On the Thermal and Thermodynamic (In)Stability of Methylammonium Lead Halide Perovskites

Bruno Brunetti1, Carmen Cavallo2, Andrea Ciccioli2, Guido Gigli2 & Alessandro Latini2

The interest of the scientific community on methylammonium lead halide perovskites (MAPbX₃, X = Cl, Br, I) for hybrid organic-inorganic solar cells has grown exponentially since the first report in 2009. This fact is clearly justified by the very high efficiencies attainable (reaching 20% in lab scale devices) at a fraction of the cost of conventional photovoltaics. However, many problems must be solved before a market introduction of these devices can be envisaged. Perhaps the most important to be addressed is the lack of information regarding the thermal and thermodynamic stability of the materials towards decomposition, which are intrinsic properties of them and which can seriously limit or even exclude their use in real devices. In this work we present and discuss the results we obtained using non-ambient X-ray diffraction, Knudsen effusion-mass spectrometry (KEMS) and Knudsen effusion mass loss (KEML) techniques on MAPbCl₃, MAPbBr₃ and MAPbI₃. The measurements demonstrate that all the materials decompose to the corresponding solid lead (II) halide and gaseous methylamine and hydrogen halide, and the decomposition is well detectable even at moderate temperatures (~60 °C). Our results suggest that these materials may be problematic for long term operation of solar devices.

In 2009, the pioneering work published by Kojima et al.1 regarding the use of methylammonium lead halide perovskites as sensitizers in solar cells, though obtaining quite modest results in comparison to then established dye-sensitized solar cells-DSSCs (solar conversion efficiencies obtained: 3.13% and 3.89%, with MAPbBr₃ and MAPbI₃, respectively vs. 11.2% for the best performing DSSC that year2), sparked an enormous and well motivated interest of the scientific community about this new class of sensitizers. In fact, the optimization of the device led to a very quick performance improvement of the same and hybrid cells based on MAPbX₃ sensitizers soon outperformed their DSSC counterpart. In fact, as of 2015, the best performing perovskite cells attained solar conversion efficiency of 20.1%3 vs 13% of the best DSSC4. But this stunning development is accompanied by many problems5–7 the most important being related to hysteresis of cells and stability issues of MAPbX₃ compounds with regards to interaction with atmospheric agents (especially moisture)6 and to their thermal and thermodynamic stability towards decomposition, especially in severe operating conditions such as under intense solar irradiation. Despite the extreme importance of information regarding the last two issues, i.e. thermal and thermodynamic stability towards decomposition of the materials for the technological development of solar devices based on MAPbX₃ compounds, the available literature does give only very limited experimental information8–11.

Here we present the results of two parallel investigations on MAPbCl₃, MAPbBr₃ and MAPbI₃. The first is a study of the thermal stability of the compounds by means of non-ambient X-ray diffraction. The second is a study of the thermodynamics of decomposition of the compounds by Knudsen effusion-mass spectrometry (KEMS) and Knudsen effusion mass loss (KEML) techniques.

By the combination of these two studies, we clarify for the first time the decomposition reactions and we obtain both kinetic data useful for the estimation of the lifetime of the devices in operative conditions as well as

1Consiglio Nazionale delle Ricerche - Istituto per lo Studio dei Materiali Nanostrutturati, c/o Dipartimento di Chimica, Università degli Studi di Roma “La Sapienza”, Piazzale Aldo Moro 5, 00185 Roma, Italy. Dipartimento di Chimica, Università degli Studi di Roma “La Sapienza”, Piazzale Aldo Moro 5, 00185 Roma, Italy. Correspondence and requests for materials should be addressed to A.C. (email: andrea.ciccioli@uniroma1.it) or A.L. (email: alessandro.latini@uniroma1.it)
thermodynamic data necessary to assess the stability of the compounds in diverse conditions, such those encountered during the realization of the devices and during their operation.

Thermal Stability: Non-Ambient X-ray Diffraction

Conventional powder X-ray diffraction has been used to check the phase purity of the synthesized compounds. The diffractograms of MAPbCl$_3$, MAPbBr$_3$ and MAPbI$_3$ are presented in Fig. 1 and all of them show only the reflections of the desired compounds12,13, with no lead (II) halides detected.

