The genetics of Alzheimer’s disease

Eva Bagyinszky1
Young Chul Youn2
Seong Soo A An1,*,†
SangYun Kim3,‡
1Department of BioNano Technology,
Gachon University, Gyeonggi-do,
2Department of Neurology,
Chung-Ang University College of Medicine,
Seoul,
3Department of Neurology,
Seoul National University Budang Hospital,
Gyeonggi-do, South Korea
*These authors contributed equally to this work

Abstract: Alzheimer’s disease (AD) is a complex and heterogeneous neurodegenerative disorder, classified as either early onset (under 65 years of age), or late onset (over 65 years of age). Three main genes are involved in early onset AD: amyloid precursor protein (APP), presenilin 1 (PSEN1), and presenilin 2 (PSEN2). The apolipoprotein E (APOE) E4 allele has been found to be a main risk factor for late-onset Alzheimer’s disease. Additionally, genome-wide association studies (GWASs) have identified several genes that might be potential risk factors for AD, including clusterin (CLU), complement receptor 1 (CR1), phosphatidylinositol binding clathrin assembly protein (PICALM), and sortilin-related receptor (SORL1). Recent studies have discovered additional novel genes that might be involved in late-onset AD, such as triggering receptor expressed on myeloid cells 2 (TREM2) and cluster of differentiation 33 (CD33). Identification of new AD-related genes is important for better understanding of the pathomechanisms leading to neurodegeneration. Since the differential diagnoses of neurodegenerative disorders are difficult, especially in the early stages, genetic testing is essential for diagnostic processes. Next-generation sequencing studies have been successfully used for detecting mutations, monitoring the epigenetic changes, and analyzing transcriptomes. These studies may be a promising approach toward understanding the complete genetic mechanisms of diverse genetic disorders such as AD.

Keywords: dementia, amyloid precursor protein, presenilin 1, presenilin 2, APOE, mutation, diagnosis, genetic testing

Introduction
Alzheimer’s disease (AD) is a complex and heterogeneous neurodegenerative disorder. Several genetic and environmental factors and gene interactions may be involved in the disease’s occurrence and progression.1 Experiments have been performed with mono- and dizygotic twins to estimate the role of genetics in AD, the environmental influences, and the disease heritability. Variation in age of onset, neuropathological patterns, and disease duration may be possible due to genetic–environmental interactions.2–4 AD can be categorized into two subtypes: early onset and late onset. As a polygenic disorder, several additional genes might be potential risk factors for AD. Many single-nucleotide polymorphisms (SNPs) have been identified and confirmed to be associated with AD. The majority of recent studies in the genetics of AD have focused on the identification of novel risk-factor genes and mutations.2,5,6

Early onset Alzheimer’s disease
Occurrence of familial Alzheimer’s disease (FAD) represents the minority (5%–10%) of all AD cases. Familial early onset Alzheimer’s disease (EOAD) can be characterized by...
the Mendelian inheritance pattern; however, EOAD patients have also been reported without any family history (termed “sporadic EOAD”). Three genes are considered the main risk factors for EOAD: amyloid precursor protein (APP), presenilin 1 (PSEN1), and presenilin 2 (PSEN2; Figure 1).

Mutations in these genes might result in alteration of amyloid beta (Abeta) production (both Abeta 40 and Abeta 42), leading to apoptosis of the neurons and dementia.6-9 Figure 2 presents a timeline of AD onset according to age.5,10

The APP gene is located on chromosome 21. Triplication of chromosome 21 results in the triplication of the APP gene, which might enhance APP expression and Abeta accumulation. Down syndrome patients have been reported to develop AD pathology (deposition of senile plaques and neurofibrillary tangles) earlier than those without Down syndrome.11 These findings suggest that overexpression of APP might be related to AD pathology. The APP gene contains 19 exons for encoding the APP protein. The Abeta peptide is encoded by exons 16 and 17. Following transcription and alternative splicing, at least five isoforms of APP protein were identified, which contain the Abeta peptide sequence.12 However, APP seems to be a very rare risk factor for AD, as 21 and three mutations were described at exon 17 and 16, respectively. Most of the pathogenic APP mutations were located near the cleavage sites of alpha, beta, and gamma secretase enzymes, which suggests they might be involved in the onset of AD through altering the proteolysis of the Abeta peptide.13,14 N-terminal mutations in the Abeta sequence can affect the endosomal/lysosomal cleavage of Abeta, and might alter the beta secretase cleavages.12,15 Mutations near the cleavage site of alpha secretase (Glu693Lys, Glu693Gly, Glu693del, Asp694Asn) might change the processing of APP, in enhancing the proteolytic resistance of Abeta peptide.16,17 De Jonghe et al studied the APP mutations near the gamma secretase cleavage site.13 Missense mutations at codon 714-715 of APP decreased the secretion of Abeta 40, and the mutations at codon 716-717 increased the production and secretion of Abeta 42. This study suggests that gamma secretase cleavage might increase the ratio of Abeta 42 to Abeta 40.10-13,18

Linkage analyses (1996) identified two highly homologous genes – PSEN1 and PSEN2 – that might be involved in the onset of AD.19,20 The structures of PSEN1 and PSEN2 are similar, with a homology of 67%. Both of them contain 12 exons with ten coding exons (exons 3–12) for a protein of ~450 amino acids. Presenilin 1 (PS1) and presenilin 2 (PS2) proteins are transmembrane (TM) proteins with at least seven TM domains.19 The function of presenilins was first described by Wolfe et al, who proposed that two transmembrane aspartate (257 and 385) residues in PS1 are critical in gamma secretase activity.20 Most AD risk-factor mutations have been detected in PSEN1 (approximately 30%–70% of early onset FAD), which is located on chromosome 14. More than 180 mutations were found in PSEN1 in association with FAD, but they might be involved in sporadic AD or LOAD.14 Patients with PSEN1 mutations might develop AD symptoms in their 40s or early 50s, with a few cases occurring in persons in their late 30s and early 60s. Several missense mutations in PSEN1 can increase the production of Abeta 42 and 40. In an alternative mechanism, the levels of Abeta 42 and Abeta 40 might be increased and decreased, respectively.21

PSEN2, on chromosome 1, is another risk-factor gene for AD, especially EOAD among a very small European population. The most well-known group with dementia from PSEN2 mutation is families with Volga German ancestry. AD arising from PSEN2 mutations can be highly variable, and may occur between the ages of 40 and 75 years.5,21,22 The first PSEN2 mutation in AD patients was described in 1995.5,23-25 Patients with PSEN2 mutation have not been reported in Korea.
The genetics of Alzheimer’s disease

Late-onset Alzheimer’s disease

In late-onset Alzheimer’s disease (LOAD), several genes have been described as potential risk factors, but nongenetic factors may also be involved in the disease’s progression (Figure 3). The APOE gene, located on chromosome 19, is an important genetic risk factor for LOAD, and its importance has been validated from population studies. Apolipoprotein E (ApoE) protein is the major cholesterol carrier in the brain, which can be involved in neuronal maintenance and repair. ApoE binds to several receptors on the cell surface, which are involved in lipid delivery and transport, glucose metabolism, neuronal signaling, and mitochondrial function. Normally, ApoE binds to Abeta peptide and play a role in its clearance.

Two polymorphic sites, located at codon 112 and 158, have been described in the human APOE gene. At least three main variations of the APOE gene have been identified, called “E2,” “E3,” and “E4” alleles. E3 was defined as a normal allele with Cys at codon 112 and Arg at codon 158. Two other APOE alleles have been described, the E2 and E4 alleles, which carry Arg158Cys and Cys112Arg polymorphisms, respectively. Six different genotypes can be distinguished with the following combinations: homozygous – E4/E4, E3/E3, and E2/E2 and heterozygous – E2/E3, E2/E4, and E3/E4 (Table 2). E3 is the most common variant (77%), while E2 (8%) and E4 (15%) alleles have been detected less frequently. Higher frequencies of the E4 allele have been found among AD patients, and increased risk of AD can be found in patients with both homo- and heterozygous alleles. The pathogenic nature of the E4 allele might be associated with the structural change of ApoE protein. ApoE protein has two major functional domains: a 22 kDa N-terminal and a 10 kDa C-terminal domain, connected by a hinge region. The E4 allele can promote domain interactions through the altered orientation of Arg61 in the N-terminal domain. Arg112 can interact with the Glu255 in the C-terminal domain, resulting in structural changes to ApoE protein, neuronal death, and neurodegeneration. Mouse experiments revealed that the mutation of Arg61 to Thr, or of Glu255 to Ala, may reduce the domain interactions. Figure 4 shows the differences between the E3 and E4 alleles.

