Isolation and Characterization of Microsatellite Loci in Rehmannia glutinosa (Scrophulariaceae), a Medicinal Herb

Authors: Jiao, Zhenbin, Cheng, Yueqin, Wang, Hongwei, Lei, Caiyan, Wang, G. Geoff, et al.

Source: Applications in Plant Sciences, 3(10)

Published By: Botanical Society of America

URL: https://doi.org/10.3732/apps.1500054
PRIMER NOTE

ISOLATION AND CHARACTERIZATION OF MICROSATellite LOCI IN *REHMANNIA GLUTINOSA* (SCROPHULARIACEAE), A MEDICINAL HERB

ZHENBIN JIAO, YUEQIN CHENG, HONGWEI WANG, CAIYAN LEI, G. GEOFF WANG, AND LINJIANG HAN

1College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, People’s Republic of China; 2College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, People’s Republic of China; and 3School of Agricultural, Forest, and Environmental Science, Clemson University, Clemson, South Carolina 29631 USA

- **Premise of the study:** *Rehmannia glutinosa* (Scrophulariaceae) is used in traditional Chinese medicine. Microsatellite primers were developed and characterized for this species to evaluate its genetic diversity and population genetic structure.
- **Methods and Results:** Sixteen microsatellite loci were isolated from *R. glutinosa* using an enriched genomic library, and these markers were characterized in two wild populations of this species. The number of alleles per locus ranged from two to 20. A high genetic diversity was observed in two populations, with average observed heterozygosity of 0.812 and 0.794, and average expected heterozygosity of 0.802 and 0.814, respectively.
- **Conclusions:** *Rehmannia glutinosa* is an important medicinal resource. The genetic markers described in our study will be useful for future population genetic studies and molecular breeding programs on this species.

Key words: genetic diversity; microsatellite; *Rehmannia glutinosa*; Scrophulariaceae.

Rehmannia glutinosa (Gaertn.) Libosch. ex Fisch. & C. A. Mey. (Scrophulariaceae) is a perennial herbaceous species of medicinal value (Zhou, 2002; Shao et al., 2008). Its tuberous roots are commonly used in Chinese traditional medicine (Wen et al., 2002). In recent decades, a significant number of chemical and pharmacological studies have been performed on *R. glutinosa* (Zhang et al., 2008; Chang et al., 2011). More than 70 compounds, including iridoids, saccharides, amino acids, inorganic ions, and other trace elements, have been found in the herb (Zhang et al., 2008). Many studies show that some active ingredients in the roots of *R. glutinosa* possess broad pharmacological actions for protecting gastric mucosa and restraining pulmonary fibrosis (Liu et al., 2009). In addition, the root has been demonstrated to improve hematopoiesis, have anti-inflammatory and antitumor activities, decrease blood sugar, and promote the proliferation of vascular endothelial cells (Liu et al., 2009).

Genetic knowledge about *R. glutinosa*, such as its genetic diversity, genetic structure, and gene flow, serves as a foundation for cultivating improved varieties and exploiting and utilizing Chinese traditional medicine resources (Zhang et al., 2012). Simple sequence repeats (SSRs) are highly polymorphic, multiallelic, reproducible, abundantly distributed in the genome, and easy to interpret (Tanya et al., 2011). They are also codominant inheritance markers and can provide the amplified result of the heterozygote or the homozygote. In this study, we isolated 16 microsatellite loci from *R. glutinosa* and used these loci as markers to estimate the genetic diversity of two wild populations.

METHODS AND RESULTS

Forty-four individual leaves were collected from two wild populations of *R. glutinosa*: Hebi (HB: 35°36′00″N, 114°12′00″E) and Jiaozuo (JZ: 35°13′48″N, 113°25′48″E). The voucher specimens (*Rehmannia glutinosa* HB090001 and *Rehmannia glutinosa* JZ090001 for the HB and JZ populations, respectively) are deposited in the herbarium of Henan Agricultural University (HEAC). These leaf samples were dried quickly with silica gel and stored at −20°C. The total DNA was isolated from the dried leaves using a modified cetyltrimethylammonium bromide (CTAB) method (Fang et al., 2009) and purified with a Universal DNA Purification Kit (Tiangen Biotech, Beijing, China). The purified DNA was digested with the enzyme *Rsa*I, and the digested DNA fragments were linked to SuperSNX-24F (5′-GGATAAGCCTAGCTAGCAGAATC-3′) and SuperSNX-24R (5′-GATTCTGTCTACGAGCTCTTAAACAAA-3′) adapters. Using biotinylated (AC)6, (AG)6, and (ATG)12 probes (New England Biolabs, Beverly, Massachusetts, USA) and SuperSNX-24F and SuperSNX-24R adapters, the ligated fragments were hybridized and captured by streptavidin-coated magnetic beads. After purification, DNA fragments were ligated to the PMD18-T vectors (TaKaRa Biotechnology Co., Dalian, China) and transformed into DH5α cells (TaKaRa Biotechnology Co.). All white clones were tested with PCR amplification using M13F and M13R primers. Ninety-six positive clones with inserted fragments ranging from 400 to 1000 bp were selected and sequenced on an ABI 3730 DNA analyzer (Applied Biosystems, Foster City, California, USA). Out of the 96 clones, 48 contained microsatellite repeats. Based on the sequences with microsatellite repeats in the middle region of the sequences, 32 primer pairs were designed using the primer Premier 5.0 (PREMIER Biosoft International, Palo Alto, California, USA). Using 12 *R. glutinosa* individuals, PCR amplifications were performed in 10 μL of a solution containing approximately 50 ng of genomic DNA, 10 μM...
Sixteen microsatellite loci were isolated from *Rehmannia glutinosa*, and these loci were analyzed to estimate the genetic diversity of two wild populations. Our study observed a high genetic diversity in the two wild populations. The genetic markers described in our study will be useful for future population genetics studies and molecular breeding programs on this species.

