ON THE HOMOTOPY CLASSIFICATION OF MAPS

SAMSON SANEBLIDZE

To Nodar Berikashvili

Abstract. We establish certain conditions which imply that a map \(f : X \to Y \) of topological spaces is null homotopic when the induced integral cohomology homomorphism is trivial; one of them is: \(H^*(X) \) and \(\pi_*(Y) \) have no torsion and \(H^*(Y) \) is polynomial.

1. Introduction

We give certain classification theorems for maps via induced cohomology homomorphism. Such a classification is based on new aspects of obstruction theory to the section problem in a fibration beginning in [4], [5] and developed in some directions in [24], [25]. Given a fibration \(F \to E \xrightarrow{\xi} X \), the obstructions to the section problem of \(\xi \) naturally lay in the groups \(H^{i+1}(X; \pi_i(F)) \), \(i \geq 0 \). A basic method here is to use the Hurewicz homomorphism \(u_i : \pi_i(F) \to H_i(F) \) for passing the above obstructions into the groups \(H^{i+1}(X; H_i(F)) \), \(i \geq 0 \). In particular, this suggests the following condition on a fibration: The induced homomorphism

\[
(1.1)_m \quad u^* : H^{i+1}(X; \pi_i(F)) \to H^{i+1}(X; H_i(F)), \quad 1 \leq i < m
\]

is an inclusion (assuming \(u_1 : \pi_1(F) \to H_1(F) \) is an isomorphism). Note also that the idea of using the Hurewicz map in the obstruction theory goes back to the paper [23]. (Though its main result was erroneous, it became one crucial point for applications of characteristic classes (see [7]).)

For the homotopy classification of maps \(X \to Y \), the space \(F \) in (1.1)_m is replaced by \(\Omega Y \) and we establish the following statements. Below all topological spaces are assumed to be path connected (hence, \(Y \) is also simply connected) and the ground coefficient ring is the integers \(\mathbb{Z} \).

Given a commutative graded algebra (cga) \(H^* \) and an integer \(m \geq 1 \), we say that \(H^* \) is \(m \)-relation free if \(H^i \) is torsion free for \(i \leq m \) and also there is no multiplicative relation in \(H^i \) for \(i \leq m+1 \); in particular, \(H^{2i-1} = 0 \) for \(1 \leq i \leq \lfloor \frac{m+2}{2} \rfloor \). We also allow \(m = \infty \) for \(H \) to be polynomial on even degree generators.

Theorem 1. Let \(f : X \to Y \) be a map such that the pair \((X, \Omega Y)\) satisfies \((1.1)_m\), \(X \) is an \(m \)-dimensional polyhedron and \(H^*(Y) \) is \(m \)-relation free. Then \(f \) is null homotopic if and only if

\[
0 = H^*(f) : H^*(Y) \to H^*(X).
\]
Theorem 2. Let X and Y be spaces such that the Hurewicz map $u_i : \pi_i(\Omega Y) \to H_i(\Omega Y)$ is an inclusion for $1 \leq i < m$, and $\operatorname{Tor}(H^{i+1}(X), H_i(\Omega Y)/\pi_i(\Omega Y)) = 0$ when $\pi_i(\Omega Y) \neq 0$. Then X is an m-dimensional polyhedron and $H^*(Y)$ is m-relation free. Then a map $f : X \to Y$ is null homotopic if and only if
\[
0 = H^*(f) : H^*(Y) \to H^*(X).
\]

Theorem 3. Let X be an m-dimensional polyhedron and G a topological group such that $\pi_i(G)$ is torsion free for $1 \leq i < m$, and $\operatorname{Tor}(H^{i+1}(X), \operatorname{Coker} u_i) = 0$, $u_i : \pi_i(G) \to H_i(G)$ when $\pi_i(G) \neq 0$. Suppose that the cohomology algebra $H^*(BG)$ of the classifying space BG is m-relation free. Then a map $f : X \to BG$ is null homotopic if and only if
\[
0 = H^*(f) : H^*(BG) \to H^*(X).
\]

In fact the two last Theorems follow from the first one, since their hypotheses imply $(1.1)_m$, too. A main example of G in Theorem 3 is the unitary group $U(n)$ with $m = 2n$, since u_{2i} is a trivial inclusion and u_{2i-1} is an inclusion given by multiplication by the integer $(i - 1)!$ for $1 \leq i \leq n$. A $U(n)$-principal fibre bundle over X is classified by a map $X \to BU(n)$. Suppose that all its Chern classes are trivial, then $H^*(f) = 0$ and by Theorem 3, f is null homotopic. Therefore the $U(n)$-principal fibre bundle is trivial. Thus, we have in fact deduced the following statement, the main result of [22] (compare also [29]).

Corollary 1. Let ξ be a $U(n)$-principal fibre bundle over X with $\dim X \leq 2n$ and the only torsion in $H^{2i}(X)$ is relatively prime to $(i - 1)!$. Then ξ is trivial if and only if the Chern classes $c_k(\xi) = 0$ for $1 \leq k \leq n$.

