SCHRÖDINGER OPERATORS WITH COMPLEX SINGULAR POTENTIALS

VLADIMIR MIKHAILETIS AND VOLODYMYR MOLYBOGA

To Myroslav Lvovych Gorbachuk on the occasion of his 75th birthday.

Abstract. We study one-dimensional Schrödinger operators $S(q)$ on the space $L^2(\mathbb{R})$ with potentials q being complex-valued generalized functions from the negative space $H^{-1}_{unif}(\mathbb{R})$. Particularly the class $H^{-1}_{unif}(\mathbb{R})$ contains periodic and almost periodic $H^{-1}_{loc}(\mathbb{R})$-functions. We establish an equivalence of the various definitions of the operators $S(q)$, investigate their approximation by operators with smooth potentials from the space $L^1_{unif}(\mathbb{R})$ and prove that the spectrum of each operator $S(q)$ lies within a certain parabola.

1. Introduction and Main Results

In the complex Hilbert space $L^2(\mathbb{R})$ we consider a Schrödinger operator

$$S(q) = -\frac{d^2}{dx^2} + q(x)$$

with potential q that is a complex-valued distribution from the space $H^{-1}_{unif}(\mathbb{R}) \subset H^{-1}_{loc}(\mathbb{R})$. Recall that $H^{-1}_{loc}(\mathbb{R})$ is a dual to the space $H^1_{comp}(\mathbb{R})$ of functions in $H^1(\mathbb{R})$ with compact support and that every $q \in H^{-1}_{loc}(\mathbb{R})$ can be represented as Q' for $Q \in L^2_{loc}(\mathbb{R})$. Then the operator $S(q)$ can be rigorously defined e.g. by so-called regularization method that was used in [1] in the particular case $q(x) = 1/x$ and then developed for generic distributional potential functions in $H^{-1}_{loc}(\mathbb{R})$ in [21,22]; see also recent extensions to more general differential expressions in [7,8]. Namely, the regularization method suggests to define $S(q)$ via

\begin{equation}
S(q)y = l|y| = -(y' - Qy)' - Qy'
\end{equation}

on the natural maximal domain

\begin{equation}
\text{Dom}(S(q)) = \{y \in L^2(\mathbb{R}) \mid y, y' - Qy \in AC_{loc}(\mathbb{R}), l|y| \in L^2(\mathbb{R})\},
\end{equation}

here $AC_{loc}(\mathbb{R})$ is the space of functions that are locally absolutely continuous. It is easy to see that $S(q)y = -y'' + qy$ in the sense of distributions and the above definition does not depend on the particular choice of the primitive $Q \in L^2_{loc}(\mathbb{R})$.

One can also introduce the minimal operator $S_0(q)$, which is the closure of the restriction $S_{00}(q)$ of $S(q)$ onto the set of functions with compact support, i.e. onto

$$\text{Dom}(S_{00}(q)) := \{y \in L^2_{comp}(\mathbb{R}) \mid y, y' - Qy \in AC_{loc}(\mathbb{R}), l|y| \in L^2(\mathbb{R})\}.$$

In the case when potential function q is real-valued the operator $S_{00}(q)$ (and hence $S_0(q)$) is symmetric; moreover, in a standard manner [18] one can prove that $S(q)$ is adjoint of $S_0(q)$. An important question preceding any further analysis of the operator $S(q)$ is whether it is self-adjoint, i.e. $S(q) = S_0(q)$. The case when the potential belongs to the space $H^{-1}_{unif}(\mathbb{R})$ was investigated in [10]. We recall [10] that any $q \in H^{-1}_{unif}(\mathbb{R})$ can be represented (not uniquely) in the form

\begin{equation}
q = Q' + \tau,
\end{equation}

2000 Mathematics Subject Classification. Primary 34L05; Secondary 34L40, 47A55.

Key words and phrases. 1-D Schrödinger operator, complex potential, distributional potential, resolvent approximation, localization of spectrum.
where derivative is understood in the sense of distributions and Q and τ belong to Stepanov spaces $L^2_{\text{unif}}(\mathbb{R})$ and $L^1_{\text{unif}}(\mathbb{R})$ respectively, i.e.

$$\|Q\|_{L^2_{\text{unif}}(\mathbb{R})}^2 := \sup_{t \in \mathbb{R}} \int_0^{t+1} |Q(s)|^2 ds < \infty,$$

$$\|\tau\|_{L^1_{\text{unif}}(\mathbb{R})} := \sup_{t \in \mathbb{R}} \int_0^{t+1} |\tau(s)| ds < \infty.$$

Given such a representation, the operator S is defined as

$$(4) \quad S(q)y = -(y' - Qy)' - Qy' + \tau y$$

on the domain $D(S)$. This definition also does not depend on the particular choice of Q and τ above. Theorem 3.5 of the paper [10] claims that for real-valued $q \in H^{-1}_{\text{unif}}(\mathbb{R})$ the operator $S(q)$ as defined by (4) and (2) is self-adjoint and coincides with the operator $S_{F_0}(q)$ constructed by the form-sum method. However the proof given in [10] is incomplete.

The fact that $S(q)$ is indeed self-adjoint is rigorously justified in the paper [18] for the particular case where $q \in H^{-1}_{\text{unif}}(\mathbb{R})$ is periodic. The authors prove therein that $S_0(q)$, $S(q)$, $S_{F_0}(q)$ and the Friedrichs extension $S_F(q)$ of $S_0(q)$ all coincide. However the arguments heavily use periodicity of q and can not be applied to generic real-valued $q \in H^{-1}_{\text{unif}}(\mathbb{R})$. This gap in the proof of Theorem 3.5 of [10] is filled in by the authors in their recent paper [11], see also [14].

This paper deals with the case when the potential $q \in H^{-1}_{\text{unif}}(\mathbb{R})$ is complex-valued. One can easily see that in this case all operators $S_0(q)$, $S(q)$, $S_{F_0}(q)$ and $S_F(q)$ are well-defined and are related by

$$S_0(q) \subset S_F(q) = S_{F_0}(q) \subset S(q), \quad \text{Dom}(S_F(q)) \subset H^1(\mathbb{R}), \quad \text{Dom}(S(q)) \subset L^1_{\text{loc}}(\mathbb{R}) \cap L^2(\mathbb{R}).$$

The main purpose of this paper is to prove that these operators coincide and to investigate their approximation and spectral properties. Let us state the main results.

Theorem A. For every function $q \in H^{-1}_{\text{unif}}(\mathbb{R})$ operators $S_0(q)$, $S(q)$, $S_{F_0}(q)$ and $S_F(q)$ are m-sectorial and coincide.

