1 Compressible Navier-Stokes equations with relaxation in divergence form

We consider a hyperbolic system of balance laws with relaxation given by

\begin{equation}
\begin{align*}
\rho_t + (\rho u)_x &= 0 \\
(\rho u)_t + (\rho u^2 + p(\rho))_x &= S_x \\
\tau((\rho S)_t + (\rho u S)_x) - u_x &= -S
\end{align*}
\end{equation}

where \(\tau > 0 \) and the pressure \(p \) satisfies the constitutive relation

\begin{equation}
\rho = \rho^\gamma
\end{equation}

for \(\gamma > 1 \). System (1.1) is to be solved on \([0, T) \times \mathbb{R}\) for some \(T \in (0, \infty) \) with \((\rho, u, S) \) taking values in the state space \((0, \infty) \times \mathbb{R} \times \mathbb{R}\). It is equivalent to

\begin{align*}
\rho_t + (\rho u)_x &= 0 \\
\rho u_t + \rho uu_x + p(\rho)_x &= S_x \\
\tau(\rho S_t + \rho u S_x) - u_x &= -S.
\end{align*}

System (1.1) is a delayed version of the Navier-Stokes equations with a Maxwell-type law as a relaxation equation. A divergence-form variant of systems recently considered by Hu et al. [HW19, HRW22], it is a prototypical version of a model proposed by Ruggeri [Rug83] as discussed by Freistühler in [Fre22]. In the latter the question is raised whether, like the systems considered in [HW19, HRW22], also divergence-form relaxation systems such as (1.1) possess a dichotomy in the sense that for small perturbations of a homogeneous reference state the Cauchy problem for (1.1) has unique global
solutions which time-asymptotically decay to the reference state, while for (some) large data there is a blow-up of solutions, i.e. physically reasonable solutions can only exist on a finite time interval. This note serves to confirm the second part of the mentioned dichotomy.

In proving the claimed blow-up we closely follow the procedure given by Hu, Racke and Wang [HRW22]. In fact we show that system (1.1) has all the necessary features in order to apply the identical steps as in [HRW22] from a certain point on. Our system is somewhat similar to the one considered in [HW19], and in this note one may find many analogies to [HW19] including a dissipative-entropy equation and a finite speed of propagation result for the system (1.1).

The general strategy has its origins in two remarkable papers of T. Sideris. In [Sid84] he establishes a finite speed of propagation result for symmetric hyperbolic conservation laws which he uses in [Sid83] to show the “formation of singularities in three-dimensional compressible fluids”. The blow-up occurs for a certain averaged quantity involving ρu. The strategy in [Sid83] is by now well-established and for instance used in [HW19] and [HRW22].

The system (1.1) belongs to a general class of quasi-linear equations considered by Godunov [God61] and Boillat [Boi74]. Equations in this Godunov-Boillat class have the property of possessing a dissipative entropy equation. In this note we will use, and shortly derive, the following mathematical entropy equation

\begin{equation}
0 = \left[\frac{\rho - \rho(p)}{\gamma - 1} + \frac{\tau \rho S^2}{2} + \frac{\rho u^2}{2} \right]_t + \left[\frac{\gamma}{\gamma - 1} p' + \frac{\gamma}{\gamma - 1} \rho u + \frac{\rho u^3}{2} + \frac{\tau \rho u S^2}{2} - uS \right]_x + S^2
\end{equation}

where $\rho > 0$ is some reference density. Assume we are given a solution $(\rho, u, S) \in C^1(\Omega)$ on some open subset $\Omega \subset (0, \infty) \times \mathbb{R})$. To obtain (1.6) multiply (1.3) by $p'(\rho)$ to get

\begin{equation}
0 = p'(\rho) \frac{p'(\rho)}{\gamma - 1} + \gamma u_x p(\rho) + up(\rho) \frac{\rho u^2}{2} = \rho u_x t + [\gamma up(\rho)]_x + (1 - \gamma) up(\rho)_x.
\end{equation}

In this way we find

\begin{equation}
up(\rho)_x = \left[\frac{1}{\gamma - 1} p(\rho) \right]_t + \left[\frac{\gamma}{\gamma - 1} up(\rho) \right]_x.
\end{equation}

