Exploring the origin of magnetic fields in massive stars:
A survey of O-type stars in clusters and in the field*

S. Hubrig, M. Schöller, N. V. Kharchenko, N. Langer, W. J. de Wit, I. Ilyin, A. F. Kholtygin, A. E. Piskunov, N. Przybilla, and the MAGORI collaboration

1. Introduction

Magnetic fields play an important role in astrophysical phenomena of the universe at various scales. In galaxies, dynamo models associated with various MHD instabilities occurring in the interstellar medium (ISM) are used to explain the formation of the galactic structure (e.g., Gomez & Cox 2004; Bonanno & Urpin 2008). Magnetic fields play a role in the evolution of interstellar molecular clouds and in the star formation process, where the cloud collapse is probably taking place along the magnetic field lines (e.g., Alves et al. 2008). They are also present at all stages of stellar evolution, from young T Tauri stars and Ap/Bp stars to the end products: white dwarfs, neutron stars, and magnetars.

On the other hand, role of magnetic fields in massive O-type stars and Wolf-Rayet (WR) stars remains unknown. No definitive magnetic field was ever detected in WR stars and presently only less than a dozen O stars have published magnetic fields. Also, the theories on the origin of magnetic fields in O-type stars are still poorly developed, mostly due to the fact that the distribution of magnetic field strengths in massive stars from the ZAMS to more evolved stages has not yet been studied.

In our study we focus on magnetic fields of massive O-type stars observed in different environments: in open clusters at different ages and in the field. The results of our recent kinematic analysis of known magnetic O-type stars using the best available astrometric, spectroscopic, and photometric data indicates that the presence of a magnetic field is more frequently detected in candidate runaway stars than

* Based on observations obtained at the European Southern Observatory, Paranal, Chile (ESO programme 085.D-0667(A)).
in stars belonging to clusters or associations (Hubrig et al. 2011a). As the sample of stars with magnetic field detections is still very small, a study of a larger sample is urgently needed to confirm the detected trend by dedicated magnetic field surveys of O stars in clusters/associations and in the field. We were granted four nights in 2010 May with FORS2 at the VLT to survey magnetic fields in massive stars, but due to deteriorated weather conditions, only half of the granted time could be used for observations. Notwithstanding, the obtained results allow us to preliminarily constrain the conditions which enable the presence of magnetic fields and give first trends about their occurrence rate and field strength distribution. This information is critical for answering the principal question of the possible origin of magnetic fields in massive stars.

In the following, we present 41 new measurements of magnetic fields in 36 massive stars using FORS2 at the VLT in spectropolarimetric mode. Our observations and the obtained results are described in Sect. 2, and their discussion is presented in Sect. 3.

2. Observations and results

Spectropolarimetric observations were carried out in 2010 May 20–23 in visitor mode at the European Southern Observatory with FORS2 mounted on the 8-m Antu telescope of the VLT. This multi-mode instrument is equipped with polarization analyzing optics, comprising super-achromatic half-wave and quarter-wave phase retarder plates, and a Wollaston prism with a beam divergerence of 22" in standard resolution mode. Polariometric spectra were obtained with the GRISM 600B and the narrowest slit width of 0′′.4 to achieve a spectral resolving power of R ~ 2000. The use of the mosaic detector made of blue optimized E2V chips and a pixel size of 15 μm allowed us to cover a large spectral range, from 3250 to 6215 Å, which includes all hydrogen Balmer lines from Hβ to the Balmer jump. The spectral types and the visual magnitudes of the studied stars are listed in Table 1.

A detailed description of the assessment of the longitudinal magnetic-field measurements using FORS2 is presented in our previous papers (e.g., Hubrig et al. 2011a, 2011b, and references therein). The mean longitudinal magnetic field, \(\langle B_z \rangle \), was derived using

\[
\frac{V}{I} = \frac{g_{\text{eff}} \epsilon \lambda^2}{4 \pi m_e c^3} \frac{1}{I} \frac{dI}{d\lambda} \langle B_z \rangle,
\]

where \(V \) is the Stokes parameter that measures the circular polarisation, \(I \) is the intensity in the unpolarised spectrum, \(g_{\text{eff}} \) is the effective Landé factor, \(\epsilon \) is the electron charge, \(\lambda \) is the wavelength, \(m_e \) the electron mass, \(c \) the speed of light, \(dI/d\lambda \) is the derivative of Stokes \(I \), and \(\langle B_z \rangle \) is the mean longitudinal magnetic field.

