Bis(μ-cobaltoceniumselenolate-1:2κ²Se:Se)bis-[bis(cobaltoceniumselenolate-κSe)mercury(II)] tetrakis(hexafluoridophosphate) acetonitrile disolvate

Daniel Menia, Klaus Wurst and Benno Bildstein*

University of Innsbruck, Faculty of Chemistry and Pharmacy, Innrain 80-82, 6020 Innsbruck, Austria. *Correspondence e-mail: benno.bildstein@uibk.ac.at

Received 9 September 2021
Accepted 19 October 2021

Edited by M. Weil, Vienna University of Technology, Austria

Keywords: cobalt; selenium; mercury; sandwich complexes; crystal structure.

CCDC reference: 2116450

Structural data: full structural data are available from iucrdata.iucr.org

The title compound, \([\text{Co}_6\text{Hg}_2(\text{C}_5\text{H}_5)_6(\text{C}_5\text{H}_4\text{Se})_6][\text{PF}_6]_4\cdot2\text{CH}_3\text{CN}\) or \([\text{Hg}_2(\text{CcSe})_6][\text{PF}_6]_4\cdot2\text{CH}_3\text{CN}\) (Cc = \(\text{C}_{10}\text{H}_9\text{Co}\)), was obtained as bright-orange needle-shaped crystals. It is a salt containing a tetracationic dimercury species with six cobaltoceniumselenolate ligands, four hexafluoridophosphate counterions and two acetonitrile solvent molecules. The cation (point group \(\bar{1}\)) has a bitetrahedral \([\text{Hg}_2\text{Se}_6]\) core with two bridging Se atoms and four terminal Se atoms.

Structure description

Zwitterionic cobaltoceniumselenolate is a versatile ligand for forming organometallic coordination compounds (Vanicek et al., 2018). The title salt, \([\text{Hg}_2(\text{CcSe})_6][\text{PF}_6]_4\cdot2\text{CH}_3\text{CN}\) (Cc = \(\text{C}_{10}\text{H}_9\text{Co}\)), was synthesized starting from the recently reported cobaltocenium selenolate gold(I) triphenylphosphine hexafluoridophosphate (Menia et al., 2021) using elemental mercury in dry ortho-dichlorobenzene. It was crystallized as an acetonitrile solvate showing positional disorder of the solvent molecule and of one of the \(\text{PF}_6^-\) anions.

The cation lies about a crystallographic inversion center and has a bitetrahedral \([\text{Hg}_2\text{Se}_6]\) core formed by edge-sharing of two \(\text{HgSe}_4\) tetrahedra and has two bridging Se2 atoms and four terminal Se1 and Se3 atoms (Fig. 1). The Se2—Hg1—Se2' angle between the bridging Se atoms is 91.509 (10)', resulting in an Hg1—Se1—Hg1' angle of 88.491 (10)' [symmetry code: (i) \(-x + 1, -y + 1, -z + 1\)]. The four \(\text{Cipso—Se—Hg1}\) angles are slightly compressed, ranging from 98.79 (7) to 106.04 (7)', as was also observed for cobaltocenium selenolate gold complexes (Menia et al., 2021). The terminal Se—Hg1 bonds...
bond lengths are 2.5476 (3) Å (Se1—Hg1) and 2.5451 (3) Å (Se3—Hg1), whereas the bridging Se2—Hg1 bond lengths differ considerably with 2.6254 (3) Å for Se2—Hg1 and 3.1537 (4) Å for Se2—Hg1'. With an average Se—C distance of 1.89 Å between the selenolate and the cobaltocenium residues, these bond lengths are comparable with other recently reported cobaltocenium selenolates (Menia et al., 2021).

The sole comparable compound found in the literature is [Yb(C6H10O2)4][Hg2(C6H5Se)6] (Romanelli et al., 2008). Here, instead of the cationic cobaltocenium species the selenium atoms are bonded to phenyl residues, which makes the Hg species a dianion. With an average Se—Hg bond length of 2.81 Å in the title compound, bonds are elongated in comparison with the dianion of Romanelli et al. (2.68 Å).

Since the packing of the molecules (Fig. 2) shows no remarkable hydrogen bonding or π-stacking interactions, the cohesion within the crystal structure is dominated by van der Waals forces.

Synthesis and crystallization

In a 50 ml Schlenk flask, 11.1 mg of [(CeSe)(PPh3)Au]PF6 (1 eq., 0.013 mmol) were suspended in 5 ml of dry ortho-dichlorobenzene. Approximately 0.1 ml of liquid mercury was added and the mixture stirred for 48 h. This reaction was originally carried out with the aim of removing selenium from the desired compound. The bright-orange precipitate was filtered off, washed with two portions of 10 ml of diethyl ether and dissolved in 5 ml of acetonitrile. This orange solution was concentrated to about 1 ml. Bright-orange needle-shaped crystals were obtained by diffusion-crystallization with diethyl ether at 253 K. 1H NMR (300 MHz, CD3CN): δ 5.70 (t, J = 2.0 Hz, 2H), 5.51 (t, J = 2.0 Hz, 2H), 5.46 (s, 5H).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1. One of the two PF6 anions (P2) shows disorder of four fluorine atoms over two sets of sites in a 2:1 ratio for F7, F8, F9, F10 and F7A, F8A, F9A, F10A. Another positional disorder occurs for the complete acetonitrile solvent molecule in a 1:1 ratio. All disordered atoms were refined with anisotropic displacement parameters without further restraints, but with fixed occupation factors.
Table 1
Experimental details.

Crystal data	Chemical formula
Chemical formula	\([\text{Co}_6\text{Hg}_2(\text{C}_5\text{H}_5)_3(\text{C}_5\text{H}_4\text{Se})_6](\text{PF}_6)_4\)
\(M_r\)	2665.54
Crystal system, space group	Triclinic, \(P\bar{1}\)
Temperature (K)	183
\(a, b, c\) (\(\text{Å}\))	10.2933 (8), 14.3271 (12), 15.1087 (12)
\(\alpha, \beta, \gamma\) (\(^\circ\))	109.744 (3), 109.764 (2), 95.306 (3)
\(V\) (\(\text{Å}^3\))	1919.1 (3)
\(Z\)	1
Radiation type	Mo K\(\alpha\)
\(\mu\) (mm\(^{-1}\))	8.28
Crystal size (mm)	0.18 \(\times\) 0.09 \(\times\) 0.04

