Synthesis of Water-soluble, Polyester-based Dendrimer Prodrugs for Exploiting Therapeutic Properties of Two Triterpenoid Acids

Silvana Alfei, Gaby Brice Taptue, Silvia Catena, and Angela Bisio

Abstract Dendrimers are macromolecules characterized by high controlled size, shape and architecture, presence of inner cavities able to accommodate small molecules and many peripheral functional groups to bind target entities. They are of eminent interest for biomedical applications, including gene transfection, tissue engineering, imaging, and drug delivery. The well-known pharmacological activities of ursolic and oleanolic acids are limited by their small water solubility, non-specific cell distribution, low bioavailability, poor pharmacokinetics, and their direct administration could result in the release of thrombi. To overcome such problems, in this paper we described their physical incorporation inside amino acids-modified polyester-based dendrimers which made them highly water-soluble. IR, NMR, zeta potential, mean size of particles, buffer capacity and drug release profiles of prepared materials were reported. The achieved water-soluble complexes harmonize a polycationic character and a buffer capacity which presuppose efficient cell penetration and increased residence time with a biodegradable cell respectful scaffold, thus appearing as a promising team of not toxic prodrugs for safe administration of ursolic and oleanolic acids.

Keywords Polyester-based amino acids-modified dendrimers; Physical encapsulation; Water-soluble dendriplexes; Buffer capacity; NMR investigations

Citation: Alfei, S.; Taptue, G. B.; Catena, S.; Bisio, A. Synthesis of Water-soluble, Polyester-based Dendrimer Prodrugs for Exploiting Therapeutic Properties of Two Triterpenoid Acids. Chinese J. Polym. Sci. 2018, 36(9), 999–1010.

INTRODUCTION

Dendrimers, whose name has actually derived from the Greek word “Dendron” meaning “tree”, which indicates their unique tree-like branching architecture, are three-dimensional, immensely branched, well-organized nanoscopic macromolecules. They are characterized by globular shape, low polydispersity, interior cavities and their structure can be distinguished into the inner core moiety followed by radially attached generations that possess chemical functional groups at the exterior terminal surface. Their cavities can accommodate small natural or synthetic molecules with pharmacological activity, protecting them from premature degradation, increasing their solubility in biological fluids, decreasing their toxicity and favouring their bioavailability. With the increase in generations, the molecular size and peripheral groups are amplified and offer wide potential for multiple interactions, making dendrimers attractive to prepare multifunctional platforms containing at the same time physically incorporated or covalently linked drugs, target molecules such as folic acid (FA), antibodies, poly(ethylene glycol) moieties, fluorescent dyes, peptides, MRI contrast agent or various host-guest complexes that offer wide applications. Furthermore, surface modifications of dendrimers as well as hyperbranched polymers provide very appealing stimuli-responsive unimolecular polymeric micelles with dendrimer core very promising and with great potential in a variety of applications for the biomedical field. These features make dendrimers suitable materials for various biomedical applications such as drug delivery nanocarriers (prodrugs), bio-sensors, bio-imaging agents and theranostics. Furthermore, polycationic dendrimers are deeply investigated as not viral polymeric vectors for pDNA, or siRNA into specific defective cell of patients. Polyamidoamines (PAMAMs) are considered as good references both in the field of gene delivery and of drug delivery and are among the most investigated dendrimer vectors. PAMAMs are endowed not only with very efficient transfection and delivery activities but also with remarkable cytotoxicity mainly deriving from the high density of protonated amino groups in the polymeric framework. If a sharp polycationic character is necessary to interact with genetic materials or with membrane sphingolipids negatively charged, thus promoting cellular up-take and helping the escape from endosomal lysosomes.
and ischemic insult of myocardium
against ethanol-induced abnormalities in the heart
appealing protective agents may represent a novel therapeutic strategy for the treatment
and triterpenes have some conflicting characteristics. They may.
Despite their benefits, these induced dysrhythmia protective effects and are effective against chemically-
possess cardiovascular
vessels, antihyperlipidemic and antioxidant potent chemopreventive effects
and potential clinical uses in various diseases including anticancer chemotherapies. Ursolic acid (UA) together with its isomer oleanolic acid (OA), are pentacyclic triterpenoid acids, isolated from many kinds of medicinal plants, such as Eriobotrya japonica, Rosmarinus officinalis, Salvia Officinalis, Melaleuca leucadendron, Ocimum sanctum and Glechoma hederacea. UA and OA are endowed with several pharmacological activities but principally they manifest potent chemopreventive effects, hepatoprotective actions, antihyperlipidemic and antioxidant power, antitumor effects and cytotoxicity towards various types of cancer cell lines, antiviral and anti-inflammatory properties, antimutagenic activity evaluable both in vivo and in vitro. Furthermore, UA and OA may represent a novel therapeutic strategy for the treatment of age-related conditions and appealing protective agents against ethanol-induced abnormalities in the heart, cerebral ischemia and ischemic insult of myocardium. UA and OA exhibit vasorelaxant activity in isolated blood vessels, are capable of reducing blood pressure in hypertension animal models, possess cardiovascular protective effects and are effective against chemically-induced dysrhythmia. Despite their benefits, these triterpenes have some conflicting characteristics. They may be pro-inflammatory in normal non inflamed cell and have produced equivocal results in recent studies concerning their influence on the circulatory system, likely to accelerate atherosclerotic plaque formation in vivo, or to directly elicit aggregation of isolated platelets, the process that is crucial in hemostasis under normal physiological conditions but if abnormal caused by xenobiotics including drugs, food and environmental toxicants, readily leads to thrombosis acute coronary syndrome (ACS), stroke, and the ischemic complications of peripheral vascular disease. Therefore, UA or OA administrations can represent a risk for a population with a predisposition for cardiovascular disease. Furthermore, clinical applications of UA and OA are limited due to low water solubility resulting in a low bioavailability and a poor pharmacokinetic in vivo which subsequently restrict their effectiveness and to a not specific distribution throughout the body when administered intravenously. Thus, the research for new formulations of UA and OA, as well as of other problematic drugs, that overcome the disadvantages associated with their administration is very extensive. The strategy most applied concerns the use of nanosystem carriers, such as liposomes, hyperbranched polymers, dendrimers (PAMAM) to deliver these substances possibly to target cell, to protect them from premature degradation, to allow for their intravenous administration providing greater therapeutic efficacy and reducing collateral effects. In the present paper, we report the achievement of six hydrolysable, not toxic drug delivery systems (DDSs) for delivering UA and OA without polyamidoamine scaffold but based on fourth (G4) and fifth (G5) generation polycationic polyester-based amino acids-modified dendrimers and hetero dendrimers prepared using 2,2-bis(hydroxymethyl)propionic acid as building block (Fig. 1).

The physical incorporation/complexation of a mixture of UA and OA (UA and OA, as well as of other problematic drugs, that overcome the disadvantages associated with their administration) was described and discussed. The highly hydrophilic achieved materials could make the triterpenoid acids well dispersed in water with obviously increased bioavailability and pharmacokinetic and could allow to exploit the several therapeutic activities otherwise not serviceable. Furthermore, their polycationic periphery promotes interactions with membrane lipids for enhanced cellular uptake and enable to obtain an optimal buffer capacity which favors endosomal escape, protecting and preserving the transported triterpenoids from lysosomal degradation. The biodegradable polyester-based polymeric framework assures a low level of toxicity. For all these reasons we consider the prepared dendriplexes as new appealing and versatile DDSs.

