FREE SPECIAL GELFAND—DORFMAN ALGEBRA

V. GUBAREV, B. K. SARTAYEV

ABSTRACT. A Gelfand—Dorfman algebra is called special if it can be embedded into a differential Poisson algebra. We find a new basis of the free Novikov algebra. With its help, we construct the monomial basis of the free special Gelfand—Dorfman algebra.

1. Introduction

A vector space A with a bilinear product \circ satisfying the identities

$$(x_1 \circ x_2) \circ x_3 - x_1 \circ (x_2 \circ x_3) = (x_2 \circ x_1) \circ x_3 - x_2 \circ (x_1 \circ x_3),$$

and

$$(x_1 \circ x_2) \circ x_3 = (x_1 \circ x_3) \circ x_2,$$

is called a Novikov algebra. Novikov algebras were introduced in the study of Hamiltonian operators concerning integrability of certain partial differential equations [8]. Later, Novikov algebras appeared in the study of Poisson brackets of hydrodynamic type [2].

It is well-known that given a commutative algebra A with a derivation d, the space A under the product $x_1 \circ x_2 = x_1d(x_2)$ is a Novikov algebra. Moreover, all identities fulfilled in (A, \circ) are consequences of (1) and (2). Applying the rooted trees, the monomial basis of the free Novikov algebra in terms of \circ was constructed in [7]. In terms of Young diagram, the basis was constructed in [6].

An algebra A satisfying only the identity (1) is called a left-symmetric algebra. Left-symmetric algebras have been studying since 1960s, they have applications in affine geometry, ring theory, vertex algebras etc, see the survey [3]. Left-symmetric algebras embeddable under the operation $x_1 \circ x_2 = x_1d(x_2)$ into permutative algebras were studied in [12].

Note that every associative algebra is left-symmetric one, and every left-symmetric algebra under the commutator $[a, b] = a \circ b - b \circ a$ is a Lie algebra. For that reason, every Novikov algebra under the commutator is a Lie algebra satisfying an additional

2010 Mathematics Subject Classification. 17B63, 37K30, 08B20.

Key words and phrases. Differential algebra, Poisson algebra, identity, Gelfand—Dorfman algebra.

The authors were supported by the grant of the President of the Russian Federation for young scientists (MK-1241.2021.1.1).
identity of degree 5 of the following form:
\[
\sum_{\sigma \in S_4} (-1)^\sigma [x_{\sigma(1)}, [x_{\sigma(2)}, [x_{\sigma(3)}, [x_{\sigma(4)}, x_5]]]] = 0.
\]

To find all special identities for Novikov algebras considered under the commutator is still an open problem. It is equivalent to the same question formulated for a commutative algebra \(C\) with a derivation \(d\) considered under the product
\[
[x_1, x_2] = x_1 d(x_2) - x_2 d(x_1),
\]
which is called Wronskian bracket.

Given a Poisson algebra \((P, \cdot, \{,\})\) with a derivation \(d\) due to both products, define on \(P\) new operations as follows,
\[
x_1 \circ x_2 = x_1 d(x_2), \quad [x_1, x_2] = \{x_1, x_2\}.
\]
Recall that the variety of Poisson algebras is defined by the identities,
\[
\begin{align*}
 x_1 \cdot x_2 &= x_2 \cdot x_1, \quad (x_1 \cdot x_2) \cdot x_3 = x_1 \cdot (x_2 \cdot x_3), \\
 \{x_1, x_2\} &= -\{x_2, x_1\}, \quad \{\{x_1, x_2\}, x_3\} + \{\{x_2, x_3\}, x_1\} + \{\{x_3, x_1\}, x_2\} = 0,
\end{align*}
\]

The algebra \(P^{(d)} := (P, \circ, \{,\})\) has a Novikov product \(\circ\), a Lie product \(\{,\}\), and moreover, the following identities hold,
\[
\begin{align*}
 x_2 \circ [x_1, x_3] &= [x_1, x_2 \circ x_3] - [x_3, x_2 \circ x_1] + [x_2, x_1] \circ x_3 - [x_2, x_3] \circ x_1, \\
 [x_1, (x_2 \circ x_3) \circ x_4] &= [x_1, x_2 \circ x_3] \circ x_4 + [x_1, x_2 \circ x_4] \circ x_3 - ([x_1, x_2] \circ x_3) \circ x_4, \\
 [x_3 \circ x_1, x_4 \circ x_2] &= [x_4 \circ x_1, x_3 \circ x_2] + [x_3, x_4 \circ x_1] \circ x_2 - [x_4, x_3 \circ x_2] \circ x_1 \\
 &\quad - [x_4, x_3 \circ x_1] \circ x_2 + [x_3, x_4 \circ x_2] \circ x_1 + 2([x_4, x_3] \circ x_1) \circ x_2.
\end{align*}
\]

There may exist identities of degree greater than 5 fulfilled in \(P\) which are independent from \((6)\)–\((8)\).

