Real space representation of the quasiparticle self-consistent GW self-energy and its application to defect calculations.

Ozan Dernek, Dmitry Skachkov[1] and Walter R. L. Lambrecht

\textit{Department of Physics, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106-7079, USA}

\textit{National Renewable Energy Laboratory, Golden, CO 80401, USA}

Mark van Schilfgaarde

In recent years, many-body-perturbation theory, specifically in Hedin’s GW approximation\cite{1,2}, where G is the one-electron Green’s function and W the screened Coulomb interaction, has emerged as the method of choice to calculate meaningful quasiparticle excitation energies as opposed to Kohn-Sham density functional one-electron energies. In particular, this yields more accurate band structures and band gaps in good agreement with experiment, typically within ~ 0.1 eV depending somewhat on the details of the implementation and the material\cite{3}. For localized levels, such as point defects, on the other hand, excitations are usually calculated by means of a ΔSCF approach from differences between two total energies. More precisely for point defects, it is now standard practice to calculate the energies of formation as function of Fermi level position (i.e., the electron chemical potential) in the gap and then to determine the transition energies, which are the crossing points of these energies of formation from one charge state to the other. On the other hand, it has been pointed out that the GW quasiparticle energies for a defect system can be directly related to “vertical” excitations, meaning excitations which keep the structure unchanged. Apart from excitonic effects, their differences represent the optical transitions for example for transferring an electron from a defect level to the conduction band or from the valence band to a defect level\cite{4,5}. For example, transferring an electron from a defect level to the conduction band minimum (CBM), changes the defect from one charge state q to another $q+1$, with an electron in a delocalized conduction band state. Thus the difference in CBM and defect level quasiparticle energies calculated at the fixed geometry of the q state, is the “vertical” excitation energy for this process. Subsequently, one may add relaxation energies of the defect to lowest energy geometry within a given charge state. Thus, the thermodynamic transition state level of the $q/q+1$ transition may be obtained from a total energy relaxation within a given charge state calculated at the DFT level combined with the quasiparticle excitation energies calculated at the GW level. Apart from the excitonic effect, the “vertical” transition is often directly of interest as an approximation to the optical transition. In practice, defect levels are usually calculated in supercells using periodic boundary conditions, and the defect levels turn into defect bands. So, the above relation gives a renewed incentive to take defect one-electron band structures seriously, rather than dismissing them as irrelevant Kohn-Sham eigenvalues, provided they are calculated at the GW quasiparticle level.

Nonetheless, the GW method has not yet found widespread applications in defect studies. This is at least in part due to the large computational effort required for GW calculations. In particular, the latter is challenging for the large supercells needed to represent defects adequately. Thus, there is a need for improving the efficiency of the GW approach, eventually at the cost of some sim-
plification, to make it applicable to larger systems.

On the other hand, in many defect calculations, the infamous gap underestimate of the typical semi-local generalized gradient approximation (GGA) or local density approximations (LDA), can lead to serious errors in defect calculations. Defect levels, which should be in the gap may end up in the band continuum. This also affects the total energies and therefore transition levels if one considers charge states in which that defect level (now a resonance in the band) is given an extra charge because in the calculation that charge is actually placed in a delocalized state at the bottom of the band rather than in the defect level. Thus there seem to be some advantages to start from a more accurate quasiparticle one-electron theory such as GW. Total energies with in the QSGW approach are in principle calculable at the random phase approximation (RPA) level by means of an adiabatic connection approach[6], but are difficult to converge because they require a sum over unoccupied bands.

It would seem desirable to at least build into the calculation of the defect, the correct band structure of the host, overcoming thereby the band gap problem. Several such approaches have been used in the past: for example, Christensen[7] advocated using a δ-function corrected potential in which a δ-function placed at the cation site and some interstitial sites, raises the s-like partial waves at those sites in energy and since these s-like orbitals form a predominant part of the conduction band, they artificially corrected the gap. LDA+U with several orbital dependent U parameters were also shown to provide an effective way to mimic the corrected band structure. LDA+U with several orbital dependent U parameters were also shown to provide an effective way to mimic the corrected band structure. [8][9] Non-local external potentials (NLEP) of the form ∆VNLEP adjusted to reproduce the conduction band structure were introduced by Lany and Zunger. [11] Modified pseudopotential were also used for this purpose. [12]

The question thus arises to what extent we can decouple the host band structure effects from the defect. Our approach was to explore whether the GW self-energy of a defect system could be constructed from that of the host and the defect site itself or its immediate neighborhood without having to carry out the expensive full GW calculation for the large unit cell required to adequately represent a defect.

The most prevalent approach nowadays to incorporate the gap corrections beyond semi-local functions, is to use a hybrid functional such as the Heyd-Scuseria-Ernzerhof (HSE). [13][15] That approach significantly improves the gaps by including a fraction of the exact exchange operator cutoff usually beyond a certain range. By adjusting the fraction of the exchange included, the gap can be adjusted. While this approach correctly incorporates the gap correction, it is less clear that it also adjusts both band edges individually and/or obeys the generalized Koopmans theorem (GKT) [16][17] for different defects simultaneously with the host band structure. Furthermore it is also a relatively expensive approach with computational effort well beyond that of a semi-local calculation. The approach we present here to construct the GW self-energy is also applicable to the non-local exact exchange and hence, could also make that approach more efficient.

In this paper, we show that the QSGW self-energy matrix can be expanded in atom-centered orbitals, such as the linearized muffin-tin orbitals (LMTO). If these are chosen sufficiently localized, then the self-energy matrix can be represented in real space within a finite range. One might envision doing this also with maximally localized Wannier functions. This then offers new opportunities to approximately construct the self-energy of a system by partitioning the system in sub parts and constructing the self-energy by a cut-and-paste approach. In particular, we apply this here to point defects. We first construct the self-energy of the host in a supercell from that of the primitive cell. In a second step, we replace the part of the self-energy matrix related to the defect atom and its near neighborhood in terms of the self-energy of a smaller supercell containing the defect for which a GW calculation is more readily feasible. We validate the accuracy of the approach with the well-studied case of the As\textsubscript{Ga} defect.

II. COMPUTATIONAL APPROACH

A. GW background

In many-body-perturbation theory quasiparticle excitation energies are given by the equation

\[
-\frac{1}{2} \nabla^2 + v_N(r) + v_H(r) \Psi_i(r) + \int d^3r' \Sigma_{xc}(r, r', E_i) \Psi_i(r') = E_i \Psi_i(r),
\]

where we use Hartree atomic units (\(h = e = m_e = 1\)), \(v_N\) is the nuclear potential and \(v_H\) the Hartree potential, \(\Sigma_{xc}\) the exchange-correlation self-energy and \(\Psi_i\) is the quasiparticle wave function. In the GW approximation, the latter is calculated from \(\Sigma(12) = iG(12)W(1+2)\) where 1 is a shorthand for \(\{r_1, \sigma_1, t_1\}\), i.e. position, spin and time of the particle 1, \(1^+\) means \(\lim_{\delta \to 0} t_1 + \delta\), \(G(12)\) is the one-electron Green’s function and \(W(12)\) the screened Coulomb interaction. The exact one particle Green’s function is defined by \(G(12) = -i\langle N|T[\psi(1), \psi^\dagger(2)]|N\rangle\), with \(T\) the time-ordering operator, \(\psi(1)\) the annihilation field operator and \(|N\rangle\) the N-electron ground state. The screened Coulomb interaction is given by \(W(12) = v(12) + \int d(3q)v(3)P(34)W(42)\) and \(P(12) = -iG(12)G(21)\) is the irreducible polarization propagator. In practice, it is usually obtained starting from some effective independent-particle Hamiltonian,

\[
H^0 = -\frac{1}{2} \nabla^2 + v_N(r) + v_H(r) + v_{xc}(r)
\]

