This paper investigates the production of hydrocarbon resins by emulsion oligomerization of the C₅ fraction hydrocarbons in liquid by-products of oil refining. Such oligomers have a wide range of applications as film-forming agents in paints and anti-color coatings.

Emulsion oligomerization was carried out using emulsifiers of the first and second kind. The study was performed at different values of the reaction temperature of the reaction duration, the intensity of agitation; concentrations of the emulsifier; C₅-water fraction ratio. The resulting products were estimated according to the following indicators: the yield, unsaturation degree, softening temperature, mean molecular weight, color.

Statistical analysis was carried out, the correlation of parameters of emulsion oligomerization and the yield and characteristics of oligomers was established. Given that, it would be possible to establish the optimal conditions for emulsion oligomerization and predict the properties of the products obtained.

Specifically, it was established that the yield of hydrocarbon resins does not correlate with the reaction temperature (0.15 and 0.30) and the concentration of emulsifiers (0.08 and 0.05). It was proven that in the intervals studied the variable yield of oligomers depends on the duration of the reaction (correlation 0.88 and 0.81). In the case of oligomerization in the reverse emulsion, a significant correlation with the yield is also demonstrated by agitation intensity (0.51) and a C₅-water fraction ratio (0.51). That has made it possible to derive an equation of the yield multiple linear regression dependent on the most significant process parameters. The high values of the yield and bromine number correlation (0.94 and 0.93) give grounds to argue about the progress of oligomerization reaction. The relationship among the characteristics of oligomers has been confirmed. This indicates the possibility of directed adjustment of certain characteristics of hydrocarbon resins.

Keywords: liquid pyrolysis products, hydrocarbon resin, petroleum polymer resin, emulsion oligomerization, C₅ fraction.

References

1. Zohuriaan-Mehr, M. J., Omidian, H. (2000). Petroleum Resins: An Overview. Journal of Macromolecular Science, Part C: Polymer Reviews, 40 (1), 23–49. doi: https://doi.org/10.1081/mc-100100577
2. Mildenberg, R., Zander, M., Collin, G. (2008). Hydrocarbon resins. John Wiley & Sons, 191.
3. Rahmatpour, A., Ghasemi Meymandi, M. (2021). Large-Scale Production of C₅ Aromatic Hydrocarbon Resin from the Cracked-Petroleum-Derived C₅ Fraction: Chemistry, Scalability, and Technoeconomic Analysis. Organic Process Research & Development, 25 (1), 129–135. doi: https://doi.org/10.1021/op2004744
4. Dunsckiy, Yu. V., No, B. I., Butov, G. M. (1999). Hiruymi i tekhnologi-ya neftepelimernyih smol. Moscow: Hiruymi, 302.
5. Bondaleto, V. G., Vosmerikov, A. V., Bondaletova, L. I., Van Thanh, N., Bondaletova, A. V. (2018). Protective bitumen-resin coatings based on aromatic petroleum resin. AIP Conference Proceedings. doi: https://doi.org/10.1063/1.5083280
6. Nie, X., Hou, T., Yao, H., Li, Z., Zhou, X., Li, C. (2019). Effect of C9 petroleum resins on improvement in compatibility and properties of SBS-modified asphalt. Petroleum Science and Technology, 37 (14), 1704–1712. doi: https://doi.org/10.1080/10991611.2019.1602642
7. Gnativ, Z., Nylukshyn, I., Pikh, Z., Voronchak, T., Rypka, A. (2014). Catalytic Cooligomerization of Styrene and Dicyclopentadiene: Yield and Properties Dependence on Reaction Mixture Composition. Chemistry & Chemical Technology, 8 (2), 165–170. doi: https://doi.org/10.23939/chct.08.02.165
8. Yang, J., Cao, Z., Qi, Y. (2014). Polymerization of C₅ Fraction from Ethylene Cracking Catalyzed by Al3+-Loaded Styrenic Cation Exchange Resin. Asian Journal of Chemistry, 26 (19), 6658–6664. doi: https://doi.org/10.14233/ajchem.2014.17387
9. Bondaleto, V. G., Bondaletova, L. I, Thanh, N. V., Prokopyjeva, T. A. (2016). Modification of aromatic petroleum resin. Petroleum and Coal, 58 (5), 578–584.
10. Fuch, U., Dzinyak, B., Subtelnyy, R. (2015). Study of emulsifier nature effect on the process of hydrocarbon fraction cooligomerization in the emulsion. Eastern-European Journal of Enterprise Technologies, 4 (6 (76)), 54–57. doi: https://doi.org/10.15587/1729-4061.2015.47203
11. Subtelnyy, R. O., Orochuck, O. M., Dzinyak, B. O. (2020). Comparative study of the hydrocarbon resins production of by the C₅ fraction emulsion and suspension oligomerization. Chemistry, Technology and Application of Substances, 3 (1), 63–69. doi: https://doi.org/10.23939/ctas2020.01.065
12. Kovačić, S., Slugovec, C. (2020). Ring-opening Metathesis Polymerisation derived poly(dicyclopentadiene) based materials. Materials Chemistry Frontiers, 4 (8), 2235–2255. doi: https://doi.org/10.1039/d0qm00296h
13. Yao, Z., Xu, X., Dong, Y., Liu, X., Yuan, B., Wang, K. et. al. (2020). Kinetics on thermal dissociation and oligomerization of dicyclopentadiene in a high temperature & pressure microreactor. Chemical Engineering Science, 228, 115892. doi: https://doi.org/10.1016/j.cej.2020.115892
14. Orochuck, O. M., Subtelnyi, R. O., Maresz, Z. Y., Dziniak, B. O. (2014). Dvostadiynyi sposob initsuivovani koolihomeryzatsiyi ne-nasychenykh vuluvoldynyih fraktaiyi S9. Visnuk Natsionalnoho universytetu “Lvivska politekhnika”. Khimiya. Tekhnolohiya rechovyn ta yikh Zastosuvani, 787, 153–157. Available at: http://ena.lp.edu.ua/8080/bitstream/nttu/24888/1/32-153-157.pdf
This paper reports a study into the dependence of efficient glycerate potassium production involving glycerin and potassium hydroxide solution on the process conditions. The concentration of potassium glycerate in the resulting product has been used as a parameter of the efficient glycerate potassium production process.

Glycerates of metals are applied to produce articles in the construction industry, electronics, medicine; they are employed as transesterification catalysts to obtain special fats for various purposes, as well as biodiesel fuel.

In order to derive potassium glycerate, heating was applied while agitation of a mixture of glycerin and potassium hydroxide.

The analysis of potassium hydroxide was performed, in which the basic substance mass fraction was 85.5 %, the mass fraction of carbonate potassium – 0.9 %. The p.a.-grade glycerin was applied in this work, whose basic substance mass fraction was 99.5 %.

The effect of the heating temperature of the reaction mixture on the concentration of potassium glycerate in the product has been determined. It has been shown that the rational heating temperature is 145 °C.

The dependence of potassium glycerate concentration in the resulting product on the following conditions of the process has been established: a change in the molar concentration of glycerin and a reaction mixture heating duration.

Such rational conditions for obtaining potassium glycerate have been defined as a molar concentration of glycerin of 60 % and a heating duration of 4 hours. The experimentally established concentration of potassium glycerate in the product under these conditions was 75.77 %.

For potassium glycerate, the melting point (69 °C) and the mass fraction of moisture (0.8 %) have been determined.

The results of experimental studies would make it possible to obtain potassium glycerate directly at enterprises where the glycerates of metals are used, from available raw materials, under rational conditions. The defined conditions for obtaining potassium glycerate could make it possible to efficiently utilize material and energy resources.

Keywords: potassium glycerate, potassium hydroxide, glycerin, reaction mixture, basic substance content.

References
1. Rahmankulov, D. L., Kimsanov, B. H., Chanyshev, R. R. (2003) Fizicheskie i himicheskie svoystva glitserina. Moscow: Himiya, 200. Available at: https://www.studmed.ru/rahmankulov-dl-kimsanov-bh-chanyshev-rr-fizicheskie-i-himicheskie-svoystva-glicerina_a990eae1973.html
2. Geibel, J. P., Kirchoff, P. (2006). Pat. No. EP1976532A1. Fast acting inhibitor of gastric acid secretion. declared: 27.01.2006; published: 11.11.2005. Available at: https://patents.google.com/patent/EP1976532A1/en
3. Novikov, O. O., Novykov, L. V., Semenchenko, O. O. (2004). Pat. No. 4382 UA. A method for the glass chemical treatment. No. 2004042569; declared: 06.04.2004; published: 17.01.2005, Bul. No. 1. Available at: https://napatents.com/2-4382-sposob-khimichno-obrobki-skal.html
4. Pradhan, S., Shen, J., Emami, S., Naik, S. N., Reaney, M. J. T. (2014). Fatty acid methyl esters production with glycerol metal alkoxide catalyst. European Journal of Lipid Science and Technology, 116 (11), 1590–1597. doi: https://doi.org/10.1002/ejlt.201300477
5. Hsiao, M.-C., Chang, L.-W., Hou, S.-S. (2019). Study of Solid Calcium Diglyceroxide for Biodiesel Production from Waste Cooking Oil Using a High Speed Homogenizer. Energies, 12 (17), 3205. doi: https://doi.org/10.3390/en12173205
6. Teslenko, A., Chernukha, A., Bezuglov, O., Bogatov, O., Kunitsa, E., Kalyva, V. et. al. (2019). Construction of an algorithm for building regions of questionable decisions for devices containing gases in a linear multidimensional space of hazardous factors. Eastern-European
Abstract and References. Technology organic and inorganic substances

7. Pradhan, S., Shen, J., Emami, S., Mohanty, P., Naik, S. N., Dalai, A. K., Renney, M. J. T. (2017). Synthesis of potassium glyceroxide catalyst for sustainable green fuel (biocatalysts) production. Journal of Industrial and Engineering Chemistry, 46, 266–272. doi: https://doi.org/10.1016/j.jiec.2016.10.038

8. Reyero, I., Arzamendi, G., Gandia, L. M. (2014). Heterogenization of the biodiesel synthesis catalysts: CaO and novel calcium compounds as transesterification catalysts. Chemical Engineering Research and Design, 92 (8), 1519–1530. doi: https://doi.org/10.1016/j.cherd.2013.11.017

9. Lakić, I., Kesić, Z., Zdijić, M., Skala, D. (2016). Calcium diglyceroxide synthesized by mechanochemical treatment, its characterization and application as catalyst for fatty acid methyl esters production. Fuel, 165, 139–163. doi: https://doi.org/10.1016/j.fuel.2015.10.063

10. Sánchez-Cantú, M., Reyes-Cruz, F. M., Rubio-Rosas, E., Pérez-Diaz, L. M., Ramírez, E., Valente, J. S. (2014). Direct synthesis of calcium diglyceroxide from hydrated lime and glyceral and its evaluation in the transesterification reaction. Fuel, 138, 126–133. doi: https://doi.org/10.1016/j.fuel.2014.08.006

11. Bradley, D., Levin, E., Rodriguez, C., Williard, P. G., Stanton, A., Fink, J. (2021). Gas hydrate control. Petroleum Engineer's Guide to

References

1. Akhbash, M., Anam, Z. M., Ahn, S. Y., Johns, M. L., May, E. F. (2016). Gas hydrate plug formation in partially-dispersed water–oil systems. Chemical Engineering Science, 140, 337–347. doi: http://doi.org/10.1016/j.ces.2015.09.032

2. Zhang, D., Huang, Q., Wang, W., Li, H., Zheng, H., Li, R. et al. (2021). Effects of waxes and asphaltenes on CO2 hydrate nucleation and decomposition in oil-dominated systems. Journal of Natural Gas Science and Engineering, 88, 103799. doi: http://doi.org/10.1016/j.jngse.2021.103799

3. Boiko, V. S., Boiko, R. V. (2010). Vyslobuvannia i transportuvannia gidratozvituvnykh pryrodnykh i naftovykh haziv. Ivano-Frankivs'kyi: Vyd.-vo «Nova Zoria», 747.

