Review

Genetic predictors of cytokine response in ENT-associated encephalitis

Vladimir V. Kravtsov1, Natalia A. Shnayer1,3, Nikolay G. Neznanov1, Alexander A. Krivopalov2, Yan K. Yanov3, Regina F. Nasyrova1, Polina A. Shamkina2, Oksana A. Gavrilyuk3

Abstract: (1) Introduction: An imbalance of the genetically determined cytokine response plays a key role in the etiology of ENT-associated encephalitis. In recent years, an attempt has been made to evaluate the prognostic role of chronic pathology of the paranasal sinuses in the development of acute, subacute and chronic encephalitis and meningitis, which in clinical practice are manifested both as cerebral and focal neurological symptoms and as mental disorders: from borderline to psychotic ones. The problem requires a multidisciplinary approach on the part of the specialists in the following clinical disciplines: neurology (as well as neurobiology), psychiatry, immunology, experimental medicine, otorhinolaryngology, and pharmacogenetics. The solution of this problem is possible with the involvement of preventive and personalized medicine. (2) The purpose: Evaluation of the prognostic role of genetic polymorphisms of pro- and anti-inflammatory cytokines in the development of ENT-associated encephalitis. (3) Materials and Methods: We conducted a keyword-based analysis of the English and Russian-language articles published within the past 30 years (from 1988 to 2018). The following databases were used in the study: PubMed, MedLine, Web of Science Core Collection (Clarivate Analytics), Web Science, Russian Science Citation Index, Scopus, Scientific Research, Google Scholar, Oxford Press, and eLibrary. (4) Results: In a number of the analyzed works, regardless of the causative agent and viral load, an increased level of pro-inflammatory cytokine production was noted in patients with more severe disease progression, neurological complications and unfavorable outcomes, both in viral encephalitis and in bacterial one. Based on this, 30 single nucleotide variants (SNV), their influence on the expression of pro- and anti-inflammatory cytokine genes, as well as their predictor role in the development of ENT-associated encephalitis were analyzed. Due to the nature of the systemic immune response, the analysis included both cerebral and extracerebral pathology-associated SNV. The inconsistency of the previously obtained results was noted, an attempt to explain this phenomenon was made. The analysis of the dynamics and geography of publications on the stated topic was made, the leading Russian scientific centers in the field were defined. The most promising SNV for further studies were identified. (5) Conclusion: The risk of developing ENT-associated encephalitis is associated with a genetically determined status of the cytokine response and its regulation. Studies of the association of various SNV of genes encoding pro- and anti-inflammatory cytokines in the Russian Federation need to be continued.

Keywords: interleukin, genetics, sinusitis, encephalitis, single nucleotide polymorphism, personalized medicine.

Introduction
The problem of encephalitis associated with acute and chronic pathology of ENT organs is far from having been solved and stays at the cutting edge on scientific discourse. Special attention in the research is given to pathology of the paranasal sinuses. The frequency of an acute sinusitis occurrence for adult patients varies from 15 to 40 cases per 1,000 of population a year [1] and that of chronic sinusitis accounts for from 19 to 150 [2]. The highest frequency of this pathology occurrence is registered in Europe and North America [1]. In the Russian Federation, the acute sinusitis frequency varies from 20 to 134 cases per 1,000 of population a year [3]. Data on large-scale population research of chronic sinusitis on the territory of the Russian Federation have not been found. In recent years, there has been made an attempt to estimate a prognostic role of the chronic pathology of the paranasal sinuses in the development of acute, sub-acute and chronic encephalitis and meningitis that manifest themselves in the general clinical practice as both cerebral symptoms and focal neurologic signs and mental disorders: from marginal to psychotic [3-7].

Within the aspect of the problem in question, that of chronic ENT-associated encephalitis, it is worth noting a role of cytokine response since a number of anti-inflammatory cytokines (IL-6, IL-1β, TNF-α) is considered as a predictor of the chronicity of the inflammatory process in paranasal sinuses as well as a risk of the development of rhinogenous limbic encephalitis, mediobasal temporal lobar epilepsy, anxiety depressive disorder and schizophrenia [8,6]. The level of expression of pro- and anti-inflammatory cytokines and their balance ensuring an adequate response of the organism to the causative agent of a virus or bacterial nature is known to be genetically determined [9]. It is possible to solve this problem by means of preventive and personalized medicine, a branch that has been experiencing a booming development for the last decade. The amount of research dedicated to the problem in question and also to the possibility to detect patients with paranasal sinuses chronic pathology who have a high risk of the development of pathological processes in CNS structures is growing. But the results of Russian and foreign research differ, and there is no unequivocal solution to the problem in question up to the present moment.

Objective

Assessment of the prognostic role of genetic polymorphisms of pro- and anti-inflammatory cytokines in the development of ENT-associated encephalitis.

Materials and Methods

We analyzed both Russian and English-language scientific articles on a given topic. Inclusion criteria in the search: 1) full-text original articles cited in databases: PubMed, MedLine, Web of Science Core Collection (Clarivate Analytics), Web of Science, Russian Science Citation Index, Scopus, Scientific Research, Google Scholar, Oxford Press, and eLibrary; 2) articles in Russian and English; 3) search depth 1988-2018 years (30 years); 4) keyword matching: interleukin, genetics, sinusitis, encephalitis, single nucleotide variant (SNV), personalized medicine. Exclusion criteria: abstracts, monographs, manuals, guidelines. A total of 659 354 publications were found. However, only 645 works met the purpose of our research. In accordance with all the abovementioned search criteria, we analyzed 128 original full-text articles (table 1).

The review used the built-in Scopus analytical services. A reference was made to each graph.

Table 1. Keyword search results in a number of databases
The work was carried out in 2 stages. At the first stage, according to the data of a 30-year search (1988-2018), we were able to assess the scientific interest in the problem above. At the second stage, according to a 20-year search (1998-2018), we were able to analyze articles indicating associative genetic studies of cytokines in otorhinolaryngology and allied sciences.

Results

The interest to SNV genes encoding interleukins arose for the first time in 1994 [10] and has reached its maximum growth for the last decade (Figure 1).

The dynamics of publications presenting the results of research in the role of different cytokinins in ENT-associated encephalitis development are basically similar, the peak of scientific activity being in 2014-2015 (Figures 2,3).

Cytokine	Web of Science	Scopus	PubMed	Russian Science	
	Core Collection			Citation Index	Selected
IL-6	5435	6195	2438	33	23
TNF-a	4947	9195	4872	41	22
IL-1b	2690	2016	1284	9	16
INF-y	2319	4277	1606	5	11
IL-12	1648	2476	493	8	7
IL-18	1332	1657	485	13	14
IL-10	4165	6502	2097	34	12
IL-4	3824	5950	912	42	15
IL-2	5732	8059	558	65	6
TGF-b	1883	3271	1962	5	2

Figure 1. The dynamics of a number of publications presenting the results of research in SNV of genes encoding interleukins (according to the data provided by analytical service Scopus, 2018) [11].
Figure 2 (2, a-e). The dynamics of publications presenting the results of research in the role of different SNV of genes encoding pro-inflammatory cytokines (according to the data provided by analytical service Scopus, 2018) [12-17].

Figure 3 (3, a-d). The dynamics of a number of publications presenting the results of research in the role of certain SNV of genes encoding anti-inflammatory cytokines (according to the data provided by analytical service Scopus, 2018) [18-21].

The problem in question provoked the strongest interest of specialists of the following clinical disciplines: neurology (and also neurobiology), psychiatry, immunology, oncology, experimental medicine, rheumatology, otorhinolaryngology (Figure 4).
Figure 4. Flowchart showing a number of publications on a role of pro- and anti-inflammatory cytokines in clinical disciplines (according to the data provided by analytical service Web of Science, 2018) [22].

The most studied, judging by the general number of analyzed publications, are polymorphisms of gene TNF-α, IL-10, IL-2.

The majority of works on this theme was published in the USA, China and Great Britain (Figure 5).

