Why Nature has made a choice of one time and three space coordinates?

N. Mankoč Borštnik

Department of Physics, University of Ljubljana, Jadranska 19, 1111, and Primorska Institute for Natural Sciences and Technology, C. Marežganskega upora 2, Koper 6000, Slovenia

H. B. Nielsen

Department of Physics, Niels Bohr Institute, Blegdamsvej 17,
Copenhagen, DK-2100

(October 23, 2018)

Abstract

We propose a possible answer to one of the most exciting open questions in physics and cosmology, that is the question why we seem to experience four-dimensional space-time with three ordinary and one time dimensions.

Making assumptions (such as particles being in first approximation massless) about the equations of motion, we argue for restrictions on the number of space and time dimensions. (Actually the Standard model predicts and experiments confirm that elementary particles are massless until interactions switch on masses.)

Accepting our explanation of the space-time signature and the number of dimensions would be a point supporting (further) the importance of the "internal space".

04.50.+h, 11.10.Kk,11.30.-j,12.10.-g
I. INTRODUCTION

There are many experiences, prejudices so deeply embedded in our language and way of thinking, and so strongly connected with the idea that we have just one time dimension, that they could be used as arguments for such an idea, like the argument that the ordering "before" and "after" makes sense presupposing that there is just one time dimension. However, all these concepts and prejudices and experiences do not constitute a genuine explanation of why we were placed into just such a world. The main point of the present work is to discuss a more microphysical explanation for features of the numbers of space and time dimensions \([1-17] \) by associating these numbers with properties of the equations - "equations of motion" - obeyed by the fields of the elementary particles, especially involving what we can call the "internal space", by which we mean the space of spins and charges and so that we can think of all the different particles, which are fermions - like quarks and leptons (and equivalently for bosons), as being different internal states of the same particle.

Theories of strings and membranes \([18]\) and Kaluza-Klein-like theories \([19]\) (as well as the approach by one of us \([20, 22]\), which unifies spins and charges in the space of anticommuting coordinates and predicts the connection between the space-time dimension and the internal degrees of freedom) predict initially more-than-four-dimensional space-time. If this is true, how and when did our Universe in its evolution choose the Minkowski metric, and when and in which way did it "decide" to ("mostly") manifest in four-dimensional space-time out of a \(d \)-dimensional one, which could be any, even infinite?

i) In this paper we answer the question of how the internal space may result to restrictions on the choice of the signature of space-time in any \(d \)-dimensional space, assuming the Hermiticity of the equations of motion operator, its linearity in the \(d \)-momentum \(p^a \) and the irreducibility of the Lorentz group representation in the internal space. All these assumptions seem very mild: In standard quantum mechanics, Hermiticity of the Hamiltonian and thereby of the equations of motion operator guarantees a real value for the energy, unitarity in the time-development of a system, and conservation of probability. It has been
proven \cite{23} that in even-dimensional spaces of any d all massless particles, respecting the Poincaré symmetry, obey equations of motion, which are linear in the p^a-momentum. The authors of ref. \cite{24} inform us that, starting from conformal symmetry, they came to the same conclusion for any dimension. The requirement that solutions of the equations of motion operator should be a linear superposition of the minimum number of basic states of the Lorentz group possible leads to a choice of operators which the operator of equations of motion should commute with. We select the operator of handedness, which is the Casimir of the Lorentz group in any dimensional space. Massless particles, obeying the equations of motion, are in any dimensional space either left- or right-handed. (Since coefficients are complex numbers, we shall call these representations complex representations.) Handedness seems to play a fundamental role in Nature: one of the assumptions of the Standard model, dictated by experiment, is that only massless spinors of left handedness carry a weak charge, while right handed fermions are weak chargeless. Because of this property, spinors remain almost massless on the Planck scale. In other words, the Dirac equation for massive particles can only have solutions within the space of left- and right-handed states. According to the Standard model, spinors receive small (observable) masses by interacting with the Higgs fields, which (by assumption) give them masses of the order of only the weak scale. This is known as the mass protection mechanism.

