Radiological dynamics and SITC-defined resistance types of advanced melanoma during anti-PD-1 monotherapy: an independent single-blind observational study on an international cohort

Xue Bai ,1,2 Michelle Kim,3 GyuIlna Kasumova,3 Lu Si,1 Bixia Tang ,1 Chuanliang Cui,1 Xiaoling Yang,1,4 Xiaoting Wei,1 Justine Cohen,2,5 Donald Lawrence,2 Christine Freedman,2 Riley Fadden,2 Krista Rubin,2 Tatyana Sharova,3 Dennie Frederick,3 Keith Flaherty,2 Ryan Sullivan,2 Jun Guo,1 Genevieve Boland 3

ABSTRACT
Background Although the Society for Immunotherapy of Cancer (SITC) Immunotherapy Resistance Taskforce recently defined primary and secondary resistance to anti-programmed cell death protein 1 (anti-PD-1) therapy, there is lack of real-world data regarding differences in these resistance subtypes with respect to radiological dynamics and clinical manifestations.

Methods We performed single-blind re-evaluations of radiological images by independent radiologists on a retrospectively assembled cohort of patients with advanced melanoma (n=254; median follow-up 30 months) receiving anti-PD-1 monotherapy at Massachusetts General Hospital and Peking University Cancer Hospital. Radiological characteristics and timing at multiple crucial time points were analyzed and correlated with each other and with survival. Primary and secondary resistance was defined as per the SITC Immunotherapy Resistance Taskforce definitions.

Results The most significant target lesion measurement change took place within the first 3 months after anti-PD-1 initiation. Patients with stable disease vs versus without tumor shrinkage at the initial evaluation exhibited distinct disease trajectory, as the rate of further upgrade to a partial or complete remission (CR/PR) was 44% and 0%, respectively. Eleven per cent of PR patients ultimately achieved a CR. In multivariate analyses, deeper response depth was independently associated with a more limited progression pattern, fewer involved organs, lower tumor burden, slower growth rate at disease progression (PD) (all p<0.001), and longer post-progression survival (PPS) (bivariate analysis, p=0.005). Compared with primary resistance, secondary resistance was associated with less widespread PD pattern, lower tumor burden and slower tumor growth (all p<0.001). Patients with secondary resistance were less likely to receive further systemic therapy (28% vs 57%, p<0.001) yet had significantly better PPS (HR 0.503, 95% CI 0.288 to 0.879, p=0.02).

Conclusions Radiological dynamics were variable, yet significantly correlated with survival outcomes. SITC-defined primary and secondary resistance are distinct clinical manifestations in patients with melanoma, suggesting the possibility of resistance-type-based therapeutic decision-making and clinical trial design, once further validated by future prospective studies.

INTRODUCTION
Anti-programmed cell death protein 1 (PD-1) monotherapy has greatly reshaped the systemic treatment landscape for advanced melanoma.1,2 Emerging data demonstrate that radiological data taken at different time points, for example, baseline, maximal response and disease progression (PD) were associated with survival outcomes of patients with melanoma under anti-PD-1 monotherapy.3-7 Specifically, patients who achieved complete remission (CR) had the most durable survival benefit.4,8,9 Therefore, in the absence of other biomarkers,10 radiological response measurement is the most reliable and available data guiding therapeutic decision-making. During routine clinical practice, clinicians seldom make decisions solely relying on instantaneous information but rather taking disease tempo into consideration.11 At every imaging time point, the physician and patient try to determine, given the tumor response and kinetics information at hand, if the patient will benefit from ongoing anti-PD-1 therapy, and if so to what degree. Currently, there is no literature addressing the...
radiographic evolution of patients who achieve a partial remission (PR) or stable disease (SD). Also lacking is a description of the kinetics of growth/regression across different crucial time points aside from previous reports specifically focusing on early-on-treatment tumor growth rate, particularly in a small subgroup of patients, that is, hyperprogression. Although consensus has been reached for clinical definitions of types of resistance to anti-PD-1 therapy largely based on accumulating translational research data, with the hope to facilitate future clinical trial design in the post anti-PD-1 scenario, clinical data are limited in describing the difference between primary and secondary resistance from tumor characteristics at progression and evolving trajectory thereafter. We hypothesize that a deep examination of radiological response dynamics, PD patterns and detailed clinical characterization of primary versus secondary resistance may provide further insight to address this clinically relevant issue and to facilitate therapeutic decision-making. To do so, we assembled a melanoma cohort from two independent melanoma centers in the USA and China and performed independent radiological re-evaluation by radiologists in a single-blind manner.

METHODS

Patients

All patients with advanced melanoma treated with anti-PD-1 monotherapy both within and outside a clinical trial setting with longitudinal radiological data available were identified at Massachusetts General Hospital (MGH) (n=164, anti-PD-1 monotherapy initiated between September 2009 and August 2018) and Peking University Cancer Hospital (PUCH) (n=90, between Mar 2016 and May 2018) with medical notes/clinical trial data extracted and reviewed. Radiological images were retrieved and re-evaluated in a single-blind manner using Response Evaluation Criteria in Solid Tumors version 1.1 (RECIST V.1.1) criteria by radiologists from MGH Tumor Imaging Metrics Core (TIMC) and PUCH Radiological Department, respectively. This study has been conducted in compliance with local Institutional Review Board policies.

Statistical analysis

Longitudinal dynamic changes in target lesion measurement were quantified as percent change from baseline. The date of anti-PD-1 monotherapy initiation was used as the index date for both progression-free survival (PFS) and overall survival (OS). Post-progression survival (PPS) was defined as the length of time from PD by RECIST V.1.1 to survival events. Nadir was defined as the time point when the minimum target lesion measurement was reached. Best response was defined according to RECIST V.1.1, taking both target and non-target lesions into account. Among patients who experienced PD, those who had PD or SD for ≤6 months as their best response were categorized into primary resistance; otherwise, PD was designated secondary. Categorical variables were summarized and described by frequency and percentage, while continuous variables by median and range. Correlation analysis was analyzed using Spearman correlation test. The two-way comparison of continuous variables was performed via Wilcoxon rank sum test (p values of multiple comparison adjusted using Bonferroni correction), multiple-way comparison via Kruskal-Willis test.

