The pattern in prevalence and sociodemographic factors of smoking in Malaysia, 2011–2019: Findings from national surveys

Muhammad Fadhli Mohd Yusoff1, Kuang Hock Lim2, Thamil Arasu Saminathan1, Wan Shakira Rodzlan Hasani1, Tania Gayle Robert Lourdes1, Sumarni Mohd Ghazali2, Hamizatul Akmal Abd Hamid1, Nur Liana Ab Majid1, Halizah Mat Riffin1, Jane Ling Miaw Yn1

ABSTRACT
INTRODUCTION Smoking is a major contributor to morbidity and mortality worldwide, with Malaysia no exception. Through the Ministry of Health and other ministries in the government of Malaysia, numerous anti-smoking measures have been introduced to prevent and control smoking in the country. Continuous monitoring of smoking prevalence in the community is essential in order to evaluate the effectiveness of anti-smoking policies. This study aims to update the sociodemographic factors associated with smoking in the past decade in Malaysia.

METHODS The study utilized data from three national household surveys in Malaysia, namely the Global Adult Tobacco Survey (GATS) 2011, the National Health and Morbidity Survey (NHMS) 2015 and the National Health and Morbidity Survey (NHMS) 2019. These surveys adopted a multistage stratified sampling design that represents the population in Malaysia. Smoking status was determined based on the GATS protocol and definitions. Complex sample design estimates and complex multivariable logistic regression were used in the analysis.

RESULTS A total of 4250, 21410 and 11111 respondents aged ≥15 years participated in GATS 2011, NHMS 2015 and NHMS 2019, respectively, with a response rate between 85% and 87%. The prevalence of smoking was 23.1% (95% CI: 21.2–25.2) in 2011, 22.8% (95% CI: 21.9–23.8) in 2015 and 21.3% (95% CI: 19.9–22.8) in 2019. The prevalence was consistently higher in males (40.5–43.9%), adults aged 25–44 years (25.4–29.0%), Malay (22.6–24.7%), other ethnicities (30.0–35.0%), and the self-employed (33.7–44.6%). Multiple logistic regression analysis showed that the adjusted odds ratio (AOR) of smoking was higher in males, in younger and middle age groups, Malays, and those with lower education level.

CONCLUSIONS There were slight changes in the sociodemographic factors of smoking in the past decade in Malaysia. Stern measures and more aggressive strategies are needed to address all the risk factors in controlling smoking behavior in the country.
scourge. In Malaysia, about one-third of deaths were attributed to CVD where smoking is one of the main risk factors2,3. In order to address health problems related to smoking, the Malaysian government, through the Ministry of Health and other ministries, has introduced numerous anti-smoking measures, which include increasing the cost of tobacco products by restructuring taxes in the year 20154, increasing the number of smoke-free public areas5-7, and enhancing community health interventions8,9. These measures aimed to reduce the prevalence of smoking among Malaysian adults to 15% by the year 2025, and ultimately the burden of diseases related to smoking among the Malaysian population10.

Continuous monitoring of smoking prevalence is required in evaluating anti-smoking policies’ effectiveness and in line with the recommendations11,12 of the World Health Organization MPOWER approach: Monitor of tobacco use and prevention policies (M); Protect people from exposure to secondhand tobacco smoke (P) (Article 8); Offer help to quit tobacco use (O) (Article 14); Warn about the dangers of tobacco (W) (Articles 11 and 12); Enforce bans on tobacco advertising, promotion and sponsorship (E) (Articles 13); and Raise taxes on tobacco (R) (Article 6). In Malaysia, the prevalence of smoking among adults has been monitored through two types of surveys conducted periodically: the National Health and Morbidity Survey (NHMS), a nationwide survey that monitors the health status of the population in Malaysia13-16 and the Global Adult Tobacco Survey (GATS)17. The GATS, which is a global standard for monitoring tobacco use among adults and tracking key tobacco control indicators, enables country comparisons globally18.

The GATS 2011 and NHMS 2015 reported a smoking prevalence of 23.1% and 22.8%, respectively, among populations aged ≥15 years, with higher prevalence among men, Malay ethnicity, rural residents, and those aged 25–44 years15,17. In a recent publication, Lim et al.19 compared smoking by social demographic characteristics between NHMS 1996, NHMS 2005, GATS 2011 and NHMS 2015. However, the comparison was not standardized, given differences in the study populations and definition of smoking between those surveys. Furthermore, no in-depth comparison of the association between smoking and sociodemographic characteristics was carried out between NHMS 2015 with previous NHMS studies and GATS 2011 in Malaysia. Thus, assessment of changes in factors associated with smoking in that study was not possible.

