Preproinsulin Designer Antigens Excluded from Endoplasmic Reticulum Suppressed Diabetes Development in NOD Mice by DNA Vaccination

Katja Stifter, Cornelia Schuster, Jana Krieger, Andreas Spy rantis, Bernhard Otto Boehm, and Reinhold Schirmbeck

DNA vaccines against autoimmune type 1 diabetes (T1D) contain a nonpredictable risk to induce autoreactive T cell responses rather than a protective immunity. little is known if (and how) antigen expression and processing requirements favor the induction of autoreactive or protective immune responses by DNA immunization. Here, we analyzed whether structural properties of preproinsulin (ppins) variants and/or subcellular targeting of ppins designer antigens influence the priming of effector CD8+ T cell responses by DNA immunization. Primarily, we used H-2b RIP-B7.1tg mice, expressing the co-stimulator molecule B7.1 in beta cells, to identify antigens that induce or fail to induce autoreactive ppins-specific (Kb/A12-21 and/or Kb/B22-29) CD8+ T cell responses. Female NOD mice, expressing the diabetes-susceptible H-2B8 haplotype, were used to test ppins variants for their potential to suppress spontaneous diabetes development. We showed that ppins antigens excluded from expression in the endoplasmic reticulum (ER) did not induce CD8+ T cells or autoimmune diabetes in RIP-B7.1tg mice, but efficiently suppressed spontaneous diabetes development in NOD mice as well as ppins-induced CD8+ T cell-mediated autoimmune diabetes in PD-L1−/− mice. The induction of a ppins-specific therapeutic immunity in mice has practical implications for the design of immune therapies against T1D in individuals expressing different major histocompatibility complex (MHC) I and II molecules.

INTRODUCTION

DNA vaccination is a potent strategy to induce autoreactive effector CD8+ T cell responses against self-antigens, e.g., preproinsulin (ppins) in pancreatic beta cells, but can also lead to proinflammatory immune responses calibrating T cell-mediated autoreactivity. In both scenarios, de novo priming of immune responses against the major beta cell autoantigen ppins is mandatory. However, little is known about the antigen expression and processing requirements that favor either the induction of autoreactive or protective immune responses. RIP-B7.1tg mice expressing the proinflammatory immune checkpoint molecule B7.1 (CD80) have been useful to study de novo priming of antigen-specific CD8+ T cells by DNA immunization and their subsequent pathogenic crosstalk with islet beta cells. Transgenic expression of the B7.1 molecule in beta cells of RIP-B7.1tg mice converts these cells into professional-like antigen-presenting cells (APCs) (Figure S1A). As a consequence, B7.1+ beta cells could directly interact with CD28 on T cells and stimulate de novo-primed or adoptively transferred autoreactive CD8+ T cells, finally leading to a CD8+ T cell-mediated destruction of beta cells and development of clinically overt disease, mimicking largely the situation in humans afflicted with T1D. Priming of ppins-specific autoreactive CD8+ T cells in RIP-B7.1tg mice by DNA immunization did not require CD4+ T cell help. Therefore, RIP-B7.1tg mice provide an attractive model system to identify beta-cell-specific antigens that are targeted by autoreactive T cells and to identify designer antigens with the potential to mitigate autoreactive CD8+ T cells.

A single injection of ppins DNA selectively induced Kb/A12-21- monospecific CD8+ T cells, whereas a mutant ppinsΔA12-21 antigen (lacking the Kb/A12-21 epitope) induced insulin B-chain Kβ/B22-29-monospecific CD8+ T cells in RIP-B7.1tg mice (Figures S1B and S1C). A simple manipulation of ppins thus generated an altered repertoire of autoreactive CD8+ T cells. On the other hand, ppins designer antigens targeted to the cytosol and/or the nucleus and thus excluded from the endoplasmic reticulum (ER) did not induce autoimmune diabetes in RIP-B7.1tg mice. Expression of ppins designer antigens in the ER and the secretory route might increase the presentation efficacy of autoantigen-derived epitopes that bind major histocompatibility complex (MHC) class I molecules with low affinity, because they must not compete with the bulk of antigenic peptides generated in the conventional MHC I antigen-presentation pathway for transporters associated
with antigen presentation (TAP)-dependent transport into the ER. At least the K\textalpha/A\textsubscript{12-21} epitope harbors a very low affinity for the Kb molecule.7 The K\textalpha/A\textsubscript{12-21} epitope represents the extreme COOH terminus of the ppins molecule (i.e., the insulin A-chain; Figure 1A) and hence does not require COOH-terminal processing for loading MHC class I Kb molecules in the ER.6 However, Kb/A\textsubscript{12-21}-specific CD8+ T cells were also induced by COOH terminally extended ppins fusion antigens expressed in the ER (e.g., in a pCI/GFP-ppins vector), but not when excluded from ER (e.g., in a pCI/GFP vector), indicating that the epitope position at the COOH terminus is less important for antigenicity than antigen targeting to the ER.6

The insulin B-chain Kb/B\textsubscript{22-29} epitope is localized close to the B/C junction of ppins (Figure 1A) and therefore requires both processing at the COOH and NH\textsubscript{2} terminus. We thus hypothesized that intrinsic properties of the antigen and/or antigen processing and presentation in the ER contribute to the induction of autoreactive ppins-specific CD8+ T cell responses.6,17

Interestingly, the pCI/ppins vector selectively primed Kb/A\textsubscript{12-21}-specific effector CD8+ T cells in C57BL/6j (B6) mice, but they did not induce autoimmune diabetes.7,8 However, K\textalpha/A\textsubscript{12-21}-specific CD8+ T cells primed in B6 mice induced autoimmune diabetes after adoptive transfer into RIP-B7.1 tg hosts or directly after treatment of pCI/ppins-immune B6 mice with anti PD-L1 antibody.7 In contrast, the pCI/ppins\textalpha/-specific vector did not induce K\textbeta/B\textsubscript{22-29}-specific CD8+ T cells in B6 mice.7,8 Furthermore, pCI/ppins but not pCI/ppins\textalpha/-primed autoreactive CD8+ T cells and autoimmune diabetes in co-inhibition-deficient PD-1+/− or PD-L1+/− mice.7,8 This suggested that priming and/or expansion of K\textbeta/B\textsubscript{22-29}- but not K\textalpha/A\textsubscript{12-21}-specific CD8+ T cells critically depended on B7.1-mediated co-stimulatory

Figure 1. Diabetes Induction in RIP-B7.1 tg Mice by Ppins-Derived Antigens Lacking the Dominant K\textalpha/A\textsubscript{12-21} Epitope

(A) Schematic presentation of the K\textalpha/A\textsubscript{12-21} deleted or mutated antigens ppins\textalpha/A\textsubscript{12-21} and ppins\textalpha/GFP/A\textsubscript{12-21}.

