Ethnobotanical profile of medicinal plants used by people of North-eastern Morocco: Cross-cultural and Historical approach (Part I)
Alami Merrouni Ilyass, Kharchoufa Loubna, Bencheikh Noureddine, Elachouri Mostafa

Research

Abstract

Background: Northeastern Morocco is characterized by a wide range of plants. However, the list of medicinal herbs used in this area has not been identified completely. This work aims to give an exhaustive compendium of medicinal plants used by people in this region. We then compare the plants listed with others documented in some ethnobotanical studies conducted through Morocco, as well as with Ibn Al Baytar’s compendium.

Methods: A survey was carried out in North-eastern Morocco between 2015 and 2017, including 931 informants (887 ordinary inhabitants and 44 herbalists). An ethno-guided approach based on semi-structured interviews was used. Data obtained was analyzed through the Number of Citations (NC), Use Value (UV), Family Use-Value (FUV), Informant Consensus Factor (ICF), and Jaccard similarity Index (JI).

Results: A total of 283 species regrouped in 80 botanical families were recorded. The most represented family is Asteraceae. The highest use value (UV) was attributed to Allium sativum L. (UV= 0.23), and the highest Family Use Value (FUV) was assigned to Amaryllidaceae (FUV=0.116). Considering the Informant Consensus Factor, the highest values of (ICF) were recorded for digestive problems (ICF=0.56). Comparatively, the high similarity in Morocco was observed with the Ksar Lakbir district (JI=37.1). Historically, 73.5% of the plants recorded in this study were mentioned in Ibn Al Baytar’s compendium.

Conclusion: The results of this study show that the local population used plants extensively as medicine. This means that the plants used locally are a primary component of a distinct cultural domain in ancestral medical knowledge.

Keywords: Northeastern Morocco, Medicinal plants, Use value, Jaccard similarity Index, Informant Consensus Factor

Correspondence

Alami Merrouni Ilyass *, Kharchoufa Loubna, Bencheikh Noureddine, Elachouri Mostafa
Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health. Faculty of Sciences, Mohammed First University, Oujda, Morocco
*Corresponding Author: alami.ilyass.90@gmail.com

Ethnobotany Research & Applications 21:34 (2021)

Background

Northeastern Morocco is a particularly interesting region due to its geographical position and the sociocultural of the local population. The closeness of this area to the Mediterranean Sea and the mountains of Beni-Snassen and Rif created an exceptional biogeographical context in which various bioclimatic conditions can be noticed. The area encompasses a small region, including the high
Due to its location, this region constitutes the eastern gate of Morocco; it has the privilege of being an intersection bridge of cultural and economic exchange through time between the African continent, the Arab-Muslim world, and Europe. This multiplicity is mirrored in the country’s pluralistic medical system and beliefs covering illness and health concepts. The use of plants as medicine is an integral part of this region's biocultural diversity, resulting in the traditional medical system pluralism (Martinson 2011). This strong attachment to traditional medicine is currently due to the low level of socio-economic status of most people, the lack of medical infrastructures, and the poor indicators of well-being and health, especially in rural areas (Alami Merrouni & Elachouri 2021). Historically, people of North-eastern Morocco have developed an empirical health care system knowledge with medicinal plants by the accumulation and mixture of culture that originates from various ethnicities settled or traveled across the region through the time, including Arabs from the Middle East, the Andalusians, Jews from Europe, and the Blacks from Sudan, Senegal, and Niger. The classical Arabic texts on Materia Medica indicated that the advancement for medicine was shaped by names of Arabo-Muslim scholars such as Ibn Zuhr (1094-1162 CE), Averroes (1126-1198 CE), Maimonides (c.1138-1204 CE), or Ibn Al-Baytar (1197-1248 CE). This knowledge is becoming popular and widespread in Morocco and has a rich and vibrant history, enriched with various documented uses of plants (Elachouri 2018). However, most of the ethnobotanical studies conducted in Morocco overlooked the richness and accuracy of historical sources and ignored their probable influence on developing today's local traditional medicines in this country.

Unfortunately, this cultural heritage, enjoyed by the local population, is threatened with extinction. The decline of these Phyto-therapeutic practices and the degradation of the Phyto-genetic resources are due to several factors, mainly urbanization and climatic hazards. Additionally, the holders of information on medicinal plants (herbalists and traditional healers) had kept scant records, and their information is passed on, mainly verbally, from one generation to the next. Furthermore, the lack of documentation databases related to traditional medical practices and the scarcity of the ethnobotanical information archive exacerbate this natural and cultural patrimony loss. Therefore, ethnobotany and ethnopharmacology in Northeastern Morocco need more ethnobotanical studies, applying quantitative methods for compiling lists of useful plants or just medicinal ones and understanding the rational and cultural sets behind these uses.

In this respect, we undertook an ethnobotanical investigation, using a new approach, including guided field, considered the best technique, allowing for new ethnobotanical information and observing the plants in situ (Albuquerque & Lucena 2004). Based on semi-structured interviews coupled to a method consisting of visiting the new sites not visited previously. In the context of the current interest, we raise the following questions and hypothesis:

1. Are there any medicinal plants and therapeutic uses not documented yet in North-eastern Morocco?
2. Does the population of this region use similar or different medicinal plants compared to the rest of the country?
3. Does Ibn Al-Baytar’s compendium document the traditional medical practices that influenced local traditional medicine?

Materials and Methods

Study area
The study was conducted in North-eastern Morocco, including eight province districts (Figure 1) with a total of 90 130 Km² (12% of the national territory). The study area is comprised between the latitudes 33° 30' 39.567" N and 33° 36' 19.969" N and the longitude of 5° 48' 19.314" E and 5° 55' 39.317" E. According to the national census report published in 2014, the population in this region reached 2,314,346 (6.8% of the national population) with a density of 26 persons per square kilometer. The dominant language in this region was dialect Arabic.

In the second position, we found the berbere language, which is subdivided into two dialects, with low proportions; Tarifit in the north of the region (Driouech and Nador provinces) and Tashelhit in the south (province of Figuig). The region includes the mountainous area of Beni-Snassen, Rif, and Horst, culminating respectively to 1800 m, 1500 m, and 1100 m, while the coastal area is 200 km of Mediterranean coastline as the vast High Land and Sahara characterize its south area. These geographical features provide the region with a Mediterranean climatic zone that is characterized by hot and dry summers while winters are more cool and wet with average rainfall between 100 mm per year in the South (Saharan bioclimatic zone) and 400mm per year in the North (Influenced by the Mediterranean Sea). Additionally, the region

altitude of Rif’s Mountain in the north with a subhumid climate, while the semi-arid, arid, and Saharan climates dominate the rest of the area. Such complex features have ensured an extraordinary richness in biodiversity with remarkable floristic landscapes and various endemic plant species that have contributed to the development of ethnobotanical traditions.
encompasses several Sites of Biological and Ecological Interest (SBEI) and protected areas such as Benisnassen, Jbel Gorougou, Cap des Trois Fourches, Chekhar, Lalla Chafia, Lalla Mimouna, and National Park of Al Hoceima. These sites had already been identified for their original flora and their biological and ecological qualities (Fennane 2004, GEF 2000).

Figure 1. Geographical position of the study area

Study sites and informant selection technics
The sampling device of this study formed multi transects from the top to the bottom of Northeastern Morocco, including Al Hoceima, Driouech, Nador, Berkane, Ahfir, Saidia, Jerada, Oujda, Debdou, Bergem, Figuig, and Bouaarfa. Twenty-six sites were surveyed between 2015 and 2017. Each study site visited was located with the Global Positioning System (GPS); afterward, the geographical positions were converted to a map using Geographic Information System (GIS) tools. The study region was divided into three zones: North (S1 to S16 + S26), Center (S17 to S20 + S25), and South (S21 to S24) which correspond to the number of stations (Table 1 and Figure 2).

To obtain essential ethnobotanical information, collect the medicinal plants, and gather their use indications, the conducted survey used an ethnoguided approach based on semi-structured interviews and guided field tours. This technique involves visiting the sites considered in this work with one or more informants to observe the plants cited and collect samples for posterior botanical identification (Albuquerque & Lucena 2004).

The interviewers were selected with a purposive random sampling technic (probability). This adopted approach combines ethnobotanical interviews and guided tours with some interviewees (spread in the different study sites, voluntarily accepted to monitor the guided tours), which helped us to discover the various medicinal plants in the studied sites and to grasp the maximum of information related to these plants and their uses. The interview guide is divided into two major parts. The first one is related to the informant profile (demographic characteristics), while the second part is about the therapeutic indications concerning the used plants. The interviewers were asked in their local language (Arabic Darija or Amazigh language). The interview transcripts were made by specialists and were translated from Arabic and Amazigh dialects to English to reflect, as much as possible, their contents and be faithful to the data gathered. Essential information was recorded, such as vernacular names (Arabic/Amazigh names), their nature (Spontaneous, Cultivated or Imported), medicinal uses, parts used, and mode of administration (Annex A). Finally, each specimen was collected and deposited in the Herbarium called "Herbier Université Mohamed Premier Oujda Marc" (HUMPOM) at University Mohamed Premier Oujda Morocco.

Collection of plant species
During the interview process, plant samples were collected from the 26 sites concerned by our study, and each collected species had been geo-referenced to define its existence in a physical space (Hill 2006). Firstly, and for scientific identification, including classification purposes, photographs were taken before the plants were picked. Secondly, during the picking, the geographical location (altitude and geographical coordinates) of each collected species was recorded using GPS (Global Positioning
System), following the latest revision: WGS 84 (World Geodetic System 84). Then, the whole or a part of the picked plants were pressed with a plant press and dried adequately in the laboratory. A voucher number was assigned to each specimen and deposited in Herbarium “HUMPOM.”

Figure 2. Map of the study area showing the Geographical Position of each visited station. Image adapted using GIS Software
Identification and systematization of plant materials
At the laboratory, all data was processed and analyzed. Concerning the vernacular nomenclature, we transcribed all the retained words in Latin characters based on the collected data, and they were then translated into English with the help of translation experts. The scientific nomenclature of plant species was determined and verified by a professional taxonomist/botanist using live specimens and photographs. Moreover, to identify plant species' accuracy, we referred to technical documents related to Moroccan flora (Fennane et al. 1999, 2007, 2014). Afterward, to identify the origin of the plants and their ecological distributions, rarity, and endemism, we referred to the recent lists of native Moroccan flora produced by specialized references (Fennane & Rejdali 2016, Fennane & Ibn tattou 1998, Rankou et al. 2013). It is worth mentioning that the scientific names listed in this paper are updated to the currently accepted names according to the following database: Catalogue of Life: 2019 Annual Checklist (https://www.catalogueoflife.org/col/).

Data analysis
To analyze the obtained results from our ethnobotanical investigation, we adopted a quality-quantitative analysis by using statistical parameters and ethno-botanical indexes such as Use Value (UV), Family Use Value (FUV), Informant Consensus Factor (ICF), and Jaccard Index of similarity (JI).

Use value (UV)
To assess the relative importance of plant species used as medicine in the study area, the use-value was calculated following the formula suggested by (Phillips & Gentry 1993):

$$UV = \frac{\Sigma U}{N}$$

Where:
- UV = use value of species
- U = number of use reports for a given species
- N = total number of informants

The Family Use Value (FUV):
To evaluate the relation between the botanical families and users of species belonging to these families, we used the index named Family Use Value (FUV) which equals the average total use-value for each species in the family (Hoffman & Gallaher 2007).

$$FUV = \frac{\Sigma UV}{n}$$

Where:
- FUV: family use value
- UV: use value of the species belonging to the family
- n: number of species in the family.

Informant Consensus Factor (ICF):
To know about the agreement in the use of plants listed in this paper, we applied the following formula (Heinrich et al. 1998):

$$ICF = \frac{(Nur - Nut)}{(Nur - 1)}$$

Where:
- Nur: is the number of use-reports for a particular ailment category.
- Nut: is the number of plants species used for a particular ailment category by all informants.

Jaccard similarity Index (JI):
To determine the percentage of similarity and diversity of plant species recorded in our study compared to other regions inside Morocco, we used the JI (Jaccard Index). Jaccard Index may be expressed as follows (González-Tejero et al. 2008):

$$JI = \frac{C}{A + B - C} \times 100$$

Where:
- A is the number of species of sample A, B the number of species of sample B, and C is the number of species common to A and B.

The formula considers the similarity between the two areas of study as the number of shared medicinal plants divided by the total number of medicinal plants present in both. Conceptually, the Jaccard index is a percentage of how many plant species each set has in common with another set out of how many species they have total.

It is worth noting that the ethnobotanical studies used for this comparison were selected according to the following three criteria: (1) they must have been conducted in Morocco, (2) the species listed must be the results of ethnobotanical fieldwork, i.e., not from bibliographical revisions, and (3) studies must provide the collection of voucher specimens deposited in the recognized herbarium and correct botanical names (Bennett & Balick 2014; Rivera et al. 2014).

Kilometric distances (for the comparison study)
To know about the variation of the use of medicinal plants throughout the space, we attempt to evaluate the percentage of the similarity and the kilometers distances between our fieldwork and other ethnobotanical studies carried out in different regions of Morocco. We calculated the kilometric distances (as Straight line) based on “Google Maps” and taking three points, arbitrarily, as benchmarks in each zone of study; Al Hoceima in the North, Oujda in the Center, and Bouaarrafa in the South (Figure 3).
Classification of diseases

An alternative classification system accepted by the World Health Organization (WHO), International Classification of Primary Care (ICPC) second edition by the Wonca International Classification Committee (WICC) was adopted in this work with some minor modifications. This classification is closer to ethnomedical reality (Staub et al. 2015). Available online: (http://www.who.int/classifications/icd/adaptations/icpc2/en/). Categories of ailments and their symptoms and complaints available in English version online: (http://docpatient.net/3CGP/QC/ICPC_desk.pdf).

Historical analysis: Nomenclature and taxonomical issues

To compare our data with historically recorded plant species, we used the French edition (Leclerc 1877) of the *Compendium of Simple Drugs and Food* by Ibn al-Baytar (al-Jami’ li-Mufradat al-Adwiyyawa’l-Aghdhiya).

The French edition of the ‘Compendium of Simple Medicaments and Foods’ presents a significant list of botanical plant historically mentioned by Ibn Al-baytar, gathered in alphabetical order and provided much information related to each plant species such as their origin, common names in Arabic, Berber, French and Latin languages, scientific name, besides the classification number for each plant species. Even that, is still challenging to identify and confirm the complete similarity between the plant names presented in this work and Ibn Al-baytar’s book, especially for some cases, where the translated version (Leclerc 1877) provides the plant name only with the genus, and or mentioned only the vernacular name. The similarity of the current scientific names with ancient texts is not easy, as many authors pointed out, including the Ibn al-Baytar translator (De Vos 2010, Leclerc 1877).

Results and Discussion

Sociodemographic profile of informants

A total of 931 respondents were interviewed, including expert and knowledgeable informants (those who have more information about medicinal plants and their uses), 44 herbalists “Achab” and 887 ordinary informants (including 51 guided-field monitors) having a relatively low knowledge about medicinal plants (Table 1). The age range of respondents was between 20 and 75 years old, with an average age of 52 years. The gender ratio was female-dominated with 53%, while the male rate represented 47% (Table 2). Indeed, in the study area, the interviews showed that women and experts in the sector (herbalists) are remarkably competent and possess much more excellent knowledge about native plants. This could be justified by the fact that the majority of women acquired the traditional medical knowledge from each other during the wedding ceremonies or meeting in the Turkish bath “Hammam,” also because women prepared herbal soups and infusions as treatment for many diseases, which are one of their household tasks in the Moroccan traditional families, as being responsible for the well-being of the entire family. Moreover, the traditional recipes of Moroccan cuisine are rich in...
plants for taste and their believed benefits for health. At the same time, herbalists hold these traditional practices from their experiences (Bellakhdar et al. 1991, Merzouki et al. 2000). Previous studies confirm our observation in other regions of Morocco, where indigenous knowledge on the use of medicinal plants is kept by these two groups and specialists in the sector (Eddouks et al. 2017, El Hachlafi et al. 2020, Hachi et al. 2016, Merzouki, et al. 2000).

Furthermore, our results show that many respondents were illiterate, representing 47.5%, followed by 26.3% of informants who attended primary school, while 21.6% attended secondary school and only 4.6% the university (Table 2). Similar profiles were observed in other studies in different regions of Morocco (Eddouks et al. 2002).
Table 2. Socio-demographic population in northeastern Morocco

Socio-demographic variables	Categories	Percentage (%)
Gender	Male	47
	Female	53
Age (years)	20 - 35	14
	35 - 55	66
	55 - 75	20
Habitat	Urban	39.3
	Rural	60.7
Study level	Illiterate	47.5
	Primary	26.3
	Secondary	21.6
	University	4.6

Ecological status and Growth form of plant species

This ethnobotanical inquiry, among the population and traditional healers, carried out in the 26 sites within the study area, allowed us to inventory a total of 283 plant species, representing 31% of Moroccan medicinal plants (905 species) according to the last published work conducted by our team (Fakchich & Elachouri 2020). This group of plants includes 166 spontaneous species growing naturally in the area of study (59%), 96 plant species cultivated in home gardens or commercial crops (34%), and 21 plant species imported (7%). These results show that the number of spontaneous medicinal plants is higher than the cultivated and the imported. The remarks drawn from these findings are that the local people have not yet started cultivating most of the plant species used for medication. Also, we assume that people living in this region of Morocco have a great attachment to their environment for alleviating their ailments. This ascertainment was already mentioned by (Yabrir et al. 2018) in their field study conducted in the Djelfa region (Algeria).

