FRACTAL SNOWFLAKE DOMAIN DIFFUSION WITH BOUNDARY AND INTERIOR DRIFTS

MICHAEL HINZ\textsuperscript{1}, MARIA ROSARIA LANCIA\textsuperscript{2}, ALEXANDER TEPLYAEV\textsuperscript{3}, AND PAOLA VERNOLE\textsuperscript{4}

Abstract. We study a parabolic Ventsell problem for a second order differential operator in divergence form and with interior and boundary drift terms on the snowflake domain. We prove that under standard conditions a related Cauchy problem possesses a unique classical solution and explain in which sense it solves a rigorous formulation of the initial Ventsell problem. As a second result we prove that functions that are intrinsically Lipschitz on the snowflake boundary admit Euclidean Lipschitz extensions to the closure of the entire domain. Our methods combine the fractal membrane analysis, the vector analysis for local Dirichlet forms and PDE on fractals, coercive closed forms, and the analysis of Lipschitz functions.

CONTENTS

1. Introduction 1
2. Energy and Laplacian on the Snowflake 11
3. Tangential gradients on the snowflake 14
4. Quadratic forms, semigroups and Cauchy problems 16
5. Strong interpretation and co-normal derivatives 20
6. An extension principle 24
6.1. A first proof of Theorem 6.1 25
6.2. A second proof of Theorem 6.1 28
6.3. Proof of Corollary 6.2 30
Appendix A. Trace and extension results 32
References 35

\textsuperscript{1}Research supported in part by SFB 701 of the German Research Council (DFG).
\textsuperscript{2, 4}The authors have been supported by the Gruppo Nazionale per l’Analisi Matematica, la Probabilità e le loro Applicazioni (GNAMPA) of the Istituto Nazionale di Alta Matematica (INdAM).

1. Introduction

The main objective of this paper is to study a parabolic Ventsell problem for a second order differential operator in divergence form with measurable coefficients and drift terms in the interior and with drift and diffusion terms on the boundary of the classical snowflake domain $\Omega$, see Figure 1. This continues the investigation of diffusion problems related to fractal membranes started in \cite{43} (see \cite{9, 47} for the most recent results and references).

A central tool in our analysis is the expression

$$E_A(f, f) = \int_{\Omega} (A(x) \cdot \nabla f(x)) \cdot \nabla f(x) \mathcal{L}^2(dx) + c_0 E_{\partial \Omega}(f, f),$$

where $E_A(f, f)$ is the quadratic form associated with the differential operator $A(x) \cdot \nabla$.

\textit{Date:} June 16, 2016.
Figure 1. Fractal (closed) snowflake domain $\Omega$. which, together with a suitable domain of definition, is a local Dirichlet form. Here $A$ is a bounded measurable uniformly elliptic two-by-two matrix valued function, $L^2$ denotes the usual two dimensional Lebesgue measure, $c_0 > 0$ is a fixed constant, and $E_{\partial\Omega}$ denotes the usual Kusuoka-Kigami Dirichlet form on the snowflake boundary $\partial\Omega$, which is a union of three copies of the classical Koch curve. Using perturbation arguments we can pass from $E_A$ to the bilinear form corresponding to the parabolic Ventsell problem that we wish to study. This problem can be formulated as

\[
\begin{cases}
  u_t(t,x) - L_A u(t,x) - \vec{b}(x) \cdot \nabla u(t,x) = f(t,x) & \text{in } (0,T] \times \Omega \\
  u_t(t,x) - c_0 \Delta_{\partial\Omega} u(t,x) - b_{\partial\Omega}(x) D_{\partial\Omega} u(t,x) + c(x) u(t,x) = - \frac{\partial u(t,x)}{\partial n_A} + f(t,x) & \text{in } (0,T] \times \partial\Omega \\
  u(0,x) = u_0(x) & \text{in } \Omega.
\end{cases}
\]

Here $L_A u(t,\cdot) = \text{div}(A \cdot \nabla u(t,\cdot))$, and $\Delta_{\partial\Omega}$ is the Kusuoka-Kigami Laplacian on $\partial\Omega$. The function $f$ is a time-dependent external forcing, the function $c$ is a stationary scalar potential on $\partial\Omega$, and $u_0$ is a given initial condition. The term $\frac{\partial u(t,\cdot)}{\partial n_A}$ is the co-normal derivative of $u(t,\cdot)$ across $\partial\Omega$, to be defined in a suitable distributional sense, see for example [17] or Section 5. The symbol $\vec{b}$ denotes a stationary drift vector field in $\Omega$, and $b_{\partial\Omega}$ is a drift vector field on the snowflake boundary $\partial\Omega$. This drift $b_{\partial\Omega}$ is defined using a special case of the intrinsic approach to derivatives for Dirichlet forms, see e.g. [10, 27], applied to the form $E_{\partial\Omega}$. We point out that $b_{\partial\Omega}$ does not have to be the trace of $\vec{b}$ on $\partial\Omega$. The expression $D_{\partial\Omega} u(t,\cdot)$ plays the role of the tangential derivative of $u(t,\cdot)$ along $\partial\Omega$. We prove that it can be defined as the measurable gradient on the fractal boundary $\partial\Omega$ of the restriction $u(t,\cdot)|_{\partial\Omega}$ of $u(t,\cdot)$ to $\partial\Omega$. In principle this is nothing else but a version of the gradient in the sense of Kusuoka [42], Kigami [35], Strichartz [62] and Teplyaev [66]. But only the more functional analytic description [10, 11, 27, 33] permits sufficient flexibility for applications to partial differential equations [27, 29], magnetic operators [23, 25, 28] or geometric analysis [26, 29, 31]. There are (locally harmonic) coordinate functions $h_i$ on the snowflake $\partial\Omega$, and for functions on $\partial\Omega$ locally representable as $F_i \circ h_i$ with bounded functions $F_i \in C^1(\mathbb{R})$ we locally have

\[
D_{\partial\Omega} (F_i \circ h_i)(x) = F_i'(h_i(x)),
\]

i.e. the measurable gradient admits a pointwise bounded expression. In this case the measurable gradient can also be expressed as a limit of difference quotients in the spirit of Mosco [59, 60], see Section 3. The span of such functions is a dense subspace of the domain of $E_{\partial\Omega}$. 

2
Abstract gradients can be defined for any Dirichlet form, \[10\], and this is already sufficient to formulate and study partial differential equations with first order terms on some abstract level, \[27, 29\]. Interpretations of these abstract gradients as limits of difference quotients, \[59, 60\], or in terms of finite element approximations, \[11, 33\], are possible also for energy forms on other sufficiently structured fractals, such as for instance resistance forms on p.c.f. self-similar sets, \[35, 36, 67\]. In many cases one can find pointwise bounded coordinate representations similar to \[[2]\], what allows to consider non-linear equations such as in \[27\].

The novelty of the present paper is that we prove that in our situation \(D_{\partial \Omega} u(t, \cdot)\) is a well defined \(L^2\)-function on \(\partial \Omega\), and so we can consider problem \([1]\) for instance with a bounded measurable function \(b_{\partial \Omega}\) on the fractal \(\partial \Omega\), which then plays the role of a (bounded measurable) tangential drift vector field. This is very special and only possible because \(\partial \Omega\) is a curve. An interpretation of measurable gradients as measurable vector-valued functions will generally be more involved for other more complicated fractal sets. However, such interpretation is very important for considering non-linear PDEs, such as those in \[27, Section 4\] and \[2, Sections 4, 5\].

The Koch snowflake domain appears in \[15, 18, 49, 50, 51, 69\]. Our current paper is primarily motivated by physics considerations, see \[2\] and, in broader terms, \[1, 3, 4, 5, 12\], and by \[31\]. An extensive discussion of potential applications and numerical implementations can be found in \[47\]. We would like to point out that, up to the behaviour at time \(t = 0\) problem \([1]\) extends \[47, (P), page 682\], which correspond to the special case with \(\vec{b} \equiv 0\), \(b_{\partial \Omega} \equiv 0\) and \(u_0 = 0\).

We note that the Koch curve is a Lindstrøm’s nested fractal, see \[54\], and so the papers \[20, 22, 40\] provide some heat semigroup estimates. See especially Theorem 2.11 in \[40\], where ultracontractivity bounds for the Brownian motion penetrating into the fractal are deduced from ultracontractivity bounds for the diffusion on the fractal. However, pointwise heat kernel estimates are not available in the existing literature, in particular because the reference measure on \(\Omega\) is not volume doubling, although \[19\] contains some results towards obtaining such heat kernel estimates.

Our first main result is Theorem 4.1, which claims that under standard conditions on \(A\), \(\vec{b}\), \(b_{\partial \Omega}\), \(c\) and \(f\) (such as ellipticity, form-boundedness, continuity and Hölder continuity) a suitable reformulation of \([1]\) as an abstract Cauchy problem in an \(L^2\)-space has a unique classical solution. As in \[17\] one can then pass to a rigorous reformulation of \([1]\), see Section 3 in particular \[23\].

A second, auxiliary main result is an extension theorem for Lipschitz functions that complements known extension results, \[13, 14\], and connects to coordinate methods, \[26, 30\]. The Dirichlet form \(E_{\partial \Omega}\) induces an intrinsic metric on \(\partial \Omega\), cf. \[7, 57, 64, 65\]. Theorem 6.1 states that any \(E_{\partial \Omega}\)-intrinsically Lipschitz function on \(\partial \Omega\) has a Euclidean-Lipschitz extension to \(\Omega\). As a consequence, the Dirichlet form \(E_A\) is shown to possess a core consisting of functions \(u\) such that \(u|_\Omega \in C^1(\Omega)\) and \(u|_{\partial \Omega}\) is \(E_{\partial \Omega}\)-intrinsically \(C^1\) on \(\partial \Omega\) in a suitable sense, Corollary 6.2. Moreover, one can find two coordinate functions \(y_1, y_2\) which are contained in the core and separate the points of \(\Omega\). We believe that the coordinate approach will permit new regularity results for first order terms on \(\partial \Omega\). For Theorem 6.1 we provide two different proofs, which both proceed by triangulation methods and therefore are of potential interest for numerical implementations.

We proceed as follows. In Section 2 we recall the definition of the Kusuoka-Kigami energy form \(E_{\partial \Omega}\) and Laplacian \(\Delta_{\partial \Omega}\) on the snowflake \(\partial \Omega\). In Section 3 we define the tangential
gradient operator $D_{\partial \Omega}$ as an operator on the natural $L^2$-space on $\partial \Omega$. Section 4 contains a set of standard conditions under which \([1]\) admits a suitable reformulation as an $L^2$-Cauchy problem that has a unique classical solution. Following \([47]\) we provide a concrete interpretation of this Cauchy problem as a version of \([1]\) in Section 5, the main issue here is a suitable explanation of the co-normal derivative. The extension theorem is discussed in Section 6 and the two proofs are provided in Subsections 6.1 and 6.2 respectively.

We agree to write $\mathcal{E}_A(f) := \mathcal{E}_A(f, f)$, and we do similarly whenever we insert the same argument twice in other bilinear expressions.

