VASOplegia is Predicted by Preoperative Platelet-LEucocyte conGlomerate Indices in Cardiac Surgery (VASOPLEGICS): A Retrospective Single-Center Study

Rohan Magoon, Ramesh C. Kashav, Iti Shri, Souvik Dey, Ashish Walian, Jasvinder K. Kohli
Department of Cardiac Anaesthesia ABVIMS and Dr. RML Hospital, Department of Cardiac Anaesthesia, Atal Bihari Vajpayee Institute of Medical Sciences (ABVIMS) and Dr. Ram Manohar Lohia Hospital, Baba Kharak Singh Marg, New Delhi, India

ABSTRACT

Background: Post-cardiotomy vasoplegia syndrome (VS) is often linked to an exaggerated inflammatory response to cardiopulmonary bypass (CPB). At the same time, the prognostic role of platelet-leucocyte indices (PLIs) and leucocyte indices (LIs), (platelet-lymphocyte ratio [PLR], systemic immune-inflammation index [SII = platelet neutrophil/lymphocyte], aggregate index of systemic inflammation [AISI = platelet monocyte neutrophil/lymphocyte], and neutrophil-lymphocyte ratio [NLR], systemic inflammation response index [SIRI = monocyte neutrophil/lymphocyte], respectively) has been recently described in diverse inflammatory settings.

Methods: The retrospective study was conducted to evaluate the VS predictive performance of PLIs and LIs in 1,045 adult patients undergoing elective cardiac surgery at a tertiary care center. VS was defined by mean blood pressure <60 mmHg, low systemic vascular resistance (SVRI <1,500 dynes.s/cm²/m²), a normal or high CI (>2.5 L/min/m²), and a normal or reduced central filling pressure despite high-dose vasopressors.

Results: About 205 (19.61%) patients developed VS postoperatively. On univariate analysis, age, diabetes, dialysis-dependent renal failure, preoperative congestive heart failure (CHF), the European System for Cardiac Operative Risk Evaluation (EuroSCORE) II, ejection fraction, NLR, PLR, SII, AISI, CPB, and aortic cross clamp (ACC) duration, packed red blood cell (PRBC) transfusion, and time-weighted average blood glucose predicted VS. Subsequent to the multivariate analysis, the predictive performance of EuroSCORE II (OR: 3.236; 95% CI: 2.345–4.468; P < 0.001), CHF (OR: 1.04; 95% CI: 1.02–1.06; P = 0.011), SII (OR: 1.09; 95% CI: 1.02–1.18; P = 0.001), AISI (OR: 1.11; 95% CI: 1.05–1.17; P < 0.001), PRBC (OR: 4.747; 95% CI: 2.443–9.223; P < 0.001), ACC time (OR: 1.003; 95% CI: 1.001–1.005; P = 0.004), and CPB time (OR: 1.016; 95% CI: 1.004–1.028; P = 0.001) remained significant. VS predictive cut-offs of SII and AISI were 1,045 10⁹/mm³ and 137532×10⁹/mm³, respectively. AISI positively correlated with the postoperative vasoactive-inotropic score (R = 0.718), lactate (R = 0.655), mechanical ventilation duration (R = 0.837), and ICU stay (R = 0.757).

Conclusions: Preoperative elevated SII and AISI emerged as independent predictors of post-cardiotomy VS.

Keywords: Aggregate index of systemic inflammation, cardiac surgery, neutrophil-lymphocyte ratio, platelet-lymphocyte ratio, systemic immune-inflammation index, systemic inflammation response index, vasoplegia syndrome

Address for correspondence: Dr. Iti Shri, Department of Cardiac Anaesthesia, Atal Bihari Vajpayee Institute of Medical Sciences (ABVIMS) and Dr. Ram Manohar Lohia Hospital, Baba Kharak Singh Marg, New Delhi - 110 001, India.
E-mail: iti.anesthesia@gmail.com
Submitted: 05-May-2021 Revised: 07-Jul-2021 Accepted: 07-Jul-2021 Published: 10-Oct-2022

How to cite this article: Magoon R, Kashav RC, Shri I, Dey S, Walian A, Kohli JK. VASOplegia is predicted by preoperative platelet-LEucocyte conGlomerate indices in cardiac surgery (VASOPLEGICS): A retrospective single-center study. Ann Card Anaesth 2022;25:414-21.

This is an open access journal, and articles are distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as appropriate credit is given and the new creations are licensed under the identical terms.

For reprints contact: WKHLRPMedknow_reprints@wolterskluwer.com

Access this article online

Quick Response Code:
Website: www.annals.in
DOI: 10.4103/aca.aca_54_21
INTRODUCTION

The platelet-leucocyte interactions are being increasingly implicated as pivotal perpetrators of an ongoing systemic inflammatory state. As an extension of the aforementioned, there is an ever-growing interest in evaluating the prognostic role of various novel platelet-leucocyte indices (PLIs, including the platelet-lymphocyte ratio (PLR), systemic immune-inflammation index (SII = platelet × neutrophil/lymphocyte), aggregate index of systemic inflammation (AISI = platelet × monocyte × neutrophil/lymphocyte)) in diverse clinical settings predisposed to inflammation.

