A novel approach to estimate the local population denominator to calculate disease incidence for hospital-based health events in England

James Campling1, Elizabeth Begier2, Andrew Vyse1, Catherine Hyams3,4,5, Dave Heaton6, Jo Southern2, Adam Finn3, Harish Madhava2, Bradford D. Gessner2 and Gillian Ellsbury1

Cite this article: Campling J et al (2022). A novel approach to estimate the local population denominator to calculate disease incidence for hospital-based health events in England. Epidemiology and Infection 150, e150, 1–14. https://doi.org/10.1017/S0950268822000917

Received: 18 January 2022
Revised: 17 April 2022
Accepted: 9 May 2022

Key words:
Community-acquired pneumonia; epidemiology; incidence; pneumonia

Author for correspondence:
James Campling,
E-mail: james.campling@pfizer.com

Abstract
While incidence studies based on hospitalisation counts are commonly used for public health decision-making, no standard methodology to define hospitals’ catchment population exists. We conducted a review of all published community-acquired pneumonia studies in England indexed in PubMed and assessed methods for determining denominators when calculating incidence in hospital-based surveillance studies. Denominators primarily were derived from census-based population estimates of local geographic boundaries and none attempted to determine denominators based on actual hospital access patterns in the community. We describe a new approach to accurately define population denominators based on historical patient healthcare utilisation data. This offers benefits over the more established methodologies which are dependent on assumptions regarding healthcare-seeking behaviour. Our new approach may be applicable to a wide range of health conditions and provides a framework to more accurately determine hospital catchment. This should increase the accuracy of disease incidence estimates based on hospitalised events, improving information available for public health decision making and service delivery planning.

Introduction
When considering the introduction of an immunisation programme, it is paramount that the incidence of the diseases of interest is estimated as accurately as possible. Calculating annual incidence rates (expressed as the number of cases per 100 000 population) depends on the accurate estimation of two parameters: (1) the number of people diagnosed with the disease during a specified time interval, (2) the size of the population from which the cases originated at the start of the time interval of interest. Measuring each parameter has its own challenges, but here we focus on challenges associated with estimating the size of local populations within England, hereafter referred to as the denominator. For national datasets where the catchment area is determined based on clear geographic boundaries, the denominator can be estimated using census data which are maintained through annually adjusted estimates. However, many surveillance studies use health centres such as clinics and hospitals, and in these cases, the denominator population usually is not clearly defined.

To estimate healthcare facility catchment populations, a few map-based approaches have previously been proposed (e.g. defined urban conurbation area, crow-fly distance, road distance and road time access) [1–5], all of which rely on census data to provide population estimates based on where the boundary is drawn on the map from the given approach. However, in England, and for several reasons, geographically defined denominators may provide a poor estimate of the population accessing care at a particular health centre. The National Health Service (NHS) provides healthcare free of charge for all residents in England and allows patients to choose where they receive medical care, which is an important principle of the English healthcare system. Although geography plays an important role in influencing this choice, other factors may be important including public transport, parking, waiting times, traffic considerations both for patients and visiting family members, experience with a particular hospital, GP recommendation, ambulance preference, hospital capacity, specialist services and hospital reputation [6]. Moreover, while it might be expected that those who live close to a
hospital would preferentially choose that location, many people live equidistant to more than one hospital (both in terms of distance and travel time). In summary, no standardised methodology exists to estimate incidence based on the person seeking healthcare at a given facility.

In this report, we describe a novel methodology to estimate local population denominators for the Bristol AvonCAP study—a study set up with the specific aim of measuring the burden of hospitalised respiratory disease in England, to provide evidence for informed decision making for public health interventions including vaccines, that have the potential to alleviate some of this burden. The study was designed to measure the incidence of hospitalised community-acquired pneumonia (CAP) and other acute lower respiratory tract diseases (aLRTD) in two large secondary care hospitals located in Bristol. We think this methodology could be replicated for other health outcomes and other regions in England (or elsewhere if a high level of formal primary care practice registration exists), which could substantially improve disease incidence estimates and thus accurate public health decision-making.

Methods

Methodology overview

The conceptual distinction between previously proposed approaches to determine population denominators and our methodology is that the former are based on assumptions about which hospitals patients are expected to use. Our new methodology attempts to minimise the use of assumptions by utilising multiple data sources to assess which hospitals these populations have used in the past.

The NHS in England allocates an annual budget to local geographically defined clinical commissioning groups (CCGs) broadly based on population numbers and utilisation in prior years. In April 2021, there were 106 CCGs across England and their boundaries were drawn to complement local healthcare resources [7]. See the Method step 1 section for an important organisational change for the NHS.

