Advance Publication by J-STAGE

Japanese Journal of Infectious Diseases

Investigation of Orthohantavirus Seroprevalence in Northern Rural Areas of Denizli Province, Turkey

Ceylan POLAT, Çağrı ERGIN, Yüksel AKKAYA, and Ibrahim Mehmet Ali OKTEM

Received: August 21, 2019. Accepted: November 28, 2019
Published online: December 25, 2019
DOI:10.7883/yoken.JJID.2019.330

Advance Publication articles have been accepted by JJID but have not been copyedited or formatted for publication.
Investigation of Orthohantavirus Seroprevalence in Northern Rural Areas of Denizli Province, Turkey

Ceylan POLAT¹, Çağrı ERGIN², Yüksel AKKAYA³, Ibrahim Mehmet Ali OKTEM¹

¹Department of Medical Microbiology, Faculty of Medicine, Dokuz Eylül University, Izmir, Turkey
²Department of Medical Microbiology, Faculty of Medicine, Pamukkale University, Denizli, Turkey
³Public Health Laboratory, Denizli Public Health Directorate, Republic of Turkey Ministry of Health, Denizli, Turkey

Corresponding author: Ceylan POLAT, Department of Medical Microbiology, Faculty of Medicine, Dokuz Eylül University, Izmir, Turkey

e-mail: ceylanpolat88@gmail.com
Phone: 0090555 7080319

Keywords: Orthohantavirus, seroprevalence, Turkey

Running head: Orthohantavirus seroprevalence in Denizli
Summary

Orthohantaviruses infect humans via inhalation of the viral particles in the excreta of infected rodents or direct contact with infected rodents. The infections caused by *Puumala orthohantavirus* (PUUV) and *Dobrava-Belgrade orthohantavirus* (DOBV) have been reported from Turkey.

Serum samples of 346 healthy volunteers who are in risk group with regards to *Orthohantavirus* infections among the residents of Çal, Baklan, Çivril and Bekilli counties located in northeast part of Denizli province were used in this study. The samples were screened and confirmed with commercial ELISA and immunoblot tests which detect IgG antibodies against DOBV, PUUV and *Hantaan orthohantavirus* (HTNV).

IgG antibodies against PUUV were detected in the samples of two volunteers (2/346, 0.6%). They are veterinary and farmer and they live in Baklan and Çal counties, respectively. Both of them have a high probability of exposure to the virus, with respect to either occupation or living conditions. But any symptoms were not found in the clinical findings of both cases.

This study has the feature of the first publication is reported PUUV seropositivities from the southwestern part of Turkey.

Introduction

Orthohantavirus is a single-stranded, enveloped RNA virus. It is transmitted to humans by virus-containing aerosolized excreta of rodents or some insectivores or rarely direct
contact with them (1). It causes hemorrhagic fever with renal syndrome (HFRS) in Eurasia and hantavirus pulmonary syndrome (HPS) in Americas (2).

Diagnosis of the infection is difficult because of non-specific clinical manifestation and flu-like symptoms in early period (3). Therefore, it is important to acquire epidemiological data from the local communities and know the baseline of seropositivity rates against orthohantaviruses in the regions.

The infections caused by *Puumala orthohantavirus* (PUUV) and *Dobrava-Belgrade orthohantavirus* (DOBV) in humans and rodents and *Tula orthohantavirus* in rodents have been reported in Turkey (4-16). However, there is no data about the infections caused by orthohantaviruses in Denizli province of Turkey. Thus, the serum samples of 346 volunteers who are in risk group with regards to orthohantavirus infections among the residents of the northern villages of Denizli province, were evaluated for the presence of antibodies against orthohantaviruses.

Materials and Methods

Samples Group

This study was approved by the Pamukkale University, Non-Invasive Clinical Research Ethics Committee (No: 06/2017).

The serum samples of the 346 healthy volunteers, who are the residents of the villages of Çal (*n* = 220, 63.6%), Baklan (*n* = 68, 19.6%), Çivril (*n* = 54, 15.6%) and Bekilli (*n* = 4, 1.2%) counties in the northeast part of Denizli province, were collected (Fig. 1). All of the volunteers were under risk with regards to orthohantavirus infections because of the social and occupational conditions which identified by Jonsson et al. like living in
the rural areas, being veterinarians, farmers, animal husbandries, foresters and soldiers
(2).

Enzyme-Linked Immunosorbent Assay (ELISA) and Immunoblot Assay (IBA)

The serum samples of the volunteers were screened for the presence of antibodies against the agents which causes to HFRS in Europe and Asia. The commercial Anti-Hantavirus Pool 1 Eurasia ELISA IgG (Euroimmun, Germany) and EUROLINE Hanta Profile 1 IgG (Euroimmun, Germany) kits were used for the detection of IgG antibodies against the DOBV, PUUV and *Hantaan orthohantavirus* (HTNV) recombinant nucleocapsid antigens. The sensitivities are 78% for ELISA and 93% for immunoblot. The specificities are 100% for ELISA and 89% for immunoblot. The tests were performed according to the manufacturer's instructions. The results of both tests were evaluated together.

