Determining the market value of high-rise residential buildings based on evaluation of consumer properties

Svetlana Kolobova1*
Moscow State University of Civil Engineering, 26 Yaroslavskoye shosse, 129337, Moscow, Russia

Abstract. As you know, high-rise construction is an indicator of the practical implementation of advanced innovative technologies in the construction industry of the country. High-rise building inevitably comes to the big cities, in connection with the shortage and value of land. The life cycle of any construction project, including high-rise buildings consists of chains: of engineering survey - design-construction-operation. In the process of operation of a tall building, decisions about major repairs or reconstruction of a building are made for decision-making on further use. This article describes methods of assessing the consumer quality of high-rise residential buildings and the establishment of prices based on consumer characteristics of a tall residential building. It is proposed to assess the premises under their quality characteristics. The study was conducted to establish the influence of individual, comprehensive and integral indicators of comparable quality for effective quality living spaces. Simultaneously, there was established a relationship of quality with the consumer cost of housing, ultimately with the potential needs of owners, tenants of the home, lessor dwelling, or buyers of residential properties and other participants in the residential real estate market. This relationship further creates consumer requirements to quality standard of premises at a certain stage of socio-economic development.

1 Introduction

In Russia the leaders of high-rise housing construction are the following Moscow construction companies: "Don-Stroy", Mirax Group, Mirax Park. High-rise residential buildings are already built in residential complexes of Moscow "Triumph - Palace", "Edelweiss", "Tricolor", "Continental", "Scarlet sails", "House on Mosfilmovskaya", "House in Sokolniki". Among the economy projects in construction there is a "Northern city", "Airbus", "Volga sails" and others. The demand for housing in high-rise buildings continues to evolve. Modern high-rise apartment buildings are constructed in such a way that you have a multi-level underground Parking. On the first two floors of multi-storey residential buildings there is a shopping centre. The hotel is located above the shopping centre. Apartments are located above the hotel. The top two floors are occupied by apartments and penthouses.

* Corresponding author: KolobovaSV@mgsu.ru

© The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0 (http://creativecommons.org/licenses/by/4.0/).
Repair and reconstruction of residential development in the future will solve the issue of increasing the quality of real estate: apartments, houses, neighborhoods. Consequently, this will increase their competitiveness on the market. After the repair, residential properties have a higher assessed value compared to residential facilities, which were not repaired. It is proposed to undertake an assessment of the premises according to their quality characteristics. The study was conducted with the aim of establishing the influence of individual characteristics and indicators of quality to determine the overall (effective) quality of living spaces. Thus was established the connection of quality with the consumer cost of housing, ultimately with the potential needs of the owners, lessees, tenants or home buyers and other participants in the residential real estate market. This relationship creates a consumer demand for quality space at a certain stage of socio-economic development.

2 Literature review

The influence of consumer characteristics on the cost of housing and subsequent sales is studied by scientists of different countries. Assessment of the quality of housing in various countries is described in several scientific publications. For example, in the article “Data quality challenges in the UK social housing sector” authors Caroline Duvierac, Daniel Neagub, Crina Oltean-Dumbravaa and Dave Dickense explain that “The social housing sector has yet to realise the potential of high data quality” [1]. M. Norris is devoted his article to the study of the construction and management of the housing sector in the countries of Western Europe “Compared to the rest of the developed world, Western Europe is distinguished by relatively large social housing sectors”…. However, institutional arrangements for the management, financing, and regulation of social housing have been commonly reformed since the 1970s. Object subsidies for the construction of new social housing have been cut and replaced by subject subsidies for tenants such as income-related housing allowances. As a result, new social housing construction has declined and the social profile of tenants has generally become more disadvantaged. In response, social landlords have devoted more attention to the social aspects of housing management and the regeneration of estates» [2]. A. Beer examines governance in the housing sector in developed economies: «Over recent decades, the management and delivery of housing assistance measures in many developed economies has become more complex as a wider range of actors have become involved in the sector» [3]. Emma R. continues the theme of the research management of the housing sector: “Through a case study of a small, affordable housing community in Sydney, Australia, it shows that housing governance can profoundly shape senses of home in aging, both contributing to and diminishing senses of home. Further, it points to a connection between housing governance and housing design with different housing typologies associated with different aging bodies and forms of management practice, with profound implications for residents' senses of home» [4].

