FRACTIONAL DYNAMICAL SYSTEMS ON FRACTIONAL LEIBNIZ ALGEBROIDS

Gheorghe IVAN, Mihai IVAN and Dumitru OPRiŞ

Dedicated to Acad. Prof. Dr. Radu Miron at his 80th anniversary

Gheorghe Ivan, West University of Timișoara
Departments of Mathematics
4, B-dul V. Pârvan, 300223, Timișoara, Romania
E-mail: ivan @ math.uvt.ro

Mihai Ivan, West University of Timișoara
Seminarul de Geometrie - Topologie
4, B-dul V. Pârvan, 300223, Timișoara, Romania
E-mail: mihai31ro @ yahoo.com

Dumitru Opriș, West University of Timișoara
Departments of Mathematics
4, B-dul V. Pârvan, 300223, Timișoara, Romania
E-mail: miticaopris @ yahoo.com

Abstract. In this paper we consider the fractional tangent bundle on a differentiable manifold. A fractional Leibniz structure on an algebroid is defined. The fractional dynamical system on a fractional Leibniz algebroid is defined and it is discussed. Some illustrative examples are presented.

1 Introduction

The theory of derivative of noninteger order goes back to Leibniz, Liouville, Riemann, Grunwald and Letnikov. Derivatives of fractional order have found many applications in recent studies in mechanics, physics, economics, medicine. Classes of fractional differentiable systems have studied in [10], [4].

In the first section the fractional tangent bundle to a differentiable manifold is defined, using the method of Radu Miron’s from [8]. In this paper the fractional dynamical systems on fractional Leibniz algebroids are presented. The associated geometrical objects have an geometric character. Also, some examples for fractional dynamical systems of this type are given.

Key words and phrases. Fractional derivatives, fractional tangent bundle, fractional Leibniz algebroid, fractional differential equations

AMS 2000 subject classifications. 37J99, 17B60, 53C15.
2 Fractional tangent bundle on a manifold

Let \(f : [a, b] \rightarrow \mathbb{R} \) and \(\alpha \in \mathbb{R}, \alpha > 0 \). The Riemann - Liouville fractional derivative at to left of \(a \), respectively at to right of \(b \) is the function \(f \rightarrow_{a} D_{t}^{\alpha}f \) resp. \(f \rightarrow_{t} D_{b}^{\alpha}f \), where:

\[
\begin{align*}
\left\{ \begin{array}{l}
\frac{d^m}{dt^m} f(t) = \frac{1}{\Gamma(m-\alpha)} \int_a^t (t-s)^{m-\alpha-1} f(s) ds \\
\frac{d^m}{dt^m} f(t) = \frac{1}{\Gamma(m-\alpha)} \int_t^b (t-s)^{m-\alpha-1} f(s) ds,
\end{array} \right.
\]

where \(m \in \mathbb{N}^* \) such that \(m-1 \leq \alpha \leq m \), \(\Gamma \) is the Euler gamma function and \(\frac{d}{dt} = \frac{d}{dt} \circ \cdots \circ \frac{d}{dt} \).

We will denote sometimes \(D_{t}^{\alpha} = a D_{t}^{\alpha} \).

The following proposition holds.

Proposition 2.1 ([3])

(i) If \(\lim_{n \to \infty} a_n = p \in \mathbb{N}^* \), then:

\[
\lim_{n \to \infty} (a D_{t}^{\alpha} f(t)) = D_{t}^{p} f(t), \quad \lim_{n \to \infty} (t D_{b}^{\alpha} f(t)) = D_{t}^{p} f(t).
\]

(ii) If \(f(t) = c, (\forall) t \in [a, b], D_{t}^{\alpha} f(t) = 0 \).

(iii) If \(f_1(t) = t^\gamma, (\forall) t \in [a, b], \) then \(D_{t}^{\alpha} f_1(t) = \frac{\Gamma(1+\gamma)}{\Gamma(1+\gamma-\alpha)} t^{\gamma-\alpha} \).

(iv) If \(f_1, f_2 \) are analytical functions on \((a, b) \), then:

\[
D_{t}^{\alpha}(f_1 f_2)(t) = \sum_{k=0}^{\infty} \binom{\alpha}{k} D_{t}^{\alpha-k} f_1(t) \left(\frac{d}{dt} \right)^k f_2(t).
\]

(v) If \(f : [a, b] \rightarrow \mathbb{R} \) is analytical function on \((a, b) \), and \(0 \in (a, b) \) then:

\[
f(t) = \sum_{h=0}^{\infty} E_{a, h}(t) D_{t}^{\alpha_h} f(t)|_{t=0},
\]

where \(E_{a, h} \) is the Mittag - Leffler 's function:

\[
E_{a, h}(t) = \sum_{h=0}^{\infty} \frac{1}{\Gamma(1+\alpha h)} t^{\alpha h}.
\]

\(\blacksquare \)

Let \(\alpha \in \mathbb{R}, \alpha > 0 \) and \(M \) be a manifold of dimension \(n \) and \(U \) a local chart on \(M \). We say that the curves \(c_1, c_2 : I \rightarrow M, 0 \in I, c_1(0) = c_2(0) \in M \) have fractional contact \(\alpha \) in \(x_0 \), if for all \(f \in C^\infty(U), x_0 \in U \), the following relation holds:

\[
D_{t}^{\alpha}(f \circ c_1)|_{t=0} = D_{t}^{\alpha}(f \circ c_2)|_{t=0}.
\]
The set of equivalences classes \([c_x]_{x_0}\) is called the fractional tangent space in \(x_0\) and it is denoted by \(T^\alpha_{x_0}(U)\).

