Randomized Trial Comparing the Flexible 19G and 25G Needles for Endoscopic Ultrasound-Guided Fine Needle Aspiration of Solid Pancreatic Mass Lesions

Jayapal Ramesh, MD, FRCP (UK),* Ji Young Bang, MBBS, MPH,* Shantel Hebert-Magee, MD,† Jessica Trevino, MD,* Isam Elloum, MD, MBA,‡ Andra Frost, MD,‡ Muhammad K. Hasan, MD,‡ Amy Logue, MSN,‡ Robert Hawes, MD,‡ and Shyam Varadarajulu, MD‡

Objectives: Although a large gauge needle can procure more tissue at endoscopic ultrasound-guided fine needle aspiration (EUS-FNA), its advantage over smaller needles is unclear. This study compared flexible 19G and 25G needles for EUS-FNA of solid pancreatic masses.

Methods: This was a randomized trial of patients undergoing EUS-FNA of pancreatic masses using flexible 19G or 25G needle. Main outcome measure was to compare median number of passes for on-site diagnosis. Secondary measures were to compare specimen bloodiness, complications, technical failures, and histological core tissue procurement.

Results: One hundred patients were randomized to EUS-FNA using flexible 19G or 25G needle. Median of 1 pass was required to achieve on-site diagnosis of 96% and 92% (P = 0.68) in 19G and 25G cohorts. There was no significant difference in technical failure (0% vs 2%, P = 0.99) or adverse events (2% vs 0%, P = 0.99) between 19G and 25G cohorts. Although histological core tissue procurement was significantly better with flexible 19G needle (88% vs 44%, P < 0.001), specimens were bloodier (severe bloodiness, 36% vs 4%, P < 0.001).

Conclusions: As there is no significant difference in the performance of flexible 19G and 25G needles, needle choice for sampling pancreatic masses should be based on endoscopist preference and need for histology.

Key Words: EUS-FNA, solid pancreatic mass, pancreatic cancer, pancreatic biopsy, flexible 19G needle, randomized trial

Endoscopic ultrasound-guided fine needle aspiration (EUS-FNA) is an integral part of the diagnostic algorithm for the evaluation of solid pancreatic mass lesions. Randomized trials have compared the 25G, 22G, and 19G needles in an attempt to identify the optimal needle for tissue acquisition.1–3 Of the 3 studies that compared the 22G and 25G needles,1–3 whereas there was no significant difference in diagnostic accuracy, there was a trend toward better performance with the 25G needle for the FNA of pancreatic head masses. These findings were confirmed in a recent meta-analysis that revealed higher sensitivity of 25G over 22G needles for the EUS-FNA of pancreatic mass lesions.4 A limitation of FNA procedures, particularly when using smaller gauge (22G or 25G) needles, is the limited ability to procure adequate histological samples. Tissue architecture and morphology are essential for accurate pathological assessment of certain lesions, such as lymphomas and gastrointestinal stromal tumors, for which histological core is preferred over a cytological aspirate.5 Although a larger 19G needle can procure histological samples, published data are limited.6–8 In a study of 120 patients who underwent EUS-FNA using the 19G needle, the procedure was technically successful in 98.9%, and adequate histological sample was obtained in 97.5%.6 However, patients with pancreatic head or uncinate masses were excluded in this study. A major limitation of the 19G needle has been its rigidity that makes transduodenal sampling of pancreatic masses difficult because of the stiffness induced by the needle assembly on the echoendoscope shaft. Only 1 randomized trial has compared the performance of 19G and 22G needles for sampling of solid pancreatic mass lesions.7 In that study, although the diagnostic accuracy of the 19G needle was superior, the technical failure rate associated with its use was significantly higher than that for the 22G needle. In a recent study of 548 patients who underwent EUS-FNA, the 25G needle had superior technical performance over the 19G and 22G needles for the sampling of pancreatic head and uncinate lesions.8 An inherent advantage of the 25G needle is its thin caliber that makes transduodenal sampling relatively easier. To circumvent the technical problems encountered with 19G needles, a new nitinol-based platform has recently been developed with the objective of enhancing its flexibility. In a preliminary study of 50 patients with 32 pancreatic head/uncinate mass lesions who underwent transduodenal tissue acquisition with this nitinol-based flexible 19G needle, EUS-FNA was diagnostic in 92.1%, histological core tissue was procured successfully in 94.7%, and the combined diagnostic accuracy was 100%.8 Given the increased use of 25G needles for the FNA of pancreatic masses, particularly head lesions, and recent advancements in the 19G platform, we conducted a randomized trial to compare the technical performance of both needle systems for the sampling of solid pancreatic mass lesions.

