Perception of Salicylic Acid in *Physcomitrella patens*

Yujun Peng, Tongjun Sun and Yuelin Zhang*

Department of Botany, University of British Columbia, Vancouver, BC, Canada

Salicylic acid (SA) is a key signaling molecule in plant immunity. Two types of SA receptors, NPR1 and NPR3/NPR4, were reported to be involved in the perception of SA in Arabidopsis. SA is also synthesized in the non-vascular moss *Physcomitrella patens* following pathogen infection. Sequence analysis revealed that there is only one NPR1/NPR3/NPR4-like protein in *P. patens*. This agrees with the phylogenetic study that showed the divergence of NPR1 and NPR3/NPR4 from the same ancestor during the evolution of higher plants. Intriguingly, expression of the *P. patens* NPR1/NPR3/NPR4-like gene in Arabidopsis does not complement the constitutive defense phenotype of the *npr3 npr4* double mutant, but can partially rescue the mutant phenotypes of *npr1-1*, suggesting that it functions as an NPR1-like positive regulator of SA-mediated immunity and *P. patens* does not have an SA receptor functioning similarly as NPR3/NPR4. Future characterization of the *P. patens* NPR1-like protein and analysis of its functions through knockout and biochemical approaches will help us better understand how SA is perceived and what its functions are in *P. patens*.

Keywords: salicylic acid, NPR1, NPR3, NPR4, plant immunity, SA receptor

Systemic acquired resistance (SAR) is a plant immune response induced after primary infection, which leads to enhanced resistance to a broad spectrum of pathogens in distal tissue (Durrant and Dong, 2004). Early studies of SAR identified increased accumulation of salicylic acid (SA) and induction of *PATHOGENESIS RELATED* (PR) gene expression as two key features of SAR (Malamy et al., 1990; Metraux et al., 1990; Rasmussen et al., 1991; Ward et al., 1991; Uykan et al., 1991; Uknes et al., 1992). Clear evidence showed that SA accumulation is necessary for SAR, as blocking SA accumulation by expressing a bacterial salicylate hydroxylase in transgenic plants results in low SA levels and loss of SAR (Gaffney et al., 1993). In addition, two SA-deficient mutants, *sid2* and *eds5*, display enhanced susceptibility to pathogens and compromised SAR (Nawrath and Metraux, 1999; Metraux et al., 1999; Wildermuth et al., 2001). On the other hand, exogenous application of SA or its analogs is sufficient to induce PR gene expression and resistance to pathogen infection (White, 1979; Metraux et al., 1991; Gorlach et al., 1996). These studies suggest that SA is a key signaling molecule in plant immunity.

Several genetic screens conducted in Arabidopsis to identify signaling components downstream of SA led to the isolation of a large number of *npr1* alleles (Cao et al., 1994; Delaney et al., 1995; Shah et al., 1997). In *npr1* mutants, SA-induced PR gene expression and resistance to pathogens are blocked, suggesting that NPR1 is a key immune regulator downstream of SA. *NPR1* encodes a protein containing two protein–protein interaction motifs: a BTB/POZ (broad-complex, tram track, and bric-a-brac/poxvirus, zinc finger) domain at the N-terminus and an ankyrin-repeat
domain in the middle of the protein (Cao et al., 1997; Ryals et al., 1997). NPR1 binds to SA in vitro, suggesting that it may function as a receptor for SA (Wu et al., 2012; Manohar et al., 2014). Yeast two-hybrid screens identified several TGA transcription factors as interactors of NPR1 (Zhang et al., 1999; Despres et al., 2000; Zhou et al., 2000). TGAs bind to the SA-responsive element (as-I) in the PR1 promoter that are required for the induction of PR gene expression by SA, suggesting that they are important for regulating PR1 expression (Zhang et al., 1999). Knockout analysis of TGA2/TGA5/TGA6 further revealed that induction of PR1 expression and pathogen resistance by the SA analag INA was abolished in the tga2 tga5 tga6 triple mutant, but unaffected in tga5 or tga2 tga5 mutant plants, suggesting that TGA2/TGA5/TGA6 function redundantly as positive regulators of SA-induced defense responses (Zhang et al., 2003).

