Pest categorisation of non-EU *Monochamus* spp.

EFSA Panel on Plant Health (PLH),
Claude Bragard, Katharina Dehnen-Schmutz, Francesco Di Serio, Paolo Gonthier,
Marie-Agnès Jacques, Josep Anton Jaques Miret, Annemarie Fejer Justesen, Alan MacLeod,
Christe Sven Magnusson, Juan A Navas-Cortes, Stephen Parnell, Roel Potting,
Philippe Lucien Reignault, Hans-Hermann Thulke, Wopke Van der Werf, Antonio Vicent Civera,
Jonathan Yuen, Lucia Zappalà, Jean-Claude Grégoire, Virág Kertész and Panagiotis Milonas

Abstract

The Panel on Plant Health performed a pest categorisation of non-EU *Monochamus* spp., a well-defined insect genus in the family Cerambycidae (Insecta: Coleoptera). Species can be identified using taxonomic keys at national and regional level, and DNA barcoding. Two online world catalogues exist for the genus. The genus includes about one hundred species and many subspecies colonising conifers and non-conifer trees in many areas in the world. The non-EU species are listed in Annex IAI of Council Directive 2000/29/EC. Although *Monochamus* spp. colonise weakened or dead trees and have therefore no direct impact, some species vector the pine wood nematode, *Bursaphelenchus xylophilus*, which they inoculate to healthy trees when they proceed to maturation feeding on twigs, causing high mortality among pines in Asia and the EU (Portugal). Sixteen species in Asia and America attack conifers. The main pathways for entry are raw untreated wood and wood products, wood packaging material, particle wood and waste wood, finished wood products and hitchhiking. *Monochamus* species were categorised in two groups. The first group includes 16 species colonising conifers and absent in the EU known or likely to vector the pine wood nematode. The species in this group satisfy all the criteria to be considered as Union quarantine pests. Measures are in place to prevent the introduction of *Monochamus* with coniferous wood. The second group gathers all the remaining species, all non-EU species colonising non-conifers. These do not satisfy all the criteria to be considered as Union quarantine pests. As plants for planting are not a pathway for *Monochamus* spp., and as most of the species within these groups are absent from the EU territory, the two groups do not meet the criteria to be considered as regulated non-quarantine pests.

© 2018 European Food Safety Authority. *EFSA Journal* published by John Wiley and Sons Ltd on behalf of European Food Safety Authority.

Keywords: European Union, pest risk, plant health, quarantine, sawyer beetles, pine wood nematode, *Bursaphelenchus xylophilus*

Requestor: European Commission

Question number: EFSA-Q-2017-00369

Correspondence: alpha@efsa.europa.eu
Panel members: Claude Bragard, Katharina Dehnen-Schmutz, Francesco Di Serio, Paolo Gonthier, Marie-Agnès Jacques, Josep Anton Jaques Miret, Anne Marie Fejer Justesen, Alan MacLeod, Christer Sven Magnusson, Panagiotis Milonas, Juan A. Navas-Cortes, Stephen Parnell, Roel Potting, Philippe L. Reignault, Hans-Hermann Thulke, Wopke Van der Werf, Antonio Vicent, Jonathan Yuen, Lucia Zappalà

Acknowledgements: The Panel wishes to acknowledge all European competent institutions, Member State bodies and other organisations that provided data for this scientific output.

Suggested citation: EFSA Plant Health Panel (EFSA PLH Panel), Bragard C, Dehnen-Schmutz K, Di Serio F, Gonthier P, Jacques MA, Jaques Miret JA, Fejer Justesen A, MacLeod A, Magnusson CS, Navas-Cortes JA, Parnell S, Potting R, Reignault PL, Thulke H-H, Van der Werf W, Vicent Civera A, Yuen J, Zappalà L, Grégoire J-C, Kertész V and Milonas P, 2018. Scientific Opinion on the pest categorisation of non-EU *Monochamus* spp. EFSA Journal 2018;16(11):5435, 35 pp. https://doi.org/10.2903/j.efsa.2018.5435

ISSN: 1831-4732

© 2018 European Food Safety Authority. *EFSA Journal* published by John Wiley and Sons Ltd on behalf of European Food Safety Authority.

This is an open access article under the terms of the Creative Commons Attribution-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited and no modifications or adaptations are made.

The EFSA Journal is a publication of the European Food Safety Authority, an agency of the European Union.
Table of contents

Abstract ... 1
1. Introduction ... 4
1.1. Background and Terms of Reference as provided by the requestor .. 4
1.1.1. Background .. 4
1.1.2. Terms of Reference .. 4
1.1.2.1. Terms of Reference: Appendix 1 .. 5
1.1.2.2. Terms of Reference: Appendix 2 .. 6
1.1.2.3. Terms of Reference: Appendix 3 .. 7
1.2. Interpretation of the Terms of Reference .. 8
2. Data and methodologies ... 9
2.1. Data .. 9
2.1.1. Literature search .. 9
2.1.2. Database search ... 9
2.2. Methodologies ... 9
3. Pest categorisation .. 11
3.1. Identity and biology of the pest .. 11
3.1.1. Identity and taxonomy ... 11
3.1.2. Biology of the pest ... 12
3.1.3. Intraspecific diversity ... 13
3.1.4. Detection and identification of the pest .. 13
3.2. Pest distribution ... 13
3.2.1. Pest distribution outside the EU ... 13
3.2.2. Pest distribution in the EU ... 17
3.3. Regulatory status .. 18
3.3.1. Council Directive 2000/29/EC ... 18
3.3.2. Legislation addressing the hosts of Monochamus spp. .. 18
3.3.3. Legislation addressing the organisms vectored by Monochamus spp. (Directive 2000/29/EC) . 19
3.4. Entry, establishment and spread in the EU .. 19
3.4.1. Host range ... 19
3.4.2. Entry ... 19
3.4.3. Establishment .. 19
3.4.3.1. EU distribution of main host plants ... 20
3.4.3.2. Climatic conditions affecting establishment ... 20
3.4.4. Spread .. 21
3.5. Impacts .. 21
3.6. Availability and limits of mitigation measures ... 22
3.6.1. Identification of additional measures .. 22
3.6.1.1. Additional control measures ... 22
3.6.1.2. Additional supporting measures .. 22
3.6.1.3. Biological or technical factors limiting the feasibility and effectiveness of measures to prevent the entry, establishment and spread of the pest .. 23
3.7. Uncertainty ... 23
4. Conclusions .. 23
References ... 26
Abbreviations ... 28
Appendix A – Monochamus species and subspecies according to the two world catalogues 30
Appendix B – Host plants and geographic distribution of non-EU Monochamus spp. attacking conifers (data from the two world catalogues pooled; Pinus underlined). ... 35
1. Introduction

1.1. Background and Terms of Reference as provided by the requestor

1.1.1. Background

Council Directive 2000/29/EC\(^1\) on protective measures against the introduction into the Community of organisms harmful to plants or plant products and against their spread within the Community establishes the present European Union plant health regime. The Directive lays down the phytosanitary provisions and the control checks to be carried out at the place of origin on plants and plant products destined for the Union or to be moved within the Union. In the Directive's 2000/29/EC annexes, the list of harmful organisms (pests) whose introduction into or spread within the Union is prohibited, is detailed together with specific requirements for import or internal movement.

Following the evaluation of the plant health regime, the new basic plant health law, Regulation (EU) 2016/2031\(^2\) on protective measures against pests of plants, was adopted on 26 October 2016 and will apply from 14 December 2019 onwards, repealing Directive 2000/29/EC. In line with the principles of the above mentioned legislation and the follow-up work of the secondary legislation for the listing of EU regulated pests, EFSA is requested to provide pest categorizations of the harmful organisms included in the annexes of Directive 2000/29/EC, in the cases where recent pest risk assessment/pest categorisation is not available.

1.1.2. Terms of Reference

EFSA is requested, pursuant to Article 22(5.b) and Article 29(1) of Regulation (EC) No 178/2002\(^3\), to provide scientific opinion in the field of plant health.

EFSA is requested to prepare and deliver a pest categorisation (step 1 analysis) for each of the regulated pests included in the appendices of the annex to this mandate. The methodology and template of pest categorisation have already been developed in past mandates for the organisms listed in Annex II Part A Section II of Directive 2000/29/EC. The same methodology and outcome is expected for this work as well.

The list of the harmful organisms included in the annex to this mandate comprises 133 harmful organisms or groups. A pest categorisation is expected for these 133 pests or groups and the delivery of the work would be stepwise at regular intervals through the year as detailed below. First priority covers the harmful organisms included in Appendix 1, comprising pests from Annex II Part A Section I and Annex II Part B of Directive 2000/29/EC. The delivery of all pest categorisations for the pests included in Appendix 1 is June 2018. The second priority is the pests included in Appendix 2, comprising the group of Cicadellidae (non-EU) known to be vector of Pierce's disease (caused by Xylella fastidiosa), the group of Tephritidae (non-EU), the group of potato viruses and virus-like organisms, the group of viruses and virus-like organisms of Cydonia Mill., Fragaria L., Malus Mill., Prunus L., Pyrus L., Ribes L., Rubus L. and Vitis L. and the group of Margarodes (non-EU species). The delivery of all pest categorisations for the pests included in Appendix 2 is end 2019. The pests included in Appendix 3 cover pests of Annex I part A section I and all pests categorisations should be delivered by end 2020.

For the above mentioned groups, each covering a large number of pests, the pest categorisation will be performed for the group and not the individual harmful organisms listed under “such as” notation in the Annexes of the Directive 2000/29/EC. The criteria to be taken particularly under consideration for these cases, is the analysis of host pest combination, investigation of pathways, the damages occurring and the relevant impact.

Finally, as indicated in the text above, all references to ‘non-European’ should be avoided and replaced by ‘non-EU’ and refer to all territories with exception of the Union territories as defined in Article 1 point 3 of Regulation (EU) 2016/2031.

\(^1\) Council Directive 2000/29/EC of 8 May 2000 on protective measures against the introduction into the Community of organisms harmful to plants or plant products and against their spread within the Community. OJ L 169/1, 10.7.2000, p. 1–112.

\(^2\) Regulation (EU) 2016/2031 of the European Parliament of the Council of 26 October 2016 on protective measures against pests of plants. OJ L 317, 23.11.2016, p. 4–104.

\(^3\) Regulation (EC) No 178/2002 of the European Parliament and of the Council of 28 January 2002 laying down the general principles and requirements of food law, establishing the European Food Safety Authority and laying down procedures in matters of food safety. OJ L 31/1, 1.2.2002, p. 1–24.
1.1.2.1. Terms of Reference: Appendix 1

List of harmful organisms for which pest categorisation is requested. The list below follows the annexes of Directive 2000/29/EC.