While the proof of this statement in [22] does not admit an immediate generalization for an infinite dimensional X, Theorem 3 does by taking $m = \infty$. Furthermore, for $G = U$ and $X = BU$ recall that $[BU, BU]$ is an abelian group, so we get that two maps $f, g : BU \to BU$ are homotopic if and only if $H^*(f) = H^*(g) : H^*(BU; \mathbb{Q}) \to H^*(BU; \mathbb{Q})$ (compare [14], [21]). Note also that when $m = \infty$ in Theorem 3, $H^*(Y)$ must have infinitely many polynomial generators (e.g. $Y = BU, BSp$) as it follows from the solution of the Steenrod problem for finitely generated polynomial rings [1] (the underlying spaces do not have torsion free homotopy groups in all degrees).

Finally, note that beside obstruction theory we apply a main ingredient of the proof of Theorem 1 is an explicit form of minimal multiplicative (non-commutative) resolution of an m-relation free cga (of a polynomial algebra when $m = \infty$ in total degrees $\leq m$ (compare [24], [26]). Namely, the generator set of the resolution in the above range only consists of monomials formed by \smile_1 products. Remark that the idea of using \smile_1 product when dealing with polynomial cohomology, especially in the context of homogeneous spaces, has been realized by several authors [17], [9], [20], [12] (see also [18] for further references).

In sections 2 and 3 we recall certain basic definitions and constructions, including the functor $D(X; H_*)$ [2], [3], for the aforementioned obstruction theory, and in section 4 prove Theorems 1-3.

I am grateful to Jesper Grodal for helpful comments. I thank to Jim Stasheff for helpful comments and suggestions.
2. Functor $D(X; H)$

Given a bigraded differential algebra $A = \{A^{i,j}\}$ with $d : A^{i,j} \to A^{i+1,j}$ and total degree $n = i + j$, let $D(A)$ be the set \(^3\) defined by $D(A) = M(A) / G(A)$ where

$$M(A) = \{ a \in A^1 | da = -aa, a = a^{2,-1} + a^{3,-2} + \cdots \},$$

$$G(A) = \{ p \in A^0 | p = 1 + p^{1,-1} + p^{2,-2} + \cdots \},$$

and the action $M(A) \times G(A) \to M(A)$ is given by the formula

$$a * p = p^{-1}ap + p^{-1}dp.$$

In other words, two elements $a,b \in M(A)$ are on the same orbit if there is $p \in G(A)$, $p = 1 + p'$, with

$$b - a = ap' - p'b + dp'.$$

Note that an element $a = \{a^{*,*}\}$ from $M(A)$ is of total degree 1 and referred to as \textit{twisting}; we usually suppress the second degree below. There is a distinguished element in the set $D(A)$, the class of 0 \in A, and denoted by the same symbol.

There is simple but useful (cf. \cite{24})

\textbf{Proposition 1.} Let $f, g : A^{*,*} \to B^{*,*}$ be two dga maps that preserve the bigrading. If they are (f,g)-derivation homotopic via $s : A^{*,*} \to B^{*,*}$, i.e., $f - g = sd + ds$ and $s(ab) = (-1)^{|a|}fasb + sgb$, then $D(f) = D(g) : D(A) \to D(B)$.

\textbf{Proof.} Given $a \in M(A)$, apply the (f,g)-derivation homotopy s to get $fa - ga = dsa + sda = dsa + s(-aa) = dsa + fasa - saga$. From this we deduce that fa and ga are equivalent by \textbf{(2.2)} for $p' = -sa$. \Box

Another useful property of D is fixed by the following comparison theorem \cite{2, 3}:

\textbf{Theorem 4.} If $f : A \to B$ is a cohomology isomorphism, then $D(f) : D(A) \to D(B)$ is a bijection.

For our purposes the main example of $D(A)$ is the following (cf. \cite{2, 3})

\textbf{Example 1.} Fix a graded (abelian) group H_\ast. Let

$$\rho : (R_{\geq 0}H_\ast, \partial^R) \to H_\ast, \partial^R : R_iH_q \to R_{i-1}H_q,$$

be its free group resolution. Form the bigraded Hom complex

$$(R^{*,*}, d^R) = (\text{Hom}(RH_\ast, RH_\ast), d^R), \quad d^R : R^{s,t} \to R^{s+1,t};$$

an element $f \in R^{*,*}$ has bidegree (s,t) if $f : R_iH_q \to R_{j-i}H_{q-j}$. Note also that $R^{*,*}$ becomes a dga with respect to the composition product.

