Halo-tolerant plant growth promoting rhizobacteria for improving productivity and remediation of saline soils

Naveen Kumar Arora a,⇑, Tahmish Fatima b, Jitendra Mishra c, Isha Mishra b, Sushma Verma b, Renu Verma b, Maya Verma d, Ankita Bhattacharya a, Priyanka Verma a, Priya Mishra a, Chanda Bharti a

a Department of Environmental Science, School for Environmental Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, UP, India
b Department of Microbiology, Babasaheb Bhimrao Ambedkar University, Lucknow, UP, India
c DST-CPR, Babasaheb Bhimrao Ambedkar University, Lucknow, UP, India
d Uttar Pradesh Pollution Control Board (UPPCB), Lucknow, UP, India

GRAPHICAL ABSTRACT

ABSTRACT

Background: The collective impact of climate change and soil salinity is continuously increasing the degraded lands across the globe, bringing agricultural productivity and food security under stress. The high concentration of salts in saline soils impose osmotic, ionic, oxidative and water stress in plants. Biological solutions can be the most reliable and sustainable approach to ensure food security and limit the use of agro-chemicals.

Aim of Review: Halo-tolerant plant growth promoting rhizobacteria (HT-PGPR) are emerging as efficient biological tools to mitigate the toxic effects of high salt concentrations and improve the growth of plants, simultaneously remediating the degraded saline soils. The review explains the role of HT-PGPR in mitigating the salinity stress in plants through diverse mechanisms and concurrently leading to improvement of soil quality.

Key Scientific Concepts of Review: HT-PGPR are involved in alleviating the salinity stress in plants through a number of mechanisms evoking multipronged physiological, biochemical and molecular responses. These include changes in expression of defense-related proteins, exopolysaccharides synthesis, activation of antioxidant machinery, accumulation of osmolytes, maintaining the Na⁺ kinetics and improving the levels of phytohormones and nutrient uptake in plants. The modification of signaling by HT-PGPR inoculation under stress conditions elicits induced systemic resistance in plants which further prepares them against salinity stress. The role of microbial-mechanisms in remediating the saline soil through structural and compositional improvements is also important. Development of novel bioinoculants for saline soils

https://doi.org/10.1016/j.jare.2020.07.003
2090-1232/© 2020 The Authors. Published by Elsevier B.V. on behalf of Cairo University.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction

Soil salinity has emerged as one of the biggest constraints influencing crop productivity around the globe. In the last few decades, anthropogenic activities have exacerbated the rate of soil salinization [1,2]. Saline soils are high in electrical conductivity (EC), low in water potential and excessive in amounts of ionic salts making survival of plant and other life forms difficult [3,4]. It is estimated that salinity has affected over 800 million hectares of agricultural land around the globe [5]. There are reports claiming that each year around 1–2% of fertile soils are being degraded worldwide due to salinity [6]. It has also been forecasted that in the next 35 years, about 50% of the land on earth will suffer due to various degrees of salinity [7]. Additionally, data indicates that in past few decades the annual cost of salt-induced land degradation in irrigated areas was estimated to be US$ 27.3 billion [8].

The presence of an excess amount of salt in soil shows cumulative and far-reaching effects on crops [9]. Salt stress triggers ionic imbalance in plants, causes nutrient deficiency, perturbations in carbon (C) and nitrogen (N) assimilatory pathways, lowered rate of photosynthesis, generation of reactive oxygen species (ROS), osmotic and oxidative stress, thereby retarding growth and yield of crops [10,11]. Salt stress also poses negative impacts on soil processes, pH, decomposition rate, nutrient composition, microbial biodiversity and water availability, leading to the prevalence of drought-like conditions [12,13]. According to Attia et al. [14] in several agro-ecosystems, particularly in arid and semi-arid regions, drought and salinity occur simultaneously resulting in overlapping symptoms of both the stresses in the plants. Physical methods of treatment of saline soils, that include flushing, leaching, scraping and chemical amendments e.g. addition of gypsum and lime, are not sustainable [4]. Soil flushing and scraping has achieved only a little success and has limited practical significance as the salt accumulation tends to resurface due to lowering of water table and the problem intensifies with course of time. Soil leaching although comparatively successful but requires relatively low soil moisture and low ground water level [15] making it difficult for agro-ecosystems. Another drawback of this method is that important nutrients applied to the soil may also leach out lowering their availability in the plant root zones [16]. Among chemical methods, addition of gypsum is most commonly used. However, gypsum is a non-renewable mineral and also results in low solubility or availability of nutrients such as phosphorus (P), copper (Cu), iron (Fe) and zinc (Zn) to the plants [17,18]. Apart from physical and chemical approaches, several other methods such as modification in breeding practices, shifting of crop calendars and introduction of genetically engineered salt-tolerant plant varieties have been evaluated for enhancement of crop productivity in salt-affected soils but have largely proved to be in-effective [19,20]. These methods are time-consuming, costly and above all, cause genetic erosion of indigenous species [21,22].

Application of halo-tolerant plant growth promoting rhizobacteria (HT-PGPR) has the potential of alleviating salt stress in plants through elicitation of several physiological and molecular mechanisms. This includes modification in root systems, inducing antioxidative machinery, production of exopolysaccharides (EPS) and siderophores, modulation of phytohormones, synthesis of osmolytes, uptake of minerals and control of phytopathogens [23–25]. Several species of halotolerant soil bacteria such as Arthrobacter, Azospirillum, Alcaligenes Bacillus, Burkholderia, Enterobacter, Flavobacterium, Pseudomonas and Rhizobium, have been reported to ameliorate salt stress in crops [26,27]. Their use as bioinoculants is reported to increase soil organic matter, improve soil structure and water retention capacity. Apart from this, use of HT-PGPR in form of bioinoculants is an eco-friendly and sustainable method of improving productivity of saline agro-ecosystems [28]. In spite of overwhelming advantages the exact mechanisms of HT-PGPR in helping the plants are not precisely known. Hence it is important to find out the underlying molecular mechanisms of HT-PGPR involved in plant growth promotion. These findings can assist in ascertaining the role of HT-PGPR as efficient candidates for increasing production and remediating of saline soils.

