A Metamorphic Origin for Europa's Ocean

Mohit Melwani Daswani¹, Steven D. Vance¹, Matthew J. Mayne², and Christopher R. Glein¹

¹Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA, ²Department of Earth Sciences, Stellenbosch University, Stellenbosch, South Africa, ³Space Science and Engineering Division, Southwest Research Institute, San Antonio, TX, USA

Abstract. Europa likely contains an iron-rich metal core. For it to have formed, temperatures within Europa reached \( \geq 1250 \) K. Going up to that temperature, accreted chondritic minerals — for example, calcium, sulfate, and carbonate salts precipitate at the seafloor, while chloride is abundant nearer the icy shell.

Key Points:
- Devolatilization of early Europa's rocky interior may have generated a mildly acidic ocean
- Heating drove outgassing of up to 1–270 bar CO\(_2\), perhaps as an early atmosphere since lost, or captured as a large clathrate reservoir
- Calcium, sulfate, and carbonate salts precipitate at the seafloor, while chloride is abundant nearer the ice shell

Supporting Information: Supporting Information may be found in the online version of this article.

Correspondence to:
M. Melwani Daswani, mohit.melwani.daswani@jpl.caltech.edu

Citation:
Melwani Daswani, M., Vance, S. D., Mayne, M. J., & Glein, C. R. (2021). A metamorphic origin for Europa's Ocean. Geophysical Research Letters, 48, e2021GL094143. https://doi.org/10.1029/2021GL094143

Received 7 MAY 2021
Accepted 4 AUG 2021

Plain Language Summary. It is likely that Jupiter's moon Europa hosts a deep ocean underneath its surface ice shell. Telescopes and spacecraft have observed chlorine-bearing salts on the surface, but we do not yet know what they mean for the chemical composition of the ocean, or how the ocean came to be. Here, we test whether the breakdown of minerals containing volatile elements (hydrogen, carbon, sulfur, and chlorine) inside Europa might have released enough water to produce the ocean. The breakdown of these minerals generally happens at high temperature, but how hot did Europa's interior get? NASA's Galileo spacecraft confirmed that Europa probably has an iron-rich core, and such cores can only form at high temperature: at least 1250 K. Knowing this, we model the effect that heat had on the minerals (a process known as metamorphism) and calculate how much water would be released, as volatile-rich minerals transform into volatile-free minerals. We find that this process could release massive amounts of carbon dioxide, more than enough water to form Europa's present ocean, and produce sulfate and carbonate minerals. Chlorine released would be more abundant in the ocean's shallower depths, perhaps explaining the telescope observations.

1. Introduction

Key to understanding the past and present habitability of Jupiter's moon Europa is its composition and evolution. Europa hosts a \( \geq 100 \) km deep liquid water ocean beneath its 3–30 km ice shell (e.g., Schubert et al., 2009). Water, solutes and possible oxidants needed to carry out metabolic processes (Gaidos et al., 1999; Hand et al., 2007) in Europa's ocean were delivered through some combination of Europa's accreted materials, release by subsurface geochemical reactions, and subsequently by meteoritic or Io-genic influx.

Surface spectra were initially interpreted as hydrated surface salts from a sulfate-rich ocean (McCord et al., 1998), consistent with models of brine evolution in CI chondrite bodies (Kargel, 1991; Kargel et al., 2000; Zolotov & Shock, 2001). These models propose that Europa's ocean evolved from a reduced NaCl-dominated composition to a more oxidized Mg-sulfate ocean as a result of: (a) thermodynamic equilibrium (including by hydrothermal activity) between the ocean and silicate interior, while reduced volatiles H\(_2\) and CH\(_4\) produced by water-rock interaction escaped (Zolotov & Kargel, 2009; Zolotov & Shock, 2001, 2004); and/or (b) large fluxes of surface-derived oxidants delivered into the ocean through overturning of the icy lithosphere (Hand et al., 2007; Pasek & Greenberg, 2012). Recently, however, a sulfate-rich ocean has been challenged because the interpretation of hydrated sulfate salts on the surface as an oceanic signature is not apparently consistent with more recent spectroscopic observations. These observations favor instead
If Europa has a Fe-rich core, then a fraction of the deep interior was heated at least to the Fe eutectic temperature during differentiation. Accordingly, we hypothesize that prograde metamorphism (i.e., metamorphic changes caused by increasing temperature) and associated chemical reactions in the deep interior were the driving forces behind the ocean's formation and its composition. Based on this prograde assumption for Europa's evolution we: (a) establish a starting bulk composition of Europa immediately after accretion using an accretion model and compositional endmember scenarios; (b) use a Gibbs free energy minimization petrologic model to constrain a range of compositions for the changing ocean and deep interior during thermal excursions that could be caused by differentiation and/or thermal-orbital evolution (e.g., Hussmann & Spohn, 2004; Tobie et al., 2005); (c) use a chemical equilibrium model to calculate the composition of Europa's ocean after its generation by metamorphic reactions; and (d) constrain the present composition and interior structure of Europa by using mass balance and a 1D interior structure model consistent with Europa's gravitational coefficients and moment of inertia (MoI).

2. Methods

A flow chart summarizing the methods below is shown in Figure S1.

2.1. Bulk Composition of the Accreted Body

To date, accretion models have suggested that Europa's bulk water content was derived from dust, pebbles or satellitesimals composed of non-hydrated silicate, plus varying amounts of water ice as a function of the (possibly migrating) position of the circumjovian snow line toward the late stages of accretion (e.g., Canup & Ward, 2002, 2009; Lunine & Stevenson, 1982; Makalkin et al., 1999; Ronnet et al., 2017), and/or capture and impact processing (e.g., Estrada et al., 2009; Mosqueira et al., 2010; Ronnet & Johansen, 2020). Both scenarios can lead to bodies consistent with models of the density gradient in the Galilean satellites and orbital properties, but rely on the fortuitous delivery of the exact mass of water as ice to explain the present-day hydrosphere (8–12 wt.%) despite widely different sizes (~ \(10^3\)–\(10^5\) m radius) and water ice contents (0.571–50 wt.%; Ronnet & Johansen, 2020; Ronnet et al., 2017) of the accreting particles. A recent reappraisal of hydrodynamic escape during accretion also yields water contents and densities consistent with present day observations (Bieri & Nimmo, 2020). The alternative that we explore here is one where variable amounts of water and volatiles are already present in Europa's accreting particles, based on the compositions of the proposed silicate-rich building blocks of Europa (i.e., chondrites) according to geophysical and geochemical models (Kargel et al., 2000; Kuskov & Kronrod, 2005; McKinnon & Zolensky, 2003; Zolotov & Kargel, 2009; Zolotov & Shock, 2001), and tie the subsequent thermal evolution of the accreted body to present-day Europa's spherical structure and gravitational MoI. Chondrites contain various amounts of volatiles in minerals and organics (Table S2), the thermal processing of which could yield sufficient mass to form...
2.2. Ocean Build-Up by Prograde Metamorphism Until the Onset of Core Formation

To determine the mass and composition of an ocean produced during heating, devolatilization, and differentiation of the deep interior, we use the Perple_X Gibbs free energy minimization program, which leverages experimental and modeled thermodynamic data, including non-aqueous solvents, and the Deep Earth Water model optimized for computing aqueous fluid speciation at high pressure (e.g., Connolly, 2005, 2009; Connolly & Galvez, 2018; Galvez et al., 2015; Pan et al., 2013). For each initial bulk composition (Section 2.1), we model a 0-dimensional heating pathway throughout the deep interior using Rcrust (Mayne et al., 2016), which provides an interface to model complex phase fractionation. We construct a 1D column spanning the radius of Europa discretized into a number of vertical cells that experience isobaric heating steps, and track the composition and mass of the equilibrium mineral-plus-volatile assemblage. At each heating step (ΔT), the Gibbs energy of the assemblage in each cell is minimized, resulting in a new equilibrium assemblage that depends on the heating step directly prior to it, but is not affected by the adjacent vertical cells.

