Semiclassical expansion of the ground state for a model of interacting spins in QED.

L. Amour and J. Nourrigat
Université de Reims, France

Abstract
In this article, we consider fixed spin−1/2 particles interacting through the quantized electromagnetic field in a constant magnetic field. We give some asymptotic expansions for the ground state and the ground state energy of the Hamiltonian operator \(H(h)\) describing this system. The first terms of these expansions enable to recover elementary formulas for the energy and the magnetic field of the spins when considered as magnets. A first order radiative correction is computed for the energy.

Keywords: Semiclassical analysis, spins interaction, quantum electrodynamics, quasimodes, ground state.

MSC 2010: 81Q20, 35S05, 81V10.

Contents
1 The model. 1
2 Asymptotic expansions for the ground state. 5
 2.1 Statement. 6
 2.2 Formal construction of the expansion. 6
 2.3 Control of the remainder term. 13

1 The model.

The aim of this work is to give semiclassical expansions for the ground state and ground state energy for a Hamiltonian operator \(H(h)\) modelling the interaction between quantized electromagnetic field and \(N\) fixed spin-1/2 particles in a constant magnetic field.

We shall use a Hamiltonian operator \(H(h)\) recalled below in \([10]\) and \([11]\) (see Reuse\([13]\), Hübner-Spohn \([10]\), Derezinski-Gérad \([7]\)).
The Hilbert space associated with this Hamiltonian is the completed tensor product \(\mathcal{H}_{ph} \otimes \mathcal{H}_{sp} \). The Hilbert space \(\mathcal{H}_{ph} \) for photons may be viewed as the symmetrized Fock space \(\mathcal{F}_s(\mathcal{H}_C) \) associated with the complexified of some real Hilbert space \(H \) inspired by Lieb-Loss [11]. This space \(H \) is the space of mappings \(f = (f_1, f_2, f_3) \) from \(\mathbb{R}^3 \) to \(\mathbb{R}^3 \) with \(f_j \) belonging in \(L^2(\mathbb{R}^3) \), taking real values and satisfying,
\[
k_1f_1(k) + k_2f_2(k) + k_3f_3(k) = 0 \quad \text{a.e.}
\] (1)

This space is equipped with the norm,
\[
|f|^2 = \sum_{j=1}^{3} \int_{\mathbb{R}^3} |f_j(k)|^2 dk.
\] (2)

The Fock space \(\mathcal{F}_s(\mathcal{H}_C) \) definition is reminded in Section 2. The space \(\mathcal{H}_{sp} \) for the spin particles is denoted by \((\mathbb{C}^2)^{\otimes N} \).

In the space \(\mathcal{H}_{ph} \), the definition of the model and of the observables involves three kinds of operators: the number operator \(N \), the free photons energy operator \(H_{ph} \) and operators at each point \(x \in \mathbb{R}^3 \) associated with the three components of the magnetic field. These operators are denoted by \(B_m(x) \), \(1 \leq m \leq 3 \) and for the electric field, it is denoted by \(E_m(x) \), \(1 \leq m \leq 3 \). Each of these operators is depending on the semiclassical parameter \(h > 0 \) which is sometimes not explicitly written.

Within the Fock space formalism, the number operator \(N \) and the free photons Hamiltonian \(H_{ph} \) are defined by,
\[
N = d\Gamma(I), \quad H_{ph} = h d\Gamma(M),
\] (3)

\(M \) being the multiplication operator by \(\omega(k) = |k| \) with domain \(D(M) \subset H \), \(d\Gamma \) is the standard operator (see [12]) and \(h > 0 \) is the semiclassical parameter. These equalities classically define selfadjoint operators (see [12]).

In the Fock space formalism, the operators \(B_m(x) \) (depending on \(h > 0 \)), is defined by,
\[
B_m(x) = \sqrt{h} \Phi_S(a_m(x) + ib_m(x))
\] (4)

where, for each \(a + ib \in \mathcal{H}_C \), \(\Phi_S(a + ib) \) is the Segal field, defined in [12], and \(a_m(x) \) and \(b_m(x) \) are elements of \(H \), therefore mappings from \(\mathbb{R}^3 \) into itself, defined by,
\[
a_m(x)(k) = \frac{\chi(|k||k|^{\frac{1}{2}} \sin(k \cdot x)}{(2\pi)^{\frac{3}{2}}} \frac{k \wedge e_m}{|k|},
\] (5)

\[
b_m(x)(k) = \frac{\chi(|k||k|^{\frac{1}{2}} \cos(k \cdot x)}{(2\pi)^{\frac{3}{2}}} \frac{k \wedge e_m}{|k|},
\] (6)
where χ is a function belonging to $\mathcal{S}(\mathbb{R})$ and (e_1, e_2, e_3) is the canonical basis of \mathbb{R}^3.

The following estimate will be used:

$$\|\Phi_S(a + ib)f\|^2 \leq 2(|a|^2 + |b|^2)\left[\|f\|^2 + < Nf, f > \right].$$ \hspace{1cm} (7)

Operators in H_{sp} use in particular Pauli matrices σ_j \((1 \leq j \leq 3), \)

$$\sigma_1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad \sigma_2 = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \quad \sigma_3 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}.\hspace{1cm} (8)$$

For all $\lambda \leq N$ and for any $j \leq 3$, $\sigma^{[\lambda]}_j$ denotes the following operator in H_{sp}.

$$\sigma^{[\lambda]}_j = I \otimes \cdots \sigma_j \cdots \otimes I,\hspace{1cm} (9)$$

where σ_j is located at the λ^{th} position.

We assume that there are N fixed spin–$\frac{1}{2}$ particles at points x_λ in \mathbb{R}^3 \((1 \leq \lambda \leq N).\) Denoting the constant magnetic field by $\beta = (\beta_1, \beta_2, \beta_3)$, the system constituted with these particles and the quantized magnetic field is governed by the operator in $H_{ph} \otimes H_{sp}$ defined by,

$$H(h) = H_0 + hH_{int}, \quad H_0 = H_{ph} \otimes I,\hspace{1cm} (10)$$

where

$$H_{int} = \sum_{\lambda=1}^{N} \sum_{j=1}^{3} (\beta_j + B_j(x_\lambda)) \otimes \sigma^{[\lambda]}_j.\hspace{1cm} (11)$$

It is recalled in \[3\] (Section 4) that it defines a selfadjoint operator with domain $D(H_{ph}) \otimes H_{sp}$. In \[3\] some results of evolution are given, using the pseudodifferential calculus introduced in \[1\] and \[2\].

It is proved in \[5\], see also \[4\] \[8\] \[9\] \[10\], that E_h, the infimum of the spectrum of the operator $H(h)$, is an eigenvalue and the associated eigenspace is of multiplicity 1.

