Supporting Information for

The heavy particulate matter pollution during the COVID-19 lockdown period in the Guanzhong Basin, China

Xia Li1,4, Naifang Bei2, Jiaru Wu1, Suixin Liu1, Qiyuan Wang1, Jie Tian1, Lang Liu1, Ruonan Wang1,4, Guohui Li1,3,*

1 Key Lab of Aerosol Chemistry and Physics, SKLLQG, Institute of Earth Environment, Chinese Academy of Sciences, Xi’an, 710061, China
2 School of Human Settlements and Civil Engineering, Xi’an Jiaotong University, Xi’an, 710049, China
3 CAS Center for Excellence in Quaternary Science and Global Change, Xi’an, 710061, China
4 University of the Chinese Academy of Sciences, Beijing, 100049, China

* Corresponding author: Guohui Li (ligh@ieecas.cn)

Contents of this file:

Figure S1 to S10
Table S1 to S3
Introduction
The supporting information includes 10 supplementary figures and 3 supplementary tables.
Figure S1. Comparisons of observed (black dots) and simulated (red lines) near-surface (a) temperature, (b) relative humidity, (c) wind speed, and (d) wind direction at the Jinghe meteorological station in Xi’an from January 20 to February 14, 2020.
Figure S2. Pattern comparisons of simulated (color counters) vs. observed (colored circles) near-surface mass concentrations of (a) PM$_{2.5}$, (b) O$_3$, (c) NO$_2$, and (d) SO$_2$ averaged from January 20 to February 14, 2020. The black arrows indicate simulated surface winds.
Figure S3. Comparisons of observed (black dots) and simulated (red lines) diurnal profiles of near-surface mass concentrations of (a) PM$_{2.5}$, (b) O$_3$, (c) NO$_2$, (d) SO$_2$, and (e) CO averaged over all ambient monitoring sites in the GZB from January 20 to February 14, 2020.
Figure S4. Temporal variations of near-surface (a) PM$_{2.5}$, (b) O$_3$, (c) NO$_2$, (d) SO$_2$, and (e) CO mass concentrations averaged over the GZB in F_{Base} (red solid line) and F_{Sens} (blue solid line) from January 20 to February 14, 2020.
Figure S5. Contributions of emission reduction due to the CLD to the near-surface (a) PM$_{2.5}$, (b) O$_3$, (c) NO$_2$, and (d) SO$_2$ mass concentrations in the GZB averaged from January 23 to February 13, 2020.
Figure S6. Temporal variations of (a) organic aerosols (OA), (b) secondary organic aerosols (SOA), (c) sulfate, (d) nitrate, and (e) ammonium mass concentrations averaged over the GZB in F_{Base} (red solid line) and F_{Sens} (blue solid line) from January 20 to February 14, 2020.
Figure S7. Contributions of emission reduction due to the CLD to the (a) SOA, (b) sulfate, (c) nitrate, and (d) ammonium concentrations in the GZB averaged from January 23 to February 13, 2020.
Figure S8. Chemical composition of PM$_{2.5}$ in the GZB in F_{Base} (a) and F_{Sens} (b).
Figure S9. Variations of the observed near-surface O$_3$ and NO$_2$ mass concentrations as a function of the PM$_{2.5}$ concentrations from 10:00 to 17:00 (BJT) over all the monitoring sites in the GZB during (a) the wintertime from 2013 to 2018 and (b) the CLD period. The yellow lines show the PM$_{2.5}$ mass concentration of 75 µg m$^{-3}$.
Figure S10. Isopleth diagrams for the mass concentrations of (a) SOA, (b) sulfate, (c) nitrate, and (d) ammonium in the GZB during the CLD period with NO\textsubscript{X} and VOCs emissions varying from 0 to 100%. The yellow dash lines show the emission reduction of 45% and 34% for NO\textsubscript{X} and VOCs during the CLD period in the GZB, respectively.
Table S1. WRF-Chem model configurations.

