Determinants of delayed diagnosis and treatment of tuberculosis in high-burden countries: a mixed-methods systematic review and meta-analysis

CURRENT STATUS: UNDER REVIEW

Respiratory Research ▪ BMC

Alvin Kuo Jing Teo
alvin.teo@aol.com Corresponding Author
ORCiD: https://orcid.org/0000-0002-0569-3518

Shweta R Singh
National University Singapore Saw Swee Hock School of Public Health

Kiesha Prem
National University Singapore Saw Swee Hock School of Public Health

Li Yang Hsu
National University Singapore Saw Swee Hock School of Public Health

Siyan Yi
National University Singapore Saw Swee Hock School of Public Health

DOI:
10.21203/rs.2.24605/v1

SUBJECT AREAS
Pulmonology

KEYWORDS
Tuberculosis, patient delay, health system delay, treatment delay, total delay, high burden countries, risk factors
Abstract

Background: Globally, 30 countries with the highest tuberculosis (TB) burden bears 87% of the world’s TB cases. Delayed diagnosis and treatment are detrimental to TB prognosis and sustain TB transmission in the community, making TB elimination a great challenge, especially in these countries. Our objective was to elucidate the determinants and duration of delayed diagnosis and treatment of pulmonary TB in high TB burden countries.

Methods: We conducted a systematic review and meta-analysis of quantitative and qualitative studies by searching four databases for literature published between 2008 and 2018 following PRISMA guidelines. For quantitative studies, we performed narrative synthesis of the covariates that were significantly associated with patient, health system, treatment, and total delays. The pooled median duration of delay and effect sizes of covariates were estimated using random-effects meta-analyses. We identified key qualitative themes using thematic analysis.

Results: We included 124 articles from 14 low-and lower-middle-income countries (LIC and LMIC) and five upper-middle-income countries (UMIC) in this review. The pooled median duration of patient, health system, and treatment delay were 28 days (95%CI 20–30), 11.5 days (95%CI 3.9–24.7), and six days (95%CI 1–28.4), respectively. We found that the duration of delays was consistently shorter among UMIC compared to LIC and LMIC. There was consistent evidence that being female and rural residence was associated with longer patient delay. Furthermore, patient delay was also associated with other individual, interpersonal, and community risk factors such as poor TB knowledge, long chains of care-seeking through private/multiple providers, perceived stigma, financial insecurities, and poor access to healthcare. Health system and treatment delay were mediated by organizational and policy factors. These factors included the lack of resources and complex administrative procedures and systems at the health facilities. We identified data gaps in 11 high burden countries.

Conclusions: This review detailed the determinants of delayed TB diagnosis and treatment in high burden countries. The gaps identified at different socio-ecological levels could be addressed through tailored approaches, education, and at a higher level, through health system strengthening and provision of universal health coverage to reduce delays and improve access to TB diagnosis and care.
Background
In 1993, the World Health Organization (WHO) declared global tuberculosis (TB) emergency to make TB a high priority [1]. Twenty-five years on, TB remains one of the leading infectious causes of illness and death worldwide [2]. Despite that TB is both preventable and curable, and efforts such as the implementation of directly observed treatment short course and coordinated national TB programs worldwide, approximately 10 million people fell ill with TB, of which 1.5 million died from the disease in 2018 [2]. The cumulative reduction in the TB incidence rate globally between 2015 and 2018 stood at 6% [2], imposing a significant delay in reaching the end TB milestone of 20% [3] reduction by the year 2020. TB control and elimination is a critical challenge in many countries. However, the burden is disproportionately borne by 30 countries, mostly in Asia and Africa, accounting for 87% of the world's TB (both pan-TB and drug-resistant TB) and TB/HIV cases [2].

In 2018, nearly one-third of the people with TB were estimated to be undiagnosed globally [2]. The delay in diagnosis and treatment is not only detrimental to the patients’ prognosis but also perpetuates TB transmission in the community [4] and thus poses a great challenge to eliminate TB. Therefore, identifying the factors that lead to delayed TB diagnosis and treatment is imperative in developing interventions to achieve a substantial reduction in TB incidence. Collectively, recent systematic reviews have provided empirical evidence associating socio-demographic, clinical, health system, and economic factors with delayed diagnosis and treatment of TB in different countries and regions [5–11]. However, delays in diagnosis and treatment vary across countries with a different burden of the disease. From what we know, no systematic reviews have addressed delayed diagnosis and treatment of TB among countries bearing most of the global TB burden. There is also a lack of reviews that triangulate qualitative and quantitative findings to provide a more complete and all-inclusive view of the matter. Therefore, a systematic review and meta-analysis were undertaken to derive the determinants and duration of diagnosis and treatment delay of pulmonary TB in the high TB-burden countries.

Methods
We structured this review following the Preferred Reporting Items for Systematic Reviews and Meta-
Analysis (PRISMA)-statement. The protocol of this systematic review was published [12] and registered with the International Prospective Register of Systematic Reviews (PROSPERO) (registration number CRD42018107237).

Inclusion and exclusion criteria
In this review, we considered all studies conducted in the WHO high TB-burden countries—Angola, Bangladesh, Brazil, Cambodia, Central African Republic, China, Congo, Democratic People’s Republic of Korea, Democratic Republic of Congo, Ethiopia, India, Indonesia, Kenya, Lesotho, Liberia, Mozambique, Myanmar, Namibia, Nigeria, Pakistan, Papua New Guinea, the Philippines, Russian Federation, Sierra Leone, South Africa, Tanzania, Thailand, Vietnam, Zambia, and Zimbabwe. We included studies that reported on individual and interpersonal risk factors, social and physical environment, health systems, and policies associated with delayed TB diagnosis and treatment initiation published between 2008 and 2018. The factors could be self-reported, ascertained by health providers, or abstracted from medical charts or programs/administrative records.

We included study populations that comprised presumptive TB cases and people with TB (new diagnosis, previously treated, and those without a known history of previous TB treatment) regardless of HIV and bacteriological status. We included both observational (cross-sectional, case-control, retrospective, and prospective cohort design) and qualitative studies published in either English or Chinese language. Systematic reviews, meta-analyses, scoping reviews, intervention studies, publications in the form of letters and reviews, and studies lacking and/or unclear reporting of key outcomes were excluded.

Our primary outcomes were—1) patient delay: the time interval between the onset of symptoms and the first encounter with healthcare professionals; 2) health system delay: the time interval between the first encounter with healthcare professionals and the diagnosis of pulmonary TB; 3) treatment delay: the time interval between TB diagnosis and TB treatment initiation; and 4) total delay: the time interval between onset of symptoms and TB treatment initiation. As there were no universal cut-offs [8] to a duration that constituted delay, we treated delay in this review as to how they were defined in individual studies.
Literature search strategy and study selection

First, we conducted a preliminary search of articles on PubMed and EMBASE to develop a set of appropriate Medical Subject Heading terms, index terms, and keywords [12]. Using these identified search terms structured with Boolean logic operators (AND and OR), we searched PubMed, EMBASE, CINAHL, and PsycInfo. We also reviewed the reference list of key articles for additional studies. We managed all identified citations into EndNote X8 (Clarivate Analytics, Philadelphia, USA). Duplicates were removed and citations were exported to Microsoft Excel (Microsoft Corporation, Washington, USA) for further assessment. AKJT and SRS independently screened the titles, abstracts, and full-text articles based on the inclusion and exclusion criteria. Interrater agreements for the titles and abstract screening between the reviewers were high (agreement = 98%, Cohen’s kappa = 0.95, and Krippendorf alpha = 0.95) and discrepancies were discussed. The search and selection process was conducted and presented in accordance with the PRISMA guidelines.

Data extraction

Study characteristics and data on risk factors were extracted independently by two authors (AKJT and SRS). We recorded study and participants’ characteristics, exposure variables (various factors associated with delays reported by individual study), primary outcome measures, and study quality assessment scores using a standard form. Data on variables to be included in the meta-analysis were extracted by one author (AKJT) and subsequently reviewed by a second author (KP). This included duration of delay (median and interquartile range/range and mean and standard deviation) and the effect sizes for exposures of interest.

Quality assessment

The quality of the selected non-randomized (quantitative) and qualitative studies was critically evaluated using the Newcastle-Ottawa Scale for cross-sectional studies, case-control studies, and cohort studies, and the Critical Appraisal Skills Program (CASP) tool, respectively [13–15]. For non-randomized quantitative studies, the assessment was made based on four main domains - selection of samples (representativeness, sample size, definition and selection of cases and controls (for case-control studies), and non-response rate), comparability of groups included in the analyses, and the ascertainment of exposures and outcomes, including the statistical tests applied in the studies. A
score of 1 was given to individual questions if the criterion was satisfied, and 0 was given if the criterion was not satisfied or not justified. The highest possible score for cross-sectional studies was 10 (5 for selection, 2 for comparability, and 3 for outcomes). The highest possible score for case-control studies was 9 (4 for selection, 2 for comparability, and 3 for exposure). The highest possible score for cohort studies was 9 (4 for selection, 2 for comparability, and 3 for exposures). Studies that scored 0–3 were regarded as low quality (LQ), 4–6 were regarded as moderate quality (MQ), and ≥ 7 were regarded as high quality (HQ).

For qualitative studies, the assessment was made based on 10 questions regarding the results and its validity, and the value of the research. We gave a score of 1 if the paper fulfilled a criterion, 0.5 if we could not tell if the paper fulfilled a criterion, and 0 if the paper did not fulfill a criterion. A score of 0–5 equated to LQ study, a score of 6–7 equated to MQ study, and a score of ≥ 8 equated to HQ study. The final synthesized qualitative findings were graded based on the dependability and credibility of the findings using the ConQual approach [16].

Data synthesis and analyses
We described the studies by the populations, countries, study designs, and sample sizes. We reported the independent variables that were significantly associated with patient, health system, treatment, and total delays. In studies that reported both bivariate and multivariable analyses, results from the multivariable analyses preceded that of bivariate.

Median and interquartile range/range for the duration of delay in days were extracted and used to estimate a pooled median, i.e. median of study-specific medians [17]. For independent variables (risk factors), effect sizes were extracted and used to calculate pooled odds ratio and their 95% confidence interval (CI). We pooled effect sizes of covariates if data were available in more than two studies and duration of delays by meta-analysis using R (R Foundation for Statistical Computing, Vienna). Where adjustments for covariates had been performed, the data were extracted from the adjusted model.

We quantified between-study heterogeneity using Chi-square statistic Q, I², and Tau [18]. For each meta-analysis, we estimated the pooled odds ratio (OR) and its 95% CI using a random-effect model which accounts for between-study heterogeneity [19]. The estimates for Tau and I² statistics were
presented together with the pooled estimates and the 95% CI. We assessed the association of the primary outcomes and 1) sociodemographic and economic variables: sex, marital status, urbanicity; 2) behavioral variables: smoking, alcohol use, stigma, TB knowledge; and 3) clinical and health services-related variables: cough, hemoptysis, weight loss, fever, chest pain, night sweats in the meta-analyses.

We extracted qualitative findings and sample quotes reported in qualitative and mixed-method studies verbatim. The extracted data were annotated and analyzed using NVIVO 12 (QSR International). We retrieved references deductively and applied thematic analyses to categorize the textual references. Two authors (AKJT and SRS) coded the data independently. Discrepancies, code definitions, and the emergence of sub-themes were discussed. The results were presented by income categories that the high-burden countries represent.

Results

Study selection

The systematic review process is presented in Fig. 1. A total of 4878 records were identified from electronic database searches. Following the removal of duplicates (n = 1189), and non-relevant titles and abstracts (n = 3451), 238 full-text articles were retrieved and assessed. Of these, 114 articles were further excluded. A total of 124 articles were reviewed—36, 86, and two articles were included for qualitative synthesis; quantitative and narrative synthesis; and qualitative, quantitative, and narrative synthesis, respectively. Thirteen (87%) meta-analyses had large heterogeneity ($I^2 > 50\%$), and 10 (67%) meta-analyses had very large heterogeneity ($I^2 > 75\%$).

Study characteristics and quality assessments

These studies described data from 149,901 presumptive TB cases and people with TB, [20–107] 1659 in-depth and structured interviews, and 87 focus groups [44, 94, 108–143] from 19 countries in three continents (Table 1). A total of 14 countries were classified as lower-income (LIC) and lower-middle-income economies (LMIC), and five were classified as upper-middle-income economies (UMIC) [144]. Patient delay was reported in 103 studies, health system delay in 29 studies, treatment delay in 18 studies, and total delay in 21 studies. Of the 30 high TB-burden countries, 11 countries were not included in this review, either due to data unavailability or lack of key outcome data (Fig. 2). After
assessments of study quality, a total of 81 HQ studies, 40 MQ studies, and one LQ study were identified. Two mixed-methods studies scored MQ/HQ and HQ/MQ for the quantitative and qualitative components, respectively. The final synthesized qualitative findings were rated HQ (55%) and MQ (45%) using the ConQual method. Details of the assessments were illustrated in the Supplementary Materials. Based on the outcome of quality assessments, no studies were excluded; instead, the information was considered during data synthesis and interpretation.

