Asymptotic behavior of a structure made by a plate and a straight rod
D Blanchard, G Griso

To cite this version:
D Blanchard, G Griso. Asymptotic behavior of a structure made by a plate and a straight rod. Chinese Annals of Mathematics - Series B, 2013, 34, pp.399 - 434. 10.1007/s11401-013-0771-2. hal-01450105

HAL Id: hal-01450105
https://hal.science/hal-01450105v1
Submitted on 31 Jan 2017

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Asymptotic behavior of a structure made by a plate and a straight rod.

D. Blanchard1, G. Griso2

1 Université de Rouen, UMR 6085, 76801 Saint Etienne du Rouvray Cedex, France, E-mail: dominique.blanchard@univ-rouen.fr
2 Laboratoire J.-L. Lions–CNRS, Boîte courrier 187, Université Pierre et Marie Curie, 4 place Jussieu, 75005 Paris, France, Email: griso@ann.jussieu.fr

\textbf{Abstract}

This paper is devoted to describe the asymptotic behavior of a structure made by a thin plate and a thin rod in the framework of nonlinear elasticity. We scale the applied forces in such a way that the level of the total elastic energy leads to the Von-Kármán’s equations (or the linear model for smaller forces) in the plate and to a one dimensional rod-model at the limit. The junction conditions include in particular the continuity of the bending in the plate and the stretching in the rod at the junction.

KEY WORDS: nonlinear elasticity, junctions, straight rod, plate.
Mathematics Subject Classification (2000): 74B20, 74K10, 74K30.

\section{Introduction}

In this paper we consider the junction problem between a plate and a rod as their thicknesses tend to zero. We denote by δ and ε the respective half thickness of the plate Ω_δ and the rod B_ε. The structure is clamped on a part of the lateral boundary of the plate and it is free on the rest of its boundary. We assume that this multi-structure is made of elastic materials (possibly different in the plate and in the rod). In order to simplify the analysis we consider Saint-Venant-Kirchhoff’s materials with Lamé’s coefficients of order 1 in the plate and of order $a_\varepsilon^2 = \varepsilon^{2\eta}$ in the rod with $\eta > -1$ (see (1.1)). It allows us to deal with a rod made of the same material as the plate, or made of a softer material ($\eta > 0$) or of a stiffer material ($-1 < \eta < 0$). It is well known that the limit behaviors in both the two parts of this multi-structure depend on the order of the infimum of the elastic energy with respect to the parameters δ and ε. Indeed this order is governed by the ones of the applied forces on the structure. In the present paper, we
suppose that the orders of the applied forces depend on \(\delta \) (for the plate) and \(\varepsilon \) (for the rod) and via two new real parameters \(\kappa \) and \(\kappa' \) (see Subsection 5.1). The parameters \(\kappa, \kappa' \) and \(\eta \) are linked in such a way that the infimum of the total elastic energy be of order \(\delta^{2\kappa-1} \). As far as a minimizing sequence \(v_\delta \) of the energy is concerned, this leads to the following estimates of the Green-St Venant’s strain tensors

\[
\left\| \nabla v_\delta^T \nabla v_\delta - I_3 \right\|_{L^2(\Omega_\delta; \mathbb{R}^{3\times3})} \leq C \delta^{\kappa - \frac{1}{2}}, \quad \left\| \nabla v_\delta^T \nabla v_\delta - I_3 \right\|_{L^2(B_\varepsilon; \mathbb{R}^{3\times3})} \leq \frac{C \delta^{\kappa - \frac{1}{2}}}{\varepsilon \kappa'}.
\]

The limit model for the plate is the Von Kármán system \((\kappa = 3)\) or the classical linear plate model \((\kappa > 3)\). Similarly, in order to obtain either a nonlinear model or the classical linear model in the rod, the order of \(\left\| \nabla v_\delta^T \nabla v_\delta - I_3 \right\|_{L^2(B_\varepsilon; \mathbb{R}^{3\times3})} \) must be less than \(\varepsilon^{\kappa'} \) with \(\kappa' \geq 3 \). Hence, \(\delta, \varepsilon \) and \(q_\varepsilon \) are linked by the relation

\[
\delta^{\kappa - \frac{1}{2}} = q_\varepsilon \varepsilon^{\kappa'}.
\]

Moreover, still for the above estimates of the Green-St Venant’s strain tensors, the bending in the plate is of order \(\delta^{\kappa - 2} \) and the stretching in the rod is of order \(\varepsilon^{\kappa'-1} \). Since, we wish at least these two quantities to match at the junction it is essential to have

\[
\delta^{\kappa - 2} = \varepsilon^{\kappa'-1}.
\]

Finally, the two relations between the parameters lead to

\[
\delta^3 = q_\varepsilon^2 \varepsilon^2 = \varepsilon^{2+2\eta}.
\]

Under the relation \((1.1)\), we prove that in the limit model, the rotation of the cross-section and the bending of the rod in the junction are null. The limit plate model (nonlinear or linear) is coupled with the limit rod model (nonlinear or linear) via the bending in the plate and the stretching in the rod.

A similar problem, but starting within the framework of the linear elasticity is investigated in \cite{19}. In this work the rod is also clamped at its bottom. This additional boundary condition makes easier the analysis of the linear system of elasticity. In \cite{19}, the authors also assume that

\[
\frac{\varepsilon}{\delta^2} \longrightarrow +\infty.
\]

With this extra condition they obtain the same linear limit model as we do here in the case \(\kappa > 3 \) and \(\kappa' > 3 \) and they wonder if the condition \((1.2)\) is necessary or purely technical in order to obtain the junction conditions. The present article shows that this condition is not necessary to carry out the analysis.

The derivation of the limit behavior of a multi-structure such as the one considered here rely on two main arguments. Firstly it is convenient to derive ”Korn’s type inequalities” both in the plate and the rod. Secondly one needs estimates of a deformation in the junction (in order to obtain the limit junction conditions). In this paper this is
achieved through the use of two main tools given in Lemmas 4.1 and 5.2. For the plate, since it is clamped on a part of its lateral boundary, a ‘Korn’s type inequality” is given in [8]. For the rod the issue is more intricate because the rod is nowhere clamped. In a first step, we derive sharp estimates of a deformation \(v \) in the junction with respect to the parameters and to the \(L^2 \) norm (over the whole structure) of the linearized strain tensor \(\nabla v + (\nabla v)^T - 2I_3 \). This is the object of Lemma 4.1. In a second step, in Lemma 5.2 we estimate the \(L^2 \) norm of the linearized strain tensor of \(v \) in the rod with respect to the parameters and to the \(L^2 \) norms of \(\text{dist}(\nabla v, SO(3)) \) in the rod and in the plate. The proofs of these two lemmas strongly rely on the decomposition techniques for the displacements and the deformations of the plate and the rod. Once these technical results are established, we are in a position to scale the applied forces and in the case \(\kappa = 3 \) or \(\kappa' = 3 \) to state an adequate assumption on these forces in order to finally obtain a total elastic energy of order less than \(\delta^5 \).

In Section 2 we introduce a few general notations. Section 3 is devoted to recall a main tool that we use in the whole paper, namely the decomposition technique of the deformation of thin structures. In Section 4, the estimates provided by this method allow us to derive sharp estimates on the bending and the cross-section rotation of the rod at the junction together with the difference between the bending of the plate and the stretching of the rod at the junction. In Section 5 we introduce the elastic energy and we specify the scaling with respect to \(\delta \) and \(\kappa \) on the applied forces in order to obtain a total elastic energy of order \(\delta^{2k-1} \). In Section 6 we give the asymptotic behavior of the Green-St-Venant’s strain tensors in the plate and in the rod. In Section 7 we characterize the limit of the sequence of the rescaled infimum of the elastic energy in terms of the minimum of a limit energy.

As general references on the theory of elasticity we refer to [2] and [13]. The reader is referred to [1], [29], [20] for an introduction of rods models and to [?], [?], [17], [18] for plate models. As far as junction problems in multi-structures we refer to [16], [?], [20], [27], [28], [3], [24], [25], [21], [19], [4], [5], [11], [23], [9]. For the decomposition method in thin structures we refer to [22], [7], [8], [10].

2 Notations and definition of the structure.

Let us introduce a few notations and definitions concerning the geometry of the plate and the rod. We denote \(I_d \) the identity map of \(\mathbb{R}^3 \).

Let \(\omega \) be a bounded domain in \(\mathbb{R}^2 \) with lipschitzian boundary included in the plane \((O; e_1, e_2)\) such that \(O \in \omega \) and let \(\delta > 0 \). The plate is the domain

\[\Omega_\delta = \omega \times [\delta, \delta] \].

Let \(\gamma_0 \) be an open subset of \(\partial \omega \) which is made of a finite number of connected components (whose closure are disjoint). The corresponding lateral part of the boundary of \(\Omega_\delta \) is

\[\Gamma_{0,\delta} = \gamma_0 \times [\delta, \delta] \].
The rod is defined by
\[B_{\varepsilon,\delta} = D_{\varepsilon} - \delta, L, \quad D_{\varepsilon} = D(O, \varepsilon), \quad D = D(O, 1) \]
where \(\varepsilon > 0 \) and where \(D_r = D(O, r) \) is the disc of radius \(r \) and center the origin \(O \).
The whole structure is denoted
\[S_{\delta,\varepsilon} = \Omega_{\delta} \cup B_{\varepsilon,\delta} \]
while the junction is
\[C_{\delta,\varepsilon} = \Omega_{\delta} \cap B_{\varepsilon,\delta} = D_{\varepsilon} - \delta, \delta. \]
The set of admissible deformations of the plate is
\[D_{\delta} = \{ v \in H^1(\Omega_{\delta}; \mathbb{R}^3) \mid v = I_{d} \text{ on } \Gamma_{0,\delta} \}. \]
The set of admissible deformations of the structure is
\[D_{\delta,\varepsilon} = \{ v \in H^1(S_{\delta,\varepsilon}; \mathbb{R}^3) \mid v = I_{d} \text{ on } \Gamma_{0,\delta} \}. \]
The aim of this paper is to study the asymptotic behavior of the structure \(S_{\delta,\varepsilon} \) in the case where the both parameters \(\delta \) and \(\varepsilon \) go to 0. In order to simplify this study, we link \(\delta \) and \(\varepsilon \) by assuming that
\[\delta = \varepsilon^\theta \quad (2.1) \]
where \(\theta \) is a fixed constant (see Subsection 5.1). Nevertheless, we keep the parameters \(\delta \) and \(\varepsilon \) in the estimates given in Sections 3 and 4.

3 Some recalls about the decompositions in the plates and the rods.

From now on, in order to simplify the notations, for any open set \(\mathcal{O} \subset \mathbb{R}^3 \) and any field \(u \in H^1(\mathcal{O}; \mathbb{R}^3) \), we denote by
\[G_s(u, \mathcal{O}) = ||\nabla u + (\nabla u)^T||_{L^2(\mathcal{O}; \mathbb{R}^{3 \times 3})} \quad \text{and} \quad d(u, \mathcal{O}) = ||\text{dist}(\nabla u, SO(3))||_{L^2(\mathcal{O})}. \]

We recall Theorem 4.3 established in [22]. Any displacement \(u \in H^1(\Omega_{\delta}; \mathbb{R}^3) \) of the plate is decomposed as
\[u(x) = U(x_1, x_2) + x_3 R(x_1, x_2) \wedge e_3 + \overline{u}(x), \quad x \in \Omega_{\delta} \quad (3.1) \]
where \(U \) and \(R \) belong to \(H^1(\omega; \mathbb{R}^3) \) and \(\overline{u} \) belongs to \(H^1(\Omega_{\delta}; \mathbb{R}^3) \). The sum of the two first terms \(U_\varepsilon(x) = U(x_1, x_2) + x_3 R(x_1, x_2) \wedge e_3 \) is called the elementary displacement associated to \(u \). The following Theorem is proved in [22].
Theorem 3.1. Let $u \in H^1(\Omega_\delta; \mathbb{R}^3)$, there exists an elementary displacement $U_e(x) = U(x_1, x_2) + x_3 \mathcal{R}(x_1, x_2) \wedge e_3$ and a warping \overline{u} satisfying (3.1) such that

\[\|\overline{u}\|_{L^2(\Omega_\delta; \mathbb{R}^3)} \leq C\delta G_s(u, \Omega_\delta), \]
\[\|\nabla \overline{u}\|_{L^2(\Omega_\delta; \mathbb{R}^3)} \leq C G_s(u, \Omega_\delta), \]

(3.2)

where the constant C does not depend on δ.

The warping \overline{u} satisfies the following relations

\[\int_{-\delta}^{\delta} \overline{u}(x_1, x_2, x_3)dx_3 = 0, \quad \int_{-\delta}^{\delta} x_3 \overline{u}_a(x_1, x_2, x_3)dx_3 = 0 \quad \text{for a.e.} \; (x_1, x_2) \in \omega. \]

(3.3)

If a deformation v belongs to \mathcal{D}_δ then the displacement $u = v - I_d$ is equal to 0 on $\Gamma_{0,\delta}$. In this case the the fields U, \mathcal{R} and the warping \overline{u} satisfy

\[U = \mathcal{R} = 0 \quad \text{on} \; \gamma_0, \quad \overline{u} = 0 \quad \text{on} \; \Gamma_{0,\delta}. \]

(3.4)

Then, from (3.2), for any deformation $v \in \mathcal{D}_\delta$ the corresponding displacement $u = v - I_d$ verifies the following estimates (see also [21]):

\[||\mathcal{R}||_{H^1(\omega; \mathbb{R}^3)} + ||U_a||_{H^1(\omega)} \leq \frac{C}{\delta^{3/2}} G_s(u, \Omega_\delta), \]
\[||\mathcal{R}_3||_{L^2(\omega)} + ||U_a||_{H^1(\omega)} \leq \frac{C}{\delta^{1/2}} G_s(u, \Omega_\delta). \]

(3.5)

The constants depend only on ω.

From the above estimates we deduce the following Korn’s type inequalities for the displacement u

\[||u_a||_{L^2(\Omega_\delta)} \leq C_0 G_s(u, \Omega_\delta), \quad ||u_3||_{L^2(\Omega_\delta)} \leq \frac{C_0}{\delta} G_s(u, \Omega_\delta), \]
\[||u - U||_{L^2(\Omega_\delta; \mathbb{R}^3)} \leq \frac{C}{\delta} G_s(u, \Omega_\delta), \]
\[||\nabla u||_{L^2(\Omega_\delta; \mathbb{R}^9)} \leq \frac{C}{\delta} G_s(u, \Omega_\delta). \]

(3.6)

Through the use of a different decomposition of the deformation v which is introduced in [8] (see also Appendix), the following estimate also holds true

\[||U_\delta||_{H^1(\omega)} \leq \frac{C}{\delta^{3/2}} d(v, \Omega_\delta). \]

(3.7)
Now, we consider a displacement \(u \in H^1(B_{\varepsilon,\delta}; \mathbb{R}^3) \) of the rod \(B_{\varepsilon,\delta} \). This displacement can be decomposed as (see Theorem 3.1 of [22])

\[
 u(x) = \mathcal{W}(x_3) + \mathcal{Q}(x_3) \wedge (x_1 e_1 + x_2 e_2) + \overline{w}(x), \quad x \in B_{\varepsilon,\delta}, \tag{3.8}
\]

where \(\mathcal{W}, \mathcal{Q} \) belong to \(H^1(-\delta, L; \mathbb{R}^3) \) and \(\overline{w} \) belongs to \(H^1(B_{\varepsilon,\delta}; \mathbb{R}^3) \). The sum of the two first terms \(\mathcal{W}(x_3) + \mathcal{Q}(x_3) \wedge (x_1 e_1 + x_2 e_2) \) is called an elementary displacement of the rod.

The following Theorem is established in [22] (see Theorem 3.1).

Theorem 3.2. Let \(u \in H^1(B_{\varepsilon,\delta}; \mathbb{R}^3) \), there exists an elementary displacement \(\mathcal{W}(x_3) + \mathcal{Q}(x_3) \wedge (x_1 e_1 + x_2 e_2) \) and a warping \(\overline{w} \) satisfying (3.8) and such that

\[
 \left\| \overline{w} \right\|_{L^2(B_{\varepsilon,\delta}; \mathbb{R}^3)} \leq C \varepsilon G_s(u, B_{\varepsilon,\delta}),
\]

\[
 \left\| \frac{d \mathcal{Q}}{dx_3} \right\|_{L^2(-\delta, L; \mathbb{R}^3)} \leq \frac{C}{\varepsilon^2} G_s(u, B_{\varepsilon,\delta}),
\]

\[
 \left\| \frac{d \mathcal{W}}{dx_3} - \mathcal{Q} \wedge e_3 \right\|_{L^2(-\delta, L; \mathbb{R}^3)} \leq \frac{C}{\varepsilon} G_s(u, B_{\varepsilon,\delta}),
\]

where the constant \(C \) does not depend on \(\varepsilon, \delta \) and \(L \).

The warping \(\overline{w} \) satisfies the following relations

\[
 \int_{D_{\varepsilon}} \overline{w}(x_1, x_2, x_3) dx_1 dx_2 = 0, \quad \int_{D_{\varepsilon}} x_3 \overline{w}(x_1, x_2, x_3) dx_1 dx_2 = 0, \quad \int_{D_{\varepsilon}} \{ x_1 \overline{w}(x_1, x_2, x_3) - x_2 \overline{w}(x_1, x_2, x_3) \} dx_1 dx_2 = 0 \text{ for a.e. } x_3 \in [-\delta, L]. \tag{3.10}
\]

Then, from (3.9), for any displacement \(u \in H^1(B_{\varepsilon,\delta}; \mathbb{R}^3) \) the terms of the decomposition of \(u \) verify

\[
 \left\| \mathcal{Q} - \mathcal{Q}(0) \right\|_{H^1(-\delta, L; \mathbb{R}^3)} \leq \frac{C}{\varepsilon^2} G_s(u, B_{\varepsilon,\delta}),
\]

\[
 \left\| \mathcal{W}_3 - \mathcal{W}_3(0) \right\|_{H^1(-\delta, L)} \leq \frac{C}{\varepsilon} G_s(u, B_{\varepsilon,\delta}), \tag{3.11}
\]

\[
 \left\| \mathcal{W}_\alpha - \mathcal{W}_\alpha(0) \right\|_{H^1(-\delta, L)} \leq \frac{C}{\varepsilon^2} G_s(u, B_{\varepsilon,\delta}) + C \varepsilon \| \mathcal{Q}(0) \|_2.
\]

Now, in order to obtain Korn’s type inequalities for the displacement \(w \), the following section is devoted to give estimates on \(\mathcal{Q}(0) \) and \(\mathcal{W}(0) \).

