Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
The 2-5A System: Modulation of Viral and Cellular Processes Through Acceleration of RNA Degradation

Mark R. Player and Paul F. Torrence*

SECTION ON BIOMEDICAL CHEMISTRY, LABORATORY OF MEDICINAL CHEMISTRY, BUILDING 8, ROOM B2A02, NATIONAL INSTITUTE OF DIABETES AND DIGESTIVE AND KIDNEY DISEASES, NATIONAL INSTITUTES OF HEALTH, BETHESDA, MD 20892-0805, USA

ABSTRACT. The 2-5A system is an RNA degradation pathway that can be induced by the interferons (IFNs). Treatment of cells with IFN activates genes encoding several double-stranded RNA (dsRNA)-dependent synthetases. These enzymes generate 5'-triphosphorylated, 2',5'-phosphodiester-linked oligoadenylates (2-5A) from ATP. The effects of 2-5A in cells are transient since 2-5A is unstable in cells due to the activities of phosphodiesterase and phosphatase. 2-5A activates the endoribonuclease 2-5A-dependent RNase L, causing degradation of single-stranded RNA with moderate specificity. The human 2-5A-dependent RNase is an 83.5 kDa polypeptide that has little, if any, RNase activity, unless 2-5A is present. 2-5A binding to RNase L switches the enzyme from its off-state to its on-state. At least three 2',5'-linked oligoadenylates and a single 5'-phosphoryl group are required for maximal activation of the RNase. Even though the constitutive presence of 2-5A-dependent RNase is observed in nearly all mammalian cell types, cellular amounts of 2-5A-dependent mRNA and activity can increase after IFN treatment. One well-established role of the 2-5A system is as a host defense against some types of viruses. Since virus infection of cells results in the production and secretion of IFNs, and since dsRNA is both a frequent product of virus infection and an activator of 2-5A synthesis, the replication of encephalomyocarditis virus, which produces dsRNA during its life cycle, is greatly suppressed in IFN-treated cells as a direct result of RNA decay by the activated 2-5A-dependent RNase. This review covers the organic chemistry, enzymology, and molecular biology of 2-5A and its associated enzymes. Additional possible biological roles of the 2-5A system, such as in cell growth and differentiation, human immunodeficiency virus replication, heat shock, atherosclerotic plaque, pathogenesis of Type I diabetes, and apoptosis, are presented.

KEY WORDS. Double-stranded RNA, 2-5A, interferons, ribonuclease L, virus, host defense.

CONTENTS
1. INTRODUCTION 56
2. SYNTHESIS OF 2-5A AND ITS ANALOGUES 57
3. 2-5A SYNTHETASE, A DOUBLE-STRANDED RNA-REGULATED NUCLEOTIDYL TRANSFERASE 57
 3.1. OCCURRENCE 57
 3.2. INDUCTION 57
 3.3. ROLE OF 2-5A SYNTHETASE IN THE ANTIPROLIFERATIVE EFFECTS OF INTERFERON 66
 3.4. 2-5A SYNTHETASE AND DIFFERENTIATION 68
 3.5. ASSAY OF 2-5A SYNTHETASE 68
 3.6. ENZYMOLOGY 70
 3.7. STRUCTURE-ACTIVITY RELATIONSHIPS FOR DOUBLE-STRANDED RNA BINDING 71
4. RIBONUCLEASE L, THE 2-5A-DEPENDENT NUCLEASE 72
 4.1. OCCURRENCE 72
 4.2. GENOMICS 73
 4.3. RNASE L CLONING, PURIFICATION, AND PROPERTIES 73
 4.4. CLEAVAGE SPECIFICITY 75
4.5. AFFINITY LABELLING OF RNASE L 76
4.6. ACTIVATION OF RNASE L BY 2-5A AND ANALOGUES 76
 4.6.1. DEPENDENCE OF RNASE L ACTIVITY ON NATURE OF RIBOSE-PHOSPHATE BACKBONE 77
 4.6.2. DEPENDENCE OF RNASE L ACTIVITY ON THE NATURE OF THE BASES 78
 4.6.3. OTHER MODIFICATIONS 79
 4.7. RNASE L, 2-5A, AND THE ANTIVIRAL ACTION OF INTERFERON 80
5. AGENTS OF INTEREST AS ANTAGONISTS OF INTERFERON ACTION 81
6. BIOLOGICAL ROLES FOR THE 2-5A SYSTEM 82
 6.1. REGENERATION OF LIVER 82
 6.2. ESTROGEN ADMINISTRATION AND WITHDRAWAL 82
 6.3. ERYTHROID CELLS 82
 6.4. THE CELL CYCLE AND 2-5A 83
 6.5. PLATELET-DERIVED GROWTH FACTOR, INTERFERON, AND 2-5A 83
 6.6. HEAT SHOCK 84
 6.7. ETHANOL 84

*Corresponding author.
A review encompassing a unique group of low molecular mass molecules referred to as 2-5A (Fig. 1), represented as (p)p5'A2'(p5' A2'). Interest in this field is attested to by the volume of publications dealing with 2-5A: in excess of 500. The groundwork for the discovery of 2-5A was laid through the efforts of a variety of laboratories (Table 1). That work led to the now classical investigations of Kerr and Brown (1978) that described the exact chemical nature of 2-5A. This paper (Kerr and Brown, 1978) should be required reading of students entering the field of nucleic acid chemistry and biochemistry because of its elegant application of basic chemical and enzymatic principles to structure elucidation. Although the chemical structure of 2-5A was described nearly two decades ago, it has only been recently that the key enzyme in 2-5A action, the RNase L, has been cloned and finally purified to homogeneity (Table 1).

This review encompasses a unique group of low molecular mass nucleotides referred to as 2-5A (Fig. 1), represented as (p)p5' A2'(p5' A2'). Interest in this field is attested to by the volume of publications dealing with 2-5A: in excess of 500. The groundwork for the discovery of 2-5A was laid through the efforts of a variety of laboratories (Table 1). That work led to the now classical investigations of Kerr and Brown (1978) that described the exact chemical nature of 2-5A. This paper (Kerr and Brown, 1978) should be required reading of students entering the field of nucleic acid chemistry and biochemistry because of its elegant application of basic chemical and enzymatic principles to structure elucidation. Although the chemical structure of 2-5A was described nearly two decades ago, it has only been recently that the key enzyme in 2-5A action, the RNase L, has been cloned and finally purified to homogeneity (Table 1). Much has been accomplished in this area since the last

1. INTRODUCTION

Sundry low molecular mass nucleotides, in addition to the cyclic mononucleotides cyclic AMP (cAMP) and cyclic GMP, have been described and pursued for their fascinating biological properties. For instance, guanosine 5'-diphosphate 3'-diphosphate, a "magic spot" nucleotide, has been established as an intracellular messenger that influences the transcription rate of various genes and as the mediator of the stringent response in Escherichia coli (Gallant, 1979). Diadenosine 5',5"'-P1,P4'-tetraphosphate, originally described by Zamecnik et al. (1966) in the back reaction of lysyl-tRNA synthetase, is an established competitive inhibitor of platelet aggregation, and its analogues have been pursued as antithrombotic agents (Chan et al., 1997). Nicotinic acid adenine dinucleotide phosphate, 2'-phospho-cyclic ADP-ribose, and cyclic ADP-ribose have been found to regulate calcium signaling (Genazzani and Galione, 1997).
ruses, reptiles, and several avian species, including chickens.

DOUBLE-STRANDED RNA-REGULATED synthetase activity (Stark et al., 1979; Cayley et al., 1982b). Bacteria, however, have not been shown to possess 2-5A present in a large variety of mammalian species, including monkey, cow, and humans. It has also been detected in viral macromolecules (Table 4). In addition, a respectable number of SV40 fibroblasts and Ramos cells after treatment with IFN-γ (Wallach et al., 1982c). Human diploid fibroblasts (MRC5) contain very low levels of 2-5A synthetase (Stark et al., 1979), while Namalva (Johnston et al., 1980b), HeLa (Silverman et al., 1982), and K/BALB cells (Meurs et al., 1986) express very high levels in the absence of IFN induction. The enzyme occurs in high levels in human peripheral blood cells (Bruchelt et al., 1992) and human umbilical cord blood mononuclear cells (Williams and Read, 1981). Homo sapiens males have been found to have an 8-fold higher concentration of the enzyme in their polymorphonuclear blood cells (PMBCs) (Miele et al., 1992). Monocytes separated by density gradient centrifugation had 3- to 5-fold greater 2-5A synthetase levels than did lymphocytes, while B lymphocytes separated from T lymphocytes by fluorescence-activated cell sorting had 2-fold higher levels of the enzyme (Witt et al., 1990; Buffet-Janvresse et al., 1986). 2-5A synthetase is also present in the serum and plasma of mice (Krishnan and Baglioni, 1980a) and humans (Bruchelt et al., 1992; Rusconi et al., 1994). Its clinical usefulness for monitoring IFN therapy will be discussed in the following section.

3.2. Induction

The most important inducer of 2-5A synthetase is IFN. The degree and time course of induction depends on the dose and type of IFN, length of exposure, and cell type. The extent of induction observed has been generally several-fold to several hundred-fold, although a remarkable 104-fold induction has been reported in chick embryo cells (Ball, 1979). It should be noted that many of these induction studies have been based on enzyme activity levels, as opposed to measurement of protein. A 1:1 linear relationship has not been established.

A number of investigators have demonstrated differential induction with Type I versus Type II IFNs. Wallach et al. (1982) found lower levels of 2-5A synthetase in human SV40 fibroblasts and Ramos cells after treatment with IFN-γ compared with IFN-β. In mouse L929 cells, however, 2-5A synthetase levels were similar after IFN-β or γ treatment (Hovanessian et al., 1980). IFN-γ has been shown to induce lower 2-5A synthetase levels than IFN-β in the monocytic line U937, the myelocytic line HL-60, and human peritoneal macrophages (Witt et al., 1990), as well as in vivo in...
TABLE 1. Signal Discoveries in the Scientific Evolution of the 2-5A System

Discovery	Reference
Discovery of IFN.	Isaac and Lindemann, 1957
Inhibition of protein synthesis in IFN-treated virus-infected cells.	Joklik and Merigan, 1966
Detection of dsRNA in extracts of vaccinia virus-infected cells.	Duesberg and Colby, 1969
Cell toxicity in response to combined treatment with both IFN and dsRNA.	De Clercq et al., 1973
The ribosome as a site of IFN action: inability of ribosomes from IFN-treated cells to translate viral RNA. Concept of translation inhibitory protein.	Marcus and Salb, 1966
Cell-free extracts of IFN-treated cells were deficient in their ability to translate Mengovirus RNA, but not poly(U) or tobacco mosaic virus RNA.	Carter and Levy, 1968
No effect of IFN treatment of cells discerned in cell-free extracts until such extracts were preincubated. Responsible factor was ribosome-associated, but not species-specific.	Samuel and Joklik, 1974; Samuel and Ferris, 1977
Reduced ability of IFN-treated chick cell ribosomes to translate EMCV RNA.	Kerr, 1971
Extracts from IFN-treated and vaccinia virus-infected cells showed reduced ability to translate both EMCV RNA and globin mRNA.	Friedman et al., 1972a,b; Kerr et al., 1973
Extracts of IFN-treated mouse L-cells showed greatly reduced ability to translate Mengovirus RNA and globin RNA, but ability to translate poly(U) was only marginally affected.	Falcoff et al., 1973
In coupled transcription-translation system from primary chick embryo cells, there was no effect of IFN on transcription, but various mRNAs were inhibited from translation in the absence of dsRNA.	Ball and White, 1978a,b
IFN-inducible ribosome-associated translational inhibitor in ascites tumor cells. Extracts from IFN-treated and virus-infected mouse L-cells showed reduction in amount of EMCV RNA-specified products and also decrease in molecular weight of products.	Gupta et al., 1973, 1974a,b; Kerr et al., 1974b
Extracts from IFN-treated L-cells showed exquisite sensitivity of translational inhibition by dsRNA. The addition of dsRNA to the cell extracts obviated the requirement for virus infection demonstrated in the study by Friedman et al. (1972a,b).	Kerr et al., 1974a
IFN-inducible dsRNA-mediated inhibition of protein synthesis confirmed in cell-free extracts from mouse, human, and chick cells. Addition of dsRNA to extracts of IFN-treated cells accelerated the rate of degradation of mRNA.	Shaila et al., 1977; Ball and White, 1978a,b
Both dsRNA and ATP were required for the dsRNA-stimulated RNA degradation.	Brown et al., 1976; Kerr et al., 1976; Ball and White, 1978b; Clemens and Vaquero, 1978; Lewis et al., 1978
A low-molecular weight inhibitor of translation was generated when extracts of IFN-treated mouse L-cells were incubated with dsRNA and ATP. The above low-molecular weight inhibitor could be synthesized on a column of poly(I)-poly(C)-agarose to which the low-molecular weight inhibitor synthetase activity of IFN-treated cells had been absorbed.	Rattner et al., 1978; Roberts et al., 1976; Sen et al., 1976
Identification of low-molecular weight inhibitor as ppp5' A2' p5' A2' p5' A, called 2-5A. Verifcation of generation of 2-5A in other systems.	Kerr, 1971
Verification of structure of 2-5A by chemical synthesis.	Ball and White, 1978c; Hovanessian and Kerr, 1979, Minks et al., 1979a, den Hartog et al., 1979, 1981; Engels and Krahmer, 1979; Ikehara et al., 1979, 1981; Jones and Reese, 1979; Markham et al., 1979; Ogilvie and Theriault, 1979; Sawai et al., 1979; see also Table 2
Activation of nuclease activity by 2-5A.	Clemens and Williams, 1978; Farrell et al., 1978; Ball and White, 1978b; Clemens and Vaquero, 1978; Lewis et al., 1978
Accumulation of 2-5A in IFN-treated virus-infected cells. Evidence for localized activation of 2-5A system in cell extracts. Increased concentrations of 2 5A in organs of EMCV infected mice. 2',5'-Phosphodiesterase purification and characterization.	Williams et al., 1979b; Knight et al., 1980
Prevention of 2-5A action by 5'-monophosphate of 2-5A: p5' A2' p5' A2' p5' A. Prevention of anti-EMCV activity of IFN by 2-5A analogue acting as a competitive inhibitor of 2-5A. RNase L-characteristic cleavage products of rRNA detected in IFN-treated virus-infected cells.	Nilsen and Baglioni, 1979; Heatl and Johnston, 1987

(continued)
TABLE 1. Continued

Discovery	Reference
Cleavage specificity for RNase L established.	Wreschner et al., 1981; Floyd-Smith et al., 1981
Identification of four different forms of 2-5A synthetase in human cells.	Chebath et al., 1987a; Ball and White, 1979a; Wells et al., 1984; Dougherty et al., 1980; Ball, 1980; Yang et al., 1981; Marie et al., 1989; Ilson et al., 1986
Purification of 2-5A synthetase.	Hassel et al., 1993
Dominant-negative mutant of RNase L, that bound 2-5A efficiently, but lacked nuclease activity, when expressed in murine cells, prevented the anti-EMCV effect of IFN.	Hassel et al., 1993
Activated 40 kDa form of 2-5A synthetase found bound to viral RNA in IFN-treated EMCV-infected HeLa cells.	Zhou et al., 1993; Hassel et al., 1993
Cloning of human and mouse RNase L.	Torrence et al., 1993, 1994
Introduction of 2-5A-antisense.	

When HeLa cells were treated with IFN-β, after a 3-hr lag, there was a rapid rise in 2-5A synthetase levels, which peaked and remained constant at about 24 hr (Baglioni et al., 1979). This reflected de novo protein synthesis. The time course of induction of 2-5A synthetase with IFN-γ has been found to be slower than that found with Type I IFNs in HeLa cells (Baglioni and Maroney, 1980). A number of studies have specifically examined the kinetics of in vivo induction of 2-5A synthetase. Lodemann et al. (1985) found that after a dose of 5 × 10⁸ U/kg of IFN-α, 2-5A synthetase measured in PBMCs peaked at 6 hr, and that the i.v. route was not superior to i.m. injection. In another trial of IFN-α, the range of induction of 2-5A synthetase was found to be 2.1- to 5.7-fold; however, the extent and duration of the 2-5A synthetase response was a function of only the dose and not the route or number of injections (Merritt et al., 1992). After a dose of 1–5 × 10⁸ U of IFN-β s.c., 2-5A synthetase levels peaked at 24–48 hr in PBMC lysates and 48–72 hr in serum. A dose of 2–4 × 10⁸ U of IFN-γ caused a smaller increase in 2-5A synthetase (Bruchelt et al., 1992). A trial of an IFN-β/γ combination together as a continuous infusion found dose-limiting toxicity at 3 × 10⁶ U of IFN-β and 200 mg of IFN-γ, consisting of refractory headache, fever, and hepatic toxicity (Schiller et al., 1990).

It also has been well established that Type I IFNs induce transcription of the 2-5A synthetase gene in the presence of cycloheximide, unlike Type II IFNs, which generally do not (Dianzani et al., 1980; Faltynek et al., 1985; Gribaudo et al., 1989). This implied that 2-5A synthetase was induced as a primary response to treatment of cells with Type I IFNs since no new protein synthesis was required; however, new protein synthesis was required for induction of 2-5A synthetase by IFN-γ. There is some early evidence for superinduction of 2-5A synthetase. When chick embryo fibroblasts were stimulated with homologous IFN, the 2-5A synthetase level peaked at about 9 hr. If IFN was then removed, the addition of cycloheximide could delay the decay (West and Ball, 1982) or restore (Lab et al., 1982) 2-5A synthetase activity.

Four isoforms (p40, p44, p69, p100) of IFN have been described (Chebath et al., 1987a; Hovanessian et al., 1987). The various isoforms are induced differentially with a given IFN subtype. In Hs294t melanoma cells, after 48 hr of

![FIGURE 2. A schematic representation of the principal components of the 2-5A system.](image-url)
Investigators	Condensing or activating reagents comments	Synthons	Product(s)
Ikehara et al., 1979, 1981	POCl₃ in PO(OEt)₃	3'-O-(o-nitrobenzoyl)-N₆-benzoyladeninosine 5'-phosphate	(p₅'A₂')ₙ n = 2-5
Ikehara et al., 1981	Mesitylene sulfonyl triazolide	5'-O-MMT-3'-O-(o-nitrobenzyl)-N₆-benzoyladeninosine 2'-O-p-chlorophenylphosphate and 5'-O-phosphorodiamidate-3'-O-(o-nitrobenzyl) N₆-benzoyladeninosine	p₅'A₂' p₅'A
Shimizu et al., 1984	Tri-(imidazol-1-yl) phosphine. N protection not necessary	Adenosine or N₆-benzoyladeninosine	(Ap)ₙ A, n = 1-4
Hayakawa et al., 1985a,b	Triester approach: reaction of phosphorochloridate with Mg alkoxide of protected nucleoside. No N protection	2',3'-O-TBDMS-adenosine and 5'-MMT-3'-O-TBDMS-adenosine 2',3'-O-o-chlorophenyl-p-nitrophenyl phosphate	A₂'p₅'A₂'p₅'N
Chattopadhyaya, 1980	1-Mesitylesulfonyl-3-nitro-1,2,4-triazole	5'-Pxylyl-3'-O-(2-dihromomethylbenzoyl)-N₆-benzoyladeninosine 2'-O-chlorophenylphosphate and N₆, N₆, N₆, N₆-tetra benzoyladeninosine	A₂' p₅'A₂'p₅'A
Jones and Reese, 1979	1-Mesitylesulfonyl-3-nitro-1,2,4-triazole	5'-O-o-chlorophenoxyacetyl-3'-O-methoxytetrahydroxynaphoxyl-N₆-benzoyladeninosine 2'-p-nitrophenylphosphate and 2',3'-O-methoxymethylene-N₆-benzoyladeninosine	A₂' p₅'A₂'p₅'A and 5'-triphosphate
Charubala and Pfleiderer, 1980a	Tris-isopropylbenzene sulfonyl nitrotriazolide	5'-MMT-3'-O-TBDMS-N₆-benzoyladeninosine-3'-O-(o-chlorophenyl)phosphate and 3',5'-TBDMS-N₆-benzoyladeninosine-3'-O-(o-chlorophenyl)phosphate or N₆, N₆, O₂',O₂'-tetra benzoyladeninosine	A₂' p₅'A₂'p₅'A
Charubala and Pfleiderer, 1982	Quinoline 8-sulfonyl chloride and 3 nitro q 1,2,4 triazole	5'-MMT-3'-TBDMS-isoinosine-2',3'-p-nitrophenylethyl)phosphate and 3',5'-O-TBDMS-2',3'-di-o-chlorophenyl p-nitrophenylethylphosphate or 2',3',5'-TBDMS-adenosine of 2',3',5'-di-O- benzoyladeninosine	12' p₅'12' p₅'1, 12' p₅'12' p₅'12' p₅'1
Engels and Krahmer, 1979	Triester approach: tri-isopropylbenzene sulfonylnitrosimiazolide	5'-MMT-3'-O-N₂, N₂-dibenzoyl-3'-tribromomethylphosphate and 2',3', N₂, N₂-tribenzoyladeninosine	A₂' p₅'A₂'p₅'A
Gioeli et al., 1981	1-Mesitylesulfonyl-3-nitro-1,2,4-triazole; use of tetrakisopropyl-disiloxyane-1,3-diy protecting group	3',5'-O-TIPDSi-N₆-benzoyladeninosine 2'-O-chlorophenylphosphate and 2',3',5'-di-O-acetyl-N₆-benzoyladeninosine	A₂' p₅'A₂'p₅'A
Reference	Method or Compound Description	Chemical Structure	
-------------------------	---	---	
den Hartog et al., 1979, 1981	Triester approach: triisopropylbenzene sulfonylnitroimidazolide	3'-O-[(4-methoxytetrahydropyran-4-yl)-N6-p-anisoyladenosine 5'-O-[2,2,2-trichloroethyl]- morpholino-phosphonate 2'-O-(2-chlorophenyl phosphate and 3'-O-[4-methoxytetrahydropyran-4-yl]-N6-p-anisoyladenosine	
Sawai et al., 1979, 1981	Pb²⁺ catalysis	Adenosine 5'-phosphorimidazolidate	
Imai and Torrence, 1985	Pb²⁺ catalysis	Nucleoside 5'-phosphorimidazolidates and nucleoside 5'-phosphoromorpholidates	
Ogilvie and Theriault, 1979; Imai and Torrence, 1981a	2,2,2-Trichloroethylphosphoro-dichloridite	5'-MMT-3':O-TBDMS-adenosine and 2',3':di-O-TBDMS-adenosine	
Markham et al., 1979	Tri-isopropylbenzene sulfonyl chloride: solid phase	5'-MMT-3':O-benzoyl-N6-benzoyl adenosine 2'-monophosphate	
Karpeisky et al., 1982	Tri-isopropylbenzene sulfonyl chloride	5'-MMT-3':O-p-methylbenzoyl-N6-benzoyladenosine 2'-[(2-cyanoethyl)-phosphate and 2',3':di-O-acetyl-N6-benzoyladenosine	
Charubala et al., 1981	Tri-isopropylbenzene sulfonyl chloride	5'-MMT-3':O-TBDMS-N6-benzoyladenosine 2':[2-(p-nitrophenyl)ethyl] phosphate and 2',3':di-O-TBDMS-N-benzoyladenosine	
Takaku and Ueda, 1983	1-(Quinolylsulfonyl)-1H-tetrazole	2',3',5'-DMT-N6,3'-O-dibenzoyladenosine 2'-[(5-chloro-8-quinolyl) phosphate	
Kvasyuk et al., 1987	Triester approach: 2,4,6-tri-isopropyl-benzene tetrazolide	N6, N6, 2',3'-tetrabenzoyladenosine and N6,3'-dibenzoyl-5'-O-MMT-adenosine 2'-[2-(4-nitrophenyl)ethyl]phosphate	

DMT, dimethoxytrityl; MMT, p-monomethoxytrityl; TBDMS, tert-butyl-dimethylsilyl; TIPDSi, 1,1,3,3-tetraisopropyldisiloxane-1,3-yl.
TABLE 3. Chemical Approaches to 2',5'-Oligonucleotide 5'-Mono-, Di-, and Triphosphates

Investigators	Strategy and reagents	Comments
den Hartog et al., 1981	2,2,2-Tribromoethyl phosphoromorpholinochloridate used to introduce 5'-phosphate in monomeric syntheses followed by Zn deblocking of the tribromoethyl moiety and conversion of the resultant 5'-phosphoromorpholide to monophosphate with acid hydrolysis, or to 5'-diphosphate with tri-n-butylammonium phosphate, or to 5'-triphosphate with bis(tri-n-butylammonium)diphosphate.	This approach is advantageous as the critical 5'-phosphate is incorporated in masked form during chain extension. There is no need for a separate 5'-phosphorylation.
Ikehara et al., 1981	Oligomerization of 3'-O-(o-nitrobenzoyl)-N6-benzoyladenosine gave the 5'-phosphate directly. The 5'-triphosphate was obtained through the intermediate phosphoroimidazolidate.	As above, the need for separate 5'-monophosphorylation is obviated by incorporation of final 5'-monophosphate into synthetic procedure. Results in mixture of 5'-monophosphate, 5'-di-, and 5'-triphosphates.
Jones and Reese, 1979	Reaction of fully protected (except 5'-OH) urinucleotide with O-2,4-dichlorophenyl S-methylphosphorochloridothioate to yield, after deblocking, a 5'-S-methylphosphorothioate that was reacted with excess tetra(tri-n-butylammonium)pyrophosphate.	
Sawai et al., 1979	Pb²⁺-catalyzed polymerization reaction product was 5'-monophosphate, which was converted to phosphoroimidazolidate and then to 5'-triphosphate with bis(tri-n-butylammonium)diphosphate.	
Imai and Torrence, 1985	Pb²⁺-catalyzed ligation of a nucleoside 5'-phosphoromorpholide with a mononucleoside or dinucleotide 5'-phosphoromorpholide provided a 2',5'-linked oligonucleotide terminating in a 5'-phosphoroimidazolidate that could be converted into 5'-monophosphate through acid hydrolysis, or to 5'-di or 5'-triphosphate by reaction either with bis(tri-n-butylammonium) phosphate or with bis(tri-n-butylammonium)diphosphate, respectively.	The 5'-phosphoromorpholide serves both as protecting group during 2',5'-phosphodiester bond formation and also as activated precursor to desired mono-, di-, or triphosphate.
Imai and Torrence, 1981b	The completely protected product of a triester synthesis was converted to free 5'-OH by MMT removal and then phosphorylated with bis(2,2,2-trichloroethyl)phosphorochloridate, followed by I₂ oxidation to yield the 5'-monophosphate, which was then converted to the 5'-triphosphate through the phosphoroimidazolidate reaction with bis(tri-n-butylammonium)diphosphate.	

MMT, p-monomethoxytrityl.
TABLE 4. Synthetic Analogues of 2-5A

Analogue	Reference
3'-O-Methylated	den Hartog et al., 1981
(pp)p5' A2' p5' A2' p5' Am	Kinjo et al., 1992
(pp)p5' Am2' p5' Am2' p5' Am	Gosselin and Imbach, 1981, 1982
Uronic acid analogue	Sawai, 1985
Xylofuranosyl analogue	Torrence et al., 1993; Lesiak et al., 1993
p-Alanyltyrosine conjugate	Engels, 1980
2'-Terminus modifications	Imai et al., 1982a
2-5A-antisense	Pressova and Smrt, 1989
5'-Amino analogues	Bayard et al., 1984
5'-Amino and 3'-terminal acyclic modifications	Herdewijn et al., 1991
Acyclic analogue	Kvasyuk et al., 1996
HOCH2CH(OMe)CH2CH2OP(O)(OH)- as repeating unit in trinucleotide	Mikhailov and Pfleiderer, 1985
2-5A "Core" analogues substituted with TBDMS groups	Kvasyuk et al., 1995
A2' p5' A2' p5' A3' (TBDMS)	Schirmeister and Pfleiderer, 1994
A3'-TBDMS	Wassner et al., 1996
3'-Deoxyadenosine (cordenicin) analogues	Charubala and Pfleiderer, 1980b
(3'dA)2' p5' (3'dA)2' p5' (3'dA)	Hornedler and Pfleiderer, 1996
Adducts consisting of covalent conjugation at the 5' and 2' termini of the above 3'-dA analogue of 2-5A with vitamins A, D, E, and the lipids 1,2-di-O-palmitoylglycerol and 1,2-di-O-hexadecylglycerol	Wasner et al., 1994
3'-deoxyadenosyl-(2'-5')-3'-deoxyadenosyl-(2'-5')adenosine	Sawai et al., 1983
(2'-5')-3'-O-(2-hydroxyethyl)adenosine and 3'-deoxyadenosyl-(2'-5')-3'-deoxyadenosyl-(2'-5')-3'-O-[2-(cholest-5-en-3B-yloxy)carboxy]adenosine	Mikhailov et al., 1991
3'-deoxyadenosyl-(2'-5')-3'-deoxyadenosyl-(2'-5')-2'-O-[2-(cholest-5-en-3B-yloxy)carboxy]ethyl]adenosine and 5'-O-[2-(cholest-5-en-3B-yloxy)carboxy]ethyl]adenosine	Torrence et al., 1988
(pp)p5' A2' p5' A2' p5' A2' (3'dA)2' p5' (3'dA)	Sawai et al., 1983
(3'dA)2' p5' (3'dA)2' p5' (3'dA)	Charubala and Pfleiderer, 1980b; Nyilas et al., 1986
3'-deoxyadenosyl-(2'-5')-3'-deoxyadenosyl-(2'-5')-3'-deoxyadenosyl-(2'-5')-3'-deoxyadenosyl-(2'-5')-3'-deoxyadenosyl-(2'-5')-3'-deoxyadenosine	Mikhailov et al., 1991

(continued)
TABLE 4. Continued

Analogue	Reference
γ-Phosphorothioate and β,γ-difluormethylene-phosphonate analogues of 2-5A tetramer; also poly(L-lysine) conjugate of γ-phosphorothioate 2-5A analogue (all obtained by enzymatic synthesis)	Bisbal et al., 1987
pppA2'p5'A2'p5'A1'-poly(L-lysine) [coupling via periodate oxidation of 2-5A followed by Schiff base formation and cyanoborohydride reduction]	Bayard et al., 1986
5'-Capped 2-5A analogues including	Imai and Torrence, 1984
A5'pppA2'p5'A2'p5'A, A5'pppA2'p5'A2'p5'A	Drocourt et al., 1982
A5'pppA2'p5'A2'p5'N, with N = rC, rG, rU, dT, dC, dG, dA (enzymatic synthesis)	Bayard et al., 1985
pppA2'p5'A2'p5'A2'p5'N, with N = rC, rG, rU, dT, dC, dG, dA (enzymatic synthesis)	Sawai et al., 1983; Nyilas et al., 1986
(pp)p(3'dA)2'p5'(3'dA)2'p5'(3'dA)	
2'-Fluoro-2'-deoxyadenosine (Ap) analogues	
(pp)A2'p5'ApA2'p5'A	Kovacs et al., 1993, 1995
(pp)A2'p5'ApA2'p5'A	
(pp)A2'p5'ApA2'p5'A	
(pp)A2'p5'ApA2'p5'A	
Arabinosyladenosine analogues	
(ara-A)2'p5'(ara-A)2'p5'(ara-A)	Kwiatkowski et al., 1981
(ara-A)2'p5'(ara-A)2'p5'(ara-A)	Kwiatkowski et al., 1982
A2'p5'(ara-A)2'p5'(ara-A)	
A2'p5'(ara-A)2'p5'(ara-A)	
A2'p5'(ara-A)2'p5'(ara-A)	
Aristeromycin analogues	Sawai et al., 1985b
2-Terminus with 3'-amino-3'-da or 3'-tetradecanamido-3'-da	Pfeiderer et al., 1994
A2'p5'A2'p5'A2'p5'(dANH2)	Visser et al., 1986
A2'p5'A2'p5'A2'p5'(dANHCO-(CH2)3,CH2)	
Modifications to the backbone and 5'-mono-/triphosphate moiety:	
Mannose phosphate adduct	Lesiak et al., 1989
Human-ppA2'p5'A2'p5'A	
β,γ-Methyleneephosphonate	den Hartog et al., 1981
pCH3ppA2'p5'A2'p5'A	Charubala and Pfeiderer, 1980a
Linkage isomers	Lesiak et al., 1983
A2'p5'A3'p5'A	
A3'p5'A2'p5'A	
A3'p5'A2'p5'A	
(pp)A2'p5'A3'p5'A	
(pp)A2'p5'A3'p5'A	
(pp)A2'p5'A3'p5'A	
A2'p5'A2'p5'A2'p5'A	
Aristeromycin analogue	
2-Terminus with 3'-amino-3'-da or 3'-tetradecanamido-3'-da	
A2'p5'A2'p5'A2'p5'(dANH2)	
P3-n-decylaminotriphosphate analogue	Kariko and Ludwig, 1985
n-decyl NH ppA2'p5'A2'p5'A	Watling et al., 1985
Methylthiophosphate analogue	Beigelman et al., 1995
H2CSpA2'p5'A2'p5'A	Charubala and Pfeiderer, 1992
Phosphorothioate analogue	Charubala and Pfeiderer, 1988
pS2'p5'A2'p5'A2'p5'A	Charubala and Pfeiderer, 1992
CHARUMA-2'-5'-adenosine	also Battistini et al., 1992
(Rp)-P-thioadenyl(2'-5')adenosine	also Shimazu et al., 1992
(Sp)-P-thioadenyl(2'-5')adenosine	also Nelson et al., 1984;
(Rp)-P-thioadenyl(2'-5')-(Rp)-P-thioadenyl(2'-5')adenosine	Charubala et al., 1991
(Sp)-P-thioadenyl(2'-5')-(Sp)-P-thioadenyl(2'-5')adenosine	De Vroom et al., 1987
(Rp)-P-thio-3'-deoxyadenyl(2'-5')-(Rp)-P-thio-3'-deoxyadenyl(2'-5')-3'	Sobol et al., 1993a
TABLE 4. Continued

Analogue	Reference
(Rp)-P-thio-3'-deoxyadenylyl(2'-5')-(Sp)-P-thio-3'-deoxyadenylyl(2'-5')-3'	
deoxyadenosine	Charubala and Pfleiderer, 1982
(Sp)-P-thio-3'-deoxyadenylyl(2'-5')-(Rp)-P-thio-3'-deoxyadenylyl(2'-5')-3'	
deoxyadenosine	Torrence et al., 1984
(Sp)-P-thio-3'-deoxyadenylyl(2'-5')-(Sp)-P-thio-3'-deoxyadenylyl(2'-5')-3'	
deoxyadenosine	Imai and Torrence, 1985
Modification to the aglycone moiety:	
Inosine analogues	
12'p5'12'p5'1 and tetrarner)	
(pp)p5'12'p5'12'p5'1	
(pp)p5'A2'p5'A2'p5'1	
(pp)p5'A2'p5'12'p5'1	
(pp)p5'12'p5'A2'p5'1	
Uridine analogues	
(pp)p5'U2'p5'U2'p5'U	
(pp)p5'A2'p5'A2'p5'U	
(pp)p5'A2'p5'U2'p5'A	
(pp)p5'U2'p5'A2'p5'A	
Cytidine analogues	
(pp)p5'C2'p5'C2'p5'C	
p5'A2'p5'C2'p5'G	
7-Deazaadenosine (tubercidin) analogies	
(pp)p5'(c7A)2'p5'(c7A)2'p5'(c7A)	
(pp)p5'A2'p5'G2'p5'(c7A)	
(pp)p5'A2'p5'C2'p5'(c7A)	
Guanosine analogue	
(pp)p5'G2'p5'(c7A)2'p5'(c7A)	
A2'p5'A2'p5'G	
A2'p5'G2'p5'A	
8-Bromoadenosine analogues	
(pp)p5'(br8A)2'p5'(br8A)2'p5'(br8A) and longer oligos	
(pp)p5'A2'p5'A2'p5'(br8A)	
(pp)p5'A2'p5'(br8A)2'p5'A	
(pp)p5'(br8A)2'p5'A2'p5'(br8A)	
(pp)p5'A2'p5'(br8A)2'p5'(br8A)	
8-Methyladenosine analogues	
(pp)p5'(m8A)2'p5'(m8A2'p5'(m8A)	
(pp)p5'(m8A)2'p5'A2'p5'(m8A)	
(pp)p5'A2'p5'(m8A)2'p5'(m8A)	
8-Hydroxyadenosine analogues	
A2'p5'A2'p5'(ho8A)	
5'-Substituted pyrimidine nucleotide analogues	
2-A2'p5'A2'p5'R	
R = 5 bromovinyl 2'-deoxyuridine, 5-fluoro-2'-deoxyuridine, acyclovir	
3'-Azido- and 3'-amino-substituted xylofuranosyl analogues	
2-5A core trimer analogues containing 9-(3-azido-3-deoxy-β-D-xylofuranosyl)adenine or 9-(3-aminodeoxy-β-D-xylofuranosyl)adenine	
2-Azidoadenosine analogue	
(pp)p5'(N3'A)2'p5'(N3'A)2'p5'(N3'A)	
8-Azidoadenosine analogues	
(pp)p5'(N8'A)2'p5'(N8'A)2'p5'(N8'A)	
(pp)p5'(N8'A)2'p5'(N8'A)2'p5'(N8'A)	
eA, ethenoadenosine (3-β-D-ribofuranosylimidazo[2.1-i]purine) analogue	
(pp)p5'eA2'p5'eA2'p5'eA	
TBDMS, t-butyl-dimethylsilyl.	
temperatures. Hyperthermia (45°C) induced 2-5A synthetase in MDBK cells and also released a heat shock-induced factor (HSIF), which, in turn, could induce 2-5A synthetase in human WISH cells (Chousterman et al., 1987). This HSIF has since been shown to be an atypical bovine IFN (Gachet et al., 1993). The IFN-mediated antiviral effect was enhanced 3- to 10-fold in Type 1 IFN-treated HL-60 and in WISH cells cultured at 39.5°C, and this was associated with a 2- to 3-fold increase in the p40 2-5A synthetase (Chang and Wu, 1991). Stability assays showed that the mRNA half-life was selectively extended from 2 to 4 hr, although the half-lives of poly(A)+ RNA and β-actin mRNA remained unchanged.