HT-PGPR mediated salt tolerance in plants

The intrinsic metabolic and genetic properties of the HT-PGPR have a direct role in lessening the harmful effects of salt stress in plants [6]. However, intriguing interactions happening in between HT-PGPR and plants under stress conditions are still a matter of further research. Probably, mitigation of salt stress by HT-PGPR may involve a three-tier entwined action cum association i.e. survival of bacteria itself under hyperosmotic environment, induction of salt tolerance events in plants and improvisation of soil quality through various mechanisms. Fig. 1 explains the mechanisms of salt-stress mitigation in plants inoculated with HT-PGPR. In last few years, research confirmed that the presence of HT-PGPR can modulate the expression of several genes responsible for the alleviation of salinity stress in plants (Table 1). The major aspect of salt stress-tolerance in plants mediated by HT-PGPR involves the generation of responsive machinery to pool out the toxicity and establishing an osmotic equilibrium state to avoid desiccation and flaccidity in plant’s cells. HT-PGPR constrict the uptake of Na+ by changing the composition of the cell wall/ cell membrane, which increases the electrogenic Na+/H+ ionic-porters along with increased expression of salt overly sensitive (SOS) genes and NHX transporters in plants [29,44]. In a study it was shown that HT-PGPR Bacillus subtilis reduced the absorption of Na+ by Arabidopsis thaliana roots through down-regulation of high-affinity K+ transporter (HKT1) in salt-sensitive conditions [41]. Yasmin et al. [45] revealed that inoculation of salt-stressed soybean plants with Pseudomonas pseudoalcaligenes triggered synthesis of key defense enzymes that reduced the Na+ concentration in roots and shoots simultaneously balancing the cellular condition by increasing intracellular K+ levels. Similarly, Pseudomonas koreensis strain AK-1 reduced Na+ and elevated K+ levels in Glycine max L. Merrill [46]. Treatment of HT-PGPR, Burkholderia phytofirmans PsJN modified the expression patterns of ion-homeostasis related genes including Arabidopsis K + Transporter 1 (AKT1), High-Affinity K + Transporter 1 (HKT1), Sodium Hydrogen Exchanger 2 (NHX2), and SOS1 in salt-sensitive A. thaliana plants [29]. The upregulation of PtHKT1.5 and PtSOS1 and downregulation of PtHKT2;1 in B. subtilis GB03 inoculated plants reduced uptake of Na+ in halophyte grass Puccinellia tenuiflora [37]. The use of strain GB03 in improving drought tolerance in ryegrass [47] and salt tolerance in wheat [48], white clove [49] and Codonopsis pilosula [50] elucidates the involvement of some common genes and traits in mitigating both the intermingled abiotic stresses. Volatile organic compounds (VOCs) produced by HT-PGPR can trigger induction of HKT1 in shoots and reduction of HKT1 in roots, hence limiting Na+ entry.
Inoculation with HT-PGPR Dietzia natronolimnaea up-regulated HKT antiporters in salt-stressed wheat plants [33]. Similarly, upregulation of HKT family antiporters has also been reported in wheat inoculated with *Serratia* sp. SI-12 [52], *Arthrobacter nitroguajacolicus* [39] and maize plants treated with *Bacillus amyloliquefaciens* SQ9 [36] under salinity stress. Detailing the response to salinity stress in wheat by the inoculation of *Enterobacter cloacae*-SBP-8, Singh et al. [53] reported upregulation of defense related proteins by 2065%, photosynthesis related proteins by 792% and ion transport associated proteins by 765%. The upregulated ion-transporter proteins included malate transporter, and ROS-responsive calcium channel proteins to cope up the toxic ion influx and maintain ion homeostasis. The study also showed that bacterial inoculation upregulated expression of proteins involved in strengthening of cell wall and membrane integrity to prevent cellular damage and lateral diffusion of molecules in the endomembrane system. A similar mechanism of tolerance has also been reported in durum wheat when inoculated with HT-PGPR under drought and heat stress resulting in better adaption by the plants [54,55]. This again suggests the correlation between in soil salinity and drought stresses along with common mechanisms at molecular level to combat the help of HT-PGPR.

[51] Inoculation with HT-PGPR Dietzia natronolimnaea up-regulated HKT antiporters in salt-stressed wheat plants [33]. Similarly, upregulation of HKT family antiporters has also been reported in wheat inoculated with *Serratia* sp. SI-12 [52], *Arthrobacter nitroguajacolicus* [39] and maize plants treated with *Bacillus amyloliquefaciens* SQ9 [36] under salinity stress. Detailing the response to salinity stress in wheat by the inoculation of *Enterobacter cloacae*-SBP-8, Singh et al. [53] reported upregulation of defense related proteins by 2065%, photosynthesis related proteins by 792% and ion transport associated proteins by 765%. The upregulated ion-transporter proteins included malate transporter, and ROS-responsive calcium channel proteins to cope up the toxic ion influx and maintain ion homeostasis. The study also showed that bacterial inoculation upregulated expression of proteins involved in strengthening of cell wall and membrane integrity to prevent cellular damage and lateral diffusion of molecules in the endomembrane system. A similar mechanism of tolerance has also been reported in durum wheat when inoculated with HT-PGPR under drought and heat stress resulting in better adaption by the plants [54,55]. This again suggests the correlation between in soil salinity and drought stresses along with common mechanisms at molecular level to combat the help of HT-PGPR.

Apart from the direct exclusion of the salts from cells/roots/shoots, HT-PGPR also help the plant in accumulating low molecular weight osmolytes (soluble sugars, amino acids, quaternary amines, polyols and tetrahydropyrimidines) for maintaining ionic equilibrium in the cytoplasm under salinity stress [56]. It has been found that instead of synthesizing de novo, plants prefer uptake of osmolytes liberated by HT-PGPR when exposed to high salt conditions [57,28]. Osmotic accumulation is found to be negatively correlated with cellular osmotic potential. Due to increased concentration of osmolytes in cells under osmotic and water stresses the osmotic potential becomes negative and causes endosmosis of water which thereby maintains the turgor pressure and integrity of cells [58]. After the stress is over, osmolytes help in repairing the endodermis and cortical cell layers of plants and act as source of nitrogen and energy [59,60]. *Bacillus* *fortis* SSB21 was reported to increase biosynthesis of proline and upregulation of stress-related genes *CAP12*, *CaK1*, *CaO3M1*, and *CACL1* in capsicum under saline conditions [5]. Inoculation of HT-PGPR strains, *Acinetobacter* sp. (Br3), *Pseudomonas putida* (Br18) and *Curvobacterium* sp. (Br20) in *Sulla carnosa*, enhanced chlorophyll content, photosynthetic activity, total soluble sugars and antioxidant activities under saline stress [61]. With varying salt concentrations, transcription of genes responsible for osmoprotectant synthesis may express differentially in some HT-PGPR. For example, in *B. amyloliquefaciens* FZB24 trehalose and proline synthesis were found to be differentially expressed at 0 mM and 100 mM NaCl concentrations facilitating stress adaption in *A. thaliana* [62]. Among the class of transcription factors (TFs), WRKY induces several adaption responses in plants against abiotic stresses [63,64]. Safdarian et al. [39] reported the role of WRKY TFs in mitigating salinity and drought stress through modulation of osmotic balance, scavenging of ROS and triggering of stress related genes. The study also proved that inoculation of wheat with *A. nitroguajacolicus* had higher WRKY28 gene expression and promoted growth of the plants under salinity stress.

Along with ionic imbalance, long term exposure of salinity generates water deficit conditions which affect plant growth. The growth of plants is majorly affected in the osmotic phase due to decrease in the soil water potential and the mitigation requires changes at molecular, cellular and physiological levels. HT-PGPR are reported to increase the expression of genes for aquaporins (AQPs) thereby, channeling the uptake of water by plants in saline and associated drought stress [65]. HT-PGPR such as *Azospirillum brasilense*, *Pantoea agglomerans*, and *Bacillus megaterium* were found to induce the expression of *PIP2*, *ZmPIP1-1*, and *HvPIP2-1* genes involved in AQPs synthesis. The up-regulation of these genes stimulates water uptake and maintains desired water potential [66,67]. Uptake of water by *Chenopodium quinoa* was improved when inoculated with HT-PGPR *Enterobacter* sp. MN17 and *Bacillus* sp. MN54 [68]. An increase in water availability was reported in mung bean when inoculated with *Bacillus drentensis* P16 and *E. cloacae* P6 under saline conditions [69]. Apart from channeling the uptake of water, PIP1 subgroup of aquaporin TaAQP8 has been reported to confer salinity mitigation in transgenic tobacco through K+/Na+ ion homeostasis, retaining calcium content, reducing H2O2 accumulation, membrane damage and stimulation of antioxidant systems [70].