4 Estimates at the junction.

Let us set

\[
 H^1_{\gamma_0}(\omega) = \{ \varphi \in H^1(\omega); \varphi = 0 \text{ on } \gamma_0 \}.
\]
Let \(v \in \mathbb{D}_{\delta, \varepsilon} \) be a deformation whose displacement \(u = v - I_d \) is decomposed as in Theorem 3.1 and Theorem 3.2. We define the function \(\tilde{U}_3 \) as the solution of the following variational problem

\[
\begin{cases}
\tilde{U}_3 \in H^1_{\gamma_0}(\omega), \\
\int_{\omega} \nabla \tilde{U}_3 \nabla \varphi = \int_{\omega} (\mathcal{R} \wedge e_\alpha) \cdot e_3 \frac{\partial \varphi}{\partial x_\alpha}, \\
\forall \varphi \in H^1_{\gamma_0}(\omega).
\end{cases}
\] (4.1)

Indeed, due to the third estimate in (3.5), \(\tilde{U}_3 \) satisfies

\[
\|\tilde{U}_3\|_{H^1(\omega)} \leq \frac{C}{\delta^{3/2}} G_s(u, \Omega_\delta)
\] (4.2)

The definition (4.1) of \(\tilde{U}_3 \) together with the fourth estimate in (3.2) lead to

\[
\|U_3 - \tilde{U}_3\|_{H^1(\omega)} \leq \frac{C}{\delta^{1/2}} G_s(u, \Omega_\delta)
\] (4.3)

and moreover

\[
\left\| \frac{\partial \tilde{U}_3}{\partial x_\alpha} - (\mathcal{R} \wedge e_\alpha) \cdot e_3 \right\|_{L^2(\omega)} \leq \frac{C}{\delta^{1/2}} G_s(u, \Omega_\delta).
\] (4.4)

Now, let \(\rho_0 > 0 \) be fixed such that \(D(O, \rho_0) \subset \subset \omega \). Since \(\mathcal{R} \in H^1(\omega; \mathbb{R}^3) \), the function \(\tilde{U}_3 \) belongs to \(H^2(D(O, \rho_0)) \) and the third estimate in (3.5) gives

\[
\|\tilde{U}_3\|_{H^2(D(O, \rho_0))} \leq \frac{C}{\delta^{3/2}} G_s(u, \Omega_\delta).
\] (4.5)

Besides estimates (3.7) and (4.3) lead to

\[
\|\tilde{U}_3\|_{L^6(D(O, \rho_0))} \leq \frac{C}{\delta^{1/2}} G_s(u, \Omega_\delta) + \frac{C}{\delta^{3/2}} d(v, \Omega_\delta).
\] (4.6)

Lemma 4.1. We have the following estimates:

\[
|\mathcal{W}_\alpha(0)|^2 \leq \frac{C}{\varepsilon \delta} [G_s(u, \Omega_\delta)]^2 + C \left[1 + \frac{\delta^2}{\varepsilon^2} \right] \frac{\delta}{\varepsilon^2} [G_s(u, B_{\varepsilon, \delta})]^2,
\] (4.7)

\[
|\mathcal{W}_3(0) - \tilde{U}_3(0, 0)|^2 \leq \frac{C}{\delta^2} \left[1 + \frac{\varepsilon^2}{\delta} \right] [G_s(u, \Omega_\delta)]^2 + C \frac{\delta}{\varepsilon^2} [G_s(u, B_{\varepsilon, \delta})]^2,
\] (4.8)

\[
|\tilde{U}_3(0, 0)|^2 \leq \frac{C}{\delta^3} G_s(u, \Omega_\delta) d(v, \Omega_\delta) + C \frac{\delta}{\varepsilon^2} [G_s(u, \Omega_\delta)]^2 + C \frac{\delta}{\varepsilon^3} [d(v, \Omega_\delta)]^2.
\] (4.9)

The vector \(Q(0) \) satisfies the following estimate:

\[
\|Q(0)\|^2 \leq \frac{C}{\varepsilon \delta} \left[1 + \frac{\varepsilon}{\delta} \right] [G_s(u, \Omega_\delta)]^2 + C \frac{\delta}{\varepsilon^4} [G_s(u, B_{\varepsilon, \delta})]^2.
\] (4.10)

The constants \(C \) are independent of \(\varepsilon \) and \(\delta \).
Proof. The two decompositions of \(u = v - I_d \) give, for a.e. \(x \) in the common part of the plate and the rod \(C_{\delta,\varepsilon} \)

\[
\mathcal{U}(x_1, x_2) + x_3\mathcal{R}(x_1, x_2) \wedge e_3 + \overline{u}(x) = \mathcal{W}(x_3) + \mathcal{Q}(x_3) \wedge (x_1e_1 + x_2e_2) + \overline{w}(x).
\]

(4.11)

Step 1. Estimates on \(W(0) \).

In this step we prove (4.7) and (4.8). Taking into account the equalities (3.3) and (3.10) on the warpings \(\overline{u} \) and \(\overline{w} \), we deduce that the averages on the cylinder \(C_{\delta,\varepsilon} \) of the both sides of the above equality (4.11) give

\[
\mathcal{M}_{D_\varepsilon}(\mathcal{U}) = \mathcal{M}_{I_\delta}(\mathcal{W})
\]

(4.12)

where

\[
\mathcal{M}_{D_\varepsilon}(\mathcal{U}) = \frac{1}{|D_\varepsilon|} \int_{D_\varepsilon} \mathcal{U}(x_1, x_2)dx_1dx_2 \quad \text{and} \quad \mathcal{M}_{I_\delta}(\mathcal{W}) = \frac{1}{2\delta} \int_{-\delta}^{\delta} \mathcal{W}(x_3)dx_3.
\]

Besides using (3.5) we have

\[
||\mathcal{U}_\alpha||_{L^2(D_\varepsilon)}^2 \leq C\varepsilon ||\mathcal{U}_\alpha||_{L^4(\omega)}^2 \leq C\varepsilon ||\mathcal{U}_\alpha||_{H^1(\omega)}^2 \leq \frac{C\varepsilon}{\delta} [G_s(u, \Omega_\delta)]^2.
\]

From these estimates we get

\[
|\mathcal{M}_{I_\delta}(W_\alpha)|^2 = |\mathcal{M}_{D_\varepsilon}(U_\alpha)|^2 \leq \frac{C}{\varepsilon \delta} [G_s(u, \Omega_\delta)]^2.
\]

(4.13)

Moreover, for any \(p \in [2, +\infty[\) using (4.3) we deduce that

\[
||\mathcal{U}_3 - \mathcal{U}_3||_{L^2(D_\varepsilon)} \leq C\varepsilon^{1-2/p}||\mathcal{U}_3 - \mathcal{U}_3||_{L^p(\omega)} \leq C_p \varepsilon^{1-2/p}||\mathcal{U}_3 - \mathcal{U}_3||_{H^1(\omega)} \leq C_p \varepsilon^{1-2/p} \delta^{1/2} G_s(u, \Omega_\delta).
\]

(4.14)

Then we replace \(\mathcal{U}_3 \) with \(\mathcal{U}_3 \) in (4.12) to obtain

\[
|\mathcal{M}_{D_\varepsilon}(\mathcal{U}_3) - \mathcal{M}_{I_\delta}(W_3)|^2 \leq \frac{C_p}{\varepsilon^{4/p}\delta} [G_s(u, \Omega_\delta)]^2.
\]

(4.15)

We carry on by comparing \(\mathcal{M}_{D_\varepsilon}(\mathcal{U}_3) \) with \(\mathcal{U}_3(0, 0) \). Let us set

\[
r_\alpha = \mathcal{M}_{D_\varepsilon}(\mathcal{R} \wedge e_\alpha) \cdot e_3 = \frac{1}{|D_\varepsilon|} \int_{D_\varepsilon} (\mathcal{R}(x_1, x_2) \wedge e_\alpha) \cdot e_3dx_1dx_2
\]

(4.16)

and consider the function \(\Psi(x_1, x_2) = \mathcal{U}_3(x_1, x_2) - \mathcal{M}_{D_\varepsilon}(\mathcal{U}_3) - x_1r_2 - x_2r_1. \) Due to the estimate (4.5) we first obtain

\[
\left\| \frac{\partial^2 \Psi}{\partial x_\alpha \partial x_\beta} \right\|_{L^2(D_\varepsilon)} \leq \frac{C}{\delta^{3/2}} G_s(u, \Omega_\delta).
\]

(4.17)
Secondly, from (3.2) and the Poincaré-Wirtinger’s inequality in the disc \(D_\varepsilon\) we get
\[
\|(\mathcal{R} \wedge e_\alpha) \cdot e_3 - \mathcal{M}_{D_\varepsilon}\left((\mathcal{R} \wedge e_\alpha) \cdot e_3\right)\|_{L^2(D_\varepsilon)} \leq C\frac{\varepsilon}{\delta^{3/2}}G_s(u, \Omega_\delta).
\]
Using the above inequality and (4.4) we deduce that
\[
\|\nabla \Psi\|_{L^2(D_\varepsilon; \mathbb{R}^2)}^2 \leq C\left(\frac{1}{\delta} + \frac{\varepsilon^2}{\delta^3}\right)\left[G_s(u, \Omega_\delta)\right]^2,
\] (4.18)
Noting that \(\mathcal{M}_{D_\varepsilon}(\Psi) = 0\), the above inequality and the Poincaré-Wirtinger’s inequality in the disc \(D_\varepsilon\) and lead to
\[
\|\Psi\|_{L^2(D_\varepsilon)}^2 \leq C\varepsilon\delta^2\left[G_s(u, \Omega_\delta)\right]^2.
\] (4.19)
From inequalities (4.17), (4.18) and (4.19) we deduce that
\[
\|\Psi\|_2^2 \leq C\left(\frac{1}{\delta} + \frac{\varepsilon^2}{\delta^2}\right)\left[G_s(u, \Omega_\delta)\right]^2
\]
which in turn gives
\[
|\Psi(0, 0)|^2 = |\widetilde{U}_\delta(0, 0) - \mathcal{M}_{D_\varepsilon}(\widetilde{U}_\delta)|^2 \leq C\left(\frac{1}{\delta} + \frac{\varepsilon^2}{\delta^2}\right)\left[G_s(u, \Omega_\delta)\right]^2.
\]
This last estimate and (4.15) yield
\[
|\widetilde{U}_\delta(0, 0) - \mathcal{M}_{I_\delta}(W_3)|^2 \leq C\frac{1}{\delta}\left(\frac{C_p}{\varepsilon^{4/p}} + \frac{\varepsilon^2}{\delta^2}\right)\left[G_s(u, \Omega_\delta)\right]^2.
\] (4.20)
In order to estimate \(\mathcal{M}_{I_\delta}(W_3) - W_3(0)\), we set \(y(x_3) = W(x_3) - Q(0)x_3 \wedge e_3\). Estimates in Theorem 3.2 together with the use of Poincaré inequality in order to estimate \(\|Q - Q(0)\|_{L^2(-\delta, \delta; \mathbb{R}^3)}\) give
\[
\left|\frac{dy_\alpha}{dx_3}\right|_{L^2(-\delta, \delta)} \leq C\frac{1}{\varepsilon}\left[\frac{\delta}{\varepsilon^2}\left(1 + \frac{\delta^2}{\varepsilon^2}\right)\left[G_s(u, B_{\delta, \varepsilon})\right]\right]^2,
\]
which imply
\[
\left|y_\alpha - y_\alpha(0)\right|_{L^2(-\delta, \delta)} \leq C\frac{\delta^2}{\varepsilon^2}\left(1 + \frac{\delta^2}{\varepsilon^2}\right)\left[G_s(u, B_{\delta, \varepsilon})\right]^2,
\]
\[
\left|y_3 - y_3(0)\right|_{L^2(-\delta, \delta)} \leq C\frac{\delta^2}{\varepsilon^2}\left[G_s(u, B_{\delta, \varepsilon})\right]^2.
\]
Then, taking the averages on \(|-\delta, \delta|\) we obtain
\[
\left|\mathcal{M}_{I_\delta}(W_\alpha) - W_\alpha(0)\right| \leq C\left(1 + \frac{\delta^2}{\varepsilon^2}\right)\frac{\delta}{\varepsilon^2}\left[G_s(u, B_{\delta, \varepsilon})\right]^2,
\]
\[
\left|\mathcal{M}_{I_\delta}(W_3) - W_3(0)\right| \leq C\frac{\delta}{\varepsilon^2}\left[G_s(u, B_{\delta, \varepsilon})\right]^2.
\] (4.21)
Finally, from (4.13), (4.20) and the above last inequality, we obtain (4.7) and the following estimate:

$$|W_3(0) - \tilde{U}_3(0, 0)|^2 \leq \frac{C}{\delta} \left[\frac{C_p}{\varepsilon^{4/p}} + \frac{\varepsilon^2}{\delta^2} \right] \left[\mathbf{G}_s(u, \Omega_\delta) \right]^2 + C \frac{\delta}{\varepsilon^2} \left[\mathbf{G}_s(u, B_{\varepsilon, \delta}) \right]^2.$$ (4.22)

Choosing $p = \max(2, 4/\theta)$ (recall that $\delta = \varepsilon^\theta$) we get (4.8).

Step 2. We prove the estimate on $U_3(0, 0)$. First recall the Gagliardo-Nirenberg’s inequality

$$||\nabla \tilde{U}_3||_{L^3(D(O, \rho_0); \mathbb{R}^2)} \leq C||\tilde{U}_3||_{H^2(D(O, \rho_0))}^{1/2}||\tilde{U}_3||_{L^6(D(O, \rho_0))}^{1/2}.$$

Together with estimates (4.5) and (4.6) we obtain

$$||\nabla \tilde{U}_3||_{L^3(D(O, \rho_0); \mathbb{R}^2)} \leq \frac{C}{\delta^{3/2}} \left[\mathbf{G}_s(u, \Omega_\delta) \right]^{1/2} \left[d(v, \Omega_\delta) \right]^{1/2} + \frac{C}{\delta} \mathbf{G}_s(u, \Omega_\delta)$$

Due to (4.6) and to the above inequality we get

$$||\tilde{U}_3||_{W^{1,3}(D(O, \rho_0))} \leq \frac{C}{\delta^{3/2}} \left[\mathbf{G}_s(u, \Omega_\delta) \right]^{1/2} \left[d(v, \Omega_\delta) \right]^{1/2} + \frac{C}{\delta} \mathbf{G}_s(u, \Omega_\delta) + \frac{C}{\delta^{3/2}} d(v, \Omega_\delta)$$

which in turn shows that the estimate on $U_3(0, 0)$ holds true.

Step 3. We prove the estimate on $Q(0)$. We recall (see Definition 3 in [22]) that the field Q is defined by

$$Q_1(x_3) = \frac{4}{\pi \varepsilon^4} \int_{D_\varepsilon} x_1 u_3(x) dx_1 dx_2, \quad Q_2(x_3) = -\frac{4}{\pi \varepsilon^4} \int_{D_\varepsilon} x_2 u_3(x) dx_1 dx_2,$$

$$Q_3(x_3) = \frac{2}{\pi \varepsilon^4} \int_{D_\varepsilon} \left\{ x_1 u_2(x) - x_2 u_1(x) \right\} dx_1 dx_2, \quad \text{for a.e. } x_3 \in [-\delta, L].$$

Now, again using the equalities (3.3) and (3.10) on the warpings \bar{u} and \bar{w}, the two decompositions (4.11) of u in the cylinder $C_{\delta, \varepsilon}$ lead to

$$\left| \frac{\varepsilon^2}{4} M_{I_3}(Q_3) \right| = \left| M_{D_\delta}(U_3 x_3) \right|, \quad \left| \frac{\varepsilon^2}{2} M_{I_3}(Q_3) \right| = \left| M_{D_\delta}(U_2 x_1 - U_1 x_2) \right|.$$

Noticing that $M_{D_\delta}(U_1 x_2) = M_{D_\delta}(U_1 - M_{D_\delta}(U_1) x_2)$ and applying the Poincaré-Wirtinger’s inequality with (3.5) yield

$$\left| M_{I_3}(Q_3) \right|^2 \leq \frac{C}{\varepsilon^2 \delta} \left[\mathbf{G}_s(u, \Omega_\delta) \right]^2.$$ (4.23)

From the definition of the function Ψ and the constants r_α introduced in Step 1 we deduce that

$$\left| M_{D_\delta}(U_3 x_3) \right| \leq \left| M_{D_\delta}(\Psi x_3) \right| + \left| M_{D_\delta}(U_3 - \bar{U}_3 x_3) \right| + C \varepsilon^2 |r_\alpha|.$$ (4.24)
Estimate (4.19) give

$$|\mathcal{M}_{D_\varepsilon}(\Psi x_\alpha)|^2 \leq C\varepsilon^2 \left(1 + \frac{\varepsilon^2}{\delta^2}\right) [G_s(u, \Omega_\delta)]^2$$ \hspace{1cm} (4.25)$$

while (3.5) leads to

$$|r_\alpha|^2 \leq \frac{C}{\varepsilon^2} ||\mathcal{R}||^2_{L^2(D_\varepsilon;\mathbb{R}^3)} \leq \frac{C}{\varepsilon} ||\mathcal{R}||^2_{L^4(D_\varepsilon;\mathbb{R}^3)} \leq \frac{C}{\varepsilon \delta^2} [G_s(u, \Omega_\delta)]^2$$ \hspace{1cm} (4.26)$$

and (4.3) with the Poincaré-Wirtinger’s inequality yield

$$|\mathcal{M}_{D_\varepsilon}([U_3 - \tilde{U}_3]x_\alpha)|^2 \leq \frac{C\varepsilon^2}{\delta} [G_s(u, \Omega_\delta)]^2$$ \hspace{1cm} (4.27)$$

Finally, (4.24), (4.25), (4.26) and (4.27) we obtain

$$|\mathcal{M}_{I_\delta}(Q_\alpha)|^2 \leq \frac{C}{\varepsilon^2\delta} \left(1 + \frac{\varepsilon}{\delta^2}\right) [G_s(u, \Omega_\delta)]^2$$ \hspace{1cm} (4.28)$$

The third estimate in (3.9) implies

$$\|Q(0) - \mathcal{M}_{I_\delta}(Q)\|^2 \leq \frac{C\delta}{\varepsilon^2}[G_s(u, B_{\varepsilon,\delta})]^2.$$ \hspace{1cm} (4.29)$$

From (4.28) and (4.29) we get (4.10).

\[\square\]

5 Elastic structure.

In this section we assume that the structure $S_{\delta,\varepsilon}$ is made of an elastic material. The associated local energy $\hat{W}_\varepsilon : S_{\delta,\varepsilon} \times X_3 \rightarrow \mathbb{R}^+$ is the following St Venant-Kirchhoff’s law (see [9])

$$\hat{W}_\varepsilon(x, F) = \begin{cases} Q_\varepsilon(x, F^T F - I_3) & \text{if } \det(F) > 0 \\ +\infty & \text{if } \det(F) \leq 0. \end{cases}$$ \hspace{1cm} (5.1)$$

where the quadratic form $Q_\varepsilon(x, \cdot)$ is given by

$$Q_\varepsilon(x, E) = \begin{cases} Q_p(E) & \text{if } x \in \Omega_\delta \setminus C_{\delta,\varepsilon}, \\ q^2 Q_r(E) & \text{if } x \in B_{\varepsilon,\delta} \setminus C_{\delta,\vepsilon}, \\ Q_p(E) & \text{if } x \in C_{\delta,\vepsilon} \text{ and } q_\varepsilon \leq 1, \\ q^2 Q_r(E) & \text{if } x \in C_{\delta,\vepsilon} \text{ and } q_\varepsilon > 1. \end{cases}$$

with

$$Q_p(E) = \frac{\lambda_p}{8} \left(\text{tr}(E)\right)^2 + \frac{\mu_p}{4} \text{tr}(E^2), \quad Q_r(E) = \frac{\lambda_r}{8} \left(\text{tr}(E)\right)^2 + \frac{\mu_r}{4} \text{tr}(E^2).$$ \hspace{1cm} (5.2)$$

11
and where \((\lambda_p, \mu_p)\) (resp. \((q^2 \lambda_r, q^2 \mu_r)\)) are the Lamé’s coefficients of the plate (resp. the rod). The constant \(q \varepsilon\) depends only on the rod, we set \(q \varepsilon = \varepsilon \eta\), the parameter \(\eta\) being such that

- \(\eta = 0\) for the same order for the the Lamé’s coefficients in the plate and the rod,
- \(\eta > 0\) for a softer material in the rod than in the plate,
- \(\eta < 0\) for a softer material in the plate than in the rod.

