Genetic variability of *Citrus* spp. in Cibinong germplasm garden using random amplified polymorphic DNA

Y G D Anggraheni¹, E S Mulyaningsih¹, and D Priadi¹*

¹Research Center for Biotechnology-LIPI, Jl. Raya Bogor KM. 46 Cibinong, 1691, Indonesia
E-mail: yuliana.galih@yahoo.com

Abstract. The preservation and protection of citrus plant germplasms can be done *in-situ* and *ex-situ*. Germplasm garden LIPI, Cibinong was built as a local fruit plant garden. The field management also carries out seed propagation and dissemination. This study aims to reveal the genetic diversity of citrus collections and used them as a database for plant breeding and protection activities. This research was conducted at the Agronomy Laboratory for Evaluation of Biotechnology Products-LIPI. Genetic analysis was performed using RAPD techniques, and the resulting data were processed using *PowerMarker* ver 3.25 and *PAST* ver 3.25 programs. The results showed that seven genetic materials for citrus analyzed with 15 RAPD primers resulted in the mean number of alleles, frequency of main alleles, and heterozygosity are 7.33, 0.49, and 1, respectively. All primers had a PIC value > 0.5, meaning they had high information in fingerprinting research on citrus plant genetic diversity, with an average gene diversity of 0.71. Principal coordinates analysis [PCoA] and clustering obtained two groups with a 0.70 similarity coefficient. Garut and Siam Pontianak have the closest relationship [92% similarity]. On the other hand, the farthest genetic relationship is between Bali and Keprok Batu-55, with a similarity index value of 52%.

Keywords: *Citrus* spp., Genetic diversity, Germplasm, RAPD

1. **Introduction**

Citrus [sp. sp. sp.] belongs to the Rutaceae family, grown in many regions. Type of citrus includes Oranges, Mandarins, Tangerines, Limes, Grapefruits, Lemons, Citrons, and many hybrids and varieties [1]. Orange is known as a vitamin C source, which is available throughout the year. Citrus fruits contain essential nutrients such as sugar, fiber, potassium, folate, calcium, thiamin, niacin, vitamin B6, phosphorus, magnesium, copper, riboflavin, pantothenic acid, flavonoids, carotenoids. Citrus also contains bioactive compounds for the treatment of hypertension, heart diseases, obesity control, as an antibacterial, antifungal, antioxidant, anticancer, teeth whitener, mosquito larvicide, anti-cholesterol[2][1][3].

Recent studies to find an antidote to COVID-19 showed that the flavonoid content in citrus fruits [naringenin] could reduce ACE 2 receptor activity by binding to proline, leucine, and lysine [4]. Several types of citrus have been collected since 1980 in the Germplasm Garden of the Research Center for Biotechnology LIPI. This garden was established to prevent erosion, preserve, and provide fruit germplasm for breeding purposes.

Genetic disclosure to identify and characterize plant traits needs to be done. Determining genetic variation at the molecular level is very important for breeders to develop new superior
cultivars with the desired traits. One of the genetic diversity analysis techniques is RAPD [Random amplified polymorphism DNA]. This technology has advantages in terms of speed, cost efficiency and can use many markers in a short time [5]. The results of the RAPD interpretation can be processed using Principal Coordinates Analysis [PCoA]. The advantage of this analysis is that it can be used on various types of variables[6]. Previous studies of citrus diversity analysis using RAPD techniques include 15 functional citrus accessions, 60 lime lines, 23 Omeh mountain citrus, 15 citrus fruits [7][8][9][10][11]. This study aims to reveal the genetic diversity of citrus collections used as a database for plant breeding and protection activities using the RAPD technique.

2. Materials and Methods
The genetic materials were taken from the Cibinong germplasm garden, West Java [Table 1].

Table 1. The genetic material used in this study

No.	Local name	Scientific name	Origin of collection
1	Keprok RGL	*Citrus reticulata*	East Java
2	Keprok JRM	*Citrus reticulata*	East Java
3	Garut	*Citrus nobilis*	West Java
4	Kalimantan Selatan	*Citrus suhuiensis*	South Kalimantan
5	Bali	*Citrus grandis*	-
6	Keprok Batu 55	*Citrus reticulata*	East Java
7	Siam Pontianak	*Citrus nobilis*	West Kalimantan

DNA isolation was carried out using the CTAB method [12]. The PCR reaction used *MyTaq Red Mix Bioline* with a total reaction of 12.5 µl consisting of 6.25 µl, 1 µl DNA [100 ng], 1 µl primer [10 uM] [Table 2], and 4.25 µl dH2O. PCR mixed reaction was put into the PCR machine [*Cleaver GTC 96S*]. The amplification program conditions were as follows: pre-denaturation at 94°C for 5 min followed by 30 cycles of denaturation at 94°C for 1 min, annealing at 35°C for 1 min, and extension at 72°C for 3 min. The final extension at 72°C for 10 min. Amplification products were separated by electrophoresis using *Cleaver machine CS300N* with a power of 50 volts for 1.5 hours. Agarose gel colored with 4% *SYBR DNA Stain*. Visualization of agarose gel was carried out on a *Syngene G: Box Gel Image Analysis System machine*.