The article discusses the influence of the quality of the workmanship and construction of new housing on sales prices and capital growth. To measure the quality of construction we use the unique situation in Singapore, where the newly completed residential projects are evaluated regardless of the quality of work in the framework of the quality evaluation system construction. «Empirical evidence suggests that apartments that are well constructed not only command a higher price for developers, but they also generate higher capital gains for homeowners and investors in the future» [5]. Other articles are devoted to the research to price discovery in the local housing market. The key question in scientific research is the quality of construction [6,7,8,9]. Russian scientists have also devoted their numerous scientific papers research housing. [10, 11, 12, 13, 14, 15].
3 Materials and methods

The author of this article found the concept of consumer quality and cost proposed method of determining this quality of housing.

To assess current market value we introduce the concept of integrated quality. Integral quality is determined by the set of all functional and economic indicators, it is through the relationship between consumer cost and the cost of a residential facility. Structure of consumer properties of objects of housing represented in Fig.1.

![Image of the structure of consumer properties of objects of housing](https://doi.org/10.1051/e3sconf/20183302034)

Fig.1. Structure of consumer properties of objects of housing

You must be able to measure consumer value of premises of different quality, that is, to set the level of quality. To measure the level of quality real estate by comparing it with a certain level of quality of the same object, taken as the base for comparison (the base quality). Based on this approach, the expression of quantitative relationships between the properties of a living object and the reflection of these properties in the process of operation of residential facility, namely, between the quality of construction and quality of maintenance and operation.

The number of indicators of the quality of any object, including living quarters, very large, and therefore requires the streamlining of these indicators, that is, their classification. As the basis of classification should be taken of the ability of indicators to Express the most characteristic groups of the object properties, the ability of quantitative and qualitative reflect
these properties. Their set needs to determine the quality of the object. Their body needs to determine the quality of the object. For the dwelling is inherent to a certain group of properties, component quality standard: a group of environmental, functional, aesthetic, economic, technical and social properties. The system and composition of individual indicators to obtain a comprehensive characterization of the quality of the object, based on the analysis of scientific publications. The individual indicators of the quality of a residential facility must allow its assessment at three levels: district, house, apartment. Level of quality dwelling is a relative characteristic based on the comparison of the actual values of individual quality indicators (hereinafter IQI) residential facility \(p_j \) with the respective preset values baseline \(p_j^b \).

Since the properties through the relevant IQI, forming a quality residential properties, differently involved in the formation of this quality, that is, have different weight, it must be considered in determining comprehensive indicators of the quality of the estimated residential units on each of three levels of manifestation of these properties: urban district, houses, apartments. The quantitative values of the IQI of the object in each level are comparable using the weight of the IQI. The definition of weight, the IQI is produced using a introduced by the author three-point rating scale from 0 to 2 points. IQI, which have a significant effect on the formation of consumer quality of residential facility, is assigned the highest score 2, and IQI does not affect the consumer quality – 0.

Introduced coding of indicators, reflecting the level of their manifestation and the number summarizes their properties:
- consumer quality of apartments - 100;
- consumer quality at house - 200;
- consumer quality of district - 300.

Since the properties through the relevant IQI, forming a quality residential facilities differ from one another by its weight, i.e., importance in the overall assessment of its level of quality, then there is a need for integrated indicators valuation for each of the three levels of manifestation of these properties: urban district, houses, apartments.

Obtaining a comprehensive measure of consumer qualities of premises associated with the approach of the calculated quantitative values of object on each level to the total index, taking into account comparability of the estimates IQI and the assigned weights of IQI.

To establish the relative weights IQI residential premises were involved 11 experts in the field of transactions with residential real estate, with practical experience in the real estate market from 6 to 15 years. The experts who participated in the determination of the functional weighting of the IQI, set out the assessment in accordance with the importance of quality. The most significant IQI was awarded a perfect score of "2", and IQI does not affect the quality of the residential object "0". In the processing of these data obtained the desired weight. Each expert was offered a questionnaire with tables. It was necessary to fill the table with given factors, "j" and IQI "Pj" to a residential facility.

