CHARACTERIZATIONS OF ALGEBRAS OF RAPIDLY DECREASING GENERALIZED FUNCTIONS

C. BOUZAR AND T. SAIDI

Abstract. The well-known characterizations of Schwartz space S of rapidly decreasing functions is extended to the algebra G_S of rapidly decreasing generalized functions and to the algebra G_S^∞ of regular rapidly decreasing generalized functions.

1. Introduction

The Schwartz space S of rapidly decreasing functions on \mathbb{R}^n and its generalizations, in view of their importance in many domains of analysis, have been characterized differently by many authors, e.g. see [10], [15], [17], [4], [1] and [11]. To built a Fourier analysis within the generalized functions of [5], the algebra of rapidly decreasing generalized functions on \mathbb{R}^n, denoted G_S, was first constructed in [18] and recently studied in [8] and [7]. The algebra of regular rapidly decreasing generalized functions on \mathbb{R}^n, denoted G_S^∞, is fundamental in the characterization of the local regularity of a Colombeau generalized function by its Fourier transform and also for developing a generalized microlocal analysis.

Let

$$S^* = \left\{ f \in C^\infty : \forall \alpha \in \mathbb{Z}_+^n, \sup_{x \in \mathbb{R}^n} |\partial^\alpha f(x)| < \infty \right\},$$

$$S_* = \left\{ f \in C^\infty : \forall \beta \in \mathbb{Z}_+^n, \sup_{x \in \mathbb{R}^n} |x^{\beta} f(x)| < \infty \right\},$$

then, inspired by the work of [15], the authors of [4] proved the following result:

$$S = S^* \cap S_*$$

The aim of this work is to characterize the algebras G_S and G_S^∞ in the spirit of the characterization of the Schwartz space S done in [4]. In fact we do more, this characterization is given in the general context of the algebra $G_S^R (\Omega)$ of R–regular rapidly decreasing generalized functions on an open set Ω of \mathbb{R}^n, see [7] and [3]. The sixth section of this paper gives such an extension, i.e. the characterization of the algebra $G_S^R (\Omega)$ provided Ω is a box of \mathbb{R}^n. The seventh section gives a characterization of $G_S^R (\mathbb{R}^n)$ of R–regular rapidly decreasing generalized functions on the whole space \mathbb{R}^n using the Fourier transform. The last section, as corollaries of the results of the paper, gives the characterizations of the classical algebras G_S and G_S^∞.

1991 Mathematics Subject Classification. 46F30; 46F05; 42B10.

Key words and phrases. Schwartz space S, Rapidly decreasing generalized functions, Colombeau generalized functions, Fourier transform.
2. Regular sets of sequences

We will adopt the notations and definitions of distributions and Colombeau generalized functions, see [14] and [13].

Definition 1. A non void subset \mathcal{R} of \mathbb{R}_+^Z is said to be regular, if

For all $(N_m)_{m \in \mathbb{Z}^+} \in \mathcal{R}$ and $(k, k') \in \mathbb{Z}_+^2$, there exists $(N'_m)_{m \in \mathbb{Z}^+} \in \mathcal{R}$ such that

\[(R1) \quad N_{m+k} + k' \leq N'_m, \quad \forall m \in \mathbb{Z}^+\]

For all $(N_m)_{m \in \mathbb{Z}^+}$ and $(N'_m)_{m \in \mathbb{Z}^+}$ in \mathcal{R}, there exists $(N''_m)_{m \in \mathbb{Z}^+} \in \mathcal{R}$ such that

\[(R2) \quad \max (N_m, N'_m) \leq N''_m, \quad \forall m \in \mathbb{Z}^+\]

For all $(N_m)_{m \in \mathbb{Z}^+}$ and $(N'_m)_{m \in \mathbb{Z}^+}$ in \mathcal{R}, there exists $(N''_m)_{m \in \mathbb{Z}^+} \in \mathcal{R}$ such that

\[(R3) \quad N_{l_1} + N'_{l_2} \leq N''_{l_1+l_2}, \quad \forall (l_1, l_2) \in \mathbb{Z}_+^2\]

Example 1. The set \mathbb{R}_+^+ of all positive sequences is regular.

Example 2. The set \mathcal{A} of affine sequences defined by

$$\mathcal{A} = \{(N_m)_{m \in \mathbb{N}} \in \mathbb{R}_+^Z : \exists a \geq 0, \exists b > 0, \forall l \in \mathbb{Z}_+, N_l \leq al + b\}$$

is regular.

Example 3. The set \mathcal{B} of all bounded sequences of \mathbb{R}_+^Z is regular.

The notion of regular set is extended to the sets of double sequences.

Definition 2. A non void subset $\tilde{\mathcal{R}}$ of $\mathbb{R}_+^{Z^2}$ is said to be regular if

For all $(N_{q,l})_{(q,l) \in \mathbb{Z}_+^2} \in \tilde{\mathcal{R}}$ and $(k, k', k'') \in \mathbb{Z}_+^3$, there exists $(N'_{q,l})_{(q,l) \in \mathbb{Z}_+^2} \in \tilde{\mathcal{R}}$ such that

\[\tilde{(R1)} \quad N_{q+k,l+k'} + k'' \leq N'_{q,l}, \quad \forall (q,l) \in \mathbb{Z}_+^2\]

For all $(N_{q,l})_{(q,l) \in \mathbb{Z}_+^2}$ and $(N'_{q,l})_{(q,l) \in \mathbb{Z}_+^2}$ in $\tilde{\mathcal{R}}$, there exists $(N''_{q,l})_{(q,l) \in \mathbb{Z}_+^2} \in \tilde{\mathcal{R}}$ such that

\[\tilde{(R2)} \quad \max (N_{q,l}, N'_{q,l}) \leq N''_{q,l}, \quad \forall (q,l) \in \mathbb{Z}_+^2\]

For all $(N_{q,l})_{(q,l) \in \mathbb{Z}_+^2}$ and $(N'_{q,l})_{(q,l) \in \mathbb{Z}_+^2}$ in $\tilde{\mathcal{R}}$, there exists $(N''_{q,l})_{(q,l) \in \mathbb{Z}_+^2} \in \tilde{\mathcal{R}}$ such that

\[\tilde{(R3)} \quad N_{q_1,l_1} + N'_{q_2,l_2} \leq N''_{q_1+q_2,l_1+l_2}, \quad \forall (q_1, q_2, l_1, l_2) \in \mathbb{Z}_+^4\]

Example 4. The set $\mathbb{R}_+^{Z^2}$ of all positive double sequences is regular.

