COHEN–MACAULAY QUOTIENTS OF NORMAL SEMIGROUP RINGS VIA IRREDUCIBLE RESOLUTIONS

EZRA MILLER

Abstract. For a radical monomial ideal I in a normal semigroup ring $k[Q]$, there is a unique minimal irreducible resolution $0 \to k[Q]/I \to W^0 \to W^1 \to \cdots$ by modules W^i of the form $\bigoplus_j k[F_{ij}]$, where the F_{ij} are (not necessarily distinct) faces of Q. That is, W^i is a direct sum of quotients of $k[Q]$ by prime ideals. This paper characterizes Cohen–Macaulay quotients $k[Q]/I$ as those whose minimal irreducible resolutions are linear, meaning that W^i is pure of dimension $\dim(k[Q]/I) - i$ for $i \geq 0$. The proof exploits a graded ring-theoretic analogue of the Zeeman spectral sequence [Zeel63], thereby also providing a combinatorial topological version involving no commutative algebra. The characterization via linear irreducible resolutions reduces to the Eagon–Reiner theorem [ER98] by Alexander duality when $Q = \mathbb{N}^d$.

2000 AMS Classification: 13C14, 14M05, 13D02, 55Txx (primary) 14M25, 13F55 (secondary)

1. Introduction

Let $Q \subseteq \mathbb{Z}^d$ be a normal affine semigroup. We assume for simplicity that Q generates \mathbb{Z}^d as a group, and that Q has trivial unit group. The real cone $\mathbb{R}_{\geq 0}Q$ is a polyhedral cell complex. Endow it with an incidence function ε, and let $\Delta \subseteq \mathbb{R}_{\geq 0}Q$ be a closed polyhedral subcomplex. Corresponding to Δ is the ideal I_{Δ} inside the semigroup ring $k[Q]$, generated (as a k-vector space) by all monomials in $k[Q]$ not lying on any face of Δ. Thus $k[Q]/I_{\Delta}$ is spanned by monomials lying in Δ.

This paper has three goals:

- Define the notion of irreducible resolution for Q-graded $k[Q]$-modules.
- Introduce the Zeeman double complex for Δ.
- Characterize Cohen–Macaulay quotients $k[Q]/I_{\Delta}$ in terms of the above items.

An irreducible resolution (Definition 2.1) of a \mathbb{Z}^d-graded $k[Q]$-module is an injective-like resolution, in which the summands are quotients of $k[Q]$ by irreducible monomial ideals rather than indecomposable injectives. Minimal irreducible resolutions exist uniquely up to isomorphism for all Q-graded modules M (Theorem 2.4). When $M = k[Q]/I_{\Delta}$, every summand is isomorphic to a semigroup ring $k[F]$, considered as a quotient module of $k[Q]$, for some face $F \in \Delta$ (Corollary 3.3).

The Zeeman double complex $D(\Delta)$ consists of $k[Q]$-modules that are direct sums of semigroup rings $k[F]$ for faces $F \in \Delta$ (Definition 3.1). Its naturally defined differentials come from the incidence function on Δ.

Here is the idea behind the Cohen–Macaulay criterion, Theorem 4.2. Although the total complex of the Zeeman double complex $D(\Delta)$ is an example of an irreducible
resolution (Proposition 3.4), its large number of summands keeps it far from being minimal. However, the cancellation afforded by the horizontal differential of $D(\Delta)$ sometimes causes the resulting vertical differential (on the horizontal cohomology) to be a minimal irreducible resolution. This fortuitous cancellation occurs precisely when Δ is Cohen–Macaulay over k, in which case the horizontal cohomology occurs in exactly one column of $D(\Delta)$.

Part 3 of Theorem 4.2, which characterizes the Cohen–Macaulay property by collapsing at E^1 of the ordinary Zeeman spectral sequence for Δ (Definition 3.6), may be of interest to algebraic or combinatorial topologists. Its statement as well as its proof are independent of the surrounding commutative algebra.

The methods involving Zeeman double complexes and irreducible resolutions should have applications beyond those investigated here; see Section 5 for possibilities.

