Dissipative Chaos in Semiconductor Superlattices

Kirill N. Alekseev, Gennady P. Berman, David K. Campbell, Ethan H. Cannon, and Matthew C. Cargo

Center for Nonlinear Studies and Theoretical Division, Los Alamos National Laboratory
Los Alamos, New Mexico 87545, U.S.A.

Kirensky Institute of Physics, 660036, Krasnoyarsk, Russia

Department of Physics, University of Illinois at Urbana-Champaign,
1110 West Green St., Urbana, IL 61801-3080, U.S.A.

(Received April 24, 1995; Revised September 9, 2018)

We consider the motion of ballistic electrons in a miniband of a semiconductor superlattice (SSL) under the influence of an external, time-periodic electric field. We use the semi-classical balance-equation approach which incorporates elastic and inelastic scattering (as dissipation) and the self-consistent field generated by the electron motion. The coupling of electrons in the miniband to the self-consistent field produces a cooperative nonlinear oscillatory mode which, when interacting with the oscillatory external field and the intrinsic Bloch-type oscillatory mode, can lead to complicated dynamics, including dissipative chaos. For a range of values of the dissipation parameters we determine the regions in the amplitude-frequency plane of the external field in which chaos can occur. Our results suggest that for terahertz external fields of the amplitudes achieved by present-day free electron lasers, chaos may be observable in SSLs. We clarify the nature of this novel nonlinear dynamics in the superlattice-external field system by exploring analogies to the Dicke model of
an ensemble of two-level atoms coupled with a resonant cavity field and to Josephson junctions.

PACS numbers: 73.20.Dx, 72.20.Fr, 05.45 +b
I. INTRODUCTION

More than two decades ago, Esaki and Tsu [1] discovered a striking nonlinear effect in semiconductor superlattices (SSL’s), establishing that the dissipative motion of electrons within a single SSL miniband in the presence of a static electric field can produce a negative differential conductivity (NDC) in the stationary current-voltage characteristic. In view of its potential applications to ultra-small electronic devices [2], interest in this effect remains high [3], and it continues to be studied by a variety of different theoretical and experimental techniques [4,5]. The importance of these systems is reflected, for example, in the many articles in semi-popular physics literature [1].

In the past several years, technological advances in semiconductor nanostructure fabrication and in electromagnetic field generation techniques have made possible detailed studies of a wide range of other nonlinear phenomena involving electron transport in SSLs in the presence of a variety of electromagnetic (EM) fields [4,5]. Very recently, the effect of alternating fields in the terahertz (THz) domain on the nonlinear current-voltage characteristics of superlattices has been investigated experimentally [7] and observations of photon-assisted resonant tunneling and negative absolute resistance have been reported [8].

These extensive experimental efforts have been paralleled by many related theoretical studies [9–17]. These studies have examined the propagation of the electromagnetic solitons through the superlattice [4]; self-consistent nonlinear plasma oscillations [11,12]; Hamiltonian chaotic dynamics of electrons in a constant magnetic field interacting with electromagnetic waves [13]; emission of electromagnetic radiation from superlattices due to multiphoton transitions [14]. Although most of these studies have been in the semi-classical regime, the consequences of a fully quantum mechanical treatment of miniband transport in an intense oscillating EM field have also been examined [16]. Reviews of these and other theoretical studies are given in [16,17]. All these investigations have dealt with the intra-miniband dynamics of the electron, neglecting the possibility of inter-miniband transitions; additional nonlinear phenomena can become relevant if inter-miniband dynamics are considered.
In a previous paper [18], we extended earlier studies of the intra-miniband dynamics of ballistic electrons in an SSL with an ac external electric field by taking into account the self-consistent EM field generated by the electron current. The coupling of the electron motion to the self-consistent field results in cooperative oscillations which alter the dynamics substantially. In particular, we showed that, with the inclusion of the self-consistent field, the inherently nonlinear nature of the electron dynamics implies that, under the influence of the external ac field, various dynamical instabilities, including transitions to chaos, can occur [18]. However, our previous work was limited to the non-dissipative regime and thus was strictly valid only on time-scales shorter than all characteristic relaxation times for the electron’s energy and momentum. Hence, a priori we could not determine the long-time (stationary) dynamical behavior. More importantly, the assumption of no dissipation is of dubious applicability to the interpretation of experiments in real systems, in which dissipative effects are certainly present at some level.

In the present study, we generalize our previous work by considering explicitly the role of dissipation in the balance equations describing the SSL plus field system. After recalling briefly how the conventional balance equations recover the standard results of Bloch oscillations and negative differential conductivity, we show that our extension of the balance equations to account for collective effects on the electron’s motion can (for certain conditions) result in chaotic dynamics, both transient and stationary, even in the presence of damping. We discuss and exploit analogies between the electrons in an SSL plus field system and the dynamics of lasers and optical bistable systems and of damped, driven Josephson junctions; the extensive tradition of studying dissipative nonlinear dynamics in these problems allows us to use these analogies to guide our studies of the semiconductor system.

The remainder of the paper is organized into three sections. In Section 2 we use a balance equation approach to formulate (phenomenological) equations of the motion for the electron in the SSL in the presence of an external ac field, including the self-consistent field generated by the electron current. We show how to incorporate various dissipative channels in these equations and illustrate that the solutions to these equations capture the
anticipated behavior in several simple limiting cases, including those of (undamped) Bloch oscillations and (stationary) negative differential conductivity. In preparation for our study of the general case, we introduce a re-scaled (pseudo-spin) representation of the equations of motion and demonstrate the analogy with the optical systems, in which chaotic behavior is well established. In Section 3 we present the details of our study of the dissipative chaotic dynamics of the SSL plus field system. First, we show that our equations reduce (in two different limits) to the equations of two well-known chaotic systems, (1) the Lorenz equations and (2) the damped, driven pendulum. Second, we present numerical studies of the full equations. Our results suggest that, for a wide range of values of the frequency and amplitude of the external field and for experimentally relevant values of the damping, stationary chaotic dynamics should be observed, interspersed with transient chaos leading eventually to periodic motion. We provide detailed confirmation of the chaotic behavior in the form of Lyapunov exponents, power spectra, and direct time evolution traces. In Section 4 we summarize our results, examine critically the possible parameter ranges in which the effects we predict can be observed in experiments, discuss how these effects might manifest themselves in experimental observables, and mention a number of open theoretical issues.

II. BALANCE EQUATION APPROACH

Consider the motion of ballistic electrons in an SSL in the presence of an external ac electric field with amplitude E_0 and frequency Ω,

$$E_{\text{ext}}(t) = E_0 \cos \Omega t,$$

which is applied in the direction perpendicular to the layers of the SSL, i.e., in the direction of the motion within the SSL miniband. In the standard tight-binding approximation, the dispersion relation of the electron belonging to a single miniband in the SSL is

$$\varepsilon(p) = \frac{\Delta}{2} \left[1 - \cos \left(\frac{pa}{\hbar} \right) \right],$$

for $p = p_x, p_y$.

$$p_x, p_y$$

which are the components of the electron momentum parallel to the layers of the SSL.
where Δ is the miniband width, and a is the SSL periodicity. This non-quadratic dependence of the electron energy on the quasi-momentum within the miniband renders the dynamics of electrons inherently nonlinear.

Generalizing the balance equation approach of Ref. [14] to incorporate the self-consistent field [19], [20] generated by the electron current, we find that (with the assumption of spatial homogeneity) the equations describing the electron’s motion in the combined external and self-consistent field become

$$\dot{V} = -eE_{\text{tot}}(t)/m(\varepsilon) - \gamma_v V, \quad (3a)$$

$$\dot{\varepsilon} = -eE_{\text{tot}}(t)V - \gamma(\varepsilon - \varepsilon_0), \quad (3b)$$

$$\dot{E}_{\text{sc}} = -4\pi j - \alpha E_{\text{sc}}, \quad (3c)$$

where

$$E_{\text{tot}}(t) = E_{\text{sc}}(t) + E_{\text{ext}}(t) \quad \text{and} \quad j \equiv -eNV. \quad (3d)$$

In Eqs. (3), V is the average velocity (along the SSL axis) and N is the number of electrons per unit volume, so that j is the average electron current density; ε is the average energy of the electrons; ε_0 is the equilibrium energy of carriers (resulting from thermal energy and/or external pumping); and E_{sc} is the self-consistent EM field generated by the electron current j. All quantities are measured in CGS units.