While a systemic inflammatory-response syndrome is inexorably associated with the conduct of cardiopulmonary bypass (CPB), the burden of the resultant inflammatory complications can be significant. In this context, post-CPB vasoplegia syndrome (VS) is a peculiar hemodynamic complication with a wide reported incidence ranging from 9 to 40% and is heralded by systemic hypotension accompanied by a low vascular resistance, normal to augmented cardiac index, and poor response to volume therapy. Vascular hyporesponsiveness, accentuated vasopressor requirements, and heightened operative morbidity-mortality frequently compound such clinical scenarios.

Ahead of the range of demographic, pharmacological, and perioperative factors which have been described to be related to an escalated risk of post-CPB VS, the inflammatory links of VS continues to be strengthened in the recent literature. Herein, the description of the association of post-cardiac transplant VS with an elevated preoperative neutrophil-lymphocyte ratio (NLR) by Ahmed et al. and the elucidation of higher post-coronary artery bypass grafting vasoactive-inotropic scores (VIS) in patients with an elevated pre-grafting SII is intriguing. Therefore, we conducted the present retrospective analysis aimed at evaluating the potential of novel PLIs (PLR, SII, and AISI) and leucocyte indices (LIs, including NLR and systemic inflammation response index [SIRI = monocyte × neutrophil/lymphocyte]) in predicting post-cardiotomy VS.

METHODS

After obtaining clearance from the institutional ethics committee (No. 454 (103/2020) IEC/ABVIMS/RMLH), the study was conducted at our tertiary care cardiac center. A total of 1,316 consecutive patients (age >18 years) undergoing elective cardiac surgery on CPB between January 1, 2015, and December 31, 2019, were primarily included. The patients with the presence of any one of the following conditions were excluded: anemia with hemoglobin (Hb) <10 g/dL on admission, multiple organ dysfunction syndrome (MODS defined as the development of physiologic derangement involving two or more organ systems), presence of an active infection and unavailability of complete hemogram within 48 h prior to surgery. During the intraoperative period, 86 patients required either intra-aortic balloon pump (IABP) (n = 68) or extracorporeal membrane oxygenation (ECMO) (n = 18) to assist the separation from CPB and were excluded from the analysis. Patients requiring deep hypothermic circulatory arrest during the procedure were also excluded. Another 37 patients were lost due to the unavailability of adequate postoperative data. Finally, 1,045 patients were evaluated for the outcome and their data were extracted from an electronic database and/or hospital record archive files. The flow chart for patient enrolment is illustrated in Figure 1.

Preoperative characteristics of the patients such as age, sex, body surface area (BSA), smoking history, pre-existing comorbidities (hypertension, diabetes mellitus [DM]),...
ventilation was gradually started, and the patient was weaned following the operative procedure, the ACC was removed and blood cell (PRBC) when required. Maintenance during CPB with the addition of packed red cells when required. Heparinization was achieved with 4 mg/kg heparin and a target ACT >380 s. After aortic and venous cannulation, an aortic cross-clamp (ACC) was placed and the heart was arrested with del Nido cardioplegia (20 mL/kg). A maximum flow of 2.2–2.5 L/min/m² of BSA was employed and a target perfusion pressure of 60–80 mmHg was maintained with mild-to-moderate hypothermia. A hematocrit of 24% was maintained during CPB with the addition of packed red blood cell (PRBC) when required.

Following the operative procedure, the ACC was removed and after adequate it is deairing and rewarming (temperature ≥35°C), ventilation was gradually started, and the patient was weaned off CPB slowly with the support of inotropes and vasopressor infusions. While a combination of 5 µg/kg/min dobutamine and 0.05 µg/kg/min adrenaline was initiated at rewarming, the subsequent inotrope and vasopressor management was aided by the transesophageal echocardiographic examination and/or minimally-invasive cardiac output evaluation (FloTrac™, Edwards Lifesciences, Irvine, CA, USA) with the objective of maintaining the biventricular performance and systemic perfusion. Temporary epicardial pacing was instituted as and when required. After hemodynamic stability was achieved, protamine (dose @ 1:1 of heparin) was administered. Blood and blood products were transfused to maintain Hb ≥10 g/dL. Post-sternal closure, all patients were shifted to the postoperative intensive care unit (ICU) for elective mechanical ventilation.