An example of a questionnaire table for assessment factors given in table 1

Sequence number	Factors «j»	Rating
At the level of the apartment		

Table 1. Evaluation of residential property.
At the level of the house

1	The location of the apartment in the house
2	Space-planning solution of the apartment
3	The presence of the glassed balcony(s)
4	Combined bathroom (bathroom with toilet)
5	Improved furnish of premises under the "European standard"
6	Sanitary state

At the district level

1	The location of the location of the house relative to the center of the city
2	The environment
3	The improvement district
4	The individuality of the area

After filling in the experts table, the processing of the obtained results. Initially it was determined the weight of characteristics at each of three levels of the house and area:

\[m_j = \frac{\sum_j V_{js}}{\sum_s \sum_j V_{js}} , \text{ in this case } \sum_j m_j = 1 \] \hspace{1cm} (1)

Where: \(m_j \) – the weight characteristics \(\langle j \rangle \); \(V_{js} \) – the assessment, exhibited \(j \)-th characteristic of the \(s \)-th expert; \(j=1, J \) – ordinal characteristics; \(s=1, S \) – serial number expert.

For example, the weight factor \(\langle j_1 \rangle \) «The location of the apartment in the house» - \(m_{j_1} \) is as follows:

\[m_{j_1} = \frac{\sum_s \sum_j V_{j_1s}}{\sum_s \sum_j V_{j_1s}} = \frac{12}{66} = 0.182 \] \hspace{1cm} (2)

Similarly, the calculation of the weights for other factors. Example and definition of weights for groups of factors for objects on the level are shown in table 2.

Table 2. Sample weights for groups of factors for objects on the level.

Factor \(j \)	At the level of the apartment					
Expert, \(S \)	**The location of the apartment in the house**	**Space-planning solution of the apartment**	**The presence of the glassed balcony (s)**	**Combined bathroom (bathroom with toilet)**	**Improved furnish of premises under the "European standard"**	**Sanitary state**
1	1	1	1	0	0	2
2	1	1	1	1	0	0
3	1	1	1	1	0	2
4	0	2	1	1	1	1
5	2	1	2	0	0	0
6	1	1	2	2	1	0
Similarly one computes the values of weights at the house and the area.
Then in the same way the weight IQI - «\(P_j\)» in each group of characteristics:

\[
m_{\cdot P_j} = \frac{\sum_j v_{P_j} s_{P_j}}{\sum_j \sum_j v_{P_j} s_{P_j}}, \text{ in this case } \sum_j m_{\cdot P_j} = 1
\]

(3)

Where \(m_{\cdot P_j}\) — weight IQI «\(P_j\)>>; \(v_{P_j} s_{P_j}\) — the mark awarded \(P_j\) –th IQI \(s\) –th expert.

Weigh \(m_{\cdot P_j}\) is calculated by multiplying the weight \(m_{P_j s}\) on the weight characteristic «\(j\)>> weight \(m_j\). For example, \(m_{P_1} = \cdot 0.182 \cdot 0.182 = 0.033\)
\(m_{P_2} = 0.227 \cdot 0.182 = 0.041\)
\(m_{P_3} = 0.197 \cdot 0.182 = 0.036\)
\(m_{P_4} = 0.212 \cdot 0.182 = 0.039\)
\(m_{P_5} = 0.182 \cdot 0.182 = 0.033\)

4 Results

Example the definition of weights \(m_{\cdot P_j}\) and the average marks \(q_{\cdot P_j}\) at the level of the apartment the factors "the location of the apartment in the house" and "Space-planning solution of the apartment" are shown in table 3.

Table 3. Example the definition of weights \(m_{\cdot P_j}\) and the average marks \(q_{\cdot P_j}\) at the level of the apartment the factors "the location of the apartment in the house" and "Space-planning solution of the apartment".

Expert, S	Feature rooms	Floors	Material of walls, floors	The proximity to the Elevator shaft	Orientation rooms	The kitchen area of over 10 sq m	The hall area of over 10 sq m	Ceiling height	Area of residential and outbuildings	The device built-in wardrobes	Adjoining rooms in the apartment
1	1	2	1	1	2	1	2	1	0	2	0
An example of defining an integrated index of consumer qualities of the i-th apartment on the basis of estimates of IQI and weights.