Theorem A allows one to link the known results for the Schrödinger operators in the space $L^2(\mathbb{R})$ which are defined in different ways, see e.g. [2, 5, 13, 24].

In the paper [18] the authors proved that for every real-valued 1-periodic function $q \in H^{-1}_{\text{loc}}(\mathbb{R})$ a sequence of smooth 1-periodic functions q_n exists such that the sequence of operators $S(q_n)$ converges to the operator $S(q)$ in the sense of norm resolvent convergence. It is sufficient to establish

$$\|q - q_n\|_{H^{-1}(0,1)} \to 0, \quad n \to \infty.$$

The following theorem generalizes this result in two directions. The potential q may be complex-valued and non-periodic.

Theorem B. Let q, q_n, $n \geq 1$, belong to the space $H^{-1}_{\text{unif}}(\mathbb{R})$. Then the sequence of operators $S(q_n)$, $n \geq 1$, converges to the operator $S(q)$ in the sense of norm resolvent convergence, $R(\lambda, S) := (S - \lambda I)^{-1}$.

$$(5) \quad \|R(\lambda, S(q)) - R(\lambda, S(q_n))\| \to 0, \quad n \to \infty, \quad \lambda \in \text{Resolv}(S(q)) \neq 0,$$

if

$$(6) \quad q_n \xrightarrow{H^{-1}_{\text{unif}}(\mathbb{R})} q, \quad n \to \infty$$

or, equivalently,

$$(7) \quad q_n \xrightarrow{L^2_{\text{unif}}(\mathbb{R})} Q, \quad \tau_n \xrightarrow{L^1_{\text{unif}}(\mathbb{R})} \tau, \quad n \to \infty.$$

Since the set $C^\infty(\mathbb{R}) \cap L^1_{\text{unif}}(\mathbb{R})$ is dense in the space $H^{-1}_{\text{unif}}(\mathbb{R})$ (see Section 3.2 below), then the following corollary holds.

Corollary B.1. For every function $q \in H^{-1}_{\text{unif}}(\mathbb{R})$ there is a sequence of functions $q_n \in C^\infty(\mathbb{R}) \cap L^1_{\text{unif}}(\mathbb{R})$ such that the limit relation (5) is true. If the function q is real-valued, then the functions q_n can be chosen to be real-valued as well.
In particular, if Q and τ are almost periodic Stepanov functions then Q_n and τ_n can be chosen to be trigonometrical polynomials [13 Theorem 1.5.7.2]. If Q and τ are bounded and uniformly continuous on the whole real axis \mathbb{R}, then Q_n and τ_n can be chosen to be entire analytic functions [15 Theorem I.1.10.1, Remark].

The following theorem allows one to describe the localization of the spectrum of the operators $S(q)$.

Theorem C. The numerical ranges of operators $S(q)$ (and therefore their spectra) lie within the parabola:

\[|\text{Im} \lambda| \leq 5K \left(\text{Re} \lambda + 4(2K + 1)^4 \right)^{3/4}, \]
\[K = 2 \left(\|Q\|_{L^2_{ \text{unif}}(\mathbb{R})} + \|\tau\|_{L^2_{ \text{unif}}(\mathbb{R})} \right). \]

If the potential q is real-valued, then the self-adjoint operator $S(q)$ is bounded below by a number

\[m(K) = \begin{cases}
-4K, & \text{if } K \in [0, 1/2), \\
-32K^4, & \text{if } K \geq 1/2.
\end{cases} \]

Note that if a complex-valued potential $q \in H^1_{ \text{unif}}(\mathbb{R})$ is a periodic generalized function, then the spectrum of the operator $S(q)$ lies within a quadratic parabola [16 Theorem 6]. A similar result holds for certain complex-valued measures, see [24] and Section 3.3, formula (32).

Similar problems are considered in the papers [3, 4, 6, 17, 20, 23].

2. Preliminaries

This section contains several statements that are used in the proof of Theorem A.

We begin with introduction the dual operators $S_{00}^+(q) \equiv S^+(q)$. The formally adjoint quasi-differential expression 1^+ for 1 is defined by [23]:

\[v^{(0)} := v, \quad v^{(1)} := v - \overline{Q}v, \quad v^{(2)} := (v^{(1)})' + \overline{Q}v^{(1)} + (Q^2 - \tau)v, \]
\[1^+[v] := -v^{(2)}, \quad \text{Dom}(1^+) := \left\{ v : \mathbb{R} \to \mathbb{C} \mid v, v^{(1)} \in \text{AC}_{\text{loc}}(\mathbb{R}) \right\}. \]

By $\overline{\tau}$ we denote a complex conjugation. Then

\[S^+v \equiv S^+(q)v := 1^+[v], \quad \text{Dom}(S^+) := \left\{ v \in L^2(\mathbb{R}) \mid v, v^{(1)} \in \text{AC}_{\text{loc}}(\mathbb{R}), 1^+[v] \in L^2(\mathbb{R}) \right\}, \]
\[S_{00}^+v \equiv S_{00}^+(q)v := 1^+[v], \quad \text{Dom}(S_{00}^+) := \left\{ v \in \text{Dom}(S^+) \mid \text{supp} v \in \mathbb{R} \right\}. \]

One can easily see that if $\text{Im} q \equiv 0$ then operators $S_{00}(q) \equiv S_{00}^+(q)$, $S(q)$ and $S^+(q)$ coincide.

Lemma 1 (Theorem 1, Corollary [25]). For arbitrary functions $u \in \text{Dom}(S)$, $v \in \text{Dom}(S^+)$ and finite interval $[a, b]$ the following equality holds:

\[\int_a^b \overline{l[u]a} dx - \int_a^b \overline{l[u]}v dx = [u, v]_a^b, \]

where

\[[u, v](t) := u(t)v^{(1)}(t) - u^{(1)}(t)v(t), \]
\[[u, v]^b_a := [u, v](b) - [u, v](a). \]

Lemma 2. For arbitrary functions $u \in \text{Dom}(S)$ and $v \in \text{Dom}(S^+)$ the following limits exist and are finite:

\[[u, v](\infty) := \lim_{t \to -\infty} [u, v](t), \quad [u, v](\infty) := \lim_{t \to -\infty} [u, v](t). \]

Proof. Let us fix the number b in the equality (9) and then pass to the limit as $a \to -\infty$. Whereas due to the assumptions of the lemma $u, v, l[u], l^+[v] \in L^2(\mathbb{R})$, the limit $[u, v](\infty)$ exists and is finite. Similarly one can prove that the limit $[u, v](\infty)$ exists and is finite.

The Lemma is proved.

