Supplementary Information

Ti surface doping of LiNi_{0.5}Mn_{1.5}O_{4-δ} positive electrodes for lithium ion batteries

F. Ulu Okudur^1, J. D’Haen^2, T. Vranken^1, D. De Sloovere^1, M. Verheijen^1, O. M. Karakulina^3, A. M. Abakumov^3,4, J. Hadermann^3, M. K. Van Bael^1, A. Hardy^1

^1 UHasselt, Institute for Materials Research (IMO-IMOMEC), partner in Energyville, Inorganic and Physical Chemistry, Agoralaan, 3590 Diepenbeek, Belgium
^2 UHasselt, Institute for Materials Research (IMO-IMOMEC), Materials Physics, Wetenschapspark 1, 3590 Diepenbeek, Belgium
^3 EMAT, University of Antwerp, Groenenborgerlaan 171, B-2020 Belgium
^4 Skoltech Center for Electrochemical Energy Storage, Skolkovo Institute of Science and Technology, Nobel str. 3, 143026 Moscow, Russia

Increasing the NH\textsubscript{3} catalyst concentration from 0.5 to 3 mL during synthesis results in increased agglomeration, globular cluster formation within the LNMO particles, with a 500°C anneal (Figure S1). This is an indication of free amorphous TiO\textsubscript{x} formation by homogenous nucleation, which crystallizes into TiO\textsubscript{2} during annealing as shown by XRD (Figure S2). The amount of the observable globular clusters reduces and the crystallite shapes change with 700°C annealing of this sample (Figure S1).

Figure S1. TEM images of surface modified LNMO synthesized using 3 g LNMO, 12 mL TBOT and 3 mL NH\textsubscript{3} (a) without annealing and with annealing at (b) 500°C and (c) 700°C.

Figure S2. XRD data for surface modified LNMO samples synthesized using 12 mL TBOT and 3 mL NH\textsubscript{3}; followed by annealing at 500 and 700°C. High NH\textsubscript{3} (25 wt.%) catalyst concentration caused an increase in the amorphous TiO\textsubscript{x} loading; resulting in anatase (JCPDS/ICDD 1-562) formation with 500°C anneal, anatase and rutile (JCPDS/ICDD 2-494) formation with 700°C anneal.
Figure S3. SEM image showing the different morphology of free TiO$_2$ formed inside LNMO powder during synthesis; using 3 g LNMO, 12 mL TBOT and 3 mL NH$_3$. Sample was annealed at 700°C temperature (sample dispersion in ethanol, dropping onto 200 mesh copper TEM grid).

Figure S4. Zeta potential measurements as a function of pH, made in 10 mM KNO$_3$ aqueous suspensions of 0.01 wt.% LNMO and amorphous TiO$_x$. Each data point was collected as an average of minimum 3 runs. An important observation is that the surface charge at basic pHs is negative, both for LNMO and amorphous TiO$_x$. Amorphous TiO$_x$ was synthesized using 12 mL TBOT and 0.5 mL NH$_3$.

Figure S5. HAADF-STEM images of the commercial LNMO powder composed of (a) loose 15-50 nm nanoparticles and (b) 200 nm - 2 μm agglomerates.
Table S1. The Mn/Ni ratios from commercial LNMO measured by STEM-EDX from regions indicated in Figure S5.

Mn/Ni	Region	15-50 nm particles	200 nm – 2 µm particles
1	3.1	-	-
2	3.0	-	-
3	2.9	-	-
4	3.0	-	-
5	2.8	-	-
6	2.9	-	-
7	0.3	-	-
8	-	3.5	-
9	-	1.3	-
10	-	1.8	-

Figure S6. PXRD pattern of the commercial LNMO.

Table S2. Chemical composition analysis results by ICP-AES for bare (commercial) LNMO without any anneals and for bare and surface modified LNMO with anneals at different temperatures

Sample	Measurement	Li (mol)	Li (wt%)	Ni (mol)	Ni (wt%)	Mn (mol)	Mn (wt%)	Ti (mol)	Ti (wt%)	Stoichiometry (based on Ni standardization)	Li:Ni:Mn:Ti (average molar ratio)
bare (comm.) LNMO	1	3.35	4.81E-04	15.4	2.63E-04	44.2	8.05E-04	-	-	Li_{0.91}Ni_{0.50}Mn_{1.45}O_{x}	0.91:0.5:1.51
bare LNMO-500°C	1	3.50	5.03E-05	17.0	2.89E-05	46.0	8.37E-05	-	-	Li_{0.87}Ni_{0.50}Mn_{1.45}O_{x}	0.87:0.5:1.45
bare LNMO-800°C	1	3.55	5.10E-05	16.5	2.81E-05	45.2	8.23E-05	-	-	Li_{0.91}Ni_{0.50}Mn_{1.46}O_{x}	0.92:0.5:1.49
surface mod. LNMO-500°C	1	3.32	4.78E-05	15.2	2.58E-05	44.6	8.11E-05	1.44	3.01E-06	Li_{0.92}Ni_{0.50}Mn_{1.57}T_{0.06}O_{x}	0.92:0.5:1.54:0.06
surface mod. LNMO-800°C	1	3.26	9.37E-06	14.9	5.07E-06	42.9	1.56E-05	2.08	8.70E-07	Li_{0.92}Ni_{0.50}Mn_{1.54}T_{0.09}O_{x}	0.92:0.5:1.53:0.08
bare LNMO-500°C	1	3.32	4.86E-05	15.4	2.63E-05	43.3	7.89E-05	1.47	3.07E-06	Li_{0.92}Ni_{0.50}Mn_{1.50}T_{0.08}O_{x}	0.92:0.5:1.53:0.08
Table S3. Lattice parameter refinement results and crystallite size calculations obtained from XRD data of bare and surface modified LNMO annealed at different temperatures.