Annex IIAI

(a) Insects, mites and nematodes, at all stages of their development

- *Aleurocanthus* spp.
- *Anthonomus bisignifer* (Schenkling)
- *Anthonomus signatus* (Say)
- *Aschistonyx eppoi* Inouye
- *Carposina niponensis* Walsingham
- *Enarmonia packardi* (Zeller)
- *Enarmonia prunivora* Walsh
- *Grapholita inopinata* Heinrich
- *Hisshomonus phycitis*
- *Leucaspis japonica* Ckll.
- *Listronotus bonariensis* (Kuschel)

(b) Bacteria

- *Citrus variegated chlorosis* F. W. Dye
- *Erwinia stewartii* (Smith)

(c) Fungi

- *Alternaria alternata* (Fr.) Keissler (non-EU pathogenic isolates)
- *Anisogramma anomala* (Peck) E. Müller
- *Apiosporina morbosa* (Schwein.) v. Arx
- *Ceratocystis virescens* (Davidson) Moreau
- *Cercoseptoria pini-densiflorae* (Hori and Nambu) Deighton
- *Cercospora angolensis* Carv. and Mendes

(d) Virus and virus-like organisms

- *Beet curly top virus* (non-EU isolates)
- *Black raspberry latent virus*
- *Blight and blight-like* Palm lethal yellowing mycoplasm
- *Cadang-Cadang viroid*
- *Citrus tristeza virus* (non-EU isolates)
- *Leprosis* Witches’ broom (MLO)

Annex IIB

(a) Insect mites and nematodes, at all stages of their development

- *Anthonomus grandis* (Boh.)
- *Cephalcia lariciphila* (Klug)
- *Dendroctonus micans* Kugelan
- *Gilphinia hercyniae* (Hartig)
- *Goniipterus scutellatus* Gyll.
- *Ips amitinus* Eichhof
- *Ips cembrae* Heer
- *Ips duplicatus* Sahlberg
- *Ips sexdentatus* Börner
- *Ips typographus* Heer
- *Sternochetus mangiferae* Fabricius
(b) **Bacteria**

Curtobacterium flaccumfaciens pv. flaccumfaciens *(Hedges)* Collins and Jones

(c) **Fungi**

Glomerella gossypii Edgerton

Hypoxylon mammatum *(Wahl.)* J. Miller

Gremmeniella abietina *(Lag.)* Morelet

1.1.2.2. Terms of Reference: Appendix 2

List of harmful organisms for which pest categorisation is requested per group. The list below follows the categorisation included in the annexes of Directive 2000/29/EC.

Annex IAI

(a) **Insects, mites and nematodes, at all stages of their development**

Group of Cicadellidae (non-EU) known to be vector of Pierce’s disease (caused by *Xylella fastidiosa*), such as:

1) *Carneocephala fulgida* Nottingham

2) *Draeculacephala minerva* Ball

Group of Tephritidae (non-EU) such as:

1) *Anastrepha fraterculus* *(Wiedemann)*

2) *Anastrepha ludens* *(Loew)*

3) *Anastrepha obliqua* Macquart

4) *Anastrepha suspensa* *(Loew)*

5) *Dacus ciliatus* Loew

6) *Dacus curcurbitae* Coquillet

7) *Dacus dorsalis* Hendel

8) *Dacus tryoni* *(Froggatt)*

9) *Dacus tsuneonis* Miyake

10) *Dacus zonatus* Saund.

11) *Epochra canadensis* *(Loew)*

(c) **Viruses and virus-like organisms**

Group of potato viruses and virus-like organisms such as:

1) Andean potato latent virus

2) Andean potato mottle virus

3) Arracacha virus B, oca strain

4) Potato black ringspot virus

5) Potato virus T

6) non-EU isolates of potato viruses A, M, S, V, X and Y (including Yo, Yn and Yc) and Potato leafroll virus

Group of viruses and virus-like organisms of *Cydonia Mill.*, *Fragaria L.*, *Malus Mill.*, *Prunus L.*, *Pyrus L.*, *Ribes L.*, *Rubus L.* and *Vitis L.*, such as:

1) Blueberry leaf mottle virus

2) Cherry rasp leaf virus *(American)*

3) Peach mosaic virus *(American)*

4) Peach phony rickettsia

5) Peach rosette mosaic virus

6) Peach rosette mycoplasm

7) Peach X-disease mycoplasm

8) Peach yellows mycoplasm

9) Plum line pattern virus *(American)*

10) Raspberry leaf curl virus *(American)*

11) Strawberry witches’ broom mycoplasm

12) Non-EU viruses and virus-like organisms of *Cydonia Mill.*, *Fragaria L.*, *Malus Mill.*, *Prunus L.*, *Pyrus L.*, *Ribes L.*, *Rubus L.* and *Vitis L.*
Annex II A1

(a) Insects, mites and nematodes, at all stages of their development

Group of Margarodes (non-EU species) such as:

1) Margarodes vitis (Phillipi)
2) Margarodes vredendalensis de Klerk
3) Margarodes prieskaensis Jakubski

1.1.2.3. Terms of Reference: Appendix 3

List of harmful organisms for which pest categorisation is requested. The list below follows the annexes of Directive 2000/29/EC.

Annex IIA1

(a) Insects, mites and nematodes, at all stages of their development

Taxon	Name	Author
Acleris spp. (non-EU)	Longidorus diadecturus	Eveleigh and Allen
Amauromyza maculosa (Malloch)	Monochamus spp. (non-EU)	
Anomala orientalis Waterhouse	Myndus crudus	Van Duzee
Arrhenodes minutus Drury	Nacobbhus aberrans (Thorne)	Thorne and Allen
Choristoneura spp. (non-EU)	Naupactus leucoloma	Boheman
Conotrachelus nenuphar (Herbst)	Premnotypes spp. (non-EU)	
Dendrolimus sibiricus Tschevekik	Pseudopityophthorus minutissimus (Zimmermann)	
Diabrotica barberi Smith and Lawrence	Pseudopityophthorus pruinuosus (Eichhoff)	
Diabrotica undecimpunctata howardi Barber	Scaphoideus luteolus (Van Duzee)	
Diabrotica undecimpunctata undecimpunctata Mannerheim	Spodoptera eridania (Cramer)	
Diabrotica virgifera zeae Krysan & Smith	Spodoptera frugiperda (Smith)	
Diaphorina citri Kuway	Spodoptera litura (Fabricus)	
Heliothis zea (Boddie)	Thrips palmi Karny	
Hirschmanniella spp., other than Hirschmanniella gracilis (de Man) Luc and Goodey	Xiphinema americanum Cobb sensu lato (non-EU populations)	
Liriomyza sativae Blanchard	Xiphinema californicum Lamberti and Bleve-Zacheo	

(b) Fungi

Taxon	Name	Author	
Ceratocystis fagacearum (Bretz) Hunt	Mycosphaerella larici-leptolepis	Ito et al.	
Chrysomyxa arctostaphyli Dietel	Mycosphaerella populorum G. E. Thompson		
Cronartium spp. (non-EU)	Phoma andina	Turkensteen	
Endocronartium spp. (non-EU)	Phyllosticta solitaria Ell. and Ev.		
Guignardia laricina (Saw.) Yamamoto and Ito	Septoria lycopersici Spec. var. malagutii Ciccarone and Boerema		
Gymnosporangium spp. (non-EU)	Trechispora solani	Barrus	
Inonotus weirii (Murril) Kotlaba and Pouzar	Thecaphora brinkmannii (Bresad.) Rogers		
Melampsora farlowii (Arthur) Davis			

(c) Viruses and virus-like organisms

Taxon	Name	
Tobacco ringspot virus	Pepper mild tigré virus	
Tomato ringspot virus	Squash leaf curl virus	
Bean golden mosaic virus	Euphorbia mosaic virus	
Cowpea mild mottle virus	Florida tomato virus	
Lettuce infectious yellows virus		

(d) Parasitic plants

Taxon	Name	
Arceuthobium spp. (non-EU)		
Annex IAII

(a) Insects, mites and nematodes, at all stages of their development

Meloidogyne fallax Karssen
Rhizoecus hibisci Kawai and Takagi
Popillia japonica Newman

(b) Bacteria

Clavibacter michiganensis (Smith) Davis et al.
Ralstonia solanacearum (Smith) Yabuuchi et al.

(c) Fungi

Melampsora medusae Thümen
Synchytrium endobioticum (Schilbersky) Percival

Annex IB

(a) Insects, mites and nematodes, at all stages of their development

Leptinotarsa decemlineata Say
Liriomyza bryoniae (Kaltenbach)

(b) Viruses and virus-like organisms

Beet necrotic yellow vein virus

1.2. Interpretation of the Terms of Reference

In Council Directive 2000/29/EC, *Monochamus* spp. are listed as *Monochamus* spp. (non-European). In this opinion, we focus on *Monochamus* spp. not present in EU countries.

Monochamus spp. (non EU species) are listed in the Appendices to the Terms of Reference (ToR) to be subject to pest categorisation to determine whether they fulfil the criteria of quarantine pests or those of regulated non-quarantine pests for the area of the EU excluding Ceuta, Melilla and the outermost regions of Member States (MS) referred to in Article 355(1) of the Treaty on the Functioning of the European Union (TFEU), other than Madeira and the Azores.

Monochamus spp. do not qualify as pests by themselves, as they attack weakened or dead trees (Akbulut and Stamps, 2012; Akbulut et al., 2017; Ethington, 2015; Hellrigl, 1970). However, 13 species in the genus (*M. alternatus*, *M. carolinensis*, *M. galloprovincialis*, *M. marmorator*, *M. mutator*, *M. nitens*, *M. notatus*, *M. obtusus*, *M. saltuarius*, *M. scutellatus*, *M. sutor*, *M. titillator* and *M. urussovii*) can vector the pine wood nematode (*PWN*), *Bursaphelenchus xylophilus*, responsible for the pine wilt disease (PWD) in North America, Asia and Europe (Akbulut and Stamps, 2012; Akbulut et al., 2017), which is present in Portugal and transient in Spain (EPPO, 2018). The fact that *Monochamus* species native to Asia (*M. alternatus*) and to Europe (*M. galloprovincialis*) are able to vector the North American PWN suggests that all *Monochamus* species using PWN host plants are potential vectors for the PWN (Akbulut and Stamps 2012; Akbulut et al., 2017). This opinion will thus focus on the *Monochamus* species (listed in Appendix B) attacking pines and, more generally, conifers. It should be noted that five of these species (*M. galloprovincialis*, *M. urussovii*, *M. saltuarius*, *M. sutor* and *M. sartor*) do occur in the EU, but are also present in third countries where the pine wood nematode is present. However, the introduction of PWN-infected *Monochamus* species should be limited by the import requirements as specified in Council Directive 2000/29/EC. Non-EU *Monochamus* species are considered in this opinion because they could become new vectors of the PWN within the EU territory.

It should be noted that *Monochamus* species are also associated with the transmission of fungal tree pathogens including Dutch elm disease, chestnut blight, dieback of balsam fir, oak wilt and hypoxylon canker (Donley, 1959; Linsley, 1961; Nord and Night, 1972; Ostry and Anderson, 1995; Alisson et al., 2004). It is uncertain how important *Monochamus* spp. are as vectors of these fungal pathogens.
2. Data and methodologies

2.1. Data

2.1.1. Literature search

A literature search on Monochamus spp. was conducted at the beginning of the categorisation in the ISI Web of Science bibliographic database, using the scientific name of the genus as search term. Relevant papers were reviewed and further references and information were obtained from experts, as well as from citations within the references and grey literature.

2.1.2. Database search

Pest information, on host(s) and distribution, was retrieved from the European and Mediterranean Plan Protection Organization (EPPO) Global Database (EPPO, 2018) and relevant publications.

Data about the import of commodity types that could potentially provide a pathway for the pest to enter the EU and about the area of hosts grown in the EU were obtained from EUROSTAT (Statistical Office of the European Communities).

The Europhyt database was consulted for pest-specific notifications on interceptions and outbreaks. Europhyt is a web-based network run by the Directorate General for Health and Food Safety (DG SANTE) of the European Commission, and is a subproject of PHYSAN (Phyto-Sanitary Controls) specifically concerned with plant health information. The Europhyt database manages notifications of interceptions of plants or plant products that do not comply with EU legislation, as well as notifications of plant pests detected in the territory of the Member States (MS) and the phytosanitary measures taken to eradicate or avoid their spread.

2.2. Methodologies

The Panel performed the pest categorisation for Monochamus spp., following guiding principles and steps presented in the EFSA guidance on quantitative pest risk assessment (EFSA PLH Panel, 2018) and in the International Standard for Phytosanitary Measures No 11 (FAO, 2013) and No 21 (FAO, 2004).

