РАСПОЗНАВАНИЕ СВИСТЯЩИХ АТМОСФЕРИКОВ В ОНЧ-СПЕКТРОГРАММАХ

Е. А. Малыш, Г. М. Водинчар, Н. В. Чернева

1 Институт космофизических исследований и распространения радиоволн ДВО РАН, 684034, Камчатский край, п. Паратунка, ул. Мирная, 7
2 Камчатский государственный университет имени Витуса Беринга, 683032, г. Петропавловск-Камчатский, ул. Пограничная, 4
E-mail: roswell-47@mail.ru

Описаны алгоритм распознавания образов свистящих атмосфериков в спектрограммах ОНЧ-излучения и алгоритм фильтрации импульсных сигналов в спектрограммах.

Ключевые слова: свистящие атмосферики, распознавание образов, ОНЧ-излучение.

© Малыш Е. А., Водинчар Г. М., Чернева Н. В., 2016

MSC 68T10

DETECTION OF THE WHISTLERS IN THE VLF-SPECTROGRAMS

E. A. Malysh, G. M. Vodinchar, N. V. Cherneva

1 Institute of Cosmophysics Research and Radio Wave Propagation FEB RAS, 684034, Paratunka, Kamchatka region, Mirnaya st., 7
2 Vitus Bering Kamchatka State University, 683031, Petropavlovsk-Kamchatsky, Pogranchnaya st., 4
E-mail: roswell-47@mail.ru

The whistlers pattern recognition algorithm in the spectrogram of VLF-radiation and algorithm of the filtering of pulse signals in the spectrograms are proposed.

Key words: whistlers, pattern recognition, VLF-emission.

© Malysh E. A., Vodinchar G. M., Cherneva N. V., 2016
Введение

На долю свистящих атмосфериков (вистлеров) приходится значительная часть естественного электромагнитного излучения. Они формируются в результате частотной дисперсии импульса грозового разряда, при распространении этого импульса в магнитосферной плазме. В сигналах ОНЧ-диапазона вистеры проявляются в виде структур, имеющих характерную саблеобразную форму на спектрограмме [1]. Форма дисперсионного искажения импульса определяется параметрами плазмы, поэтому вистеры являются естественными маркерами состояния плазмосферы Земли [2], и их мониторинг является перспективным направлением исследований космической погоды.

Мониторинг вистлеров в планетарном масштабе осуществляется станциями сети AWDANet, работа которой координируется в рамках международного проекта "Plasmon"[3]. Один из регистраторов этой сети работает в обсерваторском пункте Института космофизических исследований и распространения радиоволн (ИКИР) ДВО РАН «Карымшина».

Также мониторинг вистлеров в ИКИР ведется с помощью радиокомплекса собственной разработки, в котором реализована система автоматического распознавания вистлеров [4, 5]. Однако, данная система не позволяет вести детектирование вистлеров в реальном времени, что требует разработки новой системы распознавания.

В настоящей работе мы описываем один алгоритм распознавания образа вистлеров в спектрограмме. Исходными данными для задачи распознавания вистлеров в системе мониторинга ИКИР являются 15-минутные wav-файлы сигнала ОНЧ-излучения. Рассматриваемый алгоритм обрабатывает 4-секундный отрезок этого файла. Основная идея алгоритма основана распознавании "выпрямленного" образа и была изложена ранее в работе [6].

Медианная фильтрация спектрограммы

Рассмотрим спектрограмму такого фрагмента как двумерный массив $A = \{A_{ij}\}$, $i = 0, \ldots, N - 1$, $j = 0, \ldots, M - 1$, где $N = 513$ и $M = 172$. По вертикали индекс i нумерует отсчеты частоты f_i, а по горизонтали индекс j – отсчеты времени t_j. Пример такой спектрограммы, содержащей один вистлер, приведен на рис. 1 слева.

Рис. 1. Спектрограмма фрагмента ОНЧ-сигнала, содержащего вистлер: исходная (слева) и после медианной фильтрации (справа).
Задача распознавания вистлеров может рассматриваться как задача распознавания графического образа в двумерном изображении. Искомым образом является саблеобразная кривая, форма которой в плоскости \((t, f)\) описывается соотношением
\[t - t_0 \sim f^{-1/2} \] [1].