EXPERIMENTAL

Plant Material and Methods

Fresh aerial parts of Salvia Corrugata Vahl were obtained from the Istituto Sperimentale per la Floricoltura (Sanremo, Italy) and Centro Regionale di Sperimentazione ed Assistenza Agricola (Albenga, Italy). The species was identified by Dr. Gemma Bramley and a voucher specimen is deposited at Kew Herbarium (K) (Kew, Surrey, U.K.).
Materials

All the reagents and solvents were purchased from Aldrich or Merck and used without further purifications. The dialysis bags (D-Tube™ Dialyzer Maxi, MWCO 3.5 kDa) were purchased from Merck. The solvents were dried and distilled according to standard procedures. Petroleum ether refers to purchased from Merck. The solvents were dried and distilled.

Materials

The hydrodynamic size (diameter) of all dendriplexes was measured in batch mode at 25 °C in a low ionic strength (0.040–0.063 mm). Elemental analyses were performed with an EA1110 Elemental Analyser (Fison-Instruments). Organic solutions were dried over anhydrous sodium sulphate and evaporated using a rotatory evaporator operating at reduced pressure of about 1.3–2.7 kPa.

Potentiometric Titrations of Dendriplexes 7–12

Potentiometric titrations to determine the buffer capacity \([\beta = dV_{\text{HCl}}/d(pH)[91]](HCl)\) and then the average buffer capacity \([\beta = dV_{\text{HCl}}/d(pH(1))]^{[92]}\) of dendriplexes in the form of hydrochlorides were performed at room temperature with a Hanna Microprocessor Bench pH Meter. The dendrimer (20–30 mg) was dissolved in Milli-Q water (30 mL) and then was treated with standard 0.1 mol/L NaOH (1–1.5 mL, pH = 10–12). The solution was potentiometrically titrated by adding 0.2 mL samples of standard 0.1 mol/L HCl up to total 3.0 mL and measuring the corresponding pH values [93].

Dynamic Light Scattering (DLS) and Zeta Potential

The hydrodynamic size (diameter) of all dendriplexes prepared was measured in batch mode at 25 °C in a low volume quartz cuvette (pathlength 10 mm) using a Malvern Zetasizer Nano ZS instrument with back scattering detector (173°, 633 nm laser wavelength). Dendriplexes samples were prepared at a concentration of 1 mg/mL in PBS and filtered through a 0.02 μm filter. At minimum, twelve measurements per sample were made. The Z average diameter, derived from a cumulants analysis of the measured correlation curve, was reported as the intensity-weighted average (Int-Peak) hydrodynamic radius. The zeta potential was measured at 25 °C in deionized water. An applied voltage of 100 V was used. Samples were loaded into pre-rinsed folded capillary cells and a minimum of twelve measurements were made per sample.

In Vitro Ursolic and Oleanolic Acids Release from Dendriplexes 7–12

The in vitro release behavior of the mixture UOA from samples employed aluminium-backed silica gel plates (Merck DC-DC-Alufolien Kieselgel 60 F254) and detection of spots was made by UV light and/or by ninhydrin solution 0.2% in ethanol and heating in a stove at 100 °C. Flash chromatography (FC) was performed on Merck Silica gel (0.040–0.063 mm). Elemental analyses were performed with an EA1110 Elemental Analyser (Fison-Instruments). Organic solutions were dried over anhydrous sodium sulphate and evaporated using a rotatory evaporator operating at reduced pressure of about 1.3–2.7 kPa.

Potentiometric Titrations of Dendriplexes 7–12

Potentiometric titrations to determine the buffer capacity \([\beta = dV_{\text{HCl}}/d(pH)[91]](HCl)\) and then the average buffer capacity \([\beta = dV_{\text{HCl}}/d(pH(1))]^{[92]}\) of dendriplexes in the form of hydrochlorides were performed at room temperature with a Hanna Microprocessor Bench pH Meter. The dendrimer (20–30 mg) was dissolved in Milli-Q water (30 mL) and then was treated with standard 0.1 mol/L NaOH (1–1.5 mL, pH = 10–12). The solution was potentiometrically titrated by adding 0.2 mL samples of standard 0.1 mol/L HCl up to total 3.0 mL and measuring the corresponding pH values [93].

Dynamic Light Scattering (DLS) and Zeta Potential

The hydrodynamic size (diameter) of all dendriplexes prepared was measured in batch mode at 25 °C in a low volume quartz cuvette (pathlength 10 mm) using a Malvern Zetasizer Nano ZS instrument with back scattering detector (173°, 633 nm laser wavelength). Dendriplexes samples were prepared at a concentration of 1 mg/mL in PBS and filtered through a 0.02 μm filter. At minimum, twelve measurements per sample were made. The Z average diameter, derived from a cumulants analysis of the measured correlation curve, was reported as the intensity-weighted average (Int-Peak) hydrodynamic radius. The zeta potential was measured at 25 °C in deionized water. An applied voltage of 100 V was used. Samples were loaded into pre-rinsed folded capillary cells and a minimum of twelve measurements were made per sample.

In Vitro Ursolic and Oleanolic Acids Release from Dendriplexes 7–12

The in vitro release behavior of the mixture UOA from samples employed aluminium-backed silica gel plates (Merck DC-DC-Alufolien Kieselgel 60 F254) and detection of spots was made by UV light and/or by ninhydrin solution 0.2% in ethanol and heating in a stove at 100 °C. Flash chromatography (FC) was performed on Merck Silica gel (0.040–0.063 mm). Elemental analyses were performed with an EA1110 Elemental Analyser (Fison-Instruments). Organic solutions were dried over anhydrous sodium sulphate and evaporated using a rotatory evaporator operating at reduced pressure of about 1.3–2.7 kPa.

Potentiometric Titrations of Dendriplexes 7–12

Potentiometric titrations to determine the buffer capacity \([\beta = dV_{\text{HCl}}/d(pH)[91]](HCl)\) and then the average buffer capacity \([\beta = dV_{\text{HCl}}/d(pH(1))]^{[92]}\) of dendriplexes in the form of hydrochlorides were performed at room temperature with a Hanna Microprocessor Bench pH Meter. The dendrimer (20–30 mg) was dissolved in Milli-Q water (30 mL) and then was treated with standard 0.1 mol/L NaOH (1–1.5 mL, pH = 10–12). The solution was potentiometrically titrated by adding 0.2 mL samples of standard 0.1 mol/L HCl up to total 3.0 mL and measuring the corresponding pH values [93].

Dynamic Light Scattering (DLS) and Zeta Potential

The hydrodynamic size (diameter) of all dendriplexes prepared was measured in batch mode at 25 °C in a low volume quartz cuvette (pathlength 10 mm) using a Malvern Zetasizer Nano ZS instrument with back scattering detector (173°, 633 nm laser wavelength). Dendriplexes samples were prepared at a concentration of 1 mg/mL in PBS and filtered through a 0.02 μm filter. At minimum, twelve measurements per sample were made. The Z average diameter, derived from a cumulants analysis of the measured correlation curve, was reported as the intensity-weighted average (Int-Peak) hydrodynamic radius. The zeta potential was measured at 25 °C in deionized water. An applied voltage of 100 V was used. Samples were loaded into pre-rinsed folded capillary cells and a minimum of twelve measurements were made per sample.

