On multi-symmetric functions and transportation polytopes

Eddy Pariguan and Jhoan Sierra V

August 3, 2020

Abstract

We present a study of the transportation polytopes appearing in the product rule of elementary multi-symmetric functions introduced by F. Vaccarino.

Introduction

The classical transportation problems in operation research arise from the problem of transporting goods from a set of factories, and a set of consumer centers. Assuming the total supply of the set of factories equals to the total demand of consumer centers, we can optimize the cost of transporting goods (see [4, 6, 7]). Transportation polytopes have an interest in discrete mathematics and also arise naturally in optimization and statistics (see [5, 9, 15, 17]).

A transportation polytope consists of all tables of non-negative real numbers that satisfy certain equations. In this work we only consider the well-known subfamily, the classical transportation polytopes in just two indices, the 2-way transportation polytopes and we use the notation and terminology introduced by Jesus A. De Loera and Edward D. Kim in [2].

Our main motivation comes from the study of the product rule of elementary multi-symmetric functions introduced by F. Vaccarino in [14] and their relationships with transportation polytopes. The classic product rule of multi-symmetric functions and its respective generalization to the quantum case introduced by Diaz and Pariguan in [3], both have an unexplored underlying structure of transportation polytopes. The main goal of this work, see section 3, is to present a first combinatorial description of this structure in the classical case.
1 Review of multi-symmetric functions

In this section, we present a short introduction to elementary multi-symmetric functions. Fix a characteristic zero field \mathbb{K}. Consider the action of the symmetric group S_n on \mathbb{K}^n by permutation of vector entries. The quotient space \mathbb{K}^n/S_n is the configuration space of n-unlabeled points with repetitions in \mathbb{K}. Polynomials functions on \mathbb{K}^n/S_n may be identified with the algebra $\mathbb{K}[x_1, \ldots, x_n]^{S_n}$ of S_n invariant polynomials in $\mathbb{K}[x_1, \ldots, x_n]$. It is well-known that \mathbb{K}^n/S_n is an n-dimensional affine space; indeed we have an isomorphism of algebras

$$\mathbb{K}[x_1, \ldots, x_n]^{S_n} \equiv \mathbb{K}[e_1, \ldots, e_n],$$

where $\alpha \in [n] = \{1, 2, \ldots, n\}$ and e_α is the elementary symmetric polynomial determined by the identity

$$\prod_{i=1}^{n}(1 + x_i t) = \sum_{\alpha=0}^{n} e_\alpha(x_1, \ldots, x_n) t^\alpha.$$

If we consider polynomial functions over $(\mathbb{K}^d)^n/S_n$, we obtain the ring of multi-symmetric functions, also called the ring of vector symmetric functions or MacMahon’s symmetric functions [8], which are given by

$$\mathbb{K}[x_{11}, \ldots, x_{1d}, x_{22}, \ldots, x_{2d}, \ldots, x_{nd}]^{S_n}.$$

We will denote by $\mathbb{K}[(\mathbb{K}^d)^n]^{S_n}$ to the ring $\mathbb{K}[x_{11}, \ldots, x_{nd}]^{S_n}$. The following results due to F. Vaccarino.

Fix $p, n, d \in \mathbb{N}^+$. Let y_1, \ldots, y_d and t_1, \ldots, t_d be independent and commutative variables in \mathbb{K}. For $\alpha = (\alpha_1, \ldots, \alpha_p) \in \mathbb{N}^p$ we use the following notation

$$|\alpha| = \sum_{i=1}^{p} \alpha_i, \quad t^\alpha = \prod_{i=1}^{p} t_1^{\alpha_i}.$$

Given a polynomial $f \in \mathbb{K}[y_1, \ldots, y_d]$ and $i \in [n]$, we denote by $f(i) = f(x_{i1}, \ldots, x_{id})$ to the polynomial obtained by replacing each appearance of y_j in f by x_{ij}, for $j \in [d]$.

