Population pharmacokinetics model and initial dose optimization of tacrolimus in children and adolescents with lupus nephritis based on real-world data

XIAO CHEN1*, DONG-DONG WANG1*, HONG XU2 and ZHI-PING Li1

Departments of 1Pharmacy and 2Nephrology, Children's Hospital of Fudan University, Shanghai 201102, P.R. China

Received January 28, 2020; Accepted May 1, 2020

DOI: 10.3892/etm.2020.8821

Abstract. The present study aimed to establish a population pharmacokinetics model of tacrolimus and further optimize the initial dosing regimen of tacrolimus in pediatric and adolescent patients with lupus nephritis (LN). Pediatric and adolescent patients with LN were recruited between August 2014 and September 2019 at the Children's Hospital of Fudan University (Shanghai, China). Relevant information was used to set up a population pharmacokinetics model with a Nonlinear Mixed Effect Model and the initial dosage regimen was simulated with the Monte Carlo method. Body weight and co-administration of wuzhi capsule were indicated to influence tacrolimus clearance in pediatric and adolescent patients with LN, and at the same body weight, the rate of tacrolimus clearance in patients without vs. with co-administration of wuzhi capsule was 1:0.71. In addition, in patients who were not administered wuzhi capsule, an initial dosage regimen of 0.15 mg/kg/day was recommended for a body weight of 10-23 kg and 0.10 mg/kg/day for 23-60 kg; in patients who were administered wuzhi capsule, an initial dosage regimen of 0.10 mg/kg/day was recommended for a body weight of 10-23 kg and 0.05 mg/kg/day for 23-60 kg. To the best of our knowledge, the present study was the first to establish a population pharmacokinetics model of tacrolimus in order to determine the optimal initial dosage regimen of tacrolimus in pediatric and adolescent patients with LN.

Introduction

Systemic lupus erythematosus (SLE) is a multisystemic autoimmune disease (1) characterized by connective-tissue inflammation and extensive vasculitis (2-5). It primarily occurs in adolescents aged 10-19 years, although 1/3 of affected patients are <10 years old and the majority are females (1,6). Organ lesions in pediatric and adolescent patients with SLE are more severe than those in adults and may lead to death in a relatively short time, being associated with dismal prognoses (1). Pediatric and adolescent patients with SLE frequently have complex and severe clinical manifestations (1,6) that affect various different organs, either simultaneously or successively involving multiple systems, including the urinary, nervous, cardiovascular and blood supply systems (1).

Lupus nephritis (LN) is one of the most severe complications of SLE and its incidence rate reaches up to 60% in patients with SLE worldwide. Among patients with SLE, 50-80% are cases of pediatric-onset SLE (7,10). As comprehensively reviewed (10), without pharmacotherapy, long-term LN may induce irreversible renal injury and subsequently develops into end-stage renal disease. Traditional treatments of LN involve a combination therapy of cyclophosphamide with glucocorticoids, which have been demonstrated to improve the long-term prognosis. However, its usage is limited by severe adverse effects, including hemorrhagic cystitis, amenorrhea, malignancy and sepsis. Novel immunosuppressants, including tacrolimus, cyclosporine and mycophenolate mofetil are required to inhibit the side effects of traditional treatments. Tacrolimus has been reported to be a safe and effective agent for treating patients with LN (10).

However, considerable intra- and inter-individual pharmacokinetic variability makes it difficult to establish individualized tacrolimus dosage regimens. Of note, population pharmacokinetics is able to differentiate in terms of pharmacokinetic variability and has a higher statistical power to verify the effect of multiple factors on the pharmacokinetic behaviour of tacrolimus compared to traditional pharmacokinetic analysis and makes it possible to formulate an optimal
dosage schedule (11,12). Hence, the present study aimed to establish a population pharmacokinetics model of tacrolimus and further optimize the initial dosage regimen for tacrolimus in pediatric and adolescent patients with LN.

Patients and methods

Study design. The clinical information of pediatric and adolescent patients with LN treated between August 2014 and September 2019 at the Children's Hospital of Fudan University (Shanghai, China) was retrospectively collected. The clinical information was collected from the hospital’s information system and tacrolimus whole-blood levels were acquired from a therapeutic drug detection system. Partial basic clinical information data with partial overlap were collected from certain patients in previous studies (13,14). The present study was approved by the Research Ethics Committee of the Children's Hospital of Fudan University [ethical approval code: (2019)020]. The present study was a retrospective study and was approved by the ethics committee of this hospital without the requirement for written informed consent. A previous study have used lower patient numbers (15).

