Network Pharmacology-Based and Molecular Docking-Based Analysis of Suanzaoren Decoction for the Treatment of Parkinson’s Disease with Sleep Disorder

1. Introduction

Parkinson’s disease (PD) is a common neurodegenerative disease in middle-aged and elderly individuals. Clinically, symptoms include classic motor symptoms—tremor, myotonia, bradykinesia, and postural imbalance—as well as nonmotor symptoms—sleep disorders, smell disorders, autonomic nervous dysfunction, and cognitive and mental disorders [1]. Sleep disorders (SD), the most common nonmotor symptoms of PD, seen in 60–90% of these patients, are one of the common nocturnal symptoms [2]. Treatment modalities of PD with sleep disorder (PDS), used in clinical practice, include levodopa, dopamine receptor agonists, benzodiazepines, and melatonin [3–5]. However, long-term use of such drugs may enhance restless leg syndrome, periodic limb movements, and rapid eye movement (REM) sleep disorders. Therefore, exploring nonpharmacological and complementary therapies for the treatment of PDSD becomes an urgent need.
behavior disorder symptoms [6]. Furthermore, melatonin had little effect on objective sleep parameters [7]. Suanzaoren decoction (SZRD), derived from JinKuiYaoLue, is composed of five traditional Chinese medicines: Semen ziziphi spinosae, Glycyrrhiza glabra, Rhizoma anemarrhena, Poria cocos, and Rhizoma chuanxiong [8]. It has the effect of nourishing the blood, calming the mind, clearing away heat, and eliminating annoyance, mainly treating liver and blood deficiency and insomnia caused by heat deficiency [9–12]. PD belongs to the category of “fibrillation disease” in traditional Chinese medicine, and it is more common in the elderly [13]. Clinical evidence shows that SZRD has a remarkable curative effect on insomnia [14–16]. However, the mechanism of action of fibrillation disease merging with wakefulness is not clear. Therefore, with the systematic research methods of network pharmacology and molecular docking, the overall analysis of the “herb-component-target-pathway” was conducted in this study to explore the possible mechanism of SZRD in the treatment of PDS and to provide new theoretical support for the clinical treatment of PDS.

2. Materials and Methods

2.1. Screening and Target Prediction of Active Components of SZRD. Application analysis platform and database system pharmacology of Chinese medicine (TCMSP, https://tcmspw.com/tcmsp.php) [17] were used to retrieve active ingredients of SZRD and predict the targets of active ingredients. We use pharmacodynamics to select active ingredients satisfying both oral bioavailability (OB) ≥ 30% and drug − likeness (DL) ≥ 0.18 [18, 19]. TCMSP was used for the prediction of targets of active ingredients. At the same time, the UniProt database (https://www.uniprot.org/) [20], which was set for human species, was used to standardize the drug target of each active ingredient.

2.2. Screening of Disease-Related Targets. The targets related to the PD and SD were obtained through retrieving the OMIM (https://omim.org/search/advanced/) [21], GeneCards (https://www.genecards.org/) [22], and DisGeNET database search (https://www.disgenet.org/) [23] using the keyword “Parkinson’s diseases” or “Sleep disorder.”

2.3. Screening of Common Targets of Diseases and Drugs. The online Venny 2.1 mapping platform (http://bioinfogp.cnb.csic.es/tools/venny/index.html) was used to map “Parkinson’s diseases,” “Sleep disorder,” and “SZRD” targets and to get the intersection targets.

2.4. Common Target PPI Network Construction. The intersection targets were imported into the STRING database (https://string-db.org/cgi/input) [24]. A confidence, ≥0.4,
was taken, and the free nodes were hidden to construct the protein-protein interaction (PPI) network. This PPI network was further processed by Cytoscape 3.7.2 software [25] to realize visualization and screen out the core targets.

2.5. GO and KEGG Enrichment Analysis. For the screened core targets, the DAVID data platform (https://david.ncifcrf.gov/tools.jsp) [26] was used for Gene Ontology (GO) functional annotations and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis. Select “Homo species” on the DAVID platform; further analyze the SZRD for PDSD-related biological processes (BP), cellular component (CC), molecular function (MF), and signal pathway; and use the bioinformatic online platform (https://www.bioinformatics.com.cn/) [27] to visualize the result analysis.

