Cocoa butter-like lipid production ability of non-oleaginous and oleaginous yeasts under nitrogen-limited culture conditions

Yongjun Wei1,2 · Verena Siewers1,2 · Jens Nielsen1,2,3

Abstract Cocoa butter (CB) extracted from cocoa beans is the main raw material for chocolate production. However, growing chocolate demands and limited CB production has resulted in a shortage of CB supply. CB is mainly composed of three different kinds of triacylglycerols (TAGs), POP (C16:0–C18:1–C16:0), POS (C16:0–C18:1–C18:0), and SOS (C18:0–C18:1–C18:0). The storage lipids of yeasts, mainly TAGs, also contain relative high-level of C16 and C18 fatty acids and might be used as CB-like lipids (CBL). In this study, we cultured six different yeasts, including one non-oleaginous yeast strain, *Saccharomyces cerevisiae* CEN.PK113-7D, and five oleaginous yeast strains, *Trichosporon oleaginosus* DSM11815, *Rhodotorula graminis* DSM 27356, *Lipomyces starkeyi* DSM 70296, *Rhodosporidium toruloides* DSM 70398, and *Yarrowia lipolytica* CBS 6124, in nitrogen-limited medium and compared their CBL production ability. Under the same growth conditions, we found that TAGs were the main lipids in all six yeasts and that *T. oleaginosus* can produce more TAGs than the other five yeasts. Less than 3% of the total TAGs were identified as potential SOS in the six yeasts. However, *T. oleaginosus* produced 27.8% potential POP and POS at levels of 378 mg TAGs/g dry cell weight, hinting that this yeast may have potential as a CBL production host after further metabolic engineering in future.

Keywords Cocoa butter-like lipids · Oleaginous yeasts · Lipid production · TAG profiles

Introduction

Cocoa butter (CB) is extracted from cocoa beans of the cocoa tree *Theobroma cacao*, and besides being used as food flavor and cosmetics additive, CB is the main component of chocolate (Lipp and Anklam 1998). Due to variations in CB production and an increasing chocolate demand by consumers, the CB supply is currently insufficient and its price has increased in recent years (Clough et al. 2009). Although some other vegetable oils can be used as CB equivalents, for example, Illipe butter, shea butter, and kokum butter, their production is also limited (Jahurul et al. 2013; Verstringe et al. 2012). Therefore, there are interests in developing other routes for production of CB-like lipids (CBL), which can be used as a stable and economically feasible supply for chocolate production (Clough et al. 2009).

CB mainly contains three different kinds of triacylglycerols (TAGs), which are esters formed with one glycerol and three fatty acids (Jahurul et al. 2013). The fatty acids in the sn-1 and sn-3 positions of CB TAG backbone glycerol are mainly palmitic acid (C16:0) or stearic acid (C18:0), and the fatty acid in sn-2 position is predominantly oleic acid (C18:1). POP (C16:0–C18:1–C16:0), POS (C16:0–C18:1–C18:0), and SOS (C18:0–C18:1–C18:0) are the three main CB TAGs, and they are therefore also the desired TAGs of CBL (Jahurul et al. 2013). POP, POS, and SOS ratios in CB are 14–16.4, 34.6–38.3, and 23.7–28.4%, respectively (Lipp and Anklam 1998). Moreover, the fatty acid distributions of CB...
are C16:0 (24.1–25.8%), C18:0 (33.3–37.6%), and C18:1 (32.7–36.5%) (Lipp and Anklam 1998).

Currently, enzymatic re-esterification of vegetable oils using lipases is used for CBL production (Ferreira-Dias et al. 2013; Matsuo et al. 1981; Mohamed 2013; Verstringe et al. 2012; Xu 2000). However, re-esterification requires hydrogenation of large amounts of plant oils which have limited production (Ferreira-Dias et al. 2013; Wang et al. 2006). In addition to the lipase-assisted method, yeasts, especially oleaginous yeasts, also have potential application for CBL production, as the main fatty acids produced by yeasts are C16 and C18 fatty acids (Beopoulos et al. 2011; Papanikolaou and Aggelis 2011). For the model yeast, Saccharomyces cerevisiae, global analysis of its lipidome, has shown that only small amounts of CBL were produced (Ejsing et al. 2009). On the other hand, several different oleaginous yeast strains have been reported as candidates for CBL production, such as Yarrowia lipolytica, Rhodosporidium toruloides, Lipomyces starkeyi, and Cryptococcus curvatus (Hassan et al. 1994; Hassan et al. 1995; Papanikolaou et al. 2001; Papanikolaou et al. 2003; Wu et al. 2011). Though the cultivation conditions that affect fatty acid production have been examined in several yeasts (Kolouchova et al. 2016), a detailed comparison of the CBL production ability in different yeasts and given conditions has rarely been reported.

In this study, we compared the compositions of total lipids, fatty acids, and TAGs of one non-oleaginous S. cerevisiae strain and five oleaginous yeast strains, which had been reported to accumulate lipids up to more than 20% of their cell dry weight, under nitrogen-limited growth conditions (Ageitos et al. 2011; Galafassi et al. 2012; Nijkamp et al. 2012). Based on the analysis, we evaluated CBL production of these six yeast species, which represent a good starting point to be further engineered for CBL production in future.

Materials and methods

Yeast strains and cultivation media

One non-oleaginous S. cerevisiae strain and five oleaginous yeast strains were used in this study. S. cerevisiae CEN.PK113-7D was kindly provided by Peter Kött (Entian and Kötter 2007). Trichosporon oleaginosus DSM11815, Rhodotorula graminis DSM 27356, L. starkeyi DSM 70296, and R. toruloides DSM 70398 were purchased from the culture collection of the DSMZ (Braunschweig, Germany). Y. lipolytica CBS 6124 was purchased from the CBS-KNAW Fungal Biodiversity Centre (Utrecht, The Netherlands). Rich media, YPD or YM, were used for cultivation of these six yeasts. The YPD medium was prepared with 10 g/l yeast extract (Merck Millipore), 20 g/l peptone (Merck Millipore), and 20 g/l glucose (Merck Millipore). The YM medium was constituted of 3 g/l yeast extract (Merck Millipore), 3 g/l malt extract (Oxoid), 5 g/l peptone from soybeans (Merck Millipore), and 10 g/l glucose (Merck Millipore). The nitrogen-limited medium (named NLM medium in the text) was prepared as described in the literature using 70 g/l glucose (Merck Millipore) as carbon source (Yang et al. 2014).