Figure 5. The number of publications presenting the results of research in the role of polymorphisms of pro- and anti-inflammatory cytokines in the Russian Federation and abroad (according to the data provided by analytical service Scopus, 2018) [23].
Table 2. The number of publications in Russian institutions

Title of the institution	Number of publications
Siberian State Medical University	9
N.F.Katanov Khakass State University	4
Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences	3
Kemerovo State University	3
M.V. Lomonosov Moscow State University	3
Research Institute of Medical Genetics, Omsk Scientific Center of the Siberian Branch of the Russian Academy of Medical Sciences	3
Federal State Budget-funded Scientific Institution “ V.A. Nasonova Research Institute of Rheumatology”	3
Omsk State Medical Academy	3
Federal State Budget-funded Institution “ Federal Research and Clinical Center for Specialized Types of Medical Care and Medical Technology”, Federal Biomedical Agency of Russia	3
Federal Budget-funded Research Institution “Federal Scientific Center for Medical and Preventive Health Risk Management Technologies”	3

The number of Russian publications indexed in the databases Scopus and Web of Science (Clarivate Analytics) accounted for 208. The leading scientific groups, according to the fulfilled search, are scientific-research centers and universities of Moscow and Siberia (table 2).

The following SNV of the genes are of the greatest researchers’ interest: 308 A>G rs1800629 of gene TNFA, -1082 A>G rs 1800896 of gene IL10 and -174 G>C rs1800795 of gene IL6 (table 3).

Interleukin-6 (IL-6)

Interleukin 6 acts as a pro- and anti-inflammatory cytokine; it is synthesized by activated macrophages, T-cells and glial cells; stimulates the immune response. The production of IL-6 is activated by pathogen-bound molecules, the response is mediated via TOLL-like receptors, besides, IL-1 and TNF-α stimulate IL-6 expression. This interleukin is encoded by the IL6 gene located on chromosome 7p15.3. Currently, the role of the following SNV is known: -572 C>G (rs1800796), -174 G>C (rs1800795), −6331 T>C (rs10499563), −634 C>G (rs1800796) (Table. 3). However, the prognostic role and effect of specific alleles remain ambiguous. Thus, the association of allele G (-572 C>G) with IL-6 hyperexpression and, as a consequence, the risk of ENT-associated encephalitis is shown in the following studies [24-28]. However, we found a study that revealed the opposite effect on expression and showed the protective role of the G allele in the pathogenesis of Alzheimer’s disease [29]. The role of allele C -174 G>C is still ambiguous: a number of studies [30-36] showed a positive association of the C allele and the IL-6 cytokine expression (hyperexpression) whereas some other studies demonstrated the opposite result (hypoexpression) [37, 38].
Table 3. Effect of the studied SNV of genes encoding pro-inflammatory cytokines on their expression in vivo

Cytokine / Gene	SNV	Effect (on gene expression)	Author
IL-6 / IL6	rs1800796 (-572 C>G)	Allele G – increases	[24-28]
	rs1800795 (-174 G>C)	Allele C – increases	[28-31]
	rs10499563 (-6331 T>C)	Allele T – increases	[32]
	rs1800796 (-634 C>G)	Allele G – increases	[27]
IL-1β / IL1B	rs1143634 (+3954 C>T)	Allele T – increases	[33]
	rs1143627 (-31 C>T)	Allele C – increases	[34]
	rs16944 (-511 C>T)	Allele T – increases	[35]
TNF-a / TNFA	rs1800629 (-308 A>G)	Allele A – increases	[36]
	rs361525 (-238 A>G)	Allele A – increases	[37]
	rs1799724 (-857 C>T)	Haplotype CC – decreases	[38]
	rs1800630 (-863 A>C)	Haplotype AA – decreases	[39]
Hsp70 / HSP70-2	rs2227956 (+1267 A>G)	Allele G – increases	[40]
INF-γ / INFG	rs2069709 (-179 T>G)	Allele T – increases	[41]
	rs2430561 (+874 A>T)	Allele A – increases	[42]
IL-12b / IL12B	rs3212227 (+1188 A>C)	Haplotype CC – increases	[43]
IL-18 / IL18	rs549908 (-105 A>C)	Allele A – increases	[44]
	rs187238 (-137 G>C)	Allele G – increases	[45]
	rs1946518 (-607 A>C)	Allele A – increases	[46]
–920T>C, –133C>G, –132A>G.	Haplotype	C/C/G – increases	[47]

1 – proven association in patients-smokers only; 2 – not applicable to pro-inflammatory cytokines, however, the corresponding gene’s SNV is able to affect the level of TNF-a expression.
Table 4 – Effect of the studied SNV of genes encoding anti-inflammatory cytokines on their expression in vivo.

Interleukin / Gene	SNV	Effect (on gene expression)	Author
IL-10 / IL10	rs1800896 (-1082 A>G)	Allele G – increases	[99,102-106]
	rs1800871 (-819 C>T)	Allele T – increases	[107,108]
	rs1800872 (-592 A>C)	Allele A – increases	[107]
	rs7603630 (-2849 A>G)	Allele G – increases	[110]
IL-4 / IL4	rs2243250 (-590 C>T)	Allele T – increases	[112-115]
	rs2227284 (+33 C>T)	Allele T – increases	[117,118]
	rs2243250 (-589 C>T)	Allele T – increases	[118-120]
	rs2227284 (+3017 G>T)	Allele T – increases	[121]
IL-2 / IL2	rs2069762 (-330 T>G)	Haplotype GG – decreases	[6]
	rs2069763 (+166 T>G)	Allele T – increases	[123]
TGF-β / TGFB1	rs1800469 (-509 C>T)	Allele C – increases	[127]
	rs1800470 (29 C>T)	Allele T – decreases	

Interleukin-1 beta (IL-1β)

IL-1β is a pro-inflammatory cytokine synthesized by activated macrophages. It is known that induction of cyclooxygenase-2 (PTGS2/COX2) by this cytokine in the central nervous system (CNS) promote hypersensitivity to inflammatory pain [42]. According to several studies, some polymorphisms of the IL-1β gene could be associated with genetic predisposition to schizophrenia [8]. IL-1β is encoded by the IL1B gene located on chromosome 2q14. Among the analyzed studies, special attention is drawn to the following SNV: +3954 C>T (rs1143634), −31 C>T (rs1143627), -511 C>T (rs16944) (table 3), alleles +3954 C>T having the most ambiguous effect. The results of the studies vary among different populations. In the Siberian Federal District of the Russian Federation there is a positive association of the C allele carrier status with the IL-1β expression [4]. The Asia-Pacific region shows studies with opposite results - a positive association of the T allele with the IL-1β expression [43-45]. In North America and Western Europe, the results of the studies are very contradictory, and therefore it is not possible to distinguish the prevailing effect of this SNV alleles C and T on the level of the IL-1β expression [46].

Tumor necrosis factor alpha (TNF-α)

TNF-α is an extracellular protein representing a multifunctional cytokine synthesized (mainly) by monocytes, macrophages, eosinophils and neurons. TNF-α stimulates production of IL-1, IL-6, IL-8, interferon-gamma, activates white blood cells. Excessive expression of TNF-α is associated with a disorder of cerebral hemodynamics and
cytotoxic effect on cells of various tissues of the human body. Dysregulation of TNF-\(\alpha\) expression is involved into the pathogenesis of many mental disorders and organic CNS diseases, such as Alzheimer’s disease [55], major depressive disorder [56]. Recent studies have shown that TNF-\(\alpha\) can have a protective effect and prevent neuronal death and apoptosis by a mechanism involving the activation of transcription factor NF-kappaB, inducing expression of both Mn-SOD and Bcl-2 proteins [57]. TNF-\(\alpha\) is encoded by the TNFA gene located on the chromosome 6p21.33. The most studied is the role of the following SNVs: -308 A>G (rs1800629), −238 A>G (rs361525), -857 C>T (rs1799724), -863 A>C (rs1800630) (table 3). The association of SNV HSP70-2 +1267 A>G (rs2227956), in particular, the carriage of allele G with the expression of the cytokine by effector cells [58], is also reported. Due to the different designs of the analyzed works and the pathogenesis of the studied diseases, the results of associative studies of the role of polymorphism -308 A>G with the level of TNF-\(\alpha\) in blood serum differ. Thus, many authors show the positive association of the A allele carrier status with an increased production of TNF-\(\alpha\) [59-68]. However, according to the meta-analysis in the European population, allele A has statistically significant effect neither on the level of serum cytokine concentration, in general, nor on the pathogenesis of rheumatoid diseases, in particular [68, 69]. In the population of the South-Eastern region of Iran, on the contrary, the association of the G allele carrier status with hyperexpression of TNF-\(\alpha\) [70] was revealed.

