Title Page

Title: A Systematic Review of the Methodological Quality of Economic Evaluations in Genetic Screening and Testing for Monogenic Disorders

(Tentative) Authorship: Karl Johnson,¹ Kate Saylor,² Isabella Guynn,¹ Karen Hicklin,¹ Jonathan S. Berg,³ Kristen Hassmiller Lich¹

Author Institutions:

1. University of North Carolina, Gillings School of Global Public Health, Department of Health Policy and Management
2. University of North Carolina, Department of Public Policy
3. University of North Carolina, School of Medicine, Department of Genetics

Corresponding Author:

Kristen Hassmiller Lich
klich@unc.edu
T : (919) 843-9932
F : (919) 966-3671
1105E McGavran-Greenberg Hall
CB #7411
Chapel Hill, NC 27599-7411

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
Conflicts of interest: The authors declare no conflict of interest.
ABSTRACT (198/200 words)

Purpose: Understanding the value of genetic screening and testing for monogenic disorders requires high-quality, methodologically robust economic evaluations. This systematic review sought to assess the methodological quality among such studies and examine opportunities for improvement.

Methods: We searched Pubmed, Cochrane, Embase, and Web of Science for economic evaluations of genetic screening/testing (2013-2019). Methodological rigor and adherence to best practices were systematically assessed using the BMJ checklist.

Results: Across 47 identified studies, there was substantial variation in modeling approaches, reporting detail, and sophistication. Models ranged from simple decision trees to individual-level microsimulation, comparing between two and >20 alternative interventions. Many studies failed to report sufficient detail to enable replication or did not justify modeling assumptions, especially for costing methods and utility values. Meta-analyses, systematic reviews, or calibration were rarely used to derive parameter estimates. Nearly all studies conducted some sensitivity analysis, and more sophisticated studies implemented probabilistic sensitivity/uncertainty analysis, threshold analysis, and value of information analysis.

Conclusion: We describe a heterogeneous body of work and present recommendations and exemplar studies across the methodological domains of (1) perspective, scope, and parameter selection, (2) use of uncertainty/sensitivity analyses, and (3) reporting transparency for improvement in the economic evaluation of genetic screening/testing.
INTRODUCTION

Genetic screening and testing for monogenic diseases can be used to establish a definitive molecular diagnosis in symptomatic patients, identify increased risk of disease in pre-symptomatic individuals, provide information about prognosis or management of rare disorders, identify other at-risk family members, and guide reproductive planning. If used appropriately, such analysis has the potential to reduce morbidity and mortality through disease prevention or early intervention, targeted treatment, and avoidance of inappropriate or ineffective treatment. However, genetic analysis and indicated downstream care for people who test positive can be costly for both the health system and the patient. Despite being rare (the most common affecting less than 1% of the population), molecular diagnosis of monogenic conditions can be highly useful from a clinical perspective. Currently, diagnostic genetic testing is recommended only to those meeting specific clinical criteria or after other clinical tests have failed to give a definite diagnosis. It may be cost-effective to identify and care for patients with monogenic conditions before symptoms manifest, especially for conditions with effective interventions that could improve clinical outcomes. Researchers are assessing the value of screening for clinically useful monogenic conditions within a broader population. Economic evaluations—including cost-consequence, cost-benefit, cost-utility, and cost-effectiveness analyses\(^1\)—are critical for assessing the potential value of genetic screening/testing for specific applications. Over the last two decades, the number of such evaluations has increased rapidly.\(^2,3\) Yet, the speed with which economic evaluations have been produced may be outpacing the field’s ability to disseminate and widely adopt best practices, as well as identify gaps where best practices have not been adopted.
High-quality methodological approaches to economic evaluations are essential for the appropriate interpretation and implementation of study findings. Despite the recent publication of several methodological recommendations for cost-effectiveness analyses in genetic medicine, study quality across disease areas has not been systematically reviewed. Importantly, there are methodological challenges unique to economic evaluations of clinical genetic screening and testing for monogenic disorders that deserve specific attention. Compared with other medical interventions that have more routinely been subjects of economic evaluations (e.g., pharmacoeconomics), the methodological tendencies of economic evaluators of genetic screening and testing programs may still be in formation.

This qualitative systematic review characterizes the methodological quality of recent economic evaluations of genetic screening and testing for monogenic disorders, spanning from birth to diagnosis. Throughout this review, we use the term “genetic testing” when referring to a clinical diagnostic setting in which a patient is at increased risk for a genetic disorder due to their personal and/or family history; we use “genetic screening” when the individual being screened is not known to be symptomatic of, nor at substantially increased risk for, such a condition. We emphasized this distinction given both the differing resources demanded of and health outcomes that may be experienced through either strategy and the field’s interest in evaluating screening programs. See Appendix 1 for more detail. The goal of this review is to improve the methodological quality of future economic evaluations to guide implementation of such studies. Where consistent methodological limitations were identified, we have provided recommendations and exemplar models.

METHODS
Search Strategy

This systematic review identified economic evaluations of genetic screening and testing for monogenic disorders, focusing on assays that seek to establish (or refine) a genetic risk or diagnosis. Included studies incorporated costs and health outcomes downstream from genetic testing and diagnosis. The review was registered with PROSPERO on July 2, 2019 (record number CRD42019141086). Studies that did not include complete economic evaluations (“the comparative analysis of alternative courses of action in terms of both their costs and consequences”\(^1\)) or considered no health outcomes beyond diagnostic yield were excluded.\(^8,9\)

Studies of common variants and polygenic risk scores for complex diseases were excluded, as were studies of somatic variants or gene expression in tumors.\(^10,11\) Pharmacogenetic screening was excluded, defined as testing for genetic variants primarily related to adverse reactions to drugs or drug metabolism.\(^12\) Genetic testing/screening specifically related to reproductive planning (pre-conception or pre-natal) was excluded.\(^13\) Systematic reviews and commentaries were also excluded.\(^14\) Additional search strategy details are included in Appendix 2.

Code Development

Qualitative codes reflecting methodological features of evaluations were developed using a top-down and inductive approach. Initial codes were adopted from the 1996 checklist developed by Drummond and Jefferson for the BMJ (hereafter: “BMJ checklist”), along with features highlighted in similar systematic reviews.\(^15–18\) While more recent checklists have been developed as guides for authors,\(^19\) the BMJ checklist was chosen given its emphasis on quality assessment by reviewers, its use in recent reviews of genetic evaluations\(^18,20\) and its widespread use among similar systematic reviews published from 2010 to 2018.\(^21\) A full list of the codes and summary statement templates used can be found in Appendix 3.
BMJ Checklist and Qualitative Assessment beyond the BMJ Checklist

We used the 35 BMJ checklist items (hereafter: “items”) to assess included studies. Items were classified as not met (0), partially met (1), fully met (2), or not relevant (N/R). If relevant information was not contained in the primary publication or supplemental materials, but an appropriate citation was listed, we classified that item as “not available” (N/A). A detailed rubric was developed for each checklist item (Appendix 4). Average quality values were calculated for each question by summing the 0s, 1s, and 2s each article received across all studies, then dividing that sum by the number of items for which 0s, 1s, and 2s were possible (excluding N/R and N/A).

Additional items were created to track, in more detail, important article features which the BMJ checklist did not directly address but have been recommended in other authoritative guidelines (Appendix 5). These features did not contribute to average checklist values. During analysis, we grouped these additional items, along with select BMJ checklist items that we wished to highlight in more detail, into three distinct methodological constructs: perspective, scope, and parameter selection; the use of sensitivity/uncertainty analyses; and reporting transparency.

Review Process

Article coding and assessment began with a “primary coder” who applied qualitative codes and assessed items. Next, a “secondary coder” received the already-coded articles from primary coders and cross-examined articles to ensure codes were appropriately applied. Secondary coders independently assessed all 35 BMJ items, and were blind to the assessment.
given by primary coders. Conflicts were discussed and resolved between the two reviewers (KJ, IG, KH, KHL).

RESULTS

Study Characteristics

Of the 5727 records identified through database searches, 47 studies met inclusion criteria (Figure 1). Table 1 reports the main features of the 47 articles included in this review along with each article’s average quality assessment. Three genetic conditions constituted nearly half of all studies: Lynch syndrome (n=10), familial hypercholesterolemia (n = 7), and hereditary breast and ovarian cancer (n=14). A smaller set of studies considered maturity onset diabetes of the young (n=3), thrombophilia (n=2), or multiple conditions (n=2), and undiagnosed pediatric disorders (n=4). The setting of most studies was the United States (n=11), the United Kingdom (n=9), and Australia (n=9), with smaller numbers also conducted in Germany (n=4), both the United States and the United Kingdom (n=3), the Netherlands (n=3) and elsewhere (Spain: n=2; Poland: n=1; Norway: n=1; Malaysia: n=1; Italy: n=2; Taiwan, n=1; Singapore: n=1).

Table 2 presents the major model characteristics across all studies. Most studies utilized the combination of a decision tree with a Markov model (n = 17), though several used either just a decision tree (n = 11) or just a Markov model (n = 6). Five studies employed some form of individual-level simulation (e.g., microsimulation). Less than half of all studies (n = 18) compared only one alternative to “usual care”, which often consisted of the standard-of-care genetic or clinical testing/screening protocol. Most studies conducted cost-utility analyses (i.e., health outcomes are expressed in utility measures like QALYs or DALYs) (CUAs) (n = 26), with
several conducting both CUAs and cost-effectiveness analyses (i.e., health outcomes are expressed in clinical measures like total diagnoses or deaths) (CEAs) (n = 10) and a limited number (n=6) conducting cost-consequence analyses. Three studies incorporated societal costs, the rest were strictly from either the healthcare sector or payer perspective.

BMJ Checklist Assessment

Some basic items from the BMJ checklist were fully met by nearly all studies, including “The research question is stated” (average value [AV]: 2) and “The primary outcome measure(s) for the economic evaluation are clearly stated” (AV: 1.98). Conversely, several checklist items consistently were not met or partially met by all studies, including “Quantities of resources are reported separately from their unit costs” (AV: 0.87) and “Details of the subjects from whom valuations were obtained are given” (AV: 1.10). Some items were consistently addressed by citing external sources but without an overview of the source material (N/A), such as “Methods to value health states and other benefits are stated.” Several of the cost-consequence analyses received an above average number of “N/R” assessments. Average values for each variable are presented in **Table 3**. While comparative assessment of studies is not the primary focus of our analysis and the BMJ checklist is not intended to produce a quantitative assessment, the distribution of values and the average value for each article is presented in **Appendix 6** and **Appendix 7**.

Assessment of Key Methodological Constructs

Perspective, scope, and parameter selection
For studies that based effectiveness estimates for preventive interventions on several sources (n=25), roughly a third (n=7) presented a thorough evidence synthesis, which outlined how they identified the parameters used in their analysis. A systematic literature review was conducted and a formal meta-analysis was completed for important variables in only four articles (Appendix Table 5).29–32

Fourteen articles either conducted micro-costing or referenced prior micro-costing analyses, while the rest opted for a macro-costing approach. Furthermore, several studies (n=7) adopted costing information from other, similar cost-effective analyses without justifying the primary source of the costing data.

Of studies with a clearly stated perspective, all presented at least a healthcare payer or healthcare system perspective. Three articles also included components of a societal perspective; two of these studies incorporated lost labor productivity costs into overall costs and one conducted two separate analyses from either the healthcare sector or societal perspective. No studies incorporated non-medical benefits of genetic screening or testing, such as the personal utility of non-actionable genetic information or psychological benefits of negative test results. Studies that only examined carrier screening were excluded from the review, though two studies either incorporated costs associated with assisted reproductive technology use by parents after a child’s genetic diagnosis or DALYs averted by decisions to avoid having children with genetic disease.33,34 One study included a discussion of the privacy implications of familial cascade testing,35 although privacy costs were not incorporated into their model.