MATERIALS AND METHODS

Patients and Settings

This was a multicenter randomized trial conducted at Florida Hospital and the University of Alabama at Birmingham (ClinicalTrials.gov identifier: NCT01677312; registration date: August 28, 2012). All patients 19 years and older with suspected solid...
pancreatic mass lesions that were identified on computed tomo-
gram scan and referred for EUS-FNA were eligible for participa-
tion in this study. Patients were excluded if a pancreatic mass
lesion was not seen at EUS, the mass had a cystic component,
or if the coagulation parameters were abnormal. The respective in-
stitutional review boards of Florida Hospital and the University of
Alabama at Birmingham approved the study on August 28, 2012.
Written informed consents were obtained from all patients for par-
ticipation in the trial. The full study protocol can be accessed from
the ClinicalTrials.gov Web site, and the CONSORT checklist for
randomized trials has been included as Supplemental Digital Con-
tent 1 (http://links.lww.com/MPA/A329). All authors had access to
the study data and have reviewed and approved the final
manuscript.

Randomization and Masking

Computer-generated randomization assignments were ob-
tained before study enrollment using the block randomization
method by the statistician. These were then placed in sequentially
numbered sealed opaque envelopes and opened by the endoscopy
dnurse during the procedure when patients met criteria for study in-
clusion. Patients were randomized equally to the 2 needle types
(1:1 allocation).

Procedural Technique

Patients underwent EUS-FNA with either the flexible 19G or
25G needle (Expect; Boston Scientific Corporation, Natick, MA)
by 1 of the 5 experienced endosonographers (all with advanced
endoscopy training and >500 EUS procedures/year) at either
medical center. All pancreatic head and uncinate masses were
accessed via the duodenum, whereas all pancreatic body and tail
masses were sampled via the stomach. All procedures were per-
formed using a linear array echoendoscope (Olympus UCT140;
Olympus America Corp, Center Valley, PA) with patients in the
left lateral decubitus position under moderate sedation or after ad-
ministration of propofol. At EUS, during individual FNA passes,
after puncturing the pancreatic mass, the stylet was removed, and
the needle was moved to-and-fro, 12 to 16 times, at different areas
within the lesion using the fanning technique. As described in a
previous report, suction was not applied, and the stylet was not
reintroduced into the needle after the first pass in any patient.

Specimen Handling

Tissue material was expressed onto slides by advancing the
stylet within the needle assembly. After the initial pass, which
was collected in cell block (Hank balanced salt solution; Invitrogen,
Grand Island, NY), an attending pathologist who was blinded to the
type of needle being used processed the subsequent specimens on-
site. A maximum of 6 passes (excluding the cell block) were per-
formed using the original needle type, and if there was diagnostic
failure, the procedure was terminated to the alternate needle.
However, if a definitive diagnosis was established during the
initial attempt, the procedure was terminated, and the number of
passes performed was documented.

Preparation of Specimen for On-Site Analysis

Air-dried and alcohol-stained smears were prepared on-site
after individual passes. Air-dried smears were stained with
Three-Step Stain (Richard-Allan Scientific, Kalamazoo, MI) and
immediately reviewed by a cytopathologist who was blinded to the
needle type used, to establish the on-site diagnosis and blood-
iness of the specimen. Alcohol-stained smears were prepared off-
site in the pathology laboratory using the Papanicolaou stain.