Glucocorticoids, at concentrations capable of inhibiting DNA synthesis and cell division, induced 2-5A synthetase in Daudi and Raji cells (Krishnan and Baglioni, 1980b). Corticosterone inhibited glucocorticoid induction, but did not inhibit 2-5A synthetase induction by IFN. 2-5A synthetase activity also was increased in the chick oviduct after estrogen withdrawal (Stark et al., 1979). The antiestrogen tamoxifen, at levels that were growth inhibitory, increased 2-5A synthetase and RNase L levels in a cell line that was estrogen receptor positive (CG5), but not in one that was receptor negative (EVSA-T) (Viano et al., 1989).

A number of autocrine growth factors can induce 2-5A synthetase alone or in combination with various IFNs. Additive 2-5A synthetase-inducing effects of IFN-γ and transforming growth factor (TGF)-α have been observed in A431 cells (Wietzerbin et al., 1990), although the question of whether or not TGF-α could induce 2-5A synthetase in the absence of IFN was not addressed (Kumar and Mendelsohn, 1990). Epidermal growth factor-urogastrone caused a 3- to 5-fold induction of 2-5A synthetase in human fibroblasts, which was not reversed with anti IFN-β antibodies (Lin et al., 1983). Platelet-derived growth factor (PDGF) induced 2-5A synthetase in murine BALB/c 3T3 cells, but not in the presence of mono- or polyclonal antibodies to murine IFN-β (Garcia-Blanco et al., 1989). Tumor necrosis factor-α, in combination with either IFN-β or IFN-γ, exhibited significant synergism with regard to 2-5A synthetase induction (Mestan et al., 1988; Wietzerbin et al., 1990). Nerve growth factor (NGF) induced 2-5A synthetase from 5- to 25-fold in the rat pheochromocytoma cell line (PC12), but the basis for the effect was unclear (Saarma et al., 1986).

Ever since the finding that treatment of Daudi cells with IFN-α or IFN-β caused transient increases in the level of diacylglycerols (Yap et al., 1986), there has been significant interest in the contribution of protein kinase C (PKC) to the induction of 2-5A synthetase. Some investigators have found that (1) PKC activators such as 12-O-tetradecanoylphorbol-13-acetate (TPA) can potentiate the action of IFN in HL-60, Daudi and HeLa cells; (2) PKC inhibitors such as staurosporine or H7 can inhibit 2-5A synthetase induction; (3) down-regulation of PKC by TPA can decrease 2-5A synthetase induction (Faltynek et al., 1989; Raber et al., 1991; Chang et al., 1992; Percario et al., 1995). To the contrary, others have observed decreases in 2-5A synthetase activity after short-term treatment with TPA (Yan et al., 1989). Additional research needs to be done to clarify the importance of PKC in the induction of 2-5A synthetase by IFN.

Vasoactive intestinal peptide has been shown to induce 2-5A synthetase in glial cells and HT-29 cells, but not in neurons (Chelbi-Alix et al., 1994). The induction of 2-5A synthetase was preceded by the synthesis of heat shock protein (hsp) 70 and was abolished by treatment with anti-IFN-α/β. Cyclic AMP also induced 2-5A synthetase mRNA on a transcriptional level (Itkes et al., 1984b). Although there are no sites in the 2-5A synthetase 5'-flanking region analogous to the cAMP-responsive element TGACGTCA, several other potential transcription binding factor sites do exist (Itkes, 1994). Interleukin (IL)-6 has also been found to exhibit synergism with Type 1 IFN in M1 cells, possibly by inducing DNA binding factors (Cohen et al., 1991). IL-6 in M1 cells induced different 2-5A synthetase isozymes than IFN, including one that is cell-surface associated. Murine IFN-α/β antibodies do not completely abolish 2-5A synthetase induction mediated by IL-6 (Gothelf et al., 1991).

A number of drugs and chemicals have been reported to increase 2-5A synthetase activity (Table 6), but whether or not the intermediate production of IFN was responsible for the induction usually was not addressed. Other agents have been found to decrease 2-5A synthetase induction. These include gangliosides (Krishnamurti et al., 1982), arachidonic acid analogues (Menon et al., 1990), glucose (Onishi et al., 1986) and concanavalin A (Faltynek et al., 1988).

Since the level of 2-5A synthetase mRNA decreased during apoptosis, the 2-5A synthetase protein was surmised not to play a direct role in cell death through the production of 2-5A (Kelvé et al., 1994). However, more recent experiments suggest a role for the 2-5A system in apoptosis (Castelli et al., 1997; see Section 6.25).

3.3. Role of 2-5A Synthetase in the Antiproliferative Effects of Interferon

There is considerable evidence documenting negative growth regulatory effects of IFNs. Whether or not the 2-5A system plays a direct role through production of 2-5A, followed by RNase L-mediated cleavage of cellular mRNAs, is somewhat less clear. 2-5A synthetase activity has been found to be low in normal proliferating diploid Syrian hamster (FC13) cells, 3-fold higher in density-arrested FC13 cells, and uniformly low in their neoplastically transformed derivative BP6T cells in the absence of autocrine IFN production (Hassel and Ts’O, 1992). Similar results have been obtained in the BSC1 lines, in which the 2-5A synthetase levels were greatest in quiescent cells (Kimchi et al., 1981). This was also the case in Namalva cells, in which 2-5A synthetase levels were highest at
TABLE 5. 2-5A Synthase Identified in Various Species by Tissue or Cell Type

Species	Tissue or cell type	Reference
Chick	Embryo	West and Ball, 1982
	Embryo fibroblasts	Lab et al., 1982
	Embryo tendon fibroblasts	Oikarinen, 1982
	Oviduct	Stark et al., 1979
	Thyroid epithelium	Kueh et al., 1994
	Myoblasts	Birnbaum et al., 1990
	Erythrocytes	Sokawa and Sokawa, 1986
Quail	QT35	Fulton et al., 1995
Duck	Serum	Akagi et al., 1992
Cow	Endometrium (stroma, epithelium)	Schmitt et al., 1993
	MDBK	Short et al., 1992
Pig	Spleen homogenate	Shimizu and Sokawa, 1983
	Trophoblast (none detected)	D'Andrea et al., 1994
	Endometrium	Short et al., 1992
	Enterocytes, testicular cells	Bosworth et al., 1989
Dog	Liver homogenates	Etienne-Smekens et al., 1991
Monkey	CV-1	Rice et al., 1985
	Kidney	Bannai et al., 1985
	Kidney, PBL	Bannai, 1986
Mouse	Various tissues	Krishnan and Bagioni, 1990a
	Splenic lymphocytes	Shimizu and Sokawa, 1979
Guinea pig	Macrophages	Wang and Wu, 1986
Hamster	FC13	Hassel and Ts'0, 1992
Rabbit	Reticulocytes	Suhadolnik et al., 1990
	Reticulocytes	Li et al., 1990
	Reticulocytes	Kariko et al., 1987a
Reptiles	Liver, kidney, heart homogenates	Cayley et al., 1982b
Viruses	VSV, M-MuLV	Wallach and Revel, 1980

TABLE 6. Drugs or Chemicals that Act to Increase 2-5A Synthetase Activity

Drug	Tissue or cell type	Reference
Phenobarbital	Rat liver nuclei	Liu and Owens, 1987
Pentostatin	Serum and PBMCs after in vivo administration	Ho et al., 1992
CL246,738	PBMCs after in vivo administration	Litton et al., 1990
Tyrosine kinase inhibitors	Melanoma cells	Ralph et al., 1995
Retinoic acid	NB-4 cells	Kumar and Korutla, 1995
Indomethacin	Serum after in vivo administration	Andreone et al., 1994
Bile acids	Human PBMCs	Podevin et al., 1995
Imiquimod	PBMCs after in vivo administration	Witt et al., 1993b
Ethanol	MDBK cells	Chelbi-Alix and Chousterman, 1992
Dimethyl sulfoxide	HL-60 cells	Schwartz and Nilson, 1989
Theophylline	3T3 cells	Itkes et al., 1984a,b

confluency (Jacobsen et al., 1983b). Stable transfection of a human 2-5A synthetase cDNA into T98G cells was associated not only with EMCV resistance, but also with a reduced rate of cellular proliferation (Rysiecki et al., 1989). Levels of 2-5A synthetase during the cell cycle have been examined (Wells and Mallucci, 1985). Using mouse embryo tertiary fibroblasts progressing synchronously through the cell cycle as determined by fluorescence-activated cell sorting, 2-5A synthetase levels were found to be low in quiescent cultures, as well as during G1 and early S. They then rose 10-fold in late S and decreased sharply in G2. A similar, though quantitatively lower pattern, was found for RNase L.

Induction of 2-5A synthetase preceded the antiproliferative effects of IFN in Moloney murine sarcoma virus (MSV)-transformed NIH 3T3 cells (Salzberg et al., 1990b). Treatment of A431 cells with IFN-γ resulted in growth inhibition that was kinetically correlated to significant increases in 2-5A synthetase isoenzymes (Kumar and Mendelsohn, 1989). 2-5A synthetase p40 and p100 isoenzymes were induced up to day 4, while the p67 isozyme induced late and remained high until day 7 after treatment. IFN-γ has been shown to potentiate the response of T-cells to mitogens, but not to induce an antiviral state (Landolfo et al., 1988). However, in this same study, IFN-α/β, but not IFN-γ, induced increases in 2-5A synthetase. Human IFN-α2 has been shown to cause blast cytoreduction in peripheral blood and marrow of juvenile acute myelogenous leukemia patients in concert with an increase in 2-5A synthetase levels (Freedman et al., 1986). Salzberg et al. (1990b) found that IFN treatment of MSV-transformed NIH 3T3 fibroblasts resulted in decreased rates of cell growth, protein synthesis, and cloning efficiency, with a parallel 10-fold rise in 2-5A synthetase levels. Recovery occurred only when the level of IFN treatment was significantly decreased and 2-5A synthetase levels dropped also.

Antiviral and growth inhibitory effects seem to be dissociated at the genetic level. A mutant murine cell line (Irk-), which was unable to mount an antiviral response with IFN-β treatment. remained growth-inhibited by IFN-β (Shan and Lewis, 1989). A human cell type has been described that expressed both IFNAR receptor subunits Jak 1 and Tyk 2, had adequate levels of Stat 1, Stat 2, and Stat 3, and could mount an antiviral response, but remained insensitive to the growth-inhibitory effects of IFN. On this basis, a human chromosome 21-encoded component, which may confer IFN-inducible growth inhibition to cells in the context of a high-affinity interaction through IFNAR-α/β, has been postulated (Ghislain et al., 1993).
Suppression of c-myc may play a role in IFN's growth inhibitory properties. Autocrine production of IFN resulted in c-myc suppression and the G2/M arrest that occurred during the terminal differentiation of hematopoietic cells (Resnitzky et al., 1986). During growth arrest and differentiation, down-regulation of c-myc and 2-5A synthetase induction occurred in M1 cells, but not in murine radiation-induced acute myelogenous leukemia cells (Resnitzky et al., 1992). Human IFN-β ser17 inhibited growth of human colon-carcinoma DLD-1 clone A cells in vitro and expression of the c-myc proto-oncogene through post-transcriptional destabilization of the c-myc mRNA (Chatterjee and Savarése, 1992).

Other investigators have not found a correlation between growth inhibition and 2-5A system activity. Induction of 2-5A synthetase in human immunodeficiency virus (HIV)-infected T-cells was not correlated with growth inhibition, but was correlated with the antiviral state (Fujii et al., 1992). Although IFN-β resulted in a large increase in human prostatic JCA-1 cell 2-5A synthetase activity, neither increased p68 dsRNA-dependent protein kinase (PKR) levels nor RNase L activation could be demonstrated (Nakajima et al., 1994). In IL-1 mitogen-stimulated smooth muscle cell cultures, IFN-γ reduced the rate of [3H]thymidine incorporation and delayed the time to peak level of c-fos RNA; however, the kinetic characteristics of 2-5A synthetase induction in these same cultures made it unlikely that 2-5A synthetase accounted for the cytostatic effects of IFN-γ (Warner et al., 1989). In alveolar pulmonary tumor cells (A459) maintained in organotypic culture, only IFN-α2 and IFN-γ resulted in an antiproliferative effect, but IFN-α, IFN-β, and IFN-γ all caused an increase in 2-5A synthetase activity (Martyre et al., 1988).

3.4. 2-5A Synthetase and Differentiation

2-5A synthetase has been found to be positively correlated with differentiation and the maturational process. Induction of differentiation with chemicals or cytokines frequently has been associated with 2-5A synthetase induction. For instance, 2-5A synthetase activity was found to reach a peak 26 hr after hexamethylene bis-acetamide induction of terminal differentiation of Friend erythroleukemia cells, even in the presence of anti-IFN-α/β (Salberg et al., 1996). A 27-fold increase in 2-5A synthetase has been observed in human HL-60 cells induced to differentiate with dimethyl sulfoxide, and this increase was ablated by anti-IFN-α (Schwartz and Nilson, 1989). Induction of differentiation in U937 cells by hydroxyvitamin D3 was associated with autocrine IFN production and increased in 2-5A synthetase (Testa et al., 1988). IL-6 induced differentiation of murine M1 cells into mature macrophages coincident with induction of IFN-β (Bickel et al., 1990). However, the observed induction of 2-5A synthetase by IL-6 occurred in the presence of anti-IFN-β antibodies and cycloheximide, and was characterized by the presence of two mRNA species (1.7 and 2.4 kb), whereas IFN-β induced only the 1.7 kb mRNA species. This may have resulted from a direct induction of binding factors that act on the IFN-stimulatable response element (ISRE) (Cohen et al., 1991).

2-5A synthetase activity increases have been found in a wide variety of cell types during differentiation. Differentiation of skeletal muscle cells in several species has been found to be associated with 2-5A synthetase induction and 2-5A pppA3 formation and with a decrease in c-myc expression (Birnbaum et al., 1990). IFN-β2 induced growth arrest and differentiation of M1 and U937 cells, as well as 2-5A synthetase induction that was synergized by IFN-γ (Chen et al., 1988). M1 variants that were resistant to IL-6-induced differentiation could not activate the 2-5A synthetase gene. In mouse condylar cartilage, 2-5A synthetase levels have been found to be greatest in proliferating, undifferentiated chondrocytes, whereas fully differentiated chondrocytes showed lower levels (Maor et al., 1990). In primary chronic lymphocytic leukemia cells, there was a close correlation between 2-5A synthetase induction and induction of blast transformation (Ostlund et al., 1986). In clones not exhibiting IFN-induced 2-5A synthetase increases, blast transformation did not occur. 2-5A synthetase levels and 10 differentiation markers were monitored in the human monocye cell line U937 and the promyelocytic cell line HL-60 during cellular maturation (Ferbus et al., 1985). 2-5A synthetase levels increased prior to many of the differentiation markers and rose during the maturational process in both cell lines.

Some investigators have not found a causal connection between 2-5A synthetase induction and differentiation. The human neuroblastoma cell line LAN-5 was sensitive to the differentiation-promoting effects of IFN-γ (Corrias et al., 1995). All isoforms of 2-5A synthetase were induced in this cell line by IFN-γ, including clones that were resistant to the neuronal maturation effects. Sodium butyrate, an inducer of differentiation in Burkitt's lymphoma cells, was found to cause a rapid decrease in c-myc mRNA, as well as an increase in 2.5A synthetase mRNA; however, the time course of 2-5A synthetase mRNA induction precluded a direct effect (Polack et al., 1987).

3.5. Assay of 2-5A Synthetase

A variety of methods have been advanced towards assaying 2-5A synthetase, and these assays involve three separate stages: (1) isolation of 2-5A synthetase from cells, (2) the synthesis of 2-5A oligonucleotide, and (3) measurement of the 2-5A oligonucleotide concentration (Table 7).

The enzymatic synthesis of 2-5A may be performed in the solution phase: however, high 2-5A degrading activities in certain cell extracts, e.g., Hela, make this problematic. Adsorption of lysate-derived 2-5A synthetase to an affinity matrix (Hovanessian et al., 1981a). Poly(I)poly(C) linked to agarose, sepharose, cellulose, or paper has been the most commonly used affinity matrix. 2-5A
TABLE 7. Methods Used for Assaying 2-5A Produced by 2-5A Synthetase

1. Biological activity
 A. Inhibition of protein synthesis. Evaluation of the concentration required to effect a 50% reduction in an mRNA-programmed cell-free system (Johnston et al., 1980a; Williams et al., 1981).
 B. Nuclease activation assay. Detection of 2-5A is achieved through RNase L activation. RNA cleavage is observed by:
 (i) Gel electrophoresis. Specific (Wreschner et al., 1981a) or general (Williams et al., 1981) RNA cleavages may be observed.
 (ii) Acid precipitable counts (Baglioni et al., 1981a).
 (iii) Degradation of radiolabelled poly(IC) by RNase L-core (7-5A) cellulose in the presence of 2-5A (Silverman, 1985).
2. 2-5A produced using radiolabelled ATP and separated from excess ATP using one of the following techniques
 A. HPLC (Brown et al., 1981; Knight et al., 1980) utilizes reverse-phase C18 columns and phosphate buffers at pH 7 to examine enzymatically synthesized 2-5A mixtures.
 B. Column chromatography
 (i) Ion exchange media such as DEAE sephadex or cellulose enable ATP to be separated from more highly charged 2-5As or their cores (Minks et al., 1979a; Hovanessian et al., 1981a; Wells et al., 1984; Miller and Bell, 1995).
 (ii) Alumina columns bind "32P strongly, but dimer to tetramer 2-5A is recovered almost quantitatively, enabling the detection of small quantities of 2-5A synthetase (Merlin et al., 1981; Revel et al., 1981; Schattner et al., 1981).
 (iii) SepPak C18 cartridges may be used to purify (2',5')oligo(A) from excess ATP (Hassel and Ts'O, 1994).
 C. TLC
 (i) Untreated 2-5A separated using PEI-cellulose (Justesen et al., 1980).
 (ii) Bacterial alkaline phosphatase digests heterogeneous 2-5A mono-, di-, and triphosphates to form the corresponding cores that are then separated with PEI-cellulose (Verhaegen et al., 1980; Minks et al., 1979a).
 (iii) Hexokinase/glucose treatment to form 2-5A diphosphates (Dougherty et al., 1980).
 D. DEAE-paper binding (Ball and White, 1979a).
 E. Electrophoresis
 (i) High-voltage paper electrophoresis (Kerr et al., 1977).
 (ii) Denaturing 20% polyacrylamide gel electrophoresis separates 2-5A, enabling a large number of samples to be rapidly processed in parallel (Miele et al., 1991).
 (iii) Capillary isoelectric focusing has been utilized to measure ATP at the beginning and end of a reaction on poly(I)·poly(C) agarose after the conversion of ATP to ADP using hexokinase/glucose (Bruchelt et al., 1989).
3. RNase L radiobinding assay (Knight et al., 1980). Unknown 2-5A solutions from crude reaction mixtures (Knight et al., 1981) or after HPLC purification (Brown et al., 1981) can compete with radiolabelled 2-5A for RNase L binding.
4. Antibody binding
 A. Radioimmunoassay. The minimal structure recognized is -A2'pA2'pA- (Knight et al., 1981), -A2'pA- (Cailla et al., 1982), or (pp)pA2'pA- (Sawai et al., 1985a).
 B. Enzyme immunoassay. The minimal structure recognized is -AZ'pA- (Nicolas et al., 1987).
 C. ELISA. The minimal structure recognized is -pAZ'pA- (Johnston et al., 1983).
5. Spectrophotometry. This pyrophosphate assay measures NADPH through the use of UDP-glc pyrophosphorylase, phosphoglucomutase, and G6PD (Justesen and Kjeldgaard, 1992).

synthetase adsorbed to poly(I)·poly(C) has been shown to be more stable (Samanta et al., 1980) and to demonstrate a linear synthesis of 2-5A for a longer time (Hovanessian et al., 1981a) than enzyme in solution. The synthesis has been commonly terminated by removal of the reaction mixture from the support, or if the reaction is done in solution, denaturation of the enzyme with heat followed by centrifugation.

Initial efforts to determine the concentration of 2-5A utilized its known biological activity (Table 7). That is, the assay took advantage of the ability of 2-5A to inhibit protein synthesis in cell-free systems or examined RNA cleavage by 2-5A-activated RNase L. However, the relative insensitivity, the inherent variability involved in using a complex biological system as an assay method, and the unsuitability of these techniques for routine analysis render them of limited interest.

A number of useful assays exist that utilize the incorporation of radiolabelled ATP into 2-5A by the 2-5A synthetase reaction mixture. The mixture of radiolabelled 2-5As, or their core (5'-unphosphorylated) derivatives (the latter obtained after treatment with alkaline phosphatase), can be separated by any of several methods. Ion-exchange methods utilizing alumina columns or DEAE on sephadex or paper commonly have been used. Reverse-phase thin-layer chromatography (TLC) techniques also have been useful in visualizing the 2-5A molecules generated. In addition, gel and paper electrophoresis, as well as capillary isoelectric focusing, have been adapted for quantitation of the reaction products. High performance liquid chromatography (HPLC) remains a powerful technique, as it may be used for preparative, as well as analytical, separations of the radiolabelled 2-5As.

2-5A oligonucleotide assays that rely on the high-affinity binding of 2-5A to RNase L (Knight et al., 1980) or to monoclonal antibodies have the advantage of high specificity and sensitivity (Table 7). RNase L from crude cell extracts binds ppp5'A2'pA5'A2'p5'A3'[32P]pCp (2-5A[32P]pCp) strongly. Inhibition of binding of this probe takes place with nanomolar concentrations of unlabelled 2-5A. Similarly, labelled 2-5A (2-5A[32P]pCp) (Knight et al., 1980) or [32P]sucinyl 2-5A (Cailla et al., 1982) binding to antibodies can be competed off by nanomolar concentrations of unlabelled 2-5A.
However, with the antibody assays, cross-reactivity with 3',5'-oligoadenylates, which may be present in the millimolar range, can be problematic. The latter may have to be removed before the assay can be performed. Finally, enzyme immunoassays, ELISAs, and coupled spectrophotometric assays have the advantage that no radiolabelled 2-5A mixtures or radiolabelled probes need to be generated (Table 7).

3.6. Enzymology

2-5A synthetase catalyzes the following reaction:

\[nATP \rightarrow ppp'5'A_2'(p5'A)_{n-1} + (n-1)ppi \]

In addition to catalyzing the polymerization of ATP to 2',5'-oligoadenylate, the enzyme may also function as a 2',5'-nucleotidyltransferase (Ball and White, 1979a; Johnston et al., 1980a; Ferbus et al., 1981). A single addition of any of the different ribo- and deoxyribonucleotidetriphosphates onto the 2'-OH can occur (Hughes et al., 1983), although some phosphorothioate ATP analogues (Kariko et al., 1987a) do not seem to act as chain terminators. 2-5A synthetase can also elongate various oligonucleotides (as primers), which terminate in adenosine and in which a free 2'-OH exists (Ball and White, 1979a; Minks et al., 1980b; Ferbus et al., 1981). Since 2-5A synthetase 2'-adenylates both NAD⁺ and ApA, thereby inactivating them, the initial speculation was that 2-5A synthetase played a role in cellular metabolism by this route; however, to date, these 2'-adenylated intermediates have not been identified in cells using the radiobinding assay discussed above (Cayley and Kerr, 1982).

2-5A synthetase has been purified to homogeneity from human HeLa and Namalva cells, mouse L and EAT cell lines, as well as from rabbit reticulocytes (Table 8). Common purification steps have included ammonium sulfate or methanol precipitation and DEAE-cellulose chromatography (Wells et al., 1984; Dougherty et al., 1980; Ball, 1980). The most convenient overall schemes did not require ultracentrifugation (Yang et al., 1981). Using p69 and p100 immunoaffinity columns, Marie et al. (1989) purified these two isozymes to homogeneity. A necessary purification step has been chromatography on poly(rI).poly(rC)-cellulose or poly(rI)*poly(rC)-agarose, as the enzyme is unstable in the absence of dsRNA (Rovnak and Ranu, 1987). Yang et al. (1981) found that ATP, dsRNA, BSA, and nonionic detergents, SDS-PAGE and gel filtration, CC, glycerol gradient density centrifu-
gents such as Triton X-100 or Nonidet P-40 stabilized the enzyme. The K_m of the 2-5A synthetase was $\sim 2 \text{ mM}$; $\geq 90\%$ of ATP added can be utilized, with the optimal Mg^{2+} concentration of 16 mM. The consensus is that mode of chain elongation is nonprocessive (Johnston et al., 1980b; Justesen et al., 1980; Imai et al., 1982b; but see Minks et al., 1980a); intermediates dissociate from the enzyme before addition of another nucleotide unit. Experiments to confirm this with the purified 2-5A synthetase isoforms have not been performed.

The human p40-p46 2-5A synthetase (accession numbers X04371 and M25552) and p69 2-5A synthetase (accession number M87284) have been cloned (Warhelet al., 1986; Marie and Hovanessian, 1992); however, human p100 has not been reported yet to be cloned. The p40 and p46 2-5A synthetases are coded for by 1.6 and 1.8 kb mRNAs, which are derived from the same gene through cell-type-specific differential splicing between the 7th and an additional 8th exon of this gene (Benech et al., 1985a), which is localized to chromosome 12 (Williams et al., 1986). The 1.6 kb RNA codes for a 364 amino acid C-terminal hydrophobic protein, while the 1.8 kb RNA codes for a 400 amino acid C-terminal acidic protein (Bench et al., 1985b; Saunders et al., 1985). The cDNAs encoding both 1.6 and 1.8 kb mRNAs have been expressed in E. coli under a trp-lac promoter (Mory et al., 1989).

Two p69 2-5A synthetase full-length cDNAs of 5.6 and 3.1 kb encode open reading frames (ORFs) that are predicted to produce a protein with the first 683 amino acids identical, with an extension of 4 or 44 amino acids (Marie and Hovanessian, 1992). When translated, these encoded proteins of 69 and 71 kDa migrated with authentic p69 on sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and produced 2-5A in the presence of ATP and dsRNA. The C-terminal acidic p69 and C-terminal hydrophobic p71 are seen as a broad band sometimes visible as a doublet on SDS-PAGE (Hovanessian et al., 1987). The p69 2-5A synthetase contained two homologous subdomains, each containing an ATP binding motif (Gly-gly-Ser X gly/Ala-Lys/Arg), as well as a dsRNA-binding domain. In addition, p40 and p46 contained only one of each of these domains. On the basis of gel-filtration experiments (Marie et al., 1990a,b) and the former evidence, it is likely that p40 and p46, as well as p69 and p71, probably exist as a tetramer and dimer, respectively, which possess two 2-5A catalytic domains. On the other hand, the p100 2-5A synthetase probably exists only as a monomer (Marie et al., 1990b), which is consistent with its observed role in the production of 2-5A dimers (Hovanessian et al., 1988). It is also tempting to speculate that the p69-p71 gene may have evolved from the ancestral fusion of two p40-p46 genes.

The four forms of 2-5A synthetase (p40, p46, p69, p100) have been isolated from a variety of human cell lines and from PBMCs; however, there were a number of biochemical and functional differences between them. Although any of the isoforms have been induced by IFN-α, -β or -γ, provided that cell type was responsive to that type of IFN, there have been cell-type (Marie et al., 1990b) and patient-specific (Witt et al., 1993a) differences in the dose-response and kinetics of the 2-5A synthetase isofrom synthesis. Differences in subcellular localization also occurred. Both p69 and p100 were localized in the cytoplasm, but p69 was myristoylated and was found in closer association with the nuclear membrane (Marie et al., 1990b). The p69 was present in cell membranes as well as the microsomal pellet, while p100 was found only in microsomes (Hovanessian et al., 1987). The p46 and p46 2-5A synthetases were localized primarily in nuclei (Chebath et al., 1987a). The p69 2-5A synthetase had a higher K_m for ATP, required less dsRNA to manufacture 2-5A, required an more acidic pH, and produced longer 2-5A oligomers. In addition, maximal synthesis of 2-5A occurs earlier in response to IFN than does p100 (Hovanessian et al., 1988). Although the four isoforms were antigenically dissimilar, they did share common epitopes (Chebath et al., 1987a).

Binding of a Type I IFN led to a tyrosine phosphorylation of the human IFN-α receptor peptide (IFNABR-α) and an activation by phosphorylation of the latent transcription factor (ISOF3/E) that can bind to the ISRE (see Pellegrini and Schindler, 1993). The 40 kDa isoform of 2-5A synthetase was expressed as a glutathione S-transferase fusion protein in E. coli (Kon and Schindler, 1996). Cova lent linkage of a 8-azido-[32P]ATP photoprobe to 2-5 synthetase, tryptic digestion of the biotinylated, and isolation of the labeled peptide by metal (Al$^{3+}$) chelate chromatography revealed a pentapeptide to be the putative ATP binding site. The sequence was $\text{D}_{96}\text{FLKQ}_{100}$ where the photoprobe modified lysine 199. Site-directed mutagenesis of this lysine confirmed the results.

3.7. Structure-Activity Relationships for Double-Stranded RNA Binding

The binding site for dsRNA to 2-5A synthetase isoforms has not been well defined. Ghosh et al. (1991) investigated a small mouse 2-5A synthetase and found that a linear region between residues 104–158 at its amino terminal domain was necessary for dsRNA binding. This sequence showed some homology with other mouse and rat 2-5A synthetases (Truve et al., 1994b), and has been postulated to be the dsRNA binding site. Though human p40 (Warhelet al., 1986) showed some homology in this region, there was little homology to human p69 (Marie and Hovanessian, 1992), while sequences beginning at residues 201 in p40 and at residues 192 and 535 in p69 contained 7–9 lysine or arginine residues and were more strictly conserved. Moreover, while the dsRNA-binding domain of the dsRNA-activated protein kinase PKR is shared by dsRNA binding proteins from a number of organisms (St. Johnston et al., 1992), 2-5A synthetases appear to belong to a completely different family of dsRNA binding proteins.

Maximal 2-5A synthetase activity required the presence of 65–80 bp long dsRNA (Minks et al., 1979a,b,c; Samanta et al., 1980). If dsRNA was removed from the 2-5A syn-
The misaligned dsRNA poly(I)-poly(C12U) (Ampligen) has also been shown to be a potent activator of p69 and p100 2-5A synthetase both in vitro and in vivo (Carter et al., 1987; Li et al., 1990; Ushijima et al., 1993; Hovanessian et al., 1988). Poly(I)-poly(C12U) was also less toxic, less pyrogenic, and less antigenic than is poly(I)-poly(C) (Heard and Johnston, 1986). Synthetic heteropolymeric dsRNA has also been prepared and was found to activate 2-5A synthetase (Haines et al., 1992). It possessed restricted biological activity, however, being unable to inhibit the growth of A1698 cells in vitro or induce IFN-β or IL-1α gene expression.

Structure-activity studies have demonstrated that neither ssRNA, triple-stranded RNA, nor complete 2'-OH substitution of poly(I)-poly(C) with H, OCH3, N3, F, or Cl resulted in activation (Johnston et al., 1980a; Baglioni et al., 1981b; Torrence et al., 1981b; Torrence and Friedman, 1979). 2-5A synthetase, however, was more tolerant of some 2'-O methyl substitution than was PKR (Minks et al., 1980b).

Natural dsRNAs from phage f2, killer yeast or Penicillium chrysogenum have been found to be good 2-5A synthetase activators. Adenoviral VAI RNA, which is highly structured in solution, can bind to and activate 2-5A synthetase as a consequence of its two long, imperfectly paired stem structures (Desai et al., 1995; Matthews and Shenk, 1991). When the imperfect pairing was repaired, 2-5A synthetase was activated to an even greater degree. EMCV RNA was also found bound to p40 2-5A synthetase after immunoprecipitation and the p40 was partially activated, even without the addition of dsRNA, while p40 precipitated from uninfected cells was not (Gribov et al., 1991). The HIV transactivating region (TAR) was able to bind and to activate 2-5A synthetase in vitro (SenGupta and Silverman, 1989; Maitra et al., 1994). Further, this effect of TAR on 2-5A synthetase activation was abolished by the Tat protein (Schoeder et al., 1990c; Silverman and SenGupta, 1990). Heterogeneous nuclear RNA (hnRNA) from PBMCs from patients with hairy cell leukemia and from HeLa cells activated 2-5A synthetase, suggesting a possible role in hnRNA processing (Nilsen et al., 1982b; Hubbell et al., 1991). 2-5A synthetase has also been found to be associated with 60S spliceosomes and could be immunoprecipitated with anti-Sm antibodies. 2-5A synthetase antibodies were also found to inhibit the splicing reaction in vitro and to result in deficient splicing activity when added to HeLa cell nuclear extract (Sperling et al., 1991).

Remarkably, 2-5A synthetase from lymphocytes of autoimmune BB rats was not sensitive to stimulation by dsRNA (Bonnevie-Nielsen et al., 1991b).

4. RIBONUCLEASE L, THE 2-5A-DEPENDENT NUCLEASE

4.1. Occurrence

The overwhelming majority of data is consistent with the view that RNase L is present in avian, reptilian, and mammalian species, but not in insects, fish, plants, or bacteria. Reptiles and avian species have been shown to possess 2-5A binding activity (presumably RNase L) in a number of studies (Bull and White, 1978a,b; Cayley et al., 1982b). In fact, liver, kidney, and cardiac tissues from a number of reptilian species have been shown to be high in 2-5A binding activity (Cayley et al., 1982b).

Murine and rabbit tissues in which RNase L has been found are listed in Table 9. The enzyme also is found in a large number of human cell types in the absence of IFN treatment. In one study, murine spleen tissue extracts had the highest levels of RNase L, while liver extracts had the lowest levels, as measured by the radiobinding assay (Floyd-Smith and Denton, 1988a). Lung and kidney extracts had moderate levels. While IFN-β did not affect the observed basal level of RNase L present in tissues, rabbit anti-mouse IFN-α/β did decrease levels of RNase L in spleen, suggesting that endogenous IFN-α/β was responsible for the maintenance of RNase L levels in that organ in vivo. In mice, RNase L levels are highest in the spleen, lung, liver, and kidney at 5 days of age and then decrease with age, except in the spleen where it remains high until adulthood (Floyd-Smith and Denton, 1988b). This may have relevance to the participation of the RNase L system in certain age-specific viral diseases.

The majority of studies have identified a nuclear and cytoplasmic localization for RNase L (Nilsen et al., 1982c; Be-

Mammalian Cellular Distribution of RNase L	Reference
Rabbit (liver, kidney, spleen, reticulocytes)	Williams et al., 1979a; Nilsen et al., 1981; Krause and Silverman, 1993
Mouse (liver, kidney, lung, intestine, spleen)	Nilsen et al., 1981; Floyd-Smith and Denton, 1988a,b; Silverman et al., 1988; Bayard et al., 1994
Human lymphocytes	Nilsen et al., 1981
Human colonic mucosa	Wang et al., 1995
Human kidney	Bayard and Gabriol, 1993
yard and Gabrion, 1993; Schroder et al., 1989). The enzyme was associated with polysomes in the cytoplasm (Salehzada et al., 1991) and with nuclear matrices in the nucleus (Schroder et al., 1989).

Basal levels of RNase L exist in a wide variety of differentiated cell types at low, constant levels; however, in some cell types, RNase L may be highly regulated. In murine JLS-V9R cells, RNase L levels increased up to 20-fold with IFN treatment, a response that was blocked by treatment with actinomycin D, suggesting transcriptional involvement (Jacobsen et al., 1983a,b). Furthermore, a 10-fold increase in RNase L levels could be observed in this cell type during growth arrest by confluency. In NIH 3T3 cells, growth arrest by confluency caused a 6-fold induction of RNase L levels that could be increased still further by IFN treatment (Krause et al., 1985a,b). F9 cells and RNase L mRNA levels were increased 3-fold in murine L929 cells as a response to IFN treatment and were unaffected by cycloheximide (Zhou et al., 1993).

There are a number of indications that RNase L functions in the control of cell growth and differentiation. As documented above, RNase L and 2-5A synthetase levels were often found to be elevated during cell differentiation, as well as in growth-arrested cells. In addition, introduction of 2-5A into cells has the effect of impairing cell growth (Sen and Lengyel, 1992; Zhou et al., 1993). Krause et al. (1985a,b) demonstrated differential regulation of RNase L in various cell lines in response to induced differentiation or IFN treatment, as measured by the breakdown of rRNA caused by introduction of ppp5'-(A2'p5')A into the cells. RNase L induction by IFN was demonstrated for three differentiated cell types (F9 clone 9, PYS, and PSA 5E); however, in three undifferentiated cell lines (F9, PC13 clone 5, and Nulli 2A), there was little RNase L with or without IFN treatment. In addition, during induced differentiation of PC13 clone 5 cells, there was a concomitant induction of RNase L. Paradoxically, a recent study suggests that RNase L levels may be increased up to 10-fold in rapidly dividing tissue obtained from colorectal tumors with respect to normal colorectal mucosa (Wang et al., 1995). The increased RNase L levels were also found to occur early during colorectal tumorigenesis.