The prevalence of the E2 allele has been found to be significantly lower in individuals with dementia. E2 allele was suggested to be protective against AD. Further, APOE E2 and E3 may participate in neuronal maintenance and repair. A Korean study detected significant correlation between the APOE E4 allele and AD. Genotyping analysis was performed in a group of AD patients and healthy individuals (controls). The allele and genotype frequency were compared using chi-square and Fisher’s exact tests. The frequency of the APOE E4 allele in the EOAD and LOAD groups was significantly higher than in the control group. However, the study failed to find any difference in the E2 allele between AD patients and controls. These findings suggest that the E2 allele might not play a protective role against AD in Korea.

Genome-wide association studies (GWASs) have identified novel genes that might be associated with LOAD. Recently, SNP arrays have been developed and used for the analysis of several genes and SNPs. GWASs have been successfully applied to complex polygenic disorders, such as diabetes and macular degeneration. Several papers have been published on the association between AD and different genes or alleles. Bertram et al have created a publicly available, constantly updated, database summarizing the potential genes that may be related to AD (http://www.alzgene.org). Systematic meta-analyses were performed for each polymorphism with all genotype data described for them. At least three case-control samples were tested. This database collected all potential genes that may be involved in AD onset, thus is a powerful tool to further the understanding of AD genetics. Additionally, it may be considered a model for tracking gene candidates in other polygenic disorders.

Clusterin (CLU) is a major inflammatory-related apolipoprotein (Apolipoprotein J; ApoJ) that is expressed in all mammalian tissues. Clusterin may play a protective role against apoptosis, cell damage, or oxidative stress. Clusterin expression has been found to be upregulated in the brains of AD patients. Animal models have suggested it might be secreted with soluble Abeta. Clusterin can act as a molecular chaperon, which might prevent Abeta oligomerization and fibrilization. GWASs have determined a strong association between CLU mutations (located on chromosome 8) and LOAD. Additionally, a significant association has been found between the APOE E4 allele and CLU mutations.

The complement receptor 1 (CR1) gene, located on chromosome 1, encodes the receptor for C3b complement
Gene	Exon	SNP	Country/countries	References
APP	17	Ala692Gly	The Netherlands, Belgium	17,29
		Glu693Gln	The Netherlands	30
		Glu693Gly	Arctic, USA	31
		Glu693del	Japan	16
		Ala713Thr	France, Italy, Spain	32
		Thr714Ala	Iran	33
		Thr714Ile	Austria	34
Val175Met	16	val715Met	Britain, France, Korea	21,26,36
		Val715Ala	Germany, UK	13,36
		lle716Val	USA, UK	36
		lle716Phe	Spain	37
		lle716Thr	Italy	14
		Val717le	UK, Germany, Japan	38,39
		Val717Leu	USA, Belgium, Germany	40
		lle718Leu	China, Taiwan	41
		lle720Ser	China, Taiwan	41
		Val710Gly	China, Taiwan	41
		Val717Phe	USA	42
		Val717Gly	UK, France	43
		lle723Pro	Australia	44
		Lys724Asn	Belgium	45
	16	Asp678Asn	Japan	46
		Lys670Asn	Sweden	15
		Met671Leu	Sweden	15
		Glu682Asn	Belgium	47
PSEN1	4	Ala79Val	Belgium, Germany	48–50
		Val82Leu	France	51
		Met83del	UK	52
		lle85Pro	Japan	53
		Val89Leu	Spain	54
		Cys92Ser	Italy	14,55
		Val94Met	Colombia	56
		Val96Phe	Japan	57
		Val97Leu	China	58
		Phe105Ile	France	59
		Phe105Val	Spain	60
		Phe105Leu	Germany	49
		Leu13Gln	Germany	42
		Leu13Pro	France	61
PSEN1	IVS4	InsTAC	USA, UK	50
PSEN1	5	Tyr115His	France	49
		Tyr115Cys	Canada, Belgium, UK	48
		Thr116Asn	Denmark, France, Italy	37,60
		Thr116Ile	France, Italy	60,62
		Pro117Ala	France, USA	63
		Pro117Ser	USA	64
		Pro117Arg	Poland, Spain	60,65
		Pro117Leu	Poland, USA	66
		Glu120Lys	Denmark, USA	67
		Glu120Gly	Spain	60
		Glu120Asp	USA, France, Israel	51,59
		Asn135Asp	USA	68
		Asn135Ser	Germany, USA	42
		Ala136Gly	China	58

(Continued)
Table 1 (Continued)

Gene	Exon	SNP	Country/countries	References
Glu123Lys		Met139Val	USA, Finland, Denmark, Germany,	65,67
			Poland, Sweden	
Met139Lys		Met139Thr	France	70
Met139Thr		Met139Lys	France, Spain	51
Met139Lys	59		**Korea, USA**	
Ile143Phe		Ile143Thr	France, Japan, Columbia	50,56
Ile143Thr		Ile143Val	Italy	73
Ile143Val		Ile143Met	South Africa	14
Ile143Met		Ile143Asn	France	59
Met146Leu		Met146Val	Italy, USA, France, Canada	21,42
Met146Val		Met146Ile	Sweden, Canada	50
Met146Ile		Thr147Ile	France	21
Thr147Ile		Leu153Val	France, UK	36
Leu153Val		Tyr154Asn	**Japan**	74
Tyr154Asn		Tyr154Cys	**UK**	36
InsFl	65		**Canada, Italy**	50
His163Tyr		His163Arg	**Korea, France, Japan**	8,26,76
His163Arg	76		**Korea**	
His163Pro	77		**Korea**	
Trp165Gly		Trp165Cys	**Japan**	78
Trp165Cys		Leu166del	**France**	21
Leu166del		Leu166His	**UK**	79
Leu166His	80		**Italy**	
Leu166Pro		Leu166Arg	**Germany**	81
Leu166Arg	82		**Spain**	
Ile167del	36		**UK**	
Ile167del	36		**UK**	
Ile168del	36		**Spain**	
Ser169Pro		Ser169Arg	**Spain**	82
Ser169Arg		Ser169del	**China**	84
Ser169del		Ser170Phe	**USA, Italy, Poland**	85
Ser170Phe		Leu171Pro	**UK, Mexico**	36
Leu171Pro		Leu173Trp	**France**	21
Leu173Trp	86		**Italy**	
Leu174Met		Leu173Phe	**Japan**	
Leu174Phe		Leu174Arg	**Germany**	87
Leu174Arg	50		**France, Canada**	
Phe177Leu		Ser178Pro	**Canada**	50
Phe177Ser		Gly183Val	**Belgium**	88
Gly183Val	89		**Japan, UK**	
Val191Ala		Gly206Ser	**Korea, France, Canada**	35,50
Gly206Ser	77		**France**	
Gly206Asp		Gly206Ala	**Spain, Canada**	50
Gly206Ala		Gly206Val	**USA**	90
Gly206Val		Gly209Arg	**Japan**	91
Gly209Arg	91		**USA**	
Gly209Glu		Gly209Val	**USA**	93
Gly209Val		Ser212Tyr	**USA**	93
Ser212Tyr	93		**Canada**	
Ile213Leu	65		**Poland**	
Ile213Pro	57		**Japan**	
Ile213Thr	57		**Spain**	
His214Asp	37		**Spain**	
Gene	Exon	SNP	Country/countries	References
----------	------	----------	-------------------	------------
His214Tyr		France		59
Gly217Arg		USA		94
Gly217Asp		Japan		95
Leu219Phe		Italy		14
Leu219Pro		Australia		96
Gln222Arg		Canada		50
Gln222His		USA		97
Gln223Arg		Germany		98
Leu226Phe		Poland, Spain		99
Leu226Arg		USA		100
Ile229Phe		US		36
Ala231Thr		France, Canada		21,50
Ala231Val		Belgium		48
Met233Val		USA		101
Met233Thr		**France, Australia, Korea**		21,35,50
Met233Leu		Italy		102
Met233Ile		France		103
Leu235Val		UK		36
Leu235Pro		France		21,50
Phe237Ile		Japan		104
Phe237Leu		UK		36
Lys239Asn		Spain		105
Thr245Pro		USA		106
Ala246Glu		Poland, Canada		107
Leu248Arg		Spain		93
Leu250Val		Japan		108
Leu250Ser		USA, UK		67
Tyr256Ser		USA		97
Ivs8-Ivs9		**9del**		14,109
9del		UK, USA, Japan		110
IVS8 8		c.869-22_869-23ins18		111
8		France		111
Ala260Val		Canada, Japan, UK, USA		25,36,112
Val261Leu		Spain		60,113
Val261Phe		Canada		50
Leu262Phe		Sweden		114
Cys263Arg		Italy		115
Cys263Phe		UK, Belgium		36
Pro264Leu		France, USA		21,59
Gly266Ser		Japan		116,117
Pro267Ser		Sweden, UK		67
Pro267Leu		Poland		107
Arg269Gly		Spain, UK		118
Arg269His		Japan, Spain, UK		26,60
Leu271Val		Australia		119
Val272Ala		Spain		93
Glu273Ala		Japan		26
Thr274Arg		Canada		50
Arg278Thr		Australia		120
Arg278Ser		UK		121
Arg278Lys		Italy		122
Arg278Ile		UK		123
Glu280Ala		Japan, Australia, Sweden, Britain		120
Glu280Gly		France, Sweden, Britain, USA		25,60
Leu282Val		Belgium		124
Leu282Phe		Japan		125
Leu282Arg		Spain		60
Pro284Leu		Japan		109