The compounds were then inserted into the non-ambient reactor chamber and underwent a thermal treatment under helium atmosphere from 130 °C to 170 °C with isotherms every 10 °C, each one lasting 10 hours. After each isotherm the sample was quickly cooled to 25 °C and a diffraction pattern was taken. The temperature range was chosen in order to have detectable changes of the samples within the isotherm duration. The thermal profile used in the experiments is shown in Figure S1 of the Supplementary Information. The diffraction patterns after each isotherm for each compound are given in Fig. 2, while a magnification of the same, together with the reflections of the corresponding MAPbX$_3$ and PbX$_2$ are shown in Figures S2–S4 of the Supplementary Information. The phase identification analysis performed on the patterns revealed that the only solid decomposition product is the corresponding lead (II) halide for all the compounds under investigation. No trace of solid methylammonium halides has been found. This fact, together with the results coming from the Knudsen effusion-mass spectrometry (KEMS) and Knudsen effusion mass loss experiments (KEML), demonstrate that the decomposition reactions occur in all cases with the loss of gaseous methylamine (MA) and the corresponding hydrogen halide HX according to the reaction:

Figure 1. X-ray diffraction patterns of the synthesized MAPbX$_3$ compounds. All the diffraction patterns show only the reflections of the perovskite phases, with no lead (II) halides detectable.
and not by phase separation of solid lead (II) halides and methylammonium halides, a possibility that had to be taken into account considering that all the methylammonium halides under consideration have melting points over 200 °C.

$$MAPbX_3(s) \rightarrow PbX_2(s) + MA(g) + HX(g)$$

(1)
After phase identification, the quantitative phase analysis was performed by applying the Rietveld method on the diffractograms. The relative weight percentages of the crystalline phases are reported in the diffraction patterns shown in Fig. 2. The order of reaction for the decomposition reactions has been determined by differential thermal analysis (DTA) of the compounds using the “shape index” of the endothermic decomposition peak in the thermograms. The DTA peaks for decomposition of the compounds are shown in Fig. 3. For MAPbBr₃ and MAPbI₃, the peaks due to the melting processes of the corresponding lead (II) halides partially overlap with those of the decomposition, so a peak fitting procedure with a sum of gaussian functions was applied to separate the contributions of each process to the resulting DTA peak. All the compounds decompose according to a first order kinetics.

Considering then a first order kinetics for the decomposition of the MAPbX₃ compounds, and using the integrated form of the rate equation

$$-\frac{dn}{dt} = kn$$

i.e.:

$$k = \ln \left(\frac{n_1}{n_2} \right) / (t_2 - t_1)$$

the values of the kinetic constant \(k\) can be obtained at each of the temperatures of the isotherms used in the experiments; \(n\) is the number of moles of reactant, \(t\) is the time, and the number 1 and 2 indicate initial and final state, respectively.

By plotting the values of \(\ln k\) vs the inverse of the absolute temperature, and fitting them with a straight line, the apparent activation energies for the decomposition reactions can be obtained by the slope of the line, considering the Arrhenius equation:

$$k = Ae^{-E_a/RT}$$

where \(A\) is the prefactor, \(E_a\) the apparent activation energy, \(R\) the gas constant and \(T\) the absolute temperature. These plots are shown in Fig. 4. In all the cases the point at 130 °C was excluded because of the excessive uncertainty on the value of \(\ln k\). In the case of MAPbCl₃, the value of \(\ln k\) at 170 °C cannot be calculated because the decomposition of MAPbCl₃ was complete and so equation (3) cannot be applied. The obtained values of the apparent activation energies for the decomposition reactions are, considering the uncertainties, practically equal, being 68 ± 2 kJ/mol, 60 ± 10 kJ/mol and 80 ± 20 kJ/mol for MAPbCl₃, MAPbBr₃, and MAPbI₃, respectively.

For an estimation of the lifetime of the compounds under severe operative conditions of the devices, a value of \(k\) at 90 °C (which is a temperature that solar cells can reach under harsh conditions) can be extrapolated, and from the value of \(k\), the half life

$$t_{1/2} = \ln2 / k$$

of the compounds can be calculated. The estimated half-lives are 9, 12 and 170 days for MAPbCl₃, MAPbBr₃ and MAPbI₃, respectively. These values, though being simply rough estimations, pose a significant question about the possibility of using these compounds for the realization of stable solar cells, not considering all the problems related to other causes of degradation.

Thermodynamic stability: Knudsen effusion mass spectrometry and Knudsen effusion mass loss. Evaporation studies were performed with two different techniques based on molecular effusion: KEMS
(Knudsen Effusion Mass Spectrometry) and KEML (Knudsen Effusion Mass Loss). Details of the experimental apparatus and techniques are given in the Methods section.