Population pharmacokinetics modeling. The population pharmacokinetics model was established using Nonlinear Mixed Effects Modeling software (NONMEM®; version VII; ICON Development Solutions Ltd.) by the first-order conditional estimation method with interaction. The pharmacokinetics parameters included apparent oral clearance (CL/F), volume of distribution (V/F) and absorption rate constant (Ka), where the value of Ka was fixed at 4.48 per hour (13,16-18).

Inter-individual variabilities were estimated by equation (i): \[ \theta = A \times (\exp(\eta_i)) \]

\( A \) and \( T(A) \) represent the individual parameter value and the typical individual parameter value, respectively. \( \eta \) represented a symmetrical distribution \((0, \sigma^2)\), which was a random term with zero mean and variance \( \sigma^2 \).

Random residual variabilities were estimated by equation (ii): \[ \varepsilon = (1 + \varepsilon_i) \times B \]

A and B represent the observed concentration and the individual predicted concentration, respectively. \( \varepsilon \) represented a symmetrical distribution \((0, \sigma^2)\), which was a random term with zero mean and variance \( \sigma^2 \).

Covariate model. Weight and pharmacokinetics parameters were estimated by equation (iii): \[ A_{\text{WT}} = A_{\text{WT}} \times (\text{WT/WT}_{\text{std}})^{\text{power}} \]

\( A_{\text{WT}} \) represents the typical individual parameter of \( \text{WT}_{\text{std}} \) (\( 70 \) kg) and \( A_{\text{WT}} \) is the standard body weight, which was 70 kg). Power was the allometric coefficient, which was set at 0.75 for the CL/F and 1 for the V/F (19). Continuous covariates and categorical covariates were estimated by equation (iv) and (v), respectively: \[ A_{\text{WT}} = T(A) \times (\text{Cov}_{\text{WT}})^{0.5} \] and \[ A_{\text{WT}} = T(A) \times (1 + \text{Cov}_{\text{WT}}) \]. \( A_{\text{WT}} \) and \( T(A) \) represent the individual parameter value and the typical individual parameter value, respectively. \( \theta \) represents the parameter to be estimated and \( \text{Cov}_{\text{WT}} \) is the population median for the covariate. \( \text{Cov}_{\text{WT}} \) represents the covariate of the i-th individual. When a covariate was finally incorporated into the model, the corresponding \( \theta \) value was obtained.

Changes in objective function values (OFV) were assessed by covariate inclusions and a decrease of OFV >3.84 (P<0.05). An increase in OFV >6.63 (P<0.01) was considered sufficient for significance in the final model.

Evaluation and simulation. The reliability and stability of the final parameters were assessed by bootstrap (n=1,000), which was performed using the NONMEM® software (version VII; ICON Development Solutions Ltd), goodness of fit plots and prediction-corrected visual predictive check (VPC) plots. The Monte Carlo method was used for the simulation of the optimal initial dose, including six weight groups (10, 20, 30, 40, 50 and 60 kg) and seven initial dosing regimens (0.01, 0.05, 0.10, 0.15, 0.20, 0.25 and 0.30 mg/kg daily) split into two doses. Based on previous publications, the therapeutic window of tacrolimus treatment in LN is between 5 and 15 ng/ml; thus, this was used in the present study (10).

Results

Data collection. The clinical information of 32 pediatric and adolescent patients with LN (5 males and 27 females) was collected for the present study and was used for population modelling. The clinical information of certain patients was collected in previous studies (13,14). Table I presents patient characteristics and drug combinations.

Population pharmacokinetic model. The final covariate model was described by equations (vi) and (vii), respectively: \[ \text{CL/F} = \theta_{\text{CL/F}} x (\text{WT/70})^{0.5} x (1 + \text{WZ} x \theta_{\text{WZ}}) \] and \[ \text{V/F} = \theta_{\text{V/F}} x (\text{WT/70}) \]. \( \theta_{\text{CL/F}} \) and \( \theta_{\text{V/F}} \) are the typical population values of CL/F and V/F, respectively. \( \theta_{\text{WZ}} \) is the coefficient of wuzhi capsule. When patients were co-administered wuzhi capsule and tacrolimus, \( \text{WZ}=1 \) was used; otherwise, \( \text{WZ}=0 \) was applied.