Observe that the definition of \(Q_\varepsilon(x, E)\) shows that

\[
Q_\varepsilon(x, E) \geq \mu \left(1_{\Omega_\delta}(x) + 1_{B_\varepsilon,\delta}(x)q^2 \varepsilon \right) \text{tr}(E^2)
\]

for a.e. \(x \in S_{\delta,\varepsilon}\) and \(\forall E \in X_3\),

where

\[
\bar{\mu} = \inf\{\mu_p, \mu_r\} / 8. \tag{5.4}
\]

Let us recall (see e.g. [18] or [7]) that for any \(3 \times 3\) matrix \(F\) such that \(\det(F) > 0\) we have

\[
\text{tr}([F^T F - I_3]^2) = \|\| F^T F - I_3 \|\|_2^2 \geq \text{dist}(F, SO(3))^2. \tag{5.5}
\]

We define the total energy \(J_\delta(v)\) over \(\mathcal{D}_{\delta,\varepsilon}\) by

\[
J_\delta(v) = \int_{S_{\delta,\varepsilon}} \hat{W}_\varepsilon(x, \nabla v)(x)dx - \int_{S_{\delta,\varepsilon}} f_\delta(x) \cdot (v(x) - I_d(x))dx. \tag{5.6}
\]

5.1 Relations between \(\delta, \varepsilon\) and \(q_\varepsilon\).

In Section Subsection 5.2 we scale the applied forces in order to have the infimum of this total energy of order \(\delta^{2\kappa - 1}\) with \(\kappa \geq 3\). In such way, the minimizing sequences \((v_\delta)\) satisfy

\[
\| \nabla v_\delta^T \nabla v_\delta - I_3\|_{L^2(\Omega_\delta; \mathbb{R}^{3x3})} \leq C \delta^{\kappa - 1/2}, \quad \| \nabla v_\delta^T \nabla v_\delta - I_3\|_{L^2(B_{\varepsilon,\delta}; \mathbb{R}^{3x3})} \leq C \delta^{\kappa - 1/2} / q_\varepsilon.
\]

The above estimate in the plate \(\Omega_\delta\) leads to the Von Kármán limit model \((\kappa = 3)\) or the classical linear plate model \((\kappa > 3)\). Since we wish at least to recover the linear model in the rod which corresponds to a Green-St Venant’s strain tensor in the rod of order \(\varepsilon^{\kappa'}\) with \(\kappa' > 3\), we are led to assume that

\[
\delta^{\kappa - 1/2} = q_\varepsilon \varepsilon^{\kappa'}. \tag{5.7}
\]

\footnote{For later convenience, we have added the term \(\int_{S_{\delta,\varepsilon}} f_\delta(x) \cdot I_d(x)dx\) to the usual standard energy, indeed this does not affect the minimizing problem for \(J_\delta\).}
Furthermore, still for the above estimates of the Green-St Venant’s strain tensors, the bending in the plate is of order $\delta^k - 2$ and the stretching in the rod is of order $\varepsilon^{k - 1}$. In this paper, we wish these two quantities to match at the junction it is essential to have

$$\delta^k - 2 = \varepsilon^{k - 1}. \quad (5.8)$$

As a consequence of the above relations (5.7) and (5.8) we deduce that

$$\delta^3 = q^2 \varepsilon^2 = \varepsilon^{2\eta + 2} \quad (5.9)$$

which implies that η must be chosen such that $\eta > -1$.

From now on we assume that (5.9) holds true and to recover a slightly general model in the rod we extend the analysis to $\kappa \geq 3$.

5.2 Assumptions on the forces and energy estimate.

Let $v \in \mathbb{D}_{\delta, \varepsilon}$ be a deformation. The estimate (4.5) and those in Lemma 4.1 yield

$$|W_\alpha(0)|^2 \leq \frac{C}{\varepsilon \delta} [G_s(u, \Omega_\delta)]^2 + C [1 + \delta^2] \frac{\delta}{\varepsilon^2} [G_s(u, B_{\varepsilon, \delta})]^2,$$

$$|W_\beta(0)|^2 \leq \frac{C}{\delta^2} [1 + \varepsilon^2] [G_s(u, \Omega_\delta)]^2 + C \frac{\delta}{\varepsilon^2} [G_s(u, B_{\varepsilon, \delta})]^2 + \frac{C}{\delta^3} G_s(u, \Omega_\delta)d(v, \Omega_\delta) + \frac{C}{\delta^3} [d(v, \Omega_\delta)]^2,$$

$$||Q(0)||_2^2 \leq \frac{C}{\varepsilon^2 \delta^2} [1 + \varepsilon^2] [G_s(u, \Omega_\delta)]^2 + C \frac{\varepsilon^2}{\delta^2} [G_s(u, \Omega_\delta)]^2.$$ \hspace{1cm} (5.10)

The following lemma gives the estimates of the displacement $u = v - I_d$ in the rod $B_{\varepsilon, \delta}$.

Lemma 5.1. For any deformation $v \in \mathbb{D}_{\delta, \varepsilon}$ the displacement $u = v - I_d$ satisfies the following Korn’s type inequality in the rod $B_{\varepsilon, \delta}$:

$$||u_\alpha||_{L^2(B_{\varepsilon, \delta})}^2 \leq \frac{C}{\varepsilon^2} [G_s(u, B_{\varepsilon, \delta})]^2 + C \frac{\varepsilon^2 + \delta^2}{\delta^2} [G_s(u, \Omega_\delta)]^2,$$

$$||u_\beta||_{L^2(B_{\varepsilon, \delta})}^2 \leq C [G_s(u, B_{\varepsilon, \delta})]^2 + C \frac{\varepsilon^2 + \delta^2}{\delta^2} [G_s(u, \Omega_\delta)]^2 + \frac{C}{\delta^2} G_s(u, \Omega_\delta)d(v, \Omega_\delta) + \frac{C}{\delta^2} [d(v, \Omega_\delta)]^2,$$

$$||\nabla u||_{L^2(B_{\varepsilon, \delta}; \mathbb{R}^3)}^2 \leq \frac{C}{\varepsilon^2} [G_s(u, B_{\varepsilon, \delta})]^2 + C \frac{\varepsilon^2 + \delta^2}{\delta^2} [G_s(u, \Omega_\delta)]^2,$$

$$||u - W||_{L^2(B_{\varepsilon, \delta}; \mathbb{R}^3)}^2 \leq C [G_s(u, B_{\varepsilon, \delta})]^2 + C \frac{(\varepsilon^2 + \delta^2)\varepsilon^2}{\delta^2} [G_s(u, \Omega_\delta)]^2.$$

Proof. We define the rigid displacement r by $r(x) = W(0) + Q(0) \mathbb{1}$. Hence, we have

$$||r_\alpha||_{L^2(B_{\varepsilon, \delta}; \mathbb{R}^3)} \leq C\varepsilon (|W(0)| + ||Q(0)||_2),$$

$$||r_\beta||_{L^2(B_{\varepsilon, \delta}; \mathbb{R}^3)} \leq C\varepsilon|W(0)| + C\varepsilon^2 ||Q(0)||_2,$$

$$||\nabla r||_{L^2(B_{\varepsilon, \delta}; \mathbb{R}^3)} \leq C \varepsilon ||Q(0)||_2.$$ \hspace{1cm} (5.12)
Besides, from (3.11) we obtain the following inequalities for the displacement $u - r$:

$$||u_\alpha - r_\alpha||_{L^2(B_{\varepsilon,\delta})} \leq \frac{C}{\varepsilon} G_s(u, B_{\varepsilon,\delta}),$$

$$||u_3 - r_3||_{L^2(B_{\varepsilon,\delta})} \leq C G_s(u, B_{\varepsilon,\delta}),$$

$$||\nabla u - \nabla r||_{L^2(B_{\varepsilon,\delta} ; \mathbb{R}^p)} \leq \frac{C}{\varepsilon} G_s(u, B_{\varepsilon,\delta}).$$

which lead to the first third estimates in (5.11) using (5.12). Before obtaining the estimate of $u - \mathcal{W}$ we write (see (3.8))

$$u(x) - \mathcal{W}(x_3) = (Q(x_3) - Q(0)) \land (x_1 \mathbf{e}_1 + x_2 \mathbf{e}_2) + \pi(x) \land (x_1 \mathbf{e}_1 + x_2 \mathbf{e}_2).$$

Then, due to the estimates (3.9), (3.11) and (5.10) we finally get the last inequality in (5.11).

The following lemma is one of the key point of this article in order to obtain a priori estimates on minimizing sequences of the total energy.

Lemma 5.2. Let $v \in \mathbb{D}_{\delta,\varepsilon}$ be a deformation and $u = v - I_d$. We have

$$G_s(u, \Omega_\delta) \leq C d(v, \Omega_\delta) + C_1 \frac{[d(v, \Omega_\delta)]^2}{\delta^{5/2}} \quad (5.13)$$

and the following estimate on $G_s(u, B_{\varepsilon,\delta})$:

$$G_s(u, B_{\varepsilon,\delta}) \leq C d(v, B_{\varepsilon,\delta}) + C_2 \frac{[d(v, B_{\varepsilon,\delta})]^2}{\varepsilon^3} + C \left[\delta^2 + \varepsilon^{3/2} \right] \frac{[d(v, \Omega_\delta)]^2}{\varepsilon \delta^3}. \quad (5.14)$$

The constants C do not depend on δ and ε.

The proof is postponed in the Appendix.

As an immediate consequence of the Lemmas 5.1 and 5.2 we get the full estimates of the displacement $u = v - I_d$ in the rod.

Corollary 5.3. For any deformation v in $\mathbb{D}_{\delta,\varepsilon}$ the displacement $u = v - I_d$ satisfies the
following nonlinear Korn’s type inequality in the rod $B_{\varepsilon, \delta}$:

$$
||u_\alpha||_{L^2(B_{\varepsilon, \delta})} \leq C \frac{d(v, B_{\varepsilon, \delta})}{\varepsilon} + 2C_2 \frac{[d(v, B_{\varepsilon, \delta})]^2}{\varepsilon^4} + C \left[(\delta + \varepsilon^{1/2}) \frac{d(v, \Omega_\delta)}{\delta^{3/2}} + \left(\frac{\varepsilon^{1/2}}{\delta^4} + \frac{\delta^2 + \varepsilon^{3/2}}{\varepsilon^2 \delta^3} \right) [d(v, \Omega_\delta)]^2 \right]
$$

$$
\frac{d(v, B_{\varepsilon, \delta})}{\varepsilon} + 2C_2 \frac{[d(v, B_{\varepsilon, \delta})]^2}{\varepsilon^4} + C \left[(\delta + \varepsilon^{1/2}) \frac{d(v, \Omega_\delta)}{\delta^{3/2}} + \left(\frac{\varepsilon^{1/2}}{\delta^4} + \frac{\delta^2 + \varepsilon^{3/2}}{\varepsilon^2 \delta^3} \right) [d(v, \Omega_\delta)]^2 \right]
$$

$$
||u_3||_{L^2(B_{\varepsilon, \delta})} \leq C \frac{d(v, B_{\varepsilon, \delta})}{\varepsilon} + 2C_2 \frac{[d(v, B_{\varepsilon, \delta})]^2}{\varepsilon^3} + C \varepsilon \left[\frac{d(v, \Omega_\delta)}{\delta^{3/2}} + \frac{\delta^{1/2} + \varepsilon^{1/2}}{\delta^4} [d(v, \Omega_\delta)]^2 + \frac{[d(v, \Omega_\delta)]^{3/2}}{\delta^{11/4}} \right]
$$

$$
||\nabla u||_{L^2(B_{\varepsilon, \delta}; \mathbb{R}^3)} \leq C \frac{d(v, B_{\varepsilon, \delta})}{\varepsilon} + 2C_2 \frac{[d(v, B_{\varepsilon, \delta})]^2}{\varepsilon^4} + C \varepsilon \left[\frac{d(v, \Omega_\delta)}{\delta^{3/2}} + \frac{\delta^{1/2} + \varepsilon^{1/2}}{\delta^4} [d(v, \Omega_\delta)]^2 + \frac{[d(v, \Omega_\delta)]^{3/2}}{\delta^{11/4}} \right]
$$

$$
||u - W||_{L^2(B_{\varepsilon, \delta}; \mathbb{R}^3)} \leq C \frac{d(v, B_{\varepsilon, \delta})}{\varepsilon} + 2C_2 \frac{[d(v, B_{\varepsilon, \delta})]^2}{\varepsilon^3} + C \varepsilon \left[\frac{d(v, \Omega_\delta)}{\delta^{3/2}} + \frac{\delta^{1/2} + \varepsilon^{1/2}}{\delta^4} [d(v, \Omega_\delta)]^2 + \frac{[d(v, \Omega_\delta)]^{3/2}}{\delta^{11/4}} \right]
$$

First assumptions on the forces. To introduce the scaling on f_δ, let us consider f_r, g_1, g_2 in $L^2(0, L; \mathbb{R}^3)$ and $f_p \in L^2(\omega; \mathbb{R}^3)$ and assume that the force f_δ is given by

$$
f_\delta(x) = \varepsilon^{\kappa} \left[f_{r,1}(x_3) e_1 + f_{r,2}(x_3) e_2 + \frac{1}{\varepsilon} f_{r,3}(x_3) e_3 + \frac{x_1}{\varepsilon^2} g_1(x_3) + \frac{x_2}{\varepsilon^2} g_2(x_3) \right],
$$

$$
x \in B_{\varepsilon, \delta}, \quad x_3 > \delta, \quad f_{r,\alpha}(x) = \delta^{\kappa - 1} f_{p,\alpha}(x_1, x_2), \quad f_{\delta,\alpha}(x) = \delta^{\kappa} f_{p,\alpha}(x_1, x_2), \quad x \in \Omega_\delta. \quad (5.15)
$$

We set

$$
N(f_p) = ||f_p||_{L^2(\omega; \mathbb{R}^3)}, \quad N(f_r) = ||f_r||_{L^2(0, L; \mathbb{R}^3)} + \sum_{\alpha=1}^2 ||g_\alpha||_{L^2(0, L; \mathbb{R}^3)}.
$$

We recall that $\overline{\mu}$ is defined in (5.4).

Lemma 5.4. Let $v \in \mathbb{D}_{\delta, \varepsilon}$ be such that $J_\varepsilon(v) \leq 0$ and $u = v - I_d$. Under the assumption (5.15) on the applied forces, we have

- if $\kappa > 3$ and $\kappa' > 3$ then

$$
\frac{d(v, \Omega_\delta) + q_\delta d(v, B_{\varepsilon, \delta})}{\varepsilon} \leq C \delta^{\kappa - 1/2} (N(f_p) + N(f_r) + [N(f_r)]^2), \quad (5.17)
$$
• If \(\kappa = 3 \) and \(\kappa' > 3 \) then there exists a constant \(C^* \) which does not depend on \(\delta \) and \(\varepsilon \) such that, if the forces applied to the plate \(\Omega_\delta \) satisfy
\[
N(f_p) < C^* \mu
\]
then \((5.17) \) still holds true,
• If \(\kappa > 3 \) and \(\kappa' = 3 \) then there exists a constant \(C^{**} \) which does not depend on \(\delta \) and \(\varepsilon \) such that, if the forces applied to the rod \(B_{\varepsilon, \delta} \) satisfy
\[
N(f_r) < C^{**} \mu
\]
then \((5.17) \) still holds true,
• If \(\kappa = 3 \) and \(\kappa' = 3 \) then if the applied forces satisfy \((5.18) \) and \((5.19) \) then \((5.17) \) still holds true.

The constants \(C, C^* \) and \(C^{**} \) depend only on \(\omega \) and \(L \).

