Relationship Between Maximum Strength and Vertical Jump Performance in Junior Speed Skaters

Ștef Raluca Doina 1*
Grosu Emilia Florina 2

1, 2”Babeș-Bolyai” University Cluj-Napoca, Pandurilor 7 Street, 400376, Romania

DOI: 10.29081/gsjesh.2020.21.2.10

Keywords: maximal strength, squat jump, countermovement jump

Abstract

The aim of this study was to determine the relationships between back squat maximal strength, maximal isometric force, jump squat and countermovement jump and whether power training improves parameters mentioned above in well-trained speed skaters. Sixteen athletes devided in two groups, performed two maximal squat strength test and two vertical jump test before and after the intervention program. Absolute strength showed a strong correlation with squat jump height (\(r = 0.762, p < 0.001 \)) and countermovement jump height (\(r = 0.760, p < 0.001 \)) but also between maximal isometric force and squat jump (\(r = 0.418, p = 0.036 \)). Percentage change within the experiment group were significantly different from pre to post intervention for each parameter tested in the order described, respectively: 14%; 16.8%; 14.9%; 9.1%. These results suggest that jump squat training can improve several athletic performances developing high levels of lower body strength to enhance jump performance.

1. Introduction

Weightlifting training has been indicated to benefit vertical power production, and both shown to affect sprint performance (Haug, Spratford, Williams, Chapman, & Drinkwater, 2015). Some authors are advocating training with the weightlifting movements for the purposes of developing speed and power performance of speed skaters, this is nonetheless irresponsible until the investment necessary to achieve gains is quantified.

Considering that other dry-land training modalities may be capable benefitting the variables mentioned before (i.e. dry-land plyometric training, velocity resistance training explosive weight training) and vertical power production (i.e. vertical jump training), further systematic cost-benefit analyses

* E-mail: stefralucadoina@yahoo.ca, tel. 0745 091068
need to be performed on the weightlifting movements even though training principles and potential similarity in movement mechanics are respected.

Previous works have reported similarity between long track speed skating start and dry-land sprint start (Song, Lee, & Moon, 2017), associations between skating sprint performance and off-ice performance characteristics, such as vertical jump performance (Farlinger, Kruisselbrink, & Flowles, 2007). Weightlifting training is considered as a worthwhile off-ice means to develop speed skating performance as the literature strongly reports to develop dry-land start performance (Stangier et al., 2016; Akahane, Kimura, & Cheng, 2006) so maximizing the transfer of training to performance is paramount.

In his study, Wilson, Murphy, and Walsche, (1996) of 8-week of strength training with the squat exercise produced a 21% gain in the one repetition maximum (1RM) squat. This change was accompanied by an improvement in vertical jump (VJ) performance of also 21%. This example shown that training to improve leg strength as measured by a 1RM squat has excellent transference to VJ performance.

In a meta-analysis was reported that the most common indicators of power were vertical jump with 25 studies, sprint running 13 performance and a positive effect was detected for resistance training programs on vertical jump (mean difference 3.08 [95% CI 1.65, 4.51], Z=4.23 [P<0.0001]) (Harries, Lubans, & Callister, 2012). Other studies, McBride, Triplett-McBride, & Davie (2002) reported subjects who trained for same period of time with jump squat using 80% of their 1RM squat achieved an increase of greater than 60% in the average of EMG output and with a 10% gain in peak power output.

When comes about the load, speculation exists as to whether the optimal training intensity is the same as that used to generate instantaneous peak power. Studies using young subjects (Moss, Rees, Abildgaard, Nicolaysen, & Jensen, 1997) have reported peak power generation at loads equivalent to 30% of maximum strength. But that isn’t all, youth athletes demonstrate a high trainability, with (Keiner et al., 2013) concluding that well-trained athletes aged 16–19 years should be able to back squat a minimum of 200% body mass. Beside the trainability of the young athlete’s research has demonstrated that resistance training is safe, improves performance, and reduces injury risk (Harries et al., 2012).

In studies where the load that maximizes mean power output has been calculated there seems to have been more consistent simultaneous improvement in maximum and rapid force production, as well as jump performance (Lamas, et al., 2012).

Explosive weight training has been the focus of several research papers is the jump squat exercise. Here, a loaded bar is held on the shoulders and the individual squats down prior to rapidly extending the legs and torso to finally leave contact with the floor. The load used during jump squat training seems to be an important consideration for training outcomes. Following the law of specificity, authors (Smilios, et al., 2013) showed that training with lighter loads improves power at the high velocity end of the force-velocity curve, whereas higher loads improves power.
at the high force end of the force-velocity curve.

The aim of this study was to determine the relationships between back squat maximal strength (1RM), maximal isometric force (Fmax) and jump performance: jump squat (SJ) and countermovement jump (CMJ) and whether power training (8 weeks) improves the parameters mentioned above in well-trained speed skaters.

