When unit groups of continuous inverse algebras are regular Lie groups

by

HELGE GLÖCKNER (Paderborn) and KARL-HERMANN NEEB (Erlangen)

Abstract. It is a basic fact in infinite-dimensional Lie theory that the unit group A^\times of a continuous inverse algebra A is a Lie group. We describe criteria ensuring that the Lie group A^\times is regular in Milnor’s sense. Notably, A^\times is regular if A is Mackey-complete and locally m-convex.

1. Introduction and statement of the main result. A locally convex, unital, associative topological algebra A over $\mathbb{K} \in \{\mathbb{R}, \mathbb{C}\}$ is called a continuous inverse algebra if its group A^\times of invertible elements is open and the inversion map $\iota: A^\times \to A$, $x \mapsto x^{-1}$, is continuous (cf. [20]). Then ι is \mathbb{K}-analytic and hence A^\times is a \mathbb{K}-analytic Lie group [6]. Our goal is to describe conditions ensuring that the Lie group A^\times is well-behaved, i.e., it is a regular Lie group in the sense of Milnor [16].

To recall this notion, let G be a Lie group modelled on a locally convex space E, with identity element 1, its tangent bundle TG and the Lie algebra $\mathfrak{g} := T_1G \cong E$. Given $g \in G$ and $v \in T_1G$, let $\lambda_g: G \to G$, $x \mapsto gx$ be left translation by g and $gv := T_1(\lambda_g)(v) \in T_gG$. If $\gamma: [0, 1] \to \mathfrak{g}$ is a continuous map, then there exists at most one C^1-map $\eta: [0, 1] \to G$ such that

$$\eta'(t) = \eta(t)\gamma(t) \quad \text{for all } t \in [0, 1], \quad \text{and} \quad \eta(0) = 1.$$

If such an η exists, it is called the evolution of γ. The Lie group G is called regular if each $\gamma \in C^\infty([0, 1], \mathfrak{g})$ admits an evolution η_γ, and the map evol: $C^\infty([0, 1], \mathfrak{g}) \to G$, $\gamma \mapsto \eta_\gamma(1)$, is smooth (see [16] and [17], where also many applications of regularity are described). If G is regular, then its modelling space E is Mackey-complete in the sense that every Lipschitz

2010 Mathematics Subject Classification: Primary 22E65; Secondary 34G10, 46G20, 46H05, 58B10.

Key words and phrases: continuous inverse algebra, Q-algebra, Waelbroeck algebra, locally m-convex algebra, infinite-dimensional Lie group, regular Lie group, regularity, left logarithmic derivative, product integral, evolution, initial value problem, parameter dependence.

DOI: 10.4064/sm211-2-1 [95] © Instytut Matematyczny PAN, 2012
curve in E admits a Riemann integral \(^{(1)}\) (as shown in \([10]\)). It is a notorious open problem whether, conversely, every Lie group modelled on a Mackey-complete locally convex space is regular \([17\text{ Problem II.2}];\) cf. \([16]\).

As a tool for the discussion of A^n, we let $\mu_n : A^n \to A$ be the n-linear map defined via $\mu_n(x_1, \ldots, x_n) := x_1 \cdots x_n$, for $n \in \mathbb{N}$. Given seminorms $p, q : A \to [0, \infty[$, we define $B^q_1(0) := \{ x \in A : q(x) \leq 1 \}$ and

$$\|\mu_n\|_{p,q} := \sup \{ p(\mu_n(x_1, \ldots, x_n)) : x_1, \ldots, x_n \in B^q_1(0) \} \in [0, \infty[.$$

Our regularity criterion now reads as follows:

Theorem 1.1. Let A be a Mackey-complete continuous inverse algebra such that the following condition is satisfied:

\(^(*)\) For each continuous seminorm p on A, there exists a continuous seminorm q on A and $r > 0$ (which may depend on p and q) such that

$$\sum_{n=1}^{\infty} r^n \|\mu_n\|_{p,q} < \infty.$$

Then A^\times is a regular Lie group in Milnor’s sense.

In fact, A^\times even has certain stronger regularity properties (see Proposition \([4,4]\)). Of course, by Hadamard’s formula for the radius of convergence of a power series, condition \(^(*)\) is equivalent to \(^{(2)}\)

$$\lim sup_{n \to \infty} \sqrt[n]{\|\mu_n\|_{p,q}} < \infty.$$

It is also equivalent to the existence of $M \in [0, \infty[$ such that $\|\mu_n\|_{p,q} \leq M^n$ for all $n \in \mathbb{N}$.

Remark 1.2. The authors do not know whether condition \(^(*)\) can be omitted, i.e., whether A^\times is regular for every Mackey-complete continuous inverse algebra A. Here are some preliminary considerations:

If A is a continuous inverse algebra, then the map $\pi_n : A \to A, x \mapsto x^n$, is a continuous homogeneous polynomial of degree n, for each $n \in \mathbb{N}_0$. It is known that the analytic inversion map $\iota : A^\times \to A$ is given by Neumann’s series, $\iota(1 - x) = \sum_{n=0}^{\infty} x^n = \sum_{n=0}^{\infty} \pi_n(x)$, for x in some 0-neighbourhood of A. \([6\text{ Lemma 3.3}].\) Hence, for each continuous seminorm p on A, there exists a continuous seminorm q on A and $s > 0$ such that

$$\sum_{n=1}^{\infty} s^n \|\pi_n\|_{p,q} < \infty,$$

\(^{(1)}\) See \([13]\) for a detailed discussion of this property.

\(^{(2)}\) If $\|\mu_n\|_{p,q} < \infty$, then also $\|\mu_k\|_{p,q} < \infty$ for all $k \in \{1, \ldots, n\}$. In fact, $\|\mu_k\|_{p,q} \leq q(1)^{n-k} \|\mu_n\|_{p,q}$ since $\mu_k(x_1, \ldots, x_k) = \mu_n(1, \ldots, 1, x_1, \ldots, x_k)$.

where \(\|\pi_n\|_{p,q} := \sup \{ p(\pi_n(x)) : x \in B^q_1(0) \} \) (cf. [2] Proposition 5.1 [(3)]).

Let \(S_n \) be the symmetric group of all permutations of \(\{1, \ldots, n\} \) and let \(\mu_n^{\text{sym}} : A^n \to A, (x_1, \ldots, x_n) \mapsto (1/n!)(\sum_{\sigma \in S_n} x_{\sigma(1)} \cdots x_{\sigma(n)}) \) be the symmetrization of \(\mu_n \). Then \(\pi_n(x) = \mu_n^{\text{sym}}(x, \ldots, x) \) and thus \(\|\mu_n^{\text{sym}}\|_{p,q} \leq (n^n/n!)\|\pi_n\|_{p,q} \) by the Polarization Formula (in the form [11, p. 34, (2)]).

