Air and Fuel Flow Interaction in Combustion for Various Injector Locations

A Sai Kumar ¹ and T Shravan Kumar ²

¹ Asst. Professor, Dept. of Aeronautical Engineering, MLR Institute of Technology,
Hyderabad-500043. India
² Student M.Tech Aerospace Engineering, Dept. of Aeronautical Engineering,
MLR Institute of Technology, Hyderabad-500043. India
*e-mail: ask.mraj@gmail.com

Abstract: Oil based fills assume a crucial part in fast consumption of regular vitality sources alongside expanding request and furthermore real donors of air poisons. Real segment of the present vitality request in India is being met with non-renewable energy sources. Consequently ample opportunity has already past that substitute powers for motors ought to be go tten from indigenous sources. As India is a rural nation, there is a wide extension for the generation of vegetable oils (both palatable and non-eatable) from various oil seeds. The present work concentrated just on non-palatable oils as fuel for motors, as the consumable oils are in awesome request and excessively costly. The past work uncovered that employments of vegetable oils for motors set up of diesel were researched. In spite of the fact that the concerned sciences suggested the utilization of vegetable oils in diesel motors, there was no proof of any down to earth vegetable oil source motors. The present examinations are arranged after an intensive audit of writing around there. Analyses are done in a more prevalent petter sort single barrel, water cooled motor. Significant issues related with vegetable oils are higher viscosities, bring down warming esteems, ascend in stoichiometric fuel air proportion and warm splitting. The creator has concentrated on use of five non-palatable oils, their mixes with diesel and individual Methyl esters in diesel motors. The perfect oil mixes with diesel were warmed before going into ignition chamber. The warming quality relies upon the expansion in level of flawless oils in blend to diminish the consistency of the fuel. The execution parameters of the test motor Viz. Brake warm productivity, Volumetric proficiency are diminished, Brake particular fuel utilization and Exhaust gas temperature are expanded for every slick oil contrasted with diesel. Emanation parameters of motor, for example, Carbon monoxide, Carbon dioxide, Un-consumed hydrocarbons and Smoke are expanded, yet Nitrogen oxides are diminished for every single slick oil and their mixes contrasted with diesel. This pattern is seen because of high thickness combined with bring down warming estimation of the powers. Every single flawless oil are changed over into their separate methyl esters through trans - desertification process. In this procedure, the execution parameters of motor, for example, Brake warm proficiency and volumetric productivity are marginally diminished, Brake particular fuel utilization and Exhaust gas temperature are expanded contrasted with diesel for all bio-diesels. Emanation parameters of motor, for example, Carbon monoxide, Carbon dioxide, Un-consumed hydrocarbons and Smoke are decreased, however Nitrogen oxides expanded for all bio-diesels contrasted with diesel. This pattern is seen because of finish ignition of the bio-diesels, as the consistency is lessened. From the experimentation, it is watched that 25% of perfect oil blended with 75% of diesel is the most appropriate mix, without warming and with no alteration of the motor. Methyl ester of Linseed oil is the better
performing fuel because of better execution and lower outflows contrasted with other picked methyl ester.

1. Introduction
India, one among the quickest developing nations with a stable financial development. In such Countries transportation and its related fields are in many folds. Fuel utilization is straightforwardly proportionate to this request. India depends essentially on imported powers because of absence of non-renewable energy source stores and it greatly affects economy. India needs to search for a contrasting option to manage the development rate. Bio-diesel is a promising and an alternative option for our Fuel needs. With huge vegetation and land accessibility, unquestionably bio-diesel is a practical wellspring of alternative fuel for India. Late investigations and research have made it conceivable to remove bio-diesel at temperate expenses and amounts. The mix of Bio-diesel with fossil diesel has many advantages like diminishment in emanations, increment in effectiveness of motor, higher Cetanerating, bring down motor wear, low fuel utilization, lessening in oil utilization and so forth. It can be seen that the effectiveness of the motor increments by the usage of Bio-diesel. This will greatly affect Indian economy. Diesel energizes have profound effect on the modern economy of a nation. These are utilized as a part of substantial trucks, city transport transports, trains, electrical generators, cultivate types of gear, underground mine types of gear and so forth.

Oil based goods. The import charge on these things was 17,838 crores. With the normal development rate for diesel utilization over 14% for every annum, contracting raw petroleum holds and constrained refining limit, India is probably going to depend more on imports of unrefined oil and oil based goods.

