The Effect of Sudanese Smokeless Tobacco (Toombak) using on Oral Microbiota

Mudathir Abdelshafèa Abdelkareem Abakar1*, Abdalazim Abubaker Ismail Omer 2 and Albashir Mosab Mustafa Yousif2

1. Assistant professor, Department of Medical Microbiology and Immunology, Alzaiem Alazhari University, Khartoum, Sudan.
2. Department of Medical Microbiology and Immunology, Alzaiem Alazhari University, Khartoum, Sudan.

*Corresponding author

mudashafac@yahoo.com

Key words: Smokeless tobacco, Toombak, oral Microbiota.
ABSTRACT

Background:

Toombak, saffa and saod are the common local name of Sudanese smokeless tobacco which used by large population in different regions in Sudan. That chemical nature of Toomback includes very high levels of carcinogenic substances, strong alkaline materials and microorganisms. The used of Toombak implying application of the highly addictive product in the mouth many times per day for long times differed from users to other.

Objectives:

The objective of this study was to study the effect of Toombak on the oral microbial flora (Microbiota).

Materials and Methods:

100 buccal swabs were collected in this study, 50 swabs from Toombak users and 50 swabs from non Toombak users as control group. All the participants were non smokers. The swabs were cultured on Chocolate agar, Blood agar and Sabouraud agar and incubated aerobically for up to 7 days. Then colonial morphology, indirect microscopy and biochemical tests were used to identify the isolated organism.

Results:

Toomback shows inhibitory effect on the viridanas streptococci and the baccual swabs collected from toomback users show significant increase in number of mixed growth (P value 0.000/ likelihood ratio 43.24) and colonization of oral
cavity with *Bacillus species* (P value 0.000/ likelihood ratio 57.41), *Aspergillus species* (P value 0.003/ likelihood ratio 10.462) and *Aspergillus flavus* (P value 0.036/ likelihood ratio 4.45).

Conclusion:

Toombak using is affecting the quality and quantity of the oral normal flora because it has inhibitory effect on *viridians streptococci*, leading to rising of new colonizing species such as *Bacillus species* and *Aspergillus specie* especially aflatoxins producing *Aspergillus flavus*. These changes in the microenvironment may affect the immunity and health of the Toombak users and may lead to serious oral and systemic health problems.
Introduction:

Using of the smokeless tobacco is common worldwide practice in more than 70 countries with different socioeconomic background especially in South-East Asia Region, which includes about 89% of the world’s users (1).

Many studies were conducted and connected the smokeless tobacco with different pathological conditions mainly cancers including oral cavity, nasal cavity, esophagus, pancreas, lung, trachea and liver in human and animal models. This wide range of cancers refers to many carcinogenic substances which counted more than 30 carcinogens have been identified in different brands of smokeless tobacco (1, 2, 3).

Oral and systemic effect of smokeless tobacco (SLT):

The South African smokeless tobacco product contains very the high PH in the (4) which associated with development of oral keratotic lesions (5). More severe lesions have been associated with higher pH values supporting the idea that a higher product pH is associated with increased toxicity (6). Smokeless tobacco also significantly associated to oral health problems included gingival recession, leukoplakia tooth loss and loss of periodontal attachment on the side of product placement is supported in previous studies (7, 8, 9). Xerostomia, white mucosal lesions and systemic effects such as cardiovascular system, digestive and genitourinary symptoms had been reported and related to some brands of smokeless tobacco (10, 11, 12, 13, 14).
Toombak

The Sudanese form of smokeless tobacco product (Toombak) using in form of snuff-dipping process called (Suffa) which a small ball of Toombak commonly applied over the gums and teeth and sucked slowly for 10 to 15 minutes, the process repeated about 20 time per day in average\(^{(15, 16)}\).

Toomback is prepared from leaves of \textit{Nicotiana rustica} by in high alkaline condition of aqueous solution of sodium bicarbonate, the process involve fermentation for up to one year and other complex process resulted in formation of moist paste form Toombak which is has strong aroma, highly addictive and contains high level of nicotine and nornicotine at least 100-fold higher concentrations of the tobacco-specific N-nitrosamines (TSNA) than US and Swedish commercial snuff brands \(^{(17, 18)}\).

