A class of vector identities relevant to the representation of the electric current density

M Bornatici and O Maj
Physics Department “A. Volta”, University of Pavia, I-27100 Pavia, Italy
E-mail: maj@fisicavolta.unipv.it

Abstract. A rigorous mathematical proof is given of a class of vector identities that provide a way to separate an arbitrary vector field (over a linear space) into the sum of a radial (i.e., pointing toward the radial unit vector) vector field, minus the divergence of a tensor plus the curl of an axial vector. Such a separation is applied to the representation of electric current densities yielding a specific form of the effective polarization and magnetization fields which is also discussed in some details.

On dealing with the description of the electromagnetic response of material media, the issue of the representation of the induced current density appears to be crucial for the definition of the effective polarization and magnetization fields and, thus, for writing the macroscopic Maxwell’s equations [Vinogradov and Aivazyan 1999, Vinogradov 2002, Agranovich et al 2004, Bornatici and Maj 2005]. Specifically, one should find the effective polarization and magnetization fields, \(P_{\text{eff}} \) and \(M_{\text{eff}} \), as functionals of electric the current density \(J \) so that the basic relationship [Jackson 1999]

\[
J(r, t) = \frac{\partial P_{\text{eff}}(r, t)}{\partial t} + c \nabla \times M_{\text{eff}}(r, t),
\]

is satisfied (Gaussian units are used). In particular, on accounting for the charge continuity equation, the representation (1) yields the corresponding relationship for the charge density \(\rho(r, t) \), namely, \(\rho(r, t) = -\nabla \cdot P_{\text{eff}}(r, t) \), the required integration constant being properly chosen.

It is readily verified that the effective fields \(P_{\text{eff}} \) and \(M_{\text{eff}} \) verifying equation (1) for a given current density \(J \) are not uniquely determined and thus different forms of the effective polarization and magnetization fields are available, obtained on the basis of either the Helmholtz’s theorem [Bornatici and Maj 2005] or vector identities proved by Vinogradov and Aivazyan [Vinogradov and Aivazyan 1999, Vinogradov 2002] and by Raab (quoted in [Vinogradov and Aivazyan 1999]).

In this letter, a rigorous mathematical proof is given of a class of identities which are satisfied by any (sufficiently regular) vector field over a linear space. When applied to the current density \(J(r, t) \) regarded as a vector field over the three-dimensional \(r \)-space (with time \(t \) treated as a parameter), each one of such identities (labelled by an integer \(n \geq 1 \)) can be cast in the form (1) and, thus, yields a specific form of effective
A class of vector identities relevant to the representation of the electric current density

polarization and magnetization fields. The results reported by Vinogradov and Aivazyan
[Vinogradov and Aivazian 1999, Vinogradov 2002] are found as particular cases for \(n = 1 \)
and \(n = 2 \).

With this aim, let us consider a generic vector field \(\mathbf{R}(\mathbf{x}) = (R_i(\mathbf{x}))_{i=1}^N \) with \(N \)
components over the \(N \)-dimensional (linear) space with \(\mathbf{x} = (x_1, \ldots, x_N) \) (it is crucial
that the dimension of the vector field is the same as that of the considered space) and
assume that the field is sufficiently regular, i.e., differentiable up to a high-enough order.
We claim that

\[
x_i x_j_1 \cdots x_{j_1} \frac{\partial}{\partial x_{j_1}} \cdots \frac{\partial}{\partial x_{j_{n-1}}} \frac{\partial R_k}{\partial x_k}
= \sum_{\ell=0}^{n-1} (-1)^\ell \binom{n-1}{\ell} \frac{(N + n - 1)!}{(N + n - \ell - 1)!} \left\{ U_i^{(n-\ell)} - (n-\ell)q_i^{(n-\ell-1)} \right\},
\]

where repeated indices are summed, \(n \geq 1 \) is an integer, \(\binom{n-1}{\ell} \) denotes the binomial
coefficient and the following quantities have been defined as functionals of \(\mathbf{R}(\mathbf{x}) \), viz.,