Since \(\lim_{n \to \infty} (n/n\sqrt{n}) = e \) is Euler’s constant (as a consequence of Stirling’s Formula), it follows that

\[
\sum_{n=1}^{\infty} t^n \|\mu_n^{\text{sym}}\|_{p,q} < \infty \quad \text{for each } t \in]0, s/e[.
\]

In general, it is not clear how one could give good estimates for \(\|\mu_n\|_{p,q} \) in terms of \(\|\mu_n^{\text{sym}}\|_{p,q} \). Hence, it does not seem to be clear in general whether (1.1) implies the existence of some \(r > 0 \) with \((*)\).

However, \((*)\) is satisfied in some important cases. Following [14], a topological algebra \(A \) is called \emph{locally m-convex} if its topology arises from a set of seminorms \(q \) which are \emph{submultiplicative}, i.e., \(q(xy) \leq q(x)q(y) \) for all \(x, y \in A \).

Corollary 1.3. Let \(A \) be a Mackey-complete continuous inverse algebra. If \(A \) is commutative or locally m-convex, then \(A^\times \) is a regular Lie group.

Proof. In fact, if \(A \) is commutative, then \(\mu_n = \mu_n^{\text{sym}} \), whence \((*)\) is satisfied with any \(r \in]0, s/e[\) as in (1.1). Therefore Theorem 1.1 applies [(4)]. If \(A \) is locally m-convex, then for every continuous seminorm \(p \) on \(A \), there is a submultiplicative continuous seminorm \(q \) on \(A \) such that \(p \leq q \). Using the submultiplicativity, we see that \(\|\mu_n\|_{p,q} \leq \|\mu_n\|_{q,q} \leq 1 \). Thus \((*)\) is satisfied with any \(r \in]0, 1[\), and Theorem 1.1 applies. \(\blacksquare \)

It can be shown that every Mackey-complete, commutative continuous inverse algebra is locally m-convex (cf. [19]).

Remark 1.4. We mention that there is a quite direct, alternative proof for the corollary if \(A \) is locally m-convex and \emph{complete} [(5)]. The easier argu-

(3) If \(k = \mathbb{R} \), we can apply the proposition to \(A_\mathbb{C} \), which is a complex continuous inverse algebra (see, e.g., [6] Proposition 3.4]).

(4) Alternative proof: \((A, +)\) is regular, as it is Mackey-complete [17 Proposition II.5.6]. Since \(\exp : A \to A^\times \) is a homomorphism of groups (as \(A^\times \) is abelian) and a local diffeomorphism (see [6] Theorem 5.6), it follows that also \(A^\times \) is regular [18 Proposition 3].

(5) Then \(A = \lim_{\leftarrow} A_q \) is a projective limit of Banach algebras (where \(q \) ranges through the set of all submultiplicative continuous seminorms on \(A \)). Being a Banach–Lie group, each \(A_q^\times \) is regular [16]. Then \(C^\infty([0, 1], A) = \lim_{\leftarrow} C^\infty([0, 1], A_q) \) and \(\text{evol}_{A^\times} = \lim_{\leftarrow} \text{evol}_{A^\times_q} \) is a smooth evolution (cf. [11 Lemma 10.3]).
ments fail however if \(A \) is not complete, but merely sequentially complete or Mackey-complete. By contrast, our more elaborate method does not require that \(A \) be complete: Mackey-completeness suffices.

Remark 1.5. Our Theorem 1.1 is a variant of the (possibly too optimistic) Theorem IV.1.11 announced in the survey [17], and its proof expands the sketch of proof given there. To avoid the difficulties described in Remark 1.2 we added condition (\(\ast \)).

Remark 1.6. Unit groups of Mackey-complete continuous inverse algebras are so-called BCH-Lie groups [6, Theorem 5.6], i.e., they admit an exponential function which is an analytic diffeomorphism around 0 (see [5], [17], [18] for information on such groups). Inspiration for the studies came from an article by Robart [18]. He pursued the (possibly too optimistic) larger goal to show that every BCH-Lie group with Mackey-complete modelling space is regular. However, there seem to be gaps in his arguments (6).

Remark 1.7. The following questions are open:

(a) Are there examples of Mackey-complete continuous inverse algebras which satisfy (\(\ast \)) but are not locally m-convex? Or even:

(b) Does every Mackey-complete continuous inverse algebra satisfy (\(\ast \))?

2. Notation and preparatory results

Basic notation. Let \(\mathbb{N} = \{1, 2, \ldots \} \) and \(\mathbb{N}_0 := \mathbb{N} \cup \{0\} \). If \(X \) is a set and \(n \in \mathbb{N} \), we write \(X^n := X \times \cdots \times X \) (with \(n \) factors). If \(f : X \to Y \) is a map, we abbreviate \(f^n := f \times \cdots \times f : X^n \to Y^n \). If \((E, \| \cdot \|_E) \) and \((F, \| \cdot \|_F) \) are normed spaces and \(\beta : E^n \to F \) is a continuous \(n \)-linear map, we write \(\| \beta \|_{op} \) for its operator norm, defined as usual as \(\sup \{ \| \beta(x_1, \ldots , x_n) \|_F : x_1, \ldots , x_k \in E, \| x_1 \|_E, \ldots , \| x_n \|_E \leq 1 \} \). If \(E \) is a locally convex space, we let \(P(E) \) be the set of all continuous seminorms on \(E \). If \(p \in P(E) \), we consider the factor space \(E_p := E/p^{-1}(0) \) as a normed space with the norm \(\| \cdot \|_p \) given by \(\| x + p^{-1}(0) \|_p := p(x) \). Then the canonical map \(\pi_p : E \to E_p, x \mapsto x + p^{-1}(0) \), is linear and continuous, with \(\| \pi_p(x) \|_p = p(x) \).

Weak integrals. Recall that if \(E \) is a locally convex space, \(a \leq b \) are reals and \(\gamma : [a,b] \to E \) a continuous map, then the weak integral \(\int_a^b \gamma(s) \, ds \) (if it exists) is the unique element of \(E \) such that \(\lambda(\int_a^b \gamma(s) \, ds) = \int_a^b \lambda(\gamma(s)) \, ds \) for each continuous linear functional \(\lambda \) on \(E \). If \(\alpha : E \to F \) is a continuous

(6) For example, it is unclear whether the limit \(\gamma_u \) constructed in the proof of [18, Proposition 7] takes its values in \(\text{Aut}(\mathcal{L}) \) (as observed by K.-H. Neeb), and no explanation is given how a smooth curve \(g \) in the local group with \(\text{Ad}(g) = \gamma_u \) can be obtained.
linear map between locally convex spaces and \(\int_a^b \gamma(s) \, ds \) (as before) exists in \(E \), then also \(\int_a^b \alpha(\gamma(s)) \, ds \) exists in \(F \) and is given by
\[
(2.1) \quad \int_a^b \alpha(\gamma(s)) \, ds = \alpha \left(\int_a^b \gamma(s) \, ds \right)
\]
(see, e.g., [10] for this observation). If \(E \) is sequentially complete, then \(\int_a^b \gamma(s) \, ds \) always exists (cf. [2] Lemma 1.1 or [11] 1.2.3)).