Theorem 1.1. (i) If χ is vanishing in a neighborhood of the origin, and if $\beta \neq 0$, one can find a sequence of real numbers λ_j such that, for all p,

$$\left| E_h - \sum_{j=1}^{P} \lambda_j h^j \right| \leq C_p h^{p+1}.\hspace{1cm} (12)$$

(ii) If $\beta \neq 0$, but without the hypothesis on χ, one can find λ_1 and λ_2 such that,

$$\left| E_h - \lambda_1 h - \lambda_2 h^2 \right| \leq C h^{5/2}.\hspace{1cm} (13)$$
The expansion is formally obtained in Proposition 2.3 and the control of the remainder term is derived in Theorem 2.7. Point (ii) is proved at the end of Section 2. For the first two terms, one finds,

\[\lambda_1 h + \lambda_2 h^2 = -Nh|\beta| - \frac{h^2}{2} \sum_{\lambda, \mu \leq N} F(x_\lambda - x_\mu) - NC h^2, \]

where \(F \) is the semiclassical interaction function between parallel spins, given by, when the spins are aligned along the direction \(n_\beta = \beta/|\beta| \),

\[F(x) = (2\pi)^{-3} \int_{\mathbb{R}^3} |\chi(|k|)|^2 \cos(k \cdot x) \left(1 - \frac{|k \cdot n_\beta|^2}{|k|^2} \right) dk \]

and \(C \) is defined in (51). The first term amounts to the sum of the energies of each spin aligned along the direction of the constant field \(\beta \). The second term amounts to the sum of the classical interaction energies between two spins, all being parallel (including for the auto-interaction). See the comments after Proposition 2.5. Only the third term \(NC h^2 \) is genuinely a quantum term.

Now assuming that \(\chi \) is vanishing in a neighborhood of the origin, it is proved in Theorem 2.2 that a unitary eigenvector \(\varphi_h \) has, up to a normalization factor, an asymptotic expansion in powers of \(h^{1/2} \), to any order. Without this hypothesis, we can give only an expansion with only three terms.

For all \(x \in \mathbb{R}^3 \), we can compare the average magnetic field \(<B(x)\varphi_h, \varphi_h> \) taken on the ground state \(\varphi_h \) with the magnetic field \(B^{\text{class}}(x) \) associated by elementary physics with the spins systems regarded as magnets all being aligned along the direction of the (non zero) constant magnetic field. Setting \(n_\beta = \beta/|\beta| \), we have to consider the current density \(j(x) \) corresponding to this spins system,

\[j(x) = h n_\beta \wedge \text{grad}\Phi(x), \]

\[\Phi(x) = \sum_{\lambda=1}^{N} \rho(x - x_\lambda), \quad \rho(x) = (2\pi)^{-3} \int_{\mathbb{R}^3} |\chi(k)|^2 \cos(k \cdot x) dk. \]

The potential vector \(A^{\text{class}}(x) \) satisfies \(\Delta A^{\text{class}} = j \) and also,

\[A^{\text{class}}(x) = \frac{1}{4\pi} \int_{\mathbb{R}^3} \frac{j(y)}{|x - y|} dy. \]

The classical magnetic field is,

\[B^{\text{class}} = \text{rot}A^{\text{class}} \]

and the electric field \(E^{\text{class}} \) is zero. One notes the role of the function \(\chi \): the spin particle is not exactly a point-like particle.

We shall prove the following theorem.
Theorem 1.2. Suppose that $\chi(0) = 0$ and $\beta \neq 0$. For all x in \mathbb{R}^3, we have

$$< B(x)\varphi_h, \varphi_h > - B_{\text{class}}(x) = O(h^{3/2}),$$

$$< E(x)\varphi_h, \varphi_h > - E_{\text{class}}(x) = O(h^{3/2}).$$

The first step of the proof is Proposition 2.6. The second step appears at the end of Section 2. The proof only used the fact that $\chi(0) = 0$ and not that χ is vanishing in a neighborhood of the origin. Nevertheless, the method used for these estimates, which relies on a conjugate operator, does not allow to avoid the hypothesis $\chi(0) = 0$.

2 Asymptotic expansions for the ground state.

The following theorem is proved in [5]. Let b_0 and b_1 be unitary elements of C^2 such that:

$$\sum_{m=1}^{3} \beta_m \sigma_m b_0 = -|\beta| b_0$$

$$\sum_{m=1}^{3} \beta_m \sigma_m b_1 = |\beta| b_1$$

For all $E \subset \{1, \ldots, N\}$, a_E denotes the following element,

$$a_E = a_1 \otimes \cdots \otimes a_N, \quad a_j = \begin{cases} b_1 & \text{if } j \in E \\ b_0 & \text{if } j \notin E \end{cases}.$$ \hspace{1cm} (17)

Theorem 2.1. ([6][8][12][14]) The infimum E_h of the spectrum of $H(h)$ satisfies

$$E_h \leq -N|\beta|h.$$ \hspace{1cm} (18)

The eigenspace associated with E_h has dimension 1. Moreover, there exists an unitary eigenvector φ_h corresponding to the eigenvalue E_h, the infimum of the spectrum of $H(h)$, such that, for any small enough h,

$$\|\varphi_h - (\Psi_0 \otimes a_0)\| \leq C h^{1/2}.$$ \hspace{1cm} (19)

The estimate (18) follows from $< H(h)(\Psi_0 \otimes a_0), (\Psi_0 \otimes a_0) >= -N|\beta|h$. The estimate (19) is also a consequence of Proposition 2.8 below. The constant C coming from this Proposition could may be different from the one in [4]. When Proposition 2.8 is used, the constant C depends on the $L^2(\mathbb{R}^3)$ norms of the functions $\chi(|k|)|k|^{1/2}$ and $\chi(|k|)|k|^{-1/2}$.

The aim of this section is to establish an asymptotic expansion as h tends to 0 of the eigenvalue E_h and of an unitary eigenvector φ_h.

5
2.1 Statement.

Theorem 2.2. Suppose that there exists $\rho > 0$ such that the function χ in (5) and (6) vanishes for $|k| \leq \rho$. Assume that $\beta \neq 0$. Let E_h be the infimum of the spectrum of $H(h)$ and let φ_h be a corresponding normalized eigenvector of $H(h)$. Then, there exists a sequence of elements of $\mathcal{H}_p \otimes \mathcal{H}_q$ denoted u_j ($j \geq 0$) and a sequence of real numbers λ_j ($j \geq 1$) such that,

(i) One has,
$$u_0 = \Psi_0 \otimes a_\emptyset, \quad \lambda_1 = -N|\beta|. \quad (20)$$

(ii) For all integers p, there exists C_p satisfying for h small enough,
$$\left| E_h - \sum_{j=0}^{p} \lambda_j h^j \right| \leq Ch^{p+1}. \quad (21)$$

(iii) Moreover, for all integers p and any $h > 0$, there exists $\rho_h > 0$ and θ_h (depending on h and m) such that, setting
$$V_{2p+1}(h) = \sum_{j=0}^{2p+1} u_j h^{j/2} - \rho_h e^{i\theta_h} \varphi_h, \quad (22)$$
we have for h sufficiently small,
$$\|V_{2p+1}(h)\| \leq C_p h^{p+1}, \quad (23)$$
where the constant C_p is independent on h.