Robust systems are used by CCGs to reimburse hospital care, therefore we hypothesised that CCG geographical regions may be helpful in determining hospital catchment areas and local populations. To test our hypothesis, we utilised Hospital Episode Statistics (HES) data which were re-used with the permission of NHS Digital via Harvey Walsh Limited. aLRTD admissions at the study hospitals between April 2017–March 2020 were linked to aggregated general practitioner (GP) data to understand from which CCG the hospitals’ patients came (Methods Part 1). Then, we estimated the proportion of patients hospitalised at the study hospitals among all patients hospitalised with LRTD for each practice and multiplied that by count of patients registered at that GP practice to calculate the Bristol hospital catchment population (Methods Part 2).

In England, all hospitalisations in NHS hospitals are captured in HES and all acute care is provided by NHS hospitals. HES contains information on bed days, length of admission, outpatient appointments, attendances at Accident and Emergency Departments at NHS hospitals in England, discharge diagnoses and hospital death [8]. The primary diagnosis and other clinical conditions are specified using the tenth revision of the International Classification of Diseases version 10 (ICD-10) [9]. Furthermore, in England a high proportion of the population are registered with General Practice where it is not possible to be registered at two practices concurrently [10, 11].

Method step 1 — defining GP practices associated with patients treated at study hospitals

To understand from where patients treated at the study hospitals originated (i.e. to which CCG the patients’ GP practices belong), HES data were extracted for all adult patients coded for aLRTD between April 2017–March 2020 and filtered to include only patients treated at the study hospitals: North Bristol NHS Trust (NBT), and University Hospitals Bristol NHS Foundation Trust & Weston NHS Foundation Trust (UHBW). Finally, data were analysed to determine in which CCG area the patients lived based on their GP registration. There are 6 CCG regions in the South West of England within a 1-hour drive of the study hospitals, as illustrated in Figure 1.

Fig. 1 shows a map of the CCGs described in the results pie chart (Fig. 2) along with the location of relevant hospitals. In July 2022 NHS England established 42 integrated care systems (ICS) and as a consequence CCGs were closed down and new statutory organisations called integrated care boards (ICB) were introduced. The remit of an ICB includes managing the NHS budget and arranging for the provision of health services in the ICS area. The boundaries of the new ICSs in the south-west of England remain unchanged from the previous CCG boundaries and therefore this change does not impact this analysis (https://www.england.nhs.uk/integratedcare/).

Method step 2 — defining the catchment population of study hospitals

As patients registered in the CCG might seek care at a different hospital for a variety of reasons, we could not assume every patient registered with a GP in the Bristol, North Somerset and South Gloucestershire (BNSSG) CCG used the study hospitals. Therefore, we estimated the proportion of patients from each GP practice treated at the study hospitals among all BNSSG CCG patients, stratified by age group. This proportion was used to calculate the study hospitals’ catchment population. All aLRTD hospitalisations (based on ICD-10 codes; Appendix 1) occurring between April 2017 – March 2020 among patients registered in the BNSSG CCG were analysed by GP practice. For each GP practice, the per cent of hospitalisations occurring at study hospitals was calculated within each age-group (18–34, 35–49, 50–64, 65–74, 75–84 and ⩾85 years). The percentage of hospitalisations occurring at study hospitals was the number of patients at each GP practice who were admitted for aLRTD at study hospitals (study hospital aLRTD patients) divided by the total number of patients at that GP practice who were hospitalised for aLRTD at any English hospital in the time period (overall aLRTD inpatients). This proportion (i.e. per cent of aLRTD inpatients using study hospitals) was multiplied by the practice population for each GP practice by age strata to provide an expected Bristol hospital catchment population contribution for each GP practice (once all age groups summed). GP populations were obtained from NHS Digital ‘Patients Registered at a GP Practice’ data for October 2019. Finally, the catchment population contribution for each GP practice in the BNSSG CCG was combined to provide an expected total Bristol hospital catchment population. In summary, if:

- \(E = \) Calculated catchment population
- \(SHP = \) Number of patients at a GP practice hospitalised at a study hospital with aLRTD during 2017–2019
- \(OL = \) Overall number of patients at a GP practice hospitalised in England with aLRTD during 2017–2019
- \(POP = \) Local GP population
- \(i = \) Each individual practice

\[C = \frac{E}{\frac{SHP}{POP}} \times \frac{OL}{i} \]

This equation is used to estimate the number of patients expected to use the hospital for aLRTD inpatient care, for each GP practice.