Normal flora

Normal flora or bacterial normal flora or microflora is the population of microorganisms that inhabit the skin and mucous membranes of healthy normal persons. About half of the oral microflora are \textit{viridians streptococci} such as \textit{Streptococcus mutans} and \textit{Streptococcus sanguinis}. The other half include many bacterial families such as \textit{Eikenella corrdens, Bacteroides, provetella, Fusbacterium, Colstridium}, and \textit{Peptostreptococcus} and \textit{Actinomyces species}. This normal flora considers a first defense line against microbial pathogens, besides their role maturation of the immune system \(^{(19, 20)}\).
Rationale

The carcinogenic effect of Toomback has been intensively studied. The aim of this work is to study the effect of Toomback on oral microbial flora. The problem of this study rose from the hypothesis that if Toomback has an effect on the balance of microflora, this may contribute to oral, dental and periodontal infections and may affect the immunity of oral mucosa.

Method and material:

This case control study was conducted in Alzaiem Alazhari University, Khartoum, Sudan during the period from March to June 2018. The study included 100 male; 50 of them were Toomback users and they sets as case group, and the rest 50 participants were never used Toomback before their participation. All of the participants were non smokers.

Oral swabs (buccal) were collected from the entire participants for isolation and Identification of isolated organism. Antimicrobial sensitivity of Toomback was tested on the isolated organisms.

The collected swabs were cultured on blood agar, chocolate blood agar and sabouraud agar and incubated aerobically at 37°C for 24-72 hours, with addition of 5-10% carbon dioxide enrich environment for chocolate agar.

Colonial morphology, indirect gram stain and biochemical tests were used for identification of bacterial isolates.

Needle mount with lactophenol cotton blue stain were used for identification of isolated fungi based on their morphological features.
Sensitivity test for Toombak to isolated micro organism:

Under sterile condition make wells on sterile media. Then weight the Toombak about 3g/ml of normal saline. Culture the microorganism under the test on the media which contains the wells. Add the snuff solution to the wells. Incubate at 37c for 24 hours. Measure the inhibition zone.

Ethic consideration:

This study was approved to carry out by the ethical committee of Alzaiem Alazhari University. Every participant was informed by the objective of the study, purpose of the study and received formal consent for voluntary participation, and their privacy and confidentiality have been maintained and protected.

Statistical analysis:

Frequencies, independent T-Test, Chi square test and likelihood ratio were computerizing calculated by statistical package for social science (SPSS®) program 21.

Results:

All of the oral swabs obtained from the 100 participants of the study, showed growth, 53(53%) of the growth was yelled one organism. The most isolated bacteria is *viridanas streptococci* which grow on the 96(96%) of the specimens. Whereas *Aspergillus species* is the only isolated fungi in this study and grow from 33(33%) specimen (Table1).
This study revealed that there were no inhibition zone of Toombak on *Bacillus species* and *Aspergillus species*. The inhibitory effect was noted *viridanas streptococci* but there were insignificant mean differences between the mean of inhibitory zone of Toombak among *viridanas streptococci* isolated from the Toombak users and control group (Table 2).

Table 3 illustrated significant increase in number of mixed growth among Toombak users (P value 0.000/ likelihood ratio 43.24). And Toomback users have less significant frequencies of pure growth of *viridanas streptococci* (P value 0.000/ likelihood ratio 57.41). There were a significant association between using of Toombak and colonization of oral cavity with *Bacillus species* (P value 0.000/ likelihood ratio 57.41) and *Aspergillus species* (P value 0.003/ likelihood ratio 10.462). 10 out of the 13 strains of *Aspergillus flavus* (76.9%) was isolated from Toombak users, this give a significantly association of oral colonization of *Aspergillus flavus* with Toombak using (P value 0.036/ likelihood ratio 4.45).
Table (1) shows Study variables

