Monogenean parasites of the African catfish *Clarias gariepinus* from two fish farms in Calabar, Cross River State, Nigeria

Eyo Victor Oscar*, Edet Theresa Arit, Ekanem Albert Philip

Fisheries and Aquaculture Unit, Institute of Oceanography, University of Calabar, P.M.B.1115, Calabar, Cross River State, Nigeria

ARTICLE INFO

Article history:
Received 4 Feb 2015
Received in revised form 13 Feb 2015
Accepted 18 Mar 2015
Available online 6 May 2015

Keywords:
Monogenean parasites
Fish farms
Clarias gariepinus
Prevalence
Intensity
Abundance
Calabar

ABSTRACT

Objective: To determine the prevalence, mean intensity, and abundance of monogenean parasites in *Clarias gariepinus* (*C. gariepinus*) from two selected fish farms in Calabar, Cross River State, Nigeria.

Methods: Eighty specimens of *C. gariepinus* from the two farms (40 each) were necropsied for parasitological analysis. Skin, gill and fin biopsies were prepared from each specimen following standard methods for microscopic analysis. Parasitological indices including dominance (D), prevalence, mean intensity and abundance were calculated according to standard formulae. Data were analyzed using the Fisher's exact test.

Results: *C. gariepinus* from the two farms were infested with a total of ninety individuals of monogenean parasites belonging to three species including *Macrogyrodactylus clarii* (*M. clarii*), *Gyrodactylus* sp. and *Dactylogyrus* sp. D index showed that the three monogenean species were eudominant (*D*-value > 10%). *Gyrodactylus* sp. was more abundant (46) followed by *Dactylogyrus* sp. (23) while *M. clarii* was the lowest (21). Prevalence, mean intensity and abundance of monogenean parasites in the two farms, varied insignificantly higher (*P* > 0.05). Prevalence in both farms were higher in female *C. gariepinus* than that in male. Monogenean parasites exhibited organ specificity as *M. clarii* and *Dactylogyrus* sp. were recovered from the gills while *Gyrodactylus* sp. colonized the skin and fin.

Conclusions: High abundance of these parasites may lead to poor growth performance and high mortality in *C. gariepinus*, leading to huge monetary loss and low profit margin by increasing production cost due to the cost of treatments.

1. Introduction

Monogenea is a parasite of marine and freshwater fishes that was first collected and described by Muller in 1776 from the skin of the halibut, *Hippoglossus hippoglossus*.[1] They also parasitize frogs and other aquatic animals throughout freshwater and marine habitats.[2] However, Muller considered the parasite as a leech and named it *Hirudo hippoglossi* not until 1858 when Van Beneden proved its status as a monogenean, publishing a detailed and accurate description of the parasite.[1] Monogeneans are a kind of flatworms that belong to the phylum Platyhelminthes. They are composed of two major groups, the monopisthocotyleans and the polyopisthocotyleans.[2] Three members of the monogenean family including Gyrodactylidae, Dactylogyridae and Ancyrocephalidae are the most reported parasites found in cultured and wild fish.[2][3] Monogenea, are known to exhibit both host and organ specificity as some species prefer to colonize the skin and fins while some are mostly restricted to gills of marine and freshwater fishes. The life cycle of monogeneans involves only one host and they spread by releasing eggs and free-swimming infective larvae.[2] All monogeneans are oviparous (egg layers) except gyrodactylids which are viviparous (live bearers) in nature.[4] According to Jalali and Barzegar and Tasawar et al.[5][6], the adult stage of parasite is more dangerous to fish health depending on factors such as modes of attachment, the size and weight of host. A tachymere of ectoparasitise
such as monogeneans to gill and skin of fishes causes localized hyperplasia, disturbance of osmoregulation and mortality of the host[18]. This can also result in providing a pathway for secondary pathogens such as viruses, bacteria and fungi to invade the host[8].

