HIERARCHICAL CLUSTERING AND THE BAO SIGNATURE

WOJCIECH A. HELIWING∗
Interdisciplinary Centre for Mathematical and Computational Modeling (ICM),
University of Warsaw, ul. Powiśléskiego 5a, Warsaw, Poland,∗E-mail: pchela@icm.edu.pl

ROMAN JUSZKIEWICZ
Institute of Astronomy,University of Zielona Góra,
ul. Lubuska 2, Zielona Góra, Poland

RIEN VAN DE WEYGAERT
Kapteyn Astronomical Institute, University of Groningen,
P.O. Box 800, 9725LB Groningen, the Netherlands

MACIEJ BILICKI
Astrophysics, Cosmology and Gravity Centre (ACGC),Department of Astronomy,
University of Cape Town,Private Bag X3, Rondebosch 7701, South Africa

In this contribution we present the preliminary results regarding the non-linear BAO
signal in higher-order statistics of the cosmic density field. We use ensembles of N-body
simulations to show that the non-linear evolution changes the amplitudes of the BAO
signal, but has a negligible effect on the scale of the BAO feature. The latter observation
accompanied by the fact that the BAO feature amplitude roughly doubles as one moves
to higher orders, suggests that the higher-order correlation amplitudes can be used as
probe of the BAO signal.

Keywords: baryon acoustic oscillations, non-linear clustering, dark matter

1. Introduction

Thanks to the impressive development in observational astronomy that we have wit-
nessed in the last two decades, we are living now in the era of the precision cosmol-
ogy. Growing data sets and galaxy catalogues allow for extraction and measurement
of percent-level signals. However, this advance of observational data has however
not always matched by an accompanying increase in theoretical understanding. Ob-
servations of the evolution and the structure of the large-scale clustering pattern
of galaxies has left us with the riddle about the nature of the seemingly dominant
yet elusive components of cosmic energy: dark matter(DM) and dark energy(DE).
One of the main precision probes of 21st century cosmology is that of the Baryon
Acoustic Oscillations (BAO).

The BAO feature in the cosmic density field is closely related to the size of the
sound horizon during at recombination era. The measurements of the size of the
BAO feature in the low-redshift Universe constrain the cosmic expansion history.
Such measurements, in principle, should have discriminatory power to distinguish
between dynamical DE models and the cosmological constant.

Measurements of the BAO feature have been reported for the power spectrum
and the two-point correlation function of galaxies.1,2 However there are well-known
systems and non-linear effects that lower the accuracy of the two-point statistics. The most important among them are the biasing of galaxies with respect to the dark matter distribution and redshift space distortions. Recently, we have proposed that higher-order statistics of clustering could be a useful probe of the BAO signal (hereafter JHvW). Higher-order clustering amplitudes have the advantage that they are less prone to systematics and non-linear effects. On the other hand, in general they have a lower signal-to-noise level. Here we explore the original idea of JHvW using the N-body simulations. Also, we investigate the idea for higher order statistics beyond that of the three-point clustering measure.

2. Hierarchical amplitudes and the BAO

We define the volume-averaged J-point correlation function (of the density/galaxy field) as

$$
\bar{\xi}_J = V_W^{-J} \int_S d\mathbf{x}_1...d\mathbf{x}_J W(\mathbf{x}_1)...W(\mathbf{x}_J)\xi_J(\mathbf{x}_1,...,\mathbf{x}_J),
$$

where \mathbf{x}_i is the comoving separation vector, $W(\mathbf{x})$ is a window function with volume V_W, and the integral covers the entire volume S. The hierarchical amplitudes $S_n(R)$ of order n are conventionally defined as,

$$
S_n(R) = \frac{\xi_n}{\xi_2} = \xi_n \sigma^{-2(n-1)}
$$

with volume-averaged correlation functions $\bar{\xi}_n(R)$ and the variance $\sigma^2(R)$ implicitly depending on the smoothing scale R. Using perturbation theory (PT), Juszkiewicz et al. showed that the reduced skewness (S_3) of the density field is a function of the logarithmic slope of the variance (power spectrum) at a given smoothing scale R. Furthermore, Bernardeau showed that also higher-order clustering amplitudes are functions of higher-order derivatives of the variance. JHvW noticed that the unique feature of the BAO signal, the so-called wiggles, should be imprinted also in the slope of the variance, and hence in the high-order hierarchical amplitudes.

3. Results

Here we present the preliminary results of our N-body simulations. We have conducted high-resolution N-body simulations using the publicly available code by Volker Springel - Gadget2. To assess the exact features resulting from the presence of the BAO signal we have used two ensembles of simulations. In one of these, we applied initial conditions generated with BAO wiggles smoothed-out (dubbed 'no-wiggles'). In the other, we implemented the initial density field with fully consistent BAO features.

Our results are summarised in Figure 1. In the left panel we plot the prediction of the BAO signal for the reduced skewness S_3 computed using PT, together with the signal obtained from the simulations. The fully non-linear evolution of the structure
formation lowers the amplitude of the BAO signal by $\sim 33\%$ compared to PT. However, an important thing to note here is that the non-linear effects seem to have negligible impact on the scale of the BAO feature in the hierarchical amplitude. This has profound consequences, as this is the scale associated with the BAO signature. We should remind that it is the BAO scale that constrains the expansion history, not the amplitude. In the right hand side panel we plot the BAO feature measured from simulations for the first three amplitudes - S_3 (skewness), S_4 (kurtosis) and the S_5. The plot shows that when one moves to statistics of one order higher, the amplitude of the BAO signal doubles. Such a behaviour of the BAO signature in the high-order clustering amplitudes opens a possibility to extract this signal from the current and future large and deep galaxy redshift surveys, avoiding to some extent the systematic effects that lower the accuracy of the two-point statistics.

Acknowledgements

Soon after we started working on this project, Roman Juszkiewicz had undergone a dramatic deterioration of health, as a result of which he passed away on 28th January 2012. We leave this contribution as another tribute to a leading scientist and teacher who was a great friend to the entire community.

References

1. D. J. Eisenstein, I. Zehavi, D. W. Hogg, R. Scoccimarro, M. R. Blanton, R. C. Nichol, R. Scramton, H.-J. Seo, M. Tegmark, Z. Zheng, S. F. Anderson, J. Annis, N. Bahcall, J. Brinkmann, S. Burles, F. J. Castander and et al., *ApJ* 633, 560(November 2005).
2. S. Cole, W. J. Percival, J. A. Peacock, P. Norberg, C. M. Baugh, C. S. Frenk, I. Baldry, J. Bland-Hawthorn, T. Bridges, R. Cannon, M. Colless and et al., *MNRAS* 362, 505(September 2005).
3. R. Juszkiewicz, W. A. Hellwing and R. van de Weygaert, *MNRAS* 429, 1206(February 2013).
4. R. Juszkiewicz, F. R. Bouchet and S. Colombi, *ApJ* 412, L9(July 1993).
5. F. Bernardeau, *ApJ* 433, 1(September 1994).
6. V. Springel, *Mon. Not. Roy. Astron. Soc.* 364, 1105(December 2005).