Let us say a few words about the physical interpretation of these equations. Eq. (3a) is the basic equation of motion of electrons belonging to one miniband (with the dispersion law (2)) in the presence of the electric field $E_{\text{tot}}(t)$. Importantly, the dependence of the electron’s effective mass, $m(\varepsilon)$, on energy in (3a) is [14]

$$m(\varepsilon) = \frac{m_0}{1 - 2\varepsilon/\Delta}, \quad m_0 \equiv \frac{2\hbar^2}{\Delta a^2}, \quad (4)$$

where m_0 is the electron’s effective mass at the bottom of the miniband. Note that $m(\varepsilon)$ may take negative values for $\varepsilon > \Delta/2$. The occurrence of a negative effective mass is connected with the existence of negative differential drift velocities (see, e.g., [14] and references therein).
Eq. (3b) describes the heating (i.e., increase in energy) of the electrons by the field $E_{\text{tot}}(t)$ and cooling (i.e., relaxation of energy) to the equilibrium value ε_0. The thermal equilibrium energy value, ε_0, has the temperature dependence

$$\varepsilon_0(T) = \frac{\Delta}{2} \left[1 - \frac{I_1(\Delta/2k_BT)}{I_0(\Delta/2k_BT)} \right],$$

where $I_{0,1}$ are the modified Bessel functions, T is lattice temperature, and k_B is Boltzmann’s constant.

The parameters γ_v, γ_e and α are the phenomenological relaxation constants of the average velocity, energy and the self-consistent field, respectively. The treatment of these relaxation parameters as constants, independent of energy, is an approximation; we shall discuss our present understanding of the validity of this approximation in the concluding section. Physically, in an SSL, the damping of the average velocity is mainly due to the elastic scattering of electrons with the impurities, structural disorder, and interface roughness. Typically, the main channel of energy dissipation for the electron sub-system is inelastic phonon scattering.

Eq. (3c) is Maxwell’s equation for the time evolution of the self-consistent electric field, with an additional term describing its relaxation. The form of this equation, including the phenomenological relaxation constant, α – which models effects of interactions of the self-consistent field with degrees of freedom beyond the ballistic electrons described dynamically in our equations – is familiar from the literature on bulk semiconductors [19]. Examples of the processes contributing to α include surface effects and the generation of polar phonons due to the finite polarization of the crystal produced by the field.

Following the original deviations of the “balance equations” (3a) and (3b) in [22,23], several articles have discussed the microscopic derivation and justification of the equations and their use in modeling both of general transport properties in SSLS [2] and of specific nanoscale devices [3, 25]. For our present purposes, however, it is sufficient to consider Eqs. (3) as a phenomenological set of equations.

Before analyzing the nonlinear dynamics of the full system (3) in detail, let us examine briefly several important limiting cases, in order to illustrate the consistency of the balance
equation approach with known results. For simplicity, we shall momentarily ignore the self-consistent field equation entirely and focus on the consequences of Eqs. (3a) and (3b) alone. Consider first the case in which the electrons in the SSL are influenced only by a constant external field $E_{\text{tot}} = E_{\text{ext}} = E_0 = \text{const}$, and for which the relaxation processes can be neglected: i.e., $\gamma_\varepsilon = \gamma_v = 0$. In this simple limiting case, a straight-forward calculation shows that the electrons perform harmonic oscillations with velocity $V = V_0 \sin \omega_s t$. These are the familiar “Bloch oscillations”, and the characteristic frequency of these oscillations $\omega_s = eaE_0/\hbar$ is known as the Bloch or Stark frequency. For typical SSL’s and for typical electric fields, ($\sim 1 - 10kV/cm$), the Bloch frequency belongs to the THz domain. Although there remains some controversy, experimental evidence for these Bloch oscillations has recently been reported.

Consider next the case of in which there is still a constant electric field and the relaxation effects are also included, so that $\gamma_v \neq 0, \gamma_\varepsilon \neq 0$. This problem was first considered by Esaki and Tsu for the particular case $\gamma_v = \gamma_\varepsilon$, and the generalization to the case $\gamma_v \neq \gamma_\varepsilon$ is given in [14,22,23]. Again, a straightforward calculation shows that the system undergoes damped oscillations and that in the steady-state the current $j = -eNV$ becomes

$$j = \frac{e^2 NE_0/\gamma_v}{1 + ((eE_0a/\hbar)^2/(\gamma_v \gamma_\varepsilon)) I_1(\Delta/2k_BT)/I_0(\Delta/2k_BT) m_0},$$

which reduces to the original Esaki-Tsu result in the zero temperature limit (so the ratio of Bessel functions goes to one) and when we choose $\gamma_v = \gamma_\varepsilon \equiv 1/\tau$. In this limit, it is easy to see that $\partial j/\partial E_0 < 0$ for $(eaE_0\tau/\hbar) > 1$, so that there NDC in this regime. Experimentally, both the NDC effect in SSL and the effect of thermal saturation of miniband transport in an SSL, due to the dependence of the equilibrium electron energy $\varepsilon_0^{(T)}$ (cf. Eq. (5)) on temperature have been observed. In this regard, it is interesting to note that the generalization of the formula of Esaki and Tsu to finite temperature and to $\gamma_v \neq \gamma_\varepsilon$ describes with reasonable accuracy the stationary transport properties of an SSL, even in the case when the energy of the external field and the thermal energy of the electrons are comparable to the miniband width and the quasiclassical description becomes \textit{a priori} inadequate.
We have considered these two special cases in the absence of the self-consistent field, i.e., $E_{sc}(t) \equiv 0$. Importantly, if we include $E_{sc}(t)$, we again find Bloch oscillations (albeit not simple sinusoidal motion) in the case of no relaxation effects and NDC for the steady state current-voltage characteristic when relaxation effects are included. We do not present these results in detail here [28], as they are not essential to our present study.

To prepare for our study of the time-varying external field case, including $E_{sc}(t)$, we introduce some scalings of the variables in Eq. (3), for these will both simplify the analysis and make apparent an important analogy with the nonlinear dynamics in optical systems.

We introduce new variables

$$\begin{align*}
v &= \frac{2\hbar}{\Delta a} V, \\
w &= \frac{\varepsilon - \Delta/2}{\Delta/2}, \\
w_0 &= \frac{\varepsilon_0 - \Delta/2}{\Delta/2}.
\end{align*}$$

(7)

$$E = \frac{ea}{\hbar} E_{sc} + \omega_s \cos \Omega t, \quad \omega_s = \frac{dE_0}{\hbar}, \quad d = ea.
$$

(8)

In these variables, Eqs. (3) become

$$\begin{align*}
\dot{v} &= Ew - \gamma_{\varepsilon} v, \\
\dot{w} &= -Ev - \gamma_{\varepsilon}(w - w_0), \\
\dot{E} &= \omega_E^2 v - \alpha E + f(t),
\end{align*}$$

(9)

where

$$f(t) = \alpha \omega_s \cos \Omega t - \omega_s \Omega \sin \Omega t \quad \text{and} \quad \omega_E = \left[\frac{2\pi e^2 N a^2 \Delta}{\hbar^2}\right]^{1/2}.
$$

(10)

It follows from Eq. (5) that $w^{(T)}_0 = 2\varepsilon^{(T)}_0/\Delta - 1$. The variable w in Eq. (7) has a simple physical interpretation: namely, it is the electron’s energy measured from the middle of the miniband and normalized by the half-width of the miniband. Hence the value $w = -1$ corresponds to the bottom of the miniband, and $w = 1$ corresponds to the upper edge of the miniband. The field E is the total electric field (measured in units of frequency) acting on the electrons. Note that the frequency ω_E is formally equal to the frequency of electron plasma oscillations, $\omega_{pl} = \left[4\pi e^2 N/m_0\right]^{1/2}$, provided that m_0 is taken as the effective electron mass at the bottom of the miniband, as given by Eq. (4). For this reason, the corresponding
cooperative oscillations of the coupled SSL system were called “nonlinear plasma oscillations” by Epshtein [11]. However, since the term “plasma oscillations” is usually used in a different context in semiconductors [2,10] we shall refer to these as “cooperative oscillations” and denote their frequency by ω_E.

