Retrovirus-mediated gene transfer of human endostatin inhibits growth of human liver carcinoma cells SMMC7721 in nude mice

Xuan Wang, Fu-Kun Liu, Xi Li, Jie-Shou Li, Gen-Xin Xu

INTRODUCTION
It has become clear that angiogenesis not only is essential for a number of physiological processes such as embryonic development, organ and tissue regeneration, but also plays a pivotal role in tumor growth and metastases[1-4]. Folkman[5] demonstrated that suppression of tumor angiogenesis leads to tumor starvation and tumor regression. Thus, the tumor vascular system has become an important target for cancer therapy, and methods to inhibit angiogenic process provide an unique opportunity to inhibit tumor growth[6-14]. However, antiangiogenic therapy with endostatin requires multiple and prolonged administrations, and the problems of such as bioactive protein production in large quantities, high costs and the cumbersome daily administration can often be met during cancer therapy[13]. Gene transfer therapy could provide an alternative approach to continuous local delivery of this antiangiogenic factor in vivo[16]. So, in order to explore the effect of human endostatin expressed by human liver carcinoma cell on tumor growth, stable transfectant from human liver carcinoma cell line SMMC7721 transfected with human endostatin gene was built and the inhibitory effect of endostatin on tumor growth in vitro and in vivo were observed.

MATERIALS AND METHODS

Cell culture
Human liver carcinoma cell line SMMC7721 was kept by our laboratory. Human umbilical vein endothelial cell line (HUVEC) was purchased from Institute of Cell Biology, Chinese Academy of Sciences. HUVEC and human liver carcinoma cell line SMMC7721 were maintained in RPMI 1640 medium (Gibco) supplemented with 100 mL·L⁻¹ FBS, 100 units/mL penicillin and 100 µg/mL streptomycin. Retrovirus packaging cell line PA317 was kindly provided by Dr.Qian Qijun (Second Military Medical University, Shanghai, China), and maintained in DMEM (Gibco) supplemented with 100 mL·L⁻¹ FBS,100 units/ml penicillin and 100 µg/mL streptomycin.

Plasmid
The recombinant retroviral plasmid pLnx-endo containing the cDNA for human endostain gene with a HA tag attached to the C-terminus as a fusion protein was engineered by our laboratory[17]. In this plasmid, human endostain cDNA was put downstream of rat serum albumin signal peptide.

Generation of stable transfectants
Recombinant plasmid pLnx-endo was transferred into PA317
cells by Lipofectamine (Gibco) following the manufacturer's instructions. G418 selection at 500 µg/mL was added at the same time. Two weeks after transfection, G418-resistant colonies emerged and were expanded respectively. The supernatants of G418-resistant PA317 colony were collected and stored at -80 °C for usage. 5×10^4 SMMC7721 cells were plated on 6-well plate and incubated for 24 h. The cells were rinsed with serum-free RPMI 1640 medium twice, and 100 µL supernatant of endostatin-transfected PA317 colony was added and incubated for 3 h. Another 3 mL 1640 medium was added with the final concentration of polybrene at 2 mg·L\(^{-1}\) and G418 at 500 µg·L\(^{-1}\). Four weeks after transfection, G418-resistant cells were expanded for preservation and tested for endostatin-HA fusion protein by immunohistochemistry and Western blot analysis. The endostatin-transfected colony was designated as SMMC-endo. Control transfectant (SMMC-pLncx) was generated in a similar way except the parent plasmid pLncx-end was replaced by empty plasmid pLncx.

PCR amplification of endostatin from transfected SMMC7721 cells

According to human endostain sequence, two primers were designed. The primers used were E1: 5'CCG GAA TTC ATG CAC AGC CAC CGC TTC CTA CTT GGA GGC AGT CAT GAA GCT. SMMC7721 cells were transfected with a plasmid containing the entire open reading frame of human endostatin. The primers used were E1: 5'CCG GAA TTC ATG CAC AGC CAC CGC TTC CTA CTT GGA GGC AGT CAT GAA GCT and E2: 5'GCC GGA AGC CAC CGC GAC TTC CAG CCG. PCR amplification of endostatin from transfected SMMC-endo was replaced by empty plasmid pLncx. The PCR products were checked on 10 g·L\(^{-1}\) agarose gels (containing 0.5 mg·L\(^{-1}\) ethidium bromide).