\[
U_i^{(n)}(\mathbf{x}, \mathbf{R}(\mathbf{x})) = \frac{\partial^n}{\partial x_{k_1} \cdots \partial x_{k_n}} \left(x_i x_{k_1} \cdots x_{k_{n-1}} R_{k_n}(\mathbf{x}) \right), \quad (n \geq 1), \quad (3a)
\]

and

\[
q_i^{(n)}(\mathbf{x}, \mathbf{R}(\mathbf{x})) = R_i(\mathbf{x}),
q_i^{(n)}(\mathbf{x}, \mathbf{R}(\mathbf{x})) = \frac{\partial^n}{\partial x_{k_1} \cdots \partial x_{k_n}} q_{i k_1 \cdots k_n}(\mathbf{x}, \mathbf{R}(\mathbf{x})), \quad (n \geq 1), \quad (3b)
\]

with

\[
q_{i k_1 \cdots k_n}(\mathbf{x}, \mathbf{R}(\mathbf{x})) = x_i x_{k_1} \cdots x_{k_{n-1}} R_{k_n}(\mathbf{x})
\equiv \frac{1}{(n+1)!} \sum_\sigma x_{\sigma(i)} x_{\sigma(k_1)} \cdots x_{\sigma(k_{n-1})} R_{\sigma(k_n)}(\mathbf{x})
\]

the symmetric part of the tensor \(x_i x_{k_1} \cdots x_{k_{n-1}} R_{k_n}(\mathbf{x}) \), the index \(\sigma \) running over the
permutations of the \(n+1 \) indices \(\{i, k_1, \ldots, k_n\} \). For the case \(n = 1 \), equation (2)
reduces to

\[
x_i \frac{\partial R_k}{\partial x_k} = \frac{\partial (x_i R_k)}{\partial x_k} - R_i,
\]

which can be readily verified. Hence, let us prove the generic case by induction, that is, we
need to prove that, if (2) is true for \(n \), then it is true for \(n+1 \). With this aim, it is
convenient to consider the identity

\[
x_i x_j_1 \cdots x_{j_1} \frac{\partial}{\partial x_{j_1}} \cdots \frac{\partial}{\partial x_{j_{n-1}}} \frac{\partial R_k}{\partial x_k} = \frac{\partial}{\partial x_j}(x_j x_{j_1} \cdots x_{j_{n-1}} \frac{\partial}{\partial x_{j_1}} \cdots \frac{\partial}{\partial x_{j_{n-1}}} \frac{\partial R_k}{\partial x_k})
- (N+n) \cdot x_j x_{j_1} \cdots x_{j_{n-1}} \frac{\partial}{\partial x_{j_1}} \cdots \frac{\partial}{\partial x_{j_{n-1}}} \frac{\partial R_k}{\partial x_k},
\]

which, on inserting equation (2), yields
A class of vector identities relevant to the representation of the electric current density

\[
x_i x_j \cdots x_j \frac{\partial}{\partial x_{j_n}} \frac{\partial}{\partial x_{k}} \partial R_k
\]

\[
= \sum_{\ell=0}^{n-1} (-1)^\ell \left(\frac{n-1}{\ell} \right) \frac{(N+n-1)!}{(N+n-\ell-1)!} \frac{\partial}{\partial x_{j}} \left[x_j \left(U_i^{(n-\ell)} - (n-\ell)q_i^{(n-\ell-1)} \right) \right]
\]

\[
- \sum_{\ell=0}^{n-1} (-1)^\ell \left(\frac{n-1}{\ell} \right) \frac{(N+n)!}{(N+n-\ell-1)!} \left[U_i^{(n-\ell)} - (n-\ell)q_i^{(n-\ell-1)} \right].
\]

Moreover one has

\[
\frac{\partial}{\partial x_j} (x_j U_i^{(n)}) = U_i^{(n+1)} - nU_i^{(n)},
\]

\[
\frac{\partial}{\partial x_j} (x_j q_i^{(n)}) = \frac{n+2}{n+1} q_i^{(n+1)} - \frac{1}{n+1} U_i^{(n+1)} - nq_i^{(n)},
\]

where the identity

\[
q_i^{(n)} = \frac{1}{n+1} \frac{\partial^n}{\partial x_{k_1} \cdots \partial x_{k_n}} \left(R_k x_{k_1} \cdots x_{k_n} + n x_i x_{k_1} \cdots x_{k_n-1} R_k \right)
\]

has been used. Equation (4), along with (5), reduces to (2) with \(n \to n + 1 \), hence one can conclude that the identity (2) holds true for any integer \(n \geq 1 \).