Validation. As presented in Fig. 1, observations vs. population predictions, observations vs. individual predictions, conditional weighted residuals (WRES) vs. population predictions and conditional WRES vs. time after the start of therapy were assessed in goodness of fit plots. The parameter estimates of the final model and bootstrap validation are presented in Table II. The prediction-corrected visual predictive check plots of the final model are provided in Fig. 2, where most of the observations are within the 95% prediction intervals of the simulation data, indicating that the prediction-corrected concentrations were well predicted by the final model.

Simulation. Body weight and co-administration of wuzhi capsule affected tacrolimus clearance in pediatric and adolescent patients with LN, and for the same body weight, the rate of tacrolimus clearance in patients who were not administered wuzhi capsule vs. those who were administered wuzhi capsule was 1:0.71 (Fig. 3). Fig. 4 presents the probability of achieving the target concentrations under different initial doses. In addition, in patients who were not administered wuzhi capsule, the initial dosage regimen of 0.15 mg/kg/day was recommended for a body weight of 10-23 kg and 0.10 mg/kg/day for 23-60 kg; in patients who were co-administered wuzhi capsule and tacrolimus, the initial dosage regimen of 0.10 mg/kg/day was...
Table I. Demographic data of patients (n=32) and drug combinations.

| Characteristic                              | N or mean ± SD          | Median (range)       |
|---------------------------------------------|-------------------------|----------------------|
| Gender (male/female)                        | 5/27                    |                      |
| Age (years)                                 | 13.44±2.86              | 13.87 (2.86-17.99)   |
| Body weight (kg)                            | 45.89±10.55             | 47.00 (17.00-66.50)  |
| Albumin (g/l)                               | 38.24±6.21              | 39.40 (10.00-49.30)  |
| Alanine transaminase (IU/l)                 | 13.88±15.69             | 10.00 (1.00-123.00)  |
| Aspartate transaminase (IU/l)               | 16.37±8.10              | 15.00 (5.00-79.80)   |
| Creatinine (µmol/l)                         | 55.71±19.59             | 54.00 (16.00-225.00) |
| Urea (mmol/l)                               | 6.14±2.61               | 5.80 (2.10-27.30)    |
| Total protein (g/l)                         | 64.26±7.13              | 65.20 (37.90-79.70)  |
| Total bile acid (µmol/l)                    | 4.78±6.34               | 3.70 (0.90-85.50)    |
| Direct bilirubin (µmol/l)                   | 1.68±3.56               | 1.40 (0.20-55.10)    |
| Total bilirubin (µmol/l)                    | 6.34±4.12               | 6.00 (2.30-64.90)    |
| Hematocrit (%)                              | 36.57±4.85              | 36.50 (20.50-50.00)  |
| Hemoglobin (g/l)                            | 122.01±21.97            | 120.00 (70.20-290.00)|
| Mean corpuscular hemoglobin (pg)            | 28.15±2.33              | 28.00 (21.00-35.00)  |
| Mean corpuscular hemoglobin concentration (g/l) | 330.25±13.93         | 333.00 (271.00-383.00)|
| Co-medication                               |                         |                      |
| Glucocorticoid                              | 32                      |                      |
| Wuzhi capsule                               | 12                      |                      |

SD, standard deviation.

Figure 1. The final model goodness-of-fit plots. (A) Observations vs. population predictions. (B) observations vs. individual predictions, (C) conditional WRES vs. population predictions and (D) conditional WRES vs. time after the start of therapy. WRES, weighted residuals. Partial concentration values were collected based on previous studies (13,14).
CHEN et al: TACROLIMUS PPK AND INITIAL DOSE IN LN

Table II. Parameter estimates of the final model and bootstrap validation.

| Parameter | Estimate | SE  | Median | 95% CI       | Bias  |
|-----------|----------|-----|--------|--------------|-------|
| CL/F (l/h)| 15.5     | 0.729 | 18.5   | [2.5, 24.4]  | 0.194 |
| V/F (l)   | 174      | 1.908 | 303    | [8, 1200]    | 0.741 |
| Ka (1/h)  | 4.48 (fixed) | -   | -      | -            | -     |
| θ_WZ      | -0.290   | 0.390 | -0.297 | [-0.440, -0.133] | 0.024 |
| ω_{CL/F}  | 0.172    | 0.461 | 0.175  | [0.073, 0.292] | 0.017 |
| σ_1       | 0.281    | 0.049 | 0.277  | [0.249, 0.305] | -0.014 |

The 95% CI was displayed as the 2.5th, 97.5th percentile of bootstrap estimates. CL/F, apparent oral clearance; V/F, apparent volume of distribution; Ka, absorption rate constant; θ_WZ, coefficient of wuzhi capsule; ω_{CL/F}, inter-individual variability of CL/F; σ_1, residual variability, proportional error; SE, standard error; Bias, prediction error [Bias=(Median-Estimate)/Estimate].

