Hypnotic drug risks of mortality, infection, depression, and cancer: but lack of benefit [version 3; peer review: 2 approved]

Daniel F. Kripke
University of California, San Diego, La Jolla, CA, 92037-2226, USA

Abstract
This is a review of hypnotic drug risks and benefits. Almost every month, new information appears about the risks of hypnotics (sleeping pills). The most important risks of hypnotics include excess mortality (especially overdose deaths, quiet deaths at night, and suicides), infections, cancer, depression, automobile crashes, falls, other accidents, and hypnotic-withdrawal insomnia. Short-term use of one-two prescriptions is associated with even greater risk per dose than long-term use. Hypnotics have usually been prescribed without approved indication, most often with specific contraindications, but even when indicated, there is little or no benefit. The recommended doses objectively increase sleep little if at all, daytime performance is often made worse (not better) and the lack of general health benefits is commonly misrepresented in advertising. Treatments such as the cognitive behavioral treatment of insomnia and bright light treatment of circadian rhythm disorders offer safer and more effective alternative approaches to insomnia.

Keywords
hypnotics and sedatives, mortality, cancer, infection, depression, insomnia, sleep

Open Peer Review
Invited Reviewers
1
2

version 3
(-update)
12 Nov 2018

version 2
(-update)
17 Mar 2017

version 1
19 May 2016

1. Jerome M. Siegel, University of California, Los Angeles, Los Angeles, USA
2. Barbara A. Phillips, University of Kentucky, Lexington, USA

Any reports and responses or comments on the article can be found at the end of the article.
self-injury deaths would be estimated well above 72,000 for
have been accidental or cause-undetermined are higher
2017–2018
opioid overdose deaths reported in 2014 reached 47,055, a 137%
under-reported. Despite such underestimation, U.S. drug and
evaluated by coroners and Medical Examiners. Thus, it is
The overdose epidemic
suicides and homicides.
ics are related to serious illnesses and premature deaths from
cancer, serious infections, mood disorders, accidental injuries,
tory depression occur among patients never examined by coro
Examiners, attributed to respiratory arrests resulting from
“overdose.” However, it is likely that many deaths from respira
tory depression occur among patients never examined by coro
ners, especially when the death is caused by a combination of
hypnotics with other contributing factors, so that the lethal hyp
notic dosage may by itself have been within custom-made dos
ages ranges. In addition to respiratory depression, hypnotics
are related to serious illnesses and premature deaths from can
cancer, serious infections, mood disorders, accidental injuries,
suicides and homicides.

The overdose epidemic
Only a small fraction of U.S. deaths has been medically evalu
ated by coroners and Medical Examiners. Thus, it is
commonly assumed that overdose deaths have been grossly un
reported. Despite such underestimation, U.S. drug and opio
d overdose deaths reported in 2014 reached 47,055, a 137%
crease since 2000, and rapidly increased to 72,000 per year in
2017–2018. Self-injury deaths including overdoses that might
have been accidental or cause-undetermined are higher, so total
self-injury deaths would be estimated well above 72,000 for
2018. U.S. use of hypnotics dramatically increased over most of
the same interval until about 2012 but then have subsequently
decreased.

Available death certificate reports seem unclear, but perhaps
one third of death certificates listing overdose with an opioid
as a cause of death also lists a benzodiazepine, Z, hypnotic, or
barbiturate as a cause of death (retrieved from CDC Wonder).
Such death certificate data are known to underestimate drug-inv
volvement, due to insufficient assays done and insensitivity of
assays when blood is not frozen soon after death. In about half
of overdose reports, the drug causing death has been unspecified.
A very recent study combining Medical Examiner toxicity
reports with prescription records suggested that 76% of over
dose patients had a benzodiazepine agonist prescription: e.g., one
quarter of the patients had a prescription for the hypnotic
zolpidem. Some older studies are consistent with these high
estimates of combination overdoses. An opioid prescription
is more likely to lead to overdose when a hypnotic is also prescribed.
Indeed, among women who had received an opioid prescrip
tion, the added overdose risk of taking high-dose benzodiazepine
or zolpidem was comparable to the risk of high-dose opioid.
It appears that some of the hazard associated with zolpidem
was attenuated when confounding depression was included in
the statistical adjustment; however, since hypnotics cause depression
(see below), hypnotics would seem indirectly causal for much of
the depression-related excess hazard. There have also been sever
several thousand yearly reported overdoses involving a hyp
notic in which an opioid was not involved. With both opioid and
other-drug poisoning increasing, so great is the recent increase
in overdose and suicide deaths that they have lowered overall life
expectancy in much of the U.S. adult population. Overdoses kill
more Americans than automobile accidents or murders. On
August 31, 2016, the FDA announced “boxed warnings” about
the lethality of combinations of opiates and benzodiazepine
agonists including benzodiazepine hypnotics.

Aside from overdose deaths, benzodiazepines were involved in
a comparably increasing number of emergency room visits over
a similar time interval, and over half of these also involved opio
ids, alcohol, or all three in combination. Combined overdoses of
opiates and benzodiazepine agonists had more severe out
comes. Suicides from all causes per capita have been increasing,
particularly among women, and overdoses from unspecified
drugs have been increasing, particularly since 2007, at which
time generic zolpidem became available, increasing zolpidem
prescribing. Hypnotics may increase suicide by increasing
depression, impairing judgement, and creating behavioral confu
sion (see below), as well as through pharmacologic overdose.

There is some evidence that increasing hypnotic use is
epidemiologically associated with the social despair and under
employment similar to that associated with the increasing opioid
overdose epidemic. This despair is linked to depressed mood,
sleep complaints, weakness, and poor motor coordination.

Forty-six epidemiologic studies of mortality
Of 46 epidemiologic studies that provided comparable risk ratios
for mortality associated with hypnotics, 43 found that hypnotics

Introduction
This is the third update and expansion of scientific review pre
sented October 26, 2015 to the Commissioner of the Food and
Drug Administration (United States FDA) as part B of Petition
FDA-2015-P-3959. That petition is accessible at http://www.
regulations.gov/#/docketDetail?D=FDA-2015-P-3959 along with
peer Comments responding to that Petition. Almost every month,
new information about the risks of hypnotics (sleeping pills)
appears.

Risks of hypnotic drugs
Hypnotic drugs increase all-cause mortality
Use of hypnotic drugs is associated prospectively with a greatly
increased risk of all-cause mortality. Some of this mortality has
been documented as deaths caused by hypnotics by Medical Examiners,
attributed to respiratory arrests resulting from
“overdose.” However, it is likely that many deaths from respira
tory depression occur among patients never examined by coro
ners, especially when the death is caused by a combination of
hypnotics with other contributing factors, so that the lethal hyp
notic dosage may by itself have been within custom-made dos
ages ranges. In addition to respiratory depression, hypnotics
are related to serious illnesses and premature deaths from can
cancer, serious infections, mood disorders, accidental injuries,
suicides and homicides.

UPDATE Updates from Version 2
This update adds new findings about the accelerating overdose epid
emic that is suddenly reducing U.S. life expectancy. The
overdose role of hypnotics and other benzodiazepine agonists
in combination with opioids is further reviewed. Evidence is
expanded that most hypnotic prescriptions are not indicated—
indeed, the great majority have been contraindicated or result
in misuse. The “weak” evidence relating minimal benefit with
indicated hypnotics does not support over 90% of actual U.S.
ingestion, wherein the hypnotic was not indicated or rather
was contraindicated. For >90% of cases, there seems to have
been no scientific evidence of benefit. On the other hand,
the evidence of severe risks appears to apply to all hypnotic
utilization whether or not given for an approved indication.
Evolving concern with hypnotic risks provides many new studies
for this review, including four additional large epidemiologic
analyses relating hypnotic prescriptions to excess mortality and
two complementary meta-analyses demonstrating associations of
hypnotic prescriptions to specific cancers. Meanwhile, the data
base has grown demonstrating superior results with cognitive
-behavioral therapy of insomnia and with bright light treatment.

See referee reports
were associated with excess mortality, as listed in Appendix A. In addition, a 44th study of stroke patients showed elevated mortality among those receiving hypnotics and various other psychotropic drugs18. One exception was an early small study by Merlo et al. that nevertheless found hypnotics associated with cancer deaths39. Another partial exception was a study from Taiwan that found benzodiazepine hypnotics associated with significant excess mortality, but found zolpidem 10 mg associated with significantly reduced mortality in adjusted models, despite a significantly-increased unadjusted mortality risk for zolpidem and a significantly-increased adjusted risk of cancer mortality for zolpidem30. In a comment to this report appearing with it on the internet, I have questioned the statistical methods of adjusting zolpidem risks30. A large study of benzodiazepine use and mortality was not included because it was not focused on hypnotics, specifically excluded nonbenzodiazepine “Z” drugs such as zolpidem, and failed to compare drug use of cases and controls during follow-ups31.

Only that one of the 46 epidemiologic studies of hypnotic drugs reported any association with improved patient survival, and that one only by relying on questionable statistical adjustments39. None of the other 45 studies found hypnotic drug risk ratios significantly less than 1.0. That is, in 45 studies there was no evidence that hypnotics ever benefit patient survival. To find 44 of 46 studies showing a positive risk ratio was very highly significant, P<0.000001. Also, the evidence of association satisfied all nine Bradford Hill criteria for inferring causality32, though skepticism despite meeting these criteria may be warranted31. There remain questions concerning the magnitude of the causality. The randomized placebo-controlled trials I have suggested would help clarify the magnitude of hypnotic health impairment32.

Of the 46 epidemiologic studies, 35 individual studies reported statistically significant mortality odds ratios, risk ratios, or hazard ratios for hypnotics exceeding 1.0. All 22 studies reporting on samples of >14,000 people found significant mortality risks, but nine of 22 smaller studies found positive trends that were not significant. Most of the non-significant reports were among the earliest 15 published before 2006. Of studies analyzing follow-ups of 8 years or less, 23 of 27 studies reported a significant association, but of studies with longer follow-ups, only 13 of 17 studies observed significant mortality risks. This may suggest that during long prospective follow-ups, many patients initially taking hypnotics will discontinue hypnotic usage, whereas many controls not using hypnotics at prospective baseline may have begun using hypnotics during a long follow-up, so that the longer the follow-up, the more mixing of hypnotic-consuming and control groups becomes likely. Mixing weakens the risk-ratio contrasts observed. In long follow-ups, one is also studying the selected survivors of the more marked short-term risks that have been recently described34-36.

Most of the 46 studies reported mortality risk ratios of less than 1.5, but some of the highest quality studies reported among the highest risk ratios. Four large studies were particularly persuasive, as presented below.

The Geisinger Health System study
From electronic records of the Geisinger Health System in Eastern Pennsylvania, a sample of 34,205 patients was drawn with carefully controlled 1:2 matching of hypnotic users with non-user controls for age, gender, smoking, and various comorbidities. Compared to a reference hazard ratio of 1.0 for non-users of hypnotics, the fully-adjusted mortality hazard ratio for use of 0.4–18 hypnotic doses per year was 3.60 (2.92–4.44, 95% CI), for those using 18–132 doses per year, the hazard ratio was 4.43 (3.67–5.36), and for >132 doses per year, the hazard ratio was 5.32 (4.50–6.30)36. Each of these associations was significant with P<0.001. Sensitivity studies showed that little of the hypnotic-associated mortality could be explained by known confounders or use of hypnotics before commencement of the study. In this sample, prescriptions for each of the following drugs were found to significantly predict increased mortality with statistical significance: zolpidem, temazepam, eszopiclone, zaleplon, triazolam, flurazepam or quazepam, and barbiturates prescribed to induce sleep. This review is principally concerned with these popular hypnotics for which drug-specific mortality data are available. Barbiturates prescribed at night for sleep considered as a group had about the same empirical hazard ratios as the benzodiazepines and zolpidem, but the observed hazard ratio for eszopiclone was significantly higher than that of barbiturates, possibly biased by the shorter average follow-up intervals for this more-recently introduced drug36.

