Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Synthesis of the Putative Red Clover Necrotic Mosaic Virus RNA Polymerase by Ribosomal Frameshifting in Vitro

Z. XIONG, K. H. KIM, T. L. KENDALL, AND S. A. LOMMEL

Department of Plant Pathology, Box 7616, North Carolina State University, Raleigh, North Carolina 27695-7615

Received August 28, 1992; accepted November 4, 1992

The red clover necrotic mosaic virus (RCNMV) genome is split between two single-stranded RNA species termed RNA-1 and RNA-2. RNA-1 directs the synthesis of 88-kDa (p88), 57-kDa (p57), 37-kDa (p37), and 27-kDa (p27) polypeptides and RNA-2 a 35-kDa (p35) polypeptide in vitro. The coding order of the RNA-1 products was determined to be 5'-p27-p57-p37-3'. Antibodies to synthetic peptides representing the carboxyl terminal portions of p27 and p57 immunoprecipitated their respective polypeptides in addition to p88, suggesting that p88 is a fusion protein. A frameshift heptanucleotide sequence element has been identified in RCNMV RNA-1. In addition, a stable stem-loop secondary structure adjacent to the heptanucleotide sequence is predicted. Together, these sequence elements suggest that a ribosomal frameshifting event occurs which allows translational readthrough of the p27 open reading frame into the p57 open reading frame, generating the observed p88 product. An RNA-1 expression construct fusing the p57 and the CP open reading frame was engineered to investigate the ribosomal frameshifting event. CP antibodies immunoprecipitated a fusion protein of the predicted size containing the carboxyl portion of CP. Site-directed mutagenesis of the frameshiftelement indicates that pBB can also be expressed alternatively by suppression of an amber termination codon. Based on these data, we propose that the putative RCNMV RNA polymerase is an 88-kDa polypeptide expressed by a ribosomal frameshifting mechanism similar to those utilized by retroviruses.

INTRODUCTION

Red clover necrotic mosaic virus (RCNMV), a member of the dianthovirus group, is characterized by a genome split between two single-stranded RNAs of 3.9 kb (RNA-1) and 1.45 kb (RNA-2). The RNAs are encapsidated together in 30–32 nm icosahedral virions by 80 copies of a 37-kDa capsid protein (CP) (Holllings and Stone, 1977).

The monocistronic RNA-2 contains a single open reading frame (ORF) capable of encoding a 35-kDa polypeptide which has been observed both in vitro (Lommel et al., 1988) and in vivo (Osman and Buck, 1991). The RCNMV cell-to-cell movement activity has been genetically mapped to RNA-2 (Osman and Buck, 1987; Paje-Manalo and Lommel, 1989).

The polycistronic RNA-1 contains three ORFs capable of encoding polypeptides of 27, 57, and 37 kDa (Xiong and Lommel, 1989) (Fig. 1). Capsid protein synthesis and replication functions have been genetically mapped to RNA-1 (Osman and Buck, 1987; Paje-Manalo and Lommel, 1989). Amino acid sequence alignment with a number of related spherical RNA plant viruses within the tombus-, carmo-, and luteovirus groups and identification of conserved RNA-dependent RNA polymerase motifs suggest that the polypeptides encoded by the RNA-1 p27 and p57 ORFs constitute the viral polymerase (Koonin, 1991). Most of these related plant viruses have polycistronic genomic RNAs and, with the notable exception of barley yellow dwarf luteovirus (BYDV), the 5’ proximally located 88–92 kDa polymerase ORF is interrupted by an inframe amber termination codon (Beier et al., 1984; Carrington et al., 1989; Guilley et al., 1985; Hearne et al., 1990; Miller et al., 1988; Nutter et al., 1989). Periodic suppression of the amber termination codon with an amber suppressor tRNA during translation results in the attenuated expression of the polymerase fusion protein (Beier et al., 1984). Unlike these other viruses, the polymerases of RCNMV, BYDV (Brault and Miller, 1992), and potato leafroll luteovirus (PLRV) appear to be encoded by two adjacent out of frame ORFs (Mayo et al., 1989).

Previously, Morris-Krinich et al. (1983), reported that the capsid protein and a 36-kDa polypeptide were synthesized in vitro from RNA-1 and a 34-kDa polypeptide from RNA-2. The number and size of RNA-1-programmed proteins do not account for the RNA-1 coding capacity. Consequently, we have reinvestigated the in vitro expression of RCNMV RNA-1. In this report, we present the in vitro translation profile of the RCNMV genome and relate it to the genetic map of the virus.