Interferon gamma (IFN-\(\gamma\))

IFN-\(\gamma\) is a soluble cytokine that has both pro-and anti-inflammatory effects. It is the only member of type II interferon class. IFN-\(\gamma\) is secreted by T-helpers (Th1), cytotoxic T-cells, macrophages, mucosal epithelial cells, as well as by NK-cells (natural killers). IFN-\(\gamma\) has antiviral, immunoregulatory and antitumor properties, and in the central nervous system as well [74]. The protective role of cytokine in allergic encephalomyelitis has been shown [81]. IFN-\(\gamma\) is encoded by the IFNG gene located on chromosome 12q15. In the analyzed studies the association of the following SNVs with hyperexpression of the IFNG gene is shown: -179 T>G (rs2069709) allele T [75, 78] and +874 A>T (rs2430561) allele G [76-80] (table 3).

Interleukin-12B (IL-12\(\beta\))

IL-12\(\beta\) is a pro-inflammatory interleukin produced by dendritic cells, macrophages, neutrophils, and B-lymphoblasts in response to antigenic stimulation. IL-12\(\beta\) activates the production of IFN-\(\gamma\) and TNF-\(\alpha\) from T-cells and NK-cells, reduces the indirect IL-4 suppression of IFN-\(\gamma\) expression. The role of IL-12\(\beta\) in the pathogenesis of encephalitis, including autoimmune encephalitis, is described [82]. IL-12\(\beta\) is encoded by the IL12B gene located on the chromosome 3p12-q13.2. Association of SNV +1188 A>C (rs3212227) with the IL12B gene expression level is shown (table 3). The CC genotype carrier status is reported to significantly increase the production of IL-12\(\beta\) cytokine [83-85].

Interleukin-18 (IL-18)

IL-18 (also known as interferon-gamma-inducing factor) is a pro-inflammatory cytokine produced by macrophages and other lymphoid cells. With the increasing production of IL-18 the overproduction of beta-amyloid in human brain neurons associated with Alzheimer’s disease was found [87]. IL-18 is encoded by the IL18 gene located on chromosome 11q23.1. Currently, the most studied is the role of the following SNV: -105 A>C (rs549908), -137 G>C (rs187238), -607 A>C (rs1946518) (table 3). One of the studies [84] revealed 3 non equilibrium coupled polymorphisms −920T>C, −133C>G, −132A>G; in the case of the carriage of C/C/G - haplotype increased expression of IL-18 was shown.
Interleukin-10 (IL-10)

IL-10 is an anti-inflammatory cytokine produced by monocytes and, to a lesser extent, lymphocytes, especially T-helpers type 2 (Th2), mast cells, (CD4+ CD25+ Foxp3+) regulatory T-cells, as well as some activated T- and B-cells. Association of IL-10 hypoproduction with the development of autoimmune encephalitis is shown [98]. IL-10 is encoded by the IL10 gene located in the chromosome 1q32.1. The association of the following SNV carrier status with IL10 gene expression was studied: -1082 A>G (rs1800896), -819 C>T (rs1800871), -592 A>C (rs1800872), -2849 A>G (rs6703630) (table 4). In addition to the studies on the associations of individual polymorphism, there is an increasing number of studies evaluating the overall (additive) effect and the interaction of alleles of several specific SNV. In this case, the haplotype assessment becomes more informative but the contribution and the ratio of allele effects remain unclear. Thus, in carriers of haplotype -1082A/-819T/-592A elevated levels of IL10 gene expression and increased serum levels of IL-10 cytokine were revealed [99,101]. Nonequilibrium linkage and a priority influence of other SNV can cause the differences in the results of single factor analysis [100].

Interleukin-4 (IL-4)

IL-4 is an anti-inflammatory cytokine that induces differentiation of naive T-helpers (Th0 cells) into Th2-cells. Probably basophiles could be the effector cells for IL-4, and Th2, forming a feedback loop. It was found that IL-4 mediates the interaction between the stem neuron cells and neurons that undergo neurodegeneration. IL-4 initiates a cascade of neuronal regeneration via phosphorylation of the intracellular effector STAT6 (experimental model of Alzheimer's disease - zebrafish) [111]. IL-4 is encoded by the IL4 gene located on chromosome 5q31.1. In this study of SNV of IL4 gene, the most known and interesting in the aspect of ENT-associated encephalitis of SNV of IL4 gene were revealed: -590 C>T (rs2243250), +33 C>T (rs2227284), -589 C>T (rs2243250), +3017 G>T (rs2227284) (table 4). In the case of allele T SNV +33 C>T and +3017 G>T carriage, the association with elevated serum IgE level was shown, which, consequently, increases the risk of autoimmune reactions, hypersensitivity of 1 type [117, 118, 121]. In one study [6], the CC genotype was associated with the risk of schizophrenia, the supposed mechanism of which was the immune imbalance in the central nervous system as a trigger for subsequent neurodegenerative changes.

Interleukin-2 (IL-2)

IL-2 is an inflammation and immunity mediator, produced by T-cells in response to antigenic and mitogenic stimulation. The role of IL-2 in the pathogenesis of viral encephalomyelitis is described [122]. IL-2 is encoded by the IL2 gene located on the chromosome 4q27. The association of carriage of the following SNV with IL2 gene expression: -330 T>G (rs2069762), +166 T>G (rs2069763) (tab. 4) is shown. It should be noted that the carriage of the GG genotype of SNV -330 T>G is associated with the increasing risk of symptomatic epilepsy and autoimmune genesis and neurotoxicity [122]. The T allele carrier status of SNV +166 T>G is associated with cytokine imbalance and risk of autoimmune diseases [123].

Transforming growth factor beta (TGF-β)

TGF-β controls proliferation, cell differentiation and other functions in most cells. TGF-β is produced by all cells of the white blood cell line and initiates apoptosis in many cell types. Via Foxp3 protein it affects regulatory T-cells and T-helper 17 type (Th17). Decrease in the TGF-β level leads to an increase of Th17-cells and a subsequent
increase in the TNF-α level, which leads to demyelination of neuronal axons [125]. It is also shown that TGF-β induces the growth of oligodendrocytes (cells producing myelin sheath) [125]. Consequently, the decrease of TGFβ gene expression level can downregulate remyelination of neuronal axons [125]. Higher concentrations of TGF-β were found in blood and cerebrospinal fluid in patients with Alzheimer’s disease compared to the control group [126], indicating a possible role of TGF-β in the neurodegenerative cascade leading to the neurodegenerative diseases. TGF-β is encoded by the TGFβ gene located on chromosome 19q13.2. The studies about the association of the following SNV with TGFβ gene expression were found: -509 C>T (rs1800469), +29 C>T (rs1800470) (tabl. 4). In one research [127], the haplotype carrier status was analyzed together with two polymorphisms not included in table 4: -800 G>A (rs1800468) and +74 G>C (rs1800471). We present the results of associative studies only for G/T/C/G and G/C/T/G haplotypes, respectively.

Discussion

Imbalance of cytokine response has an important role in the etiology of secondary encephalitis in general, and ENT-associated in particular. In a number of analyzed studies, regardless of the pathogen, there was an increased level of pro-inflammatory cytokine production in patients with a more severe course of the disease, neurological complications and adverse outcome, both in viral [4, 128, 129] and bacterial [130, 131] encephalitis. It should be noted that viral or bacterial load in the examined patients remained the same and did not correlate with the level of cytokines in blood serum [129]. In this case, the leading role of the genetically determined immune response becomes evident.

It is important that in most patients with secondary encephalitis caused by RNA/DNA viruses and bacteria, the genetic material of the pathogen was not determined neither in the cerebrospinal fluid (liquor) nor in the brain parenchyma during autopsy [129] but there was an inflammatory infiltrate and, as a consequence, neurodegenerative changes in the brain. It is important to note that the immune damage of CNS structures involves both the local immune system [137] and activated lymphocytes (including perivascular lymphocytes) on the periphery [135, 136]. It becomes clear that in the full analysis it is necessary to pay attention not only to the SNV associated with cerebral pathology but also to the SNV associated with extracerebral pathology. In other words, it is necessary to evaluate the immune response and its regulation in general, that is, the system “cytokine-receptor-antagonist” for pro- and anti-inflammatory cytokines. Such studies have not been found at the moment.

We should also focus on the features of the immune response in the central nervous system. A benign outcome and elimination of the pathogen in this case should occur without damaging the non-renewable neuronal population. Consequently, any imbalance, in the excessive or insufficient production can lead to fatal consequences. The mechanism of pathological infiltration of the brain parenchyma is also associated with hypopexpression of genes encoding pro-inflammatory cytokines. Thus, blood vessels of the blood-brain barrier (BBB) are normally intact and impervious to lymphocytes. When inflammatory reactions occur, TNF-α, IL-1β and CXCL-10 produced by microglia and astrocytes induce the presentation of cell adhesion proteins, in particular ICAM1 and VCAM1 into the vessel lumen, which triggers active migration of B-, T-lymphocytes and macrophages into the central nervous system [137]. The absence or weakening of the feedback loop, in particular, with insufficient production of anti-inflammatory cytokines (IL-10, 4, 2) can lead to excessive infiltration or the chronic pathological process even in the case of pathogen elimination. Also, increased production of pro-inflammatory cytokines, especially IL-6, increases the permeability of the blood-brain barrier and enhances
immune neurotoxicity [132, 133]. In transgenic mice having elevated levels of IL-6 a greater number of neurological complications of the infection was observed [134].

