Adaptation of the Student Expectations of Online Learning Survey Revised (SEOLS-R) into Turkish

Ömer Arslan a, Gökhan Dağhan b and Buket Akkoyunlu c

a Amasya University, Faculty of Education, Amasya/Turkey (ORCID: 0000-0002-9410-30547)
b Hacettepe University, Faculty of Education, Ankara/Turkey (ORCID: 0000-0002-3182-2862)
c Çankaya University, Department of Inter-Curricular Courses, Ankara/Turkey (ORCID: 0000-0003-1989-0552)

Abstract: The aim of this study is to adapt the Student Expectations of Online Learning Survey Revised [SEOLS-R] developed by Harris, Larrier and Castano-Bishop (2011) into Turkish. For this purpose, the adaptation process of the scale, which consists of 7 factors and 43 items in the 5-point Likert structure, started first with the necessary permissions, and then a translation and cultural adaptation process was carried out. After the cultural adaptation process, the construct validity of the scale was tested with 411 students who study in distance education programs of Amasya University. After the construct validity findings, the reliability values of the scale were examined. In line with the findings, it was concluded that the Turkish version of the SEOLS-R scale is a valid and reliable measurement tool suitable for Turkish culture.

Keywords: Online learning, student expectations, validity and reliability, scale adaptation

DOI: 10.16949/turkbilmat.653684

1. Introduction

Many factors in adult students’ daily livings, such as family responsibilities, time constraints and overtime dependencies, lead to the preference of online distance education programs rather than formal education. At this point, online distance education programs can offer very favorable opportunities to enable such students to study. Students who enroll in these programs and begin their education, and who have successfully fulfilled the requirements of the program, can obtain a better future, a better working position, more professional knowledge or higher academic degrees. However, for these programs, success is not always possible for students who spend time, money and effort as well as their responsibilities. Dropping out the programs due to unmet expectations, responsibilities or failure to fulfill the requirements of the program can turn into serious losses both in terms of the individual's future planning and the academic units such as Distance Education Application and Research Centers. According to Okur, Paşaoğlu-Baş and Uça-Güneş (2019), it is one of the reasons for students who do not have an academic or professional career expectation to give up more easily in the face of adverse events they encounter, and to leave school or not enroll. Harris, Larrier and Castano-Bishop (2011) emphasize that the problem of student loss in online learning environments of higher education institutions has attracted the attention of distance education administrators. In order to prevent these losses, examining the expectations of students regarding online learning environments may enable them to better understand the dropout action and to produce solutions. According to Okur et al. (2019), determining the reasons for dropping out of education can provide important data on the solution of drop out problems. In this way, it is possible to make an inference whether students’ expectations from the programs are realistic, and to what extent the methods, techniques or materials used by the instructors meet the requirements of the students and programs. Examining and well determining the interactions between students, their communication with their instructors and the support they

Citation Information: Arslan, Ö., Dağhan, G., & Akkoyunlu, B. (2020). Adaptation of the student expectations of online learning survey revised (SEOLS-R) into Turkish. Turkish Journal of Computer and Mathematics Education, 11(2), 438-460.
need during the education process from the registration to graduate can help to prevent students from dropping out.

The main concern of educators is the increase in the number of students who do not continue their education even though they have started their education in the process which educators focused on designing, developing and providing appropriate online learning environments (O’Brien, 2002; Parker, 1999). Generally, distance education dropout rates are higher than face-to-face education dropout rates. Many students drop out online classes or try to finish them unsatisfactorily (Keegan, 1990; Morgan & Tam, 1999; Willging & Johnson, 2009). According to Rovai (2003), the completion rate of the education process can be used as a measure of the quality of education. While the rate of dropping out campus education is between 15% and 25%, it can be up to 40% in online courses (Parker, 1999, 2003; Xenos, 2004). The low completion rate of open education and online distance education programs may be due to student-related reasons such as learner characteristics, motivation, and satisfaction (Willging & Johnson, 2009), and students’ job and family responsibilities (Xenos, Pierrakeas, & Pintelas, 2002) can prevent them from continuing education.

There are limited number of studies, which handle students’ dropout rates of distance education programs in Turkey. In these studies, it is seen that the dropout causes are generally studied, but the dropout rates are not mentioned. In their review study, Okur et al. (2019) stated that dropout factors are about the school and the program, personal characteristics of the students, and the social environment. Arslan (2018) classified educational dropout under the headings of internal factors, external factors, preference reasons, personal characteristics and expectations. However, numeric data are unknown related to dropout rates in Turkey. First, there is a need for inclusive quantitative data about rates and statistics. Then, it is necessary to examine the persistence / dropout rates and their causes comparatively.

It is emphasized in the literature that one of the important factors in dropping out online distance education programs is the inability of students to meet their expectations (Bezerra & Silva, 2017; Laskaris, 2015; Onah, Sinclair, & Boyatt, 2014). Arslan (2018) has stated that one of the factors causing dropout in Turkish literature is expectations. At this point, Harris et al. (2011) state that the theoretical framework of the SEOLS-R scale is based on the Expectation Theory. This theory provides a framework that explains how to confirm to what extent the expected results of future actions are met (Isaac, Zerbe, & Pitt, 2001). In the context of continuing online education and not to dropout courses, Expectation Theory correspondes to the extent to which students’ expectations in online courses are met will affect whether students will continue to take online courses. When student expectations are consistent with lesson experiences, students are more likely to spend time in an online learning environment. Having knowledge and understanding of student expectations and how these expectations affect student performance and retention is the first step in developing programs that will help students develop realistic expectations for online courses.

In this study, Expectation Theory, which is the theoretical basis of the SEOLS-R scale, is based on the study of Vroom (1964). Later, Porter and Lowler (1968) developed a model on effort-performance relationship. Although this model is often called the Expectation Theory, it is also known as the VIE theory and is explained in a sequence of V (valence), I (instrumentality) and E (expectancy) (Isaac, Zerbe, & Pitt, 2001). According to Vroom (1964), valence is a mental animation-focused value that helps an individual to choose between various results (Anik, 2007). Instrumentality is a concept that is more suitable for situations where there are intermediate objectives and focuses on other intermediate objectives in order to achieve an award. According to Anik (2007), instrumentality shows that one’s behavior can be explained by shaping his belief that he can achieve a result that he believes will be satisfied by a certain set of tools. The concept of expectancy, which is the last basic component of the Expectation Theory, is the inner prediction, belief or opinion developed by an individual in order to achieve a goal. Expectation Theory is actually a theory of motivation and behavior. The relationship between the SEOLS-R scale and Expectation Theory discussed in this study comes from the assumption that students are more likely to continue and graduate in online programs if their expectations for online education are met (Harris et al., 2011). Therefore, the SEOLS-R scale is a reliable measurement tool measures the structures that may affect students’ continuance to online classes quantitatively (Harris et al., 2011).

Emphasizing that many studies address the reasons for dropping out online distance education programs, but few studies have examined the relationship between student expectations and dropouts. Harris et al. (2011) pointed out that a systematic method is needed to fill this gap in the literature. At this point, the SEOLS-R scale was developed by Harris et al. (2011) in order to determine the expectations of students dropping out online distance education programs. No other scale has been developed in the literature for this purpose. Although many scales have been developed or adapted in the literature on topics such as learner readiness, community feeling, student engagement, motivation, and attitude towards online learning, they will be able to explain the reasons for dropping out online distance learning programs pointed out by Harris et al. (2011). The lack of a student expectations scale is an important deficiency. Therefore, the purpose of this research is to adapt the SEOLS-R scale to Turkish. Since the validity and reliability study of SEOLS-R has not been carried out in Turkish culture before, the cultural adaptation studies of the scale were made in the context of this study, and
then its validity and reliability were examined. Adapting such a scale to the Turkish culture is considered important in terms of having the potential to measure student expectations in online distance education, which is becoming more and more widespread at national level, and to have the opportunity to take some measures at the point of dropping out after these expectations are determined.

2. Method

This research is an intercultural scale adaptation study. For this purpose, it was aimed to adapt the scale into Turkish which is originally developed in English. In this adaptation process, the suitable scale adaptation steps of Deniz (2007) were followed without changing the order for this study. These steps are explained under this title.

2.1. Participants

In the adaptation process of the SEOLS-R scale, data were collected from 411 students who were attending to distance education programs of Amasya University. These students enrolled in the Pedagogical Formation Education Certificate Program and they take all theoretical lessons entirely through online learning. Students answered the SEOLS-R scale and a short questionnaire consisting of demographic information online. The students were informed about the fact that their answers will remain confidential, the data will not be used for any purposes other than this research, and all students are voluntarily participated in the research. 148 (36%) of the students participating in the study are male and 263 (64%) are female. The age distribution of the participants varies between 21 and 42, and the average age is 26.06 (standard deviation: 4.11). In terms of marital status, 76% (n=313) of the participants are single and 24% (n=98) are married. While 14% (n=59) of the participants have previously attended in an online education program, 86% (n=352) have not attended in any online education program.

2.2. Information about the Original Scale

The theoretical foundations of the SEOLS-R scale are based on the Expectation Theory. Harris et al. (2011) emphasized that expectations are the basic principles of human behavior and the degree of meeting individual expectations in various situations effect their latter behavior preferences. According to this view, they state that the extent to which a student's expectations are met in the online course will affect whether the student continues to take the online course. Based on this assumption, the researchers decided that there is a need for an instrument that can measure students' online learning expectations. The initial version of this instrument has 44 items and its validity and reliability studies were carried out. For validity study, face validity and content validity were examined. Item-total correlations and Cronbach alpha internal consistency coefficients were calculated for reliability. Two panels consisting of students and experts examined the scale and expressed their views for face validity. For content validity, the opinions of the panel consisting of experts were used as a base. For reliability, Cronbach alpha internal consistency coefficients of each dimension ranged from .64 to .95. Items with total item correlations of 0.25 or higher were kept in the questionnaire. After this first pilot study, some items were added and deleted, thus the scale was revised and reached its final shape consisting of 7 factors and 43 items in a 5-point Likert structure.

The aim of the SEOLS-R scale developed by Harris et al. (2011) is to measure students' online learning expectations in terms of proficiency with technology, expectations of the online instructor, expectations about course content, expectations about social interaction, expectations about course navigation, facilitators associated with successful online learning, and proficiency with the course delivery system. The proficiency with technology dimension aims to determine the level of individual's basic skills related to computer usage. An example item from this dimension is "I am proficient in using a computer on my own". The dimension of expectations for the online instructor aims to determine the expectations of participants from online instructor during the teaching process. An example item from this dimension is "I expect the course instructor to be clear in communicating the goals of the course". Expectations about course content dimension aims to measure students' expectations about how an online course should be taught. An example from this dimension is "I expect this online course to provide me with opportunities for active learning". Expectations about social interaction dimension includes participants' expectations regarding how social relationships should be in online learning environment. An example item from this dimension is "I expect that online interactions with my classmates will be as frequent as face to face interactions". Expectations about course navigation dimension aims to measure expectations of participants about accessing easily to instructions and materials of the course, making course topic titles and forum names clear and more comprehensible. An example item from this dimension is "I expect the course materials to be easy to locate". The dimension of facilitators associated with successful online learning aims to determine the level of role of family, friends, positive factors related to online courses and personal factors that facilitate the success of participants in online learning process. An example item from this dimension is "I feel that having the support of my friends will enable me to succeed in this course". Finally, the proficiency with the course delivery system dimension aims to measure the perceptions of participants about how well they are able to use the features of online learning environments such as sending text messages, uploading
assignments and using discussion forums. An example item for this dimension is "I am proficient in using the Dropbox feature in the courseroom". SEOLS-R is an instrument consisting of 7 sub-dimensions as mentioned above. Participants indicate their approval levels to the statements in each sub-dimension by marking one of the answering categories, and also perform better in samples where the participants' evaluations regarding the related sub-dimension are positive or their expectations are high. A minimum score of 43 and a maximum of 215 can be obtained from the scale.

