RODOLFO FAVARO RIBEIRO

ESTABELECIMENTO DE UM MODELO DE GESTAÇÃO COMPLICADA POR DIABETES TIPO 1 EM CAMUNDONGOS: AVALIAÇÃO DO SEU IMPACTO SOBRE O AMBIENTE UTERINO NO INÍCIO DA GESTAÇÃO

Tese apresentada ao Programa de Pós-graduação em Biologia Celular e Tecidual do Instituto de Ciências Biomédicas da Universidade de São Paulo, para a obtenção do título de Doutor em Ciências.

São Paulo
2011
RODOLFO FAVARO RIBEIRO

ESTABELECIMENTO DE UM MODELO DE GESTAÇÃO COMPLICADA POR DIABETES TIPO 1 EM CAMUNDONGOS: AVALIAÇÃO DO SEU IMPACTO SOBRE O AMBIENTE UTERINO NO INÍCIO DA GESTAÇÃO

Tese apresentada ao Programa de Pós-graduação em Biologia Celular e Tecidual do Instituto de Ciências Biomédicas da Universidade de São Paulo, para a obtenção do título de Doutor em Ciências.

Área de concentração: Biologia Celular e Tecidual

Orientadora: Profª. Drª. Telma M.T. Zorn

Versão corrigida. A versão original se encontra arquivada no Serviço de Comunicações do ICB

São Paulo
2011
Favaro, Rodolfo Ribeiro.

Estabelecimento de um modelo de gestação complicada por diabetes tipo 1 em camundongos: avaliação do seu impacto sobre o ambiente uterino no início da gestação / Rodolfo Favaro Ribeiro. -- São Paulo, 2011.

Orientador: Telma Maria Tenorio Zorn.

Tese (Doutorado) – Universidade de São Paulo. Instituto de Ciências Biomédicas. Departamento de Biologia Celular e do Desenvolvimento. Área de concentração: Biologia Celular e Tecidual. Linha de pesquisa: Biologia da reprodução e da matriz extracelular.

Versão do título para o inglês: Establishment of a mouse model of pregnancy complicated by type 1 diabetes: evaluation of its impact on the uterine environment at early pregnancy.

Descritores: 1. Gravidez 2. Útero 3. Matriz extracelular 4. Diabetes mellitus 5. Histopatologia 6. Imunohistoquímica 1. Zorn, Telma Maria Tenorio II. Universidade de São Paulo. Instituto de Ciências Biomédicas. Programa de Pós-Graduação em Biologia Celular e Tecidual III. Título.

ICB/SEIB076/2011
Candidato(a): Rodolfo Favaro Ribeiro.

Título da Tese: Estabelecimento de um modelo de gestação complicada por diabetes tipo 1 em camundongos: avaliação do seu impacto sobre o ambiente uterino no início da gestação.

Orientador(a): Telma Maria Tenorio Zorn.

A Comissão Julgadora dos trabalhos de Defesa da Tese de Doutorado, em sessão pública realizada a ..., considerou

() Aprovado(a) () Reprovado(a)

Examinador(a): Assinatura: ..
Nome: ..
Instituição: ..

Presidente: Assinatura: ..
Nome: ..
Instituição: ..
DECLARAÇÃO

Em adendo ao Certificado 144/02/CEEA, datado de 23.04.02 e por solicitação da Profa. Dra. Telma Maria Tenório Zorn, responsável pela linha de Pesquisa, autorizo a inclusão de novos procedimentos ao projeto de pesquisa “Trata-se de um grupo de projetos que podem ser agrupados em 2 sub-grupos. A: Estudos imunocitoquímicos para rastreamento de moléculas de matriz extracelular e B: Estudos radioautográficos para localização de receptores de estradiol, progesterona e melatonina, ambos nos tecidos uterinos de camundongos”, uma vez que se trata de utilização da mesma espécie animal e de métodos experimentais similares ao referido certificado.

Informo ainda, que sua validade será renovada por um período de três anos a contar de 23.04.08.

São Paulo, 08 de abril de 2008.

[Assinatura]

Prof. Dr. Wothan Tavares de Lima
Coordenador da CEEA
ICB/USP
DECLARAÇÃO

Em adendo ao Certificado 144/02/CEEA, datado de 23.04.02 e por solicitação da Profª. Dra. Telma Maria Tenório Zorn, responsável pela linha de Pesquisa, autorizo a inclusão dos pesquisadores: Rodolfo Favaro Ribeiro, Priscila Ribeiro Raspantini, Munick C.S. Fulquim, Renato de Mayrink Salgado, Fernanda Fernandes Farias, Sebastian San Martin H., Karin Spiess, ao Projeto de Pesquisa “Trata-se de um grupo de projetos que podem ser agrupados em 2 sub-grupos, A: Estudos imunocitoquímicos para rastreamento de moléculas de matriz extracelular e B: Estudos radioautográficos para localização de receptores de estradiol, progesterona e melatonina, ambos nos tecidos uterinos de camundongos”, uma vez que se trata de utilização da mesma espécie animal e de métodos experimentais similares ao referido certificado.

São Paulo, 08 de abril de 2008.

[Assinatura]

Prof. Dr. Wothan Tavares de Lima
Coordenador da CEEA
ICB/USP
À minha família, em especial a minha mãe, Vanda, e aos meus irmãos Mishel e Renato.
À Professora Telma Zorn, orientadora e amiga
Ao Laboratório de Biologia da Reprodução & Matriz Extracelular, em homenagem aos seus 30 anos de atividade em ensino e pesquisa de excelência.
AGRADECIMENTOS

À minha querida Mãe, Vanda Favaro, muito obrigado pela sua constante preocupação com minha educação e minha vida. Você foi fundamental nessa caminhada. Ensinou-me valores que permeiam minha conduta, e incentivou-me a buscar um futuro melhor por meio da educação. Aos meus irmãos, Mishel Favaro Piveta e Renato Favaro, pelo companheirismo e apoio, vocês foram fundamentais! Aos meus avós Devair Favaro (in memorian) e Emilia Favaro (in memorian), pelo seu exemplo de dedicação à família. A família desempenha um papel essencial na construção da identidade do indivíduo, o suporte de vocês foi essencial para essa conquista. Espero que minha ausência seja compreendida.

À Profa. Telma Zorn, minha "Mãe Científica", muito obrigado por me acolher em seu laboratório e em sua vida. Esses anos sob a sua orientação fizeram com que aumentasse ainda mais o amor que sinto pela universidade, educação e pesquisa. A Senhora é meu exemplo de educadora. Todo o conhecimento que me foi transmitido, pelas suas palavras e seu exemplo, constituem os alicerces que fundamentam minhas ações, como futuro pesquisador e educador.

Aos integrantes do LBR & MEC, Ambart Covarrubias, amiga chilena e colaboradora; Cleusa Pelegrini, amiga e exemplo de dedicação, com quem tive a oportunidade de conviver e aprender muito sobre histologia, Fernanda Barrence, amiga e importante colaboradora, sua ajuda foi essencial para este estudo, assim como para o bom andamento do laboratório; Fernanda Fernandes, amiga, realizou sua iniciação científica no laboratório; Juliane Sanches, amiga desde a graduação em Biomedicina na UEL e atual colaboradora; Munick Fulquim e Priscila Raspantini, na época, estudantes de obstetrícia e iniciação científica, importantes colaboradoras durante as etapas iniciais do projeto; Renato Salgado, amigo e importante colaborador científico, obrigado pela valiosa ajuda na correção dos artigos e da tese; Prof. Sebastián San Martín, amigo e colaborador. Fui muito privilegiado em poder conviver e contar com o apoio de todos vocês na realização deste estudo. Formamos uma excelente equipe! Cada um, a sua maneira, fez uma contribuição para este estudo, por isso compartilho-o com vocês.
Ao Prof. Paulo Abrahamsohn, amigo e fundador do LBR & MEC. Seus estudos serviram como base científica e inspiração para o desenvolvimento dessa tese.

À Profa. Zuleica Bruno Fortes e sua equipe, sua experiência e conhecimento foram fundamentais para o desenvolvimento deste estudo.

À Profa. Estela Bevilacqua e aos integrantes de seu laboratório. Admiro muito seu conhecimento, e seus ensinamentos foram muito importantes para a minha formação.

À Profa. Fernanda Pacheco, docente da Universidade Estadual de Londrina, ex-integrante do LBR & MEC e minha orientadora durante a iniciação científica, sua ajuda foi muito importante para minha vinda a São Paulo. A todos os meus professores durante a graduação em Biomedicina na UEL, em especial aos professores do Departamento de Histologia, onde realizei a iniciação científica, pelo conhecimento transmitido.

Ao Carlos Daniel Pujol Bazzo, o "Mano" e Francisco Carrara Junqueira, o "Kiko" meus grandes amigos do Paraná, companheiros de estrada. Aos meus também grandes amigos e companheiros de República aqui em São Paulo, Anderson "Panda" Vallerini, Diogo "Didi" Comitre, Isaac James "Jaiminho" Chiaratti, Adriano "Meninão" Zager. Às amigas Aline Soeiro e Maria Joana pela amizade e companheirismo. Aos meus amigos da graduação em Biomedicina, em especial, Bruno Blanco, Narjara Oliveira, Karen Oliveira, Klaus Mainardes, José Augusto Medeiros, Tatiana Brasil. À Iara de Souza, pelos momentos compartilhados e pela parceria, você foi importante para tornar os dias aqui em São Paulo melhores. À Gilei Soares, uma grande amiga, pelos momentos de convívio, apoio e incentivo. Aos meus amigos do Departamento, em especial ao Felipe "Albieri" Viecelli, Rodrigo Weingril e Priscila "Pri" Peron, pelos momentos de convivência. Junto de todos vocês vivi experiências que ficarão para sempre marcadas na minha memória.
Aos Professores do Departamento de Biologia Celular e do Desenvolvimento, Alison Colquhoun, Anselmo Moriscot, Irene Yan, Dânia Hamassaki, Edna Kimura, Emer Ferro, Eugênia Strauss, Jarbas Arruda Bauer José Roberto, José Carneiro, Flávio Fava de Morais, Gláucia Santelli, Luis Carlos Junqueira (in memoriam), Maria Inês Borella, Marília Seelaender, Marinilce dos Santos, Patrícia Gama, Ruy Jaeger, Sérgio de Oliveira, Vanessa Freitas, e aos que ministraram disciplinas que cursei durante a pós-graduação, todos vocês foram muito importantes para a minha formação.

Ao Gaspar Lima pela ajuda com a preparação do material para microscopia eletrônica. Ao Edson de Oliveira pela ajuda com o manuseio do microscópio eletrônico e o tratamento de imagens. Ao Cláudio Modia, Fernando de Araújo e Marley da Silva pelo valioso auxílio na manutenção dos animais no biotério. À Celiana Marchiori, Eloise Piva, Beth, Ana Lúcia Mota, secretárias do departamento. À Maria do Socorro, Mônica Amaral, Renata dos Santos, Edilson Bernardino, Valéria Pedullo e todos os funcionários da Biblioteca do ICB.

À Profa. Maria Terez Nunes e aos integrantes do seu grupo, pela amizade e permissão para a utilização do equipamento de PCR em tempo real em seu laboratório.

À Dra. Carla Lima, Dra. Mônica Lopes-Ferreira e Fernanda Bruni, do Laboratório Especial de Toxinologia Aplicada do Instituto Butantan, pela ajuda na realização dos experimentos de ELISA.

À Thais Marques e ao Marcos, pelo fornecimento e intensiva dedicação ao cuidado com os animais, que foram utilizados nesse estudo.

À Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) e seus assessores, pelo suporte financeiro e auxílio no desenvolvimento desse estudo, na forma de bolsa de doutorado (04/14442-6) e projeto de pesquisa (07/55277-6).
A verdadeira viagem do descobrimento não consiste em procurar novas paisagens, mas em ter novos olhos.

Marcel Proust

Assumir uma atitude responsável perante o futuro sem uma compreensão do passado é ter um objetivo sem conhecimento. Compreender o passado sem um comprometimento com o futuro é conhecimento sem objetivo.

Ronald T. Laconte
RESUMO

Favaro RR. Estabelecimento de um modelo de gestação complicada por diabetes tipo 1 em camundongos: Avaliação do seu impacto sobre o ambiente uterino no início da gestação. [Tese (Doutorado em Biologia Celular e Tecidual)]. São Paulo: Instituto de Ciências Biomédicas da Universidade de São Paulo; 2011.

Por meio desse estudo nosso laboratório estabeleceu um novo modelo de gestação complicada por diabetes do tipo 1 de longa duração em camundongos, e avaliou o impacto desta doença sobre o ambiente uterino desses animais no início da gestação. A idade de gestação estudada (168 horas) compreende o estágio em que a decídua antimesometrial está plenamente desenvolvida e o embrião inicia os processos de organogênese, de particular interesse devido à alta taxa de malformações nas gestações diabéticas. Além disso, o miomêtrio encontra-se na primeira fase de adaptação à gestação (fase proliferativa), e as gestações diabéticas estão associadas a uma alta incidência de partos prematuros. O diabetes foi induzido em fêmeas de camundongos Swiss, pela administração de aloxana i.v. (40 mg/Kg), e os animais foram acasalados após diferentes períodos de tempo. As fêmeas diabéticas apresentaram os parâmetros fisiopatológicos do diabetes tipo 1, caracterizados por: altos níveis de hiperglicemia, hipoinsulinemia, glicosúria, polifagia, polidipsia, poliúria e diminuição do peso corporal. A comparação do número de sítios de implantação e das dimensões da decídua entre os grupos acasalados 50-70 dias após a indução do diabetes (D) ou 90-110D mostrou que ambos os parâmetros foram alterados apenas no grupo 90-110D, o qual foi eleito para os estudos subsequentes. A histoquímica do Picrosirius revelou um aumento na deposição dos colágenos fibrilares na decídua do grupo diabético, quando comparada ao controle. Análises imunohistoquímicas demonstraram aumento da deposição dos colágenos tipo I e V e diminuição do colágeno III e dos proteoglicanos associados ao colágeno, biglicam e lúmicam. Estas alterações se refletiram na fibrilogênese do colágeno, como mostrou a análise ao microscópio eletrônico de transmissão (MET). A avaliação, por PCR quantitativo em tempo real, da expressão do RNAm para os colágenos e proteoglicanos, entretanto, demonstrou o aumento da expressão gênica apenas do colágeno tipo I. Levando em conta relatos sobre o papel da IL-11 na remodelação da matriz extracelular (MEC) decidual, realizou-se a análise dos seus níveis por ELISA. Entretanto, não foram observadas diferenças.
entre os grupos. Os efeitos do diabetes sobre o miométrio foram investigados em dois subgrupos de fêmeas diabéticas: D1 (90-100D) e D2 (100-110D). A análise histomorfológica revelou o aumento da distância entre as camadas musculares em D1, indicando edema, e a diminuição da distância em D2, associada à atrofia e à fibrose do miométrio. Em ambos os subgrupos foi detectado o estreitamento das camadas musculares, correlacionado com a diminuição da proliferação das células musculares lisas, avaliada por meio da imunodetecção de PCNA. A análise ao MET mostrou o comprometimento da citoarquitetura, da MEC e do aparelho contráctil das células musculares lisas, confirmado através da imunolocalização de α-actina de músculo liso. Em conjunto, nossos resultados suportam o conceito de que o desenvolvimento de complicações na gestação está diretamente relacionado com a progressão do diabetes na mãe, em consonância com resultados clínicos, apontando para a importância de modelos experimentais que incluam o fator temporal na investigação dos efeitos do diabetes sobre a gestação. Adicionalmente, neste modelo foram descritas alterações importantes no ambiente uterino, que contribuem para explicar as alterações no desenvolvimento embrionário e a maior incidência de partos prematuros nas gestações diabéticas.

Palavras chave: Gravidez. Útero. Matriz extracelular. Diabetes mellitus. Histopatologia. Imunohistoquímica.
ABSTRACT

Favaro RR. Establishment of a mouse model of pregnancy complicated by type 1 diabetes: Evaluation of its impact on the uterine environment at early pregnancy. [Ph. D. thesis (Tecidual and Cellular Biology)]. São Paulo: Instituto de Ciências Biomédicas da Universidade de São Paulo; 2011.

By means of this study our laboratory has developed a new mouse model of pregnancy complicated by long-term type 1 diabetes and evaluated the impact of this disease on the uterine environment at early pregnancy. The age of pregnancy studied (168 hours) comprises the stage in which antimesometrial decidua is fully developed and organogenesis is in progress, of particular interest due to higher rates of malformations in diabetic pregnancies. In addition, the myometrium is at the first adaptive phase of pregnancy (proliferative phase) and diabetic pregnancies are associated with high incidence of preterm labors. Diabetes was induced in female Swiss mice by i.v. alloxan administration (40 mg/Kg) and the animals were mated after different periods of time. Diabetic females showed pathophysiological parameters of type 1 diabetes, characterized by hyperglycemia, hypoinsulinemia, polyuria, glycosuria, polyphagy, polydipsia and decreased body weight. Comparison of the number of implantation sites and decidual dimensions between groups mated 50-70 days after diabetes induction (D) or 90-110D showed that both parameters were impaired only in the 90-110D group, which was elected for subsequent studies. Picrosirius staining revealed an augment in fibrillar collagen deposition in the diabetic group, when compared to control group. Immunohistochemical analysis demonstrated increased deposition of collagen types I and V, and decreased deposition of collagen type III, and associated proteoglycans biglycan and lumican. These alterations reflected on collagen fibrillogenesis, as shown by transmission electron microscopy (TEM) analysis. Quantitative real time PCR evaluation of collagens and proteoglycans mRNA expression, however, demonstrated the increase of collagen type I expression only. Taking into account reports on the role of IL-11 on decidual extracellular matrix (ECM) remodeling, its levels were measured by ELISA. However, no differences were observed between groups. Effects of diabetes on the myometrium were investigated in two subgroups: D1 (90-110D) and D2 (100-110D). Histomorphometrical analysis revealed an increase in the distance between muscle layers in D1, indicating edema, and diminution of the distance in D2, associated with
atrophy and fibrosis of the myometrium. In both subgroups narrowing of muscle layers was detected and correlated with decreased cell proliferation of smooth muscle cells, evaluated by immunodetection of PCNA. TEM analysis showed impairment of cytoarchitecture, ECM and contractile apparatus of the smooth muscle cells, confirmed by immunolocalization of α-smooth muscle actin. Together, our results support the concept that development of gestational complications is directly associated with the progression of diabetes in the mother, in consonance with clinical results, pointing to the importance of experimental models that include the temporal factor to investigate the effects of diabetes on pregnancy. Additionally, important alterations have been described in this model, which contribute to explain the alterations on embryo development and the high incidence of preterm labor in diabetic pregnancies.

Key words: Pregnancy. Uterus. Extracellular matrix. Diabetes mellitus. Histopathology. Immunohistochemistry.
LISTA DE ILUSTRAÇÕES

Figura 1 - Representação esquemática do embrião de camundongo (a) e da estrutura da placenta corio-vitelínica (b) ...24

Figura 2 - Fotomicrografia do sítio de implantação de camundongos, em corte transversal, com 168 horas de gestação...28

Figura 3 - Representação esquemática da organização estrutural do colágeno fibrilar (a). Fibrilas de colágeno em corte longitudinal (L) e transversal (T), observadas ao microscópio eletrônico de transmissão (b)..31

Figura 4 - Representação esquemática dos pequenos proteoglicanos ricos em leucina, biglicam e decorim, membros da classe I, e fibromodulim e lumican, pertencentes à classe II..33

Figura 5 - Representação esquemática das isoformas do versicam associadas a uma molécula de ácido hialurônico (em verde). ..33

Figura 6 - Representação esquemática de integrinas ...34

Figura 7 - Fotomicrografia do miométrio de camundongos, em corte transversal, com 168 horas de gestação..39

Figura 8 - Comparação entre a datação em horas e dias de gestação....................52

Figura 9 - Imunolocalização de colágeno tipo IV na decidua antimesometrial (a - b). Imunolocalização de colágeno tipo IV na decidua mesometrial (c - d)........67

Figura 10 - Imunolocalização de versicam na decidua antimesometrial (a - b). Imunolocalização de versicam na decidua mesometrial (c - d)....................68

Figura 11 - Localização dos colágenos fibrilares na decidua mesometrial pela técnica histoquímica do Picrosirius...69

Figura 12 - Imunolocalização de colágeno tipo I na decidua mesometrial.............69

Figura 13 - Imunolocalização de colágeno tipo III na decidua mesometrial..........70

Figura 14 - Imunolocalização de colágeno tipo V na decidua mesometrial..........70

Figura 15 - Imunolocalização de biglicam na decidua mesometrial.....................71

Figura 16 - Imunolocalização de lumicam na decidua mesometrial.....................71

Figura 17 - Imunolocalização de VEGF na decidua...72

Figura 18 - Imunolocalização de colágeno tipo I no miométrio.............................72

Figura 19 - Imunolocalização de colágeno tipo III no miométrio.......................73

Figura 20 - Imunolocalização de colágeno tipo V no miométrio.........................73

Figura 21 - Imunolocalização de fibromodulim no miométrio............................74

Figura 22 - Imunolocalização de decorim no miométrio.....................................74

Figura 23 - Imunolocalização de lumicam no miométrio....................................75

Figura 24 - Imunolocalização de biglicam no miométrio.....................................75
LISTA DE ABREVIATURAS E SIGLAS

Abs - absoluto
ACTH - hormônio adrenocorticotrófico (do inglês adrenocorticotropic hormone)
BSA - albumina de soro bovino (do inglês bovine serum albumin)
CDK - quinase dependente de ciclína (do inglês cyclin-dependent kinase)
CME - camada muscular longitudinal externa
CMI - camada muscular circular interna
D - dias após a indução do diabetes
DAB - 3,3-diaminobenzidina
DAG - diacilglicerol
dg - dia de gestação
dpg - dia de pseudogestação
ELISA - (do inglês enzyme-linked immunosorbent assay)
ER-α - receptor de estrógeno-α (do inglês estrogen receptor-α)
FAK - quinase de adesão focal (do inglês focal adhesion kinase)
FGF - fator de crescimento fibroblástico (do inglês fibroblast growth factor)
FITC - fluoresceína
GAGs - glicosaminoglicanos
GLUT - transportador de glicose (do inglês glucose transporter)
HA - ácido hialurônico (do inglês hyaluronic acid)
HB-EGF - fator de crescimento epidermal ligado à heparina (do inglês heparin-binding epidermal growth factor)
hg - horas de gestação
H₂O₂ - peróxido de hidrogênio
IGF - fator de crescimento semelhante à insulina (do inglês insulin-like growth factor)
IgG - imunoglobulina tipo G
IL-11 - interleucina-11
i.p. - intraperitoneal
i.v. - intravenosa
LH - hormônio luteinizante (do inglês luteinizing hormone)
MEC - matriz extracelular
MET - microscopia eletrônica de transmissão
mg/Kg - miligramas por quilograma
mg/dL - miligramas por decilitro
mL - mililitro
mmol/L - milimolar por litro
MMPs - metaloproteinases da matriz (do inglês matrix metalloproteinases)
NOD - camundongo diabético não-obeso (do inglês non-obese diabetic mouse)
NKu - linfócitos natural killer uterinos
PCNA - antígeno nuclear de proliferação celular (do inglês proliferating cell nuclear antigen)
PCRq - PCR quantitativo em tempo real
PKC - proteína quinase C (do inglês protein kinase C)
SLRPs - pequenos proteoglicanos ricos em leucina (do inglês small leucine-rich proteoglycans)
PBS - tampão fosfato salino (do inglês phosphate buffered saline)
TGF-β - fator de crescimento transformante-β (do inglês transforming growth factor-β)
TNF-α - fator de necrose tumoral-α (do inglês tumor necrosis factor-α)
VEGF - fator de crescimento endotelial vascular (do inglês vascular endothelial growth factor)
3H-prolina - prolina triciada
8-Br-cAMP - 8- Bromoadenosine- 3', 5'- cyclic monophosphate
SUMÁRIO

1 INTRODUÇÃO..23
1.1 Formação da Interface Materno-Fetal...24
 1.1.1 Implantação Embrionária..24
 1.1.2 A Decidualização do Endométrio...26
1.2 A Matriz Extracelular..30
1.3 Remodelação da Matriz Extracelular Endometrial Promovida pela Decidualização....35
1.4 O Miométrio..38
1.5 O Diabetes Mellitus...40
 1.5.1 Efeitos do Diabetes sobre a Reprodução...31

2 OBJETIVOS...46
2.1 Objetivos Gerais..47
2.2 Objetivos Específicos..47

3 MATERIAIS & METODOS..49
3.1 Animais..50
3.2 Indução do Diabetes...50
3.3 Manutenção das Fêmeas Diabéticas...51
3.4 Esfregaço Vaginal e Coloração de Shorr..51
3.5 Acasalamento e Formação dos Grupos...52
3.6 Coleta das Amostras para Microscopia de Luz...52
3.7 Histoquímica do Picrosirius...53
3.8 Imunohistoquímica...53
3.9 Histoquímica de Lectina DBA..53
3.10 Microscopia Eletrônica de Transmissão..54
3.11 Documentação Fotográfica, Histomorfometria e Análise Estatística.....................54

4 RESULTADOS..56
4.1 Estabelecimento do Modelo de Gestação Complicada por Diabetes Tipo 1 em camundongo..57
ANEXO B..115
PROCESSAMENTO DE MATERIAL PARA MICROSCOPIA DE LUZ - FIXAÇÃO EM METHACARN..116
ANEXO C..117
PROTOCOLO DA TÉCNICA HISTOQUÍMICA DO Picrosirius..118
ANEXO D..119
PROTOCOLO DAS TÉCNICAS DE IMUNOPEROXIDASE E IMUNOFLUORESCÊNCIA..............................120
ANEXO E...123
HISTOQUÍMICA DE LECTINA DBA..124
ANEXO F..126
PROTOCOLO DE PROCESSAMENTO PARA MATERIAL DE MICROSCOPIA ELETRÔNICA DE TRANSMISSÃO - FIXAÇÃO POR KARNOVSKY..127
ANEXO G...129
Effects of long-term type 1 diabetes on the structure and cell proliferation of the myometrium in the early pregnancy of mice...130
ANEXO H...141
LONG-TERM TYPE 1 DIABETES IMPAIRS DECIDUALIZATION AND EXTRACELLULAR MATRIX REMODELING DURING MOUSE ORGANOGENESIS..142
1 INTRODUÇÃO
1.1 Formação da Interface Materno-Fetal

1.1.1 Implantação Embrionária

Durante a gestação, a interação entre os organismos materno e embrionário/fetal ocorre por meio do desenvolvimento de regiões especializadas no ambiente uterino, denominadas de interface materno-fetal. Em humanos e camundongos, nos quais a placentação é do tipo hemocorial, o embrião é nutrido pelo contato direto das células embrionárias (trofoblásticas) com o sangue materno. O estabelecimento da interface materno-fetal nestas espécies compreende os seguintes eventos: i) interação das células do trofoblasto com o epitélio uterino, durante o processo de implantação; ii) decidualização do endométrio; iii) invasão e remodelação do endométrio decidualizado e de sua vasculatura pelas células do trofoblasto; iv) estabelecimento da placenta (Revisão em: Georgiades et al., 2002; Malassine et al., 2003).

Figura 1 - Representação esquemática do embrião de camundongo (a) e da estrutura da placenta corio-vitelínica (b).
Fonte: Adaptado de: Sutherland, 2003.

Após a fertilização e as sucessivas divisões celulares, as primeiras células a se diferenciarem durante o desenvolvimento do embrião de camundongos formam o trofoectoderma que reveste o blastocisto. Sequencialmente, as células do trofoectoderma, em contato com a massa celular interna, formam o trofoblasto polar, enquanto que as demais originam o trofoblasto apolar ou mural. O
trofoblasto mural reveste o **saco vitelínico** e é formado pelas **células trofoblásticas gigantes primárias**, responsáveis pela implantação e nutrição do embrião. Com o desenvolvimento dos vasos vitelínicos e o contato do trofoblasto com o sangue materno a partir da invasão de capilares do endométrio decidualizado (decidua antimesometrial), este conjunto de estruturas forma a **placenta cório-vitelínica** (Figura 1), responsável pela nutrição do embrião entre o 6º e o **10-11º dia de gestação (dg)** (Bevilacqua, Abrahamsohn, 1988; Revisão em: Cross et al., 1994; Malassine et al., 2003; Sutherland, 2003). Considerando que a **organogênese** compreende o período entre o 7º e o 12º dg (Rugh, 1968), grande parte deste processo ocorre enquanto o embrião é nutrido pela placenta corio-vitelínica, enfatizando a sua importância para o desenvolvimento embrionário em camundongos. Por volta do 10-11º dg, a **placenta corio-alantóica** está fundamentalmente estruturada e ativa, assumindo o papel principal na nutrição do embrião (Revisão em: Cross et al., 1994; Malassine et al., 2003).

O primeiro passo para o estabelecimento da interface materno-fetal é a implantação embrionária; uma complexa série de eventos responsável pela aquisição de uma posição fixa do embrião junto ao útero. Para que a implantação ocorra, é necessário que o estágio de desenvolvimento do embrião esteja em sincronia com a receptividade do endométrio (McLaren, Michie, 1956; Noyes, Dickmann, 1960). O período de receptividade do endométrio à implantação, denominado de **janela de implantação**, é governado pela ação dos hormônios ovarianos estrógeno e progesterona em conjunto com fatores de crescimento, citocinas e mediadores lipídicos (Psychoyos, 1986; Paria et al., 2002). O processo de implantação é extremamente complexo e requer um grande número de fatores associados, tanto de origem materna quanto embrionária. Morfologicamente, o processo de implantação é caracterizado pelo contato entre as células do trofoblasto com as células do epitélio uterino, e posteriormente pela invasão do endométrio. Inicialmente os microvilos presentes em ambos os tipos celulares se interdigitam, durante o estágio de aposição, e o lúmen uterino se fecha ao redor do embrião, processos denominados de reação de fixação, prosseguindo para um contato mais íntimo durante o estágio de adesão, onde os microvilos são perdidos e as membranas se tornam paralelas, onduladas e separadas por um pequeno espaço. O diálogo molecular estabelecido entre os dois organismos é orquestrado por diversos fatores entre os quais se destacam: i) **fatores de crescimento**; ii) **citocinas**;
iii) hormônios; iv) mediadores lipídicos; v) moléculas de adesão celular; vi) integrinas; vii) moléculas da matriz extracelular (MEC); viii) metaloproteinases da matriz (MMPs do inglês *matrix metalloproteinases*) (Revisão em: Abrahamsohn, Zorn, 1993; Carson et al., 2000; Paria et al., 2002; Yoshinaga, 2010).

O período de implantação embrionária varia entre as diferentes espécies animais. Em camundongos ocorre entre o final do 4º e início do 5º dg (Reinius, 1967; Das et al., 1995), em ratos no 5º - 6º dg (Dickmann, Noyes, 1960; Enders, Schlafke, 1967) e em humanos por volta do 8º - 10º dg (Wilcox et al., 1999). O marcador molecular mais precoce da implantação descrito em camundongos é o fator de crescimento epidermal ligado à heparina (HB-EGF do inglês *heparin-binding epidermal growth factor*), expresso pelo epitélio uterino apenas nos locais em contato com o embrião (Das et al., 1994). Posteriormente, ocorre aumento de permeabilidade vascular ao redor dos locais de implantação, que podem ser claramente visualizados pelo extravasamento de corante injetado na circulação materna (Psychoyos, 1961). Após a adesão do trofoblasto, as células epiteliais uterinas sofrem apoptose, se desprendem da membrana basal e são fagocitadas pelo trofoblasto. Dessa maneira, as células do trofoblasto entram em contato direto com a membrana basal do epitélio e, após a sua degradação, com as primeiras células decidualizadas, a sua MEC e seus vasos sanguíneos. Por volta do 6º dg o embrião está localizado no interior do ambiente uterino, perdendo contato com o meio exterior, e assim, finalizando sua implantação (Revisão em: Abrahamsohn, Zorn, 1993; Cross et al., 1994; Carson et al., 2000). As células do trofoblasto expressam receptores para componentes da MEC e enzimas que degradam estes componentes. Variações no perfil de expressão das integrinas presentes nas células trofoblásticas estão associadas aos diferentes estágios de desenvolvimento do embrião (Sutherland et al., 1993; Damsky et al., 1994), indicando a importância da MEC para o diálogo na interface materno-fetal (Revisão em: Armant, 2005).

1.1.2 A Decidualização do Endométrio

Para dar suporte à implantação e ao desenvolvimento do embrião, o endométrio de humanos e roedores passa por uma série de modificações conhecida
como reação decidual ou decidualização. Este processo resulta na formação da decídua, uma nova estrutura no interior do ambiente uterino, situada na interface materno-fetal, fundamental para o sucesso da gestação. A decídua regula a invasão do trofoblasto, modula o sistema imune materno e produz uma série de citocinas, fatores de crescimento, hormônios e moléculas da MEC que participam do diálogo entre os organismos materno e fetal. Resultados recentes atribuíram às células a função de monitorar a viabilidade dos embriões (Teklenburg et al., 2010). O Laboratório de Biologia da Reprodução & Matriz Extracelular (LBR & MEC) tem se dedicado, nos últimos 30 anos, a investigar as adaptações que ocorrem no ambiente uterino durante as etapas iniciais da gestação em camundongos, tendo como foco de seus estudos a decidualização do endométrio e a remodelação da MEC que acompanha este processo.

