Localization and segmentation of optic disc in retinal images using Circular Hough transform and Grow Cut algorithm

Muhammad Abdullah, Muhammad Moazam Fraz, Sarah A Barman

Automated retinal image analysis has been emerging as an important diagnostic tool for early detection of eye related disease such as glaucoma and diabetic retinopathy. In this paper, we have presented a robust methodology for optic disc detection and boundary segmentation, which can be seen as the preliminary step in the development of a computer-assisted diagnostic system for glaucoma in retinal images. The proposed method is based on morphological operations, Circular Hough transform and Grow Cut algorithm. The morphological operators are used to enhance the optic disc and remove the retinal vasculature and other pathologies. The optic disc center is approximated using the Circular Hough Transform, and the Grow Cut algorithm is employed to precisely segment the optic disc boundary. The method is quantitatively evaluated on five publicly available retinal image databases DRIVE, DIARETDB1, CHASE_DB1, DRIONS-DB, Messidor and one local Shifa Hospital Database. The method achieves optic disc detection success rate as 100% for these databases with the exception of 99.09% and 99.25% for the DRIONS-DB, Messidor, and ONHSD databases respectively. The optic disc boundary detection achieved an average spatial overlap of 78.6%, 85.12%, 83.23%, 85.1%, 87.93%, 80.1%, and 86.1% respectively for these databases. This unique method has shown significant improvement over existing methods in terms of detection and boundary extraction of the optic disc.
Localization and Segmentation of Optic Disc in Retinal Images using Circular Hough Transform and Grow Cut Algorithm

Muhammad Abdullah¹, Muhammad Moazam Fraz² and Sarah A. Barman³

¹ School of Electrical Engineering and Computer Science, National University of Sciences and Technology, Sector H-12, Islamabad, 44000, Pakistan.
² Faculty of Science Engineering and Computing, Kingston University London, United Kingdom

Corresponding Author:
Muhammad Moazam Fraz

Street Address:
School of Electrical Engineering and Computer Science, National University of Sciences and Technology, Sector H-12, Islamabad, 44000, Pakistan.

Email Address:
moazam.fraz@seecs.edu.pk

Phone:
00 92 51 9085 2179
Abstract
Automated retinal image analysis has been emerging as an important diagnostic tool for early
detection of eye related disease such as glaucoma and diabetic retinopathy. In this paper, we
have presented a robust methodology for optic disc detection and boundary segmentation, which
can be seen as the preliminary step in the development of a computer-assisted diagnostic system
for glaucoma in retinal images. The proposed method is based on morphological operations,
Circular Hough transform and Grow Cut algorithm. The morphological operators are used to
enhance the optic disc and remove the retinal vasculature and other pathologies. The optic disc
center is approximated using the Circular Hough Transform, and the Grow Cut algorithm is
employed to precisely segment the optic disc boundary. The method is quantitatively evaluated
on five publicly available retinal image databases DRIVE, DIARETDB1, CHASE_DB1,
DRIONS-DB, Messidor and one local Shifa Hospital Database. The method achieves optic disc
detection success rate as 100% for these databases with the exception of 99.09% and 99.25% for
the DRIONS-DB, Messidor, and ONHSD databases respectively. The optic disc boundary
detection achieved an average spatial overlap of 78.6%, 85.12%, 83.23%, 85.1%, 87.93%,
80.1%, and 86.1% respectively for these databases. This unique method has shown significant
improvement over existing methods in terms of detection and boundary extraction of the optic
disc.

1. Introduction
Digital retinal images are widely used for early detection of retinal, ophthalmic and systemic
diseases because they provide a non-invasive window to the human circularity system and
associated pathologies (Jack J. Kanski & Brad Bowling 2015). Glaucoma and Diabetic
Retinopathy (DR) are among major retinal disease which are the leading cause of vision loss and
blindness in the working population (Federation 2013). Early detection of these disease by
screening programs and subsequent treatment can prevent blindness. Computer aided diagnostic
retinal image analysis is the first step in automated screening of these diseases in large
population based studies (Fraz et al. 2015). The change in anatomical structures in human retina,
which includes retinal vasculature, Optic Disc (OD), optic cup and retinal pathologies are the
early diagnostic indicators of several diseases such as DR, Macula Edema and Glaucoma (Jack J.
Kanski & Brad Bowling 2015). Among these, the OD is the most important feature because its
visual aspects are central for glaucoma detection and other lesions assessment related to DR. The
important anatomical structures presented in the retinal image are shown in Figure 1. OD
detection is preliminary step for glaucoma screening, which is globally the second leading cause
of blindness. Moreover, it helps in the detection and localization of other retinal structures which
includes the fovea, macula and estimating vascular changes (Basit & Fraz 2015).
Glaucoma is caused by the increase in the intraocular fluid pressure in the Optic Nerve Head (ONH), because of either blockage or a higher production of aqueous humor of the eye (Jack J. Kanski & Brad Bowling 2015). Glaucoma remains asymptomatic at an early stage and slowly progress with time which ultimately leads to blindness. Medical treatment is only effective at the early stages because the optic nerve, once damaged can’t be cured (Weinreb et al. 2014). The early prevalence of Glaucoma can be identified by localization and segmentation of the OD and Optic Cup, followed by computing the cup-to-disc ratio. The structural changes in OD furnish critical clues pertaining to glaucoma prognosis (Abramoff et al. 2010). A Computer Assisted Diagnosis (CAD) system is necessary for large population based screening of Glaucoma. OD localization and segmentation is the first step towards the development of CAD. Knowing the significance such systems, several OD approaches have been proposed and attempted by many but it’s still an active research area.

