1. Introduction

Given a primitive sublattice P of signature $(1, \rho - 1)$ of the K3 lattice $\Lambda_{K3} := E_8 \perp E_8 \perp U \perp U \perp U$, let $T = T_P := P^\perp$ be the orthogonal lattice and $\Gamma = \Gamma_P$ be the subgroup of $O(\Lambda_{K3})$ consisting of elements g satisfying $g|_P = \text{id}_P$. By abuse of notation, we write the image of Γ under the injection $g \mapsto g|_T \in O(T)$ by the same symbol. A P-polarized K3 surface in the sense of Nikulin [Nik79a] is a pair (Y, j) of a K3 surface Y and a primitive lattice embedding $j : P \hookrightarrow \text{Pic} Y$. As explained in [Dol96, Section 3], the global Torelli theorem [PSŞ71, BR75] and the surjectivity of the period map [Tod80] shows that the period map gives an isomorphism from the coarse moduli scheme of pseudo-ample P-polarized K3 surfaces to the quotient $M := D/\Gamma$ of the bounded Hermitian domain

$$\mathcal{D} := \{ [\Omega] \in \textbf{P}(T \otimes \mathbb{C}) \mid (\Omega, \Omega) = 0, (\Omega, \overline{\Omega}) > 0 \}$$

of type IV.

Let

$$\tilde{\mathcal{D}} := \{ \Omega \in T \otimes \mathbb{C} \mid (\Omega, \Omega) = 0, (\Omega, \overline{\Omega}) > 0 \}$$

be the total space of a principal \mathbb{C}^\times-bundle over \mathcal{D}. A modular form of weight $k \in \mathbb{Z}$ and character $\chi \in \text{Char}(\Gamma) := \text{Hom}(\Gamma, \mathbb{C}^\times)$ is a holomorphic function $f : \tilde{\mathcal{D}} \rightarrow \mathbb{C}$ satisfying

(i) $f(\alpha z) = \alpha^{-k} f(z)$ for any $\alpha \in \mathbb{C}^\times$, and

(ii) $f(\gamma z) = \chi(\gamma) f(z)$ for any $\gamma \in \Gamma$.

The vector spaces $A_k(\Gamma, \chi)$ of modular forms constitute the ring

$$\tilde{A}(\Gamma) := \bigoplus_{k=0}^{\infty} \bigoplus_{\chi \in \text{Char}(\Gamma)} A_k(\Gamma, \chi)$$

of modular forms. We also write the subring of modular forms without characters as

$$A(\Gamma) := \bigoplus_{k=0}^{\infty} A_k(\Gamma).$$

The main result of this paper is the following:

Theorem 1.1. The graded ring of modular forms with characters of $O(2, 4; \mathbb{Z})$ is generated by modular forms of weights 4, 4, 6, 8, 10, 12, and 30 with three relations of weights 8, 20, and 60:

$$\tilde{A}(O(2, 4; \mathbb{Z})) \cong \mathbb{C}[t_4, t_6, t_8, t_{10}, t_{12}, s_4, s_{10}, s_{30}]/(s_4^2 - \Delta_8(t), s_{10}^2 - \Delta_{20}(t), s_{30}^2 - \Delta_{60}(t)),$$

where the polynomials $\Delta_8(t)$, $\Delta_{20}(t)$, and $\Delta_{60}(t)$ are given in (3.4), (2.12), and (3.6) respectively.

This paper is organized as follows: In Section 2, we prove that the coarse moduli scheme of $U \perp E_7 \perp E_7$-polarized K3 surfaces is the double cover of the weighted projective space $\textbf{P}(4, 6, 8, 10, 12)$ branched along the divisor defined by $\Delta_{20}(t)$. We give a proof of Theorem 1.1 in Section 3. In Section 4, we discuss the relation with the configuration space of six lines on \textbf{P}^2 following [MSY92].

Acknowledgment: We thank Kenji Hashimoto for valuable discussions. A. N. was partially supported by JSPS Kakenhi (18K13383, MEXT LEADER). K. U. was partially supported by JSPS Kakenhi (15KT0105, 16K13743, 16H03930).
Theorem 2.1. The graded ring $A(\Gamma_1)$ of automorphic forms with respect to Γ_1 is given by
\begin{equation}
A(\Gamma_1) = \mathbb{C}[t_4, t_6, t_8, t_{10}, s_{10}, t_{12}]/(s_{10}^2 - \Delta_20(t)),
\end{equation}
where the lower indices indicate the weights, and $\Delta_20(t)$ is defined in (2.12).