2.3. Preparation of the Turkish Form of the Scale

In order to adapt the SEOLS-R, the owners of the scale were first contacted via e-mail and the necessary permission was obtained to adapt the scale. In the second stage, the translation process of the scale was carried out. Steps suggested by Brislin (1970) were followed in the translation process of the scale. The original scale was translated into Turkish by researchers at first. Subsequently, a back-translation process was carried out by another researcher working in the Department of Computer Education and Instructional Technologies and who has knowledge of the Turkish and English languages, also has knowledge about scale development and adaptation studies. This researcher has the experience of teaching online in distance education, and also has a manager role in Distance Education Application and Research Center. In the third stage, the draft scale that was translated back was compared with the original scale, and a limited number of items that could not be reconciled was re-translated. Then, another researcher who is not familiar with the research subject but fluent in the English language translated back the items in the scale and compared with the original ones. At the end of this process, it was seen that the items with reverse translation process and the items in the original scale were the same. At this point, it has been seen that there is no semantic or conceptual equivalence lack between languages in the sense of terms or concepts. Following the linguistic adaptation of SEOLS-R to the Turkish language, the validity and reliability of the scale were examined.

2.4. Data analysis

Confirmatory factor analysis was performed to examine the construct validity of SEOLS-R. Two types of factor analysis are frequently used in the literature to test the construct validity of the scales (Brown, 2015; Harrington, 2009). These are exploratory factor analysis and confirmatory factor analysis. Exploratory factor analysis is a multivariate statistical method used by researchers to determine the factor structure of the scales in which they previously had little or no knowledge of the factor structure, in other words, to develop a theoretical structure, whereas confirmatory factor analysis is a multivariate statistical method used to test whether an existing theoretical structure is similar in a different sample or culture (Brown, 2015). The factor structure of the scale is not known in exploratory factor analysis. In confirmatory factor analysis, it is aimed to determine whether a known factor structure is similar in a different culture or sample. Similarly, in this study, confirmatory factor analysis was used to determine whether the factor structure determined by SEOLS-R by Harris et al. (2011) is similar in Turkish culture.

In this study, Mplus (Muthén & Muthén, 2011) program was used in conducting confirmatory factor analysis. The responses of the participants to the SEOLS-R items were analyzed using the Weighted Least Squares Means and Variance Adjusted (WLSMV). The researchers state that the maximum likelihood estimation method, which is frequently used in confirmatory factor analysis, can produce inaccurate results when used with sorting scale items that do not show normal distribution or have a limited number of response categories (Finney & DiStefano, 2006). In the literature, it is stated that WLSMV prediction method offers more accurate factor loading value estimates, more accurate goodness-of-fit indices in Likert type scales with a limited number of answering categories, and also perform better in samples which are small and does not show normal distribution (Beauducel & Herzberg, 2006). In this context, WLSMV estimation method was used in this study, considering that SEOLS-R items consist of Likert type scale items with a limited number of answering categories. In the confirmatory factor analysis, the model-data fit of the model tested is examined through the goodness of fit indexes. The Mplus program creates four different goodness of fit indices that are recommended to be reported when using the WLSMV prediction method (McDonald & Ho, 2002). These are the normed chi-square (NC) (χ^2/df), The Root Mean Square Error of Approximation (RMSEA), Comparative Fit Index (CFI), Non Normed Fit Index [NNFI] or Tucker-Lewis Index [TLI]. TLI is also known as NNFI in the literature (Cangur & Ercan, 2015). Little (2013) states that TLI index is reported in Mplus software and NNFI is reported in LISREL software, although both are developed by different research groups at different times, the preference belongs to the authors during their use in researches.

As a general rule to evaluate model-data fit in the literature, χ^2/df value is greater than 2 and less than or equal to 5 (2<χ^2/df≤5), RMSEA value is between .05 and .08 (0.05≤RMSEA≤0.08) indicates acceptable fit. On the other hand, acceptable fit values for CFI and TLI values are .90 and above (Hu & Bentler, 1999; Kline, 2011; Marsh, Balla, & McDonald, 1988; McDonald & Marsh, 1990). Perfect fit values for the above indices are below 2 for χ^2/df ratio, .95 and above for CFI and TLI, .05 and below for RMSEA (Hu & Bentler, 1999; Kline, 2011; Marsh et al., 1988; McDonald & Marsh, 1990).
Before analyzing the data by confirmatory factor analysis, the collected data were examined. Whether data extraction is required is considered. Since the data were collected online, all questions were answered. Therefore, there is no missing data. Since there is no outlier in the data set, no data extraction was made. The collected data set is included in the analysis as it is.

Before the factor analysis, Kaiser-Meyer-Olkin (KMO) Sampling Adequacy Test and Bartlett’s Sphericity Test were carried out to test the adequacy of the sampling for analysis. It was found that KMO value is .856 and χ^2=8877.664; p < .05. These statistics indicate that the data can be factored, and the sample size is adequate.

The reliability of SEOLS-R was analyzed through item total correlations, Cronbach Alpha internal consistency coefficients and composite reliability coefficients.

3. Findings

In this section, firstly, the construct validity findings of the Turkish form of the SEOLS-R scale, and then the reliability findings are presented.

3.1. Validity Findings

Confirmatory factor analysis was performed to determine whether the seven-factor structure of SEOLS-R proposed by Harris et al. (2011) is also valid for Turkish culture. Before conducting confirmatory factor analysis, factor variances of each item were fixed to 1 and factors were allowed to be related in order to identify the model. The reason for this is to provide an opportunity to be scaled for each structure in the scale and prevent scale uncertainty. According to Brown (2015), fixing factor variances to 1 defines the model and parameter estimates allow to reproduce the input matrix perfectly. As a result of the confirmatory factor analysis performed, the data fit of the tested model was found to be acceptable [χ^2(839): 1865.877, χ^2/df: 2.224, CFI: .938, TLI: .934, RMSEA: .055, RMSEA 90% Confidence Interval Lower Limit: .051, RMSEA 90% Confidence Interval Upper Limit: .058]. These fit values are one-time fit values without any modification.

Table 1. Results of confirmatory factor analysis

	λ	S.E.	Z	R^2
PT (Factor 1)				
I1	.779	.036	21.940	.607
I2	.768	.033	23.258	.591
I3	.908	.026	34.378	.825
I4	.894	.020	44.473	.800
I5	.883	.030	29.826	.780
I6	.943	.018	52.576	.890
I7	.898	.026	33.961	.806
EOI (Factor 2)				
I8	.673	.047	14.312	.453
I9	.783	.044	17.784	.613
I10	.740	.040	18.362	.548
I11	.774	.045	17.272	.599
I12	.718	.041	17.400	.516
I13	.782	.037	20.851	.611
I14	.898	.023	39.316	.807
I15	.946	.026	36.633	.895
I16	.524	.049	10.682	.275
ECC (Factor 3)				
I17	.693	.045	15.232	.480
I18	.789	.037	21.076	.622
I19	.636	.036	17.588	.405
I20	.578	.038	15.081	.334
I21	.760	.029	26.498	.577
I22	.773	.032	24.328	.597
I23	.798	.028	28.338	.637
ESI (Factor 4)				
I24	.808	.023	35.243	.653
I25	.819	.064	12.827	.671
I26	.856	.017	49.221	.732
I27	.908	.017	53.869	.825
I28	.845	.021	39.956	.714
Table 1 continued

Item	λ	S.E.	Z	R²
ECN (Factor 5)				
I29	.764	.043	17.829	.584
I30	.792	.033	23.854	.627
I31	.854	.030	28.387	.730
I32	.818	.043	18.997	.669
I33	.867	.034	25.171	.752
FSOL (Factor 6)				
I34	.785	.030	26.339	.616
I35	.773	.029	26.961	.598
I36	.696	.034	20.233	.484
I37	.510	.048	10.670	.260
I38	.967	.013	72.752	.936
I39	.940	.015	64.782	.884
PCDS (Factor 7)				
I40	.846	.022	38.895	.715
I41	.887	.016	54.929	.787
I42	.916	.014	63.437	.838
I43	.835	.022	37.598	.698

Note: PT: Proficiency with technology, EOI: Expectations for the online instructor, ECC: Expectations about course content, ESI: Expectations about social interaction, ECN: Expectations about course navigation, FSOL: Facilitators associated with successful online learning, PCDS: Proficiency with the course delivery system. All critical values are at least significant at p <.001 level.

Table 1 shows the item factor loading values, standard errors of the item factor load values, critical values and R² values obtained as a result of confirmatory factor analysis. R² values are the amount of variance in the item described by the model tested (Kelloway, 2015).

As can be seen in Table 1, the standardized item factor loading values in proficiency with technology sub-dimension ranged between .78 and .94, in expectations for the online instructor sub-dimension ranged between .67 and .95, in expectations about course content sub-dimension ranged between .58 and .80, in expectations about social interaction sub-dimension ranged between .81 and .91, in expectations about course navigation sub-dimension ranged between .76 and .87, in facilitators associated with successful online learning sub-dimension ranged between .51 and .97, in proficiency with the course delivery system sub-dimension ranged between .84 and .92. All z values for the 7-factor model are at least significant at p <.001. It is also seen that R² values vary between .26 and .94. When these findings are evaluated as a whole, it indicates that the scale shows a good fit for the seven-factor structure. The factor loadings of the Turkish equivalent form of the SEOLS-R scale are presented in Figure 1.
Figure 1. Factor loadings of the Turkish equivalent form of the SEOLS-R scale
3.2. Reliability Findings

Following the construct validation of the SEOLS-R, its reliability was examined with item total correlations, Cronbach Alpha internal consistency coefficients and composite reliability coefficients. Table 2 shows the item total correlations and Cronbach Alpha internal consistency coefficients of each sub-dimension.

Table 2. SEOLS-R item total correlations and Cronbach Alpha internal consistency coefficients

Dimension	Item	r	Item	r
PT (Factor 1)	I1	.59	I8	.40
	I2	.60	I9	.51
	I3	.71	I10	.51
	I4	.69	I11	.54
	I5	.65	I12	.49
	I6	.70	I13	.56
	I7	.61	I14	.55
		.86	I15	.51
			I16	.33
Cronbach Alpha		.86		.77
ECC (Factor 3)	I17	.40	I24	.68
	I18	.53	I25	.20
	I19	.48	I26	.74
	I20	.47	I27	.80
	I21	.63	I28	.70
	I22	.55		.83
	I23	.64		.79
Cronbach Alpha		.79		
ECN (Factor 5)	I29	.42	I34	.46
	I30	.49	I35	.44
	I31	.63	I36	.46
	I32	.50	I37	.34
	I33	.63	I38	.61
Cronbach Alpha		.74		.74
FSOL (Factor 6)	I39	.56		
PCDS (Factor 7)	I40	.69		
	I41	.78		
	I42	.83		
	I43	.69		
Cronbach Alpha		.88		

Note: PT: Proficiency with technology, EOI: Expectations for the online instructor, ECC: Expectations about course content, ESI: Expectations about social interaction, ECN: Expectations about course navigation, FSOL: Facilitators associated with successful online learning, PCDS: Proficiency with the course delivery system. r = item total correlations.

As can be seen in Table 2, item total correlations of proficiency with technology sub-dimension ranged between .59 and .71; expectations for the online instructor sub-dimension ranged between .33 and .66, expectations about course content sub-dimension ranged between .40 and .64, expectations about social interaction sub-dimension ranged between .20 and .80; expectations about course navigation sub-dimension ranged between .42 and .63, facilitators associated with successful online learning sub-dimension ranged between .34 and .61; proficiency with the course delivery system sub-dimension ranged between .69 and .83. Researchers suggest that item total correlations should be at least .20 and above (Büyüköztürk, 2010; Nunnally & Bernstein, 1994). The positive and high item total correlations mean that the item shows similar behaviors and the internal consistency of the test is high (Alış, 2017). In this context, when item total correlations of SEOLS-R sub-dimensions are examined, it can be said that all items have sufficient item total correlation. Cronbach Alpha internal consistency coefficients of the SEOLS-R sub-dimensions are as below; proficiency with technology is .86, expectations for the online instructor is .77, expectations about course content is .79, expectations about social interaction is .83, expectations about course navigation is .74, facilitators associated with successful online learning is .74, proficiency with the course delivery system is .88. As a rule, researchers state that instruments with Cronbach Alpha internal consistency coefficient of .70 and above can be used for...
research purposes (DeVellis, 2012; Nunnally & Bernstein, 1994). In this context, it can be said that all subdimensions of the scale can be used for research purposes.

