Limited positive predictive value of β-D-glucan in hematologic patients receiving antimold prophylaxis

Euijin Chang,¹,a Taek Soo Kim,²,a Chang Kyung Kang,¹,b Kang Il Jun,¹ Dongyeop Shin,¹,³ Youngil Koh,¹,³ Junshik Hong,¹,³ Pyoeng Gyun Choe,¹ Wan Beom Park,¹ Nam-Joong Kim,¹ Sung-Soo Yoon,¹,³ Inho Kim,¹,³b and Myoung-don Oh¹

¹Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea; ²Department of Laboratory Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea; ³Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea

aE. C. and T. S. K. contributed equally to this work and share first authorship.

bC. K. K. and I. K. share senior authorship.

Correspondence: Chang Kyung Kang, MD, Seoul National University College of Medicine, Department of Internal Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea (zeptemiger@hanmail.net).

Key words. β-D-glucan; hematologic diseases; antimold prophylaxis; fungal diagnostics.
Key points: The positive predictive value of β-D-glucan was low in hematologic patients who are taking prophylactic posaconazole or micafungin. BDG test is not helpful in diagnosing IFIs in those patients.
INTRODUCTION

Invasive fungal infections (IFIs) cause significant morbidity and mortality in hematologic patients [1, 2]. Those who receive induction chemotherapy for acute myelogeneous leukemia (AML), allogenic stem cell transplantation (SCT), or treatment for graft-versus-host disease (GVHD) have higher risk of IFIs and tend to have poorer clinical outcomes [3, 4].

Several studies demonstrated that the use of prophylactic antimold agents, such as posaconazole or micafungin, improved clinical outcomes in high-risk hematologic patients [5–7]. Incidence of invasive aspergillosis has declined since the introduction of this prophylaxis, from more than 10% to around 2% [8–10].

Serologic markers such as serum galactomannan antigen and β-D-glucan (BDG) have been used for the early diagnosis of IFIs [11]. In previous studies, the BDG assay had fair positive predictive value (PPV) (30–89%) and negative predictive value (NPV) (73–97%) for IFI diagnosis in hematologic patients [8, 12–14]. However, these studies included many patients who did not receive antifungal prophylaxis, leading to a high incidence of IFIs (12–32%). The diagnostic value of BDG testing could be different in hematologic patients receiving antimold prophylaxis who may have a lower prevalence of IFIs, since PPV is largely dependent on the prevalence of a disease [15].

We aimed to reevaluate the diagnostic value of the BDG assay for IFIs in hematologic patients under antimold prophylaxis.
METHODS

Study Setting and Participants

We conducted a retrospective study at Seoul National University Hospital (1,779 patient beds). Among all hospitalized hematologic patients between January 2017 and August 2019, all episodes of induction chemotherapy, stem cell transplantation, or GVHD treatment that had BDG results during posaconazole or micafungin prophylaxis were reviewed. The sensitivity, specificity, PPV, and NPV of BDG testing for IFI diagnosis were sought in these patients. This study was approved by the institutional review board of the hospital (IRB No. 1910-028-1068). The informed consent requirement was waived, since this study was retrospective, involved no interaction with patients, and was considered to be of minimal risk.

Clinical Data and \(\beta\)-D-glucan (BDG) Assay

Age, sex, types of hematologic diseases, additional underlying diseases, the indication and the duration of antimold prophylaxis, dates and results of BDG assays, occurrence of IFIs, and in-hospital mortality were reviewed in the electronic medical record. We also searched the records for potential causes for false-positive BDG assays in the false positive (FP) episodes [12, 16, 17].

BDG testing was ordered by attending physicians according to their clinical needs. The Goldstream kit (Gold Mountain River Tech Development, Beijing, China) was used for the test. The cut-off value for the positive BDG assay was 80.0 pg/mL, according to the manufacturer’s instructions [8].
Definitions

Positive BDG was defined as two or more consecutive BDG results higher than the cut-off. IFIs were classified as proven, probable, or possible following the revised diagnostic criteria [11]. Only proven and probable diagnoses were regarded as positive IFIs in this study [9, 10].