Longitudinal magnetic fields were measured in two ways: using only the absorption hydrogen Balmer lines or using the entire spectrum including all available absorption lines. The lines that show evidence for emission were not used in the determination of the magnetic field strength. The feasibility of longitudinal magnetic field measurements in massive stars using low-resolution spectropolarimetric observations was demonstrated by previous studies of O and B-type stars (e.g., Hubrig et al. 2006, 2008, 2009a, 2011a). To check that the instrument was functioning properly, we observed the magnetic Ap star HD 187474, which has a well studied longitudinal magnetic field, during the night of May 23 at rotation phase 0.66. HD 187474 has a rotation period of 6.4 yr and a longitudinal magnetic field ranging roughly from −2 kG to 2 kG. The measured value of the magnetic field, \(\langle B_z \rangle_{\text{all}} = -1249 \pm 47 \) G, fits very well to the observations at the same phase presented by Landstreet & Mathys (2000).

Although we were granted four nights for our survey, due to unfavorable weather conditions (snow and high humidity) only four stars could be observed during the first night, 14 stars during the second night, none during the third night, and 23 during the last night. Most of the targets were observed only once. The exceptions were the stars HD 328856, HD 153426, and HD 168112, which we were able to observe twice. HD 148937 was observed three times to assess the magnetic field variability during the rotation cycle.

Table 1. List of O-type stars observed with FORS2.

Name	Other Identifier	V	Spectral Type
CPD−28 2561I	SAO174826	10.09	O6.5 Ipa
CPD−47 2963I	SAO220701	8.45	O4 III (f)
CPD−58 2620I	CD−58 3529	9.27	O6.5 V (f)
HDE 303311	CPD−58 2652B	8.98	O5 V
HD 03129B	CPD−58 2618B	7.16	O3.5 V (f+)
HD 03204	CPD−59 2584	8.48	O5 V (f)
HDE 303308	CPD−59 2626	8.14	O4 V (f+)
HD 03403	CPD−58 2680	7.30	O5 III (f)
HD 03843	CPD−59 2732	7.33	O5 III (f)
HD 105056	GS Mus	7.34	ON9.7 Ia e
HD 115455	CPD−61 3575	7.97	O7.5 III (f)
HD 120521	CPD−57 6339	8.56	O6 Ib (f)
HD 123590	CPD−61 4382	7.62	O7/8
HD 125206	CPD−60 5298	7.94	O9.4 V (n)
HD 125241	CPD−60 5300	8.31	O5.8 Ib (f)
HD 130298	CPD−55 6191	9.29	O6.5 III (n)
HD 148937	CPD−47 7765	6.77	O6.5 Ipa
HD 328586	CPD−46 8218	8.50	O9.3III
HD 152233	CPD−41 7718	6.90	O6 III (f)
HD 152247	CPD−41 7732	7.20	O9.5 II-III
HD 152249	HR 6263	6.47	O9.5Iab
HD 153426	CPD−38 6624	7.49	O9 II-III
HD 153919	V884 Sco	6.53	O6.5 Ia f+
HD 154368	V1074 Sco	6.18	O9.5 Iab
HD 154643	CPD−34 6733	7.15	O9.5 III
HD 154811	CPD−46 8416	6.93	O9.7 Iab
HD 156154	CPD−35 6916	8.04	O8 Iab (f)
HD 156212	CPD−27 5605	7.95	O9.7 Iab
HD 165319	BD−14 4880	7.93	O9.5Iab*
HD 315033	CPD−24 6163	8.90	B3*
HD 168075	BD−13 4925	8.73	O6 V (f)
HD 168112	BD−12 4988	8.55	O5 III (f)
HD 169582	BD−09 4729	8.70	O6 I f
HD 171589	BD−14 1531	8.21	O7 II (f)
HD 175754	BD−19 5242	7.02	O8 II (f)
HD 187474	V8961Sgr	5.32	Ap*

Notes: * indicates Spectral Types taken from SIMBAD.

The spectropolarimetric capabilities of FORS1 were moved to FORS2 in 2009.
Apart from this star, which has a rotation period of seven days (Nazé et al. 2008), no exact rotation periods are known for the other stars in our sample.