2.6. Constructing the "H-C-T-P" Network. Cytoscape 3.7.2 software was used to construct the network of “herb-component-target-pathway” (H-C-T-P). This “H-C-T-P” network together with the screened main active ingredients, core targets, and concentrated main signal pathways was used to systematically analyze the possible mechanism of SZRD in the treatment of PDSD.
Table 3: Core target information table.

Target	Degree	Betweenness centrality (BC)	Closeness centrality (CC)
AKT1	123	0.064225	0.731518
IL6	110	0.033377	0.693727
MAPK3	109	0.052416	0.693727
TP53	105	0.027917	0.676259
VEGFA	100	0.016309	0.664311
TNF	98	0.018693	0.661972
CASP3	97	0.019316	0.661972
JUN	97	0.021842	0.664311
EGF	95	0.020902	0.657343
MAPK8	95	0.017033	0.657343
PTGS2	91	0.032141	0.646048
MAPK1	90	0.012068	0.639456
EGFR	89	0.016470	0.641638
MYC	89	0.013782	0.639456
STAT3	88	0.011530	0.635135
FOS	87	0.033525	0.639456
CXCL8	85	0.016357	0.626667
MMP9	85	0.027723	0.632997
IL1B	82	0.013500	0.626667
CAT	81	0.038221	0.624585
ESR1	79	0.010994	0.616393
CCND1	77	0.006779	0.610390
CCL2	76	0.005212	0.608414
NOS3	74	0.020902	0.614379
MTOR	71	0.006984	0.598726
MAPK14	71	0.005773	0.600639
IL10	70	0.003254	0.593060
MMP2	69	0.003821	0.596825
PPARG	68	0.008861	0.594937
ICAM1	67	0.002937	0.591195
RELA	67	0.014775	0.585670
ERBB2	66	0.009451	0.587500
AR	64	0.017042	0.589342
HMOX1	63	0.006109	0.580247
STAT1	63	0.006329	0.574924
SERPINE1	62	0.004200	0.580247
IL4	61	0.002350	0.576687
IL2	60	0.002819	0.569697
VCAM1	60	0.002099	0.574924
BCL2L1	59	0.002173	0.567976
CASP8	58	0.002424	0.564565

2.7. Docking and Verification of Potential Active Ingredients with Core Target Molecules. The 2D structures of the potential active ingredients in SZRD were downloaded from the TCMSP database while the 3D structure of the PDSD docking targets (top 5 of degree in PPI network) treated by SZRD was downloaded from the Worldwide Protein Data Bank (PDB) database (https://www.rcsb.org/) [28]. They were imported to AutoDockTools [29] for hydrogenation, dehydration, and other pretreatments. Then, molecular docking of the receptor and ligand was conducted to analyze its binding activity. The docking results were visualized using the PyMol software [30].

3. Results

3.1. The Active Components and Effective Targets of SZRD. By searching the TCMSP database, 135 different active ingredients of SZRD were screened, including 9 in Semen ziziphi spinosae, 15 in Poria cocos, 15 in Rhizoma anemarrhena, 7 in Rhizoma chuanxiong, and 92 in Glycyrrhiza glabra. The results showed that these different drugs contained common active ingredients, namely A, B, and C as shown in Table 1.

Cytoscape 3.7.2 software was used to screen the active ingredients with a degree ≥ 20 in SZRD. As shown in Table 2, 17 major components, which include quercetin, kaempferol, vestitol, 7-methoxy-2-methyl isoflavone, naringenin, anhydroicarin, formononetin, stigmasterol, licochalcone A, and isorhamnetin, were obtained using this software.

A total of 204 different drug targets were screened using the TCMSP database and were standardized by the UniProt database, which included the 26 in Semen ziziphi spinosae, 16 in Poria cocos, 90 in Rhizoma anemarrhena, 23 in Rhizoma chuanxiong, and 193 in Glycyrrhiza glabra. The data of potential active ingredients and potential targets of SZRD in the treatment of PDSD were obtained into Cytoscape 3.7.2 software to obtain a diagram of the traditional Chinese medicine component-target network (Figure 1).

3.2. Related Targets for Disease. After combining the three databases and deleting repeated targets, a total of 9777 PD-related targets and 10748 SD-related targets were obtained from the OMIM, DisGeNET, and GeneCards databases.

3.3. Common Targets for Diseases and Drugs. A total of 9777 PD-related targets, 10748 SD-related targets, and 204 SZRD drug prediction targets were imported using the Venny online mapping platform. After mapping, 189 intersection targets of SZRD and PDSD were obtained (Figure 2).