(Continued)
Gene	Exon	SNP	Country/countries	References
Ala285Val	9	Japan, Canada	126	
Leu286Val	10	Japan, Canada	127	
Leu286Pro	11	Spain	128	
Thr291Pro		France	111	
Arg358Gln		Canada	50	
Ser365Ala		Spain	93	
Arg377Met	11	UK	36	
Gly378Glu		Germany, Japan	127	
Gly378Val		Australia	36	
Leu381Val		Japan, Bulgaria	129	
Gly384Ala		Japan, Belgium	26,130	
Phe386Ser		France	59	
Ser390Ile		France	21	
Val391Phe		France	21	
Leu392Val	12	France, Japan	21,127	
Leu392Pro		Italy	14	
Gly394Val		Canada, Italy	50	
Asn405Ser	12	Japan	131	
Ala409Thr		Italy	102	
Cys410Tyr		France, Canada	21	
Leu418Phe	12	Canada	50	
Leu420Arg		USA	132	
Leu424Val		Spain	133	
Leu424Pro		Bulgaria	14	
Leu424His		France, Poland	59,99	
Leu424Arg		Poland	107	
Ala426Pro		USA	92	
Ala431Glu		USA	50	
Ala431Val	12	Japan	134	
Ala434Cys		Canada, USA	50	
Leu435Phe		Canada	50	
Pro436Ser	5	UK	72	
Pro436Gln		The Netherland	135	
Ile439Ser		Spain	60	
T440del	4	Japan	29	
PSEN2				
Arg71Trp	5	Spain	37	
Ala85Val		Spain	136	
Thr122Pro		Germany	42,49	
Asn141Ile		Germany, Canada	25,42	
Val148Ile		Spain	137	
Met174Val	6	Spain	93	
Ser175Cys		Italy	138	
Gin228Leu	7	Poland	65	
Met239Val		Italy	25	
Met239Ile	12	Germany	139	
Thr430Leu		Spain	82	
Asp439Ala		Spain	82,140	

Notes: Underlined mutations were discovered in Asia; emboldened mutations were discovered in Korea. Reproduced from Cruts M, Theuns J, Van Broeckhoven C. Locus-specific mutation databases for neurodegenerative brain diseases. *Hum Mutat*. 2012;33(9):1340–1344. © 2012 Wiley Periodicals, Inc.

Abbreviations: APP, amyloid precursor protein; PSEN, presenilin; SNP, single-nucleotide polymorphism.

Protein. CR1 and C3b can be involved in Abeta clearance and in the prevention of Abeta aggregation. Risk-factor mutations for LOAD have been found in CR1 (rs6656401 and rs381361).155 The functional role of CR1 mutations in AD pathogenesis is not determined yet, and further studies are needed to find out the effect in Abeta deposition.155,156 Phosphatidylinositol binding clathrin assembly protein (PICALM or CALM), located on chromosome 11, may be a putative LOAD risk-factor gene. PICALM can play a role in APP endocytosis and Abeta generation. Additionally, its overexpression may increase Abeta cleavage and aggregation.157 Harold et al found strong association between
two polymorphisms in PICALM and LOAD. Rs561655 is located within a transcription factor-binding site, and a silent mutation, rs592297, may be involved in the alternative splicing.\(^{158}\) Other SNPs in PICALM have also been suggested to be involved in LOAD, such as rs3851179 and rs541458.\(^{158}\)

Sortilin-related receptor (SORL1) on chromosome 11q23-24 may be involved in Abeta recycling. The under-expression of SORL1 can increase Abeta generation. Intronic polymorphisms, located near the 3’ end of the SORL1 coding region, might be associated with AD.\(^{159,160}\)

A poly-T repeat (rs10524523) was identified in exon 6 of the translocase of outer mitochondrial membrane 40 homolog (TOMM40; chromosome 19) gene that can be associated with an earlier age of onset of LOAD in patients with APOE E3/E3 and E3/E4 alleles. Cruchaga et al suggested that TOMM40 and other mitochondrial enzymes might be involved in the onset of LOAD.\(^{161}\)

Bridging Integrator 1 (BIN1; chromosome 2) is a tumor suppressor gene that can be involved with protein for vesicle trafficking. Mutations in BIN1 may be associated with autosomal recessive centronuclear myopathy. Caenorhabditis elegans experiments have suggested that BIN1 protein might have a role in trafficking APP, ApoE proteins, and Abeta through the endolysosomal pathways, thus BIN1 mutations may be a putative risk factor for LOAD.\(^{162}\)

Table 2 The six genotypes of the apolipoprotein E (APOE) gene

Alleles	Polymorphisms
Homozygous	E2/E2: Cys112, Cys158; E3/E3: Cys112, Arg158; E4/E4: Arg12, Arg158
Heterozygous	E2/E3: Cys112, Cys158, Arg158; E2/E4: Cys112, Cys158; E3/E4: Cys112, Arg112, Arg158

Note: Data from Rihn et al.\(^{143}\)

Figure 3 Factors involved in late-onset Alzheimer’s disease (AD). **Abbreviations:** Abeta, amyloid beta; APOE, apolipoprotein E.

Figure 4 The difference between apolipoprotein E (APOE) protein E3 allele (A) and APOE E4 allele (B). The pathomechanism of the APOE E4 allele could be based on the interaction between Arg112 and Glu255.

Notes: Reproduced with permission from Mahley RW, Huang Y. Alzheimer disease: multiple causes, multiple effects of apolipoprotein E4, and multiple therapeutic approaches. Ann Neurol. 2009;65(6):623–625.\(^{164}\) Copyright © 2009 American Neurological Association. Reproduced with permission from Mahley RW, Weisgraber KH, Huang Y. Apolipoprotein E4: a causative factor and therapeutic target in neuropathology, including Alzheimer’s disease. Proc Natl Acad Sci U S A. 2006;103(15):5644–5651.\(^{166}\) Copyright (2006) National Academy of Sciences, USA.

The low-density lipoprotein receptor-related protein 6 (LRP6) gene on chromosome 12 is expressed as a co-receptor for Wnt signaling. Defects in Wnt signaling have been validated as risk factors for neurodegenerative disorders such as schizophrenia, autism, and AD. Wnt signaling proteins, such as beta-catenin or glycogen synthase kinase 3 beta, can form complexes with presenilins, which suggests they might play an important role in Abeta processing and neurotoxicity. Genetic linkage studies have suggested an association between LOAD and chromosome 12. Polymorphisms in LRP6 might result in abnormalities in plasma ApoE catabolism and in Wnt signaling.\(^{163}\)

The cadherin-associated protein alpha 3 (CTNNA3) gene located on chromosome 10 encodes alpha-T catenin, which can be involved in AD pathogenesis by binding to beta-catenin and interacting with PS1. Miyashita et al identified seven putative LOAD risk-factor polymorphisms located at intron 9 of CTNNA.\(^{164}\) Polymorphisms in CTNNA3 have shown significant association with LOAD in female patients, who carried the APOE E3 allele, but not the E4.\(^{164,165}\)

Growth factor receptor-bound protein 2-associated-binding protein 2 (GAB2) molecules are intracellular docking or scaffolding molecules. GAB2 can be involved in several signal transduction processes, associated with cell growth, survival, differentiation, and apoptosis. GAB2 might play a role in the suppression of Tau phosphorylation and in neurofibrillary tangles (NFTs) formation. Reiman et al detected six SNPs in GAB2 (chromosome 11) which might be associated with LOAD.\(^{166}\) Interaction was found between GAB2 haplotypes and the APOE E4 allele.\(^{166–168}\)
Dynamin-binding protein (DNMBP) or Tubα protein plays a role in the transport of dynamin to the actin regulatory proteins. A Belgian study found a significant association between two SNPs (rs3740057 and rs10883421) in the 3′ region of the DNMBP (chromosome 10) gene and LOAD.169