Survival data were analyzed using multivariate proportional hazard regression model adjusting for different covariates in a context-dependent way. Dichotomous and continuous outcomes were analyzed using multivariate logistic and linear regression models, respectively, adjusting for different covariates in a context-dependent way. All statistical tests were two-sided and p<0.05 was defined as of statistical significance. All analyses were performed using R V.3.6.0 (R packages tidyverse, survival, survminer and ggplot2).

Results

In total, 254 patients were identified with the median follow-up of 31 months. The median PFS and OS was 4 (95% CI 3 to 6) and 30 (95% CI 24 to 54) months, respectively. The dominant melanoma subtype of this cohort was cutaneous (n=150, 59%), followed by acral (n=37, 15%), melanoma of unknown primary (n=30, 12%), mucosal (n=25, 10%) and ocular melanomas (n=12, 5%). Ninety-six (38%) patients were stage M1c, and 41 (16%) stage M1d. Ninety-nine (39%) patients had prior systemic immunotherapy (including interleukin-2 and ipilimumab), 30 (12%) received prior targeted therapy (MAPK inhibitors). Detailed baseline demographic and clinical characteristics of the patients are listed in the online supplemental table 1.

Response dynamics

To explore the radiological response dynamics, we limited analysis to patients who had both baseline (with measurable target lesion(s)) and at least one radiological evaluation after anti-PD-1 monotherapy initiation (n=215) (figure 1), among whom 109 (51%) had two imaging time points available (including 96 (45%) who experienced disease progression at the initial 3-month evaluation), 106 (49%) had more than two scans to track further disease evolving trajectory.

Drastic tumor size change early during treatment

The greatest change in tumor size occurred within the first 3 months after anti-PD-1 monotherapy initiation (ie, at 3-month evaluation), and the discrepancy of tumor percent change from baseline was already significant between patients with CR (median −70%, range −100% to −23%), PR (median −37%, range −76% to −2%), and SD (median −1%, range −30% to 18%) as their best response (p<0.001) (figure 2A,B). By comparing the tumor percent change at 3 months with the maximal response depth (tumor % change at 3 months/maximal % regression)
for CR and PR patients, median proportion was 70% and 71%, respectively.

Clinical outcomes once patients reached CR/PR/SD

For CR patients (n=15, figure 1), median duration of CR was 21 months (95% CI 20 to not reached). Once patients achieved PR (n=72, yellow box in figure 1), median duration of response was 46 months (95% CI 24 to not reached); 8 (11%) experienced further tumor regression and achieved CR (median time from initial PR to CR was 6 months (range 3 to 21); median duration of the eventual CR in this subset of patients was not reached (95% CI 21 to not reached)).

For patients who initially achieved SD (n=56), median duration of disease control from the time of first response assessment scan was 6 months (95% CI 4 to 24). One (2%) patient experienced further tumor shrinkage and upgraded into CR 22 months later, 15 (27%) upgraded into PR after the median time of 4 months (range 2 to 34). All patients who upgraded into CR/PR had initial tumor shrinkage (median tumor percent change −20%, range −30% to −2%) when graded as SD. Whereas in SD patients who had tumor growth (n=17) or no change in target lesion size (n=3) when first graded SD, the median duration of response was 4 months (95% CI 2 to not reached) and 3 months (95% CI 2 to not reached), respectively; and only 3 out of 17 (18%) and 1 out of 3 (33%) had further tumor shrinkage (compared with baseline), respectively; none reached PR/CR by the date of last follow-up (3/4 already experienced PD). The 6-month PFS rate was 64% (95% CI 52% to 79%) for the entire SD subgroup, 72% (95% CI 58% to 89%) for patients with tumor shrinkage, and 42% (95% CI 23% to 76%) for patients without.

For patients who reached PR or SD at the initial 3-month radiological evaluation (n=112), 32 (29%) had tumor shrinkage greater than 40%, 50 (45%) between 10% and 40%, and 30 (27%) no greater than 10%, with the median PFS of 49 (95% CI 25 to not reached), 38 (95% CI 17 to not reached), and 7 months (95% CI 6 to 21), respectively (p<0.001).

Best response

Median tumor size percent change at the time of maximal tumor reduction was −5% (range −100% to 241%), and 116 (54%) patients had tumor regression to some degree. CR rate was 7% (95% CI 4% to 11%), objective response...
rate (ORR) 37% (95% CI 30% to 44%), and disease control rate (DCR) 43% (95% CI 37% to 50%).

Maximal response depth
Although there was no correlation between baseline tumor burden and response depth (Spearman rho 0.02, p=0.79), a significant difference was observed between baseline target lesion size and best response categories (p=0.002), specifically between patients who had CR (median 19 mm, range 10–49 mm) and all others. No between-group difference was observed between PR (median 66 mm, range 10–255 mm), SD (median 48 mm, range 10–187 mm) and PD groups (median 46 mm, range 10–305 mm) (online supplemental table 2, figure 2C). The largest diameter of a single lesion that achieved a CR was 43 mm (lymph node). Notably, high baseline tumor burden (>50 mm) precluded the possibility of CR in this cohort, but not PR, and low disease burden did not guarantee tumor response (online supplemental figure 1).

The time to the maximal tumor reduction varied greatly, with median of 3 months (range 0.4–37 months). The median time to reach CR and PR was 6 months (range 2–25) and 2.7 months (range 2–37), respectively.

Both tumor percent change from baseline and time to nadir as continuous variables were significantly correlated with both PFS (HR 1.014 and 0.830; 95% CI 1.011 to 1.017 and 0.788 to 0.874; both p<0.001; respectively) and OS (HR 1.009 and 0.897; 95% CI 1.004 to 1.013 and 0.851 to 0.946; both p<0.001, respectively) in multivariate analysis adjusted for known prognostic factors (online supplemental table 3). Greater response depth did not necessarily preclude PD (online supplemental figure 2).
We further explored correlates of the PD patterns (online supplemental tables 4–9). Multivariate analyses incorporating all covariates with definitive or marginal statistical significance in bivariate analyses (adjusted for baseline target lesion size), after controlling for baseline target lesion size, demonstrated that response depth was the strongest correlate with significant less widespread PD pattern, fewer involved organs, smaller target lesion size, as well as slower target lesion enlargement (online supplemental tables 5 and 7–9).