Let \(T^\alpha(M) = \bigcup_{x_0 \in M} T^\alpha_{x_0}(U)\) and the projection \(\pi^\alpha : T^\alpha(M) \to M\) given by \(\pi^\alpha([c_x]_{x_0}) = x_0\).

On \(T^\alpha(M)\) there exists a differentiable structure and we can prove that \((T^\alpha(M), \pi^\alpha, M)\) is a differentiable bundle.

In a system of local coordinates on \(M\), if \(x_0 \in U\) and \(c : I \to M\) is a curve given by \(x^i = x^i(t), (\forall) t \in I\), the class \([c_x]_{x_0}\) is given by:
\[
x^i(t) = x^i(0) + \frac{1}{\Gamma(1 + \alpha)} t^\alpha D^\alpha_{t^i} x^i(t) \big|_{t=0}, \quad t \in (\varepsilon, \varepsilon).
\]
(7)

On the open set \((\pi^\alpha)^{-1}(U) \subseteq T^\alpha(M)\), the local coordinates of the element \([c_x]_{x_0}\) are \((x^i, y^{i(\alpha)})\), where:
\[
x^i = x^i(0), \quad y^{i(\alpha)} = \frac{1}{\Gamma(1 + \alpha)} D^\alpha_{t^i} x^i(t), i = \overline{1,n}.
\]
(8)

Proposition 2.2 ([1], [2]) Let \(U, \overline{U}\) be two local charts on \(M\) such that \(U \cap \overline{U} \neq \emptyset\) and the coordinate transformations. The coordinate transformations on \((\pi^\alpha)^{-1}(U \cap \overline{U})\) are given by:
\[
\overline{x}^i = \overline{x}(x^1, x^2, ..., x^n), \quad \det \left(\frac{\partial \overline{x}^i}{\partial x^j} \right) \neq 0, \quad i = \overline{1,n}
\]
(9)
where:
\[
\alpha J^i_j(x, \overline{x}) = \frac{1}{\Gamma(1 + \alpha)} D^\alpha_{x^i} (x^j)^\alpha
\]
(11)
and \(D^\alpha_{x^i}\) is defined by:
\[
D^\alpha_{x^i} f(x) = \frac{1}{\Gamma(1-\alpha)} \frac{\partial}{\partial x^i} \int_{a^i}^{x^i} f(x^1, ..., x^{i-1}, \overline{x}, x^{i+1}, ..., x^n) - f(x^1, ..., x^{i-1}, a^i, x^{i+1}, ..., x^n) (x^i-s)^\alpha ds,
\]
(12)
with \(U_{ab} = \{x \in U, a^i \leq x^i \leq b^i, i = \overline{1,n}\} \subseteq U\).

Let \(\mathcal{D}^1(U)\) the module of 1 - forms defined on \(U \subseteq M\). Using the fractional exterior derivative \(d^\alpha : C^\infty(U) \to \mathcal{D}^1(U), f \to d^\alpha(f)\) (see [2]), where \(d^\alpha(f)\) is given by:
\[
d^\alpha(f) = d(x^i)^\alpha D^\alpha_{x^i}(f)
\]
(13)
follows:

\[
\begin{cases}
 d(x^i)^\alpha &= J_j(x, \bar{x}) d(x^j)^\alpha \\
 D^\alpha_{x^i} &= \frac{\alpha^j}{J_i(\bar{x}, x)} D^\alpha_{x^j} \\
 J_k(x, \bar{x}) J_j(\bar{x}, x)^\alpha &= \delta^j_j.
\end{cases}
\]

(14)

We denote by \(\mathcal{X}^\alpha(U) \) the module of fractional vector fields generated by the operators \(\{ D^\alpha_{x^i}, i = 1, \ldots, n \} \). A fractional vector field \(\overline{X} \in \mathcal{X}^\alpha(U) \) has the following form:

\[
\overline{X} = \overline{X}^i D^\alpha_{x^i}, \quad \overline{X}^i \in C^\infty(U), i = 1, \ldots, n,
\]

(15)

which for a change of local charts, the correspondent components satisfies the relations:

\[
\overline{X}^i = J_j(x, \bar{x}) \overline{X}_j, \quad i, j = 1, \ldots, n.
\]

(16)

The fractional differentiable equations associated to fractional vector field \(\overline{X} \) is:

\[
D^\alpha_{x^i}(t) = \overline{X}^i(x(t)), \quad i = 1, \ldots, n
\]

(17)

or equivalently (using the notation (8)):

\[
\Gamma(1 + \alpha) y^{i(\alpha)}(t) = \overline{X}^i(x(t)), \quad i = 1, \ldots, n.
\]

(18)

The fractional differential equations (17) with initial conditions have solutions, see [3]. Examples of fractional differentiable equations on \(\mathbb{R} \) can be find in [4].

3 Fractional Leibniz dynamical systems

Let the module \(\mathcal{X}^\alpha(U) \) of fractional vector fields generated by the operators \(\{ D^\alpha_{x^i}, i = 1, \ldots, n \} \) and the module \(\mathcal{D}^\alpha(U) \) generated by the 1– forms \(\{ d(x^i)^\alpha, i = 1, \ldots, n \} \). Applying the Proposition 2.2 it follows:

\[
(d(x^i)^\alpha)(D^\alpha_{x^i}) = D^\alpha_{x^i}(x^i)^\alpha = \Gamma(1 + \alpha) \delta^i_j.
\]

(19)

If \(\overline{X} \in \mathcal{X}^\alpha(U) \) and \(\overline{\omega} \in \mathcal{D}^\alpha(U) \) such that \(\overline{\omega} = \overline{\omega}_i d(x^i)^\alpha \), then \(\overline{\omega}(\overline{X}) = \Gamma(1 + \alpha) \overline{X}^i \overline{\omega}_i. \)
Let be a fractional 2-contravariant tensor field \(\beta \in \mathcal{X}^\alpha(U) \times \mathcal{X}^\alpha(U) \) and \(d^\alpha f, d^\alpha g \in D^\alpha(U) \) defined by (13).