(B) HEK293 cells were transiently transfected with pCI/ppins (lane 1), pCI/ppins\textalpha/A\textsubscript{12-21} (lane 2), pCI/ppins\textalpha/A\textsubscript{12-21} (lane 3), or control pCI DNA (lane 4). At 48 hr post-transfection, cells were lysed and total cell extracts were subjected to SDS-PAGE (12.5%) followed by anti-insulin- and anti-beta-actin-specific western blotting.

(C) Alternatively, HeLa cells were co-transfected with pCI/ppins or pCI/ppins\textalpha/A\textsubscript{12-21} DNA and an ER-targeted, red fluorescent protein (L-RFP-ER)-expressing vector. Ppins or insulin staining was performed using anti-insulin and FITC-conjugated anti-rabbit IgG.

(D) RIP-B7.1 tg mice (n = 5 per group) were immunized with pCI/ppins (group 1), pCI/ppins\textalpha/A\textsubscript{12-21} (group 2), or pCI/ppins\textalpha/A\textsubscript{12-21} (group 3), and diabetes development was followed by determination of the blood glucose levels. Cumulative diabetes incidences (%) are shown.

(E) Frequencies of K\textbeta/B\textsubscript{22-29}-specific CD8+ T cells in the pancreata of diabetic, pCI/ppins (group 1, n = 7), pCI/ppins\textalpha/A\textsubscript{12-21} (group 2, n = 7), pCI/ppins\textalpha/A\textsubscript{12-21} (group 3, n = 7), and sham-immunized (pCI) (group 4, n = 7) RIP-B7.1 tg mice were determined by K\textbeta/B\textsubscript{22-29}-dimer staining. Bar graphs represent the mean percentage of K\textbeta/B\textsubscript{22-29}-dimer+ cells among the CD8+ T cell population ± SD. Statistical analysis was performed using a repeated-measures one-way ANOVA followed by Tukey’s multiple comparisons. *p < 0.05; **p < 0.01; ns, not significant.
signals from tg beta cells (Figures S1B and S1C). However, pCI/ppinsΔA12-21 injection into PD-1−/− or PD-L1−/− mice elicited a systemic Foxp3 CD25+CD4+ Treg cell immunity that suppressed diabetes induction by a subsequent injection of the diabetogenic pCI/ppins vector.18

Nonobese diabetic (NOD) mice expressing the diabetes-susceptible H-2Kb haplotype (Kb A12-21) have been exploited extensively to study diabetes development as well as to develop immunotherapies to prevent diabetes. The MHC class II I-Aβ7 molecule in NOD mice, as specific human leukocyte antigen (HLA) haplotypes (DQ2; DQ8) in humans, is a major determinant for developing disease but expressed in an otherwise nonsusceptible genetic background (B6 or nonobese resistant NOD/Lt) is not sufficient for diabetes development. Though the pace of insulitis and disease development differs substantially in man and NOD mice and many translating therapies from NOD mice to humans failed, there are also several promising approaches. Peptide-based and vector-DNA-based immunotherapies have been successfully used in human trials. Vectors expressing proinsulin (pins) reduced the incidence of spontaneous diabetes development in NOD mice and reduced the frequency of autoimmune CD8+ T cells in patients with T1D. However, genetic vaccination with ppins-expressing DNA accelerated spontaneous diabetes development in female NOD mice and diminished the natural diabetes resistance in male NOD mice. This exemplifies that DNA vaccines against T1D contain a nonpredictable risk to induce autoimmune diabetes in different mouse models of type 1 diabetes. In particular, ppins designer antigens excluded from expression in the ER efficiently suppressed spontaneous diabetes development in the NOD mouse model.

RESULTS
Deletion or Silencing of the ppinsΔKb/A12-21, Epitope Restored Priming of Kb/B22-29-Specific CD8+ T Cells in RIP-B7.1 tg Mice
In RIP-B7.1 tg mice, injection of pCI/ppins DNA induced Kβ/A12-21 but not Kβ/B22-29-specific CD8+ T cells, whereas a mutant ppinsΔA12-21 vector, lacking the COOH-terminal Kβ/A12-21 epitope, elicited Kβ/B22-29-specific CD8+ T cells and autoimmunity diabetes (Figures S1B and S1C). Deletion of the A12-21 sequence may generate a specifically folded ppinsΔA12-21 antigen, which is selectively processed for Kβ/B22-29-specific epitope presentation and critically depends on its instable, protease-mediated high turn-over expression, as detected in transiently transfected HEK293 cells.

To determine whether intrinsic features of ppinsΔA12-21 played a crucial role for the priming of Kβ/B22-29-specific CD8+ T cells, we generated a mutant ppins antigen, in which the Kβ/A12-21 (ppins101-110) epitope was silenced by exchanging the amino acids at positions 102, 105, and 107 with alanine. This generated the pCI/ppinsΔ102,105,107A vector (Figure 1A). Ppns and ppinsΔ102,105,107A, but not the ppinsΔA12-21, antigen was stably expressed and accumulated to pronounced steady-state levels in transiently transfected HEK293 cells (Figure 1B). Both ppins102,105,107A and wild-type ppins proteins were expressed in the ER of transiently transfected HeLa cells (Figure 1C). Single injections of pCI/ppins102,105,107A, pCI/ppinsΔA12-21, or pCI/ppins vectors efficiently induced autoimmune diabetes in RIP-B7.1 tg mice (Figure 1D). However, dimer Kβ/B22-29-specific CD8+ T cells were detectable in pCI/ppins102,105,107A and pCI/ppinsΔA12-21-immune, but not in pCI/ppins-immune mice (Figure 1E). Kb/A12-21-specific CD8+ T cells, reactive with either wild-type Kβ/A12-21 or mutant Kβ/A12-21A Peptides were not detectable in pCI/ppinsΔA12-21 and pCI/ppins102,105,107A-immune mice (data not shown). Silencing of the Kβ/A12-21 epitope in the pCI/ppins102,105,107A construct was further confirmed in co-inhibition-deficient PD-L1−/− mice. In these mice, only ppins constructs that trigger Kβ/A12-21-specific effector CD8+ T cells induce autoimmune diabetes, and injection of pCI/ppins102,105,107A did not induce autoimmune diabetes (Figure S2). Overall, these findings indicated that antigen-specific properties of endogenously expressed ppinsΔA12-21 were not the primary cause for the priming of Kβ/B22-29-specific CD8+ T cells. Minor changes in the ppins102,105,107A antigen thus affected de novo priming of autoreactive CD8+ T cells in an epitope-specific manner. However, we could not exclude that the presence or absence of the Kβ/A12-21-epitope (and Kβ/A12-21-specific CD8+ T cells) may also affect the priming of Kβ/B22-29-specific CD8+ T cells in RIP-B7.1 tg mice, for example, by intrinsic local immune dominance phenomena.

