COEFFICIENT CONDITIONS FOR
HARMONIC CLOSE-TO-CONVEX FUNCTIONS

TOSHIO HAYAMI

Abstract. New sufficient conditions, concerned with the coefficients of harmonic functions $f(z) = h(z) + \overline{g(z)}$, in the open unit disk U normalized by $f(0) = h(0) = h'(0) - 1 = 0$, for $f(z)$ to be harmonic close-to-convex functions are discussed. Furthermore, several illustrative examples and the image domains of harmonic close-to-convex functions satisfying the obtained conditions are enumerated.

1. Introduction

For a continuous complex-valued function $f(z) = u(x,y) + iv(x,y)$, we say that $f(z)$ is harmonic in the open unit disk $U = \{z \in \mathbb{C} : |z| < 1\}$ if both $u(x,y)$ and $v(x,y)$ are real harmonic in U, that is, $u(x,y)$ and $v(x,y)$ satisfy the Laplace’s equations

$$
\Delta u = u_{xx} + u_{yy} = 0 \quad \text{and} \quad \Delta v = v_{xx} + v_{yy} = 0.
$$

A complex-valued harmonic function $f(z)$ in U is given by $f(z) = h(z) + \overline{g(z)}$ where $h(z)$ and $g(z)$ are analytic in U. We call $h(z)$ and $g(z)$ the analytic part and the co-analytic part of $f(z)$, respectively. A necessary and sufficient condition for $f(z)$ to be locally univalent and sense-preserving in U is $|h'(z)| > |g'(z)|$ in U (see, [2] or [3]). Let \mathcal{H} denote the class of harmonic functions $f(z)$ in U with $f(0) = h(0) = 0$ and $h'(0) = 1$. Thus, every normalized harmonic function $f(z)$ can be written by

$$
f(z) = h(z) + \overline{g(z)} = z + \sum_{n=2}^{\infty} a_n z^n + \sum_{n=1}^{\infty} b_n z^n \in \mathcal{H}
$$

where $a_1 = 1$ and $b_0 = 0$, for convenience.

We next denote by $\mathcal{S}_\mathcal{H}$ the class of functions $f(z) \in \mathcal{H}$ which are univalent and sense-preserving in U. Since the sense-preserving property of $f(z)$, we see that $|b_1| = |g'(0)| < |h'(0)| = 1$. If $g(z) \equiv 0$, then $\mathcal{S}_\mathcal{H}$ reduces to the class \mathcal{S} consisting of normalized analytic univalent functions. Furthermore, for every function $f(z) \in \mathcal{S}_\mathcal{H}$, the function

$$
F(z) = \frac{f(z) - b_1 f(z)}{1 - |b_1|^2} = z + \sum_{n=2}^{\infty} \frac{a_n - b_1 b_n}{1 - |b_1|^2} z^n + \sum_{n=2}^{\infty} \frac{b_n - b_1 a_n}{1 - |b_1|^2} z^n
$$

2010 Mathematics Subject Classification. Primary 30C45, Secondary 58E20.

Key words and phrases. Coefficient condition, harmonic function, univalent function, close-to-convex function.
is also a member of \mathcal{S}_H. Therefore, we consider the subclass \mathcal{S}_H^0 of \mathcal{S}_H defined as

$$\mathcal{S}_H^0 = \{ f(z) \in \mathcal{S}_H : b_1 = g'(0) = 0 \}.$$

Conversely, if $F(z) \in \mathcal{S}_H^0$, then $f(z) = F(z) + b_1 F'(z) \in \mathcal{S}_H$ for any $b_1 (|b_1| < 1)$.

We say that a domain \mathbb{D} is a close-to-convex domain if the complement of \mathbb{D} can be written as a union of non-intersecting half-lines (except that the origin of one half-line may lie on one of the other half-lines). Let \mathcal{C}, \mathcal{C}_H and \mathcal{C}_H^0 be the respective subclasses of \mathcal{S}, \mathcal{S}_H and \mathcal{S}_H^0 consisting of all functions $f(z)$ which map U onto a certain close-to-convex domain.

Bshouty and Lyzzaik [1] have stated the following result.