Notational conventions. By the assumptions on the semigroup Q in the first paragraph above, Q is the intersection with \mathbb{Z}^d of the positive half-spaces defined by primitive integer-valued functionals τ_1, \ldots, τ_n on \mathbb{Z}^d. In particular the ith facet of Q (for $i = 1, \ldots, n$) is the subset $F_i \subseteq Q$ on which τ_i vanishes. More generally, an arbitrary face of Q is defined by the vanishing of a linear functional on \mathbb{Z}^d that is nonnegative on Q. The (Laurent) monomial in $k[\mathbb{Z}^d]$ with exponent α is denoted by x^α, although sets of monomials in $k[\mathbb{Z}^d]$ are frequently identified with their exponent sets in \mathbb{Z}^d.

All cellular homology and cohomology groups are taken with coefficients in the field k unless otherwise stated. We work here always with nonreduced (co)homology of the usually unbounded polyhedral complex Δ, which corresponds to the reduced (co)homology of an always bounded transverse hyperplane section of Δ, homologically shifted by 1.

All modules in this paper, including injective modules, are \mathbb{Z}^d-graded unless otherwise stated. Elementary facts regarding the category of \mathbb{Z}^d-graded $k[Q]$-modules, especially \mathbb{Z}^d-graded injective modules, hulls, and resolutions, can be found in [GW78].

2. Irreducible resolutions

Recall that an ideal W inside of $k[Q]$ is irreducible if W can’t be expressed as an intersection of two ideals properly containing it.

Definition 2.1. An irreducible resolution \overline{W}^\bullet of a $k[Q]$-module M is an exact sequence

$$0 \rightarrow M \rightarrow \overline{W}^0 \rightarrow \overline{W}^1 \rightarrow \cdots \rightarrow \overline{W}^i = \bigoplus_{j=1}^{\mu_i} k[Q]/W^{ij}$$

in which each W^{ij} is an irreducible ideal of $k[Q]$. The irreducible resolution is called minimal if all the numbers μ_i are simultaneously minimized (among irreducible resolutions of M), and linear if \overline{W}^i is pure of Krull dimension $\dim(M) - i$ for all i. (By convention, modules of negative dimension are zero.)

The fundamental properties of quotients $\overline{W} := k[Q]/W$ by irreducible monomial ideals W are inherited from the corresponding properties of indecomposable injective
modules. Recall that each such indecomposable injective module is a vector space \(k\{\alpha + E_F\} \) spanned by the monomials in \(\alpha + E_F \), where

\[
E_F = \{ f - a \mid f \in F \text{ and } a \in Q \}
\]

is the negative tangent cone along the face \(F \) of \(Q \). The vector space \(k\{\alpha + E_F\} \) carries an obvious structure of \(k[Q] \)-module. In what follows, the \(\mathbb{Z}^d \)-graded injective hull of a \(\mathbb{Z}^d \)-graded module \(M \) \(^{[GW78]}\) is denoted by \(E(M) \), so that, in particular, \(E(k[F]) = k\{E_F\} \). Define the \(Q \)-graded part of \(M \) to be the submodule \(\bigoplus_{a \in Q} M_a \) generated by elements whose degrees lie in \(Q \).

Lemma 2.2. A monomial ideal \(W \) is irreducible if and only if \(W : = k[Q]/W \) is the \(Q \)-graded part of some indecomposable injective module.

Proof. (\(\Leftarrow \)) The module \(k\{\alpha + E_F\}_Q \) is clearly isomorphic to \(W \) for some ideal \(W \). Supposing that \(W \neq k[Q] \), we may as well assume \(\alpha \in Q \) by adding an element far inside \(F \), so that \(x^\alpha \in W \) generates an essential submodule \(k\{\alpha + F\} \). Suppose \(W = W_1 \cap W_2 \). The copy of \(k\{\alpha + F\} \) inside \(W \) must include into \(W_j \) for \(j = 1 \) or 2. Indeed, if both induced maps \(k\{\alpha + F\} \to W_j \) have nonzero kernels, then they intersect in a nonzero submodule of \(k\{\alpha + F\} \) because \(k[F] \) is a domain. The essentiality of \(k\{\alpha + F\} \subseteq W \) then forces \(W \to W_j \) to be an inclusion for some \(j \). We conclude that \(W \) contains this \(W_j \), so \(W = W_j \) is irreducible.