Proof. Giving a P_1-polarized K3 surface is equivalent to giving an elliptic K3 surface with a section and two singular fibers containing an E_7-configuration (i.e., of Kodaira type II^* or III^*), which we may assume to lie above 0 and ∞ on the base \mathbb{P}^1. An elliptic K3 surface with a section admits a Weierstrass model of the form
\begin{equation}
z^2 = y^3 + g_2(x, w)y + g_3(x, w)
\end{equation}
in $\mathbb{P}(1, 4, 6, 1)$ (cf. e.g. [SS10, Section 4]). Recall that the elliptic surface (2.2) has a singular fiber of type either II^* or III^* at $a \in \mathbb{P}^1$ only if $\text{ord}_a g_2(x, w) \geq 3$ and $\text{ord}_a g_3(x, w) \geq 5$ (cf. e.g. [Mir89, Table IV.3.1]). This requires
\begin{align}
g_2(x, w) &= u_{5,3}x^5w^3 + u_{4,4}x^4w^4 + u_{3,5}x^3w^5, \\
g_3(x, w) &= u_{7,5}x^7w^5 + u_{6,6}x^6w^6 + u_{5,7}x^5w^7.
\end{align}

It has a singularity worse than rational double points on the fiber at $a \in \mathbb{P}^1$ if and only if $\text{ord}_a(g_2) \geq 4$ and $\text{ord}_a(g_3) \geq 6$ (cf. e.g. [Mir89, Proposition III.3.2]). This is the case if and only if either $u_{3,5} = u_{5,7} = 0$ (for $a = 0$) or $u_{5,3} = u_{7,5} = 0$ (for $a = \infty$). The parameter
\begin{equation}
u = (u_{5,3}, u_{4,4}, u_{3,5}, u_{7,5}, u_{6,6}, u_{5,7}) \in U := \mathbb{C}^6 \setminus \{u_{3,5} = u_{5,7} = 0 \text{ or } u_{5,3} = u_{7,5} = 0\}
\end{equation}
appearing in the Weierstrass model (2.2) is unique up to the action of $(\mathbb{C}^\times)^2$ given by
\begin{align}
\mathbb{C}^\times &\ni \lambda: ((x, y, z, w), (u_{i,j})_{i,j}) \mapsto (x, \lambda^2 y, \lambda^3 z, w), (\lambda^{(i+j)/2}u_{i,j})_{i,j}) \\
\mathbb{C}^\times &\ni \mu: ((x, y, z, w), (u_{i,j})_{i,j}) \mapsto ((\mu^{-1}x, y, z, \mu w), (\mu^{-1}j u_{i,j})_{i,j}).
\end{align}

Note that the former \mathbb{C}^\times-action rescales the holomorphic volume form
\begin{equation}
\Omega = \text{Res} \ \frac{w dx \wedge d y \wedge d z}{z^2 - y^3 - g_2(x, w)y - g_3(x, w; u)}
\end{equation}
as
\begin{equation}
\Omega_{\lambda u} = \text{Res} \ \frac{w dx \wedge d(\lambda^2 y) \wedge d(\lambda^3 z)}{(\lambda^3 z)^2 - (\lambda^2 y)^3 - g_2(x, w; \lambda u)(\lambda^2 y) - g_3(x, w; \lambda u)} = \lambda^{-1}\Omega_u,
\end{equation}
whereas the latter (which comes from the automorphism of the base \mathbb{P}^1 fixing 0 and ∞) keeps it invariant. The categorical quotient $T := U/C^\times_u$ is the coarse moduli scheme of pairs (Y, Ω) consisting of a P_1-polarized K3 surface Y and a holomorphic volume form $\Omega \in H^0(\omega_Y)$ on Y. The coordinate ring $\mathbb{C}[T]$ of T is generated by six elements
\begin{align}
t_4 &:= u_{4,4}, \\
t_6 &:= u_{6,6}, \\
t_8 &:= u_{5,3}u_{3,5}, \\
t_{10} &:= u_{5,3}u_{5,7} + u_{3,5}u_{7,5}, \\
ts_{10} &:= u_{5,3}u_{5,7} - u_{3,5}u_{7,5}, \\
t_{12} &:= u_{7,5}u_{5,7},
\end{align}
with one relation
\begin{equation}
s_{10}^2 = \Delta_20(t) := t_{10}^2 - 4t_8t_{12}.
\end{equation}
The boundary of the affinization $\overline{T} := \text{Spec} \mathbb{C}[T]$ is given by
\begin{equation}
\{ t_8 = t_{10} = s_{10} = t_{12} = 0 \} \cong \mathbb{C}_{t_4} \times \mathbb{C}_{t_6}.
\end{equation}
The period map induces an isomorphism of the graded ring of modular forms and the coordinate ring $\mathbb{C}[T]$. The weight of the modular form is identified with the weight of the \mathbb{C}_x^\times-action, and Theorem 1.1 is proved.