3.4. PPI Network Construction. A total of 189 targets were imported into the STRING platform to construct a PPI network. Then, 189 nodes and 3426 edges were also obtained using this platform. The double median of “Degree,” that is, “Degree ≥ 58,” was used to screen the intersection targets. Thus, 41 nodes, 765 edges, and a total of 41 core targets for SZRD treatment of PDSD were obtained (Table 3). Import the PPI network information obtained from the STRING platform into Cytoscape 3.7.2 software for visualization (Figure 3).

3.5. GO and KEGG Enrichment Analysis. The GO function enrichment analysis of the 41 core targets was performed on the DAVID platform, and a total of 1423 GO items were obtained, including 1325 BP, 36 CC, and 62 MF. The first 15, 8, and 14 items were selected based on the P value for visual analysis (Figure 4). Results showed that the treatment of PDSD by SZRD mainly involves BP such as cell migration,
angiogenesis, leukocyte differentiation, cell proliferation, stress, cell aging, cell adhesion, and cell regeneration. These targets pass through cytokine receptor binding, transcription factor binding specificity, phosphatase binding, DNA binding domain specificity, protein structure combining, G protein coupled receptor molecules, and other functions, and they play a role in the cell membrane, RNA polymerase II transcription factor complex, nucleus and organelle outer membrane and plasma membrane protein complexes, and extracellular matrix components.

One hundred and nine signal pathways were enriched by KEGG pathway analysis of the core targets using the DAVID
3.6. Construction of “H-C-T-P” Network. The “H-C-T-P” network was constructed using the 17 major components, 41 core targets, and 15 signal pathways of SZRD in the treatment of PDSD (Figure 6).

3.7. Molecular Docking Results and Analysis. According to Table 3, the top 5 targets of degree are AKT1, IL6, MAPK1, TP53, and VEGFA. The docking targets with the two active components with the highest degree of quercetin (degree = 127) and kaempferol (degree = 104) in SZRD were docking. As shown in Table 5, the binding energy of platform. According to the \(P \) value < 0.05 and the number of genes \(\geq 12 \), 15 signal pathways with high probability were screened out for visual analysis as shown in Table 4 and Figure 5. Moreover, Figure 5 shows that SZRD treatment of PDSD may be mainly related to TNF, PI3K-Akt, MAPK, HIF-1, Toll-like receptor, FoxO, and other signaling pathways.

Table 4: KEGG pathway enrichment results.

Term	%	Count	\(P \) value
hsa05200: pathways in cancer	65.85	27	2.30E-23
hsa04668: TNF signaling pathway	43.90	18	3.19E-21
hsa05161: hepatitis B	43.90	18	7.08E-19
hsa05142: Chagas disease	41.46	17	1.04E-19
hsa05205: proteoglycans in cancer	41.46	17	4.91E-15
hsa04151: PI3K-Akt signaling pathway	39.02	16	3.03E-10
hsa04010: MAPK signaling pathway	36.58	15	5.72E-11
hsa05212: pancreatic cancer	34.14	14	1.31E-17
hsa04066: HIF-1 signaling pathway	34.14	14	2.96E-15
hsa04620: Toll-like receptor signaling pathway	34.14	14	1.11E-14
hsa05164: influenza A	34.14	14	7.36E-12
hsa05145: toxoplasmosis	31.70	13	5.84E-13
hsa05160: hepatitis C	31.70	13	5.83E-12
hsa05152: tuberculosis	31.70	13	1.73E-10
hsa04068: FoxO signaling pathway	29.26	12	1.45E-10

According to the \(P \) value < 0.05 and the number of genes \(\geq 12 \), 15 signal pathways with high probability were screened out for visual analysis as shown in Table 4 and Figure 5. Moreover, Figure 5 shows that SZRD treatment of PDSD may be mainly related to TNF, PI3K-Akt, MAPK, HIF-1, Toll-like receptor, FoxO, and other signaling pathways.
quercetin, kaempferol with AKT1, IL6, MAPK1, TP53, and VEGFA was all less than $-5.0 \text{kcal-mol}^{-1}$, showing good binding force. The binding of AKT1 to quercetin and kaempferol and TP53 to kaempferol is shown in Figure 7.

4. Discussion

4.1. Understanding of PDSD in Traditional Chinese Medicine and Western Medicine. In Western medicine, PDSD is believed to be associated with a variety of factors which may also be related to the increase or decrease of serum vitamin D, melatonin, serum cystatin (Cys) C, homocysteine (Hcy), and dopamine levels in the striatum caused by PD itself [31–34].