The reason for herbaceous dominance in the study area might be the easy availability resulting from abundant growth in wild habitats. Less tree percentage might be due to geographic and climatic factors. These results were verified by checking the ecological and botanical most specialists’ resources available in Morocco (Fennane et al. 1999, 2007, 2014, Fennane & Ibn tatto 1998, Fennane & Rejdali 2016, Rankou et al. 2015).

The local informants reported that most of the practitioner healers (Herbalists) use herbs against diseases due to their easy availability. Inline results were found from other researchers on medicinal plants conducted in Ethiopia (Giday et al. 2003, 2007), Nepal (Uprety et al. 2010), Swat, Pakistan (Akhtar et al. 2013), and Karak, Pakistan (Rehman et al. 2015). They reported the herbaceous life form as the dominant one for medicinal purposes. Taking into account the statistical point of view by matching the local medicinal flora recorded in this paper with national vascular flora inventoried, we can argue that the number of medicinal plants recorded by our team represents only 5.9% of total Morocco’s vascular flora, which accounts for about 4800 species, according to the latest statistics published works (Fennane & Rejdali 2018). Owing to this finding, we can note that local medicinal flora is not well explored on a national scale. No percentage can be estimated regarding the local flora until the flora at the regional level has been determined.

Medicinal plants and species composition

The results regrouped in a table (Annex A) showed that 283 medicinal plants belonging to 224 genera and 80 families with 1720 use reports were recorded. The medicinal plants on file were unevenly distributed in the 26 study sites visited (Figure 2). The plants listed were arranged in alphabetical order...
of families using the scientific names (Family, Species and number of Voucher specimen), Local/Vernacular names (Arabic and/or Amazigh), Localization (GPS), Life forms, Ecological status, Herbaceous life forms, Traditional uses (use reports), Parts used, Mode of preparation, Use value (UV), Family Use Value (FUV) and Number of citation (NC) for each plant species (Annex A). The dominated families (Figure 4) are Asteraceae (9.5%) followed by Apiaceae (8.8%), Lamiaceae (7.4%), and Fabaceae (7%), while the other represented families are Rosaceae, Poaceae with 3.5% each, Solanaceae with 3.2%, Euphorbiaceae, Brassicaceae and Asparagaceae with 2.8% each. The remaining 70 families represent 57.8% of the total. Note that some families contained less than three species (e.g., Aristolochiaceae), and others are only represented by a single species (e.g., Apocynaceae).

Figure 4. Dominant botanical families

The predominance of the four families: Asteraceae, Apiaceae, Lamiaceae, and Fabaceae was already mentioned in other ethnobotanical studies carried out in other regions of Morocco (Barkaoui et al. 2017, Belhaj et al. 2020, El Hachlafi et al. 2020, Es-Safi et al. 2020, Fakchich & Elachouri 2014).

The top position of these families (according to the number of species cited) could be justified because they regroup the widely spread and most studied plant species in Morocco (Alami Merrouni & Elachouri 2021, Alves-Silva et al. 2017, Bouyahya et al. 2020). In fact, according to the National Study on Biodiversity Synthesis Reports, published in 2001 (Franchimont & Saadaoui 2001), these botanical families are in the lead of the specific wealth of the nine first families of the Moroccan vascular flora.

Plant parts used
As indicated in figure 5, the leaves are the most commonly used parts in medical preparation, with a percentage of 21.4%, followed by fruits (12.2%), whole plant (12.1%), seeds (10.7%), roots (10.4%), flowers (7.9%), aerial part (7.3%), stem (4.6%), cortex (3.4%), rhizome (2%) and others (8%). The predominance of leaves used in traditional remedies corroborates with several studies conducted in other works in various regions inside Morocco (Eddouks et al. 2017, El Hachlafi et al. 2020, Es-Safi et al. 2020) or foreign countries such as the northeast and northwest of Algeria (Benarba et al. 2015, Bouasla & Bouasla 2017) and Tamul Nadi in India (Parthiban et al. 2016). The frequent use of the leaves could be explained by the "ecological appearance," which means that the more salient a species is, the more likely that it will be used (Johns et al. 1990), the abundance, the availability of this part of the plant, as well as the ease of its harvesting (Sargin 2015; Yemele et al. 2015). Furthermore, the harvesting of these organs is relatively a sustainable practice compared to the utilization of other parts of the plants, like roots and stem. Roots harvests could contribute to the extermination and vanishing of the plants. The predominance of using a specific organ, such as leaves, compared to another in the therapeutic domain is strongly linked to its concentration of active ingredients (the leaf is the principal seat of photosynthesis). The use of particular plant parts suggests that these parts have very efficient secondary metabolites with medicinal properties.

Modes of preparation
Different drug preparation from medicinal plants used by the local population included decoction, infusion, powder, fumigation, poultice, maceration,
and cooking (Figure 6). The mode of preparation is related to the type of use (external or internal); for example, massage or mask uses are applied externally, while decoction, infusion, maceration, and the other modes are used internally. Our survey demonstrates that the decoction constitutes the highest type of preparation form with a percentage of 30.5%, followed by infusion (22.5%), powder (20.2%), raw (6.2%), cataplasm (6%), and maceration (5.7%). The other preparations such as a poultice, fumigation, preparing juice, and mixed in honey represented a cumulative percentage of 9%. This finding corroborates with other studies carried out in other regions of Morocco (Belhaj et al. 2020, El Hachlafi et al. 2020, Es-Safi et al. 2020). Most drug preparation methods used water as diluents (El Abbouyi et al. 2014; El Hachlafi et al. 2020; Es-Safi et al. 2020). On the other hand, others are prepared based on some foods such as milk, olive oil, and honey (Abouri et al. 2013).
Toxicological evidence
The use of medicinal plants is not always benign and can cause toxicity in some cases. The use of these plants faces many problems related to these herbs' safety, which could negatively affect health. As mentioned in our team's previous works, 89 of the plants listed in this paper (31%) have potentially unexpected effects to cause toxicities and/or interacting with prescribed medications or other chemical compounds. Detailed information on these toxic plants' potential toxicity has been documented by our team in previously published works (Kharchoufa et al. 2018, Yamani et al. 2015). Knowing that the traditional phytotherapy sector is excluded from the national health system in Morocco, the medicinal plant sector was not regulated nor controlled. In such a situation, the recklessness of medicinal plants' use remains a potential danger that threatens public health.

The use value (UV)
The preference of the local population to use some plants more than others in treating different ailments is confirmed by the Use Value (UV). The high score of this index reflects the importance of the plant considered. The results of this parameter were presented in a table (Annex A), with values limited between 0.23 and 0.0011. The high value (UV= 0.23) was attributed to Allium sativum L., followed by Rosmarinus officinalis L. (UV=0.19), Dysphania ambrosioides (L.) Mosyakin & Clemants (UV=0.16), Olea europaea L. (UV=0.15), Trigonella foenum-graecum L. (UV=0.13), Ricinus communis L., Mentha pulegium L. with (UV=0.12), Allium cepa L., Origanum majorana L., and Lavandula stoechas L. with (UV=0.11). While, the lowest values of UV were assigned to 27 plant species, including Fagonia cretica L., Searsia tripartita (Ucria) Moffett, and Picris asplenioides L. with UV= 0.0011.

The results indicate that the plants with high use-value denoted high use reports contrariwise to the species with low use-value, which indicates that the plant had few use reports and therefore was less preferred by the local users.

The high score (UV=0.23) of Allium sativum L. justified the importance of this species. Garlic is well known in the traditional folk medicine in Morocco to treat various ailments such as digestive disorders, hair loss, diabetes, hypertension, and dermatitis (Barkaoui et al. 2017, Eddouks et al. 2017, Merzhouki et al. 2000). In Algeria, garlic is used as antiseptic, antispasmodic, hypotensive, and wormer (Rebbas et al. 2012); in Italy, A. sativum is used as a hypotensive and wormer (Guarrera 2005), it is also used in Turkey as a hypotensive, wormer, antibiotic and antidiabetic (Güzel et al. 2015). Ranked in the second position, Rosmarinus officinalis L. (UV=0.19), a plant native to the Mediterranean region with an important historical story. This herb was considered as a love symbol and used in wedding ceremonies (Heinrich et al. 2006). Rosemary is widely used in the traditional medicine of the Mediterranean countries as an appetizer, anticancer agent, intestinal antiseptic, and antispasmodic; it is also used against cold and fever (Guarrera 2005, Güzel et al. 2015, Miara et al. 2018, Rigat et al. 2015).

Dysphania ambrosioides L. (=Chenopodium ambrosioides L.), with UV= 0.16. This plant is widely used in traditional medicine around the world. The plant was used to treat many illnesses in Morocco, such as fever, colds, rheumatism, headache, and migraine (Eddouks et al. 2017, El-Hilaly et al. 2003, Teixidor-Toneu et al. 2016).

Olea europaea L. (UV= 0.15) is among the most cited plants in different Mediterranean countries such as Morocco, Cyprus, and Algeria (González-Tejero et al. 2008). The Olive tree is considered a symbol of the Mediterranean region. O. europaea is traditionally used to treat diabetes in Turkey (Bulut & Tuzlaci 2013), while in Spain, this plant is used against hypertension (González et al. 2010).

Trigonella foenum-graecum L. (UV= 0.13) is one of the medicinal plants commonly used in traditional therapy in Morocco to treat various illnesses such as diabetes, rheumatism, and fever; also, the fenugreek is used to treat cardiovascular, gynecological, respiratory, and gastrointestinal problems (Eddouks et al. 2017, Teixidor-Toneu et al. 2016).

Ricinus communis L. (UV=0.12) has been widely used in traditional phytotherapy across the world. In Iran, R. communis is used for digestive disorders such as emetic and against diarrhea and abdominal pains (Sadat-Hosseini et al. 2017). In Turkey, this herb is used to treat hair loss (Güzel et al. 2015), while in Brazil, the castor bean is used as a remedy against allergies and wound healing (Bieski et al. 2015). Our results correlate relatively with some previous works conducted in other regions of Morocco, in which Allium sativum L. also has the highest UV (Barkaoui et al. 2017). Otherwise, Rosmarinus officinalis L. has the highest UV (Eddouks et al. 2017) instead of the second-highest UV as presented in the present work.

Finally, the most reported plants with the highest UV values were considered the most cited plants in Morocco, according to the results of the European RUBIA project (González-Tejero et al. 2008). This group of medicinal plants was widely used and well known in the Moroccan traditional pharmacopeia.
The botanical Family Use Value (FUV)
Previous ethnobotanical investigations conducted by our team in Oriental Morocco (Eastern Morocco) revealed 60 families of medicinal plants (Fakhchich & Elachouri 2014). However, the present work, which was carried out in the same region, but in other districts not previously visited, revealed a patrimony of 80 plant families. Our study revealed that 57% of medicinal plant families were reported for the first time from the study area. Regarding their uses, this justifies in part the novelty of the present study. Comparing the number of families recorded in this paper (80 Families) with those recorded by other ethnobotanical studies carried out in other regions in Morocco: Errachidia province, Tata province, Agadir Ida outanane province, and the El Jadida region, in which the number of families recorded was 69, 56, 53 and 37 families respectively (Abouri et al. 2013, Briguiche et al. 2015, Eddouks et al. 2017, Ouhaddou et al. 2014), we can estimate that the area of the present study was endowed with a rich medicinal flora.

Regarding the Family Use Value of the plants recorded in this paper, the results show the high score for Amarillocladaceae (FUV= 0.1160) followed by Verbenaceae (FUV=0.1031), Nitrariaceae (FUV= 0.0870), Oleaceae (FUV= 0.0548), Iridaceae (FUV= 0.0515), Lamiaceae (FUV= 0.0485), Ranunculaceae (FUV= 0.0456), Thymelaeaceae (FUV= 0.0430), Amaranthaceae (FUV= 0.0429) and Capparaceae (FUV= 0.0408). Caprifoliaceae, Convolvulaceae, Cynomoriaceae, and Dioscoreaceae (FUV= 0.0011) had the lowest values of FUV among the recorded families.

The highest FUV (0.116) was assigned to the Amarillocladaceae, which regroup only three species: Allium sativum L., Allium cepa L. and Allium ampeloprasum L. The high (FUV) value for this botanical family can be explained by the fact that garlic and onion were considered one of the most important cultivated crops of genus Allium (Devi et al. 2014). Additionally, these plant species are widely used in Moroccan traditional pharmacopeia for multiple therapeutic virtues mentioned above (for A. sativum). These herbs are used frequently as food or as a meal ingredient in Moroccan cuisine (i.e., the famous Moroccan salad made from onions, garlic, tomatoes, and olive oil).

Informant Consensus Factor (ICF)
The recorded use reports data have been classified into different ailment categories, based on the International Classification of Primary Care - 2nd Editions (ICPC-2), that we adopted in this study (http://www.who.int/classifications/icd/adaptations/icpc2/en/). So, 17 categories of diseases treated traditionally by popular herbal medicine were regrouped in Table 3, including categories of ailments, the number of use reports for each category (Nur), the number of plants related to the treatment of each category of ailment (Nut), the percentage of taxa (%) and the Informant consensus factor (ICF). As indicated in Table 3, the medicinal plants listed in this paper are endowed with a large diversity of pharmacological properties. According to these results, we noted that the highest values of this index (ICF) were recorded for digestive system problems (ICF=0.56) with 198 plant species (70% of recorded taxa), followed by General and Unspecified diseases (ICF=0.43), Urological diseases (ICF=0.39), Respiratory diseases (ICF=0.37). Illnesses such as Musculoskeletal problems (ICF=0.11) and Male genital problems (ICF=0.07) had the lowest values of ICF.

The high prevalence of ICF value of digestive diseases is in accordance with several studies carried out in other areas in Morocco (Eddouks et al. 2017, El-Hilaly et al. 2003, Fakhchich & Elachouri 2014; Merzouki et al. 2000), in Algeria (Benarba et al. 2015, Bouasla & Bouasla 2017, Miara et al. 2018), and globally in Mediterranean region (González-Tejero et al. 2008). These observations could be justified because the digestive system encompasses many organs, like the liver, spleen, stomach, gut esophagus, and intestine. Each one of these organs, when affected, could be assimilated to a digestive problem. The high ICF values for most ailments observed in the present work show homogeneity of informants’ knowledge, thereby reinforcing the medicinal properties of the listed plants. Since there was a high consensus among the informants about the use of these plants, their medicinal properties cannot be neglected. A high degree of consensus on the use of these plants suggests that the species likely have high therapeutic potential. Unfortunately, this high population’s interest could have a negative spinoff since these species, which are unsustainably harvested, were exposed to a high threat risk.

Cross-cultural analysis
Most ethnobotanical studies focus on the use of medicinal plants within one culture or ethnic group, and little emphasis has been given to the comparison of plant species in various cultures (Heinrich et al. 1998). However, traditional knowledge changes over space and time. Therefore, several cross-cultural studies aim to find which parameters explain such patterns by comparing species traditionally used in different regions or countries and which variables explain this culture changes over space and time (Bradacs et al. 2011, Eddouks et al. 2017, Ellena et al. 2012, Ghorbani et al. 2012, Heinrich et al. 1998, Leonti et al. 2009, 2010, Leporatti & Ghedira 2009, Madaleno 2010, Pieroni et al. 2011, Söukand & Kalle 2010).
Generally, patterns of medicinal plant knowledge could be determined by both ecological availabilities, which means that the more salient a species is, the more likely it will be used, and cultural factors including language, human cognition, cultural history beliefs, religion, socio-cultural identities, political context, and social networks (Maffi 2005).

In this part of the text, we attempt to assess the importance of the factors influencing the use of medicinal plants by comparing traditional medicinal plant knowledge recorded in this paper with other ethnobotanical studies carried out in other areas inside Morocco. With such an approach, we try to explore the fundament of common traditional knowledge for the medicinal plants used by the local inhabitants.

Plants recorded locally versus plants recorded elsewhere within Morocco
To better understand the use of medicinal plants by different communities, it is interesting to examine the complex interactions of culture, geographic setting, and health experiences. Several studies have focused their investigation in cross-cultural analysis between plants used in various cultures in different parts of the Mediterranean area, including Morocco (Eddouks et al. 2017, El-gharbaoui et al. 2017, Heinrich et al. 1998; Lardos & Heinrich 2013, Leonti et al. 2010). Such comparison is handy in the sense that it leads to the enrichment of traditional medicinal knowledge. To ascertain this assumption, and for performing a detailed cross-cultural analysis between our study and other geographically and culturally distant areas, we attempt to compare the ethnobotanical resources of medicinal interest in north-eastern Morocco with particular attention to the differences and/or similarities between the information known in neighboring regions (Table 4).

For this purpose, we calculate the Jaccard Index of similarity (JI) between areas considered according to the plant species inventoried. By this approach, we opted for investigating the divergences and convergences of our ethnobotanical data versus plant species recorded in other works conducted inside Morocco. With such an approach, we could sketch the distribution and diversity of medicinal plants recorded in this paper.

