Genetic diversity of *Colletotrichum lupini* and its virulence on white and Andean lupin

J. A. Alkemade¹, M. M. Messmer², R. T. Voegele², M. R. Finckh³ & P. Hohmann*⁴

Lupin cultivation worldwide is threatened by anthracnose, a destructive disease caused by the seed- and air-borne fungal pathogen *Colletotrichum lupini*. In this study we explored the intraspecific diversity of 39 *C. lupini* isolates collected from different lupin cultivating regions around the world, and representative isolates were screened for their pathogenicity and virulence on white and Andean lupin. Multi-locus phylogeny and morphological characterizations showed intraspecific diversity to be greater than previously shown, distinguishing a total of six genetic groups and ten distinct morphotypes. Highest diversity was found across South America, indicating it as the center of origin of *C. lupini*. The isolates that correspond to the current pandemic belong to a genetic and morphological uniform group, were globally widespread, and showed high virulence on tested white and Andean lupin accessions. Isolates belonging to the other five genetic groups were mostly found locally and showed distinct virulence patterns. Two highly virulent strains were shown to overcome resistance of advanced white lupin breeding material. This stresses the need to be careful with international seed transports in order to prevent spread of currently confined but potentially highly virulent strains. This study improves our understanding of the diversity, phylogeography and pathogenicity of a member of one of the world's top 10 plant pathogen genera, providing valuable information for breeding programs and future disease management.

The fungal genus *Colletotrichum* contains many important plant pathogenic species that cause anthracnose and other pre- and post-harvest diseases in a wide variety of hosts. Among potential hosts are important fruit, cereal and legume crops such as strawberry, maize and soybean. Besides being of economic importance, *Colletotrichum* spp. have been widely used as model species to study plant-fungus interactions because of the diversity of lifestyles within this genus. *Colletotrichum* is listed in the top 10 of most important fungal plant pathogens worldwide. Within the genus, members of the *Colletotrichum acutatum* species complex are notorious and cause disease in many important crops. The most important morphological characteristic for members of this species complex are the acute ends of its conidia. Discrimination of *Colletotrichum* species solely based on morphological traits, however, is deemed unreliable due to the few and highly variable characteristics, the strong influence of environmental conditions and the high overlap between species. Therefore, a polyphasic approach, combining morphological and genetic data is recommended. Multi-locus phylogeny revealed a high diversity within the *C. acutatum* species complex, showing at least 32 different species divided among five clades. Although many species within the *C. acutatum* species complex have a broad host range, *Colletotrichum lupini*, belonging to clade 1, appears to be highly host specific on lupins (*Lupinus*).

Lupin anthracnose caused by *C. lupini* is the most important disease in lupin cultivation worldwide, affecting all economically important lupin species such as blue (*Lupinus angustifolius* L.), white (*L. albus* L.), Andean (*L. mutabilis* Sweet.), yellow (*L. luteus* L.) and ornamental lupin (*L. polyphyllus* Lindl.). The disease was first reported in 1912 in Brazil, but the fungal pathogen was identified much later. A first outbreak was reported in the 1940–1950s in North America and was followed by a more severe and globally widespread outbreak around the 1980s which is still persisting until this day. The disease is mainly dispersed via seeds, facilitating rapid spread through international seed transports, and within the crop by rain splash during the growing season. Even low amounts of initial inoculum can cause total yield losses making this disease highly destructive. Typical symptoms are stem twisting and necrotic lesions on stems and pods (Fig. 1). Current disease management is focused on planting certified disease-free seed and chemical protection. However, crop resistance could offer a more sustainable alternative. In blue lupin, anthracnose resistance is controlled by single resistance genes.
genes, whereas in white, Andean and yellow lupin no such single gene resistance is known and the observed quantitative resistance is considered to be polygenic. The increasing demand for plant-based protein is renewing the interest for lupins as a high quality protein crop, however, the current anthracnose pandemic, severely hampers cultivation.

The pathogen was first described as Gloesporium lupini, followed by C. gloeosporioides and C. acutatum until it was fully described as C. lupini. Currently two genetic groups (I and II) are distinguished within C. lupini based on vegetative compatibility groups (VCG), the ITS (internal transcribed spacer) region and multi-locus phylogeny of the ITS, GAPDH (glyceraldehyde-3-phosphate dehydrogenase), CHS-1 (chitin synthase), HIS3 (histone), ACT (actin), TUB2 (β-tubulin 2), HMG (HMG box region) and APN/MAT1 (Apn2-Mat1-2-1 intergenic) loci. The TUB2 and GAPDH loci were shown to be the most informative within the C. acutatum species complex and APN/MAT1 the most informative within C. lupini, whereas classification based on the ITS region can be problematic due to low resolution within the complex. Although only two groups within C. lupini have been distinguished, with most of the reported strains belonging to group II, intraspecific diversity is thought to be greater as a high diversity was found in a Chilean C. lupini collection using random amplified polymorphic DNA (RAPD) markers and a distinct lupin infecting C. acutatum group was identified in Ecuador based on the ITS region. This suggests that highest intraspecific diversity is found in South America, which is believed to be the center of origin of members belonging to clade 1 of the C. acutatum species complex.

The overall aim of this study was to assess a worldwide collection of lupin-infecting Colletotrichum isolates through (i) multi-locus phylogeny, (ii) morphology and (iii) virulence on white and Andean lupin. Insights into
C. lupini diversity, phylogeography and plant-C. lupini interactions will improve our understanding of the current lupin anthracnose pandemic and support future disease management strategies and lupin breeding programs.