A decidualização é caracterizada pela transdiferenciação dos fibroblastos endometriais em células deciduais, em um processo de transição mesênquima-epitélio governado, sobretudo, pela ação de estrógeno e progesterona. A aquisição do fenótipo epitelial envolve a reestruturação do citoesqueleto e uma profunda remodelação da MEC. (Revisão em: Abrahamsohn, Zorn, 1993; Abrahamsohn et al., 2002). A angiogênese é estimulada através da expressão de diversos fatores, como o fator de crescimento endotelial vascular (VEGF, do inglês vascular endothelial growth factor), promovendo a formação de uma ampla rede vascular no endométrio, responsável pela nutrição do embrião. Ocorre também a migração de infócitos natural killer uterinos (NKu), que participam da modulação do sistema imune e da remodelação dos vasos sanguíneos para o estabelecimento da placenta (Revisão em: Croy et al., 2003).

Em humanos, o gatilho para a decidualização não depende do embrião. A cada ciclo sexual sob a influência do aumento da progesterona produzida na fase luteal ou progestacional, são observadas células em processo de decidualização. Entretanto, a manutenção e o desenvolvimento da decidualização é sustentado pela implantação do embrião, caso contrário o endométrio decidualizado é liberado com a menstruação. Em contrapartida, em roedores, a decidualização é estimulada pelo contato do blastocisto com o epitélio uterino ou pode ser experimentalmente induzida através da injeção de substâncias, como óleos e polissacarídeos, no lúmen uterino de fêmeas pseudográvidas ou hormonalmente sensibilizadas. A estrutura resultante, denominada deciduoma (Loeb, 1908), é marcadamente semelhante à
decídua (Andrade, 1993; Monice, 1998) e representa um modelo valioso, pois permite analisar a decidualização sem a influência do embrião.

A decidualização em roedores é restrita ao endométrie que circunda cada um dos embriões. Estes locais são denominados sitios de implantação e entre eles estão as regiões de interimplantação, onde o endométrie permanece praticamente inalterado. Tendo como referência o mesométrie-ligamento que prende os cornos uterinos à parede abdominal- o endométrie pode ser subdividido em duas porções, a mesometrial e a antimesometrial. Cada região possui características próprias e destinos distintos durante a gestação. A decídua antimesometrial fornece suporte ao embrião durante os estágios iniciais da gestação, participa da implantação e da formação da placenta cório-vitelínica e involui à medida que a decídua mesometrial se desenvolve e contribui para a formação da placenta cório-alantóica (Figura 2) (Revisão em: Abrahamssohn, Zorn, 1993).

![Figura 2 - Fotomicrografia do sítio de implantação de camundongos, em corte transversal, com 168 horas de gestação, evidenciando a decídua mesometrial (DM), decídua antimesometrial (DA), embrião (E), miométrie (M) e mesométrie (ME). Picrosirius-hematoxilina.](image)

Em camundongos, as primeiras células deciduais podem ser observadas ao redor da cripta de implantação por volta do 5º dg. Em seguida, a reação decidual se expande de forma centrífuga, ocupando a maior parte da região antimesometrial, e gradativamente se estende também para a região mesometrial. A formação da decídua é um processo dinâmico que ocorre dentro de um espaço de tempo geneticamente determinado e notavelmente curto, durante o qual os fibroblastos
endometriais adquirem progressivamente novas características morfofuncionais, formando no endométrio regiões compostas por células em diferentes estágios de diferenciação. Próximo do miométrio, uma pequena camada de células permanece indiferenciada (Revisão em: Abrahamsohn et al., 2002). Existem indícios de que estas células participem da reconstrução do endométrio no período pós-parto (Kleinfeld, O'Shea, 1983), constituindo possivelmente uma população de células pluripotentes do endométrio.

Com a decidualização há uma mudança expressiva no arranjo do estroma endometrial, composto por tecido conjuntivo frouxo. Os fibroblastos deste tecido são estrelados, possuem longos processos citoplasmáticos e estão imersos em abundante MEC. O citoplasma possui pouco retículo endoplasmático granular e complexo de Golgi. O núcleo é achatado e contém grumos de cromatina condensada (Abrahamsohn, 1983). Embora morfologicamente semelhantes à de outros tecidos, esta população especial de fibroblastos tem a capacidade de se transdiferenciar em células deciduais quando devidamente sensibilizada pelos hormônios ovarianos estrógeno e progesterona.

Diferente destes fibroblastos, as células deciduais maduras possuem fenótipo epitelióide. São células grandes e poligonais, dispostas compactamente e unidas por extensas áreas de junções celulares, onde se alternam junções do tipo adherens e gap. Apresentam os núcleos esféricos, formados em sua maioria por cromatina frouxa e núcleolos proeminentes, são poliplóides e muitas delas polinucleadas. Possuem grande quantidade de retículo endoplasmático granular e polirribossomos livres, complexo de Golgi bem desenvolvido, mitocôndrias e lisossomos. O citoplasma é típico de uma célula envolvida na síntese de macromoléculas (Revisão em: Abrahamsohn, 1983; Abrahamsohn, Zorn, 1993).

O primeiro marcador descrito para a decidualização foi a desmina, uma proteína de filamentos intermediários. As células deciduais apresentam positividade para a desmina, diferentemente dos fibroblastos de origem, onde o filamento intermediário predominante é a vimentina (Glasser, Julian, 1986). A organização dos filamentos intermediários de desmina muda conforme a diferenciação das células deciduais, de modo que a distribuição perinuclear é substituída progressivamente por uma distribuição mais espalhada no citoplasma, concentrando-se na periferia celular até desaparecer no 9º dg, quando a decídia antimesometrial encontra-se em processo de involução (Oliveira et al., 2000).
O crescimento da decidua ocorre através da proliferação e diferenciação de novas células deciduais e também do aumento do volume celular (Abrahamsohn, 1983). Além disso, as células deciduais realizam a síntese de material genético sem, entretanto, completar a divisão celular, tornando-se polinucleadas e poliplóides. Alguns dos mecanismos moleculares envolvidos nestes dois processos já foram desvendados. O ciclo celular é controlado fundamentalmente pelo balanço entre as ciclinas e as quinases dependentes de ciclina (cdks). Nas células deciduais a proliferação foi associada com a atuação coordenada de ciclina D3 e CDK4, enquanto que a poliploidia foi relacionada com ação de ciclina D3, p21 e CDK6 (Tan et al., 2002; Revisão em: Das, 2009). Existem evidências de que a ciclina D3 é modulada pela interleucina-11 (IL-11) (Li et al., 2008) e a integrina αvβ3 (Mangale et al., 2008), indicando um papel relevante de citocinas e das interações célula-matriz na regulação do ciclo celular das células deciduais.

1.2 A Matriz Extracelular

Conceitualmente a MEC é formada pelas moléculas que são secretadas pelas células e imobilizadas no espaço extracelular, formando um complexo macromolecular multifuncional. Além de ser um componente estrutural, a MEC também desempenha papéis biológicos fundamentais para as células. A MEC integra as células e as suas funções no contexto do tecido. Suas moléculas são depositadas e agregadas no meio extracelular, formando plataformas sinalizadoras que contextualizam as células no seu microambiente. Os fatores solúveis, por outro lado, tem a capacidade de se difundirem no microambiente, e em conjunto com as moléculas da MEC orquestram os processos celulares (Revisão em: Hynes, 2009).

Os principais componentes da MEC são: i) colágenos; ii) componentes do sistema elástico; iii) glicoproteínas adesivas; iv) glicosaminoglicanos; v) proteoglicanos. Os colágenos representam as proteínas mais abundantes do organismo. Até o presente foram descritos 29 tipos distintos de colágeno, agrupados em diferentes categorias (Revisão em: Gordon, Hahn, 2010). Destacamos aqui os colágenos fibrilares, os mais abundantes e amplamente distribuídos no organismo, representados pelos tipos I, II, III, V, XI, XXIV e XXVII. As cadeias polipeptídicas das
moleculas de colágeno são caracterizadas pela presença de uma glicina a cada três aminoácidos na sequencia glicina-X-Y, onde X é frequentemente uma prolina e Y uma hidroxiprolina. A glicina é necessária para possibilitar o dobramento adequado da molécula de colágeno, por ser este o menor aminoácido existente. Os colágenos são formados por três cadeias polipeptídicas arranjadas em α-hélice, que podem ser idênticas (homotriméricos) ou distintas (heterotriméricos). Inicialmente, as moléculas de colágeno são sintetizadas no interior do reticulo endoplasmático na forma de pró-colágenos. Em seguida, são exportadas para o complexo de golgi onde passam por modificações pós-traducionais, como glicosilação e hidroxilação das prolinas e lisinas. O pró-colágeno é secretado para a MEC e sob a ação das pró-colagenases, as extremidades amino e carboxi terminal são clivadas, formando a cadeia de colágeno madura. Estas moléculas formam ligações cruzadas, através dos resíduos de lisina, e se polimerizam com o auxilio da enzima lisil oxidase, formando fibrilas que, por sua vez, se agregam formando os feixes de colágeno (Figura 3) (Revisão em: Myllyharju, Kivirikko, 2004). A formação das fibrilas de colágeno ou fibrilogênese é um processo complexo que envolve a associação de tipos diferentes de colágeno, o processamento enzimático do pró-colágeno e a associação com proteoglicanos e fatores mecânicos (Trelstad et al., 1982; Birk et al., 1990; Revisão em: Banos et al., 2008). Dessa forma, alterações nestes fatores podem comprometer a fibrilogênese do colágeno.

Figura 3 - Representação esquemática da organização estrutural do colágeno fibrilar (a). Eletromicrografia contendo fibrilas de colágeno em corte longitudinal (L) e transversal (T), observadas ao microscópio eletrônico de transmissão (b).
Fonte: Adaptado de: Junqueira, Carneiro, 2008.
Os **proteoglicanos** compõem outro grupo de moléculas da MEC. São formados por um eixo protéico ao qual estão ligados um ou mais **glicosaminoglicanos** (GAGs). Os GAGs são moléculas formadas pela repetição de unidades dissacarídicas compostas pela união de um ácido urônico com uma n-acetil-galactosamina ou n-acetil-glicosamina. Os GAGs resultantes são: condroitim, dermatam, heparina e queratam sulfato, heparina e ácido hialurônico (HA).

Os **pequenos proteoglicanos ricos em leucina** (SLRPs, do inglês *small leucine-rich proteoglycans*) compõem uma família de moléculas caracterizadas pela homologia estrutural e a presença de domínios repetitivos de leucina ao longo do eixo protéico. O **decorim** e o **biglicam** (Figura 4) fazem parte da classe I, seus eixos protéicos possuem 36 e 38 KDa, respectivamente, e estão ligados a uma ou mais cadeias de condroitim ou dermatam sultato. Essas moléculas possuem também um *cluster* de resíduos de cisteína na porção N terminal, formando pontes dissulfeto. O **fibromodulim** e o **lumicam** (Figura 4) pertencem à classe II. O eixo protéico do fibromodulim possui 42KDa e do lumicam 37KDa. Ambos possuem cadeias de queratam sulfato e polilactosamina, resíduos de cisteína e também resíduos de tirosina sulfatada na porção N-terminal (Revisão em: Schaefer, Iozzo, 2008). Dados da literatura têm mostrado que os SLRPs podem se ligar ao colágeno e, deste modo, participar do processo de fibrilogênese (Vogel et al., 1984; Scott, Haigh, 1986; Revisão em: Kalamajski, Oldberg, 2010). Além disto, têm a capacidade de interagir com fatores de crescimento, como o fator de crescimento transformante-β (TGF-β do inglês *transforming growth factor*- β), (Yamaguchi et al., 1990), e também com receptores tirosina quinase e do tipo *Toll*, participando no controle do crescimento celular, na morfogênese e na imunidade (Revisão em: Iozzo, Schaefer, 2010).

O **versicam** é um proteoglicano de condroitim sulfato, pertencente à família das hialectinas, caracterizadas pela capacidade de ligação com o HA. Existem 4 isoformas de versicam formadas pelo *sliping* alterantivo do RNAm, denominadas de V0, V1, V2 e V3 (Figura 5) (Zimmernann, 2000). O versicam interage com diversas moléculas da MEC, como colágeno I e fibronectina, além de ser reconhecido por receptores como o CD-44 e a integrina β1, participando de processos como proliferação e diferenciação celular (Wight, 2002; Wu et al., 2005).
Figura 4 - Representação esquemática dos pequenos proteoglicanos ricos em leucina, biglicam e decorim, membros da classe I, e fibromodulim e lumican, pertencentes à classe II. As cadeias de proteoglicanos, associadas ao eixo protético, estão representadas em azul. As regiões destacadas em vermelho e verde indicam locais de interação com o colágeno.
Fonte: Adaptado de: Kalamajski, Oldberg, 2010.

Figura 5 - Representação esquemática das isoformas do versicam associadas a uma molécula de ácido hialurônico (em verde). As diferentes isoformas, exceto V3, possuem diversos proteoglicanos (linhas onduladas) associados ao eixo protético central.
Fonte: Adaptado de: Zimmermann, Dours-Zimmermann, 2008.
A interação das células com os componentes da MEC ocorre através de receptores presentes na membrana plasmática. Os sinais disparados para o interior da célula regulam o citoesqueleto e ativam vias de sinalização, que em conjunto são capazes de modular a expressão gênica e a morfologia das células, e dessa forma as funções celulares (Revisão em: Berrier, Yamada, 2007). Os receptores que reconhecem a MEC podem ser separados em dois grandes grupos, o das integrinas e o das não-integrinas. As integrinas são formadas por duas subunidades, uma α e outra β, ambas ligadas de forma não covalente. Esses receptores possuem um domínio extracelular, um segmento transmembrana e um domínio citoplasmático, integrando dessa forma o meio extracelular com o interior da célula (Figura 6). Até agora foram descobertas 18 subunidades α e oito subunidades β, suas combinações perfazem um total de 24 tipos de integrinas. Desse total, quatro tipos de integrinas reconhecem o colágeno, formadas pela interação da subunidade β1 com as subunidades α1, α2, α10 e α11. Essas integrinas diferem na especificidade de ligação aos diferentes tipos de colágeno, e disparam vias de sinalização distintas no interior das células, relacionadas com processos celulares como proliferação, diferenciação e migração (Revisão em: Heino, 2000; Leitinger, Hohenester, 2007).

Figura 6 - Representação esquemática de integrinas. Cada integrina é formada por duas cadeias, uma α e outra β. A porção extracelular interage com a matriz extracelular, enquanto que a porção citoplasmática está associada a moléculas sinalizadoras como FAK, Src e Paxilina, disparando sinais intracelulares. Fonte: Adaptado de: Avraamides et al., 2008.
A ligação de componentes da MEC com as integrinas promove a sua ativação e agregação na membrana plasmática, acionando complexos moleculares no interior da célula. Como as integrinas não possuem atividade enzimática intrínseca, a transmissão de sinais ocorre através de moléculas associadas a elas (Hynes, 2002). Mais de 150 proteínas foram descritas na porção citoplasmáticas das adesões mediadas por integrinas, formando complexos sinalizadores (Zaidel-Bar et al., 2007). A quinase de adesão focal (FAK do inglês focal adhesion kinase), uma tirosina quinase de 125kDa, foi uma das primeiras moléculas a serem caracterizadas nestes locais. A fosforilação de FAK representa uma das etapas iniciais e de grande importância para a sinalização mediada pelas integrinas, participando de diferentes processos celulares como, por exemplo, a proliferação. A superexpressão de FAK em fibroblastos NIH3T3 acelera a progressão do ciclo celular, em um processo correlacionado com o aumento de ciclina D1. Em contrapartida, a expressão de uma forma mutante de FAK, com perda de sua função, diminui a expressão de ciclina D1 e inibe a progressão do ciclo celular (Zhao et al., 1998). Em conjunto, estes resultados permitem traçar um modelo pelo qual a interação das células com a MEC, através de integrinas, dispara vias de sinalização intracelulares que modulam a expressão gênica de moléculas do ciclo celular, regulando este processo (Revisão em: Cox et al., 2006).

Os componentes da MEC têm também a capacidade de interagir com fatores de crescimento, regulando sua concentração e disponibilidade no microambiente celular. Através de sua associação com a MEC, os fatores de crescimento podem ser apresentados aos seus receptores em concentrações adequadas; ser armazenados e protegidos de degradação, e liberados quando necessário, ou ainda ter aumentada sua conversão para a forma ativa, dependendo da situação em questão (Revisão em: Ramirez, Rifkin, 2003; Rosso et al., 2004). Considerando as diversas funções desempenhadas pela MEC nos tecidos, supõe-se, portanto, que ao ocorrerem alterações na sua composição e organização, processos de grande importância biológica podem ser afetados.
1.3 Remodelação da Matriz Extracelular Endometrial Promovida pela Decidualização

Durante a gestação, indícios de remodelação na MEC do endométrio são observados no 2º dg, através da presença de estruturas fosfatase ácida-positivas contendo fibrilas de colágeno no interior dos fibroblastos, indicando a sua fagocitose e degradação intracelular (Bijovsky et al., 1992). De acordo com este resultado, no 4º dg fibrilas de colágeno são escassas na MEC, como analisado através da histoquímica do Picrosirius (Martello, Abrahamsohn, 1986) e de microscopia eletrônica de transmissão (MET) (Zorn et al., 1986).

À medida que o endométrio se decidualiza, suas células se tornam volumosas, os espaços intercelulares diminuem e a MEC sofre uma profunda remodelação na sua composição e organização. Nosso laboratório demonstrou que as células deciduais depositam uma MEC com características próprias, sugerindo um papel importante de suas moléculas para o estabelecimento da interface materno-fetal. (Revisão em: Abrahamsohn, Zorn, 1993; Abrahamsohn et al., 2002). De fato, a MEC participa do processo de decidualização (White et al., 2004), da implantação e do desenvolvimento do embrião (Armant, 2005) além de atuar na modulação das células do sistema imunológico no ambiente uterino (McKay et al., 1992).

A decidualização envolve a remodelação da MEC em humanos (Revisão em: Aplin, 2002) e camundongos (Revisão em: Abrahamsohn, Zorn, 1993; Abrahamsohn et al., 2002). As modificações na matriz colágena são particularmente notáveis no camundongo. Ocorre grande espessamento das fibrilas de colágeno (Zorn et al., 1986; Alberto-Rincon et al., 1989) e mudanças no perfil de expressão e distribuição de colágenos (Teodoro et al., 2003; Spiess et al., 2007) e proteoglicanos (San Martin et al., 2003a; San Martin et al., 2003b; San Martin et al., 2004).

A partir do 5º dg, a decidualização promove um aumento na deposição de colágeno ao redor das células deciduais (Martello, Abrahamsohn, 1986; Zorn et al., 1986), assim como na quantidade de colágeno no endométrio, mensurada pelo teor de hidroxiprolina (Teodoro et al., 2003). A síntese de colágeno pelas células deciduais foi demonstrada através de um estudo radioautográfico ultraestrutural após a injeção de 3H-prolina (Oliveira et al., 1991). Os colágenos tipo I e III são os
principais componentes do endométrio de animais não-grávidos. No endométrio decidualizado, além destes, o colágeno tipo V também passa a ser produzido. Diferentemente daquele colágeno heterotrimérico, formado pela associação de cadeias alfa distintas, que é expresso pela placenta, o colágeno tipo V da decidua é um tipo homotrimérico, formado pela associação de três cadeias iguais [alfa1(V)]3 (Teodoro et al., 2003). A decidualização em camundongos induz o espessamento das fibrilas de colágeno (aumento aproximado de 50 nm para 470 nm de espessura) (Zorn et al., 1986; Alberto-Rincon et al., 1989), possivelmente através da agregação lateral de fibrilas formadas por pelo menos estes três tipos de colágeno (Carbone et al., 2006). A presença dos colágenos XXIV e XXVII no endométrio não é conhecida.

Membros da família dos pequenos proteoglicanos ricos em leucina (SLRPs) apresentam uma expressão diferencial durante a decidualização. Enquanto o decorim, presente no endométrio não decidualizado, é abolido da matriz do estroma superficial (onde se estabelece a decidua madura), biglicam e lumicam são depositados pelas células deciduals (San Martin et al., 2003a). Em um estudo imunocitoquímico ultra-estrutural, foi demonstrado que o decorim se associa às fibrilas finas, enquanto o biglicam se associa exclusivamente às fibrilas espessas de colágeno, indicando a participação destes proteoglicanos na fibrilogênese do colágeno endométrial (San Martin, Zorn, 2003). De acordo com estes resultados, a análise do endométrio de animais deficientes para o gene do decorim revelou alterações na fibrilogênese do colágeno (Sanches et al., 2010). Os efeitos da ausência do biglicam e lumicam ainda não foram investigados. Além dos proteoglicanos pertencentes à família dos SRLPs, membros de outras famílias como o versicam (San Martin et al., 2003b), perlecam e syndecan-4 (San Martin et al., 2004) também são expressos pela decidua. O versicam foi localizado na região de células deciduals maduras, na região pré-decidual e apenas traços na região não decidualizada (San Martin et al., 2003b).

Diversas integrinas foram mapeadas no endométrio durante o ciclo menstrual e a gestação. Resultados do nosso laboratório mostraram que em camundongos as células deciduals e as pré-deciduals possuem as subunidades de integrina α2 e α3, ao passo que a região de fibroblastos não-decidualizados não expressa tais subunidades (Costa, 2003). Estes resultados mostram que além da remodelação dos componentes e da estrutura da MEC, o processo de decidualização também está correlacionado com a aquisição de um repertório próprio de integrinas. As
integrinas α5, α6 e β3 também foram detectadas na decídua de camundongos (Mangale, Reddy, 2007). Foi demonstrado em cultura de células deciduais que o bloqueio da integrina αvβ3, um ligante de vitronectina, pela ação de anticorpo específico, afeta a expressão de diversos genes relacionados com a proliferação celular e apoptose nestas células como, por exemplo, ciclina D3, F e G e p53 (Mangale et al., 2008).

As fêmeas de camundongo nocaute para o receptor da interleucina-11 (IL-11) são inférteis devido à deficiência na decidualização (Bilinski et al., 1998; Robb et al., 1998). Foi demonstrado que a ausência deste receptor altera a expressão de moléculas de matriz, aumentando, por exemplo, os níveis do RNAm e da proteína do biglicam e do colágeno III (White et al., 2004). Existem evidências de que a laminina tem a capacidade de inibir in vitro a decidualização mediada por 8-Br-cAMP de células endometriais humanas (Mizuno et al., 1999). O conjunto destes resultados mostra que a remodelação da MEC é essencial para a decidualização, e que a decídua é fundamental para a implantação e o desenvolvimento do embrião.

1.4 O Miométrio

Além do endométrio, a parede uterina é formada também pelo miométrio. Este compartimento contém as fibras da musculatura lisa e é responsável pela contratilidade uterina. Em camundongos, o miométrio é composto por três camadas: i) camada muscular circular interna (CMI) ii) camada muscular longitudinal externa (CME) iii) tecido conjuntivo entre as camadas e vasos sanguíneos do plexo vascular (Figura 7). O miométrio é extremamente dinâmico e sofre importantes mudanças durante o ciclo reprodutivo (Salgado et al., 2009) e a gestação, para acomodar o crescimento do embrião, a formação da placenta e ainda promover o parto ao final da gestação (Bressan Filho, 2006). Foram caracterizados quatro estágios fenotípicos do miométrio ao longo da gestação de ratas, uma fase proliferativa inicial, seguida por uma fase de hipertrofia celular e aumento da produção de componentes da MEC, uma fase contratil e, por fim, a fase de parto (Shynlova et al., 2006; Revisão em: Shynlova et al., 2009). Cada fase é marcada por um perfil molecular próprio como, por exemplo, o de membros da família do fator de
crescimento semelhante à insulina (IGF: *insulin-like growth factor*) (Shynlova et al., 2007).

Figura 7 - Fotomicrografia do miométrio de camundongos, em corte transversal, com 168 horas de gestação. As células musculares da camada muscular circular interna (CMI) e da camada muscular longitudinal externa (CME) são identificadas pela imunolocalização de α-actina de músculo liso. Entre as camadas musculares localiza-se o tecido conjuntivo (TC) e os vasos sanguíneos (V).

Alterações no conteúdo de colágeno do miométrio foram relatadas durante a gestação de humanos e ratos (Morrione, Seifter, 1962). Células miometriais estimuladas pelo estrógeno têm a capacidade de sintetizar colágeno e fibras elásticas (Ross, Klebanoff, 1971). Outros autores demonstraram no miométrio de ratas que a expressão de fibronectina, laminina e colágeno IV é baixa durante a metade da gestação e aumenta consideravelmente no período de parto. Por outro lado, a expressão dos colágenos I e III, alta durante a metade da gestação, diminui nas proximidades do parto. Esta modulação da MEC foi associada com alterações nos níveis de progesterona e o aumento do estresse mecânico (Shynlova et al., 2004).

Resultados do nosso laboratório demonstram que a MEC do miométrio é remodelada durante as fases do ciclo estral (Salgado et al., 2009) e o início da gestação (San Martin et al., 2003a). Esses últimos autores mostraram que o decorim e o lumericam estão presentes no miométrio durante todo o período estudado, entre o 1º e o 7º dg, enquanto que o biglicam e o fibromodulim passam a ser expressos somente a partir do 5º dg. Este período coincide com o estágio de proliferação
celular, indicando a importância dessas moléculas para a aquisição do fenótipo proliferativo. A remodelação da MEC do miométrio durante a gestação também é acompanhada de alterações na expressão das integrinas α1, α3 e β1 (Williams et al., 2010). Estes resultados indicam a importância das interações célula-matriz para as adaptações que o miométrio sofre durante a gestação.

A contratilidade do miométrio é dependente do aparelho contráctil presente no citoplasma das células musculares lisas. A α-actina de músculo liso e a γ-actina foram identificadas no miométrio de ratas. Enquanto os níveis do RNAm e da proteína da α-actina permanecem praticamente constantes ao longo da gestação, o RNAm e a proteína da γ-actina aumentam na segunda parte da gestação, principalmente na CMI. Em adição, a distribuição da γ-actina modifica-se durante a gestação, passando de um padrão de distribuição difusa para se concentrar na periferia celular no final da gestação (Shynlova et al., 2005). De fato, a MEC está integrada ao interior das células por meio de receptores presentes na membrana plasmática, como as integrinas, participando da contratilidade das células musculares. Dessa forma, alterações na MEC e no aparelho contrátil das células musculares podem afetar a contratilidade do miométrio.

1.5 O Diabetes Mellitus

A glicose é o principal substrato energético utilizado pelo organismo. Através de inúmeras rotas metabólicas, a glicose e os seus produtos, além de servirem para a produção de energia, participam também da formação de uma vasta gama de glicoconjugados. Muitos aspectos da captação da glicose sanguínea e da sua utilização pelos tecidos-alfos são dependentes da insulina. A insulina é um hormônio polipeptídico produzido pelas células-β das ilhotas de Langerhans do pâncreas endócrino, secretado na circulação, principalmente em resposta ao aumento da glicose sanguínea após as refeições. Ela tem uma ampla faixa de ações derivadas da ligação ao seu receptor, presente na superfície celular dos tecidos-alfos. A ativação do receptor de insulina aciona diversas vias de sinalização no interior da célula. Estimula a captação de glicose através do aumento da atividade e da quantidade de transportadores de glicose (GLUTs) translocados do pool
interno para a membrana plasmática. Num período de minutos a horas, a atividade de várias enzimas é alterada através de processos de fosforilação e, num período mais longo, leva a modulações na expressão gênica (Dean, McEntyre, 2004).

O diabetes mellitus é caracterizado como um conjunto de doenças metabólicas causadas por alterações na produção de insulina e/ou alterações nas suas vias de sinalização (resistência à insulina), levando à diminuição da utilização de glicose pelos tecidos e consequentemente, ao aumento dos seus níveis circulantes (hiperglicemia) (American Diabetes Association, 2011).

Para compreendermos de que maneira o diabetes afeta a gestação é essencial reconhecer que existem diferentes tipos desta doença, com características distintas. As principais formas de diabetes na gestação são o diabetes preexistente, que pode ser tanto do tipo 1 quanto do tipo 2, e o diabetes com início durante a gestação, o diabetes gestacional. O diabetes do tipo 1 é caracterizado pela deficiência de insulina causada pela destruição das células-β pancreáticas, em um processo mediado pelo sistema imunológico. O diabetes do tipo 2 e o gestacional apresentam características semelhantes. Nos dois casos observa-se a presença de hiperglicemia acompanhada de resistência à insulina, entretanto, o diabetes gestacional normalmente é detectado no último trimestre da gestação (American Diabetes Association, 2011). É importante ressaltar que o diabetes é uma doença crônica de modo que cada portador pode carregar essa doença por diferentes períodos de tempo. Além disso, um mesmo tipo de diabetes pode apresentar características metabólicas distintas, de acordo com o grau de controle clínico e também com o estágio de progressão da doença.

A hiperglicemia (Revisão em: Brownlee, 2001; Sheetz, King, 2002) e os distúrbios na sinalização da insulina (Fortes et al., 1984) são fatores centrais nas complicações microvasculares observadas no diabetes, levando à disfunção endotelial, ativação de células inflamatórias e mudanças na expressão de fatores vasculares. De acordo com a necessidade funcional de cada tecido, estas alterações irão gerar diferentes patologias. Olhos, rins, nervos e o sistema circulatório se mostram bastante susceptíveis. No início das manifestações do diabetes, a hiperglicemia intracelular causa disfunção endotelial, anormalidades no fluxo sanguíneo, além de provocar a diminuição da resposta a vasodilatadores e aumento da resposta a vasoconstitores. Em adição, alterações qualitativas e quantitativas na MEC, induzida por fatores de crescimento, contribuem para o aumento da
permeabilidade vascular. O diabetes promove também a diminuição na expressão de fatores tróficos para as células endoteliais e neuronais, e a morte de células da microvasculatura, em parte por apoptose, levando à oclusão progressiva dos capilares. Estas alterações causam edema, isquemia e neovascularização induzida por hipóxia na retina, expansão da matriz mesangial e glomeruloesclerose no rim, e degeneração axonal multifocal nos nervos periféricos (Revisão em: Brownlee, 2001). Alterações na MEC têm sido observadas em diferentes tecidos afetados pelo diabetes, sugerindo que esta seja uma característica comum a esta condição.

1.5.1 Efeitos do Diabetes sobre a Reprodução

O diabetes está associado com um grande conjunto de alterações reprodutivas. Potencialmente todos os componentes que formam o eixo do sistema reprodutor feminino podem ser afetados pelo diabetes, incluindo as estruturas neuroendócrinas que controlam o ciclo reprodutivo, o hipotálamo e a hipófise (Kirchick et al., 1979; Garris et al., 1982), até os ovários (Chieri et al., 1969; Garris et al., 1984) e o útero (Frederick et al., 1985), comprometendo o ciclo reprodutivo e a gestação.

Mulheres diabéticas apresentam uma maior incidência de infertilidade e anormalidades no ciclo menstrual (Griffin et al., 1994; Yeshaya et al., 1995). Em ratas diabéticas, ocorre a inibição do pico de LH (hormônio luteinizante), necessário para a ovulação, levando a interrupção do ciclo estral (anestro) (Kirchick et al., 1978; Katayama et al., 1984). Além da interrupção do ciclo estral, foi demonstrada a redução da resposta uterina estimulada pela administração de estrógeno em animais diabéticos (Piyachaturawat et al., 1984; Frederick et al., 1985), indicando uma ação direta do diabetes sobre o útero.

As gestações em mulheres portadoras de diabetes do tipo 1 estão associadas com um amplo espectro de complicações, onde podemos destacar: abortos, malformações, partos prematuros, pré-eclampsia, restrição do crescimento intrauterino e macrossomia (Casson et al., 1997; Jensen et al., 2004; Cunningham, Williams, 2010). Diferenças nos tipos e nas características do diabetes podem explicar a ocorrência de resultados aparentemente contraditórios, como a restrição
do crescimento intrauterino e a macrossomia. Em gestantes portadoras de diabetes do tipo 1 severo, com a presença de vasculopatia, os pesos das placentas e dos fetos tendem a ser menores, enquanto que na ausência de vasculopatia, os pesos das placentas e dos fetos são maiores, quando comparados aos controles (Makhseed et al., 2002; Haeri et al., 2008). Estes resultados sugerem que, embora o crescimento fetal seja estimulado por um mecanismo relacionado com a transferência excessiva de nutrientes, como a glicose, e a maior produção de insulina (Oh et al., 1988; Revisão em: Kalkhoff, 1991), a presença de vasculopatia pode limitar o suprimento de fatores essenciais, como o oxigênio, levando à restrição do crescimento intrauterino. Da mesma forma, a presença de vasculopatia também foi associada com uma maior incidência de malformações (White, 1949; Pedersen et al., 1964; Karlsson, Kjellmer, 1972).

Os fatores maternos sistêmicos alterados em conseqüência do diabetes, como a hiperglycemia e a hipoinsulinemia, atingem direta e indiretamente o embrião, através do comprometimento do ambiente uterino. Ambos prejudicam a formação e o funcionamento da interface materno-fetal e, consequentemente, o desenvolvimento embrionário. Os efeitos deletérios do diabetes sobre o desenvolvimento intrauterino podem ser observados quando embriões de fêmeas normais são transferidos para fêmeas diabéticas e uma maior incidência de malformações é gerada (Otani et al., 1991).

A organogênese representa o período de maior susceptibilidade ao desenvolvimento de malformações causadas pelo diabetes (Revisão em: De Hertogh, 2005), destacando, dessa forma, a importância de se investigar a interface materno-fetal ao longo desse processo. A organogênese em camundongos compreende o período entre o 7º e 12º dg (Rugh, 1968). Como relatado anteriormente, a placenta corio-vitelínica é responsável pela nutrição do embrião em grande parte deste processo (até por volta do 10º-11º dg) (Revisão em: Cross et al., 1994; Malassine et al., 2003). Existem evidências de que as malformações induzidas pelo diabetes estão associadas com alterações estruturais e funcionais no saco vitelínico (Revisão em: Reece et al., 1994; Reece, Eriksson, 1996). Observações feitas através do estudo de embriões de rato cultivados em meio com alta concentração de glicose, ou em soro derivado de animais diabéticos, indicam que os capilares do saco vitelínico são escassos e irregulares (Pinter et al., 1986), e além
disso, as células desta estrutura perdem seus microvilos característicos e apresentam sinais de degeneração na membrana plasmática (Zusman et al., 1987).