Recall that we want a geometric energy in the plate \(d(v, \Omega_\delta) \) of order less than \(\delta^{5/2} \) in order to obtain a limit Von Kármán plate model. Lemma 5.4 prompts us to adopt the conditions \((5.18) \) if \(\kappa = 3 \) and \((5.19) \) if \(\kappa' = 3 \). Let us notice that in the case \(\kappa = 3 \) under the only assumption \((5.15) \) on the body forces (i.e. without assumption \((5.18) \)) the geometric energy is generally of order \(\delta^{3/2} \) which corresponds to a limit model allowing large deformations (see [10]).

Second assumptions on the forces. From now on, in the whole paper we assume that

• If \(\kappa = 3 \) then
\[
N(f_p) < C^* \mu, \tag{5.20}
\]

• If \(\kappa' = 3 \) then
\[
N(f_r) < C^{**} \mu. \tag{5.21}
\]

Proof. Proof of Lemma 5.4. Notice that \(J_\delta(I_d) = 0 \). So, in order to minimize \(J_\delta \) we only need to consider deformations \(v \) of \(D_{\delta, \varepsilon} \) such that \(J_\delta(v) \leq 0 \). From \((3.6) \) and the assumptions \((5.15) \) on the body forces, we obtain for any \(v \in D_{\delta, \varepsilon} \) and for \(u = v - I_d \)
\[
\left| \int_{S_{\delta, \varepsilon}} f_\delta(x) \cdot u(x) dx \right| \leq C_0 \delta^{\kappa-1/2} N(f_p) G_\delta(u, \Omega_\delta) + \sqrt{\pi} q_\varepsilon^2 \varepsilon^{\kappa' + 1} \left(\frac{1}{\varepsilon} ||f_r,3||_{L^2(0,L)} ||u_3||_{L^2(B_{\varepsilon, \delta})} \right.
\]
\[
+ \sum_{\alpha=1}^2 \left(||f_r,\alpha||_{L^2(0,L)} ||u_\alpha||_{L^2(B_{\varepsilon, \delta})} + ||g_\alpha||_{L^2(0,L;\mathbb{R}^3)} ||u - W||_{L^2(B_{\varepsilon, \delta};\mathbb{R}^3)} \right). \tag{5.22}
\]

16
Now we use (5.13) and Corollary 5.3 and the relations (5.7)-(5.9) to obtain
\[
\left| \int_{S_{k,c}} f_\delta(x) \cdot u(x) dx \right| \leq C_1 C_0 \delta^{k-3} N(f_\delta) |d(v, \Omega_\delta)|^2 \\
+ C \left[\delta^{1/2} + \varepsilon^{1/2} \right] \delta^{k-3} N(f_\delta) |d(v, \Omega_\delta)|^2 \\
+ C \delta^{k-7/4} N(f_\delta) |d(v, \Omega_\delta)|^{3/2} \\
+ 2C_2 \sqrt{\pi} \varepsilon C \delta^{k-3} N(f_\delta) |d(v, B_{\varepsilon, \delta})|^2 \\
+ C \delta^{k-1/2} \{ N(f_\delta) + N(f_\delta) \} d(v, \Omega_\delta) \\
+ C q_\delta^2 \varepsilon \delta' N(f_\delta) d(v, B_{\varepsilon, \delta}).
\] (5.23)

From (5.1), (5.3) and (5.5) we have
\[
\mu \left(|d(v, \Omega_\delta)|^2 + q_\delta^2 |d(v, B_{\varepsilon, \delta})|^2 \right) \leq \int_{S_{k,c}} \hat{W}_\delta(x, \nabla v)(x) dx \leq \int_{S_{k,c}} f_\delta(x) \cdot u(x) dx. \] (5.24)

Then using (5.23) and observing that for any $X \geq 0$ we have
\[
C \delta^{k-7/4} N(f_\delta) X^{3/2} \leq \frac{\mu}{2} \delta^{k-3} X^2 + \frac{2C^2 [N(f_\delta)]^2}{\mu} \delta^{k-1/2} X
\]
we get
\[
\left[\frac{\mu}{2} - C_1 C_0 \delta^{k-3} N(f_\delta) - C \left(\delta^2 + \varepsilon^2 \right) \left(\delta^{k-3} + \delta^{1/2} + \varepsilon^{1/2} \right) N(f_\delta) \right] |d(v, \Omega_\delta)|^2 \\
+ \left[\frac{\mu}{2} - 2C_2 \sqrt{\pi} \varepsilon \delta' N(f_\delta) \right] q_\delta^2 |d(v, B_{\varepsilon, \delta})|^2 \\
\leq C \delta^{k-1/2} \left\{ N(f_\delta) + N(f_\delta) + [N(f_\delta)]^2 \right\} d(v, \Omega_\delta) + C q_\delta^2 \varepsilon \delta' N(f_\delta) d(v, B_{\varepsilon, \delta}) \\
\leq C \delta^{k-1/2} \left\{ N(f_\delta) + N(f_\delta) + [N(f_\delta)]^2 \right\} (d(v, \Omega_\delta) + q_\delta d(v, B_{\varepsilon, \delta})). \] (5.25)

Now, recall that $k \geq 3$ and $\kappa' \geq 3$, so that first $\left[\delta^2 + \varepsilon^{3/2} \right] \varepsilon^{\kappa'} - 3 + \left[\delta^{1/2} + \varepsilon^{1/2} \right] \delta^{k-3} \to 0$. Secondly, setting $C^* = 1/(2C_1 C_0)$ and $C^{**} = 1/(2C_2 \sqrt{\pi})$ then (5.17) holds true in any case of the lemma.

Recalling that $\delta^{k-1/2} = q_\delta \varepsilon \delta'$, we first deduce from Lemma 5.4
\[
d(v, \Omega_\delta) \leq C \delta^{k-1/2}, \quad d(v, B_{\varepsilon, \delta}) \leq C \varepsilon \delta'. \] (5.26)

Then applying (5.13) of Lemma 5.2 we obtain
\[
G_s(u, \Omega_\delta) \leq C \delta^{k-1/2} \] (5.27)
while (5.14) gives
\[
G_s(u, B_{\varepsilon, \delta}) \leq C \delta^{\kappa'} + C \left[\delta^2 + \varepsilon^{3/2} \right] \frac{|d(v, \Omega_\delta)|^2}{\varepsilon \delta^3} \leq C \delta^{\kappa'} + C \left[\delta^2 + \varepsilon^{3/2} \right] \frac{\delta^{2k-4}}{\varepsilon} \]
and using (5.8) yields
\[\mathbf{G}_s(u, B_{\varepsilon,\delta}) \leq C\varepsilon^{\kappa}. \] (5.28)

Finally for any deformation \(v \in \mathcal{D}_{\delta,\varepsilon} \) and \(u = v - I_d \) such that \(J(v) \leq 0 \) we have
\[\int_{S_{\delta,\varepsilon}} f_{\delta} \cdot u \leq C\delta^{2\kappa-1}. \] (5.29)

Moreover, the above inequality together with (5.24) show that
\[\int_{S_{\delta,\varepsilon}} \mathbf{\hat{W}}_\varepsilon(x, \nabla v)(x)dx \leq C\delta^{2\kappa-1} \] (5.30)
which in turn leads to
\[\| \nabla^T \nabla v - I_3 \|_{L^2(\Omega_{\delta}; \mathbb{R}^{3 \times 3})} \leq C\delta^{\kappa-1/2}, \quad \| \nabla^T \nabla v - I_3 \|_{L^2(B_{\varepsilon,\delta}; \mathbb{R}^{3 \times 3})} \leq C\varepsilon^{\kappa'}. \] (5.31)

From (5.29) we also obtain
\[c\delta^{2\kappa-1} \leq J_\delta(v) \leq 0. \] (5.32)

We set
\[m_\delta = \inf_{v \in \mathcal{D}_{\delta,\varepsilon}} J_\delta(v). \] (5.33)

In general, a minimizer of \(J_\delta \) does not exist on \(\mathcal{D}_{\delta,\varepsilon} \). As a consequence of (5.32) we have
\[c \leq \frac{m_\delta}{\delta^{2\kappa-1}} \leq 0. \]

6 **Limits of the Green-St Venant’s strain tensors.**

In this subsection and the following one, we consider a sequence of deformations \((v_\delta) \) belonging to \(\mathcal{D}_{\delta,\varepsilon} \) and satisfying \((u_\delta = v_\delta - I_d) \)
\[\mathbf{G}_s(u_\delta, \Omega_\delta) \leq C\delta^{\kappa-1/2}, \quad \mathbf{G}_s(u_\delta, B_{\varepsilon,\delta}) \leq C\varepsilon^{\kappa'}. \]

For any open subset \(\mathcal{O} \subset \mathbb{R}^2 \) and for any field \(\psi \in H^1(\mathcal{O}; \mathbb{R}^3) \), we denote
\[\gamma_{\alpha\beta}(\psi) = \frac{1}{2} \left(\frac{\partial \psi_\alpha}{\partial x_\beta} + \frac{\partial \psi_\beta}{\partial x_\alpha} \right), \quad (\alpha, \beta) \in \{1, 2\}. \] (6.1)

6.1 **The rescaling operators.**

Before rescaling the domains, we introduce the reference domain \(\Omega \) for the plate and the one \(B \) for the rod
\[\Omega = \omega \times]1, 1[, \quad B = D \times]0, L[= D(O, 1) \times]0, L[. \]
As usual when dealing with thin structures, we rescale Ω and $B_{\varepsilon,\delta}$ using -for the plate-the operator

$$\Pi_\delta(w)(x_1, x_2, X_3) = w(x_1, x_2, \delta X_3)$$

for any $(x_1, x_2, X_3) \in \Omega$
defined for e.g. $w \in L^2(\Omega_\delta)$ for which $\Pi_\delta(w) \in L^2(\Omega)$ and using -for the rod- the operator

$$P_\varepsilon(w)(X_1, X_2, x_3) = w(\varepsilon X_1, \varepsilon X_2, x_3)$$

defined for e.g. $w \in L^2(B_{\varepsilon,\delta})$ for which $P_\varepsilon(w) \in L^2(B)$.

6.2 Asymptotic behavior in the plate.

Following Section 2 we decompose the restriction of $u_\delta = v_\delta - I_\delta$ to the plate. The Theorem 3.1 gives U_δ, R_δ and \overline{u}_δ, then estimates (3.5) lead to the following convergences for a subsequence still indexed by δ

$$\begin{align*}
\frac{1}{\delta^{\kappa-2}} U_{3,\delta} & \rightarrow U_3 \quad \text{strongly in } H^1(\omega), \\
\frac{1}{\delta^{\kappa-1}} U_{\alpha,\delta} & \rightharpoonup U_\alpha \quad \text{weakly in } H^1(\omega), \\
\frac{1}{\delta^{\kappa-2}} R_\delta & \rightharpoonup R \quad \text{weakly in } H^1(\omega; \mathbb{R}^3), \\
\frac{1}{\delta^{\kappa}} \Pi_\delta(\overline{u}_\delta) & \rightharpoonup \overline{u} \quad \text{weakly in } L^2(\omega; H^1(-1, 1; \mathbb{R}^3)), \\
\frac{1}{\delta^{\kappa-1}} \left(\frac{\partial U_\delta}{\partial x_\alpha} - R_\delta \wedge e_\alpha \right) & \rightharpoonup Z_\alpha \quad \text{weakly in } L^2(\omega; \mathbb{R}^3),
\end{align*}$$

The boundary conditions (3.4) give here

$$U_3 = 0, \quad U_\alpha = 0, \quad R = 0 \quad \text{on } \gamma_0,$$

while (6.2) show that $U_3 \in H^2(\omega)$ with

$$\frac{\partial U_3}{\partial x_1} = -R_2, \quad \frac{\partial U_3}{\partial x_2} = R_1.$$

We also have

$$\begin{align*}
\frac{1}{\delta^{\kappa-1}} \Pi_\delta(u_{\alpha,\delta}) & \rightarrow U_\alpha - X_3 \frac{\partial U_3}{\partial x_\alpha} \quad \text{weakly in } H^1(\Omega), \\
\frac{1}{\delta^{\kappa-2}} \Pi_\delta(u_{3,\delta}) & \rightarrow U_3 \quad \text{strongly in } H^1(\Omega)
\end{align*}$$

which shows that the rescaled limit displacement is a Kirchhoff-Love displacement.

In [8] the limit of the Green-St Venant’s strain tensor of the sequence v_δ is also derived. Let us set

$$\overline{u}_p = \overline{u} + \frac{X_3}{2} (Z_1 \cdot e_3) e_1 + \frac{X_3}{2} (Z_2 \cdot e_3) e_2$$

(6.6)
and
\[Z_{\alpha\beta} = \begin{cases}
\gamma_{\alpha\beta}(U) + \frac{1}{2} \partial U_3 \partial U_3, & \text{if } \kappa = 3, \\
\gamma_{\alpha\beta}(U) & \text{if } \kappa > 3.
\end{cases} \tag{6.7} \]

Then we have
\[\frac{1}{2\delta^{\kappa-1}} \Pi_\delta((\nabla_x v_\delta)^T \nabla_x v_\delta - I_3) \rightharpoonup E_p(U, \overline{u}_p) \quad \text{weakly in } L^1(\Omega; \mathbb{R}^9), \]

where the symmetric matrix \(E_p(U, \overline{u}_p) \) is defined by
\[E_p(U, \overline{u}_p) = \begin{pmatrix}
-X_3 \frac{\partial^2 U_3}{\partial x_1^2} + Z_{11} & -X_3 \frac{\partial^2 U_3}{\partial x_1 \partial x_2} + Z_{12} & \frac{1}{2} \frac{\partial \overline{u}_p,1}{\partial X_3} \\
* & -X_3 \frac{\partial^2 U_3}{\partial x_2^2} + Z_{22} & \frac{1}{2} \frac{\partial \overline{u}_p,2}{\partial X_3} \\
* & * & \frac{1}{2} \frac{\partial \overline{u}_p,3}{\partial X_3}
\end{pmatrix} \tag{6.8} \]

6.3 Asymptotic behavior in the rod.

Now, we decompose the restriction of \(u_\delta = v_\delta - I_d \) to the rod. The Theorem 3.2 in the text gives \(W_\delta, Q_\delta \) and \(\overline{w}_\delta \); then the estimates in (3.11), (5.10) allow to claim that

\[||\overline{w}_\delta||_{L^2(B_{\delta,\delta}; \mathbb{R}^3)} \leq C \varepsilon^{\kappa'-1}, \quad ||\nabla \overline{w}_\delta||_{L^2(B_{\delta,\delta}; \mathbb{R}^3)} \leq C \varepsilon^{\kappa'}, \]

\[||Q_\delta - Q_\delta(0)||_{H^1(-\delta, L; \mathbb{R}^3)} \leq C \varepsilon^{\kappa'-2}, \quad \left\| \frac{dW_\delta}{dx_3} - Q_\delta \wedge e_3 \right\|_{L^2(-\delta, L; \mathbb{R}^3)} \leq C \varepsilon^{\kappa'-1}, \]

\[||W_{\delta,3} - W_{\delta,3}(0)||_{H^1(-\delta, L; \mathbb{R}^3)} \leq C \varepsilon^{\kappa' - 1}, \]

\[||W_\delta - W_\delta(0) - Q_\delta(0) x_3 \wedge e_3||_{H^1(-\delta, L; \mathbb{R}^3)} \leq C \varepsilon^{\kappa'-2}. \]

Moreover from (4.8) and (5.10) we get

\[|W_{\alpha,\delta}(0)| \leq C \delta^{1/2}(\delta + \varepsilon^{1/2}) \varepsilon^{\kappa'-2}, \]

\[|W_{3,\delta}(0) - \tilde{U}_{3,\delta}(0,0)| \leq C(\delta^{1/2} + \varepsilon) \varepsilon^{\kappa'-1}, \tag{6.10} \]

\[||Q_\delta(0)||_2 \leq C(\delta^{1/2} + \varepsilon^{1/2}) \varepsilon^{\kappa'-2}. \]

Due to the above estimates we are in a position to prove the following lemma:
Lemma 6.1. There exists a subsequence still indexed by δ such that
\[
\begin{align*}
\frac{1}{\varepsilon^{\kappa'-2}} W_{\alpha,\delta} &\rightarrow W_{\alpha} \text{ strongly in } H^1(0, L), \\
\frac{1}{\varepsilon^{\kappa'-1}} W_{3,\delta} &\rightharpoonup W_3 \text{ weakly in } H^1(0, L), \\
\frac{1}{\varepsilon^{\kappa'-2}} \mathcal{Q}_\delta &\rightharpoonup \mathcal{Q} \text{ weakly in } H^1(0, L; \mathbb{R}^3), \\
\frac{1}{\varepsilon^\kappa} P_{\varepsilon}(w_\delta) &\rightharpoonup w \text{ weakly in } L^2(0, L; H^1(D; \mathbb{R}^3)), \\
\frac{1}{\varepsilon^{\kappa'-1}} \left(\frac{\partial W_{5,1}}{\partial x_3} - \mathcal{Q}_{5,2} \right) &\rightharpoonup Z_1 \text{ weakly in } L^2(B), \\
\frac{1}{\varepsilon^{\kappa'-1}} \left(\frac{\partial W_{5,2}}{\partial x_3} + \mathcal{Q}_{6,1} \right) &\rightharpoonup Z_2 \text{ weakly in } L^2(B).
\end{align*}
\] (6.11)

We also have $W_\alpha \in H^2(0, L)$ and
\[
\frac{dW_1}{dx_3} = Q_2, \quad \frac{dW_2}{dx_3} = -Q_1.
\] (6.12)

The junction conditions
\[
W_\alpha(0) = 0, \quad Q(0) = 0, \quad W_3(0) = U_3(0, 0)
\] (6.13)

hold true. Setting
\[
\overline{w} = \overline{w} + [X_1 Z_1 + X_2 Z_2] e_3
\] (6.14)

we have
\[
\frac{1}{2\varepsilon^{\kappa'-1}} P_{\varepsilon}((\nabla v_\delta)^T \nabla v_\delta - I_3) \rightharpoonup E_r(W, Q_3, \overline{w}_r) \text{ weakly in } L^1(B; \mathbb{R}^{3 \times 3}),
\] (6.15)

where the symmetric matrices $E_r(W, Q_3, \overline{w}_r)$ and $F(Q)$ are defined by
\[
E_r(W, Q_3, \overline{w}_r) = \begin{pmatrix}
\gamma_{11}(\overline{w}) & \gamma_{12}(\overline{w}) & -\frac{1}{2} X_2 \frac{dQ_3}{dx_3} + \frac{1}{2} \frac{\partial \overline{w}_r}{\partial x_3} \\
* & \gamma_{22}(\overline{w}) & \frac{1}{2} X_1 \frac{dQ_3}{dx_3} + \frac{1}{2} \frac{\partial \overline{w}_r}{\partial x_2} \\
* & * & -X_1 \frac{d^2 W_1}{dx_3^2} - X_2 \frac{d^2 W_2}{dx_3^2} + \frac{dW_3}{dx_3}
\end{pmatrix} + F(Q),
\]

with
\[
F(Q) = \begin{cases}
\frac{1}{2} (||Q||^2 I_3 - Q Q^T) & \text{if } \kappa' = 3, \\
0 & \text{if } \kappa' > 3.
\end{cases}
\] (6.16)
Proof. First, the estimates (6.9) and (6.10) imply that the sequences \(\frac{1}{\varepsilon^k - 2} W_{\alpha,\delta}, \frac{1}{\varepsilon^k - 1} W_{\delta,3} \) and \(\frac{1}{\varepsilon^k - 2} Q_{\delta} \) are bounded in \(H^1(0, L; \mathbb{R}^k) \), for \(k = 1 \) or \(k = 3 \). Taking into account also (6.9) and upon extracting a subsequence it follows that the convergences (6.11) hold together with (6.12). The first strong convergence in (6.11) is in particular a consequence of (6.9). The junction conditions on \(Q \) and \(W_{\alpha} \) are immediate consequences of (6.10) and the convergences (6.11).