Plant species were compared with the available data from ethnobotanical studies in different regions of Morocco; NW: Ksar Lakbir; SE: Errachidia; W: Eljadia; SW: Agadir Ida ou Tanane province; S: Guelmim province and Center: High Atlas. The correspondent results are presented in Table 4.

Table 3. Informant consensus factor (ICF)

Category of ailments (ICPC-2)	Nur	Nut	% of taxa	ICF
Digestive problems	453	198	70	0.56
General and Unspecified	187	107	38	0.43
Urological	121	74	26	0.39
Respiratory diseases	118	75	27	0.37
Eye diseases	15	10	4	0.36
Skin diseases	183	119	42	0.35
Ear problems	7	5	2	0.33
Endocrine, Metabolic and Nutritional	216	153	54	0.29
Blood, Blood Forming Organs and Immune Mechanism	22	17	6	0.24
Neurological	40	32	11	0.21
Female Genital	29	24	8	0.18
Cardiovascular	114	96	34	0.16
Cancer	20	17	6	0.16
Pregnancy, Childbearing and Family Planning	35	30	11	0.15
Musculo-skeletal	76	68	24	0.11
Male Genital	42	39	14	0.07

- ICF: Informant consensus factor
- Nur: is the number of use-reports for a particular ailment category.
- Nut: is the number of plants species used for a particular ailment category by all informants.
Table 4. Jaccard Index of similarity inside Morocco

Area	Locality and kilometric distance from benchmark	Indices	Jaccard Index	References
Ksar Lakbir District	(NW) 181 km from Al Hoceima	A = 283	37.1	(Merzouki et al. 2000)
Province of Errachidia	(SE) 240 km from Bouarfa	A = 283	35.5	(Eddouks et al. 2017)
El Jadida	(W) 629 from Oujda	A = 283	24.5	(El Abbouyi et al. 2014)
Agadir Ida Ou Tanane Province	716 km from Bouarfa	A = 283	20.9	(Ouhaddou et al. 2014)
Taidalt village	(SW) 867 km from Bouarfa	A = 283	7.4	(Blanco & Carrière 2016)
High Atlas of Morocco	(Center) 484 from Bouarfa	A = 283	5.4	(Teixidor-Toneu et al. 2016)

A: The number of species of our region. B: The number of species of each region in Morocco. C: The number of species common to A and B. Three benchmarks (Al Hoceima in the North, Oujda in the Center, and Bouaarfa in the South) have been considered references for calculating distances.

The results showed that the highest value of similarity was found with studies conducted in 'Ksar lakbir’ district and the province of 'Errachidia’ with JI= 37.1 and 35.5 respectively, while the lowest indices of similarity were found in Taidalt Village “Guelmime Province” and High Atlas, with JI= 7.4 and 5.4 respectively. Medium value has been noted in El Jadid and Agadir Ida ou Tanane, with JI= 24.5 and 20.9, respectively. According to these results, at first glance, we could link between the kilometric distance separating the comparative areas (geographical position) and the degree of similarities. The degree of similarity is higher when the study area is closed to our study area, and the opposite is correct.

The high value of the Jaccard index (JI= 37.1) corresponding to “Ksar lakbir,” which is located at a distance of 181 km (as the crow flies, taking Al Hoceima as reference). For Errachidia, the distance from Bouaarfa (as reference) is about 240 km; in this case, the value of JI= 35.5. For El Jadida, which is about 629 km from Oujda (as reference), the value of JI = 24.5; The value of JI= 5.4 for the High Atlas which is about 484 km from Bouaarfa, considering Agadir Ida ou tanane and Guelmim, the JI value and kilometric distances are respectively JI = 20.9/716 km and JI = 7.4 / 867 km. However, the High Atlas represents an exception with a value of JI= 5.4, which seems to be an outlier point (Figure 7), corresponding to the kilometric distance (484 km), relatively low, whereas El Jadida which was far from the reference by 629 km, the value of JI was relatively elevated (JI= 24.5). This discrepancy observed could be explained by the different locations of the regions considered, the orographic position, and the exceptional bioclimatic characterizing each area. The region of High Atlas of Morocco, which is situated at a high altitude (culminating summit surrounding 4200m), sheltered a special bioclimate (Mountainous bioclimate), besides, this territory was characterized by its richness on endemic plants with 439 species (49.1% of Moroccan endemic plants) (Rankou et al. 2013), which can confirm the dissimilarity of plants used concerning our study area. However, El Jadida, which is located at the edge of the Atlantic Ocean, has an advantage from the maritime influence. These observations indicate that the relationship (JI
- Km) is not always accurate because other factors such as climate and sociocultural parameters may interfere, as with the High Atlas cited above (Teixidor-Toneu et al. 2016).

Globally, with such results, we can postulate that the variation in the percentage of similarity might be due to the distance between the study area and other regions in the first place. Secondary, by the homogeneous ecological area, including vegetation types, climatic conditions, and the sociocultural homogeneity in the regions considered for comparison. Furthermore, it is worth noticing that the sample sizes (number of informants) within the studies considered for comparison may also affect these outcomes. Nevertheless, our finding corroborates those conducted by other researchers (Amiguet et al. 2006, Leonti et al. 2006, Saslis-lagoudakis et al. 2011).

Figure 7. Correlation between Kilometric distances and Jaccard index of similarity

Historical analysis

In this paragraph, we were interested in the knowledge transmission regarding medicinal plants and their uses by local people through history. To fill the gaps between the current and the historical written records of oral medical traditions, we chose Leclerc’s translation as a proxy for Ibn Al baytar’s text in three volumes (Leclerc 1877). The document with expertise conveys authority resulting in practical yet qualified interpretations and is easily accessible to readers. With such an approach, we would like to highlight the importance of the analysis of historical texts on the plants used by people in north-eastern Morocco by comparing our data with plants listed in Ibn Al Baytar’s compendium, a document representing a valuable bibliographical source for comparison, including a high number of plants used as medicine.

Considering the checklist of the local plant recorded in this paper, with those documented by Ibn Al Baytar, our results showed a congruence of many plant species. Out of 283 plant species reported locally, 208 were documented historically in Ibn Al Baytar’s compendium (Annex A), representing 73.5%. A similar finding has been found by Elgharbaoui (2017), although they were limited in their study only on the botanical family of Lamiaceae.

Among the plants not cited in Ibn Al Baytar’s texts, we found species not known at his time which were imported later from Australia (e.g., *Eucalyptus torquata* Luehm.), Japan (e.g., *Eriobotrya japonica* (Thunb.) Lindl.), and America (e.g., *Agave americana* L.), or were out of the reach like endemic and Saharan plants, in addition to some species newly introduced in the Franco-Spanish colonial time. This high correspondence between ancient texts and current local folk traditions prompts us to conclude that many traditional medical practices derive more or less directly from the ancestral Arabo-Islamic civilization. However, we must remain cautious about this hypothesis because of some difficulties with the translation of historical terms for diseases and symptoms into modern biomedical terminology, the technical problems with a straightforward interpretation of Ibn Al Baytar’s work for plant identification, and also current scientific names for individual plants do not correspond precisely with Ibn Al Baytar’s "kinds" of plants. These parameters could impede such assumption. So, it
must be essential to be cautious with such a conclusion.

Overall, these observations led us to conclude a historical continuity concerning the medicinal plants and their traditional uses. Thus, the historical prevalence of these ancestral Phyto therapeutic uses testified to their past. Throughout this reflection, we can say that the historical written records of oral medical traditions have significantly impacted the development of medicine and the pharmacopeia in Moroccan society, including people living in northeastern Morocco.

Conclusion

Keeping in mind the importance of medicinal flora, the present work provides the fundamental component of a distinct cultural domain in the ancestral medical knowledge related to medicinal plants in North-eastern Morocco. Also, the survey discusses the gaps in the current state of knowledge on ethnomedical plants used by people living in this region. Our results show that traditional medicine still plays a significant role in meeting indigenous people’s primary health care needs in this region. We can note that plant wealth documented in this paper deserves great attention, as natural resources should be kept and protected from threatening and endangering factors, especially for the rare and the endemic species, which could enhance the efforts to sustain these species. The current paper (Part I) regrouped scientific ethnobotanical information on 283 medicinal plants used by people living in Northeastern Morocco. In the second paper (Part II), which is currently in preparation, we attempt to determine the phytochemical and pharmacological profile of the plants listed herein. Finally, the motivation behind this study was to advance ethnobotanical research regarding the North-eastern region that has not yet been explored exhaustively. Also, the plants listed in the present paper could serve as a database and could have adequate support to research on traditional ethnobotanical knowledge and the sourcing of raw materials to produce commercial pharmaceutical compounds. That is why it is necessary to develop novel approaches to conserve and valorize this wealthy ancestral heritage.

Declarations

Ethics approval and consent to participate: The data were collected with respect to confidentiality, anonymity and consent. All respondents were informed about the aim of this study. No further ethics approval was required.

List of abbreviation: N/A

Competing interest: The authors declare that they have no competing interests.

Author’s contributions: Alami Merrouni Ilyass contributed to the ethnobotanical survey, the data analysis, drawing of graphics, collect of plants and the writing of the manuscript; Kharchoufa Loubna contributed to the collect of plants, botanical identification and to the writing of the manuscript; Bencheikh Noureddine, inquiry and collect of plants; Elachouri Mostafa designed the study, performed the ethnobotanical survey and contributed to the writing of the manuscript.

Funding Statement: This study did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Acknowledgements

We would like to thanks all the informants from the population of northeastern Morocco who has participated in this survey, especially those who monitored our filed tours. Many thanks to Ajoun Mohamed and Bouhrim Mohamed from our laboratory for their time spent helping us in this work. Thanks to Myleshia Perryman (from Department of Dermatology, Emory University School Medicine, Atlanta, Georgia, USA), for assistance in improving the quality of written English in the manuscript.

References

Abouri M, El Mousadik A, Msanda, F, Boubaker H, Saadi B, Cherifi K. 2012. An ethnobotanical survey of medicinal plants used in the Tata Province, Morocco. International Journal of Medicinal Plant Research 1(7):99-123.

Akhtar N, Rashid A, Murad W, Bergmeier E. 2013. Diversity and use of ethno-medical plants in the region of Swat, North Pakistan. Journal of Ethnobiology and Ethnomedicine. 9(1):1-14.

Alami Merrouni I, Elachouri M. 2021. Anticancer medicinal plants used by Moroccan people: Ethnobotanical, Preclinical, Phytochemical and Clinical evidence. Journal of Ethnopharmacology 266:2-35. doi:10.1016/j.jep.2020.113435.

Albuquerque UP, Lucena RFP. 2004. Seleção e escolha dos informantes. Métodos e técnicas na pesquisa etnobotânica. Edited by: Albuquerque UP, Lucena RFP. Recife: Editora NUPEEA:19-35.

Alves-Silva JM, Romane A, Efferth T, Salgueiro L. 2017. North African medicinal plants traditionally used in cancer therapy. Frontiers in Pharmacology 8:1-24. doi:10.3389/fphar.2017.00383.

Amiguet VT, Arnason JT, Maquin P, Cal V, Pablo SV, Luis, PA. 2006. A regression analysis of Q’eqchi’ Maya medicinal plants from southern Belize. Economic Botany 60(1):24-38.

Barkaoui M, Katri I, Boubaker H, Msanda F. 2017. Ethnobotanical survey of medicinal plants used in the traditional treatment of diabetes in Chtouka Ait
Part A):46

Jadida. International Journal of Herbal Medicine 2(5)
catalogue of medicinal plants used in the region of El

Briguiche H, Rochdi A, Zidane L. 2014. The
doi:10.1016/j.jep.2011.05.

Ethnopharmacology 137(1):434
ethnobotanical study of three islands. Journal of
Medicinal plant use in Vanuatu:A comparative
Bradacs G, Heilmann J, Weckerle CS. 2011.

Pharmacological properties and mechanism insights
Bouyahya A, Belmehdi O, Benjouad A, El Hassani

doi:10.1016/j.phymed.2017.09.007.

Phytomedicine 36:68-81.
doi:10.1016/j.phymed.2017.09.007.

Boulayha A, Belmehdi O, Benjouad A, El Hassani
RA, Amzazi S, Dakra N, Bakri Y. 2020.

Pharmacological properties and mechanism insights
of Moroccan anticancer medicinal plants:What are the
next steps?. Industrial Crops and Products
147:112198. doi:10.1016/j.indcrop.2020.112198.

Bradacs G, Heilmann J, Weckerle CS. 2011.

Medicinal plant use in Vanuatu:A comparative
ethnobotanical study of three islands. Journal of
Ethnopharmacology 137(1):434-448.
doi:10.1016/j.jep.2011.05.050.

Briguiche H, Rochdi A, Zidane L. 2014. The
catalogue of medicinal plants used in the region of El
Jadida. International Journal of Herbal Medicine 2(5
Part A):46-54.
Es-Safi I, Mechchate H, Amaghrouj A, Zahra Jawhari F, Bari A, Cerruti P, Avella M, Grafov A, Bousta D. 2020. Medicinal plants used to treat acute digestive system problems in the region of Fez-Meknes in Morocco: An ethnopharmacological survey. Ethnobotany Research and Applications 20:1-14. doi:10.32859/era.20.25.1-14.

Fakchich J, Elachouri M. 2021. An overview on ethnobotanico-pharmacological studies carried out in Morocco, from 1991 to 2015: systematic review (part 1). Journal of Ethnopharmacology 267:1-32. doi:10.1016/j.jep.2020.113200.

Fakchich J, Elachouri M. 2014. Ethnobotanical survey of medicinal plants used by people in Oriental Morocco to manage various ailments. Journal of Ethnopharmacology 28:76-87. doi:10.1016/j.jep.2014.03.016.

Fennane M. 2004. Propositions de zones importantes pour les plantes au Maroc (ZIP Maroc). Institut Scientifique, Rabat, Morocco.

Fennane M, Ibn Tattou M, Ouyahya A, El Oualidi J. 2014. Flore pratique du Maroc: manuel de détermination des plantes vasculaires. Dicotylédones (P.P), Monocotylédones: Vol 3. Institut scientifique Ed. Rabat. 636 pg.

Fennane M, Ibn Tattou M, Ouyahya A, El Oualidi J. 2007. Flore pratique du Maroc: manuel de détermination des plantes vasculaires. Angiospermae (Leguuminosae - Lentibulariaceae). Vol 2. Institut scientifique Ed. Rabat. 793 pg.

Fennane M, Ibn Tattou M, Mathez J. 1999. Flore pratique du Maroc: manuel de détermination des plantes vasculaires. Pteridophyta, Gymnospermae, Angiospermae (Lauraceae-Neuradaceae): Vol 1. Institut scientifique Ed. Rabat. Maroc. 558 pg.

Fennane M, Ibn Tattou M, Valdés B. 1998. Catalogue des plantes vasculaires rares, menacées ou endémiques du Maroc. Bocconea. Palerme. Italie. 8th ed.

Fennane M, Rejdali M. 2018. Moroccan vascular plant Red Data Book: A basic tool for plant conservation. Bocconea 28:273-284. doi:10.7320/flmedit28.339.

Fennane M, Rejdali M. 2016. Aromatic and medicinal plants of Morocco, richness, diversity and threats. Bulletin de l’Institut Scientifique: Section Sciences de la Vie 38:27-42. doi:10.1021/jp901631b.

Franchimont J, Saadaoui EM. 2001. National study on biodiversity synthesis report. Ministry of Territorial Planning, Water and Environment, United Nations Program of Environment. Legal Deposit: 2001/1445. Rabat. Kingdom of Morocco.

GEF. 2000. Global Environment Facility. Morocco Protected Areas-Management Project. The World Bank.

Ghorbani A, Langenberger G, Sauerborn J. 2012. A comparison of the wild food plant use knowledge of ethnic minorities in Naban River Watershed National Nature Reserve, Yunnan, SW China. Journal of Ethnobiology and Ethnomedicine 8(1):1-10.

Giday M, Asfaw Z, Elmqvist T, Woldu Z. 2003. An ethnobotanical study of medicinal plants used by the Zay people in Ethiopia. Journal of Ethnopharmacology 85(1):43-52. doi:10.1016/S0378-8741(02)00359-8.

Giday M, Teklehaimanot T, Animut A, Mekonnen Y. 2007. Medicinal plants of the Shinasha, Agew-awi and Amhara peoples in northwest Ethiopia. Journal of Ethnopharmacology 110(3):516-525. doi:10.1016/j.jep.2006.10.011.

González-Tejero MR, Casas-Morell M, Sánchez-Rojas CP, Ramiro-Gutiérrez JM, Molero-Mesa J, Pieroni A, Giusti ME, Censorini E, De Pasquale C, Della A, Paraskeva-Hadžijambli D. 2008. Medicinal plants in the Mediterranean area: synthesis of the results of the project Rubia. Journal of Ethnopharmacology 116(2):341-357. doi:10.1016/j.jep.2007.11.045.

González JA, García-Barriuso M, Amich F. 2010. Ethnobotanical study of medicinal plants traditionally used in the Arribes del Duero, western Spain. Journal of Ethnopharmacology 131(2):343-355. doi:10.1016/j.jep.2010.07.022.

Guarrera PM. 2005. Traditional phytotherapy in Central Italy (Marche, Abruzzo, and Latium). Fitoterapia 76(1):1-25. doi:10.1016/j.fitote.2004.09.006.