Existem evidências de que o diabetes afeta a decidualização normal (Caluwaerts et al., 2000) e a artificialmente induzida (Norambuena et al., 1984; Garris, 1988; Zakaria et al., 2000). Entretanto, poucos são os estudos que avaliaram os efeitos do diabetes sobre a porção materna da interface materno-fetal durante o período de organogênese. Nesses estudos o comprometimento da decidualização foi relacionado com alterações nos níveis dos hormônios ovarianos estrógeno e progesterona (Garris, 1988; Zakaria et al., 2000). O ambiente uterino comprometido pelo diabetes responde com o aumento da produção de fatores pró-inflamatórios como citocinas e prostaglandinas inflamatórias, óxido nítrico, espécies reativas de oxigênio, peroxinitritos e MMPs, representando um desafio para o desenvolvimento adequado do embrião (Revisão em: Jawerbaum, Gonzalez, 2006). Demonstrou-se que os níveis e a atividade MMP-2 estão aumentados nos tecidos uterinos de ratas diabéticas no período da implantação (Pustovrh et al., 2002), indicando que a composição da MEC pode ser afetada pelo diabetes. Entretanto, os efeitos do diabetes sobre a MEC dos tecidos uterinos no início da gestação ainda não são conhecidos.

A prematuridade é uma das principais causas de morbidade e mortalidade fetal (McCormick et al., 2010). As gestações em mulheres diabéticas estão associadas com uma alta incidência de partos prematuros (Mimouni et al., 1988; Sibai et al., 2000; Revisão em: Vitoratos et al., 2010), representando assim um sério risco ao êxito dessas gestações. Surpreende, no entanto, a falta de informações sobre o impacto do diabetes no miométrio, considerando a sua importância para o parto. Existem indícios de alterações na contractilidade do miométrio grávido de mulheres diabéticas (Kaya et al., 1999) e em modelos animais (Jawerbaum et al., 1996; Spiegl et al., 2009). Estes achados podem estar relacionados com o comprometimento da função adrenérgica do miométrio, observado em ratas diabéticas (Falkay et al., 2007). Entretanto, não existem informações quanto ao impacto do diabetes sobre a estrutura e o aparelho contráctil das células do miométrio grávido.

Neste contexto, a proposta deste estudo foi estabelecer um novo modelo animal que permitisse estudar a gestação complicada por diabetes do tipo 1 de longa duração em camundongos. De posse desse modelo o objetivo seguinte foi
investigar o impacto do diabetes sobre a citoarquitetura e a composição da MEC dos tecidos que constituem o ambiente uterino no início da gestação. A idade de gestação utilizada neste estudo (168 hg) compreende o estágio em que a decidua antimesometrial está plenamente desenvolvida e o embrião, nutrido pela placenta coriovitelínica, realiza os primeiros estágios da organogênese, processo de particular interesse devido à alta taxa de malformações nas gestações diabéticas. Além disso, nesse período da gestação, o miométrio encontra-se na primeira fase de adaptação à gestação, a fase proliferativa, e a importância de investigá-lo reside na alta incidência de partos prematuros nas gestações diabéticas. Os resultados do presente estudo contribuem para o avanço na compreensão das alterações e dos fatores envolvidos nas complicações do diabetes durante a gestação, em particular sobre o ambiente uterino.
OBJETIVOS
2.1 Objetivos Gerais

i) Estabelecer um modelo de diabetes mellitus tipo 1 em camundongos, especificamente delineado para o estudo desta patologia durante a gestação;

ii) Avaliar o efeito da duração do diabetes no desenvolvimento de complicações reprodutivas;

iii) Investigar o impacto do diabetes sobre a decidualização do endométrio e a remodelação da matriz extracelular que acompanha este processo, particularmente aquela depositada na interface materno-fetal;

iv) Avaliar os efeitos do diabetes sobre o miométrio durante a sua primeira fase de adaptação à gestação, a fase proliferativa.

2.2 Objetivos Específicos

i) Caracterização do modelo de diabetes através da avaliação dos parâmetros fisiopatológicos:
 a) Glicemia; b) insulinemia; c) glicosúria; d) cetonúria; e) consumo de água; f) consumo de ração; g) peso corporal.

ii) Caracterização dos parâmetros reprodutivos do modelo de diabetes:
 a. Capacidade de acasalamento em diferentes períodos após a indução do diabetes:
 i) 10-25; ii) 30-45; iii) 50-70; iv) 90-110; v) 120-140 dias;
 b. Número de sítios de implantação.

iii) Análise morfológica da decídua antimesometrial e do miométrio ao microscópio de luz e eletrônico de transmissão;

iv) Avaliação histomorfométrica da decídua e do miométrio ao microscópio de luz;
v) Análise da proliferação celular das células musculares do miométrio por meio da imunodetecção do antígeno nuclear de proliferação celular (PCNA);

vi) Análise da composição da matriz extracelular dos tecidos uterinos pela histoquímica do Picrosirius e imunohistoquímica para as seguintes moléculas:
 a. Colágenos tipo I, III, IV e V;
 b. Proteoglicanos: biglicam, decorim, fibromodulim, lunicam e versicam.

vii) Análise por PCR quantitativo em tempo real da expressão do RNAm das seguintes moléculas na decídua:
 a. Colágenos tipo I, III e V;
 b. Proteoglicanos: biglicam e lunicam.

viii) Determinação dos níveis de interleucina-11 por ELISA;

ix) Avaliação quantitativa das células natural killer uterinas pela histoquímica de lectina DBA;

x) Imunolocalização do fator de crescimento endotelial vascular (VEGF) nos tecidos uterinos.
3 MATERIAIS & MÉTODOS
3.1 Animais

Foram utilizados camundongos da espécie *Mus musculus*, variedade *Swiss*, a partir de 60 dias de idade. Os animais foram provenientes do Biotério do Departamento de Farmacologia, do Instituto de Ciências Biomédicas da Universidade de São Paulo. Durante o período experimental os animais foram mantidos no Biotério do Departamento de Biologia Celular e do Desenvolvimento do Instituto de Ciências Biomédicas da Universidade de São Paulo.

Os procedimentos adotados neste estudo foram aprovados pelo Comitê de Ética em Experimentação Animal do Instituto de Ciências Biomédicas da Universidade de São Paulo (Número da autorização: 144/2002).

3.2 Indução do Diabetes

O diabetes foi induzido pela administração intravenosa (veia caudal) de 40 mg/Kg de aloxana monohidratada (Sigma, St Louis, Estados Unidos). Os animais controle receberam igual volume de solução salina. Para provocar vaso dilatação e facilitar a injeção da droga, aplicamos ao redor da cauda do animal uma gase previamente umedecida em água quente.

As fêmeas foram privadas do alimento por pelo menos 16 horas antes da administração da droga. Este procedimento é fundamental para que a indução do diabetes seja efetiva, períodos de tempo inferiores diminuem substancialmente a eficiência da indução. Além disso, a ração foi retirada antes do início da alimentação dos animais no período noturno do biotério (ciclo escuro). A retirada do alimento após este período também reduz significativamente a eficiência da indução. No período subsequente ao experimento, os animais receberam água e ração Nuvilab CR1® *ad libitum* (Nuvital, São Paulo, Brasil)

A glicemia foi determinada 5 - 7 dias após a indução do diabetes utilizando-se um glicosímetro Accu-Check Performa® (Roche Diagnostics, Basel, Suiça). As fêmeas que apresentaram glicemia >400 mg/dl foram incluídas no grupo diabético e mantidas por diferentes períodos de tempo antes de serem acasaladas. Durante
este período foram determinados o peso corporal, a glicemia, a presença de glicosúria e cetonúria e o consumo de água e ração. Para a avaliação da glicosúria e cetonúria utilizou-se fitas de teste Keto-Diabur-Test® (Roche). O consumo de água e ração foi analisado durante um período de 24 h.

3.3 Manutenção das Fêmeas Diabéticas

As fêmeas diabéticas requerem cuidados especiais na sua manutenção no biotério. Diferentes combinações de procedimentos foram testadas visando atingir uma boa relação entre o número de animais por gaiola, o tamanho da gaiola e a frequência de manutenção dos animais. Por fim, optou-se por manter duas fêmeas diabéticas por gaiola grande (41 x 34 x 16 cm), realizando a sua manutenção 2 ou 3 vezes por semana, de acordo com a necessidade, determinada através da qualidade da forração quanto a quantidade de urina e de fezes. O suprimento de água foi ajustado para atender, com reserva, uma média de consumo de até 80 mL/dia por animal e foram frequentemente avaliados e repostos.

As fêmeas diabéticas são muito suscetíveis à diminuição brusca de temperatura do ambiente, dessa forma, a manutenção da temperatura dentro dos limites recomendados é extremamente desejável. Por esta razão, é preferível programar a obtenção de um grupo animal para os meses com maior média de temperatura (primavera e verão), na tentativa de assegurar uma menor taxa de mortalidade e melhores índices de acasalamento. No inverno, mesmo os animais normais passam por dificuldades de acasalamento.

3.4 Esfregaço Vaginal e Coloração de Shorr

O protocolo detalhado da coloração de Shorr encontra-se no Anexo A.
3.5 **Acasalamento e Formação dos Grupos**

Foram formados diferentes grupos experimentais de acordo com o período de acasalamento dos animais: *i)* 10-25 dias após a indução do diabetes (D); *ii)* 30-45D; *iii)* 50-70D; *iv)* 90-110D; *v)* 120-140D.

Para permitir uma maior precisão na idade de gestação adotou-se um esquema de acasalamento controlado e a datação da gestação foi determinada em horas de gestação (hg), a partir da detecção da rolha vaginal. Para isso, fêmeas normais e diabéticas foram acasaladas com machos normais por períodos de 3 horas. A presença da rolha vaginal, indicativo de acasalamento, foi considerada como hora zero da gestação. As fêmeas foram sacrificadas com 168 hg, o que equivale aproximadamente ao 8º dg, quando os animais são acasalados durante o período noturno e na manhã do dia seguinte (±12 h) a rolha vaginal é considerada como 1º dg, conforme o esquema a seguir:

Horas de gestação	±3h 0	24	48	72	96	120	144	168
Acasalamento								
±12h	1	2	3	4	5	6	7	8

Figura 8 - Comparação entre a datação em horas e dias de gestação.

3.6 **Coleta das Amostras para Microscopia de Luz**

Para a coleta das amostras os animais foram anestesiados com Avertin® (Sigma) e mantidos em decúbito dorsal. Após a exposição dos cornos uterinos, uma solução de papaverina (25 mg/ml) (Sigma) foi gotejada diretamente sobre eles para evitar a contração do miométrio e permitir uma melhor preservação da estrutura dos tecidos uterinos. Os sítios de implantação foram separados, fixados sobre a placa e
em seguida fixados por imersão em Methacarn. O modo de preparo do fixador e seu processamento estão descritos no Anexo B.

3.7 Histoquímica do Picrosirius

A coloração pela técnica histoquímica do Picrosirius foi realizada de acordo com o protocolo presente no Anexo C.

3.8 Imunohistoquímica

As reações imunohistoquímicas foram realizadas por imunoperoxidase e imunofluorescência. Para a imunoperoxidase o anticorpo secundário estava conjugado biotina-streptoavidina-peroxidase, foi revelado com DAB e observado ao microscópio de luz. Para a imunofluorescência o anticorpo secundário estava conjugado com fluoresceína (FITC) e foi observado em microscópio de fluorescência. A descrição detalhada das etapas básicas dessas técnicas estão descritas no Anexo D. As informações específicas para cada anticorpo estão listadas na Tabela 1.

3.9 Histoquímica de Lectina DBA

As células NKu foram identificadas através da histoquímica de lectina DBA (Sigma), de acordo com o protocolo presente no Anexo E.
3.10 Microscopia Eletrônica de Transmissão

Os fragmentos dos sítios de implantação foram fixados por imersão na solução de Karnovsky e processados de acordo com o protocolo presente no Anexo F.

3.11 Documentação Fotográfica, Histomorfometria e Análise Estatística

A documentação fotográfica e as análises histomorfométricas foram realizadas como auxílio de um microscópio Nikon Eclipse E600 (Nikon, Tokio, Japão), integrado a uma câmera digital Olympus DP72 (Olympus, Tokio, Japão), em conjunto com o software ImagePro Plus (Media Cybernetics, Silver Spring, Estados Unidos). A análise estatística foi realizada utilizando o software GraphPad Prism (GraphPad Software Inc., San Diego, Estados Unidos). Utilizou-se o teste t de Student e o ANOVA seguido do teste de Tukey. Em ambos, a significância foi considerada quando p ≤ 0,05.
Tabela 1 - Anticorpos utilizados para as reações imunohistoquímicas, suas concentrações e os tratamentos enzimáticos utilizados para recuperação antigênica.

Anticorpo primário	Fornecedor	Recuperação antigênica	Anticorpo secundário	Fornecedor	[]
Anti-biglicam LF-113¹	1 : 1000	Condroitinase ABC² (0,2 U) 1 h – 37 ºC	Anti-IgG de coelho (cabra) Conj. biotina	Rockland	1 : 2000
Anti-decorim LF-159¹	1 : 3000	Condroitinase ABC² (0,2 U) 1 h – 37 ºC	Anti-IgG de coelho (cabra) Conj. biotina	Rockland	1 : 2000
Anti-fibromodulin LF-150¹	1 : 400	Condroitinase ABC² (0,2 U) 1 h – 37 ºC	Anti-IgG de coelho (cabra) Conj. biotina	Rockland	1 : 2000
Anti-lumicam R&D Systems	1 : 2000	Condroitinase ABC² (0,2 U) 1 h – 37 ºC	Anti-IgG de coelho (cabra) Conj. biotina	Rockland	1 : 2000
Anti-versicam Chemicon	1 : 400	Condroitinase ABC² (0,2 U) 1 h – 37 ºC	Anti-IgG de coelho (cabra) Conj. biotina	Rockland	1 : 2000
Anti-colágeno tipo I	Rockland 1 : 50	Pepsina³ (4 mg/mL) 10 min - 37 ºC	Anti-IgG de coelho (cabra) Conj. FITC	Sigma	1 : 150
Anti-colágeno tipo III	Rockland 1 : 50	Pepsina³ (4 mg/mL) 10 min - 37 ºC	Anti-IgG de coelho (cabra) Conj. FITC	Sigma	1 : 150
Anti-colágeno tipo IV	Chemicon 1 : 400	Pepsina³ (4 mg/mL) 10 min - 37 ºC	Anti-IgG de coelho (cabra) Conj. biotina	Rockland	1 : 2000
Anti-colágeno tipo V	Rockland 1 : 50	Pepsina³ (4 mg/mL) 10 min - 37 ºC	Anti-IgG de coelho (cabra) Conj. FITC	Sigma	1 : 150
Anti-VEGF Chemicon	1 : 50	Pepsina³ (4 mg/mL) 10 min - 37 ºC	Anti-IgG de coelho (cabra) Conj. biotina	Rockland	1 : 2000

¹. Prof. Larry Fisher (National Institute of Dental and Craniofacial Research, NIH, Estados Unidos)
². Seikagaku Corp. (Japão)
³. Sigma (Estados Unidos)
4 RESULTADOS
4.1 Estabelecimento do Modelo de Gestação Complicada por Diabetes Tipo 1 em Camundongo

4.1.1 Caracterização dos Parâmetros Fisiopatológicos

O protocolo de indução empregado foi eficaz para promover as características do diabetes tipo 1 nas fêmeas de camundongo. A caracterização dos parâmetros fisiopatológicos revelou: altos níveis de hiperglicemia, hipoinsulinemia, glicosúria, polifagia, polidipsia e diminuição do peso corporal*. Esses dados estão apresentados no artigo presente no Anexo G.

* Inicialmente, não foram observadas alterações no peso das fêmeas diabéticas em relação às fêmeas controle. No entanto, o exame físico indicava a perda de massa corporal, acompanhada de dilatação abdominal o que nos levou a realizar a pesagem destes animais sem o seu trato digestório. No momento do sacrifício o trato digestório foi seccionado, entre a laringe e o reto, e retirado. Através deste procedimento demonstramos que a perda de massa corporal nas fêmeas diabéticas estava sendo mascarada pelo aumento na ingestão alimentar e a maior quantidade de alimento retido no trato digestório.

O rendimento deste modelo foi de aproximadamente 10%, calculado pela relação entre o número de animais utilizados no início e o número de animais obtidos no final do experimento. Apresentamos a seguir a listagem dos parâmetros fisiopatológicos e reprodutivos detectados ao longo do experimento que expõem as causas do baixo rendimento do modelo.

i) Aproximadamente 80% das fêmeas apresentou hiperglicemia após a administração da droga;

ii) Aproximadamente 62% das fêmeas atingiram o limite mínimo de glicemia estabelecido (>400 mg/dL);

iii) Algumas fêmeas entraram em anestro durante o período experimental;

iv) Algumas fêmeas não se acasalaram durante o período estabelecido;

v) Por volta de 20-30% das fêmeas que se acasalaram (presença de tampão vaginal), não apresentaram sítios de implantação no momento do sacrifício (168 hg).

vi) Óbitos durante o período experimental (extremamente variável).
4.1.2 Caracterização dos Parâmetros Reprodutivos

A capacidade reprodutiva das fêmeas foi avaliada em diferentes períodos após a indução do diabetes: i) 10-25D; ii) 30-45D; iii) 50-70D; iv) 90-110D; v) 120-140D. Tendo como meta o estabelecimento de um modelo de diabetes de longa duração realizamos uma série de experimentos para determinar qual o período máximo de tempo a que as fêmeas poderiam ser submetidas ao diabetes e ainda assim manterem a capacidade reprodutiva. Verificamos que nos grupos 10-25D e 30-45D não houve dificuldades significativas no acasalamento dos animais. No grupo de 50-70D foram detectadas alterações leves no acasalamento. A análise do esfregaço vaginal, caracterizado por grande quantidade de muco e leucócitos, demonstrou que uma porcentagem das fêmeas desse grupo estava em anestro. O estado de anestro foi confirmado pela aparência atrófica dos cornos uterinos no momento do sacrifício dos animais. No grupo de 90-110D de submissão a diabetes, um maior número de fêmeas estava em anestro, assim como a quantidade de óbitos foi maior em relação aos grupos anteriores indicando o agravamento do efeito do diabetes sobre esses animais. Ainda assim, uma parcela, embora pequena, das fêmeas foi capaz de se acasalar. Adicionalmente, 20-30% dessas fêmeas que mantiveram a capacidade de copular não apresentaram sítios de implantação no momento do sacrifício. O grupo 120-140D foi marcado por uma elevada taxa de mortalidade e incidência de anestro, resultando em um número insuficiente de acasalamentos.

A partir desta série experimental foi possível determinar 90-110D como o período máximo de duração do diabetes passível de permitir o acasalamento das fêmeas e uma porcentagem razoável de sucesso no estabelecimento da gestação.
4.2 Impacto do Diabetes sobre a Gestação e a Matriz Extracelular da Decídua Antimesometrial

A idade gestacional utilizada neste estudo (168 hg) compreende o estágio em que a decídua antimesometrial está plenamente desenvolvida e o embrião, nutrido pela placenta corio-vitelínica, realiza os primeiros estágios da organogênese.

A influência da duração do diabetes sobre a gestação foi avaliada através da comparação do número de sítios de implantação e das dimensões da decídua entre os grupos de 50-70D e 90-110D. Ambos os parâmetros foram alterados apenas no grupo 90-110D. Estes resultados indicam que a duração do diabetes influencia o desenvolvimento de complicações gestacionais, e confirmam que o período de 90-110D é o ideal para o estudo da relação entre o diabetes de longo prazo e complicações gestacionais.

O objetivo seguinte dos estudos foi investigar, nesse grupo de 90-110D, os efeitos do diabetes na MEC da decídua antimesometrial situada na interface com o embrião, por meio de técnicas in situ complementares e de biologia molecular. A histoquímica do Picrosirius revelou um aumento na deposição dos colágenos fibrilares na decídua dos animais diabéticos. Em adição, análises imunohistoquímicas demonstraram aumento da deposição dos colágenos tipo I e V e diminuição do colágeno tipo III e dos proteoglicanos associados ao colágeno, biglicam e lumicam. Através da MET observamos que estas alterações na deposição dos colágenos e proteoglicanos impactaram na fibrilogênese do colágeno, produzindo alguns feixes com predomínio de fibrilas finas. A análise da expressão do RNAm dos colágenos e proteoglicanos por PCR quantitativo em tempo real (PCRq) revelou o aumento apenas da expressão do colágeno tipo I. Devido ao papel da IL-11 na remodelação da MEC decidual, realizou-se a análise dos seus níveis por ELISA. Entretanto, não foram detectadas alterações entre os grupos controle e diabético.

O conjunto destes resultados está documentado em um manuscrito (submetido para publicação) apresentado no Anexo H desta tese, intitulado: “Long-term type 1 diabetes impairs decidualization and extracellular matrix remodeling during mouse organogenesis”.

4.2.1 Colágeno tipo IV

Na decídua antimesometrial a imunoreação para o colágeno tipo IV foi observada nas membranas basais dos vasos sanguíneos e nos espaços extracelulares, localizados nas imediações da cripta de implantação. No grupo diabético foi observado o acúmulo de marcação nos espaços extracelulares. Não houve, no entanto, alterações na deposição dessa molécula nas membranas basais dos vasos sanguíneos (Figura 9).

4.2.2 Versicam

A imunomarcação para o versicam foi observada na região de células não decidualizadas e pré-decidualizadas, diminuindo progressivamente à medida que as células se tornavam plenamente decidualizadas (células deciduais maduras) as quais praticamente não exibiam imunoreação. No grupo diabético, observou-se a presença de versicam na região de células deciduais maduras, e na região de células pré-deciduais, a imunomarcação foi mais intensa (Figura 10).

4.3 Impacto do Diabetes sobre a Matriz Extracelular da Decídua Mesometrial

4.3.1 Picrosirius

Na decídua mesometrial a reação histoquímica do Picrosirius identificou o colágeno como estruturas predominantemente fibrilares localizadas entre as células deciduais e nas proximidades dos vasos sanguíneos, sobretudo naqueles próximos à cripta de implantação. O diabetes promoveu um aumento na deposição do colágeno fibrilar (Figura 11).
4.3.2 Colágenos Tipo I, III, IV e V

Os colágenos tipo I, III, IV e V foram imunolocalizados na decidua mesometrial. A imunomarcação para o colágeno tipo I apresentou um padrão fibrilar, semelhante aquele observado pela histoquímica do Picrosirius, e foi observada entre as células deciduais mesometriais e próxima de vasos sanguíneos em ambos os grupos, controle e diabético. No entanto, no grupo diabético a deposição desse colágeno estava aumentada (Figura 12).

A imunomarcação para o colágeno tipo III foi observada entre as células deciduais mesometriais e na região de membrana basal dos vasos sanguíneos. No grupo diabético foi observado um aumento na deposição entre as células deciduais, ao passo que na região de membrana basal dos vasos sanguíneos a imunomarcação estava diminuída e irregularmente distribuída (interrompida) ao longo dos vasos (Figura 13).

O colágeno tipo IV foi imunolocalizado tanto nas membranas basais dos vasos sanguíneos como no citoplasma das células deciduais. No grupo diabético, observou-se um aumento pronunciado da imunomarcação no citoplasma das células deciduais (Figura 9). A imunomarcação presente na membrana basal dos vasos sanguíneos estava diminuída e irregularmente distribuída, de forma semelhante a do colágeno tipo III.

No grupo controle, a imunomarcação para o colágeno tipo V foi observada na região de membrana basal dos vasos sanguíneos e apenas traços entre as células deciduais mesometriais. No grupo diabético foi observada a interrupção da marcação em alguns locais na região de membrana basal dos vasos sanguíneos, ao passo que entre as células deciduais houve um leve aumento na deposição (Figura 14).

4.3.3 Biglicam, Decorim, Fibromodulim e Luminicam

Na região mesometrial, a imunomarcação para o biglicam foi observada como poucas fibrilas distribuídas pelo estroma. A imunomarcação para o luminicam
foi mais abundante e estava presente tanto no interior das células como no espaço extracelular. Notou-se o aumento na deposição de biglicam e, sobretudo, lumicam no grupo diabético quando comparado ao grupo controle (Figura 15 e 16, respectivamente). O decorim e o fibromodulim não foram imunodetectados na decídua mesometrial, em ambos os grupos, controle e diabético.

4.3.4 Versicam

O versicam estava amplamente distribuído na MEC da decídua mesometrial, em ambos os grupos, controle e diabético. Entretanto, no grupo diabético, observou-se o aumento na deposição desta molécula na região dos grandes vasos sanguíneos da decídua mesometrial (Figura 10).

4.4 Efeito do Diabetes sobre as Células NKu

As células NKu foram identificadas através da histoquímica com a lectina DBA. Embora as dimensões da decídua sejam menores nas fêmeas diabéticas, a proporção relativa da área ocupada pelas células NKu não apresentou diferenças significativas entre os grupos controle e diabético (24,07 ± 1,41 x 23,53 ± 1,45, respectivamente).

4.5 Efeito do Diabetes sobre o VEGF

A imunoreação para o VEGF foi observada nas células deciduais ao redor do embrião. A distribuição foi semelhante entre o grupo controle e diabético. Notou-se, entretanto, uma maior intensidade de marcação no grupo diabético. (Figura 17).
4.6 Efeitos do Diabetes sobre a Estrutura e a Proliferação Celular do Miométrio

Os efeitos do diabetes sobre a estrutura e a proliferação celular do miométrio foram investigados durante a sua primeira fase de adaptação à gestação, a fase proliferativa. De acordo com o período de acasalamento, as fêmeas diabéticas foram divididas em dois subgrupos D1 e D2, 90-100D e 100-110D, respectivamente. A análise histomorfométrica revelou o aumento da distância entre as camadas musculares em D1, indicando edema, e a diminuição da distância em D2, associada com a atrofia e a fibrose do miométrio identificada pela histoquímica do Picrosirius e pela análise ao MET. Em ambos os subgrupos foi detectado o estreitamento das camadas musculares, avaliado através da imunodetecção do PCNA (do inglês proliferating cell nuclear antigen). A análise ao MET revelou o comprometimento da citoarquitetura, da MEC e do aparelho contráctil das células musculares lisas. Esta última observação confirmada através da imunolocalização de α-actina de músculo liso, demonstrando uma profunda desorganização na sua distribuição.

O conjunto destes resultados está documentado em um artigo, apresentado no Anexo G desta tese, intitulado: “Effects of long-term diabetes on the structure and cell proliferation of the myometrium in the early pregnancy of mice”.

4.7 Efeitos do Diabetes sobre a Matriz Extracelular do Miométrio

A partir dos resultados obtidos por meio da histoquímica do Picrosirius e análise ao MET, investigamos o impacto do diabetes sobre a composição da MEC do miométrio através da imunolocalização dos colágenos tipo I, III e V e dos proteoglicanos biglicam, decorim, fibromodulim e lumicam.
4.7.1 Colágenos Tipo I, III e V

Os colágenos tipo I, III e V foram imunodetectados no miométrio do grupo controle e dos subgrupos diabéticos D1 e D2. Entretanto, foram observadas alterações na deposição desses colágenos entre eles. No grupo controle, o colágeno tipo I estava presente na CMI, ao redor dos fascículos musculares da CME, no tecido conjuntivo entre as camadas e ao redor de vasos sanguíneos. No subgrupo D1 a distribuição foi semelhante ao grupo controle, entretanto, houve uma diminuição na imunomarcação ao redor dos fascículos na CME. No subgrupo D2, foi observada a diminuição da imunomarcação na CMI e, sobretudo, ao redor dos fascículos na CME. Entretanto, foram também observadas áreas de acúmulo de colágeno na CMI. Da mesma forma, houve um aumento na deposição deste colágeno no tecido conjuntivo entre as camadas musculares (Figura 18).

No grupo controle, do mesmo modo que o colágeno tipo I, o colágeno tipo III, também estava presente na CMI, CME e no tecido conjuntivo entre as camadas. Entretanto, na CME, a imunoreação para o colágeno tipo III, além de envolver os fascículos musculares, foi também observada ao redor das células musculares. No subgrupo D1 observou-se a diminuição da imunomarcação nas camadas CMI e CME. No subgrupo D2, em adição as alterações presentes em D1, houve acúmulo de colágeno tipo III no tecido conjuntivo entre as camadas musculares (Figura 19).

A imunomarcação para o colágeno tipo V foi observada na CMI e ao redor das células musculares da CME e no tecido conjuntivo entre as camadas. A distribuição na CMI e CME foi semelhante nos subgrupos D1 e D2. No tecido conjuntivo, entretanto, houve uma diminuição na imunomarcação em D1 e D2 (Figura 20).

4.7.2 Biglicam, Decorim, Fibromodulim e Luminicam

Os quatro proteoglicanos, biglicam, decorim, fibromodulim e luminicam, foram imunodetectados no miométrio do grupo controle. Nos subgrupos diabéticos, entretanto, foram observadas diferenças marcantes na imunomarcação para o
decorim e o **fibromodulim**. No grupo controle a imunoreação para o **fibromodulim** foi observada no interior das células musculares de ambas as camadas. Em ambos os subgrupos diabéticos, **D1** e **D2**, houve uma diminuição drástica da imunoreação para o **fibromodulim**. A imunoreatividade foi mantida na região pericelular de células do sistema imunológico presentes no tecido conjuntivo entre as camadas (Figura 21).

O **decorim** e o **lumicam** foram imunodetectados na MEC das células musculares da camada interna, envolvendo os fascículos musculares da camada externa e no tecido conjuntivo entre as camadas. No subgrupo **D1**, não foram observadas alterações significativas na distribuição do **decorim**. Por outro lado, no subgrupo **D2** houve a supressão da imunoreação na camada interna, e a diminuição na camada externa (Figura 22). Não foram detectadas alterações na distribuição de **lumicam** no subgrupo **D1**, entretanto, notou-se a diminuição da imunomarcação na CME envolvendo os fascículos musculares. No subgrupo **D2**, além da diminuição na CME, observou-se o acúmulo de lumicam no tecido conjuntivo entre as camadas musculares (Figura 23). O **biglicam** foi imunodetectado apenas na MEC das células musculares da camada interna e em algumas fibrilas no tecido conjuntivo localizadas próximas de células musculares. Não foram observadas alterações na distribuição do **biglicam** nos subgrupos diabéticos (Figura 24).
DOCUMENTAÇÃO FOTOGRÁFICA
Figura 9 - Imunolocalização de colágeno tipo IV na decídua antimesometrial (a - b). No grupo controle, a marcação é observada na matriz extracelular das células deciduais próximas ao embrião (E) (setas) e na região de membrana basal dos vasos sanguíneos (V) (cabeças de setas). Observe que no grupo diabético a marcação está distribuída de forma mais ampla nos espaços extracelulares. Barra = 40 μm.

Imunolocalização de colágeno tipo IV na decídua mesometrial (c - d). No grupo controle a marcação está presente na região de membrana basal dos vasos sanguíneos (V) (cabeças de setas) e apenas traços nas células decíduais (setas). Observe no grupo diabético a diminuição e a irregularidade da marcação na membrana basal e o aumento da marcação presente na região perinuclear do citoplasma das células deciduais (cabeças de setas). Barra = 40 μm.
Figura 10 - Imunolocalização de versicam na decidua antimesometrial (a-d). No grupo controle a imunomarcação é observada na região não-decidualizada (ND) e pré-decidual (PD), e diminui progressivamente (a), restando apenas traços de marcação (setas) na região de células deciduais maduras (DM) na interface com o embrião (E) (c). Observe no grupo diabético a deposição de versicam na DM (b) e o aumento da marcação na ND e PD (d). Imunolocalização de versicam na decidua mesometrial (e-f). No grupo controle, a imunomarcação é observada na MEC das células deciduais, na região dos vasos mesometrais. Observe o aumento na deposição de versicam no grupo diabético. Barra = 40 µm.
Figura 11 - Localização dos colágenos fibrilares na decidua mesometrial pela técnica histoquímica do Picrosirius. A coloração para o colágeno pode ser observada entre as células deciduals (setas) e nas proximidades dos vasos sanguíneos (V) (cabeças de setas), em ambos os grupos controle e diabético. Observe o aumento na deposição de colágeno no grupo diabético. Barra = 40 μm.

Figura 12 - Imunolocalização de colágeno tipo I na decidua mesometrial. A marcação está presente entre as células deciduals (setas) e nas proximidades dos vasos sanguíneos (V) (cabeças de setas) em ambos os grupos controle e diabético. Note o aumento na deposição desta molécula no grupo diabético. Barra = 40 μm.
Figura 13 - Imunolocalização de colágeno tipo III na decídua mesometrial. No grupo controle, a marcação é visualizada entre as células deciduals (setas) e na região de membrana basal dos vasos sanguíneos (V) (cabeças de setas). Observe no grupo diabético um aumento na deposição do colágeno tipo III entre as células deciduals, e a irregularidade da marcação na região de membrana basal dos vasos sanguíneos. Barra = 40 μm.

Figura 14 - Imunolocalização de colágeno tipo V na decídua mesometrial. No grupo controle, a marcação foi observada na região de membrana basal dos vasos sanguíneos (V) (cabeças de setas) e apenas traços entre as células deciduals (setas). No grupo diabético observa-se a irregularidade da imunomarcação na região de membrana basal dos vasos sanguíneos e um leve aumento na deposição dessa molécula entre as células deciduals. Barra = 40 μm.
Figura 15 - Imunolocalização de biglicam na decidua mesometrial. A imunomarcação para o biglicam, é observada em pequena quantidade entre as células deciduais. Observe um leve aumento na deposição desta molécula no grupo diabético. Vasos sanguineos (V). Cores invertidas. Barra = 40 μm.