Table 1
Characteristics of included observational and qualitative studies

Income group^a	Country	Study population	Study design	Sample size and study	Newcastle-Ottawa scale score^b		
					HQ	MQ	LQ
Patient delay	Ethiopia	People with TB	Cross-sectional	216[20], 296[21], 360[22], 382[23], 398[24], 425[25], 605[26], 706[27], 924[28]	129[29], 201[30], 226[31]		
		Presumptive TB cases	Case-control	838[32]	663[36], 763[37]		
	Mozambique	People with TB	Cross-sectional	622[38]			
	Tanzania	People with TB	Cross-sectional	639[39]	206[40]		
		Presumptive TB cases	Cross-sectional	3388[41]			
LMIC	Angola	People with TB	Cross-sectional	385[42]			
	Bangladesh	People with TB	Cross-sectional	7280[43]			
	Cambodia	People with TB	Mixed-methods	96[44]			
	India	People with TB	Cross-sectional	216[45], 234[46]	150[47], 261[48]	175[49]	
		People with TB (children)	Cross-sectional	437[50]			
	Indonesia	Presumptive TB cases	Cross-sectional	194[51]	746[52]		
	Kenya	People with TB	Cross-sectional	230[53]			
		Presumptive TB cases	Cross-sectional	426[54]			
	Nigeria	People with TB	Cross-sectional	160[55], 450[56]	102[57]		
	Zambia	Presumptive TB cases	Cross-sectional	6708[58]			
	Zimbabwe	People with TB	Cross-sectional	383[59]			
UMIC	Brazil	People with TB	Cross-sectional	139[60], 153[61], 97[62], 101[63], 199[64],			
Country	Study Type	Description	Sample Size				
--------------	------------	----------------------------------	-------------				
China	Prospective cohort	TB-HIV co-infection	201[67]				
	Cross-sectional	People with TB	314[68], 1126[69], 2280[70]				
		Presumptive TB cases	4677[78], 10356[79]				
	Retrospective cohort	People with TB	1005[81]				
South Africa	Cross-sectional	General population	1020[83]				
	Cross-sectional	Presumptive TB cases	104[84]				
Thailand	Prospective cohort	TB-HIV co-infection	891[85]				
	Cross-sectional	People with TB	443[86], 199[87]				
LIC	Ethiopia	People with TB	201[30]				
	Nigeria	People with TB	470[88]				
LMIC	Angola	People with TB	385[42]				
UMIC	Brazil	People with TB	218[65], 304[66], 305[89]				
	China	People with TB	314[68], 146[71]				
		Prospective cohort	202[77]				
	Retrospective cohort	People with TB	4677[78]				
South Africa	TB-HIV co-infection	People with TB	480[90]				
LIC	Tanzania	People with TB	1161[91]				
LMIC	Bangladesh	People with TB	123[92]				
	Cambodia	People with TB	96[44]				
India	Cross-sectional	People with TB	234[46], 344[93]				
	Mixed-methods	Retrospective cohort	662[95], 1800[96]				
	Retrospective cohort	People with TB	2443[97]				
Zimbabwe	Retrospective cohort	People with TB	2443[97]				
UMIC	China	People with TB	314[98]				
	South Africa	People with TB	4677[78]				
Total delay	LIC	People with TB	216[20], 296[21], 328[100], 382[23]				
	Ethiopia	People with TB	201[30]				
	Mozambique	People with TB	622[38]				
Country	Study population	Methods of analysis	Study and sample size	ConQual rating	CASP score		
------------------	--	--	-----------------------	----------------	------------		
Tanzania	People with TB and traditional healers	Content analysis	32 IDIs[112]	HQ	HQ		
LMIC Bangladesh	People with TB, contacts of people with TB, and health care workers	Phenomenological analysis	5 IDIs and 2 FGDs[108]	HQ	HQ		
India	People with TB, contacts of people with TB, and health care workers	Thematic analysis	26 IDIs[109]	HQ	HQ		
Indonesia	People with TB, contacts of people with TB, and health care workers	Thematic analysis	19 IDIs[110]	HQ	HQ		
Nigeria	People with TB, contacts of people with TB, and health care workers	Thematic analysis	891[85]	HQ	HQ		
Pakistan	People with TB, contacts of people with TB, and health care workers	Thematic analysis	242[107]	HQ	HQ		
LMIC Bangladesh	People with TB, contacts of people with TB, and health care workers	Qualitative analysis of open ended survey questions	229 interviews[113]	MQ	MQ		
Malaysia	People with TB, contacts of people with TB, and health care workers	Qualitative analysis using a priori codes	24 IDIs[114]	HQ	HQ		
Cambodia	People with TB, health care workers, and community volunteers	Thematic analysis	43 IDIs and 6 FGDs[44]	MQ	HQ		
Cambodia	People with TB, health care workers, and community volunteers	Thematic analysis	13 FGDs[115]	HQ	HQ		
India	Health care workers	Thematic analysis	16 IDIs[116]	HQ	HQ		
India	People with TB, contacts of people with TB, and health care workers	Thematic analysis	76 IDIs[117], 75 structured interviews[94]	MQ	MQ		
Saudi Arabia	People with TB, contacts of people with TB, and health care workers	Thematic analysis	108 structured interviews[118]	MQ	MQ		
Thailand	People with TB, contacts of people with TB, and health care workers	Thematic analysis	443[86]	HQ	HQ		
Morocco	People with TB, contacts of people with TB, and health care workers	Thematic analysis	50 IDIs[119]	MQ	MQ		
Country	Group	Analysis Method	IDI Count	MQ	HQ		
-----------	---	--------------------------------------	-----------	----	----		
Indonesia	People with TB and health care workers	Qualitative analysis using a priori codes	19 IDIs[119]				
		Thematic analysis	71 IDIs[120]	MQ	HQ		
	People with TB and community volunteers	Thematic analysis	67 IDIs and 6 FGDs[121]	MQ	HQ		
	People with TB, TB survivors, village leaders, and community volunteers	Not presented in the article	50 IDIs and 3 FGDs[122]	MQ	HQ		
Nigeria	General population	Thematic analysis	56 IDIs[123]	MQ	HQ		
Philippines	People with TB and general population	Thematic analysis	22 IDIs and 3 FGDs[124]	MQ	HQ		
Zambia	People with TB and community volunteers	Thematic analysis	30 IDIs and 6 FGDs[125]	MQ	HQ		
Zimbabwe	Presumptive TB cases	Grounded theory	20 IDIs[126]	MQ	HQ		
UMIC	Brazil	Discourse analysis	16 IDIs[127]	MQ	HQ		
	People with TB	Content analysis	23 IDIs[128]	MQ	HQ		
		Thematic analysis	7 IDIs[129]	MQ	HQ		
		Discourse analysis	7 IDIs[130]	MQ	HQ		
China	People with TB	Qualitative analysis of open ended survey questions	70 interviews[131]	MQ	MQ		
	People with TB (migrants)	Thematic analysis	34 IDIs[132]	MQ	HQ		
	People with TB (migrants), presumptive TB cases, and health care workers	Framework approach	60 IDIs and 12 FGDs[133]	MQ	HQ		
	People with TB, health care workers, policy makers, and community volunteers	Thematic analysis	47 IDIs and 5 FGDs[134]	MQ	HQ		
Russia	People with TB	Grounded theory	5 FGDs[135]	MQ	HQ		
	People with TB and health care workers		32 IDIs and 11 participants in FGDs (number of FGDs not specified)[136]	MQ	HQ		
South Africa	People with TB, health care workers, policy makers, and people with TB (miners)	Thematic analysis and grounded theory	104 applied ethnography using formal/informal IDIs, FGDs, field notes, and participant observations[137]	MQ	HQ		
	Health care	Thematic analysis	12 IDIs[138]	MQ	HQ		
Workers, village leaders, and researchers	Analysis	People with TB	41 IDIs[139]	MQ	HQ		
People with TB, contacts of people with TB, and health care workers		25 IDIs and 4 FGDs[140]		HQ	HQ		
People with TB, general population, and community volunteers	Thematic analysis and grounded theory	93 reports from participatory research and participants observation[1 41]		HQ	HQ		
People with TB and general population	Thematic analysis	8 IDIs[142]		HQ	HQ		
Thailand People with TB (migrants) and health care workers	Thematic analysis	12 IDIs and 11 FGDs[143]		MQ	HQ		

CASP, critical appraisal skills program; FGD, focus group discussions; HQ, high quality; IDI, in-depth interviews; LIC, low-income countries, LMIC; lower-middle-income countries, LQ, low quality; MQ, moderate quality; TB, tuberculosis; UMIC; upper-middle-income countries;

Based on World Bank classification. Low-income economies—gross national income (GNI) per capita $1,025 or less in 2018; lower middle-income economies—GNI per capita between $1,026 and $3,995; upper middle-income economies—GNI per capita between $3,996 and $12,375

Study quality was assessed using the Newcastle-Ottawa scale. Highest possible score for cross-sectional studies was 10 (5 for selection, 2 for comparability, and 3 for outcome). Highest possible score for case-control studies was 9 (4 for selection, 2 for comparability, and 3 for exposure). Highest possible score for cohort studies was 9 (4 for selection, 2 for comparability, and 3 for exposure). Studies that scored 0–3 were regarded as LQ, 4–6 were regarded as MQ, and ≥ 7 were regarded as HQ.

All papers were pre-ranked (high, moderate, low) and the levels were adjusted according to the dependability and credibility of the findings. We pre-ranked all papers as high. The ranking remained high if the papers were regarded as dependable and the findings were unequivocal. We downgraded the paper from high to moderate if the papers scored 3 or less in terms of dependability or scored a mix of unequivocal and credible in terms of credibility.

CASP for qualitative study had 10 questions to critically appraise the paper. We gave a score of 1 if the paper fulfilled a criterion, 0.5 if we couldn’t tell if the paper fulfilled a criterion, and 0 if the paper did not fulfil a criterion. A score of 0–5 equated to LQ study, a score of 6–7 equated to MQ study, and a score of ≥ 8 equated to HQ study.

Patient delay

The pooled median patient delay (Fig. 3) in LIC and LMIC was 30 days (95% CI 17.9–45). The pooled median patient delay in UMIC was 24.5 days (95% CI 13.2–30). The overall median patient delay in high TB burden countries was 28 days (95% CI 20–30). In the meta-analysis and narrative synthesis of quantitative data (Table 2), females were more likely to delay care-seeking for TB (Fig. 4). Qualitative studies highlighted limitations for women to seek healthcare [113, 115, 123, 124, 128]. Women reported economic constraints and power imbalances in the decision-making process as barriers to care-seeking [113, 115, 123, 124]. We further stratified the analysis by sex, and we found that women were disproportionately affected by risk factors for patient delay (Fig. 5) such as unemployment, poor TB knowledge, and having difficulties or to travel a long distance to visit health
facilities [39, 47]. Long-distance to health facilities was also reported by qualitative studies as a barrier to care-seeking [44, 109, 110, 112, 115, 124, 129, 134, 135, 138, 140, 143]. In addition to physical barriers, financial insecurities and economic challenges also compounded patient delay [21, 24, 29, 34–36, 39, 46, 47, 62, 63, 65, 68, 72, 73, 79, 81, 85, 86]. Among qualitative studies (Table 3), seven articles reflected on participant’s experiences where competing priorities of livelihoods and commitment to work and family led to individual care-seeking delay [44, 123–125, 132, 136, 143]. We also found that being rural residents in LIC and LMIC was associated with patient delay. No studies from the UMIC were included in the meta-analysis for urbanicity. This review also identified other sociodemographic and economic risk factors for patient delay, such as being older, lower education level, unmarried, being unemployed, absence of health insurance, and high cost of treatment and transportation to health facilities (Table 2).

Table 2
Summary of risk factors for patient delay, health system delay, and treatment delay in high TB burden countries

Patient delay	Health system delay	Treatment delay	Total delay																
LIC and LMIC	UMIC	LIC and LMIC	UMIC	LIC and LMIC	UMIC	LIC and LMIC	UMIC												
Female[34, 35, 57]	Female[65, 78, 80, 81]	Sub-urban residence[42]	Female[65]	Older age[44, 91, 93]	Low income[98]	Female[106]	Rural residence[85]												
Male[52, 54, 58]	Male[84]	Low income[88]	Older age[90]	Younger age[92]	Married[92]	Male [56, 100, 105]	Unemployed [85]												
Older age[23, 26, 27, 36, 57]	Older age[70, 79, 80]	Younger age[68]	Married[92]	Older age [30, 43, 56, 105, 106]	Larger family size[23]														
Larger family size[23, 34, 45]	Low education[63, 67]	More working days per week [68]	Widowed/divorced/separated/not married[44]	Larger family size[23]															
Low education[22, 28, 29, 36, 42, 50, 54, 56]	Rural residence[80]	Long distance/traveling time to health facility[68]	Reside in areas without health centers[95]	Low education[100]															
Rural residence [21, 22, 28–30, 43, 50]	Urban residence[87]	Long distance/traveling time to health facilities[44]	Rural residence [21, 30, 43, 103, 106]																
Urban residence [24, 56, 58]	Widowed/divorced/separated/not married[67, 75]	Cost of health care incurred before diagnosis[46]	Sub-urban residence[104]																
Widowed/divorced	Low income[62, 68, 72]		Urban residence[156]																
Event/ Status	More working days per week	Long distance/traveling time to health facilities	Unemployed	Cost of treatment/transport to health facilities	No health insurance	Cost of health care incurred before diagnosis	Poor TB knowledge	Poor TB knowledge	Non-smoking	Stigma	Stigma	Poor TB knowledge	Poor TB knowledge	Poor TB knowledge	Non-NTP endorsed facilities	Self-medication	Self-medication	Non-allopathic health provider	Private health practitioner
-------------------------------------	----------------------------	---	------------	---	--------------------	---	-------------------	------------------	-------------	--------	--------	------------------	------------------	------------------	----------------------------	----------------	----------------	----------------------	---------------------
Low income [21, 24, 29, 34, 46]																			
High income [37, 58]																			
Long distance/traveling time to health facilities [25, 29, 31, 32, 39, 48, 49, 51, 53]																			
Unemployed [35, 36, 39]																			
Cost of treatment/transport to health facilities [47]																			
Behavioral	Smoking [37]	Smoking [77]	Poor TB knowledge [98]	Poor TB knowledge [104]	Non-smoking [99]	Stigma [100]	Recreational drug use [107]												
Stigma [25, 40, 57]	Stigma [72, 83]																		
Poor TB knowledge [26–28, 31, 38–40, 46–48, 53, 55]	Poor TB knowledge [64, 70, 75, 81, 82]																		
Poor perceived benefit that TB is incurable [24]	Alcohol use [85]																		
Poor perceived severity (perceived well and not sick) [36]																			
Health-seeking	Traditional/spiritual medicine [28, 38, 40]	Non-hospital/lower level facilities [30, 88]	Non-hospital/lower level facilities [68, 71]	Traditional medicine [91]	Self-medication [23]	Non-NTP endorsed facilities [99]													
Self-medication [20, 23, 27, 46, 59]	Self-medication [81]	Long waiting time in health facility [42]	Non-allopathic health provider [47]	Private health practitioner [46]															
Private health practitioner[28]	Non-DOTS center/facilities that do not provide TB services[42]	Private health practitioner[46]	Non-hospital/ lower level facilities[20]																
---------------------------------	---	---------------------------------	--																
Pharmacy[28, 54]	Private health practitioner[30]	Multiple care seeking prior to diagnosis[46, 47]	Non-formal health provider[46, 101]																
Multiple care seeking prior to diagnosis[55]	Untraceable contact details (loss to follow-up post diagnosis) [93]	Non-NTP endorsed facilities[104]																	
Non-formal health provider [20, 21, 26, 27, 29]																			
Rural primary health facility/non-DOTS facility[42, 59]																			
Qualified health provider [23, 43]																			