Example 5. The set \mathcal{B} of all bounded sequences of $\mathbb{R}_+^{Z^2}$ is regular.

The following lemma, not difficult to prove, is needed in the formulation of the principal theorem of this paper.

Lemma 1. Let $\tilde{\mathcal{R}}$ be a regular subset of $\mathbb{R}_+^{Z^2}$, then

(i) The subset $\mathcal{R}^0 := \{N_{0} : N \in \tilde{\mathcal{R}}\}$ is regular in $\mathbb{R}_+^{Z^2}$.

(ii) The subset $\mathcal{R}_0 := \{N_{0} : N \in \tilde{\mathcal{R}}\}$ is regular in $\mathbb{R}_+^{Z^2}$.
3. THE ALGEBRA OF \mathcal{R}–REGULAR BOUNDED GENERALIZED FUNCTIONS

Let
\[S^* (\Omega) = \left\{ f \in C^\infty (\Omega) : \forall \alpha \in \mathbb{Z}_+^n, \sup_{x \in \Omega} |\partial^\alpha f(x)| < \infty \right\}, \]

and \mathcal{R} be a regular subset of $\mathbb{R}_+^\mathbb{Z}$, if we define
\[
\mathcal{E}^\mathcal{R}_{S^*} (\Omega) = \left\{ (u_\epsilon)_\epsilon \in S^* (\Omega)^I : \exists N \in \mathcal{R}, \forall \alpha \in \mathbb{Z}_+^n, \sup_{x \in \Omega} |\partial^\alpha u_\epsilon(x)| = O (\epsilon^{-N_{|\alpha|}}), \epsilon \to 0 \right\},
\]
\[
\mathcal{N}^\mathcal{R}_{S^*} (\Omega) = \left\{ (u_\epsilon)_\epsilon \in S^* (\Omega)^I : \forall N \in \mathcal{R}, \forall \alpha \in \mathbb{Z}_+^n, \sup_{x \in \Omega} |\partial^\alpha u_\epsilon(x)| = O (\epsilon^{N_{|\alpha|}}), \epsilon \to 0 \right\},
\]
where $I = [0, 1]$, then the properties of $\mathcal{E}^\mathcal{R}_{S^*} (\Omega)$ and $\mathcal{N}^\mathcal{R}_{S^*} (\Omega)$, easy to verify, are given by the following results.

Proposition 2. (i) The space $\mathcal{E}^\mathcal{R}_{S^*} (\Omega)$ is a subalgebra of $S^* (\Omega)^I$.

(ii) The space $\mathcal{N}^\mathcal{R}_{S^*} (\Omega)$ is an ideal of $\mathcal{E}^\mathcal{R}_{S^*} (\Omega)$.

(iii) We have $\mathcal{N}^\mathcal{R}_{S^*} (\Omega) = \mathcal{N}_{S^*} (\Omega)$, where
\[
\mathcal{N}_{S^*} (\Omega) = \left\{ (u_\epsilon)_\epsilon \in S^* (\Omega)^I : \forall m \in \mathbb{Z}_+, \forall \alpha \in \mathbb{Z}_+^n, \sup_{x \in \Omega} |\partial^\alpha u_\epsilon(x)| = O (\epsilon^m), \epsilon \to 0 \right\}
\]

We have also the null characterization of the ideal $\mathcal{N}_{S^*} (\Omega)$ provided Ω is a box.

Definition 3. An open subset Ω of \mathbb{R}^n is said to be a box if
\[\Omega = I_1 \times I_2 \times \ldots \times I_n, \]
where each I_i is a finite or infinite open interval in \mathbb{R}.

Proposition 3. Let Ω be a box, then an element $(u_\epsilon)_\epsilon \in \mathcal{E}^\mathcal{R}_{S^*} (\Omega)$ belongs to $\mathcal{N}_{S^*} (\Omega)$ if and only if the following condition is satisfied
\[\forall m \in \mathbb{Z}_+, \sup_{x \in \Omega} |u_\epsilon(x)| = O (\epsilon^m), \epsilon \to 0 \]

Proof. Suppose that $(u_\epsilon)_\epsilon \in \mathcal{E}^\mathcal{R}_{S^*} (\Omega)$ satisfies [1]. It suffices to show that $(\partial_i u_\epsilon)_\epsilon$ satisfies the $\mathcal{N}_{S^*} (\Omega)$ estimates for all $i = 1, \ldots, n$. Suppose that u_ϵ is real valued, in the complex case, we shall carry out the following calculus separately on its real and imaginary part. Let $m \in \mathbb{Z}_+$, we have to show
\[\sup_{x \in \Omega} |\partial_i u_\epsilon(x)| = O (\epsilon^m), \epsilon \to 0 \]

Since $(u_\epsilon)_\epsilon \in \mathcal{E}^\mathcal{R}_{S^*} (\Omega)$, then
\[\exists N \in \mathcal{R}, \sup_{x \in \Omega} |\partial_i^2 u_\epsilon(x)| = O (\epsilon^{-N_2}), \epsilon \to 0 \]

Since $(u_\epsilon)_\epsilon$ satisfies [1], we have
\[\forall m \in \mathbb{Z}_+, \sup_{x \in \Omega} |u_\epsilon(x)| = O (\epsilon^{N_{2+m}}), \epsilon \to 0 \]

By Taylor’s formula, we have
\[u_\epsilon(x + \epsilon^{N_{2+m}} e_i) = u_\epsilon(x) + \partial_i u_\epsilon(x) \epsilon^{N_2+m} + \frac{1}{2} \partial_i^2 u_\epsilon(x + \theta \epsilon^{N_2+m} e_i) \epsilon^{2(N_2+m)}, \]
where \(\theta \in]0,1[\) and \(\epsilon \) is sufficiently small as \(\Omega \) is a box. It follows that
\[
|\partial_i u_\epsilon(x)| \leq \left| u_\epsilon \left(x + \epsilon^{N_2+m} e_i \right) \right| \epsilon^{-N_2-m} + \left| u_\epsilon(x) \right| \epsilon^{-N_2-m} + \epsilon^{N_2+m} \partial_i^2 u_\epsilon \left(x + \theta \epsilon^{N_2+m} e_i \right) \tag{\ast}
\]

From (\ref{1}), we have (\ast) and (***) are of order \(O(\epsilon^m) \), \(\epsilon \to 0 \); and from (\ref{2}), we have (****) is of order \(O(\epsilon^m) \), \(\epsilon \to 0 \).