Figura 16 - Imunolocalização de lumicam na decidua mesometrial. A marcação para o lumicam está localizada no interior das células deciduais e no espaço extracelular, na forma de fibrilas finas. Observe um aumento na deposição desta molécula no grupo diabético. Vasos sanguineos (V). Cores invertidas. Barra = 40 μm.
Figura 17 - Imunolocalização de VEGF na decidua. A marcação (asteriscos) está localizada nas células deciduais ao redor do embrião (E) em ambos os grupos, controle e diabético. No grupo diabético, entretanto, a marcação é mais intensa. Cores invertidas. Barra = 50 μm.

Figura 18 - Imunolocalização de colágeno tipo I no miométrio. No grupo controle, a marcação é observada na camada muscular interna (CMI), ao redor dos fascículos musculares da camada muscular externa (CLE) e no tecido conjuntivo (TC) entre as camadas. Note no subgrupo D1 a diminuição da marcação ao redor dos fascículos da CLE. No subgrupo D2, observe a diminuição da marcação na CMI, acompanhada de áreas de acúmulo de colágeno (seta). A marcação ao redor dos fascículos da CLE está diminuída. No TC, observa-se o aumento na deposição do colágeno. Barra - 40 μm.
Figura 19 - Imunolocalização de colágeno tipo III no miométrio. No grupo controle, a marcação está presente na camada muscular interna (CMI), ao redor das células e dos fascículos musculares da camada muscular externa (CLE), e no tecido conjuntivo (TC) entre as camadas. No subgrupo D1, observe a diminuição da marcação nas camadas CMI e CLE. No subgrupo D2, além das alterações presentes em D1 observe o aumento na deposição desta molécula no TC entre as camadas musculares. Barra = 40 μm.

Figura 20 - Imunolocalização de colágeno tipo V no miométrio. A marcação é observada na camada muscular interna (CMI), ao redor das células musculares da camada muscular externa (CLE) e no tecido conjuntivo (TC) entre as camadas. Observar a diminuição da marcação no TC em ambos os subgrupos diabéticos D1 e D2. Barra = 40 μm.
Figura 21 - Imunolocalização de fibromodulin no miométrio. No grupo controle, a marcação está presente no interior das células musculares de ambas as camadas interna (CMI) e externa (CME). Observe uma diminuição drástica da imunoreação nos subgrupos diabéticos D1 e D2. Observe no detalhe, células do sistema imunológico com marcação pericelular (setas), presentes no conjuntivo entre as camadas musculares do subgrupo D1. Endomêtrio (E) e tecido conjuntivo (TC). Barra = 40 μm.

Figura 22 - Imunolocalização de decorin no miométrio. No grupo controle, a marcação pode ser observada entre as células musculares da camada interna (CMI), envolvendo os fascículos musculares da camada externa (CME) e no tecido conjuntivo (TC) entre as camadas. No subgrupo D1 a marcação é semelhante. No subgrupo D2, observe a ausência de marcação na camada interna e a diminuição na camada externa. Endomêtrio (E). Barra = 40 μm.
Figura 23 - Imunolocalização de lumicam no miométrio. No grupo controle, a marcação pode ser observada entre as células musculares da camada interna (CMI), envolvendo os fascículos musculares da camada externa (CME) e no tecido conjuntivo (TC) entre as camadas. Observe a diminuição da imunomarcação na CME do subgrupo D1 e D2, e o aumento da deposição no TC do subgrupo D2. Endométrio (E). Barra = 40 μm.

Figura 24 - Imunolocalização de biglicam no miométrio. A marcação está presente apenas na camada muscular interna (CMI) tanto no grupo controle quanto nos subgrupos diabéticos D1 e D2. Não foram observadas alterações entre os grupos. Camada muscular externa (CME). Endométrio (E) e tecido conjuntivo (TC). Barra = 40 μm.
5 DISCUSSÃO
A incidência de diabetes do tipo 1 vem aumentando de forma significativa nos últimos anos (The DIAMOND Project Group, 2006). Sua manifestação ocorre frequentemente nos primeiros anos de vida, de forma que mulheres portadoras tornam-se grávidas após anos de exposição a essa doença. Antes da descoberta e da utilização da insulina para o tratamento do diabetes, as gestações, em mulheres diabéticas eram infrequentes e quando ocorriam, resultavam na grande maioria das vezes em perdas gestacionais e na morte materna. A utilização da insulina permitiu que mulheres diabéticas permanecessem fértiles e aumentou a chance de manterem a gestação até o termo. Entretanto, estas gestações foram ainda marcadas por uma série de complicações, resultando em uma alta incidência de morbidade e mortalidade fetal (White, 1949; Revisão em: Mestman, 2002). Os avanços nas ciências biomédicas e, consequentemente na prática clínica, têm auxiliado na compreensão das complicações do diabetes na gestação e permitido o delineamento de estratégias para minimizá-las. Embora estes esforços tenham resultado em uma diminuição significativa na incidência de complicações na gestação, os seus índices ainda continuam elevados. Da mesma forma, muitas questões sobre os mecanismos envolvidos no desenvolvimento destas complicações ainda não foram desvendadas. Devido à importância deste tema, atualmente tem se firmado um novo campo de investigação denominado diabetologia da gestação.

Considerando as restrições éticas em relação à experimentação em humanos, a compreensão dos mecanismos que promovem as complicações do diabetes na gestação e, consequentemente, o desenvolvimento de estratégias para a sua prevenção e tratamento, depende em grande parte da experimentação em modelos animais. Existem diferentes modelos animais de diabetes, cada qual com suas próprias características, e por isso, adequado ao estudo de determinados aspectos da doença. Kalter (1996) e White e Jawerbaum (2010) apresentam extensas revisões dos modelos animais empregados na investigação dos efeitos do diabetes sobre a gestação. Ratos e camundongos têm sido amplamente utilizados em modelos de gestação complicada por diabetes, tanto de origem genética como induzidos por drogas. Nesses modelos a indução foi realizada pouco tempo antes da concepção ou em diferentes idades gestacionais. Os resultados destes experimentos são variados, dependendo da espécie, da linhagem, ou do esquema de indução empregado. Muitos estudos relatam a presença de alterações no
desenvolvimento e a ocorrência de malformações na prole diabética. Da mesma maneira, diversas alterações estruturais e funcionais são descritas na placenta destes animais. Embora a literatura sobre diabetes e gestação seja extensa, destacamos a falta de informações sobre o impacto desta patologia nos eventos que ocorrem no ambiente uterino durante o início da gestação, em especial durante o período de organogênese, de particular interesse devido à alta taxa de malformações nas gestações diabéticas. Da mesma forma, embora de grande importância devido ao alto índice de partos prematuros nas gestações diabéticas, enfatizamos a falta de informações sobre os efeitos do diabetes no miométrio.

Visando contribuir com esses importantes temas, desenvolvemos e validamos um novo modelo animal de gestação complicada por diabetes do tipo 1 de longa duração em camundongos. As fêmeas diabéticas apresentam os parâmetros fisiopatológicos do diabetes do tipo 1, caracterizado por: altos níveis de hiperglicemia, hipoinsulinemia, glicosúria, polifagia, polidipsia, poliúria e diminuição do peso corporal. Esse é o modelo de gestação complicada por diabetes do tipo 1 severo (média de glicemia: 513.7 ± 48.20 mg/dL) de maior duração presente na literatura. A possibilidade de acasalar as fêmeas diabéticas até 110 dias após a indução do diabetes, como demonstrado, permite investigar sistematicamente a relação entre o estágio de progressão do diabetes e o seu impacto sobre a gestação. Nesse modelo, as fêmeas diabéticas não recebem insulina para correção da hiperglicemia, de forma que o diabetes evolui de forma progressiva ao longo do tempo. Considerando como indicativos os altos níveis de glicemia, a hipoinsulinemia, a duração do diabetes e o desenvolvimento de complicações vasculares no miométrio, as características deste modelo animal são comparáveis ao de mulheres portadoras de diabetes do tipo 1 de longa duração, e com presença de vasculopatia, agrupadas na classe D de White (White, 1978). Estudos pioneiros de White (1949) (Revisão em: White, 1974) e posteriormente Pedersen et al. (1964) e Karlsson e Kjellmer (1972) demonstraram que a severidade e a duração da doença, assim como a presença de vasculopatia estão entre os principais fatores de risco para o desenvolvimento de complicações nas gestações em mulheres diabéticas. No entanto, a contribuição destes fatores para o desenvolvimento de complicações na gestação, em particular sobre o ambiente uterino, ainda não haviam sido explorada adequadamente em modelos animais.
O estabelecimento do presente modelo demandou a análise de diversos grupos experimentais, explorando diferentes períodos de duração do diabetes. Pelo menos dois princípios foram fundamentais para orientar o seu desenvolvimento: a) a correlação entre o diabetes e diversos prejuízos para a gestação, já conhecidos através de estudos clínicos e de outros modelos animais; b) as informações existentes de que o desenvolvimento de complicações do diabetes depende de sua duração. Por exemplo, em modelos animais destinados ao estudo da nefropatia diabética, o desenvolvimento de determinadas alterações nos glomérulos renais é diretamente relacionado com uma longa exposição ao diabetes, de até 40 semanas (Inada et al., 2005). Embora a duração do diabetes (i.e. progressão da doença) tenha sido associada ao desenvolvimento de complicações, tanto em estudos clínicos como modelos experimentais, em diferentes campos de investigação do diabetes, este conceito não havia sido aplicado em modelos de gestação complicada por diabetes.

Existem diversos estudos, em ratas, que abordam a influência do diabetes no ciclo estral, e em diversas características da gestação. São descritas alterações na duração do ciclo estral e sua interrupção. Há ainda relatos da ocorrência de atrofia uterina em ratas com diabetes do tipo 1 severo. Por outro lado, existem raras informações sobre a capacidade reprodutiva de fêmeas de camundongo em modelos de diabetes do tipo 1. Além disso, diferentes espécies, ou até mesmo linhagens, podem apresentar comportamentos distintos. As informações presentes na literatura e aquelas obtidas pelo nosso grupo mostram que ratas tornam-se inférteis devido à interrupção do ciclo estral (anestro) por volta de 10 a 20 dias após a indução do diabetes (Lawrence, Contopoulos, 1960; Katayama et al., 1984; González, 2002) ou são incapazes de manter a gestação sem a reposição de insulina (González, 2002; Giachini et al., 2008). Os resultados presente estudo permitiram suprir a carência de informações sobre a capacidade reprodutiva de fêmeas de camundongos portadoras de diabetes tipo 1. Além disso, os diversos experimentos realizados nesse estudo nos deu a possibilidade de identificar o período máximo de tempo em que as fêmeas permaneciam férteis delineando, desse modo, o modelo de diabetes de longa duração.

Surpreendentemente, o presente estudo demonstrou que o comportamento reprodutivo das fêmeas de camundongos diabéticos é consideravelmente diferente daquele apresentado por ratas diabéticas. No nosso modelo, embora algumas
fêmeas tenham entrado em anestro ao longo do período de experimentação, uma parcela foi capaz de manter o ciclo estral, acasalar-se e sustentar a gestação mesmo após 110 dias da indução do diabetes, período substancialmente superior àquele observado em ratas diabéticas (10-20 dias) (Lawrence, Contopoulos, 1960; Katayama et al., 1984; González, 2002).

O conjunto das características desse modelo de camundongo o qualifica para o estudo dos efeitos do diabetes de longo prazo sobre a gestação. É ainda importante considerar que, no modelo de ratas o curto período de tempo em que essas permanecem férteis possivelmente é insuficiente para promover alterações significativas no organismo desses animais como, por exemplo, a vasculopatia. Além disso, a suplementação das ratas diabéticas com insulina também pode mascarar ou mesmo retardar o desenvolvimento de complicações vasculares do diabetes, indicando, dessa forma, desvantagens experimentais desse modelo. Em adição, um estudo recente demonstrou que a insulina possui efeitos importantes sobre o eixo reprodutor e a gestação, independentemente de outros fatores como a hiperglicemia (Nandi et al., 2010). Assim, a administração exógena deste hormônio pode, por outro lado, representar uma abordagem valiosa para investigar a contribuição da sua sinalização para o desenvolvimento de complicações gestacionais promovidas pelo diabetes. Consequentemente, o modelo que desenvolvemos em camundongos, pode ser útil para diferenciar os efeitos da hiperglicemia daqueles decorrentes da deficiência de insulina, pois permite a análise de animais suplementados ou não com insulina.

Diferenças entre o comportamento reprodutivo das fêmeas de rato e camundongo podem estar relacionadas com diferenças nas características do diabetes desenvolvido em cada espécie. No presente estudo e naquele realizado por Giachini et al. (2008) em ratas, o diabetes foi induzido pelo mesmo protocolo. Desse modo, os dois modelos são de grande utilidade para comparações entre o comportamento de ratos e camundongos frente ao diabetes. De fato, o confronto dos parâmetros fisiopatológicos entre os dois modelos mostra que as ratas desenvolvem cetonúria (Giachini et al., 2008), enquanto que esta alteração metabólica está ausente nas fêmeas de camundongo (Favaro et al., 2010). A presença de cetonúria indica o aumento do catabolismo de ácidos graxos e a consequente depleção do tecido adiposo. O tecido adiposo atua como uma glândula endócrina, produzindo diversos hormônios, entre eles a leptina. A sinalização deste hormônio participa da regulação
do metabolismo energético e também do controle do ciclo reprodutivo, representando um ponto de convergência entre ambos. Há informações de que a deficiência de leptina pode acarretar a interrupção do ciclo estral, atuando como um mecanismo de controle para que a reprodução ocorra apenas se o status energético do organismo for favorável (Hoggard et al., 1998). Fêmeas de camundongo da linhagem db/db, com mutações no receptor da leptina, são inférteis devido a diversas alterações morfofuncionais no sistema reprodutor e a interrupção do ciclo estral (Garris et al., 1986; Garris, Garris, 2004). Podemos também hipotetizar que existam diferenças na sensibilidade do eixo-reprodutor ao diabetes entre estas duas espécies. Considerando esse conjunto de informações e a complexidade do tema, julgamos importante a realização de estudos que avaliem o desempenho reprodutivo em diferentes linhagens de camundongos para determinar se a maior resistência ao diabetes é comum à espécie ou apenas uma característica particular da linhagem utilizada neste estudo (Swiss).

Em um modelo descrito por Stanley et al. (2009), as fêmeas de camundongo C57Bl6/J foram induzidas por streptozotocina i.p. e acasaladas pelo menos 8 semanas (aproximadamente 60 dias) após a indução do diabetes. A eficiência da indução com a streptozotocina foi de 38%, com a administração de uma dose da droga, e 31% para múltiplas administrações. Os níveis de hiperglicemia variaram entre 270 – 360 mg/dL (15,2 - 20,2 mmol/L). A taxa de acasalamento das fêmeas diabéticas foi de 21%. Combinados, os índices de indução e acasalamento demonstram um baixo rendimento, assim como o encontrado nesse estudo, indicando que essa pode ser uma característica intrínseca de tais modelos. No entanto, o protocolo de indução do diabetes utilizado nessa tese, através da administração de aloxana i.v., atingiu 80% de efetividade para glicemia >200 mg/dL e 62% para valores >400 mg/dL. Além disso, os valores de glicemia foram substancialmente superiores (513.7 ± 48.20 mg/dL) aos encontrados por Stanley et al. (2009). Essas diferenças podem ser atribuídas ao protocolo de indução e a droga empregada em cada estudo, e indicam que a aloxana, através do protocolo utilizado, apresenta melhores resultados para a indução do diabetes quando comparada a streptozotocina. É importante ter em mente que ambas as drogas apresentam limitações e efeitos colaterais próprios que devem ser considerados pelo investigador.
Em fêmeas de camundongos NOD a manifestação do diabetes ocorre em 9% dos animais com 12 semanas de vida e em 80% após 29 semanas (Formby et al., 1987). Fêmeas de camundongos NOD com diabetes severo, sem a reposição de insulina, apresentam alterações reprodutivas graves, caracterizadas pelo comprometimento ovariano e atrofia uterina (Tatewaki et al., 1989). Por outro lado, fêmeas com a reposição de insulina ou hiperplicemia moderada (até por volta de 300 mg/dL) são capazes de se acasalar. Foram relatadas gestações em camundongos NOD com hiperplicemia leve, por volta de 180 mg/dL, entre a 26ª a 52ª semana de vida (Formby et al., 1987). Em fêmeas diabéticas com níveis de glicemia de até 288 mg/dL (16 mmol/L) e hemoglobina glicada (indicativo da glicemia num período de 6 a 8 semanas) abaixo de 2,5%, não houve correlação deste fator com o peso fetal. Os valores entre 2,6% a 4% foram correlacionados positivamente, ao passo que, acima de 4% foi correlacionado negativamente com o peso fetal. Além disso, a idade materna também foi associada com o aumento do peso da prole de fêmeas de camundongo NOD (Bevier et al., 1994).

Por meio do presente estudo demonstramos o papel da duração (i.e. progressão da doença) para o desenvolvimento de complicações em um modelo de gestação complicada por diabetes do tipo 1 severo, de longa duração e sem a reposição de insulina. Os nossos resultados indicam que o comprometimento do ciclo reprodutivo e da gestação é dependente do estágio de progressão do diabetes. Quando se comparam grupos diabéticos com durações diferentes, observa-se que poucas fêmeas do grupo 50-70D estavam em anestro, e não foram detectadas alterações no número de implantações e nas dimensões da decídua. Por outro lado, no grupo de 90-110D um maior número de fêmeas estava em anestro, assim como o número de implantações e as dimensões da decidua estavam reduzidos.

A diminuição do número de sítios de implantação foi descrita por outros grupos em ratas diabéticas (De Hertogh et al., 1989; Wentzel et al., 1995). Em fêmeas de camundongo, entretanto, alguns estudos descrevem tanto a diminuição (De Hertogh, 2005) como a ausência de alterações no número de sítios de implantação (Torchinsky et al., 1997; Fein et al., 2002; Burke et al., 2007; Dong et al., 2008). Considerando que a diminuição do número de sítios de implantação foi observada apenas no grupo 90-110D, sugerimos que a ausência de alterações nesses estudos seja decorrente da curta duração do diabetes. De fato, Yu et al. (2009) não relatam alterações no número de fetos, em um modelo de diabetes de
curta duração (4 - 7 dias), enquanto Stanley et al. (2009) descrevem a diminuição, em um modelo com pelo menos 60 dias de duração do diabetes. A diminuição do número de implantações pode ser atribuída a alterações na foliculogênese e ovulação, no desenvolvimento pré-implantacional ou em ambos (Chiari et al., 1969; Diamond et al., 1989; Moley et al., 1991; Pampfer et al., 1994; Revisão em: Jungheim, Moley, 2008). Observamos também a ausência de embriões implantados em uma parcela das fêmeas diabéticas em que o tampão vaginal, indicativo do acasalamento, foi observado, fenômeno pouco frequente em fêmeas normais. Resultado semelhante também foi relatado por outros autores em modelo de camundongo (Torchinsky et al., 1997; Fein et al., 2002). As causas deste fenômeno não foram definidas. Dentre as explicações possíveis destacamos o comprometimento da fertilização e a incapacidade de implantação. O esfregaço vaginal das fêmeas diabéticas foi caracterizado por uma maior quantidade de muco e de leucócitos, fatores que podem prejudicar o transporte e a sobrevivência dos espermatozoides e a fertilização, contribuindo para a deficiência reprodutiva. Foi demonstrado também que o diabetes afeta a foliculogênese, promovendo alterações na meiose, o que pode se refletir na alteração da capacidade de fecundação e de estágios posteriores de desenvolvimento do embrião (Wang et al., 2009). Em um estudo realizado em ratas diabéticas, o número de blastocistos recuperados no quinto dia de gestação foi menor, enquanto que o número de mórulas, um estágio de desenvolvimento anterior, foi maior (Vercheval et al., 1990). Estes resultados indicam um atraso no desenvolvimento pré-implantacional, o que pode levar a incapacidade dos embriões em atingir o estágio de desenvolvimento apropriado durante a janela de implantação, promovendo falhas neste processo. Os embriões de mães diabéticas possuem também alterações na massa celular interna e no trofoblasto (Pampfer et al., 1990) e um maior número de células apoptóticas (Pampfer et al., 1997b).

O diabetes altera o perfil de citocinas e fatores de crescimento produzidos no microambiente uterino, o que pode contribuir para as alterações no desenvolvimento embrionário. Em favor desta hipótese, alguns estudos mostraram que o diabetes afeta tanto o perfil de moléculas produzido no ambiente uterino, caracterizado pelo aumento do fator de necrose tumoral-α (TNF-α do inglês tumor necrosis factor-α) (Pampfer et al., 1997a) e diminuição do TGF-β2 (Fein et al., 2002), como também pelos embriões, que apresentam diminuição do FGF-4 (Leunda-Casi et al., 2001).
Sugerimos, dessa forma, que possam ocorrer defeitos na implantação levando à incapacidade dos embriões de estabelecerem um diálogo adequando com o endométrio. Em conjunto, estes resultados indicam que o destino do embrião de uma mãe portadora de diabetes começa a ser traçado desde o período pré-concepcional, e que as condições do ambiente uterino são fundamentais para o seu desenvolvimento desde as etapas iniciais da gestação.

As complicações do diabetes na gestação têm uma etiologia multifatorial. O desenvolvimento embrionário pode ser comprometido tanto por fatores endócrino-metabólicos sistêmicos, como também por fatores derivados do ambiente uterino, ambos alterados em consequência do diabetes. Freinkel (1980) propôs a teoria da teratogênese mediada por nutriente (do inglês fuel-mediated teratogenesis) para explicar a ocorrência de malformações pelo diabetes. Foi postulado que alterações nas concentrações de nutrientes, como a glicose, poderiam atuar como teratógenos. Em relação ao ambiente uterino, existem evidências de que o diabetes afeta a decidualização durante a gestação de fêmeas de camundongo diabéticas (Caluwaerts et al., 2000) e a decidualização artificialmente induzida em ratas diabéticas (Norambuena et al., 1984; Garris, 1988; Zakaria et al., 2000). Norambuena et al. (1984) analisaram a decidualização artificialmente induzida em ratas diabéticas no 7º, 10º e 13º dia da pseudogestação (dpg). Através da observação de que o peso uterino e a taxa de mitose das células deciduais diminuíram apenas no 13º dpg concluiu-se que o diabetes não afeta o início do processo de decidualização, apenas estágios posteriores. Além disso, esses autores relatam que as modificações nas artérias espiraladas uterinas das fêmeas diabéticas foram menos marcantes. Garris (1988) relata a diminuição do peso uterino, o comprometimento da decidualização e a diminuição do fluxo sanguíneo uterino em um período mais precoce, entre o 6º e o 7º dpg. Estas alterações foram associadas à diminuição dos níveis de progesterona e foram restauradas pela administração de insulina. Zakaria et al. (2000) apresentaram resultados semelhantes, caracterizados pela diminuição do peso uterino acompanhada da redução dos níveis de estrógeno e progesterona e um aumento de testosterona e do hormônio adrenocorticotrófico (ACTH). Estes autores demonstraram ainda que a inibição da produção de estrógeno e progesterona está associada com a hipersecreção de testosterona, uma vez que a administração de acetato de ciproterona, um inibidor da ação de andrógenos, recupera os níveis de estrógeno e progesterona e reverte os efeitos do
diabetes sobre a decidualização. Estes resultados confirmam o papel da deficiência hormonal no comprometimento da decidualização. Por fim, Caluwaerts et al. (2000) relatam a diminuição do peso da decídua em fêmeas de camundongo diabéticas, indicando que a decidualização também é afetada nesta espécie, o que foi associado com prejuízos observados no desenvolvimento embrionário. No entanto, não existem informações sobre o processo de decidualização em mulheres portadoras de diabetes. Estudos desta natureza poderiam trazer informações relevantes para a compreensão dos mecanismos envolvidos nas complicações observadas em gestações diabéticas como perdas gestacionais, malformações e alterações na formação da placenta.

Os resultados do presente estudo expandem as informações presentes na literatura, mostrando que o diabetes, além de prejudicar a formação da decídua, promove também alterações na composição da MEC depositada na interface materno-fetal no período em que a organogênese está em andamento. A combinação das técnicas de histoquímica pelo Picrosirius, imunohistoquímica e microscopia eletrônica de transmissão proporcionou a obtenção de uma visão integrada do impacto do diabetes sobre a MEC da decídua. Observamos um aumento na rede de colágeno fibrilar total, caracterizado pelo aumento dos colágenos tipo I e V e a diminuição do colágeno tipo III e dos proteoglicanos associados ao colágeno, biglicam e lumicam. Além disso, observamos que essas alterações na relação molecular entre os diferentes tipos de colágenos e proteoglicanos depositados na decídua, teve um impacto na fibrilogênese do colágeno. A análise da expressão gênica por PCRq dos colágenos e proteoglicanos, entretanto, não revelou alterações, com exceção do RNAm para o colágeno tipo I. Estes resultados indicam a existência de mecanismos pós-transcrionais, em relação à estabilidade do mRNA, e/ou sobre a degradação destas moléculas no ambiente extracelular sob ação de MMPs. Um estudo prévio demonstrou que os níveis e a atividade da MMP-2 estão aumentados nos tecidos uterinos de ratas diabéticas no período da implantação (Pustovrh et al., 2002), indicando que alterações nas enzimas que clivam as moléculas da MEC estão envolvidas nas alterações na MEC da decídua de animais diabéticos. Considerando o já descrito papel da IL-11 na regulação da MEC decidual de camundongos, em particular do colágeno III e do biglicam (White et al., 2004), avaliámos se as alterações promovidas pelo diabetes na MEC tinham relação com os níveis desta citocina.
Entretanto, não foram observadas diferenças entre os grupos, mostrando que no presente modelo, as alterações na MEC decidual não são dependentes de IL-11. Este resultado indica a existência de outros mecanismos responsáveis pelo controle da remodelação da MEC decidual.

Resultados prévios do nosso laboratório identificaram o versicam na região de células deciduais maduras, de células pré-deciduais e apenas traços na região de células não-decidualizadas (San Martin et al., 2003b). Entretanto, os resultados apresentados no presente estudo, por meio do uso de um anticorpo distinto, demonstraram a presença deste proteoglicano na região não-decidualizada e pré-decidual, e alguns traços na região de células deciduais maduras. Esta discrepância pode ser explicada através de diferenças na especificidade dos anticorpos utilizados em cada um dos estudos, em relação às distintas isoformas do versicam. O anticorpo utilizado nesse estudo reconhece apenas as isoformas V0 e V1, aquelas que contêm o domínio β-GAG no seu eixo protético, enquanto que o anticorpo utilizado nos estudos anteriores era direcionado contra um peptídeo presente em todas as isoformas do versicam humano. A reatividade contra as isoformas de camundongo não são conhecidas. Dessa maneira, as isoformas presentes na região de células não-decidualizadas e pré-decidual são V0 e/ou V1 enquanto que as isoformas presentes na decídua madura podem ser V2 e/ou V3. Entretanto a isoforma V2 é normalmente expressa no tecido nervoso (Schmalfeldt et al., 2000). A comparação dos resultados mostra uma modulação das isoformas do versicam compartimento-dependente no endométrio decidualizado. Para se definir com precisão a distribuição destas isoformas seria necessária a utilização de anticorpos específicos para cada uma das isoformas os quais ainda não são comercialmente disponíveis.

Além de ser importante para o processo de decidualização, a MEC também participa do estabelecimento da interface materno-fetal e do desenvolvimento embrionário. As células do trofoblasto apresentam receptores para moléculas da matriz que ativam vias de sinalização no interior destas células, regulando a sua diferenciação e função (Revisão em: Armant, 2005). Deste modo, é razoável propor que estas alterações contribuam para o maior número de reabsorções e malformações daqueles embriões incapazes de ultrapassar os desafios do ambiente uterino comprometido pelo diabetes, ou alterações mais sutis como o aumento da susceptibilidade a doenças crônicas que virão a se desenvolver na vida adulta,
naqueles que conseguem se desenvolver até o termo. Entretanto, por ser muito precoce, a idade de gestação estudada não permitiu avaliar a incidência de malformações neste modelo.

Os principais mecanismos moleculares envolvidos nos danos causados pela hiperglicemia estão relacionados com o aumento da produção de superóxido pela cadeia transportadora de elétrons mitocondrial através do aumento do fluxo na via da hexosamina e dos polióis, ativação da proteína quinase C (PKC) e aumento da formação de produtos finais de glicação avançada (Revisão em: Brownlee, 2001; Sheetz, King, 2002). Foi demonstrado o aumento da produção de diacilglicerol (DAG) e da atividade de PKC na decidua de fêmeas de camundongo diabéticas, indicando que as células deciduais são alvo dos efeitos deletérios da hiperglicemia (Hiramatsu et al., 2002).

Chamamos a atenção para o fato de que o diabetes é uma síndrome multifatorial que provoca, entre outras alterações, um desbalanço hormonal, o qual pode ser em parte responsável pelas alterações nos órgãos reprodutores afetados pelo diabetes. Foi descrito em ratas diabéticas o comprometimento da resposta dos fibroblastos endometriais, precursores das células deciduais, à estimulação pelo estrógeno (Frederick et al., 1985). Da mesma forma, foi demonstrada por radioautografia a diminuição da fração citoplasmática e nuclear dos receptores de estrógeno nas células deciduais no período peri-implantacional (De Hertogh et al., 1989). Dados da literatura e observações preliminares dos ovários permitem sugerir que os níveis hormonais neste modelo estão reduzidos. Consideramos de grande importância realizar a dosagem hormonal de estrógeno e progesterona, a fim de confirmar a existência de deficiência hormonal, e sua participação nas alterações produzidas pelo diabetes no modelo. Da mesma forma, sugerimos que o comprometimento na decidualização, além das alterações nos níveis hormonais, esteja também relacionado com alterações nos receptores e na sinalização hormonal das células deciduais.

O VEGF é uma molécula que desempenha diversas funções de grande importância para o processo de angiogênese (Revisão em: Cao, 2009). A imunohistoquímica demonstrou um aumento na intensidade da marcação no grupo diabético indicando aumento da produção dessa molécula nos tecidos uterinos. Esse dado sugere que a formação da rede vascular da decidua pode estar alterada. Entretanto, um estudo histomorfométrico é necessário para determinar com precisão
os efeitos do diabetes sobre a estrutura vascular da decídua. Existem evidências em ratas de que a remodelação das artérias uterinas espiraladas, presentes na região mesometrial, podem ser afetadas pelo diabetes (Norambuena et al., 1984). Em adição, foi relatada, em fêmeas de camundongo NOD, a diminuição da quantidade e das dimensões das artérias uterinas espiraladas (Burke et al., 2007). As células NKu uterinas também participam do remodelamento destes vasos sanguíneos (Revisão em: Croy et al., 2003). Todavia, como observado por outros autores em camundongos NOD, em nosso estudo a análise quantitativa da área ocupada pelas células NKu, não mostrou diferenças entre os grupos analisados. Foi demonstrado que no 6º dg a quantidade de células NKu foi menor nos animais diabéticos, enquanto que no 8º dg, idade de gestação similar à utilizada neste estudo, não houve diferenças entre os animais normais e os diabéticos. Entretanto, os autores demonstraram alterações no perfil de proliferação destas células que estava aumentado no 6º dg e diminuído no 8º dg (Dong et al., 2008).

Nossos resultados mostram que o diabetes promove alterações na MEC da decídua mesometrial. Considerando o papel da MEC para o remodelamento das artérias espiraladas (Revisão em: Harris, Aplin, 2007), indicamos que estas alterações possam estar associadas ao comprometimento da formação da placenta, promovida pelo diabetes, impactando negativamente no desenvolvimento fetal. Além disso, sugerimos que o comprometimento da placentação é devido a alterações na porção materna da interface materno-fetal, desde o início da placentação.

As características do ambiente uterino comprometido pelo diabetes no início da gestação são similares àquelas observadas em etapas mais avançadas. O diabetes promove a indução da expressão de genes relacionados com o estresse e a inflamação na placentia, além de afetar a expressão de componentes da MEC, do seu sistema de degradação, e de moléculas que têm a capacidade de regulá-las, como citocinas e fatores de crescimento (Radaelli et al., 2003). São descritas também alterações na composição da MEC da placentia de mulheres diabéticas (Yang et al., 2005; Chen et al., 2007) e de modelos animais de diabetes (Forsberg et al., 1998; Giachini et al., 2008).

O desenvolvimento e a análise do presente modelo animal, permitiu ainda que demonstrássemos o desenvolvimento de complicações do diabetes no miométrio no início da gestação. Observamos que o diabetes promove o estreitamento das camadas musculares, correlacionado com a diminuição no índice de proliferação das
células musculares, além de afetar sua organização, o sistema contrátil das células musculares e sua MEC. O diabetes também promoveu edema entre as camadas musculares, sugerindo o desenvolvimento de doença vascular nesta estrutura. Mostramos ainda que após esta fase de edema segue-se uma fase de fibrose e atrofia do miométrio. Estes resultados mostram que o diabetes afeta a primeira fase de adaptação do miométrio durante a gestação, e que estas alterações só se desenvolvem após um período longo de submissão ao diabetes (Favaro et al., 2010). Chirayath et al. (2010) relataram a presença de disfunção endotelial nas artérias do miométrio de mulheres diabéticas. Nosso estudo fornece indícios adicionais de que o desenvolvimento de complicações diabéticas no miométrio está associado a alterações vasculares neste compartimento uterino.

Considerando a interdependência entre as fases de adaptação do miométrio durante a gestação para o exercício adequado de suas funções (Revisão em: Shynlova et al., 2009), as alterações na fase proliferativa inicial podem afetar potencialmente as fases seguintes. Dessa forma, sugerimos que o comprometimento do parto em mulheres diabéticas pode estar relacionado com alterações no miométrio e que essas estão presentes desde as fases iniciais da gestação.