Ppns or Pins Designer Antigens Excluded from Expression in the ER Did Not Induce Autoimmune Diabetes
A central aim of our studies was to design ppins or pins antigens that do not induce autoreactive Kβ/A12-21 and Kβ/B22-29-specific CD8+ T cells in RIP-B7.1 tg mice. We previously showed that ppins antigens, targeted to the cytosol and/or the nucleus by fusing the ppins sequence COOH terminally to the GFP (pCI/GFP-ppins) or to a 77-residue stress protein (Hsp73)-binding domain of the SV40 large T antigen (pCI/cT77-ppins), were excluded from expression and processing in the ER and did not induce autoimmune diabetes in RIP-B7.1 tg mice (Figure S3). Because these fusion antigens contain large heterologous protein sequences (Figure S3) that could induce ill-defined immune responses and thereby influence priming of autoreactive CD8+ T cells, we generated a small nuclear pins construct by exchanging the sequence of the ER-targeting signal peptide of ppins (SP) with a 19-amino-acids-long SV40 T-Ag-derived nuclear localization sequence (NLS; pCI/NLS-ppins) (Figure 2A). To facilitate detection of this antigen, we fused an HA-tag sequence COOH terminally in frame to the NLS-ppins sequence (Figure 2A). The NLS-ppins antigen was stably expressed in the nucleus of transiently transfected HEK293 cells (Figures 2B and 2C). Injection of the pCI/NLS-ppins vector into RIP-B7.1 tg mice did not induce autoimmune diabetes (Figure 2D). Furthermore, no signs of CD8+ T cell infiltration into islets or destruction of islets were detectable in pCI/NLS-ppins-immune RIP-B7.1 tg mice by histology (Figure 2E). Overall, these findings confirmed that prevention of antigen expression in the ER did not
Figure 2. Characterization of the pCI/NLS-pins Vaccine

(A) Schematic presentation of the HA-tagged NLS-pins antigen. The aa sequences of the nuclear localization signal (NLS) and the HA-tag (HA) are shown in brackets.

(B) Anti-HA- and anti-beta-actin-specific western blotting was performed on total cell extracts of HEK293 cells at 48 hr post-transfection with pCI (lane 1) or pCI/NLS-pins (lane 2).

(C) HeLa cells were either co-transfected with pCI/ppins and mRuby-H2B vector or with pCI/NLS-pins and mRuby-H2B vector. Antigen (pins)-specific expression was detected using anti-insulin (H-86) and FITC-conjugated anti-rabbit IgG.

(D) Diabetes development in pCI/ppins or pCI/NLS-pins immunized RIP-B7.1 tg mice (n = 5 per group) was followed by regular determination of the blood glucose levels. Cumulative diabetes incidences (%) are shown.

(E) Pancreatic sections from healthy, pCI/NLS-pins-immune RIP-B7.1 tg mice were analyzed by H&E staining and immunofluorescence staining for insulin and CD8+ T cells. Scale bar, 100 μm.
allow de novo priming of autoreactive effector CD8+ T cells in RIP-B7.1 tg mice by DNA immunization.

We previously showed that injection of pCI/ppins but not pCI/ppinsΔA12-21 DNA into H-2b PD-1- or PD-L1-deficient mice induced CD8+ T cell-mediated autoimmune diabetes (Figures S1B and S1C).7,8 However, the failure to induce CD8+ T cells in PD-1−/− and PD-L1−/− mice by pCI/ppinsΔA12-21 facilitated the induction of a systemic Foxp3+CD25+CD4+ Treg cell immunity that suppressed diabetes development by de novo priming and/or expansion of Kd/A12-21-specific effector CD8+ T cells in this diabetes model.18

Ppins or Pins Designer Antigens Excluded from Expression in the ER Suppressed Spontaneous Diabetes Development in NOD Mice

We hypothesized that ppins designer antigens that do not induce CD8+ T cells and autoimmune diabetes in H-2b RIP-B7.1 tg mice also do not induce autoreactive CD8+ T cells in NOD mice, expressing the diabetes-susceptible H-2b7 haplotype (Kd, D b; I – Ag7) but elicit a tolerogenic immunity that could suppress spontaneous diabetes development in these mice. Female NOD mice spontaneously developed severe autoimmune diabetes and hyperglycemia at the age of 14 to 22 weeks (Figure 4A). Diabetes development is characterized by continuous lymphoid cell accumulations in the periphery of pancreatic islets (peri-insulitis) and infiltration of the islets (insulitis) (Figures 5A and 5B), finally leading to the destruction of beta cells and the development of severe hyperglycemia.20 To determine whether ppins designer antigens could induce a tolerogenic immune response in NOD mice, we injected pCI/NLS-pins or pCI/GFP-ppins vectors and different pCI-based control vectors six times in biweekly intervals into young female NOD mice, starting at the age of 10–12 weeks (Figures 4 and 5). As expected at this age, islets already showed signs of an initial damage with a prominent insulitis (Figure 5B, group 1),19 whereas clinical signs of diabetes were still absent, with blood glucose levels below the threshold of 250 mg/dl (deciliter). Therefore, the destructive autoreactive immune response in the islets was already underway before DNA vaccination. In this therapeutic setting, we showed that vaccination of prediabetic
NOD mice with pCI/GFP-ppins or NLS-pins vectors significantly mitigated diabetes development as compared to untreated mice (Figure 4A). In contrast, immunization of NOD mice with pCI/ppinsΔA₁₂₋₂₁ did not affect spontaneous diabetes development in