Definition 4. Let \(\mathcal{R} \) be a regular subset of \(\mathbb{R}^\mathbb{Z}_+ \), the algebra of \(\mathcal{R} \)-regular bounded generalized functions, denoted by \(\mathcal{G}^\mathcal{R}_S(\Omega) \), is the quotient algebra
\[
\mathcal{G}^\mathcal{R}_S(\Omega) = \frac{\mathcal{E}^\mathcal{R}_S(\Omega)}{\mathcal{N}_S(\Omega)}
\]

Remark 1. When \(\mathcal{R} \) is the set of all positive sequences the algebra \(\mathcal{G}^\mathcal{R}_S(\Omega) \) is denoted by \(\mathcal{G}_{L^\infty}(\Omega) \) in \([2]\) and \([3]\) as it is constructed on the differential algebra \(D_{L^\infty}(\Omega) \) of Schwartz \([19]\). So it is more correct to write \(\mathcal{G}^\mathcal{R}_S(\Omega) \) instead of \(\mathcal{G}_{L^\infty}(\Omega) \). The null characterization of negligible elements of \(\mathcal{G}_{L^\infty}(\Omega) \) in the case \(\Omega = \mathbb{R}^n \) is given in \([9]\).

4. **The algebra of \(\mathcal{R} \)-regular roughly decreasing generalized functions**

Let
\[
\mathcal{S}_S(\Omega) = \left\{ f \in \mathcal{C}^\infty(\Omega) : \forall \beta \in \mathbb{Z}_+^n, \sup_{x \in \Omega} |x^\beta f(x)| < \infty \right\},
\]
and \(\mathcal{R} \) be a regular subset of \(\mathbb{R}^\mathbb{Z}_+ \), if we define
\[
\mathcal{E}^\mathcal{R}_S(\Omega) = \left\{ (u_\epsilon)_\epsilon \in \mathcal{S}_S(\Omega)^I : \exists N \in \mathcal{R}, \forall \beta \in \mathbb{Z}_+^n, \sup_{x \in \Omega} |x^\beta u_\epsilon(x)| = O(\epsilon^{-N_{|\beta|}}), \epsilon \to 0 \right\},
\]
\[
\mathcal{N}^\mathcal{R}_S(\Omega) = \left\{ (u_\epsilon)_\epsilon \in \mathcal{S}_S(\Omega)^I : \forall N \in \mathcal{R}, \forall \beta \in \mathbb{Z}_+^n, \sup_{x \in \Omega} |x^\beta u_\epsilon(x)| = O(\epsilon^{N_{|\beta|}}), \epsilon \to 0 \right\},
\]
then the following properties of \(\mathcal{E}^\mathcal{R}_S(\Omega) \) and \(\mathcal{N}^\mathcal{R}_S(\Omega) \) are easy to verify.

Proposition 4. (i) The space \(\mathcal{E}^\mathcal{R}_S(\Omega) \) is a subalgebra of \(\mathcal{S}_S(\Omega)^I \).
(ii) The space \(\mathcal{N}^\mathcal{R}_S(\Omega) \) is an ideal of \(\mathcal{E}^\mathcal{R}_S(\Omega) \).
(iii) We have \(\mathcal{N}^\mathcal{R}_S(\Omega) = \mathcal{N}_S(\Omega) \), where
\[
\mathcal{N}_S(\Omega) = \left\{ (u_\epsilon)_\epsilon \in \mathcal{S}_S(\Omega)^I : \forall m \in \mathbb{Z}_+, \forall \beta \in \mathbb{Z}_+^n, \sup_{x \in \Omega} |x^\beta u_\epsilon(x)| = O(\epsilon^m), \epsilon \to 0 \right\}
\]

The following proposition characterizes \(\mathcal{N}_S(\Omega) \).

Proposition 5. Let \((u_\epsilon)_\epsilon \in \mathcal{E}^\mathcal{R}_S(\Omega) \), then \((u_\epsilon)_\epsilon \in \mathcal{N}_S(\Omega) \) if and only if the following condition is satisfied
\[
\forall m \in \mathbb{Z}_+, \sup_{x \in \Omega} |u_\epsilon(x)| = O(\epsilon^m), \epsilon \to 0 \tag{\ref{5}}
\]

Proof. Suppose that \((u_\epsilon)_\epsilon \in \mathcal{E}^\mathcal{R}_S(\Omega) \) satisfies (\ref{5}), since \((u_\epsilon)_\epsilon \in \mathcal{E}^\mathcal{R}_S(\Omega) \), then \(\exists N \in \mathcal{R}, \forall \beta \in \mathbb{Z}_+^n, \sup_{x \in \Omega} |x^{2\beta} u_\epsilon(x)| = O(\epsilon^{-N_{2|\beta|}}), \epsilon \to 0 \).

From (\ref{5}), we have
\[
\forall m \in \mathbb{Z}_+, \sup_{x \in \Omega} |u_\epsilon(x)| = O(\epsilon^{2m+N_{2|\beta|}}), \epsilon \to 0
\]

Therefore $\forall x \in \Omega$,
\[|x^\beta u_\epsilon (x)|^2 = |x^{2\beta} u_\epsilon (x)| |u_\epsilon (x)| = O (\epsilon^m), \; \epsilon \to 0, \]
hence
\[\forall m \in \mathbb{Z}_+, |x^\beta u_\epsilon (x)| = O (\epsilon^m), \; \epsilon \to 0 \]

Remark 2. The C^∞ regularity in the definition of elements of $G^R_{S_\epsilon} (\Omega)$ is not in fact needed in the proof of the principal results of this work.