According to the positivity of IFI and BDG, all the episodes were classified into four groups [9, 10]. Episodes with IFI having a positive BDG were classified as true positives (TP), and those without a positive BDG as false negatives (FN). Episodes without IFIs but with a positive BDG were classified as FPs, and those without a positive BDG were designated as true negatives (TN). Non-evaluable episodes included cases in which the prophylactic antifungal agents had been switched to other kinds of agents, such as polyenes or echinocandins, due to prolonged neutropenic fever without any evidence of IFI [9, 10].

BDG assays were classified as diagnostic or for surveillance, based on the situation. When at least one BDG assay was performed in the context of neutropenic fever lasting for more than 5 days despite the use of broad-spectrum antibacterial agents, or in the presence of clinical symptoms or abnormal imaging findings indicating IFI, the episode was considered diagnostic [9, 10]. When all the BDG tests were performed in the absence of clinical evidence of IFI, they were classified as surveillance.

Data Analysis

We calculated the sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) of BDG as follows: the sensitivity was calculated as $\frac{TP}{TP+FN} \times 100\%$, the specificity as $\frac{TN}{TN+FP} \times 100\%$, the PPV as $\frac{TP}{TP+FP} \times 100\%$, ...
and the NPV as \(\frac{TN}{TN+FN} \times 100\% \). These diagnostic values were calculated for both diagnostic and surveillance episodes.

When comparing clinical characteristics between evaluable and non-evaluable or FP episodes and TN episodes, the Student’s \(t \) test or Mann–Whitney \(U \) test was used to compare continuous variables. The Chi-squared test or Fisher’s exact test was used to compare categorical variables. These analyses were performed using PASW for Windows (version 25.0; SPSS Inc., Chicago, IL, USA).

Sensitivity Analyses

Sensitivity analyses were performed to account for potential confounders of BDG diagnostic values. First, the sensitivity, specificity, PPV, and NPV were calculated for subgroups consisting of cases having more than 2, 3, and 4 BDG results, respectively, to account for any confounding by the number of BDG tests performed. Second, those values were calculated separately, according to the type of prophylactic drug used, to see if there were differences related to the choice of antimold agent. Third, we analyzed the subgroup after including only the first episodes in every patients to account effects of including duplicate patients to the diagnostic values. Lastly, diagnostic values were calculated after excluding autologous SCT episodes since it has a lower pre-test probability of IFI than other conditions.
RESULTS

Study Populations and BDG Assays

A total of 203 episodes from 155 patients were identified during the study period. Among them, 117 (57.6%) were male, and the mean (± standard deviation) age was 52.0 (± 14.4) years (Table 1). The most frequent underlying hematologic diseases were AML (n = 115, 56.7%), multiple myeloma or amyloidosis (n = 30, 14.8%), and lymphoma (n = 26, 12.8%) (Table 1). The most common indications for prophylaxis and the respective antimold agents used were the following, ranked by number of cases: induction chemotherapy for AML or myelodysplastic syndrome with posaconazole, 89 (43.8%); autologous SCT with micafungin, 53 (26.1%); allogeneic SCT with micafungin, 48 (23.6%); and GVHD treatment with posaconazole, 13 (6.4%). Additional frequent underlying diseases included hypertension (n = 28, 13.8%), diabetes mellitus (n = 22, 10.8%), other solid malignancy (n = 18, 8.9%), and chronic liver diseases (n=7, 3.4%). The median (interquartile range [IQR]) duration of antimold prophylaxis was 20 (17–29) days.

A total of 629 BDG assays were performed, over a total of 203 episodes (median [IQR], 3 [2–4] per episode). The median numbers of interval days between the commencement of antimold prophylaxis and the first BDG assay, and between BDG assays, were 6 (IQR 3–11) and 4 (IQR 3–7) days, respectively.