Preparation of Cell Block for Histological Analysis

In the laboratory, a 10-mL vial of Hank balanced salt solu-
tion containing the collected specimen was placed into the centri-
fuge, counter-balanced, and spun for 5 minutes. If the specimen
quantity was sufficient, the supernatant was removed, and 3 drops
of plasma and thrombin were added to the sediment. Upon forma-
tion of a clot, the cell button was removed intact, enclosed in a
Tissue-Loc HistoScreen cassette (Microm International, Walldorf,
Germany), and fixed in formalin. The cassette was processed, em-
bossed in paraffin, and then prepared in hematoxylin and eosin to
be evaluated for the presence of a histological core. Core tissue
was quantified using cellSens (Olympus America Inc, Center
Valley, PA), a specially designed software that measures dimen-
sions of core tissue evi-vivo under microscopy in millimeters. When
required, immunohistochemical or special staining was per-
formed for the differentiation of morphologically challenging
lesions.

Outcome Measures and Follow-Up

The primary objective was to compare the median number of
passes required to establish on-site diagnosis. The secondary
outcome measure was to compare the bloodiness of specimen,
advise events, technical failure, and the ability to procure histo-
logical core. Immediate complications were documented at the
time of the procedure, and late complications were documented
via telephone follow-up at 24 hours and 10 days after the
procedure.

Statistical Analysis

In line with our primary objective, a 2-tailed sample size cal-
culation was performed with type I error rate (α) set at 0.05 to at-
tain 90% of power for detecting a difference of 1 pass in the
number of passes needed to acquire an on-site diagnosis. On the
basis of previous studies,1,8 SDs of 0.79 for the 19G needle group
and 2.0 for the 25G needle group were used, which produced tar-
gent sample sizes of 49 for each group and was set at 50 patients per
group to allow for possible dropouts.

Baseline characteristics of the patient population, pancre-
atic mass lesions, technical details, and procedure outcomes
were summarized as means (with SD) or medians (with inter-
quartile range [IQR] and range) for continuous data and as
frequencies and proportions for categorical data. For the com-
parison of categorical data, χ² or Fisher exact test was used as
indicated, whereas the 2-sample t test or the Wilcoxon rank-
sum test was used as appropriate for the comparison of continuous
data. Statistical significance was determined as P < 0.05. Data
sets were compiled using Microsoft Excel, and all statistical
analyses were performed using Stata 13 (Stata Corp, College
Station, TX).

Definitions

On-site diagnosis was defined as the proportion of pa-
tients in whom the tissue was diagnostically sufficient to render a
preliminary on-site diagnosis using the original needle. Diag-
nostic failure (nondiagnostic) was defined as an inability to ob-
tain sufficient diagnostic material for on-site diagnosis despite
6 passes with the original needle. Technical failure was defined as
malfunction of the needle before an on-site assessment could
be rendered. Core tissue was defined as a continuous string of
material that retains its histological tissue architecture on
microscopic examination. Specimen bloodiness was catego-
rized based on the percentage of blood in the microscopic field:
mild, less than 33%; moderate, 33% to 66%; and severe, greater than 66%.

RESULTS

Of the 130 patients who were screened for participation in this study between August 30, 2012, and January 25, 2013, 30 were excluded as a pancreatic lesion was not visualized at EUS in 19 patients, the lesion was cystic in 10 patients, and 1 patient refused participation. A total of 100 patients with solid pancreatic mass lesions constituted the study cohort and were randomized equally to the 2 needle groups.

Patient Demographics and Tumor Characteristics

Except for tumor size, which was larger in patients randomized to the flexible 19G needle (median size, 37.5 vs 35 mm; $P = 0.03$), there was no difference in patient demographics or tumor characteristics between the 2 cohorts (Table 1). More than 80% of lesions in both cohorts were neoplastic, and 61% of masses were located in the pancreatic head/uncinate region requiring transduodenal sampling. Vascular invasion was observed at EUS in 61% of patients. The final diagnosis was pancreatic adenocarcinoma or other type of malignant tumor in 76 patients (76%), neuroendocrine tumor in 7 patients (7%), chronic pancreatitis in 13 patients (13%), primary pancreatic lymphoma in 2 patients (2%), and intrapancreatic accessory spleen in 2 patients (2%).