(\(\Rightarrow \)) Let \(W \) be an irreducible ideal and \(W : = k[Q]/W \). Considering the injective hull \(E(W) = J_1 \oplus \cdots \oplus J_r \), the composite \(k[Q] \to W \to E(W) \) has kernel \(W = W_1 \cap \cdots \cap W_r \), where \(W_j = (J_j)_Q \). Since \(W \) is irreducible, we must have \(W_j = W \) for some \(j \). We conclude that \(E(W) = J_j \), and \(W = W_j \). \(\square \)

Lemma 2.3. For any finitely generated module \(M \), there exists \(\beta \in \mathbb{Z}^d \) such that \(M_\beta \neq 0 \), and for all \(\gamma \in \beta + Q \), the inclusion \(M_{\gamma} \hookrightarrow E(M)_{\gamma} \) is an isomorphism.

Proof. Suppose that \(E(M) = \bigoplus_{\alpha,F} k\{\alpha + E_F\}^{\mu(\alpha,F)} \), where we assume that \(\alpha + E_F \neq \alpha' + E_F \) whenever \((\alpha,F) \neq (\alpha',F') \). Now fix a pair \((\alpha,F) \) so that \(\alpha + E_F \) is maximal inside \(\mathbb{Z}^d \) among all such subsets appearing in the direct sum. Clearly we may assume \(F \) is maximal among faces of \(Q \) appearing in the direct sum. Pick an element \(f \) that lies in the relative interior of \(F \).

By \(\{F\} \) and the maximality of \(F \), some choice of \(r \in \mathbb{N} \) pushes the \(\mathbb{Z}^d \)-degree \(\alpha + r \cdot f \in \alpha + E_F \) outside of \(\alpha' + E_{F'} \) for all \((\alpha',F') \) satisfying \(F' \neq F \). Moreover, the maximality of \((\alpha,F) \) implies that \(\alpha + r \cdot f \notin \alpha' + E_F \) whenever \(\alpha' \neq \alpha \).

The prime ideal \(P_F \) satisfying \(k[Q]/P_F = k[F] \) is minimal over the annihilator of \(M \). Therefore, if \(M' = (0 :_M P_F) \) is the submodule of \(M \) annihilated by \(P_F \), the composite injection \(M' \hookrightarrow M \hookrightarrow E(M) \) becomes an isomorphism onto its image after homogeneous localization at \(P_F \)—that is, after inverting the monomial \(x^f \). It follows that choosing \(r \in \mathbb{N} \) large enough forces isomorphisms

\[
M_{\alpha+r,f} \cong E(M)_{\alpha+r,f} \cong (k\{\alpha + E_F\}^{\mu(\alpha,F)})_{\alpha+r,f} = k^{\mu(\alpha,F)}.
\]

Setting \(\beta = \alpha + r \cdot f \), the multiplication map \(x^{\gamma-\beta} : E(M)_\beta \to E(M)_\gamma \) for \(\gamma \in \beta + Q \) is either zero or an isomorphism, because \(E(M) \) agrees with \(k\{\alpha + E_F\}^{\mu(\alpha,F)} \) in degrees
\(\beta\) and \(\gamma\) by construction. The previous sentence holds with \(M\) in place of \(E(M)\) by (2), because \(M\) is a submodule of \(E(M)\).

Not every module has an irreducible resolution, because being \(Q\)-graded is a prerequisite. However, \(Q\)-gradedness is the only restriction.

Theorem 2.4. Let \(M = M_Q\) be a finitely generated \(Q\)-graded module. Then:

1. \(M\) has a minimal irreducible resolution, unique up to noncanonical isomorphism.
2. Any irreducible resolution of \(M\) is (noncanonically) the direct sum of a minimal irreducible resolution and a split exact irreducible resolution of \(0\).
3. The minimal irreducible resolution of \(M\) has finitely many irreducible summands in each cohomological degree.
4. The minimal irreducible resolution of \(M\) has finite length; that is, it vanishes in all sufficiently high cohomological degrees.
5. The \(Q\)-graded part of any injective resolution of \(M\) is an irreducible resolution.
6. Every irreducible resolution of \(M\) is the \(Q\)-graded part of an injective resolution.

Proof. Lemma 2.2 implies part 3. The remaining parts therefore follow from part 3 and the corresponding (standard) facts about \(\mathbb{Z}^d\)-graded injective resolutions [GW78], with the exception of part 4, which is false for injective resolutions whenever \(k(Q)\) isn’t isomorphic to a polynomial ring.