Items	Configurations
Region	Guanzhong Basin (GZB)
Simulation period	January 20 to February 14, 2020
Domain size	150 × 150
Domain center	34.25°N, 109°E
Horizontal resolution	6 km × 6 km
Vertical resolution	35 vertical levels with a stretched vertical grid with spacing ranging from 30 m near the surface to 500 m at 2.5 km and 1 km above 14 km
Microphysics scheme	WRF Single-Moment 6-class graupel scheme (Hong & Lim, 2006)
Boundary layer scheme	Mellor-Yamada-Janjić (MYJ) turbulent kinetic energy (TKE)
	planetary boundary layer scheme (Janjić, 2002)
Surface layer scheme	MYJ surface scheme (Janjić, 2002)
Land-surface scheme	Unified Noah Land-surface model (Chen and Dudhia, 2001)
Longwave radiation scheme	Goddard longwave scheme (Chou et al., 2001)
Shortwave radiation scheme	Goddard shortwave scheme (Chou & Suarez, 1999)
Meteorological boundary	NCEP 1° × 1° reanalysis data
and initial conditions	
Chemical initial and boundary	WACCM 6-h output (Neale et al., 2013; Marsh et al., 2013)
conditions	
Anthropogenic emission inventory	Developed by Zhang et al. (2009) and Li et al. (2017)
Biogenic emission inventory	MEGAN model (Guenther et al., 2006)
Table S2. Average mass concentrations of PM$_{2.5}$, O$_3$, NO$_2$, SO$_2$ and CO in the GZB during the COVID-19 lockdown period from January 23 to February 13, 2020 (CLD), the three-weeks average before CLD from January 1 to 22, 2020 (PRE-CLD), the five-years average from 2015 to 2019 during the same time period with CLD in the Gregorian calendar (STP-CLD), and the five-years average from 2015 to 2019 during the same time period with CLD in the Chinese lunar calendar that covers the Lunar New Year (STP-LNY).