The OD appears as a variable sized, bright yellowish region, slightly oval in shape with blood vessels converging towards its center. These features are mostly used for automated OD localization. Retinal pathologies like exudates and lesions, if present, may appear like the shape of a disc, thus may cause false detection (Basit & Fraz 2015). In CAD, accurate detection and segmentation of the OD is quite a challenging task because of various factors like boundary artifacts, missing edges and poor textural contrast. The variation in illumination conditions, luminosity and contrast during image acquisition are added challenges (Haleem et al. 2013).

Moreover, the OD boundary is not constant because of the presence of incoming blood vessels which produce a fused boundary. Another distractor is papillary atrophy which, if present, appears as the bright region outside the OD and thus deforms the OD boundary (Aquino et al. 2010).

This paper presents a new approach for automatic detection and segmentation of the OD based on morphological operations, Circular Hough Transform (CHT) (Illingworth & Kittler 1987) and Grow Cut (GC) algorithm (Vezhnevets & Konouchine 2005). The GC algorithm has been widely used in many application areas of image segmentation, but has not been applied within the framework of retinal image analysis. To the limit of our knowledge, the GC algorithm has been utilized for the first time in localizing and segmenting the OD in retinal images. The method is evaluated on six retinal image datasets exhibiting different morphological characteristics. Experimental evaluation shows that this method is computationally fast in processing, robust to the variation in image contrast, illumination and presence of pathologies; and comparable with the state-of-the-art methodologies in terms of quantitative performance metrics.

It’s worth mentioning that this work is aimed at contributing to the development of automatic systems for glaucoma detection that are currently under development. Although other published...
solutions can be used, this work presents higher accuracy, robustness and is tolerant to a vast variety of image characteristics, which make it suitable for integration with a glaucoma detection system.

The organization of the paper is as follows. Section 2 presents a comprehensive overview of the OD localization and segmentation methodologies available in the literature. Section 3 explains the proposed methodology in detail. The materials and the performance metrics used to evaluate the proposed methodology are illustrated in section 4. The results and comparison with other methods are given in section 5. The paper is concluded in section 6.

1 Related Work

A significant number of papers have been published to deal with the OD detection and segmentation (Haleem et al. 2013). Some papers only perform OD detection while others perform both detection and segmentation. Here we briefly discuss both of the groups.

1.1 Methods for OD detection

Hoover and Goldbaum (Hoover & Goldbaum 2003) use vascular origin to detect the OD center. To detect the vascular convergence point they use a fuzzy convergence and voting type algorithm. Niemeijer et al. (Niemeijer et al. 2009) performed vascular segmentation and measure the distance at specific locations with the help of a kNN regressor. The point with lowest distance to the OD is selected as the OD center. Inspired by results from vascular direction methods, Youssif et al. (Youssif et al. 2008) used a matched filter to match the direction of blood vessels around the OD area and a vessel direction map is obtained by segmenting vessels. Mendonca et al. (Mendonca et al. 2013) further improve the results by using the entropy of vascular direction to assess the convergence point of vessels. To increase robustness, they constrain the search for maximal entropy to the areas with high intensities. In (Lu 2011), a circular transformation is used to capture a circular shape OD and evaluate image variation along multiple radial lines. Pixels with maximum variations are determined, as they can be further used for OD center and boundary localization. Another methodology based on the Radon transformation of overlapping window (Pourreza-Shahri et al. 2014) has achieved 100% success in DRIVE and 96.3% on STARE databases.

1.2 Methods for OD detection and boundary segmentation

In (Welfer et al. 2010), a method based on mathematical morphology is proposed to detect and segment the OD in images from DRIVE and DIARETDB1. This work is extended in (Welfer et al. 2013) by incorporating a multiscale morphologic approach. Marin et al. (Marin et al. 2015) proposed a two step automatic thresholding on a morphologically processed bright enhanced region to get a reduced region of interest, followed by the application of Circular Hough Transformation (CHT) to get the OD center and OD region. Seo et al. (Seo et al. 2004) also use morphological and Canny edge detection filters to segment and detect the OD rim. Kande et al. (Kande et al. 2008) detected the OD by using maximum local variance with 92.53% success rate and geometric Active Contour Model (ACM) for OD segmentation. In (Aquino et al. 2010), a template based approach is used for OD segmentation. They applied morphological and edge detection techniques followed by CHT to approximate circular objects. Lupascu et al. (Lupascu et al. 2008) used a regression method and texture descriptors for circular OD fitting. An approach based on Principal Component Analysis and mathematical modelling is presented in (Morales et al. 2013), which utilizes a generalized distance function, stochastic watershed and geodesic transformations. The result is finally approximated by a circular approximation. Walter et al. (Walter et al. 2002) presents a methodology based on Watershed transformation and
morphological processing. In (Hsiao et al. 2012), illumination correction technique was used to
detect optic disc. They select high intensity pixels as candidates for OD and among those
candidate pixels they select OD pixel as one with the highest variance. For segmentation, the
Supervised Gradient Vector Flow (SGVF) snake model is used. By extending the SGVF snake in
each iteration, contour points get updated and classified based on features. Statistical information
and features extracted from trained images were then used for classification. In (Joshi et al.
2011), the Chan-Vese model has been extended by introducing image information around a
contour point. Inspired by the work proposed in (Joshi et al. 2011), the local binary fitting
energy ACM (Mittapalli & Kande 2016) is proposed to integrate the local image information
which includes texture color and intensity for each point of interest. A multi-resolution Sliding
Band Filter (SBF) was used in (Dashtbozorg et al. 2015) for OD segmentation. Super-pixels are
employed in (Cheng et al. 2013) such that each super-pixel is classified as OD or non-OD. It has
been observed that the confluence of vessels in the OD region affects the precision of OD
segmentation methods. However, to overcome the influence of the presence of vessels some
methods try to eliminate them from image. In this paper, we propose a new approach for
automatic OD detection and segmentation which is not influenced by the confluence of vessels in
OD area, therefore, no template or vessel map is required in advance.