Total scores and correlation values between the factors of the SEOLS-R scale are presented in Table 3.

Table 3. Total scores and correlation values between the factors of the SEOLS-R scale (N=411)

Factors	PT	EOI	ECC	ESI	ECN	FSOL	PCDS
Total Scores	.467	.641	.741	.680	.568	.637	.652

Note: PT: Proficiency with technology, EOI: Expectations for the online instructor, ECC: Expectations about course content, ESI: Expectations about social interaction, ECN: Expectations about course navigation, FSOL: Facilitators associated with successful online learning, PCDS: Proficiency with the course delivery system.

According to the Table 3, relation between proficiency with technology (PT) and expectations about course navigation (ECN) shows a medium-level relation with total scores, while there is a high-level relation between other factors and total scores. When the correlations between the structures were analyzed, it can be found that all correlations are positive, only the relations between expectations about course content (ECC) and expectations about social interaction (ESI) factors with proficiency with technology are not statistically significant, and all other relationships are significant at the level of p <.01. The diagonal values of the correlation matrix shown in Table 3 represent the square root of the average variance explained. Fornell and Larcker (1981) stated that the discriminant validity can be achieved by the square root of the average variance explained for each structure is larger than the correlations between that structure and other structures. When Table 3 is examined according to this point of view, it can be said that discriminant validity is provided because the square root of the variance explained in relation to all structures is larger than the correlations between that structure and other structures.

Average variance explained and composite reliability coefficients of SEOLS-R scale factors are presented in Table 4.

Table 4. Average variance explained and composite reliability coefficients of SEOLS-R scale factors

Factors	Average Variance Explained	Composite Reliability Coefficients
PT	.757	.956
EOI	.591	.927
ECC	.522	.883
ESI	.719	.927
ECN	.672	.911
FSOL	.629	.908
PCDS	.760	.927

Note: PT: Proficiency with technology, EOI: Expectations for the online instructor, ECC: Expectations about course content, ESI: Expectations about social interaction, ECN: Expectations about course navigation, FSOL: Facilitators associated with successful online learning, PCDS: Proficiency with the course delivery system.

According to the Table 4, the average variance explained vary between .522 and .760. For the convergent validity, based on the values of average variance explained and factor loadings for each item are greater than .50 criteria as Fornell and Larcker (1981) suggested; the factor loadings shown in Table 2 and the values of average variance explained seen in Table 4 are greater than .50, so the convergent validity is provided. As seen in Table 4, the composite reliability coefficients vary between .883 and .956. Since these values exceed the critical value determined as .60 by Bagozzi and Yi (1988), it can be said that construct reliability is provided. Ensuring construct validity and reliability means that the adapted SEOLS-R scale is valid and reliable. The final form of the SEOLS-R scale, which was finalized after validity and reliability studies, is presented in Appendix 1.

4. Results and Recommendations

In this study, the SEOLS-R scale developed by Harris et al. (2011) is adapted to Turkish culture. It has been tested whether the proposed seven-factor structure of the scale is also valid for Turkish culture, and as a result of the findings, it was decided that there is a cultural compatibility and SEOLS-R can be used as a data collection instrument in Turkish studies. All dimensions of the scale are shown in Figure 2.

Ö. Arslan, G. Dağhan, B. Akkoyunlu

446
Figure 2. Schematic representation of SEOLS-R’s factor structures

When the goodness of fit indices of the SEOLS-R scale are examined, $\chi^2(839)$ value is 1865.877, χ^2/df ratio is 2.224, CFI value is .938, TLI value is .934, RMSEA value is .055, 90% confidence interval lower limit value of RMSEA is .051 and 90% confidence interval upper limit value of RMSEA is .058. When these goodness of fit indices are analyzed according to the values reported in the studies of Bentler (1990), Schermelleh-Engel, Moosbrugger and Müller (2003), Bentler and Bonett (1980), and Hu and Bentler (1999), they are acceptable and corresponds to a good fit. When the Cronbach Alpha internal consistency coefficients for each dimension of the scale and the Cronbach Alpha internal consistency coefficient (.897) for the entire scale are examined, it can be said that the reliability of the scale is also provided. Cronbach Alpha internal consistency coefficients of the original scale are also known to vary between .64 and .95 on the basis of dimensions.

It may be suggested to test this instrument in different studies occasionally and to test its validity and reliability again. In addition, although this measurement tool is adapted to Turkish culture with cross-sectional data collected at a certain time, it is useful to measure student expectations regarding online learning environments in order to determine its relationship with other variables.

In order for the contribution of this scale adaptation process to be more meaningful and useful, the individual expectations to be measured with SEOLS-R in future studies should be associated with academic performance, persistence of learning, course completion or dropout rates. With the results obtained from SEOLS-R, directors of online distance education programs, course designers, and instructors of online courses can develop strategies for the development of online courses towards students’ expectations.

This scale adaptation study has been done on adult students. One of the limitations of this research is the difference between students which take online courses, and which did not take is not examined, so validity and reliability studies on a mixed group is not carried on. In future studies, it may be suggested to use this scale and re-examine its psychometric properties in two different groups in order to measure the differences in expectations among professional and novice online learners. It may be possible to adjust the group dynamics by determining the differences between the expectations of students with professional online learning experience and those of novice students.

No detailed research has been found in the national literature on dropout statistics and comparison of these statistics with reasons of dropout. With this scale, more descriptive data can be obtained by making quantitative reviews.
Appendix 1. Student Expectations of Online Learning Survey Revised (SEOLS-R) Scale (Turkish Version)

Likert Rating of the Scale

1: Strongly Disagree, 2: Disagree, 3: Neutral, 4: Agree, 5: Strongly Agree

Dimensions and Items

Proficiency with Technology

1. I am proficient in using a computer on my own.
2. I am proficient in using a word processing software program like Microsoft Word on my own.
3. I am proficient in using email on my own.
4. I am proficient in attaching files to email messages on my own.
5. I am proficient in using the internet on my own.
6. I am proficient in doing internet searches for personal reasons on my own.
7. I am proficient in doing internet searches for school work on my own.

Expectations for the Online Instructor

8. I expect the course instructor to be clear in communicating the goals of the course.
9. I expect the course instructor to be clear in communicating expectations of me.
10. I expect the course instructor to post course requirements within an agreed upon time.
11. I expect the course instructor to provide constructive feedback on assignments.
12. I expect the course instructor to have a consistent presence in the discussion forums.
13. I expect the course instructor to promote a supportive online learning environment.
14. I expect the course instructor to have an appropriate online tone.
15. I expect the course instructor to be responsive to students’ tone in the course room.
16. I expect the course instructor to provide instructor contact information to students.

Expectations about Course Content

17. I expect this online course to be as rigorous as face to face courses.
18. I expect this online course to provide me with opportunities for active learning.
19. I expect this online course to provide me with opportunities for large group discussion.
20. I expect this online course to provide me with opportunities for small group discussion.
21. I expect this online course to provide me with opportunities for self-reflection.
22. I expect this online course to provide me with opportunities to relate theory to real life.
23. I expect this online course to require thoughtful discussion postings from students.

Expectations about Social Interaction

24. I expect this online course to provide me opportunities to meet new people.
25. I expect peer comments to be made in a respectful manner.
26. I expect that online interactions with my classmates will be as frequent as face to face interactions.
27. I expect to have as many opportunities to get to know my classmates online as I would face to face.
28. I expect to feel positive about online interaction with my peers.

Expectations about Course Navigation

29. I expect the course delivery system to be easy to navigate.
30. I expect the course forum names to be clearly stated.
31. I expect the course topic titles to be clearly stated.
32. I expect the course materials to be easy to locate.
33. I expect the course instructions to be clearly stated.

Facilitators associated with successful online learning

34. I feel that effective time management will enable me to succeed in this course.
35. I feel that being an independent learner will enable me to succeed in this course.
36. I feel that this online course provides me with flexibility to succeed in this course.
37. I feel that having the support of my family will enable me to succeed in this course.
38. I feel that having the support of my friends will enable me to succeed in this course.
39. I feel that having a positive home environment will enable me to succeed in this course.

Proficiency with the course delivery system

40. I am proficient in using the “Message” feature in the course room.
41. I am proficient in using the “Dropbox” feature in the course room.
42. I am proficient in using the “Discussion Forum” feature in the course room.
43. I am proficient in using the “Resource” feature in the course room.
Revize Edilmiş Çevrimiçi Öğrenmeye İlişkin Öğrenci Beklentileri Ölçeğinin (SEOLS-R) Türkçe'ye Uyarlanması

1. Giriş

Yetişkin öğrencilerin yaşamlarında var olan, ailevi sorumluluklar, zaman kışkıtlığı ve mesai bağlantılığı gibi çok sayıda etken, öğrencinin eğitiminde iyiye çevrimiçi uzaktan eğitim programlarının tercih edilmesine neden olmaktadır. Bu noktada uzaktan eğitim programları, bu tür öğrencilerin eğitim almalarını olanak sağlamaya dönük oldukça elverişli imkanlar sunmaktadır. Bu programlara kayıt olup öğrenme başlayan ve programın gereklikleri اليمن getirip başarıyla mezun olan öğrenciler, daha iyi bir gelecek, daha iyi bir çalışma pozisyonu, daha çok mesleki bilgi ve daha yüksek akademik derece elde edebilmektedirler. Ne var ki, bu programlar için, sorumlulukların yanı sıra zamanda, para ve çaba sarf eden öğrenciler için bazı her zaman mümkün olamamaktadır. Programların, kazanımlarayan beklentiler, sorumluluklar ya da program gerekliklerini yerine getirememesi gibi nedenlerle terk edilmesi, hem öğrencinin bireysel geleceğin planlanması açısından hem de bu programlara suan Uzaktan Eğitim Uygulama ve Araştırma Merkezleri (UZEM) gibi akademik birimler açısından ciddi kayıplara dönüşebilme olasılığıdır. Ocak, Pucaoğlu-Baş ve Uça-Güneş’e (2019) göre akademik veya mesleki kariyer beklentisi olmayan öğrencilerin karşılanklari olumuz olaylar karşısında daha kolay vazgeçmeleri, okul bırakma veya kayıt yaptırıma sebeplerinden biridir. Harris, Larrier ve Castano-Bishop (2011) yüksekokşetin kurumlardaki çevrimiçi öğrenme ortamlarında öğrenci kayıbsorunun uzaktan eğitim yöneticilerinin dikkatini çektiğini vurgulamaktadır. Bu kayıpların önüne geçilmesi için öğrencilerin çevrimiçi öğrenme ortamlarına ilişkin beklentilerinin incelenmesi, terk eylemini daha iyi anlamaya ve çözümler üretmeye olanak sağlayabilir. Ocak ve arkadaşlarına (2019) göre, öğrencilerin bırakmalarını, terk eylemini daha iyi anlamaya ve çözümler üretmelerine yardımcı olabilen ve öğrencilerin beklentilerine karşılanamaması olduğu vurgulanmaktadır (Bezerra ve Silva, 2017; Laskaris, 2015; Arslan, 2018).