Production of natural polysaccharides or EPS during unfavorable conditions is a well-known characteristic of HT-PGPR. EPS produced by HT-PGPR help in the formation of a watery-nutrient...
The rhizosheath, a rich layer around the root surface, known as rhizosheath [71]. There is evidence that rhizosheath serves as a physical barrier against deposition of ionic salts and also acts as an active site of plant growth-regulating activities, modulation of cellular osmotic balance, ROS scavenging activity and metallothionein synthesis. The authors also reported increased soil/root tissue ratio due to higher adhesion of soils caused by gel-like nature of bacteria in root hairs and promoted the growth of foxtail millet under adverse conditions [76].

Table 1

| S. No | Plant species | Involved PGPR | Stress responsive gene | Function | Reference |
|-------|---------------|---------------|------------------------|----------|-----------|
| 1. | Arabidopsis thaliana | Burkholderia phytofirmans PsJN | Transcription of RD29A, RD29B, APX2 and GLY17 | Downregulation of ion transporters, maintenance of high K⁺/Na⁺ ratio | [29] |
| 2. | Glycine max | Pseudomonas simiae strain AU | Upregulation of POX, CAT, VSP and NR | Reactive oxygen species (ROS) pathway, production of antioxidant enzymes such as peroxidase, catalase and also vegetative storage protein, nitrite reductase | [30] |
| 3. | Abelmoschus esculentus | Enterobacter sp. UPMR18 | Upregulation of CAT, APX, GR and DHAR | Production of antioxidant enzymes such as peroxidase, catalase and also vegetative storage protein, nitrite reductase | [31] |
| 4. | A. thaliana | Pseudomonas putida PS01 | Upregulation of Lox2 | Reactive oxygen species (ROS) pathway, production of antioxidant enzymes such as peroxidase, catalase and also vegetative storage protein, nitrite reductase | [32] |
| 5. | Wheat | Bacillus safensis W10 | Upregulation of expansins, endotransglucosylase/ hydrodrolase, sulphur rich thionin, S adenosylmethionine secarboxylase precursor and metallothioneins | Downregulation of Flavonone hydroxylase, oxalate oxidase, protein phosphatase | [33] |
| 6. | Wheat | Dietzia natronolimnaea ST8 | Upregulation of ToABARE and ToOPR1 | Abscisic acid signaling, reactive oxygen species scavenging, antioxidant enzyme activity, increased expression of ion transporters, maintenance of high K⁺/Na⁺ ratio | [34] |
| 7. | A. thaliana | Enterobacter spp. EJ01 | Increased expression of DREB2b, RD29A, RD29B and RAB18 | Structural genes and transcription factors, growth regulators, defense related genes | [35] |
| 8. | Solanum lycopersicum | Bacillus megaterium | Upregulation of GmVSP, GmPHD2, GmZIP62, GmWRKY54, GmULPH and CHS | Metallothionein Glutathione reductase enzyme synthesis | [36] |
| 9. | G. max | Bacillus firmus SW5 | Downregulation of NCED | Antioxidant enzyme production, tolerance to salinity, flavonoid biosynthetic pathway | [37] |
| 10. | Zea mays L. | Bacillus amyloliquefaciens SQ90 | Downregulation of NAC1, NAC2 and NAC3 | Photosynthesis, Na⁺ export and sequestration | [38] |
| 11. | Puccinellia tenuiflora | Bacillus subtilis (GB03) | Upregulation of PHKT1,5 and PSOS1 | Modulation of Na⁺ homeostasis | [39] |
| 12. | S. lycopersicum | P. putida UW4 | Expression of ToC GTPase | Regulation of chloroplast import apparatus components | [40] |
| 13. | Wheat | Arthrobacter nitroguajacolicus | Upregulation of AA0618700, AA0359620, APX, GPX | Plant cell wall biosynthesis, phenylpropanoid biosynthetic pathway, glutathione-ascorbate cycle, modulation of cellular osmotic balance, ROS scavenging activity | [41] |
| 14. | Oryza sativa | B. amyloliquefaciens SN13 | Upregulation of NADP-Me2, EREBP, SOS1, BADH and SERK1 | Na⁺/H⁺ antiporter system, plant growth and development, abiotic stress response, oxidative decarboxylation of L-malate, ion homeostasis | [42] |
| 15. | A. thaliana | B. subtillis GB03 | Expression of HKTI | Detoxification of reactive oxygen species, Na⁺ homeostasis, responses to abiotic stress | [43] |
| 16. | A. thaliana | Paenibacillus yangensis DCY84T | Expression of AtHS1, AtVQ9 and AtWRKY8, AtERD15, AtAAB18, and AtLTI78 | | |
| 17. | O. sativa | Root-associated plant growth-promoting rhizobacteria (PGPR) | Expression of RAB18 | Intracellular protein transport | [44] |

Table 1 lists PGPR mediated expression of genes detected in plants responsible for amelioration of salinity stress.
growing in Central Utah (salinity level 5–27%), when inoculated in alfalfa grown under saline stress, stimulated growth and stress resilience [78]. The possible mechanism suggested by the authors included binding of sodium ions by bacteria along with production of volatile compounds, biofilm formation involving EPS through modification of signaling and expression of stress resistant genes.

