Сенситивность барорецепторов и состояние автономной нервной системы у пациентов с хроническими нарушениями сознания

В. Н. Дороговцев1, Д. С. Янкеевич1, А. Л. Парфенов1, А. Е. Скворцов1, А. В. Котельникова2

1 Федеральный научно-клинический центр реаниматологии и реабилитологии, Россия, 141534, Московская область, Солнечногорский район, д. Лыткино, д. 777
2 Московский научно-практический центр медицинской реабилитации, восстановительной и спортивной медицины ДЗМ, Россия, 105120, г. Москва, ул. Земляной вал, д. 53

Sensitivity of the Baroreceptors and the State of the Autonomic Nervous System in Patients with Chronic Impairment of Consciousness Due to Severe Brain Damage

Viktor N. Dorogovtsev1, Dmitriy S. Yankevich1, Alexander L. Parfenov1, Artem E. Skvortsov1, A. V. Kotelnikova2

1 Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitiology, 777 Lytkino 141534, Solnechnogorsk district, Moscow region, Russia
2 Department of medical rehabilitation Moscow Research Centre for Medical Rehabilitation and Sports Medicine, 53 Zemlyanoi val, 105120 Moscow, Russia

Цель исследования: изучить чувствительность барорецепторов и автономной нервной системы при пассивной ортостатической пробе у пациентов с хроническими нарушениями сознания вследствие тяжелых повреждений головного мозга и определить их роль в реабилитационном процессе.

Материалы и методы. В исследование включили 30 пациентов с длительными нарушениями сознания, вызванными тяжелыми повреждениями головного мозга (группа 1), 10 из которых были в вегетативном состоянии (ВС) и 20 — с синдромом малого сознания (СМС). Основной причиной тяжелых повреждений была черепно-мозговая травма (53% пациентов этой группы). В группу сравнения вошли 24 пациента с очаговой неврологической симптоматикой, основной причиной которой в 79,2% случаев были нарушения мозгового кровообращения (группа 2). Контрольную группу (группа 3) составили 22 здоровых добровольца сопоставимого возраста. Все измерения проводили с помощью монитора Task Force Monitor 1030i (CNSystem, Австрия) в процессе пассивной ортостатической пробы 0°–30°–60°–0°. Провели анализ изменений показателей мощности низкочастотного (НЧС) и высокочастотного спектра (ВЧС) вариабельности сердечного ритма и чувствительности барорецепторов (ЧБР). Статистический анализ провели с помощью пакета статистических программ «Statistica-10». Значимость межгрупповых различий несвязанных выборок определяли расчетом критерия Манна Уитни (Mann–Whitney U-test). Достоверными считали различия при достижении уровня статистической значимости p<0,05.

Результаты. Максимальные фоновые значения ЧБР выявили в контрольной группе. У пациентов 1 и 2 групп отмечали значительное снижение этого показателя, пропорциональное тяжести повреждений головного мозга. Аналогичную динамику имели показатели чувствительности автономной нервной системы (НЧС и ВЧС). Основной тренд ортостатических изменений ЧБР НЧС и ВЧС характеризовался прогрессивным снижением этих показателей при увеличении угла наклона пациентов и восстановлением их до исходного уровня после возврата пациентов в горизонтальное положение. У 4 пациентов группы 1 (14%) при выполнении наклона на 30° появились признаки ортостатической гипотензии: в 3 случаях наблюдалась ортостатическая гипотензия, а в одном — синдром постуральной ортостатической тахикардии (СПОТ). Отличием этих пациентов было более низкая ЧБР и более высокие показатели активности симпатической системы (НЧС) по сравнению с показателями других пациентов данной группы.

Заключение. У пациентов с хроническими нарушениями сознания в посткоматозном периоде после тяжелых повреждений головного мозга наблюдаются значительное снижение чувствительности барорецепторов и нарушения автономной нервной системы, приводящие к значительному снижению активности симпатической и парасимпатической систем. Степень этих нарушений ассоциирована с тяжестью повреждений головного мозга. Риск развития ортостатической гипотензии при вертикализации выше у пациентов с более низкой чувствительностью барорецепторов, что необходимо учитывать в начале процесса их вертикализации.

Ключевые слова: вегетативное состояние; синдром малого сознания; пассивная ортостатическая проба; автономная нервная система; чувствительность барорецепторов

Корреспонденция:
Виктор Николаевич Дороговцев
E-mail: vicdor@yandex.ru

Адрес для корреспонденции:
Виктор Николаевич Дороговцев
E-mail: vicdor@yandex.ru
Purpose of the study: to examine sensibility of baroreceptors and the autonomic nervous in the passive orthostatic test in patients with chronic impairment of consciousness due to severe brain damage and determine their role in the rehabilitation process.

Materials and methods. The study included 30 patients with long-term impairment of consciousness due to severe brain damage (group 1), 10 of them being in the vegetative state (VS) and 20 being in the minimally conscious state (MCS). Cranioencebral trauma was the main cause of severe damage in that group (53% of patients). The comparison group included 24 patients with focal neurological symptoms caused predominantly — 79.2% of cases — by cerebrovascular disorders (group 2). The control group (group 3) consisted of 22 healthy volunteers of a comparable age. All measurements were done with the help of a Task Force Monitor 1030i (CNSystem, Austria) in the course of passive orthostatic test at 0°–30°–60°–0°. Changes in the power of low-frequency (LFS) and high-frequency spectrum (HFS) of heart rate variability and baroreceptors sensibility (BRS) were analyzed. Statistical analysis was carried out using Statistica-10 software. Significance of inter-group differences on unrelated samples was determined by the Mann–Whitney U-test. Differences between groups were considered significant at $P<0.05$.

Results. Maximal background values of BRS were found in the control group. In group 1 and 2 patients, considerable decrease of that index was noted, which was proportional to the brain damage severity. Similar dynamics was observed for the indices of autonomic nervous system sensibility (LFS and HFS). The main trend of orthostatic changes of BRS, LFS, and HFS was characterized by progressive decrease of the indices with increase of the patients’ angle of tilting and their return to the baseline level after the patients were put back into the horizontal position. 4 patients of group 1 (14%) displayed signs of orthostatic disorders upon tilting to 30°: in 3 cases, orthostatic hypotension was observed, and in one case the postural orthostatic tachycardia syndrome (POTS) was diagnosed. Those patients differed by lower BRS and higher sympathetic system activity (LFS) vs. the same indices of other patients in that group.