4. Fink, J. (2021). Gas hydrate control. Petroleum Engineer’s Guide to Oil Field Chemicals and Fluids. Elsevier Inc., 531–610. doi: http://doi.org/10.1016/b978-0-323-85438-2.00015-4

5. Bai, Y., Bai, Q. (2019). Hydrates. Subsea Engineering Handook. Elsevier Inc., 409–434. doi: 10.1016/b978-0-12-812622-6.00015-4

6. Vyatchin, M. G., Pravednikov, N. K., Batalin, O. Yu. et al. (1998). Uslovii i zony gidratozvoriuvalnykh pryrodnykh i naftovykh haziv. Ivano-Frankivs’kyi: Vyd.-vo «Nova Zoria», 747.

7. Vyatchin, M. G., Pravednikov, N. K., Batalin, O. Yu. et al. (2001). Zakonomernosti gidratozvoriuvalnykh pryrodnykh i naftovykh haziv. Ivano-Frankivs’kyi: Vyd.-vo «Nova Zoria», 4–54.

8. Gruave, D., Boxall, J., Mulligan, J., Sloan, E. D., Koh, C. A. (2008). Hydrate formation from high-water-content crude oil emulsions. Chemical Engineering Science, 63 (18), 4570–4579. doi: http://doi.org/10.1016/j.ces.2008.06.025

9. Maganov, R., Vakhitov, G., Vafina, N. (2000).Optimalnaya tekhnostologiya borby s gidratozvoriuvymi otlozheniyami. Neft Rossii, 3, 96–99.

Oleksandr Petras
National University «Yuri Kondratyuk Poltava Polytechnic», Poltava, Ukraine
ORCID: https://orcid.org/0000-0001-8515-6460

The paper considers the process of hydrate-paraffin deposits formation in oil wells. Due to the research with the author’s specially designed laboratory equipment — an experimental installation containing a technological unit and an information-measuring system, the most favorable pressure-temperature conditions of hydrate formation in a wide range of pressure (0.1–120 MPa) and temperature (from –20 to +80 °C) were determined. The experimental results made it possible to determine the conditions required for hydrate deposits and iron (Fe) oxides in the range of temperature from –15 to +60 °C and pressure from 0 to 60 MPa. These results are confirmed by thermodynamic calculations of the oil-gas-hydrate phase equilibria in the annulus of the well. Data processing was performed using the methods of correlation, dispersion and regression analysis, which allowed comparing the processes of hydrates and iron (Fe) oxides formation in the annulus of oil wells. The results of the study can be used to prevent and eliminate hydrate-paraffin plugs in the downhole equipment of oil wells, and also to determine the operation mode of the well for long-term operation of the downhole equipment without complications, accidents and stops for repair works, which reduces downtime.

Keywords: hydrate-paraffin formation, iron oxides, tubing, casing, well.
This paper reports the principles of design and the examined protective properties of liquid materials for shielding the electric, magnetic, and electromagnetic fields over a wide frequency range. The materials were made on the basis of iron ore concentrate and a pigment additive, with water-dispersed and geopolymer paints used as a matrix. The tests of protective properties for the electrical and magnetic components of the electromagnetic field of industrial frequency showed that the electric field shielding coefficients at a concentration of the screening substance of 15–60 % (by weight) equaled 1.1–8.6; magnetic field – 1.2–5.3. The shielding coefficients of the material based on a water-dispersed paint are lower than those of a geopolymer one, which can be explained by the oxidation of an iron-containing component and a decrease in electrical conductivity. The shielding coefficients of the electromagnetic field with a frequency of 2.45 GHz are 1.2–7.9. The highest coefficients are inherent in the material with filler made of iron ore concentrate and titanium-containing pigment powder in a ratio of 1:1.

To design materials with the required (predictable) protective properties, the relative magnetic, dielectric permeability of materials was calculated. It is shown that the obtained data are acceptably the same as the results from direct measurements of magnetic and dielectric permeability and could be used to calculate the wave resistance of the material and the predicted reflection coefficient of electromagnetic waves. Thus, there is reason to assert the need to build a database on the frequency dependence of effective magnetic and dielectric permeability in order to automate the design processes of composite materials with predefined protective properties.

Keywords: electromagnetic field, shielding coefficient, magnetic permeability, dielectric permeability, composite materials.

References

1. Vergallo, C., Dimi, L. (2018). Comparative Analysis of Biological Effects Induced on Different Cell Types by Magnetic Fields with Magnetic Flux Densities in the Range of 1–60 mT and Frequencies up to 50 Hz. Sustainability, 10 (8), 2776. doi: https://doi.org/10.3390/su10082776

2. Duhaini, I. (2016). The effects of electromagnetic fields on human health. Physica Medica, 32, 213. doi: https://doi.org/10.1016/j.ejmp.2016.07.720

3. Patil, N., Velhal, N. B., Pawar, R., Puri, V. (2015). Electric, magnetic and high frequency properties of screen printed ferrite-ferroelectric composite thick films on alumina substrate. Microelectronics International, 32 (1), 25–31. doi: https://doi.org/10.1108/mi-12-2013-0080

4. Mondal, S., Ganguly, S., Das, P., Khasgir, D., Das, N. C. (2017). Low percolation threshold and electromagnetic shielding effectiveness of nano-structured carbon based ethylene methyl acrylate nanocomposites. Composites Part B: Engineering, 119, 41–56. doi: https://doi.org/10.1016/j.compositesb.2017.03.022

5. Yadav, R. S., Kuritka, I., Vlacakova, J., Machovský, M., Skoda, D., Urbanek, P. et al. (2019). Polypropylene Nanocomposite Filled with Spinel Ferrite NiFe2O4 Nanoparticles and In-Situ Thermally-Re-
Indonesia has very abundant reserves of silica, but progressive studies on the deposition of this material are very few, resulting in limited applications of silica. This work refers to the purification of silica from quartz sand originated from Sukabumi, Indonesia to obtain high-purity silica, which can be applied as important raw materials for special purposes. The aim of our research is to improve low-grade silica from quartz sand by removing impurities, especially aluminum and iron removal, using sulfuric acid leaching. In order to achieve the aim, the effect of reaction time and sulfuric acid concentration on the leaching process was investigated. The effectiveness of sulfuric acid for the impurities removal was observed. The chemical composition of the samples before and after leaching was studied by Monte Carlo Study. Jundishapur Journal of Natural Pharmaceutical Products, 14 (2), e12589. doi: https://doi.org/10.5812/jjnpmw.12589

1. Zhang, L., Bi, S., Liu, M. (2020). Lightweight Electromagnetic Interference Shielding Materials and Their Mechanisms. Electromagnetic Materials and Devices. doi: https://10.5772仇ntechopen.62270

2. Belyaev, A. A., Bespalova, E. E., Lepeshkin, V. V. (2015). Radiocommunication. Trudy VIAM, 6, 80–88.

3. Barsukov, V., Senyk, I., Kryukova, O., Butenko, O. (2018). Composite Carbon-Polymer Materials for Electromagnetic Radiation Shielding. Materials Today: Proceedings, 5 (8), 15909–15914. doi:https://10.1016/j.matpr.2018.06.063

4. Senyk, I. V., Kurypta, Y. A., Barsukov, V. Z., Butenko, O. O., Khomenko, V. G. (2020). Development and Application of Thin-Wall-Board Screening Composite Materials. Physics and Chemistry of Solid-State, 21 (4), 771–778. doi:https://10.15330/pcss.21.4.771-778

5. Guzi, S., Kryvenko, P., Guzi, O., Yushkevich, S. (2019). Determining the effect of the composition of an aluminosilicate binder on the rheotechnological properties of adhesives for wood. Eastern-European Journal of Enterprise Technologies, 6 (6 (102)), 30–38. doi:https://10.15587/1729-4061.2019.185728

6. Glyva, V., Podkopaev, S., Levchenko, L., Karaviea, N., Nikolaev, K., Tykhonko, O. et. al. (2018). Design and study of protective properties of electromagnetic screens based on iron ore dust. Eastern-European Journal of Enterprise Technologies, 1 (5 (91)), 10–17. doi:https://10.15587/1729-4061.2018.136222

7. Radionov, A. V., Podoltsk, A. D., Radionova, A. A. (2017). Express - method for determining the quality of a magnetic fluid for operation in the working gap of a magnetic fluid seal. IOP Conference Series: Materials Science and Engineering, 233, 012038. doi: https://10.1088/1757-899X/233/1/012038

DOI: 10.15587/1729-4061.2021.226267

IMPLEMENTATION OF SULFURIC ACID LEACHING FOR ALUMINUM AND IRON REMOVAL FOR IMPROVEMENT OF LOW-GRADE SILICA FROM QUARTZ SAND OF SUKABUMI, INDONESIA (p. 32-40)

Eko Sulistiyo
Research Centre for Metallurgy and Material Indonesian Institute of Sciences, Kawasan Puspitpek Serpong, Tangerang Selatan, Indonesia
ORCID: https://orcid.org/0000-0003-4147-3464