Given a topological space X, consider the dga

$$(\mathcal{H}, \nabla) = (C^\ast(X; \mathbb{R}), \nabla = d^C + d^R)$$

which is bigraded via $\mathcal{H}^{r,t} = \prod_{i+j=r,t} C^{i}(X; \mathbb{R}^{j,t})$. Thus we get

$$\mathcal{H} = \{\mathcal{H}^{n}\}, \quad \mathcal{H}^{n} = \prod_{n=r+t} \mathcal{H}^{r,t}, \quad \nabla : \mathcal{H}^{r,t} \to \mathcal{H}^{r+1,t}.$$

We refer to r as the perturbation degree which is mainly exploited by inductive arguments below. For example, for a twisting cochain $h \in M(\mathcal{H})$, we have

$$h = h^{2} + \cdots + h^{r} + \cdots, \quad h^{r} \in \mathcal{H}^{r,1-r},$$

\cdots. \hfill \blacksquare$
is a free module. In \cite{[2]} the Hirsch model was extended for arbitrary Brown’s twisting tensor product model (\text{C}) \text{RH} \text{by replacing the chains RH}

\text{d} \text{in which (3.1) }

\n
\begin{equation}
\n\n\alpha \gamma \text{H}_\text{h} \sim \text{H}_\text{h} \text{(3.1)}
\end{equation}

\n
\text{Define}

\n
\text{D}(X; H_\text{s}) = D(\mathcal{H}, \nabla).

Then \text{D}(X; H_\text{s}) becomes a functor on the category of topological spaces and continuous maps to the category of pointed sets.

\n
\text{Example 2. Given two dga’s } B^* \text{ and } C^\bullet, \text{ with } d^B : B^i \rightarrow B^{i+1} \text{ and } d^C_j : C^{j,t} \rightarrow C^{j+1,t}, \text{ where } A = B \otimes C. \text{ View } (A, d) \text{ as bigraded via } A = \{A^r, d\}, A^{r,t} = \prod_{r+i+j} B^i \otimes C^{j,t}, \text{ d = } d^B \otimes 1 + 1 \otimes d^C_j. \text{ Note also that the dga } (\mathcal{H}, \nabla) \text{ in the previous example can also be viewed as a special case of the above tensor product algebra by setting } B^* = C^* (X) \text{ and } C^\bullet = RH^\bullet \text{.}

3. Predifferential \text{d(\xi)} \text{ of a fibration}

Let \text{F} \rightarrow \text{E} \xrightarrow{\xi} \text{X} \text{ be a fibration}. In \cite{[2]} a unique element of \text{D}(X; H_\text{s}(F)) \text{ is naturally assigned to } \xi; \text{ this element is denoted by } \text{d(\xi)} \text{ and referred to as the predifferential of } \xi. \text{ The naturalness of } \text{d(\xi)} \text{ means that for a map } f : \text{Y} \rightarrow \text{X},

\n
\begin{equation}
\n\text{d(f(\xi)) = D(f)(d(\xi))},
\end{equation}

\n
\text{where } f(\xi) \text{ denotes the induced fibration on } \text{Y}.

\n
\text{Originally } d(\xi) \text{ appeared in homological perturbation theory for measuring the non-freeness of the Brown-Hirsch model: First, in \cite{[11]} G. Hirsch modified E. Brown’s twisting tensor product model } (C_\text{s}(X) \otimes C_\text{s}(F), d_\text{phi}) \rightarrow (C_\text{s}(E), d_\text{E}) \text{ \cite{[3]}, \text{ by replacing the chains } C_\text{s}(F) \text{ by its homology } H_\text{s}(F) \text{ provided the homology is a free module. In \cite{[2]} the Hirsch model was extended for arbitrary } H_\text{s}(F) \text{ by replacing it by a free module resolution } RH_\text{s}(F) \text{ to obtain } (C_\text{s}(X) \otimes RH_\text{s}(F), d_\text{h}) \text{ in which } d_\text{h} = d_\text{X} \otimes 1 + 1 \otimes d_\text{F} + - \cap h \text{ and } h \text{ is just an element of } M(\mathcal{H}) \text{ in Example } \text{[1]} \text{ with } H_\text{s} = H_\text{s}(F). \text{ Furthermore, to an isomorphism } p : (C_\text{s}(X) \otimes RH_\text{s}(F), d_\text{h}) \rightarrow (C_\text{s}(X) \otimes RH_\text{s}(F), d_\text{phi}) \text{ between two such models answers an equivalence relation } h \sim_p h' \text{ in } M(\mathcal{H}), \text{ and the class of } h \text{ in } D(X; H_\text{s}(F)) \text{ is identified as } d(\xi). \text{ More precisely, we recall some basic constructions for the definition of } d(\xi) \text{ we need for the obstruction theory in question.}