By inspection of (2) one should note that it is convenient to separate the symmetric part of the tensor \(x_i x_{k_1} \cdots x_{k_n-1} R_k \) in the quantity \(U_i^{(n)} \), namely, (cf. equation (3))

\[
U_i^{(n)}(x, R(x)) = \frac{\partial^n}{\partial x_{k_1} \cdots \partial x_{k_n}} \left(x_i x_{k_1} \cdots x_{k_n-1} R_k(x) \right)
\]

\[
= \frac{\partial^n}{\partial x_{k_1} \cdots \partial x_{k_n}} \left[\frac{1}{n+1} x_i x_{k_1} \cdots x_{k_n-1} R_k + x_i x_{k_1} \cdots x_{k_n-1} R_k x_{k_1} \cdots x_{k_n-1} \right]
\]

\[
+ \frac{n}{n+1} x_{k_1} \cdots x_{k_n-1} R_k - \frac{1}{n+1} \left(x_i x_{k_1} \cdots x_{k_n-1} R_k + \cdots + R_k x_{k_1} \cdots x_{k_n-1} \right)
\]

\[
= q_i^{(n)} + \frac{\partial^n}{\partial x_{k_1} \cdots \partial x_{k_n}} \left[\frac{1}{n+1} (x_i R_k - x_k R_i) x_{k_1} \cdots x_{k_n-1} \right]
\]

\[
= q_i^{(n)} + \epsilon_{ijk} \frac{\partial}{\partial x_j} m_k^{(n)},
\]

where the vector \(q_i^{(n)} = q_i^{(n)}(x, R(x)) \) is defined in equations (3a) and the axial vector \(m_k^{(n)} = m_k^{(n)}(x, R(x)) \) is given by

\[
m_k^{(n)}(x, R(x)) = \frac{\partial^{n-1}}{\partial x_{k_1} \cdots \partial x_{k_{n-1}}} m_{kk_1 \cdots k_{n-1}}(x, R(x)), \quad (n \geq 1),
\]

with

\[
m_{kk_1 \cdots k_{n-1}}(x, R(x)) = \frac{1}{n+1} \left(\epsilon_{kab} x_a R_b(x) \right) x_{k_1} \cdots x_{k_{n-1}}.
\]

In equation (7), the identities (3) and \(\epsilon_{ijk} \epsilon_{kab} = \delta_{ia} \delta_{jb} - \delta_{ib} \delta_{ja} \) have been accounted for, \(\epsilon_{ijk} \) and \(\delta_{ij} \) being, respectively, the completely anti-symmetric permutation symbol and
A class of vector identities relevant to the representation of the electric current density
A class of vector identities relevant to the representation of the electric current density

On accounting for equations (11a)-(11c) explicitly, the effective fields $P_i^{(n)}$ and $M_{k_{1} \ldots k_{\ell-1}}^{(n,\ell)}$ can be expressed in a form which, formally, resembles the multipole expansion [Agranovich et al 2004], namely,

$$P_i^{(n)}(r, t) = P_i^{(n)}(r, J(r, t)) - \frac{\partial}{\partial x_k} \sum_{\ell=1}^{n} \frac{\partial^{\ell-1}}{\partial x_{k_1} \ldots \partial x_{k_{\ell-1}}} Q_{ik_{1} \ldots k_{\ell-1}}^{(n,\ell)}(r, J(r, t)), \quad (12a)$$

$$M_{k_{1} \ldots k_{\ell-1}}^{(n,\ell)}(r, t) = \sum_{\ell=1}^{n} (-1)^{\ell-1} \frac{\partial^{\ell-1}}{\partial x_{k_1} \ldots \partial x_{k_{\ell-1}}} M_{ik_{1} \ldots k_{\ell-1}}^{(n,\ell)}(r, J(r, t)), \quad (12b)$$

where $P_i^{(n)}$, $Q_{ik_{1} \ldots k_{\ell-1}}^{(n,\ell)}$, and $M_{k_{1} \ldots k_{\ell-1}}^{(n,\ell)}$ play the role of electric dipole, electric quadrupole and magnetic multipole moments, respectively, and are functionals of the induced current density $J(r, t)$ given by