Güzel Y, Güzelşemme M, Miski M. 2015. Ethnobotany of medicinal plants used in Antakya: a multicultural district in Hatay Province of Turkey. Journal of Ethnopharmacology 174:118-152. doi:10.1016/j.jep.2015.07.042.

Hachi M, Benkhignoue O, Hachi T, El Bouhaddioui M, Bouabadi I, Rochdi A. 2016. Contribution to the ethnobotanical study of antidiabetic medicinal plants of the Central Middle Atlas region (Morocco). Lazaroa 37:135-144. doi:10.5209/LAZAROA.51854.

Heinrich M, Anki A, Frei B, Weimann C, Sticher O. 1998. Medicinal plants in Mexico: Healers’ consensus and cultural importance. Social Science & Medicine 47(11):1859-1871.

Heinrich M, Kufer J, Leonli M, Pardo-de-Santayana M. 2006. Ethnobotany and ethnopharmacology—Interdisciplinary links with the historical sciences. Journal of Ethnopharmacology 107(2):157-160. doi:10.1016/j.jep.2006.05.035.

Hill LL. 2006. Georeferencing: The geographic associations of information. Edited by MA: The MIT. Cambridge: MA: The MIT Press.

Hoffman B, Gallaher T. 2007. Importance indices in ethnobotany. Ethnobotany Research and Applications 5:201-218.
Kerman, Iran. Journal of Ethnopharmacology 199:194-204. doi:10.1016/j.jep.2017.02.006.

Sargin SA. 2015. Ethnobotanical survey of medicinal plants in Bozuyazi district of Mersin, Turkey. Journal of Ethnopharmacology 173:105-126. doi:10.1016/j.jep.2015.07.009.

Saslis-Lagoudakis CH, Williamson EM, Savolainen V, Hawkins JA. 2011. Cross-cultural comparison of three medicinal floras and implications for bioprospecting strategies. Journal of Ethnopharmacology 135(2):476-487.

Sőukand R, Kalle R. 2010. Plant as object within herbal landscape: different kinds of perception. Biosemiotics 3(3):299-313. doi:10.1007/s12304-010-9078-9.

Staub PO, Geck MS, Weckerle CS, Casu L, Leonti M. 2015. Classifying diseases and remedies in ethnomedicine and ethnopharmacology. Journal of Ethnopharmacology 174:514-519. doi:10.1016/j.jep.2015.08.051.

Teixidor-Toneu I, Martin GJ, Ouhammou A, Puri RK, Hawkins JA. 2016. An ethnomedicinal survey of a Tashelhit-speaking community in the High Atlas, Morocco. Journal of Ethnopharmacology 188:96-110. doi:10.1016/j.jep.2016.05.009.

Uprety Y, Asselin H, Boon EK, Yadav S, Shrestha KK. 2010. Indigenous use and bio-efficacy of medicinal plants in the Rasuwa District, Central Nepal. Journal of ethnobiology and ethnomedicine 6(1):1-10.

Yabrir B, Touati M, Adli B, Bezini E, Ghaoul M, Khalifa S, Guit B. 2018. Therapeutic use of spontaneous medicinal flora from an extreme environment (dune cordon) in Djelfa region, Algeria. Journal of Pharmacy & Pharmacognosy Research 6(5):358-373.

Yamani A, Bunel V, Antoine MH, Husson C, Stévigny C, Duez P, Elachouri M, Nortier J. 2015. Substitution between Aristolochia and Bryonia genus in North-Eastern Morocco: toxicological implications. Journal of Ethnopharmacology 166:250-260. doi:10.1016/j.jep.2015.03.036.

Yemele MD, Telefo PB, Lienou LL, Tagné SR, Fodouop CSP, Goka CS, Lemfack MC, Moundipa FP. 2015. Ethnobotanical survey of medicinal plants used for pregnant women’s health conditions in Menoua division-West Cameroon. Journal of Ethnopharmacology 160:14-31. doi:10.1016/j.jep.2014.11.017.

Ziyat A, Legssyer A, Mekfi H, Dassouli A, Serhrouchni M, Benjelloun W. 1997. Phytotherapy of hypertension and diabetes in oriental Morocco. Journal of Ethnopharmacology 58(1):45-54. doi:10.1016/s0378-8741(97)00077-9.
Annex A: List of medicinal plants species used by local people, and some of their properties

Family / Scientific Name (Synonym) / Voucher	Local name	Localization of plants specimen (GPS)	Ecological status / Life forms / Herbaceous form	Therapeutic uses (Use reports)	Part used	Mode of preparation	NC	UV	FUV
ACANTHACEAE									
Acanthus mollis L. HUMPOM188		N 35°13'34.8" W 003°38'15.7" E = 248 m	S / Hem / H	Skin infections (1), skin burns (4) and eczema (3).	lv, rt	inf, cat	8	0.0086	0.0086

| **AMARANTHACEAE** | | | | | | | | | |
| Anabasis aretioides Coss. & Mod. HUMPOM049 | | N 32°06'20.8" W 001°13'31.4" E = 911 m | S / Th / H | Rheumatism (5), blood disorder (1), diuretic (6), antidote (7), diabetes (1) and hypertension (3). | ap, lv, wp | dec | 23 | 0.0247 |

| **AMARANTHACEAE** | Beta vulgaris L. HUMPOM191 | n° 1202, 1424 | C / Hem / H | Diabetes (5). | sd | pod, fod | 5 | 0.0054 |

| **AMARANTHACEAE** | Chenopodium album L. HUMPOM043 | n° 1064 | S / Th / H | Stomach ache (9) and antispasmodic (2). | rt | dec | 11 | 0.0118 |

| **AMARANTHACEAE** | Dysphania ambrosioides (L.) Mosyakin & Clemants* HUMPOM042 | - مخيزة | S / Th / H | Hypertension (12), colds (25), antitussive (3), emmenagogue (2), diabetes (6), antispasmodic (1), menstrual pains (4), asthma (2), analgesic (1), arrhythmia (1), headache (36), respiratory infections (12), carminative (4), fever (41), oral infections (2) and anxiety (1). | lv, fl, sd, rt, st, wp | dec, inf, mac, cat, juc | 153 | 0.1643 | 0.0430 |

| **AMARANTHACEAE** | Haloxylon scoparium Pomel* HUMPOM047 | n° 1063 | S / Ch / H | Allergy (3), hypertension (3), cancer (1), mouthwash (2), antidote (5), dermatitis (1), diabetes (4), stomach ache (10), colds (7), rheumatism (1), scabies (1), wounds healing (1) and intestinal antiseptic (2). | bl, lv, fr, rt, wp, ap, ls, sd | dec, inf, pod, juc, cat, tis | 41 | 0.0440 |

| **AMARANTHACEAE** | Nitrosalsola vermiculata (L.) Theodorova* (Salsola vermiculata L.) HUMPOM048 | n° 87, 709, 1037 | S / Ch / SH | Hypertension (3), arrhythmia (1), and intestinal antiseptic (2). | lv, ap, fr | cat, pod, dec | 7 | 0.0075 |

| **AMARANTHACEAE** | Allium ampeloprasum L. HUMPOM193 | n° 1760, 1820, 1875, 1910, 1911, 1998 | S / GB / H | Diabetes (1), hypertension (1) and otitis (1). | bl, wp | fod | 3 | 0.0032 | 0.116 |
Plant	Scientific Name	Inventory No.	Geographic Coordinates	Uses	Common Uses	Value
Allium cepa L.	Allium cepa L.	HUMPOM192	N 35°56'23.1" W 002°20'48.8" E = 151 m	C / GB / H	Diabetes (12), cancer (1), colds (19), cough (6), diuretic (1), fever (6), boils (9), respiratory problems (13), eye infection (3), asthma (15), vertigo (9), sterility (1), antispasmodic (5) and urinary infections (4).	104
Allium sativum L.*	Allium sativum L.*	HUMPOM194	N 35°56'16.3" W 002°20'42.7" E = 149 m	C / GB / H	Diabetes (23), cough (21), hypertension (16), colds (9), wounds healing (12), antidote (37), antibacterial (2), antifungal (3), cancer (3), Alzheimer (1), rheumatism (11), kidney stones (7), bl	217
ANACARDIACEAE	Pistacia atlantica Desf.	HUMPOM079	N 34°50'52.8" W 002°12'18.6" E = 1347 m	S / Ph / T	Laxative (1), diuretic (1), stomach ache (1), skin problems (1) and allergy (1).	4
Pistacia lentiscus L.*	Pistacia lentiscus L.*	HUMPOM080	N 34°47'57.1" W 002°24'07.4" E = 889 m	S / Ph / T	Diabetes (1), oral hygiene (1), cardio stimulant (1), menstrual pains (1), digestive problems (2), hair care (1), diuretic (1) and asthma (1).	9
Searsia tripartita (Ucria)	Searsia tripartita (Ucria)	HUMPOM001	N 32°06'24.8" W 001°13'32.5" E = 910 m	S / Ph / T	Hypertension (1) and digestive problems (1).	1
APIACEAE	Ammi majus L.*	HUMPOM116	N 34°50'30.2" W 002°10'26.2" E = 1198 m	S / Th / H	Vitiligo (3), respiratory infection (1) and cardiovascular diseases (1).	5
Visnaga daucoides Gaertn.	Visnaga daucoides Gaertn.	HUMPOM117	N 34°50'26.5" W 002°21'23.2" E = 723 m	S / Th / H	Diabetes (1), hypoglycemia (1), renal pain (1), headache (1), vertigo (1), antispasmodic (1), asthma (1), carminative (1), aphrodisiac (2), tonic (1), kidney stones (1), urinary infection (1) and mouth hygiene (5).	14
Species	Accession	Coordinates	Parts Used	Conditions	Cured with other ailments	
---	-----------	------------------------------	--	---		
Ammodaucus leucotrichus Coss.	HUMPOM098	N 32°06'28.5" W 001°13'37.1"	fr, lv, inf, dec, pod, raw, 69	Stomach ache (14), intestinal antiseptic (5), diarrhea (17), diabetes (6), hypertension (4), arrhythmia (1), respiratory problems (8), allergy (2), reproductive system problems (6) and anxiety (5).		
Anmoids pusilla (Brot.) Breistr.	HUMPOM100	N 34°47'59.1" W 002°24'01.0"	S / Th / H	Colds (11), fever (9), influenza (6), stomach ache (2), bronchitis (4), diabetes (10) and hypertension (1).		
Anethum graveolens L.	HUMPOM118	N 36°14'50.3" W 003°37'33.1"	S / Th / R? / H	Urinary disorders (4), cardiovascular diseases (2), tonic (1), kidney stones (4), anxiety (1), antispasmodic (1), aphrodisiac (1) and diuretic (2).		
Apium graveolens L.	HUMPOM112	N 35°14'43.8" W 003°37'38.4"	C / Th-b / H	Digestive problems (4) and rheumatism (1).		
Helosciadium nodiflorum (L.) Koch *	HUMPOM113	N 34°50'27.8" W 002°21'24.9"	S / G / HyF / H	Appetizer (1) and gain weight (1).		
Bunium bulbocastanum L.	HUMPOM104	N 35°52'53.8" W 003°07'39.7"	S / G / H	Antispasmodic (8), stomach ache (6), sedative (1), analgesic (1), diabetes (3), problems of nervous system (1), hypertension (1), aphrodisiac (2), carminative (2), colds (3), bronchitis (2) and lactation (1).		
Carum carvi L.	HUMPOM195	N 34°52'52.7" W 002°07'44.2"	C / Hem / H	Fever (3), abortive (2), facilitating childbirth (2) and female sterility (1).		
Coriandrum sativum L. *	HUMPOM197	N 34°47'79.1" W 002°24'37.6"	S / Th / H	Intestinal antiseptic (11), stomach ache (19), carminative (6), dental problems (3), fever (14), insomnia (2), lactation (1), rheumatism (5), asthma (3), bronchitis (13) and cardiovascular (9).		