The results of our magnetic field measurements are presented in Table 2. In the first two columns, we provide the star names and the modified Julian dates at the middle of the exposures. In Cols. 3 and 4 we present the longitudinal magnetic field \(\langle B_z \rangle_{\text{all}} \) using the whole spectrum and the longitudinal magnetic field \(\langle B_z \rangle_{\text{hydr}} \) using only the hydrogen lines. All quoted errors are 1σ uncertainties. In Col. 5, we identify new detections by ND and in the case of HD 148937 the confirmed detection is marked by CD.

Ten stars of our sample, CPD−28 2561, CPD−47 2963, HD 93843, HD 130298, HD 148937, HD 153919, HD 154643, and HD 156154, show evidence for the presence of a magnetic field.

Importantly, the strongest magnetic fields are detected in both Of?p stars CPD−28 2561 and HD 148937. Walborn (1974) introduced the Of?p category for massive O stars displaying recurrent spectral variations in certain spectral lines, sharp emission or P Cygni profiles in He I and the Balmer lines, and strong C III emission lines around 4650 Å. Only five Galactic Of?p stars are presently known: HD 108, NGC 1624-2, CPD−28 2561, HD 148937, and HD 191612 (Walborn et al. 2010). Our observations of CPD−28 2561 reveal a magnetic field at 3.1σ level using the whole spectrum and at 3.2σ level using Balmer lines. The study of radial velocity variation of Levato et al. (1988) indicated the presence of variability of a few emission lines with a probable period of 17 days. Walborn et al. (2010) report that CPD−28 2561 undergoes extreme spectral transformations very similar to those of HD 191612, on a timescale of weeks, exhibiting variable emission intensity of the C III λλ 4647-4650-4652 triplet. The detection of a mean longitudinal magnetic field \(\langle B_z \rangle \approx -254\pm181 \) G in the Of?p star HD 148937 using FORS1 at the VLT was previously reported by Hubrig et al. (2008). An extensive multiwavelength study of HD 148937 was carried out by Nazé et al. (2008), who detected small-scale variations of He I 4686 and the Balmer lines with a period of 7 days and an over-

Table 2. Longitudinal magnetic fields measured with FORS 2 in the studied sample. All quoted errors are 1σ uncertainties.

Name	MJD	\(\langle B_z \rangle_{\text{all}} \) [G]	\(\langle B_z \rangle_{\text{hydr}} \) [G]	Comment
CPD−28 2561	55338.969	−381±122	−534±167	ND
CPD−47 2963	55337.094	−190±62	−154±96	ND
CPD−58 2620	55339.020	−53±71	−66±88	
HDE 303311	55337.131	−56±40	−19±61	
HD 93129B	55337.179	−49±44	−79±78	
HD 93204	55339.053	22±46	16±66	
HDE 303308	55339.078	122±54	137±96	
HD 93403	55339.116	39±41	−15±88	
HD 105956	55337.208	−93±48	−156±63	
HD 115455	55337.230	4±47	13±64	
HD 120521	55337.257	25±44	−3±62	
HD 123590	55339.133	19±42	56±70	
HD 125206	55337.307	12±64	8±91	
HD 125241	55339.188	24±39	16±72	
HD 130298	55339.159	113±38	193±62	ND
HD 148937	55336.307	−297±62	−293±85	CD
HD 152233	55339.289	−74±52	−76±74	
HD 152247	55339.261	34±52	86±64	
HD 152249	55339.275	−22±51	−15±72	
HD 153426	55336.338	−27±53	−10±62	
HD 153919	55337.341	−213±68	−119±95	ND
HD 154369	55339.324	−74±38	−77±63	
HD 154643	55339.340	110±34	121±52	ND
HD 154811	55337.327	91±39	59±64	
HD 156154	55337.358	−118±38	−167±54	ND
HD 156212	55337.377	−104±42	−51±63	
HD 163319	55339.306	−44±48	−38±74	
HD 153033	55337.402	−41±41	−36±52	
HD 168075	55339.389	17±42	3±65	
HD 168112	55336.418	−74±53	−66±74	
HD 169582	55339.415	−87±58	−124±88	
HD 171589	55339.445	−62±140	−119±180	
HD 175754	55337.426	82±67	66±77	
HD 187474	55339.433	−1249±22	−1253±32	Ap star

S. Hubrig et al.: Magnetic fields of massive stars
abundance of nitrogen by a factor of 4 compared to the Sun. The periodicity of spectral variations in hydrogen and He lines was re-confirmed using additional higher resolution spectroscopic material indicating similarity to the other Of?p stars HD 108 and HD 191612 (Naze et al. 2010). Our spectropolarimetric observations of this star indicate that the magnetic field is variable, but due to the low number of measurements it is not possible to verify the period deduced from spectroscopic observations. The magnetic field of this star was observed at 4.8σ, 2.9σ, and 3.4σ levels on three different nights using all absorption lines.