In addition, various anti-smoking policies since 2015, such as the introduction smoking bans in open-air restaurants and a wide range of other health promotion initiatives, as well as the higher price of tobacco products were implemented. This study aims to update the sociodemographic factors associated with smoking and to assess on whether there are any significant changes in the factors in the past decade in Malaysia using data from three national surveys. As there has not been much change in the prevalence of smoking, similar findings would also be expected for the risk factors.

METHODS

This study utilized data from three national surveys, namely the GATS 2011, NHMS 2015 and NHMS 2019. All three surveys had the same target population, study design, approach, and core smoking questionnaire making it comparable in term of its methodology. The surveys used a two-stage stratified sampling method to select a representative sample of Malaysian adults aged ≥15 years. Stratification was according to the states in Malaysia by urban and rural classification within each state. Two-stage random sampling was performed within each stratum with enumeration blocks (EBs) as the primary sampling unit (PSU), and living quarters as the secondary sampling unit (SSU). An EB is an artificial geographically contiguous area with identified boundaries created by the Department of Statistics, Malaysia, which consists of about 80–120 living quarters (LQs). EBs were selected from each stratum via a probability-proportionate-to-size method, followed by selecting 12 living quarters from each selected EB. All individuals aged ≥15 years from the selected EBs were eligible to participate in the study.

Questionnaire

The three surveys (GATS 2011, NHMS 2015 and NHMS 2019) used a validated tobacco survey questionnaire20,21. The questionnaire consists of questions on smoking status and type of tobacco products, smokeless tobacco use, e-cigarettes use, exposure to secondhand smoke, cessation, anti-
cigarette information, cigarette advertisement and cigarette purchasing. The respondents’ sociodemographic characteristics such as age, gender, ethnicity, education level, marital status, occupation, and income level, were also included in the questionnaire.

The smoking prevalence was measured using the item: ‘Do you currently smoke tobacco on a daily basis or less than daily?’ Respondents who answered ‘Yes’ were classified as ‘current smokers’, while those who answered ‘Not at all’ were categorized as ‘non-smokers’.

Data collection
In all the surveys, data collection was done via face-to-face interviews by trained data collectors. Informed consent was obtained from the respondents. Prior to the interview, the respondents received explanation about the study, and their participation was voluntary. All information would only be used for research purposes, and their anonymity and confidentiality of the information given were ensured. For respondents aged <18 years, parental/guardian consent was obtained in addition to the participants’ assent.

Data analysis
The data was cleaned and categorized according to the definitions for all the surveys. The sample weights were calculated based on each survey’s sampling design, response rate, and population characteristics to ensure valid population estimates from the analysis. The prevalence of smokers for each survey was determined. Multivariate logistic regression was used to determine the association of sociodemographic factors with smoking. The dependent variable was smoking status (current smokers, coded as 1; or non-smokers, coded as 0). The sociodemographic variables were all coded as categorical variables in the analysis as follows: location (1 = urban, 2 = rural), sex (1 = male, 2 = female), age group (1 = 15–24 years, 2 = 25–44 years, 3 = 45–64 years, 4 = >64 years), ethnicity (1 = Malay, 2 = Chinese, 3 = Indian, 4 = Other Bumiputras, 4 = Other), education level (1 = no formal, 2 = primary, 3 = secondary, 4 = tertiary), occupation (1 = government employee, 2 = private employee, 3 = self-employed, 4 = unpaid worker/housewife, 5 = retiree) and household income (1 = quintile 1; 2 = quintile 2; 3 = quintile 3; 4 = quintile 4; 5 = quintile 5). All possible two-way interactions between the independent variables were assessed in producing the final model. The fit of the model was examined using a classification table. Data are presented with a 95% confidence level. All statistical analyses were carried out using SPSS version 26 with complex samples function.

RESULTS
A total of 4250, 21445 and 11111 respondents were involved in GATS 2011, NHMS 2015 and NHMS 2019, with the response rate of 85.3%, 86.4% and 87.2%, respectively. In all three surveys, the proportion of respondents by sex was almost equal. The majority of the respondents were Malays and married, and nearly half of them had attained secondary education (Table 1).

