EndoBind detects endogenous protein-protein interactions in real time

Anke Bill, Sheryll Espinola, Daniel Guthy, Jacob R. Haling, Mylene Lanter, Min Lu, Anthony Marelli, Angelica Mendiola, Loren Miraglia, Brandon L. Taylor, Leonardo Vargas, Anthony P. Orth & Frederick J. King

We present two high-throughput compatible methods to detect the interaction of ectopically expressed (RT-Bind) or endogenously tagged (EndoBind) proteins of interest. Both approaches provide temporal evaluation of dimer formation over an extended duration. Using examples of the Nrf2-KEAP1 and the CRAF-KRAS-G12V interaction, we demonstrate that our method allows for the detection of signal for more than 2 days after substrate addition, allowing for continuous monitoring of endogenous protein-protein interactions in real time.
Cell signaling is a highly flexible and transient process that relies on a careful balance between inhibitory and activating signals mediated by protein–protein interactions. A variety of methods for monitoring cellular protein–protein interactions have been described that suffer enormous limitations to capture those highly dynamic signaling events in cells. (i) Ectopic, usually transient overexpression risks non-biologically relevant interactions or artificial modulation of the signaling event itself by disturbing the stoichiometric balance. (ii) Analyzing the protein–protein interactions or signaling state of a cell at a specific time point in end-point assays can lead to misinterpretation or oversight of important underlying processes. (iii) Methods relying on the detection of endogenous protein require either high amounts of protein or special instrumentation, making them incompatible with high-throughput applications.

Here, we present two ultra-sensitive methods—RT-bind and EndoBind—that overcome these limitations and are capable of capturing real-time cellular protein–protein interactions and dynamics of exogenously (RT-bind) or endogenously (EndoBind) expressed proteins in high-throughput.

Results and discussion

RT-bind enables the detection of proteins in real-time. Our methods exploit the split-NanoLuciferase-complementation (NanoBitTM) system¹ in which the interaction of the two target methods exploit the split-NanoLuciferase-complementation of expressed proteins in high-throughput.

![Diagram of RT-Bind principle](image)

Fig. 1 Real-time detection of protein interactions in cells on the example of the Nrf2-Keap1 interaction. a Schematic of RT-Bind principle: cells expressing the protein of interests (red/blue cartoon) tagged with either SmB or LgB of modified NanoLuciferase, are incubated with a long-lived pro-substrate for NanoLuciferase (gray star), are incubated with a long-lived pro-substrate for NanoLuciferase (gray star), which is continuously metabolized by the cells to the NanoLuciferase-compatible substrate (light gray box). Interaction of the proteins of interest leads to complementation of the NanoBit enzyme and, in presence of the metabolized substrate, to luminescence. b Relative luminescence signal after 4 h treatment with 10 μM Sulforaphane or 1 μM compound 7 in HEK293T-SmB-Nrf2/Keap1-LgB cells (mean ± s.d., n = 3 wells each, representative experiment) as detected by the use of the indicated luciferase substrates. c Relative luminescence signal in HEK293T-SmB-Nrf2/Keap1-LgB cells detected by RT-bind by measuring the same plate at the indicated time points after treatment with 10 μM Sulforaphane or 1 μM compound 7 (mean ± s.d., n = 12 wells each, representative experiment). d Relative luminescence signal in HEK293T-SmB-Nrf2/Keap1-LgB cells detected by RT-Bind 4 h after treatment with 10 μM Sulforaphane or 1 μM compound 7 (mean ± s.d., n = 4 wells each, representative experiment). Data were normalized to the control (DMSO) treated sample.
depletion we delivered the constructs for the respective proteins at low MOI via a lentiviral vector employing a shortened EF1-promoter to drive ectopic expression. Stable lines with all eight possible pairwise combinations of reciprocal tag permutations were generated (i.e., N- or C-terminal tagging with SmB or LgB for both Nrf2 and Keap1 and all possible combinations thereof). The cell line with N-terminal SmB-tag on Nrf2 and C-terminal LgB-tag on Keap1 (from hereon referred to as SmB-Nrf2/Keap1-LgB) was chosen for all further experiments based on assay window and expected performance of known Nrf2 modulators (Supplementary Fig. 1a, b). Sulforaphane (SFN), an inhibitor of the Keap1/Cul3-mediated degradation, yielded an increase of the Nrf2:Keap1 signal in the SmB-Nrf2/Keap1-LgB cell line and compound 7, an inhibitor of the interaction of Keap1 and Nrf2, yielded a decrease. Analysis of Nrf2 levels via western blotting confirmed the overall low level of overexpression of tagged Nrf2 and Keap1, both approximately expressed at twice the levels of the endogenous proteins (Supplementary Fig. 1c). Treatment with SFN led to increased Nrf2 levels in the parental cells as well as in the SmB-Nrf2/Keap1-LgB cell line, demonstrating the dependence of endogenous as well as overexpressed, tagged Nrf2 on degradation by Keap1/Cul3.