Nossos resultados mostram que as alterações na organização estrutural do miométrio são acompanhadas de alterações na composição da MEC. Os colágenos tipo I, III e V foram imunolocalizados no miométrio. O diabetes promoveu alterações na deposição destes colágenos nas camadas musculares e no tecido conjuntivo entre as camadas. Resultados prévios demonstraram que o decorim e o lumicam estavam presentes no miométrio durante todo o período estudado, entre o 1º e o 7º dg, enquanto que o biglicam e o fibromodulim passaram a ser expressos somente a partir do 5º dg (San Martin et al., 2003a). Este período coincide com o estágio de proliferação celular, sugerindo a participação destas moléculas na aquisição do fenótipo proliferativo. O diabetes promoveu uma diminuição drástica do fibromodulim. Ao mesmo tempo observamos uma diminuição da proliferação celular no miométrio sugerindo a existência de relação entre ambos. Interessantemente, a imunomarcação para o fibromodulim foi observada apenas no interior das células musculares. Resultado semelhante foi descrito durante o ciclo estral (Salgado et al., 2009). Sugerimos duas possíveis explicações não excludentes para este resultado: ou o fibromodulim está sendo armazenado para posterior deposição na MEC, como
observado durante o ciclo estral (Salgado et al., 2009), ou este proteoglicano da MEC também desempenha funções intracelulares. O estudo em dias posteriores da gestação, assim como a análise da sua localização intracelular por imunoeletromicroscopia, podem fornecer pistas para esclarecer essas questões. Considerando os efeitos inibitórios do decorim sobre a proliferação celular (Yamaguchi, Ruoslahti, 1988), nós hipotetizamos que a diminuição desta molécula nas camadas musculares pode atuar na conservação da proliferação celular prejudicada pelo diabetes. Foi sugerido que durante o ciclo estral, a inibição do decorim na camada superficial do endométrio tem o papel de promover a proliferação celular neste compartimento (Salgado et al., 2009).

O diabetes está associado a disfunções do trato urinário inferior em mulheres, causadas por danos microvasculares, neuropatia e o comprometimento da musculatura lisa e do urotélio (Revisão em: Ho et al., 2007). Na bexiga, a musculatura lisa sofre hiperplasia, hipertrofia e ocorre a diminuição do colágeno do tecido conjuntivo, em um processo tempo-dependente (Pitre et al., 2002). A análise do perfil protéico das células da musculatura lisa da bexiga de ratos diabéticos por eletroforese bidimensional e espectrometria de massa identificou a diminuição de proteínas relacionadas à MEC, à adesão celular e ao citoesqueleto. Por outro lado, proteínas relacionadas com a proliferação celular e com a inflamação estavam aumentadas (Yohannes et al., 2008). Estes resultados coincidem com os achados morfológicos relatados anteriormente. Nossos dados demonstram que, ao contrário de outros tipos de células musculares lisas, como as vasculares e as da bexiga, as células do miométrio diminuem a proliferação em resposta ao diabetes. Os nossos resultados são semelhantes àqueles descritos na vagina de ratas diabéticas. Park et al. (2001) descrevem a redução das camadas epiteliais, a diminuição da vasculatura e o desarranjo do tecido conjuntivo, que se apresenta denso e irregular. As alterações do tecido conjuntivo foram relacionadas com a expressão de TGF-β1. Adicionalmente, há diminuição da camada muscular acompanhada de um desbalanço hormonal, caracterizado pela diminuição dos níveis plasmáticos de estrógeno e aumento dos níveis de testosterona, e a redução nos níveis dos receptores de estrógeno (ERα) e de andrógeno, presentes nos extratos nucleares dos tecidos vaginais (Kim et al., 2006). Assim como na decidua, a determinação dos níveis hormonais e a avaliação da expressão e funcionalidade dos receptores são
necessárias para uma melhor compreensão dos efeitos do diabetes sobre o miométrio.

O estabelecimento do modelo animal e os resultados obtidos neste estudo fundamentam uma nova linha de pesquisa no laboratório. Um novo projeto está sendo desenvolvido com o objetivo de analisar o impacto do diabetes sobre o desenvolvimento fetal e placentário, na etapa final da gestação. Além disso, outro projeto, em fase inicial de preparação, está sendo delineado para investigar os mecanismos associados ao comprometimento do desenvolvimento da decídua, por meio da avaliação da proliferação celular, índice de poliploidia e expressão de genes relacionados com o controle do ciclo celular nas células deciduais.

Em consonante com resultados clínicos, o conjunto de nossos resultados suporta o conceito de que o desenvolvimento de complicações na gestação está diretamente relacionado com a progressão do diabetes na mãe, destacando a importância de modelos experimentais que incluam a dimensão temporal na investigação dos efeitos do diabetes sobre a gestação. Do mesmo modo, foram descritas alterações importantes no ambiente uterino deste modelo, que contribuem para explicar o comprometimento do desenvolvimento embrionário e também a maior incidência de partos prematuros provocados pelo diabetes.
6 CONCLUSÕES
Os resultados obtidos neste estudo permitem concluir que:

1. O diabetes compromete a formação da decídua e promove alterações na composição da sua MEC;

2. Alterações na relação entre os diferentes tipos de colágeno e proteoglicanos depositados na MEC da decídua correlacionam-se com o comprometimento da fibrilogênese do colágeno;

3. As alterações na deposição dos colágenos e proteoglicanos da MEC decidual não tiveram relação com alterações na expressão gênica do RNAm, exceto para o colágeno tipo I;

4. As alterações promovidas pelo diabetes na MEC da decídua são independentes dos níveis de IL-11;

5. O diabetes afeta a estrutura e a organização das camadas musculares e altera a MEC, o sistema contráctil e a proliferação das células musculares lisas do miométrio indicando o comprometimento da primeira fase (proliferativa) de adaptação dessa estrutura para a gestação;

6. Os efeitos do diabetes sobre a gestação estão diretamente correlacionados com a duração e o estágio de progressão desta doença.
REFERÊNCIAS

Abrahamsohn PA. Ultrastructural study of the mouse antimesometrial decidua. Anat Embryol (Berl). 1983;166(2):263-74.

Abrahamsohn PA, Zorn TM. Implantation and decidualization in rodents. J Exp Zool. 1993;266(6):603-28.

Abrahamsohn PA, Zorn TMT, Oliveira SF. Decidua in rodents. In: Glasser SR, Aplin JD, Guidice LC, Tabibzadeh S, editors. The endometrium. 1 ed. London: Informa Healthcare; 2002. p. 279-93.

Alberto-Rincon MC, Zorn TM, Abrahamsohn PA. Diameter increase of collagen fibrils of the mouse endometrium during decidualization. Am J Anat. 1989;186(4):417-29.

American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes Care. 2011;34 Suppl 1:S62-9.

Andrade CG. Decidualização Induzida em Camundongas Pseudográvidas - Estudo Morfológico e Ultra-estrutural. São Paulo: Universidade de São Paulo; 1993.

Aplin JD. Endometrial Extracellular Matrix. In: Glasser SR, Aplin JD, Guidice LC, Tabibzadeh S, editors. The endometrium. London: Informa Healthcare; 2002. p. 294-307.

Armant DR. Blastocysts don't go it alone. Extrinsic signals fine-tune the intrinsic developmental program of trophoblast cells. Dev Biol. 2005;280(2):260-80.

Avraamides CJ, Garmy-Susini B, Varner JA. Integrins in angiogenesis and lymphangiogenesis. Nat Rev Cancer. 2008;8(8):604-17.

Banos CC, Thomas AH, Kuo CK. Collagen fibrillogenesis in tendon development: current models and regulation of fibril assembly. Birth Defects Res C Embryo Today. 2008;84(3):228-44.

¹De acordo com: International Committee of Medical Journal Editors. Uniform requirements for manuscripts submitted to Biomedical Journal: sample references. Available form: http://www.icmje.org [2007 May 22].
Berrier AL, Yamada KM. Cell-matrix adhesion. J Cell Physiol. 2007;213(3):565-73.

Bevier WC, Jovanovic-Peterson L, Formby B, Peterson CM. Maternal hyperglycemia is not the only cause of macrosomia: lessons learned from the nonobese diabetic mouse. Am J Perinatol. 1994;11(1):51-6.

Bevilacqua EM, Abrahamsohn PA. Ultrastructure of trophoblast giant cell transformation during the invasive stage of implantation of the mouse embryo. J Morphol. 1988;198(3):341-51.

Bijovsky AT, Zorn TM, Abrahamsohn PA. Remodeling of the mouse endometrial stroma during the preimplantation period. Acta Anat (Basel). 1992;144(3):231-4.

Bilinski P, Roopenian D, Gossler A. Maternal IL-11Ralpha function is required for normal decidua and fetoplacental development in mice. Genes Dev. 1998;12(14):2234-43.

Birk DE, Fitch JM, Babiarz JP, Doane KJ, Linsenmayer TF. Collagen fibrillogenesis in vitro: interaction of types I and V collagen regulates fibril diameter. J Cell Sci. 1990;95 (Pt 4):649-57.

Bressan Filho NP. Modificações gravídicas locais. In: Neme B, editor. Obstetrícia Básica. 3 ed. São Paulo: Sarvier; 2006. p. 32-6.

Brownlee M. Biochemistry and molecular cell biology of diabetic complications. Nature. 2001;414(6865):813-20.

Burke SD, Dong H, Hazan AD, Croy BA. Aberrant endometrial features of pregnancy in diabetic NOD mice. Diabetes. 2007;56(12):2919-26.

Caluwaerts S, Pijnenborg R, Luyten C, Van Assche FA. Growth characteristics of diabetic rat ectoplacental cones in vivo and in vitro. Diabetologia. 2000;43(7):939-45.

Cao Y. Positive and negative modulation of angiogenesis by VEGFR1 ligands. Sci Signal. 2009;2(59):re1.

Carbone K, Pinto NM, Abrahamsohn PA, Zorn TM. Arrangement and fine structure of collagen fibrils in the decidualized mouse endometrium. Microsc Res Tech. 2006;69(1):36-45.
Carson DD, Bagchi I, Dey SK, Enders AC, Fazleabas AT, Lessey BA, et al. Embryo implantation. Dev Biol. 2000;223(2):217-37.

Casson IF, Clarke CA, Howard CV, McKendrick O, Pennycook S, Pharoah PO, et al. Outcomes of pregnancy in insulin dependent diabetic women: results of a five year population cohort study. BMJ. 1997;315(7103):275-8.

Chen CP, Chang SC, Vivian Yang WC. High glucose alters proteoglycan expression and the glycosaminoglycan composition in placentas of women with gestational diabetes mellitus and in cultured trophoblasts. Placenta. 2007;28(2-3):97-106.

Chieri RA, Pivetta OH, Foglia VG. Altered ovulation pattern in experimental diabetes. Fertil Steril. 1969;20(4):661-6.

Chirayath HH, Wareing M, Taggart MJ, Baker PN. Endothelial dysfunction in myometrial arteries of women with gestational diabetes. Diabetes Res Clin Pract. 2010;89(2):134-40.

Costa FG. Influencia de componentes da matriz extracelular em cultivos primários de células decicuais antimesometriais de camundongos. São Paulo: Universidade de São Paulo; 2003.

Cox BD, Natarajan M, Stettner MR, Gladson CL. New concepts regarding focal adhesion kinase promotion of cell migration and proliferation. J Cell Biochem. 2006;99(1):35-52.

Cross JC, Werb Z, Fisher SJ. Implantation and the placenta: key pieces of the development puzzle. Science. 1994;266(5190):1508-18.

Croy BA, He H, Esadeg S, Wei Q, McCartney D, Zhang J, et al. Uterine natural killer cells: insights into their cellular and molecular biology from mouse modelling. Reproduction. 2003;126(2):149-60.

Cunningham FG, Williams JW. Williams obstetrics. 23rd ed. New York: McGraw-Hill Medical; 2010.

Damsky CH, Librach C, Lim KH, Fitzgerald ML, McMaster MT, Janatpour M, et al. Integrin switching regulates normal trophoblast invasion. Development. 1994;120(12):3657-66.
Das SK. Cell cycle regulatory control for uterine stromal cell decidualization in implantation. Reproduction. 2009;137(6):889-99.

Das SK, Chakraborty I, Paria BC, Wang XN, Plowman G, Dey SK. Amphiregulin is an implantation-specific and progesterone-regulated gene in the mouse uterus. Mol Endocrinol. 1995;9(6):691-705.

Das SK, Wang XN, Paria BC, Damm D, Abraham JA, Klagsbrun M, et al. Heparin-binding EGF-like growth factor gene is induced in the mouse uterus temporally by the blastocyst solely at the site of its apposition: a possible ligand for interaction with blastocyst EGF-receptor in implantation. Development. 1994;120(5):1071-83.

De Hertogh R. Diabetic Embryopathy. In: Djelmiš J, Desoye G, Ivanišević M, editors. Diabetology of Pregnancy. Basel: Karger; 2005. p. 46-57.

De Hertogh R, Vanderheyden I, Glorieux B, Ekka E. Oestrogen and progestogen receptors in endometrium and myometrium at the time of blastocyst implantation in pregnant diabetic rats. Diabetologia. 1989;32(8):568-72.

Dean L, McEntyre J. The Genetic Landscape of Diabetes. Bethesda: NCBI; 2004.

Diamond MP, Moley KH, Pellicer A, Vaughn WK, DeCherney AH. Effects of streptozotocin- and alloxan-induced diabetes mellitus on mouse follicular and early embryo development. J Reprod Fertil. 1989;86(1):1-10.

Dickmann Z, Noyes RW. The fate of ova transferred into the uterus of the rat. J Reprod Fertil. 1960;1:197-212.

Dong H, Burke SD, Croy BA. Vascular addressins in the uterus and pancreas of type 1 diabetic mice in early pregnancy. Placenta. 2008;29(2):201-9.

Enders AC, Schlafke S. A morphological analysis of the early implantation stages in the rat. American Journal of Anatomy. 1967;120(2):185-225.

Falkay G, Spiegl G, Csonka D, Zupko I. Effects of streptozotocin-induced diabetes on the uterine adrenergic nerve function in pregnant rats. A superfusion study. Neurochem Int. 2007;51(5):306-10.
Favaro RR, Salgado RM, Raspantini PR, Fortes ZB, Zorn TM. Effects of long-term diabetes on the structure and cell proliferation of the myometrium in the early pregnancy of mice. Int J Exp Pathol. 2010;91(5):426-35.

Fein A, Magid N, Savion S, Orenstein H, Shepshelovich J, Ornoy A, et al. Diabetes teratogenicity in mice is accompanied with distorted expression of TGF-beta2 in the uterus. Teratog Carcinog Mutagen. 2002;22(1):59-71.

Formby B, Schmid-Formby F, Jovanovic L, Peterson CM. The offspring of the female diabetic "nonobese diabetic" (NOD) mouse are large for gestational age and have elevated pancreatic insulin content: a new animal model of human diabetic pregnancy. Proc Soc Exp Biol Med. 1987;184(3):291-4.

Forsberg H, Wentzel P, Eriksson UJ. Maternal diabetes alters extracellular matrix protein levels in rat placentas. Am J Obstet Gynecol. 1998;179(3 Pt 1):772-8.

Fortes ZB, Garcia Leme J, Scivoletto R. Vascular reactivity in diabetes mellitus: possible role of insulin on the endothelial cell. Br J Pharmacol. 1984;83(3):635-43.

Frederick GT, Kirkland JL, Stancel GM, Gardner RM. Effects of experimentally-induced diabetes on oestradiol-stimulated changes in the ultrastructure of the rat endometrium. Acta Endocrinol (Copenh). 1985;108(3):414-20.

Freinkel N. Banting Lecture 1980. Of pregnancy and progeny. Diabetes. 1980;29(12):1023-35.

Garris DR. Effects of diabetes on uterine condition, decidualization, vascularization, and corpus luteum function in the pseudopregnant rat. Endocrinology. 1988;122(2):665-72.

Garris DR, Garris BL. Genomic modulation of diabetes (db/db) and obese (ob/ob) mutation-induced hypercytolipidemia: cytochemical basis of female reproductive tract involution. Cell Tissue Res. 2004;316(2):233-41.

Garris DR, Smith C, Davis D, Diani AR, Gerritsen GC. Morphometric evaluation of the hypothalamic-ovarian axis of the ketonuric, diabetic Chinese hamster: relationship to the reproductive cycle. Diabetologia. 1982;23(3):275-9.
Garris DR, West RL, Pekala PH. Ultrastructural and metabolic changes associated with reproductive tract atrophy and adiposity in diabetic female mice. Anat Rec. 1986;216(3):359-66.

Garris DR, Whitehead DS, Morgan CR. Effects of alloxan-induced diabetes on corpus luteum function in the pseudopregnant rat. Diabetes. 1984;33(7):611-5.

Georgiades P, Ferguson-Smith AC, Burton GJ. Comparative developmental anatomy of the murine and human definitive placenta. Placenta. 2002;23(1):3-19.

Giachini FR, Carriel V, Capelo LP, Tostes RC, Carvalho MH, Fortes ZB, et al. Maternal diabetes affects specific extracellular matrix components during placentation. J Anat. 2008;212(1):31-41.

Glasser SR, Julian J. Intermediate filament protein as a marker of uterine stromal cell decidualization. Biol Reprod. 1986;35(2):463-74.

González E. Diabetes mellitus experimental: etiología de las malformaciones congénitas en descendientes de ratas diabéticas. Rev Cubana Endocrinol. 2002;13(1):53-63.

Gordon MK, Hahn RA. Collagens. Cell Tissue Res. 2010;339(1):247-57.

Griffin ML, South SA, Yankov VI, Booth RA, Jr., Asplin CM, Veldhuis JD, et al. Insulin-dependent diabetes mellitus and menstrual dysfunction. Ann Med. 1994;26(5):331-40.

Haeri S, Khoury J, Kovilam O, Miodovnik M. The association of intrauterine growth abnormalities in women with type 1 diabetes mellitus complicated by vasculopathy. Am J Obstet Gynecol. 2008;199(3):278 e1-5.

Harris LK, Aplin JD. Vascular remodeling and extracellular matrix breakdown in the uterine spiral arteries during pregnancy. Reprod Sci. 2007;14(8 Suppl):28-34.

Heino J. The collagen receptor integrins have distinct ligand recognition and signaling functions. Matrix Biol. 2000;19(4):319-23.
Hiramatsu Y, Sekiguchi N, Hayashi M, Isshiki K, Yokota T, King GL, et al. Diacylglycerol production and protein kinase C activity are increased in a mouse model of diabetic embryopathy. Diabetes. 2002;51(9):2804-10.

Ho MH, Yip S, Bhatia NN. Lower urinary tract dysfunctions in women with diabetes mellitus. Curr Opin Obstet Gynecol. 2007;19(5):469-73.

Hoggard N, Hunter L, Trayhurn P, Williams LM, Mercer JG. Leptin and reproduction. Proc Nutr Soc. 1998;57(3):421-7.

Hynes RO. The extracellular matrix: not just pretty fibrils. Science. 2009;326(5957):1216-9.

Hynes RO. Integrins: bidirectional, allosteric signaling machines. Cell. 2002;110(6):673-87.

Inada A, Nagai K, Arai H, Miyazaki J, Nomura K, Kanamori H, et al. Establishment of a diabetic mouse model with progressive diabetic nephropathy. Am J Pathol. 2005;167(2):327-36.

Iozzo RV, Schaefer L. Proteoglycans in health and disease: novel regulatory signaling mechanisms evoked by the small leucine-rich proteoglycans. FEBS J. 2010;277(19):3864-75.

Jawerbaum A, Catafau JR, Gonzalez ET, Novaro V, Gomez G, Gelpi E, et al. Eicosanoid production, metabolism and contractile activity in the isolated uterus from non-insulin-dependent diabetic rats during late pregnancy. Prostaglandins. 1996;51(5):307-20.

Jawerbaum A, Gonzalez E. Diabetic pregnancies: the challenge of developing in a pro-inflammatory environment. Curr Med Chem. 2006;13(18):2127-38.

Jawerbaum A, White V. Animal models in diabetes and pregnancy. Endocr Rev. 2010;31(5):680-701.

Jensen DM, Damm P, Moelsted-Pedersen L, Ovesen P, Westergaard JG, Moeller M, et al. Outcomes in type 1 diabetic pregnancies: a nationwide, population-based study. Diabetes Care. 2004;27(12):2819-23.
Jungheim ES, Moley KH. The impact of type 1 and type 2 diabetes mellitus on the oocyte and the preimplantation embryo. Semin Reprod Med. 2008;26(2):186-95.

Junqueira LC, Carneiro J. Histologia Básica. 11ª ed. Rio de Janeiro: Guanabara Koogan; 2008.

Kalamajski S, Oldberg A. The role of small leucine-rich proteoglycans in collagen fibrillogenesis. Matrix Biol. 2010;29(4):248-53.

Kalkhoff RK. Impact of maternal fuels and nutritional state on fetal growth. Diabetes. 1991;40 Suppl 2:61-5.

Kalter H. Reproductive toxicology in animals with induced and spontaneous diabetes. Reprod Toxicol. 1996;10(6):417-38.

Karlsson K, Kjellmer I. The outcome of diabetic pregnancies in relation to the mother's blood sugar level. Am J Obstet Gynecol. 1972;112(2):213-20.

Katayama S, Brownscheidle CM, Wootten V, Lee JB, Shimaoka K. Absent or delayed preovulatory luteinizing hormone surge in experimental diabetes mellitus. Diabetes. 1984;33(4):324-7.

Kaya T, Cetin A, Cetin M, Sarioglu Y. Effects of endothelin-1 and calcium channel blockers on contractions in human myometrium. A study on myometrial strips from normal and diabetic pregnant women. J Reprod Med. 1999;44(2):115-21.

Kim NN, Stankovic M, Cushman TT, Goldstein I, Munarriz R, Traish AM. Streptozotocin-induced diabetes in the rat is associated with changes in vaginal hemodynamics, morphology and biochemical markers. BMC Physiol. 2006;6:4.

Kirchick HJ, Keyes PL, Frye BE. Etiology of anovulation in the immature alloxan-diabetic rat treated with pregnant mare’s serum gonadotropin: absence of the preovulatory luteinizing hormone surge. Endocrinology. 1978;102(6):1867-73.

Kirchick HJ, Keyes PL, Frye BE. An explanation for anovulation in immature alloxan-diabetic rats treated with pregnant mare’s serum gonadotropin: reduced pituitary response to gonadotropin-releasing hormone. Endocrinology. 1979;105(6):1343-9.
Kleinfeld RG, O'Shea JD. Spatial and temporal patterns of deoxyribonucleic acid synthesis and mitosis in the endometrial stroma during decidualization in the pseudopregnant rat. Biol Reprod. 1983;28(3):691-702.

Lawrence AM, Contopoulos AN. Reproductive performance in the alloxan diabetic female rat. Acta Endocrinol (Copenh). 1960;33:175-84.

Leitinger B, Hohenester E. Mammalian collagen receptors. Matrix Biol. 2007;26(3):146-55.

Leunda-Casi A, De Hertogh R, Pampfer S. Decreased expression of fibroblast growth factor-4 and associated dysregulation of trophoblast differentiation in mouse blastocysts exposed to high D-glucose in vitro. Diabetologia. 2001;44(10):1318-25.

Li F, Devi YS, Bao L, Mao J, Gibori G. Involvement of cyclin D3, CDKN1A (p21), and BIRC5 (Survivin) in interleukin 11 stimulation of decidualization in mice. Biol Reprod. 2008;78(1):127-33.

Loeb L. The Production of Deciduomata. Journal of the American Medical Association. 1908;L(23):1897-901.

Makhseed M, Musini VM, Ahmed MA, Al-Harmi J. Placental pathology in relation to the White's classification of diabetes mellitus. Arch Gynecol Obstet. 2002;266(3):136-40.

Malassine A, Frendo JL, Evain-Brion D. A comparison of placental development and endocrine functions between the human and mouse model. Hum Reprod Update. 2003;9(6):531-9.

Mangale SS, Modi DN, Reddy KV. Identification of genes regulated by an interaction between alphavbeta3 integrin and vitronectin in murine decidua. Reprod Fertil Dev. 2008;20(2):311-9.

Mangale SS, Reddy KV. Expression pattern of integrins and their ligands in mouse feto-maternal tissues during pregnancy. Reprod Fertil Dev. 2007;19(3):452-60.

Martello EM, Abrahamsohn PA. Collagen distribution in the mouse endometrium during decidualization. Acta Anat (Basel). 1986;127(2):146-50.
McCormick MC, Litt JS, Smith VC, Zupancic JA. Prematurity: An Overview and Public Health Implications. Annu Rev Public Health. 2010;32:367-79.

McKay DB, Vazquez MA, Redline RW, Lu CY. Macrophage functions are regulated by murine decidual and tumor extracellular matrices. J Clin Invest. 1992;89(1):134-42.

McLaren A, Michie D. Studies on the transfer of fertilized mouse eggs to uterine foster mothers. I. Factors affecting the implantation and survival of native and transferred eggs. J Exp Biol. 1956;33:394–416.

Mestman JH. Historical Notes on Diabetes and Pregnancy. The Endocrinologist. 2002;12(3):224-42.

Mimouni F, Miodovnik M, Siddiqi TA, Berk MA, Wittekind C, Tsang RC. High spontaneous premature labor rate in insulin-dependent diabetic pregnant women: an association with poor glycemic control and urogenital infection. Obstet Gynecol. 1988;72(2):175-80.

Mizuno K, Tanaka T, Umesaki N, Ogita S. Inhibition of cAMP-mediated decidualization in human endometrial stromal cells by IL-1beta and laminin. Horm Metab Res. 1999;31(5):307-10.

Moley KH, Vaughn WK, DeCherney AH, Diamond MP. Effect of diabetes mellitus on mouse pre-implantation embryo development. J Reprod Fertil. 1991;93(2):325-32.

Monice FL. Involução do deciduoma induzido em camundongos pseudográvidos: estudo estrutural, ultra-estrutural e imunocitoquímico. São Paulo: Universidade de São Paulo; 1998.

Morrione TG, Seifter S. Alteration in the collagen content of the human uterus during pregnancy and post partum involution. J Exp Med. 1962;115:357-65.

Myllyharju J, Kivirikko KI. Collagens, modifying enzymes and their mutations in humans, flies and worms. Trends Genet. 2004;20(1):33-43.

Nandi A, Wang X, Accili D, Wolgemuth DJ. The effect of insulin signaling on female reproductive function independent of adiposity and hyperglycemia. Endocrinology. 2010;151(4):1863-71.
Norambuena J, Pijnenborg R, Brosens I. Decidual changes in the endometrium and morphological adaptation of the associated supplying arteries in the normal and diabetic pseudopregnant rat. Placenta. 1984;5(3):249-60.

Noyes RW, Dickmann Z. Relationship of ovular age to endometrial development. J Reprod Fert. 1960;1:186-96.

Oh W, Gelardi NL, Cha CJ. Maternal hyperglycemia in pregnant rats: its effect on growth and carbohydrate metabolism in the offspring. Metabolism. 1988;37(12):1146-51.

Oliveira SF, Greca CP, Abrahamsohn PA, Reis MG, Zorn TM. Organization of desmin-containing intermediate filaments during differentiation of mouse decidual cells. Histochem Cell Biol. 2000;113(4):319-27.

Oliveira SF, Nagata T, Abrahamsohn PA, Zorn TM. Incorporation of 3H-proline by mouse decidual cells: an ultrastructural radioautographic study. Mem Inst Oswaldo Cruz. 1991;86 Suppl 3:101-2.

Otani H, Tanaka O, Tatewaki R, Naora H, Yoneyama T. Diabetic environment and genetic predisposition as causes of congenital malformations in NOD mouse embryos. Diabetes. 1991;40(10):1245-50.

Pampfer S, de Hertogh R, Vanderheyden I, Michiels B, Vercheval M. Decreased inner cell mass proportion in blastocysts from diabetic rats. Diabetes. 1990;39(4):471-6.

Pampfer S, Vanderheyden I, De Hertogh R. Increased synthesis of tumor necrosis factor-alpha in uterine explants from pregnant diabetic rats and in primary cultures of uterine cells in high glucose. Diabetes. 1997a;46(7):1214-24.

Pampfer S, Vanderheyden I, McCracken JE, Vesela J, De Hertogh R. Increased cell death in rat blastocysts exposed to maternal diabetes in utero and to high glucose or tumor necrosis factor-alpha in vitro. Development. 1997b;124(23):4827-36.

Pampfer S, Wuu YD, Vanderheyden I, De Hertogh R. In vitro study of the carry-over effect associated with early diabetic embryopathy in the rat. Diabetologia. 1994;37(9):855-62.
Paria BC, Reese J, Das SK, Dey SK. Deciphering the cross-talk of implantation: advances and challenges. Science. 2002;296(5576):2185-8.

Park K, Ryu SB, Park YI, Ahn K, Lee SN, Nam JH. Diabetes mellitus induces vaginal tissue fibrosis by TGF-beta 1 expression in the rat model. J Sex Marital Ther. 2001;27(5):577-87.

Pedersen LM, Tygstrup I, Pedersen J. Congenital Malformations in Newborn Infants of Diabetic Women. Correlation with Maternal Diabetic Vascular Complications. Lancet. 1964;1(7343):1124-6.

Pinter E, Reece EA, Leranth CZ, Sanyal MK, Hobbins JC, Mahoney MJ, et al. Yolk sac failure in embryopathy due to hyperglycemia: ultrastructural analysis of yolk sac differentiation associated with embryopathy in rat conceptuses under hyperglycemic conditions. Teratology. 1986;33(1):73-84.

Pitre DA, Ma T, Wallace LJ, Bauer JA. Time-dependent urinary bladder remodeling in the streptozotocin-induced diabetic rat model. Acta Diabetol. 2002;39(1):23-7.

Piyachaturawat P, Peungvicha P, Limlomwongse L, Krishnamra N. Depression of estrogen-induced uterine peroxidase in alloxan-diabetic rats. J Steroid Biochem. 1984;21(6):685-90.

Psychoyos A. [Capillary permeability and uterine deciduation]. C R Hebd Seances Acad Sci. 1961;252:1515-7.

Psychoyos A. Uterine receptivity for nidation. Ann N Y Acad Sci. 1986;476:36-42.

Pustovrh C, Jawerbaum A, Sinner D, White V, Capobianco E, Gonzalez E. Metalloproteinase 2 activity and modulation in uterus from neonatal streptozotocin-induced diabetic rats during embryo implantation. Reprod Fertil Dev. 2002;14(7-8):479-85.

Radaelli T, Varastehpour A, Catalano P, Hauguel-de Mouzon S. Gestational diabetes induces placental genes for chronic stress and inflammatory pathways. Diabetes. 2003;52(12):2951-8.

Ramirez F, Rifkin DB. Cell signaling events: a view from the matrix. Matrix Biol. 2003;22(2):101-7.
Reece EA, Eriksson UJ. The pathogenesis of diabetes-associated congenital malformations. Obstet Gynecol Clin North Am. 1996;23(1):29-45.

Reece EA, Pinter E, Homko C, Wu YK, Naftolin F. The yolk sac theory: closing the circle on why diabetes-associated malformations occur. J Soc Gynecol Investig. 1994;1(1):3-13.

Reinius S. Ultrastructure of blastocyst attachment in the mouse. Z Zellforsch Mikrosk Anat. 1967;77(2):257-66.

Robb L, Li R, Hartley L, Nandurkar HH, Koentgen F, Begley CG. Infertility in female mice lacking the receptor for interleukin 11 is due to a defective uterine response to implantation. Nat Med. 1998;4(3):303-8.

Ross R, Klebanoff SJ. The smooth muscle cell. I. In vivo synthesis of connective tissue proteins. J Cell Biol. 1971;50(1):159-71.

Rosso F, Giordano A, Barbarisi M, Barbarisi A. From cell-ECM interactions to tissue engineering. J Cell Physiol. 2004;199(2):174-80.

Rugh R. The mouse reproduction and development. Minneapolis: Burgess Publishing Company; 1968.

Salgado RM, Favaro RR, Martin SS, Zorn TM. The estrous cycle modulates small leucine-rich proteoglycans expression in mouse uterine tissues. Anat Rec (Hoboken). 2009;292(1):138-53.

San Martin S, Soto-Suazo M, De Oliveira SF, Aplin JD, Abrahamsohn P, Zorn TM. Small leucine-rich proteoglycans (SLRPs) in uterine tissues during pregnancy in mice. Reproduction. 2003a;125(4):585-95.

San Martin S, Soto-Suazo M, Zorn TM. Distribution of versican and hyaluronan in the mouse uterus during decidualization. Braz J Med Biol Res. 2003b;36(8):1067-71.

San Martin S, Soto-Suazo M, Zorn TM. Perlecan and syndecan-4 in uterine tissues during the early pregnancy in mice. Am J Reprod Immunol. 2004;52(1):53-9.
San Martin S, Zorn TM. The small proteoglycan biglycan is associated with thick collagen fibrils in the mouse decidua. Cell Mol Biol (Noisy-le-grand). 2003;49(4):673-8.

Sanches JC, Jones CJ, Aplin JD, lozzo RV, Zorn TM, Oliveira SF. Collagen fibril organization in the pregnant endometrium of decorin-deficient mice. J Anat. 2010;216(1):144-55.

Schaefer L, lozzo RV. Biological functions of the small leucine-rich proteoglycans: from genetics to signal transduction. J Biol Chem. 2008;283(31):21305-9.

Schmalfeldt M, Bandtlow CE, Dours-Zimmermann MT, Winterhalter KH, Zimmermann DR. Brain derived versican V2 is a potent inhibitor of axonal growth. J Cell Sci. 2000;113 (Pt 5):807-16.

Scott JE, Haigh M. Proteoglycan-collagen interactions in intervertebral disc. A chondroitin sulphate proteoglycan associates with collagen fibrils in rabbit annulus fibrosus at the d-e bands. Biosci Rep. 1986;6(10):879-88.

Sheetz MJ, King GL. Molecular understanding of hyperglycemia's adverse effects for diabetic complications. JAMA. 2002;288(20):2579-88.