The African catfish [*Clarias gariepinus* (*C. gariepinus*)] which belongs to the family Claridae is the most cultivated fish species in Nigeria[10]. The dominance of this species in Nigerian aquaculture, compared to other species such as the Nile tilapia (*Oreochromis nilotica*), common carp (*Cyprinus carpio*), is attributed to several characteristics exhibited by this species. Such attributes include its ability to tolerate a varying range of environmental conditions, high stocking densities under culture conditions, fast growth rate, disease resistance, acceptability of artificial feed, high fecundity, nice taste, excellent meat quality, ease of artificial breeding, high market value, etc[10].

In Nigeria, infection problems caused by parasites are quite frequent in fish farms and can lead to poor growth performance, high mortalities and monetary losses. The profitability is reduced because the production cost is increased due to the treatment expenses. This indicates the significance of epidemiological studies in Nigerian fish farms so that proper management strategies should be adopted. In Cross River State, there have been numerous studies on fish mortalities and monetary losses. The profitability is reduced because the production cost is increased due to the treatment expenses. This indicates the significance of epidemiological studies in Nigerian fish farms so that proper management strategies should be adopted.

In Nigeria, fish farms so that proper management strategies should be adopted.

2. Materials and methods

2.1. Study site

Specimens of the African catfish *C. gariepinus* were collected from March 2014 to June 2014 in two fish farms located at Calabar South Local Government Area, Cross River State of Nigeria for parasitological analysis.

2.2. Collection and transportation of fish specimens

Specimens collected from the two farms were stored in a labelled transparent rectangular plastic container with cover and transported alive immediately to the Fish Pathology Laboratory of the University of Calabar for identification and examination. Collection of specimens was based on physical observable signs such as wounds, lesions, patches, fin rot and behavioral signs such as loss of appetite, erratic swimming, rubbing the skin against the walls of the tank, etc. All fish from the two farms were collected with hand net, weighed (g) and measured (cm). Fish weight was measured with METLAR M D-2000 electronic weighing balance to the nearest g while the length was measured using measuring board to the nearest cm. Thereafter, the fish specimens were necropsied for parasitological analysis. Collected fish specimens were examined externally for gross signs of monogenean parasties. For each specimen, the gills, skin and fins were examined. Skin biopsies were prepared from the entire length of the lateral body wall; gill biopsy was collected from the second arch and fin biopsy was collected from the caudal fin[15]. Wet mounts of all biopsied tissues were prepared for further analysis and examined under light microscopes for monogenean parasites.

Collection, fixation, identification and quantification of monogenean parasites were done according to standard recommendations and literature[3,11,12,16-19].

2.4. Calculation of parasitological indices

Parasitological indices evaluated in this study included dominance, prevalence, mean intensity and abundance.

The dominance of monogenean parasite species was calculated according to Roohi *et al*. as follows[15]:

Dominance = \[
\frac{N \times 100}{N_{\text{sum}}}
\]

Where *N* = abundance of monogenean parasite species and *N sum* = sum of the abundance of all monogenean parasite species found. The monogenean parasites were classified based on their dominance values according to Niedbala and Kasprzak as follows[20]: eudominant (* > 10%), dominant (5.1%-10%), subdominant (2.1%-5%), recedent (1.1%-2%) and subrecedent (<1.0%) of given species.

Prevalence (%), meaning intensity and abundance, were calculated according to formula given by Upadhyay *et al*. as follows[21]:

Prevalence (%) = \[
\frac{\text{No. of infected fish}}{\text{Total No. of fish examined}} \times 100
\]

Mean intensity = \[
\frac{\text{No. of infected fish}}{\text{No. of collected parasites}}
\]

Abundance = \[
\frac{\text{No. of parasites}}{\text{No. of fish examined}}
\]

2.5. Physico-chemical parameters

Water quality parameters measured in the two fish farms included pH, dissolved oxygen, temperature and ammonia. Dissolved oxygen was measured in mg/L by using oxygen meter, and pH was measured by using pH meter; water temperature was measured by using thermometer while ammonia was measured colorimetrically by using ammonia test kit[22].

2.6. Data analysis

The differences between dominance, prevalence (%), mean
intensity and abundance of parasitized fish in the two farms in relation to sex were determined by using the Fisher’s exact test.