In Vitro Ursolic and Oleanolic Acids Release from Dendriplexes 7–12

The in vitro release behavior of the mixture UOA from
dendriplexes 7–12 was evaluated performing the dialysis bag diffusion technique using 20% ethanol in phosphate buffer saline (PBS) as dissolution medium. The dialysis bags (MWCO = 3.5 kDa) were pre-swelled in milli-Q water for 12 h before use.

A sample of each dendriplex 7–12 (10 mg) was dissolved in 1 mL of 0.1 mol/L PBS (pH = 7.4) containing 20% of ethanol. Each obtained solution was placed into a dialysis bag and both ends were sealed. Then each bag was individually immersed in a beaker containing 100 mL of 0.1 mol/L PBS (pH = 7.4) and ethanol (20%). In parallel, a release study of free UA and OA mixture from the dialysis bag was performed under the same condition. The mixture (1 mg) was suspended in 1 mL of 0.1 mol/L PBS and ethanol (60%) and placed in a dialysis bag which was immersed in a beaker containing 100 mL of 0.1 mol/L PBS (pH = 7.4) and ethanol (20%). The dialysis was carried out at 37 °C, and the quantity of drugs released was analysed by HPLC as described in the following paragraph at various time points (1, 2, 5, 10, 24 and 48 h) during the dialysis process.

HPLC Analysis
A Shimadzu LC-2010 C system equipped with a UV detector was used to perform the analyses of UA and OA mixture concentration. For the separation of drugs a Hypersil C18 column (5 μm particle size, 150 mm × 4.6 mm) was used. Mobile phase was composed of methanol and water (90/10, V/V). The flow rate was set at 1 mL/min and temperature at 25 °C. The UV absorbance was determined at 210 nm. The concentration of the UA and OA mixture released was analysed on the bases of a free UA calibration curve.

Extraction and Isolation of Ursolic and Oleanolic Acids Mixture

For the isolation of leaf surface mixture of UA and OA, fresh aerial parts of Salvia Corrugata Vahl (2.6 kg) were immersed in CH2Cl2 for 20 s to obtain only the external secreted material mixed with cuticular components, thereby avoiding extraction of components inside the cell wall. After filtration, the extraction solvent was removed under reduced pressure. The exudate (25 g, 0.96 wt% of fresh plant) was chromatographed in portions of 1.0 g on Sephadex LH-20 columns (53 cm × 2.5 cm), using CHCl3/Methanol (7/3, V/V) as the eluent. The eluate fractions (20 mL each) were combined according to TLC to obtain four main fraction groups (I–IV): group I (up to 140 mL) (waxy inactive compounds), group II (from 140 mL to 160 mL), group III (from 160 mL to 200 mL), group IV (from 200 mL to 260 mL). Group II was evaporated, washed with hexane and crystallized from EtOH and then from MeOH to yield a product which was identified as a crystalline mixture of UA and OA (4.2 g). 1H-NMR spectrum of the isolated mixture recorded in CDCl3/DMSO-d6 is available in Fig. S2 (in ESI). The NMR data are in accordance with literature ones with some difference depending on the acquisition solvent.

Preparation of G4 and G5 Dendriplexes 7–12

General procedure
A solution of dendrimers 1–6 [89] (N = 58–136) in dry MeOH (2.0 mg/mL) was added with the UOA mixture (9 equiv.). The solution was kept under vigorously magnetic stirring at room temperature for 72 h in the dark. Then after removal of the solvent at reduced pressure the obtained white solids were suspended in dichloromethane (DCM) overnight to wash away the free UOA. After decanting the solid, dichloromethane was separated and evaporated to obtain a white solid which by IR analysis appeared to be the UOA mixture not complexed by dendrimers. The solid was brought to constant weight and then dissolved in MeOH/H2O and precipitated in acetone in a centrifuge tube. After two cycles of centrifugation (3400 r/min) and washings with acetone, the wet solids were brought to dry and constant weight under reduced pressure and then stored on P2O5 in a dryer.

Complex G4[Arg(36)OH(12)UOA(6)] (7)
Slightly hygroscopic yellowish glassy solid [6 units of UOA mixture per dendrimer mol (51.4 mg, 0.0031 mmol, yield: 90%)]. FTIR (KBr, cm−1): 3411 (OH and NH2), 1724 (C=O ester), 1663 (NH). 1H-NMR (300 MHz, CD2OD, δ, ppm): 0.75–0.97 [several s, 132H, CH2 and H (C(5)) of triterpenoids], 1.07–2.38 [m, 414H (C(5) of dendrimer + CH2=CH2: Arg + CH and CH2 of triterpenoids)], 3.20–3.40 (m, 72H, CH2NH Arg), 3.85 (br, 24H, CH2OH), 4.05–4.62 [m, 198H (CH2O of dendrimer + CHNH2 Arg)], 5.22 (m, 6H, CH of triterpenoids), the signals for two CH of triterpenoids (12 H) are undetectable while the signal for one CH is hidden under solvent peak.

Complex G4[Arg(72)OH(19)UOA(7)] (8)
Slightly hygroscopic yellowish glassy solid [7 units of UOA mixture per dendrimer mol (12.5 mg, 0.00074 mmol, yield: 46%)]. FTIR (KBr, cm−1): 3431 (OH and NH2), 1747 (C=O ester), 1637 (NH). 1H-NMR (300 MHz, CD2OD, δ, ppm): 0.74–0.99 [several s, 154H, CH2 and H (C(5)) of triterpenoids], 1.11–2.37 [m, 408H (C(5) of dendrimer + CH2=CH2: Arg + CH and CH2 of triterpenoids)], 2.85 (m, 7H, CH of triterpenoids), 3.15 (m, 7H, CH of triterpenoids), 3.20–3.40 (m, 58H, CH2NH Arg), 3.64 (br t, 38H, CH2OH), 3.90–4.40 [m, 235H (CH2O of dendrimer + CHNH2 Arg + CH2NH Glycerin)], 5.22 (q, 7H, CH of triterpenoids), the signal for one CH of triterpenoids (7 H) is hidden under solvent peak.

Complex G4[Arg(16)Lys(19)OH(13)UOA(4)] (9)
Slightly hygroscopic off white glassy solid [4 units of UOA mixture per dendrimer mol (27.0 mg, 0.0018 mmol, yield: 90%)]. FTIR (KBr, cm−1): 3431 (OH and NH2), 1747 (C=O ester), 1631 (NH). 1H-NMR (300 MHz, CD2OD, δ, ppm): 0.78–0.99 [several s, 88H, CH2 and H (C(5)) of triterpenoids], 1.00–2.40 [m, 404H (C(5) of dendrimer + CH2=CH2: Arg + CH2=CH2: Lys + CH and CH2 of triterpenoids)], 2.94–3.17 [m, 468H (CH2NH2 Lys + CH of triterpenoids)], 3.30–3.50 (m, 32H, CH2NH Arg), 3.54–3.82 (m, 26H, CH2OH), 4.10–4.50 [m, 195H (CH2O of dendrimer + CHNH2 Lys + CHNH2 Arg)], 4.59–4.71 (dd, 4H, CH of triterpenoids), 5.22 (q, 4H, CH of triterpenoids).

