Comparison of the Biochemical Activities of Commercial Yogurts and \textit{Lactobacillus acidophilus}-containing Yogurt

Jae-Ki Ryu1, Hyeong-Seon Lee2, Bon-Kyung Koo3, and Hyun-Kyung Kim1

1Department of Biomedical Laboratory Science, Gimcheon University, Gimcheon 740–704, Korea
2Department of Biomedical Laboratory Science, Jungwon University, Chungbuk 367–700, Korea
3Department of Laboratory Medicine, Samsung Medical Center, Seoul 135–710, Korea

Lactic acid-producing bacteria such as \textit{Lactobacillus} spp., function to ferment carbohydrates and produce ATP. \textit{Lactobacillus} spp. are used for the production of commercial yogurts. \textit{Lactobacillus} spp. are beneficial to the intestinal tract, and \textit{Lactobacillus acidophilus}-containing yogurts have received considerable attention because of their preventive effects against early-stage cancer of the large intestine. In this study, lactic acid–producing bacteria were cultured from three different groups: commercial solid yogurt (for eating), commercial liquid yogurt (for drinking), and \textit{Lactobacillus acidophilus}-containing yogurt. We first determined the optimum culture conditions for \textit{Lactobacillus} spp. and then analyzed turbidity and pH in order to compare the growth abilities and lactic acid–production capacities among the groups. Finally, high–performance liquid chromatography was used to measure the lactic acid content in the culture supernatants, and the antibacterial activities against \textit{Staphylococcus aureus} and \textit{Escherichia coli} were compared among the three groups. The optimum culture conditions for \textit{Lactobacillus} spp. were MRS medium at 25°C, for 24 h. The highest turbidity was found in \textit{L. acidophilus}-containing yogurt, followed by liquid yogurt and solid yogurt. Similarly, the highest lactic acid production ability was found in \textit{L. acidophilus}-containing yogurt, followed by liquid yogurt and solid yogurt. Culture supernatants from the three groups did not show any antibacterial activity towards \textit{S. aureus}; however, supernatants derived from \textit{L. acidophilus}-containing yogurt resulted in a 1.8 mm inhibitory zone against \textit{E. coli} in a paper disk diffusion test. These results revealed the high level of lactic acid–production capacity and antibacterial activity in \textit{L. acidophilus}-containing yogurt.

\textbf{Keywords:} \textit{Lactobacillus acidophilus}, Yogurt, Lactic acid, Antibacterial activity

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

Introduction

Lactic acid–producing bacteria such as \textit{Lactobacillus} spp., which ferment carbohydrates and produce ATP (Kandler, 1983) are known for their considerable benefits to the health of the human intestine. Indeed, probiotic substances produced by \textit{Lactobacillus} spp. are used in the food and pharmaceutical industries for manufacturing products that maintain

www.kjcls.org
the stability of the normal intestinal flora. These probiotic substances have various effects on the physiology and health of individuals. For example, these probiotics have been shown to protect against cancer, decrease cholesterol levels in the blood, promote the growth of beneficial bacteria, and improve the absorption of lactose (Robinson et al., 1984; Kim et al., 1993; Andersson et al., 2001; Ranadheera et al., 2010; Ooi and Liong, 2010). Additionally, *Lactobacillus acidophilus* has been shown to prevent the development of cancer of the large intestine (Wollokiswski et al., 2001). Thus, *Lactobacillus* spp. have a range of biological effects that are beneficial to health.

In the food industry, *Lactobacillus* spp. are used extensively for producing cheese, bean paste, fermented milk, kimchi, soy sauce, yogurt, and yogurt-based products (Sugiyama, 1984; Lücke, 1996; Leory and Vuyst, 2004; Lee et al., 2011). Yogurt is classified into solid and liquid types. Solid-type yogurt was first introduced in Korea in 1981. Since the early 1970s, after the sale of liquid-type yogurt containing 3% milk solids produced by Japan, the consumption of yogurt has increased dramatically every year. Moreover, consumption of solid yogurt is gradually increasing in consumers with a high standard of living.

Staphylococcus aureus is a gram-positive bacterium isolated from the nasal cavities of healthy adult and from sites of infection; this bacterium is association with hospital and community-acquired infections (Kim, 2012; Han and Kim, 2014). Some strains of *S. aureus* are resistant to antimicrobial agents (Kim, 2012; Han and Kim, 2014). *Escherichia coli* is a part of the normal flora of the human intestine; however, this bacterium can occasionally cause opportunistic infection and exhibit antimicrobial resistance (Lee and Choi, 2007; Kim et al., 2012; Sung et al., 2013).

Although many commercial yogurts have been used to promote health, the content and activities of lactic acid bacteria in solid and liquid yogurts have not been fully elucidated. Therefore, in this study, we aimed to compare the lactic acid-producing capacities and antibacterial activities of commercial solid and liquid yogurts and a homemade yogurt containing *L. acidophilus*. We expect that our results will provide important insights into the production of more effective probiotic yogurts.

