Audiologists’ Perceptions of Hearing Healthcare Resources and Services in South Africa’s Public Healthcare System

Aaqilah Bhamjee1, Talita Le Roux1, Kurt Schlemmer1,2, Marien Alet Graham3 and Faheema Mahomed-Asmail1

1Department of Speech-Language Pathology and Audiology, University of Pretoria, Pretoria, South Africa. 2Department of ENT Head and Neck Surgery, University of KwaZulu Natal, Durban, South Africa. 3Department of Science, Mathematics and Technology Education, University of Pretoria, Pretoria, South Africa.

ABSTRACT

BACKGROUND: Hearing loss poses a significant burden globally. Its prevalence is exceptionally high in countries across the African region, where healthcare resources and services remain inaccessible. This study aimed to describe audiologists’ perceptions regarding hearing healthcare resources and services within South Africa’s public healthcare system.

METHODS: A national self-developed telephonic survey was conducted with audiologists in public healthcare system hospitals across South Africa, with the final sample comprising 100 audiologists.

RESULTS: Most (82%) audiologists indicated that their hospitals did not have adequate hearing healthcare resources to render efficient audiology services to patients. Binaural amplification devices (invasive and non-invasive) for adults with bilateral hearing loss who adhered to the criteria for these devices were perceived to be unavailable in most hospitals. Audiologists also perceived that universal newborn hearing screening services, adult aural rehabilitation services, and follow-up care for all hearing devices post-warranty expiration were limited.

CONCLUSION: Efforts should be made to upsurge hearing healthcare resources, including increasing the financial budgets allocated to audiology resources so that increased diagnostic and screening audiology equipment and hearing devices can be procured where required, and additional audiologists can be employed within the South African public sector hospitals where needed.

KEYWORDS: Hearing loss, hearing healthcare, hearing resources, hearing intervention, South Africa

Background

Approximately 1.5 billion people worldwide currently live with a hearing loss, of whom 430 million require rehabilitation services such as hearing assistive devices to address their disabling hearing loss.1 Disabling hearing loss is defined as hearing loss greater than 35 dBHL in the better-hearing ear.2 According to 2021 WHO estimates, the prevalence of hearing loss will likely escalate to 2.5 billion by 2050, with at least 700 million requiring rehabilitation services.3 Despite the high prevalence of hearing loss, it has often been overlooked as a global health priority.4 The negative impact associated with disabling hearing loss is well documented. Regardless of the age of onset, it has a catastrophic effect on an individual’s quality of life, social-communicative competence, psychosocial health, and economic independence, and it is also one of the largest modifiable risk factors for dementia.4–6 Additionally, disabling hearing loss harms a country’s social and economic development.7,8 Moreover, unaddressed hearing loss is the third most common cause of years lived with disability worldwide, where failure to address hearing loss appropriately has resulted in an annual global loss of approximately US$ 1 trillion.1 Hearing loss can therefore be considered an extensive global health concern.9,10

Despite the significant implications and burden of hearing loss, it can be prevented in many instances, and in other cases, it can be treated effectively, thereby reducing its burden.11 Given that most of the estimated costs of unaddressed hearing loss are associated with its impact on quality of life and productivity, these costs can be lessen by implementing timeous and cost-efficient measures.1,11–13 Cost-efficient, preventative, and treatment interventions that can reduce the burden of hearing loss include childhood hearing screening initiatives, earplugs for hearing protection, noise-reducing technology, hearing devices such as hearing aids and cochlear implants (CIs), and the early and prompt treatment of infections and diseases such as otitis media and meningitis.14 Even though these cost-efficient interventions for hearing loss exist, they often remain unaffordable and therefore inaccessible in low-income and middle-income countries, where hearing loss is most common.14
Access to substantial and sustainable hearing healthcare resources is a prerequisite for the efficient delivery of hearing healthcare services to address the burden of hearing loss and improve quality of life. However, in most countries, there is a lack of integration of ear and hearing care services into health systems, with health systems lacking the capacity to deliver these services where they are needed most. The lack of trained professionals who could efficiently deliver these needed hearing healthcare services is one factor associated with the incapacity of hearing health systems. Furthermore, a substantial difference exists between the number of trained hearing healthcare professionals between high-income, upper-middle income, lower-middle income, and low-income countries. More than half (56%) of the countries within the African region reportedly have less than one ear, nose, and throat (ENT) specialist per million population, and 78% have less than one audiologist per million population.

In contrast, more than 70% of countries within the European region have more than 50 ENTs per million, and 52% have more than 10 audiologists per million. Hence it is evident that the number of human resources trained to deliver hearing healthcare are limited within Africa, reducing the capacity to provide the specialized care in addressing ear disease or in diagnosing and managing hearing loss using hearing technology.

In addition to human resources, financial resources are required to provide hearing healthcare services. Health facilities require these financial resources to employ hearing healthcare personnel, establish and improve hearing healthcare infrastructures and procure and maintain essential ear and hearing-related equipment and hearing devices. Due to the invisible, non-life-threatening nature of hearing loss when compared to more serious infectious or life-threatening conditions, it has often been overlooked as a global health priority. As a result, financial resources dedicated to hearing healthcare are minimal. Consequently, the burden of hearing loss is exacerbated because of this lack of prioritization. However, the World Health Organization does not restrict the definition of health as the absence of disease but as the complete physical, mental, and social well-being of an individual. Therefore, it can be argued that resource distribution between the diverse healthcare conditions should be equitable and also favorable to neglected and non-life-threatening chronic conditions such as hearing loss.