Data collection

Diffractometer	Bruker D8 QUEST PHOTON 100
Absorption correction	Multi-scan (SADABS: Krause et al., 2015)
\(T_{\text{min}}, T_{\text{max}}\)	0.574, 0.837
No. of measured, independent and observed \([I > 2\sigma(I)]\) reflections	69321, 7546, 7005
\(R_{\text{int}}\)	0.038
\(\sin(\theta/\lambda)_{\text{max}}\) (\(\text{Å}^{-1}\))	0.617

Refinement

\(R[F^2 > 2\sigma(F^2)]\), \(wR(F^2), S\)	0.017, 0.042, 1.04
No. of reflections	7546
No. of parameters	553
H-atom treatment	H-atom parameters constrained
\(\Delta\rho_{\text{max}}, \Delta\rho_{\text{min}}\) (e \(\text{Å}^{-3}\))	0.77, -0.80

Acknowledgements

We thank Dr Holger Kopacka (Institute of General, Inorganic and Theoretical Chemistry, University of Innsbruck) for the measurement of NMR spectra and Dr Viktoria Falkowski (Inorganic Chemistry Laboratory, Oxford University) and Dr Frank Tambornino (Inorganic Chemistry, University of Marburg) for important input.

Funding information

Funding for this research was provided by: Austrian Science Fund FWF (grant No. P33858).

References

Buker (2014). AP\(\text{E}X^2\) and S\(\text{AINT}\). Bruker AXS Inc., Madison, Wisconsin, USA.

Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.

Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.

Menia, D., Kopacka, H., Wurst, K., Müller, T., Lippmann, P., Ott, I. & Bildstein, B. (2021). Eur. J. Inorg. Chem. pp. 2784–2786.

Romanelli, M. D., Emge, T. J. & Brennan, J. G. (2008). Acta Cryst. E64, m987–m988.

Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.

Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.

Vanicek, S., Podewitz, M., Hassenrück, C., Pittracher, M., Kopacka, H., Wurst, K., Müller, T., Liedl, K. R., Winter, R. F. & Bildstein, B. (2018). Chem. Eur. J. 24, 3165–3169.

Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
full crystallographic data

Bis(µ-cobaltoceniumselenolate-1:2κ²Se:Se)bis[bis(cobaltoceniumselenolate-κSe)mercury(II)] tetrakis(hexafluoridophosphate) acetonitrile disolvate

Daniel Menia, Klaus Wurst and Benno Bildstein

Bis(µ-cobaltoceniumselenolate-1:2κ²Se:Se)bis[bis(cobaltoceniumselenolate-κSe)mercury(II)] tetrakis(hexafluoridophosphate) acetonitrile disolvate

Crystal data

[Co₆Hg₂(C₅H₅)(C₅H₄Se)₆](PF₆)₄·2C₂H₃N

Mr = 2665.54

Triclinic, P1

a = 10.2933 (8) Å

b = 14.3271 (12) Å

c = 15.1087 (12) Å

α = 109.744 (3)°

β = 109.764 (2)°

γ = 95.306 (3)°

V = 1919.1 (3) Å³

Z = 1

F(000) = 1260

Dx = 2.306 Mg m⁻³

Mo Kα radiation, λ = 0.71073 Å

Cell parameters from 9672 reflections

θ = 2.3–26.4°

µ = 8.28 mm⁻¹

T = 183 K

Prism, orange

0.18 × 0.09 × 0.04 mm

Data collection

Bruker D8 QUEST PHOTON 100
diffractometer

Radiation source: Incoatec Microfocus

Multi layered optics monochromator

Detector resolution: 10.4 pixels mm⁻¹

φ and ω scans

Absorption correction: multi-scan

(SADABS; Krause et al., 2015)

Tmin = 0.574, Tmax = 0.837

69321 measured reflections

7546 independent reflections

7005 reflections with I > 2σ(I)

Rint = 0.038

θmax = 26.0°, θmin = 2.2°

hk=−12→12

kl=−17→17

ilm=−18→18

Refinement

Refinement on F²

Least-squares matrix: full

R[F² > 2σ(F²)] = 0.017

wR(F²) = 0.042

S = 1.04

7546 reflections

553 parameters

0 restraints

Primary atom site location: structure-invariant direct methods

Hydrogen site location: inferred from neighbouring sites

H-atom parameters constrained

w = 1/[σ(Fc⁻²) + (0.0197P)² + 1.8079P]

where P = (Fc⁻² + 2Fc²)/3

(Δσ)max = 0.003

Δρmax = 0.77 e Å⁻³

Δρmin = −0.80 e Å⁻³

Extinction correction: SHELXL2014/7 (Sheldrick, 2015b),

Fc*=kFc[1+0.001xFc²λ/sin(2θ)]⁻¹/⁴

Extinction coefficient: 0.00230 (10)
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. C-bound hydrogen atoms were placed in calculated positions and constrained to ride on their parent atoms with $U_{iso}(H) = 1.2U_{eq}(C)$ and a C—H distance of 0.95 Å for aromatic H atoms. Positonal disorder of same flourine atoms at P2 in ratio 2:1 for F7-F10 : F7a-F10a and for solvent acetonitrile C32-C31-N1 : C32a-C31a-N1a in ratio 1:1, respectively.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^2)