Sample	a (Å)	%Rwp	%R_bragg	χ²	I_ξ	Average crystallite size (nm)
surface mod. LNMO-500°C	8.18170(10)	3.19	1.96	1.449	14.98	53
surface mod. LNMO-600°C	8.18269(21)	3.26	2.17	1.520	15.22	52
surface mod. LNMO-700°C	8.18551(19)	3.51	2.18	1.753	7.36	108
surface mod. LNMO-750°C	8.18594(7)	3.15	1.49	1.433	4.23	188
surface mod. LNMO-800°C	8.18574(7)	3.64	3.57	1.876	3.67	216
surface mod. LNMO-850°C	8.18547(7)	3.65	2.16	1.903	0.82	967
bare LNMO-500°C	8.17909(19)	3.04	1.61	1.331	13.33	60
bare LNMO-600°C	8.17913(19)	3.01	2.00	1.314	16.31	49
bare LNMO-700°C	8.17952(7)	2.87	1.51	1.180	10.24	78
bare LNMO-750°C	8.18100(6)	3.01	2.16	1.275	8.36	95
bare LNMO-800°C	8.18184(6)	3.46	2.20	1.691	3.86	206
bare LNMO-850°C	8.17976(12)	3.87	2.40	2.224	4.16	191

Table S4. Atom sites used for both LiNi₀.₅Mn₁.₅O₄₋₄.₈ and LiNi₀.₅Mn₁.₅₋₁.₅Ti₁.₅O₄ lattice parameter refinements [1] (Ti was assumed to replace Mn at the 16d sites [2])

atom	site	x	y	z	site occupancy
Li	8a	0.125	0.125	0.125	1
Ni	16d	0.5	0.5	0.5	0.25
Mn	16d	0.5	0.5	0.5	0.75
O	32e	0.26314(6)	0.26323(5)	0.2632(7)	1

[1] Branford, W., Green, M.A., Neumann, D.A., Structure and ferromagnetism in Mn(4+) spinels: A Mn₀.₅Mn₁.₅O₄ (A = Li, Cu; M = Ni, Mg). Chem. Mater., 2002. 14: p. 1649-1656.

[2] Le, M.-L.-P., Strobel, P., Colin, C., Pagnier, T. and Alloin, F. Spinel-type solid solutions involving Mn⁴⁺ and Ti⁴⁺: Crystal chemistry, magnetic and electrochemical properties. Journal of Physics and Chemistry of Solids, 2011. 72(2): p. 124-135.
Figure S7. Refinement profiles for surface modified LNMO samples prepared using 3 g LNMO, 12 mL TBOT and 0.5 mL NH3 (25 wt.%), followed by anneals at different temperatures. The Bragg positions of LiNi$_{0.5}$Mn$_{1.5}$O$_{4-δ}$ and LiNi$_{0.5}$Mn$_{1.5-y}$Ti$_{y}$O$_{4}$ phases are shown as tick marks located in upper and lower positions, respectively.

Table S5. Particle diameter measurements based on TEM images (30-2700 x magnifications)