TABLE 1. Patient and Pancreatic Mass Characteristics

Needle Size	Study Cohort (n = 100)	Flexible 19G (n = 50)	25G (n = 50)	P
Age, years		68.1 (11.0)	68.8 (11.0)	0.75
Sex		19 (38)	20 (40)	0.84
Ethnicity, n (%)		39 (78)	35 (70)	0.57
Size of pancreatic mass on EUS, mm		40.2 (14.0)	34.9 (12.9)	0.03
Location of pancreatic mass, n (%)		30 (60)	31 (62)	0.99
Vascular invasion by mass, n (%)		31 (62)	30 (60)	0.84
Final diagnosis, n (%)		40 (80)	34 (68)	0.26

TABLE 2. Technical Details and Outcomes

Needle Size	Study Cohort (n = 100)	Flexible 19G (n = 50)	25G (n = 50)	P
On-site diagnosis		48 (96)	46 (92)	0.68
Total no. passes needed for on-site diagnosis		1.4 (0.9)	1.6 (1.6)	0.41
Vascular invasion by mass, n (%)		37 (75.5)	42 (84)	0.31
Presence of histological core, n (%)		36 (72)	12 (24)	0.001
Area of diagnostic core tissue, mm2		3.44 (3.68)	0.95 (1.57)	0.007
Technical failure, n (%)		0 1 (2)	49 (98)	0.99
Needle crossover, n (%)		1 (2)	4 (8)	0.36

TABLE 3. Technical Details and Outcomes

Needle Size	Study Cohort (n = 100)	Flexible 19G (n = 50)	25G (n = 50)	P
On-site diagnosis		48 (96)	46 (92)	0.68
Total no. passes needed for on-site diagnosis		1.4 (0.9)	1.6 (1.6)	0.41
Vascular invasion by mass, n (%)		37 (75.5)	42 (84)	0.31
Presence of histological core, n (%)		36 (72)	12 (24)	0.001
Area of diagnostic core tissue, mm2		3.44 (3.68)	0.95 (1.57)	0.007

†One patient in the flexible19G group was not crossed over to the alternate needle as bleeding occurred during the procedure, which was then terminated. Therefore, this patient was not included in the calculation of the number of passes needed for diagnosis as the diagnosis was not achieved with on-site cytology.

*Other: 2 Hispanic and 1 Asian in Flexible 19G; 2 Hispanic in 25G.

†Flexible 19G: 3 NET; 25G: 4 NETs, 2 lymphomas, 1 renal cell carcinoma, 1 spindle cell neoplasm of pancreas.

‡Flexible 19G: 5 chronic pancreatitis, 2 intrapancreatic accessory spleens; 25G: 8 chronic pancreatitis.

NET, neuroendocrine tumor.
Outcome Measures

There was no significant difference in the median number of passes required to establish on-site diagnosis (1 [IQR, 1–1] vs 1 [IQR, 1–1], \(P = 0.41 \)), rates of technical failure (0% vs 2%, \(P = 0.99 \)), or procedural complications (2% vs 0%, \(P = 0.99 \)) between the flexible 19G and 25G cohorts, respectively (Table 2). On-site diagnosis could not be established in 2 patients with pancreatic head masses in the flexible 19G cohort: 1 patient had a nondiagnostic aspirate, was crossed over to the 25G cohort, and was diagnosed to have pancreatic adenocarcinoma. Another patient developed bleeding (adverse event) at the sixth pass, and the procedure was terminated without crossover. However, at cell block, this patient was diagnosed to have pancreatic adenocarcinoma. On-site diagnosis could not be established in 4 patients in the 25G cohort, because of 3 nondiagnostic aspirates and 1 technical failure. Of the 3 patients with nondiagnostic aspirates who underwent crossover to the flexible 19G needle, one was diagnosed with pancreatic spindle cell cancer located in the pancreatic body, and two had chronic pancreatitis (1 lesion located in the head and the other in the tail of the pancreas). Technical failure was encountered in 1 patient who underwent transgastric FNA.

![Flow diagram of the study results.](pancreasjournal.com/131)

FIGURE 1. Flow diagram of the study results.

Abbreviations: ca, Cancer; CP, Chronic pancreatitis; EUS-FNA, Endoscopic ultrasound-guided fine needle aspiration; NET, Neuroendocrine tumor.