2. Energy and Laplacian on the Snowflake

To fix notation we briefly recall the construction of the Koch curve. The Koch curve $K$ is the unique nonempty compact subset $K$ of $\mathbb{C}$ such that $K = \bigcup_{i=1}^4 \psi_i(K)$, where $\psi_1(z) = \frac{z}{3}$, $\psi_2(z) = \frac{z}{3}e^{i \frac{\pi}{3}} + \frac{1}{3}$, $\psi_3(z) = \frac{z}{3}e^{-i \frac{\pi}{3}} + i \frac{\sqrt{3}}{6}$ and $\psi_4(z) = \frac{z+2}{3}$. The set $V_0(K) = \{0, 1\} \subset \mathbb{C}$ is the set of essential fixed points of the iterated function system $\{\psi_1, ..., \psi_4\}$. For $j_1, ..., j_n \in \{1, 2, 3, 4\}$ write $\psi_{j_1, ..., j_n} := \psi_{j_1} \circ ... \circ \psi_{j_n}$ and $V_{j_1, ..., j_n}(K) := \psi_{j_1, ..., j_n}(V_0(K))$. For fixed $n$ we put

$$V_n(K) := \bigcup_{j_1, ..., j_n = 1}^4 V_{j_1, ..., j_n}(K)$$

and finally, set

$$V_s(K) := \bigcup_{n \geq 0} V_n(K).$$

We recall the construction of the Kusuoka-Kigami energy form on the Koch curve $K$, \([16, 36]\). Setting

$$\mathcal{E}^{(n)}_K(u) := \frac{1}{2} 4^n \sum_{p \in V_n(K)} \sum_{q \sim p} (u(p) - u(q))^2,$$

we can define discrete energy forms $\mathcal{E}^{(n)}_K$ on the space of functions $u : V_s(K) \to \mathbb{R}$. The notation $q \sim p$ in $\mathcal{E}^{(n)}_K$ means that we sum over all $q$ that are $n$-neighbors of $p$. Due to the rescaling with prefactor $4^n$ the discrete energies $\mathcal{E}^{(n)}_K(u)$ are non-decreasing in $n$ and

$$\mathcal{E}_K(u) := \lim_{n \to \infty} \mathcal{E}^{(n)}_K(u)$$

defines a non-trivial quadratic form $\mathcal{E}_K$ with domain $\mathcal{D}_*(\mathcal{E}_K) := \{u : V_s(K) \to \mathbb{R} : \mathcal{E}_K(u) < \infty\}$. The metric

$$d_R(p, q) := \sup \left\{ \frac{|u(p) - u(q)|^2}{\mathcal{E}_K(u)} : u \in \mathcal{D}_*(\mathcal{E}_K), \mathcal{E}_K(u) > 0 \right\}, \ p, q \in V_s(K),$$

on $V_s(K)$ extends to a metric on $K$. The metric space $(K, d_R)$ is compact, and the resistance topology (i.e. the topology induced by $d_R$) agrees with the Euclidean trace topology, \([16, 32]\). The functions in $\mathcal{D}_*(\mathcal{E}_K)$ are seen to extend uniquely to functions on $K$ which are continuous in resistance topology, we denote these extensions by the same symbol. We write $\mathcal{D}(\mathcal{E}_K) := \{u \in C(K) : \mathcal{E}_K(u) < \infty\}$, where $\mathcal{E}_K(u) := \mathcal{E}_K(u|_{V_s(K)})$. By polarization this defines a resistance form $(\mathcal{E}_K, \mathcal{D}(\mathcal{E}_K))$ on $K$ in the sense of Kigami \([36, 37, 38]\). For any $u \in \mathcal{D}(\mathcal{E}_K)$ and any $x, y \in K$ we have

$$|u(x) - u(y)| \leq d_R(x, y) \frac{1}{4} \mathcal{E}_K(u)^{1/2}.$$
The resistance form \((E_K, D(E_K))\) is regular, that is, \(D(E_K)\) is uniformly dense in \(C(K)\). For any \(u, v \in D(E_K)\) we have
\[
E_K(u, v) := \lim_{n \to \infty} \frac{1}{2} 4^n \sum_{p \in V_n(K)} \sum_{q \sim_n p} (u(p) - u(q))(v(p) - v(q)).
\]
A function \(u\) on \(K\) is said to be harmonic with boundary values \(u(0)\) and \(u(1)\) on \(V_0(K)\) if it minimizes the discrete energies \(E_K^{(n)}\) for all \(n \geq 1\). In this case \(u \in D(E_K)\) and for all \(n \geq 1\) we have
\[
E_K(u) = E_K^{(n)}(u) = E_K^{(0)}(u) = \frac{1}{2}(u(1) - u(0))^2.
\]
In the sequel let \(h\) denote the unique harmonic function on \(K\) with boundary values \(h(0) = 0\) and \(h(1) = 1\). We use \(h\) as a coordinate function on \(K\). It provides a homeomorphism of \(K\) onto \([0, 1]\). If we let \(\delta = \dim_H K = \frac{\ln 4}{\ln 3}\) denote the Hausdorff dimension of \(K\), then \(K\), equipped with the quasi-distance \(d_\delta(x, y) := |x - y|^{\delta}\), \(x, y \in K\), is a variational fractal in the sense of [58], and for any \(p, q \in V_n(K)\) with \(p \sim_n q\) we have
\[
|h(p) - h(q)| = d_\delta(p, q) = |p - q|^{\delta}.
\]
The space
\[
S_K := \{F \circ h : F \in C^1(\mathbb{R})\}
\]
is a dense subspace of \(D(E_K)\). [67] Theorem 7. Let \(\mu_K\) denote the energy measure of \(h\), that is, the unique nonnegative and finite Radon measure on \(K\) such that
\[
E_K(h, uh) - \frac{1}{2}E_K(u, h^2) = \int_K u \, d\mu_K, \quad u \in D(E_K).
\]
The chain rule, [17] Theorem 3.2.2, now implies that
\[
E_K(u) = \int_K (F'(h(x)))^2 \, d\mu_K(dx),
\]
for any \(u = F \circ h\) from \(S_K\). From [3] and a straightforward calculation (similarly as in the case of the unit interval) one can see that up to the multiplicative constant \(\frac{1}{2}\), the energy measure \(\mu_K\) of \(h\) is just the normalized self-similar Hausdorff measure on \(K\). Clearly the measure is finite and non-atomic and has full support. Therefore the form \((E_K, D(E_K))\) is a strongly local regular Dirichlet form on \(L^2(K, \mu_K)\), see e.g. [38] Theorem 8.4.

We pass to the Dirichlet form on the Koch Snowflake \(\partial \Omega\). [16]. The latter can be obtained as the union of three congruent copies \(K_1, K_2\) and \(K_3\) of the Koch curve \(K\), arranged as symbolically depicted in Figure 2. Alternatively it can be obtained as the union of the three 'shifted' copies \(K_4, K_5\) and \(K_6\), Figure 3. Let \(\varphi_i, i = 1, \ldots, 6\), be the six uniquely determined orientation preserving Euclidean motions such that each \(\varphi_i\) maps \(K_i\) to \(K\) so that for each \(i\) the boundary point of \(K_i\) which in counterclockwise orientation of \(\partial \Omega\) comes first is mapped to \(0 \in K\).

Set
\[
D(E_{\partial \Omega}) := \{u : \partial \Omega \to \mathbb{R} : u|_{K_i} \circ \varphi_i^{-1} \in D(E_K), \quad i = 1, \ldots, 6\}
\]
and define
\[
E_{\partial \Omega}(u) := E_{K_1}(u|_{K_1}) + E_{K_2}(u|_{K_2}) + E_{K_3}(u|_{K_3}), \quad u \in D(E_{\partial \Omega}).
\]
In [9] we could replace \(K_1, K_2\) and \(K_3\) by \(K_4, K_5\) and \(K_6\). As the \(\varphi_i\) are just Euclidean motions, we notationally identify \(u|_{K_i}\) with \(u|_{K_i} \circ \varphi_i^{-1}\) and also identify the measures \(\mu_{K_i}\),
defined similarly as in \cite{7}, with their image measures under the $\varphi_i^{-1}$. Note that on each copy $K_i$ of $K$ the function $h_i = h \circ \varphi_i$ is a harmonic function as $h$ above (so that in counterclockwise orientation the boundary point of $K_i$ with value zero comes first). We equip $\partial \Omega$ with the measure
\[
\mu := \mu_{K_1} + \mu_{K_2} + \mu_{K_3}.
\]
Then the quadratic form $(\mathcal{E}_{\partial \Omega}, \mathcal{D}(\mathcal{E}_{\partial \Omega}))$ defines a strongly local Dirichlet form on $L^2(\partial \Omega, \mu)$. We refer to it as the (Kusuoka-Kigami) energy form on the snowflake. By $(\Delta_{\partial \Omega}, \mathcal{D}(\Delta_{\partial \Omega}))$ we denote the infinitesimal generator of $(\mathcal{E}_{\partial \Omega}, \mathcal{D}(\mathcal{E}_{\partial \Omega}))$ in the usual $L^2$-sense. We refer to it as the (Kusuoka-Kigami) Laplacian on the snowflake. It can also be viewed in the variational sense as an operator $\Delta_{\partial \Omega}$ from the energy domain $\mathcal{D}(\mathcal{E}_{\partial \Omega})$ into its dual $(\mathcal{D}(\mathcal{E}_{\partial \Omega}))'$ so that
\[
\langle \Delta_{\partial \Omega} f, g \rangle_{(\mathcal{D}(\mathcal{E}_{\partial \Omega}))', \mathcal{D}(\mathcal{E}_{\partial \Omega})} = -\mathcal{E}_{\partial \Omega}(f, g), \quad f, g \in \mathcal{D}(\mathcal{E}_{\partial \Omega}),
\]
where $\langle \cdot, \cdot \rangle_{(\mathcal{D}(\mathcal{E}_{\partial \Omega}))', \mathcal{D}(\mathcal{E}_{\partial \Omega})}$ denotes the dual pairing between the spaces $(\mathcal{D}(\mathcal{E}_{\partial \Omega}))'$ and $\mathcal{D}(\mathcal{E}_{\partial \Omega})$. We will use this interpretation in Section 5.

3. Tangential gradients on the snowflake

In this section we introduce the notion of tangential derivative on the boundary $\partial \Omega$ of $\Omega$ and we prove that it is a $L^2$-function. This is achieved by following the seminal paper \cite{59} (see also \cite{60}), where the (discrete) tangential derivative is defined as the limit of a suitable differential quotient, and by using the harmonic coordinate method developed in \cite{67}. The construction may also be seen as a particularly simple example of a measurable Riemannian structure, \cite{21}.

Let
\[
S_{\partial \Omega} := \{ u : \partial \Omega \to \mathbb{R} : u|_{K_i} \in S_{K_i}, i = 1, ..., 6 \}
\]
where $S_{K_i} := \{ F \circ h_i : F \in C^1(\mathbb{R}) \}$. In a sense, the following density result is a special case of \cite[Theorem 7]{67}.