Example: if a GP practice treated 100 patients with aLRTD at a hospital, the expected number of patients would be calculated as follows:

- \(E = 100 \) (number of patients treated with aLRTD at the hospital)
- \(SHP = 200 \) (number of patients treated at the hospital for aLRTD)
- \(POP = 1000 \) (local GP population)
- \(OL = 2000 \) (total number of patients treated in England for aLRTD)

\[C = \frac{100}{\frac{200}{1000}} \times \frac{2000}{i} = \frac{100}{0.2} \times \frac{2000}{i} = 500 \times \frac{2000}{i} \]

This would result in an expected catchment population of 1,000,000 patients for that GP practice.
Then:

\[E = \sum \left(\frac{\text{SHP}_i}{\text{OL}_i} \right) \text{POP}_i \]

Drive-time methodology

The BNSSG CCG used a 20-minute drive-time for their healthcare utilisation mapping purposes [12]. We have included this alternative methodological approach to allow comparison between our methodology and other methodologies in current use. We obtained data from the BNSSG CCG which divides the CCG region into small geographical areas used by the UK census known as lower layer super output areas (LSOA). LSOAs have a population of between 1000–3000 people or 400–1200 households [13]. Data were filtered according to estimated drive-time from each LSOA to the study hospitals according to the Automobile Association (AA) route planner, (AA, Hampshire, UK) [14]. UK population data by LSOA for all ages (0 – ≥90 years) were downloaded from the UK Office of National Statistics census website. Population estimates were derived for the following drive-times from the study hospitals 20, 25, 30, 40 and 60 minutes by matching the LSOA population data with the drive-time data.

Results

In 2019, there were 82 GP practices in the BNSSG CCG. Figure 2 shows the proportion of patients that attended the study hospitals in 2019 that were registered at GP practices in both the BNSSG CCG as well as six other CCGs that, combined, represented where >99% of patients hospitalised at study hospitals were registered. The majority of hospitalised patients (96%) were registered at BNSSG CCG GP practices, with most of the remaining 4% based in the surrounding CCGs.

Substantial variability existed by GP practice in the per cent of all persons hospitalised for aLRTD who were hospitalised at a study hospital with much less variability by age (Fig. 3) (based on a representative sample of 10 anonymised GP practices within the BNSSG CCG). Lower proportions were reported for GP practices that were located either close to the CCG boundary or close to Weston hospital (a non-study hospital situated in the BNSSG CCG). Full tables reporting these data for all GP practices located in the BNSSG CCG for 2017, 2018, 2019 and the combined data can be found in Appendix 2.

The degree to which the estimates from our methodology compared to estimates produced by other methods varied, including within specific age groups (Table 1 and Fig. 4). The total CCG population (the sum of the population of all GP practices in the CCG) overestimated the catchment population compared to our estimates by 15% to 24%. By contrast, the population living within a 20 minute drive of the study hospitals underestimated the catchment population by 10% to 29%. As drive-time increased linearly, the estimated population increased non-linearly such that the population based on a 60 minute drive-time overestimated the catchment population by 276% to 428%. The degree of underestimation or overestimation from other methods did not vary substantially by age group.

The map in Fig. 5 shows the location of the study hospitals and Weston General Hospital. The BNSSG CCG boundary is shown in
Fig. 2. 2017–2019 study hospital admissions by clinical commissioning group of the patients’ GP practices.

Fig. 3. A bar chart showing the proportion of persons hospitalised for acute lower respiratory tract disease who were hospitalised at a study hospital, stratified by individual anonymised general practice and patient age group.
Table 1. Comparison of study hospital catchment population estimates based on different approaches

Age group	Estimated catchment (Study method)	Total CCG catchment	Estimated based on ≤20 min drive-time	Estimated based on ≤25 min drive-time	Estimated based on ≤30 min drive-time	Estimated based on <40 min drive-time	Estimated based on <60 min drive-time
Five adult age groupings							
18–34	231 342	268 093 (16%)	208 924 (10%)	238 301 (13%)	295 130 (128%)	442 590 (191%)	870 841 (276%)
35–49	184 269	211 568 (15%)	130 881 (129%)	162 469 (12%)	211 462 (19%)	337 781 (183%)	714 415 (288%)
50–64	152 380	178 970 (17%)	108 404 (129%)	143 508 (16%)	196 307 (129%)	331 795 (111%)	732 702 (381%)
65–74	74 245	89 015 (20%)	52 954 (127%)	73 368 (11%)	102 148 (138%)	175 757 (137%)	391 718 (428%)
75–84	45 989	55 720 (121%)	33 712 (127%)	46 919 (12%)	65 244 (142%)	111 109 (142%)	239 310 (420%)
85+	19 229	23 938 (124%)	15 280 (121%)	20 400 (16%)	28 261 (147%)	47 108 (149%)	99 865 (439%)
Two adult age groupings							
18–64	567 991	658 611 (16%)	448 209 (212%)	544 278 (12%)	702 889 (124%)	1 112 166 (196%)	2 317 958 (308%)
≥65	139 463	168 673 (212%)	101 946 (127%)	140 687 (11%)	195 653 (140%)	333 974 (139%)	730 893 (424%)
Total	707 454	827 304 (17%)	550 155 (222%)	684 965 (13%)	898 542 (127%)	1 446 140 (104%)	3 048 851 (331%)

