The spread of the spectrum of a nonnegative matrix with a zero diagonal element

Roman Drnovšek

Department of Mathematics, Faculty of Mathematics and Physics, University of Ljubljana, Jadranska 19, SI-1000 Ljubljana, Slovenia

Abstract

Let $A = [a_{ij}]_{i,j=1}^n$ be a nonnegative matrix with $a_{11} = 0$. We prove some lower bounds for the spread $s(A)$ of A that is defined as the maximum distance between any two eigenvalues of A. If A has only two distinct eigenvalues, then $s(A) \geq \frac{n}{2(n-1)} r(A)$, where $r(A)$ is the spectral radius of A. Moreover, this lower bound is the best possible.

Keywords: nonnegative matrices, spectrum, spread

2010 MSC: 15B48, 15A42

1. Introduction

Let A be a complex $n \times n$ matrix with the spectrum $\{\lambda_1, \lambda_2, \ldots, \lambda_n\}$. The spectral radius and the trace of A are denoted by $r(A)$ and $\text{tr}(A)$, respectively. The spread $s(A)$ of A is the maximum distance between any two eigenvalues, that is, $s(A) = \max_{i,j} |\lambda_i - \lambda_j|$. This quantity was introduced by Mirsky [4], and it has been studied by several authors; see e.g. [3] and the references therein. Note that $s(\lambda A) = |\lambda|s(A)$ for every complex number λ and that the spread of a nilpotent matrix is zero. Thus, when studying the

The paper will appear in Linear Algebra and its Applications.

Email address: roman.drnovsek@fmf.uni-lj.si (Roman Drnovšek)
spread of a matrix A, there is no loss of generality in assuming that $r(A) = 1$.

Let C_n (with $n \geq 2$) be the collection of all nonnegative $n \times n$ matrices $A = [a_{ij}]_{i,j=1}^n$ such that $a_{11} = 0$ and $r(A) = 1$. It is not difficult to prove (see e.g. Proposition 2.1) that the spread of a matrix $A \in C_n$ cannot be zero, that is, the number 1 cannot be the only point in the spectrum of A. This motivates searching for lower bounds for the spread of A. If A has only two distinct eigenvalues, we prove that $s(A) \geq \frac{n}{2(n-1)}$, and we provide a matrix for which this lower bound is achieved. Such a matrix is necessarily irreducible, that is, there exists no permutation matrix P such that

$$P^T AP = \begin{bmatrix} A_{11} & A_{12} \\ 0 & A_{22} \end{bmatrix},$$

where A_{11} and A_{22} are square matrices.

2. Results

We start with an easy observation.

Proposition 2.1. Let A be a nonnegative $n \times n$ matrix with the spectral radius $r(A) = 1$. If A has k zero diagonal elements, then

$$s(A) \geq \frac{k}{n}.$$

In particular, if $A \in C_n$ then

$$s(A) \geq \frac{1}{n}.$$

Proof. Since A is a nonnegative matrix, the spectral radius $r(A) = 1$ is its Perron eigenvalue. We denote it by λ_1, while the rest eigenvalues of A are denoted by $\lambda_2, \lambda_3, \ldots, \lambda_n$. For every $i = 1, 2, \ldots, n$ we have

$$\text{Re}(1 - \lambda_i) \leq |1 - \lambda_i| = |\lambda_1 - \lambda_i| \leq s(A),$$

2
and so $1 - s(A) \leq \Re \lambda_i$. It follows that

$$n(1 - s(A)) \leq \sum_{i=1}^{n} \Re \lambda_i = \sum_{i=1}^{n} \lambda_i = \text{tr} (A).$$

However, $\text{tr} (A) = \sum_{i=1}^{n} a_{ii} \leq n - k$, as A has k zero diagonal elements and $a_{ii} \leq r(A) = 1$ for all i. We thus obtain that $n(1 - s(A)) \leq n - k$, and so $ns(A) \geq k$ as asserted. \qed

Applying the known inequalities of Johnson, Loewy and London we will prove a better result for matrices in C_n. Let A be a nonnegative $n \times n$ matrix and let $s_k := \text{tr} (A^k)$ for $k \in \mathbb{N}$. The JLL-inequalities (discovered independently by Loewy and London [2], and Johnson [1]) state that

$$s_k^m \leq n^{m-1} s_{km}$$

for all positive integers k and m. A slight modification of their proof gives the following inequalities.

Proposition 2.2. Let A be a nonnegative $n \times n$ matrix with k zero diagonal elements. Then

$$s_1^m \leq (n - k)^{m-1} s_m$$

for all $m \in \mathbb{N}$. In particular, if $A \in C_n$ then

$$s_1^m \leq (n - 1)^{m-1} s_m$$

for all $m \in \mathbb{N}$.