We simulate the build-up of the ocean by imposing a limit on the fraction of volatiles retained in the assemblage for each heating step. That is, if fluids (except silicate melt, see below) are thermodynamically stable, a specified portion is irreversibly fractionated from the equilibrium assemblage of the particular cell to go into the growing ocean reservoir (Figure 1). As a limiting case, for each bulk composition computed (Section 2.1) we apply our thermodynamic models with a retained-to-extracted (R/E) fluid mass ratio of 0, that is, all fluids (including gases, liquids and their dissolved species) produced during heating are extracted from the interior. Buoyancy drives fluids upward, with transport being particularly rapid in permeable materials in the direction of maximum compressive stress (e.g., Richard et al., 2007). Long-term retention of fluids at high pressure would lead to an unstable solution that is out of hydrostatic equilibrium. Thus, the only path for free low density fluids is up. This efficient extraction of volatiles from Europa's interior is consistent with findings for the more limiting case of Titan (Leitner & Lunine, 2019) where a volatile-rich hydrosphere and atmosphere were formed endogenously (Miller et al., 2019; Néri et al., 2020) despite higher overburden pressure and gravity, and reduced tidal heating, that would more efficiently prevent their escape.
The CI chondrite endmember bulk composition modeled for Europa would contain water in excess of Europa’s present hydrosphere (Section 2.1), so for EM-CI, we also test the effect of varying the R/E fluid mass ratio, and carry out a model with a R/E ratio of 0.1 at each heating step, that is, at each ΔT, thermodynamic equilibrium is computed, and subsequently 1 part of fluid is retained for 10 parts of fluid extracted. For EM-CI we also test the effect of a constant mass of fluid present in the rocky interior by retaining 5 wt.% fluid and extracting any fluid in excess, similar to how magma chambers reach a critical size threshold prior to eruption (e.g., Townsend & Huber, 2020) (See Text S2 for model parameters and validation, and Table S4 for activity-composition models used.) As discussed, Europa likely contains a Fe-rich core, so the lowest maximum temperature the interior reached during prograde metamorphism is the melting temperature of the Fe-rich phase(s) that eventually formed the core (Section 2.3). Therefore, the resulting concentrations we report here represent a lower limit of the exsolved and extracted volatiles that formed Europa’s proto-ocean. The onset of differentiation occurs at a temperature lower than the temperature of silicate melting (Section 2.3), hence silicate partial melting does not occur here.

2.3. Core Composition

In our model we assume that prograde metamorphism proceeded at least up to the Fe-FeS eutectic temperature in order for core formation to proceed. Since this occurs at temperatures higher than volatile-releasing metamorphic reactions (see Section 2.2), we further assume that core formation does not appreciably sequester volatiles that would build the ocean. Our calculations are performed in the simplified Fe-S system as an initial approximation for an expected core composition, mass and density, until a future mission can constrain the deep interior composition of Europa from its seismic properties and improved gravity data. For further details on assumptions taken for modeled temperatures and the chemical system considered see Text S3.

2.4. Post-Differentiation Structure, Mineralogy and Geochemistry

We obtain our final predictions for Europa’s interior structure after the formation of the ocean and differentiation using PlanetProfile, a program for constructing 1D planetary structure models, in which the self-consistent gridded thermodynamic properties from Perple_X and Rcrust are used as inputs (Vance et al., 2018). To construct the inputs, we first use Rcrust to perform isobaric heating simulations as described in Section 2.2 and Figure 1 to obtain the thermodynamic properties. We then remove the appropriate Fe±S mass from the silicate layer for each model Europa to form a core with 24 mass % sulfur (the minimum amount of sulfur in melt at the Fe-FeS eutectic within Europa, see Section 2.3) for EM-CI, EM-CM and MC-Scale after fluid extraction up to the Fe-FeS eutectic temperature (Section 2.2). Finally, we fold the separate silicate layer and Fe±S core (Section 2.3) thermodynamic properties into PlanetProfile and obtain structures consistent with Europa’s radius, density and MoI. Text S4 describes inputs and modifications to PlanetProfile for this work. The results form a baseline against which spacecraft observations may be compared to elucidate the effects of ~ 4.5 Gyr of orbital-geologic history.

2.5. Ocean Column Composition

We use the bulk extracted ocean compositions and masses (Section 2.2) as inputs into geochemical model CHIM-XPT (Reed, 1998) to compute ocean depth dependent mineral-aqueous solution-gas equilibria using the self-consistent thermodynamic database SOLTHERM, which includes thermodynamic properties of water and equilibrium constants up to 0.5 GPa. We carry out a 1D CHIM-XPT model for the bulk fluids extracted by prograde metamorphism of EM-CI, EM-CM, and MC-Scale (Section 2.2), varying the pressure from the seafloor (200 MPa; Vance et al., 2018) up to a hypothetical ice-free surface. This way, we quantify gas saturation and mineral precipitation out of the primordial ocean (i.e., fractionation), and the effects on the water column’s composition, pH and redox potential. Further details about CHIM-XPT and validation of the model are found in Text S2.
3. Results and Discussion

Prograde metamorphism up to the Fe-FeS eutectic temperature has the effect of dehydrating, dehydroxylating, decarbonizing and desulfurizing the deep interior, irreversibly changing the mineralogy (e.g., Glein et al., 2018). The main volatile-releasing generalized reactions are:

\[
\text{Mg}_2\text{Si}_2\text{O}_5(\text{OH})_4 \rightarrow \text{Mg}_3\text{SiO}_4 + \text{MgSiO}_3 + 2\text{H}_2\text{O}
\]

(1)

\[
\text{Mg}_2\text{Si}_2\text{O}_5(\text{OH})_4 + \text{MgCO}_3 \rightarrow 2\text{Mg}_2\text{SiO}_4 + 2\text{H}_2\text{O} + \text{CO}_2
\]

(2)

Large amounts of volatiles are released at low temperature (< 300 K): the starting rock compositions (namely volatile-rich carbonaceous chondrites) are thermally unequilibrated, so the thermodynamic model predicts that excess volatiles (mainly water and CH\textsubscript{4}) and dissolved solutes are unbound from minerals and organics. At moderate temperatures (300–600 K), only small amounts of fluid are released because lizardite, antigorite, chlorite and magnesite are stable; these are phyllosilicate or carbonate minerals with structurally bound water and OH\textsuperscript{−}, or CO\textsubscript{3}\textsuperscript{2−}. At \(> 650 \text{ K}\), antigorite and magnesite break down, releasing H\textsubscript{2}O and CO\textsubscript{2}. Higher pressure stabilizes magnesite and antigorite, whereas lower pressure favors their breakdown at that temperature. Analogous volatile-releasing reactions occur presently in Earth’s subducting oceanic plates, for example, which experience dewatering and decarbonization with increasing pressure and temperature (e.g., Gorce et al., 2019; Manthilake et al., 2016). Further details about the pressures and temperatures of the reactions and the changing mineralogy along the prograde metamorphic path are found in Text S5 and Figures S12 and S13.

3.1. Extracted Fluid Compositions and Ocean Masses

Prograde metamorphism of the EM-CI and EM-CM initial compositions supplies a fluid mass that exceeds the present ~10 wt. % hydrosphere for all tested R/E ratios. The MC-Scale composition however, is unable to supply sufficient fluid mass, despite a R/E ratio = 0, since the maximal water content of this composition (3.5 ± 0.6 wt.%), assuming all H is in H\textsubscript{2}O) falls short of Europa’s present hydrosphere mass, indicating that additional water was co-accreted or delivered if Europa formed from the materials nearest to Jupiter ~ 4.5 Ga according to the MC accretion model (Section 2.1).

