Evidence for European presence in the Americas in AD 1021

The Vikings (or Norse) were the first Europeans to cross the Atlantic9. However, the only confirmed Norse site in the Americas is L’Anse aux Meadows, Newfoundland9–12 (Extended Data Figs. 1 and 2). Extensive field campaigns have been conducted at this UNESCO (United Nations Educational, Scientific, and Cultural Organization) World Heritage Site, and much knowledge has been gained about the settlement and its contemporary environment2,13–15 (Supplementary Note 1). Evidence has also revealed that L’Anse aux Meadows was a base camp from which other locations, including regions further south, were explored15.

The received paradigm is that the Norse settlement dates to the close of the first millennium3; however, the precise age of the site has never been scientifically established. Most previous estimates have been based on stylistic analysis of the architectural remains and a handful of artefacts, as well as interpretations of the Icelandic sagas, oral histories that were only written down centuries later2,16 (Supplementary Note 2). Radiocarbon (14C) analysis has been attempted at the site, but has not proved especially informative1,17,18. More than 150 14C dates have been obtained, of which 55 relate to the Norse occupation19. However, the calibrated age ranges provided by these samples extend across and beyond the entire Viking Age (AD 793–1066) (Fig. 1 and Extended Data Fig. 3). This is in contrast with the archaeological evidence and interpretations of the sagas. The latter offer differing scenarios for the frequency and duration of Norse activity in the Americas, but both the archaeological and written records are consistent with a very brief period of occupation (Supplementary Note 3 and Extended Data Fig. 4).

Transatlantic exploration took place centuries before the crossing of Columbus. Physical evidence for early European presence in the Americas can be found in Newfoundland, Canada1,2. However, it has thus far not been possible to determine when this activity took place3–5. Here we provide evidence that the Vikings were present in Newfoundland in AD 1021. We overcome the imprecision of previous age estimates by making use of the cosmic-ray-induced upsurge in atmospheric radiocarbon concentrations in AD 993 (ref. 6). Our new date lays down a marker for European cognisance of the Americas, and represents the first known point at which humans encircled the globe. It also provides a definitive tie point for future research into the initial consequences of transatlantic activity, such as the transfer of knowledge, and the potential exchange of genetic information, biota and pathogens7,8.

Cosmic radiation events as absolute time markers

In our study, we use an advanced chronometric approach to anchor Norse activity in the Americas to a precise point in time. Exact-year 14C results can be achieved by high-precision accelerator mass spectrometry (AMS) in combination with distinct features in the atmospheric 14C record20–22. Measurements on known-age (dendrochronological) tree rings show that 14C production usually fluctuates by less than 2‰ per year23. However, such time series have also revealed that production of the isotope rapidly increased in the years AD; 775 and AD 993 by about 12‰ (which manifests as a decrease of about 100 14C yr)24 and about 9‰ (about 70 14C yr), respectively. These sudden increases were caused by cosmic radiation events, and appear synchronously in dendrochronological records all around the world25–29. By uncovering these features in tree-ring samples of unknown age, it is possible to effect precise pattern matching between such samples and reference series. In so doing, if the bark edge (or more specifically, the waney edge) is also present, it becomes possible to determine the exact felling year of the tree20. Moreover, it is not necessary to have 14C dates for the outermost growth rings, because once the ring that contains the AD 993 anomaly has been detected, it simply becomes a matter of counting the number of rings to the waney edge. On the basis of the state of development of the earlywood and latewood...
Here we present 127 14C measurements, of which 115 were performed on the Norse-modified wood cells in the waney edge, one can even determine the precise felling season.

