The CONSORT Statement: Revised Recommendations for Improving the Quality of Reports of Parallel-Group Randomized Trials

David Moher; Kenneth F. Schulz; Douglas Altman; et al.

JAMA. 2001;285(15):1987-1991 (doi:10.1001/jama.285.15.1987)

http://jama.ama-assn.org/cgi/content/full/285/15/1987
The CONSORT Statement: Revised Recommendations for Improving the Quality of Reports of Parallel-Group Randomized Trials

David Moher, MSc
Kenneth F. Schulz, PhD, MBA
Douglas Altman, DSc
for the CONSORT Group

A REPORT OF A RANDOMIZED CONTROLLED trial (RCT) should convey to the reader, in a transparent manner, why the study was undertaken and how it was conducted and analyzed. For example, a lack of adequately reported randomization has been associated with bias in estimating the effectiveness of interventions.1,2 To assess the strengths and limitations of an RCT, readers need and deserve to know the quality of its methods. Despite several decades of educational efforts, RCTs still are not being reported adequately.3-6 For example, a review of 122 recently published RCTs that evaluated the effectiveness of selective serotonin reuptake inhibitors as first-line management strategy for depression found that only 1 (0.8%) article described randomization adequately.7 Inadequate reporting makes the interpretation of RCT results difficult if not impossible. Moreover, inadequate reporting borders on unethical practice when biased results receive false credibility.

HISTORY OF CONSORT
In the mid 1990s, 2 independent initiatives to improve the quality of reports of RCTs led to the publication of the CONSORT (Consolidated Standards of Reporting Trials) statement,7 which was developed by an international group of clinical trialists, statisticians, epidemiologists, and biomedical editors. CONSORT has been supported by a growing number of medical and health care journals8-11 and editorial groups, including the International Committee of Medical Journal Editors12 (ICMJE, also known as the Vancouver Group), the Council of Science Editors (CSE), and

To comprehend the results of a randomized controlled trial (RCT), readers must understand its design, conduct, analysis, and interpretation. That goal can be achieved only through complete transparency from authors. Despite several decades of educational efforts, the reporting of RCTs needs improvement. Investigators and editors developed the original CONSORT (Consolidated Standards of Reporting Trials) statement to help authors improve reporting by using a checklist and flow diagram. The revised CONSORT statement presented in this article incorporates new evidence and addresses some criticisms of the original statement.

The checklist items pertain to the content of the Title, Abstract, Introduction, Methods, Results, and Comment. The revised checklist includes 22 items selected because empirical evidence indicates that not reporting the information is associated with biased estimates of treatment effect or because the information is essential to judge the reliability or relevance of the findings. We intended the flow diagram to depict the passage of participants through an RCT. The revised flow diagram depicts information from 4 stages of a trial (enrollment, intervention allocation, follow-up, and analysis). The diagram explicitly includes the number of participants, according to each intervention group, included in the primary data analysis. Inclusion of these numbers allows the reader to judge whether the authors have performed an intention-to-treat analysis.

In sum, the CONSORT statement is intended to improve the reporting of an RCT, enabling readers to understand a trial’s conduct and to assess the validity of its results.
the World Association of Medical Editors (WAME). CONSORT is also published in Dutch, English, French, German, Japanese, and Spanish. It can be accessed on the Internet, along with other information about the CONSORT group.13

The CONSORT statement comprises a checklist and flow diagram for reporting an RCT. For convenience, the checklist and diagram together are called simply CONSORT. They are primarily intended for use in writing, reviewing, or evaluating reports of simple 2-group parallel RCTs.

