Characterization of the Lytic Bacteriophage phiEaP-8 Effective against Both \textit{Erwinia amylovora} and \textit{Erwinia pyrifoliae} Causing Severe Diseases in Apple and Pear

Jungkum Park1, Gyu Min Lee2, Donghyuk Kim3, Duck Hwan Park4, and Chang-Sik Oh1*

1Department of Horticultural Biotechnology, College of Life Sciences, Kyung Hee University, Yongin 17104, Korea
2Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin 17104, Korea
3School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea
4Applied Biology Program, Division of Bioresource Sciences, Kangwon National University, Chuncheon 24341, Korea

(Received on June 8, 2018; Revised on July 20, 2018; Accepted on July 25, 2018)

Bacteriophages, bacteria-infecting viruses, have been recently reconsidered as a biological control tool for preventing bacterial pathogens. \textit{Erwinia amylovora} and \textit{E. pyrifoliae} cause fire blight and black shoot blight disease in apple and pear, respectively. In this study, the bacteriophage phiEaP-8 was isolated from apple orchard soil and could efficiently and specifically kill both \textit{E. amylovora} and \textit{E. pyrifoliae}. This bacteriophage belongs to the Podoviridae family. Whole genome analysis revealed that phiEaP-8 carries a 75,929 bp genomic DNA with 78 coding sequences and 5 tRNA genes. Genome comparison showed that phiEaP-8 has only 85% identity to known bacteriophages at the DNA level. PhiEaP-8 retained lytic activity up to 50°C, within a pH range from 5 to 10, and under 365 nm UV light. Based on these characteristics, the bacteriophage phiEaP-8 is novel and carries potential to control both \textit{E. amylovora} and \textit{E. pyrifoliae} in apple and pear.

Keywords: Bacteriophage, black shoot blight, \textit{Erwinia amylovora}, \textit{Erwinia pyrifoliae}, fire blight

*Corresponding author.
Phone) +82-31-201-2678, FAX) +82-31-204-8116
E-mail) co35@khu.ac.kr

ORCID
Chang-Sik Oh
http://orcid.org/0000-0002-2123-862X

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0) which permits unrestricted noncommercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

Articles can be freely viewed online at www.ppjonline.org.

Handling Associate Editor: Sohn, Kee Hoon

\textit{Erwinia amylovora} and \textit{E. pyrifoliae} are Gram-negative bacterial pathogens that cause the devastating diseases, fire blight and bacterial black shoot blight, in apple and pear, respectively. Since \textit{E. amylovora} was first discovered in 1780 in the United States, it has been reported globally in Europe, North America, the Middle East and central Asia, and New Zealand (Van der Zwet et al., 2012). In 2015, this disease was reported in apple and pear orchards in South Korea (Myung et al., 2016; Park et al., 2016). In the case of \textit{E. pyrifoliae}, it was first reported in pear orchards in South Korea in 1995 (Kim et al., 1999). These two pathogens are quarantine pathogens in South Korea and have caused severe economic loss due to extensive host eradication and difficulty of fruit export (Park et al., 2017).

So far, antibiotics and copper compounds have been mostly used for the control of fire blight and bacterial black shoot blight in apple and pear. However, the appearance of bacteria resistant to these chemicals have limited their use in the field (Manulis et al., 1998). As an alternative, lytic bacteriophages have been reconsidered as a tool for biological control (Loc-Carrillo and Abedon, 2011). Bacteriophages infect very specific target bacteria, and their host ranges are very narrow unlike antibiotics and copper compounds. They have two different life cycles: the lytic and the lysogenic cycles. During the lytic cycle, a bacteriophage actively infects host bacteria, multiplies inside the host, and kills the host to release progeny (Orlova, 2012). Due to this feature, lytic bacteriophages have been used for...
phage therapy to control many bacterial pathogens causing disease in animals and plants (Buttimer et al., 2017; Doffkay et al., 2015).

