(q \) is the state and \(k \) is the value of the first counter (resp., the second) if \(i \) is odd (resp., even).

Define \(L_0 \) to be the set of all strings \(\alpha \) such that
1. \(\alpha = \#1\#1\# \cdots \#1#m\# \);
2. \(m \geq 1 \);
3. for \(1 \leq j \leq 2m - 1 \), \(I_j \Rightarrow I_{j+1} \), i.e., if \(T \) begins in configuration \(I_j \), then after one phase, \(T \) is in configuration \(I_{j+1} \) (i.e., \(I_{j+1} \) is a valid successor of \(I_j \));

 Then, the following was shown in [8].

Lemma 18. \(L_0 \) is not in \(\text{DCM} \cup \text{2DCM}(1) \).

We will use this language exactly to show taking either the suffix, infix or outfix of a language in \(\text{DCM}(1,3), \text{DCM}(2,1) \) or \(\text{2DCM}(1) \) can produce languages that are in neither \(\text{DCM} \) nor \(\text{2DCM}(1) \).

Theorem 19. There exists a language \(L \in \text{DCM}(1,3) \) (respectively \(L \in \text{DCM}(2,1) \), and \(L \in \text{2DCM}(1) \) that makes no turn on the input and 3 reversals on the counter) such that \(\text{suff}(L) \notin \text{DCM} \cup \text{2DCM}(1) \), \(\text{inf}(L) \notin \text{DCM} \cup \text{2DCM}(1) \), and \(\text{outf}(L) \notin \text{DCM} \cup \text{2DCM}(1) \).

Proof. Let \(L_0 \) be the language defined above, which is not in \(\text{DCM} \cup \text{2DCM}(1) \). Let \(a, b \) be new symbols. Clearly, \(bL_0b \) is also not in \(\text{DCM} \cup \text{2DCM}(1) \). Let \(L = \{ab\#I_1\#I_2\# \cdots \#I_{2m}\#b \mid I_1, \ldots, I_{2m} \text{ are configurations of the 2-counter machine } T, \text{ and } I_j \Rightarrow I_{j+1} \text{ is not a valid successor of } I_j \} \). Clearly \(L \) is in \(\text{DCM}(1,3) \), in \(\text{DCM}(2,1) \), and in \(\text{2DCM}(1) \) (as \(\text{DCM}(1,3) \) is a subset of \(\text{2DCM}(1) \)).

Let \(L_1 \) be \(\text{suff}(L) \). Suppose \(L_1 \) is in \(\text{DCM} \) (resp., \(\text{2DCM}(1) \)). Then \(L_2 = \overline{L_1} \) is also in \(\text{DCM} \) (resp., \(\text{2DCM}(1) \)).

Let \(R = \{b\#I_1\#I_2\# \cdots \#I_{2m}\#b \mid I_1, \ldots, I_{2m} \text{ are configurations of } T \} \). Then since \(R \) is regular, \(L_3 = L_2 \cap R \) is in \(\text{DCM} \) (resp, \(\text{2DCM}(1) \)). We get a contradiction, since \(L_3 = bL_0b \).

Non-closure under infix and outfix can be shown similarly. \(\Box \)

This implies non-closure under left-quotient with regular languages, and this result also extends to the embedding operation, a generalization of outfix.

Corollary 20. There exists \(L \in \text{DCM}(1,3) \) (respectively \(L \in \text{DCM}(2,1) \), and \(L \in \text{2DCM}(1) \) that makes no turn on the input and 3 reversals on the counter), and \(R \in \text{REG} \) such that \(R^{-1}L \notin \text{DCM} \cup \text{2DCM}(1) \).

Corollary 21. Let \(m > 0 \). Then there exists \(L \in \text{DCM}(1,3) \) (respectively \(L \in \text{DCM}(2,1) \), \(L \in \text{2DCM}(1) \) that makes no turn on the input and 3 reversals on the counter) such that \(\text{emb}(L, m) \notin \text{DCM} \cup \text{2DCM}(1) \).

