ON \(k \)-CONNECTED \(\Gamma \)-EXTENSIONS OF BINARY MATROIDS

Y. M. BORSE\(^1\) AND GANESH MUNDHE\(^2\)

Abstract. Slater introduced the point-addition operation on graphs to classify 4-connected graphs. The \(\Gamma \)-extension operation on binary matroids is a generalization of the point-addition operation. In this paper, we obtain necessary and sufficient conditions to preserve \(k \)-connectedness of a binary matroid under the \(\Gamma \)-extension operation. We also obtain a necessary and sufficient condition to get a connected matroid from a disconnected binary matroid using the \(\Gamma \)-extension operation.

Keywords: binary matroid, splitting, \(k \)-connected, \(\Gamma \)-extension

Mathematics Subject Classification: 05B35

1. Introduction

We refer to [9] for standard terminology in graphs and matroids. The matroids considered here are loopless and coloopless. Slater [12] introduced the point-addition operation on graphs and used it to classify 4-connected graphs. Azanchiler [1] extended this operation to binary matroids, which is defined by Shikare et al. [11], as follows:

Definition 1.1. [1] Let \(M \) be a binary matroid with ground set \(S \) and standard matrix representation \(A \) over \(GF(2) \). Let \(X = \{x_1, x_2, \ldots, x_m\} \subset S \) be an independent set in \(M \) and let \(\Gamma = \{\gamma_1, \gamma_2, \ldots, \gamma_m\} \) be a set such that \(S \cap \Gamma = \emptyset \). Suppose \(A' \) is the matrix obtained from the matrix \(A \) by adjoining \(m \) columns labeled by \(\gamma_1, \gamma_2, \ldots, \gamma_m \) such that the column labeled by \(\gamma_i \) is same as the column labeled by \(x_i \) for \(i = 1, 2, \ldots, m \). Let \(A^X \) be the matrix obtained by adjoining one extra row to \(A' \) which has entry 1 in the column labeled by \(\gamma_i \) for \(i = 1, 2, \ldots, m \) and zero elsewhere. The vector matroid of the matrix \(A^X \), denoted by \(M^X \), is called as the \(\Gamma \)-extension of \(M \) and the transition from \(M \) to \(M^X \) is called as \(\Gamma \)-extension operation on \(M \).

An example given at the end of the paper illustrates the definition. Note that the ground set of the matroid \(M^X \) is \(S \cup \Gamma \) and \(M^X \setminus \Gamma = M \). Therefore \(M^X \) is an extension of \(M \). The \(\Gamma \)-extension operation is related to the splitting operation on binary matroids, which is defined by Shikare et al. [11], as follows:

Definition 1.2. [1] Let \(M \) be a binary matroid with standard matrix representation \(A \) over \(GF(2) \) and let \(Y \) be a non-empty set of elements of \(M \). Let \(A_Y \) be the matrix obtained by adjoining one extra row to the matrix \(A \) whose entries are 1 in the columns labeled by the elements of the set \(Y \) and zero otherwise. The vector matroid of the matrix \(A_Y \), denoted by \(M_Y \), is called as the splitting matroid of \(M \) with respect to \(Y \), and the transition from \(M \) to \(M_Y \) is called as the splitting operation with respect to \(Y \).

Let \(M \) be a binary matroid with ground set \(S \) and let \(X = \{x_1, x_2, \ldots, x_m\} \) be an independent set in \(M \). Obtain the extension \(M' \) of \(M \) with ground set \(S \cup \Gamma \), where \(\Gamma = \{\gamma_1, \gamma_2, \ldots, \gamma_m\} \) is disjoint from \(S \), such that \(\{x_i, \gamma_i\} \) is a 2-circuit in \(M' \) for each \(i \). The matroid \(M'_X \) obtained from \(M' \) by splitting the set \(\Gamma \) is the \(\Gamma \)-extension matroid \(M^X \).

The splitting operation with respect to a pair of elements, which is a special case of Definition 1.2, was earlier defined by Raghunathan et al. [10] for binary matroids as an extension of the corresponding graph operation due to Fleischner [7].

Whenever we write \(M^X \), it is assumed that \(X \) is a non-empty independent set of the matroid \(M \).