The remaining three Of?p stars are located in the Northern hemisphere and cannot be reached with FORS 2 at the VLT. To study magnetic fields in HD 108 and HD 191612 we recently used polarimetric spectra obtained with the SOFIN spectrograph installed at the Nordic Optical Telescope (Hubrig et al. 2010). As a result, we detected a longitudinal magnetic field \(B_z = -168 \pm 35 \text{ G} \) in the Of?p star HD 108, which is in agreement with the longitudinal magnetic field measurement of the order of \(-150 \text{ G}\) recently reported by Martins et al. (2010). For the star HD 191612 with a rotation period of 537.6 d (Howarth et al. 2007) we measured a longitudinal magnetic field \(B_z = 450 \pm 153 \text{ G} \) at rotation phase 0.43 (Hubrig et al. 2010). The only previously published magnetic field measurement for this star showed a negative longitudinal magnetic field \(B_z = -220 \pm 38 \text{ G} \) at rotation phase 0.24 (Donati et al. 2006), indicating a change of polarity over \(\sim 100 \text{ days} \). No attempt has yet been made to measure the magnetic field of NGC 1624-2. Clearly the recent results of magnetic field measurements in Of?p stars imply a tight relation between the observed properties of the Of?p star group and the presence of a magnetic field.

For the star CPD−47 2963 we achieved a 3.1σ detection using all absorption lines. According to Walborn et al. (2010) this star belongs to the Of category, which consists of normal spectra with C III \(\lambda \lambda 4647-4650-4652 \) emission lines of comparable intensity to those of the Of defining lines N III \(\lambda \lambda 4634-4640-4642 \). The authors indicate that the Of phenomenon occurs primarily in certain associations and young clusters. However, the available kinematic and photometric data do not indicate cluster or association membership for CPD−47 2963. The origin of the magnetic field in this star is probably different compared to that of other magnetic O-type stars, as non-thermal radio emission, which is frequently observed in binary systems with colliding winds, was detected by Benaglia et al. (2001). On the other hand, the membership of CPD−47 2963 in a binary or multiple system has not been investigated yet. The authors suggest that the non-thermal radiation from this star possibly comes from strong shocks in the wind itself and/or in the wind colliding region if the star has a massive early-type companion. Both optical and radio observations reveal the presence of a second source separated by 5″.

According to Walborn et al. (2010), also the star HD 93843, with a 3.7σ detection achieved using all absorption lines, belongs to the Of category. Prinja et al. (1998) monitored the stellar wind of this star using IUE time series. They identified systematic changes in the absorption troughs of the Si IV and N V resonance lines with a repeatability of wind structures with a period of 7.1 days. Noteworthy, the authors suggest the presence of a magnetic field as one of the possible mechanisms to explain the cyclical wind perturbation. On the other hand, three other stars of the Of category included in our survey, HD 93204, HDE 303308, and HD 93403, do not show the presence of a magnetic field at a 3σ level.

The star HD 130298 with a longitudinal magnetic field observed at 3.1σ level using the Balmer lines, is known as an object with a bow shock. Noriega-Crespo et al. (1997) used ISSA/IRAS archival spectra to identify stars surrounded by extended infrared emission at 60μm, which is a signature of wind bow shocks. The bow shocks are usually associated with runaway early-type stars with typical wind velocities of 500−3000 km s\(^{-1}\) and mass loss rates \(\sim 10^{-5} - 10^{-6} M_\odot \text{ yr}^{-1} \) (see e.g. Puls et al. 1999).

