Use of Fluoxetine to Reduce Weight in Adults with Overweight or Obesity: Abridged Republication of the Cochrane Systematic Review

Aurora E. Serralde-Zuñigaa Alejandro G. González-Garayb Yanelli Rodríguez-Carmonac Guillermo Meléndez-Mierd

aClinical Nutrition, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico; bMethodology Research Unit, Instituto Nacional de Pediatría, Mexico City, Mexico; cNutritional Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA; dIndependent Author, Mexico City, Mexico

\textbf{Keywords}
Fluoxetine · Weight loss · Adverse events · Obesity

\textbf{Abstract}

\textbf{Introduction}: Using fluoxetine is one of many weight loss strategies. A serotonin reuptake inhibitor indicated for depression believed to impact weight control by changing an individual’s appetite; however, its benefit-risk ratio is unclear. The aim of this review was to assess the efficacy and safety of fluoxetine in reducing weight in adults with overweight or obesity.

\textbf{Methods}: We searched Cochrane Library, MEDLINE, Embase, and other databases without language restrictions. Cochrane Collaboration tool and GRADE instrument assessed the risk of bias of randomized controlled trials and certainty of their evidence. We conducted random-effects meta-analyses and calculated the risk ratio/mean difference with 95\% confidence intervals for the outcomes.

\textbf{Results}: We included 19 trials (2,216 adults) and found that fluoxetine may reduce weight by \(-2.7\) kg (95\% CI \(-4\) to \(-1.4\); \textit{p} < 0.001) and body mass index by \(-1.1\) kg/m\(^2\) (95\% CI \(-3.7\) to 1.4), compared with placebo; however, it would cause approximately twice as many adverse events, such as dizziness, drowsiness, fatigue, insomnia, or nausea.

\textbf{Conclusions}: Although low-certainty evidence suggests that off-label fluoxetine may reduce weight, high-certainty research is needed to be conducted in the future to determine its effects exclusively as well as whether it is useful when combined with other agents. This article is based on a Cochrane Review published in the Cochrane Database of Systematic Reviews 2019, Issue 10, DOI: 10.1002/14651858.CD011688.pub2. Cochrane Reviews are regularly updated as new evidence emerges, and in response to feedback, it should be consulted for the most recent version of the review.

\textbf{Introduction}

Excess body weight is the sixth most important risk factor that contributes to the overall burden of non-communicable diseases worldwide [1]. Over the past 30 years, the prevalence of weight gain has increased considerably to become an important public health issue as it has multiple consequences such as the risk of developing cardiovascular diseases (hazard ratio [HR] 1.27; 95\% confidence interval [CI] 1.23–1.31), cerebrovascular accidents, hypertension, respiratory disorders (odds ratio [OR] 1.58; 95\% CI 1.22–2.03; \textit{p} < 0.001), osteoarthritis, metabolic syndrome, type 2 diabetes mellitus (HR 1.86; 95\% CI

Correspondence to:
Alejandro G. González-Garay, pegaso100@gmail.com
Although we identified 1,036 potential studies for inclusion, 32 trials were excluded due to different reasons [41–72] (online suppl. Table 1; for all online suppl. material, see www.karger.com/doi/10.1159/000524995), and 19 trials were included with 2,216 participants with a mean age of 30–51 years, a wide variety of comparisons according to fluoxetine doses (10, 20, 40, and 60 mg once a day), and time of administration (from 3 days to 12 months) (Fig. 1; Table 1) [19–37].

In most trials, the risk of selection bias was unclear because their reports provided no details of the methods of random sequence generation and blinding of outcome assessment. Approximately one-third of the trials had a high risk of bias due to an attrition rate of 20% (Fig. 2).

Fluoxetine versus Placebo
Weight Loss in Kilograms
Ten trials compared fluoxetine with placebo. Seven trials used a dose of 60 mg/day [21, 25, 26, 30, 31, 33, 36]; two trials used a dose of 40 mg/day [29, 30]; and three trials used a dose of 20 mg/day [31, 35, 37].

We identified a weight loss of −2.5 kg (95% CI −3.8 to −1.2; p = 0.0001; 7 trials) in 819 participants who received fluoxetine 60 mg/day, while for the adults who received fluoxetine 40 mg/day, the weight loss was −3.97 kg (95% CI −5.42 to −2.52; p < 0.001; 10 trials).

We calculated the mean difference (MD) with 95% CI. Heterogeneity was identified by visual inspection of forest plots and using a random-effects model, with the inverse variance method. For dichotomous data, we obtained RRs; for continuous outcomes, we used a random-effects model with the inverse variance method. Heterogeneity was identified by visual inspection of forest plots and using a random-effects model, with the inverse variance method.

Methods

Search Strategy

Two reviewers conducted a search without language restriction up to January 2021 on the following databases: MEDLINE, Embase, LILACS, Cochrane CENTRAL, the ICTRP Search Portal, and ClinicalTrials.gov. The following MeSH terms were searched: (Obesity, Morbid OR Adiposity/OR Body Weight/Weight Loss/OR Overweight/OR fat) AND (Fluoxetine/AND (randomized controlled trial OR controlled clinical trial) AND (exp animal/ not humans)).

Study and Participant Selection Criteria

We included randomized controlled trials that examined the administration of fluoxetine for adults (>18 years) with overweight (body mass index [BMI] 25–29.9 kg/m²) or obesity (BMI ≥30 kg/m²) according to the WHO’s criteria compared with placebo, other anti-obesity agents, non-pharmacological therapy, and no treatment [1]. Trials in which participants presented with diabetes mellitus, polycystic ovary syndrome, eating disorders, schizophrenia, HIV infection, cancer, and pregnancy were excluded. Fluoxetine regimens were dose-adjusted to assess the following outcomes: (A) weight loss; (B) BMI reduction; (C) adverse events; (D) mortality; and (E) socioeconomic effects, with 12-month follow-up.

Assessment of Risk of Bias

Two independent reviewers used the Cochrane tool [16] and GRADE instrument [17] to assess the risk of bias of the randomized controlled trials and the certainty of their evidence. Disagreements were resolved by discussion and consultation with a third reviewer. For cases with unclear information, the authors were contacted through email.

Statistical Analysis

For dichotomous data, we obtained RRs; for continuous outcomes, we calculated the mean difference (MD) with 95% CI. Meta-analyses were performed using a random-effects model, with the inverse variance method. Heterogeneity was identified by visual inspection of forest plots and using a standard χ² test with a significance level of 0.1 and I² statistic using the Review Manager V5.4 software. For more details, see the Cochrane systematic review [18].

Results

Although we identified 1,036 potential studies for inclusion, 32 trials were excluded due to different reasons [41–72] (online suppl. Table 1; for all online suppl. material, see www.karger.com/doi/10.1159/000524995), and 19 trials were included with 2,216 participants with a mean age of 30–51 years, a wide variety of comparisons according to fluoxetine doses (10, 20, 40, and 60 mg once a day), and time of administration (from 3 days to 12 months) (Fig. 1; Table 1) [19–37].

