The mitochondrial genome of a sea anemone *Bolocera* sp. exhibits novel genetic structures potentially involved in adaptation to the deep-sea environment

Bo Zhang¹,² | Yan-Hong Zhang¹ | Xin Wang¹,² | Hui-Xian Zhang¹ | Qiang Lin¹

¹CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
²University of Chinese Academy of Sciences, Beijing, China

Correspondence
Qiang Lin, CAS Key Laboratory of South China Sea Institute of Oceanology Chinese Academy of Sciences, Guangzhou, China. Email: linqiang@scsio.ac.cn

Funding information
This research was supported by Special Fund for Strategic Pilot Technology Chinese Academy of Sciences (Grant/Award Number: XDA11030203-2); National Science Fund for Excellent Young Scholars (Grant/Award Number: 41322038); the National Natural Science Foundation of China (Grant/Award Number: 41576145, 41606170); and Guangdong Oceanic and Fisheries Science and Technology Foundation (A201601D03)

Abstract

The deep sea is one of the most extensive ecosystems on earth. Organisms living there survive in an extremely harsh environment, and their mitochondrial energy metabolism might be a result of evolution. As one of the most important organelles, mitochondria generate energy through energy metabolism and play an important role in almost all biological activities. In this study, the mitogenome of a deep-sea sea anemone (*Bolocera* sp.) was sequenced and characterized. Like other metazoans, it contained 13 energy pathway protein-coding genes and two ribosomal RNAs. However, it also exhibited some unique features: just two transfer RNA genes, two group I introns, two transposon-like noncanonical open reading frames (ORFs), and a control region-like (CR-like) element. All of the mitochondrial genes were coded by the same strand (the H-strand). The genetic order and orientation were identical to those of most sequenced actiniarians. Phylogenetic analyses showed that this species was closely related to *Bolocera tuediae*. Positive selection analysis showed that three residues (31 L and 42 N in ATP6, 570 S in ND5) of *Bolocera* sp. were positively selected sites. By comparing these features with those of shallow sea anemone species, we deduced that these novel gene features may influence the activity of mitochondrial genes. This study may provide some clues regarding the adaptation of *Bolocera* sp. to the deep-sea environment.

KEYWORDS

adaptation, *Bolocera* sp, deep-sea sea anemone, mitochondrial genome

1 | INTRODUCTION

The deep sea is the part of the ocean below the continental shelves, and it is the most extensive ecosystem on earth (Rex, 1981). The organisms living there survive in an extremely harsh environment, tolerating hundreds of bars of pressure, small amounts of oxygen, very little food, constant darkness, and low temperature (Sanders & Hessler, 1969). Because of the sparseness of animal life and the technical difficulties in sampling the deep-sea benthos, our knowledge of deep-sea organisms is based almost entirely on morphological distinctions at the species level (Etter, Rex, Chase, & Quattro, 1999). There is little information about the adaptive molecular mechanisms of the organisms living in the deep-sea environment (Sanders & Hessler, 1969).

As the powerhouse of the cell, mitochondria generate energy by oxidative phosphorylation (OXPHOS) (Luo et al., 2008) and play important roles in energy metabolism and various biosynthetic pathways (Green & Reed, 1998; Newmeyer & Ferguson-Miller, 2003). Mitochondria, with their own genetic material, are present in nearly...
all eukaryotic cells (Bernt, Braband, Schierwater, & Stadler, 2013), and they are autonomously replicated and transcribed (Boore, 1999). Mitogenomes have been widely used for studies of population genetics, phylogeography, phylogeny, and species identification (Brown, Brooke, Fordyce, & McCracken, 2011; Feng, Li, Kong, & Zheng, 2011; Gvoždík, Moravec, Klítsch, & Kotlík, 2010; Keskin & Can, 2009; Lei et al., 2010; Ma et al., 2013). The mitogenome, especially the 13 energy pathway protein-coding genes, represents a particularly useful genetic marker for investigating the molecular basis of organismal adaptation to an extreme environment (Yu, Wang, Ting, & Zhang, 2011). In recent years, several mitochondrial genes have been shown to contain signatures of adaptive evolution, including the cytochrome b gene of alpacas (da Fonseca, Johnson, O’Brien, Ramos, & Antunes, 2008), the cytochrome c oxidase gene of plateau pikas (Luo et al., 2008), the NADH dehydrogenase six gene of domestic horses (Ning, 2008), the cytochrome c oxidase gene of plateau pikas (Luo et al., 2008), the NADH dehydrogenase six gene of domestic horses (Ning, 2008). The cytochrome c oxidase gene of plateau pikas (Luo et al., 2008) and the ATP synthase genes of Caprinæ (Hassanin, Ropiquet, Couloux, & Cruaud, 2009).

Most metazoan mitogenomes are circle molecules, between 14 and 18 kb in length that encode 37 genes (13 protein-coding genes, 22 transfer RNA genes, and two ribosomal RNA genes) as well as a putative control region (Boore, 1999; Wolstenholme, 1992). As sea anemones are primitive animals (Putnam et al., 2007), their mitogenomes exhibit some differences. Similar to most metazoan mitogenomes, the typical sea anemone mitogenome is a circular molecule, 16–20 kb in length and encodes 13 energy pathway protein-coding genes and two ribosomal RNA genes (Beagley, Okimoto, & Wolstenholme, 1998; Emblem et al., 2014; Osigus, Eitel, Bernt, Donath, & Schierwater, 2012). However, some distinctive features have been identified in these mitogenomes. Only 2 of the 22 essential transfer RNAs (tRNAs) are present, one or two genes are interrupted by a group I intron, the open reading frames (ORFs) encode unknown proteins, and there is a very slow nucleotide substitution rate (Beagley, Okada, & Wolstenholme, 1996; Beagley & Wolstenholme, 2013; Emblem et al., 2011; Johansen et al., 2010; Nielsen & Johansen, 2009; Osigus et al., 2013).