As a next step, we tested whether adding the RealTime-Glo substrate to our SmB-Nrf2/Keap1-LgB cell line would allow us to measure the NanoBit signal indicative of the interaction of Nrf2/Keap1. For this, we added the RT-Glo-substrate to the cells at the time of seeding, incubated the cells overnight, added compound on the next morning, and measured the luciferase signal 4 h after compound treatment without the addition of any additional substrate. NanoGlo-live or NanoGlo substrate were added to separate cells as a comparison. The signal measured with the RealTime-Glo substrate demonstrated a significant decrease after treatment with compound 7 and a significant increase after treatment with SFN, similar to the signal changes seen after the addition of the other substrates (Fig. 1b).

In order to investigate whether the use of the RealTime-Glo substrate would allow us to study the interaction kinetically, we seeded SmB-Nrf2/Keap1-LgB cells in the presence of pro-substrate and incubated the cells overnight. The next day, we measured the basal signal, added either SFN or compound 7, and then re-read the same plate at various time points post compound treatment up to 24 h without the addition of additional reagents or substrate. We observed a near-instant signal decrease in response to the known Nrf2/Keap1 complex disruptor compound 7, an effect sustained over the entire time course of the experiment (Fig. 1c). In contrast, as expected for a compound acting via proteostasis, treatment with SFN increased the luciferase signal steadily until reaching a peak about 4 h after treatment before returning to baseline 8 h after treatment. The slow but steady increase in the luciferase signal is a result of the accumulation of Nrf2 protein due to transient inhibition of degradation by the Keap1/Cul3-complex. To corroborate the specificity of the observed signal, we compared the effect of compound 7 and SFN on our SmB-Nrf2/Keap1-LgB cell line and a similar cell line expressing an Nrf2 mutant insensitive to Keap1-mediated degradation (SmB-Nrf2-D29H/Keap1-LgB, i.e., Nrf2-D29H mutant N-terminally tagged with SmB and Keap1 C-terminally tagged with LgB) (Fig. 1d). The D29H mutant diminishes interaction at one of the two critical binding sites between Nrf2 and Keap1 (DLG-motif) and hence protects Nrf2 from Keap1/Cul3-mediated degradation, resulting in a stabilization of Nrf2 protein levels. Hence, treatment with SFN in this cell line is not expected to increase Nrf2 levels (as seen in Supplementary Fig. 1b), but compound 7 is expected to block binding of Keap1 to Nrf2 that occurs via the still intact second binding site (ETGE-motif). As expected, while treatment with compound 7 decreased the signal in both cell lines in a dose-dependent manner, treatment with SFN had no effect in the cell line expressing Nrf2-D29H while provoking a dose-dependent increase in the cell line expressing wild-type Nrf2. Taken together, our data introduces a method to study protein–protein interactions in cells in real-time over an extended amount of time. Hence we named the method real-time-bind (RT-Bind).