In order to obtain the junction condition between the bending in the plate and the stretching in the rod, note first that the sequence \(\frac{1}{\varepsilon^k - 1} W_{\delta,3} \) converges strongly in \(H^1(\omega) \) to \(U_3 \) because of (4.3) and the first convergence in (6.2). Besides this sequence is uniformly bounded in \(H^2(D(O, \rho_0)) \), hence it converges strongly to the same limit \(U_3 \) in \(C^0(D(O, \rho_0)) \). Moreover the weak convergence of the sequence \(\frac{1}{\varepsilon^k - 1} W_{\delta,3} \) in \(H^1(0, L) \), implies the convergence of \(\frac{1}{\varepsilon^k - 1} W_{\delta,3}(0) \) to \(W_{\delta,3}(0) \). Using the third estimate in (6.10) gives the last condition in (6.13).

Once the convergences (6.11) are established, the limit of the rescaled Green-St Venant strain tensor of the sequence \(v_{\delta} \) is analyzed in [7] and it gives (6.16).

The above Lemma and the decomposition (3.8) lead to
\[
\begin{align*}
\frac{1}{\varepsilon^k - 2} &P_{\varepsilon}(u_{\alpha,\delta}) \xrightarrow{} W_{\alpha} \text{ strongly in } H^1(B), \\
\frac{1}{\varepsilon^k - 1} &P_{\varepsilon}(u_{1,\delta} - W_{1,\delta}) \rightharpoonup -X_2 Q_3 \text{ weakly in } H^1(B), \\
\frac{1}{\varepsilon^k - 1} &P_{\varepsilon}(u_{2,\delta} - W_{2,\delta}) \rightharpoonup X_1 Q_3 \text{ weakly in } H^1(B), \\
\frac{1}{\varepsilon^k - 1} &P_{\varepsilon}(u_{3,\delta} - W_{3,\delta}) \rightharpoonup W_3 - X_1 \frac{dW_1}{dx_3} - X_2 \frac{dW_2}{dx_3} \text{ weakly in } H^1(B),
\end{align*}
\]
which show that the limit rescaled displacement is a Bernoulli-Navier displacement.

7 Asymptotic behavior of the sequence \(\frac{m_{\delta}}{\delta^{2k-1}} \).

The goal of this section is to establish Theorem 7.2. Let us first introduce a few notations. We set
\[
\mathbb{D}_0 = \left\{ (U, W, Q_3) \in H^1(\omega; \mathbb{R}^3) \times H^1(0, L; \mathbb{R}^3) \times H^1(0, L) | \\
U_3 \in H^2(\omega), \ W_\alpha \in H^2(0, L), \ U = 0, \ \frac{\partial U_3}{\partial x_\alpha} = 0 \text{ on } \gamma_0, \right. \\
W_3(0) = U_3(0, 0), \ W_\alpha(0) = \frac{dW_\alpha}{dx_3}(0) = Q_3(0) = 0 \right\}
\]
We introduce below the "limit" rescaled elastic energies for the plate and the rod

\[
J_p(U) = \frac{E_p}{3(1-\nu_p^2)} \int_\omega \left[(1-\nu_p) \sum_{\alpha,\beta=1}^2 \left| \frac{\partial^2 U_3}{\partial x_\alpha \partial x_\beta} \right|^2 + \nu_p (\Delta U_3)^2 \right]
+ \frac{E_p}{(1-\nu_p^2)} \int_\omega \left[(1-\nu_p) \sum_{\alpha,\beta=1}^2 \left| Z_{\alpha\beta} \right|^2 + \nu_p (Z_{11} + Z_{22})^2 \right],
\]

(7.2)

\[
J_r(W, Q_3) = \frac{E_r \pi}{8} \int_0^L \left[\left| \frac{d^2 W_1}{dx_3^2} \right|^2 + \left| \frac{d^2 W_2}{dx_3^2} \right|^2 \right] + \frac{E_r \pi}{2} \left| \frac{dW_3}{dx_3} + F_{33} \right|^2
+ \frac{\mu_r \pi}{8} \int_0^L \left| \frac{dQ_3}{dx_3} \right|^2
\]

where the \(Z_{\alpha\beta}\)'s are given by

\[
Z_{\alpha\beta} = \begin{cases}
\gamma_{\alpha\beta}(U) + \frac{1}{2} \frac{\partial U_3}{\partial x_\alpha} \frac{\partial U_3}{\partial x_\beta}, & \text{if } \kappa = 3, \\
\gamma_{\alpha\beta}(U), & \text{if } \kappa > 3.
\end{cases}
\]

and where \(F_{33}\) is given by

\[
F_{33} = \begin{cases}
\frac{1}{2} \left(\left| \frac{dW_1}{dx_3} \right|^2 + \left| \frac{dW_2}{dx_3} \right|^2 \right) & \text{if } \kappa' = 3, \\
0 & \text{if } \kappa' > 3.
\end{cases}
\]

(7.3)

The total energy of the plate-rod structure is given by the functional \(J\) defined over \(D_0\)

\[
J(U, W, Q_3) = J_p(U) + J_r(W, Q_3) - L(U, W, Q_3)
\]

(7.4)

with

\[
L(U, W, Q_3) = 2 \int_\omega f_p \cdot U + \pi \int_0^L f_r \cdot W dx_3 + \frac{\pi}{2} \int_0^L g_\alpha \cdot (Q \wedge e_\alpha) dx_3
\]

(7.5)

where

\[
Q = -\frac{dW_2}{dx_3} e_1 + \frac{dW_1}{dx_3} e_2 + Q_3 e_3.
\]

(7.6)

It is worth noting that the functional \(J_p(U)\) corresponds to the elastic energy of a Von Kármán plate model for \(\kappa = 3\) (see e.g. [17]) and to the classical linear plate model for \(\kappa > 3\). Similarly the functional \(J_r(W, Q_3)\) corresponds to a nonlinear rod model derived in [7] for \(\kappa' = 3\) and to the classical linear rod model for \(\kappa' > 3\). Let us also notice that in the space \(D_0\) the bending in the plate is equal to the stretching in the rod at the junction while the bending and the section-rotation of the rod in the junction are equal to 0 (see (7.6)).

In the lemma below we give sufficient conditions on the applied forces in order to insure the existence of at least a minimizer of \(J\) (see [17] for a proof of the result for different boundary conditions for the displacement on \(\partial \omega\)).
Lemma 7.1. We have

• if $\kappa > 3$ and $\kappa' > 3$ then the minimization problem

$$\min_{(U, W, Q_3) \in D_0} J(U, W, Q_3)$$

(7.7)

admits an unique solution,

• if $\kappa = 3$ and $\kappa' > 3$ then there exists a constant C^*_p such that, if (f_{p1}, f_{p2}) satisfies

$$||f_{p1}||^2_{L^2(\omega)} + ||f_{p2}||^2_{L^2(\omega)} < C^*_p$$

(7.8)

then (7.7) admits at least a solution,

• if $\kappa > 3$ and $\kappa' = 3$ then there exists a constant C^{**}_r such that, if f_r satisfies

$$||f_r||_{L^2(0,L)} < C^{**}_r$$

(7.9)

then (7.7) admits at least a solution,

• if $\kappa = 3$ and $\kappa' = 3$ then if the applied forces (f_{p1}, f_{p2}) and f_r satisfy (7.8) and (7.9) then (7.7) admits at least a solution.

Proof. First, in the case $\kappa > 3$ and $\kappa' > 3$ the result is well known.

We prove the lemma in the case $\kappa = 3$ and $\kappa' = 3$. The two other cases are simpler and left to the reader.

Due to the boundary conditions on U_3 in D_0, we immediately have

$$||U_3||^2_{H^2(\omega)} \leq C J_p(U).$$

(7.10)

Then we get

$$\sum_{\alpha, \beta=1}^2 ||\gamma_{\alpha, \beta}(U)||^2_{L^2(\omega)} \leq J_p(U) + C ||\nabla U_3||^4_{L^4(\omega; \mathbb{R}^2)}$$

(7.11)

$$\leq J_p(U) + C [J_p(U)]^2.$$

Thanks to the 2D Korn’s inequality we obtain

$$||U_1||^2_{H^1(\omega)} + ||U_2||^2_{H^1(\omega)} \leq C J_p(U) + C_p [J_p(U)]^2.$$

(7.12)

Again, due to the boundary conditions on W_α and Q_3 in D_0, we immediately have

$$||W_1||^2_{H^2(0,L)} + ||W_2||^2_{H^2(0,L)} + ||Q_3||^2_{H^2(0,L)} \leq J_r(W, Q_3).$$

(7.13)

Then we get

$$\left\|\frac{dW_3}{dx_3}\right\|^2_{L^2(0,L)} \leq J_r(W, Q_3) + C\left\{ \left\|\frac{dW_1}{dx_3}\right\|^4_{L^4(0,L)} + \left\|\frac{dW_2}{dx_3}\right\|^4_{L^4(0,L)} \right\}$$

(7.14)

$$\leq J_r(W, Q_3) + C [J_r(W, Q_3)]^2.$$
From the above inequality and (7.10) we obtain

$$
\left\|W_3\right\|^2_{L^2(0,L)} \leq C|W_3(0)|^2 + C\left\|\frac{dW_3}{dx_3}\right\|^2_{L^2(0,L)} \leq C\mathcal{J}_p(U) + C\mathcal{J}_r(W, Q_3) + C_r[\mathcal{J}_r(W, Q_3)]^2.
$$

(7.15)

Since \(\mathcal{J}(0,0,0) = 0 \), let us consider a minimizing sequence \((U^{(N)}, W^{(N)}, Q_3^{(N)}) \in \mathbb{D}_0\) satisfying \(\mathcal{J}(U^{(N)}, W^{(N)}, Q_3^{(N)}) \leq 0 \)

$$
m = \inf_{(U,W,Q_3)\in \mathbb{D}_0} \mathcal{J}(U, W, Q_3) = \lim_{N \to +\infty} \mathcal{J}(U^{(N)}, W^{(N)}, Q_3^{(N)})
$$

where \(m \in [-\infty, 0] \).

With the help of (7.10)-(7.15) we get

$$
\begin{align*}
\mathcal{J}_p(U^{(N)}) + \mathcal{J}_r(W^{(N)}, Q_3^{(N)}) &\leq C||f_p3||\sqrt{\mathcal{J}_p(U^{(N)})} + (||f_p1||_{L^2(\omega)} + ||f_p2||_{L^2(\omega)})^{1/2}(C\sqrt{\mathcal{J}_p(U^{(N)})} + \sqrt{C_r}\mathcal{J}_p(U^{(N)})) \\
&+ \sum_{\alpha=1}^2 (||f_{\alpha1}||_{L^2(0,L)} + ||g_\alpha||_{L^2(0,L;\mathbb{R}^3)}) \sqrt{\mathcal{J}_r(W^{(N)}, Q_3^{(N)})} \\
&+ ||f_3||_{L^2(0,L)}(C\sqrt{\mathcal{J}_r(W^{(N)}, Q_3^{(N)})} + C\sqrt{\mathcal{J}_p(U^{(N)})} + \sqrt{C_r}\mathcal{J}_r(W^{(N)}, Q_3^{(N)}))
\end{align*}
$$

(7.16)

Choosing \(C^*_p = \frac{1}{C_p} \) and \(C^{**}_r = \frac{1}{\sqrt{C_r}} \), if the applied forces satisfy (7.8) and (7.9) then the following estimates hold true

$$
\begin{align*}
||U_3^{(N)}||_{H^2(\omega)} + ||U_1^{(N)}||_{H^1(\omega)} + ||U_2^{(N)}||_{H^1(\omega)} + ||W_1^{(N)}||_{H^0(0,L)} + ||W_2^{(N)}||_{H^0(0,L)} + ||Q_3^{(N)}||_{H^0(0,L)} &\leq C
\end{align*}
$$

(7.17)

where the constant \(C \) does not depend on \(N \).

As a consequence, there exists \((U^{(s)}, W^{(s)}, Q_3^{(s)}) \in \mathbb{D}_0\) such that for a subsequence

- \(U_3^{(N)} \to U_3^{(s)} \) weakly in \(H^2(\omega) \) and strongly in \(W^{1,4}(\omega) \),
- \(U_3^{(N)} \to U_3^{(s)} \) weakly in \(H^1(\omega) \),
- \(W_1^{(N)} \to W_1^{(s)} \) weakly in \(H^2(0,L) \) and strongly in \(W^{1,4}(0,L) \),
- \(Q_3^{(N)} \to 0 \) weakly in \(H^1(0,L) \),
- \(W_3^{(N)} \to 0 \) weakly in \(H^1(0,L) \).

Finally, since \(\mathcal{J} \) is weakly sequentially continuous in

$$
H^2(\omega) \times H^1(\omega; \mathbb{R}^2) \times L^2(\Omega; \mathbb{R}^3) \times H^2(0,L; \mathbb{R}^2) \times H^1(0,L; \mathbb{R}^2) \times L^2(0,L)
$$

25
with respect to
\[(U_3, U_1, U_2, Z_{11}, Z_{12}, Z_{22}, W_1, W_2, W_3, Q_3, F_{33})\]
The above weak and strong converges imply that
\[J(U^{(s)}, W^{(s)}, Q_3^{(s)}) = m = \min_{(U, W, Q_3) \in D_0} J(U, W, Q_3)\]
which ends the proof of the lemma.

The following theorem is the main result of the paper. It characterizes the limit of the rescaled infimum of the total energy \(m_{\delta} = \frac{1}{\delta^{2\kappa-1}} \inf_{v \in D_{\delta,\kappa}} J_{\delta}(v)\) as the minimum of the limit energy \(J\) over the space \(D_0\). Due to the conditions on the fields \(U, W, Q_3\) in \(D_0\), this minimization problem modelizes the junction of a 2d plate model with a 1d rod model of the type "plate bending-rod stretching".

Theorem 7.2. Under the assumptions (5.15), (5.20)–(5.21) and (7.8)–(7.9) on the forces, we have
\[
\lim_{\delta \to 0} m_{\delta} \frac{\delta^{2\kappa-1}}{\delta^{2\kappa-1}} = \min_{(U, W, Q_3) \in D_0} J(U, W, Q_3),
\]
where the functional \(J\) is defined by (7.4).

Proof. Step 1. In this step we show that
\[
\min_{(U, W, Q_3) \in D_0} J(U, W, Q_3) \leq \liminf_{\delta \to 0} m_{\delta} \frac{\delta^{2\kappa-1}}{\delta^{2\kappa-1}}.
\]

Let \((v_{\delta}, v_{\delta}, Q_3)\) be a sequence of deformations belonging to \(D_{\delta,\kappa}\) and such that
\[
\lim_{\delta \to 0} \frac{J_{\delta}(v_{\delta})}{\delta^{2\kappa-1}} = \liminf_{\delta \to 0} m_{\delta} \frac{\delta^{2\kappa-1}}{\delta^{2\kappa-1}}.
\]

One can always assume that \(J_{\delta}(v_{\delta}) \leq 0\) without loss of generality. From the analysis of the previous section and, in particular from estimates (5.26) the sequence \(v_{\delta}\) satisfies
\[
\text{d}(v_{\delta}, \Omega_{\delta}) \leq C\delta^{\kappa-1/2}, \quad \text{d}(v_{\delta}, B_{\delta}) \leq C\varepsilon^{\kappa'}.
\]

Estimates (5.31) give
\[
\|\nabla v_{\delta}^T \nabla v_{\delta} - I_3\|_{L^2(\Omega_{\delta}; \mathbb{R}^{3 \times 3})} \leq C\delta^{\kappa-1/2}, \quad \|\nabla v_{\delta}^T \nabla v_{\delta} - I_3\|_{L^2(B_{\delta}; \mathbb{R}^{3 \times 3})} \leq C\varepsilon^{\kappa'}.
\]

Firstly, for any fixed \(\delta\), the displacement \(u_{\delta} = v_{\delta} - I_{\delta}\), restricted to \(\Omega_{\delta}\), is decomposed as in Theorem 3.1. Due to the second estimate in (7.21), we can apply the results of Subsection 6.2 to the sequence \((v_{\delta})\). As a consequence there exist a subsequence (still indexed by \(\delta\)) and \(U^{(0)}\), \(R^{(0)} \in H^1(\omega; \mathbb{R}^3)\), such that the convergences (6.2) and (6.5)
The triplet \((\mathcal{U}, \mathcal{W}_2, \mathcal{Q}_3)\) holds true. Due to (6.3) and (6.4) the field \(\mathcal{U}_3\) belongs to \(H^2(\omega)\), and we have the boundary conditions

\[
\mathcal{U}^{(0)} = 0, \quad \nabla \mathcal{U}_3^{(0)} = 0, \quad \text{on } \gamma_0, \tag{7.23}
\]

Subsection 6.2 also shows that there exists \(\mathcal{W}_p^{(0)} \in L^2(\omega; H^1(-1, 1; \mathbb{R}^3))\) such that

\[
\frac{1}{2\delta^k} (\nabla v^T \nabla v_\delta - I_3) \rightarrow E_p^{(0)} \quad \text{weakly in } L^2(\Omega; \mathbb{R}^9) \tag{7.24}
\]

where \(E_p^{(0)} = E_p(\mathcal{U}^{(0)}, \mathcal{W}_p^{(0)})\) (see (6.8)). Moreover thanks to the first estimate in (7.22), the weak convergence (7.24) actually occurs in \(L^2(\Omega; \mathbb{R}^9)\).

