A NUNKE TYPE CLASSIFICATION IN THE LOCALLY COMPACT SETTING

SAMUEL M. CORSON AND OLGA VARGHESE

Abstract. In this short note we prove that a group G is lcH-slender- that is, every abstract group homomorphism from a locally compact Hausdorff topological group to G has an open kernel- if and only if G is torsion-free and does not include \mathbb{Q} or the p-adic integers \mathbb{Z}_p for any prime p. This mirrors a classical characterization given by Nunke for slender abelian groups.

1. Introduction

R. Nunke produced in 1961 a remarkable theorem which comprehensively characterizes a special class of abelian groups via their subgroups [11]. An abelian group A is slender if for every abstract group homomorphism ϕ whose domain is the countably infinite product $\prod_{\omega} \mathbb{Z}$ and whose codomain is A there exists an $m \in \omega$ such that $\phi = \phi \circ p_m$, where $p_m : \prod_{\omega} \mathbb{Z} \to \prod_{k=0}^m \mathbb{Z} \times (0)_{k=m+1}$ is the obvious retraction map [7]. Thus A is slender provided each homomorphism $\phi : \prod_{\omega} \mathbb{Z} \to A$ depends on only finitely many coordinates, or equivalently, provided any such ϕ has open kernel (endowing $\prod_{\omega} \mathbb{Z}$ with the Tychonov topology where each coordinate is discrete). Nunke’s theorem is that an abelian group A is slender if and only if A is torsion-free and does not include $\prod_{\omega} \mathbb{Z}$ or \mathbb{Q} or a p-adic integer group \mathbb{Z}_p for any prime p.

Slenderness can be seen as an automatic continuity condition: endowing an abelian slender group A a discrete topology one sees that any homomorphism from $\prod_{\omega} \mathbb{Z}$ to A is continuous. By analogy, one defines a (not necessarily abelian) group G to be locally compact Hausdorff slender (abbrev. lcH-slender) provided every abstract group homomorphism from a locally compact Hausdorff topological group to G has open kernel [2]. An early result of Dudley shows that, for example, free (abelian) groups are lcH-slender [5]. More recent results extend the known lcH-slender groups to include each group whose abelian subgroups are free [9].

We deduce the following complete classification of lcH-slender groups via their subgroups:

Theorem 1. A group G is lcH-slender if and only if G is torsion-free and does not include \mathbb{Q} or any p-adic integer group \mathbb{Z}_p as a subgroup.

This classification was recently shown in the case where G is abelian [3]. Theorem 1 provides the following further examples of lcH-slender groups (using [4, Theorem I.4.1 (vii)] and [10, Theorem 1], respectively):

2010 Mathematics Subject Classification. Primary: 22D05, 22D12.

Key words and phrases. automatic continuity, slender group, lcH-slender group, locally compact group.

The work of the first author was supported by the Severo Ochoa Programme for Centres of Excellence in R&D SEV-20150554. The work of the second author was funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy EXC 2044/390685587, Mathematics M"{u}nster: Dynamics-Geometry-Structure.
Corollary 2. Torsion-free CAT(0) groups and torsion-free one-relator groups are lcH-slender.

An analogous notion of slenderness is defined by replacing the locally compact Hausdorff groups with the completely metrizable groups: G is completely metrizable slender (abbrev. cm-slender) if every homomorphism from a completely metrizable topological group to G has open kernel. Similarly G is n-slender if every abstract group homomorphism from the fundamental group of a Peano continuum to G has an open kernel. As the proscribed subgroups in Theorem 1 are neither cm-slender nor n-slender (see [3, Theorem C] and [6, Theorem 3.3]) we immediately obtain:

Corollary 3. If a group G is either n-slender or cm-slender then G is lcH-slender.

2. Proof of Theorem 1

Towards the proof of Theorem 1 we recall some notions from abelian group theory (see [7]). We use convenient alternative characterizations which suit our purposes, rather than the historical definitions. Let A be an abelian group. We say A is algebraically compact if A is an abstract direct summand of a Hausdorff compact abelian group. We say A is cotorsion if it is a homomorphic image of an algebraically compact group. Also, A is cotorsion-free if the only cotorsion subgroup of A is the trivial one. Importantly A is cotorsion-free if and only if A is torsion-free and contains no copy of \mathbb{Q} or the p-adic integers \mathbb{Z}_p for any prime p [7, Theorem 13.3.8].

Lemma 4. Suppose $\phi : K \to G$ is an abstract group homomorphism with K a compact topological group and G torsion-free and not including \mathbb{Q} or any \mathbb{Z}_p as a subgroup. Then ϕ is trivial.