Primary versus secondary resistance

One hundred and twenty-three patients (74%) developed primary and 43 (26%) secondary resistance (table 1). Compared with secondary resistance, primary resistance was associated with higher proportion of broad progression (57% vs 30%, p<0.001), more involved organs (28% vs 2% with >=3 organs involved, p<0.001), more frequent LDH elevation (54% vs 28%, p=0.005), as well as more rapid tumor growth and LDH elevation (table 2). However, no baseline characteristics were significantly correlated with the resistance type (online supplemental table 10).

Post-progression survival (PPS) and its correlates

Ninety-two patients (55%) were deceased at the time of this analysis. Median PPS was 15 months (95% CI 9 to 20). In total, 58 patients with PD received regional treatment (either radiotherapy or surgery), 82 switched to other systemic treatments, including 19 with ipilimumab/nivolumab, 20 BRAFi/MEKi combo, 25 chemotherapynaangiogenesis agent(s), and 18 others (online supplemental table 11). BRAF V600 mutant patients treated with MAPKi (including some who had received it prior to anti-PD-1 therapy) had a median PFS of 5 months (95% CI 4 to 12) and an ORR of 50% (95% CI 26% to 74%), patients treated with anti-CTLA-4 monotherapy had a median PFS of 3 months (95% CI 2 to 13) and an ORR of 21% (95% CI 5% to 51%), whereas those treated with conventional chemotherapy typically had abysmal clinical outcomes with no responses noted and a median PFS of 1 month (95% CI 1 to 4) (online supplemental table 12).

All response parameters, PD patterns, and resistance type demonstrated strong associations with PPS (table 3). For response pattern, tumor percent change and longer PFS were significantly associated with longer PPS (HR 1.005 and 0.959, 95% CI 1.002 to 1.009 and 0.921 to 0.998, p=0.04 and 0.01, respectively). Patients with widespread PD pattern, more involved organs, larger total target lesion measurement, more rapid tumor growth, LDH elevation, and more rapid LDH increase at PD were all significantly associated with shorter PPS. Compared with primary resistance, patients with secondary resistance had borderline higher likelihood to receive local/regional treatment after anti-PD-1 failure (47% vs 31%, p=0.08), significantly lower likelihood to switch to other systemic treatments (28% vs 57%, p<0.001) (online supplemental

Table 1 Progression pattern overview (n=166)

Categorical metrics	Number (%)
Resistance type	
Primary resistance	123 (74)
Secondary resistance	43 (26)
Number of involved organ(s)	
1	80 (48)
2	50 (30)
>=3	36 (22)
General progression pattern	
Enlargement only	41 (25)
New lesion(s) only	42 (25)
Both	83 (50)
LDH at PD	
Normal	72 (43)
Elevated	79 (48)
NA	15 (9)
Continuous metrics	Median (range)
Target lesion size at PD (mm)*	49.0 (0 to 415.0)
Tumor enlargement dynamics†	
Percent change from last evaluation (%)	26.2 (−100.0 to 241.0)
Percent change from last evaluation (%) per month	10.0 (−28.6 to 109.1)
LDH elevation dynamics‡	
Percent change from last evaluation (%)	6.2 (−33.7 to 354.6)
Percent change from last evaluation (%) per month	7.9 (−49.7 to 409.2)

*Thirteen patients with no available target lesion size data at PD. †Eighteen patients with no available tumor enlargement dynamics data. ‡Twenty-four patients without LDH dynamics data at PD. LDH, lactate dehydrogenase; NA, not available; PD, disease progression.

Progression pattern

In total, 181 patients experienced PD, among whom 15 died without radiological data and thus were excluded from the PD pattern analysis (figure 1). Time of PD from anti-PD-1 initiation varied widely (median 3 months, range 0.3–49). In general, 86 (52%) patients had PD in more than one organ/system with enlarging or newly emerging lesions, 83 (50%) had widespread PD pattern (defined as with both enlargement of existing lesions and emergence of new lesions), and 79 (48%) had elevated LDH at PD. Median target lesion size was 49 mm, median target lesion size enlargement and LDH increase per month from the last pre-PD evaluation was 10% and 8%, respectively (table 1).
DISCUSSION

Frontline anti-PD-1 monotherapy is a standard therapy associated with significant clinical benefit. Imaging data at different time points have demonstrated constant correlations with survival outcomes. However, no significant correlation was found between baseline characteristics and PPS (online supplemental table 13), although BRAF mutation seemed to be a protective factor with marginal significance towards longer PPS (HR 0.630, 95% CI 0.368 to 1.080, p=0.09) with targeted therapy as a second-line regimen after PD from anti-PD-1 monotherapy for these subgroup of patients.

An important consideration for treatment selection prior to the initiation of frontline therapy is the kinetics of response of any potential therapy. We demonstrate here that most tumor volume change takes place within the first 3 months after initiation of anti-PD-1 monotherapy, comprising around 70% of total tumor reduction in PR/CR patients. This is in agreement with a study showing that tumor size change at month 3 is distinctly predictive of survival. Another important issue is how well the timing and degree of tumor regression are associated with long-term benefit. Here we show for the first time the clinical outcomes of patients based on when they achieve CR/PR/SD.