Theorem 1.1. If $f(z) = h(z) + g(z) \in \mathcal{H}$ satisfies

$$g'(z) = zh'(z) \quad \text{and} \quad \text{Re} \left(1 + \frac{zh''(z)}{h'(z)}\right) > -\frac{1}{2}$$

for all $z \in U$, then $f(z) \in \mathcal{C}_H^0 \subset \mathcal{S}_H^0$.

A simple and interesting example is below.

Example 1.1. The function

$$f(z) = \frac{1 - (1 - z)^2}{2(1 - z)^2} + \frac{z^2}{2(1 - z)^2} = z + \sum_{n=2}^{\infty} \frac{n + 1}{2} z^n + \sum_{n=2}^{\infty} \frac{n - 1}{2} z^n$$

satisfies the conditions of Theorem 1.1 and therefore $f(z)$ belongs to the class \mathcal{C}_H^0. We now show that $f(U)$ is actually close-to-convex domain. It follows that

$$f(z) = \left(\frac{z}{2(1 - z)^2} + \frac{z}{2(1 - z)^2}\right) + \left(\frac{z}{2(1 - z)^2} - \frac{z}{2(1 - z)^2}\right)$$

$$= \text{Re} \left(\frac{z}{1 - z}\right) + \text{Im} \left(\frac{z}{1 - z}\right).$$

Setting

$$f(re^{i\theta}) = \frac{-2r^2 + r(1 + r^2) \cos \theta}{(1 + r^2 - 2r \cos \theta)^2} + \frac{r \sin \theta}{1 + r^2 - 2r \cos \theta} i = u + iv$$

for any $z = re^{i\theta} \in U \ (0 \leq r < 1, \ 0 \leq \theta < 2\pi)$, we see that

$$-4(u + v^2) = \frac{4r(r - \cos \theta)(1 - r \cos \theta)}{(1 + r^2 - 2r \cos \theta)^2} = \frac{4r(r - t)(1 - rt)}{(1 + r^2 - 2rt)^2} \equiv \phi(t) \quad (-1 \leq t = \cos \theta \leq 1).$$

Since

$$\phi'(t) = \frac{-4r(1 - r^2)^2}{(1 + r^2 - 2rt)^3} \leq 0,$$

we obtain that

$$\phi(t) \leq \phi(-1) = \frac{4r}{(1 + r)^2} \equiv \psi(r).$$

Also, noting that

$$\psi'(r) = \frac{4(1 - r)}{(1 + r)^3} > 0,$$
we know that
\[\psi(r) < \psi(1) = 1 \]
which implies that
\[u > -\psi^2 - \frac{1}{4}. \]
Thus, \(f(z) \) maps \(U \) onto the following close-to-convex domain.

Figure 1. The image of \(f(z) = \frac{1 - (1 - z)^2}{2(1 - z)^2} + \frac{z^2}{2(1 - z)^2} \).

Remark 1.1. Let \(\mathcal{M} \) be the class of all functions satisfying the conditions of Theorem 1.1. Then, it was earlier conjectured by Mocanu \[9, 10\] that \(\mathcal{M} \subset \mathcal{S}_H^0 \). Furthermore, we can immediately see that the function \(f(z) \) in Example 1.1 is a member of the class \(\mathcal{M} \) and it shows that \(f(z) \in \mathcal{M} \) is not necessarily starlike with respect to the origin in \(U \) (\(f(z) \) is starlike with respect to the origin in \(U \) if and only if \(tw \in f(U) \) for all \(w \in f(U) \) and \(t \), \(0 \leq t \leq 1 \)).

Remark 1.2. For the function \(f(z) = h(z) + \overline{g(z)} \in \mathcal{H} \) given by
\[g'(z) = z^{n-1} h'(z) \quad (n = 2, 3, 4, \ldots), \]
letting \(w(t) = f(e^{it}) = h(e^{it}) + \overline{g(e^{it})} \) \((-\pi \leq t < \pi) \), we know that
\[\text{Im} \left(\frac{w''(t)}{w'(t)} \right) \leq 0 \quad (-\pi \leq t < \pi) \]
which means that \(f(z) \) maps the unit circle \(\partial \mathcal{U} = \{ z \in \mathbb{C} : |z| = 1 \} \) onto a union of several concave curves (see, \[8\] Theorem 2.1)).
Jahangiri and Silverman \[7\] have given the following coefficient inequality for \(f(z) \in \mathcal{H} \) to be in the class \(\mathcal{C}_H \).