Bioscreen cultivation of yeasts

Yeast cultures were streaked on YPD plates from frozen stocks. A single colony of each strain was used to inoculate 50 ml falcon tubes containing 5 ml YPD medium and cultivated at 200 rpm and 30 °C. Overnight cultures (for L. starkeyi, a 36-h cultivation was used) were used to inoculate fresh YPD, YM, or NLM medium with an optical density (OD600 nm) of about 0.1. Each strain in each medium was analyzed in eight replicates and cultivated in a Bioscreen C MBR (Oy Growth Curves Ab Ltd.). The parameters of the Bioscreen C MBR cultivation were as follows: a working volume of 150 μl, a cultivation temperature of 30 ± 0.1 °C, and OD reading period = 12 min. Other cultivation conditions and data processing methods were the same as described previously (Adeboye et al. 2014; Warringer and Blomberg 2003). The cultivations in Bioscreen microplates were finished when the yeasts reached their stationary phase, and the running time for all strains in this study was 39.4 h.

Shake flask growth characteristics measurement

Due to hyphal growth of Y. lipolytica and R. graminis in YPD and YM media, maximum growth rates of Y. lipolytica and R. graminis in YPD and YM media were determined using a dry weight method. Overnight cultures of Y. lipolytica and R. graminis were used to inoculate 500-ml unbaffled shake flasks with 120-ml YPD or YM medium at about 0.2 g dry weight per liter medium in three biological duplicates. Five-milliliter culture of Y. lipolytica and R. graminis was collected every few hours using 0.45-μm polyethersulfone filters (Sartorius Stedim Biotech). The filters were dried in a microwave (Severin) for 15 min (126 W) and put into one desiccator (Duran) for 2 days until a stable weight was achieved.

In order to verify the growth results obtained using the Bioscreen C MBR and to determine the cultivation time for yeast biomass collection in unbaffled shake flasks, yeast growth characteristics in 100-ml shake flask with 20 ml NLM medium were determined in biological triplicates.

Microscopic analysis of yeast cells

Overnight cultures of the six yeasts (for L. starkeyi, a 36-h cultivation was used) were used to inoculate 100-ml unbaffled shake flasks with 20 ml YPD, YM, or NLM media at an OD600 nm of about 0.1 in biological duplicates. After 72-h
cultivation, 100 μl yeast cultures from each shake flask were sampled by centrifugation at 6500×g for 5 min. The yeast cells were washed twice with 500 μl PBS buffer and suspended in 100 μl PBS buffer. Then, 0.5 μl Nile red (1 mg/ml in DMSO) was added to the suspended cells and stained in the dark for 30 min. After that, the stained cells were washed twice with 500 μl PBS buffer and resuspended in 50 μl PBS buffer for microscopic imaging (Greenspan et al. 1985; Wu et al. 2010). The fluorescence microscopy images were acquired with a Leica AF 6000 inverted microscope (Leica Microsystems, and the excitation/emission is 546/605 nm) and processed with the Leica Application Suite (LAS) software.

Analysis of lipid and fatty acid composition

Each strain was used to inoculate 50-ml falcon tubes with 10 ml YPD medium and cultivated at 30 °C with shaking at 200 rpm for 18 h (for L. starkeyi, a 36-h cultivation was used). The cultures were transferred to 250-ml shake flasks with 50 ml fresh YPD medium and cultivated for another 12 h at 30 °C with shaking at 200 rpm. Then, the cultures were collected by centrifugation and resuspended in 50 ml fresh NLM medium. Respective volumes were used to inoculate 5-ml shake flask with 1 l fresh NLM medium to ensure a starting OD600 nm of 0.1. The yeast cells were harvested by centrifugation at 10,000×g for 15 min after 120 h of cultivation. Thirty milliliters of the cultures was collected separately by centrifugation at 10,000×g for 15 min and dried using a freeze dryer (Alpha 2-4 LSC, Christ GmbH); the remaining yeast cells were used for lipid extraction for TAG analysis. The collected yeast cells were washed once with distilled water before further treatment. Freeze-dried yeast cells from the 30 ml samples were used to determine the total lipid profile and the total fatty acid composition using microwave-assisted methods (Khoomrungr et al. 2012; Khoomrungr et al. 2013).

Lipid extraction for TAG analysis

The total dry cell weight (DCW) of the 1 l cultures was estimated based on the dried biomass from the 30 ml samples. For every gram of the yeast pellets (DCW), 6 ml HCl solution (4 M) was added. The samples were kept at 78 °C in a water bath for 2 h to disrupt the yeast cells. After cooling the samples to room temperature, 12 ml chloroform–methanol 1:1 (v/v) solution per gram of yeast biomass was added and the samples incubated for 10 min at 1500 rpm using a DVX-2500 multi-tube vortexer (VWR). After centrifugation at 6500×g for 10 min, the lower phase was collected and combined with the previously obtained one. Finally, an equal volume of 0.1% NaCl was added to the combined lower phase (chloroform phase), vortexed, and centrifuged at 6500×g for 10 min to collect the lower phase containing the lipids. The collected liquid was dried in glass tubes with a miVac concentrator (Genevac) at 50 °C until the weight of each sample did not change (Nambou et al. 2014; Yu et al. 2015).