Results
Colletotrichum lupini comprises of six genetic groups supported by morphology. From the 50 sequenced isolates, 39 belonged to C. lupini (Table 1). A globally representative subset of 28 C. lupini isolates was characterized based on colony morphology (form, aerial mycelium, margin type and color of the reverse side) and 18 of those were further characterized for growth rate and conidial shape and size, revealing ten distinct morphotypes (A–J; Fig. 2, Table 2, Supplementary Figs. S1, S2). Despite certain variability, all observed conidia shared features typical for C. lupini (hyaline, smooth-walled, aseptate, straight and with one acute end) as described by Damm et al. Morphotype A was the most common and was observed for isolates from across the world (Europe, Australia, North- and South America), all belonging to genetic group II. Morphotypes B, C and G were observed for isolates from South Africa and morphotypes D, E, G, I and J were observed for isolates from South America.

Multi-locus phylogenetic analyses of 50 Colletotrichum isolates identified six distinct genetic groups within C. lupini (I–VI; Fig. 3, Supplementary Fig. S3). The combined sequence dataset contained 2251 characters (ITS: 1–496, GAPDH: 497–745, TUB2: 746–1200, APN/MAT1: 1201–2251) including alignment gaps. The APN/MAT1 locus showed the highest variability across the nucleotide data set, with 75.8% conserved sites for the whole data set (including out-groups) and 97.4% within C. lupini (Supplementary Table S1). The TUB2 and GAPDH loci showed 89.9% and 81.1% identical sites for the entire dataset and 97.8% and 98.4% identity within C. lupini, respectively. The ITS region showed the lowest variability with 97% identical sites across the whole dataset and 99.2% within C. lupini. As shown in Fig. 3, most C. lupini strains clustered with a high bootstrap support (BS) value of 79 and posterior probability (PP) of 1 with reference strains representing genetic group II (CBS 109221, IMI 375715 and RB221). Strains within group II showed a high identity among each other (> 99.9%) and showed morphotype A, except for Chilean strain JA15 showing morphotype D (Fig. 2). South African strain JA10 and Peruvian strain JA20, with morphotypes G and F, respectively, clustered together with a BS of 84 and PP of 1, forming a highly supported group (III). South African strains JA11 and JA12, with morphotypes C and B, respectively, clustered together with a BS of 98 and PP of 1, forming a highly supported group (IV). Ecuadorian strains JA18 and JA19 with distinct morphotypes I and J, respectively, showed 99.7% identity with reference strains of group II and clustered together with a BS of 60 (Fig. 3, Supplementary Fig. S3) and a PP of 1 in (Fig. 3), forming a distinct group (V). The reference strains for group I (CBS 109225 with morphotype H, CBS 109226 and CBS 509.97) are clustered together with a BS of 99 and PP of 1 and show 100% identity with each other and 99.6% identity with reference strains of group II. South American strains JA21, JA22 and CBS 109216, with morphotype E, cluster together with a BS of 98 and PP of 1 (Fig. 3) and a BS of 54 (Supplementary Fig. S3) forming a highly supported group (VI). JA21 and JA22 showed 99.8% and CBS 109216 showed 99.7% identity with reference strains of group I and 99.4% and 99.2% identity with references strains of group II, respectively.

Distinct virulence patterns on white and Andean lupin. Virulence assays performed on two white lupin (L. albus L.) accessions (Fedora and Blu-25) and two Andean lupin (L. mutabilis Sweet.) accessions (LUP 17 and LUP 100) revealed strong strain (p < 0.0001), lupin species (p < 0.0001) and strain × lupin species interaction effects (p < 0.0001). A strong accession effect was found within white lupin (p < 0.0001), whereas for Andean lupin there was no significant accession effect (p = 0.43). Strain (p < 0.0001) and strain × accession (p < 0.0001) interaction effects were found for both species. Strains belonging to genetic group II with morphotype A, caused severe disease on white lupin accession fedora and both Andean lupin accessions (Supplementary Fig. S4), showing standardized area under the disease progress curve (AUDPC) means ranging from 3.95 to 5 (Fig. 4). On the other tested tolerant white lupin accession Blu-25, AUDPC means for strains of group II with morphology A were more variable, with JA01 and IMI 375715 showing moderate (2.7–2.9) and Chilean strains JA16 and 17 showing high (3.8–4.1) virulence. Chilean strain JA15, also belonging to genetic group II but with a different morphology (D), caused low disease on LUP 100 and Blu-25 (1.9), showing a different virulence spectrum compared to the other tested strains of genetic group II. South African strains JA11 and JA12, belonging to genetic group IV with morphotypes C and B, respectively, showed a similar virulence spectrum on white lupin as strains of group II. JA10 and JA20, representing group III and morphotype G and F, respectively, were overall avirulent (< 2), with the exception of JA10 on Fedora, showing moderate virulence (2.95). Peruvian strain JA21, representing genetic group VI and morphotype E, caused low disease on white lupin (1.4–1.8), but severe disease on Andean lupin (4.25–5). A similar observation was found for the two Ecuadorian strains JA18 and JA19 of genetic group V and morphotypes I and J, respectively. These two strains caused low disease on white lupin and high disease on Andean lupin LUP 100. On Andean lupin LUP 17, however, a severe disease phenotype was only found for JA18 (3.6), whereas JA19 barely caused any disease symptoms (1.25). Similar to the observations for JA19, the Ukrainian strain CBS 109225 (genetic group I, morphotype H) caused severe disease on Andean lupin LUP 100 (3.36) and low disease on Andean lupin LUP 17 and white lupin (1.2–2). The C. tamarii and C. acutatum strains were avirulent across the lupin accessions (< 1.26).