Shynlova O, Mitchell JA, Tsampalieros A, Langille BL, Lye SJ. Progesterone and gravidity differentially regulate expression of extracellular matrix components in the pregnant rat myometrium. Biol Reprod. 2004;70(4):986-92.

Shynlova O, Oldenhof A, Dorogin A, Xu Q, Mu J, Nashman N, et al. Myometrial apoptosis: activation of the caspase cascade in the pregnant rat myometrium at midgestation. Biol Reprod. 2006;74(5):839-49.

Shynlova O, Tsui P, Dorogin A, Chow M, Lye SJ. Expression and localization of alpha-smooth muscle and gamma-actins in the pregnant rat myometrium. Biol Reprod. 2005;73(4):773-80.

Shynlova O, Tsui P, Dorogin A, Langille BL, Lye SJ. Insulin-like growth factors and their binding proteins define specific phases of myometrial differentiation during pregnancy in the rat. Biol Reprod. 2007;76(4):571-8.
Shynlova O, Tsui P, Jaffer S, Lye SJ. Integration of endocrine and mechanical signals in the regulation of myometrial functions during pregnancy and labour. Eur J Obstet Gynecol Reprod Biol. 2009;144 Suppl 1:S2-10.

Sibai BM, Caritis SN, Hauth JC, MacPherson C, VanDorsten JP, Klebanoff M, et al. Preterm delivery in women with pregestational diabetes mellitus or chronic hypertension relative to women with uncomplicated pregnancies. The National institute of Child health and Human Development Maternal- Fetal Medicine Units Network. Am J Obstet Gynecol. 2000;183(6):1520-4.

Spiegl G, Zupko I, Minorics R, Csik G, Csonka D, Falkay G. Effects of experimentally induced diabetes mellitus on pharmacologically and electrically elicited myometrial contractility. Clin Exp Pharmacol Physiol. 2009.

Spiess K, Teodoro WR, Zorn TM. Distribution of collagen types I, III, and V in pregnant mouse endometrium. Connect Tissue Res. 2007;48(2):99-108.

Stanley JL, Ashton N, Taggart MJ, Davidge ST, Baker PN. Uterine artery function in a mouse model of pregnancy complicated by diabetes. Vascul Pharmacol. 2009;50(1-2):8-13.

Sutherland A. Mechanisms of implantation in the mouse: differentiation and functional importance of trophoblast giant cell behavior. Dev Biol. 2003;258(2):241-51.

Sutherland AE, Calarco PG, Damsky CH. Developmental regulation of integrin expression at the time of implantation in the mouse embryo. Development. 1993;119(4):1175-86.

Tan J, Raja S, Davis MK, Tawfik O, Dey SK, Das SK. Evidence for coordinated interaction of cyclin D3 with p21 and cdk6 in directing the development of uterine stromal cell decidualization and polyploidy during implantation. Mech Dev. 2002;111(1-2):99-113.

Tatewaki R, Otani H, Tanaka O, Kitada J. A morphological study on the reproductive organs as a possible cause of developmental abnormalities in diabetic NOD mice. Histol Histopathol. 1989;4(3):343-58.
Teklenburg G, Salker M, Molokhia M, Lavery S, Trew G, Aojanepong T, et al. Natural selection of human embryos: decidualizing endometrial stromal cells serve as sensors of embryo quality upon implantation. PLoS One. 2010;5(4):e10258.

Teodoro WR, Witzel SS, Velosa AP, Shimokomaki M, Abrahamsohn PA, Zorn TM. Increase of interstitial collagen in the mouse endometrium during decidualization. Connect Tissue Res. 2003;44(2):96-103.

The DIAMOND Project Group. Incidence and trends of childhood Type 1 diabetes worldwide 1990–1999. Diabetic Medicine. 2006;23(8):857-66.

Torchinsky A, Toder V, Savion S, Shepshelovich J, Orenstein H, Fein A. Immunostimulation increases the resistance of mouse embryos to the teratogenic effect of diabetes mellitus. Diabetologia. 1997;40(6):635-40.

Trelstad RL, Birk DE, Silver FH. Collagen fibrillogenesis in tissues, in a solution and from modeling: a synthesis. J Invest Dermatol. 1982;79 Suppl 1:109s-12s.

Vercheval M, De Hertogh R, Pampfer S, Vanderheyden I, Michiels B, De Bernardi P, et al. Experimental diabetes impairs rat embryo development during the preimplantation period. Diabetologia. 1990;33(4):187-91.

Vitoratos N, Vrachnis N, Valsamakis G, Panoulis K, Creatsas G. Perinatal mortality in diabetic pregnancy. Ann N Y Acad Sci. 2010;1205:94-8.

Vogel KG, Paulsson M, Heinegard D. Specific inhibition of type I and type II collagen fibrillogenesis by the small proteoglycan of tendon. Biochem J. 1984;223(3):587-97.

Wang Q, Ratchford AM, Chi MM, Schoeller E, Frolova A, Schedl T, et al. Maternal diabetes causes mitochondrial dysfunction and meiotic defects in murine oocytes. Mol Endocrinol. 2009;23(10):1603-12.

Wentzel P, Jansson L, Eriksson UJ. Diabetes in pregnancy: uterine blood flow and embryonic development in the rat. Pediatr Res. 1995;38(4):598-606.

White CA, Robb L, Salamonsen LA. Uterine extracellular matrix components are altered during defective decidualization in interleukin-11 receptor alpha deficient mice. Reprod Biol Endocrinol. 2004;2:76.

White P. Classification of obstetric diabetes. Am J Obstet Gynecol. 1978;130(2):228-30.
White P. Diabetes mellitus in pregnancy. Clin Perinatol. 1974;1(2):331-47.

White P. Pregnancy complicating diabetes. Am J Med. 1949;7(5):609-16.

Wight TN. Versican: a versatile extracellular matrix proteoglycan in cell biology. Curr Opin Cell Biol. 2002;14(5):617-23.

Wilcoxon AJ, Baird DD, Weinberg CR. Time of implantation of the conceptus and loss of pregnancy. N Engl J Med. 1999;340(23):1796-9.

Williams SJ, Shynlova O, Lye SJ, MacPhee DJ. Spatiotemporal expression of alpha(1), alpha(3) and beta(1) integrin subunits is altered in rat myometrium during pregnancy and labour. Reprod Fertil Dev. 2010;22(4):718-32.

Wu YJ, La Pierre DP, Wu J, Yee AJ, Yang BB. The interaction of versican with its binding partners. Cell Res. 2005;15(7):483-94.

Yamaguchi Y, Mann DM, Ruoslahti E. Negative regulation of transforming growth factor-beta by the proteoglycan decorin. Nature. 1990;346(6281):281-4.

Yamaguchi Y, Ruoslahti E. Expression of human proteoglycan in Chinese hamster ovary cells inhibits cell proliferation. Nature. 1988;336(6196):244-6.

Yang WC, Su TH, Yang YC, Chang SC, Chen CY, Chen CP. Altered perlecan expression in placental development and gestational diabetes mellitus. Placenta. 2005;26(10):780-8.

Yeshaya A, Orvieto R, Dicker D, Karp M, Ben-Rafael Z. Menstrual characteristics of women suffering from insulin-dependent diabetes mellitus. Int J Fertil Menopausal Stud. 1995;40(5):269-73.

Yohannes E, Chang J, Christ GJ, Davies KP, Chance MR. Proteomics analysis identifies molecular targets related to diabetes mellitus-associated bladder dysfunction. Mol Cell Proteomics. 2008;7(7):1270-85.

Yoshinaga K. Research on Blastocyst Implantation Essential Factors (BIEFs). Am J Reprod Immunol. 2010;63(6):413-24.
Yu Y, Singh U, Shi W, Konno T, Soares MJ, Geyer R, Fundele R. Influence of murine maternal diabetes on placental morphology, gene expression, and function. Arch Physiol Biochem. 2008;114(2):99-110.

Zaidel-Bar R, Itzkovitz S, Ma’ayan A, Iyengar R, Geiger B. Functional atlas of the integrin adhesome. Nat Cell Biol. 2007;9(8):858-67.

Zakaria R, Ismail Z, Chatterjee A. Cyproterone acetate and reversal of the impaired endometrial decidualization in streptozotocin-diabetic pseudopregnant rats. Pharmacol Res. 2000;42(2):183-6.

Zimmermann DR, Dours-Zimmermann MT. Extracellular matrix of the central nervous system: from neglect to challenge. Histochem Cell Biol. 2008;130(4):635-53.

Zimmernann D. Versican. In: Iozzo RV, editor. Proteoglycans - Structure, Biology and Molecular Interactions. New York: Marcel Dekker Inc.; 2000. p. 327-41.

Zorn TM, Bevilacqua EM, Abrahamsohn PA. Collagen remodeling during decidualization in the mouse. Cell Tissue Res. 1986;244(2):443-8.

Zusman I, Yaffe P, Ornoy A. The effects of high-sucrose diets and of maternal diabetes on the ultrastructure of the visceral yolk sac endoderm in rat embryos developing in vivo and in vitro. Acta Anat (Basel). 1987;128(1):11-8.
PROTOCOLO DE COLORAÇÃO PELA TÉCNICA DE SHORR PARA ANÁLISE DO ESFREGAÇO VAGINAL

As amostras são coletadas utilizando-se uma pequena escova (utilizada para coleta de material odontológico) introduzida no orifício vaginal e em seguida espalhada sobre uma lâmina de vidro. Após a secagem, em TA, as lâminas são submetidas às seguintes etapas:

- Fixação em solução de álcool 70% - éter (1:1) -10 min
- Álcool 70% - 2 min
- H₂O destilada - 2 min
- Hematoxilina de Mayer - 2 min
- Lavagem em H₂O corrente - 5 min
- H₂O destilada - passagem rápida
- Álcool 70% - 2 min
- Álcool 80% - 2 min
- Álcool 90% - 2 min
- Solução de Shorr - 10 min (sob agitação)
- Alcool 95% - passagem rápida
- Álcool abs - 5 min
- Álcool / xilol (1:1) - 5 min
- Xilol I e II - 2 min cada
- Montagem das lâminas com lamínula de vidro e resina.
PROCESSAMENTO DE MATERIAL PARA MICROSCOPIA DE LUZ - FIXAÇÃO EM METHACARN

1) Fixação
 - Solução de Methacarn (60% metanol, 30% clorofórmio e 10% de ácido acético glacial) por 3 h a 4 ºC.

2) Lavagem
 - Álcool abs - 4 x 30 min cada (Após a lavagem, o material pode ser mantido em álcool antes de continuar o processamento)

3) Diafanização
 - Xilol - 3 x 15 min (o tempo pode ser ajustado de acordo com as dimensões do material)

4) Inclusão
 - Paraplast® - 3 x 30 min (o tempo pode ser ajustado de acordo com as dimensões do material)

5) Microtomia
 - Cortes com 5 μm de espessura são obtidos com o auxílio de um micrótomo equipado com navalhas de aço,

6) Preparação das lâminas
 - Os cortes são aderidos a lâminas de vidro previamente limpas e revestidas por poli-L-lisina.
 - Secagem em estufa à 60 ºC – 30 min
 - Secagem em estufa à 37 ºC – 24 h
PROTOCOLO DA TÉCNICA HISTOQUÍMICA DO PICROSIRIUS

1) Desparafinização
 - Xilol I - II - 30 min cada

2) Hidratação
 - Álcool Abs - 95% - 90% - 70% - 30 min cada
 - Água destilada - 5 min

3) Coloração
 - Hematoxilina de Mayer - 8 min
 - Água corrente - 10 min
 - Água destilada - 5 minutos
 - Picrosirius - 1 hora (sob agitação)
 - Água corrente - 15 minutos
 - Água destilada. - lavagem rápida

4) Desidratação e diafanização
 - Álcool - 95% - 1 min (passagem rápida)
 - Álcool Abs I - 2 min
 - Álcool Abs II - 5 min
 - Álcool / xilol (1:1) – 5 min
 - Xilol I e II - 15 min cada

5) Montagem
 - Montagem das lâminas com resina e laminula de vidro
PROTOCOLO DAS TÉCNICAS DE IMUNOPEROXIDASE E IMUNOFLUORESCÊNCIA

1) Desparafinização e hidratação
 - Xilol I – II - 30 min cada
 - Álcool Abs - 30 min
 - Álcool 95% - 30 min
 - Álcool 90% - 30 min
 - Álcool 70% - 30 min
 - H₂O destilada - 5 min
 - PBS - 5 min

2) Recuperação antigênica
 De acordo com a natureza do antígeno a ser detectado e do anticorpo empregado pode-se utilizar uma das metodologias para recuperação antigênica:
 - Condroitinase ABC 0,2 U/mL, em tampão tris-HCl 20 mM por 1 h a 37 ºC (proteoglicanos)
 - Pepsina (Sigma) (4 mg/mL) em ácido acético 0,5 N por 15 min a 37 ºC (colágenos)
 - Recuperação antigênica em tampão citrato pH 6,0, por 10 min, à 98 ºC

3) Lavagem
 - PBS - 3 x 5 min

4) Bloqueio da peroxidase endógena (imunoperoxidase)
 - Peróxido de hidrogênio (3%) em PBS - 30 min T.A. (sob agitação)

5) Lavagem
 - PBS - 3 x 5 min
6) Bloqueio dos sítios antigênicos inespecíficos
- Soro do animal doador do anticorpo secundário em PBS/BSA 10% (1:1) T.A
 (retirar apenas o excesso da solução de bloqueio antes da incubação com o anticorpo)

7) Anticorpo primário
- Incubação do anticorpo primário - overnight a 4 ºC (câmara úmida)

8) Lavagem
- PBS - 3 x 5 min

9) Anticorpo secundário
- Incubação do anticorpo secundário conjugado com biotina (imunoperoxidase) ou com fluoresceína (FITC) (imunofluorescência), por 1 h (T.A.)

10) Lavagem
- PBS – 3 x 5 min (imunoperoxidase)
- PBS Tween 20 (0,05%) – 3 x 5 min (imunofluorescência)
- As lâminas de imunofluorescência são montadas em seguida (item 14). As lâminas da imunoperoxidase são submetidas a etapas adicionais, itens 11-13, antes da montagem

11) Amplificação do sinal (imunoperoxidase)
- Incubação com o complexo streptoavidina-peroxidase (Kit ABC, Vector) por 1 h (T.A.)

12) Revelação com DAB e contracoloração (imunoperoxidase)
- Revelação com 3,3 - diaminobenzidina (DAB) 0,03% em PBS e H₂O₂ 0,03%
- Contracoloração com Hematoxilina de Mayer por 2 - 4 min
- H₂O corrente - 10 min
13) Desidratação e diafanização (imunoperoxidase)
- Álcool 95% - 5 min
- Álcool Abs I – 10 min
- Álcool abs II – 10 min
- Álcool / Xilol (1:1) – 10 min
- Xilol I - xilol II – 10 min cada

14) Montagem das lâminas
- As lâminas de imunoperoxidase são montadas com resina enquanto que as da imunofluorescência são montadas com meio próprio para preservar o sinal fluorescente
HISTOQUÍMICA DE LECTINA DBA

1) Desparafinização e hidratação
 - Xilol I – II - 15 min cada
 - Álcool Abs - 15 min
 - Álcool 95% - 10 min
 - Álcool 90% - 10 min
 - Álcool 70% - 10 min cada
 - H₂O destilada - 5 min
 - PBS - 5 min

2) Bloqueio da peroxidase endógena
 - Peróxido de hidrogênio (3%) em PBS - 30 min T.A. (sob agitação)

3) Lavagem
 - PBS - 3 x 5 min

6) Bloqueio dos sítios antigênicos inespecíficos
 - Incubação com PBS/BSA 10% T.A por 1 h (não lavar em PBS antes da
 incubação com a lectina DBA, retirar apenas o excesso da solução de
 bloqueio)

7) Lectina DBA
 - Incubação com a lectina DBA biotinilada overnight a 4 ºC (câmara úmida)

8) Lavagem
 - PBS - 3 x 5 min

Amplificação do sinal
 - Incubação com o complexo streptoavidina-peroxidase (Kit ABC, Vector) por
 1 h (T.A.)
12) Revelação com DAB e contracoloração
 - Revelação com 3,3 - diaminobenzidina (DAB) 0,03% em PBS e \(\text{H}_2\text{O}_2 \) 0,03%
 - Contracoloração com Hematoxilina de Mayer por 2 - 4 min
 - \(\text{H}_2\text{O} \) corrente - 10 min

13) Desidratação e diafanização
 - Álcool 95% - 5 min
 - Álcool Abs I – 10
 - Álcool abs II – 10 min
 - Álcool / Xilol (1:1) – 10 min
 - Xilol I e II – 10 min cada

14) Montagem das lâminas
 - As lâminas são montadas com resina e lamínula de vidro
PROTOCOLO DE PROCESSAMENTO PARA MATERIAL DE MICROSCÓPIA ELETRÔNICA DE TRANSMISSÃO - FIXAÇÃO POR KARNOVSKY

1) Fixação
 - O material é fixado por imersão na solução de Karnovsky por 24 h a 4 ºC (no girador)
 - Glutaraldeído 2%
 - Paraformaldeído 4%
 - Tampão cacodilato de sódio 0,1 M pH 7,4

2) Lavagem
 - Tampão cacodilato de sódio 0,1 M pH 7,4 - 4 x 15 min

3) Pós-fixação
 - Tetróxido de ósmio a 1% em cacodilato de sódio 0,1 M - 1 h

4) Desidratação
 - Álcool 30% - 2 x 10 min
 - Álcool 50% - 2 x 10 min
 - Álcool 70% - 2 x 10 min
 - Álcool 80% - 2 x 10 min
 - Álcool 90% - 2 x 10 min
 - Álcool 95% - 2 x 10 min
 - Álcool Abs - 2 x 10 min

5) Inclusão
 - Óxido de propileno ou acetona - 4 x 10 min
 - Resina Spurr e óxido de propileno 1:1 - 3 h
 - Resina Spurr e óxido de propileno 3:1 - 3 h
 - Resina Spurr overnight
 - Polimerização da resina em estufa à 37 ºC, durante 48 h
6) Microtomia

- Obtenção de secções semifinas (2 μm), utilizando um micrótomo equipado com navalhas de vidro
- Coloração dos cortes com azul de toluidina 1 % em solução aquosa de borato de sódio 1 %, com o objetivo de selecionar as áreas de interesse
- Ultramicrotomia para a obtenção de cortes ultrafinos (40–60 nm), utilizando-se de um ultramicrótomo equipado com navalha de diamante
- Os cortes ultrafinos são depositados sobre telas de cobre de 200 mesh
Effects of long-term diabetes on the structure and cell proliferation of the myometrium in the early pregnancy of mice

Rodolfo R. Favaro*, Renato M. Salgado*, Priscila R. Raspantini*, Zuleica B. Fortes† and Telma M. T. Zorn*

*Laboratory of Reproductive and Extracellular Matrix Biology, Department of Cell and Developmental Biology, University of São Paulo, São Paulo, Brazil and †Laboratory of Diabetes and Hypertension, Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil

Summary

It is known that the development of diabetic complications in human pregnancy is directly related to the severity and the duration of this pathology. In this study, we developed a model of long-term type 1 diabetes to investigate its effects on the cytoarchitecture, extracellular matrix and cell proliferation during the first adaptation phase of the myometrium for pregnancy. A single dose of alloxan was used to induce diabetes in mice prior to pregnancy. To identify the temporal effects of diabetes the mice were divided into two groups: Group D1 (females that became pregnant 90–100 days after alloxan); Group D2 (females that became pregnant 100–110 days after alloxan). Uterine samples were collected after 168 h of pregnancy and processed for light and electron microscopy. In both groups the histomorphometric evaluation showed that diabetes promoted narrowing of the myometrial muscle layers which was correlated with decreased cell proliferation demonstrated by PCNA immunodetection. In D1, diabetes increased the distance between muscle layers and promoted oedema. Contrarily, in D2 the distance between muscle layers decreased and, instead of oedema, there was a markedly deposition of collagen in the myometrium. Ultrastructural analysis showed that diabetes affects the organization of the smooth muscle cells and their myofilaments. Consistently, the immunoreaction for smooth muscle α-actin revealed clear disorganization of the contractile apparatus in both diabetic groups. In conclusion, the present model demonstrated that long-term diabetes promotes significant alterations in the myometrium in a time-sensitive manner. Together, these alterations indicate that diabetes impairs the first phenotypic adaptation phase of the pregnant myometrium.

Keywords
cell proliferation, electron microscopy, myometrium, pregnancy, smooth muscle α-actin, type 1 diabetes
Introduction

The myometrium is a highly dynamic uterine compartment, which is deeply remodelled during the estrous cycle (Salgado et al. 2009), as well as along the full course of pregnancy, to accommodate the growing embryo, to allow the appropriate formation of the placenta and successful labour (Bressan 2006). Hyperplasia and hypertrophy of the smooth muscle cells (SMCs) have been recognized as key biological events for a proper myometrial adaptation during pregnancy (Lagueurs & Lagrutta 1964; Reynolds 1965; Bulmer & Peel 1974). However, only recently, the exact contribution of these two biological processes for each phase of pregnancy was clarified. Four sequential myometrial phenotypic phases were identified in the rat. The first phase, at early pregnancy, is characterized by hyperplasia of the SMCs. In the second phase, at mid-pregnancy, hypertrophy of SMCs and extracellular matrix (ECM) synthesis occur. In the third phase, at the end of pregnancy, the cells assume a contractile phenotype, and finally, in the fourth phase the SMCs become highly active and committed to labour. The authors suggest that this phenotypic modulation is promoted by endocrine signals and mechanical stretch of the myometrium provided by the growing foetus (Reviewed by Shynlova et al. 2009).

A pioneer study performed by Alvarez and Caldeyro-Barcia (1948) demonstrated that contractility of the myometrium is present throughout pregnancy. Contractility is important for fundamental events, such as control of uterine blood flow, distension and formation of the lower uterine segment and proper accommodation of the foetus (Neme et al. 2006). All these data reinforce the importance of the myometrium not only during labour but also during the full course of pregnancy.

Type 1 diabetes mellitus is a severe pathology that affects pregnancy and is associated with elevated rates of congenital malformations, stillbirth and preterm birth (Casson et al. 1997; Jensen et al. 2004; Lapolla et al. 2008). The rate of preterm delivery ranges from 24 to 38% in women with type 1 diabetes, which was significantly higher than in non-diabetic women (Mimouni et al. 1988; Hanson & Persson 1993; Sibai et al. 2000; Kovilam et al. 2002; Lepercq et al. 2004). In addition, spontaneous and induced preterm delivery is augmented in diabetic pregnancies. Spontaneous preterm labour has been associated with poor glycemic control (Mimouni et al. 1988; Kovilam et al. 2002). However, the mechanisms underlying remain unknown and, consequently, the prevention of diabetic-associated preterm labour are hampered by our limited knowledge of the impact of this pathology on the myometrium.

A previous study demonstrated that non-obese diabetic (NOD) mice exhibit uterine weight loss because of atrophy of both the endometrium and the myometrium (Tatemaki et al. 1989). In addition, other reports showed that diabetes affects not only the morphology of the myometrium, but also its normal function.

Ultrastructural examination of non-pregnant myometrium indicates that diabetes reduces SMCs myofibrils. In addition, in vitro experiments showed a diminished contractile response of the myometrium to oxytocin stimulation (McMurtrie et al. 1985).

There are few studies showing that diabetes alters the contractility of pregnant myometrium in human (Kaya et al. 1999) and animal models (Jawerbaum et al. 1996; Spiegel et al. 2009), and the structural basis of those functional alterations has not been investigated yet.

To contribute with this field, we developed a model of long-term type 1 diabetes in mice, aiming to know the impact of this pathology on the structure and cell proliferation of the myometrium in the early pregnancy, when the first adaptation phase (proliferative phase) occurs.

Material and methods

Animals

All experiments were approved by the Institute of Biomedical Sciences Animal Ethics Committee (authorization number, 144/2002).

Sixty-day-old Swiss female mice weighing 30–35 g were obtained from the breeding colony of the Veterinary Medical School of our University. The mice were housed at constant room temperature (21 ± 1 °C), humidity and 12 h light/dark cycle, and had free access to tap water and standard mouse chow.

Induction of diabetes

Diabetes was induced by a single intravenous injection of alloxan, 40 mg/kg (Sigma, St. Louis, MO, USA), freshly prepared in physiological saline solution (pH 7.0), 16 h after food deprivation. Control mice (n=5) were injected with physiological saline alone. The blood glucose levels were measured using an Accu-Check blood glucose monitor (Roche Basel, Switzerland) with blood collected from the tail, 7 days after alloxan administration. Most of the animals (62%) presented non-fasting glycemia higher than 400 mg/dl and these were selected for this study.

Glycemia, glycosuria, ketonuria, body weight, as well as food and water consumption, were evaluated every 30 days and at the moment of sacrifice, to confirm the maintenance of the diabetic state. Serum insulin was measured by radio-
Table 1 Physiological and reproductive parameters of the diabetic model

	Control (n = 5)	Diabetic (n = 9)
Glycemia (mg/dl)	114.2 ± 10.25	513.7 ± 48.20³
Glycosuria (mmol/l)	—	≥278³
Food consumption (g)	5.8 ± 0.46	21.5 ± 1.54*
Water consumption (ml)	5.5ml ± 1.65	65ml ± 7.07*
Insulinemia (ng/ml)	1.9 ± 0.24	—
Maternal body weight (g)	31.3 ± 1.86	23.9 ± 0.85*
Number of Implantation sites	14.5 ± 0.5	10.2 ± 1.04*

Data were expressed as means ± standard error of means and analysed with Student’s t test.

*P < 0.001 vs. respective control group. ³below detectable levels.

In all animals, glycosuria levels reached test limit.

immunoassay using a commercial kit (Linco Research Inc., MD, USA).

Mating Schedule

Animals were mated from the 90th to the 110th day after alloxan or saline administration. To precisely identify the temporal effects of diabetes on the myometrium, the pregnant diabetic mice were divided into two groups: Group D1 (n = 5) – females that became pregnant in the first half of the mating period (90–100 days after diabetes induction) and Group D2 (n = 4) – females that became pregnant in the second half of the mating period (100–110 days after diabetes induction).

To set up mating and to avoid differences in the timing of pregnancy (Stumm and Zorn, 2007), diabetic and control female mice were housed daily for a short time period of 3 h with non-diabetic male mice. After this period, the females were examined for the presence of a vaginal plug. The presence of the vaginal plug was considered zero hour of pregnancy (hp).

Tissue collection

The females were killed in the early pregnancy, after 168 hp (Day 8 of pregnancy), during the first phase of myometrial adaptation to pregnancy. Before killing they were anaesthetized with an intraperitoneal injection of Avertin® (Sigma, MO, USA) (0.025 ml/g body weight). To

Figure 1 Photomicrographs of the myometrium: (a) Myometrium of the control group showing well organized smooth muscle cells (SMC) of the inner muscle layer (IML) and outer muscle layer (OML). A loose blood vessel-rich connective tissue is observed between layers; (b) Note in subgroup D1 enlarged intercellular spaces and dilated blood vessels in the connective tissue between muscle layers, indicating the presence of oedema. Contrarily, in D2 (c) the distance between muscle layers shows a dramatic reduction and there is an excessive deposition of collagen fibris. In both D1 and D2, the narrowing of the muscle layers can be observed. ES: endometrial stroma. Picrosirius-haematoxylin. Scale bar = 50μm.

Figure 2 Graphic representation showing: (a) total thickness of the myometrium; (b) distance between layers (c) thickness of the inner muscle layer (IML) and (d) thickness of the outer muscle layer (OML) of the control (n = 5) and the diabetic subgroups D1(n = 5) and D2 (n = 4).

© 2010 The Authors
Journal compilation © 2010 Blackwell Publishing Ltd, International Journal of Experimental Pathology
avoid undesirable myometrial contractions, a 4% (w/v) papaverin solution in distilled water was dripped onto the uterine horns prior to the dissection. Females were killed by cervical dislocation and body weight was measured without the digestive tract.

Light microscopy

To study the effects of diabetes on the organization of the myometrial layers, three implantation sites were randomly isolated from the right uterine horn of each animal. Samples were fixed by immersion in methacarn solution (absolute methanol, chloroform and glacial acetic acid; 6:3:1) for 3 h at 4°C, and processed for Paraplast (Oxford-Labware, St. Louis, MO, USA) embedding. Sections of 5 μm were cut and adhered onto glass slides using 0.1% poly-L-Lysine (Sigma, MO, USA). These samples were submitted to picrosirius histochemistry for collagen fibres (Junqueira *et al*. 1983) and immunoperoxidase procedures.

Electron microscopy

Uterine fragments were fixed by immersion in Karnowsky solution – 2% glutaraldehyde and 2% paraformaldehyde.

Figure 3 Ultrastructure of the inner (a, b and c) and outer (d, e, and f) muscle layers. (a) Control group showing well organized bundles of collagen fibrils; (b) group D1 showing that collagen fibrils are less organized and less compacted (arrows) (c) in D2 note the higher deposition of collagen fibrils which do not have a preferential orientation in the tissue (arrows). Non fibrilar matrix is also higher in D2 (asterisks). Compared to the control, the number of caveolae is lower in both diabetic subgroups (arrow heads). FB: fibroblast. × 20,000. Note that, compared to the control (d), the intercellular spaces (asterisks) are enlarged in D1 (e) and reduced in D2 (f). × 4000.
in 0.1 M sodium cacodylate buffer (pH 7.4) for 24 h at 4 °C, followed by a postfixation with 1% (w/v) osmium tetroxide in the same buffer for 2 h. Samples were dehydrated and embedded in Spurr resin. Thin sections (50 nm thick) of selected regions were obtained with a MT-2 Sorvall ultramicrotome. After staining with uranyl acetate and lead citrate the sections were examined with a JEOL 100 CX II transmission electron microscope (Jeol, Tokyo, Japan).

Immunoperoxidase detection of PCNA

PCNA immunoreaction was used to analyse the effect of diabetes on the proliferative activity of the smooth muscle cells. For that, sections were deparaffinized, hydrated and treated with 3% (v/v) H₂O₂ in PBS for 30 min. For detection of PCNA, non-specific staining was blocked with normal goat serum diluted 1:1 in PBS-10% (w/v) BSA, and then incubated with rabbit polyclonal anti-PCNA antibody (Abcam Cambridge, UK) diluted 1:2000 in PBS, overnight at 4 °C. Afterwards, the slides were incubated with biotin-conjugated goat anti-rabbit IgG (Rockland, Gilbertsville, PA, USA), diluted 1:2000 in PBS for 1 h at room temperature (RT), followed by incubation with streptavidin-peroxidase complex (Vectastin ABC kit; Vector Laboratories, CA, USA) for 1 h at RT. The peroxidase reaction was visualized using 0.03% (w/v) 3,3′-diaminobenzidine (Sigma, MO, USA) in PBS with 0.03% (v/v) H₂O₂. Sections were counterstained with Mayer's haematoxylin.

To achieve standardization of the immunoreactions, the slides from all groups were simultaneously incubated with
DAB for a determined period of time and reaction was then immediately interrupted with PBS. For each immunocytochemical reaction, control reactions were performed by replacing the primary antibodies with the respective non-immune serum at similar concentrations or by omitting the primary antibody step from the protocol.

Immunoperoxidase detection of smooth muscle α-actin

To investigate the integrity of the contractile apparatus of the myometrial SMCs, the distribution of smooth muscle α-actin was analysed. For that purpose, sections were deparaffinized, hydrated and treated with 3% (v/v) H2O2 in PBS for 30 min. Sections were then blocked for 1 h with IgG blocking reagent (M.O.M. Kit, Vector Laboratories, CA, USA), followed by washing in PBS and incubation with M.O.M. kit diluent for 10 min. Afterwards, the sections were incubated with mouse monoclonal anti-smooth muscle α-actin (Sigma, MO, USA), diluted 1:800, for 30 min at room temperature. After PBS washing, sections were incubated with biotinylated anti-mouse IgG reagent for 10 min, followed by incubation with streptavidin-peroxidase complex for 10 min at RT. The following steps were performed as described above.
Histomorphometry and proliferative index evaluation

Images were captured and analysed using a Nikon Eclipse E600 microscope integrated with a digital camera Nikon DP-72 (Nikon, Japan) and Image Pro Plus software (Media Cybernetics, MD, USA). For the histomorphometrical analysis of the myometrial layers, at least 10 fields per animal were selected from the antimesometrial region of the uterus in paraffin cross-sectioned samples. Five to ten measurements of the thickness of each myometrial layer were performed per field. Proliferative index was calculated as the percentage of PCNA positive cells counted in at least 1,000 cells in each group.

Statistical analysis

Data were expressed as means ± standard error of means (SEM). Statistical analyses were performed with Student’s t-test and one-way analysis of variance (ANOVA) followed by Tukey-multiple comparisons test (P ≤ 0.05).

Results

Physiological and reproductive parameters of a long-term diabetic model

Compared with control, diabetic mice exhibited sharply elevated blood glucose concentrations, glycosuria, lipo-insulinemia, increased food and water consumption and reduction of body weight. No ketonuria was detected. Pregnancy was achieved without any insulin treatment. The number of implantation sites was reduced nevertheless (Table 1).

Effect of diabetes on the structural organization of the myometrium

The myometrium in rodents is composed of three well-defined layers: (i) the inner circular muscle layer (IML) surrounding the endometrium; (ii) the outer longitudinal muscle layer (OML); (iii) the connective tissue between both layers that contains the vascular plexus (Figure 1a).