5. **The algebra of R–regular rapidly decreasing generalized functions**

Let
\[S (\Omega) = \left\{ f \in C^\infty (\Omega) : \forall (\alpha, \beta) \in \mathbb{Z}_+^{2n}, \sup_{x \in \Omega} |x^\beta \partial^\alpha f (x)| < \infty \right\}, \]
called the space of rapidly decreasing functions on Ω, and let \tilde{R} be a regular subset of \mathbb{R}_+^{2n}, if we define
\[E_{S_\epsilon}^R (\Omega) = \left\{ (u_\epsilon)_\epsilon \in S (\Omega)^I : \exists N \in \tilde{R}, \forall (\alpha, \beta) \in \mathbb{Z}_+^{2n}, \sup_{x \in \Omega} |x^\beta \partial^\alpha u_\epsilon (x)| = O (\epsilon^{-N|\alpha|,|\beta|}), \epsilon \to 0 \right\}, \]
\[N_{S_\epsilon}^R (\Omega) = \left\{ (u_\epsilon)_\epsilon \in S (\Omega)^I : \forall N \in \tilde{R}, \forall (\alpha, \beta) \in \mathbb{Z}_+^{2n}, \sup_{x \in \Omega} |x^\beta \partial^\alpha u_\epsilon (x)| = O (\epsilon^N|\alpha|,|\beta|), \epsilon \to 0 \right\}, \]
then we have the following results.

Proposition 6. We have the following assertions

(i) The space $E_{S_\epsilon}^R (\Omega)$ is a subalgebra of $S (\Omega)^I$.

(ii) The space $N_{S_\epsilon}^R (\Omega)$ is an ideal of $E_{S_\epsilon}^R (\Omega)$.

(iii) We have $N_{S_\epsilon}^R (\Omega) = N_S (\Omega)$, where
\[N_S (\Omega) = \left\{ (u_\epsilon)_\epsilon \in S (\Omega)^I : \forall m \in \mathbb{Z}_+, \forall (\alpha, \beta) \in \mathbb{Z}_+^{2n}, \sup_{x \in \Omega} |x^\beta \partial^\alpha u_\epsilon (x)| = O (\epsilon^m), \epsilon \to 0 \right\} \]

Proof. The proof is not difficult, it follows from the properties of the set \tilde{R}. \hfill \Box

Definition 6. Let \tilde{R} be a regular subset of \mathbb{R}_+^{2n}, the algebra of \tilde{R}–regular rapidly decreasing generalized functions on Ω, denoted by $G^R_{S_\epsilon} (\Omega)$, is the quotient algebra
\[G_{S_\epsilon}^R (\Omega) = \frac{E_{S_\epsilon}^R (\Omega)}{N_S (\Omega)} \]

Example 6. (i) For $\tilde{R} = \mathbb{R}_+^{2n}$, we obtain the algebra $G_S (\Omega)$ of rapidly decreasing generalized functions on Ω, see [13].

(ii) Pour $\tilde{R} = \tilde{B}$, we obtain the algebra $G_{S_\epsilon}^R (\Omega)$ of regular rapidly decreasing generalized functions on Ω, see [8].
6. Characterization of \mathcal{R}–regular rapidly decreasing generalized functions

Let us mention that the theorem of [4] can be extended to an open subset Ω of \mathbb{R}^n provided Ω is a box.

Proposition 7. If Ω is a box of \mathbb{R}^n, then

$$\mathcal{S} (\Omega) = \mathcal{S}^* (\Omega) \cap \mathcal{S}_* (\Omega)$$

Proof. The proof is the same as in [4], noting that, in Taylor’s expansion, the hypothesis that Ω is a box assures that $(x_1 + h, x')$ stays in Ω for all $(x_1, x') \in \Omega$ and $h > 0$ sufficiently small. □

The principal result of this section is an extension of (6) to the algebra of \mathcal{R}–regular rapidly decreasing generalized functions. It is the first characterization of the algebra $\mathcal{G}_\mathcal{R}^\mathcal{R} (\Omega)$.

Theorem 8. If Ω is a box, then

$$\mathcal{G}_\mathcal{R}^\mathcal{R} (\Omega) = \mathcal{G}^{\mathcal{R}_0}_\mathcal{S}_* (\Omega) \cap \mathcal{G}^{\mathcal{R}_0}_\mathcal{S}^* (\Omega)$$

Proof. We have to show that $\mathcal{S} (\Omega) = \mathcal{S}^* (\Omega) \cap \mathcal{S}_* (\Omega)$.

The inclusions $\mathcal{S}^\mathcal{R}_\mathcal{S} (\Omega) \subset \mathcal{S}^\mathcal{R}_\mathcal{S} (\Omega) \cap \mathcal{S}^\mathcal{R}_\mathcal{S} (\Omega)$ and $\mathcal{N}^\mathcal{R}_\mathcal{S} (\Omega) \subset \mathcal{N}^\mathcal{R}_\mathcal{S} (\Omega) \cap \mathcal{N}^\mathcal{R}_\mathcal{S} (\Omega)$ are obvious. In order to show the reverse inclusions, first let $(u_\epsilon)_\epsilon \in \mathcal{S}^\mathcal{R}_\mathcal{S} (\Omega) \cap \mathcal{S}^\mathcal{R}_\mathcal{S} (\Omega)$, then $(u_\epsilon)_\epsilon \in \mathcal{S}^* (\Omega) \cap \mathcal{S}_* (\Omega)' \cap \mathcal{S}_* (\Omega)' = \mathcal{S} (\Omega)'$. In order to show that $(u_\epsilon)_\epsilon$ satisfies the estimate of $\mathcal{S}^\mathcal{R}_\mathcal{S} (\Omega)$, set $x = (x_1, x') \in I_1 \times (I_2 \times I_3 \times \ldots \times I_n) := \Omega$ and consider in first the case $x_1 > 0$. For $h > 0$ sufficiently small, a Taylor’s expansion of u_ϵ with respect to x_1 gives