The effects of 2.45-GHz microwave radiation on 2-5A synthetase and RNase L levels were investigated (Krause et al., 1991). Although no differences in 2-5A synthetase levels were found, RNase L was induced as measured by 2-5A binding.

4.2. Genomics

The gene for RNase L is known as RN4, as it was the fourth RNase to be mapped in the human genome (Squire et al., 1994). The regional assignment was made using fluorescence in situ hybridization using a RNase L genomic clone isolated from a human placenta cosmId library (Zhou et al., 1993). Positive hybridization signals were found on 1q25 in all of 30 metaphase spreads. Since the genes for 2-5A synthetase have been mapped to chromosomes 11 and 12, genes for the 2-5A system do not form a gene cluster in the human genome. There was no evidence that RN4 defects are directly linked to human disease; however, there are a number of abnormalities that co-localize with 1q defects. The Charcot-Marie-Tooth disease (CMT1B) locus has been localized to 1q21.2 to 1q25 (Lebo et al., 1991). Multiple congenital anomalies and developmental delays were found in one patient with an interstitial deletion between 1q23 and 1q25 (Franco et al., 1991). More significantly, a number of human cancers have been found to be associated with 1q abnormalities. These include gastric adenocarcinomas (Sano et al., 1991), oral squamous cell carcinomas (Kerr and Brown, 1978), and breast cancer (Chen et al., 1989; Pathak et al., 1990). Because of the negative growth regulatory function of RNase L, it may be considered a candidate for a tumor-suppressor gene.

4.3. RNase L Cloning, Purification, and Properties

Human and murine RNases L have been successfully cloned. Murine L929 cells treated with IFN/cycloheximide and then medium alone were chosen as the initial source of mRNA (Zhou et al., 1993) because of relatively abundant basal levels of RNase L. The CDNA library was screened using a bromine substituted [32P]2-5A probe (Nolan-Sorden et al., 1990). In vitro translation in wheat germ extract with subsequent characterization using the aforementioned probe and proteolytic degradation analysis revealed that the isolated murine RNase L was truncated with an apparent molecular mass of 74 kDa. The sequence of full-length human RNase L was obtained from a composite cDNA(HZB1)/genomic construct. To obtain the cDNA portion, a human kidney cDNA library was screened with the previously obtained radiolabeled murine RNase L cDNA. The sequence resulted in an ORF encoding a protein of 83,539 Da. After in vitro translation in a rabbit reticulocyte lysate that had been depleted of endogenous RNase L, core-cellulose-based assays with the enzyme revealed the degradation of poly(U) with a half-life of 10 min; using the same conditions, no poly(C) degradation occurred. Localization of the 2-5A-binding domain was facilitated using a C-terminus truncated murine RNase L that possessed no catalytic activity. Deletion analysis, as well as site-directed mutagenesis, of the human construct localized the 2-5A-binding domain to between amino acids 218 and 294 at the site of two putative P-loop motifs. Additionally, a Zn-finger was proposed, although the putative homologous region (amino acids 394-444) is atypical of classical Zn fingers, and the human and mouse sequences differ in the positions of the cysteines.

An independent analysis of the sequence of RNase L (Bork and Sander, 1993) found that the N-terminal 330 residues contained 9 ankyrin (ANK) repeats, with an average length of 33 residues with 35% sequence homology to human erythrocyte ANK. ANK repeats occur as consecutive copies in a large number of functionally variable proteins, and have been shown to mediate protein-protein and
protein-DNA interactions. Protein kinase domains have been identified following the ANK repeats. The previous identification of a P-loop motif has been challenged by this group (Bork and Sander, 1993). Nevertheless, the 7th and 8th ANK repeat contains the likely 2-5A binding site, whether or not in association with two P-loops, and the protein kinase homologous domains probably contain the ATP binding site, with domains necessary for catalytic activity residing in the C-terminal portion of the enzyme.

Dong and Silverman (1997) have performed progressive truncation studies from either terminus of RNase L, and have developed a bipartite model for the structure of RNase L in which the regulatory functions were assigned to the N-terminal half of the enzyme and the catalytic function was assigned to the C-terminal half. In the process of these studies, Dong and Silverman were able to produce, by deletion of 335 amino acids from the N-terminus, a constitutively active ribonuclease with about 6-fold reduced activity compared with wild-type enzyme.

Recombinant RNase L recently has been expressed in a baculovirus system and purified to reported homogeneity (Dong et al., 1994). The human RNase L cDNA was subcloned into the BacPAK6 baculovirus vector and plaques containing recombinant virus selected based on Southern analysis. Expression was accomplished in SF21 cells using a multiplicity of infection of 10 for 72 hr. After preparation of cell extract, FPLC chromatography using successive Blue Sepharose CL-6B, Mono Q, and Superose-12 columns yielded apparently pure enzyme.

This recombinant enzyme was evaluated for its activator requirements. While the dimer pppA2'p5'A and 3',5'-phosphodiester-linked oligoadenylates such as ppp5'(A3'p5')A completely failed to activate RNase L, and while 2'-5' linked core oligoadenylates such as A(2'p5')A had greatly reduced ability to activate the enzyme, the longer 2-5A oligomers, ppp5'(A7'p5')A, ppp5'(A2'p5')A, as well as the monophosphate p5'(A2'p5')A all maximally activated at 1 nM. After extensive dialysis to remove divalent cations, the effects on enzyme activity, as measured by the poly(U) degradation assay, were also determined. Although recombinant RNase L had some residual ability to cleave poly(U) even in the complete absence of metal ions, addition of ATP plus Mg cation or, to a slightly lesser extent, ATP plus Mn cation significantly stimulated RNase L activity. Addition of Ca ions alone was inhibitory, as was the addition of Zn ion, even in the presence of ATP. At a 1:1 molar ratio of 2-5A to RNase L, as determined by glycerol gradient centrifugation, chemical cross-linking, and gel filtration, complete conversion to a homodimeric form from a monomer was observed. In addition, core oligoadenylates were ineffective at promotion of dimerization. This may indicate the presence of a shared catalytic site for RNA degradation in RNase L. While poly(rG), poly(rC), poly(dA), and poly(dT) were not cleaved by the recombinant enzyme, poly(rA) was degraded somewhat, and poly(rU) was degraded very efficiently, to fragments ranging in size from between 5 and 22 nucleotides in length.

It was first observed that an irreversible loss of RNase L activity was caused by gel filtration through a Sephadex G-25 column, and that this could be prevented by addition of ATP or ADP to the buffer (Wreschner et al., 1982). In more recent work, purified mouse and human RNase L showed 2-fold stimulatory effects of ATP on RNase L activity, but only in the presence of 2-5A (Silverman et al., 1988; Dong et al., 1994). Earlier results notwithstanding, if ATP was omitted during some purification steps, RNase L activity was fully recovered. This observation has been repeated in the authors' laboratory (M. Player, E. Wondrak and P. F. Torrence, unpublished observations). RNase L activation also requires the presence of Mg2+, although Mn2+ or Ca2+ will also function to support catalytic activity. A minimal level of activity remains in the absence of divalent cations (Dong et al., 1994). A reducing agent such as 2-mercaptoethanol or dithiothreitol is also necessary to maintain the binding activity of the ribonuclease (Dong et al., 1994; Bayard et al., 1994), although no detailed studies on this are available.

RNase L was found to exist in the monomeric state with a molecular mass of approximately 80 kDa in rabbit reticulocytes (Wreschner et al., 1982), CEM and Jurkat cells (Bayard and Gabrion, 1993), mouse liver and EAT cells (Silverman et al., 1988; Floyd-Smith et al., 1982), as well as HeLa cells and mouse thymoma W7 cells (Nilsen et al., 1981). However, murine EAT cells and mouse splenocytes have also been found to contain a dimer of approximately twice this weight (Slattery et al., 1979; Bayard et al., 1994).

In an additional study, murine Ehrlich ascites tumor cell-derived RNase L was reported to behave as a 185 kDa species by gel filtration, while SDS-PAGE analysis of an affinity-labeled RNase L gave a result of 80 kDa (Bisbal et al., 1989). However, these latter authors found another 40 kDa species that bore some similarity to RNase L by partial proteolysis. Protease inhibitors were reported not to alter the levels of the 40 kDa protein, and its significance remains unknown. It has also been proposed that RNase L consists of a heterodimer: a regulatory subunit that binds 2-5A and a catalytic subunit to which RNA binds (Salehzada et al., 1993). More recent work, based on chemical cross-linking, gel filtration, and glycerol gradient sedimentation, demonstrated that the enzyme is a homodimer in the presence of a molar equivalent of 2-5A and a monomer in its absence (Dong et al., 1994; Cole et al., 1996). 2-5A oligoadenylates, which caused dimerization of RNase L, usually activated it well, while core (non-5'-phosphorylated) oligoadenylates, which were not capable of activating RNase L, were similarly inefficient at dimerizing it (Dong et al., 1994).

Dimerization of RNase L has been studied by equilibrium sedimentation techniques. The enzyme was found not to dimerize in the presence of a synthetic oligoribonucleotide substrate or in the presence of ATP alone (Cole et al., 1996). However, in the presence of saturating 2'.5'ppA3', the enzyme was fully dimerized at protein concentrations as low as 100 nM. In the absence of activator, no dimerization was observed at protein concentrations as high as 18 mM.
Evaluation of the kinetics of cleavage of PKR mRNA in the context of 2-5A antisense chimeras has been performed (Maitra et al., 1995). The 2-5A antisense chimera against PKR mRNA, as well as 2-5A tetramer, were found to be 20- and 40-fold more active, respectively, than a 2-5A antisense chimera in which the antisense sequence was not complementary to the PKR mRNA target. In addition, k_{cat} was found to be 5-10 sec$^{-1}$, implying that each molecule of RNase L was able to catalyze the cleavage of multiple mRNA strands. The sites of cleavage were also mapped to discrete sites along the PKR mRNA using primer extension analysis. The recognized preference for cleavage 3' of UpNp was altered by this approach, and a clear preference for specific bases was not observed.

Although classical methods of assay rely on cleavage of radiolabelled poly(U) (Silverman, 1985) or on cleavage of ribosomal RNA (rRNA) (Kariko et al., 1987a,b), a more recent method utilizes cleavage of a radiolabelled oligonucleotide (Carroll et al., 1996). Since RNase L cleaves preferentially after UU and UA sequences (Wreschner et al., 1981b), the sequence chosen for kinetic analysis of RNase L was $[^{32}\text{P}]5'$-pC1iUUC7. Comparison of the primary cleavage product with cleavage products resulting from RNase PhyM and from base-catalyzed hydrolysis confirms that $[^{32}\text{P}]5'$-pC1iUUp is the primary cleavage product.

When RNase L was added to a reaction mixture containing substrate and (2-5)pA, an initial lag in product formation occurred. This could be alleviated by a 30-min incubation of RNase L with (2-5)pA at 0°C. The rate of cleavage was linear between 100 and 600 μM, using RNase L preactivated with 800 nM (2-5)pA. The rate of cleavage was half-maximal at 1 nM (2-5)pA, and attained maximal velocity at 1 nM (2-5)pA and above. Longer oligonucleotides were cleaved more efficiently; for instance, 5'-pC1iUCUC4 is cleaved 3-fold less efficiently (k_{cat}/K_0) than 5'-pC1iUUC7, primarily due to an increase in K_0. In addition, RNase L catalyzed the cleavage of substrates containing 2 or 3 sequential U's with a 20- and 50-fold faster rate than that with which it catalyzed the cleavage of a substrate containing a single U (Carroll et al., 1996).

The 2-5A system and the RNase L are rapidly evolving in complexity. Salehzada et al. (1993) obtained a monoclonal antibody by immunizing BALB/c mice with Daudi cell proteins partially purified on a 2-5A-Sepharose column. This antibody, together with 2-5A binding experiments, enabled these investigators to distinguish between two different proteins in Daudi cell extracts: a 2-5A-binding protein and an RNA binding protein. The investigators proposed that RNase L is a complex of two separate subunits: an 80 kDa RNA binding protein (the catalytic subunit) and an 80 kDa 2-5A binding protein (regulatory subunit). The possible relationship of this relationship, if any, to the above described dimerization, is unknown as yet.

In a separate study, Bayard et al. (1994) employed tetrmeric ppp(5'Az2'p)3p, periodate-oxidized and then covalently bound to hexameric hydrazide agarose, to affinity purify RNase L from 100,000 g supernatants of mouse spleen. Highly purified enzyme, >80% homogenous, could be eluted from such an affinity column with pH 2.7 glycine buffers in the presence of Triton-X. When the purified nuclease was stabilized by affinity labeling with 2-5A, it migrated as a 160 kDa protein, but as an 80 kDa protein in denaturing SDS-PAGE conditions. Similar studies with cellular extracts implied that the enzyme was comprised of 80% 160 kDa and 20% 80 kDa species. In the absence of 2-mercaptoethanol, the apparently dimeric 160 kDa species bound 2-5A only minimally. The addition of 2-mercaptoethanol, or, surprisingly, poly(U), could maximize 2-5A binding. The eluted 160 kDa nuclease showed residual activity even in the absence of 2-5A. These findings led Bayard et al. (1994) to suggest that the poly(U) substrate induced a conformational change in RNase L, and that this change facilitated 2-5A binding. Bayard et al. (1994) also postulated the loss of a regulatory protein during purification in order to account for the low level of non-2-5A-dependent nuclease activity.

Yet another chapter in the complexity of the 2-5A system was added through the findings of Bibhal et al. (1995), who isolated a polypeptide inhibitor (termed RLI) of the 2-5A system based on their screening of an expression library assayed by binding to radioactive 2-5ApCp. This protein was proposed as a regulator that would inhibit the binding of 2-5A to RNase L, thereby blocking activation of RNase L and its nuclease activity. Although RLI had a poor affinity for RNase L, it may associate directly, but noncovalently, with the enzyme to alter its activation potential by 2-5A. Over-expression of RLI in I LeLa cells partly antagonized the antipicornaviral effects of IFN.

In essence, the present state of affairs in regard to RNase L's functional catalytic structure may be expressed by two different scenarios. On the one hand, as suggested by the work of Dong et al. (1994) and Cole et al. (1996), RNase L appears as an 83 kDa protein that dimerizes in the presence of a 2-5A activator, perhaps to give the actual catalytic conformation. On the other hand, as represented by the data of Bayard et al. (1994) and Salehzada et al. (1993), RNase L may consist of two different 80 kDa proteins, one that binds 2-5A and another that binds RNA substrate. The active enzyme could then be inhibited by yet another protein that binds RNase L, but not 2-5A.

4.4. Cleavage Specificity

A critical question is whether or not the 2-5A system might differentiate between RNA substrates, i.e., viral vs. cellular, in the intact host cell. Partially purified RNase L from murine EAT cells was found to degrade only poly(U) of the four homopolymers: poly(U), poly(C), poly(G), and poly(A) (Floyd-Smith et al., 1981). With a 5' labelled phage T7-specific RNA segment, frequent cuts were found after UA, UG, and UU, with minor cleavages after CA and rare cleavages after AC and CG (Floyd-Smith et al., 1981). RNase L isolated from rabbit reticulocytes, human lymphoblastoid cells, and murine EAT cells cleaved 5'-labelled viral and
18S rRNA substrates after some, but not all, UU and UA sequences, possibly as a result of secondary structure (Wreschner et al., 1981a,b). Generally, then, RNase L cleavage occurred 3' to UpN3'p terminated products (Wreschner et al., 1981a,b). Cleavage experiments with purified recombinant human RNase L yielded similar results, with the exception that inefficient cleavage of poly(A) was observed (Dong et al., 1994). The existence of cuts in predominantly single-stranded regions of phage R17 RNA (Floyd-Smith et al., 1981) and the reported absence of cleavage of poly(A),poly(U) (Nilsen et al., 1980) have been established, but the dependence of sites and extent of cleavage on RNA secondary structure is poorly understood. In addition, the degradation of poly(U) was observed to generate discrete fragments or about 5-22 nucleotides in length as end products for unknown reasons (Dong et al., 1994).

Cleavage of specific types of RNA could occur in the intact host cell through any of several mechanisms. Compartmentalization of 2-5A synthetase or RNase L to areas within the cell could result in localization of either 2-5A synthesis or action. Several findings point to this as a possibility. The replicative intermediates of certain viruses contain dsRNA linked to ssRNA, and ssRNA linked to dsRNA has been found to be degraded faster than ssRNA alone in extracts of IFN-treated cells, possibly as a result of localized 2-5A production (Nilsen and Baglioni, 1979). Nuclear extracts of HeLa cells were found to contain nanomolar quantities of 2-5A and an activity that bound 2-5A with an affinity similar to that of RNase L. The nucleic acid, hnRNA, which contains duplex structures, was found both to promote the synthesis of 2-5A and to be preferentially cleaved in IFN-treated cell extracts (Nilsen et al., 1982b). Nascent reovirus RNA prepared in transcription reactions from purified virions was degraded in preference to mRNA in a cell-free system as a result of localized production of 2-5A, while the transcription reaction could be completely inhibited by the addition of the 3'-O-methyl analogue of 2-5A (Baglioni et al., 1984). There is no direct evidence for specific and selective cleavage of viral RNA as a response to localized 2-5A production in intact IFN-treated cells. In fact, if this were the predominant means by which the cellular machinery distinguished between viral and host RNA, the well-described cleavage of rRNA in IFN-treated EMCV-infected cells would be aberrant (Silberman et al., 1983), although perhaps understandable if the latter cleavage took place only in the presence of large 2-5A concentrations.

4.5. Affinity Labelling of RNase L

Affinity labelling of RNase L has been accomplished through a variety of approaches. Crosslinking of RNase L to alkaline phosphatase-digested periodate-oxidized [32P]ppp5' (A2'p5')3ApCp was accomplished by Wreschner et al. (1982). Simple UV irradiation was used to crosslink 2-5A to RNase L in a study by Floyd-Smith et al. (1982). Photoactivatable azido derivatives of 2-5A also were reported (Suhadolnik et al., 1988), but their usefulness was greatly restricted by their low specific activities. Nolan-Sorden et al. (1990) reported the use of a brominated 2-5A derivative, p(A2'p)(br-A2'p):A3'[32P]pCp, as a highly effective photoaffinity label. The affinity-labelled protein migrated to a molecular mass of 85 kDa on SDS-PAGE and the affinity labelling could be prevented by competition with ppp5'(A2'p3')3A, but not ppp5' A2'p5'A.

4.6. Activation of RNase L by 2-5A and Analogues

Examination of structure-activity relationships using 2-5A and its analogues and RNase L have generated considerable information on the nature of the 2-5A-binding domain. The driving force behind this work has been a desire to employ 2-5A derivatives in intact cells in order not only to determine the biological role of the 2-5A system, but also to evaluate its potential for antiviral and cancer chemotherapy. In order to accomplish this goal, several considerations must be addressed. Firstly, 2-5A has a short half-life in biological systems, resulting from the activity of 2',5'-phosphodiesterase, and secondly, because of the highly ionic nature of 2-5A, it does not easily penetrate the cell membrane of the intact eukaryotic cell. In order to provide information to mitigate these factors, structural components necessary for binding and activation have been closely evaluated using chemical and enzymatic methods.

To examine binding of the 2-5A analogue to RNase L, a 2-5A tetramer, e.g., ppp5'(A2'p5')3A, has been linked to [32P]pCp using T4 RNA ligase (Knight et al., 1980). The resultant radioactive probe may be competed with a number of 2-5A analogues and the binding IC50 measured and compared with 2-5A. Several other techniques have been used to evaluate activation of RNase L so that the relative contribution to binding versus activation of various 2-5A structural domains may be compared (Lewis and Falcoff, 1981). An early method involved the ability of the analogue to inhibit cell-free protein synthesis from a specific mRNA (Torrence and Friedman, 1979). Another method uses the property that 2-5A causes specific cleavages in rRNA that can be evaluated in a cell-free system and examined by agarose gel electrophoresis (Wreschner et al., 1981a). Perhaps the most frequently employed assay has been the use of poly(rU) 3'-ligated to [32P]pCp. The resultant poly(rU)-[32P]pCp product was evaluated as a substrate for RNase L by measurement of trichloroacetic acid-precipitable radioactivity in response to activation of the enzyme by a 2-5A analogue. In order to distinguish cleavage caused by RNase L, as opposed to other cellular nucleases, the RNase L first must be immobilized on core 2-5A cellulose and washed free of contaminating nucleases. In contrast, with purified human recombinant enzyme, Carroll et al. (1996) were able to employ [32P]5'-pCp, UUpCp as a synthetic substrate. Although 2-5A synthetase can generate 2-5A oligomers from dimers to products longer than decamers, oligoadenylicates must be trimers or longer in order to effectively bind.
to and to activate RNase L (e.g., Torrence et al., 1984; Johnston and Torrence, 1934). Oligomers of greater length than the trimer bond to and activate the enzyme approximately equally well. There is limited evidence for tissue-specific differences in oligomer size activation requirements for RNase L (Krause and Silverman, 1993; Wu et al., 1983). RNase L from rabbit reticulocyte lysates, thus far, is unique in requiring tetramer 2-5A instead of trimer 2-5A for activation, as measured by the core-cellulose assay and by their respective abilities to cause an inhibition of translation in a reticulocyte cell-free system. Rabbit kidney cell RNase L, however, as well as murine reticulocyte RNase L, were activated by trimer or tetramer 2-5A.

4.6.1. Dependence of RNase L activity on nature of ribose-phosphate backbone. The most intriguing feature of the 2-5A molecule is the presence of the 2',5'-phosphodiester bonds themselves. Might one or all of these bonds be replaced by 3',5'-linkages without impeding binding to and activation of RNase L? 3-5A linkage isomers, prepared either by lead ion-catalyzed polymerization of adenosine 5'-phosphorimidazolate or by means of T4 polynucleotide kinase-catalyzed 5'-phosphorimidazolylpyrophosphate (Lesiak et al., 1983). When pp5'A3'p5'A3'p5'A was evaluated as a translational inhibitor using EMCV RNA-programmed L-cell extracts, it was found to be approximately 10,000 times less efficacious as 2-5A (Lesiak et al., 1983). Phosphodiester linkage analogues of 2-5A, pp5'A2'p5'A3'p5'A, and pp5'A3'p5'A2'p5'A were 25-28 times less effective as translation inhibitors (Lesiak et al., 1983). In addition, pp5'A3'p5'A2'p5'A, pp5'A2'p5'A3'p5'A, and pp5'A3'p5'A3'p5'A were 48, 48, and 13,000 times less effective than 2-5A at displacing pp5'A2'p5' A2'p5'A3'[52P]-p5'C3'p in the radiobinding assay. Monophosphates of these linkage isomers showed a similar pattern of activity (Lesiak et al., 1983). The above observations have been confirmed using purified recombinant human enzyme. It follows that 2',5'-phosphodiester bonds are stereochemical requirements for the biological activity of 2-5A.

Another structural feature that may be examined is the role of the ribose moiety. In particular, replacement of ribose by 3'-deoxyadenosine (cordycepin) might be a particularly important modification with regard to improving resistance towards nuclease degradation, since certain nucleases that may be involved in 2-5A breakdown operate through a 2',3'-cyclic phosphate intermediate, the formation of which would be blocked in such 3'-deoxyadenosine analogues.

Although the enzymatic synthesis of pp5'(3'dA)2'p5'(3'dA)2'p5'(3'dA)2'p5'(3'dA) by 2-5A synthetase has been reported (Doetsch et al., 1981), structural proof has consisted solely of an Rf comparison of a radiolabelled alkali-line phosphatase-digested product to the well-characterized chemically synthesized core (Charubala and Pfeiferer, 1980a,b) in a single TLC system. Although the pp5'(3'dA)2'p5'(3'dA)2'p5'(3'dA)2'p5'(3'dA)2'p5'(3'dA)2'p5'(3'dA)2'p5'(3'dA)2'p5'(3'dA)2'p5'(3'dA)2'p5'(3'dA)2'p5'(3'dA)2'p5'(3'dA) was found to be a more potent translational inhibitor than 2-5A trimer or tetramer in a rabbit reticulocyte cell-free system (Doetsch et al., 1981), other groups (Silverman et al., 1981; Williams et al., 1979a) have found 2-5A trimer not to be a subnanomolar activator of the nuclease at all, in contrast to other rabbit cell types and all murine and human lines examined thus far.

The 5'-di- and -triposphates and core of the cordycepin analogue of 2-5A trimer and tetramer have been prepared and characterized by four groups (Sawai et al., 1983; Haugh et al., 1983; Nyilas et al., 1986; Charubala and Pfeiferer, 1980a,b). The products were characterized both enzymatically and physically. The core oligonucleotide, produced by Charubala and Pfeiferer, was identical after phosphorylation to the 5'-monophosphate produced by Sawai et al. (1983), and the alkaline phosphatase digestion product of the latter also was found to be identical with the Charubala and Pfeiferer core trimer product. These cordycepin analogues of 2-5A have been examined in a number of different assay systems. In L-cell lysates, (pp)p5'(3'dA)2'p5'(3'dA)2'p5'(3'dA)2'p5'(3'dA) was found to bind to RNase L 20 times less well than 2-5A and to activate the nuclease 4 x 105 less potently than 2-5A, as judged by inhibition of EMCV RNA translation (Sawai et al., 1983). In a globin mRNA-programmed rabbit reticulocyte cell lysate, the cordycepin 2-5A trimer analogue was active only at micromolar concentrations or above, as was 2-5A itself; however, when the tetramers were evaluated under the same conditions, the cordycepin analogue was more than 103-fold less potent than 2-5A (Sawai et al., 1983). Haugh et al. (1983) did not find activation of RNase L in L-cell or Daudi cell extracts by pp5'(3'dA)2'p5'(3'dA)2'p5'(3'dA). Krause et al. (1986) found no activity of pp5'(3'dA)2'p5'(3'dA)2'p5'(3'dA)2'p5'(3'dA) in the core-cellulose/poly(U)poly(C) degradation assay. When calcium co-precipitation was used to introduce pp5'(3'dA)2'p5'(3'dA)2'p5'(3'dA) into intact L-cells, it was found to be 100 times less potent than 2-5A, as measured by inhibition of protein synthesis (Eppstein et al., 1985). When pp5'(3'dA)2'p5'(3'dA)2'p5'(3'dA) was examined for its activity in mouse EAT cells, none was found, while activity in L-cell extracts was minimal (Nyilas et al., 1986). Since replacement of the ribose moiety by cordycepin in all positions resulted in virtually complete loss of activity, the effects of introduction of one 3'-deoxyadenosine at each position of the trimer were examined (Torrence et al., 1988). When pp5'(3'dA)2'p5'(3'dA)2'p5'(3'dA)2'p5'(3'dA)2'p5'(3'dA) was evaluated, binding was equivalent to that of 2-5A and activation was approximately 3 times less potent than 2-5A, as measured by translational inhibition and the poly(U) degradation assay. With pp5'A2'p5'A2'p5'(3'dA), an increase in binding and activation was observed. However, pp5'A2'p5'(3'dA)2'p5'A displayed an 8-fold decrease in binding, while activation of RNase L was decreased 500- to 1000-fold. Therefore, the 3'-hydroxyl of the second (from the 3'-terminus) nucleotide residue of 2-5A is critical for binding to RNase L.
Baglioni et al. (1981a) investigated a series of 3′-O-methylated analogues of 2-5A. 2′-terminal substitution of 3′-O-methyladenosine for adenosine in 2-5A trimer gave a compound with enhanced ability to inhibit protein synthesis in a cell-free system, probably due to enhanced phosphodiesterase resistance. Methylation of all of the 3′-hydroxyl groups of 2-5A trimer, however, produced an inactive compound. These earlier results are completely consistent with the above studies on 3′-deoxyadenosine analogues, and reinforce the importance of the ribose moieties of 2-5A for activation of RNase L.

Replacement of the oxygen atom of each of the ribose rings of 2-5A with methylene gave an aristeromycin analogue with dramatically reduced ability to activate the RNase L (Sawai et al., 1985b). Only a fraction of the loss in activity could be explained by a loss of RNase L binding ability.

Since fluorine can act as a hydrogen-bond acceptor (Murray-Rust et al., 1983), series of fluorosugar analogues of 2-5A were synthesized for evaluation in binding to and activation of RNase L (Kovacs et al., 1993). Replacement of the 3′-hydroxyl in the second position from the 3′-terminus resulted in significant decreases in both binding and activation of RNase L, despite the absence or presence of 3′-F substitution in the other residues. Therefore, the middle 3′-hydroxyl in 2-5A trimer may act as a hydrogen-bond acceptor while bound to RNase L (Kovacs et al., 1993).

Beigelman et al. (1995) examined the biological properties of a phosphorothioate analogue of 2-5A and found that it was about 10 fold less effective than 2-5A as an activator of RNase L, and that this reduction in activity was related to a corresponding decrease in binding to the RNase L.

The individual diastereomeric cores of A2′p(s)5′A2′p5′A were prepared by a modified hydroxybenzotriazole photodiester approach (De Vroom et al., 1987). The 5′-mono- and di-phosphates were then derived after phosphorylation with a 6-trifluoromethyl-1-benzotriazolyl-activated phosphoramidite.

The synthesis and resolution of P-thioadenylyl-(2′-5′)-P-thioadenylyl-(2′-5′)-adenosine cores were first performed by Charubala et al. (1991). All diastereomers bound equally well to cell lysate-derived RNase L with an IC50 of 3 × 10−7 M compared with an IC50 of 5 × 10−8 M for pA3, Poly(U)-3′-P[pCp] with 20% degradation at 2 × 10−7 M while pA3 does not hydrolyze this substrate under the same conditions. The corresponding RpRp trimer triphosphate was also prepared, characterized, and evaluated. The four phosphorothioate trimer core and 5′-monophosphate analogues were also prepared and used to dissect the structural parameters governing binding and activation to RNase L of these stereoisomers (Kariko et al., 1987a). Binding of the four diastereoisomeric pairs was not appreciably different; however, activation parameters, as determined by RNA and core-cellulose assays, showed marked differences between the isomers. The order of activation of RNase L was identical for core and 5′-monophosphate analogues with RpRp > SpRp > RpSp. The pSpSp and SpSp analogues are ineffective at activation and function as antagonists in competition assays. When evaluated as antiviral agents following cytoplasmic microinjection into HeLa cells, the pRpRpRp, pSpRpRp and pRpSpSp diastereomeric 2-5A phosphorothioate tetramer analogues demonstrate antiviral activity versus VSV (Charachon et al., 1990). The pSpSp analogue again acts as an antagonist.

4.6.2. Dependence of RNase L activity on the nature of the bases. The requirement for base specificity by RNase L was established when it was found that complete substitution of adenine for any other base, including cytosine, hypoxanthine, uracil, or etheno-adenosine, resulted in a loss of activity (Torrence et al., 1984; Lesiak and Torrence, 1983). When the 3′-terminal base was replaced by any common nucleotide to form ppp5′A2′p5′A2′p5′N, a loss of RNase L activating ability resulted, although antagonism of the action of 2-5A was still possible (Drocourt et al., 1982). Further, replacement of the first base by hypoxanthine to give ppp5′A2′p5′A2′p5′N yielded a 200-fold loss in activating ability, as well as binding affinity, while replacement of the second base to yield ppp5′A2′p5′2′p5′A yielded a 20-fold decrease in activating ability, but only a 3-fold decrease in binding affinity (Imai and Torrence, 1985; Imai et al., 1985). Replacement of the 3′-base by hypoxanthine to give ppp5′A2′p5′A2′p5′2′A yielded a 1000-fold loss of activating ability, as measured by inhibition of translation, but no
decrease in binding affinity. Therefore, the Ni/N6 of the 5'-terminal adenosine is required for binding to the RNase L, while the Ni/N6 (the 3'-terminal adenosine) was required for effective activation of RNase L, but not for binding. Further evidence for the importance of the Ni/N6 moiety of the 5'-terminal adenosine was shown by the synthesis of ppp5'G2'p5' (cA)2'p5' (cA), which was over 100 times less effective in binding to murine RNase L (Jamoulle and Torrence, 1986).

Uridine substituted at various positions in the 2-5A tri- mer further substantiates results obtained with the inosine-modified 2-5A analogues (Kitade et al., 1991a). Thus, while 5'-residue substitution to form ppp5'U2'p5'A2'p5'A caused a 100-fold decrease in both binding and activation, and while replacement of the terminal 2'-residue caused a 10^4 decrease in activation, replacement of the middle adenosine to form ppp5'A2'p5'U2'p5'A showed a correspondingly larger decrease in activation ability than the inosine 2-5A analogues, as expected from the inosine analogue studies.

Formation of sequence-specific analogues of 2-5A with tubercidin (7-deazaadenosine, cA) further corroborates the results mentioned above (Jamoulle et al., 1984, 1987). The tubercidin 2-5A analogue ppp5' (cA)2'p5' (cA)2'p5' (cA) bound almost as well as 2-5A trimer, but was incapable of activation of the nuclease. When ppp5'A2'p5' (cA)2'p5'A and ppp5' (cA)2'p5'A2'p5'A were evaluated, a large decrease in activation ability with more moderate loss of binding ability was observed, while ppp5'A2'p5' (cA)2'p5'A showed a negligible reduction of activation ability, despite a moderate loss of binding ability. Thus, the situation is somewhat reminiscent of the inosine and uridine analogues, that is, the base moiety of the second nucleotide unit of 2-5A appears to play a less important role in RNase L activation than do the first or third adenes of 2-5A trimer. It would also appear that the purine N7 of these latter two adenosine sites of 2-5A may be important contributors to the binding/activation process (Jamoulle et al., 1987).

Substitution of bromine for the purine 8-position H also moderates binding and activating ability (Lesiak and Torrence, 1986, 1987). While (p)pp5'A2'p5' (brA)2'p5'A and (p)pp5' (brA)2'p5'A2'p5'A were evaluated, a 10^4-fold decrease in activation directly attributable to decreases in binding affinity, pp5'A2'p5'A2'p5' (brA) activated murine RNase L 10-fold more effectively than 2-5A, as measured by inhibition of translation. Conformational studies on these brominated 2-5A analogues revealed that good binding to RNase L requires an anti orientation of the base about the glycosidic bond of the 5'-terminal adenosine (van den Hoogen et al., 1989). In addition, a syn base-sugar orientation or an S-type sugar conformation of the 2'-terminal adenosine may positively influence binding to RNase L. Studies on 8-methyladenosine analogues of 2-5A further confirmed these results (Kitade et al., 1991b). Introduction of the 8-methyladenosine into the 5'-terminal position resulted in a decrease in binding affinity, with a concomitant decrease in activating ability, while introduction into the 2'-terminus yielded an analogue that activated better than 2-5A itself.

RNase L derived from most lines of mouse L-cells requires a 5'-triphosphate for effective activation. However, several rational modifications of 2-5A can obviate the necessity for the polyphosphate, which in and of itself presents problems referable to increased charge and diminished cellular uptake, as well as increased susceptibility to cellular phosphatases and phosphodiesterase, both of which tend to decrease biological activity of the 2-5A. Although the 5'-diphosphate can substitute for the 5'-triphosphate in most L-cell lines (Lesiak and Torrence, 1985), this requirement is not absolute (Kovacs et al., 1993), as one L-cell line and a mouse liver extract require only a 5'-monophosphate. In the former cases, the 5'-monophosphates can serve as effective antagonists (Torrence et al., 1981a). Several derivatives have been found to mitigate the necessity for the 5'-polyphosphate. The p5'A2'p5'A2'p5'A2'p5'A2'p5'A was found to be as effective an activator as ppp5'A2'p5'A2'p5'A in mouse L-cells, as determined by inhibition of translation, as well as being more stable toward cellular phosphodiesterases (Torrence et al., 1992).

4.6.3. Other modifications. Baglioni et al. (1981a) reported that the β,γ-methylene phosphonate analogue of 2-5A trimer triphosphate could not activate the enzyme, as judged by protein synthesis inhibition, but still could bind to RNase L, as ascertained by its ability to inhibit the action of 7-5A itself. In contrast, a β,γ-difluoromethylene analogue showed significant activity, possibly due to a closer correspondence of the pKa's of the phosphonyl moiety to natural 2-5A, as compared with the unsubstituted methylene analogue (Bisbal et al., 1987). In addition, a β,γ-phosphorothioate analogue of 2-5A and a β-thiophosphate analogue both were effective activators of RNase L (Bisbal et al., 1987). An auranic acid analogue of 2-5A showed a trace of activity in RNase L activation (Kinjo et al., 1992).

Several additional modifications of 2-5A are discussed below (Section 5) in relation to antagonism of RNase L and IFN action (see also Table 10).

4.7. RNase L, 2-5A, and the Antiviral Action of Interferon

Considerable evidence exists relating RNase L to the antiviral activity of IFN. In a virus-infected IFN-treated cell, dsRNA production activates 2-5A synthetase to produce 2-5A, which in turn activates RNase L. The RNase L causes a generalized depletion of viral as well as cellular RNA, resulting in impaired viral replication. Member viral species from several families, including the picornaviridae, reoviridae, and poxviridae, have been examined. On the other hand, an IFN-mediated antiviral response in the absence of detectable 2-5A synthetase or RNase L has been reported (Meurs et al., 1981).