with for example the local density approximation (LDA) exchange-correlation potential \(v_{xc}(r)\). The Green’s function \(G^0\) is then constructed from the eigenvalues \(\epsilon_i\) and
and eigenfunctions \(\psi_i \) of
\[
H^0 \psi_i(r) = \epsilon_i \psi_i(r)
\]
as follows
\[
G^0(r, r', \omega) = \sum_i \frac{\psi_i(r) \psi_i^*(r')}{\omega - \epsilon_i + i\delta \text{sgn}(\epsilon_i - \mu)},
\]
with \(\mu \) the chemical potential and \(\omega \) the energy variable of the Green’s function. These LDA eigenstates form a convenient basis set in which the Green’s function \(G^0_{ij}(\omega) = \delta_{ij}\omega - \epsilon_i + i\delta \text{sgn}(\epsilon_i - \mu) \) is diagonal. For a solid, the states are labeled by \(i = \{ n, k \} \) with \(n \) a band index and \(k \) the point in the Brillouin zone. The screened \((W^0) \) and bare \((v) \) Coulomb interactions and the polarization \(P^0 \) on the other hand are expressed in an auxiliary basis set of Bloch functions. In the LMTO implementation of the GW method, these are constructed from products of angular momentum partial waves[18] inside the spheres and plane-waves confined to the interstitial space, which is afterwards reduced to avoid linear dependence and rotated so as to diagonalize the bare Coulomb interaction.[6][19][20] We label them \(E_{\mathbf{q}\mu}(r) \) and the matrix of the Coulomb interactions in terms of them is then written
\[
v_{\mu\nu}(\mathbf{q}) = \int d^3rd^3r' E^\mathbf{q}_{\mu}(r) \frac{1}{|\mathbf{r} - \mathbf{r}'|} E^\mathbf{q}_{\nu}(r')
\]
and
\[
W^0_{\mu\nu}(q, \omega) = \left[1 - v_{\mu\lambda}(q) P^0_{\lambda\nu}(q, \omega)\right]^{-1} v_{\mu\nu}(q)
\]
is obtained from a matrix inversion once \(P^0_{\mu\nu}(q, \omega) \) is known. The latter is also calculated directly in terms of the \(\psi_{nk} \) and eigenvalues \(\epsilon_{nk} \). In the above equation, summation convention over repeated indices is understood. In most other works, plane waves are used instead as basis functions. Let’s write the rotation from the auxiliary functions \(E^\mathbf{q}_{\mu} \) to the LDA eigenstates as \(\langle \psi_{\mathbf{k}n} | \psi_{\mathbf{q}n} | E^\mathbf{q}_{\mu} \rangle \). Using these rotation matrices we can express
\[
W^0_{nm'\mu k}(q, \omega) = \sum_{\mu\nu} \langle \psi_{\mathbf{k}n} | \psi_{\mathbf{q}n'} E^\mathbf{q}_{\mu} \rangle W^0_{\mu\nu}(q, \omega) \langle E^\mathbf{q}_{\nu} | \psi_{\mathbf{k}n'} | \psi_{\mathbf{q}m} \rangle
\]
The self-energy matrix is then given by
\[
\Sigma_{nm}(k, \omega) = \frac{i}{2\pi} \int dw' \sum_{\mathbf{q}} \sum_{n'} G^0_{nm'}(k - \mathbf{q}, \omega - w') W^0_{nm'm}(\mathbf{q}, \omega) e^{i\mathbf{q}w'}
\]
in which we recognize the schematic \(\Sigma = iGW \) but which makes it clear that to obtain the energy and k-space dependent form, a triple convolution is involved over energy \(\omega' \), \(\mathbf{q} \) and band index \(n' \).

This self-energy matrix is energy dependent and contains in principle information, not only on the quasiparticle energies but also the satellites and non-coherent parts of the one-electron excitation. In the QSGW method, we now reduce this to a non-local but energy-independent and Hermitian matrix,
\[
\tilde{\Sigma}_{nm}(k) = \frac{1}{2} \text{Re} [\Sigma_{nm}(k, \epsilon_{nk}) + \Sigma_{nm}(k, \epsilon_{mk})]
\]
We now define \(\Delta \tilde{\Sigma}_{nm}(k) = \tilde{\Sigma}_{nm}(k) - \tilde{v}^c_{nm}(k) \) where we subtract the matrix element of the LDA exchange-correlation potential taken between the Bloch eigenstates. We can then add this correction to the exchange-correlation potential to the \(H^0 \) Hamiltonian and re-diagonalize the latter to find new independent particle eigenvalues and eigenstates and repeat the cycle of calculating \(\Sigma \). At the convergence of this iteration, the eigenvalues of the final \(H^0 \), which we will call \(H^{QSGW} \), are identical to the quasiparticle energies. We may view this as finding a \(G^0W^0 \) perturbation theory solution of Eq. 1 starting from \(H^0 \) but refining \(H^0 \) so the perturbation becomes negligible. In this sense the quasiparticle energies are self-consistent and independent of the starting approximation but they are still real and do not provide information on the lifetime of the actual quasiparticle states.

B. Bloch-function and real space representation

The Bloch functions of the \(H^{QSGW} \) are now known as an expansion in the LMTO basis set.
\[
|\psi_{nk}\rangle = \sum_{\mathbf{R}_i} |\lambda_{\mathbf{R}_i}\rangle |\psi_{nk}\rangle_{\mathbf{R}_i}
\]
so we can re-express the self-energy correction matrix as \(\Delta \Sigma_{\mathbf{R}_i, \mathbf{R}_i'}(k) \). Here \(\mathbf{R} \) label the sites in the unit cell and \(i \) the muffin-tin orbitals. The latter are labeled by angular momentum quantum numbers \((l,m)\) as well as a third index, labeling the choice of smoothed Hankel function decay and/or local orbital (confined to the muffin-tin sphere). See Ref. [6] for a full description of the full potential (FP)-LMTO method used. Finally, performing an inverse Bloch sum or Fourier transform, we obtain \(\Delta \Sigma_{\mathbf{R}_i, \mathbf{R}_i + \mathbf{T}_d, \mathbf{T}_d'} \) fully expressed in real space, where \(\mathbf{T} \) are the lattice translation vectors.