Complex G5[Arg(66)OH(30)UOA(3)] (10)
Slightly hygroscopic off white fluffy solid [3 units of UOA mixture per dendrimer mol (44.2 mg, 0.0016 mmol, yield: 100%)]. FTIR (KBr, cm−1): 3392 (OH and NH2), 1743 (C=O ester), 1663 (NH). 1H-NMR (300 MHz, CD2OD, δ,
RESULTS AND DISCUSSION

The target of this research was to obtain new efficient prodrugs of UA and OA, two pentacyclic triterpenoids isomers extracted by us as a mixture from Salvia Corrugata Vahl[89] which are endowed with several pharmacological activities not exploitable above all because of their low water solubility. The strategy was to complex them with proper vectors which, unlike the prodrugs widely reported in the literature, did not have a polyamidoamide highly cationic matrix but a hydrolysable ester-based one, in order to reduce or eliminate the risk of permanent damages to cellular membranes and toxicity to cells. The desired prodrugs should be water-soluble to authorise safe and effective administrations of the two triterpenoids thanks to increased bioavailability and pharmacokinetic and at the same time should be able to protect them from premature degradation and if possible to decrease their toxic side part for vectors, we chose to test six polyacrylic amino acids-modified polyester-based dendrimers of the fourth and fifth generations we previously prepared[89]. The hydrolysable inner matrix of the ester type assured low level of toxicity of the vector while the cationic peripheral character conferred by amino acids promoted the interaction with negatively charged lipids of membrane advancing the endocytic cellular uptake. Furthermore the excellent buffer capacity of these materials guaranteed the escape from endosomal and from lysosomal attack thanks to the so-called proton-sponge effect when inside the cell thus allowing the release of the transported material into the cytosol. In literature it is reported that in dendrimer/drug systems[84–96] such as PAMAM/weakly acidic drug moieties (ibuprofen, DOX, MTX)[97–99], hydrogen bonding and ionic interactions are among those mechanisms suggested to play a decisive part in dendrimer/drug complexation. So, we reasonably thought that the UA/OA mixture could be complexed by dendrimers 1–6 thanks to the presence of several amino groups capable of establishing hydrogen bonds or electrostatically interacting with the triterpenoid acids like PAMAM with ibuprofen, DOX or MTX. On the other hand, attempts to covalently bind the two acids on the not cationic polyester and polyhydroxylated dendrimer G4OH[90, 100], whose structure and NMR spectra are available in Figs. S9 and S10 (in ESI), were not successful either with N,N-dicyclohexyl-carbodiimide (DCC), 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide (EDC) or following the procedure which uses 2-chloro-1-methyl-pyridinium iodide (CMPI)[30] as condensing agents.

Incorporation of Ursolic和Oleanolic Acids Mixture (UA) in Dendrimers 1–6

Dendrimers 1–6[89] were dissolved in methanol following which, the UA/OA mixture extracted and isolated from Salvia Corruggata Vahl according to a described procedure[89] and whose 1H-NMR spectrum is available in Fig. S2 (in ESI) was added.

The reaction was vigorously stirred for 72 h at room temperature in the dark (Scheme 1). The methanol solution was evaporated at reduced pressure to remove the solvent. The residue solids were dried under vacuum in order to remove methanol completely. Then, DCM was added to extract the UA and OA not encapsulated, as UA and OA are soluble in DCM while complexes are not. They were water soluble as expected.

The solid complexes were further purified by dissolution in MeOH and precipitation in acetone and then recovered by centrifugation (3400 r/min, 15’, twice). The UA-OA dendrimer complexes were obtained in the form of off white or yellowish slightly hydrolysable fluffy solids and stored on P2O5 in a dryer. FTIR was not significantly diagnostic to confirm the formation of the complexes but 1H-NMR spectroscopy was useful to have both qualitative and quantitative information about the composition of the dendriplexes.

As an example in Fig. 2 is shown a comparison between 1H-NMR spectra of the mixture UA (a), dendrimer 3 (b) and dendriplex 9 (c).

It is clear as the peaks under 1.0 ppm not present in the parent dendrimer 3 spectrum, but peculiar of UA/OA mixture and regarding seven CH3 groups and H (C(5)) for a total of
Scheme 1 Preparation of dendriplexes 7–12. The numbers inside round parentheses indicate the composition in amino acids, OH groups and UOA of parent dendrimers and dendriplexes

![Scheme 1](image)

22 H\(^{[101]}\) were well detectable in the spectrum of 9 and very diagnostic to confirm that the encapsulation was successful and estimate the number of UOA units encapsulated per dendrimer mole.

In Fig. 3 is shown only the spectrum of 9 with in evidence the peaks and the integral values used to quantify the amounts of triterpenoid acids loaded per dendrimer mole. Briefly, for all dendriplexes, UOA units per complex mole were obtained comparing the integral value of CH\(_2\)OH at 3.6–3.8 ppm and the value of the integral of peaks between 0.72 and 0.98 ppm.

The \(^1\)H-NMR spectra of all dendriplexes 7–12 with an expansion of the zone between 2.0 and 0.5 ppm (determining to confirm that the incorporation was successful) compared to \(^1\)H-NMR spectra of UOA mixture and of the parent dendrimer are available in Figs. S3–S8 (in ESI).

Table 1 summarizes the principal data and results about the preparation of dendriplex 7–12.

Dendrimers of the fifth generation 5 and 6 decorated with dipeptide L-arginine-glycine and mixed L-arginine and L-lysine respectively, showed more efficiency in complexing UOA than the analogue dendrimers 8 and 9 of the fourth generation, which complexed half or almost of UOA per mole. Surprisingly, with dendrimers containing only L-arginine 7 and 10, exactly the opposite happened; it was actually the fifth generation dendrimer 10 that complexed the half amount of UOA in respect of 7. After having estimated the UOA units loaded per dendrimer mole it was possible to make an estimate of molecular weight of compounds 7–12 simply by summing the molecular weight of the forerunner dendrimer to the molecular weight of UOA multiplied by the number of complexed units as deduced by NMR spectra. Table 2 summarizes the obtained data.

Potentiometric Titrations of the Prepared Dendrimers

It is generally accepted that carriers improve their efficacy as delivery systems (DDSs) if endowed with a proper buffer capacity \([β = d\beta/d(pH)]^{[91]}\) and so with an average buffer capacity \([β = d\beta/d(pH)]^{[92]}\) in the pH range 4.5–7.5 suitable to make them escape from endosome compartments where pH is in the 5–6 range\(^{[16]}\). To have an estimate of the buffer capacity of the prepared dendriplexes, potentiometric titrations of 7–12 were performed according to Benns et al\(^{[93]}\). Since PAMAM are considered as good reference in the field both of gene delivery\(^{[27]}\) and of drug delivery\(^{[28–32]}\), literature data of three G4-PAMAM derivatives\(^{[102]}\) potentiometrically titrated with the same protocol were used to obtain their titration curve. The \(β\) and \(β\) values of each prepared dendrplex and of G4-PAMAM derivatives were calculated from the titration data. Table 3 collects the \(β\) and \(β\) values recorded in the pH range 5–7.