Türkiye’de öğrencilerin uzaktan eğitim programlarına terk etme oranlarını ele alan sınırlı sayıda araştırma vardır. Bu araştırmaarda genel olarak terk nedenlerinin en alındığı, ama terk etme ve bırakma oranlarına değişimli olduğu görülmektedir. Ocak ve arkadaşlarının (2019) derleme niteliği çalışmalarında okuldan ve programdan kaynaklanan faktörler, öğrencinin kişisel özelliklereinden kaynaklı faktörler ve sosyal çevrenin kaynaklı faktörlerde değişimliştır. Arslan (2018) ise eğitim terkini, açık faktörler, dışsal faktörler, tercih nedeni, kişisel özellikler ve beklentiler başlıklarıyla sınıflamıştır. Fakat Türkiye’de eğitim programlarının tamamlama oranlarının düşük olduğu vurgulanmaktadır (Bezerra ve Silva, 2017; Laskaris, 2015; Arslan, 2018) kaynaklarına bakıldığında, öğrencilerin beklentilerinin karşılanamaması olduğu vurgulanmaktadır (Bezerra ve Silva, 2017; Laskaris, 2015; Arslan, 2018).

Alanya’da çevrimiçi uzaktan eğitim programlarının terk edilmesinde önemli rolü olan faktörlerden birinin öğrencilerin beklentilerinin karşılanamaması olduğu vurgulanmaktadır (Bezerra ve Silva, 2017; Laskaris, 2015; Onah, Sinclair ve Boyatt, 2014). Ulusal alanya’da da terde neden olan faktörlerden birisinin beklentileri olduğu Arslan (2018) tarafından dile getirilmektedir. Tam bu noktada Harris ve arkadaşlarının (2011), geliştirildikleri SEOLS-R ölçeğinin kuramsal çerçevesine temellendığı idame etmektedirler. Bu kuram, gelecekteki eylemlerin beklenen sonuçlarının ne ölçüde karşılandığını nasıl doğrulayacağını açıklayan bir çerçeve sağlamaktadır (Isaac, Zerbe ve Pitt, 2001). Çevrimiçi eğitimimi sürdürme, derslerden vazgeçme ve arkadaşlarının (2011), geliştirdikleri içerik ve içeriklerin teminine odaklanan analizlerin ne ölçüde karşılandığının nasıl doğrulanacağını açıklayan bir çerçeve sağlamaktadır (Isaac, Zerbe ve Pitt, 2001). Çevrimiçi eğitimimi sürdürme, derslerden vazgeçme ve arkadaşlarının (2011), geliştirdikleri içerik ve içeriklerin teminine odaklanan analizlerin ne ölçüde karşılandığının nasıl doğrulanacağını açıklayan bir çerçeve sağlamaktadır (Isaac, Zerbe ve Pitt, 2001). Çevrimiçi eğitimimi sürdürme, derslerden vazgeçme ve arkadaşlarının (2011), geliştirdikleri içerik ve içeriklerin teminine odaklanan analizlerin ne ölçüde karşılandığının nasıl doğrulanacağını açıklayan bir çerçeve sağlamaktadır (Isaac, Zerbe ve Pitt, 2001). Çevrimiçi eğitimimi sürdürme, derslerden vazgeçme ve arkadaşlarının (2011), geliştirdikleri içerik ve içeriklerin teminine odaklanan analizlerin ne ölçüde karşılandığının nasıl doğrulanacağını açıklayan bir çerçeve sağlamaktadır (Isaac, Zerbe ve Pitt, 2001). Çevrimiçi eğitimimi sürdürme, derslerden vazgeçme ve arkadaşlarının (2011), geliştirdikleri içerik ve içeriklerin teminine odaklanan analizlerin ne ölçüde karşılandığının nasıl doğrulanacağını açıklayan bir çerçeve sağlamaktadır (Isaac, Zerbe ve Pitt, 2001). Çevrimiçi eğitimimi sürümne, derslerden vazgeçme ve arkadaşlarının (2011), geliştirdikleri içerik ve içeriklerin teminine odaklanan analizlerin ne ölçüde karşılandığının nasıl doğrulanacağını açıklayan bir çerçeve sağlamaktadır (Isaac, Zerbe ve Pitt, 2001). Çevrimiçi eğitimimi sürümne, derslerden vazgeçme ve arkadaşlarının (2011), geliştirdikleri içerik ve içeriklerin teminine odaklanan analizlerin ne ölçüde karşılandığının nasıl doğrulanacağını açıklayan bir çerçeve sağlamaktadır (Isaac, Zerbe ve Pitt, 2001). Çevrimiçi eğitimimi sürümne, derslerden vazgeçme ve arkadaşlarının (2011), geliştirdikleri içerik ve içeriklerin teminine odaklanan analizlerin ne ölçüde karşılandığının nasıl doğrulanacağını açıklayan bir çerçeve sağlamaktadır (Isaac, Zerbe ve Pitt, 2001). Çevrimiçi eğitimimi sürümne, derslerden vazgeçme ve arkadaşlarının (2011), geliştirdikleri içerik ve içeriklerin teminine odaklanan analizlerin ne ölçüde karşılandığının nasıl doğrulanacağını açıklayan bir çerçeve sağlamaktadır (Isaac, Zerbe ve Pitt, 2001). Çevrimiçi eğitimımı sürümne, derslerden vazgeçme ve arkadaşlarının (2011), geliştirdikleri içerik ve içeriklerin teminine odaklanan analizlerin ne ölçüde karşılandığının nasıl doğrulanacağını açıklayan bir çerçeve sağlamaktadır (Isaac, Zerbe ve Pitt, 2001). Çevrimiçi eğitimimi sürümne, derslerden vazgeçme ve arkadaşlarının (2011), geliştirdikleri içerik ve içeriklerin teminine odaklanan analizlerin ne ölçüde karşılandığının nasıl doğrulanacağını açıklayan bir çerçeve sağlamaktadır (Isaac, Zerbe ve Pitt, 2001). Çevrimiçi eğitimimi sürümne, derslerden𫖮me ve arkadaşlarının (2011), geliştirdikleri içerik ve içeriklerin teminine odaklanan analizlerin ne ölçüde karşılandığının nasıl doğrulanacağını açıklayan bir çerçeve sağlamaktadır (Isaac, Zerbe ve Pitt, 2001). Çevrimiçi eğitimimi sürümne, derslerden vazgeçme ve arkadaşlarının (2011), geliştirdikleri içerik ve içeriklerin teminine odaklanan analizlerin ne ölçüde karşılandığının nasıl doğrulanacağını açıklayan bir çerçeve sağlamaktadır (Isaac, Zerbe ve Pitt, 2001). Çevrimiçi eğitimimi sürümne, derslerden vazgeçme ve arkadaşlarının (2011), geliştirdikleri içerik ve içeriklerin teminine odaklanan analizlerin ne ölçüde karşılandığının nasıl doğrulanacağını açıklayan bir çerçeve sağlamaktadır (Isaac, Zerbe ve Pitt, 2001). Çevrimiçi eğitimimi sürümne, derslerden vazgeçme ve arkadaşlarının (2011), geliştirdikleri içerik ve içeriklerin teminine odaklanan analizlerin ne ölçüde karşılandığının nasıl doğrulanacağını açıklayan bir çerçeve sağlamaktadır (Isaac, Zerbe ve Pitt, 2001). Çevrimiçi eğitimimi sürümne, derslerden vazgeçme ve arkadaşlarının (2011), geliştirdikleri içerik ve içeriklerin teminine odaklanan analizlerin ne ölçüde karşılandığının nasıl doğrulanacağını açıklayan bir çerçeve sağlamaktadır (Isaac, Zerbe ve Pitt, 2001). Çevrimiçi eğ
ve kalkülüği nasıl etkilediği, öğrencilerin çevrimiçi kurslar için gerçekçi beklenlere geliştirmelerine yardımcı olacak programlar geliştirilmesinin ilk adımdır.

Bu araştırmada SEOLS-R ölçeğinin kuramsal temelinin dayandığı Beklenti Kuramı, Vroom’un (1964) oluşmasına temellenmektedir. Daha sonra Porter ve Lowler (1968) tarafından çaba-performans ilişkisi üzerine bir model geliştirilmiştir. Bu model genellikle Beklenti Kuramı olarak adlandırılınmakla birlikte, VIE kuramı olarak da bilinenmektedir ve V değer (valence) ve I araçsallık (instrumentality) ve E bekleni (expectancy) şeklinde bir sralamaya açıklanmaktadır (Isaac ve ark., 2001). Vroom’a (1964) göre valance, bir bireyin çeşitli sonuçlar arasında seçim yapmasına yardımcı eden zihinsel canlılandırma odaklı bir değerdir (Anık, 2007). Araçsallık ise, ara amaçların olduğu durumlar için daha uygun düşen, bir öülü ülde ulaşabilme için başka arama araçlarını odaklanan bir kavramdır. Anık’a (2007) göre araçsallık, kişinin tatinın olacagına inanındaki bir sonuca belirli birtakım araçlar dayasayı ulaşabileceği inancını içermi, inanca veya kanaatir. Beklenti Kuramını son temel bileşeni olan beklen kavram ise, bir bireyin bir amaç ulaşabilmek için kendisinde geliştiği işel öngörü, inanca veya kanaatir. Beklenti Kuramında, bir motivasyon ve davranış kuramıdır. Bu araştırma ele alınan SEOLS-R ölçeği ile Beklenti Kuramının iliskisi, çevrimiçi eğitime ilişkin beklenlere karşılanması durumunda, öğrencilerin çevrimiçi programlarda devam etme ve mezun olma olasılıklarının bir yüksek olduğu varsayımından gelmektedir (Harris ve ark., 2011). Dolayısıyla SEOLS-R ölçeği, öğrencilerin çevrimiçi derslere devam etmeleri üzerinde etkisi olabilecek yapılar nicel olarak ölçebilecek yapıda güvenilir bir ölçme aracıdır (Harris ve ark., 2011).

Pek çok çalışmanın çevrimiçi uzaktan eğitim programlarını terk etme nedenlerini ele almış ama çok az sayıda çalışmada öğrenci beklenlere odaklı terk etme arasındaki inçlenimi vurgulayan Harris ve arkadaşları (2011), alanyazında bu boşluğu dolduracak sistemik bir yönteme ihtiyaç olduğunu dikkati çekmiştir. Tam bu noktada, buttons biciminde bir sıralama oluşturulmuştur. Bu sıralama odaklanan beklenlere odaklı programa devam etme odaklı bir sıralamadır. Harris ve arkadaşları (2011) tarafından SEOLS-R ölçeği geliştirilmiştir. Alanyazında bu amaçla geliştirilmiş başka bir öğrenci beklentileri ile terk etme arasındaki ilişki, çevrimiçi eğitime ilişkin beklenlere karşılanması durumunda, önvurucu olabilecek bir öğrenci beklentileri ölçeğinin kuramsal temelleri Beklenti Kuramına dayanmaktadır. Beklenti Kuramına dayanarak, öğrencilerin çevrimiçi beklentilerine inancını biçimlendirerek, onun davranışının şekillendirilebilirliğini göstermektedir. Beklenti Kuramının son temel bileşeni olan beklen kavram ise, bir bireyin bir amaç ulaşabilmek için kendisinde geliştiği işel öngörü, inanca veya kanaatir. Beklenti Kuramında, bir motivasyon ve davranış kuramıdır. Bu araştırma ele alınan SEOLS-R ölçeği ile Beklenti Kuramının iliskisi, çevrimiçi eğitime ilişkin beklenlere karşılanması durumunda, öğrencilerin çevrimiçi programlarda devam etme ve mezun olma olasılıklarının bir yüksek olduğu varsayımından gelmektedir (Harris ve ark., 2011). Dolayısıyla SEOLS-R ölçeği, öğrencilerin çevrimiçi derslere devam etmeleri üzerinde etkisi olabilecek yapılar nicel olarak ölçebilecek yapıda güvenilir bir ölçme aracıdır (Harris ve ark., 2011).

2. Yöntem

Bu araştırma kültürlerarası bir ölçek uygulama çalışması niteliği taşımaktadır. Bu amaçla özgün şekli İngilizce dilinde geliştirilen ölçekin Türkçe’ye uyarlanması amaçlanmıştır. Bu uygulama sürecinde Deniz (2007) tarafından sralanılan ölçek uygulama adımlarından bu çalışma için uygun olanları, sralama gerçekleştirilmeden izlenmiştir. Söz konusu aşamalar bu bölüm altında açıklanmıştır.