The findings from the surveys showed that approximately 4.7 million (23.1%), 5.0 million (22.8%), and 4.9 million (21.3%) adults ≥15 years in Malaysia were current smokers in 2011, 2015 and 2019, respectively. The prevalence was consistently higher in males (40.5–43.9%) compared to females.
(1.0–1.4%), rural dwellers (23.4–27.9%) compared to urban population (20.1–22.7%) and those aged 25–44 years (25.4–29.0%), in all the three surveys (Table 2).

In all three surveys, after adjusting for location (urban/rural), age, ethnicity, marital status, education level, occupation, and household income level (for NHMS 2015 and NHMS 2019), multiple logistic regression analysis showed that the adjusted odds ratio (AOR) of smoking was markedly higher in males (72.44, 57.42 and 48.68 in 2011, 2015 and 2019, respectively). The pattern of AOR of smoking was also consistently higher in those aged 25–44 years compared to ≥65 years, Malay compared to Chinese, and those with lower education level (Table 3).
Table 2. Prevalence (%) of current smokers by sociodemographic characteristics in Malaysia, 2011, 2015 and 2019

Characteristics	2011	2015	2019						
	N*	%	95% CI	N*	%	95% CI	N*	%	95% CI
Overall	10.3	8.4	6.3–10.3	10.3	8.4	6.3–10.3	10.3	8.4	6.3–10.3
Location	15.2	14.7	12.7–16.7	15.2	14.7	12.7–16.7	15.2	14.7	12.7–16.7
Sex	14.1	12.6	10.7–14.5	14.1	12.6	10.7–14.5	14.1	12.6	10.7–14.5
Age (years)	13.0	12.4	10.8–13.8	13.0	12.4	10.8–13.8	13.0	12.4	10.8–13.8
Ethnicity	15.5	15.0	14.3–16.6	15.5	15.0	14.3–16.6	15.5	15.0	14.3–16.6
Marital status	16.2	15.8	15.0–16.7	16.2	15.8	15.0–16.7	16.2	15.8	15.0–16.7
Education level	17.1	16.7	15.9–17.5	17.1	16.7	15.9–17.5	17.1	16.7	15.9–17.5
Occupation	18.6	18.2	17.4–19.0	18.6	18.2	17.4–19.0	18.6	18.2	17.4–19.0
Household income level	19.7	19.3	18.6–20.0	19.7	19.3	18.6–20.0	19.7	19.3	18.6–20.0

*Estimated population. a Household income level: Quintile 1 is the lowest and Quintile 5 is the highest.
Table 3. Trend of association between sociodemographic factors and smoking among adults aged ≥15 years in Malaysia

Factors	2011	2015	2019			
	AOR*	95% CI	AOR*	95% CI	AOR*	95% CI
Location						
Urban (Ref.)	1	1	1		1	
Rural	0.72	0.54–0.94	1.08	0.93–1.26	1.10	0.88–1.37
Sex						
Male	72.44	43.87–119.63	57.42	41.25–79.94	48.68	30.96–76.53
Female (Ref.)	1	1	1		1	
Age (years)						
15–24	1.19	0.54–2.60	3.10	2.11–4.56	3.18	1.90–5.31
25–44	2.51	1.31–4.79	3.92	2.94–5.24	3.50	2.38–5.13
45–64	1.64	0.87–3.07	2.05	1.56–2.70	2.32	1.64–3.29
≥65 (Ref.)	1	1	1		1	
Ethnicity						
Malays	2.69	1.78–4.08	2.43	2.02–2.93	2.17	1.50–3.14
Chinese (Ref.)	1	1	1		1	
Indians	1.19	0.67–2.10	1.11	0.81–1.53	0.82	0.48–1.40
Other Bumiputras	2.00	1.55–2.59	1.90	1.21–2.97		
Other	3.45	2.16–5.48	1.86	1.41–2.47	1.98	1.15–3.40
Marital status						
Single	1.28	0.66–2.49	1.02	0.84–1.22	0.91	0.66–1.24
Married (Ref.)	1	1	1		1	
Widow(er)/divorcee	1.83	1.25–2.68	1.09	0.76–1.57	0.92	0.56–1.51
Education level						
No formal	4.67	2.38–9.17	3.28	2.27–4.75	1.73	0.88–3.39
Primary	3.46	2.04–5.88	3.33	2.66–4.16	2.74	1.84–4.07
Secondary	2.45	1.56–3.86	2.53	2.14–2.99	2.61	1.99–3.43
Tertiary (Ref.)	1	1	1		1	
Occupation						
Government employee	1.93	1.04–3.58	1.38	1.02–1.88	0.89	0.54–1.46
Private employee	2.42	1.38–4.24	1.80	1.36–2.37	1.46	0.95–2.22
Self-employed	3.37	1.90–5.97	1.87	1.42–2.45	1.52	0.97–2.40
Unpaid worker/housewife	0.50	0.13–1.93	0.73	0.46–1.14	0.74	0.38–1.45
Retiree (Ref.)	1	1	1		1	
Household income level						
Quintile 1	1.24	0.93–1.64	1.34	0.92–1.96		
Quintile 2	1.30	1.07–1.59	0.97	0.67–1.40		
Quintile 3	1.22	1.01–1.47	0.90	0.64–1.28		
Quintile 4	1.33	1.11–1.59	1.00	0.69–1.45		
Quintile 5 (Ref.)	1	1	1		1	