\(C^r \)-curves. Let \(r \in \mathbb{N}_0 \cup \{\infty\} \). As usual, a \(C^r \)-curve in a locally convex space \(E \) is a continuous function \(\gamma: I \to E \) on a non-degenerate interval \(I \) such that the derivatives \(\gamma^{(k)}: I \to E \) of order \(k \) exist for all \(k \in \mathbb{N} \) with \(k \leq r \), and are continuous (see, e.g., [10] for more details). The \(C^\infty \)-curves are also called smooth curves.

Smooth maps. If \(E \) and \(F \) are real locally convex spaces, \(U \subseteq E \) is an open subset and \(r \in \mathbb{N}_0 \cup \{\infty\} \), then a function \(f: U \to F \) is called \(C^r \) if \(f \) is continuous, the iterated directional derivatives \(d^{(k)}f(x, y_1, \ldots, y_k) := (D_{y_k} \ldots D_{y_1}f)(x) \) exist for all \(k \in \mathbb{N} \) such that \(k \leq r \), \(x \in U \) and \(y_1, \ldots, y_k \in E \), and define continuous functions \(d^{(k)}f: U \times E^k \to F \). If \(U \) is not open, but is a convex (or locally convex) subset of \(E \) with dense interior \(U^0 \), we say that \(f \) is \(C^r \) if \(f \) is continuous, \(f|_{U^0} \) is \(C^r \) and \(d^{(k)}(f|_{U^0}): U^0 \times E^k \to F \) has a continuous extension \(d^{(k)}f: U \times E^k \to F \) for each \(k \in \mathbb{N} \) such that \(k \leq r \). \(C^\infty \)-maps are also called smooth. We abbreviate \(df := d^{(1)}f \). It is known that the Chain Rule holds in the form \(d(f \circ g)(x, y) = df(g(x), dg(x, y)) \), and that compositions of \(C^r \)-maps are \(C^r \). Moreover, a \(C^0 \)-curve \(\gamma: I \to E \) is a \(C^r \)-curve if and only if it is a \(C^r \)-map, in which case \(\gamma'(t) = d\gamma(t, 1) \) (see [10] for all of these basic facts; cf. also [15], [16], and [4]).

Analytic maps. If \(E \) and \(F \) are complex locally convex spaces and \(n \in \mathbb{N} \), then a function \(p: E \to F \) is called a continuous homogeneous polynomial of degree \(n \in \mathbb{N}_0 \) if \(p(x) = \beta(x, \ldots, x) \) for some continuous \(n \)-linear map \(\beta: E^n \to F \) (if \(n = 0 \), this means a constant function). A map \(f: U \to F \) on an open set \(U \subseteq E \) is called complex-analytic (or \(\mathbb{C} \)-analytic) if it is continuous and for each \(x \in U \), there is a \(0 \)-neighbourhood \(Y \subseteq E \) with \(x + Y \subseteq U \) and continuous homogeneous polynomials \(p_n: E \to F \) of degree \(n \) such that
\[
(\forall y \in Y) \quad f(x + y) = \sum_{n=0}^\infty p_n(y)
\]
(see [2], [4] and [10] for further information). Following [16], [4] and [10] (but deviating from [2]), given real locally convex spaces \(E, F \), we call a function \(f: U \to F \) on an open set \(U \subseteq E \) real-analytic (or \(\mathbb{R} \)-analytic) if it extends to a complex-analytic map \(V \to F_\mathbb{C} \), defined on some open subset \(V \subseteq E_\mathbb{C} \).
of the complexification of E, such that $U \subseteq V$. For $\mathbb{K} \in \{\mathbb{R}, \mathbb{C}\}$, it is known that compositions of \mathbb{K}-analytic maps are \mathbb{K}-analytic. Every \mathbb{K}-analytic map is smooth (see, e.g., [10] or [4] for both of these facts).

We shall use the following lemma (proved in Appendix A):

Lemma 2.1. Let E and F be complex locally convex spaces, \tilde{F} be a completion of F such that $F \subseteq \tilde{F}$ as a dense vector subspace, and $p_n : E \to F$ be continuous homogeneous polynomials of degree n for $n \in \mathbb{N}_0$. Assume that $f(x) := \sum_{n \in \mathbb{N}_0} p_n(x)$ converges in \tilde{F} for all x in a balanced, open 0-neighbourhood $U \subseteq E$, and $f : U \to \tilde{F}$ is continuous. If F is Mackey-complete, then $f(x) \in F$ for all $x \in U$ and $f : U \to F$ is \mathbb{C}-analytic.

Function spaces. If E is a locally convex space and $r \in \mathbb{N}_0 \cup \{\infty\}$, let $C^r([0,1],E)$ be the space of all C^r-maps from $[0,1]$ to E. We endow $C^r([0,1],E)$ with the locally convex vector topology defined by the seminorms $\| \cdot \|_{C^k,p}$ given by

$$\|\gamma\|_{C^k,p} := \max_{j=0,\ldots,k} \max_{t \in [0,1]} p(\gamma^{(j)}(t))$$

for p in the set of continuous seminorms on E and $k \in \mathbb{N}_0$ with $k \leq r$. We abbreviate $C([0,1],E) := C^0([0,1],E)$. Three folklore lemmas concerning these function spaces will be used (the proofs can be found in Appendix A):

Lemma 2.2. Let E and F be locally convex spaces, $\alpha : E \to F$ be a continuous linear map, and $r \in \mathbb{N}_0 \cup \{\infty\}$. Then also the map

$$\alpha_* := C^r([0,1],\alpha) : C^r([0,1],E) \to C^r([0,1],F), \quad \gamma \mapsto \alpha \circ \gamma,$$

is continuous and linear. If α is a topological embedding (i.e., a homeomorphism onto its image), then also α_* is a topological embedding.

Lemma 2.3. If E is a locally convex space and $r \in \mathbb{N}_0 \cup \{\infty\}$, then the topology on the space $C^r([0,1],E)$ is initial with respect to the mappings $(\pi_p)_* : C^r([0,1],E) \to C^r([0,1],E_p)$, $\gamma \mapsto \pi_p \circ \gamma$, for $p \in P(E)$.

Lemma 2.4. If $r \in \mathbb{N}_0 \cup \{\infty\}$ and E is a locally convex space which is complete (resp., Mackey-complete), then also $C^r([0,1],E)$ is complete (resp., Mackey-complete).

3. Picard iteration of paths in a topological algebra

Setting 3.1. Let A be a locally convex topological algebra over \mathbb{C}, i.e., a unital, associative, complex algebra, equipped with a Hausdorff locally
convex vector topology making the map \(A \times A \to A, \ (x, y) \mapsto xy \), continuous. We assume that condition \(*\) from Theorem 1.1 is satisfied (\(\text{cf.} \)).

