Abstract

We say that the sequence $g_n, n \geq 3, n \to \infty$ of polynomial transformation bijective maps of free module K^n over commutative ring K is a sequence of stable degree if the order of g_n is growing with n and the degree of each nonidentical polynomial map of kind g_n^k is an independent constant c. A transformation $b = \tau g_n^k \tau^{-1}$, where τ is affine bijection, n is large and k is relatively small, can be used as a base of group theoretical Diffie-Hellman key exchange algorithm for the Cremona group $C(K^n)$ of all regular automorphisms of K^n. The specific feature of this method is that the order of the base may be unknown for the adversary because of the complexity of its computation. The exchange can be implemented by tools of Computer Algebra (symbolic computations). The adversary can not use the degree of righthandside in $b^x = d$ to evaluate unknown x in this form for the discrete logarithm problem.

In the paper we introduce the explicit constructions of sequences of elements of stable degree for cases $c = 3$ for each commutative ring K containing at least 3 regular elements and discuss the implementation of related key exchange and public key algorithms.

Key Words: Key exchange, public key cryptography, symbolic computations, graphs and digraphs of large girth.

1 Introduction

Discrete logarithm problem can be formulated for general finite group G. Find a positive integer x satisfying condition $g^x = b$ where $g \in G$ and $b \in G$. The prob-
lem has reputation to be a difficult one. But even in the case of cyclic group C there are many open questions. If $C = \mathbb{Z}_{p-1}^*$ or $C = \mathbb{Z}_{pq}^*$ where p and q are ”sufficiently large” primes then the complexity of discrete logarithm problem justify classical Diffie-Hellman key exchange algorithm and RSA public key encryption, respectively. In most of other cases complexity of discrete logarithm problem is not investigated properly. The problem is very dependent on the choice of the base g and the way of presentation the data on the group. Group can be defined via generators and relations, as automorphism group of algebraic variety, as matrix group, as permutation group etc. In this paper we assume that G is a subgroup of S_p^n which is a group of polynomial bijective transformation of vector space F_p^n into itself. Obviously $|S_p^n| = (p^n)!$, it is known that each permutation π can be written in the form $x_1 \to f_1(x_1, x_2, \ldots, x_n), x_2 \to f_2(x_1, x_2, \ldots, x_n), \ldots, x_n \to f_n(x_1, x_2, \ldots, x_n)$, where f_i are multivariable polynomials from $F_p[x_1, x_2, \ldots, x_n]$. The presentation of G as a subgroup of S_p^n is chosen because the Diffie-Hellman algorithm here will be implemented by the tools of symbolic computations. Other reason is universality, as it follows from classical Cayley results each finite group G can be embedded in S_p^n for appropriate p and n in various ways.

Let F_p, where p is prime, be a finite field. Affine transformations $x \to Ax + b$, where A is invertible matrix and $b \in (F_p)^n$, form an affine group $AGL_n(F_p)$ acting on F_p^n.

Affine transformations form an affine group $AGL_n(F_p)$ of order $p^n(p^n - 1)(p^n - p) \ldots (p^n - p^{n-1})$ in the symmetric group S_{p^n} of order $p^n!$. In [12] the maximality of $AGL_n(F_p)$ in S_{p^n} was proven. So we can present each permutation π as a composition of several ”seed” maps of kind $\tau_1 \tau_2$, where $\tau_1, \tau_2 \in AGL_n(F_p)$ and g is a fixed map of degree ≥ 2.

We can choose the base of F_p^n and write each permutation $g \in S_{p^n}$ as a ”public rule”:

$$x_1 \to g_1(x_1, x_2, \ldots, x_n), x_2 \to g_2(x_1, x_2, \ldots, x_n), \ldots, x_n \to g_n(x_1, x_2, \ldots, x_n).$$

Let $g^k \in S_{p^n}$ be the new public rule obtained via iteration of g. We consider Diffie-Hellman algorithm for S_{p^n} for the key exchange in the case of group . Correspondents Alice and Bob establish $g \in S_{p^n}$ via open communication channel, they choose positive integers n_A and n_B, respectively. They exchange public rules $h_A = g^{n_A}$ and $h_B = g^{n_B}$ via open channel. Finally, Alice and Bob compute common transformation T as $h_B^{n_A}$ and $h_A^{n_B}$, respectively.

In practice they can establish common vector $v = (v_1, v_2, \ldots, v_n), v_i \in F_p, i = 1, \ldots, n$ via open channel and use the collision vector $T(v)$ as a password for their private key encryption algorithm.

This scheme of symbolic Diffie-Hellman algorithm can be secure, if the order of g is ”sufficiently large” and adversary is not able to compute number n_A (or
nB) as functions from degrees for g and h_A. Obvious bad example is the following: g sends x_i into x_i^t for each i. In this case n_A is just a ratio of deg h_A and deg g.

To avoid such trouble one can look at family of subgroups G_n of S_{p^n}, n -> \infty such that maximal degree of its elements equal c, where c is small independent constant (groups of degree c or groups of stable degree). Our paper is devoted to explicit constructions of such families.

We refer to a sequence of elements g_n \in G_n such that all its nonidentical powers are of degree c as element of stable degree. This is equivalent to stability of families of cyclic groups generated by g_n. Of course, cyclic groups are important for the Diffie-Hellman type protocols.

It is clear that affine groups AGL_n(F_p), n -> \infty form a family of subgroups of stable degree for c = 1 and all nonidentical affine transformations are of stable degree. Notice that if g is a linear diagonalisable element of AGL_n(F_p), then discrete logarithm problem for base g is equivalent to the classical number theoretical problem. Obviously, in this case we are losing the flavor of symbolic computations. One can take a subgroup H of AGL_n(F_p) and consider its conjugation with nonlinear bijective polynomial map f. Of course the group H' = f^{-1}Hf will be also a stable group, but for "most pairs" f and H group H' will be of degree deg f \times deg f^{-1} \geq 4 because of nonlinearity f and f^{-1}.

So the problem of construction an infinite families of subgroups G_n in S_{p^n} of degree 2 and 3 may attract some attention.

General problem of construction an infinite families of stable subgroups G_n of S_{p^n} of degree c satisfying some additional conditions (unbounded growth of minimal order of nonidentical group elements, existence of well defined projective limit, etc) can be also interesting because of possible applications in cryptography.

Notice that even we conjugate nonlinear C with invertible linear transformation \tau \in AGL_n(F_p), some of important cryptographical parameters of C and C'' = \tau^{-1}C\tau can be different. Of course conjugate generators g and g' have the same number of fixed points, same cyclic structure as permutations, but counting of equal coordinates for pairs (x, g(x)) and (x, g'(x)) may bring very different results.