At the same time, we revealed the contradictory results of the studies of the same SNV. This fact can be of great clinical importance. Firstly, the frequency of allele carriage and, possibly, their effect on the risk of ENT-associated encephalitis, vary among representatives of a particular ethnic group. The problem (in particular, [68, 69]) which is relevant in China, has no value in Europe. In Russia, taking into account the population and ethnic heterogeneity of the country, this aspect in the planning and analysis of the results of associative genetic research is crucial. Secondly, despite the expression of genes encoding the cytokine receptor of the same name and its antagonist, it is extremely difficult to assess the additive effect of hyper- or hypoproduction of cytokines and cytokine response in a specific clinical case, in general. This fact explains the need for further complex data analysis, as well as conducting multivariate studies in the Russian Federation. Thirdly, the subsequent formation of risk groups, methods and strategies for the treatment of ENT-associated encephalitis with immunocorrection drugs should, first of all, rely on the individual characteristics of the patient’s immune response, which corresponds to the strategy of rapidly developing personalized medicine.

The role of ENT diseases, in particular, chronic and acute purulent-inflammatory sinusitis and otitis media, inflammatory infectious diseases of the upper respiratory tract, was identified in the pathogenesis of such disorders as epilepsy [138], meningoencephalitis [140], depression and anxiety-depressive disorders (as ENT-associated complications) [141]. These pathologies usually remain resistant to standard therapy in Otolaryngology and Psychoneurology because they require personalized disease-modifying treatment. Based on this, complex therapy and interdisciplinary cooperation with the participation of different specialists such as otolaryngologists, immunologists, neurologists, and psychiatrists are needed. For example, due to anatomical features, the purulent-inflammatory process in the sphenoid sinus, maxillary sinuses or middle ear can spread to the subdural and arachnoid space by infectious destruction of the bone tissue of the ENT organs, migration in the perivasal and perineural spaces. Also, the migration in the opposite direction, contributing to the formation of recurrent pathology is possible. The most difficult are smoldering processes in patients with a weak immune response and an imbalance of the cytokine response.

Conclusions

The risk of developing ENT-associated encephalitis is associated with a genetically determined status of the cytokine response and its regulation, while the most studied cytokines to date are IL-6, IL-1β, TNF-α. Studies of the association of various SNV of genes encoding pro- and anti-inflammatory cytokines need to be continued.

Author Contributions: writing—original draft preparation, (K.V.V., S.N.A.); writing—review and editing, (K.A.A.); visualization, (N.N.G); supervision, (N.R.F., S.P.A., A.G.O.). All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Worrall, G. Acute sinusitis. Can Fam Physician 2011, 57(5), 565-7. PMID: 21642737.
2. Beule, A. Epidemiology of chronic rhinosinusitis, selected risk factors, comorbidities, and economic burden. GMS current topics in otorhinolaryngology, head and neck surgery 2015, 14, Doc11 doi: 10.3205/cto000126. PMID: 2670285.
32. Licastro, F., Grimaldi, L.M.E., Bonafe, M., Martina, C., Olivieri, F., Cavallone, L., Giovannetti, S., Maslia, E., Franceschi, C. Interleukin-6 gene alleles affect the risk of Alzheimer’s disease and levels of the cytokine in blood and brain. *Neurobiology of Aging* 2003, 24(7), 921-926. doi:10.1016/s0197-4580(03)00013-7.

33. Hulkkonen, J. Elevated interleukin-6 plasma levels are regulated by the promoter region polymorphism of the IL6 gene in primary Sjogren’s syndrome and correlate with the clinical manifestations of the disease. *Rheumatology* 2001, 40(6), 656-661. doi:10.1093/rheumatology/40.6.656.

34. Boiardi, L., Casali, B., Farnetti, E., Pipitone, N., Nicol, D., Cantini, F., Macchioni, P., Bajocchi, G., Cantanos, M.G., Pulsetalli, L., Consonni, D., Salvareni, C. Relationship between interleukin-6 promoter polymorphism at position-174, IL-6 serum levels, and the risk of relapse/recurrence in polymyalgia rheumatica. *The Journal of Rheumatology* 2006, 33(4), 703-8.

35. Landi, S., Moreno, V., Gioia-Patricola, L., Guino, E., Navarro, M., de Oca, J., Capella, G., Canzian, F.; Bellvitge Colorectal Cancer Study Group. Association of common polymorphisms in inflammatory genes interleukin (IL) 6, IL8, tumor necrosis factor α, NFκB1, and peroxisome proliferator-activated receptor γ with colorectal cancer. *Cancer research* 2003, 63(13), 3560-6.

36. Morse, H.R., Olomolaiye, O.O., Wood, N.A.P., Keen, L.J., Bidwell, J.L. Induced heteroduplex genotyping of TNF-α, IL-1β, IL-6 and IL-10 polymorphisms associated with transcriptional regulation. *Cytokine* 1999, 11(10), 789-795.

37. Capurso, C., Solfi, C., Dintinno, A., Colacicco, A.M., Capurso, S.A., Capurso, A., Panza, F. Interleukin 6-174 G/C promoter gene polymorphism and sporadic Alzheimer’s disease: geographic allele and genotype variations in Europe. *Experimental Gerontology* 2004, 39(10), 1567-1573. doi:10.1016/j.exger.2004.07.006.

38. Fishman, D., Faulds, G., Jeffery, R., Mohamed-Ali, V., Yudkin, J.S., Humphries, S., Woo, P. The effect of novel polymorphisms in the interleukin-6 (IL-6) gene on IL-6 transcription and plasma IL-6 levels, and an association with systemic-onset juvenile chronic arthritis. *Journal of Clinical Investigation* 1998, 102(7), 1369-1376. doi:10.1172/jci2629.

39. Smith, A.J.P., Daiuto, F., Palmen, J., Cooper, J.A., Samuel, J., Thompson, S., Sanders, J., Donos, N., Nibali, L., Brull, D., Woo, P., Humphries, S.E. Association of Serum Interleukin 6 Concentration with a Functional IL6 -6331G>C Polymorphism. *Clinical Chemistry* 2008, 54(5), 841-850. doi:10.1373/clinchem.2007.098608.

40. Saijo, Y., Yoshioka, E., Fukui, T., Kawaharada, M., Sata, F., Sato, H., Kishi, R. Effects of the Interaction between Interleukin-6-634C/G Polymorphism and Smoking on Serum C-Reactive Protein Concentrations. *Hypertension Research* 2007, 30(7), 593-599. doi:10.1291/hypres.30.593.

41. Deng, X.T., Jiang, M.H., Zhu, J.H., Ge, L.J., Guo, J., Gao, S.P., Zheng, J.G., Luan, H., Shi, G.L., Wang, R.X., Shi, H.F., Pan, M. The Association of Interleukin 6-634C/G Polymorphism With Left Atrial Thrombus and Severe Spontaneous Echocochtast in Patients With Atrial Fibrillation. *Clinical and Applied Thrombosis/Hemostasis* 2012, 19(6), 673-678. doi:10.1177/1076029612457706.

42. Vardeh, D., Wang, D., Costigan, M., Lazarus, M., Saper, C.B., Woolf, C.J., Fitzgerald, G.A., Samad, T.A. COX2 in CNS neural cells mediates mechanical inflammatory pain hypersensitivity in mice. *Journal of Clinical Investigation* 2009, 119(2), 287-94. doi:10.1172/jci37098.

43. Fang, Y., Xie, H., Lin, Z. Association between IL-1β 3954C/T polymorphism and myocardial infarction risk. *Medicine. 2018, 97(30). doi:10.1097/md.0000000000011645.*

44. Pacioti, F., Melvig, J., Wogensken, L., Worsaae, H., Nerup, J. A Taq1 polymorphism in the human interleukin-1β (IL-1β) gene correlates with IL-1β secretion in vitro. *European Journal of Clinical Investigation.* 1992, 22(6), 396-402. doi:10.1111/j.1365-2362.1992.tb01480.x.