The following perioperative variables were recorded: cardiac index (CI), systemic vascular resistance index (SVRI), intraoperative blood glucose (time-weighted average of blood glucose [TWAG] calculated as the area under the curve of all intraoperative glucose measurements divided by the time between the first and last measurements), number of PRBC units transfused, blood lactate, dose of the vasopressors and inotropes (calculated as VIS = Dopamine (µg/kg/min) + dobutamine (µg/kg/min) + milrinone (µg/kg/min) × 10 + epinephrine (µg/kg/min) × 100 + norepinephrine (µg/kg/min) × 100 + vasopressin (units/kg/min) × 10,000), duration of CPB, ACC time, duration of mechanical ventilation (DO-MV), length of ICU stay (LOS-ICU), and length of hospital stay (LOS-H). Hemodynamic parameters were recorded at every 15-min interval intraoperatively and on an hourly basis in the ICU.

VS (within the first 24 postoperative ICU hours) was defined by the constellation of the following hemodynamic criteria: hypotension (defined by systemic mean blood pressure <60 mmHg), low systemic vascular resistance (SVRI <1,500 dynes.s/cm²/m²), a normal or high CI (>2.5 L/min/m²), and a normal or reduced central filling pressure (central venous pressure <10 mmHg) despite high-dose vasopressors (typically 0.5 µg/kg/min of norepinephrine equivalents). Other outcomes including mortality, atrial fibrillation (AF), and acute kidney injury (AKI defined in accordance with the Acute Kidney Injury Network [AKIN] criteria) developed during the hospital stay were also noted.

Statistical analysis
The categorical variables were expressed as the number of patients and percentage of patients and compared between the subgroups using the Chi-square test. The continuous variables were compared using the Student's t-test for normally distributed data and the Mann-Whitney U test for non-normally distributed data. The categorical outcomes were compared using the Fisher's exact test. The p-values were adjusted for multiple comparisons using the Bonferroni correction. The statistical significance level was set at p < 0.05.
variables were reported as mean and standard deviation and compared between the VS and non-VS groups using the unpaired t-test. The correlation between the continuous variables was measured with the help of Pearson’s correlation analysis. The non-parametric receiver operating characteristic (ROC) curve analysis was performed to evaluate the accuracy of various variables to predict VS indicated by their respective area under the curve (AUC). The “optimum cut-off point” was determined as the cut-off point with the highest [(sensitivity + specificity)/2] ratio, at which there was a maximal correct classification of developing VS. The sensitivity, specificity, and predictive values were depicted using these generated cut-offs. The multivariate analysis was performed using the binary logistic regression method. The statistical software SPSS version 20 (IBM Corp., Armonk, NY, USA) was used for the analysis. An alpha level of 5% has been considered with any P value < 0.05 considered as significant (a Bonferroni correction was done for testing the five indices together during the multivariate analysis and P value < 0.01 was taken as significant).

RESULTS

The study included a total of 1,045 patients out of which 205 patients developed VS (19.6%). The patient demographics, comorbid conditions, and perioperative variables have been compared in Table 1 between VS and non-VS groups. The patients in the VS group were significantly older than the non-VS group (P < 0.001). A higher proportion of the vasoplegic patients were diabetic, suffering from dialysis-dependent renal failure and preoperative CHF had significantly poorer LVEF and higher EuroSCORE II as compared to the non-vasoplegics [Table 1]. Among the intraoperative variables, significantly higher CPB, and ACC time, higher CI, PRBC requirement, and TWAG were noted among the VS group whereas the SVRI was significantly lower in the same [Table 1]. Subsequently, univariate analysis revealed both the causative and protective factors for developing VS [Table 2A].

After adjusting all these factors in the multivariate analysis, the following variables remained significantly associated with the development of VS: EuroSCORE II (OR: 3.236; 95% CI: 2.345–4.468; P < 0.001), history of preoperative CHF (OR: 1.04; 95% CI: 1.02–1.06; P = 0.011), preoperative SII (OR: 1.09; 95% CI: 1.02–1.18; P = 0.001), and AISI (OR: 1.11; 95% CI: 1.05–1.17; P < 0.001), PRBC used (OR: 4.747; 95% CI: 2.443–9.223; P < 0.001), ACC time (OR: 1.003; 95% CI: 1.001–1.005; P = 0.004), and CPB time (OR: 1.016; 95% CI: 1.004–1.028; P = 0.001) [Table 2B]. Preoperative β-blocker usage was found to be protective against the development of VS (OR: 0.893; 95% CI: 0.803–0.987; P = 0.026) [Table 2B]. Metoprolol was used predominantly in our institution. However, the dosage required to protect from vasoplegia could not be determined due to the unavailability of data.

Subsequently, the ROC analysis for the hematological parameters revealed the cut-off values for predicting the development of post-CPB VS with AISI having the highest AUC (0.965) as depicted in Figure 2. The derived cut-off values of the hematological parameters for the development of VS were the following: NLR = 4.125 (94.6% sensitivity, 76.9% specificity); PLR = 152.635 (97.1% sensitivity, 80.9% specificity); SII = 845 (94.7% sensitivity, 85.3% specificity); SIRI = 1045 (90.7% sensitivity, 93.3% specificity), and AISI = 137,532 (90.2% sensitivity, 96% specificity).