Picornaviruses are naked icosahedral nucleocapsids of 25-30 nm diameter, having a core of ssRNA. They are subdivided into four genera: enterovirus, cardiovirus, rhinovi-
TABLE 10. Compounds that Have Demonstrated Ability to Antagonize the Action of 2-5A

Oligonucleotide	Reference
p5' A2' p5' A'2' p5' A	Torrence et al., 1981a, unpublished
p5' A2' p5' A'2' p5' A2' p5' A	Miyamoto et al., 1983; Haugh et al., 1983; Jamoulle et al., 1984; Black et al., 1985; Lesiaik and Torrence, 1986
p5' A2' p5' A'2' p5' A-A-hexylmorpholine	Imai et al., 1982a
p5' A2' p5' A'2' p5' A2' p5' A-N-hexylmorpholine	Sawai et al., 1983
ppp-, ppp-, and p5' (3'dA)2' p5' (3'dA)2' p5' (3'dA)	Torrence et al., 1984
p5' A2' p5' A2' p5' A2' p5' A	Lesiaik et al., 1983
p5' A3' p5' A2' p5' A	Haugh et al., 1983
CH3Sp(A2' p)A2' p3'OCH3	Watling et al., 1985
CH3Sp(A2' p)A2' p'2'3'CH3	Bisbal et al., 1987
CH3Sp(A2' p)A2' p3'RC1H3	Imai et al., 1985
B-γ-CF2-A4(ox-red)	
ppp5'- and p5' A2' p5' A2' p5'1	

This mutant RNase L was truncated by 89 C-terminus amino acid residues, and while 2-5A binding activity was present, catalytic activity was completely absent. When stably expressed in murine SVT2 cells, this truncated version of RNase L caused an inhibition of the 2-5A system. Specifically, expression of the SVT2/ZBl mutant prevented 2-5A-dependent rRNA cleavage, and the antiviral effect of IFN-α/β for EMCV was reduced by 250-fold while the antivSV effect was reduced only 2.5-fold. The antiproliferative effect of IFN was also suppressed, although the IFN-mediated induction of PKR was not. One further intriguing result that requires additional study is that in the absence of IFN when cells are infected with EMCV, a drastic decrease in RNase L occurs, and this decrease is prevented by the pretreatment of the cells with IFN (Cayley et al., 1982a). This clearly represents a viral defense against the 2-5A system.

Reoviruses are naked icosahedral, doubly encapsulated nucleocapsids of approximately 75 nm diameter, having a core of multiply segmented dsRNA. There are six nonantigenically related genera, the most significant for human disease being the genus rotavirus. Significant quantities of dsRNA are produced as replicative intermediates in the reovirus life cycle. Reovirus infection may cause 2-5A accumulation, as well as characteristic rRNA breakdown, and this may be partially compensated for by cells by means of an increase in mRNA synthesis (Nilsen et al., 1982a, 1983).
hance the levels of 2-5A synthetase and RNase L. Specific methods by which poxviruses may escape 2-5A system control remain to be determined.

5. AGENTS OF INTEREST AS ANTAGONISTS OF INTERFERON ACTION

Molecules that may inhibit or antagonize the action of 2-5A (Table 10) may be of interest for several reasons. They could block the effects of 2-5A to allow an assessment of its biochemical importance in a particular biological situation; for instance, what role does the 2-5A system play in inhibition of the growth of picornaviruses in IFN-treated cells? Similarly, by inhibiting the action of RNase L, such agents may permit the assessment of the relative importance of the 2-5A system versus another biochemical mechanism in a given situation; for example, what is the relative importance of the 2-5A system in the mechanism of inhibition of protein synthesis by dsRNA? In addition, to the extent that 2-5A or the 2-5A system might be involved in differentiation, cell growth regulation, or the pathological manifestations of IFN production and action, such antagonists (or analogue inhibitors) may lead to chemotherapeutic applications.

The first agent reported as an antagonist of 2-5A was the oligonucleotide p’5’A2’p5’A2’p5’A (Torrence et al., 1981a). Addition of 200 μM p’5’A2’p5’A2’p5’A to an L-cell-free protein synthesis system resulted in a 300-fold increase in the concentration of 2-5A required to inhibit protein synthesis. This blockade of 2-5A-mediated translational inhibition was paralleled by a similar prevention of the 2-5A mediated enhancement of nuclease activity. Thus, the oligonucleotide p’5’A2’p5’A2’p5’A was able to bind to the RNase L, but it was unable to activate it for degradation of RNA.

Subsequently, the role of 2-5A in the translational inhibitory effects of dsRNA in extracts of IFN-treated cells was examined using p’5’A2’p5’A2’p5’A as an antagonist. In fact, in an EMCV RNA-programmed, IFN-treated, mouse L-cell-free system, p’5’A2’p5’A2’p5’A was able to prevent the action of poly(I)-poly(C). A: the highest concentration (200 μM) of p’5’A7’p5’A7’p5’A tested, and with poly(I)-poly(C) at 2 μM, up to 80% relief of the dsRNA-mediated inhibition of translation could be obtained (Torrence et al., 1981a). Studies conducted in the above cell-free system, but using phosphodiesterase-stabilized antagonists, such as p’5’A2’p5’A2’p5’A2’p or the N-hexylmopholine-terminated 2’,5’-oligoadenylate, revealed that even when allowance was made for the substantial concentrations of 2-5A generated by the poly(I)-poly(C)-activation of 2-5A synthetase, a significant translational inhibitory component, not preventable by the 2-5A antagonists, remained. Thus, while 2-5A was the primary mediator of the poly(I)-poly(C)-induced translational repression in this particular cell-free system under given conditions, another mechanism (protein kinase?) apparently was operational also (Torrence et al., 1981a).

The relative contribution of the 2-5A-dependent ribonuclease to the mechanism of dsRNA action (Lengyl, 1987) can vary, depending upon the exact particulars of the system under investigation. For instance, studies of Miyamoto et al. (1983) confirmed the previously reported studies (Torrence et al., 1981a) that the 5’-monophosphate p’5’A2’p5’A2’p5’A could block the activation of RNase L by 2-5A. Specifically, it could block the 2-5A-mediated degradation of reovirus mRNA. However, in contrast to the results of Torrence et al. (1981a), Miyamoto et al. (1983) found that reovirus mRNA translational inhibition by reovirus dsRNA in extracts of IFN-treated mouse cells was only partly prevented (30-35%) by p’5’A2’p5’A2’p5’A, in distinct contrast to the 80% prevention of poly(I)-poly(C) action seen earlier (Torrence et al., 1981a). The remaining inhibitory activity of reovirus dsRNA was ascribed to the PKR (Miyamoto et al., 1983). These differences emphasize that what would appear to be relatively minor differences in conditions may lead to major shifts in the mechanism by which dsRNA operates to inhibit protein synthesis, at least in cell-free extracts. Whether such would be the case in intact cells remains a subject of inquiry. It might be expected that with such a parallel functioning of the two dsRNA-activatable systems, it may be difficult to dissect their relative contributions to IFN action.

The antagonism of 2-5A action by p’5’A2’p5’A2’p5’A in mouse L-cell-free extracts was extended to intact cells (Black et al., 1985). Calcium phosphate was used to introduce the p’5’A2’p5’A2’p5’A into cells. Under these conditions, p’5’A2’p5’A2’p5’A (10^-4 M) was able to prevent the protein synthesis inhibitory effects of 2-5A (10^-6 M).

While p’5’A2’p5’A2’p5’A has been an effective inhibitor of the activation of RNase L in mouse L-cell extracts in some lines of mouse L-cells (Torrence et al., 1981a; Miyamoto et al., 1983; Black et al., 1985; Haugh et al., 1983), it does not have general applicability to other cell-free systems or other intact cells. In some other systems, such as some cultures of mouse L-cells (Haugh et al., 1983) or in cell-free extracts of Daudi lymphoblastoid cells or HeLa cells (Haugh et al., 1983; Lestak and Torrence, 1987), the 5’-monophosphate mimics the action of 2-5A. In some cases, this could be due to the conversion of the 5’-monophosphate to the corresponding 5’-di- or 5’-triphosphate. In the case of human cells, however, it is now established that the pure human RNase L is activated equally well by 2-5A as 5’-triphosphate or as the 5’-monophosphate (Dong et al., 1994). Thus, p’5’A2’p5’A2’p5’A cannot be used as an antagonist of 2-5A action in human-derived systems.

Following the lead of Torrence et al. (1981a), Watling and co-workers (1985) employed an analogue-inhibitor (antagonists) of 2-5A action in intact cells. This molecule consisted of a trimeric 2’,5’-oligoadenylate with a terminal 5’-monophosphate modified to a methylthiophosphate for phosphatase protection and a 2’-terminus protected with a 3’-O-methyl group to provide resistance to phosphodiesterase degradation and a 2’-pyrophosphate to enhance precipitation with calcium phosphate used in the transfe-

The 2-5A Natural Defense System

81
tion procedure to introduce the 2-5A analogue into cells. Upon calcium phosphate transfection, this analogue inhibitor (abbreviated as \(\text{CH}_{3}\text{pA}^2\text{p5'}\text{A}^2\text{p5'}\text{A}^2\text{p5'}\text{OCH}_2\text{p}^2\text{p} \)) could block activation of RNase L by 2-5A itself in both cell-free extracts and in intact cells. Most importantly, in IFN-treated and encephalomyocarditis-infected cells, this analogue, after calcium phosphate-aided uptake, could inhibit 2-5A-mediated rRNA cleavages, and it also could restore partially the synthesis of EMCV RNA synthesis and virus yield. The partial reversal of virus replication by \(\text{CH}_{3}\text{pA}^2\text{p5'}\text{A}^2\text{p5'}\text{A}^2\text{p5'}\text{OCH}_2\text{p}^2\text{p} \) was taken as evidence to implicate the 2-5A system in the inhibition of EMCV growth by IFN (Watling et al., 1985). However, since the reversal was at best only 20%, it was not clear whether or not this represented the 2-5A system’s maximum contribution to the anti-EMCV effects of IFN, or whether compensatory action by some different mechanism (e.g., PKR) had occurred.

6. BIOLOGICAL ROLES FOR THE 2-5A SYSTEM
A large variety of studies have implicated all or part of the 2-5A system (Fig. 2) in various biological phenomena.

6.1. Regeneration of Liver
The regenerating rat liver (Bucher and Malt, 1971) has provided a model system in which the potential role of 2-5A has been examined (Smeeks-Etienne et al., 1983; Etienne-Smeeks et al., 1983). In these studies, the levels of 2-5A synthetase, as well as 2-5A itself, were determined in both normal and regenerating rat livers. After partial hepatectomy, parallel changes in the activity of 2-5A synthetase and the concentration of 2-5A occurred. Both enzyme and oligonucleotide decreased several-fold and then increased to normal prehepatectomy activity (2-5A synthetase) and concentration (2-5A). The loss of 2-5A synthetase activity preceded the onset of labeled thymidine incorporation into DNA, synthetase activity was lowest when DNA synthesis was maximal, and when 2-5A concentrations were lowest, DNA synthesis was greatest. Thus, this system provided good correlation between 2-5A synthetase activity and/or 2-5A concentration and cell growth. These results have been interpreted as circumstantial evidence to implicate the 2-5A system in the negative control of growth, at least in the regenerating rat liver.

6.2. Estrogen Administration and Withdrawal
Another system that has provided evidence for a biological role for the 2-5A system involves estrogen administration to immature chicks. Estrogen treatment leads to differentiation and growth of the tubular gland cells in the oviduct. Egg white proteins, predominantly ovalbumin, are synthesized in such tubular gland cells (Schimke et al., 1975; O’Malley et al., 1977; Palmiter et al., 1977). If estrogen treatment is discontinued, there results a gradual 2- to 3-week decline of ovalbumin synthesis and a decrease in oviduct size. Egg white proteins and oviduct growth may be reinduced by a variety of agents, including estrogens, progesterone, glucocorticoids, carcinogens, or tumor promoter (reviewed by Cohrs et al., 1988), but the initial or primary stimulation occurs only with estrogens.

Rapid or acute withdrawal of estrogens, as with surgical removal of a diethylstilbestrol implant, caused inhibition of transcription of egg white protein mRNAs and a speedy degradation of existing hormone-induced mRNAs (reviewed by Cohrs et al., 1988). Ovalbumin’s mRNA half-life was reduced from 24 hr in the hormone-treated chick’s oviduct to 2-6 hr in the hormone-withdrawn chick’s oviduct. Restimulation led to new ovalbumin mRNA through transcription.

Stark et al. (1979) reported that 2-5A synthetase was present at very low or undetectable levels after restimulation of the oviduct with estrogen, but that during estrogen withdrawal, the activity of 2-5A synthetase rose dramatically. Cohrs et al. (1988) extended this observation by examining 2-5A concentrations and the fate of mRNAs in the estrogen-treated and withdrawn chick oviduct. Low concentrations (0.7 nM) of 2-5A could be detected in oviducts from chicks given secondary estrogen stimulation. Following acute estrogen withdrawal, the 2-5A concentration increased 2-fold at 6 hr post-withdrawal. 2-5A was determined using the functional nuclease assay of Silverman (1985). No HPLC evidence for 2-5A was gathered. In the further course of this study, Cohrs et al. (1988) found that a distinct 18s rRNA species, about 450 nucleotides in length, underwent a significant increase in intensity at 6 hr and more after acute estrogen withdrawal. This 18s rRNA-derived fragment showed an identical mobility on denaturing agarose gels as the 18s rRNA fragment produced when chick oviduct ribosomes were incubated in vitro with partially purified 2-5A-dependent RNase from chick oviduct. Cohrs et al. (1988) concluded that chick oviduct 2-5A-dependent RNase may be involved in the degradation of rRNA brought about by estrogen withdrawal and that the 2-5A-dependent RNase may play some role in the normal turnover of rRNA. Nonetheless, since no specific 2-5A-dependent RNase-derived ovalbumin mRNA product could be detected, and since the 18s rRNA-derived fragment showed no detectable increase at 3 hr after estrogen withdrawal when 35% of ovalbumin mRNA was degraded, it would seem premature to implicate the 2-5A system in the ovalbumin mRNA turnover.

6.3. Erythropoietin Cells
Orlic et al. (1981, 1984a) discovered that rat bone marrow cell cultures were inhibited in their ability to respond to erythropoietin induction of red cell formation when they were treated with 2-5A tetramer core (\(\text{A}^2\text{p5'}\text{A}^2\text{p5'}\text{A}^2\text{p5'}\text{OCH}_2\text{p}^2\text{p} \)) at a concentration of \(10^{-4} \) M. Not only did the 2-5A tetramer core cause a reduction of erythroid colonies, but it also inhibited [H]thymidine incorporation. Orlic et al. (1982) further found that in the livers and spleens of rats made anemic by phenylhydrazine injections, there was a direct correlation between the rate of erythropoiesis and 2-5A
synthetase activity. These studies were later extended (Orlic et al., 1984b, 1985) to include both hypoxia-induced and phenylhydrazine-induced erythropoiesis in mice. In the latter case, spleen cell lysates showed a 1.9- to 2.8-fold increase in 2-5A synthetase activity, as assayed by the poly(1)poly(C)-agarose method. In the hypoxia studies, 2-5A synthetase increased 102% over control values; moreover, 2-5A synthetase activity was maximal in spleen cell populations containing the largest number of nucleating cells, whereas 2-5A synthetase activity was minimal in populations carrying the fewest nucleated cells. In addition, Orlic et al. (1984b) found that L-2,5A trimer (A2'p5'A2'p5'A) and tetramer cores partially inhibited the colony-forming response. On the basis of these foregoing results, the speculation has been advanced that 2-5A may play a role in regulating some of the late events in erythropoiesis.

Possibly relevant to the above observations is the report by Ortega et al. (1979) that IFN has a suppressive effect on erythroid cell proliferation. Ortega et al. (1979) suggested that IFN's inhibitory effect on erythropoiesis might be the cause of the acute erythrolastopenic crisis seen in certain patients with viral infections. Orlic et al. (1984b) then further speculated that this effect, in fact, may be mediated by the 2-5A system.

Ferbus et al. (1984) also examined erythropoiesis in rabbits made anemic by hemimaging or phenylhydrazine injections. Erythrocytes formed under such conditions initially had high activity of 2-5A synthetase, but this activity decayed as the erythrocytes aged. These authors hypothesized that 2-5A synthetase, through 2-5A synthesis and resultant activation of RNase L, could be effecting the degradation of mRNA in the reticulocyte.

6.4. The Cell Cycle and 2-5A

Wells and Mallucci (1985) examined the levels and activities of the various components of the 2-5A system in highly synchronized cultures of mouse embryo fibroblasts. 2-5A synthetase activity was low in cells in G1 and in early S phases, but increased approximately 10-fold at the peak of S phase and remained at similar high levels through the remainder of S phase. 2-5A synthetase activity dropped dramatically as the cells went through G2 and returned to G1. The increase in 2-5A synthetase activity was not due to its induction by autocrine IFN, since treatment of the cells with the autocrine IFN they produce brought about an increase in 2-5A synthetase from cells in the G0 phase, but had no effect in cells that were in the G1 or S phases of the cell cycle (Wells and Mallucci, 1988).

In the mouse embryo fibroblast system, low basal levels of 2-5A synthetase were maintained concurrent with low concentrations of a 1.7 kb 2-5A synthetase mRNA. Induction of cells in G0 with autocrine IFN caused a considerable increase in the amounts of the 1.7 kb mRNA and a trace appearance of a 4 kb 2-5A synthetase mRNA. In contrast, the surge of S phase synthetase activity, unrelated to autocrine IFN, was related to expression of the 4 kb synthetase mRNA (Mallucci et al., 1985, 1986; Chebath et al., 1986). Similar results were obtained when the IFN employed was virus-induced.

Activity attributable to a 2',5'-oligophosphodiesterase was higher in confluent quiescent G0 cells, in contrast to other reports. RNase L activity rose 2-fold in S phase, also in contrast to other studies. Wells and Mallucci (1985) could not detect significant concentrations (>1 nM) of 2-5A in cell extracts by HPLC and so, concluded that if 2-5A is involved in control of the cell cycle in mouse embryo fibroblasts, it must operate at subnanomolar levels as a result of localized activation or activation for brief periods of time.

In A431 cells, IFN-γ treatment caused inhibition of growth, prolongation of the G0-G1 phase, and also caused dramatic morphological alterations, including an increase in cell size and production of sheets of fused cells (Kumar and Mendelsohn, 1989). In such cells, 2-5A synthetase activity was increased (approximately 3 times), as was the 1.6 kb 2-5A-synthetase mRNA. In addition, there was a differential induction and expression of the different 2-5A synthetase isoenzymes, as well as apparent differences in the enzymatic activities of the three (~40, ~67, and ~100) isoenzymes, all of which suggested to the authors that growth inhibition of A431 cells by IFN involves the mediation of 2-5A synthetase.

In a second study, Kumar and Mendelsohn (1990) found that A431 cells treated with IFN-γ specifically synthesized increased levels of the mRNA for the polypeptide TGF-α, which is required for the growth of a variety of epithelial cells. Such IFN-γ-treated cells also secreted increased concentrations of TGF-α after 4 days of treatment. In this A431 cell system, TGF-α induced a 2-fold increase in 2-5A synthetase activity, ascribable mostly to the 100 kDa form. The authors (Kumar and Mendelsohn, 1990) suggested that these results implied regulatory interactions between TGF-α and IFN-γ, that the prolonged induction of 2-5A synthetase by IFN-γ in A431 cells could be due to the IFN-γ-induced late expression of TGF-α, that the autocrine action of TGF-α could be responsible for the high constitutive levels of 2-5A synthetase in A431 cells, and, finally, that induction of 2-5A synthetase may be a mediator of negative feedback regulation by TGF-α, as postulated for PDGF (Zullo et al., 1985).

6.5. Platelet-Derived

Growth Factor, Interferon, and 2-5A

PDGF is a mitogen found in platelets and is released from them during the blood clotting reaction. At the wound site, PDGF probably has many functions, including promotion of the repair of damaged tissue in cooperation with other growth factors. Treatment of cells with PDGF induces a state of "competence" (Pledger et al., 1977) in such cells so that they can respond to other defined growth factors, such as insulin-like growth factor and epidermal growth factor, proceeding to engage in DNA synthesis. A variety of such "competence" genes have been described and include c-fos
and c-myc (Cochran et al., 1984). Zullo et al. (1985) found that dsRNA was a potent inducer of the competence gene family. Conversely, the same group also reported that PDGF stimulated expression of the genes usually characterized as being dsRNA-inducible; namely, 2-5A synthetase and IFN-β. Zullo et al. (1985) proposed that the 2-5A synthetase and IFN genes could function in a feedback loop to control cell growth. They further speculated that the mitogenic response to PDGF may be inherently self-limited. Thus, at the same time it induces the genes necessary to trigger cell division, PDGF may also induce those genes required for the eventual control of such division.

6.6. Heat Shock

Nearly all cells, prokaryotes and eukaryotes, can respond to a sudden rise in growth temperature (heat shock) by the synthesis of a new set of proteins called hspS. Such proteins also can be elaborated upon exposure of the cells to other environmental stresses such as ethanol. Chousterman et al. (1987) found that hyperthermia not only induced hsp synthesis in bovine kidney cells (MDBK cells), but also induced 2-5A synthetase. An important difference in kinetics of induction was noted with the synthesis of hsp, which reached a maximum about 3 hr after the temperature shift, whereas induction of 2-5A synthetase was maximal 18 hr after the change in temperature. In addition, such heat-shocked cells released a 70 kDa factor (hsp 70) (Chelbi-Alix and Sripati, 1994), different from IFN, which could induce 2-5A synthetase in fresh non-heat-shocked cells. Similarly to the hypothesis of Zullo et al. (1985), Chousterman et al. (1987) suggested that 2-5A synthetase might function as a feedback regulator in the cells’ response to stress. According to their hypothesis, 2-5A synthetase may be part of a rescue mechanism in response to stress. This rescue would be accomplished by increasing the degradation of hsp mRNA through the action of 2-5A synthetase-generated 2-5A that would activate the 2-5A-dependent RNase.

6.7. Ethanol

Ethanol also induces 2-5A synthetase mRNA and activity, as well as hsp 70 (Chelbi-Alix and Chousterman, 1992). In contrast to the foregoing situation of heat shock itself (Chousterman et al., 1987), ethanol also induces IFN synthesis and an antiviral state in MDBK cells (Chelbi-Alix and Chousterman, 1992). Both the antiviral state and the appearance of 2-5A synthetase activity could be prevented by antibody to bovine IFN-β, thereby establishing that 2-5A synthetase was induced by externalized IFN and not by hsp 70. Thus, even though the mechanisms of induction of 2-5A synthetase were different, Chelbi-Alix and Chousterman (1992) observed that cellular recovery from ethanol treatment may involve the 2-5A synthetase and that, as in the case of heat shock, 2-5A oligonucleotide itself might serve as a signal for the termination of the stress response.

6.8. Tubular Reticular Inclusions, Interferon, and 2-5A

IFN treatment can induce the formation of cytoplasmic tubular reticular inclusions (TRI), which are complexes of membranous tubules associated with the endoplasmic reticulum or perinuclear cisternae (Grimmley et al., 1984; Grimmley and Schaff, 1976). They are typically observed in humans with acquired immunodeficiency syndrome (AIDS) or systemic lupus erythematosus, both diseases in which endogenous IFN production is increased relative to disease-free subjects. Feldman et al. (1988) noted that in human umbilical vein and thoracic aorta endothelial cells, IFN induced formation of TRI under conditions wherein 2-5A synthetase was also induced; however, whereas 2-5A synthetase activity remained constant at 2 days of IFN treatment, TRI continued to increase in size and number. The correlation between TRI and 2-5A synthetase induction also failed to extend to a number of other cell lines, in which no TRI formed, even though there was significant elevation of 2-5A synthetase activity.

6.9. Atherosclerotic Plaque

Smooth muscle cell proliferation is involved in the formation of human atheromatous plaque. Smooth muscle cells in such atherosclerotic lesions express major histocompatibility complex Class II antigens, and such lesions also contain T-cells that may be activated to secrete IFN-γ, which could suppress proliferation of the smooth muscle cells and act as a negative control of plaque formation. Warner et al. (1989) reported that immune IFN (IFN-γ) inhibited proliferation of smooth muscle cells from adult human blood vessels stimulated with the mitogens IL-1 and PDGF. IFN also delayed the transient mitogen-induced increase in c-fos mRNA. 2-5A synthetase activity was induced with IFN-γ, as well as other IFNs, but the time required for this response was much longer (24 hr) than the blockade seen in c-fos increase, implying that 2-5A system could not be completely responsible for the observed inhibition of proliferation.

6.10. Sarcolectins

Sarcolectins represent a family of proteins that bind to simple sugars, can agglutinate vertebrate cells, and can antagonize the antiviral action of IFN by accelerating the decay of the antiviral state. These proteins do not interact directly with IFN or its receptors. Jiang et al. (1988) found that in mouse cells, under conditions wherein IFN brings about a 4- to 8-fold increase in PKR and the 2-5A synthetase (predominantly the 100 kDa isoenzyme), the addition of sarcolectin 5 hr after IFN resulted in major decreases in both the 2-5A synthetase and PKR, as judged by enzyme activities and Western blots. Jiang et al. (1988) have suggested that sarcolectins may induce proteins that oppose, in an equilibrium fashion, the formation of the two IFN-induced proteins PKR and 2-5A synthetase. Since sarcolectins oppose IFN action, it is possible that they could be part of a homeostatic mechanism for the control of cell growth or...
differantiation. For instance, both are found together in the human placenta during the fetal phase of pregnancy.

6.11. Growth Inhibition by Interferon

Chapekar et al. (1988) described a human epithelialoido cell line called A431, which is highly sensitive to the growth inhibitory effects of dsRNA. Poly(I)-poly(C) did not cause secretion of IFN into the medium of cells, and anti-IFN serum did not block the growth-inhibitory effects of poly(I)-poly(C). Poly(I)-poly(C), however, did produce an induction of 2-5A synthetase activity (2- to 6-fold increase) and caused the degradation of 45S pre-rRNA, 28S and 18S RNAs. Nonetheless, no 2-5A itself could be found in poly(I)-poly(C) treated cell extracts, a result hypothesized to be due to high 2',5'-phosphodiesterase activity (Chapekar et al., 1988). The authors further speculated that the growth inhibitory effects of dsRNA in A431 cells were independent of IFN action, but rather were associated with RNA degradation, which perhaps was caused by activation of the 2-5A system.

6.12. Endochondral Ossification

Maor et al. (1990) provided the first in vivo evidence that the 2-5A synthetase may be involved in a differentiation process; specifically, endochondral ossification. In embryonic mouse mandibular condyles, 2-5A synthetase activity was significantly lower in the proliferative zone of the condyle than in the more mature condylar zone where cartilage-specific proteins already had formed. In neonatal condyles, 2-5A synthetase activity was highest in the chondroprogenitor zone, which contains proliferating cells that have not differentiated. In condylar cartilage proper, where expression of cartilage antigens was complete, the activity of the 2-5A synthetase was decreased significantly. Also of note was that in the above system, the predominant 2-5A product in the assays to determine synthetase activity was the trimer pppA2'p5'A2'p5'A. The authors concluded that at least, 2-5A synthetase could be used as a marker of differentiation in the developing condyle cartilage of neonatal mouse.

6.13. Myoblast Differentiation

To address whether IFN-induced enzymes may be involved in differentiation (Salzberg et al., 1990a), Birnbaum et al. (1993) worked with primary myoblasts from embryonic tissue. In culture, these cells underwent fusion to multinucleated myotubes that showed spontaneous contraction and expressed antigens specific to muscle. Infection of rat skeletal muscle cell cultures with Moloney MSV blocked myotube formation, as well as the muscle-specific proteins myosin light chain-2, creatine kinase, and acetylcholine receptors. Viral genes were expressed in the infected cells. In contrast to uninfected cell cultures in which the growth-associated gene c-myc transcripts decreased over time, in the Moloney MSV-infected cultures, the c-myc RNA transcripts increased over time. Examination of control cultures showed that 2-5A synthetase activity increased up to 3 days after seeding of the cells and then decreased; however, in MSV-infected cultures, 2-5A synthetase activity was reduced immediately after infection, but showed a substantial increase between days 5 and 7 in culture (3-5 days after infection). A nontransforming virus, Moloney murine leukemia virus, showed the same kinetics of 2-5A synthetase activity as did control cultures. Thus, the normal transient expression of 2-5A synthetase activity associated with muscle cell differentiation in culture is significantly altered in cell cultures infected with MSV, and this finding suggested to the authors a potential role for 2-5A synthetase in myogenesis. Birnbaum et al. (1993) went on to suggest that since MSV-transformed cells have an unusually high activity of 2-5A synthetase, it may be possible that the enzyme functions as a regulator of cell growth and no longer may be controlled effectively in the transformed cell.

6.14. Neuron Differentiation

A model system used to attempt to understand the differentiation of neurons is the treatment of the rat pheochromocytoma cell line PC12 with NGF. Saarma and co-workers (1986) found a 3-fold increase in 2-5A synthetase activity when PC12 cells were treated with NGF, and simultaneously, they detected a 2- to 4-fold decrease in the activity of the 2',5'-phosphodiesterase activity. In addition, 2',5'-oligoadenylates underwent an approximately 10-fold increase in the first hours after NGF treatment. The authors suggested that these changes in the constituents of the 2-5A system were associated with NGF-dependent differentiation in PC12 cells.

6.15. Growth Control Re-Establishment

A phenotypically revertant cell line of Ha-ras-transformed NIH 3T3 cells can be obtained after prolonged treatment with IFN-α/β. These cells maintained the revertant non-tumorigenic phenotype, resisted transformation by specific oncogenes, and still expressed Ha-ras-specific mRNA and its protein product p21, even after being passaged in the absence of IFN (Samid et al., 1987). Rimoldi et al. (1990) found that such revertant cells expressed elevated levels of 2-5A synthetase activity and the corresponding 1.7 kb mRNA, and that these levels were considerably higher than in normal parental cells of Ha-ras-transformed NIH 3T3 cells. These revertant cells showed a functional result of this enhanced expression of 2-5A synthetase in that they were more resistant to infection by mengovirus than were either normal or transformed NIH 3T3 cells. No endogenous production of IFN or mRNA for IFN-β could be detected in these revertant cells, demonstrating that these cells constitutively produce functional 2-5A synthetase in the absence of endogenous IFN production. The authors concluded that these results suggested a relationship between 2-5A synthetase expression and the re-establishment of growth control in these cells possessing the revertant non-tumorigenic phenotype.
Peripheral blood lymphocytes (PBL) were examined for the presence of 2-5A synthetase in a study reported by Bonnevie-Nielsen et al. (1991b). PBL homogenates from Sprague-Dawley rats and from BB (autoimmune) rats were observed to have high basal levels of 2-5A synthetase activity in the absence of poly(I)-poly(C); moreover, addition of poly(I)-poly(C) at 200 mg/mL was needed to cause further activation of the synthetase, and the 2-5A synthetase activity from BB rat PBL was totally unaffected by addition of poly(I)-poly(C). PBL extracts from dog, pig, sheep, and humans were all comparable in virtual lack of 2-5A synthetase activity in the absence of dsRNA and showed increased activity as the concentration of poly(I)-poly(C) was increased. The additional remarkable aspect of this study was the finding that PBL extracts of BB rats gave rise to only putative 2-5A dimer, and this did not change by addition of increasing amounts of dsRNA. Equally unusual was the observation that PBL extracts of sheep and humans produced exclusively, or nearly so, octamer 2-5A in response to poly(I)-poly(C) stimulation. Human PBL extracts sometimes were able to produce tetramer also. Trimer 2-5A was observed only in poly(I)-poly(C)-treated extracts from human PBL pretreated with IFN. The authors suggested that the aberrant synthesis of inactive 2-5A dimers and the lack of stimulation of the 2-5A synthetase by poly(I)-poly(C) could imply a connection between the 2-5A system and the development of autoimmune insulin-dependent diabetes mellitus (IDDM) in the BB rat (Bonnevie-Nielsen et al., 1991b).

6.17. 2-5A System and Transmissible Gastroenteritis Virus

Bosworth et al. (1989) investigated the induction of 2-5A synthetase and its potential role in the course of a coronavirus infection by transmissible gastroenteritis virus. 2-5A synthetase activity was increased 25-fold and replication of transmissible gastroenteritis virus was inhibited in cultured swine testicular cells treated with recombinant bovine IFN. In addition, in the same cells treated with IFN and infected with virus, detectable 2-5A (3.6 nM) was present. Infection of neonatal pigs with transmissible gastroenteritis virus caused IFN production and a 25-fold increase in 2-5A synthetase activity in enterocytes; however, no 2-5A oligonucleotides could be found under these in vivo conditions, and this was attributed to substantial dilution of the virus-infected cells with uninfected (crypt) cells. Thus, even though IFN limited the increase in virus titer in cultured cells and induced 2-5A synthetase, it could not prevent the cytopathic effect of the virus. A similar situation was obtained in vivo since 2-5A synthetase increases could be detected in the intestines of newborn pigs in response to IFN induction by virus and before virus-induced histology was present, yet cellular destruction proceeded. Since based on the above results dsRNA must have been generated (in sufficient amounts to activate the 2-5A synthetase), the dsRNA-activated PKR pathway must also be ineffectual in this coronavirus infection. Establishment of the presence of functional RNase L in this system would be of interest.

6.18. Melanoma Cell Growth and Interferon

Creasey et al. (1983) presented evidence to implicate IFN and 2-5A synthetase in the cytoplastic action of IFN and in the growth regulation of melanoma cells in culture. High-density cell cultures of nutrient-starved HS294T human melanoma cells produced low levels of IFN. Antibodies against human IFN-β made such cultures enter the S phase of the cell cycle earlier than did IFN-untreated cells when the cultures were stimulated with serum. Further analysis showed that there was an inverse correlation between 2-5A synthetase activity levels and the percentage of cells in S phase of the cell cycle in IFN-untreated melanoma cultures. Treatment with IFN caused the correlation to break down since 2-5A synthetase levels were elevated in all phases of the cell cycle. As a result of these observations, the authors postulated a correlation between the growth inhibitory property of IFN and the activity of 2-5A synthetase, with the caveat that additional direct evidence would have to be provided to give this hypothesis support.

6.19. The 2-5A System and Human Immunodeficiency Virus

A great deal of interest centers around the activity of the 2-5A system in HIV infection (Wu et al., 1990). Immunologic dysfunction in HIV may include aberrancies in the production of cytokines such as IFN-α or IFN-γ. For instance, a decrease in the level of IFN-α in cultured PBMCs of patients with HIV-1 has been reported (Voth et al., 1990), while in patients with AIDS, IFN-γ levels may be increased (Rossel et al., 1989). There is also evidence that RNase L activity in lymphocytes of AIDS patients is absent despite high levels of 2-5A (Carter et al., 1987). The 2-5A metabolic enzymes are present in the nuclear matrix (see Section 4.1), which also harbors HIV mRNA precursors (Verheijen et al., 1988).

The HIV-1 gene product tat or transactivating protein causes a dramatic increase in the steady-state levels of HIV-1 long terminal repeat (LTR)-derived mRNAs. The interaction of tat with a region in the HIV LTR called TAR mediates this up-regulation of HIV mRNAs. The TAR sequence also is present in the 5′ leader untranslated region of HIV mRNA as a large inverted repeat that forms a stable stem-loop structure. When the TAR element is fused to a heterologous RNA, the result is an inhibition of that RNA's translation.

Edery et al. (1989), SenGupta and Silverman (1989), and Maitra et al. (1994) have found that the above translational inhibition is due in part to activation of the IFN-induced PKR by HIV-1 leader RNA containing the dsRNA stem-loop structure. In addition, 2-5A synthetase also is activated by purified TAR RNA (SenGupta and Silverman, 1989; Maitra et al., 1994). Although, it was postulated that the activation of IFN-induced enzymes could play a role in
the inhibition of HIV, Roy and co-workers (1990) reported that HIV-1 infection of CEM cells caused a down-regulation of the p68 dsRNA protein kinase. Furthermore, stable expression of tat in IFN-treated HeLa cells caused a reduction in the amount of dsRNA protein kinase compared with IFN-treated control cells. The expression of 2-5A synthetase mRNA was not affected under these conditions. Thus, HIV infection would act to mitigate against potential translational inhibitory effects of TAR RNA through any mechanism involving the dsRNA protein kinase (Roy et al., 1990).

Schroder and co-workers (1988, 1989) reported that the nuclear matrix of HIV-infected, as well as uninfected, H9 (human T-cells) contained 2-5A synthetase that was increased by a factor of 7.7 in the HIV-infected cells. This latter increase was accompanied by a 5- to 10-fold increase in 2-5A oligonucleotides in nuclei from HIV-1-infected H9 cells. Also increased in HIV-infected cells was an exonuclease activity that degraded 2-5A. The 2-5A-dependent RNase activity also underwent an increase to coincide with the time of maximum 2-5A synthetase activity. The RNase was also associated with the nuclear matrix, as determined by photochemical cross-linking and probably was responsible for degradation of HIV transcripts. Failure of infected H9 cells to release HIV was correlated with the presence of high concentrations of 2-5A and high levels of the 2-5A-dependent RNase. When 2-5A concentration decreased, the cells began to release HIV. Treatment of cells with 3'-azido-3'-deoxythymidine extended the duration of time during which HIV transcript degradation occurred. Schroder et al. (1989) suggested that a useful approach to screen for potential chemotherapeutic agents for HIV would be to search for compounds that would act to stabilize the concentration of 2-5A in order to extend degradation of HIV transcripts.

Schroder et al. (1990b) described the introduction of an expression vector containing the 2-5A synthetase coding region downstream of a 3'-LTR of HIV-1 into a cell line permissive for HIV infection. Expression of the vector DNA was activated in trans by the HIV tat protein. Apparently through the tat-mediated trans-activation of the 2-5A synthetase and resultant increase in 2-5A oligonucleotides, the replication of HIV was inhibited in cells transfected with the above vector. The authors Schroder et al. (1990b) postulated that HIV-trans-activated 2-5A synthetase could block HIV replication and that a possible therapeutic approach might be to embody this approach in gene therapy.