Table 2. List of RAPD primers

No	Primer	Sequence	Ref	No	Primer	Sequence	Ref
1	OPA4	AATCGGGCTG	[13]	9	OPII	ACCTGGACAC	[13]
2	OPA7	GAAACGGGTG	[13]	10	OPM6	CTGGGCAACT	[14]
3	OPB5	TGCGCCCTTC	[13]	11	OPM13	GGTGTTCAAG	[13]
4	OPB18	CCACACAGT	[13]	12	OPO8	CCTCCAGTGT	-
5	OPC8	TGGACCAGTG	[14]	13	OPO12	CAGTGCTGTG	[13][14]
The electropherogram was converted into binary data. The characteristic of RAPD primers analyzed using the PowerMarker 3.25 program[15]. The principal coordinates analysis, clustering analysis, and the similarity index were carried out with the PAST 3.25 program[16].

3. Results and discussion

3.1. Polymorphism analysis of RAPD primers

All RAPD primers used showed polymorphisms in all genotypes used. This result can indicate a high level of genetic diversity among genotype of Citrus spp. [Figure 1]. The analysis results using 15 RAPD primers obtained 110 alleles with a range of 5-8 alleles at each locus [Table 3]. The number of amplified fragments is in line with previous research on Citrus aurantifolia, ranging from 7 to 11[8]. The main allele frequency was 49%, with the lowest value of 43% in the OPG5 primers and 50% in the other 14 RAPD primers.

The heterozygosity value is the probability of a primer distinguishing two random alleles selected in a population. A high heterozygosity value indicates a heterozygous or diverse sample population. The higher the heterozygosity value, the higher the ability of the primers to differentiate genotypes genetically. The 15 RAPD primers used in this study [Table 2] showed high heterozygosity values [1]. Genetic diversity indicates the level of diversity in the genotype being tested. The average diversity value was 0.71, with a range of 0.65 [OPQ7] - 0.76 [OPG5]. The diversity value correlates with the Polymorphic Information Content [PIC] value. The diversity of genes indicates the probability of differences in the two alleles randomly selected at different loci with the PIC value, which indicates the probability size of two randomly selected test materials.

PIC values ranging between 0 and 1 reflect the level of primary polymorphism used. Primers with a high PIC value can better differentiate genetic accessions and vice versa [17]. Therefore, the primers chosen for investigation are very informative to be able to assess genotype diversity. Botstein et al. [18] divided the PIC values into 3 categories, that is very informative [PIC > 0.5], moderate [0.25 < PIC < 0.5] and less [PIC < 0.25]. In this study, the PIC value ranged from 0.60 [OPQ7] - 0.74 [OPG5], with a mean of 0.69. Thus, all the RAPD primers used in this study were very informative to differentiate the genetic genotype tested. However, some other studies with similar commodities have various PIC values [7][19].

	OPG2	GGCACTGAGG	[13]	14	OPQ1	GGGACGATGG	[13][14]
7	OPG5	CTGAGACGGA	[13][14]	15	OPQ7	CCCGATGGT	[13]
8	OPG8	TCACGTCCAC	[13][14]				
Figure 1. PCR band pattern variation using RAPD primers. A] OPA4, B] OPA7, C] OPB5, D] OPB18, E] OPO12, and F] OPQ7. note: L: Marker, J1: Keprok RGL, J2: Keprok JRM, J3: Garut, J4: Kalimatan Selatan, J5: Bali, J6: Batu 55, J7: Siam Pontianak, K: control.

Table 3. The characteristic of 15 RAPD primers analysis in seven citrus genotypes collection in Cibinong germplasm garden

Primer	Number of alleles	Frequency of main alleles	Genetic diversity	Heterozygosity	PIC
OPA4	8	0.50	0.71	1	0.70
OPA7	8	0.50	0.71	1	0.70
OPB5	8	0.50	0.71	1	0.70
OPB18	8	0.50	0.71	1	0.70
OPC8	8	0.50	0.71	1	0.70
3.2. Clustering analysis

Clustering analysis was performed to identify genetic distances between the genotypes tested. The group formation is based on the similarity index, where the genotype with the closest genetic character has a high similarity value. The clustering analysis results using UPGMA from seven genotypes of citrus collections in the Cibinong germplasm garden have a similarity coefficient of 70% formed two main groups [Figure 2]. The first group contains citrus Kalimantan Selatan and Bali, and the second group consists of citrus Garut, Siam Pontianak, Keprok Batu 55, Keprok RGL, and Keprok JRM. The similarity index between citrus genotypes ranges from 52% to 92%. The highest similarity index [92%] was obtained between Siam Pontianak and Garut [92%] and vice versa, the lowest between Bali citrus and Keprok Batu 55 [52%] [Table 3].