No studies calibrate their model using real-world data. Two articles attempted some form of internal or external model validation, although this was not done to inform model
parameterization but rather to confirm that model outcomes aligned with data used within the model and external values (e.g., known prevalence of disease).32,36

\textit{Use of Sensitivity/Uncertainty Analyses}

While all evaluations considered in this review conducted sensitivity analyses, the depth, breadth, and presentation of analyses varied widely. The majority of studies (n=33) conducted some form of one-way or two-way deterministic sensitivity analyses and 19 of such studies presented the results in the form of a tornado diagram. Among the 29 studies that included a probabilistic sensitivity analysis (PSA), nine displayed PSA results in ICER scatter plots, 23 presented cost-effectiveness acceptability curves, but only three presented uncertainty intervals for primary estimates. Twenty-one studies conducted at least one scenario analysis and eight studies conducted at least one threshold analysis. Only two value of information analyses were conducted, which included an expected value of perfect information analysis and an expected value of partial perfect information analysis for specific parameter groups (e.g., treatment costs, probability of cancer recurrence) (\textbf{Table 2}).

\textit{Reporting Transparency}

Both the study question and answer to the study question were clear in all papers. Only two studies did not clearly report the discount rate for their analysis, though many studies (n=19) did not provide a proper justification of why their specific rate was selected. Similarly, most papers (n=39) clearly articulated the year and price information of their cost units but only about half (n=24) reported whether or how these prices had been adjusted for inflation or currency conversion.
All articles presented both disaggregated outcomes (such as total QALYs gained or total healthcare costs) as well as final ICER calculations. However, less than half of the studies (n=23) based the population size on a real-world population. Only one article disaggregated intervention costs into specific categories unique to genetic screening and nine studies disaggregated costing results based on the generic source of costs such as genetic sequencing, disease prevention, and disease treatment.

For studies that reported results in the form of either QALYs or DALYs (n=37), about half (n=16) presented the valuation method or study by which their utility values were generated and slightly more than half (n=19) reported the population from whom these values were generated.

Of the 19 studies that reported the results of one-way sensitivity analyses in the form of a tornado diagram, 9 had figures that did not indicate the direction of the associations between each parameter and the ICER. It was also unclear for several studies (n=10) why certain variables were ultimately selected to be included in deterministic sensitivity analyses (such as tornado diagrams) and not others. While more than half of the studies conducted a probabilistic uncertainty analysis.

DISCUSSION

Overview of Major Findings

This systematic review analyzed the methodological quality of 47 recent economic evaluations of genetic screening or testing for monogenic disorders across disease arenas. There was substantial variation in model sophistication and reporting quality. Most articles satisfied
basic criteria for their presentation of parameter values, model design, and results as well as their implementation and interpretation of sensitivity/uncertainty analyses. A few studies achieved higher levels of sophistication or quality and can serve as exemplars for future work.32,34,37–41

Recommendations for Future Evaluations and Exemplar Cases

While uniformity of evaluation design and reporting should not come at the cost of analytic flexibility, the heterogeneity of quality assessed in our review suggests the importance of further training to develop high-quality economic evaluations of genetic screening/testing. Scholars are encouraged to reference one or more of the guidelines that have been published over the past 20 years; these guidelines demonstrate near-consensus on the key elements of an economic evaluation.19,42 Within the last five years, several textbooks have also been published on the proper methodological approach to economic evaluation.3,7,28

Informed by our assessment and considering authoritative sources, we make several recommendations for future economic evaluations of genetic testing/screening. Our recommendations focus on three arenas that consistently caused difficulty for articles considered in our review (parameter selection, use of sensitivity/uncertainty analyses, and reporting transparency). Table 4 summarizes this discussion along with several exemplar cases from our review are provided to demonstrate recommended practices.

Perspective, Scope, and Parameter Selection

A central challenge in conducting any economic evaluation is employing expert judgement and the evidence synthesis needed to select or estimate parameter values for the model. A formal systematic review with or without meta-analysis should be attempted for
parameter values that are especially influential, uncertain, or likely to change in different environments (e.g. as a consequence of policy decisions).3,4,43

Most economic evaluations of genetic testing/screening take a simplistic view of genetic analysis costs, often ignoring costs of implementation and patent outreach. For more realistic integration of the costs incurred by genetic testing/screening, micro-costing is recommended.7,45 Micro-costing is especially important for analyses centered on changes in the way resources are delivered within a specific program or diagnostic odyssey, which is often the case for innovative genetic medicine programs.28,32 Micro-costing may not be suitable for studies primarily concerned with nationally aggregated or long-run costs, and the importance of various sub-components may depend on the perspective.

Economic evaluations of genetic testing/screening should evaluate value across relevant stakeholders, including but not limited to payer and societal perspectives. Genetic analyses are unusual in that they have implications not just for the individual being tested but also for family members, who may or may not be covered by the same payer. For settings without a single-payer, including family members in models requires careful consideration of how and even whether cascade testing is relevant in a payer-perspective analysis. Moreover, it has been strongly recommended that economic evaluations report two standard reference case perspectives: one from the healthcare payer perspective (i.e. formal healthcare sector costs borne by third-party payers or paid for out-of-pocket by patients) and, in parallel, one from the societal perspective (i.e. including patient/family time costs involved in receiving an intervention and for self-management).3 Presenting a reference case from a particular third-party payer (e.g. the federal government, a single healthcare system, or a particular insurance company) can also be warranted, though care should be taken to consider whether the covered population is stable,
especially when benefits may lag many years behind initial investments (e.g., crossing Medicaid and Medicare programs or attrition from insurance plans). Presenting both analytical perspectives in tandem clarifies how value may vary substantially among key stakeholders.

To account for the balance between the burden of screening and recovered productivity, future studies should refer to the “Impact Inventory” developed by the Second Panel on Cost-Effectiveness in Health and Medicine to guide which costs should be considered from either perspective.

Model calibration is a process used in economic evaluations to improve the accuracy of parameters that cannot be directly measured, leveraging available data that can be matched with the model. Calibration efficiently searches the space of plausible parameter values to find those which optimize the model’s fit to real-world data. Calibration is not always necessary but should be used when it can reduce the amount of parameter uncertainty in the model, especially for the most influential or actionable model parameters.

Authors should pay special attention to test performance in the model. True clinical sensitivity is extremely difficult to measure for most conditions, and categories of possible test
results vary between diagnostic testing, family cascade testing, and population screening. The probability of further interaction between the healthcare system and patient will differ based on how these categories are reported. Evaluators should ensure that their modeling of test results accurately reflects both what is known about the clinical sensitivity and specificity of the genetic test and how that knowledge is translated into diagnostic protocols, which may vary across sites of implementation.

Use of Sensitivity/Uncertainty Analyses

Beyond reporting outcomes of a base case, economic evaluations of genetic testing/screening should identify and consider the impact of stochastic, parameter, and/or structural uncertainty as well as patient heterogeneity. Analyses should distinguish between variability in inputs that may affect outcomes (sensitivity analysis) and uncertainty in model inputs that may alter the uncertainty of model conclusions (uncertainty analysis). As with all economic evaluations, it is challenging to estimate the collective impact that uncertainty within individual parameters will have on the uncertainty of overall model outcomes. We strongly recommend studies to conduct a *Probabilistic Uncertainty Analysis (PUA)* and to use the PUA results to clearly report the degree of uncertainty of estimates for primary outcomes of interest (i.e., confidence intervals). Given their likely dramatic impact on model outcomes, we recommend studies to consider the following parameters within their PUA: pathogenic variant prevalence (which depends on the target population and clinical scenario), probability of referral to genetic counseling and genetic testing uptake, likelihood of clinical outcomes (based on penetrance and expressivity of the condition), uptake/adherence and efficacy of interventions in symptomatic and pre-symptomatic individuals, morbidity and mortality in the absence of a
genetic diagnosis, and cost of genetic analysis, implementation of interventions, and care used as part of post-result clinical interventions.

Studies should incorporate **threshold analyses** (a type of sensitivity analysis) to interrogate key parameters that may change in response to policy decisions, programmatic design, or other exogenous factors. Threshold analyses identify the minimum or maximum value for a given parameter that results in the intervention meeting willingness-to-pay thresholds. In the context of genetic testing/screening, this may fruitfully be applied to parameters such as the prevalence of the pathogenic variant being screened, with the assumption that programs could be developed to target populations with a critical prevalence rate (e.g., those with a clinical history suggestive of genetic disease). Threshold analyses could also determine the minimum rate of uptake for accepting genetic testing/screening or prophylactic interventions for screening to become cost-effective. It is widely appreciated that genetic laboratory costs have fallen over the past decade, and there is speculation over whether testing prices will continue to fall or may even increase if testing companies capture greater control of markets. This value should also be strongly considered for threshold analyses.

As with any novel intervention, many parameters necessary to evaluate genetic testing/screening are fixed but unknown or uncertain. Some of these parameters, such as the prevalence of pathogenic variants in populations, could be studied using biobank or cohort studies and epidemiological research methods. **Value of information analyses** should be conducted to quantify the value of investing in research activities that generate additional evidence that lessens parameter uncertainty. This type of analysis informs what research is most valuable—essential information for researchers and funders.
Scenario analyses should be used to estimate structural uncertainty or to compare different intervention approaches in a model. In the context of genetic testing/screening, they could be used to consider alternative scenarios in which more energy is dedicated to certain sub-populations or the diagnostic pathway is slightly modified for these sub-populations. The consistent incorporation of scenario analyses will not only make models more informative (by calling attention to particularly uncertain or variable parameters) but also improve methodological rigor as authors are forced to critically think about the specific questions that their model must be designed to address.

Reporting Transparency

The amount of content necessary to properly present an economic evaluation is often too much to fit in a single manuscript, prompting evaluators to reference secondary literature. When referencing secondary literature (especially for parameter estimation), summary information should be available within the main manuscript or appendix for readers to understand the context and methods behind the results produced from that literature.

When price transformations are necessary—either between different years or between different currencies—authors must be clear what year was used as the benchmark and what exchange rate was employed for the transformation. When adjusting for inflation, authors should use inflation rates unique to the medical industry. When relevant, inflation or cost adjustments should be specific to medical commodities that have increased or decreased in price relative to the rest of the industry (e.g., when a patented drug becomes available in generic forms). Evaluators should also clearly identify when monetary amounts included in the model reflect price or cost estimates; we recommend accounting for all the associated costs of a medical good.
or activity. The cost of the same genetic analysis may also vary considerably depending on the equipment used, throughput level, and sequencing method; we recommend clearly identifying the sub-components of costs associated with the genetic analysis.

We strongly recommend disaggregating the outcome of cost-effectiveness analyses into total costs and total effectiveness. Disaggregation is especially useful if the size of the model population is reported and corresponds to a real-world population rate. This allows for population-wide health and economic impacts (e.g., a budgetary impact analysis) to be reported in addition to per-person cost and effectiveness. When expressing the total costs associated with any screening strategy, it is also recommended that authors report both total costs as well as costs disaggregated into relevant categories. This categorization provides a clear depiction of which aspect of genetic testing/screening is responsible for incremental cost differences. Detecting sources of incremental variation is especially important for a field such as genetics in which materials and activities are rapidly changing costs.