Theorem 1.2. If \(f(z) \in \mathcal{H} \) satisfies
\[
\sum_{n=2}^{\infty} n|a_n| + \sum_{n=1}^{\infty} n|b_n| \leq 1,
\]
then \(f(z) \in \mathcal{C}_H \).

Example 1.2. The function
\[
f(z) = z + \frac{1}{5}z^5
\]
belongs to the class \(\mathcal{C}_H^0 \subset \mathcal{C}_H \) and satisfies the condition of Theorem 1.2. Indeed, \(f(z) \) maps \(U \) onto the following hypocycloid of six cusps (cf. \[3\] or \[6\]).

\[\text{Figure 2. The image of } f(z) = z + \frac{1}{5}z^5. \]

The object of this paper is to find some sufficient conditions for functions \(f(z) \in \mathcal{H} \) to be in the class \(\mathcal{C}_H \). In order to establish our results, we have to recall here the following lemmas due to Clunie and Sheil-small \[2\].

Lemma 1.1. If \(h(z) \) and \(g(z) \) are analytic in \(U \) with \(|h'(0)| > |g'(0)| \) and \(h(z) + \varepsilon g(z) \) is close-to-convex for each \(\varepsilon \) (\(|\varepsilon| = 1 \)), then \(f(z) = h(z) + g(z) \) is harmonic close-to-convex.

Lemma 1.2. If \(f(z) = h(z) + g(z) \) is locally univalent in \(U \) and \(h(z) + \varepsilon g(z) \) is convex for some \(\varepsilon \) (\(|\varepsilon| \leq 1 \)), then \(f(z) \) is univalent close-to-convex.
We also need the following result due to Hayami, Owa and Srivastava [5].

Lemma 1.3. If a function $F(z) = z + \sum_{n=2}^{\infty} A_n z^n$ is analytic in U and satisfies

$$
\sum_{n=2}^{\infty} \left| \sum_{k=1}^{n} \left\{ \sum_{j=1}^{k} (-1)^{k-j} j(j+1) \left(\begin{array}{c} \alpha \\ k-j \end{array} \right) A_j \right\} \left(\begin{array}{c} \beta \\ n-k \end{array} \right) \right| \leq 2
$$

for some real numbers α and β, then $F(z)$ is convex in U.

2. **Main results**

Our first result is contained in

Theorem 2.1. If $f(z) \in \mathcal{H}$ satisfies the following condition

$$
\sum_{n=2}^{\infty} |na_n - e^{i\varphi} (n-1)a_{n-1}| + \sum_{n=1}^{\infty} |nb_n - e^{i\varphi} (n-1)b_{n-1}| \leq 1
$$

for some real number φ ($0 \leq \varphi < 2\pi$), then $f(z) \in \mathcal{C}_H$.

Proof. Let $F(z) = z + \sum_{n=2}^{\infty} A_n z^n$ be analytic in U. If $F(z)$ satisfies

$$
\sum_{n=2}^{\infty} |nA_n - e^{i\varphi} (n-1)A_{n-1}| \leq 1
$$

then it follows that

$$
| (1 - e^{i\varphi} z)F'(z) - 1 | = \left| \sum_{n=2}^{\infty} (nA_n - e^{i\varphi} (n-1)A_{n-1}) z^{n-1} \right|
$$

$$
\leq \sum_{n=2}^{\infty} |nA_n - e^{i\varphi} (n-1)A_{n-1}| \cdot |z|^{n-1}
$$

$$
< \sum_{n=2}^{\infty} |nA_n - e^{i\varphi} (n-1)A_{n-1}| \leq 1 \quad (z \in U).
$$