Notes: fr = fruit; lv = leaves; sd = seeds; inf = inflorescence; dec = decoction; pod = pod; raw = raw; C / Th-b (Hem) / H = capsule / Th-b (Hem) / H; lv, wp, cat, fod = leaves, water purses, cat, food; rt = root; - = not available; wp, fr, lv, rt, inf, dec, pod = water purses, fruit, leaves, roots, infusions, decimals, powder; b / H = b / H; C / Th / H = capsule / Th / H; N 32°06'28.5" W 001°13'37.1" = N 32°06'28.5" W 001°13'37.1"; E = 911 m; C / Th / R? / H = capsule / Th / R? / H; N 34°47'59.1" W 002°24'01.0" = N 34°47'59.1" W 002°24'01.0"; E = 889 m; S / Th / R? / H = S / Th / R? / H; N 36°14'50.3" W 003°37'33.1" = N 36°14'50.3" W 003°37'33.1"; E = 55 m; S / Th / R / H = S / Th / R / H; N 35°14'43.8" W 003°37'38.4" = N 35°14'43.8" W 003°37'38.4"; E = 57 m; S / Th / H = S / Th / H; N 34°50'27.8" W 002°21'24.9" = N 34°50'27.8" W 002°21'24.9"; E = 723 m; S / G / HyF / H = S / G / HyF / H; C / Th-b / H = capsule / Th-b / H; N 35°52'53.8" W 003°07'39.7" = N 35°52'53.8" W 003°07'39.7"; E = 506 m; S / G / H = S / G / H; C / Hem / H = capsule / Hem / H; N 34°52'52.7" W 002°07'44.2" = N 34°52'52.7" W 002°07'44.2"; E = 512 m; C / Th-b (Hem) / H = capsule / Th-b (Hem) / H; N 34°50'00.8" W 003°05'54.1" = N 34°50'00.8" W 003°05'54.1"; E = 604 m; S / Th-b (Hem) / H = S / Th-b (Hem) / H; N 35°12'00.8" W 003°05'54.1" = N 35°12'00.8" W 003°05'54.1"; E = 604 m; S / Th-b (Hem) / H = S / Th-b (Hem) / H; N 34°47'49.6" W 002°24'07.8" = N 34°47'49.6" W 002°24'07.8"; E = 876 m; S / Th / H = S / Th / H; N 34°47'49.6" W 002°24'07.8" = N 34°47'49.6" W 002°24'07.8"; E = 876 m; S / Th / H = S / Th / H; N 34°47'79.1" W 002°24'37.6" = N 34°47'79.1" W 002°24'37.6"; E = 885 m; S / Th / H = S / Th / H; N 34°47'79.1" W 002°24'37.6" = N 34°47'79.1" W 002°24'37.6"; E = 885 m; S / Th / H = S / Th / H;
Species	Locality	Symptoms	Parts	E/N	Distance	P value		
Daucus carota L.	n° 96, 481, 983, 1389, 2240	Urinary infections (3), stomach ache (4), renal diseases (3), diuretic (2), diarrhea (1), depreative (1), hypoglycemia (2) and emmenagogue (1).	rh, sd, juc, dec	17	0.0183			
Daucus crinitus Desf.	n° 96, 481, 983, 1389, 2240	Cardiovascular diseases, laxative (1), rheumatism (1) and weakness (1).	rt, st, wp, pod, dec, raw, fod	3	0.0032			
Beversa scagaria Coss. & Durieu *	n° 1784	Migraine (4).	ap, cat	4	0.0043			
Eryngium tricuspidatum L.	n° 158, 688, 2091	Gain weight (1), tonic (1), respiratory infections (6), rheumatism (3) and labor pains (2).	rt, lv, pod, dec	13	0.0140			
Ferula assa-foetida L. *	n° 1834, 1961	Antispasmodic (1), rheumatism (1), aphrodisiac (1), sterility (3), fever (1), gain weight (1), uro-genital affection (2), cardiovascular diseases (1), and neurological diseases (2).	fl, fr, rt, wp, dec, inf	8	0.0086			
Ferula communis L. *	n° 265, 286, 1019, 1341, 1784	Diabetes (2), liver and pancreas disorders (1), cardiovascular diseases (3), carminative (1), lactation (1), oral hygiene (1), anxiety (1) and respiratory infections (2).	fr, sd, fl, rt, st, inf, dec, pod, mac	5	0.0054			
Foeniculum vulgare Mill*	n° 307, 1902, 2161	Hypertension (3), cardio stimulant (2), renal disease (1), insomnia (1), appetizer (2), sedative (1), allergy (1), diuretic (2), emmenagogue (1), antidele (1), stomach ache (3) and tonic (2).	ap, sd, lv, wp, inf, dec, pod	16	0.0172			
Petroselinum crispum (Mill.) Fuss	n° 159, 571, 1020, 1968	Aphrodisiac (2), antidele (1), menstrual pains (1), diabetes (1), asthma (1), bronchitis (1), antispasmodic (1), cough (2), diuretic (2), kidney stones (2), hypertension (1), stomach ache (1) and cancer (1).	sd, fr, lv, rt, dec, pod, inf, mac	9	0.0097			
Polygonum maritimum L.	n° 34°56′10.8″ W 003°48′36.7″ E = 508 m	Hypercholesterolemia (1), diarrhea (1), allergy (1) and oral infections (1).	rt, ct, wp, dec, pod	4	0.0043			
Taxon Name	Scientific Name	Extract Code	Collection Code	Coordinates	Uses	Methods		
------------	----------------	--------------	----------------	-------------	----------------	---------		
Ridolfia segetum (L.) Moris	HUMPMON115	n° 666, 989, 1136	N 34°47'69.1' W 002°24'04.0' E = 889 m	S / Th / H	Diabetes (3) and jaundice (1).	sd, pod, 3 0.0032		
Smyrnium olusatrum L.	HUMPMON102	n° 1228, 1902	N 34°47'66.2' W 002°24'17.6' E = 780 m	S / G (Hem) / RR / H	Cold (2), stomach ache (1), aphrodisiac (1) and hemorrhoids (1).	fr, sd, pod, dec, 3 0.0032		
Thapsia garganica L.*	HUMPMON121	n° 28, 440,2321	N 34°47'55.1' W 002°24'09.0' E = 896 m	S / G / H	Analeptic (1), rheumatism (2), antispasmodic (4), colds (3), cough (3), sterility (1), aphrodisiac (1), face care (1), gain weight (1), hepatitis (1), and bladder diseases (1).	rt, ap, inf, oil, 10 0.0107		
Arisarum vulgare O. Targ. Tozz. *	HUMPMON125	n° 2047	N 34°25'05.1' W 002°54'02.1' E = 391 m	S / GT / H	Cancer (1), scabies (2), eczema (3) and purgative (1).	tb, rt, cat, 5 0.0054		
Hedera helix L.*	HUMPMON093	-	N 34°50'30.5' W 002°21'27.6' E = 725 m	S / Ph(1) / SH	Strength (1), rheumatism (1), boils (1) and wounds healing (1).	lv, fr, mac, pod, 4 0.0043		
Aristolochia baetica L.*	HUMPMON026	n° 58, 243, 1099, 1300, 1744, 2135	N 34°50'29.9' W 002°21'22.8' E = 723 m	S / Ph / SH	Respiratory infections (3) and skin problems (1).	lv, st, rt, fr, pod, 4 0.0043		
Aristolochia fontanesii Boiss. & Reut.*	HUMPMON027	n° 58, 243, 1099, 1300, 1744, 2135	N 34°50'29.4' W 002°21'25.7' E = 729 m	S / G / SH	Cancer (1), diabetes (7), laxative (5), intestinal disorders (8), menstrual pains (1), aorta palpitation (1), hypoglycemia (4), skin problems (3) and rheumatism (2).	wp, rt, sd, lv, rh, inf, dec, pod, raw, 31 0.0333		
Agave americana L. *	HUMPMON149	-	N 34°39'47.7' W 002°19'02.9' E = 866 m	C / Hem /SH	Antibacterial (1), cancer (1), diabetes (1), skin problems (3), rheumatism (1), eczema (2) and digestive problems (3).	lv, st, dec, cat, fod, 8 0.0086		
Asparagus officinalis L.*	HUMPMON201	n° 518, 2260, 2308	N 34°47'70.3' W 002°24'03.1' E = 893 m	C / Nph; Ch / H	Hepatitis (3), sterility (1), menstrual pains (1), aphrodisiac (1), rheumatism (4) and digestive problems (10).	wp, rh, dec, inf, 18 0.0193		
Species	Locality	Uses						
--	------------------------------------	--						
Asparagus horridus L. *	HUMPOM141	Aphrodisiac (1)						
Leopoldia comosa (L.) Parl. *	HUMPOM148	Toothache (2), bad breath (1) and aphrodisiac (1).						
Ruscus aculeatus L. *	HUMPOM140	Depurative (1), aphrodisiac (1), intestinal pains (1), hypertension (1), eczema (1), otitis (1) and rheumatism (1).						
Drimia maritima (L.) Steam. *	HUMPOM146	Abscesses (2), jaundice (1), skin problems (2), oral infections (1), rheumatism (2) and digestive problems (3).						
Leontopodium alpinum L. *	HUMPOM074	Diabetes (1), rheumatism (1), and sexual stimulant (1).						
Anacyclus clavatus (Desf.)	HUMPOM071	Hair care (3), sedative (2) and purgative (1).						
Anacyclus pyrethrum (L.) Link.	HUMPOM072	Analgesic (2), toothache (1), aphrodisiac (1), rheumatism (1), liver pains (1), skin inflammation (1), digestive disorder (3), oral infections (1), allergy (1) and diabetes (2).						
Chamaemelum nobile (L.) All.	HUMPOM069	Diabetes (2), diarrhea (1) and intestinal antispasmodic (1).						
Anvillea garcinii (Coss. & Dur.) A. Anderberg	HUMPOM062	Diabetes (3), skin problems (2), liver pains (1), vaginal antiseptic (1), cystitis (1).						
Artemisia absinthium L.*	HUMPOM086	Diabetes (6), tonic (2), digestive problems (9), emmenagogue (1), fever (2), cardiovascular diseases (5), toothache (8), vaginal antiseptic (1) and colds (6).						
Artemisia arborescens L.*	HUMPOM087	Diabetes (5), diuretic (4), menstrual pains (1), abortive (1) and aperitive (1).						
Artemisia campestris L.	HUMPOM082	Digestive problems (3), asthma (1) and allergy (1).						
Scientific Name	Arabic Name	Coordinates	Uses	Categories	Values			
-------------------------------------	--	-----------------------------	---	----------------------------	--------			
Seriphidium herba-alba (Asso) J. Sojak* (Artemisia herba-alba Asso) HUMPOM083	شبح، طبيبي	N 34°01'15.2'' E = 934 m S / Ch (Hem) / SH	Diabetes (16), skin problems (9), antibacterial (8), emmenagogue (2), antidote (2), and intestinal antiseptic (23).	lv, sd, fl, wp, dec, inf, pod,	56			
Asteriscus graveolens (Forsk.) Less. * HUMPOM063	- نفاذنيط للحمة	N 32°1'51.3'' W 001°57'14.1'' E = 1167 m S / Ch / H	Rheumatism (1), antispasmodic (2) and weakness (1).	ap, dec,	2			
Brocchia cinerea (Delile) Vis HUMPOM081	عداد طخطي	N 32°06'22.3'' W 001°13'33.6'' E = 250 m S / Th / ?? / H	Diabetes (1), stomach ache (3), cystitis (1) and kidney stones (1).	lv, fl, pod, dec,	3			
Calendula arvensis M.Bieb. * HUMPOM091	- فرطوطاء طيرطة	N 35°13'36.6'' W 003°38'19.8'' E = 250 m S / Th / ?? / H	Anti-inflammatory (1), intestinal antiseptic (1), antispasmodic (2), emmenagogue (1) and cosmetic (1).	fl, cat,	3			
Chamaeleon gummifer (L.) Cass. * (Atractylis gummifera L.) HUMPOM030	جمرة، نسيدي	N 35°12'00.8'' W 003°05'54.4'' E = 603 m S / Hem (G) / H	Headache (2), vertigo (1), rheumatism (6), anti-inflammatory (4), cosmetic (3), boils (1), allergy (1), abortive (1), purgative (4), gum diseases (2) and toothache (2).	rt, st, wp, cat, dec, mac, raw, pod,	23			
Cichorium Intybus L. * HUMPOM092	بواعد العلية	N 35°23'08.2'' W 002°58'27.7'' E = 350 m S / Hem / H	Diabetes (1), diuretic (1), liver disorders (1), renal disease (2) and eczema (1).	ap, rt, wp,	4			
Cynara cardunculus L. HUMPOM202	خروف الفوق	N 35°13'36.6'' W 003°38'19.8'' E = 250 m S / Th / ?? / H	Digestive problems (5), cardio stimulant (2) and diabetes (3).	rt, lv, dec, inf,	7			
Cynara scolymus L. HUMPOM203	قرشين الفوق	N 32°06'22.3'' W 001°13'33.6'' E = 250 m S / Th / ?? / H	Hypercholesterolemia (1), oral infections (1), respiratory problems (1), skin problems (1) and digestive problems (3).	fl, rt, wp,	4			
Dittrichia viscosa (L.) W. Greuter HUMPOM058	غمرمان، عزيلات	N 35°12'48.1'' W 003°38'40.5'' E = 274 m S / Ch (Nph) / H	Cancer (1), stomach ache (6), diabetes (1), hypertension (1), and skin problems (1).	lv, wp, sd, rt, dec, inf, pod,	6			
Echinops spinossissimus Turra * HUMPOM029	ثمرة رعين	N 35°12'01.2'' W 003°05'54.3'' E = 603 m S / Hem (G) / ? / H	Diabetes (1), diuretic (1), hypoglycemia (1), stomach ache (3), liver disorders (1), and cystitis (1).	sd, rt, cp, inf, dec, pod,	8			
Helianthus annuus L. HUMPOM204	- عبد الشمس	N 35°11'45.1'' W 003°08'66.1'' E = 610 m C / Th / H	Cholesterol (1), renal disease (1), laxative (2), respiratory problems (2).	fl, sd, dec,	5			
Lactuca sativa L. * HUMPOM205	خص	N 35°11'12.4'' W 003°07'65.6'' E = 610 m C / Th / H	Diabetes (2), cardio stimulant (1), appetizer (3), depurative (2) and antidote (1).	ap, lv, raw, cat,	4			
Launaea arborescens (Batt.) Murb * HUMPOM103	- منبتة عشبية	N 35°12'10.5'' W 003°05'62.3'' E = 608 m S / Nph / SH	Diabetes (1), fever (2) and hypertension (1).	wp, lt, dec,	2			
Plant Name	Classification	Latitude/Longitude	Uses	Cultivation				
--	--------------------	---------------------	---	-------------				
Matricaria chamomilla L.	HUMPOM075	N 34°56'51.8" W 002°06'19.5" E = 249 m	Colds (1), diabetes (1), anxiety (3), insomnia (3), labor pains (1), cosmetic (3), antispasmodic (2), and wounds healing (1).	fl, lv, cp, dec, inf	3 0.0032			
Picris asplenioides L. *	HUMPOM096	N 34°25'15.2" W 002°54'32.6" E = 395 m	Digestive problems (1).	wp, pod	1 0.0011			
Rhaponticum acaule (L.) DC. *	HUMPOM035	N 34°50'59.3" W 002°12'23.6" E = 1347 m	Stomach ache (1) and Genito-urinary problems (1).	rt, raw	2 0.0021			
Scolymus hispanicus L. *	HUMPOM206	N 34°24'05.2" W 002°53'01.8" E = 393 m	Diabetes (3).	rt, raw, fod	3 0.0032			
Sonchus arvensis L.	HUMPOM111	N 34°25'07.1" W 002°54'03.1" E = 391 m	Allergy (2), uterus infections (1), vaginal antiseptic (1) digestive problems (4), jaundice (2) and skin problems (3).	lv, inf	3 0.0032			
Warionia saharae Benth. Hook.*	HUMPOM050	N 34°28'55.7" W 001°45'51.2" E = 1143 m	Cancer (1), stomach ache (3) and diabetes (2).	ct, st, rt, wp, pod, dec, inf	5 0.0054 0.0054			
Berberis hispanica subsp. hispanica (Berberis vulgaris subsp. australis (Boiss.) Heywood)	HUMPOM31	N 34°14'46.3" W 002°37'28.1" E = 50 m	Hypertension (2), anti-inflammatory (1), stress (1), bronchitis (3), skin problems (1), colds (4), fever (2), diuretic (1) and laxative (5).	lv, fr, it, ifl, wp, pod, juc, dec, cat, inf	7 0.0075 0.0075			
Borago officinalis L.	HUMPOM147	N 34°30'09.3" W 002°58'27.7" E = 350 m	Labor pains (1), epilepsy (2), constipation (2), sterility (1), colds (3), rheumatism (1) and eye inflammation (1).	wp, dec	11 0.0118			
Anastatica hierochuntica L.*	HUMPOM150	N 34°20'26.1" W 001°13'33.5" E = 911 m	Fever (1), antibacterial (1) and respiratory problems (1).	rh, lv, dec, mac, raw	2 0.0021			
Brassica napus L. *	HUMPOM207	N 34°05'22.1" W 001°12'32.3" E = 910 m	Diabetes (2), aphrodisiac (3), vomiting (1), colds (4), bronchitis (1), constipation (1), bladder diseases (1), wounds healing (1) and rheumatism (1).	cp, sd, pod, inf, cat	12 0.0129			
Brassica nigra (L.) W. D. J. Koch *	HUMPOM208	N 34°08'27.1" W 001°15'36.2" E = 914 m	Fever (1), anti-inflammatory (1), diabetes (2), anemia (1), renal diseases (1) and cardiovascular disease (1).	ap, lv, fl, dec, raw	4 0.0043			
Common Name	Scientific Name	Authority	Coordinates	Benefits	p, w, l, i, d, c			
---------------------------------	--	-----------	--------------------------	--	-----------------			
Capsella bursa pastoris (L.)	*Capsella bursa pastoris* (L.) Medik *	HUMPOM151	N 35°26'15.2"W 002°57'45.6"E = 87 m	S / Th / H Diarrhea (1), tonic (1), wounds healing (1) and cosmetic (1).	wp, lv, inf, dec, 2 0.0021			
Eruca vesicaria (L.) Cav.*	*Eruca vesicaria* (L.) Cav.*	HUMPOM144	N 35°12'00.7"W 003°05'55.2"E = 603 m	S / Th / H Diabetes (1).	ap, - 1 0.0011			
Lepidium sativum L.*	*Lepidium sativum* L.*	HUMPOM210	N 35°02'19.4"W 001°11'32.9"E = 909 m	C / Th / H Respiratory infections (5), constipation (2), cardio stimulant (2), diabetes (2) and migraine (1).	sd, pod, dec, inf, 16 0.0172			
Raphanus sativus L. *	*Raphanus sativus* L. *	HUMPOM211	N 35°07'22.1"W 001°15'34.7"E = 912 m	C / Th / H Diabetes (3) and intestinal disorders (2).	rh, raw, 3 0.0032			
Commiphora africana (A. Rich.)	*Commiphora africana* (A. Rich.) Engl.	HUMPOM271	N 35°15'09.7"W 003°07'58.9"E = 613 m	C / Ph / T Respiratory problems (5), cosmetic (2) and skin infections (3).	rt, rs, fmg, 8 0.0086 0.0086			
Opuntia ficus-indica (L.) Mill.	*Opuntia ficus-indica* (L.) Mill.	HUMPOM041	N 35°12'03.2"W 003°05'50.6"E = 986 m	S / Th / H Kidney stones (16), pancreas ailments (2), colds (7), urinary problems (10) and cosmetic (1).	lv, ap, wp, inf, dec, pod, 32 0.0344			
Valeriana jatamansi Jones	*Valeriana jatamansi* Jones	HUMPOM014	N 35°16'14.3"W 003°09'81.5"E = 332 m	S / Ch (Nph) / H Diabetes (8), hypertension (5), aphrodisiac (3), appetizer (5), diuretic (2), antispsmodic (9), tonic (3), menstrual pains (2), and rheumatism (3).	sd, ap, fr, pod, mac, 38 0.0408 0.0408			
Valeriana dioecoides Sibth. & Sm.	*Valeriana dioecoides* Sibth. & Sm.	HUMPOM008	N 35°26'55.2"W 002°06'22.7"E = 249 m	C / Th / H Migraine (1).	- inf, pod, dec 1 0.0011			
Silene vulgaris (Moench) Garcke *	*Silene vulgaris* (Moench) Garcke *	HUMPOM070	N 35°12'47.2"W 003°38'41.4"E = 274 m	S / GR / H Digestive problems (1).	fl, dec, 1 0.0011			
Scientific Name	Harvesting Month	Habitat	Elevation	Geographical Coordinates	Description			
--------------------------------	------------------	---------	-----------	--------------------------	---			
Telephium imperati L. *	WP, LV, Dec	S / Hem (Ch) / H	1168 m	N 32°11'55.5'' W 001°57'17.2''	Cardiovascular diseases (1), skin problems (1) and digestive problems (1).			
CISTACEAE								
Cistus albidus L. *	WD, LV, Dec, Raw	S / Nph / SH	887 m	N 34°47'59.6'' W 002°24'02.2''	Rheumatism (4), respiratory problems (2), digestive problems (6), circulatory problems (2) and urinary infection (1).			
Cistus creticus L. *	LV, SD, RT, WP, Pod	S / CH / R? / SH	886 m	N 33°09'12.5'' W 002°08'16.8''	Arthritis (3), rheumatism (8), antibacterial (3), emmenagogue (2), and lactation (2).			
Cistus libanotis L. *	WP, Mac	S / CH / SH	890 m	N 33°09'12.5'' W 002°08'16.8''	Skin problems (1) and cosmetic (1).			
Cistus monspeliensis L. *	LV, RT	S / CH / SH	887 m	N 33°09'12.5'' W 002°08'16.8''	Sexual impotence (1), rheumatism (1), hemorrhoids (1) and constipation (1).			
COMBRETACEAE								
Terminalia chebula Retz. *	Fr, Dec	C / Nph / SH	887 m	N 33°09'12.5'' W 002°08'16.8''	Digestive problems (1).			
CONVOLVULACEAE								
Convolvulus althaeoides L. *								
Cuscuta epithymum (L.) L. *	Silent	C / TH / H	511 m	N 34°52'59.9'' W 002°07'43.2''	Diabetes (1).			
CUCURBITACEAE								
Citrullus colocynthis (L.) Schrader.*		S / G / H	506 m	N 33°03'08.5'' W 002°00'14.8''	Purgative (1), ulcers (2), urinary infection (1) and rheumatism (1).			
Cucumis melo L. *	Fr, SD, PL			N 33°03'08.5'' W 002°00'14.8''				