Focusing now on part 3, let \(\overline{W}^\ast\) be an irreducible resolution of \(M\), and set \(J^0 = E(\overline{W}^0)\). The inclusion \(M \hookrightarrow J^0\) has \(Q\)-graded part \(M \hookrightarrow \overline{W}^0\) by Lemma 2.2. Making use of the defining property of injective modules, extend the composite inclusion \(\overline{W}^0/M \hookrightarrow \overline{W}^1 \hookrightarrow E(\overline{W}^1)\) to a map \(J^0/M \rightarrow E(\overline{W}^1)\), and let \(K^0\) be the kernel. Then \(K^0\) has zero \(Q\)-graded part because \(\overline{W}^0/M \hookrightarrow \overline{W}^1\) is a monomorphism. The injective hull \(K^0 \hookrightarrow E(K^0)\) therefore has zero \(Q\)-graded part. Extending \(K^0 \hookrightarrow E(K^0)\) to a map \(J^0/M \rightarrow E(K^0)\) yields an injection \(J^0/M \rightarrow J^1 := E(K^0) \oplus E(\overline{W}^1)\) whose \(Q\)-graded part is \(\overline{W}^0/M \hookrightarrow \overline{W}^1\). Replacing \(M\), 0 and 1 by image(\(\overline{W}^{i-1} \rightarrow \overline{W}^i\)), \(i\) and \(i+1\) in this discussion produces the desired injective resolution by induction.

Finally, for the length-finiteness in part 3, consider the set \(V(M)\) of degrees \(a \in Q\) such that \(M_b\) vanishes for all \(b \in a + Q\). The vector space \(k\{V(M)\}\) is naturally an ideal in \(k(Q)\). Lemma 2.3 implies that \(V(M) \subseteq V(\overline{W}/M)\) whenever \(\overline{W}\) is the \(Q\)-graded part of an injective hull of \(M\) and \(M \neq 0\) (that is, \(V(M) \neq Q\)). The noetherianity of \(k(Q)\) plus this strict containment force the sequence of ideals

\[
k\{V(M)\} \subseteq k\{V(\overline{W}/M)\} \subseteq k\{V(\overline{W}/\text{image}(\overline{W}^0))\} \subseteq \cdots
\]

to stabilize at the unit ideal of \(k(Q)\) after finitely many steps. \(\square\)

Remark 2.5. The results in this section hold just as well for unsaturated semigroups, with the same proofs, verbatim. \(\square\)

Examples of irreducible resolutions include Proposition 3.4, below, as well as the proof of Lemma 3.3, which contains the irreducible resolution of the canonical module of \(k[F]\) in (3). In general, any example of an injective resolution of any \(\mathbb{Z}^d\)-graded module yields an irreducible resolution of its \(Q\)-graded part, although the indecomposable injective summands with zero \(Q\)-graded part get erased. In particular, the
“cellular injective resolutions” of [Mil00] become what should be called “cellular irreducible resolutions” here.

3. Zeeman Double Complex

This section introduces the Zeeman double complex and its resulting spectral sequences. The total complex of the Zeeman double complex in Proposition 3.4 provides a natural but generally nonminimal irreducible resolution for $k[Q]/I_\Delta$.

For each face $G \in \Delta$, let $k[G]$ be the affine semigroup ring for G, considered as a quotient of $k[Q]$, and denote by e_G the canonical generator of $k[G]$ in \mathbb{Z}^d-graded degree 0. Also, for each face $F \in \Delta$, let kF be a 1-dimensional k-vector space spanned by F in \mathbb{Z}^d-graded degree 0.

Definition 3.1. Consider the $k[Q]$-module $D(\Delta) = \bigoplus_{F \subseteq G} kF \otimes_k k[G]$ generated by

$$\{ F \otimes_k e_G \mid F, G \in \Delta \text{ and } F \supseteq G \}.$$

Doubly index the generators so that $D(\Delta)_{pq}$ is generated by

$$\{ F \otimes e_G \mid p = \dim F \text{ and } -q = \dim G \},$$

and hence $\{0\} \otimes e_{\{0\}} \in D(\Delta)_{00}$, with the rest of the double complex in the fourth quadrant. Now define the **Zeeman double complex** of \mathbb{Z}^d-graded $k[Q]$-modules to be $D(\Delta)$, with vertical differential ∂ and horizontal differential δ as in the diagram:

$$\partial e_G = \sum_{G' \in G, \text{ is a facet}} \varepsilon(G', G) e_G'$$

$$\delta F \otimes e_G \rightarrow \delta F \otimes e_G$$

$$(-1)^q \delta F = \sum_{F' \in F'} \varepsilon(F, F') F',$$

where the signs $\varepsilon(G', G)$ and $\varepsilon(F, F')$ come from the incidence function on Δ.