Approximately 75 μg lipid samples were collected in a glass vial and melted at 80 °C. Then, they were immediately dissolved in 1.2 ml acetone–tetrahydrofuran (THF) 1:1 (v/v) (Rathburn Chemicals). Afterwards, they were filtered through a 0.45-μm filter (PTFE, Cameo) directly into a sequence vial. The TAG composition analysis was performed by ultra performance liquid chromatography (UPLC) using refractive index (RI) detection (Waters), and TAG compositions were expressed in relative area percentages (Shukla et al. 1983).

In contrast to the previously published method (Shukla et al. 1983), acetonitrile (Merck)/methyl tert-butyl ether (MTBE) (Rathburn Chemicals) was used as mobile phase instead of acetonitrile/THF and an RI detector was used instead of a UV detector. Cocoa butter standards and TAG composition analyses were completed by AAK, and TAG standards were purchased from Larodan.

Results

Growth characteristics of the yeasts in different media

Yeasts are able to grow and produce different levels of lipids in different conditions and media (Barth and Gaillardin 1997). Especially, they have been reported to increase their lipid production when nitrogen is exhausted and excess carbon source is present in the medium (Mullner and Daum 2004; Ratledge and Wynn 2002). In this study, two rich media, YPD and YM, and one nitrogen-limited and carbon-excess medium, NLM medium, were employed to assess the growth of the six yeasts. All yeast strains were able to grow in these three media, but they showed different growth characteristics and maximum specific growth rates (Table 1 and Fig. S1a–f). In general, maximum growth rates of T. oleaginosus and R. toruloides were higher than those of the other yeasts in NLM medium.

Most yeasts cultivated in the three media displayed similar morphologies after 72 h, but some Y. lipolytica and R. graminis cells in YPD and YM media showed hyphal growth after 72 h of cultivation (Fig. S2). Nile red was used to stain lipid droplets present in the cells (Greenspan et al. 1985; Kimura et al. 2004), and the lipid droplets of all yeasts formed under NLM medium cultivation exhibited a brighter fluorescence and were larger than under rich medium (YPD or YM) cultivation (Fig. S2).
Lipid profiles of the yeasts

The total lipid profiles in yeasts cover TAGs, steryl esters (SE), ergosterol (ES), cardiolipin (CL), phosphatidic acid (PA), phosphatidylethanolamine (PE), phosphatidylinositol (PI), phosphatidylserine (PS), and phosphatidylcholine (PC) (Czabany et al. 2007; de Kroon et al. 2013; Kaneko et al. 1976). The total lipid content and distribution of the six yeasts cultivated in NLM medium for 120 h was measured, and \textit{S. cerevisiae}, \textit{T. oleaginosus}, \textit{R. graminis}, \textit{L. starkeyi}, \textit{R. toruloides}, and \textit{Y. lipolytica} produced 76, 428, 213, 183, 166, and 134 mg lipids/g DCW, respectively (Table S1). TAG was the most abundant lipid class in all yeasts. \textit{S. cerevisiae} produced 38.7 mg TAGs/g DCW, while the five oleaginous yeasts produced TAG levels between 106 and 378.6 mg lipids/g DCW (Table S1). The TAG proportion of the total lipids in the five oleaginous yeasts was between 79.0 and 90.3%, while the TAG ratio in \textit{S. cerevisiae} was only 50.7%.

\textit{S. cerevisiae} contained 34.0% SE and 6.4% ES, which were higher than the SE and ES proportion of the five oleaginous yeasts (Table 2). Considering the remaining lipid classes, CL, PA, PE, PI, PS, and PC, their contents were very low in all six yeasts (Table 2).

Total fatty acid profiles of the yeasts

Though the oleaginous yeasts produced more total fatty acids than \textit{S. cerevisiae}, the most abundant fatty acids of all the six yeasts were C16 and C18 fatty acids, which accounted for >95% of the total fatty acids (Table 3 and Table S2). The C16/C18 ratio of \textit{S. cerevisiae} and \textit{Y. lipolytica} was 1.9 and 0.6, respectively, which was higher than the C16/C18 ratio of the other four yeasts (Table 3). For \textit{S. cerevisiae}, the three main fatty acids were C16:0 (13.7%), palmitoleic acid (C16:1, 50.0%), and C18:1 (30.0%); for \textit{Y. lipolytica}, the four main fatty acids were C16:0 (13.6%), C16:1 (24.1%), C18:1 (46.2%), and linoleic acid (C18:2, 11.2%); and for the other four oleaginous yeasts, C18:1 was the most abundant fatty acid, followed by C16:0, and the combined relative C16:0 and C18:1 content of these four oleaginous yeasts was 64.3–79.5% (Table 3). The C16:0/C16:1 ratios of \textit{S. cerevisiae} and \textit{Y. lipolytica} were 0.3 and 0.6, respectively, while the ratios of the other four yeasts were 8.3 to 53.2, showing much higher proportion of the mono-unsaturated C16:1 fatty acid in \textit{S. cerevisiae} and \textit{Y. lipolytica} than in the other four yeasts (Table 3).

Table 1 Maximum specific growth rates of six different yeasts in different media

Yeast	\(\mu_{\max}^a\) (h\(^{-1}\), YPD medium)	\(\mu_{\max}^b\) (h\(^{-1}\), YM medium)	\(\mu_{\max}^a\) (h\(^{-1}\), NLM medium)	\(\mu_{\max}^b\) (h\(^{-1}\), NLM medium)
\textit{Saccharomyces cerevisiae}	0.53 ± 0.02	0.50 ± 0.01	0.37 ± 0.02	0.24 ± 0.01
\textit{Trichosporon oleaginosus}	0.47 ± 0.01	0.42 ± 0.01	0.40 ± 0.02	0.39 ± 0
\textit{Rhodotorula graminis}	0.19 ± 0.01\(^c\)	0.2 ± 0\(^c\)	0.21 ± 0.01	0.27 ± 0.01
\textit{Lipomyces starkeyi}	0.13 ± 0.01	0.11 ± 0	0.13 ± 0.01	0.12 ± 0
\textit{Rhodosporidium toruloides}	0.42 ± 0.03	0.38 ± 0.01	0.29 ± 0.03	0.45 ± 0.02
\textit{Yarrowia lipolytica}	0.24 ± 0.01\(^c\)	0.21 ± 0.01\(^c\)	0.23 ± 0.02	0.31 ± 0.04