HT-PGPR are also known for triggering antioxidant defense machinery in plants which are involved in synthesis of antioxidant enzymes such as superoxide dismutase (SOD), peroxidase, catalase (CAT), nitrate reductase (NR), glutathione reductase (GR), polyphenol oxidase (PO), guaiacol peroxidase (GP), monohydrate dehydrogenase (MDHAR) and dehydroascorbate reductase (DHAR)
against oxidative stress caused by ROS during salt stress [79,80]. SOD has been reported as key antioxidant enzyme and first line of defense to mitigate abiotic stresses for scavenging H$_2$O$_2$, reducing Haber–Weiss reaction and hydroxyl ion formation [81]. Enzymes CAT, APX (ascorbate peroxidase) and POD (peroxidase) act as the second line of defense found to mitigate the products of SOD [82]. Inoculation of plants with anti-oxidant enzymes producing HT-PGPR exhibited higher expression of APX, CAT, SOD genes under salt stress which attenuated the risks of cellular damage due to ROS in plants [24]. Inoculation of HT-PGPR (B. megaterium UPMR2 and Enterobacter sp. UPMR18) enhanced the levels of SOD, APX, and CAT and triggered the regulation of genes involved in ROS pathway (CAT, APX, GR, and DHAR) in okra plants under salinity stress [31]. Priming of Panax ginseng with salt-tolerant *Paenibacillus yanginensis* DCY84$^4$ facilitated the expression of various antioxidant genes such as *Pp*APX and *Pp*CAT, increasing the plant tolerance against salinity stress [83]. Along with enzymatic ROS scavenging, HT-PGPR also produce non-enzymatic antioxidant such as ascorbate (AsA), carotenoids, tocopherols, glutathione (GSH) and phenolics which act as defense molecules for the plant under saline conditions [84]. HT-endophyte *Pseudomonas stutzeri* ISE12 isolated from halophyte *Salicornia europaea* upon inoculation to *Brassica napus* L. triggered antioxidant system and rearrangement of plant cell wall, consecutively inducing the tolerance in plants [85]. Inoculation of cowpea with HT-PGPR *Bradyrhizobium* and *Pseudomonas graminis* showed the accumulation of AsA and GSH and helped plants survival under salt stress [86]. Solubilization of inaccessible form of soil minerals into bioavailable form is a noted activity of HT-PGPR. HT-PGPR employ a vast array of mechanisms including production of low molecular weight organic acids, chelating agents and ion exchange for solubilization of P, Zn and potassium (K) in saline soil [87,88]. Minimizing the rhizospheric competition in nutrient scant stressed soils, some microbes through penetration or nodulation establish themselves as endophytes and in turn benefit the plant by assimilating nutrients and increasing survival/adaptation rate [89]. P is an important macronutrient required in large quantities by the plant i.e. ~ 0.2%–0.8% [90]. But the enhanced level of salt in soil messes up with the availability of P to plants. In alkaline and calcareous soils, *P* forming strong calcium phosphate compounds, thereby exacerbating the chelation by plants [91]. Thus, along with phosphatic fertilizers application of phosphate solubilizing microorganisms (PSMs) are gaining attention. Bacterial isolates from saline mangrove swamps exhibited the property to solubilize rock phosphate with maximum chelation of 97% by *Oceanobacillus picturae* [87]. HT-PGPR such as *Vibrio*, *Arthrobacter*, *Bacillus*, *Azospirillum*, *O. picturae*, and *Phyllobacterium* are reported to increase the P uptake by plants in saline soils [92,6]. Apart from the macro-nutrients, availability of Fe is another challenge, limiting the growth and productivity of crops. Chelation of Fe is mainly governed by the pH of the soil system. Under saline conditions, higher content of bicarbonates inactivates the soluble Fe and thus, the uptake (of Fe by plants) is reduced. Saline soils tend to have pH more than 6.5 which causes oxidation of soluble ferrous to insoluble ferric oxide [93]. Siderophore production by HT-PGPR fulfill the demand of Fe in crops grown under salinity stress [94,95]. Mukherjee et al. [96] reported the role of siderophore production by *Halomonas sp.* in chelating Fe and growth promotion of rice under salinity stress. Goswami et al. [97] noted that *Bacillus licheniformis* strain A2 isolated from rhizosphere of salt tolerant desert plant *Suaeda fruticosa* solubilized phosphate and produced siderophore contributing to increment in plant biomass and height when grown under salinity stress. Another issue faced by the plants under salt stress is the deficiency of N due to negative influence on population and distribution of microbes. Process of dinitrogen fixation can be hampered in presence of salinity unless and until proper strains are not selected and inoculated [98]. A novel study determining the diversity of diazotrophic endophytes in salt tolerant plant *S. europaea* L. (growing at 55 and 112 ds/m salinity) highlighted the presence of wide range of efficient nitrogen fixing genera including *Curtobacterium*, *Microbacterium*, *Rhodococcus*, *Mycobacterium*, *Cellulomonas*, *Sanguibacter*, *Clavibacter*, *Cryococcus* / *Labeledella*, *Frigoribacterium*, *Agrea*, *Herbicinoux*, and *Plantibacter* [99]. The study also reported that nitrogen fixing Actinobacteria have higher salinity tolerance ability than Proteobacteria which are often reported at lower salinity. Similarly, Jha et al. [100] reported novel diazotrophic spectra of HT-PGPR including *Brady- bacterium saurusretnese* sp. nov., *Zhibengiuella* sp., *Brevibacterium casei*, *Haereheralobacter* sp., *Halomonas* sp., *Vibrio* sp., *Cronobacter sakazakii*, *Pseudomonas* spp., *Rhizobium* radiobacter, and *Mesorhizo- bium* sp. from the rhizosphere of extreme halophyte *Salicornia brachiata*. The isolates were found to be potent nitrogen fixers, efficient IAA (indole acetic acid) producers, phosphate solubilizers along with positive for 1-aminoacyclopropane 1-carboxylate (ACC) deaminase activity (ACCD). *Gordonia* sp., a HT-PGPR was reported positive for nifH gene and siderophore production, stimulating the growth of pearl millets under saline conditions [101]. The lesser explored extreme habitats should thus be explored to discover the potential strains of stress tolerant PGPR so as to utilize them in strained agro-ecosystems.

Modulation of phytohormones and accumulation of nutrients against the hyperosmotic and hypo-nutritive conditions is an important role of HT-PGPR to confer symbiotic association and promote growth and productivity of plants. Studies confirmed that under salt stress, expression of genes for auxin like compounds increase in HT-PGPR and compensate plant’s requirement of growth hormone [102,89]. Apart from the improvement in growth, there is also evidence that phytohormones produced by HT-PGPR showed role in the exclusion of ionic salts. Rojas-Tapias et al. [103] reported improved K$^+$ uptake, Na$^+$ exclusion and plant growth promotion in maize upon inoculation with auxin producing *Azotobacter* C5 and C9 strains under salt stress. Priming the seeds of *Triticum durum* var. *waha* with potent IAA producing HT-PGPR *A. brasilense* NH along with the extract of Marine Alga *Ulva lactuca* served as a novel bioformulation and enhanced the growth parameters of plants under saline conditions [104]. Synthesis of IAA is transcriptionally related to soaring level of ethylene in plants via the expression of ACC synthase gene (producing ethylene) [105]. Ethylene increases salt tolerance in plants but at the expenditure of growth and productivity [106]. The first small peak of ethylene under abiotic stresses takes up ACC and initiates expression of genes responsible for defense mechanism, while second larger peak is majorly deleterious to plants causing leaf chlorosis abscission, and senescence [107]. Mitigating this second ethylene peak, HT-PGPR synthesize ACC deaminase (ACCD) enzyme for growth and development of stressed plants [108]. ACC encoding gene accD are found in halotolerant microbes functioning to convert ACC (precursor of ethylene) to ammonia, α-ketoglutaraldehyde and utilizing for energy and N source [109]. Concluding from the direct correlation between IAA and ethylene it can be suggested that HT-PGPR with combined property of IAA production and ACCD should be used for stress amelioration [110,111].

Under salt stress PGPR also modulate emergency hormone abscisic acid (ABA) biosynthesis and ABA-mediated signaling pathways for growth elevation of plants. Relatively, inoculation of wheat plants with halotolerant strain *D. natronolimnaea* STR1 under salinity stress caused the up-regulation of TaABARE (ABA-responsive gene) and TaOPRK1 (12-oxophytodienoate reductase 1) stimulating TaMYB and TaWRKY following the expression of salt-stress induced gene TaST [33]. *P. fluorescens* inoculation to rice plants under drought stress was found to be enhancing the intrinsic tolerance level of plant through elevated expression of ABA syn-
thetic genes, particularly at later reproductive stage [112]. The authors reported increased expression of ncd1, an ABA biosynthesis gene in tomato plants, upon inoculation with bacteria. The increased ABA content helped in stomatal closure to prevent loss of water from plants in a water-deficit condition. Gibberellic acid (GA) is another class of phytohormones inducing the physiological responses, germination and plant growth promotion. Under salt stress the mitigation strategy by GA involves antioxidant activity, inhibiting lipid peroxidation, chlorophyll synthesis, elevated root-shoot length, photosynthetic activity and plant biomass [113]. Kang et al. [114] reported that inoculation of salt and drought stressed soybean plants with P. putida H2-3, elevated the production of gibberellins and helped in regulating the hormonal and stress physiology.