The Weich et al. study
In a sample of over 100,000 hypnotic users and matched controls from the representative British General Practice Research Database17, users of 1–30 defined daily doses (DDD) of hypnotics and anxiolytics within a year had fully adjusted dose-responsive mortality hazard ratios of 2.55 (2.42–2.69, 95% CI) for 1–30 DDD (defined daily doses in the first year); 3.78 (3.54–4.04) for 31–60 DDD, 4.19 (3.84–4.58) for DDD 61–90, and 4.51 (4.22–4.82) for DDD >90. Extensive full adjustment for potential confounders resulted in only very small and inconsistent decreases in the estimated hazard ratios, and many methodological details were focused on minimizing possibilities of confounding. Use of benzodiazepine hypnotics alone was associated with higher hazard ratios than use of “Z” hypnotics alone. These hazard ratios were remarkably similar to those from the Geisinger Health System, considering the many differences in drug characteristics, samples, design, confounder controls, and analyses. Note that as in the Geisinger Health System study, much of the mortality was associated with early deaths after limited doses of hypnotics, perhaps as little as one-two prescriptions filled or refilled.

Norwegian Pharmacy Database
A representative study of the Norwegian Pharmacy Database found that benzodiazepine-receptor-agonist use was associated with a mortality odds ratio of 2.30 (2.20–2.40)38. The authors argued that terminal illness caused an upturn in benzodiazepine-receptor agonist use shortly before death (which might be appropriate for hospice care), and therefore they argued that the increased benzodiazepine-agonist use among those who would die was demonstrated as a confound of terminal illness. To the
contrary, their data demonstrated an excess of benzodiazepine use even among those who would not die until 22 months or later, so the benzodiazepine use of this population was elevated before the terminal upturn in hypnotic usage that the authors had demonstrated. Also, the upturn in death-associated hypnotic use 6–10 months before subsequent death might be consistent with a causal lethal hazard resulting from only a few short months’ exposures to hypnotics. The Norwegian Pharmacy Database did not enable this study to identify terminal illnesses, to analyize comorbidities or to control for other confounders.

The Palmaro et al. study
In this large study, both French and British case-control samples were drawn from reasonably-representative national samples\(^29\). Results had many similarities to those of Weich et al.\(^27\) despite numerous differences in statistical design. Substantially lower overall hazard ratios were found in the French sample (not all significant after adjustment), perhaps because a large number of occasional users were included. An important finding was the much higher hazard ratios associated with the initial 3–6 months of hypnotics-benzodiazepines use, as high as 11.12 (95% CI, 9.91–12.47) for the 3-month analysis of the British sample. This sharpened the evidence, also noted in the three previous studies discussed, that although dose-response is observed over several years, much of the hypnotic-associated hazard is observed during the early months of usage after as little as one or two prescriptions.

It should be noted that Weich et al.\(^27\) and Palmaro et al.\(^24\) found significant hazard ratios associated with diazepam and other benzodiazepines that are not considered hypnotics (though tranquilizer benzodiazepines may often be used for sleep). These more modern data with better drug identification and measurements of prescriptions during follow-up must be considered more reliable, but neither “Valium” nor “Librium” had been associated with excess mortality in the previous large U.S. CPSII study\(^25\). One might argue that if diazepam has a different hazard from temazepam, for example, this specificity tends to bolster the evidence for causality with temazepam\(^30\). On the other hand, it would not be clear if the specificity is in the drug’s pharmaceutical effects, in its absorption and half-life, in its usual time of administration, in other aspects of frequency and dosage of administration, or in various associated confounders.

These epidemiologic studies had many limitations\(^32\). However, the limitations that would tend to bias the results towards underestimating the associations of hypnotics and mortality appeared more influential than those that would bias towards overestimation of the risks. In particular, studies with the most careful efforts to control for confounders found that such control made little difference in the estimated risk ratios, but the hazard ratios in these carefully-controlled studies tended to be higher. The risk ratios derived, like the studies themselves, were extremely heterogeneous, probably due to differences in the size, age, gender, and ethnicity of samples and their health status, the nature of the hypnotics studied, the accuracy with which the drugs examined and their dosages were known, the control variables available, and the duration of follow-up observations to ascertain mortality. Meta-analyses attempting to group 40 such heterogeneous studies would not be clarifying.

Short-term hypnotic use is unsafe
Data provided by Palmaro et al.\(^24\) and Chung et al.\(^25\) expanded the hints in the other large epidemiologic studies\(^10,26–28\) that short-term hypnotic use has surprisingly high risks: apparently short-term hypnotic use has higher risks than long-term usage on a per dose or per-unit-time basis. It is logical that for a patient with an “overdose” of common contributory factors such as aging, obesity, sleep apnea, alcohol overuse, and opiate use, even a single hypnotic dose could be lethal on the first night of consumption. Depending on the drug and the patient’s metabolic capacity, the hypnotic drug concentration in blood could increase for the first few consecutive nights of dosage, but eventually, developing tolerance might make each dose less risky among those who had survived the initial doses. There would continue to be deaths at a lower rate after tolerance develops because of hypnotic dose-escalation in response to tolerance, addition of other sedatives or opiates, especially-heavy pre-sleep alcohol consumption, body position, altitude, upper respiratory infections, and other contributing factors that could suddenly produce hypnotic lethality even after several years of steady consumption. In addition, new consumption of non-sedative drugs that impair liver drug metabolism and even foods such as grapefruit can suddenly make a patient more vulnerable to a customary dose. Understanding these considerations, limitation of hypnotic prescribing to a small number of doses or a single prescription cannot be considered safe.

Are insomnia and depression explanatory confounders?
Several reports carefully examined insomnia and depression as potential confounders of the association of hypnotics with mortality, finding that insomnia and depression could explain little if any of this association\(^7,21–33\). Note also that the evidence does not permit us to assume that causality between insomnia, depression, and hypnotic usage is a one-way path when contemplating confounder control, as there is reverse causality\(^34,35\).

Summary of mortality risk epidemiology
Altogether, the epidemiologic literature is conclusive that hypnotic use is associated with excess mortality. The better studies tend to show very high dose-response risk ratios suggesting association with a very large number of deaths. A supplement to the Geisinger Health System data showed that the risk ratios demonstrated lead to estimated U.S. deaths associated with hypnotic usage of the same order of magnitude as those associated with cigarette use, around 300,000–500,000 per year\(^26\). Evidence has been presented from several independent studies that most of these deaths cannot be attributed to known forms of confounding, and indeed, adjustment for the major confounders such as smoking and comorbidities produced little change in the estimated associations in most of these studies. Authors acknowledge that their estimates of adjusted association of hypnotics and mortality could be influenced by inadequate ascertainment of confounding factors or lack of control for a very large number of potential confounds with small or rare effects. It is because skeptics may question whether the strong associations of hypnotics with mortality are causal, despite data
fulfilling the Bradford Hill criteria for inferring causality, that large post-marketing controlled trials of vulnerable patients may still be needed.

**Hypnotic drugs have a long history of delayed recognition of mortality risks**

Despite its well-known risks of lethality, pentobarbital was nevertheless for decades a preferred hypnotic routinely prescribed for patients seeking sleep aids. In the U.S., today, the most notable human application of pentobarbital is in implementing the death sentence. Although it has been believed that the more modern benzodiazepine and benzodiazepine-receptor-agonist hypnotics that replaced barbiturates have higher acute margins of safety and therefore lower risks than pentobarbital, death certificate and epidemiologic data do not confirm that the newer drugs are significantly safer than barbiturates in routine use.

**Hypnotics produce an excess of deaths at night**

In the first Cancer Prevention Study, the percentage of deaths at night were found to be increased by 15.6% among those taking hypnotics (P=0.01), presumably due to respiratory suppression. In that study, the higher percentage of excess deaths at night associated with taking hypnotics accounted for about one third of total extra mortality associated with hypnotics. These nocturnal deaths were attributed to other causes, even though quiet respiratory suppression as a cause would explain the higher percentage of nocturnal deaths observed among those taking hypnotics than among controls.

The mechanisms of dangerous hypnotic respiratory depression are well-understood. The common hypnotics including barbiturates, benzodiazepines, the “Z” drugs and other benzodiazepine-receptor agonists bind to gamma-aminobutyric acid (GABA) receptors. These ligands-agonists alter the configuration of the receptors to allow negative chloride ions to more readily enter the neurons, where the chloride negatively hyperpolarizes the membranes and inhibits the neurons from firing. When they depress neural respiratory center firing, such drugs can acutely suppress respiration and in large enough dosage, or when individuals are particularly sensitive, may effectively arrest respiration, which leads rapidly to cardiac arrest and consequent death. Respiratory depression is accordingly, and accurately, listed among zolpidem’s warnings and precautions. The barbiturates and alcohol bind to different locations on GABA receptors, where they exert additive or perhaps synergistic respiratory depression effects which may add to benzodiazepine-agonist effects. An antihistamine, diphenhydramine, also binds to GABA receptors, but it does not seem known whether the actions of diphenhydramine on GABA receptors are similar to benzodiazepines. Opiates bind to mu (µ) opioid receptors on respiratory neurons, where they hyperpolarize neural membranes by opening potassium channels. Thus opiates, benzodiazepine agonists, and alcohol have additive or synergistic effects inhibiting respiratory neurons. Hypnotics inhibiting respiration would be expected to produce quiet deaths at night.

**Hypnotics can cause serious and potentially lethal infections**

A meta-analysis of available placebo-controlled randomized clinical trials showed that hypnotics cause infections (p<0.00001). Because these clinical trials randomized hypnotics versus placebos, the 44% higher infection rate among participants who were given hypnotics was proven to be caused by the hypnotics. Moreover, the lead manufacturer of zolpidem has acknowledged that zolpidem induces infections, based on that manufacturer’s own clinical trials data. The FDA also found dozens of reports of zolpidem-related severe infections among post-marketing reports.

Extensive epidemiologic data demonstrated that hypnotics are associated with increased pneumonia including fatal pneumonia. Likewise, triazolam was associated with pneumonia in Japan, perhaps attributable to increased aspiration. This finding was not confirmed by one Taiwanese study, but another Taiwanese study focusing on patients with sleep disturbances found that use of zolpidem was associated with 62%–91% increased hospitalizations for serious infections. A Taiwan study of patients with chronic obstructive pulmonary disease found highly significant odds ratios associated with benzodiazepine use of 9.3 for pneumonia, 10.4 for acute chronic obstructive pulmonary disease (COPD) exacerbation, 45.0 for acute respiratory failure, and 18.6 for cardiopulmonary arrest; whereas the odds ratios for “Z” drugs such as zolpidem were of almost similar magnitude. In confirmation, note in the Geisinger Health Study supplement, Table 7, mortality hazard ratios were likewise specifically elevated among hypnotics users with COPD. Other Taiwanese studies observed that use of zolpidem was associated with increased risk of pyogenic liver abscess, pancreatitis, and pyelonephritis, and zopiclone with pancreatitis and other conditions. British data showed that use of benzodiazepines and use of the hypnotic zopiclone (containing 50% eszopiclone as the active ingredient) were significantly related to asthma exacerbation and to all-cause mortality following exacerbation. This asthma study described some of the benzodiazepine-agonist-mediated impairments of immune surveillance. Perhaps as a consequence of post-hospital continuation of benzodiazepines and resultant infection, use of benzodiazepines was associated with 23% increased hospital readmission in North Carolina. In summary, epidemiologic evidence indicates that hypnotics not only cause the mild upper-respiratory infections most commonly reported in available controlled clinical trials, but also more severe and life-threatening infections. Since such infections demonstrably impair survival, infection is shown to be an additional mechanism by which hypnotics covertly increase mortality. The death certificate would be likely to list the infection as a cause of death but not the hypnotic which may have caused that infection.