45. Ferreira, S.B., Trombone, A.P.F., Repeke, C.E., Cardoso, C.R., Martins, W. Jr., Santos, C.F., Trevigliato, P.C., Avila-Campos, M.J., Campanelli, A.P., Silva, J.S., Garlet, G.P. An Interleukin-1 (IL-1) Single-Nucleotide Polymorphism at Position 3954 and Red Complex Periodontopathogens Independently and Additively Modulate the Levels of IL-1 in Diseased Periodontal Tissues. *Infection and Immunity.* 2008, 76(8), 3725-3734. doi:10.1128/iai.00546-08.

46. Asensi, V., Rego, C., Montes, A.H., Collazos, J., Carton, J.A., Castro, M.G., Alvarez, V., Fernández, C., Maradona, J.A., Valle-Garay, E. IL-1β (3954C/T) polymorphism could protect human immunodeficiency virus (HIV)-infected patients on highly active antiretroviral treatment (HAART) against lipodystrophic syndrome. *Genetics in Medicine.* 2008, 10(3), 215-223. doi:10.1097/gim.0b013e3181627317.

47. Kimura, R., Nishioka, T., Soemamtri, A., Ishida, T. Cis-acting effect of the IL1B C-31T polymorphism on IL-1β mRNA expression. *Genes & Immunity.* 2004, 5(7), 572-575. doi:10.1038/sj.gene.6364128.

48. Chang, Y.W., Jang, J.Y., Kim, N.H., Lee, J.W., Lee, H.J., Jung, W.W., Dong, S.H., Kim, H.J., Kim, B.H., Lee, J.I., Chang, R. Interleukin-18 (IL-18) polymorphisms and gastric mucosal IL-1β in 45 Korean patients with gastric cancer. *International Journal of Cancer.* 2005, 114(3), 465-471. doi:10.1002/ijc.20724.

49. Kitamura, A., Hasegawa, G., Obayashi, H., Kaniuchi, K., Ishii, M., Yano, M., Tanaka, T., Yamaguchi, M., Shigeta, H., Ogata, M., Nakamura, N., Yosihikawa, T. Interleukin-6 polymorphism (−634C/G) in the promoter region and the progression of diabetic nephropathy in Type 2 diabetes. *Diabetic Medicine.* 2002, 19(12), 1000-1005. doi:10.1046/j.1464-5491.2002.00844.x.

50. Hwang, I.R., Kodama, T., Kikuchi, S., Sakai, K., Peterson, L.E., Graham, D.Y., Yamaoka. Y. Effect of interleukin 1 polymorphisms on gastric mucosal interleukin 1β production in Helicobacter pylori infection. *Gastroenterology.* 2002, 123(6), 1793-1803. doi:10.1053/gast.2002.37043.

51. Nemetz, A. Allelic variation at the interleukin 1beta gene is associated with decreased bone mass in patients with inflammatory bowel diseases. *Gut.* 2001, 49(5), 644-649. doi:10.1136/gut.49.5.644.

52. Yang, Y., Qiao, J., Tang, R.X., Li, M.Z. Genotype and haplotype determination of interleukin (IL) 1β (g −511C>T and g 3954C>T) and IL-1RN in polycystic ovary disease. *Fertility and Sterility.* 2010, 94(1), 384-386. doi:10.1016/j.fertnstert.2009.09.042
53. Mcgeer, P.L. Polymorphisms in Inflammatory Genes and the Risk of Alzheimer Disease. *Archives of Neurology*. 2001, 58(11), 1790. doi:10.1001/archneur.58.11.1790

54. Mcgeer, P.L., Yasejima, K., Mcgeer, E.G. Association of interleukin-1β polymorphisms with idiopathic Parkinsons disease. *Neuroscience Letters*. 2002, 326(1), 67-69. doi:10.1016/s0304-3940(02)00300-2

55. Swardfager, W., Lanc tót, K., Rothenberg, L., Wong, A., Cappell, J., Herrmann, N. A Meta-Analysis of Cytokines in Alzheimers Disease. *Biological Psychiatry*. 2010, 68(10), 930-941. doi:10.1016/j.biopsych.2010.06.012

56. Dowlati, Y., Herrmann, N., Swardfager, W., Liu, H., Sham, L., Reim, E.K., Lanc tót, K.L. A Meta-Analysis of Cytokines in Major Depression. *Biological Psychiatry*. 2010, 67(5), 446-457. doi:10.1016/j.biopsych.2009.09.033

57. Mattson, M.P. Apoptosis in neurodegenerative disorders. *Nature Reviews Molecular Cell Biology*. 2000, 1(2), 120-130. doi:10.1038/35040009

58. Giacconi, R., Costarelli, L., Malavolta, M., Piacenza, F., Galeazzi, R., Gasparini, N., Basso, A., Mariani, E., Fulop, T., Rink, L., Dedoussis, G., Kanoni, S., Herbein, G., Jaffe, J., Busco, F., Mocchegiani, E. Association among 1267 A/G TNF-α polymorphisms and pro-inflammatory plasma mediators in old ZincAge population. *Biogerontology*. 2013, 15(1), 65-79. doi:10.1007/s10522-013-9480-1

59. Wilson, A.G., Symons, J.A., Mcdevoll, T.L., Mcdevitt, H.O., Duff, G.W. Effects of a polymorphism in the human tumor necrosis factor promoter alters control of gene transcription. *Proceedings of the National Academy of Sciences*. 1997, 94(7), 3195-3199. doi:10.1073/pnas.94.7.3195

60. Mcgeer, P.L. Polymorphisms in Inflammatory Genes and the Risk of Alzheimer Disease. *Archives of Neurology*. 2001, 58(11), 1790. doi:10.1001/archneur.58.11.1790

61. Morse, H., Olomolaiye, O., Wood, N., Keen, L., Bidwell, J. Induced heteroduplex genotyping of TNF-α, IL-1β, IL-6 and IL-10 polymorphisms associated with transcriptional regulation. *Cytokine*. 1999, 11(10), 789-795. doi:10.1006/cyto.1999.0491

62. Tharthar, S., Gao, G.F.M., Nazmy, M.H., Mohamed, H.I., Hamza, N., Wahid, A., Ibrahim, A.R.N. Impact of IL-27p28 and TNF-α (rs1800629) Genetic Polymorphisms on the Progression of HCV Infection in Egyptian Patients. *Immunological Investigations*. 2018, 1-13. doi:10.1080/08820139.2018.1510958

63. Biswas, A., Gupta, N., Gupta, D., Datta, A., Firdaus, R., Chowdhury, P., Bhattacharya, M., Sadhukhan, P.C. Association of TNF-alpha (~308 A/G) and IFN-gamma (874 A/T) gene polymorphisms in response to spontaneous and treatment induced viral clearance in HCV infected multitransfused thalassemic patients. *Cytokine*. 2018, 106, 148-153. doi:10.1016/j.cyto.2017.10.026

64. Gazzar, I.I.E., Fathy, H.M., Geita, T.A., Nour El-Din, A.M., Rasheed, E.A., Bassiony, R.H., Kenawy, S.A. Tumor necrosis factor-α -308 A/G gene polymorphism in children with juvenile idiopathic arthritis: relation to disease activity, damage, and functional status. *Clinical Rheumatology*. 2017, 36(8), 1757-1763. doi:10.1007/s10067-017-3719-1

65. Conway, D.J., Holland, M.J., Bailey, R.L., Campbell, A.E., Mahdi, O.S., Jennings, R., Mbena, E., Mabey, D.C. Scarring trachoma is associated with polymorphism in the tumour necrosis factor alpha (TNF-alpha) gene promoter and with elevated TNF-alpha levels in tear fluid. *Infection and Immunity*. 1997, 65(3), 1003-6.

66. Maxwell, J.R., Potter, C., Hyrich, K.L.; Biologics in Rheumatoid Arthritis Genetics and Genomics Study Syndicate, Barton, A., Worthington, J., Isaacs, J.D., Morgan, A.W., Wilson, A.G. Association of the tumour necrosis factor-308 variant with differential response to anti-TNF agents in the treatment of rheumatoid arthritis. *Human Molecular Genetics*. 2008, 17(22), 3532-3538. doi:10.1093/hmg/ddn245

67. Lee, Y.H., Rho, Y.H., Choi, S.J., Ji, J.D., Song, G.G. Association of TNF-alpha –308 G/A polymorphism with responsiveness to TNF-alpha blockers in rheumatoid arthritis: a meta-analysis. *Rheumatology International*. 2006, 27(2), 157-161. doi:10.1007/s00296-006-0175-7

68. Correa, P.A., Gomez, L.M., Cadena, J., Anaya, J.M. Autoimmunity and tuberculosis. Opposite association with TNF polymorphism. *The Journal of rheumatology*. 2005, 32(2), 219-24.