Discussion

Accurate estimation of incidence denominators is critical for accurate epidemiological studies. Traditional methods, which rely on census data to define catchment areas, can be problematic, especially in areas with a large number of hospitals. This is because error can be introduced at any stage, from the definition of the catchment area to the inclusion of patients. For example, a drive-time of 20 minutes would have underestimated incidence to the same degree. At the other extreme, defining the catchment population as those people living within a 60-minute drive from a study hospital would have overestimated the true catchment population by 24%.

Other issues must be considered when using our approach. For example, the percentage of people with aLRTD hospitalisation who were hospitalised in a study hospital was relatively stable within a particular census area. This suggests that for some practices and age groups less than 20% of cases were hospitalised in a study hospital. Since the only way to document the catchment area of any health centres inherent in traditional estimates would be to first present the methods described here, we suggest a better approach is simply to use our methods or some similar approach to define incidence denominators.

Other studies have demonstrated that for some practices and age groups less than 20% of cases were hospitalised in a study hospital. Since the only way to document the catchment area of any health centres inherent in traditional estimates would be to first present our methods or some similar approach to define incidence denominators.
The AvonCAP study was designed primarily to inform decisions on respiratory vaccine use among older adults, including vaccines to prevent the pneumococcal, respiratory syncytial virus, and SARS-CoV-2 infection. Policymakers, including vaccine technical committees, have consistently indicated that disease burden is the number one factor in setting priorities for vaccines [16, 17]. Disease incidence, and usually severe disease incidence using hospitalisation as a proxy, is the cornerstone of disease burden and usually is the key outcome driving cost-effectiveness models. Cost-effectiveness values in turn are often used for policy and pricing decisions. For example in England, a vaccine must be below a threshold of £ 30 000 per Quality Adjusted Life Year.
(QALY) saved to meet the criteria to be recommended for a national immunisation programme [8]. Since disease incidence underlies all these downstream measures, its accurate determination is critical for policy decisions. This requires a focus not just on the accurate determination of case counts (that is, numerators) but also the catchment population for the surveillance system (that is, denominators).

Our approach has a few limitations. We could not account for people who were not registered with a GP; although, nearly all English residents are registered [10]. Our methodology also did not include the 4% of people that use the study hospitals but are registered with a GP practice outside of the CCG. However, this will be largely addressed in Avon-CAP by excluding from incidence calculations patients with a study outcome living outside the CCG. Our approach requires a new estimate to be calculated for each disease of interest because some conditions will be disproportionately observed in some hospitals due to therapy area specialism. As discussed above, our approach may not be suitable for rare diseases or surveillance systems with small populations. Lastly, our methodology is appropriate for the particular circumstances of England and remains so with the recent transition to the ICS structure. The extent to which this approach can be generalised to other countries will need to be evaluated on a case-by-case basis, but other areas where nearly all persons are formally registered with a primary care provider could consider its use.

We will use the described methodology to define denominators for incidence calculations within the Avon-CAP study, which in turn should contribute to providing better data for informing decisions related to adult respiratory vaccine use. A similar approach could be used to refine previous estimates where these are being used to inform respiratory disease vaccine decision making. A historical study reporting disease incidence of hospitalised pneumonia in England was conducted in Hull and the East Riding of Yorkshire [5]. This study included 8 hospitals in the region and a geography-based approach was used to define the denominator. Whilst an effort was made to specifically exclude defined postcode areas reflecting a geographic region unlikely to use the study hospitals, the accuracy of the denominator used in this study remains uncertain. A more recent study published hospitalised CAP incidence estimates from Nottingham, England and used a denominator based on the entire population of the Greater Nottingham area, but the market share of the two study hospitals used was not formally defined [3, 18]. Since the Greater Nottingham area is surrounded by other urban areas with hospitals that also treat CAP, it is unclear how well Greater Nottingham census data matches the hospital catchment population, and this could be formally evaluated by replicating our methodology. More generally, the method we describe may be used for other disease incidence calculations and for relatively common diseases could be extended to focus on specific groups such as those with underlying comorbidities. While the approach we describe takes considerably more human and financial resources than using census data (through commissioning a specialist vendor that holds an appropriate license to analyse the data), this cost is negligible compared to the inefficiencies introduced when inaccurate disease incidence estimates are used as a core basis for public health decision making.