From (1.3) and (1.4) we deduce

\begin{equation}
-\rho u_x + uS_x = \rho uu_t + pu^2 u_x + \frac{u^2}{2} (\rho_t + (pu)_x) = \left[\frac{\rho u^2}{2} \right]_t + \left[\frac{\rho u^3}{2} \right]_x
\end{equation}

\[2\]
and similarly from (1.5)

\[(1.9) \quad -S^2 + u_x S = \tau (\rho S_t + \rho u S_x) = \left[\frac{\tau \rho S^2}{2} \right]_t + \left[\frac{\tau \rho u S^2}{2} \right]_{x}. \]

Combining (1.7)-(1.9) gives the entropy dissipation equality (1.6) where we have added an affine linear expression in the time-derivative term and compensated for this appropriately in the space-derivative term.

2 Blow-up of solutions for some large data

We begin with two properties of the Cauchy problem for system (1.3)-(1.5). On the one hand we have existence of physically reasonable solutions of said Cauchy problem on a maximal time interval for suitable initial values since (1.3)-(1.5) may be written as a first-order symmetrizable hyperbolic system of quasi-linear differential equations. On the other hand there is a finite speed of propagation result in the spirit of [Sid84].

Lemma 2.1. Let \(\overline{\rho} > 0 \). Let \((\rho_0, u_0, S_0) : \mathbb{R} \to \mathbb{R}^3 \) satisfy \((\rho_0 - \overline{\rho}, u_0, S_0) \in H^2(\mathbb{R}) \) and \(\rho_0(x) > 0\) for all \(x \in \mathbb{R}\). Then there exists a maximal \(T \in (0, \infty]\) such that there is a unique solution \((\rho, u, S)\) of (1.3)-(1.5) satisfying

\[
(\rho - \overline{\rho}, u, S) \in C^0([0, T), H^2(\mathbb{R})) \cap C^1([0, T), H^1(\mathbb{R})),
\]

and

\[
(\rho(0), u(0), S(0)) = (\rho_0, u_0, S_0),
\]

and for all \((t, x) \in [0, T) \times \mathbb{R}\)

\[
\rho(t, x) > 0.
\]

Proof. See Chapter 2 in [Maj84]. \(\square\)

Lemma 2.2. Let \(T, R > 0\) and \(\overline{\rho} > 0\). Set

\[
(2.1) \quad \sigma := \sqrt{p'(\overline{\rho}) + \frac{1}{\tau \overline{\rho}}^2} > 0.
\]

Suppose \((\rho, u, S) \in C^1([0, T) \times \mathbb{R}) \) solves (1.3)-(1.5) and satisfies

- \((\rho, u, S) \in C^1_t([0, T] \times \mathbb{R}) \) for all \(t \in [0, T]\);
- \(\text{supp} (\rho(0, \cdot) - \overline{\rho}, u(0), S(0)) \subset (-R, R).\)
Then for all $t \in [0, T)$ and $x \in D_t := \{ x \in \mathbb{R} : |x| \geq R + \sigma t \}$ it holds

\begin{equation}
(\rho(t, x) - \bar{\rho}, u(t, x), S(t, x)) = (0, 0, 0).
\end{equation}

Proof. Write $U = (\rho, u, S)$ and define

\[A_0(U) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \rho & 0 \\ 0 & 0 & \tau \rho \end{pmatrix}, \quad A_1(U) = \begin{pmatrix} u & \rho & 0 \\ p'(\rho) & u & -1 \\ 0 & -1 & \tau \rho u \end{pmatrix}, \quad B = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}. \]

Set $\bar{U} := (\bar{\rho}, 0, 0)$ and consider for $V := U - \bar{U}$ the system

\[V_t + A_0(\bar{U})^{-1} A_1(\bar{U}) V_x + A_0(\bar{U})^{-1} B V = G(\bar{U}, U, U_t, U_x) \]

with

\[G(\bar{U}, U, U_t, U_x) = A_0(\bar{U})^{-1} [(A_0(\bar{U}) - A_0(U)) U_t + (A_1(\bar{U}) - A_1(U)) U_x]. \]

The eigenvalues of $A_0(\bar{U})^{-1} A_1(\bar{U})$ are

\[\lambda_1(\bar{U}, \tau) = -\sqrt{p'(\bar{\rho}) + \frac{1}{\tau^2}}, \quad \lambda_2(\bar{U}, \tau) = 0, \quad \lambda_3(\bar{U}, \tau) = \sqrt{p'(\bar{\rho}) + \frac{1}{\tau^2}}. \]

Set $\sigma := \lambda_3$ and proceed like in [HW19] which follows the idea of [Sid84] to show the claim of the lemma.