The bilinear map \([\cdot, \cdot]^\alpha : C^\infty(M) \times C^\infty(M) \to C^\infty(M)\) defined by:

\[
[f, g]^\alpha = B(d^\alpha f, d^\alpha g), \quad (\forall) f, g \in C^\infty(M),
\]

is called the fractional Leibniz bracket.

If \(\beta = \beta^i j D^\alpha x^i \otimes D^\alpha x^j \), from (20) follows:

\[
[f, g]^\alpha = \beta^i j \cdot D^\alpha x^i f \cdot D^\alpha x^j g.
\]

Since

\[
D^\alpha_x(fh)(x) = \sum_{k=0}^{\infty} \left(\begin{array}{c} \alpha \\ k \end{array} \right) (D^\alpha_x f^x)(x)^k h(x),
\]

it follows

\[
[fh, g]^\alpha = \sum_{k=0}^{\infty} \left(\begin{array}{c} \alpha \\ k \end{array} \right) \cdot \beta^i j (D^\alpha_x f)(x)^k h \cdot D^\alpha x^j g,
\]

Similarly, one obtain

\[
[f, gh]^\alpha = \sum_{k=0}^{\infty} \left(\begin{array}{c} \alpha \\ k \end{array} \right) \cdot \beta^i j (D^\alpha_x f)(x)^k h \cdot D^\alpha x^j (g)(x)^k h.
\]

The pair \((M, [\cdot, \cdot]^\alpha)\) is called fractional Leibniz manifold. If the bracket \([\cdot, \cdot]^\alpha\) is skew-symmetric, that is \([f, g]^\alpha = -[g, f]^\alpha\) for all \(f, g \in C^\infty(M) \) we say that \((M, [\cdot, \cdot]^\alpha)\) is a fractional almost Poisson manifold. If \(\alpha \to 1 \), then one obtain the concept from [6].

For \(h \in C^\infty(M) \), the fractional vector field \(\bar{\alpha} \mathcal{X}_h \) defined by

\[
\bar{\alpha} \mathcal{X}_h(f) = [f, h]^\alpha, \quad (\forall) f \in C^\infty(M),
\]

is called the fractional Leibniz vector field associated to \(h \). The fractional dynamical system associated to \(\bar{\alpha} \mathcal{X}_h \) is called the fractional Leibniz dynamical system.

If \((x^i), i = 1, n\) is a system of local coordinates on \(M \), then the fractional Leibniz dynamical system is given by

\[
D^\alpha_t x^i(t) = [x^i(t), h(t)]^\alpha, \quad \text{where} \quad [x^i, h]^\alpha = \beta^i j D^\alpha x^j h.
\]
Example 3.1. Let the constant fractional 2- contravariant tensor \(\hat{g} = (\hat{g}^{ij}) \) defined on \(\mathbb{R}^3 \) by

\[
\hat{g} = \begin{pmatrix}
 s_1 \gamma_1 & 0 & 0 \\
 0 & s_2 \gamma_2 & 0 \\
 0 & 0 & s_3 \gamma_3
\end{pmatrix},
\]

(27)

where \(s_1, s_2, s_3 \in \{-1, 1\} \) and \(\gamma_1, \gamma_2, \gamma_3 \) satisfies the relation \(\gamma_1 + \gamma_2 + \gamma_3 = 0 \).

For \(h = x^1 x^2 x^3 \), the associated fractional Leibniz dynamical system is

\[
\begin{align*}
D_t^\alpha x^1 &= s_1 \gamma_1 D_t^\alpha x^1 (h) = \frac{\Gamma(2)}{\Gamma(2 - \alpha)} s_1 \gamma_1 x^2 x^3 (x^1)^{1-\alpha} \\
D_t^\alpha x^2 &= s_2 \gamma_2 D_t^\alpha x^2 (h) = \frac{\Gamma(2)}{\Gamma(2 - \alpha)} s_2 \gamma_2 x^1 x^3 (x^2)^{1-\alpha} \\
D_t^\alpha x^3 &= s_3 \gamma_3 D_t^\alpha x^3 (h) = \frac{\Gamma(2)}{\Gamma(2 - \alpha)} s_3 \gamma_3 x^1 x^2 (x^3)^{1-\alpha}.
\end{align*}
\]

(28)

If \(\alpha \to 1 \), it follows the system (7) in [10].

For \(\tilde{h} = (x^1)^\alpha (x^2)^\alpha (x^3)^\alpha \), the associated fractional Leibniz dynamical system is

\[
\begin{align*}
D_t^\alpha x^1 &= \Gamma(1 + \alpha) s_1 \gamma_1 x^2 x^3 \\
D_t^\alpha x^2 &= \Gamma(1 + \alpha) s_2 \gamma_2 x^1 x^3 \\
D_t^\alpha x^3 &= \Gamma(1 + \alpha) s_3 \gamma_3 x^1 x^2.
\end{align*}
\]

(29)

Let \(\hat{P} \) be a skew-symmetric fractional 2- contravariant tensor field and a non-degenerate symmetric fractional 2- contravariant tensor field \(\hat{g} \) on the manifold \(M \). We define the bracket \([\cdot, \cdot] : C^\infty(M) \times C^\infty(M) \to C^\infty(M) \) by

\[
[f, h]^\alpha = \hat{P}(d^\alpha f, d^\alpha h) + \hat{g}(d^\alpha f, d^\alpha h), \quad (\forall)f, h \in C^\infty(M).
\]

(30)

The 4- tuple \((M, \hat{P}, \hat{g}, [\cdot, \cdot]^\alpha) \) is called fractional almost metric manifold.