Discussion
This study compared 39 C. lupini and 11 Colletotrichum spp. isolates collected from across the world to explore intraspecific diversity of C. lupini and to better understand the dynamics of the current lupin anthracnose pandemic and potential implications of further migrations of distinct pathogenic strains. Based on multi-locus phylogeny supported by isolate morphology, we identified four distinct genetic groups additional to previously
Strain	Alternative code(s)	Species	Host	Origin	Year	GenBank no.
JA01		Colletotrichum lupini	Lupinus albus	Switzerland, Melikon	2018	MW342515
JA02	C. lupini	L. albus	Germany	Hattenhofen	2019	MW342516
JA03	C. lupini	L. albus	Germany	Wittenhausen	2018	MW342517
JA04	C. lupini	L. albus	Germany	Westerbork	2018	MW342518
JA05	C. lupini	L. albus	Russia	Saint Petersburg	2018	MW342519
JA06	C. lupini	L. albus	Australia	WA, Dongara	2004	MW342520
JA07		C. angustofolius		South Africa	1994	MW342521
JA08	C. lupini	L. luteus	Australia	WA, Mingenew	2004	MW342522
JA09		C. lupini	Australia	WA, Yandanoooka	2004	MW342523
JA10	CMW 9930, SHK 788	L. albus	South Africa	Bethlehem	1995	MW342524
JA11	CMW 9931, SHK 1033	L. albus	South Africa	Stellenbosch	1995	MW342525
JA12	CMW 9933, SHK 2148	L. albus	South Africa	Malmesbury	1999	MW342526
JA13	C. lupini	L. mutabilis	USA	Florida, Martin County	2013	MW342527
JA14	C. lupini	L. hartwegii	USA	Florida, Martin County	2013	MW342528
JA15	A-02	L. albus	Chile	Cajon	2009	MW342529
JA16	A-10	L. angustofolius	Chile	Cajon	2009	MW342530
JA17	A-24	L. albus	Chile	Temuco	2015	MW342531
JA18	Lap1	L. mutabilis	Ecuador	Montalvo	2007	MW342532
JA19	Lap18	L. mutabilis	Ecuador	Pujili	2007	MW342533
JA20	C. mutabilis	Peru, Carhuaz	Peru	Carhuaz	2019	MW342534
JA21	C. mutabilis	Peru, Carhuaz	Peru	Carhuaz	2019	MW342535
JA22	C. mutabilis	Peru, Carhuaz	Peru	Carhuaz	2019	MW342536
CBS 109216	BBA 63879	C. lupini	Brazil		2013	JQ948156
CBS 109221	BBA 70352, RB172	C. lupini	Germany		2013	JQ948169
CBS 109225	BBA 70884	C. lupini	Ukraine		2013	JQ948155
CBS 109226	RB121, IMI 504884, H109, BBA 71249	C. lupini	Canada, Nova Scotia		2013	JQ948158
CBS 509.97	RB235, LARS 178	C. lupini	France		1996	JQ948159
IMI 375715	964A	C. lupini	Australia, WA, Perth		1997	JQ948161
RB020	PT30	L. albus	Portugal	Azores	1999	MW342517
RB042	CBS 129944, CMG12	C. lupini	Portugal	Lisbon	1996	JQ948159
RB116	CSL 1294	L. polyphyllus	UK	York	1997	JQ948161
RB122	BBA 71310, C3	C. lupini	Poland		1999	MW342517
RB123	IMI 504885, SHK788	L. albus	South Africa	Bethlehem	1994	MW342517
RB124	BBA 70555	C. lupini	Chile		1994	MW342517
RB125	C. lupini	L. albus	Austria		1994	MW342517
RB127	PT102	Olea europea	Spain		1994	MW342517
RB147	IMI 350308	Lupinus sp.	UK	Kent	1991	MW342519
RB221	IMI 504893	Lupinus sp.	France	Brittany	2016	MW342537
RB226	C. lupini	Lupinus sp.	France	Brittany	2016	MW342537
CBS 129814	T.A6	C. tamarillii	Colombia	Gundisnamarca	2012	JQ948181
CBS 129955	RB018, Tom-12	C. tamarillii	Colombia	Antioquia, Santa Rosa	1998	JQ948189
CBS 211.78	IMI 309622, RB184	C. costaricensis	Costa Rica	Turrialba	1998	JQ948181
CBS 134730	RB237	C. melonis	Brazil	Rio Grande do Brazil	2016	KC204997

Continued
Table 1. Isolation details and GenBank accessions of Colletotrichum strains used in this study. YA strains from the FiBL culture collection characterized in this study, RB personal collection of Riccardo Baroncelli described in Dubrulle et al.39, CBS collection of the Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands, IMI Culture collection of CABI Europe UK Centre, Egham, UK, ITS internal transcribed spacers 1 and 2 together with 5.8S rDNA, GAPDH glyceraldehyde-3-phosphate dehydrogenase, TUB2 β-tubulin 2, APN/ MAT1 Apn2-Mat1-2-1 intergenic. Codes in bold were used for morphology analysis in this study. Accession numbers in bold are newly determined in this study.

Strain*	Alternative code(s)	Species	Host	Origin	Year	GenBank no.*
IMI 304,802	RB216	C. cuscutae	Cuscuta sp.	Dominica	2011	JQ948195 JQ948255 JQ948946 MK478340
IMI 384,185	CPC 189,37, RB218	C. paraenseae	Caryocar brasiliense	Brazil	1993	JQ948191 JQ948521 JQ948942 MK478342
CBS 130,239	Frag NL-1	C. nymphaeae	Fragaria x ananassa	The Netherlands	1968	JQ948250 JQ948580 JQ949901 MW342583
IMI 360,928	CPC 189,26, RB163	C. nymphaeae	Fragaria x ananassa	Switzerland, Zurich	1993	JQ948243 JQ948573 JQ948984 MK478326
CBS 12,2122	BRIP 285,19, RB179	C. simmondsii	Carica papaya	Australia	1987	JQ948276 JQ948606 JQ949927 MK478332
CBS 369,73	NRCC 10,084	C. acutatum	L. angustifolius	New Zealand, Kanese	1968	JQ948350 JQ948681 JQ950081 MW342582
CBS 370,73	NRCC 10,088, RB187	C. acutatum	Pinus Aridata	New Zealand, Tokorona	1965	JQ948351 JQ948682 JQ950002 MK478335