Из рис. 1 хорошо видно, что в анализируемом сигнале кроме вистлера присутствуют \(\delta\)-образные компоненты (импульсы грозовых разрядов, так называемые атмосферики) и узкополосные составляющие. И те, и другие являются помехами для задачи распознавания и проявляются в спектрограмме в виде протяженных прямолинейных структур, вертикальных и горизонтальных, соответственно.

Возникает необходимость, прежде всего, подавить такие помехи, и отобрать статистически значимые отсчеты гистограммы.

Хорошо известно, что эффективным инструментом подавления протяженных импульсных помех в изображениях является медианная фильтрация [7]. Она относится к классу нелинейных фильтров и хорошо сохраняет резкость изображения, поскольку основана на порядковой статистике, которая устойчива к сильным выбросам в данных. В работе [8] был предложен модифицированный алгоритм медианной фильтрации, позволяющий подавлять протяженные вертикальные помехи в спутниковых снимках. Этот алгоритм был адаптирован нами для решения задачи подавления протяженных вертикальных и горизонтальных помех в спектрограммах.

Сначала составляются два одномерных массива \(X_i\) и \(Y_j\), элементы которых являются средними значениями элементов исходного массива спектрограммы по строкам и столбцам соответственно, т.е.

\[
 X_i = \frac{1}{N} \sum_{k=0}^{M-1} A_{ik}, \quad Y_j = \frac{1}{M} \sum_{k=0}^{N-1} A_{kj}. \quad (1)
\]

В результате каждая вертикальная помеха оказывается сконцентрированной в нескольких соседних отсчетах массива \(X\), а горизонтальная – в нескольких соседних отсчетах массива \(Y\). Фильтруемым помехам будут тогда соответствовать сильные выбросы в этих массивах.

Далее, каждый из этих массивов подвергается одномерной медианной фильтрации:

\[
 \hat{X}_i = \text{median}\{X_{i+k} \mid k = -L_X, \ldots, L_X\}, \quad i = L_X, \ldots, N - L_X - 1, \\
 \hat{X}_i = \hat{X}_{L_X}, \quad i = 0, \ldots, L_X - 1, \\
 \hat{X}_i = \hat{X}_{N-L_X-1}, \quad i = N - L_X, \ldots, N - 1, \\
 \hat{Y}_j = \text{median}\{Y_{j+k} \mid k = -L_Y, \ldots, L_Y\}, \quad j = L_Y, \ldots, M - L_Y - 1, \\
 \hat{Y}_j = \hat{Y}_{L_Y}, \quad j = 0, \ldots, L_Y - 1, \\
 \hat{Y}_j = \hat{Y}_{M-L_Y-1}, \quad j = M - L_Y, \ldots, M - 1, \quad (2)
\]

где \(2L_X + 1\) и \(2L_Y + 1\) являются длинами масок фильтров. Затем вычисляются массивы шумов \(\Delta X = X - \hat{X}\) и \(\Delta Y = Y - \hat{Y}\).

Фильтрованную спектрограмму \(\hat{A}\) определим далее по правилу \(\hat{A}_{ij} = A_{ij} - (\Delta X_i + \Delta Y_j)/2\). Она изображена на рис. 1 справа. Видно, что предложенный алгоритм медианной фильтрации действительно эффективно подавляет образы атмосфериков и
узкополосных шумов, а образ вистлера не размывается. Сохраняются и короткие \(\sim 0.5 \) сек. сигналы радиостанций.

Отбор значимых точек спектрограммы

На следующем этапе распознавания происходит отбор значимых отсчетов для каждого столбца фильтрованной спектрограммы. Мы рассматриваем квадраты элементов столбца как периодограмму Шустера соответствующего фрагмента ОНЧ-сигнала и выполняем проверку на уровне значимости \(\alpha \) гипотезы о том, что этот фрагмент сигнала является белым шумом [9].

Для этого вычисляем по каждому \(j \)-му столбцу спектрограммы \(\hat{A} \) дисперсию \(\sigma_j^2 \) через ее спектральное представление

\[
\sigma_j^2 = 2 \sum_{i=0}^{N-1} \hat{A}_ij^2.
\] (3)

Далее, если \(\hat{A}_{ij}^2 < -\sigma_j^2 (\ln \alpha)/N \), то отсчет \(\hat{A}_{ij} \) считается шумовым (незначимым), в противном случае – значимым.