Africa accounts for the greatest burden of hearing loss compared to other world regions. It has also been predicted that by 2050, the most significant hearing loss escalation will be within the African region. Considering this region encompasses South Africa, the global burden of disabling hearing loss must be addressed at a South African national level. South Africa’s healthcare system is, however, dichotomized. Most of its population (84%) rely on public healthcare sector services where patients are charged for services based on the Uniform Patient Fee Schedule (UPFS) system. This is a system whereby patients within the public healthcare system are billed according to their income classification; thus, each patient’s co-payments are calculated based on a sliding scale of income system. In contrast, a marginal 16% of the population belongs to South Africa’s self-funded private healthcare sector. Consequently, most of the South African population with hearing loss are unable to afford audiology services within private healthcare sector services at large and are solely reliant upon public healthcare sector services. Therefore, the status of hearing healthcare resources and services within this public healthcare sector must be recognized.

To date, no large-scale study on the status of hearing healthcare resources and services in South Africa has been conducted. Moreover, to the authors’ knowledge, national data on the status of hearing healthcare within South Africa’s public healthcare sector are non-existent. A necessary first step to determine the status of hearing healthcare would be to start at the ground level by investigating the perceptions of hearing healthcare providers. These perceptions will provide an increased understanding of the gaps in the available resources and services from a professional and clinical level perspective. Such data is essential in gaining support for hearing loss from South Africa’s legislative sector and advocating for the integration of disability and quality of life concerns related to hearing loss on the national healthcare agenda. Therefore, the current study aimed to describe audiologists’ perceptions of hearing healthcare resources and services within South Africa’s public healthcare system.

Methods

Research and ethical approval for this study were obtained from the Research Ethics Committee of the Faculty of Humanities, University of Pretoria (HUM005/1019) before any participants were recruited for this study.

Study setting and participants

A descriptive, telephonic survey design was employed. Proportional, stratified random sampling was implemented, followed by simple random sampling to select the final set of public healthcare system hospitals to be telephonically contacted. In 2020, 182 public healthcare system hospitals across South Africa’s public healthcare sector had audiology departments (Table 1). Qualified audiologists employed at these hospitals were recruited as participants for this study. Using proportional stratified sampling ensured the sample size of each stratum (different levels of care public sector hospitals) was equal to the stratum’s proportion in the population as a whole (Table 1). Convenient sampling was thereafter used to invite participants. Only one audiologist per hospital was required to complete the telephonic survey, resulting in a total sample of 100 audiologists employed across 100 hospital settings (Table 1). The sample was considered representative of audiologists in public healthcare system.
Materials for data collection

Data were collected through a telephonic survey that was developed specifically for the purpose of this study. First, a pilot study involving 5 audiologists employed within South African public healthcare system hospitals was conducted to establish the validity of the newly developed survey. The expert panel made some minor recommendations (including sentence reconstruction, rewording for clarity purposes, and removing specific questions for conciseness and survey length reduction) which were then incorporated into the survey. An item content validity index (I-CVI) was computed, which provided the proportion of experts agreeing on an item. An acceptable I-CVI value is 1 when the expert panel consists of 3 to 5 experts. Content validity was established since the I-CVI equaled 1 for each item in the newly developed survey.

The survey was used to obtain demographic information and information concerning audiologists' perceptions of hearing healthcare resources and services within the hospitals in South Africa's public healthcare system. It included 18 close-ended questions with 2 open-ended questions (Supplemental Appendix A). The survey comprised 6 sub-sections (audiologist's demographics, hospital's demographics, audiology staffing, resources, hearing assistive devices, and services provided) totaling 20 questions.

Response options “we don't have, but we need”; “we have, but not sufficient”; “we don't have, but we don't need”; “we have, but it needs repairs/maintenance/calibration” (Supplemental Appendix A) for resources enabled audiologists to indicate their perceived need for each resource based on the established protocols (eg, newborn hearing screening protocol) followed at each respective hospital setting.

Data collection procedures

The audiology departments of the various public healthcare system hospitals were contacted, and the answering audiologists were provided with information about the survey. Only one available audiologist at the time of the call from each audiology department participated in the study. This allowed a broad representation of perceptions from audiologists with differing years of experience and positions in different hospital settings. Verbal consent was obtained from all participating audiologists before completing the telephonic survey. The terminology used in the survey was clearly defined to the participating audiologists while conducting the survey. For instance, the differentiation between universal newborn hearing screening services (UNHS) versus targeted hearing screening services was provided to audiologists during the telephonic survey. All telephonic surveys were completed during a single phone call and the approximate time of completion was 15 to 20 minutes. Data for this study were collected over 3 weeks, and the response rate was 100% as all attempted calls were answered, and all 100 audiologists completed the survey.

Data analysis

The data were captured in Microsoft Excel (2017), and Statistical Package for Social Sciences SPSS (Version 26) was used to analyze the data. Descriptive statistics were used to define the audiologists’ demographical characteristics (Table 2); and their perceptions of their audiology department’s staffing, resources, hearing devices, and services provided.

The first author conducted a qualitative thematic analysis of the responses to the 2 open-ended survey questions utilizing the conventional approach as identified by Braun and Clark. The raw data from each question and transcript were individually read, following which codes and themes were identified.