Table 2 Correlation between primary versus secondary resistance and progression pattern (n=166)

Progression pattern	Resistance type	General progression pattern	Primary resistance (n=123)	Secondary resistance (n=43)	P value
					<0.001
		Enlargement only	34 (28)	7 (16)	
		New lesion(s) only	19 (15)	23 (54)	
		Both	70 (57)	13 (30)	
		No of involved organ(s)			<0.001
		1	49 (40)	31 (72)	
		2	39 (32)	11 (26)	
		>=3	35 (28)	1 (2)	
		LDH at PD			0.005
		Normal	48 (39)	24 (56)	
		Elevated	67 (54)	12 (28)	
		NA	8 (7)	7 (16)	
		Target lesion size at PD (mm)*	64.0 (0 to 415.0)	29.2 (0 to 229.0)	<0.001
Tumor enlargement dynamics†			31.3 (−100.0 to 241.0)	3.3 (−71.4 to 120.0)	0.001
Percent change from last evaluation (%)			13.2 (−28.6 to 82.2)	0.8 (−14.6 to 109.1)	0.001
Percent change from last evaluation (%) per month			13.2 (−28.6 to 82.2)	0.8 (−14.6 to 109.1)	0.001
LDH elevation dynamics‡			12.3 (−33.7 to 354.6)	2.1 (−25.4 to 42.6)	0.003
Percent change from last evaluation (%)			13.3 (−49.7 to 409.2)	2.4 (−36.3 to 41.7)	0.003
Percent change from last evaluation (%) per month			13.3 (−49.7 to 409.2)	2.4 (−36.3 to 41.7)	0.003

*Thirteen patients with no available target lesion size data at PD.
†Eighteen patients with no available tumor enlargement dynamics data.
‡Twenty-four patients without LDH dynamics data at PD.
LDH, lactate dehydrogenase; NA, not available; PD, disease progression.
experienced PR first, compared with those who achieved CR at the first evaluation, seemed to have a numerically longer duration of response. Given the small number of patients, it is possible that this difference may be an artifact. However, there are data showing that CR patients treated for more than 6 months had a lower relapse risk compared with those treated for a shorter duration. Presuming those treated for less than 6 months were more likely to have a CR on first evaluation, it is possible that these two sets of data are corroborating. Notably, our study demonstrated that the SD category is heterogeneous with distinct evolving patterns between patients with versus without tumor shrinkage at the initial radiological evaluation, for example, no patients without tumor shrinkage upgraded into CR/PR, whereas 44% of patients with tumor shrinkage did.

While tumor size variation has been well appreciated to be associated with outcomes when evaluated at baseline and nadir, PD pattern has generally and arbitrarily categorized as oligo and systemic. We depicted PD patterns with more granularity by viewing them as a continuous heterogeneous spectrum, characterized by different types of progression (enlargement vs new lesion vs both), numbers of involved organs, target lesion size, and tumor growth rate. By doing this, we revealed a high degree of heterogeneity. As opposed to a stochastic appearance of tumor size at different static time points, we observed that response depth, timing, PD pattern, and survival outcomes were highly correlated after adjustment for baseline tumor burden. In terms of target lesion size, the correlation between baseline measurement and response depth is complicated. Consistent with a previous finding, we did not observe a simple linear correlation between baseline tumor measurements and response depth. However, significantly lower tumor burden was observed in patients with CR compared with all others. This may reflect the fact that smaller tumor burden at baseline simply requires less tumor size reduction to reach CR. Additionally, we speculated that some long-lasting partial responses may indeed be complete pathologically with residual scarring/fibrosis, a phenomenon that has been observed in the neoadjuvant setting, but as these lesions are rarely biopsied, we are left, by convention, to calling these responses partial. However, while larger baseline tumor size precluded CR, smaller tumor size did not guarantee response. Additionally, no discrepancy is observed between PR, SD, and PD patients, consistent with an observation in ipilimumab/nivolumab-treated melanoma cohort. Noticeably, in different multivariate analysis using different metrics of PD pattern, response depth stayed constantly the most significantly correlated factor among different covariates, in concert with the previous observation that PD after objective response was associated with excellent clinical outcomes.

Finally, we evaluated the resistance subtype (primary vs secondary) based on a previously reported resistance definition that emerged from the SITC Immunotherapy Resistance Taskforce. Of note, patients included in this study are heterogeneous, 39% had prior immunotherapy, 12% had prior targeted therapy; 16% had brain metastasis;
and 29% were with acral, mucosal, or ocular melanomas which are known to be less responsive to immunotherapy. Therefore, the proportion of primary resistance observed in this cohort may be higher than in the general melanoma population with anti-PD-1 monotherapy as the first-line treatment. With those caveats, we demonstrate that primary resistance is correlated with more rapid progression tempo, that is, broader PD pattern, more involved organs, higher LDH level, and larger target lesion measurement at progression. Although patients with primary resistance were treated more intensely (exemplified by lower proportion of local/regional therapy and higher rate of systemic treatment), they had poorer PPS compared with those with secondary resistance. This may relate to the fact that patients who developed secondary resistance were more likely to have oligoprogession, thus making those patients more amenable to local/regional treatment. This suggests that anti-PD-1 therapy in these patients changed the trajectory of these patients’ disease, which is obvious since these patients had a response or prolonged SD prior to progression, and that the biology of secondary resistance is distinct from primary resistance.

As such, the distinct clinical manifestations of these two resistance types implicate that specific therapeutic strategies and trial enrollment recommendations should be applied accordingly.

The analysis of different systemic therapy in the post-PD-1 setting is instructive. Although no direct comparison between first line and post-PD-1 setting could be made for MAPKis and CTLA-4 monotherapy, they both demonstrated reasonable antitumor effect, similar to prior reports. We also report that chemotherapy in the post-PD-1 scenario at these institutions was futile and is associated with similar lack of benefit as seen prior to the dawn of immunotherapy and targeted therapy.

We acknowledge that the major limitation of this study resides in its retrospective nature. Although we performed independent radiological re-evaluations strictly following RECIST V.1.1 in a single-blind manner, potential selection and measurement biases cannot be entirely eliminated. Thus, further validation is required.

In summary, by describing response and progression dynamics in a large cohort of patients with advanced melanoma treated at two institutions, we provide a rationale for radiological parameter-based therapeutic decision-making by showing the drastic tumor volume change shortly after anti-PD-1 initiation and the strong correlation between response dynamics, progression patterns, and survival. We present for the first time the progression patterns of both primary and secondary resistance, which may provide data from which decisions regarding patient eligibility for clinical trials in the post-PD-1 scenario can be based.
REFERENCES

1. Robert C, Schachter J, Long GV, et al. Pembrolizumab versus nivolumab in advanced melanoma. N Engl J Med 2015;372:2521–32.