Retrovirus RNA genomes are also polycistronic and the internally located polymerase (pol) ORF is expressed as a fusion protein with gag or pro (Varmus,
Mutagenesis of the ribosomal frameshifting element

Several point and frameshift mutations in and around the RCNMV ribosomal frameshifting site were constructed by site-specific mutagenesis of ssDNA templates using synthetic oligonucleotides as described by Kunkel et al. (1987). The RCNMV frameshift heptanucleotide element was changed to a BYDV frameshift heptanucleotide element using the oligonucleotide 5'-CCCTTGGGTTTTAAGCG-3' in the clone pRC1BYDV. The frameshift region was also changed to an amber termination codon by addition of a G residue after the p27 ORF termination codon using the oligonucleotide 5'-ATTTTAGGGGCGGCCCCACTC-3' forming pRC1Amb. A single p88 ORF was generated by changing the amber termination codon to a tyrosine residue using the oligonucleotide 5'-ATTTTACGGCCGCCACTC'T (pRC1p88). The putative p57 ORF initiation codon was destroyed with 5'-CCAGTAGATCGACAAAGTGAA-3' (pRC1Met1) and a second downstream inframe methionine codon was eliminated with 5'-ACATAATTTATTAGTAGTAGTAGC-3' (pRC1Met2). Two mutations were constructed that were predicted to prevent p88 expression. The frameshift heptanucleotide was destroyed with 5'-AAATTATAATATGATATGATCTAGGCGG-3' (pRC1NoFS) and a termination codon was incorporated in the -1 frame after the frameshift heptanucleotide sequence with 5'-CTTGAGGATTTTAGTCAGTACTCAGTTCCGTG-3' (pRC1-1Stop). All site-directed mutants were confirmed by DNA sequence analysis.

In vitro transcription, translation, and immunoprecipitation

Positive polarity run-off transcripts of RCNMV RNA-1 cDNA clones were synthesized using T7 RNA polymerase following linearization of pBS(+) plasmids with HindIII or SphI (Xiong and Lommel, 1991). Transcription reactions were carried out according to the manufacturer's instructions (BRL). RNA was ethanol-precipitated together with the templates and translated in vitro.

Rabbit reticulocyte lysates (Green Hectares, Oregon Wisconsin) were used to translate viral RNAs and in vitro transcripts as described by Lommel et al. (1988). The [35S]methionine-labeled translation products were analyzed by discontinuous SDS 12.5%-polyacrylamide gel electrophoresis (SDS–PAGE) (Laemmli, 1970). After electrophoresis, gels were fixed and processed by fluorography. Immunoprecipitation of in vitro translation products was carried out as described by Heibert and Purcifull (1981) with Staphylococcus aureus (Cowan strain) cell walls and either non-immune or immune serum.
Antibody preparation

Antibodies to CP were raised in rabbits by injecting SDS-PAGE-purified RCNMV CP subunits intramuscularly. Two synthetic oligopeptides, IRENKAVAGFKSLEDV representing the carboxyl terminus of p27 and PTHYSIHKDLIKAR representing the carboxyl terminus of p57 and p88, were synthesized (Xiong and Lommel, 1989). For each peptide an additional amino-terminal non-viral cysteine residue was included to facilitate coupling to keyhole limpet hemocyanin (KLH) using m-maleimidobenzoyl-N-hydroxysuccinimide ester linkage (Harlow and Lane, 1988). Oligopeptides coupled to KLH were then injected intramuscularly into rabbits. Antibodies were purified from antisera by affinity column chromatography with epoxy-activated Sepharose 6B (Pharmacia) coupled with the corresponding synthetic oligopeptide.