Diabetes affected the structural organization of the myometrium and a significant variation was observed when groups D1 and D2 were compared. Mice grouped in D1 (90–100 days of diabetes induction) showed a notable increase in the thickness of the myometrium, enlarged intercellular spaces and dilated blood vessels in the connective tissue between layers, indicating the presence of oedema (Figure 1b). Interestingly, those of D2 (100–110 days of diabetes induction) presented reduction of the myometrial wall and, instead of oedema, there was an increased deposition of collagen evidenced by picrosirius histochemistry (Figure 1c). Confirming our morphological observation, the histomorphometric data showed that mice in D1 and D2 are differentially affected by diabetes. When compared with the control group (152.3 ± 4 μm) the total thickness of the myometrial wall was increased in D1 (172.33 ± 7.26 μm; P < 0.05) and decreased in D2 (85.17 ± 5.69 μm; P < 0.001) (Figure 2a). Compared with the control group (71.22 ± 2.35 μm), in subgroup D1 the distance between the inner muscle layer and outer muscle layer was significantly augmented (101.6 ± 5.04 μm; P < 0.001). Contrarily, in subgroup D2 the distance between muscle layers showed an impressive reduction (36.06 ± 2.89 μm; P < 0.001) (Figure 2b). In addition, the thickness of the IML was decreased in both D1 (33.93 ± 1.65 μm; P < 0.05) and D2 (30.74 ± 0.78 μm; P < 0.001) compared with the control group (39.57 ± 1.48 μm) (Figure 2c). The thickness of the OML was also significantly narrower in both groups D1 (34.93 ± 1.36 μm; P < 0.001) and D2 (23.91 ± 1.26 μm; P < 0.001) compared with the control (45.68 ± 1.05 μm). In addition, the OML was significantly narrower in D2 than in D1 (P < 0.001) (Figure 2d).

Effect of diabetes on the ultrastructure of the myometrium

In the control group the SMCs of the IML were regularly organized in parallel layers. The intercellular spaces contained predominantly cross-sectioned thin collagen fibrils. Many caveolae were present in the plasma membrane which was lined by an electron-dense basement membrane (Figure 3a). In D1, the intercellular spaces were wider and contained few and dispersed collagen fibrils (Figure 3b). In D2, the intercellular spaces were also wider than in the control group. Interestingly, they were filled by high amounts of collagen fibrils and microfibrils. In addition, the collagen fibrils were disorganized and lost the transversal orientation observed in the control group (Figure 3c). Moreover, the basement membrane was less electron dense and discontinuous. Compared to the control, the SMCs of D1 and D2 had fewer caveolae (Figure 3a, b, c).

In the control group the SMCs of the OML were organized in bundles and the intercellular spaces were filled with cross-sectioned thin collagen fibrils (Figure 3d). As in the IML, many caveolae were present. In D1 the OML was clearly disorganized, intercellular spaces were wider and collagen fibrils dispersed (Figure 3e). Contrarily, in D2 the intercellular spaces were clearly reduced (Figure 3f).
Effects of diabetes on the contractile apparatus

Ultrastructural analysis revealed in the SMCs of the control group a rich network of electron-dense filaments of the contractile system and few profiles of rough endoplasmic reticulum and mitochondria in the cytoplasm. (Figure 4a). In both diabetic groups the contractile filaments were less abundant and disorganized (Figures 4b, c).

Consistently, in the control group the immunoreaction for smooth muscle α-actin was strong and homogenously distributed in the cytoplasm of the SMCs of both layers (Figures 4c, f). However, in both diabetic groups the immunoreaction for smooth muscle α-actin was less intense and irregularly distributed inside the SMCs of both layers, indicating that the contractile apparatus was affected by diabetes. (Figure 4d, e, g, h).

Effect of diabetes on cell proliferation

The index of cell proliferation was significantly lower in both layers of the myometrium in the diabetic animals. The percentage of PCNA-positive nuclei was lower in the IML of both D1 (32.58 ± 2.19%; P < 0.001) and D2 (26.95 ± 1.85%; P < 0.001), compared with the control group (44.85 ± 1.7%) (Figure 5a, b, c and 6a). Likewise, the percentage of PCNA-positive nuclei in the OML was lower in D1 (12.84 ± 1.68%; P < 0.001) and D2 (12.26 ± 0.84%; P < 0.001), compared with the control group (30.53 ± 3.95%) (Figure 5d, e, f, and 6b). The SMCs of the IML showed higher proliferative index than those of the OML in the control and both diabetic groups.

Discussion

The mouse model developed for this study was successful to induce the classical characteristics of type 1 diabetes, such as high levels of hyperglycaemia, glycosuria, hipoinsulinemia, increased food and water consumption and decreased body weight. In addition, 62% of diabetic animals presented glycaemia higher than 400 mg/dl, characterizing severe diabetes.

Even 90 days after the induction of diabetes, many animals were able to mate and to maintain their pregnant state. A similar result was obtained by Stanley et al. (2009) in a mouse model of pregnancy complicated by type 1 diabetes 8 weeks after streptozotocin administration. Contrarily, diabetic rats become anestrous shortly after the induction of diabetes and they are unable to mate and maintain pregnancy without insulin replacement, as achieved by our group and others (Katayama et al. 1984; González 2002; Giachini et al. 2008).

One distinctive aspect of the present mouse model is the possibility of studying the development of gestational complications in animals submitted to long-term diabetes prior to pregnancy, thus simulating the human condition, when pregnancy occurs several years after the onset of type 1 diabetes. It is known that the development of diabetic complications in human pregnancy is directly related to the severity and the duration of this pathology (White 1974; Greene et al. 1989; Garner 1995; Gonzalez-Gonzalez et al. 2008). However, the correlation between the length of diabetes and the development of gestational complications has not been adequately explored in animal models.

This study showed that diabetes promotes significant alterations in the myometrium in a time-sensitive manner. During the development of the present mouse model we observed that after a short period of diabetes (50–60 days) no significant structural alterations were observed in the myometrium (Favaro RR, Fortes ZB and Zorn TMT, unpublished data), what led us to extend the duration of diabetes. From 90 to 110 days after diabetes induction, however, remarkable and distinct structural alterations were found in the myometrium, suggesting there is a critical window of sensibility to diabetes in a short period of time. In addition, from 120 days of diabetes induction onward the mortality increased dramatically, and most of those animals who survived were in anestrous (Favaro RR, Fortes ZB and Zorn TMT, unpublished data). In fact, oedema or fibrosis was observed in the myometrium according to the duration of diabetes. These apparently contradictory myometrial responses can be reconciled by hypothesizing that both types of alterations represent different stages of diabetic complications. In the early stage, alteration of the vascular permeability promotes oedema, inducing the increase in the distance between the myometrial layers. In the following stages, and consequent to the inflammatory process, fibrosis and atrophy occur in the myometrial layers. According to Brownlee (2001), there are evidences that early in the course of diabetes intracellular hyperglycaemia leads to abnormalities in blood flow and increased vascular permeability, because of the decreased activity of vasodilators, increased activity of vasoconstrictors and elaboration of permeability factors. In addition, decreased production of endothelial and neurotrophic factors and excessive ECM deposition contribute to microvascular damage, whereas progressive capillary occlusion occurs. Together these alterations cause oedema, ischaemia and hypoxia-induced neovascularization in the retina and proteinuria in the kidney. Interestingly, in spite of oedema and vasodilatation observed in D1, no significant leucocytic infiltration was observed in the myometrial connective tissue. This fact may be a consequence of a defective
leucocyte interaction with the endothelium promoted by diabetes (Fortes et al. 1991; Cruz et al. 2003). In addition, the pregnant uterus is an immune-privileged organ in which inflammatory reactions are especially modulated (Hunt & Petroff 2008).

Myometrial growth and remodelling during pregnancy depend on increased synthesis of ECM proteins (Shynlova et al. 2004). Collagens, elastin and proteoglycans have been previously detected in the pregnant myometrium (Nishinaka & Fukuda 1991). Accordingly, we have previously demonstrated that small leucine rich proteoglycans (SLRPs) are remarkably remodelled in the mouse myometrium during the estrous cycle and early pregnancy, suggesting the potential role of these ECM molecules in the biology of the myometrium (San Martin et al. 2003; Salgado et al. 2009). The alterations in ECM deposition and organization, as observed in the diabetic animals in this study, are expected to have a negative impact on the contractility of the myometrium.

Comparable alterations were observed in the vagina of diabetic rats. In that study, reduction in the vasculature, lamina propria and the muscle layer was observed. These alterations were accompanied by disarrangement and fibrosis of the connective tissue, which was correlated with the expression of TGF-β (Park et al. 2001). Despite a significant decrease in the vaginal muscle layers, none or little apoptosis was detected 3 months after the induction of diabetes (Ferrini et al. 2006). This information raises the possibility that the thinning of the muscle layer results from a decreased cell proliferation promoted by diabetes, as demonstrated in our study.

Although it is well documented that diabetes increases cell proliferation in non classical targets of ovarian hormones, such as the SMCs of blood vessels (Natarajan et al. 1992) and the bladder (Eika et al. 1993), our data showed that myometrial SMCs present an opposite behaviour. In our model diabetes promoted a reduction in SMCs proliferation, which was correlated with decreased thickness of the muscle layers. Considering previous data, we speculate that such differences in cell proliferation between myometrial and vascular SMCs are because of their distinct dependence and response to ovarian hormones. In fact, it has been demonstrated that cell proliferation in the pregnant myometrium is regulated by oestrogen, acting through the mammalian Target Of Rapamycin (mTOR) signalling pathway, which regulates cell growth and proliferation in many tissues (Jaffer et al. 2009). Alterations observed in the vagina of diabetic rats were associated with hormonal unbalance, with reduction of the plasmatic levels of oestrogen and its nuclear receptors (Kim et al. 2006). Indeed, oestradiol supplementation restores the diabetes-induced thinning of the vaginal muscle layer in mice (Cushman et al. 2009). In addition, the levels of oestrogen and progesterone are reduced in pregnant diabetic animals (Zakaria et al. 2000), which could explain the decreased proliferation of myometrial SMCs demonstrated in this study.

Actins are members of a highly conserved contractile protein family. Differentiated SMCs typically contain α and γ smooth muscle actins, which form the myofibrils, and cytoplasmic β and γ actin isoforms that participate in the formation of the cytoskeleton (Kabsch & Vandekerckhove, 1992). Both smooth muscle actins, α and γ, were detected in the rat pregnant myometrium. Alpha SM-actin was constitutively expressed at high levels in the myometrium throughout rat pregnancy (Shynlova et al. 2005).

One important result from our study was that diabetes also affected the organization of the contractile filaments of the SMCs, demonstrated by electron microscopy and immunodetection of α-actin. Reduction in the myofibrils content and loss of its characteristic organization is expected to disturb the normal contractility of the myometrium. Myofibril alteration was also observed in the myometrium of non-pregnant diabetic rats and was correlated with the reduction of the myometrium contractility induced by oxytocin in vitro (McMurtrie et al. 1985). Diabetes also impairs the contractility of the myometrium of pregnant rats. However, responsiveness to oxytocin may be augmented (Spiegler et al. 2009) or diminished (Jawerbaum et al. 1996), what may be attributed to different animal models and experimental conditions.

In addition, previous studies have shown that the contractility of the SMCs depends on the interaction between the contractile apparatus of the cell and its ECM intermediated by membrane receptors (Reviewed by: Zhang & Gunst 2008). In our model, both contractile apparatus and ECM were clearly affected by severe long-term type 1 diabetes providing evidences that may explain the loss of contractile efficiency of the myometrium in a diabetic state. Besides their contractile function, we should consider that SMCs of the myometrium also secrete factors to the pregnant endometrium (Wang et al. 1998).

Alteration of the myometrial contractile apparatus by diabetes may be correlated with the reduced levels of ovarian hormones promoted by this disease. Actually, there are evidences that diethylstilbestrol, an oestrogenic hormone, restores the uterine activity stimulated by oxytocin in vitro, altered in consequence of the diabetic condition (Rosa 1977).

Furthermore, we observed that the number of caveolae was reduced in the SMCs of both diabetic groups. Caveolae are specialized plasma membrane regions, which act as scaffold to receptors, signalling proteins and ion channels and play a major role in SMCs physiology (Halayko et al.
2008). Thus, reduced number of caveolae may impair SMCs function.

In conclusion, the results presented in this study expand our understanding about the effects of diabetes on the reproductive system, particularly on the myometrium, demonstrating that this pathology alters the organization of the muscle layers, the contractile apparatus, and the cell proliferation profile of the pregnant myometrium. Therefore, these alterations promoted by diabetes impair the first adaptation phase of the pregnant myometrium. Moreover, our mouse model of long-term type 1 diabetes was appropriate to demonstrate that, in the myometrium, these alterations occur in a time-sensitive manner.

Acknowledgments
The authors are grateful to Mrs. Fernanda AC Barreiro, Mrs. Cleusa R Pellegrini and Mr. Caspar F. Lima for the excellent technical assistance provided.

References
Alvarez H. & Caldeyro-Barcia R. (1948) La actividad contráctil rítmica del útero humano grávido. Arch. Gin. Obst. 7, 79–100.
Bressan Filho N.P. (2006) Local changes in pregnant uterus. Basic Obstetrics, 3rd edn, pp. 32–36, Neme, B. São Paulo: Sarvier.
Brownlee M. (2001) Biochemistry and molecular cell biology of diabetic complications. Nature 414, 813–820.
Bulmer D. & Peel S. (1974) An autoradiographic study of cellular proliferation in the uterus and placenta of the pregnant rat. J. Anat. 117, 433–441.
Casson I.F., Clarke C.A., Howard C.V. et al. (1997) Outcomes of pregnancy in insulin dependent diabetic women: results of a five year population cohort study. BMJ 315, 275–278.
Cruz J.W., Soto-Suazo M.W., Hofman T.C., Akamine E.H., Zorn T.T., Fortes Z.B. (2003) Minalrestat and leukocyte migration in diabetes mellitus. Diabetes Metab. Res. Rev. 19, 223–231.
Cushman T.T., Kim N., Hoyt R., Traish A.M. (2009) Estradiol ameliorates diabetes-induced changes in vaginal structure of db/db mouse model. J. Sex. Med. 6, 2467–2479.
Eika B., Levin R.M., Monson F.C., Murphy M., Longhurst P.A. (1993) 3H-thymidine uptake by the rat urinary bladder after induction of diabetes mellitus. J. Urol. 150, 1316–1320.
Ferrini M.G., Nolazo G., Vernet D., Gonzalez-Cadavid N.F., Berman J. (2006) Increased vaginal oxidative stress, apoptosis, and inducible nitric oxide synthase in a diabetic rat model: implications for vaginal fibrosis. Fertil. Steril. 86, 1152–1163.
Fortes Z.B., Farsky S.P., Oliveira M.A., Garcia-Leme J. (1991) Direct vital microscopic study of defective leukocyte-endothelial interaction in diabetes mellitus. Diabetes 40, 1267–1273.
Garner P. (1995) Type I diabetes mellitus and pregnancy. Lancet 346, 157–161.
Giachini F.R., Carriel V., Capelo L.P. et al. (2008) Maternal diabetes affects specific extracellular matrix components during placentation. J. Anat. 212, 31–41.
González E. (2002) Diabetes mellitus experimental: etiologia de las malformaciones congénitas en descendientes de ratas diabéticas. Diabetes Metab. Res. Rev. 13, 53–63.
Gonzalez-Gonzalez N.L., Ramirez O., Mozas J. et al. (2008) Factors influencing pregnancy outcome in women with type 2 versus type 1 diabetes mellitus. Acta Obstet. Gynecol. Scand. 87, 43–49.
Greene M.F., Hare J.W., Krache M. et al. (1989) Prematurity among insulin-requiring diabetic gravid women. Am. J. Obstet. Gynecol. 161, 106–111.
Halayko A.J., Tran T., Gosens R. (2008) Phenotype and functional plasticity of airway smooth muscle: role of caveolae and caveolins. Proc Am Thorac Soc 5, 80–88.
Hanson U. & Persson B. (1993) Outcome of pregnancies complicated by type 1 insulin-dependent diabetes in Sweden: acute pregnancy complications, neonatal mortality and morbidity. Am. J. Perinatol. 10, 330–333.
Hunt J.S. & Petroff M.G. (2008) Molecular immunology of the maternal-fetal interface. In: The Endometrium, pp. 524–545 (eds J.D. Aplin, A.T. Fazleabas, S.R. Glasser, L.C. Giudice) 2nd edn, UK: Informa Healthcare.
Jaffer S., Shynlova O., Lye S. (2009) Mammalian target of rapamycin is activated in association with myometrial proliferation during pregnancy. Endocrinology 150, 4672–4680.
Jawerbaum A., Catalafu J.R., Gonzalez E.T. et al. (1996) Eicosanoid production, metabolism and contractile activity in the isolated uterus from noninsulin-dependent diabetic rats during late pregnancy. Prostaglandins 51, 307–320.
Jensen D.M., Dann P., Moelsted-Pedersen L. et al. (2004) Outcomes in type 1 diabetic pregnancies: a nationwide, population-based study. Diabetes Care 27, 2819–2823.
Junqueira L.C., Montes G.S., Martins J.E., Joaíma P.P. (1983) Dermal collagen distribution. A histochemical and Ultrastructural study. Histochemistry 79, 397–403.
Kabsch W., Vandekerkhove J. (1992) Structure and function of actin. Annu. Rev. Biophys. Biomol. Struct. 21, 49–72.
Katayama S., Browsncheidt C.M., Wooten V., Lee J.B., Shimoz M. (1984) Absent or delayed preovulatory luteinizing hormone surge in experimental diabetes mellitus. Diabetes 33, 324–327.
Kaya T., Cetin A., Cetin M., Sarıoğlu Y. (1999) Effects of endothelin-1 and calcium channel blockers on contractions in
human myometrium. A study on myometrial strips from normal and diabetic pregnant women. *J. Reprod. Med.* 44, 115–121.

Kim N.N., Stankovic M., Cushman T.T., Goldstein I., Munarriz R., Traish A.M. (2006) Streptozotocin-induced diabetes in the rat is associated with changes in vaginal hemodynamics, morphology and biochemical markers. *BMC Physiology* 6, 1–9.

Kovilam O., Khouri J., Miodovnik M., Chames M., Spinnoto J., Sibai B. (2002) Spontaneous preterm delivery in the type 1 diabetic pregnancy: the role of glycemic control. *J Matern Fetal Neonatal Med.* 11, 245–248.

Laguens R. & Lagrutta J. (1964) Fine structure of human uterine muscle in pregnancy. *Am. J. Obstet. Gynecol.* 89, 1040–1047.

Lapolla A., Dalfra M.G., Di Cianni G., Bonomo M., Parretti E., Mello G. (2008) A multicenter Italian study on pregnancy outcome in women with diabetes. *Nutr. Metab. Cardiovasc. Dis.* 18, 291–297.

Lepercq J., Coste J., Theau A., Dubois-Laforgue D., Timsit J. (2004) Factors associated with preterm delivery in women with type I diabetes a cohort study. *Diabetes Care* 27, 2824–2828.

Mcmurtrie E.M., Ginsberg G.G., Frederick G.T., Kirkland J.L., Stancel G.M., Gardner R.M. (1985) Effect of a diabetic state on myometrial ultrastructure and isolated uterine contractions in the rat. *Proc. Soc. Exp. Biol. Med.* 180, 497–504.

Minouni F., Miodovnik M., Siddiqi T.A., Berk M.A., Wittkind C., Tsang R.C. (1988) High grade premature labor rate in insulin-dependent diabetic pregnant women: an association with poor glycemic control and urogenital infection. *Obstet. Gynecol.* 72, 175–180.

Natarajan R., Gonzales N., Xu L., Nadler J.L. (1992) Vascular smooth muscle cells exhibit increased growth in response to elevated glucose. *Biochem. Biophys. Res. Commun.* 187, 552–560.

Neme B., Tedesco J.J., Sabatino H. (2006) *Uterine contraction. Basic Obstetrics*, 3rd edn., pp. 32–36. Neme, B. São Paulo: Sarvier.

Nishinaka K. & Fukuda Y. (1991) Changes in extracellular matrix materials in the uterine myometrium of rats during pregnancy and postparturition. *Acta Pathol Jpn.* 41, 122–132.

Park K., Ryu S.B., Park Y.I., Ahn K., Lee S.N., Nam J.H. (2001) Diabetes mellitus induces vaginal tissue fibrosis by TGF-beta 1 expression in the rat model. *J. Sex Marital Ther.* 27, 577–587.

Reynolds S.R.M. (1965) *Physiology of the uterus*, 2nd edn. New York: Hafner.

Rosa G. (1977) Uterine reactivity of alloxan-diabetic rats to oxytocin. *Rev. Bras. Pesqui. Med.* 10, 387–396.

Salgado R.M., Favaró R.R., San Martin S., Zorn T.M. (2009) The estrous cycle modulates small leucine-rich proteoglycans expression in mouse uterine tissues. *Anat Rec (Hoboken)* 292, 138–153.

San Martin S., Soto-Suazo M., Ferreira de Oliveira S., Aplin J.D., Abrahamsohn P., Zorn T.M.T. (2003) Small leucine-rich proteoglycans (SLRPs) in uterine tissues during pregnancy in mice. *Reproduction* 125, 585–595.

Shynolaova O., Mitchell J.A., Tsampalieros A., Langille B.L., Lye S.J. (2004) Progesterone and gravity differentially regulate expression of extracellular matrix components in the pregnant rat myometrium. *Biol. Reprod.* 70, 986–992.

Shynolaova O., Tsui P., Dorogin A., Chow M., Lye S.J. (2005) Expression and localization of alpha-smooth muscle and gamma-actins in the pregnant rat myometrium. *Biol. Reprod.* 73, 773–780.

Shynolaova O., Tsui P., Jaffer S., Lye S.J. (2009) Integration of endocrine and mechanical signals in the regulation of myometrial functions during pregnancy and labour. *Eur. J. Obstet. Gynecol. Reprod. Biol.* 144, S2–S10.

Sibai B.M., Caritis S.N., Hauth J.C. et al. (2000) Preterm delivery in women with pregestational diabetes mellitus or chronic hypertension relative to women with uncomplicated pregnancies. The National institute of Child health and Human Development Maternal-Fetal Medicine Units Network. *Am. J. Obstet Gynecol.* 183, 1520–1524.

Spiegel G., Zupkó I., Minorics R., Csák G., Csonka D., Falkay G. (2009) Effects of experimentally induced diabetes mellitus on pharmacologically and electrically elicited myometrial contractility. *Clin. Exp. Pharmacol. Physiol.* 36, 884–891.

Stanley J.L., Ashton N., Taggart M.J., Davidge S.T., Baker P.N. (2009) Uterine artery function in a mouse model of pregnancy complicated by diabetes. *Vasc. Pharmacol.* 50, 8–13.

Stumm C.L., Zorn T.M. (2007) Changes in fibrillin-1 in the endometrium during the early stages of pregnancy in mice. *Cells Tissues Organs* 185, 258–268.

Tatewaki R., Otani H., Tanaka O., Kitada J. (1989) A morphological study on the reproductive organs as a possible cause of developmental abnormalities in diabetic NOD mice. *Histo. Histopathol.* 4, 343–358.

Wang W., Van De Water T., Lufkin T. (1998) Inner ear and maternal reproductive defects in mice lacking the Hmx3 homeobox gene. *Development.* 125, 621–634.

White P. (1974) Diabetes mellitus in pregnancy. *Clin. Perinatol.* 1, 331–347.

Zakaria R., Ismail Z., Chatterjee A. (2000) Cyproterone acetate and reversal of the impaired endometrial decidualization in streptozotocin-diabetic pseudopregnant rats. *Pharmacol. Res.* 42, 183–186.

Zhang W. & Gunst S.J. (2008) Interactions of airway smooth muscle cells with their tissue matrix: implications for contraction. *Proc. Am. Thorac. Soc.* 5, 32–39.
LONG-TERM TYPE 1 DIABETES IMPAIRS DECIDUALIZATION AND EXTRACELLULAR MATRIX REMODELING DURING MOUSE ORGANOGENESIS

Rodolfo Favaro¹, Renato de Mayrinck Salgado¹, Fernanda Bruni², Carla Lima², Sebastián San Martín³,⁴, Zuleica Bruno Fortes⁵ & Telma Maria Tenório Zorn¹

¹Laboratory of Reproductive and Extracellular Matrix Biology, Department of Cell and Developmental Biology; Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil; ²Special Laboratory of Applied Toxinology (CAT/CEPID), Butantan Institute, São Paulo, Brazil; ³Biomedical Research Centre, School of Medicine, Universidad de Valparaíso, Valparaíso, Chile; ⁴CREAS, Regional Centre of the Study of Healthy Foods, Valparaíso, Chile. ⁵Laboratory of Diabetes and Hypertension, Department of Pharmacology; Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.

Running title: DIABETES IMPAIRS DECIDUAL ECM

On occasion of the 30th anniversary of the Laboratory of Reproductive and Extracellular Matrix Biology we dedicate this article to its founder, Professor Paulo Abrahamsohn.

This study was conducted as partial fulfillment of the requirements for a PhD degree by Rodolfo Favaro (advisor, Telma Zorn). Fellowship (04/14442-6) and grants were provided by FAPESP (07/55277-6) and CNPq (306336/2006-5).

Correspondent Author:
 Prof. Telma Maria Tenório Zorn, M.D. Ph.D
 Department of Cell and Developmental Biology, ICB-I / USP
 Av. Lineu Prestes 1524. CEP-05508-900
 São Paulo - SP - Brazil
 Tel/Fax: +55 (11) 3091-7309
 E-mail: temtzorn@usp.br
ABSTRACT

Pregnancies in women with type 1 diabetes are associated with several complications, including miscarriage and malformations. Although organogenesis has been considered critical to the development of malformations, there is limited information about the effects of diabetes on the maternal-fetal interface at this period. To contribute to this field, our group has developed a mouse model of pregnancy complicated by type 1 diabetes. Here we investigate the impact of this disease upon decidual extracellular matrix located at the interface with the embryo, when organogenesis is in progress. Diabetes was induced in female mice by alloxan administration and the animals were mated after different periods of time. Comparison of the number of implantation sites and decidual dimensions between groups mated 50-70 or 90-110 days after diabetes induction (D) showed that both parameters were impaired only in the 90-110D group. Comparing the control group with the 90-110D group, following Picrosirius staining, showed augmentation in the fibrillar collagen network and, following immunohistochemical examination, that this was associated with increases in type I and V collagens and decreases in type III collagen and collagen-associated proteoglycans biglycan and lumican. However, quantitative real time PCR demonstrated that only type I collagen mRNA levels were altered in the diabetic group. No significant differences were observed in interleukin-11 levels evaluated by ELISA. Moreover, transmission electron microscopy revealed that, in the diabetic group, some collagen fibrils were thinner than in control, suggesting that alterations in the molecular ratio among distinct collagen types and proteoglycans are correlated with abnormal collagen fibrillogenesis. Our results support the concept that the development of pregnancy complications is directly associated with diabetic progression, and that this is a consequence of both systemic, such as altered maternal endocrine-metabolic profile (hyperglycemia-hypoinsulinemia), and local factors, including disrupted commitment of cellular (decidual) and molecular (extracellular matrix) components of the uterine environment.

Key words: decidua; extracellular matrix; maternal-fetal interface; mouse; organogenesis; pregnancy; type 1 diabetes.
In order to support embryo implantation and development, the human and rodent endometrium undergoes a series of biological events, collectively known as decidualization. Upon decidualization, a remarkable remodeling of the extracellular matrix (ECM) occurs\cite{1-3}. In mice, one of the most striking events is the increase of collagen fibers diameter\cite{4-5}. Decidual cells synthesize collagen\cite{6}, and collagen types I, III and V were identified as the major components of thick fibrils\cite{7-9}. Members of the small leucine-rich proteoglycans (SLRPs) family are differentially expressed during decidualization. While decorin is suppressed, biglycan and lumican are deposited in the ECM by decidual cells\cite{10}. It has been previously demonstrated that decorin is associated with thin fibrils in the endometrial stroma, whereas biglycan is associated with thick fibrils\cite{11}. Moreover, the uterus of decorin-deficient mice possesses fibrils with larger diameter and irregular profile\cite{12}. These results indicate the participation of SLRPs in endometrial collagen fibrillogenesis.

Studies with knockout mice have provided valuable information concerning the genes that participate in the process of decidualization (for a complete list see: Lim & Wang\cite{13}). For instance, interleukine-11 (IL-11) receptor α-deficient mice are infertile due to a defective decidualization\cite{14}. Gene expression profiling by microarray, as well as analysis by immunohistochemistry, revealed that the IL-11 signaling pathway regulates genes of ECM components\cite{15}. Taken together, these studies indicate that ECM remodeling is essential for successful decidualization, and that the decidua is critical for establishment of a functionally maternal-fetal interface.

The outcome of human pregnancies complicated by type 1 diabetes includes a higher incidence of miscarriages, malformations and intrauterine growth restriction\cite{16-18}. The harmful effects of a diabetic uterine environment were demonstrated by an elevated occurrence of anomalies, generated when embryos of non-diabetic females are transferred to diabetic recipient ones\cite{19}. Although organogenesis has been considered the critical period when diabetes may induce malformations\cite{20}, there is limited information about the impact of this disease on the maternal-fetal interface at this period. Mouse organogenesis comprises the period between days 7 and 12 of pregnancy\cite{21}, when the embryo is nourished by the choriovitelline placenta. The choriovitelline placenta is functional between days 6 and 10-11 of pregnancy in mice\cite{22-23}, and is formed by the interaction between embryonic (trophoblast giant cells and yolk sac) and maternal components (antimesometrial decidua)\cite{24-25}.
The pathogenesis of diabetes-associated malformations is complex and multifactorial. Developmental abnormalities are accompanied by metabolic alterations, increased generation of reactive oxygen species, and structural and functional changes in the yolk sac\(^ {26-28}\). On the maternal side of the interface, there are evidences that diabetes impairs decidualization, which has been associated with decreased levels of the ovarian hormones estrogen and progesterone\(^ {29-30}\). Additionally, diabetes creates a pro-inflammatory uterine environment by increasing the levels of reactive oxygen species, pro-inflammatory cytokines and prostaglandins, nitric oxide, as well as activation of metalloproteases\(^ {31}\). In fact, the uterine levels and activity of matrix metalloproteinase (MMP)-2 were increased during the implantation period, in a model of type 2 diabetes in rats\(^ {32}\), indicating that the ECM may be affected by this condition. In order to verify this hypothesis, our group has developed a mouse model of pregnancy complicated by long-term type 1 diabetes\(^ {33}\) and here we investigated the impact of this disease upon decidual ECM located at the interface with the embryo, when organogenesis is in progress. Complementary in situ techniques, such as Picrosirius staining, immunohistochemistry to detect type I, III and V collagens and associated proteoglycans decorin, biglycan, fibromodulin and lumican, as well as transmission electron microscopy, were performed. In addition, mRNA expression of collagens and proteoglycans was evaluated by quantitative real time PCR (qPCR) and the levels of IL-11 were measured by enzyme-linked immunosorbent assay (ELISA).

MATERIAL AND METHODS

All experiments were approved by the Animal Ethics Committee of the Institute of Biomedical Sciences of the University of São Paulo (authorization number, 144/2002).

Induction of diabetes

Sixty day-old Swiss female mice weighing 30-35 g were housed at constant room temperature (21±1 °C), humidity and 12 h light/dark cycle, and had free access to tap water and standard mouse chow. Diabetes was induced by a single
intravenous injection of alloxan, 40 mg/kg (Sigma, St. Louis, MO, USA), freshly prepared in physiological saline solution (pH 7.0), at least 16 hours after food deprivation. Control mice were injected with physiological saline alone. The blood glucose levels were measured using an Accu-Check Performa blood glucose monitor (Roche Diagnostics, Basel, Switzerland) with blood collected from the tail 7 days after alloxan administration. Females with non-fasting glycemia higher than 400 mg/dL were selected for this study. Glycemia, glycosuria, ketonuria, body weight, as well as food and water consumption, were evaluated every 30 days and at the moment of sacrifice, in order to confirm the maintenance of the diabetic state. Serum insulin was measured by radioimmunoassay using a commercial kit (Linco Research Inc., St Charles, MO, USA). The pathophysiological parameters of this model can be found in Favaro et al.33

Mating Schedule

To identify the temporal effects of diabetes on the reproductive performance, females were divided into three groups according to the mating period: (i) 50-70 days after diabetes induction (D) (n=5), (ii) 90-110D (n=7) and (iii) 120-140D (n=6). Age-matched saline-injected females (n=5) were mated at the same periods and served as control.

To set up mating and to avoid differences in the timing of pregnancy, diabetic and control female mice were housed for a short time period (three hours) with non-diabetic male mice. After this period, the females were examined for the presence of a vaginal plug, which was considered zero hour of pregnancy. Uterine samples of control and diabetic females were collected at 168 hours of pregnancy (equivalent to day 8 of pregnancy, when the observation of the vaginal plug is considered as day 1).

Tissue collection and processing for light microscopy

Before sacrifice females were anesthetized with an intraperitoneal injection of Avertin® (0.025 ml/g body weight) (Sigma) and blood was collected from the orbital sinus. To avoid undesirable myometrial contractions, a 4% (w/v) papaverin (Sigma) solution in distilled water was dripped onto the uterine horns prior to dissection.
Females were sacrificed by cervical dislocation and body weight was evaluated without the digestive tract.

Implantation sites were counted and three of them were isolated from each uterus. Samples were fixed by immersion in Methacarn solution (absolute methanol, chloroform and glacial acetic acid; 6:3:1) for 3 h at 4 °C, and processed for paraffin-embedding (Paraplast - Oxford Labware, St Louis, MO, USA). Sections of 5 μm were cut and adhered onto glass slides using 0.1% poly-L Lysine (Sigma). These samples were submitted to Picrosirius staining for collagen fibers and immunohistochemistry procedures for detection of collagens and proteoglycans.