2 The Methodology

This work presents an OD detection and segmentation methodology which is able to detect the
OD center without using any template or prior vascular information, an extension to our earlier
work (Abdullah & Fraz 2015). The OD appears as a yellowish structure in retinal fundus images
with shape varying from circular to slightly elliptical and has the highest intensity value pixels.
However, the presence of brightness artifacts can make the OD merge into the background and
lose its brightness. Furthermore, the presence of several pathological structures such as exudates
may take the shape of the OD and may have the highest intensity value. The proposed algorithm
is based on morphological operations, Circular Hough transform and Grow Cut algorithm. The
morphological operators are used to enhance the optic disc and remove the retinal vasculature
and other pathologies. The optic disc center is approximated using the Circular Hough
Transform, and the Grow Cut algorithm is employed to precisely segment the optic disc
boundary.

2.1 Preprocessing

The variation in image contrast, background illumination and pigmentation is normalized by
applying pre-processing operations to the retinal images. The green channel of an RGB image gives maximum contrast between exudates and the
neighboring regions (Fraz et al. 2012b). Therefore, the green channel of RGB images is
processed for normalization of contrast and luminosity. A variety of algorithms for contrast and
luminosity normalization in retinal images are available in the literature, and these
methodologies are either based on subtracting the estimated background from the original image
(Fraz et al. 2014) or on dividing the later by the former (Foracchia et al. 2005; Vázquez et al.
2013). However, our earlier work (Fraz et al. 2014) shows that the results of both methods are
similar with no appreciable advantage of one over the other. We have used the subtractive
method as it has been reported in our earlier work (Fraz et al. 2014). The background pixel
intensities are estimated and the difference between the estimated background and the green
channel is computed to produce the normalized image. The background of the retinal image,
denoted as “Ibg” is estimated by applying a filtering operation with an arithmetic mean kernel.
The size of the filter kernel is not a critical parameter as long as it is large enough to ensure the
blurred image contains no visible structures such as optic disc, exudates or blood vessels. In this
work, we have used an 89 × 89 pixel kernel. The difference between the estimated background
“Ibg” and the morphologically opened image “Iopen” is calculated on pixel basis. Thus the
background normalized image “Inorm” is obtained using:

\[I_{norm}(x, y) = I_{open}(x, y) - I_{bg}(x, y) \]

Due to different illumination conditions in the acquisition process, there may be significant
intensity variations between images. These intensity variations make it difficult to use the best
possible technique for all of the images, thus shade corrections were necessary and have been
applied. A global linear transformation function is applied to modify the pixel intensities.

\[I_{SC}(x,y) = \begin{cases}
0 & \text{if } I_{norm}(x,y) < 0 \\
1 & \text{if } I_{norm}(x,y) > 1 \\
I_{adjusted}(x,y) & \text{otherwise}
\end{cases} \]

\[I_{adjusted}(x,y) = I_{norm}(x,y) - \text{IntValMaxPixels} + 0.5 \]

Where \(I_{sc}(x,y)\) is the shade corrected image, \(I_{norm}(x,y)\) is the background normalized image,
\(\text{IntValMaxPixels}\) is the intensity value representing the most number of pixels in the normalized image
\(I_{norm}(x,y)\). Pixels with this intensity value \(\text{IntValMaxPixels}\) represent the background (Fraz et al.
2012a). This global transformation function normalizes or shade corrects the image by setting the
background pixels to 0.5, which can be observed in Figure 2(c).

2.2 Optic Disc Detection

After pre-processing, the OD appears as the brightest structure in the image with varying size
and appearance. The retinal blood vessels originate from the OD and branch out to spread in the
retinal image. A morphological closing operation with a disc shaped structuring element is
applied to the pre-processed image in order to remove the vasculature from the image. The result
is shown in Figure 2(d). CHT, an extension of Hough transform (HT) (Hough 1962), is for the detection of circular
objects from the image. For the detection of a circle, the HT is based on the equation of circle,
defined as

\[(x_i - a)^2 + (y_i - b)^2 = r^2 \]
2.3 Optic Disc Segmentation

In the preprocessed image, the OD area is treated as foreground (fg) and the rest of the retinal image is considered as background (bg). The Grow Cut (GC) (Vezhnevets & Konouchine 2005) algorithm separates the fg from bg using the von Neumann Neighborhood principle (Toffoli & Margolus 1987) and seeded region growing. The detected OD center is chosen as initial seed points for fg area whereas the bg seed points are automatically chosen from rest of image. This algorithm iteratively checks each neighboring pixel and decides its region-wise membership. The GC algorithm use cellular automata for image modelling. Each image pixel “p” can be represented by a triplet (lp, θp, Cp). Where, “lp” represents the class label of the pixel “p” to which it belongs, “θp” represents the “strength” of the pixel “p” which is a measure of the certainty of the pixel “p” that should be labelled as “lp”. The label of a pixel whose “strength” = 1 cannot be changed during the algorithm progress, whereas the pixel label whose “strength” < 1 may change during algorithm execution. “Cp” represents the pixel greyscale value.