The analogy mentioned in the introduction between the present SSL problem and optical systems helps to clarify this point further. If we consider the variable w in Eqs. (9) to be the population difference and v the polarization, then Eqs. (9) are equivalent to the coupled Maxwell-Bloch (CMB) system, taking into account the external field (see, for example, [29]). Recall that the CMB equations describe the dynamics of two-level atoms placed in a single-mode cavity and interacting with the cavity field via a dipole interaction. The width of the SSL miniband (Δ/\hbar) is equivalent to the transition frequency (ω_0) of the two-level atom. The value ea of the SSL is the transition dipole moment (d) in the CMB case. Finally, the analog of the frequency ω_E defined by Eq. (10) is the so-called “cooperative frequency”, $\omega_c = (2\pi \omega_0 d^2 N/\hbar^2)^{1/2}$ [30]. The physical interpretation of this cooperative frequency is the frequency of the slow resonant exchange of energy between the N two-level atoms and the field in the cavity, as first described by the Dicke model [30]. In the balance equations describing the SSL system (Eqs. (9)), the miniband is treated as initially empty. When the N electrons are injected, the assumption that they are distributed with spatially homogeneous density means that the “populated” miniband becomes analogous to an optical system consisting of an ensemble of two-level atoms with density N in the Dicke model. Our self-consistent field is analogous to the cavity field, and the cooperative oscillations of the Dicke type appear due to the coupling of the electrons in the miniband to the self-consistent field. The relaxation parameter α in our SSL equations plays the role of the finite quality factor of the cavity in the optical system. Finally, the Stark frequency $\omega_s = eaE_0/\hbar$ is equivalent to the Rabi frequency $\omega_R = dE_0/\hbar$.

Eqs. (9) are also similar to the CMB equations describing the dynamics of a laser with an injected signal [31], or a bistable system in the framework of the Bonifacio-Lugiato model [29,32]. However, there are important differences between Eqs. (9) and the optical
analog systems. First, the CMB equations are derived for the field and the polarization envelopes; hence, the variables v and E in the CMB equations are generally complex. Second, the form of the external force $f(t)$ that perturbs the cavity mode is different in the CMB equations. Nonetheless, the structural similarities and the well-known results that under certain conditions transitions to chaos take place in the bistable devices [29,32] and also in lasers both with [33] and without injected signals [34,35] suggest that one should expect transitions to chaotic dynamics in the SSL plus field interaction problem. In the next section, we will show that this is indeed the case.

III. CHAOTIC DYNAMICS IN SEMICONDUCTOR SUPERLATTICES

Exploring the chaotic dynamics in Eqs. (9) is a formidable task, for we have in effect a four-dimensional dynamical system – three independent variables ($v, w,$ and E) plus the explicit external time-dependence – involving six parameters ($\gamma_v, \gamma_E, \alpha, \omega_E, \omega_s,$ and Ω). Fortunately, we can obtain some guidance concerning the “interesting” regions of parameter and state space by noting that our equations reduce, in two different limits, to two well-known systems which exhibit chaos. We discuss these two limits in the ensuing two subsections.

A. The Lorenz Equation Limit

When the external ac field is absent ($f(t) \equiv 0$), Eqs. (9) are equivalent to the well-known Lorenz model [36]. Although one can derive this equivalence directly, it can also be seen immediately from our optical analogy: namely, for $f(t) \equiv 0$, Eqs. (9) coincide with the CMB equations describing a single-mode homogeneously broadened laser at exact resonance between the cavity mode and two-level atomic transition [34], and it has been shown by Haken [35] that the CMB equations can be reduced to the Lorenz model by a simple transformation of variables.

Translating the necessary conditions for instability and the transition to chaos in the
Lorenz model \cite{34,35,36} into our notation, we find that these conditions can be written as

\[\alpha > \gamma_v + \gamma_e, \]

(11a)

and

\[w_0 > \frac{\gamma_v \alpha^2 (\alpha/\gamma_v + \gamma_e/\gamma_v + 3)}{\omega_E^2 (\alpha - \gamma_e - \gamma_v)}. \]

(11b)

The condition in Eq. (11b) requires that the value \(w_0 \) corresponding to the electron’s equilibrium energy should be larger than some critical value, \(w_0^{(cr)} > 0 \). From (5), we see that even at high temperatures \((T \to \infty) \), the equilibrium value \(w_0(T) \to -0 \). Hence we find the interesting result that in the Lorenz limit \((f(t) \equiv 0) \), the necessary conditions (11b) for the transition to chaos can not be satisfied in the SSL system; to obtain chaos in the SSL system, we require additional driving \((f(t) \neq 0) \).

B. The Damped, Driven Josephson Junction Limit

When \(\gamma_v = \gamma_e = 0 \), the Eqs. (8a) and (8b) immediately imply the existence of a constant of motion: namely, the length of the pseudo-spin vector, which we can without loss of generality scale to 1, so that

\[v^2(t) + w^2(t) = 1. \]

(12)

We can incorporate this conservation law explicitly and consistently into the dynamics by introducing the change of variables

\[v = -\sin \theta, \quad w = -\cos \theta, \quad \theta = \int_0^t dt' E(t'). \]

(13)

From these definitions (and noting that \(\dot{\theta} = E \)), one sees that Eqs. (9a) and (9b) are automatically satisfied and that Eq. (9c) becomes

\[\ddot{\theta} + \alpha \dot{\theta} + \omega_E^2 \sin \theta = \omega_\perp (\alpha \cos \Omega t - \Omega \sin \Omega t). \]

(14)

Introducing \(\phi_0 = \tan^{-1}(\Omega/\alpha) \), we can recast Eq. (14) into the form

\[\ddot{\theta} + \alpha \dot{\theta} + \omega_E^2 \sin \theta = \rho \cos(\Omega t + \phi_0), \]

(15)
where \(\rho = \omega_s \sqrt{\alpha^2 + \Omega^2} \). This is the canonical form of the damped, (ac) driven pendulum equation, widely studied in chaotic dynamics both in its own right and as a model for a damped, driven Josephson junction [37]. We shall exploit this connection further in our detailed analysis of the numerical results below.

In the limit of no dissipation whatever – so \(\alpha = 0 \) as well as \(\gamma_v \) and \(\gamma_\varepsilon \) — the SSL plus field system reduces to the Hamiltonian system which we studied in Ref. [18] for a range of physically reasonable initial conditions; interested readers should consult this reference for details. Here we simply remark that this non-dissipative chaos in the SSL plus field system has its own optical analogy, involving the generalized semi-classical Tavis-Cummings (TC) model, which describes the dynamics of two-level atoms in a single-mode high quality cavity, interacting with self-consistent and external fields [38]. Details of the chaotic dynamics in the TC model can be found in [38,39].

It is well known that both Eq. (15) and its undamped counterpart contain chaotic dynamics [40]. In terms of our parameters, the parameter region in which strong chaos is expected is \(\omega_E \sim \omega_s \sim \Omega \); in the next subsection, we shall use this information as the starting point for our study of chaos in the full SSL plus field problem.

C. Dissipative Chaos in the Presence of an External Time-Periodic Field

We now consider the general case, in which all of \(f(t), \gamma_v, \gamma_\varepsilon \), and \(\alpha \) are non-zero. The structure of the Eqs. (9) suggests that we take \(\omega_E \) as the scale of (inverse) time, and thus the natural damping parameters that occur in the re-scaled equations are the dimensionless quantities \(\gamma_v/\omega_E, \gamma_\varepsilon/\omega_E \) and \(\alpha/\omega_E \). Since there is considerable uncertainty in the individual values of the phenomenological damping parameters, we will study a broad range of values of these parameters: \(0 \leq \gamma_v/\omega_E, \gamma_\varepsilon/\omega_E \leq 0.2 \) and \(0 \leq \alpha/\omega_E \leq 0.2 \). Since there are as yet no direct measurements of the cooperative oscillations or their damping, we have chosen conservative upper damping limits inferred from recent results determining that the ratio of the line width of the plasma oscillations to their frequency can be as large as \(2 \times 10^{-1} \) [11,12].
For initial conditions, we take $E(0) = \omega_s$, $v(0) = 0$, and $w(0) = -1$, corresponding to the initially unexcited SSL just being struck by the incident EM radiation. For our numerics we used a fifth-order Runge-Kutta algorithm incorporating adaptive step size, accuracy checking, and Cash-Karp optimized parameters.