The two stars HD 328856 and HD 153426, both with magnetic field detections, were observed on two different nights, namely the first and the fourth night of our observing run. For HD 328856 we obtained on these nights 3.3σ and 3.1σ level detections, respectively, using all absorption lines. Based on the photometric membership probability, this star is a member of the compact open cluster Hogg 22 in the Ara region at an age of 5 Myr and a distance of about 1300 pc (see Sect. 3). On the other hand, its proper motions indicate that HD 328856 is not fully co-moving with the other cluster members, deviating from the cluster mean proper motion by \(\sim 2\sigma \) (for more details on membership probabilities see Kharchenko et al. 2004). The observations of the star HD 153426 revealed the presence of a mean longitudinal magnetic field at the 3.9σ level using Balmer lines on the fourth night. The non-detection of the magnetic field for HD 153426 on the first observing night can probably be explained by the strong dependence of the longitudinal magnetic field on the rotational aspect. HD 153426 is a double-lined spectroscopic binary with unknown orbit parameters and was considered by de Wit et al. (2005) as a star in a newly detected cluster. Using the best presently available kinematic data on young open clusters, Schilbach & Röser (2005) suggested that HD 153426 was ejected from the cluster Hogg 22. Their back-tracing procedure indicates that the encounter time for HD 153426, i.e. the time when the star was ejected, is about 8.1 Myr, while the age of the cluster Hogg 22 is only 5 Myr.

The star HD 153919 was observed only once, revealing the presence of a mean longitudinal magnetic field at the 3.9σ level, using all absorption lines. The study of Ankay et al. (2001) suggested that this star is a runaway X-ray binary, ejected from the OB association Sco OB1 about 2 Myr ago due to the supernova of 4U1700-37’s progenitor. They considered this star as a companion to 4U1700-37, most likely a neutron star powered by wind accretion (e.g., Jones et al. 1973). Since 4U1700-37 is a candidate for a low-mass black hole (Brown et al. 1996), this system can be similar to the optical component (the O9.7 Iab supergiant) in the system Cyg X-1, for which the presence of a variable weak magnetic field was recently detected using a FORS 1 spectropolarimetric time series over the orbital period of 5.6 days (Karitskaya et al. 2010). Schilbach & Röser (2008) identified the origin of this field star in the cluster NGC 6231 (the open cluster inside Sco OB1) at an age of about 6.5 Myr and their back-tracing procedure indicates that the star was ejected from the cluster 1.1 Myr ago.

The longitudinal magnetic field for the star HD 154643 was observed at 3.2σ level using all absorption lines. De Wit et al. (2005) characterise this star as a candidate runaway star associated with the young cluster Bochum 13. However, Schilbach & Röser (2005) identified the origin of this field...
The five stars at the end of the table are currently not members of the indicated clusters, and were ejected 1.4 Myr ago.

For each star we give in the first two columns the object name and the corresponding catalogue number. The kinematic and photometric probabilities for cluster membership presented in Cols. 3 und 4 were calculated according to the procedures described by Kharchenko et al. (2003). The cluster names, the distances and the ages are presented in the next three columns. The proper motions and their errors for stars and clusters are given in the last columns. All cluster data are taken from Kharchenko et al. (2005a, 2005b). The five stars at the end of the table are currently not members of the indicated clusters, and were ejected from them \(t_{\text{enc}} \) years ago (Schilbach, Roeser 2008). The encounter times \(t_{\text{enc}} \) of these stars are given in brackets. The three stars with magnetic fields that are most probable cluster members are presented in italics.

3. Discussion

A lot of effort has been put into the research of massive stars in recent years in order to properly model the effects of rotation, stellar winds, and surface chemical composition. However, possible paths for the formation of magnetic O-type stars were not analysed yet with modern theories for the evolution of single and binary stars. Clearly, the number of massive stars with detected magnetic fields is still small, and the available data are insufficient to prove statistically whether magnetic fields in massive stars are ubiquitous or appear in specific stars with certain stellar parameters and in a special environment. On the other hand, the observations of magnetic fields in massive stars accumulated over the last few years can be used to preliminarily constrain the conditions which enable the appearance of magnetic fields and give first trends about their occurrence and field strength distribution.