Azanchiler [1] characterized the circuits and the bases of the \(\Gamma \)-extension matroid \(M^X \) in terms the circuits and bases of \(M \), respectively. Some results on preserving graphicness of \(M \) under the...
The Γ-extension operation are obtained in [2]. Borse and Mundhe [8] characterized the binary matroids M for which M^X is graphic for any independent set X of M.

A k-separation of a matroid M is a partition of its ground set S into two disjoint sets A and B such that $\min \{ |A|, |B| \} \geq k$ and $r(A) + r(B) - r(M) \leq k - 1$. A matroid M is k-connected if it does not have a $(k - 1)$-separation. Also, M is connected if it is 2-connected.

In general, the splitting operation does not preserve the connectivity of a given matroid. Borse and Dhotre [4] provided a sufficient condition to preserve connectedness of a matroid while Borse [3] and Malwadkar et al. [5] gave a sufficient condition to get a k-connected binary matroid under this operation.

The Γ-extension operation also does not give k-connected binary matroid in general. Azanchiler [1] obtained sufficient conditions to preserve 2-connectedness and 3-connectedness of a binary matroid under this operation.

In this paper, we obtain necessary and sufficient conditions to preserve k-connectedness under the Γ-extension operation for any integer $k \geq 2$. We also give necessary and sufficient conditions to get a connected matroid from a disconnected binary matroid in terms of the Γ-extension operation.

2. Proofs

We need some lemmas.

Lemma 2.1. [1] Let M be a binary matroid with ground set S and let X be an independent set in M. Suppose M^X is the Γ-extension of M with ground set $S \cup \Gamma$. Let r and r' be the rank functions of M and M^X, respectively. Then

(i) Γ is independent in M^X;
(ii) $r'(A) = r(A)$ if $A \subset S$;
(iii) $r'(A) \geq r(S \cap A) + 1$ if A intersects Γ;
(iv) $r'(M^X) = r(M) + 1$.

Lemma 2.2. [1] Let M be a binary matroid with ground set S and let X be an independent set in M. Then $Z \subset S \cup \Gamma$ is a circuit of M^X if and only if one of the following conditions holds:

(i) Z is a circuit of M;
(ii) $Z = \{x_i, x_j, \gamma_i, \gamma_j\}$ for some distinct elements x_i, x_j of X and the corresponding elements γ_i, γ_j of Γ;
(iii) $Z = J \cup (D - X_J)$, where $J \subset \Gamma$ with $|J|$ even and D is a circuit of M containing the set $X_J = \{x_i \in X : \gamma_i \in J\}$.

Lemma 2.3 ([9], pp 273). Let M be a k-connected matroid with at least $2(k - 1)$ elements. Then every circuit and every cocircuit of M contains at least k elements.

The next lemma is a consequence of [9, Proposition 2.1.6].

Lemma 2.4. [3] Let M be a matroid with ground set S and let $Y \subset S$ such that $r(M \setminus Y) = r(M) - 1$. Then Y contains a cocircuit of M.

The following result follows immediately from Lemma 2.3 and Lemma 2.4.

Corollary 2.5. Let M be a k-connected matroid with ground set S such that $|S| \geq 2(k - 1)$. Then $r(M \setminus Y) = r(M)$ for any $Y \subset S$ with $|Y| < k$.

We now give necessary and sufficient conditions to obtain a k-connected matroid from the given k-connected binary matroid as follows.

Theorem 2.6. Let $k \geq 2$ be an integer and M be a k-connected binary matroid with at least $2(k - 1)$ elements and X be an independent set in M. Then the Γ-extension matroid M^X is k-connected if and only if $|X| \geq k$ and $2 \leq k \leq 4$.

Proof. Suppose $|X| \geq k$ and $2 \leq k \leq 4$. We prove that M^X is k-connected. The ground set of M^X is $S \cup \Gamma$, where Γ is disjoint from the ground set S of M. Since $|\Gamma| = |X|$, $|\Gamma| \geq k$. By Lemma 2.1(i), Γ is independent in M^X. Suppose r and r' denote the rank functions of M and M^X, respectively. Assume that M^X is not k-connected. Then M^X has a $(k-1)$-separation (A, B). Therefore A and B are non-empty disjoint subsets of $S \cup \Gamma$ such that $S \cup \Gamma = A \cup B$ and further,

$$\min \{ |A|, |B| \} \geq k - 1$$
$$r'(A) + r'(B) - r'(M^X) \leq k - 2. \quad (1)$$

As A and B are non-empty, each of them intersects S or Γ or both. We consider the three cases depending on whether A intersect only S or only Γ or both and obtain a contradiction in each of these cases.