Figure 2. The final model VPC plots. The y-axis represents the observed whole blood concentration of tacrolimus. The middle solid line represents the median of the prediction-corrected concentrations. The lower and upper dashed lines are the 2.5th and 97.5th percentiles of the prediction-corrected concentrations, respectively. The blue points represents observed concentrations (measured concentrations). The pink zone represents the confidence interval of the middle solid line and the purple zones indicate the confidence interval of the lower and upper dashed lines. VPC, prediction-corrected visual predictive check. Partial concentration values were collected based on previous studies (13,14).

Figure 3. CL/F of tacrolimus in children and adolescents with lupus nephritis. WZ, wuzhi capsule; CL/F, apparent oral clearance.

recommended for a body weight of 10-23 kg and 0.05 mg/kg/day for 23-60 kg, as presented in Table III.

Discussion

Tacrolimus, also known as FK506, is a 23-membered lactone ring that is isolated from Streptomyces tsukubaensis and used as a potent immunosuppressant. It has been reported that tacrolimus is 100 times stronger than cyclosporine and it may exert its effects by inhibiting the function of T lymphocytes and downregulating the expression of interleukin-2 (20,21). In addition, it has been used as the first-line drug for patients with liver and renal transplant (16,22-34). Furthermore, it has been demonstrated that tacrolimus may be used to improve the outcome of patients who undergo bone marrow (35-42), lung (43) and heart transplantation (44).

In previous years, clinical experiments have also indicated that tacrolimus has useful applications in systemic-onset juvenile idiopathic arthritis (45-48), nephrotic syndrome (49-55), SLE (56-65), myasthenia gravis (66,67), ulcerative colitis (68,69) and autoimmune hepatitis (70). Furthermore, according to a previous review article, tacrolimus is a safe and effective agent for treating patients with LN (10).

It has been reported that the underlying mechanism of action of tacrolimus in LN is primarily its inhibitory effect on the dephosphorylation of the nuclear factor of activated T cells, which thereby reduces the activity of genes encoding interleukin-2 and associated cytokines (71), leading to the inhibition of T-cell activation. In addition, the effect of tacrolimus on LN is also the result of its well-known antiproteinuric effects that have been utilized in the treatment of a variety of kidney pathologies (72). It has also been reported that in mouse models of SLE, tacrolimus inhibits the progression of glomerular hypercellularity, crescent formation and proteinuria development,
and suppresses the increase of anti-double-stranded DNA antibody serum levels in animal models of spontaneous LN (73). Therefore, from the above perspective, the mechanism of action of tacrolimus in treating LN is well explained.

However, due to the considerable pharmacokinetic variation among individuals (74,75), the optimal initial dose regimen of tacrolimus in pediatric and adolescent patients with LN has remained to be determined. Population pharmacokinetic models may be useful in predicting individualized therapy by integrating different effects of variables on drug exposure (76), which may determine the initial dosage in different diseases. This includes dose simulation of oxcarbazepine in pediatric patients with epilepsy (77), dose optimization of vancomycin in neonates and young infants (78), dose optimization of azithromycin in pediatric patients with community-acquired pneumonia (79), dose optimization of cyclosporin in pediatric patients with hemophagocytic lymphohistiocytosis (80) and dose optimization of tacrolimus in patients with nephritic syndrome (81,82). Thus, the present study aimed to establish a population pharmacokinetic model of tacrolimus and further optimize the initial dosage regimen of tacrolimus in pediatric and adolescent patients with LN.

In the present study, body weight and co-administration of wuzhi capsule were indicated to influence tacrolimus clearance in pediatric and adolescent patients with LN. A previous similar study demonstrated a non-linear association between drug clearance and body weight in patients (19). In the present study, the rate of tacrolimus clearance in patients who were not administered wuzhi capsule and those who were administered wuzhi capsule with the same body weight was 1:0.71. Wuzhi capsule is a Chinese patent medicine, which contains the primary active ingredients schisandrin, schisantherin A and schisandrol B (83). It has been demonstrated that wuzhi capsule increases the concentration of tacrolimus (84-86) via inhibition of the enzyme cytochrome P450, family 3 (CYP3A) in order to inhibit the metabolization of tacrolimus (86,87). This is able to reduce the dose of tacrolimus required and reduce medical costs, particularly in patients who require to take tacrolimus over a long period of time. In addition, the present study revealed a wide range of hemoglobin levels, which may be due to differences in various physiological or pathological states among the pediatric patients. The specific mechanisms remain to be further explored.