So two conjugate families of stable degree are not quite equivalent because corresponding cryptoanalisical problems may have different complexity.

We generalize the above problem for the case of Cremona group of the free module K^n, where K is arbitrary commutative ring K. For the cryptography case of finite rings is the most important. Finite field F_{p^n}, n \geq 1 and cyclic rings Z_m (especially m = 2^7 (ASCII codes), m = 2^8 (binary codes), m = 2^{16} (arithmetic), m = 2^{32} (double precision arithmetic)) are especially popular. Case of infinite rings K of characteristic zero (especially Z or C) is an interesting as well because
of Matijasevich multivariable prime approximation polynomials can be defined there (see, for instance [20] and further references).

So it is natural to change a vector space F_p^n for free module K^n (Cartesian power of K) and the family and symmetric group S_p^n for Cremona group $C(n, K)$ of all polynomial automorphisms of K^n.

We repeat our definition for more general situation of commutative ring.

Let G_n, $n \geq 3$, $n \rightarrow \infty$ be a sequence of subgroups of $C(n, K)$. We say that G_n is a family of groups of stable degree (or subgroup of degree c) if the maximal degree of representative $g \in G_n$ is some independent constant c.

Recall, that cases of degree 2 and 3 are especially important.

The first family of stable subgroups of $C_n(F_q)$, $K = F_q$ with degree 3 was practically established in [21], where the degrees of polynomial graph based public key maps were evaluated. But group theoretical language was not used there and the problem of the key exchange was not considered.

So we reformulate the results of [21] in terms of Cremona group over a general ring in section 2 of current paper.

Additionally we show the existence of cubic elements of large order in case of finite field.

Those results are based on the construction of the family $D(n, q)$ of graphs with large girth and the description of their connected components $CD(n, q)$. The existence of infinite families of graphs of large girth had been proven by Paul Erdős’ (see [2]). Together with famous Ramanujan graphs introduced by G. Margulis [11] and investigated in [10] graphs $CD(n, q)$ is one of the first explicit constructions of such a families with unbounded degree. Graphs $D(n, q)$ had been used for the construction of LDPS codes and turbocodes which were used in real satellite communications (see [3], [4], [5], [6]), for the development of private key encryption algorithms [17], [18], [13], [7], the option to use them for public key cryptography was considered in [16], [15] and in [14], where the related dynamical system had been introduced (see also surveys [19], [20]).

The computer simulation show that stable subgroups related to $D(n, q)$ contain elements of very large order but our theoretical linear bounds on the order are relatively weak. We hope to improve this gap in the future and justify the use of $D(n, q)$ for the key exchange.

In section 4 we also will use graphs and related finite automata for the constructions of families of stable subgroups with degree 3 of Cremona group $C(n, K)$ over general ring K containing elements of large order (order is growing with the growth of n). First family of stable groups were obtained via studies of simple algebraic graphs defined over F_q. For general constructions of stable groups over commutative ring K we use directed graphs with the special colouring. The main
result of the paper is the following statement.

Theorem 1 For each commutative ring K with at least 3 regular elements there is a families Q_n of Cremona group $C(K^n)$ of degrees 3 such that the projective limit Q of Q_n, $n \to \infty$ is well defined, the group Q is of infinite order, it contains elements g of infinite order, such that there exists a sequence $g_n \in Q_n$ $n \to \infty$ of stable elements such that $\lim g_n = g$.

The family Q_n is obtained via explicit constructions. So we may use in the finite ring K with at least 3 regular elements the sequence equivalent to g_n for the key exchange. We show that the growth of the order of g_n when n is growing can be bounded from below by some linear function $\alpha \times n + \beta$. In case of such a sequence of groups $G_n = Q_n$ we can modify a sequence g_i of elements of stable degree by conjugation with $h_i \in G_i$. New sequence $d_i = h_i^{-1} g_i h_i$ can be also a sequence of elements of stable degree.

Let us discuss the asymmetry of our modified Diffie-Hellman algorithms of the key exchange in details. Correspondents Alice and Bob are in different shoes. Alice chooses dimension n, element g_n as in theorem above, element $h \in Q_n$ and affine transformation $\tau \in AGL_n(K)$. So she obtains the base $b = \tau^{-1} h^{-1} g_n h \tau$ and sends it in the form of standard polynomial map to Bob.

Our groups Q_n are defined by the set of their generators and Alice can compute words $h^{-1} g_n h$, b and its powers very fast. So Alice chooses rather large number n_A computes $c_A = b^{n_A}$ and sends it to Bob. At his turn Bob chooses own key n_B computes $c_B = b^{n_B}$. He and Alice are getting the collision map c as $c_A^{n_B}$ and $c_B^{n_A}$ respectively.

Remark. Notice that the adversary is in the same shoes with public user Bob. He (or she) need to solve one of the equations $b^x = c_B$ or $b^x = c_A$. The algorithm is implemented in the cases of finite fields and rings \mathbb{Z}_m for family of groups Q_n. We present its time evaluation (generation of b and b_A^n by Alice and computation of b_B^n by Bob) in the last section of paper. We continue studies of orders of g_i theoretically and by computer simulation.

The computer simulation show that the number of monomial expressions of kind $x^{i_1} x^{i_2} x^{i_3}$ with nonzero coefficient is rather close to binomial coefficient C_n^3. So the time of computation b^{n_B}, $c_B^{n_A}$ and $c_A^{n_B}$ can be evaluated via the complexity of computation of the composition of several general cubical polynomial maps in n variable.
2 Walks on infinite forest \(D(q)\) and corresponding groups

2.1 Graphs and incidence system

The missing definitions of graph-theoretical concepts which appear in this paper can be found in [2]. All graphs we consider are simple, i.e. undirected without loops and multiple edges. Let \(V(G)\) and \(E(G)\) denote the set of vertices and the set of edges of \(G\), respectively. Then \(|V(G)|\) is called the order of \(G\), and \(|E(G)|\) is called the size of \(G\). A path in \(G\) is called simple if all its vertices are distinct. When it is convenient, we shall identify \(G\) with the corresponding anti-reflexive binary relation on \(V(G)\), i.e. \(E(G)\) is a subset of \(V(G) \times V(G)\) and write \(vGu\) for the adjacent vertices \(u\) and \(v\) (or neighbors). The sequence of distinct vertices \(v_1, \ldots, v_t\), such that \(v_iGv_{i+1}\) for \(i = 1, \ldots, t - 1\) is the pass in the graph. The length of a pass is a number of its edges. The distance \(\text{dist}(u, v)\) between two vertices is the length of the shortest pass between them. The diameter of the graph is the maximal distance between two vertices \(u\) and \(v\) of the graph. Let \(C_m\) denote the cycle of length \(m\) i.e. the sequence of distinct vertices \(v_1, \ldots, v_m\) such that \(v_iGv_{i+1}\), \(i = 1, \ldots, m - 1\) and \(v_mGv_1\). The girth of a graph \(G\), denoted by \(g = g(G)\), is the length of the shortest cycle in \(G\). The degree of vertex \(v\) is the number of its neighbors (see [1] or [2]).