The variable most directly related to experimental observables is the average electron velocity, v. Accordingly, we will focus on the various different behaviors of v that follow from the solutions of Eqs. (9) and the regions in which they occur. In Fig. 1 we show the two basic types of behavior for v observed in our simulations. Fig. 1a shows behavior in the “regular” region, in which the velocity varies periodically. In Fig 1a, the basic frequency is just the fundamental frequency of the external EM field with a longer period modulation (caused by the nonlinearity of the equations) superimposed. The “locking” of the oscillations of the electron’s velocity to the fundamental frequency of the external field is referred to as “1:1 mode-locking behavior” in the Josephson junction literature and in related studies of coupled oscillators. Fig. 1b shows a typical behavior in the “chaotic” region, in which the velocity varies erratically and with no apparent periodicity for as long as we observe it; this is “stationary chaos” and is the behavior in which we are most interested. Within the region of parameters in which chaos is observed, we also observe a behavior which exhibits characteristics of both the regular and the stationary chaotic motion: namely, a (typically long) interval of “erratic”, aperiodic motion, followed by a near vanishing of the oscillations and then a locking into a periodic motion; this transient chaos is illustrated in Fig. 2.

Importantly, the time at which the transient chaos disappears, t_{tr} is a sensitive function of the numerics, especially the level of accuracy demanded of the numerical integrator. This is commonly encountered in simulations of chaotic systems.

In the regions of transient chaos, the asymptotic state is periodic. Visual inspection of Fig. 2b shows that for these parameter values the final period is also the fundamental of the external period, but we have also observed (for other parameter values) locking to different subharmonics of this period. The general case of locking into periods other than the fundamental period of the external drive is well-known from general results in nonlinear
dynamics and is exhibited explicitly by the damped, driven Josephson junction [37]. Given our present focus on establishing the possibility of chaotic motion in the SSL system, we shall not present further details here [28].

To quantify these three types of behavior systematically, we used standard dynamical systems tests: for each set of parameters, we calculated the maximum Lyapunov exponent, λ, using the method described in Ref. [43] and determined the power spectrum (using an FFT algorithm) for each of the velocity plots. In Fig. 3 we show the typical behavior of the maximal Lyapunov exponent for the cases of regular motion and chaotic motion. With the standard definitions and calculational procedures [43], the Lyapunov exponent will vary in time, eventually converging to the value reflecting the underlying long-time dynamics. We see from Fig. 3 that for the chaotic motion, the asymptotic value of λ is greater than zero, as it should be, whereas for the periodic behavior it is less than zero. For the parameter values chosen in Fig. 3a, this asymptotic value is only slightly negative, consistent with the fairly weak dissipation for these values of the parameters. For the case of transient chaos, shown in Fig. 3b, the Lyapunov exponent decays to its final value only very slowly.

In Fig. 4 we show typical power spectra for periodic and chaotic motion. Note the expected appearance of a broad power spectrum in the chaotic case, in contrast to the isolated peaks associated with the periodic evolution.

The best overview of the qualitative nature – chaotic versus periodic – of the behavior of the system is provided by a two-dimensional plot showing the locations of the regions with positive values of the Lyapunov exponent as functions of the two parameters of the external field, ω_s and Ω, measured in units of ω_E. This sort of “λ topographic map” – henceforth, “λ-map” – has been used very effectively in studies of chaos in the damped, driven Josephson junction [37]. Here it will allow us readily to see how various types and amounts of damping effect the extent of chaos in our system. Further, viewing the λ-map as a topographic map suggests a colorful but informative terminology in which the region of the map with $\lambda > 0$ is viewed as a “continent,” with the surrounding “sea” being the region with $\lambda < 0$, in which the velocity behaves as a periodic function of time with the same period as the
external drive. On the “dry land” of the continent, the velocity exhibits stationary chaos, but within the continent, there are (depending on parameters) “geographical” features – such as fjords, deltas, lakes, and channels – in which the velocity again (typically after an interval of transient chaos) shows periodic behavior, in some instances with a subharmonic of the external driving frequency.

In Fig. 5 we present the first of the λ-maps for our system. For purposes of comparison with Ref. [37], we have chosen the parameters to correspond to the case of the Josephson junction ($\gamma_v = \gamma_e = 0$) and have produced a λ-plot in the ($\rho - \Omega$) plane instead of the ($\omega_s - \Omega$) plane; again, the plots are in units of ω_E. As stressed above, this is not a physically plausible set of parameters for real a SSL because it neglects crucial velocity and energy dissipation effects, but it does provide a convincing test of our numerics, for direct comparison shows that our results (plotted here with $\alpha/\omega_E = 0.2$) are in full agreement with those of Ref. [37] as far as concerns the structure of the chaotic regions; further, although we shall not present the details of the harmonics in the periodic regions because they are not germane to our current discussion, we have also found [28] good agreement with Ref. [37] for the periodic regions. Qualitatively, Fig. 5 shows us the triangularly shaped southern extremity of a large chaotic continent (which extends upwards for toward larger values of ρ). The southwest edge of the continent looks like a river delta, with many periodic channels cutting through the chaotic region; these channels correspond to the different subharmonic periodic lockings observed in simulations of Josephson junctions.

Turning to parameter values more relevant to SSLs, we show in Fig. 6a-d the evolution of the chaotic region as the values of the damping parameters are varied over a wide range. In Fig. 6a we begin from the limit of fairly small dissipation ($\gamma_v = \gamma_e = 0.01$, $\alpha = 0.001$). Note that in Fig. 6 and henceforth, all damping parameters are scaled in units of ω_E. In this case, the “order-chaos” boundary is very close to the boundary found in [15] for the Hamiltonian model; given the fairly small values of the relaxation parameters, this is perhaps not terribly surprising. Further, the chaotic continent is very solid, with few of the channels observed in Fig. 5 (or in subsequent figures discussed below).
In Fig. 6b all relaxation rates have been increased by a factor of 10 (so that $\gamma_v = \gamma_\epsilon = 0.1$, $\alpha = 0.01$). The λ-map shows substantially more structure in the chaotic regime, with a number of fjords cutting into the west coast, and the east coast receding substantially, leaving effectively an offshore island of chaos. Increasing the damping still more reduces the chaotic region, first to the narrow peninsula plus islands in Fig. 6c and then to the two tiny islands of chaos in Fig. 6d. These figures make clear that while the size and shape of the chaotic region are strong functions of damping, chaos is expected to occur for a wide range of values. In particular, for the expected range of the velocity and energy damping parameters, $0.01 \leq \gamma_v, \gamma_\epsilon \leq 0.1$ [14] found in the highest quality SSLs, chaos appears likely to occur over a substantial range of parameters.

Let us comment on several qualitative features of the chaotic regions in Fig. 6, beginning with Fig. 6a. Perhaps the most striking qualitative feature here is the clear distinction between the “west coast” of the chaotic continent, which appears sharply defined (like a set of cliffs), and the “east coast,” which is substantially more diffuse (like a river delta).

An enlargement of the east coast region, shown in Fig. 7a, suggests that the river delta may have a fractal boundary, since zooming in on the region does not decrease its structure. Although this structure is theoretically interesting, the experimental consequences are likely to be limited. First, in this region, many of the positive Lyapunov exponents are nearly zero and are thus sensitive to small effects from the numerics. It is thus difficult to be certain of the boundaries between periodic and chaotic behavior. To illustrate the sensitivity to a cut-off on the size of λ, we show in Fig. 7b the same enlargement of the east coast with the constraint that $\lambda > 0.01$. The difference between Fig. 7a and 7b is readily apparent. Second, since, as shown in Fig. 3b and discussed above, the Lyapunov exponents can sometimes relax very slowly to their asymptotic values – leading to regions of “transient chaos” – determining the true asymptotic value of λ can be difficult. Indeed, the precise boundary in Fig. 7a is very sensitive to the details of the numerical code, including discretization effects, and a different code would likely not reproduce it exactly. Particularly if there is a fractal boundary [14] for the actual differential equation system, this effect is to be expected.
In contrast, the west coast in Fig. 6a is very sharply defined: the negative exponents jump suddenly to large positive ones as the coastline is crossed.