2.1. Katılımcılar

SEOLS-R ölçeğinin uygulama sürecinde veri toplanan grup, Amasya Üniversitesi’nin uzaktan eğitim programlarıyla devam etmektedir. Bu öğrenciler Pedagojik Formasyon Eğitimi Sertifika Programına kayıtlı öğrencilerdir ve teorik dersle programına devam etmekte olan 411 öğrenciden oluşmaktadır. Bu öğrenciler Pedagojik Formasyon Eğitimi Sertifika Programına kayıtlı öğrencilere verdikleri cevapların gizli kalacağı, verilerin araştırma amacı dışında kullanılmayacağı, sadece beklenti ölçmeye odaklanır. SEOLS-R ölçeği, öğrencilere çevrimiçi derslere devam etmeleri üzerinde etkisi olabilecek yapılar nicel olarak ölçebilecek yapıda güvenilir bir ölçme aracıdır (Harris ve ark., 2011).

SEOLS-R ölçeğinin uygulama sürecinde veri toplanan grup, Amasya Üniversitesi’nin uzaktan eğitim programlarıyla devam etmektedir. Bu öğrenciler Pedagojik Formasyon Eğitimi Sertifika Programına kayıtlı öğrencilerdir ve teorik dersle programına devam etmekte olan 411 öğrenciden oluşmaktadır. Bu öğrenciler Pedagojik Formasyon Eğitimi Sertifika Programına kayıtlı öğrencilere verdikleri cevapların gizli kalacağı, verilerin araştırma amacı dışında kullanılmayacağı, sadece beklenti ölçmeye odaklanır. SEOLS-R ölçeği, öğrencilere çevrimiçi derslere devam etmeleri üzerinde etkisi olabilecek yapılar nicel olarak ölçebilecek yapıda güvenilir bir ölçme aracıdır (Harris ve ark., 2011).

2.2. Özgün Ölçeğe İlişkin Bilgiler

SEOLS-R ölçeğinin uygulama sürecinde veri toplanan grup, Amasya Üniversitesi’nin uzaktan eğitim programlarıyla devam etmektedir. Bu öğrenciler Pedagojik Formasyon Eğitimi Sertifika Programına kayıtlı öğrencilerdir ve teorik dersleri tamamen çevrimiçi olarak almaktaadır. Öğrenciler SEOLS-R ölçeğini ve demografik bilgilerini oluşturan kısa anketi çevrimiçi ortamda cevaplamışlardır.

Bu çalışma, beklenlere odaklı terk etme odaklı bir öğrenci beklentileri ölçeğinin kuramsal temelleri Beklenti Kuramına dayanmaktadır. Beklenti Kuramına dayanarak, öğrencilerin çevrimiçi beklentilerine inancını biçimlendirerek, onun davranışı şekillendirilebilirliğini göstermektedir. Beklenti Kuramının son temel bileşeni olan beklen kavram ise, bir bireyin bir amaç ulaşabilmek için kendisinde geliştiği işel öngörü, inanca veya kanaatir. Beklenti Kuramında, bir motivasyon ve davranış kuramıdır. Bu araştırma ele alınan SEOLS-R ölçeği ile Beklenti Kuramının iliskisi, çevrimiçi eğitime ilişkin beklentilerinin karşılanması durumunda, öğrencilerin çevrimiçi programlarda devam etme ve mezun olma olasılıklarının bir yüksek olduğu varsayımından gelmektedir (Harris ve ark., 2011). Dolayısıyla SEOLS-R ölçeği, öğrencilerin çevrimiçi derslere devam etmeleri üzerinde etkisi olabilecek yapılar nicel olarak ölçebilecek yapıda güvenilir bir ölçme aracıdır (Harris ve ark., 2011).
ilk sürümü 44 madde halinde hazırlanan ölçme aracı konu olarak birçok sahiplerle e-mail yoluyla iletişime geçilerek ölçek uyarlanabilmesini için gerekli assistantsı hazırlanmıştır. İkinci aşamada, ölçek çeviri işlemi gerçekleştirilmiştir. Ölçek çeviri işlemlerinin gerçekleştirilmesinde Bürsin (1970) tarafından önerilen işlemleri takip edilmiştir. Görünüş çevirisinin konusunun işleyişinin desenleri de uygulamaları ve Cronbach alfa iç tedarikli katsayıları hesaplanmıştır. Görünüş çevirisinin konusunun işleyişinin desenleri de uygulamaları ve Cronbach alfa iç tedarikli katsayıları hesaplanmıştır. Görünüş çevirisinin konusunun işleyişinin desenleri de uygulamaları ve Cronbach alfa iç tedarikli katsayıları hesaplanmıştır. Görünüş çevirisinin konusunun işleyişinin desenleri de uygulamaları ve Cronbach alfa iç tedarikli katsayıları hesaplanmıştır. Görünüş çevirisinin konusunun işleyişinin desenleri de uygulamaları ve Cronbach alfa iç tedarikli katsayıları hesaplanmıştır. Görünüş çevirisinin konusunun işleyişinin desenleri de uygulamaları ve Cronbach alfa iç tedarikli katsayıları hesaplanmıştır. Görünüş çevirisinin konusunun işleyişinin desenleri de uygulamaları ve Cronbach alfa iç tedarikli katsayıları hesaplanmıştır. Görünüş çevirisinin konusunun işleyişinin desenleri de uygulamaları ve Cronbach alfa iç tedarikli katsayıları hesaplanmıştır. Görünüş çevirisinin konusunun işleyişinin desenleri de uygulamaları ve Cronbach alfa iç tedarikli katsayıları hesaplanmıştır. Görünüş çevirisinin konusunun işleyişinin desenleri de uygulamaları ve Cronbach alfa iç tedarikli katsayıları hesaplanmıştır. Görünüş çevirisinin konusunun işleyişinin desenleri de uygulamaları ve Cronbach alfa iç tedarikli katsayıları hesaplanmıştır. Görünüş çevirisinin konusunun işleyişinin desenleri de uygulamaları ve Cronbach alfa iç tedarikli katsayıları hesaplanmıştır. Görünüş çevirisinin konusunun işleyişinin desenleri de uygulamaları ve Cronbach alfa iç tedarikli katsayıları hesaplanmıştır. Görünüş çevirisinin konusunun işleyişinin desenleri de uygulamaları ve Cronbach alfa iç tedarikli katsayıları hesaplanmıştır. Görünüş çevirisinin konusunun işleyişinin desenleri de uygulamaları ve Cronbach alfa iç tedarikli katsayıları hesaplanmıştır. Görünüş çevirisinin konusunun işleyişinin desenleri de uygulamaları ve Cronbach alfa iç tedarikli katsayıları hesaplanmıştır. Görünüş çevirisinin konusunun işleyişinin desenleri de uygulamaları ve Cronbach alfa iç tedarikli katsayıları hesaplanmıştır. Görünüş çevirisinin konusunun işleyişinin desenleri de uygulamaları ve Cronbach alfa iç tedarikli katsayıları hesaplanmıştır. Görünüş çevirisinin konusunun işleyişinin desenleri de uygulamaları ve Cronbach alfa iç tedarikli katsayıları hesaplanmıştır. Görünüş çevirisinin konusunun işleyişinin desenleri de uygulamaları ve Cronbach alfa iç tedarikli katsayıları hesaplanmıştır. Görünüş çevirisinin konusunun işleyişinin desenleri de uygulamaları ve Cronbach alfa iç tedarikli katsayıları hesaplanmıştır. Görünüş çevirisinin konusunun işleyişinin desenleri de uygulamaları ve Cronbach alfa iç tedarikli katsayıları hesaplanmıştır. Görünüş çevirisinin konusunun işleyişinin desenleri de uygulamaları ve Cronbach alfa iç tedarikli katsayıları hesaplanmıştır. Görünüş çevirisinin konusunun işleyişinin desenleri de uygulamaları ve Cronbach alfa iç tedarikli katsayıları hesaplanmıştır. Görünüş çevirisinin konusunun işleyişinin desenleri de uygulamaları ve Cronbach alfa iç tedarikli katsayıları hesaplanmıştır. Görünüş çevirisinin konusunun işleyişinin desenleri de uygulamaları ve Cronbach alfa iç tedarikli katsayıları hesaplanmıştır. Görünüş çevirisinin konusunun işleyişinin desenleri de uygulamaları ve Cronbach alfa iç tedarikli katsayıları hesaplanştırılmıştır. Daha sonra sonra araştırma konusuna aina olanın anacak İngilizce diline hakkın başka bir araştırma tarafından gerekli çevirsisi oluşturmaktadır. Bu süreç sonunda geri çeviri işlemi gerçekleştirilmiştir ve özgün ölçüğe tabi maddelerin aynı olduğu görülmüştür. Daha sonra sonra araştırma konusuna aina olanın anacak İngilizce diline hakkın başka bir araştırma tarafından gerekli çevirsisi oluşturmaktadır. Bu süreç sonunda geri çeviri işlemi gerçekleştirilmiştir ve özgün ölçüğe tabi maddelerin aynı olduğu görülmüştür. Daha sonra sonra araştırma konusuna aina olanın anacak İngilizce diline hakkın başka bir araştırma tarafından gerekli çevirsisi oluşturmaktadır. Bu süreç sonunda geri çeviri işlemi gerçekleştirilmiştir ve özgün ölçüğe tabi maddelerin aynı olduğu görülmüştür. Daha sonra sonra araştırma konusuna aina olanın anacak İngilizce diline hakkın başka bir araştırma tarafından gerekli çevirsisi oluşturmaktadır. Bu süreç sonunda geri çeviri işlemi gerçekleştirilmiştir ve özgün ölçüğe tabi maddelerin aynı olduğu görülmüştür. Daha sonra sonra araştırma konusuna aina olanın anacak İngilizce diline hakkın başka bir araştırma tarafından gerekli çevirsisi oluşturmaktadır. Bu süreç sonunda geri çeviri işlemi gerçekleştirilmiştir ve özgün ölçüğe tabi maddelerin aynı olduğu görülmüştür. Daha sonra sonra araştırma konusuna aina olanın anacak İngilizce diline hakkın başka bir araştırma tarafından gerekli çevirsisi oluşturmaktadır. Bu süreç sonunda geri çeviri işlemi gerçekleştirilmiştir ve özgün ölçüğe tabi maddelerin aynı olduğu görülmüştür. Daha sonra sonra araştırma konusuna aina olanın anacak İngilizce diline hakkın başka bir araştırma tarafından gerekli çevirsisi oluşturmaktadır. Bu süreç sonunda geri çeviri işlemi实施细则 Bennettlerin altında şu yöntem iken, davranışsal faktör analizi ise var olan bir
teorik yapının farklı bir örneklendeme ya da kültürde benzer olup olmadığını test etmek amacıyla kullanılan çok değişkenli istatistiksel bir yöntemdir (Brown, 2015). Açıklamacı faktör analizinde ölçünün faktör yapısı bilinmekte, doğrulayıcı faktör analizinde bilinen bir faktör yapısı farklı bir kültürde ya da örneklendeme test edilerek benzer olup olmadığı belirlenmeye çalışılmaktadır. Bu çalışmadada benzer şekilde, SEOLS-R’nin, Harris ve arkadaşları (2011) tarafından belirlenen faktör yapısının Türk kültüründe benzer olup olmadığını belirleyebilmek amacıyla doğrulayıcı faktör analizi kullanılmıştır.

Bu çalışmada doğrulayıcı faktör analizinin yürütülmesinde Mplus (Muthén ve Muthén, 2011) programından yararlanılmıştır. Katılmaları SEOLS-R maddelerine verdikleri cevaplara orantı edilen ve varyansa göre düzeltilmiş üçgen karelerin toplamın tam egrisi (Weighted Least Squares Means and Variance Adjusted - WLSMV) kullanılarak analiz edilmiştir. Araştırmacılar, doğrulayıcı faktör analizinde ilkleri kullanılan maksimum olasılık belirlemesi tamin yöntemi, normal dağılım göstermesini ve 2’sinin altı olması, SEOLS da bilinmektedir (Cangur ve Ercan, 2011).

