Level of physical activity and its associated factors among adults in southeast Ethiopia: a community-based cross-sectional study

Yohannes Tekalegn, Damtew Solomon, Biniyam Sahiledengle, Girma Beressa, Fikreab Desta, Fekata Tolcha, Heather L Rogers, Pammla P Petrucka, Lillian Mwanri

ABSTRACT

Objective Insufficient levels of physical activity are a well-known modifiable risk factor for a number of chronic conditions including obesity, type 2 diabetes, cardiovascular diseases and certain malignancies. Little is known about the status of physical activity and its associated factors among adults in low-income countries, including Ethiopia. Therefore, this study aimed to assess the level of physical activity and its associated factors among adults in southeast Ethiopia.

Design Analytical cross-sectional study.

Setting Community setting in southeast Ethiopia.

Participants 641 adults aged 18–64 years.

Primary outcome Level of physical activity assessed via the Global Physical Activity Questionnaire (GPAQ).

Results The overall prevalence of insufficient physical activity in this study was 29.48% (95% CI: 25.78 to 33.18). Women were more likely to report insufficient physical activity compared with men (39.0% for women and 12.3% for men, p<0.001). Being: a women (adjusted OR=3.99, 95% CI: 2.15 to 7.40), overweight/obese (OR=1.94, 95% CI: 1.05 to 3.56), a housewife (OR=2.13, 95% CI: 1.01 to 4.47), a person with no formal education (OR=1.93, 95% CI: 1.05 to 3.56), a person with a formal education (OR=1.94, 95% CI: 1.05 to 3.56), and married (OR=3.04, 95% CI: 1.75 to 5.29) were associated with insufficient physical activity. Age, employment status, and marital status were found to be significantly associated with physical activity.

Conclusion The study revealed that three in 10 adults did not achieve the recommended level of physical activity. For chronic disease prevention in Ethiopia, the Ethiopian Ministry of Health and other stakeholders should pay special attention to strategies to improve the population’s physical activity especially among women, housewives, people with no formal education, and married, unemployed and overweight/obese adults.

INTRODUCTION

Physical activity (PA) is defined as ‘any bodily movement produced by skeletal muscles that require energy expenditure. PA occurs during any movement including during leisure time, for transport to get to and from places, or as part of a person’s work’. The WHO recommends that adults should do at least 150–300 min of moderate-intensity aerobic physical activity, or at least 75–150 min of vigorous-intensity aerobic physical activity, or an equivalent combination of moderate-intensity and vigorous-intensity activity throughout the week for substantial health benefits. Physical activity has been shown to be beneficial in maintaining good health and preventing illnesses.

According to the pooled analysis of 358 population-based surveys across 168 countries in the world, more than a quarter of adults (28%) were not achieving the recommended level of physical activity for health in the year 2016. The study further showed that women were less likely to be physically active compared with men, and people in high-income countries (HICs) were more likely to be physically inactive compared with those in low-income countries.
Physical inactivity or insufficient level of physical activity is one of the known risk factors for premature death and a number of non-communicable diseases.10–14 About 7.2% of global all-cause mortality and 7.6% of cardiovascular disease deaths were attributable to physical inactivity.15 Physical inactivity costs the healthcare system about $53.8 billion in 2013.16 Furthermore, physical inactivity-related deaths cost $13.7 billion in productivity loss and 13.4 million disability adjusted life-years (DALYs) with low-income and middle-income countries (LMICs) bearing 70% of the DALYs.16 Conversely, increasing the physical activity level of the world's population is projected to save a cumulative US$8.6 trillion for the global economy by 2050.17

The WHO’s Global Action Plan on Physical Activity targeted to reduce physical inactivity by 10% by 2025 and 15% by 2030.18 Despite these targets, the global trend of physical inactivity from 2001 to 2016 remained relatively stable and even increased for HICs in this period.9

In Ethiopia, a national STEPS survey was conducted in 2015 among people aged 15–69 years revealing 6% of adults with insufficient physical activity.19 This figure varies depending on residential area with urban inhabitants more likely to be physically inactive compared with their rural counterparts (12.7% vs 4.2%).19 Additional cross-sectional studies conducted among adults in eastern Ethiopia reported that about 45% of adults did not achieve the WHO recommended level of physical activity.20,21 Significant variability in reported inactivity levels reflects variation in studied populations, such as patient, adolescents or pregnant women.22–30 The recommended level and intensity of physical activity varies for adults, adolescents, pregnant women and people living with different medical conditions.3 Evidence on the level of physical activity and its predictors among adults in low-income countries, including Ethiopia, is sparse and inconclusive. This evidentiary gap warrants studying the level of physical activity among adults in the Ethiopian context in order to formulate specific recommendations informing public health actions aimed at increasing the level of physical activity, as well as chronic disease prevention and control. Thus, the current study aimed to assess the level of physical activity and associated factors among adults aged 18–64 years old in southeastern Ethiopia.

METHODS AND MATERIALS

Study setting

The study was conducted in Bale zone in the southeastern part of Oromia, one of the regional states in Ethiopia. According to the Central Statistical Agency (CSA), the Bale zone had a total population of 1,840,746, including 932,224 men and 908,522 women in 2017.31 The zone is subdivided into 18 districts and two administrative towns of Robe and Goba. According to the 2021 administrative report, Robe and Goba towns have populations of 73,152 and 52,785, respectively. Furthermore, each administrative town is divided into smaller administrative clusters known as gota. There are 36 and 24 gotas in Robe and Goba towns, respectively.