Case (i). A intersects only Γ.

As $A \subset \Gamma$, $B = (S - A) \cup \Gamma$. Since Γ is independent, A is independent in M^X. Consequently, $r'(A) = |A| \geq k - 1$. Suppose $A \neq \Gamma$. Then, by Lemma 2.1(iii) and (iv), $r'(B) \geq r(S) + 1 = r(M) + 1 = r'(M^X)$. Hence $r'(B) = r'(M^X)$. Therefore $r'(A) + r'(B) - r'(M^X) \geq k - 1$, which contradicts (1). Therefore $A = \Gamma$. Hence $B = S$ and $r'(A) = |\Gamma| \geq k$. By Lemma 2.1(ii) and (iv), $r'(B) = r'(S) = r(S) = r(M) = r'(M^X) - 1$. Therefore $r'(A) + r'(B) - r'(M^X) \geq k - 1$, which is a contradiction to (1).

Case (ii). A intersects only S.

As $A \cap \Gamma = \emptyset$, $A \subset S$ and $B = (S - A) \cup \Gamma$. Therefore, by Lemma 2.1(i) and (ii), $r'(A) = r(A)$ and $r'(B) \geq r'(\Gamma) = |\Gamma| \geq k$. Suppose $|S - A| \leq k - 2$. Then, by Corollary 2.5, $r(A) = r(M)$. Consequently, by Lemma 2.1(iv),

$$r'(A) + r'(B) - r'(M^X) = r(A) + r'(B) - (r(M) + 1) \geq r'(B) - 1 \geq k - 1,$$

which is a contradiction to (1). Hence $|S - A| \geq k - 1$. By Lemma 2.1 (ii) and (iii), $r(S - A) = r'(S - A) \leq r'(A) - 1$. Therefore, by Inequality (1),

$$r(A) + r(S - A) - r(M) \leq r'(A) + r'(B) - 1 - r'(M^X) + 1 \leq k - 2.$$

This shows that A and $S - A$ gives a $(k - 1)$-separation of M, which is a contradiction to fact that M is k-connected.

Case (iii). A intersects both S and Γ.

Let $S_1 = A \cap S$ and $\Gamma_1 = A \cap \Gamma$. Since $B \neq \emptyset$, it intersects S or Γ. If B intersects only S or only Γ, then we get a contradiction by interchanging roles of A and B in Case (i) and Case (ii). Therefore B intersects both S and Γ. Let $S_2 = B \cap S$ and $\Gamma_2 = B \cap \Gamma$. Then $S_1 \neq \emptyset$ and $\Gamma_1 \neq \emptyset$ for $i = 1, 2$.

By Lemma 2.1(ii) and (iii), $r(S_1) = r'(S_1) \leq r'(A) - 1$ and $r(S_2) = r'(S_2) \leq r'(B) - 1$. By (1),

$$r(S_1) + r(S_2) - r(M) \leq r'(A) - 1 + r'(B) - 1 - r'(M^X) + 1 \leq k - 3.$$

Hence, if $|S_1| \geq k - 2$ and $|S_2| \geq k - 2$, then (S_1, S_2) gives a $(k - 2)$-separation of M, a contradiction to fact that M is k-connected. Consequently, $|S_1| \leq k - 3$ or $|S_2| \leq k - 3$.

Suppose $|S_1| \leq k - 3$. As $k \leq 4$ and $1 \leq |S_1|$, $k = 4$ and $|S_1| = k - 3 = 1$. Thus A contains exactly one element, say x, of M. Further, $|A| \geq k - 1 = 4 - 1 = 3$. We claim that $r'(A) \geq 3$.