(iv) We also have,
$$< (N \otimes I) V_{2p+1}(h), V_{2p+1}(h) > \leq C_p h^{2p+1}. \quad (24)$$

2.2 Formal construction of the expansion.

Additional details on the Fock space. Let us recall that,
$$\mathcal{F}_s(\mathcal{H}_\mathbb{C}) = \oplus_{m \geq 0} \mathcal{F}_m, \quad (25)$$
where $\mathcal{F}_0 = \mathbb{C}$ and \mathcal{F}_m is completion of the m–fold symmetric tensor product $\mathcal{H}_\mathbb{C} \otimes \cdots \otimes \mathcal{H}_\mathbb{C}$.
One may then consider an element of \mathcal{F}_m as a symmetric map f from $(\mathbb{R}^3)^m$ to $(\mathbb{C}^3)^\otimes m$ satisfying for all a_2, \ldots, a_m in $\{1, 2, 3\}$ and for all k_1, \ldots, k_m in \mathbb{R}^3,
$$\sum_{j=1}^{3} k_{1,j} f_{j, a_2, \ldots, a_m}(k_1, \ldots, k_m) = 0. \quad (26)$$
We use here the notation \(k_1 = (k_{1,1}, k_{1,2}, k_{1,3}) \). In addition, the components of this function \(f \) should be in \(L^2(\mathbb{R}^{3m}) \), which is defining the norm in \(\mathcal{F}_m \). Thus, an element of \(\mathcal{F}_s(H_\mathcal{C}) \) is a sequence \(f = (f_m)_{m \geq 0} \) where \(f_m \) is an element of \(\mathcal{F}_m \) and one has,

\[
\|f\|^2 = \sum_{m \geq 0} \|f_m\|^2.
\]

We shall denote by \(\Psi_0 \) a unitary element of \(\mathcal{F}_0 \).

For any \(\rho > 0 \) and \(m \geq 1 \), \(\mathcal{F}_m(\rho) \) stands for the set of elements \(f \) in \(\mathcal{F}_m \) satisfying \(f(k_1, \ldots, k_m) \) belongs to \(S(\mathbb{R}^{3m}) \) and is vanishing if one of the \(|k_j| \) is \(\leq \rho \). If \(m = 0 \), it is agreed that \(\mathcal{F}_0(\rho) = \mathcal{F}_0 \). It is also agreed that \(\mathcal{F}_m = 0 \) if \(m < 0 \). One sets,

\[
\mathcal{F}_{\text{even}}(\rho) = \mathcal{F}_0 \oplus \mathcal{F}_2(\rho) \oplus \mathcal{F}_4(\rho) \oplus \cdots
\]

\[
\mathcal{F}_{\text{odd}}(\rho) = \mathcal{F}_1(\rho) \oplus \mathcal{F}_3(\rho) \oplus \mathcal{F}_5(\rho) \oplus \cdots.
\]

Elements in these spaces here are finite sums.

Let us recall that, if \(M : H \rightarrow H \) is the multiplication by \(\omega(k) = |k| \) and if \(f \) is a rapidly decreasing function in \(\mathcal{F}_m \) then one has,

\[
(d\Gamma(M)f)(k_1, \ldots, k_m) = (|k_1| + \cdots + |k_m|)f(k_1, \ldots, k_m).
\]

We remind that \(H_{ph} = h d\Gamma(M) \). For all \(x \in \mathbb{R}^3 \) and for each \(m \leq 3 \), the operator \(B_m(x) \) corresponding to the semiclassical parameter \(h \) is defined by \((4)\). Therefore, we can write,

\[
H(h) = hK_1 + h^{3/2}K_{3/2},
\]

with

\[
K_1 = d\Gamma(M) \otimes I + I \otimes T_0, \quad T_0 = \sum_{\lambda=1}^{N} \sum_{m=1}^{3} \beta_m \sigma_m^{[\lambda]},
\]

\[
K_{3/2} = \sum_{\lambda=1}^{N} \sum_{m=1}^{3} \Phi_{S}(a_m(x_\lambda) + ib_m(x_\lambda)) \otimes \sigma_m^{[\lambda]},
\]

where \(a_m(x_\lambda) \) and \(b_m(x_\lambda) \) are defined in \((5)\) and \((6)\). The operators \(K_1 \) and \(K_{3/2} \) are independent on \(h \).

With these notations, the formal construction of the asymptotic expansion is provided by the following Proposition.
Proposition 2.3. Let $\rho > 0$ be such that the function χ in (40) is vanishing for $|k| \leq \rho$. Suppose $\beta \neq 0$. Then, there exists a sequence of elements in $H_{ph} \otimes H_{sp}$ denoted by u_j ($j \geq 0$) and a sequence of real numbers λ_j ($j \geq 1$) such that, u_0 and λ_1 are given in (20) and if j is even,

$$u_j \in F^{(j)}_{even}(\rho) \otimes H_{sp},$$

and if j is odd,

$$u_j \in F^{(j)}_{odd}(\rho) \otimes H_{sp}$$

and such that, for all integers p, setting,

$$U^{(p)}(h) = \sum_{j=0}^{p} u_j h^{j/2}, \quad \lambda^{(p)}(h) = \lambda_1 h + \cdots + \lambda_p h^p,$$

we have

$$\left(H(h) - \lambda^{(p+1)}(h)\right)U^{(2p)}(h) = R^{(2p)}(h),$$

$$\left(H(h) - \lambda^{(p+1)}(h)\right)U^{(2p+1)}(h) = R^{(2p+1)}(h),$$

where the $R^{(j)}(h)$ are expressed as following,

$$R^{(2p)}(h) = \sum_{k \geq 1} h^{p+1+(k/2)} f^{(p+1+(k/2))}_{2p},$$

with the $f^{(p+1+(k/2))}_{2p}$ being elements of $F_s(H_C) \otimes H_{sp}$,

$$R^{(2p+1)}(h) = \sum_{k \geq 0} h^{p+2+(k/2)} f^{(p+2+(k/2))}_{2p+1},$$

with the $f^{(p+2+(k/2))}_{2p+1}$ belonging to $F_s(H_C) \otimes H_{sp}$. The sums in the right hand sides of (39) and (40) are finite.

The above elements u_j are independent on h. The proof uses the following Lemma.