For each fixed G, the elements $F \otimes e_G$ generate a summand of $D(\Delta)$ closed under the horizontal differential ∂. Taking the sum over all G yields the horizontal complex

$$D(\Delta, \partial) = \bigoplus_{G \in \Delta} C^* (\Delta_G) \otimes k[G], \quad \text{where } \Delta_G = \{ F \in \Delta \mid F \supseteq G \}$$

is the **part of Δ above** G. It is straightforward to verify that $C^* (\Delta_G)$ is isomorphic to the reduced cochain complex $C^* \text{link}(G, \Delta)$ of the link of G in Δ (also known as the vertex figure of G in Δ), but with \emptyset in homological degree $\dim G$ instead of -1.

The cohomology $H^i(C^* (\Delta_G))$ is also called the **local cohomology** $H^i_G (\Delta)$ of Δ near G. Since the complex $C^* (\Delta_G)$ is naturally a subcomplex of $C^* (\Delta_{G'})$ whenever $G' \subseteq G$, the natural restriction maps $H^i_G (\Delta) \rightarrow H^i_{G'} (\Delta)$ make local cohomology into a sheaf on Δ. The following is immediate from the above discussion.

Lemma 3.2. In column p, the vertical complex $(H_\delta D(\Delta), \partial)$ of $k[Q]$-modules has

$$\bigoplus_{\dim G = q} k[G] \otimes k H^q_G (\Delta)$$

in cohomological degree $-q$. The vertical differential ∂ is comprised of the natural maps $H^q_G (\Delta) \otimes e_G \rightarrow H^q_{G'} (\Delta) \otimes e_G'$ for facets G' of G.

We’ll need to know the vertical cohomology $H_\delta D(\Delta)$ of $D(\Delta)$, too.

Lemma 3.3. $H_\delta D(\Delta) = \bigoplus_{F \subseteq \Delta} \omega_{k[F]}$, where $\omega_{k[F]}$ is the canonical module of $k[F]$, and each summand $\omega_{k[F]}$ sits along the diagonal in bidegree $(p, q) = (\dim F, - \dim F)$.

Proof. Collecting the terms with fixed F yields the tensor product of kF with

$$0 \to k[F] \to \bigoplus_{\text{faces } F' \subset F} k[F'] \to \cdots \to \bigoplus_{\text{rays } v \in F} k[v] \to k \to 0.$$

(3)

The \mathbb{Z}^d-graded degree a part of this complex is zero unless $a \in F$, in which case we get the relative chain complex $C_a(F, F')$, where a is in the relative interior of F'. The homology of such a relative complex is zero unless $F' = F$. Therefore, the only homology of (3) is the canonical module $\omega_{k[F]}$, being the kernel of the first map.

Proposition 3.4. The total complex $\text{tot} D(\Delta)$ of the Zeeman double complex is an irreducible resolution of $k[Q]/I$.

Proof. The spectral sequence obtained by first taking vertical cohomology of $D(\Delta)$ has $H_\partial D(\Delta) = E^1 = E^\infty$ by Lemma 3.3. The same lemma implies that the cohomology of $\text{tot} D(\Delta)$ is zero except in degree $p + q = 0$, and that the nonzero cohomology has a filtration whose associated graded module is $\bigoplus_{F \in \Delta} \omega_{k[F]}$. On the other hand, the map $k[Q] \to D(\Delta)$ sending $1 \mapsto \sum_{F \in \Delta} \epsilon_F F \otimes e_F$ has kernel I_Δ, for any choice of signs $\epsilon_F = \pm 1$. Choosing the signs $\epsilon_F = (-1)^{\dim F(\dim F+1)/2}$ forces $(\delta + \partial)(\sum_{F \in \Delta} F \otimes e_F) = 0$, thanks to the factor $(-1)^q$ in the definition of δ.

Corollary 3.5. Every summand in the minimal irreducible resolution of the quotient $k[Q]/I$ by a reduced monomial ideal I is isomorphic to $k[F]$ for some face F of Q.

Proof. Every summand in the total Zeeman complex of Proposition 3.4 has the desired form. Now apply Theorem 2.4.2.

The spectral sequence in the proof of Proposition 3.4 always converges rather early, at E^1. The other spectral sequence, however, obtained by first taking the horizontal cohomology H_δ, may be highly nontrivial.