Proof. Since A is a nonnegative matrix, we have

$$s_m = \text{tr} (A^m) \geq \sum_{i=1}^{n} a_{ii}^m = \sum_{i \in J} a_{ii}^m,$$
where \(J = \{ i \in \{ 1, 2, \ldots , n \} : a_{ii} > 0 \} \). On the other hand, Hölder’s inequality gives

\[
s_1^m \leq \left(\sum_{i \in J} a_{ii} \right)^m \leq (n - k)^{m-1} \sum_{i \in J} a_{ii}^m,
\]

and so we conclude that \(s_1^m \leq (n - k)^{m-1} s_m \). \(\square \)

Using Proposition 2.2 we prove the following lower estimates for the spread of a matrix in \(\mathcal{C}_n \).

Theorem 2.3. If \(A \in \mathcal{C}_n \) then

\[
s(A) > \frac{2}{4 + \sqrt{2(n + 3)}}
\]

for \(n \geq 6 \),

\[
s(A) \geq \frac{5}{8 + \sqrt{74}}
\]

for \(n = 5 \), and

\[
s(A) \geq \frac{1}{3}
\]

for \(n = 4 \).

Proof. Since \(s(A) > 0 \) by Proposition 2.1 and since the result is true if \(s(A) \geq 1 \), we may assume that \(s := s(A) \in (0, 1) \), and consequently the eigenvalues of \(A \) have positive real parts. Let \(\lambda_1 = r(A) = 1, \lambda_2, \lambda_3, \ldots, \lambda_n \) be the spectrum of \(A \). By Proposition 2.2 we have

\[
\left(\sum_{i=1}^{n} \lambda_i \right)^2 = s_1^2 \leq (n - 1)s_2 = (n - 1)\sum_{i=1}^{n} \lambda_i^2.
\]

This inequality can be rewritten in the form

\[
\sum_{i=1}^{n} \lambda_i^2 \leq \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} (\lambda_i - \lambda_j)^2.
\] (1)
The right-hand side of (1) is clearly at most $n(n-1)s^2/2$. To obtain a lower bound for the left-hand side of (1), we choose any eigenvalue λ of A. Since $\lambda + \overline{\lambda} = 2 \text{Re} \lambda \geq 2(1 - s) > 0$, we have

$$\lambda^2 + \overline{\lambda}^2 = (\lambda + \overline{\lambda})^2 - 2|\lambda|^2 \geq (2(1 - s))^2 - 2 = 4s^2 - 8s + 2,$$

and so we obtain the following lower bound for the left-hand side of (1):

$$\sum_{i=1}^{n} \lambda_i^2 = 1 + \sum_{i=2}^{n} \lambda_i^2 \geq 1 + \frac{n-1}{2} (4s^2 - 8s + 2).$$

Therefore, the inequality (1) gives the inequality

$$\frac{n(n-1)}{2} s^2 \geq 1 + \frac{n-1}{2} (4s^2 - 8s + 2),$$

which leads to the inequality

$$(n-1)(n-4)s^2 + 8(n-1)s - 2n \geq 0. \quad (2)$$

For $n = 4$ we obtain that $s \geq \frac{1}{3}$, while for $n = 5$ we have

$$2s^2 + 16s - 5 \geq 0,$$

implying that

$$s \geq \frac{-8 + \sqrt{74}}{2} = \frac{5}{8 + \sqrt{74}}.$$

If $n \geq 6$ we rewrite the inequality (2) to the form

$$(n^2 - 5n)s^2 + 8ns - 2n \geq -4s^2 + 8s = 4s(2 - s) > 0,$$

and so

$$(n - 5)s^2 + 8s - 2 > 0.$$

It follows that

$$s > \frac{-4 + \sqrt{2(n+3)}}{n-5} = \frac{2}{4 + \sqrt{2(n+3)}}.$$

This completes the proof. \qed
For $n \in \{2, 3\}$ we can obtain sharp lower bounds for the spread of a matrix in C_n.

Proposition 2.4. If $A \in C_2$ then $s(A) \geq 1$; if $A \in C_3$ then $s(A) \geq \frac{3}{4}$. Both bounds are exact.

Proof. Let 1 and λ be the eigenvalues of $A \in C_2$. By Proposition 2.2, we have

$$(1 + \lambda)^2 = s_1^2 \leq s_2 = 1 + \lambda^2,$$

and so $\lambda \leq 0$ proving that $s(A) \geq 1$. The diagonal matrix $\text{diag}(0, 1) \in C_2$ shows that this lower bound is exact.