Next, Monte Carlo simulation was used to further predict the optimal dose. This indicated that in patients who weren't administered wuzhi capsule, the initial dosage regimen of 0.15 mg/kg/day was recommended for a body weight of 10-23 kg and 0.10 mg/kg/day for 23-60 kg; in patients who were co-administered wuzhi capsule, the initial dosage regimen of 0.10 mg/kg/day was recommended for a body weight of 10-23 kg and 0.05 mg/kg/day for 23-60 kg.

However, there are limitations to the present study. Polymorphisms of CYP3A5 may be associated with tacrolimus required dose; however, the present study was based on real-world data, in which pharmacogenetics were not considered in tacrolimus dosing and therefore, no routine clinical testing was performed with this regard. Therefore, it should be further investigated whether the inclusion of genotyping in this model is able to better explain the variability in the dosage of tacrolimus. In addition, future studies with more patients are required to verify the results of the present study.

In conclusion, to the best of our knowledge, the present study was the first to construct a population pharmacokinetics model of tacrolimus and optimize the initial dosage regimen for tacrolimus treatment in pediatric and adolescent patients with LN.

Acknowledgements

Not applicable.
Funding
This work was supported by the Scientific Research Project of Science and Technology Commission of Shanghai Municipality (grant no. 18DZ1910604/19DZ1910703) and the Shanghai Science and Technology Commission (grant no. 19XD1400900).

Availability of data and materials
The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

Authors' contributions
ZL and HX conceived and designed the study. XC and DW collected and analyzed the data. XC wrote the manuscript. All authors read and approved the final manuscript.

Ethics approval and informed consent to participate
The study was approved by the Research Ethics Committee of the Children's Hospital of Fudan University (Shanghai, China). The present study was a retrospective study and the analysis was approved by the Ethics Committee of the hospital without the requirement for written informed consent.