Karsinah et al. [20] have classified citrus plants based on the similarity index with a similarity index of 75%, from 30 accession numbers divided into four groups. Mahardika et al., [21] divided 18 pamelos into five groups with a similarity index of 53%. Meanwhile, Baig et al., [13] divided 18 citrus into two groups on the similarity index of 61%, and Devy and Hardiyanto[10] reported a 50% similarity index of citrus, which divided 23 Omeh mountain citrus into two groups with similarity indexes ranging from 31-91%. The classification of citrus plants in several studies gave mixed results, and this was due to the use of different RAPD primers and genetic material between studies.

Principal coordinates analysis [PCoA] is useful in analyzing genetic diversity between genotypes. The research is carried out to study genotypes closeness based on character similarity through dimensional simplification. The percentage of the main and second coordinates in Figure 3 shows that the genetic diversity based on the RAPD primers is 66.5% [coordinate 1] and 14.7% [coordinate 2], respectively.

The total genetic diversity of the two components explained the genetic diversity of all citrus genotypes used in this study by 81.2%. The distribution of citrus genotypes tends to spread and can be grouped into two major groups. Citrus plants symbolized by adjacent coordinate points show a low level of genetic diversity; on the other hand, if the coordinate points are far apart, they show high genetic diversity.

Genotype	Accession	Similarity 1	Similarity 2	Similarity 3	Similarity 4
OPG2	6	0.50	0.69	1	0.70
OPG5	8	0.43	0.76	1	0.74
OPG8	6	0.50	0.69	1	0.66
OPI1	8	0.50	0.71	1	0.70
OPM6	7	0.50	0.70	1	0.68
OPM13	8	0.50	0.71	1	0.70
OPO8	7	0.50	0.70	1	0.68
OPO12	8	0.50	0.71	1	0.70
OPQ1	7	0.50	0.70	1	0.68
OPQ7	5	0.50	0.65	1	0.60

Total 110 Mean 7.33 0.49 0.71 1 0.69
PCoA analysis in identifying genetic diversity between genotypes has been reported by Munankarmi et al. [22], which grouped 60 *Citrus aurantifolia* with a total diversity value of 22.85%. Yu et al. [23] showed a total diversity of 80 citrus accessions of 77.3%, and Probojatiet al. [24] reported grouping 15 plantains into three main groups.

![Clustering analysis of seven citrus genotypes based on 15 RAPD primers](image)

Figure 2. Clustering analysis of seven citrus genotypes based on 15 RAPD primers

Table 3. The similarity index value of seven citrus genotypes collection in Cibinong germplasm garden using 15 RAPD primers.

Local name	Keprok RGL	Keprok JRM	Garut	Kalimantan Selatan	Bali	Keprok Batu55	Siam Pontianak
Keprok RGL							
Keprok JRM		76%					
Garut		79%	71%				
Kalimantan Selatan		57%	64%	58%			
Bali		58%	66%	58%	82%		
Keprok Batu 55		76%	70%	80%	53%	52%	
Siam Pontianak		75%	71%	92%	58%	57%	78%
Figure 3. Principal coordinates analysis [PCoA] seven citrus genotypes based on band variation PCR results using 15 RAPD primers.

4. Conclusion
The level of genetic diversity of the seven genotypes of citrus from the Cibinong germplasm garden was relatively high. The seven genotypes are divided into two clusters, where three types of tangerines were in the same group. All primers used were informative and able to analyze the diversity of seven genotypes of citrus with high polymorphism. The information obtained is expected to be a database for citrus plant breeding and protection programs at the Cibinong germplasm garden.

Acknowledgments
This research is funded by the Pranaraksa Astra-LIPI program for the 2019 fiscal year. We want to thank Daniel Pryandana, Likarsilia Santun, and Oktri Yurika, who helped this research in the field and the laboratory.