Clinical/Health services

- **No chest pain[40]**
 - Cough [65, 66, 70, 76, 84, 86]
 - TB-HIV co-infection/HIV positive[30, 88]
 - No cough[66]
 - No history of TB[97]
 - Smear positive [78, 99]
 - No history of TB in the family[101]
 - Chest pain[107]

- **No history of TB[32, 33, 35, 36]**
 - Chest pain[66, 86]
 - No cavity lesion[66]
 - Smear negative[44, 95]
 - Extrapulmonary TB[20, 23, 30]
 - HIV infection[85, 99]

- **Smear positive[28]**
 - Cough without sputum[86]
 - History of TB[78]
 - Retreatment cases [92-96]
 - Smear negative[23]
 - Smear negative[28, 89]

- **Smear negative[23]**
 - Night sweats[70]
 - Smear negative [77, 78, 89]
 - Absence of TB diagnostic services in local health facility[94]
 - No HIV infection[21]

- **Extrapulmonary TB[23, 30]**
 - Fever[86]
 - Extrapulmonary TB[89]
 - HIV positive[96]

- **Shorter duration of symptoms[38]**
 - No hemoptysis[70, 74, 76]
 - Not on ART[90]
 - HIV status not known[94]

- **Presence of more than 1 symptom[41]**
 - No weight loss[60]
 - High HIV viral load[90]

- **HIV negative[21]**
 - Pulmonary cavities[69]
 - Hyperglycemia[69, 70]

- **Presence of other known medical conditions[38]**
 - No history of TB[67, 78]

- **Smear positive[69, 78]**

- ** Longer duration of symptoms[41]**
| Country | Themes | Quotes |
|--|--|--|
| **Patient delay** | Perceived stigma and discrimination at workplace, within family and the community against women, and associating TB with HIV deterred presumptive TB cases from seeking TB diagnosis and care | "When someone says, ‘I have TB’ others will say that the person has three words [HIV].”[141] |
| Bangladesh[113, 114], Brazil[127, 128], Cambodia[115], China[133, 134], Ethiopia[108], India[113, 119], Nigeria[123], Philippines[124], Russia[135], South Africa[137-142], Tanzania[112], Zambia[125], Zimbabwe[126] | Long distance to health facilities and language barrier led to delay in care seeking and TB diagnosis | "Well, I didn’t come to the health center early because it is far from my village.”[109] |
| Brazil[129], Cambodia[44, 115], China[134], Ethiopia[109, 110], Philippines[124], Russia[135], South Africa[138, 140], Tanzania[112], Thailand[143] | Long chains of care seeking through multiple providers and the lack of trust in the health care system providing TB care led to delay in care seeking and TB diagnosis | "I don’t understand the language, so I don’t know what to do next after I finished the 15 days medication. The problem for me is the language because I can’t speak Thai.”[143] |
| Bangladesh[113, 114], Brazil[129], Cambodia[115], China[132-134], Ethiopia[108-110], India[113, 116-120], Indonesia[121, 122], Mozambique[111], Nigeria[123], Philippines[124], Russia[135, 136], South Africa[137, 138, 140-142], Tanzania[112], Zambia[125], Zimbabwe[126] | Gender-specific factors such as men dominating and owning the decision-making power in family, more economic constraints for women to seek healthcare, and men concealing health issues or denying disease severity by substance (alcohol and nicotine) abuse led to delay in care seeking and TB diagnosis | "Government doctor did not show any interest, neither he responded to my questions. They never spoke to me at all. We went there 1–3days and became fed-up. Even the 4th day they did not say anything. They asked me to go here and there. It was really a horrible experience to run around there. So, finally we decided and went to private”[120] |
| Bangladesh[113, 114], India[113], Nigeria[123], Russia[135, 136], South Africa[142], Thailand[143], Zimbabwe[126] | "We usually try many other methods first and the hospital is the last choice.”[115] | "There are very few women in my community who can afford the costs of transportation to the hospital and to pay the hospital fees.”[123] |
| Cambodia[44], China[132], Nigeria[123], Philippines[124], | Competing priorities of livelihood, work, and family led to delay in | "When I drink, nothing is bad for me! Illness flies out with alcohol. You don’t feel it. Alcohol softens everything, all diseases. When you drink you do not pay attention to illness. Well, today you sneeze, cough, but it will pass! In the morning you wake up, something squeaks, whistles; you groan but go anyway, then you forget about it during work.”[136] |
| Country/Region | Theme | Quote |
|------------------------------------|---|--|
| Russia[136], Thailand[143], Zambia[125] | Care seeking and TB diagnosis | “I work almost every day except on market days on the farm and Sundays or if there are special occasions. I usually return in the late afternoon to cook for my husband and children. So, if I should go to the hospital in the morning hours as I am told that is when they open and return in the afternoon, that whole day is gone.”[123] |
| Brazil[127], China[132, 133], Ethiopia[108, 110], India[119], Indonesia[121], Philippines[124], Russia[136], South Africa[138, 140], Tanzania[112], Zambia[125], Zimbabwe[126] | Poor knowledge regarding TB symptoms and treatment, and the availability of free treatment policy were barriers to early healthcare seeking | “TB is not yet a disease that people recognize, then any respiratory problem is associated with virus diseases, flu, smoke, dust of the street, all but a disease like TB.”[127] |
| Bangladesh[113], Cambodia[44, 115], Ethiopia[108], India[113, 117], Indonesia[122], Mozambique[111], Philippines[124], South Africa[138, 140], Tanzania[112] | Presumptive TB cases delayed care-seeking due to low perceived severity of symptoms, low perceived susceptibility to TB, believed that TB is hereditary or retribution for sinful behavior, blame others for delay and then overpowered by hopelessness | “They also don’t take the symptoms seriously, they just assume that it is a flu.”[140] |
| Bangladesh[114], Brazil[127, 130], China[131, 133], Ethiopia[108, 109], India[116, 120], Indonesia[121, 122], Tanzania[112] | Poor practice at the health facilities and ignorance of TB led to a delay in TB diagnosis | “He had told me to take injections daily and I was taking it as advised. But he did not tell me anything. He kept on saying it is typhoid. We told him that sputum is coming while coughing. But he said, it will happen like this even for typhoid also.”[120] |

Health system delay

Country/Region	Theme	Quote
Bangladesh[114], Brazil[127, 130], China[131, 133], Ethiopia[108, 109], India[116, 120], Indonesia[121, 122], Tanzania[112]	Poor practice at the health facilities and ignorance of TB led to a delay in TB diagnosis	“There was poor adherence of the
Country/Region	Issue	Citation
---------------	--	----------
Brazil[128, 130], China[131], India[94, 117], Philippines[124], South Africa[142]	Complicated procedures at the health facilities to reach TB diagnosis	[116]
Brazil[127, 128, 130], India[94], Russia[136], South Africa[142]	Lack of resources and materials in the health facilities led to a delay in TB diagnosis	[142]
Cambodia[44], India[94, 117], South Africa[139]	Self-perception of health, and unconvinced of the diagnosis and the effectiveness of TB treatment led to a delay in TB treatment initiation	[44]
India[117]	Diagnosis and treatment initiated in different facilities caused a delay in TB treatment initiation	[139]
South Africa[139]	Geographical distance to health facilities and other competing priorities delayed TB treatment initiation	[117]
India[94], South Africa[139]	Health system factors such as lack of organization at the facilities to manage patients, poor staff attitude, and logistic issues caused a delay in TB treatment initiation	[139]
Zambia[125]	Women experienced stigma due to TB diagnosis resulting in concealment of diagnosis or being isolated	[94]
DOTS, directly observed treatment, short course; HIV, human immunodeficiency virus; TB, tuberculosis

Furthermore, poor TB knowledge (Fig. 6), unawareness of free TB treatment policies [26], low perceived susceptibility, and severity of TB was associated with patient delay [36, 44, 108, 111-113, 115, 117, 122, 124, 135]. Perceived stigma and discrimination (Fig. 6) at the workplace, within the family, and community and associating TB with HIV deterred presumptive TB patients from care-seeking [108, 112-115, 119, 123-128, 133-135, 137-142]. From the qualitative data, we found alcohol consumption and smoking to be associated with patient delay, especially among men where these substances were used to conceal health issues [114, 126, 135, 136, 142, 143]. However, these lifestyle behaviors were not statistically significant in the meta-analysis where the estimates from both sexes were pooled (Fig. 6).

Long chains of care-seeking through multiple non-formal or private health providers was also identified as a determinant of patient delay [108-126, 132, 133, 135, 136, 138, 140-142]. Qualitative data also suggested that the lack of trust in the public health care system perpetuated delays in care-seeking [120, 129, 134-137, 141, 142]. Unlike hemoptysis and weight loss, the presence of cough [65, 66, 70, 76, 84, 86] was associated with patient delay (Fig. 7).

Health system delay

The pooled median health system delay (Fig. 3) in LIC and LMIC was 14 days (95%CI 7–27). The pooled median health system delay in UMIC was 9.8 days (95%CI 1–95.9). The overall median health system delay in high TB-burden countries was 11.5 days (95%CI 3.9–24.7). In the meta-analysis, rural residence in LIC and LMIC was associated with longer health system delay (Fig. 4). Twelve qualitative studies reported that poor practices and ignorance of TB among health providers at health facilities led to a delay in TB diagnosis [108, 109, 112, 114, 116, 120-122, 127, 130, 131, 133]. Seven qualitative studies identified that complicated administrative procedures at the health facilities [94, 117, 124, 128, 130, 131, 142], which could have resulted in longer waiting time [42], and complex referral system[142] that eventually prolonged health system delay. This review identified that visiting lower-level facilities and those that did not provide TB services [30, 42, 68, 71, 88] was associated with health system delay. Six qualitative studies mentioned inadequate resources and
supplies in health facilities as such could have delayed TB diagnosis [94, 127, 128, 130, 136, 142]. We also found that people with smear-negative TB were more likely to experience health system delay [77, 78, 89].

Treatment delay
The pooled median treatment delay (Fig. 3) in LIC and LMIC was 13 days (95%CI 2.3–35.5). The pooled median treatment delay in UMIC was 0 days (95%CI 0–1). The overall median treatment delay in high TB burden countries was 6 days (95%CI 1–28.4). One qualitative study noted that the geographical distance to health facilities, especially when diagnosis and treatment were initiated in separate institutions delayed TB treatment initiation [139]. This could be exacerbated by residing in areas without health centers nearby [95]. Health system factors such as logistical issues in drug transportation [94, 139] and the absence of TB diagnostic services in local health facilities [94, 117] compounded delay in treatment initiation. Similar to patient delay, women experienced the stigma of TB diagnosis resulting in its concealment or isolation; thus, delaying treatment initiation [125]. Four qualitative studies mentioned self-perception of health, and unconvinced of the diagnosis and the need for TB treatment, and the perceived low effectiveness of TB treatment led to a delay in TB treatment initiation [44, 94, 117, 139]. We also found that retreatment cases were more likely to delay TB treatment initiation [92–96].

Discussion
Our review is the first to focus on determinants of delayed TB diagnosis and treatment among high TB burden countries using evidence-based quantitative and qualitative information. Overall, the median patient delay among high TB burden countries was 28 days, and the delay in LIC/LMIC (30 days) and UMIC (24.5 days) were not significantly different. Our findings were consistent with previous systematic reviews conducted in countries of different income levels [5, 8]. However, the median patient delay among UMIC in this review was shorter than the findings from observational studies conducted in other high-income countries [145, 146]. TB burden in high-income countries has been progressively reduced through improvements in socio-economic conditions, strong health systems components such as the delivery of TB services and universal health coverage, and social protection
schemes [147]. Notwithstanding, TB remains an issue in such settings [148], especially among hard-to-reach populations like migrants [149], who face challenges in accessing healthcare due to stigma, language barriers, and cost of testing and treatment [6]. For the natives, the high standards of living and wellbeing shaped the notion that TB is not a significant concern, rendering a lower index of suspicion of TB and thus delaying TB care-seeking [150].