Patient consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

References
1. Papadimitraki ED and Isenberg DA: Childhood- and adult-onset lupus: An update of similarities and differences. Expert Rev Clin Immunol 5: 391-403, 2009.
2. Takeuchi T, Tsuzaka K, Abe T, Yoshimoto K, Shiraishi K, Kameda H and Amano K: T cell abnormalities in systemic lupus erythematosus. Autoimmunity 38: 339-346, 2005.
3. Rahman A and Isenberg DA: Systemic lupus erythematosus. N Engl J Med 358: 929-939, 2008.
4. Gurevitz SL, Snyder JA, Wessel EK, Frey J and Williamson BA: Renal association -European dialysis and transplant association -Joint European league against rheumatism and European. Acta Paediatr Jpn 39: 250-256, 1997.
5. Fujikawa S, Tanaka H, Joh K and Imaizumi T: Treatment of pediatric-onset lupus nephritis: A proposal of optimal therapy. Clin Exp Immunol 5: 391-403, 2009.
6. Tang YX, Su QH, Wu KH, Ren YP, Li L, Zhou TY and Lu W: A population pharmacokinetic study of tacrolimus in healthy Chinese volunteers and liver transplant patients. Acta Pharmacol Sin 36: 281-288, 2015.
7. Zhou T, Lin S, Yang S and Lin W: Efficacy and safety of tacrolimus in induction therapy of patients with lupus nephritis. Drug Des Devel Ther 13: 857-869, 2019.
8. V. Narayankumar S, Prasathan S, Techawathanawanna N, Treypaprasert W and Avihingsanon Y: Population pharmacokinetics of tacrolimus in Thai kidney transplant patients: Comparison with similar data from other populations. J Clin Pharm Ther 41: 310-328, 2016.
9. Wang D, Chen X, Xu H and Li Z: Population pharmacokinetics and dosing regimen optimization of tacrolimus in Chinese pediatric hematopoietic stem cell transplantation patients. Xenobiota 50: 178-185, 2020.
10. Wang DD, Lu JM, Li Q and Li ZP: Population pharmacokinetics of tacrolimus in paediatric systemic lupus erythematosus based on real-world study. J Clin Pharm Ther 43: 476-483, 2018.
11. Chen X, Wang D, Xu H and Li Z: Initial dose optimization of tacrolimus for children with systemic lupus erythematosus based on the CYP3A5 polymorphism and coadministration with Wuzhi capsule. J Clin Pharm Ther 45: 309-317, 2020.
12. Mizuno T, Fukuda T, Christians U, Perentes JP, Foula M and Vinks AA: Population pharmacokinetics of temsirolimus and sirolimus in children with recurrent solid tumours: A report from the Children's Oncology Group. Br J Clin Pharmacol 83: 1097-1107, 2017.
13. Yang JW, Liao SS, Zhu LQ, Zhao Y, Zhang Y, Sun XY, Rao W, Qu W, Li WZ and Sun LY: Population pharmacokinetic analysis of tacrolimus early after Chinese pediatric liver transplantation. Int J Clin Pharm Ther 53: 75-83, 2015.
14. Lindbom L, Pilgriden F and Jonsson EN: PsN-Toolkit—a collection of computer intensive statistical methods for non-linear mixed effect modeling using NONMEM. Comput Methods Programs Biomed 79: 241-257, 2005.
15. Jusko WJ, Piekoszewski W, Klintmalm GB, Shafer MS, Hebert MF, Piergies AA, Lee CC, Schechter P and Mekki QA: Pharmacokinetics of tacrolimus in liver transplant patients. Clin Pharmacol Ther 57: 281-290, 1995.
16. Anderson BJ and Holford NH: Mechanism-based concepts of size and maturity in pharmacokinetics. Annu Rev Pharmacol Toxicol 48: 303-332, 2008.
17. Ho S, Clipstone N, Timmermann L, Northrop J, Graef I, Fiorentino D, Nourse J and Crabtree GR: The mechanism of action of cyclosporin A and FK506. Clin Immunol Immunopathol 80: S40-S45, 1996.
18. Wang DD, Chen X and Li ZP: Tacrolimus ameliorates proteinuria in Chinese pediatric lupus nephritis patients. Int J Exp clin Pharmacol Ther 12: 10931-10937, 2015.
19. Andreu F, Colom H, Grinyo JM, Torras J, Cruzado JM and Llobet N: Development of a population PK model of tacrolimus for adaptive dosage control in stable kidney transplant patients. Ther Drug Monit 37: 246-255, 2015.
20. Berktaki K, Rostaing L, Remaud A, Woillard JB, Saint-Marcoux F, Benkali K, Rostaing L, Premaud A, Woillard JB and Rostaing L: Population pharmacokinetics and Bayesian estimation of tacrolimus exposure in renal transplant recipients on a new once-daily formulation. Clin Pharmacokinet 48: 683-692, 2010.
21. Bergmann TK, Hennig S, Barraclough KA, Isbel NM and Staatz CE: Population pharmacokinetics of tacrolimus in adult kidney transplant patients: Impact of CYP3A5 genotype on starting dose. Ther Drug Monit 36: 62-70, 2014.
22. Han N, Ha S, Yun HY, Kim MG, Min SI, Ha J, Lee JI, Oh JM and Kim JW: Population pharmacokinetic-pharmacogenetic model of tacrolimus in the early period after kidney transplantation. Basic Clin Pharmacol Toxicol 114: 400-406, 2014.
23. Zhao W, Elie V, Roussey G, Brochard K, Niaudet P, Leroy V, Lloberas N: Development of a population PK model of tacrolimus in children with recurrent solid tumours. Basic Clin Pharmacol Toxicol 114: 400-406, 2014.
Nash RA, Etzioni R, Storb R, Furlong T, Gooley T, Anasetti C, d’Incalci M, Salloum R, Bierer BE, Przepiorka D, Fitzsimmons WE, Marquet P and Reynaud-Gaubert M, Pison C, Stern M, Kessler R, Guillemain R, Oudard S: Phase 3: The efficacy of add-on tacrolimus for minor responses in patients with systemic-onset juvenile idiopathic arthritis with tacrolimus. Exp Ther Med 19: 2120-2122, 2020.

Tamura H, Tsugawa K, Suzuki K, Oki E, Nonaka K, Kimura S and Ito E: Treatment of difficult cases of systemic-onset juvenile idiopathic arthritis with tacrolimus. Eur J Pediatr 166: 1053-1055, 2007.

Wang D, Chen X and Li Z: Treatment of patients with systemic-onset juvenile idiopathic arthritis with tacrolimus. Exp Ther Med 17: 2305-2309, 2019.