Lemma 3 (Generalized Lagrange identity). For all functions $u \in \text{Dom}(S)$, $v \in \text{Dom}(S^+)$ the equality

\[\int_{-\infty}^\infty \overline{l[u]a} dx - \int_{-\infty}^\infty \overline{l[u]}v dx = [u, v]_{-\infty}^\infty, \]
\[[u, v]_{-\infty}^\infty := [u, v](\infty) - [u, v](\infty). \]
holds.

Proof. The identity (10) is true due to Lemma 1 and Lemma 2.

In the following proposition we describe the properties of minimal and maximal operators and their adjoints.

Proposition 4. For the operators S, S_{00} and S^+, S^+_{00} the following statements are fulfilled.

1. Operators S_{00} and S^+_{00} are densely defined in the Hilbert space $L^2(\mathbb{R})$.

2. The following relations hold:

$$(S_{00})^* = S^+, \quad (S^+_{00})^* = S.$$

3. Operators S, S^+ are closed and operators S_{00}, S^+_{00} are closable,

$$S_0 := (S_{00})^*, \quad S^+_0 := (S^+_{00})^*.$$

4. Domains of operators S_0, S^+_0 may be described in the following way:

$$\text{Dom}(S_0) = \{ u \in \text{Dom}(S) \mid [u, v]_{-\infty}^\infty = 0 \ \forall v \in \text{Dom}(S) \},$$

$$\text{Dom}(S^+_0) = \{ v \in \text{Dom}(S^+) \mid [u, v]_{-\infty}^\infty = 0 \ \forall u \in \text{Dom}(S) \}.$$

5. Domains of operators S, S_0, S_{00} and S^+, S^+_0, S^+_{00} satisfy the following relations:

$$u \in \text{Dom}(S) \Leftrightarrow \overline{u} \in \text{Dom}(S^+),$$

$$u \in \text{Dom}(S_0) \Leftrightarrow \overline{u} \in \text{Dom}(S^+_0),$$

$$u \in \text{Dom}(S_{00}) \Leftrightarrow \overline{u} \in \text{Dom}(S^+_{00}).$$

The proof of properties 1–4 in Proposition 4 is similar to the proof of similar statements for symmetric operators on semi-axis [25], see also [19]. The property 5 is proved by direct calculation.

We use the following estimates obtained in [10] Lemma 3.2] to prove the main theorems.

Lemma 5. Let the functions $Q \in L^2_{unif}(\mathbb{R})$, $\tau \in L^1_{unif}(\mathbb{R})$ and $u \in H^1(\mathbb{R})$. Then $\forall \varepsilon \in (0, 1)$ and $\forall \eta \in (0, 1)$ the estimates hold:

$$\left| (Q, \overline{\tau} u)_{L^2(\mathbb{R})} \right| \leq ||Q||_{L^2_{unif}(\mathbb{R})} \left(\varepsilon \|u\|^2_{L^2(\mathbb{R})} + 4\varepsilon^{-3} \|u\|^2_{L^2(\mathbb{R})} \right),$$

$$\left| (\tau, |u|^2)_{L^2(\mathbb{R})} \right| \leq ||\tau||_{L^1_{unif}(\mathbb{R})} \left(\eta \|u\|^2_{L^2(\mathbb{R})} + 8\eta^{-1} \|u\|^2_{L^2(\mathbb{R})} \right).$$

3. PROOFS

3.1 **Proof of Theorem A** Consider the sesquilinear forms generated by preminimal operators $S_{00}(q)$:

$$i_{S_{00}}[u, v] := (S_{00}(q)u, v)_{L^2(\mathbb{R})} = (u', v')_{L^2(\mathbb{R})} - (Q, \overline{\tau} v + \overline{\tau} v')_{L^2(\mathbb{R})} + (\tau, \overline{\tau} v)_{L^2(\mathbb{R})},$$

$$\text{Dom}(i_{S_{00}}) := \text{Dom}(S_{00}(q)).$$

To them correspond the quadratic forms

$$i_{S_{00}}[u] = (u', u')_{L^2(\mathbb{R})} - (Q, \overline{\tau} u + \overline{\tau} u')_{L^2(\mathbb{R})} + (\tau, |u|^2)_{L^2(\mathbb{R})}.$$ We introduce the notation:

$$t_{Q, \tau}[u, v] := -(Q, \overline{\tau} v + \overline{\tau} v')_{L^2(\mathbb{R})} + (\tau, \overline{\tau} v)_{L^2(\mathbb{R})}, \quad \text{Dom}(t_{Q, \tau}) := \text{Dom}(S_{00}(q)),

$$i_0[u, v] := (u', v')_{L^2(\mathbb{R})}, \quad \text{Dom}(i_0) := \text{Dom}(S_{00}(q)).$$

Then due to Lemma 5 forms $t_{Q, \tau}$ are 0-bounded with respect to the densely defined positive form i_0:

$$||t_{Q, \tau}[u]\| \leq K \varepsilon ||i_0[u]\| + 4K \varepsilon^{-3} ||u||^2_{L^2(\mathbb{R})} \quad \forall \varepsilon \in (0, 1], \ u \in \text{Dom}(i_0),$$

$$K := 2 \left(||Q||_{L^2_{unif}(\mathbb{R})} + ||\tau||_{L^1_{unif}(\mathbb{R})} \right).$$

Formula (11) implies that sesquilinear forms $i_{S_{00}} = i_0 + t_{Q, \tau}$ are closable, $t_{S_{00}} := (i_{S_{00}})^{\sim}$:

$$i_{S_{00}}[u, v] = (u', v')_{L^2(\mathbb{R})} - (Q, \overline{\tau} v + \overline{\tau} v')_{L^2(\mathbb{R})} + (\tau, \overline{\tau} v)_{L^2(\mathbb{R})}, \quad \text{Dom}(t_{S_{00}}) = H^1(\mathbb{R}).$$

Forms $t_{S_{00}}$ are densely defined, closed and sectorial. Then due to the First Representation Theorem 12, with the sesquilinear forms $t_{S_{00}}$ we associate m-sectorial operators $S_F(q)$ that are the Friedrichs extensions of operators $S_{00}(q)$.

Proposition 6. The m-sectorial operators $S_F(q)$ are described in the following way:

$$S_F u = S_F(q)u = [u], \quad \text{Dom}(S_F) = \left\{ u \in H^1(\mathbb{R}) \mid u, u^{[1]} \in AC_{loc}(\mathbb{R}), [u] \in L^2(\mathbb{R}) \right\}.$$

The proof of Proposition 6 is similar to the proof of [10] Theorem 3.5 for real-valued distributions $q \in H^{-1}_{unif}(\mathbb{R})$.