Two paralogs of NPR1, NPR3 and NPR4, also interact with TGA2/TGA5/TGA6, but they function as negative regulators of PR gene expression and pathogen resistance (Zhang et al., 2006). The npr3 npr4 double mutants exhibit elevated basal PR gene expression and enhanced resistance against pathogens. Similar to NPR1, NPR3 and NPR4 also bind to SA, suggesting that they also function as SA receptors (Fu et al., 2012). They were proposed to negatively regulate plant immunity by degrading NPR1 in response to SA (Fu et al., 2012).

Physcomitrella patens is the first bryophyte to have its whole genome sequenced and has been widely used in studying evolutionary changes during the evolution of land plants (Rensing et al., 2008). Few studies have been carried out on the immune system of P. patens. It was shown that SA levels in P. patens increase rapidly after inoculation with Botrytis cinerea (Ponce De Leon et al., 2012). Exogenous application of SA also strongly induces the expression of a PAL gene in P. patens (Ponce De Leon et al., 2012), suggesting that SA is synthesized and perceived during pathogen infection.

To better understand how SA is perceived in P. patens, we carried out BLAST searches to look for homologs of NPR1 in P. patens. Search of the NCBI database found that Pp3c19_7560 encodes an NPR1 homolog. Search of the JGI Phytozome database revealed that another predicted protein encoded by Pp3c21_7570 also has high similarity with Arabidopsis NPR1. To determine the actual coding sequences of these two NPR1-like genes in P. patens, we sequenced their cDNAs amplified by RT-PCR. Analysis of the cDNA sequences revealed that the predicted Pp3c19_7560 gene model is incorrect and there is an early frame shift in the cDNA, resulting in the truncation of the encoded protein, suggesting that Pp3c19_7560 is likely a pseudogene. The cDNA sequence of Pp3c21_7570 is also different from the predicted mRNA sequence. The first exon is larger than predicted.

The predicted Pp3c21_7570 protein based on the cDNA sequence shows 34% identity and 53% similarity with Arabidopsis NPR1, 37% identity and 55% similarity with NPR3, and 36% identity and 56% similarity with NPR4. Similar to NPR1 and NPR3/NPR4, it contains a conserved N-terminal BTB/POZ domain, a central ankyrin-repeat domain and a C-terminal domain with nuclear localization signals (Figure 1A). In Arabidopsis NPR1, Cys521, and Cys529 in the C-terminal domain were reported to be required for SA-binding, but they are not universally conserved in NPR1 orthologs (Wu et al., 2012). These two residues are not conserved in Pp3c21_7570 and Arabidopsis NPR3/NPR4 either. Most likely SA-binding in SA receptors involves in additional amino acid residues. Phylogenetic analysis of proteins in the NPR1 family from different plant species revealed that NPR1 and NPR3/NPR4 diverged from Pp3c21_7570 during evolution of higher plants (Figure 1B). It is not obvious whether Pp3c21_7570 is more related to Arabidopsis NPR1 or NPR3/NPR4 simply from the phylogenetic tree.

To determine whether Pp3c21_7570 has similar functions as NPR3/4 or NPR1, we generated a construct expressing Pp3c21_7570 driven by the 35S promoter and transformed it into Arabidopsis npr3-2 npr4-2 and npr1-1 mutants to test whether

FIGURE 1 | Pp3c21_7570 encodes an NPR1-like protein in Physcomitrella patens. (A) Phylogenetic analysis of Pp3c21_7570, Arabidopsis NPR1/NPR3/NPR4 and Pp3c21_7570/NPR3/NPR4-like proteins in rice (OsNPR1, OsNPR2, OsNPR3, OsNPR4, and OsNPR5), tomato (SlNIM1, SlNIM1-like protein 1, and SlNIM1-like protein 2) and the lycophyte Selaginella moellendorfii (SmNPR1-like protein 1 and SmNPR1-like protein 2). The protein sequences were aligned by MEGA version 7.0.26, and the maximum likelihood tree was generated using the Maximum Likelihood method. Bootstrap replication (500 replications) was used for statistical support for the nodes in the phylogenetic tree. (B) Predicted protein structures of Arabidopsis NPR1/NPR3/NPR4 and Pp3c21_7570. BTB/POZ domain (white box), Ankryrin-repeat (gray box), and nuclear localization signals (black box) are shown.
it can complement the mutant phenotype of \textit{npr3-2 npr4-2} or \textit{npr1-1}. As shown in Figure 2A, the 35S::Pp3C21_7570 transgenic plants in the \textit{npr3-2 npr4-2} double mutant background still exhibit elevated basal \textit{PR1} expression, and the expression levels of \textit{PR1} in the transgenic lines are actually higher than in \textit{npr3-2 npr4-2}. Similarly, the enhanced resistance to \textit{H.a. Noco2} in \textit{npr3-2 npr4-2} is unaffected in the 35S::Pp3C21_7570 transgenic lines (Figure 2B). These data suggest that the 35S::Pp3C21_7570 transgene does not complement the mutant phenotypes of \textit{npr3-2 npr4-2}.