With KEMS the nature and abundance of the effusing molecular species can be determined from the mass-spectrometrically detected ions and their measured intensities. In all three of the MAPbX₃ compounds here under study mass spectra were consistent with the aforementioned decomposition process (1), leading to the formation in the gas phase of methylamine and the corresponding hydrogen halide. Mass spectra were almost coincident with the reference spectra of such compounds. The relative intensities of methylamine and hydrogen halide ions varied depending on the system, as expected. Indeed, the fundamental equation correlating the individual molecular fluxes, \(\frac{dn}{ds} dt \), and the corresponding molecular densities \(n' \) inside the cell is:

\[
\frac{dn}{ds} dt = n' \frac{d}{ds} \]

Figure 4. Plot of the values of \(\ln k \) vs. the absolute temperature. From the slope of each linear fit, the values of the apparent activation energies for the decomposition reaction of each MAPbX₃ compound were calculated and from the equation of the lines the \(k \) and consequently the \(t_{1/2} \) values at 90°C were estimated.
Uncertainties on second- and third-law values are standard deviations, whereas the final error associated to the proposed value is estimated as described in the text.

The resulting factors multiplicative of P_{tot}^2 are 0.250, 0.236 and 0.221 for the decomposition reaction of the chloride, bromide and iodide compound, respectively. It is also to be noted that, in the case of the KEML technique, experiments have been performed with different size of the effusion orifice (1 mm and 3 mm diameter) in search of the occurrence of any kinetically hindered evaporation, as it is sometimes reported for decomposition reactions47,18. Within the experimental uncertainties, however, no difference was observed in the total pressures measured with different orifices.

	CH$_3$NH$_3$PbCl$_3(s)$ = PbCl$_{2(g)}$ + CH$_3$NH$_2(g)$	CH$_3$NH$_3$PbBr$_3(s)$ = PbBr$_{2(g)}$ + CH$_3$NH$_2(g)$ + HBr$_{g}$	CH$_3$NH$_3$PbI$_3(s)$ = PbI$_{2(g)}$ + CH$_3$NH$_2(g)$ + HI$_{g}$					
	n of data	T_{av}/K	second-law $\Delta H_{r}^{\circ}/kJ \cdot mol^{-1}$	second-law $\Delta H_{r}^{\circ}/kJ \cdot mol^{-1}$	third-law $\Delta H_{r}^{\circ}/kJ \cdot mol^{-1}$	proposed $\Delta H_{r}^{\circ}/kJ \cdot mol^{-1}$		
			KEMS	KEML	KEMS	KEML	KEMS	KEML
			18	40	25	20	14	31
		381	190.8 ± 6.6	197.6 ± 2.4	196.8 ± 5.8	217.5 ± 3.1	209.2 ± 4.4	219.3 ± 7.1
		381	195.5 ± 6.6	202.5 ± 2.4	201.2 ± 5.8	221.1 ± 3.1	216.1 ± 4.4	226.4 ± 7.1
		207.8 ± 10.5	190.8 ± 1.7	190.0 ± 2.4	207.4 ± 1.6	208.1 ± 0.8	208.8 ± 1.1	208.0 ± 1.0
		208.4 ± 10.9	190.4 ± 8.0	190.0 ± 2.4	207.4 ± 1.6	208.1 ± 0.8	208.8 ± 1.1	208.0 ± 1.0

Table 1. Summary of the KEMS and KEML experiments and enthalpy changes for the decomposition reactions derived thereafter. Uncertainties on second- and third-law values are standard deviations, whereas the final error associated to the proposed value is estimated as described in the text.

$$dn/ds \, dt = 1/4n \langle \nu \rangle$$

(6)

where $\langle \nu \rangle$ is the average molecular speed. Fluxes and pressure are therefore correlated through the factor $1/\sqrt{M}$, where M is the molecular mass. In order to maintain the stoichiometry of reaction (1), equal escaping fluxes of methylamine and HX are required, therefore the partial pressure ratios must satisfy the relation:

$$P_{\text{methylamine}}/P_{\text{HX}} = \sqrt{M_{\text{methylamine}}/M_{\text{HX}}}$$

(7)