Thus we have established that the following relations hold:

\begin{equation}
S_{00} \subset S_0 \subset S_F \subset S.
\end{equation}

Passing in to the adjoint operators (12) and using property 2 of Proposition 4, we obtain:

\begin{equation}
S_{00}^+ \subset S_0^+ \subset S_F^* \subset S^+.
\end{equation}

One can easily prove that operators S_F^* coincide with Friedrichs extensions $S_F^+ \subset S_F^*$ of operators S_{00}.

Let us now define the operators (1) as form-sums.

Consider the sesquilinear forms generated by the distributions $q \in H^{-1}_{unif}(\mathbb{R})$:

$$\langle \cdot, \cdot \rangle_q := (q(x) u, v), \quad \text{Dom}(\langle \cdot, \cdot \rangle_q) := C_0^\infty(\mathbb{R}),$$

where (\cdot, \cdot) is a sesquilinear form pairing the spaces of generalized functions $\mathcal{D}'(\mathbb{R})$ and test functions $C_0^\infty(\mathbb{R})$ with respect to the space $L^2(\mathbb{R})$.

Due to Lemma 5 for the forms

$$i_q[u, v] = \langle q(x) u, v \rangle = -(Q, \nabla u \nabla v')_{L^2(\mathbb{R})} + (\tau, |u|^2)_{L^2(\mathbb{R})}, \quad u \in C_0^\infty(\mathbb{R}),$$

the following estimates hold:

$$|i_q[u]| \leq 2 \left(\|Q\|_{L^2_{unif}(\mathbb{R})} + \|\tau\|_{L^2_{unif}(\mathbb{R})} \right) \left(\|u\|_{L^2(\mathbb{R})}^2 + 4 \|u\|_{L^2(\mathbb{R})}^2 \right), \quad u \in C_0^\infty(\mathbb{R}).$$

Therefore forms i_q allow a continuous extension onto the space $H^1(\mathbb{R})$ [20]. The sesquilinear forms $i_q[u, v]$ on the space $H^1(\mathbb{R})$ are represented as:

\begin{equation}
t_q[u, v] = -(Q, \nabla v \nabla u')_{L^2(\mathbb{R})} + (\tau, \nabla u)_{L^2(\mathbb{R})}, \quad \text{Dom}(t_q) = H^1(\mathbb{R}).
\end{equation}

One may easily see that the following Lemma is true applying the estimates of Lemma [5].

Lemma 7. The sesquilinear forms t_q are 0-bounded with respect to the sesquilinear form

$$t_0[u, v] := (u', v')_{L^2(\mathbb{R})}, \quad \text{Dom}(t_0) := H^1(\mathbb{R}).$$

Thus, the sesquilinear forms

\begin{equation}
t[u, v] := t_0[u, v] + t_q[u, v], \quad \text{Dom}(t) := H^1(\mathbb{R}),
\end{equation}

are densely defined, closed and sectorial. According to the First Representation Theorem [12] with the forms t one can associate m-sectorial operators $S_{fs}(q)$, which are called the form-sums and denoted by:

$$S_{fs} \equiv S_{fs}(q) := -\frac{d^2}{dx^2} + q(x),$$

$$\text{Dom}(S_{fs}(q)) := \left\{ u \in H^1(\mathbb{R}) \mid -u'' + q(x)u \in L^2(\mathbb{R}) \right\}.$$

Since the forms t coincide with the forms t_{S_0}, the form-sum operators $S_{fs}(q)$ and the Friedrichs extensions $S_F(q)$ of operators $S_{00}(q)$ coincide: $S_F(q) = S_{fs}(q)$.

Thus, relations (12) and (13) take the following form:

\begin{align*}
(16) \quad S_{00} \subset S_0 \subset S_F = S_{fs} \subset S, \quad & \text{Dom}(S_F) \subset H^1(\mathbb{R}), \quad \text{Dom}(S) \subset H^1_{loc}(\mathbb{R}), \\
(17) \quad S_{00}^+ \subset S_0^+ \subset S_F^+ = S_{fs}^* = S_F^* = S^*, \quad & \text{Dom}(S_F^+) \subset H^1(\mathbb{R}), \quad \text{Dom}(S^+) \subset H^1_{loc}(\mathbb{R}).
\end{align*}

Proposition 8. Suppose $\text{Dom}(S) \subset H^1(\mathbb{R})$. Then operators $S_0(q)$ and $S_0^+(q)$ are m-sectorial and

$$S_0 = S_F = S_{fs} = S,$$

$$S_0^+ = S_F^+ = S_{fs}^* = S_F^* = S^+.$$
Therefore, taking into consideration that

Indeed, taking into account the property (21)

Obviously, together with (20) the following is also true:

Taking into account (18) and (19), property 4° of Proposition 4 implies the equalities:

Proposition is proved.

Due to Proposition 14 (see Section 3.3 3.3) operators \(S_0(q) \) are quasiaccretive:

In what follows w.l.a.g. we assume that

Obviously, together with (20) the following is also true:

Indeed, taking into account the property 5° of Proposition 4 we get:

The following lemma is used in the proof of Theorem A. It is proved by direct calculation.

Lemma 9. Suppose \(u \in \text{Dom}(S) \). Then \(\forall \varphi \in C_0^\infty(\mathbb{R}) \):

i) \(\| \varphi u \| = \varphi \| u \| - \varphi'' u - 2 \varphi' u' \); ii) \(\varphi u \in \text{Dom}(S_00) \).

Now let us prove Theorem A.

Let us prove that operators \(S_0(q) \) are quasi-\(m \)-accretive. It is sufficient to show that

\(\text{def } S_0(q) := \dim (\text{ran } S_0(q)) + = \dim (\text{ker } S_0^+(q)) = 0. \)

Let \(v(x) \) be a solution of the equation

Let us show that \(v(x) \equiv 0. \)

For any real function \(\varphi \in C_0^\infty(\mathbb{R}) \) due to Lemma 9 and property 5° of Proposition 4 we have \(\varphi v \in \text{Dom}(S_0^0) \). Therefore, taking into consideration that \(1^+ [v] = 0 \) due to (22), one calculates:

Considering (20) and that

\[
\text{Re} \int_R \varphi \varphi' (v\varphi' - v'\varphi) d x = 0,
\]

from (23) we obtain:

\[
\int_R (\varphi')^2 |v|^2 d x \geq \int_R \varphi^2 |v|^2 d x \quad \forall \varphi \in C_0^\infty(\mathbb{R}), \text{ Im } \varphi = 0.
\]

Let us then take a sequence of functions \(\{ \varphi_n \}_{n \in \mathbb{N}} \) such that:

i) \(\varphi_n \in C_0^\infty(\mathbb{R}) \), \(\text{Im } \varphi_n \equiv 0 \);

ii) \(\supp \varphi_n \subset [-n - 1, n + 1] \);

iii) \(\varphi_n(x) = 1, \ x \in [-n, n] \);

iv) \(|\varphi_n'(x)| \leq C. \)
Substituting functions \(\varphi_n \) into (24) we receive
\[
\int_{-n}^{n} |v|^2 dx \leq \int_{\mathbb{R}} \varphi_n^2 |v|^2 dx \leq \int_{\mathbb{R}} (\varphi_n')^2 |v|^2 dx \leq C^2 \int_{n \leq |x| \leq n+1} |v|^2 dx,
\]
that is
\[
(25) \quad \int_{-n}^{n} |v|^2 dx \leq C^2 \int_{n \leq |x| \leq n+1} |v|^2 dx.
\]

Taking into account that \(v(x) \in L^2(\mathbb{R}) \), passing in (25) to the limit as \(n \to \infty \) we obtain \(v(x) \equiv 0 \).