$$\frac{\partial P_i^{(n)}}{\partial t}(r, J(r, t)) = (-1)^n \frac{6}{(n+2)!} x_i x_{j_1} \ldots x_{j_{n-1}} \frac{\partial}{\partial x_{j_1}} \ldots \frac{\partial}{\partial x_{j_{n-1}}} J_k(r, t), \quad (13a)$$

$$\frac{\partial Q_{ik_{1} \ldots k_{\ell-1}}^{(n,\ell)}}{\partial t}(r, J(r, t)) = (-1)^{\ell} \frac{6}{(\ell+2)!} \binom{n}{\ell} \left[1 - \frac{2(n-\ell)}{n(\ell+3)} \right] x_i x_{k_1} \ldots x_{k_{\ell-1}} J_k(r, t), \quad (13b)$$

$$M_{ik_{1} \ldots k_{\ell-1}}^{(n,\ell)}(r, J(r, t)) = \frac{6}{c(\ell+2)!} \binom{n}{\ell} \binom{n}{\ell+1} (\varepsilon_{ijk} x_j J_k(r, t)) x_{k_1} \ldots x_{k_{\ell-1}}. \quad (13c)$$

Equation (11) along with the effective fields (12) takes the form

$$J_i = \frac{\partial P_i^{(n)}}{\partial t} - \frac{\partial}{\partial t} \frac{\partial}{\partial x_k} \sum_{\ell=1}^{n} \frac{\partial^{\ell-1}}{\partial x_{k_1} \ldots \partial x_{k_{\ell-1}}} Q_{ik_{1} \ldots k_{\ell-1}}^{(n,\ell)} + c \varepsilon_{ijk} \frac{\partial}{\partial x_j} \frac{1}{2c} \varepsilon_{k_{1}m_{1}} x_m J_n, \quad (14)$$

which exhibits the same mathematical structure as a multipole expansion truncated to the n-th order, even though, with the “multipoles” given by equations (13a)-(13c), it is an exact identity.

For the specific case $n = 1$, equation (14) reduces to

$$J_i = -x_i \frac{\partial J_k}{\partial x_k} - \frac{1}{2} (x_k J_i + x_i J_k) + c \varepsilon_{ijk} \frac{\partial}{\partial x_j} \frac{1}{2c} \varepsilon_{k_{1}m_{1}} x_m J_n \quad (15)$$

which is the identity proved by Vinogradov and Aivazyan [Vinogradov and Aivazyan 1999].

For $n = 2$, equation (14) reads

$$J_i = \frac{\partial P_i^{(2)}}{\partial t} - \frac{\partial}{\partial t} \frac{\partial Q_{ij}^{(2,1)}}{\partial x_j} - \frac{\partial}{\partial t} \frac{\partial^2 Q_{ij}^{(2,2)}}{\partial x_j \partial x_k} + c \varepsilon_{ijk} \frac{\partial}{\partial x_j} \frac{\partial}{\partial x_k} M^{(2,1)}_{k_{1} \ldots k_{\ell-1} \ldots k_{\ell-1}}$$

which is the identity proved by Vinogradov and Aivazyan [Vinogradov and Aivazyan 1999].

For $n = 2$, equation (14) reads

$$J_i = \frac{\partial P_i^{(2)}}{\partial t} - \frac{\partial}{\partial t} \frac{\partial Q_{ij}^{(2,1)}}{\partial x_j} - \frac{\partial}{\partial t} \frac{\partial^2 Q_{ij}^{(2,2)}}{\partial x_j \partial x_k} + c \varepsilon_{ijk} \frac{\partial}{\partial x_j} \frac{\partial}{\partial x_k} M^{(2,1)}_{k_{1} \ldots k_{\ell-1} \ldots k_{\ell-1}}$$

with

$$\frac{\partial P_i^{(2)}}{\partial t}(r, J(r, t)) = \frac{1}{4} x_i x_j \frac{\partial}{\partial x_j} \frac{\partial J_k}{\partial x_k} \quad (17a)$$