Precise dating of Norse activity in the Americas

Here we present 127 14C measurements, of which 115 were performed at the Centre for Isotope Research (CIO; Groningen), and 12 at the Curt-Engelhorn-Center Archaeometry (CEZA; Mannheim). The samples consisted of 83 individual tree rings from a total of 4 wooden items with find numbers 4A 59 E3-1, 4A 68 E2-2, 4A 68 J4-6 and 4A 70 B5-14 (Extended Data Fig. 5, Supplementary Note 4 and Supplementary Data 2). Unfortunately, the last item is excluded from the remainder of our analysis because it spans only nine years and does not include the 993 anomaly and therefore cannot be precisely dated (Supplementary Data 2). Anatomical characteristics such as different numbers of growth rings, varying growth-ring widths and the presence–absence of features such as missing rings show that wood items 4A 59 E3-1, 4A 68 E2-2 and 4A 68 J4-6 come from different trees. Furthermore, they comprise at least two different species, specifically fir, possibly balsam fir (Abies balsamea), and juniper/thuja (Juniperus/Thuja type; Extended Data Fig. 6). In addition, the waney edge could be identified in all cases.

The items were found at the locations shown on the site map in Extended Data Fig. 2. The association of these pieces with the Norse is based on detailed research previously conducted by Parks Canada. The determining factors were their location within the Norse deposit and the fact that they had all been modified by metal tools, evident from their characteristically clean, low angle-in cuts. Such implements were not manufactured by the Indigenous inhabitants of the area at the time (Supplementary Note 4).

Our individual 14C results are consistently better than ±2.5‰ (1σ), with some averaged results better than ±1.5‰ (about 12 14C yr). Our corpus of replicated measurements is consistent with statistical expectation, and no statistically significant offset (5.1 ± 7.9 14C yr, 1σ) was evident between the two 14C facilities involved (Supplementary Data 2).

Two steps are used to determine the exact cutting year of each piece of wood. First, the range of possible dates for the waney edges is obtained by standard 14C wiggle matching against the Northern Hemisphere calibration curve, IntCal20 (ref. 23). Here we use the D-Sequence function in the software OxCal (ref. 21) to match the full 14C time-series for each item. The resultant 95% probability (2σ) ranges for the waney edges all lie between AD 1019 and AD 1024 (Fig. 1c). This indicates that the AD 993 anomaly should be present in each of the wood pieces 26 to 31 years before they were cut. In our numbering system, this corresponds to rings –31 to –26, where the waney edge is assigned to be 0, the penultimate ring is assigned to be –1, and so forth.

A second step is then used to determine the exact cutting year of each item. This process hinges on identifying the precise ring in which the 993 anomaly is found, and hence the precise date of the waney edge. For this purpose, we use the Classical χ2 approach32,35 to match the 14C data from the six rings (–31 to –26) most likely to contain the AD 993 anomaly against a second Northern Hemisphere reference (henceforth B2018)39. This dataset is preferred because the AD 993 anomaly is less distinct in the smoothed IntCal20 curve (Fig. 2). The six-ring subsets are compared with B2018 such that χ2 becomes minimal for the cutting date of each item. The matches are conducted over a range for each waney edge of AD 1016–1026 (Fig. 2a).

The optimal χ2 value for goodness-of-fit for the waney edge in all three cases is AD 1021 (Fig. 2a). While other solutions pass the χ2 test at 95% probability (AD 1022 for 4A 59 E3-1; AD 1022 for 4A 68 E2-2; AD 1019, AD 1020 and AD 1022 for 4A 68 J4-6), the ideal positioning for the precipitous drop in 14C years in each case is when ring –29 corresponds to AD 992 (inset of Fig. 2b). Furthermore, the formation of a small band of earlywood cells in 4A 68 J4-6 indicates a felling season in spring (Extended Data Fig. 7a). The felling season of 4A 68 E2-2 is summer/autumn (Extended Data Fig. 7b). Past polyethylene glycol (Methods) consolidation hinders determination of the felling season of 4A 59 E3-1.