Lemma 2.4. Let λ_1 be defined in (20), and T_0 in (32). Then, for all f in $F_{odd}(\rho) \otimes H_{sp}$, (resp. in $F_{even}(\rho) \otimes H_{sp}$), there exists u in $F_{odd}(\rho) \otimes H_{sp}$, (resp. in $F_{even}(\rho) \otimes H_{sp}$) satisfying,

$$(d\Gamma(M) \otimes I + I \otimes (T_0 - \lambda_1))u = f - \Pi f,$$

where Π is the orthogonal projection on $u_0 = \Psi_0 \otimes a_0$.

8
Note that $\Pi f = 0$ if f is in $\mathcal{F}_{\text{odd}}(\rho) \otimes \mathcal{H}_{sp}$.

Proof of the Lemma. One may write,

$$ f = \sum_{E \subseteq \{1, \ldots, N\}} \sum_{m \geq 0} f_{E,m} \otimes a_E, $$

with $f_{E,m}$ in $\mathcal{F}_m(\rho)$, vanishing for even m (resp. for odd m). If $m \geq 1$, set

$$ u_{E,m}(k_1, \ldots, k_m) = \frac{f_{E,m}(k_1, \ldots, k_m)}{|k_1| + \cdots + |k_m| + 2|\beta||E|}. $$

Since $f_{E,m}$ vanishes in neighborhood of the origin, this element is well defined, even when E is empty. If $m = 0$ and $E \neq \emptyset$, set

$$ u_{E,0} = \frac{f_{E,0}}{2|\beta||E|}. $$

Then set,

$$ u = \sum_{m \geq 1} \sum_{E \subseteq \{1, \ldots, N\}} u_{E,m} \otimes a_E + \sum_{E \subseteq \{1, \ldots, N\}} u_{E,0} \otimes a_E. $$

This element u has the stated properties in the Lemma.

\[\square\]

Proof of Proposition 2.3. Note that the operator K_1 defined in (32) maps each of the two spaces $\mathcal{F}_{\text{even}}(\rho) \otimes \mathcal{H}_{ph}$ and $\mathcal{F}_{\text{odd}}(\rho) \otimes \mathcal{H}_{ph}$ into itself, whereas $K_{3/2}$ defined in (33) maps each of these two spaces into each other. This comes from the Segal field Φ_S definition (see [12]). By writing that the coefficient of h^j ($j \leq p + 1$) in the left hand side of (37) or (38) is zero, one sees that the u_j and the λ_j have to satisfy the following relations,

$$ (K_1 - \lambda_1)u_0 = 0, \quad (42) $$
$$ (K_1 - \lambda_1)u_1 + K_{3/2}u_0 = 0, \quad (43) $$
$$ (K_1 - \lambda_1)u_2 + K_{3/2}u_1 - \lambda_2u_0 = 0, \quad (44) $$
$$ (K_1 - \lambda_1)u_3 + K_{3/2}u_2 - \lambda_2u_1 = 0. \quad (45) $$

More generally, if $m = 2p$ is even, one needs,

$$ (K_1 - \lambda_1)u_{2p} + K_{3/2}u_{2p-1} - \lambda_2u_{2p-2} - \cdots - \lambda_{p+1}u_0 = 0 \quad (46) $$

and if $m = 2p + 1$ is odd,

$$ (K_1 - \lambda_1)u_{2p+1} + K_{3/2}u_{2p} - \lambda_2u_{2p-1} - \cdots - \lambda_{p+1}u_1 = 0. \quad (47) $$
One has, $d\Gamma(M)\Psi_0 = 0$ and $(T_0 - \lambda_1)u_0 = 0$, thus, the elements u_0 and λ_1 defined in (20) satisfy (42). Since the operator $K_{3/2}$ exchanges parity, $K_{3/2}u_0$ is in $F_{\text{odd}}(\rho) \otimes H_{sp}$. According to the Lemma 2.4 there exists u_1 in $F_{\text{odd}}(\rho) \otimes H_{sp}$ satisfying (43). Set $p \geq 0$. Suppose that u_0, \ldots, u_{2p+1} and $\lambda_1, \ldots, \lambda_{p+1}$ satisfying (46) and (47) are already constructed. In order to determine u_{2p+2} and λ_{p+2}, one applies Lemma 2.4 with,

$$f_{2p+2} = \begin{cases}
-K_{3/2}u_{2p+1} + \lambda_2 u_{2p} + \cdots + \lambda_{p+1} u_2 & \text{if } p \geq 1 \\
-K_{3/2}u_1 & \text{if } p = 0
\end{cases}.$$ \hfill (48)

Since $K_{3/2}$ exchanges parity, this element belongs to $F_{\text{even}}(\rho) \otimes H_{sp}$. One defines λ_{p+2} by,

$$\lambda_{p+2} = -\langle f_{2p+2}, u_0 \rangle.$$ \hfill (49)

According to Lemma 2.4, there exists u_{2p+2} in $F_{\text{even}}(\rho) \otimes H_{sp}$ such that,

$$(K_1 - \lambda_1)u_{2p+2} = f_{2p+2} + \lambda_{p+2}u_0,$$

that is to say, (46) with p replaced by $p + 1$. To get u_{2p+3}, Lemma 2.4 is applied with,

$$f_{2p+3} = -K_{3/2}u_{2p+2} + \lambda_2 u_{2p+1} + \cdots + \lambda_{p+2} u_1.$$ \hfill (50)

This element belongs to $F_{\text{odd}}(\rho) \otimes H_{sp}$ and consequently, $\Pi f_{2p+3} = 0$. According to Lemma 2.4, there indeed exists u_{2p+3} in $F_{\text{odd}}(\rho) \otimes H_{sp}$ satisfying

$$(K_1 - \lambda_1)u_{2p+3} = f_{2p+3}.$$ \hfill (51)

We have therefore constructed the sequences (u_j) and (λ_j) satisfying (46) and (47). The properties in the statement of the Proposition then follows.

□

The elements u_0 and λ_1 are defined in (20). The following Proposition gives an explicit computation of u_1 and λ_2. One sees that here, we do not need any hypothesis on the behaviour of χ in a neighborhood of the origin.