TABLE 1. Characterization of 16 microsatellite loci in *Rehmannia glutinosa*.

Locus	Primer sequences (5′–3′)	Repeat motif	*T*_a (°C)	Allele size range (bp)	GenBank accession no.
DH-1-13	F: AAGTTGAAAGATGTTGGG R: AATACAAAAGCCTTCCAAGA	(CT)₂₂	49.7	386–465	KC977459
DH-1-16	F: TAGGGTGGAGAGTGAGTTAGG R: AAGTGGTGGCAGAGGAAGA	(CAT)₆	52.8	274–297	KC97461
DH-1-18	F: TTTGGCAGCTACAGGAGGG R: GATGAGTTGGCTGTGGGCTT	(AG)₁₇	57.7	300–433	KC97462
DH-1-45	F: AAGTTCCATTGGCGCCAA R: GTCCCTATTGTTCCGCTTCC	(CT)₁₁CTTTAGTGGGCTTCTTATGNT	52.3	275–299	KC97470
DH-1-53	F: AGGAACGCGGACGAAAT R: CACAAAAACCCCAAGGCC	(GAT)₇	51.8	343–361	KC97467
DH-1-59	F: TGAGGATGGTAGATGTCTTTG R: GACGAGGGTCTTATGGTGT	(CT)₁₀GA(TG)GGC	52.3	275–299	KC97470
DH-1-73	F: AGCATCATTGCGCCAAA R: TCAACCCAGAAATCTTAGT	(CAT)₇	54.1	100–163	KC97472
DH-1-94	F: TCTTATGGAGAAGAGTGTC R: GGGCTGTATTCTGAGAGG	(TG)₈	52	258–298	KC97473
DH-1-106	F: AGACAGCTTGGATATTCTTG R: GAAGTTTATATTCCTCCCTC	(CAT)₇	47.5	164–176	KC97475
DH-1-117	F: CCATTTCTAAGCCACAAA R: AACTTCACACCAGCAAGA	(CAT)₁₁	59	107–191	KC97477
DH-1-118	F: TTTTCTGCTGTCTTTGGCTC R: GCATGCTTACGGCTCTTCC	(GA)₁₅	63.5	253–376	KC97478
DH-1-124	F: ATAAAACCTACCTACCCACAA R: AAAAAACCTCCAAACCACCC	(TC)₃A(TC)₂GAAAT(TC)₄	59.5	264–266	KC97480
DH-2-41	F: AGTCGTCGTCATCGGTT R: CCATCTGCAAGCTTTC	(AG)₂₅	55.8	278–309	KC97482
DH-2-49	F: AAGATGCTCTGCCTCCCTC R: GCAGCCAGAGTTCAAAATGTC	(TCA)₃(TGA)(GAT)₃	54	190–217	KC97483
DH-3-43	F: CCGGCCCAAGATCGACCAAA R: GAGAGTGCTAGCCACAAA	(CT)₃A(TC)₆(AC)₄	55	249–291	KC97484
DH-4-44	F: GACCCCAAGGAAGACATA R: GCACCCGGTGGTTGGTCTT	(AG)₁₈	49.2	298–332	KC97488

Note: *T*_a = annealing temperature.

