On the Performance of the Depth First Search Algorithm in Supercritical Random Graphs

Sahar Diskin * Michael Krivelevich †

Submitted: Dec 1, 2021; Accepted: Sep 5, 2022; Published: Sep 23, 2022
© The authors. Released under the CC BY-ND license (International 4.0).

Abstract

We consider the performance of the Depth First Search (DFS) algorithm on the random graph $G(n, 1+\epsilon \frac{n}{n})$, $\epsilon > 0$ a small constant. Recently, Enriquez, Faraud and Ménard proved that the stack U of the DFS follows a specific scaling limit, reaching the maximal height of $(1 + o(1)) \epsilon^2 n$. Here we provide a simple analysis for the typical length of a maximum path discovered by the DFS.

1 Introduction

We consider the structure of the spanning tree of the giant component of $G(n, p)$ uncovered by the Depth First Search (DFS) algorithm, for the supercritical regime $p = 1 + \epsilon \frac{n}{n}$.

As for the notation of the sets in the DFS algorithm, we follow the conventions similar to [5]: We denote by S the set of vertices whose exploration is complete; by T the set of vertices not yet visited, and by U the set of vertices which are currently being explored, kept in a stack. At any moment $0 \leq m \leq \binom{n}{2}$ in the DFS, we denote by $S(m)$, $T(m)$ and $U(m)$ the sets S, T and U (respectively) at m.

The algorithm starts with $S = U = T = V(G)$, and ends when $U \cup T = \emptyset$. At each step, if U is nonempty, the algorithm queries T for neighbours of the last vertex in U. The algorithm is fed X_i, $0 \leq i \leq \binom{n}{2}$, i.i.d Bernoulli($p$) random variables, each corresponding to a positive (with probability p) or negative (with probability $1 - p$) answer to such a query. If U is nonempty and the last vertex in U has no more queries to ask, then we move the last vertex of U to S. If $U = \emptyset$, we move the next vertex from T into U. Formally, after completing the discovery of all the connected components, we query all the remaining pairs of vertices that have not been queried by the DFS.

*School of Mathematical Sciences, Tel Aviv University, Tel Aviv 6997801, Israel. Email: sahardiskin@mail.tau.ac.il.
†School of Mathematical Sciences, Tel Aviv University, Tel Aviv 6997801, Israel. Email: krivelev@tauex.tau.ac.il. Research supported in part by USA-Israel BSF grant 2018267 and by ISF grant 1261/17.
Enriquez, Faraud and Ménard provided in [2] an analysis of the performance of DFS: tracking the stack U, they showed it follows a specific scaling limit, reaching the maximal height of $(1 + o(1)) \varepsilon^2 n$. Here we provide a simpler, and perhaps more telling argument for the typical maximal length of a path found by DFS.

Our result is as follows:

Theorem 1 Let $\varepsilon > 0$ be a small enough constant, and let $p = \frac{1 + \varepsilon}{n}$. Run the DFS algorithm on $G(n,p)$. Then, whp, a longest path in the obtained spanning forest is of length $\varepsilon^2 n + O(\varepsilon^3)n$.

We should note that while the precise length of a longest path in $G(n,p)$ is an open problem, it is known that a longest path is whp at least of length $4\varepsilon^2 n$ and at most $7\varepsilon^2 n$ (see [4], [6]). Hence, while the DFS finds a path of the correct magnitude ($\Theta(\varepsilon^2)n$) as was shown already in [5], the longest path found by the algorithm is significantly shorter than a longest path in the graph.

Furthermore, while we treat ε as a constant, our statements and proof hold for any $\varepsilon = \epsilon(n)$ that tends to 0 with $n \to \infty$, as long as $\epsilon(n) \gg n^{-1/3+o(1)}$ (see the comment following the proof of Lemma 2.3), covering a substantial part of the barely-supercritical regime as well.

2 Two-step Analysis

We define the excess of a connected graph $G = (V,E)$ to be $|E(G)| - |V(G)| + 1$. We define the excess of a graph to be the sum of the excesses of its connected components.

We require the following well-known facts regarding $G(n,p)$ (see, for example, [3]):

Theorem 2.1 Let $\varepsilon > 0$ be a small enough constant. Then, whp:

1. In $G\left(n, \frac{1 + \varepsilon}{n}\right)$ there is a unique giant component, L_1, whose size is asymptotic to $\Theta(\varepsilon)n$. All the other components are of size $O(\ln n/\varepsilon^2)$.