Proposition 2.5. We have,

$$\lambda_2 = -NC - \frac{1}{2} \sum_{\lambda, \mu \leq N} F(x_\lambda - x_\mu),$$ \hfill (52)

where F is the semiclassical parallel spins interaction function defined in (14) and

$$C = \frac{1}{2} (2\pi)^{-3} \int_{\mathbb{R}^3} \chi(|k|)^2 \frac{|k|^2 + k_3^2}{|k|^5} \frac{dk}{|k| + 2|\beta|}.$$ \hfill (53)
Proof. Let us first precise the computation of \(u_1 \). We assume that \(\beta = (0, 0, |\beta|) \). According to (33),

\[
K_{3/2}u_0 = f_0 \otimes a_0 + \sum_{\mu=1}^{N} f_{\mu} \otimes a_{(\mu)}.
\]

Since \(\sigma_3^{(\mu)}a_0 = -a_0 \), we have,

\[
f_0 = -\sum_{\mu \leq N} \Phi_S(a_3(x_{\mu}) + ib_3(x_{\mu}))\Psi_0.
\]

Similarly, since \(\sigma_1^{(\mu)}a_0 = a_{(\mu)} \) and \(\sigma_2^{(\mu)}a_0 = -ia_{(\mu)} \),

\[
f_{\mu} = \Phi_S(a_1(x_{\mu}) + ib_1(x_{\mu}))\Psi_0 - i\Phi_S(a_2(x_{\mu}) + ib_2(x_{\mu}))\Psi_0.
\]

All these elements are in \(\mathcal{F}_1 = \mathcal{H}_C \). For all \(X \) in \(\mathcal{H}_C \), we can identify \(\Phi_S(X)\Psi_0 \) with \(X/\sqrt{2} \) which is therefore a function of \(k \in \mathbb{R}^3 \). The element \(u_1 \) needs to satisfy (43). In view of Lemma 2.4, it can be written as,

\[
u_1 = u_0 \otimes a_0 + \sum_{\mu=1}^{N} u_{\mu} \otimes a_{(\mu)},
\]

where \(u_0 \) and the \(u_{\mu} \) are in \(\mathcal{F}_1 \), defined by,

\[
u_0(k) = -\frac{f_0(k)}{|k|}, \quad u_{\lambda}(k) = -\frac{f_{\lambda}(k)}{|k| + 2|\beta|}.
\]

According to (49) and (48) (with \(p = 0 \)), we have,

\[
\lambda_2 = < K_{3/2}u_1, u_0 > = < u_1, K_{3/2}u_0 >.
\]

Consequently,

\[
\lambda_2 = < u_0, f_0 > + \sum_{\lambda=1}^{N} < u_{\lambda}, f_{\lambda} >.
\]

We have,

\[
< u_0, f_0 > = -\frac{1}{2} \sum_{\lambda, \mu \leq N} \int_{\mathbb{R}^3} \left(a_3(x_{\lambda}) + ib_3(x_{\lambda}) \right)(k) \cdot \left(a_3(x_{\mu}) - ib_3(x_{\mu}) \right)(k) \frac{dk}{|k|}.
\]

Therefore, using (5) and (6),

\[
< u_0, f_0 > = -\frac{1}{2} \sum_{\lambda, \mu \leq N} F(x_{\lambda} - x_{\mu}),
\]

where \(F \) is the semiclassical parallel spins interaction function defined in (14). We similarly see that,

\[
< u_{\lambda}, f_{\lambda} > = -\frac{1}{2} \int_{\mathbb{R}^3} \left(a_1(x_{\lambda}) + ib_1(x_{\lambda}) \right) - i\left(a_2(x_{\lambda}) + ib_2(x_{\lambda}) \right)^2 \frac{dk}{|k| + 2|\beta|}.
\]

One again uses (5) and (6) noticing that, \(|(k \wedge e_1) - i(k \wedge e_2)|^2 = |k|^2 + k_3^2 \). Consequently,

\[
< u_{\lambda}, f_{\lambda} > = -C
\]
where C is defined in (51).

For the interpretation of the function F, we note that the classical potential vector associated to the current density $J(x) = n_\beta \wedge \text{grad}\rho(x)$, where ρ is defined in (16), is

$$A^{\text{class}}(x) = (2\pi)^{-3} \int_{\mathbb{R}^3} |\chi(|k|)|^2 \sin(k \cdot x) \frac{k \wedge n_\beta}{|k|^2} dk.$$

The magnetic field is $B^{\text{class}} = \text{rot}A^{\text{class}}$. In particular, its projection on the direction of β is $F(x)$, with F defined in (14). By translation, $F(x_\lambda - x_\mu)$ is the classical magnetic field created by the spin centered at x_λ (that is to say, by the current density $n_\beta \wedge \text{grad}\rho(x - x_\lambda)$), taken at x_μ and projected on the direction where all the spins are aligned (generated by n_β). According to the coupling constants, one can think that $-\hbar^2 F(x_\lambda - x_\mu)$ is the interaction energy of the spins centered at x_λ and x_μ, aligned and pointing in the same direction parallel to n_β.

We shall now compute the average magnetic field taken on the ground state first order asymptotic expansion. We do not have any hypothesis on the behaviour of χ at the origin.

Proposition 2.6. We have, for any $x \in \mathbb{R}^3$,

$$< (B(x) \otimes I)(u_0 + h^{1/2}u_1), (u_0 + h^{1/2}u_1) > = B^{\text{class}}(x),$$

(57)

$$< (E(x) \otimes I)(u_0 + h^{1/2}u_1), (u_0 + h^{1/2}u_1) > = 0,$$

(58)

where $B^{\text{class}}(x)$ is defined in Section 7.

Proof. One can suppose that $\beta = (0, 0, |\beta|)$. The above computations show that the classical magnetic associated to the current density defined in (15) with $n_\beta = e_3 = (0, 0, 1)$, is

$$B^{\text{class}}_m(x) = h(2\pi)^{-3} \sum_{\lambda=1}^N \int_{\mathbb{R}^3} |\chi(k)|^2 \cos(k \cdot (x - x_\lambda)) \frac{(k \wedge e_m) \cdot (k \wedge e_3)}{|k|^2} dk.$$

(59)

Besides, we have,

$$< (B_m(x) \otimes I)(u_0 + h^{1/2}u_1), (u_0 + h^{1/2}u_1) > = 2\hbar^{1/2} \text{Re} < (B_m(x) \otimes I)u_0, u_1 > .$$

Indeed, for all u belonging to one of the F_j, we have $< B_m(x)u, u > = 0$. According to the construction (54) and (55) of u_1 in the proof of Proposition 2.5, we have,

$$< (B_m(x) \otimes I)u_0, u_1 > = < B_m(x)\Psi_0, u_0 > .$$

12
Using the expression \(u_∅ \) of \(u_∅ \) and next, the one of \(f_∅ \) in (52), both considered as elements of \(H_C \), we obtain,
\[
\langle (B_m(x) \otimes I)u_0, u_1 \rangle = \int_{\mathbb{R}^3} \left(a_m(x) + ib_m(x) \right)(k) \cdot \frac{f_∅(k)}{|k|} dk
\]
\[
= \sum_{\nu \leq N} \int_{\mathbb{R}^3} \left(a_m(x) + ib_m(x) \right)(k) \cdot \frac{(a_3(x, \nu) - ib_3(x, \nu))(k)}{|k|} dk.
\]
One therefore recovers the right hand side of (59).

\[\square\]

2.3 Control of the remainder term.

The control of the error terms in Theorem 2.2, that is to say, points (21), (23) and (24), are a consequence of the following Theorem together with the construction in Proposition 2.3.

Set \(L \) a selfadjoint extension in \(H \) of the operator,
\[
L = \frac{1}{i} \frac{\partial}{\partial r} + \frac{1}{ir},
\]
where \(r = |k| \).