The incidence structure is the set \(V\) with partition sets \(P\) (points) and \(L\) (lines) and symmetric binary relation \(I\) such that the incidence of two elements implies that one of them is a point and another is a line. We shall identify \(I\) with the simple graph of this incidence relation (bipartite graph). If number of neighbours of each element is finite and depends only on its type (point or line), then the incidence structure is a tactical configuration in the sense of Moore (see [12]). The graph is \(k\)-regular if each of its vertex has degree \(k\), where \(k\) is a constant. In this section we reformulate results of [8], [9] where the \(q\)-regular tree was described in terms of equations over finite field \(F_q\).

Let \(q\) be a prime power, and let \(P\) and \(L\) be two countably infinite dimensional vector spaces over \(F_q\). Elements of \(P\) will be called points and those of \(L\) lines. To distinguish points from lines we use parentheses and brackets: If \(x \in V\), then \((x) \in P\) and \([x] \in L\). It will also be advantageous to adopt the notation for coordinates of points and lines introduced in [11]:

\[
(p) = (p_1, p_{11}, p_{12}, p_{21}, p_{22}, p_{23}, \ldots, p_{ii}, p_{ii+1}, p_{i+1,i}, \ldots),
\]

\[
[l] = [l_1, l_{11}, l_{12}, l_{21}, l_{22}, l_{23}, \ldots, l_{ii}, l_{ii+1}, l_{i+1,i}, \ldots).
\]
We now define an incidence structure \((P, L, I)\) as follows. We say the point
\((p)\) is incident with the line \([l]\), and we write \((p)I[l]\), if the following relations
between their coordinates hold:

\[
\begin{align*}
l_{11} - p_{11} &= l_1p_1 \\
l_{12} - p_{12} &= l_1p_1 \\
l_{21} - p_{21} &= l_1p_{11} \\
l_{ii} - p_{ii} &= l_1p_{i-1,i} \\
l'_i - p'_i &= l_{i-1}p_1 \\
l_{i,i+1} - p_{i,i+1} &= l_ip_1 \\
l_{i+1,i} - p_{i+1,i} &= l_ip'_i
\end{align*}
\] (1)

(The last four relations are defined for \(i \geq 2\).) This incidence structure \((P, L, I)\) we denote as \(D(q)\). We speak now of the incidence graph of \((P, L, I)\), which has
the vertex set \(P \cup L\) and edge set consisting of all pairs \{(p), [l]\} for which \((p)I[l]\).

To facilitate notation in future results, it will be convenient for us to define
\(p_{-1,0} = l_{0,-1} = p_{1,0} = l_{0,1} = 0, p_{0,0} = l_{0,0} = -1, p'_0 = l'_0 = 1, p_{0,1} = p_1, l_{1,0} = l_1, l'_1 = l_{1,1}, p'_1 = p_{1,1},\) and to rewrite (1) in the form :

\[
\begin{align*}
l_{ii} - p_{ii} &= l_1p_{i-1,i} \\
l'_i - p'_i &= l_{i-1}p_1 \\
l_{i,i+1} - p_{i,i+1} &= l_ip_1 \\
l_{i+1,i} - p_{i+1,i} &= l_ip'_i
\end{align*}
\]

for \(i = 0, 1, 2, \ldots\)

Notice that for \(i = 0\), the four conditions (1) are satisfied by every point and
line, and, for \(i = 1\), the first two equations coincide and give \(l_{1,1} - p_{1,1} = l_1p_1\).

For each positive integer \(k \geq 2\) we obtain an incidence structure \((P_k, L_k, I_k)\)
as follows. First, \(P_k\) and \(L_k\) are obtained from \(P\) and \(L\), respectively, by simply
projecting each vector onto its \(k\) initial coordinates. The incidence \(I_k\) is then
defined by imposing the first \(k-1\) incidence relations and ignoring all others.
For fixed \(q\), the incidence graph corresponding to the structure \((P_k, L_k, I_k)\) is
denoted by \(D(k, q)\). It is convenient to define \(D(1, q)\) to be equal to \(D(2, q)\). The
properties of the graphs \(D(k, q)\) that we are concerned with described in the
following proposition.
Theorem 2 \[\text{[8]}\] Let \(q \) be a prime power, and \(k \geq 2 \). Then

(i) \(D(k, q) \) is a \(q \)-regular edge-transitive bipartite graph of order \(2q^k \);
(ii) for odd \(k \), \(g(D(k, q)) \geq k + 5 \), for even \(k \), \(g(D(k, q)) \geq k + 4 \)

We have a natural one to one correspondence between the coordinates \(2,3,\ldots,n,\ldots\) of tuples (points or lines) and equations. It is convenient for us to rename by \(i + 2 \) the coordinate which corresponds to the equation with the number \(i \) and write \([l] = [l_1, l_2, \ldots, l_n, \ldots] \) and \((p) = (p_1, p_2, \ldots, p_n, \ldots) \) (line and point in "natural coordinates").

Let \(\eta_i \) be the map "deleting all coordinates with numbers > \(i \)" from \(D(q) \) to \(D(i, q) \), and \(\eta_{k,j} \) be map "deleting all coordinates with numbers > \(i \)" from \(D(j, q) \), \(j > i \) into \(D(i, q) \).

The following statement follows directly from the definitions:

Proposition 1 (see, \[\text{[8]}\]) The projective limit of \(D(i, q) \), \(\eta_{k,j} \), \(i \to \infty \) is an an infinite forest \(D(q) \).

Let us consider the description of connected components of the graphs.