Study design, and subjects

From May to July 2021, a community-based cross-sectional study assessed levels of physical activity for health among adults (18–64 years) in the administrative towns of Bale zone. There were no COVID-19 activity restrictions in place during this time. All adults residing in the study area for at least 6 months were eligible for inclusion. Individuals were excluded if they had psychiatric problems, hearing impairment, body deformities, other debilitations or disabilities. In addition, pregnant women were excluded. Individuals with psychiatric problems or hearing impairments were excluded from the study to avoid difficulties in getting accurate information during interview. Those with body deformities or disabilities resulting in limitations in performing physical activity were also excluded, as to not confound the results. Additionally, pregnant women were also excluded from the study since their BMI and waist circumference would not be a true reflection of obesity. Exclusion criteria were assessed by data collectors through observation and self-reported history taking.

Sample size determination and sampling techniques

Based on the total zonal population, the study sample size was calculated using Epi-info V.7 software. The parameters of 95% level of confidence, 5% margin of error, 45.1% proportion of insufficient physical activity (in accordance with previous study in Dire Dawa town),20 design effect of 1.5 and non-response rate of 10% were considered. A final sample size of 641 individuals was calculated for this analysis and data collection was continued until the determined sample size was achieved. A multistage stratified sampling followed by systematic random sampling was employed to select the study participants. Primarily, the study populations were stratified into Robe and Goba towns. The sample was allocated to each randomly selected ‘gota’ proportional to their respective population size, with random selection of eight (one-third) gotas from Goba town and 12 (one-third) gotas from Robe town. Furthermore, households in the sampled clusters were selected using systematic sampling techniques and one adult per sampled household was selected using the lottery method (figure 1). If the selected interviewee was not available at home during the data collection time, a revisit appointment was secured through available household members.

Data collection, measurement procedures and quality control

Interviewer-administered, structured questionnaires were used to collect data. A standard questionnaire was adapted from the WHO STEPS-wise questionnaire for chronic disease risk factor surveillance.32 The English version of the questionnaire was translated into the local languages (ie, Afan Oromo and Amharic) spoken in the study area. After the translation into local languages, the questionnaire was back-translated into English to
check the consistency. The questionnaires comprised sociodemographic and economic factors such as town of residence (Robe or Goba); age (categorised into: 18–29, 30–39, 40–49, 50–59 and ≥60 years); sex (male or female), marital status (categorised as never married or ever married); educational status (categorised as no formal education, primary education and secondary education, or diploma and above); occupational status (employed or unemployed) and wealth index (computed by principal component analysis using household assets and rank-ordered as low, medium or high wealth index terciles). Body mass index (BMI) was calculated using weight and height measurements (categorised into underweight (<18.5 kg/m²), normal (18.5–24.99 kg/m²), overweight or obese (≥25 kg/m²)). Weight was measured using an electronic digital weight scale by putting the scale on a firm flat surface after participants took off footwear, heavy clothes and emptied their pockets of heavy items. Readings were taken in kilograms. A portable height measuring board was put on a stable surface against a wall.

Figure 1 Schematic presentation of sampling procedure.
to take participants’ height measurements in a standing position. Readings were taken in centimetres with subjects facing the data collector, feet together and eyes aimed at the ears (to the nearest millimetre). Further details on the study’s physical measurement protocols are consistent with the WHO STEPS-wise instrument guideline.32

Six data collectors (three male-female pairs) with bachelor’s degrees in health sciences (Nursing, Public Health or Midwifery) conducted data collection, enabling participant-data collector sex matching. The data collection process was overseen by two supervisors with master’s degrees in public health. Data collectors and supervisors were provided with a 2-day intensive training session on the objectives of the study, data collection instruments and principles of research ethics. A pretest was conducted with 5% of the total sample size in another study setting and a few amendments were made before actual data collection. The questionnaires were checked every day by data collectors for completeness before leaving the data collection site (household) with supervisor’s assistance as necessary.

Measurement of the level of physical activity
The level of physical activity was the outcome variable for this study, which was measured using the Global Physical Activity Questionnaire (GPAQ) V.2 adopted from the WHO STEPS instrument.32 The tool has a series of questions organised in three domains namely: work-related physical activity, activities related to travel to and from places and leisure time activities. Each question in the three domains queries frequency of the activities in a typical week, and the duration of time spent in the activities on a typical day. According to the WHO recommendations on physical activity for health throughout a week, including activity for work, during transport and leisure time, adults should do at least 150 min of moderate-intensity physical activity or 75 min of vigorous-intensity physical activity or an equivalent combination of moderate-intensity and vigorous-intensity physical activity achieving at least 600 MET-min.32 In this study, we used metabolic equivalents (MET) min to examine the intensity of physical activity. MET is the ratio of a person’s working metabolic rate relative to the resting metabolic rate. One MET is defined as the energy cost of sitting quietly, and is equivalent to a caloric consumption of 1 kcal/kg/hours.32 Applying MET values to activity levels allows us to calculate total physical activity.

