The Generation of Fullerenes

Gunnar Brinkmann
*Applied Mathematics & Computer Science
Ghent University
Krijgslaan 281-S9,
9000 Ghent, Belgium

Jan Goedgebeur
†Applied Mathematics & Computer Science
Ghent University
Krijgslaan 281-S9,
9000 Ghent, Belgium

Brendan D. McKay
‡Research School of Computer Science
Australian National University
ACT 0200, Australia

Abstract

We describe an efficient new algorithm for the generation of fullerenes. Our implementation of this algorithm is more than 3.5 times faster than the previously fastest generator for fullerenes – fullgen – and the first program since fullgen to be useful for more than 100 vertices. We also note a programming error in fullgen that caused problems for 136 or more vertices. We tabulate the numbers of fullerenes and IPR fullerenes up to 400 vertices. We also check up to 316 vertices a conjecture of Barnette that cubic planar graphs with maximum face size 6 are hamiltonian and verify that the smallest counterexample to the spiral conjecture has 380 vertices.

Note: this is the unedited version of our paper which was submitted and subsequently accepted for publication in Journal of Chemical Information and Modeling. The final edited and published version can be accessed at http://dx.doi.org/10.1021/ci3003107

*Gunnar.Brinkmann@UGent.be
†Jan.Goedgebeur@UGent.be
‡bdm@cs.anu.edu.au
1 Introduction

Fullerenes are spherical carbon molecules that can be modelled as cubic plane graphs where all faces are pentagons or hexagons. We will refer to these mathematical models also as fullerenes. Euler’s formula implies that a fullerene with n vertices contains exactly 12 pentagons and $n/2 - 10$ hexagons. The dual of a fullerene is the plane graph obtained by exchanging the roles of vertices and faces: the vertex set of the dual graph is the set of faces of the original graph and two vertices in the dual graph are adjacent if and only if the two faces share an edge in the original graph. The rotational order around the vertices in the embedding of the dual fullerene follows the rotational order of the faces. As fullerenes and their duals are 3-connected, due to the theorem of Whitney the plane embeddings of fullerenes and duals of fullerenes are uniquely determined and the concept of graph isomorphism and isomorphism of embedded graphs (treating the mirror image as equivalent) coincide. The dual of a fullerene with n vertices is a triangulation (i.e. every face is a triangle) which contains 12 vertices with degree 5 and $n/2 - 10$ vertices with degree 6.

Isolated Pentagon Rule (IPR) fullerenes are fullerenes where no two pentagons share an edge. IPR fullerenes are especially interesting due to a general tendency to be chemically more stable and thus more likely to occur in nature.

The first fullerene molecule was discovered in 1985 by Kroto et al. [12], namely the famous C_{60} buckminsterfullerene or “buckyball”. After that discovery several attempts have been made to generate complete lists of fullerene isomers.

The first approach was the spiral algorithm given by Manolopoulos et al. in 1991 [16]. This algorithm was relatively inefficient and also incomplete in the sense that not every fullerene isomer could be generated with it. Manolopoulos and Fowler [15] gave an example of a fullerene that cannot be constructed by this algorithm. The algorithm described here was the first to prove that the counterexample given by Manolopoulos and Fowler [15] is in fact smallest possible [6].

The spiral algorithm was later modified to make it complete, but the resulting algorithm was not efficient [14]. In 1995 Yoshida and Osawa [19] proposed a different algorithm using folding nets, but its completeness has not been proven.

Other methods are described by Liu et al. [13] and Sah [18], but they also didn’t lead to sufficiently efficient algorithms.

The most successful approach until now dates from 1997 and is given by Brinkmann and Dress [3]. The algorithm described there is proven to be complete and has been implemented in a program called fullgen. The basic strategy can be described as stitching together patches which are bounded by zigzag (Petrie) paths. Unfortunately a simple typo-like mistake in the
source code produced an error that occurred for the first time at 136 vertices – far too many vertices to be detectable by any of the other programs until now. Due to this error the lists in the article of Brinkmann and Dress [3] contain some incorrect numbers which we will correct here.

The method of patch replacement can be described as replacing a finite connected region inside some fullerene with a larger patch with identical boundary. For energetical reasons, patch replacement as a chemical mechanism to grow fullerenes would need very small patches. Brinkmann et al. [4] investigated replacements of small patches and introduced two infinite families of operations. These operations can generate all fullerenes up to at least 200 vertices, but – as already shown in their paper – fail in general. In 2008 Hasheminezhad, Fleischner and McKay [10] described a recursive structure using patch replacements for the class of all fullerenes.

In section 2 of this paper we will describe an algorithm for the efficient generation of all non-isomorphic fullerenes using the construction operations from Hasheminezhad et al. [10]. In section 3 we will show how to extend this algorithm to generate only IPR fullerenes by using some simple look-aheads.

2 Generation of fullerenes

2.1 The construction algorithm

We call the patch replacement operations which replace a connected fragment of a fullerene by a larger fragment expansions and the inverse operations reductions. If \(G' \) is obtained from \(G \) by an expansion, we call \(G' \) the child of \(G \) and \(G \) the parent of \(G' \).

From the results of Brinkmann et al. [7] it follows that no finite set of patch replacement operations is sufficient to construct all fullerenes from smaller ones. So each recursive structure based on patch replacement operations must necessarily allow an infinite number of different expansion types.