Ratios are thus expected to be 0.93, 0.62 and 0.49 for MAPbCl$_3$, MAPbBr$_3$ and MAPbI$_3$, respectively. In our experiments the corresponding measured average ratios were found to be 1.01 ± 0.46, 0.56 ± 0.24 and 0.24 ± 0.10. While these ratios, even if largely scattered, are consistent with the decomposition stoichiometry of reaction (1) for MAPbCl$_3$, MAPbBr$_3$, a ratio smaller than expected was observed for MAPbI$_3$. However, it should be noted that (see the Methods section), two species-dependent parameters affect the partial pressures derived from ion intensities: the electron impact cross section and the multiplier gain. Uncertainties in the estimation of these parameters would in turn affect the measured ratio. In this regard, we note that the deviation from the theoretical ratio increases with the difference between the masses of methylamine and HX, suggesting an inaccuracy in the estimation of the multiplier gain, which is usually assumed to be proportional to the reciprocal square root of the molecular mass. In conclusion, the occurrence of decomposition reactions as per equation (1) can be confidently considered to be consistent with the KEMS results. Moreover, as already noted, the X-ray diffraction analysis of the vaporization residues did not show any phase other than MAPbX$_3$ compounds and the corresponding lead (II) halides, so supporting these findings. Note that this decomposition behavior is the same observed for pure methylammonium chloride16.

The discussion reported above on the partial pressure ratios measured with KEMS and the possible uncertainties in their determination paves the way for three alternative derivations of the equilibrium constant of reactions (1). Indeed one can chose to use either of the two partial pressures (methylamine and hydrogen halide) to evaluate the equilibrium constant, by imposing that the other one do obey the ratio consistent with equation (1). For example, assuming the partial pressure of methylamine as more reliable, the equilibrium constant K_p can be evaluated as:

$$K_p = P_{\text{methylamine}}/P_{\text{HX}} = P_{\text{methylamine}}^2P_{\text{methylamine}}\sqrt{M_{\text{HX}}/M_{\text{methylamine}}}$$

(8)

As a third alternative, partial pressures measured for both species can be directly used in the K_p evaluation.

$$P_{\text{tot}} = P_{\text{HX}} \times P_{\text{methylamine}}^2 = P_{\text{tot}}^0\left(1 + \sqrt{M_{\text{methylamine}}/M_{\text{HX}}}\right)^{-1}P_{\text{tot}}^0\left(1 + \sqrt{M_{\text{HX}}/M_{\text{methylamine}}}\right)^{-1}$$

(9)
All the K_p data collected for reaction (1) experiments were analyzed with the two thermodynamic processing procedures known as second- and third-law methods, detailed in the Methods section. The main results of this analysis are listed in Table 1, where we report the enthalpy change for process (1) derived by applying the two methods to K_p values obtained by KEMI and by KEMS (in the latter case, by using the HX pressures to evaluate K_p).

Enthalpy change derived from the second-law analysis are reported both at the mean temperature of the experiments and to the reference temperature of 0 K.

On looking at the results of Table 1 it is apparent, for all the three systems, an excellent agreement between the third-law enthalpies of reaction derived by the two techniques. On comparing the second- and third-law results a more complex pattern comes out. While a rather good agreement was obtained for KEMS results in the case of MAPbCl$_3$, MAPbBr$_3$ compounds, in the other cases the second law enthalpies are larger than the third-law ones by 7 to 18 kJ/mol. The quality of the original data is therefore to be evaluated as somewhat scattered. In addition, the second-law KEMS results were significantly dependent on which method, among the three mentioned above, is used to evaluate K_p, the scatter of the resulting enthalpies of reaction being in the order of 10–15 kJ/mol.

In conclusion, our results suggest a more pronounced thermodynamic tendency of the MAPbCl$_3$ towards decomposition compared to MAPbBr$_3$ and MAPbI$_3$. In order to facilitate an easy appreciation, from a practical point of view, of the stability of the studied perovskite phases, the total pressure dependence on the temperature is displayed in Fig. 5.

It is worth noting that, by comparing the kinetic and thermodynamic data presented above, MAPbCl$_3$ results to be the most unstable compound both kinetically and thermodynamically. With regard to MAPbBr$_3$ and MAPbI$_3$, while these two compounds have practically identical decomposition pressures in the explored temperature range (see Fig. 5), MAPbI$_3$ is kinetically much more stable, as shown in Fig. 4.

In summary, the studies of the MAPbX$_3$ compounds presented in this work clarify experimentally for the first time their decomposition path and highlight their limited thermal and thermodynamic stabilities and these are additional intrinsic problems that should be addressed in order to exploit their potential as photovoltaic materials in real life devices.