Next, let us consider the same self-energy of the bulk system but presented in a supercell. Obviously there is a one-to-one mapping \(\{ \mathbf{R}, \mathbf{T} \} \leftrightarrow \{ \mathbf{R}_S, \mathbf{T}_S \} \) between positions \(\mathbf{R} \) in the primitive cell with lattice vectors \(\mathbf{T} \) to the positions inside the supercell, \(\mathbf{R}_S \), and the supercell’s lattice vectors, where \(\mathbf{T}_S = \sum_{ij} n_i \mathbf{A}_j \) with \(n_i \) integers, and the supercell is defined by \(\mathbf{A}_j = \sum_{ij} N_{ij} \mathbf{a}_j \) with \(N_{ij} \) a set of integers. Thus, we can obtain \(\Delta \Sigma_{\mathbf{R}_S, \mathbf{R}_S + \mathbf{T}_S, \mathbf{T}_S'} \) by a simple relabeling procedure. In practice these are stored for every \(\mathbf{R}_S \) using a neighbor table out to some maximum distance \(|\mathbf{R}_S + \mathbf{T}_S - \mathbf{R}_S| \leq d_{\text{max}} \).
host atoms as open circles and the atoms within a range, e.g., approximately plan to use, a smaller supercell containing the defect, which we ultimately plan to use, a smaller supercell containing the defect, which we ultimately plan to use. For that purpose we construct a blank place holder in the cell and the superscript indicates the cell contains 8 atoms near the defect. Therefore the atoms are mapped to the perfect crystal and small defect cell even if their atomic positions do not perfectly match. Alternatively we could assume that the self-energy is not too sensitive to the relaxation and hence keep the self-energy fixed after our initial cut-and-paste operation and afterwards, relax (or relax again) the positions in the presence of that fixed self-energy. It is important here to remember that the self-energy provides only a correction to the electronic structure beyond the DFT Hamiltonian. The main defect induced changes are are already contained in the DFT Hamiltonian. The overall scheme for constructing the defect cell and its self-energy is as follows. For example, let us consider a 64 atom supercell to model the defect. We then start by creating the self-energy matrix of the perfect supercell (the host) from the self-energy in the primitive cell in the above form in real space and labeled according to the 64 atom cell \(\{R_S, T_S\} \) scheme. Once we have the self-energy matrix in the host supercell, we need to replace it by that for the defect within a certain range \(d_{\text{max}} \) from the defect atom. For that purpose we construct a smaller supercell containing the defect, which we ultimately plan to use, e.g., an 8 atom cell and carry out a self-consistent DFT calculation for it and subsequently a QSGW calculation of its self-energy. We then transform the self-energy of this defect cell again to a new 64 atom cell by a similar relabeling step. Let us call this the 64th cell where 64 indicates the number of atoms in the cell and the superscript indicates the cell contains 8 defects. Next, we modify the host 64 atom cell by inserting the defect. We then carry out a self-consistent calculation for it at the DFT level and construct its self-energy by the following cut-and-paste method. The first step of the method is to create a blank place holder in memory to hold the self-energy around each atom, the type of atoms, and their orbitals at each of its neighbors. We then copy the corresponding self-energy into it from the host 64 atom cell and subsequently replace it by that of the defect 64th cell for atoms within a certain distance \(d_{\text{def}} \) from the defect site. The rest of the atoms are left unchanged as host atoms. Each copy step only happens according to the neighbor table up to a maximum range \(d_{\text{max}} \). The copying of the self-energy orbital blocks happens by pairs. Only half of the \(\Sigma_{\mathbf{R}S_{\mathbf{i}}; \mathbf{R}'_{S_{\mathbf{j}}}, T_{S_{\mathbf{k}}}, T'_{S_{\mathbf{l}}}} \) matrix elements need to be constructed because of the hermiticity. Once assembled in real space it can be Fourier transformed back according to the periodicity of the supercell, to find \(\Sigma_{\mathbf{R}S_{\mathbf{i}}; \mathbf{R}'_{S_{\mathbf{j}}}}(k_S) \). Finally, we then need to carry out just one DFT self-consistent step in which the thus assembled estimate of the self-energy is added to the \(H^0 \) DFT Hamiltonian and we can evaluate its band structure. The scheme is illustrated in Fig. 1.

FIG. 1: Schematic illustration of the self-energy editor cut-and-paste method. The left shows the 64th supercell with defect atoms shown as black spheres and host atoms as open circles and the atoms within a range \(d_{\text{max}} \) from the defect atom indicated by the dashed circle are red. The target system 64th with 1 defect is shown on the right. In this example, we assume only the defect atom itself comprises the defect region and the atoms within the range \(d_{\text{max}} \) contribute to the self-energy in real space. The self-energy \(\Sigma_{\mathbf{R}S; \mathbf{R}'_{S_{\mathbf{i}}}} \) of the atom pairs corresponding to the red atoms connected to the defect atom in the target 64th cell are replaced by those from the 64th supercell, shown on the left.

C. Self-energy cut-and-paste approach

The overall scheme for constructing the defect cell and its self-energy is as follows. For example, let us consider a 64 atom supercell to model the defect. We then start by creating the self-energy matrix of the perfect supercell (the host) from the self-energy in the primitive cell in the above form in real space and labeled according to the 64 atom cell \(\{R_S, T_S\} \) scheme. Once we have the self-energy matrix in the host supercell, we need to replace it by that for the defect within a certain range \(d_{\text{def}} \) from the defect atom. For that purpose we construct a smaller supercell containing the defect, which we ultimately plan to use, e.g., an 8 atom cell and carry out a self-consistent DFT calculation for it and subsequently a QSGW calculation of its self-energy. We then transform the self-energy of this defect cell again to a new 64 atom cell by a similar relabeling step. Let us call this the 64th cell where 64 indicates the number of atoms in the cell and the superscript indicates the cell contains 8 defects. Next, we modify the host 64 atom cell by inserting the defect. We then carry out a self-consistent calculation for it at the DFT level and construct its self-energy by the following cut-and-paste method. The first step of the method is to create a blank place holder in memory to hold the self-energy around each atom, the type of atoms, and their orbitals at each of its neighbors. We then copy the corresponding self-energy into it from the host 64 atom cell and subsequently replace it by that of the defect 64th cell for atoms within a certain distance \(d_{\text{def}} \) from the defect site. The rest of the atoms are left unchanged as host atoms. Each copy step only happens according to the neighbor table up to a maximum range \(d_{\text{max}} \). The copying of the self-energy orbital blocks happens by pairs. Only half of the \(\Sigma_{\mathbf{R}S_{\mathbf{i}}; \mathbf{R}'_{S_{\mathbf{j}}}, T_{S_{\mathbf{k}}}, T'_{S_{\mathbf{l}}}} \) matrix elements need to be constructed because of the hermiticity. Once assembled in real space it can be Fourier transformed back according to the periodicity of the supercell, to find \(\Sigma_{\mathbf{R}S_{\mathbf{i}}; \mathbf{R}'_{S_{\mathbf{j}}}}(k_S) \). Finally, we then need to carry out just one DFT self-consistent step in which the thus assembled estimate of the self-energy is added to the \(H^0 \) DFT Hamiltonian and we can evaluate its band structure. The scheme is illustrated in Fig. 1.

It is clear that for the scheme to work, \(d_{\text{max}} \) must fit within the small defect containing supercell, so that the self-energy in the final cell for a pair of atoms of which one is within the defect range \(d_{\text{def}} \) does not have a neighbor of the wrong type, in other words, it must still be a host like atom as in the final cell, not another defect atom. Furthermore, we need to allow for relaxation of the atoms near the defect. Therefore the atoms are mapped between the different cells based on their atom numbering and connectivity, not on the basis of their exact position. In principle, one could first relax the atoms in the large cell with the defect at the DFT level and then do the mapping to the perfect crystal and small defect cell even if their atomic positions do not perfectly match. Alternatively we could assume that the self-energy is not too sensitive to the relaxation and hence keep the self-energy fixed after our initial cut-and-paste operation and afterwards, relax (or relax again) the positions in the presence of that fixed self-energy. It is important here to remember that the self-energy provides only a correction to the electronic structure beyond the DFT Hamiltonian. The main defect induced changes are are already contained in at the DFT level.

D. Computational details

The method has been implemented in the LMTO and QSGW suite of codes, named Questaal (Quasiparticle Electronic Structure and Augmented LMTOs)[21, 22]. The basis sets are specified in terms of the angular momentum cutoffs and smoothed Hankel functions. For the initial tests on GaAs with the As\textsubscript{Ga} antisite defect, we used a rather minimal basis set as specified along with the results. This leads to an overestimate of the band gap but is convenient for our present purpose of demonstrating the validity of the approach. Lattice positions are optimized for the crystal cells with defects. Details of the supercells chosen in the cut-and-paste approach are given along with the test results. In the final Sec. [11D] we use a larger basis set to achieve accurate comparison to experiment.
We start by testing the core idea of a finite range self-energy for bulk GaAs. Table I shows the band gap of GaAs in QSGW as function of the cutoff d_{max} used in the real space representation of the self-energy. We can see that as soon as $d_{\text{max}}/a > 1$ with a the lattice constant, or a cluster of about 30 atoms is included, the gaps become reasonable, although the convergence is not uniform and it takes till a cluster of about 450 atoms or $d_{\text{max}}/a \approx 3$ to get absolute convergence. We note that in an 8 atom supercell the distance between defects is only 1 cubic lattice constant and thus we have to restrict the $d_{\text{max}}/a \approx 1$, but nonetheless, this already will be shown to give quite reasonable results for the self-energy.

