Lymphazurin 1% (isosulfan blue dye) is the most frequently used blue dye in the United States, and it is commonly used for sentinel node biopsy in breast cancer patients.1 Allergic reaction to lymphazurin, with severe cases including intraoperative anaphylaxis, has been reported in the general surgery literature.1–4 But, to our knowledge, there have been no cases of adverse reaction to lymphazurin reported in the plastic surgery literature. In the following case report, we present a patient undergoing bilateral skin-sparing mastectomy and immediate DIEP breast reconstruction, who developed a severe biphasic hypersensitivity reaction to lymphazurin injection for sentinel node mapping. The severity of her allergic reaction required that we stop flap dissection and proceed with wound closure so that she could undergo further workup. We also describe a method to leave a “roadmap” to facilitate future delayed flap dissection.

CASE DESCRIPTION

A 49-year-old woman with a pathogenic BRCA2 gene mutation and left breast invasive ductal carcinoma presented for a bilateral skin-sparing mastectomy, with targeted left axillary lymph node dissection and immediate bilateral DIEP breast reconstruction. Her medical history included hypertension, systemic lupus erythematosus, major depressive disorder, chronic back pain, BRCA2 gene mutation, and Behcet disease. Penicillin (rash) was her only known allergy. At the start of surgery, she received 5000 units of subcutaneous heparin and 2 g of Ancef for perioperative prophylaxis. Five milliliters of lymphazurin 1% was injected under the left nipple by the Surgical Oncology team for sentinel lymph node biopsy. Twenty minutes after anesthesia induction, the patient became hypotensive and hypoxic, which was managed initially with colloids and intraoperative albuterol (Fig. 1). The patient was otherwise stable, and the surgery continued as planned. After identifying the medial and lateral DIEP perforators and before starting the intramuscular dissection, the anesthesia team noted that the patient was again becoming hypotensive and hypoxic on 100% FiO2 (Fig. 2). The patient was otherwise stable, and the surgery continued as planned. After identifying the medial and lateral DIEP perforators and before starting the intramuscular dissection, the anesthesia team noted that the patient was again becoming hypotensive and hypoxic on 100% FiO2 (Fig. 2). The patient was otherwise stable, and the surgery continued as planned. After identifying the medial and lateral DIEP perforators and before starting the intramuscular dissection, the anesthesia team noted that the patient was again becoming hypotensive and hypoxic on 100% FiO2 (Fig. 2). The patient was otherwise stable, and the surgery continued as planned. After identifying the medial and lateral DIEP perforators and before starting the intramuscular dissection, the anesthesia team noted that the patient was again becoming hypotensive and hypoxic on 100% FiO2 (Fig. 2). The patient was otherwise stable, and the surgery continued as planned. After identifying the medial and lateral DIEP perforators and before starting the intramuscular dissection, the anesthesia team noted that the patient was again becoming hypotensive and hypoxic on 100% FiO2 (Fig. 2). The patient was otherwise stable, and the surgery continued as planned. After identifying the medial and lateral DIEP perforators and before starting the intramuscular dissection, the anesthesia team noted that the patient was again becoming hypotensive and hypoxic on 100% FiO2 (Fig. 2). The patient was otherwise stable, and the surgery continued as planned. After identifying the medial and lateral DIEP perforators and before starting the intramuscular dissection, the anesthesia team noted that the patient was again becoming hypotensive and hypoxic on 100% FiO2 (Fig. 2). The patient was otherwise stable, and the surgery continued as planned. After identifying the medial and lateral DIEP perforators and before starting the intramuscular dissection, the anesthesia team noted that the patient was again becoming hypotensive and hypoxic on 100% FiO2 (Fig. 2). The patient was otherwise stable, and the surgery continued as planned. After identifying the medial and lateral DIEP perforators and before starting the intramuscular dissection, the anesthesia team noted that the patient was again becoming hypotensive and hypoxic on 100% FiO2 (Fig. 2). The patient was otherwise stable, and the surgery continued as planned. After identifying the medial and lateral DIEP perforators and before starting the intramuscular dissection, the anesthesia team noted that the patient was again becoming hypotensive and hypoxic on 100% FiO2 (Fig. 2). The patient was otherwise stable, and the surgery continued as planned. After identifying the medial and lateral DIEP perforators and before starting the intramuscular dissection, the anesthesia team noted that the patient was again becoming hypotensive and hypoxic on 100% FiO2 (Fig. 2). The patient was otherwise stable, and the surgery continued as planned. After identifying