In the 35S::Pp3C21_7570 transgenic lines in the \textit{npr1-1} background, INA-induced \textit{PR1} expression is partially restored (Figure 2C). Similarly, INA-induced resistance to \textit{H.a. Noco2} is largely restored in the 35S::Pp3C21_7570 transgenic lines, although it is not as strong as in wild type (WT) plants (Figure 2D). These data suggest that Pp3C21_7570 can partially complement the mutant phenotypes of \textit{npr1-1}. Thus Pp3C21_7570 is orthologous to \textit{Arabidopsis NPR1} and we named Pp3C21_7570 as PpNPR1.

The partial complementation of the \textit{Arabidopsis} \textit{npr1} mutant phenotypes by PpNPR1 indicates that it functions as a positive regulator of SA-induced defense gene expression, suggesting that similar mechanisms are used to promote defense gene expression and pathogen resistance by SA in \textit{P. patens}. Since there is only one NPR1-like protein in \textit{P. patens}, it probably does not use NPR3/NPR4-like SA receptors to negatively regulate defense responses. As NPR3/NPR4 evolved from the same ancestor as NPR1 in higher plants, they probably diverged from NPR1 to take a different role in fine-tuning SA-induced defense responses. Whether \textit{P. patens} has a simpler immune system which does not need negative regulators like NPR3/NPR4 or it uses an alternative approach to prevent auto-activation of defense responses in the absence of SA remains to be determined.

Bryophytes are remnants of early diverging lineages of embryophytes and occupy an ideal phylogenetic position for reconstruction of ancient evolutionary changes (Rensing et al., 2008). The identification of PpNPR1 as a NPR1-like protein provides a starting point for analyzing SA perception in the bryophyte \textit{P. patens}. Future analysis of the potential SA-binding activity of PpNPR1 and characterization of the function of PpNPR1 by knockout analysis will help us to better understand its roles in SA perception and defense against pathogens. In Arabidopsis, NPR1 interacts with TGA transcription factors and regulates defense gene expression through TGA2/TGA5/TGA6 (Zhang et al., 1999, 2003; Despres et al., 2000; Zhou et al., 2000).
It is likely that PpNPRI also interacts with TGA transcription factors in *P. patens*. It will be interesting to determine which TGA transcription factors in *P. patens* interact with PpNPRI and analyze their roles in SA-induced defense gene expression.

AUTHOR CONTRIBUTIONS

YP performed the experiments and wrote the paper; TS performed the experiments; YZ designed the experiments and wrote the paper.

REFERENCES

Bi, D., Cheng, Y. T., Li, X., and Zhang, Y. (2010). Activation of plant immune responses by a gain-of-function mutation in an atypical receptor-like kinase. *Plant Physiol.* 153, 1771–1779. doi: 10.1104/pp.110.158501

Cao, H., Bowling, S. A., Gordon, A. S., and Dong, X. (1994). Characterization of an Arabidopsis mutant that is non-responsive to inducers of systemic acquired resistance. *Plant Cell* 6, 1583–1592. doi: 10.1105/tpc.6.11.1583

Cao, H., Glazebrook, J., Clarke, J. D., Volko, S., and Dong, X. (1997). The Arabidopsis NPR1 gene that controls systemic acquired resistance encodes a novel protein containing ankyrin repeats. *Cell* 88, 57–63. doi: 10.1016/S0092-8674(00)81858-9