	x	y	z	U_{iso}/U_{eq}	Occ. (<1)	
Hg1	0.31028 (2)	0.47867 (2)	0.51180 (2)	0.02781 (4)		
Se1	0.32480 (3)	0.45328 (2)	0.67355 (2)	0.02603 (6)		
Se2	0.40933 (3)	0.35008 (2)	0.39551 (2)	0.02572 (6)		
Se3	0.13272 (3)	0.56435 (2)	0.42414 (2)	0.02556 (6)		
Co1	0.51168 (3)	0.26149 (2)	0.69145 (3)	0.02302 (8)		
Co2	0.21259 (4)	0.23319 (2)	0.12527 (3)	0.02438 (8)		
Co3	0.18455 (3)	0.79863 (2)	0.63293 (3)	0.02143 (7)		
C1	0.4091 (3)	0.1559 (2)	0.7209 (3)	0.0462 (8)		
H1	0.4018	0.1660	0.7843	0.055		
C2	0.5175 (3)	0.1204 (2)	0.6918 (3)	0.0416 (7)		
H2	0.5954	0.1018	0.7320	0.050		
C3	0.4906 (4)	0.1174 (2)	0.5936 (3)	0.0482 (8)		
H3	0.5471	0.0967	0.5554	0.058		
C4	0.3634 (4)	0.1508 (2)	0.5614 (3)	0.058 (11)		
H4	0.3197	0.1566	0.4977	0.070		
C5	0.3142 (3)	0.1739 (2)	0.6405 (3)	0.0519 (10)		
H5	0.2308	0.1976	0.6395	0.062		
C6	0.5531 (3)	0.3958 (2)	0.8092 (2)	0.0312 (6)		
H6	0.5136	0.4081	0.8594	0.037		
C7	0.6793 (3)	0.3613 (2)	0.8153 (2)	0.0337 (6)		
H7	0.7394	0.3473	0.8703	0.040		
C8	0.6998 (3)	0.3516 (2)	0.7255 (2)	0.0312 (6)		
H8	0.7763	0.3297	0.7093	0.037		
C9	0.5863 (3)	0.38023 (19)	0.6631 (2)	0.0267 (5)		
H9	0.5737	0.3801	0.5978	0.032		
C10	0.4948 (3)	0.40899 (17)	0.71494 (19)	0.0233 (5)		
C11	0.1956 (3)	0.0996 (2)	0.1453 (2)	0.0393 (7)		
H11	0.2363	0.0915	0.2080	0.047		
C12	0.2595 (3)	0.0951 (2)	0.0760 (2)	0.0402 (7)		
H12	0.3511	0.0831	0.0835	0.048		
C13	0.1648 (4)	0.1113 (2)	0.0067 (2)	0.0411 (7)		
H13	0.1816	0.1126	0.0644	0.049		
C14	0.0411 (3)	0.1252 (2)	0.0110 (2)	0.0438 (8)		
H14	0.1451	0.1371	0.0328	0.053		
C15	0.0598 (3)	0.1183 (2)	0.1054 (3)	0.0437 (8)		
---	---	---	---	---		
H15	−0.0069	0.1250	0.1365	0.052*		
C16	0.3985 (3)	0.34072 (19)	0.1954 (2)	0.0338 (6)		
H16	0.4904	0.3277	0.2072	0.041*		
C17	0.3071 (4)	0.3502 (2)	0.1062 (2)	0.0482 (9)		
H17	0.3276	0.3454	0.0483	0.058*		
C18	0.1804 (4)	0.3679 (2)	0.1184 (2)	0.0474 (9)		
H18	0.1010	0.3775	0.0702	0.057*		
C19	0.1920 (3)	0.36898 (19)	0.2153 (2)	0.0323 (6)		
H19	0.1211	0.3780	0.2425	0.039*		
C20	0.3288 (3)	0.35406 (17)	0.26440 (19)	0.0241 (5)		
C21	0.3979 (3)	0.8491 (2)	0.6884 (3)	0.0446 (8)		
H21	0.4663	0.8112	0.7061	0.053*		
C22	0.3452 (3)	0.9115 (2)	0.7541 (2)	0.0368 (7)		
H22	0.3713	0.9237	0.8243	0.044*		
C23	0.2474 (3)	0.9533 (2)	0.6989 (3)	0.0456 (8)		
H23	0.1953	0.9988	0.7249	0.055*		
C24	0.2399 (4)	0.9162 (3)	0.5986 (3)	0.0642 (12)		
H24	0.1818	0.9318	0.5442	0.077*		
C25	0.3341 (4)	0.8515 (3)	0.5931 (3)	0.0603 (12)		
H25	0.3509	0.8156	0.5339	0.072*		
C26	0.1367 (3)	0.65878 (18)	0.6361 (2)	0.0279 (6)		
H26	0.2027	0.6255	0.6669	0.033*		
C27	0.0690 (3)	0.7278 (2)	0.6860 (2)	0.0373 (7)		
H27	0.0805	0.7476	0.7554	0.045*		
C28	−0.0186 (3)	0.7617 (2)	0.6146 (3)	0.0439 (8)		
H28	−0.0767	0.8081	0.6275	0.053*		
C29	−0.0046 (3)	0.7144 (2)	0.5202 (2)	0.0350 (6)		
H29	−0.0500	0.7252	0.4594	0.042*		
C30	0.0896 (3)	0.64768 (18)	0.5321 (2)	0.0242 (5)		
P1	0.94494 (10)	0.11818 (8)	0.70615 (7)	0.0506 (2)		
F1	0.9016 (3)	0.1795 (2)	0.79546 (19)	0.0935 (9)		
F2	0.9873 (3)	0.0561 (2)	0.61544 (18)	0.0837 (8)		
F3	0.7858 (3)	0.0741 (3)	0.6318 (2)	0.1244 (14)		
F4	1.1077 (3)	0.1638 (2)	0.7786 (2)	0.0832 (7)		
F5	0.9538 (3)	0.0274 (2)	0.7437 (2)	0.0931 (9)		
F6	0.9436 (4)	0.2112 (3)	0.6708 (3)	0.1183 (12)		