\(^a\) Maximum specific growth rates were calculated based on calculated OD\(_{600}\) nm results collected from Bioscreen cultivation, \(n = 8\)

\(^b\) Maximum specific growth rates were calculated based on OD\(_{600}\) nm data collected from shake flask cultivation, \(n = 3\)

\(^c\) Maximum specific growth rates were calculated based on dry cell weight collected from shake flask cultivation, \(n = 3\)

Table 2 The relative lipid content of six yeasts cultivated in NLM medium (\(n = 2\))

Yeast	Steryl esters (%)	Triacylglycerol (%)	Ergosterol (%)	Cardiolipin (%)	PE (%)	PC (%)	PS (%)	PI (%)
\textit{Saccharomyces cerevisiae}	34.0 ± 2.5	50.7 ± 1.0	6.4 ± 0	ND	2.0 ± 0.4	5.8 ± 0.7	1.1 ± 0.4	ND
\textit{Trichosporon oleaginosus}	ND	88.1 ± 1.7	3.8 ± 0.6	0.1 ± 0	1.1 ± 0.1	3.5 ± 0.3	3.3 ± 0.4	0.2 ± 0.2
\textit{Rhodotorula graminis}	7.0 ± 4.0	86.1 ± 4.3	1.2 ± 0.3	ND	1.7 ± 0	4.0 ± 0.1	ND	ND
\textit{Lipomyces starkeyi}	0.4 ± 0.1	90.3 ± 0.2	0.8 ± 0.1	ND	2.2 ± 0.1	3.5 ± 0.2	1.8 ± 0.2	1.1 ± 0.2
\textit{Rhodosporidium toruloides}	1.3 ± 0.4	89.8 ± 2.1	1.2 ± 0.4	ND	1.5 ± 0.5	4.7 ± 0.7	0.6 ± 0	0.7 ± 0.5
\textit{Yarrowia lipolytica}	4.1 ± 0.3	79.0 ± 2.1	2.9 ± 0.5	1.3 ± 0.3	ND	12.6 ± 1.0	ND	ND

\(PE\) phosphatidylethanolamine, \(PC\) phosphatidylcholine, \(PS\) phosphatidylserine, \(PI\) phosphatidylinositol, \(ND\) not determined (the peak was not detected or the peak area was too small to determine)

\(^d\) Phosphatidic acid (PA) and free fatty acid levels were not determined in this study (below the detection limit or no detectable peaks)
In general, the proportion of unsaturated fatty acids in all six strains was higher than the proportion of saturated fatty acid. Especially, *S. cerevisiae*, *R. graminis*, and *Y. lipolytica* contained more than 72% unsaturated fatty acids, while *T. oleaginosus*, *L. starkeyi*, and *R. toruloides* produced 60.8, 55.3, and 54.9% unsaturated fatty acids, respectively (Table 3 and Table S2). *S. cerevisiae* did not produce polyunsaturated fatty acids, but the other five oleaginous yeasts produced some polyunsaturated fatty acids, for example, *T. oleaginosus*, *R. graminis*, *R. toruloides*, and *Y. lipolytica* can produce 9.8, 18.8, 14.7, and 11.2% C18:2 of their total fatty acids, respectively (Table 3).

TAG profiles of the yeasts

The TAG profile data of this study only provide the fatty acid composition of each TAG, for example, TAG (C16:0, C18:1, C18:1) contains two molecules of C16:0 and one molecule of C18:1, but their respective positions in the glycerol backbone are not determined. *S. cerevisiae*, *T. oleaginosus*, *R. graminis*, *L. starkeyi*, *R. toruloides*, and *Y. lipolytica* can produce at least 27, 35, 36, 36, and 31 different kinds of TAGs, respectively (Fig. 1, Table 4 and Table S3). However, most TAGs comprise less than 5% of the total TAGs in a strain (Table S3). The main TAGs of the six yeast strains are listed in Table 4. The main TAGs of *S. cerevisiae* were TAG (C18:1, C16:1, C16:0) (24.3%) and TAG (C18:0, C16:1, C16:1) (18.9%). The main TAGs of *R. toruloides* were TAG (C16:0, C18:1, C18:1; 22.2%), TAG (C18:1, C18:1, C18:1; 12.0%), and TAG (C16:0, C18:2, C18:1; 10.7%). The main TAGs of *Y. lipolytica* were TAG (C16:0, C18:1, C18:1; 18.4%), TAG (C18:1, C18:1, C18:1; 11.8%), and TAG (C16:0, C18:1, C18:1; 11.4%). Interestingly, the main TAGs of *T. oleaginosus*, *L. starkeyi*, and *R. toruloides* were the same, TAG (C16:0, C18:1, C18:1), TAG (C16:0, C18:1, C16:0, potential POP), and TAG (C16:0, C18:1, C18:0, potential POS); the combined relative content of these three TAGs in *T. oleaginosus*, *L. starkeyi*, and *R. toruloides* were 56.1, 59.5, and 47.6%, respectively (Table 4).

The potential CBL (mainly POP, POS, and SOS) content differed in the six yeasts. The proportion of potential POP and POS in *S. cerevisiae*, *R. graminis*, and *Y. lipolytica* was only 4.6, 9.6, and 3.0%, respectively, whereas it added up to 27.8, 29.8, and 31.9% in *T. oleaginosus*, *L. starkeyi*, and *R. toruloides*, respectively. However, the relative content of TAG (C18:0, C18:1, C18:0, potential SOS) in all yeasts remained low, between 0.1 and 2.3% (Fig. 1).