Results

The demographic characteristics of participating audiologists are summarized in Table 2. Most audiologists were community service therapists (43.0%), had less than 2 years of experience as an audiologist (56.0%), and had a bachelor’s degree in Audiology (97.0%).

Staffing

The reported average number of permanently employed audiologists per hospital in this sample was 1.8 audiologists per hospital (range: 0-14; 1.8 SD; n = 100), and the average number
The majority (82.0%; n = 82/100) of the audiologists indicated that their hospital did not have adequate resources to render efficient audiology services to patients. These 82 audiologists were then asked a series of follow-up questions to expand their perceptions of their hospital's available audiology resources. Their responses are divided into 3 categories: hearing healthcare resources, diagnostic audiology equipment, and information systems and technology. The n-value differs for each equipment resource across Figures 1 to 3 as audiologists who felt that their hospital did in fact have adequate quantities of a particular resource and that they were functional, did not select any of the 4 response options provided.

The most frequently reported resources that were not available included hearing aid verification hardware (75.6%; n = 62/82), Noah modular software (58.5% n = 48/82), a high-frequency tympanometer (51.2%; n = 42/82); an automated auditory brainstem response (AABR) screen (50.0%; n = 41/82) and a video otoscope (48.8%; n = 40/82). The most frequently reported types of equipment that audiologists perceived required repairs, maintenance, or calibration were the screening audiometer and diagnostic acoustic immittance equipment (15.9%; n = 13/82), followed by the visual reinforcement audiometer (VRA) and diagnostic pure tone audiometer (14.6%; n = 12/82).

Table 2. Demographic characteristics of audiologists (n = 100).

Current position	N AND %
Community service therapist (either dual-qualified	43.0
speech-language pathologist and audiologist or	
audiologist)	
Production level audiologist	33.0
Production level dual-qualified speech-language	18.0
pathologist and audiologist	
Appointed or acting chief audiologist	6.0

Highest qualification level

| Bachelor’s degree in audiology | 97.0 |
| Master’s degree in audiology | 3.0 |

Years of experience as an audiologist

Less than 2 years	56.0
2-5 years	14.0
5 years, 1 day to 10 years	17.0
10 years, 1 day to 15 years	10.0
More than 15 years	3.0

Hearing healthcare resources

The majority (82.0%; n = 82/100) of the audiologists indicated that their hospital did not have adequate resources to render efficient audiology services to patients. These 82 audiologists were then asked a series of follow-up questions to expand their perceptions of their hospital's available audiology resources. Their results are divided into 3 categories: hearing healthcare resources, diagnostic audiology equipment, and information systems and technology (Figure 3). The n-value differs for each equipment resource across Figures 1 to 3 as audiologists who felt that their hospital did in fact have adequate quantities of a particular resource and that they were functional, did not select any of the 4 response options provided.

The most frequently reported resources that were not available included hearing aid verification hardware (75.6%; n = 62/82), Noah modular software (58.5% n = 48/82), a high-frequency tympanometer (51.2%; n = 42/82); an automated auditory brainstem response (AABR) screen (50.0%; n = 41/82) and a video otoscope (48.8%; n = 40/82). The most frequently reported types of equipment that audiologists perceived required repairs, maintenance, or calibration were the screening audiometer and diagnostic acoustic immittance equipment (15.9%; n = 13/82), followed by the visual reinforcement audiometer (VRA) and diagnostic pure tone audiometer (14.6%; n = 12/82).

Costs, repairs, and maintenance of hearing devices

Slightly more than half (52.0%; n = 52/100) of the audiologists perceived that their hospital followed the UPFS system for the payment of both pediatric and adult hearing devices. In comparison, 48.0% (n = 48/100) perceived that their hospital did not follow the UPFS system. All 48 audiologists whose hospitals did not utilize the UPFS system perceived that their hospitals fully covered the pediatric and adult hearing device costs. Thus, all patients who required hearing devices received them free, regardless of their income classification, at the hospitals where these 48 audiologists were employed.

More than half (59.0%; n = 59/100) of the audiologists perceived that their hospital's pediatric and adult patients were required to cover all hearing aid repairs and/or replacement costs of hearing aid devices post-warranty expiration. Comparatively, all audiologists whose hospitals provided CIs and implantable bone conduction hearing devices reported that the patients (pediatric and adult) were fully liable for all the device-related costs (repair and replacement costs) incurred post-warranty expiration, as their hospitals were unable to cover these costs.

Acoustic hearing aids and alternative hearing devices (cochlear implants and conventional and implantable bone conduction hearing devices)

In the case of permanent pediatric bilateral hearing loss (sensorineural, mixed, or conductive), most of the audiologists (89.0%) perceived that 2 hearing aids were available to patients, 10.0% perceived that only one hearing aid was available to patients, and 1.0% perceived that no hearing aids were available to patients (n = 100). In the case of permanent adult bilateral hearing loss (sensorineural, mixed, or conductive), most audiologists (69.0%) perceived that only one hearing aid was available to patients, with the remaining 31.0% perceiving that 2 hearing aids were available to patients (n = 100). For a permanent unilateral sensorineural, mixed, or conductive hearing loss, most audiologists perceived that acoustic hearing aids were available for children (93.0%) and adults (81.0%) (n = 100).