Western blot analysis

SMMC-endo and SMMC-pLncx cells were plated in six-well plates at 2.5×10^5 cells/well respectively and incubated for 24 h. The medium was replaced with 1 mL serum-free RPMI 1640 and collected after 48 h. One mL of conditioned medium was concentrated in a microcon 10 microconcentrator (Amicon, Beverly, MA) to 20 µL and subjected to a 120 g·L\(^{-1}\) spin for another 48 h. The total of 9 mL serum-free RPMI 1640 grown on six-well glass slides and fixed in acetone at room temperature. After washing in PBS, the cells were incubated with a 10 mL·L\(^{-1}\) H\(_2\)O\(_2\) solution at room temperature for ten minutes to quench endogenous peroxidases. Nonspecific binding was blocked with 50 mL·L\(^{-1}\) normal horse serum at room temperature for five minutes. The cells were then incubated with anti-HA at a dilution of 1:300 dilution at 4 °C overnight. Following washing in PBS, the secondary antibody, biotinylated antimouse, was added and the cells were incubated at room temperature for one hour. After washing in PBS, Vectastain reagent (a solution containing strepavidin-horseradish peroxidase) was added and then incubated at room temperature for ten minutes. 3,3-diaminobenzidine was used as the chromagen. After ten minutes, the brown color signifying the presence of antigen bound to antibodies was detected by light microscopy and photographed at ×200. The blood vessels were counted from five areas in each tumor section.

RESULTS

Generation of stable transfectants

A 550-bp fragment was seen in the PCR product from DNA of SMMC-endo cells but not from the control (Figure 1). On a reducing 120 g·L\(^{-1}\) SDS/PAGE gel, a distinct band at around M\(_{22 000}\), corresponding to the size of endostatin, was only visualized in the supernatant of SMMC-endo cells. Monoclonal mouse anti-HA antibody reacted positively in a Western blot with the M\(_{22 000}\) protein only. It confirmed that endostatin protein expressed by transfected SMM-endo cells could be secreted into the supernatant of cells (Figure 2).

Antiangiogenic effect of human endostatin expressed by endostatin-transfected cells

The effect of expressed endostatin on HUVEC proliferation was tested. The result showed that there were no significant differences among the concentrated conditioned media from SMMC7721, SMMC-pLncx cells and RPMI1640 medium in inhibiting the growth of HUVEC. Compared to RPMI 1640 medium, the inhibitory rate on HUVEC proliferation for conditioned medium from SMMC-endo cells was 48 %,
significantly higher than that of 10.2 % for control SMMC-pLncx. There was a significant difference on the antiangiogenic effect between conditioned medium from SMMC-endo and SMMC-pLncx ($P < 0.01$, Figure 3).

Figure 1 Analysis of PCR product of endostatin-transfected SMMC7721 cells by 1% agarose gel electrophoresis. 1: DNA Marker. 2: PCR product of SMMC-pLncx. 3: PCR product of SMMC-endo.

Figure 2 SDS-PAGE analysis and Western blot of endostatin expressed in supernatant of virally transduced SMMC7721 cells (A) SDS-PAGE analysis; 1, supernatant of control SMMC-pLncx cells; 2, supernatant of endostatin-transfected SMMC-endo cells; 3, protein marker; (B) Western blot analysis; 1 protein marker; 2, supernatant of endostatin-transfected SMMC-endo cells.

Figure 3 Inhibition of endothelial cell proliferation by conditioned medium from SMMC-endo cells. Conditioned medium from SMMC-endo (2), SMMC7721 (3) and SMMC-pLncx (4) were concentrated and applied to HUVEC cells grown in 40-well plate. Three days later, cell number, as measured by absorbance (OD), was then quantified by using a colorimetric MTT assay. Bars, SD. $b P < 0.01$, compared with conditioned medium from control SMMC-pLncx.