Alignment with Similar Systematic Reviews

Several recent systematic reviews of economic evaluations of genetic screening have been conducted for either specific populations or a more limited set of medical conditions. While prior reviews primarily covered older studies, were limited to specific genetic conditions, and were not as comprehensive as our own regarding methodological assessment, these reviews have identified many of the same limitations in economic evaluations our review has exposed. These include emphasizing the healthcare payer or health system costing perspectives over societal perspectives, dependence on macro-costing strategies and adopting costing estimates from other, similar studies, and limited or opaque use of complex sensitivity analyses. The
performance of our articles as measured by the BMJ checklist is also consistent with two recent reviews of economic evaluations of genetic testing that employed the BMJ checklist. Both these reviews found that most studies failed to provide a rigorous description of how costs were derived, provided no description for how disparate sources were synthesized to establish effectiveness estimates, failed to appropriately adjust price or currency or report such adjustment, and had limited description of the valuation methods by which utility weights were calculated or characterizations of the population from which they were derived.

Study Limitations

There are several limitations to this systematic review. Firstly, our assessment mechanism gave equal weight to all items, implying that all items were of equal ease to achieve and of equal importance to the methodological quality of an article when important inequalities likely exist across both dimensions. To account for this limitation, we have focused our discussion on those items which we believe to be of greater importance to overall quality and have provided recommendations to facilitate ease of achievement. Secondly, this review does not consider the influence methodological limitations may have on the primary or secondary outcomes of studies. For instance, an opaque presentation of parameter derivation may complicate a reader’s ability to interrogate the integrity of a model, though these parameters may ultimately be the most appropriate leaving results unbiased. On the other hand, the lack of a PSA may indirectly hide the fact that primary outcomes are widely variable and cannot be interpreted with high confidence. Future research should consider which methodological features of an article may have the largest influence on outcomes. Thirdly, there is an abundance of methodological detail that went beyond the scope of this review, such as how well the structure...
of the model reflected the actual decision nodes within the healthcare system under study and whether a comprehensive selection of alternative strategies was considered for each model. This level of granularity is best suited for reviews with a much more limited scope than the one we conducted.

Conclusion

Economic evaluation of genetic medicine has been recently accelerating. Our review considered the methodological quality of such studies and demonstrated that, with notable exceptions, many studies fell short across several key methodological criteria. Improvements in these arenas highlighted above would enhance the extent to which outcomes can be understood, translated, and faithfully replicated. Renewed attention to the methodological design of future economic evaluations of genetic testing/screening is warranted. Future economic evaluations in this space should adhere to established guidelines and may benefit from considering the specific recommendations and exemplar articles identified in this review.
Figure 1. PRISMA search and exclusion flowchart.

Exclusion reasons:
- Not peer-reviewed or abstract (137)
- Commentary, perspective, or position statement (85)
- Review or meta-analysis w/o economic evaluation (73)
- Diagnostic yield/diagnosis only (72)
- Not evaluating costs (61)
- Pharmacogenomics (56)
- Lab-based genetic testing (40)
- Not evaluating genetic testing (38)
- Somatic/tumor mutation testing (38)
- DTC, willingness to pay, insurance coverage, or patent issues (12)
- Incomplete economic evaluation (11)
- Complex/multigenic, common variants (8)
- Cannot find full text (6)
- Not in English (5)
- Non-human testing (3)
- Prenatal or pregnancy-related (3)
- Viral or bacterial pathogens (3)
- Duplicate (3)
- Post-mortem testing (1)
| Study | Syndrome/genetic condition of interest | Country | Population | Intervention of Interest | Comparison | Health Outcomes Considered |
|-------------|--|----------|--|--|---|--|
| Catchpool 2019 | Cardiomyopathy | Australia | Unaffected 18-year-old first-degree relatives of dilated cardiomyopathy patients | Testing for monogenic disease variants | Clinical surveillance alone | Clinically unaffected, preclinical/mild DCM (MDCM), DCM, and death |
| Ademi 2015 | Familial hypercholesterolemia | Australia | Relatives of FH patients | Genetic testing combined with LDL-C testing | No screening of relatives | Cardiovascular disease |
| Chen 2015 | Familial hypercholesterolemia | US | People with family history or indications of FH using | Genetic screening and lipid-based screening with statin adherence | Lipid-based screening alone | “CVD Event/Stroke”, which served as summary category for myocardial infarction, stroke and angina. Three health states were considered: Pre-CVD, CVD Event/Stroke, and Death |
| Crosland 2018 | Familial hypercholesterolemia | UK | Potential FH cases identified in primary care databases and their relatives | Testing using an FH genetic panel | No case identification and no cascade testing | Stable Angina, unstable Angina, MI, TIA, stroke, heart failure, peripheral artery disease, cardiovascular mortality, and non-cardiac mortality |
| Kerr 2017 | Familial hypercholesterolemia | UK | Adult relatives of those with monogenic FH | Testing for variants in LDLR, APOB, or PCSK9 | No cascade testing | Stable angina, unstable angina, MI, TIA, stroke, CHD death, non-CHD death, post-stable angina, unstable angina, post-unstable angina, and post-stroke. |
| Lázaro 2017 | Familial hypercholesterolemia | Spain | high-cholesterol children and adults identified in primary care | Testing for FH pathogenic variants, followed by cascade screening | No genetic testing | "Coronary event", modelled as a single event but which encompassed any of the following: myocardial infarction, angina pectoris, percutaneous coronary intervention, or coronary |
| Authors | Disease | Country | Eligibility | Screening/Testing | Outcomes |
|---------|---------|---------|-------------|-------------------|----------|
| McKay 2018 | Familial hypercholesterolemia | UK | 1–2-year-olds | Universal screening of FH (using cholesterol and/or genetic screening) | No universal screening (ongoing cluster testing) |
| Pelczarska 2018 | Familial hypercholesterolemia | Poland | 6-year-olds, first job takers, or individuals after an acute coronary syndrome event (all followed by cascade screening) | Screening for FH | No screening |
| Asphaug 2019 | Hereditary breast and ovarian cancer | Norway | Breast cancer patients under age 60 (and first-degree female relatives if positive) | Testing for pathogenic variants in a 7-gene or a 14-gene panel | BRCA1/2 screening |
| Eccleston 2017 | Hereditary breast and ovarian cancer | UK | All women with epithelial ovarian cancer | Testing for germline BRCA variants (for the benefit of first- and second-degree relatives) | No germline genetic screening |
| Hoskins 2019 | Hereditary breast and ovarian cancer | Canada | All women with epithelial ovarian cancer | Testing for germline BRCA variants (for the benefit of first- and second-degree relatives) | No germline genetic screening |
| Kemp 2019 | Hereditary breast and ovarian cancer | UK | Female and male patients with an expected 10% chance of pathogenic variants (early-onset breast cancer or family history indication of Hereditary breast and ovarian cancer) | Testing for pathogenic variants using a 9-gene panel | No germline genetic screening |

Outcomes: Well (entry state), stable angina, post-stable angina, unstable angina, myocardial infarction, post-myocardial infarction, transient ischemic attack, post-transient ischemic attack, stroke, post-stroke, CHD death, non-CHD CVD death, and non-CVD death.