In most trials, the risk of selection bias was unclear because their reports provided no details of the methods of random sequence generation and blinding of outcome assessment. Approximately one-third of the trials had a high risk of bias due to an attrition rate of 20% (Fig. 2).

Fluoxetine versus Placebo
Weight Loss in Kilograms
Ten trials compared fluoxetine with placebo. Seven trials used a dose of 60 mg/day [21, 25, 26, 30, 31, 33, 36]; two trials used a dose of 40 mg/day [29, 30]; and three trials used a dose of 20 mg/day [31, 35, 37].

We identified a weight loss of −2.5 kg (95% CI −3.8 to −1.2; p = 0.0001; 7 trials) in 819 participants who received fluoxetine 60 mg/day, while for the adults who received fluoxetine 40 mg/day, the weight loss was −3.97 kg (95% CI −5.42 to −2.52; p < 0.001; 10 trials).
CI −8.8 to 0.8; \(p = 0.10; 2 \) trials, 182 participants), and for individuals who received fluoxetine 20 mg/day, the weight loss was −1.5 kg (95% CI −3.5 to 0.5; \(p = 0.15; 3 \) trials, 279 participants). However, the test for subgroup differences did not indicate a statistically significant difference (\(p = 0.62 \)). Overall, across all fluoxetine dosages and durations of treatment, the weight loss was −2.7 kg (95% CI −4 to −1.4; \(p = 0.0001; 10 \) trials, 956 participants; low-certainty evidence in favour of fluoxetine) [21, 25, 26, 30–33, 35–37]. The 95% prediction interval ranged between −7.1 kg and 1.7 kg (Fig. 3).

BMI Reduction

Three trials compared fluoxetine with placebo. We identified that 19 participants who received fluoxetine 60 mg/day showed a BMI reduction of −3.3 kg/m² (95% CI...
Author/year	Sex (female), %	Age (range), years	BMI (mean or range), kg/m²	Intervention	Comparator	Outcomes	Cointerventions
Al-Helli 2015 [13] Iraq (parallel RCT)	–	18–40	≥30	N = 12 Fluoxetine 20 mg orally, once a day for 2 months	N = 12 Placebo orally once daily for 2 months	BMI, serum lipids: total cholesterol, low-density lipoprotein cholesterol, high-density lipoprotein cholesterol, triglycerides, fasting blood glucose, malondialdehyde, leptin	–
Suplicy 2014 [29] Brazil (parallel RCT)	100	33.1–39	33.6–35.6	N = 30 Diethylpropion 75 mg orally, once per day for 52 weeks	N = 29 Placebo orally once daily for 52 weeks	Differences in weight loss, waist circumference, BMI, adverse events, blood pressure, heart rate, serum lipids, fasting glucose, fasting insulin, glycated haemoglobin, quality of life	Hypocaloric diet and encouraged to maintain at least 150 min per week of moderate physical activity
Guimaraes 2006 [20] Brazil (parallel RCT)	88.5	30.2–38.9	32–37.2	N = 8 Sibutramine 15 mg orally, once per day for 90 days	N = 10 Placebo orally, once daily for 90 days	Cognitive and critical, behavioural, and cognitive aspects of the patient’s dietary habits	Dietary reeducation containing on average 1,500 kcal/day
Bondi 2000 [15] Italy (parallel RCT)	100	47.8–51.4	38.8–42.8	N = 8 Fluoxetine 40 mg orally, once per day for 12 weeks	N = 12 Placebo orally, once daily for 12 weeks	Resting respiratory quotient, resting energy expenditure, fasting blood glucose, plasma insulin	Diet (55% carbohydrates, 20% protein, 25% fat), a caloric deficit of 500 kcal/day of 70% energy expenditure by indirect calorimetry
Huang 1998 [21] China (parallel RCT)	54	41.2–44.5	32.6–33.5	N = 30 Fluoxetine 60 mg orally, once per day for 12 weeks	N = 30 No treatment	Body weight, BMI, fasting blood sugar, triglycerides, cholesterol, uric acid, adverse events	Weight-reducing low-calorie diet (25–35 kcal/day adjusted to workload × ideal body weight – 500 kcal)
Table 1 (continued)