Tissue collection and processing for transmission electron microscopy

Uterine fragments were fixed by immersion in Karnowsky solution (2% glutaraldehyde and 2% paraformaldehyde in 0.1 M sodium cacodylate buffer (pH 7.4) for 24 h at 4 °C, followed by a post-fixation with 1% (w/v) osmium tetroxide in the same buffer for 2 h. Samples were dehydrated and embedded in Spurr resin. Thin sections (50 nm thick) of selected regions were obtained with a MT-2 Sorvall ultramicrotome (Sorvall, Newton, CT, USA). After staining with uranyl acetate and lead citrate the sections were examined with a JEOL 100 CX II (JEOL, Tokyo, Japan) transmission electron microscope.

Immunohistochemistry for collagens and SLRPs

Immunohistochemistry procedures were carried out as described previously. The antibodies and methods of antigen retrieval used are summarized in Table 1. Collagens and proteoglycans were localized by immunofluorescence and immunoperoxidase techniques, respectively. All tissue sections were firstly deparaffinized and hydrated. Those used for immunoperoxidase were treated with 3% (v/v) H$_2$O$_2$ in phosphate buffered saline (PBS) for 30 min, at room temperature (RT). Each of the succeeding steps was followed by a thorough rinse with PBS (except before primary antibody incubation), and performed in a humidified chamber. Sections were treated with 4 mg/mL pepsin (Sigma) diluted in acetic acid 0.5 N (15 min at 37 °C) for collagens detection, or 0.2 U Chondroitinase ABC (Seikagaku Co., Tokyo, Japan), diluted in 20 mM pH 6.0 Tris-HCl buffer (1 h at 37 °C) for
proteoglycans detection. Non-specific staining was blocked with normal goat or rabbit serum diluted 1:1 in PBS-10% (w/v) bovine serum albumin, according to the host from which secondary antibodies were produced, for 1 h at RT. Sections were then incubated with primary antibodies diluted in PBS containing 0.3% (v/v) Tween 20, overnight at 4 °C. Afterwards, the slides were incubated with FITC-conjugated (immunofluorescence) or biotin-conjugated secondary antibodies (immunoperoxidase) diluted in PBS for 1 h at RT. The immunoperoxidase reaction was followed by incubation with streptavidin-peroxidase complex (Vectastin ABC kit; Vector Laboratories, Burlingame, CA, USA) for 1 h at RT. The peroxidase reaction was visualized using 0.03% (w/v) 3,3’-diaminobenzidine (Sigma) in PBS with 0.03% (v/v) H₂O₂, and the sections were counterstained with Mayer’s haematoxilin. The immunofluorescence slides were mounted by using ProLong gold antifade medium (Invitrogen, Eugene, OR, USA) and coverslips. The immunoperoxidase slides were mounted with histological resin and coverslips. In order to achieve standardization of the immunoperoxidase reactions, the slides from all groups were simultaneously incubated with 3,3’-diaminobenzidine and the reaction was interrupted with PBS. For each immunohistochemical reaction, control reactions were performed by replacing the primary antibodies with the respective non-immune serum at similar concentrations or by omitting the primary antibody step from the protocol.

mRNA extraction and qPCR

qPCR experiments were performed following previous reports from our group³⁶-³⁷. In addition, methodological description was prepared according to MIQE guidelines³⁸. Primers used in this study, listed in Table 2, were designed with NCBI’s primer designing tool to span an exon-exon junction, in order to limit amplification only to mRNA.

Two decidual samples from each female were separated from the myometrium and stored in liquid nitrogen until use. Samples were homogenized and total RNA extracted using the Precellys 24 homogenizer (Bertin Technologies, Montigny-le-Bretonneux, France), sterile tubes containing ceramic beads and Trizol reagent (Invitrogen, Carlsbad, CA, USA), following the manufacturer’s instructions. RNA quantity and quality were assessed with a NanoDrop spectrophotometer (Thermo Fisher Scientific Inc., Waltham, MA, USA). The absorbance ratio \(A_{260}/A_{280} \) was
1.97±0.03 for control and 1.98±0.02 for diabetic group. Reverse transcription (RT-PCR) was performed with AffinityScript QPCR cDNA Synthesis kit (Stratagene, Cedar Creek, TX, USA) and 1 μg of total RNA. GAPDH (glyceraldehyde-3-phosphate dehydrogenase) and Ywhaz (Tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein, zeta polypeptide) were tested for reference gene and Ywhaz showed the most uniform expression across groups, hence chosen as reference gene for qPCR amplification experiments. The relative levels of mRNA of the tested genes were estimated in duplicate samples by fluorescence quantified with Qiagen Rotor-Gene Q (Qiagen, Hilden, Germany). Reactions were performed in a total volume of 25 μl containing 20 ng of cDNA and 450 nM primers in a reaction buffer containing SYBR Green PCR master mix (Stratagene). All quantification cycle (Cq) values were normalized to the expression of the reference gene, calculated by 2-ΔΔCt method, and the results were expressed as fold-induction relative to the control.

Detection of IL-11 by ELISA

Two decidual samples from each female were separated from the myometrium and stored in liquid nitrogen. Upon use, they were homogenized in a Precellys homogenizer (Bertin Technologies) in 10% (w/v) of PBS (pH 7.4) containing protease inhibitor cocktail (Roche). Homogenate was centrifuged at 3000 rpm for 10 min (4 °C) and the supernatant was removed and kept at -70 °C for a specific two-site sandwich ELISA using mouse monoclonal antibody anti-IL-11 (MAB4181 - R&D Systems, Minneapolis, MN, USA) and goat biotinylated antibody anti-IL-11 (BAF418 - R&D Systems), performed according to instructions provided by the manufacturer. Binding of biotinylated antibody was detected using streptavidin-peroxidase complex (Amersham Int., Amersham, UK) and TMB (3,3′,5,5′-tetramethylbenzidine) substrate solution containing H2O2. Samples were quantified by comparison with standard curves of recombinant mouse IL-11 (418-ML - R&D Systems). Detection limits were 0.125 ng/mL.

Histomorphometry

Images were captured and analyzed using a Nikon Eclipse E600 (Nikon, Japan) microscope integrated with a digital camera Olympus DP-72 (Olympus, Tokyo, Japan) and Image Pro Plus software (Media Cybernetics, Silver Spring, MD,
USA). For the histomorphometrical analysis of the decidua, at least 10 implantation sites per group were used. Measurements were performed in samples of paraffin-embedded and Picrosirius-haematoxilin stained implantation sites. In order to standardize the measurements, only cross-sections containing embryos (considered as midpoints of the implantation sites) were chosen.

Statistical analysis

Data were expressed as means ± standard error of means. Statistical analyses were performed by GraphPad Prism 4.0 (GraphPad Software, San Diego, CA, USA) using Student’s t test or one-way analysis of variance (ANOVA) followed by Tukey-multiple comparison test, when appropriated. Values of p less than or equal to 0.05 were considered statistically significant.

RESULTS
Reproductive parameters

In an attempt to determine the effects of diabetes duration on the reproductive performance, females were mated after different periods of diabetes induction. In the group mated 50-70D, no differences were observed in either the number of implantation sites or decidual dimensions, compared to the control group. On the other hand, females in the group mated 90-110D showed a significant decrease in both the number of implantation sites (p< 0.01) and decidual dimensions (p<0.01) (Fig. 1 and 2). Moreover, 20-30% of the females that actually mated (positive for the vaginal plug) showed no implantation sites at 168 hours of pregnancy.

The mortality increased dramatically from 120D onward, and most of those females that survived were in anestrous, as determined by vaginal smear stained by Shorr technique. Moreover, those animals also had atrophic uterine horns (data not shown).

From these observations we concluded that the 90-110D is the longest period in which female mice are capable of mating successfully. Thus, this group was chosen to explore in depth the impact of long-term type 1 diabetes on the uterine environment, referred from now on as diabetic group.
Decidual ECM - Fibrillar collagens

Picrosirius staining plus polarized microscopy were used to identify fibrillar collagens in the decidua. Collagen content was observed surrounding mature decidual cells, located at the interface of the decidua with the embryo. The distribution was similar between both control and diabetic groups. However, increased deposition of collagen was detected in the diabetic group (Fig. 3).

As Picrosirius staining represents the total fibrillar collagen network, immunohistochemistry was employed to investigate the contribution of specific collagen types (I, III or V) to the increase in collagen content detected in the diabetic group. In the control group, collagen type I was immunodetected around decidual cells, whereas collagen types III and V were found around decidual cells and in the region of basement membrane of blood vessels. Therefore, diabetes increased the amount of collagen types I and V and decreased collagen type III deposition around decidual cells at the maternal-fetal interface (Fig. 4).

Proteoglycans

To examine whether disturbed collagen composition is correlated with alterations in collagen-associated proteoglycans, deposition of biglycan, decorin, fibromodulin and lumican was investigated by immunoperoxidase. Only biglycan and lumican were present in the decidualized endometrium of both control and diabetic group. In the latter, however, deposition of biglycan and lumican was clearly reduced (Fig. 5).

Ultrastructural analysis of collagen

Transmission electron microscopy was used to analyze if the alterations observed in collagens and proteoglycans deposition impairs collagen fibrillogenesis. In the control group, cross-sectioned collagen fibrils were thick with irregular profiles. In the diabetic group some collagen bundles were similar to the control and some were formed predominantly by thinner fibrils (Fig. 6).
mRNA expression of ECM molecules

mRNA levels of collagen types I, III and V and the proteoglycans biglycan and lumican were analyzed by qPCR to investigate whether gene expression is related to the alterations in deposition of these molecules, detected by immunohistochemistry in the diabetic group. It was found that only collagen type I mRNA levels were increased in the diabetic group, whereas no significant differences in gene expression were observed for the other molecules, between groups (Fig. 7).

IL-11 levels

Considering that IL-11 receptor α-deficient mice show alterations in the endometrial ECM (White et al. 2004), we verified whether altered deposition of ECM molecules detected in diabetic females was associated with the levels of IL-11. Nevertheless, no differences between control (5.05±0.56 ng/mL) and diabetic group (5.7±0.76 ng/mL) were detected concerning the levels of this cytokine, measured by ELISA.

DISCUSSION

The present and a previous study by our group consolidate the establishment of a mouse model of pregnancy complicated by long-term type 1 diabetes. Diabetic female mice exhibited the pathophysiological features of human type 1 diabetes, characterized by high levels of glycemia, hipoinsulinemia, polyuria, glycosuria, polyphagy, polidipsia and decreased body weight. Considering the high levels of glycemia, hipoinsulinemia, the duration of diabetes and the development of diabetic vascular complications in the myometrium as indicatives, this animal model reproduces characteristics comparable to those of women with poorly controlled long-term type 1 diabetes complicated by vasculopathy (Class D, according to White’s classification). In addition, as far as we are concerned, this is the animal model of pregnancy complicated by severe type 1 diabetes with the longest duration reported in the literature. The capacity to mate diabetic female mice as far as 110D
makes possible to investigate them at different time points in the course of diabetes, depicting the relation between progression of the disease and pregnancy outcome.

As stated by Nathanielsz40, very few experimental studies have attempted to evaluate the effects of altered maternal status before conception on pregnancy outcome. This is particularly relevant in the context of type 1 diabetes where pregnancies may occur several years after its onset. Pioneer studies by White41 and later by Mølsted Pedersen, Tygstrups & Pedersen42 and Karlsson & Kjellmer43, highlighted the severity, duration and the presence of vasculopathy as major risk factors responsible for adverse outcome in diabetic pregnancies. However, the contribution of these factors to the development of pregnancy complications has not been adequately explored in animal models. Comprehensive reviews of such models can be found in Kalter44 and White and Jawerbaum45.

In the present study, duration of diabetes was demonstrated to be directly associated with the development of complications in pregnancy. Females of the 50-70D group did not show significant alterations in either the number or dimensions of implantation sites, whereas females of the 90-110D group had fewer implantation sites and also showed impaired decidualization. Moreover, we have previously shown the development of diabetic complications in the early pregnant myometrium. According to its duration, diabetes promoted edema between muscle layers, indicating the development of vasculopathy, which was followed by fibrosis and atrophy of the myometrium33. Overall, these results pointed out the importance of the temporal factor (i.e. progression of the disease) in regard to the evaluation of results obtained in animal models of pregnancy complicated by diabetes, supporting previous clinical data.

The decidua mediates embryo-maternal dialogue, being essential to sustain embryo development. It creates a permissive and well-controlled environment to trophoblast invasion, forms a wide vascular network around the embryo, modulates the maternal immune system and produces a great variety of hormones, growth factors, cytokines and ECM molecules1-2. The results of the present study expand those of the literature showing that diabetes, in addition to impaired decidualization29-30, promotes disturbances in the structure and composition of decidual ECM, deposited at the maternal-fetal interface, when organogenesis is in progress.

Furthermore, trophoblast cells have their own repertoire of ECM receptors and produce many MMPs. The molecular basis and the functional significance of the
interaction between trophoblast cells and the ECM are being unveiled and it may be considered as a cornerstone on trophoblast differentiation and function. The importance of the ECM can be demonstrated by the addition to the culture medium of integrin blocking antibodies, inhibiting embryo outgrowth. Thus, it is reasonable to suggest that impaired decidualization and ECM remodeling, as demonstrated in this study, may have a profound impact on the maternal-fetal interface, contributing to the anomalies in embryo development associated with diabetic pregnancies. Indeed, preliminary results obtained in this animal model showed an increased number of reabsorptions (miscarriage), fetal death (stillbirth), malformations, as well as intrauterine growth restriction (unpublished data).

It is well established that diabetes promotes alterations in the ECM in tissues affected by the disease. In the diabetic nephropathy, the amount of collagen types IV and V, normally present in the glomerulus, is increased, whereas types I and III appear at advanced stages of the disease, contributing to an abnormal ECM accumulation. Increased biglycan, decorin, fibromodulin and lumican mRNA levels were also described. However, concomitant increase in the deposition of these molecules was only detected at later stages of nephropathy. In the present study, increased deposition of collagen types I and V and decreased deposition of collagen type III, biglycan and lumican was observed in the decidua of the diabetic group. In addition, no correlation was observed between deposition of ECM molecules and levels of mRNA expression, except for collagen type I. Increased deposition of type I collagen was associated with higher mRNA levels. These results indicate that a complex mechanism regulates decidual ECM composition. For instance, mRNA stability and turnover of the molecules in the extracellular environment by ECM degrading enzymes should be considered. In fact, data showing alteration in the levels and activity of MMP-2 in the uterus of diabetic rats suggest that MMPs contribute to disturbances in the decidual ECM. Studies from our group demonstrated that, in the mouse uterine tissues, expression and distribution of SLRPs are modulated during the estrous cycle, early pregnancy, and are regulated by the action of the steroid hormones estrogen and progesterone. Hence, hormonal deficit reported in diabetic pregnant animals may account to the alterations in the decidual ECM. Indeed, estradiol supplementation attenuates progression of diabetic nephropathy by regulating ECM composition, TGF-beta expression and its downstream signaling pathway. Despite the role of IL-11
signaling pathway in regulating decidual ECM, no differences were detected in the levels of this cytokine, indicating the existence of other mechanisms operating in the present model.

Diabetes-associated alterations in collagen fibrillogenesis have been described in human Achilles tendon, mouse tail and rat prostate. Collagen fibrillogenesis is a complex process regulated by several factors, such as different combinations and amounts of collagen types and proteoglycans. In addition, in pathological states, such as diabetes, non-enzymatic glycation may also influence collagen fibrillogenesis by affecting the interaction between collagens and proteoglycans. Taken our results together, we suggest that alterations in collagen fibrillogenesis observed in the diabetic group are associated with changes in the molecular ratio among distinct collagen types and associated proteoglycans deposited in the decidual ECM.

The incidence of type 1 diabetes is rising worldwide. An increase of 2.8% per year was described from 1990 to 1999. Medical literature for management of diabetic women advises that “the risks associated with pregnancies complicated by diabetes increase with the duration of diabetes” and that diabetic women “should be informed about the benefits of pre-conception glycemic control, (…), from adolescence”.

Our results support the concept that the development of pregnancy complications is directly associated with diabetic progression, and that this is a consequence of both systemic, such as altered maternal endocrine-metabolic profile (hyperglycemia-hypoinsulinemia), and local factors, including disrupted commitment of cellular (decidual) and molecular (ECM) components of the uterine environment. From this data, we suggest that glycemic levels must be tightly controlled, as soon as diabetes develops, to delay the onset and progression of diabetic complications, not only in the eyes, kidneys and nerves, but also in the reproductive system, in order to prevent adverse pregnancy outcomes.

ACKNOWLEDGMENTS

The authors are grateful to Fernanda Barrence, Cleusa Pellegrini, Edson de Oliveira and Gaspar Lima for the excellent technical assistance provided. We also
thank Claudio Modia, Fernando de Araújo and Marley da Silva for intensive animal care. The authors are grateful to Prof. Larry Fisher (National Institute of Dental and Craniofacial Research, NIH, Bethesda, USA) for granting them with anti-decorin, anti-biglycan, and anti-fibromodulin antibodies.

S. San Martin is supported by grants from DIPUV (Universidad de Valparaíso, Valparaíso, Chile; grant no. CI 05/2006), Programa de Investigación Interdisciplinario (PIA) from Comisión Nacional de Investigación en Ciencia y Tecnología (CONICYT) (Anillos ACT-73, Chile).

DISCLOSURE/CONFLICT OF INTEREST

The authors declare no conflict of interest.
REFERENCES

1. Abrahamsohn PA, Zorn TM. Implantation and decidualization in rodents. J Exp Zool. 1993;266(6):603-28.

2. Abrahamsohn PA, Zorn TMT, Oliveira SF. Decidua in rodents. In: Glasser SR, Aplin JD, Guidice LC, Tabibzadeh S, editors. The endometrium. 1 ed. London: Informa Healthcare; 2002. p. 279-93.

3. Aplin JD. Endometrial Extracellular Matrix. In: Glasser SR, Aplin JD, Guidice LC, Tabibzadeh S, editors. The endometrium. London: Informa Healthcare; 2002. p. 294-307.

4. Alberto-Rincon MC, Zorn TM, Abrahamsohn PA. Diameter increase of collagen fibrils of the mouse endometrium during decidualization. Am J Anat. 1989;186(4):417-29.

5. Zorn TM, Bevilacqua EM, Abrahamsohn PA. Collagen remodeling during decidualization in the mouse. Cell Tissue Res. 1986;244(2):443-8.

6. Oliveira SF, Nagata T, Abrahamsohn PA, et al. Electron microscopic radioautographic study on the incorporation of 3H-proline by mouse decidual cells. Cell Mol Biol. 1991;37(3):315-23.

7. Spiess K, Teodoro WR, Zorn TM. Distribution of collagen types I, III, and V in pregnant mouse endometrium. Connect Tissue Res. 2007;48(2):99-108.

8. Spiess K, Zorn TM. Collagen types I, III, and V constitute the thick collagen fibrils of the mouse decidua. Microsc Res Tech. 2007;70(1):18-25.

9. Teodoro WR, Witzel SS, Velosa AP, et al. Increase of interstitial collagen in the mouse endometrium during decidualization. Connect Tissue Res. 2003;44(2):96-103.
10. San Martin S, Soto-Suazo M, De Oliveira SF, et al. Small leucine-rich proteoglycans (SLRPs) in uterine tissues during pregnancy in mice. Reproduction. 2003;125(4):585-95.

11. San Martin S, Zorn TM. The small proteoglycan biglycan is associated with thick collagen fibrils in the mouse decidua. Cell Mol Biol (Noisy-le-grand). 2003;49(4):673-8.

12. Sanches JC, Jones CJ, Aplin JD, et al. Collagen fibril organization in the pregnant endometrium of decorin-deficient mice. J Anat. 2010;216(1):144-55.

13. Lim HJ, Wang H. Uterine disorders and pregnancy complications: insights from mouse models. J Clin Invest. 2010;120(4):1004-15.

14. Robb L, Li R, Hartley L, et al. Infertility in female mice lacking the receptor for interleukin 11 is due to a defective uterine response to implantation. Nat Med. 1998;4(3):303-8.

15. White CA, Robb L, Salamonsen LA. Uterine extracellular matrix components are altered during defective decidualization in interleukin-11 receptor alpha deficient mice. Reprod Biol Endocrinol. 2004;2:76.

16. Casson IF, Clarke CA, Howard CV, et al. Outcomes of pregnancy in insulin dependent diabetic women: results of a five year population cohort study. BMJ. 1997;315(7103):275-8.

17. Jensen DM, Damm P, Moelsted-Pedersen L, et al. Outcomes in type 1 diabetic pregnancies: a nationwide, population-based study. Diabetes Care. 2004;27(12):2819-23.

18. Galindo A, Burguillo AG, Azriel S, et al. Outcome of fetuses in women with pregestational diabetes mellitus. J Perinat Med. 2006;34(4):323-31.
19. Otani H, Tanaka O, Tatewaki R, et al. Diabetic environment and genetic predisposition as causes of congenital malformations in NOD mouse embryos. Diabetes. 1991;40(10):1245-50.

20. De Hertogh R. Diabetic Embryopathy. In: Djelmiš J, Desoye G, Ivanišević M, editors. Diabetology of Pregnancy. Basel: Karger; 2005. p. 46-57.

21. Rugh R. The mouse-reproduction and development. Minneapolis: Burgess Publishing Company; 1968.

22. Cross JC, Werb Z, Fisher SJ. Implantation and the placenta: key pieces of the development puzzle. Science. 1994;266(5190):1508-18.

23. Malassine A, Frendo JL, Evain-Brion D. A comparison of placental development and endocrine functions between the human and mouse model. Hum Reprod Update. 2003;9(6):531-9.

24. Bevilacqua EM, Abrahamsohn PA. Ultrastructure of trophoblast giant cell transformation during the invasive stage of implantation of the mouse embryo. J Morphol. 1988;198(3):341-51.

25. Sutherland A. Mechanisms of implantation in the mouse: differentiation and functional importance of trophoblast giant cell behavior. Dev Biol. 2003;258(2):241-51.

26. Reece EA, Eriksson UJ. The pathogenesis of diabetes-associated congenital malformations. Obstet Gynecol Clin North Am. 1996;23(1):29-45.

27. Reece EA, Pinter E, Homko C, et al. The yolk sac theory: closing the circle on why diabetes-associated malformations occur. J Soc Gynecol Investig. 1994;1(1):3-13.

28. Eriksson UJ. Congenital anomalies in diabetic pregnancy. Semin Fetal Neonatal Med. 2009;14(2):85-93.
29. Garris DR. Effects of diabetes on uterine condition, decidualization, vascularization, and corpus luteum function in the pseudopregnant rat. Endocrinology. 1988;122(2):665-72.

30. Zakaria R, Ismail Z, Chatterjee A. Cyproterone acetate and reversal of the impaired endometrial decidualization in streptozotocin-diabetic pseudopregnant rats. Pharmacol Res. 2000;42(2):183-6.

31. Jawerbaum A, Gonzalez E. Diabetic pregnancies: the challenge of developing in a pro-inflammatory environment. Curr Med Chem. 2006;13(18):2127-38.

32. Pustovrh C, Jawerbaum A, Sinner D, et al. Metalloproteinase 2 activity and modulation in uterus from neonatal streptozotocin-induced diabetic rats during embryo implantation. Reprod Fertil Dev. 2002;14(7-8):479-85.

33. Favaro RR, Salgado RM, Raspantini PR, et al. Effects of long-term diabetes on the structure and cell proliferation of the myometrium in the early pregnancy of mice. Int J Exp Pathol. 2010;91(5):426-35.

34. Montes GS, Junqueira LC. The use of the Picrosirius-polarization method for the study of the biopathology of collagen. Mem Inst Oswaldo Cruz. 1991;86 Suppl 3:1-11.

35. Salgado RM, Favaro RR, Martin SS, et al. The estrous cycle modulates small leucine-rich proteoglycans expression in mouse uterine tissues. Anat Rec (Hoboken). 2009;292(1):138-53.

36. Salgado RM, Favaro RR, Zorn TM. Modulation of small leucine-rich proteoglycans (SLRPs) expression in the mouse uterus by estradiol and progesterone. Reprod Biol Endocrinol. 2011;9:22.

37. Salgado RM, Capelo LP, Favaro RR, et al. Hormone-regulated expression and distribution of versican in mouse uterine tissues. Reprod Biol Endocrinol. 2009;7:60.
38. Bustin SA, Benes V, Garson JA, et al. The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem. 2009;55(4):611-22.

39. White P. Classification of obstetric diabetes. Am J Obstet Gynecol. 1978;130(2):228-30.

40. Nathanielsz PW. Animal models that elucidate basic principles of the developmental origins of adult diseases. ILAR J. 2006;47(1):73-82.

41. White P. Pregnancy complicating diabetes. Am J Med. 1949;7(5):609-16.

42. Pedersen LM, Tystrup I, Pedersen J. Congenital Malformations in Newborn Infants of Diabetic Women. Correlation with Maternal Diabetic Vascular Complications. Lancet. 1964;1(7343):1124-6.

43. Karlsson K, Kjellmer I. The outcome of diabetic pregnancies in relation to the mother's blood sugar level. Am J Obstet Gynecol. 1972;112(2):213-20.

44. Kalter H. Reproductive toxicology in animals with induced and spontaneous diabetes. Reprod Toxicol. 1996;10(6):417-38.

45. Jawerbaum A, White V. Animal models in diabetes and pregnancy. Endocr Rev. 2010;31(5):680-701.

46. Armant DR. Blastocysts don't go it alone. Extrinsic signals fine-tune the intrinsic developmental program of trophoblast cells. Dev Biol. 2005;280(2):260-80.

47. Sutherland AE, Calarco PG, Damsky CH. Expression and function of cell surface extracellular matrix receptors in mouse blastocyst attachment and outgrowth. J Cell Biol. 1988;106(4):1331-48.
48. Rout UK, Wang J, Paria BC, et al. Alpha5beta1, alphaVbeta3 and the platelet-associated integrin alphallbbeta3 coordinately regulate adhesion and migration of differentiating mouse trophoblast cells. Dev Biol. 2004;268(1):135-51.

49. Mason RM, Wahab NA. Extracellular matrix metabolism in diabetic nephropathy. J Am Soc Nephrol. 2003;14(5):1358-73.

50. Schaefer L, Raslik I, Grone HJ, et al. Small proteoglycans in human diabetic nephropathy: discrepancy between glomerular expression and protein accumulation of decorin, biglycan, lumican, and fibromodulin. FASEB J. 2001;15(3):559-61.

51. Dixon A, Maric C. 17beta-Estradiol attenuates diabetic kidney disease by regulating extracellular matrix and transforming growth factor-beta protein expression and signaling. Am J Physiol Renal Physiol. 2007;293(5):F1678-90.

52. Grant WP, Sullivan R, Sonenshine DE, et al. Electron microscopic investigation of the effects of diabetes mellitus on the Achilles tendon. J Foot Ankle Surg. 1997;36(4):272-8.

53. Odetti P, Aragno I, Rolandi R, et al. Scanning force microscopy reveals structural alterations in diabetic rat collagen fibrils: role of protein glycation. Diabetes Metab Res Rev. 2000;16(2):74-81.

54. Ribeiro DL, Taboga SR, Goes RM. Diabetes induces stromal remodelling and increase in chondroitin sulphate proteoglycans of the rat ventral prostate. Int J Exp Pathol. 2009;90(4):400-11.

55. Birk DE, Fitch JM, Babiarz JP, et al. Collagen fibrillogenesis in vitro: interaction of types I and V collagen regulates fibril diameter. J Cell Sci. 1990;95 (Pt 4):649-57.

56. Danielson KG, Baribault H, Holmes DF, et al. Targeted disruption of decorin leads to abnormal collagen fibril morphology and skin fragility. J Cell Biol. 1997;136(3):729-43.
57. Reigle KL, Di Lullo G, Turner KR, et al. Non-enzymatic glycation of type I collagen diminishes collagen-proteoglycan binding and weakens cell adhesion. J Cell Biochem. 2008;104(5):1684-98.

58. The DIAMOND Project Group. Incidence and trends of childhood Type 1 diabetes worldwide 1990–1999. Diabetic Medicine. 2006;23(8):857-66.

59. NICE Clinical Guideline 63. Diabetes in pregnancy: management of diabetes and its complication from pre-conception to the postnatal period 2008. Available from: http://www.nice.org.uk/nicemedia/pdf/CG063Guidance.pdf.

60. The Diabetes Control and Complications Trial Research Group. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N Engl J Med. 1993;329(14):977-86.

61. Genuth S. Insights from the diabetes control and complications trial/epidemiology of diabetes interventions and complications study on the use of intensive glycemic treatment to reduce the risk of complications of type 1 diabetes. Endocr Pract. 2006;12 Suppl 1:34-41.
Table 1. List of the antibodies and enzymes used in immunohistochemistry.

Primary Antibody	Supplier	[]	Antigen retrieval	Secondary Antibody	Supplier	[]
Rabbit anti-type I collagen	Rockland (USA) 600-401-103	1 : 50	Pepsin³ (4 mg/mL) 12 min – 37 °C	Goat anti-rabbit IgG FITC-conjugated	Sigma (USA)	1 : 150
Rabbit anti-type III collagen	Rockland (USA) 600-401-105	1 : 50	Pepsin³ (4 mg/mL) 12 min – 37 °C	Goat anti-rabbit IgG FITC-conjugated	Sigma (USA)	1 : 150
Rabbit anti-type V collagen	Rockland (USA) 600-401-107	1 : 50	Pepsin³ (4 mg/mL) 12 min – 37 °C	Goat anti-rabbit IgG FITC-conjugated	Sigma (USA)	1 : 150
Rabbit anti-biglycan	LF-113 (NIH-USA)¹	1 : 1,000	Chondroitinase ABC² (0.2U) 1 h – 37 °C	Goat anti-rabbit IgG Biotin-conjugated	Rockland (USA)	1 : 2,000
Rabbit anti-decorin	LF-159 (NIH-USA)¹	1 : 3,000	Chondroitinase ABC² (0.2U) 1 h – 37 °C	Goat anti-rabbit IgG Biotin-conjugated	Rockland (USA)	1 : 2,000
Rabbit anti-fibromodulin	LF-150 (NIH-USA)¹	1 : 400	Chondroitinase ABC² (0.2U) 1 h – 37 °C	Goat anti-rabbit IgG Biotin-conjugated	Rockland (USA)	1 : 2,000
Goat anti-lumican	R&D Systems (USA) AF2745	1 : 2,000	Chondroitinase ABC² (0.2U) 1 h – 37 °C	Rabbit anti-goat IgG Biotin-conjugated	Rockland (USA)	1 : 2,000

1. Prof. Larry Fisher (National Institute of Dental and Craniofacial Research, NIH, USA)
2. Seikagaku Corp. (Japan)
3. Sigma (USA)
| Gene | Forward and Reverse Primers | Amplicon size | Genbank # |
|----------------------------------|---|---------------|---------------|
| Type I collagen, alpha 1 | F: ATGGCCAACCTGGTGCGAAAGG R: ACCAACGTACCAATGGGCGCCG | 113bp | NM_007742.3 |
| Type III collagen, alpha 1 | F: ACCAGGAGCCAGTGGCCATA R: TCACACGATCAACCCTTGCCAC | 163bp | NM_009930.2 |
| Type V collagen, alpha 1 | F: CCGATGGCAAGTGGCACCGAAT R: TGGTCACTGCGGCTGAGGACT | 106bp | NM_015734.2 |
| Biglycan | F: AGGAGGCTTCAGGTTTCAG R: TAGCAGTGTGTTGTACAGG | 171bp | NM_007542 |
| Lumican | F: CATTAGTCGATGGTCAGTGG T: TGCCAGGAGGAACCATTG | 171bp | NM_008524 |
| Gapdh | F: TCTGAGGCCCACCTGAAG R: AGGGTTTCTTACTCTTGGAGG | 221bp | NM_001001303 |
| Ywhaz | F: GAAGCCACAATGTTTCTTGGCCCAT R: AAACCAACAGAGACTTGGGAAGC | 84bp | NM_011740.2 |
Figure 1 - Cross sections of implantation sites from control, 50-70D and 90-110D group showing that dimensions of the decidualized endometrium (D) are affected only in the latter. Blood vessels (asterisks), Embryo (E) and Myometrium (M). Picrosirius-haematoxilin. Scale bar = 200 μm.

Figure 2 - Graphic representation showing the number of implantation sites (a) and histomorphometrical analysis of the decidual dimensions (b). Note that both parameters are affected only in the 90-110D group. **p≤0.01 vs control or 50-70D group.
Figure 3 - Picosirius staining plus polarized microscopy. The upper section contains cross sections of implantation sites showing that fibrillar collagen is similarly distributed in the decidua of either control and diabetic group. Myometrium (M). Scale bar = 100 μm. White boxes are inserted on the antimesometrial decidua, located at the interface with the embryo (E), indicating the region analyzed in detail in the following figures at higher magnifications. Observe the increased deposition of fibrillar collagen in the diabetic group compared to the control. Scale bar = 50 μm.
Figure 4 - Immunofluorescence for type I, III and V collagens. Type I collagen is immunodetected exclusively around decidual cells, whereas type I and III collagens were also found in the region of basement membranes of blood vessels. Note in the diabetic group the increased deposition of type I and V collagens, and decreased deposition of type III collagen around decidual cells at the interface with the embryo (E). Arrows indicate the decidual ECM and arrowheads the region of basement membranes of blood vessels. Scale bar = 40 μm.
Figure 5 - Immunoperoxidase for biglycan and lumican counterstained with Mayer's haematoxilin (Colors were inverted to highlight the staining against a dark background). Note in the diabetic group the decreased deposition of both molecules in the decidual ECM (arrows). Scale bar = 40μm.
Figure 6 - Transmission electron microscopy showing cross-sectioned collagen fibrils. In the diabetic group collagen fibrils are either similarly thick (a) (arrows), as observed in the control group, or formed predominately by thinner fibrils (b) (arrowheads). Magnification: 30 000 x.

Figure 7 - mRNA expression of type I, III and V collagens (Col) and proteoglycans biglycan (Bgn) and lumican (Lum). Only collagen type I mRNA levels were increased in the diabetic group. Values represent the mean ± SEM. **p ≤ 0.01.