Human endostatin inhibits tumor growth in nude mice

To determine the anti-tumor effect of endostatin expressed by transfected SMMC7721 cell, 5×10^5 cells were injected s.c. into right flanks of nude BALB/c mice. SMMC7721 cells and SMMC-pLncx cells formed tumor rapidly within 14 days. While flank tumors from SMMC-endo cells grew very slowly in nude mice. The first palpable tumor from SMMC-endo cells appeared 16 days after injection and only in 3 out of 5 nude mice formed tumors. The mean size of flank tumors from SMMC-endo cells was 94.5 % smaller than that from SMMC-pLncx cells 22 days after tumor inoculation, a significant difference between SMMC-endo and SMMC-pLncx groups ($P < 0.001$, Figure 4). The mean microvessel density (MVD) in tumors was determined by utilizing anti-CD34. The number of vessels was counted and the results showed that the MVD in tumor samples from SMMC-endo cells was only 8.6±1.1, much fewer than that of 22.6±4.5 from SMMC-pLncx cells ($P < 0.01$, Figure 5). It meant that endostatin expressed by SMMC-endo cells could decrease tumor vascularization.

Figure 5 Tumor sections were stained with an antibody reactive to CD34. A: Tumor section from endostatin-transfected
nearly 95% of the recombinant protein used will be excreted. Furthermore, the production of soluble recombinant protein requires prolonged administration and high doses of the same way, antiangiogenic therapy with endostatin in cancer and without detectable systemic sign of toxicity. It was first reported of antiangiogenic gene therapy with viral vectors being administered of gene transfer. There have been successful reports of antiangiogenic therapy with viral vectors being used to treat tumor. Endostatin is a new kind of potent antiangiogenic factor consisting of 184 amino acids in C-terminal fragment of endogenous collagen18 a. It was first isolated as a M,20 000 protein from conditioned medium of the EOMA murine hemangioendothelioma cell line by Professor O’Reilly in 1997[18-33]. In vivo and in vitro experiments had demonstrated that endostatin has specific inhibitory effect on the formation of new blood vessel. It could inhibit tumor growth with reduction of virtually all tumor neovascularization and without detectable systemic sign of toxicity[34-37]. In the same way, antiangiogenic therapy with endostatin in cancer requires prolonged administration and high doses of recombinant protein. Furthermore, the production of soluble functional polypeptide endostatin has proven difficult and nearly 95% of the recombinant protein used will be excreted out of the body because of its insoluble and instable property[38]. However, all of the above problems can be overcome by gene transfer of endostatin gene. As gene transfer mediated by retroviral is most commonly used among the various ways of transducing methods and retroviral can be integrated into chromosome of host cells. So, gene transfer mediated by retrovirus can be inherited to next generation and stably expressed in host cells for a long duration[39]. In this experiment, recombinant retroviral plasmid pLncx-endo was transferred into human liver carcinoma cell SMMC7721 by using lipofectamine. The following PCR examination and Western blot analysis confirmed the transfection and stable expression of human endostatin by SMMC-endo cells. The expressed protein was secreted outside of cells under the influence of rat albumin signal peptide[40,41]. It revealed that a stable transfectant that could secrete human endostatin was built. In vitro endothelial cell proliferation assay verified the biological activity of endostatin, which showed that conditioned medium from SMMC-endo could significantly inhibit the proliferation of endothelial cells by 48%, while the inhibitory rate for conditioned medium from control SMMC-pLncx was only 10.2%. It suggested that the secreted protein expressed by the stable transfectant had a potent antiangiogenic effect[40,41]. In vivo experiments showed that tumor formations from SMMC-endo cells were dramatically inhibited. Compared to control group, only in 3 out of 5 mice inoculated with SMMC-endo cells tumors were formed and a remarkable reduction in tumor size was also exhibited 22 days after tumor injection. The mean size of tumors from SMMC-endo cells was about 94.5% smaller than that from control SMMC-pLncx. Meanwhile, histological analysis showed that the MVD in tumors from SMMC-endo cells was also remarkably decreased compared to control SMMC-pLncx. It meant that human endostatin expressed by SMMC7721 could indeed inhibit the formation of tumor in vivo. In another word, endostatin arrests tumor growth by inhibiting the formation of microvessels in vivo, and gene transfer therapy mediated by retrovirus could meet the requirements for tumor treatment. But we also noted that the expressed endostatin did not completely inhibit the formation of tumor in nude mice. Some proangiogenic factors such as VEGF and bFGF, produced by SMMC7721 cell itself may be responsible for this phenomenon[40,41]. Another probable reason is the low amount of endostatin expressed by retroviral pLncx. So, in a word, gene transfer of endostatin mediated by retroviral pLncx could significantly inhibit the growth of SMMC7721 cells in nude mice by affecting angiogenesis and is probable one of the effective ways to deal with tumor. But the application of new efficient expression plasmid and combined therapy with multiple genes may further improve the therapeutic effect of endostatin in the future.