3. Results

3.1. Prevalence, intensity and abundance of parasites recovered from examined fish

A total of 80 adults of *C. gariepinus* were examined from farm 1 and farm 2 (40 in each farm). Out of the 40 specimens examined in farm 1, 12 specimens were infested with 61 monogenean parasites (17 *Dactylogyrus* sp., 30 *Gyrodactylus* sp. and 14 *Macrogyrodactylus clarii* (*M. clarii*)). Prevalence of monogenean parasites in farm 1 was 30%, intensity was 5.08 and abundance was 1.53. In farm 2, 9 out of the 40 specimens examined were infested with 29 monogenean parasites (6 *Dactylogyrus* sp., 16 *Gyrodactylus* sp. and 7 *M. clarii*). Prevalence of monogenean parasites in farm 2 was 22.5%, intensity was 3.22 and abundance was 0.73. Figures 1-5 show the skin, gills and fin of infected fish.

![Figure 1. *M. clarii* recovered from an infected fish (Mag × 40).](image1.png)

![Figure 2. Decayed dorsal fin exposing dorsal fin rays in infected *C. gariepinus*.](image2.png)

![Figure 3. Decayed caudal fin in infected *C. gariepinus*.](image3.png)

![Figure 4. Bloody hemorrhage at the tip of the dorsal, anal and caudal fins of infected *C. gariepinus*.](image4.png)

![Figure 5. Ulceration of the pelvic fin of infected *C. gariepinus*.](image5.png)

3.2. Prevalence, intensity and abundance of parasites recovered in relation to sex

In farm 1, 16 female (40%) and 24 male (60%) *C. gariepinus* were examined. Out of 16 females examined, 7 samples were infested with 44 monogenean parasites with prevalence (43.75%), intensity (6.29) and abundance (2.75). Out of 24 males examined, 5 samples were infested with 17 monogenean parasites with prevalence (20.83%), intensity (3.40) and abundance (0.71). In farm 2, 18 female (45%) and 22 male *C. gariepinus* (55%) were examined. Out of 18 females examined, 7 samples were infested with 25 monogenean parasites with prevalence (38.89%), intensity (3.57) and abundance (1.39). Out of 22 males examined, 2 samples were infested with 4 monogenean parasites with prevalence (9.09%), intensity (3.22) and abundance (0.18).

3.3. Prevalence, intensity, abundance and dominance of monogenean parasites in relation to organ specificity

The prevalence of ectoparasites in relation to organ specificity showed that in Farm 1, parasites were most prevalent in the gills, followed by the skin and the least in the fins. A total of 17 *Dactylogyrus* sp. and 28 *Gyrodactylus* sp. were recovered from the skin, and 2 *Gyrodactylus* sp. were recovered from the fins and 14 *M. clarii* were recovered from the gills. *Dactylogyrus* sp. recovered from the gills had a dominance value of 27.87 (eudominant parasite), prevalence (10.0%), mean intensity (4.25) and abundance (0.43). *Gyrodactylus* sp. recovered from the skin and fins had a dominance value of 49.18 (eudominant parasite), prevalence (15.0%), mean intensity (5.00) and abundance (0.75).
M. clarii recovered from the gills had a dominance value of 22.95 (eudominant parasite), prevalence (5.0%), mean intensity (7.00) and abundance (0.35).

In Farm 2, parasites were the most prevalent in the skin and fins, followed by the gills. A total of 6 Dactylogyrus sp. and 7 M. clarii were recovered from the gills and 16 Gyrodactylus sp. were recovered from the skin and fins. Dactylogyrus sp. recovered from the gills had a dominance value of 20.69 (eudominant parasite), prevalence (5.0%), mean intensity (3.00) and abundance (0.15). Gyrodactylus sp. recovered from the skin and fins had a dominance value of 55.17 (eudominant parasite), prevalence (10.0%), mean intensity (4.00) and abundance (0.40). M. clarii recovered from the gills had a dominance value of 24.14 (eudominant parasite), prevalence (7.5%), mean intensity (2.53) and abundance (0.18).