**Lemma 3.1.** The space $S_{\partial \Omega}$ is dense in $\mathcal{D}(\mathcal{E}_{\partial \Omega})$.

Here and below we make use of the fact that the collection of open sets $\{ \tilde{K}_i \}_{i=1}^6$ provides an open cover of $\partial \Omega$. 
Proof. Given \( i \) and \( u \in \mathcal{D}(\mathcal{E}_{\partial \Omega}) \) let \( (u_i^{(n)})_n \subset \mathcal{S}_{K_i} \) be a sequence of functions such that

\[
\lim_n \mathcal{E}_{K_i}(u|_{K_i} - u_i^{(n)}) = 0 \quad \text{and} \quad \lim_n \|u|_{K_i} - u_i^{(n)}\|_{\text{sup}} = 0,
\]

by the resistance estimate such a sequence can always be found. Now let \( \{\chi_i\}_i \subset \mathcal{D}(\mathcal{E}_{\partial \Omega}) \) be an energy finite partition of unity subordinate to the cover \( \{K_i\}_i \). Extending all \( \chi_i u|_{K_i} \) and \( \chi_i u_i^{(n)} \) by zero and using Corollary I.3.3.2 also

\[
\mathcal{E}_{\partial \Omega}(\chi_i u|_{K_i} - \chi_i u_i^{(n)})^{1/2} = \mathcal{E}_{K_i}(\chi_i u|_{K_i} - \chi_i u_i^{(n)})^{1/2}
\]

\[
\leq \mathcal{E}_{K_i}(\chi_i)^{1/2}\|u|_{K_i} - u_i^{(n)}\|_{\text{sup}} + \|\chi_i\|_{\text{sup}} \mathcal{E}_{K_i}(u|_{K_i} - u_i^{(n)})^{1/2}
\]

is seen to tend to zero as \( n \) goes to infinity. Consider the function \( u^{(n)} := \sum_{i=1}^6 \chi_i u_i^{(n)} \), clearly an element of \( \mathcal{D}(\mathcal{E}_{\partial \Omega}) \). Since

\[
2\mathcal{E}_{\partial \Omega}(u - u^{(n)}) \leq \sum_{i=1}^6 \mathcal{E}_{\partial \Omega}(\chi_i u|_{K_i} - \chi_i u_i^{(n)})
\]

\[
+ \sum_{i=1}^6 \sum_{j=i+1}^6 \mathcal{E}_{\partial \Omega}(\chi_i u|_{K_i} - \chi_i u_i^{(n)})^{1/2} \mathcal{E}_{\partial \Omega}(\chi_j u|_{K_j} - \chi_j u_j^{(n)})^{1/2},
\]

we have \( \lim_n \mathcal{E}_{\partial \Omega}(u - u^{(n)}) = 0 \). \( \square \)

For convenience define \( V_*(\partial \Omega) := \bigcup_{i=1}^6 V_*(K_i) \), where for any \( K_i \) the set \( V_*(K_i) \) is defined in the same way as \( V_*(K) \) for \( K \).

\textbf{Lemma 3.2.} Let \( u \in \mathcal{S}_{\partial \Omega} \). Then for any \( p \in V_*(\partial \Omega) \) the limit

\[
(10) \quad D_{\partial \Omega} u(p) := \lim_{V_*(\partial \Omega) \ni q \to p} \frac{u(p) - u(q)}{|p - q|^{\delta}},
\]

exists uniformly in \( p \in V_*(\partial \Omega) \). If \( p \in K_i \) and \( u|_{K_i} = F_i \circ h_i \), then \( D_{\partial \Omega} u(p) = F_i'(h_i(p)) \). Moreover, if \( p \in K_i \cap K_j \cap V_*(\partial \Omega) \) and \( u|_{K_j} = F_j \circ h_j \) then \( F_i'(h_i(p)) = F_j'(h_j(p)) \).

\textbf{Proof.} Let \( i \) be such that \( K_i \) contains \( p \) and \( F_i \in C^1(\mathbb{R}) \) such that \( u|_{K_i} = F_i \circ h_i \). Given \( \varepsilon > 0 \), choose \( n \) such that \( |F_i'(t) - F_i'(s)| < \varepsilon \) provided \( |t - s| \leq 4^{-n} \). Then if \( q \in K_i \cap V_n \) is such that \( h_i(q) < h_i(p) \), we have

\[
\left| F'(h_i(p)) - \frac{u(p) - u(q)}{|p - q|^{\delta}} \right| \leq \frac{1}{|h_i(p) - h_i(q)|} \int_{h_i(q)}^{h_i(p)} |F'(h_i(p)) - F'(t)| dt < \varepsilon,
\]

and similarly if \( h_i(p) < h_i(q) \). The last statement follows because the right hand side in (10) does not depend on \( i \). \( \square \)

\textbf{Definition 3.1.} Given \( x \in \bar{K}_i \) and \( u \in \mathcal{S}_{\partial \Omega} \) such that \( u|_{K_i} = F_i \circ h_i \), we set

\[
(11) \quad D_{\partial \Omega} u(x) := F_i'(h_i(x)).
\]

We refer to \( D_{\partial \Omega} u(x) \) as the tangential gradient of \( u \) along \( \partial \Omega \) in \( x \in \partial \Omega \).

\textbf{Corollary 3.1.} The definition (11) is independent of the particular choice of \( h_i \) and \( F_i \).
Proof. Assume that \( x \in \bar{K}_i \cap \bar{K}_j \) and that we have two representations \( u|_{K_i} = F_i \circ h_i \) and \( u|_{K_j} = F_j \circ h_j \). Let \( (p_n)_n \subset V_\epsilon(\partial\Omega) \cap \bar{K}_i \cap \bar{K}_j \) be a sequence with limit \( x \). The functions \( F'_i \circ h_i \) and \( F_j \circ h_j \) are (uniformly) continuous on \( K_i \cap K_j \). Therefore
\[
F'_j(h_j(x)) = \lim_{n} F_j(h_j(p)) = \lim_{n} F_i(h_i(p)) = F'_i(h_i(x))
\]
by Lemma 3.2.

The tangential gradient can be interpreted as a linear operator.

**Corollary 3.2.** The tangential gradient \( D_{\partial\Omega} \) defines a bounded linear operator \( D_{\partial\Omega} : S_{\partial\Omega} \to L^2(\partial\Omega, \mu) \), more precisely, we have
\[
\| D_{\partial\Omega}u \|_{L^2(\partial\Omega, \mu)}^2 = \mathcal{E}_{\partial\Omega}(u) \quad \text{for all} \quad u \in S_{\partial\Omega}.
\]

**Proof.** Suppose \( F_i \in C^1(\mathbb{R}) \), \( i = 1, 2, 3 \) are such that \( u|_{K_i} = F_i \circ h_i \). Then by (8) and (9) we have
\[
\mathcal{E}_{\partial\Omega}(u) = \int_{K_1} (F'_1(h_1(x)))^2 \mu_{K_1}(dx) + \int_{K_2} (F'_2(h_2(x)))^2 \mu_{K_2}(dx) + \int_{K_3} (F'_3(h_3(x)))^2 \mu_{K_3}(dx),
\]
what yields the result.

The closedness of \((\mathcal{E}_{\partial\Omega}, \mathcal{D}(\mathcal{E}_{\partial\Omega}))\) implies the following.

**Proposition 3.1.** The operator \( D_{\partial\Omega} \) extends to a closed unbounded operator \( D_{\partial\Omega} : L^2(\partial\Omega, \mu) \to L^2(\partial\Omega, \mu) \) with domain \( \mathcal{D}(\mathcal{E}_{\partial\Omega}) \). Moreover, for any \( u \in \mathcal{D}(\mathcal{E}_{\partial\Omega}) \) we have
\[
\mathcal{E}_{\partial\Omega}(u) = \| D_{\partial\Omega}u \|_{L^2(\partial\Omega, \mu)}^2
\]
and the energy measure \( \nu_u \) of \( u \) is absolutely continuous with respect to \( \mu \) with density
\[
\Gamma_{\partial\Omega}(u)(x) = (D_{\partial\Omega}u)^2 \mu\text{-a.e.}
\]

**Proof.** The first statement and the identity for the energy follow from the closedness of \((\mathcal{E}_{\partial\Omega}, \mathcal{D}(\mathcal{E}_{\partial\Omega}))\). The last identity is immediate for all functions from \( S_{\partial\Omega} \). By polarization we obtain a bilinear map \((u, v) \mapsto \Gamma_{\partial\Omega}(u, v) = D_{\partial\Omega}u D_{\partial\Omega}v \) on \( S_{\partial\Omega} \). If now \((u_n)_n \subset S_{\partial\Omega} \) is a sequence converging to \( u \in \mathcal{D}(\mathcal{E}_{\partial\Omega}) \) in \( \mathcal{D}(\mathcal{E}_{\partial\Omega}) \), then the limit
\[
\lim_n \Gamma_{\partial\Omega}(u_n) = \Gamma_{\partial\Omega}(u)
\]
exists in \( L^1(\partial\Omega, \mu) \), as follows from \( | \Gamma_{\partial\Omega}(u_n)^{1/2} - \Gamma_{\partial\Omega}(u_m)^{1/2} | \leq \Gamma_{\partial\Omega}(u_n - u_m)^{1/2} \) (which is a simple consequence of the bilinearity of \( \Gamma_{\partial\Omega} \)) together with the straightforward estimate
\[
\int_{\partial\Omega} | \Gamma_{\partial\Omega}(u_n) - \Gamma_{\partial\Omega}(u_m) | d\mu \leq \left( \int_{\partial\Omega} | \Gamma_{\partial\Omega}(u_n)^{1/2} - \Gamma_{\partial\Omega}(u_m)^{1/2} |^2 d\mu \right)^{1/2} \left( 8 \sup_n \mathcal{E}_{\partial\Omega}(u_n) \right)^{1/2}.
\]

**Remark 3.1.**

(i) According to general theory the adjoint \( D_{\partial\Omega}^* \) of \( D_{\partial\Omega} \) is a densely defined and closed linear operator from \( L^2(\partial\Omega, \mu) \) into itself. The image \( \text{Im} \ D_{\partial\Omega} \) of \( D_{\partial\Omega} \) is a closed subspace of \( L^2(\partial\Omega, \mu) \), see [23 Section 4], and we observe the orthogonal decomposition \( L^2(\partial\Omega, \mu) = \text{Im} \ D_{\partial\Omega} \oplus \ker D_{\partial\Omega}^* \). Since \( \partial\Omega \) is finitely ramified, it follows from [33 Theorem 5.6] that \( \ker D_{\partial\Omega} \) is one-dimensional. The snowflake boundary \( \partial\Omega \) is homeomorphic to the unit circle, and as in the case of the classical energy form on the unit circle \( \ker D_{\partial\Omega}^* \) consists of the constant functions.
(ii) As already mentioned in the introduction, an analog of $D_{\partial \Omega}$, namely an (abstract) gradient, can be defined for any Dirichlet form, \[10\], and for many energy forms on fractals it admits very intuitive discrete approximations \[11, 33, 35, 42, 59, 60, 62, 66, 67\]. In general such gradients take functions into (abstract) generalized $L^2$-vector fields, see for instance \[30\]. This is already sufficient to study partial differential equations on a certain functional analytic level, and we would like to emphasize that for many purposes it is not even be needed that energy measures are absolutely continuous. The specific (and by no means general) feature of the present situation is that the gradient of a function can again be seen as a function.