In addition, evaluation of the postoperative variables outlined a significantly higher incidence of postoperative AF (16.58% vs. 9.84%, P value = 0.006), AKI (12.68% vs. 8.23%, P value = 0.048), higher mortality rate (11.7% vs. 3.49%, P value < 0.001), a higher postoperative maximum lactate level (12.41 ± 2.03 vs. 10.47 ± 1.21, P value < 0.001), and VIS (24.64 ± 2.81 vs. 18.06 ± 1.44, P value < 0.001) and a significantly higher DO-MV (19.96 ± 6.82 vs. 15.35 ± 3.52, P value < 0.001) and LOS-ICU (4.77 ± 1.43 vs. 2.96 ± 0.84, P value < 0.001) in the VS group as compared to the non-VS group [Table 3A]. The two hematological indices which emerged as independent predictors of VS (SII and AISI) strongly positively correlated with the postoperative outcomes. The Pearson’s correlation coefficients were higher for AISI (R = 0.837 for correlation with DO-MV; R = 0.757 for correlation with LOS-ICU; R = 0.718 for correlation with VIS and R = 0.655 for correlation with lactate level) [Table 3B].

DISCUSSION

The findings of the index study regarding the VS risk factors are largely in agreement with the seminal meta-analysis in this research area by Dayan and colleagues.[29] Alongside the commonly implicated demographic, comorbid status, pharmacological and intraoperative surgical duration, the present study also discovered the role of the modifiable factors such as TWAG and PRBC transfusion in modulating the subsequent risk of developing VS [Table 2A and B]. With respect to the prognostic inflammatory hematological indices, we delineated the LIs and PLIs as important predictors of post-cardiotomy VS wherein the predictive
potential of SII and AISI was robust to multivariate analysis in our evaluation.

Talking of the VS risk predictive potential of hematological inflammatory indices, the findings of the study by Ahmed et al.[15] involving heart transplant recipients (a cohort highly predisposed to VS) deserve a mention. The retrospective study evaluated 70 patients undergoing a heart transplant with 25.7% developing vasoplegia postoperatively. Pre-transplant NLR emerged as an independent risk factor (OR 2.47) for developing VS with a mean NLR value of 6.72 among their patients manifesting VS.[15] Our study also derived an NLR cut-off value of 4.125 for predicting post-cardiotomy VS. While Ahmed

Table 1: Patient characteristics and perioperative variables for VS and non-VS groups

Variables	Non-VS	VS	P
n=840	n=205		
Patient characteristics			
Age (years)	66.4±7.4	69.6±9.4	<0.001
Male sex	574 (71.57)	154 (75.12)	0.311
BMI (kg/m²)	25.07±2.28	24.87±2.16	0.271
BSA (m²)	1.62±0.08	1.62±0.08	0.931
Smoker	421 (52.49)	109 (53.17)	0.862
HTN	556 (69.33)	133 (64.88)	0.221
COPD	41 (5.11)	13 (6.34)	0.486
DM	27 (28.3)	78 (38.05)	0.007
Hyperlipidemia	424 (52.87)	110 (53.66)	0.840
CAD	110 (13.72)	26 (12.68)	0.699
PVD	138 (17.21)	36 (17.56)	0.905
Dialysis-dependent renal failure	27 (3.35)	16 (7.75)	0.055
CRF	86 (10.72)	18 (8.78)	0.415
H/o stroke	78 (9.73)	20 (9.76)	0.990
Preop CHF	195 (24.31)	75 (36.59)	<0.001
H/o MI	109 (13.59)	31 (15.09)	0.489
LVEF (%)	55.4±7.67	50.2±9.34	<0.001
EuroSCORE II	4.23±0.93	6.5±1.75	<0.001
Type of surgery			
Mitral valve Sx	322 (40.2)	87 (41.95)	0.649
Aortic valve Sx	203 (25.4)	56 (26.83)	0.676
Double valve Sx	57 (7.14)	18 (8.29)	0.574
CABG	183 (22.9)	34 (16.58)	0.058
CABG+valve	37 (4.61)	12 (5.68)	0.521
Resternotomy	52 (6.49)	18 (8.16)	0.397
Laboratory parameters			
Hb (g/dL)	12.6±0.36	11.9±0.69	<0.001
NLR	3.4±0.95	5.3±1.04	<0.001
PLR	120.5±37.5	191.6±31.9	<0.001
SII (/mm³)	632.3±196.57	1105.5±232.13	<0.001
SIRI	452.2±128.88	909.5±211.59	<0.001
AISI (mm³)	83531.49±26430.28	187245.52±46516.96	<0.001
BUN (mg/dL)	22.8±3.76	23.2±3.75	0.137
Cr (mg/dL)	0.9±0.22	0.9±0.22	0.568
AST (U/L)	68.1±9.23	67.9±8.53	0.649
ALT (U/L)	67.7±9.63	68.1±9.49	0.605
Intraoperative variables			
DO-SX (min)	90.2±7.98	311.1±52.32	<0.001
CPB time (min)	64.6±7.6	78.9±9.51	<0.001
ACC time (min)	49.6±6.33	64.2±9.23	<0.001
PRBC (units)	2.5±0.62	3.1±0.75	<0.001
SVRI (dynes.s/cm²/m²)	2184.8±152.56	1114.0±239.12	<0.001
CI (L/min/m²)	2.4±0.27	3.5±0.37	<0.001
TWAG (mg/dL)	132.1±8.96	169.4±22.14	<0.001