The fractional dynamical system associated to \(h \in C^\infty(M) \) is

\[
D_t^\alpha x^i(t) = [x^i(t), h(t)]^\alpha, \quad \text{where} \quad [x^i, h]^\alpha = \hat{P}^{ij} D_t^\alpha x_j h + \hat{g}^{ij} D_t^\alpha x_i h.
\]

(31)

Example 3.2. Let be the fractional 2 - contravariant tensors fields \(\hat{P} = (\hat{P}^{ij}), \hat{g} = (\hat{g}^{ij}) \) on \(\mathbb{R}^3 \) and the function \(h \in C^\infty(\mathbb{R}^3) \) given by :

\[
\hat{P} = \begin{pmatrix}
 0 & x^3 & -x^2 \\
 -x^3 & 0 & x^1 \\
 x^2 & -x^1 & 0
\end{pmatrix},
\]

\[
\hat{g} = \begin{pmatrix}
 0 & x^3 & -x^2 \\
 -x^3 & 0 & x^1 \\
 x^2 & -x^1 & 0
\end{pmatrix}.
\]
\[
\begin{pmatrix}
-a_2(x^2)^2 - a_3(x^3)^2 \\
a_1a_2x^1x^2 \\
a_1a_3x^1x^2
\end{pmatrix}
- \begin{pmatrix}
\alpha_1\alpha_2x^1x^2 \\
a_2a_3x^2x^3 \\
a_1(x^1)^2 - a_3(x^3)^2
\end{pmatrix},
\]

\[
h = (a_1 + 1)(x^1)^\alpha + (a_2 + 1)(x^2)^\alpha + (a_3 + 1)(x^3)^\alpha.
\]

Since \(D^\alpha_{x^1} h = (a_1 + 1)\Gamma(1 + \alpha) \), \(D^\alpha_{x^2} h = (a_2 + 1)\Gamma(1 + \alpha) \), \(D^\alpha_{x^3} h = (a_3 + 1)\Gamma(1 + \alpha) \), the fractional Leibniz dynamical system (31) associated to \(h \) is

\[
\begin{pmatrix}
D^\alpha_{x^1} x^1 \\
D^\alpha_{x^2} x^2 \\
D^\alpha_{x^3} x^3
\end{pmatrix} = \Gamma(1 + \alpha) \tilde{P} \begin{pmatrix}
\alpha_1 + 1 \\
\alpha_2 + 1 \\
\alpha_3 + 1
\end{pmatrix} + \Gamma(1 + \alpha) \tilde{g} \begin{pmatrix}
\alpha_1 + 1 \\
\alpha_2 + 1 \\
\alpha_3 + 1
\end{pmatrix} = \Gamma(1 + \alpha)(\tilde{P} + \tilde{g}) \begin{pmatrix}
\alpha_1 + 1 \\
\alpha_2 + 1 \\
\alpha_3 + 1
\end{pmatrix} \square
\]

Let be two fractional 2 - contravariant tensors fields \(\tilde{P} \) and \(\tilde{g} \) on \(M \). Define the bracket \([, (,)] : C^\infty(M) \times C^\infty(M) \times C^\infty(M) \rightarrow C^\infty(M) \) by:

\[
[f, h]^\alpha = \tilde{P}(d^\alpha f, d^\alpha h_1) + \tilde{g}(d^\alpha f, d^\alpha h_2), \quad (\forall) f, h_1, h_2 \in C^\infty(M).
\] (32)

The fractional vector field \(\tilde{X}^\alpha_{h_1,h_2} \) defined by

\[
\tilde{X}^\alpha_{h_1,h_2} = [f, (h_1, h_2)], \quad (\forall) f \in C^\infty(M).
\] (33)

is called the fractional almost Leibniz vector field associate to the functions \(h_1, h_2 \in C^\infty(M) \). The dynamical system associated to \(\tilde{X}^\alpha_{h_1,h_2} \) is called the fractional almost Leibniz dynamical system.

Locally, the fractional almost Leibniz dynamical system is given by:

\[
D^\alpha_{x^i} x^i(t) = \tilde{P} \cdot D^\alpha_{x^i} h_1 + \tilde{g} \cdot D^\alpha_{x^i} h_2.
\] (34)

Example 2.3. Let be the fractional 2 - contravariant tensors fields \(\tilde{P} = (P^{\alpha ij}) \), \(\tilde{g} = (g^{\alpha ij}) \) on \(\mathbb{R}^3 \) and the functions \(h_1, h_2 \in C^\infty(\mathbb{R}^3) \) given by :

\[
\tilde{P} = \begin{pmatrix}
0 & 1 & 0 \\
-1 & 0 & x^1 \\
0 & -x^1 & 0
\end{pmatrix},
\]

\[
\tilde{g} = \begin{pmatrix}
0 & 1 & 0 \\
-1 & 0 & x^1 \\
0 & -x^1 & 0
\end{pmatrix},
\]
\[
\bar{g} = \begin{pmatrix}
0 & 0 & 0 \\
0 & -(x^3)^2 & 0 \\
0 & 0 & -(x^2)^2 \\
\end{pmatrix},
\]

\[\bar{h}_1 = (x^2)^{1+\alpha} + (x^3)^{1+\alpha}, \quad \bar{h}_2 = (x^1)^{1+\alpha} + (x^3)^\alpha.\]