4. Quadratic forms, semigroups and Cauchy problems

Now consider the function space
\[ V(\Omega, \partial \Omega) := \{ u \in H^1(\Omega) : u|_{\partial \Omega} \in D(\mathcal{E}_{\partial \Omega}) \} . \]

This space is well defined and non-empty, see e.g. \[43\, \text{Propositions 4.8 and 4.9}\] or \[44\], and equipped with the scalar product
\[ (u, v)_{V(\Omega, \partial \Omega)} = (u, v)_{H^1(\Omega)} + \mathcal{E}_{\partial \Omega}(u|_{\partial \Omega}, v|_{\partial \Omega}) + \langle u|_{\partial \Omega}, v|_{\partial \Omega} \rangle_{L^2(\partial \Omega, \mu)} , \]
it is a Hilbert space, \[47, \text{Proposition 3.2}\]. The last statement is a consequence of known trace and extension results, \[34, 68, 70\], a short survey is provided in Appendix A.

Let \[ m = L^2|_{\Omega} + \mu \]
denote the sum of the measures $L^2|_{\Omega}$ and $\mu$. For any $c_0 > 0$ we can define a quadratic form $(\mathcal{E}_0, V(\Omega, \partial \Omega))$ on $L^2(\Omega, m)$ by
\[ \mathcal{E}_0(u) := \int_{\Omega} (\nabla u)^2 d\mathcal{L}^2 + c_0 \mathcal{E}_{\partial \Omega}(u|_{\partial \Omega}), \quad u \in V(\Omega, \partial \Omega), \]
and its polarized version
\[ \mathcal{E}_0(u, v) := \int_{\Omega} \nabla u \cdot \nabla v d\mathcal{L}^2 + c_0 \mathcal{E}_{\partial \Omega}(u|_{\partial \Omega}, v|_{\partial \Omega}), \quad u, v \in V(\Omega, \partial \Omega), \]
yields a Dirichlet form $(\mathcal{E}_0, V(\Omega, \partial \Omega))$ on $L^2(\Omega, m)$.

Assumption 4.1. Now let us assume we are given the following data:

(i) a coefficient matrix $A = (a_{ij})_{i,j=1}^2$ that is symmetric, $a_{ji} = a_{ij}$, has bounded entries $a_{ij} \in L^\infty(\Omega)$, and satisfies the ellipticity condition
\[ \sum_{i,j=1}^2 a_{ij} \xi_i \xi_j \geq \lambda \sum_{i=1}^2 |\xi_i|^2, \quad \xi = (\xi_1, \xi_2) \in \Omega, \]
with a constant $\lambda > 0$,

(ii) a vector field $\vec{b} = (b_1, b_2) \in L^2(\Omega, \mathbb{R}^2)$ such that
\[ \int_{\Omega} u^2 (\vec{b} \cdot \nabla u) d\mathcal{L}^2 \leq \gamma_1 \int_{\Omega} (\nabla u)^2 d\mathcal{L}^2 + \gamma_2 \|u\|_{L^2(\Omega)}^2, \quad u \in V(\Omega, \partial \Omega), \]
with positive constants $\gamma_1$ and $\gamma_2$ such that $\sqrt{2\gamma_1} < \lambda$. 


(iii) a 'boundary vector field' \( b_{\partial \Omega} \in L^2(\partial \Omega, \mu) \) such that
\[
\int_{\partial \Omega} u^2 b^2_{\partial \Omega} \, d\mu \leq \delta_1 \mathcal{E}_{\partial \Omega}(u|_{\partial \Omega}) + \delta_2 \|u\|_{L^2(\partial \Omega, \mu)}^2, \quad u \in V(\Omega, \partial \Omega),
\]
with positive constants \( \delta_1 \) and \( \delta_2 \) such that \( \sqrt{2\delta_1} < c_0 \),
(iv) a continuous function \( c \) on \( \partial \Omega \).

Given data as in Assumption 4.1 consider the bilinear form defined by
\[
\mathcal{E}(u, v) = \int_{\Omega} (A(x) \cdot \nabla u(x)) \cdot \nabla v(x) \mathcal{L}^2(\Omega) - \int_{\Omega} (\tilde{b}(x) \cdot \nabla u(x)) v(x) \mathcal{L}^2(\Omega) 
+ c_0 \mathcal{E}_{\partial \Omega}(u, v) - \int_{\partial \Omega} b_{\partial \Omega}(x) \cdot \nabla u(x) v(x) \mu(dx) + \int_{\partial \Omega} c(x) \nabla u(x) v(x) m(dx),
\]
u, v \in V(\Omega, \partial \Omega). Given \( \alpha > 0 \) we write
\[
\mathcal{E}_\alpha(u, v) := \mathcal{E}(u, v) + \alpha \langle u, v \rangle_{L^2(\Omega, m)}.
\]

**Proposition 4.1.** Let \( A, \tilde{b}, b_{\partial \Omega}, \) and \( c \) be as in Assumption 4.1. Then \( (\mathcal{E}, V(\Omega, \partial \Omega)) \) is a closed coercive form in the wide sense, i.e. there is some \( \alpha > 0 \) such that \( u \mapsto \mathcal{E}_\alpha(u, u) \) defines a positive definite closed quadratic form on \( L^2(\Omega, m) \) with domain \( V(\Omega, \partial \Omega) \) and
\[
|\mathcal{E}_{\alpha+1}(u, v)| \leq K (\mathcal{E}_{\alpha+1}(u^{1/2}) \mathcal{E}_{\alpha+1}(v)^{1/2}, \quad u, v \in V(\Omega, \partial \Omega),
\]
with a universal constant \( K > 0 \).

**Proof.** By (i) the form
\[
\mathcal{E}_A(u, v) := \int_{\Omega} A \cdot \nabla u \cdot \nabla v \, d\mathcal{L}^2 + c_0 \mathcal{E}_{\partial \Omega}(u|_{\partial \Omega}, v|_{\partial \Omega})
\]
defines a symmetric Dirichlet form \( (\mathcal{E}_A, V(\Omega, \partial \Omega)) \) on \( L^2(\Omega, m) \). Conditions (ii) and (iii) are form boundedness conditions, cf. [61]. A straightforward calculation using (ii) shows that for any \( \varepsilon > 0 \) we have
\[
\int_{\Omega} (\tilde{b} \cdot \nabla u) u \, d\mathcal{L}^2 \leq \frac{\sqrt{2\gamma_1 + \varepsilon^2}}{\lambda} \mathcal{E}_A(u, u) + \frac{c_0^2}{\varepsilon^2} \|u\|_{L^2(\Omega, m)}^2,
\]
and by (ii) we can find a small \( \varepsilon \) such that \( \sqrt{2\gamma_1 + \varepsilon^2} < \lambda \). A similar bound follows from (iii), and we can find some \( 0 < \varepsilon_0 < 1 \) and \( C > 0 \) such that
\[
|\tilde{\mathcal{E}}(u, u) - \mathcal{E}_A(u, u)| \leq \varepsilon_0 \mathcal{E}_A(u, u) + C \|u\|_{L^2(\Omega, m)}^2
\]
for any \( u \in V(\Omega, \partial \Omega) \), where \( \tilde{\mathcal{E}}(u, v) = \frac{1}{2}(\mathcal{E}(u, v) + \mathcal{E}(v, u)) \) denotes the symmetric part of \( \mathcal{E} \).

By [61] Theorem X.17 the symmetric form \( (\tilde{\mathcal{E}}, V(\Omega, \partial \Omega)) \) is lower bounded and closed. The sector condition [15] is straightforward. \( \square \)

As a consequence \( (\mathcal{E}, V(\Omega, \partial \Omega)) \) generates an analytic semigroup \( (T_t)_{t \geq 0} \) on \( L^2(\Omega, m) \) which satisfies
\[
\|T_t\|_{L^2(\Omega, m) \to L^2(\Omega, m)} \leq e^{\alpha t}, \quad t \geq 0.
\]
See for instance [56, Corollary I.2.21].
Let \((A, \mathcal{D}(A))\) denote the \(L^2(\Omega, m)\)-generator of the form \((\mathcal{E}, V(\Omega, \partial\Omega))\). Given \(T > 0\) and functions \(f : [0, T] \to L^2(\Omega, m)\) and \(u_0 \in L^2(\Omega, m)\), we consider the abstract Cauchy problem

\[
\begin{align*}
\frac{du(t)}{dt} &= Au(t) + f(t), & 0 < t \leq T, \\
u(0) &= u_0 
\end{align*}
\]

in \(L^2(\Omega, m)\). A function \(u \in C([0, T], L^2(\Omega, m))\) is called a classical solution to (18) if \(u \in C^1([0, T], L^2(\Omega, m)) \cap C([0, T], \mathcal{D}(A))\) and \(u\) satisfies (18). Under Assumptions 4.1 and a Hölder condition on \(f\) the existence and uniqueness of a classical solution to (18) follows from [55, Theorem 4.3.1].

**Theorem 4.1.** Suppose \(0 < \theta < 1\) and \(f \in C^\theta([0, T], L^2(\Omega, m))\) and that Assumption 4.1 is satisfied. Then (18) has a unique classical solution \(u\), given by

\[
u(t) = T_t u_0 + \int_0^t T_{t-s} f(s) ds, \quad 0 \leq t \leq T.
\]

**Remark 4.1.**

(i) According to [55, Theorem 4.3.1] for any \(\varepsilon > 0\) we also have

\[
\|u\|_{C^1([\varepsilon, T], L^2(\Omega, m))} + \|u\|_{C([\varepsilon, T], \mathcal{D}(A))} \leq C_{\varepsilon} \|f\|_{C^\theta([\varepsilon, T], L^2(\Omega, m))}
\]

for the classical solution \(u\) of (18). Here \(C_{\varepsilon} > 0\) is a constant depending only on \(\varepsilon\).

(ii) If in addition \(u_0 \in \mathcal{D}(A)\) then by [55, Theorem 4.3.1] the unique classical solution \(u\) to (18) as in Theorem 4.1 is also the unique strict solution to the problem

\[
\begin{align*}
\frac{du(t)}{dt} &= Au(t) + f(t), & 0 \leq t \leq T, \\
u(0) &= u_0, 
\end{align*}
\]

i.e. the unique function \(u \in C([0, T], L^2(\Omega, m))\) such that \(u \in C^1([0, T], L^2(\Omega, m)) \cap C([0, T], \mathcal{D}(A))\) and (19) is satisfied. In this case the estimate in (i) also holds for \(\varepsilon = 0\).

We point out that by (17) and a similar bound for \(\mathcal{E}_{\partial\Omega}\) there is a constant \(C' > 0\) such that for the form \(\mathcal{E}_A\) in (16) we have \(\mathcal{E}_A(g) \leq C' \mathcal{E}(g), \; g \in V(\Omega, \partial\Omega)\). Together with Assumption 4.1 (i) this implies that

\[
\int_{\Omega} (\nabla g)^2 d\mathcal{L}^2 \leq \frac{C'}{\lambda} \mathcal{E}_1(g) \leq \frac{C'}{\lambda} (\|Ag\|_{L^2(\Omega, m)} + \|g\|_{L^2(\Omega, m)})^2
\]

for any \(g \in \mathcal{D}(A)\).