AOR: adjusted odds ratio, based on Complex Sample Logistic Regression analysis and adjusted for all sociodemographic variables in the study, i.e. location (urban/rural), sex, age group, ethnicity, marital status, education level, occupation and household income level (for NHMS 2015 and NHMS 2019).

Tob. Induc. Dis. 2022;20(October):84
https://doi.org/10.18332/tid/152410
DISCUSSION
About one-fifth (21.3%), or about 4.9 million, of Malaysian adults were current smokers in 2019. A decreasing trend in smoking prevalence was observed across almost all sociodemographic variables, although they were not significant. Based on the results, there is still a need for the strategies to be reviewed and strengthened as the current trend is still far from the target of reducing the smoking prevalence to 15% by the year 2025, set by the Ministry of Health Malaysia. Comparing with other Asian countries, similar prevalence were reported in the Philippines (22.7%), Vietnam (22.5%) and Thailand (24.0%), but higher in Indonesia (36.1%). Nevertheless, the smoking prevalence in Malaysia is still high when compared to Singapore (16.0%) and Brunei (18.0%). These differences may be due to differences in terms of socioeconomics, culture, tobacco legislation and taxation between the countries. Excise tax increases can significantly reduce the smoking prevalence. The ratio (34:1) of male to female smokers in NHMS 2019 is similar to that of Vietnam (34:1) but higher than in Taiwan (9:1) and Singapore (5.6:1). The lower number of female smokers could be due to social norms that are not conducive to female smoking in the Malaysian culture.

Lower prevalence and odds of smoking among the elderly were observed in all three surveys. This finding might be due to several factors. First, the elderly tend to have more health problems due to advancing age, their health condition may require them to visit health facilities for treatment more frequently and so indirectly increasing their exposure to anti-smoking messages by health workers. The advice given by health workers is most likely to be accepted by the elderly. Also, the life-span of non-smokers is generally longer than smokers as they are usually free from smoking-related illnesses, thus contributing to the low prevalence of smoking among the older population. No significant changes were observed in smoking prevalence and odds of smoking among those aged 25–44 years and 45–64 years, in the three surveys. More efforts and interventions are needed for these groups, such as increased smoking cessation clinics with trained healthcare providers both in the public and private health sectors. Despite the decreasing pattern in the overall prevalence of smoking, the prevalence among those aged 15–24 years has an increasing trend from 2011 to 2015. Thus, preventive measures must be improved, such as identifying non-smoking adolescents who may be susceptible to smoking initiation and providing appropriate prevention measures among the youth.

These three surveys found that those with tertiary education level are less likely to smoke and this is in-line with studies elsewhere. This might be due to the fact that those with higher education level have better knowledge about the dangers of smoking cigarettes, thus reducing the risk for smoking initiation or increasing the likelihood of smoking cessation of those who smoked, as posited by the health belief model. Besides, they may have better coping skills of stressors they encounter in daily life, and optimum management of stress levels may reduce the likelihood of resorting to tobacco products to alleviate stress. However, further studies are required to investigate this theory. Furthermore, with their qualification, they might be working in a non-smoking environment as supported by the lowest prevalence of smoking among respondents with tertiary education level in all the three surveys and this may prevent them from initiating smoking or may even encourage them to quit smoking. The NHMS study 2019 showed a significant reduction in smoking prevalence among those without formal education. This is quite surprising in view of previous studies either locally or internationally that have demonstrated contrasting results. This could be due to the differences in characteristics of those with no formal education in the population over time. Some of them might have obtained some form of informal education in recent years, which may influence smoking behavior. However, further studies are needed to explore this hypothesis.