The short-distance nature of the self-energy in real space is illustrated in Fig. [2] We here show the trace of each block of the self-energy matrix for pairs $\{R_S, R_S + T_S\}$ as function of their separation distance. While the self-energy operator $\Sigma(r, r')$ itself in principle falls off as $1/|r - r'|$, being a screened exchange type term, the matrix elements $\Delta \Sigma_{R_S; R_S'}$ fall off much faster because they are dominated by the overlap of the corresponding basis function orbitals. The on-site elements are clearly seen to be 2-3 orders of magnitude larger than the inter-site elements with nearest and second nearest neighbors. They oscillate somewhat as we go to further neighbors and their localization could be further improved by means of more localized screened muffin-tin-orbitals such as the jigsaw orbitals proposed in Ref. [21]

We may also notice that the on-site self-energy of As in the perfect crystal or in the defect site are very close to each other. The essential point in correcting the self-energy matrix of the perfect crystal represented in the supercell, which already incorporates the host band gap change, is to replace that of the Ga atom by an As atom. The inter-site elements of the self-energy are so much smaller that they play only a minor role and this explains why we can restrict the range of the self-energy matrix elements rather severely with a small d_{max}. This provides a-posteriori also an explanation for why schemes such as LDA+U [8, 9] for modifying the band structure or other local on-site corrections [7, 11] have had considerable success in adjusting the gap in defect calculations.

TABLE I: Convergence of band gap with d_{max} in GaAs with Basis set Ga: spd, As: spd. $a = 10.66$ Bohr is the lattice constant in the zinc blende structure. The gap of GaAs the LDA gap with this basis set is 0.50 eV and the k-space QSGW gap is 2.35 eV.

d_{max}/a	#neighbors	gap (eV)
0.6	5	1.84
0.8	17	1.76
1.0	29	2.09
1.2	47	2.26
1.4	87	2.30
1.6	147	2.29
1.8	191	2.30
2.0	275	2.32
2.2	345	2.32
2.4	417	2.33
2.6	457	2.34
3.0	461	2.35
∞		2.35

Next, we check the viability of the scheme for the case of the As_{Ga} antisite defect in GaAs. This is a well-studied defect, known as the EL2 defect, or at least closely related to it. [23, 24] In the $q = 0$ state, it has a single a_1 defect level filled in the gap and a single t_2 empty resonance just above the CBM. The excited state $a_1^t t_2$ is two-fold degenerate and both its $S = 1$ and $S = 0$ configurations are orthogonal to the ground state $a_1^g t_2$. This degeneracy leads to a symmetry breaking distortion, such that the antisite As atom is pushed through the interstitial position and the initial single point defect turns into Ga-vacancy and As-interstitial $V_{\text{Ga}} + A_{\text{s}}$ defect complex. Due to this displacement the system might get trapped in a metastable state at lower energy than the excited state but at the distorted geometry. This metastable state is labeled $1^a 2^a$ where now the levels are labeled according to the C_{3v}

FIG. 2: The trace of submatrices of corresponding atom-atom pair $\text{Tr} [\Sigma_{R_S; R_S'} + T_{S'; S}]$ in the self-energy matrix is plotted as function of distance $|R_S' + T_{S} - R_S|$. The basis atoms of primitive GaAs crystal (Ga_p and As_p), the defect (As_Ga) from the 64 atom cell and its nearest neighbor (As_m) are chosen to illustrate the drastic drop in energy corrections with distance. Both structures are in $q = 0$ state. In the inset, the onsite energy corrections of the As atoms are seen more clearly.

B. Basic properties of the As_{Ga} antisite defect

Next, we check the viability of the scheme for the case of the As_{Ga} antisite in GaAs. This is a well-studied defect, known as the EL2 defect, or at least closely related to it. [23, 24] In the $q = 0$ state, it has a single a_1 defect level filled in the gap and a single t_2 empty resonance just above the CBM. The excited state $a_1^t t_2$ is two-fold degenerate and both its $S = 1$ and $S = 0$ configurations are orthogonal to the ground state $a_1^g t_2$. This degeneracy leads to a symmetry breaking distortion, such that the antisite As atom is pushed through the interstitial position and the initial single point defect turns into Ga-vacancy and As-interstitial $V_{\text{Ga}} + A_{\text{s}}$ defect complex. Due to this displacement the system might get trapped in a metastable state at lower energy than the excited state but at the distorted geometry. This metastable state is labeled $1^a 2^a$ where now the levels are labeled according to the C_{3v}.
distorted geometry. The ground state in this notation is $1a^2t_2^0$ and the excited state is $1a^1t_2^1$. In other words, $1a$ in C_{3v} derives from the a_1 in T_d while $2e$ derives from t_2.\cite{Bachelet} This state is associated with the photoquenching behavior of EL2 defect in Ref. \cite{Bachelet} Therefore, the optical excitation energy from the a_1 to the t_2 level is of interest and can be directly related to the corresponding QSGW levels since it occurs from the ground state $q = 0$ geometry. Furthermore, the Green’s function calculations of Bachelet et al.\cite{Bachelet} provide detailed information on the position of the Kohn-Sham defect levels of a_1 and t_2 symmetry in two charge states. We identify these two defect levels in defect supercell band structure and compare our results with Ref. \cite{Bachelet} and \cite{Bachelet}. The ground state defect level of neutral EL2 is well known experimentally and we discuss this further in Sec. \ref{III.D}.

\begin{figure}[ht]
\centering
\includegraphics[width=0.8\textwidth]{Fig3.png}
\caption{Band structure of As_{Ga} in $q = 0$ state in GaAs in 64 atom cell in LDA. This supercell has simple cubic form and the high-symmetry k-points are $\Gamma = (0,0,0)$, $X = (1,0,0)$, $M = (1,1,0)$ and $R = (1,1,1)$ in units $2\pi/a_S$ with $a_S = 2a$ the supercell lattice constant.}
\end{figure}

\begin{figure}[ht]
\centering
\includegraphics[width=0.8\textwidth]{Fig4.png}
\caption{Band structure of As_{Ga} in 8 atom GaAs cell in QSGW. This supercell is also a simple cubic but with lattice constant a. The high-symmetry points are labeled the same as in Fig. 3 but correspond to a Brillouin zone twice as large in each direction.}
\end{figure}

\begin{figure}[ht]
\centering
\includegraphics[width=0.8\textwidth]{Fig5.png}
\caption{Band structure of a 64 atom supercell containing an As_{Ga} antisite defect at its origin in the LDA and for $q = 0$ state. In this study, we used a minimal basis set of only a single κ and smoothing radius R_{sm}, spd orbital set on Ga and As. The gap is thereby underestimated as 0.65 eV in LDA and overestimated as 2.25 eV in QSGW. This should facilitate recognizing the defect level. Nonetheless, we see in Fig. 3 that the electronic structure of the defect and even the gap are barely recognizable. The defect band is the highest occupied band but is seen to be so much broadened that, in combination with the LDA gap underestimate, it touches the valence band maximum (VBM) at the Γ-point. The conduction band minimum (CBM) occurs 0.65 eV above it at the Γ-point in LDA, while a converged basis set would give an even lower LDA gap of only 0.51 eV. Clearly, the band structure of this system cannot be examined accurately with DFT level calculations.