2. The excess of $G\left(n, \frac{1 + \varepsilon}{n}\right)$ is at most $6\varepsilon^3 n$.

3. In $G\left(n, \frac{1 - \varepsilon}{n}\right)$, all the components are of size $O(\ln n/\varepsilon^2)$.

When $p = \frac{1 + \varepsilon}{n}$, we call $G(n,p)$ a supercritical random graph. When $p = \frac{1 - \varepsilon}{n}$ we call $G(n,p)$ a subcritical random graph.

We also require the following simple lemma:

Lemma 2.2 Let $\varepsilon > 0$ be a small enough constant, and let $p = \frac{1 + \varepsilon}{n}$. Then, whp, by the moment $m = n \ln^2 n$ we are already in the midst of discovering the giant component.

Proof. By Theorem 2.1, the largest component is whp of size $\Theta(\varepsilon)n$, and all the other components are of size $O\left(\frac{\ln n}{\varepsilon^2}\right)$. As long as we are prior to the discovery of the giant component, every time U empties, the new vertex about to enter U has probability at least $\Theta(\varepsilon)$ to belong to the giant component. Every time a vertex that does not belong
to the giant enters U, U empties after at most $O\left(\frac{\ln^2 n}{\epsilon^2}\right)$ queries, corresponding to at most $O\left(\frac{\ln n}{\epsilon^2}\right)$ positive answers. Therefore, the probability that after $n \ln^2 n$ rounds we are still not in the midst of discovering the giant component is at most $(1 - \Theta(\epsilon))^{O\left(\frac{n \ln^2 n}{\epsilon^2}\right)} = (1 - \Theta(\epsilon))^{\Omega\left(\frac{n \ln n}{\epsilon^2}\right)} = o(1)$.

We will focus on the stack of the DFS, U, and its development throughout the DFS run.

2.1 The Straightforward Analysis

In hindsight, we know that U reaches its maximal height around the moment $\frac{\epsilon n^2}{1+\epsilon}$. However, around this moment issues with critically begin to occur. We thus define two moments which will be useful as points of reference for us:

$$m_1 := \frac{(\epsilon - \epsilon^2)n^2}{1 + \epsilon}, \quad m_2 := \frac{(\epsilon - \epsilon^2 + \epsilon^3)n^2}{1 + \epsilon}.$$

(1)

The following straightforward lemma gives a bound on the height of U at the moment m_1, depending only on the number of queries between U and T, which we will analyse afterwards:

Lemma 2.3 Let $\epsilon > 0$ be a small enough constant and let $p = \frac{1 + \epsilon}{n}$. Let m_1 be as defined in (1). Run the DFS algorithm on $G(n,p)$. Then, at the moment m_1 we have \textbf{whp}:

$$|U(m_1)| = \frac{\epsilon^2 n}{2} + \frac{q_{m_1}(U,T)}{n} + O(\epsilon^3 n),$$

where $q_{m_1}(U,T)$ is the number of queries between the vertices of $U(m_1)$ and $T(m_1)$ by moment m_1.

Proof. We consider the different types of queries that occurred by moment m_1:

1. $q_{m_1}(S,T)$ is the number of queries between the vertices in $S(m_1)$ and $T(m_1)$ by the moment m_1. By properties of the DFS,

$$q_{m_1}(S,T) = |S(m_1)||T(m_1)|.$$

2. $q_{m_1}(S \cup U)$ is the number of queries inside $S(m_1) \cup U(m_1)$ by the moment m_1. By Theorem 2.1, the excess of the graph is \textbf{whp} at most $6\epsilon^3 n$. Hence, we have that \textbf{whp}:

$$\left(\frac{|S(m_1)|}{2} + \frac{|U(m_1)|}{2}\right) - 6\epsilon^3 n^2 \leq q_{m_1}(S \cup U) \leq \left(\frac{|S(m_1)|}{2} + \frac{|U(m_1)|}{2}\right).$$

Indeed, there are $\left(\frac{|S(m_1)| + |U(m_1)|}{2}\right)$ possible queries inside $S(m_1) \cup U(m_1)$. In order to obtain the full description of the graph, we will need to ask all these queries. Should there be more than $6\epsilon^3 n^2$ queries remaining after the DFS run, there would be \textbf{whp} (by a standard Chernoff-type bound, see, for example, Theorem A.1.11 of [1]) at least $6\epsilon^3 n$ additional edges, contradicting Theorem 2.1.
3. \(q_{m_1}(U,T)\) is the number of queries between the vertices in \(U(m_1)\) and \(T(m_1)\) by the moment \(m_1\).