\n
\text{For convenience, assume that } X \text{ is a polyhedron and that } \pi_1(X) \text{ acts trivially on } H_\text{s}(F). \text{ Then } \xi \text{ defines the following colocal system of chain complexes over } \text{X: To each simplex } \sigma \in \text{X} \text{ is assigned the singular chain complex } (C_\text{s}(F_\sigma), \gamma_\sigma) \text{ of the space } F_\sigma = \xi^{-1}(\sigma) : \text{X} \ni \sigma \rightarrow (C_\text{s}(F_\sigma), \gamma_\sigma) \subset (C_\text{s}(E), d_\text{E}), \text{ and to a pair } \tau \subset \sigma \text{ of simplices an induced chain map } C_\text{s}(F_\tau) \rightarrow C_\text{s}(F_\sigma). \text{ Set } C_\sigma = \{C_\sigma^{s,t}\}, \text{ C}_\sigma^{s,t} = \text{Hom}_\text{E}(R_\sigma \text{H}_\text{s}(F), C_\text{s}(F_\sigma)) \text{ where } C_\text{s} \text{ is regarded as bigraded via } C_\text{s}_{i,s} = C_{i,s}, C_\text{s}_{i,s} = 0, i \neq 0, \text{ and } f : R_\sigma \text{H}_\text{s}(F) \rightarrow C_{j-s-q-t}(F_\sigma) \text{ is of bidegree } (s,t). \text{ Then we obtain a colocal system of cochain complexes } \mathcal{C} = \{C_\sigma^{s,t}\} \text{ on } X. \text{ Define } \mathcal{F} \text{ as the simplicial cochain complex } C^*(X; \mathcal{C}) \text{ of } X \text{ with coefficients in the colocal system } \mathcal{C}. \text{ Then } \mathcal{F} = \{\mathcal{F}_{i,j-t}\}, \text{ } \mathcal{F}_{i,j-t} = C^i(X; C^{j,t}) \text{.}
Furthermore, obtain the bicomplex $\mathcal{F} = \{\mathcal{F}^{r,t}\}$ via
\[
\mathcal{F}^{r,t} = \prod_{r_i + t_j = r} \mathcal{F}^{r_i,t_j}, \quad \delta : \mathcal{F}^{r,t} \to \mathcal{F}^{r+1,t}, \quad \gamma : \mathcal{F}^{r,t} \to \mathcal{F}^{r,t+1}, \quad \delta = d^C + \partial^R, \quad \gamma = \{\gamma_0\},
\]
and finally set
\[
\mathcal{F} = \{\mathcal{F}^m\}, \quad \mathcal{F}^m = \prod_{m=r+t} \mathcal{F}^{r,t}.
\]
We have a natural dg pairing
\[
(\mathcal{F}, \delta + \gamma) \otimes (\mathcal{H}, \nabla) \to (\mathcal{F}, \delta + \gamma)
\]
defined by γ product on $C^\ast(X;\gamma)$ and the obvious pairing $C_\sigma \otimes R \to C_\sigma$ in coefficients; in particular we have $\gamma(fh) = \gamma(f)h$ for $f \otimes h \in F \otimes H$. Denote $\mathcal{R}_\sigma = Hom(RH_\ast(F), H_\ast(F))$ and define
\[
(\mathcal{F}_\sigma, \delta_\sigma) := (H(\mathcal{F}, \gamma), \delta_\sigma) = (C^\ast(X; \mathcal{R}_\sigma), \delta_\sigma).
\]
Clearly, the above pairing induces the following dg pairing
\[
(\mathcal{F}_\sigma, \delta_\sigma) \otimes (\mathcal{H}, \nabla) \to (\mathcal{F}_\sigma, \delta_\sigma).
\]
In other words, this pairing is also defined by γ product on $C^\ast(X;\gamma)$ and the pairing $\mathcal{R}_\sigma \otimes R \to \mathcal{R}_\sigma$ in coefficients. Note that ρ induces an epimorphism of chain complexes
\[
\rho^\ast : (\mathcal{H}, \nabla) \to (\mathcal{F}_\sigma, \delta_\sigma).
\]
In turn, ρ^\ast induces an isomorphism in cohomology.

Consider the following equation
\[
(\delta + \gamma)(f) = fh
\]
with respect to a pair $(h, f) \in H^1 \times F^0$,
\[
h = h^2 + \cdots + h^r + \cdots, \quad h^r \in H^{r-1-r},
\]
\[
f = f^0 + \cdots + f^r + \cdots, \quad f^r \in F^{r-r},
\]
satisfying the initial conditions:
\[
\nabla(h) = -hh
\]
\[
\gamma(f^0) = 0, \quad [f^0]_\gamma = \rho^\ast(1) \in F^{0,0}, \quad 1 \in \mathcal{H}.
\]
Let (h, f) be a solution of the above equation. Then $d(\xi) \in D(X; H_\ast(F))$ is defined as the class of h. Moreover, the transformation of h by (2.1) is extended to pairs (h, f) by the map
\[
(M(H) \times F^0) \times (G(H) \times F^{-1}) \to M(H) \times F^0
\]
given for $((h, f), (p, s)) \in (M(H) \times F^0) \times (G(H) \times F^{-1})$ by the formula
\[
(h, f) \ast (p, s) = (h \ast p, fp + p(h \ast p) + (\delta + \gamma)(s)),
\]
We have that a solution (h, f) of the equation exists and is unique up to the above action. Therefore, $d(\xi)$ is well defined.