The pattern of volatile release at different pressures and temperatures is broadly similar for all prograde metamorphism models of the initial compositions tested. We focus on solutes and solvents from EM-CM shown in Figure 2, and include additional subtleties of the exsolved fluid compositions in Text S5, Table S5 and Figures S6–S11. In all cases, the most significant contributors to the ocean reservoir mass are oxygen and hydrogen, as water (e.g., Figure 2). Carbon is the third most abundant element comprising the ocean reservoir of the EM-CI and EM-CM models, particularly at relatively high temperatures where CO\textsubscript{2} becomes a major component, and acts as the solvent, in the fluid phase (Figure 2) as a result of carbonate destabilization (see also Section 3.3). However, while carbon, hydrogen, oxygen, sulfur, and calcium abundances in the exsolved ocean reservoirs of EM-CI and EM-CM are comparable, the total mass of silicon, sodium, magnesium, chlorine, potassium and aluminum extracted from EM-CM is significantly higher, and only the extracted mass of iron is lower after prograde metamorphism of EM-CM compared to EM-CI. For MC-Scale, the most abundant solutes in the extracted ocean are calcium and sulfur, especially exsolved at <650 K and >6 GPa in the form of CaSO\textsubscript{4}, although some calcium is paired to chlorine, as CaCl\textsubscript{2}.

3.2. Composition of the Ocean Column, Precipitated Minerals and Exsolved Gases

Distinct ocean compositions from seafloor to surface (Figure 3) result from isothermal 1D decompression CHIM-XPT models equilibrating the bulk compositions of the extracted fluids for EM-CI, EM-CM, and MC-Scale (Section 3.1). In all cases, gypsum (CaSO\textsubscript{4}) saturates and precipitates as pressure decreases. Additionally, for EM-CM, dolomite is stable throughout the water column, while for MC-Scale, dolomite is stable at <30 MPa, which may correspond to a depth within the present ice shell (Figure 3). Since prograde metamorphism of the MC-Scale composition did not yield a sufficiently massive hydrosphere (Section 3.1), we consider the effects of compensating the difference with late delivery of cometary materials in Text S7 and Figure S15.
Gypsum precipitation throughout the water column steadily decreases the S/Cl molar ratio with decreasing depth in all cases, such that the total concentrations of chlorine and sulfur become comparable ($\sum E Cl \approx \sum E S$) at shallow depths for EM-CI and EM-CM (Figure 3), and chlorine exceeds sulfur at $\approx 124$ MPa for EM-CI. Similarly, the dissolved calcium concentration decreases as a result of gypsum precipitation, decreasing the Ca/Mg molar ratio with decreasing depth in all models. No Na- or K-bearing minerals saturate, so the Na/K molar ratio remains constant at all depths. In the limiting assumption of zero porosity, the globally averaged thickness of all mineral precipitates at Europa's seafloor is 2.7–9.5 km (Table 1).

The combined mass of gases (particularly $\text{CO}_2$) that would boil out of the ocean at low pressure (i.e., at $< 20$ MPa for a hypothetical non-ice covered surface) is comparable to the mass of precipitated minerals (Figure 3 and Table 1). The massive outgassing of volatiles (0.06%-1.33% Europa's mass; Table 1) may have led to an early $\text{CO}_2$-rich atmosphere of considerable thickness, on the order of 1–27 MPa for the mass of exsolved gases calculated if they were released all at once. We note that 5–25 MPa of $\text{H}_2\text{O}$ and in excess of 1–5.5 MPa of $\text{CO}_2$ are calculated to have been lost from Mars $< 12$ Myr after accretion (Erkaev et al., 2014; Odert et al., 2018). Massive primordial atmospheres have also been predicted for Triton ($\approx 16$ MPa $\text{pCO}_2$; Lunine & Nolan, 1992), Titan, Ganymede, and Callisto (Kuramoto & Matsui, 1994). With such a thick atmosphere, greenhouse trapping of heat generated by insolation (Zahnle & Catling, 2017), radioactive decay...
or tides would likely vaporize Europa’s hydrosphere, although exceedingly high rates of atmospheric escape by thermal and non-thermal processes, including ionization in Jupiter’s magnetosphere, sputtering by solar energetic particles and galactic cosmic rays, or impact erosion, would have likely either prevented atmospheric build-up, or allowed recondensation of the hydrosphere. We do not quantify the lifetime or stability of a possible early steam atmosphere here, but note that up to 27 MPa of $\text{H}_2\text{O}$ would have been available from metamorphic reactions and subsequent exsolution from the ocean.

More likely, the rate of heating (radioactive or tidal) would control the rate of exsolution from the deep interior, ocean build-up, and the subsequent mass outgassed from the ocean. Based on mass ejection rates from tentative plume detections (Roth et al., 2014; Sparks et al., 2016), plumes could output up to $197.2 \times 10^{-20} - 207.2 \times 10^{-20}$ kg of $\text{H}_2\text{O}$ over the lifetime of the solar system, or about 1.4%–24% of Europa’s present ocean mass (Text S6). Alternatively, clathrate hydrates could trap dissolved carbon and limit CO$_2$ outgassing. Whether CO$_2$ clathrates are stable in Europa’s ocean depends on the pressure and temperature, assuming sufficient CO$_2$ feedstock is present. For the large amounts of CO$_2$ produced here, we predict structure I clathrates with a CO$_2$/H$_2$O molar ratio of 0.159 at 273.15 K and equilibrium pressure (1.24 MPa), with a density of 1106 kg/m$^3$ (see Text S6 for details). This exceeds the ocean’s density, so these clathrates would sink, forming a 3.4–77 km layer on the seafloor. The thermal blanketing effect of a thick clathrate layer may ultimately freeze the ocean, which is inconsistent with the present-day state of the ocean. However, the long term stability of such a clathrate layer may be unfavorable because: (a) temperatures > 299 K preclude CO$_2$ clathrate stability in Europa’s ocean (Text S6 and Figure S14), and magmatic episodes are predicted at Europa’s seafloor over geologic time (Běhounková et al., 2021), and (b) formation of the ice shell would further increase the salinity and density of the ocean, inhibiting the formation of clathrates or making them buoyant.

We find major differences between the ocean compositions predicted here and those presented previously. On the basis of thermodynamic equilibrium and extensive water-rock interaction between the ocean and the sea-
Table 1
Adjusted Mass of Europa’s Hydrosphere After Accounting for Sediments Predicted to Precipitate on the Seafloor and Mass of Gases Exsolved at low Pressure in the Ocean Column

| Mineral precipitates | EM-CI R/E = 0 | EM-CM R/E = 0 | MC-Scale R/E = 0 |
|----------------------|---------------|---------------|-----------------|
|                      | Concentration | Mass kg       | Concentration   | Mass kg       | Concentration | Mass kg       |
| graphite             | 3.92          | 3.82 x 10^9   | 3.93           | 2.75 x 10^9   | 5.34          | 6.89 x 10^8   |
| pyrite               | 0.02          | 2.17 x 10^7   | 0             | 0                | 0.26          | 3.35 x 10^7   |
| quartz               | 2.59          | 2.52 x 10^9   | 8.51           | 5.96 x 10^9   | 1.20          | 1.55 x 10^8   |
| sulfur               | 0.78          | 7.63 x 10^8   | 0             | 0                | 0             | 0             |
| gypsum               | 50.08         | 4.89 x 10^20  | 34.46          | 2.41 x 10^20  | 117.09        | 1.51 x 10^20  |
| dolomite             | 3.28          | 3.20 x 10^9   | 7.84           | 5.49 x 10^9   | 2.86          | 3.68 x 10^8   |