Fatty acid composition of the TAGs in different yeasts

Analyses showed that more than 90.9% of the fatty acids of the TAGs in all yeasts were C16 and C18 fatty acids (Table 5). Besides, the C16/C18 ratios of TAGs were different from the corresponding ratio among the total fatty acids. Thus, the C16/C18 ratios of TAGs were lower than in the total fatty acid pool in *S. cerevisiae*, *T. oleaginosus*, and *L. starkeyi*, but the C16/C18 ratios of TAGs were higher than in the total fatty acids in *R. toruloides*, *R. graminis*, and *Y. lipolytica*. In general, the relative unsaturated fatty acid content of TAGs were nearly the same as in the total fatty acid pools in *T. oleaginosus*, *L. starkeyi*, and *R. toruloides*, but the relative unsaturated fatty acid content of TAGs were higher than in the total fatty acid pools in *S. cerevisiae*, *R. graminis*, and *Y. lipolytica* (Tables 3 and 5).

In the five oleaginous yeasts, C18:1 was the most abundant fatty acid and the relative C18:1 content of the TAGs was 37.4–53.0%, which was consistent with the total fatty acid composition where the relative C18:1 content of the five oleaginous yeasts was 36.6–48.3%. In contrast, while C16:1 was the most abundant fatty acid of TAGs in *S. cerevisiae* with a relative content of 39.4%, the relative C16:1 content of total fatty acid in *S. cerevisiae* was 50% (Tables 3 and 5). C16:0 was the 2nd most abundant fatty acid of TAGs in *T. oleaginosus*, *R. graminis*, *L. starkeyi*, and *R. toruloides*, and the relative content was 24.9–35.1%, which was similar to the C16:0 content of total fatty acid in the four yeasts (22.8–31.6%). For *Y. lipolytica*, the two main fatty acids of the TAGs other than C18:1 were C16:1 (23.5%) and C16:0 (16.8%).

Table 3 The relative total fatty acid contents of six yeasts cultivated in NLM medium (*n* = 2)

Yeast	C16:0	C16:1	C18:0	C18:1	C18:2	C18:3	Others
S. cerevisiae	13.7 ± 0.1	50.0 ± 0.3	3.5 ± 0.3	30.0 ± 0.5	ND	ND	2.6 ± 0.5
T. oleaginosus	29.7 ± 1.1	0.8 ± 0.1	6.4 ± 0.1	48.3 ± 0.0	9.8 ± 0.8	0.3 ± 0.0	4.6 ± 0.7
Rhodotorula graminis	22.8 ± 0.2	2.7 ± 0.7	1.8 ± 0.0	46.9 ± 0.3	18.8 ± 1.0	2.0 ± 0.0	5.1 ± 0.4
Lipomyces starkeyi	31.6 ± 0.2	1.6 ± 0.0	10.1 ± 0.0	47.8 ± 0.3	4.2 ± 0.8	0.1 ± 0.0	4.4 ± 0.4
Rhodospirillum toruloides	27.7 ± 0.9	0.5 ± 0.0	14.6 ± 1.2	36.6 ± 1.7	14.7 ± 1.4	1.8 ± 0.1	4.0 ± 0.2
Yarrowia lipolytica	13.6 ± 0.1	24.1 ± 0.6	2.1 ± 0.2	46.2 ± 0.5	11.2 ± 0.8	ND	2.7 ± 0.2

ND not determined (the peak was not detected or the peak area was too small to determine)

a Others represent fatty acids of C12:0, C14:0, C14:1, C20:0, C20:1, C22:0, C24:0, and C26:0.
similar to the relative C16:1 (24.1%) and C16:0 (13.6%) content in the total fatty acid pool (Tables 3 and 5).

Discussion

Here, we investigated lipid production and composition of six different yeast strains cultivated in the same nitrogen-limited medium and analyzed their ability to produce CBL. Importantly, we showed that *T. oleaginosus* can produce 378 mg TAGs/g DCW, and its relative content of potential POP and POS was 14.4 and 13.4%, respectively, suggesting that it has the highest potential as a CBL producer among these six yeasts. Besides, our results gave insights into lipid production of the yeasts, suggesting potential metabolic engineering directions for future CBL production in yeasts.

We analyzed the growth characteristics of the yeasts, and the results showed that most strains can grow faster in rich medium (YPD and YM media) than in nitrogen-limited medium (NLM medium) (Fig. S1 and Table 1).

Table 4 The relative TAG content (>5%) of six yeasts cultivated in NLM medium (n = 2)