Figure 4. Suppression of Spontaneous Diabetes Development in NOD Mice by pCI/NLS-pins and pCI/GFP-ppins Vaccines

(A) Young female NOD mice, at the age of 10 to 12 weeks, were either left untreated (n = 18) or immunized with pCI/GFP-ppins (n = 20) or pCI/NLS-pins (n = 8).
(B) Furthermore, NOD mice were immunized with the “empty” pCI vector (n = 22), pCI/ppinsΔA₁₂₋₂₁ (n = 10), or pCI/grp40 (n = 10). Injections were repeated six times in bi-weekly intervals. Diabetes development was monitored by regular blood glucose measurements. Kaplan-Meier curves of diabetes-free survival in the different study cohorts were compared using log-rank test. (*p < 0.05, **p < 0.01, ***p < 0.001); ns, not significant.

Figure 5. Suppression of the Pathogenic T Cell Infiltration into Islets of NOD Mice by pCI/NLS-pins and pCI/GFP-ppins Vaccines

(A) The continuous T cell infiltration into the islets was determined in untreated NOD mice by H&E staining of the islets. For the semiquantitative evaluation of islet infiltration, H&E-stained sections containing more than five islets were selected, and 20–30 islets per pancreas were evaluated. The extent of lymphoid islet infiltration was scored from 0 to 3 as follows: score 0 = healthy (no infiltration with lymphocytes detectable); score 1 = peri-insulitis (lymphocytes surrounding the islets); score 2 = insulitis with a <50% infiltration of the islets with lymphocytes; score 3 = severe insulitis with an extensive >50% infiltration of the islets with lymphocytes. Representative images of insulitis levels corresponding to the respective scores are shown. Scale bar, 50 μm.
(B) The actual progress of spontaneous diabetes development was determined in untreated nondiabetic (10–12 weeks old, n = 5) and diabetic (20 weeks old, n = 5) NOD mice: score 0 (black), score 1 (light gray, cross-striped), score 2 (gray), score 3 (light gray).
(C) The actual T cell infiltration of islets (insulitis scores 2 + 3) was determined in untreated diabetic (n = 5) NOD mice and compared with healthy, pCI/GFP-ppins (n = 4) or pCI/NLS-pins (n = 3) immune NOD mice. For statistical analysis, a repeated-measures one-way ANOVA followed by Tukey’s pairwise comparisons was used. *p < 0.05; ns, not significant.
female NOD mice (Figure 4B). Likewise, injection of the “empty” pCI vector or a vector expressing the G-protein-coupled receptor GPR40 (pCI/GPR40) did not affect spontaneous diabetes development in NOD mice (Figure 4B). As compared to 20-week-old untreated, diabetic NOD mice, suppression of diabetes development in age-matched pCI/GFP-ppins- or pCI-NLS-pins-immune and healthy NOD mice correlated with a substantial reduction of lymphoid cell infiltrations (insulinitis) into the islets (Figure S5A). Similarly, immunofluorescence staining of pancreas from healthy (vaccinated with pCI/GFP-ppins vector) NOD mice confirmed the perpetuation of insulin production in the islets and the little infiltration of islets with CD8+ T cells and CD4+ T cells (Figure S5A). In contrast, pancreatic islets of diabetic NOD mice (e.g., injected with “empty” pCI vector) showed a massive infiltration with CD8+ T cells and CD4+ T cells (Figure S5A). Overall, these findings showed that DNA vaccines expressing ppins or pins designer antigens excluded from ER efficiently inhibited an ongoing autoreactive immune response in NOD mice.