$$\frac{\partial Q_{ij}^{(2,1)}}{\partial t}(r, J(r, t)) = -\frac{3}{4} (x_i J_j + x_j J_i) \quad (17b)$$
A class of vector identities relevant to the representation of the electric current density

\[\frac{\partial Q_{i \text{jk}}^{(2)}}{\partial t}(r, \mathbf{J}(r, t)) = \frac{1}{12}(x_i x_j J_k + x_i J_k x_j + J_i x_j x_k), \quad (17c) \]
\[M''_{i}^{(2,1)}(r, \mathbf{J}(r, t)) = \frac{1}{2c} \varepsilon_{ijk} x_j J_k, \quad (17d) \]
\[M''_{il}^{(2,2)}(r, \mathbf{J}(r, t)) = \frac{1}{12c} (\varepsilon_{ijk} x_j J_k) x_l. \quad (17e) \]

Equation (16), along with (17), agrees with Raab’s result quoted in [V. Vinogradov and Aivazyan 1999]. (The factor 1/2 in the expression (17d) for \(M^{(2,1)} \) appears to be missing in the corresponding Raab’s expression.)

With reference to (13a) and (13b), only the time-derivative of both the vector \(P_i^{(n)}(r, \mathbf{J}(r, t)) \) and the tensors \(Q_{i k_1 \ldots k_{\ell-1}}^{(n, \ell)}(r, \mathbf{J}(r, t)) \) is specified as functionals of the induced current density \(\mathbf{J}(r, t) \). The explicit form of both \(\tilde{P}_i^{(n)}(r) \) and \(\tilde{Q}_{i k_1 \ldots k_{\ell-1}}^{(n, \ell)}(r) \) is obtained on integrating with respect to time,

\[P_i^{(n)}(r, \mathbf{J}(r, t)) = \int_{t_0}^{t} dt' \frac{\partial P_i^{(n)}}{\partial t'}(r, \mathbf{J}(r, t')) + \tilde{P}_i^{(n)}(r), \quad (18) \]
\[Q_{i k_1 \ldots k_{\ell-1}}^{(n, \ell)}(r, \mathbf{J}(r, t)) = \int_{t_0}^{t} dt' \frac{\partial Q_{i k_1 \ldots k_{\ell-1}}^{(n, \ell)}}{\partial t'}(r, \mathbf{J}(r, t')) + \tilde{Q}_{i k_1 \ldots k_{\ell-1}}^{(n, \ell)}(r), \quad (19) \]

where \(t_0 \) is a reference time (as it appears below, its presence is crucial for the treatment of static fields) and \(\tilde{P}_i^{(n)}(r) \) and \(\tilde{Q}_{i k_1 \ldots k_{\ell-1}}^{(n, \ell)}(r) \) are time-independent integration constants which should be selected in such a way that the representation in (11) for the induced charge density \(\rho(r, t) \) is verified, i.e., \(\nabla \cdot \mathbf{P}^{(n)}_{\text{eff}}(r, t) = -\rho(r, t) \).

In particular, the integration in (18) can be explicitly carried out on making use of (13a) along with the charge continuity equation, with the result that \(P_i^{(n)}(r) \) is a functional of the induced charge density,

\[P_i^{(n)}(r, \rho(r, t)) = (-1)^{n+1} \frac{6}{(n+2)!} \sum_{j=1}^{n} x_i x_j \cdots x_{j_{n-1}} \frac{\partial}{\partial x_{j_{n-1}}} \left(\rho(r, t) - \rho(r, t_0) \right) \]
\[+ \tilde{P}_i^{(n)}(r). \quad (20) \]