Cytokinin phytoregulatory signaling events also impart osmotic balance and help plant acclimatize to salinity [115]. These purine stress physiology.

Kang et al. [114] reported that inoculation of salt and drought stressed soybean plants with P. putida H2-3, elevated the production of gibberellins and helped in regulating the hormonal and stress physiology.

Apart from governing the molecular and physical interactions in plants, PGPR also elicit induced systemic resistance/ tolerance (ISR/ IST) through signaling [119]. ISR is primarily governed by ethylene and jasmonic acid (JA) signaling and the complex transcriptome analysis reveals involvement of MYB72, β-glucosidase U42 (BGLU42) and MYC2, in rhizobacteria mediated ISR [120]. PGPR produce plethora of signaling molecules including volatile organic compounds (VOCs), quorum sensing molecules such as N-acyl homoserine lactone (AHL) and cyclodipeptides (CDPs) which are effective in induction of systemic resistance in plants [121–123].

The exogenous application of N-3-oxo-hexanoyl-homoserine lactone (3OC6-HSL) (molecule of AHL family) enhanced the salt tolerance in Arabidopsis and wheat plants. 3OC6-HSL was found to be increasing the root and shoot length, plant biomass, proline and chlorophyll content and reduced MDA (malondialdehyde) and Na+ levels. The molecular mechanism revealed that 3OC6-HSL was up-regulating expression of salinity-tolerance genes including COR15a, RD22, ADH and P5CS1 (ABA-dependent osmotic stress regulating genes), ERD1 (ABA-independent path signaling gene), and SOS1, SOS2 and SOS3 (salinity responsive genes) in both the plants [124].

Correlatively, red rice plants inoculated with Gluconacetobacter diazotrophicus under drought stress showed synthesis of AHL molecules by LuxN proteins (autoinducer proteins) which enhanced tolerance in plants through IST [125]. Also two stress marker genes, PR-1 (for salicylic acid SA pathway) and PR-10 (for JA/ ethylene pathway) were induced transcriptionally to activate ISR. Therefore, G. diazotrophicus strain PII 5 was suggested as future bioinoculant to reduce the damages in plants due to abiotic stresses and AHL an elicitor of plant defense systems [126].

**HT-PGPR as soil remediators**

The presence of HT-PGPR in saline soil greatly influences soil quality and fertility parameters. Studies have confirmed that HT-PGPR improve nutrient status, soil structure, organic matter, pH, EC, and deposition of ionic salts in soil [127]. HT-PGPR mitigate ionic toxicity through cation bridging, hydrogen bonding, and anion adsorption [128]. There are reports where application of HT-PGPR has improved salt index of saline soil [129]. Mitigating the nutrient status, HT-PGPR improve N, C, P, Fe and Zn content of saline soils, thereby reviving the lost vegetative index and accelerating the agricultural sustainability. Under saline conditions the N content and population of nitrogen fixers are found to be decreasing. Thus, acting as an efficient reclamation strategy, the symbiotic and asymbiotic biological nitrogen fixation by salt tolerant microbes enhances the N content as well as improves fertility of soil [88,130,131]. The enrichment of saline soil using nitrogen fixing PGPR Pseudomonas aeruginosa, along with N compost stimulated the level of nitrogen as compared with un-inoculated control [132]. Revival of arid and saline soil by utilizing salt-tolerant rhizobia can help in improving the fertility and productivity of these stressed agro-ecosystems [133]. Hassan et al. [134] utilized root powder of a halophyte Cenchrus ciliaris as carrier to develop inoculant from HT-PGPR Bacillus cereus, Pseudomonas moraviensis, and Stenotrophomonas maltophilia. The developed bioinoculant when applied in field improved growth of wheat and simultaneously resulted in better texture, EC, pH and organic matter of saline-sodic soil. Along with N, HT-PGPR can stimulate the P, Zn and Fe content of saline soils. P. moraviensis reclaimed saline sodic soil by improving P, nitrate (NO3)N and K content by almost 18–35% [135]. Increase in P content of saline soil was observed by inoculation with phosphate solubilizing B. licheniformis MH48 strain. Reduction in soil pH, EC and enhanced availability of macro-nutrients (NPK), micronutrients (Fe, Zn, Mn and Cu) and organic matter was reported when saline soil was inoculated with HT-PGPR and phosphogypsum [136].

Besides nutrition, aggregation is also an important soil quality which promotes water percolation, root penetration, aeration and micropore formation [137]. HT-PGPR improve soil structure and aggregation by production of EPS (in stress conditions) resulting in formation of microaggregates (<250 μm) and macroaggregates (greater than250 μm) thus entrapping nutrients and water molecules. Formation of coherent EPS-soil complex in protected environment against odds of salinity helps in protection of both the plants and HT-PGPR population in the rhizosphere [138,139]. Qurashi and Sabri [140], concluded that significant increase in soil aggregation was found due to EPS producing PGPR Planococcus rifi- etoensis (RT4) and Halomonas variabilis (HT1). Acting as protective sponge, EPS in the biofilm complex also increase the water holding capacity of soil and improves the water activity in plants under stress conditions of salinity and drought [74]. Improvement in water holding capacity and aggregation of soil upon application of EPS extracted from P. putida GAP-P45 under salt and drought stress was reported [128]. Similarly, Boukhelata et al. [141] testified that EPS produced by Alcaligenes latus absorbed 1000 times more water than its own dry weight, while water absorbing capacity of EPS from P. aeruginosa strain CMG1421 was 400 times [142] and that from Rhizobium sp. and Paenibacillus sp., 100 times more than the dry weight [143]. EPS is an excellent soil conditioner and can even be utilized as an additive for development of bioformulations [144].

Increase in salinity by more than 5% significantly lowers the population of bacteria and actinobacteria [145]. The exogenous application of HT-PGPR while improving the soil structure also participates in assimilating the organic matter and increasing the microbial interactions. The establishment of biofilm in soil aggregates or on root surface is characterized by high concentration of root exudates, signaling molecules, organic matter and water content. This complex acts as a dragging force in selecting and establishing microbial diversity. The primary content of biofilm (EPS) regulates the organic matter by serving as C source and coagulating soil particles thereby ensuring the formation of humic substances which are stable organic carbon forms [146]. Improvement of C
cycling in saline soil is reported when inoculated with PGPR [147]. Another mechanism of action reported by Lipińska et al. [148] highlights that bacterial inoculation increases the dehydrogenase activity which is suggested to be directly correlated with soil microbial biomass. Islam et al. [149] described increase in microbial biomass carbon and dehydrogenase activity in saline soil upon inoculation with HT-PGPR B. cereus Pb25. Research thus clearly shows the role and possible utilization of HT-PGPR in improving the quality of soils impacted with abiotic stresses such as salinity (Fig. 3).