DISCUSSION

Here, we describe a novel strategy to prevent diabetes development in murine models of T1D through DNA vaccination. Vector-expressed designer antigens that targeted ppins to the cytosol and/or the nucleus and thus are excluded from direct expression and processing in the ER did not induce either autoreactive T cells or autoimmune diabetes in different mouse models, namely H-2b (Kb, Db, I-Ab) RIP-B7.1 tg and co-inhibition-deficient PD-L1−/− mice as well as H-2f7 (Kd, Dd, I-Af) NOD mice. Therefore, these vaccines are considered safe for autoreactive CD8+ T cells.19 There is increasing evidence from face of beta cells in NOD mice and man and thus are potential targets of autoimmunity.22 The ppins Kb/A12-21 epitope, representing the COOH terminus of the ppins molecule, does not require COOH-terminal processing for loading to Kd molecules in the ER.22 Similarly, a B22-30 epitope precursor with an almost exact COOH terminus (i.e., the B22-30 peptide with one additional serine residue at position B30) could be generated in insulin-producing beta cells by beta cell-specific prohormone convertases PC2 and PC3 (cleaving between the B and C and C and A junctions, respectively) and by carboxypeptidase E (removing the COOH-terminal, basic arginine residues of the B/C junction; Figure S1B).28 However, these enzymes were not expressed in non-beta cells (i.e., in vector-transfected APCs in the muscle).28 The processing mechanism(s) involved in the generation of the Kd/B22-29 peptide in non-beta cells and its loading to Kd molecules are yet unknown, but, at least for the mutant ppinsΔA12-21 antigen, may depend on its instable, proteasome-mediated high turn-over expression in transfected non-beta cells.8 In line with this, secretory or transmembrane proteins often contain MHC class I epitopes in their ER-targeting NH2-terminal signal peptides (SPs). SPs translocate proteins into the ER and are cleaved there by ER-resident signal peptidases (SPPases)40,41 can further process the NH2-terminal T cell responses to other beta cell antigens.31,33,34 However, induction and progression of autoimmune diabetes requires complex interactions between different components and/or networks of the immune system (e.g., professional APCs, CD4+ and CD8+ T cells, but also natural killer [NK] and natural killer T [NKT] cells). In particular, 1-Af/b B22-23, CD4+ T cells could play a central role in the induction of autoimmune diabetes in NOD mice.34,35 Therefore, the requirements for therapeutic vaccines against T1D are complex36 and should (1) be safe and not trigger autoreactive immune responses, (2) primarily suppress autoreactive CD4+ and CD8+ T cell responses directed against ppins, its processing intermediates, or unusual ribosomal insulin products37 as well as against very different beta cell antigens,19 and (3) operate in individuals with different MHC I and II compositions. We here showed that ppins designer antigens excluded from ER expression are smart vaccination tools to fulfill these requirements. Here, we showed that antigen expression in the ER is crucial to prime CD8+ T-cell-mediated diabetes. Antigens not expressed in the ER (i.e., pCI/GFP-ppins and pCI-NLS-pins) did not induce diabetes. However, we previously showed that a pCI/pins vector, generated from pCI/pins by removing the SP domain, expressed an instable protein in the cytosol. Comparable to the mutant ppinsΔA12-21 antigen, proteasome-mediated degradation of pins resulted in a high turnover of this antigen in transiently transfected cells.6,37 Injection of pCI/pins into RIP-B7.1 tg mice inefficiently induced late-onset autoimmune diabetes,6 but we could not unequivocally assign CD8+ T cell specificities to diabetes development. Therefore, this antigen contains a residual risk to develop diabetes, though pins expressing DNA vaccines were successfully used in NOD mice38 and patients with T1D to induce a tolerogenic immunity.22 The ppins Kd/A12-21 epitope, representing the COOH terminus of the ppins molecule, does not require COOH-terminal processing for loading to Kd molecules in the ER.22 Similarly, a B22-30 epitope precursor with an almost exact COOH terminus (i.e., the B22-30 peptide with one additional serine residue at position B30) could be generated in insulin-producing beta cells by beta cell-specific prohormone convertases PC2 and PC3 (cleaving between the B and C and C and A junctions, respectively) and by carboxypeptidase E (removing the COOH-terminal, basic arginine residues of the B/C junction; Figure S1B).28 However, these enzymes were not expressed in non-beta cells (i.e., in vector-transfected APCs in the muscle).28 The processing mechanism(s) involved in the generation of the Kd/B22-29 peptide in non-beta cells and its loading to Kd molecules are yet unknown, but, at least for the mutant ppinsΔA12-21 antigen, may depend on its instable, proteasome-mediated high turn-over expression in transfected non-beta cells.8 In line with this, secretory or transmembrane proteins often contain MHC class I epitopes in their ER-targeting NH2-terminal signal peptides (SPs). SPs translocate proteins into the ER and are cleaved there by ER-resident signal peptides (SPases). This often generates MHC class I epitope(s) with an exact COOH terminus. This has been shown to occur for two overlapping HLA-A0201-binding epitopes (ppins15-24 and ppins17-34) in the SP of human ppins.42 ER-resident aminopeptidase ERAp1,59 also but signal peptide peptide peptide (SPPases)40,51 can further process the NH2-terminal
epitope-flanking sequences. Processing and presentation of these epitopes in the ER required neither proteasomes nor TAP,27,42 thus differing from the conventional endogenous antigen-processing pathway, in which the majority of MHC class I-binding peptides are generated by the proteasome complex followed by TAP-mediated peptide translocation into the ER.51 However, several epitopes (and CD8+ T cells) were also identified in the human ppins SP that contain COOH termini far away from the natural SPase processing site at position 24/25 (HLA-A*24/ppins3-11; HLA-B*39/ppins5-12; HLA-B*38/ppins5-14).28,41 These epitopes are processed in the ER and/or the ER membrane by ER-associated SPases and SPPases, released into the cytoplasm and further processed for MHC I binding in a proteasome- and TAP-dependent manner.28,41 Furthermore, it has been shown that CD8+ T cells directed against an epitope of a defective ribosomal protein (DRiP)55 encoded in an alternative open reading frame of ppins5-14)28,41 These epitopes are processed in the ER and/or the ER membrane and synthesized by GeneArt (Regensburg, Germany) or generated from these constructs by standard cloning techniques. All constructs were cloned into the pCI vector (cat. no. E1731, Promega, Mannheim, Germany) using the NheI and NotI restriction sites. Batches of DNA were produced in E. coli using the QIAGEN Plasmid Mega Kit (cat. no. 12183; QIAGEN, Hilden, Germany).

Immunization of Mice and Detection of Ppins-Specific CD8+ T Cells

Mice were immunized into both tibialis anterior muscles with 100 μg/mouse of plasmid DNA. Development of autoimmune diabetes was analyzed by regular blood glucose measurements and diagnosed if two consecutive blood glucose values (within 2 days) exceeded 250 mg/dl, i.e., 13.8 mmol/L (Disetronic Freestyle, Sulzbach, Germany). A single drop of blood for the measurements was obtained by tail-vein puncture.

Kβ/B22.29-specific CD8+ T cell frequencies were determined in the pancreata as described previously.5,12 Kβ/B22.29-specific CD8+ T cells were stained with APC-conjugated anti-CD8 mAb (cat. no. 17-0081-83, BD Biosciences) and phycocerythrin (PE)-conjugated Kβ/B22-M29L loaded MHC class I dimers (BDDimer X, cat. no. 552944, BD Biosciences).

Characterization of Antigen Expression

HEK293 cells (ATCC CRL-1573) were used to determine expression of ppins constructs, because they can be transfected with high efficacy (>90%) using the calcium phosphate method and express high levels of vector-encoded antigens.56 For western blot analyses, transiently transfected cells were directly lysed with SDS-containing buffer (50 mM Tris-hydrochloride, 3% SDS, 5% β-mercaptoethanol [pH 6.8]), processed for SDS-PAGE and blotted on nitrocellulose membranes (cat. no. IB3010-01, Thermo Fisher, Germany) using the iBlot Dry Blotting system (Thermo Fisher). Membranes were blocked for 30 min at room temperature (RT) in a buffer supplemented with 0.1% Tween 20, 0.1% gelatin, and 3% milk powder. Membranes were successively incubated with rabbit H-86 anti-insulin antibody (cat. no. sc-9168, Santa Cruz Biotechnology) and horseradish peroxidase (HRP)-conjugated anti-rabbit immunoglobulin G (IgG) (cat. no. NA9340; GE Healthcare, Chalfont St Giles, UK). Where indicated, membranes were incubated with Restore Western Blot Stripping
Buffer (cat. no. 21059; Thermo Fisher Scientific) according to the recommendations of the manufacturer, prior to incubation with mouse anti-beta-actin mAb (cat. no. A2281, Sigma Munich, Germany) and HRP-conjugated sheep anti-mouse IgG (cat. no. NA931V, GE Healthcare, Dornstadt, Germany). HA-tagged proteins were detected using a primary anti-HA-Tag antibody (6E2; cat. no. 2367, Cell Signaling, Denver, MA, USA) and the secondary HRP-conjugated sheep anti-mouse antibody. The membranes were dried, and the Immobilon Western Chemiluminescent HRP substrate was applied as recommended by the manufacturer (cat. no. WBKLS0100, Millipore, Darmstadt, Germany) followed by exposure of the membranes to an Amersham Hyperfilm ECL (cat. no. 28906847, GE Healthcare, Dornstadt, Germany).