The tat protein is known to bind to a three nucleotide bulge in the stem-loop structure of TAR. Schroder et al. (1990c) demonstrated that while the TAR RNA sequence can activate 2-5A synthetase, tat protein can antagonize activation of the 2-5A synthetase by replacing the synthetase from the TAR RNA. Thus, tat can block 2-5A synthesis. So, just as with the down-regulation of the dsRNA protein kinase by HIV infection, the virus has a potential mechanism to subvert the action of the 2-5A system and its antiviral action.

Levels of 2-5A in cells decline as HIV production increases. When human T-cells were first infected with HIV, activation of nuclear matrix-associated 2-5A synthetase resulted in large quantities of 2-5A being produced, and this occurs in parallel with an increase in the activity of nuclear matrix-associated RNase L (Schroder et al., 1988). Maximal 2-5A synthetase and RNase L activities are reached at 2–3 days post-infection, during which time no progeny virions are produced. This increase of 2-5A synthetase activity at 2–3 days post-infection was found to be paralleled by an increase in 2-5A synthetase mRNA (Ushijima et al., 1993). This would indicate that after infection, either an induction of 2-5A synthetase gene expression or, less likely, an increase in 2-5A synthetase mRNA half-life occurs. Later in infection, 2-5A synthetase and RNase L activity decrease concomitant with the appearance of tat transcripts followed by an increase in viral protein synthesis and release of progeny virions. An increase in cytosolic 2-5A synthetase activity in HIV-infected human monocytes has also been reported (Baca et al., 1994). It has been noted that the release of HIV can be delayed or prevented by agents that maintain the high intracellular levels of 2-5A by stimulating the dsRNA-dependent antiviral response of infected cells; for example, IFN (Ho et al., 1985), lectins (Schroder et al., 1990a), or mismatched dsRNA (Ampligen) (Carter et al., 1987).

The trans-activator protein (tat) enhances LTR-directed gene expression by binding to the TAR (Rosen, 1991) that is present at the 5'-end of the HIV LTR, as well as all HIV transcripts. TAR has a sufficient secondary structure to bind to and to activate 2-5A synthetase in vitro (Schroder et al., 1990b; SenGupta and Silverman, 1989). However, binding of 2-5A synthetase to TAR in vitro can be prevented by addition of tat (Muller et al., 1990). Preferential cleavage of HIV mRNA may occur through localized activation of 2-5A synthetase in areas in which HIV transcripts are present in high concentration, resulting in the low levels of HIV mRNAs present during the early stage of infection. Therefore, treatments that prevent tat to TAR binding, such as the complexation of metal ions required for tat dimerization, may restore the antiviral state by enabling TAR to become capable of activating 2-5A synthetase. Thus, productive strategies for treating HIV infection using the 7.5A system may include the development of dsRNA analogues that increase 2-5A production, and nuclelease-stable, phosphatase-stable, more potent 7-5A analogues (Schol et al., 1995).

6.20. Pathogenesis of Type I Diabetes and the 2-5A System

Since potential associations between development of the autoimmune disease Type I diabetes and virus infection have been reported (Rayfield, 1990; Gamble, 1980; Yoon et al., 1979; Ginsberg-Fellner et al., 1985), and since the fact that IFN-α has been found in insulin-secreting pancreatic β-cells (Foulis et al., 1987) suggests the possible expression
of IFN-induced enzymes, Bonnevie-Nielsen et al. (1991a) explored whether or not the pathogenesis of Type I dia-
abetes might be related to deficient expression or activation of the 2-5A synthetase. Both in RIN cells (derived from a rat
insulinoma) and in pancreatic islets of Langerhans, rat IFN-α induced 10- to 15-fold increases in 2-5A synthetase activity
in parallel with stimulation of major histocompatibility complex Class I gene expression (Bonnevie-Nielsen et al.,
1991a). In addition, the authors noted that 2-5A dimers
were the principal product in IFN-unstimulated cell extracts
incubated with poly(I):poly(C), whereas the additional production of trimeric and tetrameric 2-5A required that
the extracts be derived from IFN-treated cells. The authors concluded that the 2-5A synthetase was expressed and
functional in insulin-producing cells, and suggested that the effect of virus infection on IFN-induced enzymes in
such insulin-producing cells might be explored.

6.21. Splicing and the 2-5A Synthetase

Splicing of pre-mRNA in the spliceosome involves first a
cova lent linkage of the 5′-terminal guanosine of the intron
by a 2′,5′-phosphodiester bond to a conserved adenosine
toward the 3′-terminus of the intron to form a lariat struc-
ture with the intron and the 3′-terminal exon, and then an
exclusion of the intron as a lariat as the two exons are joined.
Sperling et al. (1991) examined the possibility that the
2-5A synthetase could be involved in the initial generation
of 2′,5′-phosphodiester bonds in the first step of splicing.

Sperling and co-workers (1991) provided evidence that
(1) 2-5A synthetase is constitutively expressed in HeLa cell
nuclei at the 40 kDa and 100 kDa isoenzymes; (2) 2 5A
synthetase activity could be partly immunoprecipitated by
antibodies to components of small nuclear ribonucleopro-
teins; (3) 2-5A synthetase activity was present in the splice-
some (100 kDa isoenzyme); (4) antibodies to the 2-5A
synthetase could inhibit in vitro splicing; and (5) when nu-
clear extracts were immunodepleted of 2-5A synthetase,
they became deficient in their ability to catalyze splicing.
Sperling et al. (1991) argued that the above observations,
together with the fact that GTP can replace ATP in the
elongation of a 2′,5′-oligoadenylate primer by the 2-5A
synthetase, imply that 2-5A synthetase indeed may be re-
sponsible for the initial step of the splicing reaction.

6.22. Trisomy 21 and 2-5A

Trisomy 21 cells from patients with Down’s syndrome have
elevated levels of gene products associated with chromo-
some 21, such as IFN-α and IFN-β receptors. Gerdes et al.
(1993) demonstrated a direct relation between the number
of IFN-α and -β receptors and the basal activity of 2-5A
synthetase, and the sensitivity of this enzyme’s elevation in
response to IFN treatment. Specifically, trisomy 21 cells
showed basal levels of 2-5A synthetase 1.57-fold above nor-
mal controls, but showed only a 187% increase in response
to IFN as compared with a 251% increase in 2-5A syn-
theticase in IFN-treated controls. Gerdes et al. (1993) sug-
gested that the observed increased basal levels of 2-5A syn-
thetase could cause an inhibition of protein synthesis in
trisomy-21 cells, thereby leading to reduced cell growth;
Furthermore, the reduced sensitivity to IFN would make the
cells more susceptible to virus infection.

6.23. Yellow Fever Vaccination,
Insulin-Dependent Diabetes, and 2-5A

Bonnevie-Nielsen et al. (1989) followed the induction of
2-5A synthetase activity after vaccination against yellow
fever in control subjects and in subjects with IDDM. As
measured by synthesis from [32P]labelled ATP in extracts of
PBL, 2-5A synthetase activity increases were significantly
lower in subjects with IDDM as compared with matched
controls after immunization with yellow fever vaccine; how-
ever, the IDDM subjects had higher basal 2-5A synthetase
activities than controls, and this was held responsible for the
attenuated response to vaccination. Bonnevie-Nielsen et al.
(1989) proposed that a persistent viral infection or the pre-

cence of a foreign nucleic acid could explain the elevated
2-5A synthetase activity levels seen in the IDDM subjects’
lymphocytes.

6.24. Pregnancy, Trophoblast
Proteins, and the 2-5A System

In mammals, the corpus luteum undergoes regression to
permit a new ovarian cycle. During pregnancy, however,
the corpus luteum life span is extended so it can produce
progesterone, which provides an environment conducive to
conceptus development. Prevention of luteal regression de-
depends on biochemical signals originating from the conceptus
as part of maternal recognition of pregnancy. In primates, the
primary conceptus luteotrophic signal is chorionic gonado-

trophin.

In many ovine, porcine, and caprine species, prostaglan-
din Fα is responsible for inducing regression of the corpus
luteum. During pregnancy, prostaglandin Fα continues to
be released, but the mode of release changes from pulsatile,
which is held responsible for regression of the corpus lu-
etum. Protein factors identified as ovine trophoblastic pro-
tein (oTP-1) and bovine trophoblastic protein (bTP-1)
have been found to be primarily responsible for this alter-
atation of prostaglandin Fα secretion pattern (Barros et al.,
1991). Moreover, both oTP-1 and bTP-1 have been char-
acterized as IFNs, being closely related to IFN-α and IFN-ω
(Roberts, 1991). Similar proteins have been described for
humans also (Aboagye-Mathiesen et al., 1993).

Both oTP-1 and bTP-1 possess antiviral activities (Gill,
1991), and therefore, not unexpectedly oTP-1 infusion
caus ed enhancement of 2-5A synthetase activity in the en-
dometrium of ewes during early pregnancy. The conceptus
protein bTP-1 induced 2-5A synthetase activity in Madin-
Darby kidney cells as did IFN-α, -β, and -γ (Short et al.,
1991). In addition, both oTP-1 and bIFN-α induced 2-5A
synthetase activity in monolayers of endometrial epithelial and stromal cells (Mirando et al., 1991). It has also been shown that the presence of the bovine conceptus during the period of maternal recognition of pregnancy causes induction of 2-5A synthetase activity, most probably through conceptus secretion of bTP-1. These and related findings have led to the hypothesis that the 2-5A system, after induction of the 2-5A synthetase by bTP-1, may act to alter prostaglandin synthesis or release by uterine cells and that the 2-5A system may play a vital biological role in the maintenance of early pregnancy.

How the 2-5A system might specifically function in the above mechanisms is not at all clear, especially since a mechanism for selective action of the RNase L has not become apparent yet. Clues already may be extant in the literature, however. An intriguing study by Hansen et al. (1991) documented the combined decreased transcription rate and increased mRNA turnover for oTP-1. The mRNA of oTP-1 has 3'-noncoding sequence motifs rich in adenosine and uridine. Could such motifs be targeted by the RNase L?

6.25. A Role for the 2-5A System in Apoptosis?

Castell et al. (1997) stably transfected NIH 3T3 cells with the human RNase L gene placed under the control of an isopropylthiogalactoside-inducible lac promoter to give 3T3/RNaseLS cells. First, these cells expressed human RNase L to several-fold higher levels after treatment with isopropylthiogalactoside and after calcium phosphate-mediated introduction of 2-5A gave characteristic cleavage patterns of 28S rRNA. 3T3/RNaseLS cells grew significantly more slowly than their nontransfected parent counterparts due to an increase in cell death rate that was due to a 6-fold increase in apoptosis. Thus, increased RNase L expression led to an increased rate of apoptosis.

Second, mouse L929 cells undergo a large increase in apoptosis after exposure to both IFN and dsRNA. When these cells were infected transiently with a truncated version of the 2-5A-dependent RNase L, once bound to the 2-5A component of the chimera, might disturb hybridization to target RNA, or conversely that the double helix generated from union of antisense oligonucleotide and sense RNA might interfere with RNase L degradation. This approach would bring into play the potent and catalytic action of the latent 2-5A-dependent endonuclease, perhaps thereby substantially increasing the potency of the antisense approach.

The prototype 2-5A/antisense chimera consisted of an antisense domain made up of oligo(dt)18 connected to 2-5A through a linker (Torrence et al., 1993). This 2-5A and antisense moieties were joined by two 1,2-butanediol molecules joined to each other and to 2-5A and antisense by phosphodiester bonds. Linkage to the 2-5A tetramer was at the 2'-terminal hydroxyl and linkage to the antisense oligonucleotide was at the 5'-terminal hydroxyl. It was considered necessary that the mode of linkage to the 2-5A component should be through the 2'-terminus of the oligomer since a free 5'-monophosphate was requisite for maximal 2-5A-dependent endonuclease activity (Johnston and Torrence, 1994). Linker elements were used to join 2-5A and antisense rather than directly joining the terminal 2-5A adenosine nucleotide to the first nucleotide of the antisense sequence because of the possibility that the RNase L, once bound to the 2-5A component of the chimera, might disturb hybridization to target RNA, or conversely that the double helix generated from union of antisense oligonucleotide with sense RNA might interfere with maximum binding to RNase L. The structure of the chimeric oligonucleotide was:

\[p^{5}'A^{2}'(p^{5}'A^{2}')_{2}p^{5}'A^{2}p^{1}O(CH_{2})_{4}O^{1}p^{1}- \]
\[O(CH_{2})_{4}O^{1}p^{5}'dT3'(p^{5}'dT3')_{2}p^{5}'dT \]

Chimeric 2-5A-antisense was undiminished in ability to bind to RNase L. In addition, the composite molecule did not adversely affect the ability of the antisense domain to hybridize to its target poly(A), and when the poly(A) target was pre-annealed with the chimera pA4-dT18, there was no significant decrease in 2-5A-dependent RNase binding ability (Lesiak et al., 1993). Thus, this novel conjugate molecule retained the ability of each partner in the construct to interact with the relevant biological receptors in a manner consistent with the proposed mechanism of action.

The 2-5A-antisense strategy for site-directed RNA cleavage first was evaluated (Torrence et al., 1993) in a cell-free system consisting of a postribosomal supernatant fraction of human lymphoblastoid Daudi cells, already known to contain basal levels of the 2-5A-dependent RNase. The
The target for the pA₄₋dT₁₈ chimera was an engineered modified HIV-1 vif mRNA containing an internal 3',5'-oligoA tract; namely, TAR:A₂₅:vifRNA. The resultant RNA was end-labeled with [³²P]pCp.

When the chimera pA₄₋dT₁₈ was added to the cell-free system containing labeled TAR:A₂₅:vifRNA, there was a nearly quantitative conversion of the target RNA to a specific cleavage product. The exact sites of RNA cleavage were determined using primer-extension DNA synthesis.

The chimera pA₄₋dT₁₈ induced multiple cleavages within the oligo(A) tract of the TAR:A₂₅:vif RNA. Various control experiments provided strong evidence that cleavage of the TAR:A₂₅:vifRNA occurred by the postulated mechanism involving the 2-5A-dependent RNase. When 2-5A itself was added alone with unlinked (dT)₂₀, no specific cleavage of the target RNA was observed. In addition, RNA cleavage was dependent on a functionally active 2-5A derivative. Activation of the human 2-5A-dependent RNase requires a 2',5'-oligoadenylate with at least one 5'-phosphate group. Thus, in line with this requirement, the 5'-unphosphorylated compound A₄₋dT₁₈ did not lead to detectable RNA cleavage. The oligonucleotide (dT)₂₀ should be able to block competitively the action of the chimera pA₄₋dT₁₈ by annealing to the target A₂₅ sequence in the RNA, thus preventing access of the chimera to the RNA. Indeed, when a 10-fold molar excess of unlinked (dT)₂₀ was added to reaction mixtures containing chimeric pA₄₋dT₁₈, specific cleavage was completely blocked.

FIGURE 3. Postulated mechanism of action of 2-5A antisense.
The 2.5A Natural Defense System

following 2.5A-antisense chimeric molecule directed against PKR mRNA (Maran et al., 1994):

\[
p5'\text{A}2'\text{pO(CH2)4O}p1\text{pO(CH2)4O}p5'\text{GTACTACTCCTGTCCTCG}
\]

This chimera will be referred to as pA\(_4\)-antiPKR. The 2',5'-oligoadenylate moiety and the 3',5'-oligodeoxyribonucleotide antisense sequence were linked through phosphodiester bonds to two 1,4-butanediol units that in turn were joined by a phosphodiester bond.

The chimera pA\(_4\)-antiPKR was able to effect the cleavage of 5'-[\(^{32}\text{P}\)]labelled PKR mRNA in a cell-free system containing purified human recombinant 2.5A-dependent RNase (Maitra et al., 1994). Observable cleavage was detectable at 10–20 nM of pA\(_4\)- antiPKR, with nearly complete cleavage occurring at 25–50 nM. Under the same conditions, about 400 nM of the sense orientation chimera pA\(_4\)-sensePKR was required to cause 50% cleavage of PKR mRNA (Maitra et al., 1995). Thus, in a cell-free system, the composite molecule pA\(_4\)-antiPKR was a potent and selective inducer of target PKR mRNA destruction.

The chimera pA\(_4\)-antiPKR was added at 2 \(\mu\)M concentration to HeLa cell cultures and the cultures were incubated at 37°C for 4 hr. Total RNA was isolated from the cells, and PKR mRNA was detected using reverse transcription-coupled polymerase chain reaction methodology (RT-PCR). No signal corresponding to PKR mRNA could be detected from the pA\(_4\)-antiPKR-treated cell in contrast to the untreated cells where the PKR mRNA was clearly detectable. Thus, the chimera pA\(_4\)-antiPKR caused the complete ablation of PKR mRNA in HeLa cells. In a conclusive functional assay, it was demonstrated that cells depleted of PKR mRNA and the PKR activity were unresponsive to activation of nuclear factor-\(\kappa\)B by the dsRNA poly(I)-poly(C), thereby providing direct evidence that PKR is a transducer for the dsRNA signaling of nuclear factor-\(\kappa\)B. Thus, the ablation of PKR mRNA had a specific functional consequence (Maran et al., 1994).

Recently, respiratory syncytial virus (RSV) replication has been targeted using 2.5A-antisense (Cirino et al., 1997). Potential 2.5A-antisense oligonucleotide binding sites were selected based on computer-assisted secondary structure analysis of virus M2 mRNA. The M2 mRNA contains two ORFs, one (ORF1, nucleotides 7606–8188) for a 77 kDa internal virion protein and another (ORF2, nucleotides 8159–8431) for a protein product not yet detected in infected cells.

Appropriate 2.5A-antisense chimeras were prepared against specific sites in the computer-generated structures using second generation 2.5A-antisense chemistries. Specifically, the 5'-phosphate of the 2.5A domain of the chimera was modified to a 5'-thiophosphate that provided resistance to phosphatase action. The 3'-terminus of the antisense domain was altered to include an terminal inverted 3'-3' phosphodiester linkage that considerably increased resistance to degradation by exonucleases.

The most potent of these 2.5A-antisense chimeras spA4-antiRSV3'-3'T (8281) was directed against nucleotides 8281–8299 in the ORF2 region of the M2 RNA. For instance, in 9HTE cells, virus replication could be inhibited approximately 50% by twice daily treatment with 1 \(\mu\)M spA4-antiRSV3'-3'T (8281). In MA-104 cells, spA4-antiRSV3'-3'T (8281), upon twice daily administration, showed an EC\(_50\) (concentration to reduce virus replication by 90%) of 0.02 \(\mu\)M compared with an EC\(_50\) for ribavirin of 1 mM (D. Barnard, R. Sidwell, W. Xiao and P. F. Torrence, unpublished observations). When M2 RNA concentrations in RSV-infected 9HTE cells were examined using RT-PCR, approximately 80% decrease was seen in response to a single administration of 3.3 \(\mu\)M spA4-antiRSV3'-3'T (8281). Under these conditions, there was no effect on concentrations of the RSV N or P mRNAs, nor was there a discernible effect on cellular glyceraldehyde 3-phosphate dehydrogenase mRNA. There was no evidence for the involvement of RNase H in the antiviral activity of spA4-antiRSV3'-3'T (8281) since spA2-anti RSV3'-3'T (8281), which cannot activate RNase L because of the dimeric 2-5A domain, showed only weak anti-RSV activity and did not cause the degradation of M2 RNA. In addition, antiRSV3'-3'T (8281), without the 2.5A domain, and an all phosphorothioate oligonucleotide to the 8281–8299 sequence, were only weakly active against RSV. In summary, these foregoing results show that 2.5A-antisense can be a potent suppressor of RSV replication through its effect on RSV M2 RNA.

The 2.5A antisense approach to specific nucleic acid cleavage has a number of significant advantages when compared with other approaches to targeted cellular RNA degradation. First, it relies upon a nuclease activity that is endogenous and ubiquitous in mammalian cells, but is active only when bound to 2.5A. Second, the substrate specificity of RNase L appears susceptible to modulation through changes in the antisense cassette of the 2.5A-antisense chimera. Third, in contrast to a number of other strategies, the DNA:RNA hybrid formed presumably would still be susceptible to attack by RNase H also; however, DNA chain modifications, such as methylphosphonate introduction, while eliminating RNase H-catalyzed scission as a mode of degradation, would not be expected to affect 2.5A-dependent RNase activation ability. The recruitment of an entirely new and different nuclease for the targeted destruction of RNA should greatly expand the range and potential of antisense therapeutics.

6.27. Chronic Fatigue Syndrome and Chronic Myelogenous Leukemia

Chronic fatigue syndrome (CFS) is a disease characterized by persistent fatigue and cognitive dysfunction. A number of viruses have been associated with this syndrome, including human herpes virus (HHV)-6, Epstein-Barr virus, and some enteroviruses. As a previous trial with acyclovir showed no substantive clinical improvement in CFS pa-
tients, poly(1)-poly(C12)U (Ampligen) was evaluated as a potential therapeutic agent (Suhadolnik et al., 1994a). A study was conducted with 15 patients with particularly debilitating CFS. Poly(1)-poly(C12)U was given to all patients (Suhadolnik et al., 1994b). Levels of 2-5A synthetase, 2-5A, and RNase L were measured before and after therapy, and these data were compared with healthy untreated controls. CFS patients had a significantly lower basal level of latent 2-5A synthetase (P < 0.001), a higher 2-5A level (P = 0.002), and a higher pretherapy RNase L level (P < 0.0001), when compared with controls. PMBC extracts also had higher 2-5A synthetase levels than controls. All PMBC extracts tested were positive for replication of HHV-6. Poly(1)-poly(C12)U therapy resulted in a significant decrease in HHV-6 activity (P < 0.01), a decrease in 2-5A and RNase L activity, as well as neuropsychological improvements. Whether or not any of these observations are related to the finding (Chapekar and Glazer, 1988) that immune IFN and TNF can inhibit rRNA processing and 2-5A activation of RNase L remains to be determined.

Increased endoribonucleolytic activity, as well as increased RNase L activity, were observed in extracts of PMBCs isolated from patients with chronic myelogenous leukemia (CML) (Hubbell et al., 1994). The rRNA cleavage assay was used to evaluate the context of both activities. Two different rRNA cleavage products could be observed. The smallest rRNA cleavage products were generated by Ficoll-purified monocytes and granulocytes from CML patients, as well as the granulocytic fraction from healthy controls. The aforementioned cleavage products were generated by endoribonucleolytic degradation of larger RNase L-derived RNA cleavage products. Since the endoribonucleolytic activity, as measured by time course experiments, was up to 240-fold greater in CML patients with respect to controls, RNase L and the novel endoribonuclease postulated to play a functional role in CML.

6.28. Other Biological Receptors or Roles for 2-5A?
Is the RNase L the only biochemical target of 2-5A? A number of investigations of affinity labelling with radioactive 2-5A or its derivatives and analogues have reported, in addition to the distinct labeling of the approximately 80 kDa RNase L protein, a number of other affinity-labelled bands that were present in reduced intensity. Importantly, these bands did not label if the affinity reaction was carried out in the presence of excess 2-5A, suggesting that they too were involved in specific binding to 2-5A (Krause et al., 1985b; St. Laurent et al., 1983; Wreschner et al., 1982; Floyd-Smith et al., 1982; Bisbal et al., 1989). In some instances, certain such affinity-labelled products disappeared when protease inhibitors were included during cell extract preparations and manipulation (Krause et al., 1985b). Some of these results presumably might be explained as our understanding of RNase L dimerization (Dong and Silverman, 1995; Cole et al., 1996; Bayard et al., 1994; Salehzada et al., 1993) and association with other proteins (Bisbal et al., 1995) continues to emerge.

The above considerations of proteolytic degradation and protein-protein associations notwithstanding, other biological and biochemical effects of 2-5A and closely related compounds have been reported. For instance, Castora et al. (1991) showed that calf thymus Type I DNA topoisomerase was inhibited by a number of 2',3'-oligoadenylates, with the extent of inhibition increasing with the degree of 5'-phosphorylation and the chain length. Thus, the hexamer ppp5'A2'p5'A was the most effective, reducing relaxation by the DNA topoisomerase I at submicromolar concentration. These findings were completely corroborated in a later report (Schröder et al., 1994).

An apparent anomaly of the 2-5A system is the production by the 2-5A synthetase of ppp5'A2'p5'A, which does not bind to or activate the RNase L. Nonetheless, Alarcon et al. (1984) reported the inhibition of VSV production by this dimeric 2',5'-oligoadenylate, possibly through an effect on early virus transcription. Subramanian et al. (1990) then demonstrated that ppp5'A2'p5'A was an inhibitor of the purified RNA polymerase ("nucleocapsid") complex from VSV. Under standard assay conditions, a 50% inhibition required approximately 300 μM dinucleotide. Characteristics of this inhibition reaction were significantly different from those usually associated with the 2-5A system generally. (1) the 2',5'-linkage was not required since ppp5'A3'p5'A was equally effective; (2) only the dimer was effective with higher oligomers of greatly reduced or no inhibitory activity; (3) the dimer triphosphate was most active, the dimer 5'-monophosphate was nearly devoid of activity, and the 5'-diphosphate was of intermediate inhibitory potency.

In a possibly related study, Tominaga et al. (1990) found that the dimer "core" itself, A2'p5'A, added to cells without permeability treatments, could inhibit replication of both Sindbis virus and VSV through an inhibition of viral protein synthesis. Phosphorylated forms of dimer did not show such effects. It is difficult to see the connection between this report and the work of Alarcon et al. (1984) and Subramanian et al. (1990).

In a similar vein, Pivazian et al. (1984) reported that the dinucleotide ppp5'A2'p5'A was a potent noncompetitive inhibitor of poly(ADP-ribose) transferase activity with a KI = 5 μM. The activity of longer 2',5'-oligoadenylates was not reported.

Sobol et al. (1993b) reported on the ability of various 2',5'-oligoadenylates and their analogues to function as noncompetitive inhibitors of primer-HIV-1 reverse transcriptase complex formation. 2',5'-Phosphorothioate derivatives of the 2',5'-oligonucleotides were the most inhibitory, with Ks approximating 7-13 μM. 5'-Triphosphates were needed for optimum inhibition.

Rios et al. (1995) showed that 2',5'-oligoadenylates could inhibit rotavirus in vitro transcription. Inhibition increased with chain length and was potentiated for a given oligoadenylate by 5'-phosphorylation. Inhibition appeared competitive, with an apparent K of 156 μM. 3',5'-Oligoad-
enylates also were inhibitory, but only hexameric or longer chain lengths were effective. Surprisingly, in vitro rotavirus replication could not be inhibited by 2',5'-oligoadenylates.

In view of the concentrations required for the above effects of 2-5A and its congeners on biological receptors other than the RNase L, it is unlikely that such effects would be significant under most circumstances. However, it may be conceivable that in certain situations when micromolar concentrations of 2-5A are formed, such as during replication of picornaviruses or vaccinia virus in IFN-treated cells, 2',5'-oligoadenylates may begin to affect other enzymes, such as DNA topoisomerase I. Whether or not such possible effects may have biological repercussions remains to be seen.

7. CONFORMATION OF 2',5'-OLIGONUCLEOTIDES

7.1. Base Stacking

Circular dichroism (CD) studies on 2',5'-oligoadenylates showed that their hypochromicity was greater than that of 3',5'-oligoadenylates, leading to the suggestion that the degree of base stacking is greater in 2',5'-linked oligoadenylates than in 3',5'-oligoadenylates (Dhingra and Sarma, 1978). Using 13C NMR, on the other hand, Schleich et al. (1976) noted that in the case of 2',5'-linked versus 3',5'-linked oligoadenylate tetramers, pentamers, and hexamers revealed that the change in extinction coefficient with growing chain length increased for the 3',5'-oligoadenylates, but remained constant for the 2',5'-linked congeners. These results implied that stacking was weaker in the 2',5'-oligoadenylates compared with 3',5'-oligoadenylates. Dhingra and Sarma (1978). Using 13C NMR, on the other hand, Schleich et al. (1976) noted that large chemical shift differences between the base carbons in the dimers versus the monomers indicated base stacking in both A3'p5'A and A2'p5'A. Through the tool of Raman spectroscopy, White et al. (1967) suggested that there was no base stacking in the trimeric p5'A2'p5'A2'p5'A. In contrast, Weaver and Williams (1988) found from Raman spectroscopy that p5'A2'p5'A2'p5'A was more stacked than the deoxy trimer p5'dA3'p5'dA3'p5'DA.

Studies on other 2',5'-linked oligonucleotides also differ in their conclusions regarding stacking interactions. Parthasarathy and co-workers (1982) conducted X-ray analyses of the dinucleotide A2'p5'C and concluded that while a compact right-handed helix could exist in crystals, the stacking involved intramolecular ribose O 4'-adenine stacking, rather than classical intramolecular base stacking. The dinucleotide A2'p5'A also displayed a reduced base stacking compared with A3'p5'U in another X-ray crystallographic study (Shefter et al., 1969). In an X-ray study of the complex of C2'p5'A with the enzyme RNase S, no base stacking was seen in the dinucleotide since an extended structure was required to optimize contacts in the enzyme active site (Shefter et al., 1969).

Kondo et al. (1970) investigated CD, UV, and NMR parameters associated with the isomorphic pair A2'p5'A and A3'p5'A, as well as A2'p5'C and A3'p5'C. These authors noted that a comparison of base stacking derived from a single physicochemical measurement "is not necessarily meaningful and can be quite misleading". They found that based on CD measurements, the order of base stacking was A3'p5'A > A2'p5'A and A3'p5'C > A2'p5'C. However, from UV measurements, the base stacking was in the order A2'p5'A > A3'p5'A and A2'p5'C < A3'p5'C. From NMR "dimerization shifts," the base stacking interaction was A2'p5'A > A3'p5'A and A2'p5'C > A3'p5'C, if the adenine H-8 proton of the 5'-terminal A was used to calculate "dimerization shifts". In contrast, if the adenine H-2 of the 5'-terminal A was used as a basis, then the order of stacking was A3'p5'A > A2'p5'A. Kondo and co-workers (1970) went on to develop models using NMR data to establish relative base orientations and space-filling models for backbone constraints. They concluded that base stacking interactions were stronger in A2'p5'A and A2'p5'C than in A3'p5'A and A3'p5'C, respectively. Warshaw and Cantor (1970) also concluded that 2',5'-dinucleotides possessed a significant degree of base stacking.

In a particularly compelling comparison, Sund et al. (1992) examined a number of branched RNA structures of the general configuration

$$2'p5'G$$
$$A3'p5'U$$

such as that found in lariat RNA. In all cases, a clear preference was shown for 2'→5' versus 3'→5' base-stacked structures.

The consistent difference between solution studies, which mostly indicate a stronger tendency for 2',5'-oligonucleotides to base stack compared with their 3',5'-counterparts, and X-ray crystallographic studies, which indicate little or no base stacking in 2',5'-oligonucleotides, has been ascribed to the use of the free acid nucleotide form (pH ~ 4.5) in X-ray studies and the use of the salt form (pH ~ 7.5) in various solution studies (Parthasarathy et al., 1982).

7.2. Association of 2',5'-Oligonucleotides with Other 2',5'-Linked Nucleic Acids and with 3',5'-RNA and DNA: Theoretical and Empirical Studies

These experimental studies have been accompanied by several relevant theoretical calculations that may provide some additional understanding of the fundamental differences between 2',5'- and 3',5'-oligonucleotides. Dhingra and Sarma (1978) employed empirical dimerization shifts collected from dinucleotides to generate a set of conformational parameters to describe 2',5'-dinucleotides in general. The most dramatic outcome of this was the finding that the glycosidic torsion angle, χ_1, for the first (5') residue of a 2',5'-dinucleotide was in the low syn domain ($\chi_1 \sim -50^\circ$), while the glycosidic torsion angle for the second residue (2') was in the anti domain ($\chi_2 \sim +60^\circ$). Thus, the glycosidic torsion angle, χ_1, for the first (5') nucleotide of the
2',5'-dimer was in the syn range in contrast to the anti conformation found in the second residue of the 2',5'-dimer, and most critically, in the 3',5'-dinucleotide, which possesses an anti conformation ($\chi_2 = 60^\circ$). The end result of this is that when determined conformational parameters for A2'p5'C were used in a repeating mode, no helix formation could be obtained. Only when the backbone torsion angles were fixed and glycosidic torsion angles allowed to vary could helices be formed in certain domains of χ_1 and χ_2. In short, 2',5'-dinucleotides could be incorporated into helical structures, but at such values of χ that no base stacking interactions can be formed.

Parthasarathy et al. (1982) found that the overall conformation of 2',5'-dinucleotides, based on their X-ray diffraction analysis of A2'p5'C, was markedly different from their 3',5'-counterparts since the 2',5'-bond oriented the backbone inwards toward the bases rather than away from the bases, as in 3',5'-linked oligos. Using conformational parameters determined for A2'p5'C, Parthasarathy and colleagues (1982) determined what possible helices might be built from 2',5'-oligonucleotides. A very compact single-stranded poly(2',5'-p5'C) helix could be generated readily and was characterized as a right-handed helix with four bases per helical turn with alternating purines and pyrimidines. The repeat unit was a dinucleotide, GpCp or CpGp, with the purines in the syn conformation and the pyrimidines in the anti conformation. Base stacking was minimal in the GpC moiety, but ribose 4'-O stacking was important. However, in the GpC moiety, there was base stacking of C and G. In the CpG fragment, the 5'-phosphates had different conformations, as in Z DNA. Attempts to build a double helix with 2',5'-phosphodiester linkages failed because in order to keep the residues stacked, the Watson-Crick hydrogen-bonding sites had to be pointed in opposite directions.

Anukanth and Ponnuswamy (1986) performed exhaustive theoretical calculations of A2'p5'A. Analysis of over 400 probable conformations resulted in only 10 conformations within 5 kcal/mol of the global minimum energy state. As a result, Anukanth and Ponnuswamy were able to generate a double-helical structure similar in backbone torsion angles to standard A and B double helices; however, base stacking may be minimized in such a model.

Srinivasan and Olson's (1986) calculations indicated that long helices cannot form in 2',5'-duplexes, although short 2',5'-dimer miniduplexes were possible. Adjacent base stacking resulted in mixed glycosyl angles and sugar puckering in the 2',5'-ribose-phosphate backbone. Their data implied the possibility of a 2',5'-duplex with alternating A- and B-type stacking patterns.

Experimentally, the solid phase support synthesis of 2',5'-linked oligoribonucleotides has demonstrated that complementary sequences can form complexes with antiparallel Watson-Crick hydrogen bonded strands, albeit with T_ms significantly lower than their 3',5'-linked analogues (Kierzek et al., 1992). Thus, the self-complementary all 2',5'-octaribonucleotide CCGGCAGCCG possessed a T_m of 46°C, whereas under the same conditions, the all 3',5'-octaribonucleotide of the same sequence had a T_m of 79.3°C.

Giannaris and Damha (1993) have reported that 2',5'-linked oligoribonucleotides exhibit remarkable specificity for ssRNA; for instance, the 13-mer 2',5'-r(AGAAGGAGAGGAG) formed a duplex with its 3',5'-complementary oligomer 3',5'-r(AGAAGGAGAGGAG) of T_m 40°C in 0.1 M salt (pH 7), but no detectable complex formation was observed with the corresponding DNA oligomer 3',5'-d(AGAAGGAGAGGAG). The 2',5'-decaribonucleotide 2',5'-rA10 formed a complex (triplex) with poly(U) of T_m 54°C, whereas the corresponding complex with poly(dT) had a T_m of −1°C in 1 M NaCl. No complex of poly(dT) and 2',5'-rA10 was observable at a concentration of 0.1 M NaCl. Giannaris and Damha also observed complex formation between 2',5'-rA10 and 2',5'-rU10. This displayed a T_m of 8°C in 1 M NaCl as compared with a T_m of 28°C for the corresponding all 3',5'-linked duplex 3',5'-rA10: 3',5'-rU10.

Recently, there has been a flurry of publications on DNA with 2',5'-phosphodiester linkages (Dougherty et al., 1992; Hashimoto and Switzer, 1992; Jin et al., 1993; Jung and Switzer, 1994; Alul and Hoke, 1995; Robinson et al., 1995; Shepard and Broselow, 1996), although initial reports used a confusing 2',5'-designation for the 2',5'-phosphodiester bond. The general conclusions that can be drawn from these studies are that 2',5'-DNAs can form stable double-helical structures of the A genus conformation, but of markedly depressed stability as compared with their 3',5'-linked counterparts. For instance, the self-complementary 2',5'-d(CCGGCAGCCG) had a T_m of 36°C in 0.1 M NaCl as compared with a T_m of 72°C for the corresponding 3',5'-d(CCGGCAGCCG). However, just as with the 2',5'-ribooligomers, such 2',5'-DNAs formed duplexes with RNAs of comparable stability to the 3',5'-RNA/DNA hybrids. This selectivity, together with enhanced nuclease resistance, has led to suggestions that 2',5'-DNAs may find useful antisense applications.

7.3. Additional Conformational Parameters
In a detailed comparative study using NMR and model building, van den Hoogen et al. (1989) explored conformational facets of the 2-5A trimer p5' A2'p5' A2'p5' A and a series of 8-brominated analogues. Substitution of br^A for A in the first (5') residue or second residue of p5' A2'p5' A2'p5' A caused a shift of the N/S sugar conformation equilibrium from a slight preference for N in the first and second residues to a strong N preference. Moreover, this shift to a strong preference for N was present, albeit of less magnitude, in all brominated analogues, regardless of whether the residue was brominated. For instance, the mole percent of N was 86% in the 25A of p5' A2'p5' A2'p5' A and was shifted to >90% N in p5' br^A A2'p5' A2'p5' A, but was still shifted to 67-80% in p5' A2'p5' br^A A2'p5' A and p5' A2'p5' A2'p5' br^A. In contrast, bromination of the third (2') residue of L, 5'-(pA)3, led to a strong preference...
for the S-type sugar conformer, whereas no such preference is seen when the third A is unmodified. Brominated A residues led to greater eclipsing of ribose H2' and H3' and flatter ribose rings. The bromination of residues A1 and A2 also led to a syn orientation of the bases in those residues. When the A3 residue or 2',5'-(pA)3 was 8-brominated, the A3 base syn conformation was favored together with the S sugar conformation. These glycosidic conformations contrasted strongly with those in 2',5'-(pA)3 itself, in which all sugar-base torsion angles were in the anti range. The variation in glycosidic torsion angle led to different stacking interactions in 2',5'-(pA)3 as compared with the various brominated analogues.