Author/year	Sex (female), %	Age (range), years	BMI (mean or range), kg/m²	Intervention N/dose	Comparator N/dose	Outcomes	Cointerventions
Bross 1995 [16] Canada (parallel RCT)	100	32–33	34–34.1	N = 10 Fluoxetine 60 mg orally, once per day for 3 weeks	N = 10 Placebo orally, once daily for 3 weeks	Body weight, resting energy expenditure, thermic effect, serum triiodothyronine and thyroxine, adverse events	Formula diet (420 kcal including 70 g protein/day and 100% RDA vitamins and minerals)
Fernández-Soto 1995 [17] Spain (crossover RCT)	100	39	35.1–36.8	N = 23 Fluoxetine 60 mg orally, once per day for 3 months	N = 19 Placebo orally, once daily for 3 months	Weight, pulse, adverse events, glucose, urea, uric acid, creatinine, cholesterol, triglycerides	Diet 1,200 kcal maintained throughout the trial; no caloric liquids; psychotherapy
Lawton 1995 [23] United Kingdom (crossover RCT)	100	32.8	39.9	N = 13 Fluoxetine 60 mg orally, once per day for 2 weeks	N = 13 Placebo orally, once daily for 2 weeks	Satiety, weight loss, adverse events, appetite, energy intake, motivational ratings (hunger), post-lunch meal palatability rating	Diet: each treatment phase incorporated 2 separate test days on which the participants response to either a high-carbohydrate or a high-fat meal was assessed
Goldstein 1994 [19] USA (parallel RCT)	81	43	35.8–36.2	N = 230 Fluoxetine 60 mg orally, once per day for 52 weeks	N = 228 Placebo orally, once daily for 52 weeks	Weight loss, adverse events, heart rate, blood chemistry, haematology, and urinalysis	Diet with caloric intake designed to produce a weight loss of 0.45 kg per week
Goldstein 1993 [18] USA (parallel RCT)	87	42.6–44.9	31.6–31.9	N = 106 Fluoxetine 60 mg orally, once per day for 40 weeks	N = 104 Placebo orally, once daily for 40 weeks	Pulse rate, carbohydrate craving scores, adverse events, urinalysis and blood chemistry, haematology	Advised to reduce overall caloric consumption and offered a diet to lose 0.45 kg per week
Pedrinola 1993 [26] Brazil (parallel RCT)	–	20–50	33.6–35.1	N = 10 Fluoxetine 40 mg orally, once per day for 12 weeks	N = 10 Placebo orally, twice daily for 12 weeks	Weight loss, BMI, adverse events, cholesterol, triglycerides	Standard 1,000-kcal diet
Visser 1993 [30] The Netherlands (parallel RCT)	0	38.8–42.6	27.9	N = 20 Fluoxetine 60 mg orally, once per day for 12 weeks	N = 20 Placebo orally, once daily for 12 weeks	Body weight, waist-hip ratio, abdominal fat areas, adverse events	Received dietary advice on healthy nutrition and means to lose weight
Wurtman 1993 [31] USA (parallel RCT)	100	39.5–41.2	32–33.1	N = 30 Fluoxetine 20 mg orally, once per day for 12 weeks	N = 28 Desfenfluramine mg orally, once per day for 12 weeks	Weight, adverse events, glucose, triglycerides, urinalysis, thyroid profile, depression	–
Kopelman 1992 [22] United Kingdom (crossover RCT)	9	25–53	44	N = 11 Fluoxetine 60 mg orally, once per day for 3 days	N = 11 Placebo orally, once daily for 3 days	Sleep-breathing patterns, weight loss, adverse events, hematology, oxygen saturation, apnea/hypopnea index, total sleep time, qualitative assessment of sleep	–
Author/year	Sex (female), %	Age (range), years	BMI (mean or range), kg/m²	Intervention N/dose	Comparator N/dose	Outcomes	Cointerventions
-------------	----------------	--------------------	-----------------------------	---------------------	-------------------	----------	----------------
Stinson 1992 [28] Ireland (crossover RCT)	61.7 <65 36.7	N = 13 Fluoxetine 60 mg orally, once per day for 2 weeks	N = 17 Placebo orally, once daily for 2 weeks	Resting metabolic rate, diet-induced thermogenesis, weight reduction, serum urea and creatinine levels, hematocrit	–		
Bagiella 1,991 [14] Italy (parallel RCT)	– 18–57 30–40	N = – Fenfluramine 20 mg orally, once per day for 12 weeks N = – 5-hydroxy-tryptophan 300 mg orally, once per day for 12 weeks N = – Fenfluramine 15 mg orally, once per day for 12 weeks N = – Fluoxetine 20 mg orally, once per day for 12 weeks N = – Fluvoxamine 50 mg orally, once per day for 12 weeks	N = – Placebo 1 capsule orally, 2 or 3 times per day for 12 weeks	Cognitive and critical, behavioral, and cognitive aspects of the patient’s dietary habits	–		
Pijl 1991 [27] The Netherlands (parallel RCT)	100 37.3–38.1 35.2–36.4	N = 12 Fluoxetine 60 mg orally, once per day for 6 weeks	N = 12 Placebo orally, once daily for 6 weeks	Body weight, total caloric intake, adverse events, spontaneous food choice	–		
Levine 1989 [25] USA (parallel RCT)	85 39–41 ≥25	N = 131 Fluoxetine 10 mg orally, once per day for 8 weeks N = 131 Fluoxetine 20 mg orally, once per day for 8 weeks N = 131 Fluoxetine 40 mg orally, once per day for 8 weeks N = 131 Fluoxetine 60 mg orally, once per day for 8 weeks	N = 131 Placebo orally, once daily for 8 weeks	Weight loss, BMI, adverse events, heart rate	–		
Levine 1987 [24] USA (parallel RCT)	88 43–46 ≥25	N = 60 Fluoxetine 60 mg orally, once per day for 11 days	N = 60 Placebo orally, once daily for 11 days	Weight loss, BMI, adverse events, blood pressure, heart rate	Advised to reduce overall calorie consumption by 20%		

BMI, body mass index; –, not reported; RCT, randomized controlled trial.
Fluoxetine to Reduce Weight in Adults with Overweight

Fluoxetine to Reduce Weight in Adults (with Overweight)

−7.3 to 0.7; \(p = 0.10; 1 \) trial) and who received fluoxetine 40 mg/day showed −2.8 kg/m² (95% CI −8.7 to 3.1; \(p = 0.35; 1 \) trial, 18 participants). On the other hand, we observed in one trial an increase in BMI of 0.2 kg/m² in 60 individuals who received fluoxetine 20 mg/day. However, overall, we observed a BMI reduction across all fluoxetine doses compared with the placebo that was −1.1 kg/m² (95% CI −3.7 to 1.4; 3 trials; 97 participants; very-low-certainty evidence) (Fig. 4) [26, 32, 35].

Adverse Events
Nine trials reported adverse events in this comparison [24–26, 30, 31, 33, 35–37]. A total of 399 out of 627 participants (63.6%) who received fluoxetine experienced an adverse event (mainly dizziness with RR 2.40; 95% CI 1.03–5.60; \(p = 0.04; \) drowsiness with RR 2.67; 95% CI 1.68–4.24; \(p = 0.0001; \) fatigue RR 2.50; 95% CI 1.62–3.85; \(p = 0.0001; \) insomnia with RR 2.23; 95% CI 1.22–4.08; \(p = 0.009; \) and nausea RR 1.99; 95% CI 1.35–2.91; \(p = 0.0004; \)) compared with 352 out of 626 participants (56.2%) who received placebo.

We observed an increase in the risk to develop at least one adverse event with RR 1.16 (95% CI 0.93–1.44; \(p = 0.18; 7 \) trials) in 1,134 participants who received fluoxetine 60 mg/day; same findings were identified in 262 adults who received fluoxetine 40 mg/day (RR 1.07; 95% CI 0.93–1.24; \(p = 0.32; 1 \) trial), fluoxetine 20 mg/day (RR 1.10; 95% CI 0.92–1.31; \(p = 0.30; 1 \) trial, 592 participants), and fluoxetine 10 mg/day (RR 0.96; 95% CI 0.82–1.12; \(p = 0.59; 1 \) trial, 262 participants) without significant subgroup differences (Fig. 5).
However, pooling the trials showed an increase in the risk of experiencing at least one adverse event in the fluoxetine groups, compared with the placebo with an RR of 1.18 (95% CI 0.99–1.42; p = 0.07; 9 trials, 1,253 participants; low-certainty evidence) [24–26, 30, 31, 33, 35–37]. The 95% prediction interval ranged between 0.74 and 1.88 (Table 2).

Fluoxetine versus Other Therapies and No Treatment

Weight Loss in Kilograms

Three trials (234 participants) compared different doses of fluoxetine with six types of anti-obesity agents (sibutramine, metformin, dexfenfluramine, diethylpropion, fenproporex, and mazindol) [26, 35, 37]; one trial (48 participants) used the omega-3 gel as monotherapy and in combination with fluoxetine [19]; and one trial compared with no treatment (60 participants) [27]; however, due to the great heterogeneity between the studies, it was not possible to generate the meta-analysis (Table 3).