Let \(k \geq 6 \), \(t = [(k + 2)/4] \), and let \(u = (u_1, u_{11}, \cdots, u_t, u'_t, u_{t+1}, u_{t+1,t}, \cdots) \) be a vertex of \(D(k, q) \). (It does not matter whether \(u \) is a point or a line). For every \(r \), \(2 \leq r \leq t \), let

\[
a_r = a_r(u) = \sum_{i=0}^m (u_{i,i}u'_{i,r-i,r-i} - u_{i,i+1}u_{r-i,r-i-1}),
\]

and \(a = a(u) = (a_2, a_3, \cdots, a_t) \). (Here we define

\[
p_{-1,0} = l_{0,0} = 0, p_{0,0} = l_{0,0} = 0, p_{0,1} = p_{1,0}, l_{1,0} = l_1, p'_{0,0} = p'_{0,0} = 1
\]

\(l'_{11} = l_{11}, p'_{1,1} = p_{1,1} \).

In \[\text{[8]}\] the following statement was proved.

Proposition 2 Let \(u \) and \(v \) be vertices from the same component of \(D(k, q) \). Then \(a(u) = a(v) \). Moreover, for any \(t - 1 \) field elements \(x_i \in F_q \), \(2 \leq t \leq [(k + 2)/4] \), there exists a vertex \(v \) of \(D(k, q) \) for which

\[
a(v) = (x_2, \ldots, x_t) = (x).
\]

Let us consider the following equivalence relation \(\tau : u \tau v \) iff \(a(u) = a(v) \) on the set \(P \cup L \) of vertices of \(D(k, q) \) (\(D(q) \)). The equivalence class of \(\tau \) containing the vertex \(v \) satisfying \(a(v) = (x) \) can be considered as the set of vertices for the induced subgraph \(EQ(x)(k, q) \) (\(EQ(x)(q) \)) of the graph \(D(k, q) \) (respectively, \(D(q) \)). When \((x) = (0, \cdots, 0)\), we will omit the index \(v \) and write simply \(EQ(k, q) \).

Let \(CD(q) \) be the connected component of \(D(q) \) which contains \((0,0,\ldots)\). Let \(\tau' \) be an equivalence relation on \(V(D(k, q)) \) (\(V(D(q)) \)) such that the equivalences
classes are the totality of connected components of this graph. Obviously $u \tau v$ implies $u \tau' v$. If char F_q is an odd number, the converse of the last proposition is true (see [20] and further references).

Proposition 3 Let q be an odd number. Vertices u and v of $D(q)$ ($D(k, q)$) belong to the same connected component iff $a(u) = a(v)$, i.e., $\tau = \tau'$ and $EQ(q) = CD(q)$ ($EQ(k, q) = CD(k, q)$).

The condition $\text{char } F_q \neq 2$ in the last proposition is essential. For instance, the graph $EQ(k, 4)$, $k > 3$, contains 2 isomorphic connected components. Clearly $EQ(k, 2)$ is a union of cycles $CD(k, 2)$. Thus neither $EQ(k, 2)$ nor $CD(k, 2)$ is an interesting family of graphs of high girth. But the case of graphs $EQ(k, q)$, q is a power of 2, $q > 2$ is very important for coding theory.

Corollary 1 Let us consider a general vertex

$$x = (x_1, x_{1,1}, x_{2,1}, x_{1,2}, \ldots, x_{i,i}, x'_{i,i}, x_{i,i+1}, x_{i,i+1}, \ldots),$$

$i = 2, 3, \ldots$ of the connected component $CD(k, F_q)$, which contains a chosen vertex v. Then coordinates $x_{i,i}$, $x_{i,i+1}$, $x_{i+1,i}$ can be chosen independently as “free parameters” from F_q and $x'_{i,i}$ could be computed successively as the unique solutions of the equations $a_i(x) = a_i(v)$, $i = 1, \ldots$.

2.2 Geometrical interpretation of the algorithm

We can change F_q for the integral domain K and introduce the graph $D(K)$ as the graph given by equations (1) over K and repeat all results of the previous section. If we assume that K is the general commutative ring then we will lose just the bounds on the girth.

The graph $D(K)$, where K is integral domain is a forest consisting of isomorphic edge-transitive trees (see [17] or [14]).

Notice that each tree is a bipartite graph. We may choose a vertex x and refer to all vertices on even distance from it as points. So all remaining vertices are lines.

We may identify all vertices from $P = K^\infty$ with the union of point-sets for all trees from $D(K)$. Another copy L of K^∞ we will treat as totality of all lines in our forest.

For our Diffie-Hellman key exchange protocol Alice has to go to infinite magic forest $D(K)$ and do the following lumberjack’s business
1) Truncate all trees there by deleting all components with number \(\geq n + 1 \). So Alice gets a finite dimensional graph \(D(n, K) \) which is a union of isomorphic connected components \(CD(n, K) \)- truncated trees.

Notice, if you plant a truncated tree \(CD(n, K) \) and let \(n \to \infty \) then it will grow to a projective limit of \(CD(n, K) \), which is an infinite regular tree.

2) We define a special colouring of graph \(D(n, K) \) (or \(D(K) \)) in the following way. Let us identify our simple graph with the directed graph of corresponding symmetric binary relation. We introduce the colour of the directed arrow between two ordered vertices of our graph \(v_1 \) and \(v_2 \) as the difference of their first coordinates. It is \(l_0, 1 - p_0, 1 \) if \(v_1 \) is a point \((p)\) and \(-l_0, 1 - p_0, 1\) if \(v_1 \) is a line \([l]\).

Let \(X(\alpha, \beta) \) be the operator on the vertices of the graph \(D(K) \) moving point \((p)\) to its neighbor alongside the edge of colour \(\alpha \) and moving line \([l]\) to its neighbor alongside the edge of colour \(\beta \). It is clear that \(X(\alpha, \beta)X(-\beta, -\alpha) \) is an identity map. So \(X(\alpha, \beta)^{-1} = X(-\beta, -\alpha) \). We assume, that \(N_\alpha = X(\alpha, \alpha) \).

Let us define the infinite group \(GD(K) \) generated by elements of kind \(g = N_{\alpha_1}N_{\alpha_2} \ldots N_{\alpha_{2s-1}}N_{\alpha_{2s}}(x), s = 1, 2, \ldots \) corresponding to walks of even length within the tree starting in the general vertex \(x \). It is a transformation group of variety \(P \cup L \). It acts transitively on \(P \) (or \(L \)). \((GD(K), P) \) is a subgroup of Cremona group for variety \(K^\infty \).

The computation of \(g = N_{\alpha_1}N_{\alpha_2} \ldots N_{\alpha_{2s-1}}N_{\alpha_{2s}}(x) \) in the transformation group \((GD(K), P) \) corresponds to walk in \(D(K) \) of even length within the tree starting with the point \(x \). So the group \(G \) is the totality of all point to point walks in our forest.