Preliminary data indicate that the use of CONSORT does indeed help to improve the quality of reports of RCTs.14,15 In an evaluation of 71 published RCTs in 3 journals in 1994, allocation concealment was reported unclearly in 43 (61%) of the trials.16 Four years later, after these 3 journals required that authors reporting an RCT use CONSORT, the proportion of articles in which allocation concealment was reported unclearly had decreased to 30 of 77 (39%; mean difference, −22%; 95% confidence interval, −38% to −6%).14

The usefulness of CONSORT is enhanced by continuous monitoring of the biomedical literature; this monitoring allows CONSORT to be modified depending on the merits of maintaining or dropping current items and including new items. For example, when Meinert16 observed that the flow diagram did not provide important information about the number of participants who entered each phase of an RCT (enrollment, treatment allocation, follow-up, and data analysis), the diagram was able to be modified to accommodate the information. The checklist is similarly flexible.

This iterative process makes the CONSORT statement a continually evolving instrument. While participants in the CONSORT group and their degree of involvement vary over time, members meet regularly to review the need to refine CONSORT. At the 1999 meeting, participants decided to revise the original statement. This report reflects changes determined by consensus of the CONSORT group, partly in response to emerging evidence on the importance of various elements of RCTs.

REVISION OF THE CONSORT STATEMENT

Thirteen members of the CONSORT group met in May 1999 with the primary objective of revising the original CONSORT checklist and flow diagram, as needed. The group discussed the merits of including each item in the light of current evidence. As in developing the original CONSORT statement, our intention was to keep only those items deemed fundamental to reporting standards for an RCT. Some items not considered essential may well be highly desirable and still should be included in an RCT report even though they are not included in CONSORT. Such items include approval of an institutional ethical review board, sources of funding for the trial, and a trial registry number (eg, the International Standard Randomized Controlled Trial Number [ISRCTN]) used to register the RCT at its inception.17

Shortly after the meeting, a revised version of the checklist was circulated to the group for additional comments and feedback. Revisions to the flow diagram were similarly made. All these changes were discussed when CONSORT participants met in May 2000, and the revised statement was finalized shortly afterward.

The revised CONSORT statement includes a 22-item checklist (TABLE) and a flow diagram (FIGURE). Its primary aim is to help authors improve the quality of reports of simple 2-group parallel RCTs. However, the basic philosophy underlying the development of the statement can be applied to any design. In this regard, additional statements for other designs will be forthcoming from the group.13 CONSORT can also be used by peer reviewers and editors to identify reports with inadequate description of trials and those with potentially biased results.1,2

During the 1999 meeting, the group also discussed the benefits of developing an explanatory document to enhance the use and dissemination of CONSORT. The document is patterned on reporting of statistical aspects of clinical research18 and was developed to help facilitate the recommendations of the ICMJE’s Uniform Requirements for Manuscripts Submitted to Biomedical Journals. Three members of the CONSORT group, with assistance from members on some checklist items, drafted an explanation and elaboration document. That document19 was circulated to the group for additions and revisions and was last revised after review at the latest CONSORT group meeting.

CHANGES TO CONSORT

1. In the revised checklist, a new column for “paper section and topic” integrates information from the “subject heading” column that was contained in the original statement.

2. The “Was it reported?” column has been integrated into a “reported on page #” column, as requested by some journals.

3. Each item of the checklist is now numbered and the syntax and order have been revised to improve the flow of information.

4. “Title” and “Abstract” are now combined in the first item.

5. While the content of the revised checklist is similar to the original, some items that previously were combined are now separate. For example, authors had been asked to describe “primary and secondary outcome(s) measure(s) and the minimum important difference(s), and indicate how the target sample size was projected.” In the new version, issues pertaining to outcomes (item 6) and sample size (item 7) are separate, enabling authors to be more explicit about each. Moreover, some items request additional information. For example, for outcomes (item 6) authors are asked to report any methods used to enhance the quality of measurements, such as multiple observations.

6. (item 6) The item asking for the unit of randomization (eg, cluster) has been dropped because specific checklists have

1988 JAMA, April 18, 2001—Vol 285, No. 15

©2001 American Medical Association. All rights reserved.
been developed for reporting cluster RCTs—and other design types—since publication of the original checklist.