Data are presented as mean±SD and n (%); P<0.05 in bold are statistically significant Abbreviations: BMI: body mass index; BSA: body surface area; COPD: chronic obstructive pulmonary disease; DM: diabetes mellitus; HTN: hypertension; CAD: coronary artery disease; PVD: peripheral vascular disease; CRF: chronic renal failure; H/O STROKE/TIA: history of stroke/transient ischemic attack; Preop CHF: preoperative congestive heart failure; H/O MI: history of myocardial infarction; LVEF: left ventricular ejection fraction; EuroSCORE II: European System for Cardiac Operative Risk Evaluation; CABG: coronary artery bypass grafting; Hb: hemoglobin; NLR: neutrophil to lymphocyte ratio; PLR: platelet-to-lymphocyte ratio; SII: systemic immune-inflammation index; SIRI: systemic inflammation response index; AISI: aggregate index of systemic inflammation; BUN: blood urea nitrogen; CR: creatinine; AST: aspartate transaminase; ALT: alanine transaminase; DO-SX: duration of surgery; CPB time: cardiopulmonary bypass time; ACC time: aortic cross clamp time; PRBC: packed red blood cell; SVRI: systemic vascular resistance index; CI: cardiac index; TWAG: time-weighted average blood glucose

Annals of Cardiac Anaesthesia | Volume 25 | Issue 4 | October-December 2022
Table 2A: Univariate association of variables with the development of vasoplegia

Variables	Odds Ratio	95% CI for Odds Ratio Lower	95% CI for Odds Ratio Upper	P
Patient characteristics				
Age	1.051	1.031	1.072	<0.001
Sex	1.199	0.844	1.705	0.311
BMI	0.961	0.897	1.029	0.253
BSA	0.871	0.134	5.668	0.885
HTN	0.817	0.591	1.130	0.222
COPD	1.257	0.660	2.392	0.487
SMOKER	1.028	0.756	1.397	0.862
DM	1.556	1.128	2.145	0.007
Hyperlipidemia	1.032	0.759	1.404	0.840
CAD	0.914	0.578	1.444	0.699
PVD	1.025	0.684	1.535	0.905
Dialysis-Dependent Renal failure	1.80	1.29	2.52	0.005
Preoperative medication intake				
Nitrates	0.854	0.545	1.337	0.490
B-Blockers	0.875	0.860	0.890	0.029
DHPCCB	0.950	0.638	1.413	0.798
NDHPCCB	0.987	0.608	1.605	0.959
ACEI/ARB	0.958	0.702	1.307	0.785
Heparin	0.865	0.556	1.346	0.520
Statin	1.124	0.823	1.536	0.462
Hydralazine	0.990	0.662	1.481	0.961
Steroids	1.182	0.672	2.079	0.562
Digoxin	1.047	0.590	1.859	0.876
Diuretics	1.342	0.815	2.211	0.247
Aspirin	5.808	4.179	8.070	0.568
LT4	1.307	0.750	2.279	0.345
Type of surgery				
Mitrval valve Sx	0.65	0.35	1.21	0.649
Aortic valve Sx	0.98	0.52	1.83	0.676
Double valve Sx	0.89	0.67	1.17	0.574
CABG	0.653	0.519	0.822	0.049
CABG + valve	1.10	0.78	1.54	0.66
Resternotomy	1.034	0.646	1.654	0.397
Intraoperative variables				
DO-SX	1.325	0.992	2.090	0.985
CPB time	1.151	1.131	1.172	<0.001
ACC time	1.214	1.185	1.245	<0.001
PRBC	4.183	3.248	5.386	<0.001
TWBG	1.124	1.108	1.141	<0.001
Laboratory parameters				
Hb	0.098	0.070	0.137	0.089
NLR	5.359	4.299	6.682	<0.001
PLR	1.050	1.043	1.057	<0.001
SII	1.009	1.008	1.010	<0.001
SIRI	1.013	1.012	1.015	<0.001
AISI	1.000	1.000	1.000	<0.001

Table 2A: Contd...