Since the 1960’s, many bacteriophages effective against E. amylovora have been reported, and their genomic and physiological features have been determined (Born et al., 2011; Esplin et al., 2017; Gill et al., 2003; Meczker et al., 2014; Müller et al., 2011; Yagubi et al., 2014). Based on the morphology of these bacteriophages, they belong to either the Myoviridae or Podoviridae family. Some bacteriophages with a broad host range have been applied for phage therapy to control E. amylovora (Meczker et al., 2014) and some of them have been commercialized (Buttimer et al., 2017). However, no bacteriophages effective against E. pyrifoliae or both E. amylovora and E. pyrifoliae have yet been reported.

In this study, to isolate bacteriophages with effective host specificity to both E. amylovora and E. pyrifoliae, 18 soil samples from apple and pear orchards at Jecheon, Chungju, and Yongin, South Korea were collected. After mixing soil with SM (sodium chloride-magnesium sulfate) buffer [50 mM Tris-HCl (pH 7.5), 10 mM NaCl, 10 mM MgSO₄] for 30 min, the mixed samples were centrifuged at 10,000 rpm, 4°C for 10 min and filtered with a 0.22 μm pore size filter (Sartorius, Gottingen, Germany). Then, bacteriophages were enriched through overnight incubation with 5ml of the supernatant, 10 ml of LB, and 500 μl of bacterial suspension (10⁹ cfu/ml) of E. amylovora strain Ea-K1 isolated in South Korea at 26°C in a shaking incubator. The incubated samples were treated with chloroform (1% of the final volume) for 30 min, centrifuged at 3,000 g, 4°C for 15 min, and filtered with a 0.22 μm pore size filter. The presence of bacteriophages in the supernatant was confirmed with four E. amylovora strains and two E. pyrifoliae strains using a dotting assay (Kropinski et al., 2009; Yu et al., 2016). Then, in order to isolate individual bacteriophages, the overlay assay (Yu et al., 2016) was performed, and plaques with different sizes and shapes were picked separately. A total of 21 individual bacteriophages were picked based on their plaque sizes and shapes (Fig. 1). To determine whether isolated bacteriophages were separate isolates, the genomic DNAs from the 21 isolated bacteriophages were extracted using a phage DNA isolation kit (Norgen Biotek, Thorold, ON, Canada) and digested with restriction enzymes, EcoRI, BamHI or both. According to DNA patterns, isolated bacteriophages were categorized into three groups. The bacteriophage phiEaP-8 isolated from apple orchard soil in Yongin, South Korea, where no fire blight or bacterial black shoot blight has been reported, represents one of the three groups and this bacteriophage was used for further characterization.

To determine the shape of bacteriophage phiEaP-8, it was propagated by incubating with the Ea-K1 strain (OD₆₀₀ = 0.5-1.0), as described previously (Kim and Ryu, 2011), and then was purified using CsCl gradient ultracentrifugation (Lim et al., 2013). After ultracentrifugation at 25,000 rpm, 4°C for 2 h, bacteriophages were collected and purified through dialysis twice for 1 h in SM buffer. The purified bacteriophage phiEaP-8 was observed by transmission electron microscopy at 120 kV after negative staining with 2% aqueous uranyl acetate (pH 4.0) on carbon-coated copper grids (Ackermann and Heldal, 2010; Brum and Steward, 2010). The bacteriophage phiEaP-8 belonged to the Podoviridae family based on its morphology (Fig. 1). The total length and head size are 95 nm and 75 nm, respectively.

Next, the host range of the bacteriophage phiEaP-8 was determined by an overlay assay with twenty E. amylovora and seven E. pyrifoliae strains isolated in Korea as well as other related bacteria such as Pectobacterium carotovorum, Dickeya zeae and three Pantoea strains. The bacteriophage phiEaP-8 could efficiently kill all tested strains of both E. amylovora and E. pyrifoliae, but it was not effective against other related bacteria (Table 1), indicating that this bacte-
Table 1. Host range of the bacteriophage phiEaP-8

