Risk Management Analysis Using FMECA and ANP Methods in the Supply Chain of Wooden Toy Industry

W N Tanjung1, S A Atikah1, S Hidayat1, E Ripmiati2, S S Asti1 and R S Khodijah1

1Industrial engineering department, Faculty of science and technology, Universitas Al Azhar Indonesia, Sisingamangaraja Road, Jakarta 12110, Indonesia.
2Informatics engineering department, Faculty of science and technology, Universitas Al Azhar Indonesia, Sisingamangaraja Road, Jakarta 12110, Indonesia.

Abstract. Risk is a factor that has a potential to occur in every part of an industry, including its supply chain. Every industry must consider and manage its supply chain risks in order to minimize losses while improving performance. In this study, a supply chain risk management (SCRM) approach was conducted in the supply chain of wooden toy industry as a way to minimize the impact of risk. In this case, SCRM method is done by identifying risks, assessing risks using the failure mode effect criticality analysis (FMECA) method to determine the risk priorities that must be mitigated, and establish strategies to mitigate the risk with analytical network process (ANP) method. Thus, the risk priority in the wooden toy industry’s supply chain is the cost/price risk with the highest WRPN value of 33,379. In order to mitigate the cost/price risk, conducting strategic accounting practices and financial planning are recommended to be considered as its strategies.

Keywords: ANP, FMECA, SCRM

1. Introduction

Industry is a complex system consisting of various elements that interact directly or non directly with one another in the system. Every industry has a system that describes the flow of products, money and information in a supply chain. The supply chain is a series of relationships between companies or activities that carry out the supply of goods or services from the place of origin to the place of the buyer or customer [1] which activities include material procurement, product manufacturing, and forward / reversed logistics [2]. However, in the supply chain, every element and activity that exists both internally and externally is vulnerable to risk. Risk is the probability of an event that results in a loss when the event occurs during a certain period [3]. Some examples of supply chain risks are raw material shortages, supplier failures, rising in material prices, machine breakdown, uncertain demand, inaccurate forecasting, order changes, and transportation failures [4].

Competition between industries focuses not only on the percentage of profit generated but also on more critical matters: how well the company manages the risks of its internal and external supply chains. Although the profit generated is still relatively small, if the foundation of the supply chain system is good, then the company will grow more stable. Supply chain risk management (SCRM) is risk management in the supply chain by approaching and making decisions that optimally align organizational processes and decisions to take advantage of opportunities while minimizing risk simultaneously [5].

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
Published under licence by IOP Publishing Ltd
One industry that has a significant contribution in national economic development is wooden toy industry (hereinafter WTI), which produces children's toys with a wide variety of designs and also distributes their products to major retailers. It is without exception that the supply chain of WTI is still vulnerable to risks that have the probability to emerge and disrupt the performance of the supply chain, this can result in delays in production activities, delays in distribution and ultimately delays in goods reaching customers. Responding to this, the SCRM approach was used by using the failure mode effects critical analysis (FMECA) method, which is a risk assessment method on a product or activity using three assessment factors, namely severity, occurrence, and detection. As well as using criticality analysis to sort the level of criticality of the existing risks. The result of the assessment then became the input for establishing strategies, then with Analytical Network Process (ANP) the strategy priorities would be determined. The research was carried out by conducting reference studies for the risk and strategies, then interviews on risks that could arise in the company's supply chain and interviews for taking expert judgements which were then processed into quantitative forms so that the level of risk and the recommended strategies could be identified.

2. Methods
The research was conducted in the wooden toy industry to indentify risk in its supply chain. For the risk identification is used the supply chain risks categorization by Jafarnejad [6], an interview was also done to check and compare the risks is obtained from the literature to the real conditions in the wooden toy industry. A risk assessment was done using three methods: AHP, FMECA, and ANP methods. The AHP method was used to obtain the risk weights which then processed further with the FMECA method to obtain the rank of the risks. In this research, three experts are chosen to judge the risks using pairwise comparison matrix, then their judgements became the input in AHP method that were calculated using Expert Choice software. Then FMECA method was done to determine the occurrence, severity, detection, and the criticality level of each risk. Criticality level helped us to filter which risks that necessary for WRPN calculation in order to rank the risks. The last step was to generate some recommended strategies for the most critical risk, strategies were obtained from literature study, and then were judged by experts before they were calculated with ANP method. The use of ANP method was necessary to help us knew which strategies to be considered for mitigation. Figure 1 shows the step of each method used for this research.