Relative TAG content of total TAGs (%)	Saccharomyces cerevisiae	Trichosporon oleaginosus	Rhodotorula graminis	Lipomyces starkeyi	Rhodosporidium toruloides	Yarrowia lipolytica
TAG (C16:0, C18:1, C18:1)	7.0 ± 0.2	28.3 ± 0.1	22.2 ± 0.3	29.7 ± 0.2	15.7 ± 0.4	11.4 ± 1.4
TAG (C16:0, C18:1, C16:0)	2.7 ± 0.1	14.4 ± 0.2	7.8 ± 0	16.9 ± 0.7	17.4 ± 0.6	2.0 ± 0.4
TAG (C16:0, C18:1, C18:0)	1.8 ± 0	13.4 ± 0.2	1.8 ± 0	13.0 ± 0.1	14.5 ± 0.5	1.0 ± 0.1
TAG (C18:1, C18:1, C18:1)	1.8 ± 0.2	8.7 ± 0.3	12.0 ± 0	11.3 ± 0.1	3.4 ± 0.1	11.8 ± 0.1
TAG (C18:0, C18:1, C18:1)	1.3 ± 0.1	7.4 ± 0.1	2.1 ± 0.2	6.9 ± 0.2	4.5 ± 0.1	2.6 ± 0.3
TAG (C16:0, C18:2, C18:1)	0.0	6.3 ± 0.1	10.7 ± 0.1	2.9 ± 0.3	8.1 ± 0.2	0
TAG (C18:2, C18:1, C18:1)	0.2 ± 0.2	3.4 ± 0	8.3 ± 0.2	1.4 ± 0.3	2.0 ± 0.1	0
TAG (C14:0, C18:1, C18:1)	0	1.4 ± 0.1	4.4 ± 0	2.5 ± 0.1	1.7 ± 0	5.0 ± 0
TAG (C16:0, C18:2, C16:0)	0.8 ± 0.1	1.4 ± 0.1	3.1 ± 0	1.1 ± 0.1	6.2 ± 0.1	1.7 ± 0.3
TAG (C16:0, C18:2, C18:0)	0.2 ± 0	1.3 ± 0.2	0.9 ± 0	1.2 ± 0	5.0 ± 0.1	0.6 ± 0
TAG (C16:0, C18:2, C18:2)	13.1 ± 0.5	0.9 ± 0	1.6 ± 0	0.2 ± 0.1	1.3 ± 0.2	6.2 ± 0.9
TAG (C16:1, C18:1, C18:1)	0.9 ± 0.4	0.3 ± 0	0.6 ± 0	0.1 ± 0	0.1 ± 0.1	5.6 ± 0.2
TAG (C16:1, C16:1, C16:1)	6.6 ± 0.3	0.2 ± 0	1.2 ± 0	0.2 ± 0	1.1 ± 0.1	1.2 ± 0
TAG (C18:1, C16:1, C16:1)	24.3 ± 1.7	0	0.3 ± 0	0	0.1 ± 0	9.6 ± 0.1
TAG (C18:0, C16:1, C16:1)	18.9 ± 1.5	0	0.0 ± 0	0	0	9.5 ± 0.1
TAG (C16:0, C18:1, C16:1)	6.1 ± 0.5	0	0.5 ± 0	0.2 ± 0	0.3 ± 0.4	18.4 ± 0.7
Unknown TAGs	8.6 ± 1.8	0.7 ± 0.1	3.1 ± 0	0.9 ± 0	1.0 ± 0.3	4.6 ± 0.5
However, when comparing lipid droplets, the cells grown in NLM medium produced bigger but fewer lipid droplets than the ones grown in YPD or YM media, suggesting that a nitrogen-limited environment can alter the morphology of yeast lipid droplets and is better suited for lipid production as reported earlier (Fig. 1 and Fig. S2) (Papanikolaou and Aggelis 2011). The growth rates of

Yeast Species	C16:0	C16:1	C18:0	C18:1	C18:2	C18:3	Others\^a	Unknown\^b
Saccharomyces cerevisiae	13.4 ± 0.8	39.4 ± 2.3	7.7 ± 0.3	20.9 ± 0.3	9.4 ± 0.5	0	0.5 ± 0	8.6 ± 1.8
Trichosporon oleaginous	28.7 ± 0.6	0.4 ± 0	10.4 ± 0	50.7 ± 0.4	5.2 ± 0.2	0.8 ± 0	3.0 ± 0	0.7 ± 0.1
Rhodotorula graminis	24.7 ± 0	2.2 ± 0	4.3 ± 0.1	48.0 ± 0.1	7.9 ± 0.1	4.0 ± 0.1	5.5 ± 0.1	3.1 ± 0
Lipomyces starkeyi	29.1 ± 0.6	0.3 ± 0	9.8 ± 0.2	53.0 ± 0.4	3.3 ± 0.1	0.3 ± 0.1	3.3 ± 0	0.9 ± 0.2
Lipomyces starkeyi	35.1 ± 0.4	2.4 ± 0	11.5 ± 0.1	37.4 ± 0.7	8.9 ± 0.7	1.6 ± 0	2.2 ± 0	1.0 ± 0.3
Yarrowia lipolytica	16.8 ± 0.3	23.5 ± 0.1	5.3 ± 0.0	41.1 ± 1.2	5.7 ± 0.7	0.4 ± 0.1	2.6 ± 0.2	4.6 ± 0.5
a Others represent fatty acids of C14:0, C20:0, C22:0, and C24:0.								
b Unknown represents TAGs whose fatty acid composition was not determined.								

production in the near future. Besides, *Y. lipolytica*, *S. cerevisiae*, and *R. graminis* contained relatively low proportions of potential POP, POS, and SOS, further implying that these yeasts would not be the first choice as CBL producers (Fig. 1). Though the potential SOS content of the TAGs extracted from *T. oleaginosus* and *R. toruloides* was low, the two yeasts had a relatively high proportion of potential POP and POS, indicating that they are promising CBL producers (Fig. 1). As *T. oleaginosus* additionally produced higher amounts of TAG than the other yeasts, it is the most promising potential CBL producer among the six yeasts evaluated.

The TAG and fatty acid compositions of *T. oleaginosus* are different from CB (Lipp and Anklam 1998; Zhang et al. 2014). CBL production would require a higher ratio of C18:0 and less polyunsaturated fatty acids (Table 3). Metabolic engineering can assist to alter yeast lipid profiles (Nielsen 2009; Nielsen and Keasling 2016), and further engineering is therefore required to enable production of CBL using *T. oleaginosus*. As genome information of *T. oleaginosus* is available and genetic engineering methods of *T. oleaginosus* to produce modified fatty acids have been successfully established (Görner et al. 2016; Kourist et al. 2015), engineering genes in the lipid biosynthetic pathway, such as genes involved in fatty acid elongation and desaturation, might enable an increased CBL production (Martin et al. 2007; Oh et al. 1997; Toke and Martin 1996). In addition, formation of TAGs is mainly catalyzed by three different enzymes, glycerol-3-phosphate acyltransferase (GPAT), lysophosphatidyl acyltransferase (LPAT), and diacylglycerol acyltransferases (DGAT), which are responsible for adding acyl residues to the sn-1, sn-2, and sn-3 positions of the TAG backbone glycerol, respectively (Bates et al. 2013; Benghezal et al. 2007; Oelkers et al. 2002; Zheng and Zou 2001). As CBL proportion was relatively low, it is important to engineer yeast GPAT, LPAT, and DGAT genes or to express GPAT, LPAT, and DGAT genes specific for CBL production besides altering the C18:0 composition in the total fatty acid pool.
Acknowledgements This work was funded by AAK AB, the Knut and Alice Wallenberg Foundation, and the Novo Nordisk Foundation. We thank Berit Kristensen, AAK A/S, for performing the TAG analysis, and Morten Emil Møldrup, AAK AB, for scientific discussions during the project. We thank Michael Gossing, David Bergenholm, and Florian David for their helpful discussions during the experiments. We thank Julia Karlsson, Michael Gossing, Jacob Kindbom, and Raphael Ferraira for their help in GC and HPLC analyses. We thank Xin Chen for her help with Nile red staining.