Future prospects

Rapid increase in salinization of soil has not only affected agricultural production but also posed a threat to food security. Although still in its infancy, recent research shows that application of HT-PGPR has proven effective and a sustainable solution for the reclamation of saline soils. With the advancement of methodologies and techniques wide array of metabolites and genes (by PGPR) have been identified in response to salinity stress. However, further insights are required into the metabolome of the HT-PGPR during their interaction with plants both under physiologically stressed and non-stressed conditions [150]. ‘Interactomics’ is the emerging mapping technique involving bioinformatics tools to analyze the relationships between biomolecules such as proteins/enzymes from both plants and bacterial cells so as to determine the pathways involved in communication between both the partners under salt stress [151]. The decoding of the signaling and interactions between microbe-to-plant or plant-to-microbe can be used to modify the phytomicrobiome for the benefit of stressed plants. The connection between plant stress responses, signaling molecules and assemblages of microbiome can be further explored for development of stress ‘smart agriculture’ [152]. Limitations of bioformulations such as shelf-life and inability to perform in conditions prevalent under abiotic stresses have to be overcome. Inducing the stress ameliorating factors by adding additives or metabolites to attract the microbes can be explored to improve the quality of bioformulations for stressed agro-ecosystems. AHL can be used as one such elicitor for enhancing the plant-microbe communication and ensuring physiological, biochemical and molecular changes to prevent salt-injury in crops [153]. Osmoprotectants or cell-protectants can also be added in the novel formulations, along with HT-PGPR, to help them overcome the initial stress and get acclimatized to the conditions. Exogenous application of glycine betaine and proline to culture medium resulted in enhanced salinity tolerance of fluorescent pseudomonads [154]. Hence this can also be utilized for development of bioinoculants for saline soils. Novel bioformulations can thus be developed by utilizing diverse HT-PGPR or their metabolites for improving productivity and quality of saline soils (Fig. 4). Amending gene elicitors inducing salt-stress responses and aiding in formation of biofilms can not only help in preparing the plant and microbe against stress like salinity, but also protect the introduced microbe from initial shock. Biofilm formation by HT-PGPR has already been reported in protection and growth promotion of plants in saline conditions [155]. Improvement of productivity and quality of saline soils utilizing HT-PGPR can play important role in improving the microbial diversity, soil organic matter, water activity, EC, pH and nutrient availability. Bioinoculants based on HT-PGPR can thus be of multiple utility. These novel formulations can not only protect and improve the crops’ yields but also play crucial role in remediating stressed agro-ecosystems.

Conclusion

Switching from unsustainable traditional methods, microbiological approaches are emerging as the most significant biological tools to remediate and increase the productivity of saline soils. HT-PGPR have an array of mechanisms in their armor to manage and overcome the harmful impacts of soil-salinity. The application of these under-used but potential microorganisms to improve the productivity and instigate remediation of saline soils is required to be explored. Further research is needed to develop novel bioinoculants to tackle the menace of soil-salinity. To be a replicable and reliable technology, more scientific inputs will be required so as to understand the intricacies of the plant–microbe–microbe interactions under the complex stresses elicited due to soil salinity. This novel microbial technology needs to be explored further for improving crop-productivity and control the pandemic of soil salinity.
Compliance with ethics requirements

This article does not contain any studies with human or animal subjects.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

NKA conceptualized the idea. All authors equally contributed in writing of the manuscript. NKA and JM prepared the illustrations. TF thanks UGC-MANF for fellowship, SV received UGC-NFOBC fellowship, RV and CB thank CSIR-UGC for the fellowship.

References

[1] Lambers H. Introduction: Dryland salinity: A key environmental issue in southern Australia. Plant Soil 2003;257:5–7. doi: https://doi.org/10.1023/B:PLSO.0000003909.80658.db.
[2] Bargaz A, Lyamloulif K, Choukhi M, Zeroual Y, Dhiba D. Soil microbial resources for improving fertilizers efficiency in an integrated plant nutrient management system. Front. Microbiol. 2018. doi: https://doi.org/10.3389/fmicb.2018.01606.
[3] Mishra J, Fatima T, Arora NK. Plant Microbiome: Stress Response. In: Egamberdieva D, Ahmad P, eds. Role of secondary metabolites from plant growth-promoting rhizobacteria in combating salinity stress. Singapore: Springer; 2018. p. 127-163. doi:10.1007/978-981-10-5514-0_6.
[4] Egamberdieva D, Wirth S, Bellinger-Kimura SD, Mishra J, Arora NK. Salt-tolerant plant growth promoting rhizobacteria for enhancing crop productivity of saline soils. Front. Microbiol. 2019;10:2791. doi: https://doi.org/10.3389/fmicb.2019.02791.
[5] Yasin NA, Akram W, Khan WU, Ahmad SR, Ahmad A, Ali A. Halotolerant plant-growth promoting rhizobacteria modulate gene expression and osmolyte production to improve salinity tolerance and growth in Capsicum annum L. Environ. Sci. Pollut. Res. 2018;25(23):23236–50. doi: https://doi.org/10.1007/s11356-018-2381-8.
[6] Etesami H, Beattie GA. Mining halophytes for plant growth-promoting halotolerant bacteria to enhance the salinity tolerance of non-halophytic
Anderson JA, Ellsworth PC, Faria JC, Head GP, Owen MDK, Pilcher CD, et al. Chakraborty U, Chakraborty BN, Dey PL, Chakraborty AP. Hashem A, Abd_Allah E, Alqarawi A, Al-Huqail A, Shah M. Vaishnav A, Kumari S, Jain S, Varma A, Tuteja N, Choudhary DK. PGPR-Elrashidi MA, West LT, Seybold CA, Benham EC, Schoeneberger PJ, Ferguson R. El-Esawi MA, Alaraidh IA, Alsahli AA, Alamri SA, Ali HM, Alayafi AA. Bulgari R, Franzoni G, Ferrante A. Biostimulants application in horticultural crops. Front. Microbiol. 2018;9:651. doi:https://doi.org/10.3389/fmicb.2018.00651.

Elrashidi MA, West LT, Seybold CA, Benham EC, Schoeneberger PJ, Ferguson R. El-Esawi MA, Alaraidh IA, Alsahli AA, Alamri SA, Ali HM, Alayafi AA. Bulgari R, Franzoni G, Ferrante A. Biostimulants application in horticultural crops. Front. Microbiol. 2018;9:651. doi:https://doi.org/10.3389/fmicb.2018.00651.

Hashem A, Abd_Allah E, Alqarawi A, Al-Huqail A, Shah M. Vaishnav A, Kumari S, Jain S, Varma A, Tuteja N, Choudhary DK. PGPR-Egamberdiyeva D. Plant-growth-promoting rhizobacteria isolated from a Burwell, MA, USA, soil. J. Basic Microbiol. 2016;56:1274–88. doi:10.1155/2016/428132.

Hashem A, Abd_Allah E, Alqarawi A, Al-Huqail A, Shah M. Vaishnav A, Kumari S, Jain S, Varma A, Tuteja N, Choudhary DK. PGPR-Elrashidi MA, West LT, Seybold CA, Benham EC, Schoeneberger PJ, Ferguson R. El-Esawi MA, Alaraidh IA, Alsahli AA, Alamri SA, Ali HM, Alayafi AA. Bulgari R, Franzoni G, Ferrante A. Biostimulants application in horticultural crops. Front. Microbiol. 2018;9:651. doi:https://doi.org/10.3389/fmicb.2018.00651.