Thus, operators \(S_0(q) \) are proved to be quasi-\(m \)-accractive. Due to Proposition [14] they are \(m \)-sectorial.

Therefore, by the properties of the Friedrichs extensions [12] we have:
\[
S_0(q) = S_\mathcal{F}(q).
\]

Then taking into account property 2 of Proposition [14] from (26) we derive:
\[
S^+(q) = S_\mathcal{F}^+(q), \quad \text{Dom}(S^+(q)) \subset H^1(\mathbb{R}).
\]

Due to the property 5 of Proposition [14] from Proposition [8] we finally get necessary result
\[
S_0 = S_\mathcal{F} = S_{fs} = S.
\]

Theorem [A] is proved completely.

3.2. Proof of Theorem [B]. Let us suppose that the assumptions of theorem, that is the formula (20) (or equivalently (7)), hold. Consider the sesquilinear forms
\[
\begin{align*}
\tilde{t}_0[u, v] &:= (S(q)u, v)_{L^2(\mathbb{R})}, \quad \text{Dom}(\tilde{t}_0) := \text{Dom}(S(q)), \\
\tilde{t}_n[u, v] &:= (S(q_n)u, v)_{L^2(\mathbb{R})}, \quad \text{Dom}(\tilde{t}_n) := \text{Dom}(S(q_n)), \, n \in \mathbb{N}.
\end{align*}
\]
The forms \(\tilde{t}_0 \) and \(\tilde{t}_n \), \(n \in \mathbb{N} \), are densely defined, closable and sectorial. Their closures may be represented in the following way:
\[
\begin{align*}
t_0[u, v] &= (u', v')_{L^2(\mathbb{R})} - (Q, \partial_\nu v + \partial_\nu v')_{L^2(\mathbb{R})} + (\tau, \partial_\nu v)_{L^2(\mathbb{R})}, \quad \text{Dom}(t_0) = H^1(\mathbb{R}), \\
t_n[u, v] &= (u', v')_{L^2(\mathbb{R})} - (Q_n, \partial_\nu v + \partial_\nu v')_{L^2(\mathbb{R})} + (\tau_n, \partial_\nu v)_{L^2(\mathbb{R})}, \quad \text{Dom}(t_n) = H^1(\mathbb{R}).
\end{align*}
\]

Further, applying the estimates of Lemma [5] we get:
\[
(27) \quad |t_n[u] - t_0[u]| \leq a_n \|u\|^2_{L^2(\mathbb{R})} + 4a_n \|u\|^2_{L^2(\mathbb{R})},
\]
where
\[
a_n := 2 \left(\|Q - Q_n\|^2_{L^2_{n+1}(\mathbb{R})} + \|\tau - \tau_n\|^2_{L^2_{n+1}(\mathbb{R})} \right),
\]
and similarly to the proof of Lemma [11] (see below) we obtain:
\[
(28) \quad 2\Re t_0[u] + 4\|u\|^2_{L^2(\mathbb{R})} \geq \|u'\|^2_{L^2(\mathbb{R})}.
\]

Formulas (27) and (28) together with (6), (7) imply:
\[
|t_n[u] - t_0[u]| \leq 2a_n \Re t_0[u] + 8a_n \|u\|^2_{L^2(\mathbb{R})}, \quad a_n \to 0, \, n \to \infty.
\]

To complete the proof we only need to apply [12, Theorem VI.3.6].

Theorem [B] is proved completely.

To prove Corollary [B.1] we need in an auxiliary result. It has an independent interest also.

Theorem 10. The set
\[
C^\infty(\mathbb{R}) \cap L^p_{\text{unif}}(\mathbb{R})
\]
is everywhere dense in the Stepanov space \(L^p_{\text{unif}}(\mathbb{R}) \), \(1 \leq p < \infty \).

Proof. Set for \(f \in L^p_{\text{loc}}(\mathbb{R}) \), \(f_n := \chi_{[n, n+1)} f, \, n \in \mathbb{Z} \). Let \(\varepsilon > 0 \) be given. Since the set \(C^\infty_0(a, b) \) is dense in the space \(L^p(a, b) \), there is a function sequence \(g_n \in C^\infty_0(\mathbb{R}) \), supp \(g_n \subset (n, n+1) \), such that \(\|f_n - g_n\|_{L^p(\mathbb{R})} < \varepsilon 2^{-|n| - 2} \). Set \(g := \sum_{n \in \mathbb{Z}} g_n \). Then \(g \in C^\infty(\mathbb{R}) \) and \(\|f - g\|_{L^p(\mathbb{R})} < \varepsilon \). If \(f \in L^p_{\text{unif}}(\mathbb{R}) \), then the function \(g \in L^p_{\text{unif}}(\mathbb{R}) \) since \(\|f - g\|_{L^p_{\text{unif}}(\mathbb{R})} < \varepsilon \). If the function \(f \) is real-valued, then so are the functions \(f_n \) as well. Therefore, the functions \(g_n \) may be chosen to be real-valued.

Theorem [11] and [10, Theorem 2.1] imply the following important statement.

\(\square \)
Corollary 10.1. The set
\[C^\infty(\mathbb{R}) \cap L^1_{\text{unif}}(\mathbb{R}) \]
is everywhere dense in the space \(H_{\text{unif}}^{-1}(\mathbb{R}) \).

Then Corollary 13.1 follows from Theorem 12 and Corollary 10.1

3.3. Proof of Theorem C. Theorem C follows from Theorem 13 below regarding perturbations of a positive quadratic form. It is abstract and can be of independent interest.

Let in an abstract Hilbert space \(H \) a densely defined closed positive sesquilinear form \(\alpha_0[u,v] \) with domain \(\text{Dom}(\alpha_0) \subset H \) be given. Let \(\beta[u,v] \) be a sesquilinear form defined on \(H \) with a domain \(\text{Dom}(\beta) \supset \text{Dom}(\alpha_0) \).

