Abstract
Immunoglobulin G4 (IgG4)-related kidney disease is a relatively rare clinical entity and usually occurs as an extra-pancreatic manifestation of IgG4-related autoimmune pancreatitis. We describe here the imaging findings of a patient who presented with recurrent multiorgan IgG4-related disease, involving bilateral kidneys/ureters, proximal small bowel, and multiple abdominal and extra-abdominal lymph nodes.

Keywords: 2-Fluoro-2-deoxy glucose, immunoglobulin G4, immunoglobulin G4-related kidney disease, inflammatory, kidney, positron emission tomography/computed tomography

Case History
A 52-year-old male with a history of immunoglobulin G4 (IgG4)-related biliary stricture, treated with steroids in 2017, presented with increased stool frequency and weight loss for 2 months. Blood reports revealed normal total white blood cell count with increased differential eosinophil counts - 13% (normal <6%), absolute eosinophil count - 1190 cells (normal <450 cells/cumm), normal lactate dehydrogenase - 142 IU/L (normal <450 IU/L), and elevated serum IgG4 subclass - 353 mg/dL (normal range for >18 years old: 3–201 mg/dL). Routine urine analysis does not reveal any infections/proteinuria, and urine cytology was negative malignancy. Colonoscopy-guided biopsy was suggestive of colitis. In view of known history of IgG4-related disease, a whole-body 18F-2-fluoro-2-deoxy glucose (FDG) positron emission tomography/computed tomography (PET/CT) was done which revealed FDG uptake in the diffuse thickening of the pelvis of bilateral kidneys [Figure 1a-g, yellow arrows, pelvis of left kidney - SUV_{max} = 11.32] and bilateral proximal ureter [white arrows, Figure 1e, left ureter - SUV_{max} = 4.45] with smooth and patent urinary lumen [Figure 1b-d, red arrows]. On delayed post-intravenous (IV) furosemide, delayed PET/CT images showed soft tissue density in the bilateral pelvis without any delayed contrast retention [Figure 1f, yellow arrow heads] and with persistent FDG uptake in the bilateral pelvis/ureteric wall [Figure 1g, white arrow head]. In addition, FDG PET/CT showed increased FDG uptake in the multiple enlarged mesenteric/retroperitoneal/pelvic nodes (with surrounding mesenteric fat stranding) and mild wall thickening in the proximal small bowel and proximal large bowel [Figure 2a-c, yellow arrows]. Extra-abdominal increased FDG uptake was also noted in the bilateral tonsils and enlarged bilateral axillary and cervical nodes [Figures 1a and 2d]. In view of patient’s history, current imaging, and blood investigations, diagnosis of IgG4-related kidney disease (IgG4-RKD) relapse was established without need for re-biopsy. The patient was treated steroids which subsequently showed good clinical improvement.

Discussion
IgG4-RKD is a relatively newly recognized disease after many reports associated its occurrence in patients with autoimmune pancreatitis. Early recognition of the disease is important as it is a condition associated with dramatic response to IV steroids. Imaging features, best described on CT, are the characteristics and often the first recognized manifestation of this disease. Most common pattern reported on CT appears to be multiple rounded low-density lesions in the bilateral renal pelvis without any delayed contrast retention
IgG4-related fibroinflammatory disease may virtually involve every other organs including pancreas (most common), liver, bile ducts, stomach, salivary glands, thyroid, kidneys, and colon. Due to the same reason, the clinical symptoms are variable/nonspecific, often leading to delay in diagnosis and thereby threatening organ function. Growing evidence over the past half-decade favors the use of PET/CT as a one-stop shop for imaging IgG4-related diseases for diagnosis, guiding biopsy, and treatment response evaluation. Detecting extra-renal involvement at baseline appears to be the most important indication of using FDG PET/CT in IgG4-RKD. Appropriate use of PET/CT should be guided by the serum IgG4 levels, as the probability of detecting multiorgan disease is >80% if the serum IgG4 levels are two times the upper limit of normal (i.e., >270 mg/dL, normal limit ≤135 mg/dL). Another potential use of FDG PET/CT in this disease would be in avoiding invasive tissue diagnosis, especially in recurrent disease setting.

Declaration of patient consent

The authors certify that they have obtained all appropriate patient consent forms. In the form the patient (s) has/have given his/her/their consent for his/her/their images and other clinical information to be reported in the journal. The patients understand that their names and initials will not be published and due efforts will be made to conceal their identity, but anonymity cannot be guaranteed.

Financial support and sponsorship

Nil.

Conflicts of interest

There are no conflicts of interest.

References

1. Uchiyama-Tanaka Y, Mori Y, Kimura T, Sonomura K, Umemura S, Kishimoto N, et al. Acute tubulointerstitial nephritis associated with autoimmune-related pancreatitis. Am J Kidney Dis 2004;43:18-25.
2. Watson SJ, Jenkins DA, Bellamy CO. Nephropathy in IgG4-related systemic disease. Am J Surg Pathol 2006;30:1472-7.
3. Saeki T, Nishi S, Imai N, Ito T, Yamazaki H, Kawano M, et al. Clinicopathological characteristics of patients with IgG4-related tubulointerstitial nephritis. Kidney Int 2010;78:1016-23.
4. Takahashi N, Kawashima A, Fletcher JG, Chari ST. Renal involvement in patients with autoimmune pancreatitis: CT and MR imaging findings. Radiology 2007;242:791-801.
5. Kawano M, Saeki T, Nakashima H, Nishi S, Yamaguchi Y, Hisano S, et al. Proposal for diagnostic criteria for IgG4-related kidney disease. Clin Exp Nephrol 2011;15:615-26.
6. Obiorah IE, Henao Velasquez A, Özdemirli M. The clinicopathologic spectrum of IgG4-related disease. Balkan Med J 2018;35:292-300.
7. Vadi SK, Parihar AS, Kumar R, Singh H, Mittal BR, Bal A, et al. IgG4-related disease simulating carcinoma colon with...
diffuse peritoneal carcinomatosis on 18F-FDG PET/CT. Clin Nucl Med 2018;43:e247-9.

8. Chandra P, Nath S, Jain D. Pancreatitis, cholangitis, and gastritis: The triumvirate of immunoglobulin G4-related disease identified simultaneously on 18F-fluorodeoxyglucose positron emission tomography/computed tomography. Indian J Nucl Med 2019;34:335-7.

9. Zhang J, Chen H, Ma Y, Xiao Y, Niu N, Lin W, et al. Characterizing IgG4-related disease with 18F-FDG PET/CT: A prospective cohort study. Eur J Nucl Med Mol Imaging 2014;41:1624-34.

10. Lee J, Hyun SH, Kim S, Kim DK, Lee JK, Moon SH, et al. Utility of FDG PET/CT for differential diagnosis of patients clinically suspected of IgG4-related disease. Clin Nucl Med 2016;41:e237-43.

11. Fu Z, Liu M, Zhang J, Li Z, Li Q. IgG4-related renal lesions detected by delayed 18F-FDG PET/CT scan. Clin Nucl Med 2017;42:66-7.

12. Krebs S, Monti S, Seshan S, Fox J, Mannelli L. IgG4-related kidney disease in a patient with history of breast cancer: Findings on 18F-FDG PET/CT. Clin Nucl Med 2016;41:e388-9.

13. Inoue D, Yoshida K, Yoneda N, Ozaki K, Matsubara T, Nagai K, et al. IgG4-related disease: Dataset of 235 consecutive patients. Medicine (Baltimore) 2015;94:e680.