Next, we construct the defect in an 8 atom cell and perform a QSGW calculation for it. From the corresponding band structure shown in Fig. 4 it is clear that this cell is much too small to adequately represent the defect electronic structure. In this figure, it is not even clear which is the defect band and which is the lowest conduction band. On the other hand, we will show that this cell is sufficient to reconstruct the self-energy components in the immediate neighborhood of the defect.

In Fig. 5 we show the band structure of the 64 atom cell obtained by means of our self-energy cut-and-paste approach with the dashed red lines. The defect region contains only the defect atom itself and the self-energy range d_{\max} was set to one lattice constant (5.64Å). In the same figure we show the fully self-consistent QSGW results in the same 64 atom cell with the solid black lines, after aligning the two at the VBM. The dispersion of this defect band is about 0.7 eV and results from periodically repeated defects in the 64 atom supercells, so from defects that are $2a_{\text{cell}}$ or 11.28 Å apart. Comparing with the band structure in a larger cell in Fig. 8 we can see that the defect band width is mostly reduced at R and Γ but the top of the band near X and M stays the same. We therefore identify the eigenvalue near its maximum with the isolated defect level. The fact that the defect band dispersion does not follow the expected form $E_d + 2t[\cos (k_xa) + \cos (k_ya) + \cos (k_za)]$ for a simple isotropic s-band in a nearest-neighbor simple cubic lattice, where the maximum would be at R and the minimum at Γ indicates that the interactions between defect states are not isotropic because of the underlying crystal structure. The filled defect band is now clearly detached from the VBM and it occurs at about 1.12 eV above the...
VBM. Its position above the VBM and even its dispersion is in excellent agreement between the cut-and-paste and fully self-consistent results. Furthermore, this defect level position above the VBM is in good agreement with Bachelet’s Green’s function calculation\cite{23} of an isolated defect, which gives 1.23 eV for the $q = 0$ state.

The CBM is also clearly seen (overestimated as 2.25 eV above the VBM by our small basis set) in the full self-consistent calculation. This gap is somewhat smaller in the cut-and-paste case (1.66 eV). This is because the range cutoff d_{max} applied to Σ reduces the gap. Second, in this 64 atom cell, we do not yet approach the dilute limit where the perfect crystal gap with this cutoff (2.09 eV) would be recovered. This can be attributed to the t_2 defect level interacting with the CBM. In both cases, we can identify the second defect level, the a_1 state, which here is a resonance and can be recognized as a flat band near X at about 1.55 eV above the Fermi level, which coincides with the top of the a_1 defect band, in direct QSGW calculation and 1.07 eV in the cut-and-paste method. This defect level lies 0.42 eV above the CBM in direct QSGW calculation and 0.60 eV in the cut-and-paste approach. The energy splitting between the t_2 and a_1 state taken as the energy difference at X-point, because of above reasons, hence 1.55 eV in direct calculation and 1.06 eV in our approach. Dabrowski et al.\cite{24} reports this splitting as 1.18 eV experimentally and as 0.97 eV at the DFT level calculations, while in the Green’s function calculation it is 0.87 eV\cite{23}. Our result for this splitting of the $t_2 - a_1$ level is thus comparable in accuracy with the previous calculations and in fact closer to the experimental value, which, as mentioned earlier, is important for understanding the optical behavior of this defect. Hence, the the cut-and-paste method is found to be a viable approach.

Next, we test whether replacing only the self-energy related to the defect atom itself is sufficient or whether we need to include a larger defect cluster region. In our cut-and-paste method, including the nearest neighbors in the defect region corresponds to taking the nearest neighbor of the defect atom as another center for the $\Delta \Sigma_{R_S, R'_S + T_S}$ to be taken from the small defect containing (8 atom) cell. This approach could be problematic, because it extends the range of this $\Delta \Sigma$ with R_S being a nearest neighbor of the defect beyond its unit cell, hence includes pairs connecting this atom to other defect atoms, while in the dilute limit, or in the large supercell with a single defect, there should only be one defect atom. However, because the off-site matrix elements fall off rather quickly, this is found not to be a serious problem. With this approach, we observe that the valence and defect bands remain in the same position, but the CBM value drop 0.14 eV, which deviates from the QSGW calculation as expected. These results are shown in supplemental information.

Clearly, in order to allow us to include more neighbors than the defect atom itself in a safe way, we would need to enlarge the size of the cell from which the defect and its neighbors self-energy is extracted. This might then also allow to increase the d_{max} or range of the self-energy cutoff. To further test the convergence of our scheme we now consider a somewhat larger cell than the 8 atom cell to extract the defect atom and its neighbors’ self-energy. For this purpose, we incorporate the defect in a 32 atom supercell of GaAs. The d_{max} value is set to the lattice constant of this cell, 1.73a_0 of the conventional cell, which is then also the nearest defect distance.

Building the host cell using this small cell does not
FIG. 7: Band structure of As_{Ga} in $q = 2$ state in GaAs in 64 atom cell: fully QSGW (solid black lines), with self-energy constructed by cut-and-paste approach (red dashed lines) using only the defect atom as defect region, aligned at the VBM. The zero of energy is the Fermi level for the VBM in the full QSGW case for the doubly ionized defect.

provide considerable improvement for the cut-and-paste method. This is expected since we already know that the self-energy matrix elements fall off rapidly with intersite distance. Furthermore, the exact QSGW calculation of this cell is now a more expensive calculation and not so much is gained by increasing the size to a 64 atom cell using the cut-and-paste approach. Nonetheless, we test its performance to check the convergence of our cut-and-paste approach in terms of the size of the defect region and self-energy cutoff distance d_{max}. The results of this scheme is summarized in Table II with the label 64$_8$. Different defect region descriptions and charge states were also considered. In Fig. 6, we compare the two cut-and-paste band structures of the defect containing 64 atom cell in the $q = 0$ state, built from the 8 atom cell (64$_8$) and from the 32 atom cell (64$_{32}$). The almost identical bands show that there is nothing to be gained in the accuracy of the method by extracting the defect atom self-energy from a 32-atom compared to an 8 atom cell and is furthermore significantly more computationally expensive. We conclude that the most effective approach for the cut-and-paste method is building the defect containing host cell from the 8 atom cell and it is sufficient to define the defect region as the defect atom itself. The results obtained by this approach are in good agreement with our exact QSGW calculations and previous studies in the literature.

Next we want to address whether the cut-and-paste approach works also for charged defect states and correctly describes the trend with charge observed in the Green’s function calculations. In Fig. 7 we show the band structure of the same cell, but with the defect in $q = 2$ state. In this case, the exact QSGW band gap does not change, but the defect level moves closer to the VBM. The cut-and-paste approach yields 0.05 eV larger band gap. Although the defect band dispersion is again reproduced faithfully, the position of defect level deviates by about 0.2 eV between the cut-and-paste and exact calculation. This is still an acceptable precision of the cut-and-paste method and indicates that the nearly perfect agreement seen earlier for the $q = 0$ state is perhaps somewhat coincidental.

On the other hand, the difference between the two charge states regarding the defect level position agrees with prior work and has a clear physical meaning. It can be related to the different final geometries after atomic relaxations in different charge states. For the $q = 0$ state, we observe outward breathing of nearest As atoms, such that they move further from the defect atom about 4% of the nearest neighbor distance. Dabrowski et al. [24] reported similar lattice relaxation effects. On the other hand, in the $q = 2$ state, the nearest neighbor distance remains the same as in the perfect crystal.