Mean density kg/m^3

| Total precipitates | EM-CI R/E = 0 | EM-CM R/E = 0 | MC-Scale R/E = 0 |
|--------------------|---------------|---------------|-----------------|
|                    | Mean density | Thickness km  | Mean density    | Thickness km  | Mean density | Thickness km  |
|                    | kg/m^3       |               | kg/m^3          |               | kg/m^3       |               |
|                    | 2,305^a      | 9.5^a         | 2,413           | 6.2           | 2,300^a      | 2.7^a         |

Gases exsolved

| Gases exsolved | EM-CI R/E = 0 | EM-CM R/E = 0 | MC-Scale R/E = 0 |
|----------------|---------------|---------------|-----------------|
|                | Concentration | Mass kg       | Concentration   | Mass kg       | Concentration | Mass kg       |
| H2O gas        | 2.90 x 10^-2  | 2.83 x 10^17  | 1.81 x 10^-2    | 1.27 x 10^17  | 2.06 x 10^-2  | 2.66 x 10^16  |
| CO2 gas        | 65.58         | 6.40 x 10^20  | 14.86           | 1.04 x 10^20  | 45.93         | 5.57 x 10^10  |
| CH4 gas        | 2.66 x 10^-8  | 2.59 x 10^11  | 5.90 x 10^-9    | 4.13 x 10^9   | 4.32 x 10^-8  | 8.38 x 10^9   |
| H2S gas        | 6.37 x 10^-10 | 1.34 x 10^9   | 3.72 x 10^-10   | 2.60 x 10^9   | 6.50 x 10^-10 | 2.44 x 10^9   |
|                | 1.38 x 10^-3  | 1.34 x 10^6   | 5.66 x 10^-4    | 3.96 x 10^35  | 1.89 x 10^-3  | 2.44 x 10^13  |

Total gases exsolved

| Total gases exsolved | EM-CI R/E = 0 | EM-CM R/E = 0 | MC-Scale R/E = 0 |
|----------------------|---------------|---------------|-----------------|
|                      | Mass kg       | Mass (kg)     | Mass (kg)       |
|                      | 6.40 x 10^20  | 1.04 x 10^20  | 2.65 x 10^19    |

Adjusted hydrosphere (A_{hydr})

| EM-CI R/E = 0 | EM-CM R/E = 0 | MC-Scale R/E = 0 |
|---------------|---------------|-----------------|
| Mass kg       | A_{hydr}/M_{hydr} Mass% | Mass kg       | A_{hydr}/M_{hydr} Mass% | Mass kg       | A_{hydr}/M_{hydr} Mass% |
| 8.56 x 10^21  | 17.83         | 6.51 x 10^21  | 13.57           | 1.26 x 10^21  | 2.63            |

Note. EM-CI = endmember CI initial bulk composition, EM-CM = endmember CM initial bulk composition, MC-Scale = Monte Carlo scaled initial composition, R/E = fluid retained-to-extracted mass ratio. “Thickness” = globally averaged thickness of the precipitate layer at Europa’s seafloor, for a hydrosphere depth of 140 km (see Section 3.3). “Adjusted hydrosphere mass” = mass of exsolved volatiles from the interior (Section 3.1) minus the mass of minerals precipitated and gases exsolved from the water column. M_{hydr} = mass of Europa.

*Does not include dolomite precipitated, since it is not thermodynamically stable at the seafloor of EM-CI (see Section 3.2).

Floor, Zolotov and Kargel (2009) predicted a “low pH” fluid that rapidly (~ 10^5 yr) evolved to a reduced and basic primordial ocean (pH = 13–13.6) rich in H_2, Na^+, K^+, Ca^{2+}, OH^-, and Cl^-. The escape of H_2 may have then led to a progressively oxidized, sulfate-rich ocean today. On the other hand, work by Kargel et al. (2000) and Zolotov and Shock (2001) on the low temperature aqueous differentiation, brine evolution, and freezing of the European ocean broadly coincides with our predictions for a sulfate- and carbonate-rich ocean, although they predict that the most abundant cation in solution would be Mg^{2+} instead of Ca^{2+}. Hansen and McCord (2008) also favored a CO_2-rich ocean based on spectroscopic observations. If the acidic ocean predicted here could subsequently react and rehydrate the silicate interior, sulfate reduction to sulfide in the presence of reductants would be a kinetically favored sulfur sequestration reaction (Tan et al., 2021), and potentially CO_2 could be converted to CH_4 or graphite.

We also find it significant that the composition of the ocean column is depth-dependent, such that anion and cation concentrations, pH, and redox conditions close to the seafloor are not apparently reflective of the
composition nearer to the surface or at the base of the ice shell. A caveat is that the results presented here do not account for homogenizing or mixing of the ocean column's composition by advection or convection, or latitudinal changes; a comprehensive ocean circulation model (e.g., Lobo et al., 2021) would be required to place such constraints.

### 3.3. Consequences of Fluid Extraction on the Silicate Mantle and Structure of Europa

Removal of Fe ± S from the devolatilized deep interior at the Fe-FeS eutectic (Section 2.3), and calculation of Europa's structure with PlanetProfile using the resulting core and residual silicate mantle thermodynamic properties (Section 2.4) yields a spherical shell structure, MoI (0.3455–0.3457) and density consistent with present-day Europa observations, assuming a ~ 30 km ice shell (Figure 1; Text S4). Further details about the predicted deep mineralogy are found in Text S5 and Figures S12 and S13. Figure S16 shows the density, heat capacity, and bulk and shear moduli of resulting profiles.

### 4. Concluding Remarks

We find that the resulting volatile mass evolved from Europa's deep interior is consistent with, and can even exceed, the hydrosphere's present mass. The size and composition of the ocean depend on the assumed accreted composition of Europa. Different bulk compositions lead to different mineralogies in the thermo-dynamic model, that mediate the escape of volatiles and solutes. To elaborate:

1. Building a volatile mass equivalent to that of Europa's current hydrosphere by prograde metamorphism prior to core formation was probable if Europa accreted a disproportionately large amount of CI or CM chondrite material, water, and/or cometary material relative to the expected abundance of these materials at Jupiter's location in the early Solar System (cf., Desch et al., 2018). Other known chondritic materials have insufficient volatile mass extractable by metamorphism to account for Europa's present hydrosphere mass (Section 2.1 & Section 3.1).
2. Europa's ocean, if derived from thermal evolution of the interior as shown here, was carbon and sulfur-rich (Section 3.1). If thermal excursions in the interior (from radioactive decay and tidal dissipation) were unimportant since differentiation, geochemical equilibrium models predict that the ocean would remain CO₂, carbonate and CaSO₄-rich (Section 3.2). However, pressure has a first order effect on the ocean's composition: decreasing pressure precipitates gypsum, removing calcium and sulfur from solution, thereby increasing the relative concentration of chlorine further up the water column, such that Cl > S at ≤ 10 MPa. Thickening of the ice shell preferentially freezes SO₄²⁻, rejecting and concentrating Cl at the base of the ice shell in time (Marion et al., 2005), leaving the relative concentration of SO₄²⁻ unchanged at depth.
3. While the volatile mass in the initially accreted bulk body was high (Section 3.1), the deep interior must be relatively volatile-poor at present to meet the MoI and density constraints (Section 3.3). Therefore, prograde metamorphism and fluid migration into the hydrosphere was necessarily efficient in order to remove volatile mass from the interior. Volatile loss from the rocky interior in excess of the present hydrosphere mass can be accommodated by early loss to space, especially because of the high pCO₂ outgassed. Alternatively, a large portion of volatiles (particularly CO₂) would be retained in clathrates, and their periodic destabilization by tidal heating may provide oxidants and buoyant pressure at the ice-ocean interface. We rule out complete ocean freeze-out enabled by the thermal blanketing effect of a stable seafloor clathrate layer: even if a thick clathrate layer is stable at the seafloor over geologic time, ≤ 80 km thick high pressure ice layers at Ganymede and Titan with heat fluxes > 6 mW/m² from the silicate interior are able to maintain a liquid ocean (Kalousová & Sotin, 2020). Melt and heat transport from the bottom of the clathrate layer to the ocean would occur either through hot plume conduits or solid state convection (Choblet et al., 2017; Kalousová & Sotin, 2020).
4. The CO₂-rich ocean delivered by metamorphism may facilitate life's emergence by contributing to the generation of a proton gradient between acidic ocean water and alkaline hydrothermal fluids (Camprubí et al., 2019), if the latter are present in Europa.