3.4. Physicochemical parameters

Results of physicochemical parameters showed that in Farm 1, pH ranged between 6.8 to 7.1, water temperature ranged between 28 °C to 29 °C, dissolved oxygen ranged between 3.5 mg/L to 3.8 mg/L and ammonia ranged from 0.00 mg/L to 0.004 mg/L. In Farm 2, pH ranged between 6.9 to 7.2, water temperature ranged between 28 °C to 29 °C, dissolved oxygen ranged between 3.3 mg/L to 3.7 mg/L and ammonia ranged from 0.00 mg/L to 0.005 mg/L.

4. Discussion

Monogenean parasites are reported to cause high mortality of fish in tanks since they have a tremendous reproductive capacity, leading to a rapid buildup of infections to produce a large number of parasites capable of causing mortality in the host. The present study showed that C. gariepinus examined from the two farms were infested with three species of monogenean parasites including M. clarii, Gyrodactylus sp. and Dactylogyrus sp. Infestation rate of monogenean parasites was higher (30%) in Farm 1 than in Farm 2 (22.5%). Findings of this study revealed that a total of 90 monogenean parasites belonging to 3 species were identified from 14 infected fish samples from the two farms (61 in Farm 1 and 29 in Farm 2). According to Khalil and Mashego[23], the occurrence of monogeneans on the skin and gills of C. gariepinus will affect its culture in ponds and tanks. Observations in this study that fishes infested with monogeneans were lethargic, swimming near the surface with clamped fins are in accordance with findings of Reed et al[24]. Findings of Harris’s study on the population dynamics of monogenean parasites in tanks, showed that infections persisted for at least 9 months, with parasites growing rapidly at the initial stage before being limited by a host response[25]. Furthermore, he explained that at their peak, parasite populations contained several hundred individuals but then dropped to less than 20 following the host. The infected fish which exhibited a reduced appetite was observed to swim to the corners or sides of the concrete tank, rubbing their body against the walls of the tank. Findings of this study agree with reports of Khalil and Mashego[23], and Douellou and Chishwo who recovered, described and illustrated specimens of Macrogyrodactylus from the gills of C. gariepinus from Middle Letaba Dam and Mokgoma-Matla Dam in South Africa and Lake Kariba in Zimbabwe[26]. Khan et al. and Peerven and Ullah attributed the infestation of bottom dwellers such as Gyrodactylus sp. to the fact that water temperature remains constant in the bottom as compared to the surface of water[27,28]. Evaluation of the dominance index based on the classification of Niedbala and Kasprzak showed that the three species of monogenean parasites were eudominant (D-value > 10%)[29]. Prevalence of parasites in fish is the proportion of fish hosts infected among all the hosts examined whereas mean intensity is the mean number of parasites found in the infected fish hosts. Among the three monogenean species recovered in the two farms, Gyrodactylus sp. was more abundant (46) followed by Dactylogyrus sp. (23) while M. clarii was the lowest (21). Prevalence (30%), intensity (5.08) and abundance (1.53) of monogenean parasites recorded in Farm 1 were not significantly higher (P > 0.05) than prevalence (22.5%), intensity (3.22) and abundance (0.73) recorded in Farm 2. These findings suggest that prevalence, intensity and abundance of monogenean parasites vary from one farm to another and this may be attributed to variations in environmental parameters such as temperature, pH, dissolved oxygen levels, etc. In the present study, prevalence, mean intensity and abundance of monogenean parasites in relation to sex showed that in both farms, female C. gariepinus were more infected than male. In Farm 1, prevalence of 43.75% and 20.83% (females and males), intensity of 6.29 and 3.40 (females and males) and abundance of 2.75 and 0.71 (females and males) were recorded. In Farm 2, prevalence of 38.89% and 9.09% (females and males), intensity of 3.57 and 3.22 (females and males) and abundance of 1.39 and 0.18 (females and males) were recorded. This observation is similar to findings of Alam et al. that female fishes were more infected than the male fishes[29]. However, Alam et al. attributed the cause of higher intensity in female fishes to ecological habitat and sex hormones which were responsible for depressing the level of parasite infestation[29]. Similarly, Aloo et al. explained that the main reason for the variation in parasitic infestation in relation to sex was physiological[30]. Organ specificity of monogenean parasites showed that M. clarii and Dactylogyrus sp. were recovered from the gills while Gyrodactylus sp. was recovered from the skin and fins. According to Reed et al[24], Gyrodactylus usually prefer the gills as a feeding and attachment site as primarly found in freshwater fish while Gyrodactylus glue their eggs to the skin of the catfish using an adhesive material.

