Mistletoes are considered the most damaging pathogens to attack commercially important coniferous and hardwood timber stands (Mathiasen et al., 2008). Despite their negative economic impact, mistletoes are ecologically important in forest ecosystems as they provide food, cover, and nesting sites for a variety of birds, mammals, and insects (Watson, 2001). The geographic range of mistletoes is related to the availability of suitable host trees, and the genetic structuring of mistletoe populations is potentially influenced by the distribution of host populations (Norton and Carpenter, 1998). The genus *Psittacanthus* Mart. (c. 119 species; Loranthaceae), an aerial hemiparasite distributed throughout the Neotropics on a wide range of tree hosts, is distinguished by its large and conspicuous red, yellow, or orange flowers, bulky haustorial connections to the host trees, and large fruits with seeds that lack endosperm (Kuijt, 2009). *Psittacanthus schiedeanus* (Cham. & Schlecht.) G. Don is characteristic of the canopy in the cloud forest edges in Mesoamerica and often parasitizes tall trees (López de Buen and Ornelas, 2002). The hermaphroditic, hummingbird-pollinated flowers are self-compatible (Ramírez and Ornelas, 2010), and ripe, lipid-rich, purplish-black fleshy fruits are dispersed by a variety of resident and migratory bird species (López de Buen and Ornelas, 1999, 2001; Ramírez and Ornelas, 2009). The foraging and flocking behavior and local abundance of birds differ widely (López de Buen and Ornelas, 2001), and consequently affect the spatial patterns of mistletoe seed deposition (López de Buen and Ornelas, 1999; López de Buen et al., 2002). At a local scale, mistletoes can develop specificity on particular host trees depending on the heterogeneity of host patches, which may lead to gene flow changes and the eventual formation of mistletoe races (Overton, 1997; Norton and Carpenter, 1998). Cross-infection experiments, which have proven useful to demonstrate host specificity in other mistletoes (Overton, 1997; Lara et al., 2009), have shown local host adaptation of *P. schiedeanus* on *Liquidambar styraciflua* L. (Ramírez and Ornelas, 2012). However, the parasite-host interaction is predominantly on other host species in areas where *L. styraciflua* is not distributed. Thus, geologic- and climate-driven processes implicated in the fragmentation of the Mesoamerican cloud forests and the distribution of potential host species across a geographic range could have influenced the distribution of genetic variation among populations of *P. schiedeanus*.

Our aim is to determine to what extent the historically fragmented distribution of cloud forest in Mesoamerica and the distributions of host species have affected the spatial genetic variability of *P. schiedeanus* and interactions with its hosts, pollinators, and seed dispersers. For these purposes, we isolated and characterized 10 polymorphic nuclear microsatellite loci that are being successfully applied to describe spatial patterns of genetic structure. To date, microsatellite primers have not been developed for this mistletoe species.
METHODS AND RESULTS

Microsatellite isolation was performed by the simple sequence repeat (SSR) development company Genetic Marker Services (Brighton, United Kingdom; http://www.geneticmarkerservices.com). We extracted genomic DNA from a single *P. schiedeanus* (PSI) individual collected in Jardín Botánico Francisco Xavier Clavijero, near the city of Xalapa, Veracruz, Mexico (Appendix 1), with the DNeasy Plant Mini Kit (QIAGEN, Valencia, California, USA) to develop an enriched library, and to design and test primer pairs for microsatellite-containing loci. Enrichment involved incubating adapter-ligated restricted DNA with filter-bonded synthetic repeat motifs: (AG)_{17}, (AC)_{17}, (AAC)_{10}, (CCG)_{10}, (CTG)_{10}, and (AAT)_{10}. We detected and sequenced 29 microsatellite-positive *Escherichia coli* clones, of which 27 contained repeat motifs, and 19 of these loci had sufficient flanking regions to design F/R primer pairs using the primer design software Primer3 (Rozen and Skaletsky, 2000). All repeat motifs were perfect dinucleotides.

TABLE 1. Characteristics of 17 microsatellite loci developed in *Psittacanthus schiedeanus*.