Secondly, still for \(\delta\) fixed, the displacement \(u_\delta = v_\delta - I_d\), restricted to \(B_{\varepsilon,\delta}\), is decomposed as in Theorem 3.1. Again due to the third estimate in (7.22), we can apply the results of Subsection 6.3 to the sequence \((v_\delta)\). As a consequence there exist a subsequence (still indexed by \(\delta\)) and \(\mathcal{W}^{(0)}, \mathcal{Q}_3^{(0)} \in H^1(0, L; \mathbb{R}^3)\), such that the convergences (6.11) hold true. As a consequence of (6.12) the fields \(\mathcal{W}^{(0)}\) belongs to \(H^2(0, L)\) and we have

\[
\frac{d\mathcal{W}^{(0)}}{dx_3} = Q_3^{(0)} \wedge e_3.
\]

The junction conditions (6.13) and (6.13) give

\[
Q^{(0)}(0) = 0, \quad \mathcal{W}_\alpha^{(0)}(0) = 0, \quad \mathcal{W}_3^{(0)}(0) = \mathcal{U}_3^{(0)}(0, 0). \tag{7.25}
\]

The triplet \((\mathcal{U}^{(0)}, \mathcal{W}^{(0)}, \mathcal{Q}_3^{(0)})\) belongs to \(\mathbb{D}_0\).

Subsection 6.3 also shows that there exits \(\mathcal{W}_r^{(0)} \in L^2(0, L; H^1(D; \mathbb{R}^3))\) such that

\[
\frac{1}{2\varepsilon^k}\int_{B_{\varepsilon,\delta}\setminus C_{\delta,\varepsilon}} \mathcal{W}_r(x, \nabla v_\delta) dx + \frac{1}{q_2^2\varepsilon^2k'} \int_{B_{\varepsilon,\delta}\setminus C_{\delta,\varepsilon}} \mathcal{W}_r(x, \nabla v_\delta) dx \tag{7.26}
\]

where the symmetric matrix \(E_r^{(0)} = E_r(\mathcal{W}^{(0)}, \mathcal{Q}_3^{(0)}, \mathcal{W}_r^{(0)})\) (see (6.16)). Moreover thanks to the second estimate in (7.22), the weak convergence (7.26) actually occurs in \(L^2(\mathbb{B}; \mathbb{R}^9)\).

First of all, we have

\[
\frac{1}{\delta^{2k-1}} \int_{S_{\delta,\varepsilon}} \mathcal{W}_r(x, \nabla v_\delta) dx \geq \frac{1}{\delta^{2k-1}} \int_{\Omega \setminus C_{\delta,\varepsilon}} \mathcal{W}_r(x, \nabla v_\delta) dx + \frac{1}{q_2^2\varepsilon^2k'} \int_{B_{\varepsilon,\delta}\setminus C_{\delta,\varepsilon}} \mathcal{W}_r(x, \nabla v_\delta) dx
\]

\[
= \int_{\Omega} Q_p \left(\chi_{\Omega\setminus D_{\varepsilon,\delta}}(v_\delta - I_3) \mathcal{W}_r \left(\frac{1}{\delta^{k-1}} (\nabla v_\delta) T \nabla v_\delta - I_3\right)\right)
\]

\[
+ \int_{B} Q_r \left(\chi_{B\setminus D_{\varepsilon,\delta}}(v_\delta - I_3) \mathcal{W}_r \left(\frac{1}{\varepsilon^{k-1}} (\nabla v_\delta) T \nabla v_\delta - I_3\right)\right)
\]

From the weak convergences of the Green-St Venant’s tensors in (7.24) and (7.26) (recall that these convergences hold true in \(L^2\)) and the limit of the term involving the forces (7.28) we obtain

\[
\lim\inf_{\delta \to 0} \frac{J_\delta(v_\delta)}{\delta^{2k-1}} \geq \int_{\Omega} Q(E_r^{(0)}) + \int_{B} Q(E_r^{(0)}) - \lim_{\delta \to 0} \frac{1}{\delta^{2k-1}} \int_{S_{\delta,\varepsilon}} f_\delta \cdot (v_\delta - I_d). \tag{7.27}
\]
In order to derive the last limit in (7.27) we use the assumptions on the forces (5.15) and the convergences (6.2) and (6.11) and this leads to
\[
\lim_{\delta \to 0} \frac{1}{\delta^{2p-1}} \int_{S_{\delta, \varepsilon}} f_\delta \cdot (v_\delta - I_d) = \mathcal{L}(U^{(0)}, W^{(0)}, Q^{(0)}_3) \tag{7.28}
\]
where \(\mathcal{L}(U, W, Q_3)\) is given by (7.5) for any triplet in \(D_0\). From (7.27) and (7.28), we obtain
\[
\liminf_{\delta \to 0} \frac{J_\delta(v_\delta)}{\delta^{2p-1}} \geq \int_\Omega Q(E_p^{(0)}) + \int_B Q(E_r^{(0)}) - \mathcal{L}(U^{(0)}, W^{(0)}, Q^{(0)}_3). \tag{7.29}
\]
The next step in the derivation of the limit energy consists in minimizing \(\int_{-1}^1 Q_p(E_p^{(0)}) \, dX_3\) with respect to \(\bar{w}^{(0)}_p\). Explicit calculations show that
\[
\int_{-1}^1 Q_p(E_p^{(0)}) \, dX_3 \geq \int_{-1}^1 Q_p(E_p(U^{(0)}, \bar{w}^{(0)}_p)) \, dX_3
\]
\[
= \frac{E_p}{3(1 - \nu_p)} \left[(1 - \nu_p) \sum_{\alpha, \beta = 1}^2 \left| \frac{\partial^2 U_3^{(0)}}{\partial x_\alpha \partial x_\beta} \right|^2 + \nu_p (\Delta U_3^{(0)})^2 \right] \tag{7.30}
\]
\[
+ \frac{E_p}{(1 - \nu_p^2)} \left[(1 - \nu_p) \sum_{\alpha, \beta = 1}^2 \left| Z_{\alpha \beta}^{(0)} \right|^2 + \nu_p (Z_{11}^{(0)} + Z_{22}^{(0)})^2 \right]
\]
where
\[
\bar{w}^{(0)}_p(\cdot, \cdot, X_3) = \frac{\nu_p}{1 - \nu_p} \left[\left(\frac{X_3^2}{2} - \frac{1}{6} \right) \Delta U_3^{(0)} - X_3 (Z_{11}^{(0)} + Z_{22}^{(0)}) \right] e_3,
\]
\[
Z_{\alpha \beta}^{(0)}(7.31)
\]
Similarly minimizing \(\int_D Q_r(E_r^{(0)}) \, dX_1 dX_2\) with respect to \(\bar{w}^{(0)}_r\) gives
\[
\int_D Q_r(E_r^{(0)}) \, dX_1 dX_2 \geq \int_D Q_r(E_r(W^{(0)}, Q_3^{(0)}, \bar{w}^{(0)}_r)) \, dX_1 dX_2
\]
\[
= \frac{E_r \pi}{8} \left[\left| \frac{d^2 W_1^{(0)}}{dx_3^2} \right|^2 + \left| \frac{d^2 W_2^{(0)}}{dx_3^2} \right|^2 \right] + \frac{E_r \pi}{2} \left| \frac{dW_3^{(0)}}{dx_3} + F_{33}^{(0)} \right|^2 \tag{7.32}
+ \frac{\mu_r \pi}{8} \left| \frac{dQ_3^{(0)}}{dx_3} \right|^2
\]
where
\[
\bar{w}^{(0)}_{r,1} = -\nu_r \left[\frac{X_1^2 - X_2^2}{2} \frac{d^2 W_1^{(0)}}{dx_3^2} - X_1 X_2 \frac{d^2 W_2^{(0)}}{dx_3^2} + X_1 \left(\frac{dW_3^{(0)}}{dx_3} + F_{33}^{(0)} \right) \right] - X_1 F_{11}^{(0)} - \frac{X_2}{2} F_{12}^{(0)}
\]
\[
\bar{w}^{(0)}_{r,2} = -\nu_r \left[\frac{X_1^2 - X_2^2}{2} \frac{d^2 W_2^{(0)}}{dx_3^2} - X_1 X_2 \frac{d^2 W_1^{(0)}}{dx_3^2} + X_2 \left(\frac{dW_3^{(0)}}{dx_3} + F_{33}^{(0)} \right) \right] - \frac{X_1}{2} F_{12}^{(0)} - X_2 F_{22}^{(0)}
\]
\[
\bar{w}^{(0)}_{r,3} = -X_1 F_{13}^{(0)} - X_2 F_{23}^{(0)} \tag{7.33}
\]
and
\[
F^{(0)} = \begin{cases}
\frac{1}{2} \left(||Q^{(0)}||_2^2 I_3 - Q^{(0)} (Q^{(0)})^T \right) & \text{if } \kappa' = 3, \\
0 & \text{if } \kappa' > 3.
\end{cases} \tag{7.34}
\]

In view of (7.29), (7.30) and (7.32), the proof of (7.19) is achieved.

Step 2. Under the assumptions (7.8)-(7.9), we know that there exists \((\mathcal{U}^{(1)}, \mathcal{W}^{(1)}, \mathcal{Q}_3^{(1)}) \in \mathbb{D}_0\) such that
\[
\min_{(\mathcal{U}, \mathcal{W}, \mathcal{Q}_3) \in \mathbb{D}_0} J(\mathcal{U}, \mathcal{W}, \mathcal{Q}_3) = J(\mathcal{U}^{(1)}, \mathcal{W}^{(1)}, \mathcal{Q}_3^{(1)}).
\]
Now, in this step we show that
\[
\limsup_{\delta \to 0} \frac{m_\delta}{\delta^{2\kappa-1}} \leq J(\mathcal{U}^{(1)}, \mathcal{W}^{(1)}, \mathcal{Q}_3^{(1)}).
\]

Let \(\overline{\omega}_p^{(1)}\) be in \(L^2(\omega; H^1_{\gamma}(\mathbb{R}^3))\) obtained through replacing \(\mathcal{U}^{(0)}\) by \(\mathcal{U}^{(1)}\) in (7.31) and \(\overline{\omega}_r^{(1)}\) be in \(L^2(0, L; H^1_D(\mathbb{R}^3))\) obtained through replacing \(\mathcal{W}^{(0)}\) and \(\mathcal{Q}_3^{(0)}\) by \(\mathcal{W}^{(1)}\) and \(\mathcal{Q}_3^{(1)}\) in (7.33)-(7.34). Observe that
\[
J(\mathcal{U}^{(1)}, \mathcal{W}^{(1)}, \mathcal{Q}_3^{(1)}) = \int_\Omega Q_p(E_p(\mathcal{U}^{(1)}, \overline{\omega}_p^{(1)})) + \int_B Q_r(E_r(\mathcal{W}^{(1)}, \mathcal{Q}_3^{(1)}, \overline{\omega}_r^{(1)})) \quad - \mathcal{L}(\mathcal{U}^{(1)}, \mathcal{W}^{(1)}, \mathcal{Q}_3^{(1)}) \tag{7.35}
\]

We now consider a sequence \((\mathcal{U}^{(n)}, \mathcal{W}^{(n)}, \mathcal{Q}_3^{(n)}, \overline{\omega}_p^{(n)}, \overline{\omega}_r^{(n)})_{n \geq 2}\) such that

- \(\mathcal{U}_\alpha^{(n)} \in W^{2, \infty}(\omega) \cap H^1_{\gamma_0}(\omega)\) and
 \(\mathcal{U}_\alpha^{(n)} \longrightarrow \mathcal{U}_\alpha^{(1)}\) strongly in \(H^1(\omega)\),

- \(\mathcal{U}_3^{(n)} \in W^{3, \infty}(\omega) \cap H^2_{\gamma_0}(\omega)\) and
 \(\mathcal{U}_3^{(n)} \longrightarrow \mathcal{U}_3^{(1)}\) strongly in \(H^2(\omega)\),

- \(\mathcal{W}_\alpha^{(n)} \in W^{3, \infty}(-1/n, L)\) with \(\mathcal{W}_\alpha^{(n)} = 0\) in \([-1/n, 1/n]\) and
 \(\mathcal{W}_\alpha^{(n)} \longrightarrow \mathcal{W}_\alpha^{(1)}\) strongly in \(H^2(0, L)\),

- \(\mathcal{W}_3^{(n)} \in W^{2, \infty}(-1/n, L)\) with \(\mathcal{W}_3^{(n)} = \mathcal{U}_3^{(n)}(0, 0)\) in \([-1/n, 1/n]\) and
 \(\mathcal{W}_3^{(n)} \longrightarrow \mathcal{W}_3^{(1)}\) strongly in \(H^1(0, L)\),

- \(\mathcal{Q}_3^{(n)} \in W^{2, \infty}(-1/n, L)\) with \(\mathcal{Q}_3^{(n)} = 0\) in \([-1/n, 1/n]\) and
 \(\mathcal{Q}_3^{(n)} \longrightarrow \mathcal{Q}_3^{(1)}\) strongly in \(H^1(0, L)\),
\[\begin{align*}
\bullet \; \overline{u}^{(n)} & \in W^{1,\infty}(\Omega; \mathbb{R}^3) \text{ with } \overline{u}^{(n)} = 0 \text{ on } \partial \omega \times]-1,1[, \; \overline{u}^{(n)} = 0 \text{ in the cylinder } D(O,1/n) \times]-1,1[, \text{ and } \\
& \quad \overline{u}^{(n)} \rightharpoonup \overline{u}_p^{(1)} \text{ strongly in } L^2(\omega; H^1(-1,1; \mathbb{R}^3)), \\
\bullet \; \underline{w}^{(n)} & \in W^{1,\infty}(]-1/n, L[\times D; \mathbb{R}^3) \text{ with } \underline{w}^{(n)} = 0 \text{ in the cylinder } D \times]-1/n,1/n[, \text{ and } \\
& \quad \underline{w}^{(n)} \rightharpoonup \underline{w}_r^{(1)} \text{ strongly in } L^2(0, L; H^1(D; \mathbb{R}^3)).
\end{align*} \]

First, the above strong convergences and \ref{1.35} show that

\[\begin{align*}
\lim_{n \to 0} \left[\int_{\Omega} Q_p(\mathbf{E}_p(\mathcal{U}^{(n)}_p, \mathcal{V}^{(n)}_p)) + \int_B Q_r(\mathbf{E}_r(\mathcal{W}^{(n)}_3, \mathcal{V}^{(n)}_3, \mathcal{W}^{(n)}_3, \mathcal{V}^{(n)}_3)) - \mathcal{L}(\mathcal{U}^{(n)}, \mathcal{W}^{(n)}, \mathcal{Q}^{(n)}_3) \right] \\
= \int_{\Omega} Q_p(\mathbf{E}_p(\mathcal{U}^{(1)}, \mathcal{V}^{(1)}_p)) + \int_B Q_r(\mathbf{E}_r(\mathcal{W}^{(1)}, \mathcal{Q}^{(1)}_3, \mathcal{V}^{(1)}_p)) - \mathcal{L}(\mathcal{U}^{(1)}, \mathcal{W}^{(1)}, \mathcal{Q}^{(1)}_3) \\
= \mathcal{J}(\mathcal{U}^{(1)}, \mathcal{W}^{(1)}, \mathcal{Q}^{(1)}_3).
\end{align*} \] \tag{7.36}

For \(n \) fixed, let us consider the following sequence \((v_\delta)\) of deformations of the whole structure \(\mathcal{S}_{\delta,\varepsilon} \), defined below:

- in \(\Omega_\delta \) we set

\[\begin{align*}
v_{\delta,1}(x) &= x_1 + \delta^{n-1}(\mathcal{U}_1^{(n)}(x_1, x_2) - \frac{x_3}{\delta} \frac{\partial \mathcal{U}_3^{(n)}}{\partial x_1}(x_1, x_2) + \delta \overline{u}_1^{(n)}(x_1, x_2, \frac{x_3}{\delta})), \\
v_{\delta,2}(x) &= x_2 + \delta^{n-1}(\mathcal{U}_2^{(n)}(x_1, x_2) - \frac{x_3}{\delta} \frac{\partial \mathcal{U}_3^{(n)}}{\partial x_2}(x_1, x_2) + \delta \overline{u}_2^{(n)}(x_1, x_2, \frac{x_3}{\delta})), \\
v_{\delta,3}(x) &= x_3 + \delta^{n-2}(\mathcal{U}_3^{(n)}(x_1, x_2) + \delta \overline{u}_3^{(n)}(x_1, x_2, \frac{x_3}{\delta})).
\end{align*} \] \tag{7.37}