Cucumis sativus L. *	Fr, RT			N 33°03'08.5'' W 002°00'14.8''				
Scientific Name	Arabic Name	Coordinates	Uses	Comment				
-----------------	-------------	--------------	------	---------				
Cucurbita pepo L.	نَكْرَةُ الْحَمْرَا	N 35°64'18.7" W 002°30'52.7"	C / G / H	Renal diseases (2), cardiovascular diseases (2), colds (1), fever (1), intestinal pains (1), diuretic (1) and asthma (1).	sd, fr, iv, pod, juc, raw,			
Lagenaria siceraria (Molina) Standl.	نَكْرَةُ الْسَّلَوَا	N 35°64'19.3" W 002°30'55.1"	C / G / H	Migraine (1), respiratory problems (1) and asthma (1).	ct, fr, Dec, raw,			
CUPRESSACEAE								
Cupressus sempervirens L.	لِزَا وَرَس	N 34°50'47.1" W 002°12'18.9"	C / Ph / T	Wounds healing (1) and warmer (1).	lc, cn,			
CUPRESSACEAE								
Juniperus oxycedrus L.*	الْعَرَاهَرَ	N 34°50'15.5" W 002°12'22.6"	S / Ph (Nph) / T	Fever (3), psychological troubles (1), urinary infections (4), intestinal antiseptic (5), menstrual pains (1), stomach ache (7), colds (2) and rheumatism (1).	cd, wd, raw, oil,			
CUPRESSACEAE								
Juniperus phoenicea L.	الرَّجَالُ	N 34°50'15.5" W 002°12'22.6"	S / Ph (Nph) / T	Antiparasitic (23), wounds healing (12), warmer (8), skin infections (16) and urinary-genital infections (5).	cd, wd, raw, oil,			
CUPRESSACEAE								
Tetraclinis articulata (Vahl) Mast.	الْعَرَاهَرَ	N 34°50'47.1" W 002°12'22.6"	S / Ph (Nph) / T					
CYNOMORIACEAE								
Cynomorium coccineum L.	تَوْثَرَ	N 35°12'08.7" W 003°05'56.2"	S / Ph (Nph) / T					
DIOSCOREACEAE								
Dioscorea communis (L.)	زَدَوْغَ وَرَبٍ	N 35°23'11.6" W 002°58'28.5"	S / G(-l) / H					
EPHEDRACEAE								
Ephedra fragilis Desf.*	مِرْزَأ	N 33°57'46.2" W 003°02'40.1"	S / Ph (Nph) / T	Hair care (1) and diabetes (4).	ap, ls, dec,			
EUPHORBIACEAE								
Croton tiglium L.*	كَلْمَلُ	N 34°50'50.9" W 002°12'22.6"	S / Ph (Nph) / T					
EUPHORBIACEAE								
Euphorbia falcata L.	ﺔَدَوَلُ ﺔَنْفُو	N 34°50'50.9" W 002°12'22.6"	S / Ph (Nph) / T					
ERICACEAE								
Arbutus unedo L.	ﺔَزَرُ ﺔَمْثَر	N 34°50'50.9" W 002°12'22.6"	S / Ph (Nph) / T					
EUPHORBIACEAE								
Croton tiglium L.*	حَيَةُ ﻣَلْك	N 34°50'50.9" W 002°12'22.6"	S / Ph (Nph) / T					
Common Name	Arabic Name	Arabic N°	Coordinates	Uses	Toxicology			
---	----------------------	-----------	------------------------------	---	------------			
Euphorbia helioscopia L.*	هلوبيا هليوسكوسيا	1056, 2302	N 34°47'59.7'' W 002°24'03.0'' E = 889 m	Skin problems (1), digestive problems (1).	-			
Euphorbia resinifera O. Berg *	هلوبيا زينيسيرفيا	399, 1673, 2302	N 32°08'21.7'' W 001°13'33.1'' E = 911 m	Diabetes (1), antidote (1), headache (1), abortive (1), purgative (1) and skin infections (1).	ct, iv, rs, lt, wp, inf, pod,			
Euphorbia retusa Forssk. *	هلوبيا رتصيا	-	N 34°28'55.1'' W 001°13'39.2'' E = 1143 m	Skin problems (5), antidote (1), digestive problems (6), abortive (1), neuralgia (1) and kidney stones (3).	lt, cat, raw,			
Mercurialis annua L.*	هلو بيوزيلاريز	689, 1716	N 34°52'60.1'' W 002°07'42.3'' E = 506 m	Diabetes (1), diuretic (1), purgative (1) and anxiety (1).	lv, ap, inf,			
Ricinus communis L.*	عورخولا	771, 925, 1476 bis	N 34°54'08.4'' W 003°47'28.5'' E = 923 m	Diabetes (19), fever (26), skin problems (9), digestive problems (28), laxative (6), hair care (5), jaundice (1), colds (13), menstrual pains (1), rheumatism (14) and bone fracture (3).	lv, sd, dec, oil, cat, pod, tis,			
Acacia gummifera Willd. *	حبلطلا	153, 156, 558, 765, 1406, 1608	N 34°53'57.9'' W 002°07'42.2'' E = 506 m	Diabetes (8), bronchitis (10), antitussive (6), anxiety (1), eyes care (2), asthma (5), jaundice (1), cough (7), hepatitis (2), angina (1), dental care (2), wound healing (1) and diarrhea (1).	ap, rb, sd, fr, rt, inf, dec,			
Senna alexandrina Mill.	سننا	1236	N 34°50'41.3'' W 002°21'33.2'' E = 729 m	Digestive problems (3), rheumatism (2), diabetes (2), constipation (2), colds (1), pancreas ailments (1), cholagogue (1), sedative (1), cosmetic (2) and hair care (1).	lv, fr, wp, dec, inf, pod,			
Plant Name	Scientific Name	Locality	Uses	Conditions	References			
------------	-----------------	----------	------	------------	------------			
Ceratonia siliqua	C. siliqua L.	HUMPOM011	n° 762,gorb	C / Ph / T	Intestinal parasites (8), diarrhea (5), skin problems (3), nervous problems (1), diabetes (7), antidote (4), fever (8), laxative (1) and bronchitis (1).	34 0.0365		
Cicer arietinum	C. arietinum L.	HUMPOM218	n° 696,احمص	C / Th / H	Diabetes (2), tonic (1), influenza (2), urinary infections (1), urethritis (1), digestive problems (2) and skin problems (1).	7 0.0075		
Glycine max	G. max (L.) Merr*	HUMPOM219	n° 305, 1250, 1640, 1536	C / Ch / H	Digestive problems (1), laxative (1), allergy (1) and diabetes (1).	3 0.0032		
Glycyrrhiza glabra	G. glabra L.*	HUMPOM273	n° 305, 1250, 1640, 1536	I / G / H	Renal disease (4), laxative (1), allergy (1) and diabetes (1).	26 0.0279		
Lens culinaris Medik.	L. culinaris Medik.	HUMPOM220	n° 350, 1518	C / Th / H	Jaundice (1) and digestive problems (1).	2 0.0021		
Lotus corniculatus	L. corniculatus L. *	HUMPOM045	n° 568, 717, 718, 1031, 1537, 2050	S / Hem (H) / H	Anxiety (1) and stress (1).	1 0.0011		
Lupinus albus	L. albus	HUMPOM221	n° 406	C / Th / H	Diabetes (1), cardiovascular problems (1), hypoglycemia (1), digestive problems (1) and liver disorders (1).	3 0.0032		
Medicago sativa	M. sativa	HUMPOM222	n° 78, 1011, 1044, 1684, 1738, 1805, 2231	C / Hem / H	Diabetes (6), against scurvy (2), asthenia (3), menstrual pains (1), anemia (1), arthritis (2), appetizer (4) and lactation (3).	19 0.0204		
Ononis natrix	O. natrix L. *	HUMPOM034	n° 1315,افزار، حبة البريغ	S / Ch / E / RR / H	Urinary infections (2), gallstones (1), skin problems (2), stomachache (4), sedative (1), respiratory problems (3), hemostatic (1) and circulatory problems (1).	14 0.0150		
Phaseolus vulgaris	P. vulgaris L.	HUMPOM223	-	C / Th / H	Diabetes (2).	2 0.0021		
Retama monosperma	R. monosperma (L.) Bois. *	HUMPOM016	n° 1029,رطم إلفاغي	S / Nph / SH	Gum care (1), skin problems (1), anti-inflammatory (1).	2 0.0021		
Tamarindus indica	T. indica L. *	HUMPOM274	n° 426, 705, 727,1391	I / Ph / T	Laxative (1), aphrodisiac (1), liver pains (1) and anti-inflammatory (1).	2 0.0021		
Plant Name	Scientific Name	Description	Uses	Doses/Preparation	Medicinal Uses			
----------------------------	-----------------	-------------	--	-------------------	--			
Trigonella foenum-graecum	L.	n° 684, 904	C / Th / H	sd, fl, pod, inf, dec, mac, raw	Diabetes (26), cancer (1), tonic (7), analeptic (1), depurative (4), respiratory problems (12), colds (19), anemia (1), appetizer (31), skin problems (5), hypertension (14) and laxative (8).			
Vicia ervilia (L.) Wild.	HUMPOM226	n° 1912	C / Th / H	sd	pod, mac			
Vicia faba L.	HUMPOM227	n° 224, 1659	C / Th / H	sd, iv, pod, dec, inf, cat	Diabetes (1), ulcers (2), cardiovascular problems (6), anti-inflammatory (1), allergy (1), renal diseases (4), bronchitis (1) and colds (2).			
Quercus faginea Lam.	HUMPOM038	n° 339, 1081	S / Ph / R / T	gl, fr, dec, pod	Diarrhea (11), vaginal antiseptic (1), hair care (8), mouth hygiene (10), colds (13), antibacterial (5), hemostatic (1), eye inflammation (1) and hypoglycemia (6).			
Quercus ilex L.	HUMPOM039	n° 339, 1244	S / Ph / T	bk, lv, inf, pod	Hair care (4), respiratory problems (5), digestive problems (7), skin problems (3), anti-inflammatory (2) and circulatory problems (1).			
Quercus suber L.	HUMPOM040	n° 273, 371	S / Ph / T	ct, bk, lv, dec, inf, pod	Digestive problems (3), dental care (2), hair care (4), anti-inflammatory (2).			
Centaurium erythraea Rahn	HUMPOM126	n° 1840	S / Th (Hem) / E / RR / H	wp, ap, lv, dec, inf	Diabetes (6), kidney diseases (4), appetizer (4), hypertension (3) and fever (5).			
Centaurium pulchellum (Sw.)	HUMPOM128	n° 3450 25.5	S / Th / E / H		Rheumatism (1), digestive problems (1), urinary-genital infections (1).			
Hypericum perforatum L.	HUMPOM095	n° 1840	S / Th / H		Fever (2), digestive problems (1), diabetes (1), colds (2) and depurative (1).			
Crocus sativus L.	HUMPOM228	n° 463, 484,	C / GB / H	fl, st, pod, inf, mac	Skin problems (31), intestinal antiseptic (28), gynecological (15), eye infection (2) and respiratory problems (20).			
Iris germanica L. *	n° 216, 900	N 34°50'55.3'' W 002°12'18.7'' E = 1331	C / GR	Diabetes (1), digestive problems (1) and hypercholesterolemia (1).	rh, fl, rt, inf, dec, 3	0.0032		
JUGLANACEAE	**Juglans regia** L. HUMPOM230			Diabetes (5), tooth care (4), gum diseases (3), antidote (1), topical (1), eczema (2), skin infections (3), rheumatism (1).	ct, st, lv, fr, dec, pod, inf, raw, 17	0.0183		
JUNCACEAE	**Juncus acutus** L. HUMPOM165	n° 65, 1229	N 34°25'09.2'' W 002°54'05.8'' E = 391 m	S / Hem (GR) / SH	Skin problems (2), diuretic (1), digestive problems (2), renal diseases (1), insomnia (1), colds (1), fever (1) and circulatory problems (1).	lt, fr, wp, raw, dec, inf, cat, 6	0.0064	
Juncus maritimus Lam. *	HUMPOM166	n° 65, 1229	N 35°06'17.6'' W 002°21'05.4'' E = 9 m	S / Hem (G) / T	Diuretic (1), insomnia (1) and colds (1).	fr, rt, -	3	0.0032
LAMIACEAE	**Ajuga iva** (L.) Schreb. HUMPOM153	n° 2134	N 36°12'02.3'' W 003°05'55.1'' E = 602 m	S / Hem (G) / SH	Diabetes (12), cardiovascular problems (6), digestive problems (5) and respiratory problems (7).	lv, rt, wp, dec, inf, pod, 23	0.0247	
Ballota hirsuta Benth. *	HUMPOM167	- توغة بلغري	N 36°14'57.6'' W 003°37'27.8'' E = 52 m	S / Ch / H	Digestive problems (8), and gynecological problems (3).	lv, tis, 10	0.0107	
Clinopodium nepeta subsp. glandulosum (Req.) Govaerts HUMPOM171	شندكورة	n° 1712	N 35°12'00.7'' W 003°05'54.1'' E = 604 m	S / Ch/ RR / H	Diabetes (2), digestive problems (5), respiratory problems (3), fever (4), colds (4) and cough (3).	lv, st, wp, dec, inf, pod, 15	0.0161	
Lavandula dentata L. HUMPOM157	- خازة	N 34°52'56.6'' W 002°07'43.9'' E = 506 m	S / Ch; Nph / H	Fever (3), colds (2), respiratory problems (5), bronchitis (2) and digestive problems (2).	lv, fl, wp, dec, inf, pod, 11	0.0118		
Lavandula pedunculata (Mill.) Cav. *	HUMPOM159	- حزمت	N 34°52'55.8'' W 002°07'39.3'' E = 506 m	S / Ch / E / H	Skin problems (16), digestive problems (21), gynecological (2), eye infection (1), otolygologic (7) and respiratory problems (25).	lv, ifl, tis, 67	0.0719	
Lavandula stoechas L. HUMPOM158	ححلال	n° 62, 1437, 1944, 2182	N 34°52'61.4'' W 002°07'42.9'' E = 506 m	S / Ch / R / H	Hypercholesterolemia (19), digestive problems (43), diabetes (27) and rheumatism (15).	lv, fl, wp, dec, pod, inf, 98	0.1053	
Marrubium vulgare L. HUMPOM160	مرتبة مرسم	n° 1316, 1347, 1674	N 34°47'63.2'' W 002°24'10.0'' E = 889 m	S / Ch / H	Diabetes (6), hypertension (8), hair care (2), fever (9), jaundice (1), diarrhea (3), intestinal pains (11), cough (4), colds (2), respiratory problems (10), ear pains (1) and menstrual pains (1).	lv, rt, st, ap, wp, dec, pod, inf, 55	0.0590	
Melissa officinalis L. *	HUMPOM170	n° 221, 324, 326, 592, 1928, 2082	N 35°06'17.7'' W 002°21'02.8'' E = 9 m	S / Ch / R / H	Antispasmodic (29), depurative (13), cholagogue (6), anxiety (1), diarrhea (25) and fever (17).	ap, wp, inf, 87	0.0934	
Species	Catalogue	Coordinates	Uses/Properties	Methods	Notes	Score		
---------------------------------	-----------	------------------------------	--	--------------------	---------------------	-------		
Mentha pulegium L.* HUMPOM175	n° 807, 1639,1712	N 34°47'62.5" W 002°24'06.7" E = 888 m S / Hem / H	Diabetes (16), digestive problems (33), hypertension (15), respiratory infections (21), carminative (9), sedative (1), cough (12) and skin problems (8).	lv, st, dec, inf, pod	109 0.1171			
Mentha spicata L.* HUMPOM231	n° 2227	N 34°47'65.1" W 002°24'05.8" E = 881 m C / Hem / H	Headache (3), weakness (2), hypertension (6), renal diseases (2), skin (2) and respiratory problems (3).	lv, fl, ap, dec, inf, oil, wp	15 0.0161			
Mentha suaveolens Ehrh. HUMPOM176	n° 1442	N 34°47'59.9" W 002°24'06.4" E = 887 m S / Hem (Th) / E / R / H	Allergy (2), diabetes (3), tonic (1), warmer (2), arhythmia (2), sterility (1), colds (12), carminative (5) and analgesic (2).	lv, wp, st, ap, dec, inf, mac	29 0.0311			
Ocimum basilicum L. HUMPOM232	n° 205, 223, 511, 589, 593, 704, 726, 892, 897, 1075, 1077, 1268, 1441	N 34°20'45.2" W 002°07'23.1" E = 1112 m C / Th / H	Hypertension (2), arhythmia (1), sinusitis (1), renal diseases (3), hemorrhoids (2) and allergy (1).	sd, lv, inf, pod	8 0.0086			
Origanum compactum Benth. HUMPOM172	n° 178, 586, 587, 891, 1230, 1598, 2100	N 33°57'42.7" W 003°02'38.6" E = 1535 m S / Ch / E / H	Diabetes (8), hypertension (10), digestive problems (18), fever (5) and colds (4).	lv, sd, wp, dec, inf, pod	37 0.0397			
Origanum majorana L. HUMPOM233	n° 129	N 35°12'00.4" W 003°02'39.4" E = 1534 m C / Ch / H	Cancer (1), digestive problems (26), fever (11), cough (6), flatulence (3), hypertension (12), headache (15), insomnia (1), urinary infections (24) and cystitis (5).	lv, br, ifl, dec, inf	102 0.1096			
Rosmarinus officinalis L.* HUMPOM156	n° 129	N 34°20'35.3" W 002°07'20.1" E = 1180 m S / Nph / SH	Allergy (6), diabetes (46), hypertension (39), cardio stimulant (19), intestinal parasites (15), rheumatism (22), kidney diseases (13), diuretic (7), carminative (8), sedative (1) and wounds healing (5).	rt, lv, dec, inf, pod	178 0.1912			
Salvia officinalis L.* HUMPOM234	n° 140, 1274, 1387	N 34°47'75.5" W 002°24'24.8" E = 894 m C / Hem / SH	Diabetes (8), hemostatic (1), respiratory problems (15), hypertension (7), intestinal antiseptic (12), diuretic (2), rhematism (4), cough (2), cholagogue (1) and carminative (2).	lv, fl, wp, inf, dec, pod	43 0.0462			
Salvia tingitana Etl. HUMPOM169	n° 594, 747, 781, 1113, 2061, 2108, 2109	N 34°47'72.1" W 002°24'21.6" E = 892 m S / Hem / E / SH	Skin problems (3), hypertension (6) and respiratory problems (5).	lv, wp, dec, mac	13 0.0139			
Salvia verbenaca L. HUMPOM168	n° 2108	N 34°47'69.2" W 002°24'18.1" E = 892 m S / Hem / H	Wounds healing (1), fever (4), hemostatic (1) and rheumatism (2).	ap, pod, inf	6 0.0064			
Teucrium polium L.* HUMPOM73	n° 488	N 35°12'00.4" W 003°05'53.6" E = 603 m S / Ch / H	Digestive problems (2), liver pain (1) and hypertension (1).	ap, fl, dec, inf, pod	4 0.0043			
Family	Species Name	Number	Uses	Parts Used				
-----------------	-------------------------------	-------------	-----------------------------------	------------				
Thymus vulgaris	L.	n° 456, 548, 2233	C / Ch / H	Cardio stimulant (2), hypertension (5), skin problems (3), intestinal antiseptic (4), antispasmodic (10), bronchitis (3) and allergy (1).	lv, fl, wp, inf, pod, dec,			
Thymus saturojoides	Coss.	-	N 32°09'56.8" W 001°24'38.0" E = 981 m S / Ch / E / H	Diabetes (4), hypertension (6), respiratory problems (2), stomachache (9), skin problems (2), circulatory problems (1), genital (1), nervous (1), eyes (1) and urinary problems (3).	lv, fl, st, ap, wp, dec,			
Lauraceae	Cinnamomum cassia**	n° 46, 841, 1205, 2213	-	Antispasmodic (10), cardiovascular diseases (5), diabetes (3), respiratory problems (13), warmer (5), and sexual stimulant (1).	ct, rs, ap, pod, dec, inf,			
Laurus nobilis	L.	n° 922, 965, 1065, 1619	N 34°50'30.1" W 002°21'28.8" E = 724 m S / Ph / R / SH	Anti-inflammatory (2), hypertension (3), dental care (4), liver disorders (2), pancreas ailments (1), cosmetic (4) and digestive problems (7).	lv, fr, dec, inf, oil,			
Linaceae	Linum usitatissimum**	n° 279, 933, 1885	N 32°09'58.8" W 001°24'39.3" E = 980 m C / Th / H	Diabetes (3), hypertension (2), allergy (1), renal diseases (3), laxative (1), antitussive (1), cosmetic (1), skin infections (1), diuretic (1) and urinary problems (1).	sd, pod, mac, inf, oil,			
Lythraceae	Lawsonia inermis**	n° 719, 899, 1658, 2309	-	Diabetes (1), headache (1), hair care (4), kidney stones (1), vomiting (1), antifungal (1) and hypertension (1).	lv, ct, wp, pod, dec, mac,			
Punica granatum	L.	n° 494, 1048, 1058, 2144	N 34°50'33.1" W 002°10'28.6" E = 980 m C / Nph / T	Diabetes (4), renal diseases (1), intestinal antiseptic (5), hemostatic (1), ulcers (2), eczema (3), eye allergy (1).	ct, pr, pod, dec, inf,			
Malvaceae	Abelmoschus esculentus**	n° 229	-	Lose weight (3).	fr, mac, fod,			
Malva sylvestris	L.	n° 752	N 38°13'34.1" W 003°38'16.7" E = 244 m C / Hem / H	Laxative (1), cystitis (1), asthma (1), cough (1), colds (1), cosmetic (1) and analgesic (1).	lv, rt, inf, pod, dec, cat, raw,			
Molluginaceae	Corrigiola telephiifolia**	n° 250, 1170	S / Hem / H	Lung problems (2), hair care (3), rheumatism (5), diuretic (4), stomach ache (8), allergy (1), diarrhoea (5), nervous problems (1), antibacterial (3) and fertility (1).	wp, rt, pod, dec,			
Moraceae	Ficus carica**	n° 352, 439, 1272	-	Diabetes (5), laxative (2), sedative (1), narcotic (1), digestive problems (8) and cardiovascular diseases (4).	fl, lv, dec, raw, pod,			

