NOTE ON THE NON-PRESERVATION OF DEPTH

ROGER PLYMEN

Abstract. Let K be a local field of characteristic p. We consider the local Langlands correspondence for tori, and construct examples for which depth is not preserved.

1. Introduction

Let K be a local non-archimedean field. Let $T = R_{L/K} \mathbb{G}_m$ be an induced torus, when L is a finite separable extension of K. The LLC (Local Langlands Correspondence) for tori induces an isomorphism

$$\lambda_T : \text{Hom}(T(K), \mathbb{C}^\times) \cong H^1(W_K, T^\vee)$$

where W_K is the Weil group of K and T^\vee is the complex dual torus, see [MP] and [Yu].

For background material on depth, see [ABPS]. Concerning depth-preservation, we have the theorem of Yu [Yu, §7.10]: In the LLC for tori, if T splits over a tamely ramified extension, then we have

$$\text{dep}(\chi) = \text{dep}(\lambda_T(\chi)).$$

Mishra and Patanayak [MP] have recently constructed, in characteristic 0, an explicit example of a wildly ramified torus for which depth is not preserved under LLC for all positive depth characters.

We produce explicit examples, in characteristic p, of wildly ramified tori for which depth is not preserved under LLC for all positive depth characters. In particular, let K be a local field of characteristic 2, and let L/K be a totally ramified quadratic extension: there are countably many of these, with ramification breaks given by $m = 1, 3, 5, 7, \ldots$. In the LLC for tori, the depth, for all positive depth characters, is not preserved.

We wish to thank Maarten Solleveld for pointing out an error in the first version of this Note, and for several valuable comments.

2. On depth

Let K be a local field of characteristic p. Let \mathfrak{o} be the ring of integers in K and $p \subset \mathfrak{o}$ the maximal ideal. Let $\varphi(x) = x^p - x$.

Let $\overline{K} = K/\varphi(K)$. Let $D \neq \mathfrak{o}$ be an \mathbb{F}_p-line in \overline{K}, m the integer such that $D \subset \overline{p}^{-m}$ but $D \not\subset \overline{p}^{-m+1}$; we know that $m > 0$ and prime to p. Fix an element $a \in p^{-m}$ whose image generates D, let α be a root of $T^p - T - a$ (in an algebraic closure of K), and let $L = K(\alpha) = K(\varphi^{-1}(D))$. See [Da, §6].
The extension L/K is totally (and wildly) ramified. The unique ramification break of the degree p cyclic extension L/K occurs at m, see [Da, §6]. Set $T = L^\times$, then T is a wildly ramified torus.

Theorem 2.1. Let K be a local field of characteristic p, let $L = K(\sqrt[p]{1}(D))$ as above, let χ be any character of T of positive depth. In the local Langlands correspondence for tori, the depth of the character χ is not preserved.

Proof. We have the elegant recent formula of Mishra and Patanayak [MP]:

\[\varphi_{L/K}(e \cdot \text{dep}_T(\chi)) = \text{dep}_W(\lambda_T(\chi)) \]

where $\varphi_{L/K}$ is the Hasse-Herbrand function, χ is a character of T, $\text{dep}_T(\chi)$ is the depth of χ, $\text{dep}_W(\lambda_T(\chi))$ is the depth of the Langlands parameter $\lambda_T(\chi)$, and $e = e(L/K)$ is the ramification index. If u is a real number ≥ -1, G_u denotes the ramification group G_i, where i is the smallest integer $\geq u$. Then the Hasse-Herbrand function is

\[\varphi_{L/K}(u) = \int_0^u \frac{1}{(G_0 : G_t)} dt. \]

We will write $d := \text{dep}_T(\chi)$.

First case. We suppose that $d > m/p$. We apply the formula (1):

\[
\begin{align*}
\text{dep}_W(\lambda_T(\chi)) &= \varphi_{L/K}(e \cdot \text{dep}_T(\chi)) \\
&= \varphi_{L/K}(pd) \\
&= \int_0^{pd} \frac{1}{(G_0 : G_t)} dt \\
&= \int_0^m 1 dt + \int_m^{pd} \frac{1}{p} dt \\
&= m + (pd - m)/p \\
&= d + m(1 - 1/p) \\
&> \text{dep}_T(\chi)
\end{align*}
\]

Second case. We suppose that $0 < d \leq m/p$. We have

\[
\begin{align*}
\text{dep}_W(\lambda_T(\chi)) &= \varphi_{L/K}(e \cdot \text{dep}_T(\chi)) \\
&= \varphi_{L/K}(pd) \\
&= \int_0^{pd} \frac{1}{(G_0 : G_t)} dt \\
&= pd \\
&> \text{dep}_T(\chi)
\end{align*}
\]

\[\square \]

Corollary 2.2. Let K be a local field of characteristic 2, and let L/K be a totally ramified quadratic extension: there are countably many of these, with ramification breaks given by $m = 1, 3, 5, 7, \ldots$. In the LLC for tori, the depth, for all positive depth characters, is not preserved.
References

[ABPS] A.-M. Aubert, P. Baum, R.J. Plymen, M. Solleveld, Depth and the local Langlands correspondence, Arbeitstagung Bonn 2013, Progress in Math., Birkhauser 2016, arxiv.org/abs/1311.1606

[Da] C.S. Dalawat, Further remarks on local discriminants, J. Ramanujan Math. Soc., (4) 25 (2010) 393–417.

[MP] M. Mishra, B. Patanayak, A note on depth preservation, J. Ramanujan Math. Soc., to appear.

[Yu] Jiu-Kang Yu. On the local Langlands correspondence for tori. In Ottawa lectures on admissible representations of reductive p-adic groups, volume 26 of Fields Institute Monograph, pages 177–183. Amer. Math. Soc., Providence, RI, 2009.

School of Mathematics, Southampton University, Southampton SO17 1BJ, England
and School of Mathematics, Manchester University, Manchester M13 9PL, England
E-mail address: r.j.plymen@soton.ac.uk roger.j.plymen@manchester.ac.uk