Suppose the form \(\beta \) satisfies the following estimate:
\[\exists a, b, s > 0 : \quad |\beta[u]| \leq a\varepsilon \alpha_0[u] + b\varepsilon^{-s} \|u\|^2_H \quad \forall \varepsilon > 0, \ u \in \text{Dom}(\alpha_0). \]

Consider on the Hilbert space \(H \) the sum of forms \(\alpha_0 \) and \(\beta \):
\[\alpha[u,v] := \alpha_0[u,v] + \beta[u,v], \quad \text{Dom}(\alpha) := \text{Dom}(\alpha_0). \]

A sesquilinear form \(\alpha \) is densely defined closed and sectorial form on the Hilbert space \(H \). Let \(\Theta(\alpha) \) be a numerical range of \(\alpha \):
\[\Theta(\alpha) := \{ \alpha[u], \ u \in \text{Dom}(\alpha), \ |u| \in H = 1 \}. \]

According to our assumptions \(\Theta(\alpha_0) \subset [0, \infty) \). Let us find the properties of the set \(\Theta(\alpha) \). To do that we require the following two lemmas.

Lemma 11. The following estimates hold:
\[|\text{Im} \alpha[u]| \leq 2a\varepsilon \text{Re} \alpha[u] + 2b\varepsilon^{-s}|u|^2_H, \quad 0 < \varepsilon \leq (2a + 1)^{-1}. \]

Proof. According to our assumptions we have:
\[\text{Re} \alpha[u] = \alpha_0[u] + \text{Re} \beta[u], \quad \text{Im} \alpha[u] = \text{Im} \beta[u], \]
and due to (30):
\[|\text{Im} \alpha[u]| \leq a\varepsilon \alpha_0[u] + b\varepsilon^{-s}|u|^2_H. \]

Furthermore given that \(0 < \varepsilon \leq (2a + 1)^{-1} \) and therefore \(1 - a\varepsilon \geq \frac{1}{2} \) we have for \(\text{Re} \alpha[u] \):
\[\text{Re} \alpha[u] \geq \alpha_0[u] - |\text{Re} \beta[u]| \geq (1 - a\varepsilon)\alpha_0[u] - b\varepsilon^{-s}|u|^2_H \geq \frac{1}{2} \alpha_0[u] - b\varepsilon^{-s}|u|^2_H, \]
and
\[2a\varepsilon \text{Re} \alpha[u] \geq a\varepsilon_0[u] \quad \text{and} \quad 2a\varepsilon \text{Re} \alpha[u] + b\varepsilon^{-s}|u|^2_H \geq a\varepsilon_0[u] - b\varepsilon^{-s}|u|^2_H. \]

From (32) and (33) we receive the required estimates:
\[|\text{Im} \alpha[u]| \leq 2a\varepsilon \text{Re} \alpha[u] + 2b\varepsilon^{-s}|u|^2_H. \]

Lemma is proved. \(\square \)

We introduce the following notation:
\[S_{a,b,s,\varepsilon} := \{ \lambda \in \mathbb{C} \mid |\text{Im} \lambda| \leq 2a\varepsilon \text{Re} \lambda + 2b\varepsilon^{-s} \}, \]
\[M_{a,b,s} := \bigcap_{0 < \varepsilon \leq (2a + 1)^{-1}} S_{a,b,s,\varepsilon}. \]

Then due to Lemma 11 we have \(\Theta(\alpha) \subset M_{a,b,s} \).

Lemma 12. The set \(M_{a,b,s} \) can be written as:
\[M_{a,b,s} = \begin{cases} \{ \lambda \in \mathbb{C} \mid |\text{Im} \lambda| \leq \frac{2a}{2a + 1} \text{Re} \lambda + 2b(2a + 1)^s \}, & \lambda_0 \leq \text{Re} \lambda \leq \lambda_1, \\ \{ \lambda \in \mathbb{C} \mid |\text{Im} \lambda| \leq 2(s + 1)b^{1/(s+1)} \left(\frac{a}{s} \right)^{s/(s+1)} (\text{Re} \lambda)^{s/(s+1)} \}, & \lambda_1 < \text{Re} \lambda, \end{cases} \]

where \(\lambda_0 := -\frac{b}{a}(2a + 1)^{s+1} \) is the vertex of sector

\[
\left\{ \lambda \in \mathbb{C} \bigg| \left| \text{Im} \lambda \right| \leq \frac{2a}{2a + 1} \text{Re} \lambda + 2b(2a + 1)^s \right\},
\]

and \(\lambda_1 := \frac{bs}{a}(2a + 1)^{s+1} \).

Proof. For convenience we will find the description of the set \(\mathcal{M}_{a,b,s} \) in \(\mathbb{R}^2 \).

Let

\[
y = 2a \varepsilon x + 2b \varepsilon^{-s}
\]

be the line which bounds the corresponding sector from above. Let us find the locus of points of intersection of these lines when \(0 < \varepsilon < (2a + 1)^{-1} \):

\[
2a \varepsilon_1 x + 2b \varepsilon_1^{-s} = 2a \varepsilon_2 x + 2b \varepsilon_2^{-s},
\]

\[
2a(\varepsilon_1 - \varepsilon_2)x = 2b(\varepsilon_2^{-s} - \varepsilon_1^{-s}),
\]

\[
x = -\frac{b}{a} \frac{\varepsilon_1^{-s} - \varepsilon_2^{-s}}{\varepsilon_1 - \varepsilon_2},
\]

\[
x \xrightarrow{\varepsilon \to \varepsilon_1} \frac{sb}{a} \varepsilon_1^{-s-1},
\]

and

\[
y = 2a \varepsilon_1, \quad \frac{sb}{a} \varepsilon_1^{-s-1} + 2b \varepsilon_1^{-s} = 2(s + 1)b \varepsilon_1^{-s}.
\]

So, for \(\varepsilon = (2a + 1)^{-1} \) the set \(\mathcal{M}_{a,b,s} \) is bounded from above by the line:

\[
y = \frac{2a}{2a + 1}x + 2b(2a + 1)^s,
\]

and for \(0 < \varepsilon < (2a + 1)^{-1} \) by the curves:

\[
y = 2(s + 1)b \varepsilon^{-s}.
\]

If we express \(\varepsilon \) through \(x \) in the first equality of (36) and substitute it in the equality for \(y \), we obtain an explicit equation for curves (36):

\[
y = 2(s + 1)b^{1/(s+1)} \left(\frac{a}{s} \right)^{s/(s+1)} x^{s/(s+1)}, \quad x > x_1, \quad x_1 := \frac{bs}{a}(2a + 1)^{s+1}.
\]

The set \(\mathcal{M}_{a,b,s} \) is bounded below by curves of the form (35) and (37) with \(-y\) instead of \(y\).