Locus	Primer sequences (5′–3′)	Repeat motif	Allele size range (bp)	Fluorescent dye	GenBank accession no.
Psi1	F: GGTGAAATGTGGAATAATTGGA R: GCACATTGTGCTCTGCTTG	(AG)_{18}	95–131	6FAM	KP027826
Psi29	F: CCAGATTGAGATAGATCCAG R: TCAATTGCTCTTCTTAACCA	(AG)_{14}	139–145	VIC	KP027827
Psi6	F: CATCTGTTTGGAGAAC R: CTTCTCTCTCTCTCACTCA	(AG)_{12}	145–199	NED	KP027828
Psi8	F: TGCACTTTCTCTCTGATT R: TCTTTATCATACGCCTTCA	(GA)_{13}	209–247	PET	KP027829
Psi15	F: AGAAAGAGAGACCTCAACC R: TTTATCAAAAGAGGGCTTATAATG	(AG)_{14}	78–102	PET	KP027830
Psi16	F: TGAAGGTTTGGAGAGAAGA R: ACACATATACAGATTTGC	(AG)_{21}	88–130	6FAM	KP027831
Psi17	F: ACCAGAACACACCGCTC R: CACAGGGACCAACAGATCC	(AG)_{12}	196–208	NED	KP027832
Psi19	F: GTGTGTGTGTGTGTAAGA R: CCGGAAACCTTTATCACTT	(GA)_{17}	145–179	PET	KP027833
*Psi7	F: TGGGGTTTTGATGTTAATGAAA R: GAGAAGGGATCAGTTTCA	(GA)_{12}	192	—	KP027834
*Psi18	F: GGGGTCATTTGTTTTGAGAG R: TAGAGGGGCTCAGAATTC	(CT)_{9}	163	—	KP027835
*Psi21	F: GCTCAACAGCTGCTTTAC R: TGGCAAAATTTGTAGCATAG	(AC)_{9}	107	—	KP027836
*Psi22	F: TCGGCAAGGAAGGAGTGC R: CTCAGCCACCTCCTCTCTT	(AC)_{9}	122	—	KP027837
*Psi24	F: CTGCACTTGGGGATGTTT R: TAGAGGGAAGGAGGGTCA R: AAGAGACCACCCAGGAC R: CTGCTCTCTCTGAC R: ACCAGGGAGGAGGAGGAGGAGGAG R: TGGCACTATCGACCTGAC R: CACAGGGACCAACAGATCC	(AG)_{10}	192	—	KP027838
*Psi27	F: ACCAGACTTCCAAACCAAG R: CTCGTATCTGCTCACCTCA R: TCTGGATGTTCCTTAAAATT R: ACCAGTTTCTCCAAAACCAAG R: CACAGGGACCAACAGATCC	(GA)_{12}	122	—	KP027839

*Loci untested for polymorphism, probably monomorphic.

TABLE 2. Genetic properties of the 10 newly developed polymorphic microsatellites of *Psittacanthus schiedeanus*.

Locus	Jitotol (n = 5)	Motozintla (n = 7)	Rancho Viejo (n = 19)	Xilitla (n = 8)												
Psi1	A	H_o	H_e	HWE												
Psi29	4	0.600	0.822	0.1959	2	0.000	0.263	0.0771	11	0.631	0.829	0.1824	7	1.000	0.875	0.6202
Psi16	3	0.000	0.666	0.0043*	3	0.000	0.666	0.0043*	10	0.555	0.792	0.0021*	8	1.000	0.857	0.1551
Psi8	4	0.750	0.821	0.3172	3	0.200	0.511	0.1105	8	0.705	0.798	0.5665	3	0.375	0.675	0.1994
Psi25	4	0.600	0.777	0.6951	6	0.571	0.868	0.0012*	6	0.473	0.605	0.0359	5	0.500	0.725	0.1767
Psi15	6	0.200	0.911	0.0009*	4	0.333	0.651	0.0699	4	0.473	0.613	0.3026	3	0.375	0.425	0.3854
Psi6	4	0.600	0.911	0.0009*	4	0.428	0.648	0.2545	10	0.842	0.832	0.0093	5	0.500	0.533	0.5869
Psi16	3	0.600	0.511	1.000	2	0.428	0.362	1.000	5	0.052	0.482	0.0002*	3	0.500	0.425	1.000
Psi17	—	—	—	—	1	—	—	—	1	—	—	—	1	—	—	—
Psi19	4	0.000	0.800	0.0034*	9	0.571	0.912	0.0058	12	0.500	0.892	0.0008*	6	0.625	0.816	0.0678

Note: A = number of alleles sampled; H_o = expected heterozygosity; H_e = observed heterozygosity; HWE = P values of the exact test of Hardy–Weinberg equilibrium; n = number of individuals sampled.

*All four populations are located in Mexico. See Appendix 1 for geographic coordinates and voucher information.

* Locus showed significant deviations from Hardy–Weinberg equilibrium after Bonferroni correction (P < 0.005).
CONCLUSIONS

The 10 microsatellites described here are the first to be developed for *P. schiedeanus* and the genus *Psittacanthus*. These polymorphic loci will be useful in studies of genetic diversity and genetic population differentiation and will provide valuable information to understand the importance of host distribution and abiotic factors involved in geographic variation and structure of this widespread mistletoe in Mesoamerica. Cross-species amplifications were successful in closely related *P. calyculatus* and *P. angustifolius*, but unsuccessful in most of the studied *Psittacanthus* species, likely due to their high genetic divergence.