Since
\[D^\alpha_x \bar{h}_1 = 0, \quad D^\alpha_x \bar{h}_2 = \Gamma(1 + \alpha)x^2, \quad D^\alpha_x \bar{h}_1 = \Gamma(1 + \alpha)x^3;\]
\[D^\alpha_x \bar{h}_2 = \Gamma(1 + \alpha)x^1, \quad D^\alpha_x \bar{h}_2 = 0, \quad D^\alpha_x \bar{h}_2 = \Gamma(1 + \alpha),\]
the system (34) becomes:
\[
\begin{pmatrix}
D^\alpha_t x^1 \\
D^\alpha_t x^2 \\
D^\alpha_t x^3
\end{pmatrix} = \begin{pmatrix}
0 & 1 & 0 \\
-1 & 0 & x^1 \\
0 & -x^1 & 0
\end{pmatrix} \begin{pmatrix}
\Gamma(1 + \alpha)x^2 \\
\Gamma(1 + \alpha)x^3
\end{pmatrix} +
\begin{pmatrix}
0 & 0 & 0 \\
0 & -(x^3)^2 & 0 \\
0 & 0 & -(x^2)^2
\end{pmatrix} \begin{pmatrix}
\Gamma(1 + \alpha)x^1 \\
0 \\
\Gamma(1 + \alpha)
\end{pmatrix}
\]
or equivalently
\[
\begin{align*}
D^\alpha_t x^1 &= \Gamma(1 + \alpha)x^2 \\
D^\alpha_t x^2 &= \Gamma(1 + \alpha)x^1 x^3 \\
D^\alpha_t x^3 &= -\Gamma(1 + \alpha)x^2 - \Gamma(1 + \alpha)(x^2)^2.
\end{align*}
\]

The system (35) is called the \textit{fractional Maxwell-Bloch equations}. If in (35) we take \(\alpha \to 1\), then one obtain the Maxwell-Bloch equations.

\section*{4 Fractional Leibniz algebroids}

Let \(M\) be a smooth manifold of dimension \(n\), let \(\pi : E \to M\) be a vector bundle and \(\pi^* : E^* \to M\) the dual vector bundle. By \(\text{Sec}(M, E)\) or \(\text{Sec}(\pi)\) we denote the sections of \(\pi\).

A \textit{fractional Leibniz algebroid structure} on a vector bundle \(\pi : E \to M\) is given by a bracket (bilinear operation) \([\cdot, \cdot]^\alpha\) on the space of sections \(\text{Sec}(\pi)\) and two vector bundle morphisms \(\bar{\rho}_1, \bar{\rho}_2 : E \to T^\alpha M\) (called the left
and the right fractional anchor, respectively such that

\[
\begin{align*}
[e_a, e_b]^{\alpha} &= C^{\alpha c}_{ab} e_c \\
[f\sigma_1, g\sigma_2]^{\alpha} &= f\hat{\rho}_1(\sigma_1)(g)\sigma_2 - g\hat{\rho}_2(\sigma_2)(f)\sigma_1 + f g[\sigma_1, \sigma_2]^{\alpha}
\end{align*}
\]

(36)

for all \(\sigma_1, \sigma_2 \in \text{Sec}(\pi)\) and \(f, g \in C^\infty(M)\).

A vector bundle \(\pi : E \to M\) endowed with a fractional Leibniz algebroid structure \([\cdot, \cdot]^{\alpha}, \hat{\rho}_1, \hat{\rho}_2\) on \(E\), is called fractional Leibniz algebroid over \(M\) and denoted by \((E, [\cdot, \cdot]^{\alpha}, \hat{\rho}_1, \hat{\rho}_2)\).

A fractional Leibniz algebroid with an antisymmetric bracket \([\cdot, \cdot]^{\alpha}\) (in this case we have \(\hat{\rho}_1 = -\hat{\rho}_2\)) is called fractional pre-Lie algebroid.

In a system of local coordinates the relation (36) reads:

\[
[\sigma^1 e_a, \sigma^2 e_b]^{\alpha} = \sigma^1_1 \hat{\rho}_1(e_a)(\sigma^2_b e_b) - \sigma^2_2 \hat{\rho}_2(e_a)(\sigma^1_b e_b) + \sigma^1_1 \sigma^2_2 C^{\alpha c}_{ab} e_c.
\]

(37)

If \(\hat{\rho}_1(e_a) = \hat{\rho}^{\alpha i}_1 D^\alpha_{xi}, \hat{\rho}_2(e_b) = \hat{\rho}^{\alpha i}_2 D^\alpha_{xi}\), from (37) follows:

\[
[\sigma^1 e_a, \sigma^2 e_b]^{\alpha} = \sigma^1_1 \hat{\rho}^{\alpha i}_1(D^\alpha_{xi}\sigma^2_b e_b) - \sigma^2_2 \hat{\rho}^{\alpha i}_2(D^\alpha_{xi}\sigma^1_b e_b) + \sigma^1_1 \sigma^2_2 C^{\alpha c}_{ab} e_c.
\]

(38)

In the following, we establish a correspondence between the fractional Leibniz algebroid structures on the vector bundle \(\pi : E \to M\) and the fractional 2-contravariant tensor fields on bundle manifold \(E^*\) of the dual vector bundle \(\pi^* : E^* \to M\).