Hashem A, Abd_Allah E, Alqarawi A, Al-Huqail A, Shah M. Vaishnav A, Kumari S, Jain S, Varma A, Tuteja N, Choudhary DK. PGPR-Elrashidi MA, West LT, Seybold CA, Benham EC, Schoeneberger PJ, Ferguson R. El-Esawi MA, Alaraidh IA, Alsahli AA, Alamri SA, Ali HM, Alayafi AA. Bulgari R, Franzoni G, Ferrante A. Biostimulants application in horticultural crops. Front. Microbiol. 2018;9:651. doi:https://doi.org/10.3389/fmicb.2018.00651.

Hashem A, Abd_Allah E, Alqarawi A, Al-Huqail A, Shah M. Vaishnav A, Kumari S, Jain S, Varma A, Tuteja N, Choudhary DK. PGPR-Elrashidi MA, West LT, Seybold CA, Benham EC, Schoeneberger PJ, Ferguson R. El-Esawi MA, Alaraidh IA, Alsahli AA, Alamri SA, Ali HM, Alayafi AA. Bulgari R, Franzoni G, Ferrante A. Biostimulants application in horticultural crops. Front. Microbiol. 2018;9:651. doi:https://doi.org/10.3389/fmicb.2018.00651.

Hashem A, Abd_Allah E, Alqarawi A, Al-Huqail A, Shah M. Vaishnav A, Kumari S, Jain S, Varma A, Tuteja N, Choudhary DK. PGPR-Elrashidi MA, West LT, Seybold CA, Benham EC, Schoeneberger PJ, Ferguson R. El-Esawi MA, Alaraidh IA, Alsahli AA, Alamri SA, Ali HM, Alayafi AA. Bulgari R, Franzoni G, Ferrante A. Biostimulants application in horticultural crops. Front. Microbiol. 2018;9:651. doi:https://doi.org/10.3389/fmicb.2018.00651.

Hashem A, Abd_Allah E, Alqarawi A, Al-Huqail A, Shah M. Vaishnav A, Kumari S, Jain S, Varma A, Tuteja N, Choudhary DK. PGPR-Elrashidi MA, West LT, Seybold CA, Benham EC, Schoeneberger PJ, Ferguson R. El-Esawi MA, Alaraidh IA, Alsahli AA, Alamri SA, Ali HM, Alayafi AA. Bulgari R, Franzoni G, Ferrante A. Biostimulants application in horticultural crops. Front. Microbiol. 2018;9:651. doi:https://doi.org/10.3389/fmicb.2018.00651.

Hashem A, Abd_Allah E, Alqarawi A, Al-Huqail A, Shah M. Vaishnav A, Kumari S, Jain S, Varma A, Tuteja N, Choudhary DK. PGPR-Elrashidi MA, West LT, Seybold CA, Benham EC, Schoeneberger PJ, Ferguson R. El-Esawi MA, Alaraidh IA, Alsahli AA, Alamri SA, Ali HM, Alayafi AA. Bulgari R, Franzoni G, Ferrante A. Biostimulants application in horticultural crops. Front. Microbiol. 2018;9:651. doi:https://doi.org/10.3389/fmicb.2018.00651.
Glick BR. Plant growth-promoting bacteria: mechanisms and applications.

Glick BR. Bacteria with ACC deaminase can promote plant growth and help to

Rojas-Tapias D, Moreno-Galván A, Pardo-Díaz S, Obando M, Rivera D, Bonilla

Saakre M, Baburao TM, Salim AP, Ffancies RM, Achuthan VP, Thomas G, et al.

Goswami D, Thakker JN, Dhandhukia PC. Portraying mechanics of plant

Nabti E, Schmid M, Hartmann A. Application of halotolerant bacteria to

Sorty AM, Meena KK, Choudhary K, Bitla UM, Minhas PS, Kothari KK. Effect of plant growth promoting bacteria associated with halophilic weed (Poralea corynifoila L.) on germination and seedling growth of wheat under salinity conditions. Appl. Biochem. 2016;180(5):782–82. doi: https://doi.org/10.1016/j.abb.2016.03.007

Jaafar Z, Xiong-Yun Y, Ye, Jin Yang. B. Cells stimulation of rice plant growth and enhances salt tolerance in Arabidopsis and wheat. Bot. Stud. 2020;61(8). doi: https://doi.org/10.1007/s12010-020-00383-1

Figueroa L, Silva R, Santos B, Coelho M, Silva M, Estrada-Bonilla G, et al. Gluconacetobacter diazotrophicus Changes the Molecular Mechanisms of Root Development in Osaria sativa L. Plant Soil 2019;1:1–17. doi: https://doi.org/10.1007/s11104-019-04163-1

Silva R, Figueroa L, Santos B, Coelho M, Silva M, Estrada-Bonilla G, et al. Gluconacetobacter diazotrophicus mitigates drought stress in Osaria sativa L. Plant Soil 2019;1:1–17. doi: https://doi.org/10.1007/s11104-019-04162-2

Chow Q, Xie, Jiang W, Yang C, Chen-Hua Jia, Shui-Shan S. N-3-o-hexanoyl-homoserine lactone group. Plant Mol. Biol. 2016;90(6):605–12. doi: https://doi.org/10.1007/s11103-016-9945-1

Rosier A, Maderos FH, Bais HP. Defining plant growth promoting rhizobacteria molecular characteristics. ISRN Microbiol. 2012;2012:1–10. doi: https://doi.org/10.5402/2012/403560

Ranjekar PK, Beavan J, Lovell PG, Berridge VJ. Regulation of expression of the K+-uptake ATPase in plants defective in the presence of K+. Proc. Natl. Acad. Sci. U. S. A. 1990;87(19):7551–5. doi: https://doi.org/10.1073/pnas.87.19.7551

Savajoux M, Schirone E, Bielecke M, Fantauzzi L. Growing Under Water Stress, Int. J. Mol. Sci. 2012;13(10):10339–51. doi: https://doi.org/10.3390/ijms131010339

Chapelle F, Staley JT. Phylogenetic interrelationships among bacteria of the genera Clostridium and Bacillus. Arch. Microbiol. 1980;126(3):265–71. doi: https://doi.org/10.1007/BF00403067

Zahran HH. Rhizobium-legume symbiosis and nitrogen fixation under severe conditions and in an arid climate. Microbiol. Mol. Biol. Rev. 1999;63(4):968–89. doi: https://doi.org/10.1128/MMBR.63.4.968-989.1999

Hassan TU, Bano A, Naz I. Halophyte root powder: an alternative biofertilizer and bio carrier for saline land. J. Soil Sci. Plant Nutri. 2018;64(5):63–5. doi: https://doi.org/10.1007/s13213-018-1406-3

Hassan TU, Bano A. Construction of IAA-deficient mutants of Pseudomonas moravensis and their comparative effects on wild type strains as bio- inoculant on wheat in saline sodic soil. J. Plant Physiol. 2019;236(4):376–84. doi: https://doi.org/10.1016/j.jplph.2019.06.009