Although several complete or partial mitogenomes of sea anemones have been sequenced in recent years, the members of these genera are highly diverse (Emblem et al., 2014), and the information regarding these mitogenomes remains incomplete. For deep-water species from extreme environments in particular, little mitochondrial data have been reported. To evaluate the variation in deep-sea sea anemone gene structures and their adaptations to the deep-sea environment, this study determined the complete mitogenome of a deep-sea sea anemone (Bolocera sp.), identified its mitochondrial gene structures and arrangements, and elucidated their evolutionary characteristics.

2 | MATERIALS AND METHODS

2.1 | Specimens and DNA extraction

The specimen was collected on December 15, 2014, from a seamount on the Pacific Ocean (137.44°E/8.52°N) at a depth of 1106 m, fixed in 99% ethanol, and stored at 4°C. DNA was extracted using a Genomic DNA Kit (Tiangen Co. Beijing, China) according to the manufacturer's instructions. The specimen was not an endangered or protected species, and no specific permits were required for our collection process.

2.2 | PCR and sequencing

To identify the subspecies of the specimen, two conserved genes (COI and cytb) were sequenced. The complete mitogenomes of closely related species were downloaded from the NCBI Entrez Database and amplified to search for conserved regions where primers for the complete mitogenome clone were designed. The complete mitogenome was amplified by overlapping PCR. All PCRs were performed in a 50 μl volume, which included 1 μl template DNA (approximately 100 ng), each primer at a concentration of 0.3 μmol/L, 5 μl of 10 × LA Taq buffer (Mg2+ plus), 5 μl of dNTP Mix (2.5 mmol/L), and 1 U of LA Taq (TaKaRa, Japan). The PCR amplifications used the following procedure: one cycle of denaturation for 5 min at 94°C; 35 cycles of 40 s at 94°C, 40 s at the primer-specific annealing temperature, and 5 min at 72°C; and finally a 10-min extension at 72°C. After purification, the PCR products were directly sequenced in both directions three times with the PCR primers. Sequencing was performed by ThermoFisher Scientific (Guangzhou, China).

2.3 | Complete mitogenome analysis

The sequence alignment was conducted using Clustal X. The protein-coding genes and rRNA genes were determined by BLAST and the NCBI Entrez Database and by comparison with the mitogenome sequences of homologous species. The tRNA genes and their secondary structures were predicted by the Web-based tRNAscan-SE 1.21 (Lowe & Eddy, 1997). The skew in nucleotide composition was calculated by AT skew and GC skew and measured according to the following formulae: AT skew = (A − T)/(A + T) and GC skew = (G − C)/(G + C) (Perma & Kocher, 1995), where A, T, C, and G are the occurrences of the corresponding bases. Codon usage was calculated by the Codon Usage Database (http://www.kazusa.or.jp/codon/). The gene map of the complete mitogenome was depicted by OGDRAW (http://ogdraw.mpimp-golm.mpg.de/).

2.4 | Phylogenetic analysis

To illustrate the phylogenetic relationships among sea anemone, the complete mitogenomes of 23 Anthozoa species were downloaded from the GenBank database, including Aiptasia pulchella (HQ423148), Alicia sansibarensis (KR051001), Antholoba achates (KR051002), Bolocera tuediae (HQ423145), Halcampoides purpurea (KR051003), Hormathia digitata (HG423146), Isosicyonis striata (KR051006), Metridium senile (HG423143), Nematomastella sp. (DQ643835), Sagartia ornata (KR051008), Urticina eques (HG423144), Chryosophytes formosa (NC_008411), Myriopathes japonica (NC_027667), Stichopathes lutkeni (NC_018377), Savalia savaglia (NC_008827), Acropora aculeus (KT001202), Acropora tenuis (NC003522), Pocillopora damicornis (EF526302), Siderastrea radians (DQ643838), Heliopora coerulea (NC_020375), Dendronephthya suensonii (NC_022809), Renilla muelleri (NC_018378), and Styelula elongata (JX023275). Geodia neptuni (AY320032) (Demospongiae) was
selected as the out-group. The concatenated nucleotide sequences of 13 energy pathway protein-coding genes were aligned using Clustal X with the default settings. The maximum likelihood (ML) method was employed to analyze the phylogenetic tree. The GTR + I + G model was selected as the best nucleotide substitution model by ModelTest 3.7 (Posada & Crandall, 1998). The ML analysis was performed by MEGA 5.1 with 1,000 bootstrap replicates.

2.5 | Positive selection analysis

The selective pressure imposed on the mitogenomes of sea anemones was evaluated using CODEML from the PAML package. Two different tree-building methods were used because the CODEML likelihood analysis is sensitive to tree topology. The two-ratio and free-ratio model (M1 model) was used in the mitogenome analysis. The branch-site model was used to determine whether these genes have undergone positive selection in the foreground lineage. Bayes Empirical Bayes (BEB) analysis was used to calculate the Bayesian posterior probability of the positively selected sites.