There is no related record of PDSD in traditional Chinese medicine classes, but according to its related clinical symptoms, it can be classified as a combination of “fibrillation” and “insomnia.” SZRD is a classic prescription, with tranquilizing properties, mainly treating “deficiency of liver and blood, deficiency of heat, and internal disturbance.” This prescription uses a lot of *Semen ziziphi spinosae* that nourishes the blood and liver and gives peace of mind. *Rhizoma anemarrhenae* nourishes Yin and clears the heat, and when the evil heat is gone, the healthy Qi is restored. “*Poria cocos* calms the heart and tranquillizes the mind.” Moreover, the theory of the properties of drugs says it is “good at calming the mind.” *Rhizoma anemarrhenae* and *Poria cocos* are used to help *Semen ziziphi spinosae* calm the mind from vexation. The nature of *Rhizoma chuanxiong* is scattered, “Qi medicine in the blood,” and is introduced into the liver meridian. Furthermore, this regulates Qi activity to help the liver recover its ability to dredge and release Qi. Rihuа Zi medicine said that it “cures all wind, all Qi, all strain, all blood, and replenish five kinds of weakness.” *Rhizoma chuanxiong* is used in combination with King medicine, which has a magical effect to help sanguification and liver recuperation. Then, *Glycyrrhiza glabra* is used to harmonize the various drugs. All the drugs work together, to calm the mind in addition to the effect of vexation.

4.2. The Mechanism Prediction of SZRD for PDSD. Based on the network pharmacological research method, a total of 17 major active components of SZRD, which include quercetin, kaempferol, visistin, 7-methoxy-2-methyl isoflavone, narinogenin, anhydroicaritin, formononetin, stigmasterol, licochalcone A, and isorhamnetin, in the treatment of PDSD were obtained.

![Figure 5: KEGG enrichment bubble diagram.](image-url)
Quercetin, kaempferol, and isorhamnetin are flavonoids which can scavenge reactive oxygen free radicals and achieve antioxidant and neuroprotective effects [35–38]. In the H₂O₂-induced PD model PC-12 cells, quercetin treatment increased cell viability, reduced mutagenesis of antioxidant enzymes, and reduced apoptosis of cells and hippocampal neurons [39]. In addition, quercetin can significantly reduce inflammation and oxidative damage in the striatum of PD model rats induced by 6-hydroxy-dopamine (6-OHDA) or 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) [40]. Filomeni et al. found that kaempferol can significantly protect neuroblastoma cells (SH-SY5Y nerve cells) and major neurons from rotenone damage [41]. Moreover, it can reduce protease lysis and nuclear apoptosis and significantly reduce oxidative stress levels and mitochondrial hydroxyl compound content [41]. We also found that kaempferol may play a neuroprotective role by inhibiting cysteine proteinase-3 and by reducing brain cell apoptosis [42]. At the same time, quercetin and kaempferol have sedative and hypnotic effects, and both can also improve the effects of sleep disorders [43–46].

According to the GO and KEGG pathway enrichment analysis results, we speculated that the mechanism of SZRD in the treatment of PDSD may be mainly related to TNF, PI3K-Akt, MAPK, HIF-1, Toll-like receptors, and FoxO-associated signaling pathways. Such as involving AKT1, IL6, MAPK3, TP53, and VEGFA multiple key targets, cell aging, adhesion, regeneration, and angiogenesis, leukocyte differentiation is closely related to the process of cell metabolism. Recent studies have shown that PI3K-Akt, MAPK, and FOXO are all involved in the process of human cell apoptosis [47–49]. AKT1, an important member of the AKT (protein kinase B, PKB) family, is an intracellular serine/threonine involved in a variety of cellular BP, and its activation is mainly dependent on the PI3K signaling pathway [50]. AKT1 is activated by phosphorylation, which in turn activates downstream signaling molecules [51]. The PI3K/Akt signal transduction pathway is involved in a variety of cytokines, and it has been found that by reducing the phosphorylation levels of PI3K, AKT, and mTOR, the transduction of this pathway can play a role in the treatment of MPTP-induced PD mice [52]. Studies have shown that cytokines are involved in regulating sleep, among which interleukin-1 (IL-1), interleukin-6 (IL-6), and tumor necrosis factor (TNF-α and TNF-β) play a role in promoting sleep [53–55]. Elevation of interleukin-1β (IL-1β) and TNF-α can directly act on central sleep-wake neurons, causing increased nonrapid eye movement (NREM) sleep and regulating the pathologic circadian rhythm [56, 57]. IL-1β and TNF-α, as sleep-regulating cytokines, can induce the production of