In a related investigation of 9-(3'-fluoro-3'-deoxy-β-D-xylofuranosyl)-adenine and 3'-fluoro-3'-deoxyadenosine containing 2',5'-linked oligoadenylate trimers (van den Boogaart et al., 1994), it was found that when the fluorine substituent was xylo, the N-type sugar conformation was favored with flattening of the ribose ring and syn orientations for the bases in the xylo-fluoro-substituted residues. When the fluorine was in the rivo position in 3'-fluoro-3'-deoxyadenosine-substituted analogues, the sugar conformation of the substituted residue was nearly pure S-type ribose, but fluorine had little or no effect on other conformational parameters.

8. 2-5A AND THE RNA WORLD

The discovery of ribozymes (Kruger et al., 1982; Guerrier-Takada et al., 1983) rekindled earlier speculations (Woese, 1967; Orgel, 1968; Crick, 1968) that RNA replication preceded protein synthesis during evolution. "The RNA world" (Gilbert, 1986; Pace and Marsh, 1985; Sharp, 1985; Lewin, 1986; Gesteland and Atkins, 1993; James and Elington, 1995; Laccano and Miller, 1996) encompasses the idea that at an early epoch of evolution, RNA replication was responsible for the transfer of genes from one generation to the next, that Watson-Crick base-pairing was then, as now, the operational recognition mode between bases, and that catalytic RNAs, not proteins, were specified by the RNA genes.

From a prebiotic viewpoint, the assembly of 3',5'-phosphodiester bond-linked oligonucleotides is an implausible event unless the intervention of an appropriate catalyst is postulated, which would increase the percentage of 3',5'-bond formation (Usher, 1968). In point of fact, lead ion-catalyzed or uranyl ion-catalyzed oligomerization of activated nucleotides, such as nucleoside 5'-phosphorimidazolides, gives rise to predominantly 2',5'-linked oligonucleotides (Sleep and Orgel, 1979; Sawai et al., 1988). This sticking point in the chemical evolution of 3',5'-linked RNAs has been largely by-passed in the prebiotic field through the postulation of a yet unfound metal ion, acid-base catalyst, or specific mineral surface to which nucleotide precursors might have adsorbed, resulting in the production of the desired 3',5'-linkages (Gesteland and Atkins, 1993). Even under conditions of template-directed synthesis, 2',5'-phosphodiester bond formation is favored, except under selected conditions (Joyce, 1987; Inoue and Orgel, 1981).

This knotty problem of the propensity for formation of 2',5'- versus 3',5'-phosphodiester bonds was addressed by Usher (1977), who studied the relative rates of hydrolysis of two oligoadenylates; namely, [p5'A3']12 and [p5'A3']p5'A3[p5'A3']p. The only difference between the two oligoadenylates was the replacement of a single 3',5'-phosphodiester bond by a 2',5'-phosphodiester bond. Both of these had equivalent hydrolytic rates under alkaline conditions. Remarkably, however, the addition of 3',5'-poly(U) to the individual oligonucleotides led to a dramatic difference in alkaline hydrolysis rates: the oligonucleotide [p5'A3']p5'A2'p5'A3'[p5'A3']12, with the single 2',5'-linkage, was hydrolyzed much more rapidly than was the all 3',5'-linked [p5'A3']12. This led Usher to the conclusion that the 2',5'-phosphodiester linkage was 700 times less stable than the 3',5'-phosphodiester bond. Usher rationalized this difference through consideration of the mechanism of hydrolysis of nucleotide diesters (Usher and McHale, 1976). For a double-helical RNA containing 3',5'-linkages, hydrolysis through intramolecular attack of the 2'-OH or phosphorus would involve the leaving 5'-OH in an energetically less favorable "adjacent" (Westheimer, 1968) position of the trigonal by-pyramidal intermediate. On the other hand, in a double-helical RNA containing 2',5'-phosphodiester bonds, the attack of the 2'-OH would result in the more energetically favorable "in line" departure of the 5'-OH leaving group.

The foregoing experiments, however, remain incomplete since no measurement was made of the opposing situation; i.e., the inclusion of a single 3',5'-phosphodiester bond in an all 2',5'-linked oligonucleotide and its rate of hydrolysis in a complex with either a 2',5'-linked RNA or a 3',5'-linked RNA. For that matter, no studies have been carried out on the relative rates of hydrolysis of 2',5'-phosphodiester bonds in oligonucleotides complexed with complementary 2',5'-linked or 3',5'-linked oligonucleotides relative to the behavior of the 3',5'-linkages in the same situations. Until these data are available, it remains premature to draw any conclusions about the relative stability of 2',5'- versus 3',5'-phosphodiester bonds.

As described earlier in this review (Section 7), 2',5'-linked RNAs generally seem to form less stable associations with complementary 2',5'- or 3',5'-polynucleotides than do 3',5'-RNAs. Thus, it would be expected that over time and based on this duplex stability property alone, 3',5'-RNAs would be selected over 2',5'-RNAs as the basis for self-replicating RNA.

2',5'-Oligoadenylates of the 2-5A system are not the only 2',5'-phosphodiester-linked nucleic acids found in nature. Probably the best known 2',5'-phosphodiester bond is that which forms in the lariat RNA intermediate during gene splicing (Voet and Voet, 1990). A 2',5'-phosphodiester linkage also is formed in a peculiar satellite DNA called multicopy single-stranded DNA (Sun et al., 1989). This multicopy single-stranded DNA was made up of a 67-
base single-stranded DNA with its 5'-terminus linked to a 58-base RNA through a 2',5'-phosphodiester bond to the 2'-hydroxyl of guanosine at the 15th nucleotide residue of the RNA.

Laurence et al. (1984) used a highly specific monoclonal antibody for A2'p5'A-containing oligonucleotides to demonstrate the presence of dimeric to pentameric 5'-nonphosphorylated 2',5'-oligonucleotides in a variety of mammalian tissues, but even more remarkably, in bacteria and yeast. The origin and function of the 2',5'-linked adenylates in the latter remains unknown.

These examples notwithstanding, 2',5'-oligoadenylates remain the only example of nucleic acids that contain more than one 2',5'-linkage in tandem. This, in spite of the ready test-tube ability of 2-5A synthetase to add adenylate in 2',5'-linkage to other substrates or to add other nucleotides in 2',5'-linkage to 2', 5'-oligoadenylates themselves.

Is 2-5A a relic of a bygone RNA world? If so, why are the 2-5A synthetase and RNase L not found in simpler life forms, such as bacteria, fungi, molds, yeasts, amphibians, and insects (Cayley et al., 1982b)? The report (Kuuskaluu et al., 1995) of a functionally active 2-5A synthetase in marine sponge suggests that the entire question of the presence of the 2-5A system in such more "primitive" animals should be revisited. Or might 2-5A be simply a later evolutionary adaptation of 3',5'-RNA? It may be possible that the eventual determination of the role the 2-5A molecule plays in the enzymatic action of RNase L may provide an answer. Specifically, does the 2-5A molecule itself actually participate in the catalytic reaction? Or is the cleavage preference of RNase L for UpNp sequences related to hydrogen bonding interactions between substrate and 2 5A in the recognition process (Floyd-Smith et al., 1981)?

9. CONCLUSION

The 2-5A system is a unique and powerful regulatory system. Thus, dsRNA stimulates a unique enzyme to synthetize small and novel 2',5'-phosphodiester-linked oligonucleotides that, in turn, activate a unique nuclease, RNase L. Insofar that the decay of mRNA is of cardinal importance in the post-transcriptional regulation of gene expression and can be influenced by a variety of environmental and developmental factors (Belasco and Brawerman, 1993), it seems clear that the potential roles of the 2-5A system could be widespread. Indeed, past research in this field has broached a large number of arenas in which a role for the 2-5A system has been posited; nonetheless, the only generally accepted role for the 2-5A system to date is as one mediator of the anti-picornavirus effects of IFN. Research in the next decade likely will reveal the answers to many questions posed in the 20 years since 2-5A was discovered. For instance, major advances may be expected in our understanding of the key enzyme RNase L. A complete picture of how 2-5A acts to turn on this nuclease certainly is obtainable now that pure enzyme is accessible. An intriguing question will be whether RNase L and/or the lessons it will teach us can eventually be adapted to be of benefit in human medicine. This would bring the story full circle from IFN itself to a therapeutic based on one aspect of IFN action. The question remains whether a two-edged sword can be shaped to a delicate scalpel.

References

Aboagy-Mathiesen, G., Toth, F. D., Hager, H., Zdravkovic, M., Petersen, P. M., Villadsen, J. A., Zachar, V. and Ebbesen, P. (1993) Human trophoblast interferons. Antiviral Res. 22: 91-105.

Akagi, S., Fukuda, R. and Shimada, Y. (1992) The sequential change of serum 2',5' oligoadenylate synthetase in different infectious patterns of duck hepatitis B virus in ducks in experimental transmission. Gastroenterol. Jpn. 27: 374-381.

Alarcon, B., Bugony, H. and Carrasco, L. (1984) pppA2'p5'A blocks vesicular stomatitis virus replication in intact cells. J. Virol. 52: 183-187.

Alul, R. and Hoke, G. D. (1995) (2'.5')-Oligo-3'-deoxynucleotides selective binding to single-stranded RNA but not DNA. Antisense Res. Dev. 5: 3-11.

Andreone, P., Cursaro, C., Granenzi, A., Buzzi, A., Miniero, R., Sprovieri, G. and Gabbarrini, G. (1994) Indomethacin enhances serum 2',5'-oligoadenylate synthetase in patients with hepatitis B and C virus chronic active hepatitis. J. Hepatol. 21: 904-908.

Anukantah, A. and Ponnuswamy, P. K. (1986) 2',5'-Linked poly nucleotides do form a double-stranded helical structure: a result from the energy minimization study of A2'p5'A. Biopolymers 25: 729-752.

Baca, L. M., Genis, P., Kalvakolanu, D., Sen, G., Melter, M. S., Zhou, A., Silverman, R. and Gendelman, H. E. (1994) Regulation of interferon-α-inducible cellular genes in human immunodeficiency virus-infected monocytes. J. Leukoc. Biol. 55: 299-309.

Baglioni, C. and Maroney, P. A. (1980) Mechanism of action of human interferons. Induction of 2',5'-oligo(A) polymerase. J. Biol. Chem. 255: 8390-8393.

Baglioni, C., Minks, M. A. and Maroney, P. A. (1978) Interferon action may be mediated by activation of a nuclease by pppA2'p5'A2'p5'A. Nature 273: 684-686.

Baglioni, C., Maroney, P. A. and West, D. K. (1979) 2',5' Oligo(A) polymerase activity and inhibition of viral RNA synthesis in interferon-treated HeLa cells. Biochemistry 18: 1765-1770.

Baglioni, C., D'Alessandro, S. B., Nilson, T. W., Den Hartog, J. A. A., Crea, R. and Van Boom, J. H. (1981a) Analogs of (2'.5')oligo(A). Endonuclease activation and inhibition of protein synthesis in intact cells. J. Biol. Chem. 256: 3253-3257.

Baglioni, C., Minks, M. A. and De Clercq, E. (1981b) Structural requirements of polynucleotides for the activation of (2'.5')A, polymerase and protein kinase. Nucl. Acids Res. 9: 4939-4950.

Baglioni, C., De Benedetti, A. and Williams, G. (1984) Cleavage of nascent reovirus mRNA by localized activation of the 2',5'-oligoadenylate-dependent endoribonuclease. J. Virol. 52: 865-871.

Ball, L. A. (1979) Induction of 2',5' oligoadenylate synthetase activity and a new protein by chick interferon. Virology 94: 282-296.

Ball, L. A. (1980) Induction, purification and properties of 2',5'- oligoadenylate synthetase. Ann. NY Acad. Sci. 350: 486-496.

Ball, L. A. and White, C. N. (1978a) Coupled transcription and
translation in mammalian and avian cell-free systems. Virology 84: 479–495.

Ball, L. A. and White, C. N. (1978b) Effect of interferon pretreatment on coupled transcription and translation in cell-free extracts of primary chick embryo cells. Virology 84: 496–508.

Ball, L. A. and White, C. N. (1978c) Oligonucleotide inhibitor of protein synthesis made in extracts of interferon-treated chick embryo cells: comparison with the mouse low molecular weight inhibitor. Proc. Natl. Acad. Sci. USA 75: 1167–1171.

Ball, L. A. and White, C. N. (1979a) Induction, purification and properties of 2',5' oligoadenylate synthetase. In: Regulation of Macromolecular Synthesis by Low Molecular Weight Media tors, pp. 303–317, Koch, G. and Richter, D. (eds.) Academic Press, New York.

Ball, L. A. and White, C. N. (1979b) Nuclease activation by double-stranded RNA and by 2',5'-oligoadenylate in extracts of interferon-treated chick cells. Virology 93: 348–356.

Bannai, H. (1986) Comparison of pharmacokinetic behaviors of two human interferons (Lb-IFN-alpha and Re-IFN-alpha A) in cynomolgus monkeys by 2'-5' oligoadenylate synthetase assay. Jpn. J. Med. Sci. Biol. 39: 185–198.

Bannai, H., Tatsumi, M., Kohase, M., Onishi, E. and Yamaazaki, S. (1985) Pharmacokinetic study of a human recombinant interferon (Re-IFN-alpha A) in cynomolgus monkeys by 2'-5' oligoadenylate synthetase assay. Jpn. J. Med. Sci. Biol. 38: 113–124.

Battistini, C., Brasca, M. G., Fustinoni, S. and Lazzari, E. (1992) An efficient and stereoselective synthesis of 2',5'-oligo(Sp)-thioadenylates. Tetrahedron 48: 3209–3226.

Bayard, B. and Gabrion, J. B. (1993) 2',5'-Oligoadenylate-dependent RNase located in nuclei: biochemical characterization and subcellular distribution of the nuclease in human and murine cells. Biochem. J. 296: 155–160.

Bayard, B., Bisbal, C., Silhol, M., Onishi, E. and Yamaazaki, S. (1995) Cloning and characterization of a RNase L inhibitor. J. Biol. Chem. 270: 13308–13317.

Blaak, R. J., Friedman, R. M., Insi, J. and Torrence, P. G. (1985) Specific antagonism of 2'-5A-mediated inhibition of protein synthesis in intact cells by 2',5'-(PA)2. FEBS Lett. 191: 154–158.

Bonnevie-Nielsen, V., Larsen, M. L., Frifelt, J. J., Michelsen, B. and Lernmark, A. (1989) Association of IDDM and attenuated response of 2',5'-oligoadenylate synthetase to yellow fever vaccine. Diabetes 38: 1636–1642.

Bonnevie-Nielsen, V., Gerdes, A.-M., Fleckner, J., Petersen, J. S., Michelsen, B. and Dyrberg, T. (1991a) Interferon stimulates the expression of 2',5'-oligoadenylate synthetase and MHC class I antigens in insulin producing cells. J. Interferon Res. 11: 255–260.

Bonnevie-Nielsen, V., Husum, G. and Kristiansen, K. (1991b) Lymphocytic 2',5'-oligoadenylate synthetase is insensitive to dsRNA and interferon stimulation in autoimmune BB rats. J. Interferon Res. 11: 351–356.

Bork, P. and Sander, C. (1993) Hypothesis. A hybrid protein kinase-RNA in an interferon-induced pathway? HEBs Lett. 334: 149–152.

Bosworth, B. T., Maclachlan, N. J. and Johnston, M. I. (1989) Induction of the 2-5A system by interferon and transmissible gastroenteritis virus. J. Interferon. Res. 9: 731–739.

Bourgeade, M. F. and Besacon, F. (1984) Induction of 2',5'-oligoadenylate synthetase by retinoic acid in two transformed cell lines. Cancer Res. 44: 5355–5360.

Branca, A. A. and Baglioni, C. (1981) Evidence that type I and II interferons have different receptors. Nature 294: 768–770.

Brown, G. E., Lebleu, B., Kawakita, M., Shaida, S., Sen, G. C. and Lengyel, P. (1976) Increased endonuclease activity in an extract from mouse ehrlich ascites tumor cells which had been treated with a partially purified interferon preparation: dependence on double-stranded RNA. Biochem. Biophys. Res. Commun. 69: 114–122.

Brown, R. E., Cayley, P. J. and Kerr, I. M. (1981) Analysis of (2',5')-oligo(A) and related oligonucleotides by high-performance liquid chromatography. Methods Enzymol. 79: 208–216.
Bruchelt, G., Buedenbender, M., Traemer, J., Niethammer, D. and Schmidt, K. (1989) Investigations on the interferon-induced 2'-5' oligo-adenylate system using analytical capillary isota-chophoresis. J. Chromatogr. 470: 185-190.

Bruchelt, G., Fierbeck, G., Schiebel, U., Bogenschutz, O., Rassner, G. and Niethammer, D. (1992) Determination of 2'-5' oligoadenylate synthetase in serum and peripheral blood mononuclear cells before and after subcutaneous application of recombinant interferon beta and gamma. Eur. J. Clin. Chem. Biochem. 30: 521-528.

Bucher, N. L. R. and Malt, R. A. (1971) Regeneration of Liver and Kidney. New England Journal of Medicine Progress Series. Little & Brown, Boston.

Buffet-Janvresse, C., Vannier, J. P., Laurent, A. G., Robert, N. and Iovancevian, A. G. (1986) Enhanced level of double-stranded RNA-dependent protein kinase in peripheral blood mononuclear cells of patients with viral infections. J. Interferon Res. 6: 85-96.

Cailla, H., Le Borne De Kaoiel, C., Roux, D., Delaage, M. and Marti, J. (1982) Monoclonal antibodies to 5'-triphospho-(2',5')adenylyladenosenosine oligonucleotides. Proc. Natl. Acad. Sci. USA 79: 4742-4746.

Carroll, S. S., Chen, E., Viscount, T., Geib, J., Sardana, M. K., Carter, W. A. and Levy, H. B. (1968) The recognition of viral RNA by mammalian ribosomes. An effect of interferon. Biochem. Biophys. Acta 155: 437-443.

Carver, W. A., Strayer, D. R., Brodzky, I., Lewin, M., Pellegrino, M. G., Henriques, H. F., Simon, G. L., Parenti, D. M., Scheib, R. G., Schulof, R. S., Montefiori, D. C., Robinson, W. E., Mitchell, W. M., Volsky, D. J., Faut, D., Paxton, H., Meyer, W. A., Kaniko, K., Reichenbach, N., Suhadolnik, R. J. and Gillespie, D. H. (1987) Clinical, immunological, and virological effects of Ampligen, a mismatched double-stranded RNA in A431 cells. Mol. Pharmacol. 34: 461-466.

Chang, C. C. and Wu, J. M. (1991) Modulation of antiviral activity of interferon and 2',5'-oligoadenylate synthetase gene expression by mild hyperthermia (39.5 degrees C) in cultured human cells. J. Biol. Chem. 266: 4605-4612.

Chang, C. C., Borelli, T. J., Williams, B. R. and Wu, J. M. (1992) Transcriptional activation of human (2'-5')-oligoadenylate synthetase gene expression by the phorbol ester 12-O-tetradecanoylphorbol 13-acetate in type-I-interferon-treated HL-60 and HeLa cells. Eur. J. Biochem. 207: 297-304.

Chapek, M. S. and Glazer, R. I. (1988) The synergistic cytotoxic effect produced by immune interferon and tumor necrosis factor in HT-29 cells is associated with inhibition of rRNA processing and (2',5')-oligo(A) activation of RNase L. Biochem. Biophys. Res. Commun. 151: 1180-1187.

Chapek, M. S., Kuo, M. C. and Glazer, R. I. (1988) The epitaxial growth factor-interferon-independent effects of double-stranded RNA in A431 cells. Mol. Pharmacol. 34: 461-466.

Charchon, G., Sobol, R. W., Bishal, C., Salehzada, T., Silhol, M., Charchon, R., Pfeifer, W., Lebleu, B. and Suhadolnik, R. J. (1990) Phosphorothioate analogues of (2'-5')[A]_i agonist and antagonist activities in intact cells. Biochemistry 29: 2550-2556.

Charubala, R. and Pfleiderer, W. (1980) Synthesis of phosphorothioate analogues of (2'-5')-adenylate dimers and trimers and their 5'S0-monophosphates. Helv. Chim. Acta 63: 1286-1292.

Charubala, R. and Pfleiderer, W. (1980a) Synthesis and properties of adenylyl trimers A2'p5'A2'p5'A, A2'p5'A3'p5'A and A3'p5'A2'p5'A. Tetrahedron Lett. 21: 4789-4792.

Charubala, R. and Pfleiderer, W. (1980b) Synthesis and properties of 3'-deoxyadenylate dimer A'A2'p5'A. Tetrahedron Lett. 21: 4077-4080.

Charubala, R. and Pfleiderer, W. (1982) Synthesis of inosinate trimers I2'p5'12'p5'1 and tetramer I2'p5'12'p5'12'p5'1. Tetrahedron Lett. 23: 4789-4792.

Charubala, R. and Pfleiderer, W. (1988) The chemical syntheses of (2'-5')-P-thioadenylate dimers, trimers and tetramers. Nucleosides & Nucleotides 7: 703-706.

Charubala, R. and Pfleiderer, W. (1992) Syntheses and characterization of phosphorothioate analogues of (2'-5')-adenylate dimer and trimer and their 5'SO-monomophosphates. Helv. Chim. Acta 75: 471-482.

Charubala, R., Ullmann, E. and Pfleiderer, W. (1981) Synthesis and characterization of phosphorothioate analogues of (2'-5')-adenylate dimers and trimers and their 5'SO-monomophosphates. Helv. Chim. Acta 75: 471-482.

Chatterjee, D. and Savarese, T. M. (1992) Posttranscriptional regulation of c-myc proto-oncogene expression and growth inhibition by recombinant human interferon-beta ser17 in a human colon cancer cell line. Cancer Chemother. Pharmacol. 30: 12-20.

Chattopadhyaya, J. B. (1980) Synthesis of adenylyl-(2'-5')-adenylate-(2'-5')-adenosine (2-5'A core). Tetrahedron Lett. 21: 4115-4116.
Chelbath, J., Benech, P., Mory, Y., Federman, P., Berissi, H., Gesang, C., Forman, J., Lanovitch, S., Lehrer, R., Aloni, N. and Revel, M. (1987) The human (2'-5') oligo A synthetase gene, structure of its two enzyme products and quick cell blot for clinical monitoring of its activation by interferons. Prog. Clin. Biol. Res. 202: 149–161.

Chebath, J., Benech, P., Mory, Y., Mallucci, L., Michalевич, R. and Revel, M. (1986) IFN and (2',5') oligo A synthetase in cell growth and in differentiation of hematopoietic cells. In: Interferons as Cell Growth Inhibitory Factors, pp. 351–363, Friedman, R. M., Merigan, T. and Sreevalsen, T. (eds.) A. R. Liss, New York.

Chelbath, J., Benech, P., Hovanessian, A., Galabru, J. and Revel, M. (1987a) Four different forms of interferon-induced 2',5'-oligo(A) synthetase identified by immunoblotting in human cells. J. Biol. Chem. 262: 3552–3557.

Chelbath, J., Benech, P., Revel, M. and Vigneron, M. (1987b) Constitutive expression of (2',5') oligo A synthetase confers resistance to picornavirus infection. Nature 330: 587–588.

Chelbi-Alix, M. K. and Chousterman, S. (1992) Ethanol induces 2',5'-oligoadenylate synthetase and antiviral activities through interferon-beta production. J. Biol. Chem. 267: 1741–1745.

Chelbi-Alix, M. K. and Sripari, C. E. (1994) Ability of insulin and dRNA to induce interferon system and Hsp 70 in fibroblast and epithelial cells in relation to their effects on cell growth. Exp. Cell Res. 213: 383–390.

Chelbi-Alix, M. K. and Thang, M. N. (1987) Cloned human interferons alpha: differential affinities for polyinosinic acid and relationship between molecular structure and species specificity. Biochem. Biophys. Res. Commun. 145: 426–435.

Chelbi-Alix, M. K., Brouard, A., Boissard, C., Pelaprat, D., Rostene, W. and Thang, M. N. (1994) Induction by vasoactive intestinal peptide of interferon alpha/beta synthesis in glial cells but not in neurons. J. Cell. Physiol. 158: 47–54.

Chen, L., Novick, D., Rubinstein, M. and Revel, M. (1988) Recombinant interferon-beta 2 (interleukin-6) induces myeloid differentiation. FEBS Lett. 239: 290–304.

Chen, L.-C., Dollbaum, C. and Smith, H. S. (1989) Loss of heterozygosity on chromosome 1q in human breast cancer. Proc. Natl. Acad. Sci. USA 86: 7204–7207.

Chernajovsky, Y., Kimchii, A., Aloni, N. and Revel, M. (1987) Differential effects of two interferon-induced 2',5'-phosphodiester bonds in RNA results in lack of protection by interferon from viral infection. Proc. Natl. Acad. Sci. USA 84: 658–662.

Cochran, B. H., Zullo, J., Verma, I. M. and Stiles, C. D. (1984) Expression of the c-fos gene and of a fos-related gene is stimulated by platelet-derived growth factor. Science 226: 1080–1082.

Cohen, B., Gothelf, Y., Vaiman, D., Chen, L., Revel, M. and Chebath, J. (1991) Interleukin-6 induces the (2'-5') oligoadenylate synthetase gene in M1 cells through an effect on the interferon-responsive enhancer. Cytokine 3: 83–91.

Cofrin, M. V., Grubaud, G., Guarnaccia, F. and Ponzoni, M. (1995) Induction of 2-5A and RNA degradation in the chick oviduct during rapid estrogen withdrawal. Biochemistry 24: 3246–3252.

Cole, J. L., Carroll, S. S. and Kuo, L. C. (1996) Stoichiometry of 2',5'-oligoadenylate-induced destruction of ribonuclease L. J. Biol. Chem. 271: 3799–3801.

Crick, F. H. C. (1968) The origin of the genetic code. J. Mol. Biol. 38: 367–379.

D'Andrea, S., Chousterman, S., Flechon, J. E. and La Bonnaire, C. (1994) Paracrine activities of porcine trophoblastic interferons. J. Reprod. Fertil. 102: 185–194.

De Benedetti, A., Pytel, B. A. and Raglioni, C. (1987) Loss of (2',5')oligoadenylate synthetase activity by production of antisense RNA results in lack of protection by interferon from viral infections. Proc. Natl. Acad. Sci. USA 84: 658–662.

De Clercq, E., Stewart, W. E. and De Somer, P. (1973) Increased toxicity of double-stranded ribonucleic acid in virus-infected animals. Infect. Immun. 7: 167–172.

den Hartog, J. A. J., Doornbos, J., Crea, R. and Van Boom, J. H. (1979) Synthesis of the 5'-triphosphate of a trimer containing 2',5'-internucleotide linked riboadenosines. Recueil 98: 469–780.

den Harog, J. A. J., Wijnands, R. A. and Van Boom, J. H. (1981) Chemical synthesis of pppA2p5'A2p5'A, an interferon-induced inhibitor of protein synthesis and some functional analogues. J. Org. Chem. 46: 2242–2251.

Dessi, S. Y., Patel, R. C., Sen, G. C., Malhotra, P., Ghadge, G. D. and Timmapaya, B. (1995) Activation of interferon-inducible 2'-5' oligoadenylate synthetase by adenoviral VAI RNA. J. Biol. Chem. 270: 3454–3461.

De Vroom, E., Fidder, A., Saris, C. P., Van Der Marel, G. A. and Van Boom, J. H. (1987) Preparation of the individual diastereomers of adenylyl-(2'-5')P-thiadenylyl-(2's5')adenosine and their 5'-phosphorylated derivatives. Nauc. Acids Res. 15: 9933–9943.

Dhingra, M. M. and Sarma, R. H. (1978) Why do nucleic acids have 3',3'-phosphodiester bonds? Nature 272: 798–804.

Dianzani, F., Zucca, M., Scupham, A. and Georgiadis, J. A. (1980) Immune and virus-induced interferons may activate cells by different derepression mechanisms. Nature 283: 400–402.

Doetsch, P., Wu, J. M., Sawada, Y. and Suhadolnik, R. J. (1981) Synthesis and characterization of (2'-5')ppp3'dA(p3'dA)n, and analogue of (2'-5')pppA(pA)n. Nature 291: 355–358.
Dong, B. and Silverman, R. H. (1995) 2-5A-dependent RNase molecules dimerize during activation by 2-5A. J. Biol. Chem. 270: 4133–4137.

Dong, B. and Silverman, R. H. (1997) A bipartite model of 2-5A-dependent RNase L. J. Biol. Chem., 272: 22236–22242.

Dong, B., Xu, L., Zhou, A., Hassel, B. A., Lee, X., Torrence, P. F. and Silverman, R. H. (1994) Intrinsic molecular activities of the interferon-induced 2-5A-dependent RNase. J. Biol. Chem. 269: 14153–14158.

Doornbos, J., DenHartog, J. A., Van Boom, J. H. and Altona, C. (1981) Conformational analysis of the nucleotides A'2'-5'A, A2'-5'A2'-5'A and A2'-5'U from nuclear magnetic resonance and circular dichroism studies. Eur. J. Biochem. 116: 403–412.

Doornbos, J., Chamubala, R., Pfeiderer, W. and Altona, C. (1983) Conformational analysis of the trinucleotide dihydrophosphate 3'd(A2'-5'A2'-5'A). An NMR and CD study. Nucl. Acids Res. 11: 4569–4582.

Dougherty, J. P., Samanta, H., Farrell, P. J. and Lengyel, P. (1980) Interferon, double-stranded RNA, and RNA degradation. Isolation of homogenous pppA(2'p5'A)1 synthetase from Ehrlich ascites tumor cells. J. Biol. Chem. 255: 3813–3816.

Dougherty, J. P., Rizzo, C. J. and Breslow, R. (1992) Oligodeoxyadenylate synthetase. Tetrahedron Lett. 21: 4339–4342.

Drocourt, J.-L., Diefenbach, C. W., Ts'O, P. O. P., Justesen, J. and Thang, M. N. (1982) Structural requirements of (2' 5')oligoadenylate for protein synthesis inhibition in human fibroblasts. Nucl. Acids Res. 10: 2163–2174.

Duesberg, P. H. and Colby, C. (1969) On the biosynthesis and degradation of RNA molecules and its inhibition by interferon. Virology 34: 170–178.

Edery, I., Petryshyn, R. and Sonenberg, N. (1989) Activation of double-stranded RNA-dependent kinase (dsi) by the I AR region of HIV-1 mRNA: a novel translational control mechanism. Cell 56: 303–312.

Engels, J. (1980) Synthesis of 2'-end modified 2',5'-adenylate trimers. Tetrahedron Lett. 21: 4339–4342.

Engels, J. and Krahmer, U. (1979) Directed synthesis of the trimERIC isodeylate A2'p5'A2'p5'A. Angew. Chem. Int. Ed. Engl. 18: 942–943.

Eppstein, D. A., Peterson, T. C. and Samuel, C. E. (1979) Mechanism of interferon action: synthesis and activity of the interferon-mediated low-molecular-weight oligonucleotide from murine and human cells. Virology 98: 9–19.

Eppstein, D. A., Van Der Pas, M. A., Schryver, B. B., Sawai, H., Leclaire, K., Imai, J. and Torrence, P. F. (1985) Cordycepin analogs of ppp5'A2'p5'A2'p5'A (2-5A) inhibit protein synthesis through activation of the 2-5A-dependent endonuclease. J. Biol. Chem. 260: 3666–3671.

Eppstein, D. A., Schryver, B. B. and Marsh, Y. V. (1986) Stereoconfiguration markedly affects the biochemical and biological properties of phosphorothioate analogs of 2-5A core, (A2'p5'), A. J. Biol. Chem. 261: 5999–6003.

Etienne-Smekens, M., Vassart, G., Content, J and Dumont, J. E. (1981) Presence of 2'-5' A synthetase in dog liver. FEBS Lett. 125: 146–150.

Etienne-Smekens, M., Vandenhussche, P., Content, J and Dumont, J. E. (1983) (2',5')Oligoadenylate in rat liver: modulation after partial hepatectomy. Proc. Natl. Acad. Sci. USA 80: 4609–4613.

Falcoff, E., Falcoff, R., Lebleu, B. and Revel, M. (1973) Correlation between the antiviral effect of interferon pretreatment and the inhibition of in vitro mRNA translation in noninfected L cells. J. Virol. 12: 421–430.

Faltynek, C. G., McCandless, S., Chebath, J. and Baglioni, C. (1985) Different mechanisms for activation of gene transcription by interferons α and γ. Virology 144: 173–180.

Faltynek, C. R., Prinsler, G. L., Russetti, F. W. and Birchall, M. (1988) Lectins modulate the internalization of recombinant interferon-alpha A and the induction of 2',5'-oligo(A) synthetase. J. Biol. Chem. 263: 7112–7117.

Faltynek, C. R., Prinsler, G. L., Gusella, G. L., Varesio, L. and Radzioch, D. (1989) A functional protein kinase C is required for induction of 2-5A synthetase by interferon-combinant alpha A in Daudi cells. J. Biol. Chem. 264: 14305–14311.

Farrell, P. J., Sen, G. C., Dubois, M. F., Rattner, L., Slattery, E. and Lengyel, P. (1978) Interferon action: two distinct pathways for inhibition of protein synthesis by double-stranded RNA. Proc. Natl. Acad. Sci USA 75: 5893–5897.

Feldman, D., Goldstein, A. L., Cox, D. and Grinley, F. M. (1988) Cultured human endothelial cells treated with recombinant leukocyte interferon. Lab. Invest. 58: 584–589.

Ferbus, D., Justesen, J., Besacor, F. and Thang, M. N. (1981) The 2'-5' oligoadenylate synthetase has a multifunctional 2'-5' nucleotidyl-transferase activity. Biochem. Biophys. Res. Commun. 100: 847–856.

Ferbus, D., Justesen, J., Bertrand, H. and Thang, M. N. (1984) (2'-5')Oligoadenylate synthetase in the maturation of rabbit reticulocytes. Mol. Cell. Biochem. 62: 51–55.

Ferbus, D., Tesla, U., Titeux, M., Louache, F. and Thang, M. N. (1985) Induction of 2'-5' oligoadenylate synthetase activity during granulocyte and monocyte differentiation. Mol. Cell. Biochem. 67: 125–133.

Floyd-Smith, G. and Denton, J. S. (1988a) A (2'-5')-dependent endonuclease: tissue distribution in BALB/c mice and the effects of IFN-β-treatment and anti-IFN-α/β immunoglobulin on the levels of the enzyme. J. Interferon Res. 8: 517–525.

Floyd-Smith, G. and Denton, J. S. (1988b) Age-dependent changes are observed in the levels of an enzyme mediator of interferon action: a (2'-5')-dependent endonuclease. Proc. Soc. Exp. Biol. Med. 189: 329–337.

Floyd-Smith, G., Slattery, E. and Lengyel, P. (1981) Interferon action: RNA cleavage pattern of a (2'5')-oligoadenylate-dependent endonuclease. Science 212: 1030–1032.

Floyd-Smith, G., Yoshi, O. and Lengyel, P. (1982) Interferon action. Covalent linkage of pppApApA(2P)pCp to (2'-5')(A)1-dependent ribonucleic acids in cell extracts by ultraviolet irradiation. J. Biol. Chem. 257: 8584–8587.

Fousil, A. K., Farquharson, M. A. and Meager, A. (1987) Immunoactive alpha-interferon in insulin-secreting beta cells in type I diabetes mellitus. Lancer ii: 1423–1427.

Franco, B., Lai, L.-W., Patterson, D., Ledbetter, D. H., Trask, B. J., Van den Engh, G., Iannoccone, S., Frances, S., Patel, P. L. and Lupsii, J. A. (1991) Molecular characteristics of a patient with del(1)(q23-q25). Hum. Genet. 8: 609–611.

Freedman, M. H., Estrov, Z., Williams, B. R. and Gelfand, E. W. (1986) Clinical and in vitro antiproliferative properties of recombinant DNA-derived human interferon-alpha 2. Am. J. Pediatr. Hematol. Oncol. 8: 178–182.

Friedman, R. M., Esteban, R. M., Metz, D. H., Tovell, D. R. and Kerr, I. M. (1972a) Translation of RNA by L cell extracts: effects of interferon. FEBS Lett. 24: 273–277.

Friedman, R. M., Metz, E. H., Esteban, R. M., Tovell, D. R., Ball, L. A. and Kerr, I. M. (1972b) Mechanism of interferon action:
Gosselin, C. and Imbach, J.-L. (1982) Nucleosides de synthèse XXII. Obtention, comme synthons oligoribonucleotidiques, de D-xylofuranosyl adénine spécifiques substitués. J. Heterocycl. Chem. 19: 597–602.

Goswami, B. B. and Sharma, O. K. (1984) Degradation of rRNA in interferon-treated vaccinia virus-infected cells. J. Biol. Chem. 259: 1371–1374.

Gothelf, Y., Raber, J., Chen, L., Schattner, A., Chebath, J. and Revel, M. (1991) Terminal differentiation of myeloleukemic M1 cells induced by IL-6: role of endogenous interferon. Lymphokine Cytokine Res. 10: 369–375.