3 | RESULTS AND DISCUSSION

3.1 | Genome organization

Similar to most metazoan mitogenomes, the mitogenome of Bolocera sp. is a circular molecule. The complete mitochondrial DNA of Bolocera sp. contained 19,463 bp. It shared the highest overall similarity (96.43%) with the B. tuediae mitochondrial DNA sequence (Emblem et al., 2014). In addition to the common individual base composition differences, the alignment of the two complete mitogenomes also showed several insertions or deletions of genetic fragments. Therefore, we speculated that Bolocera sp. was a new subspecies of Bolocera. Similar to those of other anthozoan species, the mitogenome of Bolocera sp. showed a different evolution pattern than most metazoans (Shearer, Van Oppen, Romano, & Wörheide, 2002). It encoded 16 protein-coding genes (13 energy pathway protein-coding genes, a heg gene, and two unknown ORFs), two tRNA genes, and two rRNA genes (Figure 1, Table 1). All of the genes were coded by the same strand (the H-strand) and transcribed in the same direction. The gene order and orientation were identical to other sequenced actinarians. In all the mitogenomes studied, no gene overlaps were observed, and the intergenic spacers varied. Several typical anthozoan mitogenome features (Beagley & Wolstenholme, 2013; Beagley et al., 1998; Emblem et al., 2014) were also observed in Bolocera sp., including the presence of two group I introns, two tRNA genes, and large intergenic spacers. In addition, two noncanonical protein-coding genes (ORFC and ORFD) were observed. A genetic fragment similar to the control region (CR) of metazoans was also observed, which was first reported in sea anemones. The complete mitochondrial DNA sequence was deposited in the GenBank database under the accession number KU507297.

FIGURE 1 Graphical map of complete mitogenome of Bolocera sp. Different genes are represented by different boxes in different colors. tRNAs are displayed according to the one-letter code. Genes encoded by the heavy strand are shown outside the circle, and those encoded by the light strand are shown inside. The direction of the arrows shows the direction of transcription. The inner ring shows the GC content of the mitogenome.
TABLE 1 Gene structure of the mitogenome of Bolocera sp.

Feature	Position numbers	Size	Codon	Intergenic nucleotides	Strand		
		Nucleotides	Amino acid	Start	Stop	nucleotides	
ND5	1-717, 3,115–4,230	1,833	610	ATG	TAG	18	H
ND1	941–1,924	984	327	ATG	TAA	223	H
ND3	1,969–2,325	357	118	ATG	TAA	44	H
tRNAAla	4,544–4,613	70	0	ATG	TAA	313	H
ND2	4,729–6,111	1,383	460	ATG	TAG	115	H
srRNA	6,161–7,215	1,055	0	ATG	TAA	49	H
COII	7,269–8,015	747	248	ATG	TAA	53	H
ND4	8,021–9,496	1,476	491	ATG	TAA	5	H
ND6	9,501–10,109	609	202	ATG	TAA	4	H
cytb	10,137–11,288	1,152	383	ATG	TAA	27	H
ORFD	11,371–11,505	135	44	ATG	TAG	82	H
tRNAGlu	11,549–11,619	71	0	ATG	TAA	43	H
tRNA	11,620–13,835	2,216	0	ATG	TAA	0	H
COIII	13,904–14,692	789	262	ATG	TAA	68	H
ORFC	14,946–15,146	201	66	ATG	TAA	253	H
COI	15,253–16,142, 16,996–17,677	1,572	523	ATG	TAA	106	H
heg	16,297–16,986	690	229	GTG	TAA	154	H
ND4L	18,182–18,481	300	99	ATG	TAA	504	H
ATP8	18,506–18,721	216	71	ATG	TAA	24	H
ATP6	18,755–19,444	690	229	ATG	TAA	33	H

3.2 | Group I introns and unknown ORFs

In addition to the standard set of 13 energy pathway protein-coding genes, an additional heg gene and two group I introns as well as two unknown ORFs were identified in the Bolocera sp. mitogenome (Figures 1 and 2, Table 1). Group I introns are genetic insertion elements that are extremely rare in metazoans and have only been identified within the mitogenomes of hexacorals and some sponges (Boore, 1999). In *Lophelia pertusa* (a scleractinian coral), a complex group I intron is inserted in the ND5 gene to host seven essential mitochondrial protein genes and a rRNA gene (Emblem et al., 2011). In this study, two group I introns were detected (ND5 intron and COI intron). Both of the group I introns contained the same gene components as those in other hexacorallian species except for scleractinians (Figure 2). A gene structure analysis of hexacorallians showed that the ND5 intron absorbed more genes but that the COI intron lost the heg gene. The reason for this difference might be that the scleractinian ancestor had a different evolutionary pathway than other hexacorallian suborder species before significant mitogenome rearrangement, which is supported by the opinion of Mónica (Medina, Collins, Takaoka, Kuehl, & Boore, 2006).