Figures of all the titration and \(β\) values curves and the histogram of all the \(β\) calculated are available in Figs. S11–S13 (in ESI). As expected, considering the data about buffer capacity values of dendrimers 1–6, all the dendriplexes prepared using them as vectors resulted in a \(β\)
Parent dendrimer Ursolic acid Oleanolic acid

Fig. 3 1H-NMR spectrum of 9 (300 MHz, CD3OD)

Table 1 Main data and results about preparation of dendriplexes 7–12

Entry (mg/mmol)	N a	MW b	Dendriplex (mg)	Per dendrimer mole UOA units loaded c	mg UOA/wt/wt %
47.6/0.0035	72	1.36 × 10^4	7	6.86/16.8	
21.7/0.0016	58	1.36 × 10^4	8	7.24/19.0	
31.5/0.0020	70	1.28 × 10^4	9	4.34/12.5	
41.2/0.0016	132	2.60 × 10^4	10	3.22/5.0	
24.0/0.0009	104	2.58 × 10^4	11	12.28/16.1	
29.0/0.0011	136	2.57 × 10^4	12	8.6/7.9	

Table 2 Calculated molecular weight of 7–12

Dendriplex	Per dendrimer mole UOA units loaded a	MW a	Dendriplex	Per dendrimer mole UOA units loaded a	MW a
7	6.86/16.8	1.63 × 10^5	7	6.86/16.8	1.63 × 10^5
8	7.24/19.0	1.68 × 10^5	8	7.24/19.0	1.68 × 10^5
9	4.34/12.5	1.46 × 10^5	9	4.34/12.5	1.46 × 10^5
10	3.22/5.0	2.74 × 10^5	10	3.22/5.0	2.74 × 10^5
11	12.28/16.1	3.13 × 10^5	11	12.28/16.1	3.13 × 10^5
12	8.6/7.9	2.93 × 10^4	12	8.6/7.9	2.93 × 10^4

Dynamic Light Scattering (DLS) and Zeta Potential

Particle hydrodynamic size (diameter) and zeta potential were measured and the obtained data together with the deviation standard (N = 12) values are summarized in Table 4. Particle size was determined by dynamic light scattering (DLS) and Z average diameter (Z-AVE, nm), derived from a cumulant analysis of the measured correlation curve, was reported as the intensity-weighted average (Int-Peak) value much more higher than the G4-PAMAM derivatives taken as reference.

Buffer capacity values of dendriplexes 7–12 and G4-PAMAMS in the pH range 6–7 from potentiometric titrations

Table 3 Buffer capacity values of dendriplexes 7–12 and G4-PAMAMS in the pH range 6–7 from potentiometric titrations

Dendriplex	pH	β
7	6.40	0.0833
8	6.00	0.0150
9	6.50	0.033
10	6.80	0.0426
11	6.10	0.0227
12	6.30	0.0180
G4-PAMAM a	7.00	0.0014
G4-PAMAM-Arg b	6.25	0.0024
G4-PAMAM-His-Arg c	6.20	0.0038

Dynamic Light Scattering (DLS) and Zeta Potential

Particle hydrodynamic size (diameter) and zeta potential were measured and the obtained data together with the deviation standard (N = 12) values are summarized in Table 4. Particle size was determined by dynamic light scattering (DLS) and Z average diameter (Z-AVE, nm), derived from a cumulant analysis of the measured correlation curve, was reported as the intensity-weighted average (Int-Peak) value much more higher than the G4-PAMAM derivatives taken as reference.

Dynamic Light Scattering (DLS) and Zeta Potential

Particle hydrodynamic size (diameter) and zeta potential were measured and the obtained data together with the deviation standard (N = 12) values are summarized in Table 4. Particle size was determined by dynamic light scattering (DLS) and Z average diameter (Z-AVE, nm), derived from a cumulant analysis of the measured correlation curve, was reported as the intensity-weighted average (Int-Peak) value much more higher than the G4-PAMAM derivatives taken as reference.

Dynamic Light Scattering (DLS) and Zeta Potential

Particle hydrodynamic size (diameter) and zeta potential were measured and the obtained data together with the deviation standard (N = 12) values are summarized in Table 4. Particle size was determined by dynamic light scattering (DLS) and Z average diameter (Z-AVE, nm), derived from a cumulant analysis of the measured correlation curve, was reported as the intensity-weighted average (Int-Peak) value much more higher than the G4-PAMAM derivatives taken as reference.

Dynamic Light Scattering (DLS) and Zeta Potential

Particle hydrodynamic size (diameter) and zeta potential were measured and the obtained data together with the deviation standard (N = 12) values are summarized in Table 4. Particle size was determined by dynamic light scattering (DLS) and Z average diameter (Z-AVE, nm), derived from a cumulant analysis of the measured correlation curve, was reported as the intensity-weighted average (Int-Peak) value much more higher than the G4-PAMAM derivatives taken as reference.

Dynamic Light Scattering (DLS) and Zeta Potential

Particle hydrodynamic size (diameter) and zeta potential were measured and the obtained data together with the deviation standard (N = 12) values are summarized in Table 4. Particle size was determined by dynamic light scattering (DLS) and Z average diameter (Z-AVE, nm), derived from a cumulant analysis of the measured correlation curve, was reported as the intensity-weighted average (Int-Peak) value much more higher than the G4-PAMAM derivatives taken as reference.

Dynamic Light Scattering (DLS) and Zeta Potential

Particle hydrodynamic size (diameter) and zeta potential were measured and the obtained data together with the deviation standard (N = 12) values are summarized in Table 4. Particle size was determined by dynamic light scattering (DLS) and Z average diameter (Z-AVE, nm), derived from a cumulant analysis of the measured correlation curve, was reported as the intensity-weighted average (Int-Peak) value much more higher than the G4-PAMAM derivatives taken as reference.

Dynamic Light Scattering (DLS) and Zeta Potential

Particle hydrodynamic size (diameter) and zeta potential were measured and the obtained data together with the deviation standard (N = 12) values are summarized in Table 4. Particle size was determined by dynamic light scattering (DLS) and Z average diameter (Z-AVE, nm), derived from a cumulant analysis of the measured correlation curve, was reported as the intensity-weighted average (Int-Peak) value much more higher than the G4-PAMAM derivatives taken as reference.

Dynamic Light Scattering (DLS) and Zeta Potential

Particle hydrodynamic size (diameter) and zeta potential were measured and the obtained data together with the deviation standard (N = 12) values are summarized in Table 4. Particle size was determined by dynamic light scattering (DLS) and Z average diameter (Z-AVE, nm), derived from a cumulant analysis of the measured correlation curve, was reported as the intensity-weighted average (Int-Peak) value much more higher than the G4-PAMAM derivatives taken as reference.
Then, their and oleanolic acids need to be released from dendriplexes in order to explicate their pharmacological effects, ursolic soluble prodrugs with expected enhanced bioavailability, but 6, used as nanoparticle vectors, provided highly water–1

As expected, the physical entrapping of the two triterpenoid In Vitro Ursolic and Oleanolic Acids Release from samples than G4 and increasing at the increase of N. was within range 15–35 mV with higher values for G5 presumably due to interactions with the drug moieties and samples was slightly reduced compared to dendrimers tissue and clearance by the mononuclear phagocytic system (MPS) is the best solution and as reported, particles less than 100 nm and greater than 20 nm could be a good choice

biliary and renal clearance. A balance between maximizing tumor penetration while minimizing both toxicity to normal tissue and clearance by the mononuclear phagocytic system (MPS) is the best solution and as reported, particles less than 100 nm and greater than 20 nm could be a good choice. As exposed in Table 4 the mean particle size of G4, 5 dendrimer/UA complexes of the present paper was increased in comparison to parent dendrimers as a function of the weight percentage of UA loaded.

In any case the size was less than 100 nm, a value which assures that these prodrugs will not form the administration embolism, thus promising for intravenous or intraperitoneal administration to the patient. Finally, except sample 6, the nanoparticles were all > 20 nm and suitable to be used as drug vehicles with prolonged circulation time and efficient tumor penetration. The surface charge of the examined samples was slightly reduced compared to dendrimers 1–6 presumably due to interactions with the drug moieties and was within range 15–35 mV with higher values for G5 samples than G4 and increasing at the increase of N.