One important advantage of our method is that once the exact QSGW calculation for the small cell is done, moving to larger host cells and calculating the defect properties in the dilute limit is a straightforward procedure and one can achieve GW-level accuracies for the cost of an LDA calculation for even larger cells. Although we do not include the exact calculations for these larger cells in this work, we analyze a 216 atom cell, i.e. a $3 \times 3 \times 3$ supercell of the conventional simple cubic 8 atom cell.
In Fig. 8 we see that in the 216 atom cell dispersion of the defect band is almost zero, indicating we are close to the dilute limit. Furthermore, this allows us to better evaluate the nature of the defect band dispersion. As mentioned earlier, the top of the defect band which is flat between X and M remains the same as in the smaller 64 and 32 atom cells but the band width is reduced at Γ. This helps us to identify the top of the defect band with the dilute limit defect level.

TABLE II: The energy band gap, \(E_g \), the defect level at the \(X \)-point w.r.t. VBM, \(a_{1VBM}^X \), the defect level splitting at the \(X \)-point, \((t_2 - a_1)^X \) and the \(a_1 \) defect band width \(w(a_1) \), are presented for various schemes in \(q = 0 \) (top half) and in \(q = 2 \) (bottom half) states. The subscript numbers represent the small cell atom number which was used to build up the final cell in the cut-and-paste method.

Scheme	\(E_g \)	\(a_{1VBM}^X \)	\((t_2 - a_1)^X \)	\(w(a_1) \)
Dabrowski [24]	0.6	0.97		
Bachelet [23] (LDA)	0.7	1.23	0.87	
64 atom QSGW	2.25	1.12	1.55	0.62
641	1.66	1.19	1.07	0.68
641	1.52	1.19	1.04	0.69
641	1.69	1.01	1.02	0.67
641	1.64	0.98	1.03	0.68
2161	1.72	1.14	1.24	0.19
2161	1.67	1.14	1.23	0.19
Bachelet	0.69	0.99		
64 atom QSGW	2.24	0.69	1.60	0.60
641	1.71	1.06	0.95	0.67
641	1.58	1.07	0.94	0.67
641	1.63	0.92	0.96	0.67
641	1.64	0.92	0.95	0.67
2161	1.70	0.61	1.24	0.16
2161	1.65	0.62	1.24	0.16

\(^{1} \) Defect region is defect atom itself.
\(^{*} \) Defect region is defect atom and its nearest neighbors.

It is important to point that obtaining this 216 atom cell band structure only required an additional LDA calculation of this cell. Once the 8 atom cell \(GW \) calculation is done, moving to even larger cells only requires the LDA calculation of the desired single defect containing supercell. This provides an immense reduction in computational cost. For instance, we can compare the computation time of exact QSGW calculations for 8 atom, 32 atom and 64 atom cells. The convergence parameters for these calculations are kept the same and the \(k \)-point meshes are kept equivalent by taking a smaller set with approximately the same grid-density in the larger cells. The number of processors for each calculation is adjusted proportional to the \(k \)-point mesh grid. Under these circumstances, fully consistent QSGW calculation was completed in 0.6 hour for the 8 atom cell, 26.4 hour for the 32 atom cell, and 181 hours for the 64 atom cell. In other words, the computing time scales like \(N^3 \) with \(\eta \approx 1.8 \) and \(N \) the number of atoms or \(3\eta \) for the scaling with the linear size of the supercell. On the other hand, the LDA calculation of the 64 atom cell took less than half an hour. For this particular 648 scheme, the bottleneck of cut-and-paste method was the 8 atom cell QSGW calculation. For larger single defect cells, the LDA calculation might become the bottleneck due to large number of atoms, however the computation cost would still be insignificant, compared to the QSGW calculation of the same cell. For instance, the LDA calculation of the host cell in our 2168 scheme was performed using resources comparable to that of 648 LDA step, and this step took around 6 hours. Note that all the atoms are fully relaxed in this step, and one could reduce the computation time even further by only letting the first few nearest neighboring atoms relax.

D. Large basis sets and comparison to experiment

To test the fidelity of the theory, we finally make a careful comparison against the experimentally observed neutral EL2 deep donor level (\(E_v + 0.75 \) eV). [24] [25] This defect level was first identified with the As\textsubscript{Ga} antisite by Weber \textit{et al.} [25] based on Electron Paramagnetic Resonance (EPR) and activation of the unpaired spin +1 charge state from the neutral state by an optical transition to the conduction band, which was found to occur at 0.75 eV. This was later also confirmed by thermionic emission and optical studies. [26] [27] In view of the experimental gap of 1.52 eV at low temperature, this places the defect level almost exactly at mid gap. We revisit the neutral EL2 level with a reasonably well converged basis, and also include spin-orbit coupling (SOC). We repeat the procedure described above, using a 32-atom supercell, with an \(spdfspd \) basis on both the Ga and As, and local orbitals to include the Ga 3d in the valence. The basis also includes \(sp \) “floating orbitals” (smoothed Hankel functions without augmentation spheres) centered at the two high-symmetry interstitial sites along the [111] line. The QSGW bandgap (1.7 eV, including SOC) is slightly less than that of a fully converged basis (1.8 eV). This includes a reduction in the bandgap of 0.11 eV from SOC. The gap reduction is expected, as the split-off valence band at Γ is 0.33 eV below the VBM, both experimentally and in QSGW.

We note that even with his well-converged basis set the bandgap is overestimated because QSGW under-screens \(W \), because the RPA polarizability omits electron-hole attractions that connect the electron and hole parts of the bubble. If such attractions are included, \(e.g. \) via ladder diagrams, the bandgap is reduced to a value very close to the observed gap. It was discovered soon after QS GW(line. The QS GW calculation might become the bottleneck due to large number of atoms, however the computation cost would still be insignificant, compared to the QSGW calculation of the same cell. For instance, the LDA calculation of the host cell in our 2168 scheme was performed using resources comparable to that of 648 LDA step, and this step took around 6 hours. Note that all the atoms are fully relaxed in this step, and one could reduce the computation time even further by only letting the first few nearest neighboring atoms relax.

We note that even with his well-converged basis set the bandgap is overestimated because QSGW under-screens \(W \), because the RPA polarizability omits electron-hole attractions that connect the electron and hole parts of the bubble. If such attractions are included, \(e.g. \) via ladder diagrams, the bandgap is reduced to a value very close to the observed gap. It was discovered soon after QS GW(line. The QS GW calculation might become the bottleneck due to large number of atoms, however the computation cost would still be insignificant, compared to the QSGW calculation of the same cell. For instance, the LDA calculation of the host cell in our 2168 scheme was performed using resources comparable to that of 648 LDA step, and this step took around 6 hours. Note that all the atoms are fully relaxed in this step, and one could reduce the computation time even further by only letting the first few nearest neighboring atoms relax.

We note that even with his well-converged basis set the bandgap is overestimated because QSGW under-screens \(W \), because the RPA polarizability omits electron-hole attractions that connect the electron and hole parts of the bubble. If such attractions are included, \(e.g. \) via ladder diagrams, the bandgap is reduced to a value very close to the observed gap. It was discovered soon after QS GW(line. The QS GW calculation might become the bottleneck due to large number of atoms, however the computation cost would still be insignificant, compared to the QSGW calculation of the same cell. For instance, the LDA calculation of the host cell in our 2168 scheme was performed using resources comparable to that of 648 LDA step, and this step took around 6 hours. Note that all the atoms are fully relaxed in this step, and one could reduce the computation time even further by only letting the first few nearest neighboring atoms relax.
It has recently shown that improving W with ladders, and using this W in the QSGW self-consistency cycle, almost completely eliminates the overestimate of bandgaps in weakly correlated semiconductors, and it also corrects for the underestimate of ϵ_{∞} \cite{32}. As an alternative, a hybrid approach has long been used, mixing LDA and QSGW \cite{28}. Kotani and his coworkers showed that a hybrid of 80% QSGW and 20% LDA yields uniformly good bandgaps in many weakly correlated semiconductors \cite{33}. The hybrid approach is an inexpensive, albeit ad hoc way to mimic the effect of ladder diagrams, and we use it here to refine our estimate of the neutral EL2 level.