2. Material and methods

Study design

This study was designed to investigate the relationship between maximal back squat strength (1RM), maximal isometric squat force (Fmax) and jump performance: squat jump (SJ) and countermovement jump (CMJ) in well trained speed skaters (2 times per week for 8 weeks off-ice season all subject were training full time with 4 training specific sessions). Jump and squat protocol to determine performance were selected because it is an accurate way of measuring explosive power commonly used in speed skating community. During training, each repetition was monitored, and real time feedback provided to the subjects to ensure maximum effort. The tests were performed in 2 separate occasions pre and post training divided in 2 separate days (first: countermovement jump (CMJ) and squat jump (SJ) and second: maximal isometric squat force (Fmax) and maximal back squat strength (1RM) All athletes rested the day before testing. Prior to all test a standard warm-up was performed consisting of a 10 min jogging and mobilization exercises, including various bodyweight lunges, squats and some low-level plyometric drills replicating the athletes standardized warm-ups before training.

Participants

Sixteen young subjects completed the study (EXP; n = 8; 17.45 ± 1.2 years) and (C; n = 8; 18.01 ± 0.8 years). All subjects were fully informed of the requirements of the investigation and provided appropriate consent to participate and with consent from the parent under the age of 18. Subjects were well trained with at least 2-year experience in strength training.

Training protocol

All subjects performed a total of 16 training sessions during 8 week-period, divided in two 8 sessions using 6 sets of 4 repetitions of maximum power load (Pmax) and the other half 3 sets of 8 repetitions with 50-60% of Pmax load (individualized). Control group maintained their normal physical activity with the instruction to not perform any organized heavy strength and explosive power training during the intervention period.

Vertical Jumps

The intensity of each jump squat (SJ) and countermovement jump (CMJ) repetition was measured with Tendo Weightlifting Analyzer (TENDO Sports Machines, Trecin, Slovak Republic) attached to the barbell perpendicular to the floor trough a nylon cord and the systems sensor unit is connected to a computer with matching software collecting data Tendo Softaware Computer V-5 (Version 6.0.1, Slovak Republic) that allowed a full record of the variables (power, force and velocity) and the mat (Tendo WL package) was used to measure the jump height.
All subjects squatted down until the hamstrings touched the foam cubes and then jumped as high as possible. After the warm-up standardized, subjects completed 3 trials of each jump with hands on hips with 1 min rest between trials. The SJ was performed with a 3 second pause at approximately 90° of knee flexion. After a further 15-minute active rest, subjects performed 3 CMJs (maximal vertical jump) with 1 minute rest between repetitions.

Maximum squat strength (1RM)

Maximum strength in the half-squat exercise (knee angle 90°) was measured with the 1RM method. Briefly, the subjects warmed up with 5–8 repetitions with a load estimated by the subjects to be approximately 50% of their 1RM. After 2 minutes of rest, 2–4 repetitions were performed with a load 70–80% and 1 repetition with a load 90% of the estimated 1RM. Thereafter, the load increased progressively when the subject performed 1 repetition to reach the maximum where the movement could not be completed with a full range of motion. Between single repetitions, the subjects rested for 3–5 minutes. Two to 3 single trials were required until the 1RM load was reached.

Maximal isometric force (Fmax)

To assess maximal isometric squat force (Fmax) was used the same Tendo equipment. The barbell was adjusted to subject’s knee angle of 90° during the half squat and each performed 2 trials over duration of 5 seconds with 3 minute rest between trials. Fmax (N) was analyzed with the highest value determining the best performance. All assessments took place on the same day, in the sequence described above, with approximately 15-minute rest between measurements.

Statistical analyses

Standard methods were used to determine means and standard deviations. Difference between groups in relative changes over time were assessed by independent T test. Main effect for time and group and time were assessed with ANCOVA with repeated measures. Relationships between variables were determined using Pearson’s correlations using SPSS software (version IBM SPSS Statistics 20, Chicago, IL, USA). Alpha was set at ≤ 0.05.

3. Results and Discussions

For maximal strength measured as 1RM, experiment group showed significant increase from pre to post intervention EXP (15.7 1RM (kg), p < 0.001) (Tabel 1). Significant main effects were observed for time and group (F = 18.26, p < 0.001). Percentage change between groups were significantly different from pre to post intervention (EXP 14% vs. C 2.1%, T = 3.65, p < 0.001).

Experiment group showed significant increase from pre to post intervention in Fmax to (4.9 (N·kg-1) p < 0.001) where control group did not registered any significant modification in any of the variables measured from pre to post test period (Tabel.1). Significant main effects were observed for time and group (F = 21.53, p < 0.001) and time (F = 5.81, p < 0.01). Percentage change between groups were significantly different from pre to post intervention (EXP 16.8 % vs. C 3.6%, T = 5.13, p < 0.001) (Fig.1).
Tabel 1 Results pre and post intervention for both groups tested. Values are means (±SD)

	Experiment		Control	
	Pre	Post	Pre	Post
1RM (kg)	97.1 (29.0)	112.8 (32.0)*†	95.5 (26.6)	97.5 (28.8)
Fmax (N·kg⁻¹)	24.3 (4.1)	29.2 (4.0)*†	24.7 (2.5)	25.5 (3.1)
SJ (cm)	34.3 (3.9)	40.3 (4.5)*†	36.1 (5.5)	36.6 (5.2)
CMJ (cm)	43.2 (5.3)	47.5 (6.0)*†	44.5 (5.8)	44.9 (5.9)

1RM (1 repetition maximum); Fmax (maximum isometric force); SJ (squat jump); CMJ (countermovement jump); *indicates significant difference (p < 0.01); †indicates significant difference between pre to post.