Conclusion

Use of the entire CCG or drive-times does not account for the nuanced ways that populations access healthcare and may overestimate or underestimate denominators and distort incidence estimates. Our data-driven method provides more accurate incidence estimates and thus can improve public health decision-making. Denominators for hospital-based incidence studies should be based on healthcare usage rather than geographical boundaries.

Author contributions. JC, EB, AV, DH & GE contributed to the initial design of the methodology. All authors contributed to the analysis, interpretation, and discussion of the results. We would like to acknowledge the assistance of Qi Yan, PhD (Pfizer, Inc.) who provided indispensable medical writing and literature review support for this manuscript and Harvey Walsh, Open Health Group who performed the denominator calculation. HES Data were re-used with the permission of NHS Digital via Harvey Walsh, Open Health Group.

Conflict of interest. JC, EB, AV, JS, HM, BG & GE are employees of Pfizer Vaccines and hold stock or stock options. DH is an employee of Harvey Walsh Ltd. CH is the Principal Investigator of the Avon CAP study which is an investigator-led University of Bristol study funded by Pfizer and has previously received support from the NIHR in an Academic Clinical Fellowship. AF is a member of the Joint Committee on Vaccination and Immunization (JCVI) and chair of the World Health Organization European Technical Advisory Group of Experts on Immunization (ETAGE) committee. In addition to receiving funding from Pfizer as Chief Investigator of the Avon CAP study, he leads another project investigating the transmission of respiratory bacteria in families jointly funded by Pfizer and the Gates Foundation.

Data availability statement. The data that support the findings of this study are available from Harvey Walsh, Open Group. Restrictions apply to the availability of these data, which were used under licence for this study. Data are available from the authors with the permission of Harvey Walsh, Open Group.

Disclosure. This study was conducted as a collaboration between the University of Bristol, Pfizer and Open Health Group. Pfizer is the study sponsor.

References

1. Schuurman N et al. (2006) Defining rational hospital catchments for non-urban areas based on travel-time. International Journal of Health Geographics 5, 43.
2. Roderick P et al. (1999) What determines geographical variation in rates of acceptance onto renal replacement therapy in England? Journal of Health Services Research & Policy 4, 139–146.
3. Pick H et al. (2020) Pneumococcal serotype trends, surveillance and risk factors in UK adult pneumonia, 2013–18. Thorax 75, 38–49.
4. Clarke JM, Barahona M and Darzi AW (2019) Defining hospital catchment areas using multiscale community detection: a case study for planned orthopaedic care in England. bioRxiv, 619692. https://doi.org/10.1101/619692.
5. Elston JW et al. (2012) Increasing incidence of invasive pneumococcal disease and pneumonia despite improved vaccination uptake: surveillance in Hull and East Yorkshire, UK, 2002–2009. Epidemiology & Infection 140, 1252–1266.
6. Dealey C (2005) The factors that influence patients’ choice of hospital and treatment. British Journal of Nursing 14, 576–579.
7. Anon (2021) NHS Clinical Commissioning Group (CCG) reorganisation as of 1 April 2021. NHS Business Services Authority. In.
8. Joint Committee on Vaccination and Immunisation (2013) Code of practice June 2013. https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/224864/JCVI_Code_of_Practice_revision_2013_-_final.pdf. In.
9. World Health Organization (2004) ICD-10: International Statistical Classification of Diseases and Related Health Problems: Tenth Revision in, 2nd Edn. Geneva: World Health Organization. https://apps.who.int/iris/handle/10665/42980 (Accessed September 2021).
10. Baker C (2016) Population estimates & GP registers: why the difference? https://commonslibrary.parliament.uk/population-estimates-gp-registers-why-the-difference/#_ftn1. In.
Appendix 1: ICD-10 codes used for the analysis