BMI Reduction

Two trials compared fluoxetine with five types of anti-obesity agents (sibutramine, metformin, diethylpropion, fenproporex, and mazindol) [26, 35], and one trial compared with no treatment [27]. We identified that participants who received fluoxetine 60 mg/day showed a BMI reduction from −0.5 kg/m² (95% CI −0.6 to −0.3; p = 0.0001, 60 adults) to −2.2 kg/m² (95% CI −8.4 to 4; p = 0.48; 1 trial, 17 adults) compared to no treatment and

Table 3. Forest plot of fluoxetine versus placebo for weight loss in kg. MD, mean difference.

Study or Subgroup	Fluoxetine	Placebo	Mean Difference					
Mean [kg]	SD [kg]	Total [kg]	Mean [kg]	SD [kg]	Total [kg]	Weight	IV, Random, 95% CI	
Fluoxetine 60 mg/d	-5.6	5.89	12	-4.9	4.65	12	6.3%	-0.70 [-5.02, 3.62]
Bondi 2000 (1) [19]	-1.4	7.1	217	-1.2	5.7	217	18.7%	-0.20 [-1.41, 1.01]
Gulnara 2006 (3) [20]	83	9.01	9	77.7	10.66	10	1.9%	5.30 [-3.55, 14.15]
Levine 1987 (4) [24]	-4.5	4	60	-1.4	0.77	60	19.6%	-3.10 [-4.13, -2.07]
Levine 1989 (5) [25]	-3.91	3.87	87	-0.54	2.34	74	19.9%	-3.37 [-4.34, -2.40]
Pijl 1991 (6) [27]	-3.6	1.66	11	0.3	1.73	12	17.8%	-1.90 [-5.29, -2.61]
Visser 1993 (7) [30]	-5.9	2.8	18	-2.4	2.8	20	15.7%	-3.50 [-5.28, -2.72]
Subtotal (95% CI)	414	405	100%	-2.50 [-3.78, -1.22]				

Heterogeneity: Tau² = 1.90; Chi² = 26.38, df = 6 (p = 0.0002); I² = 77%

Test for overall effect: Z = 3.43 (p = 0.0001)

Fluoxetine 40 mg/d

Levine 1989 (8) [25] | -2.16 | 2.56 | 90 | -0.54 | 2.34 | 74 | 51.8% | -1.62 [-2.37, -0.87] |
| Pedrirola 1993 (9) [28] | -8.2 | 2.8 | 10 | -1.7 | 1.3 | 8 | 48.2% | -6.50 [-8.46, -4.54] |
| Subtotal (95% CI) | 100 | 82 | 100% | -3.97 [-8.75, 0.81] |

Heterogeneity: Tau² = 11.34; Chi² = 20.85, df = 1 (p < 0.00001); I² = 95%

Test for overall effect: Z = 1.83 (p = 0.10)

Fluoxetine 20 mg/d

Levine 1989 (10) [25] | -1.93 | 3.06 | 86 | -0.54 | 2.34 | 74 | 42.0% | -1.39 [-2.23, -0.55] |
Suppley 2014 (11) [20]	-2.5	4.1	31	-3.1	4.3	29	30.7%	-0.60 [-1.53, 2.73]
Wurtman 1993 (12) [21]	-7.1	5.97	30	-3	3.99	29	26.5%	-4.10 [-6.68, -1.52]
Subtotal (95% CI)	147	132	100%	-1.50 [-3.35, 0.54]				

Heterogeneity: Tau² = 2.33; Chi² = 7.58, df = 2 (p = 0.02); I² = 74%

Test for overall effect: Z = 1.44 (p = 0.15)

Test for subgroup differences: Chi² = 1.17, df = 2 (p = 0.56), I² = 0%

Footnotes:

(1) 12 weeks intervention
(2) 52 weeks intervention
(3) 20 days intervention
(4) 11 days intervention; value of 0.1 in publication probably SE and recalculated as SD
(5) 8 weeks intervention
(6) 6 weeks intervention
(7) 12 weeks intervention
(8) 8 weeks intervention
(9) 12 weeks intervention
(10) 8 weeks intervention
(11) 8 weeks intervention
(12) 12 weeks intervention
metformin, respectively; however, on the other hand, we also observed an increase of BMI in participants who received fluoxetine 20 mg/day from 2 kg/m² (95% CI 0.9–3.1; p = 0.0001; 1 trial, 62 adults) to 2.9 kg/m² (95% CI 1.8–4; p = 0.0001; 1 trial 61 participants) compared to sibutramine, diethylpropion, fenproporex, and mazindol. As in the previous outcome analysis, we were unable to perform the meta-analysis due to the diversity of interventions and heterogeneity between the studies (Table 3).

Adverse Events

Three trials reported the development of adverse events comparing fluoxetine with six anti-obesity agents [26, 35, and 37], and one trial compared with no treatment [27]. Overall, we observed an increase in the risk to develop at least one adverse event from an RR of 1.05 (95% CI 0.68–1.65; p = 0.82; 1 trial, 60 participants) to an RR of 1.58 (95% CI 0.91–2.77; p = 0.11; 1 trial) in participants who received fluoxetine at any dose; however, the meta-analysis could not be performed due to the heterogeneity between the trials (Table 3). For mortality and socioeconomic effects, none of the included trials reported these outcomes.

Discussion

Overall, we identified a great variety of doses and durations of treatment in the intervention groups, many different groups of comparators, and variation in the diagnostic criteria and characteristics of the grade of obesity in the participants, which limited comparability and increased the heterogeneity between trials. In most trials, the risk of selection bias was unclear because their reports did not mention in detail the methods of random se-

Table 2. Risk of developing adverse events with fluoxetine

Adverse event	Risk of adverse events, RR (95% CI)	Trials	Participants
Abdominal pain	1.51 (0.58–3.90); p = 0.40	5	504
Allergy	0.17 (0.03–0.98); p = 0.05*	3	780
Anemia	12.89 (0.73–227.44); p = 0.08	1	458
Anorexia	8.89 (1.36–57.89); p = 0.02*	1	19
Anxiety	1.07 (0.56–2.03); p = 0.83	7	1,210
Constipation	2.83 (0.58–13.90); p = 0.20	3	381
Diarrhoea	1.44 (0.97–2.13); p = 0.07	7	1,191
Dizziness	2.40 (1.03–5.60); p = 0.04*	5	693
Drowsiness	2.67 (1.68–4.24); p = 0.0001*	9	1,253
Dry mouth	1.23 (0.66–2.30); p = 0.52	6	896
Dyspepsia	1.99 (0.71–5.55); p = 0.19	4	501
Fatigue	2.50 (1.62–3.85); p = 0.0001*	5	1,112
Headache	1.17 (0.94–1.47); p = 0.16	8	1,234
Insomnia	2.23 (1.22–4.08); p = 0.009*	7	1,191
Irritability	1.44 (0.63–3.15); p = 0.40	3	442
Malaise	0.60 (0.15–2.46); p = 0.48	2	322
Nausea	1.99 (1.35–2.91); p = 0.0004*	7	1,016
Palpitations	2.81 (0.12–66.40); p = 0.52	1	60
Rhinitis	0.99 (0.75–1.30); p = 0.94	3	933

* p value ≤0.05.
resulting generation and concealment of allocation. Blinding of outcome assessment was unclear in almost all trials. Approximately one-third of the trials had a high risk of bias due to an attrition rate of 20% of their participants, and almost half of the trials had a high risk of reporting bias.

