RFRP neurons are critical gatekeepers for the photoperiodic control of reproduction

Valérie Simonneaux* and Caroline Ancel
Neurobiologie des Rythmes, Institut des Neurosciences Cellulaires et Intégratives, UPR CNRS 3212, Strasbourg, France

MAMMALS USE THE RHYTHMIC SECRETION OF THE PINEAL HORMONE MELATONIN TO SYNCHRONIZE REPRODUCTION WITH THE SEASONS

A large number of species restrict their fertility to a particular time of the year to ensure that the birth of the offspring occurs during the most favorable season. To determine the time of the year and synchronize their reproductive activity accordingly, mammals use the highly reproducible annual variations in light duration (or photoperiod). Photoperiod is transduced by a photo-neuroendocrine system composed of the retina, the suprachiasmatic nucleus (seat of the master circadian clock) and the pineal gland which releases the hormone melatonin exclusively at night, so that the duration of the secretion varies according to night length. Therefore, the photoperiodic variations in circulating levels of melatonin throughout the year provide the body with a robust and reproducible representation of the seasons (Simonneaux and Ribelayga, 2003). It has long been established that photoperiodic variations in the duration of the nocturnal peak of melatonin synchronize reproduction in seasonal species like sheep or hamsters (Hoffman and Reiter, 1965; Carter and Goldman, 1983; Pevet, 1988; Battaglia et al., 1993; Malpuech et al., 2001).

Syrian hamsters are long day breeders, meaning that they are sexually active in long day (LD: 14 light/10 h dark) conditions. Upon exposure to short day (SD: 10 light/14 h dark) conditions, they undergo a dramatic inhibition of reproductive activity within 8–10 weeks manifested by a marked atrophy of the gonads and accessory organs resulting in low levels of circulating sex steroids. Surgical removal of the pineal gland before exposure to SD conditions prevents hamsters from undergoing sexual inactivation. Conversely, exogenous melatonin injections mimicking SD conditions in hamsters raised in LD conditions induce sexual inactivation. In contrast to small rodents, large mammals with a longer gestation time like sheep are SD-breeders; they are sexually active in SD conditions and become quiescent after transfer to LD conditions. Although the reproductive timing is opposite in hamsters and sheep, in both cases the circulating levels of melatonin synchronize reproduction with photoperiod. However, why the reproductive systems of LD- and SD-breeders respond in opposite ways to the same melatonin signal is not known.

MELETONIN ACTS ON THE PARS TUBERALIS TO TRANSMIT PHOTOPERIODIC INFORMATION

It is clear that melatonin does not act directly on GnRH neurons and responsiveness to GnRH does not change with photoperiod (Urbanski et al., 1991). Melatonin binding sites are found
in a number of brain structures but with considerable species differences (Masson-Pevet et al., 1994). Besides, a high density of melanin receptors has been identified in the pars tuberalis of the adenohypophysis in a large number of mammalian species (Masson-Pevet and Gauer, 1994). Notably, the pars tuberalis cells expressing melanin receptors synthesize thyroid-stimulating hormone (TSH) in a photoperiod/melanin-dependent manner, with a higher level of expression in LD conditions (Klösen et al., 2002; Dardente et al., 2003, 2010). TSH produced by the pars tuberalis has been recently recognized as a key messenger through which melanin acts on the gonadotropic axis for the seasonal control of reproduction. TSH acts on a specialized glial cell type of the hypothalamic ependymal wall, the tanycytes, to induce a marked up-regulation of the thyroid hormone-activating enzyme deiodinase 2 (Dio2) which in turn increases local concentrations of the bioactive T3 thyroid hormone (Yoshimura et al., 2003; Hanon et al., 2008, 2010; Nakao et al., 2008). In quail (Yoshimura et al., 2003) and Siberian hamsters (Barrett et al., 2007) local T3 administration was reported to increase reproductive activity although through unknown mechanisms.

Altogether these observations point to the pars tuberalis as a key site for the integration of the endocrine melatoninergic message for the seasonal regulation of reproductive activity. However, the central reproductive site(s) actually controlled by the melatonin/TSH system(s) are still unknown. Various structures in the mediobasal hypothalamus have been proposed to be direct or indirect sites of action for melatonin, particularly in the sheep (Malpaux et al., 1998) and hamster (Maywood and Hastings, 1995).

