Bisphosphonate releasing dental implant surface coatings and osseointegration: A systematic review

Shariq Najeeb, MSc, Muhammad S. Zafar, PhD,*, Zohaib Khurshid, MRes, Sana Zohaib, MSc, Syed M. Hasan, BDS and Rabia S. Khan, MSc

Abstract

Objectives: Bisphosphonates (BPs) are a class of drugs that are used to treat osteoporosis. It has been suggested that BP coatings on dental implants have a positive effect on bone formation. The purpose of this review is to analyse the currently available data concerning the clinical and experimental efficacy of BP-releasing titanium implants such that their potential in clinical oral implant dentistry may be ascertained.

Methods: Based on a literature review, a focused research question was constructed: what is the effect of a BP-releasing coating on the osseointegration of titanium dental implant? The databases of PubMed/MEDLINE; ISI Web of Knowledge; Embase and Google Scholar were searched electronically using the keywords ‘dental implant’, ‘bisphosphonate’ and ‘titanium’.

Results: A total of eleven articles fulfilled the criteria to be included in this review. Eight studies were experimental; two studies were clinical; and one study was experimental and clinical. In nine studies (82%), BP-
Dental implants are devices that are surgically placed in the mandibular or maxillary bone to support or retain prosthodontic or orthodontic appliances.\(^\text{1,2}\) For a long-term clinical success of dental implants, a direct and intimate contact between the bone and the implant surface must exist. The formation of such an implant–bone interface is termed osseointegration.\(^\text{3–5}\) If the implant does not osseointegrate, it leads to failure, resorption of the alveolar bone and loss of the implant.\(^\text{6}\) Currently, the most widely used dental implant material is titanium. A number of factors may lead to failure of osseointegration, such as poor bone quality and volume, periodontitis, poor systemic health, tobacco use, and poor oral hygiene.\(^\text{5,9}\) Additionally, implant characteristics, such as surface texture, shape and material, also play key roles towards osseointegration.\(^\text{7,10}\)

Therefore, a dental implant material must fulfill a number of requirements in order to be used in clinical settings.\(^\text{7,11}\) First, the surface of the dental implant must be hydrophilic to promote cellular adhesion. Hydrophilicity may be increased by means of numerous surface treatments and coatings. Second, the shape of the implant must suit the site of application. In addition, coatings of osseoconductive materials, such as calcium phosphates and hydroxyapatite (HA), on the implant surface have been observed to promote the surface properties of dental implants.\(^\text{12,13}\) However, even with the aforementioned surface treatments, implants are known to fail.\(^\text{9}\) For example, the poor mechanical properties and delamination of the bioactive layer from the titanium surface contributes to the failure of osseointegration. The coating process involves implant treatment at high temperatures that leads to the formation of weaker calcium phosphate phases that might break off from the deeper layers of the coating.\(^\text{7}\) More recently, immobilizing bioactive and osseoconductive drugs and growth factors have been advocated to improve osseointegration.\(^\text{14}\)

Systematic bone diseases, such as osteoporosis, affect bone physiology and osseointegration.\(^\text{15,16}\) The prevalence of osteoporosis is on the rise, posing a key healthcare problem.\(^\text{17,18}\) Bisphosphonates (BPs) are a class of drugs that are commonly used to treat osteoporosis.\(^\text{17–19}\) Although BPs’ prolonged systemic use may cause bisphosphonate-related osteonecrosis of the jaws (BRONJ), their topical application has resulted in a positive effect on periodontal health and bone formation.\(^\text{20–22}\) BPs reduce bone resorption by inhibiting osteoclasts by inhibiting the farnesyl diphosphate synthase (FPSS) enzyme in the HMG-CoA reductase pathway.\(^\text{23}\) BPs have a higher affinity to bone cells compared to other tissues and are selective in their actions.\(^\text{24}\) Due to BPs’ anti-resorptive action, they have been immobilized on the surface of titanium dental implants. It has been further suggested that such coatings have a positive effect on new bone formation around the dental implants.\(^\text{25}\) However, other studies have suggested that there is no difference between BP-releasing implants, HA-coated and uncoated implants.\(^\text{26}\) Hence, there seems to be a controversy regarding the use of BP-releasing dental implants. Therefore, the aim of this systematic review is to analyse the currently available data concerning the clinical and experimental efficacy of BP-releasing titanium implants such that their potential in clinical oral implant dentistry may be ascertained.