Murni Handayani
Research Centre for Metallurgy and Material Indonesian Institute of Sciences, Kawasan Puspitpek Serpong, Tangerang Selatan, Indonesia
ORCID: https://orcid.org/0000-0002-0478-2121

Agus Budi Prasetyo
Research Centre for Metallurgy and Material Indonesian Institute of Sciences, Kawasan Puspitpek Serpong, Tangerang Selatan, Indonesia
ORCID: https://orcid.org/0000-0001-7514-4648

Januar Irawan
Research Centre for Metallurgy and Material Indonesian Institute of Sciences, Kawasan Puspitpek Serpong, Tangerang Selatan, Indonesia
ORCID: https://orcid.org/0000-0002-9687-5869

Eni Febriana
Research Centre for Metallurgy and Material Indonesian Institute of Sciences, Kawasan Puspitpek Serpong, Tangerang Selatan, Indonesia
ORCID: https://orcid.org/0000-0002-1816-9598

Florentinus Firdiyono
Research Centre for Metallurgy and Material Indonesian Institute of Sciences, Kawasan Puspitpek Serpong, Tangerang Selatan, Indonesia
ORCID: https://orcid.org/0000-0003-4868-1626

Erlina Vustanti
Sultan Ageng Tirtayasa University, Cilegon, Indonesia
ORCID: https://orcid.org/0000-0003-3087-1387

Safetyana Nazaretha Sembiring
Tirtayasa University, Cilegon, Indonesia
ORCID: https://orcid.org/0000-0001-5639-2849

Firdaus Nugroho
Gedung THBC Puspitpek, Zona Bisnis Teknologi Kawasan Puspitpek, Jl. Raya Puspitpek, Gunung Sindur, Bogor, Indonesia
ORCID: https://orcid.org/0000-0002-9067-4752

Ersan Yudhapratama Muslib
Trisakti University, Grogal Petamburan, Jakarta, Indonesia
ORCID: https://orcid.org/0000-0002-2972-6214
enhance the quality of low-grade silica to provide better raw materials for glass industries.

Keywords: beneficiation, quartz sand, leaching, aluminum removal, iron removal, silica.

References

1. Suratman (2015). Removal of Metallic Impurities From Quartz Sand Using Oxalic Acid. Indonesian Mining Journal, 18 (3), 133–141. Available at: https://journal.tekmira.esdm.go.id/index.php/imj/article/view/262/167

2. Chammas, E., Panias, D., Taxiarchou, M., Anastasakis, G. N., Pasquarri, I. (2001). Removal of iron and other major impurities from silica sand for the production of high added value materials. Proceedings of the 9th Balkan Mineral Processing Congress, 289–295. Available at: https://www.researchgate.net/publication/234107519_Removal_of_iron_and_other_major_impurities_from_silica_sand_for_the_production_of_high_added_value_materials

3. Banza, A. N., Quindt, J., Gock, E. (2006). Improvement of the quartz sand processing at Hohenbocka. International Journal of Mineral Processing, 79 (1), 76–82. doi: https://doi.org/10.1016/j.minpro.2005.11.010

4. Al-Maghrabi, M.-N. (2004). Improvement of Low-Grade Silica Sand Deposits In Jeddah Area. Journal of King Abdulaziz University-Engineering Sciences, 15 (2), 113–128. doi: https://doi.org/10.4197/eng.15.2.8

5. Haghi, H., Noaparast, M., Shafaei Tonkaboni, S., Mirmohammadi, M. (2016). A New Experimental Approach to Improve the Quality of Low Grade Silica. The Combination of Indirect Ultrasound Irradiation with Reverse Flotation and Magnetic Separation. Minerals, 6 (4), 121. doi: https://doi.org/10.3390/min6040121

6. Vegló, F., Passariello, B., Barbaro, M., Plescia, P., Marabini, A. M. (1998). Drum leaching tests in iron removal from quartz using oxalic and sulphuric acids. International Journal of Mineral Processing, 54 (3-4), 183–200. doi: https://doi.org/10.1016/s0301-7516(98)00114-3

7. Wahyuninghis, S., Suharty, N. S., Pramono, E., Ramelan, A. H., Sasongko, B., Dewi, A. O. T. et. al. (2018). Iron and boron removal from sodium silicate using complexation methods. AIP Conference Proceedings, 2018. doi: https://doi.org/10.1063/1.5063803

8. Bessho, M., Fukumaka, Y., Kusuda, H., Nishiyama, T. (2009). High-Grade Silica Refined from Diatomaecous Earth for Solar-Grade Silicon Production. Energy & Fuels, 23 (8), 4160–4165. doi: https://doi.org/10.1021/ef900359m

9. Buttress, A. J., Rodriguez, J. M., Ure, A., Ferrari, R. S., Dodds, C., Kingman, S. W. (2019). Production of high purity silica by micro-fluidic-inclusion fracture using microwave pre-treatment. Minerals Engineering, 131, 407–419. doi: https://doi.org/10.1016/j.mineng.2018.11.025

10. Suratman, S., Handayani, S. (2014). Beneficiation of Sambiroto Silica Sand By Chemical And Biological Leaching. Indonesian Mining Journal, 17 (3), 134–143. Available at: https://journal.tekmira.esdm.go.id/index.php/imj/article/view/318/201

11. Styriaková, I., Mockovčiaková, A., Styriak, I., Kraus, I., Uhlík, P., Madejová, J., Orolinová, Z. (2012). Bioleaching of clays and iron oxide coatings from quartz sands. Applied Clay Science, 61, 1–7. doi: https://doi.org/10.1016/j.claysci.2012.02.020

12. Wahyuninghis, S., Ramelan, A. H., Suharty, N. S., Handayani, M., Firdiyono, F., Sulistiyono, E. et. al. (2018). Phosphorus Elimination at Sodium Silicate from Quartz Sand Roasted with Complexation using Chitosan-EDTA. IOP Conference Series: Materials Science and Engineering, 333, 012050. doi: https://doi.org/10.1088/1757-899x/333/1/012050

13. Febriana, E., Manurung, U. A. B., Prasetyo, A. B., Handayani, M., Mustih, E. Y., Nugroho, F. et. al. (2020). Dissolution of quartz sand in sodium hydroxide solution for producing amorphous precipitated silica. IOP Conference Series: Materials Science and Engineering, 858, 012047. doi: https://doi.org/10.1088/1757-899x/858/1/012047

14. Smyth, H. R., Hall, R., Nichols, G. J. (2008). Significant Volcanic Contribution to Some Quartz-Rich Sandstones, East Java, Indonesia. Journal of Sedimentary Research, 78 (3), 335–356. doi: https://doi.org/10.2110/jsr.2008.039

15. Clements, B., Hall, R. (2006). Provenance of Palaeogene sediments in West Java, Indonesia. Proceedings of the International Geosciences Conference and Exhibition, Jakarta, 1–5. Available at: http://searg.hl.ac.uk/pubs/elements_cents_2006%20West%20Java%20provenance_IPA.pdf

16. Hendrizan, M., Praptisih, P., Putra, P. S. (2012). Depositional Environment of the Batuasih Formation on the Basis of Foraminifera Content: A Case Study in Sukabumi Region, West Java Province, Indonesia. Indonesian Journal on Geoscience, 7 (2). doi: https://doi.org/10.17014/ijoeg.v7i2.139

17. Anas Boussaa, S., Kheloufi, A., Boutarek Zaourar, N., Bouachma, S. (2017). Iron and Aluminium Removal from Algerian Silica Sand by Acid Leaching. Acta Physica Polonica A, 132 (2-III), 1082–1086. doi: https://doi.org/10.12693/aphyspola.132.1321082

18. Vegló, F., Passariello, B., Abbruzzese, C. (1999). Iron Removal Process for High-Purity Silica Sands Production by Oxalic Acid Leaching. Industrial & Engineering Chemistry Research, 38 (11), 4443–4448. doi: https://doi.org/10.1021/ie990156b

19. Taxiarchou, M., Panias, D., Donni, I., Paspariari, I., Kontopoulos, A. (1997). Removal of iron from silica sand by leaching with oxalic acid. Hydrometallurgy, 46 (1-2), 215–227. doi: https://doi.org/10.1016/s0304-386x(97)00015-7

20. Ubaldisi, S., Piga, L., Fornari, P., Massidda, R. (1996). Removal of iron from quartz sands: A study by column leaching using a complete factorial design. Hydrometallurgy, 40 (3), 369–379. doi: https://doi.org/10.1016/0304-386x(95)00012-6

21. Du, F., Li, J., Li, X., Zhang, Z. (2011). Improvement of iron removal from silica sand using ultrasound-assisted oxalic acid. Ultrasonics Sonochemistry, 18 (1), 389–393. doi: https://doi.org/10.1016/j.ultsonch.2010.07.006

22. Zhang, Z., Li, J., Li, X., Huang, H., Zhou, L., Xiong, T. (2012). High efficiency iron removal from quartz sand using phosphoric acid. International Journal of Mineral Processing, 114-117, 30–34. doi: https://doi.org/10.1016/j.minpro.2012.09.001

23. Sulistiyono, E., Handayani, M., Prasetyo, A. B., Irawan, Y., Febriana, E., Sembiring, S. N., Yustanti, E. (2020). Identification of Quartz Sand From the Hills of Gunung Walat at Sukabumi Regency for Raw Materials of Nano Silica Precipitate. IOP Conference Series: Materials Science and Engineering, 858, 012048. doi: https://doi.org/10.1088/1757-899x/858/1/012048

24. Zhao, H. L., Wang, D. X., Cai, Y. X., Zhang, F. C. (2007). Removal of iron from silica sand by surface cleaning using power ultrasonic. Minerals Engineering, 20 (8), 816–818. doi: https://doi.org/10.1016/j.mineng.2006.10.005

25. Kazemi, A., Faghhi-Sani, M. A., Alizadeh, H. R. (2013). Investigation on cristobalite crystallization in silica-based ceramic cores for investment casting. Journal of the European Ceramic Soci-
SOFC solid electrolytes are known for their ionic conductivity characteristics, which increase with increasing SOFC operating temperature. Using COMSOL Multiphysics numerical simulation, analysis of SOFC power performance with yttria-stabilized zirconia (YSZ) and lithium sodium carbonate – gadolinium-doped ceria (LiNa)CO₂ – GDC electrolytes was conducted to determine the potential of these electrolytes in their application in SOFC. The ionic conductivity of YSZ was differentiated based on the mole value of the yttria content, namely 8, 8.95, 10 and 11.54 mol. Meanwhile, GDC varied based on the (LiNa)CO₂ content such as 7.8, 10, 16.8 and 30 %. With the numerical model, the calculation error is an average of 7.32 % and 6.89 % for the experimental power and voltage values. In SOFC with the YSZ electrolyte, it was found that the power output can increase 26.4–35 times with an increase in operating temperature from 500 °C to 750 °C. SOFC with YSZ can produce the highest power compared to other YSZ, which is 123 A/m² at a current of 198 A/m² with an operating temperature of 500 °C and 3,440 A/m² at a current of 5,549 A/m² with an operating temperature of 750 °C. Whereas in SOFC with the GDC electrolyte, it was found that the power output can increase 18.6–22.6 times with an increase in operating temperature from 500 °C to 750 °C. SOFC with 30 % YSZ electrolyte produced the highest power compared to other GDC, which is 231 A/m² at a current of 444 A/m² with an operating temperature of 500 °C and 5,240 A/m² at a current of 10,077 A/m² with an operating temperature of 750 °C. YSZ also showed the potential for an increase in power output as the SOFC temperature increases above 750 °C, while the 30 % variation (LiNa)CO₂ – GDC shows a limited increase in ionic conductivity at 750 °C.