This work was initiated following an evaluation of the EU plant health regime. Therefore, to facilitate the decision-making process, in the conclusions of the pest categorisation, the Panel addresses explicitly each criterion for a Union quarantine pest and for a Union regulated non-quarantine pest in accordance with Regulation (EU) 2016/2031 on protective measures against pests of plants, and includes additional information required in accordance with the specific terms of reference received by the European Commission. In addition, for each conclusion, the Panel provides a short description of its associated uncertainty.

Table 1 presents the Regulation (EU) 2016/2031 pest categorisation criteria on which the Panel bases its conclusions. All relevant criteria have to be met for the pest to potentially qualify either as a quarantine pest or as a regulated non-quarantine pest. If one of the criteria is not met, the pest will not qualify. A pest that does not qualify as a quarantine pest may still qualify as a regulated non-quarantine pest that needs to be addressed in the opinion. For the pests regulated in the protected zones only, the scope of the categorisation is the territory of the protected zone; thus, the criteria refer to the protected zone instead of the EU territory.

It should be noted that the Panel’s conclusions are formulated respecting its remit and particularly with regard to the principle of separation between risk assessment and risk management (EFSA founding regulation (EU) No 178/2002); therefore, instead of determining whether the pest is likely to have an unacceptable impact, the Panel will present a summary of the observed pest impacts. Economic impacts are expressed in terms of yield and quality losses and not in monetary terms, whereas addressing social impacts is outside the remit of the Panel.
Table 1: Pest categorisation criteria under evaluation, as defined in Regulation (EU) 2016/2031 on protective measures against pests of plants (the number of the relevant sections of the pest categorisation is shown in brackets in the first column)

Criterion of pest categorisation	Criterion in Regulation (EU) 2016/2031 regarding Union quarantine pest	Criterion in Regulation (EU) 2016/2031 regarding protected zone quarantine pest (articles 32–35)	Criterion in Regulation (EU) 2016/2031 regarding Union regulated non-quarantine pest
Identity of the pest (Section 3.1)	Is the identity of the pest established, or has it been shown to produce consistent symptoms and to be transmissible?	Is the identity of the pest established, or has it been shown to produce consistent symptoms and to be transmissible?	Is the identity of the pest established, or has it been shown to produce consistent symptoms and to be transmissible?
Absence/presence of the pest in the EU territory (Section 3.2)	Is the pest present in the EU territory? If present, is the pest widely distributed within the EU? Describe the pest distribution briefly!	Is the pest present in the EU territory? If not, it cannot be a protected zone quarantine organism	Is the pest present in the EU territory? If not, it cannot be a regulated non-quarantine pest. (A regulated non-quarantine pest must be present in the risk assessment area)
Regulatory status (Section 3.3)	If the pest is present in the EU but not widely distributed in the risk assessment area, it should be under official control or expected to be under official control in the near future	The protected zone system aligns with the pest free area system under the International Plant Protection Convention (IPPC) The pest satisfies the IPPC definition of a quarantine pest that is not present in the risk assessment area (i.e. protected zone)	Is the pest regulated as a quarantine pest? If currently regulated as a quarantine pest, are there grounds to consider its status could be revoked?
Pest potential for entry, establishment and spread in the EU territory (Section 3.4)	Is the pest able to enter into, become established in, and spread within, the EU territory? If yes, briefly list the pathways!	Is the pest able to enter into, become established in, and spread within, the protected zone areas? Is entry by natural spread from EU areas where the pest is present possible?	Is spread mainly via specific plants for planting, rather than via natural spread or via movement of plant products or other objects? Clearly state if plants for planting is the main pathway!
Potential for consequences in the EU territory (Section 3.5)	Would the pests’ introduction have an economic or environmental impact on the EU territory?	Would the pests’ introduction have an economic or environmental impact on the protected zone areas?	Does the presence of the pest on plants for planting have an economic impact, as regards the intended use of those plants for planting?
Available measures (Section 3.6)	Are there measures available to prevent the entry into, establishment within or spread of the pest within the EU such that the risk becomes mitigated?	Are there measures available to prevent the entry into, establishment within or spread of the pest within the protected zone areas such that the risk becomes mitigated? Is it possible to eradicate the pest in a restricted area within 24 months (or a period longer than 24 months where the biology of the organism so justifies) after the presence of the pest was confirmed in the protected zone?	Are there measures available to prevent pest presence on plants for planting such that the risk becomes mitigated?
The Panel will not indicate in its conclusions of the pest categorisation whether to continue the risk assessment process, but following the agreed two-step approach, will continue only if requested by the risk managers. However, during the categorisation process, experts may identify key elements and knowledge gaps that could contribute significant uncertainty to a future assessment of risk. It would be useful to identify and highlight such gaps so that potential future requests can specifically target the major elements of uncertainty, perhaps suggesting specific scenarios to examine.

3. Pest categorisation

3.1. Identity and biology of the pest

3.1.1. Identity and taxonomy

Is the identity of the pest established, or has it been shown to produce consistent symptoms and to be transmissible?
Yes, the identity of the species of the genus Monochamus is generally well established. The different species can be identified using taxonomic keys at national and regional level, and DNA barcoding. However, no taxonomic key at the world level is currently available.

Monochamus Dejean is an insect genus in the family Cerambycidae, subfamily Lamiinae (Arthropoda: Coleoptera). Presently, two online catalogues provide global information worldwide: Titan (http://titan.gbif.fr/), managed by G. Tavakilian and H. Chevillotte at the Museum National d’Histoire Naturelle (MNHN) and the Institut de recherche pour le développement (IRD), Paris, and the Photographic Catalogue of the Cerambycidae of the World (New World: https://apps2.cdfa.ca.gov/publicApps/plant/bycidDB/wdefault.asp?w=n; Old World: https://apps2.cdfa.ca.gov/publicApps/plant/bycidDB/wresults.asp?w=o), hosted by the California Department of Food and Agriculture (CDFA), managed by Larry G. Bezark and referred to hereunder as Bezark (2018a,b) respectively. Appendix A provides a synthetic view of these databases.

The European Monochamus species are listed in the Fauna Europaea (https://fauna-eu.org/online-databases).

There are some discrepancies regarding the total number of species/subspecies of the genus. Cesari et al. (2005), citing Hellrigl (1970), report 163 species worldwide, Tavakilian and Chevillotte (2018) report 94 species and 16 subspecies, and Bezark (2018a,b) reports 102 species and 76 subspecies. The taxonomic level of various taxa (species vs. subspecies) also varies according to the different sources (Appendix A).

Several confusing taxonomic conflicts must be mentioned. One of the five species that occur also in the EU, listed as M. rosenmuelleri in Fauna Europaea is recorded as M. urussovi by Tavakilian and Chevillotte (2018) and as M. sutor rosenmuelleri by Bezark (2018b). There is a claim (e.g. Wu et al., 2017) that M. urussovi (Fisher-Waldheim, 1806) should be M. urusovii (Fisher von Waldheim), and the literature is split between these two names (e.g. Bezark (2018b) and Tavakilian and Chevillotte (2018) use ‘urussovi’, the EPPO Global Database uses ‘urussovi’). M. carolinensis, described by Akbulut and Stamps (2012) as the most important vector of PWN in the USA and generally accepted as a valid species (e.g. McNamara and Bousquet, 1991; Monné and Giesbert, 1995; Bezark, 2018a), is listed as M. dentator by Tavakilian and Chevillotte (2018) (Appendix A).

A series of national or regional taxonomic keys are available, e.g. Bense (1995), Danilevsky (2003), Harde (1966), Linsley and Chemsak (1984), McNamara and Bousquet (1991), Monné and Giesbert
(1995), Muyaert (1990), Picard (1929), Sama (2002), Wallin et al. (2013). Cesari et al. (2005) provide an analysis of the taxonomy and phylogeny of the five European Monochamus species, using molecular and karyological data. DNA barcoding has also been used to identify Monochamus larvae (Hodgetts et al., 2016; Wu et al., 2017).

Considering the large number of species in the genus Monochamus, as well as the limited information available for most of them, we consider hereunder two groups of species: those attacking conifers, which are either known or likely vectors of the PWN, and those attacking only non-conifer hosts. We shall also remain at the species level, not considering the largely unresolved issue of subspecies.

Tavakilian and Chevillotte (2018) and Bezark (2018a,b) list nine non-European species attacking conifers in Asia, and seven species in North America: M. alternatus; M. basifossulatus; M. carolinensis; M. clamator; M. dentator; (= M. carolinensis); M. grandis; M. guerryi; M. impluviatius; M. marmorator; M. niten; M. notatus; M. obtusus; M. scutellatus; M. subfasciatus; M. talianus; M. titillator. In addition to these, the five European species, M. galloprovincialis, M. saltuarius, M. sartor; M. sutor; M. urussovi, also attack conifers.

The host plants and geographic distribution of these 21 species are listed in Appendix B.

3.1.2. Biology of the pest

Monochamus spp. feed on conifers and/or broad-leaved trees, attacking weakened, dying or freshly cut trees and are viewed as secondary pests (Akbulut et al., 2017). The species attacking conifers colonise trees of the genera Pinus L., Picea Mill., Abies Mill., Cedrus Trew, Juniperus L., Cryptomeria D. Don., Tsuga Carriere, and Pseudotsuga Carriere.

The biology of Monochamus spp. is summarised in a series of reviews. Hellrigl (1970) describes the biology of the European species (M. sartor, M. urussovi, M. sutor, M. galloprovincialis and M. saltuarius). Akbulut and Stamps (2012) review the biology of 13 species worldwide: M. carolinensis (=M. dentator), M. scutellatus; M. titillator; M. mutator, M. obtusus, M. notatus, M. marmorator, M. alternatus, M. niten, M. saltuarius, M. urussovi, M. sutor and M. galloprovincialis. This section mainly summarises these reviews.

The eggs are laid singly or in little groups in a slit or a pit made by the female’s mandibles in the bark of weakened or recently dead trees. According to species, they are laid in various parts of the trees, including smaller branches down to 2 cm in diameter. Thin bark is preferred by some species, such as M. alternatus (Kobayashi et al., 1984). Fecundity varies between and within species. For example, tested on logs, M. galloprovincialis was found to lay an average of 67 eggs in Pinus pinaster in Portugal (Naves et al., 2006), 126 eggs in Pinus sylvestris and 57 eggs in Pinus nigra in Turkey (Akbulut, 2009) and 138 eggs in P. sylvestris in France (Koutroumpa et al., 2008). The early larval instars develop entirely under the bark. Late instars construct galleries in the sapwood where they bore oval shaped galleries. Cannibalism has been observed to exert a high impact on the larvae. For example, it reduced the immature survival of M. carolinensis to 6–15% in the laboratory (Akbulut et al., 2004). Pupation occurs at the end of the larval gallery, in a chamber plugged with wood shavings, close to the surface. Metamorphosis occurs in the pupal niche, in which the young adults still spend a few days before emerging through a round hole in the bark. After emergence, the adults need to feed on the living bark of young twigs for sexual maturation. This phase is obligatory before oviposition. There is a wide between- and within-species variation in adult longevity, from ca. 1 month to 5 months. Within any Monochamus species, specific host preferences are observed. For example, M. alternatus attacks 18 Pinus species, 3 Picea species and 1 species of Abies, Cedrus and Larix (Kobayashi, 1988).

Depending on the species and also on the geographic location, the time of the year when oviposition occurs, the host species and the possible occurrence of larval diapause, Monochamus spp. can be multivoltine (several generations per year), univoltine or semivoltine (life cycle in more than 1 year) (Akbulut et al., 2017). In Portugal and in France, respectively, 5% and 8.1% of a sample of M. galloprovincialis completed their life cycle in 2 years, whilst the bulk of the insects took only one year (Koutroumpa et al., 2008; Naves et al., 2008).