RFRP-3 Neurons Located in the Mediodisal Hypothalamus Are Strongly Regulated by Melatonin

In the Syrian hamster, the dorsal part of the mediobasal hypothalamus appears as a key structure for the photoperiodic regulation of reproductive activity since it contains melatonin binding sites and its ablation by electrolytic lesion prevents the inhibitory effect of melatonin on reproductive activity (Maywood et al., 1996). Recently, we reported that neurons located in this hypothalamic area express the RFamide-related peptide (rfrp) gene in a photoperiodic-dependent manner in Syrian and Siberian hamsters (Revel et al., 2008).

The rfrp gene was discovered in 2000 in mammals (Hinuma et al., 2000), concurrently with the discovery of its avian ortholog gonadotropin-inhibitory hormone (gnih; Tsutsui et al., 2000). The rfrp and gnih genes were found to produce new peptides of the RFamide family of peptides, which share a common C-terminal LPXRamide (X = L or Q) motif. In the quail, GnIH was shown to act directly at the level of the pituitary to inhibit gonadotropin release (Tsutsui et al., 2000). In mammals, the rfrp gene is expressed in neurons located in the mediobasal hypothalamus and encodes a precursor that produces two peptides, RFRP-1 and RFRP-3 (Ukena and Tsutsui, 2001; Kriegsfeld et al., 2006; Clarke et al., 2008; Dardente et al., 2008; Revel et al., 2008; Smith and Clarke, 2010). The demonstration that GnIH is a potent inhibitor of gonadotropin release in birds sparked great interest in the roles of RFRP-1 and particularly RFRP-3 in the regulation of endocrine functions in mammals (Bently et al., 2010; Kriegsfeld et al., 2010; Smith and Clarke, 2010; Tsutsui et al., 2010 for reviews).

In Syrian and Siberian hamsters, we observed that the level of rfrp mRNA is strongly down-regulated in sexually inactive SD-adapted animals (Revel et al., 2008). This variation is solely photoperiodic as there are no daily changes in rfrp mRNA levels either in LD or SD conditions. In both species, the SD-induced decrease in rfrp gene expression is associated with a similar decrease in peptide immunoreactivity in perikarya and fibers (Revel et al., 2008; Mason et al., 2010; Ubuka et al., 2012). We have recently found a similar SD-induced inhibition of rfrp expression in other LD-breeder, notably the European hamster (Figure 1) and the jerboa (Janati et al., 2012). Strikingly, in sheep, a SD-breeder, two studies reported that hypothalamic rfrp mRNA levels and RFRP immunoreactivity are also reduced in SD conditions while animals are sexually active (Dardente et al., 2008; Smith et al., 2008). In contrast, in the non-photoperiodic rat rfrp mRNA levels are not modified by photoperiodic conditions (Revel et al., 2008).

In the Syrian hamster, we demonstrated that the SD down-regulation of rfrp expression is not due to the lower levels of
circulating sex steroids since neither testosterone implants in sexually inactive SD hamsters, nor testis ablation in LD-adapted hamsters altered the levels of rfrp mRNA. This lack of major sex steroid feedback on rfrp expression is in agreement with other studies conducted in rats, mice, Siberian hamsters, and sheep (Smith et al., 2008; Quenney et al., 2010; Foling et al., 2012; Uba et al., 2012). Of note however, studies in female Syrian hamsters reported that RFRP neurons contain Erα and respond to estrogen administration (Kriegsfeld et al., 2006; Gibson et al., 2008) and RFRP expression in ewes is reduced during the proovulatory period (Clarke et al., 2012).