Our result of AD 1021 for the cutting year constitutes the only secure calendar date for the presence of Europeans across the Atlantic before the voyages of Columbus. Moreover, the fact that our results, on three different trees, converge on the same year is notable and unexpected. This coincidence strongly suggests Norse activity at L’Anse aux Meadows in AD 1021. Further evidence reinforces this conclusion. First, the modifications are extremely unlikely to have taken place before this year, because the globally observed sudden decrease in 14C values is evident in ring –29. Second, the probability that the items would have been modified at a later stage is also negligible. This is largely because of the fact that they all had their waney edges preserved. This layer would almost certainly have been stripped off during water transport, so the possibility of driftwood is effectively discounted33. Further, the Norse would have had no need to reclaim deadwood because fresh wood was abundant in the region at the time33. Finally, if it were scavenged material, the probability that all three items would exhibit precisely the same amount of inbuilt age would be vanishingly small.

The Icelandic sagas suggest that the Norse engaged in cultural exchanges with the Indigenous groups of North America34. If these encounters indeed occurred, they may have had inadvertent outcomes, such as pathogen transmission3, the introduction of foreign flora and fauna species, or even the exchange of human genetic information. Recent data from the Norse Greenlandic population, however, show no evidence of the last of these3. It is a matter for future research how the year AD 1021 relates to overall transatlantic activity by the Norse. Nonetheless, our findings provide a chronological anchor for further investigations into the consequences of their westernmost expansion.

Conclusions

We provide evidence that the Norse were active on the North American continent in the year AD 1021. This date offers a secure juncture for late Viking chronology. More importantly, it acts as a new point-of-reference
Mühlemann, B. et al. Diverse variola virus (smallpox) strains were widespread in northern Europe in the Viking Age. Science 369, 6652 (2020).

Margaryan, A. et al. Population genomics of the Viking world. Nature 585, 390–396 (2020).

Wallace, B. L. The Norse in Newfoundland: L’Anse aux Meadows and Vinland. Newfoundl. Labrador Stud. 19, 50–43 (2003).

ingstad, H. & Ingstad, A. S. The Viking Discovery of America: The Excavations of a Norse Settlement at L’Anse aux Meadows, Newfoundland (Breakwater Books, 2000).

Ledger, P. M., Girdland-Flink, L. & Forbes, V. New horizons at L’Anse aux Meadows. Proc. Natl Acad. Sci. USA 116, 15341–15343 (2019).

Dee, M. W. & Kutems, M. Duration of activity inseparable due to imprecision of the data. Proc. Natl Acad. Sci. USA 116, 22967–22972 (2019).

Miyake, F., Masuda, K. & Nakamura, T. Another rapid event in the carbon-14 content of tree rings. Nat. Commun. 4, 1748 (2013).

Mühlemann, B. et al. Diverse variola virus (smallpox) strains were widespread in northern Europe in the Viking Age. Science 369, 6652 (2020).

Margaryan, A. et al. Population genomics of the Viking world. Nature 585, 390–396 (2020).

Wallace, B. L. The Norse in Newfoundland: L’Anse aux Meadows and Vinland. Newfoundl. Labrador Stud. 19, 50–43 (2003).

Ingram, H. The Discovery Norse House-Sites in North America (Harper & Row, 1966).

Lindsay, C. S. Was L’Anse aux Meadows a Norse outpost? Can. Geogr. 94, 36–43 (1977).

Ingstad, A. S. & Ingstad, H. The Norse Discovery of America Vols I and II (Univ. Oslo Press, 1986).

Davis, A. M., McAndrews, J. H. & Wallace, B. L. Paleoenvironment and the archaeological record at the L’Anse aux Meadows site, Newfoundland. Geoaichology 3, 53–64 (1988).

Ogilvie, A. E., Barlow, L. K. & Jennings, A. E. North Atlantic climate c. AD 1000: millennial reflections on the Viking discoveries of Iceland, Greenland and North America. Weather 55, 34–45 (2000).

Wallace, B. L. L’Anse aux Meadows, Leif Eriksson’s home in Vinland. J. North Atl. Special Vol. 2, 114–125 (2009).