Thirteen species are known so far to vector the PWN (Akbulut and Stamps 2012; Akbulut et al., 2017; EPPO GB 2018; CABI CPC 2018; see Table 2). The nematodes develop through four juvenile stages before reaching the adult stage. In wood infested with Monochamus spp., nematode populations build up through the propagative lifecycle, but during pupation of the beetle the nematodes change their life strategy by entering the dispersal life cycle. In close proximity with the pupal chamber, a special juvenile stage of the nematode (the third dispersal stage) accumulates in the adjacent wood. During pupation of
the beetle this juvenile stage moults to the fourth dispersal stage (the dauerlarva) which invade the pupal chamber, and after the eclosion of the beetle, the dauerlarvae enter the tracheal system (Mamiya, 1984). The dauerlarvae leave the beetle to enter the feeding scars made by the beetle on the twigs of healthy trees or when females oviposit in the bark of weakened or dead host.

The most important and effective vectors of the PWN are *M. carolinensis* in the USA, *M. alternatus* in Eastern Asia, and *M. galloprovincialis* in Europe (Akbulut et al., 2017).

3.1.3. Intraspecific diversity

Tavakilian and Chevillotte (2018) report 94 species and 16 subspecies, and Bezark (2018a,b) reports 102 species and 76 subspecies. The taxonomic level of various taxa (species vs. subspecies) also varies according to the different sources (Appendix A). Tavakilian and Chevillotte (2018) list nine non-European species and five subspecies attacking conifers in Asia, and seven species and six subspecies in North America. Bezark (2018a,b) reports nine species and 14 subspecies in Asia, and six species and 19 subspecies in North America (Appendix A).

The study of the intraspecific diversity within the genus *Monochamus* is still largely in progress. For example, a recent work by Haran et al. (2017) using polymorphic microsatellites and samples from 45 European locations has shown that five distinct populations of *M. galloprovincialis* exist in Europe. On the other hand, this study did not find any support to validate the distinction between two subspecies made so far in Europe (e.g. *Fauna Europaea* 2018), *M. galloprovincialis galloprovincialis* and *M. galloprovincialis pistor*.

3.1.4. Detection and identification of the pest

Are detection and identification methods available for the pest?

Yes, the pest can be identified visually as immatures in attacked trees, or as adults on the trunks. It can also be efficiently trapped using a pheromone, ’monochamol’ (2-undecyloxy-1-ethanol) combined with kairomones (host plant volatiles and bark-beetle pheromones).

Taxonomic keys are available and barcoding techniques have been developed (see Section 3.1.1). The trees that attract and harbour *Monochamus* spp. are weakened, dying or dead, and their needles are therefore often partly or completely discoloured. Close scrutiny may allow the detection of oviposition slits in the bark of dead or dying trees, oval-shaped larval entrance holes in the sapwood under the dead bark, or round adult exit holes in the sapwood. Larvae can also be excavated from the bark or sapwood, and adults can be found walking or resting on cut or dead wood during the growing season.

However, the most efficient detection method is trapping. *Monochamus* spp. produce a male aggregation pheromone, *monochamol* (2-undecyloxy-1-ethanol), which has been identified from *M. galloprovincialis* (Pajares et al., 2010), *M. alternatus* (Teale et al., 2011) and *M. scutellatus* (Fierke et al., 2012). Bark-beetle pheromones were also shown to attract significant numbers of *M. clamator*, *M. obtusus*, *M. notatus*, and *M. scutellatus* to baited traps (Allison et al., 2001). In Europe, Aveñez et al. (2016) identified the best combination of attractants among a range of possibilities: *monochamol* plus two bark beetle pheromones: ipsenol and methyl-butenol. This blend, plus α-pinene, deployed with black Teflon-coated cross-vane traps in the USA, Canada and China, proved efficient as well towards non-European *Monochamus* species: *M. carolinensis*, *M. mutator*, *M. notatus*, *M. s. scutellatus*; *M. obtusus*, *M. clamator*, *M. titillator* in North America; and *M. alternatus* in China (Boone et al., 2018).

3.2. Pest distribution

3.2.1. Pest distribution outside the EU

Monochamus species are widespread throughout the whole world (Appendix A). Thirteen species are known so far to vector the PWN (Table 2). Five species are present in the EU (*M. galloprovincialis*, *M. urussovii*, *M. saltuarius*, *M. sutor* and *M. sartor*), but have a wide distribution also in Asia.
Table 2: Distribution of *Monochamus* spp. which are known to be vectors of the pine wood nematode (EPPO, 2018; CABI, 2018, accessed on 6.4.2018; Akbulut and Stamps, 2012; Akbulut et al., 2017; Wallin et al., 2013). The first four species from the left are also (but not only) present in the EU.

Continent	Country	State/region	Species present in the EU	Species absent in the EU
			M. galloprovincialis	*M. urussovii*
Africa	Algeria		x	x
	Morocco		x	
	Tunisia			
America	Canada	Alberta	x	x x x
		British Columbia	x	x x x
		Manitoba	x	x
		New Brunswick	x x x	x
		Newfoundland	x	x
		Northwest Territories	x x x	x
		Nova Scotia	x	x
		Ontario	x x x	x x x
		Prince Edward Island	x	x
		Quebec	x x x	x
		Saskatchewan	x	x
		Yukon Territory		
USA	Mexico			
	USA	Alabama	x	x x
		Alaska	x	
		Arkansas	x	x x
		California	x	x
		Connecticut	x	x x
		Delaware	x	x x
		Florida	x	x x
		Georgia	x	x x
		Idaho		
		Illinois	x x	x x
		Indiana	x x	x
		Iowa	x	
		Kansas	x	
		Kentucky	x	x x
		Louisiana	x x	x x
		Maine	x x	x x
		Maryland	x	x x
		Massachusetts	x x	x x
		Michigan	x x	x
		Minnesota	x x x	x
		Mississippi	x x	x
Continent	Country	State/region	Species present in the EU	Species absent in the EU
-----------	---------	-------------	--------------------------	-------------------------
Asia	China		M. galloprovincialis	
		Anhui	x	
		Fujian	x	
		Guangdong	x	
		Guangxi	x	
		Guizhou	x	
		Hebei	x	x
		Heilongjiang	x x x	
		Hubei	x	
		Hunan	x	
		Jiangsu	x	
		Jiangxi	x	
		Jilin	x x x x	
		Liaoning	x x	
		Neimenggu	x x	
		Qinghai	x	
		Shaanxi	x	
		Shandong	x x x	
		Shanxi	x	
		Sichuan	x	
Continent	Country	State/region	Species present in the EU	Species absent in the EU
-----------	---------	-------------	--------------------------	--------------------------
Europe (non EU)				
	Albania	x		x
	Andorra	x		
	Armenia	x		
	Azerbaijan	x		
	Belarus	x	x	
	Bosnia and Herzegovina	x	x	
	Georgia	x	x	
	Macedonia	x		
	Moldova	x	x	
	Montenegro	x		
	Norway	x	x	x
	Russia	x	x	x
	Central Russia	x	x	x
	Eastern Siberia	x	x	x
	Far East	x	x	
	Northern Russia	x	x	x
	Southern Russia	x	x	x
	Western Siberia	x	x	x
3.2.2. Pest distribution in the EU

Is the pest present in the EU territory? If present, is the pest widely distributed within the EU?

Yes, five *Monochamus* species are present in the EU (Table 3) but are also distributed in several non-EU countries (Table 2).

Table 3: Current distribution of *Monochamus* species in the 28 EU MS based on information from the EPPO Global Database and *Fauna Europaea*(a)

Country	*M. galloprovincialis*	*M. saltuarius*	*M. sartor*	*M. sutor*	*M. urussovii*
Austria	Present, no details	Present, no details	Present	Present, no details	–
Belgium	–	–	–	–	–
Bulgaria	Absent, intercepted only	–	Present	Present, no details	–
Croatia	Present, no details	–	Present	Present, no details	–
Cyprus	–	–	–	–	–
Czech Republic	Present, no details	–	Present	Present, no details	–
Denmark	Present, restricted distribution	–	–	Present, no details	–
Estonia	Present, no details	–	–	Present, no details	–
Finland	Present, widespread	–	–	Present, widespread	Present, restricted distribution
France	Present, widespread Corse: Present, no details	–	Present	Present, no details	–
Germany	Present, no details	Present, restricted distribution	Present	Present, no details	–
Greece	Present, no details	–	–	–	–
Hungary	Present, no details	–	Present	Present, no details	–
Ireland	–	–	–	–	–
Italy	Present, no details Sicily: Present, no details	Present, restricted distribution	Present	Present, restricted distribution	–
3.3. Regulatory status

3.3.1. Council Directive 2000/29/EC

Non-European Monochamus species are listed in Council Directive 2000/29/EC. Details are presented in Tables 4 and 5. It should be noted that some Monochamus species present in the EU territory have a wider distribution range that includes Asian countries where the PWN is present (China, Taiwan, Japan, Korea – see Appendix B). These species could be a pathway for PWN. However, import requirements in place for host plants of PWN and coniferous wood in general will also prevent the introduction of all Monochamus species present in third countries.

Table 4: Monochamus spp. in Council Directive 2000/29/EC

Country	M. galloprovincialis	M. saltuarius	M. sartor	M. sutor	M. urussovii
Latvia	Present, no details	–	–	Present, no details	–
Lithuania	Present, no details	Present, no details	–	Present, no details	–
Luxembourg	–	–	–	–	–
Malta	–	–	–	–	–
The Netherlands	Present, restricted distribution	–	–	Present, no details	–
Poland	Present, no details	Present, no details	Present	Present, no details	Present, no details
Portugal	Present, widespread Madeira: Present, no details	–	–	–	–
Romania	Present, no details	–	Present	Present, no details	–
Slovak Republic	Present, no details	–	Present	Present, no details	–
Slovenia	Present, no details	–	Present	Present, no details	–
Spain	Present, widespread Balearic islands: Present, no details Canary islands: Present, few occurrences	-	–	Present, restricted distribution	–
Sweden	Present, no details	–	–	Present, no details	Present, no details
United Kingdom	Absent, intercepted only	–	–	Absent, intercepted only	–

-: Data not available.

(a): M. rosenmuelleri, listed in Fauna Europaea (2018), is not included in Table 3, as it is usually not considered as a species per se. Bezark (2018b), consider is as a subspecies (Monochamus sutor rosenmuelleri Cederhjelm 1798); Tavakilian and Chevillotte (2018), treat it as a synonym for M. urussovii.
3.3.2. Legislation addressing the hosts of Monochamus spp

Monochamus spp. (non-European) are listed on Annex IAI, which implies they are regulated for all plant genera and commodities. Requirements for wood and bark are specified in Council Directive 2000/29/EC Annex IVAI 1.1, 1.2, 1.5, 1.6, 1.7 and 7.3.

3.3.3. Legislation addressing the organisms vectored by Monochamus spp. (Directive 2000/29/EC)

Table 5: Organisms vectored by Monochamus spp. in Council Directive 2000/29/EC

Annex I, Part A	Harmful organisms whose introduction into, and spread within, all member states shall be banned
Section II	Harmful organisms known to occur in the community and relevant for the entire community
(a)	Insects, mites and nematodes, at all stages of their development
0.01.	*Bursaphelenchus xylophilus* (Steiner and Bührer) Nickle et al.

Detection, containment and eradication measures for Pine Wood nematode and its vector Monochamus are specified in EU Commission Decision 2012/535/EU on emergency measures to prevent the spread within the Union of *Bursaphelenchus xylophilus* (Steiner et Bührer) Nickle et al. (the pine wood nematode). These include: demarcating areas around infested areas, destruction of contaminated material, heat treatment of wood, bark and wood packaging material (56°C, 30 min), chipping wood waste (to pieces of 3 cm), hygiene protocol for forestry vehicles and transport conditions (timing and protection) of plants and wood and bark.