Note that action (3.3) in particular has a property that if $(\tilde{h}, \tilde{f}) = (h, f) \ast (p, s)$ and $h^r = 0$ for $2 \leq r \leq n$, then in view of (2.2) one gets the equalities
\[
\tilde{h}^{n+1} = h \ast (1 + p^n) = h^{n+1} + \nabla(p^n).
\]
3.1. Fibrations with $d(\xi) = 0$. The main fact of this subsection is the following theorem from [4]:

Theorem 5. Let $F \to E \xrightarrow{\xi} X$ be a fibration such that (X, F) satisfies (1.1)$_m$. If the restriction of $d(\xi) \in D(X; H_*(F))$ to $d(\xi)|_{X^n} \in D(X^n; H_*(F))$ is zero, then ξ has a section on the m-skeleton of X. The case of $m = \infty$, i.e., $d(\xi) = 0$, implies the existence of a section on X.

Proof. Given a pair $(h, f) \in \mathcal{H} \times \mathcal{F}$, let (h_{tr}, f_{tr}) denote its component that lies in $C^*(X; \text{Hom}(H_0(F), RH_*(F))) \times C^*(X; \text{Hom}(H_0(F), C_*(F)))$.

Below (h_{tr}, f_{tr}) is referred to as the transgressive component of (h, f). Observe that since $RH_0(F) = H_0(F) = \mathbb{Z}$, we can view (h_{tr}^{r+1}, f_{tr}^r) as a pair of cochains laying in $C^{r+1}(X; RH_*(F)) \times C^r(X; C_*(F))$. Such an interpretation allows us to identify a section $\gamma: X \to E$ on the r-skeleton $X^r \subset X$ with a cochain, denoted by c^r_γ, in $C^r(X; C_*(F))$ via $c^r_\gamma(\sigma) = \gamma|_\sigma: \Delta^r \to F_\sigma \subset E$, $\sigma \subset X^r$ is an r-simplex, $r \geq 0$.

The proof of the theorem just consists of choosing a solution (h, f) of (3.2) so that the transgressive component $f_{tr} = \{f_{tr}^r\}_{r \geq 0}$ is specified by $f_{tr}^r = c^r_\chi$ with χ a section of ξ. Indeed, since F is path connected, there is a section χ^1 on X^1; consequently, we get the pairs $(0, f_{tr}^0) := (0, c^0_\chi)$ and $(0, f_{tr}^1) := (0, c^1_\chi)$ with $\gamma(f_{tr}^1) = \delta(f_{tr}^0)$. Then $\delta(f_{tr}^1) \in C^2(X; C_1(F))$ is a γ-cocycle and $[\delta(f_{tr}^1)]_\gamma \in C^2(X; H_1(F))$ becomes the obstruction cocycle $c(\chi^1) \in C^2(X; \pi_1(F))$ for extending of χ^1 on X^2; moreover, one can choose h^2_{tr} to be satisfying $\rho^*(h^2_{tr}) = [\delta(f_{tr}^1)]_\gamma$ (since ρ^* is an epimorphism and a weak equivalence).

Suppose by induction that we have constructed a solution (h, f) of (3.2) and a section χ^n on X^n such that $h^n = 0$ for $2 \leq r \leq n$, $f_{tr}^n = c^n_\chi$ and

$$\rho^*(h_{tr}^{n+1}) = [\delta(f_{tr}^n)]_\gamma \in C^{n+1}(X; H_n(F)).$$

In view of (2.3) we have $\nabla(h^{n+1}) = 0$ and from the above equality immediately follows that

$$u^\#(c_\chi^n) = \rho^*(h_{tr}^{n+1})$$

in which $c_\chi^n \in C^{n+1}(X; \pi_n(F))$ is the obstruction cocycle for extending of χ^n on X^{n+1} and $u^\#: C^{n+1}(X; \pi_n(F)) \to C^{n+1}(X; H_n(F))$.

Since $d(\xi)|_{X^n} = 0$, there is $p \in G(\mathcal{H})$ such that $(h + p)|_{X^n} = 0$; in particular, $(h + p)^{n+1} = 0 \in H^{n+1, -n}$ and in view of (3.3) we establish the equality $h^{n+1} = -\nabla(p^n)$, i.e., $[h^{n+1}] = 0 \in H^{n+1}(\mathcal{H}, \nabla)$; in particular, $[h_{tr}^{n+1}] = 0 \in H^{n+1}(X; H_n(F))$. Consequently, $[u^\#(c_\chi^n)] = 0 \in H^{n+1}(X; H_n(F))$. Since (1.1)$_n$ is an inclusion induced by $u^\#$, $[c_\chi^n] = 0 \in H^{n+1}(X; \pi_n(F))$. Therefore, we can extend χ^n on X^{n+1} without changing it on X^n in a standard way. Finally, put $f_{tr}^{n+1} = c^{n+1}_\chi$ and choose a ∇-cocycle h_{tr}^{n+2} satisfying $\rho^*(h_{tr}^{n+2}) = [\delta(f_{tr}^{n+1})]_\gamma$. The induction step is completed.