No.	Bacterial species	Strain	Lytic activity
1	Erwinia amylovora	Ea73	+
2	Erwinia amylovora	Ea74	+
3	Erwinia amylovora	Ea75	+
4	Erwinia amylovora	Ea76	+
5	Erwinia amylovora	Ea77	+
6	Erwinia amylovora	Ea78	+
7	Erwinia amylovora	Ea-K1	+
8	Erwinia amylovora	Ea80	+
9	Erwinia amylovora	Ea2016-1	+
10	Erwinia amylovora	Ea2016-2	+
11	Erwinia amylovora	Ea2016-3	+
12	Erwinia amylovora	Ea2016-4	+
13	Erwinia amylovora	YKB 12316 (TS 3128)	+
14	Erwinia amylovora	YKB 12317 (TS3133)	+
15	Erwinia amylovora	YKB 12318 (TS 3240)	+
16	Erwinia amylovora	YKB 12319 (TS 3241)	+
17	Erwinia amylovora	YKB 12320 (TS 3315)	+
18	Erwinia amylovora	YKB 12321 (TS 3325)	+
19	Erwinia amylovora	YKB 12322 (TS 3371)	+
20	Erwinia amylovora	YKB 12323 (TS 3373)	+
21	Erwinia pyrifolia	Ep81	+
22	Erwinia pyrifolia	EpK1/15	+
23	Erwinia pyrifolia	YKB 12324 (TS 2743)	+
24	Erwinia pyrifolia	YKB 12325 (TS 2744)	+
25	Erwinia pyrifolia	YKB 12326 (TS 3239)	+
26	Erwinia pyrifolia	YKB 12327 (TS 3340)	+
27	Erwinia pyrifolia	YKB 12328 (TS 3342)	+
28	Pectobacterium carotovorum subsp. carotovorum	Pcc21	–
29	Dickeya Zeae	–	–
30	Pantoea dispersa	–	–
31	Pantoea agglomerans	–	–
32	Pantoea stewartii	–	–

+, positive; –, negative

Bacteriophage phiEaP-8 for Both *E. amylovora* and *E. pyrifoliae*

To examine if the bacteriophage phiEaP-8 is homologous to known bacteriophages, whole genome sequencing was performed using the PacBio RS II platform (Pacific Biosciences, Menlo Park, CA, USA). Total genomic DNA of phiEaP-8 was isolated using a phage DNA isolation kit (Norgen Biotek, Thorold, ON, Canada), and 10 µg was used to generate a 10 kb SMRTbell™ template library. After sequencing, *de novo* assembly was performed using CANU v1.4 (Koren et al., 2017) and a single contig was generated. The bacteriophage phiEaP-8 carries a 75,929 bp genomic DNA (GenBank accession number, MH160392), and its G+C content is 46.8%. In order to compare the phiEaP-8 genome with other sequenced bacteriophages, which can infect *E. amylovora*, 42 sequenced genomes were obtained from GenBank database, and their genome were compared with BPGA (Bacterial Pan Genome Analysis) pipeline (Chaudhuri et al., 2016) and USEARCH (Edgar, 2010). Specifically, 10 of them are *Podoviridae*, 29 of them are *Myoviridae*, and 3 bacteriophages are *Siphoviridae*. Based on a phylogenetic tree (Fig. 2, Supplementary Fig. 1), phiEaP-8 was closely related to five bacteriophages belonging to *Podoviridae*, which are vB_EamP_Rexella (GenBank accession number, KX098390), vB_EamP_Frozen (GenBank accession number, KX098389), Ea9-2 (GenBank accession number, KF806588), vB_EamP_Gutmeister (GenBank accession number, KX098391), and vB_EamP-S6 (GenBank accession number, HQ728266). At the DNA level, phiEaP-8 only has about 85% identity to these closely related bacteriophages.

Gene annotation to find coding sequences (CDS), tRNA, and rRNA genes was performed using Prokka (v1.12b). Gene annotation showed that the genome contains 78 CDSs and 5 tRNA genes, but no rRNA genes (Supplementary Table 1). The bacteriophage phiEaP-8 genome carries genes encoding putative holin and Rz/Rz1 spanin proteins, indicating that it is a lytic bacteriophage. Interestingly, this bacteriophage carries a gene homologous to *amsF* responsible for amylovoran biosynthesis in *E. amylovora* and also a gene encoding serine protease highly homologous to one in *Enterobacteriaceae* like *Escherichia coli* and *Salmonella enterica*. These results indicate that this bacteriophage might have obtained these genes from host bacteria during infection and genome multiplication.