Importantly, we found that pineal gland ablation before transferring hamsters to SD conditions, a protocol which prevents the SD-induced inhibition of reproductive activity, prevented the decrease in rfrp mRNA levels (Revel et al., 2008). Conversely, repeated melatonin injections during the late afternoon to LD-adapted hamsters, a protocol known to inhibit reproductive activity, also induced a marked decrease in rfrp mRNA levels (Revel et al., 2008). In the Syrian hamster as well, the down-regulation of rfrp expression in SD conditions is induced by melatonin (Uba et al., 2012). Remarkably, in the quad, melatonin also regulates GnIH expression but in an opposite manner compared to mammals. Melatonin binds to Mel1c receptors located on GnIH neurons to increase GnIH synthesis and release, and as a consequence, expression of this inhibitory peptide is increased under SD conditions (Uba et al., 2003).

Altogether these observations indicate that in a number of seasonal mammalian species, rfrp expression is decreased in SD conditions regardless of whether the species is a LD- or a SD-breeder. Experiments with melatonin manipulation carried out in Syrian and Siberian hamsters demonstrate that rfrp down-regulation results from the larger production of melatonin in SD conditions. It is tempting to speculate that melatonin may act primarily on RFRP neurons in the mediobasal hypothalamus to control seasonal reproduction. Several observations, however, indicate that this central effect of melatonin is probably indirect. Melatonin binding sites are found in the area where RFRP neurons are located in the Syrian hamster, but this is not the case in the other seasonal species like the Siberian and European hamsters or the sheep. Furthermore, in the Syrian hamster, we found that at least 3 weeks of daily melatonin administration is required to induce a significant reduction in the level of rfrp mRNA (Revel et al., 2008) whereas the pineal hormone is much faster to control the expression of other photoperiodically regulated genes like 7th in the pars tuberalis or aridius in 2 in the tanyocytes (Revel et al., 2006a; Yassou et al., 2007; Dardente, 2012). Therefore, it appears likely that there is an intermediate between the endocrine melatoninergic message and the photoperiodic regulation of RFRP expression, and it might be interesting to investigate whether it is the melatonin-driven TSH/T3 signal.

RFRP-3 Stimulates the Gonadotropin Axis and Rescues Reproductive Activity in Photo-Inhibited Hamsters

An increasing number of studies now indicate that RFRP-3 is implicated in the regulation of mammalian reproductive function (Bentley et al., 2010; Tsutui et al., 2010 for reviews). In mice RFRP-3 was found to exhibit rapid and repeatable inhibitory effects on the firing rate of a subpopulation of GnRH neurons (Ducret et al., 2009). In male rats, intracerebroventricular (icv) RFRP-3 significantly suppresses all facets of sex behavior and also significantly reduces plasma levels of luteinizing hormone (LH; Johnson et al., 2007; Pineda et al., 2010). In female rats, chronic icv infusion of RFRP-3 causes a dose-dependent inhibition of GnRH neuronal activation at the LH surge peak and also suppresses neuronal activation in the anteroven tricular region, which provides stimulatory input to GnRH neurons (Andrievson et al., 2009). In ovariectomized mature rats, intravenous administration of RFRP-3 significantly reduces plasma LH concentrations (Muzakma et al., 2008). Finally, in the ovine and bovine species, RFRP-3 administration inhibits gonadotropin release (Clarke et al., 2008; Kadokawa et al., 2009; Sasi et al., 2012) although this is still controversial (Caraty et al., 2012).