Hasheminezhad et al. [10] used two infinite families of expansions: \(L_i \) and \(B_{i,j} \) and a single expansion \(F \). These expansions are sketched in Figure 1. The lengths of the paths between the pentagons may vary and for operation \(L_i \) the mirror image must also be considered. All faces drawn completely in the figure or labelled \(f_k \) or \(g_k \) have to be distinct. The faces labelled \(f_k \) or \(g_k \) can be either pentagons or hexagons, but when we refer to the pentagons of the operation, we always mean the two faces drawn as pentagons. For more details on the expansions see the article of Hasheminezhad et al. [10].

In Figure 2 the \(L \) and \(B \) expansions of Figure 1 are shown in dual representation. We will refer to vertices which have degree \(k \in \{5,6\} \) in the dual representation of a fullerene as \(k \)-vertices. The solid white vertices in the figure are 5-vertices, the solid black vertices are 6-vertices and the shaded vertices can be either.
Three special fullerenes \(C_{20} \) (the dodecahedron), \(C_{28}(T_d) \) and \(C_{30}(D_{5h}) \) are shown in Figure 3. The type-(5,0) nanotube fullerenes are those which can be made from \(C_{30}(D_{5h}) \) by applying expansion \(F \) zero or more times. We will refer to all fullerenes not in one of these classes as reducible. The following theorem proved by Hasheminezhad et al. [10] shows that all reducible fullerenes can be reduced using a type \(L \) or \(B \) reduction.

Theorem 2.1. Every fullerene isomer, except \(C_{28}(T_d) \) and type-(5,0) nanotube fullerenes can be constructed by recursively applying expansions of type \(L \) and \(B \) to \(C_{20} \).

Our algorithm uses this theorem by applying \(L \) and \(B \) expansions starting at \(C_{20} \) and \(C_{28}(T_d) \), together with separate (easy) computation of the type-(5,0) nanotube fullerenes.

2.2 Isomorphism rejection and optimizations

If the expansions are applied in all possible ways, lots of isomorphic copies will be generated, but we wish to output only one example of each type. We use the canonical construction path method [17], but in the following we do not assume the reader to be familiar with the method.

In order to use this method, we first have to define a canonical reduction for every reducible dual fullerene \(G \). This reduction must be unique up
to automorphisms of G. We call the dual fullerene which is obtained by applying the canonical reduction to G the \textit{canonical parent} of G and an expansion that is the inverse of a canonical reduction in the extended graph a \textit{canonical expansion}.

We also define an equivalence relation on the set of all expansions or reductions of a given dual fullerene G. An expansion is completely characterized by the patch that is replaced with a larger patch. Two expansions are called equivalent if there is an automorphism of G mapping the two corresponding patches onto each other. For reductions, the definition is similar, but in addition to the patch, a rotational direction is necessary to uniquely encode a reduction of type L. This direction can be a flag describing whether the new position of the pentagon is in clockwise or counterclockwise position of the path connecting the pentagons. Two type L reductions are equivalent.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure2.png}
\caption{The L and B expansions in dual representation.}
\end{figure}
if the patches are mapped onto each other by an orientation preserving automorphism and the flags are the same or they are mapped onto each other by an orientation reversing automorphism and the flags are different.

The two rules of the canonical construction path method applied to dual fullerenes are:

1. Only accept a dual fullerene if the last step in its construction was a canonical expansion.

2. For each dual fullerene G to which expansions are applied, only apply one expansion from each equivalence class of expansions.

The expansions/reductions must of course be represented in an efficient way. Reductions are represented by triple (e, x, d), where e is a directed edge that is the first edge on the central path between the two pentagons, x is the parameter set for the reduction (such as “(2,3)” for $B_{2,3}$) and d is a direction. For B reductions, d indicates whether the turn in the path is to the left or the right. For L reductions, d distinguishes between this reduction and its mirror image. Since e can be at either end of the path, there are two equivalent triples for the same reduction, as illustrated in Figure 4. We call these triples the representing triples of the reduction. Expansions are also represented by triples in similar fashion.

When we translate the notion of equivalent reductions or expansions to representing triples, then the equivalence relation is generated by two relations. The first is that two triples are equivalent if they represent the same reduction. The second is that (e, x, d) and (e', x', d') are equivalent if $x = x'$ and in case $d = d'$ the edge e can be mapped to e' by an orientation preserving automorphism and in case $d \neq d'$ the edge e can be mapped to e' by an orientation reversing automorphism.

For an efficient implementation of the canonicity criteria it is important that in many cases simple and easily computable criteria can decide on the
Figure 4: An example of two triples \((e_0, (3, 2), 1)\) and \((e_1, (2, 3), 0)\) representing the same \(B\) reduction.

canonical reduction or at least reduce the list of possible reductions. To this end we assign a 6-tuple \((x_0, \ldots, x_5)\) to every triple \((e, p, f)\) representing a possible reduction. We then choose the canonical reduction to be a reduction which has a representing triple with the smallest 6-tuple.