Thus the set \(\mathcal{M}_{a,b,s} \) in \(\mathbb{R}^2 \) may be represented in the following way:

\[
\mathcal{M}_{a,b,s} = \left\{ (x, y) \in \mathbb{R}^2 \bigg| y \leq \frac{2a}{2a + 1}x + 2b(2a + 1)^s \right\}, \quad x_0 \leq x \leq x_1,
\]

\[
\left\{ (x, y) \in \mathbb{R}^2 \bigg| y \leq 2(s + 1)b^{1/(s+1)} \left(\frac{a}{s} \right)^{s/(s+1)} x^{s/(s+1)} \right\}, \quad x_1 < x,
\]

where \(x_0 := -\frac{b}{a}(2a + 1)^{s+1} \) is the vertex of sector

\[
\left\{ (x, y) \in \mathbb{R}^2 \bigg| |y| \leq \frac{2a}{2a + 1}x + 2b(2a + 1)^s \right\},
\]

and \(x_1 = \frac{bs}{a}(2a + 1)^{s+1} \).

Lemma is proved. \(\square \)

Lemmas \(\text{[11]} \) and \(\text{[12]} \) imply the following theorem.
Theorem 13. The numerical range $\Theta(\alpha)$ of the sesquilinear form α is a subset of the set $\mathcal{M}_{a,b,s}$:

$$
\mathcal{M}_{a,b,s} = \left\{ \lambda \in \mathbb{C} \left| \left| \text{Im} \lambda \right| \leq \frac{2a}{2a + 1} \text{Re} \lambda + 2b(2a + 1)^{s} \right\}, \lambda_{0} \leq \text{Re} \lambda \leq \lambda_{1},
\right.
$$

where $\lambda_{0} = -\frac{b}{a}(2a + 1)^{s+1}$ is the vertex of sector

$$
\left\{ \lambda \in \mathbb{C} \left| \left| \text{Im} \lambda \right| \leq \frac{2a}{2a + 1} \text{Re} \lambda + 2b(2a + 1)^{s} \right\},
$$

and $\lambda_{1} = \frac{bs}{a}(2a + 1)^{s+1}$.

Remark 13.1. Direct calculations show that the following inclusion is valid:

$$
\mathcal{M}_{a,b,s} \subset \left\{ \lambda \in \mathbb{C} \left| \left| \text{Im} \lambda \right| \leq 2(s + 1)b^{1/(s+1)} \left(\frac{a}{s} \right)^{s/(s+1)} (\text{Re} \lambda)^{s/(s+1)} \right\}, \left. \lambda \right| \leq \lambda_{1},
$$

where $\lambda_{0} = -\frac{b}{a}(2a + 1)^{s+1}$ is the vertex of sector

$$
\left\{ \lambda \in \mathbb{C} \left| \left| \text{Im} \lambda \right| \leq \frac{2a}{2a + 1} \text{Re} \lambda + 2b(2a + 1)^{s} \right\},
$$

and $\lambda_{1} = \frac{bs}{a}(2a + 1)^{s+1}$.

Theorem 13 is useful for preliminary localisation of a spectrum of various operators.

For instance, if the potential $q \in H^{-1}_{unif}(\mathbb{R})$ is a complex-valued regular Borel measure such that:

$$
q = Q', \quad Q \in \text{BV}_{\text{loc}}(\mathbb{R}) : \quad |q(I)| = \left| \int_{I} dQ \right| \leq K_{0}, \quad K_{0} > 0,
$$

for any interval $I \subset \mathbb{R}$ of a unit length, then forms satisfy the estimates (30) with $a = b = 4K_{0}$, $s = 1$ (24):

$$
|t_{q}[u]| = \left| \int_{I} |u|^{2}dQ \right| \leq 4K_{0} \epsilon \|u\|_{L_{2}(\mathbb{R})}^{2} + 4K_{0} \epsilon^{-1} \|u\|_{L_{2}(\mathbb{R})}^{2} \quad \forall \epsilon \in (0,1], \quad u \in H^{1}(\mathbb{R}).
$$

Then due to Theorem 13 the spectra $\text{spec}(S(q))$ of operators $S(q)$ belong to a quadratic parabola:

$$
\text{spec}(S(q)) \subset \left\{ \lambda \in \mathbb{C} \left| \left| \text{Im} \lambda \right| \leq 16K_{0} \left(\text{Re} \lambda + (8K_{0} + 1)^{2} \right)^{1/2} \right\}, \quad (38)
$$

compare with (24) Proposition 2.3.

Applying Theorem 13 and estimates (11) we obtain a description of the numerical ranges of preminimal operators $S_{00}(q)$ and $S_{00}^{+}(q)$.

Proposition 14. Operators $S_{00}(q)$ and $S_{00}^{+}(q)$ are sectorial: for arbitrary $\epsilon > 0$ numerical ranges $\Theta(S_{00}(q))$ and $\Theta(S_{00}^{+}(q))$ are located within the sector:

$$
S_{K,\epsilon} := \left\{ \lambda \in \mathbb{C} \left| \left| \text{Im} \lambda \right| \leq 2K \epsilon \text{Re} \lambda + 8K \epsilon^{-3} \right\}, \quad 0 < \epsilon \leq (2K + 1)^{-1}.
$$

Furthermore

$$
\Theta(S_{00}(q)) \subset \mathcal{M}_{K}, \quad \Theta(S_{00}^{+}(q)) \subset \mathcal{M}_{K},
$$

where

$$
\mathcal{M}_{K} := \left\{ \lambda \in \mathbb{C} \left| \left| \text{Im} \lambda \right| \leq \frac{2K}{2K + 1} \text{Re} \lambda + 8K(2K + 1)^{3} \right\}, \lambda_{0} \leq \text{Re} \lambda \leq \lambda_{1},
$$

$$
\mathcal{M}_{K} := \left\{ \lambda \in \mathbb{C} \left| \left| \text{Im} \lambda \right| \leq \frac{32}{125/4}K^{3/4} \text{Re} \lambda^{3/4} \right\}, \lambda_{1} < \text{Re} \lambda,
$$

with $\lambda_{0} := -4(2K + 1)^{4}$ and $\lambda_{1} := 12(2K + 1)^{4}$.

Estimates (8) result from Proposition 14 and Remark 13.1.