Until recently, and based on the plethora of publications supporting this hypothesis, it was assumed that RFRP-3 functioned in mammals as GnIH functioned in birds and served as an inhibitory component regulating the hypothalamic-pituitary-gonadal axis. However, this statement was somehow contradictory with our observation of an increased synthesis of RFRP in LD-adapted sexually active hamsters. We have recently reported novel findings in the male Syrian hamster (Ancel et al., 2012) which have led to call this assumption into question, concurrently with another group working on the male Siberian hamster (Uba et al., 2012). In the male Syrian hamster, we reported that acute icv administration of RFRP-3 stimulates GnRH cell activity, gonadotropin release, and testosterone production under LD conditions (Figure 2; Ancel et al., 2012). In the same manner, in SD-adapted male Syrian hamsters a single central injection of RFRP-3 increases gonadotropin release [LH (mg/ml) vehicle 1.72 ± 0.31 vs. RFRP-3 4.36 ± 0.82; n = 6; p < 0.05]. Furthermore, under the same photo-inhibitory conditions, 5 weeks of continuous central administration of RFRP-3 to male Syrian hamsters produces a complete reactivation of the reproductive axis, manifested by increased testis weight and circulating levels of testosterone, similar to those observed in LD conditions (Figure 2A; Ancel et al., 2012). In the Siberian hamster, while administration of RFRP-3 in LD conditions inhibits gonadotropin release, the same protocol stimulates gonadotropin secretion in SD conditions (Uba et al., 2012). Remarkably, these findings of a stimulatory action of RFRP-3 on the male hamster reproductive axis are in sharp contrast with a previous study reporting an inhibitory effect of icv GnIH in ovariectomized female Syrian hamsters (Kriegsfeld et al., 2006). In LD conditions, reproductive activity of female rodents displays a well-described estrous cycle, characterized by varying levels of circulating gonadotropins and sex steroids. It has been hypothesized that RFRP-3 might be an inhibitory component of the negative feedback loop which regulates the estrous cycle, since RFRP cellular activity is decreased at the time of the LH surge in the Syrian hamster (Gibson et al., 2008). In this context it would be interesting to determine whether the effect of RFRP-3 on the female reproductive axis depends on the stage of the estrous cycle at which it is administered.
Simonneaux and Ancel

RFRP and seasonal reproduction

FIGURE 2 | Acute intracerebroventricular administration of RFRP-3 (1500 ng) activates c-FOS expression in GnRH neurons (A) and increases LH production (B) and circulating levels of testosterone (C) in sexually active long day-adapted male Syrian hamsters. *p < 0.05 when compared to vehicle-treated animals. Adapted from Ancel et al. (2012).

FIGURE 3 | Chronic intracerebroventricular administration of RFRP-3 [12 μg/day for 5 weeks in artificial cerebrospinal fluid (aCSF)] in sexually inactive short day (SD)-adapted male Syrian hamsters increases kisspeptin expression in the arcuate nucleus (A) and testicular weight (B) up to values comparable to animals kept in long day (LD) conditions. *p < 0.05 when compared to LD or RFRP-3 treated SD animals. Adapted from Ancel et al. (2012).

Taken together, these data indicate that there are certainly species- and gender-dependent differences in the involvement of RFRP-3 in the regulation of reproductive activity. As a consequence one might be cautious when calling the mammalian peptide “GnIH” based on its effect in birds, and in the light of the recent reports on work carried out in male hamsters the peptide should be termed “RFRP-3.” From a seasonal point of view, when considering LD- (hamsters) and SD- (sheep) breeders, it is remarkable to find that while the expression of the peptide is increased in LD conditions in both kinds of breeders, the effect of the peptide on the gonadotropic axis is opposite, as it is stimulatory in hamsters and inhibitory in sheep. This suggests a non-conserved role and/or site of action for RFRP-3 across seasonally breeding species. It is tempting to speculate that RFRP neurons may play a key role in discriminating between long and short day breeders because RFRP expression is down-regulated by a short day profile of melatonin in both kinds of seasonal breeders but the peptide appears to...
have an opposite effect on the reproductive axis, being stimulatory in long day and inhibitory in short day breeders. Complementary experiments will have to be carried out in other species to test this hypothesis and fully understand the role of RFRP-3 in the seasonal control of reproduction.

Interestingly, the RFRP peptides were shown to have a modulatory action on feeding behavior (Bechtold and Luckman, 2007; Johnson et al., 2007; Clarke et al., 2012) thus it might be worth investigating whether the photoperiodic variation in RFRP expression might also impact on food intake and body weight regulation in seasonal species.

RFRP-3 MODES AND SITES OF ACTION
The complex involvement of RFRP peptides in the regulation of the hypothalamic–pituitary–gonadal axis has raised a number of questions regarding the sites of action of the peptides. In various mammalian species including humans, RFRP fiber networks are found in multiple brain regions including the preoptic area, the arcuate nucleus, the lateral septum, the anterior hypothalamus, and the bed nucleus of the stria terminalis (Ukena and Tsutsui, 2001; Kriegsfeld et al., 2006; Johnson et al., 2007; Mason et al., 2010). Notably, RFRP-immunoreactive fibers make apparent contact with a subpopulation of GnRH neurons in rodents and sheep (Kriegsfeld et al., 2006; Smith et al., 2008; Poling et al., 2012; Rizwan et al., 2012; Ubuka et al., 2012) suggesting that RFRP-3 acts centrally to control the reproductive axis.