REFERENCES

1. Hahnfeldt, P; Panigraphy, D; Folkman, J; Hlatky, L. Tumor development under angiogenic signaling: a dynamical theory of tumor growth, treatment response and postvascular dormancy. Cancer Res 1999; 59: 4770-4775
2. Folkman, J; Watson, K; Ingbert, D; Hanahan, D. Induction of angiogenesis during the transition from hyperplasia to neoplasia. Nature 1989; 339: 58-62
3. Liekens, S; De Clercq, G; Neyts, J. Angiogenesis: regulators and clinical applications. Biochem Pharmacol 2001; 61: 253-270
4. Wu, J; Fang, DM. Angiogenesis and antiangiogenesis therapy. Shijie Huaren Xiziao Zazhi 2001; 9: 316-321
5. Yanagi, K; Onda, M; Uchida, E. Effect of angiostatin on liver metastasis of pancreatic cancer in hamsters. Jpn J Cancer Res 2000; 91: 723-730

Figure 4: Inhibition on the growth of human liver carcinoma implanted in nude mice by human endostatin. *P <0.001, SMMC-endo compared with control SMMC-pLncx.

DISCUSSION

It is known to all that blood supply is necessary for tumor progression and metastasis[1-4]. Folkman[21] noted that tumor will stop growing or die when it exceeds 2 mm to 3 mm in diameter if new blood vessel for tumor is not formed. Numerous studies have also shown that inhibition of tumor growth and metastases could be reached by administration of recombinant angiogenic proteins[15,19-21]. Moreover, the genome of endothelial cells, targeted by angiogenic proteins has a stable inheritance property and rare mutation rate. So, unlike tumor cells in chemotherapy, acquired resistance to recombinant angiogenic protein is rarely developed during angiogenic therapy. Therefore, angiogenic therapy is probably one of the most effective and promising approaches to cancer treatment[40].