This study provides first solid evidence that, based on multi-locus phylogeny and morphology, genetic diversity within C. lupini is higher than previously shown. High-resolution genome-wide sequencing and an increased sampling density from especially the South American Andes region are now necessary to increase genetic resolution and to better understand C. lupini phylogeny and phylogeography. This could provide the basis for in-depth comparative genomic studies to identify effector gene clusters within the C. lupini genome. This study confirms that the current lupin anthracnose pandemic is caused by a genetically uniform group of highly virulent strains. The identification of strains with an increased virulence on tolerant white lupin breeding material and the observation of strain-specific virulence patterns should be taken into account in lupin resistance breeding programs.
Figure 2. *Colletotrichum lupini* morphology. Capital letters (A–J) indicate the different morphology types based on conidia shape and size and colony growth rate and morphology (see Table 2). Strain codes are followed by country of origin and roman numbers (I–VI) indicate genetic groups. Plates show the front and reverse of 14 day old colonies on PDA. Scale bars indicate 20 µm. Colors indicate strain origin: blue = Europe, green = South America, red = North America, orange = Southern Africa, dark blue = Australia.
Due to its seed-borne nature, caution should be taken when importing seeds, especially from South America, to prevent further introductions of potentially virulent strains across the world.

Methods

Fungal and plant material. A diverse collection of 39 *Colletotrichum lupini* and 11 closely related *Colletotrichum* spp. isolates, originating from Europe, Australia, Southern Africa and South and North America, was analyzed (Table 1). Nine isolates were collected from symptomatic lupin plants in this study, whereas the rest of the isolates was already identified as *C. lupini* or as other members of the *C. acutatum* species complex representing clades 1, 2 and 4. The *C. lupini* strains CBS 109225 (Ukraine), CBS 509.97 (France) and CBS 109226 (Canada) were chosen as reference for genetic group I, strains CBS 109221 (Germany), IMI 375715 (Australia) and RB221 (France) served as reference for genetic group II and the *C. acutatum* strains CBS 369.73 and CBS 370.73 were used as outgroup in the phylogenetic analysis. Inoculations were performed on two white lupin (*Lupinus albus* L.) accessions: Feodora (susceptible; breeder: Jouffrai Drillaud, France) and Blu-25 (tolerant; breeder: Semillas Baer, Chile), and two Andean lupin (*L. mutabilis*) accessions: LUP 17 and LUP 100 (genebank: IPK, Germany). Plant material can be requested at mentioned breeders and genebanks, who performed formal identification and gave permission to use the material for research purposes. The experimental research of the plant material used in this study complies with relevant institutional, national, and international guidelines and legislation.

Fungal isolation and culture conditions. Symptomatic (dried) lupin stem or pod tissue (Fig. 1) of 1–3 cm was surface sterilized (after rehydration in sterile ddH₂O for dried samples) for 5 s with 0.25% sodium hypochlorite solution and rinsed thrice for 5 s in sterile ddH₂O. Thin slices of 1 mm were cut and placed on PDA (potato dextrose agar, Carl Roth, Karlsruhe, Germany) amended with Tetracycline (0.02 g/l, Carl Roth) for 3 to 4 days at 22 °C in the dark. Single cultures were selected and grown on fresh PDA plates amended with Tetracycline for 4 to 6 days at 22 °C in the dark and suspected *Colletotrichum* species were sub-cultured. Single isolates were re-isolated on PDA plates amended with Tetracycline for 3 to 4 days at 22 °C in the dark and suspected *Colletotrichum* species were sub-cultured. Single

Strain	Morphotype	Genetic group	Growth rate (mm/day)a	Conidia L × W (µm)a	Conidia shapebc	Colony morphologyc
IMI 375715, JA01, -06, -07, -13, -16, -17	A	II	6.2 ± 0.1	12 ± 2.1 × 4 ± 0.7	Cylindrical to elliptical, occasionally clavate	Flat, circular, with entire margins, white-greyish cottony aerial mycelium, pale to orange on reverse, dark in center
JA12	B	IV	5.6 ± 0.1	13.3 ± 1.4 × 3.4 ± 0.5	Cylindrical to elliptical, occasionally clavate	Flat, circular, with entire margins, white-brownish cottony aerial mycelium, pale on reverse
JA11	C	IV	5.5 ± 0.1	12 ± 1.7 × 4.5 ± 0.7	Cylindrical to elliptical, occasionally clavate	Flat, circular, slightly filiform margins, white-greyish cottony aerial mycelium, pale on reverse, orange in center
JA15	D	II	5 ± 0	9.7 ± 2.4 × 4.2 ± 1.0	Cylindrical, occasionally roundish	Flat, circular, with entire margins, white-greyish cottony aerial mycelium, dark on reverse, pale at margins
CBS 109216, JA21, -22	E	VI	5.4 ± 0.3	8.5 ± 2.1 × 3.5 ± 0.7	Cylindrical to clavate	Flat, circular, with entire margins, white-greyish cottony aerial mycelium, pale on reverse with black dots
JA20	F	III	4.2 ± 0.3	8.7 ± 1.1 × 3.2 ± 0.6	Cylindrical, occasionally clavate	Flat, circular, with entire margins, white-greyish aerial mycelium, pale on reverse
JA10	G	III	4.9 ± 0.2	9.2 ± 1.7 × 3.6 ± 0.7	Cylindrical to elliptical, occasionally clavate	Irregular and radially sulcate with aerial mycelia growth in the center, pale on reverse
CBS 109225	H	I	5.2 ± 0.1	8.5 ± 1.7 × 3.8 ± 0.8	Cylindrical to clavate	Slightly irregular and thickly covered with wooly white-greyish aerial mycelia, pale on reverse
JA18	I	V	4.1 ± 0	10 ± 1.8 × 2.9 ± 0.7	Cylindrical	Irregular, wooly white aerial mycelia on the margins, pale on reverse
JA19	J	V	6 ± 0.2	12.1 ± 1.8 × 2.4 ± 0.7	Cylindrical	Irregular, white-greyish wooly aerial mycelium, pale on reverse with occasional black/orange dots