There is still uncertainty as to whether RFRP-3 also exerts a hypophysiotropic effect in mammals as reported in birds. A large body of evidence now reports the absence of fibers in the median eminence of rodents (Ukena and Tsutsui, 2001; Yano et al., 2003; Kriegsfeld et al., 2006; Rizwan et al., 2009; Smith et al., 2010; Ubuka et al., 2012). However, there are controversial data as to whether RFRP-3 acts (Kriegsfeld et al., 2006; Murakami et al., 2008; Pineda et al., 2010) or not (Anderson et al., 2009; Rizwan et al., 2009; Ubuka et al., 2012) on the rodent pituitary to regulate LH secretion. In the male hamster we reported no effect of the peptide on LH secretion when injected peripherally, nor on the basal and stimulation of the reproductive function following continuous RFRP-3 administration goes alongside with an increase in Kiss1 expression in the arcuate nucleus together with an increase of testicular activity (Figure 3; Ancel et al., 2012). It is therefore possible that the RFRP-3 neuronal system regulates reproductive activity by acting at two levels of the reproductive axis: the GnRH and the kisspeptin neurons. In order to answer this question, it seems essential to carry out a detailed mapping of the Kiss1 gene in the Syrian hamster.

Altogether, a large amount of evidence now indicates that in various mammalian species RFRP-3 regulates reproductive activity by acting via its receptor located on GnRH neurons. This is supported by results showing that RFRP-3 fibers are in contact with a subpopulation of GnRH neurons and that Gpr147 is expressed in GnRH neurons in rodents. However, another line of evidence points to Kiss1 neurons as possible intermediates between RFRP peptides and the regulation of the reproductive function. Indeed, in rats RFRP-3 fibers are in contact with kisspeptin neurons which express Gpr147 and in Syrian hamsters the reaction of the reproductive function following continuous RFRP-3 administration goes alongside with an increase in Kiss1 expression. Future studies using Kiss1R and GnHR antagonists could help to understand the role of each one of these neuronal populations in mediating the effects of RFRP peptides on the reproductive axis.
A few years ago, the same supposition was made for kisspeptin, another member of the large RFamide family of peptides. In 2003, milestone studies reported that loss-of-function mutations of the kisspeptin receptor (KiSS1R/GPR54) in humans and rodents (de Roux et al., 2003; Seminara et al., 2003) prevented pubertal development and caused infertility, leading to a large number of studies aiming at investigating the role of kisspeptins in vertebrate reproduction (Pinilla et al., 2012 for review). The Kiss1 gene is mainly expressed in the arcuate nucleus and the anteroventro-periventricular nucleus of the hypothalamus, and kisspeptin neurons project specifically onto the GnRH cell bodies in the preoptic area and nerve terminals in the median eminence. In all mammalian species studied to date, kisspeptin appears as a powerful stimulator of the gonadotropic axis, acting primarily on GnRH neurons.

In the male Syrian hamster, we demonstrated that kisspeptin expression in the arcuate nucleus is down-regulated by melatonin in SD conditions, despite a negative feedback effect of testosterone on these neurons (Revel et al., 2006b). In the anteroventro-periventricular nucleus, kisspeptin expression is also decreased in SD conditions, but as a result of the absence of the positive feedback of testosterone consecutive to testicular regression (Ansel et al., 2010). Importantly, we demonstrated that chronic infusion of kisspeptin in SD-adapted sexually inactive male hamsters rescues reproductive activity to levels comparable to animals kept in photo-stimulatory LD conditions (Revel et al., 2006b; Ansel et al., 2011; Simonneaux et al., 2012). In the Siberian hamster as well, kisspeptin expression displays photoperiod variations and the peptide stimulates LH release (Greves et al., 2008a,b). Interestingly in the sheep, kisspeptin expression is also regulated by photoperiod, with a higher level of expression in SD conditions when animals are sexually active, and kisspeptin infusion in LD-adapted anestrous ewes induces ovulation in a majority of treated animals (Francescini et al., 2006; Caraty et al., 2007; Smith et al., 2007, 2009). These observations indicate that kisspeptin expression, like RFRP, is regulated by photoperiod in seasonal species but, unlike RFRP, the direction of the regulation is different according to whether animals are LD- or SD-breeders.