Table 5: Docking results of target protein and active compound.
Core target
AKT1
IL-6
MAPK3
TP53
VEGFA
each other [58]. After the activation of the PI3K-Akt signaling pathway, the activity of inflammatory mediator genes was upregulated, which promoted the production of a large number of cytokines and the increase in the levels of TNF-α, IL-6, and IL-1β, thus playing a role in regulating sleep [59]. Mitogen-activated protein kinase (MAPK) is a kind of serine/threonine protein kinases in cells. The MAPK-mediated signal transduction pathway is mainly related to the inflammatory response and plays a role in the phosphorylation of protein c-Jun [60]. Studies have shown that SP600125, a specific inhibitor of the JNK signaling pathway, significantly reduced the expression of phosphorylated c-Jun in the substantia nigra of the midbrain in PD model mice [61]. It was found that MAPK, AKT1, and IL-6 in the serum of patients with anxiety were all increased, and there was a significant positive correlation between anxiety severity and sleep quality. With the improvement of anxiety state and sleep state, the expression of MAPK decreases gradually [62–64]. The FOXO signaling pathway is interrelated with the PI3K-Akt and MAPK signaling pathways [65, 66]. FoxO3a protein is an important subtype of the FoxO family and is an important cytokine in PI3K-Akt signal transduction [67]. After phosphorylation and modification of FoxO3a, specific downstream target genes can be activated.

Figure 7: Molecular docking diagram of chemical composition to target: (a) 1UNQ-quercetin; (b) 1UNQ-kaempferol; (c) 1YC5-kaempferol.
to induce autophagy and apoptosis of cells [68]. For example, when the MAPK pathway is activated or the PI3K-Akt pathway is inhibited, FoxO3a is dephosphorylated, thereby regulating different downstream factors and promoting cell apoptosis [68]. HIF-1 and its target gene VEGF can play a protective role in PD through mechanisms such as antioxidant stress, and the overexpression of VEGF can promote the proliferation and differentiation of neurons and reduce MPTP-induced substantia nigra nigra cell injury [69]. The expression of angiogenic factor VEGF increased with an increase in the severity of sleep disturbance [70].

5. Conclusions

In this study, we used the network pharmacology research method to predict the chemical composition, target, and signal pathways at multiple levels. The prediction results were verified by molecular docking technology. The results show that SZRD plays an important role in the treatment of sleep disorders associated with PD through “multicomponent, multitarget, and multipathway,” which provides a new theoretical basis for further experimental research and clinical treatment.

Data Availability

The data used to support the findings of this study are available from the corresponding author upon request.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Authors’ Contributions

Yan-yun Liu and Li-hua Yu contributed equally to this work.

Acknowledgments

The authors acknowledge the web database platform and software for data analysis. I would like to thank my tutor Professor Juan Zhang for her guidance on the ideas and writing of the article. Thanks are due to Professor Yu and Professor Xie for their guidance on the content of my article. Thanks are due to my classmates for their help in data collection and analysis. This article could not have been finished without their help. This study was totally supported by the National Natural Foundation of China (No. 81774299) and the Scientific Research Project of the Chinese National Medical Association (No. 2020ZY070-410033).

References

[1] A. Berardelli, G. K. Wenning, A. Antonini et al., “EFNS/MDS-ES recommendations for the diagnosis of Parkinson’s disease,” European Journal of Neurology, vol. 20, no. 1, pp. 16–34, 2013.

[2] "Guidelines for the treatment of Parkinson’s disease in China (fourth edition),” Chinese Journal of Neurology, vol. 53, no. 12, pp. 973–986, 2020.

[3] Y. C. Pan and F. L. Wang, “Evaluation of the clinical effect of carbidopa-levodopa controlled-release tablet in the treatment of Parkinson's disease with sleep disorders,” World Journal of Sleep Medicine, vol. 6, no. 5, pp. 544–546, 2019.

[4] Z. Y. Liu and J. Wang, “Role of dopaminergic agonists in the treatment of non-motor symptoms of Parkinson's disease,” Shanghai Med Pharm, vol. 36, no. 3, pp. 9–17, 2015.