RESULTS

In vitro translation analysis of the RCNMV genome

Electrophoretically separated RCNMV RNA-1 directed the synthesis of four polypeptides, p88, p57, p37, and p27, in addition to several minor components ranging in size from 20 to 23 kDa, in a rabbit reticulocyte in vitro translation system (Fig. 1). The p27 protein was the major RNA-1 translation product while p57 and p37 were produced in significant but lower quantities. The p88 was synthesized at barely detectable levels in comparison to p27 or the RNA-2 encoded p35. Consequently, the detection of p57 and p88 required overexposure of the fluorographs relative to p27 and p35. No amino acid sequence similarity was observed between p27 and p57 by V8 protease cleavage analysis (data not shown). The low level of p88 synthesis in vitro prevented protease cleavage comparisons with p27 and p57. Translation of separated RNA-2 yielded a single major polypeptide, p35 (Fig. 1). A few minor low molecular weight protein bands, presumably products of degradation, internal initiation, or premature termination were also visible.

Translational mapping of RNA-1 encoded products

A series of 3' co-terminal subclones were generated from pRC1 by incremental 5' deletions of approximately 500 nucleotides using convenient restriction sites (Fig. 2). Uncapped, positive polarity run-off transcripts from each deletion clone were synthesized and equimolar amounts translated in vitro. Transcripts from the two smallest RNA-1 deletion constructs, pRC1Ac (0.3 kb) and pRC1Ba (1.1 kb), did not direct the synthesis of a detectable protein (Fig. 2, left panel). The next largest construct, pRC1Xb (1.5 kb), produced a large quantity of p37 CP relative to the other transcripts and viral RNA-1. Transcripts from construct pRC1Hi (2.6 kb) directed the synthesis of a reduced amount of p37 relative to pRC1Xb, but no larger polypeptides. In addition to p37, pRC1Ps (2.8 kb) yielded polypeptide species similar in mobility to p57. The pRC1Ac transcript, lacking approximately the 5' terminal 400 bases of RNA-1, directed the synthesis of proteins comigrating with viral RNA-1 encoded p57 and p37. The p27 major
Carboxyl-terminal oligopeptide antibodies were generated to both the predicted p27 and p57/p88 non-structural proteins. The p27 antibody immunoprecipitated p27 as well as p88 (Fig. 3). In addition, the p27 antibody immunoprecipitated the series of minor bands ranging in size from 20 to 23 kDa, establishing them as subsets of p27. The p88 antibody immunoprecipitated p57, p88, and smaller amounts of several minor proteins, presumably p57 and or p88 degradation products. This result clearly showed that p88 is composed of both p27 and p57 sequences. The p35, as well as all the other smaller products encoded by RNA-2, were only immunoprecipitated by the p35 carboxyl-terminal oligopeptide antibody (Fig. 3).

CP reporter system to observe ribosomal frameshifting

Nucleotide sequence analysis suggested that p88 may arise by a ribosomal frameshifting event near the translation product from viral RNA-1 was not synthesized from the pRC1Ac transcript. However, the transcript from the full-length clone, pRC1, produced a large amount of p27, as well as small amounts of p57 and p37 in vitro. The synthesis of p88 directed by pRC1 transcripts was not observed at the exposure illustrated (Fig. 2), but was detected upon longer exposure (data not shown). Thus, the genome organization of RNA-1 is from 5' to 3': p27, p57, and p37 CP, in agreement with the nucleotide sequence of RNA-1 (Xiong and Lommel, 1989).

Immunoprecipitation of RCNMV translation products

RCNMV CP antiserum immunoprecipitated p37 as well as a 28-kDa polypeptide and several minor smaller polypeptides establishing p37 as CP (Fig. 2, right panel, and Fig. 3). The 28-kDa product observed in vitro is most likely the result of internal initiation from one of several in frame methionine codons present within the 5' terminal quarter of the CP gene. No RNA-2 directed translation products were immunoprecipi-
termination codon of the p27 ORF, allowing translation to continue into and through the p57 ORF (Xiong and Lommel, 1989). To investigate this possibility, a p57–CP fusion construct was made. Deletion of an internal BamHI fragment from pRC1 generates an inframe fusion between the amino-terminal portion of p57 and the carboxyl-terminal portion of p37 CP. The construct (pRC1BCP) was predicted to encode a CP fusion peptide of 37.4 kDa, and assuming ribosomal frameshifting, a 67-kDa fusion polypeptide (Fig. 4). Run-off RNA transcripts were prepared from pRC1BCP after Smal linearization. Analysis of the in vitro translation products directed by the pRC1BCP transcript showed that it directed the synthesis of a major 27-kDa product and the carboxyl-terminal portion of p37 CP. The predicted 68-kDa fusion polypeptide was produced at an extremely low level and was only detectable after concentration by immunoprecipitation with CP antisera (Fig. 4). In addition to the 68-kDa polypeptide, the 37.4-kDa polypeptide was also immunoprecipitated, as was expected, since both of these polypeptides were composed of the carboxyl-terminal portion of CP.