$$u_\epsilon (x_1 + h, x') = u_\epsilon (x_1, x') + h \partial_1 u_\epsilon (x_1, x') + \frac{h^2}{2} \partial_1^2 u_\epsilon (\xi, x'),$$

for $\xi \in [x_1, x_1 + h]$. The hypothesis $(u_\epsilon)_\epsilon \in \mathcal{S}^\mathcal{R}_\mathcal{S} (\Omega) \cap \mathcal{S}^\mathcal{R}_\mathcal{S} (\Omega)$ gives

$$\exists L \in \mathcal{R}_0, \forall k \in \mathbb{Z}_+, \sup_{x_1 > 0} (1 + |x|)^k |u_\epsilon (x)| = O (\epsilon^{-L_k}), \epsilon \longrightarrow 0$$

$$\exists M \in \mathcal{R}_0, \sup_{x_1 > 0} |\partial_1^2 u_\epsilon (x)| = O (\epsilon^{-M_2}), \epsilon \longrightarrow 0$$

We have

$$\sup_{x_1 > 0} (1 + |x|)^k |u_\epsilon (x_1 + h, x')| \leq \sup_{x_1 > 0} (1 + |(x_1 + h, x')|)^k |u_\epsilon (x_1 + h, x')| = O (\epsilon^{-L_k}), \epsilon \longrightarrow 0$$

It follows from (7)

$$|\partial_1 u_\epsilon (x_1, x')| \leq \frac{1}{h} |u_\epsilon (x_1 + h, x')| + |u_\epsilon (x_1, x')| + \frac{h}{2} |\partial_1^2 u_\epsilon (\xi, x')|$$

Therefore

$$\sup_{x_1 > 0} (1 + |x|)^k |\partial_1 u_\epsilon (x)| = O (\epsilon^{-L_k-M_2}), \epsilon \longrightarrow 0$$

From (R3) of definition [2], there exists $N' \in \mathcal{R}$ such that

$$L_k + M_2 \leq N'_{2, k}$$

consequently

$$\forall \beta \in \mathbb{Z}_+^n, \sup_{x_1 > 0} |x^\beta \partial_1 u_\epsilon (x)| \leq C \sup_{x_1 > 0} (1 + |x|)^{|\beta|} |\partial_1 u_\epsilon (x)| = O (\epsilon^{-N'_{2, |\beta|}}), \epsilon \longrightarrow 0$$
If \(x_1 < 0 \), consider \(v_\epsilon \) such that \(v_\epsilon (x) = u_\epsilon (-x_1, x') \). We see that \((v_\epsilon)_\epsilon \in \mathcal{E}^R_{S^*} (\Omega) \cap \mathcal{E}^C_{S^*} (\Omega) \) and consequently the above arguments give the existence of \(N'' \in \mathcal{R} \) such that

\[
\sup_{x_1 > 0} |x^\beta \partial_1 v_\epsilon (x)| = \sup_{x_1 < 0} |x^\beta \partial_1 u_\epsilon (x)| = O \left(\epsilon ^{N''} \right) , \epsilon \to 0
\]

Now from \((\mathcal{R}1) \) and \((\mathcal{R}2) \) of definition \(\mathcal{R} \) there exists \(N \in \mathcal{R} \) such that

\[
\max \left(N'_2 |\beta|, N''_2 |\beta| \right) \leq N_1 |\beta| ,
\]

so

\[
\sup_{x \in \Omega} |x^\beta \partial_1 u_\epsilon (x)| = O \left(\epsilon ^{N_1 |\beta|} \right) , \epsilon \to 0
\]

Analogously we show

\[
\exists N \in \mathcal{R}; \forall \beta \in \mathbb{Z}^n_+, \sup_{x \in \Omega} |x^\beta \partial_1 u_\epsilon (x)| = O \left(\epsilon ^{N_2 |\beta|} \right) , \epsilon \to 0 , i = 2, ..., n
\]

Therefore, by induction, we obtain

\[
\exists N \in \mathcal{R}; \forall \alpha \in \mathbb{Z}^n_+, \forall \beta \in \mathbb{Z}^n_+, \sup_{x \in \Omega} |x^\beta \partial_1 u_\epsilon (x)| = O \left(\epsilon ^{N_{2.1} |\beta|} \right) , \epsilon \to 0 ,
\]

i.e. \((u_\epsilon)_\epsilon \in \mathcal{E}^\mathbb{R}_{S^*} (\Omega) \).

Suppose now that \((u_\epsilon)_\epsilon \in \mathcal{N}_{S^*} (\Omega) \cap \mathcal{N}_{S^*} (\Omega) \), then

\[
\forall m \in \mathbb{Z}^n_+, \forall k \in \mathbb{Z}^n_+, \sup_{x_1 > 0} (1 + |x|)^k |x^\beta \partial_1 u_\epsilon (x)| = O \left(\epsilon ^{m} \right) , \epsilon \to 0
\]

\[
\forall m \in \mathbb{Z}^n_+, \sup_{x_1 > 0} |\partial_1^2 u_\epsilon (x)| = O \left(\epsilon ^{m} \right) , \epsilon \to 0
\]

We have

\[
\sup_{x_1 > 0} (1 + |x|)^k |u_\epsilon (x_1 + h, x')| \leq \sup_{x_1 > 0} (1 + |(x_1 + h, x')|)^k |u_\epsilon (x_1 + h, x')| = O \left(\epsilon ^{m} \right) , \epsilon \to 0
\]

It follows from \((\mathcal{R}7) \)

\[
\sup_{x_1 > 0} (1 + |x|)^k |\partial_1 u_\epsilon (x)| = O \left(\epsilon ^{m} \right) , \epsilon \to 0
\]

Consequently

\[
\forall m \in \mathbb{Z}^n_+, \forall \beta \in \mathbb{Z}^n_+, \sup_{x_1 > 0} \left| x^\beta \partial_1 u_\epsilon (x) \right|^2 \leq C_1 \sup_{x_1 > 0} (1 + |x|)^{|\beta|} |\partial_1 u_\epsilon (x)| = O \left(\epsilon ^{m} \right) , \epsilon \to 0
\]