[5] H. J. Wei, M. Du, and H. Y. Bai, “Correlations of melatonin and glutathione levels with oxidative stress mechanism in Parkinson’s disease,” Acta Academiae Medicinae Sinicae, vol. 41, no. 2, pp. 183–187, 2019.

[6] C. Juri, P. Chaná, J. Tapia, C. Kunstmann, and T. Parrao, “Quetiapine for insomnia in Parkinson Disease,” Clinical Neuropsychopharmacology, vol. 28, no. 4, pp. 185–187, 2005.

[7] A. P. Deng, M. Q. Wu, P. Q. Yuan, and L. Yanag, “Research progress of sleep disorders in patients with Parkinson’s disease,” Journal of nursing, vol. 26, no. 18, pp. 27–31, 2019.

[8] Q. H. Zhou, H. L. Wang, X. L. Zhou et al., “Efficacy and safety of Suanzaoren decoction for chronic insomnia disorder in adults: study protocol for randomised, double-blind, double-dummy, placebo-controlled trial,” BMJ Open, vol. 7, no. 4, article e014280, 2017.

[9] Y. Wang, X. Yang, P. F. Xia et al., “Review of chemical constituents, pharmacological effects and clinical applications of Suanzaoren decoction and prediction and analysis of its Q-markers,” Chinese journal of Chinese materia medica, vol. 45, no. 12, pp. 2765–2771, 2020.

[10] X. Y. Niu, B. S. He, Y. du et al., “The investigation of immunoprotective and sedative hypnotic effect of total polysaccharide from Suanzaoren decoction by serum metabolomics approach,” Journal of Chromatography B, vol. 1086, pp. 29–37, 2018.

[11] L. H. Zhan, Y. J. Dong, K. Yang et al., "Soporific effect of modified Suanzaoren decoction and its effects on the expression of CCK-8 and orexin-A,” Evidence-based Complementary and Alternative Medicine, vol. 2020, Article ID 6984087, 17 pages, 2020.

[12] B. Yang, A. H. Zhang, H. Sun et al., “Metabolomic study of insomnia and intervention effects of Suanzaoren decoction using ultra-performance liquid-chromatography/electrospray-ionization synapt high-definition mass spectrometry,” Journal of Pharmacological and Biomedical Analysis, vol. 58, pp. 113–124, 2012.

[13] W. M. Yang, Y. C. Bao, H. Wang et al., "Diagnosis and treatment of atrial fibrillation (Parkinson’s disease),” Clinical Journal of Traditional Chinese Medicine, vol. 24, no. 11, pp. 1125–1126, 2012.

[14] X. Liu, P. Wang, L. Ding, S. B. Zhang, K. Shi, and Q. Y. You, “Effects of Suanzaoren decoction on the expression of nuclear receptor PPARγ and its co-activator PGC-1α in elderly chronic sleep deprivation rats,” Modernization of Traditional Chinese Medicine and Materia Medica-World Science and Technology, vol. 23, no. 5, pp. 1339–1346, 2021.

[15] Y. X. Gong, "Clinical effect evaluation of Suanzaoren decoction on insomnia,” Inner Mongolia Journal of Traditional Chinese Medicine, vol. 40, no. 6, pp. 12–14, 2021.

[16] K. T. Zhou and Y. X. Yu, “Clinical efficacy and safety of modified Suanzaoren decoction combined with escitalopram tablets in the treatment of insomnia,” Chinese Journal of Clinical Rational Drug Use, vol. 14, no. 15, pp. 134–136, 2021.
Z. W. Ma, P. C. He, and T. Ma, “TCMSp: a database of systems pharmacology for drug discovery from herbal medicines,” Journal of Cheminformatics, vol. 6, article 24735618, pp. 1–6, 2014.

S. Wang, H. Wang, and Y. Lu, “Tianfoshen oral liquid: a CFDA approved clinical traditional Chinese medicine, normalizes major cellular pathways disordered during colorectal carcinoma,” Oncotarget, vol. 8, no. 9, pp. 14549–14569, 2017.

Y. Y. Wang, W. D. Yu, C. L. Shi et al., “Network pharmacology of Yougpiu pill combined with Buzhong Yiqi decoction for the treatment of sexual dysfunction,” Evidence-Based Complementary and Alternative Medicine, vol. 2019, Article ID 1243743, 10 pages, 2019.

The UniProt Consortium, “UniProt: the universal protein knowledgebase,” Nucleic Acids Research, vol. 45, no. D1, pp. D158–D169, 2017.