Monogenean parasites such as M. clarii, Dactylogyrus sp. and Gyrodactylus sp. are common parasites of farmed C. gariepinus which is the most cultured fish species in Nigeria. However, the prevalence, mean intensity and abundance showed that females were prone to high rate of infection than male fish. Monogenean parasites were found to exhibit a high degree of organ specificity as M. clarii and Dactylogyrus sp. colonized the gills while
Gyrodactylus sp. colonized the skin and fins. In conclusion, high abundance of these parasites may cause poor growth performance and high mortality in C. gariepinus, leading to huge monetary loss and low profit margin by increasing production cost due to the cost of treatments.

Conflict of interest statement

We declare that we have no conflict of interest.

References

[1] Kearn GC. Some aspects of the biology of monogenean (Platyhelminth) parasites of marine and freshwater fishes. Oceanography 2014; 2: 117.
[2] Öztürk T, Özer A. Monogenean fish parasites, their host preferences and seasonal distributions in the Lower Kızılırmak Delta (Turkey). Turk J Fish Aquat Sci 2014; 14: 367-78.
[3] Paperna I. Parasites, infections and diseases of fish in Africa. Rome: Food and Agriculture Organization of the United Nations; 1980. [Online] Available from: http://www.fao.org/docrep/008/v9551e/v9551e00.htm [Accessed on 29th January, 2015]
[4] Paperna I. Parasites infections and disease of fishes in Africa- an update. Rome: Food and Agriculture Organization; 1996. CIFA Technical paper No. 31.
[5] Jali b, Barzegar M. Fish parasites in Zarivar Lake. J Agric Sci Technol 2006; 8: 47-58.
[6] Tasawar Z, Naz F, Lashari MH, Hayat CS, Ali SHB, Naeem M, et al. Incidence of Ichthyophthirius multifiliis on Cichlasoma in a fish farm. Sarhad J Agric 2009; 25(2): 285-9.
[7] Piasceki W, Goodwin AE, Eiras JC, Nowak BF. Importance of Copepoda in fresh water aquaculture. Jour Stud 2004; 43(2): 193-205.
[8] Bednarska M, Bednarski M, Soltyšak Z, Polechonski R. Invasion of Lernaea cyprinacea rainbow trout (Oncorynchus mykiss). ACTA Scientiarum Polonorum Medicina Veterinaria 2009; 8(4): 27-32.
[9] Tumbol RA, Powell MD, Nowak BF. Ionic effect of infection of Ichthyophthirius multifiliis in goldfish. J Aquat Anim Health 2001; 13(1): 20-6.
[10] Eyo VO, Ekanem AP, Jimmy UIU. A comparative study of the gonadosomatic index (GSI) and gonad gross morphology of African catfish (Clarias gariepinus) fed unical aqua feed and Coppens commercial feed. Croat J Fish 2014; 72(2): 63-9.
[11] Ekanem AP, Eyo VO, Sampson AF. Parasites of landed fish from Great Kwa River, Calabar, Cross River State, Nigeria. Int J Fish Aquac 2011; 3(12): 225-30.
[12] Ekanem AP, EyoVO, Udoh JP, Okon JA. Endoparasites of food-fish landing from the Calabar River, Cross River State, Nigeria. J Sci Res Rep 2014; 3(6): 810-7.
[13] Obiekezie A I. Chemotherapy regimens for diseases management in the nursery phase of African catfishes (Clariidae) (Ext. Abstr.). Nairobi: First African Fisheries Congress (Fist’ 95); 1995.