2.1. Analytical Hierarchy Process (AHP)
Analytic Hierarchy Process (AHP) is a theory of relative measurement with absolute scales of both tangible and intangible criteria based on the judgment of knowledgeable and expert people [7]. In this research the use of AHP method was to obtain risk weight, not to determine priority. The weight then were used to calculate the global weight and determine the WRPN value in the FMECA method.

2.2. Failure Mode Effect Criticality Analysis (FMECA)
FMECA method has a risk assessment scale [8] based on the value of the RPN that ranges from 0 to more than 324 as can be seen in table 1. The RPN is calculated by considered three factors, there are occurrence, severity, and detection. Each factor has a rating scale of 1 to 10 as in table 2.
Figure 1. AHP, FMECA, and ANP method flowchart

Table 1. Criticality analysis

Criticality Level	Score	Acceptance
Low	0 - 30	Acceptable
Moderate	31 - 60	Tolerable
High	61 - 180	
Very High	181 - 252	Unacceptable
Critical	253 – 324	
Very Critical	> 324	

Table 2. Rating scale of occurrence, severity, and detection

Skor	Occurrence (O)	Severity (S)	Detection (D)
1	Remote probability	No effect	Almost certain
2	Very rare	Very small effect	Very easy
3	Moderately rare	Minor effect	Easy
4	Slightly rare	Very low	Fairly easy
5	Rare	Low	Moderate chance of detection
6	Slightly often	Moderate	Slightly difficult
7	Moderately often	High	Moderately difficult
8	Often	Very high	Difficult
9	Very often	Serious	Very difficult
10	Certain probability	Very severe	No chance of detection

After collecting RPN value from the experts, the next step of FMECA is to calculate global weight of each risk using risk weight we obtained in the AHP method. The equation of global weight is as shown below:

\[
\text{Global weight} = \text{Risk factor weight} \times \text{Local weight}
\]

(1)

After that, we also had to calculate Risk Priority Number (RPN) value which needed for determining risk criticality and its acceptance using the equation below:
RPN = O × S × D \quad (2)

The RPN value also used for calculating the Weighted Risk Priority Number (WRPN) that has an equation as shown below:

\[WRPN = RPN \times f(Wi) \quad (3) \]

2.3. **Analytical Network Process (ANP)**

ANP is a general theory of relative measurement used to derive composite priority ratio scales from individual ratio scales that represent relative measurement of the influence of elements that interact with respect to control criteria \[9\]. ANP method was used to assess strategies and determine which strategies that were recommended for mitigation. The ANP method began by calculating the geometric mean to get the overall value from the three experts’ judgements. The equation is as shown below:

\[\text{Geometric Mean} = \left(a_1 \times a_2 \times \ldots \times a_n \right)^{1/n} \quad (4) \]

After the experts’ judgement were calculated, then it was needed to also check and analyze the consistency ratio. Consistency ratio shows that the experts’ judgements are consistent and can be use for further calculation. The expert’s judgements are considered consistent if the CR value fall at or below 10%. CI and CR equation are as shown below:

\[\text{CI} = \frac{\lambda_{\text{max}} - n}{n - 1} \quad (5) \]

Information:
\[\lambda_{\text{max}} : \text{Maximum eigen vector} \]
\[n : \text{Number of alternative or criteria} \]

\[\text{CR} = \text{CI} / \text{RI} \quad (6) \]

Information:
\[\text{CI} : \text{Consistency Index} \]
\[\text{RI} : \text{Ratio Index} \]

3. **Result and Discussion**

This study aims to identify risks that have a high probability of occurrence and assess risks to determine their criticality rank. This study also aims to generate recommendation strategies that can be taken into consideration in mitigating the risk. Meanwhile, implementation and monitoring have not been carried out in real conditions.

3.1. **Risk Identification**

Risk identification was carried out with the aim of determining the risks that have emerged or have the possibility to appear in the supply chain. Identification of these risks was carried out with literature study by using supply chain risks categorization by Jafarnejad \[6\] and interview with experts, after which 25 risk variables were grouped based on the 6 risk factors that sheltered them:

3.2. **Data consistency and risk weight**

After the expert assessments have been done, weights for 6 risk factors and 25 local weights can be calculated. The local weight addressed a risk variable weight. The weight result can be seen in Table 4. Moreover, weight of each risk must be validated using consistency ratio (CR) value and followed the rule the CR value is 0.1 or more. The purpose of the consistency test was to find out whether the assessments of the three experts were consistent and also determine whether the data could be used for
the next calculation step or not. The results of CR obtained sequentially are: 0.04; 0.01; 0.04; 0.00; 0.07; 0.08; and 0.03. Thus, all the CR values are below 0.1 then the data was consistent.