An algebra \((G, \circ, [,])\) such that \((G, \circ)\) is Novikov, \((G, [,])\) is Lie, and the identity \((6)\) holds is called a Gelfand–Dorfman algebra (GD-algebra) \([14, 15]\). GD-algebras appeared in \([8]\) as a source of Hamiltonian operators: with the help of the structure constants of a Gelfand–Dorfman algebra one may construct a differential operator. In \([15]\), it was shown that GD-algebras are closely related with Lie conformal algebras.

It is worth to note that the identities \((7)\) and \((8)\) are not fulfilled in the free GD-algebra, thus, these identities are called special identities. Moreover, the identities \((7)\) and \((8)\) are mutually independent \([10, 11]\).

A Gelfand–Dorfman algebra \(G\) is called special if there exists a Poisson algebra \(P\) with a derivation \(d\) such that \(G\) injectively embeds into \(P^{(d)}\). It is known that the class of special GD-algebras forms a variety \([11]\), thus, we may consider the free special Gelfand–Dorfman algebra \(\text{SGD}(X)\) generated by a set \(X\). By \(\text{ComDer}(X)\)
and PoisDer$\langle X \rangle$ we denote the free commutative and the free Poisson algebra with a derivation in the signature generated by X, respectively.

In [11] it was proved that every 2-dimensional GD-algebra is special. Another interesting result is that a GD-algebra such that $[a, b] = a \circ b - b \circ a$ is special [9]. Therefore, a natural problem arises: To construct a monomial basis of the free SGD-algebra in terms of \circ and $[,]$. We solve this problem. For the solution, we construct a new monomial basis of the free Novikov algebra.

For all mentioned varieties we have the following diagram:

$$
\begin{array}{ccc}
\text{Nov}(X) & \hookrightarrow & \text{ComDer}(X) \\
\downarrow & & \downarrow \\
\text{SGD}(X) & \hookrightarrow & \text{PoisDer}(X)
\end{array}
$$

In §2, we construct new basis of the free Novikov algebra (Theorem 2). In §3, we define what is a canonical form of monomials PoisDer$\langle X \rangle$ of weight -1. Finally, in §4, the linear basis of the free special GD-algebra is constructed (Theorem 3). For simplicity, we identify the element $d(x)$ with x'. In this paper, all algebras are defined over a field of characteristic 0.

2. Basis of free Novikov algebra

Let $X = \{x_i \mid i \in I\}$, where I is well ordered set. The free commutative algebra ComDer$\langle X, d \rangle$ with a derivation d in the signature has a standard linear basis consisting of monomials

$$x_{i_1}^{(r_1)} \ldots x_{i_k}^{(r_k)}, \quad x_j \in X, \quad i_1 \leq \ldots \leq i_k, \quad r_j \geq 0.$$

Here $x_j^{(0)} = x_j$, $x_j^{(n+1)} = (x_j^{(n)})'$. Thus, the elements $x^{(r)}$, where $x \in X$ and $r \in \mathbb{N}$, generate ComDer$\langle X, d \rangle$ as a commutative algebra. For simplicity, we will denote ComDer$\langle X, d \rangle$ as ComDer$\langle X \rangle$ omitting the symbol d.

Definition 1. Let u be a monomial from the standard basis of ComDer$\langle X, d \rangle$. Define the weight function $\text{wt}(u) \in \mathbb{Z}$ by induction as follows,

$$\text{wt}(x) = -1, \quad x \in X;$$

$$\text{wt}(d(u)) = \text{wt}(u) + 1; \quad \text{wt}(uv) = \text{wt}(u) + \text{wt}(v).$$

We may consider the space ComDer$\langle X \rangle$ under the product $u \circ v = ud(v)$, denote the obtained Novikov algebra as ComDer$\langle X \rangle^{(d)}$. Let ComDer$\langle X \rangle_{-1}$ be a span of monomials from the standard basis of ComDer$\langle X \rangle$ of weight -1. Note that ComDer$\langle X \rangle_{-1}$ is closed under the Novikov product \circ, so, it is a Novikov subalgebra of ComDer$\langle X \rangle^{(d)}$.

Let us recall the well-known results related to the free Novikov algebra.
Theorem 1. a) \[\comder(X)_{-1} \circ \cong \nov(X)\]
\[\]
b) \[\]
Every Novikov algebra can be embedded into a free differential commutative algebra.

Let us define an order on the elements \(x^{(r)}\) of \(\comder(X)\) as follows: \(x^{(r_m)} > x^{(r_n)}\) if \(r_m > r_n\) or \(r_m = r_n\) and \(i > j\).