EndoBind detects protein–protein interactions of endogenous proteins in real-time. While RT-Bind offers the advantage of measuring the interaction of proteins of interest kinetically over an extended period and employs a standardized expression promoter permitting normalization for transcriptional effects, it still relies on ectopic expression of fusion proteins, making RT-Bind prone to artifacts due to non-physiological interaction of the partners. To circumvent this liability, we wondered whether we could measure the interaction of endogenous proteins at physiological expression levels by introducing the NanoBit-tags at the respective genomic loci using CRISPR-knockin instead of overexpressing the respective fusion proteins. To test this particular hypothesis, we set out to measure the interaction of G12V-mutant KRAS and CRAF, two proteins that signal via forming complexes with each other and other proteins. Artificial overexpression of RAS can alter its physiological interactions and signaling behavior in cells, leading to increased cell growth, senescence, or apoptosis and growth rate of the cells (Supplementary Fig. 2b, c). Using a similar workflow to RT-Bind we were able to detect a low but significant basal signal in the PATU8988T-SmBKRAS-LgBCRAF cell line. We termed the use of the RT-Bind workflow with endogenously tagged partners, EndoBind.

To further test the limits of the KRAS:CRAF EndoBind assay, we treated the cells with the type-1 RAF-inhibitor GDC0879 which is expected to increase the interaction of KRAS and CRAF. Treatment of the cells with GDC0879 indeed yielded a dose-dependent increase in signal in PATU8988T-SmBKRAS-LgBCRAF cells but not in the isogenic parental cells (Fig. 2a). This signal increase was most pronounced 7 h after treatment and was still detectable 24 h after treatment. To demonstrate signal dependency on the specific interaction of KRAS and CRAF, we transfected the cells with siRNAs targeting either CRAF or KRAS and then treated the cells with GDC0879 for 7 h (Fig. 2b). As expected, the EndoBind signal depended on the expression of both KRAS and CRAF and showed a concentration-dependent decrease after siRNA-mediated knockdown of either CRAF or KRAS that correlated with the remaining protein levels. There was no significant decrease in EndoBind signal after knockdown of CRAF or KRAS in the absence of GDC0879, indicating that there is no detectable interaction of CRAF and KRAS in the absence of GDC0879 (Supplementary Fig. 2d).

To test the extensibility of this EndoBind assay we treated the cells with either GDC0879 (type 1 RAF-inhibitor), LHS533 (type 2 RAF-inhibitor), LY3009120 (type 2 RAF-inhibitor), or Selumetinib (MEK-inhibitor) and measured the KRAS:CRAF
interaction after the indicated duration of treatment (Fig. 2c). The binding of RAF inhibitors to RAF in the presence of activated KRAS leads to allosteric priming, in which the RAF inhibitor promotes interaction of RAF with activated RAS by stabilizing the activated conformation of RAF\(^15\). According to this model, RAF inhibitors that bind to both protomers in a dimer (type 1 and type 2) show stronger allosteric priming than inhibitors of monomeric RAF (type 1.5). Coherent with this model, all three RAF-inhibitors led to an increase in EndoBind signal, indicative of increased interaction of KRAS and CRAF. As expected, the type 1.5 inhibitor LHS533 showed the lowest induction of EndoBind signal, while both GDC0879 and LY3009120 provoked much stronger increases in signal, albeit with different kinetics, peaking at 4 h compared to 12 h post treatment, respectively.
To demonstrate that the EndoBind assay is suited to identifying compounds with the mechanism of action other than RAF inhibition, we treated the cells with either an Hsp90 inhibitor or an Hsp70 inducer. Both chaperones are required for the stability and activity of CRAF.16,17 As expected, the Hsp90 inhibitor NVP-AUY922 led to time- and dose-dependent decreases in EndoBind signal likely due to degradation of CRAF protein (Fig. 2d). Similarly, AEG3482, an Hsp70 inducer, led to an increase in EndoBind signal due to facilitating CRAF protein folding and stability (Fig. 2e).