- in \(B_{\varepsilon,\delta} \) we set

\[\begin{align*}
v_{\delta,1}(x) &= x_1 + \delta^{n-1}(\mathcal{U}_1^{(n)}(x_1, x_2) - \frac{x_3}{\delta} \frac{\partial \mathcal{U}_3^{(n)}}{\partial x_1}(x_1, x_2)) + \varepsilon^{n-2}(\mathcal{W}_1^{(n)}(x_3) \\
&\quad - x_2 \mathcal{Q}_3^{(n)}(x_3) + \varepsilon^2 \mathcal{W}_1^{(n)}(\frac{x_1}{\varepsilon}, \frac{x_2}{\varepsilon}, x_3)), \\
v_{\delta,2}(x) &= x_2 + \delta^{n-1}(\mathcal{U}_2^{(n)}(x_1, x_2) - \frac{x_3}{\delta} \frac{\partial \mathcal{U}_3^{(n)}}{\partial x_2}(x_1, x_2)) + \varepsilon^{n-2}(\mathcal{W}_2^{(n)}(x_3) \\
&\quad + x_1 \mathcal{Q}_3^{(n)}(x_3) + \varepsilon^2 \mathcal{W}_2^{(n)}(\frac{x_1}{\varepsilon}, \frac{x_2}{\varepsilon}, x_3)), \\
v_{\delta,3}(x) &= x_3 + \delta^{n-2}(\mathcal{U}_3^{(n)}(x_1, x_2) + \varepsilon^{n-1}(\mathcal{W}_3^{(n)}(x_3) - \mathcal{U}_3^{(n)}(0,0)) - \frac{x_1}{\varepsilon} \frac{d \mathcal{W}_1^{(n)}}{dx_3}(x_3) \\
&\quad - \frac{x_2}{\varepsilon} \frac{d \mathcal{W}_2^{(n)}}{dx_3}(x_3) + \varepsilon^2 \mathcal{W}_3^{(n)}(\frac{x_1}{\varepsilon}, \frac{x_2}{\varepsilon}, x_3)).
\end{align*} \] \tag{7.38}
Obviously, if δ is small enough (in order to have $\delta \leq 1/n$) the two expressions of v_δ match in the cylinder $C_{\delta,\varepsilon}$ and are equal to

$$
v_{\delta,1}(x) = x_1 + \delta^{n-1}(U_1^{(n)}(x_1, x_2) - \frac{x_3}{\delta} \frac{\partial U_3^{(n)}}{\partial x_1}(x_1, x_2)),
$$

$$
v_{\delta,2}(x) = x_2 + \delta^{n-1}(U_2^{(n)}(x_1, x_2) - \frac{x_3}{\delta} \frac{\partial U_3^{(n)}}{\partial x_2}(x_1, x_2)),
$$

$$
v_{\delta,3}(x) = x_3 + \delta^{n-2}U_3^{(n)}(x_1, x_2).
$$

By construction the deformation v_δ belongs to $D_{\delta,\varepsilon}$. Then we have

$$
m_\delta \leq J_\delta(v_\delta). \quad (7.40)
$$

In the expression (7.37) of the displacement $v_\delta - I_d$ the explicit dependence with respect to δ permits to derive directly the limit of the Green-St Venant’s strain tensor as δ tends to 0 (n being fixed)

$$
\frac{1}{2\delta^{n-1}}\Pi_\delta((\nabla_x v_\delta)^T \nabla_x v_\delta - I_3) \rightarrow E_p^{(n)} \quad \text{strongly in } L^\infty(\Omega; \mathbb{R}^9),
$$

where the symmetric matrix $E_p^{(n)}$ is defined by

$$
E_p^{(n)} = \begin{pmatrix}
-X_3 \frac{\partial^2 U_3^{(n)}}{\partial x_1^2} + Z_{11}^{(n)} & -X_3 \frac{\partial^2 U_3^{(n)}}{\partial x_1 \partial x_2} + Z_{12}^{(n)} & \frac{1}{2} \frac{\partial u_1^{(n)}}{\partial x_3} \\
* & -X_3 \frac{\partial^2 U_3^{(n)}}{\partial x_2^2} + Z_{22}^{(n)} & \frac{1}{2} \frac{\partial u_2^{(n)}}{\partial x_3} \\
* & * & \frac{1}{2} \frac{\partial u_3^{(n)}}{\partial x_3}
\end{pmatrix}
$$

where

$$
Z_{\alpha\beta}^{(n)} = \begin{cases}
\gamma_{\alpha\beta}(U^{(n)}) + \frac{1}{2} \frac{\partial U_3^{(n)}}{\partial x_\alpha} \frac{\partial U_3^{(n)}}{\partial x_\beta}, & \text{if } \kappa = 3, \\
\gamma_{\alpha\beta}(U^{(n)}) & \text{if } \kappa > 3.
\end{cases}
$$

31
Now, in the rod $B_{\varepsilon, \delta}$ we have

\begin{align*}
v_{\delta,1}(x) &= x_1 + \varepsilon' - 2 \left[W_1^{(n)}(x_3) + \delta \varepsilon U_1^{(n)}(0, 0) - \varepsilon x_3 \frac{\partial U_3^{(n)}}{\partial x_1}(0, 0)
ight] \\
&\quad - x_2 \omega_3^{(n)}(x_3) + \tilde{w}_{\varepsilon,1}^{(n)}(x), \\
v_{\delta,2}(x) &= x_2 + \varepsilon' - 2 \left[W_2^{(n)}(x_3) + \delta \varepsilon U_2^{(n)}(0, 0) - \varepsilon x_3 \frac{\partial U_3^{(n)}}{\partial x_2}(0, 0)
ight] \\
&\quad + x_1 \omega_3^{(n)}(x_3) + \tilde{w}_{\varepsilon,2}^{(n)}(x), \\
v_{\delta,3}(x) &= x_3 + \varepsilon' - 1 \left[W_3^{(n)}(x_3) - \frac{x_1}{\varepsilon} \frac{dW_1^{(n)}}{dx_3}(x_3) + x_1 \frac{\partial U_3^{(n)}}{\partial x_1}(0, 0)
ight] \\
&\quad - \frac{x_2}{\varepsilon} \frac{dW_2^{(n)}}{dx_3}(x_3) + x_2 \frac{\partial U_3^{(n)}}{\partial x_2}(0, 0) + \tilde{w}_{\varepsilon,3}^{(n)}(x). \\
\end{align*}

(7.43)

where

\begin{align*}
\tilde{w}_{\varepsilon,1}^{(n)}(x) &= \varepsilon' \frac{W_1^{(n)}}{\varepsilon}(x_1, x_2, x_3) + \delta \varepsilon' - 1 (U_1^{(n)}(x_1, x_2) - U_1^{(n)}(0, 0)) \\
&\quad - x_3 \varepsilon' - 1 \left(\frac{\partial U_3^{(n)}}{\partial x_1}(x_1, x_2) - \frac{\partial U_3^{(n)}}{\partial x_1}(0, 0) \right), \\
\tilde{w}_{\varepsilon,2}^{(n)}(x) &= \varepsilon' \frac{W_2^{(n)}}{\varepsilon}(x_1, x_2, x_3) + \delta \varepsilon' - 1 (U_2^{(n)}(x_1, x_2) - U_2^{(n)}(0, 0)) \\
&\quad - x_3 \varepsilon' - 1 \left(\frac{\partial U_3^{(n)}}{\partial x_2}(x_1, x_2) - \frac{\partial U_3^{(n)}}{\partial x_2}(0, 0) \right), \\
\tilde{w}_{\varepsilon,3}^{(n)}(x) &= \varepsilon' \frac{W_3^{(n)}}{\varepsilon}(x_1, x_2, x_3) + \varepsilon' - 1 (U_3^{(n)}(x_1, x_2) - U_3^{(n)}(0, 0)) \\
&\quad - \frac{x_1}{\varepsilon} \frac{\partial U_3^{(n)}}{\partial x_1}(0, 0) - x_2 \frac{\partial U_3^{(n)}}{\partial x_2}(0, 0). \\
\end{align*}

First notice that

\begin{align*}
\frac{1}{\varepsilon' - 2} P_{\varepsilon}(\tilde{w})^{(n)} - x_3 \left[\frac{X_1}{\varepsilon} \frac{\partial^2 U_3^{(n)}}{\partial x_1^2}(0, 0) + \frac{X_2}{\varepsilon} \frac{\partial^2 U_3^{(n)}}{\partial x_1 \partial x_2}(0, 0) \right] e_1 \\
- x_3 \left[\frac{X_1}{\varepsilon} \frac{\partial^2 U_3^{(n)}}{\partial x_1 \partial x_2}(0, 0) + \frac{X_2}{\varepsilon} \frac{\partial^2 U_3^{(n)}}{\partial x_2^2}(0, 0) \right] e_2 \quad \text{strongly in } W^{1,\infty}(B; \mathbb{R}^3). \\
\end{align*}

(7.44)

As above, the expression (7.43) of the displacement $v_{\delta} - I_d$ being explicit with respect to δ and ε, a direct calculation gives

\begin{align*}
\frac{1}{2 \varepsilon' - 1} P_{\varepsilon}((\nabla v_{\delta}^T)^T \nabla v_{\delta}) - I_3 \rightarrow E_r^{(n)} \quad \text{strongly in } L^{\infty}(B; \mathbb{R}^{3 \times 3}). \\
\end{align*}

(7.45)
where the symmetric matrix \(E_r^{(n)} \) is defined by

\[
E_r^{(n)} = \begin{pmatrix}
\gamma_{11}(\varpi_r^{(n)}) & \gamma_{12}(\varpi_r^{(n)}) & -\frac{1}{2} X_2 \frac{dQ_3^{(n)}}{dx_3} + \frac{1}{2} \frac{\partial \varpi_r^{(n)}}{\partial X_1} \\
* & \gamma_{22}(\varpi_r^{(n)}) & -X_1 \frac{dQ_3^{(n)}}{dx_3} + \frac{1}{2} \frac{\partial \varpi_r^{(n)}}{\partial X_2} \\
* & * & -X_1 \frac{d^2 U_1^{(n)}}{dx_3^2} - X_2 \frac{d^2 U_2^{(n)}}{dx_3^2} + \frac{dU_3^{(n)}}{dx_3}
\end{pmatrix} + F^{(n)},
\]

(7.46)

\[
F^{(n)} = \begin{cases}
\frac{1}{2} (||Q^{(n)}||_2^2 I_3 - Q^{(n)}(Q^{(n)})^T) & \text{if } \kappa' = 3, \\
0 & \text{if } \kappa' > 3.
\end{cases}
\]

The definition (5.1) of \(\widehat{W}_\varepsilon(x, \nabla \vartheta)(x) \) shows that

\[
\left| \frac{1}{\delta^{2\kappa-1}} \int_{S_{\vartriangle,\varepsilon}} \widehat{W}_\varepsilon(x, \nabla \vartheta)(x) dx - \int_{\Omega} Q_p \left(\Pi_3 \left[\frac{1}{\delta^{\kappa-1}}((\nabla \vartheta)^T \nabla \vartheta - I_3) \right] \right) \\
- \int_B Q_p \left(\frac{1}{\varepsilon^{\kappa-1}}((\nabla \vartheta)^T \nabla \vartheta - I_3) \right) \right| \leq C \frac{q^2}{\delta^{2\kappa-1}} \int_{C_{\vartriangle,\varepsilon}} ||(\nabla \vartheta)^T \nabla \vartheta - I_3||^2
\]

where the constant \(C \) depends only on the Lamé's constants. Taking into account (5.9) and (7.41) we first obtain that

\[
\frac{q^2}{\delta^{2\kappa-1}} \int_{C_{\vartriangle,\varepsilon}} ||(\nabla \vartheta)^T \nabla \vartheta - I_3||^2 \to 0
\]

as \(\delta \) and \(\varepsilon \) go to 0. Then, due to (7.41) and (7.45) we finally get

\[
\lim_{\delta \to 0} \frac{1}{\delta^{2\kappa-1}} \int_{S_{\vartriangle,\varepsilon}} \widehat{W}_\varepsilon(x, \nabla \vartheta)(x) dx = \int_{\Omega} Q(E_r^{(n)}) + \int_B Q(E_r^{(n)}).
\]

Furthermore, from the expressions -(7.37) and (7.38)- of \(\vartheta_\delta \) in the plate and in the rod, we immediately have

\[
\lim_{\delta \to 0} \frac{1}{\delta^{2\kappa-1}} \int_{S_{\vartriangle,\varepsilon}} \vartheta_\delta \cdot (\vartheta_\delta - I_d) = \mathcal{L}(U^{(n)}, W^{(n)}, Q_3^{(n)}).
\]

Then, the above limits and (7.40) lead to

\[
\limsup_{\delta \to 0} \frac{m_\delta}{\delta^{2\kappa-1}} \leq \int_{\Omega} Q(E_p^{(n)}) + \int_B Q(E_r^{(n)}) - \mathcal{L}(U^{(n)}, W^{(n)}, Q_3^{(n)}).
\]

(7.47)

Now, \(n \) goes to infinity, the above inequality and (7.36) give

\[
\limsup_{\delta \to 0} \frac{m_\delta}{\delta^{2\kappa-1}} \leq J(U^{(1)}, W^{(1)}, Q_3^{(1)}).
\]

(7.48)

This concludes the proof of the theorem. \(\square \)
Corollary 7.3. Let v_δ be a sequence of $\mathbb{D}_{\delta,\varepsilon}$ and such that
\[
\lim_{\delta \to 0} \frac{J_\delta(v_\delta)}{\delta^{2\kappa-1}} = \lim_{\delta \to 0} \frac{m_\delta}{\delta^{2\kappa-1}}.
\] (7.49)

Then there exists a subsequence still indexed by δ such that
\[
\frac{1}{\delta^{\kappa-1}} \Pi_\delta(u_{a,\delta}) \rightarrow U_a^{(0)} - X_3 \frac{\partial U_3^{(0)}}{\partial x_\alpha} \text{ weakly in } H^1(\Omega),
\]
\[
\frac{1}{\delta^{\kappa-2}} \Pi_\delta(u_{3,\delta}) \rightarrow U_3^{(0)} \text{ strongly in } H^1(\Omega),
\]
\[
\frac{1}{\varepsilon^{\kappa'-1}} P_\varepsilon(u_{a,\delta}) \rightarrow W_a^{(0)} \text{ strongly in } H^1(B),
\]
\[
\frac{1}{\varepsilon^{\kappa'-1}} P_\varepsilon(u_{1,\delta} - W_1^{(0)}) \rightarrow -X_2 Q_3^{(0)} \text{ weakly in } H^1(B),
\]
\[
\frac{1}{\varepsilon^{\kappa'-1}} P_\varepsilon(u_{2,\delta} - W_2^{(0)}) \rightarrow X_1 Q_3^{(0)} \text{ weakly in } H^1(B),
\]
\[
\frac{1}{\varepsilon^{\kappa'-1}} P_\varepsilon(u_{3,\delta}) \rightarrow W_3^{(0)} - X_1 \frac{dW_1^{(0)}}{dx_3} - X_2 \frac{dW_2^{(0)}}{dx_3} \text{ weakly in } H^1(B),
\]
where $(U^{(0)}, W^{(0)}, Q_3^{(0)})$ is a minimizer of J in \mathbb{D}_0.

Proof. Step 1 of Theorem 7.2 shows that, for a subsequence still indexed by δ, there exists $(U^{(0)}, W^{(0)}, Q_3^{(0)}) \in \mathbb{D}_0$, such that the convergences (7.50) hold true. Moreover we have
\[
J(U^{(0)}, W^{(0)}, Q_3^{(0)}) \leq \lim_{\delta \to 0} \frac{J_\delta(v_\delta)}{\delta^{2\kappa-1}} = \lim_{\delta \to 0} \frac{m_\delta}{\delta^{2\kappa-1}} = \min_{(u, W, Q_3) \in \mathbb{D}_0} J(u, W, Q_3).
\]

So that $(U^{(0)}, W^{(0)}, Q_3^{(0)})$ is a minimizer of J in \mathbb{D}_0. The proof of Step 1 in Theorem 7.2 also shows that the convergences (7.24) and (7.26) of the rescaled Green-St Venant’s strain tensors are respectively strong in $L^2(\Omega; \mathbb{R}^{3\times3})$ and in $L^2(B; \mathbb{R}^{3\times3})$.

8 Appendix

Proof of Lemma (5.2). The first estimate (5.13) is proved in Lemma 4.3 of [8]). Now we carry on by estimating $G_s(u, B_{\varepsilon,\delta})$.

Step 1. In this step we prove the following inequality:
\[
G_s(u, B_{\varepsilon,\delta}) \leq C d(v, B_{\varepsilon,\delta}) + C \varepsilon \frac{d(v, B_{\varepsilon,\delta})^2}{\varepsilon^3} + C \varepsilon \| Q(0) - I_3 \|^2.
\] (8.1)
The restriction of the displacement \(u = v - I_d \) to the rod \(B_{\varepsilon, \delta} \) is decomposed as (see Theorem 2.2.2 of [7])

\[
 u(x) = W(x) + (Q(x) - I_3)(x_1e_1 + x_2e_2) + w'(x), \quad x \in B_{\varepsilon, \delta}, \tag{8.2}
\]

where we have \(W \in H^1(-\delta, L; \mathbb{R}^3) \), \(Q \in H^1(-\delta, L; SO(3)) \) and \(w' \in H^1(B_{\varepsilon, \delta}; \mathbb{R}^3) \). This displacement is also decomposed as in (3.8). In both decompositions the field \(W \) is the average of \(u \) on the cross-sections of the rod.

We know (see Theorem 2.2.2 established in [7]) that the fields \(W, Q \) and \(w' \) satisfy

\[
\begin{align*}
 ||\nabla w'||_{L^2(B_{\varepsilon, \delta}; \mathbb{R}^3)} & \leq C\varepsilon d(v, B_{\varepsilon, \delta}), \\
 ||\nabla w'||_{L^2(B_{\varepsilon, \delta}; \mathbb{R}^3)} & \leq C d(v, B_{\varepsilon, \delta}), \\
 \left\| \frac{dQ}{dx_3} \right\|_{L^2(-\delta, L; \mathbb{R}^3)} & \leq \frac{C}{\varepsilon^2} d(v, B_{\varepsilon, \delta}) \tag{8.3} \\
 \left\| \frac{dW}{dx_3} - (Q - I_3)e_3 \right\|_{L^2(-\delta, L; \mathbb{R}^3)} & \leq \frac{C}{\varepsilon} d(v, B_{\varepsilon, \delta}) \\
 \left\| \nabla v - Q \right\|_{L^2(B_{\varepsilon, \delta}; \mathbb{R}^3)} & \leq C d(v, B_{\varepsilon, \delta})
\end{align*}
\]

where the constant \(C \) does not depend on \(\varepsilon, \delta \) and \(L \).