In Vitro Ursolic and Oleanolic Acids Release from Dendriplexes 7–12 Studies

As expected, the physical entrapping of the two triterpenoid acids in polyester-based, amino acids-modified dendrimers 1–6, used as nanoparticle vectors, provided highly water-soluble prodrugs with expected enhanced bioavailability, but in order to explicate their pharmacological effects, ursolic and oleanolic acids need to be released from dendriplexes. Then, their in vitro release from the prodrugs was studied in buffer solutions at pH = 7.4, adding to the incubation medium (20% V/V with ethanol) to favor their solubility. Samples were taken out of the medium at fixed time points (1, 2, 5, 10, 24 and 48 h) and the released triterpenoid acids were quantified by HPLC. As data summarized in Table 5 and shown in Fig. S14A (in ESI) highlighted, all the profiles of the drugs released from the dendrimers prodrugs showed a three phases pattern. The first phase resolved after the first hour of incubation at pH = 7.4, when the release was almost null. This presupposes that, after administration, only a minimum release of the drugs in the systemic circulation will occur and that the DDSs may have time to reach and enter the target cells where the bulk of the release should occur. Then a very fast release phase started while after five hours a sustained release phase took place. The amount of UA released from G4-UA dendriplexes was more than that released from G5-UA ones and inside a generation, the release profile showed a dependence on N value. This may be rationally due to the stronger interactions of free UA mixture with dendrimers having more cationic groups. This feature, that significantly differentiates the behavior of our materials (at least in vitro), may be useful for modulating the amount of drug released over time and the total amount of drug that will be released, according to the therapeutic needs. In addition, to eliminate the effects of dialysis bag and release medium on the release rate, the release of free UA and OA mixture in the same release medium was also studied and reported as cumulative release (%) in the last row of Table 5 and in Fig. S14B (in ESI).

Dendriplex	Z-potential (mV)	Z-Ave size (nm)	Dendriplex UOA wt/wt %	Z-potential (mV)	Z-Ave size (nm)	
1	72	31.2 ± 0.1	4.4 ± 0.1	7	22.2 ± 0.1	30.6 ± 3.1
2	58	21.5 ± 0.6	4.7 ± 0.1	5	16.8	20.3 ± 2.1
3	70	34.8 ± 0.2	4.6 ± 0.1	7	19.0	16.1 ± 2.1
4	132	50.0 ± 0.6	5.1 ± 0.1	9	4 ± 2.5	16.1 ± 2.1
5	104	43.7 ± 0.7	5.4 ± 0.1	11	5 ± 0.1	35.9 ± 2.8
6	136	51.8 ± 0.1	5.3 ± 0.1	12	5 ± 0.1	20.3 ± 3.1

Table 4 Summary of particle characterization: particle hydrodynamic size (DLS) and zeta-potential at 25 °C of parent dendrimers 1–6 and of dendriplexes 7–12

Table 5 In vitro drugs release study results

UOA-loaded dendriplex (10 mg)	N	0 h	1 h	2 h	5 h	10 h	24 h	48 h
7	72	0.2	38.8	48.6	58.2	75.2	80.5	
8	58	0.5	44.4	59.4	69.4	85.0	103.9	
9	70	0.2	39.1	48.7	58.5	75.5	81.0	
10	132	0	36.8	43.0	53.1	65.2	69.5	
11	104	0	37.4	46.8	56.6	68.4	73.7	
12	136	0	35.6	43.7	53.7	65.9	72.3	

Table 5 In vitro drugs release study results

https://doi.org/10.1007/s10118-018-2124-9
CONCLUSIONS

In this work, six dendrimer-based prodrugs without the commonly reported and adopted polyamidoamine structure for safe and effective administration of a mixture of two triterpenoid acids extracted and isolated from Salvia Corrigata Vahl were synthesized. They were achieved by a simple and fast physical incorporation of the triterpenoid acids which were successfully complexed by polycationic polyester-based amino acids-modified dendrimers thanks to electrostatic and hydrogen bond interactions. The IR and NMR characterization of dendriplexes together with buffer electrostatic and hydrogen bond interactions. The IR and NMR characterization of dendriplexes together with buffer electrostatic and hydrogen bond interactions. The IR and NMR characterization of dendriplexes together with buffer electrostatic and hydrogen bond interactions. The IR and NMR characterization of dendriplexes together with buffer electrostatic and hydrogen bond interactions. The IR and NMR characterization of dendriplexes together with buffer electrostatic and hydrogen bond interactions. The IR and NMR characterization of dendriplexes together with buffer electrostatic and hydrogen bond interactions. The IR and NMR characterization of dendriplexes together with buffer electrostatic and hydrogen bond interactions. The IR and NMR characterization of dendriplexes together with buffer electrostatic and hydrogen bond interactions.

Electronic Supplementary Information

Electronic supplementary information (ESI) is available free of charge in the online version of this article at http://dx.doi.org/10.1007/s10118-018-2124-9.

ACKNOWLEDGMENTS

The authors are very thankful to Mr Gagliardo Osvaldo for Elemental Analysis and to University of Genova.