The data for which solutions of (1.3)-(1.5) experience a blow-up is constructed from the function in the following lemma taken from [HR14] (see [HRW22], too):

Lemma 2.3. Let $L > 0$ and $M > 2$. Then the function

\[u_{L,M}(x) := \begin{cases} 0, & x \in (-\infty, -M] \\ \frac{L}{2} \cos(\pi(x + M)) - \frac{L}{2}, & x \in (-M, -M + 1] \\ -L, & x \in (-M + 1, -1] \\ L \cos(\pi(x + M)), & x \in (-1, 1] \\ L, & x \in (1, M - 1] \\ \frac{L}{2} \cos(\pi(x + M)) + \frac{L}{2}, & x \in (M - 1, M] \\ 0, & x \in (M, \infty) \end{cases} \]

is an element of $H^2(\mathbb{R}) \cap C^1(\mathbb{R})$ with

\begin{equation}
||u_{L,M}||_{L^2}^2 \leq 2L^2M.
\end{equation}
Now we state and prove the theorem on blow-up of solutions to (1.3)-(1.5) for some large data.

Theorem 2.4. Let $R > 0$, $\overline{\rho} = 1$ and let $(\rho_0, S_0) \in C^1(\mathbb{R})$. Suppose $\rho_0(x) > 0$ for all $x \in \mathbb{R}$ and supp $(\rho_0 - 1, S_0) \subset (-R, R)$. Assume

\begin{equation}
\int_{\mathbb{R}} \rho_0(x) - 1 \, dx \geq 0.
\end{equation}

and set $\sigma := \sqrt{\gamma + \tau^{-1}}$. Choose $\tilde{\sigma}, L > 0$ such that

\begin{equation}
\tilde{\sigma}^2 = \max\{\sigma^2, (8 \max \rho_0)^{-1}\}
\end{equation}

and

\begin{equation}
L \min \rho_0 > \max\{\sqrt{8 \max \rho_0}, 16 \tilde{\sigma} \max \rho_0\}.
\end{equation}

Define

\begin{equation}
H_0 := \int_{\mathbb{R}} p(\rho_0(x)) - 1 - \gamma(\rho_0(x) - 1) \frac{\gamma - 1}{\gamma} + \frac{\tau \rho_0(x) S_0^2(x)}{2} \, dx
\end{equation}

and choose $M \geq \max\{4, R\}$ such that

\begin{equation}
H_0 + \max \rho_0 L^2 M \leq 2 \tilde{\sigma} M^2 \max \rho_0.
\end{equation}

Let (ρ, u, S) be the solution of (1.3)-(1.5) with initial data $(\rho_0, u_{L,M}, S_0)$ and maximal time of existence $T > 0$ as given by Lemma 2.1. Then T is finite and the critical averaged quantity initially satisfies

\begin{equation}
\int_{\mathbb{R}} x \cdot \rho_0(x) u_0(x) \, dx > \max\{16 \tilde{\sigma} M^2 \max \rho_0, M^2 \sqrt{8 \max \rho_0}\}.
\end{equation}

Remark 2.5. Before we enter the proof let us comment on where the above choices of constants enter in the proof. The relations (2.5) and (2.6) are needed to establish two a-priori estimates which appear in the deduction of the central Riccati-type differential inequality. Then again (2.6) together with (2.8) serves to find that the quantity on the right of (2.9) plays the role of a critical threshold for the Riccati-type inequality thereby allowing the conclusion of a finite maximal time of existence of the considered solution of (1.3)-(1.5).

Proof. The proof is very close to section 3 of [HRW22], also with respect to notation. In fact after establishing the Riccati-type estimate the claim
follows like in [HRW22]. The general strategy follows [Si83]. First define for $t \in [0,T)$ the averaged quantities

$$(2.10) \quad m(t) := \int_{\mathbb{R}} \rho(t, x) - 1 \, dx$$

and

$$(2.11) \quad F(t) := \int_{\mathbb{R}} x \cdot \rho(t, x) u(t, x) \, dx.$$

m and F are well-defined and continuous functions because of the compact supports of $u(t, \cdot)$ and $\rho(t, \cdot) - 1$ by Lemma 2.2.