![Figure 2 Processing steps for OD detection.](a) RGB retinal image (b) Green Channel image (c) Preprocessed green channel image (d) Blood vessel removed image (e) Circular approximation of optic disc by CHT (f) Detected OD center

At the initial stage of the algorithm, the triplet for all pixels are set as,

\[l_p = 0, \theta_p = 0, C_p = RGB_p \]

(5)

Which means that initially all pixels have undefined labels and zero strength. The aim of the GC algorithm in segmenting the OD is to assign a label to each pixel in the image regarding whether it belongs to OD or to the retinal image background. To start the algorithm, we initialized seeds by setting labels for the optic disc (+1) and non-OD (-1). Once the seeds are initialized, the process keeps on iteratively assigning labels to each pixel in the image until all pixels are labelled. For each pixel p and its neighbors xi (i=1 to 8), quantity “g” is computed which is monotonous decreasing function where g (xi) ∈ [0, 1] such that
\[g(x_i) = \frac{\|C_p - C_{xi}\|_2}{\max \|C\|_2} \] \hspace{1cm} (6)

As we were using green channel of the image so \(\|C_p - C_{xi}\|_2\) is equal to \(\|I_p - I_{xi}\|_2\), where \(I_p\) and \(I_{xi}\) are the intensities of pixels \(p\) and \(xi\) respectively. \(\max \|C\|_2\) is equal to \(2L - 1\), where \(L\) is the bit depth of the image. Afterwards, the algorithm iteratively compute \(\lambda(xi)\) for all pixels \(xi\) which don’t have label “undefined” such that:

\[\lambda(xi) = g(xi) \theta(xi) \] \hspace{1cm} (7)

If \(\lambda(xi) > \theta_p\) then a pixel takes the label and strength of \(xi\) otherwise it keeps its own label and “strength”. The algorithm terminates when all the pixels are labeled and the pixel label stops changing. In the end, the segmented OD boundary is approximated to an elliptical shape by using ellipse equation which involves drawing of ellipse outline over the segmented boundary of GC. The processing steps of OD boundary extraction are shown in Figure 3. The circular approximation of the OD boundary is illustrated in Figure 4.

![Figure 3 Steps for OD boundary extraction](image)

(A) Original RGB image with detected central point of optic disc, (B) Foreground (optic disc area represented by small circle) selection points and background (non-optic disc region represented by large circle) selection points (C) Result of Grow Cut for boundary segmentation, (D) Boundary approximation (in black) of grow cut.

![Figure 4 Close up view of (a) Grow Cut segmentation; (b) approximation of Grow Cut.](image)

3 Materials

The proposed methodology is evaluated on five publicly available retinal image databases and one local database.

3.1 DRIVE

DRIVE (2004) is a publically available database consisting of 40 images with resolution 584 × 565 pixels. Out of these 40 images, 7 are pathological, containing pigment epithelium changes, exudates and hemorrhages.

3.2 DIARETDB1

The DIARETDB1 (Kauppi et al. 2007) database comprised 89 fundus images which are obtained with a 50° of FOV using a fundus camera and are in PNG format. These images are of size 1500 × 1152 pixels, with 24bits/pixel.

3.3 CHASEDB1

The CHASEDB1 (Fraz et al. 2012c) database consists of 28 images captured from a Nidek NM 200D camera at 30° FOV. Images are of 1280 × 960 pixels resolution, which are affected by illumination artifacts and poor contrast.

3.4 DRIONS-DB

The DRIONS (Carmona et al. 2008) database consists of 110 images of 600 × 400 resolution, with 8 bits/pixel. In these 110 images, 50 images contain some sort of defect, such as illumination artifacts, rim blurredness and papillary atrophy, which may hinder the detection and segmentation problem.

3.5 Messidor

The Messidor (Decenciere et al. 2014) database consists of 1200 retinal fundus images which were captured from 3CCD color video camera on Topcon TRC NW6 non-mydratic retinograph, with 45° of FOV.

3.6 ONHSD

The ONHSD (Lowell et al. 2004) database consists of 99 fundus images of 640 × 480 resolution. Images were captured from canon CR6 45MNf camera with 45° of FOV. Images were acquired from 50 patients, 19 out of which were diabetic.

3.7 Shifa Database

This database belongs to Department of Ophthalmology, Shifa International Hospital Islamabad, Pakistan. 19 images are healthy while the rest of them have some sort pathological symptoms and illumination artifacts. The dataset consists of 111 fundus images of 1936 × 1296 resolution, acquired with a 45° field of view.

3.8 Ground Truths

The OD in all the images from the above mentioned databases is hand labelled by ophthalmic experts from the Armed Forces Institute of Ophthalmology, Rawalpindi, Pakistan and used as ground truths. For 1200 images in the Messidor database, we have used the ground truths provided by Aquino et.al (Aquino et al. 2010). The quantitative results are based on comparison of automatic segmented images with these ground truths.

3.9 Quantitative Performance Measures

The outcome of OD detection and the segmentation process results in the classification of pixels belong to OD region or non-OD region. There are four possibilities for pixel classification, illustrated in Table 1, True Positive (TP), True Negative (TN), False Positive (FP) and false Negative (FN). The first two are the result of mutual agreement between predicted values and actual values while the last two are the result of the wrong prediction. TP is the case when the system predicts the pixel belongs to the OD and is actually an OD pixel in reference to the ground truth image, while in the case of TN both the system and actual ground truth identify a
pixel as a non-OD pixel. FP is the case where the system predicts the pixel as an OD pixel when it actually belongs to non-OD region in ground truth, whereas, in the FN case the system predicts a pixel as a non-OD pixel when it actually is an OD pixel.