Smiley, J. The Sagas of the Icelanders (Penguin, 2005).

Martindale, A. et al. Canadian Archaeological Radiocarbon Database (CARD 2.1) (accessed 13 April 2021) (2016).

Kristensen, T. J. & Curtis, J. E. Late Holocene hunter-gatherers at L’Anse aux Meadows and the dynamics of bird and mammal hunting in Newfoundland. Arctic Anthropol. 49, 68–87 (2012).

Wallace, B. L. in Archaeology in America: An Encyclopedia (eds Cordell, L. S. et al.) 78–83 (ABC-CLIO, 2009).

Wacker, L. et al. Radiocarbon dating to a single year by means of rapid atmospheric 14C changes. Radiocarbon 56, 573–579 (2016).

Oppenheimer, C. et al. Multi-proxy dating the ‘Millennium Eruption’ of Changbaishan to late 946 CE. Quat. Sci. Rev. 158, 164–171 (2017).

Kutems, M. et al. Radiocarbon-based approach capable of subannual precision resolves the origins of the site of Por-Bajin. Proc. Natl Acad. Sci. USA 117, 14038–14041 (2020).

Reimer, P. et al. The IntCal20 Northern Hemisphere radiocarbon age calibration curve (0–55 cal kBP). Radiocarbon 62, 725–757 (2020).

Miyake, F., Nagaya, K., Masuda, K. & Nakamura, T. A signature of cosmic-ray increase in AD 774–775 from tree rings in Japan. Nature 486, 240–242 (2012).

Usoskin, I. G. et al. The AD775 cosmic event revisited: the Sun is to blame. Astron. Astrophys. 552, L3 (2013).

Jull, A. T. et al. Excursions in the 14C record at A.D. 774–775 in tree rings from Russia and America. Geophys. Res. Lett. 41, 3004–3010 (2014).
27. Güttler, D. et al. Rapid increase in cosmogenic ^{14}C in AD 775 measured in New Zealand kauri trees indicates short-lived increase in ^{14}C production spanning both hemispheres. Earth Planet. Sci. Lett. 411, 290–297 (2015).

28. Büntgen, U. et al. Tree rings reveal globally coherent signature of cosmogenic radiocarbon events in 774 and 993 CE. Nat. Commun. 9, 3605 (2018).

29. Scifo, A. et al. Radiocarbon production events and their potential relationship with the Schwabe cycle. Sci. Rep. 9, 17056 (2019).

30. Wallace, B. L. Westward to Vinland: the Saga of L’Anse aux Meadows (Historic Sites Association of Newfoundland and Labrador, 2012).

31. Bronk Ramsey, C. Bayesian analysis of radiocarbon dates. Radiocarbon 51, 337–360 (2009).

32. Bronk Ramsey, C., van der Plicht, J. & Weninger, B. ‘Wiggle matching’ radiocarbon dates. Radiocarbon 43, 381–389 (2001).

33. Mooney, D. E. A. ‘North Atlantic island signature’ of timber exploitation: evidence from wooden artefact assemblages from Viking Age and Medieval Iceland. J. Archaeol. Sci. Rep. 7, 280–289 (2016).

34. Odess, D., Loring, S. & Fitzhugh W. W. in Vikings: the North Atlantic Saga (eds Fitzhugh, W. W. & Ward, E. I.) (Smithsonian Institution Press, 2000).

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Methods

Sampling

After careful examination of the transversal and radial sections of the wood, and ring counting, individual samples were collected under a microscope for annual-ring measurement using a steel blade, following the standard procedure for cleaving tree rings. Sample extraction started at the waney edge. For each wood item, the sample of the waney edge was given the number 0, the second-to-last ring was given the number −1, and so forth.