Variables	Odds Ratio	95% CI for Odds Ratio Lower	95% CI for Odds Ratio Upper	P
BUN	1.032	0.990	1.075	0.134
Cr	1.224	0.616	2.430	0.564
AST	0.997	0.980	1.014	0.710
ALT	1.004	0.988	1.020	0.637

P-values in bold are statistically significant. Abbreviations: BMI: body mass index; BSA: body surface area; COPD: chronic obstructive pulmonary disease; DM: diabetes mellitus; HTN: hypertension; CAD: coronary artery disease; PVD: peripheral vascular disease; CRF: chronic renal failure; H/D STROKE/TIA: history of stroke/transient ischemic attack; Preop CHF: preoperative congestive heart failure; H/O MI: history of myocardial infarction; LVEF: left ventricular ejection fraction; Euro SCORE II: European System for Cardiac Operative Risk Evaluation; DHP CCB: dihydropyridine calcium channel blocker; ACEI/ARB: angiotensin converting enzyme inhibitor/angiotensin receptor blocker; LT4: levothyroxine; CABG: coronary artery bypass grafting; Hb: hemoglobin; NLR: neutrophil to lymphocyte ratio; PLR: platelet-to-lymphocyte ratio; SII: systemic immune-inflammation index; SII cut-off value of 1,045 × 10^3 /mm^3; AISI: aggregate index of systemic inflammation; BUN: blood urea nitrogen; Cr: creatinine; AST: aspartate transaminase; ALT: alanine transaminase; DO-SX: duration of surgery, CPB time: cardiopulmonary bypass time; ACC time: aortic cross clamp time; PRBC: packed red blood cell; SVRI: systemic vascular resistance index; CI: cardiac index; TWBG: time-weighted average blood glucose

Magoon, et al. attributed the high NLR value in the VS group to a pre-existing low-grade inflammation inextricably linked to a pre-transplant heart failure setting, the index study also discovered preoperative CHF as an independent predictor of developing VS. Moreover, the patients with preoperative CHF in the present study also had a significantly higher mean preoperative AISI and SII values as compared to the rest of the patient cohort (mean AISI [CHF: 155,321.89, non-CHF: 76,241.72], P value < 0.001; mean SII [CHF: 987.25 × 10^3 /mm^3, non-CHF: 620.48 × 10^3 /mm^3], P value = 0.002).

At the same time, the literature is accumulating on the role of LIs and PLIs in predicting poor outcome following adult cardiac surgery. Herein, Rosalia et al. in their retrospective analysis of a large adult cardiac surgical cohort revealed the association of an elevated SII with postoperative outcomes albeit failed to account for the extent of poor outcome related to the development of VS. Our description of the VS risk prediction potential of SII and AISI highlights vasoplegia as an important harbinger of the prognostic links of these novel LIs and PLIs with inflammation being the common denominator. Nevertheless, our VS predictive SII cut-off value of 1,045 × 10^3 /mm^3 was higher than the Dey et al. and Rosalia et al. outcome predictive SII cut-off of 878.057 × 10^3 /mm^3 and 647, respectively.

The interaction of the corpuscular lineages with each other and the endothelium as the perpetrators of an ongoing inflammatory process continue to captivate
Table 2B: Multivariate analysis of the significant variables for the development of vasoplegia

Variables	Odds Ratio	95% CI for Odds Ratio	P
Age	1.009	0.959 - 1.062	0.722
DM	0.522	0.198 - 1.381	0.190
EuroSCORE II	3.236	2.345 - 4.468	<0.001
Preop CHF	1.04	1.02 - 1.06	0.011
β-Blocker	0.893	0.803 - 0.987	0.026
NLR	0.974	0.279 - 3.468	0.678
PLR	1.006	0.986 - 1.026	0.557
SII	1.09	1.02 - 1.18	0.001
SIRI	1.000	0.993 - 1.007	0.933
AISI	1.110	1.05 - 1.17	<0.001
PRBC	4.747	2.443 - 9.223	<0.001
ACC time	1.003	1.001 - 1.005	0.004
CPB time	1.016	1.004 - 1.028	0.001

P<0.05 in bold are statistically significant. Abbreviations: ACC time: aortic cross clamp time; AISI: aggregate index of systemic inflammation; CPB time: cardiopulmonary bypass; DM: diabetes mellitus; EuroSCORE II: European System for Cardiac Operative Risk Evaluation II; NLR: neutrophil to lymphocyte ratio; PLR: platelet-to-lymphocyte ratio; PRBC: packed red blood cell; Preop CHF: preoperative congestive heart failure; SII: systemic immune-inflammation index; SIRI: systemic inflammation response index.