If \(x_1 < 0 \), consider \(v_\epsilon \) such that \(v_\epsilon (x) = u_\epsilon (-x_1, x') \) as above, then we obtain

\[
\sup_{x_1 > 0} \left| x^\beta \partial_1 v_\epsilon (x) \right|^2 = \sup_{x_1 < 0} \left| x^\beta \partial_1 u_\epsilon (x) \right|^2 = O \left(\epsilon ^{m} \right) , \epsilon \to 0
\]

Therefore, by induction, we have

\[
\forall m \in \mathbb{Z}^n_+, \forall \alpha \in \mathbb{Z}^n_+, \forall \beta \in \mathbb{Z}^n_+, \sup_{x \in \Omega} |x^\beta \partial_1 u_\epsilon (x)| = O \left(\epsilon ^{m} \right) , \epsilon \to 0
\]

Thus \(\mathcal{N}_{S^*} (\Omega) \cap \mathcal{N}_{S^*} (\Omega) \subset \mathcal{N}_{S^*} (\Omega) \) and consequently \(\mathcal{G}_{S^*}^\mathbb{R} (\Omega) = \mathcal{G}_{S^*}^C (\Omega) \cap \mathcal{G}_{S^*}^C (\Omega) \). \(\square \)

The propositions \(\mathcal{R}3 \) and \(\mathcal{R}5 \) give the following result which characterizes the negligible elements of the algebra \(\mathcal{G}_{S^*}^\mathbb{R} (\Omega) \).
Corollary 9. If Ω is a box, then an element $(u_\epsilon)_\epsilon \in \mathcal{E}_S^\mathcal{R}(\Omega)$ is in $\mathcal{N}_S(\Omega)$ if and only if the following condition is satisfied
\[\forall m \in \mathbb{Z}_+, \sup_{x \in \Omega} |u_\epsilon(x)| = O(\epsilon^m), \epsilon \to 0\]

7. Characterization of \mathcal{R}—regular rapidly decreasing generalized functions via Fourier transform

The direct Fourier transform of $u \in \mathcal{S}$, denoted \hat{u}, is defined by
\[\hat{u}(\xi) = (2\pi)^{-\frac{n}{2}} \int e^{-ix\xi} u(x) \, dx\]

Definition 7. The Fourier transform of $u = [(u_\epsilon)_\epsilon] \in \mathcal{G}_S^\mathcal{R}$, denoted by $\mathcal{F}_S(u)$, is defined by
\[\mathcal{F}_S(u) = \hat{u} = [(\hat{u}_\epsilon)_\epsilon] \text{ in } \mathcal{G}_S^\mathcal{R}\]

Remark 3. The inverse Fourier transform of $u \in \mathcal{S}$, denoted \tilde{u}, and the map \mathcal{F}_S^{-1} are defined as usually and in the same way.

The following proposition gives one of the main results of the Fourier transform \mathcal{F}_S and is easy to prove.

Proposition 10. The map
\[\mathcal{F}_S : \mathcal{G}_S^\mathcal{R} \to \mathcal{G}_S^\mathcal{R}\]
is an algebraic isomorphism.

Let
\[\mathcal{S}^\mathcal{S} = \left\{ f \in \mathcal{C}^\infty : \forall \beta \in \mathbb{Z}_+^n, \sup_{\xi \in \mathbb{R}^n} |\xi^\beta \hat{f}(\xi)| < \infty \right\},\]
and let \mathcal{R} be a regular subset of $\mathbb{R}_+^{\mathbb{Z}_+^n}$, if we define
\[\mathcal{E}_S^{\mathcal{R}^0} = \left\{ (u_\epsilon)_\epsilon \in \mathcal{S}^\mathcal{S} : \exists N \in \mathcal{R}^0, \forall \beta \in \mathbb{Z}_+^n, \sup_{\xi \in \mathbb{R}^n} |\xi^\beta \hat{u}_\epsilon(\xi)| = O(\epsilon^{-N|\beta|}), \epsilon \to 0 \right\},\]
\[\mathcal{N}_S^{\mathcal{R}^0} = \left\{ (u_\epsilon)_\epsilon \in \mathcal{S}^\mathcal{S} : \forall N \in \mathcal{R}^0, \forall \beta \in \mathbb{Z}_+^n, \sup_{\xi \in \mathbb{R}^n} |\xi^\beta \hat{u}_\epsilon(\xi)| = O(\epsilon^N|\beta|), \epsilon \to 0 \right\},\]
then the following proposition is easy to prove.

Proposition 11. (i) The space $\mathcal{E}_S^{\mathcal{R}^0}$ is a subalgebra of $\mathcal{S}^\mathcal{S}$.
(ii) The space $\mathcal{N}_S^{\mathcal{R}^0}$ is an ideal of $\mathcal{E}_S^{\mathcal{R}^0}$.
(iii) The ideal $\mathcal{N}_S^{\mathcal{R}^0} = \mathcal{N}_S$, where
\[\mathcal{N}_S := \left\{ (u_\epsilon)_\epsilon \in \mathcal{S}^\mathcal{S} : \forall m \in \mathbb{Z}_+, \forall \beta \in \mathbb{Z}_+^n, \sup_{\xi \in \mathbb{R}^n} |\xi^\beta \hat{u}_\epsilon(\xi)| = O(\epsilon^m), \epsilon \to 0 \right\}\]

The following proposition characterizes \mathcal{N}_S.

Proposition 12. Let $(u_\epsilon)_\epsilon \in \mathcal{E}_S^{\mathcal{R}^0}$, then $(u_\epsilon)_\epsilon \in \mathcal{N}_S^{\mathcal{R}^0}$ if and only if the following condition is satisfied
\[\forall m \in \mathbb{Z}_+, \sup_{\xi \in \mathbb{R}^n} |\hat{u}_\epsilon(\xi)| = O(\epsilon^m), \epsilon \to 0\]
Proof. The proof is similar to that of proposition 5. □

Definition 8. The algebra $G_{S_z}^{R_0}$ is defined as the quotient algebra

\[G_{S_z}^{R_0} = \frac{E_{S_z}^{R_0}}{N_{S_z}}. \]

The next theorem is the second characterization of $G_{S}^{\bar{R}}$.

