Arthroscopic Excision of Medial Knee Plica: A Meta-Analysis of Outcomes

Gerrard, Adam Daniel and Charalambous, Charalambos P.

Available at http://clok.uclan.ac.uk/25339/

Gerrard, Adam Daniel and Charalambous, Charalambos P. (2018) Arthroscopic Excision of Medial Knee Plica: A Meta-Analysis of Outcomes. Knee Surgery & Related Research, 30 (4). pp. 356-363. ISSN 2234-0726

It is advisable to refer to the publisher’s version if you intend to cite from the work.
http://dx.doi.org/10.5792/ksrr.18.017

For more information about UCLan’s research in this area go to http://www.uclan.ac.uk/researchgroups/ and search for <name of research Group>.

For information about Research generally at UCLan please go to http://www.uclan.ac.uk/research/

All outputs in CLoK are protected by Intellectual Property Rights law, including Copyright law. Copyright, IPR and Moral Rights for the works on this site are retained by the individual authors and/or other copyright owners. Terms and conditions for use of this material are defined in the policies page.
Arthroscopic Excision of Medial Knee Plica: A Meta-Analysis of Outcomes

Adam Daniel Gerrard, MRCS¹ and Charalambos P. Charalambous, FRCS¹,²
¹Department of Orthopaedics, Blackpool Victoria Hospital, Blackpool; ²School of Medicine, University of Central Lancashire, Preston, UK

Purpose: A meta-analysis was performed to assess the outcomes following surgical intervention for medial knee plica.

Materials and Methods: A literature search of Medline, EMBASE, CINAHL and Cochrane CENTRAL was performed using relevant key words. The primary outcome was patient-reported postoperative scores of "good" and "excellent". Meta-analyses were performed using a random effects model.

Results: The literature search identified 731 articles. After removing duplicates and those not meeting the inclusion criteria, 12 articles reporting on a total of 643 knees were included for analysis, and of these, 7 articles including 235 knees were used for meta-analysis. The overall rate of good and excellent outcomes following surgery was estimated at 84.2% (95% confidence interval [CI], 72.8–91.4). In those cases that had non-surgical therapy prior to surgery, the rate of good and excellent outcomes of surgery was estimated at 76.1% (95% CI, 60.1–87).

Conclusions: Arthroscopic surgical management of symptomatic medial knee plica results in favourable outcomes. Our results suggest that arthroscopic surgical excision should be considered as a treatment modality in patients with pathological medial plica disease of the knee either as a first-line treatment or when symptoms have not responded to non-surgical interventions.

Level of Evidence: IV

Keywords: Knee, Plica, Medial, Arthroscopy, Excision

Introduction

The reported incidence of medial plica of the knee found during arthroscopy varies from 22% to almost 80%¹-². The healthy medial plica has smooth elastic properties and slides freely over the femoral condyle with knee movement. However, a pathological medial plica can develop when inflammation and fibrosis occur. Patients suffer anterior knee pain more often on the medial aspect³-⁵. The pain is often made worse through activities involving flexion of the knee and may be associated with symptoms of knee clicking or locking⁶. Often there is a history of injury or reparative sporting activity⁷-⁹.

The diagnosis of symptomatic medial plica is challenging, as the medial plica is a common incidental finding⁸ and the symptoms experienced by the patient with a pathological medial knee plica are indistinguishable on clinical examination to other pathologies of the knee including torn menisci, inflammation, and osteochondral defects⁹. Similarly, the management of pathological medial plica is controversial¹⁰, with beneficial effects reported for both non-surgical¹¹,¹² and surgical treatment¹³. Non-surgical management uses analgesia and anti-inflammatory medications along with physiotherapy. However, when this has not improved the patient's symptoms, surgical arthroscopic intervention may be employed. At arthroscopy the pathological medial plica may be excised or divided, with studies advocating complete excision to be a superior treatment¹⁴. Surgical intervention is not without its risks as a patient is subject to the inherent dangers of surgery including anaesthetic risks and thromboembolic events, combined with the possibility of the surgery not improving symptoms¹⁵ or causing local complications such as haemarthrosis and swelling, increasing the patient's morbidity¹⁶-¹⁷.