* Malignancy: All pancreatic adenocarcinoma
† Malignancy: 34 pancreatic adenocarcinoma, 1 metastatic renal cell carcinoma
of a pancreatic body mass: the bent 25G needle could not be released out of the sheath after the third pass (all of which were nondiagnostic), and the patient was crossed over to the flexible 19G needle with FNA revealing a lymphoma. A flow diagram of the study results is shown in Figure 1.

Intraprocedural bleeding was observed at the sixth pass in a male patient who underwent transduodenal FNA of a pancreatic head mass using the flexible 19G needle. The bleeding resolved spontaneously, but the patient also developed postprocedure fever that was managed by administration of intravenous antibiotics. As stated earlier, the cell block in this patient eventually revealed a pancreatic adenocarcinoma.

At the on-site assessment, severe bloodiness was observed in significantly more patients randomized to the flexible 19G than to the 25G needle (36% vs 4%, P < 0.001). Histological core tissue was also present in significantly greater proportion of patients randomized to the flexible 19G than to the 25G needle (88% vs 44%, P < 0.001), with a significant difference in the area of diagnostic core tissue between the 2 needles (median area, 1.79 mm² for flexible 19G needle vs 0.37 mm² for 25G needle; P = 0.007).

Follow-Up

At a median follow-up of 7 months (range, 2–12 months), 37 patients with neoplastic disease were undergoing chemoradiation, 13 had undergone definitive surgery, 12 elected for palliative care, and 22 were deceased. Fifteen patients with benign disease and one with neuroendocrine tumor on follow-up had no clinical or radiological disease progression. All patients who underwent surgical resection were found to have malignant disease, and there were no false-positive diagnoses in any patient. Likewise, on follow-up, none of the patients diagnosed with chronic pancreatitis had disease progression either clinically or on radiological imaging and were doing well. In addition, none of the patients who underwent chemoradiation had subsequent surgical resection as there was documented disease progression on follow-up computed tomogram scan with deterioration in clinical well-being.

DISCUSSION

In this study, the first randomized trial to compare the flexible 19G and 25G needles for sampling solid pancreatic lesions, the technical performance of the flexible 19G needle was comparable with that of the 25G needle. The major advantage of the flexible 19G needle was the ability to procure histological core tissue. The EUS-FNA of pancreatic lesions with the large bore 19G needle has been fraught with technical challenges. In a comparative study that evaluated the 19G Trucut, 19G, and 22G FNA needles for sampling solid pancreatic mass lesions, the technical success rates for sampling uncinate lesions were 0% versus 0% versus 100% and, for head lesions, were 60% versus 60% versus 100%, respectively. In a prospective randomized trial that compared the 19 and 22G needles, the technical success rate for sampling pancreatic head mass specimens was significantly lower for the 19G needle than for the 22G needle (80.8% vs 100%). In another study that evaluated the 19G needle, although FNA of pancreatic uncinate lesions was not feasible in any patient, the success rate for FNA of head lesions was only 33.3%. In contrast, the present study shows that, when using the flexible 19G needle, mass lesions located anywhere in the pancreas can be successfully sampled, including patients crossed over from the 25G cohort because of technical failure.

The diagnostic sensitivity of EUS-FNA is incumbent on the presence of an on-site cytopathologist, and the 25G needle is considered the most optimal for on-site tissue acquisition. There are limited data on the ability to provide rapid on-site interpretation when using the 19G needle. In the present study, although there was no difference in the ability to render on-site diagnosis between the flexible 19G and 25G needles, specimens procured using the flexible 19G needle were bloodier. Therefore, when using the flexible 19G needle, to minimize specimen bloodiness, it is important not to “jab” the same area in the mass repeatedly but rather “fan” the needle at different locations within the mass to procure a better quality sample. In the present study, although the specimens procured using the flexible 19G needles were bloodier, it did not impede on-site assessment in most patients because of the presence of adequate diagnostic tissue. The ability to render immediate diagnosis is particularly relevant for centers that have access to on-site cytopathology services so that patient care can be expedited.