For the analysis of GPAQ data, existing guidelines were adopted. It is estimated that, compared with sitting quietly, a person’s caloric consumption is four times as high when being moderately active, and eight times as high when being vigorously active. Therefore, for the calculation of the categorical indicator of the recommended amount of physical activity for health, the total time spent in physical activity during a typical week and the intensity of the physical activity were taken into account. Further details on the calculation of the MET values are consistent with the WHO STEPS-wise instrument guideline.32

Accordingly, we categorised study participants using the total MET values from the three domains. Adults achieving an equivalent combination of moderate-intensity and vigorous-intensity physical activity of less than 600 MET-min were considered as not meeting the WHO recommendation of physical activity for health (insufficient physical activity) and coded as ‘1’ and those who achieved 600 MET-min or higher were considered as doing sufficient physical activity and coded as ‘0’ in this analysis.

Data processing and analyses
The data were coded and entered into EpiData V.3.1. After cleaning and processing, data were analysed using SPSS V.25 and STATA V.14. The variables were described using median, frequencies, proportions, IQR and tables. Normality was checked for continuous variables (total MET-min and time spent sitting or reclining) using the Kolmogorov-Smirnov test. The χ² test was used to check the statistical difference of the distribution of categorical independent variables between men and women. A two-sample Wilcoxon rank-sum (Mann-Whitney) test was used to check the statistical difference of continuous independent variables between men and women given the difference in prevalence of physical inactivity noted in the results. Factors associated with physical inactivity were assessed for both men and women in combined model rather than separate model, due to inadequate number of cases in each stratum. Both bivariant and multivariant binary logistic regression analyses were used to identify factors associated with the outcome variable. Variables having a p-value of less than 0.2 in the bivariable binary logistic regression model were included in the multivariant binary logistic regression analysis model to control potential confounding effects. The enter method was used to run the model. The logit of the dependent variable was checked for outliers and nine outlying values (having standardised residual of >2.58 at a level of α<0.01) were excluded from the analysis. The Hosmer and Lemeshow’s goodness of model fit was checked and the data fit the model well (p=0.44). Multicollinearity between independent variables was checked using the variance inflation factor (VIF), the mean VIF was 1.94 which is less than the recommended cut-off value.34 Finally, adjusted ORs with 95% CI were used to estimate the strength of associations between the outcome and independent variables. All tests were two-tailed and statistical significance was declared at p-value<0.05. The results were reported using the strengthening the reporting of observational studies in epidemiology cross-sectional reporting guidelines35 (S1 table).

Patient and public involvement
Patients or the public were not involved in the design, conduct, reporting or dissemination plans of our research.

RESULTS
Sociodemographic and economic characteristics of adults
A total of 641 adults aged between 18 and 64 years participated in the study. Three hundred and eighty (59.28%)...
were from Robe town and 261 (40.72%) were from Goba town. Four hundred and thirteen (64.43%) of the participants were females. The median age of participants was 32 years with an IQR of 25–46 years (table 1).

Self-reported level of physical activity by specific domains

Of the total sample, 7.2% of the study participants reported doing vigorous-intensity physical activity at work. Thirty-three per cent of the study participants reported moderate-intensity physical activity on travel to and from places. A total of 9.7% of the study participants did vigorous physical activity in both work and leisure domains. The proportion of men who did vigorous physical activity was more than twofold higher compared with women (70.97% vs 29.03%, p<0.001). Total MET-min achieved per week were significantly higher for men compared with women (2040 vs 840, p<0.001). Similarly, women spent more time on sedentary activities such as sitting/reclining at work place, home or in transportation compared with men. Women had higher median sitting minutes per day than men (180 min vs 120 min, p<0.001) (table 2).

MAGNITUDE OF INSUFFICIENT LEVEL OF PHYSICAL ACTIVITY BY SEX

A total of 29.5% (95% CI: 25.9 to 33.2) of the study participants had insufficient level of physical activity (<600 MET-min). A higher proportion of women were below the recommended level compared with the men (39.0% vs 12.3%, p<0.001) (figure 2).

Factors associated with physical insufficient physical activity

The final model of the logistic regression analysis identified that being women (AOR=3.99, 95% CI: (2.15 to 7.40)), overweight/obese (AOR=1.95, 95% CI: 1.23 to 3.09), ever-married (AOR=2.13, 95% CI: 1.01 to 4.47), adults with no formal education (AOR=1.94, 95% CI: 1.05 to 3.56), housewives (AOR=3.04, 95% CI: 1.75 to 5.29) and unemployed (AOR=3.30, 95% CI: 1.55 to 7.02) were statistically significantly associated with insufficient physical activity (table 3).

DISCUSSION

Similar to many other low-income and middle-income countries, Ethiopia continues to be in a state of health transition which includes both demographic and epidemiological changes that are leading to varying patterns of morbidity and mortality from infectious and non-communicable diseases. These disease patterns are often accompanied by increasing physical inactivity, urbanisation and changes in sociocultural norms; creating health problems similar to those seen in the ‘developed’ world, but occurring in resource poor settings. This study assessed level of physical activity and associated factors among adults aged 18–64 years in southeast Ethiopia. The findings revealed that 29.5% of the study

Variables	Frequency	Per cent
Town of residence		
Robe	380	59.28
Goba	261	40.72
Sex		
Male	228	35.57
Female	413	64.43
Age category in years		
18–29	262	40.87
30–39	134	20.90
40–49	103	16.07
50–59	92	14.35
60–64	50	7.81
Educational status		
No formal education	79	12.35
Primary and secondary	396	61.87
Diploma and above	165	25.78
Ethnicity		
Oromo	512	79.87
Amhara	97	15.13
Wolaita	10	1.56
Somali	1	0.16
Refused	21	3.28
Religion		
Muslim	275	42.90
Orthodox Christian	298	46.49
Protestant Christian	67	10.45
Catholic	1	0.16
Marital status		
Never-married	134	21.20
Ever-married	498	78.80
Occupational status		
Employed	283	44.57
Housewives	238	37.48
Unemployed*	114	17.95
Wealth index		
Low	257	40.10
Medium	149	23.24
High	235	36.66
Body mass index		
<18.5 kg/m²	57	9.16
18.5–24.99 kg/m²	402	64.63
≥25 kg/m²	163	26.21