Antiangiogenic therapy will require sustained maintenance of therapeutic levels in vivo[22,23]. Continuous delivery and high doses of recombinant angiogenic protein in circulation by repeated administrations seem expensive and impossible. Gene therapy transfer of foreign angiogenic gene into host cells represents an alternative method to tumor therapy. The aim of generating high efficient protein in areas around tumor with no toxin and keeping long time relatively high expression of antiangiogenic protein can be achieved by a single administration of gene transfer. There have been successful reports of angiogenic gene therapy with viral vectors being used to treat tumor[24-27]. Endostatin is a new kind of potent antiangiogenic factor consisting of 184 amino acids in C-terminal fragment of endogenous collagen18 a. It was first isolated as a M,20 000 protein from conditioned medium of the EOMA murine hemangioendothelioma cell line by Professor O’Reilly in 1997[28-33]. In vivo and in vitro experiments had demonstrated that endostatin has specific inhibitory effect on the formation of new blood vessel. It could inhibit tumor growth with reduction of virtually all tumor neovascularization and without detectable systemic sign of toxicity[34-37]. In the same way, antiangiogenic therapy with endostatin in cancer requires prolonged administration and high doses of recombinant protein. Furthermore, the production of soluble functional polypeptide endostatin has proven difficult and nearly 95% of the recombinant protein used will be excreted out of the body because of its insoluble and instable property[38]. However, all of the above problems can be overcome by gene transfer of endostatin gene. As gene transfer mediated by retroviral is most commonly used among the various ways of transducing methods and retroviral can be integrated into chromosome of host cells. So, gene transfer mediated by retrovirus can be inherited to next generation and stably expressed in host cells for a long duration[39]. In this experiment, recombinant retroviral plasmid pLncx-endo was transferred into human liver carcinoma cell SMMC7721 by using lipofectamine. The following PCR examination and Western blot analysis confirmed the transfection and stable expression of human endostatin by SMMC-endo cells. The expressed protein was secreted outside of cells under the influence of rat albumin signal peptide[40,41]. It revealed that a stable transfectant that could secrete human endostatin was built. In vitro endothelial cell proliferation assay verified the biological activity of endostatin, which showed that conditioned medium from SMMC-endo could significantly inhibit the proliferation of endothelial cells by 48%, while the inhibitory rate for conditioned medium from control SMMC-pLncx was only 10.2%. It suggested that the secreted protein expressed by the stable transfectant had a potent antiangiogenic effect[40,41]. In vivo experiments showed that tumor formations from SMMC-endo cells were dramatically inhibited. Compared to control group, only in 3 out of 5 mice inoculated with SMMC-endo cells tumors were formed and a remarkable reduction in tumor size was also exhibited 22 days after tumor injection. The mean size of tumors from SMMC-endo cells was about 94.5% smaller than that from control SMMC-pLncx. Meanwhile, histological analysis showed that the MVD in tumors from SMMC-endo cells was also remarkably decreased compared to control SMMC-pLncx. It meant that human endostatin expressed by SMMC7721 could indeed inhibit the formation of tumor in vivo. In another word, endostatin arrests tumor growth by inhibiting the formation of microvessels in vivo, and gene transfer therapy mediated by retrovirus could meet the requirements for tumor treatment. But we also noted that the expressed endostatin did not completely inhibit the formation of tumor in nude mice. Some proangiogenic factors such as VEGF and bFGF, produced by SMMC7721 cell itself may be responsible for this phenomenon[40,41]. Another probable reason is the low amount of endostatin expressed by retroviral pLncx. So, in a word, gene transfer of endostatin mediated by retroviral pLncx could significantly inhibit the growth of SMMC7721 cells in nude mice by affecting angiogenesis and is probable one of the effective ways to deal with tumor. But the application of new efficient expression plasmid and combined therapy with multiple genes may further improve the therapeutic effect of endostatin in the future.