The composition of \(g_1 \) and \(g_2 \) from variable \(x \) is the walk corresponding to \(g_1 \) with starting point \(x \) combined with the walk corresponding to \(g_2 \) with the starting point \(g_1(x) \) and final point \(g_2(g_1(x)) \).

Each pass of even length in the graph starting from a point \((p)\) can be obtained as a sequence \((p), v_1 = N_{\alpha_1}(p), v_2 = N_{\alpha_2}(v_1), \ldots, v_{2k} = N_{\alpha_{2k}}(v_{2k-1})\).

Each element of \(GD(K) \) has an infinite order because our forest does not contain cycles.

Let us consider our symbolic Diffie -Hellman protocol for the infinite transformation group \(GD(K), P \).

a) In case of this group Alice is hiding a general point \(x \) by ”quasi random” affine transformation \(T \) and sending \(g(T(x)) \) to Bob.

b) Further Bob chooses his key \(k_B \) and computes transformation \(h_b = g(T(x))^{k_B} \) of point set for the tree. He makes this computation root in ”darkness” because he has no information on the forest, he has to apply standard tools for symbolic computations.

c) Alice computes \(h_A = g(T(x))^{k_A} \). She can make it fast because via the
repetition of the walk g from the vertex $T(x)$ several times.

d) Alice and Bob are getting the collision vector as h_{BA}^k and h_{AB}^k respectively.

2.3 Truncated trees and corresponding stable group

Now we change the forest $D(K)$ on the bunch of truncated trees from $D(n, K)$. Computation $g = N_{\alpha_1}N_{\alpha_2} \ldots N_{\alpha_{2^s-1}}N_{\alpha_{2^s}}(x)$ generate the group $(GD(n, K), P\cup L)$ corresponding all walks in $D(n, K)$ of even length starting in vertex x.

Each pass of even length in the graph starting from a point (p) can be obtained as a sequence (p), $v_1 = N_{\alpha_1}(p), v_2 = N_{\alpha_2}(v_1), \ldots, v_{2k} = N_{\alpha_{2k}}(v_{2k-1})$.

Now Alice and Bob can do the key exchange similarly to the case of $GD(K)$ but in finite group $GD(n, K)$, where K is a finite ring

REMARK. The generalised graph $D(n, K)$ can be defined on the vertex set $K^n \cup K^n$ in case of arbitrary ring K by equations (1). Notice that if K contains zero divisors then girth is dropping, it is bounded by constant.

The next result follows instantly from [21].

Theorem 3 Let K be a commutative ring containing at least 3 regular elements. Sequence of subgroups $GD(n, K)$ of Cremona group $C(n, K)$ form a family of stable subgroups of degree 3.

We refer to element $g = N_{\alpha_1}N_{\alpha_2} \ldots N_{\alpha_{2^s-1}}N_{\alpha_{2^s}}$ for which $\alpha_i \neq \alpha_{i+1}, i = 1, 2, \ldots, 2s - 1$ as irreducible element of length s.

Let ϕ_n be a canonical homomorphism of $GD(K)$ onto $GD(n, K)$.

The following proposition follows from the results on the girth of previous section. Now it is very important that $K = F_q$

Proposition 4 The order of each nonidentical element of $GD(F_q)$ is an infinity. Let $g \in GD(F_q)$ be a regular element of length $l(g) = k$, then the order of $g_n = \phi_n(g)$, where $k \leq [n + 5]/2$, is bounded below by $[n + 5]/4k$ The sequence g_n is a family of stable elements.

So element $h = \tau^{-1}h^{-1}g_nh\tau$, where $\tau \in AGL_n(K), h \in DG(n, K)$ is an element for which $h^{-1}g_nh$ is a cubical map, can be used as the base for Diffie-Hellman algorithm as above for $K = F_q$.

3 On the regular directed graph with special colouring

Directed graph is an irreflexive binary relation $\phi \subset V \times V$, where V is the set of vertices.
Let us introduce two sets

\[id(v) = \{ x \in V | (a, x) \in \phi \}, \]
\[od(v) = \{ x \in V | (x, a) \in \phi \} \]

as sets of inputs and outputs of vertex v. Regularity means the cardinality of these two sets (input or output degree) are the same for each vertex.

Let \(\Gamma \) be regular directed graph, \(E(\Gamma) \) be the set of arrows of graph \(\Gamma \). Let us assume that additionally we have a colouring function i.e. the map \(\pi : E \to M \) onto set of colours \(M \) such that for each vertex \(v \in V \) and \(\alpha \in M \) there exist unique neighbour \(u \in V \) with property \(\pi((v, u)) = \alpha \) and the operator \(N_\alpha(v) := N(\alpha, v) \) of taking the neighbour \(u \) of a vertex \(v \) within the arrow \(v \to u \) of colour \(\alpha \) i a bijection. In this case we refer to \(\Gamma \) as rainbow-like graph.

For each string of colours \((\alpha_1, \alpha_2, \ldots, \alpha_m) \), \(\alpha_i \in M \) we can generate a permutation \(\pi \) which is a composition \(N_{\alpha_1} \times N_{\alpha_2} \times \cdots \times N_{\alpha_m} \) of bijective maps \(N_{\alpha_i} : V(\Gamma) \to V(\Gamma) \). Let us assume that the map \(u \to N_\alpha(u) \) is a bijection. For given vertex \(v \in V(\Gamma) \) the computation \(\pi \) corresponds to the chain in the graph:

\[v \to v_1 = N(\alpha_1, v) \to v_2 = N(\alpha_2, v_1) \to \cdots \to v_n = N(\alpha_m, v_{m-1}) = v'. \]

Let \(G_\Gamma \) be the group generated by permutations \(\pi \) as above.

E.Moore \[12\] used the term tactical configuration of order \((s, t) \) for biregular bipartite simple graphs with bidegrees \(s + 1 \) and \(r + 1 \). It corresponds to the incidence structure with the point set \(P \), line set \(L \) and symmetric incidence relation \(I \). Its size can be computed as \(|P|(s + 1) \) or \(|L|(t + 1) \).

Let \(F = \{ (p, l) | p \in P, l \in L, pI\} \) be the totality of flags for the tactical configuration with partition sets \(P \) (point set) and \(L \) (line set) and incidence relation \(I \). We define the following irreflexive binary relation \(\phi \) on the set \(F \): Let \((P, L, I) \) be the incidence structure corresponding to regular tactical configuration of order \(t \).