Methods

Materials preparation. Lead (II) acetate trihydrate (99.0–103%), lead (II) chloride (reagent grade, 99%), hydrobromic acid 47% in water, hydroiodic acid 57% in water (stabilized with 1.5% hypophosphorus acid), methylamine 40% in water were purchased from Alfa Aesar. Hydrochloric acid 37% in water was purchased from Sigma Aldrich. The compounds were synthesized as powders according to literature procedure20. In the case of...
MAPbCl₃, a quantity of 37% HCl double with respect to literature procedure was necessary to dissolve the solid PbCl₂. All the syntheses gave crystalline precipitates that were collected on a Büchner funnel under suction. In the case of MAPbI₃ the filtration was performed while the solution was still hot (T > 45–50 °C) to avoid the formation of (MA)₄PbI₆∙2H₂O. After filtration, the solids were left under suction for at least 30 min to let them dry. MAPbCl₃ and MAPbBr₃ were then washed with acetone to remove the last traces of the mother solutions and left under suction for additional 30 min. The washing with acetone was not possible in the case of MAPbI₃, which immediately decomposes in contact with the solvent, probably because of the traces of water present in the same. So after drying under suction, it was purified by keeping it in vacuum at 100 °C overnight.

X-ray diffraction and non-ambient X-ray diffraction. X-ray diffraction patterns on the as-synthesized samples were performed by using a Panalytical X’Pert Pro MPD diffractometer (Cu Kα radiation, λ = 1.54184 Å) equipped with an ultra-fast X'Celerator RTMS detector. The angular resolution (in 2θ) was 0.001°. A 0.04 rad soller slit, a 1° divergence slit and a 20 mm mask have been used on the incident beam path, while a 6.6 mm anti-scatter slit, a Ni Kβ filter and a 0.04 rad collimator have been used on the diffracted beam path.

For the non-ambient X-ray diffraction measurements, the diffractometer has been equipped with an Anton Paar XKR 900 reactor chamber with a factory calibrated automatic stage mover, using a Macor glass-ceramic sample holder. The position of the sample holder was calibrated at room temperature using the (104) reflection of powdered corundum. The experiments have been performed at atmospheric pressure under a protective flow of He gas (20 cm³/min @ STP, purity ≥ 99.999%). The optics used for the non-ambient measurements were the same as above with the exception of incident beam path mask (15 mm instead of 20 mm).

All the scans were performed in the angular range 10–90° (in 2θ) with a scan time of 1 hour.

The Rietveld analyses of the diffractograms taken in non-ambient conditions were performed by using the MAUD software package. The necessary cif (crystallographic information file) files for the MAPbX₃ compounds were created from the literature data, while for the lead (II) halides they were retrieved from the FIZ/NIST ICSD (Inorganic Crystal Structure Database) FindIt database.

Differential Thermal Analysis (DTA). DTA measurements on the MAPbX₃ compounds were performed using a Netzsch STA 409 PC Luxx thermal analyzer. The DTA sensor was calibrated against the melting points of In, Sn, Zn, Al, Ag, Au and Ni at least 99.9% pure. The measurements were performed in sintered alumina crucibles under flowing Ar atmosphere (85 cm³/min @ STP, purity ≥ 99.999%) with a scan rate of 10 K/min.

Knudsen Effusion Mass Spectrometry (KEMS). The features of the Knudsen effusion mass spectrometry (KEMS) technique are well summarized in ref. 25 and references cited therein. The apparatus employed is a single focusing 90° magnetic sector mass spectrometer, originally by Patco, equipped with a Knudsen molecular source. Graphite effusion cells with 1 mm diameter effusion holes, inserted in an outer molybdenum crucible, were used. The molecular source assembly is surrounded by a spiral-shaped tungsten as heating element and several tantalum shields. The temperature of the cell was measured with a Pt-Pt/Rh 10% thermocouple inserted in the bottom of the molybdenum container. Ionization of the vapours originated by the Knudsen molecular source was accomplished by electron impact with an electron emission current generally regulated at 1.0 mA. A secondary electron multiplier was used as a detector. The basic experimental data are the ion intensities, I⁺, recorded as a function of the temperature of the molecular source. These can be converted into partial pressures of the corresponding neutral species in the Knudsen cell through the relation:

\[P_a = \frac{I_+}{I_+} \]
These thermodynamic functions have been here evaluated up to 450 K. This was performed by a least square analysis of a vant Hoff plot, \(\ln K \) vs. \(1/T \), where \(K \) is the equilibrium constant. The corresponding enthalpy change at the reference temperature, \(\Delta H^\circ_r \), can be calculated through the use of the heat content functions, \(H^\circ_r - H^\circ_0 \) of reactants and products. A single \(\Delta H^\circ_r \) value is obtained from the entire set of data points. The third-law procedure, based on the relation:

\[
\Delta H^\circ_r = -RT \ln (K_p) - T \Delta (G^\circ_f) / T
\]

where \((G^\circ_f - H^\circ_f) / T \) is the Gibbs energy function \(G^\circ_f \) provides a value of \(\Delta H^\circ_f \) for each experimental point. The advantages and shortcomings of these two independent methods of analysis of primary experimental data are reported in ref. 25. In short, although the third-law analysis, unlike the second-law, requires the more demanding knowledge of the absolute values of partial pressures, third-law results are considered to be superior and to be preferred when thermal functions are sufficiently well established, because they are less sensitive to random errors.