By conservation of density (1.3), the compact support of $\rho(t, \cdot) - 1$ and by (2.4) we have for $t \in [0,T)$

$$(2.12) \quad m(t) = m(0) \geq 0.$$

Setting

$$B_t := \{ x \in \mathbb{R} : |x| < M + \tilde{\sigma} t \} \subset D_t^c$$

and using Jensen’s inequality (see p.846 [WH18]) implies

$$(2.13) \quad \int_{B_t} p(\rho(t, x)) \, dx \geq \int_{B_t} p(\bar{\rho}) \, dx.$$

By Lemma 2.2 partial integration and (1.3) and (1.4) we have

$$F'(t) = \int_{\mathbb{R}} (\rho u^2)(t, x) \, dx + \int_{\mathbb{R}} p(\rho(t, x)) - p(\bar{\rho}) \, dx - \int_{\mathbb{R}} S(t, x).$$

Apply estimate (2.13) and Young’s inequality to conclude

$$(2.14) \quad F'(t) \geq \int_{\mathbb{R}} (\rho u^2)(t, x) \, dx - \frac{1}{2} \int_{\mathbb{R}} S^2(t, x) \, dx - (M + \tilde{\sigma} t).$$

Hölder’s inequality and (2.12) yield

$$(2.15) \quad F^2(t) \leq \int_{B_t} x^2 \rho(t, x) \, dx \int_{B_t} (\rho u^2)(t, x) \, dx$$

$$\leq 2(M + \tilde{\sigma} t)^3 \max \rho_0 \int_{B_t} (\rho u^2)(t, x) \, dx.$$
Let
\[c_2 := \frac{\tilde{\sigma}}{M}, \]
\[c_3 := \frac{1}{2 \max \rho_0 M^3}, \]
\[c_1 := \frac{2c_2}{c_3}, \]
and assume for all \(t \in [0, T) \) the a-priori estimates
\begin{equation}
F(t) \geq c_1 > 0
\end{equation}
and
\begin{equation}
M + \tilde{\sigma} t = M(1 + c_2 t) \leq \frac{c_3}{2(1 + c_2 t)^3} F^2(t).
\end{equation}

Combining the estimate (2.14) for \(F' \) with the estimate (2.15) for \(F^2 \) and using the a-priori estimates (2.16) and (2.17) one finds the Riccati-type inequality
\begin{equation}
\frac{F'(t)}{F^2(t)} \geq \frac{c_3}{2(1 + c_2 t)^3} - \frac{1}{2c_1} \int \mathcal{S}^2(t, x) dx.
\end{equation}

One uses the entropy equality (1.6) to treat the \(\mathcal{S}^2 \)-term above:
\begin{equation}
\int \mathcal{S}^2(t, x) dx \leq \int \frac{p(\rho_0) - 1 - \gamma(\rho_0 - 1)}{\gamma - 1} + \frac{\rho_0 u_{L,M}^2}{2} + \tau \rho_0 S_{L,2}^2 dx
\end{equation}
\[\leq H_0 + \frac{\max \rho_0}{2} \|u_{L,M}\|^2.\]

Remark 2.6. By Taylor’s Theorem one has for \(\rho > 0 \)
\[p(\rho) = 1 + \gamma(\rho - 1) + \frac{\rho''(\xi)(\rho - 1)^2}{2} \]
for some \(\xi > 0 \). Note \(p''(\rho) > 0 \) for \(\rho > 0 \). These facts were used for the estimate in (2.19) (see also p.829 [HW19]).