There were 62 (30.5%) non-evaluable episodes, whose prophylactic antifungal agents were switched to another class. When compared evaluable and non-evaluable episodes, AML, induction chemotherapy, and posaconazole prophylaxis was more common in non-evaluable episodes (Supplementary Table 1).
Breakthrough IFI Cases

Among the 141 evaluable episodes, there were 8 (5.7%) episodes having positive IFIs, including five probable diagnoses of invasive aspergillosis, two proven cases of candidemia, and one proven case of trichosporosis (Table 2). Among them, only four cases (three invasive aspergillosis and one candidemia) had positive BDG. There was no mucormycosis or cryptococcosis during the study period. The duration of the prophylaxis before the occurrence of IFIs was 3–35 days in those cases.

BDG Diagnostic Values

There were 4 TP, 21 FP, 4 FN, and 112 TN (Table 3). Since breakthrough IFI occurred in 5.7% of episodes, the sensitivity, specificity, PPV, and NPV were calculated as 50.0%, 84.2%, 16.1%, and 96.5%, respectively. There were 108 (76.6%) BDG assays performed for diagnosis and 33 (23.4%) for surveillance. Among the episodes associated with diagnostic BDG assays, there were 4 TP, 11 FP, 4 FN, and 89 TN, yielding sensitivity, specificity, PPV, and NPV values of 50.0%, 89.0%, 26.7%, and 95.7%, respectively. In the surveillance episodes, there were no positive IFIs, with 10 FP and 23 TN, yielding specificity, PPV, and NPV values of 69.7%, 0%, and 100%, respectively.

Potential Causes of False-Positive BDG Results

Among 21 FP BDG assays, frequent potential causes of false positivity were the following: administration of piperacillin/tazobactam (n = 16, 76.2%), intravenous immunoglobulin (n = 10, 47.6%), administration of meropenem (n = 6, 28.6%), and intravenous albumin (n = 6, 27.3%) (Supplementary Table 2). When compared frequencies of those potential causes
between FP and TN episodes, only intravenous albumin administration was significantly more common in FP episodes.

Sensitivity Analyses

There were 109, 78, and 53 evaluable episodes having more than 2, 3, and 4 BDG results, respectively. The respective prevalences of IFI were 6.4%, 9.0%, and 11.3%, yielding respective PPVs of 16.0%, 16.7%, and 17.6% (Table 4). Among 78 and 63 evaluable cases with micafungin or posaconazole use, PPVs were 0% and 20.0%, respectively, since there were no TP cases in the micafungin subgroup. PPV were 18.8% and 16.0% in subgroups after excluding duplicated patients or autologous SCT episodes, respectively (Supplementary Table 3).
DISCUSSION

The present study showed limited PPV and high NPV for the BDG assay in hematologic patients given antimold prophylaxis. PPV was especially low when it was performed for surveillance, and was not high even when performed for diagnostic purposes, underscoring the necessity for prudent interpretation of the test. However, NPVs were commonly high for all assays performed, indicating the BDG assay’s higher value as a rule-out test than as a rule-in test when used during antimold prophylaxis.

There are reports that the BDG assay can be useful in diagnosing IFIs. A meta-analysis from 6 cohort studies comprising 1771 hematologic patients, of whom 215 (12.5%) were diagnosed with proven or probable IFIs, demonstrated the diagnostic value of the BDG assay for IFIs [8]. The sensitivity, specificity, PPV, and NPV for diagnosis of IFIs were calculated as 49.6%, 98.9%, 83.5%, and 94.6%, respectively. However, more than 50% of the patients in the meta-analysis did not receive antimold prophylaxis, leading to a higher prevalence of IFIs than that seen in the present study.