Sample preparation and measurement

The tree-ring samples were cut into small fragments again using a steel blade. All of the wood samples were chemically pretreated and analysed at CIO, Groningen. For independent control, 12 of the samples were also chemically pretreated and analysed at CEZA, Mannheim. CEZA and CIO recently took part in a multi-laboratory intercomparison exercise to ensure the effectiveness of their pretreatment protocols in which tree-ring samples of unknown age were pretreated to α-cellulose and then analysed for 14C concentration by AMS37.

Procedures at CIO, University of Groningen

The first step involves pretreating the samples to α-cellulose, the most rigid and immobile fraction of the wood36. The method has previously been described in full37. In brief, the wet chemistry involves a series of strong solutions of acid–base–acid, and an oxidant, with rinses to neutrality using deionized and ultrapure water after each step. The samples are then either freeze-dried or air-dried at room temperature for 72 h. To eliminate the additive polyethylene glycol (PEG), which was present in all wood items except 4A 68 E2-2, the aqueous pretreatment is preceded by placement of the samples in ultrapure water at 80 °C for 36 h. This latter step builds on past studies of this contaminant38–40. In cases where the starting weight was <20 mg, and the wood was not treated with PEG, the holocellulose protocol used at CIO was deemed sufficient37.

Aliquots (about 5 mg, where possible) of the (alpha-)cellulosic product are weighed into tin capsules for combustion in an elemental analyser (IsotopeCube, Elementar). A small amount of the CO2(g) released is directed into an isotope ratio mass spectrometer (IsotopePrime 100) for determination of the stable isotope ratios of C and N, but the majority is cryogenically trapped into Pyrex rigs and reduced to graphite under a stoichiometric excess of H2(g) over an Fe(s) catalyst. The graphite (about 2 mg) is subsequently pressed into Al(s) cathodes for measurement by AMS (MICADAS, Ionplus). The data were refined using BAT5 4.0 and stored in FileMaker Pro 14.6.0. For quality control purposes, full pretreatment and radioisotope measurements were concurrently conducted on known-age standards (for example, tree-ring material from AD 1503, UK) and background wood (Pleistocene deposit Kitzbühel, Austria). Community-wide isotope ratio mass spectrometry and AMS standards (for example, National Institute of Standards and Technology oxalic acid II, Merck caffeine, and International Atomic Energy Agency C7 and C8) were used to validate the isotope measurements.

Procedures at CEZA, Mannheim

Samples MAMS-45877–45879 and MAMS-47884–47886 are pretreated as alpha-cellulose following the protocol used by CIO described above. PEG contamination is removed in the same way as at CIO by washing in hot ultrapure water. The cellulose is combusted to CO2 in an elemental analyser. CO2 is then converted catalytically to graphite. 14C is analysed in-house using an AMS instrument of the MICADAS type. The isotopic ratios (14C/12C(standard) of samples, calibration standard oxalic acid II), blanks and control standards are measured simultaneously in the AMS. 14C ages are normalized to δ14C = −25‰ (ref. 41), where δ14C = ((14C/12C)sample/(14C/12C)standard) − 1) × 1,000.

Models in the program OxCal

All models employ OxCal 4.4 and use its standard Metropolis–Hastings Markov chain Monte Carlo algorithm and default priors42. The code for these models is provided in Supplementary Note 5 and in the repository https://github.com/mwdee/LAM1021.

Averaging

Averages are produced for each sample type using the Sum function in OxCal 4.4. In each case, all of the relevant 14C dates are included in bounded phases. The main prior information used by this model is that each date is assumed to be part of a defined group37.

Wiggle matching

14C data for each beam are wiggle matched against the IntCal20 calibration curve in OxCal 4.4 using its D_Sequence function37. All models show high convergence and run to completion.