However, although our findings had low-certainty evidence, we observed that off-label fluoxetine at any dose, especially 60 mg once a day, may cause moderate weight loss of approximately 2.7 kg and only with this dose generate a reduction of BMI of −1.1 kg/m² compared with placebo in adults with overweight or obesity; however, it may lead to approximately twice as many adverse events, such as dizziness, drowsiness, fatigue, insomnia, or nausea. These findings are similar to other systematic reviews which reported that the participants who received fluoxetine at least for 4 months showed a weight loss from 1.3 kg in adults with overweight or obese (BMI of 26–39 kg/m²) to 5.1 kg in participants with type 2 diabetes compared with placebo [38–40].

Based on the above, although there are FDA-approved pharmacological therapies effective for weight reduction in adults with overweight or obesity, such as pancreatic lipase inhibitors, GLP-1 analogues, MC4R agonists, and appetite suppressants, the only therapeutic strategy that includes a weak antidepressant is the naltrexone-bupro-

Study or Subgroup	Fluoxetine Events	Placebo Events	Weight M–H, Random, 95% CI	Risk Ratio M–H, Random, 95% CI		
Fluroxetine 60 mg/d						
Goldstein 1993 [18]	19	106	20	107	10.9%	0.96 [0.54, 1.69]
Goldstein 1994 [19]	200	230	194	228	41.3%	1.02 [0.95, 1.10]
Guimaraes 2006 [20]	8	9	1	10	1.3%	8.89 [1.36, 57.89]
Levine 1987 [24]	15	60	7	60	6.0%	2.14 [0.94, 4.88]
Levine 1989 [25]	101	131	94	131	36.5%	1.07 [0.93, 1.24]
Pijl 1991 [27]	4	12	2	12	2.0%	2.00 [0.45, 8.94]
Visser 1993 [30]	7	18	2	20	2.2%	3.89 [0.92, 16.36]
Subtotal (95% CI)	566	568	100.0%	1.16 [0.93, 1.44]		
Total events	354	320				

Heterogeneity: Tau² = 0.03; Chi² = 15.41, df = 6 (P = 0.02); I² = 61%
Test for overall effect: Z = 1.33 (P = 0.18)

Fluroxetine 40 mg/d						
Levine 1989 [25]	101	131	94	131	100.0%	1.07 [0.93, 1.24]
Subtotal (95% CI)	131	131	100.0%	1.07 [0.93, 1.24]		
Total events	101	94				

Heterogeneity: Not applicable
Test for overall effect: Z = 0.99 (P = 0.32)

Fluroxetine 20 mg/d						
Goldstein 1993 [18]	16	104	20	107	7.9%	0.82 [0.45, 1.50]
Levine 1989 [25]	100	131	94	131	48.7%	1.06 [0.92, 1.23]
Suppilly 2014 [29]	18	31	8	29	6.6%	2.10 [1.09, 4.08]
Wurtman 1993 [31]	27	30	24	29	36.8%	1.09 [0.89, 1.33]
Subtotal (95% CI)	296	296	100.0%	1.10 [0.92, 1.31]		
Total events	161	146				

Heterogeneity: Tau² = 0.01; Chi² = 4.78, df = 3 (P = 0.19); I² = 37%
Test for overall effect: Z = 1.04 (P = 0.30)

Fluroxetine 10 mg/d						
Levine 1989 [25]	90	131	94	131	100.0%	0.96 [0.82, 1.12]
Subtotal (95% CI)	131	131	100.0%	0.96 [0.82, 1.12]		
Total events	90	94				

Heterogeneity: Not applicable
Test for overall effect: Z = 0.54 (P = 0.59)

Test for subgroup differences: Chi² = 2.44, df = 3 (P = 0.49), I² = 0%

Fig. 5. Forest plot of fluoxetine versus placebo for any adverse event (per dose).
Fluoxetine to Reduce Weight in Adults with Overweight

Table 3. Fluoxetine versus another anti-obesity agents and no treatment

Comparison	Mean difference (95% CI)	Trials	Participants
Weight loss			
Fluoxetine 60 mg/day versus sibutramine	4.3 kg (−3.2–11.8); p = 0.26	1	17
Fluoxetine 60 mg/day versus metformin	−8.9 kg (−19.9–2.1); p = 0.11	1	17
Fluoxetine 20 mg/day versus sibutramine	7 kg (4.4–9.6); p = 0.0001*	1	61
Fluoxetine 20 mg/day versus dexfenfluramine	−0.5 kg (−3.4–2.4); p = 0.73	1	58
Fluoxetine 20 mg/day versus diethylpropion	7.5 kg (4.7–10.3); p = 0.0001*	1	61
Fluoxetine 20 mg/day versus fenproporex	5.3 kg (2.4–8.2); p = 0.0004*	1	62
Fluoxetine 20 mg/day versus mazindol	4.9 kg (2.6–7.3); p = 0.0001*	1	60
Fluoxetine 60 mg/day versus no treatment	−2.7 kg (−3 to −2.4); p = 0.0001*	1	60
BMI reduction			
Fluoxetine 60 mg/day versus sibutramine	−1.5 kg/m² (−5.2–2.2); p = 0.42	1	17
Fluoxetine 60 mg/day versus metformin	−2.2 kg/m² (−8.4–4); p = 0.48	1	17
Fluoxetine 20 mg/day versus sibutramine	2.4 kg/m² (1.4–3.4); p = 0.0001*	1	61
Fluoxetine 20 mg/day versus diethylpropion	2.9 kg/m² (1.8–4); p = 0.0001*	1	61
Fluoxetine 20 mg/day versus fenproporex	2 kg/m² (0.9–3.1); p = 0.0006*	1	62
Fluoxetine 20 mg/day versus mazindol	2 kg/m² (1.1–2.9); p = 0.0001*	1	60
Fluoxetine 60 mg/day versus no treatment	−0.5 kg/m² (−0.6 to −0.3); p = 0.0001*	1	60
Relative risk (95% CI)			
Fluoxetine 60 mg/day versus sibutramine	1.19 (0.75–1.88); p = 0.47	1	17
Fluoxetine 60 mg/day versus metformin	1.78 (0.86–3.69); p = 0.12	1	17
Fluoxetine 20 mg/day versus sibutramine	1.58 (0.91–2.77); p = 0.11	1	61
Fluoxetine 20 mg/day versus dexfenfluramine	1.09 (0.89–1.33); p = 0.42	1	59
Fluoxetine 20 mg/day versus diethylpropion	1.58 (0.91–2.77); p = 0.11	1	61
Fluoxetine 20 mg/day versus fenproporex	1.20 (0.75–1.92); p = 0.45	1	62
Fluoxetine 20 mg/day versus mazindol	1.05 (0.68–1.64); p = 0.82	1	60
Fluoxetine 60 mg/day versus no treatment	8.67 (2.94–25.94); p = 0.0001*	1	60

* p value ≤0.05.