The A disintegrin and metalloproteinase domain-containing protein 10 (ADAM10; chromosome 15) gene encodes the major brain alpha secretase. Alpha secretase cleavage can prevent Abeta formation and aggregation, and increase Abeta clearance. In vitro and in vivo studies have shown that two mutations (Gln171Gly and Arg181Gly) in the pre-domain region of ADAM10 may be associated with AD.170

ATP-binding cassette transporter A7 (ABCA7), located on chromosome 19, is a recently discovered potential risk factor for AD. ABCA7 protein, which is highly homologous to ABCA1, may be involved in the synthesis and transport of high-density lipoprotein cholesterol and generate phospholipid and cholesterol efflux from the cells. It can also play a key role in sterol homeostasis and in the host defense system.171,172 The two variants (rs3752246 and rs3764650) in ABCA7 have been suggested to be associated with LOAD.171 Rs3764650 is located in intron 13, and rs3752246 is a missense mutation in exon 32 (Gly1527 Ala).173 Recent findings have revealed an additional SNP (rs115550680) that might be involved in LOAD in African-Americans. Since ABCA7 plays a role in the lipid metabolism as well as in APP transport, mutations in ABCA7 gene might be involved in LOAD.173

Recent GWASs have revealed that triggering receptor expressed on myeloid cells 2 (TREM2), located on chromosome 6 can be involved in AD, especially in LOAD. TREM2 is a member of immunoglobulin family, and it contains a single variable domain. TREM2 is located on the membrane of several immune cells, such as macrophages and dendritic cells. Its main ligand is DNA clamp loader is Replication Factor C-activating protein of 12 kilodaltons (DAP12), which can be involved in downstream signaling. Functions of TREM2 protein can include the clearance of apoptotic cells (DAP12), which can be involved in downstream signaling. Functions of TREM2 protein can include the clearance of apoptotic cells and immunosupression.174 In an Icelandic population, a rare variant (Arg47His) has been suggested to increase the risk of impairment in inflammation, leading to LOAD.175 Other variants located in exon 2 have been shown higher percentage in AD patients, such as Glu33X or Asp87 Asn. AD, associated with TREM2 can be associated with chronic brain inflammation with aberrations in microglial phagocytosis or inflammatory pathways.176

Cluster of differentiation 33 (CD33; chromosome 19) is a 67 kDa transmembrane glycoprotein that is expressed on the surface of myeloid progenitor cells, mature monocytes, and macrophages. It can function as a lectin, a carbohydrate-binding protein, which inhibits cellular binding. The CD33 locus is related to altered monocyte function, which suggests it can be involved in innate immunology, leading to AD progression. Rs3865444 can be associated with elevated CD33 expression, leading to cognitive decline and AD. Mutations in CD33 can be associated with disturbances in myeloid function and amyloid pathology, thus may be involved in the progression of early AD.177

Methods of detecting mutation

PCR-based methods can be performed for monitoring the mutations in the AD risk factor genes (Figure 5).178 Genomic DNA can be extracted from total blood, buffy coat (white blood cells), bone marrow, or cell cultures, using a specific extraction kit. DNA should be amplified by specific primers, designed for the AD risk-factor genes such as APP, PSEN1, PSEN2, and APOE.6–8,22,26 Several mutation detection methods have been developed, such as restriction fragment length polymorphism (RFLP), single-strand conformation polymorphism (SSCP), denaturing gradient gel electrophoresis (DGGE), temperature gradient gel electrophoresis (TGGE), and heteroduplex analysis. RFLP is based on the recognition of a specific cleavage site and can be used for genetic mapping and linkage analysis. To identify the polymorphisms in the PCR products, the amplicons should be sequenced.178

Methods based on the conformational changes of single-stranded DNA

DGGE is a rapid, commonly used method for mutation detection. The technology is based on the mobility of
double-stranded DNA in polyacrylamide gel containing linearly increasing concentrations of denaturing chemicals.179,180 SSCP is a simple PCR-based mutation detection method. The mobility of double-stranded PCR fragments depends on the size of the DNA, since the polymorphisms might result in the altered mobility of single-stranded DNA by changing its conformation (Figure 6). The PCR products should be denatured by heat and formamide, followed by neutral polyacrylamide gel electrophoresis.181,182

Heteroduplex analysis with Surveyor® Nuclease

Surveyor Nuclease (Transgenomic, Inc, Omaha, NE, USA) is a plant (celery) endonuclease that cleaves double-stranded DNA at mismatch sites, including SNPs, insertions, and deletions. A novel PCR-based mutation detection method has been developed by Transgenomic. The process has four main steps: 1) amplification of target DNAs from patients and healthy controls; 2) hybridization of normal DNA with the DNA of the patient; 3) digestion of homo- and heteroduplexes by Surveyor Nuclease; and finally, 4) separation of cleavage products by standard gel electrophoresis or high-pressure liquid chromatography (Figure 7). This method may be promising in molecular diagnosis, and it has been successfully used for the identification of genetic-based disorders.183–185

Figure 6 The single-strand conformation polymorphism process. After denaturation of the polymerase chain reaction (PCR) product, the conformation of single-stranded DNA (ssDNA) could be different, resulting in altered mobility in polyacrylamide gel. **Abbreviations:** dsDNA, double-strand DNA; PAGE, polyacrylamide gel electrophoresis; WT, wild type.

Figure 7 The basic steps of genotyping with Surveyor® Nuclease (Transgenomic, Inc, Omaha, NE, USA). After mixing the polymerase chain reaction ampicons of healthy control and patient (A), hybridization should be performed, resulting in homo- and heteroduplex formation (B). Treatment with Surveyor Nuclease cleaves the DNA at the mismatch site (C). Cleavage products can be separated by electrophoresis (D). **Abbreviation:** SNP, single-nucleotide polymorphism.
APOE genotyping

Allele-specific, multiplex PCR has been developed for APOE genotyping, with common and specific inner primers for polymorphism detection at codons 112 and 158. The agarose electrophoresis pattern can show the homozygous and heterozygous genotypes of E2, E3, and E4 alleles. Various kits have been designed for APOE PCR genotyping. One of the most frequently used kits is the LightCycler® ApoE Mutation Kit by Roche Diagnostics (Basel, Switzerland). PCR-RFLP is a widely used, simple and fast method for APOE genotyping. The genomic DNA should be amplified with specific primers, followed by HhaI digestion. The samples can be separated in 8% polyacrylamide (PAGE) gel, and visualized with fluorescent dye.

Future insights into AD genetics: from GWASs to next-generation sequencing (NGS)

Since AD is a genetically heterogeneous disorder, GWASs have been performed for identification of novel disease risk-factor loci. Several genes and mutations have been tested to find association with disease-related phenotypes, such as changes in biomarker levels and/or neuropathology. Sanger sequencing is a widely used technology, but it has limitations in terms of cost, speed, and efficacy. High-throughput or NGS technologies are recent hot topics in genomic research of animals and humans. NGS technologies included sequencing by synthesis, ligation, or hybridization; single-molecule sequencing; nanopore sequencing; and colony sequencing. NGS technologies provide fast and cost-effective sequencing strategies that can be used in various genetic applications; for example, in high-throughput mutation detection, small RNA detection, or the monitoring of epigenetic changes. The most well-known NGS technologies have been developed by Illumina (and Solexa, Inc, purchased by Illumina in 2007; San Diego, CA, USA), Helicos BioSciences (Cambridge, MA, USA), ABI/SOLiD, and 454 Life Sciences (a subsidiary of Roche; Branford, CT, USA) and use a single-molecule template for mutation detection with cloning-free approaches.

Jin et al performed pooled DNA sequencing with APP, PSEN1, PSEN2, progranulin (PGRN) and microtubule-associated Tau protein (MAPT) genes that was applied in a large population for monitoring rare human-specific mutations. Samples were collected from selected groups of patients and pooled in complex mixtures with negative control samples (validated as wild-type alleles). The mixes were then sequenced by NGS analyzers. The sequencing data were mapped back to the sample and to the control as reference. The pooled sequencing analysis detected PGRN and MAPT mutations in patients with clinically diagnosed AD. These findings show that the clinical phenotype of amnesic frontotemporal dementia and that of AD may be similar, and the overlapping symptoms can result in difficulties in the disease diagnosis. Complex genetic analysis might improve the diagnosis of neurodegenerative disorders.