For a given section \(\sigma \in \text{Sec}(\pi)\), we define the function \(i_{E^*}\sigma\) on \(E^*\) by the relation:

\[
i_{E^*}\sigma(a) = <\sigma(\pi^*(a)), a>, \quad \text{for} \quad a \in E^*.
\]

(39)

where \(<\cdot, \cdot>\) is the canonical pairing between \(E\) and \(E^*\). If \(\sigma = \sigma^a e_a\) and \(a \in E^*\) has the coordinates \((x^i, \xi_a)\), then:

\[
i_{E^*}\sigma(a) = \sigma^a \xi_a.
\]

(40)

Let \(\Lambda^\alpha\) be a fractional 2-contravariant tensor field on \(E^*\) and the bracket \([\cdot, \cdot]^{\alpha}\) of functions defined by:

\[
[f, g]^{\alpha} = \Lambda^{\alpha \beta}(d^{\alpha \beta} f, d^{\alpha \beta} g), \quad (\forall) \quad f, g \in C^\infty(E^*),
\]

(41)

where

\[
d^{\alpha \beta} f = d(x^i)^{\alpha} D^\alpha_{2i} f + d(\xi_a)^{\beta} D^\beta_{\xi_a} f = d^\alpha(f) + d^\beta(f).
\]

(42)
In the basis \(\{ D^a_x, D^b_{\xi_a} \} \), \(i = 1, n, a = 1, m \) of the module \(\mathcal{X}^{\alpha\beta}(\pi^{-1}(U)) \), the components \(\Lambda^{\alpha\beta} \) are given by:

\[
\Lambda^{\alpha\beta} = A_{ab} D^b_{\xi_a} \otimes D^a_{\xi_b} + A^i_{1a} D^b_{\xi_b} \otimes D^a_x + A^i_{2a} D^b_x \otimes D^a_{\xi_a}. \tag{43}
\]

For a given fractional 2 - contravariant tensor field \(\Lambda^{\alpha\beta} \) on \(E^* \), we say that \(\Lambda^{\alpha\beta} \) is \textit{linear}, if for each pair \((\mu_1, \mu_2)\) of sections of \(\pi^* \), the function \(\Lambda^{\alpha\beta} (d(i_{E*}\mu_1)^\beta, d(i_{E*}\mu_2)^\beta) \) defined on \(E^* \) is linear with respect the coordinates \(\xi_a \).

If \(\mu_1 = \mu_1^a(x)e_a, \mu_2 = \mu_2^a(x)e_a \), then \(d_{E*}\mu_1 = \mu_1^a(x)\xi_a, d_{E*}\mu_2 = \mu_2^a(x)\xi_a \) and \(\Lambda^{\alpha\beta} (d(i_{E*}\mu_1)^\beta, d(i_{E*}\mu_2)^\beta) = A_{ab}(x, \xi)(\mu_1^a(x))^{\alpha}(\mu_2^a(x))^{\beta}D^a_{\xi_a}(\Lambda)D^b_{\xi_b}(\Lambda)^{\alpha\beta} = \frac{1}{(1+\alpha)}(\mu_1^a(x))(\mu_2^b(x))^{\alpha\beta}A_{ab}(x, \xi) \).

It follows that \(\Lambda^{\alpha\beta} \) is linear if and only if \(A_{ab}(x, \xi) = C_{ab}(x)\xi_c \).

The fractional formulation of the Grabowski and Urbanski’s Theorem from [6], is the following.

\textbf{Theorem 4.1.} For every fractional Leibniz algebroid structure on \(\pi : E \to M \) with the bracket \([\cdot, \cdot]^{\alpha}\) and the fractional anchors \(\tilde{\rho}_1, \tilde{\rho}_2 \), there exists an unique fractional 2 - contravariant tensor field \(\Lambda^{\alpha\beta} \) on \(E^* \) such that the following relations hold:

\[
\begin{align*}
 i_{E*}[\sigma_1, \sigma_2] &= [(i_{E*}\sigma_1)^\beta, (i_{E*}\sigma_2)^\beta]^{\alpha\beta}_\Lambda \\
 \pi^*(\tilde{\rho}_1^{\alpha}(\sigma)(f)) &= [(i_{E*}\sigma)^\beta, \pi^*f]^{\alpha\beta}_\Lambda \\
 \pi^*(\tilde{\rho}_2^{\alpha}(\sigma)(f)) &= [\pi^*f, (i_{E*}\sigma)^\beta]^{\alpha\beta}_\Lambda.
\end{align*} \tag{44}
\]

for all \(\sigma_1, \sigma_2 \in \text{Sec}(\pi) \) and \(f \in C^\infty(M) \).

Conversely, every fractional 2 - contravariant linear tensor field \(\Lambda^{\alpha\beta} \) on \(E^* \) defines a fractional Leibniz algebroid on \(E \) if the relations (44) hold. \(\square \)

Let \((x^i) \), \(i = 1, n \) be a local coordinate system on \(U \subseteq M \) and let \(\{e^1, \ldots, e^m\} \) be a basis of local sections of \(E|_U \) (\(\dim M = n, \dim E = n + m \)). We denote by \(\{e^1, \ldots, e^m\} \) the dual basis of local sections of \(E^*|_U \) and \((x^i, y^a) \) (resp., \((x^i, \xi_a) \)) the corresponding coordinate system on \(E \) (resp., \(E^* \)).