Emblem et al. (2014) observed two ORFs (orfA-51 and orfB-26) of unknown function in the mitogenome of the cold-water sea anemone *U. eques*, and a truncated version of orfA was also found in tropical reef *A. pulchella* and cold-water *H. digitate* mitogenome. Foux, Brugler, Siddall, & Rodríguez (2016) also observed homologous ORFs in other actinioidae species, but no obvious similarity was noted within the ORFs. Instead of the ORFs described above, two new truncated ORFs (ORFC and ORFD) were observed in the Bolocera sp. mitogenome. Consistent with previous studies, no obvious similarity was detected. Flot & Tillier (2007) strongly suggested that the ORFs are expressed proteins, and Emblem even identified the ORFs to be functional elements (Emblem et al., 2014). The ORFs appear to be evolving under some selection relative to other protein-coding genes (Emblem et al., 2014). The patterns (gained, lost, or truncated) exhibited by these noncanonical ORFs are consistent with transposon-like elements (Winckler, Szafranski, & Glöckner, 2005). The ORFs detected in this study showed the same characteristics as the ORFs above, so they may play similar roles. Transposable elements can influence neighboring genes by altering splicing and polyadenylation patterns, or by functioning as enhancers or promoters (Girard & Freeling, 1999; Slotkin & Martienssen, 2007; Waterland & Jirtle, 2003). They have been demonstrated to play essential roles in the host response to stress and in facilitating the adaptation of populations (Blot, 1994; Casacuberta & González, 2013; Chénais, Caruso, Hiard, & Casse, 2012). Considering the common features of the species that carry noncanonical ORFs and the particular characteristics of the environment in which they live, the ORFs identified in this study may play important roles in adjusting mitochondrial energy metabolism.
3.3 | Genome composition and skewness

In metazoan mitogenomes, the frequency of each nucleotide utilized varies among different taxa. The mitogenome of metazoans usually has a strand-specific bias in nucleotide composition (Alexandre, Nelly, & Jean, 2005). The A + T content of the mitogenome is extremely high in insects and nematodes and lower in vertebrates (Saccone, Giorgi, Gissi, Pesole, & Reyes, 1999). In the anthozoan mitogenome, the A + T content ranges from 54.9% to 68.1% (Brugler & France, 2007; Fox et al., 2016). The nucleotide composition of the H-strand in Bolocea sp. was biased toward A and T, and the overall A + T content was 60.51%. Similar results have also been observed in other actinarian mitogenomes (Fox et al., 2016; Zhang & Zhu, 2016). As is commonly found in metazoan mitogenomes, the A + T content varied in different regions (Table 2). The CR-like element presented the highest A + T content (66.16%), and the lowest content was found in the 2 tRNA genes (49.65%).

The AT skew was negative (~0.127), whereas the GC skew was positive (0.108) in Bolocea sp. In all sequenced actinarian mitogenomes, the trends were the same, and the AT-skew and GC-skew values were similar (Table 2). This result indicated that actinarian mitogenomes favor Ts and Gs. Similar nucleotide skew patterns have also been observed in the mitogenomes of other hexacorallian subclasses (Brugler & France, 2007; van Oppen et al., 2000).

3.4 | Protein-coding genes

In this study, 16 protein-coding genes (13 energy pathway protein-coding genes, a heg gene, and two unknown ORFs) were identified (Table 1). All of these genes were coded by the same strand (the
TABLE 2

Species	GenBank accession NO.	GenBank length (bp)	Length (bp) A+T (%)	NO. of amino acids	Length (bp) A+T (%)	AT-skew	GC-skew	No. of ORFs
Bolocera sp.	KU507297	19,463	61.25	4,023	58.22	0.108	0.109	13
Bolocera tuediae	HG423145	19,143	61.32	2,216	59.73	0.141	0.141	13
Aiptasia pulchella	HG423148	19,790	62.76	2,178	59.21	0.141	0.141	13
Alicja sansibarensis	KR051001	19,575	61.55	2,200	59.29	0.141	0.141	13
Antholoba achates	KR051003	19,575	61.89	2,200	59.29	0.141	0.141	13
Halcampoides purpurea	KR051005	19,575	61.01	2,200	59.29	0.141	0.141	13
Metridium senile	HG423143	17,444	61.86	2,200	59.29	0.141	0.141	13
Nematostella sp.	HG423144	17,446	61.86	2,200	59.29	0.141	0.141	13
Undetermined	HG423144	20,458	60.07	2,200	59.29	0.141	0.141	13

The heg gene and two ORFs do not counted in the 13 energy pathway protein-coding genes.

In most cnidarian mitogenomes, only two tRNAs (tRNATrp and tRNAMet) were detected (except for octocorallians, in which only one tRNAMet was detected) (Beagley et al., 1998; Beaton, Roge, & Cavalier-Smith, 1998; Kayal & Lavrov, 2008). A study by Beagley and Wolstenholme (2013) showed that nuclear DNA-encoded functional tRNAs were detected in mitochondria, and the missing tRNAs are believed to be encoded in the nucleus and later imported into the mitochondrion (Schneider & Maréchal-Drouard, 2000). In this study, the mitogenome of Bolocera sp. contained two tRNAs (tRNATrp and tRNAMet) (Figure 3). Both tRNAs could fold into a clover-leaf secondary structure, and the anticodon usage was identical to most of the observed sea anemone species. One mismatched base pair (C-A) was detected in tRNAMet. Interestingly, the unmatched base pair occurred on the amino acid acceptor arm. Such stem mismatches seem to be a common phenomenon for mitochondrial tRNAs in many species (Jiang et al., 2013; Liao et al., 2010; Miller et al., 2005; Wang et al., 2016) and are probably corrected by a post RNA-editing mechanism (Lavrov, Brown, & Boore, 2000).
3.6 Noncoding regions

A total of 22 noncoding regions (ranging from 4 to 789 bp) were identified in the *Bolocera* sp. mitogenome. The longest noncoding region (789 bp) was located between the ND3 gene and the second exon of the ND5 gene. The nucleotide content of the 789-bp noncoding region was 238 As (30.16%), 284 Ts (36.00%), 130 Cs (16.48%), and 137 Gs (17.36%). The A + T content (66.16%) of the 789-bp noncoding region was higher than that of other regions in the mitogenome. In addition, several special TTTT and AAA repeats and T + A-rich regions were observed (Figure 4).