Figure 1. Relationship between change (%) in maximum isometric force and squat jump after intervention period in experiment group.

For the first vertical jump measured, squat jump (SJ), experiment group increased significantly from pre to post intervention were observed EXP (6.0 (cm), p < 0.001) and a significant time and group interaction (F = 35.40, p < 0.001). Percentage changes between groups were significantly different from pre to post intervention period (EXP 14.9% vs. C 1.4%, T = 8.12, p < 0.001).

For the (CMJ) experiment group showed significant increase from pre to post EXP (4.3 (cm), p < 0.001) but no significant difference were observed for control group between the two testing period C (0.40 (cm), p > 0.05). There is a significant time and group interaction (F = 15.1, p < 0.001). Percentage changes between groups were significant different (EXP 9.1% vs. C 0.9%, T = 4.71, p < 0.001).

Strength as 1RM (kg) tested, showed a strong relationship ($r = 0.762 - 0.760$) with jump performance respectively with, squat jump height (SJ) ($r = 0.762$, p < 0.001) and countermovement jump height (CMJ) ($r = 0.760$, p < 0.001) (Tabel.2). Also a statistical significant relationship was observed between Fmax and SJ after
the intervention program \((r = 0.418, p = 0.036)\) for EXP (Fig. 2).

Table 2. Relationship (Pearson’s correlation, \(r\)) between strength measurement and jump performance

Jumps	Strength	Squat jump (SJ)	Countermovement jump (CMJ)
1RM (kg)		0.762**	0.760**
Fmax (N·kg\(^{-1}\))		0.418*	-

* \(p < 0.05\); ** \(p < 0.001\).

Figure 2. Relationship between absolute squat strength (1RM) and squat jump

One important aspect of the present study was that the external load was individually adjusted according to the power-load curve and instant feedback was provided to the subjects to ensure that all prescribed repetitions were performed with \(\geq 90\%\) of maximum average power output. The inclusion of real – time feedback has been shown to be important to maximize gain during power training compared to training without feedback and provides motivation to subjects to consistently perform with maximum effort in each repetition (Harris, Cronin, Hopkins, & Hansen, 2010).

Concerning the load used during the intervention period, it has been individualized which is advantageous compared to prescribing loads based on maximum strength (i.e. \(\%\) of 1RM) since different neuromuscular characteristics between athletes may lead to different power load curves (Izquierdo, Häkkinen, González-Badillo, Ibáñez, & Gorostiaga, 2002). The loads used were at a larger percentage of 1RM and this higher absolute load during intervention may have
been better suited to develop a range of athletic performance tasks in training program.

The main findings in this study confirm improvements in all assessed parameters: significant improvements in Fmax from pre to post intervention period in EXP group, maximal strength (1RM) the same as for the SJ and CMJ, that were greater than for C group. For SJ and CMJ significant changes were observed and these results are in line with previous research studying velocity resistance training or power training (Cronin, & Hansen, 2005; McBride et al., 2009; Lamas, et al., 2012). The results of this study highlight the importance of developing high levels of strength to enhance jump performance in speed skaters, with stronger athletes tending to demonstrate the best jump height and the weaker ones the opposite. The magnitude of improvements in CMJ for EXP was 9.1% and for the SJ 14.9% from pre to post intervention.

Some studies suggest that improvements in loaded jump squat performance are specific to light loads (30% of 1RM) (Smilios et al., 2013) which is in contrast to the findings of our study, where it was observed that an average load of approx. 50-60% of 1RM improves the jumping performance of CMJ and higher loads has been shown to improve the jumping performance of SJ, where a strong correlation between the two variables (1RM and SJ) has been observed, fact that also is supported by the study of the authors Lamas, et al., (2012).

Improvements in isometric maximal force Fmax have been also observed for EXP group from pre to post intervention, with magnitude of improvements of 16.8% vs. 3.6%. Furthermore, we found positive association between Fmax and SJ, suggesting that improving maximum strength favorably influences some elements of explosive athletic performance. Some evidence to support this claim may be indicated by the positive association in increased Fmax and SJ but not between Fmax and CMJ in the present study.

Consequently, in our study we found good relationships between maximal squat strength and jump performance, which were similar to those previously reported (Wisloff, Castagna, Helgerud, Jones, & Hoff, 2004; McBride et al., 2009) as mentioned for SJ ($r = 0.762, p < 0.001$) and CMJ ($r = 0.760, p < 0.001$) respectively. With regard to the jump performances, the same authors, Wisloff et al., (2004), reported similar correlations ($r = 0.78$) between strength and CMJ performance in adult athletes.

4. Conclusions

Significant improvements were registered after 8 weeks of jump squat training in all 4 parameters measured: squat jump, countermovement jump, maximum strength (absolute) as well as maximum isometric force. These results suggest that jump squat training can improve several athletic performances developing high levels of lower body strength to enhance jump performance.

Finally, while the literature has explored specific areas of vertical power production (i.e. squat jump) affected by weightlifting training, other areas such as end range of motion kinetics are currently under-investigated, as differences in this
area may provide insight into the mechanisms by which weightlifting functions and may serve to separate weightlifting as an off-ice training means for speed skaters.