3. MODULAR FORMS OF $O(2,4;\mathbb{Z})$ WITH CHARACTERS

The lattice T_1 has a unique extension $T_1 \subset T_2 \subset T_1 \otimes \mathbb{Q}$ of index 2 to an odd unimodular lattice $T_2 \cong U \uplus \langle -1 \rangle \uplus \langle 1 \rangle \uplus \langle -1 \rangle \uplus \langle 1 \rangle$, and T_1 is the sublattice of T_2 consisting of even elements;
\begin{equation}
T_1 \cong \{ v \in T_2 \mid \langle v, v \rangle \in 2\mathbb{Z} \}.
\end{equation}

It follows that $\Gamma_2 := O(2,4;\mathbb{Z}) := O(T_2)$ can naturally be identified with $O(T_1)$, so that
\begin{equation}
A(O(T_2)) \cong A(O(T_1)) = A(\Gamma_1)^{\langle \sigma_1 \rangle}.
\end{equation}
Since σ_1 acts on U by sending $u_{i,j}$ to $u_{j,i}$, one obtains a proof of the following:

\textbf{Theorem 3.1} ([Vin10, Theorem 1]). The graded ring $A(O(2,4;\mathbb{Z}))$ of automorphic forms is given by
\begin{equation}
A(O(2,4;\mathbb{Z})) = \mathbb{C}[t_4, t_6, t_8, t_{10}, t_{12}]
\end{equation}
where the lower indices indicate the weights.

In fact, this proof of Theorem 3.1 already appears in [CMS19]. In particular, (2.2) is identical to [CMS19, (4.13)] up to an obvious change of coordinates. Note that ‘isomorphisms of $H \uplus E_7(\mathbb{Z})$ lattice polarized K3 surfaces’ in [CMS19, Proposition 4.3,(b)] come from the action of σ_1, and as such are not isomorphisms of lattice polarized K3 surfaces in the sense of [Dol96].

The coarse moduli space $M := D / O(T_1)$ of P_1-polarized K3 surfaces up to the action of σ_1 is an open subvariety of its Satake–Baily–Borel compactification Proj $A(O(T_1)) \cong \mathbb{P}(4,6,8,10,12)$. Although M and the the orbifold quotient $\mathbb{M} := [D / O(T_1)]$ are closely related, the canonical morphism $\mathbb{M} \rightarrow M$ is not an isomorphism even in codimension 1. In order to obtain an orbifold which is isomorphic to \mathbb{M} in codimension 1 (so that the total coordinate rings are isomorphic), we first consider the stacky weighted projective space $\mathbb{P} := \mathbb{P}(4,6,8,10,12)$, defined as the quotient of $\mathbb{C}^5 \setminus \mathbf{0}$ by a \mathbb{C}^\times-action with this weight. The morphism $\mathbb{M} \rightarrow M$ lifts to a morphism $\mathbb{M} \rightarrow \mathbb{P}$, which is an isomorphism in codimension 0, since the generic stabilizers are $\{ \pm \text{id} \}$ on both sides.