To determine if phiEaP-8 can be used for phage therapy against both *E. amylovora* and *E. pyrifoliae*, its lytic activity under diverse environmental conditions was examined. For this, 10⁵ PFU/ml of bacteriophages were treated for 1 h at 30, 40, 50, and 60°C, at pH range 3 to 12, or under 365 nm UV light, and its lytic activity was measured by the dotting assay. This bacteriophage retained lytic activity stable at 30, 40, 50, and 60°C, up to 50°C, within a pH range from 5 to 10, and under 365 nm UV light (Fig. 3). Bacteriophages are typically isolated from soil, water, and plants surrounding infected trees (Doffkay et al., 2015; Müller et al., 2011). Interestingly, the apple orchard in Yongin, South Korea where phiEaP-8 was isolated has never been infected with either *E. amylovora* or *E. pyrifoliae*. Bacteriophages are typically isolated from soil, water, and plants surrounding infected trees (Doffkay et al., 2015; Müller et al., 2011). Interestingly, the apple orchard in Yongin, South Korea where phiEaP-8 was isolated has never been infected with either *E. amylovora* or *E. pyrifoliae*.
In a previous paper (Lagonenko et al., 2015), phiEa2809 was isolated from the leaves of an apple tree without fire blight symptoms in an apple orchard where fire blight was never detected. The genus *Erwinia* is classified to the *Enterobacteriaceae* family, which includes both pathogenic and non-pathogenic bacteria in genera such as *Erwinia*, *Enterobacter*, *Pantoea*, *Pectobacterium*, and *Brenneria* (Kado, 2006). Presence of bacteriophages in an apple orchard, in which fire blight or bacterial black shoot blight have never been detected, might be explained by the thought that bacteriophages could exist owing to the presence of some of these bacteria.

Born et al. (2011) reported eight bacteriophages effective against *E. amylovora*. Interestingly, some of them were effective against other related bacteria such as *Erwinia billingiae*, *Pantoea agglomerans*, and *Pantoea ananatis*, indicating the presence of wide host-range bacteriophages. The bacteriophage phiEaP-8 looks specific to both *E. pyrifoliae*. In a previous paper (Lagonenko et al., 2015), phiEa2809 was isolated from the leaves of an apple tree without fire blight symptoms in an apple orchard where fire blight was never detected. The genus *Erwinia* is classified to the *Enterobacteriaceae* family, which includes both pathogenic and non-pathogenic bacteria in genera such as *Erwinia*, *Enterobacter*, *Pantoea*, *Pectobacterium*, and *Brenneria* (Kado, 2006). Presence of bacteriophages in an apple orchard, in which fire blight or bacterial black shoot blight have never been detected, might be explained by the thought that bacteriophages could exist owing to the presence of some of these bacteria.

Born et al. (2011) reported eight bacteriophages effective against *E. amylovora*. Interestingly, some of them were effective against other related bacteria such as *Erwinia billingiae*, *Pantoea agglomerans*, and *Pantoea ananatis*, indicating the presence of wide host-range bacteriophages. The bacteriophage phiEaP-8 looks specific to both *E.
Bacteriophage phiEaP-8 for Both E. amylovora and E. pyrifoliae

... which indicates that this is a somewhat narrow host-range bacteriophage. However, this bacteriophage could be very useful because both pathogenic bacteria can co-exist in apple and pear orchards in Korea.

Acknowledgments

We thank Dr. Young-Gi Lee for providing YKB strains of Erwinia amylovora and Erwinia pyrifoliae and the Korea Basic Science Institute for TEM analysis. This work was carried out with the support of the “Cooperative Research Program for Agriculture Science & Technology Development (Project No: PJ0117582018)” of the Rural Development Administration, Republic of Korea and Korea Institute of Planning and Evaluation for Technology in Food, Agriculture, Forestry (IPET) through Agri-Bio industry Technology Development Program, funded by Ministry of Agriculture, Food and Rural Affairs (MAFRA) (No. 317012-4).