Figure 2f shows the distribution of the signal across the screening plates, demonstrating a good separation of signal between the neutral control DMSO and the active control NVP-AUY922. Taken together, we describe two new assays formats that allow for the continuous detection of protein-protein interactions in real-time for ectopically expressed or endogenously tagged proteins in cells. The use of a pro-substrate that can be added during seeding of the cells eliminates the need for additional substrate addition at the time of measurement and enables high-throughput-friendly, continuous readout of the signal on the same plate over an extended amount of time as well as pre- and post-treatment measurement on the same cells.

Methods

Plasmids. Plasmids for RT-Bind: The coding sequences for SmB and LgB, flanked by a linker region with additional restriction sites, were cloned into a pCDH1-EF1 vector (System Biosciences), generating a set of 8 unique vectors with either N-terminal or C-terminal NanoBit-tags and either a Hygromycin- or a Puromycin-counterselection cassette driven by a CMV-promoter. The restriction sites were designed as such that the ORF-sequence was excised by EcoRI and Kpn1 digestion to allow for expression of the respective sequence on a single DNA fragment. The respective sequence was synthesized and inserted between the restriction sites of the EcoRI-Kpn1 digestion. The cloning of the coding sequence into the plasmid was controlled by diagnostic restriction or digestion. The plasmids for CRISPR-knockin: We designed a donor-plasmid with the sequence for the donor cassette and the respective integration sites cloned into a vector (System Biosciences) generating a set of 8 unique vectors with either N-terminus of KRAS or CRAF, respectively, results in the expression of a protein of interest that is tagged at the N-terminus or C-terminus with either a Hygromycin- or a Puromycin-counterselection. The respective sequence was synthesized and inserted between the restriction sites of the EcoRI-Kpn1 digestion. The cloning of the coding sequence into the plasmid was controlled by diagnostic restriction or digestion. The plasmids for RT-Bind: The coding sequences for SmB and LgB, flanked by a linker region with additional restriction sites, were cloned into a pCDH1-EF1 vector (System Biosciences), generating a set of 8 unique vectors with either N-terminal or C-terminal NanoBit-tags and either a Hygromycin- or a Puromycin-counterselection cassette driven by a CMV-promoter. The restriction sites were designed as such that the ORF-sequence was excised by EcoRI and Kpn1 digestion to allow for expression of the respective sequence on a single DNA fragment. The respective sequence was synthesized and inserted between the restriction sites of the EcoRI-Kpn1 digestion. The cloning of the coding sequence into the plasmid was controlled by diagnostic restriction or digestion.

Generation of stable cell lines for RT-Bind assay. HEK293T cells were seeded in 6-wells and transfected with a low multiplicity of infection with lentivirus containing the respective constructs. Cells expressing the LgB-tagged protein of interest were selected with 1.75 μg/ml Puromycin, cells expressing the SmB-tagged protein of interest were selected with 250 μg/ml Hygromycin, expressing both constructs were selected with both.

Generation of CRISPR-knockin cell line. PATU8988T-SmB-KRAS cell lines were generated by co-transferring 300 ng of the donor template with 300 ng of the sgRNA- and Cas9-encoding vector using 1.8 μl Dharmafect kb (Dharmacon) per 12-well. Transfected cells were cultured and expanded for 5 days before 30 μg/ml Blasticidin was added. After the outgrowth of a Blastcidin-resistant population of cells, the cells were sorted on an Aria-FACS-Sorter (BD Bioscience) and the 10% most GFP-negative population was selected. Cells were single-cell cloned by serial dilution and clones were analyzed by PCR and western blotting for the successful integration of the donor sequence. One clone with homozygous integration was identified, the same process was repeated with the donor construct for N-terminal tagging of CRAF, using Puromycin selection (1 μg/ml).