LITERATURE CITED

EXCOFFIER, L., G. LAVAL, AND S. SCHNEIDER. 2005. Arlequin ver. 3.0: An integrated software package for population genetics data analysis. *Evolutionary Bioinformatics Online* 1: 47–50.

KUIJT, J. 2009. Monograph of *Psittacanthus* (Loranthaceae). *Systematic Botany Monographs*, vol. 86. American Society of Plant Taxonomists, Laramie, Wyoming.

LARA, C., G. PEREZ, AND J. F. ORNELAS. 2009. Provenance, guts, and fate: Field and experimental evidence in a host-mistletoe-bird system. *Science* 16: 399–407.

LÓPEZ DE BUEN, L., AND J. F. ORNELAS. 1999. Frugivorous birds, host selection and the mistletoe *Psittacanthus schiedeanus*, in central Veracruz, Mexico. *Journal of Tropical Ecology* 15: 329–340.

LÓPEZ DE BUEN, L., AND J. F. ORNELAS. 2001. Seed dispersal of the mistletoe *Psittacanthus schiedeanus* by birds in central Veracruz, Mexico. *Biotropica* 33: 487–494.

LÓPEZ DE BUEN, L., AND J. F. ORNELAS. 2002. Host compatibility of the cloud forest mistletoe *Psittacanthus schiedeanus* (Loranthaceae) in central Veracruz, Mexico. *American Journal of Botany* 89: 95–102.

LÓPEZ DE BUEN, L., J. F. ORNELAS, AND J. G. GARCÍA-PRENO. 2002. Mistletoe infection of trees located at fragmented forest edges in the cloud forests of central Veracruz, Mexico. *Forest Ecology and Management* 164: 293–302.

MATHIASSEN, R. L., D. L. NICKRENT, D. C. SHAW, AND D. M. WATSON. 2008. Mistletoes: Pathology, systematics, ecology, and management. *Plant Disease* 92: 988–1006.

NORTON, D. A., AND M. A. CARPENTER. 1998. Mistletoes as parasites: Host specificity and speciation. *Trends in Ecology and Evolution* 13: 101–105.

OVERTON, J. M. 1997. Host specialization and partial reproductive isolation in desert mistletoe (*Phoradendron californicum*). *Southwestern Naturalist* 42: 201–209.

RAMÍREZ, M. M., AND J. F. ORNELAS. 2009. Germination of *Psittacanthus schiedeanus* (mistletoe) seeds after passage through the gut of cedar waxwings and grey silky-flycatchers. *Journal of the Torrey Botanical Society* 136: 322–331.

Table 3. Cross-species amplifications of microsatellite primers developed for *Psittacanthus schiedeanus*.

Species	Psi1	Psi29	Psi6	Psi8	Psi5	Psi15	Psi2	Psi16	Psi17	Psi19
Psittacanthus robustus	–	–	–	–	–	–	–	–	–	–
Psittacanthus acinarius	–	–	–	–	–	–	–	–	–	–
Psittacanthus cordatus	–	–	–	–	–	–	–	–	–	–
Psittacanthus sonorensis	–	–	–	–	–	–	–	–	–	–
Psittacanthus ramiflorus	–	–	–	–	–	+	–	–	+	–
Psittacanthus mayanus	+	–	–	–	–	–	–	–	–	+
Psittacanthus macranthus	+	+	+	+	+	+	+	+	+	+

Note: + = successful amplification; ~ = amplification of multiple bands; – = failed amplification.
APPENDIX 1. Voucher, number of individuals sampled, and location information for *Psittacanthus* species in this study.