(7) Whenever possible, new evidence is incorporated into the revised checklist. For example, authors are asked to be explicit about whether the analysis reported is by intention-to-treat (item 16). This request is based in part on the observations that authors do not adequately describe and apply intention-to-treat analysis and reports that not providing this information are less likely to provide other relevant information, such as loss to follow-up.

(8) The revised flow diagram depicts information from 4 stages of a trial (enrollment, intervention allocation, follow-up, and analysis). The revised diagram explicitly includes the number of participants, according to each intervention group, included in the primary data analysis. Inclusion of these numbers lets the reader know whether the authors have performed an intention-to-treat analysis. Because some of the information may not always be

Table. Checklist of Items to Include When Reporting a Randomized Trial
Section and Topic
Title and Abstract
Introduction
Methods
Participants
Interventions
Objectives
Outcomes
Sample size
Randomization
Sequence generation
Allocation concealment
Implementation
Blinding (masking)
Statistical methods
Results
Participant flow
Recruitment
Baseline data
Numbers analyzed
Outcomes and estimation
Ancillary analyses
Adverse events
Comment
Interpretation
Generalizability
Overall evidence
known and to accommodate other information, the structure of the flow diagram may need to be modified for a particular trial. Inclusion of the participant flow diagram in the report is strongly recommended but may be unnecessary for simple trials, such as those without any participant withdrawals or dropouts.

COMMENT

Specifically developed to guide authors about how to improve the quality of reporting of simple 2-group parallel RCTs, CONSORT encourages transparency in reporting the methods and results so that reports of RCTs can be interpreted both readily and accurately. However, CONSORT does not address other facets of reporting that also require attention, such as scientific content and readability of RCT reports. Some authors, in their enthusiasm to use CONSORT, have modified the checklist. We recommend against such modifications because they may be based on a different process than the one used by the CONSORT group. The use of CONSORT seems to reduce (if not eliminate) inadequate reporting of RCTs. Potentially, the use of CONSORT should positively influence the manner in which RCTs are conducted. Granting agencies have noted this potential relationship and, in at least 1 case, have encouraged grantees to consider in their application how they have dealt with the CONSORT items.

The evidence-based approach used to develop CONSORT also has been used to develop standards for reporting meta-analyses of randomized trials, meta-analyses of observational studies, and diagnostic studies (Jeroen Lijmer, MD, written communication, October 2000). Health economists also have started to develop reporting standards to help improve the quality of their reports. The intent of all these initiatives is to improve the quality of reporting of biomedical research and by doing so to bring about more effective health care.

The revised CONSORT statement will replace the original one in the journals and groups that already support it. Journals that do not yet support CONSORT may do so by registering on the CONSORT Web site. To convey to authors the importance of improved quality in the reporting of RCTs, we encourage supporting journals to reference the revised CONSORT statement and the CONSORT Internet address in their “Instructions to Authors.” Because the journals publishing the revised CONSORT statement have waived copyright protection, CONSORT is now widely accessible to the biomedical community. The CONSORT checklist and flow diagram can also be accessed at the CONSORT Web site.

A lack of clarification of the meaning and rationale for each checklist item in the original CONSORT statement has been remedied with the development of the CONSORT explanation and elaboration document, which also can be found on the CONSORT Web site. This document reports the evidence on which the checklist items are based, including the references, which had annotated the checklist items in the previous version. We encourage journals to also include reference to this document in their Instructions to Authors.

Emphasizing the evolving nature of CONSORT, the CONSORT group invites readers to comment on the updated checklist and flow diagram through the CONSORT Web site. Comments and suggestions will be collated and considered at the next meeting of the group in 2001.

Author Contributions: Mr Moher and Drs Schulz and Altman participated in regular conference calls, identified participants, contributed to the CONSORT meetings, and drafted the manuscript. Mr Moher planned the CONSORT meetings, secured funding, invited the participants, and planned the meeting agenda. Members of the CONSORT group attended the meetings and provided input for the revised checklist, flow diagram, and/or text of this article. Mr Moher is the guarantor of this article.