Definition 1. Fix $\alpha \in \mathbb{N}^p$ such that $|\alpha| \leq n$ and $f = (f_1, \ldots, f_p) \in \mathbb{K}[y_1, \ldots, y_d]^p$. The multisymmetric functions $e_\alpha(f) \in \mathbb{K}[(\mathbb{K}^d)^n]^{S_n}$, are given by the identity

$$\prod_{i=1}^{n}(1 + f_1(i)t_1 + f_2(i)t_2 + \cdots + f_p(i)t_p) = \sum_{|\alpha| \leq n} e_\alpha(f) t^\alpha.$$

The following result provide an explicit formula for the product rule of multi-symmetric functions
Theorem 2. Fix $p, q, n \in \mathbb{N}^+$, $f \in \mathbb{K}[y_1, \ldots, y_d]^p$ and $g \in \mathbb{K}[y_1, \ldots, y_d]^q$. Let $\alpha \in \mathbb{N}^p$ and $\beta \in \mathbb{N}^q$ be such that $|\alpha|, |\beta| \leq n$, then we have

$$e_\alpha(f)e_\beta(g) = \sum_{\gamma \in L(\alpha, \beta, n)} e_\gamma(f, g, fg),$$

where:

1. $(f, g, fg) = (f_1, \ldots, f_p, g_1, \ldots, g_q, f_1g_1, \ldots, f_1g_q, f_2g_1, \ldots, f_2g_q, \ldots, f_pg_1, \ldots, f_pg_q)$.

2. $L(\alpha, \beta, n)$ is the set of matrices $\gamma \in \text{Map}([0] \cup [p] \times [0] \cup [q], \mathbb{N})$ such that
 - $\gamma_{00} = 0$,
 - $|\gamma| = \sum_{i=0}^p \sum_{j=0}^q \gamma_{ij} \leq n$,
 - $\sum_{j=1}^q \gamma_{ij} = \alpha_i$ for $i \in [p]$,
 - $\sum_{i=1}^p \gamma_{ij} = \beta_j$ for $j \in [q]$.

Graphically, a matrix γ is represented as

$$\begin{array}{cccc}
\beta_1 & \beta_2 & \beta_3 & \beta_q \\
\uparrow & \uparrow & \uparrow & \cdots & \uparrow \\
0 & \gamma_{01} & \gamma_{02} & \gamma_{03} & \cdots & \gamma_{0q} \\
\gamma_{10} & \gamma_{11} & \gamma_{12} & \gamma_{13} & \cdots & \gamma_{1q} & \rightarrow & \alpha_1 \\
\gamma_{20} & \gamma_{21} & \gamma_{22} & \gamma_{23} & \cdots & \gamma_{2q} & \rightarrow & \alpha_2 \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
\gamma_{p0} & \gamma_{p1} & \gamma_{p2} & \gamma_{p3} & \cdots & \gamma_{pq} & \rightarrow & \alpha_p \\
\end{array}$$

where the arrows $\rightarrow\uparrow$ represent, respectively, row and column sums and the matrix γ will be identify with the vector

$$\vec{\gamma} = (\gamma_{10}, \cdots, \gamma_{p0}, \gamma_{11}, \cdots, \gamma_{pq}, \gamma_{1q}, \cdots, \gamma_{2q}, \cdots, \gamma_{p1}, \cdots, \gamma_{pq}).$$

The main goal of this work is the study of the combinatorial structure underlying in the set of matrices $L(\alpha, \beta, n)$ introduced in Theorem 2.

Example 3. For $n = 3$, $\alpha = (2, 1)$, $\beta = (1, 2)$, $f = (y_1, y_2)$ and $g = (y_1y_3, y_2)$, we have the following identity
\[e_{(2,1)}(y_1, y_2)e_{(1,2)}(y_1y_2, y_3) = \sum_{\gamma} e_{\gamma}(y_1, y_2, y_1y_2, y_3, y_1y_2y_3, y_1y_2, y_2^2) \]

where \(\gamma = (\gamma_{10}, \gamma_{20}, \gamma_{01}, \gamma_{11}, \gamma_{12}, \gamma_{21}, \gamma_{22}) \in \mathbb{N}^8 \) is such that \(|\gamma| \leq 3 \) and:

\[
\begin{align*}
\gamma_{10} + \gamma_{11} + \gamma_{12} &= 2, \\
\gamma_{20} + \gamma_{21} + \gamma_{22} &= 1, \\
\gamma_{01} + \gamma_{11} + \gamma_{21} &= 1, \\
\gamma_{20} + \gamma_{12} + \gamma_{22} &= 2.
\end{align*}
\]

Finding the solutions we obtain the vectors

\((0, 0, 0, 0, 1, 1, 0, 1), (0, 0, 0, 0, 2, 1, 0) \)

then we have that

\[
e_{(2,1)}(y_1, y_2)e_{(1,2)}(y_1y_2, y_3) = e_{(1,1,1)}(y_1^2y_3, y_1y_2y_3, y_2^2) + e_{(2,1)}(y_1^2y_3, y_1y_2y_3, y_2^2).
\]

2 Classical transportation polytopes

In this section, we review a few needed notions on classical 2-way transportation polytopes and we assume the reader to be somewhat familiar with De Loera and Kim’s work \[2\].