Table 2. Growth rate, conidial size and shape, and colony morphology for the different morphotypes observed within *Colletotrichum lupini*. L length, W width. *Mean ± SD, see also Supplementary Fig. S2.* Observed conidia were rather variable in shape and size, but all conidia were hyaline, smooth-walled, aseptate, straight, with one end round and one end acute as described for *Colletotrichum lupini* in Damm et al.14. See also Fig. 2.
spore cultures were obtained and transferred to PDA and maintained at 22 °C in the dark as working cultures and stored at −80 °C in 25% glycerol for long-term storage.

Morphology. A globally representative subset of 28 C. lupini isolates was characterized based on colony morphology (form, aerial mycelium, margin type and color of the reverse side). From those, a subset of 18 isolates was further characterized for growth rate (mm/day), and conidial shape and size. Isolates were subcultured by placing a droplet of 5 μl spore suspension in the middle of three PDA plates and grown for 14 days at 22 °C in the dark. Culture diameter was recorded every 3 days. Photographs were taken from the front and reverse sides of the PDA plates after 14 days of incubation. Conidia were collected with a sterile spreader after flooding the Petri plate with 2 ml sterile ddH2O, the spore suspension was filtered with sterile cheese cloth and microscopic slides were prepared with sterile ddH2O. Conidia morphology was observed using light microscopy (DM2000-LED, Leica Microsystems, Wetzlar, Germany) equipped with a high definition camera (Gryphax Subra, Jenoptik AG, Jena, Germany). A minimum of at least 50 measurements were performed to determine conidia length and width. A principal component analysis (PCA) was performed on a subset of 17 representative C. lupini isolates, based on average conidia length and width, length width ratio, colony growth rate, form (circular = 1, most irregular = 4), aerial mycelia (no aerial mycelia = 1, most aerial mycelia = 4), color (palest = 1, darkest = 4) and filiform margin (yes = 1, no = 0), using R 4.0.361 and the FactoMineR package.

DNA extraction, PCR amplification and sequencing. Mycelium from single-spore cultures was collected after 7–10 days on PDA at 22 °C with a sterile spreader after flooding the Petri plate with 2 ml sterile ddH1O. Genomic DNA was isolated with a CTAB extraction protocol. Partial gene sequences were determined for the internal transcribed spacer (ITS) region using primers ITS5 and ITS4, the glyceraldehyde-3-phosphate dehydrogenase (GAPDH) gene using primers GDF1 and GDR1, the β-tubulin 2 (TUB2) gene using primers

Figure 3. Multi-locus phylogeny of Colletotrichum lupini. Bayesian analysis tree inferred from the combined ITS, TUB2, GAPDH and APN/MAT1 sequence datasets of 50 Colletotrichum strains used in this study. Bootstrap support values (> 50) and Bayesian posterior probabilities (> 0.95) are given at each node. The tree is rooted to C. acutatum (CBS 369.73 and CBS 370.73). Strain codes are followed by host, country of origin and morphology (A–J). Grouping (I–VI) is based on phylogeny and morphology. Strains used for virulence assays are highlighted in bold. Clades indicate the different clades within the C. acutatum species complex.
Btub2Fd and Btub4Rd66 and the Apn2-Mat1-2-1 intergenic (APN/MAT1) spacer and partial mating type gene using Apnmat1F and Apnmat1R39. PCR was performed in a S1000 Thermal Cycler (Bio-Rad Laboratories, Inc., Hercules, CA, USA) according to conditions described in Dubrulle et al.39 PCR products were verified by gel electrophoresis, purified using the QIAquick PCR Purification Kit (Qiagen, Hilden, Germany), quantified with a NanoDrop ND-1000 spectrophotometer (Thermo Fisher Scientific, Waltham, MA, USA) and sent to Eurofins Genomics (Ebersberg, Germany) for sequencing. The obtained DNA sequences were analyzed and consensus sequences were generated using BioEdit v. 7.2.567.

Phylogenetic analyses. Alignments for each of the four loci, including sequences obtained in this study and downloaded from GenBank (Table 1), were performed with ClustalW using MEGA X48. Obtained multiple alignments where manually corrected and trimmed to obtain comparable sequences. Best-fit substitution models were determined for each locus separately and for the concatenated multi-locus alignment (ITS, TUB2, GAPDH and APN/MAT1). Phylogenetic analyses of the multi-locus alignment were based on Maximum Likelihood (ML) and Bayesian Inference (BI). The ML analysis was performed using RAxML v. 849 through the CIPRES science gateway portal70 using default parameters and 1000 bootstrap iterations. The BI analysis was performed with MrBayes v. 3.2.71 using a Markov Chain Monte Carlo (MCMC) algorithm using four chains and starting from a random tree topology. Substitution models for each locus were included for each partition. The analysis ran for 500,000 generations with trees sampled every 1000 generations to reach average standard deviations of split frequencies below 0.01. The first 25% of saved trees were discarded at the ‘burn-in’ phase and the 50% consensus trees and posterior probabilities (PP) were determined from the remaining trees. Bootstrap

Figure 4. Virulence of *Colletotrichum lupini* strains on white (*Lupinus albus*) and Andean lupin (*L. mutabilis*). Anthracnose severity is expressed in standardized area under the disease progress curve (sAUDPC) and estimated means are shown. Strain codes are followed by abbreviated country of origin and morphotype (A–J). Different capital letters above bars indicate significant differences between strains (Tuckey-HSD, p < 0.05). Error bars indicate the standard error of the estimated mean.
support values (BS) from the ML analysis were plotted on the Bayesian phylogeny. Further phylogenetic analyses were performed with the unweighted pair group method with arithmetic mean (UPGMA) with 10,000 replicates in Mega X. All generated sequences were deposited in GenBank (Table 1) and alignments and trees in TreeBASE.