Species	Locality	Latitude	Longitude	n	Voucher no.	Herbarium ID*
P. acinarus	Brazil, Mato Grosso, Cuiaba	-15°35'56"	-56°05'42"	3	G. Ceccantini 3676	(USP)
P. angustifolius	Mexico, Chiapas, Comitán	16°13'46"	-92°08'01"	2	A. Ortiz-Rodríguez s.n.	(XAL)
P. angustifolius	Mexico, Oaxaca, Puerto Escondido	15°43'32"	-96°39'48"	1	E. Ruiz-Sánchez 448	(XAL)
P. auriculatus	Mexico, Oaxaca, El Molino	17°46'14"	-97°44'58"	3	A. Ortiz-Rodríguez s.n.	(XAL)
P. calycatus	Mexico, Michoacán, Maravatio	19°54'00"	-100°27'00"	1	E. Ruiz-Sánchez 414	(XAL)
P. calycatus	Mexico, Michoacán, Morelia	19°60'05"	-101°23'00"	1	A. González s.n.	(XAL)
P. calycatus	Mexico, Tlaxcala, Tlaxcala	19°17'00"	-98°14'00"	1	C. Lara s.n.	(XAL)
P. coryanus	Brazil, Mato Grosso, Cuiabá	-15°35'56"	-56°05'42"	3	G. Ceccantini 3671	(USP)
P. macrantherus	Mexico, Sinaloa, El Palmito	23°33'00"	-105°50'00"	1	E. Ruiz-Sánchez 348	(XAL)
P. mayanus	Mexico, Yucatán, Unucmá	21°02'58"	-89°54'38"	1	Nonvouched	
P. mayanus	Mexico, Yucatán, Cuxtal	20°54'37"	-89°37'15"	1	Nonvouched	
P. mayanus	Mexico, Chiapas, Ocozocuaua	16°47'47"	-93°24'30"	1	A. Ortiz-Rodríguez s.n.	(XAL)
P. ramiflorus	Mexico, Chiapas, Berriozaab	16°50'21"	-93°18'11"	3	A. Ortiz-Rodríguez s.n.	(XAL)
P. rynchanthus	Guatemala, Patutul	14°22'24"	-91°08'18"	3	J. J. Vega s.n.	(UVAL)
P. robustus	Brazil, Minas Gerais, Serra do Cipó	-19°18'26"	-43°52'33"	3	G. Ceccantini 3589	(USP)
P. schiedeanus	Mexico, San Luis Potosí, Xilitla	21°22'39"	-98°59'35"	8	E. Ruiz-Sánchez 281	(XAL)
P. schiedeanus	Mexico, Veracruz, Clavijero	19°30'47"	-96°56'28"	1	M. T. Mejía 2036	(XAL)
P. schiedeanus	Mexico, Veracruz, Rancho Viejo	19°31'11"	-96°58'22"	19	M. T. Mejía 362	(XAL)
P. schiedeanus	Mexico, Veracruz, Coacoatzintla	19°37'41"	-96°52'56"	1	M. T. Mejía 2043	(XAL)
P. schiedeanus	Mexico, Veracruz, Tlalnelhuayocan	19°34'47"	-96°57'38"	1	M. T. Mejía 2041	(XAL)
P. schiedeanus	Mexico, Veracruz, Actopán	19°23'13"	-96°36'56"	1	M. T. Mejía 2049	(XAL)
P. schiedeanus	Mexico, Veracruz, La Mancha	19°20'43"	-96°36'05"	1	M. T. Mejía 2050	(XAL)
P. schiedeanus	Mexico, Chiapas, Motorizinta	15°21'21"	-92°14'54"	7	E. Ruiz-Sánchez 261	(XAL)
P. schiedeanus	Mexico, Chippas, Jitotol	17°01'47"	-92°50'46"	5	E. Ruiz-Sánchez 263	(XAL)
P. sonorae	Mexico, Sonora, Nacapule	27°59'04"	-111°02'40"	1	Nonvouched	
P. sonorae	Mexico, Sonora, Cruz de Piedra	27°57'25"	-110°40'51"	1	Nonvouched	
P. sonorae	Mexico, Sonora, Paraiso La Manga	27°53'43"	-111°06'55"	1	Nonvouched	

*IDs reported below refer to accession numbers in the Instituto de Ecología, A.C. (XAL), Universidad del Valle de Guatemala (UVAL), and the Universidad de São Paulo (USP) herbaria.

References

Ramírez, M. M., and J. F. Ornelas. 2010. Pollination and nectar production of *Psittacanthus schiedeanus* (Loranthaceae) in central Veracruz, Mexico. *Boletín de la Sociedad Botánica de México* 87: 71–77.

Ramírez, M. M., and J. F. Ornelas. 2012. Cross-infection experiments of *Psittacanthus schiedeanus*: Effects of host provenance, gut passage and host fate on mistletoe seedling survival. *Plant Disease* 96: 780–787.

Rozen, S., and H. Skalletsky. 2000. Primer3 on the WWW for general users and for biologist programmers. In S. Misener and S. A. Krawetz [eds.], Methods in molecular biology, vol. 132: Bioinformatics methods and protocols, 365–386. Humana Press, Totowa, New Jersey, USA.

Watson, D. M. 2001. Mistletoe—A keystone resource in forests and woodlands worldwide. *Annual Review of Ecology and Systematics* 32: 219–249.

http://www.bioone.org/loi/apps