Animal studies confirm that hypnotics can cause infections. A controlled trial demonstrated in mice that diazepam exacerbated Streptococcus pneumoniae infection through GABA receptors, partly explaining the underlying immune mechanisms. In mice,
diazepam also exacerbated cowpox, a viral infection. Midazolam impaired equine immune responses, attributable to effects on macrophage peripheral benzodiazepine receptors (now called TSPO). Evidence for involvement of the peripheral benzodiazepine receptor TSPO in immune impairment also came from specific test compounds in mice. Thus, hypnotic drugs cause increased risk of potentially lethal infections in controlled laboratory experiments.

**Hypnotics are associated with increased cancer**

**Human clinical trials strongly suggested that hypnotics cause cancer**

A compilation of randomized controlled trials of hypnotics showed 12 cancers or tumors of uncertain malignancy reported among participants randomized to a hypnotic, but none (zero) among those randomized to placebo (P=0.032, two-tailed Fisher Exact Test). When the FDA repeated this audit of their controlled trials data, they counted 13 cancers among those randomized to hypnotics versus none (zero) from placebo.

The controlled-trials compilations described above did not include indiplon, an unlicensed zaleplon-like benzodiazepine agonist and hypnotic, for which studies published subsequently indicated three incidental cancers in the indiplon groups and none in the randomized control group. The compilations did include cancers associated with the marketed hypnotic ramelteon that admittedly has a very different molecular mode of action from the benzodiazepine agonists.

The FDA was not persuaded that these human controlled-trials data required regulatory action, because most of the definite cancers were only minor skin cancers, because of heterogeneities in the data, and because the cancers were recognized after short randomization periods. Nevertheless, the controlled trials data suggested more than skin cancer. There were cancers of organs apart from skin noted among those treated with hypnotics but none among those randomized to placebo. Reconsideration of FDA’s deferral of action is now encouraged by new animal testing and new epidemiologic findings: over half of the research referenced in this manuscript appeared after that FDA deferral of action.

Because hypnotics seem to cause cancers to be suddenly recognized during short-term clinical trials, e.g., from one month to one year, the short-term effects are likely to arise more from hypnotics promoting progression of tiny pre-existing cancers rather than from effects upon microscopic cancer initiation. Such progression may cause a cancer death, whether or not the hypnotics initiated the cancer.

**Animal studies proved that hypnotics cause cancer**

The animal data in the FDA files for zolpidem indicated that increasing doses of zolpidem fed to rats resulted in increasing numbers of renal liposarcomas and lipomas combined (statistically significant). These data also showed increased thyroid follicular adenomas and carcinomas combined, and increased testicular interstitial cell adenomas, but the latter findings did not reach statistical significance. There were no such tumors—that is, zero tumors—in the placebo groups. These studies were too small, however, to have substantial power for these neoplasms. Expert FDA pharmacy examiners interpreted the data as suggesting an unknown degree of cancer risk for humans.

These experiments, which showed tumors resulting from feeding zolpidem to rats and suggested a dose-dependent relationship, apparently were never extended, clarified, published, or otherwise followed up.

Similarly, the animal data used for eszopiclone evaluation relied largely on old zopiclone data, since eszopiclone is roughly 50% of zopiclone, and eszopiclone is thought to be the active isomer. Along with other issues, the animal evidence that zopiclone caused animal cancers was of great enough concern to FDA’s scientists, that at least five FDA scientists and medical officers recommended against approval of eszopiclone. Tumors of the lung in rodents were of special concern; these findings also anticipated the human-specific association of hypnotics with lung and esophageal cancers, as will be described below. Despite the cancer evidence and the recommendations of its own experts, the FDA nevertheless approved eszopiclone as a hypnotic.

Since zolpidem and eszopiclone were evaluated, much additional evidence has appeared relating hypnotics to cancer. Amerio et al. systematically surveyed FDA records including much animal data not included in the earlier compilation of hypnotics trials and concluded that hypnotics and sedatives had among the most elevated cancer hazards among psychotropic drugs.

**In vitro studies strongly suggest that hypnotics cause cancer**

Hypnotics can damage chromosomes. Zopiclone, zaleplon, and ramelteon are clastogenic. Clastogens are potentially mutagenic agents that induce disruption or breakages of chromosomes. This process can lead to carcinogenesis. Cells that are not killed by the clastogenic effect may become transformed to cancer. One of the several formulations of zolpidem was said from *in vitro* studies not to be clastogenic. Other than the four drugs mentioned, no information has been located that other hypnotic drugs found to be associated with cancer have ever been adequately tested for clastogenicity. Clastogenicity is one mechanism by which hypnotics are likely to be carcinogenic, through either initiating cancers or promoting progression through additional mutations of cancer cells, or both.

The alterations of immune surveillance produced by benzodiazepine agonists, discussed in relation to infection above, suggest additional mechanisms by which cancer initiation and progression might be facilitated or disinhibited. Hypnotic-initiated increases in infections and consequent inflammation is another potential carcinogenic mechanism. These animal-demonstrated and *in vitro* mechanisms for carcinogenicity of hypnotics, that have been widely ignored, support evidence that hypnotics cause human cancer.

**Human epidemiology studies demonstrate elevated cancer incidence associated with hypnotics**

A 2008 paper listed three prior epidemiologic studies reporting associations of hypnotics with cancer deaths. Analysis of CPSII data found that the elevation in deaths associated with
also Kao the significant hazard. Several U.S. and European groups 
for important confounders is not proof that confounding explains 
conclusively demonstrated 
that cigarettes smoking, both groups thought their result 
usage with cancer, especially lung cancer 
Sivertsen 
equally. Indeed, selective specificity among cancer types would 
was weak and the type and quantity of hypnotic consumption were 
the same data set week versus 
for age, gender, smoking, BMI, and by matching comorbidities 
compared to Taiwanese women at the time. BMI was not control 
ed, but at that time in Taiwan, although being overweight was 
more common among women, obesity was more common among 
men. However, hepatocellular carcinoma was not associated with 
zolpidem use in a case-control study. In a complementary 
study of benzodiazepines in Taiwan, benzodiazepines were 
associated with a 1.19 (1.08–1.32 95% CI) cancer incidence 
hazard ratio, with over twice the benzodiazepine-associated haz 
ard among men as among women. Similarly, a brief analysis 
of the national data from Taiwan found a significant cancer 
adjusted odds ratio for two of three benzodiazepine hypnotics.

In the Geisinger Health study using electronic medical records, 
Kripke et al. found a hazard ratio for cancer incidence of 1.35 
(1.18–1.55 95% CI) associated with use of ≥132 hypnotic doses per 
year, with specific hazard ratios of 1.28 (1.03–1.59) for high-dose 
zolpidem and 1.99 (1.57–2.52) for high-dose temazepam. There 
was a significant dose-response. This study was carefully control 
ed for age, gender, smoking, BMI, and by matching comorbidities 
among cases and controls. Jiao et al. found no excess of colorect 
al cancer among those reporting sleeping pill usage <3 times per 
week versus ≥3 times per week in the Women’s Health Initiative 
data set, a result consistent with the Hartz and Ross report on 
the same data, but since the contrast of frequencies of usage 
was weak and the type and quantity of hypnotic consumption were 
not determined objectively, the negative observation was not very 
persuasive. We would not expect hypnotics to promote all cancers equally. Indeed, selective specificity among cancer types would 
be anticipated if the mechanisms are causal. Pottegard et al. and 
Sivertsen et al. found small but significant associations of hypnotic 
usage with cancer, especially lung cancer, but since they had not 
controlled for cigarette smoking, both groups thought their result 
might have arisen from confounding, albeit confounding was not 
conclusively demonstrated. That investigators failed to control 
for important confounders is not proof that confounding explains 
the significant hazard. Several U.S. and European groups and 
also Kao et al. found high hazard ratios for lung and esophageal 
tumors, and the two San Diego studies had carefully controlled 
for smoking. We had proposed that effects of hypnotics on weakening the gastro-esophageal sphincter and permitting 
more gastro-esophageal regurgitation might account for the high 
cancer-specific rates of esophageal and lung tumors. A new 
meta-analysis of epidemiological case-control and cohort studies 
found an overall cancer hazard ratio of 1.29 (1.08–1.53, 95% CI). This 
meta-analysis found that zolpidem had a higher hazard ratio than benzodiazepines and that particularly high hazard 
ratios were found for esophagus and lung cancers, among other 
cancer sites with statistical significance. These multiple studies 
findings show hypnotics associated with human lung cancer were 
consistent with concerns of FDA scientists about lung cancers 
found in animal studies of zopiclone. The lung cancer specificity 
supports causality. There was one pair of studies that was neither clearly confirmatory nor negative. A large-scale survey 
screening many drugs with a questionable scheme for reusing controls for multiple 
tests and incorporating a questionable 2-year drug-to-cancer lag 
remarked no significant association of benzodiazepines or zolpidem but did find significant associations with oxazepam and 
and perhaps lorazepam, using P<0.01 and relative risk >1.50 as criteria. In that study, it was not always possible to control for 
smoking, and control for other confounders was crude and not 
well-standardized. A similar study added a possible association for 
phenobarbital.

In a formal meta-analysis of 22 prospective cohort studies with 
2,482,625 participants suffering 312,203 incident cancers, benz 
diazepine drug use (including agonists) was found associated 
with increased cancer risk (“RR:1.25: 95% CI, 1.15–1.36)”, 
showing dose-response and dose-duration relationships and 
specificity among cancer types.

To summarize the cancer epidemiology, the available clastogenicity 
data, animal data, randomized placebo-controlled clinical 
trials, and human epidemiology studies rather consistently, if not 
always conclusively, suggested that hypnotics likely cause human 
cancers and cancer deaths.

**Hypnotics increase incidence of clinical depression**

In combined clinical trials, participants randomized to hypnotics 
suffered 2.1 times as many incident (new) depressions as those randomized to placebo. These were not exacerbations of pre-existing depressions. These were depressions caused by the hypnotics. There are other data demonstrating worsening of depression with a wider variety of popular benzodiazepine and GABA agonists. Treatment of insomnia by hypnotics causing comorbid depression stands in marked contrast to cognitive-behavioral treatment of insomnia, that has been shown to decrease comorbid depression and otherwise improve mental health.

Some studies have appeared designed to show that a hypnotic 
reduced depression scores among patients given an antidepressant 
known to cause insomnia. In the first of these studies, the benefit 
of the hypnotic for depression was not significant at week 4 after
the investigators removed the rating scale items related to insomnia, whereas the week 8 benefit was nominally significant only at the P=0.04 level not correcting for multiple comparisons. In other words, using rigorous Bonferroni correction for multiple comparisons, the alleged benefit of hypnotic for depression symptoms was not significant. In a second study the authors more readily conceded that the hypnotic had no significant benefit for depression. These studies failed to rebut the evidence that hypnotics cause new depressions.