Contributors to this version of the CONSORT statement: Frank Davidoff, MD, Annals of Internal Medicine (Philadelphia, Pa); Susan Eastwood, ELS(D), University of California at San Francisco; Matthias Egger, MD, Department of Social Medicine, University of Bristol (Bristol, England); Diana Elbourne, PhD, London School of Hygiene and Tropical Medicine (London, England); Peter Gattzsche, MD, Nordic Cochrane Centre (Copenhagen, Denmark); Sylvan B. Green, PhD, MD, School of Medicine, Case Western Reserve University (Cleveland, Ohio); Leni Grossman, BA, Merck & Co Inc (Whitehouse Station, NJ); Barbara S. Hawkins, PhD, Winlen Ophthalmological Institute, Johns Hopkins University (Baltimore, Md); Richard Horton, MB, The Lancet (London, England); Wayne B. Jonas, MD, Unfirmed Services University of the Health Sciences (Bethesda, Md); Terry Klassen, MD, Department of Pediatrics, University of Alberta (Edmonton); Leah Lepage, PhD, Thomas C. Chalmers Centre for Systematic...
REVISED CONSORT STATEMENT

1. Schulz KF, Chalmers I, Hayes RJ, Altman DG. Empirical evidence of bias: dimensions of methodological quality associated with estimates of treatment effects in controlled trials. JAMA. 1995;273:408-412.
2. Moher D, Pham B, Jones A, et al. Does the quality of reports of randomised trials affect estimates of intervention efficacy reported in meta-analyses? Lancet. 1998;352:609-613.
3. Jadad AR, Moore RA, Carroll D, et al. Assessing the quality of reports of randomized clinical trials: is blinding necessary? Control Clin Trials. 1996;17:56-60.
4. Moher D, Pham B, Jones A, et al. Does the quality of reports of randomised trials affect estimates of intervention efficacy reported in meta-analyses? Lancet. 1998;352:609-613.
5. Hotopf M, Lewis G, Normand C. Putting trials on the quality of reporting of randomized controlled trials. J Epi- demiology. 1999;317:1181-1184.
6. Dickinson K, Bunn F, Wentz R, Edwards P, Johns Hopkins University (Baltimore), Md; Mary Mosley, BS, Life Science Publishing (Tokyo, Japan); Stuart Pocock, PhD, London School of Hygiene and Tropical Medicine (London, England); Drummond Rennie, MD, JAMA (Chicago, Ill); David S. Riley, MD, University of New Mexico Medical School (Santa Fe), Roberta W. Scherer, PhD, Epidemiology and Preventive Medicine, University of Maryland School of Medicine (Baltimore); Ida Sim, MD, PhD, University of California at San Francisco; and Donna Stroup, PhD, MSc, Epidemiology Program Office, Centers for Disease Control and Prevention (Atlanta, Ga).

Funding/Support: Financial support to convene meet- ings of the CONSORT group was provided in part by Abbott Laboratories, American College of Physi- cians, GlaxoWellcome, The Lancet, Merck, Canadian Institutes for Health Research, National Library of Medi- cine, and TAP Pharmaceuticals.

Acknowledgment: The effort to improve the report- ing of randomized trials, from its beginnings with the Standards of Reporting Trials (SORT) group to the cur- rent activities of the CONSORT group, have involved a large number of people around the globe. We wish to thank Leah Lepage, PhD, for keeping everybody all lined up and moving in the same direction.

