Gingival salivary gland choristoma: An unusual case report

Mario Héctor Torres Medina1,2, Ramón Franco Topete1, Mario Nava Villalba1, José Sergio Zepeda Nuño1,2

1Department of Microbiology and Pathology, Pathology Research and Diagnosis Center, University Center of Health Sciences, University of Guadalajara, 2Department of Dental Clinics, Oral Medicine Clinic, University Center of Health Sciences, University of Guadalajara, Guadalajara, Jalisco, México

INTRODUCTION

The gingival salivary gland choristoma (GSGC) is a highly unusual tumor-like mass alteration constituted by normal salivary gland cells in an abnormal location, reported for the first time in 1964 by Moskow and Baden.1 To our knowledge, only 12 cases of this entity (including present case) are reported to date, the majority observed as asymptomatic, solitary, smooth-surfaced tumor-like masses, measuring 0.5–1.5 cm with no osseous involvement. This case involves a 38-year-old female, with a pink symptomatic polypoid nodule on the posterior mandibular alveolar ridge mucosa, measuring 6 mm in diameter where no osseous abnormalities are shown. An excisional biopsy was performed. Microscopically, the specimen was constituted by dense fibrous connective tissue containing mucous minor salivary glands, intraductal calcification and adipose tissue clusters. Furthermore, inflammatory infiltrate foci were seen. An immunohistochemical technique was used as the support for the diagnostic methodology. The diagnosis of gingival salivary gland choristoma was established. Some development theories are discussed, referring to a pluripotential capacity of the gingiva. This case reflects the importance of not underestimating innocuous lesions that could represent more serious or unusual entities. In addition, histopathological analysis is mandatory to achieve a correct diagnosis and management of soft-tissue enlargements of oral mucosa.

Keywords: Alveolar ridge, gingival choristoma, heterotopic tissue, polypoid nodule, salivary gland

Access this article online

Quick Response Code: www.jomfp.in

DOI: 10.4103/jomfp.JOMFP_284_19

How to cite this article: Torres Medina MH, Topete RF, Villalba MN, Zepeda Nuño JS. Gingival salivary gland choristoma: An unusual case report. J Oral Maxillofac Pathol 2021;25:S90-3.
CASE REPORT

A 38-year-old female, was referred to the oral medicine service at the University of Guadalajara. At the diagnosis interrogation, the patient reported a 3-month symptomatic enlargement and did not mention any antecedents of importance. After obtaining consent from the patient, we proceed to intraoral exploration that revealed a polyposic nodule of approximately 6 mm in size, with smooth surface, firm consistency and similar coloration to the normal adjacent oral mucosa, the lesion was located on the posterior alveolar ridge mucosa close upon a root remnant of the mandibular right second molar [Figure 1a]. A periapical radiography was applied, where no osseous or dental root abnormalities are shown [Figure 1b]. An excisional biopsy was performed under local anesthesia, and the obtained tissue was submitted to the histopathological analysis.

Microscopically, the specimen was constituted by a nodular mass of dense fibrous connective tissue [Figure 2], containing mucous minor salivary glands [Figure 3a], medium caliber arteries and lymphatic vessels. Adjacent to salivary acini, intraductal calcification [Figure 3b] and adipose tissue clusters [Figure 3c] could be observed. In the overall stroma, mild inflammatory infiltrate foci with predominance of lymphocytes were observed.

Although it is not necessary to establish the diagnosis, an immunohistochemical technique was performed to assess the proliferative activity of gland cells through the evaluation of Ki-67 expression, where it was observed that the majority of glandular cells show lack of expression [Figure 4]. In addition, positive expression of Ki-67 was found in the 2% and 4% of the nuclei of acinar and stromal cells, respectively. Based on the clinical and histopathological findings, the diagnosis of GSGC known as heterotopic salivary gland tissue was established. After the excisional biopsy, postsurgical care was indicated to the patient. The relief of occasional pain was achieved, and there was no recurrence after 12 weeks of follow-up.

DISCUSSION

According to the clinical and radiographic findings, this injury can be diagnosed with a reactive origin tumor-like mass due to the close relationship of the alveolar ridge with the occlusal contact, similar to an irritation fibroma, which usually is a well-delimited smooth surface where a firm consistency is observed on the nodule. This can vary from

Table 1: Gingival salivary gland choristomas reported to date

Author/year	Age (years)	Gender	Region	Histopathologic findings
Traeger(19)/1961	19	Male	Posterior maxilla	Gingival cyst and lobule of mucous salivary gland
Moscow and Baden(19)/1964	35	Male	Posterior maxilla	Mucous and sebaceous salivary gland and lipoid material
Moss-Salentijn and Applebaum(19)/1972	N/A	N/A	Posterior mandible	Mucous salivary gland
Wilson and MacEntee(19)/1974	77	Male	Anterior mandible	Papillary cystadenoma and lobule of mucous gland
Izumi et al.(19)/1976	11 months	Female	Anterior maxilla	Cystic glandular epithelium
Ide et al.(19)/1983	9	Female	Anterior maxilla	Mucous salivary gland and excretory ducts
Moscow and Baden(19)/1986	N/A	N/A	Anterior mandible	Mucous salivary gland and gingival cyst
Brannon et al.(19)/1986	21	Male	Anterior mandible	Mucous salivary gland
Ledesma-Montes et al.(19)/1998	43	Female	Anterior mandible	Mucous salivary gland lobules
Gheena et al.(19)/2011	45	Female	Anterior mandible	Mucous salivary gland lobules
Gheena et al.(19)/2011 (two cases)	51	Male	Anterior maxilla	Mucous salivary gland, adipose tissue and focal ductal calcification