ICD-10 Code	ICD-10 Description
J110	Hypertensive heart disease with (congestive) heart failure
J130	Hypertensive heart and renal disease with (congestive) heart failure
J132	Hypertensive heart and renal disease with both (congestive) heart failure and renal failure
I500	Heart failure
I500	Congestive heart failure
J010	Heart failure, unspecified
J09	Influenza due to identified avian influenza virus
J09X	Influenza due to identified zoonotic or pandemic influenza virus
J10	Influenza due to identified seasonal influenza virus
J100	Influenza with pneumonia, seasonal influenza virus identified
J101	Influenza with other respiratory manifestations, seasonal influenza virus identified
J108	Influenza with other manifestations, seasonal influenza virus identified
J11	Influenza, virus not identified
J110	Influenza with pneumonia, virus not identified
J111	Influenza with other respiratory manifestations, virus not identified
J118	Influenza with other manifestations, virus not identified
J12	Viral pneumonia, not elsewhere classified
J120	Adenoviral pneumonia
J121	Respiratory syncytial virus pneumonia
J122	Parainfluenza virus pneumonia
J123	Human metapneumovirus pneumonia
J128	Other viral pneumonia
J129	Viral pneumonia, unspecified
J13	Pneumonia due to Streptococcus pneumoniae
J13X	Pneumonia due to Streptococcus pneumoniae
J14	Pneumonia due to Haemophilus influenzae
J14X	Pneumonia due to Haemophilus influenzae
J15	Bacterial pneumonia, not elsewhere classified
J150	Pneumonia due to Klebsiella pneumoniae
J151	Pneumonia due to Pseudomonas

(Continued)
ICD-10 Code	ICD-10 Description
J152	Pneumonia due to staphylococcus
J153	Pneumonia due to streptococcus, group B
J154	Pneumonia due to other streptococci
J155	Pneumonia due to *Escherichia coli*
J156	Pneumonia due to other Gram-negative bacteria
J157	Pneumonia due to *Mycoplasma pneumoniae*
J158	Other bacterial pneumonia
J159	Bacterial pneumonia, unspecified
J16	Pneumonia due to other infectious organisms, not elsewhere classified
J160	Chlamydial pneumonia
J168	Pneumonia due to other specified infectious organisms
J17	Pneumonia in diseases classified elsewhere
J170	Pneumonia in bacterial diseases classified elsewhere
J171	Pneumonia in viral diseases classified elsewhere
J172	Pneumonia in mycoses
J173	Pneumonia in parasitic diseases
J178	Pneumonia in other diseases classified elsewhere
J18	Pneumonia, organism unspecified
J180	Bronchopneumonia, unspecified
J181	Lobar pneumonia, unspecified
J182	Hypostatic pneumonia, unspecified
J188	Other pneumonia, organism unspecified
J189	Pneumonia, unspecified
J20	Acute bronchitis
J200	Acute bronchitis due to *Mycoplasma pneumoniae*
J201	Acute bronchitis due to *Haemophilus influenzae*
J202	Acute bronchitis due to streptococcus
J203	Acute bronchitis due to *coxackievirus*
J204	Acute bronchitis due to parainfluenza virus
J205	Acute bronchitis due to respiratory syncytial virus
J206	Acute bronchitis due to rhinovirus
J207	Acute bronchitis due to *echovirus*
J208	Acute bronchitis due to other specified organisms
J209	Acute bronchitis, unspecified
J21	Acute bronchiolitis
J210	Acute bronchiolitis due to respiratory syncytial virus
J211	Acute bronchiolitis due to human metapneumovirus
J218	Acute bronchiolitis due to other specified organisms
J219	Acute bronchiolitis, unspecified
J22	Unspecified acute lower respiratory infection
J22X	Unspecified acute lower respiratory infection
J40	Bronchitis, not specified as acute or chronic
J40X	Bronchitis, not specified as acute or chronic
ICD-10 Code	ICD-10 Description
-------------	--------------------
J41	Simple and mucopurulent chronic bronchitis
J410	Simple chronic bronchitis
J411	Mucopurulent chronic bronchitis
J418	Mixed simple and mucopurulent chronic bronchitis
J42	Unspecified chronic bronchitis
J42X	Unspecified chronic bronchitis
J43	Emphysema
J430	MacLeod syndrome
J431	Panlobular emphysema
J432	Centrilobular emphysema
J438	Other emphysema
J439	Emphysema, unspecified
J44	Other chronic obstructive pulmonary disease
J440	Chronic obstructive pulmonary disease with acute lower respiratory infection
J441	Chronic obstructive pulmonary disease with acute exacerbation, unspecified
J448	Other specified chronic obstructive pulmonary disease
J449	Chronic obstructive pulmonary disease, unspecified
J45	Asthma
J450	Predominantly allergic asthma
J451	Nonallergic asthma
J458	Mixed asthma
J459	Asthma, unspecified
J46	Status asthmaticus
J46X	Status asthmaticus
J47	Bronchiectasis
J47X	Bronchiectasis
J85	Abscess of lung and mediastinum
J850	Gangrene and necrosis of lung
J851	Abscess of lung with pneumonia
J852	Abscess of lung without pneumonia
J853	Abscess of mediastinum
J86	Pyothorax
J860	Pyothorax with fistula
J869	Pyothorax without fistula
J90	Pleural effusion, not elsewhere classified
J90X	Pleural effusion, not elsewhere classified
J91	Pleural effusion in conditions classified elsewhere
J91X	Pleural effusion in conditions classified elsewhere
J95	Postprocedural respiratory disorders, not elsewhere classified
J950	Tracheostomy malfunction
J951	Acute pulmonary insufficiency following thoracic surgery
J952	Acute pulmonary insufficiency following nonthoracic surgery
J953	Chronic pulmonary insufficiency following surgery
ICD-10 Code	ICD-10 Description
------------	--
J954	Mendelson syndrome
J955	Postprocedural subglottic stenosis
J958	Other postprocedural respiratory disorders
J959	Postprocedural respiratory disorder, unspecified
J96	Respiratory failure, not elsewhere classified
J960	Acute respiratory failure
J9600	Acute respiratory failure, Type I [hypoxic]
J9601	Acute respiratory failure, Type II [hypercapnic]
J9609	Acute respiratory failure, Type unspecified
J961	Chronic respiratory failure
J9610	Chronic respiratory failure, Type I [hypoxic]
J9611	Chronic respiratory failure, Type II [hypercapnic]
J9619	Chronic respiratory failure, Type unspecified
J969	Respiratory failure, unspecified
J9690	Respiratory failure, unspecified, Type I [hypoxic]
J9691	Respiratory failure, unspecified, Type II [hypercapnic]
J9699	Respiratory failure, unspecified, Type unspecified
J98	Other respiratory disorders
J980	Diseases of bronchus, not elsewhere classified
J981	Pulmonary collapse
J982	Interstitial emphysema
J983	Compensatory emphysema
J984	Other disorders of lung
J985	Diseases of mediastinum, not elsewhere classified
J986	Disorders of diaphragm
J988	Other specified respiratory disorders
J989	Respiratory disorder, unspecified
J99	Respiratory disorders in diseases classified elsewhere
J990	Rheumatoid lung disease
J991	Respiratory disorders in other diffuse connective tissue disorders
J998	Respiratory disorders in other diseases classified elsewhere
Appendix 2: Anonymised GP Practice Data