2. Robert C, Long GV, Brady B, et al. Nivolumab in previously untreated melanoma without BRAF mutation. N Engl J Med 2015;372:320–30.

3. Joseph RW, Elsassai-Schaap J, Kefford R, et al. Baseline tumor size is an independent prognostic factor for overall survival in patients with melanoma treated with pembrolizumab. Clin Cancer Res 2018;24:4960–7.

4. Betof Warner A, Palmer JS, Shoushtari AN, et al. Long-Term outcomes and responses to retreatment in patients with melanoma treated with PD-1 blockade. J Clin Oncol 2020;38:1655–63.

5. Osgood C, Mulkey F, Mishra-Kalyani PS, et al. FDA analysis of depth of response (Dpr) and survival across 10 randomized controlled trials in patients with previously untreated unresectable or metastatic melanoma (Umm) by therapy type. J Clin Oncol 2019;37:9508.

6. Patrinely JR, Baker LX, Davis EJ, et al. Outcomes after progression of disease with anti-PD-1/PD-L1 therapy for patients with advanced melanoma. Cancer 2020;126:3448–55.

7. Wang M, Chen C, Jemielita T, et al. Are tumor size changes predictive of survival for checkpoint blockade based immunotherapy in metastatic melanoma? J Immunother Cancer 2019;7:39.

8. Jansen YJL, Rozeman EA, Mason R, et al. Discontinuation of anti-PD-1 antibody therapy in the absence of disease progression or treatment limiting toxicity: clinical outcomes in advanced melanoma. Ann Oncol 2019;30:1154–61.

9. Gauci M-L, Laney E, Champiat S, et al. Long-Term survival in patients responding to anti-PD-1/PD-L1 therapy and disease outcome upon treatment discontinuation. Clin Cancer Res 2019;25:946–50.

10. Havel JJ, Chowell D, Chan TA. The evolving landscape of biomarkers for checkpoint inhibitor immunotherapy. Nat Rev Cancer 2019;19:133–50.

11. Grob JJ, Long GV, Schadendorf D, et al. Disease kinetics for decision-making in advanced melanoma: a call for scenario-driven strategy trials. Lancet Oncol 2015;16:e522–6.

12. Champiat S, Dercle L, Ammari S, et al. Hyperprogressive disease is a new pattern of progression in cancer patients treated by anti-PD-1/PD-L1. Clin Cancer Res 2017;23:1920–8.

13. Champiat S, Ferrara R, Massard C, et al. Hyperprogressive disease: recognizing a novel pattern to improve patient management. Nat Rev Clin Oncol 2018;15:748–62.

14. Kluger HM, Tawbi HA, Ascierto ML, et al. Defining tumor resistance to PD-1 pathway blockade: recommendations from the first meeting of the SITC immunotherapy resistance Taskforce. J Immunother Cancer 2020;8:e00398.

15. Wang DY, Erogul Z, Ozgun A, et al. Clinical features of acquired resistance to anti-PD-1 therapy in advanced melanoma. Cancer Immunol Res 2017;5:357–62.

16. Osorio JC, Arbour KC, Le DT, et al. Lesion-level response dynamics to programmed cell death protein (PD-1) blockade. J Clin Oncol 2019;37:3546–55.

17. Amaria RN, Reddy SM, Tawbi HA, et al. Neoadjuvant immune checkpoint blockade in high-risk resectable melanoma. Nat Med 2018;24:1649–54.

18. Pires da Silva I, Lo S, Quek C, et al. Site-Specific response patterns, pseudoprogression, and acquired resistance in patients with melanoma treated with ipilimumab combined with anti-PD-1 therapy. Cancer 2020;126:86–97.

19. Zimmer L, Apuri S, Erogul Z, et al. Ipilimumab alone or in combination with nivolumab after progression on anti-PD-1 therapy in advanced melanoma. Eur J Cancer 2017;75:47–55.

20. Saab KR, Mooradian MJ, Wang DY, et al. Tolerance and efficacy of BRAF plus MEK inhibition in patients with melanoma who previously have received programmed cell death protein 1-based therapy. Cancer 2019;125:884–91.

21. Pires Da Silva I, Ahmed T, Lo S, et al. Ipilimumab (IPI) alone or in combination with anti-PD-1 (IPI+PD1) in patients (PTS) with metastatic melanoma (MM) resistant to PD1 monotherapy. J Clin Oncol 2020;38:100053.

22. Korn EL, Liu P-Y, Lee SJ, et al. Meta-Analysis of phase II cooperative group trials in metastatic stage IV melanoma to determine progression-free and overall survival benchmarks for future phase II trials. J Clin Oncol 2008;26:527–34.
Table S1. Baseline characteristics (n=254)

Characteristics	Number (%)
Median age (range) (year)	62 (20-91)
Sex	
Female	99 (39)
Male	155 (61)
M stage	
M1a	51 (20)
M1b	57 (22)
M1c	96 (38)
M1d	41 (16)
M0 (unresectable stage III)	9 (4)
Melanoma subtype	
Cutaneous	150 (59)
Acral	37 (15)
Mucosal	25 (10)
Ocular	12 (5)
Unknown primary	30 (12)
LDH	
Normal	135 (53)
Elevated	108 (43)
NA	11 (4)
Mutation	
BRAF	68 (27)
NRAS	46 (18)
KIT	11 (4)
Triple wild type*	100 (39)
NA	29 (11)
Prior treatment	
I.O. (including IL-2 & ipilimumab)	99 (39)
Targeted therapy (MAPKi)	30 (12)
Chemo	61 (24)
Other targeted therapy (KITi, mTORi, etc.)	14 (6)
None	95 (37)
Anti-PD-1 antibody	
Pembrolizumab	198 (78)
Nivolumab	20 (8)
Camrelizumab	36 (14)

NA, not available. *Wild type for BRAF, NRAS and KIT genes.
Best Response	CR	PR	SD	PD
CR	NA	/	/	/
PR	<.001	NA	/	/
SD	.008	>.99	NA	/
PD	.004	>.99	>.99	NA