Let \(\Lambda^{\alpha\beta} \) given by (43). Using (44), it is easy to see that every linear fractional 2 - contravariant tensor field \(\Lambda^{\alpha\beta} \) on \(E^* \) has the form:

\[
\Lambda^{\alpha\beta} = C^{ab}_{\xi_d} D^b_{\xi_a} \otimes D^a_{\xi_b} + \rho^{i}_{1a} D^b_{\xi_b} \otimes D^a_x + \rho^{i}_{2a} D^b_x \otimes D^a_{\xi_a}. \tag{45}
\]
where $C_{ab}, \rho_{1a}, \rho_{2a} \in C^\infty(M)$ are functions of x^i.

The correspondence between Λ and a fractional Leibniz algebroid structure is given by the following relations:

$$[e_a, e_b]^\alpha = C_{ab}^d e_d, \quad \rho_1(e_a) = \rho_{1a}^i D^\alpha x^i, \quad \rho_2(e_a) = \rho_{2a}^i D^\alpha x^i. \quad (46)$$

We call a fractional dynamical system on the fractional Leibniz algebroid $\pi : E \to M$, the fractional dynamical system associated to vector field $\overset{\alpha}{\beta} X_h$ with $h \in C^\infty(E^*)$ given by:

$$\overset{\alpha}{\beta} X_h(f) = \Lambda (d^\alpha \beta f, d^\alpha \beta h), \quad \text{for all } f \in C^\infty(E^*). \quad (47)$$

In a system of local coordinates (x^i, ξ_a) on E^*, the dynamical system (47) is given by:

\[
\begin{cases}
D^\alpha \xi_a = [\xi_a, h]_{\alpha} \\
D^\alpha x^i = [x^i, h]_{\alpha} \\
\end{cases}
\quad (48)
\]

where

\[
\begin{cases}
[\xi_a, h]_{\alpha} = C_{ab}^d \xi_d D^\beta \xi_b h + \rho_{1a}^i D^\alpha x^i h \\
[x^i, h]_{\alpha} = -\rho_{2a}^i D^\beta \xi_a h \\
\end{cases}
\quad (49)
\]

If $\alpha \to 1$, $\beta \to 1$, dynamical system (48) was studied in [6].

If $\alpha \to 1$ dynamical system (48) has the form:

\[
\begin{cases}
\dot{x}^i = -\rho_{2a}^i D^\beta \xi_a h \\
D^\beta \xi_a = C_{ab}^d \xi_d D^\beta \xi_b h + \rho_{1a}^i \frac{\partial h}{\partial x^i} \\
\end{cases}
\quad (50)
\]

If $\beta \to 1$ dynamical system (48) has the form:

\[
\begin{cases}
D^\alpha x^i = -\rho_{2a}^i \frac{\partial h}{\partial \xi_a} \\
\dot{\xi}_a = C_{ab}^d \xi_d \frac{\partial h}{\partial \xi_b} + \rho_{1a}^i D^\alpha x^i h \\
\end{cases}
\quad (51)
\]

If the fractional Leibniz algebroid is a fractional pre-Lie algebroid (that is, $C_{ab} = -C_{ba}$), then the fractional dynamical system (48) is given by:

\[
\begin{cases}
D^\beta \xi_a = C_{ab}^d \xi_d D^\beta \xi_b h + \rho_{1a}^i D^\alpha x^i h \\
D^\alpha x^i = -\rho_{1a}^i D^\beta \xi_a h \\
\end{cases}
\quad (52)
\]
If the fractional Leibniz algebroid is a fractional symmetric algebroid (that is, $C_{ab}^d = C_{da}^d$), then the fractional dynamical system (48) is given by:

$$\begin{align*}
D_t^\beta \xi_a &= C_{ab}^d \xi_d D_{t}^\beta \xi_a + \rho_{1a} D_{x}^\alpha h, \\
D_{x}^\alpha x^i &= \rho_{1a} D_{x}^\alpha \xi_a
\end{align*}$$

(53)

Example 4.1. Let the vector bundle $\pi : E = \mathbb{R}^3 \times \mathbb{R}^3 \to \mathbb{R}^3$ and $\pi^* : E^* = \mathbb{R}^3 \times (\mathbb{R}^3)^* \to \mathbb{R}^3$ the dual vector bundle. We consider on E^* the fractional 2 - contravariant linear tensor field $\tilde{\Lambda}$ defined by the matrix P^β, the fractional anchors $\tilde{\alpha}_1, \tilde{\alpha}_2$ and the function h given by:

$$P^\beta = \begin{pmatrix} 0 & -\xi_3 x^3 & \xi_2 x^2 \\ \xi_3 x^3 & 0 & -\xi_1 x^1 \\ -\xi_2 x^2 & \xi_1 x^1 & 0 \end{pmatrix}, \quad \tilde{\alpha}_1 = \begin{pmatrix} 0 & -x^3 & x^2 \\ x^3 & 0 & 0 \\ -x^2 & 0 & 0 \end{pmatrix},$$

$$\tilde{\alpha}_2 = \begin{pmatrix} 0 & -1 & 0 \\ 1 & 0 & -x^1 \\ 0 & x^1 & 0 \end{pmatrix} \quad \text{and} \quad h(x, \xi) = (x^2)^\alpha (\xi_2)^\beta + (x^3)^\alpha (\xi_3)^\beta, \alpha > 0, \beta > 0.$$