References

1. AKAHANE, K., KIMURA, T., & CHENG, G.A. (2006). Relationship between balance performance and leg muscle strength in elite and non-elite junior speed skaters. *J Phys Ther Sci*, 18(2): 149-154.

2. CRONIN, J.B., & HANSEN, K.T. (2005). Strength and power predictors of sports speed. *J Strength Cond Res*, 19: 349–357.

3. FARLINGER, C.M., KRUISSELBRINK, L.D., & FOWLES, J.R. (2007). Relationships to skating performance in competitive hockey players. *Journal of Medicine Science and Sports Exercise*, 21: 915-922.

4. HARRIES, S.K., LUBANS, D.R., & CALLISTER, R. (2012). Resistance training to improve power and sports performance in adolescent athletes: A systematic review and meta-analysis. *J Sci Med Sport 15*: 532–540.

5. HARRIS, N.K., CRONIN, J.B., HOPKINS, W.G., & HANSEN, K.T. (2010). Interrelationships between machine squat-jump strength, force, power and 10 m sprint times in trained sportmen. *J Sports Med Phys Fitness*, 50: 37–42.

6. HAUG, W. B., W. SPRATFORD, K. J. WILLIAMS, D. W. CHAPMAN, & DRINKWATER, E.J. (2015). "Differences in end range of motion vertical jump kinetic and kinematic strategies between trained weightlifters and elite short track speed skaters." *J Strength Cond Res*, 29: 2488-2496.

7. IZQUIERDO, M., HÄKKINEN, K., GONZÁLEZ-BADILLO, J.J., IBÁÑEZ, J. & GOROSTIAGA, E.M. (2002) Effects of long-term training specificity on maximal strength and power of the upper and lower extremities in athletes from different sports. *European Journal of Applied Physiology 87*: 264-271.

8. KEINER, M., SANDER, A., WIRTH, K., CARUSO, O., IMMESBERGER, P., & ZAWIEJA, M. (2013). Trainability of adolescents and children in the back and front squat. *J Strength Cond Res*, 27: 357–362.

9. LAMAS, L., UGRINOWITSCH, C., RODACKI, A., PEREIRA, G., MATTOS, E.C., KOHN, A.F., & TRICOLI, V. (2012). Effects of strength and power training on neuromuscular adaptations and jumping movement pattern and performance. *Journal of Strength and Conditioning Research 26*: 3335-3344.

10. MCBRIDE, J.M., TRIPLETT-MCBRIDE, T., & DAVIE, A. (2002). The effect of heavy- vs. light-load jump squats on the development of strength, power, and speed. *Journal of Strength and Conditioning Research*, 16(1): 75-82.

11. MCBRIDE, J.M., BLOW, D., KIRBY, T.J., HAINES, T.L., DAYNE, A.M., & TRIPLETT, N.T. (2009). Relationship between maximal squat strength and five, ten, and forty-yard sprint times. *J Strength Cond Res*, 23: 1633–1636.

12. MOSS, B.M., REFSNES, P.E., ABILDGAARD, A., NICOLAYSEN, K., & JENSEN, J. (1997). Effects of maximal effort strength training with different
loads on dynamic strength, cross-sectional area, load-power and load-velocity relationships. *Eur J Appl Physiol*, 75: 193-199.

13. SONG, J., LEE, D., & MOON, Y.J. (2017). Kinematics of the running-like sprint start in long-track speed skating. *International Journal of Performance Analysis in Sport*, 17: 1-13.

14. SMILIOS, I., SOTIROPOULOS, K., CHRISTOU, M., DOUDA, H., SPAIAS, A. & TOKMAKIDIS, S.P. (2013) Maximum power training load determination and its effects on load-power relationship, maximum strength, and vertical jump performance. *Journal of Strength and Conditioning Research*, 27: 1223-1233.

15. STANGIER, C., ABEL, T., HESSE, C., CLAEN, S., MIERAU, J., HOLLMANN, W., & STRÜDER, H.K. (2016). Effect of cycling vs. running training on endurance performance in preparation for inline speed skating. *Journal of Strength & Conditioning Research*. 30(6): 1597-1606.

16. WILSON, G.J., MURPHY, A.J., & WALSCHÉ, A. (1996). The specificity of strength training: the effect of posture. *European Journal of Applied Physiology*, 73: 346-352.

17. WISLOFF, U., CASTAGNA, C., HELGERUD, J., JONES, R., & HOFF, J. (2004). Strong correlation of maximal squat strength with sprint performance and vertical jump height in elite soccer players. *Br J Sports Med*, 38: 285–288.
Relația între Forța Maximă și Performanța Săriturii pe Verticală la Patinatorii de Viteză Juniori

Ștef Raluca Doina1
Grosu Emilia Florina2
1,2Universitatea "Babeș- Bolyai" Cluj-Napoca Pandurilor 7,400376, Romania.