Screening: “any CVD”, which served as summary category for coronary heart disease, angina pectoris, heart failure, stroke, and myocardial infarction. 4 states were possible: general, CVD, Post-CVD, and Dead.
Author(s)	Cancer Type	Country	Population/Setting	Screening Method	BRCA1/2 Testing Criteria	Cancer Types
Kwon 2019	Hereditary breast and ovarian cancer	Canada	First-degree relatives of women with ovarian cancer	Testing for pathogenic variants in BRCA1/2	No genetic screening	Breast cancer, ovarian cancer
Li 2017	Hereditary breast and ovarian cancer	US	Asymptomatic 40- (or 50-) year-old women with family history of breast or ovarian cancer	Testing for pathogenic variants in a seven-gene panel of breast cancer-associated genes	Only screening BRCA 1/2	Breast cancer, ovarian cancer
Lim 2018	Hereditary breast and ovarian cancer	Malaysia	Female breast cancer patients in a low/middle income country setting (Malaysia)	Screening for pathogenic variants in BRCA1/2	Routine clinical surveillance without genetic testing	Breast cancer, ovarian cancer
Manchanda 2018	Hereditary breast and ovarian cancer	US and UK	All women	screen for pathogenic variants in BRCA1/BRCA2/ RAD51C/RAD51D/BRI P1/PALB2	BRCA1/2 testing only in women who meet family/personal history criteria	Breast cancer, ovarian cancer
Manchanda 2015	Hereditary breast and ovarian cancer	UK	Ashkenazi Jewish women over age 30	Screening for specific BRCA founder variants (2.5% pathogenic variant prevalence)	Testing just those who meet personal/family history criteria (9.4% pathogenic variant prevalence)	Breast cancer, ovarian cancer
Manchanda 2017	Hereditary breast and ovarian cancer	US and UK	women with 1, 2, 3, or 4 Ashkenazi Jewish grandparents	Testing for pathogenic variants in BRCA 1/2 (1.1%, 1.6%, 2.0%, 2.5% pathogenic variant prevalence respectively)	Testing just those who meet family/personal history criteria (9.4% pathogenic variant prevalence)	Breast cancer, ovarian cancer
Müller 1986	Hereditary breast and ovarian cancer	Germany	35-year-old women with family history indications (>10% risk)	Testing for variants in BRCA1/2	No genetic testing	Breast cancer, ovarian cancer
Kwon 2019v	Hereditary breast and ovarian cancer	US and UK	30-year-old Sephardic Jewish (SJ) women	Screen for the SJ BRCA1 founder variants	BRCA1/2 testing just those who meet family/personal history criteria	Breast cancer, ovarian cancer, cardiac events
Tuffaha 2018	Hereditary breast and ovarian cancer	Australia	40-year-old female breast cancer patients with >10% risk of BRCA variants (and first- and second-degree)	Screen for pathogenic BRCA variants	No BRCA screening	Breast cancer, ovarian cancer
Study	Condition	Country	Population	Methodology	Screening Strategy	
-------	-----------	---------	------------	-------------	--------------------	
Neusser 2019	Hereditary breast and ovarian cancer	Germany	Women in Germany, aged 25-65, with relatives with confirmed pathogenic variants in BRCA1/2 or another moderate risk gene. The model starts with 2509 women, and new women enter the model each year, for a total of 47,659 after 10 years.	Increased demand (90% genetic test uptake) for screening for variants in BRCA1/2	Current rates of genetic testing (9% genetic test uptake)	Breast cancer, ovarian cancer
Graaff 2017	Hereditary Hemochromatosis	Australia	30-year-old males and 45-year-old females of northern European ancestry	Screen for HFE C282Y variant homozygosity	Cascade or incidental screening	4 different haemochromatosis categories were possible, each of which represented an assortment of distinct health outcomes. Category 3 included early symptoms (e.g. arthritis, fatigue, lethargy) and Category 4 included organ damage (e.g. liver cirrhosis, hepatocellular carcinoma, heart disease, Type 2 diabetes)
Barzi 2015	Lynch syndrome	US	General population	20 different diagnostic algorithms which include predictive models, MSI, IHC, BRAF, and germline DNA testing for Lynch Syndrome	No screening	At risk for CRC, curable CRC, non-curable CRC, curable gynecologic cancers, non-curable gynecologic cancer, curable other cancer (not CRC or gynecologic), non-curable other cancers, death.
Chen 2016	Lynch Syndrome	Italy	First-degree relatives of patients with known pathogenic MMR variants	Screening using genetic testing with intensive surveillance	No genetic testing with intensive surveillance for all first degree relatives	Colon and endometrium cancers
Tuffaha	Lynch syndrome	Taiwan	Patients newly diagnosed	4 different diagnostic	Routine FIT	Colorectal cancer
Year	Syndrome(s)	Country	Patients/Relatives	Testing/Screening	Diagnosis Stages	Comments
------	-------------	---------	--------------------	-------------------	-----------------	----------
2018	Lynch	US	CRC (and relatives if positive)	Strategies including IHC, BRAF, MSI, and germline DNA testing	Screening for a minority of the population	Colorectal cancer
Gallego 2015 (83)	Lynch syndrome	US	Patients referred to the medical genetics clinic for colorectal cancer and polyposis syndrome evaluation	Testing using next-generation sequencing	Sequential evaluation for Lynch syndrome recommended by current guidelines	Colorectal cancer
Gansen 2019 (35)	Lynch syndrome	Germany	Patients with newly diagnosed colorectal cancer (and their first-degree relatives)	21 different diagnostic algorithms including Revised Bethesda and Amsterdam II criteria, MSI, IHC, BRAF, and germline DNA testing	No screening	Well, CRC, metachronous CRC, well after cancer, and death (cancer stages were classified as 1-4)
Goverde 2016 (84)	Lynch syndrome	Netherlands	Endometrial cancer (EC) patients ≤70 years of age (and relatives if positive)	Testing for LS using a combination of MSI, IHC and germline DNA analysis	Testing in endometrial cancer (EC) patients ≤50 years of age	Colorectal and endometrial cancer
Leenen 2016 (57)	Lynch syndrome	Netherlands	All CRC patients ≤70 years of age (and relatives if positive)	Testing for LS using MSI, IHC and MLH1 hypermethylation followed by germline testing	Testing all CRC patients ≤50 or ≤60	Presumably CRC, though details of Life Year Gained estimates are unclear
Severin 2015 (35)	Lynch syndrome	Germany	Patients with newly diagnosed colorectal cancer and their first-degree relatives	21 different diagnostic algorithms including Revised Bethesda and Amsterdam II criteria, MSI, IHC, BRAF, and germline DNA testing for Lynch Syndrome	No screening	Well, CRC, metachronous CRC, well after cancer, and death (cancer stages were classified as 1-4)
Snowsill 2017 (38)	Lynch syndrome	UK	Newly diagnosed CRC patients and their biological relatives	9 different diagnostic algorithms including MSI, IHC, BRAF V600E, MLH1 promoter methylation testing and germline DNA testing	No testing	Colorectal and endometrial cancer
Snowsill 2015 (33)	Lynch syndrome	UK	Individuals (under the age of 50) with newly diagnosed CRC	9 different diagnostic algorithms including MSI, IHC, BRAF V600E, MLH1 promoter methylation testing and germline DNA testing	No testing	CRC, metachronous CRC, endometrial cancer, death
Author	Conditions	Region	Population details	Testing details	Screening for cancer risk	
-------------	---	------------	--	---	---------------------------	
Johnson 2019	Maturity-onset diabetes of the young	Australia	Children presenting with diabetes	Testing for MODY using targeted massively parallel sequencing testing	Ad hoc testing for MODY using Sanger sequencing on clinical grounds	
Naylor 2014	Maturity-onset diabetes of the young	US	25–40-year-old newly-diagnosed type 2 diabetes patients	Testing for HNF1A-, HNF4A-, and GCK-MODY	No testing	
Nguyen 2017	Maturity-onset diabetes of the young	US	Diabetes patients diagnosed before the age of 45	Testing using algorithm driven MODY testing (GAD antibodies Ab testing followed by 16 gene panel)	No testing	
Bennette 2015	Multiple conditions: Hereditary breast and ovarian cancer, Lynch syndrome, Familial hypercholesterolemia, Hypertrophic/dilated cardiomyopathy, Long QT syndrome, Arrhythmogenic right ventricular cardiomyopathy (ARVD), Malignant hyperthermia susceptibility	US	Three distinct patient populations (those with cardiomyopathy, those with colorectal cancer, or healthy individuals)	Returning incidental findings from next generation genome sequencing	Not returning incidental findings	
Zhang 2019	Multiple conditions	Australia	All adults aged 18–25 years	Screening for cancer risk	No screening	
Study	Cancers	Country	Population	Testing	Consideration	
-------	---------	---------	------------	---------	---------------	
Ngeow 2015	Hereditary breast and ovarian cancer, Lynch Syndrome; Carrier testing for cystic fibrosis, spinal muscular atrophy, fragile X syndrome	US	CS-like patients	PTEN Cleveland Clinic (CC) score as a clinical risk calculator to identity for PTEN germline testing	No use of PTEN germline testing	Breast, endometrial, kidney and thyroid cancer
Compagni 2019	Other cancers: Cowden syndrome, Neurofibromatosis type 1	US	Pediatric patients with suspected NF1 (1.3% risk of legius) or suspected NF1 with cafe-au-lait spots (2.95% risk of legius)	Screening for pathogenic variants in SPRED1 to rule out NF1	No genetic testing, depending on age at genetic testing	None
Rubio-Terrés 2015	Thrombophilia	Italy	15-45-year-old women at risk for VTE who are seeking oral contraception	Testing for genetic risk factors	Either a battery of biochemical tests or no testing	Disease sequelae associated with pulmonary embolism (recurrent venous thromboembolism events, hemorrhage due to warfarin, myocardial infarction, stroke, and pulmonary hypertension) and deep vein thrombosis (recurrent venous thromboembolism events, hemorrhage due to warfarin, myocardial infarction, stroke, and postthrombotic syndrome).
Farnaes 2018	Thrombophilia	Spain	VTE patients	Testing using a 12-gene panel (Thrombo inCode)	Testing only factor V Leiden and prothrombin G20210A	Deep vein thrombosis, pulmonary embolism, bleeding caused by warfarin
Compagni 2019	Undiagnosed pediatric disorders: Multiple clinical	US	Acutely-ill infants	Rapid WES	Standard genetic testing	A wide variety of health outcomes associated with the rare clinical conditions
Study	Undiagnosed Pediatric Disorders	Location	Condition	Test	Health Outcomes	
-------	---------------------------------	----------	-----------	------	-----------------	
Rubio-Terrés 2015	Multiple structural malformations and/or unexplained developmental delay/intellectual disability (specific conditions not reported)	Singapore	Children with developmental delay	WES	Standard care (chromosome microarray)	
Vrijenhoek 2018	Undiagnosed pediatric disorders: neurodevelopmental delay	Netherlands	Infants with intellectual disabilities	WES	No WES	
Schofield 2019	Undiagnosed pediatric disorders: Suspected monogenic disorders	Australia	Infants with suspected monogenic disorders	WES	Standard diagnostic pathway with single- and multigene panel tests and complex/invasive tests	
Stark 2018	Undiagnosed pediatric disorders: Suspected monogenic	Australia	Infants with suspected monogenic disorders	WES	Standard diagnostic pathway with single- and multigene panel	

for each infant, including among others: seizures, severe cholestasis, respiratory distress and metabolic acidosis, hyperinsulinemia. Health outcomes were not modeled but rather reported based on retrospective analysis of individual patient trajectories.
| disorders | tests and complex/invasive tests | WES diagnosis resulted in a change in disease management (specific outcomes were unique for each infant): alternating hemiplegia, hyperkalemia, progressive deterioration (probably fatal), and continued need for blood transfusions. |

Notes: FH = Familial hypercholesterolemia; UK = United Kingdom; US = United States; VTE = Venous thromboembolism; CRC = Colorectal Cancer; WES = Whole exome sequencing; CS = Cowden Syndrome; NF1 = Neurofibromatosis type 1; MODY = Maturity-onset diabetes of the young
Table 2: Primary Modeling Characteristics of Included Studies

Study	Type of evaluation	Perspective	Discounting	Time Horizon	Model type	Costing method	Sensitivity Analyses Conducted	Forms of Analysis Presentation
Catchpool 2019 41	CUA	Healthcare system (Australian Government)	5% costs and outcomes	Lifetime	Decision tree and Markov model	Gross	PSA, One/Two-Way Deterministic Analysis	CEAC, Tornado Diagram
Ademi 2015 40	CEA and CUA	Healthcare system (Australian Government)	5% costs and outcomes	10 years	Decision tree and Markov model	Gross	PSA, One/Two-Way Deterministic Analysis	CE Plane/Scatter Plot, CEAC
Chen 2015 47	CUA	Societal and healthcare system combined	3% costs and outcomes	Lifetime	Decision tree and Markov model	Gross	Threshold Analysis, PSA, One/Two-Way Deterministic Analysis	CEAC, Tornado Diagram
Crosland 2018 66	CUA	Healthcare system (UK NHS)	3.5% costs and outcomes	Lifetime	Decision tree and Markov model	Micro	Threshold Analysis, PSA, One/Two-Way Deterministic Analysis	CE Plane/Scatter Plot, CEAC
Kerr 2017 67	CUA	Healthcare system (UK NHS)	3.5% costs and outcomes	30 years	Markov model	Micro	One/Two-Way Deterministic Analysis	None
Lázaro 2017 46	CEA and CUA	Healthcare system (Spanish National Health System) and	3% costs and outcomes	10 years	Decision tree	Gross	Scenario Analysis, One/Two-Way Deterministic Analysis	CE Frontier
Study	Type	Healthcare sector	Costs and outcomes	Time horizon	Methodology	Analysis tools		
------------------	--------	------------------------------------	--------------------	-------------------------	---	-------------------------		
McKay 2018	CUA	Healthcare system (UK NHS)	3.5% costs	Lifetime (limited to 100 years)	Decision tree and Markov model	Micro		
Pelczarska 2018	CEA and CUA	Healthcare system (Polish Government)	5% costs, 3.5% outcomes	Lifetime	Decision tree and Markov model	Gross		
Asphaug 2019	CUA	Healthcare sector	4% costs	Lifetime (limited to 100 years)	Patient-level microsimulation with memory.	Micro		
Eccleston 2017	CUA	Healthcare system (UK NHS)	3.5% costs	50 years	Patient-level microsimulation with memory.	Gross		
Hoskins 2019	CUA	Canadian healthcare system perspective	1.5% costs	50 years	Patient-level microsimulation with memory.	Gross		
Kemp 2019	CUA	Healthcare system (UK NHS)	3.5% costs	50 years	Patient-level microsimulation with memory.	Gross		
Kwon 2019	CUA	Healthcare system (Canadian Government)	3% costs	50 years	Decision tree and Markov model	Gross		
Li 2017	CEA and CUA	Healthcare payer	3.5% costs	Lifetime (limited to 100 years)	Decision tree and Markov model	Gross		
Lim 2018	CEA and CUA	Healthcare system (Malaysian Government)	3% costs	Lifetime	Decision tree and Markov model	Gross		
Manchanda 2018	CEA and CUA	Healthcare system (US and UK)	3.5% costs	Lifetime (to age 83 based on life tables)	Decision tree	Gross		
Manchanda	CUA	Healthcare	3.5% cost	Lifetime	Decision tree	Gross		
Plane/Scatter Plot, CEAC, Tornado Diagram	Gross	Scenario Analysis, PSA, One/Two-Way Deterministic Analysis	CEAC	None				
Scenario Analysis, PSA, One/Two-Way Deterministic Analysis	CEAC	None						
None	Gross	Scenario Analysis, PSA, One/Two-Way Deterministic Analysis	CEAC	None				
None	Gross	Scenario Analysis, PSA, One/Two-Way Deterministic Analysis	None	None				
None	Gross	Scenario Analysis, PSA, One/Two-Way Deterministic Analysis	CEAC	None				
None	Gross	Scenario Analysis, PSA, One/Two-Way Deterministic Analysis	CEAC	None				
None	Gross	Scenario Analysis, PSA, One/Two-Way Deterministic Analysis	CEAC	None				
None	Gross	Scenario Analysis, PSA, One/Two-Way Deterministic Analysis	CEAC	None				
None	Gross	Scenario Analysis, PSA, One/Two-Way Deterministic Analysis	CEAC	None				
Year	Model	Healthcare system	Costs and outcomes	Time horizon	Analysis Method	Payer	Model	
------	-------	-------------------	--------------------	--------------	----------------	-------	-------	
2015	CEA and CUA	Healthcare system (UK NHS)	and outcomes	age 83 based on life tables	Decision tree	Gross	Scenario Analysis, PSA, Tornado Diagram	
Müller	CEA and CUA	Healthcare payer (German Statutory Health Insurance)	3% costs and outcomes	65 years	Decision tree and Markov model	Gross	PSA, One/Two-Way Deterministic Analysis	
Patel	CEA and CUA	Healthcare payer	3.5% costs and outcomes	Lifetime (up until 83 and 82 years for UK and US women, respectively)	Markov model	Gross	Scenario Analysis, PSA, One/Two-Way Deterministic Analysis	
Tuffaha	CUA	Healthcare system (Australian Government)	5% costs and outcomes	Lifetime (limited to 90 years)	Decision tree and Markov model	Gross	PSA, One/Two-Way Deterministic Analysis	
Neusser	CCA	Healthcare payer (German Statutory Health Insurance)	3% costs	10 years	Markov model	Gross	None	
Graaff	CUA	Healthcare system (Australian Government)	5% costs and outcomes	Lifetime	Markov model	Micro	PSA, One/Two-Way Deterministic Analysis	
Barzi	CEA	Societal (no clear societal costs) and healthcare system	3% costs and outcomes	Whichever comes first: the death, an age of 80 years, or 50 years	Decision tree followed by Markov -based individual patient simulation	Micro	Scenario Analysis, One/Two-Way Deterministic Analysis	
Reference	Type	Health Care System	Discounted at the 2012 level	Years of Follow-up	Analysis Model	Health Care System	Sensitivity Analysis	
-----------------	-------	--	------------------------------	-------------------	-------------------------	--------------------	---------------------	
Bonfanti 2016	CCA	Not stated (assumed healthcare system)	**Discounted at the 2012 level**	10 years	Informal epidemiological model	Micro	None	
Chen 2016	CEA	Healthcare system (The Ministry of Health and Welfare (MOHW) of the Taiwan government)	3% costs and outcomes	Lifetime	Decision tree and Markov model	Gross	PSA, One/Two-Way Deterministic Analysis	
Gallego 2015	CUA and CEA (exclusively CUA in sensitivity analyses)	Not stated (assumed healthcare payer)	3% (unclear how applied)	Lifetime	Decision tree	Gross	Scenario Analysis, PSA, One/Two-Way Deterministic Analysis	
Gansen 2019	CEA	Healthcare payer (German Statutory Health Insurance)	3% costs and outcomes	120 years	Decision tree and Markov model	Micro	Scenario Analysis, PSA	
Goverde 2016	CEA	Not stated	3% costs and outcomes	Not stated (presumably lifetime)	Decision tree	Micro	One/Two-Way Deterministic Analysis	
Leenen 2016	CEA	Healthcare sector	3% costs and outcomes	Lifetime	Decision tree	Micro	None	
Severin 2015	CEA	Healthcare payer (German Statutory Health)	3% costs and outcomes	Lifetime	Decision tree and Markov model	Micro	Scenario Analysis, PSA, One/Two-Way Deterministic Analysis	