the medial and lateral DIEP perforators and before starting the intramuscular dissection, the anesthesia team noted that the patient was again becoming hypotensive and hypoxic on 100% FiO2 (Fig. 2). The patient was otherwise stable, and the surgery continued as planned. After identifying the medial and lateral DIEP perforators and before starting the intramuscular dissection, the anesthesia team noted that the patient was again becoming hypotensive and hypoxic on 100% FiO2 (Fig. 2). The patient was otherwise stable, and the surgery continued as planned. After identifying the medial and lateral DIEP perforators and before starting the intramuscular dissection, the anesthesia team noted that the patient was again becoming hypotensive and hypoxic on 100% FiO2 (Fig. 2). The patient was otherwise stable, and the surgery continued as planned. After identifying the medial and lateral DIEP perforators and before starting the intramuscular dissection, the anesthesia team noted that the patient was again becoming hypotensive and hypoxic on 100% FiO2 (Fig. 2). The patient was otherwise stable, and the surgery continued as planned. After identifying the medial and lateral DIEP perforators and before starting the intramuscular dissection, the anesthesia team noted that the patient was again becoming hypotensive and hypoxic on 100% FiO2 (Fig. 2). The patient was otherwise stable, and the surgery continued as planned. After identifying the medial and lateral DIEP perforators and before starting the intramuscular dissection, the anesthesia team noted that the patient was again becoming hypotensive and hypoxic on 100% FiO2 (Fig. 2). The patient was otherwise stable, and the surgery continued as planned. After identifying the medial and lateral DIEP perforators and before starting the intramuscular dissection, the anesthesia team noted that the patient was again becoming hypotensive and hypoxic on 100% FiO2 (Fig. 2). The patient was otherwise stable, and the surgery continued as planned. After identifying the medial and lateral DIEP perforators and before starting the intramuscular dissection, the anesthesia team noted that the patient was again becoming hypotensive and hypoxic on 100% FiO2 (Fig. 2). The patient was otherwise stable, and the surgery continued as planned. After identifying the medial and lateral DIEP perforators and before starting the intramuscular dissection, the anesthesia team noted that the patient was again becoming hypotensive and hypoxic on 100% FiO2 (Fig. 2). The patient was otherwise stable, and the surgery continued as planned. After identifying the medial and lateral DIEP perforators and before starting the intramuscular dissection, the anesthesia team noted that the patient was again becoming hypotensive and hypoxic on 100% FiO2 (Fig. 2). The patient was otherwise stable, and the surgery continued as planned. After identifying the medial and lateral DIEP perforators and before starting the intramuscular dissection, the anesthesia team noted that the patient was again becoming hypotensive and hypoxic on 100% FiO2 (Fig. 2). The patient was otherwise stable, and the surgery continued as planned. After identifying the medial and lateral DIEP perforators and before starting the intramuscular dissection, the anesthesia team noted that the patient was again becoming hypotensive and hypoxic on 100% FiO2 (Fig. 2). The patient was otherwise stable, and the surgery continued as planned. After identifying the medial and lateral DIEP perforators and before starting the intramuscular dissection, the anesthesia team noted that the patient was again becoming hypotensive and hypoxic on 100% FiO2 (Fig. 2). The patient was otherwise stable, and the surgery continued as planned. After identifying the medial and lateral DIEP perforators and before starting the intramuscular dissection, the anesthesia team noted that the patient was again becoming hypotensive and hypoxic on 100% FiO2 (Fig. 2). The patient was otherwise stable, and the surgery continued as planned. After identifying the medial and lateral DIEP perforators and before starting the intramuscular dissection, the anesthesia team noted that the patient was again becoming hypotensive and hypoxic on 100% FiO2 (Fig. 2). The patient was otherwise stable, and the surgery continued as planned. After identifying the medial and lateral DIEP perforators and before starting the intramuscular dissection, the anesthesia team noted that the patient was again becoming hypotensive and hypoxic on 100% FiO2 (Fig. 2).
transesophageal echocardiogram showed signs of moderate right ventricular dilation suggestive of PE. Therefore, we decided to abort flap dissection and ionotropic medications (phenylephrine and ephedrine), and heparin drip was administered while the surgical wounds were quickly closed. Since the patient’s DIEP perforators had already been isolated, we placed Prolene sutures along the medial and lateral perforators as a landmark to facilitate safe identification for future delayed DIEP or muscle-sparing transverse rectus abdominis muscle flap reconstruction.