Stabilizers of \mathbb{M} along divisors come from reflections, and besides σ_1 appearing above, there are two more reflections that one can easily find in $O(T_1)$. The first one, which we call σ_2, is the reflection along the $(−2)$-vector whose reflection hyperplane is defined by
\begin{equation}
\Delta_8(t) := t_8.
\end{equation}
In terms of P_1-polarized K3 surfaces, this divisor corresponds to the locus where the Picard lattice contains $U \uplus E_7 \uplus E_8$. The second one, which we call σ_3, is the reflection along the $(−2)$-vector whose reflection hyperplane corresponds to the locus where the Picard lattice contains $U \uplus E_7 \uplus E_7 \uplus A_1$. In order to describe this locus, first consider the discriminant $4g_2(x,w,t)^3 + 27g_3(x,w,t)^2$ of $y_9^3 + g_2(x,w,t)y + g_3(x,w,t)$ as a polynomial of y, which is the product of x^9w^9 and a homogeneous polynomial $h(x,w,t)$, of degree 6 in (x,w) and degree 12 in t. Note that the discriminant of the polynomial $\sum_{i=0}^{n} a_i x^i w^{n-i}$ with respect to (x,w) is homogeneous of degree $2(n-1)$ in $\mathbb{Z}[a_0,\ldots,a_n]$ if $\deg a_0 = \cdots = \deg a_n = 1$. It follows that the discriminant $k_{120}(t)$ of $h(x,w,t)$ with respect to (x,w) is a homogeneous polynomial of degree $2 \cdot 5 \cdot 12 = 120$ in t. A general point on the divisor of $\mathbb{P}(4,6,8,10,12)$ defined by $k_{120}(t)$ corresponds to the locus where two fibers of Kodaira type I_1 collapse into one fiber. This divisor has two components; a general point on one corresponds to the case when there exists a point $p = [x:w]$ on \mathbb{P}^1 such that neither g_2 nor g_3 vanishes at p, and a general point on the other component corresponds to the case when both g_2 and g_3 vanishes at p. In the former case, the resulting singular fiber is of Kodaira type I_1, and the surface acquires an A_1-singularity. In the latter case, the resulting singular fiber is of Kodaira type I_2, and the surface
does not acquire any new singularity. The defining equation of the latter component is the resultant of \(g_2\) and \(g_3\). It is given as the determinant

\[
(3.5) \quad r_{20}(t) = \begin{vmatrix} u_{5,3} & u_{4,4} & u_{3,5} \\ u_{5,3} & u_{4,4} & u_{3,5} \\ u_{7,5} & u_{6,6} & u_{5,7} \end{vmatrix}
\]

of the Sylvester matrix, which is homogeneous of degree 20. As shown in [HU, Lemma 6.1], the polynomial \(k_{120}(t)\) is divisible by \(r_{20}(t)^3\), and a direct calculation using a computer algebra system shows that the quotient

\[
(3.6) \quad \Delta_{60}(t) := k_{120}(t)/r_{20}(t)^3
\]

is irreducible.

Recall from [AGV08, Cad07] that the root construction is an operation which adds a stabilizer along a divisor. Let \(T\) be the stack obtained from \(P\) by the root construction of order 2 along the divisor on \(P\) defined by \(\Delta_{88}(t) := \Delta_8(t)\Delta_{20}(t)\Delta_{60}(t)\), which is the quotient of the double cover of \(P\) branched along \(\Delta_{88}(t)\) by the group \(G\) of deck transformations. The Picard group of \(T\) (or the \(G\)-equivariant Picard group of \(P\)) is generated by the pull-back \(O_T(1) := p^*O_P(1)\) of the generator \(O_P(1)\) of the Picard group of \(P\) by the structure morphism \(p: T \to P\) and three line bundles \(O_T(D_i)\) for \(i = 4, 10, 30\) such that the space \(H^0(O_T(D_i))\) is generated by an element \(s_i\) satisfying \(s_i^2 = \Delta_i \in H^0(O_T(i)) \cong H^0(O_P(i))\).

The ramification formula for the canonical bundle gives

\[
(3.7) \quad \omega_T \cong p^*(\omega_P \otimes O_T(D_4 + D_{10} + D_{30}))
\]

\[
(3.8) \quad \cong O_T(-40) \otimes O_T(D_4 + D_{10} + D_{30})
\]

\[
(3.9) \quad \cong O_T(4) \otimes O_T(-44 + D_4 + D_{10} + D_{30}).
\]

Note that \(O_T(-44 + D_4 + D_{10} + D_{30})\) is an element of order two in \(\text{Pic}\, T\). By comparing (3.9) with

\[
(3.10) \quad \omega_{M_0} \cong O_M(4) \otimes \det
\]

which follows from (the proof of) [HU, Proposition 5.1], one concludes that \(M\) has no further stabilizer along a divisor, so that the lift \(M \to T\) of \(M \to P\) is an isomorphism in codimension 1. It follows that \(\text{Pic}\, M \cong \text{Pic}\, T\) is isomorphic to \(\mathbb{Z} \oplus (\mathbb{Z}/2\mathbb{Z})^3\), and the total coordinate ring (also known as the Cox ring) of \(M\) is given by

\[
(3.11) \quad \bigoplus_{L \in \text{Pic}\, M} H^0(L) \cong \mathbb{C}[t_4, t_6, t_8, t_{10}, t_{12}, s_4, s_{10}, s_{30}]/(s_4^2 - \Delta_8(t), s_{10}^2 - \Delta_{20}(t), s_{30}^2 - \Delta_{60}(t)).
\]