*Multiple comparison adjusted using Bonferroni correction. NA, not applicable. /, redundant information omitted.
Table S3. Radiological dynamics and its correlation with survival outcomes*
(multivariate analysis, n=215)

Survival type	Variable type	HR (95% CI)	P value
PFS	Tumor percent change	1.014 (1.011 to 1.017)	<.001
	Time to maximal tumor reduction	0.830 (0.788 to 0.874)	<.001
OS	Tumor percent change	1.009 (1.004 to 1.013)	<.001
	Time to maximal tumor reduction	0.897 (0.851 to 0.946)	<.001

*Response depth and time to maximal tumor reduction were both treated as continuous variables and incorporated in the same model, interpreted as HR per 1 percent increase in the change of the sum of target lesions and per 1-month increase for time to maximum decrease or minimum increase of tumor before or at PD compared with baseline measurement. Other covariates included ethnicity (Caucasian vs. non-Caucasian), melanoma subtype (cutaneous, acral, mucosal, ocular, and melanoma of unknown primary), M stage (M0, M1a, M1b, M1c, and M1d), baseline LDH level (elevated vs. normal), previous systemic treatment (yes vs. no), baseline target lesion size (continuous variable).
Baseline Characteristics	General progression pattern	OR (95% CI)	P value
Age 5		0.977 (0.955 to 0.999)	.04
Sex $^#$		0.722 (0.380 to 1.371)	.32
Ethnicity $^+$		0.719 (0.382 to 1.355)	.31
Subtype $^&$			
Acral		1.208 (0.527 to 2.767)	.66
Mucosal		4.213 (1.268 to 13.999)	.02
Ocular		0.965 (0.240 to 3.879)	.96
UP		0.745 (0.276 to 2.011)	.56
Previous systemic treatment $^@$		1.921 (0.943 to 3.913)	.07
Baseline LDH $^\hat{\circ}$		1.549 (0.770 to 3.115)	.22
Mutation $^\`$			
BRAF		1.182 (0.532 to 2.626)	.68
NRAS		0.491 (0.176 to 1.371)	.18
C-KIT		2.356 (0.533 to 10.406)	.26
M stage $^\%$			
M1b		1.314	.58
M1c		0.766	.55
M1d		0.956	.93
M0 (unresectable)		NA	.99
Number of organ involved 5		1.024	.88

Response pattern			
Tumor percent change (%) 5		1.018 (1.010 to 1.026)	<.001
Time to nadir (months) 5		0.946 (0.871 to 1.028)	.19
PFS 5		0.943 (0.894 to 0.993)	.03

*Logistic regression model, adjusted for target lesion size at baseline. Dichotomous outcome, defined as both new lesion(s) & enlargement vs. new lesion(s) or enlargement only, with the latter as the reference group. 5As continuous variables. $^\$Female as the reference group. $^\&$Non-Caucasian as the reference group. $^\+$Cutaneous melanoma as the reference. $^\@$Without previous systemic treatment as the reference group. $^\`$Normal baseline LDH as the reference. $^\`$Others as the reference group. $^\%$M1a as the reference group.
Table S5. Baseline characteristics, response pattern and their correlations with general progression pattern
(multivariate analysis, n=166)

Baseline characteristics	General progression pattern* Coefficient (95% CI)	P value1
Baseline characteristics		
Age	0.983 (0.957 to 1.010)	.21
Subtype		
Acral	0.470 (0.171 to 1.295)	.14
Mucosal	8.103 (1.819 to 36.092)	.006
Ocular	0.968 (0.222 to 4.225)	.96
UP	0.627 (0.199 to 1.972)	.42
Previous systemic treatment	2.988 (1.174 to 7.605)	.02
Response pattern		
Tumor percent change (%)	1.020 (1.009 to 1.030)	<.001
PFS	0.994 (0.934 to 1.059)	.86

* Dichotomous outcome, defined as both new lesion(s) & enlargement vs. new lesion(s) or enlargement only, with the latter as the reference group. 1 All variates with definitive or marginal statistical significance in bivariate analyses (Table S4) and target lesion measurement at baseline incorporated. 2 As a continuous variable. 3Cutaneous melanoma as the reference.
Table S6. Baseline characteristics, response pattern and their correlation with progression pattern (continuous outcome) (bivariate analysis, n=166)

	Number of culprit organ	Target lesion size	Enlargement dynamics
Baseline Characteristics			
Age	-0.013	-0.460	-0.203
	(-0.026 to -0.001)	(-0.849 to -0.071)	(-0.405 to -0.002)
Sex	-0.096	0.259	-6.122
	(-0.467 to 0.275)	(-11.408 to 11.927)	(-12.149 to 0.096)
Ethnicity	-0.473	-23.668	-12.078
	(-0.832 to -0.115)	(-34.487 to -12.848)	(-17.752 to 6.404)
Subtype			
Acral	0.172	23.556	11.722
	(-0.299 to 0.644)	(8.937 to 38.175)	(4.229 to 19.214)
Mucosal	0.686	6.050	12.216
	(0.100 to 1.273)	(-12.514 to 24.614)	(2.713 to 21.720)
Ocular	-0.287	11.964	3.751
	(-1.075 to 0.501)	(-12.385 to 36.315)	(-8.699 to 16.200)
UP	-0.276	10.202	1.568
	(-0.828 to 0.277)	(-6.899 to 27.303)	(-7.552 to 10.689)
Previous systemic treatment	0.246	9.565	4.925
	(-0.155 to 0.648)	(-2.902 to 22.032)	(-1.626 to 11.477)
Baseline LDH	0.281	2.501	3.074
	(-0.118 to 0.681)	(-9.898 to 14.900)	(-3.333 to 9.481)
Mutation			
BRAF	-0.013	-9.591	-7.638
	(-0.478 to 0.452)	(-23.817 to 4.635)	(-14.793 to -0.483)
NRAS	-0.096	-14.624	-10.292
	(-0.658 to 0.466)	(-31.938 to 2.691)	(-19.169 to 1.414)
C-KIT	0.330	5.434	13.409
	(-0.490 to 1.150)	(-19.382 to 30.250)	(1.102 to 25.716)
M stage			
M1b	0.706	3.329	3.009
	(0.158 to 1.256)	(-14.210 to 20.869)	(-12.194 to 6.177)
M1c	0.456	-8.409	4.064
	(-0.031 to 0.942)	(-23.808 to 6.989)	(-12.079 to