The CR in the mitogenome is essential for transcription and replication in vertebrates (Fernández-Silva, Enríquez, & Montoya, 2003). As it was not constrained in the same way as the protein-coding genes, the mitochondrial CR is usually considered to be the most variable portion of the mitogenome (Marshall & Baker, 1997), showing the highest variation in the whole mitogenome (Aquadro & Greenberg, 1983). The structure of the CR has been extensively investigated in vertebrates, but not in invertebrates. Generally, in vertebrates, the mitochondrial CR is divided into three domains, including the extended terminal associated sequences (ETAS), the central conserved sequence blocks (CSB-F, CSB-E, and CSB-D), and the conserved sequence blocks (CSB-1, CSB-2, and CSB-3) (Pesole, Gissi, Chirico, & Saccone, 1999; Sbisà, Tanzariello, Reyes, Pesole, & Saccone, 1997). However, the nucleotide sequence, length, and number of each motif all vary considerably among vertebrate classes and even within a class (Rand, 1993; Ruokonen & Kvist, 2002; Shaffer & McKnight, 1996). In invertebrates, especially in anthozoans, similar CR structures are not clearly defined, but some similar features have been observed. In *A. te- nuis*, the candidate mitochondrial CR contains repetitive elements and has the potential to form the typical secondary structures of vertebrate D–loops (van Oppen et al., 2000). In *Pocillopora*, the candidate mitochondrial CR exhibits three characteristics: large size, variability in nucleotide composition, and tandemly arranged repeated sequences (Flot & Tillier, 2007). With the exception of the repeated sequences, the rest of these characteristics were all observed in the 789-bp noncoding region identified here. In addition, the special CR "G(A)nT" motif that is present in *S. gregaria* and *C. paralleus* (Zhang, Szymura, & Hewitt, 1995) was also observed in the 789-bp noncoding region (Figure 4). In all organisms except primates, A + T > G + C in the CR domains (Sbisà et al., 1997), which was also observed in the 789-bp noncoding region. Replication of mitogenome has been shown to initiate near hairpin structures (Clayton, 2000). In *Drosophila*, the origin of replication is located near a conserved stem-loop structure (Saito, Tamura, & Aotsuka, 2005). In this study, the secondary structure of the 789-bp noncoding fragment presented several similar stem-loop structures (Figure 5), which is a characteristic feature of Q in vertebrates (Clayton, 1991). In short, while no repetitive elements were

![Figure 4](image-url)
observed, the 789-bp noncoding region exhibited typical CR structures observed in other invertebrates. Considering the primitiveness of sea anemones in evolution, there must be some primitive features maintained. Therefore, we concluded that the 789-bp noncoding sequence was a candidate CR (that we defined as “CR-like”) that has not been reported in other actinarians. This would be a unique and/or primitive mitogenomic feature for Bolocera sp., which is in agreement with the CR differences observed within invertebrates. As no other obvious adjusting elements were detected in the Bolocera sp. mitogenome, this special CR-like element may play an important role in regulating the transcription and replication of the mitogenome in the extreme environment of the deep sea.

3.7 Phylogenetic analyses

To investigate the relationships among anthozoan, we performed phylogenetic analysis based on the nucleotide datasets of the 13 mitochondrial energy pathway protein-coding genes (Figure 6). All of the topologies showed a high support value. The phylogenetic tree of Anthozoa in this study showed that Bolocera sp. was clustered in the Actiniaria clade and had the closest relationship with Bolocera tue- diae. The Actiniaria represented a monophyletic group and together with the sister groups Zoanthidea, Antipatharia, and Scleractinia clustered with the Hexacorallia group, which supported the classification of anthozoan (Daly, Fautin, & Cappola, 2003). Based on seven mitochondrial protein-coding genes, Brugler and France (2007) found that

![FIGURE 5](image1.png) The potential stem-loop structures in the 789-bp noncoding “CR-like” sequence of Bolocera sp.

![FIGURE 6](image2.png) Phylogenetic tree of species of Anthozoa based on ML analysis of the nucleotide datasets. Geodia neptuni was selected as outgroup. Bootstrap support values are shown on the nodes.
Table 3 Selective pressure analyses of the mitochondrial genes of sea anemones

Gene	Branch-site model	Model compared	2ΔlnL	LRT p-value	Positive sites					
ATP6	Model A	−3,368.2077	Site class	2a	2b	Model A versus Model A null	2.1423	.1433	31 L 0.994**	42 N 0.991**
	Model A null	−3,369.2788	Proportion	0.0000	0.0000	0.9291	0.0709			
			Background ω	0.0719	1.0000	0.0719	1.0000			
			Foreground ω	0.0719	1.0000	999.0000	999.0000			
ND5	Model A	−9,573.8530	Site class	2a	2b	Model A versus Model A null	0.3829	.5360	570 S 0.978*	
	Model A null	−9,574.0445	Proportion	0.0000	0.0000	0.9074	0.0926			
			Background ω	0.0815	1.0000	0.0815	1.0000			
			Foreground ω	0.0815	1.0000	26.8046	26.8046			