Since no longitudinal magnetic fields stronger than 300 G were detected in our study (apart from the rather large field in the O7p star CPD–28 2561), we confirm our previous conclusion (Hubrig et al. 2003) that large-scale, dipole-like, magnetic fields with polar field strengths higher than 1 kG are not widespread among O type stars. Our study presents the results of a magnetic field survey in 36 massive stars. Among them, 19 stars can be related to open clusters and associations at different age. The data on the cluster membership of these probable cluster O-type stars are presented in Table 3. To increase the significance of our statistic assessment, we present in the same table the data for an additional six probable cluster O-type stars, which have been studied during the last years by Hubrig et al. (2008, 2009b, 2011a). The encounter times \(t_{\text{enc}} \) of these stars are given in brackets. The encounter times \(t_{\text{enc}} \) of these stars are given in brackets.
and Pourbaix et al. (2004) discussed in this work. According to Mason et al. (1998) included this star in Table 3, as no membership criteria are on Trumpler 24 at the age log t = 6.92. We have not included this star in Table 3, as no membership criteria are discussed in this work. According to Dias et al. (2002) Version 3.1 (24/11/2010), one of the previously studied O-type stars, the star HD 152408 (Hubrig et al. 2008), is projected on the cluster Collinder 316, which presents a large group of bright stars superposed on Trumpler 24 at the age log t = 6.92. We have not included this star in Table 3, as no membership criteria are discussed in this work. According to Dias et al. (2002) and Pourbaix et al. 2004, among the stars presented in Table 3 six stars, HD 47839, HD 135240, HD 152233, HD 153919, HD 154368, and HD 167263, are members of spectroscopic binary systems, with orbital periods between 3.4 and 9247 days.

From the inspection of kinematic and photometric membership probabilities, and following the membership criteria described by Kharchenko et al. (2004), five stars in Table 3, CPD−58 2620, HD 93129B, HDE 305308, HD 105066, HD 152233, have a rather low cluster membership probability. Two other stars, HD 120521 and HD 153919, are not kinematic members of the oldest clusters Platais 10 and NGC 6281, respectively, and should be regarded as field stars projected against the clusters by chance. Among the remaining stars, only in three stars, HD 155806, HD 156154, and HD 164794, weak magnetic fields have been detected (more details on the kinematic study of HD 155806 and HD 164794 can be found in Hubrig et al. 2011a). In Fig. 1 we display the positions of the stars presented by Kharchenko et al. (2005a, 2005b). The theoretical isochrones were calculated by the Padova group (Girardi et al. 2002) and the values for the zero-age main sequence were retrieved from Schmidt-Kaler (1982). The absolute magnitudes and colours are presented in Table 4. The uncertainty in the distance modulus is assumed to be 0.2. The positions of the magnetic stars with high cluster membership probabilities, HD 156154, HD 155806, and HD 164794, do not reveal any sign of a specific distribution, which would hint at the origin of their magnetic fields at a certain evolutionary age.

In Fig. 2 we present the age distribution of the most probable cluster members. While the age of HD 155806 and HD 164794 is similar to the bulk of the studied cluster O-type stars, the star HD 156154 is somewhat older at an age of ∼12 Myr. HD 155806 is classified as an Oe star, possibly representing the higher mass analogues of classical Be stars (e.g. Walborn 1973). Only six members are suggested to belong to this group of stars (e.g. Negueruela et al. 2003). The star HD 164794 is a spectroscopic double-lined system with an orbital period of 2.4 yr, known as emitting non-thermal radio-emission, probably associated with colliding winds (Nazé et al. 2010). No specific information can be found in the literature about the luminous supergiant HD 156154.

The available observations seem to indicate that the presence of a magnetic field is more frequently detected in field stars than in stars belonging to clusters or associations. It is generally accepted that the majority of massive stars form in star clusters and associations, and studies of kinematical properties of the massive star field population indicate that a major part of these stars can be traced back to their parent open clusters or associations (e.g. Schilbach & Roeser 2008). Pflamm-Altenburg & Kroupa 2010 recently

Fig. 1. The positions of the stars studied for cluster membership in the colour-magnitude diagram. Different symbols indicate stars with different membership probabilities: Squares stand for stars with cluster membership probability larger than 60%, circles for stars with a probability between 14% and 60%, and triangles for membership probability between 1% and 14%. Non-members and runaway stars are marked by dots and crosses, respectively. One runaway star, HD 171589, does not appear in this figure, as its colour and magnitude do not fit the presented parameter space (see Table 3). The three stars with magnetic fields, HD 155806, HD 156154, and HD 164794, with high cluster membership probabilities are denoted by filled squares. Isochrones for HD 156154, and HD 164794 are similar to the bulk of the studied cluster O-type stars, the star HD 156154 is somewhat older at an age of ∼12 Myr. HD 155806 is classified as an Oe star, possibly representing the higher mass analogues of classical Be stars (e.g. Walborn 1973). Only six members are suggested to belong to this group of stars (e.g. Negueruela et al. 2003). The star HD 164794 is a spectroscopic double-lined system with an orbital period of 2.4 yr, known as emitting non-thermal radio-emission, probably associated with colliding winds (Nazé et al. 2010). No specific information can be found in the literature about the luminous supergiant HD 156154.