The median health system delay in this review (11.5 days) was found to be shorter than previous systematic reviews conducted among countries of similar economies [5, 8]. As this review included studies conducted in the last decade, the improvement in health system delay may be attributed to the enhancements of healthcare systems [151], and the quality of TB laboratories [152]. The ability of clinicians to consider TB as a differential diagnosis in high burden settings is also essential for early diagnosis and treatment [153]. However, there remains a paucity of data in several high TB burden countries, including seven in Africa (Central African Republic, Congo, Democratic Republic of Condo, Lesotho, Liberia, Namibia, and Sierra Leone) and four in Asia (Democratic People’s Republic of Korea, Myanmar, Papua New Guinea, and Vietnam), potentially due to logistical challenges in conducting such studies. Therefore, this review could allow countries that have yet to collect empirical evidence on delayed TB diagnosis and treatment initiation to infer potential barriers that people with TB in those settings might face.

Patient delay
While TB is a disease affecting mostly men [154], in our review, we found that women still faced challenges in accessing TB care promptly in some settings. In the Philippines, Hu and colleagues [124] described the struggles of women with TB juggling with their responsibility as a caretaker of their children and their wellbeing. Lorent and colleagues also reported competing priorities among Cambodian women who shouldered familial and financial responsibilities [44]. Likewise, men were found to conceal health issues using substances such as alcohol and nicotine. High doses of alcoholism were related to oblivion to one’s condition, poor social and financial status, and low motivation to seek treatment [135]. In another study in Russia by Kuznetsov and colleagues [136], the influence of alcohol is further reiterated on participants being in denial and ignoring their
symptoms. Globally, men are more likely to smoke, consume alcohol, and drink in high volume compared to women [155, 156]. Therefore, the correlates for alcohol consumption and smoking and patient delay in the meta-analysis were possibly biased towards null because the estimates were pooled from both sexes. Nevertheless, it is imperative to recognize sex disparities in TB care-seeking, and women with TB in high burden countries experienced delays in diagnosis and treatment because of barriers to TB services. Investment cases for programming and interventions should be tailored to address sex-specific vulnerabilities and needs to improve access to TB services among men and women.

Despite wide coverage of free TB diagnostic and treatment services in high burden countries [157], people with TB and their families, especially the poor, bear the impact of significant economic costs [158]. High indirect medical costs [44, 124], productivity, time, and income loss [44, 123, 125, 132, 136, 143] as a result of disease suffering further worsen household vulnerabilities and contribute to a delay in TB diagnosis and poor health outcomes [159]. Our review identified livelihood, work, and family were prioritized and led to a delay in care-seeking. These factors, coupled with the physical environments and impoverished living conditions [125, 136] plunged low-income households into a vicious cycle of impoverishments [160, 161], making the elimination of TB overtly challenging.

Gosoni and colleagues reported that people with TB living in poor conditions felt hopeless and blamed poverty for their TB diagnosis [113]. A similar report in Russia [135] mentioned that poor participants were overwhelmed by their day-to-day struggles and had little hope to overcome their conditions, thus delaying TB care-seeking. To seek care, people affected by TB suffer income loss and incur catastrophic costs [162]. Aside from the broad expansion of TB services — improved access to services, treatment, and case-finding strategies — that has been shown to reduce financial burden on TB affected households [163], it is also essential to ensure that financial and social protection policies are in place to protect those at risk of catastrophic TB costs and poverty.

In countries where TB diagnostic and treatment services are provided for free, access to TB care is further challenged by poor knowledge and awareness regarding such policies, making presumptive TB not seek treatment early. In China [133] and Indonesia [121], two separate studies reported that even
though public health care centers offered free health care treatment, participants were skeptical regarding the availability of free treatment. A few others also assumed that the TB drugs offered in free treatment would be of poor quality. In addition to poor awareness about free TB treatment policy, we also found poor knowledge regarding TB symptoms to be associated with a delay in TB care-seeking. The inability of people with TB to recognize symptoms such as fever and cough that were not ascribed to TB intrinsically leads to self-medication and treatment or waiting for symptoms to self-resolve due to low perceived disease severity [108, 117, 124, 126, 127, 132, 135, 138, 140]. Therefore, people with TB would delay care-seeking until only when their illness compromised their ability to work and earn for livelihoods [113]. Contrarily, a study in Cambodia [44] found instances where people with TB did not feel ill prior to diagnosis, thus not prompting healthcare seeking. The Cambodia National TB Prevalence Survey in 2011 also revealed that 56% of smear-positive TB and 77% of smear-negative TB cases identified did not exhibit any symptoms [164]. Conventionally, symptomatic individuals are linked to TB transmission, and they are regarded as the target group for TB case-finding activities using the TB symptoms screening approach [165]. However, TB transmission could also occur during the subclinical (asymptomatic) phase, particularly heightened during episodes of symptoms exhibition unrelated to TB pathologies, such as bouts of either acute or chronic cough [166]. As people with subclinical TB might not report any symptoms, they have lower awareness and motivation to seek care; thus, leading to a delay in TB diagnosis and treatment and potentially sustaining TB transmission [167] in the household and community. Therefore, a better understanding of subclinical TB, its transmission dynamics, and the implications for TB control efforts are needed. Also, the duration of TB diagnosis and treatment delay was predominantly quantified using the self-reported date of onset of symptoms; standardizing the ways of measuring delay in care-seeking should be reconsidered.

Furthermore, misperception regarding the causes of TB was also found to delay TB care-seeking. Several studies in Africa [108, 111, 112] highlighted superstitious beliefs that TB is caused by divine retributions of past misdeeds, sinful behaviors, and curses; thus, help is first sought from traditional or spiritual healers instead of a health provider. Besides, studies in Asia reported the misconception
that TB is hereditary [115, 124]. Therefore, when no one in the family is ever diagnosed with TB, presumptive TB did not self-initiate care-seeking or is specifically discouraged by family members to seek TB diagnosis and treatment [115]. Other misconceptions, such as low perceived susceptibility to TB due to a healthy lifestyle, also led to a delay in TB care-seeking [114, 122]. Therefore, it is imperative first to measure the level of knowledge, awareness, and practices regarding TB in settings where studies as such have yet to be conducted. The gaps identified could then be used to develop health education programs and interventions about TB. Studies have shown that health education programs and dissemination of TB information are effective in improving TB knowledge and awareness [168], enabling care-seeking and increasing identification of TB cases [169]. Furthermore, understanding of the knowledge and practices of health professionals could be done in parallel to improve care and facilitate early identification of TB [170].

Evident in this review, TB stigma was associated with TB diagnosis and treatment delay. TB stigma continues to be a major barrier for people to access TB diagnosis and complete treatment [10, 141], and the delay in diagnosis not only affects the health and undermines the wellbeing of people with TB but also sustains TB transmission in the community. Moreover, stigma could also reduce the use of face mask [6, 171], further contributing to the transmission of the infection. Despite being an increasingly important agenda of TB programs worldwide, there is a paucity of data on stigma [172], in particular, information from the perpetrators of stigma [173]. There is also limited evidence on effective interventions that can reduce TB-related stigma [174]. Considering the importance of stigma reduction in TB control and elimination efforts, TB de-stigmatization must include approaches that address all socio-ecological levels through education, awareness-raising activities, community mobilization and activism, institutional practices that enhance patient-provider partnerships, and national policies for a more inclusive care plan.

In high TB-burden countries, we found that people who presented with cough, fever, and night sweats were more likely to delay TB care-seeking. This is consistent with another systematic review conducted among low and middle-income countries [5]. A study conducted in Russia [136] elaborated that cough symptoms are very common and can be attributed to numerous conditions such as
bronchitis, pneumonia, and smoking. The inability to link these symptoms to TB was claimed as one of the major reasons causing a delay in seeking care [136]. Contrarily, more severe symptoms such as hemoptysis were more likely to reduce delay in care-seeking. Therefore, education and awareness-raising activities could be recalibrated to specifically highlight the possibility of TB besides other respiratory illnesses in the event of more general symptoms such as cough and fever. Simultaneously, the awareness of health workers on this matter in high-burden settings should be raised to improve TB case finding.

Health system and treatment delay
In this review, we found that patient delay was mostly associated with individual, interpersonal, and community risk factors. On the contrary, health system and treatment delay were mostly associated with organizational and policy-related risk factors. Health system delay was more pronounced in LIC and LMIC compared to UMIC, likely due to the standard of health care, the strength of the national health systems, and the availability of resources. Among LIC and LMIC, a systematic review reported that the quality of health care in public and private sectors was poor, of which the private sectors relatively outperformed the public sector with regards to the delivery of care and medicines availability [175]. The discrepancies in effectiveness and efficiency were highlighted as a facilitator to seek private healthcare, which eventually leads to a delay in TB diagnosis in a high TB burden setting like Cambodia [176]. Narrowing down to high TB-burden countries, quality of both public and private healthcare were also found to be below par, and systematic evaluations are needed to identify gaps in the TB care pathway [157]. Likewise, treatment delay was longer in LIC and LMIC compared to UMIC, and the delay was due to logistic factors such as long distance to treatment centers, availability of anti-TB drugs, and the absence of TB diagnostic services in local health facilities [94, 95]. Beyond systemic factors, individual and interpersonal risk factors like low perceived susceptibility, and TB stigma could delay an individual’s decision to initiate TB treatment [44, 125]. To encourage prompt initiation of TB treatment, interventions to decrease isolation post-diagnosis, and social support should be provided [177]. Health providers also play a vital role in assisting people with TB to internalize the diagnosis and supporting them in the decision-making process [178].
Strengths and limitations
To our knowledge, this systematic review will be the first to focus on countries with a high TB burden, where most of the TB cases in the world [2] are found. As the list consisted of countries from LIC, LMIC, and UMIC, we attempted to discern the differences in the determinants of delayed TB diagnosis and treatment between these countries. Moreover, we strived to be comprehensive by systematically assessing and reviewing quantitative and qualitative studies using validated tools and processes. We also found high levels of heterogeneity amongst the studies, which is well within the expectations of the review team as we retained the definitions of delays as to how they were defined in individual studies for comprehensiveness. We incorporated heterogeneity into random-effects models with the inclusion of confidence intervals for the pooled odds ratio for pragmatic interpretations in the real-world settings [179].

Nevertheless, as most of the independent variables were grouped differently using varied cut-offs, we were not able to standardize them all, and therefore, meta-analyses were only performed for selected variables. However, we strived to maintain the comprehensiveness of this review through the triangulation of findings from narrative synthesis and thematic analyses of qualitative studies. This review did not include data from all 30 high TB-burden countries due to the absence of key outcome data and research activities. Notwithstanding the potential lack of representativeness due to scarcity of data from several countries, we believe that this review highlights the gaps in knowledge and provides insights into the determinants of TB diagnosis and treatment delay in high-burden countries, and these findings will inform future interventions to reach these undiagnosed cases effectively.

Conclusions
Our analyses revealed a substantial delay between the onset of TB symptoms and TB care-seeking among high burden countries, highlighting the need to continue to shape knowledge, change attitude, and raise awareness of the community, people at risk of TB, and the health providers. To improve access to TB services and early diagnosis, specific vulnerabilities such as sex disparities in care-seeking, being older, and geographic isolation should be recognized and addressed through tailored approaches [180]. It is also crucial to improve consciousness of the society regarding TB to battle
stigma, and networks [181] of support from within the families, the grassroots, and institutions could create an enabling environment for early care-seeking, treatment adherence and success. In contrast to patient delay, the shorter health system and treatment delay were encouraging. Nonetheless, TB programs should strive to test and treat TB through the adoption of WHO recommendations for same-day TB diagnosis [182] to further reduce TB transmission and mortality [183]. Higher-level policies and interventions such as health system strengthening, universal health coverage, and the provision of sustainable social welfare schemes are important to reduce delays, improve access to TB care, and ultimately achieve the global TB targets [184].

Declarations

Ethics approval and consent to participate
Not applicable

Consent for publication
Not applicable

Availability of data and materials
Not applicable All data generated or analyzed during this study are included in this published article and its supplementary information files.

Competing interests
The authors declare that they have no competing interests

Funding
The author(s) received no specific funding for this work

Authors' contributions
AKJT, SY, LYH, and SRS conceptualized and designed the study. AKJT and SRS developed the search terms. AKJT conducted the searches. AKJT and STS screened, extracted, and verified the data. AKJT, SRS, and KP analyzed the data. KP and AKJT performed the meta-analysis. AKJT and SRS performed the systematic review and analyzed the qualitative data. AKJT, KP, and SRS prepared the tables and figures. AKJT, KP, and SRS wrote the initial draft of the manuscript. All authors reviewed, revised, and approved the final manuscript.
Acknowledgments

We would like to thank Dr. Asano Miho for her guidance in the early part of the study and Miss Annelissa Chin and Miss Ratnala Sukanya Naidu for their assistance with developing the search terms, scanning, and retrieving articles.

Abbreviations

Abbreviation	Description
CASP	Critical Appraisal Skills Program
CI	Confidence interval
HIV	Human immunodeficiency virus
HQ	High quality
LIC	Low-income countries
LMIC	Lower-middle-income countries
LQ	Low quality
MQ	Medium quality
OR	Odds ratio
PRISMA	Preferred Reporting Items for Systematic Reviews and Meta-Analysis
PROSPERO	International Prospective Register of Systematic Reviews
TB	Tuberculosis
UMIC	Upper-middle-income countries
USA	United States of America
WHO	World Health Organization

References

1. World Health Organization. TB: a global emergency, WHO report on the TB epidemic [Internet]. Geneva: World Health Organization; 1994. Available from: https://apps.who.int/iris/handle/10665/58749
2. World Health Organization. Global tuberculosis report 2019. Geneva: World Health Organization; 2019.
3. Stop TB Partnership, United Nations Office for Project Services (UNOPS). Global plan to end TB. The paradigm shift 2016-2020. Geneva: STOP TB Partnership and UNOPS; 2016.
4. Golub JE, Bur S, Cronin WA, Gange S, Baruch N, Comstock GW, et al. Delayed tuberculosis diagnosis and tuberculosis transmission. Int J Tuberc Lung Dis. 2006;10:24–30.
5. Getnet F, Demissie M, Assefa N, Mengistie B, Worku A. Delay in diagnosis of pulmonary tuberculosis in low-and middle-income settings: systematic review and meta-analysis. BMC Pulm Med. 2017;17.
6. de Vries SG, Cremers AL, Heuvelings CC, Greve PF, Visser BJ, Bélard S, et al. Barriers
and facilitators to the uptake of tuberculosis diagnostic and treatment services by hard-to-reach populations in countries of low and medium tuberculosis incidence: a systematic review of qualitative literature. Lancet Infect Dis. 2017;17:e128-43.