Results

Of the 346 volunteers, 164 (47%) were female and 182 (53%) were male. The mean age of the volunteers was 43±13 (16-84) years. The occupations, living conditions and daily activities of the volunteers were presented in Table 1.

Fifteen serum samples were positive with ELISA (4.3%). However, only two of them (2/346, 0.6%) were confirmed by immunoblot and the specific IgG antibodies against PUUV recombinant nucleocapsid antigen were detected in these two individuals (Fig. 2). The ELISA-negative samples were also negative with immunoblot (Fig 3).
According to the demographic data, one of the PUUV infected individuals was a veterinarian and the other was a farmer (Table 2). Both of them were in their 30's and male.

Discussion

The infections caused by orthohantavirus species, which are known as HFRS agents, have been seen in Turkey (4, 6, 8-11, 16). Kavukcu et al. reported that the seropositivity rate was 4.3% in nephropathy cases and 2.6% in healthy individuals (4). In 2009, 52.2% of the patients had antibodies against PUUV in the outbreak of Bartın and Zonguldak provinces which are located in Western Black Sea Region (6, 17). Sarıgül et al. reported that DOBV infection detected in one patient who has tenderness in lymph nodes and pharyngeal infection. The infection was confirmed by both serological and molecular tests (8). IgM positivity against DOBV was detected in an another patient who has complaints of fatigue, pain, nausea and vomiting. The patient died after being removed to the intensive care unit (9). Kaya et al. investigated the presence of antibodies in 100 patients diagnosed with Orthohantavirus between 2009 and 2012. The positivity was detected in 20 of these patients (10). The presence of IgG antibodies against Orthohantavirus in 626 healthy individuals were investigated and seroprevalence was 3.2% in Giresun province which is located in Eastern Black Sea Region (11).

While the seroprevalence was 0.6% in the individuals who are in risk group with regards to orthohantavirus infections among the residents of the northern villages of Denizli province, the rate is higher in the studies conducted in different areas. This may be due to the differences in rodent populations depending on the climatic and
geographic characteristics of the areas or the differences of *Orthohantavirus* prevalences at sampling times.

The serological tests are the preferred methods for the diagnosis and/or the seroepidemiological monitoring of *Orthohantavirus* infections in humans. Generally, the molecular methods have lower sensitivity than serological tests and they are insufficient in detecting viremia (18). In this study, the serum samples were screened by ELISA and typed by immunoblot for the detection of IgG antibodies against the recombinant nucleocapsid antigens of PUUV, DOBV and HTNV. It was determined that both of the cases were infected by PUUV.

While *Myodes glareolus* is known as the carrier of PUUV, there is no any record of *M. glareolus* existence from the Denizli province. PUUV outbreaks and cases have been reported from Zonguldak, Bartın and Düzce provinces in the Western Black Sea Region of Turkey (6, 16, 17).

PUUV infections have been reported from the southwestern part of Turkey in this study, which is the first report of PUUV infections in this area. According to the demographic data, both of PUUV seropositive individuals lived at an altitude of 850 meters or more. Occupations of these two volunteers are veterinary and farmer. Both of them have a high probability of exposure to the virus, with respect to working and living conditions. They stated that they have outdoor accommodation conditions but do not go hunting. Also, the individual who is the veterinary stated that he contacted with a wild animal (Table 2).

Therefore, it is necessary to screen potential rodent hosts where seropositive individuals are exposed to be at risk. Further studies to be performed in rodents in risky areas are
important in terms of providing information about the situation and the prevalence of Orthohantavirus infections in the region.

Individuals who live in the rural areas, veterinarians, farmers, animal husbandries, foresters and soldiers are at risk for Orthohantavirus infections (2). The occupational and social risks which identified by Jonsson et al. were also detected in the seropositive individuals in this study (2). However, there were no clinical signs of Orthohantavirus infection in both cases. A mild form of HFRS called epidemic nephropathy is seen in PUUV infections. It is well-known situation that, the recovery without any clinical findings or mild clinical findings in many PUUV cases may occur and the mortality rate of PUUV cases is very low compared to the cases caused by other HFRS agents (19). It is thought to have a subclinical and/or mild findings of both cases reported with this study.

This study provided the first data on the existence of orthohantavirus seropositivity in Denizli province. There are many provinces have not been detected the prevalence of orthohantavirus in Turkey yet. With similar studies, the risky areas where the virus can cause infection might be identified and the health management authorities can be informed against possible outbreaks.

Conflict of interest

None to declare.

References

1. Vaheri A, Henttonen H, Voutilainen L, et al. Hantavirus infections Europe and their impact on public health. Rev Med Virol. 2013; 23: 35-49.
2. Jonsson CB, Figueriedo LT, Vapalahti O. A global perspective on hantavirus ecology, epidemiology, and disease. Clin Microbiol Rev. 2010; 23: 412-41.