The metrics used to evaluate the quantitative performance of the proposed methodology are given in Table 2. We used Sensitivity (SN), Specificity (SP), Accuracy (Acc), Positive Predicted Value (PPV), False Discovery Rate (FDR) and Overlap. The overlap metric is defined in (8).

\[
\text{Overlap} = \frac{\text{Area}(\text{ground truth} \cap \text{predicted})}{\text{Area}(\text{ground truth} \cup \text{predicted})} \tag{8}
\]

Moreover, we have used the DICE similarity index to measure the similarity between the segmented optic disc and the ground truth. The DICE index is a measurement of spatial overlap used widely for comparing segmentation results, with a value ranging from 0 to 1. The DICE coefficient can be defined as two times the volume of the intersection between two segmentations divided by the sum of the volumes of the two segmentations, which is represented in (9).

\[
\text{DICE} = \frac{2 \times \text{Area}(\text{ground truth} \cap \text{predicted})}{\text{Area}(\text{ground truth}) + \text{Area} (\text{predicted})} \tag{9}
\]

Table 1

Pixel classification

Real \ Predicted	Actual pixel ∈ OD	Actual pixel ∉ OD
System Predicted pixel ∈ OD	TP	FP
System Predicted pixel ∉ OD	FN	TN

Table 2

Performance metric for OD Segmentation

Measure	Description
SN	\(\frac{\text{TP}}{\text{TP} + \text{FN}} \)
SP	\(\frac{\text{TN}}{\text{TN} + \text{FP}} \)
Acc	\(\frac{\text{TP} + \text{TN}}{\text{TP} + \text{FP} + \text{TN} + \text{FN}} \)
PPV	\(\frac{\text{TP}}{\text{TP} + \text{FP}} \)
FDR	\(\frac{\text{FP}}{\text{FP} + \text{TP}} \)

4 Results

4.1 Optic Disc Detection

The optic disc detection method achieved 100% success rate in DRIVE, DIARETDB1, CHASE_DB1 and Shifa databases, it achieved 99.09% in DRIONS-DB and 99.25% in the Messidor database. Table 3 shows the accuracy of this method for the detection of OD. The comparison of accuracy in localizing OD have been made with other methods reported in literature in Table 4.

Table 3

Performance Measure of OD detection

Datasets	Images	OD detected	OD missed	Accuracy
DRIVE	40	40	0	100%
DIARETDB1	89	89	0	100%
CHASE_DB1	28	28	0	100%
DRIONS-DB	110	109	1	99.99%
Messidor	1200	1191	9	99.25%
Shifa	111	111	0	100%
ONHSD	90	90	0	100%
Table 4
Comparison of OD localization with other methods

Authors	Database	Accuracy
(Youssif et al. 2008)	DRIVE	98.8%
(Niemeijer et al. 2009)	Local database	99.4%
(Aquino et al. 2010)	Messidor	99%
(Welfer et al. 2010)	DRIVE	100%
(Lu 2011)	DIARETDB1	97.75%
(Zubair et al. 2013)	Messidor	98.77%
(Mahfouz & Fahmy 2010)	DRIVE	100%
	DIARETDB1	97.8%
(Yu et al. 2012)	Messidor	99%
(Saleh et al. 2014)	DRIVE	100%
(Yu et al. 2015)	DIARETDB1	99.88%
	Messidor	99.67%
Proposed method	DRIVE	100%
	DIARETDB1	100%
	CHASEDB1	100%
	DRIONS-DB	99.09%
	Messidor	99.25%
	ONHSD	100%

Figure 5 shows the results of the OD detection in the DRIVE, DIARETDB1, Shifa, CHASE_DB1 and DRIONS-DB databases. The OD detection method can correctly detect the OD center even in the presence of exudates and other pathologies. Accurate detection of the optic nerve head facilitates the segmentation algorithm to extract the boundary with high precision.

4.2 Optic Disc Segmentation

The pixel-wise quantitative performance metrics (which are defined in Table 2) are calculated for OD segmentation, based on the comparison of automatic segmented images with the ground truth reference images and are illustrated in Table 5. The methodology is quantitatively evaluated.
by using an array of performance metrics, which to the limit of our knowledge has not been previously used for evaluating OD segmentation algorithms.

Table 5

Performance Measure	DRIVE	DIARET DB1	CHASE-DB1	Shifa	DRION S-DB	Messidor	ONHSD
Acc	0.9672	0.9772	0.9579	0.9793	0.9549	0.9989	0.9967
SP	0.9966	0.9984	0.9971	0.9991	0.9966	0.9995	0.9992
SN	0.8187	0.8510	0.8313	0.8015	0.8508	0.8954	0.8857
PPV	0.8728	0.9263	0.9261	0.9493	0.9666	0.9794	0.9619
FDR	0.1271	0.0737	0.0738	0.0506	0.0810	0.020	0.038
DICE	0.8720	0.8910	0.9050	0.8763	0.9102	0.9339	0.9197
Overlap	78.6%	85.1%	83.2%	80.1%	85.1%	87.93%	86.1%
Hausdorff	0.2514	0.1915	0.3174	0.2434	0.2578	0.1627	0.2245

The comparison of the proposed method has been made with other available methods on the basis of average sensitivity, specificity, accuracy, DICE score, overlap, positive predictive value and the time taken to process a single image, as illustrated in Table 6. Results shows that the proposed method provides promising results as compared to other OD segmentation techniques in the literature. The comparison with other methods is made with respect to DRIVE and DIARETDB1, DROINS-DB, Messidor and ONHSD retinal image datasets.