Pattern matching using the χ² test

The measured 14C concentrations of tree-ring samples are matched to a reference curve through the classical statistical method of the χ² test20,22, using the following χ² function:

$$\chi^2(x) = \sum_{i=1}^{n} \left(\frac{(R_i - C(x - r_i))^2}{3\sigma R_i^2 + \delta C(x - r_i)^2} \right)$$

Here R_i, r_i, are the measured 14C dates of the sample; $C(x - r) \pm \delta C(x - r)$ are the 14C concentrations of the reference curve for the year $(x - r)$, where r are the tree-ring numbers of the samples analysed; and x is a trial age for the waney edge. Measured dates are matched to the reference data (that is, either higher or lower) in such a way that the χ^2 becomes minimal for a certain value of x, which is the best estimate for the felling date of the tree20. To match the event accurately, a reference dataset is needed that has single-year resolution. We use B2018 as this reference, which combines many annual 14C results for the years relevant to this study43. The pattern-matching analyses are predominantly carried out using Python 3 in Jupyter Notebook 6.3.0. The results on each of the wood items studied are shown in Fig. 2.

Wood taxonomy

From the three main fragments of wood (4A 59 E3-1, 4A 68 E2-2 and 4A 68 J4-6), thin sections are prepared under a stereomicroscope with magnifications of up to 50×. They are cut in three directions (transverse, radial and tangential). As the wood was dry, the sections had to be soaked in soapy water to get rid of air bubbles and to be able to see the diagnostic anatomical features. The slides are examined under a transmitted light microscope with magnifications up to ×400 and identified with the help of relevant literature44–45. The three samples do not have any vessels, and therefore must be softwood from conifer species. The most important characteristics for identification are the lack of resin canals, the height of the rays (on average much lower in 4A 68 J4-6 than in the other two samples) and the type, number, and distribution of the crossfield pits. Also, presence/absence of axial parenchyma, the shape of the ray cells in crossfields, the pitting in side walls and end walls of the ray cells, and the geographical provenance are taken into account. As wood sample 4A 68 J4-6 is compression wood (reaction wood on the lower side of branches and leaning stems), the distinction between cupressoid and taxoidoid pits cannot be made. The identification for this sample is therefore uncertain with juniper and thuja as possible candidates (Juniperus/Thuja type). The other two samples are identified with confidence as fir (Abies). Within this genus further identification is impossible, but balsam fir (A. balsamea), a very common North American species, would be a good match.
Reporting summary
Further information on research design is available in the Nature Research Reporting Summary linked to this paper.

Data availability
All of the data that support the findings of this study are available in the main text or Supplementary Information. Source data are provided with this paper.

Code availability
The codes of the OxCal models are provided in the Supplementary Information and in the repository https://github.com/mwdee/LAM1021.

Acknowledgements
This work was funded by the European Research Council (grant 714679, ECHOES). M.K., A.S., P.E. and M.W.D. were supported by this grant. We thank Parks Canada for providing samples; the CIO staff, especially S. W. L. Palstra, D. van Zonneveld, R. Linker, S. de Bruin, R. A. Scheldekens, P. Wietzes-Land, D. Paul, H. A. J. Meijer, J. J. Spriensma, H. G. Jansen, A. Th. Aerts-Bijma and A. C. Neocleous; and R. Doeve, E. van Hees, A. J. Huizinga, B. J. S. Pope and J. Higdon for their help and support.

Author contributions
M.W.D. conceived the idea, directed the research and co-wrote the paper; M.K. helped to design the research, conducted most of it and co-wrote the paper; B.L.W. was principal advisor on archaeology and sagas; C.L. advised on archaeology; A.S. mainly performed the χ² analyses; P.D. advised on tree-ring anatomy; K.J. took samples; S.L. conducted pretreatments (Mannheim); P.E. conducted pretreatments (Groningen); P.M.L. and V.F. advised on archaeology and palaeoecology; C.V. analysed wood taxonomy; R.F. oversaw AMS analyses (Mannheim). All co-authors contributed to the final draft of the manuscript.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains supplementary material available at https://doi.org/10.1038/s41586-021-03972-8.