Definition 4. Fix \(p, q \in \mathbb{N} \) and let \(u \in \mathbb{R}^p_{\geq 0}, v \in \mathbb{R}^q_{\geq 0} \) be two vectors. The transportation polytope \(P \) of size \(p \times q \) defined by the vectors \(u \) and \(v \) is the convex polytope on \(p \times q \) variables \(x_{ij} \in \mathbb{R}_{\geq 0} \), where \(i \in [p] \) and \(j \in [q] \), which satisfy the \(p + q \) equations given by:

\[
\sum_{j=1}^{q} x_{ij} = u_i \text{ and } \sum_{i=1}^{p} x_{ij} = v_j. \tag{1}
\]

The vectors \(u \) and \(v \) are called marginals vectors or margins vectors of the polytope \(P \).

These polytopes are called transportation polytopes because they model the transportation of goods from \(p \) supply locations to \(q \) demand locations.

Example 5. Let us consider the transportation of goods for 3-supply locations to 3-demand location with supplying vector \(u = (5, 4, 3) \) and demanding vector \(v = (6, 2, 4) \). A point \(x \) in the transportation polytope \(P \) of size \(3 \times 3 \) defined by the margins \(u \) and \(v \) is given by

\[
x = \begin{bmatrix} x_{11} & x_{12} & x_{13} \\ x_{21} & x_{22} & x_{23} \\ x_{31} & x_{32} & x_{33} \end{bmatrix} = \begin{bmatrix} 5 & 4 & 3 \\ 1 & 1 & 1 \\ 0 & 2 & 0 \\ 1 & 1 & 2 \end{bmatrix} \rightarrow \begin{bmatrix} 6 \\ 2 \\ 4 \end{bmatrix}
\]

where the horizontal and vertical arrows represent, respectively, row and column sums.
Lemma 6. Let P be a 2-way transportation polytope of size $p \times q$ defined by the margins $u \in \mathbb{R}^p_{\geq 0}$ and $v \in \mathbb{R}^q_{\geq 0}$. The polytope P is not empty if and only if

$$\sum_{i \in [p]} u_i = \sum_{j \in [q]} v_j.$$

This proof uses the northwest corner rule algorithm (see [10]).

The equations given in (1) and the inequalities $x_{ij} \geq 0$ can be expressed in matrix form as follows

$$P = \{ x \in \mathbb{R}^{pq} : Ax = b, x \geq 0 \},$$

where A is a matrix of size $(p + q) \times pq$ and $b \in \mathbb{R}^{p+q}$. The matrix A is called the constraint matrix.

Transportation polytopes have a relationship with complete bipartite graph $K_{p,q}$ ([11, 16]) of two sets of vertices of U and V of cardinality p and q, respectively, when we consider U the supply and V is the demand.

Definition 7. The graph $K_{p,q}$ is the complete bipartite graph consisting of two sets U and V of cardinality p and q, respectively such that for any $i \in U$ and $j \in V$ there is an edge e_{ij} connecting them.

It is well known that the constraint matrix for a $p \times q$ transportation polytope is the vertex-edge incidence matrix of the complete bipartite graph $K_{p,q}$.

Example 8. Consider the 3×3 transportation polytope P defined by $u = (5, 4, 3)$ and $v = (6, 2, 4)$, then the complete bipartite graph $K_{3,3}$ is given by:

We also have that $P = \{ x \in \mathbb{R}^9 : Ax = b, x \geq 0 \}$, where the constraint matrix A is given as follows

$$A = \begin{bmatrix}
1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 \\
1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1
\end{bmatrix} \quad \text{and} \quad b = \begin{bmatrix}
5 \\
4 \\
3 \\
6 \\
2 \\
4
\end{bmatrix}.$$

In the Example the solution of $Ax = b$ can be expressed as $x^t = (4, 1, 1, 0, 2, 0, 1, 1, 2)$.
3 Multi-symmetric functions and transportation polytopes

The product rule of elementary multi-symmetric functions given in Theorem 2 involve a set of matrices with some remarkable properties. In this section we will provide some characterizations of the set $L(\alpha, \beta, n)$ in terms of transportation polytopes. In order to simplify our notation we will denote by L to the set $L(\alpha, \beta, n)$ (see Definition 10) and we can think of $\gamma \in L$ as natural points of transportation polytopes P.