While these updated models are enabled by modern computational thermodynamics and data, we expect that further work will refine these results prior to the arrival of the JUICE and Europa Clipper missions in the coming decade. In particular, 4.5 Gyr of tidally mediated magmatism may have continued to modify the...
deep interior, possibly driving solid-state mantle convection, volcanism, and volatile element redistribution and loss (Běhounková et al., 2021). The oxidized ocean may have been reduced in time with hydrogen generated by serpentinization enabled by thermal cracking (Vance et al., 2016), but better constraints on the conditions of fracture formation and propagation are required (Klimczak et al., 2019). Further improvements to the thermodynamic data of high pressure H₂O-CO₂ phases (Abramson et al., 2018) and their integration with thermodynamic models (e.g., Perple_X) are also needed to assess the build-up of the ocean: the stability of such phases can be a factor dictating whether an ocean world will be habitable (Marouzina & Rogers, 2020). Finally, we have also made the simplifying assumption that fluid percolation from depth was efficient. A coupled tidal-thermodynamic-geodynamic model would more accurately determine fluid retained-to-extracted ratios.

Data Availability Statement

All data are available through Zenodo: https://doi.org/10.5281/zenodo.5218908. AccretR is available through Melwani Daswani (2020). PlanetProfile is available through https://zenodo.org/record/4052711. Rcrust is available through Mayne et al. (2016) and https://tinyurl.com/rcr crust.
Glein, C. R., Postberg, F., & Vance, S. D. (2018). The geochemistry of Enceladus: Composition and controls. In Enceladus and the icy moons of Saturn. The University of Arizona Press. https://doi.org/10.2458/azu_uapress_9780816537075-ch003

Gorce, J., Caddick, M., & Bodnar, R. (2019). Thermodynamic constraints on carbonate stability and carbon volatility during subduction. Earth and Planetary Science Letters, 519, 213–222. https://doi.org/10.1016/j.epsl.2019.04.047

Greeley, R., Chyba, C. F., Head, J., McCord, T., McKinnon, W. B., & Pappalardo, R. T. (2004). Geology of Europa. In Jupiter: The planet, satellites and magnetosphere (pp. 329–362). New York: Cambridge University Press.

Hand, K., Carlson, R., & Chyba, C. (2007). Energy, chemical disequilibrium, and geological constraints on Europa. Astrobiology, 7(6), 1006–1022. https://doi.org/10.1089/ast.2007.0156

Hansen, G. B., & McCord, T. B. (2008). Widespread CO\textsubscript{2} and other non-ice compounds on the anti-Jovian and trailing sides of Europa from Galileo/NIMS observations. Geophysical Research Letters, 35, L01202. https://doi.org/10.1029/2007GL031748

Huss, G. R., Rubin, A. E., & Grossman, J. N. (2006). Thermal metamorphism in chondrites. In D. S. Lauretta, & H. Y. McSween (Eds.), Meteorites and the early solar system II (pp. 567–586). Tucson, AZ: University of Arizona Press.

Kalusová, V., & Sotin, C. (2020). Dynamics of Titan's high-pressure ice layer. Earth and Planetary Science Letters, 545, 116416. https://doi.org/10.1016/j.epsl.2020.116416

Kargel, J. S. (1991). Brine volcanism and the interior structures of asteroids and icy satellites. Icarus, 94(2), 368–390. https://doi.org/10.1016/0019-1035(91)90235-i

Kargel, J. S., Kaye, J. Z., Head, J. W., Marion, G. M., Sassen, R., Crowley, J. K., et al. (2000). Europa's crust and ocean: Origin, composition, and the prospects for Life. Icarus, 148(1), 226–265. https://doi.org/10.1006/icar.2000.6471

Klimczak, C., Byrne, P. K., Regensburger, P. V., Bohnenstiehl, D. R., Hauck, S. A. II, Dombard, A. J., & Elder, C. M. (2019). Contributions from accreted organics to Titan's atmosphere: New insights from cometary gases from Mars-sized planetary embryos and growing protoplanets. Journal of Geophysical Research, 124(6), 66–78. https://doi.org/10.1002/2018JE005765

Klimczak, C., Byrne, P. K., Regensburger, P. V., Bohnenstiehl, D. R., Hauck, S. A. II, Dombard, A. J., & Elder, C. M. (2019). Contributions from accreted organics to Titan's atmosphere: New insights from cometary gases from Mars-sized planetary embryos and growing protoplanets. Journal of Geophysical Research, 124(6), 66–78. https://doi.org/10.1002/2018JE005765

Kuramoto, K., & Matsui, T. (1994). Formation of a hot proto-atmosphere on the accreting giant icy satellite: Implications for the origin and evolution of Titan, Ganymede, and Callisto. Journal of Geophysical Research, 99, 21813–21827. https://doi.org/10.1029/94JE01864

Kusov, O., & Kronrod, V. (2005). Internal structure of Europa and Callisto. Icarus, 177(2), 550–569. https://doi.org/10.1016/j.icarus.2004.05.020

Mayne, M. J., Moyen, J.-F., Stevens, G., & Kasianieni, L. (2016). Rcrust: A tool for calculating path-dependent open system processes and application to melt loss. Journal of Metamorphic Geology, 34(7), 663–682. https://doi.org/10.1111/jmg.12199

McKinnon, W. B., & Zolensky, M. E. (2003). Sulfate content of Europa's ocean and shell: Evolutionary considerations and some geological and astrobiological implications. Astrobiology, 3, 871–897. https://doi.org/10.1016/j.epsl.2019.115920

McKinnon, W. B., & Zolensky, M. E. (2003). Sulfate content of Europa's ocean and shell: Evolutionary considerations and some geological and astrobiological implications. Astrobiology, 3, 871–897. https://doi.org/10.1016/j.epsl.2019.115920

Miller, K. E., Glein, C. R., & Waite, J. H. (2019). Contributions from accreted organics to Titan's atmosphere: New insights from cometology and chondritic data. The Astrophysical Journal, 878(1), 59. https://doi.org/10.3847/1538-4357/aaf561

Moore, W. B., & Hussmann, H. (2009). Thermal evolution of Europa's silicate interior. In R. T. Pappalardo, W. B. McKinnon & K. Khurana (Eds.), Europa. (pp. 369–380). Tucson: University of Arizona Press.

Mosquera, I., Estrada, P., & Turrini, D. (2010). Planetsimals and planetesimals: Formation of the satellite systems. Space Science Reviews, 153, 431–446. https://doi.org/10.1007/s11214-009-9614-6

Müller, K. E., Glein, C. R., & Waite, J. H. (2019). Contributions from accreted organics to Titan's atmosphere: New insights from cometology and chondritic data. The Astrophysical Journal, 878(1), 59. https://doi.org/10.3847/1538-4357/aaf561

Moore, W. B., & Hussmann, H. (2009). Thermal evolution of Europa's silicate interior. In R. T. Pappalardo, W. B. McKinnon & K. Khurana (Eds.), Europa. (pp. 369–380). Tucson: University of Arizona Press.