Hypnotic use is associated with high rates of suicide. Depression is the major cause of suicide. Panic attacks are another risk factor for suicide. Short-acting benzodiazepine agonists such as triazolam and zolpidem may cause withdrawal anxiety and even panic attacks during the daytime. Suicide has been recently described as the 8th or 10th leading cause of death in the United States. Indeed, comprehensive toxicological studies have found intoxicating abusable substances (mainly sedative-hypnotics) in a majority of suicides, often combined with alcohol in 30–40%. Suicides due to overdoses have increased dramatically from 1999 to 2010 in the U.S., but there have been an even larger number of deaths of undetermined manner in which suicide through overdose must be suspected. A very recent report estimated that in 2013 there were 7,000 overdose deaths related to anxiety and sleep medications, but this did not include all suicides in which the most rigorous toxicology shows a sedative or anxiolytic often mixed with alcohol to be present. The adjusted odds rate for suicide was 4.2 among hypnotic users as compared to nonusers in one study of elderly people, whereas the odds were not elevated among anti-depressant users (tending to exclude depression and other comorbidities as confounders). Prescription sleep pill use was a stronger predictor of suicide attempts than insomnia symptoms in the National Comorbidity Survey Replication. In a large study from Taiwan, the adjusted suicide hazard ratio for “needing sleeping pills” was 11.1, whereas the hazard ratio for those reporting sleeping only 0–4 hours adjusted for sleeping pill use was only 3.5, and none of the hazard ratios for insomnia symptoms exceeded 2.0. Another national Taiwan study found increased suicides and attempts associated with zolpidem. The findings indicate that the association of suicides with hypnotic use cannot be entirely attributed to confounders with reverse causality, since the association of hypnotic usage with depression is known to be largely caused by hypnotics. Since the genetic influences promoting insomnia and depression appear highly correlated, the associations both of depression and insomnia with mortality may be mediated through hypnotic drug consumption.

Zolpidem specifically has been implicated as a causal agent in a number of suicides, some of which involved kinds of dissociative behavior often attributed to zolpidem or to combined use of zolpidem with other drugs or alcohol. Impairments of cognition and judgment that may be caused by sleeping pills as well as hallucinations, irrational behaviors, and behavioral disinhibition may all contribute to suicides, violence, and accidents, even among people who are not severely depressed. However, preliminary results of a recent study listed at https://clinicaltrials.gov/ct2/show/results/NCT01689909 suggested that 8 weeks treatment with zolpidem 10 mg. may have reduced suicidal ideation among patients treated with an SSRI antidepressant.

An authoritative review documented overwhelming evidence of the association of hypnotics with suicide but discerned no evidence of causality. However, new evidence shows that major components of depression and suicide are linked to infections. Those with inflammation indicated by high C-reactive protein (CRP) had more depression and bipolar disorder and more than twice the suicide rate of those with low CRP. A Mendelian randomization study proved that CRP has a causal role, though elevated TNF-alpha, interleukins, and other parts of the immune system may also be factors. Since it is known that hypnotics cause infections that cause inflammation, a causal pathway from hypnotics to depression and suicide has been demonstrated.

Automobile crashes, falls, and other accidents are associated with hypnotics

Accidents of all sorts are associated with use of benzodiazepines and benzodiazepine agonists such as zolpidem. Hypnotic drugs impair next-day alertness, motor skills, reasoning, and overall performance. Most hypnotics impair automobile driving, as indicated by on-the-road controlled performance testing. This impairment in some instances exceeds the impairment produced by a blood alcohol concentration of 0.05%. Drivers’ ability to predict their own impairment is poor. The use of hypnotics and other sedatives is strongly associated with driver hospitalization and on-the-road driver-at-fault crashes. In addition to accidents attributable to impaired coordination, impaired motor skills and loss of alertness, hypnotics may also lead to fatal crashes due to drug induced suicidal thinking, impaired judgment, or recklessness on the part of intoxicated drivers. Hypnotics are a factor in more than half of intoxication and dangerous driving deaths.

Some crashes result in deaths of passengers and other-vehicle occupants not themselves using hypnotics, but non-driver deaths are not attributed to the hypnotics on death certificates. Some studies have found that use of benzodiazepines and “Z” hypnotics was increased among victims of homicide as well as among the homicide perpetrators. Thus, both through bad driving and homicides, hypnotics result in deaths that have not been accounted directly as deaths from these hypnotic drugs.

It is well known that falls and accidental injuries are strongly associated with hypnotic usage, and hip fractures among aging patients. Hip fracture is a sometimes-lethal injury. The preponderance of studies indicates a true association of the use of hypnotics and falls, that is thought to be due to the properties of benzodiazepine agonists in inhibiting psychomotor skills and in causing weakness, slowed reflexes, and impaired judgment, especially less than 8 hours after ingestion. After taking a hypnotic at bedtime, older people may get up during the night, e.g., to visit the bathroom, when the pharmacologic impairment from a hypnotic is near-maximum and is combined with impairments from sleepiness and the low point in the biological rhythm of performance. An interesting new systematic review observed that the risk of hip fracture was higher with
short-term than long-term use of benzodiazepines and Z-drugs, suggesting that the risk may be greatest before adaptation and tolerance develop[45].

A nursing-home study challenged these conclusions, arguing that it was insomnia, not hypnotics, that was associated with falls. This study did not appear to control for confounding sleep apnea, Alzheimer’s disease, or cognitive-behavioral disorders[49]. It should be conceded that confounders are likely have some influence on risk ratios associating hypnotics with accidental injuries, but the scientific consensus suggests that the association is nevertheless partly causal, based in part on controlled trials showing hypnotic impairments of driving and other forms of psychomotor performance. A causal element is inferred by the majority of authorities.

**Safe doses of hypnotics for target populations are unknown**

Animal studies indicate that some individuals in an animal research sample may succumb to a lethal hypnotic-drug effect at doses as low as one-fifth that which is universally lethal[41]. Variations in susceptibility in a human population varying in age, gender, genetics, and health status is likely to be greater than that in a sample of laboratory animals. The minimum lethal dose of hypnotic drugs in humans is unknown, that is, the dose that might produce fatal respiratory arrest in one person out of 1000 in a representative population or one in 10,000. So many billions of hypnotic doses are prescribed yearly in the U.S. that one death per 10,000 doses would yield over 100,000 deaths per year. Moreover, there are no human dose-response data and very little animal data concerning what doses of hypnotics may be lethal in the presence of opiates, other sedatives, alcohol, aging, obesity, COPD, and other comorbidities. Yet most recognized hypnotic-related deaths are observed in the presence of such additional factors. More study is needed to establish safe doses of hypnotics (if any) when taken with other medications and in the presence of potential comorbidities. As for aging, the consensus of the American Geriatrics Society is that hypnotics are not safe for elderly patients in any dose[44].

**Contributory factors combined with hypnotics could cause covert deaths**

There is a vast discrepancy between the hundreds of thousands of yearly hypnotic-associated deaths implied by the high epidemiologic hazard ratios and the mere thousands of yearly death certificates in which a hypnotic is listed among the causes of death. Below are presented some of the possible explanations for this discrepancy.

**Obesity and aging exacerbate hypnotic risks**

Obesity and aging are perhaps the two most important risk factors for sleep apneas, that is, brief cessations of breathing during sleep[45]. Sleep apneas occurs at least a few times per hour in the majority of adults over age 40 years and in a great majority of those over age 65[45,146]. If the duration of a sleep apnea before arousal becomes excessively prolonged, e.g., by a hypnotic, death could result. Thus, hypnotic-related hazard ratios are higher among obese patients (see Geisinger Health study supplement Tables 2 and 7[26].) Since there is no evidence that the huge increase in hypnotic hazards among obese patients can be attributed overdoses, it appears that obesity predisposes to covert hypnotic-related deaths, probably by prolonging apneas. It is plausible that among susceptible patients, combinations of aging, obesity, sleep apnea, hypnotics, opiates, other sedatives, and alcohol could produce quiet respiratory cessations followed by cardiac cessation and death even without any ingested doses above common medical practice being taken.

**Prescription and non-prescription opiate use increase hypnotic risks**

The use of opiates has become increasingly common in recent years[47]. Opiates are respiratory suppressants that (like pentobarbital) in overdose can produce respiratory arrest and cardiac arrest. Among patients taking both benzodiazepines and opiates, a remarkable 75% were found to have sleep apnea, and causality was suggested by significant dose-response correlations both for the opiates and for the benzodiazepines[44]. In some patients, this combination of benzodiazepine and opiate causes hypoxemia (low oxygen) [49]. Our sleep clinic has recorded polysomnographic data from patients who suffered profound almost continuous apnea with severe hypoxemia due to combinations of hypnotics and opiates. Recall that it is understood on a molecular level how benzodiazepine agonists and opiates combine to suppress firing of respiratory neurons that are necessary to breathe. Patients receiving a combination of benzodiazepines and opiates have increased mortality[30,130,151]. The combination of opiates and benzodiazepines has caused a growing overdose problem in emergency rooms[47]. Moreover, the most serious overdose problems are seen when opiates and benzodiazepines are combined with alcohol in older patients, reflecting combined effects of opiate, benzodiazepine, alcohol, and aging[40,141].

It may be relevant that close to 70% of hospice patients were taking an opiate and an anxiolytic or hypnotic in the last week of life[132]. This is not evidence by itself whether this combination influences the survival of hospice patients, nor is the author commenting on the ethics of combining such drugs in a genuine hospice situation. However, most patients given hypnotics and opiates combined have not consented to hospice management.

**Quiet deaths from hypnotics with contributory factors go undetected by medical examiners and unreccorded**

In combined-sedative deaths, the individual drug concentrations present in blood may appear within customary therapeutic ranges. Even if a patient is undergoing cardio-respiratory monitoring at the time when respiratory cessation followed by cardiac cessation occurs, there is usually no way of determining whether the fatal respiratory cessation was due to hypnotic drugs in combination with various contributory factors. Especially when death occurs quietly at night (for example, death of an elderly obese patient known to have various comorbidities,) there usually is no autopsy. Physicians signing the death certificates may be tempted to list a cardiac event or a stroke or some long-standing comorbidity as the cause of death without recognizing when hypnotic-induced respiratory suppression was the precipitant.

The press described a highly-distinguished example of how cause-of-death data may be unreliable after U.S. Supreme Court Justice Scalia died unexpectedly at night. According to numerous news...
reports and sheriff’s documents, Justice Scalia’s appearance was that of a person who had peacefully stopped breathing at night. There was no sign of agitation due to cardiac pain, nor had Justice Scalia complained of cardiac symptoms before going to bed. Justice Scalia might have been taking hypnotics and opiates for the jet lag and pain he was known to be suffering when he arrived at a hunting lodge that routinely gives each guest a free bottle of wine. Without ever viewing the deceased or his bedroom, much less determining what hypnotics, opiates for pain, and alcohol Justice Scalia might have consumed, a local official was guided by Justice Scalia’s physician (thousands of miles away) to declare heart attack as the cause of death. Without an autopsy, we will never know if this death was precipitated by hypnotics or opiates and alcohol or if there was a heart attack. Even if a physician suspects that a hypnotic had a role, the physician has little motivation to suggest the hypnotic as a cause of death when it would be hard to prove and may reflect negatively on whatever physician prescribed that hypnotic.