*Unemployed adults, students and retired.
Table 2 Level of physical activity by specific domains among adults aged 18–64 years, southeast Ethiopia, 2021

Physical activity by domains	Total, n (%)	Men, n (%)	Women, n (%)	Pearson χ^2 (df)	P value
Vigorous-intensity activity at work					
Yes	46 (7.19)	25 (11.01)	21 (5.08)	7.72 (1)	0.005*
No	594 (92.81)	202 (88.99)	392 (94.92)		
Moderate-intensity activity at work					
Yes	216 (33.70)	96 (42.11)	120 (29.06)	11.12 (1)	<0.001*
No	425 (66.30)	132 (57.89)	293 (70.94)		
Moderate intensity activity on travel to and from place					
Yes	626 (97.81)	223 (35.62)	403 (64.38)	0.00 (1)	0.99
No	14 (2.19)	5 (35.71)	9 (64.29)		
Vigorous-intensity sports, fitness or recreational (leisure) activities					
Yes	26 (4.06)	20 (8.77)	6 (1.45)	20.22 (1)	<0.001*
No	615 (95.94)	208 (91.23)	407 (98.55)		
Moderate-intensity sports, fitness or recreational (leisure) activities					
Yes	62 (9.67)	44 (19.30)	18 (4.36)	37.52 (1)	<0.001*
No	579 (90.33)	184 (80.70)	395 (95.64)		
Vigorous physical activity from work and leisure domains					
≥75 min/week	62 (9.67)	44 (70.97)	18 (29.03)	19.81 (1)	<0.001*
<75 min/week	579 (90.33)	184 (31.78)	395 (68.22)		
Moderate physical activity from work, transport and leisure domains					
≥150 min/week	449 (70.05)	198 (44.10)	251 (55.90)	47.57 (1)	<0.01*
<150 min/week	192 (29.95)	30 (15.63)	162 (84.38)		
Total MET-min/week (median and IQR)	1200 (480, 3200)	2040 (1140, 5560)	840 (360, 2040)	Z=8.67	<0.001*
Level of physical activity category by MET-min/week*					
≥3000 MET-min/week	167 (26.51)	92 (55.09)	75 (44.91)	66.33 (2)	<0.001*
600–2999 MET-min/week	285 (45.24)	108 (37.89)	177 (62.11)		
<600 MET-min/week	178 (28.25)	24 (13.48)	154 (86.52)		
Meeting WHO recommendations of physical activity for health†					
Yes	452 (70.51)	200 (87.72)	252 (61.02)	50.37 (1)	<0.001*

Continued
participants had insufficient level of physical activity (ie, less than 600 MET-min per week). This finding is almost five-times higher than the Ethiopian national STEPS survey that reported an overall magnitude of 6%.19 39 This discrepancy may be explained by the fact that the national study sample included both urban and rural population, and the current study included only urban population which are known to be relatively physically inactive than rural adults;19 39–41 additionally, the sex makeup of the national study was almost one to one. On the other hand, the current study's level of insufficient physical activity is lower than the subnational study conducted in Dire Dawa and Harar, eastern Ethiopia.20 21 The reason for that variation might be due to that Dire Dawa and Harar being large cities where the level of insufficient physical activity could be expected to be higher as associated with urbanised life-style. Furthermore, the study conducted in Dire Dawa included adults aged 25–64 years, whereas ours included adults aged 18–64 years. The present study's MET level of insufficient physical activity as per the WHO recommendation was comparable with a study conducted by Guthold et al based on pooled analyses of 22 African countries.42

In this study, women were four times more likely to have insufficient physically activity compared with men. This finding was supported by evidence from a previous study in the eastern part of Ethiopia which reported that men were more likely to achieve the recommended level of physical activity than women.20 21 Similarly, a study conducted among adolescent students in Debre Berhan town, central Ethiopia reported that male students were more physically active compared with female students.30

The current study finding also reveals that higher proportion of women spend more time on sedentary activities such as sitting or reclining at work, at home, getting to and from places compared with men (180 min vs 120 min, p=0.04). Previous evidence showed women were more physically inactive than men.20 43 44 The reason for this trend might be related to variation in gender roles, and in availability of physical infrastructures suitable for women. These findings strengthen evidence of insufficient physical activity in the study populations and call for

Physical activity by domains	Total, n (%)	Men, n (%)	Women, n (%)	Pearson χ^2 (df)	P value
No	189 (29.49)	28 (12.28)	161 (38.98)		
Time spent sitting/reclining on typical day (median and IQR) in min	120 (60, 240)	120 (60, 240)	180 (60, 240)	Z=-2.00	0.04*

Vigorous-intensity activity refers to physical activities that causes large increases in breathing or heart rate; moderate-intensity activity refers to activities that causes small increases in breathing or heart.