5. **Strong interpretation and co-normal derivatives**

Following the method in [47, Section 6] we can reinterpret the abstract Cauchy problem (18) as a rigorous version of (1). For the convenience of the reader we sketch the arguments.

Consider the space

\[
V(\Omega) = \{ g \in H^1(\Omega) : L_A g \in L^2(\Omega) \},
\]

where \(L_A g = \text{div}(A\nabla g)\). We equip it with the norm

\[
\|g\|_{V(\Omega)} := \|L_A g\|_{L^2(\Omega)} + \|\nabla g\|_{L^2(\Omega, \mathbb{R}^2)} + \|g\|_{L^2(\Omega)}.
\]
Proceeding as in [43] Theorem 4.15 and [46] we can see that for any \(g \in V(\Omega)\) we can define a distribution \(l_g \in (H^1(\Omega))'\) by
\[
l_g(v) := \int_{\Omega} (A \cdot \nabla g) \cdot \nabla v \, d\mathcal{L}^2 + \int_{\Omega} v L_A g \, d\mathcal{L}^2, \quad v \in H^1(\Omega).
\]

By Cauchy-Schwarz there is a constant \(c > 0\) such that for any \(g \in V(\Omega)\) and \(v \in H^1(\Omega)\) we have
\[
|l_g(v)| \leq c \|g\|_{V(\Omega)} \|v\|_{H^1(\Omega)}
\]
and moreover, if \(v, v' \in H^1(\Omega)\) are such that \(v|_{\partial \Omega} = v'|_{\partial \Omega}\) then \(l_g(v) = l_g(v')\). In conjunction with the trace and extension results mentioned in Appendix A we can therefore view each \(l_g\) as a distribution \(\frac{\partial g}{\partial n_A}\) in \((B^{2,2}_{\delta/2}(\partial \Omega))'\) and use the notation
\[
\langle \frac{\partial g}{\partial n_A}, v|_{\partial \Omega} \rangle_{(B^{2,2}_{\delta/2}(\partial \Omega))', (B^{2,2}_{\delta/2}(\partial \Omega))} = l_g(v), \quad v \in H^1(\Omega)
\]
in terms of a dual pairing. See also [44] formula (3.26) and [47] for a similar reasoning. By the boundedness of the extension operator \(\text{Ext} : B^{2,2}_{\delta/2}(\partial \Omega) \to H^1(\Omega)\) together with estimate (21) there is a constant \(c > 0\) such that for any \(g \in V(\Omega)\) we have
\[
\|\frac{\partial g}{\partial n_A}\|_{(B^{2,2}_{\delta/2}(\partial \Omega))'} \leq c \|g\|_{V(\Omega)}.
\]

Given \(f \in C^0([0, T], L^2(\overline{\Omega}, m))\) as in Theorem 4.1 let now \(u \in C((0, T], D(A))\) denote the unique classical solution to (18). Testing with functions from \(C^\infty_c(\Omega)\) we observe that for any \(t \in (0, T)\) we have
\[
u_t(t, x) = L_A u(t, x) + \tilde{b}(x) \cdot \nabla u(t, x) + f(t, x)
\]
in the distributional sense. By density this also holds in \(L^2(\Omega)\). Due to the hypothesis on \(f\) and according to Theorem 4.1 the function \(t \mapsto u_t(t) + f(t)\) is an element of \(C((0, T], L^2(\Omega))\). Since
\[
\|\nabla u(t) - \nabla u(s)\|_{L^2(\Omega)} \leq C' \frac{\lambda}{\lambda} \left(\|A(u(t) - u(s))\|_{L^2(\Omega, m)} + \|u(t) - u(s)\|_{L^2(\Omega, m)}\right)
\]
for any \(s, t \in (0, T)\) by (20), Theorem 4.1 implies that also \(t \mapsto \tilde{b} \cdot \nabla u(t)\) is in \(C((0, T], L^2(\Omega))\). Consequently also \(L_A u \in C((0, T], L^2(\Omega))\) and therefore \(u \in C((0, T], V(\Omega))\).

If for fixed \(t \in (0, T)\) (suppressed from notation) we multiply the first identity in (18) with some \(\varphi \in V(\Omega, \partial \Omega)\), we obtain
\[
\langle u_t, \varphi \rangle_{L^2(\Omega)} + \langle u_t, \varphi \rangle_{L^2(\partial \Omega, m)} = -\int_{\Omega} (A \cdot \nabla u) \cdot \nabla \varphi \, d\mathcal{L}^2 + \int_{\Omega} (\tilde{b} \cdot \nabla u) \varphi \, d\mathcal{L}^2 - c_0 \mathcal{E}_{\partial \Omega}(u|_{\partial \Omega}, \varphi|_{\partial \Omega})
\]
\[
+ \int_{\partial \Omega} (b_{\partial \Omega} D_{\partial \Omega} u|_{\partial \Omega}) \varphi \, d\mu - \langle cu, \varphi \rangle_{L^2(\partial \Omega, m)}.
\]

Taking into account that
\[
\int_{\Omega} (A \cdot \nabla u) \cdot \nabla \varphi \, d\mathcal{L}^2 = -\langle \frac{\partial u}{\partial n_A}, \varphi|_{\partial \Omega} \rangle_{(B^{2,2}_{\delta/2}(\partial \Omega))', (B^{2,2}_{\delta/2}(\partial \Omega))} + \int_{\Omega} \varphi L_A u \, d\mathcal{L}^2
\]
and noting that by the embedding of $\mathcal{D}(\mathcal{E}_{\partial\Omega})$ into $B_{2.2}^{2.2}(\partial\Omega)$, we may view $\frac{\partial u}{\partial n_A}(t)$ as an element of $(\mathcal{D}(\mathcal{E}_{\partial\Omega}))'$, we find that

$$
\begin{cases}
  u_t(u) - L_A u(t) - \tilde{b} \cdot \nabla u(t) = f(t) & \text{in } L^2(\Omega), \ t \in (0,T], \\
  u_t(t) - c_0 \Delta_{\partial\Omega} u(t) |_{\partial\Omega} - b_{\partial\Omega} D_{\partial\Omega} u(t) |_{\partial\Omega} + cu(t) = -\frac{\partial u}{\partial n_A} + f(t) & \text{in } (\mathcal{D}(\mathcal{E}_{\partial\Omega}))', \ t \in (0,T], \\
  u(0) = u_0 & \text{in } L^2(\Omega,m).
\end{cases}
$$

Problem (23) is a rigorous version of (1), and we may regard $u$ as in Theorem 4.1 as a solution. See [47] for further related details and references.

6. An extension principle

One of the main difficulties in Dirichlet form vector analysis on $\overline{\Omega}$ is the fact that $\Omega$ is not a Lipschitz domain. Nevertheless we can prove Theorem 6.1 below, which is an extension theorem that in some sense augments the results of [13, 14]. It also allows to use the coordinate approach from [26, 30].

The $\mathcal{E}_{\partial\Omega}$-intrinsic distance of two points $x,y \in \partial\Omega$ is defined as

$$
d_{\mathcal{E}_{\partial\Omega}}(x,y) := \sup \{ u(x) - u(y) : u \in \mathcal{D}(\mathcal{E}_{\partial\Omega}) \text{ with } \Gamma_{\partial\Omega}(u) \leq 1 \ \mu\text{-a.e.} \},
$$

where for any $u \in \mathcal{D}(\mathcal{E}_{\partial\Omega})$, the function $\Gamma_{\partial\Omega}(u) = (D_{\partial\Omega} u)^2$ as in [12] is the density of the energy measure $\nu_u$ of $u$ with respect to $\mu$. Because $\partial\Omega$ is compact in resistance topology and $\mathcal{D}(\mathcal{E}_{\partial\Omega}) \subset C(\partial\Omega)$, this is consistent with the usual definition of intrinsic distance in terms of Dirichlet forms [7, 57, 64, 65]. We record the following observation.

Corollary 6.1. For any $i$ and any $x,y \in K_i$ we have $d_{\mathcal{E}_{\partial\Omega}}(x,y) = |h_i(x) - h_i(y)|$.

Proof. Consider a function $u$ which equals $h_i$ on $K_i$, $1-h_j$ on one of the neighboring $K_j$ and is constant outside $K_i \cup K_j$. Then clearly $u \in \mathcal{D}(\mathcal{E}_{\partial\Omega})$ and $\Gamma(u) \leq 1 \ \mu\text{-a.e.}$ Hence

$$
|h_i(x) - h_i(y)| = |u(x) - u(y)| \leq d_{\mathcal{E}_{\partial\Omega}}(x,y).
$$

To see the converse inequality let $\varepsilon > 0$ and let $u \in \mathcal{D}(\mathcal{E}_{\partial\Omega})$ be a function with $\Gamma(u) \leq 1 \ \mu\text{-a.e.}$ and such that $d_{\mathcal{E}_{\partial\Omega}}(x,y) \leq u(x) - u(y) + \frac{\varepsilon}{3}$. The desired inequality follows provided we can find $v \in \mathcal{D}(\mathcal{E}_{\partial\Omega})$ with $v = F_i \circ h_i$ and $\|F_i\|_{\sup} \leq 1$ such that $\sup_{x \in K_i} |u(x) - v(x)| < \frac{\varepsilon}{3}$, because in this case $d_{\mathcal{E}_{\partial\Omega}}(x,y) \leq v(x) - v(y) + \varepsilon$. By the resistance estimate (5) it is sufficient to show that for any $\delta > 0$ we can find a function $v \in \mathcal{D}(\mathcal{E}_{\partial\Omega})$ with $v = F_i \circ h_i$ and $\|F_i\|_{\sup} \leq 1$ such that $\mathcal{E}_{K_i}(v - u)^1/2 > 4\delta$.