If \(E \) is a locally convex space, then a function \(\gamma \): \([0, 1] \to E \) is a Lipschitz curve if \(\frac{\gamma(t)-\gamma(s)}{t-s} : s \neq t \in [0, 1] \) is bounded in \(E \) (cf. \([13, \text{p. 9}]\)). For our current purposes, we endow the space \(\text{Lip}([0, 1], E) \) of all such curves with the topology \(\mathcal{O}_{C^0} \) induced by \(C^0([0, 1], E) \).

Lemma 3.2 (Picard Iteration). Let \(A \) be as in \([3.1] \). If \(A \) is sequentially complete and \(\gamma \in C([0, 1], A) \), we can define a sequence \((\eta_n)_{n \in \mathbb{N}} \) in \(C^1([0, 1], A) \) via

\[
\eta_0(t) := 1, \quad \eta_n(t) := 1 + \int_0^t \eta_{n-1}(t_n) \gamma(t_n) \, dt_n \quad \text{for } t \in [0, 1] \text{ and } n \in \mathbb{N}.
\]

Then:

(a) The limit \(\eta := \eta := \lim_{n \to \infty} \eta_n \) exists in \(C^1([0, 1], A) \).

(b) \(\eta_n(t) = 1 + \sum_{k=1}^n \left[\int_0^{t_k} \cdots \int_0^{t_2} \gamma(t_1) \cdots \gamma(t_k) \, dt_1 \cdots dt_k \right] \) for all \(n \in \mathbb{N}_0 \) and \(t \in [0, 1] \), and thus

\[
\eta(t) = 1 + \sum_{n=1}^{\infty} \int_0^t \cdots \int_0^t \gamma(t_1) \cdots \gamma(t_n) \, dt_1 \cdots dt_n.
\]

(c) \(\eta'(t) = \eta(t) \gamma(t) \) and \(\eta(0) = 1 \).

(d) The map \(\Phi: C([0, 1], A) \to C^1([0, 1], A), \ \gamma \mapsto \eta_\gamma \), is \(\mathbb{C} \)-analytic.

If \(A \) is not sequentially complete, but Mackey-complete, then the \((\eta_n)_{n \in \mathbb{N}_0} \) can be defined and (a)–(c) hold for each \(\gamma \in \text{Lip}([0, 1], A) \). Moreover,

(d)’ \(\Phi: (\text{Lip}([0, 1], A), \mathcal{O}_{C^0}) \to C^1([0, 1], A), \ \gamma \mapsto \eta_\gamma \), is \(\mathbb{C} \)-analytic.

Proof. If \(A \) is sequentially complete, set \(X := C([0, 1], A) \); otherwise, set \(X := \text{Lip}([0, 1], A) \). Let \(\tilde{A} \) be a completion of \(A \) such that \(A \subseteq \tilde{A} \). Then the inclusion map \(\phi: C^1([0, 1], A) \to C^1([0, 1], \tilde{A}) \) is a topological embedding (Lemma \([2.2] \) and \(C^1([0, 1], \tilde{A}) \) is complete (Lemma \([2.4] \) Hence also the closure \(Y \subseteq C^1([0, 1], A) \) of the image \(\text{im}(\phi) \) is complete, and thus \(Y \) is a completion of \(C^1([0, 1], A) \).

To prove (a), (b), (d), (d)’, let \(\gamma \in X \). Then all integrals needed to define \(\eta_n \) exist, and each \(\eta_n \) is \(C^1 \), by the Fundamental Theorem of Calculus. A trivial induction shows that

\[
\eta_n(t) = 1 + \sum_{k=1}^n \int_0^t \cdots \int_0^t \gamma(t_1) \cdots \gamma(t_k) \, dt_1 \cdots dt_k
\]

(\(^{\dagger} \)) Note that \(A \) is not assumed to be a continuous inverse algebra in this section.
(as asserted in (b)). Likewise, if \(n \in \mathbb{N} \) and \(\gamma_1, \ldots, \gamma_n \in X \), then the weak integrals needed to define \(\tau_n(\gamma_1, \ldots, \gamma_n) : [0, 1] \to A \),

\[
t \mapsto \int_0^t \cdots \int_0^{t_n} \gamma_1(t_1) \cdots \gamma_n(t_n) \, dt_1 \cdots dt_n,
\]
exist and \(\tau_n(\gamma_1, \ldots, \gamma_n) \) is a \(C^1 \)-map. Since \(\tau_n : X \to C^1([0, 1], A) \), \((\gamma_1, \ldots, \gamma_n) \mapsto \tau_n(\gamma_1, \ldots, \gamma_n) \), is an \(n \)-linear mapping, it follows that the map \(\sigma_n : X \to C^1([0, 1], A) \), \(\sigma_n(\gamma) := \tau_n(\gamma, \ldots, \gamma) \), is a homogeneous polynomial of degree \(n \) (and this conclusion also holds for \(n = 0 \), if we define \(\sigma_0(\gamma) := 1 \)). If \(p \in P(A) \), there is \(q \in P(A) \) and \(M \in [0, \infty[\) such that

\[
(\forall n \in \mathbb{N}) \quad \|\mu_n\|_{p,q} \leq M^n,
\]
as a consequence of condition \((\ast)\). Applying \(p \) to the iterated integral defining \(\sigma_n(\gamma)(t) \), we deduce that

\[
p(\sigma_n(\gamma)(t)) \leq \frac{t^n}{n!} \|\mu_n\|_{p,q} \|\gamma\|_{C^0,q}^n \leq \frac{t^n M^n}{n!} \|\gamma\|_{C^0,q}^n
\]
for each \(t \in [0, 1] \) and thus

\[
(3.3) \quad \|\sigma_n(\gamma)\|_{C^0,p} \leq \frac{M^n}{n!} \|\gamma\|_{C^0,q}^n.
\]

Also, \(\sigma_0(\gamma)' = 0 \), \(\sigma_1(\gamma)'(t) = \gamma(t) \) and

\[
(3.4) \quad \sigma_n(\gamma)'(t) = \int_0^t \cdots \int_0^{t_n} \gamma(t_1) \cdots \gamma(t_n-1) \gamma(t) \, dt_1 \cdots dt_{n-1}
\]
if \(n \geq 2 \), by the Fundamental Theorem of Calculus. Thus \(\sigma_n(\gamma)' = \sigma_{n-1}(\gamma) \cdot \gamma \) for all \(n \in \mathbb{N} \). Using \(\eta_n = \sum_{k=0}^n \sigma_k(\gamma) \), we infer that

\[
(3.5) \quad (\forall n \in \mathbb{N}) \quad \eta_n'(t) = \eta_{n-1}(t) \gamma(t),
\]
which will be useful later. By (3.4), also

\[
p(\sigma_n(\gamma)'(t)) \leq \frac{t^{n-1}}{(n-1)!} \|\mu_n\|_{p,q} \|\gamma\|_{C^0,q}^n
\]
and thus

\[
(3.6) \quad \|\sigma_n(\gamma)'\|_{C^0,p} \leq \frac{M^n}{(n-1)!} \|\gamma\|_{C^0,q}^n.
\]