The values of \(x_0, \ldots, x_4\) are combinatorial invariants of increasing discriminating power and cost. The value of \(x_0\) is the length of the reduction of which \((e, p, f)\) is a representative. The length of the reduction is the distance between the two 5-vertices of the reduction before actually applying the reduction. So in case of a \(B_{x,y}\) reduction (2 parameters) it is \(x+y+2\) and in case of an \(L_x\) reduction (1 parameter) it is \(x + 1\). Thus we give priority to short reductions. These are easier to detect and allow some look-ahead. The entry \(x_1\) is the negative of the length of the longest straight path in the reduction. For an \(L\) reduction, the value of \(x_1\) is \(-x_0\), which does not distinguish between two reductions with the same value of \(x_0\). For a \(B_{x,y}\) reduction it is \(-\max\{x, y\} - 1\), which sometimes distinguishes between \(B\) reductions with the same value of \(x_0\) and always distinguishes between an \(L\) and a \(B\) reduction with the same \(x_0\).

The entries \(x_2, x_3\) and \(x_4\) are strings which contain the degrees of the vertices in well-defined neighbourhoods of the edge in the triple. These neighbourhoods are of increasing (constant) size.

In each case the value \(x_i\) is only computed for those representing triples that have the smallest value of \((x_0, \ldots, x_{i-1})\). As our main interest is whether an expansion we applied is canonical, we can also stop as soon as we have found a smaller 6-tuple, which may just mean a reduction with smaller value of \(x_0\). In case of a unique triple with minimal value for \((x_0, \ldots, x_{i-1})\) or two such triples representing the same reduction, we have found the canonical reduction and can stop the computation of the remaining values. If after the computation of \((x_0, \ldots, x_4)\) there is still more than one possibly canonical triple, we define \(x_5\) as a string encoding the whole structure of the graph relative to the edge and the direction in the representing triple. See the
article of Brinkmann and McKay [8] for details of this string, which can be in short be described as the code of a BFS-numbering starting at that edge and evaluating the neighbours of a vertex in the rotational order (clock-wise/counterclockwise) given by the direction. Two triples coding patches in two graphs (that may be identical or not) containing the same directions are assigned the same value x_5 if and only if there is an orientation preserving isomorphism of the graphs mapping the edges in the triples onto each other. In case of different directions, the same value of x_5 is assigned if and only if there is such an orientation reversing automorphism. This final value x_5 makes sure that two patches (in the same or different graphs) with the same value of (x_0,\ldots,x_5) can be mapped onto each other by an isomorphism $\phi()$ of the graph. When performing the corresponding reductions, the patches are replaced by smaller patches and replacing the images $\phi(v)$ of vertices inside the patch appropriately, one gets an isomorphism of the reduced graphs that maps the reduced patches onto each other.

When x_5 is computed and the graph G that is tested for canonicity is accepted, as a byproduct we also have the automorphism group of G. As possible reductions are represented by edges starting at pentagons, we have a constant upper bound for the number of possible reductions to be evaluated. For a given triple, each of x_0,\ldots,x_4 can be computed in constant time and x_5 can be computed in linear time, so the canonicity test can be done in linear time.

Even though it is a nice feature that deciding canonicity of a given set of possible reductions can be done in linear time, for the practical performance it is more important that computing the combinatorial invariants (x_0,\ldots,x_4) is of a small constant cost. For dual fullerenes with 152 vertices (fullerenes with 300 vertices), the discriminating power of (x_0,\ldots,x_4) is enough to decide whether or not the last expansion was canonical in more than 99.9% of the cases.

In some cases these cheap invariants also allow look-aheads for deciding whether or not an expansion can be canonical before actually performing it. When making the lists of possible expansions, we can often already tell that a certain expansion cannot be canonical since it will not destroy all shorter reductions or since there will still be a reduction of the same length but with a smaller value for x_2. This avoids the application of a lot of non-canonical expansions. Counting only expansions passing this look-ahead, for dual fullerenes with 152 vertices still in 95.6% of the expansions a final decision can be found by only computing (x_0,\ldots,x_4).

If there is only one representing triple with minimal value for (x_0,\ldots,x_i) ($i \leq 4$), the automorphism group of G is trivial, so no extra computations are necessary. This happens in 80.9% of the cases for dual fullerenes with 152 vertices. The ratio is decreasing with the number of vertices. For 102 vertices of the dual fullerene it is 93.3% and for 127 vertices it is 86.9%.
Theorem 2.2. Assume that exactly one representative of each isomorphism class of dual fullerenes on up to \(n - 2 \) vertices is given. Suppose we perform the following steps:

1. Perform one expansion of each equivalence class of \(L \) and \(B \) expansions which lead to a dual fullerene with \(n \) vertices.

2. Accept each new dual fullerene if and only if a triple representing the inverse of the last expansion has the minimal value of \((x_0, ..., x_5) \) among all possible reductions.

Then exactly one representative of each isomorphism class of reducible dual fullerenes with \(n \) vertices is accepted.

Proof. Let \(G \) be a reducible dual fullerene with \(n \) vertices. By Theorem 2.1 there is at least one reduction, and so a canonical reduction \(\rho \), that applies to \(G \). The graph resulting from \(\rho \) is isomorphic to a graph in the input set, which has an expansion which is equivalent to the inverse of \(\rho \). But this expansion produces a graph isomorphic to \(G \) and the parameters of its inverse reduction are the same as those of \(\rho \), so the result of the expansion is accepted.

This implies that at least one representative of each isomorphism class in question is generated. It remains to be shown that at most one is generated.