Conclusions

We observed low-certainty evidence suggesting that off-label fluoxetine may produce a modest weight loss compared with placebo at any dose, especially when given at a dose of 60 mg/day. However, we found low-certainty evidence of a small increase in the risk for specific adverse events, such as dizziness, drowsiness, fatigue, insomnia, and nausea following fluoxetine consumption. With respect to other findings of our review, more high-certainty research is needed to exclusively determine the effects of pion combination despite the reported association between obesity and the development of depression [4]; so, although the indication for fluoxetine is for the treatment of obsessive behaviors, depression, and anxiety crises, it could be considered as another strategy for weight loss in adults with this condition since it may produce a modest weight loss as a side effect compared to the annoying adverse effects of the administration of pancreatic lipase inhibitors such as the presence of steatorrhea, flatulence, and deficits in the absorption of vitamins A, D, E, and beta-carotene or those developed by the use of GLP-1 analogues and MC4R agonists, which in addition to injection site reactions and their high cost, also favor the appearance of headache, hypoglycemia, nausea, vomiting, and diarrhea [7, 8]. In this way, health decision makers can take into consideration another therapeutic option at a lower cost, which could be an alternative to be implemented, especially in overweight or obese adults in low- and middle-income countries.
fluoxetine at different doses and whether it is useful when combined with other anti-obesity agents and non-pharmacological interventions.

Acknowledgements

We thank the Cochrane Metabolic and Endocrine Disorders Group for their assistance and their Information Specialist; Maria-Inti Metzendorf for developing the search strategy; and the Assistant Director of Scientific Information and Documentation of the Instituto Nacional de Pediatría, Cecilia Solis-Galicia, for acquiring study reports. The review authors are grateful to the following peer reviewers for their time and comments: Dr. Emma Axon, Cochrane Systematic methodologist, Cochrane Skin Group, University of Nottingham, UK, and Ian Caterson, University of Sydney.

Statement of Ethics

This manuscript did not require ethical approval by the ethics committee of the Instituto Nacional de Pediatría and was reviewed, approved, and co-published by Cochrane Database of Systematic Reviews 2019, Issue 10. Art. No.: CD011688 titled Fluoxetine for adults who are overweight or obese [18].

Conflict of Interest Statement

The authors have no conflicts of interest to declare.

Funding Sources

This manuscript has been supported by the Instituto Nacional de Pediatría (2019/C-043 fiscal resources program E022) only for publication.

Author Contributions

A.E.S.-Z. contributed to conceptualization, investigation, supervision, validation, visualization, medical oversight, and preparing the original draft and final manuscript. A.G.G.-G. contributed to conceptualization, data curation, formal analysis, methodology, software, validation, visualization, and writing the final manuscript. Y.R.-C. contributed to investigation, conceptualization, data curation, visualization, and preparing the original draft. G.M.-M. contributed to conceptualization, supervision, validation, project administration, and critical revision of the draft and final manuscript. All the authors approved the final manuscript. Y.R.-C. and G.M.-M. contributed equally to this article and shared final authorship.

Data Availability Statement

All data generated or analyzed during this study are included in this manuscript. Further enquiries can be directed to the corresponding author.

References

1 World Health Organization. Obesity and overweight. Available from: www.who.int/mediacentre/factsheets/fs311/en (accessed April 30, 2015).
2 Kelly T, Yang W, Chen CS, Reynolds K, He J. Global burden of obesity in 2005 and projections to 2030. Int J Obes. 2008;32(9):1431–7.
3 Lu Y, Lu K, Hajifathalian M, Ezzati M, Woodward EB, Rimm G, et al. Metabolic mediators of the effects of body-mass index, overweight, and obesity on coronary heart disease and stroke: a pooled analysis of 97 prospective cohorts with 1.8 million participants. Lancet. 2014;383:970–83.
4 Luppino FS, de Wit LM, Bouvy PF, Stijnen T, Cuijpers P, Penninx BW, et al. Overweight, obesity, and depression: a systematic review and meta-analysis of longitudinal studies. Arch Gen Psychiatry. 2010;67:220–9.
5 Regmi D, Al-Shamsi S, Govender RD, Al Kaaibi J. Incidence and risk factors of type 2 diabetes mellitus in an overweight and obese population: a long-term retrospective cohort study from a Gulf state. BMJ Open. 2020;10:e035813.
6 Cortes-Telles A, Ortiz-Farias D, Pou-Aguilar Y, Almeida-de-la-Cruz L, Perez-Padilla J. Clinical impact of obesity on respiratory diseases: a real-life study. Lung India. 2021 Jul-Aug;38(4):321–5.
7 Kishore G, National Institute of Diabetes and Digestive and Kidney diseases. Available from: www.niddk.nih.gov/health-information/weight-management/prescription-medications-treat-overweight-obesity.
8 Yanovski S, Yanovski J. Long-term drug treatment for obesity: a systematic and clinical review. JAMA. 2014;311(1):74–86.
9 Dryden S, Frankish HM, Wang Q, Pickavance L, Williams G. The serotonergic agent fluoxetine reduces neuropeptide Y levels and neuropeptide Y secretion in the hypothalamus of lean and obese rats. Neuroscience. 1996;72(2):557–66.
10 Gutiérrez A, Saracibar G, Casis L, Echevarría E, Rodríguez VM, Macarrulla MT, et al. Effects of fluoxetine administration on neuropeptide Y and orexins in obese Zucker rat hypothalamus. Obesity Research. 2002;10(6):532–40.
11 Halford JC, Harrold JA, Boyland EJ, Lawton CL, Blundell JE. Serotonergic drugs: effects on appetite expression and use for the treatment of obesity. Drugs. 2007;67(1):27–55.
12 McGuirk J, Silverstone T. The effect of the 5-HT re-uptake inhibitor fluoxetine on food intake and body weight in healthy male subjects. Int J Obes. 1990;14(4):361–72.
13 Serretti A, Mandelli L. Antidepressants and body weight: a comprehensive review and meta-analysis. J Clin Psychiatry. 2010;71(10):1259–72.
14 Beasley CM Jr, Bosomworth JC, Wernicke JF. Fluoxetine: relationships among dose, response, adverse events, and plasma concentrations in the treatment of depression. Psychopharmacol Bull. 1990;26(1):18–24.
15 Colman E, Golden J, Roberts M, Egan A, Weaver J, Rosebraugh C. The FDA’s assessment of two drugs for chronic weight management. N Engl J Med. 2012;367(17):1577–9.
16 Higgins JPT, Thomas J, Chandler J, Cumpston M, Li T, Page MJ, Welch VA, editors. Cochrane handbook for systematic reviews of interventions version 6.2. Cochrane; 2021. Available from: www.training.cochrane.org/handbook.