Materials and Methods

1. Materials

Solid and liquid-type yogurts from three different companies purchased from local supermarkets and a single strain of *L. acidophilus* were included in this study. All materials were analyzed within 24 h after storage at 10°C in a refrigerator.

2. Culture and preprocessing

One milliliter of each sample type (solid yogurt, liquid yogurt and *L. acidophilus*-containing yogurt) was cultured in 200 mL MRS broth with Tween 80 (MB Cell, Los Angeles, CA, USA) for 24 h in an incubator (J-2000, JISICO, Seoul, Korea) at 25°C and centrifuged three times at 3000 rpm for 1 min. The turbidity of each sample was adjusted to 0.5 McFarland units by spectrophotometry (MAP LAB PLUS, BSI, Arezzo, Italy) at 630 nm. The cultures for the three groups were maintained in incubators at 37°C or 25°C and divided into subgroups on the basis of incubation time (24, 48, or 72 h) in MRS broth with Tween 80.

3. pH analysis

pH was determined for each sample more than three times with a pH meter (HM-25R, Analyticon, Springfield, NJ, USA) at 25°C. Buffers at pH 4.01 and pH 6.86 were used for calibration.

4. Turbidity test

Commercial yogurts from three different companies (a, b, and c; 100 mL each) and a strain of *L. acidophilus* were cultured in MRS broth with Tween 80 for 24 h at 25°C. The absorbance was then measured at 630 nm by spectrophotometry. Sterile MRS broth with Tween 80 was used for blank samples.

5. High–performance liquid chromatography (HPLC) analysis

Lactic acid was used as the index component. Culture supernatants were obtained from 24 h cultures in MRS broth
with Tween 80 by centrifugation at 3000 rpm for 10 min.

The HPLC system (LC-20AD, Shimadzu, Nakagyo, Kyoto, Japan) comprised a pump, auto sampler, RS column compartment, UV-VIS detector, photo-diode array detector, high-pressure switching valve, and column (Shiseido, Minato-ku, Tokyo, Japan) maintained at 30°C. The mobile phase was 0.1% phosphoric acid: acetonitrile (9:1). The wavelength was measured at 254 nm at a flow rate of 1.0 mL/min. The injection volume was 10 μL.

6. Antibacterial activity

Sensitivity tests were conducted to investigate the antibacterial effects of the solid-type, liquid-type, and L. acidophilus-containing yogurts against two strains of bacteria commonly associated with food poisoning, namely S. aureus (ATCC 25923), and E. coli (ATCC 25922). Nutrient broth (BD, Franklin Lakes, NJ, USA) was used for culturing both S. aureus and E. coli. Mueller–Hinton agar (BD) was used for the sensitivity tests. Frozen samples of S. aureus and E. coli were cultured for 24 h in TSB (BD). Next, each strain was mixed in 0.85% saline and the mixture was adjusted to a turbidity of 0.5 McFarland units (spectrophotometer, 650 nm). Twenty microliters of each yogurt culture supernatant obtained from 24 h cultures in MRS broth with Tween 80 was dispensed onto paper disks for the disk diffusion assay.

7. Statistical analysis

All experiments were repeated at least three times. The results are presented as the mean±standard deviation (SD). All experimental data were analyzed using the SPSS program (SPSS 18.0, SPSS Institute, Chicago, IL, USA). One-way analysis of variance (ANOVA) with Duncan’s multiple range tests was used to examine the differences between groups. Differences with p values of less than <0.05 were considered statistically significant.

Results

1. Turbidity test

Increased turbidity suggests the growth of bacteria. Liquid yogurt was found to have a significantly higher absorbance than solid yogurt, while L. acidophilus-containing yogurt had a significantly higher absorbance than liquid yogurt (Fig. 1). These data implied that L. acidophilus-containing yogurt had the highest growth ability among the three groups.

2. pH meter analysis

pH is indicative of acid–producing activity. The lowest pH was in the L. acidophilus-containing yogurt followed by liquid yogurt and solid yogurt (Fig. 2). Thus, the L. acidophilus-containing yogurt had the highest lactic acid production, while solid yogurt had the lowest. However, the pH values of the liquid yogurt and L. acidophilus-containing yogurt were not significantly different.

3. HPLC analysis

HPLC analysis revealed that lactic acid production was in the order of L. acidophilus-containing yogurt > liquid yogurt > solid yogurt.
> solid yogurt (Fig. 3).

4. Antibacterial activity

Culture supernatants from the commercial yogurts and *L. acidophilus*-containing yogurt did not show any antibacterial activity against *S. aureus* (data not shown). However, *L. acidophilus*-derived supernatants showed an inhibitory zone of 1.8 mm in response to *E. coli* in a paper disk diffusion test (Fig. 4).

Discussion

In this study, culture turbidity and pH were measured to compare the growth ability and lactic acid production among solid-type, liquid-type, and *L. acidophilus*-containing yogurt. *L. acidophilus*-containing yogurt had the highest turbidity and lowest pH. Additionally, *L. acidophilus*-containing yogurt exhibited the highest lactic acid production, followed by...
liquid yogurt and solid yogurt. *L. acidophilus*-containing yogurt also showed the highest antibacterial activity. Thus, our data provide important insights into the production of more effective probiotic yogurts.