REFERENCES

1 Hourani, R.; Kakkar, A. Advances in the elegance of chemistry in designing dendrimers. Macromol. Rapid Commun. 2010, 31, 947–974.
2 Sowinska, M.; Urbanczyk-Lipowska, Z. Advances in the chemistry of dendrimers. New J. Chem. 2014, 38, 2168–2203.
3 Madaan, K.; Kumar, S.; Poonia, N.; Lather, V.; Pandita, D. Dendrimers in drug delivery and targeting: Drug-dendrimer interactions and toxicity issues. J. Pharm. Bioall. Sci. 2014, 6, 139–150.
4 Hu, X. L.; Liu, G. H.; Li, Y.; Wang, X. R.; Liu, S. Y. Cell-penetrating hyperbranched polydrug amphiphiles for synergistic reductive milieu-triggered drug release and enhanced magnetic resonance signals. J. Am. Chem. Soc. 2015, 137, 362–368.
5 Li, X.; Qian, Y.; Liu, T.; Hu, X.; Zhang, G.; You, Y.; Liu, S. Amphiphilic multiarm star block copolymer-based multifunctional unimolecular micelles for cancer targeted drug delivery and MR imaging. Biomaterials 2011, 32, 6595–6605.
6 Xu, J.; Luo, S. Z.; Shi, W. F.; Liu, S. Y. Two-stage collapse of unimolecular micelles with double thermoresponsive coronas. Langmuir 2006, 22, 989–997.
7 Luo, S. Z.; Xu, J.; Zhu, Z. Y.; Wu, C.; Liu, S. Y. Phase transition behavior of unimolecular micelles with thermoresponsive poly(N-isopropylacrylamide) coronas. J. Physic. Chem. 2006, 110, 9132–9139.
8 Xu, H. X.; Xu, J.; Jiang, X. Z.; Zhu, Z. Y.; Rao, J. Y.; Yin, J.; Wu, T.; Liu, H. W.; Liu, S. Y. Thermosensitive unimolecular micelles surface-decorated with gold nanoparticles of tunable spatial distribution. Chem. Mater. 2007, 19, 2489–2494.
9 Luo, S.; Hu, X.; Ling, C.; Liu, X.; Chen, S.; Han, M. Multiarm star-like unimolecular micelles with a dendritic core and a dual thermosensitive shell. Polym. Int. 2011, 60, 717–724.
10 Kesharwani, P.; Jain, K.; Jain, N. Dendrimer as nanocarrier for drug delivery. Prog. Polym. Sci. 2014, 39, 268–307.
11 Datija, J.; Sai, V. V. R.; Mukherji, S. Dendrimers in biosensors: concept and applications. J. Mater. Chem. 2011, 21, 14367–14386.
12 Caminade, A M. in “Dendrimers: towards catalytic and biomedical uses, Chapter 15”, ed. By Caminade, A. M.; Turpin, C. O.; Laurent, R.; Ouali, A.; Delavaux-Nicot, B. John Wiley & Sons, Chichester, UK., 2011, p. 375–392.
13 Kim, J. H.; Park, K.; Nam, H. Y.; Lee, S.; Kim, K.; Kwon, I. C. Polymers for bioimaging. Prog. Polym. Sci. 2007, 32, 1031-1053.
14 Wang, Z.; Niu, G.; Chen, X. Polymeric materials for theranostic applications. Pharm. Res. 2014, 31, 1358–1376.
15 Dufes, C.; Uchegbu, I. F.; Schätzlein, A. G. Dendrimers in gene delivery. Adv. Drug Deliver. Rev. 2005, 57, 2177–2202.
16 Eliyahu, H.; Barenholz, Y.; Domh, A. J. Polymers for DNA delivery. Molecules 2005, 10, 34–64.
17 Pack, D. W.; Hoffman, A. S.; Pun, S.; Stayton, P. S. Design and development of polymers for gene delivery. Nat. Rev. Drug Discov. 2005, 4, 581–593.
18 Schaffert, D.; Wagner, E. Gene therapy progress and prospects: synthetic polymer-based systems. Gene Ther. 2008, 15, 1131–1138.
19 Münzer, M. A.; Simoncek, E. E. Nonviral vectors for gene delivery. Chem. Rev. 2009, 109, 259–302.
20 O’Rorke, S.; Keeney, M.; Pandit, A. Non-viral polypelexes: scaffold mediated delivery for gene therapy. Prog. Polym. Sci. 2010, 35, 441–458.
21 Marvaniya, H. M.; Parikh, P. K.; Patel, V. R.; Modi, K. N.; Sen, D. J. Dendrimer nanocarriers as versatile vectors in gene delivery. J. Chem. Pharm. Res. 2010, 2, 97–108.
22 Guo, X.; Huang, L. Recent advances in nonviral vectors for gene delivery. Acc. Chem. Res. 2012, 45, 971–979.
23 Yue, Y.; Wu, C. Progress and perspectives in developing polymeric vectors for in vitro gene delivery. Biomater. Sci. 2013, 1, 152–170.
24 Biswas, S.; Torchilin, V. P. Dendrimers for siRNA delivery. Pharmaceuticals 2013, 6, 161–183.
25 Pourianazar, N. T.; Mutulu, P.; Gunduz, U. Bioapplications of poly(amidoamine) (PAMAM) dendrimers in nanomedicine. J. Nanopart. Res. 2014, 16, 2342/1–2342/38.
26 Newkome, G. R.; Shreiner, C. D. Poly(amidoamine), polypropyleneimine, and related dendrimers and dendrons possessing different 1→2 branching motifs: An overview of the divergent procedures. Polymer 2008, 49, 1–173.
27 Eichman, J. D.; Bielinska, A. U.; Kukowska-Latallo, J. F.;
Ursolic acid and oleanolic acid in leukemic cells. *Mutation Res.* 2006, 600, 131–137.

Shishodia, S.; Majumdar, S.; Banerjee, S.; Aggarwal, B. B. Ursolic acid inhibits nuclear factor-kappaB activation induced by carcinogenic agents through suppression of IkappaBalpha kinase and p65 phosphorylation: correlation with down-regulation of cyclooxygenase 2, matrix metalloproteinase 9, and cyclin D1. *Cancer Res.* 2003, 63, 4375–83.

Moon H. K.; Yang, E. S.; Park, J. W. Protection of peroxynitrite-induced DNA damage by dietary antioxidant. *Arch. Pharm. Res.* 2006, 29, 213–217.

Lee, I.; Lee, J.; Lee, Y. H.; Leonard, J. Ursolic acid-induced changes in tumor growth, O2 consumption, and tumor interstitial fluid pressure. *Anticancer Res.* 2001, 21, 2827–2833.

Yim, E. K.; Lee, M. J.; Lee, K. H., Um, S. J.; Park, J. S. Antiproliferative and antiviral mechanisms of ursolic acid and dexamethasone in cervical carcinoma cell lines. *Int. J. Gynecol. Cancer.* 2006, 16, 2023–2031.

Huag, M. T.; Ho, C. T.; Wang, Z. Y.; Ferraro, T.; Los, Y. R.; Stauber, K.; Ma, W.; Georgiadis, C.; Laskin, J. D.; Conney, A. K. Inhibition of skin tumorigenesis by rosemary and its constituents carnosol and ursolic acid. *Cancer Res.* 1994, 54, 701–708.

Tokuda, H.; Ohigashi, H.; Koshimizu, K.; Ito, Y. Inhibitory effects of ursolic acid and oleanolic acid on skin tumour promotion by 12-O-tetradecanoylphorbol-13-acetate. *Cancer Lett.* 1986, 33, 279–285.

Kim, K. A.; Lee, J. S.; Park, H. J.; Kim, J. W.; Kim, C. J.; Shim, I. S.; Kim, N. J.; Han, S. M.; Lim, S. Inhibition of cytochrome P450 activities by oleanolic acid and ursolic acid in human liver microsomes. *Life Sci.* 2004, 74, 2769–2779.

Ramos, A. A.; Lima, C. F.; Pereira, M. L.; Fernandes-Ferreira, M.; Pereira-Wilson, C. Antigenotoxic effects of quercetin, rutin and ursolic acid on HepG2 cells: evaluation by the comet assay. *Toxicol. Lett.* 2008, 177, 66–73.

Chiang, L. C.; Chiang, W.; Chang, M. Y.; Ng, L. T.; Lin, C. C. Antileukemic activity of selected natural products in Taiwan. *Am. J. Chin. Med.* 2003, 31, 37–46.

Fan, Y. M.; Xu, L. Z.; Gao, J.; Wang, Y.; Tang, X. H. Zhao, X. N.; Zhang, Z. X. Phytochemical and antiinflammatory studies on Terminalia catappa. *Fitoterapia* 2004, 75, 253–260.

Peng, Q.; Zhu, J.; Yu, Y.; Hoffman, L.; Yang, X. Hyperbranched lysine-arginine copolymer for gene delivery. *J. Biomater. Sci. Polym. Ed.* 2015, 26, 1163–1177.

Fesende, F. A.; Mattos de Andrade Barcala, C. A.; da Silva Faria, M. C.; Kato, F. H.; Cunha, W. R.; Tavares, D. C. Antimetapigenicity of ursolic acid and oleanolic acid against doxorubicin-induced clastogenesis in Balb/c mice. *Life Sci.* 2006, 79, 1268–1273.

Lu, J.; Zheng, Y. L.; Wu, D. M.; Luo, L.; Sun, D. X.; Shan, Q. Ursolic acid ameliorates cognition deficits and attenuates oxidative damage in the brain of senescent mice induced by D-galactose. *Biochem. Pharmacol.* 2007, 74, 1079–1090.

Saravanan, R.; Pugalendhi, V. Impact of ursolic acid on chronic ethanol-induced oxidative stress in the rat heart. *Pharmacol. Rep.* 2006, 58, 41–47.