These types of queries account for all the queries by moment \(m_1\). We thus have that:

\[m_1 = \frac{(\epsilon - \epsilon^2)n^2}{1 + \epsilon} = q_{m_1}(S,T) + q_{m_1}(S \cup U) + q_{m_1}(U,T),\]

and

\[|q_{m_1}(S,T) + q_{m_1}(S \cup U)| - \left|T(m_1) ||S(m_1)| + \frac{|S(m_1)| + |U(m_1)|^2}{2}\right| \leq 6\epsilon^3 n^2.\]

By Lemma 2.2, by the moment \(n \ln^2 n\) we are already in the midst of discovering the largest component. As such, by the moment \(m_1\), \(U\) emptied \textit{whp} at most \(2\ln^2 n\) times (every time \(U\) emptied we must have had at least \((1 - \Theta(\epsilon))n\) queries, \textit{whp}). Therefore, by properties of the DFS run and by Lemma 2.2 we have that \textit{whp},

\[|S(m_1)| + |U(m_1)| - \sum_{i=1}^{m_1} X_i \leq 2\ln^2 n,\]

and \(|T(m_1)| = n - |S(m_1)| - |U(m_1)|\). Using a standard Chernoff-type bound together with the union bound, we obtain that with exponentially high probability:

\[\sum_{i=1}^{m_1} X_i - (\epsilon - \epsilon^2)n \leq \epsilon^3 n.\]

Hence \textit{whp},

\[|S(m_1)| + |U(m_1)| = (\epsilon - \epsilon^2)n + O(\epsilon^3)n,\]

and thus \textit{whp},

\[
\frac{(\epsilon - \epsilon^2)n^2}{1 + \epsilon} = |T(m_1)||S(m_1)| + \left(S(m_1) + |U(m_1)|\right) + q_{m_1}(U,T) + O(\epsilon^3)n
= n - (\epsilon - \epsilon^2)n - (\epsilon - \epsilon^2)n - |U(m_1)| + \frac{\epsilon^2 n^2}{2} + q_{m_1}(U,T) + O(\epsilon^3)n^2
= \epsilon n^2 - \frac{3\epsilon^2 n^2}{2} - n|U(m_1)| + q_{m_1}(U,T) + O(\epsilon^3)n^2,
\]

where the last equality follows since \(U(m_1)\) spans a path, and \textit{whp} a longest path is of length at most \(2\epsilon^2 n\) (see [6]). Multiplying both sides of the inequality by \(\frac{1 + \epsilon}{n}\), we obtain that \textit{whp}:

\[en - \epsilon^2 n = (1 + \epsilon) \left(en - \frac{3\epsilon^2 n^2}{2} - |U(m_1)| + \frac{q_{m_1}(U,T)}{n} + O(\epsilon^3)n\right)
= en - \frac{\epsilon^2 n^2}{2} - |U(m_1)| + \frac{q_{m_1}(U,T)}{n} + O(\epsilon^3)n,\]
for small enough ϵ. Rearranging, we derive that \textit{whp}:

$$|U(m_1)| = \frac{\epsilon^2 n}{2} + \frac{q_{m_1}(U,T)}{n} + O(\epsilon^3)n,$$

as required.

We remark that with slight adjustment in the proof of Lemma 2.2, we have that \textit{whp} by the moment $\frac{n \ln^2 n}{\epsilon^2}$ we are already in the midst of discovering the largest component. Then, with a more careful treatment of the error terms, the proof of Lemma 2.3 follows through for any $\epsilon \gg n^{-1/3+o(1)}$ (and subsequently, so do the proofs of the following lemmas and Theorem 1).

An immediate corollary of Lemma 2.3 is that the DFS uncovers \textit{whp} a path of size at least $\frac{\epsilon^2 n}{2} - O(\epsilon^3)n$. In order to obtain tight bounds, we will need to analyse the quantity $q_{m_1}(U,T)$.