References

Ackermann, H. W. and Heldal, M. 2010. Basic electron microscopy of aquatic viruses. In: Manual of aquatic viral ecology, eds. by S. W. Wilhelm, M. G. Weinbauer, and C. A. Suttle, pp. 182-192. American Society of Limnology and Oceanography.

Born, Y., Fieseler, L., Marazzi, J., Lurz, R., Duffy, B. and Loessner, M. J. 2011. Novel virulent and broad-host-range Erwinia amylovora bacteriophages reveal a high degree of mosaicism and a relationship to Enterobacteriaceae phages. Appl. Environ. Microbiol. 77:5945-5954.

Brum, J. R. and Steward, G. F. 2010. Morphological characterization of viruses in the stratified water column of alkaline, hypersaline Mono Lake. Microb. Ecol. 60:636-643.

Buttimer, C., McAuliffe, O., Ross, R. P., Hill, C., O’Mahony, J. and Coffey, A. 2017. Bacteriophages and bacterial plant diseases. Front Microbiol. 8:34.

Chaudhari, N. M., Gupta, V. K. and Dutta, C. 2016. BPGA- an ultra-fast pan-genome analysis pipeline. Sci. Rep. 6:24373.

Dolffkay, Z., Dömötör, D., Kovács, T. and Rákhely, G. 2015. Bacteriophage therapy against plant, animal and human pathogens. Acta Biol. Szeged. 59:291-302.

Edgar, R. C. 2010. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26:2460-2461.

Esplin, I. N., Berg, J. A., Sharma, R., Allen, R. C., Arens, D. K., Ashcroft, C. R., Bairrett, S. R., Beatty, N. J., Bickmore, M., Bloomfield, T. J., Brady, T. S., Bybee, R. N., Carter, J. L., Choi, M. C., Duncan, S., Fajardo, C. P., Foy, B. B., Fuhriman, D. A., Gibby, P. D., Grossardh, S. E., Harbaugh, K., Harris, N., Hilton, J. A., Hurst, E., Hyde, J. R., Ingersoll, K., Jacobson, C. M., James, B. D., Jarvis, T. M., Jaen-Anieves, D., Jensen, G. L., Knabe, B. K., Kruger, J. L., Merrill, B. D., Pepe, J. A., Anderson, A. M. P., Payne, D. E., Peck, M. D., Pollack, S. V., Putnam, M. J., Ransom, E. K., Ririe, D. B., Robinson, D. M., Rogers, S. L., Russell, K. A., Schoenhals, J. E., Shurtleff, C. A., Simister, A. R., Smith, H. G., Stephenson, M. B., Staley, L. A., Stettler, J. M., Stratton, M. L., Tateoka, O. B., Tatlow, P. J., Taylor, A. S., Thompson, S. E., Townsend, M. H., Thurgood, T. L., Usher, B. K., Whitley, K. V., Ward, A. T., Ward, M. E. H., Webb, C. J., Wienclaw, T. M., Williamson, T. L., Wells, M. J., Wright, C. K., Breakwell, D. P., Hope, S. and Grose, J. H. 2017. Genome sequences of 19 novel Erwinia amylovora bacteriophages. Genome Announc. 5:e00931-00917.

Gill, J. J., Svircev, A. M., Smith, R. and Castle, A. J. 2003. Bacteriophages of Erwinia amylovora. Appl. Environ. Microbiol. 69:2133-2138.

Kado, C. I. 2006. Erwinia and related genera. In: The Prokaryotes, eds. by M. Dworkin, S. Falkow, E. Rosenberg, K. H. Schleifer, E. Stackebrandt, pp. 443-450. In: The prokaryotes. Springer, New York, NY, USA.

Kim, M. and Ryu, S. 2011. Characterization of a T5-like coliphage, SPC35, and differential development of resistance to SPC35 in Salmonella enterica serovar Typhimurium and Escherichia coli. Appl. Environ. Microbiol. 77:2042-2050.
Kim, W. S., Gardan, L., Rhim, S. L. and Geider, K. 1999. *Erwinia pyrifoliae* sp. nov., a novel pathogen that affects Asian pear trees (*Pyrus pyrifolia* Nakai). *Int. J. Syst. Bacteriol.* 49:899-906.