Immunofluorescence Staining

HeLa cells were grown in 2 ml of medium (cat. no. 31885, Invitrogen) supplemented with 10% fetal calf serum (FCS) on fibronectin (cat. no. 1083803901, Roche)-coated glass coverslips. Where indicated, cells were co-transfected with vectors encoding the L-RFP-ER protein (the red fluorescent protein [RFP] fused NH2-terminally with a IgG leader sequence and COOH terminally with the ER-retention signal SEKDEL) or encoding a red fluorescent mRuby-histone 2B protein using the Nanofectin transfection reagent (cat. no. Q051/005, PAA Laboratories, Colbe, Germany). For co-localization studies, cells were transfected with the indicated plasmids, fixed with 2% paraformaldehyde (PFA), and permeabilized with 0.2% Triton X-100, 48 hr post-transfection. Fish-skin gelatin (0.2%) was used as blocking reagent. Cells were stained for expression of the recombinant proteins, using rabbit H-86 anti-insulin antibody or mouse anti-HA-Tag antibody (6E2; cat. no. 2367, Cell Signaling, Denver, MA, USA), followed by Alexa Fluor 488-conjugated goat anti-rabbit IgG (cat. no. ab150077, Abcam, Cambridge, UK) or Alexa Fluor 488-conjugated goat anti-mouse IgG (cat. no. ab150113, Abcam), respectively. Images were acquired with a fluorescence microscope (IX71; Olympus) equipped with a digital camera (C4742; Hamamatsu), a 100-W mercury lamp (HBO 103W/2; Osram), and the following filter sets: GFP, excitation HQ470/40, emission HQ525/50; RFP, excitation HQ545/30, emission HQ610/75 (AHF Analysentechnik). Editing of the pictures was performed using ImageJ software (https://imagej.nih.gov/ij/). Images of H&E-stained sections were acquired on a light microscope (Leica, Germany) equipped with a digital camera and Leica Application Suite software (Leica Microsystems, Switzerland).

Statistical Analysis

PRISM 6.04 GraphPad software (GraphPad, San Diego, CA, USA) was used for statistical analyses. Figures show mean values ± SD, and group sizes are stated in the figure descriptions. For the evaluation of statistical differences in the mean T cell frequencies between groups and differences between insulitis grades of the differently treated NOD study cohorts, one-way ANOVA followed by Tukey’s multiple comparisons (with 95% confidence intervals) was used. (*p < 0.05, **p < 0.01, ***p < 0.001) The statistical significance of diabetes induction in immunized female NOD mice was determined by the log-rank (Mantel-Cox) test.

SUPPLEMENTAL INFORMATION

Supplemental Information includes five figures and can be found with this article online at https://doi.org/10.1016/j.omtm.2018.12.002.

AUTHOR CONTRIBUTIONS

K.S., C.S., J.K., and A.S. performed the experiments, researched data, and contributed to discussion; B.O.B. contributed to discussion and reviewed/edited the manuscript; K.S. and R.S. conceived and designed the experiments and wrote the manuscript.

CONFLICTS OF INTEREST

The authors have no conflicting interests.

ACKNOWLEDGMENTS

We thank Kathrin Schwengle for outstanding technical assistance. We thank Dr. Franz Oswald (University Hospital Ulm, Germany) for L-RFP-ER and mRuby-H2B vectors. We thank Dr. T. Honjo (Department of Immunology and Genomic Medicine, Kyoto University, Kyoto, Japan) for PD-1−/− mice and Dr. Lieping Chen (Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA) for PD-L1 (B7-H1)−/− mice. This work was supported by grants from the Deutsche Forschungsgemeinschaft: GRK-1789 “CEMMA” and DFG SCHI-505/6-1 to R.S. B.O.B. is supported by Lee Kong Chian School of Medicine, Nanyang Technological University Start Up Grant, Ministry of Education - Singapore (MOE), OE AcRF Tier 1 (2015-T1-001-258), and a MOE Tier 1 grant.

REFERENCES

1. Garren, H. (2009). DNA vaccines for autoimmune diseases. Expert Rev. Vaccines 8, 1195–1203.
2. Johnson, M.C., Wang, B., and Tisch, R. (2011). Genetic vaccination for re-establishing T-cell tolerance in type 1 diabetes. Hum. Vaccin. 7, 27–36.
3. Harlan, D.M., Hengartner, H., Huang, M.L., Kang, Y.H., Abe, R., Moreadith, R.W., Pircher, H., Gray, G.S., Ohashi, P.S., Freeman, G.L., et al. (1994). Mice expressing both B7-1 and viral glycoprotein on pancreatic beta cells along with glycoprotein-specific transgenic T cells develop diabetes due to a breakdown of T-lymphocyte unresponsiveness. Proc. Natl. Acad. Sci. USA 91, 3137–3141.
4. Karges, W., Pechhold, K., Al Dahouk, S., Rieger, I., Rief, M., Wissmann, A., Schirmbeck, R., Barth, C., and Boehm, B.O. (2002). Induction of autoimmune diabetes through insulin (but not GAD65) DNA vaccination in nonobese diabetic and in RIP-B7.1 mice. Diabetes 51, 3237–3244.