Discounted at the 2012 level means that the analysis was performed at the 2012 level and then discounted to the present. The years of follow-up are provided for each study, and the analysis models used are detailed, including the type of analysis (e.g., PSA, One/Two-Way Deterministic Analysis), the horizon of the analysis (e.g., lifetime), and the type of analysis (e.g., Decision tree and Markov model).
Author	Type	Healthcare System	Cost and Outcome	Time horizon	Model Type	Analysis Type	Results	
Snowsill 2017	CUA	Healthcare system (UK NHS and Personal Social Service)	3.5% costs and outcomes (strictly for QALYs, not life-years)	Lifetime (limited to 100 years)	Decision tree and individual patient simulation	Micro	Scenario Analysis	CE Frontier
Snowsill 2015	CUA	Healthcare system (UK NHS)	3.5% costs and outcomes	Lifetime (limited to 100 years)	Decision tree and individual patient simulation	Micro	Scenario Analysis, One/Two-Way Deterministic Analysis	CE Frontier
Johnson 2019	CUA	Healthcare system (Australian Government)	3% costs and outcomes	10 years and 30 years	Decision tree and Markov model	Gross	One/Two-Way Deterministic Analysis	Tornado Diagram
Naylor 2014	CUA	Healthcare system	3% costs and outcomes	Lifetime	Decision tree followed by Markov-based individual patient simulation	Gross	Threshold Analysis, Scenario Analysis, One/Two-Way Deterministic Analysis	Tornado Diagram
Nguyen 2017	CUA	Healthcare payer	3.5% costs and outcomes	30 years	Decision tree	Gross	Threshold Analysis, PSA, One/Two-Way Deterministic Analysis	CEAC, Tornado Diagram
Bennette 2015	CUA	Healthcare system	3% costs and outcomes	Lifetime	Decision tree and Markov model	Gross	Threshold Analysis, Scenario Analysis, PSA, One/Two-Way Deterministic Analysis	CEAC
Zhang 2019	CUA	Healthcare system	3% costs and outcomes	Lifetime	Decision tree	Gross	Scenario Analysis, PSA, One/Two-Way Deterministic Analysis	CEAC Plane/Scatter Plot
Study Year	Type	Region	Setting	Time Horizon	Analysis Model	Discounted	CEA/CEAC/PSA/Scenario Analysis	Tornado Diagram
------------	------	--------	---------	--------------	----------------	-----------	-------------------------------	----------------
Ngeow 2015	CUA	Societal and healthcare system combined	3% costs and outcomes	Lifetime	Decision tree and Markov model	Gross	Scenario Analysis, PSA, CEAC, Tornado Diagram	
Muram 2013	CCA	Healthcare payer	3% costs and outcomes	17 years (18 months old - 18 years old)	Markov model and individual patient simulation	Gross	None	
Compagni 2019	CUA	Healthcare system (Italian National Health System)	3.5% costs and benefits	Lifetime	Decision tree	Micro	Scenario Analysis, PSA, One/Two-Way Deterministic Analysis, CE Plane/Scatter Plot, CEAC, Tornado Diagram	
Rubio-Terrés 2015	CUA	Healthcare system (UK NHS)	3.5% costs and outcomes	35 years	Decision tree	Gross	Threshold Analysis, Scenario Analysis, PSA, One/Two-Way Deterministic Analysis, CE Plane/Scatter Plot, Tornado Diagram	
Farnaes 2018	CCA	Healthcare system	N/A	Various for different infants	N/A	Gross	None	
Hayeems 2017	CCA	Healthcare system	N/A	On average, 15 months after diagnostic results (standard care or WGS) were reported.	Linear mixed effects model	Gross	None	
Vrijenhoek 2018	CCA	Healthcare system	N/A	The length of follow-up was, on average, 240 days after WES and 922 days before WES.	None	Micro	None	
Schofield 2019	CUA	Not stated	5% (unclear how)	20 years	Decision tree	Gross	One/Two-Way Deterministic Analysis	None
Table 3: BMJ Checklist Values across all Items

BMJ Checklist Item	Total 2s	Total 1s	Total 0s	Total N/Rs	Total N/As	Average Value*
The research question is stated	47	0	0	0	0	2.00
The economic importance of the research question is stated	25	13	9	0	0	1.34
The viewpoint(s) of the analysis are clearly stated and	31	11	5	0	0	1.55

Notes: DMC = Dilated cardiomyopathy; CEA = Cost-Effectiveness Analysis; CE Plane = Cost-Effectiveness Plane; CEAC = Cost-Effectiveness Acceptability Curve; CE = Cost-Effectiveness Frontier; CUA = Cost-Utility Analysis; CCA = Const-Consequence Analysis; NHS = National Health Service; PSA = Probabilistic Sensitivity Analysis; UK = United Kingdom; US = United States
Item	Score	Yes	No	0	1	2	3	4	Total	
The rationale for choosing the alternative programs or interventions compared is stated	44	3	0	0	0	0	1.94			
The alternatives being compared are clearly described	42	5	0	0	0	0	1.89			
The form of economic evaluation used is stated	39	3	0	5	0	1.93				
The choice of form of economic evaluation is justified in relation to the questions addressed	43	0	0	4	0	2.00				
The source(s) of effectiveness estimates used are stated	43	1	0	1	2	1.98				
Details of the design and results of effectiveness study are given (if based on a single study)	16	2	0	28	1	1.89				
Details of the method of synthesis or meta-analysis of estimates are given (if based on an overview of a number of effectiveness studies)	10	10	6	20	1	1.15				
The primary outcome measure(s) for the economic evaluation are clearly stated	46	1	0	0	0	1.98				
Methods to value health states and other benefits are stated	13	2	13	11	8	1.00				
Details of the subjects from whom valuations were obtained are given	14	5	11	10	7	1.10				
Productivity changes (if included) are reported separately	1	0	4	42	0	0.40				
The relevance of productivity changes to the study question is discussed	1	2	2	42	0	0.80				
Quantities of resources are reported separately from their unit costs	15	9	21	0	2	0.87				
Methods for the estimation of quantities and unit costs are described	26	12	4	0	5	1.52				
Currency and price data are recorded (year, currency of costs, break into key components)	35	7	4	0	1	1.67				
Details of currency of price adjustments for inflation or currency conversion are given	25	3	17	1	1	1.18				
Details of any model used are given	38	4	1	1	3	1.86				
The choice of model used and the key parameters on which it is based are justified	40	3	0	2	2	1.93				
Time horizon of costs and benefits is stated	36	6	2	3	0	1.77				
The discount rate(s) is stated	42	1	1	3	0	1.93				
The choice of rate(s) is justified	22	4	18	3	0	1.09				
An explanation is given if costs or benefits are not discounted	0	0	2	45	0	0.00				
Details of statistical tests and confidence intervals are	8	1	32	5	1	0.41				
	Articles	0	1	2	3	4	5	6	7	Quality
---	----------	----	----	----	----	----	----	----	----	---------
given for stochastic data		34	8	1	4	0	0			1.77
The approach to sensitivity analysis is given		25	5	11	5	1	0			1.34
The choice of variables for sensitivity analysis is justified		36	2	3	5	1	0			1.80
Relevant alternatives are compared		38	3	5	1	0				1.72
The ranges over which the variables are varied are stated		43	0	1	3	0				1.95
Incremental analysis is reported		43	0	1	3	0				1.95
Relevant alternatives are compared		47	0	0	0	0	0			2.00
Major outcomes are presented in a disaggregated as well as aggregated form		47	0	0	0	0				2.00
The answer to the study question is given		41	6	0	0	0	0			1.87