Koren, S., Walenz, B. P., Berlin, K., Miller, J. R., Bergman, N. H. and Phillippy, A. M. 2017. Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation. *Genome Res.* 27:722-736.

Kropinski, A. M., Mazzocco, A., Waddell, T. E., Lingohr, E. and Johnson, R. P. 2009. Enumeration of bacteriophages by double agar overlay plaque assay. *Methods Mol. Biol.* 501:69-76.

Lagonenko, A. L., Sadovskaya, O., Valentovich, L. N. and Evtushenkov, A. N. 2015. Characterization of a new Vif-like *Erwinia amylovora* bacteriophage phiEa2809. *FEMS Microbiol. Lett.* 362:fnv031.

Lim, J. A., Jee, S. N., Lee, D. H., Roh, E. J., Jung, K. S., Oh, C. S. and Heu, S. G. 2013. Biocontrol of *Pectobacterium carotovorum* subsp. *carotovorum* using bacteriophage PP1. *J. Microbiol. Biotechnol.* 23:1147-1153.

Loc-Carrillo, C. and Abedon, S. T. 2011. Pros and cons of phage therapy. *Bacteriophage* 1:111-114.

Manulis, S., Zutra, D., Kleitman, F., Dror, O., David, I., Zilberstaine, M. and Shabi, E. 1998. Distribution of streptomycin-resistant strains of *Erwinia amylovora* in Israel and occurrence of blossom blight in the autumn. *Phytoparasitica* 26:223-230.

Meczker, K., Dömötör, D., Vass, J., Rákhely, G., Schneider, G., and Kovács, T. 2014. The genome of the *Erwinia amylovora* phage PhiEaH1 reveals greater diversity and broadens the applicability of phages for the treatment of fire blight. *FEMS Microbiol. Lett.* 350:25-27.

Müller, I., Lurz, R., Kube, M., Quedenua, C., Jelkmann, W. and Geider, K. 2011. Molecular and physiological properties of bacteriophages from North America and Germany affecting the fire blight pathogen *Erwinia amylovora*. *Microb. Biotechnol.* 4:735-745.

Myung, I. S., Lee, J. Y., Yun, M. J., Lee, Y. H., Lee, Y. K., Park, D. H. and Oh, C. S. 2016. Fire blight of apple, caused by *Erwinia amylovora*, a new disease in Korea. *Plant Dis.* 100:1774-1774.

Orlova, E. 2012. Bacteriophages and their structural organisation. In: *Bacteriophage*, ed. by I. Kurtboke, pp 3-30. InTech, London, UK.

Park, D. H., Yu, J. G., Oh, E. J., Han, K. S., Yea, M. C., Lee, S. J., Myung, I. S., Shim, H. S. and Oh, C. S. 2016. First report of fire blight disease on Asian pear caused by *Erwinia amylovora* in Korea. *Plant Dis.* 100:1946-1946.

Park, D. H., Lee, Y. G., Kim, J. S., Cha, J. S. and Oh, C. S. 2017. Current status of fire blight caused by *Erwinia amylovora* and action for its management in Korea. *J. Plant Pathol.* 99:59-63.

Van der Zoret, T., Orolaza-Halbrendt, N. and Zeller, W. 2012. Fire blight: history, biology, and management. Amer Phytopathological Society, Saint Paul, MN, USA. 421 pp.

Yagubi, A. I., Castle, A. J., Kropinski, A. M., Banks, T. W. and Svirec, A. M. 2014. Complete genome sequence of *Erwinia amylovora* bacteriophage vB_EamM_Ea35-70. *Genome Announc.* 2:e00413-e00414.

Yu, J. G., Lim, J. A., Song, Y. R., Heu, S. G., Kim, G. H., Koh, Y. J. and Oh, C. S. 2016. Isolation and characterization of bacteriophages against *Pseudomonas syringae* pv. *actinidiae* causing bacterial canker disease in kiwifruit. *J. Microbiol. Biotechnol.* 26:385-393.