Serralde-Zuñiga/González-Garay/Rodríguez-Carmona/Meléndez-Mier
Fluoxetine to Reduce Weight in Adults with Overweight

Leader N, King K, Llewellyn A, Norman G, Brown J, Rodgers M, et al. A checklist designed to aid consistency and reproducibility of GRADE assessments: development and piloting validation. Syst Rev. 2014;3(82):82–9.

Serralde-Zúñiga AE, Gonzalez Garay AG, Rodríguez-Carmona Y, Melendez G. Fluoxetine for adults who are overweight or obese. Cochrane Database Syst Rev. 2019;10(10):CD011688.

17 Al-Heli A, Al-Abbassi M, Jasim G, Al-Bayaty M. Effects of fluoxetine, omega 3, or their combination on serum leptin in Iraqi obese subjects. Int J Pharmaceut Sci Res. 2015;35(1):90–5.

20 Bagiella E, Cairella M, Del B, Godi R. Changes in attitude toward food by obese patients treated with placebo and serotoninergic agents. Curr Ther Res Clin Exp. 1991;50(2):205–10.

21 Bondi M, Menozzi R, Bertolini M, Venneri M, Del Rio G. Metabolic effects of fluoxetine in obese menopausal women. J Endocrinol Invest. 2000;23(5):280–6.

22 Bross R, Hoffer F. Fluoxetine increases resting energy expenditure and basal body temperature in humans. Am J Clin Nutr. 1995;61(5):1020–5.

23 Fernández-Soto M, González-Jímenez A, Barredo-Acedo F, delCastillo J, Escobar-Jiménez F. Comparison of fluoxetine and placebo in the treatment of obesity. Ann Nutr Metab. 1995;39(3):159–63.

24 Goldstein D, Rampey A, Dornseif B, Levine L, Potvin J, Fludzinski L. Fluoxetine: a randomized clinical trial in the maintenance of weight loss. Obes Res. 1993;1(2):92–8.

25 Goldstein D, Rampey A, Enas G, Potvin J, Fludzinski L, Levine L. Fluoxetine: a randomized clinical trial in the treatment of obesity. Int J Obes Relat Metab Disord. 1994;18(3):129–35.

26 Guimarães C, Pereira L, Lucif Júnior N, Cesário E, Almeida C, Carvalho D, et al. Tolerability and effectiveness of fluoxetine, metformin and sibutramine in reducing anthropometric and metabolic parameters in obese patients. Arquivos Brasileiros de Endocrinologia e Metabologia. 2006;50(6):1020–5.

27 Huang C, Chian C, Lin J. Short-term treatment of obesity with fluoxetine as a supplement to a low calorie diet. Changgeng Yi Xue Za Zhi. 1998;21(1):30–6. [Chang Gung Medical Journal].

28 Kopelman P, Elliott M, Simonds A, Cramer Lawton C, Wales J, Hill A, Blundell J. Sero- tonergic manipulation, meal-induced satiety and eating pattern: effect of fluoxetine in obese female subjects. Obes Res. 1995;3(4):345–56.

29 Levine L, Enas G, Thompson W, Byyny R, Dauer A, Kirby R, et al. Use of fluoxetine, a selective serotonin-uptake inhibitor, in the treatment of obesity: a dose-response study (with a commentary by Michael Weintraub). Int J Obes. 1989;13(5):635–45.

30 Levine L, Rosenblatt S, Bosomworth J. Use of a serotonin re-uptake inhibitor, fluoxetine, in the treatment of obesity. Int J Obes. 1987;11(Suppl 3):185–90.

31 Levine L, Enas G, Thompson W, Byyny R, Dauer A, Kirby R, et al. Use of fluoxetine, a selective serotonin-uptake inhibitor, in the treatment of obesity: a dose-response study (with a commentary by Michael Weintraub). Int J Obes. 1989;13(5):635–45.

32 Pedrinola F, Riso W, Lima N, Medeiros G. Fluoxetine induced weight loss in overweight subjects: a double-blind placebo controlled trial. Arquivos Brasileiros de Endocrinologia e Metabologia. 1993:37:31–3.

33 Pijl H, Koppeschaar H, Willekens F, Op de Kamp I, Veldhuis H, Meinders A. Effect of serotonin re-uptake inhibition by fluoxetine on body weight and spontaneous food choice in obesity. Int J Obes. 1991;15(3):237–42.

34 Robinson J, Murphy C, Andrews J, Tomkin G. The effect of fluoxetine on body weight, body composition and visceral fat accumulation. Int J Obes Relat Metab Disord. 1993;17(5):247–53.

35 Wurtman J, Wurtman R, Berry E, Gleason R, Goldberg H, McDermott J, et al. Dexfenfluramine, fluoxetine, and weight loss among female carbohydrate cravers. Neuropsychopharmacology. 1993;9(3):201–10.

36 Visser M, Seidell J, Koppeschaar H, Smits M. The effect of fluoxetine on body weight, body composition and visceral fat accumulation. Int J Obes Relat Metab Disord. 1993;17(5):247–53.

37 Wurtman J, Wurtman R, Berry E, Gleason R, Goldberg H, McDermott J, et al. Dexfenfluramine, fluoxetine, and weight loss among female carbohydrate cravers. Neuropsychopharmacology. 1993;9(3):201–10.

38 Domecq JP, Prutsky G, Leppin A, Sonbol MB, Cook J, Spring B, McChargue D, Borrelli B, Stinson J, Murphy C, Andrews J, Tomkin G. Use of fluoxetine, a selective serotonin-uptake inhibitor, in the treatment of obesity. Int J Obes. 1987;11(Suppl 3):185–90.

39 Norris SL, Zhang X, Avenell A, Gregg E, Goldberg H, McDermott J, et al. Dexfenfluramine, fluoxetine, and weight loss among female carbohydrate cravers. Neuropsychopharmacology. 1993;9(3):201–10.

40 Ye Z, Chen L, Yang Z, Li Q, Huang Y, He M, Dauer A, Kirby R, et al. A comparative study of five centrally acting drugs on the pharmacological treatment of obesity. Int J Obes. 2014;38(8):1097–103.

41 Afkhami-Ardekani M, Sedghi H. Effect of fluoxetine (Prozac) and other drugs for treatment of obesity. Int J Obes. 1991;45(10):414–9.

42 Beyazyüz M, Albayrak Y, Egilmez O, Albayrak N, Beyazýk E. Relationship between SSRIs and metabolic syndrome abnormalities in patients with generalized anxiety disorder: a prospective study. Psychiatry Investig. 2013;10(2):148–54.