Our interpretation of these features can be described qualitatively in terms of familiar concepts from dynamical systems. Recall that in exhaustive studies of general nonlinear dissipative dynamical systems one fixes the parameters and varies the initial conditions, searching for all the “attractors” and determining the shape of each basin of attraction in the space of initial conditions. Typically there is more than one attractor in the system, and the boundaries between the different basins of attraction can be smooth or fractal [44]. After determining completely the attractor structure for one set of parameters, one then moves on to another set, and does a similar search through the space of initial conditions. In our study, which is intended to be illustrative of the possible existence of chaos in SSLs (rather than exhaustive), we have for simplicity fixed the initial conditions and varied the parameters. As a consequence, if there are multiple attractors, as we change parameters for fixed initial conditions, we can pass from one basin of attraction another, and the structure of the basin boundaries –fractal or smooth– will be reflected in the λ-maps. More extensive numerical studies, which will shall report elsewhere [28], confirm this explanation.

In Figs. 6b-c, the size of the chaotic continent decreases successively, and fjords become apparent. These figures – particularly Fig. 6b – interpolate nicely between the case of the damped, driven Josephson junction (Fig. 5) and the case of Fig. 6a. The presence of these fjords raises the possibility of observing not only chaos in SSLs but also mode-lockings to various subharmonics of the driving frequency, and we are currently investigating this possibility [28].

In real SSLs, one typically has $\gamma_v \gg \gamma_\varepsilon$. In our previous discussion, we have for simplicity considered only the case $\gamma_v = \gamma_\varepsilon$. Figure 8 illustrates the extent of the chaotic region when $\gamma_v = 0.1 \gg \gamma_\varepsilon = 0.02$; this reduction in the chaotic region for unequal damping is typical [28]. Restricting ourselves to the physically relevant regime in which $\gamma_v > \gamma_\varepsilon$, we can summarize our data qualitatively by saying the region of chaos is largest when γ_ε is roughly equal to γ_v or α, whichever is larger.
Finally, we note that for simplicity in all the above results we worked at a zero temperature. From Eq. (5), we see that this corresponds to $\varepsilon_0 = 0$ ($w_0 = -1$). For $\Omega/\omega_E = 1$ and for various values of ω_s/ω_E, we investigated the influence of the temperature effects on the transition to chaos. When T was varied from helium to the room temperature, keeping all other parameters fixed, we found no qualitative changes in the nonlinear dynamics within our phenomenological balance equation model. Quantitative details of the temperature dependence will be presented elsewhere [28].

IV. SUMMARY, DISCUSSION, AND CONCLUSION

We have considered the influence of an ac electric field on the motion of ballistic electrons in a miniband of a semiconductor superlattice. Within a phenomenological balance equation approach, we established that accounting for collective effects (via a self-consistent field) leads to the possibility of chaotic dynamics. Our numerical and analytic results suggest that for a transition to chaos one must satisfy the following conditions: (i) the frequency of the ac field (Ω) should be close to the characteristic frequency of the collective electron motion (ω_E) in the SSL; (ii) at the same time, the frequency of the ac field should be close to the Stark frequency $\omega_s = eaE_0/\hbar$, which is determined by the amplitude of the external field; and (iii) the relaxation rates of the electron’s energy and momentum should not be too large ($\gamma/\omega_E \lesssim 0.2$).

Importantly, it appears possible to achieve these conditions in real SSLs, now or in the near future. For typical superlattices ($a \sim 10^{-6} cm$, $\Delta \sim 10^{-2} eV$, $N \sim 10^{14} cm^{-3}$), the characteristic frequency of the cooperative oscillations lies in the THz domain ($\omega_E \approx 1.5 \times 10^{12} sec^{-1}$) [31-34]. If an ac field with amplitude $\sim 1 kV/cm$ is applied to an SSL with period $a \sim 10^{-6} cm$, the Stark frequency also lies in the THz domain. Thus the frequency constraints can likely be achieved.

Although the damping effects and relaxation rates are much less well known, there nonetheless appears to be reason for some optimism. As we have indicated above, stan-
dard estimates of the relevant relaxation constants for the plasma oscillations give values in the range of $(10^{-1} - 10^{-2})\omega_{pl}$ \[41,42\]. That the damping is more likely near the larger end of this range is suggested by the observation that the phase relaxation rate even in a good quantum well is the relatively rapid $\tau_v \approx 3.5 \times 10^{-12}$ seconds \[46\], which corresponds to near THz frequencies. For a modulation-doped superlattice, τ_v is almost certain to be shorter, since the electrons may scatter from dopant impurities not present in the remotely doped quantum wells. Hence, the damping effects in current SSLs may be nearer the high end of our range of parameters. One intriguing possibility for producing SSLs with lower relaxation rates involves “implanting” the superlattices within parabolic quantum wells \[47\]; in this manner, one could hope to achieve the low damping levels of good quantum wells and avoid the damping effects associated with modulational doping. A separate complication concerning damping effects is that energy relaxation processes in both wells and superlattices also involve many distinct processes. From quantum well studies \[46\], we expect that the energy relaxation can not be described \textit{quantitatively} by a single, constant γ_e. Although it would clearly be possible to introduce energy-dependent relaxation rates into our phenomenological equations, without more detailed experimental guidance as to the form of this dependence, it is premature to incorporate such an additional complication. Given the relatively large range of relaxation parameters over which our phenomenological model predicts chaotic behavior for the SSL plus field system, the present uncertainties in the exact level and nature of damping in these systems are not cause for undue concern.

Thus, we believe that by applying an ac field of order $\sim 1kV/cm$ with frequency of the order of several THz to an SSL, one should be able to satisfy the requirements for transition to deterministic chaos. For instance, in the recent experiment \[7\] first studying the influence of a THz-field on the stationary electron transport properties in an SSL, the experimental conditions were close to those required for the observation of chaos in our model system. Further, continuing progress in both the fabrication of heterostructures with high carrier mobility and in the design of powerful sources of THz-radiation \[46\] suggests that the experimental observation of the deterministic chaos in SSL plus field interaction
An essential question for experimentalists is how to recognize the underlying chaotic electron dynamics in the observables measured in a real experiment. As the controversy over the observation of Bloch oscillations suggests, this may not be a simple matter. In large part, it will depend on precisely how the experiment is configured and instrumented. At this stage, and without considering in detail the configuration of a particular proposed experiment, we can most appropriately give a somewhat general answer. If chaos is present, we expect a complex, aperiodic behavior for the average velocity and hence the average current. Given the high frequencies involved, it seems unlikely that one could measure this directly in the time domain. However, in the presence of an additional dc voltage, to create non-zero mean “drift” in this average velocity, the oscillatory chaotic component would appear as a substantial additional source of apparent “noise” in drift velocity and that this additional noise would appear suddenly as one crossed the threshold to chaos, particularly for the parameter regime corresponding to the “west coast” of the chaotic “continent.” Specifically, if one measured the power spectrum associated with the current, one would observe the same substantial increase in the broad-band “noise” component that we see in Fig. 4. In an experiment on a resistively shunted Josephson tunnel junction (related to the model in our Eq. 15) precisely such a dramatic increase in experimental noise was observed when the parameters of the experimental system were moved through the transition to chaos \[48\]. A second option for detecting chaos would involve sampling the current at given time intervals and using the “phase space reconstruction” techniques \[49\] to create a geometrical image of the underlying attractor. For regular motion, the attractor will be a simple periodic structure, for chaotic motion, it will be a “strange attractor.” The details of this approach are described in the context of an experiment involving germanium photoconductors in Ref. \[50\]. Additional details about experimental techniques for detecting chaotic motion in semiconductor structures are described in Ref. \[46\].