*Sample does not include those who report no activity. IQR (Q1, Q3).
†Yes, ≥600 MET-min/week, no, <600 MET-min/week; n, sample size; Z, critical value for two-sample Wilcoxon rank-sum (Mann-Whitney) test. MET, metabolic equivalents.

Figure 2 MET-min level of physical activity by metabolic equivalent per week by sex, among adults aged 18–64 years, southeast Ethiopia, 2021. MET, metabolic equivalents.
health-promotion and preventive initiatives that target women for effective prevention of chronic conditions in the country. However, because this study did not investigate the reasons why women were less likely to undertake physical activity, it is worthwhile to further investigate the predictors of sex disparity in physical activity to effectively inform recommendations that would help policy makers and public health programmers.

In this study, ever-married adults were two times more likely to undertake insufficient physical activity as compared with those never-married. A study conducted by Alqahtani et al among Saudi Arabian adults reported unmarried individuals were more physically active than their married counterparts. Similar associations were also noted in Malaysia. Determinants of high level of insufficient physical activity among married adults might

Table 3 Factors associated with insufficient physical activity (<600 MET-min per week) among adults aged 18–64 years, southeast Ethiopia, 2021	**Level of physical activity**	**COR (95% CI)**	**AOR* (95% CI)**					
Variables	**<600 MET-min**	**≥600 MET-min**	**N (%)**					
Residential town								
Goba	84 (32.18)	177 (67.82)	1.53 (0.91 to 1.84)	1.51 (0.99 to 2.31)				
Robe	105 (27.63)	275 (72.37)	1	1				
Sex								
Male	28 (12.28)	200 (87.72)	1	1				
Female	161 (38.98)	252 (61.02)	4.56 (2.93 to 7.10)†	3.99 (2.15 to 7.40)‡				
Age categories in years								
18–29	82 (31.42)	179 (68.58)	0.76 (0.40 to 1.44)	1.54 (0.67 to 3.35)				
30–39	32 (24.43)	99 (75.57)	0.53 (0.26 to 1.09)	0.71 (0.31 to 1.66)				
40–49	25 (24.75)	76 (75.25)	0.54 (0.26 to 1.14)	0.73 (0.35 to 1.74)				
50–59	23 (25.27)	68 (74.73)	0.56 (0.26 to 1.19)	0.83 (0.34 to 2.04)				
60–64	18 (37.50)	30 (62.50)	1	1				
Marital status								
Never married	27 (20.15)	107 (79.85)	1	1				
Ever married	153 (30.72)	345 (69.28)	1.75 (1.10 to 2.79)†	2.13 (1.01 to 4.47)‡				
Educational status								
No formal education	36 (45.57)	43 (54.43)	2.28 (1.38 to 3.74)†	1.94 (1.05 to 3.56)‡				
Primary and secondary	105 (26.85)	286 (73.15)	1	1				
Diploma and above	39 (24.22)	122 (75.78)	0.87 (0.56 to 1.33)	1.57 (0.91 to 2.72)				
Occupational status								
Employed	37 (13.45)	238 (86.55)	1	1				
Housewives	108 (45.38)	130 (54.62)	5.34 (3.47 to 8.21)†	3.04 (1.75 to 5.29)‡				
Unemployed§	33 (29.20)	80 (70.80)	2.65 (1.55 to 4.52)†	3.30 (1.55 to 7.02)‡				
Wealth index								
Low	76 (29.57)	181 (70.43)	1	1				
Medium	48 (32.21)	101 (67.79)	1.13 (0.73 to 1.74)	1.13 (0.66 to 1.74)				
High	65 (27.66)	170 (72.34)	0.91 (0.61 to 1.34)	1.19 (0.67 to 1.89)				
Body mass index								
<18.5 kg/m²	22 (38.60)	35 (61.40)	1.89 (1.06 to 3.38)†	1.82 (0.95 to 3.50)				
18.5–24.99 kg/m²	100 (24.88)	302 (75.12)	1	1				
≥25 kg/m²	14 (48.28)	15 (51.72)	2.81 (1.31 to 6.04)†	1.95 (1.23 to 3.09)‡				

*Significant at p<0.05 (crude).
†Significant at p<0.05 (adjusted).
§Unemployed adults, students and retired.
AOR, adjusted OR; COR, crude OR.
partly owe to household commitments often borne by married individuals which could hinder frequent physical activity.\(^{47}\)

Adults with no formal education had two times higher odds of insufficient physical activity as compared with educated individuals. This finding is consistent with previous studies in Germany,\(^ {48}\) the Netherlands,\(^ {49}\) and the USA,\(^ {50}\) potentially indicating the importance of education in engaging in physically active life-styles. However, the finding in the current study differed from the national study findings, which reported adults with higher education were 28% less likely to be physically active compared with those without formal education.\(^ {39}\) The possible variation could be due to differences in the source population in which the former study included participants from rural population where the majority of adults engage in agricultural related activities and use walking for travel to and from places due to limited transport access,\(^ {22}\) whereas the current study focused solely on urban adults.

Unemployed adults were three times more likely to report insufficient physical activity compared with employed adults. A previous study conducted by Shaw\(^ {30}\) indicates that unemployment is negatively associated with physical activity but it interacts with level of education. Shaw reported that ‘at lower than average levels of education, employment was positively associated with physical activity, whereas at higher than average levels of education, employment became negatively associated with physical activity’.\(^ {47}\) Further studies investigating the role of employment and its interaction with education level in Ethiopia are instrumental to make specific recommendations for public health interventions.