Definition 3.6. The \mathbb{Z}^d-graded Zeeman spectral sequence for the polyhedral complex Δ is the spectral sequence $Z E^*_{pq}(\Delta)$ on the double complex $D(\Delta)$ obtained by taking horizontal homology first, so $Z E^1_{pq}(\Delta) = H_\partial H_\delta D(\Delta)$. The ordinary Zeeman spectral sequence for Δ is the \mathbb{Z}^d-graded degree 0 piece $Z E^*_1(\Delta) = Z E^*_1(\Delta)_0$.

4. **Characterization of Cohen–Macaulay quotients**

This section contains a characterization of Cohen–Macaulayness in terms of irreducible resolutions coming from the Zeeman double complex $D(\Delta)$.

Definition 4.1. The polyhedral complex Δ is Cohen–Macaulay over k if the local cohomology over k of Δ near every face $G \subset \Delta$ satisfies $H^i_G(\Delta) = 0$ for $i < \dim \Delta$.

Theorem 4.2. Let $I = I_\Delta$ be a radical monomial ideal. The following are equivalent.

1. Δ is Cohen–Macaulay over k.
2. The only nonzero vector spaces $Z E^1_{pq}(\Delta)$ lie in column $p = \dim \Delta$.

3. The complex $\mathbb{Z}E^1(\Delta)$ is a minimal linear irreducible resolution of $k[Q]/I$.
4. $k[Q]/I$ has a linear irreducible resolution.
5. $k[Q]/I$ is a Cohen–Macaulay ring.

\textbf{Proof.} \implies The \mathbb{Z}^d-degree 0 part of Lemma 3.2 says that $\mathbb{Z}E^1$ has $\bigoplus_{\dim G = q} H^p_G(\Delta)$ in cohomological degree $-q$. The equivalence is now immediate from Definition 4.1.

1 \implies The E^1 term in question is the complex $H_kD(\Delta)$, with the differential ∂ in Lemma 3.2. That lemma together with Definition 4.1 implies that the horizontal cohomology of $\mathbb{Z}E^1$ with each quotient \mathbb{Q} by induction on each summand of $\bigoplus_{\dim F = n} F \otimes \varepsilon(G, F) e_G = \sum_{\dim G = n-1} (\sum_{F \supseteq G} \varepsilon(G, F) \otimes e_G = 0.$

\implies \implies Trivial.

4 \implies If M is any module having a linear irreducible resolution \overline{W}^i in which each summand of \overline{W}^i is reduced, then M is Cohen–Macaulay. This can be seen by induction on $d - \dim(M)$ via the long exact sequence for local cohomology H^i_m, where m is the graded maximal ideal. The induction requires the modules \overline{W}^i to be Cohen–Macaulay themselves, which holds because Q is saturated.

\implies \implies $k[Q]/I$ being Cohen–Macaulay implies that $\mathbf{Ext}^i_{k[Q]}(M, \omega_{k[Q]})$ is zero for $i \neq d - n$, where $n = \dim \Delta$. In particular, if Ω^* is the Q-graded part of the minimal injective resolution of $\omega_{k[Q]}$, then the ith cohomology of $\mathbf{Hom}(k[Q]/I, \Omega^*)$ is zero unless $i = d - n$. The complex Ω^* is the linear irreducible resolution of $\omega_{k[Q]}$ in which each quotient $k[F]$ is contained in the kernel of the first map of $(H_kD(\Delta), \partial)$. Suppose $\dim \Delta = n$. If $\dim G = n - 1$ for some face $G \subseteq \Delta$, then

$$H^n_G(\Delta) = (\bigoplus kF)/\langle \sum \varepsilon(G, F) F \rangle,$$

both sums being over all facets $F \subseteq \Delta$ containing G. Now calculate

$$\partial \left(\sum_{\dim F = n} F \otimes e_F \right) = \sum_{\dim F = n} \sum_{F \supseteq G} F \otimes \varepsilon(G, F) e_G = \sum_{\dim G = n-1} (\sum_{F \supseteq G} \varepsilon(G, F) \otimes e_G = 0.$$