2.2 Estimating $q_{m_1}(U,T)$

We now want to obtain a good estimate for $q_{m_1}(U,T)$. For that, we first observe that $G[T(m)]$ behaves like a random graph. Specifically, for $m \leq m_1$, $G[T(m)]$ behaves like a supercritical random graph, having a unique giant component with all other components of size at most logarithmic in n; for $m \geq m_2$, $G[T(m)]$ behaves like a subcritical random graph, with all components of size at most logarithmic in n. For $m_1 < m < m_2$, $G[T(m)]$ might behave like a critical random graph, however, these two moments are close enough so this does not affect the size of U significantly. We now state and prove this formally:

Lemma 2.4 Let $\epsilon > 0$ be a small enough constant. Let $p = \frac{1+\epsilon}{n}$, and let m_1, m_2 be as defined in (1). Run the DFS on $G(n,p)$. Then, \textit{whp}, for all $m \leq m_1$, $G[T(m)]$ behaves like a supercritical random graph, and for all $m \geq m_2$, $G[T(m)]$ behaves like a subcritical random graph.

Proof. First we note that since at any moment m the vertices in $T(m)$ have not been queried against each other, $G[T(m)]$ is distributed like $G([T(m)], \frac{1+\epsilon}{n})$ random graph. Now, let $f(\epsilon), g(\epsilon)$ be positive constants depending on ϵ. Then, $G[T(m)]$ is supercritical if $|T(m)|p \geq 1 + f(\epsilon)$, and subcritical if $|T(m)|p \leq 1 - g(\epsilon)$. Recall that $|T(m)| = n - |S(m)| - |U(m)|$, and that by Lemma 2.2 and by a Chernoff-type bound, \textit{whp}

$$\left| |S(m)| + |U(m)| - \sum_{i=1}^{m} X_i \right| \leq \ln^2 n.$$

Substituting $m = m_1$, we have \textit{whp} that:

$$|T(m_1)|p \geq \left(n - (\epsilon - \epsilon^2)n - 4\sqrt{n \ln n}\right) \frac{1+\epsilon}{n} \geq 1 + \epsilon^3 - 5\sqrt{\frac{\ln n}{n}}.$$
Similarly, substituting $m = m_2$ we get whp that

$$|T(m_2)|p \leq \left(n - (\epsilon - \epsilon^2 + \epsilon^3)n + 3\sqrt{n \ln n}\right) \frac{1 + \epsilon}{n}$$

$$\leq 1 - \epsilon^4 + 4\sqrt{\frac{\ln n}{n}}.$$

All that is left is to note that, by properties of the DFS, for any two moments $m \leq m'$ we have that $T(m') \subseteq T(m)$ and thus $|T(m')| \leq |T(m)|$. \hfill \Box

We are now ready to provide a good estimate for $q_{m_1}(U, T)$:

Lemma 2.5 Let $\epsilon > 0$ be a small enough constant. Let $p = \frac{1+\epsilon}{n}$, and let m_1 be as defined in (1). Run the DFS on $G(n, p)$. Then, whp,$$
\frac{|U(m_1)|}{2} - 8\epsilon^3 n \leq q_{m_1}(U, T) \leq \frac{(1 + \epsilon)|U(m_1)|}{2}.$$

Proof. At any moment $m \leq m_1$, by Lemma 2.4 $G[T(m)]$ behaves like a supercritical random graph. As such, by Theorem 2.1, whp it has a unique giant component of size linear in n, with all other components of size at most logarithmic in n.

Consider a vertex that entered U at some moment $m \leq m_1$. If it belonged to the giant component of $G[T(m-1)]$, then we will explore all of the giant component of $G[T(m-1)]$, whose size is linear in n, before it will move out of U. If it did not belong to the giant component of $G[T(m-1)]$, then we will explore a component of size logarithmic in n, before removing it from U. As such, all but the last $\ln^2 n$ vertices of $U(m_1)$ entered U from a giant component (indeed, the last $\ln^2 n$ vertices of $U(m_1)$ form a path, and a path of length $\ln^2 n$ belongs to the giant component), and we can focus on these vertices.

Consider such a moment $m \leq m_1$ where a vertex belonging to the giant component of $G[T(m-1)]$ entered U, and denote the last vertex in $U(m)$ by v. Noting that these giant components are nested, and since by Lemma 2.4 whp $G[T(m_1)]$ has a giant component, we have that whp this holds for all $m \leq m_1$. Hence, whp $G[T(m)]$ also has a giant component, and since v belonged to the giant component of $G[T(m-1)]$, it must have at least one neighbour in the giant component of $G[T(m)]$. Let $q(v, m)$ be the random variable representing the number of queries the vertex v in U had against the vertices in $T(m)$, before the next vertex belonging to the giant of $G[T(m)]$ enters U.