Wang, Y.; He, Z.; Deng, S. Ursolic acid reduces the metalloprotease/anti-metalloprotease imbalance in cerebral ischemia and repercussion injury. *Drug Des., Devel. Ther.* 2016, 10, 1663–1674.

Senthil, S.; Chandramohan, G.; Pugalendhi, K. V. Isomers (oleanolic and ursolic acids) differ in their protective effect against isoproterenol-induced myocardial ischemia in rats. *Int. J. Cardiol.* 2007, 119, 131–133.

Radhiga, T.; Rajamanickam, C.; Senthil, S.; Pugalendhi, K. V. Effect of ursolic acid on cardiac marker enzymes, lipid profile and macroscopic enzyme mapping assay in isoproterenol-induced myocardial ischemic rats. *Food Chem. Toxicol.* 2012, 50, 3971–3977.

Aguirre-Crespo, F.; Vergara-Galicia, J.; Villalobos-Molina, R.; Lopez-Guerrero, J. J.; Navarrete-Vazquez, G.; Estrada-Soto, S. Ursolic acid mediates the vasorelaxant activity of Lepechinia caulescens via NO release in isolated rat thoracic aorta. *Life Sci.* 2006, 79, 1062–1068.

Martinez-Gonzalez, J.; Rodriguez-Rodriguez, R.; Gonzalez-Diez, M.; Rodriguez, C.; Herrera, M. D.; Ruiz-Gutierrez, V.; Badimon, L. Oleanolic acid induces prostacyclin release in human vascular smooth muscle cells through a cyclooxygenase-2-dependent mechanism. *J. Nutr.* 2008, 138, 443–448.

Somova, L. O.; Nadar, A.; Rammanan, P.; Shode, F. O. Cardiovascular, antihiperlipidemic and antioxidant effects of oleanolic and ursolic acids in experimental hypertension. *Phytomedicine* 2003, 10, 115–121.

Somova, L. I.; Shode, F. O.; Mipando, M. Cardiotonic and antidyssrhythmic effects of oleanolic and ursolic acids, methyl maslinate and uvaol. *Phytomedicine* 2004, 11, 121–129.

Ikeda, Y.; Murakami, A.; Ohtsuki, H. Ursolic acid: an anti- and pro-inflammatory triterpenoid. *Mol. Nutr. Food Res.* 2008, 52, 26–42.

Messner, B. Ursolic acid causes DNA damage, p53-mediated, mitochondria-and caspase-dependent human endothelial cell apoptosis, and accelerates atherosclerotic plaque formation in vivo. *Atherosclerosis* 2011, 219, 402–408.

Liu, Y.; Oh, S. J.; Chang, K. H.; Kim, Y. G.; Lee, M. Y. Antiplatelet effect of AMP-activated protein kinase activator and its potentiation by the phosphodiesterase inhibitor dipyridamole. *Biochem. Pharmacol.* 2013, 86, 914–925.

Kim, M.; Han, C. H.; Lee, M. Y. Enhancement of platelet aggregation by ursolic acid and oleanolic acid. *Biomol. Ther* 2014, 22, 254–259.

Liu, J. Oleanolic acid and ursolic acid: research perspectives. *J. Ethnopharmacol.* 2005, 100, 92–94.

Nakah, P.; Karmakar, G.; Chettri, P.; Roy, B.; Guha, P.; Besra, S. E.; Soren, A.; Bykov, A. G.; Akentiev, A. V.; Noskov, B. A.; Panda, A. K. Influence of lipid core material on physicochemical characteristics of an ursolic acid-loaded nanostructured lipid carrier: an attempt to enhance anticancer activity. *Langmuir* 2016, 32, 9816–9825.

Alfei, S.; Castellaro, S. Synthesis and characterization of polyester-based dendrimers containing peripheral arginine or mixed amino acids as potential vectors for gene and drug delivery. *Macromol. Res.* 2017, 25(12), 1172–1186.

Besra, S. E.; Soren, A.; Bykov, A. G.; Akentiev, A. V.; Noskov, B. A.; Panda, A. K. Influence of lipid core material on physicochemical characteristics of an ursolic acid-loaded nanostructured lipid carrier: an attempt to enhance anticancer activity. *Langmuir* 2016, 32, 9816–9825.

Alfei, S.; Castellaro, S. Synthesis and characterization of polyester-based dendrimers containing peripheral arginine or mixed amino acids as potential vectors for gene and drug delivery. *Macromol. Res.* 2017, 25(12), 1172–1186.

Bisio, A.; Romussi, G.; Russo, E.; Cafaggi, S.; Sciuto, A. M.; Repetto, B.; De Tommasi, N. Antimicrobial activity of the ornamental species salvia corrugata, a potential new crop for extractive purposes. *J. Agric. Food Chem.* 2008, 56, 10468–10472.

Von Seel, F. in “Grundlagen der analytischen Chemie, Vol. 82”, ed. By Geier, G., Verlag Chemie, Weinheim, 1970, p. 83.
Cheng, Y.; Xu, Z.; Ma, M.; Xu, T. Dendrimers as drug carriers: applications in different routes of drug administration. J. Pharm. Sci. 2008, 97, 123−143.

Milhem, O. M.; Myles, C.; McKeown, N. B.; Attwood, D.; D’Emanuele, A. Polyamidoamine Starburst dendrimers as solubility enhancers. Int. J. Pharm. 2000, 197, 239−241.

Kolhe, P.; Misra, E.; Kannan, R. M.; Kannan, S.; Lieh-Lai, M. Drug complexation, in vitro release and cellular entry of dendrimers and hyperbranched polymers. Int. J. Pharm. 2003, 259, 143−160.

Twyman, L. J.; Beezer, A. E.; Esfand, R.; Hardy, M. J.; Mitchell, J. C. The synthesis of water soluble dendrimers, and their application as possible drug delivery systems. Tetrahedron Lett. 1999, 40, 1743−1746.

Alfei, S.; Castellaro, S.; Taptue, G. B. Synthesis and NMR characterization of dendrimers based on 2, 2-bis-(hydroxymethyl)-propanoic acid (bis-HMPA) containing peripheral amino acid residues for gene transfection. Org. Commun. 2017, 10, 144−177.

Seebacher, W.; Simic, N.; Weis, R.; Saf, R.; Kunert, O. Spectral assignments and reference data. Magn. Reson. Chem. 2003, 41, 636−638.

Eichman, J. D.; Bielinska, A. S. U.; Kukowska-Latallo, J. F.; Baker J. R. Jr. The use of PA-MAM dendrimers in the efficient transfer of genetic material into cells. Sci. Technol. Today 2000, 3, 232−245.

Wang, J. Q.; Mao, W. W.; Lock, L. L.; Tang, J. B.; Sui, M. H.; Sun, W. L.; Cui, H. G.; Xu, D.; Shen, Y. Q. The role of micelle size in tumor accumulation, penetration, and treatment. ACS Nano 2015, 9, 7195−7206.

Yu, H.; Cui, Z.; Yu, P.; Guo, C.; Feng, B.; Jiang, T.; Wang, S.; Yin, Q.; Zhong, D.; Yang, X.; Zhang, Z.; Li, Y. pH- and NIR light-responsive micelles with hyperthermia-triggered tumor penetration and cytoplasm drug release to reverse doxorubicin resistance in breast cancer. Adv. Funct. Mater. 2015, 25, 2489−2500.

https://doi.org/10.1007/s10118-018-2124-9