69. Song, G.G., Bae, S.C., Kim, J.H., Lee, Y.H. Association between TNF-α promoter –308 A/G polymorphism and rheumatoid arthritis: a meta-analysis. *Rheumatology International*. 2013, 34(4), 465-471. doi:10.1007/s00296-013-2919-5

70. Lee, Y., Song, G. TNF-α -308 A/G and -238 A/G polymorphisms and susceptibility to glaucoma: a meta-analysis. *Genetics and Molecular Research*. 2015, 14(2), 4966-4977. doi:10.4238/2015.may.11.30

71. Heidari, Z., Moudi, B., Sagheb, H.M., Moudi, M. Association of TNF-α Gene Polymorphisms with Production of Protein and Susceptibility to Chronic Hepatitis B Infection in the South East Iranian Population. *Hepatitis Monthly*. 2016, 16(11), e41984. doi:10.5812/hepatmoon.41984

72. Höhler, T., Kruger, A., Schneider, P.M., Schopf, R.E., Knop, J., Rittner, C., Meyer zum Büschenfelde, K.H., Märker-Hermann, E. A TNF-α Promoter Polymorphism Is Associated with Juvenile Onset Psoriasis and Psoriatic Arthritis. *Journal of Investigative Dermatology*. 1997, 109(4), 562-565. doi:10.1111/1523-1747.ep12337469

73. Skog, T., Hoft, F.M.V., Kallin, B., Jovinge, S., Boquist, S., Nilsson, J., Eriksson, P., Hamsten, A. A Common Functional Polymorphism (C–A Substitution at Position -863) in the Promoter Region of the Tumour Necrosis Factor- (TNF-) Gene Associated With Reduced Circulating Levels of TNF- . *Human Molecular Genetics*. 1999, 8(8), 1443-1449. doi:10.1093/hmg/8.8.1443

74. Binder, G.K. Interferon-gamma -Mediated Site-Specific Clearance of Alphavirus from CNS Neurons. *Science*. 2001, 293(5528), 303-306. doi:10.1126/science.1059742

75. Bream, J.H., Ping, A., Zhang, X., Winkler, C., Young, H.A. A single nucleotide polymorphism in the proximal IFN-gamma promoter alters control of gene transcription. *Genes & Immunity*. 2002, 3(3), 165-169. doi:10.1038/sj.gene.6336870
76. Biswas, A., Gupta, N., Gupta, D., Datta, A., Firdaus, R., Chowdhury, P., Bhattacharya, M., Sadhukhan, P.C. Association of TNF-alpha (~308 A/G) and IFN-gamma (874 A/T) gene polymorphisms in response to spontaneous and treatment induced viral clearance in HCV infected multitransfusedthalassemic patients. *Cytokine*. 2018, 106, 148-153. doi:10.1016/j.cyto.2017.10.026

77. Nie, W., Xue, C., Chen, J., Xiu, Q. Secretoglobin 1A member 1 (SCGB1A1) 38A/G polymorphism is associated with asthma risk: A meta-analysis. *Gen. 2013, 528(2), 304-308. doi:10.1016/j.gen.2013.06.049

78. López-Maderuelo, D., Arnalich, F., Serantes, R., González, A., Codocero, R., Madero, R., Vázquez, J.J., Montiel, C. Interferon-γ and Interleukin-10 Gene Polymorphisms in Pulmonary Tuberculosis. *American Journal of Respiratory and Critical Care Medicine.* 2003, 167(7), 970-975. doi:10.1164/rccm.200205-438bc

79. Pravica, V., Perrey, C., Stevens, A., Lee, J.H., Hutchinson IV. A single nucleotide polymorphism in the first intron of the human IFN-γ gene. *Human Immunology.* 2000, 61(9), 863-866. doi:10.1016/s0198-8859(00)00167-1

80. Yu, H. Relationship between IFN-γ gene polymorphism and susceptibility to intrauterine HBV infection. *World Journal of Gastroenterology.* 2006, 12(18), 2928. doi:10.3748/wjg.v12.i18.2928

81. Krakowski, M., Ovens, T. Interferon-γ confers resistance to experimental allergic encephalomyelitis. *European Journal of Immunology.* 1996, 26(7), 1641-1646. doi:10.1002/eji.1830260735

82. Becher, B., Durell, B.G., Noelle, R.J. Experimental autoimmune encephalitis and inflammation in the absence of interleukin-12. *Journal of Clinical Investigation.* 2002, 110(4), 493-497. doi:10.1172/jci20015791

83. Opstad, T., Brusletto, B., Arnesen, H., Pettersen, A., Selfejet, I. Cigarette smoking represses expression of cytokine IL-12 and its regulator miR-21 – An observational study in patients with coronary artery disease. *Immunobiology.* 2017, 222(2), 169-175. doi:10.1016/j.imbio.2016.10.007

84. Tsunumi, Y., Sasaki, H., Nakamura, K., Sekiya, T., Hirai, K., Fujita, H., Asano, N., Kishimoto, M., Tanida, Y., Kakinuma, T., Mitsui, H., Tada, Y., Wakugawa, M., Torii, H., Komine, M., Ashihina, A., Tamaki, K. Interleukin-12 p40 gene (IL12B) 3′-untranslated region polymorphism is associated with susceptibility to atopic dermatitis and psoriasis vulgaris. *Journal of Dermatological Science.* 2002, 30(2), 161-166. doi:10.1016/s0923-1811(02)00072-5

85. Peng, Q., Li, S., Lao, X., Chen, Z., Li, R., Qin, X. Interleukin-12B 1188A/C polymorphism contributes to increased hepatocellular carcinoma susceptibility: Evidence from a meta-analysis. *Clinics and Research in Hepatology and Gastroenterology.* 2014, 38(6), 735-743. doi:10.1016/j.clinre.2014.09.002

86. Yin, L.M. Association of interleukin-12p40 gene 3′-untranslated region polymorphism and outcome of HCV infection. *World Journal of Gastroenterology.* 2004, 10(16), 2340. doi:10.3748/wjg.v10.i16.2330

87. Sutinen, E., Pirttilä, T., Anderson, G., Salminen, A., Ojala, J.O. Pro-inflammatory interleukin-18 increases Alzheimer’s disease-associated amyloid-β production in human neuron-like cells. *Journal of Neuroinflammation.* 2012, 9(1), 199. doi:10.1186/1746-2044-9-199

88. Arimitsu, J., Hirano, T., Higa, S., Kawai, M., Naka, T., Ogata, A., Shima, Y., Fujimoto, M., Yamadori, T., Hagiwara, K., Ohgawara, T., Kuswara, Y., Kawase, I., Tanaka, T. IL-18 gene polymorphisms affect IL-18 production capability by monocytes. *Biochemical and Biophysical Research Communications.* 2006, 342(4), 1413-1416. doi:10.1016/j.bbrc.2006.02.096

89. Higa, S., Hirano, T., Mayumi, M., Hiraoka, M., Ohshima, Y., Nambu, M., Yamaguchi, E., Hizawa, N., Kondo, N., Matsui, E., Katada, Y., Miyatake, A., Kawase, I., Tanaka, T. Association between interleukin-18 gene polymorphism 105A/C and asthma. *Clinical Experimental Allergy.* 2003, 33(8), 1097-1102. doi:10.1046/j.1365-2223.2003.01739.x

90. Kim, C.D., Ryu, H.M., Choi, J.Y., Choi, H.J., Cho, J.H., Park, S.H., Won, D.I., Kim, Y.L. Association of G–137C IL-18 Promoter Polymorphism With Acute Allograft Rejection in Renal Transplant Recipients. *Transplantation.* 2008, 86(11), 1610-1614. doi:10.1097/tp.0b013e31818870c4

91. Kruse, S., Kuehr, J., Moseler, M., Kopp, M.V., Kurz, T., Deichmann, K.A., Foster, P.S., Mattes, J. Polymorphisms in the IL 18 gene are associated with specific sensitization to common allergens and allergic rhinitis. *Journal of Allergy and Clinical Immunology.* 2003, 111(1), 117-122. doi:10.1067/mai.2003.43

92. Haghshenas, M.R., Hosseini, S.V., Mahmoudi, M., Saberi-Firozi, M., Farajzand, S., Ghaderi, A. IL-18 serum level and IL-18 promoter polymorphism in Iranian patients with gastrointestinal cancers. *Journal of Gastroenterology and Hepatology.* 2009, 24(6), 1119-1122. doi:10.1111/j.1440-1746.2009.05791.x