Cuvinte cheie: forță maximă, genuflexiune cu săritură, săritură cu contramișcare

Rezumat

Scopul studiului a fost de a determina relațiile dintre puterea maximă, forța izometrică maximă, genuflexiune cu săritură și săritură cu contramișcare și dacă antrenamentul de forță induce modificări la nivelul parametrilor menționați anterior, la patinatorii de viteză cu un nivel de pregătire ridicat. Șaisprezece sportivi au fost împărtăși în două grupe. S-au efectuat două teste de forță maximă și două teste de săritură pre și post testare. Forța absolută a arătat o corelație puternică cu înălțimea săriturii (r = 0,762, p < 0,001) și cu contramișcare (r = 0,760, p < 0,001) dar și între forța izometrică maximă și genuflexiune cu săritură (r = 0,418, p = 0,036). Modificarea procentuală în interiorul grupului experiment a fost semnificativ diferită pre - post testare, pentru fiecare parametru evaluat în ordinea descrisă, respectiv: 14%; 16,8%; 14,9%; 9,1%. Antrenamentul de forță cu săritură poate îmbunătăți performanța sportivă dezvoltând nivelul de forță pentru îmbunătățirea înălțimii săriturii.

1. Introducere

Antrenamentul de forță este indicat pentru dezvoltarea puterii trenului inferior, ambele dovedindu-se că aduc beneficii în ceea ce privește aplicarea forței pe direcție verticală prin săritură dar și pe orizontală îmbunătățind viteza de sprint (Haug, Spratford, Williams, Chapman & Drinkwater, 2015). Unii autorii pledează pentru mișcări cu îngreuiere în scopul dezvoltării vitezei și puterii la patinatorii de viteză, acest lucru fiind ireresponsabil până când investiția necesară pentru obținerea unor progrese nu este cuantificată.

Având în vedere că alte metode de antrenament pe uscat pot fi în măsură să aducă îmbunătățiri variabilelor menționate anterior (ex. antrenamentul pliometric, antrenament de forță exploziv) și dezvoltarea generării puterii pe verticală (antrenament cu săritură pe verticală), analize suplimentare cost-beneficiu trebuie să se efectueze pe mișcări cu îngreuiere, chiar dacă sunt respectate principiile de antrenament și mecanismul similar al mișcării.

Lucrările anterioare au raportat similaritatea între startul de pe gheață la patinaj viteză și startul pe uscat (Song, Lee, & Moon, 2017) dar și asocieri între performanța la probele de sprint și anumite caracteristici ale pregătirii fizice pe uscat cum ar fi săritura pe verticală (Farlinger, Kruisselbrink, & Flowles, 2007). De asemenea antrenamentul de forță cu haltere este considerat ca un mijloc esențial de pregătire pentru dezvoltarea performanței sportive în patinaj, deoarece literatura de
specialitate raportează beneficiile induse dar și în ceea ce privește dezvoltarea vitezei de sprint pe uscat (Stangier et al., 2016; Akahane, Kimura, & Cheng, 2006), astfel maximizarea transferului în sportul specific este extrem de importantă.

În studiul său, Wilson, Murphy and Walsche (1996), de 8 săptămâni de antrenament de forță (genuflexiune cu bara în spate) a obținut un progres procentual de 21% la o repetare maximă (1RM). Această modificare a fost însotită de o îmbunătățire a performanței săriturii în înălțime (VJ) cu 21%. Acest exemplu a arătat că antrenamentul pentru dezvoltarea forței maxime a trenului inferior măsurate prin testul 1RM are un transfer excelent pentru creșterea înălțimii săriturii pe verticală (VJ).

Într-o meta-analiză a fost raportat faptul că cei mai comuni indicatori ai puterii trenului inferior au fost măsurați prin: săritura pe verticală (genuflexiune cu săritură) cu 25 de studii, viteza de sprint cu 13 studii și un efect pozitiv a fost observat pentru antrenamentele de forță asupra săriturii în înălțime (diferență medie 3,08 [IC 95% 1,65, 4,51], Z = 4,23 [P <0,0001]) (Harries, Lubans, & Callister, 2012). Alte studii, McBride, Triplett-McBride, and Davie, (2002) au raportat subiecții care s-au antrenat pentru aceeași perioadă de timp folosind 80% din 1RM genuflexiune cu săritură, obținând o creștere cu 60% din media producției EMG și cu un procent de creștere de 10% în ceea ce privește puterea de vârf (max.).

Când vine vorba despre încărcătura utilizată, există speculații, dacă intensitatea optimă a antrenamentului este aceeași cu cea utilizată pentru generarea puterii maxime într-o repetetă. Studiile pe subiecți tineri (Moss, Refsnes, Abildgaard, Nicolaysen & Jensen, 1997) au raportat generarea de putere maximă la o încărcătură echivalentă cu 30% din puterea maximă. Dar asta nu este tot, sportivii tineri au demonstrat o capacitate ridicată de pregătire (Keiner et al., 2013) concluzionând că sportivii bine pregătiți cu vârsta cuprinsă între 16 și 19 ani ar trebui să poată utiliza cel puțin 200% din masă corporală (genuflexiune cu bara în spate). Pe lângă capacitatea de pregătire a tinerilor sportivi, cercetările au demonstrat că antrenamentul de forță este sigur, îmbunătățește performanțele sportive și reduce riscul de accidentare (Harries et al., 2012).

În studiile în care s-a calculat încărcătura care maximizează media puterii, se pare că există o îmbunătățire consistentă observându-se îmbunătățirea simultană în producția forței rapide și maxime, precum și a performanței săriturii (Lamas et al., 2012).