The results of Theorem 19 and Corollary 20 are optimal for suffix and infix as these operations applied to \(\text{DCM}(1,1) \) are always in \(\text{DCM} \) by Corollary 16 (and since \(\text{DCM}(1,2) = \text{DCM}(1,1) \)). But whether the outfix and embedding operations applied to \(\text{DCM}(1,1) \) languages is always in \(\text{DCM} \) is an open question.

5. Closure and Non-Closure for NPCM, DPCM, and DPDA

To start, we consider quotients of nondeterministic classes, then use these results for contrast with deterministic classes.

Proposition 22. Let \(L_1 \) and \(L_2 \) be classes of languages where \(L_1 \) is a full trio closed under intersection with languages in \(L_2 \), and if \(\Sigma \) is an alphabet, \(\# \) is a new symbol, then \(L \in L_2 \) implies \(\Sigma^*\#L, L\#\Sigma^* \in L_2 \). Then \(L_1 \) is closed under left and right quotient with \(L_2 \).
Proof. For right quotient, let $L_1 \in \mathcal{L}_1$, $L_2 \in \mathcal{L}_2$. If $L_1 \in \mathcal{L}_1$, then using an inverse homomorphism, and intersection with a regular language, it follows that $L'_1 = \{xy \mid xy \in L_1\}$ is also in \mathcal{L}_1. Let $L'_2 = \Sigma^*#L_2 \in \mathcal{L}_2$. Then $L = L'_1 \cap L'_2 \in \mathcal{L}_1$. Then, as every full trio is closed under gsm mappings, it follows that $L_1L_2^{-1} \in \mathcal{L}_1$ by erasing everything starting at the # symbol.

Similarly with left quotient.

\[\blacksquare \]

Corollary 23. NPCM (NCM respectively) is closed under left and right quotient with NCM.

This follows since NPCM is a full trio closed under intersection with NCM \footnote{\cite{17}}, and NCM is closed under concatenation.

The question remains as to whether this is also true for deterministic machines instead. For machines with a stack, we have:

Proposition 24. The right quotient of a DPDA(1) language (i.e., deterministic linear context-free) with a DCM(2,1) language is not necessarily an NPDA language.

Proof. Take the DPDA(1) language $L_1 = \{d^i c^j b^i a^k c^j d^i \mid i, j, k > 0\}$. Take the DCM(2,1) language $L_2 = \{a^i b^j c^i d^j \mid i, j > 0\}$. This is clearly a non-context-free language that is in DCM(2,1). However, $L_1L_2^{-1} = L_2^R$, which is also not context-free.

Next we see that, in contrast to DCM and DPDA, DPCM is closed under neither prefix nor suffix. Indeed, both DCM and DPDA are closed under prefix (and right quotient with regular sets), but not left quotient with regular sets. Yet combining their stores into one type of machine yields languages that are closed under neither.

Proposition 25. DPCM is not closed under prefix or suffix.

Proof. Assume otherwise. Let L be a language in NCM(1,1) that is not in DPCM, which was shown to exist \footnote{\cite{21}}. Let M be an NCM(1,1) machine accepting L. Let T be a set of labels associated bijectively with transitions of M. Consider the language $L' = \{t_1 \cdots t_m \# w \mid M$ accepts w via transitions $t_1, \ldots, t_m\}$. This language is in DPCM since a machine M' can be built that first pushes $t_m \cdots t_1$, and then simulates M deterministically on transitions t_1, \ldots, t_m while popping from the pushdown, while reading w. Then $\text{pref}(L') \cap \Sigma^*\# = \emptyset$, a contradiction, as DPCM is clearly closed under left quotient with a single symbol.

Similarly for prefix, consider L'^R, and create a machine M'^R accepting L'^R, which is possible since NCM(1,1) is closed under reversal. Then $L'' = \{w\# t_1 \cdots t_m \mid M'^R$ accepts w via $t_1, \ldots, t_m\}$. This is also a DPCM language as one can construct a machine M'' that pushes w, then while popping w letter-by-letter, simulates M deterministically on transitions t_1, \ldots, t_m on w. Then $\text{pref}(L'') \cap \Sigma^*\# = \emptyset$, a contradiction, as DPCM is clearly closed under right quotient with a single symbol.

\[\blacksquare \]

Corollary 26. DPCM is not closed under right or left quotient with regular sets.