In Fig. 2 we present the age distribution of the most probable cluster members. While the age of HD 155806 and HD 164794 is similar to the bulk of the studied cluster O-type stars, the star HD 156154 is somewhat older at an age of ∼12 Myr. HD 155806 is classified as an Oe star, possibly representing the higher mass analogues of classical Be stars (e.g. Walborn 1973). Only six members are suggested to belong to this group of stars (e.g. Negueruela et al. 2003). The star HD 164794 is a spectroscopic double-lined system with an orbital period of 2.4 yr, known as emitting non-thermal radio-emission, probably associated with colliding winds (Nazé et al. 2010). No specific information can be found in the literature about the luminous supergiant HD 156154.

The available observations seem to indicate that the presence of a magnetic field is more frequently detected in field stars than in stars belonging to clusters or associations. It is generally accepted that the majority of massive stars form in star clusters and associations, and studies of kinematical properties of the massive star field population indicate that a major part of these stars can be traced back to their parent open clusters or associations (e.g. Schilbach & Roeser 2008). Pflamm-Altenburg & Kroupa 2010 recently

2 http://sh9.astro.ulb.ac.be/mainform.cgi
It is striking that the major part of previously detected magnetic O-type stars are candidate runaway stars (Hubrig et al. 2011a, 2011c). Also in the sample of O-stars with magnetic fields detected in this work, four other stars, HD 130298, HD 153426, HD 153919, and HD 154643, are mentioned in the literature as candidate runaway stars. In the past, two mechanisms were discussed to explain the existence of runaway stars: In one scenario, close multibody interactions in a dense cluster environment cause one or more stars to be scattered out of the region (e.g. Leonard & Duncan 1990). For this mechanism, runaways are ejected in dynamical three- or four-body interactions. An alternative mechanism involves a supernova explosion within a close binary, ejecting the secondary due to the conservation of momentum (Zwicky 1937, Blaauw 1961). However, none of these scenarios consider the possibility how a massive star can acquire a magnetic field during the ejection process. Clearly, these findings generate a strong motivation to carry out a kinematic study of all stars previously surveyed for magnetic fields to search for a correlation between the kinematic status and the presence of a magnetic field.

Based on the still very limited magnetic surveys in massive stars, we cannot yet answer the question if O-type stars are magnetic in certain evolutionary stages and in a specific environment. Open star clusters and associations are very useful laboratories to test star formation and stellar evolution. The ages of our subsample of three stars with magnetic fields do not contradict the idea, that it is drawn from the general distribution of cluster ages. We have to keep in mind though that we have a very small number statistics. It appears that our observations are consistent with the assumption that the presence of a magnetic field can be expected in stars of different classification categories. Although it was possible to recognize a few hot Of?p magnetic stars as being peculiar on the basis of their spectral morphology, prior to their field detection (Walborn 2006), the presence of a magnetic field can also be expected in stars of other classifications. Future magnetic field measurements are urgently needed to constrain the conditions controlling the presence of magnetic fields in hot stars, and the implications of these fields on their physical parameters and evolution.

Acknowledgements. NVK and AEP thank for support by DFG grant RO 528/10-1. AEP acknowledges support of the RFBR grant 10-02-9138.

References
Alves, F. O., Franco, G. A. P., & Girart, J. M. 2008, A&A, 486, L13
Ankay, A., Kaper, L., de Bruijne, J. H. J., et al. 2001, A&A, 370, 170
Benaglia, P., Cappa, C. E., & Koribalski, B. S. 2001, A&A, 372, 952
Blaauw, A. 1961, Bull. Astron. Inst. Netherlands, 15, 265
Bonanno, A., & Urpin, V. 2008, MNRAS, 388, 1679
Brown, G. E., Weingartner, J. C., & Wijsen, R. A. M. J. 1996, ApJ, 463, 297
Dias, W. S., Alessi, B. S., Moitinho, A., & Lepine, J. R. D. 2002, A&A, 389, 871
Donati, J.-F., Howarth, I. D., Bouret, J.-C., et al. 2006, MNRAS, 365, L6
Gómez, G. C., & Cox, D. P. 2004, ApJ, 615, 744
Howarth, I. D., Walborn, N. R., Lennon, D. J., et al. 2007, MNRAS, 378, 433
Hubrig, S., Kurtz, D. W., Bagulo, S., et al. 2004a, A&A, 415, 661
Hubrig, S., Szeifert, T., Schöller, M., et al. 2004b, A&A, 415, 685
S. Hubrig et al.: Magnetic fields of massive stars