Conclusion. Patients with chronic impairment of consciousness during the post-comatose period after a severe brain damage display a significant decrease of baroreceptors sensibility and autonomic nervous system disorders manifesting in significantly lower activity of the sympathetic and parasympathetic systems. The prominence of such disorders is associated with brain damage severity. Their risk of developing orthostatic hypotension during tilting towards a vertical position is higher in patients who have lower baroreceptors sensibility, and this should be taken into account beginning the process of their verticalization.

Keywords: vegetative state; minimally conscious state; passive orthostatic test; autonomic nervous system; baroreceptors sensibility

Введение

Изучение ортостатических изменений автономной нервной системы и чувствительности барорецепторов у пациентов с тяжелыми повреждениями головного мозга имеет большое практическое и теоретическое значение. Основной причиной таких повреждений является черепно-мозговая травма, частота которой составляет в год 4,5 на 1 тыс. населения и возрастает на 2% ежегодно. Тяжелая черепно-мозговая травма (ТЧМТ) составляет 20–25% от общего числа ЧМТ, при этом летальность достигает 41–85% [1]. Другой причиной тяжелых повреждений головного мозга с развитием хронических нарушений сознания являются нарушения мозгового кровообращения, в структуре которых преобладают ишемические и нейроформированные (70–80%). Более трети больных (35%) погибают в первые 3–4 недели после травмы [2]. У большинства пациентов, выживших в остром периоде, развивается синдром мультиорганной патологии, что приводит к повышению длительности лечения в реанимационных отделениях и смертности более чем в два раза [3–7]. В таких случаях возникает необходимость длительного протезирования жизненно важных функций: искусственной вентиляции легких, искусственного кровообращения, искусственного кровообращения. Основной причиной таких повреждений является черепно-мозговая травма, частота которой составляет в год 4,5 на 1 тыс. населения и возрастает на 2% ежегодно. Тяжелая черепно-мозговая травма (ТЧМТ) составляет 20–25% от общего числа ЧМТ, при этом летальность достигает 41–85% [1]. Другой причиной тяжелых повреждений головного мозга с развитием хронических нарушений сознания являются нарушения мозгового кровообращения, в структуре которых преобладают ишемические и нейроформированные (70–80%). Более трети больных (35%) погибают в первые 3–4 недели после травмы [2]. У большинства пациентов, выживших в остром периоде, развивается синдром мультиорганной патологии, что приводит к повышению длительности лечения в реанимационных отделениях и смертности более чем в два раза [3–7]. В таких случаях возникает необходимость длительного протезирования жизненно важных функций: искусственной вентиляции легких, искусственного кровообращения, искусственного кровообращения.

Introduction

Investigation of orthostatic changes of the autonomic nervous system and baroreceptors sensibility in patients with severe brain damage has a great practical and theoretical relevance. The main cause of such damage is a cranioencebral trauma, which annual incidence equals to 4.5 per 1 thousand people and grows by 2% every year. A severe cranioencebral trauma (SCCT) accounts for 20–25% of the total number of CCT, its mortality reaching 41–85% [1]. Another cause of severe brain damage followed by development of chronic impairment of consciousness is cerebrovascular disorders, among which ischemic strokes are predominant (70–80%). Over a third of patients (35%) die within the first 3–4 weeks after a stroke [2]. Most patients who survived the acute period develop the syndrome of multiple organ pathology resulting in a longer treatment in ICUs and more than two-fold mortality [3–7]. In such cases, long-term replacement of vital functions becomes necessary: artificial lung ventilation, hemodynamic support, intracranial pressure monitoring, etc. The in-patient treatment of such patients might last from a few months to a few years, which makes their mobilization and verticalization much more difficult. In a situation of a long-term immobilization, muscular atrophies,
Вентиляции легких, поддержания гемодинамики, контроля внутричерепенного давления и т. д. Продолжительность лечения таких пациентов в условиях стационара может составлять от нескольких месяцев до нескольких лет. Что значительно затрудняет их мобилизацию и вертикализацию. В условиях длительной иммобилизации развиваются мышечные атрофии, контрактуры, пролежни, гипостатическая пневмония и ателектазы, флеботромбозы нижних конечностей и малого таза, что может вызывать тромбозы крупных и мелких артерий и, в особенности, основных сосудов головного мозга, что создает угрозу развития гипоперфузии головного мозга. Ортостатическая гипотензия (ОГ) наблюдается у более, чем половины пациентов, перенесших инсульт [10] или ЧМТ [11]. Эффективным методом профилактики ПИТ-синдрома является вертикализация пациентов [9]. Но сама процедура ортостатической пробы несет дополнительные риски, и ее депонированием в нижних отделах сосудистой системы. В результате этого снижается венозный приток к сердцу и создаются условия для снижения артериального давления (АД). Вовлечение в патологический процесс структур сосудодвигательного центра, а также распространенные параличи мышц, «выключающие» из адаптивных процессов мышечный «сокровенный» насос, облегчающий венозный возврат крови к сердцу, обусловливают угрозу развития гипоперфузии головного мозга. Ортостатическая гипотензия (ОГ) наблюдается у более, чем половины пациентов, перенесших инсульт [10] или ЧМТ [11].

Важнейшим компонентом адаптивных процессов, обеспечивающих постоянство организма при изменениях положения тела является симпатический барорефлекс, активизация которого происходит при снижении венозного возврата к сердцу вследствие депонирования части крови в сосудах нижних конечностей. Уменьшение растяжения предсердий и легочных артерий способствует стимуляции кардиопульмональных барорецепторов [12, 13]. Барорецепторы высокого давления в синокаротидной зоне, в дуге аорты и др. при повышении АД подавляют активность симпатической нервной системы (СНС). При снижении АД кардиопульмональные рецепторы вызывают ее активацию [14, 15], что способствует стимуляции ренин-ангиотензин-альдостероновой системы [16], увеличению секреции антидиуретического гормона [17]. Основная цель такого нейрогормонального сдвига заключается в воздействии на сердечно-сосудистую систему с целью повышения периферического сопротивления, необходимого для поддержания постоянства организма крови, прежде всего в головном мозге, при contractures, pressure injuries, hypostatic pneumonia and atelectasis, phlebothrombosis of lower extremities and lower pelvis, which might cause pulmonary artery thromboembolism, etc., while disorders connected with prolonged complete bedrest promote development of the post intensive care unit syndrome (PICS) [8]. Verticalization of patients is efficient prophylaxis of PICS [9]. However, the procedure of passive orthostatic test itself bears additional risks related to blood redistribution and deposition in the lower vascular system. As a result, venous inflow to the heart decreases creating conditions for decrease of arterial blood pressure (ABP). Engagement in the pathological process of vasomotor center structure and diffused muscular paralysis ‘cutting off’ the muscular venous pump, which facilitates blood return to the heart, from the adaptive processes cause the risk of brain hypoperfusion development. Orthostatic hypotension (OH) is observed in more than a half of patients who experienced a stroke [10] or CCT [11].