Regarding hearing devices alternative to hearing aids, the majority of the audiologists perceived that conventional bone conduction hearing devices were available for both pediatric (64.0%) and adult (63.0%) patients (n = 100). In terms of implantable bone conduction hearing devices, only 5.0% and 6.0% perceived that they were available to the pediatric and adult patients at their hospitals, respectively (n = 100). Concerning CIs, only 5.0% (n = 5/100) of the audiologists perceived that they were available to both the pediatric and adult patients at their hospital.

Hearing screening and aural rehabilitation services

Hearing screening services (newborn/infant and adult). Almost half (49.0%; n = 49/100) of the audiologists perceived that their
hospitals were not offering any newborn/infant hearing screening services. Of those hospitals perceived to provide screening services (51.0%; n = 51/100), 41.2% (n = 21/51) of the audiologists perceived that UNHS services (screening directed at the whole population) were provided. In comparison, 58.8% (n = 30/51) of the audiologists reported that their hospitals provided targeted hearing screening services (eg, risk-based screening—based on established risk factors).

In terms of adult hearing screening, most audiologists (97.0%) perceived that their hospitals provided no high-risk
Figure 3. Availability of information systems and technology. The x-axis illustrates the types of information systems and technology and the total number of responses for each information system and technology (cochlear implant mapping, hearing aid verification, Noah modular software, printer, PC/laptop for administrative work, PC/laptop for audiology test equipment, internet, intranet, and hi-pro box). The y-axis displays participant responses for each diagnostic equipment (we don’t have but we need, we have but not sufficient, we don’t have, but we don’t need and we have, but it needs repairs/maintenance/calibration).
based adult hearing screening services (eg, for patients exposed to ototoxic or vestibulotoxic medication, exposed to recreational noise, patients with chronic health conditions, etc.), while 3.0% noted that their hospitals provided these services (n = 100).

Aural rehabilitation services. Pediatric aural re(habilitation) services were perceived by audiologists to be offered by 66.0% of the hospitals’ post-hearing aid fitting, while adult aural rehabilitation services were perceived by audiologists to be provided by only 41.0% of the hospitals (n = 100). Following implantable bone conduction hearing device fittings, 4.0% of the hospitals were perceived by audiologists to offer both pediatric aural re(habilitation) and adult aural rehabilitation services (n = 100). Following cochlear implantation, 5.0% of the hospitals were perceived by audiologists to offer pediatric aural re(habilitation) services, and 6.0% were perceived to provide adult aural rehabilitation services (n = 100).

In terms of audiologists’ perceptions regarding the professional(s) providing aural rehabilitation services at their hospital, most audiologists (70.0%; n = 49/70) perceived that the audiologists provided aural rehabilitation services at their hospital, 34.3% (n = 24/70) stated that it was the speech-language pathologist and 22.9% (n = 16/70) stated that it was joint sessions involving both professions (multiple options could be selected).

Perceived challenges hindering hearing healthcare service delivery within the workplace

The most prominent central themes for perceived challenges hindering hearing healthcare service delivery that emerged from the open-ended qualitative responses were resource challenges (equipment, human resource, financial and infrastructural), challenges related to ENT specialist service provision, and patient appointment non-adherence (in order of importance). These central themes, together with descriptions and illustrative quotes from audiologists, are summarized in Table 3.

Discussion

A comprehensive range of audiologists’ perceptions regarding hearing healthcare resources and services in South Africa’s public healthcare system were obtained in this survey study. On average, the perceived number of permanently employed (1.8) and community service audiologists (1.0) per hospital were relatively low in this study. Evidence suggests that 78% of countries across Africa have a ratio of less than one audiologist per million people, whereas 52% of countries across Europe have more than 10 audiologists per million.16 Furthermore, there is an unequal distribution of audiologists between the private and public health sectors in South Africa.26,31 A recent study conducted on the speech therapy and audiology workforce in South Africa revealed that a mere 22% of qualified speech therapists and audiologists are employed in the public sector.31 Within the public healthcare sector, challenges to human resources include the international migration of professionals or national migration to the private sector, freezing of government posts, and attrition.26,32 Naturally, human resource shortages negatively impact service delivery and patient accessibility to hearing healthcare services such as early hearing detection and intervention (EHDI) services, provision of assistive hearing devices, and aural rehabilitation.11,33,34 Therefore, a maintainable workforce within the public healthcare sector is central to delivering these hearing healthcare-related services.

Moreover, there is a perceived shortage of ENT specialists and limitations in ENT services provision due to a lack of ENT resources within the public sector and across the hospitals and provinces. These findings are consistent with a study conducted on the availability of hearing healthcare services across 18 countries in Sub-Saharan Africa, which revealed a severe shortage of these trained hearing healthcare professionals and a lack of hearing healthcare resources in these countries.35 Consequently, individuals in Sub-Saharan Africa have minimal or no access to the simplest and most basic hearing evaluation and rehabilitation resources and the simplest hearing restoration surgeries, for instance, ventilation tubes and tympanoplasties.35

In addition to trained professionals, basic hearing healthcare services also require specific equipment and infrastructure, resulting in limited hearing healthcare service delivery in low-resource settings, including South Africa.17,35,36 This challenge was confirmed in the current study, where most (82.0%) of the audiologists perceived that their hospital did not have adequate resources to render efficient audiology services to patients. Furthermore, in their open-ended responses, resource challenges (in terms of the hospital’s audiology department’s equipment, staffing, finances, and infrastructure) were identified as the most central challenge perceived by audiologists.