Al-Enazy A, Al-Barakah F, Al-Oud S, Usman A. Effect of phosphogypsum application and bacteria co-inoculation on biochemical properties and nutrient availability in soil. J. Soil Sci. Plant Nutri. 2019;18(1):464–73. doi: https://doi.org/10.1007/s13213-019-00713-2

Boukhelata N, Taguett F, Kaci Y. Characterization of an extracellular polysaccharide produced by a Saharan bacterium Paenibacillus tarimensis. Carbohydr. Polym. 2017;162:328–35. doi: https://doi.org/10.1016/j.carbpol.2017.01.025

Bouchekara L, Taguet F, Kaci Y. Characterization of an extracellular polysaccharide produced by a Saharan bacterium Paenibacillus tarimensis. Carbohydr. Polym. 2017;162:328–35. doi: https://doi.org/10.1016/j.carbpol.2017.01.025

Jamil N, Ahmed N. Production of biopolymers by Pseudomonas aeruginosa isolated from marine source. Braz. Arch. Biol. Technol. 2008;51(3):457–64. doi: https://doi.org/10.1590/S1516-89132008000300004

Kaci Y, Heyraud A, Barakat M, Heulin T. Isolation and identification of an EPS-producing Rhizobium strain from arid soil (Algeria): characterization of its EPS and the effect of inoculation on wheat rhizosphere soil structure. Microbiol. Res. 2005;160(4):522–31. doi: https://doi.org/10.1016/j.micres.2005.01.012

Derpsch J, Kloepper JW. Bacterial antagonists of fungus: beneficial potentials and recent advances. Trends Plant Sci. 2009;14(1):1–4. doi: https://doi.org/10.1016/j.tplants.2008.04.073
N. Kumar Arora et al. / Journal of Advanced Research 26 (2020) 69–82

Jitendra Mishra holds a Ph.D. in Environmental Microbiology. He completed his master’s in Environmental Microbiology in 2009 from Babasheb Bhimrao Ambedkar University, Lucknow, and subsequently gained experience in research and teaching alike. He has worked as an Assistant Professor (Guest) at the Department of Environmental Microbiology, Babasheb Bhimrao Ambedkar University, Lucknow. He is serving as an Assistant Editor for the journal “Environmental Sustainability” published by Springer-Nature. He has published his research findings in the form of book, chapter books, research articles, and reviews in several journals of repute. Currently, he is a Research Associate at the DST-Centre for Policy Research, Brua, Lucknow.

Isha Mishra is currently a PhD fellow in Environmental Microbiology under Prof Naveen Kumar Arora at Babasheb Bhimrao Ambedkar University, Lucknow, India. Completing her Bachelor degree in Science (2012) and Master degree in Environmental Microbiology (2014). Currently, her research interest is about the characterization and role of PGPR-extracted biosurfactants in growth promotion and disease protection in plants.

Sushma Verma is a PhD student in Environmental Microbiology at Babasheb Bhimrao Ambedkar University, Lucknow, India. She did her bachelor in Science (2013) from Lucknow University and completed masters in Environmental Microbiology from Babasheb Bhimrao Ambedkar University in the year 2015. She joined the research group of Prof. Naveen Kumar Arora in 2015. Her research work primarily focuses on the exploration and characterization of plant microbiota subjected to abiotic stresses. She has publications (original articles, book chapters) in reputed journals.

Renu Verma is a PhD scholar in Environmental Microbiology at Babasheb Bhimrao Ambedkar University, Lucknow and jointly associated with ICAR-Indian Institute of pulses research for her research. She did Bsc in Biology (2004) and Msc in Microbiology (2009) from Kanpur University. She is currently working under the supervision of Prof. Naveen Kumar Arora. Her research work focuses on diversity of rhizobia associated with chickpea germplasm in relation to nodulation and nitrogen fixation.

Maya Verma is presently a Microbiologist at Uttar Pradesh Pollution Control Board (UPPCB), Lucknow, India. She received her bachelor degree in Science and Masters in Environmental Microbiology. She has done her PhD in Environmental Microbiology at Babasheb Bhimrao Ambedkar University, Lucknow, India, under the supervision of Prof. Naveen Kumar Arora. Her research topic was to determine the rhizobial diversity in wild medicinal legumes and their role in supporting better growth of plants. Currently, her research is focused on river quality monitoring in the area of Uttar Pradesh, India.

Naveen Kumar Arora, Fellow of International Society of Environmental Botanists (FISEB), Professor and Head, Department of Environmental Science, Babasheb Bhimrao Ambedkar University, Lucknow, India is a renowned researcher in the field of Environmental Microbiology and Biotechnology. His specific area of research is rhizosphere biology and plant growth-promoting rhizobacteria (PGPR). He has more than 70 research articles published in premium international journals and is an editor of 25 books published by Springer Nature. He is also Editor-in-Chief of the journal “Environmental Sustainability” published by Springer Nature. He has been awarded by national and international bodies. His current research interest mainly focuses on salt-tolerant rhizobacteria and characterization of associated metabolites and development of novel bioformulation for remediation of saline soils.

Tahmish Fatima is a PhD candidate in Environmental Microbiology under the supervision of Prof. Naveen Kumar Arora, at Babasheb Bhimrao Ambedkar University, Lucknow, India. She has a Bachelor degree in Science (2012) and Master degree in Environmental Microbiology (2014). Currently, her line of research is focused on isolation, characterization and in vitro and in vivo application of salt tolerant plant growth promoting rhizobacteria on growth enhancement of plants and reclamation of soil.
Ankita Bhattacharya is a PhD student in the Department of Environmental Science at Babasaheb Bhimrao Ambedkar University, Lucknow, India. She received her BSc in Biotechnology (2016) from AKS University Satna, India and MSc in Environmental Science (2018) from Banaras Hindu University, Varanasi, India. She joined her research under Prof. Naveen Kumar Arora in the year 2018. Her area of research is plant-microbe interactions in agriculture particularly focusing on endophytic salt-tolerant bacteria.

Priyanka Verma is a PhD student in Environmental Science at Babasaheb Bhimrao Ambedkar University, Lucknow. She received BSc in Science (2015) from M. B. P. Govt. P.G. College and MSc in Environmental Science (2018) from Babasaheb Bhimrao Ambedkar University. She is currently pursuing PhD under Prof. Naveen Kumar Arora. Her research focuses on role of plant growth promoting rhizobacteria in biocontrol against phytopathogens along with the metabolites and mechanism involved in action.

Priya Mishra earned her Master’s degree in Environmental Microbiology from Babasaheb Bhimrao Ambedkar University, Lucknow in 2014. Currently, she is pursuing a PhD in the Department of Environmental Science, Babasaheb Bhimrao Ambedkar University, Lucknow under the close guidance of Prof. Naveen Kumar Arora, and trying to explore the potential of fluorescent pseudomonads in biofortification of wheat under salt-stress conditions.

Chanda Bharti is a PhD scholar in Department of Environmental Science at Babasaheb Bhimrao Ambedkar University, Lucknow. She completed her graduation in 2015 from Kamla Nehru Institute of Science and Technology, Sultanpur and Masters in Environmental Science and Technology from Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi, India (2017). She is now pursuing her PhD under the supervision of Prof. Naveen Kumar Arora. Her research work mainly focuses on plant-microbe interactions involving salt tolerant endophytic microbes.