ii) In this paper we draw attention to a fascinating property that the mass protection mechanism only occurs in even-dimensional spaces. In odd-dimensional spaces, solutions of equations of motion span the same space for massless particles as they do for massive particles. Therefore, the procedure of excluding part of the Hilbert space does not work, and accordingly no mass protection mechanism can occur. All spinors could accordingly acquire large masses - say the Planck mass. No interaction with for instance the Higgs is required to assure them a mass. But we also have no reason to believe that this mass is a very small one in comparison with the Planck scale. Spinors in odd dimensional spaces could be invisible at "low" - experimentally accessible - energies.

iii) In this paper we argue that the stability of the equations of motion against a possible
break of the Lorentz invariance privileges four-dimensional space (in addition to the two-dimensional one). (We are not saying that other dimensions are excluded.)

We consider only free (non interacting) fields. Apart from momentum degrees of freedom, we also consider spin degrees of freedom and, for the sake of simplicity and transparency of presentation of our proofs and of the consequences of the proofs, we treat only spinors. For a general case of any spin, the reader should see [4]. We would however like to point out that, using the Bargmann-Wigner prescription [25], any spin state can be constructed out of spinor states and accordingly all the requirements regarding the signature of the metric presented for spinors should be in agreement with the requirements of all other spin particles.

The "working hypotheses" of the paper is that the fundamental space is d-dimensional, with d being any integer number, perhaps even infinite. In this paper we seek arguments which might have "led" Nature to "end up" with ("mostly", that is effectively,) four-dimensional space-time, with one time and three space dimensions. We do not discuss any mechanism which would lead from some large (or even infinite) dimension down to four dimensions. Such a mechanism is certainly needed in theories like string theories and Kaluza-Klein theories, as well as in the approach taken by one of us, which assumes that spins in d-dimensional space manifest in four-dimensional subspace as spin and all the known charges. We also do not claim that the proposed assumptions and heir argued consequences are the only reasons for the "chosen" dimension and signature of our observed world. But since the assumptions are rather mild ones, we expect the conclusions of this paper to be valid for any theory. Although we treat only massless noninteracting fields (of any spin), we expect that interactions among fields will not alter the conclusions, at least not for those types of interaction which can be switched on perturbatively. Further assumptions could, of course, limit further the allowed signatures.
II. EQUATIONS OF MOTION

Massless spinors, if they preserve the Poincaré symmetry, obey equations of motion, which are linear in the momentum d-vector as proven in refs. [23,24]. We shall use somewhat generalized equations of motion of the type

$$ (f^a(S^{cd}) p_a) |\psi> = 0, \tag{1} $$

with $a = 0, 1, 2, 3, 5, \cdots, d$ where f^a is for each a any function of the generators of the Lorentz transformations S^{ab} in the internal space of spin degrees of freedom.

The total generators of the Lorentz transformations would read $M^{ab} = L^{ab} + S^{ab}$, with $L^{ab} = x^a p^b - x^b p^a$, which is the generator of the Lorentz transformations in ordinary space. In order for the equations of motion operator to be linear in p^a, f^a can depend only on S^{ab}, that is on ”internal space”. Both L^{ab} and S^{ab}, as well as their sum, fulfil the Lorentz algebra:

$$ [M^{ab}, M^{cd}] = -i(\eta^{ac} M^{bd} + \eta^{bd} M^{ac} - \eta^{ad} M^{bc} - \eta^{bc} M^{ad}), $$

where $\eta^{ab} = \text{diag}\{\eta^{00}, \eta^{11}, \cdots, \eta^{dd}\}$ is a (not yet specified) metric tensor with $(\eta^{aa})^2 = 1$, for each a. (In four-dimensional space the two well known linear equations of motion in the momentum for free fields are the Dirac (or equivalently the Weyl) equation for spin $\frac{1}{2}$ fermions (spinors) and the Maxwell equations for gauge Yang-Mills of spin 1 fields.)