Sympathetic baroreflex, which is activated upon decrease of venous return to the heart because some blood is deposited in the lower extremities’ vessels, is a most important component of adaptive processes maintaining stable organ blood flow upon alteration of body’s position. Lessening of extension of atria and pulmonary arteries assists stimulation of cardiopulmonary baroreceptors [12, 13]. High-pressure baroreceptors in the carotid sinus region, aortic arch etc. at increased ABP suppress activity of the sympathetic nervous system (SNS). Upon ABP decrease, cardiopulmonary receptors initiate its activation [14, 15], promoting stimulation of the renin-angiotensin-aldosterone system [16], enlargement of antidiuretic hormone secretion [17]. This neurohormonal shift is aimed at acting on the cardiovascular system to enhance its peripheral resistance that is necessary to maintain stable organ blood flow, first of all, in the brain, when one’s position changes from horizontal to inclined or vertical. The function of sympathetic baroreflex is well studied in the normal setting. However, the ANS state and BRS sensibility during severe brain damage with chronic impairment of consciousness have been studied insufficiently. Practical relevance of such information consists in assessing the risk of possible orthostatic disorders during the initial period of verticalization. The theoretical importance consists in finding out the sympathetic baroreflex function in the setting of severe diffuse brain damage. It has been shown that ANS dysfunction during severe CCT correlates with the disease progression severity and mortality [18, 19] and precedes brain death development [20, 21]. The functional status of ANS allows forecasting disease progression in patients with impairment of consciousness after severe brain damage [22]. BRS during severe brain damage is less well understood. It has been shown that its significant decrease wors-
переходе из горизонтального в наклонное или вертикальное положение. Функция симпатического барорефлекса достаточно хорошо изучена в норме. Однако, состояние АНС и чувствительности ЧБР при тяжелых повреждениях головного мозга с хроническими нарушениями сознания изучены недостаточно. Практическое значение такой информации состоит в оценке риска возможных ортостатических нарушений в начальном периоде вертикализации. Теоретическое значение заключается в выяснении функции симпатического барорефлекса в условиях тяжелых диффузных повреждений головного мозга. Показано, что дисфункция АНС при тяжелых ЧМТ коррелирует с тяжестью течения заболевания и смертностью [18,19] и предшествует развитию смерти мозга [20, 21]. Функциональное состояние АНС позволяет строить прогноз течения заболевания у больных с нарушениями сознания после тяжелых повреждений головного мозга [22]. Менее изученной остается ЧБР при тяжелых повреждениях головного мозга. Показано, что значительное ее снижение ухудшает жизненный прогноз у такой категории пациентов [23]. Подчеркивается, что функция симпатического барорефлекса значительно изменяется при повреждениях головного мозга [24].

Автономная нервная система и ЧБР в значительной мере влияют на адаптивные процессы при изменениях положения тела, а вертикализация является важным компонентом реабилитационных мероприятий пациентов. В связи с недостаточностью информации о состоянии симпатического барорефлекса у пациентов с длительными нарушениями сознания после тяжелых повреждений головного мозга, изучение ортостатических изменений АНС и ЧБР у пациентов в ВС и СМС представляется актуальным.

Цель исследования — изучить чувствительность барорецепторов и атономной нервной системы при пассивной ортостатической пробе у пациентов с хроническими нарушениями сознания, вследствие тяжелых повреждений головного мозга и определить их роль в реабилитационном процессе.

Материал и методы

В исследование включили 30 пациентов с длительными нарушениями сознания, вызванными тяжелыми повреждениями головного мозга (группа 1), 10 из которых были в ВС и 20 — в СМС. Пациенты с очаговыми повреждениями головного мозга (n=24) (группа 2) были в ясном сознании, в клинической картине — преобладали локальные неврологические симптомы. Обследовали также 22 практически здоровых добровольцев сопоставимого возраста (53,4±6,6 лет) (группа 3). Состояние пациентов и добровольцев оценивали клинически и биохимически.

В исследование включили 30 пациентов с долговременным нарушением сознания, вызванным тяжелыми повреждениями головного мозга (группа 1), 10 из которых были в ВС и 20 — в СМС. Пациенты с очаговыми повреждениями головного мозга (n=24) (группа 2) были в ясном сознании, в клинической картине — преобладали локальные неврологические симптомы. Обследовали также 22 практически здоровых добровольцев сопоставимого возраста (53,4±6,6 лет) (группа 3). Состояние пациентов и добровольцев оценивали клинически и биохимически.

DOI:10.15360/1813-9779-2019-5-61-73
Clinical Studies and Practice
Таблица 1. Клиническая характеристика исследуемых групп.

Параметр	Группа 1, n=30	Группа 2, n=24	Группа 3, n=22
М/Ж	21/9	14/10	9/13
Возраст, лет	45.0±16.2	51.4±18.5	53.4±16.6
Рост (см)	169.0±8.7	172.4±9.6	166.0±9.8
Вес (кг)	61.6±10.9	79.8±14.1	76.6±13.2
ИМТ (кг/м²)	21.5±4.6	27.0±4.6	28.0±4.6

Примечание. Для табл. 1–3: параметры — параметры; значение ... в группе; М/Ж — мужчины/женщины; возраст, лет; рост, вес; ИМТ — индекс массы тела; TBI — травматическая кома; SAH — субарахноидальное кровоизлияние; CVD — сосудистые заболевания; М±SD.