7. Sullivan BJ, Esmaili BE, Cunningham CK. Barriers to initiating tuberculosis treatment in sub-Saharan Africa: a systematic review focused on children and youth. Glob Health Action. 2017;10:1290317.

8. Sreeramareddy CT, Panduru KV, Menten J, Van den Ende J. Time delays in diagnosis of pulmonary tuberculosis: a systematic review of literature. BMC Infect Dis. 2009;9:91.

9. Storla DG, Yimer S, Bjune GA. A systematic review of delay in the diagnosis and treatment of tuberculosis. BMC Public Health. 2008;8:15.

10. Barnabishvili M, Ulrichs T, Waldherr R. Role of acceptability barriers in delayed diagnosis of Tuberculosis: Literature review from high burden countries. Acta Trop. 2016;161:106-13.

11. Sreeramareddy CT, Qin ZZ, Satyanarayana S, Subbaraman R, Pai M. Delays in diagnosis and treatment of pulmonary tuberculosis in India: a systematic review. Int J Tuberc Lung Dis. 2014;18:255-66.

12. Teo AKJ, Singh SR, Prem K, Hsu LY, Yi S. Delayed diagnosis and treatment of pulmonary tuberculosis in high-burden countries: a systematic review protocol. BMJ Open. 2019;9:e029807.

13. CASP - Critical Appraisal Skills Programme. CASP Checklists [Internet]. CASP - Critical Appraisal Skills Programme. [cited 2019 Jan 26]. Available from: https://casp-uk.net/casp-tools-checklists/

14. Noyes J, Booth A, Flemming K, Garside R, Harden A, Lewin S, et al. Cochrane Qualitative and Implementation Methods Group guidance series—paper 3: methods
for assessing methodological limitations, data extraction and synthesis, and confidence in synthesized qualitative findings. Journal of Clinical Epidemiology. 2018;97:49–58.

15. Wells G, Shea B, O’connell D, Peterson J, Welch V, Losos M, et al. The Newcastle-Ottawa Scale (NOS) for assessing the quality of nonrandomised studies in meta-analyses [Internet]. [cited 2019 Jan 26]. Available from: http://www.ohri.ca/programs/clinical_epidemiology/oxford.asp

16. Munn Z, Porritt K, Lockwood C, Aromataris E, Pearson A. Establishing confidence in the output of qualitative research synthesis: the ConQual approach. BMC Med Res Methodol. 2014;14:108.

17. McGrath S, Zhao X, Qin ZZ, Steele R, Benedetti A. One-sample aggregate data meta-analysis of medians. Statistics in Medicine. 2019;38:969-84.

18. Cochran WG. The Combination of Estimates from Different Experiments. Biometrics. 1954;10:101-29.

19. Higgins JPT, Thompson SG, Spiegelhalter DJ. A re-evaluation of random-effects meta-analysis. Journal of the Royal Statistical Society: Series A (Statistics in Society). 2009;172:137-59.

20. Belay M, Bjune G, Ameni G, Abebe F. Diagnostic and treatment delay among Tuberculosis patients in Afar Region, Ethiopia: A cross-sectional study. BMC Public Health [Internet]. 2012 [cited 2019 Nov 22];12. Available from: http://bmcpublichealth.biomedcentral.com/articles/10.1186/1471-2458-12-369

21. Bogale S, Diro E, Shiferaw AM, Yenit MK. Factors associated with the length of delay with tuberculosis diagnosis and treatment among adult tuberculosis patients attending at public health facilities in Gondar town, Northwest, Ethiopia. BMC Infectious Diseases [Internet]. 2017 [cited 2019 Nov 22];17. Available from:
22. Gebeyehu E, Azage M, Abeje G. Factors Associated with Patient’s Delay in Tuberculosis Treatment in Bahir Dar City Administration, Northwest Ethiopia. BioMed Research International. 2014;2014:1-6.

23. Seid A, Metaferia Y. Factors associated with treatment delay among newly diagnosed tuberculosis patients in Dessie city and surroundings, Northern Central Ethiopia: a cross-sectional study. BMC Public Health [Internet]. 2018 [cited 2019 Nov 22];18. Available from: https://bmcpublichealth.biomedcentral.com/articles/10.1186/s12889-018-5823-9

24. Fuge TG, Bawore SG, Solomon DW, Hegana TY. Patient delay in seeking tuberculosis diagnosis and associated factors in Hadiya Zone, Southern Ethiopia. BMC Research Notes [Internet]. 2018 [cited 2019 Nov 22];11. Available from: https://bmcresnotes.biomedcentral.com/articles/10.1186/s13104-018-3215-y

25. Adenager GS, Alemseged F, Asefa H, Gebremedhin AT. Factors Associated with Treatment Delay among Pulmonary Tuberculosis Patients in Public and Private Health Facilities in Addis Ababa, Ethiopia. Tuberculosis Research and Treatment. 2017;2017:1-9.

26. Asres M, Gedefaw M, Kahsay A, Weldu Y. Patients’ Delay in Seeking Health Care for Tuberculosis Diagnosis in East Gojjam Zone, Northwest Ethiopia. The American Journal of Tropical Medicine and Hygiene. 2017;96:1071-5.

27. Gebreegziabher SB, Bjune GA, Yimer SA. Patients’ and health system’s delays in the diagnosis and treatment of new pulmonary tuberculosis patients in West Gojjam Zone, Northwest Ethiopia: a cross-sectional study. BMC Infectious Diseases [Internet]. 2016 [cited 2019 Nov 22];16. Available from: http://bmcinfectdis.biomedcentral.com/articles/10.1186/s12879-016-1995-z
28. Mesfin MM, Newell JN, Walley JD, Gessew A, Madeley RJ. Delayed consultation among pulmonary tuberculosis patients: a cross sectional study of 10 DOTS districts of Ethiopia. BMC Public Health [Internet]. 2009 [cited 2019 Nov 22];9. Available from: https://bmcpublichealth.biomedcentral.com/articles/10.1186/1471-2458-9-53

29. Hussen A, Biadgilign S, Tessema F, Mohammed S, Deribe K, Deribew A. Treatment delay among pulmonary tuberculosis patients in pastoralist communities in Bale Zone, Southeast Ethiopia. BMC Research Notes [Internet]. 2012 [cited 2019 Nov 22];5. Available from: https://bmcresnotes.biomedcentral.com/articles/10.1186/1756-0500-5-320

30. Yimer SA, Bjune GA, Holm-Hansen C. Time to first consultation, diagnosis and treatment of TB among patients attending a referral hospital in Northwest, Ethiopia. BMC Infectious Diseases [Internet]. 2014 [cited 2019 Nov 22];14. Available from: https://bmcinfectdis.biomedcentral.com/articles/10.1186/1471-2334-14-19

31. Gele AA, Bjune G, Abebe F. Pastoralism and delay in diagnosis of TB in Ethiopia. BMC Public Health [Internet]. 2009 [cited 2019 Nov 22];9. Available from: https://bmcpublichealth.biomedcentral.com/articles/10.1186/1471-2458-9-5

32. Yirgu R, Lemessa F, Hirpa S, Alemayehu A, Klinkenberg E. Determinants of delayed care seeking for TB suggestive symptoms in Seru district, Oromiya region, Ethiopia: a community based unmatched case-control study. BMC Infectious Diseases [Internet]. 2017 [cited 2019 Nov 22];17. Available from: http://bmcinfectdis.biomedcentral.com/articles/10.1186/s12879-017-2407-8

33. Abebe G, Deribew A, Apers L, Woldemichael K, Shiffa J, Tesfaye M, et al. Knowledge, Health Seeking Behavior and Perceived Stigma towards Tuberculosis among Tuberculosis Suspects in a Rural Community in Southwest Ethiopia. Mokrousov I, editor. PLoS ONE. 2010;5:e13339.
34. Senbeto M, Tadesse S, Tadesse T, Melesse T. Appropriate health-seeking behavior and associated factors among people who had cough for at least two weeks in northwest Ethiopia: a population-based cross-sectional study. BMC Public Health [Internet]. 2013 [cited 2019 Nov 22];13. Available from: http://bmcpublichealth.biomedcentral.com/articles/10.1186/1471-2458-13-1222

35. Yimer S, Holm-Hansen C, Yimaldu T, Bjune G. Health care seeking among pulmonary tuberculosis suspects and patients in rural Ethiopia: a community-based study. BMC Public Health [Internet]. 2009 [cited 2019 Oct 14];9. Available from: https://bmcpublichealth.biomedcentral.com/articles/10.1186/1471-2458-9-454

36. Engeda EH, Dachew BA, Kassa Woreta H, Mekonnen Kelkay M, Ashenafie TD. Health Seeking Behaviour and Associated Factors among Pulmonary Tuberculosis Suspects in Lay Armachiho District, Northwest Ethiopia: A Community-Based Study. Tuberculosis Research and Treatment. 2016;2016:1–7.

37. Addisu Y, Birhanu Z, Tilahun D, Assefa T. Predictors of Treatment Seeking Intention among People with Cough in East Wollega, Ethiopia Based on the Theory of Planned Behavior: A Community Based Cross -Sectional Study. Ethiopian Journal of Health Sciences. 2014;24:131.

38. Saifodine A, Gudo PS, Sidat M, Black J. Patient and health system delay among patients with pulmonary tuberculosis in Beira city, Mozambique. BMC Public Health [Internet]. 2013 [cited 2019 Nov 22];13. Available from: http://bmcpublichealth.biomedcentral.com/articles/10.1186/1471-2458-13-559

39. Mfinanga SG, Mutayoba BK, Kahwa A, Kimaro G, Mtandu R, Ngadaya E, et al. The magnitude and factors associated with delays in management of smear positive tuberculosis in Dar es Salaam, Tanzania. BMC Health Services Research [Internet]. 2008 [cited 2019 Nov 22];8. Available from:
40. Ngadaya ES, Mfinanga GS, Wandwalo ER, Morkve O. Delay in Tuberculosis case detection in Pwani region, Tanzania. A cross sectional study. BMC Health Services Research [Internet]. 2009 [cited 2019 Nov 22];9. Available from: https://bmchealthservres.biomedcentral.com/articles/10.1186/1472-6963-9-196

41. Senkoro M, Hinderaker SG, Mfinanga SG, Range N, Kamara DV, Egwaga S, et al. Health care-seeking behaviour among people with cough in Tanzania: findings from a tuberculosis prevalence survey. The International Journal of Tuberculosis and Lung Disease. 2015;19:640–6.

42. Segagni Lusignani L, Quaglio G, Atzori A, Nsuka J, Grainger R, Da Conceição Palma M, et al. Factors associated with patient and health care system delay in diagnosis for tuberculosis in the province of Luanda, Angola. BMC Infectious Diseases [Internet]. 2013 [cited 2019 Nov 22];13. Available from: https://bmcinfectdis.biomedcentral.com/articles/10.1186/1471-2334-13-168

43. Rifat M, Rusen ID, Islam MdA, Enarson DA, Ahmed F, Ahmed SM, et al. Why are tuberculosis patients not treated earlier? A study of informal health practitioners in Bangladesh. The International Journal of Tuberculosis and Lung Disease. 2011;15:647–51.

44. Lorent N, Choun K, Malhotra S, Koeut P, Thai S, Khun KE, et al. Challenges from Tuberculosis Diagnosis to Care in Community-Based Active Case Finding among the Urban Poor in Cambodia: A Mixed-Methods Study. PLoS ONE. 2015;10:e0130179.

45. Purty A, Chauhan R, Natesan M, Cherian J, Singh Z, Sharma Y. Patient and health system delays among adult smear-positive tuberculosis patients diagnosed at medical colleges of Puducherry in south India. Indian Journal of Public Health. 2016;60:77.
46. Thakur R, Murhekar M. Delay in diagnosis and treatment among tb patients registered under RNTCP mandi, Himachal Pradesh, India, 2010. Indian J Tuberc. 2013;60:37-45.

47. Tamhane A, Ambe G, Vermund S, Kohler CL, Karande A, Sathiakumar N. Pulmonary Tuberculosis in Mumbai, India: Factors Responsible for Patient and Treatment Delays. International Journal of Preventive Medicine. 2012;3:13.

48. Basa S, Venkatesh S. Patient and Healthcare System Delays in the Start of Pulmonary Tuberculosis Treatment Among Tribal Patients Registered Under DOTS, Odisha. J Clin Diagn Res [Internet]. 2016 [cited 2019 Nov 22]; Available from: http://jcdr.net/article_fulltext.asp?issn=0973-709x&year=2016&volume=10&issue=9&page=LC21&issn=0973-709x&id=8567

49. Kalra A. Care seeking and treatment related delay among childhood tuberculosis patients in Delhi, India. The International Journal of Tuberculosis and Lung Disease. 2017;21:645-50.

50. Satyanarayana S, Nair SA, Chadha SS, Sharma G, Yadav S, Mohanty S, et al. Healthcare seeking among people with cough of 2 weeks or more in India. Is passive TB case finding sufficient? Public Health Action. 2012;2:157-61.