TABLE 2. Results from the initial primer screening in two populations of *Rehmannia glutinosa*.^a^

Locus	Hebi (N = 24)	Jiaozuo (N = 20)						
---------	---------------	------------------						
	A	H_e	H_b		A	H_e	H_b	
DH-1-13	20	0.905	0.951	15	0.941	0.930		
DH-1-16	10	0.625	0.834**	6	0.500	0.754		
DH-1-18	18	0.870	0.947	20	0.889	0.965		
DH-1-45	10	0.958	0.774	9	0.950	0.753		
DH-1-53	13	0.750	0.871	13	0.650	0.875*		
DH-1-59	16	1.000	0.941	16	1.000	0.909		
DH-1-73	9	0.833	0.699	12	0.950	0.835		
DH-1-94	18	0.917	0.944	18	0.947	0.949		
DH-1-106	8	1.000	0.777	9	1.000	0.774		
DH-1-117	10	0.958	0.694	11	0.950	0.838		
DH-1-118	13	0.316	0.881**	16	0.400	0.929**		
DH-1-124	2	0.522	0.487	3	0.474	0.553*		
DH-2-41	16	0.958	0.876	15	0.900	0.885		
DH-2-49	3	0.667	0.488	2	0.400	0.328		
DH-3-43	4	0.750	0.777	19	0.800	0.897		
DH-4-44	12	0.898	0.874	7	0.950	0.853		
Average	12	0.812	0.802	11.9	0.794	0.814		

Note: A = number of alleles; H_e = expected heterozygosity; H_b = observed heterozygosity; N = number of individuals.

^a^Geographic coordinates and voucher information: Hebi (HB: 35°36′00″N, 114°12′00″E), voucher Rehmannia glutinosa HB09001; Jiaozuo (JZ: 35°13′48″N, 113°25′48″E), voucher Rehmannia glutinosa JZ09001. Vouchers deposited at Henan Agricultural University (HEAC).

^b^Deviations from Hardy–Weinberg equilibrium: *P < 0.05, **P < 0.01.

CONCLUSIONS

Sixteen microsatellite loci were isolated from *R. glutinosa*, and these loci were analyzed to estimate the genetic diversity of two wild populations. Our study observed a high genetic diversity in the two wild populations. The genetic markers described in our study will be useful for future population genetics studies and molecular breeding programs on this species.

http://www.bioone.org/loi/apps
LITERATURE CITED

Chang, W. T., Y. H. Choi, R. Van der Heijden, M. S. Lee, M. K. Lin, H. W. Kong, H. K. Kim, et al. 2011. Traditional processing strongly affects metabolite composition by hydrolysis in *Rehmannia glutinosa* roots. *Chemical & Pharmaceutical Bulletin* 59: 546–552.

Excoffier, L., and H. E. L. Lischer. 2010. Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and Windows. *Molecular Ecology Resources* 10: 564–567.

Fang, X. M., H. W. Wang, Y. Q. Cheng, Y. Z. Ye, and C. Yang. 2009. Optimization of total DNA extraction and test of suitable molecular markers of *Taihanggia rupestris*. *Chinese Agricultural Science Bulletin* 25: 57–60.

Liu, W. X., Y. W. Lu, H. T. Du, and Z. Z. Wu. 2009. Pharmacological actions of *Rehmannia glutinosa* and its active components: Research advances. *Foreign Medical Sciences (Section of Pharmacy)* 4: 277–280.

Schuelke, M. 2000. An economic method for the fluorescent labeling of PCR fragments. *Nature Biotechnology* 18: 233–234.

Shao, C. Y., S. L. Gao, F. Chen, X. X. Zhang, and B. Ren. 2008. Virus-free culture and rapid-propagation of *Rehmannia glutinosa* Liboch. *Pharmaceutical Biotechnology* 15: 258–261.

Tanya, P., P. Taeprayoon, Y. Haidam, and P. Singyves. 2011. Genetic diversity among *Jatropha* and *Jatropha*-related species based on ISSR markers. *Plant Molecular Biology Reporter* 29: 252–264.

Van Oosterhout, C., W. F. Hutchinson, D. P. M. Wills, and P. Shipley. 2004. MICRO-CHECKER: Software for identifying and correcting genotyping errors in microsatellite data. *Molecular Ecology Notes* 4: 535–538.

Wen, X. S., S. L. Yang, J. H. Wei, and J. H. Zheng. 2002. Textual research on planting history of *Rehmannia glutinosa* and its cultivated varieties. *Chinese Traditional and Herbal Drugs* 33: 946–949.

Zhang, Q., J. Li, Y. Zhao, S. K. Schuyler, and Y. P. Han. 2012. Evaluation of genetic diversity in Chinese wild apple species along with apple cultivars using SSR markers. *Plant Molecular Biology Reporter* 30: 539–546.

Zhang, R. X., M. X. Li, and Z. P. Jia. 2008. *Rehmannia glutinosa*: Review of botany, chemistry and pharmacology. *Journal of Ethnopharmacology* 117: 199–214.

Zhou, J. Y. 2002. Chromosome studies of *Rehmannia glutinosa* of traditional Chinese medicine. *Shandong Science* 15: 20–22.