Thus, the deterministic variant of Corollary \footnote{\cite{23}} gives non-closure.

The following is also evident from the proof of the proposition above.

Corollary 27. Every NCM language can be obtained by taking the right quotient (resp. left quotient) of a DPCM language by a regular language.

The statement of this corollary cannot be weakened to taking the quotients of a DPDA with a regular language, since DPDA is closed under right quotient with regular languages \footnote{\cite{17}}.

Lastly, we will address the question of whether the left or right quotient of a DPDA language with a DCM language is always in DPCM.

Proposition 28. The right quotient (resp. left quotient) of a DPDA(1) language with a DCM(1,1) language can be outside DPCM.
Proof. To start, it is known that there exists an NCM(1, 1) language that is not in DPCM \[21\]. Let \(L \) be such a language, and let \(M \) be a NCM(1, 1) machine accepting \(L \). Then \(L^R \) is also an NCM(1, 1) language, and let \(M^R \) be an NCM(1, 1) machine accepting it. Let \(T \) be a set of labels associated bijectively with transitions of \(M^R \).

Then, we can create a DCM(1, 1) machine \(M' \) accepting words in \(\#(\Sigma \cup T)^* \) such that after reading \(\# \), \(M' \) simulates \(M^R \) deterministically by reading a label \(t \in T \) before simulating \(t \) deterministically. That is, if \(M' \) reads a letter \(a \in \Sigma \), \(M' \) stores it in a buffer, and if \(M' \) reads a letter \(t \in T \), \(M' \) simulates \(M^R \) on the letter \(a \) in the buffer using transition \(t \), completely deterministically. Then if \(t \neq \) a stay transition, the next letter must be in \(T \), and the buffer stays intact, whereas if \(t \) is a right transition, then the buffer is cleared, and the next letter must be in \(\Sigma \). It is clear then that if \(h \) is a homomorphism that erases letters of \(T \) and fixes letters of \(\Sigma \), then \(h(L(M')) = L(M^R) \).

Then, consider the language \(L_1 = \{ w\#x \mid w \in \Sigma^*, x \in (\Sigma \cup T)^*, h(x) = w^R \} \). Then \(L_1 \in \text{DPDA}(1) \).

Consider \(L_2 = L_1 L(M')^{-1} \). Then \(L_2 = \{ w \mid w \in \Sigma^*, \text{there exists } x \in (\Sigma \cup T)^* \text{ such that } h(x) = w^R, \text{ and } h(x) \in L(M^R) \} \). Hence, \(L_2 = \{ w \mid w \in \Sigma^*, \text{and } \text{there exists } x \in (\Sigma \cup T)^* \text{ such that } h(x) = w^R \in L(M^R) \} = L_1 \), which is not in DPCM.

Similarly for left quotient by using the DPDA(1) language \(L_1 = \{ x\#w \mid w \in \Sigma^*, x \in (\Sigma \cup T)^* \} \). \(\square \)

The following is also evident from the proof above.

Corollary 29. Every NCM language can be obtained by taking the right quotient (resp. left quotient) of a DPDA(1) language by a DCM language.

Again, this statement cannot be weakened to the right quotient of a DPDA with a regular language since DPDA languages are closed under right quotient with regular languages \[16\].

6. Right and Left Quotients of Regular Sets

Let \(\mathcal{F} \) be any family of languages (which need not be recursively enumerable). It is known that REG is closed under right quotient by languages in \(\mathcal{F} \) \[11\]. However, this closure need not be effective, as it will depend on the properties of \(\mathcal{F} \). The following is an interesting observation which connects decidability of the emptiness problem to effectiveness of closure under right quotient:

Proposition 30. Let \(\mathcal{F} \) be any family of languages which is effectively closed under intersection with regular sets and whose emptiness problem is decidable. Then REG is effectively closed under both left and right quotient by languages in \(\mathcal{F} \).

Proof. We will start with right quotient.