Several types of biopsy needles have been developed to procure histological core specimens, which sometimes are important for the diagnosis of challenging diseases such as well-differentiated pancreatic cancer or lymphoma and for the assessment of molecular markers in metastatic lung or breast cancer to facilitate receptor-specific chemotherapy. Although the relevance of core tissue procurement for such indications is still being debated and is outside the scope of this study, herein, we demonstrate that the flexible 19G FNA needle can procure a histological core tissue, in 1 pass, in more than 85% of patients. In addition, two of the patients randomized to the 25G needle were crossed over to the flexible 19G needle (because of nondiagnostic FNA in 1 patient and needle dysfunction in the other), after which the diagnoses of pancreatic lymphoma and spindle cell neoplasm were established. In rare instances, a core biopsy needle or the large caliber 19G needle is required for better morphological characterization of tumors that may not be always feasible with standard FNA needles.

On the other hand, a diagnostic core was procured in only 44% of the patients when using the 25G needle. It is likely that, if multiple passes are performed for cell block using a 25G needle, then histological assessment may be possible in a higher proportion of patients. However, the number of passes required for an adequate cell block when using the 25G needle is unclear. Although not proven by this trial, an indirect implication of these findings is that, in centers that do not have access to on-site cytopathology services, the 19G needle can be used to procure histological specimens, which can then be processed off-site more easily using standard techniques.

There are limited data on the safety profile of the 19G FNA needle for tissue procurement. In this study, 1 patient experienced intraprocedural bleeding and postprocedure fever after transduodenal EUS-FNA using a flexible 19G needle. Although we encountered only 1 adverse event when using the flexible 19G needle, the study was not adequately powered to compare the rate of adverse events between the 2 cohorts. Other studies that have evaluated the 19G needle for tissue acquisition report no adverse events associated with its use. In a recent meta-analysis that compared the 19G versus 22G/25G needles for EUS-FNA of solid pancreatic mass lesions, there was no difference in the rates of complications between the 2 cohorts.

There are several limitations to our study. First, only solid pancreatic masses were evaluated, and the performance of both needles in other organs was not compared. Second, the median size of the pancreatic mass lesions was more than 30 mm, which may have made tissue acquisition less challenging with the flexible 19G needle. Third, per protocol, only 1 dedicated pass was obtained for histological core tissue assessment (cell block). It is therefore possible that more passes could have significantly improved the diagnostic yield in cell block. Fourth, the endoscopists
were not blinded to the type of needle being used, and the possibility of bias cannot be excluded. However, the pathologists were blinded to the procedural details, and the influence of bias on the study findings is likely minimal. Fifth, all procedures were performed by expert endosonographers in tertiary referral centers with experienced on-site cytopathology support, and these results may not be applicable to all units. Sixth, although we recommend the fanning technique and not puncturing the same area repeatedly, the optimal technique for tissue procurement using the 19G needle is not standardized. Prospective, comparative studies are therefore needed to identify the optimal maneuver for tissue procurement when using a large caliber 19G needle. In addition, comparative studies evaluating the different 19G platforms are required to identify the most suitable needle for transduodenal sampling. Finally, the diagnostic accuracy of the cytological samples obtained using EUS-FNA was not compared with the final histological diagnosis (gold standard). However, with the exception of 1 patient in the flexible 19G cohort who experienced bleeding and subsequently had a nondiagnostic on-site aspirate that was later proven to be adenocarcinoma on cell block, there was no difference in diagnostic assessment between on-site versus final cytopathological reporting. These findings are in line with a previous study from our institution that revealed an excellent agreement (kappa, 84%) between on-site and final cytologic evaluation.19

In conclusion, the current platform of 19G needles enables tissue acquisition irrespective of the location of the mass in the pancreas. As there is no significant difference in the performance of flexible 19G and 25G needles, the choice of a needle should be based on endoscopist preference and the need for histological core tissue procurement.

REFERENCES

1. Camellini L, Carlinfante G, Azzolini F, et al. A randomized clinical trial comparing 22G and 25G needles in endoscopic ultrasound-guided fine-needle aspiration of solid lesions. *Endoscopy*. 2011;43:709–715.

2. Fabbri C, Polifemo AM, Luigiano C, et al. Endoscopic ultrasound-guided fine needle aspiration with 22- and 25-gauge needles in solid pancreatic masses: a prospective comparative study with randomisation of needle sequence. *Dig Liver Dis*. 2011;43:647–652.