Virulence. Virulence tests were performed on white and Andean lupin with representative *C. lupini* strains (see Fig. 3). *C. tamarilloti* strain CBS 129814 and *C. acutatum* strain CBS 369.73 through stem-wound inoculation as described by Alkemade et al. 26, which was shown to highly correspond to field performance in Switzerland (r = 0.95). Disease scores ranging from 1 (non-pathogenic), 2 (low virulence) to 9 (highly virulent) were taken 4, 7 and 10 days post inoculation (dpi) and the standardized area under the disease progress curve was calculated (sAUDPC) 26. All inoculations were performed in a growth chamber (25 ± 2 °C, 16 h light and ~70% relative humidity) in a completely randomized block design with a minimum of six replicates per experiment.

Statistical analysis. Statistical analyses were performed with R 4.0.3 using the packages **lme4**27, **lmerTest**28 and **emmeans**24, following a mixed model with factors of interest (i.e. strain, lupin species, lupin accession) as fixed and replicated block nested in experiment as random factor. Datasets that did not follow assumptions of normality of residuals and homogeneity of variance were log10 transformed. Data are presented as estimated least-squares means using the aforementioned mixed model. A Tukey-HSD test (p ≤ 0.05) was applied for pairwise mean comparison of the different *Colletotrichum* strains within each lupin accession.

Data availability

The data that support the findings of this study are shown in this manuscript or, in the case of new sequences data, are openly available in Genbank at https://www.ncbi.nlm.nih.gov/genbank/ (for reference numbers see Table 1) and in Treebase at http://purl.org/phylo/treebase/phylows/study/TB2:527356?access-code=260136f8e616a0614b93528dd6fe6f&format=html.

Received: 14 February 2021; Accepted: 14 June 2021
Published online: 29 June 2021

References

1. Lenné, J. Some major plant diseases. In *Plant Pathologist’s Pocketbook* (eds Waller, J. M. et al.) 4–18 (CABI Publishing, 2002).

2. Cannon, P., Damm, U., Johnston, P. & Weir, B. *Colletotrichum*—Current status and future directions. *Stud. Mycol.* 73, 181–213 (2012).

3. Udayanga, D., Manamgoda, D. S., Liu, X., Chukeatirote, E. & Hyde, K. D. What are the common anthracnose pathogens of tropical fruits? *Fungal Divers.* 61, 165–179 (2013).

4. Shivash, R. G. et al. *Colletotrichum* species in Australia. *Australas. Plant Pathol.* 45, 447–464 (2016).

5. Baroncelli, R. et al. Molecular diversity of anthracnose pathogen populations associated with UK strawberry production suggests multiple introductions of three different *Colletotrichum* species. *PLoS ONE* 10, e0129400 (2015).

6. Frey, T., Weldekidan, T., Colbert, T., Wolters, P. & Hawk, J. Fitness evaluation of *C. tamarilloti*. *Australas. Plant Pathol.* 45, 447–464 (2016).

7. Rogério, F. et al. Genome sequence resources of *Colletotrichum truncatum*, *C. plurivorum*, *C. musciola* and *C. sojae*: Four species pathogenic to soybean (*Glycine max*). *Phytopathology* 110, 1497–1499 (2020).

8. Boufleur, T. R. et al. Soybean anthracnose caused by *Colletotrichum* species: Current status and future prospects. *Mol. Plant Pathol.* 22, 393–409 (2021).

9. Perfect, S. E., Hughes, H. B., O’Connell, R. J. & Green, J. R. *Colletotrichum*: a model genus for studies on pathology and fungal–plant interactions. *Fungal Genet. Biol.* 27, 186–198 (1999).

10. Baroncelli, R. et al. The *Colletotrichum acutatum* species complex as a model system to study evolution and host specialization in plant pathogens. *Front. Microbiol.* 8, 2001 (2017).

11. De Silva, D. D., Crous, P. W., Ades, P. K., Hyde, K. D. & Taylor, P. W. Life styles of *Colletotrichum* species and implications for plant biosecurity. *Fungal Biol. Rev.* 31, 155–168 (2017).

12. Yan, Y. et al. *Colletotrichum higginsianum* as a model for understanding host–pathogen interactions: A review. *Int. J. Mol. Sci.* 19, 2142 (2018).

13. Dean, R. et al. The Top 10 fungal pathogens in molecular plant pathology. *Mol. Plant Pathol.* 13, 414–430 (2012).

14. Damm, U., Cannon, P. F., Woudenberg, J. H. C. & Crous, P. W. The *Colletotrichum acutatum* species complex. *Stud. Mycol.* 73, 37–113 (2012).

15. Bragança, C. A., Damm, U., Baronecelli, R., Júnior, N. S. M. & Crous, P. W. Species of the *Colletotrichum acutatum* complex associated with anthracnose diseases of fruit in Brazil. *Fungal Biol.* 120, 547–561 (2016).

16. Cannon, P. F., Bridge, P. & Monte, E. Linking the past, present and future of *Colletotrichum* systematics. In *Colletotrichum: Host Specificity, Pathology and Host-Pathogen Interaction* (eds Prusky, D. et al.) 1–20 (APS Press, 2000).

17. Johnston, P. The importance of phylogeny in understanding host relationships within *Colletotrichum*. In *Colletotrichum: Host Specificity, Pathology, and Host-Pathogen Interaction* (eds Prusky, D. et al.) 21–28 (APS Press, 2000).