Let \(L_1 \in \text{REG} \) and \(L_2 \) be in \(\mathcal{F} \). Let \(M \) be a DFA accepting \(L_1 \). Let \(q \) be a state of \(M \), and \(L_q = \{ y \mid M \text{ from initial state } q \text{ accepts } y \} \). Let \(Q' = \{ q \mid q \text{ is a state of } M, L_q \cap L_2 \neq \emptyset \} \). Since \(\mathcal{F} \) is effectively closed under intersection with regular sets and has a decidable emptiness problem, \(Q' \) is computable. Then a DFA \(M' \) accepting \(L_1 L_2^{-1} \) can be obtained by just making \(Q' \) the set of accepting states in \(M \).

Next, for left quotient, let \(L_1 \) be in \(\mathcal{F} \), and \(L_2 \) in \(\text{REG} \) be accepted by a DFA \(M \) whose initial state is \(q_0 \).

Let \(L_q = \{ x \mid M \text{ on input } x \text{ ends in state } q \} \). Let \(Q' = \{ q \mid L_q \cap L_1 \neq \emptyset \} \). Then \(Q' \) is computable, since \(\mathcal{F} \) is effectively closed under intersection with regular sets and has a decidable emptiness problem.

We then construct an NFA (with \(\lambda \)-transitions) \(M' \) to accept \(L_2^{-1} L_1 \) as follows: \(M' \) starting in state \(q_0 \) with input \(y \) nondeterministically goes to a state \(q \) in \(Q' \) without reading any input, and then simulates the DFA \(M \).

\(\square \)

Corollary 31. REG is effectively closed under left and right quotient by languages in:

1. the families of languages accepted by NPCM and 2DCM(1) machines,
2. the family of languages accepted by MPCAs, TCA's, QCAs, and EPDAs,
3. the families of ET0L and Indexed languages.

Proof. These families are closed under intersection with regular sets. They have also a decidable emptiness problem [18, 22, 23]. The family of ET0L languages and Indexed languages are discussed further in 23 and respectively.

□

7. Closure for Bounded Languages

In this subsection, deletion operations applied to bounded and letter-bounded languages will be examined. We will need the following corollary to Theorem 4.

Corollary 32. Let \(L \subseteq \#a^*\# \) be accepted by a 2NCM. Then \(L \) is regular.

Theorem 33. If \(L \) is a bounded language accepted by either a finite-crossing 2NCM, an NPCM or a finite-crossing 2DPCM, then all of \(\text{pref}(L) \), \(\text{suff}(L) \), \(\text{inf}(L) \), \(\text{outf}(L) \) can be accepted by a DCM.

Proof. By Theorem 3, \(L \) can always be converted to an NCM. Further, one can construct NCM’s accepting \(\text{pref}(L) \), \(\text{suff}(L) \), \(\text{inf}(L) \), \(\text{outf}(L) \) since one-way NCM is closed under prefix, suffix, infix and outfix. In addition, it is known that applying these operations on bounded languages produce only bounded languages. Thus, by another application of Theorem 3, the result can then be converted to a DCM.

□

The “finite-crossing” requirement in the theorem above is necessary:

Proposition 34. There exists a letter-bounded language \(L \) accepted by a 2DCM(1) machine which makes only one reversal on the counter such that \(\text{suff}(L) \) (resp., \(\text{inf}(L) \), \(\text{outf}(L) \), \(\text{pref}(L) \)) is not in \(\text{DCM} \cup 2\text{DCM}(1) \).

Proof. Let \(L = \{a^i#b^j# \mid i, j \geq 2, j \text{ is divisible by } i \} \). Clearly, \(L \) can be accepted by a 2DCM(1) which makes only one reversal on the counter. If \(\text{suff}(L) \) is in \(\text{DCM} \cup 2\text{DCM}(1) \), then \(L' = \text{suff}(L) \cap #b^+\# \) would be in \(\text{DCM} \cup 2\text{DCM}(1) \). From Corollary 32, we get a contradiction, since \(L' \) is not semilinear. The other cases are shown similarly.