Araştırma analizinde en küçük kareler tahmin yöntemi kullanılmıştır. Doğrulayıcı faktör analizinde test edilen modelin model veri uyumlu ve örneklenebilir yüklüklere uyum])** belirtmektedir (Finney ve DiStefano, 2006). Alanyazında WLSMV tahmin yönteminin bir sonraki ve sız konusunda)** belirtilen indeksler için mükemmel uyum değerleri ise χ²/sd orani için 2’nin altı, CFI ve TLI için .95 ve üstü, RMSEA için .05 ve altı olarak belirtilmektedir (Hu ve Bentler, 1999; Kline, 2011; Marsh, 1990, ve ark., 1988; McDonald ve Marsh, 1990).

Veriler çevrimiçi ortamda toplandığı için, SEOLS-R’nin güvenirliği ise madde toplam korelasyonları, Cronbach Alfa iç tutarlık katsayıları ve birleşik güvenirlik katsayıları araciyla belirlenmiştir.

3. Bulgular

Bu kısımda önce SEOLS-R ölçeğinin Türkçe formuna ait yapı geçerliği bulguları, daha sonra güvenirlik bulguları sunulmuştur.

3.1. Geçerlik Bulguları

SEOLS-R’nin Harris ve arkadaşları (2011) tarafından önerilen yedi faktörlü yapının Türk kültürünü için de geçerli olup olmadığını anaalınlaması için doğrulayıcı faktör analizi gerekliliştır. Doğrulayıcı faktör analizi gereklilişirmedi çünkü, modelin tamamlanabilmesi amacıyla her bir maddenin faktör varyansları 1’e sabitlenmemiş ve faktörlerin birbirine ilişkili olması için verilmştir. Bunun sebebi, ölçekteki her bir maddenin mutlak ölçülenmesine fırsat sunmak ve ölçük belirsizliğini önlemektir. Brown’a (2015) göre faktör varyanslarını 1’e sabitlemek, modelin tamamlanmaktadır ve parametre tahminleri girdi matrisi mükemmel bir şekilde yeniden üretmeyi sağlamaktadır. Gereklilişirmedi doğrulayıcı faktör analizi sonucunda, test edilen modelin veri uyumunu� kabul edilebilir düzeyde olduğu görülmuştur [χ²(839): 1865.877, χ²/sd: 2.224, CFI: .938, RMSEA: .06].

Bu çalışmada doğrulayıcı faktör analizinin yürütülmesinde Mplus (Muthén ve Muthén, 2011) programından yararlanılmıştır. Katılmaları SEOLS-R maddelerine verdikleri cevaplara orantı edilen ve varyansa göre düzeltilmiş üçgen karelerin toplamın tam egrisi (Weighted Least Squares Means and Variance Adjusted - WLSMV) kullanılarak analiz edilmiştir. Araştırmacılar, doğrulayıcı faktör analizinde ilkleri kullanılan maksimum olasılık belirlemesi tamin yöntemi, normal dağılım göstermesini ve 2’sinin altı olması, SEOLS da bilinmektedir (Cangur ve Ercan, 2011).

Araştırma analizinde en küçük kareler tahmin yöntemi kullanılmıştır. Doğrulayıcı faktör analizinde test edilen modelin model veri uyumlu ve örneklenebilir yüklüklere uyum)** belirtmektedir (Finney ve DiStefano, 2006). Alanyazında WLSMV tahmin yönteminin bir sonraki ve sız konusunda)** belirtilen indeksler için mükemmel uyum değerleri ise χ²/sd orani için 2’nin altı, CFI ve TLI için .95 ve üstü, RMSEA için .05 ve altı olarak belirtilmektedir (Hu ve Bentler, 1999; Kline, 2011; Marsh, 1990, ve ark., 1988; McDonald ve Marsh, 1990).

Veriler çevrimiçi ortamda toplandığı için, SEOLS-R’nin güvenirliği ise madde toplam korelasyonları, Cronbach Alfa iç tutarlık katsayıları ve birleşik güvenirlik katsayıları araciyla belirlenmiştir.

3. Bulgular

Bu kısımda önce SEOLS-R ölçeğinin Türkçe formuna ait yapı geçerliği bulguları, daha sonra güvenirlik bulguları sunulmuştur.

3.1. Geçerlik Bulguları

SEOLS-R’nin Harris ve arkadaşları (2011) tarafından önerilen yedi faktörlü yapının Türk kültürünü için de geçerli olup olmadığını anaalınlaması için doğrulayıcı faktör analizi gerekliliştir. Doğrulayıcı faktör analizi gereklilişirmedi çünkü, modelin tamamlanabilmesi amacıyla her bir maddenin faktör varyansları 1’e sabitlenmemiş ve faktörlerin birbirine ilişkili olması için verilmştir. Bunun sebebi, ölçekteki her bir maddenin mutlak ölçülenmesine fırsat sunmak ve ölçük belirsizliğini önlemektir. Brown’a (2015) göre faktör varyanslarını 1’e sabitlemek, modelin tamamlanmaktadır ve parametre tahminleri girdi matrisi mükemmel bir şekilde yeniden üretmeyi sağlamaktadır. Gereklilişirmedi doğrulayıcı faktör analizi sonucunda, test edilen modelin veri uyumunu� kabul edilebilir düzeyde olduğu görülmuştur [χ²(839): 1865.877, χ²/sd: 2.224, CFI: .938, RMSEA: .06].
TLI: .934, RMSEA: .055, RMSEA %90 Güven Aralığı Alt Sınır: .051, RMSEA %90 Güven Aralığı Üst Sınır: .058]. Bu uyum değerleri, herhangi bir modifikasyona gerek kalmadan tek seferde elde edilen uyum değerleridir.

Tablo 1. Doğrulayıcı faktör analizi sonuçları

TY (Faktör 1)	λ	S.H.	Z	R²
M1	.779	.036	21.940	.607
M2	.768	.033	23.258	.591
M3	.908	.026	34.378	.825
M4	.894	.020	44.473	.800
M5	.883	.030	29.826	.780
M6	.943	.018	52.576	.890
M7	.898	.026	33.961	.806
ÇDÖB (Faktör 2)				
M8	.673	.047	14.312	.453
M9	.783	.044	17.784	.613
M10	.740	.040	18.362	.548
M11	.774	.045	17.272	.599
M12	.718	.041	17.400	.516
M13	.782	.037	20.851	.611
M14	.898	.023	39.316	.807
M15	.946	.026	36.633	.895
M16	.524	.049	10.682	.275
DİB (Faktör 3)				
M17	.693	.045	15.232	.480
M18	.789	.037	21.076	.622
M19	.636	.036	17.588	.405
M20	.578	.038	15.081	.334
M21	.760	.029	26.498	.577
M22	.773	.032	24.328	.597
M23	.798	.028	28.338	.637
SEB (Faktör 4)				
M24	.808	.023	35.243	.653
M25	.819	.064	12.827	.671
M26	.856	.017	49.221	.732
M27	.908	.017	53.869	.825
M28	.845	.021	39.956	.714
DGB (Faktör 5)				
M29	.764	.043	17.829	.584
M30	.792	.033	23.854	.627
M31	.854	.030	28.387	.730
M32	.818	.043	18.997	.669
M33	.867	.034	25.171	.752
BBÇÖK (Faktör 6)				
M34	.785	.030	26.339	.616
M35	.773	.029	26.961	.598
M36	.696	.034	20.233	.484
M37	.510	.048	10.670	.260
M38	.967	.013	72.752	.936
M39	.940	.015	64.782	.884
DISDY (Faktör 7)				
M40	.846	.022	38.895	.715
M41	.887	.016	54.929	.787
M42	.916	.014	63.437	.838
M43	.835	.022	37.598	.698

Not: TY: Teknoloji yeterliliği, ÇDÖB: Çevrimiçi ders öğreticisinden beklentiler, DİB: Ders içeriğinden beklentiler, SEB: Sosyal etkileşim beklentiler, DGB: Ders gezinimi beklentiler, BBÇÖK: Başarılı bir çevrimiçi öğrenmeyi kolaylaştırıcılar, DISDY: Ders iletim sistemine dair yeterlilikler. Tüm kritik değerler en az p<.001 düzeyinde anlamlıdır.
Tablo 1’de doğrulayıcı faktör analizi sonucu elde edilen madde faktör yük değerleri, madde faktör yük değerlerinin standart hataları, kritik değerler ve R^2 değerleri görülmektedir. R^2 değerleri test edilen model tarafından açıklanan maddedeki varyans miktarıdır (Kelloway, 2015).

Tablo 1’de gördüğü gibi, teknoloji yeterliliği alt boyutunda standardize edilmiş madde faktör yük değerleri .78 ile .94 arasında değişirken, çevrimiçi ders öğreticisinden bekleniler alt boyutunda .67 ile .95, ders içeriğinden bekleniler alt boyutunda .58 ile .80, sosyal etkileşim beklenti alt boyutunda .81 ile .91, dersizinimi beklentileri alt boyutunda .76 ile .87, başarılı bir çevrimiçi öğrenmeye kolaylaştıracılar alt boyutunda .51 ile .97, ders iletim sisteminde dair yeterlilikler alt boyutunda .84 ile .92 arasında değişmektedir. Test edilen 7 faktörlü modele ilişkin tüm z değerleri en az p<.001 düzeyinde anlamlıdır. Aynı zamanda R^2 değerlerinin de .26 ile .94 arasında değiştiği görülmektedir. Bu bulgular bir bütün olarak değerlendirildiğinde, ölçeğin yedi faktörlü yapı için iyi bir uyum sergilediğine işaret etmektedir. SEOLS-R ölçeğinin Türkçe eşdeğer formunun faktör yükleri bütüncül olarak Şekil 1’de sunulmuştur.

3.2. Güvenirlik Bulguları

SEOLS-R’nin yapı geçerliğinin doğrulanmasının ardından, güvenirliği ise madde toplam korelasyonları, Cronbach Alfa iç tutarlılık katsayıları ve birleşik güvenirlik katsayılarıyla incelenmiştir. Tablo 2’de her bir alt boyutun madde toplam korelasyonları ve Cronbach Alfa iç tutarlılık katsayıları görülmektedir.

Tablo 2. SEOLS-R madde toplam korelasyonları ve Cronbach Alfa iç tutarlılık katsayıları

TY (Faktör 1)	M1	M2	M3	M4	M5	M6	M7	M8	M9	M10	M11	M12	M13	M14	M15	M16
.59	.60	.71	.69	.65	.70	.61	.86	.51	.51	.54	.49	.56	.55	.51	.33	
Cronbach Alfa (α)	.86															

ÇDÖB (Faktör 2)	M8	M9	M10	M11	M12	M13	M14	M15	M16
.40	.51	.51	.54	.49	.56	.55	.51	.33	.77

DİB (Faktör 3)	M17	M18	M19	M20	M21	M22	M23
.40	.53	.48	.47	.63	.55	.64	.79
Cronbach Alfa (α)	.79						

SEB (Faktör 4)	M24	M25	M26	M27	M28
.68	.20	.74	.80	.70	.83
Cronbach Alfa (α)	.83				

ÇÖK (Faktör 5)	M29	M30	M31	M32	M33	M34	M35	M36	M37	M38	M39	M40	M41	M42	M43
.46	.44	.46	.34	.61	.56	.69	.78	.83	.69	.88					
Cronbach Alfa (α)	.88														