Let $(\nu_n)_{n=1}^{\infty} \subset \mathcal{S}_{\partial\Omega}$ with $\nu_n = F_i^{(n)} \circ h_i$ be such that $\lim_{n \to \infty} \mathcal{E}_{\partial\Omega}(\nu_n - u) = 0$. Then by a similar reasoning as in the proof of Proposition 3.1 we observe $\lim_{n \to \infty} (\mathcal{F}_i^{(n)})'(h_i(x))^2 = \Gamma(u)$ in $L^1(K_i, \mu)$. Therefore, if for sufficiently large $n$ we set $\tilde{F}_i := F_i^{(n)}$, we can ensure that $\mathcal{E}_{K_i}(\tilde{F}_i \circ h_i - u) < \delta^2$ and, by uniform integrability, that

$$
\sup_n \int_{A_\delta} (F_i^{(n)}(x))^2 \mu(dx) < \frac{\delta^2}{2},
$$

where $A_\delta = \{ x \in K_i : |\tilde{F}_i(h_i(x)| \geq 1 + \delta \}$. Note that for sufficiently large $n$ the measure $\mu(A_\delta)$ of $A_\delta$ will be smaller than any given $\delta' > 0$, because

$$
\mu(A_\delta) \leq \mu \left( \left\{ x \in K_i : |\tilde{F}_i(h_i(x)|^2 - \Gamma(u)(x) \geq \delta^2 \right\} \right) \leq \frac{1}{\delta^2} \int_{K_i} |\tilde{F}_i(h_i(x)|^2 - \Gamma(u)(x)| \mu(dx).
$$
Next, let $\varphi \in C^1(\mathbb{R})$ be a function with $\|\varphi\|_{\text{sup}} \leq 1$ such that $|\varphi(s)| \leq |(s \wedge 1) \vee (-1)|$ for all $s$ and $\|\varphi(\widetilde{F}_i^t) - (\widetilde{F}_i^t \wedge 1) \vee (-1)\|_{\text{sup}} < \delta$. Then for the function

$$F_i(s) := \widetilde{F}_i(0) + \int_0^s \varphi(\widetilde{F}_i(t))dt$$

we have $\sup_{x \in K_i \setminus A_\delta} |F_i'(h(x)) - \widetilde{F}_i'(h(x))| < 2\delta$ and

$$\int_{A_\delta} F_i'(h_i(x))^2 \mu(dx) \leq \int_{A_\delta} \widetilde{F}_i'(h_i(x))^2 \mu(dx) < \frac{\delta^2}{2}.$$ 

Combining, we observe

$$E_{K_i}(F_i \circ h_i - u)^{1/2} \leq E_{K_i}(\tilde{F}_i \circ h_i - u)^{1/2} + \left( \int_{K_i \setminus A_\delta} |\tilde{F}_i'(h_i(x)) - F_i'(h_i(x))|^2 \mu(dx) \right)^{1/2}$$

$$+ \left( 4 \int_{A_\delta} (\tilde{F}_i'(h_i(x))^2 + F_i'(h_i(x))^2) \mu(dx) \right)^{1/2}$$

$$\leq 4\delta.$$ 

Now let $v$ be the function on $\partial \Omega$ that equals $F_i \circ h_i$ on $K_i$ and is linear on $K_i^c$. Clearly $v \in \mathcal{D}(E_{\partial \Omega})$, and since $\sup_{x,y \in K_i} |v(x) - v(y)| \leq 1$, we also have $\Gamma(v) \leq 1 \mu$-a.e. on $\partial \Omega \setminus K_i$. \hfill $\square$

We call a function $E_{\partial \Omega}$-intrinsically Lipschitz if it is Lipschitz with respect to $dE_{\partial \Omega}$. Consequently a function $u \in \mathcal{D}(E_{\partial \Omega})$ is $E_{\partial \Omega}$-intrinsically Lipschitz if and only if there is a constant $L > 0$ such that $|u(x) - u(y)| \leq L|h_i(x) - h_i(y)|$ for any $x, y \in K_i$ and any $i$. The following is the main result of this section.

**Theorem 6.1.** Any $E_{\partial \Omega}$-intrinsically Lipschitz function on $\partial \Omega$ has an Euclidean-Lipschitz extension to $\overline{\Omega}$.

This theorem has implications for the Dirichlet form $E_0$ as in [1]. To functions from $\mathcal{S}_{\partial \Omega}$ we refer as $E_{\partial \Omega}$-intrinsic $C^1$-functions.

**Corollary 6.2.**

(i) The Dirichlet form $E_0$ has a core consisting of functions in $C(\overline{\Omega})$ whose restriction to $\Omega$ is in $C^1(\Omega)$, and whose restriction to $\partial \Omega$ is an $E_{\partial \Omega}$-intrinsically $C^1$-function. For a core function $u$ the gradients $\nabla u$ and $D_{\partial \Omega}u$ are well defined pointwise in $\Omega$ and on $\partial \Omega$, respectively.

(ii) There are two coordinate functions $y_1, y_2$ which are contained in the core and separate the points of $\overline{\Omega}$.

**Remark 6.1.**

(i) In particular, for a core function $u$ we have that $D_{\partial \Omega}u$ is continuous on $\partial \Omega$ and $\nabla u$ is continuous on $\Omega$, and the derivatives can be computed by the usual calculus rules. We do not claim that $\nabla u$ is continuous on $\overline{\Omega}$. Note that a typical function in Euclidean $C^1(\overline{\Omega})$ is not in the domain of $E$.

(ii) The coordinate functions in Corollary 6.2 can be used to obtain a coordinate representation for the gradients.
Before proving Theorem 6.1, we introduce general notation we will be using. For notational convenience we assume that the domain $\Omega$ pictured in Figure 1 is embedded in the complex plane $\mathbb{C}$ and inscribed in the circle of radius $\sqrt{3}$. In particular, the six most outward points of $\partial \Omega$ are $\sqrt{3}e^{ik\pi/3} + i\pi/6$, $k = 0, 1, ..., 5$. The inscribed circle is the unit circle. In particular, the six most inward points of $\partial \Omega$ are the 6th roots of unity $e^{ik\pi/3}$, $k = 0, 1, ..., 5$. The most left and right most inward points are $-1, 1 \in \mathbb{C}$ respectively.

Although we now work with Koch curves that, in comparison with those in Section 3, are dilated by the factor 3, we will continue to use the notation of Section 3. For example, two $p$ and $q$ from $V_{n+1}(\partial \Omega)$ that are neighbors, $p \sim_{n+1} q$, now have Euclidean distance $3^{-n}$. Let us write $V_n(\partial \Omega) := \bigcup_{i=1}^6 V_n(K_i)$, where $V_n(K_i)$ is defined for $K_i$ in the same way as $V_n(K)$ for $K$.

6.1. **A first proof of Theorem 6.1.** Let $f$ be an $E_{\partial \Omega}$-intrinsically Lipschitz function on $\partial \Omega$. We would like to construct a Euclidean-Lipschitz extension of $f$ to $\Omega$, which we denote $g$. There are several natural constructions based on the natural “approximate” triangulations of $\Omega$. One of them is reminiscent of the study of the structure of $\varepsilon$-neighborhoods of the Koch curve described in [52], and also of the constructions in [13, 14]. It uses a weakly self-similar triangulation, which is nicely separated from the boundary of the fractal snowflake domain $\Omega$.

For this first construction, we consider the lattice $L_n = 3^{-n}\mathbb{Z}\{e^{ik\pi/3}| k = 0, 1, ..., 5\}$. It is easy to see that for each $x \in L_n \cap \Omega$ there are finitely many points of $L_n \cap \partial \Omega$ that are closest to $x$ (this number of the closest boundary points ranges from six for the center point $x = 0 \in \Omega$, to one for most of points of $x \in L_n \cap \Omega$). On $L_n \cap \Omega$ we obtain a function $g_n$ by defining $g_n(x)$ to be the average of $f$ at these points of $L_n \cap \partial \Omega$ closest to $x \in L_n \cap \Omega$. Note that for any $n$ we have $L_n \cap \partial \Omega = V_{n+1}(\partial \Omega)$ (in the notation of the present section).

Naturally, we assume that the points of each lattice $L_n$ are the vertices of closed equilateral triangles $T_{n,m}$ of sides $3^{-n}$, and so each lattice $L_n$ defines a triangulation of $\mathbb{R}^2 = \cup_m T_{n,m}$ into such triangles $T_{n,m}$. We define $\mathcal{T}_n := \bigcup_{m: T_{n,m} \subset \Omega} T_{n,m}$ as the union of triangles $T_{n,m}$ that lie inside $\Omega$. Note that $\mathcal{T}_n$ is a compact set contained in $\Omega$, and so $\mathcal{T}_n$ is separated from $\partial \Omega$. See Figures 4 and 5. As usual, we denote the boundary of $\mathcal{T}_n$ by $\partial \mathcal{T}_n$. 

**Figure 4.** The set $\mathcal{T}_1 \subset \Omega$, triangulated by triangles of side length $1/3$. 

**Figure 5.** The set $\mathcal{T}_2 \subset \Omega$, triangulated by triangles of side length $1/9$. 

15
From the functions $g_n$ on $L_n \cap \Omega$ we now inductively define $g$ as follows. On $T_1$ we define $g$ as piece-wise linear interpolation of $g_1$ on the triangulation by triangles $T_{1,m} \subset T_1$. Next, we extend $g$ from $T_1$ to $T_2$ using piece-wise linear interpolation of $g_2$ on the triangles $T_{2,m}$ contained in $T_2$ but not in $T_1$. Inductively, if $g$ is already defined on $T_{n-1}$, we extend it to $T_n$ using piece-wise linear interpolation of $g_n$ on the triangles $T_{n,m}$ contained in $T_n$ but not in $T_{n-1}$.

In other words, on the “shell” $\partial T_n$ we define $g$ as the unique piecewise linear interpolation of $g_n$ restricted to $\partial T_n$. In the region between $\partial T_{n-1}$ and $\partial T_n$ we define $g$ by interpolating linearly on the triangles $T_{n,m}$ that lie in $T_n$ but not in $T_{n-1}$.

The resulting function $g$ is an Euclidean-Lipschitz extension of $f$ because of scaling. When we pass from $n$ to $n+1$, the $\mathcal{E}_{\partial \Omega}$-intrinsic Lipschitz constant of function $f$ is scaled by the factor $\frac{1}{3}$, but the Euclidean-Lipschitz constant of function $g$ is scaled by the factor $\frac{1}{3}$. More precisely, for any $p \in V_n(\partial \Omega)$ we have

\begin{equation}
L_{\mathcal{E}_{\partial \Omega}}(f) \geq \sup_{q \in V_n(\partial \Omega), q \sim n, p} \frac{|f(p) - f(q)|}{d_{\mathcal{E}_{\partial \Omega}}(p,q)} = \left(\frac{4}{3}\right)^n \sup_{q \in V_n(\partial \Omega), q \sim n, p} \frac{|f(p) - f(q)|}{|p - q|},
\end{equation}

where $L_{\mathcal{E}_{\partial \Omega}}(f)$ denotes the $\mathcal{E}_{\partial \Omega}$-intrinsic Lipschitz constant of $f$. This follows from Corollary 6.1 together with formula (6). For each $x \in L_n \cap \partial T_n$ the value $g(x) = g_n(x)$ is obtained as an average of the values of $f$ on the points from $V_{n+1}(\partial \Omega)$ closest to $x$, and these points all have Euclidean distance $3^{-n}$ from $x$.

If $x, x' \in \partial T_n$ have Euclidean distance $3^{-n}$ then there is a chain of maximally 8 consecutive points from $V_{n+1}(\partial \Omega)$ that contains all points recruited to compute the averages $g_n(x)$ and $g_n(x')$. Figure 6 displays this most extreme case. Using (24) and the triangle inequality we can then see that the maximal difference of the values on $f$ on these points is bounded by $4^{-n}7L_{\mathcal{E}_{\partial \Omega}}(f)$. By averaging then also the difference of $g_n(x)$ and $g_n(x')$ is bounded by that number.

Consequently the Euclidean-Lipschitz constant of the function $g$ on $\partial T_n$ is controlled by $(\frac{3}{4})^n7L_{\mathcal{E}_{\partial \Omega}}(f)$. If $x \in \partial L_n \cap T_n$ and $x' \in L_{n-1} \cap \partial T_{n-1}$ have Euclidean distance $2 \cdot 3^{-n}$ then the maximal Euclidean distance of the points on $V_{n+1}(\partial \Omega)$ recruited to compute the averages $g_n(x)$ and $g_{n-1}(x')$ is certainly bounded by $3^{-n+2}$. Proceeding similarly we can see that there is a constant $c > 0$, not depending on $x, x', n$ or $f$ such that the Euclidean-Lipschitz norm of the function $g$ on $T_n \setminus T_{n-1}$ is controlled by $c\left(\frac{3}{4}\right)^nL_{\mathcal{E}_{\partial \Omega}}(f)$.