Из пар индексов \((i, j) \) значимых элементов составляется динамический одномерный массив \(P \) с элементами \(P_m = (i_m, j_m) \), размерность которого равна количеству значимых элементов спектрограммы. Это делается для ускорения обработки, поскольку в дальнейшем в работе алгоритма распознавания используются не отсчеты спектрограммы, а массивы \(P = \{P_m\}, t = \{t_j\} \) и \(f = \{f_i\} \). При этом элементу \(P_m \) соответствует точка \(\hat{A}_{i_m,j_m} \) на фильтрованной спектрограмме. Далее будем отождествлять \(P_m \) и \(\hat{A}_{i_m,j_m} \).

Переходом к этим массивам обеспечивается существенное снижение объема обрабатываемых далее данных. Анализ типичных спектрограмм показал, что размерность массива \(P \) оказывается примерно на порядок меньше размерности исходной спектрограммы.

![Рис. 2](image.png)

Рис. 2. Значимые точки спектрограммы в плоскости \((t,f) \) (слева) и в плоскости \((t,s) \) (справа).

На рис. 2 слева точками изображены элементы, отобранные для спектрограммы \(\hat{A} \). Видно, что образ вистлера хорошо просматривается после отбора.
Схема распознавания

Из теории распространения ОНЧ-волн в магнитосферной плазме известно [1], что форма вистлера, пришедшего в момент τ, хорошо описывается уравнением

$$t - \tau = D/\sqrt{f},$$

где коэффициент $D > 0$ называют дисперсией. Из (4) видно, что если ввести преобразование $s = f^{-1/2}$, то в плоскости координат (t,s) образ вистлера выпрямляется, и уравнению (4) будет соответствовать в этой плоскости уравнение $t - Ds - \tau = 0$, т.е. уравнение наклонной прямой, образующей ненулевой острый угол с положительным направлением оси времени. Соответствующие элементам $P_m = (i_m,j_m)$ точки $Q_m = (t_{jm},s_{im})$ изображены на рис. 2 справа.

Поскольку распознавание прямой линии представляет алгоритмически более простой задачей, чем распознавание кривой, удобнее детектировать вистлера в плоскости (t,s). Признаком наличия вистлера (вистлеров) тогда является группировка точек вблизи прямой (прямых) в этой плоскости. Причем речь идет только о наклонных прямых, поскольку остатки узкополосных шумов и сигналов радиостанций после медианной фильтрации и отбора значимых элементов продолжают проявляться в виде горизонтальных прямолинейных структур.

Из многих вариантов записи уравнений таких прямых, для наших целей лучше всего подходит

$$t \sin \varphi - s \cos \varphi - d = 0,$$

где φ — угол, образуемый прямой с осью времени, а d — общепринятое расстояние от прямой до начала координат, принимаемое положительным, если прямая пересекает ось s в положительной точке, и отрицательным в противном случае.

Обработка большого числа спектрограмм показала, что реальные значения $\varphi \in [1^0, 10^0]$. Ясно также, что $d \geq d_{\min} = -\max \{t_{jm}\}$ и $d \leq d_{\max} = \max \{s_{im}\}$.

Пучёк прямых, проходящих через точку Q_m, задается уравнением

$$t_{jm} \sin \varphi - s_{im} \cos \varphi = d,$$

определяющим линию в области $1^0 < \varphi < 10^0$, $d_{\min} \leq d \leq d_{\max}$ плоскости (φ,d). Тогда прямой (образу вистлера), проходящей через несколько точек Q_m, будет соответствовать точка пересечения таких линий. Поэтому признаком близости точек к прямой в плоскости (t,s) будет существование точки в плоскости (φ,d), через малую окрестность которой проходят линии. При этом, чем меньше окрестность, тем ближе к прямой лежат точки в (t,s), и наоборот.

Введем равномерные сетки $\{\varphi_k\}$ и $\{d_l\}$ на возможных значениях углов и расстояний. Для каждой точки Q_m и каждого угла φ_k из уравнения (6) определяем расстояние d и округляем его до ближайшего d_l.

В результате получим двумерную гистограмму распределения пар (φ,d) для точек Q_m. Если для пары (φ_k,d_l) значение гистограммы велико, то много точек Q_m лежит вблизи соответствующей прямой. Таким образом, каждому значимому максимуму гистограммы можно поставить в соответствие вистлер.