Choudhry S, Bagga A, Hari P, Sharma S, Kalaivanan M and Dinda A: Efficacy and safety of tacrolimus versus cyclosporine in children with steroid-resistant nephrotic syndrome: A randomized controlled trial. Am J Kidney Dis 53: 760-769, 2009.

Gulati A, Sinha A, Gupta A, Kanitkar M, Sreenivas V, Sharma J, Mantan M, Agarwal I, Dinda AK, Hari P and Bagga A: Treatment with tacrolimus and prednisolone is preferable to intravenous cyclophosphamide as the initial therapy for children with steroid-resistant nephrotic syndrome. Kidney Int 82: 1130-1135, 2012.

Gulati S, Prasad N, Sharma RK, Kumar A, Gupta A and Baburaj VP: Tacrolimus: A new therapy for steroid-resistant nephrotic syndrome in children. Pediatr Nephrol 25: 1117-1124, 2010.

Yang EM, Lee ST, Choi HJ, Cho HY, Lee JH, Kang HG, Park YS, Cheong HI and Ha IS: Tacrolimus for children with refractory nephrotic syndrome: A one-year prospective, multicenter, and open-label study of Tacrobell(R), a generic formula. World J Pediatr 12: 60-65, 2016.

Wang D, Lu J, Li Q and Li Z: Population pharmacokinetics of tacrolimus in pediatric refractory nephrotic syndrome and a summary of other pediatric disease models. Exp Ther Med 17: 4023-4031, 2019.

Duddridge M and Powell RJ: Treatment of severe and difficult cases of systemic lupus erythematosus with tacrolimus. A report of three cases. Ann Rheum Dis 56: 690-692, 1997.

Miyasaka N, Kawai S and Hashimoto H: Efficacy and safety of tacrolimus for lupus nephritis: A placebo-controlled double-blind multicenter study. Mod Rheumatol 19: 606-615, 1999.

Watanabe H, Yamanaka R, Sada KE, Zeggar S, Katsuyama E, Watanabe KS, Kawai S, Yoon KH: Efficacy and cytokine modulating effects of tacrolimus in patients with difficult cases of systemic-onset juvenile idiopathic arthritis with tacrolimus. Eur J Pediatr 166: 1053-1055, 2007.

Alsuwaiad A: Successful management of systemic lupus erythematosus nephritis flare-up during pregnancy with tacrolimus. Mod Rheumatol 21: 73-75, 2011.

Li H, Zhang X and Chen J: Successful treatment of steroid-refractory nephrotic syndrome-associated protein-losing enteropathy using combination therapy with tacrolimus and steroid. Lupus 20: 1109-1111, 2011.

Kaieda S, Kobayashi T, Moroki M, Honda S, Yuge K, Kawano H, Mitsuayama K, Sata M, Ida H, Hoshino T and Fukuda T: Successful treatment of refractory ulcer in a patient with systemic lupus erythematosus using corticosteroids and tacrolimus. Mod Rheumatol 24: 357-360, 2014.
65. Politt D, Heintz B, Floege J and Mertens PR: Tacrolimus-(FK 506) based immunosuppression in severe systemic lupus erythematosus. Clin Nephrol 62: 49-53, 2004.

66. Zhang Z, Yang C, Zhang L, Yi Q and Hao Z: Efficacy and safety of tacrolimus in myasthenia gravis: A systematic review and meta-analysis. Ann Indian Acad Neurol 20: 341-347, 2017.

67. Wang L, Zhang S, Xi J, Li W, Zhou L, Lu J, Lu J, Zhang T and Zhao C: Efficacy and safety of tacrolimus for myasthenia gravis: A systematic review and meta-analysis. J Neurol 264: 2191-2200, 2017.

68. Komaki Y, Komaki F, Ido A and Sakuraba A: Efficacy and safety of tacrolimus therapy for active ulcerative colitis: A systematic review and meta-analysis. J Crohns Colitis 10: 484-494, 2016.

69. Matsuoka K, Saito E, Fujii T, Takenaka K, Kimura M, Nagahori M, Ohtsuka K and Watanabe M: Tacrolimus for the treatment of ulcerative colitis. Intest Res 13: 219-226, 2015.

70. Hanouneh M, Ritchie MM, Ascha M, Ascha MS, Chedid A, Sanguaneo A, Zein NN and Hanouneh IA: A review of the utility of tacrolimus in the management of adults with autoimmune hepatitis. Scand J Gastroenterol 54: 76-80, 2019.

71. Scott LJ, McKeage K, Keam SJ and Plosker GL: Tacrolimus: A further update of its use in the management of organ transplantation. Drugs 63: 1247-1297, 2003.