Apart from the most central issue of experimental verification of the existence of chaos, there are a number of open theoretical issues which merit further study. First, our model is
applicable in the limit of *miniband* transport for the electrons and assumes a spatially homogeneouse structure for the EM field. One could ask whether these assumptions are crucial to the possible existence of chaos in SSLs. A recent study by Bulashenko and Bonilla \[51\] suggests strongly that this is not the case. Focusing on the resonant-tunneling regime and considering the possibility of high-field domain effects (non-homogeneity in space), these authors also find possible chaotic behavior. Since the cross-over between the resonant-tunneling and miniband regimes of transport depends on many experimental and material parameters, some more controllable than others, and remains a complicated problem for theorists, it is important to note that these essentially complementary studies, taken together, suggest that chaos is a robust phenomenon in SSLs. Second, there is a clear need to understand the extent to which our phenomenological balance equation approach correct captures the physics contained in more microscopic considerations, such as the full Boltzmann equation or an approach based on Wigner distribution function \[20\], and on the anticipated region of validity for any miniband-based approach. Although there has been some recent progress on the former issue \[24\], there remains much to be done on both problems.

Let us conclude with a brief speculative comment related to the possible consequences and relevance of chaotic behavior in SSLs. Based on the earlier experience of studying chaos in semiconductor devices used for infra-red radiation detection \[50\], mapping out the boundary of chaos experimentally is important to reliable use of the devices in the “normal” regime. However, recent developments in “controlling chaos” \[52\] suggest that one might actually deliberately choose to drive the SSL into a chaotic regime, in order to take advantage of the myriad possible behaviors there for device applications. Alternatively, using methods of chaotic control, one may be able to suppress the onset of chaos, as was recently done in an experimental laser system \[53\]. Chaotic control and reduction of chaos are also likely to be important for future nano-fabricated semiconductor integrated circuits, where the expected chip densities will be of the order $10^9/cm^2 \[2\]$. At such densities, the devices actually form a *lateral surface superlattices* (LSSL), and device-device interactions can generate both cooperative effects and additional instabilities \[54\]. In any case, a large
number of exciting experimental and device-related problems remain.

V. ACKNOWLEDGEMENTS

It is a pleasure to thank Mark Sherwin for many valuable discussions on experimental aspects of SSL's. We also gratefully acknowledge useful comments from Feo Kusmarsev, Jesper Myqind, Mads Sorensen, and Stephanos Venakides. KNA and GPB thank The Center for Nonlinear Studies, Los Alamos National Laboratory, and Department of Physics at The University of Illinois at Urbana-Champaign, for their hospitality. This work was partially supported by the Grant 94-02-04410 of the Russian Fund for Basic Research and by the Linkage Grant 93-1602 from the NATO Special Programme Panel on Nanotechnology. EHC thanks the US Department of Education for support by a GAANN Fellowship (DE-P200A40532), and MCC thanks the US-NSF for support under its REU program (NSF PHYS93-22320).
REFERENCES

[1] L. Esaki and R. Tsu, “Superlattice and Negative Differential Conductivity in Semiconductors”, *IBM J. Res. Div.* **14**, 61 (1970).

[2] For useful summaries of technological issues and references to the literature related to the fabrication of nanoscale electronic devices, see D.K. Ferry, Y. Takagaki, J.-R. Zhou, “Future Ultra-Large Scale Integration: Transport Physics in Semiconductor Nanostructures”, *Jpn. J. Appl. Phys.* **33**, 873 (1994); D.K. Ferry and H.L. Grubin, “Modeling of Quantum Transport in Semiconductor Devices,” pp. 283-448 in *Solid State Physics*, Vol. 49, Advances in Research and Applications, H. Ehrenreich and F. Spaepen, eds. (Academic Press, 1995).

[3] *Negative Differential Resistance and Instabilities in 2D Semiconductors*, ed. by N. Balkan, B. K. Ridley and A. J. Vickers, NATO ASI series B, v. 307, (Plenum Press, N. Y., 1993).

[4] A. Sibille, J. F. Palmier, H. Wang and F. Mollot, “Observation of Esaki-Tsu Negative Differential Velocity in GaAs/AlAs Superlattices”, *Phys. Rev. Lett.* **64**, 52 (1990); F. Beltram, F. Capasso, D. L. Sivco, A.L. Hutchinson, S.-N. G. Chu and A.Y Cho, “Scattering-Controlled Transmission Resonances and Negative Differential Conductance by Field-Induced Localization in Superlattices”, *Phys. Rev. Lett.* **64**, 3167 (1990); H. T. Grahm, K. von Klitzing, K. Ploog and G. H. Döhler, “Electrical Transport in Narrow-Miniband Semiconductor Superlattices”, *Phys. Rev. B* **43**, 12094 (1991); C. Minot, H. Le Person, J. F. Palmier and F. Mollot, “Time-of-Flight Measurements of Negative Differential Velocity and Electron Heating in GaAs/AlAs Superlattices”, *Phys. Rev. B* **47**, 10024 (1993); C. Minot, H. Le Person, J. F. Palmier and J. C. Harmand, “Nonlinear Conduction and Space Charge Wave Generation in Semiconductor Superlattices”, in *Ultrafast Phenomena in Semiconductors*, ed. by D. K. Ferry and H. M. van Driel, Proc. SPIE **2142**, 326 (1994).
[5] A. Sibille, J. F. Palmier, M. Hadjazi, H. Wang, G. Etemadi, E. Dutisseuil and F. Mollot, “Limits of Semiclassical Transport in Narrow Miniband GaAs/AlAs Superlattices”, *Superlatt. and Microstr.* **13**, 247 (1993).

[6] F. Capasso and S. Datta, “Quantum Electron Devices,” *Phys. Today* **43** No. 2, 74 (1990); L. L. Chang and Leo Esaki, “Semiconductor Quantum Heterostructures,” *Phys. Today* **45**, No. 10, 36 (1992); E. E. Mendez and G. Bastard, “Wannier-Stark Ladders and Bloch Oscillations in Superlattices,” *Phys. Today* **46** No. 6, 34 (1993).

[7] A. A. Ignatov, E. Schomburg, K. F. Renk, W. Schatz, J. F. Palmier and F. Mollot, “Response of a Bloch Oscillator to a THz-Field”, *Ann. der Physik* **3**, 137 (1994).

[8] P. S. S. Guimaraes, Giran J. Keay, Jann P. Kaminski, S. J. Allen, Jr., P. F. Hopkins, A. C. Gossard, L. T. Florez, and J. P. Harbison, “Photon-Mediated Sequential Resonant Tunneling and Intense Terahertz Electric Fields,” *Phys. Rev. Lett.* **70**, 3792 (1993); B. J. Keay, S. J. Allen, Jr., J. Galán, J. P. Kaminski, K. L. Campman, A. C. Gossard, U. Bhattacharya, and M. J. W. Rodwell, “Photon-Assisted Electric Field Domains and Multiphoton-Assisted Resonant Tunneling in Semiconductor Superlattices,” *Phys. Rev. Lett.* **75**, 4098 (1995); B. J. Keay, S. Zeuner, S. J. Allen, Jr., K. D. Maranowski, A. C. Gossard, U. Bhattacharya, and M. J. W. Rodwell, “Dynamics Localization, Absolute Negative Conductance, and Stimulated Multiphoton Emission in Sequential Resonant Tunneling Semiconductor Superlattices,” *Phys. Rev. Lett.* **75**, 4102 (1995).

[9] E. M. Epstein, “Solitons in a Superlattice”, *Fiz. Tverd. Tela* (Leningrad) **19**, 3456 (1977) [Sov. Phys. Solid State **19**, 2020 (1977)].

[10] L. B. Vatova, “Propagation of Nonlinear Plasma Waves in Semiconductors Obeying a Nonquadratic Dispersion Law,” *Sov. Phys. Solid State* **15**, 1639 (1974).

[11] E. M. Epstein, “Nonlinear Plasma Oscillations in a Semiconductor with a Superlattice”, *Fiz. Tekh. Polupr.* **11**, 1386 (1977) [Sov. Phys. Semicond. **11**, 814 (1977)].
[12] E. M. Epstein, “Nonlinear Plasma Oscillations in a Superlattice in the Presence of a High-Frequency Electric Field”, Fiz. Tekh. Polupr. 12, 985 (1978) [Sov. Phys. Semicond. 12, 583 (1978)].