Suppose that the algorithm accepts two isomorphic fullerenes \(G \) and \(G' \) with \(n \) vertices. As they are isomorphic, the canonical reductions have the same parameter set \((x_0, ..., x_5) \). As they were both accepted, they were constructed by a canonical expansion, so – as mentioned before – the two parents \(G_0 \) and \(G'_0 \) are isomorphic and there is an isomorphism that maps the corresponding expansions onto each other. By our assumption this means that \(G_0 \) and \(G'_0 \) are identical and that the two expansions are equivalent, which contradicts step 1.

By recursively applying expansion \(F \) to \(C_{20} \), all type-(5,0) fullerenes are constructed. As this constructs all type-(5,0) fullerenes exactly once and these fullerenes can not be constructed by \(L \) or \(B \) expansions, this completes the algorithm.

2.3 Optimizations

As most fullerenes contain short reductions and as we give priority to short reductions, by far most long expansions are not canonical. For efficiency reasons it is interesting to determine an upper bound on the length of a canonical expansion.

Lemma 2.3. Reducible dual fullerenes which contain adjacent 5-vertices have an \(L_0 \), \(L_1 \) or \(B_{0,0} \) reduction.
Proof. For a proof, see the article of Hasheminezhad et al. \[10\]. □

So each reducible dual non-IPR fullerene has a reduction with length at most 2. In dual IPR fullerenes the shortest reduction is a reduction with the same length as the minimum distance of two 5-vertices in the dual fullerene.

In dual fullerenes where the shortest distance between two 5-vertices is at least \(d\), the sets of vertices at distance at most \(\left\lfloor \frac{d-1}{2} \right\rfloor\) of different vertices are disjoint. This gives us a lower bound of \(12 \cdot f\left(\left\lfloor \frac{d-1}{2} \right\rfloor\right)\) for the number of vertices in the fullerene, where \(f(x) = 1 + \frac{5}{2}(x+1)x\).

So expansions of length \(d\) are not canonical if the expanded graph contains fewer than \(12 \cdot f\left(\left\lfloor \frac{d-1}{2} \right\rfloor\right)\) vertices. This result does not only help to avoid the application of non-canonical expansions, but also avoids the need to search for long expansions.

We can often determine even sharper upper bounds for the maximum length of a canonical expansion:

Lemma 2.4. If a dual fullerene \(G\) has a reduction of length \(d \leq 2\), all children \(G'\) of \(G\) have a reduction of length at most \(d + 2\).

Proof. If \(G'\) is not IPR, this follows from Lemma 2.3, so assume that \(G'\) is IPR. The length of the shortest reduction is then the shortest distance between two 5-vertices. Let us look at the shortest path \(W\) between two 5-vertices allowing a reduction of length \(d\) in \(G\).

As \(d \leq 2\) and as all vertices in the patch \(P\) used for expansion must be distinct, \(W\) can contain at most 2 maximal subpaths entering \(P\) and ending there, starting in \(P\) and leaving it or crossing \(P\).

The distance between a 5-vertex in \(P\) from vertices on the boundary grows at most by 1. The same is true for each pair of vertices on the boundary. So the path \(W\) can grow in two places by at most 1, proving the result. □

This lemma could be proven for larger \(d\) if one required the child to be canonical, but as \(12 \cdot f\left(\frac{d-1}{2}\right) = 192\), all dual fullerenes with less than 192 vertices (or fullerenes with 380 vertices) have a reduction of length at most 4. Therefore, even for \(d = 2\), Lemma 2.4 is only useful for fullerenes with at least 380 vertices.

Lemma 2.5. If a dual fullerene \(G\) has an \(L_0\) reduction, all canonical children \(G'\) of \(G\) have a reduction of length at most 2.

Proof. If \(G'\) is not IPR, this follows from Lemma 2.3, so assume that \(G'\) is IPR. By Lemma 2.4, \(G'\) has a reduction of length at most 3, so a canonical child was constructed by an expansion of length at most 3. If \(G'\) was constructed by an \(L_0\), \(L_1\) or \(B_{0,0}\) expansion, the statement follows immediately.

Figure 5 and Figure 6 show the only ways that an \(L_2\) (resp. \(B_{1,0}\)) expansion can destroy an \(L_0\) reduction which involves two pentagons \(p_1\) and \(p_2\).
such that the expanded fullerene G' contains no reduction of length shorter than 3. The faces f_i and g_i ($1 \leq i \leq 4$) which are on the boundary of the L_2 or $B_{1,0}$ expansion have to be hexagons otherwise the dual of G' would contain 5-vertices which are at distance at most 2. Since p_1 and p_2 are involved in the L_0 reduction, they must share an edge. So there is an edge $a \in \{e_1, e_2, e_3\}$ which is equal to an edge $b \in \{e_4, e_5, e_6\}$ and as the pentagons share an edge, they must also share two faces each containing an endpoint of this common edge. It is easy to see that for all possible choices of a and b this implies that a fullerene containing a patch from Figure 5 or Figure 6 must have a 4-edge-cut or a 5-edge-cut. However it follows from the results of Bornhöft et al. [1] that fullerenes are cyclically 5-edge connected, so 4-edge-cuts do not exist. Kardoš and Škrekovski [11] showed that the type-(5,0) nanotubes are the only fullerenes which have a non-trivial 5-edge-cut.

So there is no expansion which can be applied to G such that the shortest reduction of the expanded fullerene has length 3. Thus all canonical children of G have a reduction of length at most 2.

\[\Box\]

Figure 5: The initial patch of an L_2 expansion involving two neighbouring pentagons p_1 and p_2. One of the edges from $\{e_1, e_2, e_3\}$ is equal to an edge in $\{e_4, e_5, e_6\}$.