A previous meta-analysis performed for all types of knee plica...
and including children found arthroscopic resection resulted in patients being asymptomatic in 64% of cases and 26% only experiencing intermittent symptoms\(^{19}\). We hypothesise that within adult patients with only pathological medial plica, arthroscopic excision will yield similar positive postoperative outcomes. This will give surgeons, patients, and health care commissioners information to guide best care.

Materials and Methods

A literature search of MEDLINE (1946 to present), EMBASE (1974 to present), CINAHL (1961 to present), and Cochrane CENTRAL (1988 to present) databases was conducted using any combination of the key words, “plica” and “knee” in December 2016 for articles published in English with no publication year limit.

The study inclusion criteria were as follows: studies including patients over the age of 15 years, published in the English language, reporting cases having arthroscopic intervention in medial plica disease with no other co-existing knee pathology, and reporting outcomes per knee rather than per patient. Studies that reported their outcomes as excellent, good, fair, or poor were included. Randomised control trials and retrospective and prospective study designs were included, with case series of less than ten patients and case reports excluded.

The title and abstract of the articles were reviewed by both authors against the inclusion criteria. Where no decision about inclusion could be made from the publication title and abstract alone, the full texts were reviewed by the first author. The lists of references for all included articles were searched for any further articles for inclusion not identified in the database search.

An electronic standardised proforma for data extraction was created and utilized. The first author performed data collection, and where there was uncertainty, this was checked by the second author. Where articles included other types of pathology or other types of plica, the data for patients with only medial plica were included.

The Preferred Reporting Items for Systematic Review and Meta-Analyses (PRISMA) methodology was used\(^{19}\). The articles were appraised using the methodological index for nonrandomized studies\(^{20}\).

1. Statistical Analysis

The primary outcome was patient-reported postoperative scores of “good” and “excellent”. Meta-analyses were performed using random-effects model\(^{20}\), 95% confidence intervals (CIs) were calculated, and the heterogeneity was assessed using tau\(^2\), I\(^2\), Q, and p-values. Funnel plots were created, with no formal asymmetrical tests performed. Data were analyzed with CMA ver. 2 (Biostat, Englewood, NJ, USA).

Results

The search of the databases produced 731 results. Duplicated articles were removed, and the remaining articles were assessed. Those of no relevance were eliminated, leaving 41 articles whose full texts were examined (Fig. 1). Twelve articles were identified that reported outcomes of arthroscopic medial plica excision (Table 1). In the study by Yilmaz et al.\(^{16}\), one patient was under the age of 15 years, and the outcomes of that single case were removed from analysis. These studies reported a total of 643 knees which had arthroscopic surgery for symptomatic medial plica.

Follow-up ranged between four and 87 months, with the mean age across the studies of between 25 years and 45 years. Six studies were prospective in their design\(^{15,16,21–24}\) and six were retrospective\(^{17,25–29}\).

In five of these 12 studies, all participants had undergone a course of physiotherapy and conservative management prior to arthroscopic surgery\(^{15,17,22–27}\). One contained patients whose symptoms persisted despite prior operations\(^{21}\) whilst six did not state what measures had been tried pre-arthroscopic surgical intervention\(^{23–26,28,29}\). Of these 12 studies, three reported no complications from arthroscopic management of medial knee plicae\(^{25,22,28}\), two reported cases of effusion within the knee joint postoperatively with all settling without further operative intervention \(^{16,17}\). One study reported four cases of haemarthrosis which required aspiration at one week\(^{29}\). Of these 12 studies, one described their improvement in outcomes in terms of presence or change in symptoms\(^{21}\), one with regards to presence or absence of knee complaints\(^{26}\), one in terms of influence upon daily activities\(^{15}\), and one in terms of satisfaction\(^{23}\). Two studies used mean functional Lysholm scores pre- and postoperatively. Both of these found improvements with surgery. Yilmaz et al.\(^{16}\) reported a mean preoperative score of 38.5 and a mean postoperative score of 82. Uysal et al.\(^{17}\) reported a mean preoperative score of 67.19±8.05 and a mean postoperative score of 90.57±9.80. A third study by Guney et al.\(^{29}\) used Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) scores and published mean preoperative and postoperative scores of 1.4±0.7/1.3 (0–3.04) and 0.2±0.5/0 (0–2.42), respectively, again showing an improvement with surgery. In the studies by Maffulli et al.\(^{15}\) and Uysal et al.\(^{17}\), the included cases had undergone a course of phys-
iotherapy and conservative management prior to arthroscopic surgery.