In particular, the study of integer points of transportation polytopes is very popular in combinatorics, a lot of mathematical objects rich in combinatorial properties appear when we study integer points in polytopes such as magic squares [1], sudoku arrangements [13], and others.

Definition 9. Fix $p, q, N \in \mathbb{N}$ and let $u \in \mathbb{N}^{p+1}$, $v \in \mathbb{N}^{q+1}$ be two vectors such that $u_0 = N - \sum_{i=1}^{p} u_i$ and $v_0 = N - \sum_{i=1}^{q} v_i$. The transportation polytope P_N of size $p+1 \times q+1$ defined by the vectors u and v is the convex polytope on $p+1 \times q+1$ variables $x_{ij} \in \mathbb{R}_{\geq 0}$, where $i \in \{0\} \cup [p]$ and $j \in \{0\} \cup [q]$, which satisfy the $p+q+2$ equations given by:

$$\sum_{j=0}^{q} x_{ij} = u_i \quad \text{and} \quad \sum_{i=0}^{p} x_{ij} = v_j.$$

(3)

Definition 10. Fix $p, q, n \in \mathbb{N}$, $\alpha \in \mathbb{N}^p$ and $\beta \in \mathbb{N}^q$. We denote by L the set of matrices $\gamma \in \operatorname{Map}(\{0\} \cup [p] \times \{0\} \cup [q], \mathbb{N})$ which satisfy the equations

- $\gamma_{00} = 0$.

- $|\gamma| = \sum_{i=0}^{p} \sum_{j=0}^{q} \gamma_{ij} \leq n$.

- $\sum_{j=1}^{q} \gamma_{ij} = \alpha_i$ for $i \in [p]$.

- $\sum_{i=1}^{p} \gamma_{ij} = \beta_j$ for $j \in [q]$.

Example 11. For $\alpha = (2, 1)$, $\beta = (1, 2)$ and $n = 3$, the set L is given by:

$$L = \left\{ \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 2 \\ 0 & 1 & 0 \end{bmatrix} \right\}.$$
We denote by L_N the subset of L given by:

$$L_N = \{\gamma \in L : |\gamma_{ij}| = N, \text{ for some } N \leq n\} \quad (4)$$

The following result provides some combinatorial properties of L_N.

Theorem 12. The following identities holds

1. $L_N \neq \emptyset$ if $\max\{|\alpha|, |\beta|\} \leq N \leq |\alpha| + |\beta|$.

2. $L = \bigsqcup_{N=\max\{|\alpha|, |\beta|\}}^{n} L_N$, if $n < |\alpha| + |\beta|$.

3. $L = \bigsqcup_{N=\max\{|\alpha|, |\beta|\}}^{|\alpha| + |\beta|} L_N$, if $n \geq |\alpha| + |\beta|$.

Proof. Fix N such that $\max\{|\alpha|, |\beta|\} \leq N \leq |\alpha| + |\beta|$. We are going to construct an element γ such that $\gamma \in L_N$ as follows: Let $\gamma \in L$ such that $(\gamma_{01}, \gamma_{02}, \ldots, \gamma_{0q})$ be a q-weak composition of α_0 which satisfy $\gamma_{0j} \leq \beta_j \forall j \in [q]$, and let $(\gamma_{10}, \gamma_{20}, \ldots, \gamma_{p0})$ be a p-weak composition of β_0 which satisfy $\gamma_{i0} \leq \alpha_i \forall i \in [p]$.

Denote by $\beta_j^{(k)} := \beta_j - \sum_{i=1}^{k-1} \gamma_{ij}$, for $(k, j) \in [p] \times [q]$ and let $(\gamma_{11}, \gamma_{12}, \ldots, \gamma_{1q})$ be a q-weak composition of $\alpha_1 - \gamma_{10}$ which satisfy $\gamma_{1j} \leq \beta_j^{(1)}$. Analogously we consider $(\gamma_{21}, \gamma_{22}, \ldots, \gamma_{2q})$ a q-weak composition of $\alpha_2 - \gamma_{20}$ such that $\gamma_{2j} \leq \beta_j^{(2)}$. Let’s go through this process until we get $(\gamma_{p1}, \gamma_{p2}, \ldots, \gamma_{pq})$ a q-weak composition of $\alpha_p - \gamma_{p0}$ with $\gamma_{pj} \leq \beta_j^{(p)}$ and finally under this construction the reader can check that $\gamma_{ij} = \gamma \in L_N$, therefore $L_N \neq \emptyset$.