GP Practice names are anonymised and presented as Practice 1, Practice 2 etc...

18 to 34

Practice name	Proportion	Population								
Practice 1	19%	507	10%	216	15%	375	18%	276	17%	169
Practice 2	100%	3254	93%	2839	100%	2342	100%	1043	100%	773
Practice 3	100%	979	100%	1176	100%	1132	100%	482	100%	362
Practice 4	97%	3899	98%	2891	97%	1825	98%	717	100%	377
Practice 5	100%	2714	94%	2364	100%	2030	100%	894	100%	469
Practice 6	100%	2383	100%	1914	100%	1262	100%	558	97%	294
Practice 7	100%	1488	89%	660	89%	239	100%	38	100%	8
Practice 8	88%	4467	97%	4750	100%	2750	100%	721	96%	335
Practice 9	90%	11794	100%	9416	100%	5370	100%	2301	98%	1429
Practice 10	88%	7402	97%	2091	100%	597	100%	362	100%	161
Practice 11	89%	2731	88%	1906	77%	1895	88%	894	80%	466
Practice 12	95%	4707	100%	4042	99%	2850	100%	717	100%	457
Practice 13	60%	767	42%	298	28%	260	19%	87	11%	33
Practice 14	71%	2816	83%	2445	86%	2914	68%	1389	63%	826
Practice 15	62%	1459	79%	986	83%	1395	67%	555	68%	292
Practice 16	94%	3400	100%	3203	99%	2780	96%	1303	99%	692
Practice 17	100%	2462	100%	2112	100%	1838	100%	774	100%	609
Practice 18	97%	2967	100%	2781	99%	2832	99%	1528	99%	1018
Practice 19	100%	3148	97%	2718	100%	1415	100%	395	100%	253
Practice 20	100%	2578	87%	2532	91%	1768	100%	666	98%	349
Practice 21	100%	1611	92%	1932	100%	2100	100%	1136	100%	684
Practice 22	93%	5815	92%	5152	95%	3682	100%	1720	99%	1002
Practice 23	96%	3097	93%	2962	93%	2735	100%	1240	100%	668
Practice 24	91%	2522	100%	2610	99%	3070	98%	1604	100%	1223
Practice 25	95%	4476	100%	4634	97%	3004	100%	1322	100%	613
Practice 26	25%	1887	42%	442	18%	331	19%	188	15%	91
Practice 27	100%	2714	100%	2193	100%	1847	100%	761	100%	467
Practice 28	100%	2057	97%	1841	100%	1406	100%	689	100%	483
Practice 29	79%	4204	100%	3303	89%	3792	88%	3825	86%	2077
Practice 30	100%	1657	100%	1657	94%	2397	94%	1763	100%	825