In the case $n = 3$ we first suppose that a matrix $A \in C_3$ has real eigenvalues 1, λ and μ. We may assume that $0 \leq \lambda \leq \mu \leq 1$. Then the inequality (1) gives the inequality

$$1 + \lambda^2 + \mu^2 \leq (1 - \lambda)^2 + (1 - \mu)^2 + (\lambda - \mu)^2,$$

and so

$$2\lambda^2 \leq 2\lambda\mu \leq (1 - \lambda)^2 + (1 - \mu)^2 - 1 \leq 2(1 - \lambda)^2 - 1 = 2\lambda^2 - 4\lambda + 1.$$

It follows that $\lambda \leq \frac{1}{4}$, so that $s(A) \geq \frac{3}{4}$.

Assume now that a matrix $A \in C_3$ has eigenvalues 1, $\lambda = a + ib$ and $\overline{\lambda} = a - ib$, where $a \in \mathbb{R}$ and $b > 0$. By Proposition 2.2, we have

$$(1 + 2a)^2 = s_1^2 \leq 2s_2 = 2(1 + \lambda^2 + \overline{\lambda}^2) = 2 + 4a^2 - 4b^2 \leq 2 + 4a^2,$$

and so $a \leq \frac{1}{4}$. This implies that $s(A) \geq \frac{3}{4}$ as asserted.

The exactness of this lower bound is proved by the matrix

$$A = \frac{1}{4} \begin{bmatrix} 0 & 2 & 0 \\ 0 & 3 & 1 \\ 2 & 0 & 3 \end{bmatrix} \in C_3$$

the spectrum of which is $\{1, \frac{1}{4}, \frac{1}{4}\}$. □
For $n \geq 4$ it looks difficult to obtain exact lower bounds for the spread of matrices in C_n. We thus restrict our attention to a special subset of C_n. Proposition 2.1 trivially implies that every matrix in C_n has at least two distinct eigenvalues, that is, 1 is not the only point in its spectrum. Let D_n (with $n \geq 2$) be the collection of all matrices in C_n having exactly two distinct eigenvalues. We now prove sharp lower bounds for the spread of matrices in D_n.

Theorem 2.5. If $A \in D_n$ then

$$s(A) \geq \frac{n}{2(n-1)}.$$

Moreover, this bound is the best possible, i.e., there is a (necessarily irreducible) matrix $A \in D_n$ such that $s(A) = \frac{n}{2(n-1)}$.

Proof. Assume first that a matrix $A \in D_n$ is irreducible. Then 1 is a simple eigenvalue of A by the Perron-Frobenius theorem. Therefore, A also has an eigenvalue $\lambda \in (-1, 1)$ of multiplicity $n - 1$. In this case the inequality reads as follows:

$$1 + (n - 1)\lambda^2 \leq (n - 1)(1 - \lambda^2).$$

Simplifying it, we obtain

$$\lambda \leq \frac{n - 2}{2(n - 1)}.$$

This implies that

$$s(A) = 1 - \lambda \geq \frac{n}{2(n-1)}.$$

Assume now that a matrix $A \in D_n$ is reducible. Then, up to similarity with a permutation matrix, we may assume that

$$A = \begin{bmatrix}
A_{11} & A_{12} & A_{13} & \cdots & A_{1m} \\
0 & A_{22} & A_{23} & \cdots & A_{2m} \\
0 & 0 & A_{33} & \cdots & A_{3m} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & A_{mm}
\end{bmatrix}$$

7
where each of $A_{11}, A_{22}, \ldots, A_{mm}$ is either an irreducible (square) matrix or a 1×1 block. Let A_{kk} be one of these diagonal blocks that has a zero diagonal element. Without loss of generality we may assume that $s(A) < 1$, so that 0 is not in the spectrum of A implying that all 1×1 diagonal blocks are non-zero. Therefore, if A_{kk} is an $r \times r$ matrix, then $r \geq 2$, and so

$$s(A) \geq s(A_{kk}) \geq \frac{r}{2(r-1)} > \frac{n}{2(n-1)}.$$

This completes the proof of the first assertion of the theorem.