It is not difficult to check statements 2 and 3. \qed

Example 13. The set L defined by vectors $\alpha = (1, 1)$, $\beta = (2, 1)$ and $n = 4$ is given by

$$L = \left\{ \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 2 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 2 & 0 \\ 1 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 0 \end{bmatrix} \right\}.$$

We have that $L = \bigsqcup_{N=3}^{4} L_N$, where L_3 and L_4 are given by

$$L_3 = \left\{ \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \right\},$$

$$L_4 = \left\{ \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \right\}.$$
and

\[
L_4 = \left\{ \begin{bmatrix} 0 & 2 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 2 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix} \right\}.
\]

The following result shows that \(L_N \) is a set of natural points in some transportation polytope.

Theorem 14. There is a transportation polytope \(P_M \) such that \(L_N \subset P_M \).

Proof. Let \(\gamma \in L_N \), then \(\gamma \) satisfy the equations given in Definition 10. Under the assumptions of Definition 9, consider the transportation polytope \(P_M \) defined by margins \(\alpha \in \mathbb{N}^{p+1} \) and \(\beta \in \mathbb{N}^{q+1} \) such that

- \(\alpha = (\alpha_0, \alpha_1, \ldots, \alpha_p) \) with \(\alpha_0 = M - \sum_{i=1}^{p} \alpha_i \).
- \(\beta = (\beta_0, \beta_1, \ldots, \beta_q) \) with \(\beta_0 = M - \sum_{i=1}^{q} \beta_i \).

It should be clear that \(\gamma \in P_M \) if \(M = N \). \(\square \)

We make a few remarks regarding to Theorem 14. Elements \(\gamma \in L_N \) are such that \(|\gamma| = N\) and \(\gamma \in L(\alpha, \beta, n) = L \), hence for \(p, q, n \in \mathbb{N}^+ \), \(\alpha \in \mathbb{N}^p \) and \(\beta \in \mathbb{N}^q \), \(\gamma \) satisfy the conditions of Theorem 2. To find the transportation polytope \(P_M \) such that \(L_N \subset P_M \), we consider the transportation polytope defined by margins \(\overline{\alpha}, \overline{\beta} \) which are obtained from \(\alpha \) and \(\beta \) adding new inputs \(\alpha_0, \beta_0 \) satisfying the condition given above. We stress that we will work with the transportation polytope \(P_N \) which follows this previous construction. This previous considerations imply our next result which establishes an example of the transportation polytopes associated with sets \(L_3 \) and \(L_4 \) given in Example 13.

Example 15. Fix \(p = q = 2 \), \(N = 3 \) and consider the vectors \(\overline{\alpha} = (1, 1, 1), \overline{\beta} = (0, 2, 1) \). The transportation polytope \(P_3 \) defined by margins \(\overline{\alpha}, \overline{\beta} \) is given by

\[
P_3 = \left\{ X \in M_{3 \times 3}(\mathbb{R}_{\geq 0}) : \sum_{j=1}^{3} x_{ij} = \overline{\alpha}_i \text{ and } \sum_{i=1}^{3} x_{ij} = \overline{\beta}_j \right\},
\]

and we have \(L_3 \subset P_3 \). If we consider \(X = \begin{bmatrix} 0 & 1 & \frac{1}{2} \\ 0 & \frac{1}{2} & \frac{1}{2} \\ 0 & 1 & 0 \end{bmatrix} \) we have that \(X \in P_3 \) but \(x \notin L_3 \) and therefore \(L_3 \neq P_3 \).
On the other hand, fix \(p = q = 2 \), \(N = 4 \) and consider the vectors \(\overline{\alpha} = (2, 1, 1), \overline{\beta} = (1, 2, 1) \). The transportation polytope \(P_4 \) defined by margins \(\overline{\alpha}, \overline{\beta} \) is given by

\[
P_4 = \left\{ X \in M_{3 \times 3}(\mathbb{R}_{\geq 0}) : \sum_{j=1}^{3} x_{ij} = \overline{\alpha}_i \text{ and } \sum_{i=1}^{3} x_{ij} = \overline{\beta}_j \right\},
\]

and we have \(L_4 \subseteq P_4 \). If we consider \(X = \begin{bmatrix} \frac{1}{2} & 1 & \frac{1}{2} \\ \frac{1}{2} & 0 & \frac{1}{2} \\ 0 & 1 & 0 \end{bmatrix} \) we have that \(X \in P_4 \) but \(X \notin L_4 \) and therefore \(L_4 \neq P_4 \).