Notes:
- **HUMPOM** indicates the reference number from the database.
- **Ph**, **C**, **T** indicate the plant part used: **Ph** for plant, **C** for chocolate, **T** for tea.
- **Nph** indicates the number of plants used.
- **L**, **C**, **H** indicate the parts of the plant used: **L** for leaves, **C** for chocolate, **H** for health.
- **E** indicates the elevation in meters.
- **S**, **T**, **C**, **Ph** indicate the parts of the plant used: **S** for seed, **T** for tea, **C** for chocolate, **Ph** for health.
- **N** indicates the number of plants used.
- **D** indicates the disease or problem treated.
- **H**, **L**, **T** indicate the parts of the plant used: **H** for health, **L** for leaves, **T** for tea.
- **Inf** indicates the number of infusions used.
- **Cat** indicates the number of cataplasms used.
- **Pod** indicates the number of pods used.
- **Mac** indicates the number of macerations used.
- **Dec** indicates the number of decoctions used.
- **Raw** indicates the number of raw materials used.
- **Fod** indicates the number of fodders used.
- **Oil** indicates the number of oils used.
- **Cat** indicates the number of cataplasms used.
- **Inf** indicates the number of infusions used.
- **Pod** indicates the number of pods used.
- **Mac** indicates the number of macerations used.
- **Dec** indicates the number of decoctions used.
- **Raw** indicates the number of raw materials used.
- **Fod** indicates the number of fodders used.
- **Oil** indicates the number of oils used.
- **Cat** indicates the number of cataplasms used.
- **Inf** indicates the number of infusions used.
- **Pod** indicates the number of pods used.
- **Mac** indicates the number of macerations used.
- **Dec** indicates the number of decoctions used.
- **Raw** indicates the number of raw materials used.
- **Fod** indicates the number of fodders used.
- **Oil** indicates the number of oils used.
- **Cat** indicates the number of cataplasms used.
- **Inf** indicates the number of infusions used.
- **Pod** indicates the number of pods used.
- **Mac** indicates the number of macerations used.
- **Dec** indicates the number of decoctions used.
- **Raw** indicates the number of raw materials used.
| Common Name | Scientific Name | HUMPO No. | Local Name | Type | Uses | Plant Parts | C, Ph, T | 3/4 | P value 1 | P value 2 |
|-----------------------------------|-------------------------------------|-----------------|------------|----------|--|-------------|----------|-----|----------|----------|
| Morus alba L. | *Morus alba* | HUMPOM241 | نوت 434, 1679 | C / Ph / T | Diabetes (1), diuretic (1), anemia (1) and aphrodisiac (1). | fr, lv, inf | 3 | 0.0032 | | |
| MYRTACEAE | Eucalyptus torquata Luehm. | HUMPOM243 | كاليتوس 434, 1679 | C / Ph / T | Diabetes (2), hypertension (1), hair care (1), respiratory problems (2), fever (4), cough (2), influenza (3) and bronchitis (1). | lv, fr, dec, inf, | 11 | 0.0118 | 0.0322 | |
| Syzygium aromaticum (L.) Merr. & L. M. Perry | HUMPOM276 | عود التوير, العقزاق 434, 1679 | I / Nph / T | Anti-inflammatory (1), insomnia (1), hair care (1), aphrodisiac (1), menstrual pains (1), diabetes (1), hypertension (1), dental analgesic (3), headache (2), digestive (4), circulatory (1) and urinary problems (1). | fl, sd, lv, fr, cv, pod, dec, inf, cat. | 13 | 0.0140 | 0.0709 | |
| Myrtus communis L. | *Myrtus communis* | HUMPOM057 | ريحان 434, 1679 | S / Nph / T | Allergy (4), diabetes (23) diarrhea (12), hair care (2), hypertension (18), bronchitis (10) and aphrodisiac (1). | lv, dec, inf, pod | 66 | 0.0709 | | |
| NITRARICAEAE | Peganum harmala L. | HUMPOM084 | حمرل 650, 943 | I / Nph / T | Diabetes (11), hypertension (14), skin problems (6), anti-inflammatory (3), respiratory problems (17), digestive problems (25), nervous problems (1), fever (6), sterility (1), emmenagogue (1) and jaundice (1). | sd, wp, rt, dec, pod, inf, fmg. | 81 | 0.0870 | 0.0870 | |
| OLEACEAE | Fraxinus angustifolia Vahl | HUMPOM181 | نوزات إبردار 650, 943 | S / Ch / H | Diabetes (1), aphrodisiac (1), laxative (1), diuretic (1), rheumatism (1), fever (3), nervous (1) and skin problems (2). | lv, ct, fl, sd, fr, dec, inf | 8 | 0.0886 | | |
| Olea europaea L. | *Olea europaea* | HUMPOM182 | زيتون 1140, 1141, 1146, 1415 | S / Nph / SH | Diabetes (29), hypertension (18), cardiovascular diseases (20), stomach ache (15), mouth hygiene (1), liver pains (5), cosmetic (16), skin infections (12), influenza (8), cough (13), helminthiasis (1), oitis (3) and respiratory problems (9). | fl, lv, sd, fr, oil, dec, inf, pod | 142 | 0.1525 | 0.0548 | |
| Phillyrea angustifolia L. | *Phillyrea angustifolia* | HUMPOM183 | مليس يملولة 1513 | S / Ph / SH | Skin infections (1), antibacterial (1), nervous problems (1), digestive problems (1) and appetizer (1). | lv, rt, wp, dec, inf | 3 | 0.0032 | | |
| PALMACEAE | Chamaerops humilis L. | HUMPOM163 | دوم 824, 342, 425, 492, 512, 834, 910, 1043, 1397, 1473, 1541, 1757, 1794, 1955 | S / Nph / SH | Hepatitis (1), diabetes (1) and digestive problems (1). | lv, fr, sd, dec, raw | 2 | 0.0021 | | |
| Phoenix dactylifera L. | *Phoenix dactylifera* | HUMPOM244 | الكنز 32°06'25.6" | C / Ph / T | Digestive problems (3), respiratory problems (1), diabetes (4) and hypertension (3). | fr, fl, lv, sd, pl, dec | 9 | 0.0097 | | |
| Family | Species | Name | N° | Latitude/Longitude | Habitat | Uses | Code | Details |
|----------------------|--------------------------------|--------------------|-------------|--------------------|---------|---|------|---------|
| PAPAVERACEAE | Papaver rhoeas L.* | HUMPOM033 | 795, 2209 | N 34°56'11.3" W 003°48'34.5" E = 507 m | S / Th / H | Diabetes (1), cosmetic (2), sedative (1), sterility (1), menstrual pains (1), cough (3), bronchitis (2), insomnia (1), warmer (1), analgesic (1), spasmodic (3) and allergy (1). | 2 | 0.0183 |
| | Papaver somniferum L.* | HUMPOM032 | 116, 462, 794, 951, 2180 | N 34°56'12.6" W 003°48'35.3" E = 508 m | S / Th / H | Analgesic (5), insomnia (2) and anxiety (3). | 8 | 0.0086 |
| PEDALIACEAE | Sesamum indicum DC. | HUMPOM245 | 499, 1066, 1218, 963 | - | C / Ch / H | Diabetes (1), antispasmodic (3), cardiovascular diseases (1), stress (1) and insomnia (1). | 7 | 0.0075 |
| PINACEAE | Cedrus atlantica (Endl.) Manetti ex Carrière | HUMPOM017 | 1317 | N 34°50'36.6" W 002°10'29.8" E = 1198 m | S / Ph / E / T | Skin problems (2), intestinal antiseptic (1) and rheumatism (1). | 4 | 0.0043 |
| | Pinus halepensis Miller.* | HUMPOM018 | 433 bis, 1021, 1114, 1417, 1581, 1806, 1835, 1919 | N 34°50'38.5" W 002°10'30.7" E = 1198 m | C / Ph / T | Rheumatism (1), cough (2), bronchitis (2), boils (1), digestive (4) and circulatory problems (1). | 10 | 0.0107 |
| | Pinus pinaster Aiton | HUMPOM019 | 433 bis, 1021, 1114, 1417, 1581, 1806, 1835, 1919 | N 34°50'39.8" W 002°10'29.3" E = 1198 m | C / Ph / T | Cosmetic (3). | 3 | 0.0032 |
| PIPERACEAE | Piper cubeba L. f.* | HUMPOM277 | 1879 | - | I / Ch / H | Urinary infections (1), aphrodisiac (1), cosmetic (1), rheumatism (1), sexual impotence (1), diarhoea (1), and intestinal antiseptic (1). | 6 | 0.0064 |
| | Piper nigrum L.* | HUMPOM278 | 239, 1696, 1699, 1993, 1994 | - | I / Ph / SH | Cough (1) and colds (3). | 3 | 0.0032 |
| PLANTAGINACEAE | Globularia alypum L.* | HUMPOM187 | 139, 1246, 1611, 1636 | N 34°47'59.8" W 002°24'01.7" E = 889 m | S / Ch / H | Diabetes (5), allergy (2), laxative (4), cholagogue (1), stomachache (9), hypoglycaemia (3), vomiting (1) and wounds healing (1). | 26 | 0.0279 |
| | Plantago coronopus L.* | HUMPOM179 | 39, 266, 778, 1005, 1892, 2022 | N 34°47'68.1" W 002°24'21.4" E = 889 m | S / Hem (Th) / H | Digestive problems (2). | 2 | 0.0021 |
| | Plantago major L.* | HUMPOM178 | 39, 266, 778, 1005, 1892, 2022 | N 34°47'61.1" W 002°24'17.2" E = 889 m | S / Hem (Th) / R / H | Cancer (1) and boils (3). | 4 | 0.0043 |
| POACEAE | Arundo donax L.* | HUMPOM186 | 1798 | N 34°52'46.4" W 002°07'44.1" E = 506 m | S / GR / H | Hair care (1) and cosmetic (1). | 2 | 0.0021 |
| | Avena sativa L.* | HUMPOM246 | 747, 777, 1779, 2256 | N 33°30'15.2" W 002°00'23.7" E = 1443 m | C / Th / H | Diabetes (1), laxative (1) and mouth hygiene (1). | 3 | 0.0032 |
| | Cynodon dactylon (L.) Pers.* | HUMPOM013 | 109, 458, 1577, 2214, 2215 | N 33°03'05.9" W 002°00'12.4" E = 1451 m | S / GR; Hem / H | Renal diseases (1), diuretic (1), hypertension (1) and circulatory problems (1). | 3 | 0.0032 |
| Plant Name | Scientific Name | Common Name | Number | Description | Active Components (n) | Quantity | Year |
|--------------------------------|--------------------------|------------------------|--------|--|------------------------|----------|------|
| Elymus repens (L.) Gould * | HUMPOM044 | | 40 | | 2 | 0.0021 | |
| Hordeum vulgare L. | HUMPOM247 | | 6 | Diabetes (1), fever (1), hypertension (1), urinary problems (1), allergy (1) and diuretic (1) | 6 | 0.0064 | |
| Oryza sativa L. * | HUMPOM248 | | 1 | Hypercholesterolemia (1) and diabetes (1) | fr, - | - | |
| Sorghum bicolor (L.) Moench | HUMPOM249 | | 7 | Diabetes (1), allergy (1) and digestive problems (1) | sd, pod, inf, dec | 0.0075 | |
| Stipa tenacissima L. | HUMPOM185 | | 13 | Diabetes (4) and digestive problems (9) | wp, lv, dec, inf, mac | 0.0140 | |
| Triticum aestivum L. | HUMPOM250 | | 1 | Digestive problems (1), allergy (1) and diabetes (1) | ct, sd, lv | 0.0011 | |
| Zea Mays L. | HUMPOM251 | | 9 | Diabetes (2), kidney diseases (3), diuretic (1), allergy (1), hypertension (2) and hypercholesterolemia (2) | sd, st, dec, inf, dri, scr | 0.0097 | |
| POLYGONACEAE | | | | | | | |
| Rumex vesicarius L. * | HUMPOM088 | | 3 | Skin infections (1), laxative (1), diuretic (1) and antispasmodic (1) | lv, rt, wp, inf | 0.0032 | 0.0032 |
| Adiantum capillus-veneris L. * | HUMPOM256 | | 6 | Asthma (1), respiratory infections (1), urinary infection (1), diarrhoea (1), genital infection (1), bronchitis (1), pancreas ailments (1), hair care (1) and boils (1) | ap, wp, inf, pod | 0.0064 | 0.0064 |
| Portulaca oleracea L. ** | HUMPOM051 | | 3 | Diabetes (3). | ls, ap, dec | 0.0032 | 0.0032 |
| Clematis cirrhosa L. ** | HUMPOM28 | | 9 | Cancer (1), rheumatism (2), eye infection (1), dental problems (3) and boils (2). | lv, ap, - | 0.0097 | |
| Nigella sativa L. * | HUMPOM279 | | | Diabetes (19), allergy (6), carminative (12), cancer (2), menstrual pains (1), tonic (8), abortive (1), antitussive (11), asthma (15) and rheumatism (7) | sd, fl, lv, pod, dec, inf | 0.0456 | |
| Reseda luteola L. * | HUMPOM161 | | 3 | Digestive problems (2) and intestinal infections (1). | rt, - | 0.0032 | 0.0032 |
| Rhamnus alaternus L. ** | HUMPOM076 | | 1 | Anemia (1), digestive problems (1) and hypoglycemia (1). | rt, lv, dec | 0.0011 | 0.0182 |
| Scientific Name | Local Name | Synonyms | Description | Medicinal Uses | Parts Used | Code |
|-----------------|------------|---------|-------------|----------------|-----------|------|
| Ziziphus lotus (L.) Lam. | سدرة الطبق | HUMPOM077 | N 33°03'05.7" W 002°00'13.9" E = 1451 m | Diabetes (13), urinary infections (5), hair care (7), circulatory problems (1), antispasmodic (8), respiratory problems (10) and renal diseases (4). | fl, lv, rt, dec, pod, inf | 47 0.0505 |
| Ziziphus jujuba Mill. | زيزوبث الفيرف | HUMPOM252 | N 35°10'38.4" W 003°10'24.1" E = 1282 m | Diabetes (7). | fr, raw, fod | 7 0.0075 |
| Crataegus monogyna Jacq. | قرطاغوس منوغنا | HUMPOM177 | N 34°54'06.9" W 002°48'12.7" E = 920 m | Hypertension (4), genital, urinary (2) problems, laxative (1), diarrhea (4) and respiratory problems (6). | fl, lv, fr, ap, dec | 15 0.0161 |
| Citrus aurantium | نارنام | HUMPOM259 | N 34°54'42.7" W 002°12'13.5" E = 1282 m | Cancer (1), aphrodisiac (1) and cosmetic (1). | lv, fr, sd, dec, oil, pod, vng | 2 0.0021 |
| Prunus serotina | نارنام | HUMPOM255 | N 34°54'26.3" W 003°47'27.7" E = 1282 m | Cancer (1), aphrodisiac (1) and cosmetic (1). | lv, fr, sd, dec, oil, pod, vng | 2 0.0021 |
| Prunus avium | نارنام | HUMPOM256 | N 34°54'26.3" W 003°47'27.7" E = 1282 m | Cancer (1), aphrodisiac (1) and cosmetic (1). | lv, fr, sd, dec, oil, pod, vng | 2 0.0021 |
| Rubia peregrina | نارنام | HUMPOM280 | N 35°10'38.4" W 003°10'24.1" E = 1282 m | Aphrodisiac (1), diarrheal (3), hepatitis (1), anemia (1), renal diseases (2), circulatory problems (1), diabetes (3), fever (4), colds (2) and appetizer (1). | bl, lv, sd, inf, dec, pod, rt | 14 0.0150 |
| Scientific Name | Arabic Name | Local Code | Coordinates | Uses |
|--------------------------------------|----------------------|------------|----------------------|--|
| **Rubia tinctorum L.** | | HUMPOM015 | N 35°12'00.9" W 003°05'54.2" E = 603 m | C / G / H |
| | | n° 1530, 1710 | | Diabetes (2), hypertension (1), cardiovascular diseases (2), renal diseases (1), digestive problems (1), aphrodisiac (1) and analeptic (1). rt, dec, 8 0.0086 |
| **RUTACEAE** | | | | |
| **Citrus aurantium L.** | | HUMPOM260 | N 35°56'22.1" W 002°20'57.9" E = 138 m | C / Ph / T |
| | | n° 2204 | | Diabetes (3), hypertension (2), headache (1), allergy (1) and cosmetic (2). fr, fl, iv, inf, oil, pod, 9 0.0097 |
| **Citrus limon** (L.) Osbeck | | HUMPOM261 | N 35°56'16.3" W 002°20'42.8" E = 147 m | C / Ph / T |
| | | n° 16, 421, 870, 945, 2086 | | Hypertension (12), antiseptic (3), diarrhea (2), angina (1), cosmetic (7), face care (2), headache (5), fever and diabetes (9). fr, fl, juc, dec, inf, mac, cat, 36 0.0387 |
| **Citrus sinensis** (L.) Osbeck | | HUMPOM263 | N 35°56'10.2" W 002°20'48.3" E = 152 m | C / Ph / T |
| | | n° 2204 | | Sedative (1), hemostatic (1), analgesic (1), carminative (1), headache (1), fever (2) and face care (1). lv, fl, iv, dec, juc, 4 0.0043 0.0133 |
| **Ruta chalepensis** L. | | HUMPOM264 | N 35°56'22.7" W 002°20'69.2" E = 141 m | C / Ch / H |
| | | n° 905, 999, 1166, 1413, 1718 | | Hypoglycemia (2), abortive (1), rheumatism (1), liver diseases (1), vitiligo (1), sterility (1), epilepsy (1), fever (1), hair care (1), anti-inflammatory (1) and respiratory problems (1). lv, ap, wp, inf, dec, pod, raw, 8 0.0086 |
| **Ruta montana** (L.) L. | | HUMPOM265 | N 35°56'19.6" W 002°20'57.4" E = 143 m | C / Ch / H |
| | | n° 905, 999, 1166, 1413, 1718 | | Diabetes (1), ear infection (1), rheumatism (1), diuretic (1), headache (1) and abortive (1). ap, ll, iv, inf, pod, 5 0.0054 |
| **SALICACEAE** | | | | |
| **Populus nigra** L. | | HUMPOM124 | N 35°56'12.9" W 002°20'49.6" E = 150 m | C / Ph / T |
| | | n° 104, 724, 725 | | Rheumatism (1), anti-inflammatory (1), digestive (1) and respiratory problems (1). lv, wp dec, inf, pod, cat, 4 0.0043 0.0037 |
| **Salix alba** L. | | HUMPOM129 | N 35°56'10.8" W 002°20'45.1" E = 148 m | S / Ph / T |
| | | n° 102, 237, 344, 369, 815, 914, 1631 | | Anti-inflammatory (1) and mouth hygiene (2). lv, ec, wp, pod, dec, 3 0.0032 |
| **SANTALACEAE** | | | | |
| **Viscum album** L. | | HUMPOM061 | N 34°54'08.7" W 003°47'28.9" E = 922 m | S / Ch(-p) / RR |
| | | n° 848 | | Diabetes (1), digestive problems (1) and appetizer (1). sd, pod, dec, 3 0.0032 0.0032 |
| **SAPOTACEAE** | | | | |
| **Argania spinosa** (L.) Skeels | | HUMPOM164 | N 35°56'12.3" W 002°20'49.8" E = 150 m | S / Ph / E / V / T |
| | | n° 56, 1145, 2041 | | Cosmetic (7), hair care (4), skin infections (5), aphrodisiac (1), ulcers (2), colds (1), eczema (2) and diabetes (5). fr, sd, lv, rt, oil, inf, cat, 25 0.0269 0.0269 |
| **SALVADORACEAE** | | HUMPOM281 | N 35°56'12.4" W 003°38'44.7" E = 274 m | S / Th-b (Hem) / H |
| **Salvadora persica** L. | | n° 50, 271, 1608, 1882 | | Hemorrhoids (1), toothache (1), ulcers (1), boils (1), eye infections (2) and colds (1). fl, inf, dis, 6 0.0064 0.0064 |
| **SCROPHULARIACEAE** | | HUMPOM184 | N 35°12'41.1" W 003°38'44.7" E = 274 m | S / Th-b (Hem) / H |
| **Verbascum sinuatum** L. | | n° 38, 375, 1263, 1704, 2162 | | Hemorrhoids (1), toothache (1), ulcers (1), boils (1), eye infections (2) and colds (1). fl, inf, dis, 6 0.0064 0.0064 |
| Family | Species | Common Name | Coordinates | Uses | Decolonization | Data Reference |
|------------------|--------------------------------|----------------------------|--------------------------|-------------------------------|----------------|----------------|
| SOLANACEAE | Atropa belladonna L. * | Ziziphus belladonna | W 003°48'39.8'', E = 510 m | Appetizer (4), sexual stimulant (2) and aphrodisiac (2). | fr, fl, rt, dec | 8, 0.0086 |
| | Capsicum annuum L. * | Capsicum annuum | C / Th / H | Tonic (1), warmer (1), sexual impotence (1) and respiratory problems (1). | fr, pod | 4, 0.0043 |
| | Datura stramonium L. * | Datura sp. | S / Th / H | Respiratory problem (14), narcotic (1), sedative (2), vomiting (4), asthma (13), cough (7), weakness (5), jaundice (1) and hypertension (9). | | 53, 0.0569 |
| | Solanum americanum Mill. * | Solanum sp. | C / Th / H | Digestive problems (3), skin inflammation (1), intestinal parasites (1) and sterility (1). | sd, dec, inf | 13, 0.0140 |
| | Solanum tuberosum L. * | Solanum sp. | C / Th / H | Cardiovascular diseases (10) and cancer (1). | sd, fr, raw | 11, 0.0118 |
| STYRACACEAE | Styrax benzoin Dr. * | Styrax sp. | I / Ph / T | Boils (2) and skin infections (3). | rs, fmg | 4, 0.0043 |
| TAMARICACEAE | Tamarix aphylla (L.) H. Karst | Tamarix sp. | W 002°58'24.4'', E = 349 m | Eczema (4), skin burns (7), wounds healing (3), edema pregnancy (2) and vomiting (1). | fr, lv, st, ap, pod, dec, inf, cat | 16, 0.0172 |
| | Solanum sodomaeum L. * | Solanum sp. | S / Nph / SH | Women sterility (1), digestive (5) and skin problems (3). | fr, inf | 9, 0.0097 |
| | Solanum tuberosum L. * | Solanum sp. | C / Th / H | Skin infections (3). | tb, raw | 3, 0.0032 |
| THEACEAE | Thea sinensis (L.) Kuntze | Thea sp. | I / Nph / T | Hair care (5), diuretic (6), liver diseases (3), and diarrhea (10). | lv, ap, dec | 21, 0.0226 |
| | Thea sinensis (L.) Kuntze | Thea sp. | I / Nph / T | Digestive problems (1), skin problems (1), hypertension (1), hemorrhoids (1) and diabetes (1). | lv, inf, dec, pod, cat | 5, 0.0054 |
| THYMELAEACEAE | Thymus serpyllum L. | Thymus sp. | S / Th / H | Diabetes (14), hair care (8), abortive (1), fever (9) and headache (5). | lv, fr, pod, mac, inf, dec | 36, 0.0387 |
| | Thymus vulgaris L. | Thymus sp. | S / Th / H | Respiratory problems (23), diabetes (10), dental problems (8) and laxative (5). | lv, sd, dec, inf | 44, 0.0473 |
| TILIACEAE | Tilia simplex Desf. | Tilia sp. | C / Ph / T | Headache (2), respiratory problems (5), fever (3), colds (2) and hypertension (1). | wp, fl, dec, mac, inf | 12, 0.0129 |
| Family | Species | Locality | Uses | Preparation | Mixture | Specificity (p-value) |
|---------------------|--|----------|---|-------------|---------|----------------------|
| URTICACEAE | Urtica dioica L.* | N° 160, 363, 478, 940, 1773 | Diabetes (3), hypertension (9), diuretic (1), eczema (5), cholang (1), renal diseases (3), digestive problems (16), depurative (1), hair care (1), rheumatism (3), diarrhea (2) and allergy (4). | wp, lv, pod, dec, inf, | 55 | 0.0591 |
| VERBENACEAE | Aloysia citriodora Palau | N° 1388, 2159 | Digestive problems (1), skin problems (1), diabetes (3), and depurative (5). | lv, wp, sd, inf, dec, pod, | 96 | 0.1031 0.1031 |
| VITACEAE | Vitis vinifera L. | N° 93, 186, 820, 863, 1078, 1084, 1105, 1483, 1571, 1595, 1903, 2143, 2200 | Hypertension (2), boils (1), headache (3), allergy (1) and anemia (1). | lv, fl, dec, inf, mac, | 7 | 0.0075 0.0075 |
| XANTHORRHOEACEAE | Aloe succotrina Lam.* | N° 1388, 2159 | Cancer (1), skin infections (7), diabetes (5) and laxative (3). | ct, lv, dec, oil, juc, | 13 | 0.0140 |
| Aloe vera (L.) Burm. f. | HUMPPOM285 | - | Diabetes (1), vitiligo (1), rheumatism (1), skin problems (1), digestive problems (2) and depurative (1). | rt, st, rh, dec, | 8 | 0.0086 |
| Asphodelus microcarpus | Salzm. & Viv. HUMPPOM150 | N° 88, 277, 826 | Antitussive (2), colds (2), sexual impotence (1), respiratory problems (4), warmer (2), menstrual pains (1), depurative (1), and anti-inflammatory (3). | ct, st, rt, wp, dec, pod, inf, | 14 | 0.0150 |
| ZINGIBERACEAE | Alpinia officinarum Hance | N° 829 | Digestive problems (3), appetite (1), aphrodisiac (1) and anemia (1). | rt, ct, st, pod, dec, inf, | 5 | 0.0054 |
| Curcuma longa L. * | HUMPPOM224 | N° 1525, 1917, 2254 | Digestive problems (3), appetizer (1), aphrodisiac (1) and anemia (1). | rt, ct, st, pod, dec, inf, | 5 | 0.0054 |
| Elettaria cardamomum (L.) | Maton HUMPPOM189 | N° 838, 1342 bis, 1355, 1722, 1783, 2247, 2268 | Aphrodisiac (2) and digestive problems (1). | sd, inf, pod, | 3 | 0.0032 |
| Zingiber officinalis Roscoe | Zingib. HUMPPOM190 | N° 1125 | Diabetes (11), colds (23), cough (16), and respiratory problems (13). | rt, ct, st, pod, dec, inf, | 58 | 0.0623 |
| Family | Species | Common Name | Geographic Coordinates | Ecological Status | Disease/Use | Mode of Preparation | Part Used | NC | UV |
|--------|---------|-------------|------------------------|-------------------|-------------|---------------------|-----------|----|----|
| ZYGOPHYLLACEAE | *Fagonia cretica* L. | - | N 34°01'17.3'' W 002°01'42.5'' E = 935 m | S / Ch / H | Digestive problems (1). | wp, inf, pod | 1 | 0.0011 |
| Tetraena gaetula (Emb. & Maire) Beier & Thulin | - | علبة | N 32°31'53.1'' W 001°57'16.2'' E = 1168 m | S / Ch / E / H | Diabetes (9), hypertension (12), appetizer (4), eczema (4), diarrhea (10), analgesic (2), intestinal antiseptic (8), tonic (3), hepatitis (1), rheumatism (9), boils (3) and cosmetic (5). | lv, ap, wp, ct, inf, pod, dec, tis | 67 | 0.0720 |