It has been suggested that the development of the human brain depends on the level of transcription. Alterations in transcription regulation are responsible for the unique gene expression patterns in the brain. Aging is the main risk factor for AD, but normal aging itself can result in only a low degree of neuronal loss. Alternative splicing and gene expression may be involved in AD pathogenesis. Microarrays are widely used for transcriptome analysis, but their accuracy might be limited because of mistakes in hybridization. Transcriptome studies have been performed in animals, various cell lines, cells derived from AD patients, and in postmortem brain tissues. Twine et al performed a whole-transcriptome analysis in different regions of an AD brain. Illumina RNA-Seq analysis was used for whole-transcriptome profiling. This study provided a possible insight into the changes in gene expressions and alternative splicing. NGS can produce digital signals directly from the complementary DNA, decrease the risk for false-positive data, and correspond to the existing genomic sequence.

Conclusion

AD is the most common form of senile dementia, but it can sometimes be difficult to distinguish heterogeneous neurodegenerative disorders, such as frontotemporal dementia, dementia with Lewy Bodies, Parkinson’s disease, and Creutzfeldt–Jakob disease. AD is a complex disorder, so several genes on different chromosomes could be involved in its onset. Finding the potential genes involved in AD progression is an essential step in molecular diagnosis. Genetic testing should be important to understand the mechanisms and pathways leading to neurodegeneration and disease symptoms. It is believed that disease-modifying therapies are more likely to be effective in the earlier stages of AD, especially before the clinical symptoms appear. Genetic testing in the family members of patients should also be important to predict the risk for disease onset in the future. Using disease markers with genetic testing together may provide more effective disease diagnosis. In addition, the discovery of novel genes may provide more information on AD-related pathways.
Genetic analysis can improve the differential diagnosis of neurodegenerative dementias. Standard Sanger sequencing is still a widely used technology, but can be costly and time consuming. NGS technologies offer a faster, less expensive approach, not only for mutation detection but also for transcriptome analysis or epigenetics. Several loci have been identified that might be involved in both familial and sporadic forms of neurodegenerative disorders. Understanding the complete genetic mechanisms of AD can provide additional information about the pathological mechanisms of neurodegeneration. GWASs and NGS studies may improve the prevention and treatment of AD.

Acknowledgments
This work was supported by the GRRC program of Gyeonggi province (GRRC Gachon 2013-B04, Development of Microfluidic Chip for diagnosis of disease).

Disclosure
The authors declare no conflicts of interest in this work.

References
1. Ertekin-Taner N. Genetics of Alzheimer’s disease: a centennial review. *Neurology*. 2007;25(12):611–617.
2. Reitz C, Mayeux R. Use of genetic variation as biomarkers for Alzheimer’s disease. *Ann NY Acad Sci*. 2009;1180:75–96.
3. Brickell KL, Leverenz JB, Steinbart EJ, et al. Clinicopathological concordance and discordance in three monozygotic twin pairs with familial Alzheimer’s disease. *J Neurol Neurosurg Psychiatry*. 2007;78(10):1050–1055.
4. Meyer JM, Breitner JC. Multiple threshold model for the onset of Alzheimer’s disease in the NAS-NRC twin panel. *Am J Med Genet*. 1998;81(1):92–97.
5. Bird DT. Genetic aspects of Alzheimer disease. *Genet Med*. 2008;10(4):231–239.
6. Sorbi S, Forleo P, Tedde A, et al. Genetic risk factors in familial and sporadic forms of neurodegenerative disorders. Standard Sanger sequencing is still a widely used technology, but can be costly and time consuming. NGS technologies offer a faster, less expensive approach, not only for mutation detection but also for transcriptome analysis or epigenetics. Several loci have been identified that might be involved in both familial and sporadic forms of neurodegenerative disorders. Understanding the complete genetic mechanisms of AD can provide additional information about the pathological mechanisms of neurodegeneration. GWASs and NGS studies may improve the prevention and treatment of AD.

Acknowledgments
This work was supported by the GRRC program of Gyeonggi province (GRRC Gachon 2013-B04, Development of Microfluidic Chip for diagnosis of disease).

Disclosure
The authors declare no conflicts of interest in this work.

References
1. Ertekin-Taner N. Genetics of Alzheimer’s disease: a centennial review. *Neurology*. 2007;25(12):611–617.
2. Reitz C, Mayeux R. Use of genetic variation as biomarkers for Alzheimer’s disease. *Ann NY Acad Sci*. 2009;1180:75–96.
3. Brickell KL, Leverenz JB, Steinbart EJ, et al. Clinicopathological concordance and discordance in three monozygotic twin pairs with familial Alzheimer’s disease. *J Neurol Neurosurg Psychiatry*. 2007;78(10):1050–1055.
4. Meyer JM, Breitner JC. Multiple threshold model for the onset of Alzheimer’s disease in the NAS-NRC twin panel. *Am J Med Genet*. 1998;81(1):92–97.
5. Bird DT. Genetic aspects of Alzheimer disease. *Genet Med*. 2008;10(4):231–239.
6. Sorbi S, Forleo P, Tedde A, et al. Genetic risk factors in familial Alzheimer’s disease. *Mech Ageing Dev*. 2001;122(16):1951–1960.
7. Schellenberg GD, Anderson L, O’Dahl S, et al. APP717, APP693, and PRP gene mutations are rare in Alzheimer disease. *Am J Med Genet*. 1999;49(3):511–517.
8. Tanzi RE, Vaula G, Romano DM, et al. Assessment of amyloid beta-protein precursor gene mutations in a large set of familial and sporadic Alzheimer disease cases. *Am J Med Genet*. 1992;51(2):273–282.
9. Bertram L, Tanzi RE. The genetic epidemiology of neurodegenerative disease. *J Clin Investig*. 2005;115(6):1449–1457.
10. Rademakers R, Cruts M, Van Broeckhoven C. Genetics of early-onset Alzheimer dementia. *ScientificWorldJournal*. 2003;3:497–519.
11. Prasher VP, Farrer MJ, Kessling AM, et al. Molecular mapping of Alzheimer-type dementia in Down’s syndrome. *Hum Mol Genet*. 1998;43(3):380–383.
12. König G, Mönning U, Czech C, et al. Identification and differential expression of a novel alternative splice isoform of the beta A4 amyloid precursor protein (APP) mRNA in leukocytes and brain microglial cells. *J Biol Chem*. 1992;267(15):10084–10089.
13. De Jonghe C, Esselens C, Kumar-Singh S, et al. Pathogenic APP mutations near the gamma-secretase cleavage site differentially affect Abeta secretion and APP C-terminal fragment stability. *Hum Mol Genet*. 2001;10(16):1665–1671.
14. Cruts M, Theuns J, Van Broeckhoven C. Locus-specific mutation databases for neurodegenerative brain diseases. *Hum Mutat*. 2012;33(9):1340–1344.
15. C. Kumar-Singh S, Van Broeckhoven C. Pathogenic APP mutations for Alzheimer’s disease in the APP gene at the N-terminus of beta-amyloid. *Nat Genet*. 1992;1(5):345–347.
16. Tomiyama T, Nagata T, Shimada H, et al. A new amyloid beta variant favoring oligomerization in Alzheimer’s-type dementia. *Ann Neurol*. 2008;63(3):377–387.
17. Roks G, Van Harckamp F, De Koninck I, et al. Presentation of amyloidosis in carriers of the codon 692 mutation in the amyloid precursor protein gene (APP692). *Brain*. 2000;123(Pt 10):2130–2140.
18. Golan J, Charnay Y, Vallet P, Bours C. [Alzheimer’s disease and Down’s syndrome. Some recent etiopathogenic data.] *Encephale*. 1991;17(1):29–31. French [with English abstract].
19. Cruts M, Hendriks L, Van Broeckhoven C. The presenilin genes: a new gene family involved in Alzheimer disease pathology. *Hum Mol Genet*. 1996;5 Spec No:1449–1455.
20. Wolfe MS, Xia W, Ostaszewski BL, Diehl TS, Kimberly WT, Selkoe DJ. Two transmembrane aspartates in presenilin-1 required for presenilin endoproteolysis and gamma-secretase activity. *Nature*. 1999;398(6727):513–517.
21. Campion D, Duminich C, Hannequin D, et al. Early-onset autosomal dominant Alzheimer disease: prevalence, genetic heterogeneity, and mutation spectrum. *Am J Hum Genet*. 1999;65(3):664–670.
22. Siewers K, Roks G, Theuns J, et al. Familial clustering and genetic risk for dementia in a genetically isolated Dutch population. *Brain*. 2004;127(7):1641–1649.
23. Beksris Y, Yu CE, Bird TD, Tsuang DW. Genetics of Alzheimer Disease. *J Geriatr Psychiatry Neurol*. 2010;23(4):213–227.
24. Levy-Lahad E, Wasco W, Pookraj P, et al. Candidate gene for the chromosome 1 familial Alzheimer’s disease locus. *Science*. 1995;269(526):973–977.
25. Rogaev EI, Sherrington R, Rogaeva EA, et al. Familial Alzheimer’s disease in kindreds with missense mutations in a gene on chromosome 1 related to the Alzheimer’s disease type 3 gene. *Nature*. 1995;376(6543):775–778.
26. Kamimura K, Tanahashi H, Yamanaka H, Takahashi K, Asada T, Tabira T. Familial Alzheimer’s disease genes in Japanese. *J Neurosci*. 1998;160(1):76–81.
27. Jayadev S, Leverenz JB, Steinbart E, et al. Alzheimer’s disease phenotypes and genotypes associated with mutations in presenilin 2. *Brain*. 2010;133(4):1143–1154.
28. To MD, Gokgoz N, Doyle TG, et al. Functional characterization of novel presenilin-2 variants identified in human breast cancers. *Oncogene*. 2008;25(25):3557–3564.
29. Ishikawa A, Piao YS, Miyashita A, et al. A mutant PSEN1 causes dementia with Lewy bodies and variant Alzheimer’s disease. *Ann Neurol*. 2005;57(3):429–434.
30. Kumar-Singh S, Cras P, Wang R, et al. Dense-core senile plaques in the Flemish variant of Alzheimer’s disease are vasocentric. *Am J Pathol*. 2002;161(2):507–520.
31. Camino K, Orr HT, Payami H, et al. Linkage and mutational analysis of familial Alzheimer disease kindreds for the APP gene region. *Am J Hum Genet*. 2002;70(5):1062–1072.
32. Giaccone G, Rossi G, Morbin M, Tagliavini F, Bugiani O. A713T mutation in the APP gene in an Italian family with Alzheimer disease and severe probable Alzheimer’s disease in the N-terminus of beta-amyloid. *Hum Genet*. 1995;90(3):345–347.
33. Bagyinszky et al. 2001;10(16):1665–1671.
36. Janssen JC, Beck JA, Campbell AT, et al. Early onset familial Alzheimer’s disease: Mutation frequency in 31 families. Neurology. 2003;60(20):235–239.