To make things more complicated, other parameters also influenced by seasons regulate kisspeptin expression. This is particularly true for sex steroids which inhibit kisspeptin expression in the arcuate nucleus and increase it in the anteroventro-periventricular nucleus in various species including the Syrian (Revel et al., 2006b; Ansel et al., 2010) and the Siberian (Mason et al., 2007) hamsters. Additionally, metabolic factors that are also under the influence of seasonal changes were shown to impact on kisspeptin expression (Castellano et al., 2010). Therefore, although kisspeptin has been identified as an essential component of the photoperiodic regulation of reproductive activity in seasonal breeders (Revel et al., 2007; Simonneaux et al., 2009, 2012 for reviews) recent observations indicate that kisspeptin neurons are not the primary target of melatonin action but are controlled upstream by seasonally regulated intermediates.

Our current findings in the Syrian, Siberian, and European hamsters (Revel et al., 2008; Figure 1), in the jerboa (Janati et al., 2012), and other reports in the sheep (Duandente et al., 2008; Smith et al., 2008) suggest that RFRP-3 expression undergoes a conserved down-regulation by the SD melatonin signal irrespective of the reproductive response to seasons. In contrast, kisspeptin expression is increased when animals become sexually active, irrespective of the photoperiod. On the other hand, kisspeptin is always stimulatory of reproductive activity whereas RFRP-3 displays species-specific effects, being stimulatory in the Syrian hamster and inhibitory in the sheep.

These observations have led us to propose a working model for the seasonal control of reproduction in rodents (Figure 4). We propose that in LD conditions, RFRP-3 would activate GnRH neuronal activity directly and/or indirectly via the kisspeptinergic neurons. The former pathway is supported by the report of RFRP-3 fibers apposed to subpopulations of GnRH neurons (Kingsfield et al., 2006) whereas the latter
is supported both by a report in rats indicating that RFRP-3 fibers are in contact with subpopulations of kisspeptin neurons (Rizzoni et al., 2012) and by our observation that chronic central infusion of RFRP-3 increases Kiss1 expression together with a reactivation of testicular function in the Syrian hamster (Ancel et al., 2012). In SD conditions, the melanotinergic signal would therefore be hypotensive, as RFRP-3 peptides leading to a decreased expression of the peptide, but whether melanotin acts directly or not on RFRP-3 neurons has yet to be determined. Current studies do not support a major feedback effect of sex steroids on RFRP neurons. In contrast, kisspeptinergic neurons integrate other factors related to the sexual and metabolic status of the animal in order to finely tune reproductive activity with the seasons. From studies in sheep, a SD-breeder, it appears that an increased production of RFRP-3 in LD conditions would inhibit reproductive activity by acting directly on the GnRH neurons and/or on the pituitary (Smith et al., 2008; Sari et al., 2009).

CONCLUSION

In regard to the seasonal regulation of reproductive activity, recent data have shed light on the involvement of the RFamide peptides and kisspeptin neurons in the control of reproductive activity with the seasons. From studies in sheep, a SD-breeder, it appears that an increased production of RFRP-3 in LD conditions would inhibit reproductive activity by acting directly on the GnRH neurons and/or on the pituitary (Smith et al., 2008; Sari et al., 2009).

REFERENCES

Ancel, C., Bentsen, A. H., Sebert, M. E., Tena-Sempere, M., Mikkoelen, J. D., and Simonneaux, V. (2012). Stimulatory effect of RFRP-3 on the gonadotropin axis in the male Syrian hamster: the exception proves the rule. Endocrinology 153, 1352–1363.