[14] Ekanem AP, Obiekezie A I. Antiparasitic effects of Piper guineense (Husaini) on the Juvenile of Heterobranchus longifilis (Cuvier & Valenciennes). Afr J Fishers Aquacult 2000; 2: 68-74.
[15] Roohi JD, Sattari M, Aghina M, Rufchaei R. Occurrence and intensity of parasites in European catfish, Sillerus glanis L., 1758 from the Anzali wetland, southwest of the Caspian Sea, Iran. Croat J Fish 2014; 72(1): 25-31.
[16] Roberts RJ. Fish pathology, 3rd ed. London: W. B. Saunders; 2001.
[17] Objekezie A I, Enyenihi UK. Henneguya chrysichthys sp. nov. (Protozoa: Myxozoa) from the gills of the estuarine catfish, Chrysiptys nigrodigitatus (Lacepede) in the Cross River Estuary Nigeria. J Afr J Zool 1988; 102: 33-42.
[18] Obiekezie A I, Ekanem DA. Experimental infection of Heterobranchus longifilis (Teleostei: Clariidae) with Trichodina martiniakae (Ciliophora: Peritrichida). Aquat Living Resour 1995; 8: 439-43.
[19] Paperna I. Monogenea of inland water fish in Africa. Belgium: Koninklijk M useum voor M idden-A frika; 1979.
[20] Niedbala W, K asprzak K. Biocenotic indexes used in the ordering and analysis of data in quantitative studies. In: Gorny M, Grum L, editors. Methods in soil zoology. Amsterdam: Elsevier; 1993, p. 379-96.
[21] Upadhyay J, Jauhari RK, Pemola Devi N. Parasitic incidence in a cyprinid fish Labeco rohitla (Ham.) at river Song in Doon valley (Uttarakhand). J Parasit Dis 2012; 36(1): 56-60.
[22] Eyo VO, Ekanem AP, Eni GE, Asikpo PE, Ufon-ima JU. Comparative study of growth performance, food utilisation and survival of hatchery bred and wild collected fingerlings of African catfish Clarias gariepinus. Greener J Oceanogr Mar Sci 2013; 1(1): 1-10.
[23] Khalil LF, M ashego SN. The African monogenean gyroacalydyl genus Macrogryodactylus M almberg, 1957, and the reporting of three species of the genus on Clarias gariepinus in South Africa. Onderstepoort J Vet Res 1998; 65: 223-31.
[24] Reed P, Francis-Floyd R, Klinger R, Petty D. Monogenean parasites of fish. Florida: University of Florida IFAS Extension; 1996. [Online] Available from: http://edis.ifas.ufl.edu/fa033 [Accessed on 29th January, 2015]
[25] Harris PD. Interactions between reproduction and population biology in gyroacalydyl monogeneans: a review. Bull Ecol Pescis 1993; 328: 47-65.
[26] Douellou L, Chishawa A M M . Monogeneans of three Siluriform fish species in Lake K ariba, Zimbabwe. J Afr Zool 1995; 109(2): 99-115.
[27] Khan MN, Aziz F, Afzal M, Rab A, Sahar L, Ali R, et al. Parasitic infestation in different fresh water fish of mini dams of Potohar Region, Pakistan. Pak J Biol Sci 2003; 6(13): 1092-5.
[28] Perveen F, Ullah H. Ectoparasites of indigenous and exotic fresh water carp fish (Cypriniformes: Cyprinidae) from Charbanda and Tarabela, Kh yber Pakhtunkhwa, Pakistan. Am J Res Commun 2013; 1(9): 255-69.
[29] Alam MJ, Rakibuzzaman M, Hasan MM. Comparative study of endoparasitic infestation in Channa punctatus (Bloch, 1793) collected from hatchery and sewage lagoon. Nat Sci 2010; 8(5): 52-6.
[30] Alloo PA, A nam RO, Mwangi JN. Metazoan parasites of some commercially important fish along the Kenyan Coast. West Indian Ocean J Mar Sci 2004; 3(1): 71-8.