□

References

[1] B. S. Baker, R. V. Book, Reversal-bounded multipushdown machines, Journal of Computer and System Sciences 8 (3) (1974) 315–332.
[2] O. H. Ibarra, Reversal-bounded multicounter machines and their decision problems, Journal of the ACM 25 (1) (1978) 116–133.
[3] O. H. Ibarra, On strong reversibility in P Systems and related problems, International Journal of Foundations of Computer Science 22 (01) (2011) 7–14.
[4] O. H. Ibarra, J. Su, Z. Dang, T. Bultan, R. A. Kemmerer, Counter machines and verification problems, Theoretical Computer Science 289 (1) (2002) 165–189.
[5] R. Alur, J. V. Deshmukh, Nondeterministic streaming string transducers, in: L. Aceto, M. Henzinger, J. Sgall (Eds.), Automata, Languages and Programming, Vol. 6756 of Lecture Notes in Computer Science, Springer Berlin Heidelberg, 2011, pp. 1–20.
[6] M. Hague, A. W. Lin, Model checking recursive programs with numeric data types, in: G. Gopalakrishnan, S. Qadeer (Eds.), Computer Aided Verification, Vol. 6806 of Lecture Notes in Computer Science, Springer Berlin Heidelberg, 2011, pp. 743–759.
[7] G. Xie, Z. Dang, O. H. Ibarra, A solvable class of quadratic diophantine equations with applications to verification of infinite-state systems, in: J. C. Baeten, J. K. Lenstra, J. Parrow, G. J. Woeginger (Eds.), Automata, Languages and Programming, Vol. 2719 of Lecture Notes in Computer Science, Springer Berlin Heidelberg, 2003, pp. 668–680.
[8] J. Eremondi, O. Ibarra, L. McQuillan, Insertion operations on deterministic reversal-bounded counter machines, in: A. Dediu, E. Formenti, C. Martín-Vide, B. Truthe (Eds.), Lecture Notes in Computer Science, Vol. 5546 of 9th International Conference on Language and Automata Theory and Applications, LATA 2015, Nice, France, 2015, pp. 200–211.
[9] E. Chiniforooshan, M. Daley, O. H. Ibarra, L. Kari, S. Seki, One-reversal counter machines and multihead automata: Revisited, Theoretical Computer Science 454 (2012) 81–87.
[10] L. Kari, S. Seki, Schema for parallel insertion and deletion: Revisited, International Journal of Foundations of Computer Science 22 (07) (2011) 1655–1668.
[11] J. E. Hopcroft, J. D. Ullman, Introduction to Automata Theory, Languages, and Computation, Addison-Wesley, Reading, MA, 1979.
[12] O. H. Ibarra, S. Seki, Characterizations of bounded semilinear languages by one-way and two-way deterministic machines, International Journal of Foundations of Computer Science 23 (6) (2012) 1291–1306.
[13] H. Jürgensen, L. Kari, G. Thierrin, Morphisms preserving densities, International Journal of Computer Mathematics 78 (2001) 165–189.
[14] O. H. Ibarra, T. Jiang, N. Tran, H. Wang, New decidability results concerning two-way counter machines, SIAM J. Comput. 23 (1) (1995) 123–137.
[15] E. M. Gurari, O. H. Ibarra, The complexity of decision problems for finite-turn multicontext machines, Journal of Computer and System Sciences 22 (2) (1981) 220–229.
[16] S. Ginsburg, S. Greibach, Deterministic context free languages, Information and Control 9 (6) (1966) 620–648.
[17] M. Harrison, Introduction to Formal Language Theory, Addison-Wesley series in computer science, Addison-Wesley Pub. Co., 1978.
[18] T. Harju, O. Ibarra, J. Karhumäki, A. Salomaa, Some decision problems concerning semilinearity and commutation, Journal of Computer and System Sciences 65 (2) (2002) 278–294.
[19] K. Vijayashanker, A study of tree adjoining grammars, Ph.D. thesis, Philadelphia, PA, USA (1987).
[20] M. L. Minsky, Recursive unsolvability of Post’s problem of “tag” and other topics in theory of Turing Machines, Annals of Mathematics 74 (3) (1961) pp. 437–455.
[21] O. H. Ibarra, Visibly pushdown automata and transducers with counters (2014).
[22] A. V. Aho, Indexed grammars—an extension of context-free grammars, J. ACM 15 (4) (1968) 647–671.
[23] G. Rozenberg, A. Salomaa, The Mathematical Theory of L Systems, Academic Press, Inc., New York, 1980.