To show that the lower bound can be achieved, we define the matrix $A = [a_{i,j}]_{i,j=1}^n$ with nonzero elements: $a_{i,i+1} = n - i$ for $i = 1, 2, \ldots, n-1$, $a_{i,i} = n$ for $i = 2, 3, \ldots, n$, and $a_{i,j} = 2$ if $i - j$ is an even positive integer. We also introduce the upper triangular matrix $U = [u_{i,j}]_{i,j=1}^n$ with nonzero elements: $u_{i,i+1} = n - i$ for $i = 1, 2, \ldots, n-1, u_{1,1} = 2(n-1)$ and $u_{i,i} = n - 2$ for $i = 2, 3, \ldots, n$. For example, if $n = 5$ then

$$A = \begin{bmatrix} 0 & 4 & 0 & 0 & 0 \\ 0 & 5 & 3 & 0 & 0 \\ 2 & 0 & 5 & 2 & 0 \\ 0 & 2 & 0 & 5 & 1 \\ 2 & 0 & 2 & 0 & 5 \end{bmatrix} \quad \text{and} \quad U = \begin{bmatrix} 8 & 4 & 0 & 0 & 0 \\ 0 & 3 & 3 & 0 & 0 \\ 0 & 0 & 3 & 2 & 0 \\ 0 & 0 & 0 & 3 & 1 \\ 0 & 0 & 0 & 0 & 3 \end{bmatrix}.$$

The proof is complete if we show that A and U are similar matrices, because then we have $r(A) = 2(n-1)$, $s(A) = n$, and $\frac{1}{2(n-1)}A \in \mathcal{D}_n$. Define two nilpotent matrices

$$N = \begin{bmatrix} 0 & 0 & 0 & \cdots & 0 & 0 \\ 1 & 0 & 0 & \cdots & 0 & 0 \\ 0 & 1 & 0 & \cdots & 0 & 0 \\ 0 & 0 & 1 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 0 & 0 \\ 0 & 0 & 0 & \cdots & 1 & 0 \end{bmatrix}.$$

8
and

\[
M = \begin{bmatrix}
0 & n-1 & 0 & \cdots & 0 & 0 \\
0 & 0 & n-2 & \cdots & 0 & 0 \\
0 & 0 & 0 & n-3 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & 0 & \cdots & 0 \\
0 & 0 & 0 & 0 & \cdots & 0
\end{bmatrix}.
\]

Introduce also the matrix

\[
S = (I + N)(I - N)^{-1} = (I + N)(I + N + N^2 + N^3 + \ldots + N^{n-1}) =
\]

\[
= I + 2N + 2N^2 + 2N^3 + 2N^4 + \ldots + 2N^{n-1} =
\]

\[
\begin{bmatrix}
1 & 0 & 0 & \cdots & 0 & 0 \\
2 & 1 & 0 & \cdots & 0 & 0 \\
2 & 2 & 1 & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
2 & 2 & 2 & 2 & \cdots & 1 \\
2 & 2 & 2 & 2 & \cdots & 2 \\
\end{bmatrix}.
\]

Let \(e_1, \ldots, e_n\) be the standard basis vectors, and let \(e = e_1 + \ldots + e_n = (1, 1, \ldots, 1)^T\). Observe that

\[
A = M + nI - ne_1e_1^T + 2(N^2 + N^4 + N^6 + \ldots) =
\]

\[
= M + (n - 2)I - ne_1e_1^T + 2(I - N^2)^{-1}
\]

and

\[
U = M + (n - 2)I + ne_1e_1^T.
\]

Note also that \([N, M] := NM - MN = I - ne_1e_1^T\). By induction one can verify that \([N^k, M] = kN^{k-1} - ne_1e_1^T\) for \(k = 1, 2, \ldots, n\). Then the commutator of \(S\) and \(M\) is

\[
[S, M] = 2 \sum_{k=1}^{n} [N^k, M] = 2 \sum_{k=1}^{n} kN^{k-1} - 2n \sum_{k=1}^{n} e_k e_1^T = 2(I - N)^{-2} - 2nee_1e_1^T.
\]
Now we have

\[SU - AS = [S, M] + n(Se_1)e_1^T + n e_1 e_1^T S - 2(I - N^2)^{-1} S = \]

\[= 2(I - N)^{-2} - 2nee_1^T + n(2e - e_1)e_1^T + n e_1 e_1^T - 2(I - N^2)^{-1}(I + N)(I - N)^{-1} = \]

\[= 2(I - N)^{-2} - 2(I - N)^{-2} = 0. \]

This proves that the matrices \(A \) and \(U \) are similar. \(\square \)

Acknowledgments.

The author was supported in part by the Slovenian Research Agency. He would like to thank Thomas Laffey and Helena Šmigoc for pointing out that Proposition 2.2 holds.

References

[1] C.R. Johnson, Row stochastic matrices similar to doubly stochastic matrices, Linear and Multilinear Algebra 10 (1981), 113–130.

[2] R. Loewy, D. London, A note on an inverse eigenvalue problem for nonnegative matrices, Linear and Multilinear Algebra 6 (1978/79), 83–90.

[3] J. K. Merikoski, R. Kumar, Characterizations and lower bounds for the spread of a normal matrix, Linear Algebra Appl. 364 (2003), 13–31.

[4] L. Mirsky, The spread of a matrix, Mathematika 3 (1956), 127–130.