Combining (3.3) and (3.6), we see that

\[
(3.7) \quad \|\sigma_n(\gamma)\|_{C^1,p} \leq \frac{M^n}{(n-1)!} \|\gamma\|_{C^0,q}^n.
\]

Therefore \(\sigma_n : X \to C^1([0, 1], A) \) is a continuous homogeneous polynomial. Moreover, we obtain
When unit groups are regular Lie groups

\[\sum_{n=1}^{\infty} \| \sigma_n(\gamma) \|_{C^1,p} \leq \sum_{n=1}^{\infty} \frac{M^n \| \gamma \|_{C^0,q}^n}{(n-1)!} = M \| \gamma \|_{C^0,q} e^{M \| \gamma \|_{C^0,q}} < \infty. \]

This estimate entails that the series \(\sum_{n=0}^{\infty} \sigma_n(\gamma) \) converges absolutely in the completion \(Y \) of \(C^1([0,1], A) \). In particular, the limit

\[\Phi(\gamma) := \sum_{n=0}^{\infty} \sigma_n(\gamma) = \lim_{n \to \infty} \eta_n \]

exists in \(Y \), and defines a function \(\Phi \): \(X \to Y \). We claim that \(\Phi \) is continuous. If this is true, then we can exploit that \(C^1([0,1], A) \) is Mackey-complete by Lemma 2.4 and each \(\sigma_n \) takes its values inside \(C^1([0,1], A) \). Thus all hypotheses of Lemma 2.1 are satisfied, and we deduce that \(\Phi(\gamma) \in C^1([0,1], A) \) for each \(\gamma \) (entailing (a) and (b)), and that the map \(\Phi \): \(X \to C^1([0,1], A) \) is complex-analytic (establishing (d) and (d)’). To establish the claim, we need only show that \(\Phi \) is continuous as a map to \(C^1([0,1], \tilde{A}) \). Identify \(p \in P(A) \) with its continuous extension to a seminorm on \(\tilde{A} \). Let \(\pi_p : \tilde{A} \to (\tilde{A})_p, \| \cdot \|_p \) be the canonical map. By Lemma 2.3 \(\Phi \) will be continuous if the maps \(h := (\pi_p)_* \circ \Phi : X \to C^1([0,1], (\tilde{A})_p) \) are continuous. It suffices that \(h \) is continuous on the ball \(B_R := \{ \gamma \in X : \| \gamma \|_{C^0,q} < R \} \) for each \(R > 0 \). However,

\[h(\gamma) = \sum_{n=0}^{\infty} \pi_p \circ \sigma_n(\gamma) \]

for \(\gamma \in B_R \), where

\[\| \pi_p \circ \sigma_n(\gamma) \|_{C^1,\| \cdot \|_p} = \| \sigma_n(\gamma) \|_{C^1,p} \leq \frac{M^n}{(n-1)!} \| \gamma \|_{C^0,q}^n \leq \frac{M^n}{(n-1)!} R^n \]

for \(n \in \mathbb{N} \), by (3.7). Hence

\[\sum_{n=0}^{\infty} \sup_{\gamma \in B_R} \{ \pi_p \circ \sigma_n(\gamma) : \gamma \in B_R \} \leq p(1) + M R e^{RM} < \infty, \]

entailing that \(\sum_{k=0}^{\infty} ((\pi_p)_* \circ \sigma_n|_{B_R}) \to h|_{B_R} \) uniformly. Thus \(h|_{B_R} \) is continuous, being a uniform limit of continuous functions.

To prove (c), observe that because \(\eta_n \to \eta \) in \(C^1([0,1], A) \), we have \(\eta_n' \to \eta' \) uniformly (and thus pointwise). Letting \(n \to \infty \) in (3.5), we deduce that \(\eta'(t) = \eta(t) \gamma(t) \).

4. Proof of Theorem 1.1. We establish our theorem as a special case of a more general result (Proposition 4.4). The latter deals with certain strengthened regularity properties (as used earlier in [7] and [3]):

Definition 4.1. Let \(G \) be a Lie group modelled on a locally convex space, with Lie algebra \(\mathfrak{g} \), and \(k \in \mathbb{N}_0 \cup \{ \infty \} \).
(a) G is called strongly C^k-regular if every curve $\gamma \in C^k([0,1],g)$ admits an evolution $\text{Evol}(\gamma) \subset C^1([0,1],G)$ and the mapping $\text{evol}: C^k([0,1],g) \to G$, $\gamma \mapsto \text{Evol}(\gamma)(1)$, is smooth.

(b) G is called C^k-regular if each $\gamma \in C^\infty([0,1],g)$ has an evolution and the map $\text{evol}: (C^\infty([0,1],g), \mathcal{O}_{C^k}) \to G$, $\gamma \mapsto \text{Evol}(\gamma)(1)$, is smooth, where \mathcal{O}_{C^k} denotes the topology induced by $C^k([0,1],g)$ on $C^\infty([0,1],g)$.

The reader is referred to [8] and [9] for a discussion of these regularity properties (and applications depending thereon). Both C^∞-regularity and strong C^∞-regularity coincide with regularity in the usual sense. If $k \leq l$ and G is (strongly) C^k-regular, then G is also (strongly) C^l-regular.

Remark 4.2. If A is a continuous inverse algebra, we identify the tangent bundle $T(A^\times)$ of the open set A^\times with $A^\times \times A$ in the natural way. Let $\eta: [0,1] \to A^\times$ be a C^1-curve and $\gamma: [0,1] \to A$ be continuous. Then $\eta'(t) = \eta(t)\gamma(t)$ holds in $T(A^\times)$ (using $\eta': [0,1] \to T(A^\times)$, and identifying the range A of γ with $\{1\} \times A \subset T_1(A^\times)$) if and only if $\eta'(t) = \eta(t)\gamma(t)$ holds in A (where the product simply refers to the algebra multiplication, and $\eta': [0,1] \to A$ is the derivative of the A-valued C^1-curve η).

The next lemma will help us to see that the A-valued map η associated to γ in Lemma 3.2 actually takes its values in A^\times if A is a continuous inverse algebra. Hence η will be the evolution of γ, by Remark 4.2.

Lemma 4.3. Let A be a continuous inverse algebra, $\gamma: [0,1] \to A$ be continuous and $\eta: [0,1] \to A$ as well as $\zeta: [0,1] \to A$ be C^1-curves. Assume that $\eta(0) = \zeta(0) = 1$ and

\begin{equation}
\eta'(t) = \eta(t)\gamma(t) \quad \text{and} \quad \zeta'(t) = \zeta(t)\gamma(t) \quad \text{for all } t \in [0,1].
\end{equation}

If $\zeta([0,1]) \subset A^\times$, then $\eta = \zeta$.