Seven studies including 235 knees reported their outcomes as either excellent, good, fair, or poor16,22,23,25,27–29 and were thus used for meta-analysis (Table 1). Of these, 3 studies reported cases that had undergone a course of physiotherapy and conservative management prior to arthroscopic surgery16,22,27, and a further meta-analysis was performed for these studies in isolation. Meta-analysis of all seven included studies showed that arthroscopic excision of medial knee plica resulted in favorable outcomes in most cases (Fig. 2). An outcome of good or excellent was seen in 84.2% (95% CI, 72.8–91.4) of knees following arthroscopic resection of pathological medial plica (Fig. 3) (heterogeneity: tau2=0.52; I2=64.7%; Q=17; df=6; p=0.009). Funnel plot visual analysis did not show an obvious small study effect. Meta-analysis of the three studies where the participants had non-surgical interventions prior to arthroscopic surgery showed that arthroscopic excision of medial knee plica resulted in favorable outcomes in most cases; an outcome of good or excellent was seen in 76.1% (95% CI, 60.1–87) following arthroscopic resection of pathological medial plica (Fig. 3) (heterogeneity: tau2=0.22; I2=50.2%; Q=4; df=2; p=0.134).

Critical appraisal of the included studies using MINORS criteria20 are summarised in Table 2. A clearly stated aim could be observed in all. Unbiased assessment of outcomes was not seen in any of the studies, as they did not use independent evaluators to assess the postoperative outcomes.

Discussion

The results of this meta-analysis demonstrate that arthroscopic excision of symptomatic medial knee plica leads to favourable clinical outcomes in most cases. Hence, based on our results, we recommend that arthroscopic excision of symptomatic medial knee plica is considered as a treatment modality in those patients
Table 1. Summary of Study Demographics, Outcomes, and Complications

Author	Year	Journal	Study type	No. of knees (n=643)	Age (yr)	Sex (M:F)	Operation performed	Follow-up time (mo)	Outcome	Complication	Included in meta-analysis	
Moller21)	1981	*Acta Orthopaedica Scandinavia*	Prospective	78	31.2	51:28	–	11	Without symptoms: 66	Slight symptoms: 8	Yes	No
Klein25)	1983	*Archives of Orthopaedic and Traumatic Surgery*	Retrospective	17	–	–	–	Apr–42	Excellent: 7	Good: 6	–	Yes
Bough and Regan22)	1985	*Irish Medical Journal*	Prospective	23	23 (15–56)	3:1	Ye s	18 (12–48)	Excellent: 16	Good: 5	No complications	Yes
Andersen and Poulsen23)	1986	*Archives of Orthopaedic and Traumatic Surgery*	Prospective	31	31 (15–44)	20:8	–	15 (7–29)	Excellent: 12	Good: 14	No complications	Yes
Brabants et al.26)	1988	*Acta Orthopaedica Belgica*	Retrospective	161	–	–	–	–	Complaint free: 128	Not complaint free: 33	–	No
Dorchak et al.27)	1991	*The American Journal of Sports Medicine*	Retrospective	51	24.9	(17–40)	Ye s	46.8 (15–77)	Excellent: 22	Good: 16	–	Yes
Maffulli et al.15)	1993	*Medicine and Science in Sports and Exercise*	Prospective	102	26.5	(18–40)	Ye s	43 (9–87)	No complaints: 67	Not able to perform best at sport, work & social life not affected: 11	6 Haematomas	No
Author	Year	Journal	Study type	No. of knees (n=643)	Age (yr)	Sex (M:F)	Non-operative management prior to surgery	Operation performed	Follow-up time (mo)	Outcome	Complication	Included in meta-analysis
-------------------------	------	--	-----------------------	----------------------	----------	-----------	---	----------------------	----------------------	----------------------------------	-----------------------	--------------------------
Farkas et al. \(28)\)	1997	*Acta Chirurgica Hungarica*	Retrospective	14	23.6 (15–43)	1:1	–	Excision of the medial plica	18 (7–35)	Excellent: 4 Good: 9 Fair: 0 Poor: 1	No complications	Yes
Yilmaz et al. \(16)\)	2005	*International Orthopaedics*	RCT between different plica excisions	23	45.1	1:2	Yes	Excision of the medial plica	30 (24–36)	Excellent: 5 Good: 10 Fair: 2 Poor: 6	20/23 Self resolving effusions	Yes
Shetty et al. \(24)\)	2007	*Journal of Knee Surgery*	Prospective	44	45 (15–65)	–	–	Resection of the plica	3	Satisfactory: 39 Unsatisfactory: 5	–	No
Uysal et al. \(17)\)	2008	*International Orthopaedics*	Retrospective	23	42.4 (23–60)	14:8	Yes	Plica resected with punch and then shaved	21 (13–24)	All patients regained full range of movement Average Lysholm knee scale score: preoperative, 67.19±8.05, postoperative, 90.57±9.80	2/23 Self resolving effusions	No
Guney et al. \(29)\)	2010	*Knee Surgery, Sports Traumatology, Arthroscopy*	Retrospective	76	37.2 (15–61)	44:32	–	Excision of the medial plica	6	Excellent: 72 Good: 2 Fair: 2 Poor: 0 Mean WOMAC score: preoperative, 1.4±0.7/1.3 (0–3.04), postoperative, 0.2±0.5/0 (0–2.42)	–	Yes