Table 3A: Comparison of postoperative outcomes among the VS and non-VS groups

Postoperative outcomes	VS	Non-VS	P
AF	34 (16.58)	79 (9.84)	0.006
AKI	26 (12.68)	66 (8.23)	0.048
Mortality	24 (11.7)	66 (8.23)	0.048
Lactate	12.4±2.03	10.47±1.21	<0.001
VIS	24.64±2.81	18.06±1.44	<0.001
DO-MV	19.96±6.82	15.35±3.52	<0.001
LOS-ICU	4.77±1.43	2.96±0.84	<0.001

P<0.005 in bold are statistically significant. Abbreviations. AKI: acute kidney injury; DO-MV: duration of mechanical ventilation; LOS-ICU: length of stay in Intensive Care Unit; AF: atrial fibrillation; VIS: vasoactive-inotropic score.

Figure 2: Receiver operating characteristic (ROC) curves of LIs and PLIs for predicting postoperative vasoplegia. (a) The comparison of the ROC curves of the LIs (NLR and SIRI) with respect to the area under the curve (AUC). (b) The comparison of the ROC curves of the PLIs (PLR, SII, and AISI) with respect to the area under the curve (AUC). The cut-off values, sensitivity, specificity, AUC, and 95% confidence intervals (CI) of the different hematological indices are displayed in the lower right corner of the respective figures.

To the best of our knowledge, the present study is a maiden endeavor at analyzing the vasoplegia predictive performance of LIs and PLIs in a cardiac surgical subset. First, the inclusion of a large sample size from a single tertiary cardiac care center constitutes a major strength of the study. Future prospective evaluation is warranted to extrapolate the findings to the highly predisposed settings like mechanical circulatory assistance. Moreover, the heterogeneity of the VS definition employed in the literature presents a unique impediment to the sound extrapolation of a novel finding in this dynamic research area. Second, the categorization of the patients as vasoplegic on the persistence of the VS-defining hemodynamic criteria in the ICU, is a positive study attribute, particularly when an isolated immediate post-CPB evaluation is precluded by a weaning-associated dynamic preload and pharmacological alterations. Third, the cost-effective readily available hematological VS risk prediction can aid in the VS risk stratification and clinical decision-making. However, the prognostic assessment in...
Table 3B: Correlation study of SII and AISI with lactate, VIS, DO-MV, and LOS-ICU

Postoperative outcomes	SII	AISI		
	R	P	R	P
DO-MV	0.746	<0.001	0.837	<0.001
LOS-ICU	0.581	<0.001	0.757	<0.001
VIS	0.637	<0.001	0.718	<0.001
Lactate	0.576	<0.001	0.655	<0.001

P-values < 0.05 in bold are statistically significant. Abbreviations: AISI: aggregate index of systemic inflammation; DO-MV: duration of mechanical ventilation; LOS-ICU: length of stay in intensive care unit; SII: systemic immune-inflammation index; VIS: vasoactive-inotropic score.

the present retrospective analysis could have been limited by the residual confounding.[29]

CONCLUSION

Preoperative PLIs can potentially stratify the adult cardiac surgical subset with regards to their risk of developing post-cardiotomy VS. The aforementioned parsimonious risk stratification reemphasizes the inflammatory association of this intriguing hemodynamic syndrome.

Financial support and sponsorship

Nil.

Conflicts of interest

There are no conflicts of interest.