REFERENCES

1. Hahnfeldt, P; Panigraphy, D; Folkman, J; Hlatky, L. Tumor development under angiogenic signaling: a dynamical theory of tumor growth, treatment response and postvascular dormancy. Cancer Res 1999; 59: 4770-4775
2. Folkman, J; Watson, K; Ingbert, D; Hanahan, D. Induction of angiogenesis during the transition from hyperplasia to neoplasia. Nature 1989; 339: 58-62
3. Liekens, S; De Clercq, G; Neyts, J. Angiogenesis: regulators and clinical applications. Biochem Pharmacol 2001; 61: 253-270
4. Wu, J; Fang, DM. Angiogenesis and antiangiogenesis therapy. Shijie Huaren Xiziao Zazhi 2001; 9: 316-321
5. Yanagi, K; Onda, M; Uchida, E. Effect of angiostatin on liver metastasis of pancreatic cancer in hamsters. Jpn J Cancer Res 2000; 91: 723-730
6 Sacco MG, Caniatti M, Cato EM, Frattini A, Chiesa G, Ceruti R, Adorini F, Zecca L, Scanziani E, Vezzoni P. Liposome-delivered endostatin strongly inhibits tumor growth and metastatization in a transgenic model of spontaneous breast carcinoma. Cancer Res 2000; 60: 266-265
7 Wang Z, Qiu SJ, Ye SL, Tang ZY, Xiao X. Combined IL-12 and GM-CSF gene therapy for murine hepatocarcinoma. Cancer Gene Ther 2001; 8: 751-758
8 O’reilly MS, Belyavin T, Shing Y, Fukai N, Vasios G, Lane WS, Flynn E, Folkman J. Endostaging: an endogenous inhibitor of angiogenesis and tumor growth. Cell 1997; 88: 277-285
9 Berger AC, Feldman AL, Grant MF. The angiogenesis inhibitor, endostatin, does not affect murine cutaneous wound healing. J Surg Res 2000; 91: 26-31
10 Dhanabal M, Volik R, Ramchandran R, Simons M, Sukhatme V. Cloning, expression, and in vitro activity of human endostatin. Biochem and Biophy Res Commun 1999; 258: 345-352
11 Chen QR, Kumar D, Szaz SA, Mixson AJ. Liposomes complexed to plasmids encoding endostatin and endostatin inhibit breast cancer in nude mice. Cancer Res 1999; 59: 3308-3312
12 Taddei L, Chiarugi P, Brogelli L. Inhibitory effect of full-length human endostatin on in vitro angiogenesis. Biochem and Biophy Res Commun 1999; 263: 340-345
13 Bleizinger P, Wang J, Gondo M, Quezada A, Mehrens D, French M, Singhia A, Sullivan S, Rolland A, Ralston R, Min W. Systemic inhibition of tumor growth and tumor metastases by intramuscular administration of the endostatin gene. Nat Biotechnol 1999; 17: 343-348
14 Yoon SS, Eto H, Lin CM, Nakamura H, Pawlik TM, Song SU, Tanabe KK. Mouse endostatin inhibits the formation of lung and liver metastases. Cancer Res 1999; 59: 6251-6256
15 Oehler MK, Blicknell R. The promise of anti-angiogenic cancer therapy. Br J Cancer 2000; 82: 749-752
16 Folkman J. Angiostatic: an endogenous inhibitor of angiogenesis and tumor growth. Cell 1997; 88: 277-285
17 Wang X, Liu FK, Li X, Li JS, Xu GX. Inhibitory effect of endostatin expressed by human liver carcinoma SMMC7721 on endothelial cell proliferation in vitro. World J Gastroenterol 2002; 8: 253-257
18 Tanigawa N, Lu C, Mitsui T, Miura S. Quantitation of sinusoidal-like vessels in hepatocellular carcinoma: its clinical and prognostic significance. Hepatology 1997; 26: 1216-1223
19 Feldman AL, Restifo NP, Alexander HR, Bartlett DL, Hwu P, Seth P, Libutti K. Antiangiogenic gene therapy of cancer utilizing a recombinant adenovirus to elevate systemic endostatin levels. Cancer Res 2000; 60: 4352-4355
20 Indraccolo S, Morelli M, Gola E, Carrozzino F, Habeler W, Minghelli S, Sant L, Bianchi LC, Cao Y, Albini A, Nooran DM. Effects of angiotatin gene transfer on functional properties and in vivo growth of Kaposi’s sarcoma cells. Cancer Res 2001; 61:5441-5446
21 Shi W, Tschendorf C, Muzychuk N, Siemen DM. Adeno-associated virus-mediated gene transfer of endostatin inhibits angiogenesis and tumor growth in vivo. Cancer Gene Ther 2002; 8: 513-521
22 Huang X, Wong MKK, Zhao Q, Zhu Z, Wang KQ, Huang N, Ye C, Gorelik E, Li M. Soluble recombinant endostatin purified from escherichia coli: antiangiogenic activity and antitumor effect. Cancer Res 2001; 61: 478-481
23 Feldman AL, Pak H, Yang JC, Alexander HR, Libutti SK. Serum endostatin levels are elevated in patients with soft tissue sarcoma. Cancer Res 2001; 61: 1525-1529