A. Hamosh, A. F. Scott, J. S. Amberger, C. A. Bocchini, and V. McKusick, “Online Mendelian Inheritance in Man (OMIM), a knowledgebase of human genes and genetic disorders,” Nucleic acids research, vol. 33, no. Database issue, article 15608251, pp. D514–D517, 2005.

M. Safran, I. Dalah, J. Alexander et al., “GeneCards version 3: the human genome integrator,” Database, vol. 2010, article 20689021, 2010.

J. Piñero, J. M. Ramirez-Anguita, J. Saich-Pitarch et al., “The DisGeNET knowledge platform for disease genomics: 2019 update,” Nucleic Acids Research, vol. 48, no. D1, pp. D845–D855, 2020.

D. Szklarczyk, A. L. Gable, D. Lyon et al., “STRING V11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets,” Nucleic Acids Research, vol. 47, no. D1, pp. D607–D613, 2019.

P. Shannon, A. Markiel, O. Ozier et al., “CytoScope: a software environment for integrated models of biomolecular interaction networks,” Genome Research, vol. 13, no. 11, pp. 2498–2504, 2003.

D. W. Huang, B. T. Sherman, and R. A. Lempicki, “Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources,” Nature protocols, vol. 4, no. 1, pp. 2498–2504, 2009.

“Heatmap was plotted by https://www.bioinformatics.com.cn/, a free online platform for data analysis and visualization.”

D. S. Goodsell, C. Zardecki, L. di Costanzo et al., “RCSB protein data bank: enabling biomedical research and drug discovery,” Protein Science, vol. 29, no. 1, pp. 52–65, 2020.

N. El-Hachem, B. Haibe-Kains, A. Khalil, F. H. Kobeissy, and G. Nemer, “AutoDock and AutoDockTools for protein-ligand docking: beta-site amyloid precursor protein cleaving enzyme 1 (BACE1) as a case study,” Methods in Molecular Biology, vol. 1598, article 28508374, pp. 391–403, 2017.

E. H. Baugh, S. Lyskov, B. D. Weitzner, and J. J. Gray, “Real-time PyMOL visualization for Rosetta and PyRosetta,” PLOS ONE, vol. 6, no. 8, article e21931, 2011.

Z. W. Ma, P. C. He, and T. Ma, “Correlation analysis of sleep disturbance and serum vitamin D level in patients with Parkinson’s disease,” Journal of Applied Clinical Medicine, vol. 24, no. 24, pp. 53–56, 2020.

L. Y. Li, “Correlation between plasma melatonin levels and nonmotor symptoms in patients with Parkinson’s disease,” Zhengzhou university, 2020.

Y. H. Choi, “The cytoprotective effect of isorhamnetin against oxidative stress is mediated by the upregulation of the Nrf2-dependent HO-1 expression in C2C12 myoblasts through scavenging reactive oxygen species and ERK inactivation,” General Physiology and Biophysics, vol. 35, no. 2, pp. 176–184, 2011.

D. K. Bao, J. K. Wang, X. B. Pang, and H. L. Liu, “Protective effect of quercetin against oxidative stress-induced cytotoxicity in rat pheochromocytoma (PC-12) cells,” Molecules, vol. 22, no. 7, p. 1122, 2017.

S. Shamsher and K. Punteet, “Piperine in combination with quercetin halt 6-OHDA induced neurodegeneration in experimental rats: biochemical and neurochemical evidences,” Neuroscience research, vol. 133, article 29056550, pp. 38–47, 2018.

G. Filomeni, I. Graziani, D. de Zio et al., “Neuroprotection of kaempferol by autophagy in models of rotenone-mediated acute toxicity: possible implications for Parkinson’s disease,” Neurobiology of Aging, vol. 33, no. 4, pp. 767–785, 2012.

Y. Z. He, M. P. Ding, Y. K. Wang et al., “Protective effect of kaempferol on cerebral ischemia-reperfusion injury in rats,” Chinese Journal of Traditional Chinese Medicine, vol. 27, no. 8, pp. 1673–1675, 2009.

J. Chen and X. Gan, “Research progress on extraction of quercetin from Sophora japonica and its effect on central nervous system,” Chemical and biological engineering, vol. 24, no. 3, pp. 11–13, 2007.

Y. H. Tao, Study on enzyme inhibitors of γ-aminobutyric acid (GABA) metabolism, Huazhong University of Science and Technology, Wuhan, 2006.