At least 50% of audiologists in this study perceived that their hospital did not have an AABR screener, and 30% and 26% did not have a TEOAE or DPOAE screener, respectively. Additionally, in their open-ended responses, audiologists perceived that the lack of screening equipment in their hospitals was a challenge hindering hearing healthcare service provision. Newborn/infant hearing screening is a service that would typically be impacted by the absence of screening equipment such as an AABR or DPOAE screener. Both of these screening measures are easy to perform in newborns and infants and are successfully used for UNHS programs.37,38 Consequently, due to lack of screening equipment, less than a third of audiologists in this study perceived that their hospital provided targeted hearing screening services, and less than a fourth perceived that their hospital provided UNHS.

Recruiting nursing staff or trained hearing screeners to conduct hearing screening is an example of task sharing and could be beneficial within the public sector since audiologists would have additional personnel to assist them with the screening.39 The successful use of non-specialist staff to conduct infant
Table 3. Central themes, descriptions, and illustrative quotes from audiologist reports of challenges perceived.

CENTRAL THEME	DESCRIPTION	ILLUSTRATIVE QUOTES
Resource challenges		
Equipment challenges	Shortage of equipment (screening and diagnostic audiology equipment as well as information systems and technology) and unrepaired, non-serviced, and uncalibrated equipment.	“Lack of audiology equipment which leads to unnecessary referrals to institutions outside the catchment area, which then increases waiting times and the caseload for basic assessments to be conducted for both adults and pediatric patients.”
Human resource challenges	Shortage of audiology staff within the workplace, including a shortage in community service therapists, production level therapists, and chief therapists/heads of audiology departments.	“No permanent speech therapist and audiologist employed at the hospital, the Department is run by community service therapists, so there is a lack of continuity of services.”
Financial challenges	Budgetary constraints within Audiology Departments in terms of the hearing device, consumables, equipment, and maintenance and repairs budget.	“The challenges stem from the limited budget. Therefore, there are not enough funds for more hearing aids, equipment, and equipment repairs.”
Infrastructural challenges	Insufficient space for the Audiology Department and the challenge of having either one room utilized for multiple purposes (i.e., therapy/consultation rooms, office space, hearing aid fitting room, and a hearing evaluation room) or having to share space with speech-language therapists or other rehabilitation professionals.	“Space is limited in the Department”
Challenges related to ENT specialist service provision	Shortage of ENT professionals across the hospitals and provinces, flawed referral system to ENTs, limitations in ENT service provision, a lack of miscommunication between ENTs and audiologists, and poor patient follow-up.	“ENT follow-up with patients is poor - a lot of middle ear conditions that could be prevented or treated are often neglected, and there is poor teamwork between the audiologists and ENTs.”
		“No/limited access to an ENT. Referral to ENT clinic is problematic, and the ENT services are limited, eg. They can’t do tympanoplasties”
		“No qualified ENT in the Province; managing middle ear pathology is challenging.”
		“No ENT close by. Closest ENT is 3 hours away, and the waiting list is 3-4 months. There are a lot of patients with middle ear pathology. During COVID-19, patients’ transport is prioritized, and audiology services are not a top priority, so patients need to arrange their own transport, which many cannot afford.”
Patient appointment non-adherence	Nonattendance of appointments and follow-up appointments	“Poor patient follow-up; patients tend to miss their hearing aid follow-up appointments”
		“The distance of the hospital from patient’s residence - so poor follow-up of patients and they do not come for hearing aid follow-ups.”
		“Patients don’t really attend their aural rehabilitation appointments; they attend one or two and then stop due to travel and distance costs”
		“Low patient adherence to appointments and follow-ups because of their financial constraints and geographic location”

Central themes are presented in order of importance based on the most frequently mentioned themes.

Hearing screening has been previously demonstrated within South Africa’s public healthcare system and in other African countries such as Nigeria and Zambia.1,40-42 More than a third of audiologists perceived that their hospitals did not have access to VRA equipment. Thus, the implication would be that many public sector hospitals in South Africa are not optimally equipped to conduct diagnostic pediatric audiological assessments. According to the Joint Committee on Infant Hearing’s (JCIH) 2007 position statement, which is endorsed in South Africa as well by the HPCSA; ABR/ASSR, DPOAE, and/or
high-frequency tympanometry (1000-Hz probe tone) equipment are required to appropriately diagnose infants less than 6 months.43-45 Additionally, ABR/ASSR and behavioral audiometry (including VRA) are required as part of the audiological test battery to appropriately diagnose children between 6 and 36 months.43-45 The absence of these types of equipment at a hospital would imply that pediatric patients would need to travel to referral hospitals that have access to the required equipment. However, this could delay the hearing loss diagnosis and subsequent hearing intervention due to the possibility of long waiting lists at most referral hospitals, traveling distances between the hospitals, and the cost and time implications for a patient’s family.