Theorem 2.7. Let \(U_h \) be an element of \(D(H(h)) \), satisfying,
\[
H(h)U_h = \lambda(h)U_h + R_h.
\]
Suppose that there are \(C > 0 \) and \(p \geq 1 \) such that, for all \(h \) in \((0, 1) \),
\[
\|U_h - (\Psi_0 \otimes a_∅)\| \leq C h^{1/2}.
\]
Suppose also tat \(U_h \) and \(R_h \) are in the domain of \(dΓ(L) \otimes I \), and that:
\[
\|U_h\| + \|(dΓ(L) \otimes I)U_h\| \leq C, \quad \|R_h\| + \|(dΓ(L) \otimes I)R_h\| \leq C h^{p+2}.
\]
Then, for any sufficiently small \(h \),
\[
|\lambda(h) - E_h| \leq 2Ch^{p+2}.
\]
Set \(ϕ_h \) a normalized eigenvector corresponding to the eigenvalue \(E_h \), the infimum of the spectrum of \(H(h) \), satisfying (19). From (19), for \(h \) small enough, one can choose \(\rho_h > 0 \) and \(θ_h \) such that the function \(V_h \) defined by,
\[
V_h = U_h - ρ_h e^{iθ_h} ϕ_h,
\]
satisfies,

\[< V_h, \Psi_0 \otimes a_0 > = 0. \] \hspace{1cm} (66)

The function \(V_h \) then satisfies,

\[\| V_h \| \leq C h^{p+1}. \] \hspace{1cm} (67)

We also have for small enough \(h \),

\[< (N \otimes I) V_h, V_h > \leq K h^{2p}. \] \hspace{1cm} (68)

\textbf{Proof of (64).} In view of (19) and (62), one deduces,

\[\| \varphi_h - U_h \| \leq \frac{Ch}{2}. \] \hspace{1cm} (69)

As a consequence, for small enough \(h \),

\[| < U_h, \varphi_h > | \geq \frac{1}{2}. \]

By equaling the scalar products of the two hand sides of (61) with \(\varphi_h \) which satisfies \(H(h) \varphi_h = E_h \varphi_h \),

\[|E_h - \lambda(h)| \leq | < U_h, \varphi_h > | \leq \| R_h \| \leq C h^{p+2}. \]

For \(h \) small enough, inequality (64) then follows.

\[\square \]

Estimates (67) and (68) are a consequence of the two following Propositions. The first one is relying on a conjugated operator argument.

\textbf{Proposition 2.8.} Let \(V_h \) be an element of \(D(H(h)) \) and \(f_h \) be element of \(H_{ph} \otimes H_{sp} \) satisfying,

\[(H(h) - E_h) V_h = f_h, \] \hspace{1cm} (69)

where \(E_h \leq -N |\beta| h \). Suppose that \(f_h \) belongs to the domain of \(d\Gamma(L) \otimes I \), where \(L \) a selfadjoint extension in \(H \) of the operator (67). We suppose also that (64) is satisfied, and that

\[16 h^{1/2} \sum_{\lambda=1}^{N} \sum_{m=1}^{3} |L A_m(x_\lambda)| \leq 1 \]

\[4 h^{1/2} |\beta| 2^{1+(N/2)} \sum_{\lambda=1}^{N} \sum_{m=1}^{3} |A_m(x_\lambda)| \leq 1. \] \hspace{1cm} (70)

Then we have:

\[\| V_h \| \leq \frac{16}{h} \| (d\Gamma(L) \otimes I) f_h \| + \frac{4}{|\beta| h} \| f_h \|, \] \hspace{1cm} (71)

\[< (N \otimes I) V_h, V_h > \leq \frac{300}{h^2} \| (d\Gamma(L) \otimes I) f_h \|^2 + \frac{32}{h^2 |\beta|^2} \| f_h \|^2. \] \hspace{1cm} (72)
Proof. First step. When M is the multiplication by $|k|$, and and L is defined in (60), we have,
\[
[d\Gamma(L), d\Gamma(M)] = d\Gamma([L, M]) = \frac{1}{i}d\Gamma(I) = \frac{1}{i}N.
\]
If V_h satisfies (69), we have:
\[
\text{Im} < (H(h) - E_h)V_h, (d\Gamma(L) \otimes I)V_h > = \text{Im} < f_h, (d\Gamma(L) \otimes I)V_h >.
\]
We use the notations (31), (32), (33) for the operator $H(h)$. Recalling that $H_{ph} = h d\Gamma(M)$, it follows from the above commutator relation that:
\[
\text{Im} < (H_{ph} \otimes I)V_h, (d\Gamma(L) \otimes I)V_h > = -\frac{h}{2} < (N \otimes I)V_h, V_h >.
\]
We have
\[
\text{Im} < ((I \otimes T_0) - E_h)V_h, (d\Gamma(L) \otimes I)V_h > = 0
\]
Therefore:
\[
-\frac{h}{2} < (N \otimes I)V_h, V_h > + h^{3/2}\text{Im} < K_{3/2}V_h, (d\Gamma(L) \otimes I)V_h > = \text{Im} < f_h, (d\Gamma(L) \otimes I)V_h >.
\]
Setting $A_m(x_\lambda) = a_m(x_\lambda) + ib_m(x_\lambda)$, and L is defined in (60), we have classically:
\[
i[d\Gamma(L), \Phi_S(A_m(x_\lambda))] = \Phi_S(iL A_m(x_\lambda))
\]
By (7), we have:
\[
\|\Phi_S(iL A_m(x_\lambda)) \otimes \sigma_{[N]}^I\| V_h \|^2 \leq |L A_m(x_\lambda)|^2 \left[\|V_h\|^2 + < (N \otimes I)V_h, V_h > \right].
\]
Therefore:
\[
\frac{h}{2} < (N \otimes I)V_h, V_h > \leq \frac{h^{3/2}}{2}\|V_h\| \left[\|V_h\|^2 + < (N \otimes I)V_h, V_h > \right]^{1/2} \sum_{\lambda=1}^{N} \sum_{m=1}^{3} |L A_m(x_\lambda)| + ...
\]
\[
... + \| (d\Gamma(L) \otimes I) f_h \| \| V_h \|
\]
If (70) is satisfied, then we have:
\[
< (N \otimes I)V_h, V_h > \leq \frac{4}{h} \| (d\Gamma(L) \otimes I) f_h \| \| V_h \| + \frac{1}{16} \|V_h\|^2.
\]
Second step. Let us denote by P_0 the projection in H_{sp} on the vectorial line generated by a_0 and by P_0^\perp the projection on the orthogonal subspace. Also, P_Ω denotes the projection in H_{ph} on the vacuum Ψ_0 and P_Ω^\perp stands for the projection on the orthogonal subspace. By (69), we have:
\[
< (P_\Omega \otimes P_0^\perp) (H(h) - E_h)V_h, V_h > = < (P_\Omega \otimes P_0^\perp) f_h, V_h >.
\]
We have $P_\Omega H_{ph} = 0$. Note that $P_\emptyset^\perp T_0 \geq |\beta|(1 - N)P_\emptyset^\perp$. In particular, if $E_h \leq -N|\beta|h$,

$$< (P_\Omega \otimes P_\emptyset^\perp)(I \otimes hT_0 - E_h) > \geq h|\beta| < (P_\Omega \otimes P_\emptyset^\perp)V_h, V_h > .$$