James Campling et al.
Practice 31	95%	Practice 32	100%	Practice 33	100%	Practice 34	100%	Practice 35	100%	Practice 36	100%	Practice 37	100%	Practice 38	100%	Practice 39	100%	Practice 40	100%	Practice 41	100%
1871	1348	1322	516	342	163																
1124	1212	1437	846	658	222																
1779	1156	1176	353	250	98																
5366	3798	2498	1175	667	249																
1467	1112	854	354	172	41																
2625	1978	2690	1164	602	200																
3148	2360	2112	1150	790	413																
2447	2243	1376	534	434	183																
1776	1927	1934	1163	795	374																
1397	1527	1495	946	678	244																
1516	1419	627	213	144	81																
7943	8350	9129	5466	3173	1211																
2183	1527	1006	445	259	154																
7909	5507	2884	848	329	110																
3642	3841	2733	1248	663	246																
1116	490	171	23	7	4																
2591	2526	2253	1088	791	338																
5580	3486	2631	1245	599	232																
863	826	981	504	283	117																
5097	4548	3372	1671	863	432																
2945	3684	3650	2554	1681	661																
2287	2483	2126	1066	654	274																
1396	1437	1239	750	518	311																
2637	2211	2004	1014	567	262																
2719	2173	1740	892	583	303																
1453	1486	1608	871	724	298																
2425	2671	1992	905	473	181																
2161	1848	1856	999	808	295																
3953	3462	2943	1224	772	387																
1006	928	1086	675	396	182																
18188	188	11	1	1	0																
3551	3011	3333	1811	1129	459																
2837	2784	3126	1900	1241	552																
1642	1473	1051	397	204	69																
5289	5309	4780	2495	1795	915																

(Continued)
Total Practice Population by Age and Proportion

Total Practice Population by Age	18–34	35–49	50–64	65–74	75–84	85+						
	Proportion	Population										
Practice name												
Practice 67	88%	4834	95%	3684	100%	2392	100%	1084	98%	549	100%	230
Practice 68	100%	2016	95%	1548	93%	1482	100%	775	100%	515	100%	271
Practice 69	100%	1626	98%	1359	100%	1124	100%	424	100%	243	100%	83
Practice 70	25%	395	17%	270	24%	470	24%	288	11%	85	11%	41
Practice 71	92%	14846	100%	2141	97%	1513	100%	708	99%	527	100%	298
Practice 72	95%	2709	100%	2514	100%	1149	100%	423	100%	245	100%	93
Practice 73	100%	1346	100%	1372	100%	1749	100%	1341	100%	894	99%	311
Practice 74	41%	679	29%	457	40%	901	27%	307	26%	195	32%	91
Practice 75	19%	367	4%	78	16%	351	22%	303	17%	153	16%	65
Practice 76	94%	4571	98%	6106	98%	6722	97%	4114	96%	2706	94%	1168
Practice 77	60%	381	100%	552	100%	683	100%	355	100%	240	100%	73
Practice 78	90%	2270	93%	2254	97%	1360	98%	522	100%	308	100%	105
Practice 79	100%	2697	100%	2479	100%	2657	100%	1464	100%	1251	99%	349
Practice 80	100%	1579	100%	2622	100%	1866	100%	1107	100%	669	99%	379
Practice 81	82%	4003	94%	3752	93%	2913	98%	1609	100%	738	100%	252
Practice 82	43%	600	25%	403	26%	519	26%	363	22%	200	18%	77
Practice 83	18–34	231 342	35–49	184 269	50–64	152 380	65–74	74 245	75–84	45 989	≥85	19 229

Appendix 2 (Continued)

James Campling et al.