We define a normal form of monomials \(\comder(X)\) of weight \(-1\) as follows,

\[
x_{i_1} x_{i_2} \ldots x_{i_{n-1}} x_{i_n}^{(r_n)} \ldots x_{j_2}^{(r_2)} x_{j_1}^{(r_1)} x_{k_m}^{r_m} \ldots x_{k_2}^{(r_2)} x_{k_1}^{(r_1)},
\]

where

\[
n \geq 1, \quad r_1, \ldots, r_n \geq 2, \quad l = r_1 + r_2 + \ldots + r_n - n,
\]

\[
x_{i_1} \leq \ldots \leq x_{i_l}, \quad x_{j_1}^{(r_1)} \geq \ldots \geq x_{j_1}^{(r_1)}, \quad x_{k_m} \geq \ldots \geq x_{k_1}.
\]

Denote by \(N(X)\) the set of all normal forms \((9)\) of monomials from the standard basis of \(\comder(X)\) of weight \(-1\).

For \(a \in N(X)\), put

\[
L(a) = (r_1, \ldots, r_n), \quad M(a) = (i_1, \ldots, i_l), \quad R(a) = (k_m, \ldots, k_1),
\]

and define \(S(a) = (L(a), R(a), M(a))\). Given \(a, b \in N(X)\), we say that \(a < b\) if and only if \(S(a) < S(b)\), we compare all tuples involved lexicographically.

Denote by \(\magma(X)\) the free magma algebra with binary operation \(\circ\) generated by \(X\). We define a linear map \(\varphi: \comder(X)_{-1} \rightarrow \magma(X)\). By linearity it is enough to define \(\varphi\) on the set \(N(X)\), we do it inductively as follows,

\[
\varphi\left(x_{i_1} x_{i_2} \ldots x_{i_{n-1}} x_{i_n}^{(n-1)}\right) = x_{i_{n-1}} \circ (x_{i_{n-2}} \circ \ldots \circ (x_{i_1} \circ x_{i_n}) \ldots),
\]

\[
\varphi\left(x_{i_1} x_{i_2} \ldots x_{i_j} x_{j_n}^{(r_n)} x_{j_2} x_{j_1}^{(r_1)} x_{k_m}^{r_m} \ldots x_{k_2} x_{k_1}^{(r_1)}\right) = \varphi\left(x_{i_1} x_{i_2} \ldots x_{i_{j-1}} x_{j_n}^{(r_n)} B_1 x_{j_{n-1}}^{r_{n-1}} \ldots x_{j_2} x_{j_1}^{(r_1)} x_{k_m}^{r_m} \ldots x_{k_2} x_{k_1}^{(r_1)}\right),
\]

where \(B_1 = \varphi(x_{i_{j+1}} x_{i_{j+2}} \ldots x_{i_{j+n}} x_{j_n}^{(r_n)})\) is a new letter, so on this step we extend the generating set \(X\) to \(X_1 = X \cup \{B_1\}\). Thus, we define \(\text{wt}(B_1) = -1\) and \(x < B_1\) for all \(x \in X\). On each step \(i\), we add a new letter \(B_i\) to the generating set, i.e. \(X_i = X_{i-1} \cup \{B_i\}\), we define \(\text{wt}(B_i) = -1\) and \(y < B_i\) for all \(y \in X_{i-1}\). Calculating by the given rule, finally, we get

\[
\varphi\left(x_{i_1} x_{i_2} \ldots x_{i_j} x_{j_n}^{(r_n)} x_{j_2} x_{j_1}^{(r_1)} x_{k_m}^{r_m} \ldots x_{k_2} x_{k_1}^{(r_1)}\right) = (\ldots ((B_{n-1} \circ (x_{i_{r_{n-1}}} \circ \ldots (x_{i_1} \circ x_{j_1}) \ldots)) \circ x_{k_m}) \ldots) \circ x_{k_1},
\]

where all previous letters \(B_1, \ldots, B_{n-2}\) are inside \(B_{n-1}\).

Example 1. Let \(x, y, z, t, q \in X, y > x, t > q\), then

\[
\varphi(xyzt^{(2)}t'q') = \varphi(B_1t'q') = \varphi(B_2q') = B_2 \circ q = (B_1 \circ t) \circ q = ((y \circ (x \circ z)) \circ t) \circ q.
\]
Define a homomorphism

\[\tau: \text{Magma}(X) \to \text{ComDer}(X)_{-1} \]

by the formula \(\tau(x) = x, \) \(x \in X; \) the last algebra is considered as a Novikov one. For example, if \(x, y, z \in X, \) then \(\tau(x \circ (y \circ z)) = x(yz)' = xy'z' + xyz(2). \)