Note. BWI — body weight index; TBI — traumatic brain injury; CVD — cerebrovascular disease; SAH — subarachnoid hemorrhage; ICA — internal carotid artery; VBA — vertebrobasilar artery.

Диагноз в посткоматозный период

Диагноз	Группа 1	Группа 2	Группа 3
TBI (%)	16 (53.3%)	1 (4.2%)	
SAH consequences due to rupture of aneurysm	3 (10.0%)	2 (8.3%)	
Consequences of CVD in the ICA basin	3 (10.0%)	16 (66.7%)	
Consequences of CVD in the VBA basin	1 (3.3%)	3 (12.5%)	
Post-hypoxic brain damage	3 (10.0%)	0 (0%)	
Consequences of surgical treatment of brain tumor	4 (13.3%)	2 (8.3%)	

Приложение: Диагнозы посткоматозного периода.

Diagnosis in post-comatose period

Diagnosis in post-comatose period	Group 1	Group 2	Group 3
TBI (%)	16 (53.3%)	1 (4.2%)	
SAH consequences due to rupture of aneurysm	3 (10.0%)	2 (8.3%)	
Consequences of CVD in the ICA basin	3 (10.0%)	16 (66.7%)	
Consequences of CVD in the VBA basin	1 (3.3%)	3 (12.5%)	
Post-hypoxic brain damage	3 (10.0%)	0 (0%)	
Consequences of surgical treatment of brain tumor	4 (13.3%)	2 (8.3%)	

Note. BWI — body weight index; TBI — traumatic brain injury; CVD — cerebrovascular disease; SAH — subarachnoid hemorrhage; ICA — internal carotid artery; VBA — vertebrobasilar artery.

Исследованиями. Клиническую характеристику групп описали в табл. 1.

В обеих группах пациентов преобладали мужчины (21/9 и 14/10, соответственно), средний возраст исследуемых достоверно не различался (45.0±16.2 и 51.4±18.5 лет, соответственно). Основными причинами повреждений головного мозга были черепно-мозговая травма (ЧМТ) (53,3% случаев) и нарушения мозгового кровообращения (НМК), включая субарахноидальное кровоизлияние (САК) вследствие разрыва аневризм и их осложнения: спазм артерий, повышение внутричерепного давления и т. д. Более редкими причинами тяжелых повреждений головного мозга были глобальная ишемия головного мозга (10,0%) и состояние после удаления больших опухолей головного мозга (13,3%). В подавляющем большинстве случаев причинами локальных повреждений головного мозга были последствия НМК и САК вследствие разрыва аневризм (79,2 и 8,3% пациентов, соответственно). Исследование проводили в разные интервалы времени от начала болезни: в группе 1 — на 124,0±101,0 суток, в группе 2 — на 137,0±130,0 суток. Все пациенты группы 1 имели коморбидные заболевания: артериальную гипертонию, пневмонию, анемию, гнойно-воспалительные осложнения органов мочевывделения, менингоэнцефалит, сепсис, полиоргансую недостаточность, бельково-энергетическую недостаточность, отит, гайморит, язвенную болезнь. Сочетание длительных нарушений сознания после тяжелых повреждений головного мозга с коморбидными заболеваниями, требовавшими проведения протезирования жизненно важных функций и интенсивной терапии, определяло необходимость длительного лечения пациентов в условиях реанимационных отделений. Обследование пациентов группы 1 проводили после успешного лечения перед переводом пациентов из реанимационных в реабилитационные отделения ФНКЦ.

Приложение: Диагнозы посткоматозного периода.

Diagnosis in post-comatose period

Diagnosis in post-comatose period	Group 1	Group 2	Group 3
TBI (%)	16 (53.3%)	1 (4.2%)	
SAH consequences due to rupture of aneurysm	3 (10.0%)	2 (8.3%)	
Consequences of CVD in the ICA basin	3 (10.0%)	16 (66.7%)	
Consequences of CVD in the VBA basin	1 (3.3%)	3 (12.5%)	
Post-hypoxic brain damage	3 (10.0%)	0 (0%)	
Consequences of surgical treatment of brain tumor	4 (13.3%)	2 (8.3%)	

Note. BWI — body weight index; TBI — traumatic brain injury; CVD — cerebrovascular disease; SAH — subarachnoid hemorrhage.

Исследованиями. Клиническую характеристику групп описали в табл. 1.

В обеих группах пациентов преобладали мужчины (21/9 и 14/10, соответственно), средний возраст исследуемых достоверно не различался (45.0±16.2 и 51.4±18.5 лет, соответственно). Основными причинами повреждений головного мозга были черепно-мозговая травма (ЧМТ) (53,3% случаев) и нарушения мозгового кровообращения (НМК), включая субарахноидальное кровоизлияние (САК) вследствие разрыва аневризм и их осложнения: спазм артерий, повышение внутричерепного давления и т. д. Более редкими причинами тяжелых повреждений головного мозга были глобальная ишемия головного мозга (10,0%) и состояние после удаления больших опухолей головного мозга (13,3%). В подавляющем большинстве случаев причинами локальных повреждений головного мозга были последствия НМК и САК вследствие разрыва аневризм (79,2 и 8,3% пациентов, соответственно). Исследование проводили в разные интервалы времени от начала болезни: в группе 1 — на 124,0±101,0 суток, в группе 2 — на 137,0±130,0 суток. Все пациенты группы 1 имели коморбидные заболевания: артериальную гипертонию, пневмонию, анемию, гнойно-воспалительные осложнения органов мочевывделения, менингоэнцефалит, сепсис, полиоргансую недостаточность, бельково-энергетическую недостаточность, отит, гайморит, язвенную болезнь. Сочетание длительных нарушений сознания после тяжелых повреждений головного мозга с коморбидными заболеваниями, требовавшими проведения протезирования жизненно важных функций и интенсивной терапии, определяло необходимость длительного лечения пациентов в условиях реанимационных отделений. Обследование пациентов группы 1 проводили после успешного лечения перед переводом пациентов из реанимационных в реабилитационные отделения ФНКЦ.