Since this paper considers only spinors, the generators S^{ab}, which for spinors also fulfill the equation $\{S^{ab}, S^{ac}\} = \frac{1}{2} \eta^{aa} \eta^{bc}$, can be expressed in terms of the operators γ^a, $a = 0, 1, 2, 3, 5, \cdots, d$, (operating again in ”internal space”) fulfilling the Clifford algebra

$$ \{\gamma^a, \gamma^b\}_+ := \gamma^a \gamma^b + \gamma^b \gamma^a = 2\eta^{ab} \tag{2} $$

as follows

$$ S^{ab} = \frac{i}{4} [\gamma^a, \gamma^b]_- := \frac{i}{2} \{\gamma^a \gamma^b - \eta^{ab}\}. \tag{3} $$

The generalized linear equations can then be written in the form

$$ \mathcal{D}(\gamma^b) \gamma^a p_a = 0. \tag{4} $$
(The reader should recall that the Dirac equation for massless spinors is usually written in the form $\gamma^a p_a = 0$.) The Hermiticity condition reads

$$\gamma^a (D(\gamma^b))^\dagger = D(\gamma^b) \gamma^a,$$

since the operator p^a is a Hermitian one, if the usual inner product in ordinary space is assumed. The requirement of Hermiticity without allowing for an extra internal space matrix $D(\gamma^b)$ would be too strong a requirement. Performing Hermitian conjugation of Eq. (2) and requiring that the inner product of a ket $\gamma^a |\psi> \rangle$ and a bra $(\gamma^a |\psi> \rangle)^\dagger$ has to have the same value as $<\psi|\psi>$ which leads to the unitarity condition $\gamma^a \gamma^a = I$, for any a, we find

$$\gamma^a \gamma^a = \eta^{aa} \gamma^a$$

and accordingly $S_{ab} = \eta^{aa} \eta^{bb} S_{ab}$. According to Eqs. (3) the Hermiticity condition for the equations of motion operator reads

$$(D(\gamma^b))^\dagger = \gamma^a D(\gamma^b) \gamma^a,$$

for each a.

We define, according to refs. [21,23], the operator Γ, which in even-dimensional spaces determines the handedness of states for any spin. In this paper we shall express the operator of handedness in terms of γ^a’s, since we treat only spinors (Γ is for $d = 4$ and for spinors known as γ^5). It has then meaning for any dimensional space

$$\Gamma = \prod_a \left(\sqrt{\eta^{aa}} \gamma^a \right) \cdot \begin{cases} (i)^{d/2}, & \text{for } d \text{ even} \\ (i)^{d-1/2}, & \text{for } d \text{ odd} \end{cases}$$

and the product of γ^a’s is assumed to be in the rising order with respect to index a. We chose the phase such that the operator Γ is Hermitian and its square is the unit operator

$$\Gamma^+ = \Gamma, \quad \Gamma^2 = I.$$

We then easily find that

$$\{\Gamma, \gamma^a\}_{\pm} = \begin{cases} 0, & \text{for + sign and } d \text{ even} \\ 0, & \text{for - sign and } d \text{ odd} \end{cases}$$

and that Γ is a Casimir of the Lorentz group, i.e. $\{\Gamma, S_{ab}\}_- = 0$.
Eqs. (4) and (7) concern the linearity and Hermiticity requirements for the operator of equations of motion. Only the reducibility has, according to our assumptions, yet to be taken into account. We accordingly require, that the operator of equations of motion and the operator of handedness commute

\[\{ \Gamma, D\gamma^a \}_{-} = \{ \Gamma, D\gamma^a \}_{-} = 0. \] \hspace{1cm} (11)

The last equation has to be fulfilled for each \(a \). We multiply this equation from the left by \(\Gamma \) and take into account of the properties of \(\Gamma \) (\(\Gamma^+ = \Gamma \) and \(\Gamma^2 = I \), Eq.(9)). It follows then, if we also take into account Eqs.(10) (which states that in even-dimensional spaces \(\Gamma \) anticommutes with \(\gamma^a \)'s, while in odd-dimensional spaces they commute) that

\[D\gamma^a + \Gamma^{-1}D\Gamma\gamma^a = 0, \] \hspace{0.5cm} for \(d \) even,

\[D\gamma^a - D\gamma^a = 0, \] \hspace{0.5cm} for \(d \) odd. \hspace{1cm} (12)