4. Proof of Theorems 1, 2 and 3

First we recall the following application of Theorem 4 (4)

Theorem 6. Let $f : X \to Y$ be a map such that X is an m-polyhedron and the pair $(X, \Omega Y)$ satisfies (1.1)$_m$. If $0 = D(f) : D(Y; H_*(\Omega Y)) \to D(X; H_*(\Omega Y))$, then f is null homotopic.
Proof. Let $\Omega \to PY \xrightarrow{\pi} Y$ be the path fibration and $f(\pi)$ the induced fibration. It suffices to show that $f(\pi)$ has a section. Indeed, (3.1) together with $D(f) = 0$ implies $d(f(\pi)) = 0$, so Theorem 5 guarantees the existence of the section.

Now we are ready to prove the theorems stated in the introduction. Note that just below we shall heavily use multiplicative, non-commutative resolutions of cga’s that are enriched with \sim_1 products. Namely, given a space Z, recall its filtered model $f_Z : (RH(Z), d_h) \to C^*(Z)$ \cite{24, 26} in which the underlying differential (bi)graded algebra $(RH(Z), d)$ is a non-commutative version of Tate-Jozefiak resolution of the cohomology algebra $H^*(Z)$ \cite{25, 15}, while h denotes a perturbation of d similar to \cite{10}. Moreover, given a map $X \to Y$, there is a dga map $RH(f) : (RH(Y), d_h) \to (RH(X), d_h)$ (not uniquely defined!) such that the following diagram

\[
\begin{array}{cccc}
(RH(Y), d_h) & \xrightarrow{RH(f)} & (RH(X), d_h) \\
\rho_Y & \downarrow & \downarrow f_X \\
C^*(Y) & \xrightarrow{C(f)} & C^*(X)
\end{array}
\]

commutes up to (α, β)-derivation homotopy with $\alpha = C(f) \circ f_Y$ and $\beta = f_X \circ RH(f)$ (see, \cite{12, 24}).

Proof of Theorem 7 The non-trivial part of the proof is to show that $H(f) = 0$ implies f is null homotopic. In view of Theorem 6 it suffices to show that $D(f) = 0$. By (4.1) and Proposition 4 we get the commutative diagram of pointed sets

\[
\begin{array}{cccc}
D(\mathcal{H}_Y) & \xrightarrow{D(f_Y)} & D(\mathcal{H}_X) \\
\downarrow D(f_Y) & & \downarrow D(f_X) \\
D(Y; H_*(\Omega Y)) & \xrightarrow{D(f)} & D(X; H_*(\Omega Y))
\end{array}
\]

in which

\[
\mathcal{H}_X = RH^*(X) \otimes \text{Hom}(RH_*(\Omega Y), RH_*(\Omega Y)),
\]
\[
\mathcal{H}_Y = RH^*(Y) \otimes \text{Hom}(RH_*(\Omega Y), RH_*(\Omega Y))
\]

(see Example 2) and the vertical maps are induced by $f_X \otimes 1$ and $f_Y \otimes 1$; these maps are bijections by Theorem 4. Below we need an explicit form of $RH(f)$ to see that $H(f) = 0$ necessarily implies $RH(f)|_{V'(m)} = 0$ with $V'(m) = \bigoplus_{1 \leq i+j \leq m} V^i,j$; hence, the restriction of the map $\mathcal{H}(f) := RH(f) \otimes 1$ to $RH'(m) \otimes 1$, $RH'(m) = \bigoplus_{1 \leq i+j \leq m} R^iH^j(Y)$, is zero, and, consequently,

\[
D(f_X) \circ D(\mathcal{H}(f)) = 0.
\]

First observe that any multiplicative resolution $(RH, d) = (T(V^*, *), d), V = \langle V \rangle$, of a cga H admits a sequence of multiplicative generators, denoted by

\[
a_1 \sim \cdots \sim a_{n+1} \in V^{-n,*}, \quad a_i \in V^0, \quad n \geq 1,
\]

where $a_i \sim a_j = (-1)^{|a_i||a_j|+1}a_j \sim a_i$ and $a_i \neq a_j$ for $i \neq j$. Furthermore, the expression $ab \sim uv$ also has a sense by means of formally (successively) applying the Hirsch formula

\[
c \sim (ab) = (c \sim a)b + (-1)^{|a||c|+1}a(c \sim b).
\]

The resolution differential d acts on (4.3) by iterative application of the formula

\[
d(a \sim b) = da \sim b - (-1)^{|a|}a \sim db + (-1)^{|a|}ab - (-1)^{|a||b|}ba.
\]
Consequently, we get
\[d(a_1 \sim \cdots \sim a_n) = \sum_{(i,j)} (-1)^j (a_{i_1} \sim \cdots \sim a_{i_k}) \cdot (a_{j_1} \sim \cdots \sim a_{j_l}) \]
where the summation is over unshuffles \((i,j) = (i_1 < \cdots < i_k \mid j_1 < \cdots < j_l)\) of \(\underline{n}\).