RCNMV frameshift element mutations

A frameshift heptanucleotide defined by the ability to facilitate ribosomal frameshifting in accordance with the -1 simultaneous slippage model (Jacks et al., 1988a) was identified in RNA-1 immediately 5’ to the p27 ORF amber termination codon (see below). To determine the role of this potential frameshifting element in p57 synthesis, several point and frameshift mutations were introduced into this region of RNA-1 (Fig. 5). Nucleotide 826 was changed from an A to a G residue generating the frameshift heptanucleotide sequence GGGUUUU predicted in BYDV (pRC1BYDV). Insertion of a G residue after the p27 ORF termination codon (mutant pRC1Amb) shifts the downstream -1 frame into the same frame as the p27 ORF generating a p88 ORF punctuated by an in-frame amber termination codon. An additional mutation in pRC1Amb, changing nucleotide number 833 from a G to a C residue altered the p27 ORF amber termination codon to a tyrosine encoding codon. This mutant, termed pRC1p88, generated a single uninterrupted p88 ORF, eliminating the p27 ORF. Two mutants were generated that were predicted to prevent p88 expression in vitro. Mutant pRC1-1Stop incorporated a termination codon immediately 3’ of the predicted frameshift heptanucleotide. Mutant pRC1NoFS destroyed the frameshift heptanucleotide preventing ribosomal frameshifting in accordance with the simultaneous slippage model.

All the mutant in vitro transcripts except pRC1p88 directed the synthesis of a large quantity of p27 in addition to smaller quantities of p37 CP (Fig. 5). The p88 fusion protein from pRC1BYDV and pRC1Amb was synthesized in approximately the same quantity as from
the wild-type transcript pRC1. Synthesis of p88 from pRC1Amb indicated that an amber terminator readthrough event occurred. The major translation product from the pRC1p88 transcript was p88, with smaller amounts of p37 CP and p57 and no p27 protein synthesis.

The internal p57 ORF identified by sequence analysis is apparently expressed directly from RNA-1 in vitro (Fig. 1). To establish that the p57 ORF resulted in the expression of p57, the predicted p57 ORF initiation codon at nucleotide 926 was changed to an aspartic acid codon. This mutant, pRC1Met1, directed the synthesis of a protein slightly smaller than p57 (Fig. 5). The smaller protein was presumably produced by initiation at the second AUG codon, 80 nucleotides downstream from the first AUG codon in the p57 ORF. This second methionine codon was changed to an isoleucine codon in the mutant pRC1Met2. This mutant did not direct the expression of p57 or a smaller product in vitro.

DISCUSSION

RCNMV RNA-1 directs the synthesis of p27, p37 (CP), p57, and p88 in addition to a population of smaller species serologically related to p27 and p37 in vitro. The coding regions of the RNA-1 encoded polypeptides have been mapped. Excluding p88, the relative location and size of the observed RNA-1 directed in vitro products correlates with the three ORFs deduced from the nucleotide sequence analysis (Fig. 1). Only p37 is immunoprecipitated by CP antiserum (Figs. 2 and 3), indicating that the other observed products are not related to CP. No amino acid sequence similarity was observed between p27 and p57 by V8 protease cleavage map analysis (data not shown). Together the serological and mapping evidence suggest that the coding sequence for p88 overlaps and is composed of the p27 and p57 ORFs.

The p37 CP has been mapped to the 3' proximal p37 ORF and appears to be relatively inaccessible for translation from full-length virion RNA as evidenced by its low level synthesis in vitro (Figs. 1 and 2). In contrast, a large amount of CP is synthesized from the 1.5-kb 3' co-terminal in vitro transcript pRC1Xb, which has only 20 nucleotides 5' to the CP initiation codon. These observations are consistent with the conclusion by Osman and Buck (1990) that the CP ORF is expressed in vivo from a 3' co-terminal 1.5-kb subgenomic RNA.