Keywords: SOFC, ionic conductivity, electrolyte, power performance, COMSOL Multiphysics, YSZ, GDC.

References

1. Mahato, N., Banerjee, A., Gupta, A., Omar, S., Balani, K. (2015). Progress in material selection for solid oxide fuel cell technology: A review. Progress in Materials Science, 72, 141–337. doi: https://doi.org/10.1016/j.pmatsci.2015.01.001

2. Stamboul, A. B., Traversa, E. (2002). Solid oxide fuel cells (SOFCs): a review of an environmentally clean and efficient source of energy. Renewable and Sustainable Energy Reviews, 6 (5), 433–455. doi: https://doi.org/10.1016/s1364-0321(02)00014-x

3. Xu, H., Chen, B., Tan, P., Xuan, J., Maroto-Valer, M. M., Farrusseng, D. et. al. (2019). Modeling of all-porous solid oxide fuel cells with a focus on the electrolyte porosity design. Applied Energy, 235, 602–611. doi: https://doi.org/10.1016/j.apenergy.2018.10.069

4. Lyu, Y., Xie, J., Wang, D., Wang, J. (2020). Review of cell performance in solid oxide fuel cells. Journal of Materials Science, 55 (17), 7184–7207. doi: https://doi.org/10.1007/s10853-020-04497-7

5. Hussain, S., Yangping, L. (2020). Review of solid oxide fuel cell materials: cathode, anode, and electrolyte. Energy Transitions, 4 (2), 113–126. doi: https://doi.org/10.4186/ej.2017.21.3.235

6. Mahato, N., Gupta, A., Balani, K. (2012). Doped zirconia and ceria-based electrolytes for solid oxide fuel cells: a review. Nano- materials and Energy, 1 (1), 27–45. doi: https://doi.org/10.1680/nme.11.00004

7. Goswami, N., Kant, R. (2019). Theory for impedance response of grain and grain boundary in solid state electrolyte. Journal of Electroanalytical Chemistry, 835, 227–238. doi: https://doi.org/10.1016/j.jelechem.2019.01.033

8. Brodnikovska, I., Korsunska, N., Khomenkova, L., Polishchuk, Y., Hryhoschina, E., Brawijaya University, Malang, Indonesia

9. Widya Wijayanti

ORCID: https://orcid.org/0000-0003-4215-5943

Brawijaya University, Malang, Indonesia

Fahrizal Perdana

ORCID: https://orcid.org/0000-0001-9937-5133

Brawijaya University, Malang, Indonesia

Mega Nur Sasonkgo

ORCID: https://orcid.org/0000-0003-0275-6947

Brawijaya University, Malang, Indonesia

DOI: 10.15587/1729-4061.2021.227230

ANALYSIS OF THE EFFECT OF IONIC CONDUCTIVITY OF ELECTROLYTE MATERIALS ON THE SOLIDOXIDE FUEL CELL PERFORMANCE (p. 41–52)
In this work, the influence of some types of the pulsed deposition mode of electrochromic films from aqueous solutions of nickel nitrate with the addition of polyvinyl alcohol was investigated. Glass coated with a fluorine-doped tin oxide film was used as the basis for deposition. The deposition of nickel (II) hydroxide—polyvinyl alcohol electrochromic films was carried out in three pulsed modes: –0.2 mA/cm²×5 s, 0 mA/cm²×5 s (10 minutes); –0.5 mA/cm²×2 s, 0 mA/cm²×8 s (10 minutes); –1 mA/cm²×1 s, 0 mA/cm²×9 s. In this case, the amount of electricity used for the formation of thin-film electrodes was the same for all samples.

The resulting films showed dramatic differences in electrochemical, optical, and quality characteristics. The sample obtained in the mode of the highest cathode current density and the duration of the no-current condition (1 mA/cm²×1 s, 0 mA/cm²×9 s) had the worst specific capacity and optical characteristics. This sample was characterized by the highest number of coating defects and color non-uniformity as well.

The sample, which was obtained at average current densities (~0.5 mA/cm²×2 s, 0 mA/cm²×8 s), had the highest specific characteristics among the electrodes in the series. The coating was uniform and solid. Also, this sample had the greatest stability of the coloration depth value, which varied from 79.1 to 78.1 % (first to fifth cycles).

The sample obtained in the mode –0.2 mA/cm²×5 s, 0 mA/cm²×5 s showed moderate specific indicators, however, there were some coating defects.

According to the results obtained, a mechanism was proposed that explained the differences in the characteristics of thin-film electrodes formed in different modes. This mechanism consists of changing the time of non-stationary processes and the distribution of the current density with a change in the value of the deposition current density, the duration of the cathode period, and the no-current condition.

Keywords: pulsed mode, electrodeposition, electrochromism, composite coating, nickel hydroxide, polyvinyl alcohol.

References

1. Wang, L., Young, K.-H., Shen, H.-T. (2016). New Type of Alkaline Rechargeable Battery –Ni–Ni Battery. Batteries, 2 (2), 16. doi: https://doi.org/10.3390/batteries2020016

2. Yao, J., Li, Y., Li, Y., Zhu, Y., Wang, H. (2013). Enhanced cycling performance of Al-substituted α-nickel hydroxide by coating with β-nickel hydroxide. Journal of Power Sources, 224, 236–240. doi: https://doi.org/10.1016/j.jpowsour.2012.10.008

3. G. Vishnuvardhan Reddy, C. (2017). Structural, electrical and thermal expansion studies of tri-doped ceria electrolyte materials for IT-SOFCs. Journal of Alloys and Compounds, 719, 97–107. doi: https://doi.org/10.1016/j.jallcom.2017.05.022

4. Lo, H.-J., Huang, M.-C., Lai, Y.-H., Chen, H.-Y. (2021). Towards bifunctional all-solid-state supercapacitor based on nickel hydroxide–reduced graphene oxide composite electrodes. Materials Chemistry and Physics, 262, 124306. doi: https://doi.org/10.1016/j.matchemphys.2021.124306

5. Annadurai, K., Sudha, V., Murugadoss, G., Thangamuthu, R. (2021). Electrochemical sensor based on hydrothermally prepared nickel oxide for the determination of 4-acetaminophen in paracetamol tablets and human blood serum samples. Journal of Alloys and Compounds, 852, 156911. doi: https://doi.org/10.1016/j.jallcom.2020.156911

6. Winiański, J. P., Rampanelli, R., Bassani, J. C., Mezalira, D. Z., Jost, C. L. (2020). Multi-walled carbon nanotubes/nickel hydroxide composite applied as electrochemical sensor for folic acid (vitamin B9) in food samples. Journal of Food Composition and Analysis, 92, 103511. doi: https://doi.org/10.1016/j.jfca.2020.103511

7. Hotovy, I., Rehacek, V., Kemeny, M., Ondrejka, P., Kostic, I., Mikolasek, M., Spiess, L. (2021). Preparation and gas-sensing properties of very thin sputtered NiO films. Journal of Electrical Engineering, 72 (1), 61–65. doi: https://doi.org/10.2478/jee-2021-0009
8. Rossini, P. de O., Laza, A., Azeredo, N. F. B., Gonçalves, J. M., Felix, F. S., Araki, K., Angnes, L. (2020). Ni-based double hydroxides as electrocatalysts in chemical sensors: A review. TrAC Trends in Analytical Chemistry, 126, 115859. doi: https://doi.org/10.1016/j.trac.2020.115859

9. Paalooe, R., Mohan, R., Parihar, V. (2017). Nanostructured nickel oxide and its electrochemical behavior - A brief review. Nano-Structures & Nano-Objects, 11, 102–111. doi: https://doi.org/10.3390/jnano.2017.07.003

10. Kotok, V. A., Kovalenko, V. L., Kovalenko, P. V., Solovov, V. A., Deabate, S., Mehdi, A. et. al. (2017). Advanced electrochromic Ni(OH)$_2$/PVA films formed by electrochemical template synthesis. ARPN Journal of Engineering and Applied Sciences, 12 (13), 3962–3977.