Proof. Recall from [6] proof of Lemma 3.1 that the differential of the inversion map $\iota: A^\times \to A$ is given by $d\iota(a,b) = -a^{-1}ba^{-1}$ for $a \in A^\times$ and $b \in A$. As a consequence, the derivative of the C^1-curve $\iota \circ \zeta: [0,1] \to A^\times$, $t \mapsto \zeta(t)^{-1}$, is given by

\begin{equation}
(\iota \circ \zeta)'(t) = -\zeta(t)^{-1}\zeta'(t)\zeta(t)^{-1}.
\end{equation}

Now consider the C^1-curve $\theta: [0,1] \to A$, $\theta(t) := \eta(t)\zeta(t)^{-1}$. Using the Product Rule, (4.2) and (4.1), we obtain

\[
\begin{align*}
\theta'(t) &= \eta'(t)\zeta(t)^{-1} - \eta(t)\zeta(t)^{-1}\zeta'(t)\zeta(t)^{-1} \\
&= \eta(t)\gamma(t)\zeta(t)^{-1} - \eta(t)\zeta(t)^{-1}\zeta(t)\gamma(t)\zeta(t)^{-1} \\
&= \eta(t)\gamma(t)\zeta(t)^{-1} - \eta(t)\gamma(t)\zeta(t)^{-1} = 0.
\end{align*}
\]

Hence $\theta(t) = \theta(0) = \eta(0)\zeta(0)^{-1} = 1$ for all $t \in [0,1]$ and thus $\eta = \zeta$.

Proposition 4.4. Let A be a continuous inverse algebra over $\mathbb{K} \in \{\mathbb{R}, \mathbb{C}\}$ which satisfies the condition (\ast) described in Theorem 1.1.

(a) If A is sequentially complete, then A is strongly C^0-regular and the map $\text{Evol}: C^0([0, 1], A) \to C^1([0, 1], A^\times)$ is \mathbb{K}-analytic.

(b) If A is Mackey-complete, then A is C^0-regular and strongly C^1-regular. Further, each $\gamma \in \text{Lip}([0, 1], A)$ has an evolution $\text{Evol}(\gamma) \in C^1([0, 1], A^\times)$, and $\text{Evol}: (\text{Lip}([0, 1], A), O_{C^0}) \to C^1([0, 1], A^\times)$ is \mathbb{K}-analytic.

Proof. If A is sequentially complete, let $X := C([0, 1], A)$; otherwise, let $X := (\text{Lip}([0, 1], A), O_{C^0})$.

We assume first that $\mathbb{K} = \mathbb{C}$. Let $\Phi: X \to C^1([0, 1], A)$ be the mapping provided by Lemma 3.2. Note that $C^1([0, 1], A^\times) \subseteq C^1([0, 1], A)$ is an identity neighbourhood, $\Phi(0) = 1$ (cf. (3.1)) and Φ is \mathbb{C}-analytic (see (d) or (d)$'$ of Lemma 3.2) and hence continuous. Therefore, there exists an open 0-neighbourhood $\Omega \subseteq X$ such that $\Phi(\Omega) \subseteq C^1([0, 1], A^\times)$. By Lemma 3.2(c), $\text{Evol}(\gamma) := \Phi(\gamma)$ is an evolution for $\gamma \in \Omega$. Moreover, $\text{evol}: \Omega \to A^\times$, $\gamma \mapsto \text{Evol}(\gamma)(1) = \Phi(\gamma)(1)$, is \mathbb{C}-analytic, since Φ and the continuous linear point evaluation $\text{ev}_1: C^1([0, 1], A) \to A$, $\zeta \mapsto \zeta(1)$, are \mathbb{C}-analytic.

If A is sequentially complete, Proposition 1.3.10 in [3] now shows that A^\times is strongly C^0-regular [8].

If A is Mackey-complete, we see as in the proof of [3] Proposition 1.3.10 that each $\gamma \in \text{Lip}([0, 1], A)$ has an evolution $\text{Evol}(\gamma) \in C^1([0, 1], A^\times)$.

In either case, we deduce with Lemmas 3.2(c) and 4.3 that $\text{Evol} = \Phi$. As a consequence, $\text{Evol}: X \to C^1([0, 1], A^\times)$ is \mathbb{C}-analytic and thus (a) holds. In the situation of (b), note that also evol := $\text{ev}_1 \circ \text{Evol}: \text{Lip}([0, 1], A) \to A^\times$ is \mathbb{C}-analytic. The inclusion maps $(C^\infty([0, 1], A), O_{C^0}) \to (\text{Lip}([0, 1], A), O_{C^0})$ and $C^1([0, 1], A) \to (\text{Lip}([0, 1], A), O_{C^0})$ being continuous linear and hence \mathbb{C}-analytic, it follows that also the maps evol: $(C^\infty([0, 1], A), O_{C^0}) \to A^\times$ and evol: $C^1([0, 1], A) \to A^\times$ are \mathbb{C}-analytic and thus smooth. Hence A^\times is C^0-regular and strongly C^1-regular.

If $\mathbb{K} = \mathbb{R}$, then also the complexification $A_\mathbb{C}$ of A is a continuous inverse algebra (see, e.g., [6] Proposition 3.4) with the same completeness properties. In (a), we can identify $X_\mathbb{C}$ with $C^0([0, 1], A_\mathbb{C})$; in the situation of (b), we can identify $X_\mathbb{C}$ with $\text{Lip}([0, 1], A_\mathbb{C})$. For $p \in P(A)$, let $p_\mathbb{C} \in P(A_\mathbb{C})$ be the seminorm defined via

$$p_\mathbb{C}(a + ib) := \inf \left\{ \sum_j |z_j|p(x_j) : a + ib = \sum_j z_jx_j, x_j \in A, z_j \in \mathbb{C} \right\}$$

for $a, b \in A$ (which satisfies $\max\{p(a), p(b)\} \leq p_\mathbb{C}(a + ib) \leq p(a) + p(b)$). Then also $A_\mathbb{C}$ satisfies (\ast), as $\|\mu_n\|_{p_\mathbb{C}, q_\mathbb{C}} = \|\mu_n\|_{p, q}$. Let $\Phi: X_\mathbb{C} \to C^1([0, 1], A_\mathbb{C})$

(8) Compare already [13] p. 409 and [18] Lemma 3] for similar arguments.
be the complex-analytic map provided by Lemma 3.2 (applied to A_C in place of A). By the complex case just discussed,
\[\Phi = \text{Evol}_{(A_C)^\times} : X_{C} \to C^1([0,1], (A_C)^\times). \]
If $\gamma \in X$, then $\Phi(\gamma)$ takes only values in the closed vector subspace A of $A_C = A \oplus iA$, as is clear from (3.1). Hence $\Phi(\gamma) \in C^1([0,1], A)$ (see 10 or [11 Lemma 10.1]) and thus $\Phi(\gamma) \in C^1([0,1], A^\times)$, using the fact that $A \cap (A_C)^\times = A^\times$ for any unital algebra. (9) We deduce that the map $\Phi|_X : X \to C^1([0,1], A^\times)$ is the evolution map Evol_{A^\times} of A^\times. Note that Evol_{A^\times} is \mathbb{R}-analytic, because $\Phi : X_C \to C^1([0,1], A)_C$ is a \mathbb{C}-analytic extension of Evol_{A^\times}. As $\text{ev}_1 : C^1([0,1], A) \to A$, $\zeta \mapsto \zeta(1)$, is continuous linear and so \mathbb{R}-analytic, also $\text{evol}_{A^\times} := \text{ev}_1 \circ \text{Evol}_{A^\times} : X \to A^\times$ is \mathbb{R}-analytic (and hence smooth). In the situation of (a), this completes the proof. In (b), compose evol_{A^\times} with the continuous linear inclusion map $C^1([0,1], A) \to \text{Lip}([0,1], A)$ (resp., $(C^\infty([0,1], A), \mathcal{O}_{C^0}) \to \text{Lip}([0,1], A)$) to see that also the evolution mapping on $C^1([0,1], A)$ (resp., on $(C^\infty([0,1], A^\times), \mathcal{O}_{C^0})$) is \mathbb{R}-analytic and hence C^∞. \hfill \blacksquare