W. J. Chen, Experimental study on anticonvulsant and sedative and hypnotic effects of bupleurin A, Southern Medical University, Guangzhou, 2013.

J. W. Zhong, L. X. Chen, and B. C. Cai, “Effect of Chinese herb oyster on hypnotic effect of pentobarbital sodium,” Chinese Archives of Traditional Chinese Medicine, vol. 27, no. 3, pp. 499–501, 2009.

Y. B. L. Rademacher, A. K. Matkowskij, E. D. LaCount, and E. H. Carchman, “Topical application of a dual PI3K/mTOR inhibitor prevents anal carcinogenesis in a human papillomavirus mouse model of anal cancer,” European Journal of Cancer Prevention, vol. 28, no. 6, pp. 483–491, 2019.
A. S. Guo, C. Liu, B. S. Li, Z. J. Zhu, W. G. Chen, and A. H. Li,
S. Y. Liu, P. Xu, X. L. Luo, J. F. Hu, and X. H. Liu,
"The role of P3K/Akt signaling pathway in the process of inflammation and apoptosis of substantia nigra cells in subacute Parkinson's disease model mice," Journal of Clinical and Experimental Pathology, vol. 5, pp. 601–605, 2007.

Y. S. Wang, Z. F. Wei, Q. Y. Tian, Z. F. Zhang, H. X. Zhou, and Y. X. Zhang,
"Regulation of JNK pathway in the process of inflammation and apoptosis of substantia nigra cells in subacute Parkinson's disease model mice," Journal of Clinical and Experimental Pathology, vol. 5, pp. 601–605, 2007.

Y. Y. Shi, X. T. Meng, Y. N. Xu, and X. J. Tian,
"Role of FOXO protein in the regulation of MAPK signaling," Drug Development Research, vol. 3409063, pp. 1–8, 2021.

Z. Jiang, J. L. Zhang, J. T. Qiu, and S. Cui,
"The effects of acupoint embedding thread on monoamine transmitters, IL-1β and TNF-α contents in hypothalamus of rats with insomnia," Shanghai Journal of Acupuncture and Moxibustion, vol. 33, no. 7, pp. 672–675, 2014.

K. Wright, A. Drake, D. Frey et al.,
"Influence of sleep deprivation and circadian misalignment on cortisol, inflammatory markers, and cytokine balance," Brain, Behavior, and Immunology, vol. 47, article 25640463, pp. 24–34, 2015.

S. Y. Liu, P. Xu, X. L. Luo, J. F. Hu, and X. H. Liu,
"(7R,8S)-Dehydrodiconiferyl alcohol suppresses lipopolysaccharide-induced inflammatory responses in BV2 microglia by inhibiting MAPK signaling," Neurochemical Research, vol. 41, no. 7, pp. 1570–1577, 2016.

Y. S. Wang, Z. F. Wei, Q. Y. Tian, Z. F. Zhang, H. X. Zhou, and Y. X. Zhang,
"Regulation of JNK pathway in the process of inflammation and apoptosis of substantia nigra cells in subacute Parkinson's disease model mice," Journal of Clinical and Experimental Pathology, vol. 5, pp. 601–605, 2007.

N. Yoshikohko, A. Taku, Y. Hikaru, S. Norio, T. Minoru, and T. Hiroshi,
"Yokukansan enhances the proliferation of B65 neuroblastoma," Journal of Traditional and Complementary Medicine, vol. 7, no. 1, pp. 34–44, 2017.

C. X. Yang, N. Sun, Y. Ren et al.,
"Association between AKT1 gene polymorphisms and depressive symptoms in the Chinese Han population with major depressive disorder," Neural Regeneration Research, vol. 7, no. 3, pp. 235–239, 2012.

A. Niraula, K. G. Witcher, J. F. Sheridan, and J. P. Godbout,
"Interleukin-6 induced by social stress promotes a unique transcriptional signature in the monocytes that facilitate anxiety," Biological Psychiatry, vol. 85, no. 8, pp. 679–689, 2019.

H. C. Wu, J. W. Zhang, Z. G. Sun, S. Xiang, Y. Qiao, and F. Lian,
"Effects of electroacupuncture on expression of P3K/Akt/Foxo3a in granulosa cells from women with Shen (kidney) deficiency syndrome undergoing in vitro fertilization-embryo transfer," Chinese Journal of Integrative Medicine, vol. 25, no. 4, pp. 252–258, 2019.