3. Vapalahti O, Mustonen J, Lundqvist A, et al. Hantavirus infections in Europe. Lancet Infect Dis. 2003; 3: 653-61.

4. Kavukçu S, Türkmen M, Salman Ş, et al. What is the risk of nephropathy associated with hantavirus in Aegean Region? J Turkish Nephrol Assoc. 1997; 3-4: 131-5. Turkish.

5. Laakkonen J, Kallio-Kokko H, Oktem MA, et al. Serological survey for viral pathogens in Turkish rodents. J Wildl Dis. 2006; 42: 672-6.

6. Ertek M, Buzgan T. An outbreak caused by Hantavirus in the Black Sea Region of Turkey, January-May 2009. Euro Surveill. 2009; 14(20). pii: 19214.

7. Çelebi G, Pişkin N, Öktem MA, et al. Bir salgının anatomisi. In: Proceedings of the 14th Turkish Clinical Microbiology and Infectious Diseases Congress. Antalya, Turkey; 2009. pp. 163. Turkish.

8. Sarıgül N, Hofmann J, Canpolat AT, et al. Dobrava hantavirus infection complicated by panhypopituitarism, İstanbul, Turkey. Emerg Infect Dis. 2010; 18: 1180-3.

9. Oncul O, Atalay Y, Onem Y, et al. Hantavirus infection in Istanbul, Turkey. Emerg Infect Dis. 2011; 17: 303-4.

10. Kaya S, Çağlayan DY, Uyar Y, et al. Can hantavirus infections be predicted on admission to hospital? J Med Virol. 2012; 84: 1790-6.

11. Gozalan A, Kalaycioglu H, Uyar Y, et al. Human Puumala and Dobrava hantavirus infections in the Black Sea Region of Turkey: a cross-sectional study. Vector Borne Zoonotic Dis. 2013; 13: 111-8.
12. Öktem IM, Uyar Y, Dincer E, et al. Dobrava-Belgrade virus in *Apodemus flavicollis* and *A. uralensis* mice, Turkey. Emerg Infect Dis. 2014; 20: 121-5.

13. Polat C, Karataş A, Sözen M, et al. Optimization of an IgG enzyme immunoassay and immunoblot for the detection of Old World Hantaviruses in wild rodents. Mikrobiyol Bul. 2016; 50: 245-55. Turkish.

14. Polat C, Sironen T, Plyusnina A, et al. Dobrava hantavirus variants found in *Apodemus flavicollis* mice in Kırklareli province, Turkey. J Med Virol. 2018; 90: 810-8.

15. Polat C, Ergünay K, Irmak S, et al. A novel genetic lineage of Tula orthohantavirus in Altai voles (*Microtus obscurus*) from Turkey. Infect Genet Evol. 2019; 67: 150-8.

16. Çelebi G, Öztoper N, Öktem İMA, et al. Dynamics of Puumala hantavirus outbreak in Black Sea Region, Turkey. Zoonoses Public Health. 2019; doi: 10.1111/zph.12625 (Epub).

17. Akar N, Çalışkan E, Öztürk CE, et al. Seroprevalence of hantavirus and *Borrelia burgdorferi* in Düzce (Turkey) forest villages and the relationship with sociodemographic features. Turk J Med Sci. 2019; 49: 483-9.

18. Öktem İMA. Hantavirüs enfeksiyonlarında laboratuvar tanısı. In: Proceedings of the Hantavirus Symposium. Ankara, Turkey; 2011. pp. 45-7. Turkish.

19. Mustonen J, Mäkelä S, Outinen T, et al. The pathogenesis of nephropathia epidemica: new knowledge and unanswered questions. Antiviral Res. 2013; 100: 589-604.
Table 1. Distribution of the occupations and daily activities of the volunteers in the study.

Activity	n	%
Having animals in the barn/garden	319	92.2
Farmer	278	80.3
Outdoor accommodation (staying sometimes in the shelter, tent, field, etc.)	245	70.8
Touching a wild animal	91	26.3
Hunting	54	15.6
Veterinary/veterinary technician	27	7.8
Shepherd	13	3.8
Table 2. Detailed data of PUUV seropositive individuals.

Sample number	County	Village	Occupation	Age	Gender	Contact with wild animal	Bite by a wild animal	Outdoor accommodation	Hunting	Having animals in the barn/garden	Altitude
2	Baklan	İçikli	Veterinary	34	Male	Yes	No	Barrack	No	Yes	850 meter Çivril and Baklan plain villages
125	Çal	Yukariseyit	Farmer	35	Male	No	No	Field	No	Yes	1840 meter Büyük Çökelez mountain villages
Figure 1. Bekilli, Çal, Çivril and Baklan districts of Denizli province where the volunteers reside, are indicated on the map.
Figure 2. Immunoblot strips which shows PUUV IgG positivity belonging to the individual number 2 and 125 and positive control.
Figure 1. Bekilli, Çal, Çivril and Baklan districts of Denizli province where the volunteers reside, are indicated on the map.

Figure 2. Immunoblot strips which shows PUUV IgG positivity belonging to the individual number 12 and 125 and positive control.

Figure 3. Some of the immunoblot strips which shows negative results.