Suppose $r'(A) \leq 2$. Then A contains a circuit C of M^X such that $|C| \leq 3$. Since Γ is independent in M^X, C is not a subset of Γ. Therefore C contains x and $C - \{x\} \subset A - \{x\} \subset \Gamma$. In the last row of the matrix A^X which represents the matroid M^X, the columns corresponding to the elements of Γ have entries 1 and rest of the entries in that row are zero. As C is a circuit, the sum of the columns of the A^X corresponding to the elements of C is zero over GF(2). This implies that C contains at least two elements of Γ. Hence $C = \{x, \gamma_1, \gamma_2\}$ for some $\gamma_1, \gamma_2 \in \Gamma$. Let x_1 and x_2 be elements of the matroid M corresponding to γ_1 and γ_2, respectively. By Lemma 2.2(ii), $C_1 = \{x_1, x_2, \gamma_1, \gamma_2\}$ is a circuit in M^X. Since M^X is a binary matroid, the symmetric difference $C \Delta C_1 = \{x, x_1, x_2\}$ of the circuits C and C_1 contains a circuit, say C_2, of M^X. Hence C_2 is a circuit in $M^X \setminus \Gamma = M$ such that $|C_2| = 3 = 4 - 1 = k - 1$, a contradiction by Lemma 2.3. Hence $r'(A) \geq 3$. Since $|S_1| \leq k - 3$, by Corollary 2.5, $r(S_2) = r(S - S_1) = r(M)$. Therefore, by Lemma
Therefore, by Lemma 2.3,

\[r'(B) = r'(M^X). \]

Hence

\[r'(A) + r'(B) - r'(M^X) = r'(A) \geq 3 = k - 1, \]

a contradiction to (1).

Suppose \(|S_2| \leq k - 3. \) Then, as in the above paragraph, we see that \(r'(B) \geq 3 = k - 1 \) and

\[r'(A) = r'(M^X) \]

so \(r'(A) + r'(B) - r'(M^X) = r'(B) \geq k - 1, \) a contradiction to (1).

Thus we get contradictions in Cases (i), (ii) and (iii). Therefore \(M^X \) is \(k \)-connected.

Conversely, suppose \(M^X \) is \(k \)-connected. The last row of the matrix \(A^X \), which represents \(M^X \), has 1’s in the columns corresponding to the set \(\Gamma \) and zero elsewhere. Hence \(\Gamma \) contains a cocircuit of \(M^X \). By Lemma 2.2, \(|\Gamma| \geq k \) and so \(|X| = |\Gamma| \geq k \). Therefore \(M^X \) contains a 4-circuit. Thus \(M^X \) is \(k \)-connected.

We now give a necessary and sufficient condition to get a connected matroid \(M^X \) from the disconnected matroid \(M \). If \(X \) is disjoint from a component \(D \) of \(M \), then it follows from Lemma 2.2 that \(D \) is a component of \(M^X \) also. Therefore to get a connected matroid \(M^X \) from the disconnected matroid \(M \), it is necessary that \(X \) intersects every component of \(M \). In the following theorem, we prove that this obvious necessary condition is also sufficient.

Theorem 2.7. Let \(M \) be a disconnected binary matroid and let \(X \) be an independent set in \(M \). Then \(M^X \) is connected if and only if every component of \(M \) intersects \(X \).

Proof. Let \(M_1, M_2, \ldots, M_r \) be the components of \(M \). Suppose each \(M_i \) intersects \(X \). Let \(S \) be the ground set of \(M \). Then the ground set of \(M^X \) is \(S \cup \Gamma \), where \(S \cap \Gamma = \phi \). Since each \(M_i \) is connected in \(M \) and \(M^X \setminus \Gamma = M \), each \(M_i \) is connected in \(M^X \) too. Therefore each \(M_i \) is contained in a component of \(M^X \). We show that all \(M_i \) are contained in a single component of \(M^X \). Since \(M \) is disconnected, it has at least two components and so \(r \geq 2 \). Let \(D \) be a component of \(M^X \) containing \(M_1 \) and let \(j \in \{2, 3, \ldots, r\} \). Suppose \(X \) contains an element \(x_1 \) of \(M_1 \) and an element \(x_j \) of \(M_j \). Suppose \(\gamma_1 \) and \(\gamma_j \) are elements of \(\Gamma \) corresponding to \(x_1 \) and \(x_j \), respectively. Then, by Lemma 2.2(ii), \(C = \{x_1, x_j, \gamma_1, \gamma_j\} \) is a 4-circuit in \(M^X \). As \(C \) contains an element of the component \(D \) of \(M^X \), \(C \) is contained in \(D \). Therefore \(D \) contains the element \(x_j \) of \(M_j \). Consequently, \(M_j \) is contained in \(D \). Thus all components of \(M \) are contained in \(D \). Therefore \(S \subset D \). Let \(\gamma \) be an arbitrary member of \(\Gamma \) and let \(x \) be the member of \(X \) corresponding to \(\gamma \). Then, by Lemma 2.2(ii), \(\gamma \) and \(x \) belong to a 4-circuit, say \(Z \), of \(M^X \). As \(x \in Z \cap D \), \(Z \subset D \) and so \(\gamma \in D \). Therefore \(\Gamma \subset D \). Consequently, \(D \) is the only component of \(M^X \). Hence \(M^X \) is connected.