Mosquera, I., Estrada, P., & Turrini, D. (2010). Planetsimals and planetesimals: Formation of the satellite systems. Space Science Reviews, 153, 431–446. https://doi.org/10.1007/s11214-009-9614-6

Neri, A., Guyot, F., Reynard, B., & Sotin, C. (2020). A carbonaceous chondrite and cometary origin for icy moons of Jupiter and Saturn. Earth and Planetary Science Letters, 530, 115920. https://doi.org/10.1016/j.epsl.2019.115920

Odert, P., Lammers, H., Erkaev, N., Nikolaou, A., Lichtenegger, H., Johnstone, C., et al. (2018). Escape and fractionation of volatiles and noble gases from Mars-sized planetary embryos and growing proplanets. Icarus, 307, 327–346. https://doi.org/10.1016/j.icarus.2017.10.031

Pan, D., Spanu, L., Harrison, B., Sverjensky, D. A., & Galli, G. (2013). Dielectric properties of water under extreme conditions and transport of carbones in the deep Earth. Proceedings of the National Academy of Sciences, 110, 6646–6650. https://doi.org/10.1073/pnas.1221581110

Pasek, M. A., & Greenberg, R. (2012). Acidification of Europa's subsurface ocean as a consequence of oxidant delivery. Astrobiology, 12(2), 151–159. https://doi.org/10.1089/ast.2011.0666

Reed, R. (1998). Calculation of simultaneous chemical equilibria in aqueous-mineral-gas systems and its application to modeling hydrothermal processes. In J. P. Richards (Ed.), Techniques in hydrothermal ore deposits geology (Vol. 10, pp. 109–124). Littleton, CO: Society of Economic Geologists, Inc. https://doi.org/10.5382/rev.10.05

Richard, G., Monnereau, M., & Rahinowicz, M. (2007). Slab dehydration and fluid migration at the base of the upper mantle: Implications for deep earthquake mechanisms. Geophysical Journal International, 168(3), 1291–1304. https://doi.org/10.1111/j.1365-246X.2006.03244.x

Ronnet, T., & Johansen, A. (2020). Formation of moon systems around giant planets: Capture and aublation of planetesimals as foundation for a pebble accretion scenario. Astronomy & Astrophysics, 633, A93. https://doi.org/10.1051/0004-6361/201936804
Ronnet, T., Mousis, O., & Vernazza, P. (2017). Pebble accretion at the origin of water in Europa. *The Astrophysical Journal, 845*, 92. https://doi.org/10.3847/1538-4357/aa80e6

Roth, L., Saur, J., Retherford, K. D., Strobel, D. F., Feldman, P. D., McGrath, M. A., & Nimmo, F. (2014). Transient water vapor at Europa's south pole. *Science, 343*(6167), 171. https://doi.org/10.1126/science.1247051

Schubert, G., Sohl, F., & Hussmann, H. (2009). Interior of Europa. In R. T. Pappalardo, W. B. McKinnon & K. Khurana (Eds.), *Europa*. (pp. 353–367). Tucson: University of Arizona Press.

Sohl, F., Spohn, T., Breuer, D., & Nagel, K. (2002). Implications from galileo observations on the interior structure and chemistry of the galilean satellites. *Icarus, 157*(1), 104–119. https://doi.org/10.1016/j.icarus.2002.06.682

Sparks, W. B., Hand, K. P., McGrath, M. A., Bergeron, E., Cracraft, M., & Deustua, S. E. (2016). Probing for evidence of plumes on Europa with IIST/STIS. *The Astrophysical Journal, 829*, 121. https://doi.org/10.3847/0004-637X/829/2/121

Tan, S., Sekine, Y., Shibuya, T., Miyamoto, C., & Takahashi, Y. (2021). The role of hydrothermal sulfate reduction in the sulfur cycles within Europa: Laboratory experiments on sulfate reduction at 100MPa. *Icarus, 357*, 114222. https://doi.org/10.1016/j.icarus.2020.114222

Tobie, G., Choblet, G., & Cotin, C. (2003). Tidally heated convection: Constraints on Europa's ice shell thickness. *Journal of Geophysical Research, 108*(E11), 5124. https://doi.org/10.1029/2003JE002099

Tobie, G., Mocquet, A., & Cotin, C. (2005). Tidal dissipation within large icy satellites: Applications to Europa and Titan. *Europa Icy Shell, 177*(2), 534–549. https://doi.org/10.1016/j.icarus.2005.04.006

Townsend, M., & Huber, C. (2020). A critical magma chamber size for volcanic eruptions. *Geology, 48*(5), 431–435. https://doi.org/10.1130/G47045.1

Trumbo, S. K., Brown, M. E., Fischer, P. D., & Hand, K. P. (2017). A new spectral feature on the trailing hemisphere of Europa at 3.78 μm. *Journal of Geophysical Research: Planets, 122*(1), 180–205. https://doi.org/10.1002/2017je005341

Watakis, S., & Genda, H. (2019). Fates of hydrous materials during planetesimal collisions. *Icarus, 328*, 58–68. https://doi.org/10.1016/j.icarus.2019.03.008

Zahnle, K. J., & Catling, D. C. (2017). The cosmic shoreline: The evidence that escape determines which planets have atmospheres, and what this may mean for proxima centauri b. *The Astrophysical Journal, 843*, 122. https://doi.org/10.3847/1538-4357/aa846e

Zolotov, M. Y., & Kargel, J. S. (2009). On the chemical composition of Europa’s icy shell, ocean, and underlying rocks. In R. T. Pappalardo, W. B. McKinnon & K. Khurana (Eds.), *Europa*. (pp. 431). Tucson: University of Arizona Press. Retrieved from https://uapress.arizona.edu/book/europa

Zolotov, M. Y., & Shock, E. L. (2001). Composition and stability of salts on the surface of Europa and their oceanic origin. *Journal of Geophysical Research, 106*(E12), 32815–32827. https://doi.org/10.1029/2000je001413

Zolotov, M. Y., & Shock, E. L. (2004). A model for low-temperature biogeochemistry of sulfur, carbon, and iron on Europa. *Journal of Geophysical Research, 109*(E6), E06003. https://doi.org/10.1029/2003je002194

References From the Supporting Information

Airelle, S., Farquhar, J., Thiemo, M., Leshin, L., Bao, H., & Young, E. (2005). Planetesimal sulfate and aqueous alteration in CM and CI carbonaceous chondrites. *Geochimica et Cosmochimica Acta, 69*(16), 4167–4172. https://doi.org/10.1016/j.gca.2005.01.029

Badro, J., Brodholt, J. P., Piet, H., Siebert, J., & Ryerson, F. J. (2015). Core formation and core composition from coupled geochemo-geophysical constraints. *Proceedings of the National Academy of Sciences of the United States of America, 112*(40), 12310–12314. https://doi.org/10.1073/pnas.1505672112

Bardyn, A., Baklouti, D., Cottin, H., Fray, N., Briois, C., Paquette, J., & Hilchenbach, M. (2017). Carbon-rich dust in comet 67P/Churyumov-Gerasimenko measured by COSIMA/Rosetta. *Monthly Notices of the Royal Astronomical Society*, 469, S712–S722. https://doi.org/10.1093/mnras/stx2840

Bjerga, A. (2014). Evolution of talc- and carbonate-bearing alterations in ultramafic rocks on Leka (central Norway) (Doctoral dissertation). Bergen: The University of Bergen. Retrieved from https://hdl.handle.net/1956/7893

Bjerga, A., Konopášek, J., & Pedersen, R. (2015). Talc–carbonate alteration of ultramafic rocks within the Leka Ophiolite complex, Central Norway. *Lithos, 227*, 21–36. https://doi.org/10.1016/j.lithos.2015.03.016