P2	0.65318 (11)	0.20499 (8)	1.02043 (7)	0.0507 (2)		
F11	0.5820 (5)	0.2828 (3)	0.9804 (3)	0.1310 (14)		
F12	0.7338 (3)	0.13036 (18)	1.06292 (17)	0.0688 (6)		
N1	0.6305 (9)	0.5411 (7)	1.0496 (6)	0.077 (2)		
C31	0.7429 (13)	0.5419 (11)	1.0966 (8)	0.058 (3)		
C32	0.8832 (15)	0.5370 (17)	1.1525 (14)	0.077 (4)		
H32A	0.8795	0.4739	1.1644	0.115*		
H32B	0.9248	0.5957	1.2183	0.115*		
H32C	0.9415	0.5381	1.1131	0.115*		
N1A	0.9757 (6)	0.5167 (5)	1.0373 (5)	0.0523 (14)		
C31A	0.9058 (7)	0.5274 (6)	1.0817 (5)	0.0459 (15)		
C32A	0.8167 (17)	0.5410 (13)	1.1386 (14)	0.087 (6)		
Atom	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
--------	-----------	-----------	-----------	-----------	-----------	-----------
Hg1	0.03160 (6)	0.02915 (6)	0.02704 (6)	0.01267 (4)	0.01398 (4)	0.01231 (4)
Se1	0.02882 (13)	0.02585 (13)	0.02935 (14)	0.00876 (10)	0.01531 (11)	0.01336 (11)
Se2	0.02821 (13)	0.02356 (13)	0.02013 (13)	0.00917 (10)	0.00767 (10)	0.00348 (10)
Se3	0.02908 (13)	0.02367 (12)	0.02107 (13)	0.00690 (10)	0.00785 (10)	0.00730 (10)
Co1	0.02233 (16)	0.01826 (16)	0.02694 (18)	0.00221 (12)	0.00697 (14)	0.01050 (14)
Co2	0.02932 (18)	0.01654 (16)	0.01857 (17)	0.00271 (13)	0.00503 (14)	0.00182 (13)
Co3	0.02007 (16)	0.01581 (15)	0.02571 (18)	0.00371 (12)	0.00727 (14)	0.00689 (13)
C1	0.0466 (18)	0.0297 (15)	0.071 (2)	−0.0005 (13)	0.0282 (17)	0.0274 (16)
C2	0.0366 (16)	0.0237 (14)	0.064 (2)	0.0061 (12)	0.0136 (15)	0.0233 (14)
C3	0.057 (2)	0.0213 (14)	0.054 (2)	0.0030 (13)	0.0219 (17)	0.0022 (14)
C4	0.059 (2)	0.0277 (16)	0.047 (2)	−0.0104 (15)	−0.0151 (18)	0.0080 (15)
C5	0.0243 (15)	0.0290 (16)	0.090 (3)	−0.0009 (12)	0.0104 (17)	0.0234 (17)
C6	0.0413 (15)	0.0252 (13)	0.0229 (13)	0.0037 (11)	0.0104 (12)	0.0079 (11)
C7	0.0294 (14)	0.0290 (14)	0.0305 (15)	−0.0014 (11)	−0.0020 (12)	0.0132 (12)
C8	0.0223 (13)	0.0301 (14)	0.0419 (16)	0.0020 (10)	0.0085 (12)	0.0202 (13)
C9	0.0259 (13)	0.0285 (13)	0.0318 (14)	0.0039 (10)	0.0129 (11)	0.0180 (11)
C10	0.0254 (12)	0.0158 (11)	0.0250 (13)	0.0033 (9)	0.0073 (10)	0.0072 (10)
C11	0.0577 (19)	0.0170 (13)	0.0280 (15)	−0.0002 (12)	0.0064 (14)	0.0039 (11)
C12	0.0337 (15)	0.0198 (13)	0.0475 (19)	0.0063 (11)	0.0087 (14)	−0.0024 (12)
C13	0.0564 (19)	0.0258 (14)	0.0254 (15)	0.0006 (13)	0.0142 (14)	−0.0041 (12)
C14	0.0368 (16)	0.0258 (14)	0.0384 (18)	0.0021 (12)	−0.0049 (14)	−0.0017 (13)
C15	0.0432 (17)	0.0223 (14)	0.052 (2)	−0.0044 (12)	0.0247 (15)	−0.0040 (13)
C16	0.0404 (16)	0.0215 (13)	0.0314 (15)	−0.0066 (11)	0.0171 (13)	0.0015 (11)
C17	0.083 (3)	0.0272 (15)	0.0290 (16)	−0.0053 (15)	0.0226 (17)	0.0083 (13)
C18	0.075 (2)	0.0218 (14)	0.0302 (16)	0.0126 (15)	0.0033 (16)	0.0100 (12)
C19	0.0404 (15)	0.0177 (12)	0.0280 (14)	0.0108 (11)	0.0058 (12)	0.0030 (11)
C20	0.0290 (13)	0.0130 (11)	0.0209 (12)	−0.0007 (9)	0.0072 (10)	−0.0001 (9)
C21	0.0231 (14)	0.0267 (15)	0.073 (2)	0.0011 (11)	0.0160 (15)	0.0105 (15)
C22	0.0359 (15)	0.0291 (14)	0.0299 (15)	−0.0080 (12)	0.0041 (12)	0.0064 (12)
C23	0.0366 (16)	0.0152 (13)	0.072 (2)	0.0037 (11)	0.0158 (16)	0.0076 (14)
C24	0.070 (2)	0.042 (2)	0.054 (2)	−0.0220 (18)	−0.0121 (19)	0.0341 (18)
C25	0.079 (3)	0.0366 (18)	0.053 (2)	−0.0262 (18)	0.045 (2)	−0.0056 (16)
C26	0.0362 (14)	0.0185 (12)	0.0326 (15)	0.0019 (10)	0.0189 (12)	0.0101 (11)
Data reports