Branch model

Trees	Branch model	Model	In L	Estimates of parameters	Model compared	2ΔlnL	LRT p-value
NJ	Model 1	−58,898.9152	ω0=0.0968 ω1=0.0795	Model 1 versus Model 0	477.4924	.0000	
	Two-ratio	−59,137.6137	ω0=0.0968 ω1=0.0795	Two-ratio versus Model 0	0.0954	.9534	
	Model 0	−59,137.6614	ω0=0.0968				
ML	Model 1	−58,898.6539	ω0=0.0968 ω1=0.0796	Model 1 versus Model 0	478.0150	.0000	
	Two-ratio	−59,137.6137	ω0=0.0968 ω1=0.0796	Two-ratio versus Model 0	0.0954	.9534	
	Model 0	−59,137.6614	ω0=0.0968				

*posterior probability >95%; **posterior probability >99%.
zoanthid was at the base of the hexacoral clade, and the antipatharian clade had high support as a sister-taxon to the scleractinian clade. However, in this study, based on the 13 protein-coding genes, the antipatharians were a sister-group to zoanthids, with a closer relationship to actinarians, while scleractinians were located at the base of the hexacoral clade, which was identical to results obtained based on 18 S rRNA (Berntson, France, & Mullineaux, 1999). These findings also corroborated earlier studies of sea anemone phylogenetic relationships based on short mitochondrial and nucleotide sequences (Daly, Chaudhuri, Gusmão, & Rodríguez, 2008; Emblem et al., 2014).

3.8 | Positive selection analysis

The selective pressures imposed on the mitogenomes of sea anemones were evaluated using CODEML from the PAML package (Table 3). Two different tree-building methods were used because the CODEML likelihood analysis is sensitive to tree topology. There were no significantly different \(\alpha \) ratios between branches of genus Bolocera and other species when we set the genus Bolocera as a foreground branch using the two-ratio model \((p > .05) \). In the analyses of individual genes, we found that three positive selection sites \((31 \text{ L and } 42 \text{ N in ATP6, } 570 \text{ S in NDS}) \) showed BEB values >0.95 using branch-site models.

The NADH dehydrogenase complex, which likely functions as a proton pump \((\text{da Fonseca et al., 2008}) \) and influences metabolic performance \((\text{Hassanin et al., 2009}) \), has been considered important in the adaptive evolution of the mammalian mitogenome \((\text{da Fonseca et al., 2008; Xu et al., 2007}) \). ND2 and ND6 were found to be under positive selection pressure in a mitogenome analysis of Chinese snub-nosed monkeys, which is suggestive of adaptive changes related to high altitude and cold weather stress \((\text{Yu et al., 2011}) \). ND6 was found to be under positive selection pressure in Tibetan horses living at high altitude \((\text{Ning et al., 2010}) \). ATP synthase is directly associated with the produce of ATP \((\text{Mishmar et al., 2003; Weiss, Friedrich, Hofhaus, & Preis, 1991; Zhou, Shen, Irwin, Shen, & Zhang, 2014}) \). It has been suggested that variation in ATPase proteins could result in significant variation in mitochondrial adaptation to different environments \((\text{Mishmar et al., 2003; Wallace, 2007}) \). Members of the Caprini tribe that live in high-altitude mountain regions show higher levels of adaptive evolution in the ATP synthase complex \((\text{Hassanin et al., 2009}) \). The positive selection of ATP6 and NDS observed in the present study could help us to better understand the adaptation of organisms to the deep-sea environment.

4 | CONCLUSION

This study characterized the complete mitogenome of a deep-sea benthos species, *Bolocera* sp., which was speculated to be a new species of Bolocera. The study provided the following conclusions about deep-sea organisms: (1) These organisms have monophyletic genome characteristics similar to those of shallow sea organisms: The basic gene content, order, and orientation of the species were identical to most of those reported homologous species, and phylogenetic analyses indicated that Bolocera sp. is closely related to Bolocera *tuediae* and belongs to the Actiniidae family. (2) Several genes experienced positive selection: Residues 31 L and 42 N in ATP6 and 570 S in NDS were inferred to be positively selected sites for the branch of Bolocera sp. and *B. tuediae*, which may indicate that the genes were under positive selection pressure. (3) Novel genetic structures appeared: Some novel/unique gene features were observed in the mitogenomes of deep-sea organisms compared with those of shallow sea species. In the mitogenome of *Bolocera* sp., two transposon-like noncanonical ORFs and a CR-like structure were detected. These novel genetic structures of *Bolocera* sp. may provide some clues regarding the adaptation to deep-sea conditions. This study may shed light on the mitogenomic adaptation of sea anemones that inhabit the deep-sea environment.

ACKNOWLEDGMENTS

This work was financially supported by the Special Fund for Strategic Pilot Technology Chinese Academy of Sciences (Grant No. XDA11030203-2), the National Science Fund for Excellent Young Scholars (Grant No. 41322038); the National Natural Science Foundation of China (Grant/ Award Number: 41576145, 41606170); and GuangDong Oceanic and Fisheries Science and Technology Foundation of \((\text{A201601D03}) \).

CONFLICT OF INTEREST

The authors report no conflict of interests. The authors alone are responsible for the content and the writing of the article.