Table 3. Wooden Toy Industry’s supply chain risk factors and variables

Risk Factor	Risk Variable	Risk Factor	Risk Variable
Demand	Competitor moves	Information	Information delay
	Delays in delivery to customers		Wrong choice of communication
	Forecast errors		Capacity inflexibility
	Market saturation		Design changes
	Macroeconomic uncertainty		
	Natural disasters	Operational	Disruption in production
	Policy uncertainty		Inventory risk
	Forcast errors		Variability in production process
	Social uncertainty		Dependency on single supplier
Environment	Cost/price risk		Inflexibility of supplier
	Exchange rate risk		
	Breakdown of IT infrastructure	Supply	Poor delivery performance
	Distorted information		Supplier poor quality
	Inadequate information security		Supplier bankruptcy

3.3. **Calculation of Global Weight**

Here the FMECA method begins by calculating the global weight, which is the weight obtained by multiplying the local weight by the weight of the risk factor using equation (1). For example, look at the demand risk factor which has a weight of 0.22 and the competitor move risk variable which has a weight of 0.136. Using equation (1) the results are as follows, the rest of the global weight shown in Table 4:

\[
\text{Global weight} = 0.22 \times 0.136 = 0.030
\]

3.4. **Calculation of RPN Value**

The RPN value or Risk Priority Number was calculated to determine the value of the risk by considering the occurrence, severity, and detectability of risk. Furthermore, after completed the assessment of the three experts, the O (occurrence), S (severity), and D (detection) scores were calculated to get the average value, so there would be only one value. The RPN was calculated with equation (2). Take an example of forecast error risk variable, the risk has a value of 8 for occurrence (often occurs), a value of 4 for severity (very low), and a value of 4 for detection (quite easily detected). With equation (2) it is produced:

\[
\text{RPN} = 8 \times 4 \times 4 = 112
\]

3.5. **Determining Risk Criticality and Its Acceptance**

After the RPN value had been determined, each risk variable critical level was categorized based on the RPN value, then the risk acceptance was classified based on the criticality level. Using this criticality analysis helps us to map the risk, take a look at Table 4, risk variable cost/price risk is categorized as critical because the RPN value is in the range of 253 to 324 according to table 2. This level of criticality has unacceptable risk acceptance that need corrective actions immediately.

3.6. **Calculating the WRPN value and ranking the risks**

The last stage in FMECA was risk ranking, based on criticality analysis we took only the risk that had a high criticality level to be sorted using WRPN (weighted risk priority numbers) calculation which could be obtained using equation (3), for example for policy uncertainty risk, the calculation is as follows:

\[
\text{WRPN} = 150 \times 0.023 = 3.456
\]
Table 4: Risk criticality and its acceptance