Average quality values were calculated for each question by summing the 1s and 2s each article received across all studies then dividing that sum by the number of items for which 0s, 1s, and 2s were possible.
Methodological Construct	Identified Challenge	Emphasized Recommendation	Exemplar Studies Identified in Systematic Review
Perspective, scope, and parameter selection	As the variety of genetic testing/screening interventions expand (e.g., full-gene sequencing, multi-gene panels, whole exome or genome sequencing), it is difficult to track the accuracy of these interventions (e.g., sensitivity and specificity)	For parameter values that are especially influential or uncertain, conduct systematic reviews (with or without meta-analyses, depending on the consensus of the review); provide justifications for variations in parameter values when consensus is not available. For parameter values that are likely to change in different environments, base estimates on available evidence and justify choices.	In the context of familial hypercholesteremia, Crosland and colleagues⁴³ conducted a systematic review to determine the diagnostic accuracy of the Simon Broome and Dutch Lipid Clinic Network clinical assessment tools (incidentally, the review also determined the absence of information available to inform uptake probabilities) See also: McKay⁴⁴ and Asphaug³²⁴³⁴⁴³²
Estimating the costs of implementing a new genetic screening or testing intervention in practice, or the ongoing costs such as training or clinical decision support systems that need to be maintained over time to support intervention	Conduct micro-costing to estimate the varied sources of cost and categories of cost within the intervention, especially for analyses centered on changes in the way resources are delivered within a specific program or diagnostic odyssey	Asphaug and colleagues³² used a departmental micro-costing analysis to estimate the cost of materials and equipment as well as direct labor, indirect labor, overhead, capital, and maintenance services for all scenarios included in the model. See also: Crosland 2018⁴³; Snowsill 2015³⁷ and 2017³⁸; Compagni 2013⁹¹; Vrijenhoek 2018⁹⁴	
When implementing genetic analyses, cost-effectiveness may not be clear for all stakeholder perspectives. It is challenging to appropriately capturing all potential benefits from genetic analyses (e.g., secondary findings or non-health-related personal or reproductive utility) across these perspectives including distinguishing benefits from screening and cascade testing	To ensure all relevant impacts of the intervention have been considered from all appropriate perspectives (e.g., healthcare and societal as distinct), refer to the “Impact Inventory” (developed by the Second Panel on Cost-Effectiveness in Health and Medicine)	Lázaro and colleagues⁴⁶ demonstrated that family cascade testing was shown to be cost-effective (i.e., compared to usual care, the additional cost of testing was considered worthwhile given the additional benefits brought) when using the healthcaresector perspective and dominant (i.e., screening was both less costly and more effective than usual care) when using the societal perspective, primarily due to the days off work that testing prevented. See also: ⁴⁶Asphaug 2019³²	
Use of Sensitivity/Uncertainty Analyses	The cost of genetic screening and testing interventions is constantly being updated	Conduct threshold analyses to interrogate key parameters that may change in response to policy decisions,	Naylor and colleagues⁵³ conducted a threshold analysis to predict the minimum prevalence of pathogenic variants for maturity-onset diabetes of the
Genetic testing/screening interventions may be improved by several adaptations to the screening algorithm (e.g., which sub-populations to target) or investments in outreach (e.g., additional assistance to contact relatives of index cases), for which the cost-effectiveness is unclear and will need to be studied further	Consequent scenario analyses to learn about the relationship between such choices and estimated incremental cost-effectiveness	For instance, Gansen and colleagues35 used scenario analyses to consider whether intensified outreach for cascade testing is cost-effective. For a detailed description of how scenario analyses were used across Familial Hypercholesterolemia studies, see Appendix 8.	See also: Snowsill 201537 and 201738; McKay 201844; Chen 201547
Genetic testing/screening interventions may lead to non-health-related changes in utility resulting from new awareness of having a genetic condition of interest, or those that closely parallel that	Identify valuation studies (i.e., studies attempting to assess the utility of distinct health states) among those with your genetic condition of interest, or those that closely parallel that	When presenting the utility values selected for individuals with breast or ovarian cancer, Müller and colleagues36 clearly articulated the populations in which valuation studies were conducted (women with a present pathogenic variants/breast cancer or young MODY) at which screening would become cost-saving. Rubio-Terrè and colleagues55 find that the cost of the new genetic tool Thrombo inCode® would need to fall substantially for it to be cost-effectively used to screen for risk of venous thromboembolism in Spain.	See also: Kwon 201954
Appropriately accounting for potential uncertainty of information, such as the population prevalence of genetic variants or variants of unknown significance	Conduct value of information analyses to quantify the value of investing in research activities that generate additional evidence that lessens parameter uncertainty	Asphaug and colleagues32 conducted an expected value of partial perfect information (EVPPI) for select parameter groups (including relative cancer risk, pathogenic variant prevalence, cost of cancer treatment, utility weights), which estimated the monetary benefit from the removal of uncertainty around parameter values. The authors determined that gaining certainty about the relative cancer risk associated with specific pathogenic variants and the cost of breast cancer treatment had the highest per person EVPPI. This analysis prompted the authors to advocate for variant-specific prevalence data, which would allow for within-gene stratification in models.32	
Condition, or health-related changes in utility not commonly described in the literature	Condition; clearly articulate the target populations in which and valuations methods by which the studies were conducted to derive health state utility values	Women from a healthy reference group), the valuation methods used across different studies (time trade-off [TTO] or standard gamble [SG]), and the reason for ultimately preferring one set of studies over another (SG more accurately reflected health-related quality of life compared to TTO, per their analysis).	
---	---	---	
The costs of genetic testing/screening programs are constantly evolving, often at a different pace than other medical goods	Specify inflation or cost adjustments to medical commodities that have increased or decreased in price relative to the rest of the industry	Gansen and colleagues identified medical costs that had been updated and how they were updated (using consumer price indices and purchasing power parity) since a publication of results using the same model four years prior, including the impact of new classification of tests relevant to Lynch Syndrome (though the specific classification was not mentioned).	
Genetic testing/screening interventions are often composed of several distinct activities which all demand varying resources costs, such as genetic counseling and clinical genetics, phlebotomy and ordering, and sequencing, analysis, and interpretation	When modeling and reporting the costs of the interventions, disaggregate intervention costs into specific categories unique to the genetic condition or disaggregate generic sources of cost into relevant categories for the testing or screening program	Ademi and colleagues helpfully disaggregated intervention costs into specific categories unique to the genetic condition: “disease costs”, “intervention costs” and “screening and imaging” (although the specific item costs attributed to each category is not clear); if genetic testing/screening costs were to substantially change following their publication, readers would be more able to account for those changes and recalculate cost-effectiveness outcomes, thereby preserving the value of the original evaluation.	

See also: Eccleston 2017; Hoskins 2019.
Data availability: All articles included in this review are accessible online, and the search terms used to query these articles can be found in the Appendix.

Acknowledgments: We wish to acknowledge Dr. Gail Henderson for both her help with the design and scope of this systematic review as well as for funding early research assistant support through the Center for Genomics and Society at UNC (grant ID: 2P50 HG004488), a National Human Genome Research Institute (NHGRI)-funded center. We also wish to acknowledge Hailey James for developing our query search strategy, contributing to study planning, and conducting article screening. This study was partially supported by another grant from the support from the NHGRI at the National Institutes of Health (grant ID: 2U01 HG006487).

Author Information: Conceptualization: K.H.L., K.S., I.G., K.J., J.S.B., K.H.; Data curation: K.S., I.G.; Formal analysis: K.J., K.S., K.H.L.; Funding acquisition: K.H.L., J.S.B.; Investigation: K.J., K.S., K.H., K.H.L.; Project administration: K.J., K.S.; Supervision: J.B., K.H.L.; Writing—original draft: K.J., K.S., K.H.L.; Writing—review and editing: I.G., K.H., J.S.B., K.J., K.S., K.H.L.

Ethics Declaration: This study was determined to be non-human subjects research by the University of North Carolina IRB.
References

1. Drummond MF, Sculpher MJ, Claxton K, Stoddart GL, Torrance GW. *Methods for the Economic Evaluation of Health Care Programmes*. Oxford university press; 2015.

2. Panzer AD, Emerson JG, D’Cruz B, et al. Growth and capacity for cost-effectiveness analysis in Africa. *Health Economics (United Kingdom)*. 2020;29(8):945-954. doi:10.1002/hec.4029

3. Neumann P, Sanders G, Russell L, Siegel J, Ganiats T. *Cost-Effectiveness in Health and Medicine*. 2nd ed. Oxford University Press; 2016.

4. Neumann PJ, Kim DD, Trikalinos TA, et al. Future Directions for Cost-Effectiveness Analyses in Health and Medicine. *Medical Decision Making*. 2018;38(7):767-777. doi:10.1177/0272989X18798833

5. Sanders GD, Neumann PJ, Basu A, et al. Recommendations for conduct, methodological practices, and reporting of cost-effectiveness analyses: Second panel on cost-effectiveness in health and medicine. *JAMA - Journal of the American Medical Association*. 2016;316(10):1093-1103. doi:10.1001/jama.2016.12195

6. Catalá-López F, Rido M, Alonso-Arroyo A, et al. The quality of reporting methods and results of cost-effectiveness analyses in Spain: A methodological systematic review. *Systematic Reviews*. 2016;5(1). doi:10.1186/s13643-015-0181-5

7. Frugoulakis V, Mitropoulou C, Williams M, Patrinos G. *Economic Evaluation in Genomic Medicine*. Academic Press; 2015.

8. Clark MM, Stark Z, Farnaes L, et al. Meta-analysis of the diagnostic and clinical utility of genome and exome sequencing and chromosomal microarray in children with suspected genetic diseases. *npj Genomic Medicine*. 2018;3(1). doi:10.1038/s41525-018-0053-8

9. Palmer EE, Schofield D, Shrestha R, et al. Integrating exome sequencing into a diagnostic pathway for epileptic encephalopathy: Evidence of clinical utility and cost effectiveness. *Molecular Genetics and Genomic Medicine*. 2018;6(2):186-199. doi:10.1002/mgg3.355

10. Secord AA, Barnett JC, Ledermann JA, Peterson BL, Myers ER, Havrilesky LJ. Cost-effectiveness of BRCA1 and BRCA2 mutation testing to target PARP inhibitor use in platinum-sensitive recurrent ovarian cancer. *International journal of gynecological cancer*. 2013;23(5):846. https://unc.summon.serialssolutions.com/2.0.0/lnk/O/elVHCXMwZ1lj9MWEmETLkIC-L9Rr5HQamd54FDW1cEiprXBD-QmVSFl17UrLkW_IN2LGc50BYIDlyIN5VaNfmmNJ-ZiYSzl1F4BOY4RmXKVFJDSdOXWh1wxkafoFynmo39a8IN32fEiXS1mP_rUmPHlf115uAZrj5mO_7D6w5fCBTghBUAIHMDRzIfYNuo0u7FQbvWED_3Bxizn7sUBnrGg2nvV4Q6rbmAGFbikTiQen7npoP_G6_rKW8PBvg33ryoxsUENX76uwRQW80x9tMXTvijO1F7ADB80HfEKnt1P_9NQA5Kvxx-b12ajDEk4Io6y8A9Eca5pg_lr1L5No2zht7XXG78V2FeXzYq5Hmls1L1va9dy4lxhOsEyi7tbelEqH7ufSqG64a4xHR9MR4A86SEFU67y18LHgSu4m5jrvwp8TDaV44Bk2NZXVbpmOcPqnUPQ15vdirtXt6wDjhyNyBQYG7ninKkvCsoIrFbzznY2tgP3Wb3PiBe1p2DNOhM1PJTftee_HFPfl9KqkOSdhsRAME_dZoijx1KNFdZuUKKIEB5QooASF6FU6LAS9S_JojoY7PX6eLVV_e_oWHuGxRkPCZKHpLEWJkLnnKZ2kgrFsWyyHSle5LmB_50wzHC22dxElmtw8cUcu6hxw7MH5Frld1OYRoVokNtVMAiNSzKyYMF2liE_lttWZeEdjvfnNOVaTrvb-uT3448JTDHuj6R6xaeefMcnMxavXAr9RM_2og0
11. Alkhatib NS, Ramos K, Slack M, et al. Ex ante economic evaluation of genetic testing for the ARG389 beta1-adrenergic receptor polymorphism to support bucindolol treatment decisions in Stage III/IV heart failure. *Expert Review of Precision Medicine and Drug Development*. 2018;3(5):319-329. doi:10.1080/23808993.2018.1526079

12. Choi H, Mohit B. Cost-effectiveness of screening for HLA-B*1502 prior to initiation of carbamazepine in epilepsy patients of Asian ancestry in the United States. *Epilepsy*. 2019;60(7):1472-1481. doi:https://doi.org/10.1111/epi.16053

13. Koren A, Profeta L, Zalman L, et al. Prevention of β Thalassemia in Northern Israel - a Cost-Benefit Analysis. *Mediterranean journal of hematology and infectious diseases*. 2014;6(1):e2014012-e2014012. doi:10.4084/MJHID.2014.012

14. Ziegler A, Rudolph-Rothfeld W, Vonthain R. Genetic testing for autism spectrum disorder is lacking evidence of cost-effectiveness. *Methods of information in medicine*. 2017;56(03):268-273.