BMJ Publishing Group Limited (BMJ) disclaims all liability and responsibility arising from any reliance placed on this supplemental material which has been supplied by the author(s)

J Immunother Cancer

doi: 10.1136/jitc-2020-002092

2021; J Immunother Cancer, et al. Bai X
Response pattern	Tumor percent change (%)	Time to nadir (months)	PFS (month)
Number of organ involved ⁶	0.277 (0.096 to 0.459)	-2.737 (-5.727 to 0.254)	-0.440 (-1.127 to 0.247)

[~] Linear regression model, adjusted for target lesion size at baseline. ⁵ As a continuous variable. [#] Female as the reference group. ⁺ Non-Caucasian as the reference group. [&] Cutaneous melanoma as the reference. [@] Without previous systemic treatment as the reference group. ^ˆ Normal baseline LDH as the reference. [`] Others as the reference group. [％] M1a as the reference group.
Table S7. Baseline characteristics, response pattern and their correlation with number of culprit organ at disease progression (multivariate analysis, n=166)

Number of culprit organ	Coefficient (95% CI)	P value
Baseline Characteristics		
Age§	-0.014 (-0.027 to -0.001)	.03
Ethnicity*	-0.012 (-5.008 to 0.477)	.96
Subtype§		
Acral	-0.192 (-7.286 to 0.345)	.48
Mucosal	0.723 (0.130 to 1.316)	.02
Ocular	-0.231 (-0.970 to 0.507)	.54
UP	-0.293 (-0.800 to 0.214)	.26
M stage%		
M1b	0.399 (-0.106 to 0.904)	.12
M1c	-0.020 (-0.539 to 0.500)	.94
M1d	-0.440 (-1.089 to 0.208)	.18
M0 (unresectable)	-0.292 (-1.744 to 1.160)	.69
Number of organ involved§	0.387 (0.188 to 0.586)	<.001

Response pattern

Tumor percent change (%)§	0.006 (0.003 to 0.010)	.001
Time to nadir (months)§	0.017 (-0.058 to 0.093)	.65
PFS (month)§	-0.017 (-0.062 to 0.028)	.45

*Linear regression model, incorporating all variables with statistical significance or marginal significance in bivariate analyses (Table S6) and also adjusted for target lesion size at baseline. §As a continuous variable. *Non-Caucasian as the reference group. §Cutaneous melanoma as the reference. ¶M1a as the reference group.
Table S8. Baseline characteristics, response pattern and their correlation with target lesion size at disease progression (multivariate analysis, n=166)

Baseline Characteristics	Target lesion size	Coefficient (95% CI)	P value
Age5	-0.002 (-0.302 to 0.298)	.99	
Ethnicity$^+$	-12.587 (-23.550 to -1.624)	.02	
Subtype$^+$			
Acral	-0.431 (-12.953 to 12.091)	.95	
Mucosal	-3.094 (-16.911 to 10.723)	.66	
Ocular	7.425 (-9.421 to 24.271)	.39	
UP	10.055 (-1.940 to 22.050)	.10	
Response pattern			
Tumor percent change (%)5	0.441 (0.356 to 0.526)	<.001	
Time to nadir (months)5	-1.869 (-3.654 to -0.084)	.04	
PFS (month)5	0.708 (-0.353 to 1.769)	.19	

Linear regression model, incorporating all variables with statistical significance or marginal significance in bivariate analyses (Table S6) and also adjusted for target lesion size at baseline. 5As a continuous variable. $^+$Non-Caucasian as the reference group. $^+$Cutaneous melanoma as the reference. $^+$M1a as the reference group.
Table S9. Baseline characteristics, response pattern and their correlation with enlargement dynamics (multivariate analysis, n=166)

Baseline Characteristics	Coefficient (95% CI)	P value
Enlargement dynamics		
Age5	-0.032 (-0.217 to 0.153)	.73
Sex$^#$	-1.560 (-6.924 to 3.804)	.57
Ethnicity$^+$	-4.706 (-11.750 to 2.338)	.19
Subtype$^&$		
Acral	-2.301 (-10.249 to 5.647)	.57
Mucosal	4.970 (-3.864 to 13.804)	.27
Ocular	-2.310 (-13.759 to 9.139)	.69
UP	-1.487 (-8.737 to 5.762)	.69
Mutation$^\circ$		
BRAF	-0.897 (-7.707 to 5.912)	.79
NRAS	-2.077 (-10.059 to 5.905)	.61
C-KIT	5.611 (-4.599 to 15.821)	.28
M stage$^\%$		
M1b	-0.795 (-7.960 to 6.369)	.83
M1c	-0.640 (-7.842 to 6.563)	.86
M1d	-4.382 (-13.647 to 4.882)	.35
M0 (unresectable)	-8.539 (-28.868 to 11.790)	.41
Number of organ involved5	-0.862 (-3.583 to 1.858)	.53
Response pattern		
Tumor percent change (%)5	0.231 (0.180 to 0.282)	<.001
PFS (month)5	0.418 (0.069 to 0.766)	.02

$^\sim$Linear regression model, incorporating all variables with statistical significance or marginal significance in bivariate analyses (Table S6) and also adjusted for target lesion size at baseline. 5As a continuous variable. $^#$Female as the reference group. $^+$Non-Caucasian as the reference group. $^\&$Cutaneous melanoma as the reference. $^\circ$Others as the reference group. $^\%$M1a as the reference group.
Table S10. Baseline characteristics and the correlation with primary vs. secondary resistance* (dichotomous outcome) (bivariate analysis, n=166)