Values are presented as mean (range).
RCT: randomized controlled trial, WOMAC: Western Ontario and McMaster Universities Osteoarthritis Index.
that fail initial non-surgical management. Five of our included studies looked at patients who had a course of physiotherapy and conservative management prior to arthroscopic surgery. One of these\(^{15}\) showed that 67 of 102 cases had no post-surgery complaints with regards to functional activities, whilst another study\(^{17}\) reported an improvement in the mean Lysholm knee score from 67.19±8.05 prior to surgery to 90.57±9.80 postsurgery. Meta-analysis of three further studies which reported their outcomes as excellent, good, fair, or poor showed that arthroscopic excision of medial knee plica resulted in a good or excellent outcome in an estimated 76.1% (95% CI, 60.1–87) of cases.

Synovial plica of the knee was first described by Mayeda in 1918. It is thought that a plica is a remnant strand of mesenchymal tissue persisting from the embryonic development of the

Study name	Event rate	Lower limit	Upper limit	Event rate and 95% CI
Klein\(^{25}\)	0.765	0.514	0.909	
Andersen and Poulsen\(^{23}\)	0.839	0.666	0.931	
Bough and Regan\(^{22}\)	0.913	0.711	0.978	
Guney et al.\(^{15}\)	0.974	0.901	0.993	
Yilmaz et al.\(^{26}\)	0.652	0.443	0.816	
Farkas et al.\(^{28}\)	0.929	0.630	0.990	
Dorchak et al.\(^{27}\)	0.745	0.609	0.846	
	0.842	0.728	0.914	

Meta-analysis

Study name	Event rate	Lower limit	Upper limit	Event rate and 95% CI
Bough and Regan\(^{22}\)	0.913	0.711	0.978	
Yilmaz et al.\(^{26}\)	0.652	0.443	0.816	
Dorchak et al.\(^{27}\)	0.745	0.609	0.846	
	0.761	0.601	0.870	

Meta-analysis

Table 2. Methodological Index for Non-Randomized Studies Assessment of Included Studies

Criteria	Moller\(^{23}\)	Klein\(^{25}\)	Bough and Regan\(^{22}\)	Andersen and Poulsen\(^{23}\)	Brabants et al.\(^{26}\)	Dorchak et al.\(^{27}\)	Maffulli et al.\(^{15}\)	Farkas et al.\(^{28}\)	Yilmaz et al.\(^{16}\)	Shetty et al.\(^{24}\)	Uysal et al.\(^{17}\)	Guney et al.\(^{29}\)
A clearly stated aim	2	2	2	2	2	2	2	2	2	2	2	2
Inclusion of consecutive patients	2	2	2	2	2	2	2	2	2	2	2	2
Prospective collection of data	2	0	0	2	0	0	2	0	2	2	0	2
Endpoints appropriate to the aim of study	2	2	2	2	2	2	2	2	2	2	2	0
Unbiased assessment of study endpoint	0	0	0	0	0	0	0	0	0	0	0	2
Follow-up appropriate to the aim of study	2	2	2	2	2	2	2	1	2	2	2	2
Loss to follow-up, <5%	2	2	2	2	2	2	2	2	2	2	2	2
Prospective calculation of study size	0	0	0	0	0	0	0	0	0	0	0	0
Total	12	10	10	12	8	10	12	10	12	11	10	10

The items are scored 0 (not reported), 1 (reported but inadequate) or 2 (reported and adequate), with maximum possible score being 16.