Finally, overweight or obese adults had twofold likelihood of insufficient physical activity than adults with normal BMI. Overweight and obesity are correlated with physical inactivity in several previous studies.\(^ {51–55}\) For example, a longitudinal study conducted by Petersen et al suggested that obesity may lead to physical inactivity.\(^ {51}\) Another longitudinal study by Wanner et al reported that remaining and becoming physically inactive were associated with weight gain while remaining and becoming active had a favourable effect on weight status.\(^ {57}\) The evidence indicates that the association between ‘overweight or obesity’ and ‘physical (in)activity coexist’ and creates a vicious circle\(^ {51}\) of poor health outcomes in populations such as cardiovascular disease, fatty liver and type 2 diabetes mellitus.\(^ {58}\)

Strengths and limitations

The use of the GPAQ tool and adherence to the analysis protocol may be among the strengths of the current study, which facilitates fair comparison with studies from different settings. The findings of the current study should be interpreted in light of the following limitations. First, the study used self-reported level of physical activities, which might affect the estimation of the intensity and duration of activities. For instance, social desirability bias may have played a role in reporting. Second, identifying enabling and reinforcing factors of physical activity including built environment to support physical activity (eg, play grounds, peer influences and social supports) were beyond the scope of this study. Third, the sample sizes for men and women were not adequate for separate modelling of factors and the prevalence of insufficient physical activity between these groups. As such, future studies should consider allocating separate sample sizes for both sexes in order to examine the role of sex-specific factors related to insufficient physical activity in Ethiopia. Finally, because of the cross-sectional nature of the study, the temporal relationship between explanatory and outcome variables could not be established.

CONCLUSION

Three in 10 urban adults in this study in southeast Ethiopia did not achieve the WHO recommended level of physical activity. A higher percentage of women reported insufficient physically activity compared with men. Physical inactivity is a current global challenge which is contributing to non-communicable diseases and premature deaths; hence, the Ethiopian Ministry of Health and other stakeholders should pay special attention to improving physical activity among women, married, those without formal education, unemployed and overweight or obese adults. Furthermore, longitudinal observational and interventional studies are required to assess the level of physical activity and/or to evaluate the effectiveness of different interventions aiming to improve the level of physical activity in Ethiopia.

Author affiliations

1. Public Health Department, Madda Walabu University, Robe, Ethiopia
2. Biomedical Department, Madda Walabu University, Robe, Ethiopia
3. Public Health, Madda Walabu University, Addis Ababa, Oromia, Ethiopia
4. Public Health, Jimma University, Jimma, Oromia, Ethiopia
5. Public Health, Madda Walabu University, Robe, Oromia Region, Ethiopia
6. Medicine, Madda Walabu University, Robe, Ethiopia
7. Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
8. Ikerbasque, Bilbao, Bizkaia, Spain
9. Nursing Education, University of Saskatchewan College of Nursing, Saskatoon, Saskatchewan, Canada
10. Torrens University Australia, Adelaide, South Australia, Australia

Twitter Yohannes Tekalegn @yohannesefa

Acknowledgements We are grateful to all data collectors, Goba and Robe Health Office and Health extension workers, Kebele and Got administrators for their facilitation and cooperation to smoothly conduct this study.

Contributors YT conceptualised, designed, reviewed literature, conducted formal analysis and wrote the original draft of the manuscript. DS, BS, GB, FD, FT, HLR, PPP and LM critically reviewed and edited the manuscript. YT responsible for the overall content as the guarantor. All authors read and approved the final version of the manuscript.

Funding This work was supported by Madda Walabu University.

Competing interests None declared.

Patient and public involvement Patients and/or the public were not involved in the design, or conduct, or reporting or dissemination plans of this research.

Patient consent for publication Not required.

Ethics approval This study involves human participants. Ethical clearance and support letters were obtained from the ethical review committee of Madda Walabu.
University with the reference number Rmu-14/92/674. A permission letter to conduct the survey was obtained from the respective authorities of the two towns (Goba and Robe). The methods were conducted following the tenets of the Helsinki declaration. Before collecting data, an information sheet was read to all eligible study participants to obtain oral informed consent. The privacy of the respondents was respected and data were deidentified before analysis and reported in aggregate. Participants gave informed consent to participate in the study before taking part.

Provenance and peer review Not commissioned; externally peer reviewed.

Data availability statement All data relevant to the study are included in the article or uploaded as supplementary information. All data generated or analysed during this study are included in this manuscript and its supplementary information files.

Supplemental material This content has been supplied by the author(s). It has not been vetted by BMJ Publishing Group Limited (BMJ) and may not have been peer-reviewed. Any opinions or recommendations discussed are solely those of the author(s) and are not endorsed by BMJ. BMJ disclaims all liability and/or omissions arising from translation and adaptation or otherwise.

Open access This is an open access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited, appropriate credit is given, any changes made indicated, and the work is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/.