In the case of \(H\) to be \(m\)-relation free with a basis \(U^1 \subset H^1, i \leq m\), we have that the minimal multiplicative resolution \(RH\) of \(H\) can be built by taking \(V\) with \(V^0, i \leq m\), and \(V^{-n}, n > 0\), to be the set consisting of monomials \([19]\) for \(1 \leq i - n \leq m\) (compare [20]). The verification of the acyclicity in the negative resolution degrees of \(RH\) restricted to the range \(RH^{(m)}\) is straightforward (see also Remark [1]). Regarding the map \(RH(f)\), we can choose it on \(RH^{(m)}\) as follows. Let \(R_0H(f) : R_0H(Y) \to R_0H(X)\) be determined by \(H(f)\) in an obvious way and then define \(RH(f)\) for \(a \in V^{(m)}\) by
\[
RH(f)(a) = \begin{cases}
R_0H(f)(a), & a \in V^{0,*}, \\
R_0H(f)(a_1) \sim \cdots \sim R_0H(f)(a_n), & a = a_1 \sim \cdots \sim a_n, \\
R_0H(f)(a_1) \sim \cdots \sim R_0H(f)(a_n), & a \in V^{-n,*}, a_i \in V^{0,*}, n \geq 1,
\end{cases}
\]
and extend to \(RH^{(m)}\) multiplicatively. Furthermore, \(f_X\) and \(f_Y\) are assumed to be preserving the generators of the form \([19]\) with respect to the right most association of \(\sim \) products in question. Since \(h\) annihilates monomials \([19]\) and the existence of formula \([19]\) in a simplicial cochain complex, \(f_X\) and \(f_Y\) are automatically compatible with the differentials involved. Then the maps \(\alpha\) and \(\beta\) in \([19]\) also preserve \(\sim \) products, and become homotopic by an \((\alpha, \beta)\)-derivation homotopy \(s : RH(Y) \to C^*(X)\) defined as follows: choose \(s\) on \(V^{0,*}\) by \(ds = \alpha - \beta\) and extend on \(V^{-n,*}\) inductively by
\[
s(a_0 \sim z_n) = -\alpha(a_0) \sim s(z_n) + \beta(z_n) + \beta(z_n)s(a_0), \quad n \geq 1,
\]
in which \(z_1 = a_1\) and \(z_k = a_1 \sim \cdots \sim a_k\) for \(k \geq 2, a_i \in V^{0,*}\). Clearly, \(H(f) = 0\) implies \(RH(f)|_{V^{(m)}} = 0\). Since \([12]\), \(D(f) = 0\) and so \(f\) is null homotopic by Theorem [3]. Theorem is proved.

Remark 1. Let \(V^{(m)}_n\) be a subset of \(V^{(m)}\) consisting of all monomials formed by the \(\cdot\) and \(\sim \) products evaluated on a string of variables \(a_1, \ldots, a_n\). Then there is a bijection of \(V^{(m)}_n\) with the set of all faces of the permuatahedron \(P_n\) \([19, 27]\) such that the resolution differential \(d\) is compatible with the cellular differential of \(P_n\) (compare \([16]\)). In particular, the monomial \(a_1 \sim \cdots \sim a_n\) is assigned to the top cell of \(P_n\), while the monomials \(a_{\sigma(1)} \cdots a_{\sigma(n)}, \sigma \in S_n, \) to the vertices of \(P_n\) (see Fig. 1 for \(n = 3\)). Thus, the acyclicity of \(P_n\) immediately implies the acyclicity of \(RH^{(m)}\) in the negative resolution degrees as desired.
Remark 2. An example provided by the Hopf map $f : S^3 \to S^2$ shows that the implication $H(f) = 0 \Rightarrow RH(f) \mid_{\nu(i)} = 0$, $k < m$ for $RH(f)$ making \((1.7)\) commutative up to (α, β)-derivation homotopy is not true in general. More precisely, let $x \in R^3H^2(S^2)$ and $y \in R^3H^3(S^3)$ with $px \in H^2(S^2)$ and $py \in H^3(S^3)$ to be the generators, and let $x_1 \in R^{-1}H^4(S^2)$ with $dx_1 = x^2$. Then $s(x_2) = \alpha(x)s(x)$ is a cocycle in $C^3(S^3)$ with $dsy(x) = \alpha(x)$ (since $\beta = 0$) and $[\alpha(x)s(x)] = py$. Consequently, while $H(f) = 0 = R^0H(f)$, a map $RH(f) : RH(S^2) \to RH(S^3)$ required in \((4.7)\) has a non-trivial component increasing the resolution degree: Namely, $R^{-1}H^4(S^2) \to R^0H^3(S^3)$, $x_1 \to y$.

Proof of Theorem 2. The conditions that $u_i : \pi_i(\Omega Y) \to H_i(X)$ is an inclusion and $\text{Tor}(H^{i+1}(X), H_i(\Omega Y)/\pi_i(\Omega Y)) = 0$ for $1 \leq i < m$, immediately implies \((1.1)_m\). So the theorem follows from Theorem 1.