The smoking prevalence showed a significant increase from 16.5% in 2015 to 22.9% in 2019 among the lowest income group, while a slight reduction was observed among the middle income group. The findings in the 2019 survey were almost similar to what was reported in NHMS 2006, where there was not much difference in the prevalence of smoking between the low and the middle income groups. Reduction in the prevalence among the lowest income population in 2015 was postulated to be influenced by the increasing price of tobacco products. The outcomes of this study could possibly be due to the
lower income smokers switching to illegal cigarettes which are cheaper. However, more specific studies are required to prove this hypothesis.

In GATS 2011, the AOR of smoking was significantly higher among widowers/divorcees than married individuals, but it was not significant in the two subsequent surveys. In terms of smoking prevalence, it was significantly lower among widowers/divorcees in all three studies. However, the low prevalence of overall smoking among widowers/divorcees was a result from over-representative female respondents in that group in all the studies. The markedly low prevalence of smoking among females had brought down the overall prevalence in this group. Lim et al., Goodwin et al., and Pennanen et al., reported that unmarried, divorced or stay-alone adults had higher odds of smoking. Therefore, it appears that the ‘marriage protection’ theory, which suggests that married adults have more social and psychological support which helps them to quit smoking, and the ‘marriage selection’ theory, which posits that married people are more likely to stay healthier by not engaging in health risk behaviors like smoking, are inapplicable in the context of smoking in Malaysia.

In terms of locality, no significant difference in the odds of smoking was observed in the 2015 and 2019 studies, while in 2011, the odds of smoking were lower in a rural area. The finding contrasts with an earlier survey in Malaysia and several studies from other countries that reported higher odds of smoking among rural dwellers. These findings warrant detailed investigation to identify the actual contributing factors.

The present study also found a reduction in smoking prevalence among government employees from 2011 to 2019, although the association with the type of occupation was not significant. The smoke-free area policy in all government offices may have contributed to this; civil servants may have found it very difficult to smoke in their working areas, which forces them to quit smoking. In contrast, private employees and self-employed people may have favorable environments that allow smoking, which could have contributed to the higher prevalence and odds of smoking among them.

A consistent trend of smoking by ethnicity was observed in Malaysia throughout the three studies. The prevalence and odds of smoking were higher among Malays, ‘Other Bumiputras’, and ‘Other’. This is also consistent with the earlier study conducted in Malaysia. In NHMS or other national studies in Malaysia, ‘Other Bumiputras’ is mainly constituted by ethnic groups from East Malaysia. Non-Malaysian citizens constitute the main proportion of the ‘Other’ ethnic category. This finding indicates that the focus intervention on certain ethnicities should be strengthened considering their cultural background.

Our study indicates that the smoking prevalence among male adults is still high. These findings suggest a need to strengthen current anti-smoking policies targeting male adults, in relation to their planning, implementation, and evaluation. On the other hand, smoking prevalence among female adults in Malaysia remains low.

Strengths and limitations

This study has a few limitations. First, the surveys being cross-sectional by design implies a limitation in measuring the actual risk of smoking. Secondly, smoking status was determined based on a self-reported method, without any biochemical verification, such as cotinine measurement in saliva or serum. However, the self-reported method has been considered the standard method for measuring tobacco use in a population study. This study has also a few strengths. The surveys being national surveys with large sample size, the robust method in sampling design and the high response rates in all three surveys were recognized as the strength in making any inference of the surveys to the country’s population.

CONCLUSIONS

There were slight changes in the association of smoking with some of the sociodemographic factors in the past decade in Malaysia. Stern measures and more aggressive strategies, especially on the hard policies, are needed to address all the risk factors in the prevention and control of smoking in the country.