The converse readily follows from the discussion prior to the statement of the theorem.

Example 2.8. We illustrate Theorem 2.6 by using the Fano matroid \(F_7 \). The ground set of \(F_7 \) is \(\{1, 2, 3, 4, 5, 6, 7\} \) and the standard matrix representation of \(F_7 \) over \(GF(2) \) is as follows:

\[
A = \begin{pmatrix}
1 & 0 & 0 & 1 & 1 & 1 & 1 \\
0 & 1 & 0 & 1 & 0 & 1 & 1 \\
0 & 0 & 1 & 1 & 1 & 0 & 1
\end{pmatrix}.
\]

Let \(X = \{1, 2\} \) and \(Y = \{1, 2, 3\} \). Then \(X \) and \(Y \) are independent in \(F_7 \). Further,

\[
A^X = \begin{pmatrix}
1 & 2 & 3 & 4 & 5 & 6 & 7 & \gamma_1 & \gamma_2 \\
1 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 0 \\
0 & 1 & 0 & 1 & 0 & 1 & 1 & 0 & 1 \\
0 & 0 & 1 & 1 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1
\end{pmatrix}
\]

and

\[
A^Y = \begin{pmatrix}
1 & 2 & 3 & 4 & 5 & 6 & 7 & \gamma_1 & \gamma_2 & \gamma_3 \\
1 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 & 1 & 1 & 0 & 1 & 0 \\
0 & 0 & 1 & 1 & 1 & 0 & 1 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1
\end{pmatrix}.
\]

Let \(F_7^X \) and \(F_7^Y \) be the vector matroids of \(A^X \) and \(A^Y \), respectively. It is well known that \(F_7 \) is 3-connected. One can check that \(F_7^Y \) is 3-connected while \(F_7^X \) is 2-connected but not 3-connected.

References

[1] H. Azanchier, "Γ-extension of binary matroids", ISRN Discrete Mathematics 2011, Article 629707 (8 pages) (2011).

[2] H. Azanchier, "On extension of graphic matroids", Lobachevskii J. Math. 36, 38-47 (2015).

[3] Y. M. Borse, "A note on n-connected splitting-off matroids", Ars Combin. 128, 279-286 (2016).
[4] Y. M. Borse and S. B. Dhotre, "On connected splitting matroids", Southeast Asian Bull. Math. 36(1), 17-21 (2012).
[5] Y. M. Borse and G. Mundhe, "On n-connected splitting matroids", AKCE Int. J. Graphs Comb. (2017)(in press), doi:10.1016/j.akcej.2017.12.001.
[6] Y. M. Borse and G. Mundhe, "Graphic and cographic Γ-extensions of binary matroids," Discuss. Math. Graph Theory 38, 889-898 (2018).
[7] H. Fleischner, Eulerian Graphs and Related Topics Part 1, Vol. 1 (North Holland, Amsterdam, 1990).
[8] P. P. Malavadkar, M. M. Shikare and S. B. Dhotre, "A characterization of n-connected splitting matroids", Asian-European J. Combin. 7(4), Article 14500600 (7 pages) (2014).
[9] J. G. Oxley, Matroid Theory (Oxford University Press, Oxford, 1992).
[10] T. T. Raghunathan, M. M. Shikare and B. N. Waphare, "Splitting in a binary matroid", Discrete Math. 184, 267-271 (1998).
[11] M. M. Shikare, G. Azadi and B. N. Waphare, "Generalized splitting operation for binary matroids and its applications", J. Indian Math. Soc. New Ser. 78 No.1-4, 145-154 (2011).
[12] P. J. Slater, "A Classification of 4-connected graphs", J. Combin. Theory Series B 17, 281-298 (1974).

E-mail address: 1ymborse11@gmail.com; 2ganumundhe@gmail.com

1 Department of Mathematics, Savitribai Phule Pune University, Pune-411007, India.
2 Army Institute of Technology, Pune-411015, India.