For the specific case of fluctuating perturbations, it is usually assumed that both \(\rho(r, t) \) and \(\mathbf{J}(r, t) \) tend to zero for \(t \to -\infty \), so that one can set \(t_0 = -\infty \) in equations (18) and (19) as well as (20), with both \(\tilde{P}_i^{(n)}(r) \) and \(\tilde{Q}_{i k_1 \ldots k_{\ell-1}}^{(n, \ell)}(r) \) being zero. On the other hand, for the case of static fields, for which, in particular, \(\rho(r, t) = \rho(r, t_0) = \rho(r) \), equation (20) reduces to

\[P_i^{(n)}(r, \rho(r)) = \tilde{P}_i^{(n)}(r), \quad (21) \]

and equation (19) along with (13b) where \(\mathbf{J}(r, t) = \mathbf{J}(r) \) yields

\[Q_{i k_1 \ldots k_{\ell-1}}^{(n, \ell)}(r, \mathbf{J}(r)) = (-1)^{n} \frac{6(t - t_0)}{(\ell + 2)!} \binom{n}{\ell} \left[1 - \frac{2(n - \ell)}{n(\ell + 3)} \right] x_i x_{k_1} \cdots x_{k_{\ell-1}} J_k(r) \]
\[+ \tilde{Q}_{i k_1 \ldots k_{\ell-1}}^{(n, \ell)}(r). \quad (22) \]

One should note that equation (22) for the effective electric multipoles exhibits a time-dependence even though static fields are considered. As for the effective magnetization, the static case is simply given by (13a) with \(\mathbf{J}(r, t) \) replaced by \(\mathbf{J}(r) \).
Let us examine in some detail the effective fields (12a) and (12b) for the specific case of \(n = 1 \) [Vinogradov and Aivazyan 1999]. With \(n = 1 \), the effective polarization (12a) is

\[
P_{\text{eff}}^{(1)}(r, t) = P^{(1)}(r, \rho(r, t)) - \nabla \cdot Q^{(1, 1)}(r, J(r, t)),
\]
with, from (20),

\[
P^{(1)}(r, \rho(r, t)) = \begin{cases}
\rho(r, t)r, & \text{fluctuating fields} \\
\tilde{P}^{(1)}(r), & \text{static fields}
\end{cases}
\]
and, from (19) along with (13b),

\[
Q^{(1, 1)}(r, J(r, t)) = \begin{cases}
-\frac{1}{2} \int_{-\infty}^{t} dt' \left(r J(r, t') + J(r, t')r \right), & \text{fluctuating fields} \\
-\frac{(t - t_0)}{2} \left(r J(r) + J(r)r \right) + \tilde{Q}^{(1, 1)}(r), & \text{static fields}
\end{cases}
\]
the upper (lower) entry of (24) and (25) referring to fluctuating (static) fields. On making use of the charge continuity equation, from (25) one gets

\[
\nabla \cdot Q^{(1, 1)}(r, J(r, t)) = \begin{cases}
\frac{1}{2} \rho(r, t)r - \int_{-\infty}^{t} dt' \left(2 J(r, t') + \frac{1}{2} (r \cdot \nabla)J(r, t') \right), & \text{fluctuating fields} \\
-(t - t_0) \left(4J(r) + (r \cdot \nabla)J(r) \right) + \nabla \cdot \tilde{Q}^{(1, 1)}(r), & \text{static fields}
\end{cases}
\]
It is readily verified that the effective polarization (24) along with (24) and (25) referring to fluctuating (static) fields. On making use of the charge continuity equation, from (25) one gets

\[
\nabla \cdot Q^{(1, 1)}(r, J(r, t)) = \begin{cases}
\frac{1}{2} \rho(r, t)r - \int_{-\infty}^{t} dt' \left(2 J(r, t') + \frac{1}{2} (r \cdot \nabla)J(r, t') \right), & \text{fluctuating fields} \\
-(t - t_0) \left(4J(r) + (r \cdot \nabla)J(r) \right) + \nabla \cdot \tilde{Q}^{(1, 1)}(r), & \text{static fields}
\end{cases}
\]
for the case of static fields.

As for the magnetization (12b), for \(n = 1 \), it is

\[
M_{\text{eff}}^{(1)}(r, t) = M^{(1, 1)}(r, J(r, t)) = \frac{1}{2c} (r \times J(r, t)),
\]
which agrees with the conventional definition of magnetic moment density associated to the current density \(J(r, t) \) [Jackson 1999, Vinogradov and Aivazyan 1999].

References

Bornatici M and Maj O 2006 Physica Scripta 73, 160
Jackson J D 1999 Classical Electrodynamics (New York: Wiley)
Vinogradov A P and Aivazyan A V 1999 Phys. Rev. E 60, 987
Vinogradov A P 2002 Physics Uspekhi 45, 331