Diagnostic values, especially PPV, must be reevaluated in settings of much lower prevalence since they could be considerably different. Our findings might provide evidence-based direction for the use of the BDG assay in hematologic patients, especially in the era of broad-spectrum antifungal prophylaxis. Expectedly, among eight breakthrough IFI cases in this study, only four showed positive BDG. Moreover, it was falsely positive in 21 episodes, yielding 16.1% of PPV. Rather, when evaluating neutropenic fever, in the absence of positive cultures or radiological findings, a negative BDG with a high negative predictive value may be useful in helping exclude IFI.

Sensitivity analyses were performed to account for potential confounding effects on BDG diagnostic values by the number of tests performed, the types of antimold agents, inclusion of
duplicate patients, or inclusion of autologous SCT (Table 4 and Supplementary Table 3). Though the numbers of episodes included in those respective subgroups were small, the results were similar, indicating the limited effect of those factors on our conclusions.

These results are similar to some reported for the serum galactomannan test. Though used to diagnose invasive aspergillosis, its PPV is reported to be as low as 11.8% for micafungin [9] and 3.2% under posaconazole prophylaxis [10], when there was no clinical evidence of IFI. Decreased IFI prevalence due to the introduction of antimold prophylaxis may contribute to these low PPVs [15].

Potential causes for false-positive BDG results include administration of beta-lactam antibiotics, intravenous immunoglobulin or albumin, other infections, and hemodialysis with cellulose membranes [12, 16, 17]. Especially, there was a report that many antimicrobials including piperacillin/tazobactam or meropenem, which are frequently used in neutropenic patients, could yield positive BDG tests [17]. Such antimicrobial agents were used in most of the FP episodes in this study, which is ordinary phenomenon in high risk hematologic patients. We could not distinguish the exact cause of false positivity between above mentioned factors and intrinsic false positivity because of the low prevalence of IFIs, however, what we have found in this study is abundancy of FP episodes in those hematologic patients. Since we could not review how did blood samples were collected (via Hickman catheter or by venipuncture), further evaluations are warranted if it could affect BDG false positivity.

The present study has some limitations. First, this study was conducted retrospectively and the number of episodes was limited, necessitating further evaluation in a larger, prospective cohort. Second, the BDG assays were not performed regularly and their number varied among episodes. Although we obtained similar results across subgroups represented by
different numbers of BDG tests, the predictive value of BDG testing should be reassessed in a patient population with a generally higher number of BDG tests. Third, BDG tests itself was used as a mycological evidence in the diagnosis of IFI, which may contribute to the overestimation of its performance. However, PPV of BDG was limited in this study despite of such a predisposition. Fourth, therapeutic drug monitoring for posaconazole had not been performed in this study. Lastly, we used the Goldstream kit for the assay rather than widely-studied Fungitell (Associates of Cape Cod, Massachusetts, USA) [12, 13, 18]. Although similar performance of the two tests has been reported [19], further validation of the Goldstream kit is needed.
CONCLUSIONS

In conclusion, in hematologic patients who are taking prophylactic posaconazole or micafungin, BDG test is not helpful in diagnosing IFIs and should be used to exclude IFI rather than to diagnose it.
Acknowledgements

We thank all study subjects for their participation.

Author contributions. C. K. K. and I. K. contrived this study, analyzed the data, and wrote, revised and approved this manuscript. E. C. and T. S. K. collected and analyzed the data, and wrote, revised and approved this manuscript. K. I. J., D. S., Y. K., J. H., P. G. C., W. B. P., N. K., S. Y., and M. O. revised and approved this manuscript. All the authors agreed with the results and conclusions, and approved the final manuscript.

Disclaimer. There was none to declare.

Financial support. There was none to declare.

Potential conflicts of interest. All authors: No reported conflicts of interest. All authors have submitted the ICMJE Form for Disclosure of Potential Conflicts of Interest.
References

1. Taplitz RA, Kennedy EB, Bow EJ, et al. Antimicrobial prophylaxis for adult patients with cancer-related immunosuppression: ASCO and IDSA clinical practice guideline update. J Clin Oncol 2018; 36:3043–3054.