ORCID iDs
Yohannes Tekalegn http://orcid.org/0000-0001-6628-8180
Biniyam Sahledengle http://orcid.org/0000-0002-1114-4840
Girma Beressa http://orcid.org/0000-0001-5677-3692
Fikreab Desta http://orcid.org/0000-0002-9706-3942
Fekatola Tokach http://orcid.org/0000-0001-6046-2969

REFERENCES
1 World Health Organization. Physical activity [Internet], 2020. Available: https://www.who.int/news-room/fact-sheets/detail/physical-activity [Accessed updated 26 November 2020].
2 World Health Organization. WHO guidelines on physical activity and sedentary behaviour: web annex: evidence profiles, 2020.
3 Bull FC, Al-Ansari SS, Biddle S, et al. World Health organization 2020 guidelines on physical activity and sedentary behaviour. Br J Sports Med 2020;54:1451–62.
4 Garber CE. The health benefits of exercise in overweight and obese patients. Curr Sports Med Rep 2015;18:287–91.
5 Lee PG, Jackson EA, Richardson CR. Exercise prescriptions in older adults. Am Fam Physician 2017;95:425–32.
6 Lear SA, Hu W, Ranganarajan S, et al. The effect of physical activity on mortality and cardiovascular disease in 130 000 people from 17 high-income, middle-income, and low-income countries: the PURE study. Lancet 2017;390:2643–54.
7 Pescatello LS, Buchner DM, Jakicic JM, et al. Physical activity to prevent and treat hypertension: a systematic review. Med Sci Sports Exerc 2019;51:1314–23.
8 Daskalopoulou C, Stubbs B, Kraj C, et al. Physical activity and healthy ageing: a systematic review and meta-analysis of longitudinal cohort studies. Ageing Res Rev 2017;38:6–17.
9 Guthold R, Stevens GA, Riley LM, et al. Worldwide trends in insufficient physical activity from 2001 to 2016: a pooled analysis of 358 population-based surveys with 1·9 million participants. Lancet Glob Health 2018;6:e1077–86.
10 Rezende LF, Mde, Sá THDe, Markozannes G, et al. Physical activity and cancer: an umbrella review of the literature including 22 major anatomical sites and 770,000 cancer cases. Br J Sports Med 2018;52:926–33.
11 Kraus WE, Powell KE, Haskell WL, et al. Physical activity, all-cause and cardiovascular mortality, and cardiovascular disease. Med Sci Sports Exerc 2019;51:1270–81.
12 Silva DAS. Physical inactivity as a risk factor to mortality by ischemic heart disease during economic and political crisis in Brazil. PeerJ 2020;8:e10192.
13 Ponticell C, Favi E. Physical inactivity: a modifiable risk factor for morbidity and mortality in kidney transplantation. J Pers Med 2021;11. doi:10.3390/jpm11090927. [Epub ahead of print: 18 09 2021].
14 Bellettiere J, LaMonte MJ, Evenson KR, et al. Sedentary behavior and cardiovascular disease in older women: the objective physical activity and cardiovascular health (OPACH) study. Circulation 2019;139:1036–46.
15 Katzmarzyk PT, Friedenreich C, Shirima EJ, et al. Physical inactivity and non-communicable disease burden in low-income, middle-income and high-income countries. Br J Sports Med 2022;56:101–1.
16 Ding D, Lawson KD, Kolbe-Alexander TL, et al. The economic burden of physical inactivity: a global analysis of major non-communicable diseases. Lancet 2016;388:1311–24.
17 Hafner M, Yerushalmi E, Stepanek M, et al. Estimating the global economic benefits of physically active populations over 30 years (2020-2050). Br J Sports Med 2020;54:1482–7.
18 Organization WH. Global action plan on physical activity 2018-2030: more active people for a healthier world! World Health organization, 2019.
19 EPFI F. WHO. Ethiopia steps report on risk factors for non-communicable diseases and prevalence of selected NCDs. Addis Ababa: Ethiopian Public Health Institute, 2016.
20 Mengesha MM, Roba HS, Ayele BH, et al. Level of physical activity among urban adults and the socio-demographic correlates: a population-based cross-sectional study using the global physical activity questionnaire. BMC Public Health 2019;19:1160.
21 Abelda C, Teklemariam Z, Seyoum B. Prevalence of physical inactivity and associated factors among adults in Harar town, eastern Ethiopia. Balt J Health Phys Act 2018;10:72–80.
22 Tegene Y, Mengesha S, van der Starre C, et al. Physical activity level and associated factors among adult HIV patients in Ethiopia. BMC Infect Dis 2022;22:1–8.
23 Tamirat A, Abebe L, Kirose G. Prediction of physical activity among type-2 diabetes patients attending Jimma university specialized Hospital, Southwest Ethiopia: application of health belief model. Science 2014;2:524–31.
24 Olsen MF, Kastel R, Tesfaye M, et al. Physical activity and capacity at initiation of antiretroviral treatment in HIV patients in Ethiopia. Epidemiol Infect 2015;143:1048–58.
25 Adane TD, Gebregiorgis BG, Nigussie EM, et al. Level of physical activity and its correlates among health care workers in Ethiopia, 2019, 2019.
26 Edmedealom A, Ademe T, Tegegne B. Level of physical activity and its associated factors among type II diabetes patients in desse referral Hospital, northeast Ethiopia. Diabetes Metab Syndr Obes 2022;13:4067–75.
27 Legesse M, Ali JH, Manzar MD, et al. Level of physical activity and other maternal characteristics during the third trimester of pregnancy and its association with birthweight at term in South Ethiopia: a prospective cohort study. PLoS One 2020;15:e0236136.
28 Hjorth MF, Kloster S, Girma T, et al. Level and intensity of objectively assessed physical activity among pregnant women from urban Ethiopia. BMC Pregnancy Childbirth 2012;13:3–8.
29 Hailieramiar TT, Gebregiorgis YS, Gebremeskel BF, et al. Physical activity and associated factors among pregnant women in Ethiopia: facility-based cross-sectional study. BMC Pregnancy Childbirth 2020;20:1–11.
30 Mohammed OY, Tesfahun E, Ahmed AM, et al. Self-Reported physical activity status among adolescents in Debere Birhan town, Ethiopia: cross-sectional study. PLoS One 2020;15:e0229522.
31 Ababa A. Federal Democratic Republic of Ethiopia central statistical agency population projection of Ethiopia for all regions at Wereda level from 2014–2017. Addis Ababa: Central Statistical Agency, 2014.
32 World Health Organization. The who stepwise approach to noncommunicable disease risk factor surveillance. Geneva: World Health Organization, 2005.
33 Organization WH. Waist circumference and waist–hip ratio: report of a who expert consultation, Geneva, 8–11 December 2008, 2011.
34 Kim JH. Multicollinearity and misleading statistical results. Korean J Anesthesiol 2019;72:558–69.
35 von Elm E, Altman DG, Egger M, et al. The strengthening the reporting of observational studies in epidemiology (STROBE) statement: guidelines for reporting observational studies. Bull World Health Organ 2007;85:867–72.
36 Manderson L. Anthropological perspectives on the health transition. International encyclopedia of public health 2011.
37 Manton KG. The global impact of noncommunicable diseases: estimates and projections. World Health Stat Q 1988;41:255–66.
38 Escovitz GH. The health transition in developing countries: a role for internists from the developed world. Ann Intern Med 1992;116:499–504.