RCNMV polymerase expression by ribosomal frameshifting

A small amount of an 88-kDa polypeptide which reacts to both p27 and p57 carboxy-terminal peptide antibodies but not the capsid protein antibody is synthesized in vitro (Fig. 3). These data suggest that p88 is a fusion protein resulting from translational frameshift of the p27 ORF into the p57 ORF. It is unlikely that p88 is a cleavage precursor of p57 and p27 because p27 is produced in much greater quantities than p57. The fact that only a minor amount of p88 is produced in vitro is consistent with a readthrough event (Beier et al., 1984) or a ribosomal frameshifting event (Atkins et al., 1990; Jacks et al., 1988a). The RCNMV RNA-1 nu-
RCNMV RIBOSOMAL FRAMESHIFTING

A

RNA-1

Virus

Overlap

Sequence

MMTV pro/pol

RCNMV p27/pol

BYDV p39/pol

RSV gag/pol

The heptanucleotide involved in the simultaneous slippage
Upstream ORF terminator

Ph...

p37CP

"Jebnsfw

"LjJtRNA

birds

-1 Simultaneous
......

B

AAGAUUUUUGAG

CUAAA

Asp

Phe

-1 Simultaneous slippage

UCCUAA

CUAAA

Glu

Asp

peptide transfer
translation

U

Leu

RNA Swiss in 1 frame

Normal peptide transfer and three nucleotide translocation bring the codon UUA in the p57 ORF into the A site where it pairs with tRNAPhe.

In addition to the heptanucleotide sequence, stable stem-loop structures often involving pseudoknot formation are thought to facilitate the ribosomal frameshifting event in eukaryotic systems (Jacks et al., 1988a,b; Hizi et al., 1987; Le et al., 1989; Ten Dam et al., 1990). These secondary structures are typically found adjacent to the frameshift heptanucleotide. A stable stem-loop structure is predicted immediately downstream of the putative frameshifting heptanucleotide sequence in RCNMV (Zuker and Stiegler, 1981; Fig. 6B). The proposed RCNMV stem-loop structure is similar to the established structures in human immunodeficiency virus (HIV) (Jacks et al., 1988b), RSV (Jacks et al., 1988a) and to the predicted stem-loop structure of BYDV (Brault and Miller, 1992) and PLRV (Prüfer et al., 1992).

Other viral translational readthrough elements facilitate RCNMV p88 expression in vitro

The RCNMV p88 is predicted to be the viral polymerase based on its amino acid sequence similarity to the putative carmo-, tombus-, and luteovirus polymerases...
(Koonin, 1991). For the carmo- and tombusviruses the greatest sequence similarity occurs in the region of the polymerase expressed as an amber terminator readthrough product. By amino acid sequence alignment, it appears that RCNMV utilizes a ribosomal frameshifting event in place of an amber terminator readthrough to achieve the modulated expression of the polymerase. This situation is parallel to the retroviruses, where some produce gag-pol fusions by an amber terminator readthrough mechanism while most use a ribosomal frameshift mechanism (Yoshinaka et al., 1985a,b).

We have mutated the predicted RCNMV RNA-1 frameshift element such that p88 expression would require amber termination codon readthrough. This construct yielded a limited amount of p88 in vitro (Fig. 5), illustrating that p88 is expressed regardless of whether a frameshift element or an inframe amber terminator is inserted within the RCNMV polymerase gene. This result suggests that the two polymerase expression modulation mechanisms are interchangeable, at least in vitro within the context of the RCNMV genome.