This gives us that

$$
\text{Re} \left((1 - e^{i\varphi} z)F'(z) \right) > 0 \quad (z \in U),
$$

that is, that $F(z) \in \mathcal{C}$. Then, it is sufficient to prove that

$$
F(z) = \frac{h(z) + \varepsilon g(z)}{1 + \varepsilon b_1} = z + \sum_{n=2}^{\infty} a_n + \varepsilon b_n z^n \in \mathcal{C}
$$
for each $\varepsilon (|\varepsilon| = 1)$ by Lemma 1.1. From the assumption of the theorem, we obtain that

$$\sum_{n=2}^{\infty} \left| \frac{a_n + \varepsilon b_n}{1 + \varepsilon b_1} - e^{i\varphi} (n - 1) \frac{a_{n-1} + \varepsilon b_{n-1}}{1 + \varepsilon b_1} \right|$$

$$\leq \frac{1}{1 - |b_1|} \sum_{n=2}^{\infty} \left| na_n - e^{i\varphi} (n - 1)a_{n-1} \right| + \left| nb_n - e^{i\varphi} (n - 1)b_{n-1} \right| \leq \frac{1 - |b_1|}{1 - |b_1|} = 1.$$

This completes the proof of the theorem. \qed

Example 2.1. The function

$$f(z) = -\log(1 - z) + \left(-mz - \log(1 - z)\right) = z + \sum_{n=2}^{\infty} \frac{1}{n} z^n + (1 - m)z + \sum_{n=2}^{\infty} \frac{1}{n} z^n \quad (0 < m \leq 1)$$

satisfies the condition of Theorem 2.1 with $\varphi = 0$ and belongs to the class \mathcal{C}_H. In particular, putting $m = 1$, we obtain the following.

![Figure 3. The image of $f(z) = -\varphi - 2\log|1 - z|$.](image)

By making use of Lemma 1.2 with $\varepsilon = 0$ and applying Lemma 1.3, we readily obtain the next theorem.

Theorem 2.2. If $f(z) \in \mathcal{H}$ is locally univalent in \mathbb{U} and satisfies

$$\sum_{n=2}^{\infty} \left[\sum_{k=1}^{n} \left(-1 \right)^{k-j} j(j+1) \left(\begin{array}{c} \alpha \\ k - j \end{array} \right) a_j \left(\begin{array}{c} \beta \\ n - k \end{array} \right) \right]$$

$$+ \sum_{k=1}^{n} \left[\sum_{j=1}^{k} \left(-1 \right)^{k-j} j(j-1) \left(\begin{array}{c} \alpha \\ k - j \end{array} \right) a_j \left(\begin{array}{c} \beta \\ n - k \end{array} \right) \right] \leq 2$$

for some real numbers α and β, then $f(z) \in \mathcal{C}_H$.

Putting $\alpha = \beta = 0$ in the above theorem, we arrive at the following result due to Jaha ngiri and Silverman [7].

Theorem 2.3. If $f(z) \in \mathcal{H}$ is locally univalent in \mathbb{U} with

$$\sum_{n=2}^{\infty} n^2|a_n| \leq 1,$$

then $f(z) \in \mathcal{C}_\mathcal{H}$.

Furthermore, taking $\alpha = 1$ and $\beta = 0$ in the theorem, we have

Corollary 2.1. If $f(z) \in \mathcal{H}$ is locally univalent in \mathbb{U} and satisfies

$$\sum_{n=2}^{\infty} \{n|(n+1)a_n - (n-1)a_{n-1}| + (n-1)|na_n - (n-2)a_{n-1}|\} \leq 2,$$

then $f(z) \in \mathcal{C}_\mathcal{H}$.

Example 2.2. The function

$$f(z) = -\int_{0}^{z} \frac{\log(1-t)}{t}dt + \left(z + (1-z) \log(1-z)\right) = z + \sum_{n=2}^{\infty} \frac{1}{n^2}z^n + \sum_{n=2}^{\infty} \frac{1}{n(n-1)}z^n$$

satisfies the conditions of Corollary 2.1 and belongs to the class $\mathcal{C}_\mathcal{H}$.