Remark 6.2. In some sense Corollary 6.1 and formula (24) imply not only that $g$ is Euclidean-Lipschitz, but also that $g$ has “zero (Euclidean) tangential derivative” along $\partial \Omega$, because an $\mathcal{E}_{\partial \Omega}$-intrinsic Lipschitz function has to grow “infinitely slow” in the “tangential direction” to the Koch curve.

6.2. A second proof of Theorem 6.1. We also can present another, different, ‘pointwise’ construction of $g$ along the following steps. It uses a weakly self-similar triangulation, which is not nicely separated from the boundary $\partial \Omega$ of the fractal snowflake domain $\Omega$.

Step 1: We define $g(0)$ to be the average of $f$ at the 6th roots of unity $e^{ik\pi/3}$, $k = 0, 1, ..., 5$. At each 6th root of unity $e^{ik\pi/3}$, $k = 0, 1, ..., 5$, we define $g(e^{ik\pi/3}) = f(e^{ik\pi/3})$. After that we interpolate $g$ linearly in each unit equilateral triangle with vertices $0, e^{ik\pi/3}, e^{ik(1+1)\pi/3}$. This defines $g$ in the regular closed convex unit hexagon which is the convex span of the 6th root of unity $e^{ik\pi/3}$, $k = 0, 1, ..., 5$. We denote this closed hexagon $\overline{\Omega}_1$.

Step 2: Note that $\Omega \setminus \overline{\Omega}_1$ consists of six disjoint isometric open sets. The closure of each of these open sets contains a regular closed convex hexagon with sides $\frac{1}{3}$. On the facet of this
Figure 5. The set $T_2 \subset \Omega$, with $T_1 \subset T_2$ triangulated by triangles of side length $\frac{1}{3}$ and $T_2 \setminus T_1$ triangulated by triangles of side length $\frac{1}{9}$.

Figure 6. Chain of 8 consecutive points from $V_{n+1}(\partial\Omega)$ that contains all points considered when computing the values $g_n(x)$ and $g_n(x')$ for neighbours $x$ and $x'$ on the shell $\partial T_n$.

hexagon that is part of the boundary of $\Omega_1$ the function $g$ is already defined, and naturally we do not change these values. In particular, $g$ is already defined on the vertices that are incident to this facet. The other four vertices of this hexagon lie on $\partial\Omega$, and so we define $g(x) = f(x)$ at these vertices. Now as we defined $g$ at the all vertices of the hexagon, we define $g$ at its center as the average at the vertices. Since the hexagon is naturally triangulated into six equilateral triangles of side $\frac{1}{3}$, we can interpolate $g$ linearly in each of these triangles. Now we have defined $g$ in the closed set which is the union of the unit regular hexagon $\Omega_1$ and the six adjacent closed hexagons with sides $\frac{1}{3}$. We denote this union by $\bar{\Omega}_2$.

Step 3: Note that $\Omega \setminus \bar{\Omega}_2$ consists of 30 open components. These components come in two shapes: 18 components are $\frac{1}{3}$ in size in comparison to the components considered in Step 2; the other 12 component are of the same scale, but have only one fractal side, rather than two fractal sides. In any case, the closure of each of these 30 components has an inscribed regular closed convex hexagon with sides $\frac{1}{9}$. On each of these hexagons we can define $g$ similarly as in Step 2. Let $\bar{\Omega}_3$ be the union of all these closed hexagons and $\bar{\Omega}_2$. See Figure 9.
It is easy to proceed by induction afterwards. If for each $n$ we denote the interior of $\Omega_n$ by $\Omega_n$, then the increasing domains $\Omega_n$ exhaust $\Omega$ from within.

This theorem is clearly local, and similarly as in the first proof, the required properties of the extension function $g$ are again implied by scaling.

6.3. **Proof of Corollary 6.2.** The first statement (i) of this corollary can be proved by smoothing the constructed Euclidean-Lipschitz extensions of $E_{\partial \Omega}$-intrinsic $C^1$-functions.

The second statement (ii) can be proved by first constructing Lipschitz coordinates which in a sense may be seen as “deformed polar coordinates”, and then smoothing them. We explain the construction of the Lipschitz coordinates only briefly because the proof of Theorem 6.1.

First, we note that it is enough to construct coordinates only locally. To construct $y_1$ we can begin with a function which is linear in the intrinsic distance on an open subset of $\partial \Omega$. For instance, we can consider the open subset $K_i$ and a function of form $F \circ h_i$ with
Figure 9. The triangulated set $\overline{\Omega}_3$.

$F : \mathbb{R} \to \mathbb{R}$ being a linear function. We can then consider its Euclidean-Lipschitz extension to a sectorial part of $\Omega$ similarly as constructed in the first proof of Theorem 6.1. It is easy to see that the extension is locally skew-symmetric (up to a local constant) with respect to the natural local symmetries (if we from some point $x \in \bar{K}_i$ we go the same distance to the left and to the right, the differences of the function values seen there and $F \circ h_i(x)$ will be equal in modulus but have different sign). In a sense, the function $y_1$ may be seen as the (local) “angular coordinate” of the deformed polar coordinates.

Now it is easy to find a complimentary Lipschitz function $y_2$ which vanishes on $\overline{\Omega}$ and separates points on each level set of $y_1$. To describe a possible construction for $y_2$, we use the same notation as in the first proof of Theorem 6.1. For each $p \in \partial T_n$ we define $y_2(p) = 3^{-n}$. Between the shells $\partial T_n$ and $\partial T_{n+1}$ we define $y_2$ by linear interpolation. This may be regarded as the “radial component” of our coordinates. Together $y_1$ and $y_2$ separate points. Note that both, the definition of $y_1$ and the definition of $y_2$ display some sort of “weak self-similarity”. After having constructed these Lipschitz coordinates, one can obtain the $C^1$-coordinates by smoothing.

The construction is essentially elementary because the weak self-similarity allows to define coordinates in a finitely many points, and then define extensions using translations and scaling. It is especially simple to use the second proof of Theorem 6.1, Subsection 6.1, to construct the piecewise linear version of $y_2$ and then smooth it.

**Appendix A. Trace and extension results**

For the convenience of the reader we provide some more detailed references for known trace and extension results used to see that (13) turns $V(\Omega, \partial \Omega)$ into a Hilbert space.

A function $f \in L^1(\Omega)$ can be strictly defined at $x \in \overline{\Omega}$ if the limit

$$\tilde{f}(x) := \lim_{\varepsilon \to 0} \frac{1}{\mathcal{L}^2(B(x, \varepsilon) \cap \Omega)} \int_{B(x, \varepsilon) \cap \Omega} f(y) \mathcal{L}^2(dy)$$

exists. Any $f \in H^1(\Omega)$ can be strictly defined at quasi-every $x \in \overline{\Omega}$ (in the sense of the Newtonian capacity on $\mathbb{R}^2$). Writing $\text{Tr} f := f|_{\partial \Omega}$, where $f|_{\partial \Omega} = \tilde{f}(x)$, $x \in \partial \Omega$, the trace
operator $f \mapsto \text{Tr } f$ defines a bounded linear operator from $H^1(\Omega)$ onto $B^{2,2}_{\beta/2}(\partial \Omega)$, and it has a bounded linear right inverse $f \mapsto \text{Ext } f$. Here $B^{2,2}_{\beta}(\partial \Omega)$, $0 < \beta < 1$, denotes the space of all elements $f$ of $L^2(\partial \Omega, \mu)$ such that

$$
\|f\|_{B^{2,2}_{\beta}(\partial \Omega)} = \|f\|_{L^2(\partial \Omega, \mu)} + \left( \int \int_{|x-y| < 1} \frac{|f(x) - f(y)|^2}{|x-y|^{\delta+2\beta}} \mu(dx) \mu(dy) \right)^{1/2} < +\infty.
$$

See [70], Theorem 2 or [34], Theorem 1, Chapter VII] (and also [68] for related methods). These trace and extension results make use of the fact that $\mu$ is a $\delta$-measure, i.e. there is a constant $c > 0$ such that $cr^\delta \leq \mu(B(x, r)) \leq c^{-1}r^\delta$ for all $x \in \partial \Omega$ and $0 < r < 1$. Here $B(x, r)$ denotes the open ball (in Euclidean metric) centered at $x$ with radius $r$. These arguments have also been used in [47], Proposition 2.10 and in similar form in [43], Theorem 4.6]. Moreover, by arguments from [48] the space $\mathcal{D}(\mathcal{E}_{\partial \Omega})$ is seen to be embedded in $B^{2,2}_{\delta/2}(\partial \Omega)$, see also [43], Proposition 4.9]. Combining these results, one observes that with (13), the space $V(\Omega, \partial \Omega)$ is Hilbert.

References

[1] E. Akkermans, Statistical mechanics and quantum fields on fractals, Fractal geometry and dynamical systems in pure and applied mathematics. II. Fractals in applied mathematics, Contemp. Math., 601, Amer. Math. Soc., Providence, RI, 2013, 1–21.

[2] E. Akkermans and K. Mallick, Geometrical description of vortices in Ginzburg-Landau billiards, in “Topological Aspects of low dimensional systems.” Les Houches Summer School (session LXIX), Springer (1999).

[3] E. Akkermans, G. Dunne, A. Teplyaev, Physical Consequences of Complex Dimensions of Fractals, Europhys. Lett. 88, 40007 (2009).

[4] E. Akkermans, G. Dunne, A. Teplyaev, Thermodynamics of photons on fractals. Phys. Rev. Lett. 105(23):230407, 2010.

[5] E. Akkermans, G.V. Dunne, A. Teplyaev and R. Voituriez, Spatial Log periodic oscillations of First-Passage observables in fractals, Phys. Rev. E 86, 061125 (2012) [arXiv:1207.3298]

[6] M. T. Barlow, Diffusions on fractals. Lectures on Probability Theory and Statistics (Saint-Flour, 1995), 1–121, Lecture Notes in Math., 1690, Springer, Berlin, 1998.

[7] M. Biroli, U. Mosco, A Saint-Venant type principle for Dirichlet forms on discontinuous media, Ann. Mat. Pura Appl. 169 (4) (1995), 125–181.

[8] N. Bouleau, F. Hirsch, Dirichlet Forms and Analysis on Wiener Space, deGruyter Studies in Math. 14, deGruyter, Berlin, 1991.

[9] M. Cefalò and M. R. Lancia. An optimal mesh generation algorithm for domains with Koch type boundaries. Mathematics and Computers in Simulation, 106:133–162, 2014.

[10] F. Cipriani, J.-L. Sauvageot, Derivations as square roots of Dirichlet forms, J. Funct. Anal. 201 (2003), 78–120.