24 Naguen JT. Adeno-associated virus and other potential vectors for angiostatin and endostatin gene therapy. Adv Exp Med Biol 2000; 495: 477-466
25 Sauter BV, Martinet O, Zhang WJ, Mandeli J, Woo SLC. Adenovirus-mediated gene transfer of endostatin in vivo results in high level of transgene expression and inhibition of tumor growth and metastases. Proc Natl Acad Sci USA 2000; 97: 4802-4807
26 Ma GZ, Liu SZ, Chiang YH, Li J, Chen SL, Tsao YP, Xiao X. Intratumoral gene therapy of malignant brain tumor in a rat model with angiotatin delivered by adeno-associated viral (AAV) vector. Gene Ther 2002; 9: 2-11
27 Qian WF, Huang ZH, Chi DB. Herpes simplex virus thymidine kinase/ganciclovir system combined with 5-Fu for the treatment of experimental colorectal cancer. Shijie Huan X 2001; 9: 190-193
28 Sasaki T, Fukui N, Mann K, Gohring W, Olsen BR, Timpl R. Structure, function and tissue forms of the C-terminal globular domain of collagen V\' \(\^ \) containing the angiogenesis inhibitor endostatin. Embryo 1998; 17: 4249-4256
29 Wen W, Moses MA, Wiederschain D, Arbiser JL, Folkman J. The generation of endostatin is mediated by elastase. Cancer Res 1999; 59: 6502-6506
30 Strik H, Schlueterer HJ, Seid K, Meyermann R, Deininger M. Localization of endostatin in rat and human gliomas. Cancer 2003; 91: 1013-1019
31 Musso O, Theret N, Heljasavaara R, Rehn M, Turlin B, Campion JP, Pihlajaniemi T, Clement B. Tumor hepatocytes and basement membrane-producing cells specifically express two different forms of the endostatin precursor, collagen X\(\^ \)II in human hepatocellular carcinomas. Cancer Res 2001; 61: 45-49
32 Musso O, Rehn M, Theret N, Turlin B, Paulette BS, Lotrion D, Campion JP, Pihlajaniemi T, Clement B. Tumor progression is associated with a significant decrease in the expression of the endostatin precursor collagen X\(\^ \)II in human hepatocellular carcinomas. Cancer Res 2001; 61: 526-531
33 Lietard J, Theret N, Rehn M, Musso O, Dargere D, Pihlajaniemi T, Clement B. The promoter of the long variant of collagen X\(\^ \)II, the precursor of endostatin, contains liver-specific regulatory elements. Hepatology 2000; 33: 868-876
34 Ding I, Sun JZ, Fenton B, Liu WM, Kinsely P, Okunieff P, Min W. Intratumoral administration of endostatin plasmid inhibits vascular growth and perfusion in MCA-4 murine mammary carcinomas. Cancer Res 2001; 61: 526-531
35 Kim YM, Jiang JW, Lee OH, Yeon J, Choi EY, Kim EW, Lee ST, Kwon YG. Endostatin inhibits endothelial and tumor cellular invasion by blocking the activation and catalytic activity of matrix metalloproteinase. Cancer Res 2000; 60: 5410-5413
36 Yokoyama Y, Green JE, Sukhatme VP, Ramakrishnan S. Effect of endostatin on spontaneous tumorigenesis of mammary adenocarcinomas in a transgenic mouse model. Cancer Res 2000; 60: 4362-4365
37 Yokoyama Y, Dhanabal M, Griffinon AW. Synergy between angiotatin and endostatin: inhibition of ovarian cancer growth. Cancer Res 2000; 60: 2190-2196
38 Felbor U, Dreier L, Bryant RA, Ploeghl HL, Olsen BR, Moths W. Secretecd cathepsin L, generates endostatin from collagenX\(\^ \)II. Embro 2000; 19: 1187-1194
39 Cao MM, Pan W, Chen QL, Ma ZC, Ni ZJ, Wu WB, Pan X, Cao GW, Qiu ZT. Construction of the eukaryotic expression vector expressing the fusion protein of human endostatin protein and IL-3 signal peptide. Shijie Huan X 2001; 9: 43-46
40 Perletti G, Concari P, Giardini R, Marras E, Piccinini F, Folkman J, Chen L. Antitumor activity of endostatin against carcinogen-induced rat primary mammary tumors. Cancer Res 2000; 60: 1793-1796
41 Dhanabal M, Ramchandra R, Waterman MJF, Lu H, Knebelmann B, Segal M, Sukhatme VP. Endostatin induce endothelial cell apoptosis. J Biol Chem 1999; 274: 1721-1726
42 Tang YC, Li Y, Qian GX. Reduction of tumorigenicity of SMMC7721 hepatoma cells by vascular endothelial growth factor antisense gene therapy. World J Gastroenterol 2001; 7: 22-27
43 Tang ZY, Sun FX, Tian J, Ye SL, Liu YK, Liu KD, Chen J, Xie JL, Qin LX, Sun HC, Wang L, Zhou J, Li Y, Ma ZC, Zhou XD, Wu ZQ, Lin ZY, Yang BH. Metastatic human hepatocellular carcinoma models in nude mice and cell line with metastatic potential. World J Gastroenterol 2001; 7: 597-601

Edited by Wu XN