REFERENCES

1. US National Center for Chronic Disease Prevention and Health Promotion -Office on Smoking and Health. The Health Consequences of Smoking—50 Years of Progress: A Report of the Surgeon General. US Centers for Disease Control and Prevention; 2014. Accessed May 11, 2022. https://www.ncbi.nlm.nih.gov/books/NBK179276/

2. Institute for Public Health. Malaysian Burden of Disease
and Injury Study 2009-2014. Institute for Public Health; 2017. Accessed May 11, 2022. http://iku.moh.gov.my/images/IKU/Document/REPORT/BOD/BOD2009-2014.pdf
3. Institute for Public Health. Malaysian Burden of Disease and Injury Study: 2015-2017. Institute for Public Health; 2020. Accessed May 11, 2022. http://library.nih.gov.my/e-doc/flipbook/malaysian-burden-disease-injury-study-2015-2017/index.html
4. World Bank Group. Malaysia: Addressing the Illicit Flow of Tobacco Products. In: Dutta S, ed. Confronting Illicit Tobacco Trade: A Global Review of Country Experiences. World Bank Group; 2019:chap 16. Accessed December 30, 2021. https://thedocs.worldbank.org/en/doc/584471548434954318-0090022019/original/WBGIllicitTobaccoTradeMalaysia.pdf
5. Government of Malaysia. Food act 1993: Control of tobacco product regulations 2004. In Malay. Government of Malaysia; 2004. Accessed May 25, 2020. https://www.tobaccocontrollaws.org/files/live/Malaysia/Malaysia%20-%20TC%20Regs%202004.pdf
6. Attorney General’s Chambers of Malaysia. Control of Tobacco Product (Amendment): Regulations 2017. Peraturan-Peraturan Kawasan Hasil Tembakau (PINDAN) 2017. Federal Government Gazette. January 24, 2017.P.U. (A) 32. Accessed December 30, 2021. https://www.tobaccocontrollaws.org/files/live/Malaysia/Malaysia - TC Regs 2017 - national.pdf
7. Kuang Hock L, Hui Li L, Chien Huey T, et al. Support for smoke-free policy among Malaysian adults: findings from a population-based study. BMJ Open. 2019;9(2):e020304. doi:10.1136/bmjopen-2017-020304
8. Lim KH, M Fadhli Y, Omar M, et al. Technical Report: Evaluation of effectiveness of implementation of ‘Komuniti Sihat Perkasa Negara’ (KOSPEN) programme in Malaysia - Phase 1. Institute for Public Health; 2015. Accessed December 30, 2021. https://iku.moh.gov.my/images/IKU/Document/REPORT/2014/KOSPEN2014.pdf
9. Ministry of Health Malaysia. National Strategic Plan for Tobacco Control and Tobacco End Games. Accessed December 30, 2021. http://jknj.moh.gov.my/ncl Strategiknsp.pdf
10. Ministry of Health Malaysia. Translating Evidence Towards Tobacco Control Policy in Malaysia. Ministry of Health Malaysia; 2017. Accessed December 30, 2021. https://www.moh.gov.my/index.php/pages/view/971?mid=55
11. World Health Organization. WHO Framework Convention on Tobacco Control. World Health Organization; 2003. Accessed June 26, 2020. http://whqlibdoc.who.int/publications/2003/9241591013.pdf
12. International Agency for Research on Cancer, World Health Organization. Evaluating the Effectiveness of Smoke-Free Policies. International Agency for Research on Cancer; 2009. IARC Handbooks of Cancer Prevention: Tobacco Control; vol 13. Accessed December 30, 2021. https://www.iarc.who.int/wp-content/uploads/2018/07/handbook13.pdf
13. Institute for Public Health. The Second National Health and Morbidity Study (NHMS 2). Institute for Public Health; 1996.
14. Institute for Public Health. The Third National Health and Morbidity Survey 2006 (NHMS III): Smoking. Institute for Public Health; 2008. Accessed May 11, 2022. http://iku.moh.gov.my/images/IKU/Document/REPORT/2006/Smoking.pdf
15. Institute for Public Health. Non-Communicable Diseases, Risk Factors & Other Health Problems. Institute for Public Health; 2015. Aris T, Mohd Yusoff MF, Abd Ghani AA, et al, eds. National Health and Mordbidity Survey 2015 (NMRR – 14-1064-21877); vol 2. Accessed March 12, 2020. http://www.moh.gov.my/moh/resources/nhmsreport2015vol2.pdf
16. Ministry of Health Malaysia - National Institutes of Health. National Health and Morbidity Survey 2019: Non-communicable diseases, healthcare demand, and health literacy - Key Findings. Institute for Public Health; 2020. Accessed May 11, 2022. https://iptk.moh.gov.my/images/technical_report/2020/4_Infographic_Booklet_NHMS_2019_-_English.pdf
17. Ministry of Health Malaysia, Centers for Disease Control and Prevention, Institute for Public Health, World Health Organization, Global Adult Tobacco Survey (GATS); Malaysia 2011. Institute for Public Health; 2012. Accessed May 11, 2022. https://extranet.who.int/ncdsmicrodata/index.php/catalog/253/download/2133
18. Palipudi KM, Gupta PC, Sinha DN, Andes LJ, Asma S, McAfee T. Social determinants of health and tobacco use in thirteen low and middle income countries: evidence from Global Adult Tobacco Surveys. PLoS One. 2012;7(3). doi:10.1371/JOURNAL.PONE.0033466
19. Lim KH, Teh CH, Pan S, et al. Prevalence and factors associated with smoking among adults in Malaysia: Findings from the National Health and Morbidity Survey (NHMS) 2015. Tob Induc Dis. 2018;16(January):1-11. doi:10.18332/TID/82190
20. Global Adult Tobacco Survey Collaborative Group. Global Adult Tobacco Survey (GATS): Core Questionnaire with Optional Questions. Version 2.0. Centers for Disease Control and Prevention; 2010. Accessed May 11, 2022. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2969889/
21. World Health Organization, Centers for Disease Control. Tobacco Questions for Surveys: A Subset of Key Questions from the Global Adult Tobacco Survey (GATS), 2nd ed. World Health Organization; 2011. Accessed May 11, 2022. https://apps.who.int/iris/bitstream/handle/10665/87331/9789241500951_eng.pdf?sequence=1&isAllowed=y
22. IBM SPSS Statistics for Windows. Version 26.0. IBM Corp; 2019. Accessed May 11, 2022. https://www.ibm.com/