![Figure 4](image-url)
A sequence \(\{c_n\}_{n=0}^{\infty} \) of non-negative real numbers is called a convex null sequence if \(c_n \to 0 \) as \(n \to \infty \) and

\[
c_n - c_{n+1} \geq c_{n+1} - c_{n+2} \geq 0
\]

for all \(n (n = 0, 1, 2, \cdots) \).

The next lemma was obtained by Fejér [4].

Lemma 3.1. Let \(\{c_n\}_{k=0}^{\infty} \) be a convex null sequence. Then, the function

\[
p(z) = \frac{c_0}{2} + \sum_{n=1}^{\infty} c_n z^n
\]

is analytic and satisfies \(\Re(p(z)) > 0 \) in \(U \).

Applying the above lemma, we deduce

Theorem 3.1. For some \(b \ (|b| < 1) \) and some convex null sequence \(\{c_n\}_{n=0}^{\infty} \) with \(c_0 = 2 \), the function

\[
f(z) = h(z) + g(z) = z + \sum_{n=2}^{\infty} \frac{c_{n-1}}{n} z^n + b \left(z + \sum_{n=2}^{\infty} \frac{c_{n-1}}{n} z^n \right)
\]

belongs to the class \(C_H \).

Proof. Let us define \(F(z) \) by

\[
F(z) = \frac{h(z) + \varepsilon g(z)}{1 + \varepsilon b} = z + \sum_{n=2}^{\infty} \frac{c_{n-1}}{n} z^n
\]

for each \(\varepsilon \ (|\varepsilon| = 1) \). Then, we know that

\[
F'(z) = \frac{c_0}{2} + \sum_{n=1}^{\infty} c_n z^n \quad (c_0 = 2).
\]

By virtue of Lemma 1.1 and Lemma 3.1 it follows that \(\Re(F'(z)) > 0 \ (z \in U) \), that is, \(F(z) \in C \). Thus, we conclude that \(f(z) = h(z) + g(z) \in C_H \). \(\square \)

In the same manner, we also have

Theorem 3.2. For some \(b \ (|b| < 1) \) and some convex null sequence \(\{c_n\}_{n=0}^{\infty} \) with \(c_0 = 2 \), the function

\[
f(z) = h(z) + g(z) = z + \sum_{n=2}^{\infty} \frac{1}{n} \left(1 + \sum_{j=1}^{n-1} c_j \right) z^n + b \left(z + \sum_{n=2}^{\infty} \frac{1}{n} \left(1 + \sum_{j=1}^{n-1} c_j \right) z^n \right)
\]

belongs to the class \(C_H \).
Proof. Let us define $F(z)$ by

$$F(z) = \frac{h(z) + \varepsilon g(z)}{1 + \varepsilon b} = z + \sum_{n=2}^{\infty} \frac{1}{n} \left(1 + \sum_{j=1}^{n-1} c_j\right) z^n$$

for each $\varepsilon (|\varepsilon| = 1)$. Then, we know that

$$(1 - z)F'(z) = \frac{c_0}{2} + \sum_{n=1}^{\infty} c_n z^n \quad (c_0 = 2).$$

Therefore, by the help of Lemma 1.1 and Lemma 3.1, we obtain that $\text{Re} ((1 - z)F'(z)) > 0 \ (z \in U)$, that is, $F(z) \in C$ which implies that $f(z) = h(z) + g(z) \in \mathcal{C}_H$. □

Remark 3.1. The sequence

$$\{c_n\}_{n=0}^{\infty} = \left\{2, \frac{2}{3}, \frac{2}{4}, \cdots, \frac{2}{n+1}, \cdots\right\}$$

is a convex null sequence because

$$\lim_{n \to \infty} c_n = \lim_{n \to \infty} \left(\frac{2}{n+1}\right) = 0, \quad c_n - c_{n+1} = \frac{2}{(n+1)(n+2)} \geq 0$$

and

$$\left(c_n - c_{n+1}\right) - \left(c_{n+1} - c_{n+2}\right) = \frac{4}{(n+1)(n+2)(n+3)} \geq 0 \quad (n = 0, 1, 2, \cdots).$$

Setting $b = \frac{1}{4}$ in Theorem 3.1 with the above sequence $\{c_n\}_{n=0}^{\infty}$, we derive

Example 3.1. The function

$$f(z) = -z - 2 \int_0^z \frac{\log(1-t)}{t} \, dt - \frac{1}{4} \left(z + 2 \int_0^z \frac{\log(1-t)}{t} \, dt \right) = z + \sum_{n=2}^{\infty} \frac{2}{n^2} z^n + \frac{1}{4} \left(z + \sum_{n=2}^{\infty} \frac{2}{n^2} z^n\right)$$

is in the class \mathcal{C}_H.