Lemma 1. Let \(a \in N(X). \) Then \(\tau(\varphi(a)) = a + \sum_j b_j, \) where \(b_j < a \) for all \(j. \)

Proof. By the definition of \(\tau, \) it is enough to prove the statement for

\[a = x_{i_1}x_{i_2} \ldots x_{i_n}x_{j_1}^{(r_1)} \ldots x_{j_2}^{(r_2)}x_{j_1}. \]

By the Leibniz rule fulfilled for \(d, \) we have

\[
\tau(\varphi(x_{i_1}x_{i_2} \ldots x_{i_n}x_{j_1}^{(r_1)} \ldots x_{j_2}^{(r_2)}x_{j_1}^{(r_1)})) = \tau(B_{n-1} \circ (x_{i_1-1} \circ \ldots \circ (x_{i_1} \circ x_{j_1}) \ldots))
\]

\[
= \tau(B_{n-1} \circ (x_{i_1-1} \circ \ldots \circ (x_{i_1} \circ x_{j_1}) \ldots))'
\]

\[
= \tau(B_{n-1})x_{i_1} \ldots x_{i_{r_1}}x_{j_1}^{(r_1)} + \sum_{p < r_1} \tau(B_{n-1}) \ldots x_{j_1}^{(p)},
\]

and all summands are less than \(x_{i_1} \ldots x_{i_{r_1}}x_{j_1}^{(r_1)} \) due to the above defined order on \(N(X). \) Analogously, we deal with \(\tau(B_{n-1}) \) and so on. \(\square \)

Define \(N_\varphi = \{ \varphi(a) \mid a \in N(X) \}. \)

Theorem 2. The set \(N_\varphi \) forms a basis of the free Novikov algebra \(\text{Nov}(X). \)

Proof. By Theorem I, we identify \(\text{Nov}(X) \) with the Novikov algebra \(\text{ComDer}(X)_{-1}. \) Let \(L \) be a linear span of \(N_\varphi \) in \(\text{Magma}(X). \) We want to show that \(\tau \) is an isomorphism of \(L \) and \(\text{Nov}(X) \) considered as vector spaces.

By Lemma 1 we have that \(\tau(\varphi(a)) = a + \sum_j b_j \) with \(b_j < a \) for every \(a \in N(X). \) Thus, we derive that \(\tau(N_\varphi) \) is linearly independent.

Suppose that \(\tau(N_\varphi) \) is not complete, so, the set \(M = \{ a \in N(X) \mid a \) is not expressed through \(\tau(N_\varphi) \} \) is not empty. Choose a minimal \(a \in M \) due to the order \(<, \) such element exists, since the set of tuples \(S(a) \) is well-ordered. We have \(a - \tau([a]) = \sum_j b_j. \) By the assumption, all \(b_j \) are expressed via \(\tau(N_\varphi), \) so, \(a \) is expressed too, a contradiction.

So, \(\tau: L \to \text{Nov}(X) \) is an isomorphism of vector spaces. Thus, we may define the product on \(L \) by the formula \(n \circ m = \tau^{-1}(\tau(n)\tau(m)'), \) where \(n, m \in N_\varphi. \) Since \(\tau \) is also a homomorphism between algebras \(L \) and \(\text{Nov}(X), \) we have proved the statement. \(\square \)

Let \(n \) be a positive integer. We consider Young diagrams corresponding to the partitions

\[\lambda_1 + \ldots + \lambda_k = n, \quad \lambda_1 > \lambda_2 \geq \ldots \geq \lambda_k \geq 1. \]
We fill the Young diagrams by elements of X:

\[
\begin{array}{cccc}
 x_{i_1} & x_{i_2} & \cdots & x_{i_{\lambda_1-1}} & x_{t_1} \\
 \vdots & & & & \\
 x_{i_r} & \cdots & x_{i_{r\lambda_r-1}} & x_{t_r} \\
 x_{t_{r+1}} & & & \\
 \vdots & & & \\
 x_{t_{r+p}} & & &
\end{array}
\]

Here

\[
i_{1\lambda_1-1} \geq \ldots \geq i_1 \geq \ldots \geq i_{r\lambda_r-1} \geq \ldots \geq i_r, \quad t_{r+1} \geq \ldots \geq t_{r+p},
\]

\[
t_1 \geq t_2 \text{ if } \lambda_1 = \lambda_2 + 1, \text{ and } t_s \geq t_{s+1} \text{ if } \lambda_s = \lambda_{s+1} \text{ for } s = 2, \ldots, r - 1.
\]

For the diagram with exactly one row $(x_{i_1}, x_{i_2}, \ldots, x_{i_{\lambda_1-1}}, x_{t_1})$ we attach a monomial of $\text{Nov}(X)$ as follows,

\[
u_1 := x_{i_{\lambda_1-1}} \circ (\ldots \circ (x_{i_2} \circ (x_{i_1} \circ x_{t_1})) \ldots).
\]

For the diagram with m rows we attach a monomial of $\text{Nov}(X)$ inductively,

\[
u_m := x_{i_m \lambda_m-1} \circ (\ldots \circ (x_{i_{m-1}} \circ (x_{i_{m-2}} \circ (x_{i_{m-1}} \circ x_{t_m})) \ldots)).
\]

The set of the constructed Young diagrams with the corresponding monomials coincides with the set N_ϕ.