Time period	PM$_{2.5}$ (µg m$^{-3}$)	O$_3$ (µg m$^{-3}$)	NO$_2$ (µg m$^{-3}$)	SO$_2$ (µg m$^{-3}$)	CO (mg m$^{-3}$)							
STP-LNY	89.9 ± 51.6	55.0 ± 17.6	38.8 ± 15.1	24.3 ± 11.6	1.5 ± 0.43							
STP-CLD	94.9 ± 54.9	43.6 ± 19.8	45.6 ± 16.1	29.4 ± 14.5	1.7 ± 0.56							
PRE-CLD	120.1 ± 38.9	32.3 ± 19.4	50.1 ± 8.2	13.6 ± 4.1	1.5 ± 0.32							
CLD	105.9 ± 48.1	66.7 ± 25.4	23.9 ± 7.4	11.9 ± 3.2	1.2 ± 0.29							
NOx reduction	VOCs reduction	PM$_{2.5}$	SA	SOA	Sulfate	Nitrate	Ammonium	8-h O$_3$	O$_3$	NO$_2$	SO$_2$	NH$_3$
---------------	---------------	------------	----	-----	---------	---------	----------	----------	------	-------	-------	-------
0	0	0	0	0	0	0	0	0	0	0	0	0
0	20	-2.3	-3.6	-10.2	-3.8	1.5	-0.6	-8.5	-6.7	3.4	2.7	2.5
0	40	-4.8	-7.6	-20.3	-7.5	1.7	-1.5	-20.1	-14.9	6.9	5.5	5.9
0	60	-7.3	-12.0	-30.3	-10.7	0.5	-2.9	-36.2	-24.3	10.6	8.6	10.1
0	80	-10.6	-17.3	-41.0	-13.9	-2.4	-5.1	-59.3	-34.7	12.8	10.7	17.0
0	100	-13.8	-22.8	-51.5	-16.5	-6.5	-7.5	-90.3	-44.8	12.5	13.2	24.6
20	0	-2.2	-3.4	-0.6	2.6	-10.3	-3.3	2.8	5.5	-22.2	-2.5	8.4
20	20	-3.9	-6.4	-9.8	-1.0	-8.0	-3.4	-3.7	0.2	-19.0	0.8	10.0
20	40	-6.0	-9.9	-19.5	-5.0	-6.6	-4.0	-13.1	-6.8	-15.5	4.0	12.5
20	60	-8.5	-13.9	-29.7	-9.1	-6.0	-5.0	-26.7	-15.7	-11.8	6.9	16.1
20	80	-11.4	-18.6	-40.1	-12.6	-7.4	-6.7	-46.3	-26.0	-8.4	9.6	21.1
20	100	-14.7	-24.1	-51.0	-15.9	-10.5	-9.1	-73.6	-36.8	-6.7	12.2	28.0
40	0	-4.5	-7.6	-1.4	6.1	-22.9	-7.1	3.7	8.8	-43.1	-4.7	19.7
40	20	-6.0	-10.2	-10.1	2.0	-20.1	-7.1	-0.8	5.7	-40.9	-1.4	20.6
40	40	-7.9	-13.3	-19.2	-2.4	-17.5	-7.4	-7.7	0.6	-38.1	2.1	21.9
40	60	-10.1	-16.7	-29.0	-6.7	-15.5	-8.0	-18.3	-6.7	-34.8	5.4	24.1
40	80	-12.4	-20.6	-39.2	-10.9	-14.7	-8.9	-34.4	-16.4	-31.0	8.7	27.4
40	100	-15.6	-25.7	-50.2	-14.9	-16.1	-10.9	-58.2	-27.6	-27.9	11.7	33.4
60	0	-7.9	-13.3	-4.3	9.0	-37.5	-12.2	1.1	8.8	-63.3	-7.4	33.1
60	20	-9.5	-15.8	-12.3	4.8	-34.7	-12.4	-1.3	8.0	-61.7	-3.7	34.4
60	40	-11.1	-18.5	-20.6	0.4	-31.8	-12.5	-5.4	5.7	-59.8	-0.1	35.7
60	60	-12.7	-21.1	-29.2	-4.1	-28.6	-12.5	-12.4	1.1	-57.5	3.5	36.8
60	80	-14.7	-24.3	-38.8	-8.9	-26.0	-13.0	-24.4	-6.5	-54.4	7.1	38.4
60	100	-17.3	-28.5	-49.7	-13.8	-24.6	-14.0	-43.8	-17.0	-51.1	10.8	41.5
80	0	-11.8	-19.8	-9.5	11.9	-51.9	-17.4	-9.3	2.9	-81.5	-9.6	47.3
80	20	-13.0	-22.2	-16.4	7.9	-50.0	-17.6	-8.7	4.5	-80.7	-5.8	49.7
80	40	-14.8	-24.9	-24.0	3.2	-47.7	-18.3	-9.3	5.4	-79.7	-2.2	52.1
80	60	-16.5	-27.5	-31.6	-1.8	-44.9	-18.7	-11.7	4.9	-78.4	1.8	53.5
80	80	-17.9	-30.0	-39.5	-7.0	-41.4	-18.8	-17.9	1.6	-76.6	6.1	54.2
100	0	-15.3	-26.2	-18.3	13.5	-62.4	-21.2	-43.7	-13.5	-97.1	-10.8	58.2
100	20	-17.4	-29.3	-25.7	9.1	-61.5	-22.3	-39.5	-10.5	-96.9	-7.3	61.6
100	40	-19.3	-32.3	-32.8	4.4	-60.6	-23.4	-35.6	-7.5	-96.8	-3.4	65.7
100	60	-20.9	-35.3	-39.5	-6.6	-59.6	-24.5	-31.9	-4.4	-96.5	1.1	69.9
100	80	-22.8	-38.3	-46.1	-6.0	-58.3	-25.8	-26.7	-1.4	-96.2	5.4	73.8
100	100	-24.4	-40.6	-52.3	-11.4	-55.7	-26.5	-27.7	0.2	-95.6	9.7	76.3