Gribaldo, C., Fizzotti, M., Cociço, M. G., Carvalho, G. and Landolf, S. (1989) Different mechanisms regulate the IFN-inducible expression of 40-kDa human 2′,5′-oligo(A) synthetase in HeLa and Molt 4 cells. Int. J. Biochem. Markers 4: 221–225.

Gribaldo, G., Lembo, D., Carvalho, G., Landolf, S. and Lengyl, P. (1991) Interferon action: binding of viral RNA to the 40-kilodalton 2′,5′-oligoadenylate synthetase in interferon-treated HeLa cells infected with encephalomyocarditis virus. J. Virol. 65: 1748–1757.

Grimaly, P. M. and Schaff, Z. (1976) Significance of tubuloreticular inclusions in the pathobiology of human diseases. Pathobiol. Annu. 6: 221–225.

Grimaly, P. M., Rutherford, M. N., Kang, Y., Williams, T., Woody, J. N. and Silverman, R. H. (1984) Formation of tubuloreticular inclusions in human lymphoma cells compared to the induction of 2′,5′-oligoadenylate synthetase by leukocyte interferon in dose-effect and kinetic studies. Cancer Res. 44: 3480–3488.

Grun, J., Kroon, E., Zoller, B., Krempien, U. and Jungwirth, C. (1987) Reduced steady-state levels of vaccinia virus-specific early mRNAs in interferon-treated chick embryo fibroblasts. Virology 158: 28–33.

Guerrier-Takada, C., Gardiner, K., Marsh, T., Pace, N. and Altman, S. (1993) The RNA salary of ribonuclease P is the catalytic subunit of the enzyme. Cell 55: 849–857.

Gupta, S. L., Sopori, M. L. and Lengyel, P. (1973) Inhibition of protein synthesis directed by added viral and cellular messenger RNAs in extracts of interferon-treated Ehrlich ascites tumor cells. Location and dominance of the inhibitor(s). Biochem. Biophys. Res. Commun. 54: 777–783.

Gupta, S. L., Grazialed, W. D., III, Weidel, H., Sopori, M. L. and Lengyel, P. (1974a) Selective inhibition of viral protein accumulation in interferon-treated cells: nondiscriminate inhibition of the translation of added viral and cellular messenger RNAs in their extracts. Virology 57: 49–63.

Gupta, S. L., Sopori, M. L. and Lengyel, L. (1974b) Release of the inhibition of messenger RNA translation in extracts of interferon-treated Ehrlich ascites tumor cells by added transfer RNA. Biochem. Biophys. Res. Commun. 57: 763–770.

Haines, D. S., Suhadolnik, R. J., Hubbard, H. R. and Gillespie, D. H. (1992) Cellular and enzymatic activities of a synthetic heteropolymer double-stranded RNA of defined size. J. Biol. Chem. 267: 18315–18319.

Hannig, G. E. and Williams, B. R. G. (1986) Transcriptional regulation of interferon-responsive genes is closely linked to interferon receptor occupancy. EMBO J. 5: 1607–1613.

Hansen, T. R., Cross, J. C., Farin, C. E., Imakawa, K. and Roberts, R. M. (1991) Slowed transcription and rapid messenger RNA turnover contribute to a decline in synthesis of ovine trophoblast protein-1 during in vitro culture. Biol. Reprod. 45: 94–101.
Hashimoto, H. and Switzer, C. (1992) Self-association of 2',5'-linked deoxynucleotides: metDNA. J. Am. Chem. Soc. 114: 6255-6256.

Hassel, B. A. and Ts'Oi, P. O. (1992) A proliferation-related constraint on endogenous and interferon-induced 2-5A synthetase activity in normal and neoplastic Syrian hamster cells. Mol. Carcinog. 5: 41-51.

Hassel, B. A. and Ts'Oi, P. O. P. (1994) A sensitive assay for the IFN-regulated 2-5A synthetase enzyme. J. Virol. Methods 50: 323-334.

Hassel, B. A., Shou, A., Sotomayor, C., Maran, A. and Silverman, R. S. (1993) A dominant negative mutant of 2-5A-dependent RNase suppresses antiproliferative and antiviral effects of interferon. EMBO J. 12: 3297-3304.

Haugh, M. C., Casley, P. J., Scarsfinauskas, H. T., Norman, D. G., Reese, C. B. and Kerr, I. M. (1983) Analogues and analogue inhibitors of ppp(A2'p)3'p. Their stability and biological activity. Eur. J. Biochem. 132: 77-84.

Hayakawa, Y., Nobi, T. and Noyori, R. (1985a) Synthesis of 2'-end modified 2'-5'-oligoadenylates. Nucl. Acids Symp. Ser. 16: 129-132.

Hayakawa, Y., Uchiyama, M., Nobi, I. and Noyori, R. (1985b) A convenient synthesis of 2'-5'-linked oligoribonucleotides. Tetrahedron Lett. 26: 761-764.

Hearl, W. G. and Johnston, M. I. (1986) A misaligned double-stranded RNA, poly(1)-poly(C12), induces accumulation of 2',5'-oligoadenylates in mouse tissues. Biochem. Biophys. Res. Commun. 138: 40-46.

Hearl, W. G. and Johnston, M. I. (1987) Accumulation of 2',5'-oligoadenylates in encephalomyocarditis virus-infected mice. J. Virol. 61: 1586-1592.

Herdeiwijn, P., Charubala, R., Pauwels, R., De Clercq, E. and Pfleiderer, W. (1987a) Synthesis and activity of oligonucleotides containing a biologically active nucleoside at the 2'-end. Nucleosides & Nucleotides 6: 441-442.

Herdeiwijn, P., Charubala, R., Pauwels, R., De Clercq, E. and Pfleiderer, W. (1987b) Synthesis and biological activity of 2'-5'-modified 2'-5'-adenylate trimers. Nucleosides & Nucleotides 6: 443-444.

Herdeiwijn, P., Charubala, R., De Clercq, E. and Pfleiderer, W. (1989a) Synthesis of 2'-5'-connected oligonucleotides. Prodrugs for antiviral and antitumoral nucleosides. Helv. Chim. Acta 72: 1739-1748.

Herdeiwijn, P., Charubala, R. and Pfleiderer, W. (1989b) Modified oligomeric 2'-5'-A analogues: synthesis of 2'-5'-oligoadenylates with 3'-carboxy-3'-deoxy-beta-D-lyxo-2,3-furanosyl)adenine and 9-(3'-amino-3'-deoxy-beta-D-lyxo-2,3-furanosyl)adenine as modified nucleosides. Helv. Chim. Acta 72: 1729-1738.

Herdeiwijn, P., Ruf, K. and Pfleiderer, W. (1991) Synthesis of modified oligomeric 2'-5'-A analogues: potential antiviral agents. Helv. Chim. Acta 74: 7-23.

Ho, A. D., Klotzblucher, A., Gross, A., Dietz, G., Mestan, J., Jakobsen, H. and Hunstein, W. (1992) Induction of intracellular and plasma 2',5'-oligoadenylate synthetase by pentostatin. Leukemia 6: 209-214.

Ho, D. D., Hartshorn, K. L., Rota, T. R., Andrews, C. A., Kaplan, J. C., Schooley, R. T. and Hirsch, M. S. (1985) Recombinant human interferon alpha-A suppresses HTLV-III replication in vitro. Lancet ii: 602-604.

Hoendler, C. and Pfleiderer, W. (1996) Synthesis of 3'-deoxyadenylyl-(2'-5')-3'-O-(2-hydroxyethyl)adenosine and 3'-deoxyadenylyl-(2'-5')-3'-deoxyadenylyl-(2'-5')-3'-O(2(cholest-5-en-3'-beta-ol)-carbonyloxyl)adenosine: a new type of (2'-5')adenylate trimer conjugate. Helv. Chim. Acta 79: 118-126.

Hovanessian, A. G. and Kerr, I. M. (1979) The (2'-5')oligoadenylate (pppA2'p 5'A2'p 5'A) synthetase and protein kinase(s) from interferon-treated cells. Eur. J. Biochem. 93: 515-526.

Hovanessian, A. G., Brown, R. E. and Kerr, I. M. (1977) Synthesis of low molecular weight inhibitor of protein synthesis with enzyme from interferon-treated cells. Nature 268: 537-540.

Hovanessian, A. G., Meurs, E., Augean, O., Vaquero, C., Stefanos, S. and Falcoff, E. (1980) Antiviral response and induction of specific proteins in cells treated with immune T (type II) interferon analogous to that from viral interferon (type I)-treated cells. Virology 104: 195-204.

Hovanessian, A. G., Brown, R. E., Martin, E. M., Roberts, W. K., Knight, M. and Kerr, I. M. (1981a) Enzymic synthesis, purification and fractionation of (2'-5')-oligoacylic acid. Methods Enzymol. 79: 184-193.

Hovanessian, A. G., Meurs, E. and Montagnier, L. (1981b) Lack of systematic correlation between the interferon mediated antiviral state and the levels of 2-5A synthetase and protein kinase in three different types of murine cells. J. Interferon Res. 1: 179-190.

Hovanessian, A. G., Laurent, A. G., Chebath, J., Galabru, J., Roberts, N. and Sival, J. (1987) Identification of 69-kd and 100-kd forms of 2-5A synthetase in interferon-treated human cells by specific monoclonal antibody. EMBO J. 6: 1273-1280.

Hovanessian, A. G., Svab, J., Marie, I., Nold, N., Chamelet, S. and Laurent, A. (1988) Characterization of 69- and 100-kDa forms of 2-5-A synthetase from interferon-treated HeLa cells. J. Biol. Chem. 263: 4945-4949.

Hubbell, H. R., Sheetz, P. C., Logal, S. S., Brodsky, I., Kariko, K., Li, S.-W., Subaholin, R. J. and Sobol, R. W. (1991) Heterogeneous nuclear RNA from virus cell leukemia patients activates 2'-5'-oligoadenylate synthetase. Anticancer Res. 11: 1927-1932.

Hubbell, H. R., Kariko, K., Subaholin, R. J. and Brodsky, I. (1994) RNase L and increased endoribonuclease activities in the mononuclear cells of patients with chronic myelogenous leukemia. Anticancer Res. 14: 341-346.

Hughes, B. G., Srivastava, P. C., Muse, D. D. and Robins, R. K. (1983) 2',5'-Oligoadenylates and related 2',5'-oligonucleotide analogues. I. Substrate specificity of the interferon-induced murine 2'5'-oligoadenylate synthetase and enzymatic synthesis of oligomers. Biochemistry 22: 2116-2126.

Ikehara, M., Oshikawa, K. and Ohitsuka, E. (1979) Synthesis of a protein biosynthesis inhibitor, 5'-triphosphoryladenylyl-(2'-5')-adenyl(2'-5')-adenosine. Tetrahedron Lett. 38: 3677-3680.

Ikehara, M., Oshikawa, K. and Hasegawa, A. and Ohitsuka, E. (1981) Synthesis and properties of 5'-triphosphoryl-2'5'-oligoadenylates (2-5A), and a general method for synthesis of 3',5'-biphosphohylated oligoadenylates. Nucl. Acids Res. 9: 2003-2020.

Ilson, D. H., Torrence, P. F. and Vilecek, J. (1986) Two molecular weight forms of human 2',5'-oligoadenylate synthetase have different activation requirements. J. Interferon Res. 6: 5-12.

Imai, J. and Torrence, P. F. (1981a) An efficient chemical synthesis of adenylyl (2'-5')-adenylyl(2'-5')-adenosine(2'-5'-Oligo A). Methods Enzymol. 79B: 233-249.

Imai, J. and Torrence, P. F. (1981b) Bis(2,2,2-trichloroethyl)-phosphono dichloride as a reagent for the phosphorylation of oligonucleotides: preparation of 5'-phosphorylated 2',5'-oligoadenylates. J. Org. Chem. 46: 4015-4021.

Imai, J. and Torrence, P. F. (1984) Synthesis and biological activity of 5'-capped derivatives of 2-5A. Biochemistry 23: 766-774.
The 2-5A Natural Defense System

Johnston, M. I. and Torrence, P. F. (1984) The role of interferon-induced proteins, double-stranded RNA and 2',5'-oligoadenylate in the interferon-mediated inhibition of viral translation. In: Interferon: Mechanism of Production and Action, pp. 189-298, Friedmann, R. M. (ed.) Elsevier, Amsterdam.

Johnston, M. I., Freidman, R. M. and Torrence, P. F. (1980a) 2',5'-Oligoadenylate synthetase: a new assay and preliminary structure-activity relationships for enzyme activation by nucleic acids. Ann. NY Acad. Sci. 350: 603-604.

Johnston, M. I., Imai, J., Lesiak, K. and Torrence, P. F. (1985) Immunochemical analysis of the structure of 2',5'-oligoadenylate. Biochemistry 22: 3453-3460.

Joklik, W. K. and Merigan, T. C. (1966) Concerning the mechanism of action of interferon. Proc. Natl. Acad. Sci. USA 56: 558-565.

Jones, S. S. and Reese, C. B. (1979) Chemical synthesis of 5'-O-triphosphoryladenylyl-(2'-5')-adenyl-(2'-5')adenosine in NIH 3T3 cells. Biochem. Biophys. Res. Commun. 97: 375-383.

Johnston, M. I., Imai, J., Lesiak, K. and Torrence, P. F. (1983) Inducible 2',5'-oligoadenylate synthetase activity in mouse JLS-V9R cells. J. Biol. Chem. 257: 12739-12745.

Imai, J. and Torrence, P. F. (1985) Expedient chemical synthesis of sequence-specific 2',5'-oligoadenylyl(5'-O-adenosine). J. Org. Chem. 50: 1418-1426.

Imai, J., Johnston, M. I. and Torrence, P. F. (1982a) Chemical modification potentiates the biological activities of 2-5A and its congeners. J. Biol. Chem. 257: 12739-12745.

Imai, J., Lesiak, K., Johnston, M. I. and Torrence, P. F. (1982b) Oligonucleoside structural features involved in binding to and activation of the 2-5A-dependent endonuclease of L cells. Nucl. Acid Symp. Ser. 11: 97-100.

Imai, J., Lesiak, K. and Torrence, P. F. (1985) Respective role of each of the purine N-6 amino groups of 5'-O-triphosphoryladenylyl(2'-5')adenyl(2'-5')adenosine in binding to and activation of RNase L. J. Biol. Chem. 260: 1390-1393.

Imaee, T. and Osgul, L. E. (1981) Substitution control of the poly(C)-directed oligomerization of guanosine 5'-phosphorimidazolide. J. Am. Chem. Soc. 103: 7666-7667.

Isaacs, A. and Lindemann, J. (1957) Virus interference. I. The interferon. Proc. R. Soc. Lond. Ser. B. 141: 209-221.

Itkes, A. V. (1994) Oligoadenylate and cyclic AMP: interrelation and mutual regulation. Prog. Mol. Subcell. Biol. 14: 209-221.

Itkes, A. V., Turpaev, K. T., Kartasheva, O. N., Kafiani, C. A. and Severin, E. S. (1984a) Cyclic AMP-dependent regulation of activities of synthetase and phosphodiesterase of 2',5'-oligoadenylate in NIH 3T3 cells. Mol. Cell. Biochem. 58: 165-171.

Itkes, A. V., Turpaev, K. T., Kartasheva, O. N., Tuntitskaaya, V. I., Kafiani, C. A. and Severin, E. S. (1984b) Regulation of 2',5'-oligo(A) synthetase activity in theophyllin-treated NIH 3T3 cells. FEBS Lett. 166: 199-201.

Jacobsen, H., Czamiecki, C. W., Krause, D., Friedman, R. M. and Silverman, R. H. (1983) Interferon-induced synthesis of 2-5A-dependent RNAse in mouse JLS-V9R cells. Virology 125: 496-501.

Jacobsen, H., Krause, D., Friedman, R. M. and Silverman, R. H. (1983a) Inducible 2',5'-oligoadenylate synthetase activity in mouse JLS-V9R cells during growth inhibition. Proc. Natl. Acad. Sci. USA 80: 4954-4958.

James, K. D. and Ellington, A. D. (1995) The search for missing links between self-replicating nucleic acids and the RNA world. Origins Life Evolution Biosphere 25: 515-530.

Jamoulle, J.-C. and Torrence, P. F. (1986) Synthesis of a guanosine and 7-deazaadenosine substituted analog or 2'-5A:p5'G2'p5'1:~7A)2'p5'(~7A). Eur. J. Med. Chem. 21: 517-519.

Jamoulle, J.-C., Lesiak, K. and Torrence, P. F. (1987) Enzymatically synthesized 2',5'-phosphorothioate dimer and trimer: unequivocal structural assignment and activation of the RNase L or mouse cells. Biochemistry 26: 376-383.

Jang, P. H., Chany-Fournier, F., Galabru, J., Nadine, R., Hovanessian, A. G. and Chassy, C. (1986) Interferon- and nucleoprotein-dependent cell regulatory interferons. J. Biol. Chem. 263: 19154-19158.

Jin, R., Chapman, W. H., Jr., Srinivasan, A. R., Olson, W. K., Breslow, R. and Breslauer, K. J. (1993) Comparative spectroscopic, calorimetric, and computational studies of nucleic acid complexes with 2',5'- versus 3',5'-phosphodiester linkages. Proc. Natl. Acad. Sci. USA 90: 10568-10572.
inhibitor of protein synthesis synthesized with an enzyme fraction from interferon-treated cells. Proc. Natl. Acad. Sci. USA 75: 256–280.

Kerr, I. M., Friedman, R. M., Esteban, R. M., Brown, R. E., Ball, L. A., Metz, D. A., Rusby, D., Tovell, D. R. and Sonnabend, J. A. (1973) The control of protein synthesis in interferon-treated cells. Adv. Biosci. 11: 109–126.

Kerr, I. M., Brown, R. E. and Ball, L. A. (1974a) Increased sensitivity of cell-free protein synthesis to double-stranded RNA after interferon treatment. Nature 250: 57–59.

Kerr, I. M., Friedman, R. M., Brown, R. E., Ball, L. A. and Brown, J. C. (1974b) Inhibition of protein synthesis in cell-free systems from interferon-treated, infected cells: further characterization and effect of formyl-methionyl tRNA. J. Virol. 13: 9–21.

Kiev, I. M., Brown, R. E., Clemen, M. J. and Gilbert, C. S. (1976) Interferon-mediated inhibition of cell-free protein synthesis in response to double-stranded RNA. Eur. J. Biochem. 69: 551–561.

Kerr, I. M., Brown, R. E. and Hovanessian, A. G. (1977) Nature of inhibitor of cell-free protein synthesis formed in response to interferon and double-stranded RNA. Nature 266: 518–542.

Kierzek, R., He, L. and Turner, D. H. (1992) Association of 2'-5' oligonucleotides from intact cells. Nature 288: 189–192.

Kimchi, A., Shure, H. and Revel, M. (1981) Antimitogenic function of interferon-induced (2'-5')oligo(adenylate) and growth-related variations in enzymes that synthesize and degrade this oligonucleotide. Eur. J. Biochem. 114: 5–10.

Kinos, J.-E., Pabuccouglu, A., Alster, D. K., Lesiak, K. and Torrence, P. F. (1992) Synthesis and biological activity of uronic acid analogues of 2-5A[5'-O-triphosphoryladenylyl(2'->5')adenylyl(2'->5')]adenosine. Drug Disc. Discov. 8: 241–254.

Kistade, Y., Alster, D. K., Pabuccouglu, A. and Torrence, P. F. (1991a) Uridine analogs of 2',5'-oligoadenylates: on the biological role of the middle base of 2-5A trimer. Bioorg. Chem. 19: 283–299.

Kistade, Y., Nakata, Y., Hirota, K., Maki, Y., Pabuccouglu, A. and Torrence, P. F. (1991b) 8-Methyladenosine-substituted analogues of 2-5A: synthesis and their biological activities. Nucl. Acids Res. 19: 4103–4108.

Knight, M., Cavley, P. J., Silverman, R. H., Wreschner, D. H., Gilbert, C. S., Brown, R. E. and Kerr, I. M. (1980) Radiomun, radiobiinding and HPLC analysis of 2-5A and related oligonucleotides from intact cells. Nature 288: 189–192.

Knight, M., Wreschner, D. H., Silverman, R. H. and Kerr, I. M. (1981) Radiomun and radiobiinding assays for A2p5'A2p5'A, A2p5'A, A2p5'A, A2p5'A and related oligonucleotides. Methods Enzymol. 79: 216–227.

Kon, N. and Suhadolnik, R. J. (1996) Identification of the ATP binding domain recombinant human 40-kDa 2',5'-oligoadenylate synthetase by photoaffinity labeling with 8-azido-[32P]ATP. J. Biol. Chem. 271: 19983–19990.

Kondo, N. S., Holmes, H. M., Stempel, L. M. and Ts'O, P. O. P. (1970) Influence of the phosphodiester linkage (3'-5', 2'-5', and 5'-5') on the conformation of dinucleoside monophosphate. Biochemistry 9: 3479–3498.

Kovacs, T., Pabuccouglu, A., Lesiak, K. and Torrence, P. F. (1993) Fluorodeoxy sugar analogues of 2',5'-oligoadenylate probes of hydrogen bonding in enzymes of the 2-5A system. Bioorg. Chem. 21: 192–208.

Kovacs, T., Van Aerschot, A., Herdevijn, P. and Torrence, P. F. (1995) Solid phase synthesis of 2',5'-oligoadenylates containing 3'-fluorinated ribose. Nucleosides & Nucleotides 14: 1259–1267.

Krause, D. L. and Silverman, R. H. (1993) Tissue-related and species-specific differences in the 2-5A oligomer size requirement for activation of 2-5A-dependent RNase. J. Interferon Res. 13: 13–16.

Krause, D., Panet, A., Arad, G., Dieffenbach, C. W. and Silverman, R. H. (1985a) Independent regulation of ppp(A2p)p,A-dependent RNase in NIH3T3 clone 1 cells by growth arrest and interferon treatment. I. Biol. Chem. 260: 9501–9507.

Krause, D., Silverman, R. H., Jacobsen, H., Leisy, S. A., Dieffenbach, C. W. and Freidman, R. M. (1985b) Regulation of ppp(A2p)p,A-dependent RNase levels during interferon treatment and cell differentiation. Eur. J. Biochem. 146: 611–618.

Krause, D., Lesiak, K., Imam, J., Sawai, H., Torrence, P. F. and Silverman, R. H. (1986) Activation of 2-5A-dependent RNase by analogs of 2-5A (5'-triphosphoryladenylyl(2'->5')adenylyl(2'->5')adenosine) using 2',5'-tetraadenylate (core-cellulose J. Biol Chem. 261: 6836–6839.

Krause, D., Mullins, J. M., Penafiel, L. M., Meister, R. and Norden, R. L. (1991) Microwave exposure alters the expression of 2-5A-dependent RNase. Radiat. Res. 127: 164–170.

Krishnamurti, C., Besancon, F., Justesen, J., Poulsen, K. and Ankel, H. (1982) Inhibition of mouse fibroblast interferon by gangolides. Differential effects on biological activity and on induction of 5'-oligoadenylate synthetase. Eur. J. Biochem. 124: 1–6.

Krishnam, I. and Baglioli, C. (1980) 2',5'-oligo(A) polymerase activity in serum of mice infected with EMC virus or treated with interferon. Nature 285: 485–488.

Krishnam, I. and Baglioli, C. (1980b) Increased levels of 2',5'-oligo(A) polymerase in human lymphoblastoid cells treated with glucocorticoids. Proc. Natl. Acad. Sci. USA 77: 6506–6510.

Krishnan, I. and Baglioli, C. (1981) Elevated levels of 2',5'-oligoadenylic acid polymerase activity in growth-arrested human lymphoblastoid Namalab cells. Mol. Cell. Biol. 1: 932–938.

Kruger, K., Grabowski, P. J., Zaug, A. J., Sands, J., Gottschling, D. E and Coch, T. R. (1982) Self-splicing RNA: autorexcision and autocyclization of the ribosomal RNA intervening sequence of Tetrahymena. Cell 31: 147–157.

Kuhr, T., Hala, K., Dietrich, H., Herold, M. and Wick, G. (1994) Genetically determined target organ susceptibility in the pathogenesis of spontaneous autoimmune thyroidic aberrant expression of MHC-class II antigens and the possible role of virus. J. Autoimmun. 7: 13–25.

Kumar, R. and Korutla, L. (1995) Growth inhibition of human acute promyelocytic leukemia NB 4 cells by interferons and all trans retinoic acid: trans-modulation of inducible gene expression pathways. Anticancer Res. 15: 353–360.

Kumar, R. and Mendelsohn, J. (1989) Role of 2',5'-oligoadenylate synthetase in gamma-interferon-mediated growth inhibition of A431 cells. Cancer Res. 49: 5180–5184.

Kumar, R. and Mendelsohn, J. (1990) Growth regulation of A431 cells. J. Biol. Chem. 265: 4578–4582.

Kuuskala, A., Pihlak, A., Muller, W. E and Kelve, M. (1995) The 2',5'-oligoadenylate synthetase is present in the lowest multicellular organisms, the marine sponges. Demonstration of the existence and identification of its reaction products. Eur. J. Biochem. 232: 351–357.

Kvasyuk, E. I., Kulak, T. I., Khrpich, N. B., Mikhailelupio, I. A., Uhlmann, E., Charushal, R. and Pfeiderer, W. (1987) Nucleotides XXIV: preparative synthesis of trimeric (2',5') oligoadenylate acid. Synthesis 1987: 535–541.
The Z-5A Natural Defense System

Kvysuk, E. I., Kulak, T. I., Mikhailopulo, L., Charubala, R. and Pfeiderer, W. (1995) Synthesis of new (2'-5')-adenylate trimers, containing 5'-amino-5'-deoxyadenosine residues at the 5'-end of the oligoadenylate chain, and of its analogues, carrying a 9-[2-hydroxyethyl]methyl]adenosine residue at the 2'-terminus. Helv. Chim. Acta 78: 1777-1784.

Kvysuk, E. I., Kulak, T. I., Shul'akovskyaya, S. M., Makarenko, M. V., Mikhailopulo, I. A., Charubala, R. and Pfeiderer, W. (1996) Synthesis of a new 12labeled tyrosine methyl ester conjugate of adenylyl(2'-5')-adenyl(2'-5')-2',3'-di-O-(2-carboxyethyl)ethylideneadenosine. Bioorg. Med. Chem. Lett. 6: 521-524.

Kwiatkowski, M., Gioli, C., Oberg, B. and Chattopadhyaya, J. (1984) Synthesis and properties of ara-adenylyl-(2'-5')-ara-adenylyl-(2'-5')-ara [(A2p5'A2p5'A)]. Chem. Scr. 18: 95-96.

Kwiatkowski, M., Gioli, C. and Chattopadhyaya, J. (1987) Chemical synthesis and conformation of "arabino analogues" of (2'->5')-isoadenylates and their application as probes to determine the structural requirements of cellular exonucleases. Chem. Scr. 19: 49-56.

Lab, M., Thang, M. N., Soteriadou, K., Koehren, F. and Justesen, J. (1982) Regulation of 2,5-oligo(A) synthetase activity and antiviral state in interferon treated chick cells. Biochem. Biophys. Res. Commun. 105: 412-418.

Lesiak, K., Imai, J., Floyd-Smith, G. and Torrence, P. F. (1983) Biological activities of phosphodiester linkage isomers of 2,5-A. J. Biol. Chem. 258: 13082-13088.

Lesiak, K., De Clercq, E. and Torrence, P. F. (1989) Adducts of mannose-6-phosphate with 5-ido-2'-deoxyuridine and 2,5-A as potential antiviral agents. Nucleosides & Nucleotides 8: 1387-1398.

Lesiak, K., Khamnei, S. and Torrence, P. F. (1993) 2',5'-Oligoadenylate:antiviral chimeras—synthesis and properties. Bioconjug. Chem. 4: 467-472.

Lewin, R. (1986) RNA catalysis gives fresh perspective on the origin of life. Science 231: 545-546.

Lewis, J. A. (1989) Induction of an antiviral state by interferon in the absence of elevated levels of 2,5-oligo(A) synthetase and eIF-2 kinase. Virology 162: 118-127.

Lewis, J. A. and Falcoff, R. (1981) Assay of double-stranded RNA-dependent endonuclease activity. Methods Enzymol. 79: 265-273.

Lewis, J. A., Falcoff, E. and Falcoff, R. (1978) Dual action of double-stranded RNA in inhibiting protein synthesis in extracts of interferon-treated mouse I. cells. Translation is impaired at the level of initiation and by mRNA degradation. Eur. J. Biochem. 86: 497-509.

Li, S. W., Moskov, J. J. and Sahadoulkov, R. J. (1990) 8-Azido double-stranded RNA photoaffinity probes. Enzymatic synthesis, characterization, and biological properties of poly[(8-azido)-poly(C) and poly[(8-azido)-poly(C)], with 2',5'-oligoadenylate synthetase and protein kinase. J. Biol. Chem. 265: 5470-5474.

Lin, S. L., Te'O, P. O. and Hollenberg, M. D. (1983) Epidermal growth factor-urogastrone action: induction of 2',5'-oligoadenylate synthetase activity and enhancement of the mitogenic effect by anti-interferon antibody. Life Sci. 28: 1479-1488.

Litton, G. J., Hong, R., Grossberg, S. E., Vechlekar, D., Goodavathi, C. N. and Borden, E. C. (1990) Biological and clinical effects of the oral immunomodulator 3,6-bis(2-piperidinethoxy)acridine trihydrochloride in patients with malignancy. J. Biol. Response Modif. 9: 61-70.

Liu, D. K., and Owens, G. F. (1987) Methylxanthine treatment of rats reduces 2,5-oligoadenylate synthesis in liver nuclei. J. Toxicol. Environ Health 20: 379-386.

Lodemann, E., Nitsche, E. M., Lang, M. H., Gerein, V., Altmeyer, M. and Cavallo, G. (1988) Interferon-gamma is not an antiviral, but a growth-promoting factor for T lymphocytes. Eur. J. Immunol. 18: 503-509.

Laurence, L., Marti, J., Roux, D. and Cailla, H. (1984) Immunological evidence for the in vivo occurrence of (2'->5')-adenyladenosine oligonucleotides in eukaryotes and prokaryotes. Proc. Natl. Acad. Sci. USA 81: 2322-2326.

Lacano, A. and Miller, S. L. (1996) The origin and early evolution of life: prebiotic chemistry, the pre-RNA world, and time. Cell 85: 793-798.

Lebo, R. V., Chance, P. F., Dyck, P. J., Reddila-Flores, M. T., Lynch, E. D., Golbus, M. S., Bird, T. D., King, M. C., Anderson, L. A., Hall, I., Wiegant, I., Jiang, Z., Dazen, P. F., Punnert, H. H., Schonger, S. A., Moore, K., Shull, M. M., Gendler, S., Hurko, O., Lovelace, R. E., Latov, N., Trofatter, J. and Connolly, P. M. (1991) Chromosome 1 Charcot-Marie-Tooth disease (CMT1B) locus in the Fcg receptor gene region. Hum. Genet. 88: 1-12.

Lengyel, P. (1987) Double-stranded RNA and interferon action. J. Interferon Res. 7: 511-519.

Lesiak, K. and Torrence, P. F. (1983) Synthesis and biological activity of a fluorescent analog of 2-5A. FEBS Lett. 151: 291-296.

Lesiak, K. and Torrence, P. F. (1985) Phosphorylation of 2,5-A core 5'-diphosphate to 2,5-A in mouse I. cell extracts. Biochem. Biophys. Res. Commun. 126: 917-921.

Lesiak, K. and Torrence, P. F. (1986) Synthesis and biological activities of oligo(8-bromoadenylates) as analogues of 5'-O-triphosphoadenylyl(2'-5')-adenyl(2'-5')adenosine. J. Med. Chem. 29: 1015-1022.

Lesiak, K. and Torrence, P. F. (1987) Purine 8-riboximation modulates the ribonuclease I binding and activation abilities of 2,5-oligoadenylates. Possible influence of glycosyl torsion angle. J. Biol. Chem. 262: 1961-1965.

Lesiak, K., Imai, J., Floyd-Smith, G. and Torrence, P. F. (1983) Biological activities of phosphodiester linkage isomers of 2,5-A. J. Biol. Chem. 258: 13082-13088.
Maran, A., Maitra, R. K., Kumar, A., Dong, B., Xiao, W., Li, G., Williams, B. R. G., Torrence, P. F. and Silverman, R. H. (1994) Blockage of NF-kB signaling by selective ablation of an mRNA target by 2'-5A antisenese chimeras. Science 265: 789–792.

Marcus, P. I. and Salb, J. M. (1966) Molecular basis of interferon action: inhibition of viral RNA translation. Virology 30: 502–516.

Marie, I. and Hovanessian, A. G. (1992) The 69-kDa 2'-5' synthetase is composed of two homologous and adjacent functional domains. J. Biol. Chem. 267: 9933–9939.

Marie, I., Galabru, J., Svab, J. and Hovanessian, A. G. (1989) Preparation and characterization of polyclonal antibodies specific for the 69 and 100 K-Dalton forms of human 2-5A synthetase. Biochem. Biophys. Res. Commun. 160: 580–587.

Marie, I., Svab, J. and Hovanessian, A. G. (1990a) The binding of the 69- and 100-kDa forms of 2',5'-oligoadenylate synthetase to different polynucleotides. J. Interferon Res. 10: 571–578.

Marie, I., Svab, J., Robert, N., Galabru, J. and Hovanessian, A. G. (1990b) Differential expression and distinct structure of 69- and 100-kDa forms of 2-5A synthetase in human cells treated with interferon. J. Biol. Chem. 265: 18601–18607.

Markham, A. F., Porter, R. A., Gait, M. J., Sheppard, R. C. and Kerr, I. M. (1979) Rapid chemical synthesis and circular dichroism properties of some 2',5'-linked oligoriboadenylates. Nucl. Acids Res. 6: 2569–2582.

Martyre, M. C., Beaupain, R. and Falcoff, E. (1988) Human lung skin fibroblasts. Lipids 25: 321–327.

Matthews, M. B. and Shenk, T. (1991) Adenovirus virus-associated RNA and translation control. J. Virol. 65: 5657–5662.

McNair, A. N., Cheng, D., Monjardino, J., Thomas, H. C. and Keir, I. M. (1994) Hepatitis delta virus replication in vitro is not affected by interferon-alpha or -gamma despite intact cellular responses to interferon and the induction of 2',5'-oligoadenylate synthetase. Tumor Biol. 9: 263–269.

Meurers, E., Krause, D., Robert, N., Silverman, R. H. and Hovanessian, A. G. (1986) The 2-5A system in control and interferon treated K/BALB cells infected with encephalomyocarditis virus. Annu. Inst. Pasteur Virology 137E: 271–272.

Miele, M. B., Liu, D. K. and Kan, N. C. (1991) Fractionation and characterization of 2',5'-oligoadenylates by polycrylamide gel electrophoresis: an alternative method for assaying 2',5'-oligoadenylate synthetase. J. Interferon Res. 11:33–40.

Miele, M. E., Vesell, E. S., Ehmann, W. C., Lipton, A., Harvey, H. and Kan, N. C. (1992) Hormonal and immunological regulation of 2',5'-oligoadenylate synthetase activity in human peripheral blood mononuclear cells. Clin. Immunol. Immunopathol. 65:183–192.

Mikhailov, S. N., and Pfeiferer, W. (1985) Synthesis of a new class of acyclic 2',5'- and 3',5'-oligonucleotide analogs based on 9-(1,5-dihydroxy-4(S)-hydroxymethyl-3-oxapent-2(R)-y1)-adenine. Tetravalent 1-Lett. 76: 7059–7067.

Mikhailov, S. N., Charubala, R. and Pfeiferer, W. (1991) 3'-Deoxyadenylenyl-(2'->3')-deoxyadenylenyl-(2'->3')-9-(ω-hydroxyalkyl)adenines. Helv. Chim Acta 74: 887–891.

Miller, B. C. and Bell, J. B. G. (1995) 2',5'-Oligoadenylate synthetase levels in patients with multiple myeloma receiving maintenance therapy with interferon alpha 2 beta do not correlate with clinical response. Br. J. Cancer 72: 1523–1530.

Minks, M. A., Benvin, S., Maroney, P. A. and Baglioni, C. (1979a) Synthesis of 2',5'-oligo(A) in extracts of interferon-treated HeLa cells. J. Biol. Chem. 254: 5058–5064.

Minks, M. A., Benvin, S., Maroney, P. A. and Baglioni, C. (1979b) Metabolic stability of 2,5'-oligo(A) and activity of 2',5'-oligo(A)-dependent endonuclease in extracts of interferon-treated and control HeLa cells. Nucl. Acids Res. 6: 767–780.

Minks, M. A., West, D. K., Benvin, S. and Baglioni, C. (1979c) Structural requirements of double-stranded RNA for the activation of 2',5'-oligo(A) polymerase and protein kinase of interferon-treated HeLa cells. J. Biol. Chem. 254: 10160–10163.

Minks, M. A., Benvin, S. and Baglioni, C. (1980a) Mechanism of pppA(7p5'A)n2p5'Ao2 synthesis in extracts of interferon-treated HeLa cells. J. Biol. Chem. 255: 5031–5035.

Minks, M. A., West, D. K., Benvin, S., Greene, J. J., Ts'O, P. O. P. and Baglioni, C. (1980b) Activation of 2',5'-oligo(A) polymerase and protein kinase of interferon-treated HeLa cells by 2'-O-methylated polyinosinic acid-poly(cytidylic acid). J. Biol. Chem. 255: 6403–6407.

Miraldo, M. A., Short, E. C., Jr., Geisert, R. D., Valler, J. L. and Bazer, F. W. (1991) Stimulation of 2',5'-oligoadenylate synthetase activity in sheep endometrium during pregnancy, by intrauterine infusion of ovine trophoblast protein-1, and by intramuscular administration of recombinant bovine interferon-on-11. J. Reprod. Fertil. 93: 599–607.