3.4. Entry, establishment and spread in the EU

3.4.1. Host range

As stated in Section 3.1.2, the conifer-dwelling species attack trees of the genera *Pinus*, *Picea*, *Abies*, *Cedrus*, *Juniperus*, *Cryptomeria*, *Tsuga*, *Pseudotsuga*. A detailed list of the genera colonised by each species is given in Appendix B. Many of the commodities listed in Section 3.4.2 below are made of wood of these species.

3.4.2. Entry

Is the pest able to enter into the EU territory? If yes, identify and list the pathways:

Yes, non-EU Monochamus species able to enter the EU territory, as shown by their high interception records.

Possible pathways of entry are:

1) Wood⁴ (including any wood products made from raw untreated coniferous wood)
2) Coniferous wood packaging material and dunnage
3) Particle wood and waste wood of host species of a size appropriate for larval survival
4) Finished wood products (e.g. upholstered furniture)
5) Live, long-lived adults can be transported in containers as hitchhikers.

There are existing requirements for pathways 1–3 (see Section 3.3.2).

Plants for planting are considered an unlikely pathway for non-EU Monochamus as adults attack large weakened or dead trees.

There is trade of coniferous wood products into the EU from countries where non-EU Monochamus species are present. Although there are strict requirements for wood packaging material in trade in place in the EU (following ISPM 15), there are interceptions of Monochamus on this commodity. There are 124 records of interception of Monochamus species in the Europhyt database (from 1998 to 19 June 2018). All the interception records are for wood packaging material or dunnage. There was

⁴ In line with the EPPO Study on wood commodities other than round wood, sawn wood and manufactured items (EPPO, 2015) the definition of wood includes firewood which is thus included in this pathway.
one case in England in 2013, of half a dozen *M. alternatus*, some of which living adults, found by a member of the public in a recently purchased chair (Hodgetts et al., 2016).

3.4.3. Establishment

Is the pest able to become established in the EU territory?
Yes, the host plants are widely present, and the climatic conditions of the areas of origin occur in parts of the EU territory. Biotic and abiotic conditions are thus favourable for establishment.

3.4.3.1. EU distribution of main host plants

Monochamus spp. feeding on conifers attack mostly *Pinus* spp. and other Pinaceae genera (*Abies, Larix, Picea, Cedrus, Juniperus, Cryptomeria*). These are distributed throughout the EU territory (Figure 1).

![Figure 1: The cover percentage of coniferous forests in Europe with a range of values from 0 to 100 at 1 km resolution (source: Corine Land Cover year 2012 version 18.5 by EEA)](image)

3.4.3.2. Climatic conditions affecting establishment

There are several species in the genus *Monochamus*, already present in the EU. Temperature requirements of the different species within the genus are expected to vary. However, for the non-EU *Monochamus* species occurring in temperate regions of the world no constraints on climatic conditions are expected, as specific life-history metrics seem to match closely among *Monochamus* species (Akbulut et al., 2017). Because suitable hosts occur across the EU, biotic and abiotic conditions are favourable for establishment.
3.4.4. Spread

The spread capacities of *Monochamus* species have been assessed using three different techniques: Field experiments (mainly mark-release-recaptures), flightmill experiments and modelling based on epidemiological data.

Field experiments. In Japan, Kobayashi et al. (1984), based on the distance between newly diseased trees and the site where infested logs were introduced, concluded that *M. alternatus* adults can disperse up to 3.3 km. In Spain, in mark–release–recapture experiments by Mas et al. (2013) *M. galloprovincialis* adults flew a maximum distance of 22.1 km, with ca 2% of the beetles flying further than 3 km. In other mark–release–recapture experiments, also in Spain, 5% of the beetles in one release flew ca 5 km. An interesting result from these latter trials was that the beetles were sometimes recaptured quite late (up to 105 days) after their release.

Flightmill experiments. In the US, Akbulut and Linit (1999) reported that *M. carolinensis* females flew up to 10 km. In France, *M. galloprovincialis* females, fed with small pine twigs between flying sessions, were able to fly cumulatively an average of 16 km, with a maximum of 44 km during their lifespan. In Austria, Putz et al. (2016), found that *M. sartor* cumulatively flew a mean distance of 7.5 km during their lifespan.

Models. Robinet et al. (2009) analysed the spread of the PWN in China during the period 1982-2005. They found that short distance spread averaged 7.5 km/year. In Japan, Osada et al. (2018) analysed historical records of PWD infection and vector abundance across 403 municipalities in northern Honshu during the period 1980–2011, and found that the yearly local spread of PWD (due to vector movements) was 2.2–3.6 km. Analysing the spread of PWD in Portugal between 2005 and 2015, de la Fuente et al. (2018) found a yearly spread into adjacent areas (thus due to vector movements) of 5.3 km in the average, with a maximum of 8.3 km.

The spread capacities of the various *Monochamus* species tested so far seem thus to allow single flights of a few kilometres, with cumulated flights over one beetle's lifespan reaching several tens of kilometres. This flight capacity is of course complemented by man-assisted spread, which could cover hundreds or thousands of kilometres. In their model regarding the PWN in China, Robinet et al. (2009) found that long-distance spread constituted more than 90% of the data, with an average distance of 111–339 km, depending on the calculation method.

3.5. Impacts

Monochamus spp. do not qualify as pests by themselves, as they attack weakened or dead trees. However, as a vector of PWN they contribute to epidemic outbreaks of pine wilt disease (Togashi, 1988; Yoshimura et al., 1999). The nematode has caused severe damage to pine forests in East Asia and in Europe and enormous further impacts in Europe are foreseen in terms of forest stock losses and social impact (Soliman et al., 2012). The introduction of non-EU *Monochamus* species could facilitate the introduction and spread of PWN in the EU.
3.6. Availability and limits of mitigation measures

Are there measures available to prevent the entry into, establishment within or spread of the pest within the EU such that the risk becomes mitigated?

Yes, there are import prohibitions in place for several coniferous plants and special requirements are specified for the trade of wood of conifers. Detection, containment and eradication measures for Pine Wood nematode and its vector Monochamus are specified in EU emergency measures 2012/535/EU (for details see Section 3.3). Additional control measures are discussed in section 3.6.1.

RNQPs: Are there measures available to prevent pest presence on plants for planting such that the risk becomes mitigated?

No, as plants for planting are not the main pathway for Monochamus spp.

3.6.1. Identification of additional measures

An overview of the possible risk mitigating measures to prevent the introduction, spread and impact of Monochamus is presented in Appendices C and D. Additional control and/or supporting measures that could be considered were selected from this list.

3.6.1.1. Additional control measures

The following additional control measures (i.e. measures that have a direct effect on pest abundance) were identified (Table 6).

Table 6: Selected control measures (a full list is available in EFSA PLH Panel et al., 2018) for pest entry/establishment/spread/impact in relation to currently unregulated hosts and pathways. Control measures are measures that have a direct effect on pest abundance

Information sheet title (with hyperlink to information sheet if available)	Control measure summary	Risk component (entry/establishment/spread/impact)
Physical treatments on consignments or during processing	This information sheet deals with the following categories of physical treatments: irradiation/ionisation; mechanical cleaning (brushing, washing); sorting and grading, and; removal of plant parts (e.g. debarking wood). This information sheet does not address: heat and cold treatment (information sheet 1.14); roguing and pruning (information sheet 1.12). Specifically: debarking to remove early life stages of Monochamus spp.	Entry

3.6.1.2. Additional supporting measures

The following additional supporting measures (i.e. measures or procedures supporting the choice of appropriate risk reduction options that do not directly affect pest abundance) were identified (Table 7).
3.6.1.3. Biological or technical factors limiting the feasibility and effectiveness of measures to prevent the entry, establishment and spread of the pest

- Methyl bromide used for the treatment of wood by fumigation and pressure impregnation will be phased out in the future following the Montreal protocol in 1987.
- Cleaning and disinfection of facilities, tools and machinery do not target *Monochamus*, but *PWN*.
- Debarking wood does not remove the larvae present in the sapwood.
- For the treatment of wood, bark and wood packaging material, ISPM 15 is not always applied rigorously.
- The high number of traps needed for mass trapping to have an impact on the population.
- For visual examination, larvae within the wood cannot always be spotted.
- DNA barcoding has been used to identify *Monochamus* spp. larvae to species level, but it has not been verified for all species so far.

3.7. Uncertainty

- The status of eight *Monochamus* species as PWN vectors is not established to date.
- Three species absent in the EU and proven vectors of PWN, *M. alternatus*, *M. guerryi*, *M. subfasciatus*, also colonise some non-conifer tree species, therefore extending the pathways to non-coniferous wood, packaging material and finished products.
- A clarification of the taxonomic status of many species and subspecies, particularly *M. carolinensis* (= *M. dentator*) and *M. rosenmuelleri* (= *M. sutor rosenmuelleri*) is necessary.
- For broad-leaved trees, there are some reports of the status of *Monochamus* species as vectors of fungal tree pathogens such as Dutch elm disease, chestnut blight, oak wilt and hypoxylon canker. This has not been assessed in this pest categorisation.
- The impact of species attacking non-coniferous trees should be clarified.

4. Conclusions

Monochamus spp. do not qualify as pests by themselves, as they attack weakened or dead trees (Akbulut and Stamps, 2011; Akbulut et al., 2017; Ethington, 2015; Hellrigl, 1970). However, 13 species in the genus have been identified as vectors of the PWN, *Bursaphelenchus xylophilus*, responsible for the PWD worldwide (Akbulut and Stamps, 2011), and which is present in Portugal and transient in Spain (EPPO, 2018).

Two groups have thus been considered for the purpose of this pest categorisation. The first group (Table 8) comprises the 16 non-EU species colonising conifer trees. These include the nine species known as vectors of the PWN (*M. alternatus*, *M. carolinensis*, *M. marmorator*, *M. mutator*, *M. nitens*, *M. notatus*, *M. obtusus*, *M. scutellatus* and *M. titillator*) and the seven other species colonising conifers and which might also be vectors of the PWN (*M. basifossulatus*; *M. clamator*; *M. grandis*; *M. guerryi*; *M. impluviatus*; *M. subfasciatus*; and *M. talianus*). Four additional species (*M. galloprovincialis*, *M. saltuarius*; *M. sutor* and *M. urussovi*) are present in the EU but are also distributed in third countries in Europe and Asia. Species of the first group are listed in Appendix B.
The second group (Table 9) comprises all the species (approximately 80) colonising non-conifer trees. None of these species are present in the EU. Since these species do not vector the PWN, this pest categorisation does not discuss them in detail.

Table 8: The Panel’s conclusions on the pest categorisation criteria defined in Regulation (EU) 2016/2031 on protective measures against pests of plants (the number of the relevant sections of the pest categorisation is shown in brackets in the first column) for the species living on conifers (M. alternatus, M. basifossulatus; M. carolinensis, M. clamator; M. grandis; M. guerryi; M. impluviat us; M. marmorator; M. mutator; M. nitens, M. notatus, M. obtusus, M. scutellatus, M. subfasciatus; M. talianus, M. titillator).