Study variables	Frequency	Percent	
Study groups	Case	50	50.0
	Control	50	50.0
Number of isolated organisms	One organism	53	53.0
	Two organisms	33	33.0
	Three organisms	14	14.0
Types of isolated organisms	Viridians streptococci	69	69.0
	Bacillus species	4	4.0
	Viridians and Bacillus	27	27.0
Fungal species	Aspergillus flavus	13	27.3
	Aspergillus niger	11	33.3
	Aspergillus terrus	9	39.4

Table (2) shows statistics and mean differences of inhibition zone of snuff against isolated bacteria among case and control groups.

inhibition zone of toombak	Case	Control	P value
	19.28±1.772	19.54±1.843	0.488

- t-test was used to calculate P value
- P value less than 0.05 considered significant
- Mean± Standard deviation
Table (3) shows association of study variables with study groups

Study groups	Case	Control	P value	L R
Number of the isolated organisms				
One organism	12(12.0%)	41(41.0%)	**0.000**	**43.26**
Two organisms	24(24.0%)	9(9.0%)		
Three organisms	14(14.0%)	0(0.0%)		
Isolated organisms				
Viridians streptococci	19(19.0%)	50(50.0%)	**0.000**	**57.41**
Bacillus species	4(4.0%)	0(0.0%)		
Viridians streptococci and Bacillus	27(27.0%)	0(0.0%)		
Bacillus species				
Yes	31(31.0%)	0(0.0%)	**0.000**	**57.41**
No	19(19.0%)	50(50.0%)		
Fungi				
Yes	24(24.0%)	9(9.0%)	**0.003**	**10.462**
No	26(26.0%)	41(41.0%)		
Fungal species				
Aspergillus flavus	10(30.3%)	3(9.1%)	0.708	0.627
Aspergillus terrus	7(21.2%)	2(6.1%)		
Aspergillus niger	7(21.2%)	4(12.1%)		
Aspergillus flavus				
Yes	10(10%)	3(35)	**0.036**	**4.54**
No	40(40%)	47(47%)		

- Chi square test was used to calculate p value
- P value less than 0.05 considered significant
- LR= Likelihood Ratio
Discussion:

This study was studied the effect of Toombak on oral micro-flora. At least to our knowledge there is no published study about the effect of Toombak on oral micro flora.

In this study we found significant increase in number and types of isolated microorganisms among Toombak users. Many chemicals products of microbial metabolisms was detected in tobacco and used as markers which indicate bacterial and fungal growth in \((21, 22)\). In addition to that, the high content of different types of microorganisms such as bacteria and fungi in growing tobacco which may reach \(10^5\) to \(10^6\) organism per gram of leaf materials with increase in microorganism concentration by 10 to 20 times during beginning of the process \((23)\).

Our study revealed the were no inhibitory effect of Toombak on *Bacillus species* and *Aspergillus species* with more inhibitory effects on *viridians streptococci*, beside a significant decrease in number of pure *viridians streptococci* isolates among Toombak users. In the other hand, we found that there was significant association between using of Toombak and colonization of oral mucosa with *Bacillus species* and *Aspergillus species*. Several studies were enumerating the bacterial populations of tobacco with predominant presence of *Bacillus species* and *Aspergillus species* \((24,25, 26, 27, 28, 29, 30, 31.)\). This may be due to presence of spores which make the *Bacillus species* more resistant to harsh environment following fermentation of tobacco \((24, 25, 27)\).
Regarding the inhibitory effect against *viridians streptococci*, this finding is similar to study conducted by Qandil R (32) show that *viridians streptococci* is more susceptible to the effects of nicotine in contrast to *staphylococcus aureus*, *spirocheate* and *B.burgdorferi* were only slightly inhibited or were completely unaffected following exposure to nicotine. Another invitro study conducted by Lindemeyer RG (33) shows contrast to our study which show stimulation of the growth of *Streptococcus mutans* and *Streptococcus sanguis* in the presence of smokeless tobacco extracts this difference may be due to difference in sugar and nicotine content of the smokeless tobacco product.