DİSDY (Faktör 6)	M40	M41	M42	M43
.69	.78	.83	.69	.88

Not: TY: Teknoloji yeterliliği, ÇDÖB: Çevrimiçi ders öğreticisinden bekleniler, DİB: Ders içeriğinden bekleniler, SEB: Sosyal etkileşim beklenileri, DGB: Dersizinimi beklenileri, BBÇÖK: Başarılı bir çevrimiçi öğrenmeye kolaylaştırıcılar, DİSDY: Ders iletim sisteminde dair yeterlilikler, r= madde toplam korelasyonları.
Şekil 1. SEOLS-R ölçeğinin Türkçe eşdeğer formunun faktör yükleri
Tablo 2’de görüldüğü gibi teknoloji yeterliliği alt boyutu madde toplam korelasyonları .59 ile .71 arasında, çevrimiçi ders ögreticisinden beklenliler alt boyutu .33 ile .66, ders içeriğinden beklenliler alt boyutu .40 ile .64 arasında, sosyal etkileşim beklenlileri alt boyutu .20 ile .80, ders gezinimi beklenlileri alt boyutu .42 ile .63 arasında, başarılı bir çevrimiçi öğrenmeyi kolaylaştırıcılar alt boyutu .34 ile .61, ders iletim sistemine dair yeterlilikler alt boyutu .69 ile .83 arasında değişmektedir. Araştırmacılar madde toplam korelasyonlarının en düşük .20 ve üzerinde olması önermektedir (Büyüköztürk, 2010; Nunnally ve Bernstein, 1994). Madde toplam korelasyonlarının pozitif ve yüksek olması, maddenin benzer davranışları öne çıkardığı ve testin iç tutarlığının yüksek olduğu anlamına gelmektedir (Aşı, 2017). Bu bağlamda, SEOLS-R alt boyutlarının madde toplam korelasyonlarından incelendiğinde tüm maddelerin yerde dizeyde madde toplam korelasyonuna sahip olduğu söylenebilir. SEOLS-R alt boyutlarının iç tutarlılık katsayları incelendiğinde teknoloji yeterliliği alt boyutunun .86, çevrimiçi ders ögreticisinden beklenliler alt boyutunun .77, ders içeriğinden beklenliler alt boyutunun .79, sosyal etkileşim beklenlileri alt boyutunun .83, ders gezinimi beklenlileri alt boyutunun .74, başarılı bir çevrimiçi öğrenmeyi kolaylaştırıcılar alt boyutunun .74, ders iletim sistemine dair yeterlilikler alt boyutunun .88 Cronbach Alfa iç tutarlık katsayısına sahip olduğu görülmüştür. Genel bir kural olarak araştırmacılar .70 ve üzerinde alınarak analiz edilmişlerdir (DeVellis, 2012; Nunnally ve Bernstein, 1994). Bu bağlamda, ölçekin tüm alt boyutlarının araştırma amaçlarıyla kullanılabileceği söylenebilir.

SEOLS-R ölçeğinin toplam puan ve faktörler arasındaki korelasyon değerleri Tablo 3’de sunulmuştur.

Tablo 3. SEOLS-R ölçeğinin toplam puan ve faktörler arasındaki korelasyon değerleri (N=411)

Faktör isimleri	TY	ÇDÖB	DİB	SEB	DGB	BBÇÖK	DİSDY	Toplam Puan
TY	.870**							.467**
ÇDÖB	.262*	.769**						.641*
DİB	.077	.432*	.722**					.741*
SEB	.044	.304*	.620*	.848**				.680*
DGB	.192*	.483*	.316*	.321*	.820**			.568*
BBÇÖK	.143*	.206*	.351*	.359*	.286*	.793**		.637*
DİSDY	.457**	.297*	.330*	.211*	.232*	.310*	.872**	.652*

*Note: TY: Teknoloji yeterliliği, ÇDÖB: Çevrimiçi ders ögreticisinden beklenliler, DİB: Ders içeriğinden beklenliler, SEB: Sosyal etkileşim beklenlileri, DGB: Ders gezinimi beklenlileri, BBÇÖK: Başarılı bir çevrimiçi öğrenmeyi kolaylaştırıcılar, DİSDY: Ders iletim sistemine dair yeterlilikler

Table 3 incelendiğinde teknoloji yeterliliği (TY) ve ders gezinimi beklenlileri (DGB) faktörlerinin toplam puanları ile orta düzeyde ilişki gösterdiği, diğer faktörler ile toplam puanlar arasında ise yüksek düzeyde bir ilişki olduğu görülmektedir. Yapılar arasındaki korelasyonlar incelendiğinde ise tüm korelasyonların pozitif yönlü olduğu, sadece ders içeriğinden beklenliler (DİB) ve sosyal etkileşim beklenlileri (SEB) faktörleri ile teknoloji yeterliliği arasındaki ilişkilerin istatistiksel olarak anlamlı olmadığını, diğer tüm ilişkilerin ise p<.01 düzeyinde anlamlı olduğu bulgusuna ulaşmıştır. Tablo 3’de görülen korelasyon matrisinin diyagonal değişikleri ise ortalama açıklanan varyansın karekökünde ifade edilmektedir. Forrell ve Larcker (1981) ayırt edici değerin, her bir algoritma orat扔a açıklanan varyansın karekökünde, o yapı ve diğer yapılar arasındaki korelasyonların iyi bir uyum olmadığını uyandırıyor. Buradan hata eketme Tablo 3 incelendiğinde, tüm yapılarla ilişkinin orat扔a açıklanan varyansın karekökünde, o yapı ve diğer yapılar arasındaki korelasyonlardan daha büyük olmasıyla sağlanabileceğini ifade edilmektedir. Buradan hareketle Tablo 3 incelendiğinde, tüm yapılarla ilişkinin orat扔a açıklanan varyansın karekökünde, o yapı ve diğer yapılar arasındaki korelasyonlardan daha büyük olması nedeniyle ayırt edici değerin sağlandığı söylenebilir.

SEOLS-R ölçeğinin faktörlerine ilişkin orat扔a açıklanan varyans (average variance explained) ve birleşik güvenirlik katsayları (composite reliability coefficient) Tablo 4’de sunulmuştur.

Tablo 4. SEOLS-R ölçeğinin faktörlerine ilişkin orat扔a açıklanan varyans ve birleşik güvenirlik katsayları

Faktör isimleri	Ortalama Açıklanan Varyans	Birleşik Güvenirlik Katsayısı
TY	.757	.956
ÇDÖB	.591	.927
DİB	.522	.883
SEB	.719	.927
DGB	.672	.911
BBÇÖK	.629	.908
DİSDY	.760	.927

*Note: TY: Teknoloji yeterliliği, ÇDÖB: Çevrimiçi ders ögreticisinden beklenliler, DİB: Ders içeriğinden beklenlileri, SEB: Sosyal etkileşim beklenlileri, DGB: Ders gezinimi beklenlileri, BBÇÖK: Başarılı bir çevrimiçi öğrenmeyi kolaylaştırıcılar, DİSDY: Ders iletim sistemine dair yeterlilikler
Tablo 4 incelendiğinde, ortalama açıklandan varyans değerlerinin .522 ile .760 aralığında değiştiği görülmektedir. Yakın tanılaşımlar için Fornell ve Larcker’in (1981) önerdiği, ortalama açıklandan varyans değerlerinin ve her bir maddeyde ilişkin faktör yüklerinin .50’den büyük olması kriterleri temel alındığında, Tablo 2’de görülen faktör yükleri ve Tablo 4’de görülen ortalama açıklandan varyans değerlerinin tamamının .50’den büyük olduğu ve buradan harekete de yakışama geçerliğinin sağlandığı söylenebilir. Yine Tablo 4’de görüldüğü üzere birleşik güvenilirlik katsayları, .883 ile .956 arasında değişmektedir. Bu değerler Bagozzi ve Yi (1988) tarafından .60 olarak belirlenen kritik değeri aştığı için yapı güvenilirliğinin sağlandığı söylenebilir. Yaptı geçerliği ve güvenilirliği sağlanmasının, uyarılan SEOLS-R ölçeğinin geçerli ve güvenilir olduğu anlamına gelmektedir. Geçerlik ve güvenilirlik çalışmaları yapılarak son şekli verilen SEOLS-R ölçeğinin Türkçe formu Ek 1’de sunulmuştur.

4. Sonuçlar ve Öneriler

Bu araştırmada Harris ve arkadaşları (2011) tarafından geliştirilen SEOLS-R ölçeğinin Türk kültürüne uyarlanmasını yapmıştır. Ölçeğin önerilen yedi faktörlü yapısının Türk kültürü için de geçerli olup olmadığı sınanmış, elde edilen bulgular neticesinde kültürel uyumun olduğuna ve SEOLS-R’nin Türkçe araştırmalarda bir veri toplama aracı olarak kullanılabileceğini karar vermiştir. Ölçeğin tüm boyutları Şekil 2’de bütüncül olarak ortaya konmuştur.

![SEOLS-R'nin faktör yaplarının şematik gösterimi](image)

SEOLS-R ölçeğinin uyum iyiliği indeksleri incelendiğinde, $\chi^2(839)$ değeriinin 1865.877, χ^2/sd oranının 2.224, CFI değerinin .938, TLI değerinin .934, RMSEA değerinin .055, RMSEA %90 güven aralığı alt sınır değerinin .051 ve RMSEA %90 güven aralığı üst sınır değerinin ise .058 olduğu görülmüştür. Bu uyum iyiliği indeksleri, Bentler (1990), Schermelleh-Engel, Moosbrugger ve Müller (2003), Bentler ve Bonett (1980) ile Hu ve Bentler’in (1999) çalışmalarda rapor edilen değerlere göre incelendiğinde, kabul edilebilir ve iyi bir uyuma karşılık gelmektedir. Ölçeğin her bir boyutuna ilişkin Cronbach Alfa iç tutarlılık katsayıları ve ölçgen tümüne ilişkin Cronbach Alfa iç tutarlılık katsayısı (.897) incelendiğinde ölçgen güvenilirliğinin da sağlandığı söylenebilir. Özgen ölçgen Cronbach Alfa iç tutarlılık katsayısının da boyutlar bazında .64 ile .95 arasında değiştirilmiştir.

Bu veri toplama aracının zaman zaman farklı kişiselarda kullanılabileceğini ve çoklu bir güvenlilik katsayıının yerine test edilmiş olunacağını belirtmektedir. Ayrıca bu ölçme aracı zamanın belli bir anda toplanan kesitsel verilerle Türk kültürüne uyanan olmasa da, çevrimiçi öğrenme ortamlarına ilişkin öğrenci beklentilerini ölçerek başka değerlendirmelerle ilişkinin belirlenebilmesine amacaçlı kullanılmasıda fayda vardır.

Bu ölçgen uyarlama sürecinin getirildiği katkıının daha anlamlı ve işe vuruk olabilmesi adına bundan sonraçı kişiselarda SEOLS-R ile ölçülecek bireysel beklentilerin, akademik performansla, öğrenmenin kalitsalı, ders tamamlayıcı birakma oranlarıyla ilişkili olabileceğini söylemektedir. Çevrimiçi uzaktan eğitim programlarının yetenecikleri, ders taramaları ve çevrimiçi derslerin öğretmenleri, SEOLS-R'den gelen ölçülerle çevrimiçi derslerin öğrenici beklentilerine yönelik olarak geliştirilmesine ilişkin stratejiler geliştirilebilir.

Yetişkin öğrenciler üzerinde bir ölçke uyarlama çalışması yapılmış olmakla birlikte, bu arastırmamızın bir sınırlığı, daha önce çevrimiçi bir ders alan ya da almayan öğrenciler arasında bir farka bakılmamış olması, bu anlamda karışık bir grup üzerinde geçerlik ve güvenilirlik çalışlarının yürütülmüş olmasıdır. Herleyen
çalışmalarda profesyonel çevrimiçi öğrenenler veya acemiler arasındaki beklenti farklılıklarını da ölçebilmek adına iki ayrı gruba ölçeğin tekrar kullanılması ve hatta psikometrik özelliklerinin yeniden irdelenmesi önerilebilir. Profesyonel anlamda çevrimiçi öğrenme deneyimi olan öğrencilerin beklentileri ile acemi öğrencilerin beklentileri arasındaki farklılıklar belirlenerek grup dinamiklerinin de ayarlanması söz konusu olabilir.

Ulusal alanyazında terk istatistikleri ve bu istatistiklerin terk nedenleriyle kıyaslanması üzerine detaylı bir araştırmaya rastlanmamıştır. Bu ölçek ile nicel taramalar yapılarak daha açıklayıcı verilere ulaşılabilir.