Atom	U1	U2	U3	U4	U5	U6
C27	0.0395 (16)	0.0289 (14)	0.0458 (18)	−0.0005 (12)	0.0294 (14)	0.0069 (13)
C28	0.0216 (14)	0.0340 (15)	0.061 (2)	0.0054 (11)	0.0183 (14)	−0.0007 (15)
C29	0.0176 (12)	0.0309 (14)	0.0404 (17)	0.0037 (10)	0.0027 (12)	0.0043 (12)
C30	0.0208 (12)	0.0166 (11)	0.0290 (14)	−0.0013 (9)	0.0090 (10)	0.0041 (10)
P1	0.0506 (5)	0.0761 (6)	0.0418 (5)	0.0398 (5)	0.0252 (4)	0.0293 (5)
F1	0.101 (2)	0.136 (2)	0.0600 (15)	0.0695 (18)	0.0506 (15)	0.0277 (16)
F2	0.0968 (18)	0.132 (2)	0.0508 (13)	0.0788 (17)	0.0438 (13)	0.0416 (15)
F3	0.0510 (15)	0.205 (4)	0.076 (2)	0.0419 (19)	0.0156 (14)	0.014 (2)
F4	0.0610 (15)	0.108 (2)	0.0796 (18)	0.0221 (14)	0.0262 (13)	0.0368 (16)
F5	0.134 (2)	0.0842 (18)	0.092 (2)	0.0295 (17)	0.0632 (19)	0.0511 (16)
F6	0.192 (4)	0.111 (2)	0.102 (2)	0.091 (3)	0.067 (2)	0.075 (2)
P2	0.0680 (6)	0.0642 (6)	0.0458 (5)	0.0353 (5)	0.0347 (5)	0.0346 (5)
F11	0.204 (4)	0.137 (3)	0.114 (3)	0.113 (3)	0.071 (3)	0.095 (2)
F12	0.0914 (17)	0.0751 (15)	0.0558 (13)	0.0603 (13)	0.0336 (13)	0.0318 (12)
N1	0.095 (6)	0.114 (6)	0.053 (4)	0.060 (5)	0.044 (4)	0.046 (4)
C31	0.075 (8)	0.086 (6)	0.041 (6)	0.045 (6)	0.037 (5)	0.036 (5)
C32	0.066 (9)	0.117 (9)	0.063 (7)	0.042 (9)	0.035 (8)	0.040 (6)
N1A	0.046 (3)	0.070 (4)	0.050 (4)	0.020 (3)	0.020 (3)	0.031 (3)
C31A	0.051 (4)	0.053 (4)	0.035 (4)	0.012 (3)	0.017 (3)	0.019 (3)
C32A	0.103 (18)	0.103 (9)	0.089 (16)	0.036 (15)	0.077 (16)	0.036 (11)
F7	0.150 (7)	0.212 (10)	0.061 (4)	0.111 (6)	0.079 (5)	0.079 (6)
F8	0.104 (4)	0.122 (7)	0.058 (4)	0.084 (4)	0.056 (4)	0.039 (5)
F9	0.069 (3)	0.107 (4)	0.076 (4)	−0.009 (3)	0.009 (3)	0.022 (3)
F10	0.081 (3)	0.114 (4)	0.122 (5)	−0.002 (3)	0.019 (4)	0.077 (4)
F7A	0.134 (12)	0.122 (11)	0.199 (17)	0.046 (9)	0.120 (13)	0.114 (14)
F8A	0.070 (8)	0.29 (2)	0.22 (2)	0.032 (10)	0.076 (13)	0.17 (2)
F9A	0.211 (19)	0.061 (6)	0.050 (6)	0.051 (8)	0.008 (10)	0.012 (5)
F10A	0.25 (3)	0.133 (17)	0.041 (8)	0.141 (19)	0.021 (12)	0.007 (8)