3. Normal form of monomials of weight -1 in $\text{PoisDer}(X)$

Let Y be a well-ordered set with respect to an order $<$, and let Y^* be the set of all associative words in the alphabet Y (including the empty word denoting by 1). Extend the order to Y^* by induction on the word length as follows. Put $u < 1$ for every nonempty word u. Further, $u < v$ for $u = y_i u', v = y_j v'$, $y_i, y_j \in Y$ if either $y_i < y_j$ or $y_i = y_j, u' < v'$. In particular, the beginning of every word is greater than the whole word.

Definition 2. A word $w \in Y^*$ is called an associative Lyndon–Shirshov word if for arbitrary nonempty u and v such that $w = uv$, we have $w > vu$.

For example, a word $aabac$ is an associative Lyndon–Shirshov word when $a > b > c$.

Consider the set Y^+ of all nonassociative words in Y, here we exclude the empty word from consideration.
Definition 3. A nonassociative word \([u] \in Y^+\) is called a nonassociative Lyndon–Shirshov word (an LS-word, for short) provided that

1. (LS1) the associative word \(u\) obtained from \([u]\) by eliminating all parentheses is an associative Lyndon–Shirshov word;
2. (LS2) if \([u] = [[u_1],[u_2]]\), then \([u_1]\) and \([u_2]\) are LS-words, and \(u_1 > u_2\);
3. (LS3) if \([u_1] = [[u_{11}],[u_{12}]]\), then \(u_2 \geq u_{12}\).

These words appeared independently for the algebras and groups [4, 13]. In [13], it was proved that the set of all LS-words in the alphabet \(Y\) is a linear basis for a free Lie algebra generated by \(Y\). Moreover, each associative Lyndon–Shirshov word \(w\) possesses the unique arrangement of parentheses which gives an LS-word \([w]\).

We consider the free Poisson algebra \(\text{Pois}\langle X \rangle\) generated by \(X\). Here we denote the operations by \(x\cdot y\) and \(\{x, y\}\). Since \(\text{Pois}\langle X \rangle = \text{Com}(\text{Lie}\langle X \rangle)\), the set of commutative words

\[
A_1 A_2 \ldots A_n, \quad A_1 \leq \ldots \leq A_n,
\]

where \(A_i\) are Lyndon–Shirshov words in \(\text{Lie}\langle X \rangle\) forms a standard basis of \(\text{Pois}\langle X \rangle\).

By [10], for the free Poisson algebra generated by a set \(X\) with a derivation \(d\), we have the equality \(\text{PoisDer}\langle X \rangle = \text{Pois}\langle X_\infty \rangle\), where \(X_\infty = \{x_i^{(n)} \mid i \in I, n \in N\}\).

Define an order on \(X_\infty\) as follows: \(x_i^{(m)} > x_j^{(n)}\) if \(m > n\) or \(m = n, i > j\).

We define an order on \(X\) as follows. At first, we compare two Lie words \(A_1\) and \(A_2\) by degree, i.e., \(A_1 > A_2\) if \(\text{deg}\ A_1 > \text{deg}\ A_2\). If \(\text{deg}\ A_1 = \text{deg}\ A_2\), then we compare corresponding associative Lyndon–Shirshov words as it was defined above.

Also, we define \(A > x_k^{(m)} > B\), where \(A\) and \(B\) are LS-words on \(X_\infty\) of degree at least two and \(A\) but not \(B\) involves \(d\) in its notation.

Recall the definition of the weight function [10, Definition 2] on basic monomials [12] with Lie words taken from \(H(X, d)\) of \(\text{PoisDer}\langle X \rangle\),

\[
\text{wt}(x) = -1, \quad x \in X;
\]

\[
\text{wt}(d(u)) = \text{wt}(u) + 1; \quad \text{wt}\{u, v\} = \text{wt}(u) + \text{wt}(v) + 1; \quad \text{wt}(uv) = \text{wt}(u) + \text{wt}(v).
\]

Due to [10], we have \((\text{PoisDer}\langle X \rangle, \circ, [\cdot, \cdot]) \cong \text{SGD}(X)\), and the linear map \(\xi: \text{PoisDer}\langle X \rangle \rightarrow \text{SGD}(X)\) defined by the formulas \(\xi(a \circ b) = ab', \xi([a, b]) = \{a, b\}\) provides the isomorphism.