Code properties	Individual quality indicators (IQI) - (Pj)	Average score	Weight	Final score
100	Evaluation of consumer qualities of premises	q_{Pj}	m_{Pj}	q_{Pj} \cdot m_{Pj}
110	The location of the apartment in the house	1.091	0.033	0.036
	Feature rooms	1.364	0.041	0.056
	Floors	1.182	0.036	0.043
	Material of walls, floors	0.273	0.039	0.011
	The proximity to the Elevator shaft	1.091	0.033	0.036
	Orientation rooms			
120	Space-planning solution of the apartment			
	The kitchen area of over 10 sq m	1.091	0.041	0.045
	The hall area of over 10 sq m	1.364	0.052	0.071
	Ceiling height	1.182	0.045	0.053
	Area of residential and outbuildings	0.818	0.031	0.025
	The device built-in wardrobes	1.091	0.041	0.045
	Adjoining rooms in the apartment	0.455	0.017	0.008
130	The presence of the glassed balcony(s)			
	Area balcony(s) loggia (s)	0.716	0.081	0.058

Table 4. An example of defining an integrated index of consumer qualities of the i-th apartment on the basis of estimates of IQI and weights.
Code	Description	Average score	Weight	Final score
P13	Type of glazing installation, double glazing	0.534	0.081	0.043
P14	The presence of combined bathroom	0.678	0.042	0.028
P15	Square bathroom	0.513	0.036	0.018
P16	Sanitary arrangements	0.505	0.035	0.018
P17	The need for improved finish	0.320	0.025	0.008
P18	The equipment with modern technical devices	0.534	0.024	0.013
P19	The microclimate in the apartment	1.182	0.023	0.027
P20	Conditions of insolation and artificial illumination	1.091	0.021	0.023
P21	The conditions of artificial lighting	1.364	0.024	0.033
P22	Organization of space for the installation of air conditioning	0.818	0.018	0.015
P23	The view from the window (window)	0.818	0.025	0.020
P24	The noise level in the apartment	0.455	0.022	0.010
P25	The need for repair	1.091	0.030	0.033
TOTAL		1.000		0.776

Comprehensive index of consumer qualities of the apartment:

\[C_i^{\alpha} = \sum_{j=1}^{25} q_{P_j} \cdot m_{P_j} = 0.776 \]

Table 5. An example of defining an integrated index of consumer qualities of the i-th house on the basis of estimates of IQI and weights.
Table 5

Code	Description	Score 1	Score 2	Score 3
P35	Device video intercom and video camera	1.343	0.032	0.043
P36	Device automatic sprinkler	1.182	0.045	0.053
P37	The device of systems of ventilation and conditioning	1.102	0.039	0.043

220

Sanitary state

Code	Description	Score 1	Score 2	Score 3
P38	The possibility of using the adjacent territory	0.678	0.042	0.028
P39	The availability of Parking machines	0.513	0.036	0.018
P40	The playgrounds and sports facilities	0.505	0.035	0.018
P41	The presence of fencing the local area	0.320	0.025	0.008
P42	Gardening and landscaping	0.534	0.024	0.013

200

The level of technical furnishing

Code	Description	Score 1	Score 2	Score 3
P43	The possibility of using the adjacent territory	0.678	0.042	0.028
P44	The proximity to the metro	0.513	0.036	0.018
P45	The proximity to the Railways stations	0.505	0.035	0.018

230

House territory improvement

Code	Description	Score 1	Score 2	Score 3
P46	Belonging to the monuments of history	0.320	0.026	0.008
P47	The building belongs to the monuments of culture	0.534	0.024	0.013
P48	The building belongs to the monuments	0.320	0.025	0.008
P49	Finding a home in the historical buffer zone	0.534	0.024	0.013

240

The proximity to public transport

Code	Description	Score 1	Score 2	Score 3
P50	Educational facilities	0.678	0.042	0.028
P51	Allocation of the storage areas	0.513	0.036	0.018
P52	The location of the office space	0.505	0.035	0.018

250

The building belongs to the monuments of history, culture and architecture

Code	Description	Score 1	Score 2	Score 3
P53	The location of the area in the city	0.678	0.042	0.028
P54	The time spent on the road	0.513	0.036	0.018
P55	The number of available modes of transport	0.505	0.035	0.018

260

The placement of household service enterprises on the ground floor

Code	Description	Score 1	Score 2	Score 3
P56	The proximity to the metro	0.513	0.036	0.018
P57	The proximity to the Railways stations	0.505	0.035	0.018
P58	Finding a home in the historical buffer zone	0.534	0.024	0.013

TOTAL: 1.000 0.787

Comprehensive consumer house quality:

\[C_{ih}^R = \sum_{j=0}^{52} q_{Pj} m_{Pj} = 0.787 \]

Table 6. An example of defining an integrated index of consumer qualities of the i-th district on the basis of estimates of IQI and weights.