Let \(F_1 = \{ (l, p) | l \in L, p \in P, lIp \} \) and \(F_2 = \{ [l, p] | l \in L, p \in P, lIp \} \) be two copies of the totality of flags for \((P, L, I) \). Brackets and parenthesis allow us to distinguish elements from \(F_1 \) and \(F_2 \). Let \(DF(I) \) be the directed graph (double directed flag graph) on the disjoint union of \(F_1 \) with \(F_2 \) defined by the following rules

\[(l_1, p_1) \to [l_2, p_2] \] if and only if \(p_1 = p_2 \) and \(l_1 \neq l_2 \),
\[[l_2, p_2] \to (l_1, p_1) \] if and only if \(l_1 = l_2 \) and \(p_1 \neq p_2 \).
4 Construction of new stable groups corresponding to rainbow like graphs

Let us consider double directed graph $DD(n, K)$ for the bipartite graph $D(n, K)$ and infinite double directed flag graph $DD(K)$ for $D(K)(DD(K))$ defined over the commutative ring K. Let $N = N_{\alpha, \beta}(v)$ be the operator of taking the neighbor alongside the output arrows of colours $\alpha, \beta \in \text{Reg}(K)$ of vertex $v \in F_1 \cup F_2$ by the following rule. If $v = \langle (p), [l] \rangle \in F_1$ then $N(v) = v' = [[l], (p')] \in F_2$, where the colour of v' is $\alpha = p'_1 - p_{1,0}$. If $v = [([l], (p)] \in F_2$ then $N(v) = v' = \langle (p), [l'] \rangle \in F_1$, where the colour of v' is $\beta = l'_{1,0} - l_{1,0}$.

Let us consider the elements $Z(\alpha, \beta) = N_{\alpha, 0}N_{0, \beta}$. It moves $v \in F_1$ into $v' \in F_1$ at distance two from v and fixes each $u \in F_2$. Notice that $Z(\alpha, \beta)Z(-\alpha, -\beta)$ is an identity map.

We consider the group $GF(n + 1, K)$ ($GF(K)$, respectively) generated by all transformations $Z(\alpha, \beta)$ for nonzero $\alpha, \beta \in K$ acting on the variety $F_1 = K^{n+1}$ (K^∞).

Theorem 4 Sequence of subgroups $GF(n, K)$ of Cremona group $C(n, K)$ form a family of subgroups of degree 3.

Proof

In the first step we connect a point with a line to get two sets of vertices of new graph:

- $F = \{\langle (p), [l] \rangle \mid (p)I([l])\} \cong K^{n+1}$
- $F' = \{[[l], (p)] \mid [l]I(p)\} \cong K^{n+1}$.

Now we define the following relation between vertices of the new graph:

- $\langle (p), [l] \rangle R\{[l'], (p')\} \iff [l] = [l']$ & $p_1 - p'_1 \in K$
- $\{[l'], (p')\} R\langle (p), [l] \rangle \iff (p') = (p)$ & $l'_1 - l_1 \in K$

Our key will be $\alpha_1, \alpha_2, \ldots, \alpha_n$, such that $\alpha_i \in \text{Reg}K$.

As a first vertex we take

$\{[l], (p)\} = (l_1, l_{1,1}, l_{1,2}, \ldots, l_{i,j}, p_1)$ (our variables) . Using the above relation we get next vertex:

$\langle (p)^{(1)}, [l]^{(2)} \rangle = (p_1, p_{1,1}^{(1)}, \ldots, p_{i,j}^{(1)}, l_1 + \alpha_1)$
with coefficients of degree 2 or 3, where

\[p_{1,1}^{(1)} = l_{1,1} - l_1p_1, \quad \deg = 2 \]
\[p_{1,2}^{(1)} = l_{1,2} - l_{1,1}p_1 \quad \deg = 2 \]
\[p_{2,1}^{(1)} = l_{2,1} - l_1(l_{1,1} - l_1p_1) \quad \deg = 3 \]
\[p_{i,i}^{(1)} = l_{i,i} - p_1l_{i,i-1} \quad \deg = 2 \]
\[p_{i,i+1}^{(1)} = l_{i,i+1} - p_1l_{i,i} \quad \deg = 2 \]
\[p_{i,i}^{(1)} = l_{i,i} - l_1(l_{i-1,i} - p_1l_{i-1,i-1}) \quad \deg = 3 \]
\[p_{i+1,j}^{(1)} = l_{i+1,j} - l_1(l_{i,j} - p_1l_{i-1,i-1}) \quad \deg = 3 \]

Similarly we get the third vertex:

\[\{ [l]^{(2)}, (p)^{(3)} \} = (l_1 + \alpha_1, l_{1,1}, \ldots, l_{i,j}, p_1 + \alpha_2) \]

also with coefficients of degree 2 or 3, where

\[l_{1,1}^{(2)} = l_{1,1} + l_1p_1, \quad \deg = 2 \]
\[l_{1,2}^{(2)} = l_{1,2} + \alpha_1p_1^2 \quad \deg = 2 \]
\[l_{2,1}^{(2)} = l_{2,1} + \alpha_1p_1^{(1)} \quad \deg = 2 \]
\[l_{i,i}^{(2)} = l_{i,i} + \alpha_1p_1^{(1)} \quad \deg = 2 \]
\[l_{i+1,j}^{(2)} = l_{i+1,j} + \alpha_1p_1^{(1)} \quad \deg = 2 \]
\[l_{i,i}^{(2)} = l_{i,i} + \alpha_1p_1^{(1)} \quad \deg = 3 \]
\[l_{i,j+1}^{(2)} = l_{i,j+1} + \alpha_1p_1^{(1)} \quad \deg = 3 \]

Let us represent:

\[p_1^{(2k-1)} = p_1 + \alpha_2 + \alpha_4 + \ldots + \alpha_{(2(k-2)} = p_1^{(2k-3)} + \alpha_{(2(k-2)} \]
\[l_1^{(2k)} = l_1 + \alpha_1 + \alpha_3 + \ldots + \alpha_{(2(k-1)} = l_1^{(2k-2)} + \alpha_{(2(k-1)} \]