Materials and Methods

Focused question

A focused question was constructed according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines and Participants Intervention Control Outcomes (PICO) protocol.\(^\text{27}\) The focused question was, ‘What is the effect of a bisphosphonate-releasing coating on the osseointegration of titanium dental implants?’

Literature search and eligibility criteria

A number of databases (PubMed/MEDLINE, ISI Web of Knowledge, Embase and Google Scholar) were searched electronically using the combination of keywords ‘dental implant’; ‘bisphosphonate’ and ‘titanium’ from 1978 up to and including May 2016 for articles addressing the focused question. The inclusion criteria were the following: (1) Human studies, (2) Animal studies, (3) Original studies, (4) Articles published in English, and (5) BP-coated titanium implants. The following types of studies were excluded: (1) Cell studies, (2) Reviews, (3) Non-titanium implants, and (4) Letters to the editor.

Two reviewers, S.N. and Z.K., conducted the literature search using the above keywords and eligibility criteria. Additionally, the reference lists of the acquired full-texts were scanned manually for any additional articles relevant to the review. Any disagreements were settled by discussion among the reviewers. All included studies were analysed for the focused question, and relevant information was extracted. A flow diagram for the search methodology employed for conducting this review is illustrated in Figure 1.
Quality assessment

The quality of the included studies was assessed using a modified scale previously described by Antczak et al.28 and Jadad et al.29 The following characteristics of the studies were assessed: calculation of sample size, description of appropriate measurement methods, appropriate statistics, error analysis and blinding. The quality of each study was hence designated as low, medium and high.

Results

Search results

Of the 255 articles that resulted in the primary search, 11 articles fulfilled the criteria to be included in this review. Eight studies were experimental,25,30–35 two studies were clinical,36,37 and one study was both-clinical and animal.26 The general characteristics and main outcomes of included studies are displayed in Table 1.

Main outcomes and quality of studies

In nine studies (82%),25,30–37 BP coated implants resulted in higher osseointegration, as indicated by higher resonance frequency values, removal torque, bone-to-implant contact and new bone formation. In two studies (18%),26,38 there was no difference between the osseointegration of BP-coated implants and controls. Additionally, in one study, it was observed that BP remained within 500 μm of implant site.33 As shown in Table 2, the quality of seven studies was rated as low25,32–35,37,38 while four studies were rated as medium.26,30,31,36
Table 1: General characteristics and main outcomes of the selected studies.

Authors; year	Study design	Subjects (n)	No. of implants placed (n)	Duration of study	Implant surface	BP used	Main outcomes	
Denissen et al.; 2000	Experimental/clinical	15 goats; 10 patients	Animals: 80; Clinical: 23	Animal: 3 months; Clinical: 1 year	HA	BP + HA	Alendronate	Comparable outcomes in both groups.
Langhoff et al.; 2008	Experimental	1 sheep	7	8 weeks	Uncoated (sand-blasted; etched)	BP; CaP; anodized heat treatment; Collagen I + Chondroitin Sulphate	Alendronate	Comparable outcomes in all groups.
Abtahi et al.; 2010	Clinical	5 patients	35	6 months	Uncoated BP + Fibrinogen	Pamidronate and ibandronate	Resonance frequency values and radiographic bone formation suggests BP improves osseointegration.	
Lee et al.; 2011	Experimental	18 rats	36	4 weeks	Uncoated BP + anodized heat treatment; heat treatment	Ibandronate	BP increased removal torque and enhanced osteoblast activity.	
Abtahi et al.; 2012	Clinical	16 patients	32	6 months	Uncoated BP + Fibrinogen	Pamidronate and ibandronate	BP increased resonance frequency values and decreased marginal bone loss	
Abtahi et al.; 2013	Experimental	40 rats	40	2 weeks	Uncoated Local BP + Fibrinogen; systemic BP	Zoledronate	BP increased removal torque.	
Alghamdi et al.; 2014	Experimental	30 osteoporotic rats; 30 healthy rats	60	4 weeks	Uncoated BP; BP-CaP; CaP	Alendronate	BP-CaP increased new bone formation.	
Nepal et al.; 2014	Experimental	8 rats	8	4 weeks	Uncoated (Ti-Zr alloy) BP + anodized heat treatment	Ibandronate	BP increased new bone formation and resonance frequency values.	
Pyo et al.; 2014	Experimental	20 rats	40	8 weeks	CaP BP + CaP (8–800 µg/mL)	Zoledronate	BP increased volume of new bone formed but had no effect on bone-implant contact.	
Karlsson et al.; 2015	Experimental	20 rats	40	8 weeks	Mesoporous TiO₂ Mesoporous BP-TiO₂	Alendronate	BP increased new bone formation and remained bound to bone within 500 µm of implant site.	
Pura et al.; 2016	Experimental	15 dogs	30	12 weeks	Porous; HA-porous BP - porous (0.02–0.18 mg/cm²)	Alendronate	BP (0.06 mg/cm²) increased new bone formation but had no effect on bone ingrowth.	