Using the calculus formulas:

$$D_{t}^\beta (\xi_b)^\gamma = \delta_b^a \xi_a^\gamma - \beta - \frac{\Gamma(1+\gamma)}{\Gamma(1+\gamma-\beta)} \xi^\gamma,$$

$$D_{x}^\alpha (x^j)^\gamma = \delta_t^j (x^i)^\gamma - \alpha - \frac{\Gamma(1+\gamma)}{\Gamma(1+\gamma-\alpha)}$$

follows:

$$\begin{align*}
D_{t}^\beta h &= 0, \quad D_{t}^\beta \xi = \Gamma(1 + \beta)(x^2)^\alpha, \quad D_{t}^\beta h = \Gamma(1 + \beta)(x^3)^\alpha \\
D_{x}^\alpha h &= 0, \quad D_{x}^\alpha \xi = \Gamma(1 + \alpha)(\xi_2)^\beta, \quad D_{x}^\alpha h = \Gamma(1 + \alpha)(\xi_3)^\beta.
\end{align*}$$

The fractional dynamical system (48) for the given elements, has the following matrix form:

$$\begin{align*}
\begin{pmatrix} D_{t}^\beta \xi_1 \\ D_{t}^\beta \xi_2 \\ D_{t}^\beta \xi_3 \end{pmatrix} &= \Gamma(1 + \beta) \begin{pmatrix} 0 & -\xi_3 x^3 & \xi_2 x^2 \\ \xi_3 x^3 & 0 & -\xi_1 x^1 \\ -\xi_2 x^2 & \xi_1 x^1 & 0 \end{pmatrix} \begin{pmatrix} 0 \\ (x^2)^\alpha \\ (x^3)^\alpha \end{pmatrix} + \\
&\quad + \Gamma(1 + \alpha) \begin{pmatrix} 0 & -x^3 & x^2 \\ x^3 & 0 & 0 \\ -x^2 & 0 & 0 \end{pmatrix} \begin{pmatrix} 0 \\ (\xi_2)^\beta \\ (\xi_3)^\beta \end{pmatrix},
\end{align*}$$

$$\begin{align*}
\begin{pmatrix} D_{t}^\alpha x^1 \\ D_{t}^\alpha x^2 \\ D_{t}^\alpha x^3 \end{pmatrix} &= -\Gamma(1 + \beta) \begin{pmatrix} 0 & -1 & 0 \\ 1 & 0 & -x^1 \\ 0 & x^1 & 0 \end{pmatrix} \begin{pmatrix} 0 \\ (x^2)^\alpha \\ (x^3)^\alpha \end{pmatrix}.
\end{align*}$$
From the above matrix equations follows the fractional dynamical system:

\[
\begin{align*}
D_t^\beta \xi_1 &= \Gamma(1 + \beta)(-\xi_3(x^2)^\alpha x^3 + \xi_2 x^2 (x^3)^\alpha) + \\
& \quad + \Gamma(1 + \alpha)(-x^3(\xi_2)^\beta + x^2(\xi_3)^\beta) \\
D_t^\beta \xi_2 &= -\Gamma(1 + \beta)\xi_1(x^3)^\alpha \\
D_t^\beta \xi_3 &= -\Gamma(1 + \beta)\xi_1(x^2)^\alpha \\
D_t^\beta x^1 &= -\Gamma(1 + \beta)(x^2)^\alpha \\
D_t^\beta x^2 &= -\Gamma(1 + \beta)x^1(x^3)^\alpha \\
D_t^\beta x^3 &= \Gamma(1 + \beta)x^1(x^3)^\alpha
\end{align*}
\]

The fractional dynamical system (54) is the \((\alpha, \beta)-\text{fractional dynamical system}\) associated to fractional Maxwell-Bloch equations.

\[\square\]

Conclusion. The numerical integration of the fractional systems presented in this paper will be discussed in future papers.

References

[1]. I.D. Albu, M. Neamțu, D. Opriș, *The geometry of fractional osculator bundle of higher order and applications*. Conference of Differential Geometry: Lagrange and Hamilton spaces. Dedicated to Acad. Prof. dr. Radu Miron at his 80-th anniversary. September 3 - 8, 2007, Iași, Romania.

[2]. K. Cotrill- Shepherd, M. Naber, *Fractional differential forms*. J. Math. Phys., 42 (2001), 2203-2212.

[3]. J. Cresson, *Fractional embedding of differential operators and Lagrangian systems*. Journal of Mathematical Physics, 38, Issue 3, 2007.

[4]. D. Deac, D. Opriș, *The geometry of fractional osculator bundle of higher order on \(\mathbb{R}\). Applications to mechanics and economics*. Conference of Differential Geometry: Lagrange and Hamilton spaces. Dedicated to Acad. Prof. dr. Radu Miron at his 80-th anniversary. September 3 - 8, 2007, Iași, Romania.

[5]. J. Grabowski, P. Urbanski, *Lie algebroid and Poisson - Nijenhuis structures*. Rep. Math. Phys., 40, 1997, 195 - 208.

[6]. Gh. Ivan, D. Opriș, *Dynamical systems on Leibniz algebroids*. Differential Geometry - Dynamical systems (DGDS), 8 (2006). Geometry Balkan Press, 127-137.

[7]. Gh. Jumărie, *Lagrangian mechanics of fractional order, Hamilton-Jacobi fractional PDE and Taylor’s Series of nondifferentiable functions*. Chaos, Solitons and Fractals, 2007.

[8]. R. Miron, *The geometry of higher order Lagrange spaces. Applications to Mechanics and Physics*. Kluwer Academic Publisher FTPH,
[9]. J.P. Ortega, V. Planas - Bielsa, *Dynamics on Leibniz manifolds*. Preprint, arXiv: math. DS/ 0309263, 2003.

[10]. V.E. Tarasov, *Fractional generalization of gradient and Hamiltonian systems*. J. Phys. A. Math. Gen., **38** (2005), 5929 - 5943.