Într-o meta-analiză a fost calculat cadrul antrenamentelor de acest tip a cărei înțelegere este o considerație importantă pentru împlinirea obiectivelor planificate și obținerea rezultatelor dorite. După legea specificității, autorii (Smilios et al., 2013) au arătat că antrenamentul cu încărcături mai mici îmbunătățește puterea la viteze de execuție mari iar curba forță-viteză aceasta aflându-se la extremitatea curbei vitezei, în timp ce încărcările mai mari îmbunătățesc puterea la extremitatea curbei forței.
Scopul acestui studiu a fost de a determina relațiile dintre puterea maximă (1RM), forța izometrică maximă (Fmax) și performanța săriturii pe verticală: genuflexiune cu săritură (SJ) și săritură cu constramișcare (CMJ) și dacă antrenamentul de forță (8 săptămâni) îmbunătățește parametrii menionâți mai sus la patinatorii de viteză bine pregătiți.

2. Material și metode

Modelul cercetării

Acest studiu investighează relația dintre forța maximă (1RM), forța izometrică maximă (Fmax) și performanța săriturii pe verticală: genuflexiune cu săritură (SJ) și săritură cu constramișcare (CMJ) la patinatori cu viteză cu un nivel de pregătire ridicat (de 2 ori pe săptămână pentru 8 săptămâni în afara sezonului de iarnă, toți subiecții s-au antrenat cu normă întreagă, cu 4 antrenament specifice). Protocolul de cercetare pentru determinarea săriturii și a forței este o metodă precisă de măsurare a puterii explozive utilizate frecvent în comunitatea patinațului viteză. În timpul antrenamentelor, fiecare repetare a fost monitorizată oferind feedback în timp real subiecților pentru a asigura efortul maxim depus.

Testele au fost efectuate la 2 momente de testare diferite pre și post intervenție, împărțite în 2 zile separate (prima: genuflexiune cu săritură (SJ) și săritură cu constramișcare (CMJ) și a doua: forța izometrică maximă (Fmax) și forța maximă (1RM). Toți sportivii s-au antrenat cu o zi înainte de testare. Inițial, testele au fost efectuate înainte de antrenamentul specific.

Participanți

Șaisprezece subiecți tineri au finalizat studiul (EXP; n = 8; 17,45 ± 1,2 ani) și (C; n = 8; 18,01 ± 0,8 ani). Toți au fost informați complet despre cerințele investigației oferind consimțământul pentru a participa, acordul părintelui a fost obținut pentru subiecții sub 18 ani. Subiecții au avut un nivel de pregătire ridicat, cu o experiență de cel puțin 2 ani în antrenamentul de forță.

Protocolul de antrenament

Toți subiecții au efectuat un număr de 16 sesiuni de antrenament pe parcursul a 8 săptămâni, împărțite în două perioade: 8 ședințe folosind 6 seturi de 4 repetări cu încărcătura calculată din puterea maximă (Pmax) obținută la 1RM și cealaltă jumătate de 3 seturi de 8 repetări cu 50-60% din încărcătura Pmax (individualizată). Grupul de control a continuat să efectueze activitatea fizică normală cu instrucțiunea de a nu realiza nici o formă organizată de antrenament de forță cu greutăți mari sau exploziv în perioada de intervenție.

Săritura pe verticală

Intensitatea fiecărui repetări a celor două tipuri de sărituri: genuflexiune cu săritură (SJ) și săritură cu constramișcare (CMJ) a fost măsurată cu ajutorul aparatului Tendo (TENDO Sports Machines, Trecin, Slovacia), atașat la bara utilizată prin cordonul de nailon poziționat perpendicular pe podea care face legătură cu unitatea
de senzori conectat la un computer prin software colectând datele în timp real, Tendo Softaware Computer V-5 (versiunea 6.0.1, Trecin, Slovacia) acest lucru a permis înregistrarea completă a variabilelor: putere, forță și viteză, de asemenea s-a utilizat și platforma din pachetul Tendo WL pentru a măsura înălțimea săriturilor. Platforma a fost calibrată la zero la fiecare sesiune de măsurare.

Toți subiecții au efectuat același exercițiu, respectiv o semigenuflexiune cu săritură. După flexia membrelor inferioare cu atingerea cuburilor de spumă s-a efectuat o săritură cât mai înaltă posibil cu mâinile pe șolduri cu 1 min. pauză între repetări. SJ a fost efectuat cu o pauză de 3 secunde la aproximativ 90° înainte de desprindere. După o pauză active de încă 15 minute, subiecții au efectuat 3 sărituri cu contramișcare CMJ (cu înălțime maximă) cu 1 min. repauză între repetări.

Forța maximă (1RM)

Forța maximă a fost măsurată cu metoda o repetare maximă, 1RM (semigenuflexiune cu bara în spate). Pe scurt, subiecții au efectuat o încălzire cu 5-8 repetări cu o încercătură estimată de subiecții a fi aproximativ 50% din 1RM. După 2 minute de pauză, au efectuat 2-4 repetări cu o încercătură de 70-80% și 1 repetare cu 90% din 1RM estimat. Încercătura a crescut progresiv până când subiectul a efectuat 1 repetare pentru a atinge greutatea maximă realizând mișcarea complet. Între repetări subiecții s-au odihnit 3-5 minute. Două- trei încercări au fost necesare pentru determinarea 1RM.