Criterion of pest categorisation	Panel’s conclusions against criterion in Regulation (EU) 2016/2031 regarding Union quarantine pest	Panel’s conclusions against criterion in Regulation (EU) 2016/2031 regarding Union regulated non-quarantine pest	Key uncertainties
Identity of the pest (Section 3.1)	The identity of the species of the genus Monochamus is generally well established. The different species can be identified using taxonomic keys at the national or regional level	The identity of the species of the genus Monochamus is generally well established. The different species can be identified using taxonomic keys at the national or regional level	No taxonomic key at the world level is currently available. There are some discrepancies in the literature regarding some species in the genus
Absence/presence of the pest in the EU territory (Section 3.2)	There are 16 Monochamus species attacking coniferous trees, absent from the EU of which nine are known vectors of the PWN	There are 16 Monochamus species attacking coniferous trees, absent from the EU of which nine are known vectors of the PWN	
Regulatory status (Section 3.3)	Non-European Monochamus spp. are listed on Annex IAI. They are regulated for all plant genera and commodities. There are import requirements in place for coniferous wood and wood products	Non-European Monochamus spp. are listed on Annex IAI. They are regulated for all plant genera and commodities. There are import requirements in place for coniferous wood and wood products	
Pest potential for entry, establishment and spread in the EU territory (Section 3.4)	The pests are able to enter into, establish in, and spread within the EU territory. The main pathways are coniferous wood, coniferous wood packaging material and dunnage, particle wood and waste wood of conifers, finished wood products, hitchhiking. Spread can also be achieved by natural flight	Not applicable. Plants for planting are not a pathway	
Potential for consequences in the EU territory (Section 3.5)	The pests’ introduction could have an important economic or environmental impact on pines in the EU territory as they are potential vectors the PWN	Not applicable. Plants for planting are not a pathway	
Available measures (Section 3.6)	Phytosanitary measures are available to reduce the likelihood of entry into the EU, e.g. prohibition of conifer plants and requirements for conifer wood, wood products and wood packaging material	Not applicable. Plants for planting are not a pathway	

www.efsa.europa.eu/efsajournal
Table 9: The Panel's conclusions on the pest categorisation criteria defined in Regulation (EU) 2016/2031 on protective measures against pests of plants (the number of the relevant sections of the pest categorisation is shown in brackets in the first column) for the species living on non-conifers

Criterion of pest categorisation	Panel's conclusions against criterion in Regulation (EU) 2016/2031 regarding Union quarantine pest	Panel's conclusions against criterion in Regulation (EU) 2016/2031 regarding Union regulated non-quarantine pest	Key uncertainties
Conclusion on pest categorisation (Section 4)	The 16 species attacking conifer trees and that are potential vectors of PWN, do satisfy all the criteria that are within the remit of EFSA to assess to be considered as Union quarantine pests	Not applicable. Plants for planting are not a pathway	
Aspects of assessment to focus on/ scenarios to address in future if appropriate	Three species absent in the EU, *M. alternatus*, *M. guerryi*, *M. subfasciatus*, also colonise some non-conifer tree species, therefore extending the pathways to non-coniferous wood, packaging material and finished products	A clarification of the taxonomic status of two species in this group [*M. carolinensis* (= *M. dentator*); *M. rosenmuelleri* (=*M. sutor rosenmuelleri*)] is necessary	The status of seven *Monochamus* species as PWN vectors needs to be clarified

Table 9: The Panel's conclusions on the pest categorisation criteria defined in Regulation (EU) 2016/2031 on protective measures against pests of plants (the number of the relevant sections of the pest categorisation is shown in brackets in the first column) for the species living on non-conifers

Criterion of pest categorisation	Panel's conclusions against criterion in Regulation (EU) 2016/2031 regarding Union quarantine pest	Panel's conclusions against criterion in Regulation (EU) 2016/2031 regarding Union regulated non-quarantine pest	Key uncertainties
Identity of the pest (Section 3.1)	The identity of the species of the genus *Monochamus* is generally well established. The different species can be identified using taxonomic keys at the national or regional level	The identity of the species of the genus *Monochamus* is generally well established. The different species can be identified using taxonomic keys at the national or regional level	No taxonomic key at the world level is currently available. There are some discrepancies in the literature regarding some species in the genus
Absence/presence of the pest in the EU territory (Section 3.2)	All the species in this group are absent from the EU territory	All the species in this group are absent from the EU territory	
Regulatory status (Section 3.3)	Non-European *Monochamus* spp. are listed on Annex IAI. They are regulated for all plant genera and commodities	Non-European *Monochamus* spp. are listed on Annex IAI. They are regulated for all plant genera and commodities	
Pest potential for entry, establishment and spread in the EU territory (Section 3.4)	The pests are able to enter into, establish in, and spread within the EU territory. The main pathways are non-coniferous wood, non-coniferous wood packaging material and dunnage, particle wood and waste wood, finished non-coniferous wood products, hitchhiking. Spread can also be achieved by natural flight	Not applicable. Plants for planting are not a pathway	
Non-EU Monochamus spp.: Pest categorisation

Criterion of pest categorisation	Panel’s conclusions against criterion in Regulation (EU) 2016/2031 regarding Union quarantine pest	Panel’s conclusions against criterion in Regulation (EU) 2016/2031 regarding Union regulated non-quarantine pest	Key uncertainties
Potential for consequences in the EU territory (Section 3.5)	The pests’ introduction is not expected to have an important economic or environmental impact on non-conifer trees in the EU territory	Not applicable. Plants for planting are not a pathway	The status of Monochamus species as vectors of fungal tree pathogens such as Dutch elm disease, chestnut blight, oak wilt, and hypoxylon canker needs to be further investigated
Available measures (Section 3.6)	Non-European Monochamus spp. are listed on Annex IAI. They are regulated for all plant genera and commodities, but specific requirements for certain broad leaf genera may not be specified	Not applicable. Plants for planting are not a pathway	It is uncertain if the current legislation embraces all the host plants of non-EU Monochamus species attacking non-coniferous trees
Conclusion on pest categorisation (Section 4)	The many species in this group do not satisfy all the criteria that are within the remit of EFSA to assess to be considered as Union quarantine pests, as their introduction is not expected to have an important economic or environmental impact on non-conifer trees in the EU territory	Not applicable. Plants for planting are not a pathway	The impact of species attacking non-coniferous trees should be clarified
Aspects of assessment to focus on/scenarios to address in future if appropriate	A clarification of the taxonomic status of many species and subspecies in this group is necessary. The status of Monochamus species as vectors of fungal tree pathogens needs to be further investigated		

References

Akbulut S, 2009. Comparison of the reproductive potential of Monochamus galloprovincialis Olivier (Coleoptera: Cerambycidae) on two pine species under laboratory conditions. Phytoparasitica, 37, 125–135.
Akbulut S and Linit MJ, 1999. Flight performance of Monochamus carolinensis (Coleoptera: Cerambycidae) with respect to nematode phoresis and beetle characteristics. Environmental Entomology, 28, 1014–1020.
Akbulut S, Stamps WT and Linit MJ, 2004. Population dynamics of Monochamus carolinensis (Coleoptera: Cerambycidae) under laboratory conditions. Journal of Applied Entomology, 128, 17–21.
Akbulut S and Stamps WT, 2012. Insect vectors of the pinewood nematode: a review of the biology and ecology of Monochamus species. Forest Pathology, 42, 89–99.
Akbulut S, Togashi K and Linit MJ, 2017. Cerambycids as plant disease vectors with special reference to Pine Wilt. In: Wang Q (ed.). Cerambycidae of the World: Biology and Pest Management. CRC Press, Florida, USA. Pp. 223–266. 628 pp.
Allison JD, Borden JH, McIntosh RL, De Groot P and Gries R, 2001. Kairomonal response by four Monochamus species (Coleoptera: Cerambycidae) to bark beetle pheromones. Journal of Chemical Ecology, 27, 633–646.
Allison JD, Borden JH and Seybold SJ, 2004. A review of the chemical ecology of the Cerambycidae (Coleoptera). Chemoecology, 14(3–4), 123–150.
Alvarez G, Gallego D, Hall DR, Jactel H and Pajares JA, 2016. Combining pheromone and kairomones for effective trapping of the pine sawyer beetle Monochamus galloprovincialis. Journal of Applied Entomology, 140, 58–71. https://doi.org/10.1111/jen.12297
Bense U, 1995. Longhorn Beetles. Illustrated key to the Cerambycidae and Vesperidae of Europe. Margraf Verlag, Weikersheim. 512 pp.
Bezark LG, 2018a. Photographic Catalogue of the Cerambycidae of the World, New World. Available online: https://apps2.cdfa.ca.gov/publicApps/plant/bycidDB/wdefault.asp?w=n [Accessed: 13 July 2018].
Bezark LG, 2018b. Photographic Catalogue of the Cerambycidae of the World, Old World. Available online: https://apps2.cdfa.ca.gov/publicApps/plant/bycidDB/wdefault.asp?w=o [Accessed: 13 July 2018].
Boone C, Sweeney J, Silk P, Hughes C, Webster RP, Stephen F, Maclachlan L, Bentz B, Drumont A, Zhao B, Berkvens N, Casteels H and Grégoire J-C, 2018. Monochamus species from different continents can be effectively detected with the same trapping protocol. Journal of Pest Science. https://doi.org/10.1007/s10340-018-0954-4
CABI, 2018. Crop protection compendium. CAB International, Wallingford, UK. Available online: www.cabi.org/cpc
Ethington MW, 2015. Southeastern Monochamus and their interactions with healthy shortleaf pine trees and associated Ips grandicollis bark beetles. Theses and Dissertations. 1379. Available online: http://scholarworks.uaark.edu/etd/1379
FAO (Food and Agriculture Organization of the United Nations), 2004. ISPM (International Standards for Phytosanitary Measures) 21—Pest risk analysis of regulated non-quarantine pests. FAO, Rome, 30 pp. Available online: https://www.ippc.int/sites/default/files/documents/1323945746_ISPM_21_2004_En_2011-11-29_Refor.pdf
FAO (Food and Agriculture Organization of the United Nations), 2013. ISPM (International Standards for Phytosanitary Measures) 11—Pest risk analysis for quarantine pests. FAO, Rome, 36 pp. Available online: https://www.ippc.int/sites/default/files/documents/20140512/ispm_11_2013_en_2014-04-30_201405121523-494.65%20KB.pdf
Fierke MK, Skabeikis DD, Millar JG, Teale SA, McElfresh JS and Hanks LM, 2012. Identification of a male-produced aggregation pheromone for Monochamus scutellatus scutellatus and an attractant for the congener Monochamus notatus (Coleoptera: Cerambycidae). Journal of Economic Entomology, 105, 2029–2034. https://doi.org/10.1603/EC12101
de la Fuente B, Saura S and Beck PSA, 2018. Predicting the spread of an invasive tree pest: the pine wood nematode in Southern Europe. Journal of Applied Ecology, 55, 2374–2385. https://doi.org/10.1111/1365-2664.13177
Harde KW, 1966. 87. Familie: Cerambycidae, Bockkäfer. Pp. 7-94 in Freude, Harde, Lohse (eds.). Die Käfer Mittelteleuropas, Bd 9. Goecke & Evers, Krefeld.
Hellrigl KG, 1970. Die Bionomie der europaischen Monochamus-Arten (Coleopt., Cerambycid.) und ihre Bedeutung fur die Forstund Holzwirtschaft. Redia, 52, 367–509.
Hodgetts J, Ostojá-Starzewski JC, Prior T, Lawson R, Hall J and Boonham N, 2016. DNA barcoding for biosecurity: case studies from the UK plant protection program. Genome, 59, 1033–1048.
Kobayashi F, 1988. The Japanese pine sawyer. In: Beryman AA (ed.). Dynamics of Forest Insect Populations: Patterns, Causes, Implications. Plenum Press, New York. pp. 431–454.
Kobayashi F, Yamane A and Ikeda T, 1984. The Japanese pine sawyer beetle as the vector of pine wilt disease. Theses and Dissertations. 1379. Available online:http://scholarworks.uaark.edu/etd/1379
Koutroumpa FA, Vincent B, Roux-Morabito G, Martin C and Lieutier F, 2008. Fecundity and larval development of Monochamus galloprovincialis (Coleoptera: Cerambycidae) in experimental breeding. Annals of Forest Science, 65, 707.
Linit MJ, 1988. Nematode-vector relationships in the pine wilt disease system. Journal of Nematology, 20, 227.
Linsley EG, 1961. Lycidlike Cerambycidae (Coleoptera). Annals of the Entomological Society of America, 54, 628–635.
Linsley EG and Chemsak JA, 1984. The Cerambycidae of North America. Part VII, No. 1. Taxonomy and classification of the subfamily Lamiinae, tribes Parmenini through Acanthoderini. University of California Press, Berkeley and Los Angeles. 258 pp.
Mamiya Y, 1984. The Pine Wood Nematode. Nickle WR Plant and Insect Nematodes. Marcel Dekker Inc., New York and Basel. pp. 589–626.
Mas H, Hernandez R, Villaroya M, Sanchez G, Perez-laorga E, Gonzalez E, Ortiz A, Lencina JL, Rovira J, Marco M, Perez V, Gil M, Sanchez-garcia FJ, Bordons P, Pastor C, Biel MJ, Montagud L and Gallego D, 2013. Comportamiento de dispersi_ón y capacidad de vuelo a larga distancia de Monochamus galloprovincialis (Olivier 1795). 6º Congreso forestal espanol. 6CFE01-393.
McNamara J and Bousquet Y (eds), 1991. Family Cerambycidae (Longhorn beetles). Checklist of beetles of Canada and Alaska, 277–300. Research Branch, Agriculture Canada, Ottawa, Canada.
Monné MA and Giesbert EF, 1995. Checklist of the Cerambycidae and Disteniidae (Coleoptera) of the Western Hemisphere, 2nd ed., xiv + 420. Wolfsarden Books, Burbank, California, USA.
Muylaert A, 1990. Faune de Belgique – Longicornes (Cerambycidae). Institut royal des Sciences naturelles de Belgique, Rue Vautier, Bruxelles. 139 pp.
Naves P, De Sousa E and Quarta P JA, 2006. Reproductive traits of Monochamus galloprovincialis (Coleoptera: Cerambycidae) under laboratory conditions. Bulletin of Entomological Research, 96, 289–294.
Naves PM, Sousa E and Rodrigues JM, 2008. Biology of Monochamus galloprovincialis (Coleoptera: Cerambycidae) in the pine wilt disease affected zone, southern Portugal. Silva Lusitana, 16, 133–148.
Nord JC and Knight FB, 1972. The importance of Saperda inornata and Oberea schaumii (Coleoptera: Cerambycidae) galleries as infection courts of Hypoxylon pruinatum in trembling aspen, Populus tremuloides. Great Lakes Entomologist, 5, 87–92.
Osada Y, Yamakita T, Shoda-Kagaya E, Liebold AM and Yamanka T, 2018. Disentangling the drivers of invasion spread in a vector-borne tree disease. Journal of Animal Ecology, 1–13. https://doi.org/10.1111/1365-2656.12884
Ostry ME and Anderson NA, 1995. Infection of Populus tremuloides by Hypoxylon mammatum ascospores through Saperda inornata galls. Canadian Journal of Forest Research, 25, 813–816.
Pajares JA, Álvarez G, Ibeas F, Gallego D, Hall DR and Farman DJ, 2010. Identification and field activity of a male-produced aggregation pheromone in the pine sawyer beetle, Monochamus galloprovincialis. Journal of Chemical Ecology, 36, 570–583.
Picard F, 1929. Faune de France, 20. Coleoptères Cerambycides, Lechevalier, Paris.
Putz J, Vorwagner EM and Hoch G, 2016. Flight performance of Monochamus sartor and Monochamus sutor, potential vectors of the pine wood nematode. Forestry Journal, 62, 195–201.
Robinet C, Roques A, Pan H, Fang G, Ye J, Zhang Y and Sun J, 2009. Role of human-mediated dispersal in the spread of the pinewood nematode in China. PLoS ONE, 4, e4646.
Sama G, 2002. Atlas of Cerambycidae of Europe and the Mediterranean Area, Vol. 1. Zl\'en: Nakladatelství Kabourek, 173 pp.
Soliman T, Mourits MC, Van Der Werf W, Hengeveld GM, Robinet C and Lansink AGO, 2012. Framework for modelling economic impacts of invasive species, applied to pine wood nematode in Europe. PLoS ONE, 7, e55055.
Tavakilian G and Chevillotte H, 2018. Titan. Available online: http://titan.gbif.fr/ [Accessed: 13 July 2018].
Teale SA, Wickham JD, Zhang F, Su J, Chen Y, Xiao W, Hanks LM and Millar JG, 2011. A male-produced aggregation pheromone of Monochamus alternatus (Coleoptera: Cerambycidae), a major vector of pine wood nematode. Journal of Economic Entomology, 104, 1592–1598.
Togashi K, 1988. Population density of Monochamus alternatus adult (Coleoptera: Cerambycidae) and incidence of pine wilt disease caused by Bursaphelenchus xylophilus (Nematoda: Aphelenchoididae). Researches on Population Ecology, 30, 177–192.
Wallin H, Schroeder M and Kramme T, 2013. A review of the European species of Monochamus Dejean, 1821 (Coleoptera, Cerambycidae) with a description of the genitalia characters. Norwegian Journal of Entomology, 60, 11–38.
Wu Y, Trepansowski NF, Molongoski JJ, Reagel PF, Lingafelter SW, Nadel H, Myers SW and Ray AM, 2017. Identification of wood-boring beetles (Cerambycidae and Buprestidae) intercepted in trade-associated solid wood packaging material using DNA barcoding and morphology. Scientific Reports, 7, 40316.
Yoshimura A, Kawasaki K, Takasu F, Togashi K, Futai K and Shigesada N, 1999. Modeling the spread of pine wilt disease caused by nematodes with pine sawyers as vector. Ecology, 80, 1691-1702.