Geometric parameters (Å, °)

Bond 1	Length (Å)	Bond 2	Length (Å)
Hg1—Se3	2.5451 (3)	C12—H12	0.9500
Hg1—Se1	2.5476 (3)	C13—C14	1.404 (5)
Hg1—Se2	2.6254 (3)	C13—H13	0.9500
Hg1—Se2'	3.1537 (4)	C14—C15	1.413 (5)
Se1—C10	1.894 (3)	C14—H14	0.9500
Se2—C20	1.895 (3)	C15—H15	0.9500
Se2—Hg1'	3.1537 (4)	C16—C17	1.417 (5)
Se3—C30	1.886 (3)	C16—C20	1.427 (4)
Co1—C6	2.018 (3)	C16—H16	0.9500
Co1—C1	2.019 (3)	C17—C18	1.411 (5)
Co1—C7	2.019 (3)	C17—H17	0.9500
Co1—C8	2.024 (3)	C18—C19	1.423 (4)
Co1—C5	2.029 (3)	C18—H18	0.9500
Co1—C2	2.030 (3)	C19—C20	1.426 (4)
Co1—C4	2.030 (3)	C19—H19	0.9500
Co1—C3	2.033 (3)	C21—C25	1.380 (5)
Co1—C9	2.035 (2)	C21—C22	1.390 (4)
Bond	Distance (Å)	Bond	Distance (Å)
--------------	--------------	--------------	--------------
Co1—C10	2.056 (2)	C21—H21	0.9500
Co2—C17	2.013 (3)	C22—C23	1.395 (4)
Co2—C18	2.019 (3)	C22—H22	0.9500
Co2—C13	2.023 (3)	C23—C24	1.398 (6)
Co2—C14	2.030 (3)	C23—H23	0.9500
Co2—C12	2.031 (3)	C24—C25	1.405 (6)
Co2—C16	2.034 (3)	C24—H24	0.9500
Co2—C15	2.035 (3)	C25—H25	0.9500
Co2—C11	2.037 (3)	C26—C27	1.418 (4)
Co2—C19	2.041 (3)	C26—C30	1.425 (4)
Co2—C20	2.075 (2)	C26—H26	0.9500
Co3—C25	2.006 (3)	C27—C28	1.411 (5)
Co3—C28	2.008 (3)	C27—H27	0.9500
Co3—C24	2.010 (3)	C28—C29	1.422 (4)
Co3—C27	2.015 (3)	C28—H28	0.9500
Co3—C29	2.021 (3)	C29—C30	1.435 (4)
Co3—C21	2.025 (3)	C29—H29	0.9500
Co3—C23	2.032 (3)	P1—F3	1.559 (3)
Co3—C26	2.039 (2)	P1—F1	1.571 (2)
Co3—C22	2.039 (3)	P1—F4	1.583 (3)
Co3—C30	2.081 (2)	P1—F5	1.584 (3)
C1—C5	1.397 (5)	P1—F2	1.585 (2)
C1—C2	1.408 (5)	P1—F6	1.595 (3)
C1—H1	0.9500	P2—F7A	1.471 (11)
C2—C3	1.399 (5)	P2—F9	1.505 (6)
C2—H2	0.9500	P2—F10A	1.54 (2)
C3—C4	1.423 (5)	P2—F8	1.553 (8)
C3—H3	0.9500	P2—F11	1.566 (3)
C4—C5	1.402 (6)	P2—F7	1.570 (5)
C4—H4	0.9500	P2—F12	1.585 (2)
C5—H5	0.9500	P2—F9A	1.621 (12)
C6—C7	1.418 (4)	P2—F8A	1.642 (14)
C6—C10	1.432 (4)	P2—F10	1.642 (6)
C6—H6	0.9500	N1—C31	1.131 (12)
C7—C8	1.406 (4)	C31—C32	1.427 (16)
C7—H7	0.9500	C32—H32A	0.9800
C8—C9	1.425 (4)	C32—H32B	0.9800
C8—H8	0.9500	C32—H32C	0.9800
C9—C10	1.422 (4)	N1A—C31A	1.126 (9)
C9—H9	0.9500	N1A—N1Ae	1.345 (12)
C11—C12	1.400 (5)	C31A—C32A	1.440 (15)
C11—C15	1.413 (5)	C32A—H32D	0.9800
C11—H11	0.9500	C32A—H32E	0.9800
C12—C13	1.407 (5)	C32A—H32F	0.9800
Se3—Hgl1—Se1	124.083 (9)	Co1—C8—H8	126.4
Se3—Hgl1—Se2	116.198 (10)	C10—C9—C8	108.5 (2)
Se1—Hgl1—Se2	115.319 (10)	C10—C9—Co1	70.43 (14)
Bond/Angle Descriptions	Bond Length (Å)	Bond Angle (°)	
---------------------------------	-----------------	----------------	
Se3—Hg1—Se2i	99.723 (10)	69.04 (14)	
Se1—Hg1—Se2i	99.201 (9)	125.8	
Se2—Hg1—Se2i	91.509 (10)	125.8	
C10—Se1—Hg1	104.54 (8)	126.4	
C20—Se2—Hg1	106.04 (7)	106.6 (2)	
C20—Se2—Hg1i	98.79 (7)	129.78 (19)	
Hg1—Se2—Hg1i	88.491 (10)	123.6 (2)	
C30—Se3—Hg1	102.46 (8)	68.88 (14)	
C6—Co1—C1	106.10 (13)	68.01 (14)	
C6—Co1—C7	41.12 (12)	126.55 (12)	
C1—Co1—C7	113.44 (14)	107.9 (3)	
C6—Co1—C8	68.77 (12)	69.63 (17)	
C1—Co1—C8	146.55 (13)	69.62 (17)	
C7—Co1—C8	40.69 (12)	126.0	
C6—Co1—C5	113.78 (14)	126.0	
C7—Co1—C5	40.39 (14)	126.3	
C8—Co1—C5	145.45 (15)	108.3 (3)	
C6—Co1—C2	129.59 (13)	70.10 (16)	
C1—Co1—C2	40.71 (13)	125.8	
C7—Co1—C2	107.44 (12)	125.8	
C8—Co1—C2	115.98 (12)	69.38 (17)	
C5—Co1—C2	68.15 (12)	126.3	
C6—Co1—C4	146.87 (15)	108.0 (3)	
C1—Co1—C4	68.11 (16)	69.98 (16)	
C7—Co1—C4	171.93 (15)	70.02 (16)	
C8—Co1—C4	134.13 (16)	126.0	
C5—Co1—C4	40.42 (16)	126.0	
C2—Co1—C4	68.22 (14)	125.6	
C6—Co1—C3	169.18 (13)	108.0 (3)	
C1—Co1—C3	68.23 (15)	69.47 (16)	
C7—Co1—C3	131.41 (13)	69.88 (16)	
C8—Co1—C3	110.49 (13)	126.0	
C5—Co1—C3	68.37 (14)	126.0	
C2—Co1—C3	40.27 (14)	126.2	
C4—Co1—C3	40.99 (15)	107.7 (3)	
C6—Co1—C9	68.73 (11)	69.44 (17)	
C1—Co1—C9	169.81 (12)	69.78 (16)	
C7—Co1—C9	68.91 (11)	126.1	
C8—Co1—C9	41.10 (10)	126.1	
C5—Co1—C9	132.51 (13)	126.2	
C2—Co1—C9	149.25 (12)	108.3 (3)	
C4—Co1—C9	111.05 (14)	68.69 (17)	
C3—Co1—C9	118.31 (13)	71.22 (14)	
C6—Co1—C10	41.14 (10)	125.9	
C1—Co1—C10	129.79 (12)	125.9	
C7—Co1—C10	69.29 (10)	108.2 (3)	
C8—Co1—C10	68.99 (10)	69.77 (18)	