Along the same lines, when hypnotics cause infection, cancer, depression, falls or other accidents, or murder, hypnotics are rarely listed among the causes of death. These patterns along with quiet respiratory deaths may explain why epidemiology shows much higher risks of death associated with hypnotics than the death certificates document. Nevertheless, even the numbers documented in death certificates are too high to be acceptable.

**Commonly-prescribed hypnotics are mainly used inappropriately**

Zolpidem, reportedly the most commonly-prescribed hypnotic in the U.S., with an estimated 40 million outpatient prescriptions in 2013\(^1\), ranked first for emergency department visits among psychotropic drugs according to CDC data\(^2,3\). According to the Agency for Healthcare Research and Quality (AHRQ) data, 68% of zolpidem patients were sustained users (three or more prescriptions), and of those 22% were also sustained users of opioids\(^4\). Note that recent CDC guidelines recommend against use of benzodiazepine agonists with opiates\(^5\). Although the FDA now recommends dosing women with only 5 mg or 6.25 mg of zolpidem, at least to begin with, only 5% of women and 10% of elderly were prescribed these low doses in 2012\(^6\). Apparently, there was little change in dosing for women and elderly after the FDA recommended the low doses in 2013\(^7,8\). Moreover, 23% of patients with sustained use took another drug targeting the same receptors. A high percentage were depressed, as indicated by 34% of sustained zolpidem users also receiving antidepressants\(^9\). Similarly, a 1999–2010 compilation of NHANES data found that 48% of those taking an insomnia medication were 60 years of age\(^10\). Moreover, over half of those who took a pill for insomnia in the past month were alcohol users (most moderate or heavy users), 56% took other sedatives, and 25% used opioids. In the NHANES data, only a minority of the sedatives taken for sleep were insomnia drugs, but most of the remainder were other benzodiazepines. Recall also that the American Geriatrics Society recommended avoidance of any use of hypnotics or benzodiazepines for elderly patients\(^11\), though about half of those receiving hypnotics have been elderly. Analyses of recent U.S. national data indicated that 77.4% of zolpidem prescription recipients had ≥2 safety contraindications\(^12\).

There is the further problem of hypnotic misuse in addition to the issues that the great majority of hypnotic prescriptions lack the indication of diagnosed insomnia, or have been prescribed despite contraindications, or have been prescribed in excessive dosages or for excessive durations. According the CBHSQ Report of the U.S. Substance Abuse and Mental Health Services Administration, misuse included taking the drug without a personal prescription, or in greater amounts or longer than instructed, or use in any other way a doctor did not direct\(^13\). The National Survey on Drug Use and Health estimated that in 2015, over 1.0 million U.S. adults misused prescription sedatives for sleep, and over 1.2 million misused prescription tranquilizers to help with sleep\(^14\). A recent French study found that an indicator of “doctor shopping” to obtain zolpidem exceeded doctor shopping to obtain oxycodone and most other opiates\(^15\). Combining the evidence of lack of indication, excessive contraindications, and misuse, it appears that fewer than 10% consuming zolpidem were prescribed the drug in accord with the consensus approved circumstances.

Hypnotics may cause death from overdoses of inappropriate drug-combination prescribing as well as other contributory factors, not only from a lethal dosage of the hypnotic considered by itself.

**Hypnotics cause withdrawal insomnia, anxiety, panic, and epilepsy**

It has been well known since they came into use over a century ago that hypnotics and similar sedatives are addicting drugs, frequently eliciting tolerance, physical dependence, and withdrawal reactions\(^16\). Most of the benzodiazepine agonist hypnotics and even suvorexant are controlled like addicting drugs by the U.S. Drug Enforcement Agency (DEA). Withdrawal from benzodiazepine agonists can cause insomnia, anxiety, agitation, confusion, and panic and even more severe somatic symptoms such as seizures and death in extreme cases\(^17,18,19\). In addition, some of the short-acting sedatives such as triazolam and zolpidem may sometimes cause anxiety or agitation during the day following administration before the previous bedtime. Dr. Kripke has treated two patients taking triazolam who developed daytime panic attacks that remitted upon triazolam withdrawal and recurrent upon re-challenge. There is also evidence that prolonged use of hypnotics may lead to lasting insomnia, as a consequence causing patients who withdrew from hypnotics to sleep worse than patients who had been randomized in parallel clinical trials to placebos\(^20\). How long this withdrawal insomnia might persist has never been adequately defined.

In another example of sedative withdrawal leading to hyperexcitability, there is a report that benzodiazepine use and withdrawal may result in lasting increased epilepsy\(^21\).

**Relationship of hypnotics to insomnia, long sleep, and short sleep**

A pioneering large epidemiological study that the American Cancer Society conducted over 50 years ago observed an increased risk of death following hypnotic use. The Cancer Prevention Study I (CPSI) obtained questionnaires in 1958 from over 1,000,000 participants and reliably ascertained their death or survival over 6 years\(^22\). The data showed that both long and short sleep predicted...
elevated mortality (with 7 hours associated with minimal mortality for each age group). This study (often replicated) raised scientific doubt whether there is medical value to increasing reported sleep duration of an adult beyond 7 hours, though it also demonstrated that many adults reporting more than 7 hours of sleep were taking sleeping pills. Sleep durations below the population median are partly attributable to inherited traits, so whether there would be any health benefit in sedating people with short sleep durations to sleep longer remains to be demonstrated. A small objective study of sleep duration recorded by wrist activity suggested increased mortality above 390 minutes of actual sleep (which is greater than the current median sleep of American adults studied with similar technology\textsuperscript{165})\textsuperscript{172}. In the CPSI data, self-reported insomnia had little or no additional mortality effect beyond hours of sleep, although insomnia was moderately associated with short sleep. In contrast, reported sleeping pill use was associated with about 50\% increased mortality after controlling for age, gender, reported sleep duration, and reported insomnia\textsuperscript{166}. This was statistically a highly significant result in a million participants, but uncertainty about what participants meant by taking “sleeping pills” “Oftentimes in terms of drug type and frequency demanded more study. The American Cancer Society performed a second Cancer Prevention Study (CPSII) with participants completing over 1.1 million questionnaires in the fall of 1982. CPSII used more explicit questions about sleep duration, insomnia, and “prescription sleeping pills.” After controlling simultaneously for 32 covariates and confounders such as insomnia and sleep duration in Cox Proportional Hazards models, results again showed that use of hypnotics was associated with elevated mortality not attributable to major confounders such as cigarette smoking. Indeed, the mortality risk associated with taking “prescription sleeping pills” was surprisingly comparable to that associated with smoking a pack of cigarettes a day\textsuperscript{173}. More recent meta-analyses have indicated that the mortality risk associated with short sleep is minimal compared to that associated with long sleep\textsuperscript{167,168}. Several recent studies have replicated the CPSI and CPSII estimates that insomnia has little or no association with mortality after control for confounders\textsuperscript{169,170}, but not all studies agree. Although a hypothesis that short sleep causes obesity has received recent popularity, some fostered by investigators affiliated with hypnotics manufacturers, no controlled trials indicating that hypnotics reduce obesity have been located. Epidemiologic data imply that hypnotic usage is more strongly associated with obesity than short sleep itself (see Lawman et al., supplement figure B)\textsuperscript{171}. In summary, there is no scientific rationale that health would be improved by giving hypnotics for short sleep.

**Benefits of hypnotics: minimal**

Popular prescribed hypnotics fail objectively to increase sleep significantly even at high doses: new guidelines discourage hypnotic use

In an authoritative National Institutes of Health (NIH)-sponsored meta-analysis of controlled trials including unpublished trials\textsuperscript{172}, Buscemi and colleagues found that although non-benzodiazepine zolpidem-like drugs (“Z-drugs”) shortened sleep onset latency by an average of 12 minutes (9–17 min, 95\% CI), according to objective polysomnograms, these hypnotics increased total nightly sleep time by only 11 minutes (-1 to 23 min, 95\% CI, NS). That is, these “Z” drugs produced no substantial statistically-reliable increase in total sleep, even at doses higher than currently recommended. Most of the meta-analyzed studies of zolpidem used doses of 10 mg or more (as high as 30 mg)\textsuperscript{172}, and most of the studies of zopiclone used 7.5 mg doses or more (containing more eszopiclone than any dose approved in the U.S.). The FDA-approved recommended initial zolpidem dosage for most patients is now 5 mg (6.25 mg for the sustained-release form\textsuperscript{173}). Zolpidem and zolpidem-like drugs constitute the bulk of the current U.S. hypnotics market. Based on all available clinical studies, these lower doses would objectively increase sleep by trivial amounts if at all\textsuperscript{183}. Indeed, the primary zolpidem manufacturer advised the FDA that the 5–6.25 mg dosages were generally ineffective\textsuperscript{144}. The newly-recommended 1-mg dosage of eszopiclone is similarly ineffective\textsuperscript{174,175} and even 3 mg was ineffective in a small study\textsuperscript{176}. Patients typically report more increase in sleep than is measured objectively, but even this self-reported “improvement” at above-recommended doses (which is not supported by objective measurement) is a mere 32 minutes (26–38 minutes, 95\% CI)\textsuperscript{177}. The discrepancies between objective and patient-subjective data may be attributable to the amnesic properties of hypnotics, erasing patients’ memories of how much time they are awake in bed. In conclusion, the FDA-recommended doses of the most popular benzodiazepine agonists are virtually ineffective for objectively increasing sleep. Older benzodiazepines are not much more effective.

A new Comparative Effectiveness Review sponsored by the U.S. AHRQ has recently examined the Management of Insomnia Disorder, largely referring to chronic insomnia\textsuperscript{177}. As a prepublication Peer Reviewer of this report, I was and still remain very critical of its limitation to mainly-subjective data that are known to give a rosier evaluation of hypnotic effects than objective evaluations, its focus on published reports that are known to be commonly biased towards reporting favorable drug results\textsuperscript{178,179} and the AHRQ’s report’s incomplete attention to adverse effects. Nevertheless, it was striking that the AHRQ study found that the strongest evidence for treatment efficacy was with the cognitive-behavioral treatment of insomnia. The evidence for short-term efficacy of zolpidem and eszopiclone in high doses was considered less sufficient, and evidence for efficacy of other hypnotics was judged to be almost entirely insufficient. Moreover, by its clinical trial selection criteria, this Review found essentially no evidence for efficacy of the very low doses of zolpidem and eszopiclone currently recommended by the FDA for most patients, because higher doses appeared unsafe to FDA. In short, the AHRQ study presented no reason why hypnotics are needed, since cognitive-behavioral treatment of insomnia is better. The AHRQ Review found evidence for increased adverse effects with hypnotics compared to placebo, including hypnotic adverse effects of concern (their selection of studies highlighted fractures and dementia)\textsuperscript{169}. This means that patients randomly treated with hypnotics tended to develop more illness and symptoms, quite the opposite of promoting health. The Review found mention of adverse effects...
virtually absent for the cognitive-behavioral treatment studies. Although the Comparative Effectiveness Review found insufficient studies to estimate the comparative effectiveness of hypnotics versus cognitive-behavioral treatments, when it reviewed potential harms, there was no contest. Moreover, controlled trials reviewed above prove that hypnotics cause comorbidities such as infection and depression and driving impairments, whereas cognitive-behavioral treatment has been found to decrease medical comorbidities such as depression.