REFERENCES

Alexandre, H., Nelly, L., & Jean, D. (2005). Evidence for multiple reversals of asymmetric mutational constraints during the evolution of the mitochondrial genome of metazoa, and consequences for phylogenetic inferences. Systematic Biology, 54, 277–298.
Aquadro, C. F., & Greenberg, B. D. (1983). Human mitochondrial DNA variation and evolution: Analysis of nucleotide sequences from seven individuals. Genetics, 103, 287–312.
Beagley, C. T., Okada, N. A., & Wolstenholme, D. R. (1996). Two mitochondrial group I introns in a metazoan, the sea anemone *Meditridium senile*: One intron contains genes for subunits 1 and 3 of NADH dehydrogenase. Proceedings of the National Academy of Sciences of the United States of America, 93, 5619–5623.
Beagley, C. T., Okimoto, R., & Wolstenholme, D. R. (1998). The mitochondrial genome of the sea anemone *Meditridium senile* (Cnidaria): Introns, a paucity of tRNA genes, and a near-standard genetic code. Genetics, 148, 1091–1108.
Beagley, C. T., & Wolstenholme, D. R. (2013). Characterization and localization of mitochondrial DNA-encoded tRNAs and nuclear DNA-encoded tRNAs in the sea anemone *Meditridium senile*. Current Genetics, 59, 139–152.
Beaton, M. J., Roge, A. J., & Cavalier-Smith, T. (1998). Sequence analysis of the mitochondrial genome of *Sarcophyton glaucum*: Conserved gene order among octocorals. Journal of Molecular Evolution, 47(6), 697–708.
Bernt, M., Brabant, A., Schierwater, B., & Stadler, P. F. (2013). Genetic aspects of mitochondrial genome evolution. Molecular Phylogenetics and Evolution, 69, 328–338.
Berntson, E. A., France, S. C., & Mullineaux, L. S. (1999). Phylogenetic relationships within the class Anthozoa (Phylum Cnidaria) based on...
nuclear 18S rDNA sequences. Molecular Phylogenetics and Evolution, 13, 417–433.
Blot, M. (1994). Transposable elements and adaptation of host bacteria. Genetics, 3, 3–5.
Boore, J. L. (1999). Animal mitochondrial genomes. Nucleic Acids Research, 27, 1767–1780.
Boore, J. L., & Brown, W. M. (1995). Complete sequence of the mitochondrial DNA of the annelid worm Lumbricus terrestris. Genetics, 141(1), 305–319.
Brown, V. A., Brooke, A., Fordyce, J. A., & McCracken, G. F. (2011). Genetic analysis of populations of the threatened bat Pteropus marnianus. Conservation Genetics, 12, 933–941.
Brugler, M. R., & France, S. C. (2007). The complete mitochondrial genome of the black coral Chryopathes forosma (Cnidaria: Anthozoa: Antipatharia) supports classification of antipatharians within the subclass Hexacorallia. Molecular Phylogenetics and Evolution, 42, 776–788.
Casacuberta, E., & González, J. (2013). The impact of transposable elements in environmental adaptation. Molecular Ecology, 22(6), 1503–1517.
Chénais, B., Caruso, A., Hard, S., & Casse, N. (2012). The impact of transposable elements on eukaryotic genomes: From genome size increase to genetic adaptation to stressful environments. Gene, 509(1), 7–15.
Clary, D. O., & Wolstenholme, D. R. (1985). The mitochondrial DNA molecule of Drosophila yakuba: Nucleotide sequence, gene organization, and genetic code. Journal of Molecular Evolution, 22(3), 252–271.
Clayton, D. A. (1991). Replication and transcription of vertebrate mitochondrial DNA. Annual Review of Cell Biology, 7, 453–478.
Clayton, D. A. (2000). Transcription and replication of mitochondrial DNA. Human Reproduction, 15(Suppl 2), 11–17.
Daly, M., Chaudhuri, A., Gusböck, L., & Rodríguez, E. (2008). Phylogenetic relationships among sea anemones (Cnidaria: Anthozoa: Actiniaria). Molecular Phylogenetics and Evolution, 48, 292–301.
Daly, M., Fautin, D., & Cappola, V. A. (2003). Systematics of the Hexacorallia (Cnidaria: Anthozoa). Zoological Journal of the Linnean Society, 139(3), 419–437.
Edgell, D. R. (2009). Selfish DNA: Homing endonucleases find a home. Current Biology, 19, 115–117.
Emblem, Å., Karlson, B. O., Evertsen, J., & Johansen, S. D. (2011). Mitogenome rearrangement in the cold-water scleractinian coral Lophelia pertusa (Cnidaria, Anthozoa) involves a long-term evolving group I intron. Molecular Phylogenetics and Evolution, 61, 495–503.
Emblem, Å., Okkenhaug, S., Weiss, E. S., Denyer, D. R., Karlson, B. O., Moum, T., & Johansen, S. D. (2014). Sea anemones possess dynamic mitogenome structures. Molecular Phylogenetics and Evolution, 75, 184–193.
Etter, R. J., Rex, M. A., Chase, M. C., & Quattro, J. M. (1999). A genetic dimension to deep-sea biodiversity. Deep Sea Research Part I: Oceanographic Research Papers, 46, 1095–1099.
Feng, Y., Li, Q., Kong, L., & Zheng, X. (2011). DNA barcoding and phylogenetic analysis of Pectinidae (Mollusca: Bivalvia) based on mitochondrial COI and 165 rRNA genes. Molecular Biology Reports, 38, 291–299.
Fernández-Silva, P., Enríquez, J. A., & Montoya, J. (2003). Replication and transcription of mammalian mitochondrial DNA. Experimental Physiology, 88, 41–56.