We set \(v = Q(0)^T v \) and \(u = v - I_d \). The deformation \(v \) belongs to \(H^1(B_{\varepsilon, \delta}; \mathbb{R}^3) \) and satisfies

\[
 d(v, B_{\varepsilon, \delta}) = d(v, B_{\varepsilon, \delta}).
\]

The last estimate in (8.3) leads to

\[
\begin{align*}
 \left\| \nabla u + (\nabla u)^T \right\|_{L^2(B_{\varepsilon, \delta}; \mathbb{R}^3)} & \leq C d(v, B_{\varepsilon, \delta}) \\
 + C\varepsilon ||Q(0)^T Q + Q^T Q(0) - 2I_3||_{L^2(-\delta, L; \mathbb{R}^3)} \tag{8.4}
\end{align*}
\]

First, we observe that for any matrices \(R \in SO(3) \) we get \(|||R - I_3|||^2 = \sqrt{2}|||R + R^T - 2I_3||| \). Hence, we have \(\sqrt{2}|||Q(0)^T Q + Q^T Q(0) - 2I_3||| = |||Q - Q(0)|||^2 \) and using again (8.3) we obtain

\[
 ||Q(0)^T Q + Q^T Q(0) - 2I_3||_{L^2(-\delta, L; \mathbb{R}^3)} \leq C \frac{[d(v, B_{\varepsilon, \delta})]^2}{\varepsilon^4}
\]

which implies with (8.4)

\[
 G_s(u, B_{\varepsilon, \delta}) \leq C d(v, B_{\varepsilon, \delta}) + C \frac{[d(v, B_{\varepsilon, \delta})]^2}{\varepsilon^3}. \tag{8.5}
\]

Observing that \(\nabla u + (\nabla u)^T = \nabla u + (\nabla u)^T + (I_3 - Q(0))^T (\nabla u - (Q(0) - I_3)) + (\nabla u - \)
\[(Q(0) - I_3)^T (I_3 - Q(0)) + 2(Q(0) + Q(0)^T - 2I_3), \] we deduce that
\[G_s(u, B_{\varepsilon, \delta}) \leq G_s(u, B_{\varepsilon, \delta}) + 2\|||Q(0) - I_3|||\|\nabla u - (Q(0) - I_3)|||^2_{L^2(B_{\varepsilon, \delta}; \mathbb{R}^{3 \times 3})} + C\varepsilon\|||Q(0) + Q(0)^T - 2I_3||| \]
\[\leq G_s(u, B_{\varepsilon, \delta}) + C\|||Q(0) - I_3||| \|\frac{d(v, B_{\varepsilon, \delta})}{\varepsilon}\| + C\varepsilon\|||Q(0) - I_3|||^2 \]
\[\leq G_s(u, B_{\varepsilon, \delta}) + C\frac{|d(v, B_{\varepsilon, \delta})|^2}{\varepsilon^3} + C\varepsilon\|||Q(0) - I_3|||^2 \]

Thanks to (8.5) we obtain (8.1).

Now we carry on by giving two estimates on \(|||Q(0) - I_3|||^2\).

Step 2. First estimate on \(|||Q(0) - I_3|||^2\).

We deal with the restriction of \(u\) to the plate. Due to Theorem 3.3 established in [8], the displacement \(u = v - I_d\) is decomposed as
\[u(x) = U(x_1, x_2) + x_3(R(x_1, x_2) - I_3)e_3 + \overline{v}(x), \quad x \in \Omega_{\delta} \quad (8.6)\]
where \(U\) belongs to \(H^1(\omega; \mathbb{R}^3)\), \(R\) belongs to \(H^1(\omega; \mathbb{R}^{3 \times 3})\) and \(\overline{v}\) belongs to \(H^1(\Omega_{\delta}; \mathbb{R}^3)\) and we have the following estimates
\[|||\nabla v|||_{L^2(\Omega_{\delta}; \mathbb{R}^3)} \leq C\delta d(v, \Omega_{\delta}), \quad |||\nabla v|||_{L^2(\Omega_{\delta}; \mathbb{R}^3)} \leq C d(v, \Omega_{\delta}), \]
\[\left\|\frac{\partial U}{\partial x_\alpha}\right\|_{L^2(\omega; \mathbb{R}^3)} \leq C \frac{\delta^{\frac{3}{2}}}{\delta^{\frac{1}{2}}} d(v, \Omega_{\delta}), \quad (8.7)\]
\[\left\|\frac{\partial U}{\partial x_\alpha} - (R - I_3)e_3\right\|_{L^2(\omega; \mathbb{R}^3)} \leq C \frac{\delta^{\frac{3}{2}}}{\delta^{\frac{1}{2}}} d(v, \Omega_{\delta}), \quad (8.7)\]
\[\left\|\nabla v - R\right\|_{L^2(\Omega_{\delta}; \mathbb{R}^3)} \leq C d(v, \Omega_{\delta}), \quad (8.7)\]

where the constant \(C\) does not depend on \(\delta\). The following boundary conditions are satisfied
\[U = 0, \quad R = I_3 \quad \text{on} \quad \gamma_0, \quad \overline{v} = 0 \quad \text{on} \quad \Gamma_0. \quad (8.8)\]

The last estimates in (8.3) and (8.7) allow to compare \(Q - I_3\) and \(R - I_3\) in the cylinder \(C_{\delta, \varepsilon}\). We obtain
\[\varepsilon^2|||Q - I_3|||^2_{L^2(-\delta, \delta; \mathbb{R}^3)} \leq C\left\{[d(v, Q_{\delta})]^2 + [d(v, B_{\varepsilon, \delta})]^2\right\} + C\delta|||R - I_3|||^2_{L^2(D_{\varepsilon}; \mathbb{R}^3)} \quad (8.10)\]

Besides, the third estimate in (8.7) and the boundary condition on \(R\) lead to
\[|||R - I_3|||^2_{L^2(D_{\varepsilon}; \mathbb{R}^3)} \leq C\varepsilon^{\frac{3}{2}}|||R - I_3|||^2_{L^2(D_{\varepsilon}; \mathbb{R}^3)} \leq C\varepsilon^{\frac{3}{2}}\left[d(v, \Omega_{\delta})\right]^2 \quad (8.9)\]

Then, we get
\[\varepsilon^2|||Q - I_3|||^2_{L^2(-\delta, \delta; \mathbb{R}^3)} \leq C\left\{[d(v, Q_{\delta})]^2 + [d(v, B_{\varepsilon, \delta})]^2\right\} + C\varepsilon^{\frac{3}{2}}\left[d(v, \Omega_{\delta})\right]^2. \quad (8.10)\]
Furthermore, the third estimate in (8.3) gives
\[|||Q(0) - I_3|||^2 \leq \frac{C}{\delta} |||Q - I_3|||^2_{L^2(-\delta,\delta; \mathbb{R}^3)} + C\delta \frac{dQ}{dx} \|Q\|_{L^2(B_{\epsilon,\delta}; \mathbb{R}^3)} \]
\[\leq \frac{C}{\delta} |||Q - I_3|||^2_{L^2(-\delta,\delta; \mathbb{R}^3)} + C\delta \varepsilon \|d(v, B_{\epsilon,\delta})\|^2 \]
which using (8.10) yields
\[\varepsilon |||Q(0) - I_3|||^2 \leq C \left[\frac{\delta^2}{\varepsilon} + \varepsilon^{1/2} \right] \frac{[d(v, \Omega_{\delta})]^2}{\delta^3} + C \left[\delta + \frac{\varepsilon^2}{\delta} \right] \frac{[d(v, B_{\epsilon,\delta})]^2}{\varepsilon^3} \]
Finally (8.11) and the above estimate lead to
\[G_s(u, B_{\epsilon,\delta}) \leq C \left(d(v, B_{\epsilon,\delta}) + \left[1 + \frac{\varepsilon^2}{\delta} \right] \frac{[d(v, B_{\epsilon,\delta})]^2}{\varepsilon^3} + \left[\delta^2 + \varepsilon^{3/2} \right] \frac{[d(v, B_{\epsilon,\delta})]^2}{\varepsilon^3} \right). \] (8.11)

Step 3. Second estimate on |||Q(0) - I_3|||^2.

Now, we consider the traces of the two decompositions (8.2) and (8.6) of the displacement \(u = v - I_d \) on \(D_\varepsilon \times \{0\} \). From (8.3) and (8.7) we have
\[\int_{D_\varepsilon} ||u(x_1, x_2, 0) - W(0) - (Q(0) - I_3)(0)(x_1e_1 + x_2e_2)||^2_{x_3} \]
\[= \int_{D_\varepsilon} ||\bar{w}(x_1, x_2, 0)||^2_{x_3} \leq C\varepsilon [d(v, B_{\epsilon,\delta})]^2; \]
\[\int_{D_\varepsilon} ||u(x_1, x_2, 0) - U(x_1, x_2)||^2_{x_3} = \int_{D_\varepsilon} ||\bar{u}(x_1, x_2, 0)||^2_{x_3} \leq C\delta [d(v, \Omega_{\delta})]^2. \]
The above estimates lead to
\[\int_{D_\varepsilon} ||W(0) + (Q(0) - I_3)(x_1e_1 + x_2e_2) - U(x_1, x_2)||^2_{x_3} \]
\[\leq C\delta [d(v, \Omega_{\delta})]^2 + C\varepsilon [d(v, B_{\epsilon,\delta})]^2 \]
and taking the mean values to
\[|W(0) - M_{D_\varepsilon}(U)|^2 \leq \frac{C}{\varepsilon^2} \{ \delta [d(v, \Omega_{\delta})]^2 + \varepsilon [d(v, B_{\epsilon,\delta})]^2 \}. \]
The two above estimates give
\[\int_{D_\varepsilon} ||(Q(0) - I_3)(x_1e_1 + x_2e_2) - (U(x_1, x_2) - M_{D_\varepsilon}(U))||^2_{x_3} \]
\[\leq C\delta [d(v, \Omega_{\delta})]^2 + C\varepsilon [d(v, B_{\epsilon,\delta})]^2. \] (8.12)

We carry on by estimating \(U - M_{D_\varepsilon}(U) \). Let us set
\[R_\alpha = M_{D_\varepsilon}((R - I_3)e_\alpha) = \frac{1}{|D_\varepsilon|} \int_{D_\varepsilon} (R(x_1, x_2) - I_3)e_\alpha dx_1 dx_2 \]
and we consider the function $\Phi(x_1, x_2) = U(x_1, x_2) - M_{D_\varepsilon}(U) - x_1 R_1 - x_2 R_2$. Due to the fourth estimate in (8.7) and the Poincaré-Wirtinger’s inequality (in order to estimate $||| (R - I_3) e_\alpha - R_\alpha |||_{L^2(D_\varepsilon; \mathbb{R}^3)}$) we obtain

$$||| \nabla \Phi |||_{L^2(D_\varepsilon; \mathbb{R}^2)}^2 \leq C \left(\frac{1}{\delta^4} + \frac{\varepsilon^2}{\delta^3} \right) [d(v, \Omega_\delta)]^2, \quad (8.13)$$

Noting that $M_{D_\varepsilon}(\Psi) = 0$, the above inequality and the Poincaré-Wirtinger’s inequality in the disc D_ε lead to

$$||| \Phi |||_{L^2(D_\varepsilon)}^2 \leq C \frac{\varepsilon^2}{\delta} \left(1 + \frac{\varepsilon^2}{\delta^2} \right) [d(v, \Omega_\delta)]^2. \quad (8.14)$$

Estimates (8.12) gives

$$\int_{D_\varepsilon} ||| (Q(0) - I_3)(x_1 e_1 + x_2 e_2) |||_2^2 \leq C \left(||| \Phi |||_{L^2(D_\varepsilon)}^2 \right) + \varepsilon^4 ||| R_1 |||_2^2 + \varepsilon^4 ||| R_2 |||_2^2 + \delta [d(v, \Omega_\delta)]^2 + \varepsilon [d(v, B_{\varepsilon, \delta})]^2$$

which in turns with (8.9) and (8.14) yield

$$\varepsilon^4 \left(||| (Q(0) - I_3)e_1 |||_2^2 + ||| (Q(0) - I_3)e_2 |||_2^2 \right) \leq C \left(\frac{\varepsilon^2}{\delta} + \frac{\varepsilon^2}{\delta^3} \right) [d(v, \Omega_\delta)]^2 + C \varepsilon [d(v, B_{\varepsilon, \delta})]^2$$

and finally

$$\varepsilon \left(||| Q(0) - I_3 ||| \right)^2 \leq C \left(\frac{\varepsilon^2}{\delta} + \varepsilon^{1/2} + \frac{\delta^4}{\varepsilon^3} \right) \frac{[d(v, \Omega_\delta)]^2}{\delta^3} + C \varepsilon \frac{[d(v, B_{\varepsilon, \delta})]^2}{\varepsilon^3}. \quad (8.15)$$

Estimates (8.1) and (8.15) yield

$$\mathbf{G}_s(u, B_{\varepsilon, \delta}) \leq C d(v, B_{\varepsilon, \delta}) + C \left[\frac{[d(v, B_{\varepsilon, \delta})]^2}{\varepsilon^3} \right] + C \left[\frac{[d(v, \Omega_\delta)]^2}{\varepsilon^3} \right] + C \left[\frac{[d(v, B_{\varepsilon, \delta})]^2}{\varepsilon^3} \right]. \quad (8.16)$$

Step 4. Final estimate on $\mathbf{G}_s(u, B_{\varepsilon, \delta})$.

The two estimates of $\mathbf{G}_s(u, B_{\varepsilon, \delta})$ given by (8.11) and (8.16) lead to

- if $\varepsilon^2 \leq \delta$ then
 $$\mathbf{G}_s(u, B_{\varepsilon, \delta}) \leq C d(v, B_{\varepsilon, \delta}) + C \left[\frac{[d(v, B_{\varepsilon, \delta})]^2}{\varepsilon^3} \right] + C \left[\frac{[d(v, \Omega_\delta)]^2}{\varepsilon^3} \right].$$

- if $\delta \leq \varepsilon^2$ then
 $$\mathbf{G}_s(u, B_{\varepsilon, \delta}) \leq C d(v, B_{\varepsilon, \delta}) + C \left[\frac{[d(v, B_{\varepsilon, \delta})]^2}{\varepsilon^3} \right] + C \left[\frac{[d(v, \Omega_\delta)]^2}{\varepsilon^3} \right].$$

We immediately deduce (5.14).
References

[1] S. S. Antman. The theory of rods, in Handbuch der Physik, Band VIa/2, S. Flügge & C. Truesdell eds., Springer-Verlag, Berlin, (1972), 641–703.

[2] S. S. Antman. Nonlinear Problems of Elasticity, Applied Mathematical Sciences 107, Springer-Verlag, New York (1995).

[3] M. Aufranc. Junctions between three-dimensional and two-dimensional non-linearly elastic structures. Asymptotic Anal. 4 (1991), 4, 319–338.

[4] D. Blanchard, A. Gaudiello, G. Griso. Junction of a periodic family of elastic rods with a 3d plate. I. J. Math. Pures Appl. (9) 88 (2007), no 1, 149-190.

[5] D. Blanchard, A. Gaudiello, G. Griso. Junction of a periodic family of elastic rods with a thin plate. II. J. Math. Pures Appl. (9) 88 (2007), no 2, 1-33.

[6] D. Blanchard, G. Griso. Microscopic effects in the homogenization of the junction of rods and a thin plate. Asympt. Anal. 56 (2008), no 1, 1-36.

[7] D. Blanchard, G. Griso. Decomposition of deformations of thin rods. Application to nonlinear elasticity, Ana. Appl. 7 (1) (2009) 21-71.

[8] D. Blanchard, G. Griso. Decomposition of the deformations of a thin shell. Asymptotic behavior of the Green-St Venant’s strain tensor. J. Elast., 101 (2), 179-205 (2010).

[9] D. Blanchard, G. Griso. Modeling of rod-structures in nonlinear elasticity. C. R. Math. Acad. Sci. Paris 348 (2010), 19-20, 1137–1141.

[10] D. Blanchard, G. Griso. A simplified model for elastic thin shells, Asymptotic Analysis, 76(1), 2012, 1-33.

[11] D. Blanchard, G. Griso. Asymptotic behavior of structures made of straight rods. J. Elast., 108(1), 85-118 (2012).

[12] D. Blanchard, G. Griso. Junction between a plate and a rod of comparable thickness in nonlinear elasticity, J. Elasticity, . Asymptotic behavior of the Green-St Venant’s strain tensor. J. Elast., 112, 79-109 (2013).

[13] P.G. Ciarlet. Mathematical Elasticity, Vol. I, North-Holland, Amsterdam (1988).

[14] P.G. Ciarlet. Plates and Junctions in Elastic Multi-Structures: An Asymptotic Analisys, Masson, Paris, 1990.

[15] P.G. Ciarlet. Mathematical Elasticity, Vol. II: Theory of Plates, North-Holland, Amsterdam,1997.
[16] P.G. Ciarlet, H. Le Dret and R. Nzengwa. Junctions between three dimensional and two dimensional linearly elastic structures. J. Math. Pures Appl. 68 (1989), 261–295.

[17] P.G. Ciarlet. and P. Rabier. Les équations de Von Kármán. Lectures Notes in Mathematics. (Springer Verlag 1980).

[18] G. Friesecke, R. D. James and S. Muñúler. A hierarchy of plates models derived from nonlinear elasticity by Γ-convergence, Arch. Rat. Mech. Anal. 180 (2006) 183-236.

[19] A. Gaudiello, R. Monneau, J. Mossino, F. Murat, A. Sili. Junction of elastic plates and rods. ESAIM Control Optim. Calc. Var. 13 (2007), no. 3, 419–457.

[20] G. Griso. Asymptotic behavior of rods by the unfolding method. Math. Meth. Appl. Sci. 2004; 27: 2081-2110.

[21] G. Griso. Asymptotic behavior of structures made of plates. Analysis and Applications 3 (2005), 4, 325-356.

[22] G. Griso. Decomposition of displacements of thin structures. J. Math. Pures Appl. 89 (2008), 199-233.

[23] G. Griso. Asymptotic behavior of structures made of curved rods. Analysis and Applications, 6 (2008), 1, 11-22.

[24] I. Gruais. Modélisation de la jonction entre une plaque et une poutre en élasticité linéarisée. RAIRO: Modél. Math. Anal. Numér. 27 (1993) 77-105.

[25] I. Gruais. Modeling of the junction between a plate and a rod in nonlinear elasticity. Asymptotic Anal. 7 (1993) 179-194.

[26] H. Le Dret. Modeling of the junction between two rods, J. Math. Pures Appl. 68 (1989), 365–397.

[27] H. Le Dret. Modeling of a folded plate, Comput. Mech., 5 (1990), 401–416.

[28] H. Le Dret. Problèmes Variationnels dans les Multi-domaines: Modélisation des Jonctions et Applications. Masson, Paris (1991).

[29] L. Trabucho and J.M. Viano. Mathematical Modelling of Rods, Handbook of Numerical Analysis 4. North-Holland, Amsterdam (1996).