3. Siddiqui UD, Rossi F, Rosenthal LS, et al. EUS-guided FNA of solid pancreatic masses: a prospective, randomized trial comparing 22-gauge and 25-gauge needles. *Gastrointest Endosc*. 2009;70:1093–1097.

4. Madhoun MF, Wani SB, Rastogi A, et al. The diagnostic accuracy of 22-gauge and 25-gauge needles in endoscopic ultrasound-guided fine needle aspiration of solid pancreatic lesions: a meta-analysis. *Endoscopy*. 2013;45:86–92.

5. Levy MJ. Endoscopic ultrasound-guided Trucut biopsy of the pancreas: prospects and problems. *Pancreatology*. 2007;7:163–166.

6. Larghi A, Verna EC, Ricci R, et al. EUS-guided fine-needle tissue acquisition by using a 19-gauge needle in a selected patient population: a prospective study. *Gastrointest Endosc*. 2011;74:504–510.

7. Song TJ, Kim JH, Lee SS, et al. The prospective randomized, controlled trial of endoscopic ultrasound-guided fine-needle aspiration using 22G and 19G aspiration needles for solid pancreatic or peripancreatic masses. *Am J Gastroenterol*. 2010;105:1739–1745.

8. Varadarajulu S, Bang JY, Hebert-Magee S. Assessment of the technical performance of the flexible 19-gauge EUS-FNA needle. *Gastrointest Endosc*. 2012;76:336–343.

9. Bang JY, Ramesh J, Trevino J, et al. Objective assessment of an algorithmic approach to EUS-guided FNA and interventions. *Gastrointest Endosc*. 2013;77:739–744.

10. Bang JY, Hebert-Magee S, Ramesh J, et al. Randomized trial comparing the fanning with standard technique for endoscopic ultrasound-guided fine needle aspiration of solid pancreatic mass lesions. *Endoscopy*. 2013;45:445–450.

11. Bang JY, Hebert-Magee S, Trevino J, et al. Randomized trial comparing the 22-gauge aspiration and 22-gauge biopsy needles for EUS-guided sampling of solid pancreatic mass lesions. *Gastrointest Endosc*. 2012;76:321–327.

12. Itoi T, Itokawa F, Sofiani A, et al. Puncture of solid pancreatic tumors guided by endoscopic ultrasonography: a pilot study series comparing Trucut and 19-gauge and 22-gauge aspiration needles. *Endoscopy*. 2005;37:362–366.

13. Sakamoto H, Kitano M, Komaki T, et al. Prospective comparative study of the EUS guided 25-gauge FNA needle with the 19-gauge Trucut needle and 22-gauge FNA needle in patients with solid pancreatic masses. *J Gastroenterol Hepatol*. 2009;24:384–390.

14. Iglesias-Garcia J, Dominguez-Munoz JE, Abdulkader I, et al. Influence of on-site cytopathology evaluation on the diagnostic accuracy of endoscopic ultrasound-guided fine needle aspiration (EUS-FNA) of solid pancreatic masses. *Am J Gastroenterol*. 2011;106:1705–1710.

15. Affolter KE, Schmidt RL, Matynia AP, et al. Needle size has only a limited effect on outcomes in EUS-guided fine needle aspiration: a systematic review and meta-analysis. *Dig Dis Sci*. 2013;58:1026–1034.

16. Varadarajulu S, Fraig M, Schmulewitz N, et al. Comparison of EUS-guided 19-gauge Trucut needle biopsy with EUS-guided fine-needle aspiration. *Endoscopy*. 2004;36:397–401.

17. Iglesias-Garcia J, Poley JW, Larghi A, et al. Feasibility and yield of a new EUS histology needle: results from a multicenter, pooled, cohort study. *Gastrointest Endosc*. 2011;73:1189–1196.

18. Varadarajulu S, Gimnelt I, Peetermans J, et al. Meta-analysis comparing rates of complications between the standard 19G and 22G/25G needles for EUS-guided FNA of pancreatic lesions. *Gastrointest Endosc*. 2013;77(5S):AB405.

19. Elkoubi MA, Taminche A, Jalali N, et al. Agreement between rapid onsite and final cytologic interpretations of EUS-guided FNA specimens: implications for the endosonographer and patient management. *Am J Gastroenterol*. 2006;101:2841–2847.