\implies \implies $k[Q]/I$ is Cohen–Macaulay implies that $\mathbf{Ext}^i_{k[Q]}(M, \omega_{k[Q]})$ is zero for $i \neq d - n$, where $n = \dim \Delta$. In particular, if Ω^* is the Q-graded part of the minimal injective resolution of $\omega_{k[Q]}$, then the ith cohomology of $\mathbf{Hom}(k[Q]/I, \Omega^*)$ is zero unless $i = d - n$. The complex Ω^* is the linear irreducible resolution of $\omega_{k[Q]}$ in which each quotient $k[F]$ for $F \in \mathbb{R}_{\geq Q}$ appears precisely once; see (3). Since $\mathbf{Hom}(k[Q]/I, k[F]) = k[F]$ if $F \subseteq \Delta$ and zero otherwise, $\mathbf{Hom}(k[Q]/I, \Omega^*)$ is

$$0 \rightarrow \bigoplus_{\dim F = n} k[F] \rightarrow \cdots \rightarrow \bigoplus_{\dim F = \ell} k[F] \rightarrow \cdots \rightarrow k[Q] \rightarrow 0.$$

If $a \subseteq Q$ is in the relative interior of $G \subseteq \Delta$, then the \mathbb{Z}^d-graded degree a component of this complex is the homological shift of $C^*(\Delta_G)$ whose ith cohomology is $H^d_G(\Delta)$. \square

\textbf{Remark 4.3.} Note the interaction of Theorem 1.2 with the characteristic of k: the horizontal cohomology of the Zeeman double complex $D(\Delta)$ can depend on $\text{char}(k)$, just as the other parts of the theorem can. \square

When the semigroup Q is \mathbb{N}^d, so that $k[Q]$ is just the polynomial ring in d variables z_1, \ldots, z_d over k, the polyhedral complex Δ becomes a simplicial complex. Thinking of Δ as an order ideal in the lattice $2^{[d]}$ of subsets of $[d] := \{1, \ldots, d\}$, the \textbf{Alexander dual} simplicial complex Δ^* is the complement of Δ in $2^{[d]}$, but with the partial order reversed. Another way to say this is that $\Delta^* = \{[d] \setminus F \mid F \notin \Delta\}$.

Theorem 4.2 can be thought of as the extension to arbitrary normal semigroup rings of the Eagon–Reiner theorem [ER98], which concerns the case $Q = \mathbb{N}^d$, via the Alexander duality functors defined in [Mil00, Röm00]. To see how, recall that a \mathbb{Z}-graded $k[Q^d]$-module is said to have **linear free resolution** if its minimal \mathbb{Z}-graded free resolution over $k[z_1, \ldots, z_d]$ can be written using matrices filled with linear forms.

Corollary 4.4 (Eagon–Reiner). If Δ is a simplicial complex on $\{1, \ldots, d\}$, then Δ is Cohen–Macaulay if and only if I_Δ^\ast has linear free resolution.

Proof. The minimal free resolution of I_Δ^\ast is the functorial Alexander dual (see [Röm00, Definition 1.9] or [Mil00, Theorem 2.6] with $a = 1$) of the minimal irreducible resolution of $k[Q^d]/I_\Delta$ guaranteed by Theorem 4.2. Linearity of the irreducible resolution translates directly into linearity of the free resolution of I_Δ^\ast. □

Remark 4.5. Is there a generalization of Theorem 4.2 to the sequential Cohen–Macaulay case that works for arbitrary saturated semigroups, analogous and Alexander dual to the generalization [HRW99] of Corollary 4.4? Probably; and if so, it will likely say that the ordinary and Z^d-graded Zeeman spectral sequences collapse at E^2 (i.e. all differentials in $E^\geq 3$ vanish). □

Remark 4.6. The Alexander dual of the complex $ZE^1(\Delta) = (H_\delta D(\Delta), \partial)$, which provides a linear free resolution of I_Δ in the Cohen–Macaulay case, also provides the “linear part” of the free resolution of I_Δ^\ast when Δ is arbitrary [RW01]. It is possible to give an apropos proof of this fact using the Alexander dual of the Zeeman spectral sequence for a Stanley–Reisner ring along with an argument due to J. Eagon [Eag90] concerning how to make spectral sequences into minimal free resolutions. □

5. Remarks and further directions

Zeeman’s original spectral sequence appears verbatim as the ordinary Zeeman spectral sequence ZE^\ast_{pq} in Definition 3.6, with $Q = \mathbb{N}^d$. Zeeman used his double complex and spectral sequence to provide an extension of Poincaré duality for singular triangulated topological spaces [Zee62a, Zee62b, Zee63]. When the topological space is a manifold, of course, usual Poincaré duality results. In the present context, Zeeman’s version of the Poincaré duality isomorphism should glue two complexes of irreducible quotients of $k[Q^d]$ together to form the minimal irreducible resolution for the Stanley–Reisner ring of any Buchsbaum simplicial complex—these simplicial complexes behave much like manifolds. This gluing procedure should work also for the more general Buchsbaum polyhedral complexes Δ obtained by considering arbitrary saturated affine semigroups Q.