References
[1] Fouad Abobatta W 2019 Nutritional Benefits of Citrus Fruits Am. J. Biomed. Sci. Res.3 303–6
[2] Ramadhianto A and Nasution J 2019 Bioaktivity Test Crude Fruit of Citrus-Lime [Citrus aurantifolia] on Bacteria Escherichia coli in Vitro Budapest Int. Res. Exact Sci. J.1 16–20
[3] Economos C and Clay W D 2005 Nutritional and health benefits of citrus fruits Food, Nutr. Agric. - FAO24 11–8
[4] Tutunchi H, Naeini F, Ostadrahimi A and Hosseinzadeh-Attar M J 2020 Naringenin, a flavanone with antiviral and anti-inflammatory effects: A promising treatment strategy against COVID-19 Phyther. Res. 1–11
[5] Kumar N and Gurusubramanian G 2011 Random amplified polymorphic DNA [RAPD] markers and its applications Random amplified polymorphic DNA [RAPD] markers and its applications Mipograss11 116–24
[6] Legendre P and Legendre L 2012 Numerical ecology [Elsevier]
[7] Yulianti F, Palupi N E and Agisimanto D 2016 Variability of Indonesian Functional Citrus Based on Morphological Characters and RAPD Markers J. AgroBiogen12 91–100
[8] Munankarmi N, Shrestha R, Rana N, Shrestha J, Shrestha S, Koirala R and Shrestha S 2014 Genetic Diversity Assessment of Acid Lime [Citrus Aurantifolia Swingle] Landraces of
Eastern Nepal Using RAPD Markers *Int. J. Appl. Sci. Biotechnol.* **2** 315–27

[9] Silvia Sari Prastiwi F F 2013 Kandungan Dan Aktivitas Farmakologi Jeruk *Farmaka* **15** 1–8

[10] Devy dan Hardiyanto 2017 Keragaman Jeruk Gunung Omeh [Citrus nobilis Lour.] di Sumatera Barat Berdasarkan Marka RAPD [The Diversity of Gunung Omeh Citrus [Citrus nobilis Lour.] in West Sumatera Based on RAPD Marker] *J. Hortik.* **27** 155–64

[11] Maya M., Rabbani M G, Mahboob M G and Matsubara Y 2012 Assessment of Genetic Relationship Among 15 Citrus Fruits Using RAPD *Asian J. Biotechnol.* **4** 30–7

[12] Doyle J J and Doyle J L 1987 A rapid DNA isolation from small amount of fresh leaf tissue *Phytochem Bull.* **19** 11–5

[13] Baig M N R, Grewal S and Dhillon S 2009 Molecular characterization and genetic diversity analysis of citrus cultivars by RAPD markers *Turkish J. Agric. For.* **33** 375–84

[14] Malik S K, Rohini M R, Kumar S, Choudhary R, Pal D and Chaudhury R 2012 Assessment of Genetic Diversity in Sweet Orange [Citrus sinensis [L.] Osbeck] Cultivars of India Using Morphological and RAPD Markers *Agric. Res.* **1** 317–24

[15] Liu K and Muse S V 2005 PowerMaker: An integrated analysis environment for genetic marker analysis

[16] Hammer O, Harper D A T and Ryan P D 2001 PAST: Paleontological Statistics Software Package for Education and Data Analysis. *Palaentologia Electron.* **4**

[17] Teklewood A and Becker H 2006 Geographic pattern of genetic diversity among 43 Ethiopian mustard [Brassica carinata A. Braun] accession as revealed by RAPD analysis. *Genet. Resour. Crop Evol.* **53** 1173–85

[18] Botstein D, White R L, Skolnick M and Davis R W 1980 Construction of a Genetic Linkage Map in Man Using Restriction Fragment Lenght Polymorphisms *Am J Hum Genet.* **32** 314–31

[19] Mondal B, Pramanick S and Saha R 2014 Application of RAPD technique for molecular marking of lime [Citrus aurantifolia] genotypes of West Bengal *Eur. J. Biotechnol. Biosci.* **2** 53–8

[20] Karsinah S, Sulistyowati L and Aswidinnoor H 2002 Keragama berdasarkan analisis n genetik plasma nutfah jeruk penanda RAPD *J. Bioteknol. Pertan.* **7** 8–16

[21] Mahardika I B K, Rai I N, Mahendra M S and Dwiyani R 2017 GENETIC DIVERSITY AND FRUIT QUALITY OF SEVERAL POMELO “JERUK BALI” [Citrus grandis L. Osbeck] CULTIVARS IN BALI *Int. J. Biosci. Biotechnol.* **5** 43

[22] Munankarmi N N, Rana N, Bhattarai T, Shrestha R L, Joshi B K, Baral B and Shrestha S 2018 Characterization of the genetic diversity of acid lime [Citrus aurantifolia [Christm.] swingle] cultivars of eastern Nepal using inter-simple sequence repeat markers *Plants* **7** 1–14

[23] Yu Y, Chen C, Huang M, Yu Q, Du D, Mattia M R and Gmitter F G 2018 Genetic diversity and population structure analysis of citrus germplasm with single nucleotide polymorphism markers *J. Am. Soc. Hortic. Sci.* **143** 399–408

[24] Probojati R T, Wahyudi D and Hapsari L 2019 Clustering Analysis and Genome Inference of Pisang Raja Local Cultivars [Musa spp.] from Java Island by Random Amplified Polymorphic DNA [RAPD] Marker *J. Trop. Biodivers. Biotechnol.* **4** 42