37. Guerreiro RJ, Baquero M, Bless R, et al. Genetic screening of Alzheimer’s disease genes in Iberian and African samples yields novel mutations in presenilins and APP. Neurobiol Aging. 2008;31(5):725–731.

38. Yoshioka K, Miki T, Katsuya T, Ogihara T, Sakaki Y. The 717Val–Ile substitution in amyloid precursor protein is associated with familial Alzheimer’s disease regardless of ethnic groups. Biochem Biophys Res Commun. 1991;178(3):1141–1146.

39. Goate A, Chartier-Harlin MC, Mullan M, et al. Segregation of a missense mutation in the amyloid precursor protein gene with familial Alzheimer’s disease. Nature. 1991;349(6311):704–706.

40. Murrell JR, Hake AM, Quaid KA, Farlow MR, Ghetti B. Early-onset Alzheimer disease caused by a new mutation (V717L) in the amyloid precursor protein gene. Arch Neurol. 2000;57(6):885–887.

41. Thajeb P, Wang P, Chien CL, Harrigan R. Novel polymorphisms of the amyloid precursor protein (APP) gene in Chinese/Taiwanese patients with Alzheimer’s disease. J Clin Neurosci. 2009;16(2):259–263.

42. Finckh U, Kuschel C, Anagnostouli M, et al. Novel mutations and repeated findings of mutations in familial Alzheimer disease. Neurogenetics. 2005;6(2):85–89.

43. Chartier-Harlin MC, Crawford F, Houlden H, et al. Early-onset Alzheimer’s disease caused by mutations at codon 717 of the beta-amyloid precursor protein gene. Nature. 1991;353(6347):844–846.

44. Kwok JB, Li QX, Hallupp M, et al. Novel Leu723Pro amyloid precursor protein mutation increases amyloid beta42(43) peptide levels and induces apoptosis. Ann Neurol. 2000;47(2):249–253.

45. Theuns J, Marjaux E, Vandenbulcke M, et al. Alzheimer dementia caused by a novel mutation located in the APP C-terminal intracytosolic fragment. Hum Mutat. 2006;27(9):888–896.

46. Wakutani Y, Watanabe K, Adachi Y, et al. Novel amyloid precursor protein gene missense mutation (D678N) in probable familial Alzheimer’s disease. J Neurol Neurosurg Psychiatry. 2004;75(7):1039–1042.

47. Brouwers N, Sleevers K, Van Broeckhoven C. Molecular genetics of Alzheimer’s disease: an update. Ann Medicine. 2008;40(8):562–583.

48. Cruts M, van Duijn CM, Backhovens H, et al. Estimation of the genetic contribution of presenilin-1 and -2 mutations in a population-based study of presenile Alzheimer disease. Hum Mol Genet. 1998;7(1):43–51.

49. Finckh U, Müller-Thomsen T, Mann U, et al. High prevalence of pathogenic mutations in patients with early-onset dementia detected by sequence analyses of four different genes. Am J Hum Genet. 2000;66(1):110–117.

50. Rogeava EA, Fafel KC, Song YQ, et al. Screening for PS1 mutations in a referral-based series of AD cases: 21 novel mutations. Neurology. 2001;57(4):621–625.

51. Campion D, Flaman JM, Brice A, et al. Mutations of the presenilin 1 gene in families with early-onset Alzheimer’s disease. Hum Mol Genet. 1995;4(12):2373–2377.

52. Houlden H, Baker M, McGowan E, et al. Variant Alzheimer’s disease with spastic paraparesis and cotton wool plaques is caused by PS-1 mutations that lead to exceptionally high amyloid-beta concentrations. Ann Neurosci. 2000;4(1):306–308.

53. Ataka S, Tomiyama T, Takuma H, et al. A novel presenilin-1 mutation (Leu85Pro) in early-onset Alzheimer disease with spastic paraparesis. Arch Neurol. 2004;61(11):1773–1776.

54. Queralt R, Ezquerra M, Lleo A, et al. A novel mutation (V89L) in the presenilin 1 gene in a family with early onset Alzheimer’s disease and marked behavioural disturbances. J Neurol Neurosurg Psychiatry. 2002;72(2):266–269.

55. Tedde A, Nacmias B, Ciantelli M, et al. Identification of new presenilin genes in early-onset familial Alzheimer disease. Arch Neurol. 2003;60(11):1541–1544.

56. Arango D, Cruts M, Torres O, et al. Systematic genetic study of Alzheimer disease in Latin America: mutation frequencies of the amyloid beta precursor protein and presenilin genes in Colombia. Am J Med Genet. 2001;103(2):138–143.

57. Kamino K, Sato S, Sakaki Y, et al. Three different mutations of presenilin 1 gene in early-onset Alzheimer’s disease families. Neurosci Lett. 1997;208(3):195–198.

58. Fang B, Jia L, Jia J. Chinese Presenilin-1 V97L mutation enhanced Abeta42 levels in SH-SY5Y neuroblastoma cells. Neurosci Lett. 2006;406(1–2):33–37.

59. Raux G, Guyant-Mareuil L, Martin C, et al. Molecular diagnosis of autosomal dominant early-onset Alzheimer’s disease: an update. J Med Genet. 2005;42(10):793–795.

60. Gómez-Tortosa E, Barquero S, Bárón M, et al. Clinical-genetic correlations in familial Alzheimer’s disease caused by presenilin 1 mutations. J Alzheimers Dis. 2010;19(3):873–888.

61. Raux G, Gantier R, Thomas-Anterion C, et al. Dementia with prominent frontotemporal features associated with L113P presenilin 1 mutation. Neurology. 2000;55(10):1577–1579.

62. La Bella V, Liguori M, Cittadella R, et al. A novel mutation (Thr116Ile) in the presenilin 1 gene in a patient with early-onset Alzheimer’s disease. Eur J Neurol. 2004;11(8):521–524.

63. Anheim M, Hannequin D, Boulay C, Martin C, Campion D, Tranchant C. AFXic variant of Alzheimer’s disease caused by Pro117Ala PSEN1 mutation. J Neurol Neurosurg Psychiatry. 2007;78(12):1414–1415.

64. Dowjat WK, Kuchna I, Wisniewski T, Wegiel J. A novel highly pathogenic Alzheimer presenilin-1 mutation in codon 117 [Pro117Ser]: Comparison of clinical, neuropathological and cell culture phenotypes of Pro117Leu and Pro117Ser mutations. J Alzheimers Dis. 2004;6(1):31–43.