51. Lock WA, Ahmad RA, Ruiter RAC, van der Werf MJ, Bos AER, Mahendradhata Y, et al. Patient delay determinants for patients with suspected tuberculosis in Yogyakarta province, Indonesia: TB patients delay determinants. Tropical Medicine & International Health. 2011;16:1501-10.

52. Ahmad RA, Richardus JH, de Vlas SJ. Care-seeking behaviour among individuals with TB symptoms in Jogjakarta Province, Indonesia: a community-based study. International Health. 2013;5:51-7.

53. Ayuo P, Diero L, Owino-Ong’or W, Mwangi A. Causes Of Delay In Diagnosis Of
Pulmonary Tuberculosis In Patients Attending A Referral Hospital In Western Kenya.
East African Medical Journal [Internet]. 2008 [cited 2019 Nov 22];85. Available from: http://www.ajol.info/index.php/eamj/article/view/9623

54. Njau IW, Karanja SM, Wanzala P, Omolo JO. Factors associated with late presentation of suspected tuberculosis cases to tuberculosis management facilities: The case in Dagoretti district, Nairobi, Kenya. Pan Afr Med J. 2012;12.

55. Biya O, Gidado S, Abraham A, Waziri N, Nguku P, Nsubuga P, et al. Knowledge, care-seeking behavior, and factors associated with patient delay among newly-diagnosed pulmonary tuberculosis patients, Federal Capital Territory, Nigeria, 2010. Pan Afr Med J. 2014;18 (Suppl 1).

56. Ukwaja KN, Alobu I, Nweke CO, Onyenwe EC. Healthcare-seeking behavior, treatment delays and its determinants among pulmonary tuberculosis patients in rural Nigeria: a cross-sectional study. BMC Health Services Research [Internet]. 2013 [cited 2019 Nov 22];13. Available from: https://bmchealthservres.biomedcentral.com/articles/10.1186/1472-6963-13-25

57. Fatiregun AA, Ejeckam CC. Determinants of patient delay in seeking treatment among pulmonary tuberculosis cases in a government specialist hospital in Ibadan, Nigeria. Tanzania Journal of Health Research [Internet]. 2010 [cited 2019 Nov 22];12. Available from: http://www.ajol.info/index.php/thrb/article/view/56398

58. Chanda-Kapata P, Kapata N, Masiye F, Maboshe M, Klinkenberg E, Cobelens F, et al. Health Seeking Behaviour among Individuals with Presumptive Tuberculosis in Zambia. van Zyl-Smit R, editor. PLOS ONE. 2016;11:e0163975.

59. Takarinda KC, Harries AD, Nyathi B, Ngwenya M, Mutasa-Apollo T, Sandy C. Tuberculosis treatment delays and associated factors within the Zimbabwe national tuberculosis programme. BMC Public Health [Internet]. 2015 [cited 2019 Nov 22];15.
Available from: https://bmcpublichealth.biomedcentral.com/articles/10.1186/s12889-015-1437-7

60. Almeida CPB de, Skupien EC, Silva DR. Health care seeking behavior and patient delay in tuberculosis diagnosis. Cadernos de Saúde Pública. 2015;31:321–30.

61. Deponti GN, Silva DR, Coelho AC, Muller AM, Dalcin P de TR. Delayed diagnosis and associated factors among new pulmonary tuberculosis patients diagnosed at the emergency department of a tertiary care hospital in Porto Alegre, South Brazil: a prospective patient recruitment study. BMC Infectious Diseases [Internet]. 2013 [cited 2019 Nov 22];13. Available from: https://bmcinfectdis.biomedcentral.com/articles/10.1186/1471-2334-13-538

62. Wysocki AD, Ponce MAZ, Scatolin BE, Andrade RL de P, Vendramini SHF, Netto AR, et al. Atraso na procura pelo primeiro atendimento para o diagnóstico da tuberculose. Revista da Escola de Enfermagem da USP. 2013;47:440–7.

63. Trigueiro DRSG, Nogueira J de A, Sá LD de, Monroe AA, Anjos UU dos, Villa TCS, et al. The influence of individual determinants in the delay of the tuberculosis diagnosis. Texto & Contexto - Enfermagem. 2014;23:1022–31.

64. Maior M de L, Guerra RL, Cailleaux-Cezar M, Golub E, Conde MB. Time from symptom onset to the initiation of treatment of pulmonary tuberculosis in a city with a high incidence of the disease. J Bras Pneumol. 2012;38:202–9.

65. Machado AC de FT, Steffen RE, Oxlade O, Menzies D, Kritski A, Trajman A. Fatores associados ao atraso no diagnóstico da tuberculose pulmonar no estado do Rio de Janeiro. Jornal Brasileiro de Pneumologia. 2011;37:512–20.

66. Maciel ELN, Golub JE, Peres RL, Hadad DJ, Fávero JL, Molino LP, et al. Delay in diagnosis of pulmonary tuberculosis at a primary health clinic in Vitoria, Brazil. Int J Tuberc Lung Dis. 2010;14:1403–10.
67. Nogueira BMF, Rolla VC, Akrami KM, Kiene SM. Factors associated with tuberculosis treatment delay in patients co-infected with HIV in a high prevalence area in Brazil. Hasnain SE, editor. PLOS ONE. 2018;13:e0195409.

68. Zhou C, Tobe RG, Chu J, Gen H, Wang X, Xu L. Detection delay of pulmonary tuberculosis patients among migrants in China: a cross-sectional study. The International Journal of Tuberculosis and Lung Disease. 2012;16:1630-6.

69. Chen H-G, Liu M, Jiang S-W, Gu F-H, Huang S-P, Gao T-J, et al. Impact of diabetes on diagnostic delay for pulmonary tuberculosis in Beijing. The International Journal of Tuberculosis and Lung Disease. 2014;18:267-71.

70. Wang Q, Ma A, Han X, Zhao S, Cai J, Kok FJ, et al. Hyperglycemia is associated with increased risk of patient delay in pulmonary tuberculosis in rural areas: ฎฏฏฏฏฏฏฎฎฎฎฏฏฏฏฏฏฏฏฏฎฏฏฎฎฎฎฎฎฎฎฎฎฎฎฎฎฎฎฎฎฎฎฎฏฏฏฏฏฏฎฏฏฏฎฏฏฏฎฎฎฎฎฎฎฎฎฎฎฎฎฎฎฎฎฎฎฎฎฎฎฎฏฏฏฎฎฎฎฎฎฎฎฎฎฎฎฎฎฎฎฎฎฎฎฎฎฎฎฎฎฎฏฏฏฎฏฏฎฎฎฏฏฏฏฏฏฏฏฏฏฏฏฏฏฏฏฏฏฏฏฏฏฏฏฏฏฏฏฏฏฏฏฏฎฎฎฎฎฎฎฎฎฎฎฎฎฎฎฎฎฎฎฎฎฏฎฎฎฎฎฎฎฎฎฎฎฎฎฎฎฎฎฎฎฎฎฎฎฎฎฎฎฎฎฎฎฎฎฎฎฎฏฎฎฎ jeste
Seeking in New Pulmonary Tuberculosis Cases among Migrants Population in East China. Pai M, editor. PLoS ONE. 2012;7:e31995.

75. Zhao X, Yang P, Gai R, Mei L, Wang X, Xu L. Determinants of health care-seeking delay among tuberculosis patients in Shandong Province, China. The European Journal of Public Health. 2014;24:757–61.

76. Xia D, Zhang Z, Li X, Jiang C, Ma J, Ding S, et al. Factors associated with patient delay among new tuberculosis patients in Anqing, China. Biomed Res. 2016;27:8.

77. Shu W, Chen W, Zhu S, Hou Y, Mei J, Bai L, et al. Factors Causing Delay of Access to Tuberculosis Diagnosis Among New, Active Tuberculosis Patients: A Prospective Cohort Study. Asia Pacific Journal of Public Health. 2014;26:33–41.

78. Xu X, Liu J-H, Cao S-Y, Zhao Y, Dong X-X, Liang Y, et al. Delays in care seeking, diagnosis and treatment among pulmonary tuberculosis patients in Shenzhen, China. The International Journal of Tuberculosis and Lung Disease. 2013;17:615–20.

79. Lin X, Chongsuvivatwong V, Geater A, Lijuan R. The effect of geographical distance on TB patient delays in a mountainous province of China. Int J Tuberc Lung Dis. 2008;12:288–93.

80. Lin Y, Enarson DA, Chiang C-Y, Rusen ID, Qiu L-X, Kan X-H, et al. Patient delay in the diagnosis and treatment of tuberculosis in China: findings of case detection projects. Public Health Action. 2015;5:65–9.

81. Wang Y, Long Q, Liu Q, Tolhurst R, Tang S. Treatment seeking for symptoms suggestive of TB: comparison between migrants and permanent urban residents in Chongqing, China: Delay in treatment seeking for symptoms suggestive of TB. Tropical Medicine & International Health. 2008;13:927–33.

82. Woith WM, Larson JL. Delay in seeking treatment and adherence to tuberculosis medications in Russia: A survey of patients from two clinics. International Journal of
83. Møller V, Erstad I, Cramm JM, Nieboer AP, Finkenflügel H, Radloff S, et al. Delays in presenting for tuberculosis treatment associated with fear of learning one is HIV-positive. African Journal of AIDS Research. 2011;10:25–36.

84. Meintjes G, Schoeman H, Morroni C, Wilson D, Maartens G. Patient and provider delay in tuberculosis suspects from communities with a high HIV prevalence in South Africa: A cross-sectional study. BMC Infectious Diseases [Internet]. 2008 [cited 2019 Nov 22];8. Available from: https://bmcinfectdis.biomedcentral.com/articles/10.1186/1471-2334-8-72

85. Otwombe KN, Variava E, Holmes CB, Chaisson RE, Martinson N. Predictors of delay in the diagnosis and treatment of suspected tuberculosis in HIV co-infected patients in South Africa. The International Journal of Tuberculosis and Lung Disease. 2013;17:1199–205.

86. Butsorn A, Suggaravetsiri P, Tesama N. Delay of treatment among new smear-positive pulmonary tuberculosis patients in Thai-Cambodia border: cases study in Surin and Sisaket Province, Thailand. Res J Med Sci. 2010;4:340–5.

87. Rattananupong T, Hiransuthikul N, Lohsoonthorn V, Chuchottaworn C. Factors associated with delay in tuberculosis treatment at 10 tertiary level care hospitals in Thailand. Southeast Asian J Trop Med Public Health. 2015;46:8.

88. Adejumo OA, Daniel OJ, Otesanya AF, Adejumo EN. Determinants of health system delay at public and private directly observed treatment, short course facilities in Lagos State, Nigeria: A cross-sectional study. International Journal of Mycobacteriology. 2016;5:257–64.

89. Rossato Silva D, Müller AM, de Tarso Roth Dalcin P. Factors associated with delayed diagnosis of tuberculosis in hospitalized patients in a high TB and HIV burden setting:
a cross-sectional study. BMC Infectious Diseases [Internet]. 2012 [cited 2019 Nov 22];12. Available from: http://bmcinfectdis.biomedcentral.com/articles/10.1186/1471-2334-12-57

90. Boniface R, Moshabela M, Zulliger R, MacPherson P, Nyasulu P. Correlates of Delayed Diagnosis among Human Immunodeficiency Virus-Infected Pulmonary Tuberculosis Suspects in a Rural HIV Clinic, South Africa. Tuberculosis Research and Treatment. 2012;2012:1–7.

91. Hinderaker SG, Madland S, Ullenes M, Enarson DA, Rusen I, Kamara D. Treatment delay among tuberculosis patients in Tanzania: Data from the FIDELIS Initiative. BMC Public Health [Internet]. 2011 [cited 2019 Nov 22];11. Available from: https://bmcpublichealth.biomedcentral.com/articles/10.1186/1471-2458-11-306

92. Htike W, Islam MA, Hasan MT, Ferdous S, Rifat M. Factors associated with treatment delay among tuberculosis patients referred from a tertiary hospital in Dhaka City: a cross-sectional study. Public Health Action. 2013;3:317–22.

93. Thomas BE, Subbaraman R, Sellappan S, Suresh C, Lavanya J, Lincy S, et al. Pretreatment loss to follow-up of tuberculosis patients in Chennai, India: a cohort study with implications for health systems strengthening. BMC Infectious Diseases [Internet]. 2018 [cited 2019 Nov 22];18. Available from: https://bmcinfectdis.biomedcentral.com/articles/10.1186/s12879-018-3039-3

94. Paul D, Busireddy A, Nagaraja SB, Satyanarayana S, Dewan PK, Nair SA, et al. Factors Associated with Delays in Treatment Initiation after Tuberculosis Diagnosis in Two Districts of India. Pai M, editor. PLoS ONE. 2012;7:e39040.

95. Kant S, Singh A, Parmeshwaran G, Haldar P, Malhotra S, Kaur R. Delay in initiation of treatment after diagnosis of pulmonary tuberculosis in primary health care setting: eight year cohort analysis from district Faridabad, Haryana, North India. Rural and
Remote Health [Internet]. 2017 [cited 2019 Nov 22];17. Available from: http://www.rrh.org.au/articles/subviewnew.asp?ArticleID=4158

96. Ilangoovan K, Nagaraja SB, Ananthakrishnan R, Jacob AG, Tripathy JP, Tamang D. TB Treatment Delays in Odisha, India: Is It Expected Even after These Many Years of RNTCP Implementation? Mistry N, editor. PLOS ONE. 2015;10:e0125465.

97. Mugauri H, Shewade HD, Dlodlo RA, Hove S, Sibanda E. Bacteriologically confirmed pulmonary tuberculosis patients: Loss to follow-up, death and delay before treatment initiation in Bulawayo, Zimbabwe from 2012-2016. International Journal of Infectious Diseases. 2018;76:6-13.