Theorem 13. We have

\[G_{S}^{\bar{R}} = G_{S_z}^{R_0} \cap G_{S_z}^{R_0}. \]

Proof. Let $(u_\epsilon) \in E_{S_z}^{R_0}$, then $\exists C > 0$ such that

\[\int |x^\beta \hat{u}_\epsilon(x)| \, dx \leq C \sup_{x \in \mathbb{R}^n} (1 + |x|^2)^n |x^\beta \hat{u}_\epsilon(x)| \]

\[= O \left(\epsilon^{-N|\beta| + 2n} \right), \quad \epsilon \to 0 \]

\[= O \left(\epsilon^{-N|\beta|} \right), \quad \epsilon \to 0, \]

for some $N \in \mathcal{R}^0$. The continuity of F from L^1 to L^∞ gives

\[||\partial^\beta u_\epsilon||_{L^\infty} = O \left(\epsilon^{-N|\beta|} \right), \quad \epsilon \to 0, \]

which shows that $(u_\epsilon) \in E_{S_z}^{R_0}$ and therefore $E_{S_z}^{R_0} \subset E_{S_z}^{R_0}$. Consequently $E_{S_z}^{R_0} \cap E_{S_z}^{R_0} \subset E_{S}^{\bar{R}}$. In order to show the inverse inclusion let us mention, at first, that from [4], we have

\[(u_\epsilon) \in S^l \iff (u_\epsilon) \in S^l \cap \hat{S}^l \]

which implies in particular that $S \subset \hat{S}$. On the other hand if $(u_\epsilon) \in E_{S}^{\bar{R}}$, then

\[\int |\partial^\beta u_\epsilon(x)| \, dx \leq C \sup_{x \in \mathbb{R}^n} (1 + |x|^2)^n |\partial^\beta u_\epsilon(x)| \]

\[= O \left(\epsilon^{-N|\beta| + 2n} \right), \quad \epsilon \to 0 \]

\[= O \left(\epsilon^{-N|\beta|,0} \right), \quad \epsilon \to 0, \]

i.e.

\[\int |\partial^\beta u_\epsilon(x)| \, dx = O \left(\epsilon^{-N|\beta|} \right), \quad \epsilon \to 0, \]

for some $N \in \mathcal{R}^0$. The continuity of F from L^1 to L^∞ gives

\[||\xi^\beta \hat{u}_\epsilon||_{L^\infty} = O \left(\epsilon^{-N|\beta|} \right), \quad \epsilon \to 0, \]

which shows that $(u_\epsilon) \in E_{S_z}^{R_0}$ and consequently $(u_\epsilon) \in E_{S_z}^{R_0} \cap E_{S_z}^{R_0}$. Thus $E_{S_z}^{\bar{R}} \subset E_{S_z}^{R_0} \cap E_{S_z}^{R_0}$, it follows that $E_{S_z}^{\bar{R}} = E_{S_z}^{R_0} \cap E_{S_z}^{R_0}$. A similar proof shows that $N_S = N_{S_z} \cap N_{S_z}$. Therefore $G_{S}^{\bar{R}} = G_{S_z}^{R_0} \cap G_{S_z}^{R_0}$. □

The following corollary gives a second characterization of the space N_S.

Corollary 14. An element $(u_\epsilon) \in E_{S}^{\bar{R}}$ is in N_S if and only if the following condition is satisfied

\[\forall m \in \mathbb{Z}_+, \sup_{\xi \in \mathbb{R}^n} |\hat{u}_\epsilon(\xi)| = O \left(\epsilon^m \right), \quad \epsilon \to 0 \]
8. Consequences

We know that when \(\tilde{\mathcal{R}} = \mathbb{R}^2_+ \) we obtain \(\mathcal{G}_{S^2}^\mathbb{Z} \mathcal{S} = \mathcal{G}_S \). Theorem 8 gives the following corollary which is a characterization of the algebra of rapidly decreasing generalized functions.

Corollary 15. We have
\[
\mathcal{G}_S = \mathcal{G}_{S^*} \cap \mathcal{G}_{S_*},
\]
where
\[
\mathcal{G}_{S^*} := \left\{ (u_\epsilon)_{\epsilon} \in S^*: \forall \alpha \in \mathbb{Z}^n_+, \exists m \in \mathbb{Z}_+, \sup_{x \in \mathbb{R}^n} |\partial^\alpha u_\epsilon (x)| = O (\epsilon^{-m}), \epsilon \rightarrow 0 \right\},
\]
and
\[
\mathcal{G}_{S_*} := \left\{ (u_\epsilon)_{\epsilon} \in S_*: \forall \beta \in \mathbb{Z}^n_+, \exists m \in \mathbb{Z}_+, \sup_{x \in \mathbb{R}^n} |x^\beta u_\epsilon (x)| = O (\epsilon^m), \epsilon \rightarrow 0 \right\}
\]

We have also the following corollary which is another characterization of the algebra \(\mathcal{G}_S \).

Corollary 16. We have
\[
\mathcal{G}_S = \mathcal{G}_{S^*} \cap \mathcal{G}_{S_*},
\]
where
\[
\mathcal{G}_{S^*} := \left\{ (u_\epsilon)_{\epsilon} \in \hat{\mathcal{S}}^*: \forall \beta \in \mathbb{Z}^n_+, \exists m \in \mathbb{Z}_+, \sup_{\xi \in \mathbb{R}^n} |\xi^\beta \hat{u}_\epsilon (\xi)| = O (\epsilon^m), \epsilon \rightarrow 0 \right\}
\]
and
\[
\mathcal{G}_{S_*} := \left\{ (u_\epsilon)_{\epsilon} \in \hat{\mathcal{S}}_*: \forall \beta \in \mathbb{Z}^n_+, \exists m \in \mathbb{Z}_+, \sup_{\xi \in \mathbb{R}^n} |\xi^\beta \hat{u}_\epsilon (\xi)| = O (\epsilon^{-m}), \epsilon \rightarrow 0 \right\}
\]

We also know that when \(\tilde{\mathcal{R}} = \tilde{\mathcal{B}} \) we obtain \(\mathcal{G}_S^{\infty} = \mathcal{G}_S^{\infty} \). The next result, which is a corollary of theorem 8 for \(\mathcal{R} = \tilde{\mathcal{B}} \), gives a characterization of \(\mathcal{G}_S^{\infty} \).