Therefore:

$$h|\beta| < (P_\Omega \otimes P_\emptyset^\perp)V_h, V_h > \leq h^{3/2}| < (P_\Omega \otimes P_\emptyset^\perp)K_{3/2}V_h, V_h > | + | < (P_\Omega \otimes P_\emptyset^\perp)f_h, V_h > |$$

We have:

$$| < (P_\Omega \otimes P_\emptyset^\perp)K_{3/2}V_h, V_h > | \leq \sum_{E \neq \emptyset} | < V_h, K_{3/2}(\Psi_0 \otimes a_E) > | \leq \sum_{\lambda = 1}^N \sum_{m = 1}^3 \| \Phi_S(A_m(x_\lambda))\Psi_0 \|

with:

$$M = \left[\sum_{E \neq \emptyset} \| K_{3/2}(\Psi_0 \otimes a_E) \|^2 \right]^{1/2} \leq 2^{N/2} \sum_{\lambda = 1}^N \sum_{m = 1}^3 \| \Phi_S(A_m(x_\lambda))\Psi_0 \|

By (7)

$$\| \Phi_S(A_m(x_\lambda))\Psi_0 \| \leq 2|A_m(x_\lambda)|$$

Therefore, if (70) is satisfied:

$$\| (P_\Omega \otimes P_\emptyset^\perp)V_h \| \leq \frac{1}{16} \| V_h \| + \frac{1}{h|\beta|} \| f_h \|. \quad (74)$$

Third step. By the condition (66), we have:

$$\| V_h \| \leq \| (P_\Omega^\perp \otimes I)V_h \| + \| (P_\Omega \otimes P_\emptyset^\perp)V_h \|

\leq < (N \otimes I)V_h, V_h >^{1/2} + \| (P_\Omega \otimes P_\emptyset^\perp)V_h \|

and therefore (71) follows from (73) and (74), and (72) follows from (71) and (73).

End of the proof of Theorem 2.7. Estimate (64) is already proved. If U_h satisfies (61), then we have,

$$H(h)U_h = E_h U_h + f_h, \quad f_h = R_h + (\lambda(h) - E_h)U_h. \quad (75)$$

For any small enough h, we can choose $\rho_h > 0$ and θ_h such that, the function V_h defined by (65) satisfies (66) and also (69). The functions R_h and R_h, and therefore f_h, are in the domain of $d\Gamma(L) \otimes I$.

Therefore, by Proposition 2.8 if the conditions (70) are satisfied, then the estimates (71) and (72) are satisfied. By (63) and (64), we have:

$$\| f_h \| + \| (d\Gamma(L) \otimes I) f_h \| \leq C h^{p+2}.$$
Let us now define u. According to (52)-(55), the functions g where Π is the orthogonal projection on the vectorial line generated by u. Proposition 2.5. Let us prove that the construction of i and u in (54), we can write U.

End of the proof of Theorem 2.2. We apply Theorem 2.7 with the elements $U(h) = U^{(2p+1)}(h)$ and $R(h) = R^{(2p+1)}(h)$ and with the real number $\chi(h) = \chi^{(p+1)}(h)$ of Proposition 2.3. These elements satisfy (61) from (19). The condition (62) comes from the fact that u_0 is defined in (20) and that the other u_j are independent on h. The assumption (63) comes from the fact that the u_j and the $f_{2p+1}(k/2)$ of Proposition 2.3 are finite sums of terms all belonging to the spaces $F_m(\rho)$. Note that $F_m(\rho)$ is invariant by the operator $d\Gamma(L)$ where L is defined in (60). The hypotheses of Theorem 2.7 are satisfied. Inequality (21) follows from (64). Inequality (23) is a consequence of (67) and inequality (24) comes from (68).

Proof of Theorem 1.1. The point i) follows from inequality (21) of theorem 2.2. For the point ii), without any hypothesis on $\chi(0)$, the elements u_0 and λ_1 are defined by (20), and u_1 and λ_2 are constructed in Proposition 2.5. Let us prove that the construction of u_2 is also possible without any hypothesis on $\chi(0)$. Let us now define u_2 which has to satisfy (44), that is to say, taking into account the choice of λ_2 in (56),

$$(K_1 - \lambda_1)u_2 = -(I - \Pi)K_{3/2}u_1,$$

where Π is the orthogonal projection on the vectorial line generated by $u_0 = \Psi_0 \otimes a_0$. Since u_1 is defined in (54), we can write

$$K_{3/2}u_1 = \sum_{E \subset \{1, \ldots, N\}} (f_E + g_E) \otimes a_E,$$

where the f_E belong to F_0 and the g_E lie in F_2. We have $\Pi K_{3/2}u_1 = f_0 \otimes a_0$. Consequently,

$$u_2 = \sum_{E \subset \{1, \ldots, N\}} (u_E + v_E) \otimes a_E,$$

where the u_E are in F_0 and the v_E in F_2. We shall have $u_0 = 0$. If E is non empty then we shall obtain, according to Lemma 7.4, $u_E = f_E/(2|\beta||E|)$. The elements g_E and v_E being identified with symmetric functions on $\mathbb{R}^3 \times \mathbb{R}^3$ and taking vector values, we have,

$$v_E(k_1, k_2) = \frac{g_E(k_1, k_2)}{|k_1| + |k_2| + 2|\beta||E|}.$$

(77)

According to (52)-(55), the functions g_E are linear combinations of products of the form $(a_m(x_\lambda) + ib_m(x_\lambda))(k_1)u_\mu(k_2)$, of products where the second factor is $u_\varphi(k_2)$, and of products where the factors are exchanged. The u_μ and u_φ are rapidly decreasing at infinity and, when k tends to 0, $u_\mu(k) = O(|k|^{1/2})$ and $u_\varphi(k) = O(|k|^{-1/2})$. Concerning elements $(a_m(x_\lambda) + ib_m(x_\lambda))(k)$, they are an $O(|k|^{1/2})$ when k tends to 0. Consequently, equalities (77) therefore define elements v_E of F_2, and (76) indeed defines an
element u_2 of $(\mathcal{F}_0 \oplus \mathcal{F}_2) \otimes \mathcal{H}_{sp}$ (Without vanishing assumptions on χ at the origin, it does not seem possible to further follow the expansion). The element $K_{3/2}u_2$ is well defined since $K_{3/2}$ is continuous from $(\mathcal{F}_0 \oplus \mathcal{F}_2) \otimes \mathcal{H}_{sp}$ into $(\mathcal{F}_1 \oplus \mathcal{F}_3) \otimes \mathcal{H}_{sp}$. We then have,

$$(H(h) - \lambda_1 h - \lambda_2 h^2) (u_0 + h^{1/2}u_1 + hu_2) = R^{(2)}(h) = h^{5/2}(K_{3/2}u_2 - \lambda_2 u_1) - h^3 \lambda_2 u_0.$$

Thus, we have $\|R^{(2)}(h)\| \leq Ch^{5/2}$. Taking the scalar products of both sides with φ_h satisfying (19) and $(H(h) - E_h)\varphi_h = 0$, one therefore obtains estimate (13).