Let us define a canonical form of monomials \(\text{PoisDer}\langle X \rangle\) of weight \(-1\) as follows:

\[
x_{i_1} \ldots x_{i_k} B_1 \ldots B_m A_n \ldots A_1 x^{(r_1)}_{j_1} \ldots x^{(r_1)}_{j_1},
\]

where \(A_i, B_j\) are Lie-words of degree at least 2 and \(A_i\) but not \(B_j\) involves \(d\) in its notation, moreover,

\[
A_1 \leq A_2 \leq \ldots \leq A_n, \quad B_m \geq B_{m-1} \geq \ldots \geq B_1,
\]

\[
x_{i_k} \geq x_{i_{k-1}} \geq \ldots \geq x_{i_1}, \quad x^{(r_1)}_{j_1} \geq x^{(r_{1-1})}_{j_1} \geq \ldots \geq x^{(r_1)}_{j_1}.
\]

Denote by \(N(X)\) the set of all normal forms [13] of monomials from the standard basis of \(\text{PoisDer}\langle X \rangle\) of weight \(-1\).
Denote by $\text{Magma}_2(X)$ the free algebra with two binary (magma) operations \circ and $[,]$ generated by X. We define a linear map $\psi: \text{PoisDer}(X)_{-1} \to \text{Magma}_2(X)$ by induction.

At first, we consider a Lie LS-word corresponding to an associative LS-word $w = x_1^{(r_1)} \ldots x_t^{(r_t)}$ with $k = r_1 + \ldots + r_t \geq 1$. Let $\pi \in S_t$ be a permutation acting on the letters of $w \in X^*_8$ such that in the associative word $w^\pi = x_1^{(p_1)} \ldots x_t^{(p_t)}$ we have $x_j^{(p_m)} \geq x_{j+1}^{(p_{m+1})}$ for $m = 1, \ldots, t - 1$.

Given $c_k \geq \ldots \geq c_1$ such that $\text{wt}(c_i) = -1$ (here by c_i we mean either $x \in X$ or a Lie LS-word in X), we put

$$\psi(c_1 \ldots c_k[w]) = [u],$$

where the corresponding associative LS-word $u = v^\pi$ and the word $v = v_1 \ldots v_t$ is defined as follows,

$$v_m = G(c_1, \ldots, c_k, w)_m := \varphi(c_k^{-1} \cdot \ldots \cdot c_{k-p+1} \cdot \ldots \cdot c_k^{-1} \cdot \ldots \cdot c_{k-p+1} \cdot x_j^{(p_m)}),$$

the map φ is defined by (10). Here, we add new generators $G(c_1, \ldots, c_k, w)_m$ to X for all $p_m \geq 1$ to get the superset \tilde{X}. We compare new generators by the length in terms on the \circ operation and then after elimination of all signs of the \circ operation we compare them as associative words. By this rule, all new letters are greater than elements from X. Also, we put $\text{wt}(G(c_1, \ldots, c_k, w)_m) = -1$.

Let u be a word of the form $[13]$. Define $\psi(u)$ as follows,

$$\psi(u) = \psi(c_1 \ldots c_m A_n \ldots A_1 x_j^{(r_1)} \ldots x_j^{(r_1)}) = \psi(c_1 \ldots c_{p_n-1} \tilde{A}_n A_{n-1} \ldots A_1 x_j^{(r_1)} \ldots x_j^{(r_1)}),$$

where $\text{wt}(c_{p_n-1+1} \ldots c_m A_n) = -1$, $\tilde{A}_n = \psi(c_{p_n-1+1} \ldots c_m \{A_n\})$ is a letter of the extended alphabet \tilde{X}.

Thus, by n such steps we exclude all Lie words of degree at least two which involve d in their notation and afterwards apply the map φ from Sec. 2:

$$\psi(u) = \psi(c_1 \ldots c_{p_n-2} \tilde{A}_{n-1} A_{n-2} \ldots A_1 x_j^{(r_1)} \ldots x_j^{(r_1)}) = \ldots = \psi(c_1 \ldots c_{p_l} \tilde{A}_2 A_1 x_j^{(r_1)} \ldots x_j^{(r_1)}) = \varphi(c_1 \ldots c_{p_l} \tilde{A}_2 A_1 x_j^{(r_1)} \ldots x_j^{(r_1)}).$$

Example 2. We have

$$\psi(x_3 x_4 x_5 \{x_1', x_2''\}) = [x_3 \circ x_1, x_5 \circ (x_4 \circ x_2)],$$

$$\psi(x_5 x_6 x_7 x_8 \{x_3', x_4''\} \{x_1, x_2'\}) = \psi(x_5 x_6 \circ x_3, x_8 \circ (x_7 \circ x_4) \{x_1, x_2'\} x_9) = \psi(x_5 [x_1, x_6 \circ x_3, x_8 \circ (x_7 \circ x_4)] \circ x_2) x_9].$$

4. Basis of free SGD-algebra

Given $a, b \in N(X)$, we compare them as elements from $\text{ComDer}(X)$ (see Sec. 2). Define a homomorphism

$$\tau: \text{Magma}_2(X) \to \text{PoisDer}(X)_{-1}.$$

Lemma 2. Let \(a \in N(X) \). Then \(\tau(\psi(a)) = a + \sum_j b_j \), where \(b_j < a \) for all \(j \).