65. Zekanowski C, Styczynska M, Popleńska B, et al. Mutations in presenilin 1, presenilin 2 and amyloid precursor protein genes in patients with early-onset Alzheimer’s disease in Poland. Exp Neurol. 2003;184(2):991–996.

66. Wisniewski T, Dowjat WK, Buxbaum JD, et al. A novel Polish presenilin-1 mutation (P117L) is associated with familial Alzheimer’s disease and leads to death as early as the age of 28 years. Neuroreport. 1998;9(2):217–221.

67. Hutton H, Busfield F, Wragg M, et al. Complete analysis of the presenilin 1 gene in early-onset Alzheimer’s disease. Neuroreport. 1996;7(3):801–805.

68. Crook R, Ellis R, Shanks M, et al. Early-onset Alzheimer’s disease with a presenilin-1 mutation at the site corresponding to the Volga German presenilin-2 mutation. Ann Neurol. 1997;42(1):124–128.

69. Yasuda M, Maeda K, Hashimoto M, et al. A pedigree with a novel presenilin 1 mutation at a residue that is not conserved in presenilin 2. Arch Neurol. 1999;56(1):65–69.

70. Dumanchin C, Brice A, Campion D, et al. De novo presenilin 1 mutations are rare in clinically sporadic, early onset Alzheimer’s disease cases. French Alzheimer’s Disease Study Group. J Med Genet. 1998;35(8):762–763.

71. Kim HJ, Kim HY, Ki CS, Kim SH. Presenilin 1 gene mutation (M139I) in a patient with an early-onset Alzheimer’s disease: clinical characteristics and genetic identification. Neurosci Lett. 2003;318(1):781–783.

72. Palmer MS, Beck JA, Campbell TA, et al. Pathogenic presenilin 1 mutations (P436S and 1143F) in early-onset Alzheimer’s disease in the UK. Hum Mutat. 1999;13(3):256.

73. Gallo M, Marcello N, Curecio SA, et al. A novel pathogenic PSEN1 mutation in a family with Alzheimer’s disease: phenotypical and neuropathological features. J Alzheimers Dis. 2011;24(5):425–431.

74. Gottori S, Sakuma K, Wukutani YS, et al. A novel presenilin 1 mutation (Y154N) in a patient with early onset Alzheimer’s disease with spastic paraparesis. Neurosci Lett. 2004;368(3):319–322.

75. Axelman K, Basun H, Lannfelt L. Wide range of disease onset in a population-based study of autosomal dominant early-onset Alzheimer’s disease genes in Iberian and African samples yields novel mutations in presenilin-1 gene. Arch Neurol. 1991;349(6311):1141–1146.
97. Miklossy J, Yoshino A, Matsui T, et al. A novel PS1 Mutation (W165G) in a Japanese family with early-onset Alzheimer's disease. *Alzheimer Reports*. 2000;3(4):227–231.

98. Uttner I, Kirchheiner J, Tumani H, et al. A novel presenilin1 mutation (Q223R) associated with early onset Alzheimer's disease, dysarthria and spastic paraparesis and decreased Abeta levels in CSF. *Eur J Neurol*. 2010;17(4):631–633.

99. Zekanowski C, Golan MP, Krzyśko KA, et al. Two novel presenilin 1 gene mutations connected with frontotemporal dementia-like clinical phenotype: genetic and bioinformatic assessment. *Exp Neurol*. 2006;200(1):82–88.

100. Coleman P, Kurlan R, Crook R, Werner J, Hardy J. A new presenilin 1 gene mutation in a familial Alzheimer disease case confirms the helical alignment of pathogenic mutations in transmembrane domain 5. *Neurosci Lett*. 2004;364(3):139–140.

101. Houlden H, Crook R, Dolan RJ, McLaughlin J, Revesz T, Hardy J. A novel presenilin mutation (M233V) causing very early onset Alzheimer's disease with Lewy bodies. *Neurosci Lett*. 2001;313(1–2):93–95.

102. Aldudo J, Bullido MJ, Valdivieso F. DGGE method for the mutational analysis of the coding and proximal promoter regions of the Alzheimer's disease presenilin-1 gene: two novel mutations. *Hum Mutat*. 1999;14(5):433–439.

103. Portet F, Duvailliers Y, Campion D, et al. Very early onset AD with a de novo mutation in the presenilin 1 gene (Met 223 Leu). *Neurology*. 2003;61(8):1136–1137.

104. Sodeyama N, Iwata T, Ishikawa K, et al. Very early onset Alzheimer’s disease with spastic paraparesis associated with a novel presenilin 1 mutation (Phe237Ile). *J Neurosurg Psychiatry*. 2001;71(4):556–557.

105. Liadó A, Fortea J, Ojea T, et al. A novel PSEN1 mutation (K239N) associated with Alzheimer's disease with wide range age of onset and slow progression. *Eur J Neurol*. 2010;17(7):994–996.

106. Edwards-Lee T, Wen J, Bell J, Hardy J, Chung J, Momeni P. A presenilin-1 mutation (T245P) in transmembrane domain 6 causes early onset Alzheimer's disease. *Neurosci Lett*. 2006;398(3):251–252.

107. Kowalska A, Wender M, Florczak J, et al. Molecular genetics of Alzheimer's disease: presenilin 1 gene analysis in a cohort of patients from the Poznán region. *J Appl Genet*. 2003;44(2):231–234.

108. Furuya H, Yasuda M, Terasawa K, et al. A novel mutation (L250V) in the presenilin 1 gene in a Japanese familial Alzheimer's disease with myoclonus and generalized convulsion. *J Neurol Sci*. 2003;209(1–2):75–77.

109. Tabira T, Chui DH, Nakayama H, Kuroda S, Shibuya M. Alzheimer's disease with spastic paresis and cotton wool type plaques. *J Neurosci Res*. 2002;70(3):367–372.

110. Verkoeiemi A, Somer M, Rinne OJ, et al. Variant Alzheimer's disease with spastic paraparesis: clinical characterization. *Neurology*. 2000;54(5):1103–1109.

111. Dumanich C, Tourrier I, Martin C, et al. Biological effects of four PSEN1 gene mutations causing Alzheimer disease with spastic paraparesis and cotton wool plaques. *Hum Mutat*. 2006;27(10):1063.

112. Ikeda M, Sharma V, Sumi SM, et al. The clinical phenotype of two missense mutations in the presenilin 1 gene in Japanese patients. *Ann Neurol*. 1996;40(6):912–917.

113. Jiménez Caballero PE, Lladó A, de Diego Boguna C, Martin Correa E, Serviá Candela M, Marsal Alonso C, et al. A novel presenilin 1 mutation (V261I) associated with presenile Alzheimer's disease and spastic paraparesis. *Eur J Neurol*. 2008;15(9):991–994.

114. Forsell C, Froelich S, Axelman K, et al. A novel pathogenic mutation (V261L) associated with presenile Alzheimer's disease and spastic paraparesis and decreased Abeta levels in CSF. *Acta Neuropathol*. 2003;106(1):173–177.

115. Bagyinszky et al. PSEN1 gene mutations connected with frontotemporal dementia-like clinical phenotype: genetic and bioinformatic assessment. *Exp Neurol*. 2006;200(1):82–88.

116. Wasco W, Pettingell WP, Jondro PD, et al. Familial Alzheimer's chromosome 14 mutations. *Nat Med*. 1995;1(9):848.

117. Akatsu H, Yamagata H, Wake A, et al. The first autopsy case report of familial Alzheimer's disease (AD) associated with a mutation at G266S in the presenilin 1 (PSEN1) gene. *Alzheimers Dement*. 2008;4 Suppl 2:T578.
117. Matsubara-Tsutsui M, Yasuda M, Yamagata H, et al. Molecular evidence of presenilin 1 mutation in familial early onset dementia. Am J Med Genet. 2002;114(3):292–298.

118. Perez-Tur J, Croxton R, Wright K, et al. A further presenilin 1 mutation in the exon 8 cluster in familial Alzheimer’s disease. Neurodegeneration. 1996;5(3):207–212.

119. Kwok JB, Halliday GM, Brooks WS, et al. Presenilin-1 mutation L271V results in altered exon 8 splicing and Alzheimer’s disease with non-core plaques and no neurotic dystrophy. J Biol Chem. 2003;278(9):6748–6754.

120. Kwok JB, Taddei K, Hallupp M, et al. Two novel (M233T and R278T) presenilin-1 mutations in early-onset Alzheimer’s disease pedigrees and preliminary evidence for association of presenilin-1 mutations with a novel phenotype. Neuroreport. 1997;8(6):1537–1542.