Clinical Studies and Practice

Ранее, на первом этапе, изучали изменения системы гемодинамики в процессе вертикализации пациентов с длительными нарушениями сознания с помощью протокола пассивной ортостатической пробы 0°–30°–60°–0° [25]. Выявили удовлетворительную ортостатическую стабильность гемодинамики у 26 пациентов группы 1 (86,6%), у 4 пациентов (13,3%) при наклоне на 30° отмечалось развитие ортостатической гипотензии и синдрома постуральной ортостатической тахикардии [25]. В данной работе описаны протокол исследования и методические аспекты измерений параметров гемодинамики с помощью монитора Task Force Monitor 1030i, представленные данные клинических и биохимических исследований пациентов, и здоровых добровольцев. На втором этапе исследования провели дополнительное обследование практически здоровых добровольцев (группа 3), сопоставимых по возрасту с пациентами. Это связано со значительным влиянием возрастного фактора на состояние АНС и ЧБР, что необходимо учитывать при сравнительном анализе данных пациентов и практически здоровых добровольцев. Определение ЧБР проводили с помощью компьютерной обработки показателей АД и Р–Р интервалов с применением последовательного метода [26]. Суть метода состоит в определении изменений трех R–Р интервалов (мсек), следующих после изменений АД. Расчет ЧБР производили в мсек/мм рт. ст. При повышении АД на 1 мм рт. ст. отмечала увеличение R–R интервала и наоборот, при снижении АД происходило его уменьшение. Считается, что чем значительнее изменения R–R интервалов при изменении АД на 1 мм рт. ст., тем выше чувствительность барорецепторов [26].

Results and Discussion

The study demonstrated significant differences in BRS between groups of patients after severe or focal brain damage and apparently healthy volunteers (table 2).

Analysis of background BRS values in horizontal position revealed a direct link between brain damage severity and the degree of a BRS decrease. Maximal BRS values were observed in group 3 that included healthy volunteers (BRS up Med = 9.8 msec./mm Hg); in patients of groups 1 and 2 BRS values were lower (Med = 6.22 and 9.07, respectively, P>0.05, cm, table 2). Comparison of BRS response to ABP decrease (BRS down) in patients of different groups showed significance of differences between groups 1–3 and 2–3. During passive orthostatic test with tilt angles of 30° and 60°, progressive decrease of BRS was observed in all three groups of subjects, but the correlations of those indices in the subjects of three groups remained the same: maximal values were typical for the subjects of group 3, minimal values remained for group 1, and intermediate values of BRS were observed in subjects of group 2. At all stages of the passive orthostatic test procedure, significance of differences was evident only between groups 1 and 3 (see table 2). There was a significant difference in the index values be-

(HFS 0.15–0.5 Hz) depending on the parasympathetic nervous system activity were analyzed [29]. Patients of groups 1 and 2 and apparently healthy volunteers (group 3) were examined following the same protocol: measurements were taken for 10 minutes in the horizontal position, then for 10 minutes at 30° tilt; thereafter, the angle of tilting was raised to 60° and ANS and BRS were recorded for 10 min.; after that, the subject was returned to the horizontal position and parameters under analysis were recorded for 10 minutes. In 4 patients of group 1 orthostatic hemodynamic disturbances were observed during the 30° passive orthostatic test: in three cases — orthostatic hypotension (decrease of systolic arterial pressure by 20 mm Hg and more), in one case — postural orthostatic tachycardia (heart rate increase by 30 bpm and over). After all those disturbances were recorded, the test was immediately terminated and the patient was returned to the horizontal position. Since hemodynamic parameters were measured in real time, timely diagnosis of the disturbances described allowed avoiding development of brain hypoperfusion and aggravation of patients’ condition in all cases.

Statistical analysis of data obtained was carried out using Statistica-10 software package. The analysis included a check for distribution normality using the Kolmogorov–Smirnov d–test, which revealed far from normal distribution of BRS and ANS. To determine significance of intergroup differences, non-parametric analysis of unrelated samples using the Mann–Whitney U–test was carried out. Differences were considered significant at P<0.05. The descriptive statistics was presented as means (M) and standard deviations (SD) (table 1), also as median (Med) and quartile (25%; 75%) values of parameters (tables 2–4).
Проведенное исследование позволило выявить значительные различия в ЧБР пациентов после тяжелых или очаговых повреждений головного мозга и практически здоровых добровольцев (табл. 2).

Анализ фоновых значение ЧБР в горизонтальном положении выявил прямую зависимость между тяжестью повреждения головного мозга и ухудшения состояния пациентов.

Parameters	Values of parameters in groups	Significance of inter-group differences										
	Med (25%)	quartile	Med (25%)	quartile	Med (25%)	quartile	(Mann-Whitney U-test)	P-level				
horizontal position 1												
BRS up	6.22	2.980	11.520	9.07	6.080	11.460	9.8	7.1	15.2	0.26	0.19	0.28
BRS down	6.1	3.850	7.320	7.14	5.350	9.400	9.5	7.7	15.2	0.32	0.006	0.03
tilt up 30°												
BRS up	5.07	4.040	5.650	6.65	5.640	9.470	8.35	6.8	10.2	0.41	0.001	0.074
BRS down	4.32	2.860	8.440	7.67	5.330	10.220	9.85	7.9	12	0.174	0.011	0.055
tilt up 60°												
BRS up	3.83	3.360	4.100	5.79	4.720	7.620	6.8	5.4	8.1	0.008	0.003	0.515
BRS down	3.63	2.540	3.930	5.36	4.340	7.860	7.3	6.1	8.7	0.002	0.002	0.27
horizontal position 2												
BRS up	6.1	1.790	8.220	9.51	5.850	10.790	8.5	6.3	12	0.027	0.016	0.73
BRS down	4.46	1.690	9.850	7.01	4.460	10.200	8.05	6.2	11.7	0.14	0.006	0.089

Note. For tables 2, 3: BRS up — sensitivity of baroreceptors to ABP increase, BRS down — sensitivity of baroreceptors to ABP decrease; Med — median; horizontal position 1, 2 — horizontal position before and after the passive orthostatic test; tilt up 30°,60° — passive head tilt upwards by 30°, 60°. Significance of intergroup differences was recognized at P<0.05.
Таблица 3. Показатели мощности высокочастотного спектра переменной частоты (ЧБР) и низкочастотного спектра (НЧС) R–P интервалов у пациентов с тяжелыми повреждениями головного мозга и у практически здоровых добровольцев при пассивной ортостатической пробе 0°–30°–60°–0°.