Fig. 2. Meta-analysis of outcomes rated as good and excellent following arthroscopic excision of medial knee plica. CI: confidence interval.

Fig. 3. Meta-analysis of outcomes rated as good and excellent following arthroscopic excision of medial knee plica in patients previously treated by conservative methods. CI: confidence interval.
The medial plica arises from the genu-articularis muscle proximally and passes over the medial femoral condyle to merge with the synovial lining of the joint capsule. It ranges from a cord-like appearance to that of a larger shelf structure. The majority of medial knee plica identified during arthroscopy are thin and asymptomatic. However, incidents of trauma or overuse result in plica becoming oedematous and fibrotic, and over time they may tighten or bowstring. The usual gliding effect of the medial plica over the femoral condyle between 30° and 60° of flexion is lost, and instead the plica may impinge and cause chondral injuries, resulting in pain, mechanical or other symptoms (swelling, snapping sensation, tenderness, stiffness, and locking). Examination of the knee may elicit an effusion, decreased range of motion, tenderness over the medial femoral condyle or joint line and on occasion synovial thickening.

The arthroscopic surgical management for pathological plica is to either excise or divide the plica. Excision may involve the use of punch, shaver, diathermy or scissors to take the plica back to a level where it no longer impinges. Division of the plica is performed by breaking its continuity. Patients in whom the plica is divided may risk the two cut ends re-joining via scar tissue and a return of their symptoms; for this reason excision of the plica has been suggested to be preferable.

Unfortunately, only three studies reported functional score outcomes. However, although there were not enough studies using the same scoring systems to extract any combined data for analysis, all of the studies reported a mean improvement in their patients who had arthroscopic intervention.

There are a number of limitations to this study. Firstly, the preoperative management of the patients within the different studies was not uniformly described. Some patients had undergone pharmacological and physical therapy to help their symptoms prior to proceeding with surgery, but it could not be determined as to whether this altered their final surgical outcomes. Patients in studies who specified preoperative conservative management had a benefit to arthroscopic resection in 76%, compared with the 84% who had a positive response when all studies were included. Secondly, there was variation in the outcome evaluation systems employed across studies and therefore only seven could be included in the meta-analysis. Furthermore, outcomes employed were mainly categorical rather than continuous numerical. In addition, most studies were observational, with no randomised trial available comparing surgical versus non-surgical intervention. Most of the studies were produced over 20 years ago with few recent studies available to be used in the analysis.

Despite the above limitations, our meta-analysis brings together clinical outcomes from a large number of pooled cases, from which meaningful conclusions can be reached.

Conclusions

Given the available evidence, our results suggest that arthroscopic excision of symptomatic medial knee plica is associated with favourable patient outcomes in an estimated 76% of those cases that had non-surgical therapy prior to surgery and 84% of all patients included. Based on these findings, we recommend that arthroscopic surgical excision should be considered as a treatment modality in patients with pathological medial plica disease of the knee either as a first-line treatment or when symptoms have not responded to non-surgical interventions.

Conflict of Interest

No potential conflict of interest relevant to this article was reported.