Whatever weak evidence for benefits of hypnotics there has been came mainly from carefully selected groups of patients with diagnosed insomnia and few if any comorbidities or contraindications, and who generally did not use opiates or other sedatives or excess alcohol. There are no clinical trials data demonstrating benefit among patients with multiple comorbidities and contraindications while lacking diagnosed insomnia, but such vulnerable patients are the majority of patients receiving hypnotics.

Derived from the AHRQ report, A Practice Guideline from the American College of Physicians made a still more reserved interpretation of hypnotics’ benefits and risks. This report advised that cognitive-behavioral treatments should always be the initial treatment for insomnia disorder, and if this therapy was unsuccessful, then short-term use of hypnotics would be questionable. This Practice Guideline found the benefits of even short-term hypnotic treatment to be small or trivial and the evidence persuasive for balancing harms. The Practice Guideline did not recommend long-term use of hypnotics at all. Going beyond the AHRQ report, that had not systematically investigated the evidence for severe risks, the Practice Guideline listed depression as a definite risk and cancer and excess mortality as possible risks, listing the evidence for these harms in considerable detail in its supplement. One wonders if the Practice Guideline would have approved use of the particular hypnotics with the most evidence of risks under any circumstances, were the authors aware of the up-to-date severe risk evidence detailed here. The American Geriatric Society and American College of Physicians guidelines were apparently written by experts without substantial financial conflicts. The European Guideline of the European Sleep Research Society, written by experts without substantial financial conflicts. The American College of Physicians guidelines were apparently biased such evidence.

Hypnotics fail to improve next-day performance or general health

Based on manufacturers’ advertising, patients expect that a hypnotic will improve their function and performance the following day. The truth is just the opposite. In 1982, two sleep experts received support from a hypnotics’ manufacturer to survey the daytime performance literature about hypnotics and found, “Drug-related improvement in performance was not found, and, in comparing active drug to placebo, it is clear that all hypnotics, at some doses, produce decrements in performance the next day.” Since 1982, the current author has been looking for objective evidence that hypnotics improve the performance of insomnia patients. Decades later, no evidence that GABA-agonist hypnotics improve objective daytime performance in treating insomnia could be located. When there are proven significant effects, the effects are to make performance worse. To reiterate, neither the AHRQ Comparative Effectiveness Review nor the AASM documented objective evidence of health or functional benefits from hypnotic drugs. On average, most hypnotics make patients sleepier the next day, not more fully awake.

After 35 years, the author is still looking for any evidence of objective functional benefits. In a letter to Sleep Medicine, readers were asked to inform us if “any U.S.-licensed hypnotic ever objectively improved any aspect of insomnia patients’ daytime function or any aspect of general health.” So far, nobody has informed me of any such evidence.

Hypnotic drugs are prescribed to patients without valid clinical indication

According to the U.S. National Ambulatory Medical Care Survey, insomnia is a stated reason for a patient’s visit in less than one quarter of office visits where a hypnotic is prescribed, but for most hypnotics, insomnia was the only approved indication. Moreover, no diagnosis of any sleep disorder at all is made on 35% of office visits when a hypnotic is prescribed, and of the 65% of such patients who are diagnosed with a sleep disorder (such as hypersonnia and most forms of sleep apnea), often a hypnotic would be contraindicated. Other studies have likewise found that hypnotics are commonly prescribed for patients who have no diagnosis or complaint of insomnia. Hypnotics are routinely being prescribed without any apparent valid indication in as much as three quarters of the cases. Similarly, 46% of patients receiving polypharmacy of CNS drugs (such as benzodiazepines and
benzodiazepine agonists) had no pain, insomnia, or mental health diagnosis.
From the data reviewed it appears that in most cases, hypnotics are prescribed despite a specific contraindication such as aging. For example, in the 2015 Beers criteria of the American Geriatrics Society, the hypnotics of concern in this presentation are all listed as drugs to avoid.

It was found that the popular hypnotics could be generally beneficial as usually prescribed: that is, without evidence of general health benefit, without indication, and despite specific contraindications.

Manufacturers misrepresent hypnotic benefits in direct-to-consumer advertising
An instructive example is a 2006 advertisement representing that “[eszopiclone provides a full night of sleep (7 to 8 hours).” An equivalent claim was made in a 2007 eszopiclone-hypnotic print advertisement titled “Sleep the night and seize the day...A better tomorrow begins tonight.” In the scientific study cited by both advertisements as evidence, the average sleep of patients receiving eszopiclone 2 mg was 382 minutes (6 hours, 22 min) and for 3 mg, it was 412 minutes (6 hours, 52 min). The clinical results cited did not support the manufacturer’s claims to “a full 7 to 8 hours of sleep,” even though the 2 mg and 3 mg doses then studied were greater than the currently-recommended starting doses.

As for the manufacturer’s advertised benefits of “seizing the day,” and a “better tomorrow,” the eszopiclone manufacturer’s study demonstrated no significant objective improvement in measured next-day daytime performance or accomplishment. Specifically, an objective morning performance test did not demonstrate significantly better performance with eszopiclone than with placebo.

It is not my intention to imply that misrepresentation in consumer advertising has come only from a single manufacturer. There have been many examples with other hypnotics.

Summary of benefits, risks, and alternatives
The evidence is clear: the most popular hypnotics offer little to no benefit to patients in recommended doses. The most recent American Academy of Sleep Medicine’s Clinical Guideline for Management of Chronic Insomnia stated that the primary goals of treatment of insomnia should be to increase sleep quantity and to enhance daytime function. To the contrary, popular hypnotics in recommended doses do not increase objective sleep substantially (if at all,) and for many patients, hypnotics cause substantial objective next-day functional impairment. The specified hypnotics have no known objective benefits for any aspect of general health.

Contrasting with the dubious benefits, the popular benzodiazepine agonists in the U.S. are associated with increased mortality hazards, comparable to the hazards of barbiturates. Medical examiner data document that over 10,000 deaths every year are directly caused by and attributed to hypnotic drugs, and there is substantial evidence that hypnotics cause additional covert respiratory depression, suicides, infection, cancer, accidents, and other disorders that lead to a far larger number of deaths as well as to non-fatal morbidities and suffering. The exact number of deaths caused by hypnotics cannot be estimated from medical examiner data alone, because most of the deaths produced by hypnotics are covert or indirect due to hypnotic-induced or hypnotic-exacerbated morbidities.

The epidemiologic hypnotic mortality risk is almost comparable to that of cigarette smoking and many-fold greater than the risk to Americans of violent death.

- Hypnotic drugs 300,000–500,000 U.S. deaths per year
- Cigarettes 560,000 U.S. deaths per year
- Murders 14,196 U.S. deaths in 2013

This presentation has focused primarily on zolpidem, temazepam, eszopiclone, zaleplon, triazolam, flurazepam, quazepam, and barbiturates used for sleep (such as pentobarbital, amobarbital, and secobarbital). These drugs were the focus because each had been shown epidemiologically to be associated with high mortality hazards. This presentation has not focused on other drugs used as hypnotics, either because the epidemiologic and controlled-trials data have not been sufficient to assess their risks as hypnotics or because these drugs are approved and may be effective for indications other than insomnia. Alternative hypnotics approved for treating insomnia in the U.S. include ramelteon, doxepin, and suvorexant. Moreover, other drugs commonly available for sleep include trazodone (off label) and melatonin (unregulated). The advantage of alternative drugs is that their risk-benefit ratios are less clearly known to be unfavorable, but the alternative drugs certainly have serious risks.

Contrasted to hypnotics, the preferred treatment for insomnia is the cognitive-behavioral treatment of insomnia, which appears to be more effective in the long run, better for comorbidities, and safer. Cognitive-behavioral therapy can be effectively provided through written materials, internet training programs, and brief group therapies. It has been argued that cognitive-behavioral treatment saves money, compared to hypnotics.

Less known, circadian rhythm timing disorders often cause the biologic propensity for sleep to be either delayed (causing trouble falling asleep and trouble waking in the morning) or too advanced (causing evening sleepiness and early awakening). It is unclear how often the circadian rhythm timing disorders have a more important role in insomnia than the cognitive-behavioral elements, but one estimate suggests that “eveningness” may be associated with trouble falling asleep in as much as one quarter of the adult population. When circadian timing issues are important, properly timed bright light treatment can be a safe, effective, and inexpensive non-drug treatment that also has benefits for comorbidities such as depression. However, more clinical trials are needed to better define the applicability of bright light treatment for insomnia.

Grant information
The author(s) declared that no grants were involved in supporting this review.
Appendix A: Epidemiologic Studies of the Mortality Risks of Hypnotic Drugs

1) Kronholm, E., Jousilahti, P., Laatikainen, T., Lallukka, T., Peltonen, M., Seppanen, J., and Virta, L. Trajectories in hypnotic use and approaching death: a register linked case-control study. *Sleep Med*. 2018; in press.

2) Kabat, G. C., Xue, X., Kamensky, V., Zaslavsky, O., Stone, K. L., Johnson, K. C., Wassertheil-Smoller, S., Shaday, A. H., Luo, J., Hale, L., Qi, L., Cauley, J. A., Brunner, R. L., Manson, J. E., and Rohan, T. E. The association of sleep duration and quality with all-cause and cause-specific mortality in the Women’s Health Initiative. *Sleep Med*. 2018; 50(10):48-54.

3) Choi, J.-W., Lee, J., Jung, S. J., Shin, A., and Lee, Y. J. Use of sedative-hypnotics and mortality: A population-based retrospective cohort study. *J Clin Sleep Med*. 2018;14(10), 1669-1677.

4) Mesrine, S., Gusto, G., Clavel-Chapelon, F., Bouton-Ruault, M. C., and Fournier, A. Use of benzodiazepines and cardiovascular mortality in a cohort of women aged over 50 years. *Eur J Clin Pharmacol*. 2018;74(11):1475-1484.

5) Sun, Y., Lin, C. C., Lu, C. J., Hsu, C. Y., and Kao, C. H. Association Between Zolpidem and Suicide: A Nationwide Population-Based Case-Control Study. *Mayo Clin Proc*. 2016;91(3):308-315.

6) Lan, T. Y., Zeng, Y. F., Tang, G. J., Kao, H. C., Chiu, H. J., Lan, T. H., and Ho, H. F. The use of hypnotics and mortality - A population-based retrospective cohort study. *PLoS One*. 2015; 10(12), e0145271. 2015.

7) Palmaro A, Dupouy J, Lapeyre-Mestre M. Benzodiazepines and risk of death: Results from two large cohort studies in France and UK. *Eur Neuropsychopharmacol* 2015;25(10), 1566-1577.

8) Chung, W. S., Lai, C. Y., Lin, C. L., and Kao, C. H. Adverse respiratory events associated with hypnotics use in patients of chronic obstructive pulmonary disease: A population-based case-control study. *Medicine (Baltimore)* 94(27), e1110. 2015.

9) Kriegbaum, M., Hendriksen, C. Vass, M., Mortensen, E. L., Osler, M. Hypnotics and mortality—partial confounding by disease, substance abuse and socioeconomic factors? *Pharmacoepidemiol Drug Saf*. 2015;24(7):779-783.

10) Pinot J, Herr M, Robine JM, Aegerter P, Arvieu JJ, Ankri J. Does the Prescription of Anxiolytic and Hypnotic Drugs Increase Mortality in Older Adults? *J Am Geriatr Soc* 2015;63(6):1263-5.