Abbreviations

Abbreviation	Full Name
DG SANTÉ	Directorate General for Health and Food Safety
EPPO	European and Mediterranean Plant Protection Organization
FAO	Food and Agriculture Organization

www.efsa.europa.eu/efsajournal 28 EFSA Journal 2018;16(11):5435
Acronym	Description
IPPC	International Plant Protection Convention
MS	Member State
PLH	EFSA Panel on Plant Health
PWD	pine wood nematode
PWN	pine wilt disease
RNQP	Regulated Non-Quarantine Pest
TFEU	Treaty on the Functioning of the European Union
ToR	Terms of Reference
Appendix A – *Monochamus* species and subspecies according to the two world catalogues

Species/subspecies	Continent	\(T^{(a)}\)	\(B^{(b)}\)	Species	Subspp
Monochamus abruptus Holzschuh 2015	Asia	X	X	X	
Monochamus affinis Breuning, 1938	Africa	X	X	X	
Monochamus alboapicalis (Pic, 1934)	Asia	X	X		
Monochamus alboapicalis Pic, 1934	Asia	X	X		
Monochamus alboapicalis strandiellus Breuning 1935	Asia	X	X		
Monochamus alternatus (Hope, 1843)	Asia	X	X	X	
Monochamus alternatus alternatus Hope 1842	Asia	X	X	X	
Monochamus alternatus endai Makihara 2004	Asia	X	X	X	
Monochamus alternatus tesserula White 1858	Asia	X	X	X	
Monochamus asper Breuning, 1935	Asia	X	X	X	
Monochamus atroceruleogriseus Gilmour 1956	Africa	X	X	X	
Monochamus baltetus Aurivillus, 1903	Africa	X	X	X	
Monochamus basifossulatus Breuning 1938	Asia	X	X	X	
Monochamus basigranulatus Breuning, 1952	Africa	X	X	X	
Monochamus basigranulatus subtuberosus Breuning 1965	Africa	X	X		
Monochamus bimaculatus (Gahan, 1888)	Asia	X	X	X	
Monochamus bimaculatus ingranaulatus Pic 1925	Asia	X	X		
Monochamus bimaculatus Breuning, 1965	Asia	X	X	X	
Monochamus blairi (Breuning, 1936)	South America	X	X	X	
Monochamus bootangensis Breuning 1947	Asia	X	X	X	
Monochamus borchmanni Breuning 1959	Asia	X	X	X	
Monochamus burgeoni Breuning 1935	Africa	X	X	X	
Monochamus burgeoni nigrosparsus Breuning 1938	Africa	X	X		
Monochamus carolinensis Olivier, 1792	North America	X	X		
Monochamus carolinensis caroliniensis Olivier 1795	North America	X	X		
Monochamus carolinensis dentator Fabricius 1792	North America	X	X		
Monochamus carolinensis minor LeConte 1873	North America	X	X		
Monochamus clamator (LeConte, 1852)	North America	X	X		
Monochamus clamator clamator (LeConte, 1852)	North America	X	X		
Monochamus clamator latus Casey 1924	North America	X	X		
Monochamus clamator linsleyi Dillon & Dillon 1941	North America	X	X		
Monochamus clamator maculosus Horn 1885	North America	X	X		
Monochamus clamator nevadensis Dillon & Dillon 1941	North America	X	X		
Monochamus clamator oregonensis Casey 1913	North America	X	X		
Monochamus clamator rubigineus (Bates, 1880)	North America	X	X		
Monochamus clamator rubigineus Bates 1880	North America	X	X		
Monochamus clamator streenuus Casey 1913	North America	X	X		
Monochamus conradi Breuning 1961	Africa	X	X	X	
Monochamus convexicolis Gressitt 1942	Asia	X	X	X	
Monochamus dayremi Breuning 1935	Africa	X	X	X	
Monochamus densepunctatus Breuning 1980	Asia	X	X	X	
Monochamus dentator (Fabricius, 1793) (= *M. carolinensis*)	North America	X	X		
Monochamus desperatus fredericus White 1858	New Guinea	X	X		
Monochamus desperatus Thompson, 1857	New Guinea	X	X		
Species/subspecies	Continent	T(a)	B(b)	Species	Subspp
--------------------	-----------	------	------	---------	--------
Monochamus fisheri (Breuning, 1944)	Asia	X	X		
Monochamus fisheri Breuning 1944	Asia	X	X		
Monochamus fisheri variegatus Fisher 1935	Asia	X	X		
Monochamus flavosignatus Breuning 1947	Asia	X	X	X	
Monochamus flavovittatus Breuning 1935	Africa	X	X	X	
Monochamus foraminosus Holzschuh 2015	Asia	X	X	X	
Monochamus foveatus Breuning 1961	Asia	X	X	X	
Monochamus foveolatus Hintz 1911	Africa	X	X	X	
Monochamus fruhstorferi Breuning, 1964	Asia	X	X		
Monochamus galloprovincialis (Olivier, 1795)	Europe	X	X	X	
Monochamus galloprovincialis cinerascens (Motschulsky, 1860)	Europe	X	X	X	
Monochamus galloprovincialis galloprovincialis (Olivier, 1795)	Europe	X	X		
Monochamus galloprovincialis lignator Kryniki 1832	Europe	X	X		
Monochamus galloprovincialis nitidior Abeille 1870	Europe	X	X		
Monochamus galloprovincialis parendeli Thery 1891	Europe	X	X		
Monochamus galloprovincialis pistor (Germar, 1818)	Europe	X	X	X	
Monochamus galloprovincialis sibiricus Pic 1908	Europe	X	X		
Monochamus galloprovincialis subrufopubens Pic 1912	Europe	X	X	X	
Monochamus galloprovincialis taucrova Pic 1912	Europe	X	X	X	
Monochamus galloprovincialis transitorius Lazarev, 2017	Europe	X	X		
Monochamus galloprovincialis unifasciatus Pic 1905	Europe	X	X		
Monochamus gardneri Breuning 1938	Asia	X	X	X	
Monochamus grandis Waterhouse 1881	Asia	X	X	X	
Monochamus granulipennis Breuning 1949	Africa	X	X	X	
Monochamus gravis Multimaculatus Pic 1933	Asia	X	X		
Monochamus gravidus Pascoe 1858	Asia	X	X	X	
Monochamus guerryi Pic 1903	Asia	X	X	X	
Monochamus guttulatus Gressitt 1951	Asia	X	X	X	
Monochamus guttulatus guttatus Blessig 1873	Asia	X	X		
Monochamus hiekei Breuning 1964	Asia	X	X	X	
Monochamus impluvius Impluvius Motschulsky 1859	Europe, Asia	X	X		
Monochamus impluvius Motschulsky, 1859	Europe, Asia	X	X	X	
Monochamus impluvius Silicola Wang 2003	Europe, Asia	X	X		
Monochamus itzingeri (Breuning, 1935)	Asia	X	X	X	
Monochamus jordani Nonfried 1894	Asia	X	X		
Monochamus karlitzingeri Tavakilian & Jiroux, 2015	Asia	X	X		
Monochamus kaszabi Heyrovsky 1955	Asia	X	X		
Monochamus kinabaluensis Hudepohl 1966	Asia	X	X		
Monochamus kivuensis Breuning 1938	Africa	X	X	X	
Monochamus laevis Jordan 1903	Africa	X	X	X	
Monochamus lamottei Lepesme & Breuning 1952	Africa	X	X		
Monochamus latefasciatus Breuning, 1944	Asia	X	X		
Monochamus latefasciatus unifasciatus Breuning 1935	Asia	X	X		
Monochamus lapesmei Breuning 1956	Africa	X	X		
Monochamus lutodispersus Pic 1927	Africa	X	X		
Monochamus maculosus (Haldeman, 1847) 1847	North America	X	X		
Monochamus maculosus mutator LeConte in Agassiz 1850	North America	X	X		
Monochamus marmorator acutus Lacordaire 1869	North America	X	X		
Species/subspecies	Continent	T(a)	B(b)	Species	Subspp
-------------------	-----------------	------	------	---------	--------
Monochamus marmorator fautor LeConte 1852	North America	X			
Monochamus marmorator Kirby, 1837	North America	X	X		
Monochamus maruokai Hayashi 1962	Asia	X	X		
Monochamus masaoi Kusama & Takakuwa 1984	Asia	X	X		
Monochamus masoni Breuning 1950	Asia	X	X		
Monochamus mbai Lopesme & Breuning 1953	Africa	X	X		
Monochamus mediomaculatus Breuning 1935	Asia	X	X		
Monochamus mexicanus (Breuning, 1950)	North America	X	X		
Monochamus mutator LeConte, 1850	North America	X			
Monochamus nigromaculatus Gressitt 1942	Asia	X	X		
Monochamus nigromaculicollis Breuning 1974	Asia	X	X		
Monochamus nigroplagiatus Breuning 1935	Asia	X	X		
Monochamus nigroplagiatus ochrescens Breuning 1944	Asia	X			
Monochamus nigrovittatus Breuning 1938	Africa	X	X		
Monochamus nigrovittatus leonensis Breuning 1956	Africa	X			