The suspected BYDV frameshift heptanucleotide sequence differs in one nucleotide from that of RCNMV. According to the simultaneous slippage model, the BYDV frameshift heptanucleotide should form a more stable codon-anticodon base pair than the BYDV frameshift heptanucleotide in the RNAs. Signals for ribosomal frameshifting in the Rous sarcoma virus gag-pol region. Cell 55, 447–458. Jacks, T., Power, M. D., Masiarz, F. R., and Varmus, H. E. (1988b). Characterization of ribosomal frameshifting in HIV gag-pol expression. Nature 331, 280–283. Koonin, E. V. (1991). The phylogeny of RNA-dependent RNA polymerases of positive-strand RNA viruses. J. Gen. Virol. 72, 2197–2206. Kunkel, T. A., Roberts, J. D., and Zakoar, R. A. (1987). Rapid and efficient site-specific in vitro mutagenesis without phenotypic selection. Methods Enzymol. 154, 367–382. Laemmli, U. K. (1970). Cleavage of structural proteins during assembly of the head of bacteriophage T4. Nature 227, 680–685. Le, S.-Y., Chen, J.-H., and Maitra, I. V. (1989). Thermodynamic stability and statistical significance of potential stem-loop structures situated at the frameshift sites of retroviruses. Nucleic Acids Res. 17, 6143–6152. Lommel, S. A., Weston-Fina, M., Xiong, Z., and Lomonossoff, G. P. (1988). The nucleotide sequence and gene organization of red clover necrotic mosaic RNA virus 2. Nucleic Acids Res. 16, 8587–8602. Maniatis, T., Fritsch, E. F., and Sambrook, J. (1982). "Molecular Cloning: A Laboratory Manual." Cold Spring Harbor Laboratory, Cold Spring Harbor, NY. Mayo, M. A., Robinson, D. J., Jolly, C. A., and Hyman, L. (1989). Nucleotide sequence of potato leafroll luteovirus RNA. J. Gen. Virol. 70, 1037–1061. Miller, W. A., Waterhouse, P. M., and Gerlach, W. L. (1988). Sequence and organization of barley yellow dwarf virus genomic RNA. Nucleic Acids Res. 16, 6097–6111. Moritz-Krinsch, B. A. M., Forster, L. S., and Mossop, D. W. (1983). Translation of red clover necrotic mosaic virus RNA in rabbit reticulocyte lysate: Identification of the virus coat protein cistron on the larger RNA strand of the bipartite genome. Virology 124, 349–356. Nutter, R. C., Sheets, K., Panganiban, L. C., and Lommel, S. A. (1993). The complete nucleotide sequence of the maize chlorotic mottle virus genome. Nucleic Acids Res. 21, 3163–3177. Osman, T. A. M., and Buck, K. W. (1987). Replication of red clover necrotic mosaic virus RNA in cowpea protoplasts, RNA 1 replicates independently of RNA 2. J. Gen. Virol. 68, 259–286. Osman, T. A. M., and Buck, K. W. (1988). Double-stranded RNAs isolated from plant tissue infected with red clover necrotic mosaic virus correspond to genomic and subgenomic single-stranded RNAs. J. Gen. Virol. 71, 945–948. Osman, T. A. M., and Buck, K. W. (1991). Detection of the movement...
protein of red clover necrotic mosaic virus in a cell wall fraction from infected *Nicotiana clevelandii* plants. *J. Gen. Virol.* 72, 2853–2856.

Paié-Manalo, L. L., and Lommel, S. A. (1989). Independent replication of red clover necrotic mosaic virus electroporated host and non-host *Nicotiana* sp. protoplasts. *Phytopathology* 79, 467–461.

Prüfer, D., Racke, E., Schmitz, J., Kull, B., Kurfürst, A., and Rohde, W. (1992). Ribosomal frameshifting in plants: A novel signal directs the -1 frameshift in the synthesis of the putative viral replicase of potato leafroll virus. *EMBO J.* 11, 1111–1117.

Ten Dam, E., Pleii, C. W. A., and Bosch, L. (1990). RNA pseudoknots: Translational frameshifting and readthrough on viral RNAs. *Virus Genes* 4, 121–136.

Varmus, H. (1988). Retroviruses. *Science* 240, 1427–1435.

Xiong, Z., and Lommel, S. A. (1989). The complete nucleotide sequence and genome organization of red clover necrotic mosaic virus RNA-1. *Virology* 171, 543–554.

Xiong, Z., and Lommel, S. A. (1991). Red clover necrotic mosaic virus infectious transcripts synthesized in vitro. *Virology* 182, 388–392.

Yoshinaka, Y., Katoh, I., Copeland, T. D., and Oroszlan, S. (1985a). Murine leukemia virus protease is encoded by the *gag-pol* gene and is synthesized through suppression of an amber termination codon. *Proc. Natl. Acad. Sci. USA* 82, 1618–1622.

Yoshinaka, Y., Katoh, I., Copeland, T. D., and Oroszlan, S. (1985b). Translational readthrough of an amber termination codon during synthesis of feline leukemia virus protease. *J. Virol.* 55, 870–873.

Zuker, M., and Stiegler, P. (1981). Optimal computer folding of larger RNA sequences using thermodynamics and auxiliary information. *Nucleic Acids Res.* 9, 133–148.