REFERENCES

1. Wagner DD, Burger PC. Platelets in inflammation and thrombosis. Arterioscler Thromb Vasc Biol 2003;23:2131-7.
2. Osadnik T, Wasilewski J, Lekston A, Szteleczuk J, Kurek A, Gonera M, et al. The platelet-to-lymphocyte ratio as a predictor of all-cause mortality in patients with coronary artery disease undergoing elective percutaneous coronary intervention and stent implantation. J Saudi Heart Assoc 2015;27:144–51.
3. Göngör H, Babu AS, Zencir C, Akpek M, Selvi M, Erkan MH, et al. Association of preoperative platelet-to-lymphocyte ratio with arterial fibrillation after coronary artery bypass graft surgery. Med Princ Pract 2017;26:e164–8.
4. Agus HZ, Kahraman S, Yıldırım C, Ertürk M, Kalkan AK, et al. Systemic immune-inflammation index predicts mortality in infective endocarditis. J Saudi Heart Assoc 2020;32:57-64.
5. Magoon R. Evolving spectrum of prognostic inflammatory markers in infective endocarditis. J Cardiothorac Vasc Anesth 2020;34:2001–2.
6. Fois AG, Paliogiannis P, Scano V, Cau S, Babudieri S, Perra R, et al. The systemic inflammation index on admission predicts in-hospital mortality in COVID-19 patients. Molecules 2020;25:5725.
7. Magoon R, Makhija N. Endothelial glyocalyx and cardiac surgery: Newer Insights. J Cardiothorac Vasc Anesth 2020;34:310-1.
8. Magoon R, Malik V, Makhija N. Micro RNAs in cardiac surgery: Novel molecular signatures! J Cardiothorac Vasc Anesth 2020;34:570.
9. Byrne JG, Leacche M, Paul S, Mihaljevic T, Rawn JD, Sherman SK, et al. Risk factors and outcomes for “vasoplegia syndrome” following cardiac transplantation. Eur J Cardiothorac Surg 2004;25:327–32.
10. Gomes WJ, Carvalho AG, Palma JH, Teles CA, Branco JN, Silas MG, et al. Vasoplegic syndrome after open heart surgery. J Cardiovasc Surg 1998;39:619–23.
11. Carrel T, Engblomber L, Mohaes P, Neuhart P, Schmidt J. Low systemic vascular resistance after cardiopulmonary bypass: Incidence, etiology, and clinical importance. J Card Surg 2000;15:347–53.
12. Levin MA, Lin HM, Castillo JG, Adams DH, Reich DL, Fischer GW. Early on-cardiopulmonary bypass hypotension and other factors associated with vasoplegic syndrome. Circulation 2009;120:1664-71.
13. Boyle EM, Pohlman TH, Johnson MC, Verrier ED. Endothelial cell injury in cardiovascular surgery: The systemic inflammatory response. Ann Thorac Surg 1997;63:277–84.
14. Tsioris A, Wilson L, Haddadin AS, Yun JJ, Mangi AA. Risk assessment and outcomes of vasoplegia after cardiac surgery. Gen Thorac Cardiovasc Surg 2017;65:557-65.
15. Ahmed N, Gandhi H, Rahgozar K, Guo S, Sun E, Saeed O, et al. Elevated pre-transplant neutrophil to lymphocyte ratio is associated with increased vasoplegia syndrome in cardiac transplantation. J Heart Lung Transplant 2019;38(Suppl. 4):S211.
16. Dey S, Kashav R, Kohli JK, Magoon R, Itishri, V, Walian A, et al. Systemic immune-inflammation index predicts poor outcome after elective off-pump CABG: A retrospective, single-center study. J Cardiothorac Vasc Anesth 2021;35:2397-404.
17. Lee S, Nam S, Bae J, Cho YJ, Jeon Y, Nam K. Intraoperative hyperglycemia in patients with an elevated preoperative C-reactive protein level may increase the risk of acute kidney injury after cardiac surgery. J Anesth 2021;35:10-9.
18. Giaesi MG, Gurney JG, Yen AH, Napoli ML, Gajarski RJ, Ohye RG, et al. Vasoactive-inotropic score as a predictor of morbidity and mortality in infants after cardiopulmonary bypass. Pediatr Crit Care Med 2010;11:234-8.
19. Shaefi S, Mittel A, Klick J, Evans A, Ivascu NS, Gutsche J, et al. Vasoplegia after cardiovascular procedures-pathophysiology and targeted therapy. J Cardiothorac Vasc Anesth 2018;32:1013-22.
20. Dayan V, Cal R, Giangrossi F. Risk factors for vasoplegia after cardiac surgery: A meta-analysis. Interact Cardiovasc Thorac Surg 2019;28:838-44.
21. Rosalia RA, Klinecheva M, Klimkarov M, Zimoski R, Hristov N, Milojbek P, et al. The systemic immune-inflammation index is associated with early postoperative morbidity and mortality following cardiac surgery. Eur Heart J 2020;41:3151.
22. Magoon R, Jain A. Hematological inflammatory prognostication in COVID-19: Points to ponder! Ann J Emerg Med 2021;45:565-6.
23. Chan JL, Kobashigawa JA, Amtabian TL, Dimbil SJ, Perry PA, Patel JK, et al. Characterizing predictors and severity of vasoplegia syndrome after heart transplantation. Annu Thorac Surg 2018;105:770-7.
24. Saini R, Singh S. Inducible nitric oxide synthase: An asset to neutrophils. J Leukoc Biol 2019;105:49-61.
25. Wachtsoflig YT, Kucuh C, Greenplate J, Gluszko P, Abrams W, Weinbaum G, et al. Human neutrophil degranulation during extracorporeal circulation. Blood 1987;69:324-30.
26. Alfirevic A, Xu M, Johnston D, Figueroa P, Patel JK, et al. Characterizing predictors and severity of vasoplegia syndrome following cardiac transplantation. Ann Thorac Surg 2011;92:812–9.
27. Magoon R, Makhija N, Das D. Vasoplegic syndrome after cardiac surgery: Better the devil you know! J Card Surg 2019;34:1679-80.
28. Magoon R, Jose J. Safeguarding anaesthesia research from spin. Br J Anaesth 2020;125:e460-2. doi: 10.1016/j.bja.2020.08.042.