Risk Factor	Weight	Risk Variable	Local Weight	Global Weight	O	S	D	RPN	Criticality	Risk acceptance
Information	0.094	Breakdown of IT infrastructure	0.38	0.036	3	5	2	28	Low	Acceptable
Demand	0.22	Competitor moves	0.136	0.030	5	4	2	33	Moderate	Tolerable
Financial	0.234	Exchange rate risk	0.458	0.107	3	5	2	33	Moderate	Tolerable
Supply	0.191	Poor delivery performance	0.197	0.038	3	5	2	37	Moderate	Tolerable
Supply	0.191	Supplier bankruptcy	0.332	0.063	4	6	2	40	Moderate	Tolerable
Supply	0.191	Dependency on single supplier	0.156	0.030	3	5	2	41	Moderate	Tolerable
Operational	0.179	Variability in production process	0.157	0.028	4	3	3	43	Moderate	Tolerable
Information	0.094	Distorted information	0.221	0.021	4	5	3	49	Moderate	Tolerable
Demand	0.22	Delays in delivery to customers	0.344	0.076	5	5	2	50	Moderate	Tolerable
Information	0.094	Inadequate information security	0.183	0.017	3	4	4	58	Moderate	Tolerable
Operational	0.179	Design changes	0.151	0.027	6	6	2	67	High	Tolerable
Information	0.094	Wrong choice of communication	0.1	0.009	4	6	3	72	High	Tolerable
Supply	0.191	Inflexibility of supplier	0.084	0.016	5	5	3	76	High	Tolerable
Information	0.094	Information delay	0.116	0.011	4	5	3	77	High	Tolerable
Operational	0.179	Inventory risk	0.105	0.019	6	5	3	79	High	Tolerable
Demand	0.22	Market saturation	0.378	0.083	3	6	4	82	High	Tolerable
Supply	0.191	Supplier poor quality	0.231	0.044	5	7	3	104	High	Tolerable
Environment	0.082	Social uncertainty	0.169	0.014	5	6	4	112	High	Tolerable
Demand	0.22	Forecast errors	0.142	0.031	8	4	4	112	High	Tolerable
Operational	0.179	Disruption in production	0.419	0.075	5	7	3	122	High	Tolerable
Environment	0.082	Policy uncertainty	0.281	0.023	5	6	5	150	High	Tolerable
Operational	0.179	Capacity inflexibility	0.168	0.030	6	7	4	154	High	Tolerable
Environment	0.082	Natural disasters	0.268	0.022	4	6	8	186	Very	Unacceptable
Financial	0.234	Cost/price risk	0.542	0.127	7	6	6	263	Critical	Unacceptable
Environment	0.082	Macroeconomic uncertainty	0.282	0.023	8	10	7	519	Very	Critical

Table 5: Ranked Risk

Risk Factor	Risk Variable	Global Weight	RPN	WRPN	Criticality	Rank
Financial	Cost/price risk	0.127	263	33,379	Critical	1
Environment	Macroeconomic uncertainty	0.023	519	11,996	Critical	2
Operational	Disruption in production	0.075	122	9,167	Critical	3
Demand	Market saturation	0.083	82	6,807	Critical	4
Operational	Capacity inflexibility	0.030	154	4,631	High	5
Supply	Supplier poor quality	0.044	104	4,576	High	6
Environment	Natural disasters	0.022	186	4,083	High	7
Demand	Forecast errors	0.031	112	3,513	High	8
Environment	Policy uncertainty	0.023	150	3,456	High	9
Operational	Design changes	0.027	67	1,807	High	10
Environment	Social uncertainty	0.014	112	1,552	High	11
Operational	Inventory risk	0.019	79	1,491	High	12
Supply	Inflexibility of supplier	0.016	76	1,217	High	13
Information	Information delay	0.011	77	840	High	14
Information	Wrong choice of communication	0.009	72	677	High	15
Then, the critical level for each risk variable was determined based on the comparison with the average WRPN, the average WRPN of the 15 risk variables at Table 5 is 5,946. So if the WRPN value in Table 5 exceeded the WRPN average, then it is categorized as a critical risk. According to Table 5, there are have four risks that are labeled as critical. But, in this research focused to develop strategies for the most critical risk which was cost/price risk.

3.7. Determine strategies priority
The main risk generated is price/cost risk. In the case in the wooden toy industry it is considered as the commodity cost volatility. Commodity cost volatility risk is a financial risk which in its handling involves effective and efficient management. Therefore, there are 8 strategies proposed to be assessed and prioritized. The proposed strategy consists of strategies for the commodity cost volatility risk and also strategies for effective management. Both are different things, so that the strategy is not combined in one matrix. Determination of strategy priorities was done using the ANP method. To input the valuation, the geometric mean of the experts’ judgment using equation (4) must be done. The results are as shown in Table 6.

Table 6. Aggregated experts assessments using geometric mean equation

Strategies for cost/price risk	Commodity Cost volatility	Effective Management						
Track commodity price movements (T1)	Establish clear terms with suppliers (T2)	Understand the true quantity used (T3)	Differentiate savings goals (T4)	Combining wood with various commodities (T5)	Strategic accounting practices (M1)	Hiring external accountant (M2)	Financial planning (M3)	
T1	1.85631	0.843433	0.305711	0.36246	0.721125	M1	4.217163	1.709976
T2	2.758924	2.758924	0.36246	0.753947	0.721125	M2	0.584804	2.758924
T3	3.271066	0.854988	1.169607	2.758924	0.721125	M3	0.237126	0.36246
T4	1.386723	1.386723	1.386723	1.386723	1.326352	M4	0.584804	2.758924
T5	1.326352	1.326352	1.326352	1.326352	1.326352	M5	0.584804	2.758924

According to Barosi and Busse [10], strategies like T1 to T4 could help on understanding exposure to raw material and how to manage the cost volatility. On the other hand, in order to achieve effective and efficient management could be done by practicing effective financial management as Shallow [11] elaborated that strategies like M1 to M3 could be applied for financial management in a small business.