11) Weisberg DF, Gordon KS, Barry DT, Becker WC, Crystal S, Edelman EJ, Gaither J, Gordon AJ, Goulet J, Kerns RD, Moore BA, Tate J, Justice AC, Fiebel DA. Long-term Prescription of Opioids and/or Benzodiazepines and Mortality Among HIV-Infected and Uninfected Patients. *J Acquir Immune Defic Syndr* 2015;69(2):223-33.

12) Nakafu G, Sanders RD, Nguyen-Van-Tam JS, Myles PR. Association between benzodiazepine use and exacerbations and mortality in patients with asthma: a matched case-control and survival analysis using the United Kingdom Clinical Practice Research Datalink. *Pharmacoepidemiol Drug Saf*. 2015;24(8):793-802.

13) Neutel CI, Johansen HL. Association between hypnotics use and increased mortality: causation or confounding? *Eur J Clin Pharmacol*. 2015;71(5):637-42.

14) Frandsen R, Baandrup L, Kjellberg J, Ibsen R, Jennum P. Increased all-cause mortality with psychotropic drug prescriptions on mortality hazards: retrospective cohort study. *BMJ* 2014;348:g1996.

15) Weich S, Pearce HL, Croft P, Singh S, Crome I, Bashford J, Frisher M. Effect of anxiolytic and hypnotic drug prescriptions on mortality hazards: retrospective cohort study. *BMJ* 2014;348:g1996.

16) Chen H-C, Su T-P, Chou P. A 9-year Follow-up Study of Sleep Patterns and Mortality in Community-Dwelling Older Adults in Taiwan. *Sleep* 2013;36(8):1187-98.

17) Gunnell D, Chang SS, Tsai MK, Tsao CK, Wen CP. Sleep and suicide: an analysis of a cohort of 394,000 Taiwanese adults. *Soc Psychiatry Psychiatr Epidemiol*. 2013 Apr 2;48: 1457-65.

18) Jaussent I, Ancelin ML, Berr C, Peres K, Scali J, Besset A, Ritchie K, Dauvilliers Y. Hypnotics and mortality in an elderly general population: a 12-year prospective study. *BMC Med* 2013;11(1):212.

19) Obiora E, Hubbard R, Sanders RD, Myles PR. The impact of benzodiazepines on occurrence of pneumonia and mortality from pneumonia: a nested case-control and survival analysis in a population-based cohort. *Thorax* 2012;68(2):163-70.

20) Hartz A, Ross JJ. Cohort study of the association of hypnotic use with mortality in postmenopausal women. *BMJ Open* 2012;2:e001413. doi: 10.1136/bmjopen-2012-001413.

21) Kripke DF, Langer RD, Kline LE. Hypnotics’ association with mortality or cancer: a matched cohort study. *BMJ Open* 2012;2(1):e000850.

22) Gisev N, Hartikainen S, Chen TF, Korhonen M, Bell JS. Mortality associated with benzodiazepines and benzodiazepine-related drugs among community-dwelling older people in Finland: a population-based retrospective cohort study. *Can J Psychiatry* 2011;56(6):377-81.

23) Rod NH, Vahtera J, Westerlund H, Kivimaki M, Zins M, Goldberg M, Lange T. Sleep Disturbances and Cause-Specific
Mortality: Results From the GAZEL Cohort Study. *Am J Epidemiol* 2010;173(3):300-9.

24) Belleville G. Mortality hazard associated with anxiolytic and hypnotic drug use in the national population health survey. *Can J Psychiatry* 2010;55(9):558-67.

25) Mallon L, Broman JE, Hetta J. Is usage of hypnotics associated with mortality? *Sleep Med* 2009;10(3):279-86.

26) Winkelmayer WC, Mehta J, Wang PS. Benzodiazepine use and mortality of incident dialysis patients in the United States. *Kidney Int* 2007;72(11):1388-93.

27) Hublin C, Partinen M, Koskenvuo M, Kaprio J. Sleep and mortality: a population-based 22-year follow-up study. *Sleep* 2007;30(10):1245-53.

28) Hoffmann VP, Dossenbach M, West TM, Lowry AJ. Mortality in a cohort of outpatients with schizophrenia: 3-year outcomes from the Intercontinental Outpatient Health Outcomes Study (IC-SOHO). *Biol Psychiatry* 61(8S):163S-164S. Accessed 2007.

29) Hausken AM, Skurtveit S, Tverdal A. Use of anxiolytic or hypnotic drugs and total mortality in a general middle-aged population. *Pharmacoepidemiol Drug Saf* 2007;16(8):913-8.

30) Fukuhara S, Green J, Albert J, Mihara H, Pisoni R, Yamazaki S, Akiba T, Akizawa T, Asano Y, Saito A, Port F, Held P, Kurokawa K. Symptoms of depression, prescription of benzodiazepines, and the risk of death in hemodialysis patients in Japan. *Kidney Int* 2006;70(10):1866-72.

31) Lack LC, Prior K, Luszcz M. 708. Does insomnia kill the elderly? *Sleep* 29[Abstract Supplement], A240. Accessed 2006.

32) Phillips B, Mannino DM. Does insomnia kill? *Sleep* 2005;28(8):965-71.

33) Ahmad R, Bath PA. Identification of risk factors for 15-year mortality among community-dwelling older people using Cox regression and a genetic algorithm. *J Gerontol A Biol Sci Med Sci* 2005;60A:1052-8.

34) Mallon L, Broman J-E, Hetta J. Sleep complaints predict coronary artery disease mortality in males: a 12-year follow-up study of a middle-aged Swedish population. *J Int Med* 2002;251:207-16.

35) Hedner J, Caidahl K, Sjoland H, Karlsson T, Herlitz J. Sleep habits and their association with mortality during 5-year follow-up after coronary artery bypass surgery. *Acta Cardiol* 2002;57(5):341-8.

36) Kripke DF, Garfinkel L, Wingard DL, Klauber MR, Marler MR. Mortality associated with sleep duration and insomnia. *Arch Gen Psychiatry* 2002;59(2):131-6.

37) Kripke DF, Klauber MR, Wingard DL, Fell RL, Assmus JD, Garfinkel L. Mortality hazard associated with prescription hypnotics. *Biol Psychiatry* 1998;43(9):687-93.

38) Merlo J, Ostergren PO, Mansson NO, Hanson BS, Ranstam J, Blennow G, Isacsson SO, Melander A. Mortality in elderly men with low psychosocial coping resources using anxiolytic-hypnotic drugs. *Scand J Public Health* 2000;28(4):294-7.

39) Sundquist J, Ekedahl A, Johansson S-E. Sales of tranquillizers, hypnotics/sedatives and antidepressants and their relationship with underprivileged area score and mortality and suicide rates. *Eur J Clin Pharmacol* 1996;51:105-9.

40) Hays JC, Blazer DG, Foley DJ. Risk of napping: excessive daytime sleepiness and mortality in an older community population. *J Am Geriatr Soc* 1996;44:693-8.

41) Merlo J, Hedblad B, Ogren M, Ranstam J, Ostergren PO, Ekedahl A, Hanson BS, Isacsson SO, Liedholm H, Melander A. Increased risk of ischaemic heart disease mortality in elderly men using anxiolytics-hypnotics and analgesics. *Eur J Clin Pharmacol* 1996;49:261-5.

42) Brabbins CJ, Dewey ME, Copeland RM, Davidson IA, McWilliam C, Saunders P, Sharma VK, Sullivan C. Insomnia in the elderly: Prevalence, gender differences and relationships with morbidity and mortality. *Int J Ger Psych* 1993;8:473-80.

43) Thorogood M, Cowen P, Mann J, Murphy M, Vessey M. Fatal myocardial infarction and use of psychotropic drugs in young women. *Lancet* 1992;340:1067-8.

44) Isacson D, Carsjo K, Bergman U, Blackburn JL. Long-term use of benzodiazepines in a Swedish community: an eight-year follow-up. *J Clin Epidemiol* 1992 Apr;45(4):429-36.

45) Rumble R, Morgan K. Hypnotics, sleep, and mortality in elderly people. *J Am Geriatr Soc* 1992;40:787-91.

46) Kripke DF, Simons RN, Garfinkel L, Hammond EC. Short and long sleep and sleeping pills: Is increased mortality associated? *Arch Gen Psychiatry* 1979;36(1):103-16.
Wium-Andersen MK, Ørsted DD, Nordestgaard BG: 74–6.
Fava M, McCall WV, Krystal A, et al.: Eszopiclone co-administered with fluoxetine in patients with insomnia coexisting with major depressive disorder, Biol Psychiatry. 2006; 69(11): 1052–60.
Sun Y, Lin CC, Lu CJ, et al.: Association Between Zolpidem and Suicide: A Nationwide Population-Based Case-Control Study. Mayo Clin Proc. 2016; 91(3): 315-16.
Tan TL, Bixler EO, Kales A, et al.: Early morning insomnia, daytime anxiety, and organic mental disorder associated with triazolam. J Fam Pract. 1985; 20(6): 592–4.
Roecker IP, Caine ED: Self-injury is the eighth leading cause of death in the United States: It is time to pay attention. JAMA Psychiatry. 2015; 72(1): 1069–70.
Levi J, Segal LM, Martin A. The Facts Hurt: A state-by-state injury prevention policy report. Washington, D.C.: Trust for America’s Health; 2015.
Pressman MR: Sleep driving; sleepwalking variant or misuse of z-drugs? Sleep Med Rev. 2011; 15(3): 285–92.
Breiding MJ, Wiersma B. Variability of undetermined manner of death classification in the US. J Trauma. 2006; 12 Suppl 2: 149–154.
Carlsten A, Wearn M: Are sedatives and hypnotics associated with increased suicide risk of suicide in the elderly? BMC Geriatr. 2009; 9(1): 20.
Brower KJ, McCannum RJ, Wojnar M, et al.: Prescribing sleep pills, insomnia, and suicidality in the National Comorbidity Survey Replication. J Clin Psychiatry. 2011; 72(4): 515–21.
Gunnel D, Chang SS, Tsai MK, et al.: Sleep and suicide: an analysis of a cohort of 394,000 Taiwanese adults. Soc Psychiatry Psychiatr Epidemiol. 2013; 48(9): 1457–69.
Gregory AM, Ripakdj P, Eley TC, et al.: A Longitudinal Twin and Sibling Study of Associations between Insomnia and Depression Symptoms in Young Adults. Sleep. 2016; 39(11): 1985–92.
Derke S, Deady M, Ouffou J. Toxicology and characteristics of deaths involving zolpidem. J Forensic Sci. 2003; 48(5): 1259–62.
Johnson LC, Chernik DA. Sedative-hypnotics and human performance. Psychopharmacology (Berl). 1982; 76(2): 101–13.
Drover D, Lemmens H, Naidu S, et al.: Pharmacokinetics, pharmacodynamics, and relative pharmacokinetic/pharmacodynamic profiles of zaleplon and zolpidem. Clin Ther. 2000; 22(12): 1443–61.
Poceta JS. Zolpidem ingestion, automatism, and sleep driving: a clinical and legal case series. J Clin Sleep Med. 2011; 7(6): 632–6.
Tsai JH, Yang P, Chen CC, et al.: Zolpidem-induced amnesia and somnambulism: rare occurrences? Eur Neuropsychopharmacol. 2009; 19(1): 74–6.
Morgenthaler TI, Silber MH: Amnesic sleep-related eating disorder associated with zolpidem. Sleep Med. 2002; 3(4): 323–7.
McCall WV, Benca RM, Rosenquist PB, et al.: Hypnotic Medications and Suicide: Risk, Mechanisms, Mitigation, and the FDA. Am J Psychiatry. 2017; 174(1): 18–26.
Wium-Andersen MK, Ørsted DD, Nordestgaard BG: Elevated C-reactive protein, depression, somatic diseases, and all-cause mortality: a mendelian randomization study. Biol Psychiatry. 2014; 76(3): 249–57.
181. Roehrs T, Verster JC, Koshornik G, et al: How representative are insomnia clinical trials? Sleep Med. 2018; 91: 118–23. PubMed Abstract | Publisher Full Text | Free Full Text