Transfection with siRNA. siRNA targeting KRAS (Dharmacon, cat No. L-005699-00-0005) or CRAF (Dharmacon, cat No. L-003601-00-0005) was diluted using control siRNA (Dharmacon, cat No. D-001810-10-05). The transfection mixture was prepared by mixing siRNA with 0.187 μl of Lipofectamine RNAiMAX Transfection Reagent (Thermo Fisher, cat No. 12781000) in 20 μl of Opti-MEM Reduced Serum Medium (Thermo Fisher, cat No. 31985062). The mixture was added to the transfection media at a ratio of 1:20 and incubated at room temperature for 30 min before adding 20 μl of cell suspension containing 4 × 10^3 cells in a 384-well plate. EndoBind signal was determined 48 h post siRNA transfection. A similar transfection protocol was used for siRNA transfection for WES. Briefly, siRNA prepared with 2.16 μl of RNAiMax in 320 μl of Opti-MEM medium was added into an equal volume of cell suspension containing at 2 × 10^5 cells/ml in a 24-well plate. Forty-eight hours post siRNA transfection, the cells were subjected to WES western blot analysis.

Western blotting. Forty-eight hours post siRNA transfection, the cells were lysed in RIPA buffer (Cell Signaling, cat No. 9806) and subjected to WES western blot analysis using antibodies for KRAS (Life Technologies, cat No. 415700), CRAF (Abcam, cat No. B37435) or β-Actin (Cell Signaling Technology, cat No. 3700) on a WES Separation Module (Protein Simple, cat No. SM-W004) according to the protocol suggested by the manufacturer. For regular western blot analysis, cells were lysed in RIPA buffer and 20 μg total lysate was subjected to sodium dodecyl sulfate-polyacrylamide gel electrophoresis using NuPage 4–12% Bis/Tris gels (ThermoFisher, cat No. NP0321). Subcellular fractionation was done using the Mem-PERM TM Membrane Protein Extraction Kit (ThermoFisher, cat No. 89842). Proteins were transferred to nitrocellulose membranes (ThermoFisher, cat No.
Luciferase measurements. Cells were cultured in the appropriate size of the flask to ensure confluence at the time of harvest was <80%. Cells were harvested and diluted in DMEM + 10% FBS to a final concentration of 0.3 × 10^6 cells/ml (for 384-well format) or 1 × 10^6 cells/ml (for 1536-well format). Real-Time-Glo substrate (Promega, cat no. G9711) was added at a dilution of 1:2000. Thirty microtiter of cells were plated per 384-well (10,000 cells/well) and 5 µl of cells were plated per 1536-well. Cells were incubated overnight. Baseline luminescence was the measured the next morning before the cells were treated as described. For RT-Bind and EndoBind luminescence was measured using the Vieuelix system (PerkinElmer) or the luminescence plate reader (LPR, GNF) with a 2 min exposure. For all other luminescence measurements, NanoGlo (Promega, cat no. N1110) or NanoGlo-live (Promega, cat no. N2011) was added according to the manufacturer’s protocol and luminescence was measured as described.

Compound treatment. Compounds were synthesized in-house. Totally, 10 mM stock solutions were made in DMSO. Compounds were dosed using the Echo acoustic liquid handling technology (Labcyte).

Screen. The compound library was prepoassed in 1536-well plates and 5 µl of a suspension of PATU8889T-SmBKRAS-LgBcRaf cells mixed with Real-Time-Glo substrate (Promega, cat no. G9711) were added. Twenty-four-hour after plating, the baseline EndoBind-signal was measured on the luminescence plate reader (LPR, GNF). The cells were treated with 5 µM DCD0879 for 1 h and the EndoBind-signal was measured again. Three micrometer NVP-AUY922 was used as a control.

Statistics and reproducibility. All quantitative data are expressed as mean ± standard deviation. The number and nature of replicates (n) are given in each figure legend. In case representative data of one experiment is shown, the experiment was repeated at least one additional time with a similar outcome. Data analysis and graphing were performed with Prism 9 (GraphPad software).

Data availability. All data shown or analyzed during this study are included in this article and its supplementary information file. Uncropped western blot images can be found in the Supplementary Data file.