We conclude that in odd-dimensional spaces the reducibility requirement leads to no limitation whatsoever on the signature of the metric. We find that \(\Gamma^{-1}D\Gamma = (\gamma^d)^{-1}(\gamma^{d-1})^{-1}\ldots(\gamma^0)^{-1}D\gamma^0\ldots\gamma^{d-1}\gamma^d \). Using (9) and its Hermitean conjugate (\(D = \gamma^aD^a\gamma^a \)) we find by repetition that \(\Gamma^{-1}D\Gamma = D\prod_a \eta^{aa} \). In order to fulfil Eq.(12) for even \(d \) it follows that \(\prod_a \eta^{aa} = -1 \).

In even-dimensional spaces the requirement is severe: Solutions of equations of motion can only have well defined handedness in spaces of odd-time and odd-space signatures. In a four-dimensional space it means that only one time and three space signature is possible (or the reverse, although this is not important, as the overall sign is not important).

In four dimensions our result, \(q \) being odd, means that we must have either 3 time dimensions and one space dimension or, as we know, we have the reverse.
IV. MASSLESS AND MASSIVE SOLUTIONS AND THE MASS PROTECTION MECHANISM

We shall prove that the so called mass protection mechanism occurs only in even-dimensional spaces. To prove this, we look at the properties w.r.t. irreducibility of an equation of motion operator with a mass term as follows

\[(\gamma^a p_a - m)|\psi> = 0.\] \hspace{1cm} (13)

This is for \(d\) equal to four and for the Minkowski metric the well-known Dirac equation, with an operator which is not Hermitean. If we want the operator to be Hermitean, we multiply it by an appropriate matrix \(D\) as above (which in the Dirac equation case is \(\gamma^0\)).

We assume the equation to be valid for any dimension \(d\). Of course, for the mass-protection discussion we cannot retain the assumption of linearity, since the mass term is obviously not linear in momentum. However, we do insist on the irreducibility assumption. Let us check whether the irreducibility requirement is at all possible with the mass term added. We use the fact that irreducible representations are obtained for the Dirac equation by projection with matrices \(\frac{1}{2}(1 \pm \Gamma)\) where \(\Gamma\) is given by (8). I.e. we restrict the state space of the Dirac equation for any \(d\) and any signature to those states that obey

\[D(\gamma^a p_a - m)\frac{1}{2}(1 - \Gamma)|\psi> = 0,\] \hspace{1cm} (14)

\[\Gamma|\psi> = |\psi> \text{ say, so that } |\psi> = \frac{1}{2}(1 - \Gamma)|\psi>.

For the projected Dirac equation to be irreducible, we must require that the equation (14) maps into the same subspace to which \(\frac{1}{2}(1 - \Gamma)|\psi>\) belongs. The requirement of these operators mapping onto the space projected on by \(\frac{1}{2}(1 - \Gamma)\) can be expressed by the requirement that projection by the projection operator \(\frac{1}{2}(1 + \Gamma)\) on the orthogonal space will give zero regardless of the state \(|\psi>\). We accordingly require

\[\frac{1}{2}(1 + \Gamma)D(\gamma^a p_a - m)\frac{1}{2}(1 - \Gamma) = 0\] \hspace{1cm} (15)
for all values of p_a, on the operator level (which means that Eq.(15) is not the equation of motion here) which leads to

$$[\Gamma, Dm] = 0 \quad \text{and} \quad [\Gamma, D\gamma^a] = 0. \quad (16)$$

Combining these two equations with Eqs.(10) we see that it is impossible to be satisfied in even dimensions d. In even dimensions the requirement of irreducibility prevents the mass term to occur since the only way out is to take the mass $m = 0$. In the case of odd dimensions, any mass is allowed even after Γ-projection. This prevention of mass - in even d - is what is called mass protection, in the sense that a theory if is arranged so that its symmetries (charges etc.) enforce only the Γ-projected state space to be used then that theory can explain why the particles in question are massless, since a theory does not allow solutions of the equations of motion for massive spinors to exist, because the part of the space which has opposite handedness is missing. In the Standard model [26] the Weinberg-Salam-Higgs field at the end gives (by “hand”) most fermions a “little” mass by breaking the gauge symmetries which caused the mass protection.