\textbf{Proof.} Let \(u = c_1 \ldots c_m A_n \ldots A_1 x_{j_1}^{(r_1)} \ldots x_{j_1}^{(r_1)} \in N(X) \). By the definition of \(\psi \) and \(\varphi \), we have (see also (14))
\[
\psi(u) = \varphi(c_1 \ldots c_q A_1 x_{j_1}^{(r_1)} \ldots x_{j_1}^{(r_1)}) = \varphi(c_1 \ldots c_q B_{t_1-1} x_{j_1}^{(r_1)}) = \ldots
\]
\[
= \varphi(c_1 \ldots c_q B_{t-1} x_{j_1}^{(r_1)}) = B_{t-1} \circ (c_q \circ (\ldots (c_1 \circ x_{j_1}) \ldots)).
\]
Applying \(\tau \), we get
\[
\tau(\psi(u)) = \tau(B_{t-1})((\tau(c_q \circ (\ldots (c_1 \circ x_{j_1}))\ldots))' \tag{15}
\]
By Lemma 1,
\[
\tau(c_q \circ (\ldots (c_1 \circ x_{j_1})\ldots)) = c_1 \ldots c_q x_{j_1}^{(r_1-1)} + \sum_j b_j,
\]
where \(b_j < c_1 \ldots c_q x_{j_1}^{(r_1-1)} \). Writing down \(\tau(B_{t-1}) \), we get the analogous expression for it as the right-hand side of (15). By this remark and by the induction reasons, it is enough to figure out with \(\tau(A_1) \). Let \(A_1 = [v_1 \ldots v_k] \), where \(v_i = x_{j_i}^{(r_i)} \). We have by Lemma 1,
\[
\tau(A_1) = [\tau(A_2)c_{t_1} \ldots c_{t_1} x_{j_1}^{(t_1)} + d_1, \ldots, c_{t_k} \ldots c_{t_k} x_{j_k}^{(t_k)} + d_k],
\]
where \(d_i \) are less than the corresponding leading terms. Extracting by the Leibniz rule \(\tau(A_2) \) from the described Lie word as well as all \(c_i \), we get the \(a \) and the sum of words less than \(a \) due to the defined order on \(N(X) \).

\textbf{Example 3.} If \(u = x_3 x_4 \{x_1', x_2'\} \), then
\[
\tau(\psi(x_3 x_4 \{x_1', x_2'\})) = \tau([x_3 \circ x_1, x_4 \circ x_2])
\]
\[
= \{x_3 x_4', x_4 x_2'\} = x_3 x_4 \{x_1', x_2'\} + \{x_3, x_4\} x_2' x_1' + x_4 \{x_3, x_2'\} x_1' + x_3 \{x_1', x_4\} x_2'.
\]
Define \(N_\psi = \{\psi(a) \mid a \in N(X)\} \).

\textbf{Theorem 3.} The set \(N_\psi \) forms a basis of the free SGD-algebra \(\text{SGD}(X) \).

\textbf{Proof.} Analogously to the proof of Theorem 2, where we apply Lemma 2.