Code	Description	Score 1	Score 2	Score 3
P53	The location of the area in the city	0.678	0.042	0.028
P54	The time spent on the road	0.513	0.036	0.018
P55	The number of available modes of transport	0.505	0.035	0.018

TOTAL: 0.513 0.018

Evaluation of consumer qualities of the area

300

Evaluation of consumer qualities of the area

310

The location of the location of the house relative to the center of the city

320

The environment
The condition of the air environment
Background radiation
The presence of industries and businesses
Proximity to transport routes
Gardens
Background radiation
The presence of industries and businesses
Proximity to transport routes
Gardens

\[\sum \] (0.231, 0.245)

330 The improvement of the district
Walking distance to the objects of trade, consumer services
Walking distance to objects of education, culture, sports, leisure
The improvement district, road surface, landscaping, lighting
The presence of the Park, square, pond
Parking machines

\[\sum \] (0.282, 0.287)

340 The individuality of the district
Historical value of residential development
Ethnic and landscape value of the territory
The presence of zones of protection of historical, cultural and architectural monuments
Density
Storeys building

\[\sum \] (0.374, 0.344)

TOTAL: (1.000, 0.940)

Comprehensive index of consumer qualities of the district:

\[C_{iP}^d = \sum_{j=1}^{Q} q_{P_j} \cdot m_{P_j} = 0.940 \]

Consistency of expert opinion was verified with the value of standard deviation [16,17].

Comprehensive quality indicators "\(C_i \)" characterizing the level of consumer quality of the premises of the i-th residential facility on three levels – apartments, houses, district:

\[C_{iP}^a = \sum_{j=1}^{Q} q_{P_j} \cdot m_{P_j} \]
\[0 \leq q_{P_j} \leq 2 \]
\[0 \leq m_{P_j} \leq 1 \]

\[C_{iP}^h = \sum_{j=1}^{Q} q_{P_j} \cdot m_{P_j} \]
\[0 \leq q_{P_j} \leq 2 \]
\[0 \leq m_{P_j} \leq 1 \]

\[C_{iP}^d = \sum_{j=1}^{Q} q_{P_j} \cdot m_{P_j} \]
\[0 \leq q_{P_j} \leq 2 \]
\[0 \leq m_{P_j} \leq 1 \]

Γде: \(C_{iP}^a, C_{iP}^h, C_{iP}^d \) – comprehensive consumer quality of apartments, houses, area of the i-th residential facility;
q- average rating exposed the experts \(P_j \)-th IQI the i-th residential facility;
\(i = 1, n \) – the objects of evaluation;
\(j = 1, J \) – characteristics included in the IQI;
\(P_j = \{1 + P\} \) – the individual indicators of the quality of the IQI assessment objects.
5 Conclusions

To calculate the magnitude of the current market value of a residential facility can be used
the integral index of quality of a residential facility. Methodological basis of the calculation
remains unchanged, and the accuracy of calculations is high enough. For this we use relative
values complex indices of consumer quality residential properties C_{i}^{oa}, C_{i}^{oh}, $C_{i}^{od} - r_{i}^{oa}$, r_{i}^{oh}, r_{i}^{od}, having them as the quotient of the absolute values of the complex indices on
the value of the maximum of the rating scale used ($q_{\text{max}} = 2$ points):

$$r_{i}^{oa} = \frac{c_{i}^{oa}}{q_{\text{max}}} ; r_{i}^{oh} = \frac{c_{i}^{oh}}{q_{\text{max}}} ; r_{i}^{od} = \frac{c_{i}^{od}}{q_{\text{max}}}$$ (5)

Obtained three values "r" for each underlying and the estimated object at the three levels
comparable because they are derived using the same methodology. The importance of these
indicators in the formation of an integrated indicator of quality should be taken into account
by the introduction of their weights is "y". This weight should be determined depending on
the conditions that determine supply and demand for this type of residential property and the
importance for the participant of the real estate market, for example, for the buyer and the
seller, each of these conditions. These weights can be obtained from the analysis of the
information about the cost of rent and sales of residential properties in the city or area when
changed external conditions: the location, highways infrastructure and other factors.