Now let $\text{Im} q = 0$. We estimate the lower bound of the operator $S(q)$. From (11) for $K \epsilon \leq 1/2$ we get:

$$
(S(q)u, u)_{L_{2}(\mathbb{R})} = \|u^{'}\|_{L_{2}(\mathbb{R})}^{2} + t_{Q}(\epsilon)u^{2} \geq \|u^{'}\|_{L_{2}(\mathbb{R})}^{2} - K\epsilon\|u^{'}\|_{L_{2}(\mathbb{R})}^{2} - 4K\epsilon^{-3}\|u\|_{L_{2}(\mathbb{R})}^{2} = (1 - K\epsilon)\|u^{'}\|_{L_{2}(\mathbb{R})}^{2} - 4K\epsilon^{-3}\|u\|_{L_{2}(\mathbb{R})}^{2} \geq -4K\epsilon^{-3}\|u\|_{L_{2}(\mathbb{R})}^{2}.
$$

The estimates (39) with $\epsilon := \min\{1, (2K)^{-1}\}$ give us the required result:

$$
(S(q)u, u)_{L_{2}(\mathbb{R})} \geq \begin{cases} -4K\|u\|_{L_{2}(\mathbb{R})}^{2}, & \text{if } K < 1/2, \\ -32K^{4}\|u\|_{L_{2}(\mathbb{R})}^{2}, & \text{if } K \geq 1/2. \end{cases}
$$

Thus Theorem 13 is proved completely. \[\square\]
Acknowledgment. The authors were partially supported by the grant no. 01/01-12 of National Academy of Science of Ukraine (under the joint Ukrainian–Russian project of NAS of Ukraine and Russian Foundation of Basic Research).

References

[1] F. Atkinson, W. Everitt, A. Zettl, Regularization of a Sturm–Liouville problem with an interior singularity using quasi-derivatives, Differential Integral Equations 1 (1988), no. 2, 213–221.
[2] J. Brasche, Perturbation of Schrödinger Hamiltonians by measures — selfadjointness and semiboundedness, J. Math. Phys. 26 (1985), no. 4, 621–626.
[3] J. Brasche, L. Nizhnik, One-dimensional Schrödinger operators with general point interactions, Methods Funct. Anal. Topology 19 (2013), no. 1.
[4] J. Eckhardt, F. Gesztesy, R. Nichols, G. Teschl, Weyl–Titchmarsh theory for Sturm–Liouville operators with distributional potentials, arXiv:1208.4677 [math.SP], 68 pp.
[5] P. Djakov, B. Mityagin, Fourier method for one-dimensional Schrödinger operators with singular periodic potentials, in Topics in operator theory, Vol. 2, Systems and mathematical physics, 195–236, Oper. Theory Adv. Appl., 203, Birkhäuser Verlag, Basel, 2010.
[6] Yu. Golovatyi, Schrödinger operators with αδ′ + βδ-like potentials: norm resolvent convergence and solvable models, Methods Funct. Anal. Topology 18 (2012), no. 3, 243–255.
[7] A. Gorinov, V. Mikhailets, Regularization of singular Sturm–Liouville equations, Methods Funct. Anal. Topology 16 (2010), no. 2, 120–130.
[8] A. Gorinov, V. Mikhailets, Regularization of two-term differential equations with singular coefficients by quasi-derivatives (Russian), Ukrainian Mat. Zh. 63 (2011), 1190–1205; English transl. in Ukrainian Math. J. 63 (2012), no. 9, 1361–1378.
[9] J. Herczyński, On Schrödinger operators with distributional potentials, J. Operator Theory 21 (1989), 273–295.
[10] R. Hryniv, Ya. Mykytyuk, Schrödinger operators with periodic singular potentials, Methods Funct. Anal. Topology 7 (2001), no. 4, 31–42.
[11] R. Hryniv, Ya. Mykytyuk, Self-adjointness of Schrödinger operators with singular potentials, Methods Funct. Anal. Topology 18 (2012), no. 2, 152–159.
[12] T. Kato, Perturbation theory for linear operators, Springer, Berlin, etc., 1995.
[13] E. Korotyaev, Characterization of the spectrum of Schrödinger operators with periodic distributions, Int. Math. Res. Not. IMRN (2003), no. 3, 2019–2031.
[14] A. Kostenko, M. Malamud, 1-D Schrödinger operators with local point interactions on a discrete set, J. Differential Equations 249 (2010), no. 2, 253–304.
[15] B. Levitan, Almost Periodic Functions (Russian), GITTL, Moskwa, 1953.
[16] V. Mikhailets, V. Molyboga, The perturbation of periodic and semiperiodic operators by Schwartz distribution (Russian), Reports of NAS of Ukraine (2006), no. 7, 26–31.
[17] V. Mikhailets, V. Molyboga, Singularly perturbed periodic and semiperiodic differential operators, Ukrainian Mat. Zh. 59 (2007), no. 6, 858–873.
[18] V. Mikhailets, V. Molyboga, One-dimensional Schrödinger operators with singular periodic potentials, Methods Funct. Anal. Topology 14 (2008), no. 2, 184–200.
[19] M. Naimark, Linear Differential Operators (Russian), Nauka, Moskwa, 1969.
[20] M. Neiman-zade, A. Shkalikov, Schrödinger operators with singular potentials from the space of multiscaptors (Russian), Matem. Zametki 66 (1999), no. 5, 723–733; Engl. transl. in Math. Notes 66 (1999), no. 5-6, 599–607 (2000).
[21] A. Savchuk, A. Shkalikov, Sturm–Liouville operators with singular potentials (Russian), Matem. Zametki 66 (1999), no. 6, 897–912; Engl. transl. in Math. Notes 66 (1999), no. 5-6, 741–753 (2000).
[22] A. Savchuk, A. Shkalikov, Sturm-Liouville operators with distributional potentials (Russian), Tr. Mosk. Mat. Obs. 64 (2003), 159–212; Engl. transl. in Trans. Moscow Math. Soc. (2003), 143–192.
[23] K. Schmüdgen, Unbounded Self-adjoint Operators on Hilbert Space, Graduate Texts in Mathematics, 265, Springer, Dordrecht, etc., 2012.
[24] A. Tip, Form perturbations of the Laplacian on $L^2(\mathbb{R})$ by a class of measures, J. Math. Phys. 31 (1990), no. 2, 308–315.
[25] A. Zettl, Formally self-adjoint quasi-differential operator, Rocky Mount. J. Math. 5 (1975), no. 3, 453–474.

Institute of Mathematics, National Academy of Science of Ukraine, 3 Tereshchenkivs’ka Str., 01601 Kyiv-4, Ukraine
E-mail address: mikhailets@imath.kiev.ua

Institute of Mathematics, National Academy of Science of Ukraine, 3 Tereshchenkivs’ka Str., 01601 Kyiv-4, Ukraine
E-mail address: molyboga@imath.kiev.ua