23. Global Adult Tobacco Survey Collaborative Group. Global Tobacco Surveillance System. Global Adult Tobacco Survey: Fact Sheets 2008-2019. Centers for Disease Control and Prevention; 2019. Accessed May 11, 2022. https://nced.cdc.gov/GTSSDataSurveyResources/Ancillary/Publications.aspx

24. Picco L, Subramaniam M, Abdin E, Vaingankar JA, Chong SA. Smoking and nicotine dependence in Singapore: findings from a cross-sectional epidemiological study. Ann Acad Med Singap. 2012;41(8). Accessed May 11, 2022. https://annals.edu.sg/pdf/41VolNo8Aug2012/V41N8p325.pdf

25. Institute for Public Health, Ministry of Health Brunei Darussalam, Pusat Promosi Kesihatan, World Health Organization. Brunei Darussalam KAPSNCD Survey: Tobacco Fact Sheet. Accessed May 11, 2022. http://www.ppkk.gov.bn/Shared%20Documents/DOCUMENT%2018%20(Brunei%20Darussalam%20KAPSNCD%20Survey)_FactSheet.pdf

26. Ho LM, Schafferer C, Lee JM, Yeh CY, Hsieh CJ. Raising cigarette excise tax to reduce consumption in low-and middle-income countries of the Asia-Pacific region: a simulation of the anticipated health and taxation revenues impacts. BMC Public Health. 2018;18(1). doi:10.1186/s12889-018-6096-z

27. Ministry of Health of Viet Nam, Hanoi Medical University, General Statistics Office. Global Adult Tobacco Survey (GATS): Viet Nam 2010. World Health Organization; 2010. Accessed May 11, 2022. https://extranet.who.int/nccsdmicrodata/index.php/catalog/255/download/2146

28. Tsai YW, Tsai TI, Yang CL, Kuo KN. Gender Differences in Smoking Behaviors in an Asian Population. J Womens Health (Larchmt). 2008;17(6). doi:10.1089/jwh.2007.0621

29. World Population Review. Smoking Rates by Country 2020. Accessed December 29, 2021. https://worldpopulationreview.com/country-rankings/smoking-rates-by-country

30. Burke KE, Schnittger R, O’Dea B, Buckley V, Wherton JP, Lawlor BA. Factors associated with perceived health in older adult Irish population. Aging Ment Health. 2012;16(3):288-295. doi:10.1080/13607863.2011.628976

31. Donohue JM, Huskamp HA, Wilson IB, Weissman J. Whom do older adults trust most to provide information about prescription drugs? Am J Geriatr Pharmacother. 2009;7(2):105-116. doi:10.1016/j.amjpharm.2009.04.005