Table 6

Performance Measures	DRIVE Database	DIARETDB1 Database						
	Methods	Sensitivity	Specificity	Accuracy	DICE Score	Overlap %	Predictive Value	Average Time per Image (in sec)
	(Sopharak et al. 2008)	0.2104	0.9993	--	--	16.88	0.9334	14.92
	(Walter et al. 2002)	0.4988	0.9981	--	--	29.32	0.8653	219.6
	(Seo et al. 2004)	0.5029	0.9983	--	--	31.09	0.843	7.23
	(Kande et al. 2008)	0.6999	0.9888	--	--	29.66	0.5218	111.7
	(Stapor et al. 2004)	0.7368	0.9920	--	--	33.42	0.6198	43.00
	(Lupascu et al. 2008)	0.7768	0.9968	--	--	34.40	0.8876	53.65
	(Welfer et al. 2013)	0.7357	0.9982	--	--	39.40	0.8544	--
	(Basit & Fraz 2015)	0.8921	0.9921	--	--	61.88	0.6930	--
	(Morales et al. 2013)	--	--	0.9903	0.8169	--	0.8544	--
	(Salazar-Gonzalez et al. 2014)	0.7512	0.9684	0.9412	--	--	--	--
Proposed Method	0.8188	0.9966	0.9672	0.8720	78.6	0.8728	59.2	
	(Sopharak et al. 2008)	0.4603	0.9993	--	--	29.41	0.9334	14.92
	(Walter et al. 2002)	0.6569	0.9993	--	--	36.97	0.9395	308.5
	(Seo et al. 2004)	0.6103	0.9987	--	--	35.32	0.8878	15.63
	(Kande et al. 2008)	0.8808	0.9878	--	--	33.41	0.5448	120.5
The OD segmentation results on these retinal datasets are illustrated in Figure 6. It can be observed that the proposed methodology can successfully detect and segment the OD in the pathological images as well as in images with non-uniform illumination and uneven background pigmentation from multiple retinal image datasets.

![Figure 6 Examples of segmentation. Images in each row belong to separate databases as per order, DIARETDB1, Shifa, CHASE_DB1, and DRIONS-DB. Grow Cut segmentation is represented by a green boundary and its final approximation is represented by a black circle.](image)

4.3 Robustness of Methodology

The robustness of proposed methodology has been evaluated on the basis of its OD localization and segmentation performance on (1) the noisy images, (2) the images with illumination artefacts, and (3) the images with pathological structures. The retinal images are corrupted with three types of noise models typically found in biomedical images (Gaussian, Salt & Pepper, and speckle noise). It can be observed in Figure 7, that OD is successfully detected and segmented despite significant deterioration of the retinal images due to the addition of noise.
Second criteria for measuring robustness is the evaluation against illumination which makes OD detection harder because poor illumination hides the OD in the background, as a result of which segmentation algorithms fail to extract boundary. Figure 8 shows some extreme cases of poor illumination where proposed method successfully localize and segment the OD.
Pathologies such as papillary atrophy, exudates, and lesions put a potent threat to accurate segmentation of optic disc because some pathologies may appear in bright or in circular shape and may result in misclassification. While others like papillary atrophy surround the OD and make it difficult to segment. Figure 9 shows the result of proposed algorithm on pathologically affected images.

Although algorithm works fine on images where segmentation is hard but in fundus imaging, sometimes, there are images which are poorly focused or have imaging artefacts which make segmentation a difficult task.

Figure 10 shows some extreme cases where method failed to extract optic disc correctly e.g. in the first two images the artifacts are so strong that it almost hide out OD and leaves false
detection and segmentation while in the third image pathologies hide the boundary of OD and leave the method to partially detect OD.

Figure 10 Incorrect OD segmentation in difficult cases of retinal images

5 Discussion and Conclusion

Optic disc segmentation is the primary step towards the development of automatic screening systems. The accuracy of the segmentation method improves the correct identification of pathological diseases like glaucoma. Similarly, optic disc detection is the first step towards segmentation and accurate detection would lead to promising segmentation results. This paper presents a new method for automatic detection and segmentation of the OD in retinal images. Using morphological operations, Circular Hough Transform and Grow Cut algorithm (GC). The GC algorithm has been widely used in many application areas of image segmentation, but has not been applied within the framework of retinal image analysis. To the limit of our knowledge, the GC algorithm has been utilized for the first time in segmenting the OD in retinal images. The method is evaluated on six retinal image datasets exhibiting different morphological characteristics. Experimental evaluation shows that this method is computationally fast in processing, robust to the variation in image contrast and illumination, works well in pathological retinal images and comparable with state-of-the-art methodologies in terms of quantitative performance metrics. The methodology offers 100% OD detection rate in DRIVE, DIARETDB1, CHASE_DB1, ONHSD, and Shifa databases, and 99.09% success rate in DRIONS-DB1. For the OD segmentation we use the detected OD center point as the seed for the Grow Cut algorithm, which then iteratively searches for neighbors of initial seeds and expands the region based on the label and strength of each pixel. The proposed method is able to segment the OD with a better overlap ratio, as compared to other methods available in the literature. We achieved 78.6%, 85.1%, 83.2%, 80.1%, 85.1%, 87.93%, and 86.1% in DRIVE, DIARETDB1, CHASE_DB1, Shifa, DRIONS-DB1, Messidor, and ONHSD databases respectively. The results of the presented algorithm can be seen online at http://vision.seecs.edu.pk/od/.

OD segmentation results clearly depict the ability of proposed method to segment, even with illumination artifacts when the OD boundary is not clear and in the presence of pathologies like papillary atrophy, which may increase the chances of false positives. The robustness of proposed methodology has been evaluated on the basis of its OD localization and segmentation performance on (1) the noisy images, (2) the images with illumination artefacts, and (3) the images with pathological structures. For evaluation purpose, the retinal images have been corrupted with three types of noises generally found in biomedical images, the Gaussian, Salt &
pepper, and Speckle noise. The methodology successfully segment the OD despite significant deterioration of the retinal images. Moreover, the algorithms perform well on the images with uneven illumination and the pathological structures. The work is aimed at contributing to the development of an automatic system for glaucoma detection that is currently under development. Although other published solutions can be used, this work presents higher accuracy, robustness and is tolerant to a vast variety of images which make it suitable for integration with a glaucoma detection system. We have already developed a fully automated software system named QUARTZ (Fraz et al. 2015), which can extract a number of quantifiable measures from retinal vessel morphology. These measures are analyzed/studied by epidemiologists and other medical/statistical experts in order to evaluate the association of retinal vessel abnormalities with other systemic diseases. In future, we aim to enhance the aforementioned software system and extend its functionality by incorporating a module for early detection of glaucoma in large population based screening programs. The proposed method for reliable segmentation of OD can be seen as a first step towards the development of a glaucoma detection module.