Ek 1. SEOLS-R Ölçeğinin Türkçe Eşdeğer Formu

Ölçeğin Likert Derecelendirilmesi

1: Kesinlikle katılmıyorum, 2: Katılmıyorum, 3: Hem katılıyorum, hem katılmıyorum, 4: Katılıyorum, 5: Kesinlikle katılıyorum

Boyutlar ve Maddeler

Teknoloji Yeterliliği

1. Kendi başıma bilgisayar kullanabilirim.
2. Kendi başıma kelimeler işlem programı (Microsoft Word vb.) kullanabilirim.
3. Kendi başıma, e-posta gönderebilirim.
4. Kendi başıma, e-postaya dosya ekleyebilirim.
5. Kendi başıma, internet kullanabilirim.
6. Kendi başıma, kişisel ihtiyaçlarını için internette araştırmalar yapabilirim.
7. Kendi başıma, derslerle (ödev, araştırma vb.) ilgili internet aramaları yapabilirim.

Çevrimiçi Ders Öğreticisinden Beklentiler

8. Öğretim elemanının, dersin hedeflerini açıkça belirtmesini beklerim.
9. Öğretim elemanının, benden beklentileri açıkça belirtmesini beklerim.
10. Öğretim elemanının, dersin gereksinimlerini daha önceden belirlenmiş zaman aralıklarını dikkate alarak duyurması beklerim.
11. Öğretim elemanının, ödevlerimi değerlendirme yapıcı geribildirimler vermesini beklerim.
12. Öğretim elemanının, tartışma forumlarına yeterli derecede katılmasını beklerim.
13. Öğretim elemanının, çevrimiçi öğrenme ortamlarının kullanılmaması konusunda teşvik etmesini beklerim.
14. Öğretim elemanının, çevrimiçi ortamların uygun davranışı sorgulamasını beklerim.
15. Öğretim elemanının, çevrimiçi derslerde öğrencilere yanıt verirken uygun davranışlar sergilemesini beklerim.
16. Öğretim elemanının, iletişim bilgilerini öğrencilere paylaşmasını beklerim.

Ders İçeriğinden Beklentiler

17. Çevrimiçi derslerin yüz yüze dersler kadar dikkatli bir biçimde işlenmesini beklerim.
18. Çevrimiçi dersin bana aktif öğrenme olanaklarını sunmasını beklerim.
19. Çevrimiçi dersin bana büyük grup tartışmaları sunmasını beklerim.
20. Çevrimiçi dersin bana küçük grup tartışmaları sunmasını beklerim.
21. Çevrimiçi dersin bana kendimi yansıtmak için olanakları sunmasını beklerim.
22. Çevrimiçi dersin bana teoriyi gerçek hayatla ilişkilendirmek için imkanı sunmasını beklerim.
23. Çevrimiçi derslerin, öğrencilerin dersle ilgili anlamlı tartışmaları yönlendirmesini beklerim.

Sosyal Etkileşim Beklentileri

24. Bu çevrimiçi dersin yeni insanlarla tanışma imkanını sunmasını beklerim.
25. Smif arkadaşlarının yorum yaparken birbirlerine saygıli davranışlarını beklerim.
26. Smif arkadaşlarının çevrimiçi etkileşimlerinin, yüz yüze arkadaşlıkların kadar sık olması beklerim.
27. Çevrimiçi İmsif arkadaşlarının tanımak için, yüz yüze etkileşimde olduğu gibi olanaklara sahip olmayı beklerim.
28. Smif arkadaşlarının çevrimiçi etkileşimler hakkında olumlu hissetmeyi beklerim.
29. Çevrimiçi derslerde gezinmenin kolay olmasını beklertim.
30. Derslerde kullanılan forum isimlerinin açık bir biçimde ifade edilmiş olmasını beklertim.
31. Ders konu başlıklarının açıkça belirtilmiş olmasını beklertim.
32. Ders materyallerini kolayca bulabilmeyi beklertim.
33. Ders yönergelerinin açıkça belirtilmiş olmasını beklertim.
34. Etkili zaman yönetiminin, bu eğitimde başarılı olmamı sağladığını düşünüyorum.
35. Bağımsız bir öğrenen olmanın, bu eğitimde başarılı olmamı sağladığını düşünüyorum.
36. Çevrimiçi derslerin, bu eğitimde başarılı olmamda bana esneklik kazandırdığını düşünüyorum.
37. Bu eğitimde başarılı olmamda ailemin desteğinin önemli olduğunu düşünüyorum.
38. Arkadaş desteğine sahip olmamın, bu eğitimde başarılı olmamı sağladığını düşünüyorum.
39. Olumlu bir aile ortamının, bu eğitimde başarılı olmamı sağladığını düşünüyorum.

Ders iletim sistemine dair yeterlilikler

40. Çevrimiçi ortamda, "mesaj" özelliğini kullanmada yeterliyim.
41. Çevrimiçi ortamda, "ödev yüklemesi" özelliğini kullanmada yeterliyim.
42. Çevrimiçi ortamda, "tartışma forumları" özelliğini kullanmada yeterliyim.
43. Çevrimiçi ortamda, "kaynaklar" özelliğini kullanmada yeterliyim.

Kaynaklar / References

Alış, S. (2017, Nisan). Geçiş ölçeğinin Türkçe’ye uyarlanması: Geçerlilik ve güvenilirlik çalışması. 3. Uluslararası Multidisipliner Avrasya Kongresi’nde sunulan bildiri, Barselona, İspanya.
Amk, C. (2007). Eğiticinin performansını etkileyen faktörler. Bilişim, 43, 133-168.
Arslan, Ö. (2018). Çevrimiçi uzaktan eğitim öğrencilerinin programları terk etme nedenlerinin incelenmesi (Yayılmamış yüksek lisans tezi). Hacettepe Üniversitesi, Eğitim Bilimleri Enstitüsü, Ankara.
Bagozzi, R. P., & Yi, Y. (1988). On the evaluation of structural equation models. *Journal of the Academy of Marketing Science, 16*(1), 74-94.
Beauducel, A., & Herzberg, P. Y. (2006). On the performance of maximum likelihood versus means and variance adjusted weighted least squares estimation in CFA. *Structural Equation Modeling: A Multidisciplinary Journal, 13*(2), 186-203.
Bentler, P. M. (1990). Comparative fit indexes in structural models. *Psychological Bulletin, 107*(2), 238-46.
Bentler, P. M., & Bonett, D. G. (1980). Significance tests and goodness of fit in the analysis of covariance structures. *Psychological Bulletin, 88*(3), 588-606.
Bezerra, L., & Silva, M. (2017). A review of literature on the reasons that cause the high dropout rates in the MOOCS. *Revista Espacios, 38*(5). Retrieved November 30, 2019 from http://www.revistaespacios.com/a17v38n05/a17v38n05p11.pdf
Brislin, R. W. (1970). Back-translation for cross-cultural research. *Journal of Cross-Cultural Psychology, 1*(3), 185-216.
Brown, T. A. (2015). Confirmatory factor analysis for applied research. New York: Guilford Press.
Büyükoztürk, Ş. (2010). *Sosyal bilimler için vert analizi el kitabı* (22. baskı). Ankara: Pegem Akademi.
Cangur, S., & Erkan, I. (2015). Comparison of model fit indices used in structural equation modeling under multivariate normality. *Journal of Modern Applied Statistical Methods, 14*(1), 152-167.
Deniz, K. Z. (2007). Psikolojik ölçme aracı uyarlama. *Ankara Üniversitesi Eğitim Bilimleri Fakültesi Dergisi, 40*(1), 1-16.
DeVellis, R. F. (2012). *Scale development: Theory and applications* (3rd ed.). London: SAGE Publications.
Finney, S. J., & DiStefano, C. (2006). Nonnormal and categorical data in structural equation. *Structural Equation Modeling: A Second Course* (In G. R. Hancock & R. O. Mueller (Eds.), (pp. 269-314). Greenwich, CT: Information Age Publishing.
Fornell, C., & Larcker, D. F. (1981). Structural equation models with unobservable variables and measurement error. *Journal of Marketing Research, 18*(1), 39-50.
Harrington, D. (2009). *Confirmatory factor analysis*. Oxford: Oxford University Press.
Harris, S. M., Larrier, Y. I., & Castano-Bishop, M. (2011). Development of the student expectations of online learning survey (SEOLS): A pilot study. *Online Journal of Distance Learning Administration, 14*(4). Retrieved November 29, 2019 from https://www.westga.edu/~distance/ojdla/winter144/harris_larrier_bishop144.html

Hu, L., & Bentler, P. M. (1999). Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. *Structural Equation Modeling: A Multidisciplinary Journal, 6*(1), 1-55.

Isaac, R. G., Zerbe, W. J., & Pitt, D. C. (2001). Leadership and motivation: The effective application of expectancy theory. *Journal of Managerial Issues, 13*(2), 212-226.

Keegan, D. (1990). *Foundations of distance education* (2nd ed.). New York: Routledge Publications.

Kelloway, E. K. (2015). *Using Mplus for structural equation modeling: A researcher’s guide.* Los Angeles: SAGE Publications.

Kline, R. B. (2011). *Principles and practice of structural equation modeling* (3rd ed.). New York: Guilford Press.

Laskaris, J. (2015). *Why do learners drop out of a course?* Retrieved November 30, 2019 from https://www.talentlms.com/blog/why-do-learners-drop-out-of-a-course/

Little, T. D. (2013). *Longitudinal structural equation modeling.* New York: The Guilford Press.

Morgan, C. K., & Tam, M. (1999). Unraveling the complexities of distance education student attrition. *Distance Education, 20*(1), 96-108.

Muthén, L. K., & Muthén, B. O. (2011). *Mplus (Version 6.12) [Computer software].* Los Angeles, CA: Muthén & Muthén.

Nunnally, J. C., & Bernstein, I. H. (1994). *Psychometric theory.* Montréal: McGraw-Hill.

O'Brien, B. (2002). Online student retention: Can it be done? *World Conference on Educational Multimedia, Hypermedia and Telecommunications, 2002*(1), 1479-1483.

Okur, M. R., Paşaoğlu-Baş, D. ve Uça-Güneş, E. P. (2019). Açık ve uzaktan öğrenmede öğrenimi bırakma sebeplerinin incelenmesi. *Yükseköğretim ve Bilim Dergisi, 9*(2), 225-235.

Onah, D. F. O., Sinclair, J., & Boyatt, R. (2014, July). Dropout rates of massive open online courses: Behavioural patterns. Paper presented at the 6th International Conference on Education and New Learning Technologies, Barcelona, Spain.

Parker, A. (1999). A study of variables that predict dropout from distance education. *International Journal of Educational Technology, 1*(2), 1-12.

Parker, A. (2003). Identifying predictors of academic persistence in distance education. *United States Distance Learning Association Journal, 17*(1), 55-62.

Porter, L. W., & Lawler, E. E. (1968). *Managerial attitudes and performance.* Homewood, IL: Dorsey Press.

Rovai, A. P. (2003). In search of higher persistence rates in distance education online programs. *The Internet and Higher Education, 6*(1), 1-16.

Schermelleh-Engel, K., Moosbrugger, H., & Müller, H. (2003). Evaluating the fit of structural equation models: Test of significance and descriptive goodness-of-fit measures. *Methods of Psychological Research - Online, 8*(2), 23-74.

Vroom, V. H. (1964). *Work and motivation.* New York, NY: Wiley.

Willging, P. A., & Johnson, S. D. (2009). Factors that influence students’ decision to dropout of online courses. *Journal of Asynchronous Learning Networks, 13*(3), 115-127.

Xenos, M. (2004). Prediction and assessment of student behaviour in open and distance education in computers using Bayesian networks. *Computers & Education, 43*(4), 345-359.

Xenos, M., Pierrakeas, C., & Pintelas, P. (2002). A survey on student dropout rates and dropout causes concerning the students in the course of informatics of the Hellenic Open University. *Computers & Education, 39*(4), 361-377.