The present study shows a significant association between oral colonization with *Aspergillus flavus* and using of Toombak. This agreed with the work of Varma SK (34) and his accompaniments who reported presence of aflatoxins producing *Aspergillus* in the tobacco.

Conclusion:

Toombak using is affecting the quality and quantity of the oral normal flora because it has inhibitory effect on *viridians streptococci*, leading to rising of new colonizing species such as *Bacillus species* and *Aspergillus specie* especially aflatoxins producing *Aspergillus flavus*. These changes in the microenvironment may affect the immunity and health of the Toombak users and may lead to serious oral and systemic health problems.
References

1. National Cancer Institute and Centers for Disease Control and Prevention. Smokeless Tobacco and Public Health: A Global Perspective. Bethesda, MD: U.S. Department of Health and Human Services, Centers for Disease Control and Prevention and National Institutes of Health, National Cancer Institute. NIH Publication No. 14-7983; 2014.

2. Cogliano V, Straif K, Baan R, Grosse Y, Secretan B, El Ghissassi F. Smokeless tobacco and tobacco-related nitrosamines. Lancet Oncol. 2004; 5(12):708.

3. International Agency for Research on Cancer. Betel-quid and areca-nut chewing and some areca-nut-derived nitrosamines. IARC monographs on the evaluation of carcinogenic risks to humans. Vol. 85. Lyon, France: World Health Organization, International Agency for Research on Cancer; 2004.

4. Stanfill SB1, Connolly GN, Zhang L, Jia LT, Henningfield JE, Richter P, Lawler TS et al. Global surveillance of oral tobacco products: total nicotine, unionised nicotine and tobacco-specific N-nitrosamines. Tob Control. 2010;20(3):e2.

5. Hille JJ, Shear M, Sitas F. Age standardized incidence rates of oral cancer in South Africa, 1988-1991. J Dent Assoc S Afr. 1996; 51(12):771-776.

6. Ayo-Yusuf OA, Swart TJ, Ayo-Yusuf IJ. Prevalence and pattern of snuff dipping in a rural South African population. SADJ. 2000; 55(11):610-614.
7. Yarom, N, Epstein J, Levi H, Porat D, Kaufman E, Gorsky M. Oral manifestations of habitual khat chewing: a case-control study. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2010;109 (6):60-66.

8. Al-Sharabi AK, Shuga-Aldin H, Ghandour I and Al-Hebshi NN. Qat chewing as an independent risk factor for periodontitis: a cross-sectional study. Int J Dental.2013: 317640:7.

9. Ali AA. Qat habit in Yemen society: a causative factor for oral periodontal diseases. Int J Environ Res Public Health. 2007;4:243-247.

10. Ali AA, Al-Sharabi AK, Aguirre JM, Nahas R. A study of 342 oral keratotic white lesions induced by qat chewing among 2500 Yemeni. J Oral Pathol Med. 2004;33(6):368-372.

11. Schmidt-Westhausen, AM, Al Sanabani J, Al-Sharabi AK. Prevalence of oral white lesions due to qat chewing among women in Yemen. Oral Dis. 2014;20(7):675-681.

12. Brenneisen R, Fische HU, Koelbing U, Geisshusler S, Kalix P. Amphetaminelike effects in humans of the khat alkaloid cathinone. Br J Clin Pharmacol. 1990;30(6):825-828.

13. Warfa N, Klein A, Bhui Kamaldeep, Leavey G, Craig T, Alfred Stansfeld S. Khat use and mental illness: a critical review. Soc Sci Med. 2007;65(2):309-318.

14. Allard WF, DeVol EB, Te OB. Smokeless tobacco (shamma) and oral cancer in Saudi Arabia. Community Dental Oral Epidemiol. 1996;27(6):398-405.
15. International Agency for Research on Cancer. Smokeless tobacco and some tobacco-specific N-nitrosamines. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans. Vol. 89. Lyon, France: World Health Organization, International Agency for Research on Cancer; 2007.