[13] F. G. Bass, V. V. Konotop, and A. P. Panchekha, “Dynamic Stochasticization of Electrons in Semiconductors with Superlattices”, JETP Lett. 48, 114 (1988); “Electron Stochasticity in Semiconductors with Nonparabolic Dispersion Law”, Sov. Phys. JETP 69, 1055 (1989); F. G. Bass and A. P. Panchekha, “Nonlinear Electromagnetic Waves in a Stochastized Electron Gas with a Nonquadratic Dependence of Energy on Momentum”, Sov. Phys. JETP 72, 955 (1991).

[14] A. A. Ignatov, K. F. Renk and E. P. Dodin, “Esaki-Tsu Superlattice Oscillator: Josephson-Like Dynamics of Carriers”, Phys. Rev. Lett. 70, 1996 (1993).

[15] Martin Holthaus, “Collapse of Minibands in Far-Infrared Irradiated Superlattices,” Phys. Rev. Lett. 69, 351 (1992).

[16] F. G. Bass and A. P. Tetervov, “High-Frequency Phenomena in Semiconductor Superlattices”, Phys. Rep. 140, 237 (1986).

[17] F. G. Bass and L. B. Vatova, “Large-Amplitude Electromagnetic Waves in Conductors with a Nonparabolic Charge Carrier Dispersion Law”, Phys. Rep. 241, 219 (1994).

[18] K. N. Alekseev, G. P. Berman and D. K. Campbell, “Dynamical Instabilities and Deterministic Chaos in Ballistic Electron Motion in Semiconductor Superlattices”, Phys. Lett. A 193, 54 (1994).

[19] E. Schöll and A. Wacker, “Oscillatory Transport Instabilities and Complex Spatio-Temporal Dynamics in Semiconductors,” p. 21 in Nonlinear Dynamics and Pattern Formation in Semiconductors and Devices, Springer Proceedings in Physics Vol. 79, F.-J. Niedernostheide, editor (Springer, 1994).

[20] J.-R. Zhou, D.K. Ferry, “Simulation of Ultra-Small GaAs MESFET Using Quantum
Moment Equations”, *IEEE Transactions on Electron Devices*, **39** 473 (1992).

[21] R. A. Suris and B. S. Shchamkhalova, “Heating of Electrons in Superlattice Semiconductors”, *Fiz. Tekh. Polupr.* **18**, 1178 (1984) [Sov. Phys. Semicond. **18**, 738 (1984)]; F. G. Bass and E. A. Rubinstein, “High-Frequency Electromagnetic Effects in Semiconductors with Nonquadratic Dispersion Law of Carriers”, *Fiz. Tverd. Tela* (Leningrad) **19**, 1379 (1977) [Sov. Phys. Solid State **19**, 800 (1977)].

[22] A. A. Ignatov and V. I. Shashkin, “A Simplified Approach to Nonlinear HF Response Theory of Superlattice Materials”, *Phys. Lett. A* **94**, 169 (1983); A. A. Ignatov, E. P. Dodin and V. I. Shashkin, “Transient Response Theory of Semiconductor Superlattices: Connection with Bloch Oscillations”, *Mod. Phys. Lett. B* **5**, 1087 (1991).

[23] X. L. Lei, N. J. M. Horing and H. L. Cui, “Theory of Negative Differential Conductivity in a Superlattice Miniband”, *Phys. Rev. Lett.* **66**, 3277 (1991).

[24] X. L. Lei, “Miniband Bloch Transport Through a One-Dimensional Semiconductor Superlattice”, *J. Phys.: Cond. Matter* **4**, 9367 (1992); X. L. Lei, N. J. M. Horing and H. L. Cui, “Balance-Equation Analysis of Hot-Carrier Bloch Transport in a Superlattice miniband”, *J. Phys.: Cond. Matter* **4**, 9375 (1992); X. L. Lei, “Low-Temperature Saturation of the Peak Drift Velocity in Superlattice Miniband Transport”, *J. Phys.: Cond. Matter* **4**, L659 (1992); “Oscillatory Transient Velocity of Miniband Transport in One-Dimensional Superlattices”, *J. Phys.: Cond. Matter* **5**, L43 (1993).

[25] J.R. Barker, D.K. Ferry, “On the Physics and Modeling of Small Semiconductor Devices-I,II,III”, *Solid State Electronics*, **23** 519; 531; 545 (1980); N.C. Kluksdahl, A.M. Kriman, D.K. Ferry, “Self-Consistent Study of the Resonant-Tunneling Diode”, *Phys. rev. B*, **39** 7720 (1989); J.-R. Zhou, D.K. Ferry, “Modeling of Quantum Effects in Ultrasmall HEMT Devices”, *IEEE Transactions on Electron Devices*, **40** 421 (1993); T. Yamada, J.-R. Zhou, H. Miyata, D.K. Ferry, “In-Plane Transport Properties of Si/Si$_{1-x}$Ge$_x$ Structure and its FET Performance by Computer Simulation”, *IEEE Transactions on*
Electron Devices, 41 1513 (1994).

[26] J. Feldmann, K. Leo, J. Shah, D. A. B. Miller, J. E. Cunningham, T. Meier, G. von Plessen, A. Schulze, P. Thomas, and S. Schmitt-Rink, “Optical Investigation of Bloch Oscillations in a Semiconductor Superlattice”, Phys. Rev. B 46, 7252 (1992); K. Leo, P. H. Bolivar, F. Brüggemann, R. Schwedler and K. Köhler, “Observation of Bloch Oscillations in a Semiconductor Superlattice”, Solid State Commun. 84, 943 (1992).

[27] G. Brozak, M. Helm, F. DeRosa, C. H. Perry, M. Koza, R. Bhat and S. J. Allen, Jr., “Thermal Saturation of Band Transport in a Superlattice”, Phys. Rev. Lett. 64, 3163 (1990).

[28] E. H. Cannon, M. Cargo, D. K. Campbell, G. P. Berman, and K. Alekseev, unpublished.

[29] H. M. Gibbs, Optical Bistability: Controlling Light with Light, (Academic Press, N. Y., 1985).

[30] R.H. Dicke, “Coherence in Spontaneous Radiation Processes,” Phys. Rev. 93, 99 (1954).

[31] N. B. Abraham, L. A. Lugiato and L. M. Narducci, “Overview of Instabilities in Laser Systems”, J. Opt. Soc. Amer. B 2, 7 (1985).

[32] V. G. Benza and S. W. Koch, “Symmetry Breaking and Metastable Chaos in a Coherently Driven Superradiant System”, Phys. Rev. A 35,174 (1987).

[33] L. A. Lugiato, L. M. Narducci, D. K. Bandy and C. A. Pennise, “Breathing, Spiking and Chaos in a Laser with Injected Signal”, Opt. Commun. 46, 64 (1983); F. T. Arecchi, G. L. Lippi, G. P. Puccioni and J. R. Tredicce, “Deterministic Chaos in Laser with Injected Signal”, Opt. Commun. 51, 308 (1984); J. R. Tredicce, F. T. Arecchi, G. L. Lippi and G. P. Puccioni, “Instabilities in Laser with an Injected Signal”, J. Opt. Soc. Amer. B 2, 173 (1985); D. K. Bandy, L. M. Narducci and L. A. Lugiato, “Coexisting Attractors in a Laser with Injected Signal”, J. Opt. Soc. Amer. B 2, 148 (1985).
[34] H. Haken, *Light, Vol. 2: Laser Light Dynamics*, (North-Holland, Amsterdam, 1985).

[35] H. Haken, “Analogy Between Higher Instabilities in Fluids and Lasers”, *Phys. Lett. A* **53**, 77 (1975).

[36] E. N. Lorenz, “Deterministic Non-Periodic Flow”, *J. Atmos. Sci.* **20**, 130 (1963); for a detailed study of the Lorenz equations over a wide range in parameter space, see C. A. Sparrow, *The Lorenz Equations: Bifurcations, Chaos, and Strange Attractors*, (Springer Verlag, New York, 1982).

[37] B. A. Huberman, J. P. Crutchfield, and N. H. Packard, “Noise Phenomena in Josephson Junctions,” *Appl. Phys. Lett.* **37**, 750-752 (1980); N. F. Pedersen and A. Davidson, “Chaos and Noise Rise in Josephson Junctions,” *App. Phys. Lett.* **39**, 830-832 (1980).