98. Zhou C, Chu J, Geng H, Wang X, Xu L. Pulmonary tuberculosis among migrants in Shandong, China: factors associated with treatment delay. BMJ Open. 2014;4:e005805.

99. Van Wyk SS, Enarson DA, Beyers N, Lombard C, Hesseling AC. Consulting private health care providers aggravates treatment delay in urban South African tuberculosis patients. The International Journal of Tuberculosis and Lung Disease. 2011;15:1069-76.

100. Asefa A, Teshome W. Total Delay in Treatment among Smear Positive Pulmonary Tuberculosis Patients in Five Primary Health Centers, Southern Ethiopia: A Cross Sectional Study. Pai M, editor. PLoS ONE. 2014;9:e102884.

101. Bronner Murrison L, Ananthakrishnan R, Swaminathan A, Auguesteen S, Krishnan N, Pai M, et al. How do patients access the private sector in Chennai, India? An evaluation of delays in tuberculosis diagnosis. The International Journal of Tuberculosis and Lung Disease. 2016;20:544-51.

102. Van Ness SE, Chandra A, Sarkar S, Pleskunas J, Ellner JJ, Roy G, et al. Predictors of delayed care seeking for tuberculosis in southern India: an observational study. BMC
103. Mahendradhata Y, Syahrizal BM, Utarini A. Delayed treatment of tuberculosis patients in rural areas of Yogyakarta province, Indonesia. BMC Public Health [Internet]. 2008 [cited 2019 Nov 22];8. Available from: https://bmcpublichealth.biomedcentral.com/articles/10.1186/1471-2458-8-393

104. Bassili A, Seita A, Baghdadi S, AlAbsi A, Abdilai I, Agboatwalla M, et al. Diagnostic and Treatment Delay in Tuberculosis in 7 Countries of the Eastern Mediterranean Region: Infectious Diseases in Clinical Practice. 2008;16:23–35.

105. Saqib MA, Awan IN, Rizvi SK, Shahzad MI, Mirza ZS, Tahseen S, et al. Delay in diagnosis of tuberculosis in Rawalpindi, Pakistan. BMC Research Notes [Internet]. 2011 [cited 2019 Nov 22];4. Available from: https://bmcresnotes.biomedcentral.com/articles/10.1186/1756-0500-4-165

106. Saqib SE, Ahmad MM, Amezcua-Prieto C, Virginia M-R. Treatment Delay among Pulmonary Tuberculosis Patients within the Pakistan National Tuberculosis Control Program. The American Journal of Tropical Medicine and Hygiene. 2018;99:143–9.

107. Coimbra I, Maruza M, Militão-Albuquerque M de FP, Moura LV, Diniz GTN, Miranda-Filho D de B, et al. Associated factors for treatment delay in pulmonary tuberculosis in HIV-infected individuals: a nested case-control study. BMC Infectious Diseases [Internet]. 2012 [cited 2019 Nov 22];12. Available from: https://bmcinfectdis.biomedcentral.com/articles/10.1186/1471-2334-12-208

108. Sagbakken M, Frich JC, Bjune GA. Perception and Management of Tuberculosis Symptoms in Addis Ababa, Ethiopia. Qualitative Health Research. 2008;18:1356–66.

109. Tadesse T, Demissie M, Berhane Y, Kebede Y, Abebe M. Long distance travelling and financial burdens discourage tuberculosis DOTs treatment initiation and compliance
in Ethiopia: a qualitative study. BMC Public Health [Internet]. 2013 [cited 2019 Nov 22];13. Available from:
http://bmcpublichealth.biomedcentral.com/articles/10.1186/1471-2458-13-424

110. Gele AA, Sagbakken M, Abebe F, Bjune GA. Barriers to tuberculosis care: a qualitative study among Somali pastoralists in Ethiopia. BMC Research Notes [Internet]. 2010 [cited 2019 Nov 22];3. Available from:
https://bmcresnotes.biomedcentral.com/articles/10.1186/1756-0500-3-86

111. Mindu C, López-Varela E, Alonso-Menendez Y, Mausse Y, Augusto OJ, Gondo K, et al. Caretakers’ perspectives of paediatric TB and implications for care-seeking behaviours in Southern Mozambique. Graham SM, editor. PLOS ONE. 2017;12:e0182213.

112. Verhagen LM, Kapinga R, van Rosmalen-Nooijens KAWL. Factors underlying diagnostic delay in tuberculosis patients in a rural area in Tanzania: a qualitative approach. Infection. 2010;38:433–46.

113. Gosoniu GD, Ganapathy S, Kemp J, Auer C, Somma D, Karim F, et al. Gender and socio-cultural determinants of delay to diagnosis of TB in Bangladesh, India and Malawi. Int J Tuberc Lung Dis. 12:848–55.

114. Bam K, Bhatt LP, Thapa R, Dossajee HK, Angdembe MR. Illness perception of tuberculosis (TB) and health seeking practice among urban slum residents of Bangladesh: a qualitative study. BMC Research Notes [Internet]. 2014 [cited 2019 Nov 22];7. Available from:
https://bmcresnotes.biomedcentral.com/articles/10.1186/1756-0500-7-572

115. Sundaram N, James R, Sreynimol U, Linda P, Yoong J, Saly S, et al. A strong TB programme embedded in a developing primary healthcare system is a lose-lose situation: insights from patient and community perspectives in Cambodia. Health
Policy and Planning. 2017;32:ii32–42.

116. Purohit MR, Sharma M, Rosales-Klintz S, Lundborg CS. ‘Multiple-test’ approach to the laboratory diagnosis of tuberculosis -perception of medical doctors from Ujjain, India. BMC Infectious Diseases [Internet]. 2015 [cited 2019 Nov 22];15. Available from: http://bmcinfectdis.biomedcentral.com/articles/10.1186/s12879-015-1037-2

117. Mistry N, Rangan S, Dholakia Y, Lobo E, Shah S, Patil A. Durations and Delays in Care Seeking, Diagnosis and Treatment Initiation in Uncomplicated Pulmonary Tuberculosis Patients in Mumbai, India. Hozbor DF, editor. PLOS ONE. 2016;11:e0152287.

118. Kapoor SK, Raman AV, Sachdeva KS, Satyanarayana S. How Did the TB Patients Reach DOTS Services in Delhi? A Study of Patient Treatment Seeking Behavior. Neyrolles O, editor. PLoS ONE. 2012;7:e42458.

119. McArthur E, Bali S, Khan A. Socio-cultural and knowledge-based barriers to tuberculosis diagnosis for women in Bhopal, India. Indian Journal of Community Medicine. 2016;41:62.

120. Yellappa V, Lefèvre P, Battaglioli T, Devadasan N, Van der Stuyft P. Patients pathways to tuberculosis diagnosis and treatment in a fragmented health system: a qualitative study from a south Indian district. BMC Public Health [Internet]. 2017 [cited 2019 Nov 22];17. Available from: http://bmcpublichealth.biomedcentral.com/articles/10.1186/s12889-017-4627-7

121. Rintiswati N, Mahendradhata Y, Suharna, Susilawati, Purwanta, Subronto Y, et al. Journeys to tuberculosis treatment: a qualitative study of patients, families and communities in Jogjakarta, Indonesia. BMC Public Health [Internet]. 2009 [cited 2019 Nov 22];9. Available from: http://bmcpublichealth.biomedcentral.com/articles/10.1186/1471-2458-9-158
122. Dewi C, Barclay L, Passey M, Wilson S. Improving knowledge and behaviours related to the cause, transmission and prevention of Tuberculosis and early case detection: a descriptive study of community led Tuberculosis program in Flores, Indonesia. BMC Public Health [Internet]. 2016 [cited 2019 Nov 22];16. Available from: http://bmcpublichealth.biomedcentral.com/articles/10.1186/s12889-016-3448-4

123. Oshi DC, Oshi SN, Alobu IN, Ukwaja KN. Gender-related factors influencing women’s health seeking for tuberculosis care in Ebonyi State, Nigeria. Journal of Biosocial Science. 2016;48:37-50.

124. Hu A, Loo E, Winch PJ, Surkan PJ. Filipino Women’s Tuberculosis Care Seeking Experience in an Urban Poor Setting: A Socioecological Perspective. Health Care for Women International. 2012;33:29-44.

125. Cremers AL, Gerrets R, Kapata N, Kabika A, Birnie E, Klipstein-Grobusch K, et al. Tuberculosis patients’ pre-hospital delay and non-compliance with a longstanding DOT programme: a mixed methods study in urban Zambia. BMC Public Health [Internet]. 2016 [cited 2019 Nov 22];16. Available from: http://bmcpublichealth.biomedcentral.com/articles/10.1186/s12889-016-3771-9

126. Mavhu W, Dauya E, Bandason T, Munyati S, Cowan FM, Hart G, et al. Chronic cough and its association with TB-HIV co-infection: factors affecting help-seeking behaviour in Harare, Zimbabwe. Tropical Medicine & International Health [Internet]. 2010 [cited 2019 Nov 22]; Available from: http://doi.wiley.com/10.1111/j.1365-3156.2010.02493.x

127. Sa LD de, Barreto AJR, Nogueira J de A, Cunha FTS, Palha PF, Villa TCS. The discourse of health managers on aspects related to the delay in tuberculosis diagnosis. Revista da Escola de Enfermagem da USP. 2013;47:1165-71.

128. Furlan MCR, Silva RLST, Marcon SS. Factors associated with early and late diagnosis
of tuberculosis: a descriptive study. Online Braz J Nurs. 2014;13:62-71.

129. Andrade SLE de, Rodrigues DC de S, Barreto AJR, Oliveira AAV de, Santos ARB do N, Sa LD de. Tuberculosis among the elderly: health care system gateway and late diagnosis. Revista Enfermagem UERJ. 2016;24.

130. Oliveira AAV de, Sá LD de, Nogueira J de A, Andrade SLE de, Palha PF, Villa TCS. Diagnóstico da tuberculose em pessoas idosas: barreiras de acesso relacionadas aos serviços de saúde. Revista da Escola de Enfermagem da USP. 2013;47:145-51.

131. Strand MA, Duan X, Johnson R, Li Y. Social Determinants of Delayed Diagnosis of Tuberculosis in a North China Urban Setting. International Quarterly of Community Health Education. 2011;31:279-90.

132. Wei X, Chen J, Chen P, Newell JN, Li H, Sun C, et al. Barriers to TB care for rural-to-urban migrant TB patients in Shanghai: a qualitative study. Tropical Medicine & International Health. 2009;14:754-60.

133. Long Q, Li Y, Wang Y, Yue Y, Tang C, Tang S, et al. Barriers to accessing TB diagnosis for rural-to-urban migrants with chronic cough in Chongqing, China: A mixed methods study. BMC Health Services Research [Internet]. 2008 [cited 2019 Nov 22];8. Available from: http://bmchealthservres.biomedcentral.com/articles/10.1186/1472-6963-8-202

134. Hutchison C, Khan MS, Yoong J, Lin X, Coker RJ. Financial barriers and coping strategies: a qualitative study of accessing multidrug-resistant tuberculosis and tuberculosis care in Yunnan, China. BMC Public Health [Internet]. 2017 [cited 2019 Nov 22];17. Available from: http://bmcpublichealth.biomedcentral.com/articles/10.1186/s12889-017-4089-y

135. Kuznetsov VN, Grjibovski AM, Mariandyshev AO, Johansson E, Enarson DA, Bjune GA. Hopelessness as a basis for tuberculosis diagnostic delay in the Arkhangelsk region:
a grounded theory study. BMC Public Health [Internet]. 2013 [cited 2019 Nov 22];13.
Available from: http://bmcpublichealth.biomedcentral.com/articles/10.1186/1471-2458-13-712

136. Kuznetsov VN, Grjibovski AM, Mariandyshev AO, Johansson E, Bjune GA. Two vicious circles contributing to a diagnostic delay for tuberculosis patients in Arkhangelsk. Emerging Health Threats Journal. 2014;7:24909.

137. Adams LV, Basu D, Grande SW, Craig SR, Patridge MT, Panth N, et al. Barriers to tuberculosis care delivery among miners and their families in South Africa: an ethnographic study. The International Journal of Tuberculosis and Lung Disease. 2017;21:571–8.

138. Finnie RKC, Mabunda T, Khoza LB, van den Borne B, Selwyn B, Mullen PD. Pilot Study to Develop a Rapid Assessment of Tuberculosis Care-Seeking and Adherence Practices in Rural Limpopo Province, South Africa. International Quarterly of Community Health Education. 2011;31:3–19.

139. Skinner D, Claassens M. It's complicated: why do tuberculosis patients not initiate or stay adherent to treatment? A qualitative study from South Africa. BMC Infectious Diseases [Internet]. 2016 [cited 2019 Nov 22];16. Available from: http://bmcinfectdis.biomedcentral.com/articles/10.1186/s12879-016-2054-5

140. Kerrigan D, West N, Tudor C, Hanrahan CF, Lebina L, Msandiwa R, et al. Improving active case finding for tuberculosis in South Africa: informing innovative implementation approaches in the context of the Kharitode trial through formative research. Health Research Policy and Systems [Internet]. 2017 [cited 2019 Nov 22];15. Available from: http://health-policy-systems.biomedcentral.com/articles/10.1186/s12961-017-0206-8

141. Murray EJ, Bond VA, Marais BJ, Godfrey-Faussett P, Ayles HM, Beyers N. High levels of
vulnerability and anticipated stigma reduce the impetus for tuberculosis diagnosis in Cape Town, South Africa. Health Policy Plan. 2013;28:410–8.