Bentley, G. E., Entin, K., and Knecht, L. J. (2010). Recent studies of gonadotropin-inhibitory hormones (GnIH) in the mammalian hypothalamus, pituitary, and gonads. J. pineal Res. 52, 62–71.

Caraty, A., Blennow, M., Vogel, G. M., Lomet, D., Bruni, C., and Ben, M. (2011). Peripherally kisspeptin neurons short photoperiod-induced general regression in Syrian hamsters by promoting GAD67 release. Reproduction 142, 417–425.

Carter, D. S., and Goldman, B. D. (2009). RFamide-related peptide-3, a mammalian hypothalamic peptide that provokes a molecular switch between reproduction and feeding. Neuroendocrinology 85, 555–561.

Dardente, H. (2012). Melatonergic-dependent timing of seasonal reproduction by the pars tuberalis of long-daylength and short-daylength gonadotropes. J. Neuroendocrinol. 24, 249–266.

Dardente, H., Brune, M., Linclon, G. A., and Hukkreg, D. G. (2010). RFamide-related peptide and its cognate receptor in the sheep: cDNA cloning, mRNA distribution in the hypothalamus and the effect of photoperiod. J. Neuroendocrinol. 20, 1252–1259.

Dardente, H., Elson, P., Povet, P., and Masson-Pevet, P. (2010). M3 muscarinic receptor mRNA expressing cells in the pars tuberalis of the European hamster: cDNA cloning, mRNA distribution in the hypothalamus and the effect of photoperiod. J. Neuroendocrinol. 20, 1252–1259.

Dardente, H., Birnie, M., Klosen, P. D., and Simonneaux, V. (2010). Differential regulation of kiss1 expression by promoting GAD67 release. Neuroendocrinology 15, 1261–1267.

Dardente, H., Birnie, M., Klosen, P. D., and Simonneaux, V. (2010). Differen-
tial regulation of kiss1 expression by promoting GAD67 release. Neuroendocrinology 15, 1261–1267.

Dardente, H., Klosen, P., Pevet, P., and Masson-Pevet, P. (2010). M3 muscarinic receptor mRNA expressing cells in the pars tuberalis of the European hamster: mRNA cloning, mRNA distribution in the hypothalamus and the effect of photoperiod. J. Neuroendocrinol. 20, 1252–1259.

De Roux, N., Genin, E., Carel, J. C., Herbison, A. E., and Hazlerigg, D. G. (2008). Antagonal effects of timed melatonin infusion in pinealectomized male Djungarian hamsters: evidence for a seasonal echelon. J. Pineal Res. 45, 202–203.

Delduque, C., Hazlerigg, D. G., and Evans, J. J. (2009). Central and peripheral effects of RFamide-related peptide-3 on lactotrope and gonadotrope function in rats. Endocrinology 150, 1834–1844.

Delduque, C., Hazlerigg, D. G., and Evans, J. J. (2009). Central and peripheral effects of RFamide-related peptide-3 on lactotrope and gonadotrope function in rats. Endocrinology 150, 1834–1844.

Delduque, C., Hazlerigg, D. G., and Evans, J. J. (2009). Central and peripheral effects of RFamide-related peptide-3 on lactotrope and gonadotrope function in rats. Endocrinology 150, 1834–1844.

Delduque, C., Hazlerigg, D. G., and Evans, J. J. (2009). Central and peripheral effects of RFamide-related peptide-3 on lactotrope and gonadotrope function in rats. Endocrinology 150, 1834–1844.

Delduque, C., Hazlerigg, D. G., and Evans, J. J. (2009). Central and peripheral effects of RFamide-related peptide-3 on lactotrope and gonadotrope function in rats. Endocrinology 150, 1834–1844.

Delduque, C., Hazlerigg, D. G., and Evans, J. J. (2009). Central and peripheral effects of RFamide-related peptide-3 on lactotrope and gonadotrope function in rats. Endocrinology 150, 1834–1844.

Delduque, C., Hazlerigg, D. G., and Evans, J. J. (2009). Central and peripheral effects of RFamide-related peptide-3 on lactotrope and gonadotrope function in rats. Endocrinology 150, 1834–1844.