Table 3. Parameters of low-frequency spectrum of R–R intervals and high frequency spectrum of R–R intervals in patients with severe or local brain damage and in healthy volunteers during the 0°–30°–60°–0° passive orthostatic test.

Таблица 3. Показатели мощности низкочастотного спектра (НЧС) и высокочастотного спектра (ВЧС) переменной частоты (ЧБР) R–P интервалов у пациентов с тяжелыми повреждениями головного мозга и у практически здоровых добровольцев при пассивной ортостатической пробе 0°–30°–60°–0°.

Таблица 3. Показатели мощности низкочастотного спектра (НЧС) и высокочастотного спектра (ВЧС) переменной частоты (ЧБР) R–P интервалов у пациентов с тяжелыми повреждениями головного мозга и у практически здоровых добровольцев при пассивной ортостатической пробе 0°–30°–60°–0°.

Полученные данные выявили значительные нарушения автономной нервной системы у пациентов с тяжелыми повреждениями головного мозга и подтверждают теоретические представления о значительном снижении ЧБР и увеличении НЧС в процессе ортостатической пробы (табл. 3).

It was particularly interesting to determine peculiarities of orthostatic changes of parameters under study in patients with orthostatic circulatory disorders detected in the course of this study (table 4).
здорового при компенсации сердечно-сосудистых наруше-
ний одним из показателей симпатической нервной систе-
мы (НЧС) и парасимпатической системы (ВЧС) являлась
достижение относительной стабильности НЧС и ВЧС, при
чем если у пациентов с последствиями тяжелых повреждений
головного мозга (группа 1) эта тенденция прослеживалась до
положения 2, а у здоровых добровольцев (группа 3) эта
tenденция была выражена незначительно. В течение 10 минут после
возврата пациентов в горизонтальное положение (2) все показатели
автономной нервной системы всех групп изучаемых достигали
исходных значений. Удивительным фактом является достижение от-
носительной стабильности гемодинамики на фоне весьма сниженных
показателей активности симпатической нервной системы (НЧС) у пациентов с хроническими
нарушениями сознания после тяжелых
повреждений головного мозга (группа 1). Разница этих
показателей с данными пациентов группы 2 была достоверной на всех этапах выполнения
ортостатической пробы, за исключением одно-
голого показателя BRS (LF) при наклоне на 60° (p=0,37) (табл. 3).
Самые низкие показатели НЧС и BRS были у пациентов с последствиями тяжелых повреждений
головного мозга (группа 1). Разница этих
показателей с данными пациентов группы 2 была достоверной на всех этапах выполнения
ортостатической пробы, за исключением одного
показателя BRS (LF) в горизонтальном положении 2, p=0,06. Характер межгрупповых различий практически не менялся при разных
углах наклонов головой вверх. Основной тренд
ортостатических изменений показателей автономной нервной системы у пациентов характеризовался еще более выраженным снижением
мощности НЧС и ВЧС, причем если у пациентов группы 2 эта тенденция прослеживалась до
увеличения угла наклона до 60°, то у пациентов группы 1 — только до 30°. У здоровых добровольцев (группа 3) эта тенденция была
выражена незначительно. В течение 10 минут после возврата пациентов в горизонтальное положение (2) все показатели автономной нервной системы всех групп изучаемых достигали исходных значений. Удивительным фактом является достигение относительной стабильности гемодинамики на фоне весьма сниженной BRS и значительного (почти в два раза) снижения ЧБР, и значительного снижения показателей активности симпатической нервной системы (НЧС) у пациентов с хроническими
нарушениями сознания после тяжелых повреждений головного мозга по сравнению со здоровыми добровольцами.

Особый интерес представляло определение особенностей ортостатических изменений изучаемых параметров у пациентов с выявленными в ходе настоящего исследования ортостатическими нарушениями (табл. 4).

У пациентов с ортостатическими нарушениями, в горизонтальном положении выявлена экстремально низкая ЧБР
(3.11 мсек/мм рт. ст.), которая была ниже, чем у остальных пациентов группы 1 (6.9±3.2 мсек/мм рт. ст.). Ввиду малой выборки группы пациентов с ортостатическими нарушениями (№ 4) проверить статистическую достоверность различий значений, а также оценить возможность пополнения данных, необходимо дальнейшие исследования.
Таблица 4. Показатели низкочастотного спектра изменений R–R интервалов, высокочастотного спектра изменений R–R интервалов и чувствительности барорецепторов у пациентов с ортостатическими нарушениями гемодинамики (n=4).

Table 4. Parameters of low-frequency spectrum of R–R intervals, high frequency spectrum of R–R intervals and baroreceptor sensibility in patients with orthostatic circulatory disorders (n=4).

Parameters	Horizontal	Tilt up 30°				
	Med	quartile 25.0%	quartile 75.0%	Med	quartile 25.0%	quartile 75.0%
BRS Mean, ms/mm Hg	3.11	2.32	4.27	3.88	1.62	4.10
LF, msec²	20.52	7.06	43.28	36.22	23.22	33.2
HF, msec²	13.77	5.20	25.07	6.02	4.36	25.79

Note. BRS Mean — mean baroreceptor sensibility to increasing of blood pressure between BRS up and BRS down.

Примечание. BRS Mean — средние значения чувствительности барорецепторов между BRS up и BRS down.

личных показателей ЧБР и активности автономной системы у пациентов с такими нарушениями и без них не представлялось возможным. Эта же причина определила необходимость объединения показателей BRS up и BRS down для расчета средних (BRS mean) значений. Активность симпатической нервной системы (НЧС) у пациентов с ортостатическими нарушениями, по данным медианных значений была выше, чем у пациентов без таких нарушений (Med = 20,52 против 8,5 мсек²). При наклоне на 30° у пациентов с ортостатическими нарушениями показатели ЧБР оставались на крайне низком уровне, в то время как мощность НЧС увеличивалась в 2 раза, при отсутствии значимых изменений ВЧС. Перед развитием обморока происходит увеличение НЧС, связанное с кратковременным повышением активности симпатической системы, которое сменяется ее снижением, развитием брадикардии, падением АД [30]. Данные, полученные на тяжелых пациентах с множественными травмами, свидетельствуют о значительном снижении показателей активности симпатической нервной системы (НЧС) и ЧБР. Показано, что снижение ЧБР до 4,4±1,5 мсек²/мм рт. ст. достоверно было связано с неблагоприятным исходом заболевания, в отличие от значения этого показателя 8,7±2,2 мсек²/мм рт. ст. у пациентов с благоприятным прогнозом [31]. Важно отметить, что показатели ЧБР у пациентов группы 1 оказались сходными с показателями новорожденных на второй — четвертой неделях после рождения. У новорожденных этот показатель увеличивался в 2–3 раза к шестому месяцу жизни [32]. Такое сходство можно объяснить «незрелостью» механизмов симпатического барорефлекса у новорожденных, который в онтогенезе постепенно налагает свою функцию («зарождается»). У пациентов низкие значения ЧБР связаны с нарушением функции симпатического барорефлекса вследствие тяжелых повреждений головного мозга. Можно предположить, что у пациентов с тяжелыми, диффузными повреждениями головного мозга, вовлекающими стволовые структуры, регуляция кровообра-