Theorem 4.2 is likely capable of providing a combinatorial construction of the “canonical Čech complex” for I_Δ^\ast [Mil00, Yan01] when Δ is Cohen–Macaulay, or even Buchsbaum (if the previous paragraph works). Although Δ^\ast has only been defined a priori for simplicial complexes Δ, when $Q = \mathbb{N}^d$, the definition of functorial squarefree Alexander duality extends easily to the case of arbitrary saturated semigroups. The catch is that I_Δ^\ast is not an ideal in $k[Q^\ast]$, but rather an ideal in the semigroup ring $k[Q^\ast]$ for the cone Q^\ast dual to Q. Combinatorially speaking, the face
The poset of Q is not usually self-dual, as it is when $Q = \mathbb{N}^d$, so the process of “reversing the partial order” geometrically forces the switch to Q^*. The functorial part of Alexander duality follows the same pattern as the case $Q = \mathbb{N}^d$: quotients $k[F]$ of $k[Q]$ are dual to prime ideals P_F^* inside $k[Q^*]$, where F^* is the face of Q^* dual to F. This kind of construction is evident in the work of Yanagawa [Yan01, Section 6].

In general, irreducible resolutions—and perhaps other resolutions by structure sheaves of subschemes—can be useful for computing the K-homology classes of reduced subschemes that are unions of transversally intersecting components. When the ambient scheme is regular, this method is an alternative to calculating free resolutions, which produce K-cohomology classes. In particular, this holds for subspace arrangements in projective spaces. This philosophy underlies the application of irreducible resolutions in [KM01, Appendix A.3] to the definition of “multidegrees”.

Note that when $Q \not\sim N^d$, irreducible resolutions are the only finite resolutions to be had: free and injective resolutions of finitely generated modules rarely terminate. In particular, an understanding of the Hilbert series of irreducible quotients of $k[Q]$—a polyhedral problem—would give rise to formulae for Hilbert series of Q-graded modules. Similarly, algorithmic computations with irreducible resolutions can allow explicit computation of injective resolutions, local cohomology, and perhaps other homological invariants in the \mathbb{Z}^d-graded setting over semigroup rings.

References

[ER98] John A. Eagon and Victor Reiner, Resolutions of Stanley-Reisner rings and Alexander duality, J. Pure Appl. Algebra 130 (1998), no. 3, 265–275.

[GW78] Shiro Goto and Keiichi Watanabe, On graded rings, II (Z^n-graded rings), Tokyo J. Math. 1 (1978), no. 2, 237–261.

[HRW99] Jürgen Herzog, Victor Reiner, and Volkmar Welker, Componentwise linear ideals and Golod rings, Michigan Math. J. 46 (1999), no. 2, 211–223.

[KM01] Allen Knutson and Ezra Miller, Gröbner geometry of Schubert polynomials, preprint available at http://www-math.mit.edu/~ezra, 2001.

[Mil00] Ezra Miller, The Alexander duality functors and local duality with monomial support, J. Algebra 231 (2000), 180–234.

[Rom00] Tim Römer, Generalized Alexander duality and applications, Osaka J. Math. (2000), to appear.

[RW01] Victor Reiner and Volkmar Welker, On the linear syzygies of a Stanley–Reisner ideal, Math. Scand. (To appear, 2001), 000–000.

[Yan01] Kohji Yanagawa, Introduction to squarefree modules and local cohomology modules at monomial ideals, ???, to appear, possibly in 2001, p. ???

[Zee62a] E. C. Zeeman, Dihomology. I. Relations between homology theories, Proc. London Math. Soc. (3) 12 (1962), 609–638.

[Zee62b] E. C. Zeeman, Dihomology. II. The spectral theories of a map, Proc. London Math. Soc. (3) 12 (1962), 639–689.

[Zee63] E. C. Zeeman, Dihomology. III. A generalization of the Poincaré duality for manifolds, Proc. London Math. Soc. (3) 13 (1963), 155–183.

Applied Mathematics, 2-363A, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 email: ezra@math.mit.edu