BP; bisphosphonate; HA; hydroxyapatite; CaP; calcium phosphate; TiO₂; titanium oxide.
Discussion

Studies suggested that BP-releasing dental implants may have a positive effect on osseointegration. BPs reduce bone resorption by inhibiting and promoting apoptosis of osteoclasts.\(^{39,40}\) Periodontal effects of BPs have been observed previously. The topical application of BP gel has been suggested to augment the efficacy of scaling and root planning resulting in improved periodontal parameters.\(^{20,21}\) Similarly, BP-releasing dental implants have been observed to reduce the marginal bone loss compared to those without a BP-releasing coating.\(^{36}\) Previously, such growth factors as bone morphogenetic protein 2 (BMP-2) have been immobilized on dental implants to improve osseointegration.\(^{41}\) To date, BPs have been coated on dental implants in numerous ways. Due to BPs’ high affinity to hydroxyapatite (HA) and calcium phosphates, they may be complicated with sprayed plasma or biomimetic coatings on dental implants.\(^{26,31}\) Alternatively, BPs have been attached to the titanium surface via fibrinogen,\(^{25}\) by anodization and heat treatment\(^{1}\) or by immobilization on a porous surface.\(^{33}\) For effective drug delivery, a slow sustained release of the pharmacological agent from the delivery device or medium is required.\(^{42}\) Hence, dental implants delivering osseointegrative agents at a slow and sustained manner into the surrounding bone may improve osseointegration. There are differences among the various types of different BPs in affinities for binding to HA.\(^{43}\) To the best of our knowledge, to date, there have been no studies conducted to investigate the difference in release and effect of different BPs from coated implants. Hence, studies are indeed needed to find the optimal BP for immobilization on dental implants. Moreover, bisphosphonates are known as to be anti-resorptive drugs that inhibit osteoclasts mostly by bone metabolism. In a clinical trial on 16 patients, bisphosphonate-eluting fibrinogen coating on implants revealed markedly improved mechanical fixation.\(^{24}\)

As demonstrated by Nepal et al.\(^{34}\) Karlsson et al.\(^{35}\) and Lee et al.\(^{36}\) anodization of titanium surfaces creates a layer of porous TiO\(_2\), which makes it easier to load BPs for effective in-situ delivery to periodontal bone. However, the long-term efficacy of such coatings, owing to the lack of clinical studies, is not clear. Although animal studies suggest that such coated implants may have an osseointegrative effect, animal studies do not necessarily translate to positive clinical effects. Therefore, more studies are required to investigate anodized BP coatings on dental implants. Attachment of BP to titanium surfaces via an intermediate layer of fibrinogen may also be an effective way to improve osseointegration. A series of animal and human studies by Abtahi et al.\(^{25,36,37}\) suggests that BP-coated dental implants may reduce marginal bone loss. However, in the human trials, the patient follow-up period was only 6 months.\(^{36,37}\) and hence, the long-term clinical efficacy of such coatings is not unknown.

Although the systematic effect of BPs on osseointegration is not clear,\(^{19,44}\) the major concern of BRONJ due to BP still exists. Local delivery of BPs to via immobilization on dental implants may overcome the risk of BRONJ. Abtahi et al.\(^{25}\) have observed that local delivery of BPs has a positive impact on the osseointegration in rats receiving systemic BPs. Additionally, in a study by Karlsson et al.,\(^{33}\) BP delivered via dental implants remained within 500 \(\mu\)m of the implant site. These results suggest that BPs may be safe and may have minimal risk of inducing necrosis of the bone. However, these results should be confirmed by more in-depth studies before BP-coated dental implants may be used in clinics.