Figure 6: The initial patch of a $B_{1,0}$ expansion involving two neighbouring pentagons p_1 and p_2. One of the edges from $\{e_1, e_2, e_3\}$ is equal to an edge in $\{e_4, e_5, e_6\}$.

For the next lemmas the following observation is useful:

Observation 2.6. If the set of vertices contained in the initial patch of an expansion of length l contains at least three 5-vertices (so in addition to the
two 5-vertices of the expansion there is at least one more 5-vertex in the boundary), then in the extended patch there are two 5-vertices at distance at most $l/2 + 1$.

Lemma 2.7. If a dual fullerene G has at least two reductions of length 2 which do not have the same set of 5-vertices of the reduction, all canonical children G' have a reduction of length at most 3.

Proof. If G' is not a dual IPR fullerene, the result follows immediately, so assume the opposite. This implies that we have to find a bound for the minimum distance of two 5-vertices. By Lemma 2.4 each child has a reduction of length 4. So each canonical child was constructed by an expansion of length at most 4. If there were three 5-vertices in the initial patch of the expansion, the result follows from Observation 2.6. So assume this is not the case and one 5-vertex of a reduction of length 2 is not contained in the initial patch. But then the distance to the other 5-vertex in the reduction can grow by at most 1, proving the lemma.

Lemma 2.8. If a dual fullerene G has at least three reductions of length 2 with pairwise disjoint sets of 5-vertices of the reduction, all canonical children G' of G have a reduction of length at most 2.

Proof. We may again assume that G' is IPR. It follows from Lemma 2.7 that G' has a reduction of length at most 3, so each canonical expansion has length at most 3. If there are three 5-vertices in the initial patch of the expansion, the result follows directly from the observation. So there is (at least) one reduction of length 2 so that none of its 5-vertices is contained in that initial patch. But then the path of length 2 between these 5-vertices still exists in the expanded graph and allows a reduction of length 2.

For two reductions R_1 and R_2 in a dual fullerene G we define the distance $d(R_1, R_2)$ to be $\min\{d(a_1, a_2) \mid a_i \text{ is a 5-vertex of } R_i\}$.

Lemma 2.9. If a dual fullerene G has L_0 reductions R_1 and R_2 with $d(R_1, R_2) > 4$, all canonical children G' of G have an L_0 reduction.

Proof. It follows from Lemma 2.5 that there is a reduction of length at most 2 in G'. The distance between vertices which are in the initial patch of an expansion of length 2 is at most 4. Therefore at least one of the two neighbouring 5-vertex pairs still exists and the neighbouring vertices are either unchanged or changed to 6-vertices. In either case the reduction will still be possible.

For dual fullerenes with 152 vertices, Lemmas 2.4, 2.7, 2.8 and 2.9 can be used to determine a bound on the length of canonical expansions in 93.9% of the cases.
3 Generation of IPR fullerenes

The algorithm was developed for generating all fullerenes, but it can also be used to generate only IPR fullerenes by using a filter and some simple look-aheads:

An L_0 expansion is the only expansion that increases the number of vertices in a dual fullerene by just 2 vertices, but the result of an L_0 expansion is never a dual IPR-Fullerene. When constructing dual IPR fullerenes with n vertices, dual IPR fullerenes with $n-2$ vertices do not have to be constructed and the largest dual fullerenes to which an expansion is applied have $n-3$ vertices.

For a dual fullerene with $n-4$ vertices only expansions of length 3 (i.e. L_2 or $B_{1,0}$ expansions) can lead to dual IPR fullerenes with n vertices. However if a dual fullerene with $n-4$ vertices contains an L_0 reduction, it follows from Lemma 2.5 that expansions of length 3 are not canonical. Thus we can reject all dual fullerenes with $n-4$ vertices that contain an L_0 reduction and also avoid applying L_0 expansions to dual fullerenes with $n-6$ vertices.

Already these simple look-aheads result in an efficient program, as can be seen in Table 1.

4 Testing and results

The running times and a comparison with fullgen are given in Table 1. Our generator is called buckygen. The program was compiled with gcc and executed in a single thread on an Intel Xeon L5520 CPU at 2.27 GHz. The running times include writing the fullerenes to a null device.

Buckgen was used to generate all fullerenes up to 400 vertices. This led to a programming error being uncovered in fullgen that caused it to miss some fullerenes starting at 136 vertices and IPR fullerenes starting at 254 vertices. After correction of the error in fullgen, the two programs agree to at least 380 vertices, which is a good check of both. We give the counts in Tables 2–6 which correct those in the article of Brinkmann and Dress [3] where they overlap. The fullerenes themselves can be downloaded from http://hog.grinvin.org/Fullerenes for small sizes.

We also repeated and extended a computation reported by Brinkmann et al. [9], which relied on the faulty version of fullgen, the results are listed in Tables 2–5. Now we have confirmed that all cubic planar graphs with maximum face size 6 are hamiltonian to at least 316 vertices, in agreement with the famous conjecture of Barnette.