Bland, P. A., Cressey, G., & Menzies, O. N. (2004). Modal mineralogy of carbonaceous chondrites by X-ray diffraction and Mössbauer spectroscopy. *Meteoritics & Planetary Science, 39*, 3–16. https://doi.org/10.1111/j.1945-5100.2004.tb00464.x

Bouquet, A., Mousis, O., Glein, C. R., Dancer, G., & Waite, J. H. (2019). The role of clathrate formation in Europa's oceanic source composition. *The Astrophysical Journal, 885*(1), 14. https://doi.org/10.3847/1538-4357/ab40f6

Brearley, A. J. (2006). The action of water. *Meteorites and the early solar system II* (pp. 584). Retrieved from https://ui.adsabs.harvard.edu/abs/2006mess.book..584B

Brettscher, A., Hermann, J., & Pette, T. (2018). The influence of oceanic oxidation on serpentinite dehydration during subduction. *Earth and Planetary Science Letters, 499*, 173–184. https://doi.org/10.1016/j.epsl.2018.07.017

Cerpa, N. G., Padrón-Navarta, J. A., & Arcay, D. (2020). *Uncertainties in the stability field of UHP hydrous phases (10-A phase and phase E) and deep-slab dehydration: Potential implications for fluid migration and water fluxes at subduction zones*. doi.org/10.5194/egusphere-egu2020-4783

Chatterjee, N. D., & Froese, E. (1975). A thermodynamic study of the pseudobinary join muscovite-paragonite in the system KAlSi3O8-NaAlSi3O8-Al2O3-SiO2-H2O. *American Mineralogist, 60*(11–12), 985–993.

Clay, P. L., Burgess, R., Busemann, H., Ruzié-Hamilton, L., Joachim, B., Day, J. M. D., & Ballentine, C. J. (2017). Halogen in chondritic meteorites and terrestrial accretion. *Nature, 553*(7682), 614–618. https://doi.org/10.1038/nature24625

Connolly, J. A. D., & Podladchikov, Y. Y. (1998). Compaction-driven fluid flow in vesicoselastic rock. *Geodinamica Acta, 11*, 55–84. https://doi.org/10.1080/098531198911105311

Cradock, R. A., & Greeley, R. (2009). Minimum estimates of the amount and timing of gases released into the martian atmosphere from volcanic eruptions. *Icarus, 204*(2), 512–526. https://doi.org/10.1016/j.icarus.2009.07.026
Day, J. M., Corder, C. A., Assayag, N., & Cartigny, P. (2019). Ferrous oxide-rich asteroid achondrites. Geochimica et Cosmochimica Acta. https://doi.org/10.1016/j.gca.2019.04.005

Dhooge, F., De Keyser, J., Altwegg, K., Briois, C., Balsiger, H., Berthelier, J.-J., et al. (2017). Halogens as tracers of protosolar nebula material in comet 67P/Churyumov–Gerasimenko. Monthly Notices of the Royal Astronomical Society, 472(2), 1336–1345. https://doi.org/10.1093/mnras/stx1911

Ferrand, T. P., Hilairet, N., Incel, S., Deldicque, L., Labrousse, L., Gasc, J., et al. (2017). Dehydration-driven stress transfer triggers intermediate-depth earthquakes. Nature Communications, 8(1), 15247. https://doi.org/10.1038/ncomms15247

Flynn, G. J., Consolmagno, G. J., Brown, P., & Macke, R. J. (2018). Physical properties of the stone meteorites: Implications for the properties of their parent bodies. Geochimie, 78(3), 269–298. https://doi.org/10.1016/j.jchecr.2017.04.002

Fowler, A. P., Zierenberg, R. A., Reed, M. H., Palandri, J., Öskarsson, F., & Gunnarsson, I. (2016a). Rare earth element systematics in boiled fluids from basalt-hosted geothermal systems. Geochimie et Cosmochimica Acta, 244, 129–154. https://doi.org/10.1016/j.gca.2018.10.001

Fredriksson, K., & Kerridge, J. F. (1988). Carbonates and sulfates in Cl chondrites — Formation by aqueous activity on the parent body. Meteoritics, 23, 35–44. https://doi.org/10.1111/j.1945-5100.1988.tb00894.x

Freedman, A. J. E., Bird, D. K., Armosson, S., Frédriksson, T., Elders, W. A., & Friddellsson, G. O. (2009). Hydrothermal minerals record CO₂ partial pressures in the Reykjanes geothermal system, Iceland. American Journal of Science, 309(9), 788–833. https://doi.org/10.2475/09.2009.02

Frost, B. R. (1991). Chapter 1. Introduction to oxygen fugacity and its petrological importance. In D. H. Lindsley (Ed.), Oxide minerals (pp. 1–10), Berlin, Boston: De Gruyter. https://doi.org/10.1515/9781510509664-004

Garcia-Arias, M. (2020). Consistency of the activity–composition models of Holland, Green, and Powell (2018) with experiments on natural and synthetic compositions: A comparative study. Journal of Metamorphic Geology, 38, 993–1010. https://doi.org/10.1111/jmg.12557

Gounelle, M., & Zolensky, M. E. (2001). A terrestrial origin for sulfate veins in CI1 chondrites. Geochimica et Cosmochimica Acta, 65(23), 3785–3807. https://doi.org/10.1016/S0016-7037(01)00796-9

Haber, P. O., Almeida, J. H., Bakker, E. A., Haskin, J. D., Heide, J., & Klein, C. (2013). Oxide minerals. Treatise on geochemistry (2nd ed., pp. 527–557). Oxford: Elsevier. https://doi.org/10.1016/B978-0-08-095975-7.00134-2

Hawkins, P. A., & Cameron, A. C. (2001). A comparative study of oxide minerals. Geochimica et Cosmochimica Acta, 65(23), 3921–3931. https://doi.org/10.1016/S0016-7037(01)00797-0

Holland, T. J. B., & Powell, R. (2018). Melting of peridotites through to granites: A simple thermodynamic model in the FeO–Al₂O₃–SiO₂–H₂O system. American Mineralogist, 103(3), 395–406. https://doi.org/10.2138/am.2017.4404

Holland, T. J. B., Green, E. C. R., & Powell, R. (2007). An order-disorder model for omphacitic pyroxenes in the system jadeite-diopside-hedenbergite-acmite, with applications to eclogitic rocks. American Mineralogist, 92(7), 1181–1189. https://doi.org/10.2138/am.2007.2401

Holland, T. J. B., Baker, J., & Powell, R. (1998). Mixing properties and activity–composition relationships of chlorites in the system MgO–Fe₂O₃–Al₂O₃–SiO₂–H₂O. European Journal of Mineralogy, 10(3), 395–406. https://doi.org/10.1127/ejm/10/3/0395

Holland, T. J. B., Green, E. C. R., & Powell, R. (2018). Melting of peridotite toperid to Granites: A simple thermodynamic model in the system KCaFe₂Al₂Si₂O₈CO₃H₂O. The planetary scientist’s companion. New york: Oxford University Press.