casting development of orthostatic hypotension in the course of verticalization, stating favorable or adverse progression of diseases. Sympathetic baroreflex is one of the key mechanisms maintaining homeostasis stability. Impulses from baroreceptors of low and high ABP enter caudal brain stem regions in nucleus tractus solitarius [37]. A conclusion can be drawn that caudal brain stem regions are the key structure of sympathetic baroreflex [38, 39]; any severe supratentorial brain damage accompanied with intracranial hypertension and tentorial herniation, or even a minor damage in the posterior cranial fossa causing disturbance of blood flow in the brain stem or its compression causes sympathetic baroreflex dysfunction. All these disorders are described in this paper including cases of irreversible damage of stem vasomotor centers.

Conclusion

The data demonstrate that patients with chronic impairment of consciousness during the post-comatose period after severe brain damage display a significant decrease of baroreceptors sensitivity and autonomic nervous system disorders manifesting in considerably lesser activity of the sympathetic and parasympathetic systems. The degree of such alterations correlates with a brain damage severity. The risk of developing orthostatic hypotension during verticalization is higher in patients with lower baroreceptors sensitivity, which is necessary to consider from the very beginning of the process of verticalization patients.

щения возвращается на филогенетически более древний, в онтогенезе соответствующий перинатальному, уровень. Для подтверждения предположения необходимы дополнительные исследования.

Если у пациентов с тяжелыми повреждениями головного мозга эволюция их показателей может длиться долго, что затрудняет их оценку в динамике, то у пациентов с нетяжелыми травмами это можно наблюдать в течение короткого срока. У пациентов с нетяжелыми
Особенности синдрома полиорганной недостаточности при тяжелых формах инсульта: современное состояние проблемы. Вестник анестезиологии и реаниматологии. 2013; 10 (5): 50–66 [In Russ.].

3. Nemchenko N.S., Denisov A.V., Zhirnova N.A. Epidemicology of stroke in Russia according to the results of the territorial-population register. (2009–2010) Zhurnal neirologii i psihiatrii. 2013; 5: 4–10 [In Russ.].

4. Primorad M.A., Galenkina T.S., Gnedovskaya E.V., Lebedeva E.V., Ribikina Yu.V., Morozov V.A., Chaykovskaya R.Yu., Rebрова O.Yu. Syndrome of multiple organ failure in severe stroke (clinical and morphological study). Neirologicheskij zhurnal. 2006; 11 (5): 9–13.

5. Serednyakova E.N., Volkonskij D.K., Glazyrina G.A. Syndrom polinogrannoj nedostatocnosti: sovremennoe sostoyanie problem. Vestnik anesteziologii i reanimatologii. 2013; 10 (5): 60–68.

6. Dewar D, Moore F.A., Moore E.E., Balogh Z. Predicting multiple organ failure in patients with severe trauma. Can J Surg. 2008; 51 (2): 97–102. PMID: 18377749, PMCID: PMC2386337.

7. Lausevic Z, Lausevic M, Trbojevic-Stankovic J, Krstic S, Stojimirovic B. Predicting multiple organ failure in patients with severe trauma. Can J Surg. 2008; 51 (2): 97–102. PMID: 18377749, PMCID: PMC2386337.

8. Belkin A.A., Aleshchev A.M., Darydova N.S., Levit A.L., Khalin A.V. The rationale for rehabilitation rehabilitation in the prevention and treatment of the syndrome of intensive care (ICU syndrome). Vestnik vostanovitelnoj mediciny.2014; 1: 37–43 [In Russ.].
Differently, Kahraman S., Dutton R.P., Hu P., Stansbury L., Xiao Y., Stein D.M., Scali T.M. Heart rate and pulse pressure variability are associated with intractable intracranial hypertension after severe traumatic brain injury. J. Neurosurg. Anesthesiol. 2010; 22: 296–302. PMID: 20622688, DOI: 10.1097/01.jna.0000318112563.

Marthol H., Intravotth B., Tardutzky J., De Pina P., Schuwab S., Hilz M.J. Sympathetic cardiovascular hyperactivity precedes brain death. Clin Auton Res. 2016; 26: 363–369. PMID: 24941135, DOI: 10.1007/s10288-016-0072-8.

Baillard C., Vivien B., Mansier P., Mangin L., Jasson S., Buia B., Sayng-hedau B. Brain death assessment using instant spectral analysis of heart rate variability. Crit Care Med. 2002; (30): 306–310. PMID: 11989929, DOI: 10.1097/00003246-200206000-00007.

Kirychkov I.V., Kolesnikov D.L., Levinger D., Petrosa M.V., Pryanikov I.V., Shchelkovskaya I.G., Paskal P. Functional Activity of the Autonomous Nervous System at Different Levels of Consciousness in Patients with a Brain Damage. Oshchavy Reanimatologii=General Reanimatologiya=Oshchavy Reanimatologii. 2008; 14 (2): 4–12. DOI: 10.15360/1813-9779-2018-2-1-4.

Papagiannopoulou V., Giannakou M., Maglaveras N., Sofianos E., Giola P. Investigation of heart rate and blood pressure variability, baroreflex sensitivity, and approximate entropy in acute brain injury patients. J. Crit. Care. 2008; 23 (3): 389–386. DOI: 10.1016/j.jcrc.2007.04.006. Epub 2007 Dec 11.