N/A: Not available
millimeters to a few centimeters and the growth is attached to the mucosa by a sessile or pedunculated base, and mild symptomatology can be associated due to constant trauma.\[13\]

According to the data, it is uncertain how minor salivary glands cells have interacted to create mucinous acini in the mandibular alveolar ridge. Researches explain some theories about the mechanism of the development of GSGC. One of these theories describes that the gingival epithelium shows a pluripotential quality, so the unusual location of this minor salivary gland tissue demonstrates that there is an ectopic formation, thus creating a morphogenesis of minor salivary glands.\[8\] Therefore, the fact of finding adipose tissue in the present case reinforces the possible theory of the pluripotential capacity of the gingiva. Another theory debates that in the normal salivary gland tissue development, a fraction of glandular tissue placed in the oral mucosa becomes “trapped” in the gingiva and consequently producing an ectopic growth, leading to the formation of GSGC.\[2\]

In general, it is known that the choristoma is a mature tissue growth with no significant mitotic activity. In the present case, we found positive Ki-67 in some acinar cells. There are a few studies that evaluate index proliferation in adult salivary glandular tissue. In one study, Ki-67 positive cells were expressed in acinar and ductal cells, with a frequency of 8% and 1%, respectively.\[14\] In a more recent work, Aure et al. evaluated the proliferative capacity of the salivary glands in murine mice. They found that homeostasis and maintenance of the adult salivary gland cells are through the duplication of differentiated secretory cells.\[15\]

CONCLUSION

The gingival mucosa is constantly under chronic irritation, chewing forces, trapped food remains, poorly-adjusted restorations, dental calculus, as well as the oral microbiota which under atypical conditions may become pathogenic. That is why in gingiva, there is a tendency for multiple entities to appear which are associated with chronic trauma and external irritation and could be a factor to present symptomatology. It is important that the professional of oral care do not underestimate the innocuous lesions, even polypoid nodules could represent more serious or unusual entities. Whereby a histopathological analysis is mandatory to achieve a correct diagnosis and management of soft-tissue enlargements of oral mucosa.

Declaration of patient consent

The authors certify that they have obtained all appropriate patient consent forms. In the form the patient(s) has/have given his/her/their consent for his/her/their images and other clinical information to be reported in the journal. The patients understand that their names and initial(s) will not be published and due efforts will be made to conceal their identity, but anonymity cannot be guaranteed.
Financial support and sponsorship
Nil.

Conflicts of interest
There are no conflicts of interest.

REFERENCES
1. Moskow BS, Baden E. Gingival choristoma. Report of a case. Oral Surg Oral Med Oral Pathol 1964;18:504-16.
2. Chou LS, Hansen LS, Daniels TE. Choristomas of the oral cavity: A review. Oral Surg Oral Med Oral Pathol 1991;72:584-93.
3. Batra R. The pathogenesis of oral choristomas. J Oral Maxillofac Surg Med Pathol 2012;24:110-4.
4. Traeger KA. Cyst of the gingiva (mucocele). Oral Surg Oral Med Oral Pathol 1961;14:243-5.
5. Moss-Salentijn L, Applebaum E. A minor salivary gland in human gingiva. Arch Oral Biol 1972;17:1373-4.
6. Wilson DF, MacEntee MI. Papillary cystadenoma of ectopic minor salivary gland origin. Oral Surg Oral Med Oral Pathol 1974;37:915-8.
7. Izumi H, Oikawa T, Yoshida T, Inoue Y, Komiyama K, Ryo T, et al. A consideration of a case of gingival cyst with glandular epithelium. Nihon Univ J Oral Sci 1976;2:242-6.
8. Ide F, Shimura H, Saito I, Umemura S. Gingival salivary gland choristoma: An extremely rare phenomenon. Oral Surg Oral Med Oral Pathol 1983;55:169-72.
9. Moskow BS, Baden E. Gingival salivary gland. Report of a case. J Clin Periodontol 1986;13:720-4.
10. Brannon RB, Houston GD, Wampler HW. Gingival salivary gland choristoma. Oral Surg Oral Med Oral Pathol 1986;61:185-8.
11. Ledesma-Montes C, Fernandez-Lopez R, Garcia-Ortitiz M, Portilla-Robertson J, Hernandez-Guerrero JC. Gingival salivary gland choristoma. A case report. J Periodontol 1998;69:1164-6.
12. Gheena S, Chandrasekhar T, Ramani P. Heterotopic salivary gland tissue: A report of two cases. J Nat Sci Biol Med 2011;2:125-7.
13. Neville BW, Damm DD, Allen CM, Chi AC. Soft tissue tumors. In: Neville BW, Damm DD, Allen CM, Chi AC, editors. Oral and Maxillofacial Pathology. 4th ed. St. Louis, Missouri: Elsevier; 2016. p. 473-97.
14. Murakami M, Ohtani I, Hojo H, Wakasa H. Immunohistochemical evaluation with Ki-67: An application to salivary gland tumours. J Laryngol Otol 1992;106:35-8.
15. Aure MH, Konieczny SF, Ovitt CE. Salivary gland homeostasis is maintained through acinar cell self-duplication. Dev Cell 2015;33:231-7.