It is well known that transportation polytopes \(P \) can be represented in matrix form, therefore transportation polytopes \(P_N \) can be represented in matrix form as well (see Proposition 16). In this case we consider the graph \(K'_{p,q} \) obtained from \(K_{p,q} \) removing the edge \(e_{11} \). Figure 1 shows the graph \(K'_{3,3} \) associated to \(K_{3,3} \).

![Figure 1: \(K'_{3,3} \) graph.](image)

The following result provides the matrix form associated to \(L_N \).

** Proposition 16.** For any \(N \in \mathbb{N} \), each \(L_N \) can be expressed as follows:

\[
L_N = \left\{ x_N \in \mathbb{N}^{(p+1)(q+1) - 1} : Ax_N = b_N \right\},
\]

where \(b_N = (\alpha_0, \alpha_1, \ldots, \alpha_p, \beta_0, \beta_1, \ldots, \beta_q) \) is such that \(\alpha_0 = N - \sum_{i=1}^{p} \alpha_i, \beta_0 = N - \sum_{i=1}^{q} \beta_i \), and \(A \) is the matrix is obtain by following the next construction

1. Let \(B \) be the constraint matrix of \(K'_{p+1,q+1} \), and denote by \(B^i \) the \(i \)-th column of \(B \), for all \(i \).
2. For \(i \in [p] \) the \(i \)-th column \(A^i \) of matrix \(A \) is given by \(A^i = B^{i(q+1)} \).
3. For \(i \in [q] \) we have \(A^{p+i} = B^i \).
4. Last columns of \(A \) are obtained from \(B \) after rearranging in ascended way the remaining columns.
Proof. Let P_N be the transportation polytope such that $L_N \subset P_N$. It should be clear that P_N is an special case of 2-way transportation polytope for any $N \in \mathbb{N}$. Observe that for $\gamma \in P_N$ we have $\gamma_{00} = 0$, then P_N can be expressed in matrix form as follows (see equation (2))

$$P_N = \{x_N \in \mathbb{R}_{\geq 0}^{(p+1)(q+1)-1} : Bx_N = b_N\},$$

where B is the constraint matrix of the graph $K_{p+1,q+1}^p$.

The matrix A obtained from B following the previous construction provides a rearrangement of x_N such that solutions of the equation $Ax_N = b_N$ are vectors $\vec{\gamma}$ which satisfy the conditions of Theorem [2], therefore we have the desired result.

Example 17. For $N = 3$ and $b_N = (1, 1, 1, 0, 2, 1)$, we have that

$$L_3 = \{x_3 \in \mathbb{N}^8 : Ax_N = b_3\},$$

where A is given as follows:

Let B be the constraint matrix of $K_{3,3}^2$ given by:

$$B = \begin{bmatrix}
1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 \\
0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 \\
1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 & 1 & 0 & 0 & 1
\end{bmatrix}.$$

Under the assumptions of Proposition [16], for $p = q = 2$, we have that

- $A^1 = B^3$ and $A^2 = B^6$,
- $A^3 = B^1$ and $A^4 = B^2$,
- The last four columns of A are given by $A^5 = B^4$, $A^6 = B^5$, $A^7 = B^7$ and $A^8 = B^8$.

Then we have

$$B = \begin{bmatrix}
B_1 & B_2 & B_3 & B_4 & B_5 & B_6 & B_7 & B_8 \\
1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 \\
0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 \\
1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 & 1 & 0 & 0 & 1
\end{bmatrix} \rightarrow A = \begin{bmatrix}
B_3 & B_6 & B_1 & B_2 & B_4 & B_5 & B_7 & B_8 \\
0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 1 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 1 & 1 \\
1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 1 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 0 & 1 & 0 & 1
\end{bmatrix}.$$
Our next goal is to describe the structure of \(N \)-matrix of the elements of \(L_N \). To accomplish it, we will require some definitions due to R. Stanley (see [12]). Let \(A = (a_{ij}) \) be an \(N \)-matrix with finitely many nonzero entries, that is \(A \) is an \(N \)-matrix of finite support and we can think of \(A \) as either an infinity matrix or as an \(m \times n \) matrix when \(a_{ij} = 0 \) for \(i > m \) and \(j > n \). Associate with \(A \) a generalized permutation or two-line array \(\omega_A \) given by