References

1. Blok A, Weiss W, Dolata T, Szczepaniec M. Medial synovial plica. Ortop Traumatol Rehabil. 2005;7:397–400.
2. Nakayama A, Sugita T, Aizawa T, Takahashi A, Honma T. Incidence of medial plica in 3,889 knee joints in the Japanese population. Arthroscopy. 2011;27:1523–7.
3. Matsusue Y, Ueo T, Yamamuro T. Arthroscopic resection of the shelf (mediopatellar plica) in the knee under local anesthesia in outpatient clinic. Nihon Geka Hokan. 1991;60:176–83.
4. Muse GL, Grana WA, Hollingsworth S. Arthroscopic treatment of medial shelf syndrome. Arthroscopy. 1985;1:63–7.
5. Richmond JC, McGinty JB. Segmental arthroscopic resection of the hypertrophic mediopatellar plica. Clin Orthop Relat Res. 1983;(178):185–9.
6. O’Dwyer KJ, Peace PK. The plica syndrome. Injury. 1988; 19:350–2.
7. Kent M, Khanduja V. Synovial plicae around the knee. Knee. 2010;17:97–102.
8. Ewing JW. Plica: pathologic or not? J Am Acad Orthop Surg. 1993;1:117–21.
9. Dandy DJ. Arthroscopic management of the knee. Edinburgh: Churchill Livingstone; 1987. p. 64–71.
10. Bellary SS, Lynch G, Housman B, Esmaeili E, Gielecki J, Tubbs RS, Loukas M. Medial plica syndrome: a review of the literature. Clin Anat. 2012;25:423-8.
11. Amatuzzi MM, Fazzi A, Varella MH. Pathologic synovial plica of the knee: results of conservative treatment. Am J Sports Med. 1990;18:466-9.
12. Laprade RF, Wentorf F. Acute knee injuries; on-the-field and sideline evaluation. Phys Sportsmed. 1999;27:55-61.
13. Weckstrom M, Niva MH, Lamminen A, Mattila VM, Philajamaki HK. Arthroscopic resection of medial plica of the knee in young adults. Knee. 2010;17:103-7.
14. Griffith CJ, LaPrade RF. Medial plica irritation: diagnosis and treatment. Curr Rev Musculoskelet Med. 2008;1:53-60.
15. Maffulli N, Testa V, Capasso G. Mediopatellar synovial plica of the knee in athletes: results of arthroscopic treatment. Med Sci Sports Exerc. 1993;25:985-8.
16. Yilmaz C, Golpinar A, Varucu A, Ozturk H, Eskandari MM. Retinacular band excision improves outcome in treatment of plica syndrome. Int Orthop. 2005;29:291-5.
17. Uysal M, Asik M, Akpinar S, Ciftci F, Cesur N, Tandogan RN. Arthroscopic treatment of symptomatic type D medial plica. Int Orthop. 2008;32:799-804.
18. Schindler OS. ‘The Sneaky Plica’ revisited: morphology, pathophysiology and treatment of synovial plicae of the knee. Knee Surg Sports Traumatol Arthosc. 2014;22:247-62.
19. Moher D, Liberati A, Tetzlaff J, Altman DG; PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Int J Surg. 2010;8:336-41.
20. Slim K, Nini E, Forestier D, Kwiatkowski F, Panis Y, Chipponi J. Methodological index for non-randomized studies (minors): development and validation of a new instrument. ANZ J Surg. 2003;73:712-6.
21. Moller H. Incarcerating mediopatellar synovial plica syndrome. Acta Orthop Scand. 1981;52:357-61.
22. Bough BW, Regan BF. Medial and lateral synovial plicae of the knee: pathological significance, diagnosis and treatment by arthroscopic surgery. Ir Med J. 1985;78:279-82.
23. Andersen E, Poulsen TD. Plica mediopatellaris: arthroscopic resection under local anesthesia. Arch Orthop Trauma Surg. 1986;106:18-9.
24. Shetty VD, Vowler SL, Krishnamurthy S, Halliday AE. Clinical diagnosis of medial plica syndrome of the knee: a prospective study. J Knee Surg. 2007;20:277-80.
25. Klein W. The medial shelf of the knee: a follow-up study. Arch Orthop Trauma Surg. 1983;102:67-72.
26. Brabants K, Geens S, Blondeel L. Plica synovialis mediopatellaris. Acta Orthop Belg. 1988;54:474-6.
27. Dorchak JD, Barrack RL, Kneisl JS, Alexander AH. Arthroscopic treatment of symptomatic synovial plica of the knee. Long-term followup. Am J Sports Med. 1991;19:503-7.
28. Farkas C, Gaspar L, Jonas Z. The pathological plica in the knee. Acta Chir Hung. 1997;36:83-5.
29. Guney A, Bilal O, Oner M, Halici M, Turk Y, Tuncel M. Short- and mid-term results of plica excision in patients with mediopatellar plica and associated cartilage degeneration. Knee Surg Sports Traumatol Arthosc. 2010;18:1526-31.
30. Sakakibara J. Arthroscopic study on linos band (plica synovia is mediopatellaris). J Jpn Orthop Assoc. 1976;50:513-22.