Forța izometrică maximă (Fmax)

Pentru a evalua forța izometrică maximă (Fmax) a fost utilizat același echipament Tendo. Un marcap a fost ajustat la unghiul de 90° pentru fiecare subiect, în timpul repetărilor. Au fost efectuate 2 încercări peste durata a 5 secunde cu 3 minute de pauză între încercări. Fmax (N) a fost măsurată, cea mai mare valoare determinată a fost analizată. Toate evaluările au avut loc în aceeași zi, în secvență descrisă mai sus, cu aproximativ 15 minute de odihnă între măsurători.

Analiza statistică

Metode standard de analiză au fost utilizate pentru a determina mediiile și abaterile standard. Diferența între grupuri și schimbările relative între cele două momente de testare a fost evaluată prin independent T test. Efectul principal pentru timp și grup și timp au fost evaluat cu ANCOVA cu măsurători repetate. Relațiile dintre variabile au fost determinate utilizând corelațiile Perasons folosind software-ul SPSS (versiunea IBM SPSS Statistics 20, Chicago, IL, SUA). Alfa a fost setat la ≤ 0,05.

3. Rezultate și discuții

Pentru forța maximă măsurată ca 1RM, grupul experiment a obținut o creștere semnificativă între pre și post testare EXP (15,7 1RM (kg), p <0,001) (Tabelul 1). Un efect principal semnificativ a fost observat pentru timp și grup (F = 18,26, p <0,00). Modificarea procentuală între grupul experiment și control a fost semnificativ diferită între pre și post intervenție (EXP 14% față de C 2,1%, T = 3,65, p <0,001).

Grupul experiment a înregistrat o creștere semnificativă între pre și post testare la proba pentru testarea forței izometrice maxime (Fmax) (4,9 (N · kg-1) p
<0,001) iar în cazul grupului control nu s-a înregistrat nicio modificare semnificativă la niciunul dintre parametrii măsurăți între perioada pre și post testare (Tabelul 1). Un efect principal semnificativ a fost observat pentru timp și grup (F = 21,53, p <0,001) și cele două momente de testare (F = 5,81, p <0,01). Modificarea procentuală între cele două grupuri a fost semnificativ diferită de la pre la post intervenție (EXP 16,8%) față de C 3,6%, T = 5,13, p <0,001) (Fig.1).

Tabelul 1. Rezultatele pre și post intervenție pentru ambele grupe testate. Valorile sunt exprimate în medii (±SD)

	Experiment	Control
1RM (kg)	97.1 (29.0)	95.5 (26.6)
Fmax (N·kg⁻¹)	24.3 (4.1)	24.7 (2.5)
SJ (cm)	34.3 (3.9)	36.1 (5.5)
CMJ (cm)	43.2 (5.3)	44.5 (5.8)

IRM (1 repetare maximă); Fmax (forța izometrică maximă); SJ (semigenuflexiune cu săritură); CMJ (săritură cu contramișcare); *indică o diferență semnificativă la (p < 0,01); † indică o diferență semnificativă între pre și post test.

Figura 1. Relația între modificarea procentuală (%) forța izometrică maximă și genuflexiune cu săritură post intervenție a celor două grupe testate

Pentru prima săritură evaluată, semigenuflexiune cu săritură (SJ), grupul experiment a înregistrat o creștere semnificativă între pre și post intervenție EXP (6,0 (cm), p <0,001) și un efect semnificativ în timp și grup a fost observat (F = 35,40, p <0,001). Modificările procentuale între grupul experiment și control au fost semnificativ diferite între cele două momente de testare (EXP 14,9%) față de C 1,4%, T = 8,12, p <0,001).
Pentru cea de-a doua săritură, cu contramișcare, grupul experiment (CMJ) a arătat o creștere semnificativă între pre și post testare EXP (4,3 (cm), p <0,001), pentru grupul control nu s-a observat nicio diferență semnificativă între cele două perioade de testare C (0,40 (cm), p> 0,05). Un efect semnificativ în timp și grup (F = 15,1, p <0,001) a fost observat. Modificările procentuale între cele două grupe au fost semnificativ diferite (EXP 9,1%) față de C 0,9%, T = 4,71, p <0,001).

Forța maximă 1RM (kg) a arătat o corelație puternică cu performanța săriturii (înălțimea ambelor sărituri) (r = 0,762 - 0,760) respectiv cu înălțimea obținută la proba genuflexiune cu săritură (SJ) (r = 0,762, p <0,01) și săritură cu contramișcare (CMJ) (r = 0,760, p <0,01) (Tabelul 2). De asemenea, o relație semnificativ statistică a fost observată între Fmax și SJ după programul de intervenție (r = 0,418, p = 0,036) pentru grupul EXP (Fig. 2).

Tabelul 2. Relația (corelația Pearson) între măsurarea forței și performanța săriturii

	Jumps
	Strength
	Squat jump (SJ)
1RM (kg)	0.762**
Fmax (N·kg-1)	0.418*
Countermovement jump (CMJ)	0.760**

* p < 0.05; ** p < 0.001.