121. Raman A, Lin X, Suri M, Hewitt M, Constantinescu CS, Phillips MF. A presenilin 1 mutation (Arg278Ser) associated with early onset Alzheimer’s disease and spastic paraparesis. J Neurol Sci. 2007;260(1–2):78–82.

122. Assini A, Terreni L, Borghi R, et al. Pure spastic paraparesis associated with a novel presenilin 1 R278K mutation. Neurology. 2003;60(1):150.

123. Godbolt AK, Beck JA, Collinge J, et al. A presenilin 1 R278I mutation presenting with language impairment. Neurology. 2004;63(11):1702–1704.

124. Dermatt B, Kumar-Singh S, De Jonghe C, et al. Cerebral amyloid angiopathy is a pathogenic lesion in Alzheimer’s disease due to a novel presenilin 1 mutation. Brain. 2001;124(12):2383–2392.

125. Hamaguchi T, Morinaga A, Tsukie T, Kivuvano R, Yamada M. A novel presenilin 1 mutation (L282F) in familial Alzheimer’s disease. J Neurol. 2009;256(9):1575–1577.

126. Aoki M, Abe K, Oda N, et al. A presenilin-1 mutation in a Japanese family with Alzheimer’s disease and distinct cerebral amyloid deposits on cranial MRI. Neurology. 1997;48(4):1118–1120.

127. Ikeuchi T, Kaneko H, Miyashita A, et al. Mutational analysis in early-onset familial dementia in the Japanese population. The role of PSEN1 and MAPT R406 W mutations. Dement Geriatr Cogn Disord. 2008;26(1):43–49.

128. Sánchez-Valle R, Lladó A, Ezquerra M, Rey MJ, Ramí L, Molinuevo JL. A novel mutation in the PSEN1 gene (L286P) associated with familial early-onset dementia of Alzheimer type and lobar haematomas. Eur J Neuro. 2007;14(12):1409–1412.

129. Dintchov Traykov L, Mehrabian S, Van den Broeck M, et al. Novel PSEN1 mutation in a Bulgarian patient with very early-onset Alzheimer’s disease, spastic paraparesis, and extrapyramidal signs. Am J Alzheimers Dis Other Demen. 2009;24(5):404–407.

130. Cruts M, Backhovens H, Wang SY, et al. Molecular genetic analysis of familial early-onset Alzheimer’s disease linked to chromosome 14q24.3. Hum Mol Genet. 1995;4(12):2363–2371.

131. Yasuda M, Maeda S, Kawamata T, et al. Novel presenilin-1 mutation with widespread cortical amyloid deposition but limited cerebral amyloid angiopathy. J Neurol Neurosurg Psychiatry. 2000;68(2):220–223.

132. Shrimpton AE, Schelper RL, Linke RP, et al. A presenilin 1 mutation (L420R) in a family with early onset Alzheimer disease, seizures and cotton wool plaques, but not spastic paraparesis. Neuropathology. 2007;27(3):228–232.

133. Robles A, Sobrido MJ, Garcia-Murias M, et al. Clinical picture of a patient with a novel PSEN1 mutation (L424V). Am J Alzheimers Dis Other Demen. 2009;24(1):40–45.

134. Matsushita S, Arai H, Okamura N, et al. Clinical and biomarker investigation of a patient with a novel presenilin-1 mutation (A431V) in the mild cognitive impairment stage of Alzheimer’s disease. Biol Psychiatry. 2002;52(9):907–910.

135. Beck JA, Poulter M, Campbell TA, et al. Somatic and germline mosaicism in sporadic early-onset Alzheimer’s disease. Hum Mol Genet. 2004;13(12):1219–1224.
158. Harold D, Abraham R, Hollingsworth P, et al. Genome-wide association study identifies variants at CLU and PICALM associated with Alzheimer's disease. *Nat Genet.* 2009;41(10):1088–1093.

159. Rogaeva E, Meng Y, Lee JH, et al. The neuronal soritin-related receptor SORL1 is genetically associated with Alzheimer disease. *Nat Genet.* 2007;39(2):168–177.

160. Meng Y, Lee JH, Cheng R, St George-Hyslop P, Mayeux R, Farrer LA. Association between SORL1 and Alzheimer's disease in a genome-wide study. *Neuroreport.* 2007;18(17):1761–1764.

161. Cruchaga C, Nowotny P, Kauwe JS, et al; Alzheimer's Disease Neuroimaging Initiative. Association and expression analyses with single-nucleotide polymorphisms in TOMM40 in Alzheimer disease. *Arch Neurol.* 2011;68(8):1013–1019.

162. Hu X, Pickering E, Liu YC, et al; Alzheimer's Disease Neuroimaging Initiative. Meta-analysis for genome-wide association study identifies multiple variants at the BIN1 locus associated with late-onset Alzheimer's disease. *PLoS One.* 2011;6(2):e16616.

163. De Ferrari GV, Papassotiriopoulos A, Biechele T, et al. Common genetic variation within the low-density lipoprotein receptor-related protein 6 and late-onset Alzheimer's disease. *Proc Natl Acad Sci U S A.* 2007;104(22):9434–9439.

164. Miyashita A, Arai H, Asada TA, et al. Japanese Genetic Study Consortium for Alzheimer's Disease. Genetic association of CTNNA3 with late-onset Alzheimer's disease in females. *Hum Mol Genet.* 2007;16(23):2854–2869.

165. Ertekin-Taner N, Ronald J, Asahara H, et al. Fine mapping of the alpha-T catenin gene to a quantitative trait locus on chromosome 10 in late-onset Alzheimer's disease pedigrees. *Hum Mol Genet.* 2003;12(23):3133–3143.

166. Reiman EM, Webster JA, Myers AJ, et al. GAB2 alleles modify Alzheimer's risk in APOE epsilon4 carriers. *Neuron.* 2007;54(5):713–720.

167. Pan XL, Lin B, Wang J, Cheng Y. Recent Patents and Advances in the Next-Generation Sequencing Technologies. *Dovepress.* 2016;7:1–14.

168. Tanzi RE. The genetics of Alzheimer disease. *Nature,* 2001;410:23–31.

169. Bettens K, Brouwers N, Engelborghs S, et al. DNBMP is genetically associated with Alzheimer dementia in the Belgian population. *Neurobiol Aging.* 2009;30(12):2000–2009.

170. Kim M, Suh J, Romano D, et al. Potential late-onset Alzheimer's disease-associated mutations in the ADAM10 gene attenuate [alpha]secretase activity. *Hum Mol Genet.* 2009;18(20):3987–3996.

171. Holton P, Ryten M, Nalls M, et al. Initial assessment of the pathogenicity of presenilin 1 in familial Alzheimer's disease in Israel detected by denaturing gradient gel electrophoresis. *Hum Mutat.* 1996;9(6):700–702.

172. Orita M, Iwahana H, Kanazawa H, Hayashi K, Sekiya T. Detection of polymorphisms of human DNA by gel electrophoresis as single-strand conformation polymorphisms. *Proc Natl Acad Sci U S A.* 1989;86(8):2766–2770.

173. Harold D, Abraham R, Hollingworth P, et al. Genome-wide association study identifies variants at CLU and PICALM associated with Alzheimer's disease. *Nat Genet.* 2009;41(10):1088–1093.

174. Jonsson T, Stefansson H, Steinberg S, et al. Variant of TREM2 associated with late-onset Alzheimer disease using denaturing gradient gel electrophoresis (DGGE). *Eur J Hum Genet.* 1998;6(2):176–180.

175. Reiznik-Wolf H, Treves TA, Shabati H, et al. Germline mutation analysis of presenilin 1 and APP genes in Jewish-Israeli individuals with familial or early-onset Alzheimer disease using denaturing gradient gel electrophoresis (DGGE). *Eur J Hum Genet.* 1998;6(2):176–180.

176. Reiznik-Wolf H, Treves TA, Davidson MA, et al. A novel mutation of presenilin 1 in familial Alzheimer's disease in Israel detected by denaturing gradient gel electrophoresis. *Hum Mutat.* 1996;9(6):700–702.

177. Aisen PS, Vellas B, Hampel H. Moving towards early clinical trials for amyloid-targeted therapy in Alzheimer's disease. *Nat Rev Drug Discov.* 2013;12(4):324.
198. Marguerat S, Wilhelm BT, Bähler J. Next-generation sequencing: applications beyond genomes. *Biochem Soc Trans.* 2008;36(Pt 5):1091–1096.

199. Lill CM, Bertram L. Towards unveiling the genetics of neurodegenerative diseases. *Semin Neurol.* 2011;31(5):531–541.