The incomplete lists of fullerenes were also used in another article of Brinkmann et al. [4]. All reducibility results given there remain true, except for Table 2, where the number of fullerenes that can not be reduced by a growth operation of cost 7 – that is replacing only 7 edges – is 1 too small.
number of vertices	fullerenes/s (buckygen)	fullgen (s) / buckygen (s)	IPR fullerenes/s (buckygen)	fullgen IPR (s) / buckygen IPR (s)
100	42 358	7.30	105	0.28
140	33 369	7.39	789	0.46
170	21 268	5.63	1 174	0.58
200	16 953	5.49	1 630	0.80
230	12 597	5.13	1 721	0.96
260	9 408	4.59	1 632	1.03
280	7 735	4.43	1 530	1.10
300	6 494	4.07	1 425	1.16
320	5 502	3.67	1 332	1.14
20–100	159 365	24.96	278	0.77
102–150	157 736	33.04	4 643	2.44
152–200	115 625	32.08	10 558	4.71
202–250	82 813	32.09	13 212	6.84

Table 1: Generation rates for fullerenes.

for 186 and 190 vertices and 2 too small for 194 vertices.

Our generator constructs larger fullerenes from smaller ones, so in order to generate all fullerenes with \(n \) vertices, all fullerenes with at most \(n - 4 \) vertices have to be generated as well (recall that an \(L_0 \) expansion increases the number of vertices by 4). So generating all fullerenes with at most \(n \) vertices gives only a small overhead compared to generating all fullerenes with exactly \(n \) vertices. In \textit{fullgen} the overhead is considerably bigger as it does not construct fullerenes from smaller fullerenes. For example, \textit{buckygen} can generate all fullerenes with \(n \in [290, 300] \) vertices more than 15 times faster than \textit{fullgen}. More comparisons with \textit{fullgen} can be found in Table 1.

5 Closing remarks

We have described a new fullerene generator \textit{buckygen} which is considerably faster than \textit{fullgen}, which is the only previous generator capable of reaching 100 vertices. The generation cost is now likely to be lower than that of any significant computation performed on the generated structures.

After correction of an error in \textit{fullgen}, we now have two independent counts of fullerenes up to 380 in full agreement, and values up to 400 vertices from buckgen.

The latest version of \textit{buckygen} can be downloaded from [5]. \textit{Buckygen} is also part of the \textit{CaGe} software package [2].

		min. face 3	min. face 4	fullerenes	IPR fullerenes
4	4	1	0	0	0
6	5	1	0	0	0
8	6	1	1	0	0
10	7	4	1	0	0
12	8	8	2	0	0
14	9	11	4	0	0
16	10	23	7	0	0
18	11	34	10	0	0
20	12	54	22	1	0
22	13	83	32	0	0
24	14	125	58	1	0
26	15	174	92	1	0
28	16	267	151	2	0
30	17	365	227	3	0
32	18	509	368	6	0
34	19	706	530	6	0
36	20	963	805	15	0
38	21	1 270	1 158	17	0
40	22	1 708	1 695	40	0
42	23	2 204	2 373	45	0
44	24	2 876	3 354	89	0
46	25	3 695	4 595	116	0
48	26	4 708	6 340	199	0
50	27	5 925	8 480	271	0
52	28	7 491	11 417	437	0
54	29	9 255	15 049	580	0
56	30	11 463	19 832	924	0
58	31	14 083	25 719	1 205	0
60	32	17 223	33 258	1 812	1
62	33	20 857	42 482	2 385	0
64	34	25 304	54 184	3 465	0
66	35	30 273	68 271	4 478	0
68	36	36 347	85 664	6 332	0
70	37	43 225	106 817	8 149	1
72	38	51 229	132 535	11 190	1
74	39	60 426	163 194	14 246	1
76	40	71 326	200 251	19 151	2
78	41	83 182	244 387	24 109	5
80	42	97 426	296 648	31 924	7
82	43	113 239	358 860	39 718	9
84	44	131 425	431 578	51 592	24
86	45	151 826	517 533	63 761	19
88	46	175 302	617 832	81 738	35