15. Andrea ED', Marzuillo C, Pelone F, de Vito C, Villari P. *Genetic Testing and Economic Evaluations: A Systematic Review of the Literature Test Genetici e Valutazioni Economiche: Una Revisione Sistematica Della Letteratura*.; 2015.

16. Schwarze K, Buchanan J, Taylor JC, Wordsworth S. Are whole-exome and whole-genome sequencing approaches cost-effective? A systematic review of the literature. *Genetics in Medicine*. 2018;20(10):1122-1130. doi:10.1038/gim.2017.247

17. de Vito C, Andrea ED', Marzuillo C, Villari P. *Health Technology Assessment of Genetic Testing for Susceptibility to Venous Thromboembolism in Italy-Chapter 3.5: Clinical Utility of Genetic Tests for Thromboembolism Emergency Department as an Epidemiological Observatory of Human Mobility: The Case of Rome Metropolitan Area (EMAHM) View Project Validazione Della Nuova Classificazione SIAPEC Del 2013 View Project.*; 2012. https://www.researchgate.net/publication/274958276

18. D'Andrea E, Marzuillo C, de Vito C, et al. Which BRCA genetic testing programs are ready for implementation in health care? A systematic review of economic evaluations. *Genetics in Medicine: Official Journal of the American College of Medical Genetics*. 2016;18(12):1171-1180. doi:10.1038/gim.2016.29

19. Husereau D, Drummond M, Petrou S, et al. Consolidated Health Economic Evaluation Reporting Standards (CHEERS) statement. *BMJ (Clinical research ed)*. 2013;346. doi:10.1136/bmj.f1049

20. di Marco M, DAndrea E, Panic N, et al. Which Lynch syndrome screening programs could be implemented in the “real world”? A systematic review of economic evaluations. *Genetics in Medicine*. 2018;20(10):1131-1144. doi:10.1038/gim.2017.244

21. Watts RD, Li IW. Use of Checklists in Reviews of Health Economic Evaluations, 2010 to 2018. *Value in Health*. 2019;22(3):377-382. doi:https://doi.org/10.1016/j.jval.2018.10.006

22. Farnaes L, Hildreth A, Sweeney NM, et al. Rapid whole-genome sequencing decreases infant morbidity and cost of hospitalization. *NPJ Genom Med*. 2018;3:10. doi:10.1038/s41525-018-0049-4
23. Hayeems RZ, Bhawra J, Tsiplova K, et al. Care and cost consequences of pediatric whole genome sequencing compared to chromosome microarray. *European Journal of Human Genetics*. 2017;25(12):1303-1312. doi:10.1038/s41431-017-0020-3

24. Vrijenhoek T., Middelburg EM., Monroe GR., et al. Whole-exome sequencing in intellectual disability; cost before and after a diagnosis. *European journal of human genetics*. 2018;26(11):1566-1571. doi:10.1038/s41431-018-0203-6

25. Bonfanti M, Gambino ML, Pisani S, et al. A cost analysis of inherited colorectal cancer care in Varese Province. *Journal of Cancer Policy*. 2016;8:1–6. doi:10.1016/j.jcpo.2016.03.006

26. Muram TM, Stevenson DA, Watts-Justice S, et al. A cost savings approach to SPRED1 mutational analysis in individuals at risk for neurofibromatosis type 1. 2013;161a(3):467-472. doi:10.1002/ajmg.a.35718

27. Neusser S., Lux B., Barth C., et al. The budgetary impact of genetic testing for hereditary breast cancer for the statutory health insurance. *Current medical research and opinion*. Published online 2019:1-8. doi:10.1080/03007995.2019.1654689

28. Muennig P, Bouhnavong M. *Cost-Effectiveness Analysis in Health: A Practical Approach*. 3rd ed. Jossey-Bass; 2016.

29. Crosland P, Maconachie R, Buckner S, McGuire H, Humphries SE, Qureshi N. Cost-utility analysis of searching electronic health records and cascade testing to identify and diagnose familial hypercholesterolaemia in England and Wales. *Atherosclerosis*. 2018;275:80-87. doi:10.1016/j.atherosclerosis.2018.05.021

30. Snowsill T, Coelho H, Huxley N, et al. Molecular testing for Lynch syndrome in people with colorectal cancer: Systematic reviews and economic evaluation. *Health Technology Assessment*. 2017;21(51). doi:10.3310/hta21510

31. McKay AJ, Hogan H, Humphries SE, Marks D, Ray KK, Miners A. Universal screening at age 1–2 years as an adjunct to cascade testing for familial hypercholesterolaemia in the UK: A cost-utility analysis. *Atherosclerosis*. Published online 2018. doi:10.1016/j.atherosclerosis.2018.05.047

32. Asphaug L, Melberg HO. The Cost-Effectiveness of Multigene Panel Testing for Hereditary Breast and Ovarian Cancer in Norway. *MDM policy & practice*. 2019;4(1):2381468318821103. doi:10.1177/2381468318821103

33. Stark Z, Schofield D, Martyn M, et al. Does genomic sequencing early in the diagnostic trajectory make a difference? A follow-up study of clinical outcomes and cost-effectiveness. *Genetics in Medicine*. Published online 2018:1-8. doi:10.1038/s41436-018-0006-8

34. Zhang L, Bao Y, Riaz M, et al. Population genomic screening of all young adults in a health-care system: a cost-effectiveness analysis. *Genetics in Medicine*. 2019;21(9):1958-1968. doi:10.1038/s41436-019-0457-6

35. Gansen F, Severin F, Schleiden S, Markmann G, Rogowski W. Lethal privacy: Quantifying life years lost if the right to informational self-determination guides genetic screening for Lynch
syndrome. *Health policy (Amsterdam, Netherlands).* Published online 2019.
doi:10.1016/j.healthpol.2019.08.015

36. de Graaff B, Neil A, Si L, et al. Cost-Effectiveness of Different Population Screening Strategies for Hereditary Haemochromatosis in Australia. *Applied Health Economics and Health Policy.* 2017;15(4):521-534. doi:10.1007/s40258-016-0297-3

37. Snowsill T, Huxley N, Hoyle M, et al. A model-based assessment of the cost-utility of strategies to identify Lynch syndrome in early-onset colorectal cancer patients. *BMC Cancer.* 2015;15(1). doi:10.1186/s12885-015-1254-5

38. Snowsill T, Coelho H, Huxley N, et al. Molecular testing for Lynch syndrome in people with colorectal cancer: Systematic reviews and economic evaluation. *Health Technology Assessment.* 2017;21(51). doi:10.3310/hta21510

39. Manchanda R, Legood R, Burnell M, et al. Cost-effectiveness of population screening for BRCA mutations in Ashkenazi Jewish women compared with family history-based testing. *Journal of the National Cancer Institute.* 2015;107(1):380. doi:10.1093/jnci/dju380

40. Ademi Z, Watts GF, Pang J, et al. Cascade screening based on genetic testing is cost-effective: Evidence for the implementation of models of care for familial hypercholesterolemia. *Journal of Clinical Lipidology.* 2014;8(4). doi:10.1016/j.jacl.2014.05.008

41. Catchpool M, Ramchand J, Martyn M, et al. A cost-effectiveness model of genetic testing and periodical clinical screening for the evaluation of families with dilated cardiomyopathy. *Genetics in Medicine: Official Journal of the American College of Medical Genetics.* Published online 2019.
doi:10.1038/s41436-019-0582-2

42. Walker DG, Wilson RF, Ritu Sharma M, et al. *Methods Research Report Best Practices for Conducting Economic Evaluations in Health Care: A Systematic Review of Quality Assessment Tools.*. 2012. www.ahrq.gov

43. Crosland P, Maconachie R, Buckner S, McGuire H, Humphries SE, Qureshi N. Cost-utility analysis of searching electronic health records and cascade testing to identify and diagnose familial hypercholesterolemia in England and Wales. *Atherosclerosis.* 2018;275:80-87. doi:10.1016/j.atherosclerosis.2018.05.021

44. McKay AJ, Hogan H, Humphries SE, Marks D, Ray KK, Miners A. Universal screening at age 1–2 years as an adjunct to cascade testing for familial hypercholesterolaemia in the UK: A cost-utility analysis. *Atherosclerosis.* Published online 2018. doi:10.1016/j.atherosclerosis.2018.05.047

45. Xu X, Nardini HKG, Ruger JP. Micro-costing studies in the health and medical literature: Protocol for a systematic review. *Systematic Reviews.* 2014;3(1). doi:10.1186/2046-4053-3-47

46. Lázaro P, Pérez de Isla L, Watts GF, et al. Cost-effectiveness of a cascade screening program for the early detection of familial hypercholesterolemia. *Journal of Clinical Lipidology.* 2017;11(1):260-271. doi:10.1016/j.jacl.2017.01.002
47. Chen CX, Hay JW. Cost-effectiveness analysis of alternative screening and treatment strategies for heterozygous familial hypercholesterolemia in the United States. *International Journal of Cardiology*. 2015;181:417-424. doi:10.1016/j.ijcard.2014.12.070

48. Karnon J, Vanni T. Calibrating Models in Economic Evaluation. *Pharmacoeconomics*. 2011;29(1):51-62. doi:10.2165/11584610-000000000-00000

49. Vanni T, Karnon J, Madan J, et al. Calibrating Models in Economic Evaluation A Seven-Step Approach. http://links.adisonline.com/PCZ/

50. Briggs AH, Weinstein MC, Fenwick EAL, Karnon J, Sculpher MJ, Paltiel AD. Model Parameter Estimation and Uncertainty: A Report of the ISPOR-SMDM Modeling Good Research Practices Task Force-6. *Value in Health*. 2012;15(6):835-842. doi:https://doi.org/10.1016/j.jval.2012.04.014

51. Adams MC, Evans JP, Henderson GE, Berg JS. The promise and peril of genomic screening in the general population. *Genetics in Medicine*. 2016;18(6):593-599. doi:10.1038/GIM.2015.136

52. Kleijnen JPC. Sensitivity Analysis Versus Uncertainty Analysis: When to Use What? In: Grasman J, van Straten G, eds. *Predictability and Nonlinear Modelling in Natural Sciences and Economics*. Springer Netherlands; 1994:322-333. doi:10.1007/978-94-011-0962-8_27

53. Naylor RN, John PM, Winn AN, et al. Cost-effectiveness of MODY genetic testing: translating genomic advances into practical health applications. *Diabetes Care*. 2014;37(1):202-209. doi:10.2337/dc13-0410

54. Kwon JS, Tinker AV, Hanley GE, et al. BRCA mutation testing for first-degree relatives of women with high-grade serous ovarian cancer. *Gynecologic Oncology*. 2019;152(3):459-464. doi:10.1016/j.ygyno.2018.10.014

55. Rubio-Terres C, Soria JM, Morange PE, et al. Economic analysis of thrombo inCode, a clinical-genetic function for assessing the risk of venous thromboembolism. *Applied health economics and health policy*. 2015;13(2):233-242. doi:10.1007/s40258-015-0153-x