Assume that the following vertices:

\[\{(p)^{(2k-1)}, [l]^{(2k)} \} = (p_1^{(2k-1)}, p_{1,1}^{(2k-1)}, \ldots, p_{i,j}^{(2k-1)}, l_1^{(2k)}) \]
\[\{ [l]^{(2k)}, (p)^{(2k+1)} \} = (l_1^{(2k)}, l_{1,1}^{(2k)}, \ldots, l_{i,j}^{(2k)}, p_1^{(2k+1)}) \]

have degrees:

\[\deg p_{i,j}^{(2k-1)}(l_1, l_2, \ldots, l_k, p_1) = \begin{cases} 2, & (i, j) = (i, i) \quad \text{or} \quad (i, j) = (i, i+1), \\ 3, & (i, j) = (i, i) \quad \text{or} \quad (i, j) = (i + 1, i) \end{cases} \]
\[\deg l_{i,j}^{(2k)}(l_1, l_2, \ldots, l_k, p_1) = \begin{cases} 3, & (i, j) = (i, i) \quad \text{or} \quad (i, j) = (i, i+1), \\ 2, & (i, j) = (i, i) \quad \text{or} \quad (i, j) = (i + 1, i) \end{cases} \]
Now we would like to find out degrees of polynomials of the vertices \(\langle p \rangle^{(2k+1)}, [l]^{(2k+2)} \) and \(\{ [l], (p) \}^{(2k+3)} \).

We have the components of the vertices with corresponding degrees:

\[
\begin{align*}
\hat{p}'_{i,j}^{(2k+1)} &= \hat{p}_{i,j}^{(2k-1)} - \alpha_{2k} \hat{t}_{i-1,j}^{(2k)} \quad \text{deg} = 2 \\
\hat{p}_{i,j}^{(2k+1)} &= \hat{p}_{i,j+1}^{(2k-1)} - \alpha_{2k} \hat{t}_{i,j}^{(2k)} \quad \text{deg} = 2 \\
\hat{p}_{i,j}^{(2k+1)} &= \hat{p}_{i,j+1}^{(2k-1)} + \alpha_{2k} \hat{t}_{i,j}^{(2k)} \quad \text{deg} = 3 \\
\hat{p}_{i+1,j}^{(2k+1)} &= \hat{p}_{i+1,j}^{(2k-1)} + \alpha_{2k} \hat{t}_{i,j}^{(2k)} \quad \text{deg} = 3 \\
\end{align*}
\]

and

\[
\begin{align*}
\hat{t}_{i,j}^{(2k+2)} &= \hat{t}_{i,j}^{(2k)} + \alpha_{2k+1} \hat{p}_{i-1,j}^{(2k+1)} \quad \text{deg} = 2 \\
\hat{t}_{i+1,j}^{(2k+2)} &= \hat{t}_{i+1,j}^{(2k)} + \alpha_{2k+1} \hat{p}_{i,j}^{(2k+1)} \quad \text{deg} = 2 \\
\hat{t}_{i,j}^{(2k+2)} &= \hat{t}_{i,j}^{(2k)} + \alpha_{2k+1} \hat{p}_{i,j}^{(2k+1)} \quad \text{deg} = 3 \\
\hat{t}_{i,j}^{(2k+2)} &= \hat{t}_{i,j}^{(2k)} + \alpha_{2k+1} \hat{p}_{i,j}^{(2k+1)} \quad \text{deg} = 3 \\
\end{align*}
\]

Hence using the induction we got:

\[
\begin{align*}
\text{deg } \hat{p}_{i,j}^{(2k+1)}(l_1, l_2, \ldots, l_k, p_1) &= \begin{cases} 2, & (i, j) = (i, i) \text{ or } (i, j) = (i, i + 1), \\ 3, & (i, j) = (i, i) \text{ or } (i, j) = (i + 1, i) \end{cases} \\
\text{deg } \hat{t}_{i,j}^{(2k+2)}(l_1, l_2, \ldots, l_k, p_1) &= \begin{cases} 3, & (i, j) = (i, i) \text{ or } (i, j) = (i, i + 1), \\ 2, & (i, j) = (i, i) \text{ or } (i, j) = (i + 1, i) \end{cases}
\end{align*}
\]

Finally using the affine transformation in the same way as in [21], independently from the length of the password we get the polynomials of degree 3.

Canonical graph homomorphisms \(\omega_n : DD(n, K) \to DD(n - 1, K) \) can be naturally expanded to group homomorphism \(GF(n+1, K) \) onto \(GF_n(K) \). It means that group \(GF(K) \) is a projective limit of \(GF(n, K) \). Let \(\delta_n \) be a canonical homomorphism of \(GF(K) \) onto \(GF(n, K) \).

Let \(\text{Reg}(K) \) be the totality of regular elements of \(K \) i. e. non zero divisors. We may consider the restriction \(\text{DD}(n, K) \) of the graph \(DD(n, K) \) via the following additional condition.

\[
\langle (p), [l] \rangle R\{ [l'], (p') \} \iff [l] = [l'] \text{ and } p_1 - p_1' \in \text{Reg}(K) \\
\{ [l'], (p') \} R\{ (p), [l] \} \iff (p') = (p) \text{ and } l_1' - l_1 \in \text{Reg}(K)
\]

. We restrict operators \(N_{\alpha, \beta} \) and \(Z(\alpha, \beta) \) simply by adding the restrictions \(\alpha, \beta \in \text{Reg}(K) \). Let \(Q_n = Q(n, K) \) be the restricted group and \(Q = Q(K) \) is a projective limit of \(Q(n, K) \), \(n \to \infty \).

In [15], [17] was shown that the projective limit of graphs \(DD(n, K) \) is acyclic graph and the length of minimal directed cycle in \(DD(n, K) \) is bounded below by \([n + 5]/2\). It means that we get the following statement.
Proposition 5 The order of each nonidentical element of $Q(K)$ is infinity. Let $g \in Q(K)$ be an element of length $l(g) = k$, then the order of its projection $g_n = \delta_n(g) \in Q_n$, where $k \leq \lfloor n + 5 \rfloor/2$, is bounded below by $\lfloor n + 5 \rfloor/2k$. The sequence g_n forms a family of stable elements of increasing order.

Theorem 1 follows immediately from theorem 4 and proposition 5.