Acknowledgment

The Authors would like to thank teams of DRIVE, DIARETDB1, CHASE_DB1, DRIONS-DB, Messidor and ONHSD for maintaining and keeping these databases active and making them easily accessible for researchers to carry out retinal image analysis research. Furthermore, we would also thank the experts from the Armed Forces Institute of Ophthalmology, Rawalpindi, Pakistan for taking the time to establish the ground truth images.

References

2004. DRIVE: Digital Retinal Images for Vessel Extraction.
Abdullah M, and Fraz MM. 2015. Application of grow cut algorithm for localization and extraction of optic disc in retinal images. 2015 12th International Conference on High-capacity Optical Networks and Enabling/Emerging Technologies (HONET): IEEE. p 1-5.
Abramoff MD, Garvin MK, and Sonka M. 2010. Retinal Imaging and Image Analysis. Biomedical Engineering, IEEE Reviews in 3:169-208. 10.1109/rbme.2010.2084567
Aquino A, Gegúndez-Arias ME, and Marín D. 2010. Detecting the optic disc boundary in digital fundus images using morphological, edge detection, and feature extraction techniques. Medical Imaging, IEEE Transactions on 29:1860-1869.
Basit A, and Fraz MM. 2015. Optic disc detection and boundary extraction in retinal images. Applied Optics 54:3440-3447. 10.1364/ao.54.003440
Carmona EJ, Rincón M, García-Feijoó J, and Martínez-de-la-Casa JM. 2008. Identification of the optic nerve head with genetic algorithms. Artificial Intelligence in Medicine 43:243-259.
Cheng J, Liu J, Xu Y, Yin F, Wong DWK, Tan N-M, Tao D, Cheng C-Y, Aung T, and Wong TY. 2013. Superpixel classification based optic disc and optic cup segmentation for glaucoma screening. Medical Imaging, IEEE Transactions on 32:1019-1032.
Dashtbozorg B, Mendonça AM, and Campilho A. 2015. Optic disc segmentation using the sliding band filter. Computers in biology and medicine 56:1-12.
Decenciere E, Zhang X, Cazuguel G, Laï B, Cochener B, Trone C, Gain P, Ordóñez-Varela J-R, Massin P, and Erginay A. 2014. Feedback on a publicly distributed image database: the MESSIDOR database. Image Analysis and Stereology:231-234.
Federation ID. 2013. International Diabetic Federation Atlas; Chapter 2 The Global Burden. Available at http://www.idf.org/sites/default/files/EN_6E_Ch2_the_Global_Burden.pdf (accessed 3 December 2015).

Foracchia M, Grisan E, and Ruggeri A. 2005. Luminosity and contrast normalization in retinal images. Medical image analysis 9:179-190. 10.1016/j.media.2004.07.001

Fraz MM, Basit A, and Barman SA. 2012a. Application of Morphological Bit Planes in Retinal Blood Vessel Extraction. Journal of Digital Imaging:1-13. 10.1007/s10278-012-9513-3

Fraz MM, Remagnino P, Hoppe A, Uyyanonvara B, Rudnicka AR, Owen CG, and Barman SA. 2012b. Blood vessel segmentation methodologies in retinal images – A survey. Computer methods and programs in biomedicine 108:407-433.

Fraz MM, Remagnino P, Hoppe A, Uyyanonvara B, Rudnicka AR, Owen CG, and Barman SA. 2012c. An Ensemble Classification-Based Approach Applied to Retinal Blood Vessel Segmentation. Biomedical Engineering, IEEE Transactions on 59:2538-2548. 10.1109/TBME.2012.2205687

Fraz MM, Rudnicka A, Owen C, and Barman S. 2014. Delineation of blood vessels in pediatric retinal images using decision trees-based ensemble classification. International Journal of Computer Assisted Radiology and Surgery 9:795-811. 10.1007/s11548-013-0965-9

Haleem MS, Han L, van Hemert J, and Li B. 2013. Automatic extraction of retinal features from colour retinal images for glaucoma diagnosis: A review. Computerized Medical Imaging and Graphics 37:581-596.

Hoover A, and Goldbaum M. 2003. Locating the optic nerve in a retinal image using the fuzzy convergence of the blood vessels. Medical Imaging, IEEE Transactions on 22:951-958.

Hough PV. 1962. Method and means for recognizing complex patterns.

Illingworth J, and Kittler J. 1987. The Adaptive Hough Transform. Pattern Analysis and Machine Intelligence, IEEE Transactions on PAMI-9:690-698. 10.1109/tpami.1987.4767964

Jack J. Kanski, and Brad Bowling. 2015. Clinical Ophthalmology: A Systematic Approach. London: Elsevier Health Sciences (UK).

Joshi GD, Sivaswamy J, and Krishnadas S. 2011. Optic disk and cup segmentation from monocular color retinal images for glaucoma assessment. Medical Imaging, IEEE Transactions on 30:1192-1205.

Kande GB, Subbaiah PV, and Savithri TS. 2008. Segmentation of exudates and optic disk in retinal images. Computer Vision, Graphics & Image Processing, 2008 ICVGIP’08 Sixth Indian Conference on: IEEE. p 535-542.

Kauppi T, Kalesnykiene V, Kamarainen J-K, Lensu L, Sorri I, Raninen A, Voutilainen R, Pietilä J, Kälviäinen H, and Uusitalo H. 2007. DIARETDB1 diabetic retinopathy database and evaluation protocol. Medical Image Understanding and Analysis (MIUA2007). Aberystwyth, Wales, UK. p 61-65.