\[
\omega_A = \begin{pmatrix} i_1 & i_2 & i_3 & \cdots & i_m \\ j_1 & j_2 & j_3 & \cdots & j_m \end{pmatrix}
\]

such that 1. \(i_1 \leq i_2 \leq \cdots \leq i_m \), 2. if \(i_r = i_s \) and \(r \leq s \) then \(j_r \leq j_s \), and 3. for each pair \((i, j) \), there are exactly \(a_{ij} \) values of \(r \) for which \((i_r, j_r) = (i, j) \). \(A \) determines a unique two-line array \(\omega_A \) satisfying this conditions and conversely any such array corresponds to a unique \(A \). For instance, if \(A = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \end{pmatrix} \), then the corresponding two-line array is \(\omega_A = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 2 \end{pmatrix} \).

Definition 18. Fix \(A \) an \(N \)-matrix and let \(\omega_A \) be the two-line array associate with \(A \). We denote by type\(^1\)(\(\omega_A \)) the vector \((u_1, \cdots, u_m)\) such that the natural number \(k \) appears exactly \(u_k \) times in the first row of \(\omega_A \) and we denote by type\(^2\)(\(\omega_A \)) the vector \((v_1, \cdots, v_m)\) such that the natural number \(k \) appears exactly \(v_k \) times in the second row of \(\omega_A \).

Example 19. If \(\omega_A = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 2 \end{pmatrix} \), then \(\text{type}^1(\omega_A) = (1, 1, 1) \) and \(\text{type}^2(\omega_A) = (0, 2, 1) \).

Fix \(N \in \mathbb{N} \), we denote by \(\omega_N \) the set of two-line array given by

\[
\omega_N = \left\{ \omega_A = \begin{pmatrix} i_1 & i_2 & i_3 & \cdots & i_N \\ j_1 & j_2 & j_3 & \cdots & j_N \end{pmatrix} : (i_1, j_1) \neq (1, 1) \right\}
\]

Theorem 20. There is a bijection between elements of \(L_N \) and elements \(\omega_A \in \omega_N \) such that \(\text{type}^1(\omega_A) = \overline{\alpha} \) and \(\text{type}^2(\omega_A) = \overline{\beta} \).

Proof. Let \(\gamma \in L_N \). Using Stanley’s construction, we can think of \(\gamma \in L_N \) as an \((p+1) \times (q+1)\) matrix when \(\gamma_{ij} = 0 \) for \(i > p+1 \) and \(j > q+1 \), then \(\gamma \) determines a unique two-line array \(\omega_\gamma \) satisfying the previous conditions. It should be clear that there is a injective map \(L_N \to \omega_N \). On the other hand, note that since the elements \(\omega_A \in \omega_N \) are such that \((i_1, j_1) \neq (1, 1) \), it follows that \(a_{11} = 0 \), moreover \(\text{type}^1(\omega_A) = \overline{\alpha} \) and \(\text{type}^2(\omega_A) = \overline{\beta} \), then \(A = (a_{ij}) \) is an element of \(L_N \). Thus we conclude that there is a injective map \(\omega_N \to L_N \).

Example 21. Under the assumptions of Example 13 consider \(L_4 \) given by

\[
11
\]
\[L_4 = \left\{ \begin{bmatrix} 0 & 2 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 2 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 0 \end{bmatrix} \right\}. \]

The set \(\omega_4 \) is given by
\[\omega_4 = \left\{ \begin{pmatrix} 1 & 1 & 2 & 3 \\ 2 & 2 & 1 & 3 \end{pmatrix}, \begin{pmatrix} 1 & 1 & 2 & 3 \\ 2 & 3 & 1 & 2 \end{pmatrix}, \begin{pmatrix} 1 & 1 & 2 & 3 \\ 2 & 3 & 2 & 1 \end{pmatrix} \right\}. \]

It is well known that we can associated with an \(\mathbb{N} \)-matrix \(A \) of finite support a pair \((P, Q)\) of semistandard Young tableau (SSYT) of the same shape using the RSK algorithm. The RSK algorithm is a bijection between \(\mathbb{N} \)-matrices of finite support and ordered pairs \((P, Q)\) of SSYTs of the same shape.