5. Karges, W., Rajaosalu, T., Spyrrantis, A., Wieland, A., Boehm, B., and Schirmbeck, R. (2007). The diabetogenic, insulin-specific CD8 T cell response primed in the experimentally autoimmune diabetes model in RIP-B7.1 mice. Eur. J. Immunol. 37, 2097–2103.

6. Brohi, M., Reiser, M., Rajaosalu, T., Spyrrantis, A., Oswald, F., Boehm, B.O., and Schirmbeck, R. (2009). Processing in the endoplasmic reticulum generates an epitope on the insulin A chain that stimulates diabetogenic CD8 T cell responses. J. Immunol. 183, 7187–7195.

7. Rajaosalu, T., Brohi, M., Schuster, C., Spyrrantis, A., Boehm, B.O., Chen, L., Reimann, J., and Schirmbeck, R. (2010). Deficiency in B7-H1 (PD-L1)/PD-1 coinhibition triggers pancreatic beta-cell destruction by insulin-specific, murine CD8 T-cells. Diabetes 59, 1966–1973.

8. Schuster, C., Brohi, M., Stifter, K., Boehm, B.O., and Schirmbeck, R. (2013). A missing PD-L1/PD-1 coinhibitory regulates diabetes induction by preproinsulin-specific CD8 T-cells in an epitope-specific manner. PLoS ONE 8, e7174.

9. Fuchs, Y.F., Adler, K., Lindner, A., Karasinsky, A., Wilhelm, C., Weigelt, M., Balke, H., Fortsch, K., Mortler-Hildebrand, L.F., Harlan, D.M., et al. (2014). IGRP and insulin vaccination induce CD8+ T-cell-mediated autoimmune diabetes in the RIP-CD80GP mouse. Clin. Exp. Immunol. 178, 199–206.

10. Verhagen, J., Smith, E.L., Whettelock, E.M., MacIntyre, B., and Peakman, M. (2018). Very low-affinity antigen routinely evade central and peripheral tolerance and cause autoimmunity. Immunity 49, 270–284.

11. Pechhold, K., Karges, W., Rajasalu, T., Spyrantis, A., Wieland, A., Boehm, B., and Schirmbeck, R. (2003). Beta cell function in type 1 diabetes through insulin (but not GAD65) DNA vaccination in nonobese diabetic and in RIP-B7.1 mice. Eur. J. Immunol. 34, 829–838.

12. Kronenberg, D., Knight, R.R., Estorninho, M., Ellis, T.I., Rester, M.G., de Ru, A., Eichmann, M., Huang, G.C., Powrie, F., and Dayan, C.M., et al. (2016). Circulating preproinsulin signal peptide-specific CD8 T cells restricted by the susceptibility molecule HLA-A24 are expanded at onset of type 1 diabetes and kill β-cells. Diabetes 65, 1752–1759.

13. Zehn, D., and Bevan, M.J. (2006). T cells with low avidity for a tissue-restricted antigen routinely evade central and peripheral tolerance and cause autoimmunity. Immunity 25, 270–284.

14. Zehn, D., Hsu, H.T., Janßen, L., Lawand, M., Kim, J., Perez-Arroyo, A., Culina, S., Gdoura, A., Burgevin, A., Cumenal, D., Fourneau, Y., et al. (2014). Endoplasmic reticulum targeting alters regulation of expression and antigen presentation of proinsulin. J. Immunol. 192, 4957–4966.

15. Chen, Y.G., Mathews, C.E., and Driver, J.P. (2018). The Role of NOD Mice in Type 1 Diabetes Research: Lessons from the Past and Recommendations for the Future. Front. Endocrinol. (Lausanne) 9, 51.

16. Hsu, H.T., Janssen, L., Lawand, M., Kim, J., Perez-Arroyo, A., Culina, S., Gdoura, A., Burgevin, A., Cumenal, D., Fourneau, Y., et al. (2014). Endoplasmic reticulum targeting alters regulation of expression and antigen presentation of proinsulin. J. Immunol. 192, 4957–4966.

17. Stifter, K., Schuster, C., Schlosser, M., Boehm, B.O., and Schirmbeck, R. (2016). Exploring the induction of preproinsulin-specific Foxp3 (+) CD4 (+) Treg cells that inhibit CD8 (+) T cell-mediated autoimmune diabetes by DNA vaccination. Sci. Rep. 6, 29419.

18. Cook, D.P., Gysemans, C., and Mathieu, C. (2017). Prospects of a type 1 diabetes vaccine. Expert Opin. Biol. Ther. 17, 403–406.

19. Krichmarth, B., Dekker, N.L., McKenzie, M.D., Purcell, A.W., Brooks, A.G., Gellert, S., Colman, P.G., Harrison, L.C., Lew, A.M., Thomas, H.E., and Ray, T.W. (2006). Responses against islet antigens in NOD mice are prevented by tolerance to proinsulin but not IGRP. J. Clin. Invest. 117, 3460–3474.

20. Prasad, S., Kohm, A.P., McMahon, J.S., Luo, X., and Miller, S.D. (2012). Pathogenesis of NOD diabetes is initiated by reactivity to the insulin B chain 9–23 epitope and involves functional epitope spreading. J. Autoimmun. 39, 347–353.

21. Daniel, C., Weigmann, B., Bronson, R., and von Boehmer, H. (2011). Prevention of type 1 diabetes in mice by tolerogenic vaccination with a strong agonist insulin minipeptide. J. Exp. Med. 208, 1501–1510.

22. Cook, D.P., Gysemans, C., and Mathieu, C. (2017). Prospects of a type 1 diabetes vaccine. Expert Opin. Biol. Ther. 17, 403–406.

23. Krichmarth, B., van Lummel, M., Nikolic, T., Joostem, A.M., Laban, S., van der Slak, A.R., van Veelen, P.A., Carloti, F., de Koning, E.J., Hoenen, R.C., et al. (2017). Autoimmunity against a defective ribosomal insulin gene product in type 1 diabetes. Nat. Med. 23, 501–507.

24. Smeekens, S.P., Montag, A.G., Thomas, G., Albiges-Rizo, C., Carroll, R., Benig, M., Prasad, S., Kohm, A.P., McMahon, J.S., Luo, X., and Miller, S.D. (2012). Pathogenesis of NOD diabetes is initiated by reactivity to the insulin B chain 9–23 epitope and involves functional epitope spreading. J. Autoimmun. 39, 347–353.