Osseointegration of BP-releasing implants have been monitored in patients in only two studies.\(^{36,37}\) The follow-up of both of these two studies was only 6 months. To date, no follow-up articles have been published documenting the long-term outcomes of those studies. Furthermore, it is unclear whether the effect of BP release is dose-dependent. Pura et al.\(^{31}\) have reported that increasing the dose of BP from 8 to 80 \(\mu\)g/mL increases new bone formation in rats but has little effect on bone-implant contact. However, Pura et al.\(^{35}\) have observed that 0.06 mg/cm\(^2\) of BP on implant surface is optimal for enhancing bone formation, but no effect is observed on bone-in growth \textit{in vivo}. Similarly, clinical studies by Abtahi et al.\(^{36,37}\) have used BPs in a concentration of less than 1 \(\mu\)g/cm\(^2\). But none of the studies reported to date had investigated the effect of altering the dose of BP in human subjects.

Conclusions

Bisphosphonate-loaded surface coatings may have a positive effect on osseointegration of dental implants.
However, more well-designed clinical studies are required to confirm the coatings’ osseoconductive effect. Alendronate is the most frequently used BP in the studies in combination with HA, collagen 1, chondroitin sulphate, and calcium phosphate, heat treatment and titanium oxide that revealed significant new bone formation. The pamidronate and ibandronate used together and separately were assessed in combination with fibrinogen and heat treatment and resulted in improved osseointegration and decreased marginal bone loss. However, the use of zoledronate with fibrinogen and calcium phosphate in two studies showed increased bone formation and increased removal torque with no bone implant effect. To date, the above-mentioned four types of BP coated implants were treated and analysed through animal and human studies to determine the effect. These studies sought to improve the osseointegration and fixation of dental implants. However, more research and clinical trials with various other implant coatings are needed to establish better evidence for successful outcomes.

Limitations

Although the outcomes of the reviewed studies are promising, this study has several limitations. For instance, the quality assessment of the literature revealed that there might be numerous sources of bias. These findings are based on data extracted primarily from animal studies and only two clinical studies. None of the studies supported its sources of bias may have contributed to a number of the positive outcomes documented in the studies. There is not sufficient evidence to validate the efficacy of BP-coated dental implants. Further research and unbiased clinical trials are warranted.

Authors’ contributions

SN and ZK proposed the study design and literature search. SN and MSZ did data acquisition and drafted major part of the manuscript. SZ and SH collected, organized and interpreted the data and wrote a part of discussion. RK performed general discussion and critically reviewed the manuscript. All of the authors have critically reviewed and approved the final draft and are responsible for the content and similarity index of the manuscript.

Conflicts of interest

The authors have no conflict of interest to declare.

Acknowledgements

None.