182. Wilt TJ, MacDonald R, Brasure M, et al.: Pharmacologic Treatment of Insomnia Disorder: An Evidence Report for a Clinical Practice Guideline by the American College of Physicians. Ann Intern Med. 2016; 165(2): 103–12. PubMed Abstract | Publisher Full Text

183. Beaulieu-Bonneau S, Ivers H, Guay B, et al.: Long-Term Maintenance of Therapeutic Gains Associated With Cognitive-Behavioral Therapy for Insomnia Delivered Alone or Combined With Zolpidem. Sleep. 2017; 40(3): zsx002. PubMed Abstract | Publisher Full Text | Free Full Text

184. Sateia MJ, Buysse D, Krystal AD, et al.: Clinical Practice Guideline for the Pharmacologic Treatment of Chronic Insomnia in Adults: An American Academy of Sleep Medicine Clinical Practice Guideline. J Clin Sleep Med. 2017; 13(2): 307–49. PubMed Abstract | Publisher Full Text | Free Full Text

185. Sateia MJ: Increasing public awareness. J Clin Sleep Med. 2005; 1(2): 117–8. PubMed Abstract

186. Boyle J, Groeger JA, Paska W, et al.: A method to assess the dissipation of the [corrected] residual effects of [corrected] hypnotics: eszopiclone versus zopiclone. J Clin Psychopharmacol. 2012; 32(5): 704–9. PubMed Abstract | Publisher Full Text

187. Stranks EK, Crowe SF: The acute cognitive effects of zopiclone, zolpidem, zaleplon, and eszopiclone: a systematic review and meta-analysis. J Clin Exp Neuropsychol. 2014; 36(7): 691–700. PubMed Abstract | Publisher Full Text

188. Kriple DF: I petitioned the FDA to restrict hypnotics: here is why. Sleep Med. in press, 2016; 23: 119–120. PubMed Abstract | Publisher Full Text

189. Meltzer MD, Akerk MB, Uhrenhuth EH: Insomnia and its treatment. Prevalence and correlates. Arch Gen Psychiatry. 1985; 42(3): 225–32. PubMed Abstract | Publisher Full Text

190. Bjorvatn B, Meland E, Fib E, et al.: High prevalence of insomnia and hypnotic use in patients visiting their general practitioner. Fam Pract. 2017; 34(1): 20–4. PubMed Abstract | Publisher Full Text

191. Maust DT, Gerlach LB, Gibson A, et al.: Trends in Central Nervous System-Active Polypharmacy Among Older Adults Seen in Outpatient Care in the United States. JAMA Intern Med. 2017; 177(4): 583–585. PubMed Abstract | Publisher Full Text | Free Full Text

192. Zammit GK, McNabb LJ, Caron J, et al.: Efficacy and safety of eszopiclone across 6-weeks of treatment for primary insomnia. Curr Med Res Opin. 2004; 20(12): 1979–91. PubMed Abstract | Publisher Full Text

193. Schutte-Rodin S, Broch L, Buysse D, et al.: Clinical guideline for the evaluation and management of chronic insomnia in adults. J Clin Sleep Med. 2008; 4(3): 487–504. PubMed Abstract | Free Full Text

194. Carter BD, Abnet CC, Feskanich D, et al.: Smoking and mortality—beyond established causes. N Engl J Med. 2015; 372(7): 691–40. PubMed Abstract | Publisher Full Text

195. Tannenbaum C, Diaby V, Singh D, et al.: Sedative-hypnotic medicines and falls in community-dwelling older adults: a cost-effectiveness (decision-tree) analysis from a US Medicare perspective. Drugs Aging. 2015; 32(4): 305–14. PubMed Abstract | Publisher Full Text

196. Kriple DF: When our body clocks run late: does it make us depressed? Ann Transl Med. In press. 2016; 4(9): 178. PubMed Abstract | Publisher Full Text | Free Full Text

197. van Maanen A, Meijer AM, van der Heijden KB, et al.: The effects of light therapy on sleep problems: A systematic review and meta-analysis. Sleep Med Rev. 2016; 29: 52–62. PubMed Abstract | Publisher Full Text
Open Peer Review

Current Peer Review Status: ✔ ✔

Version 3

Reviewer Report 13 November 2018

https://doi.org/10.5256/f1000research.18371.r21086

© 2018 Phillips B. This is an open access peer review report distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

✔ Barbara A. Phillips
Division of Pulmonary, Critical Care, and Sleep Medicine, Good Samaritan Hospital, University of Kentucky, Lexington, KY, USA

This update is on target, appropriate and approved by me.

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: epidemiology of sleep disorders

I confirm that I have read this submission and believe that I have an appropriate level of expertise to confirm that it is of an acceptable scientific standard.

Reviewer Report 13 November 2018

https://doi.org/10.5256/f1000research.18371.r21087

© 2018 Siegel J. This is an open access peer review report distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

✔ Jerome M. Siegel
Department of Psychiatry and Biobehavioral Sciences, Brain Research Institute, University of California, Los Angeles, Los Angeles, CA, USA

No further comments.

Competing Interests: No competing interests were disclosed.

I confirm that I have read this submission and believe that I have an appropriate level of
expertise to confirm that it is of an acceptable scientific standard.

**Version 2**

Reviewer Report 17 March 2017

https://doi.org/10.5256/f1000research.11965.r21113

© 2017 Siegel J. This is an open access peer review report distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

- **Jerome M. Siegel**
  Department of Psychiatry and Biobehavioral Sciences, Brain Research Institute, University of California, Los Angeles, Los Angeles, CA, USA

  I approve the revised manuscript.

  **Competing Interests:** No competing interests were disclosed.

  I confirm that I have read this submission and believe that I have an appropriate level of expertise to confirm that it is of an acceptable scientific standard.

**Version 1**

Reviewer Report 27 May 2016

https://doi.org/10.5256/f1000research.9393.r14033

© 2016 Phillips B. This is an open access peer review report distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

- **Barbara A. Phillips**
  Division of Pulmonary, Critical Care, and Sleep Medicine, Good Samaritan Hospital, University of Kentucky, Lexington, KY, USA

  This report is important and over due, and most likely would not be published in a journal that accepts advertising from pharmaceutical companies. The author is careful NOT to confuse association with causation. References are complete and up-to-date.

  **Competing Interests:** No competing interests were disclosed.
I confirm that I have read this submission and believe that I have an appropriate level of expertise to confirm that it is of an acceptable scientific standard.

Reviewer Report 23 May 2016

https://doi.org/10.5256/f1000research.9393.r13914

© 2016 Siegel J. This is an open access peer review report distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Jerome M. Siegel
Department of Psychiatry and Biobehavioral Sciences, Brain Research Institute, University of California, Los Angeles, Los Angeles, CA, USA

This paper pulls together evidence from Dr. Kripke’s own work and subsequent work, which indicate that the use of benzodiazepines and perhaps other sleeping pills is causing thousands, perhaps hundreds of thousands of deaths annually in the United States. He reviews the complete lack of evidence for any positive health effect of the use of these drugs. This is especially striking because drug companies sponsor a considerable amount of research on their sleeping pills and would undoubtedly publicize any data indicating positive health or lifespan effects – but there do not appear to be any. Kripke also points out the effectiveness of cognitive behavioral therapy for insomnia. This well studied treatment is less expensive, without any known deleterious effects on lifespan or health and produces a long-lasting reduction in insomnia. The effectiveness of cognitive behavioral therapy in the treatment of insomnia contrasts with the miniscule (0-20 min) increase in sleep time produced by sleeping pills, followed by a considerable withdrawal effect if the patient stops taking the pills.

Minor suggestions include the following:
1. I would delete the discussion of Judge Scalia’s death. Although it gets one’s attention, without knowing what Scalia was taking and without any documentation of the cause of death, it does more harm than good to the impact of the paper.

2. On page 10, I would delete the paragraph on prescriptions without valid clinical indication. I guess that in many cases the prescribing physician would just say he forgot to document the need. I do not doubt that Dr. Kripke is bringing attention to an important issue, but it is not persuasively presented, in contrast to the rest of his argument.

3. Small typo under “Obesity and aging exacerbate hypnotic risks:” “can be attributed overdoses “

Competing Interests: No competing interests were disclosed.

I confirm that I have read this submission and believe that I have an appropriate level of expertise to confirm that it is of an acceptable scientific standard.
Daniel F. Kripke, University of California, San Diego, La Jolla, USA

The kind reviews and useful contributions from Dr. Siegel and Dr. Phillips are much appreciated.

Regarding the paragraph about the death certificate of Justice Scalia, debate about his cause of death and concern about the lack of autopsy received considerable press attention in major media in the United States. The process by which a rural judge decided what cause of death to record on the death certificate was uniquely well documented by the press. This illustrated how a death that could have been due to an overdose might not be explored and the overdose possibility might not be recorded. Knowing what the patient's primary doctor had or had not prescribed would not resolve the issue of what drugs were or were not taken. This paragraph was intended to exemplify how we may indeed lack adequate documentation of the real cause of death when the plausible possibility of death caused by a hypnotic is not acknowledged on a death certificate.

Regarding hypnotic prescriptions without a recorded diagnosis of insomnia, indeed the prescribing physician might just say that forgetting to document the insomnia was an oversight, but it is implausible that oversight is the explanation for such a large percentage of total hypnotic prescriptions. If lack of indication is usually an oversight, where is the proof? When I was a medical student in the 1960’s, I was trained that a hypnotic drug should be part of preprinted routine admission orders, and I have verified that routine admission orders for hypnotics are still preprinted in distinguished academic training hospitals in 2016. If we are training young doctors to prescribe a hypnotic without asking the patient whether that patient is experiencing trouble sleeping and without weighing the benefits and risks for the individual, it is plausible that habit persists in primary care. My impression is that prescribing doctors often do not ascertain that the patient has diagnostic criteria for insomnia, and in many cases, physicians know that the patient has no trouble sleeping. The physician might be trying to treat depression or to supplement opiates, but both uses are contraindicated. The physician might be treating some condition further afield such as hypertension or might be intentionally trying to achieve a placebo effect. There were studies documenting such practices several decades ago (references 126 and 136), but I know of no adequate study of 21st century U.S. outpatient hypnotic prescribing intentions. The manufacturers of both zolpidem and suvorexant have informed the FDA that the currently-FDA-mandated recommended doses are ineffective. It is tempting to infer that the FDA countenances the use of ineffective hypnotic doses as placebo implements of the bedside manner, without evidence that benefits outweigh risks of potentially addicting or lethal placebos.

Competing Interests: Please see disclosure in the article.
The benefits of publishing with F1000Research:

• Your article is published within days, with no editorial bias
• You can publish traditional articles, null/negative results, case reports, data notes and more
• The peer review process is transparent and collaborative
• Your article is indexed in PubMed after passing peer review
• Dedicated customer support at every stage

For pre-submission enquiries, contact research@f1000.com