2. Freifeld AG, Bow EJ, Sepkowitz KA, et al. Clinical Practice Guideline for the Use of Antimicrobial Agents in Neutropenic Patients. IDSA Guidel 2010; 52(4):e61. Available at: https://www.idsociety.org/uploadedFiles/IDSA/Guidelines-Patient_Care/PDF_Library/FN.pdf.

3. Alangaden GJ. Nosocomial Fungal Infections: Epidemiology, Infection Control, and Prevention. Infect Dis Clin NA 2019; 25:201–225. Available at: http://dx.doi.org/10.1016/j.idc.2010.11.003.

4. Upton A, Kirby KA, Carpenter P, Boeckh M, Marr KA. Invasive Aspergillosis following Hematopoietic Cell Transplantation: Outcomes and Prognostic Factors Associated with Mortality. Clin Infect Dis 2007; 44:531–540.

5. Sacks FM, Harris A, Se M, et al. New England Journal CREST. Science (80-) 2009; 360:609–619.

6. Döring M, Eikemeier M, Cabanillas Stanchi KM, et al. Antifungal prophylaxis with posaconazole vs. fluconazole or itraconazole in pediatric patients with neutropenia. Eur J Clin Microbiol Infect Dis 2015; 34:1189–1200.

7. van Burik J-AH, Ratanatharathorn V, Stepan DE, et al. Micafungin versus Fluconazole for Prophylaxis against Invasive Fungal Infections during Neutropenia in Patients
Undergoing Hematopoietic Stem Cell Transplantation. Clin Infect Dis 2004; 39:1407–1416.

8. Lamoth F, Cruciani M, Mengoli C, et al. β-glucan antigenemia assay for the diagnosis of invasive fungal infections in patients with hematological malignancies: A systematic review and meta-analysis of cohort studies from the third European Conference on Infections in Leukemia (ECIL-3). Clin Infect Dis 2012; 54:633–643.

9. Vena A, Bouza E, Álvarez-Uría A, et al. The misleading effect of serum galactomannan testing in high-risk haematology patients receiving prophylaxis with micafungin. Clin Microbiol Infect 2017; 23:1000.e1-1000.e4.

10. Duarte RF, Sánchez-Ortega I, Cuesta I, et al. Serum galactomannan-based early detection of invasive aspergillosis in hematology patients receiving effective antimold prophylaxis. Clin Infect Dis 2014; 59:1696–1702.

11. De Pauw B, Walsh TJ, Donnelly JP, et al. Fungal Infections Cooperative Group and the National Institute of Allergy and Infectious Diseases Mycoses Study Group (EORTC/ MSG) Consensus Group. Clin Infect Dis 2008; 46:1813–21.

12. Theel ES, Doern CD. β-D-glucan testing is important for diagnosis of invasive fungal infections. J Clin Microbiol 2013; 51:3478–3483. Available at: https://www.ncbi.nlm.nih.gov/pubmed/23850953.

13. Karageorgopoulos DE, Vouloumanou EK, Ntziora F, Michalopoulos A, Rafailidis PI, Falagas ME. β-D-glucan assay for the diagnosis of invasive fungal infections: A meta-analysis. Clin Infect Dis 2011; 52:750–770.
14. Senn L, Robinson JO, Schmidt S, et al. 1,3-β-d-Glucan Antigenemia for Early Diagnosis of Invasive Fungal Infections in Neutropenic Patients with Acute Leukemia. Clin Infect Dis 2008; 46:878–885. Available at: https://doi.org/10.1086/527382.

15. MAUSNER JS, BAHN AK. Epidemiology. An introductory text. 1974.

16. Marty FM, Koo S. Role of (1→3)-β-D-glucan in the diagnosis of invasive aspergillosis. Med Mycol 2009; 47:S233–S240. Available at: https://doi.org/10.1080/13693780802308454.