Flot, J. F., & Tillier, S. (2007). The mitogenome of Pocillopora (Cnidaria: Scleractinia) contains two variable regions: The putative D-loop and a novel ORF of unknown function. Gene, 401, 80–87.
da Fonseca, R. R., Johnson, W. E., O’Brien, S. J., Ramos, M. J., & Antunes, A. (2008). The adaptive evolution of the mammalian mitochondrial genome. BMC Genomics, 9, 119.
Fox, J., Brugler, M., Siddall, M. E., & Rodríguez, E. (2016). Multiplexed pyrosequencing of nine sea anemone (Cnidaria: Anthozoa: Hexacorallia: Actiniaria) mitogenomes. Mitochondrial DNA. Part A, DNA mapping, sequencing, and analysis, 27, 2826–2832.
Girard, L., & Freeling, M. (1999). Regulatory changes as a consequence of transposon insertion. Genesis, 25(4), 291–296.
Green, D. R., & Reed, J. C. (1998). Mitochondria and apoptosis. Science, 281, 1309–1312.
Gvoždík, V., Moravec, J., Klütsch, C., & Kotlík, P. (2010). Phylogeography of the middle eastern tree frogs (Hyla, Hylidae, Amphibia) as inferred from nuclear and mitochondrial DNA variation, with a description of a new species. Molecular Phylogenetics and Evolution, 55, 1146–1166.
Hassanin, A., Ropiquet, A., Couthoux, A., & Cruaud, C. (2009). Evolution of the mitochondrial genome in mammals living at high altitude: New insights from a study of the tribe Caprini (Bovidae, Antilopinae). Journal of Molecular Evolution, 68, 293–310.
Jiang, L., Wang, G., Tan, S., Gong, S., Yang, M., Peng, Q., … Zou, F. (2013). The complete mitochondrial genome sequence analysis of Tibetan argali (Ovis ammon hodgsoni): Implications of Tibetan argali and Gansu argali as the same subspecies. Gene, 521, 24–31.
Johansen, S. D., Emblem, Å., Karlson, B. O., Okkenhaug, S., Hansen, H., Moum, T., … Seternes, O. M. (2010). Approaching marine bioprospecting in hexacorals by RNA deep sequencing. New Biotechnology, 27, 267–275.
Kaval, E., & Lavrov, D. V. (2008). The mitochondrial genome of Hydra oligactis (Cnidaria, Hydrozoa) sheds new light on animal mtDNA evolution and cnidianian phylogeny. Gene, 410(1), 177–186.
Keskin, E., & Can, A. (2009). Phylogenetic relationships among four species and a sub-species of Mulilidae (Actinopterygii: Perciformes) based on mitochondrial cytochrome B, 125 rRNA and cytochrome oxidase II genes. Biochemical Systematics and Ecology, 37, 653–661.
Lavrov, D. V., Brown, W. M., & Boore, J. L. (2000). A novel type of RNA editing occurs in the mitochondrial tRNAs of the centipede Lithobius forficatus. Proceedings of the National Academy of Sciences of the United States of America, 97, 13738–13742.
Lei, R. H., Shore, G. D., Brenneman, R. A., Engberg, S. E., Sitzmann, B. D., Bailey, C. A., … Louis, E. E. Jr (2010). Complete sequence and gene organization of the mitochondrial genome for Hubbard’s sportive lemur (Lepilemur hubbardorum). Gene, 464, 44–49.
Liao, F., Wang, L., Wu, S., Li, Y. P., Zhao, L., Huang, G. M., … Li, M. G. (2010). The complete mitochondrial genome of the fall webworm, Hypantria cunea (Lepidoptera: Arctiidae). International Journal of Biological Sciences [Electronic Resource], 6(2), 172–186.
Lowe, T. M., & Eddy, S. R. (1997). tRNAscan-SE: A program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Research, 25, 955–964.
Luo, Y., Gao, W., Gao, Y., Tang, S., Huang, Q., Tan, X., … Huang, T. (2008). Mitochondrial genome analysis of Ochotona curzoniae and implication of cytochrome c oxidase in hypoxic adaptation. Mitochondrion, 8, 352–357.
Ma, H., Ma, C., Li, C., Lu, J., Zou, X., Gong, Y., … Xia, L. (2014). First mitochondrial genome for the red crab (Charybdis feria) with implication of phylogenomics and population genetics. Scientific Reports, 5, 11524.
Ma, H., Ma, C., Li, X., Xu, Z., Feng, N., & Ma, L. (2013). The complete mitochondrial genome sequence and gene organization of the mud crab (Synilla paramamosain) with phylogenetic consideration. Gene, 519, 120–127.
Marshall, H. D., & Baker, A. J. (1997). Structural conservation and variation in the mitochondrial control region of fringilline finches (Fringillidae) and the greenfinch (Carduelis chloris). Molecular Biology and Evolution, 14, 173–184.
Medina, M., Collins, A. G., Takaoka, T. L., Kuehl, J. V., & Boore, J. L. (2006). Naked corals: Skeleton loss in scleractinia. Proceedings of the National Academy of Sciences of the United States of America, 103(24), 9096–9100.
Miller, A. D., Murphy, N. P., Burrage, C. P., & Austin, C. M. (2005). Complete mitochondrial DNA sequences of the decapod crustaceans Pseudocarcinus gigas (Menippeidae) and Macrobranchium rosenbergii (Palaemonidae). Marine Biotechnology, 7, 339–349.
Mishmar, D., Ruiz-Pesin, E., Golik, P., Macaulay, V., Clark, A. G., Hosseini, S., … Wallace, D. C. (2003). Natural selection shaped regional mtDNA variation in humans. PNAS, 100, 171–176.