A character of \(O(T_1)\) gives a line bundle on \(M\), so that the ring \(\tilde{A}(O(T_1))\) of modular forms with characters is a subring of the total coordinate ring, which in fact is the whole of it since any line bundle on \(M\) comes from a character in the case at hand. This can be seen by noting that the universal cover \(\tilde{D} \to \tilde{M}\) factors through a \((\mathbb{Z}/2\mathbb{Z})^3\)-cover defined by the equation appearing on the right hand side of (3.11), so that the line bundles \(O\tilde{D}(-i + D_i)\) for \(i = 4, 10, 30\) come from characters of the orbifold fundamental group of \(\tilde{M}\), which is isomorphic to \(O(T_1)\) by definition.

Note that (4.5) below produces two distinct elements of order two in \(\text{Char}(O(T_1))\); one comes from the sign representation of \(\mathfrak{S}_6\) and the other comes from the unique non-trivial representation of \(\langle \tau \rangle\). Yet another element of order two comes from the determinant representation \(\text{det}: O(T_1) \to \{\pm 1\}\), which does not belong to the subgroup of \(\text{Char}(O(T_1))\) generated by the above two characters. Since \(\text{det}(g) = -1\) for any reflection \(g \in O(T_1)\), the character of the modular form \(s_4s_{10}s_{30}\) is \(\text{det}\). As we explain in Section 4, the characters of the modular forms \(s_{10}\) and \(s_{30}\) come from the non-trivial representation of \(\langle \tau \rangle\) and the sign representation of \(\mathfrak{S}_6\) respectively.

4. Configuration of six lines on the plane

Let \(L_1, \ldots, L_6\) be six lines on \(P^2\) in very general position, and \(Y\) be the K3 surface obtained as the resolution of 15 ordinary double points on the double cover of \(P^2\) branched along the union of these six lines. Fix an isometry \(H^2(Y; \mathbb{Z}) \cong \Lambda_{K3}\) and regard the Picard lattice \(P_3\) of \(Y\) as a sublattice of \(\Lambda_{K3}\). The lattice \(P_3\) is an even lattice of signature \((1, 15)\) generated by the classes of strict transforms
of the lines and 15 exceptional divisors. The primitive embedding of P_3 into Λ_{K3} is unique up to the action of $O(\Lambda_{K3})$ by [Nik79b, Theorem 1.14.4]. The orthogonal lattice T_3 of P_3 inside Λ_{K3} is isometric to $T_{2}(2) \cong U(2) \perp U(2) \perp A_1 \perp A_1$, so that one has
\begin{equation}
O(T_3) \cong O(T_2).
\end{equation}
Set $\Gamma_3 := \Gamma_{P_3}$ and $\Gamma(2) := \{g \in O(T_3) \mid g \equiv \text{id}_{T_3} \mod 2\}$.

Lemma 4.1. One has $\Gamma_3 = \Gamma(2)$.

Proof. It follows from [Nik79b, Corollary 1.5.2] that Γ_3 is the kernel of the natural homomorphism from $O(T_3)$ to the group of automorphisms of the discriminant group of T_3 (i.e., the quotient of the dual lattice $T^\vee := \text{Hom}(T_3, \mathbb{Z})$ by the natural injection $T_3 \hookrightarrow T^\vee$).

It is shown in [MSY92, Proposition 2.7.3 and Corollary 2.7.4] that $\Gamma(2)$ is a reflection group generated by reflections along 20 (-2)-vectors given on [MSY92, p. 103]. One can easily check that every reflection acts on T^\vee_2/T_3 as the identity, so that $\Gamma(2) \subset \Gamma_3$.