Lactic acid is a weak-organic acid and plays a role in diverse biochemical processes (Ibrahim et al., 2008). Ibrahim et al. (2008) reported that lactic acid inhibits the growth of pathogens such as *Salmonella* and *E. coli* and Alakomi et al. (2000) showed that lactic acid exerts antimicrobial activity through inducing the permeabilization of gram-negative bacteria and lowering of the pH.

S. aureus and *E. coli* can cause hospital and community-acquired infections or opportunistic infection. Moreover, some strains show resistance to antimicrobial agents (Lee and Choi, 2007; Kim, 2012; Kim et al., 2012; Sung et al., 2013; Han and Kim, 2014). In our study, *L. acidophilus*-containing yogurt showed antibacterial ability against *E. coli* but, not against *S. aureus*. High lactic acid production was also observed for this sample. These data indicated that *L. acidophilus* may be a source of antibacterial substances.

In summary, *L. acidophilus*-containing yogurt had high lactic acid production and antimicrobial activity. Thus, further studies are warranted to ascertain whether commercial food products produced using *L. acidophilus* may also affect other substances within the human gastrointestinal tract, including gastric acids, bile salts, or various enzymes.

Acknowledgements: This study was financially supported by Gimcheon University.

Funding: None

Conflict of interest: None

References

1. Alakomi HL, Skytta E, Saarela M, Mattila-Sandholm T, Latvakula K, Helander IM. Lactic acid permeabilizes gram-negative bacteria by disrupting the outer membrane. *Applied and Environmental Microbiology*. 2000,66:2001-2005.
2. Andersson H, Asp NG, Bruce A, Roos S, Wadstrom T, Wold AE. Health effects of probiotics and prebiotics: A literature review on human studies. *Scand J Nutr*. 2001,45: 58-75.
3. Han DH, Kim HC. Rapid detection of methicillin resistant *Staphylococcus aureus* based on surface enhanced raman scattering. *Korean J Clin Lab Sci*. 2014,46:136-139.
4. Ibrahim SA, Yang H, Seo CW. Antimicrobial activity of lactic acid and copper on growth of *Salmonella* and *Escherichia coli* 0157:H7 in laboratory medium and carrot juice. *Food Chemistry*. 2008,109:137-143.
5. Kandler O. Carbohydrate metabolism in lactic acid bacteria. *Annotia van Leuwenhoek*. 1983,49:209-224.
6. Kim BY, Thiyam G, Kang JE, Lee SH, Park SH, Kim JS, et al. Development of an *Escherichia coli* biofilm model on transwell. *Korean J Clin Lab Sci*. 2012,44:112-117.
7. Kim CH, Lee JY, Kim MK, Kim SH, Park GY, Bae SY, et al. Isolation rate of methicillin-resistant *Staphylococcus aureus* (MRSA) from nasal cavity inferior regions and cellular phones. *Korean J Clin Lab Sci*. 2012,44:118-123.
8. Kim MS, Ahn ES, Shin DH. Physico-chemical properties of commercial yoghurt in Korea. *Korean J Food Sci Technol*. 1993,25:340-344.
9. Lee HJ, Yoon HS, Ji YS, Kim HN, Park HJ, Lee JE, et al. Functional properties of *Lactobacillus* strains isolated from kimchi. *International Journal of Food Microbiology*. 2011,145: 155-161.
10. Lee MH, Choi CS. Antimicrobial resistance profiles of *Eae* positive *Escherichia coli*. *J Fd Hyg Safety*. 2007,22:116-119.
11. Leroy F, Vuyst LD. Lactic acid bacteria as functional starter cultures for the food fermentation industry. *Trends in Food Science & Technology*. 2004,15:57-78.
12. Liu et al. Lactic acid bacteria involved in food fermentations and their present and future uses in food industry. *Lactic Acid Bacteria NATO ASI Series*. 1996,98:81-99.
13. Ooi LG, Lione MT. Cholesterol-lowering effects of probiotics and prebiotics: A review of *in vivo* and *in vitro* findings. *Int J Mol
14. Ranadheera RD, Baines SK, Adams MC. Importance of food in probiotic efficacy. *Food Research International*. 2010;43:1-7.

15. Robinson IM, Whipp SC, Bucklin JA, Allison MJ. Characterization of predominant bacteria from the colons of normal and dysenteric pigs. *Applied and Environmental Microbiology*. 1984;33:79-85.

16. Sugiyama SI. Selection of micro-organisms for use in the fermentation of soy sauce. *Food Microbiology*. 1984;1:339-347.

17. Sung JY, Oh JE, Kim ES, Son JM, Kim HY, Lim DY. Spread of CTX-M extended-spectrum β-lactamase producing *Escherichia coli* in the community in Chungcheong area, Korea. *Korean J Clin Lab Sci*. 2013;45:43-47.

18. Wollowski I, Rechkemmer G, Pool-Zobel BL. Protective role of probiotics and prebiotics in colon cancer. *Am J Clin Nutr*. 2001;73:451S-455S.