17. Liss B, Cornely OA, Hoffmann D, Dimitriou V, Wisplinghoff H. 1,3-β-d-Glucan contamination of common antimicrobials. J Antimicrob Chemother 2015; 71:913–915. Available at: https://doi.org/10.1093/jac/dkv419.

18. Boch T, Spiess B, Cornely OA, et al. Diagnosis of invasive fungal infections in haematological patients by combined use of galactomannan, 1,3-β-D-glucan, Aspergillus PCR, multifungal DNA-microarray, and Aspergillus azole resistance PCRs in blood and bronchoalveolar lavage samples: results of. Clin Microbiol Infect 2016; 22:862–868. Available at: http://dx.doi.org/10.1016/j.cmi.2016.06.021.

19. Wang Y. Session: EV010 Fungal infection & disease Category: 6b. Diagnostic mycology (incl molecular) The comparision study between tachypleus tridentatus and limulus polyphemus with different experiment process for the diagnosis of invasive fungal diseases i. 2017; :11–12.
| Characteristic | Analyzed episodes (n=203) (%) |
|--|-------------------------------|
| Male | 117 (57.6) |
| Age (± SD) | 52.0 (± 14.4) |
| Hematologic diseases | |
| AML | 115 (56.7) |
| MM or amyloidosis | 30 (14.8) |
| Lymphoma | 26 (12.8) |
| MDS | 12 (5.9) |
| ALL | 10 (4.9) |
| Others | 10 (4.9) |
| Indication of the prophylaxis | |
| Induction chemotherapy for AML or MDS | 89 (43.8) |
| Autologous SCT | 53 (26.1) |
| Allogeneic SCT | 48 (23.6) |
| Treatment for GVHD | 13 (6.4) |
| Other underlying diseases | |
| Hypertension | 28 (13.8) |
| DM | 22 (10.8) |
| Solid malignancy | 18 (8.9) |
| Chronic liver disease | 6 (3.0) |
| Chronic kidney disease | 3 (1.5) |
| Antimold prophylaxis | |
| Agents used | |
| Posaconazole | 101 (49.8) |
| Micafungin | 102 (50.2) |
| Duration of antimold prophylaxis, days, median (IQR) | 20 (17-29) |
|---|------------|
| BDG tests | |
| The number of BDG tests, median (IQR) | 3 (2-4) |
| Duration of the prophylaxis before the first BDG, median (IQR) | 6 (3-11) |
| The interval between BDG tests, days, median (IQR) | 4 (3-7) |
| In-hospital mortality | 20 (9.9) |

Abbreviations: SD, standard deviation; AML, acute myelogenous leukemia; MM, multiple myeloma; MDS, myelodysplastic syndrome; ALL, acute lymphoblastic leukemia; SCT, stem cell transplantation; GVHD, graft-versus-host disease; DM, diabetes mellitus; IQR, interquartile range; BDG, β-D-glucan

Data are presented as n (%), if not otherwise specified.
Table 2. Clinical Characteristics of Breakthrough Invasive Fungal Infection Episodes.

Characteristics	#1	#2	#3	#4	#5	#6	#7	#8	
Types of IFI	IA	IA	IA	IA	Candidemia	Candidemia	Trichosporosis	IA	
Age (years)	28	59	63	41	61	43	26	28	
Sex	Male	Male	Male	Male	Female	Male	Male	Male	
Episode	AML, induction	AML, GVHD	MDS, GVHD	Lymphoma, AML,	AML, alloSCT	indiction	GVHD	AA, alloSCT	AML, induction
Days of prophylaxis until the diagnosis of IFIs	25	4	35	13	3	29	13	23	
Positive BDG in serum	No	Yes	Yes	No	No	Yes	No	Yes	
Fungal culture	Not done	Not done	Sputum, no growth	Sputum, no growth	Blood, growth	Blood, growth	Blood, growth	Not done	
Timing of CT scan (before or after BDG)	Before	Before	Before	After	Before	Not performed	After	After	
Image findings	Cavitary lung	Cavitary lung	Multiple lung	Multiple cavitary	-	-	Multiple lung	Cavitary lung	
	nodule in CT	lung nodule	nodules in CT	nodules in CT	-	-	nodules in CT	nodule in CT	
Length of Hospitalization	Outcome	in CT							
---------------------------	---------	------							
77	Alive								
24	Alive								
98	Alive								
53	Alive								
75	Alive								
30	Dead								
95	Alive								
41	Alive								