Compliance with ethical standards

Conflict of interest The authors declare that they have no conflict of interest.

Ethical statement This article does not contain any studies with human participants or animals performed by any of the authors.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reference

Adeboye PT, Bettiga M, Olsson L (2014) The chemical nature of pheno-
lic compounds determines their toxicity and induces distinct physi-
ological responses in Saccharomyces cerevisiae in lignocellulose
hydrolysates. AMB Express 4(1):46
Agetios JM, Vallejo JA, Veiga-Crespo P, Villa TG (2011) Oily yeasts as
oleaginous cell factories. Appl Microbiol Biotechnol 90(4):1219–
1227
Barth G, Gaillardin C (1997) Physiology and genetics of the dimorphic
fungus Jarrovia lipolytica. FEMS Microbiol Rev 19(4):219–237
Bates PD, Styme S, Ohlroge J (2013) Biochemical pathways in seed oil
synthesis. Curr Opin Plant Biol 16(3):358–364
Benghezal M, Roubaty C, Veepur V, Knudsen J, Conzelmann A (2007)
SLC1 and SLC4 encode partially redundant acyl-coenzyme A 1-
acylglycerol-3-phosphate O-acyltransferases of budding yeast. J
Biol Chem 282(42):30845–30855
Beopoulos A, Nicaud J-M, Gaillardin C (2011) An overview of lipid metabolism in yeasts and its impact on biotechnological processes. Appl Microbiol Biotechnol 90(4):1193–1206
Calvey CH, Su Y-K, Willis LB, McGee M, Jeffrey TW (2016) Nitrogen
limitation, oxygen limitation, and lipid accumulation in Lipomyces
starkeyi. Biosource Technol 200:780–788
Clough Y, Faust H, Tschamkite M (2009) Cacao boom and bust: sustain-
ability of agroforests and opportunities for biodiversity conserva-
tion. Conserv Lett 2(5):197–205
Czabany T, Athenstaedt K, Daum G (2007) Synthesis, storage and degra-
dation of neutral lipids in yeast. BBA-Mol Cell Biol L 1771(3):
299–309
de Kroon AL, Rijken PJ, De Smet CH (2013) Checks and balances in
membrane phospholipid class and acyl chain homeostasis, the yeast perspective. Prog Lipid Res 52(4):374–394
Edem D (2002) Palm oil: biochemical, physiological, nutritional, hema-
tological and toxicological aspects: a review. Plant Foods Hum Nutr
57(3–4):319–341
Ejsing CS, Sampaio JL, Surendranath V, Duchoslav E, Ekroos K, Klemm
RW, Simons K, Shevchenko A (2009) Global analysis of the yeast
lipidome by quantitative shotgun mass spectrometry. P Natl Acad
Sci 106(7):2136–2141
Entian K-D, Kötter P (2007) 25 yeast genetic strain and plasmid collec-
tions. Method Microbiol 36:629–666
Ferreira-Dias S, Sandoval G, Plou F, Valero F (2013) The potential use of
lipases in the production of fatty acid derivatives for the food and
nutraceutical industries. Electron J Biotechnol 16(3):12
Galafassi S, Cuccetti D, Pizza F, Franzosi G, Bianchi D, Campano C
(2012) Lipid production for second generation biodiesel by the ole-
aginous yeast Rhodotorula graminis. Bioresource Technol 111:398–
403
Görner C, Redai V, Bracharz F, Schrepfer P, Garbe D, Brück T (2016)
Genetic engineering and production of modified fatty acids by the
non-conventional oleaginous yeast Trichosporon oleaginosus
ATCC 20509. Green Chem 18(7):2037–2046
Greenspan P, Mayer EP, Fowler SD (1985) Nile red: a selective fluores-
cent stain for intracellular lipid droplets. J Cell Biol 100(3):965–973
Hassan M, Blanc PJ, Pareilleux A, Goma G (1994) Selection of fatty acid
auxotrophs from the oleaginous yeast Cryptococcus curvatus and
production of cocoa butter equivalents in batch culture. Biotechnol
Lett 16(8):819–824
Hassan M, Blanc PJ, Pareilleux A, Goma G (1995) Production of cocoa
butter equivalents from prickly-pear juice fermentation by an unsat-
urated fatty acid auxotroph of Cryptococcus curvatus grown in
batch culture. Process Biochem 30(7):629–634
Jahuri M, Zaidul I, Norulaini N, Sahena F, Jinap S, Azmir J, Sharif K,
Omar AM (2013) Cocoa butter fats and possibilities of substitution
in food products concerning cocoa varieties, alternative sources,
extracitons methods, composition, and characteristics. J Food Eng
117(4):467–476
Kaneko H, Hosohara M, Tanaka M, Itoh T (1976) Lipid composition of
30 species of yeast. Lipids 11(12):837–844
Khoomrung S, Chumnanpuen P, Jansa-Ard S, Imanaka T, Hua Q (2014) Designing
for use in chocolate
Kourist R, Bracharz F, Lorenzen J, Kracht ON, Chovatia M, Daum C,
Kotter P, Borchardt T, Brück T (2016) Synthetic biology in yeasts and its impact on biotechnological processes. Appl Microbiol Biotechnol 94(6):1637–1646
Lipp EM, Anklam E (1998) Review of cocoa butter and alternative fats
for use in chocolate—part A. Compositional data. Food Chem
62(1):73–97
Martin CE, Oh C-S, Jiang Y (2007) Regulation of long chain unsaturated fatty acid synthesis in yeast. BBA-Mol Cell Biol L 1771(3):
271–285
Mohamed JO (2013) Lipase-catalyzed acidolysis of palm mid fraction oil