Knudsen Effusion Mass Loss (KEML). A Ugnie-Eyraud Model B60 Setaram thermobalance was used for the KEML measurements. A graphite isotherm is the heating element of a quartz tube containing the Knudsen cell. The effusion source, whose mass is monitored, was specifically modified in our laboratory in order to allow an optimal temperature measurement and to maximize the uniformity of the sample temperature. Briefly, both the Knudsen cell and a Pt100 platinum resistance thermometer are inserted into a capped copper cylinder; so that the temperature of the molecular source is directly measured instead of the usual “dummy” cell placed in the isothermal section of the furnace. Effusion cells made of pyrophyllite were used, with effusion hole diameters of 1 and 3 mm. The vapor pressures of the sample were obtained by the usual Knudsen equation:

\[
P = K \sqrt{T/M_{av}} dm/dt
\]

where \(T \) is the temperature, \(K \) a constant depending on the geometrical characteristics of the effusion hole, \(dm/dt \) the rate of mass loss, \(M_{av} \) is the average molar mass of the effusing vapor:

\[
M_{av} = \left(\sum m_i / \sqrt{M_i} \right)^2
\]

where \(m_i \) are the weight fractions of the various vapor species in the effusate and \(M_i \) the respective molecular weights.

Thermodynamic analysis of \(K_p \) data. Equilibrium data have been analyzed by the so-called second- and third-law methods of analysis\(^{25} \). With the second-law method the determination of the enthalpy change at the average temperature of the experiment, \(\Delta H^\circ_r \), is performed by a least square analysis of a vant Hoff plot, \(\ln K_p \) vs. \(1/T \), where \(K_p \) is the equilibrium constant. The corresponding enthalpy change at the reference temperature, \(\Delta H^\circ_r \), can be calculated through the use of the heat content functions, \(H^\circ_r - H^\circ_0 \) of reactants and products. A single \(\Delta H^\circ_r \) value is obtained from the entire set of data points. The third-law procedure, based on the relation:

\[
\Delta H^\circ_r = -RT \ln (K_p) - T \Delta (G^\circ_f) / T
\]

where \((G^\circ_f - H^\circ_f) / T \) is the Gibbs energy function \(G^\circ_f \) provides a value of \(\Delta H^\circ_f \) for each experimental point. The advantages and shortcomings of these two independent methods of analysis of primary experimental data are reported in ref. 25. In short, although the third-law analysis, unlike the second-law, requires the more demanding knowledge of the absolute values of partial pressures, third-law results are considered to be superior and to be preferred when thermal functions are sufficiently well established, because they are less sensitive to random errors.

Auxiliary thermodynamic functions. Free energy functions of gaseous hydrogen halides and solid lead halides were retrieved from the IVTANTHERMO database\(^{19} \), whereas those of methylamine were taken from ref. 30. The heat capacity \(C_p \) of the MAPbX\(_3\) compounds have been measured in ref. 31 up to 300 K for MAPbCl\(_3\) and MAPbBr\(_3\), and up to 360 K for MAPbI\(_3\). The same authors derived, in the same temperature range, the thermodynamic functions \((H^\circ_r - H^\circ_0) \) of reagents and products. These thermodynamic functions have been here evaluated up to 450 K in order to cover the range of temperatures of our experiments. To this end, heat capacity data were extrapolated using the Einstein and Debye temperatures provided by the same authors. The resulting values are reported in the Table 3 of the Supplementary information.