142. Skordis-Worrall J, Hanson K, Mills A. Confusion, caring and tuberculosis diagnostic delay in Cape Town, South Africa. Int J Tuberc Lung Dis. 14:171-80.

143. Tschirhart N, Nosten F, Foster AM. Access to free or low-cost tuberculosis treatment for migrants and refugees along the Thailand-Myanmar border in Tak province, Thailand. International Journal for Equity in Health [Internet]. 2016 [cited 2019 Nov 22];15. Available from: http://equityhealthj.biomedcentral.com/articles/10.1186/s12939-016-0391-z

144. The World Bank. World Bank country and lending groups [Internet]. 2019 [cited 2019 Dec 29]. Available from: https://datahelpdesk.worldbank.org/knowledgebase/articles/906519-world-bank-country-and-lending-groups

145. Williams E, Cheng AC, Lane GP, Guy SD. Delays in presentation and diagnosis of pulmonary tuberculosis: a retrospective study of a tertiary health service in Western Melbourne, 2011–2014. Internal Medicine Journal. 2018;48:184-93.

146. Abbara A, Collin SM, Kon OM, Buell K, Sullivan A, Barrett J, et al. Time to diagnosis of tuberculosis is greater in older patients: a retrospective cohort review. ERJ Open Research. 2019;5:00228-2018.

147. Lönnroth K, Castro KG, Chakaya JM, Chauhan LS, Floyd K, Glaziou P, et al. Tuberculosis control and elimination 2010-50: cure, care, and social development. Lancet. 2010;375:1814-29.

148. Lönnroth K, Migliori GB, Abubakar I, D’Ambrosio L, de Vries G, Diel R, et al. Towards tuberculosis elimination: an action framework for low-incidence countries. Eur Respir J. 2015;45:928-52.
149. Pareek M, Greenaway C, Noori T, Munoz J, Zenner D. The impact of migration on tuberculosis epidemiology and control in high-income countries: a review. BMC Medicine. 2016;14:48.

150. Watts K. Is Australia Neglecting the Local Topography When It Comes to Catastrophic Costs and Ending Tuberculosis? Tropical Medicine and Infectious Disease. 2018;3:126.

151. Durrani H. Healthcare and healthcare systems: inspiring progress and future prospects. Mhealth [Internet]. 2016 [cited 2020 Jan 28];2. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5344175/

152. Olaru ID, Albert H, Zallet J, Werner U-E, Ahmed N, Rieder HL, et al. Impact of quality improvement in tuberculosis laboratories in low- and lower-middle-income countries: a systematic review. Int J Tuberc Lung Dis. 2018;22:309–20.

153. Sulis G, Centis R, Sotgiu G, D’Ambrosio L, Pontali E, Spanevello A, et al. Recent developments in the diagnosis and management of tuberculosis. npj Primary Care Respiratory Medicine [Internet]. 2016 [cited 2020 Jan 28];26. Available from: http://www.nature.com/articles/npjpcrm201678

154. Horton KC, MacPherson P, Houben RMGJ, White RG, Corbett EL. Sex Differences in Tuberculosis Burden and Notifications in Low- and Middle-Income Countries: A Systematic Review and Meta-analysis. PLoS Med [Internet]. 2016 [cited 2020 Jan 13];13. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5012571/

155. World Health Organization. World health statistics. Geneva: World Health Organization; 2010.

156. Wilsnack RW, Wilsnack SC, Kristjanson AF, Vogeltanz-Holm ND, Gmel G. Gender and alcohol consumption: patterns from the multinational genacis project. Addiction. 2009;104:1487-500.
157. Cazabon D, Alsdurf H, Satyanarayana S, Nathavitharana R, Subbaraman R, Daftary A, et al. Quality of tuberculosis care in high burden countries: the urgent need to address gaps in the care cascade. International Journal of Infectious Diseases. 2017;56:111–6.

158. World Health Organization. Addressing poverty in TB control: options for national TB control programs. Geneva: World Health Organization; 2005.

159. Wingfield T, Boccia D, Tovar M, Gavino A, Zevallos K, Montoya R, et al. Defining catastrophic costs and comparing their importance for adverse tuberculosis outcome with multi-drug resistance: a prospective cohort study, Peru. PLoS Med. 2014;11:e1001675.

160. Fuady A, Houweling TAJ, Mansyur M, Richardus JH. Catastrophic total costs in tuberculosis-affected households and their determinants since Indonesia’s implementation of universal health coverage. Infectious Diseases of Poverty. 2018;7:3.

161. Prasanna T, Jeyashree K, Chinnakali P, Bahurupi Y, Vasudevan K, Das M. Catastrophic costs of tuberculosis care: a mixed methods study from Puducherry, India. Glob Health Action [Internet]. 2018 [cited 2020 Jan 28];11. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6008578/

162. Tanimura T, Jaramillo E, Weil D, Raviglione M, Lonnroth K. Financial burden for tuberculosis patients in low- and middle-income countries: a systematic review. European Respiratory Journal. 2014;43:1763–75.

163. Verguet S, Riumallo-Herl C, Gomez GB, Menzies NA, Houben RMGJ, Sumner T, et al. Catastrophic costs potentially averted by tuberculosis control in India and South Africa: a modelling study. The Lancet Global Health. 2017;5:e1123-32.

164. National Center for Tuberculosis and Leprosy Control (CENAT). Second national
tuberculosis prevalence survey Cambodia. Phnom Penh: National Center for Tuberculosis and Leprosy Control; 2011.

165. World Health Organization. Systematic screening for active tuberculosis: an operational guide. Geneva: World Health Organization; 2015.

166. Esmail H, Dodd PJ, Houben RMGJ. Tuberculosis transmission during the subclinical period: could unrelated cough play a part? The Lancet Respiratory Medicine. 2018;6:244–6.

167. Houben RMGJ, Esmail H, Emery JC, Joslyn LR, McQuaid CF, Menzies NA, et al. Spotting the old foe—revisiting the case definition for TB. The Lancet Respiratory Medicine. 2019;7:199–201.

168. Bisallah CI, Rampal L, Lye M-S, Mohd Sidik S, Ibrahim N, Iliyasu Z, et al. Effectiveness of health education intervention in improving knowledge, attitude, and practices regarding Tuberculosis among HIV patients in General Hospital Minna, Nigeria – A randomized control trial. PLoS One [Internet]. 2018 [cited 2020 Jan 13];13. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5823396/

169. Jaramillo E. The impact of media-based health education on tuberculosis diagnosis in Cali, Colombia. Health Policy Plan. 2001;16:68–73.

170. Zwarenstein M, Fairall LR, Lombard C, Mayers P, Bheekie A, English RG, et al. Outreach education for integration of HIV/AIDS care, antiretroviral treatment, and tuberculosis care in primary care clinics in South Africa: PALSA PLUS pragmatic cluster randomised trial. BMJ [Internet]. 2011 [cited 2020 Jan 13];342. Available from: http://www.bmj.com/content/342/bmj.d2022

171. Gonzalez-Angulo Y, Geldenhuys H, Van As D, Buckerfield N, Shea J, Mahomed H, et al. Knowledge and acceptability of patient-specific infection control measures for pulmonary tuberculosis. American Journal of Infection Control. 2013;41:717–22.
Craig GM, Dafty A, Engel N, O’Driscoll S, Ioannaki A. Tuberculosis stigma as a social determinants of health: a systematic mapping review of research in low incidence countries. International Journal of Infectious Diseases. 2017;56:90-100.

Meershoek A, Zwerling A, Dafty A, Citro B, Smyth C, Lewis D, et al. TB stigma measurement guidance. Den Haag: KNCV Tuberculosis Foundation; 2018.

Sommerland N, Wouters E, Mitchell EMH, Ngicho M, Redwood L, Masquillier C, et al. Evidence-based interventions to reduce tuberculosis stigma: a systematic review. Int J Tuberc Lung Dis. 2017;21:S81-86.

Berendes S, Heywood P, Oliver S, Garner P. Quality of Private and Public Ambulatory Health Care in Low and Middle Income Countries: Systematic Review of Comparative Studies. Jenkins R, editor. PLoS Medicine. 2011;8:e1000433.

Teo AKJ, Ork C, Eng S, Sok N, Tuot S, Hsu LY, et al. Determinants of delayed diagnosis and treatment of tuberculosis in Cambodia: a mixed-methods study. Manuscript in preparation. 2020;

Johansson E, Winkvist A. Trust and transparency in human encounters in tuberculosis control: lessons learned from Vietnam. Qual Health Res. 2002;12:473–91.

Deber RB, Kraetschmer N, Irvine J. What role do patients wish to play in treatment decision making? Arch Intern Med. 1996;156:1414–20.

Riley RD, Higgins JPT, Deeks JJ. Interpretation of random effects meta-analyses. BMJ. 2011;342:d549.

Teo AKJ, Prem K, Tuot S, Ork C, Eng S, Pande T, et al. Mobilizing community networks for the early identification of tuberculosis and treatment initiation in Cambodia. Under review. 2020;

Daftary A, Frick M, Venkatesan N, Pai M. Fighting TB stigma: we need to apply lessons learnt from HIV activism. BMJ Global Health. 2017;2:e000515.
182. World Health Organization. Same-day diagnosis of tuberculosis by microscopy: policy statement. [Internet]. Geneva: World Health Organization; 2011 [cited 2020 Jan 29]. Available from: http://whqlibdoc.who.int/publications/2011/9789241501606_eng.pdf

183. Davis JL, Dowdy DW, den Boon S, Walter ND, Katamba A, Cattamanchi A. Test and Treat: A New Standard for Smear-Positive Tuberculosis. J Acquir Immune Defic Syndr. 2012;61:e6–8.

184. Lönnroth K, Glaziou P, Weil D, Floyd K, Uplekar M, Raviglione M. Beyond UHC: Monitoring Health and Social Protection Coverage in the Context of Tuberculosis Care and Prevention. PLoS Med [Internet]. 2014 [cited 2020 Jan 29];11. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4171373/

Figures

4878 records identified through database searches (PubMed, EMBASE, CINAHL, PsycInfo)	1189 duplicates removed
3689 records screened	3451 records removed after title and abstract screening
238 full-text articles retrieved and assessed for eligibility	114 records not included
124 articles included in the review	
36 studies included for qualitative synthesis	
86 studies included for quantitative/narrative synthesis	
2 studies included for both qualitative and quantitative/narrative syntheses	

Figure 1

PRISMA flow diagram for articles identification, screening, and selection
Figure 2

Geographical coverage of studies published between 2008–2018 included in this systematic review of delayed diagnosis and treatment of pulmonary tuberculosis. The 30 high tuberculosis (TB) burden countries which have been designated by the World Health Organization are outlined in black. Of them, countries with studies presenting various types of delay are categorized by the various colors. For example, countries shaded in green had studies presenting both patient and health system delay, and those with diagonal strips presented total delay too. Some of the high TB burden countries shaded in grey had no studies identified here, or lacked key outcome data. Note: The designations employed and the presentation of the material on this map do not imply the expression of any opinion whatsoever on the part of Research Square concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. This map has been provided by the authors.
Figure 3

Duration of delay of diagnosis and treatment of pulmonary tuberculosis by regions and types of delay reported in high tuberculosis burden countries. Countries were grouped by WHO region and categorized as (i) LIC/LMIC (low- or lower-middle income countries), or (ii) UMIC (upper-middle income countries) as designated by the World Bank in 2019. The median delay—patient (in blue), health system (in yellow), treatment (in pink)—were pooled by the countries’ economic status using Medians of Medians methods by McGrath (2019).

Duration of delay in days are presented in the log scale.
Association of sociodemographic and socioeconomic variables on delayed diagnosis and treatment of pulmonary tuberculosis by regions and types of delay reported in high tuberculosis burden countries. Countries were grouped by WHO region and categorized as (i) LIC/LMIC (low- or lower-middle income countries), or (ii) UMIC (upper-middle income countries) as designated by the World Bank in 2019. The association between sociodemographic and socioeconomic variables—sex, marital status, urbanicity—and patient (in blue), health system (in yellow), and treatment (in pink) delay were pooled by the countries’ economic status using Bayesian normal random-effects meta-analysis. Odd ratios are presented in the log scale.
Figure 5

Subgroup analysis of patient delay and selected covariates by sex of the individual.

Tamhane and colleagues (2012), represented as square points, and Mfinanga and colleagues (2008), represented as round points, provided sex-specific association of patient delay and three covariates; i.e., being unemployed, having to travel long distances or long travelling time, and having poor TB knowledge. The sex-specific odds ratio, in the log scale, for males are presented in hues of blues and for females in hues of reds.
Association of behavioral variables on patient delay of pulmonary tuberculosis by regions in high tuberculosis burden countries. Countries were grouped by WHO region and categorized as (i) LIC/LMIC (low- or lower-middle income countries), or (ii) UMIC (upper-middle income countries) as designated by the World Bank in 2019. The association between behavioral variables—smoking, alcohol consumption, stigma, TB knowledge—and patient delay were pooled by the countries’ economic status using Bayesian normal random-effects meta-analysis. Odd ratios are presented in the log scale.

Figure 6
Association of clinical variables on patient delay of pulmonary tuberculosis by regions in high tuberculosis burden countries. Countries were grouped by WHO region and categorized as (i) LIC/LMIC (low- or lower-middle income countries), or (ii) UMIC (upper-middle income countries) as designated by the World Bank in 2019. The association between clinical variables—cough, hemoptysis, weight loss, fever, chest pain, and night sweats—and patient delay were pooled by the countries’ economic status using Bayesian normal random-effects meta-analysis. Odd ratios are presented in the log scale.

Supplementary Files
This is a list of supplementary files associated with this preprint. Click to download.

PRISMA_Checklist_RR.doc
Supplementary Materials_RR.docx