3.7.1. Data Consistency. This step has similarity with AHP method in part to consider the consistency expert’s judgements. Equation (5) can be used to be found the Consistency Ratio (CR) value as an example bellow. There is the calculation of CI for effective management:

\[
CI = (3.00139 - 3)/(3 - 1) = 0.000699
\]

After that, calculating the consistency ratio using equation (6), and got the result as shown:

\[
CR = (0.000699)/(0.52) = 0.00134
\]

According to Saaty It is recommended that CR should be less than or equal to 0.1. Seeing that the result, the effective management factor was less than 0.1 then the experts judgements is consistent. But for commodity cost volatility factor, the experts’ judgement exceeded the recommended CR and has the value of 11%, because of that the strategy priority assessment continued only with management factor.

3.7.2. Strategies priority. In order to get the best strategy that were recommended, the highest percentage can be chosen as a decision. Thus, in this research, the recommended strategies for cost/price risk are strategic accounting practices (54%) and financial planning (33%).
4. Conclusion
Based on the risk analysis in the wooden toy industry’s supply chain, it can be concluded that there are 6 risk factors and 25 risk variables in the wooden toy industry’s supply chain. Those 6 risk factors are demand, environment, financial, information, operational, and supply risk. The most critical risk from the 15 risk variables is cost/price risk with the highest WRPN value of 33,379. For that critical risk, developed and assessed the recommended strategies for minimizing the cost/price risk based on ANP method which are obtained: conducting strategic accounting practices, and financial planning.

Acknowledgement
This work was supported in part by Simlitabmas Ristekdikti followed SK No.3/E/KPT/2017 and contract with LP2M AI Azhar Indonesia University under agreement No. 064/SPK/A-01/UAIV/2018

5. References
[1] Assauri S 2011 Manajemen Produksi dan Operasi (Jakarta: Lembaga Penerbit FEUI).
[2] Pourhejazy P and Kwon O K 2016 The New Generation of Operations Research Methods in Supply Chain Optimization: A Review. Sustainability 8 1033 p 1
[3] Badariah N, Surjasa D and Trinugraha Y 2012 Analisa supply chain risk management berdasarkan metode failure mode effects analysis (FMEA). (Jakarta: Universitas Trisakti) Jurnal Teknik Industri p 110–118.
[4] Zaroni 2015 Manajemen Risiko Rantai Pasok dalam Model SCOR. Artikel Supply Chain, Retrieved from: http://supplychainindonesia.com/new/manajemen-risiko-rantai-pasok-dalam-model-scor/
[5] Zeng F 2011 Models for Evaluation of Supply Chain Risk with Application to Healthcare Management. (Arlington: University of Texas at Arlington) pp 1-2
[6] Jafarnejad A, Ebrahim M, Abbaszadeh M A and Abtahi S M 2014 Risk Management in Supply Chain using Consistent Fuzzy Preference Relations. International Journal of Academic Research in Business and Social Sciences 4(1) pp 77–89
[7] Saaty T and Vargas L 2006 Decision Making with the Analytic Network Process. Economic, Political, Social and Technological Applications with Benefits, Opportunities, Costs and Risks. (Pittsburgh: RWS Publication) p 347
[8] Yssaad B, Khiat M and Chaker A 2012 Maintenance Optimization for Equipment of Power Distribution System Based on FMECA Method. ACTA ECTROTEHNIKA. (Mediamira Science Publisher) 53(3) pp 218-223
[9] Saaty T 1999 Fundamentals of The Analytic Network Process (United States of America: University of Pittsburgh) p 1
[10] Barosi F and Busse P 2011 Six Steps to Managing Raw Material Price Volatility (New York: Alixpartners Publication) Retrieved from: https://legacy.alixpartners.com/
[11] Shallow K N 2017 Strategies for Effective Financial Management in Vincentian Small Businesses (America: Walden University) pp 70-92