Correspondence and requests for materials should be addressed to Margot Kuitems or Michael W. Dee.

Peer review information Nature thanks James Barrett, Dagfinn Skre, Lukas Wacker and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Reprints and permissions information is available at http://www.nature.com/reprints.
Extended Data Fig. 1 | North Atlantic regions explored by the Norse. LAM lies on the Northern Peninsula of Newfoundland. The map shows the main settlements on Greenland from where the Norse embarked, and the regions they named Helluland, Markland and Vinland. Map: R. Klaarenbeek.
Extended Data Fig. 2 | Schematic overview of the site (after Wallace 2003) and origin of our samples. Indicated are the contours of different Norse structures (A–J) and the locations (brown) at which the wood items were found that are used in the current study.
Extended Data Fig. 3 | The 55 legacy ¹⁴C dates on Norse contexts at LAM. Samples susceptible to inbuilt age: light blue, whale bone (n = 1, uncorrected for Marine Reservoir Effect); red, wood (n = 17); brown, burnt wood (n = 7); black, charcoal (n = 22). Short-lived samples: light green, turf or sod samples from the walls of the Norse buildings (n = 4); olive, outermost rings and twigs from Norse-modified wood (n = 4). See Supplementary Data 1.
Extended Data Fig. 4 | Overview of the number and order of the different voyages by the Norse to the Americas based on the information from the Sagas. Indicated for each voyage are the expedition leader (EL), the duration (D), the number of attending crew and the number of ships. Top, summary of the information from the Saga of the Greenlanders, which indicates that the number of winters spent at Vinland is seven. Given the short sailing seasons and the impossibility of making round trips between Greenland and Vinland in one year, the time between the first arrival of the Norse at Vinland and their ultimate return is estimated to be about thirteen years; bottom, summary of the information from the Saga of Erik the Red, with the estimated minimum time between the first arrival of the Norse at Vinland and their ultimate return, amounting to about three years.
Extended Data Fig. 5 | Pictures of the wood items studied. White X indicates the location from where samples were taken. The black bars represent 5 cm. Top left, 4A59 E3-1; top right, 4A68 E2-2; bottom left, 4A68 J4-6; bottom right, 4A70 B5-14. Photos: M. Kuitems.
Extended Data Fig. 6 | Microscope pictures of the thin slices from the wood samples studied. The white bars represent 0.05 mm, the black bars 0.1 mm. From left to right: radial, tangential and transversal sections of respectively: top, 4A 68 J4-6; middle, 4A 68 E2-2; bottom, 4A 59 E3-1. Photos: M. van Waijjen, BIAX Consult.
Extended Data Fig. 7 | Microscopic depiction of the felling season of the wane edge. The black bars represent 1 mm. ew = early wood, which is formed during the first stage of the growth year; lw = late wood, which is formed at the end of the growth season. a, Wood item 4A 68 E2-2; b, Wood item 4A 68 J4-6. Photos: P. Doeve.
Reporting Summary

Nature Portfolio wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency in reporting. For further information on Nature Portfolio policies, see our Editorial Policies and the Editorial Policy Checklist.

Statistics

For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

- n/a
- Confirmed
- The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement
- A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly
- The statistical test(s) used AND whether they are one- or two-sided
- Only common tests should be described solely by name; describe more complex techniques in the Methods section.
- A description of all covariates tested
- A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons
- A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)
- For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted
- Give P values as exact values whenever suitable.
- For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings
- For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes
- Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about: availability of computer code

Data collection

Data were collected by authors from Canada (Government of Canada, Parks Canada Agency), Netherlands (University of Groningen, BIAX Consult, Laboratory for Dendrochronology at BAAC and Rijksdienst voor het Cultureel Erfgoed) and Germany (CEZA Mannheim) using the software below. Radiocarbon dates were acquired on a MICADAS AMS system using BATS software 4.0