Corollary 17. We have
\[
\mathcal{G}_S^{\infty} = \mathcal{G}_{S^*} \cap \mathcal{G}_{S_*},
\]
where
\[
\mathcal{G}_{S^*} := \left\{ (u_\epsilon)_{\epsilon} \in S^*: \exists m \in \mathbb{Z}_+, \forall \alpha \in \mathbb{Z}^n_+, \sup_{x \in \mathbb{R}^n} |\partial^\alpha u_\epsilon (x)| = O (\epsilon^{-m}), \epsilon \rightarrow 0 \right\},
\]
and
\[
\mathcal{G}_{S_*} := \left\{ (u_\epsilon)_{\epsilon} \in S_*: \exists m \in \mathbb{Z}_+, \forall \beta \in \mathbb{Z}^n_+, \sup_{x \in \mathbb{R}^n} |x^\beta u_\epsilon (x)| = O (\epsilon^{-m}), \epsilon \rightarrow 0 \right\}
\]

We have also the following result obtained as a corollary of the theorem 13.
Corollary 18. We have
\[G_\infty^c = G_\infty^c \cap G_\infty^c \]
where
\[
G_\infty^c := \left\{ (u_\epsilon)_\epsilon \in \widehat{S}^i : \exists m \in \mathbb{Z}_+, \forall \beta \in \mathbb{Z}^n_+, \sup_{\xi \in \mathbb{R}^n} |\xi^\beta \widehat{u_\epsilon}(\xi)| = O(\epsilon^{-m}), \epsilon \to 0 \right\}
\]

\[
\left\{ (u_\epsilon)_\epsilon \in \widehat{S}^i : \forall m \in \mathbb{Z}_+, \forall \beta \in \mathbb{Z}^n_+, \sup_{\xi \in \mathbb{R}^n} |\xi^\beta \widehat{u_\epsilon}(\xi)| = O(\epsilon^m), \epsilon \to 0 \right\}
\]

REFERENCES

[1] J. Alvarez, H. Obiedat, Characterizations of the Schwartz space S and the Beurling-Björck space S_ω. Cubo 6, p. 167-183, (2004).
[2] H. Biagioni, M. Oberguggenberger, Generalized solutions to the Korteweg-de Vries and the generalized long-wave equations. SIAM J. Math Anal., 23(4), p. 923-940, (1992).
[3] C. Bouzar, K. Benmeriem, Ultraregular generalized functions. Oran-Essenia University, Preprint (2006).
[4] S.-Y. Chung, D. Kim et S. Lee. Characterization for Beurling-Bjorck space and Schwartz space. Proc. A.M.S. Vol. 125, No 11, p. 3229-3234, (1997).
[5] J. F. Colombeau, Elementary introduction to new generalized functions, North Holland, (1985).
[6] J. F. Colombeau, A. Heibig, M. Oberguggenberger, Generalized solutions to PDEs of evolution type. Acta Appl. Math. 45, p.115–142. (1996).
[7] A. Delcroix, Fourier Transform of rapidly decreasing generalized functions. Application to microlocal regularity. J. Math. Anal. Appl., 327, p. 564-584, (2007).
[8] C. Garetto, Pseudo-differential operators in algebras of generalized functions and global hypoellipticity. Acta Appl. Math., 80(2):1, p. 123-174, (2004).
[9] C. Garetto, Topological structures in Colombeau algebras: investigation of the duals of $G_c(\Omega), G(\Omega)$ and $G(\mathbb{R}^n)$. Monatsh. Math., 146(3), p. 203–226, (2005).
[10] S. Gindikin, L. Volevich. The Cauchy problem and related problems for convolution equations. Uspehi Mat. Nauk, vol. 27, no. 4, 65–143, (1972).
[11] K. Gröchenig, G. Zimmermann, Spaces of test functions via the STFT, J. Funct. Spaces Appl. 2, p. 25–53, (2004).
[12] I. M. Gelfand, G. E. Shilov. Generalized functions, vol. 2, Academic Press, (1967).
[13] M. Grosser, M Kunzinger, M. Oberguggenberger, R. Steinbauer. Geometric theory of generalized functions with applications to general relativity. Kluwer, (2001).
[14] L. Hörmander, Distributions theory and Fourier analysis. Springer, (1983).
[15] A. I. Kashipirovski, Equality of the spaces S_β^0 and $S_\infty^0 \cap S_\beta$, Funct. Anal. Appl., 14, p. 129, (1980).
[16] M. Oberguggenberger, Regularity theory in Colombeau algebras. Bull. T. CXXXIII. Acad. Serbe Sci. Arts, Cl. Sci. Math. Nat. Sci. Math., 31, p. 147-162 , (2006).
[17] N. Ortner, P. Wagner, Applications of weighted $D\epsilon_{\rho,l}$-spaces to the convolution of distributions. Bull. Polish Acad. Sc. Math., Vol. 37, N° 7-12, p. 579-595, (1989).
[18] Ya. V. Radyno, Sabra Ramdan, Ngo Fu Tkhan, The Fourier transform in an algebra of new generalized functions. Russian Acad. Sci. Dokl. Math. Vol. 46, N°3, p. 414-417 , (1993).
[19] L. Schwartz, Théorie des distributions. Herman, Paris, 2ème Ed., (1966).

DEPARTMENT OF MATHEMATICS, ORAN-ESSENIA UNIVERSITY, ORAN, ALGERIA
E-mail address: bouzar@univ-oran.dz; bouzarchikh@hotmail.com

CENTRE UNIVERSITAIRE DE BÉCHAR, ALGERIA
E-mail address: saidi_tb@yahoo.fr