Succeeding the detection and diagnosis of a hearing loss, necessary hearing intervention services are required for both the adult and pediatric populations. The insufficient accessibility of hearing devices such as hearing aids and CIs for individuals with hearing loss constitutes one of the barriers to hearing healthcare service delivery worldwide, and this barrier is also experienced in South Africa’s public healthcare system.7 In this study, only 31.0% of audiologists perceived that an adult patient with bilateral hearing loss would receive 2 hearing aids in their hospital setting. Similarly, a study by Pienaar et al (2010) found that South African adult patients diagnosed with bilateral hearing loss within a public sector hospital were often fitted monaurally due to resource shortages.46 The benefits of binaural hearing aid fittings for bilateral hearing loss are evident with regard to listening effort, binaural summation, improved localization abilities, spatial hearing, release of masking, source segregation, speech reception in noise, and the avoidance of head-shadow effects.47-49 Possible barriers to the provision of hearing aids within the public healthcare sector include budgetary constraints as well as structural constraints since each public healthcare setting can only cater to the population of patients residing within its pre-determined geographical/catchment area.34,50,51 As with the provision of hearing aids, the provision of CIs within South Africa’s public healthcare sector also faces challenges. Since CIs are considered to be a privileged intervention in South Africa, there is minimal public funding available for this intervention, and hence a severely restricted number of individuals who adhere to CI criteria are implanted within South Africa’s public healthcare sector.52,53 Therefore, the majority of the individuals requiring CIs have to either have sufficient finances or access to private medical aid to afford this intervention and the costly lifelong maintenance demands thereafter.23 This, therefore, explains why only 5.0% of audiologists perceived that cochlear implantation would be possible for patients requiring this intervention at their hospitals.

Patients who access hearing devices within the public sector further require lifelong maintenance of their devices (such as earmould repairs, replacement, retubing; supply of hearing aid batteries; hearing aid adjustments, repairs, and replacements).51,54-57 The South African Department of Health is responsible for covering all costs relating to the payment of hearing assistive devices and the subsequent maintenance, repairs, and re-issuing of assistive devices and the necessary assistive device consumables according to the individual’s income and UPFS classification.24 However, this study indicated that follow-up care following the fitting of hearing devices is perceived to be limited by many audiologists working within the public sector as pediatric and adult patients are perceived to be liable for covering all hearing device repairs or replacement costs once their device’s warranty has expired. These findings are consistent with a previous study conducted within South Africa’s public sector which revealed hearing devices, in particular, hearing aids fitted within the public sector, are not sufficiently cared for and are underutilized, with financial constraints serving as the greatest barrier toward adequate hearing aid utilization and maintenance.51 Therefore, it is evident that accessing and maintaining hearing devices within South Africa’s public healthcare sector is often challenging.

Appropriate and effective amplification followed by aural rehabilitation services has the potential to reduce the negative effects of hearing loss.46 It has been demonstrated that adult aural rehabilitation within a South African public healthcare setting effectively contributes to positive patient-perceived benefits post-hearing aid fitting.46 Only 41.0% of audiologists perceived that their hospitals provided adult aural rehabilitation services post-hearing aid fitting within the current study. This confirms the findings from a previous South African study on adult aural rehabilitation services, which found that these services were not optimally provided in South Africa and that improved aural rehabilitation services were required so that the adult hearing impaired population in South Africa could benefit from it.58

This study’s findings suggest that based on the perceptions of audiologists employed within South African public sector hospitals, hearing healthcare resources are strained within the South African public healthcare system. This, in turn, influences hearing healthcare service delivery and exacerbates the burden of hearing loss. Hearing healthcare should therefore be prioritized by increasing financial allocations to audiology departments. This would enable the procurement of necessary hearing resources and the placement of more audiologists within audiology departments. Ultimately, the burden of hearing loss can be addressed by promoting awareness and advocating for hearing healthcare in South Africa, advancing toward a reduction in the risk factors that contribute to disabling hearing loss, and promoting early identification and intervention services.1

A possible limitation of this study is that 43.0% of participants were audiologists completing their obligatory community service year, and 56.0% had less than 2 years of experience. Audiologists’ position in the hospital, their years of experience, and whether they are permanently employed or community service audiologists are all factors that could potentially
influence their perceptions of the hearing healthcare resources and services within the hospital. A study conducted in China on the perceptions of patient safety culture among healthcare employees also found that socio-demographic characteristics such as healthcare workers’ years of experience and their position and education level influenced their overall perceptions.59

It should be noted that a service evaluation of hearing healthcare resources and services across hospitals was not conducted in this study. Instead, this study focused on audiologists’ perceptions of resource and service provision across 100 different hospital settings. Since the sampling technique used ensured a representation of audiologists employed within South African public sector hospitals, the results can be generalized. However, future research should focus on service evaluation studies to map hearing healthcare resources and services across various public sector hospital settings. It would be useful to relate the equipment data to patient pathways provided within services. Furthermore, for anonymity purposes, information on how the data varied across different regions such as urban versus rural, different provinces, or different levels of care are not provided. Nevertheless, this is the first national study conducted in South Africa’s public sector to describe audiologists’ perceptions of hearing healthcare resources and services.

Data obtained from this study should be utilized to direct national policy on the improvement of hearing healthcare resources and service provision within South Africa at a national level, and particularly within the public healthcare sector, to ensure that the country is able to efficiently deliver hearing healthcare services to all patients requiring such services.