References

1. Javaid MA, Khurshid Z, Zafar MS, Najeeb S. Immediate implants: clinical guidelines for esthetic outcomes. Dent J 2016; 4: 21.
2. Albrektsson T, Bränemark P, Hansson H, Lindström J. Osseointegrated titanium implants: requirements for ensuring a long-lasting, direct bone-to-implant anchorage in man. Acta Orthop 1981; 52: 155–170.
3. Najeeb S, Khurshid Z, Matinlinna JP, Siddiqui F, Nassani MZ, Baroudi K. Nanomodified peel dental implants: bioactive composites and surface modification—a review. Int J Dent 2015; 2015: 1–7. Article ID 381759.
4. Najeeb S, Zafar MS, Khurshid Z, Siddiqui F. Applications of polyetheretherketone (PEEK) in oral implantology and prosthodontics. J Prosthodont Res 2016; 60: 12–19.
5. Javed F, Vohra F, Zafar S, Almas K. Significance of osteogenic surface coatings on implants to enhance osseointegration under osteoporotic-like conditions. Implant Dent 2014; 23: 679–686.
6. Saikka S, Coulthard P. Implant failure: etiology and complications. Med Oral Patol Oral Cir Bucal 2011; 16: 42–44.
7. Le Guéhennec L, Soueidain A, Layrolle P, Amouriq Y. Surface treatments of titanium dental implants for rapid osseointegration. Dent Mater 2007; 23: 844–854.
8. Chen H, Liu N, Xu X, Qu X, Lu E. Smoking, radiotherapy, diabetes and osteoporosis as risk factors for dental implant failure: a meta-analysis. PLoS One 2013; 8: e71955.
9. Bagain ZH, Moqbel WY, Sawair FA. Early dental implant failure: risk factors. Br J Oral Maxillofac Surg 2012; 50: 239–243.
10. Najeeb S, Khurshid Z, Zohaib S, Zafar MS. Bioactivity and osseointegration of PEEK are inferior to those of titanium-a systematic review. J Oral Implantol 2016; 42: 512–516.
11. Klymov A, Prodanov L, Lamers E, Jansen JA, Walboomers XF. Understanding the role of nano-topography on the surface of a bone-implant. Biomater Sci 2013; 1: 135–151.
12. Zafar MS, Al-Samadani KH. Potential use of natural silk for biomedical applications. J Taibah Univ Med Sci 2014; 9: 171–177.
13. Matinlinna JP, Tsio JK, de Vries J, Buscher HJ. Characterization of novel silane coatings on titanium implant surfaces. Clin Oral Implants Res 2013; 24: 688–697.
14. Bose S, Tarrafder S. Calcium phosphate ceramic systems in growth factor and drug delivery for bone tissue engineering: a review. Acta Biomater 2012; 8: 1401–1421.
15. Keller JC, Stewart M, Roehm M, Schneider GB. Osteoporosis-like bone conditions affect osseointegration of implants. Int J Oral Maxillofac Impl Ants 2004; 19: 687–694.
16. Giro G, Chambrone L, Goldstein A, Rodrigues JA, Zenobio E, Feres M, et al. Impact of osteoporosis in dental implants: a systematic review. World J Orthop 2015; 6: 311–315.
17. Al-Muraikhi H, Chehab MA, Said H, Selim N. Assessing health beliefs about osteoporosis among women attending primary health care centres in Qatar. J Taibah Univ Med Sci 2017; 12: 349–355.
18. Khoshhal KI. Childhood osteoporosis. J Taibah Univ Med Sci 2011; 6: 61–76.
19. Vohra F, Al-Rifaaiy MQ, Almas K. Javed F. Efficacy of systemic bisphosphonate delivery on osseointegration of implants under osteoporotic conditions: lessons from animal studies. Arch Oral Biol 2014; 59: 912–920.
20. Pradeep A, Sharma A, Rao NS, Bajaj P, Naik SB, Kumar M. Local drug delivery of alendronate gel for the treatment of patients with chronic periodontitis with diabetes mellitus: a double-masked controlled clinical trial. J Periodontol 2012; 83: 1322–1328.
21. Sharma A, Pradeep A. Clinical efficacy of 1% alendronate gel in adjunct to mechanotherapy in the treatment of aggressive periodontitis: a randomized controlled clinical trial. J Periodontol 2012; 83: 19–26.
22. Najeeb S, Siddiqui F, Khurshid Z, Zohaib S, Zafar MS, Ansari SA. Effect of bisphosphonates on root resorption after tooth replantation—a systematic review. Dent Traumatol 2016; 32(2): 77–83. http://dx.doi.org/10.1111/edt.12316.
23. Kavanagh KL, Guo K, Dunford JE, Wu X, Knapp S, Ebetino FH, et al. The molecular mechanism of nitrogen-containing bisphosphonates as antosteoporosis drugs. *Proc Natl Acad Sci U S A* 2006; 103: 7829–7834.

24. Leu C, Luegmayr E, Freedman LP, Rodan GA, Reszka AA. Relative binding affinities of bisphosphonates for human bone and relationship to antiresorptive efficacy. *Bone* 2006; 38: 628–636.

25. Abtahi J, Agholme F, Sandberg O, Aspenberg P. Effect of local vs. systemic bisphosphonate delivery on dental implant fixation in a model of osteonecrosis of the jaw. *J Dent Res* 2013; 92: 279–283.

26. Denissen H, Montanari C, Martinetti R, van Lingen A, van den Hooff A. Alveolar bone response to submerged bisphosphonate-complexed hydroxyapatite implants. *J Periodontol* 2000; 71: 279–286.

27. Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. *Ann Intern Med* 2009; 151: 264–269.

28. Antczak AA, Tang J, Chalmers TC. Quality assessment of randomized control trials in dental research I. *Methods J Control Clin Trials* 1986; 21: 305–314.