#	diameter (nm)						
1	15.944	1	21.809	1	62.618	1	242.249
2	16.582	2	22.989	2	67.08	2	338.151
3	18.005	3	24.866	3	70.562	3	357.693
4	19.133	4	26.809	4	72.593	4	366.788
5	21.287	5	26.907	5	74.031	5	379.958
6	21.429	6	27.682	6	78.002	6	425.512
7	22.395	7	29.078	7	78.186	7	436.651
8	22.862	8	29.895	8	84.876	8	443.005
9	24.766	9	30.67	9	88.403	9	478.273
10	26.156	10	33.154	10	90.203	10	499.664
11	26.427	11	34.559	11	91.472	11	593.319
12	26.634	12	36.348	12	96.42	12	630.629
13	26.907	13	37.068	13	97.923	13	647.912
14	27.298	14	38.26	14	100.921	14	659.789
15	27.807	15	40.148	15	106.983	15	677.489
16	28.321	16	42.264	16	109.327	16	680.846
17	31.671	17	42.389	17	111.799	17	712.422
18	32.986	18	42.732	18	113.58	18	721.63
19	33.072	19	43.618	19	118.264	19	737.223
20	33.808	20	43.919	20	118.485	20	754.125
21	34.587	21	43.919	21	119.724	21	806.878
22	34.868	22	44.159	22	121.962	22	823.101
---	---	---	---	---			
23	36.996	23	44.636	23	125.387	23	891.579
24	37.86	24	45.977	24	126.568	24	1024.652
25	39.793	25	46.548	25	127.267	25	1240.571
26	42.458	26	46.888	26	127.896	26	1257.456
27	43.204	27	47.168	27	130.004	27	Avg. 647
28	43.241	28	49.752	28	130.236	28	
29	44.78	29	50.36	29	140.021	29	
30	44.921	30	52.523	30	144.665	30	
31	46.923	31	54.239	31	146.049	31	
32	51.418	32	58.609	32	150.063	32	
33	54.841	33	58.609	33	153.239	33	
34	66.061	34	61.77	34	158.114	34	
35	211	35	62.451	35	164.699	35	
36	236	36	63.915	36	165.92	36	
37	249	37	66.825	37	176.652	37	
38	249	38	66.962	38	179.811	38	
39	282	39	67.298	39	201.74	39	
40	319	40	69.338	40	215.377	40	
41	325	41	71.669	41	220.379	41	
42	325	42	73.088	42	247.5	42	
43	374	43	73.088	43	253.973	43	
44	381	44	74.136	44	264.447	44	
45	441	45	75.03	45	287.529	45	
46	479	46	75.162	46	288.444	46	
47	557	47	77.19	47	317.128	47	
48	557	48	80.755	48	350.903	48	
49	578	49	81.342	49	355.258	49	
50	646	50	86.055	50	402.87	50	
51	658	51	89.744	51	407.922	51	
52	819	52	89.972	52	441.603	52	
53	837	53	100.72	53	447.145	53	
54	924	54	119.188	54	467.718	54	
55	1047	55	187.155	55	479.383	55	
56	1150	56	292.984	56	496.258	56	
57	1577	57	332.498	57	508.652	57	
58	1756.457	58	355.258	58	523.161	58	Avg. 243
59	201.74	59	358.612	59	528.242	59	Avg. 338
60	411.556	60	366.956	60	528.242	60	
61	436.663	61	366.956	61	528.652	61	
62	461.85	62	366.956	62	528.652	62	
63	464.378	63	366.956	63	528.652	63	
64	495.496	64	366.956	64	664.326	64	
65	547.42	65	366.956	65	664.326	65	
66	738.607	66	366.956	66	676.391	66	
67	760.096	67	366.956	67	701.807	67	
68	790.79	68	366.956	68	830.152	68	
69	899.3	69	366.956	69	851.34	69	
70	1064.97	70	366.956	70	876.737	70	
71	1099.226	71	366.956	71	1023.05	71	
72	1191.807	72	366.956	72	1088.128	72	
73	1542.807	73	366.956	73	1371.248	73	
74	1632.547	74	366.956	74	1462.358	74	
75	1756.457	75	366.956	75	1476.835	75	
Figure S8. (a) Particle size distribution diagram for bare (commercial) LNMO without any anneals and Ti surface modified LNMO annealed at different temperatures. (b)(c) Particle size distributions for the bare (commercial) LNMO with 500 or 800°C anneals; and Ti-surface modified LNMO samples, with 500 or 800°C anneals. Measurements were made using TEM images (30-2700 x magnifications).

Figure S9. HAADF-STEM image of surface modified LNMO annealed at 500°C (left). The green line marks the region used to plot the profiles of atomic content of Mn, Ni and Ti (right). At the surface layer (2-3 nm) Ti concentration is higher.
Figure S10. HAADF-STEM image of surface modified LNMO annealed at 800°C (left). The green line marks the region used to plot the profiles of atomic content of Mn, Ni and Ti (right). At the surface layer (2 nm) Ti concentration is higher.

Figure S11. HAADF-STEM image of surface modified LNMO annealed at 850°C (left). The green line marks the region used to plot the profiles of atomic content of Mn, Ni and Ti (right). At the surface layer Ti concentration is higher.
Figure S12. BET measurements for bare and Ti surface modified LNMO with 500°C anneals. Surface areas were determined to be 20 and 24 m²/g for bare and Ti surface modified LNMO samples, respectively.

Figure S13. High resolution HAADF-STEM image, mixed (Mn, Ni), (Mn, Ti) and O STEM-EDX maps of surface modified LNMO annealed at 800°C. Ti layer does not exceed the edges of the crystal, therefore it has spinel structure. The area marked by white arrow corresponds to another crystal.
Figure S14. Effect of 1.5wt.% Ti exclusion from the total active material mass on discharge capacity (mAh/g) of surface modified, 500°C annealed LNMO. Since the effect of 1.5wt.% Ti exclusion on discharge capacity (mAh/g) is very small, the Ti was included in the total active material mass for all samples.

Figure S15. Comparison of cycle life and Coulombic efficiency of the bare LNMO sample without any anneals (as received from Sigma Aldrich) to a surface modified LNMO with 700°C anneal (synthesis made using 3 g LNMO, 6 mL TBOT and 0.5 mL NH₃). Measurements were made using a EC/DEC electrolyte, at 0.1 C, in a potential window from 3.4 to 5 V, for 50 cycles.