5 On the time evaluation for the public rule

Recall, that we combine a graph transformation N_l with two affine transformation T_1 and T_2. Alice can use $T_1N_lT_2$ for the construction of the following public map of

$$y = (F_1(x_1, \ldots, x_n), \ldots, F_n(x_1, \ldots, x_n))$$

$F_i(x_1, \ldots, x_n)$ are polynomials of n variables written as the sums of monomials of kind $x_i^{m_1}x_i^{m_2}x_i^{m_3}$ with the coefficients from $K = F_q$, where $i_1, i_2, i_3 \in 1, 2, \ldots, n$ and m_1, m_2, m_3 are positive integer such that $m_1 + m_2 + m_3 \leq 3$. As we mentioned before the polynomial equations $y_i = F_i(x_1, x_2, \ldots, x_n)$, $i = 1, 2, \ldots, n$, which are made public, have the degree 3. Hence the process of an encryption and a decryption can be done in polynomial time $O(n^4)$ (in one y_i, $i = 1, 2, \ldots, n$ there are $2(n^3 - 1)$ additions and multiplications). But the cryptoanalyst Cezar, having only a formula for y, has a very hard task to solve the system of n equations of n variables of degree 3. It is solvable in exponential time $O(3^{n^4})$ by the general algorithm based on Gröbner basis method. Anyway studies of specific features of our polynomials could lead to effective cryptanalysis. This is an open problem for specialists.

We have written a program for generating a public key and for encrypting text using the generated public key. The program is written in C++ and compiled with the Borland bcc 5.5.1 compiler.

We use a matrix in which all diagonal elements equal 1, elements in the first row are non-zero and all other elements are zero as A, identity matrix as B and null vectors as c and d. In such a case the cost of executing affine transformations is linear.

The table 1 presents the time (in milliseconds) of the generation of the public key depending on the number of variables (n) and the password length (p).

The table 2 presents the time (in milliseconds) of encryption process depending on the number of bytes in plaintext (n) and the number of bytes in a character (w).
Table 1: Time of public key generation

	$p = 10$	$p = 20$	$p = 30$	$p = 40$	$p = 50$	$p = 60$
$n = 10$	15	15	16	32	31	32
$n = 20$	109	250	391	531	687	843
$n = 30$	609	1484	2468	3406	4469	5610
$n = 40$	2219	7391	12828	18219	24484	29625
$n = 50$	5500	17874	34078	49952	66749	82328
$n = 60$	12203	42625	87922	138906	192843	242734
$n = 70$	22734	81453	169250	286188	405500	536641
$n = 80$	46015	165875	350641	619921	911781	1202375
$n = 90$	92125	332641	708859	1262938	1894657	2525360
$n = 100$	159250	587282	1282610	2220610	3505532	4899657

Table 2: Time of encryption

	Z_{2^8}	$Z_{2^{16}}$	$Z_{2^{32}}$
$n = 20$	16	0	0
$n = 40$	265	47	15
$n = 60$	1375	188	15
$n = 80$	3985	578	47
$n = 100$	10078	1360	125
References

[1] N.L. Biggs, *Graphs with large girth*, Ars Combinatoria, 25C (1988), 73–80.

[2] B. Bollobás, *Extremal Graph Theory*, Academic Press, London, 1978.

[3] P.S. Guinand and J. Lodge, *Tanner Type Codes Arising from Large Girth Graphs*, Proceedings of the 1997 Canadian Workshop on Information Theory (CWIT ’97), Toronto, Ontario, Canada, pp. 5-7, June 3-6, 1997.

[4] P.S. Guinand and J. Lodge, *Graph Theoretic Construction of Generalized Product Codes*, Proceedings of the 1997 IEEE International Symposium on Information Theory (ISIT ’97), Ulm, Germany, p. 111, June 29-July 4, 1997.

[5] Jon-Lark Kim, U. N. Peled, I. Perepelitsa, V. Pless, S. Friedland, *Explicit construction of families of LDPC codes with no 4-cycles*, Information Theory, IEEE Transactions, 2004, v. 50, Issue 10, 2378 - 2388.

[6] M. Klisowski, V. Ustimenko, *On the implementation of public keys algorithms based on algebraic graphs over finite commutative rings*, Proceedings of International CANA conference, Wisla, 2010.

[7] S. Kotorowicz, V. Ustimenko, *On the implementation of cryptoalgorithms based on algebraic graphs over some commutative rings*, Condensed Matter Physics, 2008, vol. 11, No. 2(54), (2008) 347–360.

[8] F. Lazebnik, V. A. Ustimenko, A. J. Woldar, *A Characterization of the Components of the graphs D(k, q)*, Discrete Mathematics, 157 (1996) 271–283.

[9] F. Lazebnik F. and V. Ustimenko, *Explicit construction of graphs with an arbitrary large girth and of large size*, Discrete Appl. Math. , 60, (1995), 275 - 284.

[10] A. Lubotsky, R. Philips, P. Sarnak, *Ramanujan graphs*, J. Comb. Theory., 115, N 2., (1989), 62-89.

[11] G. A. Margulis, *Explicit construction of graphs without short cycles and low density codes*, Combinatorica, 2, (1982), 71-78.

[12] E. H. Moore, *Tactical Memoranda*, Amer. J. Math., v.18, 1886, 264-303.

[13] V. A. Ustimenko, *Graphs with Special Arcs and Cryptography*, Acta Applicandae Mathematicae, 2002, vol. 74, N2, 117-153.
[14] V. A. Ustimenko, *Linguistic Dynamical Systems, Graphs of Large Girth and Cryptography*, Journal of Mathematical Sciences, Springer, vol.140, N3 (2007) pp. 412-434.

[15] V. A. Ustimenko, *On the graph based cryptography and symbolic computations*, Serdica Journal of Computing, Proceedings of International Conference on Application of Computer Algebra, ACA-2006, Varna, N1 (2007).

[16] V. A. Ustimenko, *Maximality of affine group, and hidden graph cryptosystems*, J. Algebra and Discrete Math., 10 (October 2004), 51-65.

[17] V. A. Ustimenko, *Coordinationisation of regular tree and its quotients*, in "Voronoï's impact on modern science, eds P. Engel and H. Syta, book 2, National Acad. of Sci, Institute of Mathematics, 1998, 228p.

[18] V. A. Ustimenko, *CRYPTIM: Graphs as Tools for Symmetric Encryption*, in Lecture Notes in Computer Science, Springer, 2001, v. 2227, 278-287.

[19] V. A. Ustimenko, *On the extremal graph theory for directed graphs and its cryptographical applications* In: T. Shaska, W.C. Huffman, D. Joener and V. Ustimenko, Advances in Coding Theory and Cryptography, Series on Coding and Cryptology, vol. 3, 181-200 (2007).

[20] V. A. Ustimenko, *On the cryptographical properties of extremal algebraic graphs*, in Algebraic Aspects of Digital Communications, NATO Science for Peace and Security Series - D: Information and Communication Security, Volume 24, July 2009, 296 pp.

[21] A. Wroblewska *On some properties of graph based public keys*, Albanian Journal of Mathematics, Volume 2, Number 3, 2008, 229-234 p.