Delaney, T. P., Friedrich, L., and Rylas, J. A. (1995). Arabidopsis signal transduction mutant defective in chemically and biologically induced disease resistance. *Proc. Natl. Acad. Sci. U.S.A.* 92, 6602–6606. doi: 10.1073/pnas.92.14.6602

Despres, C., DeLong, C., Glaze, S., Liu, E., and Fobert, P. R. (2000). The Arabidopsis NPR1/NIM1 protein enhances the DNA binding activity of a subgroup of the TGA family of bZIP transcription factors. *Plant Cell* 12, 279–290. doi: 10.1105/tpc.12.2.279

Durrant, W. E., and Dong, X. (2004). Systemic acquired resistance. *Annu. Rev. Phytopathol.* 42, 185–209. doi: 10.1146/annurev.phyto.42.040803.14021

Fu, Z. Q., Yan, S., Saleh, A., Wang, W., Ruble, J., Oka, N., et al. (2012). NPR3 and NPR4 are receptors for the immune signal salicylic acid in plants. *Nature* 486, 228–232. doi: 10.1038/nature11162

Gaffney, T., Friedrich, L., Vernooij, B., Negrotto, D., Nye, G., Uknes, S., et al. (1993). Requirement of salicylic acid for the induction of systemic acquired resistance. *Science* 261, 754–756. doi: 10.1126/science.261.5122.754

Gorlach, J., Volrath, S., Knauf-Beiter, G., Hengy, G., Beckhove, U., Kogel, K. H., et al. (1996). Benzothiadiazole, a novel class of inducers of systemic acquired resistance, activates gene expression and disease resistance in wheat. *Plant Cell* 8, 629–643. doi: 10.1105/tpc.8.4.629

Malamy, J., Carr, J. P., Klessig, D. F., and Raskin, I. (1990). Salicylic acid: a likely endogenous signal in the resistance response of tobacco to viral infection. *Science* 250, 1002–1004. doi: 10.1126/science.250.4983.1002

Manohar, M., Tian, M., Moreau, M., Park, S.-W., Choi, H. W., Fei, Z., et al. (2014). Identification of multiple salicylic acid-binding proteins using two high throughput screens. *Front. Plant Sci.* 5:777. doi: 10.3389/fpls.2014.00777

Metraux, J. P., Ahl-Goy, P., Staub, T., Speich, J., Steinemann, A., Rylas, J., et al. (1991). “Induced resistance in cucumber in response to 2,6-dichlororobenzoic acid and pathogens,” in *Advances in Molecular Genetics of Plant-Microbe Interactions*, Vol. 1, eds H. Hennecke and D. P. S. Verma (Dordrecht: Kluwer Academic Publishers), 432–439.

Metraux, J. P., Signer, H., Rylas, J., Ward, E., Wyss-Benz, M., Gaudin, J., et al. (1990). Increase in salicylic acid at the onset of systemic acquired resistance in cucumber. *Science* 250, 1004–1006. doi: 10.1126/science.250.4983.1004

FUNDING

This research is funded by NSERC and CFI grants to YZ.

ACKNOWLEDGMENTS

The authors thank Rowan van Wersch and Xin Li (University of British Columbia) for discussion and editing of the manuscript. They are grateful for the financial support to YZ from Natural Sciences and Engineering Research Council (NSERC) of Canada and Canada Foundation for Innovation (CFI).

Nawrath, C., and Metraux, J. P. (1999). Salicylic acid induction-deficient mutants of *Arabidopsis* express PR-2 and PR-5 and accumulate high levels of camalexin after pathogen inoculation. *Plant Cell* 11, 1393–1404. doi: 10.2307/3879970

Ponce De Leon, I., Schmelz, E. A., Gaggero, C., Castro, A., Alvarez, A., and Montesano, M. (2012). *Physcomitrella patens* activates reinforcement of the cell wall, programmed cell death and accumulation of evolutionary conserved defence signals, such as salicylic acid and 12-oxo-phytodienoic acid, but not jasmonic acid, upon *Botrytis cinerea* infection. *Mol. Plant Pathol.* 13, 960–974. doi: 10.1111/j.1364-3703.2012.00806.x