Received: 26 January 2021; Accepted: 24 August 2021; Published online: 15 September 2021

References
1. Dixson, A. S. et al. NanoLu complementation reporter optimized for accurate measurement of protein interactions in cells. ACS Chem. Biol. 11, 400–408 (2016).
2. Bodle, C. R., Hayes, M. P., O’Brien, J. B. & Roman, D. L. Development of a bimolecular luminescence complementation assay for RGα:G protein interactions in cells. Anal. Biochem. 522, 10–17 (2017).
3. Grane-Boladeras, N. et al. Oligomerization of equilibrative nucleoside transporters: a novel regulatory and functional mechanism involving PKC and PPI. FASEB J. 33, 3841–3850 (2019).
4. Leroy, E. et al. Differential effect of inhibitory strategies of the V617 mutant of JAK2 on cytokine receptor signaling. J. Allergy Clin. Immunol. 144, 224–235 (2019).
5. Storme, J., Cannaert, A., Van Craenenbroeck, K. & Stove, C. P. Molecular dissection of the human A3 adenosine receptor coupling with beta-arrestin2. Biochem. Pharm. 148, 298–307 (2018).
6. Canning, P., Sorrell, F. J. & Bullock, A. N. Structural basis of Keap1 interactions with Nrf2. Free Radic. Biol. Med. 88, 101–107 (2015).
7. Hong, F., Freeman, M. L. & Liebler, D. C. Identification of sensor cysteines in human Keap1 modified by the cancer chemopreventive agent sulforaphane. Chem. Res. Toxicol. 18, 1917–1926 (2005).
8. Davies, T. G. et al. Monoacidic inhibitors of the Kelch-like ECH-associated protein 1: nuclear factor erythroid 2-related factor 2 (Keap1:NRF2) protein-protein interaction with high cell potency identified by fragment-based discovery. J. Med. Chem. 59, 3991–4006 (2016).
9. Birchler, J. A. & Veitia, R. A. Gene balance hypothesis: connecting issues of dosage sensitivity across biological disciplines. Proc. Natl Acad. Sci. USA 109, 14746–14753 (2012).
10. Nair, M. & Lowe, S. W. Senescence comes of age. Nat. Med. 11, 920–922 (2005).
11. Vartanian, S. et al. Identification of mutant K-Ras-dependent phenotypes using a panel of isogenic cell lines. J. Biol. Chem. 288, 2403–2413 (2013).
12. Moore, A. R., Rosenberg, S. C., McCormick, F. & Malek, S. RAS-targeted therapies: is the undruggable druggable? Nat. Rev. Drug Discov. 19, 533–552 (2020).
13. Karoula, Z., Gavathiotis, E. & Poulikakos, P. I. New perspectives for targeting RAF kinase in human cancer. Nat. Rev. Cancer 17, 676–691 (2017).
14. Yeh, T. C. et al. Biological characterization of AXX-142886 (AZD6244), a potent, highly selective mitogen-activated protein kinase 1/2 inhibitor. Clin. Cancer Res. 13, 1576–1583 (2007).
15. Karoula, Z. et al. An integrated model of RAF inhibitor action predicts inhibitor activity against oncogenic BRAF signaling. Cancer Cell 30, 485–498 (2016).
16. Grbovic, O. M. et al. V600E B-Raf requires the Hsp90 chaperone for stability and is degraded in response to Hsp90 inhibitors. Proc. Natl Acad. Sci. USA 103, 57–62 (2006).
17. Mitra, S., Ghosh, B., Gayen, N., Roy, J. & Mandal, A. K. Bipartite role of heat shock protein 90 (Hsp90) keeps CRAF kinase poised for activation. J. Biol. Chem. 291, 24579–24593 (2016).
18. Jensen, M. R. et al. NVP-AUY922: a small molecule Hsp90 inhibitor with potent antitumor activity in preclinical breast cancer models. Breast Cancer Res. 10, R33 (2008).
19. Salehi, A. H. et al. AEG3482 is an antiapoptotic compound that inhibits Jun kinase activity and cell death through induced expression of heat shock protein 70. Chem. Biol. 13, 213–223 (2006).
20. Zhou, M., Li, Q. & Wang, R. Current experimental methods for characterizing protein-protein interactions. ChemMedChem 11, 738–756 (2016).

Author contributions
A.B., D.G., J.R.H., L.M., T.P.O., and F.K. designed the experiments and prepared the material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2021