18. Cai, L. et al. A polyphasic approach for studying *Colletotrichum*. *Fungal Divers.* 39, 183–204 (2009).

19. Lardner, R., Johnston, P., Plummer, K. & Pearson, M. Morphological and molecular analysis of *Colletotrichum acutatum* sensu lato. *Mycol. Res.* 103, 275–285 (1999).

20. Talhinhas, P., Baronecelli, R. & Le Floch, G. Anthracnose of lupins caused by *Colletotrichum lupini*: A recent disease and a successful worldwide pathogen. *J. Plant Pathol.* 98, 5–14 (2016).

21. Bondar, G. *Tremoclo branco e suas molestias*. *Bol. Agríc. São Paolo* 13, 427–432 (1912).

22. Weiner, J. Anthracnose of lupines. *Phytopathology* 33, 249–252 (1943).

23. White, P., French, B. & McLarty, A. Grains research and development corporation. In *Producing Lupins* (eds White, P. et al.) 48–49 (Department of Agriculture and Food, 2008).

24. Thomas, G. & Sweetingham, M. Cultivar and environment influence the development of lupin anthracnose caused by *Colletotrichum lini*.* Australas. Plant Pathol.* 33, 571–577 (2004).

25.Accessed: 14 June 2021

26. Alkemade, J. A. et al. A high-throughput phenotyping tool to identify field-relevant anthracnose resistance in white lupin. *Plant Dis.* https://doi.org/10.1094/PDIS-07-20-1531-RE (2021).
27. Thomas, G., Sweetingham, M. & Adcock, K. Application of fungicides to reduce yield loss in anthracnose-infected lupins. *Crop Prot.* 27, 1071–1077 (2008).
28. Yang, H., Boersma, J. G., You, M., Buirechell, B. J. & Sweetingham, M. W. Development and implementation of a sequence-specific PCR marker linked to a gene conferring resistance to anthracnose disease in narrow-leaved lupin (*Lupinus angustifolius* L.). *Mol. Breed.* 14, 145–151 (2004).
29. Yang, H., Renshaw, D., Thomas, G., Buirechell, B. & Sweetingham, M. A strategy to develop molecular markers applicable to a wide range of crosses for marker assisted selection in plant breeding: A case study on anthracnose disease resistance in lupin (*Lupinus angustifolius* L.). *Mol. Breed.* 21, 473–483 (2008).
30. Fischer, K. *et al.* Characterization and mapping of *LaurBo*: A locus conferring anthracnose resistance in narrow-leaved lupin (*Lupinus angustifolius* L.). *Theor. Appl. Genet.* 128, 2121–2130 (2015).
31. Adhikari, K., Buirechell, B., Thomas, G. J., Sweetingham, M. W. & Yang, H. Identification of anthracnose resistance in *Lupinus albus* L. and its transfer from landraces to modern cultivars. *Crop Pasture Sci.* 60, 472–479 (2009).
32. Adhikari, K. N., Thomas, G., Buirechell, B. J. & Sweetingham, M. W. Identification of anthracnose resistance in yellow lupin (*Lupinus luteus* L.) and its incorporation into breeding lines. *Plant Breed.* 130, 660–664 (2011).
33. Falconi, C. Lupinus mutabilis in Ecuador with special emphasis on anthracnose resistance. PhD thesis, Wageningen University, the Netherlands (2012).
34. Lucas, M. M. *et al.* The future of lupin as a protein crop in Europe. *Front. Plant Sci.* 6, 705 (2015).
35. Van de Noort, M. Lupin: An important protein and nutrient source. In *The future of lupin as a protein crop in Europe.* Front. Plant Sci. 10, 1385 (2019).
36. Nirenberg, H. I., Feller, U. & Hagedorn, G. Description of *Colletotrichum lupini* comb. nov. in modern terms. *Mycolgia* 94, 307–320 (2002).
37. Shivas, R., McClements, J. & Sweetingham, M. Vegetative compatibility amongst isolates of *Colletotrichum* causing lupin anthracnose. *Australas. Plant Pathol.* 27, 269–273 (1998).
38. Dubrulle, G. *et al.* Phylogenetic diversity and effect of temperature on pathogenicity of *Colletotrichum lupini*. *Plant Dis.* 104, 938–950 (2020).
39. Riegel, R., Veliz, D., von Baer, I., Quitral, Y. & Munoz, M. Genetic diversity and virulence of *Colletotrichum lupini* isolates collected in Chile. *Trop. Plant Protect.* 35, 144–152 (2010).
40. Falconi, C. E., Visser, R. G. & van Heusden, A. W. Phenotypic, molecular, and pathological characterization of *Colletotrichum acutatum* associated with Andean lupine and tamarillo in the Ecuadorian Andes. *Plant Dis.* 97, 819–827 (2013).
41. Atchison, G. W. *et al.* Lost crops of the Incas: Origins of domestication of the Andean pulse crop tarwi, *Lupinus mutabilis*. *Am. J. Bot.* 103, 1592–1606 (2016).
42. Keane, F., Atchison, G. W., Hughes, C. E. & Filatov, D. A. Widespread adaptive evolution during repeated evolutionary radiations in New World lupins. *Nat. Commun.* 7, 1–9 (2016).
43. Lotter, H. & Berger, D. Anthracnose of lupins in South Africa is caused by *Colletotrichum lupini* var. setosum. *Australas. Plant Pathol.* 34, 383–392 (2005).
44. Van Der Mey, I. A. Crop development of *Lupinus* species in Africa. *S. Afr. J. Sci.* 92, 53–56 (1996).
45. San Segundo, M. & Shivas, R. G. Characterization of *Colletotrichum gloeosporioides* associated with lupin anthracnose. *Afr. Plant Prot.* 8, 51–56 (2002).
46. Yang, H. & Sweetingham, M. The taxonomy of *Colletotrichum lupini* isolates associated with lupin anthracnose. *Asiat. J. Agric. Res.* 49, 1213–1224 (1998).