Raw data is stored in FileMaker Pro 14.6.0

Data analysis

OxCal 4.4 using standard Metropolis-Hastings Markov Chain Monte Carlo (MCMC) algorithm and default priors

Canadian Archaeological Radiocarbon Database 2.0

Python 3 in Jupyter Notebook 6.3.0

Inkscape 1.0.1

Further details on the methods and relevant codes are included in the manuscript and the Supplementary Information and are available on this repository: https://github.com/mwdee/LAM1021

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and reviewers. We strongly encourage code deposition in a community repository (e.g. Github). See the Nature Portfolio guidelines for submitting code & software for further information.
Data

Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- A description of any restrictions on data availability
- For clinical datasets or third party data, please ensure that the statement adheres to our policy

All the data that support the findings of this study are available in the main text, Extended Data files or Supplementary Information files.

Field-specific reporting

Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

- ✔ Life sciences
- □ Behavioural & social sciences
- □ Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size	We did not rely on statistical methods to predetermine sample sizes. Sample sizes in this study on an archaeological site were limited by the availability of excavated wood specimens and numbers of growth rings they contained.
Data exclusions	Data was obtained on sample 4A 70 B5-14 (see Source Data Fig. 2). However, no pattern matching was attempted for this sample, because the 993 CE anomaly was clearly not evident and therefore it could not be precisely dated. Two sample measurements that failed the community's standard chi square statistical test for congruity were excluded from analysis (see below). Further details are provided in the manuscript and Extended Data.
Replication	34 samples were pretreated and radiocarbon dated more than once (as duplicates, triplicates and one quadruplicate). 32 successfully passed the community's standard (chi square) statistical test for congruity (94.1 vs 95.4% expected probability). On 12 occasions, the repeated pretreatments and measurements were conducted by another radiocarbon facility (CEZA Mannheim). We concentrated the replicates around the most distinctive features of the radiocarbon record to ensure our key findings were robust. Further details are provided in the manuscript and Source Data Fig. 2.
Randomization	The data for this study were acquired in no specific order or grouping, and all individual results were assessed against the same pretreatment, IRMS, and AMS quality control standards.
Blinding	The 12 samples that were sent for replication to CEZA Mannheim were supplied without any information about the origin or expected age.

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems	Methods
Involved in the study	Involved in the study
Antibodies	
Eukaryotic cell lines	
Palaeontology and archaeology	
Animals and other organisms	
Human research participants	
Clinical data	
Dual use research of concern	
Specimen provenance	

Palaeontology and Archaeology

Specimen provenance: The four samples used in this study had Canadian Heritage Parks Canada catalogue numbers 4A 59 E3-1, 4A 68 E2-2, 4A 68 J4-6 and 4A 70 B5-14. A Collections and Transfer Registration form was authorized by Parks Canada Agency official Kevin Jenkins and signed upon reception by researcher Dr Margot Kuitems on 9/11/2018 at Halifax, Nova Scotia.
Specimen deposition
The main items were returned to the official Parks Canada Storage after sampling. The excess material after analysis is held at CIO, Groningen. Requests for sample material can be made to the corresponding authors.

Dating methods
The radiocarbon dates were obtained on alpha-cellulose extracts taken from the above-mentioned samples at CIO (Groningen) and CEZA (Mannheim). The pretreatment, measurement and analytical methods employed by both laboratories are all described in full in the main text. Data quality was ensured by the use of internal and external standards (e.g. tree ring material from 1503 CE, UK; background wood from a Pleistocene deposit Kitzbühel, Austria; NIST oxalic acid II; Merck™ caffeine; IAEA C7 and C8). Results were calibrated using OxCal 4.4 against IntCal20.

Ethics oversight
Approval to undertake the study was given by the University of Groningen. Approval to take and analyse the samples, and publish the results, was obtained from Government of Canada, Parks Canada Agency.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Tick this box to confirm that the raw and calibrated dates are available in the paper or in Supplementary Information.