[38] K. N. Alekseev and G.P.Berman, “Stochastic Mechanism of Generation of Optical Radiation”, *Sov. Phys. JETP* **67**, 1762 (1988).

[39] K. N. Alekseev and G.P.Berman, “Dynamic Chaos in the Interaction Between External Monochromatic Radiation and Two-Level Medium, with Allowance for Cooperative Effects”, *Sov. Phys. JETP* **65**, 1115 (1987); D. Holm and G. Kovačić, “Homoclinic Chaos in a Laser-Matter System”, *Physica D* **56**, 270 (1992).

[40] B. V. Chirikov, “A Universal Instability of Many-Dimensional Oscillator Systems”, *Phys. Rep.* **52**, 263 (1979); A. J. Lichtenberg and M. A. Lieberman, *Regular and Stochastic Motion*, (Springer-Verlag, New York, 1983).

[41] J. J. Quinn and J. S. Carberry, “Bulk and Surface Plasmons in Artificially Structured Materials”, *IEEE Transactions on Plasma Sci.* **PS-15**, 394 (1987).

[42] R. E. Camley and D. L. Mills, “Collective Excitations of Semi-Infinite Superlattice Structures: Surface Plasmons, Bulk Plasmons, and the Electron-Energy-Loss Spectrum”, *Phys. Rev. B* **29**, 1695 (1984); A. C. Sharma and A. K. Sood, “Collective Excitations and Their Lineshapes for a Modulated-Doped GaAs/AlAs Superlattice”, *J.
[43] A. Wolf, J. B. Swift, H. L. Swinney and J. A. Vastano, “Determining Lyapunov exponents from a time series,” *Physica 16D*, 285 (1985).

[44] C. Grebogi, E. Ott, J. A. Yorke, “Chaos, Strange Attractors, and Fractal Basin Boundaries in Nonlinear Dynamics,” *Science 238*, 632 (1987).

[45] S. Perkowitz, *Optical Characterization of Semiconductors: Infrared, Raman, and Photoluminescence Spectroscopy*, (Academic Press, N. Y., 1993).

[46] M. S. Sherwin, “Solid-State “Atoms” in Intense Oscillating Fields”, pp. 209-234 in *Quantum Chaos: Between Order and Disorder*, ed. by G. Casati and B.V. Chirikov, (Cambridge Univ. Press, New York, 1995) and private communications.

[47] K. L. Campman, M. Sundaram, S. J. Allen, Jr., and A. C. Gossard, “Intraminiband Plasmons in a Superlattice Within a Parabolic Well,” *Superlattices and Microstructures 15*, 141 (1994).

[48] R. F. Miracky, J. Clarke, and R. J. Koch, “Chaotic Noise Observable in a Resistively Shunted Self-Resonant Josephson Tunnel Junction,” *Phys. Rev. Lett. 50*, 856 (1983); K. Wiesenfeld, E. Knobloch, R. F. Miracky, and J. Clarke, “Calculation of period doubling in a Josephson circuit,” *Phys. Rev. A 29*, 2102 (1984).

[49] N. H. Packard, J. P. Crutchfield, J. D. Farmer, R. S. Shaw, “Geometry from a Time Series,” *Phys. Rev. Lett* 45, 712 (1980).

[50] R. M. Westervelt, E. G. Gwinn, S. W. Teitsworth, “Chaotic Dynamics in Ge Photoconductors”, *Nucl. Phys. B (Proc. Suppl.)* 2, 37 (1987); S. W. Teitsworth and R. M. Westervelt, “Subharmonic and Chaotic Response of Periodically Driven Extrinsic Ge Photoconductors,” *Phys. Rev. Lett. 56*, 516 (1986); E. G. Gwinn and R. M. Westervelt, “Scaling Structure of Attractors at the Transition from Quasiperiodicity to Chaos in Electronic Transport in Ge,” *Phys. Rev. Lett. 59*, 157 (1987).
[51] O. M. Bulashenko and L. L. Bonilla, “Chaos in Resonant-Tunneling Superlattices,” *Phys. Rev. B* **52**, 7849 (1995).

[52] For recent reviews, see T. Shinbrot, C. Grebogi, E. Ott, and J. A. Yorke, “Using Small Perturbations to Control Chaos,” *Nature* **363**, 411 (1993) and L.R. Keefe, “Two Nonlinear Control Schemes Contrasted on a Hydrodynamic-like Model,” *Phys. Fluids A* **5**, 931 (1993).

[53] Z. Gillis, C. Iwata, R. Roy, I.B. Schwartz, and I. Triandaf, “Tracking Unstable Steady States: Extending the Stability Regime of a Multimode Laser System,” *Phys. Rev. Lett.* **69**, 3169 (1992).

[54] D.K. Ferry, “Device-Device Interactions”, In: *The Physics of Submicron Semiconductor Devices*, Eds: H.L. Grubin, D.K. Ferry, C. Jacoboni, Plenum Press, New York, NATO ASI Series B, **180**, 503, (1988); D.K. Ferry, “Lateral Surface Superlattices and Future of ULSI Microelectronics”, In: *Granular Nanoelectronics*, Eds: D.K. Ferry, J.R. Barker, C. Jacoboni, Plenum Press, New York, NATO ASI Series B, **251**, 1, (1991).
Figure Captions

Fig. 1. Dependence of the electron’s average velocity on time for $E(0) = \omega_s$, $v(0) = 0$, $w(0) = -1$; (a) “regular” (periodic) dynamics (for $\omega_s/\omega_E = 0.1$, $\Omega/\omega_E = 1$); (b) chaotic dynamics (for $\omega_s/\omega_E = 1.6$, $\Omega/\omega_E = 0.2$).

Fig. 2. Dependence of the electron’s average velocity v on time for transient chaos ($\gamma_v/\omega_E = \gamma_\epsilon v/\omega_E = 0.01$, $\alpha/\omega_E = 10^{-3}$; $\omega_s/\omega_E = 1.5$, $\Omega/\omega_E = 1$); (a) long-time behavior; (b) transition to the laminar phase.

Fig. 3. Dependence of the maximal Lyapunov exponent on time; (a) for chaotic motion (solid curve; the parameters are the same as in Fig. 1b); and for periodic motion (dashed curve; for $\omega_s/\omega_E = 1.3$, $\Omega/\omega_E = 0.2$); (b) for the transient chaos shown in Fig. 2.

Fig. 4. Power spectrum versus frequency for the electron’s velocity v; (a) Regular motion (parameters are the same as in Fig. 1a); (b) Transient chaos (parameters are the same as in Fig. 2). For the case of the transient chaos, the frequency spectrum was calculated only for the turbulent phase.

Fig. 5. The λ-map showing the regions of periodic (white) and chaotic (symbols) motion in the ρ-Ω plane; the values of the damping constants are $\gamma_v = \gamma_\epsilon = 0$ and $\alpha = 0.2$, corresponding to the case of the damped, driven Josephson junction studied in Ref. [37]. In this and all subsequent figures, all parameters are measured in units of ω_E.

Fig. 6. λ-maps showing the regions of periodic (white) and chaotic (symbols) motion in the ω_s-Ω plane for four different values of the damping parameters: (a) $\gamma_v = \gamma_\epsilon = 0.01$, $\alpha = 0.001$; (b) $\gamma_v = \gamma_\epsilon = 0.1$, $\alpha = 0.01$; (c) $\gamma_v = \gamma_\epsilon = 0.1$, $\alpha = 0.05$; and (d) $\gamma_v = \gamma_\epsilon = 0.2$, $\alpha = 0$.
Fig. 7. λ-maps showing an enlargement of the “east coast” of the chaotic region for the parameters $\gamma_v = \gamma_\epsilon = 0.05, \alpha = 0.01$ as determined by requiring (a) $\lambda > 0.001$; and (b) $\lambda > 0.01$.

Fig. 8. λ-maps showing the chaotic region in the case in which the elastic scattering time is considerably larger than the inelastic scattering time. The parameters are $\gamma_v = 0.1, \gamma_\epsilon = 0.02, \alpha = 0.01$.