39 Amenu K, Gelibo T, Getnet M, et al. Magnitude and determinants of physical inactivity in Ethiopia: evidence form 2015 Ethiopia national Ncd survey. Ethiopian Journal of Health Development 2017;31:348–54.

40 Adeloye D, Ige-Elegbede JO, Auta A, et al. Epidemiology of physical inactivity in Nigeria: a systematic review and meta-analysis. Journal of Public Health 2021.

41 Sivanantham P, Sahoo J, Lakshminarayanan S, et al. Profile of risk factors for non-communicable diseases (NCDs) in a highly urbanized district of India: findings from Puducherry district-wide steps survey, 2019-20. PLoS One 2021;16:e0245254.

42 Guthold R, Louazani SA, Riley LM, et al. Physical activity in 22 African countries: results from the world Health organization stepwise approach to chronic disease risk factor surveillance. Am J Prev Med 2011;41:52–60.

43 Baldew S-SM, Krishnadath ISK, Smits CCF, et al. Self-Reported physical activity behavior of a multi-ethnic adult population within the urban and rural setting in Suriname. BMC Public Health 2015;15:485.

44 Azevedo MR, Araújo CLP, Reichert FF, et al. Gender differences in leisure-time physical activity. Int J Public Health 2007;52:8–15.

45 Alqahtani AS, Baattaiah BA, Alharbi MD, et al. Barriers and facilitators affecting physical activity among adults in Saudi Arabia during COVID-19 quarantine. Health Promot Int 2021. doi:10.1093/heapro/daab191. [Epub ahead of print: 26 Nov 2021].

46 Tan KL. Factors influencing physical inactivity among adults in Negeri Sembilan, Peninsular Malaysia. Med J Malaysia 2019;74:389–93.

47 Cheah YK. Influence of socio-demographic factors on physical activity participation in a sample of adults in Penang, Malaysia. Malays J Nutr 2011;17:385–91.

48 Kleinke F, Penndorf P, Ulbricht S, et al. Levels of and determinants for physical activity and physical inactivity in a group of healthy elderly people in Germany: baseline results of the MOVING-study. PLoS One 2020;15:e0237495.

49 Droomers M, Schriijvers CT, Mackenbach JP. Educational level and decreases in leisure time physical activity: predictors from the longitudinal globe study. J Epidemiol Community Health 2001;55:562–8.

50 Shaw BA, Spokane LS. Examining the association between education level and physical activity changes during early old age. J Aging Health 2008;20:767–87.

51 Pietiläinen KH, Kaprio J, Borg P, et al. Physical inactivity and obesity: a vicious circle. Obesity 2008;16:409–14.

52 Sarma S, Zoric GS, Campbell MK, et al. The effect of physical activity on adult obesity: evidence from the Canadian NPHS panel. Econ Hum Biol 2014;14:1–21.

53 Banks E, Lim L, Seubsman S-A, et al. Relationship of obesity to physical activity, domestic activities, and sedentary behaviours: cross-sectional findings from a national cohort of over 70,000 Thai adults. BMC Public Health 2011;11:762.

54 Riebe D, Blissmer BJ, Greaney ML, et al. The relationship between obesity, physical activity, and physical function in older adults. J Aging Health 2009;21:1159–78.

55 Cleven L, Krell-Roesch J, Nigg CR, et al. The association between physical activity with incident obesity, coronary heart disease, diabetes and hypertension in adults: a systematic review of longitudinal studies published after 2012. BMC Public Health 2020;20:1–15.

56 Petersen L, Schnohr P, Sørensen TIA. Longitudinal study of the long-term relation between physical activity and obesity in adults. Int J Obes Relat Metab Disord 2004;28:105–12.

57 Wanner M, Martin BW, Autenrieth CS, et al. Associations between domains of physical activity, sitting time, and different measures of overweight and obesity. Prev Med Rep 2016;3:177–84.

58 Kim J. Sleep duration and obesity. JOMES 2017;26:1–2.