For the upper bound, observe that $q(v, m)$ is stochastically dominated by the random variable $\text{Uni}(1, n)$, since we know that there is at least one neighbour of v in the giant of $G[T(m)]$, and there are at most n vertices in $T(m)$. Therefore, $q_{m_1}(U, T)$ is stochastically dominated by the sum of $|U(m_1)|$ i.i.d random variables distributed according to $\text{Uni}(1, n)$, together with at most $n \ln^2 n$ additional queries accounting for the last $\ln^2 n$ vertices in $U(m_1)$. By the Law of Large Numbers, we have that:

$$\text{P} \left[\frac{q_{m_1}(U, T)}{n} \geq \frac{(1 + \epsilon)|U(m_1)|}{2} \right] = o(1),$$
since $|U(m_1)| \geq \frac{c^2 n}{2}$.

For the lower bound, observe that any additional neighbours that v may have in the giant component of $G[T(m)]$, besides the one guaranteed by construction, contribute to the excess of the giant component. Indeed, the edges between v and these additional neighbours will not be queried during the DFS run, since the entire giant component of $G[T(m)]$ will be explored before we return to v in U. By Theorem 2.1, the excess of the giant component is \textbf{whp} at most $6 \epsilon^3 n$. Furthermore, while it is possible that some vertices moved from T to U (and later on to S) between the moment m and the moment where we found the first neighbour in the giant, we still have that for all $m \leq m_1$ \textbf{whp} $|T(m)| \geq |T(m_1)| \geq (1 - 2 \epsilon) n$. Thus $q_{m_1}(U, T)$ stochastically dominates the sum of $|U(m_1)| - 6 \epsilon^3 n - \ln^2 n$ random variables distributed according to $\text{Uni}(1, (1 - 2 \epsilon) n)$. Since $|U(m_1)| \geq \frac{c^2 n}{2}$, by the Law of Large numbers we obtain the required lower bound \textbf{whp}.

\section{Proof of Theorem 1}

By Lemma 2.3 and Lemma 2.5, \textbf{whp} at the moment m_1 as defined in (1),

$$|U(m_1)| = \frac{\epsilon^2 n}{2} + \frac{q_{m_1}(U, T)}{n} + O(\epsilon^3 n) = \frac{\epsilon^2 n}{2} + \frac{|U(m_1)|}{2} + O(\epsilon^3 n).$$

Rearranging, we obtain that \textbf{whp} $|U(m_1)| = \epsilon^2 n + O(\epsilon^3 n)$. This immediately proves the lower bound. For the upper bound, observe that by Lemma 2.4, between m_1 and m_2 (as defined in (1)) we have at most $O(\epsilon^3 n^2)$ queries, corresponding to at most $O(\epsilon^3 n)$ additional vertices to U, \textbf{whp}. Afterwards, by Lemma 2.4, \textbf{whp} the DFS enters the subcritical phase, and by Theorem 2.1 \textbf{whp} all the components in $G[T]$ are of size logarithmic in n, at most. As such, $|U|$ could increase by at most $\ln^2 n$, before decreasing back again. \hfill \Box

\section*{References}

[1] N. Alon and J. H. Spencer, \textit{The probabilistic method}, 4th Ed., Wiley, New York, 2016.

[2] N. Enriquez, G. Faraud and L. Ménard, \textit{Limiting shape of the depth first search tree in an Erdös-Rényi graph}, Random Structures & Algorithms 56 (2020), 501–516.

[3] A. Frieze and M. Karoński, \textit{Introduction to random graphs}, Cambridge University Press, Cambridge, 2016.

[4] G. Kemkes and N. Wormald, \textit{An improved upper bound on the length of the longest cycle of a supercritical random graph}, SIAM J. Discrete Math. 27 (2013), 342–362.

[5] M. Krivelevich and B. Sudakov, \textit{The phase transition in random graphs — a simple proof}, Random Structures & Algorithms 43 (2013), 131–138.

[6] T. Łuczak, \textit{Cycles in a random graph near the critical point}, Random Structures & Algorithms 2 (1991), 421–440.