Rasmussen, J. B., Hammerschmidt, R., and Zook, M. N. (1991). Systemic induction of salicylic acid accumulation in cucumber after inoculation with *Pseudomonas syringae pv. syringae*. *Plant Physiol.* 97, 1342–1347. doi: 10.1104/pp.97.4.1342

Rensing, S. A., Lang, D., Zimmer, A. D., Terry, A., Salamow, A., Shapiro, H., et al. (2008). The *Physcomitrella* genome reveals evolutionary insights into the conquest of land by plants. *Science* 319, 64–69. doi: 10.1126/science.1150646

Rylas, J., Weymann, K., Lawton, K., Friedrich, L., Ellis, D., Steiner, H. Y., et al. (1997). The Arabidopsis NIM1 protein shows homology to the mammalian transcription factor inhibitor I kappa B. *Plant Cell* 9, 425–439. doi: 10.1105/tpc.9.3.425

Shah, J., Tsui, F., and Klessig, D. F. (1997). Characterization of a salicylic acid-insensitive mutant (sai1) of *Arabidopsis thaliana*, identified in a selective screen utilizing the SA-inducible expression of the *tms2* gene. *Mol. Plant Microbe Interact.* 10, 69–78. doi: 10.1094/MPMI.1997.10.1.69

Uknes, S., Mauch-Mani, B., Moyer, M., Potter, S., Williams, S., Dincher, S., et al. (1992). Acquired resistance in *Arabidopsis*. *Plant Cell* 4, 645–656. doi: 10.1105/tpc.4.6.645

Ward, E. R., Uknes, S. J., Williams, S. C., Dincher, S. S., Wiederhold, D. L., Alexander, D. C., et al. (1991). Coordinate gene activity in response to agents that induce systemic acquired resistance. *Plant Cell* 3, 1085–1094. doi: 10.1105/tpc.3.10.1085

White, R. F. (1979). Acetylsalicylic acid (aspirin) induces resistance to tobacco mosaic virus in tobacco. *Virology* 90, 410–412. doi: 10.1016/0042-6822(79)90019-9

Wildermuth, M. C., Dewsney, J., Wu, G., and Ausubel, F. M. (2001). Isochorismate synthase is required to synthesize salicylic acid for plant defence. *Nature* 414, 562–565. doi: 10.1038/35107108

Wu, Y., Zhang, D., Chu, J. Y., Boyle, P., Wang, Y., Brindle, I. D., et al. (2012). The *Arabidopsis* NPR1 protein is a receptor for the plant defense hormone salicylic acid. *Cell Rep.* 1, 639–647. doi: 10.1016/j.celrep.2012.05.008

Yalpani, N., Silverman, P., Wilson, T. M., Kleier, D. A., and Raskin, I. (1991). Salicylic acid is a systemic signal and an inducer of pathogenesis-related proteins in virus-infected tobacco. *Plant Cell* 3, 809–818. doi: 10.1105/tpc.3.10.809

Zhang, Y., Cheng, Y. T., Qu, N., Zhao, Q., Bi, D., and Li, X. (2006). Negative regulation of defense responses in Arabidopsis by two NPR1 paralogs. *Plant J.* 48, 647–656. doi: 10.1111/j.1365-313X.2006.02903.x

Zhang, Y., Fan, W., Kinkema, M., Li, X., and Dong, X. (1999). Interaction of NPR1 with basic leucine zipper protein transcription factors that bind sequences...
required for salicylic acid induction of the PR-1 gene. Proc. Natl. Acad. Sci. U.S.A. 96, 6523–6528. doi: 10.1073/pnas.96.11.6523
Zhang, Y., Tessaro, M. J., Lassner, M., and Li, X. (2003). Knockout analysis of Arabidopsis transcription factors TGA2, TGA5, and TGA6 reveals their redundant and essential roles in systemic acquired resistance. Plant Cell 15, 2647–2653. doi: 10.1105/tpc.014894
Zhou, J. M., Trifa, Y., Silva, H., Pontier, D., Lam, E., Shah, J., et al. (2000). NPR1 differentially interacts with members of the TGA/OBF family of transcription factors that bind an element of the PR-1 gene required for induction by salicylic acid. Mol. Plant Microbe Interact. 13, 191–202. doi: 10.1094/MPMI.2000.13.2.191

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2017 Peng, Sun and Zhang. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.