[11] F. Cipriani, J.-L. Sauvageot, Fredholm modules on p.c.f. self-similar fractals and their conformal geometry, Comm. Math. Phys. 286 (2009), 541-558.

[12] G.V. Dunne, Heat kernels and zeta functions on fractals, J. Phys. A, 45, (2012), 374016, 22.

[13] E. Evans. A finite element approach to $H^1$ extension using prefractals. Adv. Math. Sci. Appl., 22(2):391–420, 2012.

[14] E. J. Evans. A finite element approach to Hölder extension using prefractals. Methods Appl. Anal., 19(2):161–186, 2012.

[15] J. Fleckinger, M. Levitin, and D. Vassiliev. Heat equation on the triadic von Koch snowflake: asymptotic and numerical analysis. Proc. London Math. Soc. (3), 71(2):372–396, 1995.

[16] U.R. Freiberg, M.R. Lancia, Energy form on a closed fractal curve, Z. Anal. Anwend. 23 (1) (2004), 115-135.

[17] M. Fukushima, Y. Oshima and M. Takeda, Dirichlet forms and symmetric Markov processes, deGruyter, Berlin, New York, 1994.
[18] C. A. Griffith and M. L. Lapidus. *Computer graphics and the eigenfunctions for the Koch snowflake drum*. Progress in Inverse Spectral Geometry, Trends in Mathematics, Springer, 1997.

[19] Grigor’yan, A., Kajino, N., *Localized upper bounds of heat kernel for diffusions via a multiple Dynkin-Hunt formula*, to appear in Trans. AMS.

[20] B. M. Hambly and T. Kumagai, *Diffusion processes on fractal fields: heat kernel estimates and large deviations*. Probab. Theory Related Fields 127 (2003), 305–352.

[21] M. Hino, *Measurable Riemannian structures associated with strongly local Dirichlet forms*, Math. Nachr. 286 (2013), 1466-1478.

[22] M. Hino and T. Kumagai, *A trace theorem for Dirichlet forms on fractals*. J. Funct. Anal. 238 (2006), 578–611.

[23] M. Hinz, *Magnetic energies and Feynman-Kac-Ito formulas for symmetric Markov processes*, Stoch. Anal. Appl. 33 (6) (2015), 1020-1049.

[24] M. Hinz, *Sup-norm-closable bilinear forms and Lagrangians*, Ann. Mat. Pura Appl., to appear, [arXiv:1407.1301](http://arxiv.org/abs/1407.1301)

[25] M. Hinz, L. Rogers, *Magnetic fields on resistance spaces*, to appear in J. Fractal Geometry (2015+), [arXiv:1501.01100](http://arxiv.org/abs/1501.01100)

[26] M. Hinz, D. Kelleher, A. Teplyaev, *Metrics and spectral triples for Dirichlet and forms*, to apper in J. Noncommut. Geom., [arXiv:1309.5937](http://arxiv.org/abs/1309.5937)

[27] M. Hinz, M. Röckner, A. Teplyaev, *Vector analysis for Dirichlet forms and quasilinear PDE and SPDE on metric measure spaces*, Stoch. Proc. Appl. 123(12) (2013), 4373-4406.

[28] M. Hinz, A. Teplyaev, *Dirac and magnetic Schrödinger operators on fractals*, J. Funct. Anal. 265(11) (2013), 2830-2854.

[29] M. Hinz, A. Teplyaev, *Local Dirichlet forms, Hodge theory, and the Navier-Stokes equations on topologically one-dimensional fractals*, Trans. Amer. Math. Soc. 367 (2015), 1347–1380.

[30] M. Hinz, A. Teplyaev, *Finite energy coordinates and vector analysis on fractals*, Progress in Probab. 70, Fractal Geometry and Stochastics V, Birkhauser, 2015, pp. 209-227.

[31] J. Hu, X.S. Wang, *Domains of Dirichlet forms and effective resistance estimates on p.c.f. fractals*, Studia Math. 177 (2006), 153-172.

[32] M. Ionescu, L. Rogers, A. Teplyaev, *Derivations and Dirichlet forms on fractals*, J. Funct. Anal. 263 (2012), no. 8, 2141–2169.

[33] A. Jonsson, H. Wallin, *Function Spaces on Subsets of $\mathbb{R}^n$*, Math. Reports, vol. 2, Harwood Acad. Publ., London, 1984.

[34] J. Kigami, *Harmonic metric and Dirichlet form on the Sierpiński gasket*. Asymptotic problems in probability theory: stochastic models and diffusions on fractals (Sanda/Kyoto, 1990), 201–218, Pitman Res. Notes Math. Ser., 283, Longman Sci. Tech., Harlow, 1993.

[35] J. Kigami, *Analysis on Fractals*, Cambridge Univ. Press, Cambridge, 2001. Stoch. Anal. Appl. 33 (6) (2015), 1020-1049.

[36] J. Kigami, *Harmonic analysis for resistance forms*, J. Funct. Anal. 204 (2003), 525–544.

[37] J. Kigami, *Resistance forms, quasisymmetric maps and heat kernel estimates*, Mem. Amer. Math. Soc. 216, no. 1015, 2012.

[38] J. Kigami and M. L. Lapidus. *Weyl’s problem for the spectral distribution of Laplacians on p.c.f. self-similar fractals*. Comm. Math. Phys., 158(1):93–125, 1993.

[39] T. Kumagai, *Brownian motion penetrating fractals: an application of the trace theorem of Besov spaces*. J. Funct. Anal. 170 (2000) 69–92.

[40] S. Kusuoka, *Dirichlet forms on fractals and products of random matrices*, Publ. Res. Inst. Math. Sci. 25 (1989), 659-680.

[41] S. Kusuoka, *Lecture on diffusion process on nested fractals*. Lecture Notes in Math. 1567 39-98, Springer-Verlag, Berlin, 1993.

[42] M. R. Lancia. A transmission problem with a fractal interface. *Zeitschrift für Analysis und ihre Anwendungen*, 21(1):113–133, 2002.

[43] M.R. Lancia, *Second order transmission problems across a fractal surface*, Rend. Accad. Naz. Sci. XL Mem. Mat. Appl. (5) 27 (2003), 191-213.
[45] M.R. Lancia, P. Vernole, Convergence results for parabolic transmission problems across highly conductive layers with small capacity, Adv. Math. Sci. Appl. 16 (2) (2006), 411-445.
[46] M.R. Lancia, P. Vernole, Semilinear fractal problems: Approximation and regularity results, Nonlinear Anal. Theory Methods Appl. 80 (2013), 216-232.
[47] M. R. Lancia and P. Vernole. Venttsel’ problems in fractal domains. Journal of Evolution Equations, 14(3):681–712, 2014.
[48] M.R. Lancia, M.A. Vivaldi, Lipschitz spaces and Besov traces on self-similar fractals, Rend. Accad. Naz. Sci. XL Mem. Mat. Appl. (5) 23 (1999), 101-106.
[49] M. L. Lapidus, Fractal drum, inverse spectral problems for elliptic operators and a partial resolution of the Weyl-Berry conjecture. Trans. Amer. Math. Soc., 325(2):465–529, 1991.
[50] M. L. Lapidus, J. Neuberger, R. J. Renka, and C. A. Griffith. Snowflake harmonics and computer graphics: numerical computation of spectra on fractal drums. International Journal of Bifurcation and Chaos, 6(07):1185–1210, 1996.
[51] M. L. Lapidus and M. M. Pang. Eigenfunctions of the koch snowflake domain. Communications in mathematical physics, 172(2):359–376, 1995.
[52] M. L. Lapidus and E. P. Pearse. A tube formula for the koch snowflake curve, with applications to complex dimensions. Journal of the London Mathematical Society, 74(02):397–414, 2006.
[53] D. Lenz, A. Teplyaev, Expansion in generalized eigenfunctions for Laplacians on graphs and metric measure spaces. Trans. Amer. Math. Soc., Published electronically: June 24, 2015, arXiv:1310.5650
[54] T. Lindstrøm, Brownian motion on nested fractals. Mem. Amer. Math. Soc. 420, 1989.
[55] A. Lunardi, Analytic Semigroups and Optimal Regularity in Parabolic Problems, Progress in Nonlinear Differential Equations and Their Applications, vol. 16, Birkhäuser, Basel, 1995.
[56] Z.-M. Ma, M. Röckner, Introduction to the Theory of Non-Symmetric Dirichlet Forms, Universitext, Springer, Berlin, 1992.
[57] U. Mosco, Composite media and asymptotic Dirichlet forms, J. Funct. Anal. 123 (1994), 368–421.
[58] U. Mosco, Variational fractals, Annali della Scuola Normale Superiore di Pisa. Classe di Scienze. Serie IV vol. 25 (3-4) (1997), 683–712.
[59] U. Mosco, Energy functionals on certain fractal structures, J. Convex Anal. 9 (2) (2002), 581–600.
[60] U. Mosco, An elementary introduction to fractal analysis, In: Nonlinear Analysis and Applications to Physical Sciences, Benci, V., Masiello, A. (Eds.), Springer, Milan, 2004.
[61] M. Reed, B. Simon, Methods of Modern Mathematical Physics, vol. 2, Acad. Press, San Diego 1980.
[62] R.S. Strichartz, Taylor approximations on Sierpinski gasket type fractals, J. Funct. Anal. 174 (2000), 76-127.
[63] R.S. Strichartz, Differential Equations on Fractals: A Tutorial, Princeton Univ. Press, Princeton 2006.
[64] K.-Th. Sturm, Analysis on local Dirichlet spaces - I. Recurrence, conservativeness and $L^p$-Liouville properties, J. reine angew. Math. 456 (1994), 173-196.
[65] K.-Th. Sturm, On the geometry defined by Dirichlet forms, In: Progress in Probability, Vol. 36, Birkhäuser, Basel 1995, p. 231-242.
[66] A. Teplyaev, Gradients on fractals. J. Funct. Anal. 174 (2000) 128–154.
[67] A. Teplyaev, Harmonic coordinates on fractals with finitely ramified cell structure, Canad. J. Math. 60 (2008), 457–480.
[68] H. Triebel, Fractals and Spectra Related to Fourier Analysis and Function Spaces, Monographs in Math. vol. 91, Birkhäuser, Basel, 1997.
[69] M. van den Berg, Heat equation on the arithmetic von Koch snowflake. Probab. Theory Related Fields, 118(1):17–36, 2000.
[70] H. Wallin, The trace to the boundary of Sobolev spaces on a snowflake, Manuscripta Math. 73 (1991), 117-125.

22
1 Fakultät für Mathematik, Universität Bielefeld, Postfach 100131, 33501 Bielefeld, Germany
   E-mail address: mhinz@math.uni-bielefeld.de

2 Dipartimento di Scienze di Base e Applicate per l’Ingegneria, Sapienza, Universita di Roma Via A. Scarpa 16, 00161 Roma, Italy
   E-mail address: maria.lancia@sbai.uniroma1.it

3 Department of Mathematics, University of Connecticut, Storrs, CT 06269-3009 USA
   E-mail address: teplyaev@uconn.edu

4 Dipartimento di Matematica, Universita degli Studi di Roma La Sapienza, P.zale Aldo Moro 2, 00185 Roma, Italy
   E-mail address: vernole@mat.uniroma1.it