Ecological status: S: Spontaneous; C: Cultivated; I: Imported; E: Endemic; R: Rare; RR: Very rare; ??: Suspected rare; ??: Taxon on extinguished or dubious presence.; V: vulnerable (or Seems being), in Way of regression and could to become rare at short term.

Life forms: Ph: Phanerophyte; Nph: Nanophanerophyte; Ch: Chamaephyte; Hem: Hemicryptophyte; G: Geophyte; GB: Geophyte with bulb; GR: Geophyte with rhizome; GT: Geophyte with tuber; HyF: Hydrophyte fixed; Th: Therophyte; Th-b: Therophyte biennial; (l): Lianescentes; (-p): Parasites. **Herbaceous life form:** H: herb; SH: Shrub; T: Tree.

Part used: ap: Aerial part; bk: Bark; br: Branch; bl: Bulbs; cd :Cade; cp: Capitules; cv: Clove; cn: Cone; ct: Cortex; ec: Ecorce; fl: Flowers; fr: Fruits; gl: Gall; ifl: Inflorescence; lt: Latex; ls: Leafily Stem; lv :Leaves; pr: Pericarp; pt: Petal; pl: Pulp; rs: Resin; rh: Rhizome; rt: Roots; rb: Rubber; sd: Seeds; st: Stem; sg: Stigma; tb: Tubers; up: Underground Part; wp: Whole Plant; w: wood.

Mode of preparation: cat: Cataplasm; dec :Decoction; dis: Distillation; dri: Dried; fod: Food; fmg: Fumigation; inf: Infusion; inh: Inhalation; juc: Juice; mac: Maceration; oil: oil; pod: Powder; raw: Raw; scr: Scorched; tis: Tisane; vng: Vinegar. **UV:** Use Value. **FUV:** Family Use Value. **NC:** Number of citations. *: Toxic plant. -:Does not exist. *: New plant reported in the region of study.