Miyamoto, N. G., Jacobs, B. L. and Samuel, C. E. (1983) Mechanism of interferon action: effect of double-stranded RNA and the 5-Q-monophosphate form of 2',5'-oligoadenylate on the inhibition of reovirus mRNA translation in vitro. J. Biol. Chem. 258: 15232–15237.

Mory, Y., Vako, B. and Chebath, J. (1989) Production of two human 2',5'-oligoadenylate synthetase enzymes in Escherichia coli. J. Interferon Res. 9: 295–304.

Muller, W. E. G., Okamoto, T., Reuter, P., Ugarkovic, D. and Schroder, H. C. (1990) Functional characteristics of Tat protein from human immunodeficiency virus: evidence that Tat links viral RNAs to nuclear matrix. J. Biol. Chem. 265: 3803–3808.
Munoz, A., Harvey, R. and Carrasco, L. (1983) Cellular RNA is not degraded in interferon-treated HeLa cells after poliovirus infection. FEBS Lett. 160: 57–92.

Murray-Rust, P., Stallings, W. C., Monti, C. T., Preston, R. K. and Glusker, J. P. (1983) Intermolecular interactions of the C-F bond: the crystallographic environment of fluorinated carboxylic acids and related structures. J. Am. Chem. Soc. 105: 3206–3214.

Nakajima, Y., Konno, S., Perrucio, L., Chen, Y., Wu, J. M., An, S., Chiao, J., Choudhury, M., Mallouh, C. and Muraki, J. (1994) Effects of IFN-beta on growth of human prostatic JCA-1 cells. Biochem. Biophys. Res. Commun. 200: 467–474.

Nelson, F. S., Bach, C. I. and Verheyden, J. P. H. (1984) Synthesis of P-thioadenyl-(2'-5')-adenosine and P-thioadenyl-(2'-5')-P-thioadenyl-(2'-5')-adenosine. J. Org. Chem. 49: 2314–2317.

Nicolas, M., Launay, L., Luxembourg, A., Cailla, H. and Marti, G. (1986) The cordycepin analogue of 2,5A and its threo isomer. Chemical synthesis, conformation and biological activity. J. Am. Chem. Soc. 106: 4483–4489.

Orlic, D., Quani, F., Kinski, A. A. and Wu, J. M. (1983) 2',5'-Adenylate inhibition of erythropoietin-dependent colony formation. Stem Cells 1: 261–268.

Orlic, D., Wu, J., Carmichael, R. D., Quani, F., Kohylack, M. and Gordon, A. S. (1982) Increased erythropoiesis and 2'-5' A polymerase activity in the marrow and spleen of phenylhydrazine-injected rats. Exp. Hematol. 10: 478–485.

Orlic, D., Kirk, E., Quani, F. and Babbott, S. (1984a) The 2'-5' adenylate (2->5A) system in erythropoiesis. Blood Cells 10: 193–210.

Orlic, D., Kohylack, M. and Dunfet, S. B. (1994b) Inhibition of CFU-E in rat bone marrow perfused with 2'-5'-oligoadenylate core. Exp. Hematol. 12: 39–43.

Onishi, E., Bannai, H. and Yamazaki, S. (1986) Effect of glucose on antiviral activity of interferon. J. Interferon Res. 6: 381–388.

Orgel, L. E. (1968) Evolution of the genetic apparatus. J. Mol. Biol. 38: 381–393.

Pivazian, A. D., Susuki, H., Vartanian, A. A., Zhelkovsky, M., Pivazian, A. D., Susuki, H., Vartanian, A. A., Zhelkovsky, M., Parthasarathy, R., Malik, M. and Fridley, S. M. (1982) X-ray structure of a dinucleotide monophosphate A2'p5'C that contains a 2',5' link found in (2',5')oligo(A)s induced by interferons: single-stranded helical conformation of 2',5' linked oligonucleotides. Proc. Natl. Acad. Sci. USA 79: 7292–7296.

Pathak, S., Hopwood, V. L., HorthORYAI, G. N., Evans, G. A., Housman, D. and Ward, D. C. (1990) Chromosome anomalies in human breast cancer: evidence for specific involvement of 1q region in lymphocyte cultures. Anticancer Res. 11: 1055–1060.

Pellegrini, S. and Schindler, C. (1993) Early events in signalling by interferons. Trends Biochem. Sci. 18: 338–342.

Ogltie, K. K. and Tertiall, N. Y. (1979) The synthesis of 2'-5' linked oligoribonucleotides. Tetrahedron. Lett. 23: 2111–2114.

Okiarinen, J. (1982) Cortisol induces (2'-5') oligoadenylate synthetase in cultured chick embryo tendon fibroblasts. Biochem. Biophys. Res. Commun. 105: 876–881.

O'Malley, B. W., Tsai, M. J., Tsai, S. Y. and Towle, H. C. (1977) Regulation of gene expression in chick oviduct. Cold Spring Harbor Symp. Quant. Biol. 42: 605–615.

Parmar, R. K., Stallings, W. C., Monti, C. T., Preston, R. K. and Glusker, J. P. (1983) Intermolecular interactions of the C-F bond: the crystallographic environment of fluorinated carboxylic acids and related structures. J. Am. Chem. Soc. 105: 3206–3214.

Ogilvie, K. K. and Theriault, N. Y. (1979) The synthesis of 2'-5' linked oligoribonucleotides. Tetrahedron. Lett. 23: 2111–2114.

Oikarinen, J. (1982) Cortisol induces (2'-5') oligoadenylate synthetase in cultured chick embryo tendon fibroblasts. Biochem. Biophys. Res. Commun. 105: 876–881.

O'Malley, B. W., Tsai, M. J., Tsai, S. Y. and Towle, H. C. (1977) Regulation of gene expression in chick oviduct. Cold Spring Harbor Symp. Quant. Biol. 42: 605–615.
Podevin, P., Calmus, Y., Bonnefis, M. T., Veyrune, C., Chereau, C. and Poupon, R. (1995) Effect of cholestasis and bile acids on interferon-induced 2',5'-adenylyl synthetase and NK cell activities. Gastroenterology 108: 1192-1198.

Polack, A., Eick, D., Koch, E. and Bornkamm, G. W. (1987) Truncation does not abrogate transcriptional downregulation of the c-myc gene by sodium butyrate in Burkitt's lymphoma cells. EMBO J. 6: 2959-2964.

Pressova, M. and Smet, J. (1989) Synthesis of 2'-end lipophilized derivatives of 2',5'-triadenylates. Collect. Czech. Chem. Commun. 54: 487-497.

Raber, J., Eldar, H., Lehrer, R., Chebath, J. and Livneh, E. (1991) Specific regulation of the 100 kDa 2-5 A synthetase by protein kinase C. Eur. Cytokine Netw. 2: 281-290.

Ralph, S. J., Wines, B. D., Payne, M. J., Grubb, D., Hatzinisiriou, I., Linnane, A. W. and Devenish, R. J. (1995) Resistance of melanoma cell lines to interferons correlates with reduction of IFN-induced tyrosine phosphorylation. Induction of the antiviral state by IFN is prevented by tyrosine kinase inhibitors. J. Immunol. 154: 2248-2256.

Ratner, L., Sen, G. C., Brown, G. L., Lebleu, B., Kawakita, M., Caher, B., Slattery, E. and Lengyl, P. (1978) Interferon, double-stranded RNA and RNA degradation. Fractionation of the endonuclease INT system into two macromolecular components: role of a small molecule in nuclease activation. Biochim. Biophys. Acta 81: 947 954.

Rayfield, E. J. (1990) Effects of rubella virus infection on islet function. Curr. Top. Microbiol. Immunol. 156: 63-74.

Resnitzky, D., Yarden, A., Zipori, D. and Haran-Ghera, N. (1992) Absence of negative growth regulation in three new murine radiation-induced myeloid leukemia cell lines with deletion of chromosome 2. Leukemia 6: 1288-1295.

Rice, A. P., Kerr, S. M., Roberts, W. K., Brown, R. E. and Kerr, I. M. (1985) Novel 2',5'-oligoadenylate synthetases synthesized in interferon-treated, vaccinia virus infected cells. J. Virol. 56: 1041-1044.

Rimoldi, D., Dieffenbach, C. W., Friedman, R. M. and Samid, D. (1990) 2',5'-Oligoadenylate synthetase gene expression in revertants of ras-transformed NIH3T3 fibroblasts. Exp. Cell Res. 191: 76-82.

Rios, M., Munoz, M., Torrence, P. F. and Spencer, E. (1995) Effect of interferon and 2',5'-oligoadenylates on rotavirus RNA synthesis. Antiviral Res. 26: 133-143.

Roberts, R. M. (1991) A role for interferons in early pregnancy. Bioessays 13: 121-126.

Roberts, W. K., Clemens, M. J. and Kerr, I. M. (1976) Interferon-induced inhibition of protein synthesis in L-cell extracts: an ATP-dependent step in the activation of an inhibitor by double-stranded RNA. Proc. Natl. Acad. Sci. USA 73: 3136-3140.

Rosen, C. A. (1991) Regulation of HIV gene expression by RNA-protein interactions. Trends Genet. 7: 9-14.

Rosenblum, M. G., Cheung, L. and Kessler, D. (1988) Differential activity of the 30-kDa and the 100-kDa forms of 2'-5'A synthetase induced by recombinant human interferon-alpha and interferon-gamma. J. Interferon Res. 8: 275-282.

Roslavtsev, S., Voth, R., Laubenstein, H. P., Muller, W. G., Schroder, H. C., Meyer zum Buhsenfeld, K.-H. and Hess, G. (1989) Interferon production in patients infected with HIV-1. J. Infect. Dis. 159: 815-821.

Rovnak, J. and Ranu, R. S. (1987) Purification of 2',5'-oligoadenylate synthetase from rabbit reticulocytes. J. Interferon Res. 7: 231-241.

Roy, S., Katze, M. G., Parkin, N. T., Edery, I., Hovanessian, A. G. and Sonenberg, N. (1990) Control of the interferon-induced 68-kilodalton protein kinase by the HIV-1 tat gene product. Science 247: 1216-1219.

Rusconi, S., Agarossi, A., Ravasi, L., Tonita, A., Conti, M. and Galli, M. (1994) Senescence of interferon-induced 2',5'-oligoadenylate synthetase levels and clinical response to interferon-beta therapy in women with genital human papillomavirus infection. J. Infect. Dis. 169: 1112-1115.

Rysiekci, G., Gewert, D. R. and Williams, B. R. (1989) Constitutive expression of a 2',5'-oligoadenylate synthetase cDNA results in increased antiviral activity and growth suppression. J. Interferon Res. 9: 649-657.

Salehzada, T., Silhol, M., Lebleu, B. and Bisbal, C. (1991) Polyclonal antibodies against RNase L: subcellular localization of this enzyme in mouse cells. J. Biol. Chem. 266: 5808-5813.

Salehzada, T., Silhol, M., Steff, A. M., Lebleu, B. and Bisbal, C. (1993) 2',5'-Oligoadenylate-dependent RNase L is a dimer of regulatory and catalytic subunits. J. Biol. Chem. 268: 7733-7740.

Salberg, S., Hacohen, D., David, S., Dovrat, A., Ahwan, S., Gambliel, H. and Birnbaum, M. (1990a) Involvement of interferon system in the regulation of cell growth and differentiation. Scanning Microsc. 4: 479-489.

Salberg, S., Lanciano, F. and Hacohen, D. (1990b) Reversibility of the antiproliferative effect of interferon. Nat. Immun. Cell Growth Regul. 9: 191-202.

Salberg, S., Heller, A., Zou, J. P., Collart, F. R. and Huberman, E. (1996) Interferon-independent activation of (2'-5')oligoadenylate synthetase in Friend erythroleukemia cell variants exposed to HMBA. J. Cell Sci. 109: 1517-1526.

Samanta, H., Dougherty, J. P. and Lengyl, P. (1980) Synthesis of cDNA encoding the 231-241 kilodalton protein kinase. J. Biol. Chem. 255: 9807-9813.

Samanta, H., Dougherty, J. P. and Lengyl, P. (1980) Synthesis of cDNA encoding the 231-241 kilodalton protein kinase. J. Biol. Chem. 255: 9807-9813.

Samanta, H., Dougherty, J. P. and Lengyl, P. (1980) Synthesis of cDNA encoding the 231-241 kilodalton protein kinase. J. Biol. Chem. 255: 9807-9813.

Samanta, H., Dougherty, J. P. and Lengyl, P. (1980) Synthesis of cDNA encoding the 231-241 kilodalton protein kinase. J. Biol. Chem. 255: 9807-9813.

Samanta, H., Dougherty, J. P. and Lengyl, P. (1980) Synthesis of cDNA encoding the 231-241 kilodalton protein kinase. J. Biol. Chem. 255: 9807-9813.
Sawai, H., Kuroda, K. and Hojo, T. (1988) Efficient oligoadenylate synthesis catalyzed by uranyl ion complex in aqueous solution. Nucl. Acids Symp. Ser. 19: 5-7.

Sawai, H., Ishibashi, K., Itoh, M. and Watanabe, S. (1985) Sensitive radioimmunoassay for 2',5'-oligoadenylylates using a novel 14C-labeled derivative of 2',5'-triadenylate 5'-triphosphate. J. Biochem. 98: 999-1005.

Schmitt, R. A., Geisert, R. D., Zavy, M. T., Short, E. C. and Blair, R. M. (1993) Uterine cellular changes in 2',5'-oligoadenylate synthetase during the bovine estrus cycle and early pregnancy. Biol. Reprod. 48: 460-466.

Schroder, H. C., Wenger, R., Rottman, M. and Muller, W. E. G. (1988) Alteration of nuclear (2',5')oligoriboadenylate synthetase and nuclease activities preceding replication of human immunodeficiency virus in H9 cells. Biol. Chem. Hoppe Seyler 369: 985-995.

Schroder, H. C., Wenger, R., Kuchino, Y. and Muller, W. E. G. (1989) Modulation of nuclear matrix-associated 2',5'-oligoadenylate metabolism and ribonuclease L activity in H9 cells by human immunodeficiency virus. J. Biol. Chem. 264: 5669-5673.
beta-adenosine-2'beta-uridine-5'phosphoric acid. Acta Crystallogr. B 25: 895-938.

Sheppard, T. L. and Breslow, R. C. (1996) Selective binding of RNA, but not DNA, by complementary 2',5'-linked DNA. J. Am. Chem. Soc. 118: 9810-9811.

Shimazu, M., Shinouka, K. and Sawai, H. (1992) Facile and stereoselective synthesis of 2',5'-oligoadenylate by UO22+ ion catalyst. Nucl. Acids Res. 20:105-106.

Shimizu, N. and Sokawa, Y. (1983) (2'-5')Oligoadenylate synthetase activity in lymphocytes from normal mouse. J. Biol. Chem. 254: 12034-12037.

Shimizu, N. and Sokawa, Y. (1986) (2'-5') Oligoadenylate synthetase in pig spleen: isolation and characterization. J. Biochem. 94: 1421-1428.

Shimizu, N., Sokawa, Y. and Sokawa, J. (1984) Immunological cross-reactivity between large and small (2'-5')oligoadenylate synthetases from pig cells. J. Biochem. 95: 1827-1830.

Shiojiri, S., Fukunaga, R., Ichii, Y. and Sokawa, Y. (1985) Structure and expression of a cloned cDNA for human (2'-5')olegoadenylate synthetase. J. Biochem. 99: 1435-1464.

Short, E. C., Jr., Geisert, R. D., Helmer, S. D., Zavy, M. T. and Fulton, R. W. (1991) Expression of antiviral activity and induction of 2',5'-oligoadenylate synthetase by conceptus secretory proteins enriched in bovine trophoblast protein-1. Biol. Reprod. 44: 261-268.

Short, E. C., Jr., Geisert, R. D., Grootveld, P. G., Blair, R. M., Schmitt, R. A. and Fulton, R. W. (1992) Porcine conceptus proteins: antiviral activity and effect on 2',5'-oligoadenylate synthetase. Biol. Reprod. 46: 464-469.

Silverman, R. H. (1985) Functional analysis of 2-5A-dependent RNase and 2-5A using 2',5'-oligoadenylate-cellulose. Anal. Biochem. 144: 450-460.

Silverman, R. H. and SenGupta, D. N. (1990) Translational regulation by HIV leader RNA, TAT, and interferon-inducible enzymes. J. Exp. Pathol. 5: 69-77.

Silverman, R. H., Wreschner, D. H., Gilbert, C. S. and Kerr, I. M. (1981) Synthesis, characterization properties of ppp(A2'p)ApCp and related high-specific-activity 32P-labelled derivatives of ppp(A2'p)2, Eur. J. Biochem. 115: 79-85.

Silverman, R. H., Cayley, P. J., Knight, M., Gilbert, C. S. and Kerr, I. M. (1982) Control of the ppp(A2'p)2A system in HeLa cells. Effects of interferon on virus infection. Eur. J. Biochem. 124: 131-138.

Silverman, R. H., Skehel, J. J., James, T. C., Wreschner, D. H. and Kerr, I. M. (1983) rRNA cleavage as an index of ppp(A2'p)2A activity in interferon-treated encephalomyocarditis virus-infected cells. J. Virol. 46: 1051-1055.

Silverman, R. H., Jung, D. D., Nolan-Sorden, N. L., Dieffenbach, C. W., Kedar, V. P. and SenGupta, D. N. (1988) Purification and analysis of murine 2-5A-dependent RNase. J. Biol. Chem. 263: 7336-7341.

Slattery, E., Ghosh, N., Samanta, H. and Lengyel, P. (1979) Interferon, double-stranded RNA, and RNA degradation: activation of an endonuclease by (2'-5')A2', Proc. Natl. Acad. Sci. USA 76: 4778-4782.

Sleeper, H. L. and Orgel, L. E. (1979) The catalysis of nucleotide polymerization by compounds of divergent lead. J. Mol. Evol. 12: 357-364.

Smekens-Errienne, M., Goldstein, J., Ooms, H. A. and Dumony, J. E. (1983) Variation of (2',5') oligo(adenylate) synthetase synthesis during rat liver regeneration. Eur. J. Biochem. 130: 269-273.

Sobol, R. W., Charubala, R., Pfeiderer, W. and Suhadolnik, R. J. (1993a) Chemical synthesis and biological characterization of phosphorothioate analogs of 2',5'-3'-deoxyadenylate trimer. Nucl. Acids Res. 21: 2437-2443.

Sobol, R. W., Fisher, W. L., Reichenbach, N. L., Kumar, A., Beard, W. A., Wilson, S. H., Charubala, R., Pfeiderer, W. and Suhadolnik, R. J. (1993b) HIV-1 reverse transcriptase: inhibition by 2',5'-oligoadenylates. Biochemistry 32: 12112-12118.

Sobol, R. W., Henderson, E. E., Kon, N., Shao, J., Hitzges, P., Mordechai, E., Reichenbach, N. L. Charubala, R., Schirmeister, H., Pfeiderer, W. and Suhadolnik, R. J. (1995) Inhibition of HIV-1 replication and activation of RNase L by phosphorothioate/phosphodiester 2',5'-oligoadenylate derivatives. J. Biol. Chem. 270: 5963-5978.

Sokawa, J. and Sokawa, Y. (1986) (2'-5') Oligoadenylate synthetase in chicken embryo erythrocytes and immature red blood cells. J. Biochem. (Tokyo) 99: 119-124.

Sperling, J., Chebath, J., Arad-Dann, H., Offer, D., Spann, P., Lehrer, R., Goldblatt, D., Jolles, B. and Sperling, R. (1991) Possible involvement of (2'-5')-oligoadenylate synthetase activity in pre-mRNA splicing. Proc. Natl. Acad. Sci. USA 88: 10377-10381.

Squire, J., Zhou, A., Hassel, B. A., Nie, H. and Silverman, R. H. (1994) Localization of the interferon-induced, 2-5A-dependent RNase gene (RNAS4) to human chromosome 1q25. Genomics 19: 174-175.

Sriniwasan, A. R. and Olson, W. K. (1986) Conformational studies of (2'-5') polynucleotides: theoretical comparison of energy, base morphology, helical structure, and duplex formation. Nucl. Acids Res. 14: 5461-5479.

Stark, G. R., Dower, W. J., Schimke, R. T., Brown, R. E. and Kerr, I. M. (1979) 2-5A synthetase: assay, distribution and variation with growth or hormone status. Nature 278: 471-473.

St. Johnston, D., Brown, N. H., Gall, J. G. and Janisch, M. (1992) A conserved double-stranded RNA-binding domain. Proc. Natl. Acad. Sci. USA 89: 10979-10983.

St. Laurent, G., Yoshie, O., Floyd-Smith, G., Samanta, H., Sehgal, P. S. and Lengyel, P. (1983) Interferon action: two (2'-5') (A), synthetases specified by distinct mRNAs in Ehrlich ascites tumor cells treated with interferon. Cell 33: 95-102.

Subramanian, M., Kuvacs, T., Lesjak, K., Torrence, P. F. and Lenard, J. (1990) Inhibition of the RNA polymerase of vesicular stomatitis virus by pp5'2'p5'2'A and related compounds. Antiviral Res. 13: 81-90.

Suhadolnik, R. J., Kariko, K., Sobol, R. W., Li, S. W., Reichenbach, N. L. and Hales, B. E. (1988) 2- and 8-Azido photaffinity probes. I. Enzymatic synthesis, characterization, and biological properties of 2- and 8-azido photoprobes of 2-5A and photolabeling of 2-5A binding proteins. Biochemistry 27: 8840-8846.

Suhadolnik, R. J., Liu, S. W., Sobol, R. W. and Yarmum, J. M. (1990) 2',5' A synthetase: allosteric activation by fructose 1,6-bisphosphate. Biochem. Biophys. Res. Commun. 169: 1198-1203.

Suhadolnik, R. J., Reichenbach, N. L., Hitzges, P., Adelson, M. E., Peterson, B. H., Cheney, P., Salvato, P., Thompson, C., Loveless, M., Muller, W. E. G., Schroder, H. C., Strayer, D. R. and Carter, W. A. (1994a) Upregulation of the 2-5A synthetase/RNase L antiviral pathway associated with chronic fatigue syndrome. In Vivo 8: 599-604.
The 2-5A Natural Defense System

Suhadolnik, R. J., Reichenbach, N. L., Hitges, P., Sobol, R. W., Peterson, B. H., Abiashli, D. V., Muller, W. E. G., Schroder, H. C., Carter, W. A. and Strayer, D. R. (1994b) Upregulation of the 2-5A synthetase/RNase L antiviral pathway associated with chronic fatigue syndrome. Clin. Infect. Dis. 18: S96-S104.

Sun, J., Herzer, P. J., Weinstein, M. P., Lampson, B. C., Inouye, M. and Inouye, S. (1989) Extensive diversity of branched-RNA-linked multicy copy single-stranded DNAs in clinical strains of Escherichia coli. Proc. Natl. Acad. Sci. USA 86: 7208-7212.

Sund, C., Agebeck, P., Koo le, L. H., Sandstrom, A. and Chattopadhyaya, J. (1992) Assessment of competing 2'→5' versus 3'→5' stackings in solution structure of branched-RNA by 1H- & 31P-NMR spectroscopy. Tetrahedron 48: 695-718.

Takaku, H. and Ueda, S. (1983) A convenient method for the synthesis of adenyl(2'→5')adenyl(2'→5')-adenosine using 3'-O-(benzyladenosine) derivatives. Bull. Chem. Soc. Jpn. 56: 1424-1427.

Taylor, J. L., Witt, P. L., Irizarry, A., Tom, P. and O'Brien, W. J. (1995) 2',5'-Oligoadenylate synthetase in interferon-alpha- and acyclovir-treated herpes simplex virus-infected cells. J. Interferon Cytokine Res. 15: 27-30.

Testa, U., Ferbus, D., Gabbianelli, M., Pascucci, B., Boccoli, G., Louache, F. and Thang, M. N. (1988) Effect of endogenous and exogenous interferons on the differentiation of human monocyte cell line U937. Cancer Res. 48: 82-88.

Tominaga, A., Saito, S., Kohn, A., Hayakawa, Y. and Novori, R. (1990) Antiviral effects of 2',5'-oligoadenylates (2'-5A) and related compounds. Microbiol. Immunol. 34: 737-747.

Torrence, P. F. and Friedman, R. M. (1979) Are double-stranded RNA-directed inhibition of protein synthesis in interferon-treated cells and interferon induction related phenomenon? J. Biol. Chem. 254: 1259-1267.

Torrence, P. F., Imai, J. and Johnson, M. I. (1981a) 5'-O-Monophosphoryladenyl(2'→5')-adenyl(2'→5')-adenosine is an antagonist of the action of 5'-O-triphosphoryladenyl(2'→5')-adenyl(2'→5')-adenosine (2'-5A) and double-stranded RNA. Proc. Natl. Acad. Sci. USA 78: 5993-5997.

Torrence, P. F., Johnston, M. I., Epstein, D. A., Jacobson, H. and Friedman, R. M. (1981b) Activation of human and mouse 2-5A synthetase and mouse protein PI kinase by nucleic acids: structure-activity relationships and correlations with inhibition of protein synthesis and interferon induction. FEBS Lett. 130: 291-296.

Torrence, P. F., Imai, J., Lesiak, K., Jamoulle, J. C. and Sawoi, H. (1984) Oligonucleotide structural parameters that influence binding of 5'-O-triphosphoadenylyl(2'→5')-adenyl(2'→5')-adenosine to the 5'-O-triphosphoadenylyl(2'→5')-adenyl(2'→5')-adenosine dependent endoribonuclease: chain length, phosphorylation state, and heterocyclic base. J. Med. Chem. 27: 726-733.

Torrence, P. F., Broda, D., Akter, D., Charubala, R. and Pleiderer, W. (1988) Only one 3'-hydroxyl group of pp(A2'5'A2'5'A5') (2-5A) is required for activation of the 2-5A-dependent endoribonuclease. J. Biol. Chem. 263: 1131-1139.

Torrence, P. F., Broda, D., Akter, D. K., Pahuerra, A. and Lesiak, K. (1992) A new and potent 2-5A analogue which does not require a 5'-polyphosphate to activate mouse L-cell RNAse L. Antiviral Res. 18: 275-289.

Torrence, P. F., Maitra, R. K., Lesiak, K., Khamnei, S., Zhou, A. and Silverman, R. H. (1993) Targeting RNA for degradation with a (2'-5')oligoadenylate-antisense chimera. Proc. Natl. Acad. Sci. USA 90: 1300-1304.

Torrence, P. F., Xiao, W., Li, G., Lesiak, K., Khamnei, S., Maran, A., Maitra, R., Dong, B. and Silverman, R. H. (1994) 2',5'-Oligoadenylate antisense chimeras for targeted ablation of RNA. In: Carbohydrate Modifications in Antisense Research, pp. 119-132, Sanghvi, Y. S. and Cook, P. D. (eds.) American Chemical Society, Washington, D.C.

Truve, E., Aaspolu, A., Honkanen, J., Puska, R., Mehot, M., Hassi, A., Teeri, T. H., Kelve, M., Seppanen, P. and Saarma, M. (1993) Transgenic potato plants expressing mammalian 2',5'-oligoadenylate synthetase are protected from potato virus X infection under field conditions. Biotechnology 11: 1048-1052.

Truve, E., Kelve, M., Aaspolu, A., Kuuskaallu, A., Seppanen, P. and Saarma, M. (1994b) Principles and background for the construction of transgenic plants displaying multiple virus resistance. Arch. Virol. 9: 41-50.

Truve, E., Kelve, M., Aaspolu, A., Schroder, H. C. and Muller, W. E. G. (1994b) Homologies between different forms of 2-5A synthetase. Proc. Mol. Cell. Biol. 14: 139-149.

Usher, D. A. (1968) RNA double helix and the evolution of the 3',5' linkage. Nature New Biol. 235: 207-208.

Usher, D. A. (1977) Early chemical evolution of nucleic acids: a theoretical model. Science 296: 311-313.

Usher, D. A. and McMahon, A. H. (1976) Hydrolytic stability of helical RNA: a selective advantage for the natural 3',5'-bond. Proc. Natl. Acad. Sci. USA 73: 1149-1153.

Ushijima, H., Rytk, F. G., Schacke, H., Scheffer, U., Muller, W. E. G. and Schroder, H. C. (1993) Mode of action of the anti-AIDS compound poly(I)-poly(C) (Ampligen) as an activator of 2',5'-oligoadenylate synthetase and double-stranded RNA-dependent kinase. J. Interferon Res. 13: 161-171.

van den Boogaart, J. E., Kalinczhenko, E. N., Podkopaeva, T. E., Mikhailopolou, I. A. and Altona, C. (1994) Conformational analysis of 3'-fluorinated A(2'→5')A(2'→5')A fragments. Relation between conformation and biological activity. Eur. J. Biochem. 271: 750-768.

van den Hoogen, Y. T., Hilgersom, C. M., Brozda, D., Lesiak, K., Torrence, P. F. and Altona, C. (1989) Conformational analysis of brominated pA2'5'A2'5'A analogs: an NMR and model building study. Eur. J. Biochem. 182: 629-637.

Verhaegen, M., Divizia, M., Vandenbussche, P., Kuwata, T. and Content, J. (1980) Abnormal behaviour of interferon-induced enzymatic activities in an interferon-resistant cell line. Proc. Natl. Acad. Sci. USA 77: 4479-4483.

Verheijen, R., Van Venrooi, W. and Ramaekers, F. (1989) The nuclear matrix: structure and composition. J. Cell Sci. 90: 11-36.

Viano, L., Silvestro, L., Giubertoni, M., Ciarzzani, C., Genazzani, A. and Di Carlo, F. (1989) Induction of 2',5'-oligoadenylate synthetase and activation of ribonuclease in tamoxifen treated human breast cancer cell lines. J. Biol. Regul. Homeostatic Agents 3: 167-174.

Visser, G. M., Tromp, M., Van Westrenen, J., Schuppers, O. and Van Boom, J. H. (1986) Synthesis of some modified 2',5'-linked oligoriboadenylates of 2-5A core. Recl. Trav. Chim. Pays-Bas, Belg. 105: 85-91.

Vogel, D. and Voer, V. G. (1990) Biochemistry. J. Wiley and Sons, New York.

Voith, R., Rossol, S., Hess, G., Schutt, K. H., Schroder, H. C., Meyer zum Buschenfelde, K.-H. and Muller, W. E. G. (1990) Differential gene expression of interferon-alpha and tumor necrosis factor-alpha in peripheral blood mononuclear cells...
from patients with AIDS related complex and AIDS. J. Immunol. 144: 970–975.

Wallach, D. and Revel, M. (1980) An interferon-induced cellular enzyme is incorporated into virions. Nature 287: 68–70.

Wallach, D., Fellous, M. and Revel, M. (1982) Preferential effect of γ interferon on the synthesis of HLA antigens and their mRNAs in human cells. Nature 299: 833–836.

Wang, C. H. and Wu, J. M. (1986) Age-related differences in the induction of 2-5A synthetase and 2-5A dependent binding protein activities by interferon in guinea pig peritoneal macrophages. Biochem. Biophys. Res. Commun. 140: 455–460.

Wang, L., Zhou, A., Vasavada, S., Dong, B., Nie, H., Church, J. M., Williams, B. R. G., Barnerje, S. and Silverman, R. H. (1995) Elevated levels of 2-5A dependent RNase L occur as an early event in colorectal tumorigenesis. Clin. Cancer Res. 1: 1421–1428.

Warner, S. J., Friedman, G. B. and Libby, P. (1989) Immune interferon inhibits proliferation and induces 2',5'-oligoadenylate synthetase gene expression in human vascular smooth muscle cells. J. Clin. Invest. 83: 1174–1182.

Warshaw, M. M. and Cantor, C. R. (1970) Oligonucleotide interactions. IV. Conformational differences between deoxycytidine and ribodindeoside phosphates. Biopolymers 9: 1079–1103.

Wassner, M., Henderson, E. E., Suhadolnik, R. J. and Pfeiferer, W. (1994) Synthesis, characterization, and biological activity of monomeric and trimeric cordycepin cholesterol conjugates and inhibition of HIV-1 replication. Helv. Chim. Acta 77: 1757–1767.

Wassner, M., Suhadolnik, R. J., Harvath, S. E., Adelson, M. E., Kou, N., Guan, M.-X., Henderson, E. E. and Pfeiferer, W. (1996) Synthesis and characterization of cordycepin-trimer-vitamin and lipid-conjugates. Potential inhibitors of HIV-1 replication. Helv. Chim. Acta 79: 619–633.

Wathelet, M., Moutischen, S., Cravador, A., DeWitt, L., Defilippi, P., Huez, G. and Content, J. (1986) Full-length sequence of human interferon. FEBS Lett. 196: 113–170.

Watling, D., Serafinowska, H. T., Reese, C. B. and Kerr, I. M. (1980) An interferon-induced cellular enzyme is incorporated into virions. Nature 287: 68–70.

Witt, P. L., Storer, B., Helgeson, D. O. and Borden, E. C. (1989) Interferon-induced proteins in clinical trials: 2-5 adenylate synthetase as a prototype. In: Biology of Interferon Systems 1988, pp. 195–200, Kawaide, Y. and Koubayshe, S. (eds.) Kodansha Scientific, Tokyo.

Witt, P. L., Spear, G. T., Helgeson, D. O., Lindstrom, M. J., Smallley, R. V. and Borden, E. C. (1990) Basal and interferon-induced 2',5'-oligoadenylate synthetase in human monocytes, lymphocytes and peritoneal macrophages. J. Interferon Res. 10: 393–402.

Witt, P. L., Marie, I., Robert, N., Iriarry, A., Borden, E. C. and Hovanessian, A. G. (1993a) Isoforms p69 and p100 of 2',5'-oligoadenylate synthetase induced differentially by interferons in vivo and in vitro. J. Interferon Res. 13: 17–23.

Witt, P. L., Ritch, P. S., Reding, D., McAuliffe, T. L., Westrick, L., Groossberg, S. E. and Borden, E. C. (1993b) Phase I trial of an oral immunomodulator and interferon inducer in cancer patients. Cancer Res. 53: 5176–5180.

Woese, C. (1967) The Genetic Code. Harper & Row, New York.

Wreschner, D. H., Silverman, R. H. and Kerr, I. M. (1981a) Ribosomal RNA cleavage, nucleoside activation and 2-5A (ppp(A2p)nA) synthetase induction in interferon-treated cells. Nucl. Acids Res. 9: 1571–1581.

Wu, J. M., Eslami, B. and Semproni, A. R. (1983) Effect of temperature on ppp(A2p)nA binding protein activities in rabbit.
The 2',5-A Natural Defense System

...reticulocyte lysates and other mammalian extracts. Biochem. Biophys. Res. Commun. 117: 57-64.

Wu, J. M., Shang, C.-C., Chiou, J. W. and Wang, C.-H. (1990) 2',5'-Oligoadenylate (2-5A) binding protein (RNase L) changes in AIDS and mammalian cells/tissues. J. Exp. Pathol. 5: 79-88.

Wu, J.M., Shang, C.-C., Chiou, J. W. and Wang, C.-H. (1990) 2',5'-Oligoadenylate (2-5A) binding protein (RNase L) changes in AIDS and mammalian cells/tissues. J. Exp. Pathol. 5: 79-88.

Xiao, W., Player, M. R., Li, C., Zhang, K., Lesiak, K. and Torrence, P. F. (1996) Synthesis and characterization of composite nucleic acids containing 2',5'-oligoriboadenylate linked to antisense DNA. Antisense Nucl. Acid Drug Dev. 6: 247-258.

Yan, C., Sehgal, P. B. and Tamm, I. (1989) Signal transduction pathways in the induction of 2',5'-oligoadenylate synthetase gene expression by interferon alpha/beta. Proc. Natl. Acad. Sci. USA 86: 2243-2247.

Yang, K., Samanta, H., Dougherty, J., Jayaram, B., Broeze, R. and Lengyel, P. (1981) Interferons, double-stranded RNA, and RNA degradation. J. Biol. Chem. 256: 9324-9328.

Yap, W. H., Teo, T. S. and Tan, Y. H. (1986) An early event in the interferon-induced transmembrane signaling process. Science 234: 355-358.

Yoon, J. W., Austin, M., Onodera, T. and Notkins, A. L. (1979) Virus induced diabetes mellitus: isolation of a virus from the pancreas of a child with diabetic ketoacidosis. N. Engl. J. Med. 300: 1173-1179.

Yoshida, S. and Takaku, H. (1986a) Synthesis and properties of a modified 2',5'-adenylate trimer containing 2'-terminal 8-bromoadenosine. Nucl. Acids Symp. Ser. 16: 133-136.

Yoshida, S. and Takaku, H. (1986b) Synthesis and properties of 2',5'-adenylate trimers bearing 2'-terminal 8-bromo- or 8-hydroxyadenosine. Chem. Pharm. Bull. 34: 2456-2461.

Zamecnik, P. C., Stephenson, M. L., Janeway, C. M. and Randerrath, K. (1966) Enzymatic synthesis of diadenosine tetraphosphate and diadenosine triphosphate with a purified lysyl s-RNA synthetase. Biochem. Biophys. Res. Commun. 24: 91-97.

Zhou, A., Hassel, B. A. and Silverman, R. S. (1993) Expression cloning of 2-5A-dependent RNAs: a uniquely regulated mediator of interferon action. Cell 72: 753-765.

Zullo, J. N., Cochran, B. H., Huang, A. S. and Stiles, C. D. (1985) Platelet-derived growth factor and double-stranded ribonucleic acids stimulate expression of the same genes in 3T3 cells. Cell 43: 793-800.