McCord, T. B., Hansen, G. B., Matson, D. L., Johnson, T. V., Crowley, J. K., Fanale, F. P., et al. (1999). Hydrated salt minerals on Europa’s surface from the Galileo near-infrared mapping spectrometer (NIMS) investigation. Journal of Geophysical Research, 104, 11827–11851. https://doi.org/10.1029/1999JE000001

Melwani Daswani, M. (2020). AccErR. Zenodo. https://doi.org/10.5281/ZENODO.3827540

Menzel, M. D., Garrido, C. J., & López Sánchez-Vizcaíno, V. (2020). Fluid-mediated carbon release from serpentine-hosted carbonates during dehydration of antigorite-serpentine in subduction zones. Earth and Planetary Science Letters, 531, 115964. https://doi.org/10.1016/j.epsl.2019.115964

Miller, S., van der Zee, W., Olgaard, D., & Connolly, J. (2003). A fluid-pressure feedback model of dehydration reactions: Experiments, modelling, and application to subduction zones. In Physical properties of rocks and other geomaterials, a special volume to honour professor H. Kern (Vol. 370, pp. 241–251). https://doi.org/10.1016/S0040-1951(03)00189-6

Nozaka, T., Wintsch, R. P., & Meyer, R. (2017). Serpentinitization of olivine in troctolites and olivine gabbros from the Hess deep rift. Lithos, 282–283, 201–214. https://doi.org/10.1016/j.lithos.2016.12.032

Padrón-Navarta, J. A., Sánchez-Vizcaíno, V. L., Hermann, J., Connolly, J. A., Garrido, C. J., Gómez-Pugnaire, M. T., & Marchesi, C. (2013). Thermochemical carbon substitution in antigorite and consequences for phase relations and water liberation in high-grade serpentinites. Lithos, 178, 186–196. https://doi.org/10.1016/j.lithos.2013.02.001

Palandri, J. L., & Reed, M. H. (2004). Geochemical models of metasomatism in ultramafic systems: Serpentinitization, rodinite–ggregation, and sea floor carbonate chimney precipitation. Geochimica et Cosmochimica Acta, 68(3), 1115–1133. https://doi.org/10.1016/j.gca.2003.08.006

Palus, T. D., Podberscek, K., & Jones, A. (2014). 2.2 — Solar system abundances of the elements. In H. D. Holland & K. K. Turekian (Eds.), Treatise on geochemistry (2nd ed., pp. 15–36). Oxford: Elsevier. https://doi.org/10.1016/B978-0-08-095975-7.00138-x

Pätzold, M., Andert, T., Hahn, M., Asmar, S. W., Barriot, J.-P., Bird, M. K., et al. (2016). A homogeneous nucleus for comet 67P/Churyumov–Gerasimenko from its gravity field. Nature, 530(7588), 63–65. https://doi.org/10.1038/nature16353

Pitzer, K. S., & Sterner, S. M. (1994). Equations of state valid continuously from zero to extreme pressures for H₂O and CO₂. The Journal of Chemical Physics, 100(4), 3111–3116. https://doi.org/10.1063/1.467824

Préveau-Ballesteros, O., Kargel, J. S., Fernández-Sampedro, M., Selis, F., Martinez, E. S., & Hogenboom, D. L. (2005). Evaluation of the possible presence of clathrate hydrates in Europa’s icy shell or seafloor. Europa Icy Shell, 177(2), 491–595. https://doi.org/10.1016/j.jcrysan.2005.02.021
Saxena, S., & Eriksson, G. (2015). Thermodynamics of Fe-S at ultra-high pressure. *Calphad, 51*, 202–205. [https://doi.org/10.1016/j.calphad.2015.09.009](https://doi.org/10.1016/j.calphad.2015.09.009)

Scott, H., Williams, Q., & Ryerson, F. (2002). Experimental constraints on the chemical evolution of large icy satellites. *Earth and Planetary Science Letters, 204*(1), 399–412. [https://doi.org/10.1016/S0012-821X(02)00850-6](https://doi.org/10.1016/S0012-821X(02)00850-6)

Singerling, S. A., & Brearley, A. J. (2018). Primary iron sulfides in CM and CR carbonaceous chondrites: Insights into nebular processes. *Meteoritics & Planetary Science, 53*, 2076–2106. [https://doi.org/10.1111/maps.13108](https://doi.org/10.1111/maps.13108)

Sloan, E. D., & Koh, C. A. (2008). Clathrate hydrates of natural gases (3rd ed., 752). Boca Raton, FL: CRC Press.

Sonogni, Y., Treiman, A. H., & Schwenzer, S. P. (2017). Serpentinite with and without brucite: A reaction pathway analysis of a natural serpentinite in the Josephine ophiolite, California. *Journal of Mineralogical and Petrological Sciences, 112*(2), 59–76. [https://doi.org/10.2465/jmps.160509](https://doi.org/10.2465/jmps.160509)

Sotin, C., Grasset, O., & Mocquet, A. (2007). Mass-radius curve for extrasolar Earth-like planets and ocean planets. *Icarus, 191*(1), 337–351. [https://doi.org/10.1016/j.icarus.2007.04.006](https://doi.org/10.1016/j.icarus.2007.04.006)

Sotin, C., & Tobie, G. (2004). Internal structure and dynamics of the large icy satellites. *Comptes Rendus Physique, 5*(7), 769–780. [https://doi.org/10.1016/j.crhy.2004.08.001](https://doi.org/10.1016/j.crhy.2004.08.001)

Steenstra, E. S., & van Westrenen, W. (2018). A synthesis of geochemical constraints on the inventory of light elements in the core of Mars. *Icarus, 315*, 69–78. [https://doi.org/10.1016/j.icarus.2018.06.023](https://doi.org/10.1016/j.icarus.2018.06.023)

Sverjensky, D. A., Harrison, B., & Azzolini, D. (2014). Water in the deep Earth: The dielectric constant and the solubilities of quartz and corundum to 60kb and 1200°C. *Geochimica et Cosmochimica Acta, 129*, 125–145. [https://doi.org/10.1016/j.gca.2013.12.019](https://doi.org/10.1016/j.gca.2013.12.019)

Tian, F., Kasting, J. F., & Solomon, S. C. (2009). Thermal escape of carbon from the early Martian atmosphere. *Geophysical Research Letters, 36*, L02205. [https://doi.org/10.1029/2008GL036513](https://doi.org/10.1029/2008GL036513)

Verba, C., O’Connor, W., Rush, G., Palandri, J., Reed, M., & Ideker, J. (2014). Geochemical alteration of simulated wellbores of CO₂ injection sites within the Illinois and Pasco Basins. *International Journal of Greenhouse Gas Control, 23*, 119–134. [https://doi.org/10.1016/j.ijggc.2014.01.015](https://doi.org/10.1016/j.ijggc.2014.01.015)

Walder, P., & Pelton, A. D. (2005). Thermodynamic modeling of the Fe-S system. *Journal of Phase Equilibria and Diffusion, 26*(1), 23–38. [https://doi.org/10.1007/s11669-005-0055-y](https://doi.org/10.1007/s11669-005-0055-y)

Warner, M. (2004). Free water and seismic refectionivity in the lower continental crust. *Journal of Geophysics and Engineering, 1*(1), 88–101. [https://doi.org/10.1088/1742-2132/1/1/012](https://doi.org/10.1088/1742-2132/1/1/012)

Wilson, C. R., Spiegelman, M., van Keken, P. E., & Hacker, B. R. (2014). Fluid flow in subduction zones: The role of solid rheology and compaction pressure. *Earth and Planetary Science Letters, 401*, 261–274. [https://doi.org/10.1016/j.epsl.2014.05.052](https://doi.org/10.1016/j.epsl.2014.05.052)

Wood, B. J., Li, J., & Shuhar, A. (2013). Carbon in the core: Its influence on the properties of core and mantle. *Reviews in Mineralogy and Geochemistry, 75*(1), 231–250. [https://doi.org/10.2138/rmg.2013.75.8](https://doi.org/10.2138/rmg.2013.75.8)

Zhang, H. (2003). Internal structure models and dynamical parameters of the Galilean satellites. *Celestial Mechanics and Dynamical Astronomy, 87*(1), 189–195. [https://doi.org/10.1023/A:1026188029324](https://doi.org/10.1023/A:1026188029324)

Zolensky, M., Barrett, R., & Browning, L. (1993). Mineralogy and composition of matrix and chondrule rims in carbonaceous chondrites. *Geochimica et Cosmochimica Acta, 57*(13), 3123–3148. [https://doi.org/10.1016/0016-7037(93)90298-b](https://doi.org/10.1016/0016-7037(93)90298-b)