References

1. Kojima, A., Teshima, K., Shirai, Y. & Miyasaka, T. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131, 6043–6054 (2009).
2. Green, M. A., Emery, K., Hishikawa, Y. & Warta, W. Solar Cell Efficiency Tables (Version 34). Prog. Photovolt: Res. Appl. 17, 320–326 (2009).
3. Green, M. A., Emery, K., Hishikawa, Y., Warta, W. & Dunlop, E. D. Solar Cell Efficiency Tables (Version 47). Prog. Photovolt: Res. Appl. 24, 3–11 (2016).
4. Mathew, S. et al. Dye-sensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers. Nature Chemistry 6, 242–247 (2014).
5. Editorial. Perovskite fever. Nature Materials 13, 837 (2014).
6. Zhu, X. The perovskite fever and beyond. Acc. Chem. Res. 49, 355–356 (2016).
7. Manser, J. S., Saidaminov, M. I., Christians, J. A., Bakr, O. M. & Kamat, P. V. Making and breaking of lead halide perovskites. Acc. Chem. Res. 49, 330–338 (2016).
8. Deretizis, I. et al. Atomic origins of CH$_3$NH$_3$PbI$_3$ degradation to PbI$_2$ in vacuum. Appl. Phys. Lett. 106, 131904 (2015).
9. Dualeh, A., Gao, P., Seok, S. I., Nazerruddin, M. K. & Grätzel, M. Thermal Behavior of Methylammonium Lead Trihalide Perovskite Photovoltaic Light Harvesters. Chem. Mater. 26, 6160–6164 (2014).
10. Han, Y. et al. Degradation observations of encapsulated planar CH$_3$NH$_3$PbI$_3$ perovskite solar cells at high temperatures and humidity. J. Mater. Chem. A 3, 8139–8147 (2015).
11. Tan, K. W. et al. Thermally Induced Structural Evolution and Performance of Mesoporous Block Copolymer-Directed Alumina Perovskite Solar Cells. ACS Nano 8, 4730–4739 (2014).
12. Baikie, T. et al. A combined single crystal neutron/X-ray diffraction and solid-state nuclear magnetic resonance study of the hybrid perovskites CH$_3$NH$_3$PbX$_3$ (X = I, Br and Cl). J. Mater. Chem. A 3, 9298–9307 (2015).
13. Baikie, T. et al. Synthesis and crystal chemistry of the hybrid perovskite (CH$_3$NH$_3$)$_2$PbI$_4$ for solid-state sensitised solar cell applications. J. Mater. Chem. A 1, 5628–5641 (2013).
14. Kisslinger, H. E. Reaction kinetics in differential thermal analysis. Anal. Chem. 29, 1702–1706 (1957).
15. Zhang, H., Qiao, X., Shen, Y. & Wang, M. Effect of temperature on the efficiency of organometallic perovskite solar cells. J. Energy Chem. 24, 729–735 (2015).
16. Aston, J. G. & Ziemer, C. W. Thermodynamic properties of the three crystalline forms of methylammonium chloride. J. Am. Chem. Soc. 68, 1405–1413 (1946).
17. Lau, K. H., Cubicciotti, D. & Hildenbrand, D. L. Effusion studies of the thermal decomposition of magnesium and calcium sulfates. J. Chem. Phys. 66, 4532–4539 (1977).
18. Ganesan, R., Ciccioli, A., Gigli, G. & Ipser, H. Thermochemical investigations in the thin-phosphorus system. Int. J. Mat. Res. 102, 93–103 (2011).
19. Iorish, V. S. et al. IVTANTHERMO database-Version 3.0, Glushko Thermocenter of Russian Academy of Sciences (2005).
20. Dimesso, L., Dimamay, M., Hamburger, M. & Jaegermann, W. Properties of CH$_3$NH$_3$PbX$_3$ (X = I, Br, Cl) powders as precursors for organic/inorganic solar cells. Chem. Mater. 26, 6762–6770 (2014).
21. Vincent, B. R., Robertson, K. R., Cameron, T. S. & Knop, O. Alkylammonium lead halides. Part 1. Isolated Pb$^{6+}$ ions in (CH$_3$NH$_3$)$_2$PbI$_4$TH$_2$O. Can. J. Chem. 65, 1042–1046 (1987).
22. Lutterotti, L., Chateigner, D., Ferrari, S. & Ricote, J. Texture, Residual Stress and Structural Analysis of Thin Films using a Combined X-Ray Analysis. Thin Solid Films 450, 34–41 (2004).
23. Kawamura, Y., Masahiyama, H. & Hasebe, K. Structural Study on Cubic–Tetragonal Transition of CH$_3$NH$_3$PbI$_3$. J. Phys. Soc. Jpn. 71, 1694–1697 (2002).
24. FindIt FIZ/NIST ICSD (Inorganic Crystal Structure Database)-Version 1.8.1, Fachinformationszentrum Karlsruhe, Germany, and the U.S. Department of Commerce on the behalf of the United States (2011).
25. Drowart, J., Chatillon, C., Hastie, J. & Bonnell, D. High-temperature mass spectrometry: instrumental techniques, ionization cross-sections, pressure measurements, and thermodynamic data. Pure & Appl. Chem. 77, 683–737 (2005).
26. Ciccioli, A., Gigli, G., Meloni, G. & Testani, E. The dissociation energy of the new diatomic molecules SiPb and GePb. J. Chem. Phys. 127, 054303 (2007).
27. Bhutadia, H. Theoretical investigations on scattering of electrons with targets of varied interest, Ph.D. Thesis, Sardar Patel University, April 2012, Chapter 4, p. 128.
28. Vinoskumar, M., Dave, K., Bhutadia, H. & Antony, B. K. Electron impact total ionization cross sections for halogens and their hydrides. Int. J. Mass Spectrom. 292, 7–13 (2010).
29. Brunetti, B. et al. Vaporization of the prototypical ionic liquid BMImNTf$_2$ under equilibrium conditions: a multitechnique study. Phys. Chem. Chem. Phys. 16, 15653–15661 (2014).
30. Frenkel, M., Kobo, G. J., Marsh, K. N., Roganov, G. N. & Willroth, R. C. Thermodynamics of Organic Compounds in the Gas State, CRC Press (1994).
31. Onoda-Yamamuro, N., Matsuo, T. & Suga, H. Calorimetric and IR spectroscopic studies of phase transitions in methylammonium trihalogenoplumbates (II). J. Phys. Chem. Solids, 51, 1383–1395 (1990).