On the other hand, we know that any \(\gamma \in L_N \) is an \(\mathbb{N} \)-matrix of finite support such that row(\(\gamma \)) = \(\overline{\alpha} \) and col(\(\gamma \)) = \(\overline{\beta} \). Using Theorem 20 we can see that RSK algorithm is a bijection between elements \(\gamma \in L_N \) and ordered pairs \((P, Q)\) of SSYTs of the same shape such that type(\(P \)) = col(\(\gamma \)) = \(\overline{\beta} \), type(\(Q \)) = row(\(\gamma \)) = \(\overline{\alpha} \) and the first box of the last row of \(P \) and \(Q \) is not equal to 1 simultaneously. Therefore, we can summarize it as follows.

Corollary 22. There is a bijection between \(L_N \) and ordered pairs \((P, Q)\) of SSYTs of the same shape such that type(\(P \)) = col(\(\gamma \)) = \(\overline{\beta} \), type(\(Q \)) = row(\(\gamma \)) = \(\overline{\alpha} \) and the first box of the last row of \(P \) and \(Q \) is not equal to 1 simultaneously.

Example 23. Let \(\omega_\gamma = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 2 \end{pmatrix} \) be the two-line array associated with \(\gamma = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \end{pmatrix} \).

The ordered pairs \((P, Q)\) of SSYTs are the following
\[\begin{pmatrix} 3 & 2 & 2 \\ 2 & 1 & 3 \end{pmatrix} \]

Acknowledgments

We thank the organizers of “Encuentro Colombiano de Combinatoria (ECCO)”. We are also grateful to Carolina Benedetti, Rafael Daz, Rafael Gonzlez and Felipe Rincn for their suggestions. This work has been supported by Pontificia Universidad Javeriana.

References

[1] Beck, M., Cohen, M., Cuomo, J., Gribelyuk, P. (2003). The number of magic squares, cubes, and hypercubes. The American mathematical monthly, 110(8), 707-717.
[2] De Loera, J. A., Kim, E. D. (2014). Combinatorics and geometry of transportation polytopes: an update. Discrete geometry and algebraic combinatorics, 625, 37-76.

[3] Daz, R., Pariguan, E. (2015). Quantum product of symmetric functions. International Journal of Mathematics and Mathematical Sciences, 2015.

[4] Hitchcock, F. L. (1941). The distribution of a product from several sources to numerous localities. Journal of mathematics and physics, 20 (1-4), 224-230.

[5] Hoffman, A. (2007). What the transportation problem did for me. Annals of Operations Research, 149 (1), 117-120.

[6] Kantorovich, L. V. (2006). On the translocation of masses. Journal of Mathematical Sciences, 133 (4), 1381-1382.

[7] Koopmans, T. C. (1949). Optimum utilization of the transportation system. Econometrica: Journal of the Econometric Society, 136-146.

[8] Macdonald, I. G. (1998). Symmetric functions and Hall polynomials. Oxford university press.

[9] Motzkin, T. S. (1952, January). The multi-index transportation problem. In Bulletin of the American Mathematical Society, Vol. 58 (4), 494-494.

[10] Queyranne, M., Spieksma, F. (2009). Multi-index transportation problems. Encyclopedia of Optimization. Springer. 2413-2419

[11] Salman, S. A., Ibrahim, A.A. (2019). Transportation polytopes and its relation to graph theory. Journal of Al-Qadisiyah for computer science and mathematics, 11(4), 102-110

[12] Stanley, R. P. (1999). Enumerative Combinatorics, vol. 2. 1999. Cambridge Stud. Adv. Math.

[13] Stanley, R. P. (1976). Magic labelings of graphs, symmetric magic squares, systems of parameters, and Cohen-Macaulay rings. Duke Mathematical Journal, 43 (3), 511-531.

[14] Vaccarino, F. (2005). The ring of multisymmetric functions. In Annales de l’institut Fourier. Vol. 55, (3), 717-731.

[15] Von Neumann, J. (1953). A certain zero-sum two-person game equivalent to the optimal assignment problem. Contributions to the Theory of Games, 2(0), 5-12.
[16] West, D. B. (1996). Introduction to graph theory. Prentice Hall Upper Saddle River NJ USA.

[17] Yemelichev, V. A., Kovalev, M. M., Kravtsov, M. K. (1981). Polyhedrons, graphs, and optimization. Bulletin of the London Mathematical Society. Vol. 17 (3), 281-283.

epariguan@javeriana.edu.co
Departamento de Matemáticas. Pontificia Universidad Javeriana. Bogotá, Colombia

jhoan.sierra@utalca.cl
Instituto de Matemáticas y Física. Universidad de Talca. Talca. Chile.