Delduque, C., Hazlerigg, D. G., and Evans, J. J. (2009). Central and peripheral effects of RFamide-related peptide-3 on lactotrope and gonadotrope function in rats. Endocrinology 150, 1834–1844.

Delduque, C., Hazlerigg, D. G., and Evans, J. J. (2009). Central and peripheral effects of RFamide-related peptide-3 on lactotrope and gonadotrope function in rats. Endocrinology 150, 1834–1844.

Delduque, C., Hazlerigg, D. G., and Evans, J. J. (2009). Central and peripheral effects of RFamide-related peptide-3 on lactotrope and gonadotrope function in rats. Endocrinology 150, 1834–1844.

Delduque, C., Hazlerigg, D. G., and Evans, J. J. (2009). Central and peripheral effects of RFamide-related peptide-3 on lactotrope and gonadotrope function in rats. Endocrinology 150, 1834–1844.

Delduque, C., Hazlerigg, D. G., and Evans, J. J. (2009). Central and peripheral effects of RFamide-related peptide-3 on lactotrope and gonadotrope function in rats. Endocrinology 150, 1834–1844.

Delduque, C., Hazlerigg, D. G., and Evans, J. J. (2009). Central and peripheral effects of RFamide-related peptide-3 on lactotrope and gonadotrope function in rats. Endocrinology 150, 1834–1844.

Delduque, C., Hazlerigg, D. G., and Evans, J. J. (2009). Central and peripheral effects of RFamide-related peptide-3 on lactotrope and gonadotrope function in rats. Endocrinology 150, 1834–1844.

Delduque, C., Hazlerigg, D. G., and Evans, J. J. (2009). Central and peripheral effects of RFamide-related peptide-3 on lactotrope and gonadotrope function in rats. Endocrinology 150, 1834–1844.

Delduque, C., Hazlerigg, D. G., and Evans, J. J. (2009). Central and peripheral effects of RFamide-related peptide-3 on lactotrope and gonadotrope function in rats. Endocrinology 150, 1834–1844.
Simonneaux, V., et al. (2012). Distribution of mammalian photoperiodism and their receptor in the rat brain and pituitary gland. J Neuroendocrinol 24, 300–316.
Revel, F. G., Ando, L., Klosen, P., Salou, P., Pevet, P., and Simonneau, V. (2006a). Melatonin regulates type 2 deiodinase gene expression in the Syrian hamster. Endocrinology 147, 6080–6087.
Revel, F. G., Salou, P., Pevet, P., Peklenik, J. D., and Simonneau, V. (2008). Kisspeptin mediates the photoperiodic control of reproduction in hamsters. Cell Biol 16, 1730–1733. Revel, F. G., Salou, P., Pevet, P., Simonneau, V., and Mikkelsen, J. D. (2008). RFRP-related peptide gene expression in the Syrian hamster. Endocrinology 149, 902–912.
Rimondi, M. Z., Poling, M. C., Gorr, M., Cernia, P. A., Augenstine, R. A., Quemard, J. H., et al. (2012). RFRP-related peptide-3 receptor gene expression in Ghrelin and kisspeptin neuronal populations. J Neuroendocrinol 25, 1550–1559.
Rimondi, M. Z., Porteous, R., Herbst, A. E., and Anderson, G. M. (2009). Cells expressing RFRP-related peptide-1/3, the mammalian gonadotropin-inhibitory hormone, are not hypophysiotropic norresponder neurons in the rat. Endocrinology 150, 3757–3759.
Rimondi, M. Z., Poling, M. C., Smith, J. T., Tiekko, B., and Uhl, G. R. (2007). Effect of RFRP-related peptide-3 on luteinizing hormone and follicle-stimulating hormone synthesis and secretion in ovine pituitary gonadotropes. Endocrinology 150, 5549–5554.
"fendo-03-00168" — 2012/12/14 — 19:08 — page 8 — #8
Simonneaux and Ancel. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original authors and source are credited and subject to any copyright notices concerning any third-party graphics etc.

“fendo-03-00168” — 2012/12/14 — 19:08 — page 9 — #9

www.frontierns.org

December 2012 | Volume 3 | Article 158 | 3