Acknowledgements
The authors wish to acknowledge the University of Roma “La Sapienza” for financial support. A.L. and C.C. wish also to thank Prof. Daniele Gozzi of the Università degli Studi di Roma “La Sapienza” for fruitful scientific discussions.

Author Contributions
A.L. and C.C. prepared and characterized the compounds used in the experiments, performed the non-ambient X-ray diffraction measurements and analyzed the diffracgrams using the Rietveld method. A.C. and G.G. performed the KEMS measurements and analyzed the data. B.B. performed the KEML measurements and analyzed the data. A.L., A.C. and G.G. wrote the manuscript and prepared the figures and tables.

Additional Information
Supplementary information accompanies this paper at http://www.nature.com/srep

Competing financial interests: The authors declare no competing financial interests.

How to cite this article: Brunetti, B. et al. On the Thermal and Thermodynamic (In)Stability of Methylammonium Lead Halide Perovskites. Sci. Rep. 6, 31896; doi: 10.1038/srep31896 (2016).

© The Author(s) 2016
Corrigendum: On the Thermal and Thermodynamic (In)Stability of Methylammonium Lead Halide Perovskites

Bruno Brunetti, Carmen Cavallo, Andrea Ciccioli, Guido Gigli & Alessandro Latini

Scientific Reports 6:31896; doi: 10.1038/srep31896; published online 22 August 2016; updated on 27 July 2017

This Article contains errors. In the ‘Thermal Stability: Non-Ambient X-ray Diffraction’ section, under subheading ‘Thermodynamic stability: Knudsen effusion mass spectrometry and Knudsen effusion mass loss’,

“The resulting values of $\Delta f H^0_{298K}$ were: -688.3 ± 7.8 kJ/mol, -567.5 ± 8.7 kJ/mol, and -403.6 ± 9.7 kJ/mol for MAPbCl$_3$, MAPbBr$_3$ and MAPbI$_3$, respectively”.

should read:

“The resulting values of $\Delta f H^0_{298K}$ were: -660.5 ± 7.8 kJ/mol, -539.6 ± 8.7 kJ/mol, and -375.7 ± 9.7 kJ/mol for MAPbCl$_3$, MAPbBr$_3$ and MAPbI$_3$, respectively”.

In Equation (13),

$\Delta_f G^o_T (CH_3NH_3PbCl_3(s)) = [(194.8 \pm 6.0) - (275.5 \pm 6.8)10^{-3} T/K] kJ/mol$

should read:

$\Delta_f G^o_T (CH_3NH_3PbCl_3(s)) = [(185.6 \pm 6.0) - (250.4 \pm 6.8)10^{-3} T/K] kJ/mol$

In Equation (14),

$\Delta_f G^o_T (CH_3NH_3PbBr_3(s)) = [(212.2 \pm 7.1) - (273.4 \pm 10.2)10^{-3} T/K] kJ/mol$

should read:

$\Delta_f G^o_T (CH_3NH_3PbBr_3(s)) = [(203.4 \pm 7.1) - (251.3 \pm 10.2)10^{-3} T/K] kJ/mol$

In Equation (15),

$\Delta_f G^o_T (CH_3NH_3PbI_3(s)) = [(215.4 \pm 8.3) - (280.2 \pm 10.6)10^{-3} T/K] kJ/mol$

should read:

$\Delta_f G^o_T (CH_3NH_3PbI_3(s)) = [(201.4 \pm 8.3) - (243.1 \pm 10.6)10^{-3} T/K] kJ/mol$