□

Proof of Theorem 1.2. Without any hypothesis on $\chi(0)$, we determined u_0 and λ_1 from (20), and u_1 according to Proposition 2.5. One can choose ρ_h and θ_h such that the following function,

$$V_h = u_0 + h^{1/2}u_1 - \rho_h e^{i\theta_h} \varphi_h$$

satisfies (60). According to Proposition 2.6, we have,

$$\mathcal{B}^{class}(x) = \langle \mathcal{B}(x) \otimes I)(u_0 + h^{1/2}u_1), (u_0 + h^{1/2}u_1) \rangle > .$$

Thus,

$$|B_m^{class}(x) - \rho_h^2 < B_m(x)\varphi_h, \varphi_h | \leq \|B_m(x)V_h\| \left(2\rho_h + \|V_h\|^2\right).$$

By the construction in Proposition 2.5 especially (12) and (13), the function V_h defined above satisfies (19) with,

$$f_h = h^2 K_{3/2}u_1 + (\lambda_1 h - E_h)(u_0 + h^{1/2}u_1).$$

According to point (ii) of Theorem 1.1 we have $|\lambda_1 h - E_h| \leq Ch^2$. Now, if $\chi(0) = 0$, let us prove that u_1 and $K_{3/2}u_1$ lie in the domain of the operator $d\Gamma(L) \otimes I$. One follows the construction of u_1 given in (54). The elements u_0 and u_λ of \mathcal{F}_1 defined in (55) can be identified to elements of \mathcal{H}_C and then to functions on \mathbb{R}^3 and taking values in \mathbb{C}^3. In general, $u_0(k) = O(|k|^{-1/2})$ when k tends to 0 and this function is not belonging to the domain of the operator L defined in (60). However, if $\chi(0) = 0$, we have $u_0(k) = O(|k|^{1/2})$ when k tends to 0 and u_0 lies in $D(L)$. This also holds true for u_λ. Consequently, u_1 lies in the domain of the operator $d\Gamma(L) \otimes I$. This is also valid for $K_{3/2}u_1$. Therefore, f_h belongs to the domain of $d\Gamma(L) \otimes I$ and

$$\|f_h\| + \|(d\Gamma(L) \otimes I) f_h\| \leq Ch^2.$$

Then, we can apply Proposition 2.8 This enables to write, for h small enough,

$$\|V_h\| \leq Ch, \quad <(N \otimes I)V_h, V_h> \leq Ch^2.$$
According to (7),
\[\| B_m(x) V_h \| \leq C h^{1/2} \| V_h \| + C h^{1/2} < (N \otimes I) V_h, V_h >^{1/2}. \]
Thus, \[\| B_m(x) V_h \| \leq C h^{3/2} \]. Condition (66), Definition (20) of \(u_0 \) and the property (19) for \(\varphi_h \) imply that \(|1 - \rho_h e^{i \theta_h}| \leq C h^{1/2} \). The right hand side of (78) is then \(\mathcal{O}(h^{3/2}) \). Since \(B_m^{\text{class}}(x) \) is an \(\mathcal{O}(h) \), the above equality (78) shows that \(< B_m(x) \varphi_h, \varphi_h > \) is also an \(\mathcal{O}(h) \). Consequently,
\[(\rho_h^2 - 1) < B_m(x) \varphi_h, \varphi_h > = \mathcal{O}(h^{3/2}). \]

Theorem 1.3 then follows.

\[\square \]

References

[1] L. Amour, L. Jager, J. Nourrigat, *On bounded Weyl pseudodifferential operators in Wiener spaces*, Journal of Functional Analysis 269 (2015), pp. 2747-2812.

[2] L. Amour, R. Lascar, J. Nourrigat, *Beals characterization of pseudodifferential operators in Wiener spaces*, Appl. Math. Res. Express (2016).

[3] L. Amour, R. Lascar, J. Nourrigat, *Weyl calculus in QED I. The unitary group*, preprint, arXiv:1510.05293, october 2015.

[4] A. Arai, M. Hirokawa, *On the existence and uniqueness of ground states of a generalized spin-boson model*, J. Funct. Anal. 151 (1997), no. 2, 455–503.

[5] V. Bach, J. Fröhlich, I. M. Sigal, *Quantum electrodynamics of confined nonrelativistic particles*, Adv. Math. 137 (1998), no. 2, 299–395.

[6] F. Bloch, *Nuclear Induction*, Physical Review 70 460-473, (1946).

[7] J. Dereziński, C. Gérard, *Asymptotic completeness in quantum field theory. Massive Pauli-Fierz Hamiltonians*. Rev. Math. Phys. 11 (1999), no. 4, 383-450.

[8] C. Gérard, *On the existence of ground states for massless Pauli-Fierz Hamiltonians*, Ann. Henri Poincaré 1 (2000), 443–459.

[9] M. Hirokawa, F. Hiroshima, J. Lőrinczi, *Spin-boson model through a Poisson-driven stochastic process*, Math. Z. 277 (2014), 1165–1198.
[10] M. Hübner, H. Spohn, *Spectral properties of the spin-boson Hamiltonian*, Annales de l’I. H. P., Section A , tome 62, 3 (1995), 289-323.

[11] E. Lieb, M. Loss, *A note on polarization vectors in quantum electrodynamics*. Comm. Math. Phys. 252 (2004), no. 1-3, 477-483.

[12] M. Reed, B. Simon, *Methods of modern mathematical physics*, Vol II, Fourier Analysis, selfadjointness, Academic Press, 1975.

[13] F. A. Reuse, *Electrodynamique et Optique Quantiques*, Presses Polytechniques et Universitaires Romandes, Lausanne, 2007.

laurent.amour@univ-reims.fr
LMR EA 4535 and FR CNRS 3399, Université de Reims Champagne-Ardenne, Moulin de la Housse, BP 1039, 51687 REIMS Cedex 2, France.

jean.nourrigat@univ-reims.fr
LMR EA 4535 and FR CNRS 3399, Université de Reims Champagne-Ardenne, Moulin de la Housse, BP 1039, 51687 REIMS Cedex 2, France.