29. Jadad AR, Moore RA, Carroll D, Jenkinson C, Reynolds DJ, Gavaghan DJ, et al. Assessing the quality of reports of randomized clinical trials: is blinding necessary? *Control Clin Trials* 1996; 17: 1–12.

30. Alghamdi HS, Bosco R, Both SK, Iafisco M, Leeuwenburgh SC, Jansen JA, et al. Synergistic effects of bisphosphonate and calcium phosphate nanoparticles on peri-implant bone responses in osteoporotic rats. *Biomaterials* 2014; 35: 5482–5490.

31. Pyo SW, Kim YM, Kim CS, Lee IS, Park JU. Bone formation on biomimetic calcium phosphate-coated and zoledronate-immobilized titanium implants in osteoporotic rat tibiae. *Int J Oral Maxillofac Implants* 2014; 29.

32. Pura JA, Bobyn JD, Tanzer M. Implant-delivered alendronate causes a dose-dependent response on net bone formation around porous titanium implants in canines. *Clin Orthop Relat Res* 2016; 474: 1224–1233.

33. Karlsson J, Harmankaya N, Allard S, Palmquist A, Halvarsson M, Tengvall P, et al. Ex vivo alendronate localization at the mesoporous titania implant/bone interface. *J Mater Sci Mater Med* 2015; 26: 1–8.

34. Nepal M, Li L, Bae TS, Kim BI, Soh Y. Evaluation of osseointegration around tibial implants in rats by ibandronate-treated nanotubular Ti-32Nb-5Zr alloy. *Biomol Ther (Seoul)* 2014; 22: 563–569.

35. Lee S, Oh T, Bae T, Lee M, Soh Y, Kim B, et al. Effect of bisphosphonates on anodized and heat-treated titanium surfaces: an animal experimental study. *J Periodontol* 2011; 82: 1035–1042.

36. Abtahi J, Tengvall P, Aspenberg P. A bisphosphonate-coating improves the fixation of metal implants in human bone. A randomized trial of dental implants. *Bone* 2012; 50: 1148–1151.

37. Abtahi J, Tengvall P, Aspenberg P. Bisphosphonate coating might improve fixation of dental implants in the maxilla: a pilot study. *Int J Oral Maxillofac Surg* 2010; 39: 673–677.

38. Langhoff J, Voelter K, Scharnweber D, Schnablrauch M, Schloßl F, Hefti T, et al. Comparison of chemically and pharmaceutically modified titanium and zirconia implant surfaces in dentistry: a study in sheep. *Int J Oral Maxillofac Surg* 2008; 37: 1125–1132.

39. Hughes DE, Wright KR, Uy HL, Sasaki A, Yoneda T, Roodman DG, et al. Bisphosphonates promote apoptosis in murine osteoclasts in vitro and in vivo. *J Bone Min Res* 1995; 10: 1478–1487.

40. Jobke B, Milovanovic P, Amling M, Busse B. Bisphosphonate-osteoclasts: changes in osteoclast morphology and function induced by antiresorptive nitrogen-containing bisphosphonate treatment in osteoporosis patients. *Bone* 2014; 59: 37–43.

41. Lee D, Yun Y, Park K, Kim SE. Gentamicin and bone morphogenic protein-2 (BMP-2)-delivering heparinized-titanium implant with enhanced antibacterial activity and osteointegration. *Bone* 2012; 50: 974–982.

42. Rajurkar RM, Rathod CP, Thonte SS, Sugave RV, Sugave BK, Phadtare AA, et al. Gastroretentive mucoadhesive microsphere as carriers in drug delivery: a review. *Indo Am J Pharm Res* 2013; 3: 2751–2777.

43. Lawson M, Xia Z, Barnett B, Triffitt J, Phipps R, Dunford J, et al. Differences between bisphosphonates in binding affinities for hydroxyapatite. *J Biomed Mater Res Part B Appl Biomater* 2010; 92: 149–155.

44. Javed F, Almas K. Osseointegration of dental implants in patients undergoing bisphosphonate treatment: a literature review. *J Periodontol* 2010; 81: 479–484.

How to cite this article: Najeeb S, Zafar MS, Khurshid Z, Zohaib S, Hasan SM, Khan RS. Bisphosphonate releasing dental implant surface coatings and osseointegration: A systematic review. *J Taibah Univ Med Sc* 2017;12(5):369–375.