Figura 2. Relația între forța absolută (1RM) și înălțimea săriturii (semigenuflexiune cu săritură)
Un aspect important în prezentul studiu este încărcătura externă folosită aceasta a fost ajustată individual în funcția de curba încărcătură – putere obținută într-o repetare. Cu ajutorul aparatului Tendo s-a putut oferi feedback în timp real pentru fiecare din subiecți pentru a ne asigura că toate repetările prescrise au fost efectuate cu ≥ 90% din puterea medie maximă. S-a dovedit că includerea feedback-ului în timpul efortului este importantă pentru a maximiza efectul antrenamentului de forță, comparativ cu antrenamentul fără feedback, acesta oferind un plus de motivație subiecților să depună constant efortul maxim la fiecare repetare (Harris, Cronin, Hopkins, & Hansen, 2010).

În ceea ce privește încărcătura utilizată în timpul perioadei de intervenție, aceasta fost individualizată, fiind un aspect avantajos în comparație cu prescrierea încărcăturilor bazate pe puterea maximă (adică % din 1RM), deoarece diferite caracteristici neuromusculare dintre sportivi pot duce la curbe diferite între putere și încărcătură (Izquierdo, Häkkinen, González-Badillo, Ibáñez, & Gorostiaga, 2002). Încărcăturile utilizate au fost la un procent mai mare din 1RM și este posibil ca această încărcătură absolut mai mare în timpul intervenției să fi fost mai bine adaptată pentru a dezvolta o serie de caracteristici ale pregătirii fizice în programul de antrenament.

Principalele constatări ale acestui studiu confirmă îmbunătățiri ale tuturor parametrilor evaluai: îmbunătățiri semnificative ale Fmax între perioade pre și post intervenție în cazul grupului EXP, a forței maxime (1RM) precum și în cazul SJ și CMJ, scorurile medii fiind mai mari decât la grupul C. Pentru SJ și CMJ au fost observate modificări semnificative și aceste rezultate sunt în conformitate cu cercetările anterioare care studiază antrenamentul de forță - viteză sau antrenamentul de putere (Cronin, Hansen, 2005; McBride et al., 2009; Lamas et al., 2012).

Rezultatele acestui studiu subliniază importanța dezvoltării unui nivel ridicat de forță pentru a îmbunătăți performanța săriturii la patinatorii cu viteză. Sportivi mai puternici având tendința de a obține cea mai bună înălțime a săriturii iar cei mai slabi contrariul. Modificările procentuale pentru proba CMJ a grupului EXP a fost de 9,1% și pentru SJ 14,9% între pre și post intervenție.

Umele studii sugerează că îmbunătățirea performanței în cadrul săriturilor cu încărcătură adițională este specifică încărcărilor ușoare (30% din 1RM) (Smilios, et al., 2013), care este în contrast cu constatările studiului nostru, unde s-a observat faptul că o încărcătură medie de approx. 50-60% din 1RM îmbunătățește performanța săriturii cu contramișcare CMJ și încărcătură mai mare s-a dovedit că îmbunătățește performanța săriturii SJ, unde s-a observat o corelație puternică între cele două variabile (1RM și SJ), fapt care este susținut de studiul realizat de autorii (Lamas, et al., 2012).

Îmbunătățiri ale forței maxime izometrice Fmax au fost, de asemenea, observate pentru grupul EXP între pre și post intervenție, modificările procentuale în interiorul grupului au fost semnificativ diferite, respective 16,8% comparativ cu grupul control de 3,6%. Mai mult, am găsit o asociere pozitivă între Fmax și SJ, sugerând că îmbunătățirea forței maxime influențează în mod favorabil unele
caracterești ale forței explozive. Unele dovezi care susțin această afirmație pot fi indicate de asocierea pozitivă în Fmax și SJ crescut, dar nu și între Fmax și CMJ în studiul de față.

În consecință, în studiul nostru, am găsit relații pozitive semnificative între puterea maximă și înălțimea săriturii, care au fost similare cu cele raportate anterior (Wisloff, Castagna, Helgerud, Jones, & Hoff, 2004; McBride et al., 2009), după cum se menționează pentru SJ (r = 0,762, p <0,001; respectiv CMJ (r = 0,760, p <0,001). Cu privire la acest aspect același autori, Wisloff et al., (2004), au raportat corelații similare (r = 0,78) între forță și înălțimea săriturii CMJ la sportivii adulți.

4. Concluzii

Îmbunătățiri semnificative au fost înregistrate după 8 săptămâni de antrenament de forță cu săritură la toți cele 4 parametri măsurați: semigenuflexiune cu săritură, săritură cu contramișcare, forța maximă (absolută) precum și forța izometrică maximă. Aceste rezultate sugerează faptul că antrenamentele de acest tip pot îmbunătăți mai multe aspect ale performanțe sportive, dezvoltând un nivel ridicat de forță pentru a îmbunătăți performanța săriturii (înălțimii săriturii).

În sfârșit, în timp ce literatura de specialitate a explorat zone specifice ale generării puterii pe direcție verticală (ex. săritura în înălțime) ca efect al antrenamentului cu greutăți, alte domenii precum cinetica mișcării sunt în prezent investigate, deoarece diferitele aspecte din acest domeniu pot oferi o perspectivă asupra mecanismelor prin care funcționează antrenamentul cu greutăți și poate să servească separat ca mijloc de pregătire pe uscat pentru patinatorii de viteză.