McMahon C.G., Kenny R., Bennett K., Little R., Kirkman E. Effect of acute traumatic brain injury on baroreflex function. Shock. 2011; 35 (1): 53–58. DOI: 10.1097/SHK.0b013e3181e6876c. PMID: 20452625.

Dorotheou V.N., Skortzas A.E., Yudina E.A. Changes in Systemic Hemodynamics in Orthostasis in Patients With Long-Term Impairment of Consciousness. Oshchavy Reanimatologii-General Reanimatologiya-Oshchavy Reanimatologii. 2018; 14 (4): 6–12. DOI: 10.15360/1813-9779-2018-4-1-2.

Parati G., Omboni S., Fratollo A., Di Rienzo M., Zanchetti A., Mancia G. Dynamic evaluation of the baroreflex in ambulant subject. In: Blood pressure and heart rate variability, edited by di Rienzo. IOS Press, 1992: 123–137.

La Rovere M.T., Prina G.D., Raczak G. Baroreflex sensitivity: measurement and clinical implications. Ann Noninvasive Electrocardiol. 2008; 13: 191–207. DOI: 10.1111/j.1544-4744.2008.00219.x.

Schlögl A., Flotzinger D., Pfurtscheller G. Adaptive autoregressive modeling used for single-trial EEG classification. Biomed. Tech (Berl). 1997; 42 (6): 162–167. PMID: 9246870.

Camma J., Malick T. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Heart rate variability. Standards of measurement, physiological interpretation, and clinical use. Eur Heart J. 1996; 17: 354–381. PMID: 8737210.

Aschner M., Przyborski S., Dreyfus G., Akhtar S., Poon L., Foltynie T., Hamer J., Hirst D., Williams J., Woods R., Barksby J., Farwell L., Thomas P., Fredericks S., Strachan G., Upton J., Price D., Crompton M., de la Hey S., Warburton D., Hulme N., Alderson P., Fallowfield L. Effects of chemotherapy and radiotherapy on quality of life: a meta-analysis. Lancet. 2001; 357 (9260): 933–937. DOI: 10.1016/S0140-6736(00)02509-2. PMID: 11246048.

Schofield N.P., Lithwick Y., Geisinger RF, Aiken A.K., Peden D., Cartwright I., Crocker P., McEwan I., Haddow J.E., Hook D., Penman S. A population-based study of the relationship between maternal nutrition and in utero growth. Am J Clin Nutr. 1988; 48 (6): 1095–1101. PMID: 3366116.

Djerassi C., Chang S., Fenn W.O. The correlation of whole blood carbon monoxide and cyanidation carbon dioxide during the cyanide oxidation of carbon monoxide. J. Am. Chem. Soc. 1940; 62: 2914–2917. DOI: 10.1021/ja01230a031. PMID: 19695353.

Pohost G.M., McCallum S., Reams G., Mathews V., Smith P., MacGregor G. A randomized comparison of the efficacy of four antihypertensive regimens. JAMA. 1985; 253 (8): 1042–1046. DOI: 10.1001/jama.1985.03360130075003. PMID: 2906974.
30. Mosqueda-Garcia R., Furlan R., Fernandes-Violante R. Sympathetic and baroreceptor reflex function in neurally mediated syncope evoked by tilt. J. Clin. Invest. 1997; 99 (11): 2736–2744.
31. Haji-Michael PG., Vincent J.L., Deguaste J.P., van de Borne P Power spectral analysis of cardiovascular variability in critically ill neurosurgical patients. Crit. Care. Med. 2000; 28 (7): 2578–2583.
32. Yiallourou S.R., Sands S.A., Walker A.M., Horne R.S. Postnatal development of baroreflex sensitivity in infancy. J. Physiol. 2010; 588 (Pt 12): 2193–2203. DOI: 10.1113/jphysiol.2010.187070. Epub 2010 Apr 26.
33. Anderson I.D., Little R.A., Irving M.H. An effect of trauma on human cardiovascular control: baroreflex suppression. J. Trauma. 1990; 30 (8): 974–981.
34. Conci F., Di Rienzo M., Castiglioni P. Blood pressure and heart rate variability and baroreflex sensitivity before and after brain death. J. Neurosurg. Psychiatry. 2001; 71 (5): 621–631.
35. Baillard C., Vivien B., Mansier P., Mangin L., Jasson S., Rieu B., Sayegh-Hedauw B. Brain death assessment using instant spectral analysis of heart rate variability. Crit. Care Med. 2002; 30: 306–310. PMID: 11889299, DOI: 10.1097/00003246-200202000-00007
36. Marthol H., Intravooth T., Bardutzky J., De Fina P., Schuab S., Hilz M.J. Sympathetic cardiovascular hyperactivity precedes brain death. Clin. Auton. Res. 2010; 26: 363–369. PMID: 20461435, DOI: 10.1007/s10286-010-0072-8
37. Zhang J., Mifflin S.W. Subthreshold aortic nerve inputs to neurons in nucleus of the solitary tract. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2000; 278 (6): 595–604. PMID: 10848529
38. Stauss H.M. Baroreceptor reflex function. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2002; 283 (2): R264–6.
39. Kamiya A., Kawada T., Sugimachi M. Systems physiology of the baroreflex during orthostatic stress: from animals to humans. Front Physiol. 2014; 4: 256. PMID: 25071601, PMCID: PMC4086024, DOI: 10.3389/fphys.2014.00256

Поступила 07.05.19

Obshchaja Reanimatologija

Nauchno-prakticheskij журнал «Obshchaja reanimatologija», входящий в перечень ВАК РФ, в Scopus и другие базы данных, предназначен для врачей-реаниматологов и научных сотрудников

Тематика журнала: патогенез, клиника, диагностика, лечение, профилактика и патологическая анатомия критических, терминальных и постреанимационных состояний; оказание догоспитальной помощи при критических состояниях; обучение населения и медицинского персонала приемам оказания неотложной помощи при критических состояниях; оптимизация работы ОРИТ; юридические вопросы в астст анестезиологии-реаниматологии.

Аудитория: лечебные учреждения; высшие учебные заведения медицинского профиля; медицинские научно-исследовательские институты; медицинские библиотеки.

Подписка

В любом почтовом отделении связи по каталогу «Книга-Сервис»

• индекс 46338 — для индивидуальных подписчиков

GENERAL REANIMATOLOGY, 2019, 15; 5 www.reanimatology.com