![Figure 5. The image of $f(z)$ in Example 3.1](image)
Moreover, we know

Remark 3.2. The sequence

\[
\{c_n\}_{n=0}^\infty = \left\{2, 1, \frac{1}{2}, \ldots, 2^{1-n}, \ldots\right\}
\]

is a convex null sequence because

\[
\lim_{n \to \infty} c_n = \lim_{n \to \infty} 2^{1-n} = 0, \quad c_n - c_{n+1} = 2^{-n} \geq 0
\]

and

\[
(c_n - c_{n+1}) - (c_{n+1} - c_{n+2}) = 2^{-(n+1)} \geq 0 \quad (n = 0, 1, 2, \ldots).
\]

Hence, letting \(b = \frac{1}{4}\) in Theorem 3.2 with the sequence \(\{c_n\}_{n=0}^\infty = \{2^{1-n}\}_{n=0}^\infty\), we have

Example 3.2. The function

\[
f(z) = -3 \log(1 - z) + 4 \log \left(1 - \frac{z}{2}\right) + \left(-\frac{3}{4} \log(1 - z) + \log \left(1 - \frac{z}{2}\right)\right)
\]

\[
= z + \sum_{n=2}^{\infty} \frac{1}{n} \left(1 + \sum_{j=1}^{n-1} 2^{1-j}\right) z^n + \frac{1}{4} \left(z + \sum_{n=2}^{\infty} \frac{1}{n} \left(1 + \sum_{j=1}^{n-1} 2^{1-j}\right) z^n\right)
\]

is in the class \(C_H\).

Figure 6. The image of \(f(z)\) in Example 3.2
References

[1] D. Bshouty and A. Lyzzaik, Close-to-convexity criteria for planar harmonic mappings, Complex Anal. Oper. Theory 5(2011), 767–774.
[2] J. Clunie and T. Sheil-Small, Harmonic univalent functions, Ann. Acad. Sci. Fenn. Ser. A I Math. 9(1984), 3–25.
[3] P. L. Duren, Harmonic Mappings in the Plane, Cambridge University Press, Cambridge, 2004.
[4] L. Fejér, Über die positivität von summen, die nach trigonometrischen oder Legendreschen funktionen fortschreiten. I, Acta Szeged 2(1925), 75-86(German).
[5] T. Hayami, S. Owa and H. M. Srivastava, Coefficient inequalities for certain classes of analytic and univalent functions, J. Inequal. Pure Appl. Math. 8(2007), Article 95, 1-10.
[6] T. Hayami and S. Owa, Hypocycloid of n + 1 cusps harmonic function, Bull. Math. Anal. Appl. 3(2011), 239–246.
[7] J. M. Jahangiri and H. Silverman, Harmonic close-to-convex mappings, J. Appl. Math. Stoch. Anal. 15(2002), 23–28.
[8] H. Lewy, On the non-vanishing of the Jacobian in certain one-to-one mappings, Bull. Amer. Math. Soc. 42(1936), 689–692.
[9] P. T. Mocanu, Three-cornered hat harmonic functions, Complex Var. Elliptic Equ. 54(2009), 1079–1084.
[10] P. T. Mocanu, Injectively conditions in the complex plane, Complex Anal. Oper. Theory 5(2011), 759–766.

TOSHIHO HAYAMI
DEPARTMENT OF MATHEMATICS,
KINKI UNIVERSITY
HIGASHI-Osaka, Osaka 577-8502,
JAPAN
E-mail address: ha_yato112@hotmail.com