11. Smart Windows: Energy Efficiency with a View. Available at: https://www.nrel.gov/news/features/2010/1555.html

12. Al Dakheel, J., Tabet Aoul, K. (2017). Building Applications, Opportunities and Challenges of Advanced Shading Systems: A State-of-the-Art Review. Energies, 10 (10), 1672. doi: https://doi.org/10.3390/en10101672

13. Cheng, W., Moreno-Gonzalez, M., Hu, K., Krzyszowski, C., Dvorak, D. J., Weekes, D. M. et. al. (2018). Solution-Deposited Solid-State Electrochromic Windows. Science, 10, 80–86. doi: https://doi.org/10.1016/j.sci.2018.11.014

14. Kotok, V. A., Malyshiev, V. V., Solovov, V. A., Kovalenko, V. L. (2017). Soft Electrochemical Etching of FTO-Coated Glass for Use in Ni(OH)$_2$-Based Electrochromic Devices. ECS Journal of Solid State Science and Technology, 6 (12), P772–P777. doi: https://doi.org/10.1149/2.0071712ss

15. Kotok, V., Kovalenko, V. (2021). A study of the possibility of conducting selective laser processing of thin composite electrochromic Ni(OH)$_2$/PVA films. Eastern-European Journal of Enterprise Technologies, 1 (2 (109)), 6–15. doi: https://doi.org/10.15587/1729-4061.2021.225355

16. Kotok, V. A., Kovalenko, V. L. (2019). Non-Metallic Films Electroplating on the Low-Conductivity Substrates: The Conscientious Selection of Conditions Using Ni(OH)$_2$ Deposition as an Example. Journal of The Electrochemical Society, 166 (10), D395–D408. doi: https://doi.org/10.1149/2.0561910jes

17. Kotok, V., Kovalenko, V. (2018). A study of the effect of cycling modes on the electrochromic properties of Ni(OH)$_2$ films. Eastern-European Journal of Enterprise Technologies, 6 (5 (96)), 62–69. doi: https://doi.org/10.15587/1729-4061.2018.130577

18. Gopi, D., Indira, J., Kavitha, L. (2012). A comparative study on the direct and pulsed current electrodeposition of hydroxyapatite coatings on surgical grade stainless steel. Surface and Coatings Technology, 206 (11–12), 2859–2869. doi: https://doi.org/10.1016/j.surfcoat.2011.12.011

19. Baskaran, I., Sankara Narayanan, T. S. N., Stephen, A. (2006). Pulsed electrodeposition of nanocrystalline Cu–Ni alloy films and evaluation of their characteristic properties. Materials Letters, 60 (16), 1990–1995. doi: https://doi.org/10.1016/j.matlet.2005.12.065

20. Vuong, D.-T., Hoang, H.-M., Tran, N.-H., Kim, H.-C. (2020). Pulsed Electrodeposition for Copper Nanowires. Crystals, 10 (3), 218. doi: https://doi.org/10.3390/cryst10030218

21. Böhm, L., Näther, J., Underberg, M., Kazamer, N., Holkotte, L., Rost, U. et al. (2021). Pulsed electrodeposition of iridium catalyst nanoparticles on titanium suboxide supports for application in PEM electrolysis. Materials Today: Proceedings, 45, 4254–4259. doi: https://doi.org/10.1016/j.matpr.2020.12.507

22. Becker, M. D., Garaventa, G. N., Visintin, A. (2013). Pulse-Current Electrodeposition for Loading Active Material on Nickel Electrodes for Rechargeable Batteries. ISRN Electrochemistry, 2013, 1–7. doi: https://doi.org/10.1155/2013/732815

23. Zhang, W., Chen, X., Wang, X., Zhu, S., Wang, S., Wang, Q. (2021). Pulsed electrodeposition of nanostructured polythiophene film for high-performance electrochromic devices. Solar Energy Materials and Solar Cells, 219, 110773. doi: https://doi.org/10.1016/j.solmat.2020.110775

24. Kotok, V., Kovalenko, V. (2018). Investigation of the properties of Ni(OH)$_2$ electrochromic films obtained in the presence of different types of polyvinyl alcohol. Eastern-European Journal of Enterprise Technologies, 4 (6 (94)), 42–47. doi: https://doi.org/10.15587/1729-4061.2018.140560

25. Kotok, V., Kovalenko, V. (2017). The electrochemical cathodic template synthesis of nickel hydroxide thin films for electrochromic devices: role of temperature. Eastern-European Journal of Enterprise Technologies, 2 (11 (86)), 28–34. doi: https://doi.org/10.15587/1729-4061.2017.97371

DOI: 10.15587/1729-4061.2021.232822

COMPARING THE EFFECT OF NANOCLAYS ON THE WATER-RESISTANCE OF INTUMESCENT FIRE-RETARDANT COATINGS (p. 59–70)

Liubov Vakhitova

L. M. Litvinenko Institute of Physical-Organic Chemistry and Coal Chemistry of the National Academy of Sciences of Ukraine, Kyiv, Ukraine

ORCID: https://orcid.org/0000-0003-4727-9961

Kostyantyn Kalafat

Kyiv National University of Technologies and Design, Kyiv, Ukraine

ORCID: https://orcid.org/0000-0001-6165-0005

Viktoria Plavan

Kyiv National University of Technologies and Design, Kyiv, Ukraine

ORCID: https://orcid.org/0000-0001-9559-8962

Volodymyr Bessarabov

Kyiv National University of Technologies and Design, Kyiv, Ukraine

ORCID: https://orcid.org/0000-0003-0637-1729

Nadezhda Taran

L. M. Litvinenko Institute of Physical-Organic Chemistry and Coal Chemistry of the National Academy of Sciences of Ukraine, Kyiv, Ukraine

ORCID: https://orcid.org/0000-0003-1043-5596

Glib Zagoriy

Kyiv National University of Technologies and Design, Kyiv, Ukraine

ORCID: https://orcid.org/0000-0002-9362-3121

This paper reports a study into the effect of nanoclays on the water-resistance of the intumescent system ammonium polyphosphate/melamine/pentaerythritol/titanium dioxide/polymer (ethylene vinyl acetate (EVA)) or styrene acrylate (SA).
It has been established that adding nanoclay to a coating based on ethylene vinyl acetate increases the fire resistance limit of a metal plate by 30%, and to a coating based on styrene acrylate – by 50%. At the same time, coatings that include the EVA polymer are characterized by greater fire-retardant efficiency and less water resistance than coatings containing the SA polymer.

It has been shown that intumescent coatings, regardless of the nature of the polymer, under the conditions of 80% humidity over 800 days their reduce fire-protective properties by an average of 10%. The loss of fire coating fire resistance occurs due to the leaching of pentaerythritol, ammonium polyphosphate, and polymer degradation by hydrolysis. The admixtures of nanoclay with a high degree of exfoliation to the studied system create a barrier effect and maximize the chemical formulation of the intumescent coating. The fireproof properties of coatings with organically-modified montmorillonite admixtures are maintained or reduced to 5% under the conditions of 80% humidity over 800 days.

It has been determined that the direct effect of water on the coating over a period of more than 2 days leads to a significant decrease in the swelling coefficient of intumescent coatings, regardless of the nature of a nanoclay admixture in their composition. At the same time, the half-decay period of coatings without nanoclay, calculated on the basis of solubility constant in water, is 0.5 days. For coatings, which include the admixtures of organically-modified nanoclay, the half-decay period increases to 2 days.

The results reported in this paper could be recommended for designing water-proof fire-resistant reactive-type nano-coatings with prolonged service life.

Keywords: fire protection of steel, organically-modified montmorillonite, intumescent coatings, ethylene vinyl acetate, styrene acrylate, fire resistance limit.

References

1. Yasir, M., Ahmad, F., Yusoff, P. S. M. M., Ullah, S., Jimenez, M. (2019). Latest trends for structural steel protection by using intumescent fire protective coatings: a review. Surface Engineering, 36 (4), 334–363. doi: https://doi.org/10.1080/02670844.2019.1636536
2. Puri, R. G., Khanna, A. S. (2016). Intumescent coatings: A review on recent progress. Journal of Coatings Technology and Research, 14 (1), 1–20. doi: https://doi.org/10.1007/s11998-016-9815-3
3. Jimenez, M., Bellayer, S., Naik, A., Bachelet, P., Duquesne, S., Bourbigot, S. (2016). Topcoats versus Durability of an Intumescent Coating. Industrial & Engineering Chemistry Research, 55 (36), 9625–9632. doi: https://doi.org/10.1021/acs.iecr.6b02484
4. Ji, W., hua, S. W., Miao, Z., Zhen, C. (2014). Study and Prediction for the Fire Resistance of Acid Corroded Intumescent Coating. Procedia Engineering, 84, 524–534. doi: https://doi.org/10.1016/j.proeng.2014.10.464
5. Maciulaitis, R., Grigonis, M., Malaiškienė, J., Lipinskas, D. (2018). Peculiarities of destruction mechanism of polymeric intumescent fire protective coatings. Journal of Civil Engineering and Management, 24 (2), 93–105. doi: https://doi.org/10.3846/jcem.2018.447
6. Bliotta, A., de Silva, D., Negro, E. (2016). Tests on intumescent paints for fire protection of existing steel structures. Construction and Building Materials, 121, 410–422. doi: https://doi.org/10.1016/j.conbuildmat.2016.05.144
7. Aziz, H., Ahmad, F. (2016). Effects from nano-titanium oxide on the thermal resistance of an intumescent fire retardant coating for structural applications. Progress in Organic Coatings, 101, 431–439. doi: https://doi.org/10.1016/j.porgcoat.2016.09.017
8. Chuang, C.-S., Sheen, H.-J. (2019). Effects of added nanoclay for styrene-acrylic resin on intumescent fire retardancy and CO/CO₂ emission. Journal of Coatings Technology and Research, 17 (1), 115–125. doi: https://doi.org/10.1007/s11998-019-00246-x
9. Zulkurnain, E. S., Ahmad, F., Gillani, Q. F. (2016). Effects of nano-sized boron nitride (BN) reinforcement in expandable graphite based in-tumescent fire retardant coating. IOP Conference Series: Materials Science and Engineering, 146, 012037. doi: https://doi.org/10.1088/1757-899x/146/1/012037
10. Nour El-Dein, A., El-Saeed, M. A., Abo-Elenien, O. M. (2017). Fire-Resistance Personification Of Waterborne Intumescent Flame-Retardant Nano-Coatings For Steel Structures: Application. JERA, 7 (8), 1–12. Available at: https://journals.indexcopernicus.com/apj/viewByFileId/383128.pdf
11. Anees, S. M., Dasari, A. (2018). A review on the environmental durability of intumescent coatings for steels. Journal of Materials Science, 53 (1), 124–145. doi: https://doi.org/10.1007/s10853-017-1500-0
12. Wang, J., Zhao, M. (2020). Study on the effects of aging by accelerated weathering on the intumescent fire retardant coating for steel elements. Engineering Failure Analysis, 118, 104920. doi: https://doi.org/10.1016/j.engfailanal.2020.104920
13. Wang, L. L., Wang, Y. C., Li, G. Q., Zhang, Q. Q. (2020). An experimental study of the effects of topcoat on aging and fire protection properties of intumescent coatings for steel elements. Fire Safety Journal, 111, 102931. doi: https://doi.org/10.1016/j.firesaf.2019.102931
14. Vakhitova, L. N. (2019). Fire retardant nanocoating for wood protection. Nanotechnology in Eco-Efficient Construction, 361–391. doi: https://doi.org/10.1002/fam.2780
15. Gaur, S., Khanna, A. S. (2015). Functional Coatings by Incorporating Nanoparticles. Nano Res. Appl., 1 (1), 1–9. Available at: https://nanotechnology.imedpub.com/business-coatings-by-incorporating-nanoparticles.php?aid=7651
16. Fallah, F., Khorasani, M., Ebrahimi, M. (2017). Improving the mechanical properties of waterborne nitrocellulose coating using nano-silica particles. Progress in Organic Coatings, 109, 110–116. doi: https://doi.org/10.1016/j.porgcoat.2017.04.016
17. Zybina, O., Gravit, M., Stein, Y. (2017). Influence of carbon additives on operational properties of the intumescent coatings for the fire protection of building constructions. IOP Conference Series: Earth and Environmental Science, 90, 012227. doi: https://doi.org/10.1088/1755-1315/90/1/012227
18. Xu, Z., Zhou, H., Yan, L., Jia, H. (2019). Comparative study of the fire protection performance and thermal stability of intumescent fire-retardant coatings filled with three types of clay nano-fillers. Fire and Materials, 44 (1), 112–120. doi: https://doi.org/10.1007/s10853-018-00270-6
19. Wang, Z., Han, E., Ke, W. (2006). Fire-resistant effect of nanoclay on intumescent nanocomposite coatings. Journal of Applied Polymer Science, 103 (3), 1681–1689. doi: https://doi.org/10.1002/app.25096
20. EAD 350402-00-1106. Reactive coatings for fire protection of steel elements (2017). EOTA, 32. Available at: https://www.kiwa.com/nl/nl/service/brandwerende-producten-etag-018-cad/ead-350402-00-1106-reactive-coatings-for-fire-protection-of-steel-elements2.pdf
21. Kwang Yin, J. J., Yew, M. C., Yew, M. K., Saw, L. H. (2019). Preparation of Intumescent Fire Protective Coating for Fire Rated Timber
The development of potential alternative binders to Portland cement is still becoming a global challenge in housing and infrastructure aspects. That is because cement and concrete become the major materials needed in building constructions. The Ordinary Portland cement can form a solid and hard mass when mixed with water with a certain ratio. This is due to the formation of ettringite and calcium silicate hydrate (CSH) phases that contribute to the strength of the hydrated products about 33–53 MPa. However, the manufacturing temperature of Portland cement can reach up to 1,500 °C in producing clinker. In order to lower the energy consumption and production cost, scientists were trying to utilize pozzolanic materials.