43 Blondal T, Gudmundsson L, Tomasson K, Jonsdottir D, Hilmarssdottir H, Kristjansson F, et al. The effects of fluoxetine combined with nicotine inhalers in smoking cessation: a randomized trial. Addiction. 1999;94(7):1007–15. (Abingdon, England).

44 Borrelli B, Spring B, Niaura R, Kristeller J, Ockene J, Keutgen N. Weight suppression and weight rebound in ex-smokers treated with fluoxetine. J Consult Clin Psychol. 1999;67:124–31.

45 Bremner J. Fluoxetine in depressed patients: a comparison with imipramine. J Clin Psychiatry. 1984;45(10):414–9.

46 Burns R, Lock T, Edwards D, Katona C, Harrison D, Robertson M, et al. Predictors of response to amine-specific antidepressants. J Affect Disord. 1995;35:97–106.

47 Chojnacki C, Walecka-Kapica E, Klupinska G, Pawłowski M, Blonska A, Chojnacki J. Effects of fluoxetine and melatonin on mood, sleep quality and body mass index in postmenopausal women. J Physiol Pharmacol. 2015;66(5):665–71.

48 Cook J, Spring B, McChargue D, Borrelli B, Hitman B, Niaura R, et al. Influence of fluoxetine on positive and negative affect in a clinic-based smoking cessation trial. Psychopharmacology. 2004;173(1–2):153–9.

49 Dastjerdi M, Kazemi F, Najafian A, Mohamad M, Aminrooraya A, Amini M. An open-label pilot study of the combination therapy of metformin and fluoxetine for weight reduction. Int J Obes. 2007;31:713–7.

50 De Ronchi D, Rucci P, Lodi M, Raviglia G, Forti P, Volterra V. Fluoxetine and amitryptiline in elderly depressed patients. A 10-week, double-blind study on course of neurocognitive adverse events and depressive symptoms. Arch Gerontol Geriatr. 1998;26(S1):125–40.

51 Falk W, Rosenbaum J, Otto M, Zusky P, Weilburg J, Nixon R. Fluoxetine versus trazado in depressed geriatric patients. J Geriatr Psychiatry Neurol. 1989;2(4):208–14.

52 Folgelson D. Weight gain during fluoxetine treatment. J Clin Psychopharmacol. 1991;11:220–1.

53 Gendall K, Joyce P, Mulder R, Sullivan P. The effects of fluoxetine versus nortriptyline on body weight in depression. J Clin Psychopharmacol. 2000;20:714–5.

54 Fluoxetine (Prozac) and other drugs for treatment of obesity. Med Lett Drugs Ther. 1994;36:107–8.

55 Goldstein D, Rampey A, Roback P, Wilson M, Hamilton S, Sayler M, et al. Efficacy and safety of long-term fluoxetine treatment of obesity: maximizing success. Obes Res. 1995;3 Suppl 4(Suppl 4):481S–90S.

56 Goldstein D, Hamilton S, Masica D, Beasley C. Fluoxetine in medically stable, depressed geriatric patients: effects on weight. J Clin Psychopharmacol. 1997;17:365–9.
57 González M. Fixed dose combination of fluoxetine and metformin in the management of overweight and obesity (Metfluo) (multicenter, randomized, double-blind, placebo controlled trial to determine the efficacy of two fixed dose combination of metformin/fluoxetine 1000/40 mg vs. 1700/40 mg in the management of overweight and obesity. 2017. Available from: ClinicalTrials.gov.

58 Harto N, Spera K, Branconnier R. Fluoxetine-induced reduction of body mass in patients with major depressive disorder. Psychopharmacol Bull. 1988;24:220–3.

59 Keller M, Trivedi M, Thase M, Shelton R, Kornstein S, Nemeroff C, et al. The prevention of recurrent episodes of depression with venlafaxine for two years (PREVENT) study: outcomes from the 2-year and combined maintenance phases. J Clin Psychiatry. 2007; 68(8):1246–56.

60 Macías-Cortés ED, Llanes-González L, Aguilar-Faisal L, Asbun-Bojalil J. Is metabolic dysregulation associated with antidepressant response in depressed women in climacteric treated with individualized homeopathic medicines of fluoxetine? The HOMDEP-MENOP Study. Homeopathy. 2017;106(1):3–10.

61 Maina G, Albert U, Salvi V, Bogetto F. Weight gain during long-term treatment of obsessive-compulsive disorder: a prospective comparison between serotonin reuptake inhibitors. J Clin Psychiatry. 2004;65:1365–71.

62 Mendoza R, Díaz J, Buitrago F. Effectiveness of serotonergic agonist in the treatment of obese patients. Aten Primaria. 1995;16:364–6.

63 Michelson D, Amsterdam J, Quitkin F, Reimherr F, Rosenbaum J, Zajecka J, et al. Changes in weight during a 1-year trial of fluoxetine. Am J Psychiatry. 1999;156:1170–6.

64 Newhouse P, Krishnan K, Doraisswamy P, Richter E, Batzar E, Clary C. A double-blind comparison of sertraline and fluoxetine in depressed elderly outpatients. J Clin Psychiatry. 2000;61(18):559–68.

65 Niaura R, Spring B, Borrelli B, Hedeker D, Goldstein M, Keuthen N, et al. Multicenter trial of fluoxetine as an adjunct to behavioral smoking cessation treatment. J Consult Clin Psychol. 2002;70(4):887–96.

66 Ozrnick M, Friedman L, Marby D. Weight changes on fluoxetine as a function of baseline weight in depressed outpatients. Psychopharmacol Bull. 1990;26:327–30.

67 Papakostas G, Petersen T, Iosifescu D, Burns A, Nierenberg A, Alpert J, et al. Obesity among outpatients with major depressive disorder. Int J Neuropsychopharmacol. 2005;8(1):59–63.

68 Pedrinola F, Sztejnsznajd C, Lima N, Halpern A, Medeiros-Neto G. The addition of dexfenfluramine to fluoxetine in the treatment of obesity: a randomized clinical trial. Obes Res. 1996;4:549–54.

69 Ravindran P, Zang W, Renukunta S, Mansour R, Dendulari S. Effect of comedication of bupropion and other antidepressants on body mass index. Ther Adv Psychopharmacol. 2015;5(3):158–65.

70 Saules K, Schuh L, Arfken C, Reed K, Kilbey M, Schuster C. Double-blind placebo-controlled trial of fluoxetine in smoking cessation treatment including nicotine patch and cognitive-behavioral group therapy. Am J Addict. 2004;13(5):438–46.

71 Schweizer E, Rickels K, Amsterdam J, Fox I, Puzzuoli G, Weise C. What constitutes an adequate antidepressant trial for fluoxetine? J Clin Psychiatry. 1990;51:8–11.

72 Weng C, Hung Y, Shyu L, Chang Y. A study of electrical conductance of meridian in the obese during weight reduction. Am J Chin Med. 2004;32:417–25.