On the other hand, it is shown in [MSY92, Proposition 2.8.2] that the quotient group $O(T_3)/\Gamma(2)$ is the finite group given by
\begin{equation}
\left\{ \begin{pmatrix} Y_4 & 0 \\ 0 & \eta_2 \end{pmatrix} \mid Y_4 \in \text{Sp}(2, \mathbb{Z}/2\mathbb{Z}), \eta_2 \in \{I_2, U\} \right\},
\end{equation}
where
\begin{equation}
\text{Sp}(2, \mathbb{Z}/2\mathbb{Z}) := \{Y_4 \in \text{GL}(4, \mathbb{Z}/2\mathbb{Z}) \mid Y_4^T(U \oplus U)Y_4 = U \oplus U\}.
\end{equation}
Note that $\text{Sp}(2, \mathbb{Z}/2\mathbb{Z})$ is generated by
\begin{equation}
\begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ I_2 \end{pmatrix}, \begin{pmatrix} U & I_2 \\ I_2 & U \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} U \\ 1 \\ 0 \end{pmatrix}, \text{and} \begin{pmatrix} I_2 \\ 1 \\ 1 \end{pmatrix},
\end{equation}
and isomorphic to the symmetric group \mathfrak{S}_6 of degree 6. One can easily see that if $h \in O(T_3)/\Gamma(2)$ is not the identity, then h induces a non-trivial transformation on T^\vee_2/T_3, so that $\Gamma(2) = \Gamma_3$. \hfill \square

We write the element of order 2 in $O(T_3)/\Gamma_3$ represented by $I_4 \oplus U$ as τ, so that
\begin{equation}
O(T_3)/\Gamma_3 \cong \mathfrak{S}_6 \times \langle \tau \rangle.
\end{equation}

The *Igusa quartic* is the Siegel modular variety of genus 2, which can naturally be identified with the moduli spaces of
- principally polarized abelian surfaces,
- genus two curves, and
- hyperelliptic curves of genus two, i.e., configurations of six points on \mathbb{P}^1.

It can be described as a quartic hypersurface in \mathbb{P}^4, defined by the equations
\begin{equation}
\sum_{i=0}^5 x_i = 0,
\end{equation}
\begin{equation}
\left(\sum_{i=0}^5 x_i^2\right)^2 = 4 \sum_{i=0}^5 x_i^4
\end{equation}
in \mathbb{P}^5. The GIT quotient $\overline{X}(3, 6)$ of $(\mathbb{P}^2)^6$ by the action of $\text{PGL}_3 \cong \text{Aut} \mathbb{P}^2$ with respect to the democratic weight is known to be the double cover of \mathbb{P}^4 branched along the Igusa quartic by [DO88]. The period map from the configuration space $X(3, 6)$ of six lines on \mathbb{P}^2 in general position to the modular variety $M_3 := D/\Gamma_3$ extends to an isomorphism from $\overline{X}(3, 6)$ to the Satake–Baily–Borel compactification \overline{M}_3 of M_3 by [MSY92]. As explained in [MSY92, Section A.2], the action of τ on M_3 gives an involution on M_3 whose fixed locus is the moduli space of six points on a conic, which can naturally be identified with the Igusa quartic; the natural projection $M_3 \to M_3/\langle \tau \rangle \cong \mathbb{P}^4$ is a double cover of \mathbb{P}^4 branched along the Igusa quartic. The residual action of \mathfrak{S}_6 on $M_3/\langle \tau \rangle$
is the projectivization of the natural action of \mathcal{S}_6 on $\{(x_1, \ldots, x_6) \in \mathbb{A}^6 \mid x_1 + \cdots + x_6 = 0\}$ by permutation of coordinates. The quotient

$$\mathcal{D}/O(T_3) \cong M_3/\mathcal{S}_6 \times \langle \tau \rangle \cong \mathbb{P}^1/\mathcal{S}_6 \cong \text{Spec } A(O(T_3))$$

is the weighted projective space $\mathbb{P}(2, 3, 4, 5, 6) = \text{Proj } \mathbb{C}[t_4, t_6, t_8, t_{10}, t_{12}]$, where t_{2i} are symmetric functions of degree i in x_1, \ldots, x_6. The projection

$$M_1 := \mathcal{D}/\Gamma_1 \to \mathcal{D}/O(T_1) \cong \mathbb{P}(2, 3, 4, 5, 6)$$

is the double cover branched along the hypersurface defined by $\Delta_{20}(t)$. It follows that the character of s_{10} is the composite of $O(2, 4; \mathbb{Z}) \cong O(T_3) \to O(T_3)/\Gamma_3 \cong \mathcal{S}_6 \times \langle \tau \rangle \to \langle \tau \rangle$ and the non-trivial representation of $\langle \tau \rangle$.