Fig. 9 shows the density-of-states (DOS) of the 128 supercell within QSGW for two scenarios: the black data is the DOS for an ideal (unrelaxed) structure, while the red data shows the effect of relaxing the four nearest neighbors around the As$_{Ga}$ only. Limiting relaxations to nearest neighbors simplifies the embedding procedure, and tests showed that more complete relaxations made minor further changes. It is seen that the lattice relaxation induces a shift in the defect level, moving it about 0.3 eV closer to the valence band.

To estimate the EL2 energy in the limit of an infinite cell, the center of gravity of the band was calculated. It is found to be close to the Fermi level at the top of the defect band for the neutral charge state, about 0.11 eV below E_F. Thus, for higher precision we here subtract this 0.11 eV from E_F to obtain the defect level. This would reduce the a_1 defect levels in Table II by 0.11 eV. The VBM and CBM are inferred from the energies where the DOS touches zero (see labels in Fig. 9), so that the EL2 relative to either can be computed. The results are displayed in Table III.

As Table III shows, EL2 is predicted to be at $E_v+0.83$ eV and $E_c-0.85$ eV. It is slightly too far from both the VBM and the CBM, compared to experiment, because the QSGW gap is too large. It is not a priori obvious how much this level will shift if QSGW were high enough fidelity to yield the experimental gap, e.g. by adding ladder diagrams to W. It is possible in principle to do this by carrying out the calculation with ladders in W, but here we take the hybrid 80%QSGW+20%LDA approach as a simple alternative. The result is shown in Table III. The hybrid approach reduces the level by about 0.1 eV, while the gap itself is reduced by \sim0.25 eV. This is consistent with the EL2 being comprised of roughly equal measures of the host valence band and conduction band character and its position almost exactly in the middle of the gap. Finally, the predicted EL2 energy ($E_v+0.74$ eV) is in excellent agreement with the observed value $E_v+0.75$ eV, while the bandgap (1.42 eV) is also close to the room-temperature experimental gap.

Structure	QSGW E_v	QSGW+20%LDA E_v
Unrelaxed	1.13	1.02
Relaxed	0.83	0.74

Table III: Band center of neutral EL2 defect, in eV, relative to the valence band maximum, embedded in a 128 atom cell. A reasonably well converged basis was used, with spin orbit coupling included. Two calculations are shown: the first assuming no lattice relaxation, and the second including it, as described in the text. Also shown is the bandgap.

IV. CONCLUSION

We have shown that the GW self-energy matrix represented in a real-space basis-set is short-ranged, and the contribution to the quasiparticle energy correction to DFT eigenvalues is significant only for the first few nearest neighbors of a specific atom. We introduce a...
cut-and-paste method for defect calculations at the GW level that exploits this property. We demonstrate the method using a well-known single point defect, namely the As$_{Ga}$ antisite in a GaAs crystal. The main correction to the defect band structure compared to LDA in our method is incorporating the host perfect crystal gap correction via the perfect crystal self-energy, which requires a trivial cost because it just amounts to a relabeling of the self-energy matrix according to the supercell description of the atomic sites. After detailed examination, we conclude that an 8 atom cell is sufficient to extract the defect atom’s self-energy which is then used to replace the defect atom self-energy in the final supercell. We observe almost perfect agreement between the fully self-consistent QSGW defect bands and the cut-and-paste method, in terms of the valence bands, the a_1 defect level position and the defect band dispersion. There is a small disagreement between our method and the fully GW calculations, in terms of unoccupied levels. This is caused mainly by the range cutoff d_{max} applied to Σ, which slightly reduces the gap from its converged QSGW value. The main advantage of the method is that it allows us to obtain GW-level accuracy results for large defect supercells at essentially the cost of an LDA calculation for the latter. This allowed us to carefully monitor the defect band dispersion and identify the dilute limit iso-

cut-and-paste method for defect calculations at the GW level that exploits this property. We demonstrate the method using a well-known single point defect, namely the As$_{Ga}$ antisite in a GaAs crystal. The main correction to the defect band structure compared to LDA in our method is incorporating the host perfect crystal gap correction via the perfect crystal self-energy, which requires a trivial cost because it just amounts to a relabeling of the self-energy matrix according to the supercell description of the atomic sites. After detailed examination, we conclude that an 8 atom cell is sufficient to extract the defect atom’s self-energy which is then used to replace the defect atom self-energy in the final supercell. We observe almost perfect agreement between the fully self-consistent QSGW defect bands and the cut-and-paste method, in terms of the valence bands, the a_1 defect level position and the defect band dispersion. There is a small disagreement between our method and the fully GW calculations, in terms of unoccupied levels. This is caused mainly by the range cutoff d_{max} applied to Σ, which slightly reduces the gap from its converged QSGW value. The main advantage of the method is that it allows us to obtain GW-level accuracy results for large defect supercells at essentially the cost of an LDA calculation for the latter. This allowed us to carefully monitor the defect band dispersion and identify the dilute limit isolated defect level more precisely. We found good agreement for the defect level positions with previous studies of this system, although the previous studies were not at the GW-level. Inspecting the band structures of the defect system in detail allowed us to identify not only the obvious defect level in the gap of a_1 symmetry but also the excited defect t_2 symmetry resonance and provides accurate information on the optical transition between these levels, which has previously been recognized as an important step in activating a metastable state of this defect. Our calculation also agrees with previous work in the change in defect level as function of charge states. Overall, the cut-and-paste method significantly reduces the computational cost of GW-level calculations, with a small loss in accuracy. Finally, to establish that QSGW is able to predict defect levels with a fidelity comparable to its ability to predict energy bands of bulk materials, we benchmark the embedding approach against the experimentally measured neutral EL2 level. We show the discrepancies with experiments are small, and closely track the known discrepancies for weakly correlated periodic systems.

ACKNOWLEDGMENTS

This work was supported by the US Department of Energy Basic Energy Sciences (DOE-BES) under grant number DE-SC0008933. The calculations were performed on the High Performance Computing Resource in the Core Facility of Advanced Research Computing at Case Western Reserve University. M.v.S. was supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, under award FWP ERW7246.