16. Idris AM, Ibrahim SO, Vasstrand EN, Johannessen AC, Lillehaug JR, Magnusson B, et al. The Swedish snus and the Sudanese toombak: are they different? Oral Oncol. 1998;34(6):558–66.

17. Idris A.M. Hoffmann D. Toombak: A Major Risk Factor for Cancer of the Oral Cavity in Sudan. Preventive Medicine. 1994; 23 (6):832-839.

18. A.M Idrisa RNilsenc. The Swedish Snus and the Sudanese Toombak: are they different?. Oral Oncology. 1998;34,(6):558-566.

19. Levinson W. Review of Medical Microbiology and Immunology, 13th Edition, chapter 6. Mc Graw-Hill Education. Permitted under united state. 2014: 37.

20. Carroll KC, Morse SA, Timothy Mietzner T and Miller S. Jawetz, Melnick, & Adelberg’s Medical Microbiology. 27th edition. McGraw-Hill Education. New York, USA. 2016:169.

21. Larsson L, Szponar B, Ridha B, Pehrson C, Dutkiewicz J, Krysinska-Traczyk E, et al. Identification of bacterial and fungal components in tobacco and tobacco smoke. Tob Induc Dis. 2008;4:4.
22. Pauly JL, Paszkiewicz G. Cigarette smoke, bacteria, mold, microbial toxins, and chronic lung inflammation. J Oncol. 2011;2011:819129.

23. Wiernik A, Christakopoulos A, Johansson L, Wahlberg I. Effect of air-curing on the chemical composition of tobacco. Recent Adv Tob Sci. 1995;21:39–80.

24. Fisher MT, Bennett CB, Hayes A, Kargalioglu Y, Knox BL, Xu D, et al. Sources of and technical approaches for the abatement of tobacco specific nitrosamine formation in moist smokeless tobacco products. Food Chem Toxicol. 2012;50:942–8.

25. Di Giacomo M, Paolino M, Silvestro D, Vigliotta G, Imperi F, and Visca P et al. Microbial community structure and dynamics of dark fire-cured tobacco fermentation. Appl Environ Microbiol. 2007;73:825–37.

26. Pauly JL, Paszkiewicz G. Cigarette smoke, bacteria, mold, microbial toxins, and chronic lung inflammation. J Oncol. 2011;2011:819129.

27. Sapkota AR, Berger S, Vogel TM. Human pathogens abundant in the bacterial metagenome of cigarettes. Environ Health Perspect. 2010;118(3):351–356.

28. Ayo-Yusuf OA, Reddy PS, van den Borne BW. Association of snuff use with chronic bronchitis among South African women: implications for tobacco harm reduction. Tob Control. 2008;17:99–104.
29. Bao P, Huang H, Hu ZY, Haggblom MM, Zhu YG. Impact of temperature, CO2 fixation and nitrate reduction on selenium reduction, by a paddy soil clostridium strain. J Appl Microbiol. 2013;114(3):703–12.

30. Winn W, Allen S, Janda W, Koneman E, Procop G, Schreckenberger P, et al. Koneman’s color atlas and textbook of diagnostic microbiology. 6th edition. Philadelphia: Lippincott Williams & Wilkins, 2006.

31. Cockrell WT, Roberts JS, Kane BE, Fulghum RS. Microbiology of oral smokeless tobacco products. Tobacco Int. 1989;55–57.

32. Qandil R, sandhu HS and Matthews DC. Tobacco smoking and periodontal disease. J can dental Assoc. 1997; 63:187-195.

33. Lindemeyer RG, Baum RH, Hsu SC, Going RE. In vitro effect of tobacco on the growth of oral cariogenic streptococci. J Am Dent Assoc.1981; 103(5):719-22.

34. Varma SK, Verma RA, Jha AK. Ecotoxicological aspects of Aspergilli present in the phylloplane of stored leaves of chewing tobacco (Nicotiana tabaccum). Mycopathologia. 1991; 113(1):19–23.