REFERENCES

1. Schulz KF, Chalmers I, Hayes RJ, Altman DG. Empirical evidence of bias: dimensions of methodological quality associated with estimates of treatment effects in controlled trials. JAMA. 1999;273:408-412.
2. Moher D, Pham B, Jones A, et al. Does the quality of reports of randomised trials affect estimates of intervention efficacy reported in meta-analyses? Lancet. 1998;352:609-613.
3. Jadad AR, Boyle M, Cunningham C, Kim M, Schachar R. M, Mary Mosley, BS, Life Science Publishing (Tokyo, Japan); Stuart Pocock, PhD, London School of Hygiene and Tropical Medicine (London, England); Drummond Rennie, MD, JAMA (Chicago, Ill); David S. Riley, MD, University of New Mexico Medical School (Santa Fe); Roberta W. Scherer, PhD, Epidemiology and Preventive Medicine, University of Maryland School of Medicine (Baltimore); Ida Sim, MD, PhD, University of California at San Francisco; and Donna Stroup, PhD, MSc, Epidemiology Program Office, Centers for Disease Control and Prevention (Atlanta, Ga).

CONSORT statement to cluster randomised trials: for discussion. Stat Med. 2001;20:489-496.

11. Huston P, Hoey J. CMAJ endorses the CONSORT statement. CMAJ. 1996;155:1277-1279.
12. Davidoff F. News from the International Com- mittee of Medical Journal Editors. Ann Intern Med. 2000;133:229-231.
13. CONSORT Web site. Available at: http://www .consort-statement.org. Accessibility verified March 14, 2001.
14. Moher D, Jones A, Lepage L, for the CONSORT Group. Use of the CONSORT statement and quality of reports of randomized trials: a comparative before-and-after evaluation. JAMA. 2001;285:1992- 1999.
15. Egger M, Juni P, Bartlett C, for the CONSORT Group. Value of flow diagrams in reports of randomized controlled trials. JAMA. 2001;285:1992-1999.
16. Meinert CT. Beyond CONSORT: need for im- proved reporting standards for clinical trials. JAMA. 1998;279:1487-1489.
17. Chalmers I. Current controlled trials: an opportu- nity to help improve the quality of clinical research. Curr Control Trials Cardiovasc Med. 2000;1:3-8.
18. Baier JC III, Mosteller F. Guidelines for statistical reporting in articles for medical journals: amplification and explanations. Ann Intern Med. 1988;108: 266-273.
19. Altman DG, Schulz KF, Moher D, et al, for the CONSORT group. The revised CONSORT statement for reporting randomized trials: explanation and elabo- ration. Ann Intern Med. 2001;134:663-694.
20. Elbourne DR, Campbell MK. Extending the CONSORT statement to cluster randomised trials: for discussion. Stat Med. 2001;20:489-496.

21. Hollis S, Campbell F. What is meant by intention- to-treat analysis? Survey of published randomized con- trolled trials. BMJ. 1999;319:670-674.
22. Ruiz-Canela M, Martinez-Gonzalez MA, de l’Ara- bia Esteven J. Intention-to-treat analysis is related to meth- odological quality. BMJ. 2000;320:1007.
23. Lee VJ, Ellenberg JH, Hirtz DG, Nelson KB. Analy- sis of clinical trials by treatment actually received: is it really an option? Stat Med. 1991;10:1595-1605.
24. Berzzen SM. Towards evidence based radiation oncology: improving the design, analysis, and report- ing of clinical outcome studies in radiotherapy. Radiother Oncol. 1998;46:5-18.
25. O’Toole LB. MRC uses checklist similar to CON- SORT’s. BMJ. 1997;314:1127.
26. Moher D, Cook DJ, Eastwood S, Olkin I, Rennie D, Stroup DF, for the QUOROM group. Improving the quality of reports of meta-analyses of random- ized controlled trials: the QUOROM statement. Lancet. 1999;354:1896-1900.
27. Stroup DF, Berlin JA, Morton SC, et al. Meta- analysis of observational studies in epidemiology: a pro- posal for reporting. JAMA. 2000;283:2008-2012.
28. Siegel JE, Weinstein MC, Russell LB, Gold MR. Rec- ommendations for reporting cost-effectiveness analy- sis. JAMA. 1996;276:1339-1341.
29. Neumann PJ, Stone PW, Chapman RH, Sand- berg EA, Bell CM. The Quality of Reporting in Pub- lished Cost-Utility Analyses, 1976-1997. JAMA, 1994;308:283-284.