Integral indicator of comparable quality, including estimated residential facility can be
determined by the formula:

$$C_{i}^{\text{int}} = r_{i}^{oa} \cdot y^{oa} + r_{i}^{oh} \cdot y^{oh} + r_{i}^{od} \cdot y^{od}$$ (6)

By the proposed technique provides for the calculation C_{i}^{int} for a number of objects,
which had previously conducted evaluation of the transaction of purchase and sale and there
is information about selling price (S). These indicators will be used for the valuation of the
object. Similarly being an integral indicator of the quality of a residential facility. Of the total
number of objects for which received and processed information, selected object, which
$S_{i}^{\text{int}} \approx S_{0}^{\text{int}}$. The presence of equality can be considered if the coefficients differ in
the magnitude of the accuracy of the calculations by almost 5-7%. If such an object is, and the
price is inserted to the market of the object may be adopted same as that of the analogue.

If this is not unique, then the total number of objects selected two:

- one with $S_{1}^{\text{int}} \leq S$, another with $S_{2}^{\text{int}} \geq S_{0}^{\text{int}}$.

The cost is calculated based on the assumption that it changes linearly with the values
S^{int} between S_{1}^{int}, S_{2}^{int}.

Then the estimated value of residential property can be determined by the formula:

$$S_{0} = S_{1} + \frac{(C_{0}^{\text{int}}-C_{1}^{\text{int}})(S_{2}-S_{1})}{C_{2}^{\text{int}}-C_{1}^{\text{int}}}$$ (7)

Investors, potential buyers, tenants and other entities can calculate according to this
method the market value based on an integral quality indicators, characterizing consumer
properties, decides on the subsequent use of these objects: purchase, sales, rent, mortgage,
etc. In the case that the objects in question do not satisfy the demand in the real estate market,
the owner of a residential facility, takes the decision to repair, rebuild or overhaul to improve
its consumer properties.
This technique allows to estimate the current market value of a residential facility based on the level of its consumer qualities before making a decision about capital repairs, reconstruction, and renovation of the facility.

References

1. C. Duvierac, D. Neagub, C. Oltean-Dumbravaa, D. Dickensc. ,International Journal of Information Management 38, Issue 1, 196-200 (2018)
2. M. Norris. Social Housing Landlords: Europe International Encyclopedia of Housing and Home, 438–443 (2012)
3. A. Beer. Housing Governance, International Encyclopedia of Housing and Home, 497–501 (2012)
4. E. R. Housing Journal of Housing for the Elderly 31, Issue 3 (2017)
5. Joseph T.L., Ooi Thao T.T., Le Nai-JiaLee. Journal of Housing Economics 26 126-138 (2014)
6. Joseph T.L., Ooi1Thao, T.T. Le. Regional Science and Urban Economics 43, Issue 6, 850-861, (November 2013)
7. V. Zahirovich-Herberta, K. M.Giblerb. Journal of Housing Economics 26, 1-18 (2014)
8. E. Nezhnikova, R. Obukhov 08025 MATEC Web Conf. Volume 106 (2017)
9. V. Földváry, G. Bekô, S. Langer, K. Arrhenius, D. Petráš. Building and Environment, Volume 122, 363-372 (2017)
10. 10 N. Safronova, E. Nezhnikova, A. Kolhidov MATEC Web Conf. Volume 106, (2017)
11. E. A. Antipov, E. B. Pokryshevskaya. Mass appraisal of residential apartments: An application of Random forest for valuation and a CART-based approach for model diagnostics. 39, Issue 2, 1, 1772-1778 (2012)
12. D.N. Silka, I.G. Lukmanova, A.A. Afanasev, M.A. Kasyanov, International Journal of Economics and Financial Issues. 5(3s) 121-124 (2015)
13. Kamenetsky M.I. Forecasting problems, 3, 76-91 (2013)
14. A.A. Kokoshin, B.I. Bartenev Studies on Russian Economic Development 6, pp. 6-18 (2016)
15. I. Lukmanova, N. Yaskova , Procedia Engineering Volume 165 , Pages 1293-1299 (2016)
16. T. Drerupa , B. Enkeb, H-M. Gaudeckerc Journal of Econometrics Volume 200, Issue 2, Pages 378-389 (2017)
17. A. N. Koshev, V. V.Kuzina . Procedia Engineering. Volume 161, Pages 1874-1878 (2016)