25. Daniel, C., Weigmann, B., Bronson, R., and von Boehmer, H. (2011). Prevention of type 1 diabetes in mice by tolerogenic vaccination with a strong agonist insulin minipeptide. J. Exp. Med. 208, 1501–1510.

26. Krichmarth, B., van Lummel, M., Nikolic, T., Joostem, A.M., Laban, S., van der Slak, A.R., van Veelen, P.A., Carloti, F., de Koning, E.J., Hoenen, R.C., et al. (2017). Autoimmunity against a defective ribosomal insulin gene product in type 1 diabetes. Nat. Med. 23, 501–507.

27. Smeekens, S.P., Montag, A.G., Thomas, G., Albiges-Rizo, C., Carroll, R., Benig, M., Phillips, I.A., Martin, S., Okagi, S., Gardner, P., et al. (1992). Proinsulin processing by the subtilisin-related proprotein convertases furin, PC2, and PC3. Proc. Natl. Acad. Sci. USA 89, 8822–8826.

28. Vanneau, L., Carroll, R., Londo, V., Del Val, M., Lopez, D., Lepelletier, Y., Greer, F., Schomburg, L., Fruci, D., Niedermann, G., and van Endert, P.M. (2005). Concerted peptide trimming by human ERAP1 and ERAP2 aminopeptidase complexes in the endoplasmic reticulum. Nat. Immunol. 6, 689–697.
40. Voss, M., Schröder, B., and Fluhrer, R. (2013). Mechanism, specificity, and physiology of signal peptide peptidase (SPP) and SPP-like proteases. Biochim. Biophys. Acta 1828, 2828–2839.

41. Kronenberg-Versteeg, D., Eichmann, M., Russell, M.A., de Ru, A., Hehn, B., Yusuf, N., van Veelen, P.A., Richardson, S.J., Morgan, N.G., Lemberg, M.K., and Peakman, M. (2018). Molecular Pathways for Immune Recognition of Preproinsulin Signal Peptide in Type 1 Diabetes. Diabetes 67, 687–696.

42. El Hage, F., Stroobant, V., Vergnon, I., Baurain, J.F., Echchakir, H., Lazar, V., Chouaib, S., Coulie, P.G., and Mami-Chouaib, F. (2008). Preprocalcitonin signal peptide generates a cytotoxic T lymphocyte-deleted tumor epitope processed by a proteasome-independent pathway. Proc. Natl. Acad. Sci. USA 105, 10119–10124.

43. Oliveira, C.C., and van Hall, T. (2015). Alternative Antigen Processing for MHC Class I: Multiple Roads Lead to Rome. Front. Immunol. 6, 298.

44. Bland, F.A., Lemberg, M.K., McMichael, A.J., Martoglio, B., and Braud, V.M. (2003). Requirement of the proteasome for the trimming of signal peptide-derived epitopes presented by the nonclassical major histocompatibility complex class I molecule HLA-E. J. Biol. Chem. 278, 33747–33752.

45. Antón, L.C., and Yewdell, J.W. (2014). Translating DRiPs: MHC class I immunosurveillance of pathogens and tumors. J. Leukoc. Biol. 95, 551–562.

46. Gibson, V.B., Nikolic, T., Pearce, V.Q., Demengeot, J., Roep, B.O., and Peakman, M. (2015). Proinsulin multi-peptide immunotherapy induces antigen-specific regulatory T cells and limits autoimmunity in a humanized model. Clin. Exp. Immunol. 182, 251–260.

47. Bluestone, J.A., Buckner, J.H., Fitch, M., Gitelman, S.E., Gupta, S., Hellerstein, M.K., Herold, K.C., Lares, A., Lee, M.R., Li, K., et al. (2015). Type 1 diabetes immunotherapy using polyclonal regulatory T cells. Sci. Transl. Med. 7, 315ra189.

48. Patterson, S.J., Pesenacker, A.M., Wang, A.Y., Gilles, J., Mojibian, M., Morishita, K., Tan, R., Kieffer, T.J., Verchere, C.B., Panagiotopoulos, C., and Levings, M.K. (2016). T regulatory cell chemokine production mediates pathogenic T cell attraction and suppression. J. Clin. Invest. 126, 1039–1051.

49. Baxter, A.G., and Cooke, A. (1993). Complement lytic activity has no role in the pathogenesis of autoimmune diabetes in NOD mice. Diabetes 42, 1574–1578.

50. Serreze, D.V., Gaskins, H.R., and Leiter, E.H. (1993). Defects in the differentiation and function of antigen presenting cells in NOD/Lt mice. J. Immunol. 150, 2534–2543.

51. Kukreja, A., Costi, G., Marker, J., Zhang, C.H., Sinha, S., Sun, Z., and Maclaren, N. (2002). NKT cell defects in NOD mouse suggest therapeutic opportunities. J. Autoimmun. 19, 117–128.

52. Cotta-de-Almeida, V., Villa-Verde, D.M., Lepault, F., Pléau, J.M., Dardenne, M., and Savino, W. (2004). Impaired migration of NOD mouse thymocytes: a fibronectin receptor-related defect. Eur. J. Immunol. 34, 1578–1587.

53. Suwanai, H., Wilcox, M.A., Mathis, D., and Benoist, C. (2010). A defective IL15 allele underlies the deficiency in natural killer cell activity in nonobese diabetic mice. Proc. Natl. Acad. Sci. USA 107, 9305–9310.

54. Nishimura, H., Minato, N., Nakano, T., and Honjo, T. (1998). Immunological studies on PD-1 deficient mice: implication of PD-1 as a negative regulator for B cell responses. Int. Immunol. 10, 1563–1572.

55. Dong, H., Zhu, G., Tamada, K., Flies, D.B., van Deursen, J.M., and Chen, L. (2004). B7-H1 determines accumulation and deletion of intrahepatic CD8(+) T lymphocytes. Immunity 20, 327–336.

56. Wieland, A., Denzel, M., Schmidt, E., Kochanek, S., Kreppel, F., Reimann, J., and Schirmbeck, R. (2008). Reconstituent complexes of antigen with stress proteins are potent CD8(+) T-cell-stimulating immunogens. J. Mol. Med. (Berl.) 86, 1067–1079.