Conclusions
In general, hearing healthcare resources and services that are required to address the burden of hearing loss were reported to be lacking by audiologists within the South African public healthcare sector. These included equipment and human resources, and services such as UNHS and adult aural rehabilitation interventions. Therefore, efforts should be made to upsurge hearing healthcare resources, including increasing the financial budgets allocated to audiology resources so that increased diagnostic and screening audiology equipment and hearing devices can be procured where required, and additional audiologists can be employed within the South African public sector hospitals where needed.

Authors’ Contributions
All authors contributed to the study’s conception and design. AB performed material preparation and data collection, and analyses were performed by MG and AB. AB wrote the first draft of the manuscript, and all authors commented on previous versions. All authors read and approved the final manuscript.

Ethics Approval and Consent to Participate
Research and ethical approval for this study was obtained from the Research Ethics Committee of the Faculty of Humanities, University of Pretoria (HUM005/1019) before any participants were recruited for this study. Informed consent was obtained from all participants prior to data collection.

ORCID iDs
Aaqilah Bhamjee https://orcid.org/0000-0001-8937-097X
Kurt Schlemmer https://orcid.org/0000-0002-2753-3080

Supplemental Material
Supplemental material for this article is available online.

REFERENCES
1. World Health Organization. *World Report on Hearing*. WHO. 2021. Accessed June 1, 2021. https://www.who.int/publications/i/item/world-report-on-hearing.
2. World Health Organization. *Deafness and Hearing Loss*. 2021. Accessed November 3, 2021. https://www.who.int/news-room/fact-sheets/detail/deafness-and-hearing-loss.
3. Swannepol W. eHealth technologies enable more accessible hearing care. *Semin Hear*. 2020;41:133-140.
4. Brodie A, Smith B, Ray J. The impact of rehabilitation on quality of life after hearing loss: a systematic review. *Eur Arch Otorhinolaryngol*. 2018;275:2435-2440.
5. Shield B. Evaluation of the social and economic costs of hearing impairment. A report for hear-it. 2006. Accessed June 2, 2019. https://www.hear-it.org/sites/default/files/multimedia/documents/Heart_It_Report_October_2006.pdf
6. Livingston G, Huntley J, Sommerlad A, et al. Dementia prevention, intervention, and care: 2020 report of the Lancet Commission. *Lancet*. 2020;396:413-446.
7. Swannepol DW, Roux RL. Improving equitable access to hearing care. *Hear J*. 2018;71:43.
8. World Health Organization. Addressing the rising prevalence of hearing loss. 2018. Accessed June 4, 2019. https://apps.who.int/iris/bitstream/handle/10665/260336/9789241550260-eng.pdf?sequence=1&ua=1
9. The Lancet. Hearing loss: an important global health concern. *Lancet*. 2016;387:2351.
10. Wilson BS, Tucci DL, Merson MH, O’Donoghue GM. Global hearing health care: new findings and perspectives. *Lancet*. 2017;390:2503-2515.
11. Oryi A, Kamenov K, Dirac M, Davis A, Chadha S, Vos T. Global and regional unmet needs and access to hearing aids. *Int J Audiol*. 2020;59:56-66.
12. McDaid D, Park AL, Chadha S. Estimating the global costs of hearing loss. *Int J Audiol*. 2021;60:162-170.
13. Ferguson M, Maidment D, Henshaw H, Heffernan E. Evidence-based interventions for adult aural rehabilitation: that was then, this is now. *Semin Hear*. 2019;40:66-84.
14. Haile LM, Kamenov K, Briant PS, et al. Hearing loss prevalence and years lived with disability, 1990-2019: findings from the Global Burden of Disease Study 2019. *Lancet*. 2021;397:996-1009.
15. Chadha S, Kamenov K, Cirera A. The world report on hearing, 2021. *Bull World Health Organ*. 2021;99:242-242A.
16. Kamenov K, Martínez R, Kunjumen T, Chadha S. Ear and hearing care workforce: current status and its implications. *Hear J*. 2021;42:249-257.
17. Mulwafu W, Ensink R, Kuper H, Fagan J. Survey of ENT services in sub-Saharan Africa: little progress between 2009 and 2015. *Glob Health Action*. 2017;10:1289736.
18. World Health Organization. Multi-country Assessment of National Capacity. *World Health Organization*. 2013. Accessed July 16, 2021. https://www.who.int/publications/i/item/9789241506571
19. MacKenzie I, Smith A. Deafness—the neglected and hidden disability. *Ann Trop Med Parasitol*. 2009;103:565-571.
20. World Health Organization. *World Health Organization (WHO) Definition of Health*. WHO. 2019. Accessed October 4, 2021. https://www.who.int/publicheal.com.ng/world-health-organizationwho-definition-of-health/
21. Olsunaya BO, Newton VE. Global burden of childhood hearing impairment and disease control priorities for developing countries. *Lancet*. 2007;369:1314-1317.
22. World Health Organization. Development of a New Health Assembly Resolution and Action Plan for Prevention of Deafness and Hearing Loss. WHO. 2016. Accessed June 2, 2019. http://apps.who.int/iris/bitstream/10665/260336/9789241550260-eng.pdf?sequence=1&ua=1
23. Kerr GR, Tzoumi S, Müller A. Costs involved in using a cochlear implant in South Africa. *S Afr J Commun Disord*. 2012;59:16-26.
24. Department of Health. Standardisation of provision of assistive devices in South Africa: a guideline for use in the public sector. 2003. Accessed June 2, 2019.
https://shonaquipse.org.za/wp-content/uploads/2020/12/standardisation_of_ provision_of_aural_devices_in_south_africa.pdf

25. Mayosi BM, Benatar SR. Health and health care in South Africa–20 years after Mandela. *New Engl J Med*. 2014;371:1344-1353.