Monochamus nitens Bates 1884	Asia	X	X		
Monochamus nitens griseonotatus Pic 1931	Asia	X			
Monochamus notatus (Drury, 1773)	North America	X	X		
Monochamus notatus confusor Kirby in Richardson 1837	North America	X			
Monochamus notatus morgani Hopping 1945	North America	X			
Monochamus obtusus Casey, 1891	North America	X	X		
Monochamus obtusus fulvomaculatus Linsley, 1933	North America	X	X		
Monochamus obtusus obtusus Casey 1891	North America	X			
Monochamus ochreomarmoratus Breuning 1960	Africa	X	X		
Monochamus ochreopunctatus Breuning 1980	Asia	X	X		
Monochamus ochreosparsus Breuning 1959	Africa	X	X		
Monochamus ochrechticus Breuning 1938	Africa	X	X		
Monochamus ochrechticus flavoguttatus Breuning 1956	Africa	X			
Monochamus olivaceus Breuning 1935	Africa	X	X		
Monochamus pentagonus Baguena 1952	Africa	X	X		
Monochamus principis Breuning 1956	Africa	X	X		
Monochamus quadriplagiatus Breuning 1935	Africa	X	X		
Monochamus rectus Holzschuh 2015	Asia	X	X		
Monochamus regularis (Aurivillius, 1924)	Asia	X	X		
Monochamus regularis granulosus Breuning & de Jong 1941	Asia	X			
Monochamus rhodesianus Gilmour 1956	Africa	X	X		
Monochamus roveroi Teocchi, Sudre & Jiroux, 2015	Africa	X			
Monochamus rubigineus Fairmaire 1892	Africa	X			
Monochamus rubiginosus Teocchi, Sudre & Jiroux, 2014	Africa	X			
Monochamus saltuarius Gebler 1830	Europe	X	X		
Monochamus saltuarius occidentalis Sláma, 2017	Europe	X			
Monochamus sargi (Bates, 1885)	North America	X	X		
Monochamus sartor (Fabricius, 1787)	Europe, Asia	X			
Monochamus sartor fleischeri Heyrovsky 1966	Europe, Asia	X			
Monochamus sartor mulsanti Seidl 1891	Europe, Asia	X			
Monochamus sartor okenianus Gistel 1857	Europe, Asia	X			
Monochamus scutellatus (Say, 1824)	North America	X	X		
Monochamus scutellatus monticola Casey 1913	North America	X			
Monochamus scutellatus oregonensis (LeConte, 1873)	North America	X	X		
Species/subspecies	Continent	T\((a)\)	B\((b)\)	Species	Subspp
--------------------------------	---------------	----------	----------	---------	--------
Monochamus scutellatus resutor Kirby in Richardson 1837	North America	X	X	X	
Monochamus semicirculus Baguena 1952	Africa	X	X		
Monochamus semigranulatus Pic 1925	Asia	X	X	X	
Monochamus serratus Gahan 1906	Asia	X	X	X	
Monochamus shembaganurensis Breuning 1979	Asia	X	X	X	
Monochamus similis Breuning 1938	Africa	X	X	X	
Monochamus sparsutus (Fairmaire, 1889)	Asia	X	X	X	
Monochamus sparsutus dubius Gahan 1895	Asia	X	X		
Monochamus sparsutus fascioguttatus Gressitt 1938	Asia	X	X		
Monochamus sparsutus luteovittatus Breuning 1944	Asia	X	X		
Monochamus sparsutus sintikensis Matsushita 1939	Asia	X	X		
Monochamus sparsutus sparsenotatus Pic 1920	Asia	X	X		
Monochamus subconvexicollis Breuning 1967	Asia	X	X		
Monochamus subcibrosus Breuning 1950	Africa	X	X		
Monochamus subfasciatus Bates 1873	Asia	X	X		
Monochamus subfasciatus fascioguttatus Gressitt 1938	Asia	X	X		
Monochamus subfasciatus kumageinwularis Hayashi, 1962	Asia	X	X		
Monochamus subfasciatus meridianus Hayashi, 1955	Asia	X	X		
Monochamus subfasciatus shikokuensis Breuning, 1956	Asia	X	X		
Monochamus subfasciatus subfasciatus Pic 1902	Asia	X	X		
Monochamus subgranulipennis Breuning 1974	Asia	X	X		
Monochamus subtrangularis Breuning 1972	Asia	X	X		
Monochamus sutor (Linnaeus, 1758)	Europe, Asia	X	X		
Monochamus sutor atomarius DeGeer 1775	Europe, Asia	X	X		
Monochamus sutor fuscomaculatus Petr 1912	Europe, Asia	X	X		
Monochamus sutor heinrothi Cederhjelm 1798	Europe, Asia	X	X		
Monochamus sutor hybrinus Petri 1912	Europe, Asia	X	X		
Monochamus sutor longulus Pic 1898	Europe, Asia	X	X		
Monochamus sutor obscurior Abeille 1869	Europe, Asia	X	X		
Monochamus sutor pellio Germar 1818	Europe, Asia	X	X		
Monochamus sutor roseculus Cederhjelm 1798	Europe, Asia	X	X		
Monochamus sutor sutor (Linnaeus, 1758)	Europe, Asia	X	X		
Monochamus taiheizanensis Mitono 1943	Asia	X	X		
Monochamus tallanus Pic 1912	Asia	X	X		
Monochamus titillator (Fabricius, 1775)	North America	X	X		
Monochamus titillator angusticollis Casey 1913	North America	X	X		
Monochamus titillator obesus Casey 1924	North America	X	X		
Monochamus tonkinensis Breuning 1935	Asia	X	X		
Monochamus transvaaliensis Gilmour 1956	Africa	X	X		
Monochamus unicolor Breuning 1939	Africa	X	X		
Monochamus urussovii (Fischer-Waldheim, 1806)	Europe, Asia	X	X		
Monochamus urussovii quadriracmaculatus Motschulsky 1845	Europe, Asia	X	X		
Monochamus urussovii shaufussi Pic 1912	Europe, Asia	X	X		
Monochamus verticalis Fairmaire 1901	Africa	X	X		
Monochamus villieri Breuning 1960	Asia	X	X		

(a): T: Tavakilian and Chevillotte (2018) - http://titan.gbif.fr/sel_genre2.php; B: Bezark (2018a,b) - https://apps2.cdfa.ca.gov/publicApps/plant/bycidDB/wdefault.aspUnknownw=n; https://apps2.cdfa.ca.gov/publicApps/plant/bycidDB/wresults.aspUnknownw=o.
(b): See Section 2.1 on what falls outside EFSA’s remit.
Appendix B – Host plants and geographic distribution of non-EU *Monochamus* spp. attacking conifers (data from the two world catalogues pooled; *Pinus* underlined)

Species/ subspecies	Host plants	Geographic distribution	Vector of PWN
M. alternatus	Juniperus; Quercus; Abies; Cedrus deodara; Cedrus libani; Larix; Picea; *Pinus*; Malus; Morinda umbellata; Cryptomeria japonica	China; Taiwan; Vietnam; Japan; Korea; Laos	X
M. basifossulatus	*Pinus*	India; Nepal; China	
M. carolinensis (= *M. dentator*)	*Pinus*	North America	X
M. clamator	Abies, *Pinus*, *Pseudotsuga menziesii*	North America	
M. grandis	Abies; Larix; Picea; *Pinus*; *Tsuga*	Japan	
M. gueryi	Castanea, Quercus, *Pinus*, Malus	China, Indochina	
M. impluviat	Larix, *Pinus*	Finland, Europe (Urals), Mongolia, Russia (Siberia, Sakhalin), Northern China	
M. marmorator	Abies, *Picea*	North America	X
M. mutator	*Pinus*	North America	X
M. nitens	Abies, Larix, *Picea*	Japan	X
M. notatus	*Abies*, *Pinus*, *Pseudotsuga menziesii*	North America	X
M. obtusus	*Abies*, *Pinus*, *Pseudotsuga menziesii*	USA	X
M. scutellatus	Abies, Picea, Larix, *Pinus*, *Pseudotsuga menziesii*, *Tsuga*	North America	X
M. subfasciatus	Aralia; Kalopanax; Alnus; Betula; Cornus; *Carpinus*, *Mallotus*, *Robinia*, Castanea; Fagus; Quercus; Juglans; Platycarya; *Pterocarya*, *Clerodendrum*, *Machilus*; *Morus*, *Fraxinus*, *Pinus*, *Podocarpus*, *Hovenia*, *Malus*, *Prunus*, *Citrus*, *Salicaceae*, *Picrasma*, *Stachyurus*, *Staphylea*, *Oreocnide*	Japan; China	
M. talianus	*Pinus*	China (Yunnan)	
M. titillator	Abies, Picea, *Pinus*	North America	X

(a): *M. marmorator* and *M. nitens* are not recorded on *Pinus* spp. However, *M. nitens* is a known vector of the PWN (Linit, 1988).

(b): T: Tavakilian and Chevillotte (2018) - http://titan.gbif.fr/sel_genre2.php; B: Bezark (2018a,b) - https://apps2.cdfa.ca.gov/publicApps/plant/bycidDB/wdefault.aspUnknwnw=m; https://apps2.cdfa.ca.gov/publicApps/plant/bycidDB/wresults.aspUnknwnw=o.