Baseline Characteristics	Primary resistance OR (95% CI)	P value
Baseline Characteristics		
Age	0.985 (0.960 to 1.011)	.26
Sex	1.424 (0.688 to 2.948)	.34
Ethnicity	1.080 (0.525 to 2.221)	.84
Subtype		
Acral	1.011 (0.389 to 2.630)	.98
Mucosal	0.888 (0.280 to 2.821)	.84
Ocular	2.711 (0.318 to 23.132)	.36
UP	0.665 (0.233 to 1.901)	.45
Previous systemic treatment		
0.518 (0.217 to 1.239)	.14	
Baseline LDH	1.566 (0.693 to 3.537)	.28
Mutation		
BRAF	1.011 (0.411 to 2.487)	.98
NRAS	0.696 (0.247 to 1.959)	.49
C-KIT	0.704 (0.156 to 3.178)	.65
M stage		
M1b	1.275 (0.447 to 3.639)	.65
M1c	1.670 (0.645 to 4.326)	.29
M1d	3.653 (0.886 to 15.054)	.07
M0 (unresectable)	0.522 (0.030 to 9.109)	.66
Number of organ involved		
1.374 (0.921 to 2.051)	.12	

*Logistic regression model, adjusted for target lesion size at baseline. Dichotomous outcome, defined as with prior tumor shrinkage or not at the time point of maximal response, with the latter as the reference group. As continuous variables. Female as the reference group. Non-Caucasian as the reference group. Cutaneous melanoma as the reference. Without previous systemic treatment as the reference group. Normal baseline LDH as the reference. Others as the reference group. M1a as the reference group.
Table S11. Next treatment after anti-PD-1 monotherapy failure (n=166)

Treatment after anti-PD-1 monotherapy failure	Number (%)	Resistance type	
	Total	Primary (n=123)	Secondary (n=43)
Local/Regional	58 (35)	38 (31)	20 (47)
Surgery	27 (16)	15 (12)	12 (28)
Radiotherapy	31 (19)	23 (19)	8 (19)
Next systemic treatment	82 (49)	70 (57)	12 (28)
Immunotherapy	28 (17)	25 (20)	3 (7)
Anti-CTLA-4 monotherapy	15 (9)	14 (11)	1 (2)
Anti-CTLA-4/anti-PD-1 combo	4 (2)	3 (2)	1 (2)
Other anti-CTLA-4 combo	1 (1)	1 (1)	0
Other anti-PD-1/PD-L1 combo	6 (4)	6 (5)	0
Others	2 (1)	1 (1)	1 (2)
MAPK pathway inhibitor	22 (13)	19 (15)	3 (7)
BRAFi/MEKi	20 (12)	17 (14)	3 (7)
BRAFi monotherapy	1 (1)	1 (1)	0
Other combo	1 (1)	1 (1)	0
Chemotherapy +/- anti-angiogenesis agent	25 (15)	20 (16)	5 (12)
Others	7 (4)	6 (5)	1 (2)
Table S12. Effectiveness of anti-CTLA-4 monotherapy, anti-CTLA-4/anti-PD-1 combo, BRAFi/MEKi combo, and chemotherapy after failure of anti-PD-1 monotherapy (n=87)

Treatment	PFS (month) (95% CI)	CR	PR	SD	PD
Anti-CTLA-4 monotherapy (for PFS, n=15; for response, n=14)	3 (2 to 13)	1 (7)	2 (14)	3 (21)	8 (57)
Anti-CTLA-4/Anti-PD-1 combo (for PFS, n=4; for response, n=3)	2 (0.3 to NR)	0	1 (33)	0	2 (67)
BRAFi/MEKi combo(for PFS, n=20; for response, n=18)	5 (4 to 12)	1 (6)	8 (44)	6 (33)	3 (17)
Rechallenge (for PFS, n=8; for response, n=7)	4 (3 to NR)	1 (14)	1 (14)	3 (43)	2 (29)
Naïve (for PFS, n=12; for response, n=11)	6 (4 to NR)	0	7 (64)	3 (27)	1 (9)
Chemo (for PFS, n=20; for response, n=21)	1 (1 to 4)	0	0	8 (38)	13 (62)

NR, not reached.
Table S13. Baseline characteristics and its correlation with PPS (bivariate analysis, n=166)

Baseline Characteristics	PPS (months)	HR (95% CI)	P value
Age		1.008 (0.993 to 1.022)	.30
Sex		1.014 (0.658 to 1.563)	.95
Ethnicity		0.846 (0.550 to 1.302)	.45
Subtype			
Acral		0.879 (0.502 to 1.540)	.65
Mucosal		1.247 (0.609 to 2.553)	.55
Ocular		1.208 (0.512 to 2.848)	.67
UP		0.577 (0.281 to 1.182)	.13
Previous systemic treatment	1.072 (0.659 to 1.743)	.78	
Mutation			
BRAF		0.630 (0.368 to 1.080)	.09
NRAS		0.768 (0.399 to 1.475)	.43
C-KIT		0.598 (0.231 to 1.552)	.29
M stage			
M1b		1.357 (0.691 to 2.663)	.38
M1c		1.067 (0.580 to 1.961)	.84
M1d		0.954 (0.456 to 1.996)	.90
M0 (unresectable)		1.097 (0.145 to 8.310)	.93
Number of organ involved	1.013 (0.820 to 1.253)	.90	

*Cox proportional hazards regression model, adjusted for target lesion measurement at baseline. †As a continuous variable. ‡Female as the reference group. §Non-Caucasian as the reference group. ¶Cutaneous melanoma as the reference. ‡Without previous systemic treatment as the reference group. ¤Others as the reference group. ¦M1a as the reference group.
Fig S1. Waterfall of baseline total tumor measurement and best response (n=215). Only patients with low baseline tumor burden (≤50mm) experienced CR in this cohort, but this rule did not apply to PR. Meanwhile, low disease burden did not guarantee tumor response, as multiple patients had PD as their best response even though with low tumor burden at baseline.
Fig S2. **PD distribution across response depth (n=215).** The degree of response depth was correlated with PD, as patients with larger response depth were less likely to experience PD. However, even after reaching CR, a subgroup of patients experienced PD eventually.