Proof. Let $k \in K$ be given. It is easy to verify that the closure $\overline{\langle k \rangle} \leq K$ of the cyclic subgroup generated by k is compact abelian. Then $\phi(\overline{\langle k \rangle})$ is abelian and cotorsion, on the one hand, but cotorsion-free on the other hand by our assumptions on G. Therefore $\phi(\overline{\langle k \rangle})$ is trivial and the lemma is proved. \qed

Next we state some classical results regarding locally compact groups.

Proposition 5. Let L be a locally compact Hausdorff group.

1. (Iwasawa’s structure Theorem, [8, Theorem 13]) If L is connected then we can write $L = H_0\cdots H_jK$ where each H_i is a subgroup of L isomorphic to \mathbb{R} and K is a compact subgroup of L.

2. (van Dantzig’s Theorem, [1, III §4, No. 6]) If L is locally compact Hausdorff and totally disconnected then L has a compact open subgroup.

Proof of Theorem 1. If G is lcH-slender it is certainly necessary that G is torsion-free and not include \mathbb{Q} or any \mathbb{Z}_p. If, for example, G were to include torsion then G would contain a subgroup of prime order p and one can construct a discontinuous homomorphism $\phi : \prod_p \mathbb{Z}/p\mathbb{Z} \to G$ using a vector space argument. Similarly if G includes \mathbb{Q} as a subgroup one produces a discontinuous homomorphism $\phi : \mathbb{R} \to G$ by selecting a Hamel basis for \mathbb{R}. Were G to include \mathbb{Z}_p as a subgroup then the inclusion map $\mathbb{Z}_p \to G$ witnesses that G is not lcH-slender.

For the other implication we suppose that G is torsion-free and does not include \mathbb{Q} or any \mathbb{Z}_p and let $\phi : L \to G$ be an abstract group homomorphism with L a locally compact Hausdorff group. Let L^o denote the connected component of the identity.
element. Since L^o is closed, it is itself locally compact Hausdorff, and as L^o is also connected we know by Iwasawa’s structure Theorem that $L^o = H_0\cdots H_j K$ with each H_i a subgroup isomorphic to \mathbb{R} and K a compact subgroup. We know that $\phi \upharpoonright K$ is trivial by Lemma 4 and since G is torsion-free and includes no subgroup isomorphic to \mathbb{Q} we know that $\phi \upharpoonright H_i$ is trivial for each i. Thus $\phi(L^o)$ is trivial.

Now the homomorphism $\phi : L \to G$ passes to a homomorphism $\overline{\phi} : L/L^o \to G$. By van Dantzig’s Theorem we have a compact open subgroup $K' \leq L/L^o$. Again by Lemma 4 we know that $\phi \upharpoonright K'$ is trivial, and thus $\pi^{-1}(K') \leq \ker(\phi)$ witnesses that $\ker(\phi)$ is open, where $\pi : L \to L/L^o$ is the continuous projection. \hfill \Box

Remark 6. A nice subgroup characterization for n-slender and cm-slender groups is still apparently beyond reach. Thus far a classification exists for such groups only in the abelian case [3].

References

[1] N. Bourbaki, Elements de mathematique. Topologie generale. Chapitres 1 a 4, Hermann, Paris, (1971).
[2] G. Conner, S. Corson, A note on automatic continuity, Proc. Amer. Math. Soc. 147 (2019), no. 3, 1255–1268.
[3] S. Corson, Automatic continuity of \aleph_1-free groups, (to appear in Israel J. Math) ArXiv: 1808.00272
[4] M. Davis, The Geometry and Topology of Coxeter Groups, Princeton University Press (2008).
[5] R. Dudley, Continuity of homomorphisms, Duke Math. J. 28 (1961), 587–594.
[6] K. Eda, Free σ-products and noncommutatively slender groups, J. Algebra 148 (1992), 243–263.
[7] L. Fuchs, Abelian Groups, Springer (2015).
[8] K. Iwasawa, On some types of topological groups, Ann. of Math. (2) 50 (1949), 507–558.
[9] L. Kramer, O. Varghese, Abstract homomorphisms from locally compact groups to discrete groups, J. Algebra 538 (2019), 127–139.
[10] B. Newman, Some results on one-relator groups, Bull. Amer. Math. Soc. 74 (1968), 568–571.
[11] R. Nunke, Slender groups, Bull. Amer. Math. Soc. 67 (1961), 274–275.

Instituto de Ciencias Matemáticas CSIC-UAM-UC3M-UCM, 28049 Madrid, Spain.

E-mail address: sammyc973@gmail.com

Department of Mathematics, Münster University, Einsteinstraße 62, 48149, Münster, Germany

E-mail address: olga.varghese@uni-muenster.de