Table 2: Cubic plane graphs with maximum face size 6 listed with respect to their minimum face size. Cubic plane graphs with maximum face size 6 and with minimum face size 5 are fullerenes. nv is the number of vertices and nf is the number of faces.
nv	nf	min. face 3	min. face 4	fullerences	IPR fullerences
90	47	200 829	735 257	99 918	46
92	48	231 042	870 060	126 409	86
94	49	263 553	1 029 114	153 493	134
96	50	300 602	1 209 783	191 839	187
98	51	341 960	1 420 472	231 017	259
100	52	388 673	1 659 473	285 914	450
102	53	438 795	1 937 509	341 658	616
104	54	496 961	2 249 285	419 013	823
106	55	559 348	2 612 410	497 529	1 233
108	56	629 807	3 015 386	604 217	1 799
110	57	706 930	3 483 289	713 319	2 355
112	58	792 703	4 002 504	860 161	3 342
114	59	885 137	4 600 343	1 008 444	4 468
116	60	990 929	5 257 856	1 207 119	6 063
118	61	1 102 609	6 019 580	1 408 553	8 148
120	62	1 227 043	6 849 385	1 674 171	10 774
122	63	1 363 825	7 805 813	1 942 929	13 977
124	64	1 513 612	8 846 570	2 295 721	18 769
126	65	1 673 568	10 041 875	2 650 866	23 589
128	66	1 853 928	11 335 288	3 114 236	30 683
130	67	2 045 154	12 821 597	3 580 637	39 393
132	68	2 255 972	14 415 241	4 182 071	49 878
134	69	2 485 363	16 248 586	4 787 715	62 372
136	70	2 732 106	18 211 371	5 566 949	79 362
138	71	2 998 850	20 454 114	6 344 698	98 541
140	72	3 295 090	22 845 387	7 341 204	121 354
142	73	3 606 102	25 587 469	8 339 033	151 201
144	74	3 944 923	28 486 985	9 604 411	186 611
146	75	4 316 999	31 808 776	10 867 631	225 245
148	76	4 711 038	35 313 026	12 469 092	277 930
150	77	5 135 794	39 315 258	14 059 174	335 569
152	78	5 599 065	43 529 295	16 006 025	404 667
154	79	6 091 434	48 339 505	18 000 979	489 646
156	80	6 621 013	53 361 979	20 558 767	586 264
158	81	7 198 926	59 117 693	23 037 594	697 720
160	82	7 800 960	65 110 208	26 142 839	836 497
162	83	8 460 776	71 938 170	29 202 543	898 495
164	84	9 168 333	79 041 733	33 022 573	1 170 157
166	85	9 917 772	87 147 815	36 798 433	1 382 953
168	86	10 711 603	95 517 631	41 478 344	1 608 292
170	87	11 590 680	105 090 752	46 088 157	1 902 265
172	88	12 491 734	114 936 807	51 809 031	2 234 133
174	89	13 479 003	126 169 808	57 417 264	2 601 868
176	90	14 518 882	137 732 548	64 353 269	3 024 383

Table 3: Cubic plane graphs with maximum face size 6 listed with respect to their minimum face size (continued). nv is the number of vertices and nf is the number of faces.
Table 4: Triangle-free cubic plane graphs with maximum face size 6 listed with respect to their minimum face size. nv is the number of vertices and nf is the number of faces.
Table 5: Triangle-free cubic plane graphs with maximum face size 6 listed with respect to their minimum face size (continued). nv is the number of vertices and nf is the number of faces.

nv	nf	min. face 4	fullerences	IPR fullerences
248	126	2 061 311 003	1 596 482 232	209 715 141
250	127	2 020 202 308	1 712 934 069	230 272 559
252	128	2 338 869 735	1 852 762 875	252 745 513
254	129	2 497 257 527	1 985 250 572	276 599 787
256	130	2 649 382 974	2 144 943 655	303 235 792
258	131	2 825 361 014	2 295 793 276	331 516 984
260	132	2 995 557 818	2 477 017 558	362 302 637
262	133	3 191 292 821	2 648 697 036	395 600 325
264	134	3 379 722 482	2 854 536 850	431 894 257
266	135	3 598 542 661	3 048 609 900	470 256 444
268	136	3 806 922 124	3 282 202 941	512 858 451
270	137	4 049 087 424	3 501 931 260	557 745 507
272	138	4 281 540 754	3 765 465 341	606 668 511
274	139	4 549 259 510	4 014 007 928	659 140 287
276	140	4 805 073 991	4 311 652 376	716 217 922
278	141	5 103 457 703	4 591 045 471	776 165 188
280	142	5 385 296 261	4 926 987 377	842 498 881
282	143	5 713 728 893	5 241 548 270	912 274 540
284	144	6 026 548 238	5 618 445 787	987 874 095
286	145	6 388 285 729	5 972 426 835	1 068 507 788
288	146	6 731 485 975	6 395 981 131	1 156 161 307
290	147	7 132 734 985	6 791 769 082	1 247 688 189
292	148	7 508 699 038	7 267 283 603	1 348 832 364
294	149	7 948 994 131	7 710 782 991	1 454 359 806
296	150	8 365 304 423	8 241 719 706	1 568 768 524
298	151	8 847 679 520	8 738 236 515	1 690 214 836
300	152	9 302 042 370	9 332 065 811	1 821 766 896
302	153	9 835 862 103	9 884 604 767	1 958 581 588
304	154	10 332 102 625	10 548 218 751	2 109 271 290
306	155	10 915 020 041	11 164 542 762	2 266 138 871
308	156	11 462 133 758	11 902 015 724	2 435 848 971
310	157	12 098 825 145	12 588 998 862	2 614 544 391
312	158	12 694 519 224	13 410 330 482	2 808 510 141
314	159	13 396 207 247	14 171 344 797	3 009 120 113
316	160	14 043 402 497	15 085 164 571	3 229 731 630
Table 6: Counts of fullerenes and IPR fullerenes. \(nv \) is the number of vertices and \(nf \) is the number of faces.