93. An, P., Thio, C.L., Kirk, G.D., Donfield, S., Goedert, J.J., Winkler, C.A. Regulatory Polymorphisms in the Interleukin-18 Promoter Are Associated with Hepatitis C Virus Clearance. *The Journal of Infectious Diseases.* 2008, 198(8), 1159-1165. doi:10.1086/592047

94. Khrapko, O.P., Sennikova, N.S., Lopatnikova, J.A., Khrapko, J.I., Filipenko, M.L., Khrapov, E.A., Gelfgat, E.L., Yakushenko, E.V., Kozlov, V.A., Sennikov, S.V. Association of Single Nucleotide Polymorphisms in the IL-18 Gene with Production of IL-18 Protein by Mononuclear Cells from Healthy Donors. *Mediators of Inflammation.* 2008, 2008, 1-6. doi:10.1155/2008/309721

95. Pawlik, A., Kurzawski, M., Drozdzik, M., Dziedziczko, V., Safranow, K., Hercynska, M. Interleukin-18 gene (IL18) promoter polymorphisms in patients with rheumatoid arthritis. *Scandinavian Journal of Rheumatology.* 2009, 38(3), 159-165. doi:10.1080/03009740802600748

96. Ying, B., Shi, Y., Pan, X., Song, X., Huang, Z., Niu, Q., Cai, B., Wang, L. Association of polymorphisms in the human IL-10 and IL-18 genes with rheumatoid arthritis. *Molecular Biology Reports.* 2010, 37(1), 379-385. doi:10.1007/s11033-010-0119-x

97. Kruse, S., Kuehr, J., Moseler, M., Kopp, M.V., Kurz, T., Deichmann, K.A., Foster, P.S., Mattes, J. Polymorphisms in the IL 18 gene are associated with specific sensitization to common allergens and allergic rhinitis. *Journal of Allergy and Clinical Immunology.* 2003, 111(1), 117-122. doi:10.1067/mai.2003.43
98. Samoilova, E.B., Horton, J.L., Chen, Y. Acceleration of Experimental Autoimmune Encephalomyelitis in Interleukin-10-Deficient Mice: Roles of Interleukin-10 in Disease Progression and Recovery. *Cellular Immunology*. 1998, 188(2), 118-124. doi:10.1006/cimm.1998.1365

99. Lio, D., Scola, L., Crivello, A., Colonna-Romano, G., Candore, G., Bonač, M., Cavallone, L., Franceschi, C., Caruso, C. Gender-specific association between −1082 IL-10 promoter polymorphism and longevity. *Genes & Immunity*. 2002, 3(1), 30-33. doi:10.1038/sj.ge.6363827

100. Cheong, J.Y., Cho, S.W., Hwang, I.L., Yoon, S.K., Lee, J.H., Park, C.S., Lee, J.E., Hahtm, K.B., Kim, J.H. Association between chronic hepatitis B virus infection and interleukin-10 (IL-10), tumor necrosis factor-α (TNF-α) gene promoter polymorphisms. *Hepatogastroenterology*. 2006, 21(7), 1163-9. doi:10.1111/j.1440-1746.2006.04304.x

101. Turner, D.M., Williams, D.M., Sankaran, D., Lazarus, M., Sinnott, P.J., Hutchinson IV. An Investigation Of Polymorphism In The Interleukin-10 Gene Promoter. *European Journal of Immunogenetics*. 1997, 24(1), 1-8. doi:10.1111/j.1365-2370.1997.tb00001.x

102. Gallagher, P.M. Association of IL-10 polymorphism with severity of illness in community acquired pneumonia. *Thorax*. 2003, 58(2), 154-156. doi:10.1136/thorax.58.2.154

103. Miteva, L.D., Kostadinova, E.S., Stanilova, S.A. Interleukin-10-1082A/G polymorphism is associated with renal parenchymal damage in congenital anomalies of the kidney and urinary tract. *Nephrology*. 2019, 24(2), 213-220. doi:10.1111/nep.13229

104. Suárez, A., Castro, P., Alonso, R., Mozo, L., Gürtrez, C. Interindividual variations in constitutive interleukin-10 messenger RNA and protein levels and their association with genetic polymorphisms. *Transplantation*. 2003, 75(5), 711-717. doi:10.1097/01.tp.0000055216.19866.9a

105. Lio, D., Licastro, F., Scola, L., Chiappelli, M., Grimaldi, L.M., Crivello, A., Colonna-Romano, G., Candore, G., Franceschi, C., Caruso, C. Interleukin-10 promoter polymorphism in sporadic Alzheimer's disease. *Genes & Immunity*. 2003, 3(3), 234-238. doi:10.1038/sj.ge.6363964

106. Yilmaz, V., Yentur, S., Saruhan-direskeneli, G. IL-12 and IL-10 polymorphisms and their effects on cytokine production. *Cytokine*. 2005, 30(4), 188-194. doi:10.1016/j.ctyo.2005.01.006

107. Edwards-Smith, C.J., Jonsson, J.R., Purdle, D.M., Bansal, A., Shorthouse, C., Powell, E.E. Interleukin-10 promoter polymorphism predicts initial response of chronic hepatitis C to interferon alfa. *Hepatology*. 1999, 30(2), 526-530. doi:10.1002/hep.510300207

108. Bagnoli, S., Cellini, E., Tedde, A., Nacmas, B., Piacentini, S., Bessi, V., Bracco, L., Sorbi, S. Association of IL10 promoter polymorphism in Italian Alzheimer's disease. *Neuroscience Letters*. 2007, 418(3), 262-265. doi:10.1016/j.neulet.2007.03.030

109. Toker, H., Gorgun, E.P., Korkmaz, E.M., Yuce, H.B., Poyraz, O. The effects of IL-10 gene polymorphism on serum, and gingival crevicular fluid levels of IL-6 and IL-10 in chronic periodontitis. *Journal of Applied Oral Science*. 2018, 26, 20. doi:10.1590/1678-7757-2017-0232

110. Lard, L.R., Gaalen, F.A.V., Schonkeren, J.J.M., Pieterman, E.J., Steoen, G., Vos, K., Nelissen, R.G., Westendorp, R.G., Hoeben, R.C., Breedveld, F.C., Toes, R.E., Huizinga, T.W. Association of the −2849 interleukin-10 promoter polymorphism with autoantibody production and joint destruction in rheumatoid arthritis. *Arthritis & Rheumatism*. 2003, 48(7), 1841-1848. doi:10.1002/art.11160

111. Bhattarai, P., Thomas, A.K., Cosacak, M.I., Papadimitriou, C., Maskharyan, V., Froc, C., Reinhardt, S., Kurth, T., Dahl, A., Zhang, Y., Kizil, C. IL4/STAT6 Signaling Activates Neural Stem Cell Proliferation and Neurogenesis upon Amyloid-j42 Aggregation in Adult Zebrafish Brain. *Cell Reports*. 2016, 17(4), 941-948. doi:10.1016/j.celrep.2016.09.075

112. Pawlik, A., Wrzesniewska, J., Florczak, M., Gawronska-Szklarz, B., Hercynska, M. IL-6 promoter polymorphism in patients with rheumatoid arthritis. *Scandinavian Journal of Rheumatology*. 2005, 34(2), 109-113. doi:10.1080/03009740510026373

113. Kawashima, T., Noguchi, E., Arinami, T., Yamakawa-Kobayashi, K., Nakagawa, H., Otsuka, F., Hamaguchi, H. Linkage and association of an interleukin 4 gene polymorphism with atopic dermatitis in Japanese families. *Journal of Medical Genetics*. 1998, 35(6), 502-504. doi:10.1136/jmg.35.6.502

114. Noguchi, E., Shibasaki, M., Arinami, T., Takeda, K., Yokouchi, Y., Kawashima, T., Yanagi, H., Matsui, A., Hamaguchi, H. Association of asthma and the interleukin-4 promoter gene in Japanese. *Clinical Experimental Allergy*. 1998, 28(4), 449-453. doi:10.1046/j.1365-2222.1998.00256.x

115. Filippini, P.D., Badulli, C., Cuccia, M., De Silvestri, A., Dametto, E., Pasi, A., Garaventa, A., del Prever, A.B., Todesco, A., Trizzino, A., Danesino, C., Martinetti, M., Arico, M. Specific polymorphisms of cytokine genes are associated with different risks to develop single-system or multi-system childhood Langerhans cell histiocytosis. *British Journal of Haematology*. 2006, 132(6), 784-787. doi:10.1111/j.1365-2141.2005.05922.x