The research of pozzolanic materials as alkali-activated cement, very early age detection of ettringite (60.0 %) and crystalline-CSH (23.4 %). The diffractograms obtained have shown a specific hump indicating the presence of amorphous phases besides the crystalline. To confirm the presence of the non-crystalline or amorphous phases of the hydrated products, a polarizing optical microscope (OM) using a crossed Nicols method was used. The characterization of the phases is the novelty of the present research. The ettringite, crystalline CSH and the amorphous phases act as a strong binder that consequently contribute to its average maximum compressive strength of 22.17 MPa.

Keywords: low-energy binder, alkaline activator, metakaolin, pozzolanic reaction, diffractogram hump, amorphous phase, polarised optical microscope.

References

1. Bye, G. C. (1999). Portland cement: composition, production and properties. Thomas Telford Ltd. doi: https://doi.org/10.1680/ccpap.27664
2. Taylor, H. F. W. (1997). Cement chemistry. Thomas Telford Ltd. doi: https://doi.org/10.1680/cc.23929
3. Flatt, R. J., Roussel, N., Cheeseman, C. R. (2012). Concrete: An eco material that needs to be improved. European Ceramic Society, 32 (11), 2787–2798. doi: https://doi.org/10.1016/j.jeurceramsoc.2011.11.012
4. Rado, P. (1988). An introduction to the technology of pottery. Institute of Ceramics by Pergamon Press, 266.
5. Shi, C., Jiménez, A. F., Palomo, A. (2011). New cements for the 21st century: The pursuit of an alternative to Portland cement. Cement and Concrete Research, 41 (7), 750–763. doi: https://doi.org/10.1016/j.cemconres.2011.03.016
6. Ženklka, M., Kuzielova, E., Kulířůvá, M., Tkacz, J., Pulou, M. T. (2015). Study of hydration products in the model systems metakaolin–limestone and metakaolin–limestone–gypsum. Ceramics – Silikáty, 59 (4), 283–291. Available at: https://www.ceramics-silikaty.cz/2015/pdf/2015_04_283.pdf
7. Moris, M. S., Alsayed, S. H., Salloum, Y. A. (2012). Development of eco-friendly binder using metakaolin-fly ash–lime-anhydrous gypsum. Construction and Building Materials, 35, 772–777. doi: https://doi.org/10.1016/j.conbuildmat.2012.04.142
8. Blumanathidas, N., Kádás, N. (2004). Dual role of gypsum Set retarder and strength accelerator. Indian Concrete Journal, 78 (3), 170–173. Available at: https://www.researchgate.net/publication/287679112_Dual_role_of_gypsum_Set_retarder_and_strength_accelerator
9. Nežerka, V., Slížková, Z., Tesářek, P., Plchý, T., Frankeová, D., Petráňová, V. (2014). Comprehensive study on mechanical properties of lime-based pastes with additions of metakaolin and brick dust. Cement and Concrete Research, 64, 17–29. doi: https://doi.org/10.1016/j.cemconres.2014.06.006
10. Siefgesmund, S., Snethlage, R. (Eds.) (2011). Stone in architecture: properties, durability. Springer, 552. doi: https://doi.org/10.1007/978-3-642-14475-2
11. Khatib, J. M., Baalbaki, O., Elkordi, A. A. (2018). Metakaolin. Waste and Supplementary Cementitious Materials in Concrete, 493–511. doi: https://doi.org/10.1680/jfsm.2017.99.s0015-8
12. Rahhal, V., Taler, R. (2014). Very early age detection of ettringite from pozzolan origin. Construction and Building Materials, 53, 674–679. doi: https://doi.org/10.1016/j.conbuildmat.2013.10.082
13. Kovalechuk, O., Gelevera, O., Ivanychko, V. (2019). Studying the influence of metakaolin on self-healing processes in the contact-zone
dium sulfate was used as a roasting agent while 0.36 M sulfuric acid was used as a leaching agent. Solid/liquid ratio (1:5, 1:10, 1:15 and 1:20 (g/mL)) and leaching time (30, 60, 90 and 120 minutes) were used as variables in this study. The roasting process was done at 700 °C for 40 minutes while the leaching process was done at 70 °C and 350 rpm. The ratio of additive and mica schist was 1:5 (g/g). XRD, ICP-OES, and SEM were used to observe the formed compounds, chemical composition and morphology of the materials. HighScore Plus (HSP) was used to interpret the content of each compound in mica schist, roasted mica schist, and residue. ICP analysis confirmed that the mica schist contains 45.28 ppm of lithium. It is supported by XRD that lithium exists in mica schist as lepidolite (KL_2(AlSi_3O_10)(F,OH)). Sulfate roasting did not affect the type of lepidolite but the lepidolite reactivity against the chemical agent. SEM analysis shows that the roasting process reduced the average particle size from 32.17 to 27.16 µm. ICP analysis of roasted mica schist shows that lithium concentration was reduced from 45.28 to 1.27 ppm. The optimum result from this study was 97.66 % extraction of lithium while solid/liquid ratio was 1:5 (g/ml) and leaching time was 30 minutes. HSP shows that lepidolite contents in initial mica schist, roasted mica schist and residue were 60.6; 24.3 and 18.7 %, respectively. Lithium concentration in the residue according to ICP analysis is 1.06 ppm.

Keywords: lithium, extraction, mica schist, lepidolite, sulfate roasting, acid leaching, mineral.

References

1. Yan, Q., Li, X., Wang, Z., Wu, X., Wang, J., Guo, H. et al. (2012). Extraction of lithium from lepidolite by sulfuric roasting and water leaching. International Journal of Mineral Processing, 110-111, 1–5. doi: https://doi.org/10.1016/j.minpro.2012.03.005
2. Liu, J., Yin, Z., Li, X., Hu, Q., Liu, W. (2019). Recovery of valuable metals from lepidolite by atmosphere leaching and kinetics on dissolution of lithium. Transactions of Nonferrous Metals Society of China, 29 (3), 641–649. doi: https://doi.org/10.1016/s1003-6336(19)60974-5
3. Su, H., Ju, J., Zhang, J., Yi, A., Lei, Z., Wang, L. et al. (2020). Lithium recovery from lepidolite roasted with potassium compounds. Minerals Engineering, 145, 106087. doi: https://doi.org/10.1016/j.mineng.2019.106087
4. Vieceli, N., Nogueira, C. A., Pereira, M. F. C., Durão, F. O., Guimarães, C., Margarido, F. (2016). Recovery of lithium carbonate by β-spodumene using sodium sulfate solutions. Minerals Engineering, 98, 98-107. doi: https://doi.org/10.1016/j.mineng.2016.07.018
5. Luong, V. T., Kang, D. J., An, J. W., Kim, M. J., Tran, T. (2013). Factors affecting the extraction of lithium from lepidolite. Hydrometallurgy, 134-135, 54–61. doi: https://doi.org/10.1016/j.hydromet.2013.01.015
6. Guo, H., Kuang, G., Wan, H., Yang, Y., Yu, H., Wang, H. (2019). Enhanced acid treatment to extract lithium from lepidolite with a fluorine-based chemical method. Hydrometallurgy, 183, 9–19. doi: https://doi.org/10.1016/j.hydromet.2018.10.020
7. Hien-Dinh, T. T., Luong, V. T., Gieré, R., Tran, T. (2015). Extraction of lithium from lepidolite via iron sulphide roasting and water leaching. Hydrometallurgy, 153, 154–159. doi: https://doi.org/10.1016/j.hydromet.2015.03.002
8. Vieceli, N., Nogueira, C. A., Pereira, M. F. C., Dias, A. P. S., Durão, F. O., Guimarães, C., Margarido, F. (2017). Effects of mechanical activation on lithium extraction from a lepidolite ore concentrate. Minerals Engineering, 102, 1–14. doi: https://doi.org/10.1016/j.mineng.2016.12.001
9. Choubey, P. K., Kim, M., Srivastava, R. R., Lee, J., Lee, J.-Y. (2016). Advance review on the exploitation of the prominent energy storage element: Lithium. Part I: From mineral and brine resources. Minerals Engineering, 89, 119–137. doi: https://doi.org/10.1016/j.mineng.2016.01.010
10. Margarido, F., Vieceli, N., Durão, F., Guimarães, C., Nogueira, C. A. (2014). Minero-metalurgical processes for lithium recovery from pegmatitic ores. Comunicações Geológicas, 101, 795–798.
11. Vieceli, N., Nogueira, C. A., Pereira, M. F. C., Durão, F. O., Guimarães, C., Margarido, F. (2016). Optimization of Lithium Extraction from Lepidolite by Roasting Using Sodium and Calcium Sulfates. Mineral Processing and Extractive Metallurgy Review, 38(1), 62–72. doi: https://doi.org/10.1080/08827508.2016.1262858
12. Kuang, G., Liu, Y., Li, H., Xing, S., Li, F., Guo, H. (2018). Extraction of lithium from β-spodumene using sodium sulfate solution. Hydrometallurgy, 177, 49–56. doi: https://doi.org/10.1016/j.hydromet.2018.02.015
13. Lalasari, L. H., Rhamdani, A. R., Setiawan, I., Sulistiyono, E., Firdiyono, F., Arini, T. et al. (2018). Pat. No. P00201810009. Alat pemisahan mineral berkapasitas tinggi. No. 2019/04021; declared: 04.12.2019, published: 14.06.2019.
14. Green, D. W., Perry, R. H. (2008). Perry's Chemical Engineers' Handbook. McGraw-Hill.
15. Natasha, N. C., Lalasari, L. H., Rohnah, M., Sadarsono, J. W. (2018). Ekstraksi Li dari β – Spodumen Hasil Dekomposisi Batuan Seksimika Indonesia Menggunakan Aditif Natrium Sulfat. Metalurgi, 33 (2), 69. doi: https://doi.org/10.14203/metalurgi.v33i2.429
16. Luong, V. T., Kang, D. J., An, J. W., Dao, D. A., Kim, M. J., Tran, T. (2014). Iron sulphate roasting for extraction of lithium from lepidolite. Hydrometallurgy, 141, 8–16. doi: https://doi.org/10.1016/j.hydromet.2013.09.016
17. Salakjani, N. K., Singh, P., Nikoloski, A. N. (2016). Mineralogical transformations of spodumene concentrate from Greenbushes, Western Australia. Part 1: Conventional heating. Minerals Engineering, 98, 71–79. doi: https://doi.org/10.1016/j.mineng.2016.07.018
18. Swain, B. (2017). Recovery and recycling of lithium: A review. Separation and Purification Technology, 172, 388–403. doi: https://doi.org/10.1016/j.seppur.2016.08.031
19. Tadesse, B., Makuei, F., Albajanic, B., Dyer, L. (2019). The beneficiation of lithium minerals from hard rock ores: A review. Minerals Engineering, 131, 170–184. doi: https://doi.org/10.1016/j.mineng.2018.11.023
АНАТОМАI