32. Centers for Disease Control and Prevention. Tobacco-Related Mortality. Accessed December 29, 2021. https://www.cdc.gov/tobacco/data_statistics/fact_sheets/health_effects/tobacco_related_mortality/index.htm

33. Maralani V. Educational inequalities in smoking: the role of initiation versus quitting. Soc Sci Med. 2013;84:129-137. doi:10.1016/j.socscimed.2013.01.007

34. Pärna K, Purjer ML, Ringmets I, Tekkel M. Educational differences in cigarette smoking among adult population in Estonia, 1990-2010: does the trend fit the model of tobacco epidemic? BMC Public Health. 2014;14(1). doi:10.1186/1471-2458-14-709

35. Amroussia N, Gustafsson PE, Pearson JL. Do inequalities add up? Intersectional inequalities in smoking by sexual orientation and education among U.S. adults. Prev Med Rep. 2019;17:101032. doi:10.1016/j.pmedr.2019.101032

36. Jones CL, Jensen JD, Scherr CL, Brown NR, Christy K, Weaver J. The Health Belief Model as an explanatory framework in communication research: exploring parallel, serial, and moderated mediation. Health Commun. 2015;30(6):566-576. doi:10.1080/10410236.2013.873363

37. Lim HK, Ghazali SM, Kee CC, et al. Epidemiology of smoking among Malaysian adult males: prevalence and associated factors. BMC Public Health. 2013;13:1. doi:10.1186/1471-2458-13-8

38. Goodwin RD, Pagura J, Spiwak R, Lemeshow AR, Sareen J. Predictors of persistent nicotine dependence among adults in the United States. Drug Alcohol Depend. 2011;118(2-3):127. doi:10.1016/j.drugalcdep.2011.03.010

39. Pennanen M, Bruns U, Korhonen T, et al. Smoking, nicotine dependence and nicotine intake by socio-economic status and marital status. Addict Behav. 2014;39(7):1145-1151. doi:10.1016/j.addbeh.2014.03.005

40. Waldron I, Hughes ME, Brooks TL. Marriage protection and marriage selection--prospective evidence for reciprocal effects of marital status and health. Soc Sci Med. 1996;43(1):113-123. doi:10.1016/0277-9536(95)00347-9

41. Chockalingam K, Vedhahalam C, Rangaasamy S, et al. Prevalence of tobacco use in urban, semi urban and rural areas in and around Chennai City, India. PLoS One. 2013;8(10). doi:10.1371/JOURNAL.PONE.0076005

42. Doogan NJ, Roberts ME, Wewers ME, et al. A growing geographic disparity: Rural and urban cigarette smoking trends in the United States. Prev Med. 2017;104:79-85. doi:10.1016/J.JYMPED.2017.03.011
ACKNOWLEDGEMENTS
The authors would like to acknowledge the Director-General of Health Malaysia for permission to publish this article.

CONFLICTS OF INTEREST
The authors have completed and submitted the ICMJE Form for Disclosure of Potential Conflicts of Interest and none was reported.

FUNDING
The NHMS 2015 and NHMS 2019 were supported by grant from the Ministry of Health Malaysia with research registration: NMRR-14-1064-21877 and NMRR-18-3085-44207, whereas GATS 2011 was funded by CDC foundation, NMRR-11-151-8943. The funders played no role in the execution of the study.

ETHICAL APPROVAL AND INFORMED CONSENT
Ethical approval to conduct this study was obtained from the Medical Research and Ethics Committee (MREC), Ministry of Health Malaysia [GATS 2011 (NMRR-11-151-8943), NHMS 2015 (NMRR-14-1064-21877), NHMS 2019 (NMRR-18-3085-44207)]. Informed consent was obtained from all subjects, and for subjects under the age of 18 years, from a parent and/or legal guardian.

DATA AVAILABILITY
The data supporting this research are available from the authors on reasonable request.

AUTHORS’ CONTRIBUTIONS
MFMY, KHL, TGRL, TAS, HAAH and JLMY were responsible for the concept and project development. MFMY and WSRH did the statistical analysis. MFMY and KHL constructed the draft manuscript. SMG, TAS, NLAM and WSRH contributed to a critical review of the manuscript. All authors read and approved the final manuscript.

PROVENANCE AND PEER REVIEW
Not commissioned; externally peer reviewed.