Abbreviations: IFI, invasive fungal infection; IA, invasive aspergillosis; GVHD, graft-versus-host disease; MDS, myelodysplastic syndrome; SCT, stem cell transplantation; AA, aplastic anemia; BDG, β-D-glucan; CT, computed tomography.
Table 3. Diagnostic Values of β-D-glucan.

	Overall (n=141)	Diagnostic (n=108)	Surveillance (n=33)
TP, n (%)	4 (2.8)	4 (3.7)	0 (0.0)
FN, n (%)	4 (2.8)	4 (3.7)	0 (0.0)
TN, n (%)	112 (79.4)	89 (82.4)	23 (69.7)
FP, n (%)	21 (14.9)	11 (10.2)	10 (30.3)
Sensitivity, % (95% CI)	50.0 (15.7-84.3)	50.0 (15.7-84.3)	-
Specificity, % (95% CI)	84.2 (76.9-90.0)	89.0 (81.2-94.4)	69.7 (51.3-84.4)
PPV, % (95% CI)	16.1 (8.0-29.8)	26.7 (13.0-46.9)	0.0
NPV, % (95% CI)	96.5 (93.3-98.2)	95.7 (91.7-97.8)	100.0

Abbreviations: TP, true positive; FN, false negative; TN, true negative; FP, false positive; CI, confidence interval; PPV, positive predictive value; NPV, negative predictive value
Table 4. Diagnostic Values of β-D-glucan for Subgroups Defined by Test Numbers and Antimold Agents.

	Overall (n=141)	Subgroups according to the numbers of BDG tests	Subgroups according to antimold agents			
		≥2 (n=109)	≥3 (n=78)	≥4 (n=53)	Micafungin (n=78)	Posaconazole (n=63)
TP, n (%)	4 (2.8)	4 (3.7)	4 (5.1)	3 (5.7)	0 (0.0)	4 (6.3)
FN, n (%)	4 (2.8)	3 (2.8)	3 (3.8)	3 (5.7)	2 (2.6)	2 (3.2)
TN, n (%)	112 (79.4)	81 (74.3)	51 (65.4)	33 (62.3)	71 (91.0)	41 (65.1)
FP, n (%)	21 (14.9)	21 (19.3)	20 (25.6)	14 (26.4)	5 (6.4)	16 (25.4)
Sensitivity, %	50.0 (15.7-)	57.1 (18.4-)	57.1 (18.4-)	50.0 (11.8-)	0.0 (0.0-)	66.7 (22.3-)
(95% CI)	84.3	90.1	90.1	88.2	84.2	95.7
Specificity, %	84.2 (76.9-)	79.4 (70.3-)	71.8 (59.9-)	70.2 (55.1-)	93.4 (85.3-)	71.9 (58.5-)
(95% CI)	90.0	86.8	81.9	82.7	97.8	83.0
PPV, % (95% CI)	16.1 (8.0-)	16.0 (8.3-)	16.7 (8.7-)	17.6 (7.9-)	0.0 (NA)	20.0 (11.0-)
NPV, % (95% CI)	96.5 (93.3-)	96.4 (92.0-)	94.4 (87.7-)	91.7 (82.9-)	97.3 (97.1-)	95.3 (86.8-)

Abbreviations: BDG, β-D-glucan; TP, true positive; FN, false negative; TN, true negative; FP, false positive; CI, confidence interval; PPV, positive predictive value; NA, not applicable; NPV, negative predictive value