47. Elmer, W. H., Yang, H. A. & Sweetingham, M. W. Characterization of *Colletotrichum gloeosporioides* isolates from ornamental lupines in Connecticut. *Plant Dis.* 85, 216–219 (2001).
48. Talhinhas, P., Sreenivaspaprasad, S., Neves-Martins, J. & Oliveira, H. Genetic and morphological characterization of *Colletotrichum acutatum* causing anthracnose of lupins. *Phytopathology* 92, 986–996 (2002).
49. Han, K., Kim, B., Choi, I., Park, J. & Shin, H.-D. First report of anthracnose caused by *Colletotrichum lupini* on yellow lupin in Korea. *Plant Dis.* 98, 1158–1158 (2014).
50. Zou, M. *et al.* First report of *Colletotrichum lupini* causing anthracnose on lupin in China. *Plant Dis.* 103, 767 (2019).
51. Dubrulle, G. *et al.* Deciphering the infectious process of *Colletotrichum lupini* in lupin through transcriptomic and proteomic analysis. *Microorganisms* 8, 1621 (2020).
52. Guilleuq, N., Neves-Martins, J. & Talhinhas, P. Response to anthracnose in a tarwi (*Lupinus mutabilis*) collection is influenced by anthocyanin pigmentation. *Plants* 9, 583 (2020).
53. Falleiros, M. O., Mota, S. F., Ferreira, A. N. & de Souza, E. A. Mixture of *Colletotrichum lindemuthianum* races in anthracnose resistance screening and its implication for common bean breeding. *Trop. Plant Protect.* 43, 271–277 (2018).
54. Xikov, K., Mizubuti, E., Queiroz, M., Chopra, S. & Vaillancourt, L. Genotypic and pathogenic diversity of *Colletotrichum sublineola* isolates from sorghum (*Sorghum bicolor*) and johnsongrass (*S. halepense*) in the southeastern United States. *Plant Dis.* 102, 2341–2351 (2018).
55. Armstrong-Chow, C., Wang, J., Wei, Y. & Banniza, S. The infection process of two pathogenic races of Colletotrichum truncatum on lentil. *Can. J. Plant Pathol.* 34, 58–62 (2012).
56. Ordonez, N. *et al.* Worse comes to worst: Bananas and Panama disease—When plant and pathogen clones meet. *PLoS Pathog.* 11, e1005197 (2015).
57. Godfrey, H. C. J., Mason-D’Croz, D. & Robinson, S. Food system consequences of a fungal disease epidemic in a major crop. *Philos. Trans. R. Soc. Biol. Sci.* 371, 20150467 (2016).
58. Lidwell-Durnin, J. & Lapthorn, A. The threat to global food security from wheat rust: Ethical and historical issues in fighting crop diseases and preserving genetic diversity. *Glob. Food Sec.* 26, 100446 (2020).
59. Jacob, I., Feuerstein, U., Heinz, M., Schott, M. & Urbatzka, P. Evaluation of new breeding lines of white lupin with improved resistance to anthracnose. *Euphytica* 213, 236 (2017).
60. Woudenberg, J., Aveskamp, M., De Gruyter, J., Spiers, A. & Crous, P. *Multiple Didymella telomorphs are linked to the Phoma clementidina morphotype.* Persoonia 22, 56 (2009).
61. Hall, T. A. BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. *Nucleic Acids Symp.* 41, 95–98 (1999).
Acknowledgements
The authors acknowledge Dr. César E. Falconí (ESPE, Universidad de las Fuerzas Armadas, Quito, Ecuador), Dr. Amelia W. Huaringa Joaquín (Universidad Nacional Agraria La Molina, Lima, Peru), Jocelyn Betancur & Erik von Baer (Semillas Baer, Temuco, Chile), Dr. Roger G. Shivas & Dr. Yu Pei Tan (Queensland Plant Pathology Herbarium (BRIP), Brisbane, Queensland, Australia), Dr. Erin Rosskopf (USDA-ARS, Fort Pierce, Florida, USA), Dr. Seonju Marincowitz (FABI, University of Pretoria, Pretoria, South Africa), Dr. Gaétan Le Floch (Université de Bretagne Occidentale, Brest, France) and Dr. Peter Wehling (JKI, Groß Lüsewitz, Germany) for kindly providing C. lupini strains, Christine Arncken and Simon Rosenfeld (FiBL, Frick, Switzerland) for helping collect Colletotrichum strains, Erik von Baer for supplying white lupin (Blu-25) seeds and Jan Trávníček and Katharina Bitterlich for assisting with setting up controlled condition virulence experiments at FiBL (Switzerland). This research has received funding from the European Union's Horizon 2020 research and innovation programme LIVESEED under Grant Agreement No. 727230 and by the Swiss State Secretariat for Education, Research and Innovation (SERI) under Contract Number 17.00090, and the Federal Office for Agriculture FOAG. The information contained in this communication only reflects the author's view. Neither the Research Executive Agency nor SERI is responsible for any use that may be made of the information provided.

Author contributions
J.A.A., P.H. and M.M.M. conceived the original idea for this study. J.A.A. conducted the experiments and took the lead in manuscript writing. J.A.A. analyzed the data with contributions from P.H. and M.M.M. All authors significantly contributed to data interpretation and provided critical feedback that shaped the final version. J.A.A. designed the figures and tables with input from P.H., M.M.M., R.T.V. and M.R.F.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary Information The online version contains supplementary material available at https://doi.org/10.1038/s41598-021-92953-y.

Correspondence and requests for materials should be addressed to P.H.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2021