Applying Theorem 3, we obtain the multiplication table in the free SGD-algebra. If \(a, b \in N_\psi \) then we compute \(a \circ b \) and \([a, b] \) as follows. Firstly,
\[
\tau(a \circ b) = \sum_i \alpha_i c_i \in \text{PoisDer}(X),
\]
where \(* = \circ \) or \(* = [\cdot, \cdot] \), \(\alpha_i \in F \) and \(c_i \in N(X) \). Secondly, by Theorem 3, we have \(c_i = \tau(\sum_j \beta_{ij} d_{ij}) \) for some \(\beta_{ij} \in F \) and \(d_{ij} \in N_\psi \), which gives
\[
a \circ b = \sum_i \alpha_i \left(\sum_j \beta_{ij} d_{ij} \right).
\]
Example 4. We have that \([x_1, (x_2 \circ x_3) \circ x_4] \notin N_\psi\) and
\[
\tau([x_1, (x_2 \circ x_3) \circ x_4]) = \{x_1, x_2\}x'_3x'_4 + \{x_1, x'_3\}x_2x'_4 + \{x_1, x'_4\}x_2x'_3
\]
\[
\tau((x_1, x_2) \circ x_3) \circ x_4 + [x_1, x_2 \circ x_3] \circ x_4 - ([x_1, x_2] \circ x_3) \circ x_4
\]
\[
+ [x_1, x_2 \circ x_4] \circ x_3 - ([x_1, x_2] \circ x_3) \circ x_4),
\]
which gives the identity (7).
Also, \([x_2 \circ x_3, x_1 \circ x_4] \notin N_\psi\) and
\[
\tau([x_4 \circ x_1, x_3 \circ x_2]) = x_3x_4\{x'_1, x_2\} + \{x_3, x_4\}x'_2x'_1 + x_3\{x_4, x'_2\}x'_1 + x_4\{x'_1, x_3\}x'_2
\]
\[
\tau([x_3 \circ x_1, x_4 \circ x_2] - ([x_3, x_4] \circ x_2) \circ x_1 - [x_3, x_4 \circ x_2] \circ x_1 + ([x_3, x_4] \circ x_2) \circ x_1
\]
\[
- [x_3 \circ x_1, x_4] \circ x_2 + ([x_3, x_4] \circ x_2) \circ x_1 + ([x_3, x_4] \circ x_2) \circ x_1
\]
\[
+ [x_4, x_3 \circ x_2] \circ x_1 - ([x_4, x_3] \circ x_2) \circ x_1 + [x_4 \circ x_1, x_3] \circ x_2 - ([x_4, x_3] \circ x_2) \circ x_1),
\]
which gives the identity (8).

References

[1] L. A. Bokut, Y. Chen, Z. Zhang, Gröbner–Shirshov bases method for Gelfand–Dorfman–Novikov algebras, J. Algebra Appl. (1) 16 (2017), 1750001, 22 pp.
[2] A. A. Balinskii, S. P. Novikov, Poisson brackets of hydrodynamic type, Frobenius algebras and Lie algebras, Sov. Math. Dokl. 32 (1985), 228–231.
[3] D. Burde, Left-symmetric, or pre-Lie algebras in geometry and physics, Cent. Eur. J. Math., 4 (3), 325–357 (2006).
[4] K. T. Chen, R. H. Fox, and R. C. Lyndon, Free differential calculus. IV: The quotient groups of the lower central series, Ann. Math. (2) 68 (1958), 81–95.
[5] B. A. Duisengaliyeva, U. U. Umirbaev, A wild automorphism of a free Novikov algebra, Sib. Electron. Math. Rep. 15 (2018), 1671–1679.
[6] A. Dzhumadil’daev, N. Ismailov, \(S_n\)- and \(GL_n\)-module structures on free Novikov algebras, J. Algebra 416 (2014), 287–313.
[7] A. S. Dzhumadil’daev, C. Löfwall, Trees, free right-symmetric algebras, free Novikov algebras and identities, Homology, Homotopy Appl. (2) 4 (2002), 165–190.
[8] I. M. Gelfand, I. Ya. Dorfman, Hamilton operators and associated algebraic structures, Funct. Anal. its Appl. (4) 13 (1979), 13–30.
[9] P. S. Kolesnikov, A. Panasenko, Novikov commutator algebras are special, Algebra i Logika (6) 58 (2020), 804–807.
[10] P. S. Kolesnikov, B. Sartayev, A. Orazgaliev, Gelfand–Dorfman algebras, derived identities, and the Manin product of operads, J. Algebra 539 (2019), 260–284.
[11] P. S. Kolesnikov, B. K. Sartayev, On the special identities of Gelfand–Dorfman algebras, Exp. Math., doi:10.1080/10586458.2022.2041134.
[12] P. S. Kolesnikov, B. Sartayev, On the embedding of left-symmetric algebras into differential Perm-algebras, Communications in Algebra, 50 (2022), 3246–3260.
[13] A. I. Shirshov, On free Lie rings, Mat. Sb. (2) 45 (1958), 113–122.
[14] J. Wen, Y. Hong, Extending structures for Gelfand-Dorfman bialgebras. arXiv:2202.10674
[15] X. Xu, Quadratic Conformal Superalgebras, J. Algebra 231 (2000), 1–38.

Vsevolod Gubarev
Sobolev Institute of Mathematics
Acad. Koptyug ave. 4, 630090 Novosibirsk, Russia
Novosibirsk State University
Pirogova str. 2, 630090 Novosibirsk, Russia
e-mail: wsewolod89@gmail.com

Bauyrzhan Kairbekovich Sartayev
Sobolev Institute of Mathematics
Suleyman Demirel University
Abilaikhan street, 1/1, 040900 Kaskelen, Kazakhstan
e-mail: baurjai@gmail.com