In odd dimensions d, however, it is not possible to prevent spinors from acquiring a mass, because non-zero mass is allowed even when the Γ-projection is performed: the massive and massless Dirac equation have the solution within the same space of states. (Only the coefficients change but none of the states disappear.) Taking the point of view that all parameters, say the mass, not forbidden are present with a scale of size given by an order of magnitude of a fundamental scale assumed to be very big - say the Planck scale - compared to energies per particle accessible in practice, we conclude that in odd dimensions all spin one half particles will for practical purposes acquire such large masses that they effectively can not be observed. **So odd dimensions deviate from even ones by typically having all the masses of the fundamental scale, while in even dimensions the mass protection mechanism is possible.**
V. STABILITY OF THE EQUATIONS OF MOTION LEADING TO
DIMENSIONS BEING AT MOST 4

We shall add to our assumptions about the equations of motion operator in sections (III) and (II) the requirement that the equations of motion should be stable in the sense that if we infinitesimally destroy the Lorentz invariance by adding a small extra term still obeying the other assumptions, this term would in reality not disturb the equations of motion in the following sense: We could transform it away by shifting the coordinatization of the momentum p_a and changing the metric tensor η^{ab} into a new set of values. This argumentation is really a rewriting of the old argument of "Random Dynamics" of one of us [8].

Let us in fact imagine that the equations of motion (4) with abstract notation $f^a = D\gamma^a$ are modified slightly from $f^a p_a |\psi> = 0$ into

$$(f^a + f'^a) p_a |\psi> = 0.$$ (17)

Can we then pretend that this new equation is indeed just of the same form as before, but with slightly changed notation for the way one expands the momentum on the basis vectors and the metric tensor g^{ab} known from general relativity? In other words, can we by changing the basis for the d-momentum p_a, write the modified equations in a slightly more general form

$$g^{ab} f_a p_b |\psi> = 0.$$ (18)

By counting degrees of freedom, we see that this could only be the case for a general modification term $f'^a p_a$ provided we have at most 4 dimensions, i.e. it is at least needed that $d \leq 4$.

This counting goes as follows: the number of degrees of freedom of the extra term $f'^a p_a$ is that of d matrices with the number of columns and rows equal to the dimension of the irreducible representation of the "Weyl", which is $2^{d/2-1}$ for an even dimension d and $2^{(d-1)/2}$
for an odd dimension d. Altogether, this means that the number of real parameters in the modification is $d \cdot 2^{d-2}$ for even and $d \cdot 2^{d-1}$ for odd d. These modification parameters should be compensated by $d(d+1)/2$ parameters in the metric tensor g^{ab} (or η^{ab}) and $d(d-1)/2$ parameters associated with making a Lorentz transformation of the basis for the d-momentum p_a. We need accordingly the inequality

$$d(d+1)/2 + d(d-1)/2 \geq d \cdot 2^{d-2}$$

(19)

for even d, and

$$d(d+1)/2 + d(d-1)/2 \geq d \cdot 2^{d-1}$$

(20)

for odd d. These equations reduce to $d \geq 2^{d-2}$ and $d \geq 2^{d-1}$ for even and odd d respectively. Thus we must for even d have $d \leq 4$, while for odd d only $d = 1$ satisfies the inequality.

Accordingly, this stability requirement can only work for $d = 1, 2$ and 4 dimensions.

VI. CONCLUSION

In this paper we sought arguments which might have ”guided” Nature to ”mostly” (effectively) manifest in four-dimensional ordinary space, with one time and three space coordinates, in addition to the ”internal space” of spins and charges. We argued that it is the ”internal space” which forced Nature to ”make a choice” of d equal four, if rather mild assumptions about the properties of the operator of equations of motion for spinors are the meaningful ones we believe they are. (Further assumptions would further limit possible signatures in d-dimensional space. While a somewhat relaxed stability assumption could tell, for example, why spin degrees of freedom in higher than four dimensions might demonstrate as (conserved) charges in four-dimensional space-time.) These mild assumptions lead to various predictions concerning the space-time dimensions. The five assumptions which we used were:

1) Linearity in momentum,
2) Hermiticity,

3) Irreducibility,

4) Mass protection,

5) Stability.