Kumar JH, Pediredla AK, and Seelamantula CS. 2015. Active discs for automated optic disc segmentation. 2015 IEEE Global Conference on Signal and Information Processing (GlobalSIP): IEEE. p 225-229.

Lowell J, Hunter A, Steel D, Basu A, Ryder R, Fletcher E, and Kennedy L. 2004. Optic nerve head segmentation. Medical Imaging, IEEE Transactions on 23:256-264.

Lu S. 2011. Accurate and efficient optic disc detection and segmentation by a circular transformation. Medical Imaging, IEEE Transactions on 30:2126-2133.
Lupascu CA, Tegolo D, and Rosa LD. 2008. Automated detection of optic disc location in retinal images. Computer-Based Medical Systems, 2008 CBMS’08 21st IEEE International Symposium on: IEEE. p 17-22.

Mahfouz AE, and Fahmy AS. 2010. Fast localization of the optic disc using projection of image features. Image Processing, IEEE Transactions on 19:3285-3289.

Marin D, Gegundez-Arias ME, Suero A, and Bravo JM. 2015. Obtaining optic disc center and pixel region by automatic thresholding methods on morphologically processed fundus images. Computer methods and programs in biomedicine 118:173-185.

Mendonca AM, Sousa A, Mendonca L, and Campilho A. 2013. Automatic localization of the optic disc by combining vascular and intensity information. Computerized Medical Imaging and Graphics 37:409-417.

Mittapalli PS, and Kande GB. 2016. Segmentation of optic disk and optic cup from digital fundus images for the assessment of glaucoma. Biomedical Signal Processing and Control 24:34-46.

Morales S, Naranjo V, Angulo J, and Alcañiz M. 2013. Automatic detection of optic disc based on PCA and mathematical morphology. Medical Imaging, IEEE Transactions on 32:786-796.

Pourreza-Shahri R, Tavakoli M, and Kehtarnavaz N. 2014. Computationally efficient optic nerve head detection in retinal fundus images. Biomedical Signal Processing and Control 11:63-73.

Saleh MD, Salih N, Eswaran C, and Abdullah J. 2014. Automated segmentation of optic disc in fundus images. Signal Processing & its Applications (CSPA), 2014 IEEE 10th International Colloquium on: IEEE. p 145-150.

Seo J, Kim K, Kim J, Park K, and Chung H. 2004. Measurement of ocular torsion using digital fundus image. Engineering in Medicine and Biology Society, 2004 IEMBS’04 26th Annual International Conference of the IEEE: IEEE. p 1711-1713.

Sophrak A, Uyyanonvara B, Barman S, and Williamson TH. 2008. Automatic detection of diabetic retinopathy exudates from non-dilated retinal images using mathematical morphology methods. Computerized Medical Imaging and Graphics 32:720-727. http://dx.doi.org/10.1016/j.compmedimag.2008.08.009

Stapor K, Świtonski A, Chrastek R, and Michelson G. 2004. Segmentation of fundus eye images using methods of mathematical morphology for glaucoma diagnosis. Computational Science-ICCS 2004: Springer, 41-48.

Toffoli T, and Margolus N. 1987. Cellular automata machines: a new environment for modeling: MIT Press.

Vázquez SG, Cancela B, Barreira N, Penedo MG, Rodríguez-Blanco M, Pena Seijo M, Tuero GC, Barceló MA, and Sæz M. 2013. Improving retinal artery and vein classification by means of a minimal path approach. Machine Vision and Applications 24:919-930. 10.1007/s00138-012-0442-4

Vezhnevets V, and Konouchine V. 2005. GrowCut: Interactive multi-label ND image segmentation by cellular automata. proc of Graphicon: Citeseer. p 150-156.

Walter T, Klein J-C, Massin P, and Erginay A. 2002. A contribution of image processing to the diagnosis of diabetic retinopathy-detection of exudates in color fundus images of the human retina. Medical Imaging, IEEE Transactions on 21:1236-1243.

Weinreb RN, Aung T, and Medeiros FA. 2014. The pathophysiology and treatment of glaucoma: A review. JAMA 311:1901-1911. 10.1001/jama.2014.3192
Welfer D, Scharcanski J, Kitamura CM, Dal Pizzol MM, Ludwig LW, and Marinho DR. 2010. Segmentation of the optic disk in color eye fundus images using an adaptive morphological approach. Computers in biology and medicine 40:124-137.

Welfer D, Scharcanski J, and Marinho DR. 2013. A morphologic two-stage approach for automated optic disk detection in color eye fundus images. Pattern Recognition Letters 34:476-485.

Youssif AA-HA-R, Ghalwash AZ, and Ghoneim AASA-R. 2008. Optic disc detection from normalized digital fundus images by means of a vessels' direction matched filter. Medical Imaging, IEEE Transactions on 27:11-18.

Yu H, Barriga ES, Agurto C, Echegaray S, Pattichis MS, Bauman W, and Soliz P. 2012. Fast localization and segmentation of optic disk in retinal images using directional matched filtering and level sets. Information Technology in Biomedicine, IEEE Transactions on 16:644-657.

Yu T, Ma Y, and Li W. 2015. Automatic localization and segmentation of optic disc in fundus image using morphology and level set. Medical Information and Communication Technology (ISMICT), 2015 9th International Symposium on: IEEE. p 195-199.

Zubair M, Yamin A, and Khan SA. 2013. Automated detection of Optic Disc for the analysis of retina using color fundus image. Imaging Systems and Techniques (IST), 2013 IEEE International Conference on: IEEE. p 239-242.