2. Review of Literature
This section shows the definite writing survey on the vegetable oils and their subsidiaries as interchange fuel for pressure start motors. A concise verifiable foundation is trailed by the properties of vegetable oils and its mixes are resolved. Execution and fumes emanation parameters of perfect vegetable oil and its mixes with diesel are clarified. At that point the properties of biodiesel and its mixes are resolved. Execution and discharge parameters of bio diesel and its mixes are portrayed. At long last, this section finishes up with the extent of the present work.

3. Properties Test Engine
The general morphology of oil plants and seeds and accessibility of oils are clarified. Ignition parameters, for example, thickness, consistency, streak point, fire point, cetane number and calorific estimation of a wide range of picked oils and their mixes with diesel oil are introduced in this part. Impact of mixing vegetable oil with diesel on thickness is talked about. Impact of warming on thickness of oils and their mixes with diesel is considered in this part.

3.1. Linseed oil:
Linseed oil, also called flax seed oil or just flax oil. Its logical name is Linum usitatissim(or)Linaceae. The yellowish drying oil is gotten from dried ready seeds of flax plant through squeezing and extraction. It is accessible in assortments, for example, Cold Pressed, salt refined, sun Bleached, sun thickened, and polymerized (stand oil) showcased as flaxseed oil.

3.2. Castor oil:
Castor oil (or) ricinus oil is non-unpredictable greasy oil removed from Castor bean seeds. It fluctuates in shading from shading less to greenish. It has two subordinates known as blown castor and hydrogenated oil. Hydrogenated castor oil is utilized as a part of materials, paints, varnishes, plastics, beauty care products, filaments, hair oils and drying oils.
3.3. **Palm stearin oil:**

Palm oil has wonderful smell and taste. It is steady and impervious to rancidity. The shade of palm oil changes from yellow to profound orange. Entomb esterification of palm oil produces two parts. Palm oil got at low dissolving point called “Olein” and the oil acquired at high softening point called “Stearin”.

3.4. **Mahua oil:**

Scientific name of Mahua oil is "Madhuka indica", plant name is "Madura long folia". It is gotten from a tropical tree having a place with the family Sapotaceae.

3.5. **Neem oil:**

The logical name of Neem is azadirachta indica. It has a place with the family meliaceae. The parts contain 40% to half of a harsh biting greenish yellow to dark colored oil with solid obnoxious garlic like scent.

Table 3.1 Comparison of combustion burning parameters of vegetable oils utilized as a part of test engine.

Property	Castor	Mahua	Neem	Palm Stearin	Linseed	Diesel
Density (gm/cc) at 40°C	0.956	0.917	0.919	0.918	0.929	0.830
Viscosity (CST)	52	36	34	39.6	22.2	5.0
Flash point(°C)	320	273	300	220	241	57
Fire point(°C)	345	301	325	280	260	65
Calorific values(kJ/kg)	36000	39600	35200	37500	39307	42000
Cetane number	42.3	45	38	42	34.6	50

Table 3.2 Properties of Linseed oil – diesel blends or diesel mixes

Diesel (%)	Linseed oil (%)	Viscosity (CST) at 300°C	Viscosity Reduction (%)	Density (gm/cc) at 40°C
0	100	22.2	-	0.929
25	75	20	9.90	0.904
50	50	17	23.42	0.880
75	25	10	54.95	0.855
100	0	5	77.47	0.840

Fig. 3.1. Variation of Viscosity of Linseed oil and its Blends or Mixes With Temperature.
4. Experimental work

4.1. Introduction

The points of interest of the exploratory set up are exhibited in this section. The engine used along with other specifications of the experimental set up is discussed.

4.2. Experimental set-up

The schematic diagram of experimental set up along with the line diagram are given in Fig.4.1 below

Fig.4.1 Line diagram of Experimental setup
Fig. 4.2 demonstrates the photo of the test set up. The imperative parts of the framework are:

- The motor
- Dynamometer Smoke meter
- Exhaust gas analyzer

Fig. 4.2. Experimental setup

Fig. 4.3. Experimental set up with smoke meter

Fig. 4.4. Five gas emission analyser
5. Conclusion
Considering the requirement for substitute energizes, the test examinations are done in the present work keeping in mind the end goal to replace diesel with non-eatable vegetable oils. Hence, Castor oil, Neem oil, Linseed oil, Mahua oil and Palm Stearin oil were attempted in a mainstream 4 stroke water cooled diesel motor. Physical and synthetic properties of the previously mentioned oils were resolved. The execution characteristics as well as discharge parameters of these oils and their mixes were assessed. The outcomes were contrasted with those of diesel. The option of these fuel Mixtures as an alternative Fuel to the Diesel was analyzed.

6. Scope for future work
- Esters and Diesel with different proportions can be carried out to investigate the performance of different blends.
- Combustion characteristics for these blends can be investigated.
- Emission Characteristics can be predicted.
- Endurance test on the engines operating with these oils might be carried out.
- Application of these fuels to high Speed engines might be conducted.