Proof of Theorem 3. Since the homotopy equivalence $\Omega BG \simeq G$, the conditions of Theorem 2 are satisfied: Indeed, there is the following commutative diagram

$$
\begin{array}{ccc}
\pi_k(G) & \xrightarrow{u_k} & H_k(G) \\
\downarrow i_\pi & & \downarrow i_H \\
\pi_k(G) \otimes \mathbb{Q} & \xrightarrow{u_k \otimes 1} & H_k(G) \otimes \mathbb{Q}
\end{array}
$$

where i_π, i_H and $u_k \otimes 1$ are the standard inclusions (the last one is a consequence of a theorem of Milnor-Moore). Consequently, $u_k : \pi_k(\Omega BG) \to H_k(\Omega BG), k < m$, is an inclusion, too. Theorem is proved.

\[\square\]

REFERENCES

[1] K.K.S. Andersen and J. Grodal, The Steenrod problem of realizing polynomial cohomology rings, J. Topology, 1 (2008), 747-460.
[2] N. Berikashvili, On the differentials of spectral sequences (Russian), Proc. Tbilisi Mat. Inst., 51 (1976), 1-105.
[3] ————, Zur Homologieiertheorie der Faserungen I, Proc. A. Razmadze Math. Inst. 116 (1998), 1-29.
[4] ————, On the obstruction theory in fibre spaces (in Russian), Bull. Acad. Sci. Georgian SSR, 125 (1987), 257-259, 473-475.
[5] ————, On the obstruction functor, Bull. Georgian Acad. Sci., 153 (1996), 25-30.
[6] E. Brown, Twisted tensor products, Ann. of Math., 69 (1959), 223-246.
[7] A. Dold and H. Whitney, Classification of oriented sphere bundles over 4-complex, Ann. Math., 69 (1959), 667-677.
[8] V.K.A.M. Gugenheim, On the chain complex of a fibration, Ill. J. Math., 16 (1972), 398-414.
[9] V.K.A.M. Gugenheim and J.P. May, On the theory and applications of differential torsion products, Memoirs of AMS, 142 (1974), 1–93.
[10] S. Halperin and J. D. Stasheff, Obstructions to homotopy equivalences, Adv. in Math., 32 (1979), 233-279.
[11] G. Hirsch, Sur les groupes d’homologies des espaces fibres, Bull. Soc. Math. de Belg., 6 (1953), 76-96.
[12] J. Huebschmann, Minimal free multi-models for chain algebras, Georgian Math. J., 11 (2004), 733-752.
[13] D. Husemoller, J.C. Moore and J. Stasheff, Differential homological algebra and homogeneous spaces, J. Pure and Applied Algebra, 5 (1974), 113–185.
[14] S. Jackowski, J. McClure and R. Oliver, Homotopy classification of self-maps of BG via G-actions, I,II, Ann. Math., 135 (1992), 183–226, 227–270.
[15] J.T. Jozefiak, Tate resolutions for commutative graded algebras over a local ring, Fund. Math., 74 (1972), 209-231.
[16] S. MacLane, Natural associativity and commutativity, Rice University Studies, 49 (1963), 28-46.
[17] J.P. May, The cohomology of principal bundles, homogeneous spaces, and two-stage Postnikov systems, Bull. AMS, 74 (1968), 334-339.
[18] J. McCleary, “Users’ guide to spectral sequences” (Publish or Perish, Inc., Wilmington, 1985).
[19] R.J. Milgram, Iterated loop spaces, Ann. of Math. 84 (1966), 386-403.
[20] H. J. Munkholm, The Eilenberg-Moore spectral sequence and strongly homotopy multiplicative maps, J. Pure and Applied Algebra, 5 (1974), 1–50.
[21] D. Notbohm, “Classifying spaces of compact Lie groups and finite loop spaces,” Handbook of algebraic topology (Ed. I.M. James), Chapter 21, North-Holland, 1995.
[22] F.P. Peterson, Some remarks on Chern classes, Ann. Math., 69 (1959), 414-420.
[23] L. Pontrjagin, Classification of some skew products, Dokl. Acad. Nauk. SSSR, 47 (1945), 322-325.
[24] S. Saneblidze, Perturbation and obstruction theories in fibre spaces, Proc. A. Razmadze Math. Inst., 111 (1994), 1-106.
[25] ————, Obstructions to the section problem in a fibration with a weak formal base, Georgian Math. J., 4 (1997), 149-162.
[26] ————, Filtered Hirsch algebras, preprint math.AT/0707.2165.
[27] S. Saneblidze and R. Umble, Diagonals on the Permutahedra, Multiplihedra and Associahedra, J. Homology, Homotopy and Appl., 6 (2004), 363-411.
[28] J. Tate, Homology of noetherian rings and local rings, Illinois J. Math., 1 (1957), 14-27.
[29] E. Thomas, Homotopy classification of maps by cohomology homomorphisms, Trans. AMS, 111 (1964), 138-151.

A. RAZMADZE MATHEMATICAL INSTITUTE, DEPARTMENT OF GEOMETRY AND TOPOLOGY, M. ALEKSIDZE ST., 1, 0193 Tbilisi, GEORGIA
E-mail address: sane@rmi.acnet.ge