Since the branch locus of the double cover of $\mathbb{P}(2, 3, 4, 5, 6)$ associated with the sign representation of \mathcal{S}_6 is the discriminant $\Delta_{60}(t) = \prod_{1 \leq i < j \leq 6}(x_i - x_j)^3$, the character of the modular form s_{30} is the composite of the surjection $O(2, 4; \mathbb{Z}) \to \mathcal{S}_6$ and the sign representation of \mathcal{S}_6.

References

[AGV08] Dan Abramovich, Tom Graber, and Angelo Vistoli, *Gromov-Witten theory of Deligne-Mumford stacks*, Amer. J. Math. **130** (2008), no. 5, 1337–1398. MR 2450211 (2009k:14032) 4

[BR75] Dan Burns, Jr., and Michael Rapoport, *On the Torelli problem for kählerian $K - 3$ surfaces*, Ann. Sci. École Norm. Sup. (4) **8** (1975), no. 2, 235–273. MR 0447635 1

[Cad07] Charles Cadman, *Using stacks to impose tangency conditions on curves*, Amer. J. Math. **129** (2007), no. 2, 465–427. MR 2306040 (2008g:14016) 4

[CMS19] A. Clingher, A. Malmendier, and T. Shaska, *Six line configurations and string dualities*, Comm. Math. Phys. **371** (2019), no. 1, 159–196. MR 4015343 3

[DO88] Igor Dolgachev and David Ortland, *Point sets in projective spaces and theta functions*, Astérisque (1988), no. 165, 210 pp. (1989). MR 1007155 5

[Dol96] I. V. Dolgachev, *Mirror symmetry for lattice polarized $K3$ surfaces*, J. Math. Sci. **81** (1996), no. 3, 2599–2630, Algebraic geometry, 4. MR 1420220 (97i:14024) 1, 3

[HU] Kenji Hashimoto and Kazushi Ueda, *The ring of modular forms for the even unimodular lattice of signature $(2, 10)$*, arXiv:1406.0332. 4

[Mir92] Rick Miranda, *The basic theory of elliptic surfaces*, Dottorato di Ricerca in Matematica. [Doctorate in Mathematical Research], ETS Editrice, Pisa, 1989. MR 1078016 (92e:14032) 2

[MSY92] Keiji Matsumoto, Takeshi Sasaki, and Masaaki Yoshida, *The monodromy of the period map of a 4-parameter family of $K3$ surfaces and the hypergeometric function of type $(3, 6)$*, Internat. J. Math. **3** (1992), no. 1, 164. MR 1136204 1, 5

[Nik79a] V. V. Nikulin, *Finite groups of automorphisms of Kählerian $K3$ surfaces*, Trudy Moskov. Mat. Obschch. **38** (1979), 75–137. MR 544937 (81c:32033) 1

[Nik79b] ———, *Integer symmetric bilinear forms and some of their geometric applications*, Izv. Akad. Nauk SSSR Ser. Mat. **43** (1979), no. 1, 111–177. 238. MR 525944 (80j:10031) 2, 5

[PŠ71] I. I. Pjateckii-Sapiro and I. R. Šafarevič, *Torelli’s theorem for algebraic surfaces of type $K3$*, Izv. Akad. Nauk SSSR Ser. Mat. **35** (1971), 530–572. MR 0284440 (44 #1666) 1

[SS10] Matthias Schütt and Tetsuji Shioda, *Elliptic surfaces*, Algebraic geometry in East Asia—Seoul 2008, Adv. Stud. Pure Math., vol. 60, Math. Soc. Japan, Tokyo, 2010, pp. 51–160. MR 2732092 (2012b:14069) 2

[Tod80] Andrei N. Todorov, *Applications of the Kähler–Einstein-Calabi–Yau metric to moduli of $K3$ surfaces*, Invent. Math. **61** (1980), no. 3, 251–265. MR 592693 1

[Vin10] E. B. Vinberg, *Some free algebras of automorphic forms on symmetric domains of type IV*, Transform. Groups **15** (2010), no. 3, 701–741. MR 2718942 3

Faculty of Mathematics and Physics, Institute of Science and Engineering, Kanazawa University, Kakuma, Kanazawa, Ishikawa, 920-1192, Japan

E-mail address: atsuhira.nagano@gmail.com

Graduate School of Mathematical Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo, 153-8914, Japan.

E-mail address: kazushi@ms.u-tokyo.ac.jp