After closure, the patient was transferred to the postanesthesia care unit, where repeat bedside transesophageal echocardiogram findings showed that systolic function had normalized. Three hours later, computed tomographic angiography revealed a very small nonocclusive subsegmental right lower lobe PE. Additionally, duplex ultrasound demonstrated no deep venous thrombosis of the lower extremities.

Cardiology and pulmonology services were both consulted, and they agreed that the small subsegmental PE was of insufficient size to explain her hemodynamic collapse in the operating room. Given her acute cardiac and pulmonary deterioration shortly after isosulfan blue injection, rapid improvement with ionotropic support, and ruled-out massive PE, she was diagnosed with an anaphylactic reaction to lymphazurin administration.

The patient was extubated later that night after respiratory improvement. Her postoperative course was complicated by a left chest hematoma, which was washed out in the operating room. On postoperative day 5, the patient was taken back for bilateral breast reconstruction with pectoral tissue expanders and acellular dermal matrix. She will proceed with postmastectomy radiation therapy followed by delayed bilateral DIEP or muscle-sparing transverse rectus abdominis muscle flap breast reconstruction.

DISCUSSION

Isosulfan blue dye is an aniline dye commonly used in sentinel lymph node biopsy procedures for breast cancer. After subcutaneous/intraparenchymal injection into the breast, isosulfan blue drains into lymphatics carried by interstitial proteins. After the dye gets into the venous system, it can interfere with the pulse oxygen saturation absorptive quality, artificially decreasing the perceived hemoglobin saturation in some patients. The reported incidence of isosulfan blue is 1%–3%. Given the prevalence of the dye outside medicine (textiles, manufacturing, household products), patients have an increased chance of exposure and sensitization.

Isosulfan blue anaphylaxis is a Type I hypersensitivity response mediated by immunoglobulin E. Most reactions occur within 15–30 minutes after dye injection. Patients can experience a variety of symptoms, including edema, erythema, tachycardia, “blue” hives, bronchospasms, dysrhythmias, vasodilation, and cardiovascular collapse.
An elevated serum tryptase can support an anaphylaxis diagnosis but is not confirmatory. Immediate intervention is necessary, prioritizing blood pressure control and airway management, followed by intravenous epinephrine administration. A delay in epinephrine administration can lead to a biphasic response, with a rebound effect 2–4 hours after the initial event. Antihistamines and corticosteroids can be used as second-line treatment, but corticosteroids may not prevent a biphasic anaphylactic reaction. If an anaphylactic response is suspected, immediate pharmacologic management of anaphylaxis should be initiated.

Given the frequency of anaphylactic reactions, the use of prophylactic medications should be considered. Certain high-volume centers have developed algorithms to differentiate suspected reactions to blue dyes and initiate early interventions in cases of intraoperative anaphylaxis. Other authors advocate the routine use of diphenhydramine and famotidine, which have been shown to decrease the severity of anaphylaxis, but not the overall incidence rate. Furthermore, methylene blue dye may be a safer alternative to isosulfan blue, as it is not associated with anaphylactic reactions.

In conclusion, lymphazurin is frequently used by breast cancer oncologists and plastic surgeons for lymph node mapping, and it behooves the plastic surgeon to be aware of this rare but very severe hypersensitivity reaction. Although an allergic reaction is uncommon, knowledge of the signs and symptoms of an acute hypersensitivity reaction is critical to accurate treatment and optimal patient outcomes. As the number of immediate breast reconstruction surgeries and vascularized lymph node transfer and lymphovenous anastomosis increase over the years, it is almost certain that others will encounter similar situations as described here. Recognition of isosulfan blue anaphylaxis will contribute to improved patient outcomes.

Charles Y. Tseng, MD, MBA
Division of Plastic and Reconstructive Surgery
University of California Los Angeles
200 Medical Plaza Driveway Suite 460
Los Angeles, CA 90095

REFERENCES
1. Liang MI, Carson WE. Biphasic anaphylactic reaction to blue dye during sentinel lymph node biopsy. World J Surg Oncol. 2008;6:79.
2. Sandhu S, Farag E, Argalious M. Anaphylaxis to isosulfan blue dye during sentinel lymph node biopsy. J Clin Anesth. 2005;17:633–635.
3. Albo D, Wayne JD, Hunt KK, et al. Anaphylactic reactions to isosulfan blue dye during sentinel lymph node biopsy for breast cancer. Am J Surg. 2001;182:393–398.
4. Bézu C, Coutant C, Salengro A, et al. Anaphylactic response to blue dye during sentinel lymph node biopsy. Surg Oncol. 2011;20:e55–e59.
5. Lyew MA, Gamblin TC, Ayoum M. Systemic anaphylaxis associated with intramammary isosulfan blue injection used for sentinel node detection under general anesthesia. Anesthesiology. 2000;93:1145–1146.
6. Raut CP, Hunt KK, Akins JS, et al. Incidence of anaphylactoid reactions to isosulfan blue dye during breast carcinoma
lymphatic mapping in patients treated with preoperative prophylactic: results of a surgical prospective clinical practice protocol. Cancer. 2005;104:692–699.

7. Cimmino VM, Brown AC, Szocik JF, et al. Allergic reactions to isosulfan blue during sentinel node biopsy—a common event. Surgery. 2001;130:439–442.

8. Li PH, Wagner A, York M, et al. Blue dye allergy: pitfalls in diagnosis and how to avoid them. J Allergy Clin Immunol Pract. 2018;6:272–273.

9. Thevarajah S, Huston TL, Simmons RM. A comparison of the adverse reactions associated with isosulfan blue versus methylene blue dye in sentinel lymph node biopsy for breast cancer. Am J Surg. 2005;189:236–239.