7. References
1. G.R. Quick., “Developments in use of Vegetable Oils as Fuel for Diesel Engines”, ASAE Paper No.80, (1980) PP:1525-1529.
2. Bruwer, J. J., B. D. Boshoff, F. J. C. Hugo, L. M. DuPlessis, J. Fuls, C. Hawkins, A. N. VanderWalt, and A. Engelbert. The Utilization of sunflower seed oil as renewable fuel diesel engines. In Agricultural Energy, Vol. 2, Biomass Energy/Crop Production. ASAE Publication 4-81. St. Joseph, MI: ASAE. (1981).
3. Bacon, D. M., F. Brear, I. D. Moncrieff, and K. L. Walker. The use of vegetable oils in straight and modified form as diesel engine fuels. Beyond the Energy Crisis-Opportunity and Challenge Volume III. Third International Conference on Energy Use Management.Berlin (West). Eds. R. A. Fazzolare and C. R. Smith.,Pergamon Press, Oxford. (1981) PP: 1525-33.
4. Yarbrough, C. M., W. A. LePori, and C. R. Engler. Compression ignition performance using sunflower seed oil. ASAE Paper Number 81-3576. (1981)St. Joseph, MI: ASAE.
5. Basic, N. J., and A. L. Humke. Vegetable oils: diesel fuel supplements. Automotive Engineering 89(4) (1981) PP : 37-41.
6. Barisic, J.J., and A.L., Humke, “Performance and Emission Characteristics of a Naturally Aspirated Diesel Engine with Vegetable Oil Fuels”, SAE Paper 810262, (1981).
7. C.E. Goering, A.W. Schwab et al., “Fuel Properties of Eleven Vegetable Oils”, Trans. ASAE, 25 (4-6), (1982)PP:1472-1477.
8. Kusy, P.F., “Transesterification of Vegetable Oils for Fuels, Proceedings of the International conference on Plant and Vegetable Oils as Fuels”, Fargo, North Dakota, ASAE, (1982) PP: P.127-137.
9. Pryor, R.W., Hanna, M.A., Schinstock, J.L., Bashford, L.L..Soybean oil fuel in a small diesel engine. Trans ASAE 26 (1982) PP: 333–338.
10. Baranescu, R.A., Joseph J. Lusco, “Sunflower Oil as a Fuel Extender in Direct Injection Turbocharged Diesel Engines”, SAE paper No.820260, Society of Automotive Engineers, Warrendale, PA, (1982).
11. Tahir, A. R., H. M. Lapp, and L. C. Buchanan. Sunflower oil as a fuel for compression ignition engines. Vegetable Oil Fuels: Proceedings of the International Conference on Plant and Vegetable Oils Fuels. St. Joseph, MI: ASAE. (1982).
12. Bettis, B. L., C. L. Peterson, D. L. Auld, D. J. Driscoll, and E. D. Peterson.. Fuel characteristics of vegetable oil from oilseed crops in the Pacific Northwest. Agronomy Journal, 74(March/April): 335-39. (1982)
13. Ziejewski M., and K.R. Kaufman., “Vegetable Oil as Potential Alternate Fuel in Direct Injection Diesel Engines”, SAE paper 831359, (1983).
14. C.L. Peterson, G.L. Wagner and D.L. Auld., “Vegetable Oil Substitutes for Diesel Fuel”, Trans. ASAE 26(1-4), (1983) PP: 322-327
15. Gerhard Vellguth, “Performance of Vegetable Oils and their Monoesters as Fuels for Diesel Engines”, SAE Paper 831358, (1983)
16. Niehaus, R.A., Georing, C.E., et al., “Cracked Soybean Oil as a Fuel for Diesel Engine”, ASAE Paper NO.85-1560, ASAE, St.Joseph, MI, (1985)
17. Harrington, K.J., “Chemical and Physical Properties of Vegetable Oil Esters and their Effect on Diesel Fuel Performance”, Biomass, 9, (1986) PP:1-17.
18. M.O. Bagby., “Vegetable Oils for Diesel Fuel: Opportunities for Development”, ASAE Paper No. 87-1588,(1987)
19. M.L. Schlick, M.A. Hanna and J.L. Schinstock., “Soybean and Sunflower Oil Performance in a Diesel Engine”, Trans. ASAE 31(5), (1988) PP:1345-1349.
20. SrinivasaRao, R and Gopala Krishna, K.V., “Esterified Vegetable Oils as Fuels in Diesel Engines”, XI National Conference on I.C. Engines & Combustion, PP 171-179, 1989.