Appendix A. Proofs of the lemmas from Section 2. It is useful to recall that a locally convex space E is Mackey-complete (in the sense presented in the introduction) if and only if every Mackey–Cauchy sequence in E converges, i.e., every sequence $(x_n)_{n \in \mathbb{N}}$ in E for which there exists a bounded subset $B \subseteq E$ and a double sequence $(r_{n,m})_{n,m \in \mathbb{N}}$ of real numbers $r_{n,m} \geq 0$ such that $x_n - x_m \in r_{n,m}B$ for all $n, m \in \mathbb{N}$, and $r_{n,m} \to 0$ as both $n, m \to \infty$ (cf. [13 Theorem 2.14]).

Proof of Lemma 2.1. Given $x \in U$, there exists $r \in]1, \infty[\text{ such that } rx \in U$. Thus $\sum_{n=0}^{\infty} r^np_n(x)$ converges and hence $C := \{r^np_n(x) : n \in \mathbb{N}_0\}$ is a bounded subset of F. Then also the absolutely convex hull B of C is bounded. For all $n, m \in \mathbb{N}_0$, we have
\[
\sum_{k=0}^{n+m} p_k(x) - \sum_{k=0}^{n} p_k(x) = \sum_{k=n+1}^{n+m} p_k(x) = r^{-n-1} \sum_{k=n+1}^{n+m} r^{n+1-k}k^ rp_k(x) \\
\in r^{-n-1} \left(\sum_{j=0}^{m-1} (1/r)^j \right) B \subseteq \frac{r^{-n-1}}{1-1/r} B.
\]
Hence $(\sum_{k=0}^{n} p_k(x))_{n \in \mathbb{N}_0}$ is a Mackey–Cauchy sequence in F and hence convergent. Thus $f(x) \in F$. By [2 Theorems 5.1 and 6.1(i)], f is \mathbb{C}-analytic as a map to \tilde{F}. Hence, if $x \in U$, then $f(x+y) = \sum_{n=0}^{\infty} (1/n!) \delta^n_x(f)(y)$ for all y in some 0-neighbourhood, where $\delta^n_x f(y) := d^{(n)} f(x, y, \ldots, y)$ is the

(9) If $x, a, b \in A$ and $x(a+ib) = (a+ib)x = 1$, then $xa + ixb = 1$ and $ax + ibx = 1$. Hence $xa = ax = 1$, i.e., $x^{-1} = a \in A$.

106
H. Glöckner and K.-H. Neeb
nth Gâteaux differential of \(f \) at \(x \). Given \(y \in E \), there is \(s > 0 \) such that \(x + zy \in U \) for all \(z \in \mathbb{C} \) such that \(|z| \leq s \). For each \(n \in \mathbb{N}_0 \), Cauchy’s Integral Formula for higher derivatives now shows that

\[
\delta^n_x(f)(y) = \frac{n!}{2\pi i} \int_0^{2\pi} \frac{f(x + se^{i}y)}{(se^{i})^{n+1}} sie^{i} dt,
\]

which lies in \(F \) since the integrand is a Lipschitz curve in \(F \) and \(F \) is Mackey-complete \(^{(10)}\). Hence each \(\delta^n_x(f) \) is a continuous homogeneous polynomial from \(E \) to \(F \) and thus \(f \) is complex-analytic as a map from \(E \) to \(F \).

Proof of Lemma 2.3 Let \(p \) be a continuous seminorm on \(F \) and \(k \in \mathbb{N}_0 \) be such that \(k \leq r \). Then \(q := p \circ \alpha \) is a continuous seminorm on \(E \). Let \(\gamma \in C^r([0, 1], E) \). For each \(j \in \mathbb{N} \) such that \(j \leq k \), we have \((\alpha \circ \gamma)(j) = \alpha \circ \gamma(j) \) and thus \(\| (\alpha \circ \gamma)(j) \|_{C^0,p} = \| \alpha \circ \gamma(j) \|_{C^0,p} = \| \gamma(j) \|_{C^0,p\circ\alpha} = \| \gamma(j) \|_{C^0,q} \), entailing that \(\alpha \circ \gamma \) is continuous. Hence \(\alpha_* \) is a topological embedding.

If \(\alpha \) is an embedding and \(Q \) is a continuous seminorm on \(C^r([0, 1], E) \), then there exists \(k \in \mathbb{N}_0 \) such that \(k \leq r \) and a continuous seminorm \(q \) on \(E \) such that \(Q \leq \| \cdot \|_{C^k,q} \). Since \(\alpha \) is an embedding, there exists a continuous seminorm \(p \) on \(F \) such that \(p(\alpha(x)) \geq q(x) \) for all \(x \in E \) (because \(\alpha^{-1} \) is continuous linear). Hence \(\| (\alpha \circ \gamma)(j) \|_{C^0,p} = \| \gamma(j) \|_{C^0,p\circ\alpha} \geq \| \gamma(j) \|_{C^0,q} \) for each \(j \in \mathbb{N}_0 \) such that \(j \leq k \) and thus \(\| \alpha \circ \gamma \|_{C^k,p} \geq \| \gamma \|_{C^k,q} \geq Q(\gamma) \), entailing that \(\alpha_* \) is a topological embedding.

Proof of Lemma 2.3 Let \(p \in P(E) \) and \(k \in \mathbb{N}_0 \) be such that \(k \leq r \). Since \(p = \| \cdot \|_{p \circ \pi_p} \), we have

\[
\| (\pi_p \circ \gamma)(j) \|_{C^0,p} = \| \pi_p \circ \gamma(j) \|_{C^0,p} = \| \gamma(j) \|_{C^0,p} = \| \gamma \|_{C^k,p},
\]

for each \(\gamma \in C^r([0, 1], E) \) and \(j \in \{0, 1, \ldots, k\} \), whence \(\| (\pi_p)_*(\gamma) \|_{C^k,p} = \| \gamma \|_{C^k,p} \). The assertion follows.