26. Swanepoel DW. Audiology in South Africa.

33. Theunissen M, Swanepoel D. Early hearing detection and intervention services.

34. Swanepoel DW, Clark JL, Koekemoer D, et al. Telehealth in audiology: the need and potential to reach underserved communities. *S Afr J Commun Disord*. 2018;63:1-10.

35. Fagan JJ, Jacobs M. Survey of ENT services in Africa: need for a comprehensive intervention. *Glob Health Action*. 2019;2:1932.

36. Wagner R, Fagan J. Survey of Otolaryngology Services in Central America: need for a comprehensive intervention. *Otolaryngol Neck Surg*. 2013;149:674-678.

37. Gravel J, Berg A, Bradley M, et al. New York State Universal Newborn Hearing Screening Demonstration Project: effects of screening protocol on infant outcome measures. *Ear Hear*. 2000;21:131-140.

38. Norton SJ, Gong MP, Widen JE, et al. Identification of neonatal hearing impairment: summary and recommendations. *Ear Hear*. 2000;21:529-535.

39. Bezuidenhout JK, Khoza-Shangase K, De Maayer T, Strehlau U. Universal newborn hearing screening in public healthcare in South Africa: challenges to implementation. *S Afr J Child Health*. 2018;12:154.

40. Friderichs N, Swanepoel D, Hall JW. Efficacy of a community-based infant hearing screening program utilizing existing clinic personnel in Western Cape, South Africa. *Int J Pediatr Otorhinolaryngol*. 2012;76:552-559.

41. Olusanya BO, Wirz SL, Luxon LM. Hospital-based universal newborn hearing screening for early detection of permanent congenital hearing loss in Lagos, Nigeria. *Int J Pediatr Otorhinolaryngol*. 2008;72:991-1001.

42. de Kock T, Swanepoel D, Hall JW. Newborn hearing screening at a community-based obstetric unit: screening and diagnostic outcomes. *Int J Pediatr Otorhinolaryngol*. 2016;84:24-131.

43. The Health Professions Council of South Africa. *Early Hearing Detection and Intervention (EHDI) Guidelines in South Africa*. HPCSA. 2018. Accessed August 20, 2021. https://www.hpcsa.co.za/Uploads/SLH/Guidelines%20for%20Early_Hearing_Detection_and_Intervention_(EHDI)_2018.pdf

44. American Academy of Pediatrics, Joint Committee on Infant Hearing. Year 2007 position statement: principles and guidelines for early hearing detection and intervention programs. *Pediatrics*. 2007;120:988-921.

45. Joint Committee on Infant Hearing (JCIH). Year 2019 position statement: principles and guidelines for early hearing detection and intervention programs. *J Early Hear Detect Interv*. 2019;4:1-44.

46. Pienaar E, Stearn N, Swanepoel DW. Self-reported outcomes of aural rehabilitation for adult hearing aid users in a developing South African context. *S Afr J Commun Disord*. 2018;57:44.

47. Gatehouse S, Akeroyd M. Two-eared listening in dynamic situations. *Ear Hear*. 2016;20:1-16.

48. Hlayisi VG, Ramma LR. Rehabilitation for disabling hearing loss: evaluating the need relative to provision of hearing aids in the public health care system. *Disabil Rehabil*. 2019;41:2704-2707.

49. Sooful P, Djik C, Avenant C. The maintenance and utilisation of government fitted hearing aids. *Cent Eur J Med*. 2009;4:110-118.

50. le Roux T, Vinck B, Butler I, et al. Predictors of pediatric cochlear implantation outcomes in South Africa. *Int J Pediatr Otorhinolaryngol*. 2016;84:61-70.

51. Bhamjee A, Mahomed-Imai F, Perold J, Losck JW, le Roux T. Cochlear implantation in South Africa (part 2). *S Afr Med J*. 2012;112:71-75.

52. Cunningham LL, Tucci DL. Hearing loss in adults. *N Engl J Med*. 2017;377:2465-2473.

53. Olusanya BO, Neumann KJ, Saunders JE. The global burden of disabling hearing impairment: a call to action. * Bull World Health Organ*. 2014;92:367-373.

54. World Health Organization. *Guidelines for Hearing Aids and Services for Developing Countries*. 2nd ed. World Health Organization; 2004. Accessed June 2, 2019. https://apps.who.int/iris/bitstream/handle/10665/43066/9241592435_eng.pdf?sequence=1

55. World Health Organization. *Preferred Profile for Hearing-Aid Technology Suitable for Low- and Middle-Income Countries*. WHO; 2017. Accessed June 2, 2019. http://apps.who.int/iris/bitstream/handle/10665/258721/1/978924152961-english.pdf

56. Makhoba M, Joseph N. Practices and views of audiologists regarding aural rehabilitation services for adults with acquired hearing loss. *S Afr J Commun Disord*. 2016;63:1-10.

57. Li Y, Zhao Y, Hao Y, et al. Perceptions of patient safety culture among health-care employees in tertiary hospitals of Heilongjiang province in northern China: a cross-sectional study. *Int J Qual Health Care*. 2018;30:618-623.