IUCrData (2021). 6, x211083
C5—Co1—C10 108.10 (11) C16—C17—Co2 70.33 (16)
C2—Co1—C10 168.83 (12) C18—C17—H17 125.9
C4—Co1—C10 116.29 (12) C16—C17—H17 125.9
C3—Co1—C10 149.47 (13) C17—Co1—C10 125.6
C9—Co1—C10 40.70 (10) C17—C18—C19 108.2 (3)
C17—Co2—C18 40.97 (15) C17—C18—C20 69.26 (17)
C17—Co2—C13 104.66 (13) C19—C18—Co2 70.27 (16)
C18—Co2—C13 118.79 (13) C17—C18—H18 125.9
C17—Co2—C14 122.20 (14) C19—C18—H18 126.1
C18—Co2—C14 106.12 (13) C18—C19—C20 108.0 (3)
C13—Co2—C14 40.55 (13) C18—C19—Co2 68.68 (16)
C12—Co2—C14 119.40 (14) C18—C19—H18 71.02 (14)
C13—Co2—C12 154.38 (14) C18—C19—H19 126.0
C14—Co2—C12 40.60 (13) C18—C19—H19 126.0
C17—Co2—C16 68.12 (12) C20—C19—H19 125.9
C17—Co2—C16 40.98 (13) C20—C19—H19 125.9
C18—Co2—C16 68.82 (14) C19—C20—C16 107.3 (2)
C13—Co2—C16 122.91 (12) C19—C20—Se2 128.4 (2)
C14—Co2—C16 159.32 (13) C16—C20—Se2 124.3 (2)
C12—Co2—C16 107.28 (12) C19—C20—Co2 68.43 (14)
C17—Co2—C15 160.25 (15) C16—C20—Co2 68.17 (14)
C18—Co2—C15 124.82 (15) C19—C20—Co2 128.02 (12)
C13—Co2—C15 68.31 (13) C25—C21—C22 108.4 (3)
C14—Co2—C15 40.68 (14) C25—C21—Co3 69.25 (19)
C12—Co2—C15 68.04 (12) C22—C21—Co3 70.55 (16)
C16—Co2—C15 158.24 (14) C25—C21—Co3 125.8
C17—Co2—C11 155.77 (15) C22—C21—H21 125.8
C18—Co2—C11 162.92 (15) C22—C21—H21 125.8
C13—Co2—C11 68.18 (13) C21—C22—C23 126.0
C14—Co2—C11 68.27 (13) C21—C22—C23 108.1 (3)
C12—Co2—C11 40.27 (13) C21—C22—Co3 69.44 (17)
C16—Co2—C11 122.15 (13) C23—C22—Co3 69.68 (16)
C15—Co2—C11 40.60 (13) C21—C22—H22 125.9
C17—Co2—C19 69.01 (13) C23—C22—H22 125.9
C18—Co2—C19 41.04 (12) C22—C23—C24 126.5
C13—Co2—C19 155.45 (12) C22—C23—C24 107.8 (3)
C14—Co2—C19 121.50 (12) C22—C23—Co3 70.25 (16)
C12—Co2—C19 163.16 (12) C24—C23—Co3 68.93 (18)
C16—Co2—C19 68.67 (12) C22—C23—H23 126.1
C15—Co2—C19 68.51 (11) C24—C23—H23 126.1
C11—Co2—C19 109.28 (12) C23—C24—C25 126.3
C17—Co2—C20 126.94 (12) C23—C24—C25 107.6 (3)
C18—Co2—C20 68.61 (11) C23—C24—Co3 70.62 (18)
C13—Co2—C20 68.51 (11) C25—C24—Co3 69.38 (18)
C14—Co2—C20 161.03 (12) C23—C24—H24 126.2
C12—Co2—C20 158.00 (12) C25—C24—H24 126.2
C16—Co2—C20 125.96 (11) Co3—C24—H24 125.4
C15—Co2—C20 40.62 (10) C21—C25—C24 108.1 (3)
C12—Co2—C20 123.73 (12) C21—C25—Co3 70.72 (18)
Bond	Distance (Å)	Standard Deviation (Å)	
C11—Co2—C20	110.28 (11)	69.7 (2)	
C19—Co2—C20	40.55 (10)	125.9	
C25—Co3—C28	151.76 (18)	125.9	
C25—Co3—C24	40.96 (17)	125.3	
C28—Co3—C24	117.02 (17)	108.8 (3)	
C25—Co3—C27	166.20 (17)	68.63 (15)	
C28—Co3—C27	41.05 (14)	71.34 (14)	
C24—Co3—C27	151.55 (17)	125.6	
C25—Co3—C29	117.88 (15)	125.6	
C28—Co3—C29	41.32 (13)	126.0	
C24—Co3—C29	106.39 (14)	108.1 (3)	
C27—Co3—C29	69.23 (13)	69.21 (17)	
C25—Co3—C31	40.03 (16)	70.43 (15)	
C28—Co3—C31	165.87 (15)	125.9	
C24—Co3—C31	67.94 (15)	125.9	
C27—Co3—C31	128.78 (15)	126.0	
C25—Co3—C31	152.40 (13)	108.1 (3)	
C28—Co3—C31	68.09 (14)	69.74 (16)	
C24—Co3—C32	106.95 (12)	69.80 (16)	
C27—Co3—C32	40.45 (16)	126.0	
C25—Co3—C32	118.42 (13)	126.0	
C28—Co3—C32	126.63 (12)	126.1	
C25—Co3—C21	67.55 (12)	108.4 (3)	
C26—Co3—C21	128.18 (14)	68.88 (16)	
C28—Co3—C21	68.92 (12)	71.79 (14)	
C24—Co3—C21	165.64 (16)	125.8	
C27—Co3—C21	40.94 (11)	125.8	
C25—Co3—C22	68.77 (12)	125.1	
C28—Co3—C22	68.77 (12)	106.6 (2)	
C24—Co3—C22	109.67 (12)	130.28 (19)	
C25—Co3—C22	153.11 (14)	123.1 (2)	
C28—Co3—C22	67.48 (14)	68.20 (14)	
C24—Co3—C22	127.60 (13)	67.29 (14)	
C27—Co3—C22	67.71 (13)	129.52 (12)	
C29—Co3—C22	108.91 (13)	90.82 (16)	
C29—Co3—C22	164.94 (12)	177.97 (19)	
C21—Co3—C22	40.01 (13)	90.61 (16)	
C23—Co3—C22	40.07 (13)	94.2 (2)	
C25—Co3—C30	120.28 (12)	90.20 (16)	
C28—Co3—C30	108.22 (12)	87.26 (16)	
C24—Co3—C30	68.96 (11)	88.73 (16)	
C27—Co3—C30	127.29 (14)	179.55 (15)	
C29—Co3—C30	68.69 (11)	89.84 (15)	
C21—Co3—C30	40.91 (10)	89.87 (15)	
C23—Co3—C30	119.73 (11)	88.3 (2)	
C25—Co3—C30	164.93 (13)	90.27 (17)	
C26—Co3—C30	40.46 (10)	90.23 (19)	
C22—Co3—C30	153.56 (11)	177.5 (2)	
C5—C1—C2	108.3 (3)	F3—P1—F1	90.27 (17)
Bond	Distance (Å)	Torsion (°)	
--------------------	--------------	--------------	
C5—C1—Co1	70.19 (18)	F2—P1—F6	89.67 (16)
C2—C1—Co1	70.06 (16)	F7A—P2—F10A	97.8 (13)
C5—C1—H1	125.9	F9—P2—F8	92.2 (5)
C2—C1—H1	125.9	F7A—P2—F11	77.8 (6)
C1—C2—Co1	69.24 (16)	F9—P2—F7	92.0 (4)
C3—C2—H2	125.9	F8—P2—F7	175.3 (5)
C1—C2—H2	125.9	F11—P2—F7	90.6 (3)
Co1—C2—H2	126.4	F7A—P2—F12	99.1 (6)
C2—C3—C4	107.6 (3)	F9—P2—F12	96.2 (3)
C2—C3—Co1	69.72 (17)	F10A—P2—F12	95.3 (10)