We proved that, if we apply assumptions 1), 2) and 3) in even-dimensional spaces only odd-time and odd-space dimensions are possible, while in odd-dimensional spaces all signatures are possible. However, while in even-dimensional spaces limitation to only one irreducible representation, for example left handedness, enables fermions to remain massless, this is not true for odd-dimensional spaces, since the solutions for a massless and a massive case span the same space. So applying assumption 4) we exclude an odd number of space plus time dimensions.

Applying assumption 1), 2), 3) and 5), we concluded that the total dimension should be 1, 2, or 4. Taking account of assumption 4), we exclude $d = 1$ and using the odd time and odd space dimensions we finally obtain from all our five assumptions only the time-space dimensions $1 + 1$, or $1 + 3$ (or opposite). This is thus close to explaining the experimental numbers $1 + 3$.

We understand the time-space dimension $1 + 3$ as an effective dimension.

Further studies along these lines might involve consideration of different kinds of representations, like Majoranas (the paper by the two authors of this paper, entitled ”The internal space is making the choice of the signature of space-time”, which also considers Majoranas, is almost ready for publication), which are representations with real coefficients (i.e. using the field of real numbers). It turns, however, out that these kinds of representations have no mass protection mechanism either, and the corresponding fields are accordingly invisible at low energies.

This paper treats only free (non interacting) fields of any spin in d-dimensional space of any signature and any d. However, we expect that interactions among fields will not alter
the conclusions of these paper, that is they do not result in additional limitations on possible signatures, if only those types of interactions which can be switched on perturbatively are assumed.

Allowing any dimension d with ordinary and spin degrees of freedom, we only look for properties of equations of motion, which could possibly be responsible for four ordinary effective (detectable) dimensions - in addition to "internal space". We did not consider mechanisms, which could have brought d ordinary (and internal) dimensions to four effective dimensions, or the possibility (proposed by the approach of one of the authors [20–22] of this paper) that spins of higher than four dimensions are responsible for charges in the effective $(1 + 3)$ dimension. We also do not comment on where the limitation that only states of one handedness (which leads to mass protection mechanism for even-dimensional spaces) could come from.

(We have here by the number of times meant the number of dimensions with a certain signature of the metric. But there is another way in which one could define something that with some right could be called the number of time dimensions. One could namely consider more than one equation of motion per field component. By in the present article considering only one equation of motion per field component, we have in this different sense assumed just one time dimension. From that point of view one could even say that we put in a different meaning that here we have just one and thus especially an odd number of times.)

Yet the results of our conclusions, if the (rather mild) assumptions can be taken seriously (which we believe they should), are conclusive. They are also restrictive for theories with additional degrees of freedom, such as string theories and Kaluza-Klein theories.

VII. ACKNOWLEDGEMENT

This work was supported by Ministry of Education, Science and Sport of Slovenia and Ministry of Science of Denmark. The authors would like to thank to the communicator and his referees for stimulating suggestions to further clarify the paper.
REFERENCES

[1] J. Hartle, and S.W. Hawking, *Phys. Rev.* D 28, 2960 (1983).

[2] R. Bousso, and S.W. Hawking, “Lorentzian Condition in Quantum Gravity”, [hep-th/9807148](http://arxiv.org/abs/hep-th/9807148) (1998).

[3] M. Tegmark, “On dimensionality of spacetime”, [gr-qc/9702052](http://arxiv.org/abs/gr-qc/9702052), *Class. Quan. Grav.* 14, L69-L75 (1997).

[4] N.S. Mankoč Borštnik, and H.B. Nielsen, “Why odd-space and odd-time dimensions in even-dimensional spaces”, *Phys. Lett.* B 468, 314-321(2000).