72. Naesens M, Kuypers DR and Sarwil M: Calcineurin inhibitor nephrotoxicity. Clin J Am Soc Nephrol 4: 481-508, 2009.

73. Entani C, Izhimoto K, Iida H, Fujita M, Asaka M, Takata M and Sasayama S: Effect of a novel immunosuppressant, FK506, on spontaneous lupus nephritis in MRL/MpJ-lpr/lpr mice. Nephron 64: 471-475, 1993.

74. Jusko WJ, Thomson AW, Fung J, McMaster P, Wong SH, Zylber-Katz E, Christians U, Winkler M, Fitzsimmons WE, Lieberman R, et al: Consensus document: Therapeutic monitoring of tacrolimus (FK-506). Ther Drug Monit 17: 606-614, 1995.

75. Venkataramanan R, Swaminathan A, Prasad T, Jain A, Zuckerman S, Warty V, McMichael J, Lever J, Burckart G and Starzl T: Clinical pharmacokinetics of tacrolimus. Clin Pharmacokinet 29: 404-430, 1995.

76. Zheng QS and Li LJ: Pharmacometrics: A quantitative tool of pharmacological research. Acta Pharmacol Sin 33: 1337-1338, 2012.

77. Chen CY, Zhou Y, Cui YM, Yang T, Zhao X and Wu Y: Population pharmacokinetics and dose simulation of oxcarbazepine in Chinese paediatric patients with epilepsy. J Clin Pharm Ther 44: 300-311, 2019.

78. Chen Y, Wu D, Dong M, Zhu Y, Lu J, Li X, Chen C and Li Z: Population pharmacokinetics of vancomycin and AUC-guided dosing in Chinese neonates and young infants. Eur J Clin Pharmacol 74: 921-930, 2018.

79. Zheng Y, Liu SP, Xu BP, Shi ZR, Wang K, Yang JB, Huang X, Tang BH, Chen XK, Shi HY, et al: Population pharmacokinetics and dosing optimization of azithromycin in children with community-acquired pneumonia. Antimicrob Agents Chemother 62: e00686-18, 2018.

80. Wang DD, Ye QF, Chen X, Xu H and Li ZP: Population pharmacokinetics and initial dosing regimen optimization of cyclosporin in pediatric hemophagocytic lymphohistiocytosis patients. Xenobiota 50: 435-444, 2020.

81. Lu T, Zhu X, Xu S, Zhao M, Huang X, Wang Z and Zhao L: Dosage optimization based on population pharmacokinetic analysis of tacrolimus in chinese patients with nephrotic syndrome. Pharm Res 36: 45, 2019.

82. Wang X, Han Y, Chen C, Ma L, Xiao H, Zhou Y, Cui Y, Wang F, Su B, Yao Y and Ding J: Population pharmacokinetics and dosage optimization of tacrolimus in pediatric patients with nephrotic syndrome. Int J Clin Pharmacol Ther 57: 125-134, 2019.

83. Wei H, Tao X, Di P, Yang Y, Li J, Qian X, Feng J and Chen W: Effects of traditional chinese medicine Wuzhi capsule on pharmacokinetics of tacrolimus in rats. Drug Metab Dispos 41: 1398-1403, 2013.

84. Xin HW, Li Q, Wu XC, He Y, Yu AR, Xiong L and Xiong Y: Effects of Schisandra sphenanthera extract on the blood concentration of tacrolimus in renal transplant recipients. Eur J Clin Pharmacol 67: 1309-1311, 2011.

85. Xin HW, Wu XC, Li Q, Yu AR, Zhu M, Shen Y, Su D and Xiong L: Effects of Schisandra sphenanthera extract on the pharmacokinetics of tacrolimus in healthy volunteers. Br J Clin Pharmacol 64: 469-475, 2007.

86. Qin XL, Bi HC, Wang CX, Li J, Wang XD, Liu LS, Chen X, Su HT and Xiong L: Systematic review and meta-analysis of tacrolimus therapy for active ulcerative colitis; A systematic review and meta-analysis. J Crohns Colitis 10: 484-494, 2016.

87. Di Castri P, Cirillo M, Iannone G, Maraf controllerre L, Patrunno C, Giorgi C, Colombo AG, Alberti A, Scarinci A and Fornari L: Population pharmacokinetics and dosing optimization of azithromycin in children with community-acquired pneumonia. Antimicrob Agents Chemother 62: e00686-18, 2018.