C4—C3—Co1	69.39 (18)	F8—P2—F12	88.6 (4)
C2—C3—H3	126.2	F11—P2—F12	176.7 (2)
C4—C3—H3	126.2	F7—P2—F12	88.7 (3)
Co1—C3—H3	126.3	F7A—P2—F9A	92.5 (9)
C5—C4—C3	107.8 (3)	F10A—P2—F9A	169.3 (13)
C5—C4—Co1	69.73 (19)	F11—P2—F9A	95.3 (5)
C3—C4—Co1	69.62 (18)	F12—P2—F9A	85.9 (5)
C5—C4—H4	126.1	F7A—P2—F8A	175.2 (11)
C3—C4—H4	126.1	F10A—P2—F8A	86.6 (13)
Co1—C4—H4	126.1	F11—P2—F8A	100.8 (7)
C1—C5—C4	108.2 (3)	F12—P2—F8A	82.4 (7)
C1—C5—Co1	69.43 (17)	F9A—P2—F8A	83.0 (10)
C4—C5—Co1	69.85 (18)	F9—P2—F10	177.7 (3)
C1—C5—H5	125.9	F8—P2—F10	87.0 (5)
C4—C5—H5	125.9	F11—P2—F10	95.2 (3)
Co1—C5—H5	126.4	F7—P2—F10	88.7 (4)
C7—C6—C10	108.8 (2)	F12—P2—F10	81.5 (2)
C7—C6—Co1	69.48 (16)	N1—C31—C32	176.8 (19)
C10—C6—Co1	70.84 (14)	C31—C32—H32A	109.5
C7—C6—H6	125.6	C31—C32—H32B	109.5
C10—C6—H6	125.6	H32A—C32—H32B	109.5
Co1—C6—H6	125.6	C31—C32—H32C	109.5
C8—C7—C6	107.9 (2)	H32A—C32—H32C	109.5
C8—C7—Co1	69.85 (15)	H32B—C32—H32C	109.5
C6—C7—Co1	69.40 (15)	C31A—N1A—N1A#	163.0 (9)
C8—C7—H7	126.0	N1A—C31A—C32A	179.9 (11)
C6—C7—H7	126.0	C31A—C32A—H32D	109.5
Co1—C7—H7	126.3	C31A—C32A—H32E	109.5
C7—C8—C9	108.3 (2)	H32D—C32A—H32E	109.5
C7—C8—Co1	69.46 (15)	C31A—C32A—H32F	109.5
C9—C8—Co1	69.87 (14)	H32D—C32A—H32F	109.5
C7—C8—H8	125.9	H32E—C32A—H32F	109.5
C9—C8—H8	125.9		
C5—C1—C2—C3	0.6 (3)	C16—C17—C18—Co2	−60.1 (2)
Bond/Angle	Value (deg)	Standard Deviation (deg)	
------------	-------------	--------------------------	
Co1—C1—C2—C3	-59.4 (2)	Co17—C18—C19—C20	1.4 (3)
C5—C1—C2—Co1	60.0 (2)	Co2—C18—C19—C20	60.42 (18)
C1—C2—C3—C4	-0.4 (3)	C17—C18—C19—Co2	-59.1 (2)
Co1—C2—C3—C4	-59.3 (2)	C18—C19—C20—C16	-1.8 (3)
C1—C2—C3—Co1	58.9 (2)	C18—C19—C20—Se2	57.16 (17)
C2—C3—C4—C5	0.0 (3)	Co2—C19—C20—Se2	178.91 (19)
Co1—C3—C4—C5	-59.5 (2)	Co2—C19—C20—Co2	-122.13 (19)
C2—C1—C5—C4	-0.6 (3)	C18—C19—C20—Co2	-58.96 (18)
Co1—C1—C5—C4	59.5 (2)	C17—C16—C20—C19	1.6 (3)
C5—C1—C2—Co1	60.0 (2)	Co2—C16—C20—C19	-57.32 (17)
Co1—C2—C3—C4	-59.3 (2)	C17—C16—C20—Se2	-179.09 (18)
C1—C2—C3—Co1	58.9 (2)	Co2—C16—C20—Co2	122.00 (17)
C2—C3—C4—Co1	0.4 (3)	C17—C16—C20—Co2	58.90 (18)
Co1—C4—C5—Co1	59.5 (2)	Hg1—Se2—C20—C19	-33.8 (2)
C3—C4—C5—Co1	59.5 (2)	Hg1—Se2—C20—C19	-124.7 (2)
Co1—C5—C1—C4	59.3 (2)	Hg1—Se2—C20—C16	147.06 (19)
C2—C1—C5—C4	-0.6 (3)	Hg1—Se2—C20—C16	56.1 (2)
Co1—C1—C5—C4	59.3 (2)	Hg1—Se2—C20—Co2	-125.16 (14)
C3—C4—C5—C1	59.5 (2)	Hg1—Se2—C20—Co2	143.88 (14)
C4—C5—C1—C2	59.5 (2)	C25—C21—C22—C23	0.0 (3)
Co1—C6—C7—C8	59.45 (19)	Co3—C21—C22—C23	-59.1 (2)
C10—C6—C7—Co1	-60.18 (18)	C25—C21—C22—Co3	59.1 (2)
Co1—C6—C7—Co1	0.1 (3)	C21—C22—C23—C24	0.0 (3)
C6—C7—C8—C9	59.30 (18)	Co3—C22—C23—C24	-58.9 (2)
Co1—C7—C8—C9	-59.17 (18)	Co3—C22—C23—Co3	59.0 (2)
C7—C8—C9—Co1	59.37 (17)	Co2—C22—C23—Co3	-59.9 (2)
C8—C9—C10—C6	57.75 (17)	Co3—C22—C23—Co3	59.8 (2)
Co1—C9—C10—C6	-179.32 (18)	Co3—C22—C23—Co3	0.0 (3)
C8—C9—C10—Co1	-120.6 (2)	Co3—C22—C23—Co3	-59.9 (2)
Co1—C9—C10—Co1	-58.71 (17)	Co3—C22—C23—Co3	1.0 (4)
C7—C6—C10—C9	1.0 (3)	Co3—C24—C25—C21	-60.5 (2)
C10—C6—C7—C8	59.34 (18)	C23—C24—C25—Co3	60.6 (2)
C8—C9—C10—Se1	8.8 (2)	C23—C24—C25—Co3	-1.1 (3)
C10—C9—C10—Se1	173.14 (19)	Co3—C26—C27—C28	59.16 (19)
C7—C6—C10—Se1	-100.68 (14)	Co3—C26—C27—C28	-60.26 (17)
C8—C9—C10—Se1	179.53 (17)	C26—C27—C28—C29	-0.4 (3)
C7—C6—C10—Se1	120.19 (17)	Co3—C27—C28—C29	59.5 (2)
C7—C6—C10—Co1	59.34 (18)	C26—C27—C28—C29	-59.92 (18)
Hg1—Se1—Co1—C9	-8.8 (2)	C27—C28—C29—C30	1.8 (3)
Hg1—Se1—Co1—C6	173.14 (19)	Co3—C28—C29—C30	61.25 (18)
Hg1—Se1—Co1—Co1	-100.68 (14)	C27—C28—C29—Co3	-59.45 (19)
C15—C11—C12—C13	0.3 (3)	C27—C28—C29—Co3	2.2 (3)
Co2—C11—C12—C13	-59.0 (2)	C27—C28—C29—C30	-56.42 (17)
C15—C11—C12—Co2	59.29 (19)	C27—C28—C29—Se3	-177.39 (18)
C11—C12—C13—Co2	-0.4 (3)	Co3—C26—C30—Se3	124.0 (2)
C11—C12—C13—Co2	-59.9 (2)	Co3—C26—C30—Co3	58.60 (17)
Bond	Angle (°) (E)	Bond	Angle (°) (E)
-----------------------------	--------------	-----------------------------	--------------
C12—C11—C15—C14	0.0 (3)	C28—C29—C30—C26	−2.4 (3)
Co2—C11—C15—C14	59.3 (2)	Co3—C29—C30—C26	56.98 (17)
C12—C11—C15—Co2	−59.30 (19)	C28—C29—C30—Se3	177.18 (18)
C20—C16—C17—C18	−0.8 (3)	Co3—C29—C30—Se3	−123.41 (17)
Co2—C16—C17—C18	59.7 (2)	C28—C29—C30—Co3	−59.42 (19)
C20—C16—C17—Co2	−60.48 (18)	Hg1—Se3—C30—C26	−2.6 (2)
C16—C17—C18—C19	−0.4 (3)	Hg1—Se3—C30—C29	177.93 (19)
Co2—C17—C18—C19	59.7 (2)	Hg1—Se3—C30—Co3	91.34 (16)

Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x+2, −y+1, −z+2.