DOИ: 10.15587/1729-4061.2021.232684

КОРЕЛЯЦIЯ ПАРАМЕТРIВ ЕМУЛЬСIЙНОI ОЛiГОМЕРИЗАЦiI ФРАКCII C9 ТА ХАРАКТЕРИСТИК ВУГЛЕВОДНЕВИX СМОЛ (c. 6–11)

Р. О. Субтельний, Д. Б. Кiчура, Б. О. Дзiняк

Дослiджено одержання вуглеводневих смол емулсiйноi олiгомеризацiю вуглеводнiв фракцiї C9 рiдких побiчних продуктiв нафтоiпереробки. Такi олiгомери мають широкий спектр застосування як плiвкоутворювачi у лакофарбових i антикорозiйних покриттях.

Емулсiйну олiгомеризацiю здiйснювали з використання емульгаторiв першого та другого роду. Дослiдження проводили при рiзних значеннях температури реакцiї, тривалостi реакцiї, iнтенсивностi перемiшування; концентрацiях емульгатора; спiввiдношення фракцiя C9:вода. Отриманi продукти оцiнювали за такими показниками: вихiд, ступiнь ненасиченостi, температура розмiщення, середня молекулярна маса, колiр.

Здiйснено статистичний аналiз, встановлено кореляцiю параметрiв емулсiйноi олiгомеризацiї та вихodu i характеристик олiгомерiв. Завдяки цьому стане можливим встановлювати оптимальнi умови емулсiйноi олiгомеризацiї та прогнозувати властивостi одержаних продуктiв.

Зокрема встановлено, що вихiд вуглеводневих смол не корелює з температурою реакцiї (0,15 i 0,30) та концентрацiєю емульгатора (0,08 i 0,03). Доведено, що в дослiджуваних iнтервалах змiнних вихiд олiгомерiв залежить вiд тривалостi реакцiї (кореляцiя 0,88 i 0,81). У випадку олiгомеризацiї у зворотнiй емулсiї значну кореляцiю із виходом мають також iнтенсивнiсть перемiшування (0,51) та спiввiдношення фракцiя C9:вода (0,51). Це дозволило розробити рiвняння множинної лiнiйноi регресiї вихою-до найбiльш значущих параметрiв процесу.

Ключовi слова: рiдкi продукти пiролiзу, вуглеводнева смола, нафтополiмерна смола, емульсiйна олiгомеризацiя, фракцiя C9.

DOI: 10.15587/1729-4061.2021.231449

РОЗРОБКА РАЦIОНАЛНИX УМОB ОДЕРГАННЯ КАЛIЙ ГЛiЦЕРАТУ (c. 12–18)

Natalia Sytnik, Ekaterina Kunitsia, Viktoria Mazaeva, Anton Chernukha, Kostiantyn Ostatov, Pavlo Borodych, Valerii Mazurenko, Oleksandr Kovalov, Victoria Velma, Vitalii Kolokolov

Дослiджено залежнiсть ефективностi одержання калiй глiцерату з використанням глiцерину та розчину калiй гiдроксиду вiд умов проведення процесу. Як параметр ефективностi процесу одержання калiй глiцерату застосовано концентрацiю калiй глiцерату в кiнцевому продуктi.

Глiцерати металiв використовують у виробництвi продукцiї будiвельної галузi, електронiки, медицини, як каталiзатори переетерифiкування для одержання спецiальних жирiв рiзного призначення, а також бiодизельного палива.

З метою одержання калiй глiцерату застосовано нагрiвання з одночасним перемiшуванням сумiшi глiцерину та калiй гiдроксиду.

Виконано аналiз калiй гiдроксиду, в якому масова частка основної речовини склала 85,5 %, масова частка калiй карбонату– 0,9 %. В роботi застосовано глiцерин квалiфiкацiї ч. д. а. з масовою часткою основної речовини 99,5 %.

Визначено вплив температури нагрiвання реакцiйноi сумiшi на концентрацiю калiй глiцерату в продуктi. Показано, що рацiональною температурою нагрiвання є 145 °C.

Встановлено залежнiсть концентрацiї калiй глiцерату в кiнцевому продуктi вiд наступних умов проведення процесу: змiни мольної концентрацiї глiцерину та тривалостi нагрiвання реакцiйноi сумiшi.

Визначено рацiональнi умови одержання калiй глiцерату: мольна концентрацiя глiцерину 60 %, тривалiсть нагрiвання 4 год.

В калiй глiцератi визначено температуру плавлення (69 °С) та масову частку вологи (0,8 %).

Результати експериментальних дослiджень дозволять одержувати калiй глiцерат безпосередньо на пiдприємствах, де використовують глiцерати металiв, з доступної сировини, за рацiональних умов. Визначенi умови одержання калiй глiцерату дозволять ефективно використовувати матерiальнi та енергетичнi ресурси.

Ключовi слова: калiй глiцерат, калiй гiдроксид, глiцерин, реакцiйна сумiш, вмiст основної речовини.

DOI: 10.15587/1729-4061.2021.231449
ЗАКОНОМІРНОСТІ ГІДРАТОУТВОРЕНЬ У НАФТОВИХ СВЕРДЛОВИНАХ (с. 19–24)
А. В. Ляшенко, В. Д. Макаренко, Ю. Л. Винников, О. В. Петраш

В роботі розглядається процес формування гідратопарафінових відкладів у нафтових свердловинах. Завдяки проведеним дослідженням на спеціально створеному авторському лабораторному обладнанні – експериментальній установці, що містить технологічний блок та інформаційно-вимірювальну систему, – було визначено найбільш сприятливі термобаричні умови гідратоутворення в широкому діапазоні зміни тиску (0,1–120 МПа) і температури (від –20 до +80 °С). Отримані результати експериментів дали можливість визначити умови, необхідні для гідратних відкладів і оксидів заліза (Fe) в інтервалі температур від –15 до +60 °С і тисків від 0 до 60 МПа. Отримані результати дозволили порівняти процеси утворення гідратоутворень та оксидів заліза (Fe) у навколотрубному просторі нафтових свердловин. Результати дослідження можуть бути використані для попередження і усунення парафіногідратних пробок у внутрішньосвердловинному обладнанні нафтових свердловин. А також при встановленні технологічного режиму роботи свердловини для довготривалої експлуатації підземного обладнання без ускладнень, аварій та зупинок на ремонтні роботи, що зменшує непродуктивні витрати часу.

Ключові слова: гідратопарафіноутворення, оксиди заліза, насосно-компресорна труба, обсадна колона, свердловина.

DOI: 10.15587/1729-4061.2021.231479
ПРОЕКТУВАННЯ РІДИННИХ КОМПОЗИЦІЙНИХ МАТЕРІАЛІВ ДЛЯ ЕКРАНУВАННЯ ЕЛЕКТРОМАГНІТНИХ ПОЛІВ (с. 25–31)
В. А. Глива, В. С. Бахарєв, Н. В. Касаткіна, О. Г. Левченко, Л. О. Левченко, Н. Б. Бурдейна, С. Г. Гузій, О. В. Панова, О. М. Тихенко, Я. І. Бірук

Розроблено засади проектування та досліджено захисні властивості рідинних матеріалів для екранування електричних, магнітних та електромагнітних полів широкого частотного діапазону. Матеріали виготовлялися на основі концентрату залізної руди та пігментної добавки, у якості матриці були використані водно-дисперсна та геополімерна фарби. Випробування захисних властивостей для електричних та магнітних складових електромагнітного поля промислової частоти показали, що коефіцієнти екранування електричного поля за концентрації екрануючої речовини 15–60% (за вагою) – 1,1–8,6; магнітного поля – 1,2–5,3. Коефіцієнти екранування матеріалу на основі водно-дисперсної фарби нижчі за геополімерну, що можна пояснити окисленням залізовмісної компоненти і зниження електричної провідності. Коефіцієнти екранування електромагнітного поля частотою 2,45 ГГц складають 1,2–7,9. Наїбільші коефіцієнти притаманні матеріалу з наповнювачем із залізорудного концентрату та титановмісного пігментного порошку в пропорції 1:1.

Для проектування матеріалів з необхідними (прогнозованими) захисними властивостями було розраховано відносні магнітну, діелектричну проникність матеріалів. Показано, що отримані дані прийнятно збігаються з результатами прямих вимірювань магнітної і діелектричної проникності і можуть бути використані для автоматизації процесів проектування композиційних матеріалів із заданими захисними властивостями.