\(nv \)	\(nf \)	fullerenes	IPR fullerenes
318	161	15 930 619 304	3 458 148 016
320	162	16 942 010 457	3 704 939 275
322	163	17 880 232 383	3 964 153 268
324	164	19 002 055 537	4 244 706 701
326	165	20 037 346 408	4 533 465 777
328	166	21 280 571 390	4 850 870 260
330	167	22 426 253 115	5 178 120 469
332	168	23 796 620 378	5 531 727 283
334	169	25 063 227 406	5 900 369 830
336	170	26 577 912 084	6 299 880 577
338	171	27 970 034 826	6 709 574 675
340	172	29 642 262 229	7 158 963 073
342	173	31 177 474 996	7 620 446 934
344	174	33 014 225 318	8 118 481 242
346	175	34 705 254 287	8 636 262 789
348	176	36 728 266 430	9 196 920 285
350	177	38 580 626 759	9 768 511 147
352	178	40 806 395 661	10 396 040 696
354	179	42 842 199 753	11 037 658 075
356	180	45 278 616 586	11 730 538 496
358	181	47 513 679 057	12 446 446 419
360	182	50 189 039 868	13 221 751 502
362	183	52 628 839 448	14 010 515 381
364	184	55 562 506 886	14 874 753 508
366	185	58 236 270 451	15 754 940 959
368	186	61 437 700 788	16 705 334 454
370	187	64 363 670 678	17 683 643 273
372	188	67 868 149 215	18 744 292 915
374	189	71 052 718 441	19 816 289 281
376	190	74 884 539 987	20 992 425 825
378	191	78 364 039 771	22 186 413 139
380	192	82 532 990 559	23 475 079 272
382	193	86 329 680 991	24 795 898 388
384	194	90 881 152 117	26 227 197 453
386	195	95 001 297 565	27 670 862 550
388	196	99 963 147 805	29 254 036 711
390	197	104 453 597 992	30 852 950 986
392	198	109 837 310 021	32 581 366 295
394	199	114 722 988 623	34 345 173 894
396	200	120 585 261 143	36 259 212 641
398	201	125 873 325 588	38 179 777 473
400	202	132 247 999 328	40 286 153 024

Table 6: Counts of fullerenes and IPR fullerenes. \(nv \) is the number of vertices and \(nf \) is the number of faces.
5.1 Acknowledgements

This work was carried out using the Stevin Supercomputer Infrastructure at Ghent University. Jan Goedgebeur is supported by a PhD grant from the Research Foundation of Flanders (FWO). Brendan McKay is supported by the Australian Research Council.

References

[1] J. Bornhöft, G. Brinkmann, and J. Greinus. Pentagonhexagon-patches with short boundaries. European Journal of Combinatorics, 24(5):517–529, 2003.

[2] G. Brinkmann, O. Delgado Friedrichs, S. Lisken, A. Peeters, and N. Van Cleemput. CaGe - a Virtual Environment for Studying Some Special Classes of Plane Graphs - an Update. MATCH Commun. Math. Comput. Chem., 63(3):533–552, 2010. Available at http://caagt.ugent.be/CaGe.

[3] G. Brinkmann and A.W.M. Dress. A constructive enumeration of fullerenes. Journal of Algorithms, 23:345–358, 1997.

[4] G. Brinkmann, D. Franceus, P.W. Fowler, and J.E. Graver. Growing fullerenes from seed: Growth transformations of fullerene polyhedra. Chemical Physics Letters, 428:386–393, 2006.

[5] G. Brinkmann, J. Goedgebeur, and B.D. McKay. Homepage of buckygen: http://caagt.ugent.be/buckygen/.

[6] G. Brinkmann, J. Goedgebeur, and B.D. McKay. The smallest fullerene without a spiral. Chemical Physics Letters, 522(2):54–55, 2012.

[7] G. Brinkmann, J.E. Graver, and C. Justus. Numbers of faces in disordered patches. Journal of Mathematical Chemistry, 45(2):263–278, 2009.

[8] G. Brinkmann and B.D. McKay. Fast generation of planar graphs. MATCH Commun. Math. Comput. Chem., 58(2):323–357, 2007.

[9] G. Brinkmann, B.D. McKay, and U. von Nathusius. Backtrack search and look-ahead for the construction of planar cubic graphs with restricted face sizes. MATCH Commun. Math. Comput. Chem., 48:163–177, 2003.

[10] M. Hasheminezhad, H. Fleischner, and B.D. McKay. A universal set of growth operations for fullerenes. Chemical Physics Letters, 464:118–121, 2008.
[11] F. Kardoš and R. Škrekovski. Cyclic edge-cuts in fullerene graphs. *Journal of Mathematical Chemistry*, 44(1):121–132, 2008.

[12] H.W. Kroto, J.R. Heath, S.C. O’Brien, R.F. Curl, and R.E. Smalley. *C₆₀*: Buckminsterfullerene. *Nature*, 318:162–163, 1985.

[13] X. Liu, D.J. Klein, T.G. Schmalz, and W.A. Seitz. Generation of carbon cage polyhedra. *Journal of Computational Chemistry*, 12(10):1252–1259, 1991.

[14] D.E. Manolopoulos and P.W. Fowler. Molecular graphs, point groups, and fullerenes. *Journal of Chemical Physics*, 96(10):7603–7614, 1992.

[15] D.E. Manolopoulos and P.W. Fowler. A fullerene without a spiral. *Chemical Physics Letters*, 204(1-2):1–7, 1993.

[16] D.E. Manolopoulos and J.C. May. Theoretical studies of the fullerenes: C₃₄ to C₇₀. *Chemical Physics Letters*, 181:105–111, 1991.

[17] B.D. McKay. Isomorph-free exhaustive generation. *Journal of Algorithms*, 26(2):306–324, 1998.

[18] C.H. Sah. Combinatorial construction of fullerene structures. *Croatica Chimica Acta*, 66:1–12, 1993.

[19] M. Yoshida and E. Osawa. Formalized drawing of fullerene nets. 1. algorithm and exhaustive generation of isomeric structures. *Bulletin of the Chemical Society of Japan*, 68:2073–2081, 1995.