Now we are in the exact same situation as in [HRW22] section 3, and all further steps repeat theirs. Collecting the constants once more in
\[c_4 := \frac{H_0}{2c_1^2} \text{ and } c_5 := \frac{\max \rho_0}{4c_1^2}\]
and noting
\[c_4 + c_5 \|u_{L,M}\|_{L^2}^2 \leq \frac{c_3^2}{8c_2} (H_0 + \max \rho_0 L^2 M) \leq \frac{c_3}{8c_2} \]
by (2.3), the definition of \(c_1 \) and (2.8) we finally find by integrating (2.18) that for all \(t \in [0, T) \)
\[F(0)^{-1} \geq F(0)^{-1} - F(t)^{-1} \]
\[\geq - \frac{c_3}{4c_2(1 + c_2 t)^2} + \frac{c_3}{4c_2} - c_4 - c_5 \|u_{L,M}\|_{L^2}^2 \]
\[\geq - \frac{c_3}{4c_2(1 + c_2 t)^2} + \frac{c_3}{8c_2}. \]
But by definition of \(u_{L,M} \) (note its symmetry \(u_{L,M}(x) = -u_{L,M}(-x) \)), \(M \geq 4 \) and by (2.6) it holds
\[F(0) > \frac{L}{2} \min \rho_0 M^2 \geq 16 \frac{\tilde{\sigma}}{M} \max \rho_0 M^3 = \frac{8c_2}{c_3} \]
which implies \(T < \infty \) since otherwise there exists a \(t > 0 \) such that (2.20) violates (2.21).

It remains to verify the a-priori estimates. We have
\[F(0) \geq 2c_1 \]
by (2.21). If for some \(T^* \in (0, T] \) we have \(F \geq c_1 \) on \([0, T^*) \) then we get from (2.20)
\[F(t) \geq \frac{4c_2(1 + c_2 t)^2}{c_3} \geq 2c_1. \]
for all \(t \in [0, T^*) \). Since \(F \) is continuous these two facts imply \(F \geq c_1 \) on \([0, T) \) (see p.10 [HR11]).

We show
\[M + \tilde{\sigma} t = M(1 + c_2 t) \leq \frac{c_3}{4(1 + c_2 t)^3} F^2(t) \]
which implies (2.17). Proceeding in a similar fashion like before we have
\[F^2(0) \geq \frac{L^2 M^4 \min \rho^2_0}{2} \geq 4M^4 \max \rho_0 = 4M^4 \frac{c_3}{c_3} = 2M \]
by (2.21) and (2.6). Hence the estimate (2.22) holds for \(t = 0 \). Again if for some \(T^* \in (0, T] \) the estimate (2.17) holds for all \(t \in [0, T^*) \) then by the Riccati-type inequality (2.20) and assumption (2.5) we find
\[F^2(t) \geq \frac{16c_2^2}{c_3} (1 + c_2 t)^4 \geq \frac{4M}{c_3} (1 + c_2 t)^4 \]
closing the a-priori estimate (2.17) by a continuity argument. \(\square \)
References

[Boi74] G. Boillat. Sur l’existence et la recherche d’équations de conservation supplémentaires pour les systèmes hyperboliques. *C. R. Acad. Sci. Paris Sér. A*, 278:909–912, 1974.

[Fre22] H. Freistühler. Time-asymptotic stability of first-order symmetric hyperbolic systems of balance laws in dissipative compressible fluid dynamics. *to appear in Quart. Appl. Math.*, 2022.

[God61] S. K. Godunov. An interesting class of quasi-linear systems. *Dokl. Akad. Nauk SSSR*, 139:521–523, 1961.

[HR14] Y. Hu and R. Racke. Formation of singularities in one-dimensional thermoelasticity with second sound. *Quart. Appl. Math.*, 72(2):311–321, 2014.

[HRW22] Y. Hu, R. Racke, and N. Wang. Formation of singularities for one-dimensional relaxed compressible navier-stokes equations. *Konstanzer Schriften in Mathematik KOPS*, 2022.

[HW19] Y. Hu and N. Wang. Global existence versus blow-up results for one dimensional compressible Navier-Stokes equations with Maxwell’s law. *Math. Nachr.*, 292(4):826–840, 2019.

[Maj84] A. Majda. *Compressible fluid flow and systems of conservation laws in several space variables*. Applied Mathematical Sciences, 53. Springer-Verlag, New York, 1984. viii+159 pp.

[Rug83] T. Ruggeri. Symmetric-hyperbolic system of conservative equations for a viscous heat conducting fluid. *Acta Mech.*, 47(3-4):167–183, 1983.

[Sid84] T. C. Sideris. Formation of singularities in solutions to nonlinear hyperbolic equations. *Arch. Rational Mech. Anal.*, 86(4):369–381, 1984.

[Sid85] T. C. Sideris. Formation of singularities in three-dimensional compressible fluids. *Comm. Math. Phys.*, 101(4):475–485, 1985.