with palmitic and stearic fatty acid mixture for production of cocoa
butter equivalent. Appl Biochem Biotechnol 171(3):655–666
Mullner H, Daum G (2004) Dynamics of neutral lipid storage in yeast. Acta Biochim Pol-Engl 51:323–348
Nambo K, Zhao C, Wei L, Chen J, Imanaka T, Hua Q (2014) Designing
of a “cheap to run” fermentation platform for an enhanced
production of single cell oil from Yarrowia lipolytica DSM3286 as a potential feedstock for biodiesel. Biosource technol 173:324–333
Nielsen J (2009) Systems biology of lipid metabolism: from yeast to human. FEBS Lett 583(24):3905–3913
Nielsen J, Keasling JD (2016) Engineering cellular metabolism. Cell 164(6):1185–1197
Nijkamp JF, van den Broek M, Datema E, de Kok S, Bosman L, Luttik MA, Duran-Lupuajde P, Vongsaangnak W, Nielsen J, Heijne WH (2012) De novo sequencing, assembly and analysis of the genome of the laboratory strain Saccharomyces cerevisiae CEN. PK113-7D, a model for modern industrial biotechnology. Microb Cell Factories 11(1):1
Oelkers P, Cromley D, Padamsee M, Billheimer JT, Sturley SL (2002) The DGA1 gene determines a second triglyceride synthetic pathway in yeast. J Biol Chem 277(11):8877–8881
Oh CS, Toke DA, Mandal S, Martin CE (1997) ELO2 and ELO3, homologues of the Saccharomyces cerevisiae ELO1 gene, function in fatty acid elongation and are required for sphingolipid formation. J Biol Chem 272(28):17376–17384
Papanikolaou S, Aggelis G (2011) Lipids of oleaginous yeasts. Part I: biochemistry of single cell oil production. Eur J Lipid Sci Tech 113(8):1031–1051
Papanikolaou S, Chevalot I, Komaitis M, Aggelis G, Marc I (2001) Kinetic profile of the cellular lipid composition in an oleaginous Yarrowia lipolytica capable of producing a cocoa-butter substitute from industrial fats. A van Leeu 80(3–4):215–224
Papanikolaou S, Muniglia L, Chevalot I, Aggelis G, Marc I (2003) Accumulation of a cocoa-butter-like lipid by Yarrowia lipolytica cultivated on agro-industrial residues. Curr Microbiol 46(2):124–130
Ratledge C, Wynn JP (2002) The biochemistry and molecular biology of lipid accumulation in oleaginous microorganisms. Adv Appl Microbiol 51:1–52
Runguphan W, Keasling JD (2014) Metabolic engineering of Saccharomyces cerevisiae for production of fatty acid-derived biofuels and chemicals. Metab Eng 21:103–113
Shukla V, Schiotz Nielsen W, Batsberg W (1983) A simple and direct procedure for the evaluation of triglyceride composition of cocoa butters by high performance liquid chromatography—a comparison with the existing TLC-GC method. Fett Wiss Technol 85(7):274–278
Toke DA, Martin CE (1996) Isolation and characterization of a gene affecting fatty acid elongation in Saccharomyces cerevisiae. J Biol Chem 271(31):18413–18422
Verstringe S, De Clercq N, Nguyen M, Kadivar S, Dewettinck K (2012) Enzymatic and other modification techniques to produce cocoa butter alternatives. AOCS Press, Urbana.
Wang HX, Wu H, Ho C-T, Weng X-C (2006) Cocoa butter equivalent from enzymatic interesterification of tea seed oil and fatty acid methyl esters. Food Chem 97(4):661–665
Warringer J, Blomberg A (2003) Automated screening in environmental arrays allows analysis of quantitative phenotypic profiles in Saccharomyces cerevisiae. Yeast 20(1):53–67
Wild R, Patil S, Popovic M, Zappi M, Dufreche S, Bajpai R (2010) Lipids from Lipomyces starkeyi. Food Technol Biotech 48(3):329–335
Wu S, Hu C, Zhao X, Zhao ZK (2010) Production of lipid from N-acetylglucosamine by Cryptococcus curvatus. Eur J Lipid Sci Tech 112(7):727–733
Wu S, Zhao X, Shen H, Wang Q, Zhao ZK (2011) Microbial lipid production by Rhodosporidium toruloides under sulfate-limited conditions. Bioresource technol 102(2):1803–1807
Xu X (2000) Production of specific-structured triacylglycerols by lipase-catalyzed reactions: a review. Eur J Lipid Sci Tech 102(4):287–303
Yang X, Jin G, Gong Z, Shen H, Song Y, Bai F, Zhao ZK (2014) Simultaneous utilization of glucose and mannose from spent yeast cell mass for lipid production by Lipomyces starkeyi. Bioreourse Technol 158:383–387
Yu X, Dong T, Zheng Y, Miao C, Chen S (2015) Investigations on cell disruption of oleaginous microorganisms: hydrochloric acid digestion is an effective method for lipid extraction. Eur J Lipid Sci Tech 117(5):730–737
Zhang X, Yan S, Tyagi RD, Surampalli RY, Valero JR (2014) Lipid production from Trichosporon oleaginosus cultivated with pretreated secondary wastewater sludge. Fuel 134:274–282
Zhao X, Wu S, Hu C, Wang Q, Hua Y, Zhao ZK (2010) Lipid production from Jerusalem artichoke by Rhodosporidium toruloides Y4. J Ind Microbiol Biotechnol 37(6):581–585
Zheng Z, Zou J (2001) The initial step of the glycerolipid pathway identification of glycerol 3-phosphate/dihydroxyacetone phosphate dual substrate acyltransferases in Saccharomyces cerevisiae. J Biol Chem 276(45):41710–41716