Ключові слова: електромагнітне поле, коефіцієнт екранування, магнітна проникність, діелектрична проникність, композиційні матеріали.

DOI: 10.15587/1729-4061.2021.226267
ЗДІЙСНЕННЯ СІРЧАНОКИСЛОТНОГО ВИЛУГОВУВАННЯ ДЛЯ ВИДАЛЕННЯ АЛЮМІНІЮ І ЗАЛІЗА З МЕТОЮ ПОЛІПШЕННЯ НИЗЬКОСОРТНОГО КРЕМНЕЗЕМУ З КВАРЦОВОГО ПІСКУ, ЩО ВИДОБУВАЄТЬСЯ В МІСТІ СУКАБУМІ, ІНДОНЕЗІЯ (с. 32–40)
Eko Sulistiyono, Murni Handayani, Agus Budi Prasetyo, Januar Irawan, Eni Febriana, Florentinus Firdiyono, Erlina Yustanti, Safetyana Nazaretha Sembiring, Firdaus Nugroho, Ersan Y Muslih

Індонезія володіє багатими запасами кремнезему, проте прогресивні дослідження родовищ цього матеріалу досить нечисленні, що призводить до обмеженого застосування кремнезему. Дана робота присвячена очищенню кремнезему з кварцового піску, що видобувається в місті Сукабумі, Індонезія, Індонезія для отримання кремнезему високого ступеня чистоти, який може бути використаний в якості важливої спеціалізованої сировини. Метою даних досліджень є поліпшення низькосортного кремнезему з кварцового піску, що використовується в місті Сукабумі, Індонезія. Для досягнення поставленої мети було дослідено вплив часу реакції і концентрації сірчаної кислоти на процес вилуговування. Відзначена ефективність сірчаної
Твір електролітів ТОПЕ відомі своєю іонною провідністю, яка збільшується з підвищенням робочої температури ТОПЕ. За допомогою чисельного моделювання в середовищі COMSOL Multiphysics був проведений аналіз вихідної потужності ТОПЕ з електролітами на основі стабілізованого оксиду ітрію діоксиду цирконію (YSZ) і літієвого карбонату натрію – гадоліній-легованого оксиду церію ((LiNa)3-GDC) для визначення потенціалу цих електролітів при їхньому застосуванні в ТОПЕ. Іонна провідність ЯСТ була диференційована на основі молярного значення вмісту ітрію, а саме 8, 9, 9,5 і 10 моль. При цьому GDC варіювався між 7,8, 10 і 16,8 % в залежності від вмісту (LiNa)3-GDC. При використанні чисельної моделі похибка розрахунків становить в середньому 7,32 % і 6,89 % для експериментальних значень потужності і напруги. Встановлено, що в ТОПЕ з електролітом ЯСТ вихідна потужність може збільшуватись в 26,4–35 разів при підвищенні робочої температури з 500 °C до 750 °C. ТОПЕ з YSZ може виробляти найбільшу потужність в порівнянні з іншими ЯСТ, яка становить 123 A/m² при струмі 198 A/m² при робочій температурі 500 °C і 3440 A/m² при струмі 5549 A/m² при робочій температурі 750 °C. Тоді як в ТОПЕ з електролітом GDC було виявлено, що вихідна потужність може збільшуватись в 18,6–22,6 рази при підвищенні робочої температури з 500 °C до 750 °C. ТОПЕ з 30 % (LiNa)3-GDC-GDC виробив найбільшу потужність в порівнянні з іншими ЯСТ, яка становить 231 A/m² при струмі 444 A/m² при робочій температурі 500 °C і 5240 A/m² при струмі 10077 A/m² при робочій температурі 750 °C. ЯСТ також показав можливість збільшення вихідної потужності при підвищенні температурі ТОПЕ вище 750 °C, в той час як 30 % (LiNa)3-GDC-GDC показує обмежене збільшення іонної провідності при 750 °C.

Ключові слова: ТОПЕ, іонна провідність, електроліт, продуктивність, COMSOL Multiphysics, YSZ, GDC.

DOI: 10.15587/1729-4061.2021.227230
ПОРІВНЯННЯ ВПЛИВУ НАНОГЛИН НА ВОДОСТІЙКІСТЬ ІНТУМЕСЦЕНТНИХ ВОГНЕЗАХИСНИХ ПОКРИТТІВ (с. 59–70)
Л. М. Вахітова, К. В. Калафат, В. П. Плаван, В. І. Бессарабов, Н. А. Таран, Г. В. Загорій

Досліджено вплив наноглин на водостійкість інтумесцентної системи поліфосфат амонію/меламін/пентаеритрит/діоксид титану/полімер (етиленвінілацетат (E VA) або стиролакрилат (SA)).

Встановлено, що додавання наноглини в покриття на основі етиленвінілацетату підвищує межу вогнестійкості металевої пластини на 30 %, а на основі стиролакрилату – на 50 %. При цьому покриття, до складу яких входить полімер E VA, характеризуються більшою вогнезахисною ефективністю та меншою водостійкістю, ніж покриття, що містять полімер SA.

Показано, що інтумесцентні покриття незалежно від природи полімеру в умовах 80 % вологості протягом 800 діб знижує вогнезахисні властивості в середньому на 10 %. Втрати вогнезахисної характеристики відбуваються з причини вимивання пентаеритрита, поліфосфату амонію і деградації полімеру шляхом гідролізу. Домішки наноглин з високим ступенем ексфоліації в досліджувану систему створюють бар’єрний ефект та максимально зберігають хімічний склад інтумесцентного покриття.

Структура та мікроскопічна характеристика альтернативного низькоенергетичного в'яжучого, що містить Ca(OH)\(_2\) в якості лужного активатора (с. 71–79)
Aditianto Ramelan, Adhi Setyo Nugroho, Teti Indriati, Riska Rachmantyo

Розробка потенційних альтернативних портландцементу в'яжучих як і раніше стає глобальною проблемою в житловому та інфраструктурному аспектах. Це пов'язано з тим, що цемент і бетон стають основними матеріалами будівельних конструкцій. Звичайний портландцемент може утворювати тверду масу при змішуванні з водою в певному співвідношенні. Це пов’язано з утворенням фаз еттрінгіта і гідрату силікату кальцію (CSH), які сприяють міцності продуктів гідратації близько 33–53 МПа. Однак при виробництві клінкеру температура виготовлення портландцементу може досягати 1500 °C. Для зниження споживання енергії і собівартості виробництва, вчені намагалися використовувати пуццоланові матеріали.

Також проводяться дослідження пуццоланових матеріалів в якості лужно-активованого цементу, такого як грунтоцемент або геополімерний цемент. Отже, необхідне краще розуміння пуццоланової реакції та продуктів гідратації. У даній роботі були вивчені продукти гідратації низькоенергетичних в'яжучих, що складаються з сумішей Ca(OH)\(_2\)-SiO\(_2\) і Ca(OH)\(_2\)-метакаоліну-гіпсу.

Гідратований продукт – 41 мас. % Ca(OH)\(_2\) – 41 мас. % метакаоліну – 18 мас. % гіпсу з подальшим затвердінням у воді при 50 °C протягом 28 днів піддалися під час розширеного конформації особливостям. Рентгеноструктурний аналіз показав, що гідратований продукт у основному складається з еттрінгіта (60,0 %) і кристалічного CSH (23,4 %). Отримані дифрактограми показали характерний горб, який вказує на наявність аморфного фаз поряд з кристалічними. Для підтвердження наявності некристалічних або аморфних фаз гідратованих продуктів використовували поляризаційний оптичний мікроскоп (ОМ) з використанням методу схрещених ніколей. Характеристика фаз є новизною цього дослідження. Еттрінгіт, кристалічний CSH і аморфні фази діють як міцне в’яжуче, що сприяють середній максимальної міцності на стиск 22,17 МПа.

Використання слюдяного сланцю з індонезії в якості сировини для вилучення літію з використанням сульфатизуючого випалу і кислотного вилуговування (с. 80–88)
Nadia Chrisayu Natasha, Latifa Hanum Lalasari, Lia Andriyah, Tri Arini, Fariza Eka Yunita, Didied Haryono, Fani Rinanda

Літієві мінерали стають субекономічною сировиною при виробництві літію для задоволення попиту на літій. Дане дослідження присвячено вилученню літію з слюдяного сланцю з використанням процесів випалу і вилуговування. Для вивчення явищ в процесі
вилучення літію використовувався слюдяний сланець з Кебумену, Індонезія. В якості речовини для випалу використовували сульфат натрію, вилуговуючої речовини – 0.36 М сірчаної кислоти. В якості змішень використовувалося співвідношення твердого/рідкого (1:5, 1:10, 1:15 і 1:20 (г/мл)) і час вилуговування (30, 60, 90 і 120 хв). Процес випалу проводили при 700 °C протягом 40 хвилин, вилуговування – при 70 °C і 350 об./хв. Для вивчення утворених сполук, хімічного складу і морфології матеріалів використовувався рентгеноструктурний аналіз, ІЗП-ОЕС і РЕМ. Для інтерпретації вмісту кожної сполуки в слюдяному сланці, випаленому слюдяному сланці і залишку використовувалась програма HighScore Plus (HSP). ІЗП-аналіз підтверджує, що слюдяний сланець містить 45,28 ppm літію. Рентгеноструктурний аналіз підтверджує, що літій знаходиться в слюдяному сланці у вигляді лепідоліту (KLi$_2$AlSi$_4$O$_{10}$(F,OH)$_2$). Сульфатизуючий випал не вплинув на тип лепідоліту, але на реакційну здатність лепідоліту по відношенню до хімічної речовини. РЕМ показує, що в процесі випалу середній розмір частинок зменшився з 32,17 до 27,16 мкм. ІЗП-аналіз випаленого слюдяного сланцю показує, що концентрація літію знизилася з 45,28 до 1,27 ppm. Оптимальним результатом дослідження було 97,66%-ве вилучення літію при співвідношенні твердого/рідкого 1:5 (г/мл) і часі вилуговування 30 хв. НСР показує, що вміст лепідоліту в вихідному слюдяному сланці, випаленому слюдяному сланці і залишку склав 60,6; 24,3 і 18,7% відповідно. Концентрація літію в залишку за даними ІЗП-аналізу становить 1,06 ppm.

Ключові слова: літій, вилучення, слюдяний сланець, лепідоліт, сульфатизуючий випал, кислотне вилуговування, мінерал.