[5] H. B. Nielsen, “Dual Strings - Section 6. Catastrophe Theory Programme” in *Fundamentals of Quark Models*, eds. Barbour, I. M. & Davies, A. T. in *Scottish Universities Summer School in Physics*, pp. 528-543 (1976).

[6] H. B. Nielsen, in *Gauge Theories of the Eighties*, eds. Raitio, R. & Lindfors, J. (Springer Verlag), p. 288 (1983).

[7] H. B. Nielsen, D. L. Bennett, and N. Brene, in *Recent Developments in Quantum Field Theory*, eds. Ambjørn,J., Duurhus, B. & Petersen, J. L. (Elsevier Science Publishers), p. 253 (1985).

[8] H. B. Nielsen, and S. E. Rugh, “Weyl particles, weak interactions and origin of geometry”, *Nucl. Phys. B (Proc. Suppl.*) 29 B, C, 200-246 (1992).

[9] H. B. Nielsen, and S. E. Rugh, “Why do we have 3+1 dimensions”, [hep-th/9407011](http://arxiv.org/abs/hep-th/9407011) (1994) , Contribution to Wendisch-Rietz *Three-dimensional space-time meeting*, ed. (1992) by Dörfel, B. & Wieczorek, W..

[10] J. Wheeler, ”Law without Law”, in *Quantum Theory of Measurement*, eds. Wheeler, J. A. & Zurek, W. R. (Princeton University Press), p. 182 (1983).

[11] G. F. Chew, in *Properties of Fundamental Interactions*, ed. Zichichi, E. (Editrice Com-
[12] C. H. Woo, “Mission Impossible? A look at Past Setbacks in the Search for Elementary Matter and for Universal Symmetries”, (Zentrum für Interdisziplinäre Forschung, University of Bielefeld Preprint. For a recent text on Random Dynamics see: Nicolai Stillits, Cand. scient. thesis, Niels Bohr Institute, Copenhagen) (1999).

[13] C. D. Froggatt, and H. B. Nielsen, “Origin of Symmetries” (World Scientific Publishing Co.Pte.Ltd., PO Box 128, Farrar Road, Singapore 9128, ISBN 9971-96-630-1,ISBN 9971-96-631-X (pbk)) (1996).

[14] J. Greensite, “Dynamical Origin of the Lorentzian Signature of Spacetime”, Phys. Lett. B300, 34-37 (1993).

[15] A. Carlini, and J. Greensite, “Why is Space-Time Lorentzian?”, Phys. Rev. D 49, 866-878 (1994).

[16] S. Weinberg, in Proc.of the XXIII Int. Conf. on High Energy Physics, Berkeley, (World Scientific,1987), p. 217 (1986).

[17] R. Penrose, and W. Rindler, “Spinors and space-time” (Cambridge University Press; the remark referred to is on page 235 between formula (4.6.32) and (4.6.33)) (1986).

[18] M. Kaku, in Introduction to Superstrings (Springer-Verlag, New York) (1998).

[19] H. C. Li, ed. An Introduction to Kaluza-Klein Theories (Word Scientific Publishing, Singapur) (1984).

[20] N. S. Mankoč Borštnik, “Spin connection as a superpartner of a vielbein” Phys. Lett. B 292, 25-29 (1992).

[21] N. S. Mankoč Borštnik, “Spinor and vector representations in four dimensional Grassmann space”, J. Math. Phys. 34, 3731-3745 (1993).

[22] N. S. Mankoč Borštnik, “Unification of spins and charges”, Int. J. Theor. Phys. 40,
315-337 (2001) and references therein.

[23] B. Gornik, and N. S. Mankoč Borštnik, “Linear equations of motion for massless particles of any spin in any even-dimensional spaces”, hep-th/0102067, hep-th/0102008 (2001).

[24] W. Siegel, and B. Zwiebach, “Gauge string fields from light cone”, Nucl. Phys. B 282, 125-141 (1987).

[25] V. Bargmann, and E. P. Wigner, Proc. Nat. Acad. Sci. (USA), 211 (1934).

[26] T. P. Cheng and L. F. Li in Gauge Theories of Elementary Particle Physics (Oxford University Press, Oxford 1986).