References

[1] L. Hedin, Phys. Rev. 139, A796 (1965).
[2] L. Hedin and S. Lundqvist, in Solid State Physics, Advanced in Research and Applications, Vol. 23, edited by F. Seitz, D. Turnbull, and H. Ehrenreich (Academic Press, New York, 1969) pp. 1–181.
[3] M. van Schilfgaarde, T. Kotani, and S. Faleev, Phys. Rev. Lett. 96, 226402 (2006).
[4] P. Rinke, A. Janotti, M. Scheffler, and C. G. Van de Walle, Phys. Rev. Lett. 102, 026402 (2009).
[5] S. Lany and A. Zunger, Phys. Rev. B 81, 113201 (2010).
[6] T. Kotani, M. van Schilfgaarde, and S. V. Faleev, Phys. Rev. B 76, 165106 (2007).
[7] N. E. Christensen, Phys. Rev. B 30, 5753 (1984).
[8] T. R. Paudel and W. R. L. Lambrecht, Phys. Rev. B 77, 205202 (2008).
[9] A. Boonchun and W. R. L. Lambrecht, Phys. Status Solidi B 248, 1043 (2011).
[10] D. Skachkov, A. Punya Jaroenjittichai, L.-y. Huang, and W. R. L. Lambrecht, Phys. Rev. B 93, 155202 (2016).
[11] S. Lany, H. Raebiger, and A. Zunger, Phys. Rev. B 77, 241201 (2008).
[12] D. Segev, A. Janotti, and C. G. Van de Walle, Phys. Rev. B 75, 035201 (2007).
[13] J. Heyd, G. E. Scuseria, and M. Ernzerhof, J. Chem. Phys. 118, 8207 (2003)
[14] J. Heyd, G. E. Scuseria, and M. Ernzerhof, J. Chem. Phys. 124, 219906 (2006).
[15] J. P. Perdew, M. Ernzerhof, and K. Burke, J. Chem. Phys. 105, 9982 (1996).
[16] S. Lany and A. Zunger, Phys. Rev. B 80, 085202 (2009).
[17] S. Lany and A. Zunger, Phys. Rev. B 81, 205209 (2010).
[18] F. Aryasetiawan and O. Gunnarsson, Phys. Rev. B 49, 16214 (1994).
[19] T. Kotani, Journal of the Physical Society of Japan 83, 094711 (2014).
[20] C. Friedrich, S. Blügel, and A. Schindlmayr, Phys. Rev. B 81, 125102 (2010).
[21] D. Pashov, S. Acharya, W. R. Lambrecht, J. Jackson, K. D. Belashchenko, A. Chantis, F. Jamet, and M. van Schilfgaarde, Computer Physics Communications, 107065 (2019).
[22] https://www.questaal.org/ Our GW implementation was adapted from the original ecalj package now at https://github.com/tkotani/ecalj/.
[23] G. B. Bachelet, M. Schlüter, and G. A. Baraff, Phys. Rev. B 27, 2545 (1983).
[24] J. Dabrowski and M. Scheffler, Phys. Rev. B 40, 10391 (1989).
[25] E. R. Weber, H. Ennen, U. Kaufmann, J. Windscheif, J. Schneider, and T. Wosinski, Journal of Applied
Appendix A: Supplemental materials

1. Cut-and-paste method scheme

All the steps involved in the cut-and-paste method are explained here. The first step is obtaining the perfect cell self-energy matrix for the large supercell, which is intended to calculate the defect properties. Once we perform the QSGW calculation for a primitive cell, the obtained self-energy matrix can be mapped to a larger perfect cell using the “self-energy editor” provided by the Questaal code suite. In our example, we started with the GaAs primitive cell (a 2 atom cell), and mapped it into two larger cells, namely an 8 atom cell and a 64 atom cell. Second, we introduce the As$_{Ga}$ antisite defect to the 8 atom cell, and perform the atomic relaxation and QSGW calculations for it, subsequently. This calculation will provide the self-energy matrix of the immediate neighborhood of the defect. Then, this self-energy matrix also needs to be mapped into a 64 atom cell, to match with the matrix size of perfect cell self-energy. Note that the mapping steps take virtually no time because they merely involve a re-labeling of sites. Finally, we perform the LDA calculation for 64 atom cell with a single defect, which will provide the Kohn-Sham eigenvalues.

At this point, we have all the ingredients to finalize the method. The last task before the “merging” step is to decide on the defect region. In our calculations, we show that describing the defect region as the defect atom itself provides accurate results. In the merging step, the part of self-energy matrix associated with atoms within the range d_{max} from the defect atom in 64rd replaces the corresponding matrix elements of the perfect cell self-energy matrix. The steps in the procedure is illustrated in the flow diagram of Fig. 10.

2. Additional Results

Here we present additional information on the band structure calculations for different choices of the parameters in the proposed cut-and-paste scheme. In the main paper, we claimed that it suffices to consider the changes in self-energy from the perfect crystal for only the defect atom itself. Here we provide evidence of this by giving the corresponding results when the defect region contains the defect atom and its nearest neighbors. Although we do not recommend this approach because it may cause errors such that some longer range intersite self-energy matrix elements may incorrectly connect the atoms in the defect region to mirror images of the defect, we here show the results for various schemes (size of final and intermediate supercells) in Fig. 2, the main results of which were summarized and in Table-II in the paper.

We also show the comparison of different schemes to 64rd scheme in $q = 2$ state, when the defect region is described as the defect atom (Fig. 3), and when it is described as the defect and its nearest neighbors (Fig.4). This illustrates that the 64rd scheme is also sufficient in $q = 2$ state. Detailed quantitative results of all calculations are presented in below in Table-I and Table-II.
FIG. 10: Schematic demonstration of cut-and-paste method.

FIG. 11: “Defect and its nearest neighbors” defect region in (a) 64, (b) 6432 and (c) 216 schemes (dashed green line), compared to “defect only” defect region in 64 scheme (solid black line). All structures are in $q = 0$ charge state.
FIG. 12: Different schemes, namely (a) 64\textsubscript{32} and (b) 216\textsubscript{8} schemes (dashed green line), compared to 64\textsubscript{8} scheme (solid black line). All structures are in \(q = 2 \) charge state and defect region is only the defect atom.

FIG. 13: “Defect and its nearest neighbors” defect region in (a) 64\textsubscript{8}, (b) 64\textsubscript{32} and (c) 216\textsubscript{8} schemes (dashed green line), compared to “defect only” defect region in 64\textsubscript{8} scheme (solid black line). All structures are in \(q = 2 \) charge state.

\[
\begin{array}{ccccccccccc}
\text{VBM} & \text{CBM} & t^X_2 & a^X_1 & t^M_2 & a^M_1 & a^\Gamma_1 & a^{\text{disp}}_1 \\
32 \text{atom} & 1.9047 & 4.3352 & 4.6108 & 3.0938 & 4.8652 & 3.1428 & 2.6013 & 0.5415 \\
64 \text{atom} & 2.0775 & 4.3305 & 4.7496 & 3.1959 & 5.0026 & 3.2394 & 2.6163 & 0.6231 \\
64\textsubscript{8} & 1.8870 & 3.5455 & 4.1441 & 3.0775 & 4.4217 & 3.1305 & 2.4476 & 0.6830 \\
64\textsubscript{32} & 1.8843 & 3.4054 & 4.1169 & 3.0748 & 4.4162 & 3.1292 & 2.4421 & 0.6871 \\
216\textsubscript{8} & 1.9070 & 3.8975 & 3.9292 & 2.9115 & 4.2475 & 2.9714 & 2.2952 & 0.6762 \\
216\textsubscript{32} & 1.9074 & 3.5469 & 3.9183 & 2.8870 & 4.2394 & 2.9482 & 2.2653 & 0.6830 \\
\end{array}
\]

1: Defect region is defect atom itself.
*: Defect region is defect atom and its nearest neighbors.

\[
\begin{array}{ccccccccccc}
\text{VBM} & \text{CBM} & t^X_2 & a^X_1 & t^M_2 & a^M_1 & a^\Gamma_1 & a^{\text{disp}}_1 \\
32 \text{atom} & 1.9017 & 4.4254 & 4.7413 & 3.4734 & 4.9428 & 3.5183 & 2.9251 & 0.5932 \\
64 \text{atom} & 2.0680 & 4.3088 & 4.3537 & 2.7550 & 4.5088 & 2.7836 & 2.1836 & 0.6000 \\
64\textsubscript{8} & 1.8843 & 3.5986 & 3.8992 & 2.9482 & 4.0788 & 2.9877 & 2.3210 & 0.6667 \\
64\textsubscript{32} & 1.8802 & 3.4571 & 3.8843 & 2.9469 & 4.0761 & 2.9877 & 2.3156 & 0.6721 \\
216\textsubscript{8} & 1.9066 & 3.5265 & 3.7809 & 2.8176 & 4.0190 & 2.8652 & 2.1972 & 0.6680 \\
216\textsubscript{32} & 1.9034 & 3.5414 & 3.7727 & 2.8190 & 4.0217 & 2.8652 & 2.1959 & 0.6694 \\
\end{array}
\]

1: Defect region is defect atom itself.
*: Defect region is defect atom and its nearest neighbors.

\textbf{TABLE IV:} \(q = 0 \) state

\textbf{TABLE V:} \(q = 2 \) state