Remark A.1. Before we turn to the proof of Lemma 2.4, it is useful to record some simple observations:

(a) It is clear from the definitions that the map

\[
h: C^k([0, 1], E) \to C([0, 1], E) \times C^{k-1}([0, 1], E), \quad \gamma \mapsto (\gamma, \gamma'),
\]

is linear and a homeomorphism onto its image, for each \(k \in \mathbb{N} \).

(b) The image \(\text{im}(h) \) of \(h \) consists of all pairs \((\gamma, \eta) \) such that \(\gamma(t) = \gamma(0) + \int_0^t \eta(s) ds \) for each \(t \in [0, 1] \). Since point evaluations and the linear mappings \(\eta \mapsto \int_0^t \eta(s) ds \) (with \(p(\int_0^t \eta(s) ds) \leq \| \eta \|_{C^0,p} \)) are continuous, it follows that \(\text{im}(h) \) is a closed vector subspace of \(C([0, 1], E) \times C^{k-1}([0, 1], E) \).

\(^{(10)}\) The integrand is a \(C^\infty \)-curve in \(\tilde{F} \) and hence a Lipschitz curve in \(\tilde{F} \), with image in \(F \).
Proof of Lemma 2.4. Because direct products of Mackey-complete locally convex spaces are Mackey-complete, and so are closed vector subspaces, also projective limits of Mackey-complete locally convex spaces are Mackey-complete. Since $C^\infty([0, 1], E) = \lim \leftarrow C^k([0, 1], E)$ (with the appropriate inclusion maps as the limit maps), we therefore only need to prove Mackey-completeness if $k := r \in \mathbb{N}_0$. Likewise in the case of completeness.

Case $k = 0$. If E is complete, then also $C([0, 1], E)$ is complete, as is well known (cf. [12, Chapter 7, Theorem 10]). If E is merely Mackey-complete, let \tilde{E} be a completion of E which contains E. Then $C([0, 1], \tilde{E})$ is complete. The inclusion map $\phi: C([0, 1], E) \to C([0, 1], \tilde{E})$ is a topological embedding, by Lemma 2.2. If $(\gamma_n)_{n \in \mathbb{N}}$ is a Mackey–Cauchy sequence in $C([0, 1], E)$, then $(\phi \circ \gamma_n)_{n \in \mathbb{N}} = (\gamma_n)_{n \in \mathbb{N}}$ is a Mackey–Cauchy sequence in $C([0, 1], \tilde{E})$, hence convergent to some $\gamma \in C([0, 1], \tilde{E})$. For each $t \in [0, 1]$, the point evaluation $\varepsilon_t: C([0, 1], \tilde{E}) \to \tilde{E}$, $\eta \mapsto \eta(t)$, is continuous and linear. Hence $(\gamma_n(t))_{n \in \mathbb{N}}$ is a Mackey–Cauchy sequence in E and hence convergent in E. Since $\gamma_n(t) = \varepsilon_t(\gamma_n) \to \varepsilon_t(\gamma) = \gamma(t)$, we deduce that $\gamma(t) \in E$. Therefore $\gamma \in C([0, 1], E)$ and it is clear that $\gamma_n \to \gamma$ in $C([0, 1], E)$.

Induction step. If $C^{k-1}([0, 1], E)$ is (Mackey-)complete, then so is $C^k([0, 1], E)$, being isomorphic to a closed vector subspace of the (Mackey-)complete direct product $C([0, 1], E) \times C^{k-1}([0, 1], E)$ (see Remark A.1(b)).

Acknowledgements. This research was supported by DFG (grant GL 357/5-1) and the Emerging Field Project “Quantum Geometry” of FAU Erlangen-Nürnberg.

References

[1] W. Bertram, H. Glöckner and K.-H. Neeb, Differential calculus over general base fields and rings, Expo. Math. 22 (2004), 213–282.
[2] J. Bochnak and J. Siciak, Analytic functions in topological vector spaces, Studia Math. 39 (1971), 77–112.
[3] R. Dahmen, Direct limit constructions in infinite-dimensional Lie theory, doctoral dissertation, Univ. Paderborn, 2011; http://nbn-resolving.deurn:nbn:de:hbz:466:2-239.
[4] H. Glöckner, Infinite-dimensional Lie groups without completeness restrictions, in: Banach Center Publ. 55, Inst. Math., Polish Acad. Sci., Warszawa, 2002, 43–59.
[5] H. Glöckner, Lie group structures on quotient groups and universal complexifications for infinite-dimensional Lie groups, J. Funct. Anal. 194 (2002), 347–409.
[6] H. Glöckner, Algebras whose groups of units are Lie groups, Studia Math. 153 (2002), 147–177.
[7] H. Glöckner, Direct limits of infinite-dimensional Lie groups, in: Developments and Trends in Infinite-Dimensional Lie Theory, K.-H. Neeb and A. Pianzola (eds.), Progr. Math. 288, Birkhäuser, Boston, 2011, 243–280.
When unit groups are regular Lie groups

[8] H. Glöckner, Notes on regularity properties of infinite-dimensional Lie groups, arXiv: 1208.0715.

[9] H. Glöckner, Regularity in Milnor’s sense for direct limits of infinite-dimensional Lie groups, manuscript in preparation.

[10] H. Glöckner and K.-H. Neeb, Infinite-Dimensional Lie Groups, Vol. I, book in preparation.

[11] M. Hervé, Analyticity in Infinite-Dimensional Spaces, de Gruyter, Berlin, 1989.

[12] J. L. Kelley, General Topology, Springer, 1955.

[13] A. Kriegl and P. W. Michor, The Convenient Setting of Global Analysis, Amer. Math. Soc., Providence, RI, 1997.

[14] E. A. Michael, Locally multiplicatively-convex topological algebras, Mem. Amer. Math. Soc. 11 (1952).

[15] P. W. Michor, Manifolds of Differentiable Mappings, Shiva Publ., Orpington, 1980.

[16] J. Milnor, Remarks on infinite-dimensional Lie groups, in: Relativité, groupes et topologie II (Les Houches, 1983), B. S. DeWitt and R. Stora (eds.), North-Holland, Amsterdam, 1984, 1007–1057.

[17] K.-H. Neeb, Towards a Lie theory of locally convex groups, Japan. J. Math. 1 (2006), 291–468.

[18] Th. Robart, On Milnor’s regularity and the path-functor for the class of infinite dimensional Lie algebras of CBH type, Algebras Groups Geom. 21 (2004), 367–386.

[19] Ph. Turpin, Une remarque sur les algèbres à inverse continu, C. R. Acad. Sci. Paris Sér. A-B 270 (1970), A1686–A1689.

[20] L. Waelbroeck, Les algèbres à inverse continu, C. R. Acad. Sci. Paris 238 (1954), 640–641.

Karl-Hermann Neeb
FAU Erlangen-Nürnberg
Department Mathematik
Cauerstr. 11
91058 Erlangen, Germany
E-mail: karl-hermann.neeb@math.uni-erlangen.de

Received February 6, 2012
Revised version September 28, 2012
(7422)