116. Dizier, M.H., Sandford, A., Walley, A., Philipp, A., Cookson, W., Demenais, F. Indication of linkage of serum IgE levels to the interleukin-4 gene exclusion and gene of the contribution of the (−590 C to T) interleukin-4 promoter polymorphism to IgE variation. *Genetic Epidemiology*. 1999, 16(1), 84-94. doi:10.1002/(sic)1098-2272(1999)16:1<84:aaid-gep1;3.0.co;2-d

117. Suzuki, I., Hizawa, N., Yamaguchi, E., Kawakami, Y. Association between a C 33T polymorphism in the IL-4 promoter region and total serum IgE levels. *Clinical Experimental Allergy*. 2000, 30(12), 1746-1749. doi:10.1016/j.clinexpallergy.2000.09.083

118. Yang, H.J. Association Between the Interleukin-4 Gene C-589T and C 33T Polymorphisms and Asthma Risk: A Meta-analysis. *Archives of Medical Research*. 2013, 44(2), 127-135. doi:10.1016/j.arcmed.2013.01.009

119. Rosenwasser, L.J., Klemm, D.J., Dresback, J.K., Inamura, H., Mascalii, J.J., Klimpert, M., Borish, L. Promoter polymorphisms in the chromosome 5 gene cluster in asthma and atopy. *Clinical Experimental Allergy*. 1995, 25(2), 74-78. doi:10.1111/j.1365-2222.1995.tb00428.x
120. Babula, O., Lazdane, G., Kroica, J., Linhares, I.M., Ledger, W.J., Witkin, S.S. Frequency of Interleukin-4 (IL-4) -589 Gene Polymorphism and Vaginal Concentrations of IL-4, Nitric Oxide, and Mannose-Binding Lectin in Women with Recurrent Vulvovaginal Candidiasis. *Clinical Infectious Diseases*. 2005, 40(9), 1258-1262. doi:10.1086/429246

121. Basehore, M.J., Howard, T.D., Lange, L.A., Moore, W.C., Hawkins, G.A., Marshik, P.L., Harkins, M.S., Meyers, D.A., Bleecker, E.R. A comprehensive evaluation of IL4 variants in ethnically diverse populations: association of total serum IgE levels and asthma in white subjects. *Journal of Allergy and Clinical Immunology*. 2004, 114(1), 80-87. doi:10.1016/j.jaci.2004.05.035

122. Chang, J., Zaczenska, E., Katsetos, C.D., Platsoucas, C.D., Oleszak, E.L. Differential Expression of TGF-β, IL-2, and Other Cytokines in the CNS of Thielers Murine Encephalomyelitis Virus-Infected Susceptible and Resistant Strains of Mice. *Virology*. 2000, 278(2), 346-362. doi:10.1006/viro.2000.0646

123. Shahrokhi, A., Zare-Shahabadi, A., Soltani, S., Soleimani, F., Vameghi, R., Konjekav, A.R., Karimi, P., Katibeh, P., Vafaee, M., Zoghi, S., Ashrafi, M.R., Rezaei, N. Association of TGFα, but not IL10, single nucleotide polymorphisms with febrile seizures. *Seizure*. 2015, 29, 148-152. doi:10.1016/j.seizure.2015.05.001

124. Yousefi, A., Mahmoudi, E., Noveiry, B.B., Zare Bidoki, A., Sadri, M., Motamed, F., Najafi, M., Farahmand, F., Khodadad, A., Fallahi, G.H., Rezaei, N. Autoimmune hepatitis association with single nucleotide polymorphism of interleukin-2, but not interleukin-4. *Autoimmune Hepatitis Association with Single Nucleotide Polymorphism of Interleukin*. 2013, 373. doi:10.1097/00006123-201301204.x

125. Dobolyi, A., Vincze, C., Pál, G., Lovas, G. The Neuroprotective Functions of Transforming Growth Factor Beta Proteins. *International Journal of Molecular Sciences*. 2012, 13(7), 8219-8258. doi:10.3390/ijms13078219

126. Swardfager, W., Lancot, K., Rothenburg, L., Wong, A., Cappell, J., Herrmann, N. A Meta-Analysis of Cytokines in Alzheimer's Disease. *Biological Psychiatry*. 2010, 68(10), 930-941. doi:10.1016/j.biopsych.2010.06.012

127. Vitiello, G.A.F., Guembardovski, R.L., Hirata, B.K.B., Amarante, M.K., de Oliveira, C.E.C., de Oliveira, K.B., Cebinden, G.C.M., Guembardovski, A.L., Campos, C.Z., Watanabe, M.A.E. Transforming growth factor beta 1 (TGFβ1) polymorphisms and haplotype structures have dual roles in breast cancer pathogenesis. *Journal of Cancer Research and Clinical Oncology*. 2018, 144(4), 645-655. doi:10.1007/s00432-018-2585-9.

128. Winter, P.M., Dung, N.M., Loan, H.T., Kneen, R., Wills, B., Thu le, T., House, D., White, N.J., Farrar, J.J., Hart, C.A., Solomon, T. Proinflammatory Cytokines and Chemokines in Humans with Japanese Encephalitis. *The Journal of Infectious Diseases*. 2004, 190(9), 1618-1626. doi:10.1086/423328

129. Kawada, J.L., Kimura, H., Ito, Y., Hara, S., Iriyama, M., Yoshikawa, T., Morishima, T. Systemic Cytokine Responses in Patients with Influenza-Associated Encephalopathy. *The Journal of Infectious Diseases*. 2003, 188(5), 690-698. doi:10.1086/377101.

130. Saukkonen, K. The role of cytokines in the generation of inflammation and tissue damage in experimental gram-positive meningitis. *Journal of Experimental Medicine*. 1990, 171(2), 439-448. doi:10.1084/jem.171.2.439

131. Merrill, J.E., Benveniste, E.N. Cytokines in inflammatory brain lesions: helpful and harmful. *Trends in Neurosciences*. 1996, 19(8), 331-338. doi:10.1016/0166-2236(96)00473-3

132. Alba, H., Mochizuki, M., Kimura, M., Hojo, H. Predictive value of serum interleukin-6 level in influenza virus-associated encephalopathy. *Neurology*. 2001, 57(2), 295-299. doi:10.1212/wnl.57.2.295

133. Yokota, S., Imagawa, T., Miyamae, T., Ito, S., Nakajima, S., Nezu, A., Mori, M. Hypothetical pathophysiology of acute encephalopathy and encephalitis related to influenza virus infection and hypothermia therapy. *Pediatrics International*. 2000, 42(2), 197-203. doi:10.1046/j.1442-200X.2000.01204.x

134. Campbell, I.L., Abraham, C.R., Masliah, E., Kemper, P., Inglis, J.D., Oldstone, M.B., Mucke, L. Neurologic disease induced in transgenic mice by cerebral overexpression of interleukin 6. *Proceedings of the National Academy of Sciences*. 1993, 90(21), 10061-10065. doi:10.1073/pnas.90.21.10061

135. Johnson, R.T., Burke, D.S., Elwell, M., Leake, C.J., Nisalak, A., Hoke, C.H., Lorsomruede, W. Japanese encephalitis: Immunocytochemical studies of viral antigen and Inflammatory cellular factors in fatal cases. *Annals of Neurology*. 1985, 18(5), 567-573. doi:10.1002/ana.410180510

136. Griffin, D.E. Cytokines in the brain during viral infection: clues to HIV-associated dementia. *Journal of Clinical Investigation*. 1997, 100(12), 2948-2951. doi:10.1172/jci119847

137. Griffin, D.E. Immune responses to RNA-virus infections of the CNS. *Nature Reviews Immunology*. 2003, 3(6), 493-502. doi:10.1038/nri1105

138. Siderovken, D.R., Snayder, N.A., Terskova, N.V. Epilepsy and obstructive sleep apnea/hypopnea syndrome in younger children - a dangerous duo. *Praktickie sazana medicina*. 2017, 102(1), 153-156.

139. Dellen, A.V., Nadvi, S.S., Nathoo, N., Ramdial, P.K. Intracranial Tuberculous Subdural Empyema: Case Report. *Neurosurgery*. 1998, 43(2), 370-373. doi:10.1097/00006123-199808000-000118

140. Banova, V. Intracranial complications with rhinogen etiology – a case report. *Scripta Scientifica Medica*. 1991, 28, 3-4.

141. Peter, J.C., Bok, A.P. Rhinogenic subdural empyema in older children and teenagers. *South African Medical Journal*. 1994, 84(12), 847-9.