Hubrig, S., Briquet, M., Schöller, M., et al. 2006, MNRAS, 369, L61
Hubrig, S., Schöller, M., Schnerr, R. S., et al. 2008, A&A, 490, 793
Hubrig, S., Schöller, M., Savanov, I., et al. 2009a, AN, 330, 708
Hubrig, S., Stelzer, B., Schöller, M., et al. 2009b, A&A, 502, 283
Hubrig, S., Iliev, I., & Schöller, M. 2010, AN, 331, 781
Hubrig, S., Kharchenko, N. V., & Schöller, M. 2011a, AN, 332, 65
Hubrig, S., Schöller, M., Iliev, I. et al. 2011b, ApJL, 726, L5
Hubrig, S., Oskinova, L.M., Schöller, M. 2011c, AN, 332, 147, also arXiv:1101.5500
Jones, C., Forman, W., Tananbaum, H., et al. 1973, ApJ, 181, L43
Karitskaya, E. A., Bochkarev, N. G., Hubrig, S., et al. 2010, IBVS, 5950, 1
Kharchenko, N. V., Piskunov, A. E., Röser, S., et al. 2004, AN, 325, 749
Kharchenko, N. V., Piskunov, A. E., Röser, S., Schilbach, E., & Scholz, R.-D. 2005a, A&A, 438, 1163
Kharchenko, N. V., Piskunov, A. E., Röser, S., Schilbach, E., & Scholz, R.-D. 2005b, A&A, 440, 403
Kharchenko, N. V., & Röser, S. 2009, “All-sky Compiled Catalogue of 2.5 million stars”
Landstreet, J. D., & Mathys, G. 2000, A&A, 359, 213
Leonard, P. J. T., & Duncan, M. J. 1990, AJ, 99, 608
Levato, H., Morrell, N., Garcia, B., & Malaroda, S. 1988, ApJS, 68, 319
Maíz-Apellániz, J., Walborn, N. R., Galué, H. A., & Wei, L. H. 2004, ApJS, 151, 103
Martins, F., Donati, J.-F., Marcolino, W. L. F., et al. 2010, MNRAS, 407, 1423
Mason, B. D., Gies, D. R., Hartkopf, W. I., et al. 1998, AJ, 115, 821
Nazé, Y., Walborn, N. R., Rauw, G., et al. 2008, AJ, 135, 1946
Nazé, Y., ud-Doula, A., Spano, M., et al. 2010, A&A, 520, A59
Negueruela, I., Steele, I. A., & Bernabeu, G. 2004, AN, 325, 749
Norris, J., Crespo, A., van Buren, D., & Dgani, R. 1997, AJ, 113, 780
Pflamm-Altenburg, J., & Kroupa, P. 2010, MNRAS, 404, 1564
Pourbaix, D., Tokovinin, A. A., Batten, A. H., et al. 2004, A&A, 424, 727
Prinja, R. K., Massa, D., Howarth, I. D., & Fullerton, A. W. 1998, MNRAS, 301, 926
Puls, J., Kudritzki, R.-P., Herrero, A., et al. 1996, A&A, 305, 171
Schilbach, E., & Röser, S. 2008, A&A, 489, 105
 Schmidt-Kaler, Th. 1982, In: Landolt-Börnstein Numerical Data and Functional Relationships in Science and Technology, New Series, Group IV, eds. K. Schafer & H. H. Voigt, Springer-Verlag Press: Berlin-Heidelberg, New York
Walborn, N. R. 1973, AJ, 78, 1067
Walborn, N. R. 2006, In: “The Ultraviolet Universe: Stars from Birth to Death”, 8th meeting of the IAU, Joint Discussion 4, 16-17 August 2006, Prague, Czech Republic, JD04, #19
Walborn, N. R., Sota, A., Maíz Apellániz, J., et al. 2010, ApJ, 711, L143
Zwicky, F. 1957, “Morphological astronomy”, Springer, Berlin