Отбор значимых максимумов также можно проводить как и было описано выше на основе теоремы Шустера.
Заключение

В настоящей работе описан алгоритм распознавания образов свистящих атмосфериков в спектрограммах ОНЧ-излучения, состоящий из четырех этапов: медианной фильтрации; отбора значимых точек; преобразования координат с целью выпрямления образа вистлера; распознавание "выпрямленного" вистлера. Тестирование описанного алгоритма распознавания показало, что обработка 225 спектрограмм одного 15-минутного wav-файла требует менее 4 минут, что обеспечивает значительный резерв времени обработки. Для обнаружения значимых максимумов в гистограмме распределения пар в автоматическом режиме в настоящее время разрабатывается нейронная сеть.

Список литературы

[1] Гершман Б.Н., Угаров В.А., "Распространение и генерация низкочастотных электромагнитных волн в верхней атмосфере", Успехи физических наук, 72:2 (1960), 235–271; англ. пер.:Gershman B. N., Ugarov V. A., "Propagation and generation of low-frequency electromagnetic waves in the upper atmosphere", Sov. Phys. Usp., 3 (1961), A07222.

[2] Lichtenberger J., "A new whistler inversion method", Journal of Geophysical Research: Space Physics, 114 (2009), A07222.

[3] http://plasmon.elte.hu/.

[4] Cherneva N. V., Sivokon’ V. P., Agranat I. V., “Spectral characteristics of whistlers”, Problems of Geocosmos, Proc. of the 9th Int. Conf. (St. Petersburg, 2012), St. Petersburg State Univ., St. Petersburg, 2012, 212–217.

[5] Водинчар Г. М., Сивоконь В. П., Шевцов В. М., Чернева Н. В., Малыш Е. А., “Возможное проявление активности мировых грозовых центров в потоке вистлеров на камчатке”, Вестник КРАУНЦ. Физ.-мат. науки, 9:2 (2014); англ. пер.:Vodinchar G. M., Sivokonь V. P., Shevtsov B. M., Cherneva N. V., Malysz E. A., “Manifestation of the world’s centers of lightning activity In the whistler in Kamchatka”, Bulletin KRASEC. Phys. and Math. Sci., 9:2 (2014), 39–47.

[6] Малыш Е. А., “Алгоритм для автоматического распознавания свистящих атмосфериков в режиме реального времени”, Вестник КРАУНЦ. Физ.-мат. науки, 11:2 (2015), 82–87, [Malysh E. A. "Algoritm dlya avtomaticheskogo raspoznavaniya svistyashchikh atmosferikov v rezhime real’nogo vremeni", Vestnik KRAUNC. Fiz.-mat. nauki, 11:2 (2015), 82–87 (in Russian)].

[7] Gonzales R. C., Woods R. E., Digital Image Processing, Prentice-Hall Inc., Upper Saddle River, 2002, рус. пер.: Гонсалес Р., Вудс Р., Цифровая обработка изображений, М., Техносфера, 2005.

[8] Гектин Ю. М., Зайцев А. А., “Разработка и применение модифицированного алгоритма медианной фильтрации при бортовой коррекции изображений дистанционного зондирования”, Труды МФТИ, 6:4 (2014), 103–106, [Gektin Yu. M., Zaytsev A. A., "Razrabotka i primenenie modifitsirovannogo algoritma mediannykh filtratsiy pri bortovoy korrektsii izobrazheniy distantionnogo zondirovaniya", Trudy MFTI, 6:4 (2014), 103–106 (in Russian)].

[9] Marplt-jr S. L., Digital Spectral Analysis: With Applications, Prentice-Hall Inc., New Jersey, 1987, рус. пер.: Марпл-мл С. Л., Цифровой спектральный анализ и его приложения, М., Мир, 1990.

Для цитирования: Малыш Е. А., Водинчар Г. М., Чернева Н. В. Распознавание свистящих атмосфериков в ОНЧ-спектрограммах // Вестник КРАУНЦ. Физ.-мат. науки. 2016. № 4(15). С. 43-48. DOI: 10.18454/2079-6641-2016-15-4-43-48

For citation: Malyshev E. A., Vodinchar G. M., Cherneva N. V. Detection of the whistlers in the vlf-spectrograms, Vestnik KRAUNC. Fiz.-mat. nauki. 2016, 15: 4, 43-48. DOI: 10.18454/2079-6641-2016-15-4-43-48