56. Müller D, Danner M, Schmutzler R, et al. Economic modeling of risk-adapted screen-and-treat strategies in women at high risk for breast or ovarian cancer. *The European journal of health economics: HEPAC: health economics in prevention and care*. 2019;20(5):739-750. doi:10.1007/s10198-019-01038-1

57. Leenen CHM, Goverde A, de Bekker-Grob EW, et al. Cost-effectiveness of routine screening for Lynch syndrome in colorectal cancer patients up to 70 years of age. *Genetics in Medicine*. 2016;18(10). doi:10.1038/gim.2015.206

58. Eccleston A, Bentley A, Dyer M, et al. A Cost-Effectiveness Evaluation of Germline BRCA1 and BRCA2 Testing in UK Women with Ovarian Cancer. *Value in Health*. 2017;20(4). doi:10.1016/j.jval.2017.01.004

59. Hoskins P, Eccleston A, Hurry M, Dyer M. Targeted surgical prevention of epithelial ovarian cancer is cost effective and saves money in BRCA mutation carrying family members of women with epithelial ovarian cancer. A Canadian model. *Gynecologic Oncology*. 2019;153(1). doi:10.1016/j.ygyno.2019.01.018
60. Weymann D, Pataky R, Regier DA. Economic Evaluations of Next-Generation Precision Oncology: A Critical Review. *JCO Precision Oncology*. 2018;(2):1-23. doi:10.1200/PO.17.00311

61. Weymann D, Dragojlovic N, Pollard S, Regier DA. Allocating healthcare resources to genomic testing in Canada: latest evidence and current challenges. *Journal of Community Genetics*. Published online 2019. doi:10.1007/s12687-019-00428-5

62. Simeonidis S, Koutsilieri S, Vozikis A, Cooper DN, Mitropoulos C, Patrinos GP. Application of Economic Evaluation to Assess Feasibility for Reimbursement of Genomic Testing as Part of Personalized Medicine Interventions. *Frontiers in pharmacology*. 2019;10:830. doi:10.3389/fphar.2019.00830

63. Guglielmo A, Staropoli N, Giancotti M, Mauro M. Personalized medicine in colorectal cancer diagnosis and treatment: a systematic review of health economic evaluations. *Cost effectiveness and resource allocation*: C/E. 2018;16:2. doi:10.1186/s12962-018-0085-z

64. Schwarze K, Buchanan J, Taylor JC, Wordsworth S. Are whole-exome and whole-genome sequencing approaches cost-effective? A systematic review of the literature. *Genetics in Medicine*. 2018;20(10):1122-1130. doi:10.1038/gim.2017.247

65. D’Andrea E, Marzuillo C, de Vito C, et al. Which BRCA genetic testing programs are ready for implementation in healthcare? A systematic review of economic evaluations. *Genetics in Medicine*. 2016;18(12):1171-1180. doi:10.1038/gim.2016.29

66. Crosland P, Maconachie R, Buckner S, McGuire H, Humphries SE, Qureshi N. Cost-utility analysis of searching electronic health records and cascade testing to identify and diagnose familial hypercholesterolaemia in England and Wales. *Atherosclerosis*. 2018;275:80-87. doi:10.1016/j.atherosclerosis.2018.05.021

67. Kerr M, Pears R, Miedzybrodzka Z, et al. Cost effectiveness of cascade testing for familial hypercholesterolaemia, based on data from familial hypercholesterolaemia services in the UK. *Eur Heart J*. 2017;38(23):1832-1839. doi:10.1093/eurheartj/ehx111

68. Pelczarska A, Jakubczyk M, Jakubiak-Lasocka J, et al. The cost-effectiveness of screening strategies for familial hypercholesterolaemia in Poland. *Atherosclerosis*. 2018;270:132-138. doi:10.1016/j.atherosclerosis.2018.01.036

69. Asphaug L, Melberg HO. The Cost-Effectiveness of Multigene Panel Testing for Hereditary Breast and Ovarian Cancer in Norway. *MDM Policy & Practice*. 2019;4(1). doi:10.1177/2381468318821103

70. Kemp Z, Turnbull A, Yost S, et al. Evaluation of Cancer-Based Criteria for Use in Mainstream BRCA1 and BRCA2 Genetic Testing in Patients With Breast Cancer. *JAMA network open*. 2019;2(5):e194428. doi:10.1001/jamanetworkopen.2019.4428

71. Kwon JY, Karim ME, Topaz M, Currie LM. Nurses “seeing Forest for the Trees” in the Age of Machine Learning: Using Nursing Knowledge to Improve Relevance and Performance. *CIN - Computers Informatics Nursing*. 2019;37(4):203-212. doi:10.1097/CIN.0000000000000508
72. Li Y, Arellano AR, Baret LA, Bender RA, Strom CM, Devlin JJ. A Multigene Test Could Cost-Effectively Help Extend Life Expectancy for Women at Risk of Hereditary Breast Cancer. *Value in Health: The Journal of the International Society for Pharmacoeconomics and Outcomes Research*. 2017;20(4):547-555. doi:10.1016/j.jval.2017.01.006

73. Lim KK, Yoon SY, Mohd Taib NA, et al. Is BRCA Mutation Testing Cost Effective for Early Stage Breast Cancer Patients Compared to Routine Clinical Surveillance? The Case of an Upper Middle-Income Country in Asia. *Applied Health Economics and Health Policy*. 2018;16(3):395-406. doi:10.1007/s40258-018-0384-8

74. Manchanda R, Patel S, Gordon VC, et al. Cost-effectiveness of Population-Based BRCA1, BRCA2, RAD51C, RAD51D, BRIP1, PALB2 Mutation Testing in Unselected General Population Women. *Journal of the National Cancer Institute*. 2018;110(7):714-725. doi:10.1093/jnci/djx265

75. Manchanda R, Patel S, Antoniou AC, et al. Cost-effectiveness of population based BRCA testing with varying Ashkenazi Jewish ancestry. *American Journal of Obstetrics and Gynecology*. 2017;217(5):578.e1-578.e12. doi:10.1016/j.ajog.2017.06.038

76. Müller D, Danner M, Schmutzler R, et al. Economic modeling of risk-adapted screen-and-treat strategies in women at high risk for breast or ovarian cancer. *European Journal of Health Economics*. 2019;20(5). doi:10.1007/s10198-019-01038-1

77. Patel S, Legood R, Evans DG, et al. Cost-effectiveness of population based BRCA1 founder mutation testing in Sephardi Jewish women. *American Journal of Obstetrics and Gynecology*. 2018;218(4):431.e1-431.e12. doi:10.1016/j.ajog.2017.12.221

78. Tuffaha HW, Mitchell A, Ward RL, et al. Cost-effectiveness analysis of germ-line BRCA testing in women with breast cancer and cascade testing in family members of mutation carriers. *Genetics in Medicine: Official Journal of the American College of Medical Genetics*. 2018;20(9):985-994. doi:10.1038/gim.2017.231

79. Neusser S, Lux B, Barth C, et al. The budgetary impact of genetic testing for hereditary breast cancer for the statutory health insurance. *Current Medical Research and Opinion*. Published online 2019:1-8. doi:10.1080/03007995.2019.1654689

80. Barzi A, Sadeghi S, Kattan MW, Meropol NJ. Comparative effectiveness of screening strategies for Lynch syndrome. *Journal of the National Cancer Institute*. 2015;107(4). doi:10.1093/jnci/djv005

81. Bonfanti M, Gambino ML, Pisanì S, et al. A cost analysis of inherited colorectal cancer care in Varese Province. *Journal of Cancer Policy*. 2016;8:1-6. doi:10.1016/j.jcpo.2016.03.006

82. Chen YE, Kao SS, Chung RH. Cost-Effectiveness Analysis of Different Genetic Testing Strategies for Lynch Syndrome in Taiwan. *PLoS One*. 2016;11(8):e0160599. doi:10.1371/journal.pone.0160599

83. Gallego CJ, Shirts BH, Bennette CS, et al. Next-Generation Sequencing Panels for the Diagnosis of Colorectal Cancer and Polyposis Syndromes: A Cost-Effectiveness Analysis. *Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology*. 2015;33(18):2084-2091. doi:10.1200/JCO.2014.59.3665
84. Goverde A, Spaander MC, C van DH, et al. Cost-effectiveness of routine screening for Lynch syndrome in endometrial cancer patients up to 70 years of age. *Gynecologic oncology.* 2016;143(3):453-459. doi:10.1016/j.ygyno.2016.10.008

85. Severin F, Stollenwerk B, Holinski-Feder E, et al. Economic evaluation of genetic screening for Lynch syndrome in Germany. *Genetics in medicine*: *official journal of the American College of Medical Genetics*. 2015;17(10):765-773. doi:10.1038/gim.2014.190

86. Johnson SR, Carter HE, Leo P, et al. Cost-effectiveness Analysis of Routine Screening Using Massively Parallel Sequencing for Matu rity-Onset Diabetes of the Young in a Pediatric Diabetes Cohort: Reduced Health System Costs and Improved Patient Quality of Life. *Diabetes Care.* 2019;42(1):69-76. doi:10.2337/dc18-0261

87. Nguyen H van, Finkelstein EA, Mital S, Gardner DS-L. Incremental cost-effectiveness of algorithm-driven genetic testing versus no testing for Maturity Onset Diabetes of the Young (MODY) in Singapore. *Journal of Medical Genetics.* 2017;54(11):747-753. doi:10.1136/jmedgenet-2017-104670

88. Bennette CS, Gallego CJ, Burke W, Jarvik GP, Veenstra DL. The cost-effectiveness of returning incidental findings from next-generation genomic sequencing. *Genetics in Medicine: Official Journal of the American College of Medical Genetics.* 2015;17(7):587-595. doi:10.1038/gim.2014.156

89. Ngeow J, Liu C, Zhou K, Frick KD, Matchar DB, Eng C. Detecting Germline PTEN Mutations Among At-Risk Patients With Cancer: An Age- and Sex-Specific Cost-Effectiveness Analysis. *Journal of clinical oncology*: *official journal of the American Society of Clinical Oncology.* 2015;33(23):2537-2544. doi:10.1200/JCO.2014.60.3456

90. Muram TM, Stevenson DA, Watts-Justice S, et al. A cost savings approach to SPRED1 mutational analysis in individuals at risk for neurofibromatosis type 1. 2013;161a(3):467-472. doi:10.1002/ajmg.a.35718

91. Compagni A, Melegaro A, Tarricone R. Genetic screening for the predisposition to venous thromboembolism: a cost-utility analysis of clinical practice in the Italian health care system. *Value in Health: The Journal of the International Society for Pharmacoeconomics and Outcomes Research.* 2013;16(6):909-921. doi:10.1016/j.jval.2013.05.003

92. Farnaes L, Hildreth A, Sweeney NM, et al. Rapid whole-genome sequencing decreases infant morbidity and cost of hospitalization. *NPJ Genom Med.* 2018;3:10. doi:10.1038/s41525-018-0049-4

93. Hayeems RZ, Bhawra J, Tsiplova K, et al. Care and cost consequences of pediatric whole genome sequencing compared to chromosome microarray. *European Journal of Human Genetics.* 2017;25(12):1303-1312. doi:10.1038/s41431-017-0020-3

94. Vrijenhoek T, Middelburg EM, Monroe GR, et al. Whole-exome sequencing in intellectual disability: cost before and after a diagnosis. *European journal of human genetics*: *EJHG.* 2018;26(11):1566-1571. doi:10.1038/s41431-018-0203-6
95. Schofield D, Rynehart L, Shresthra R, White SM, Stark Z. Long-term economic impacts of exome sequencing for suspected monogenic disorders: diagnosis, management, and reproductive outcomes. *Genetics in Medicine*. Published online 2019. doi:10.1038/s41436-019-0534-x