Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Relation between macrophage inflammatory protein-1 and intercellular adhesion molecule-1 and computed tomography findings in critically-ill Saudi Covid-19 patients

Aljohara Mohmoud Hamza b, Warda Demerdash Khalifa Ali c, Nagwa Hassanein d, Waddah Bader Albassam e, Mohammad Barry e, Abdullah Mofarhe Mousa AlFaifi f, Khalid Abdullah Sulaiman Alattayar f, Nuha Abdulrahman M. Aboabat f, Wafa Khaled Fahad Alshaiddi h, Howayda Mohammad Hamed AbuSabbah f, Ahmed Hameed Alamri f, Sara Abdullah Hamad Albabtain g, Eman Alsayed a,⁎

a Department of Clinical Pathology, Minia University, Egypt
b Department of Anesthesia, Princess Nourah Bin Abdulrahman University, Kingdom of Saudi Arabia
c Department of Anesthesia and ICU, Al-Azhar University, Assiut branch, Egypt
d Department of Clinical Pathology, Faculty of medicine for Girls, Al-Azhar University, Cairo, Egypt
e Radiology Department, King Abdullah Bin Abdulaziz University Hospital, Kingdom of Saudi Arabia
f Department of pathology and Laboratory Medicine, King Abdullah Bin Abdulaziz University Hospital, Kingdom of Saudi Arabia
g Health Sciences Research Center, Princess Nourah Bin Abdulrahman University, Kingdom of Saudi Arabia

A R T I C L E I N F O

Article history:
Received 5 September 2022
Received in revised form 6 October 2022
Accepted 25 October 2022

Keywords:
Covid-19
Computed tomography
Macrophage inflammatory protein-1 alpha
MIP 1α
Intracellular adhesion molecule 1
ICAM-1
CT severity score

A B S T R A C T

Background: Several, clinical and biochemical factors were suggested as risk factors for more severe forms of Covid-19. Macrophage inflammatory protein-1 alpha (MIP-1α, CCL3) is a chemokine mainly involved in cell adhesion and migration. Intracellular adhesion molecule 1 (ICAM-1) is an inducible cell adhesion molecule involved in multiple immune processes. The present study aimed to assess the relationship between baseline serum MIP-1α and ICAM-1 level in critically-ill Covid-19 patients and the severity of computed tomography (CT) findings.

Methods: The study included 100 consecutive critically-ill patients with Covid-19 infection. Diagnosis of infection was established on the basis of RT-PCR tests. Serum MIP-1α and ICAM-1 levels were assessed using commercially available ELISA kits. All patients were subjected to a high-resolution computed tomography assessment.

Results: According to the computed tomography severity score, patients were classified into those with moderate/severe (n=49) and mild (n = 51) pulmonary involvement. Severe involvement was associated with significantly higher MIP-1α and ICAM-1 level. Correlation analysis identified significant positive correlations between MIP-1α and age, D-dimer, IL6, in contrast, there was an inverse correlation with INF-alpha. Additionally, ICAM-1 showed significant positive correlations with age, D-Dimer, TNF-α, IL6, while an inverse correlation with INF-alpha was observed.

Conclusions: MIP-1α and ICAM-1 level are related to CT radiological severity in Covid-19 patients. Moreover, these markers are well-correlated with other inflammatory markers suggesting that they can be used as reliable prognostic markers in Covid-19 patients.

© 2022 The Author(s). Published by Elsevier Ltd on behalf of King Saud Bin Abdulaziz University for Health Sciences. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Background

Despite the significant successes achieved in the battle against Covid-19, the pandemic is thought to continue as a predominant global health threat for years to come. The unique virological, epidemiological, and clinical characteristics of Covid-19 infection had
shaped the unprecedented worldwide combat against the pandemic with many questions remaining unanswered [1]. One of the most challenging issues in the management of Covid-19 is the early identification of patients liable for a worse prognosis; so that, resources can be focused on their follow-up and management. Several genetic, clinical, and biochemical factors were suggested as risk factors for more severe forms of Covid-19 [2].

Genetic risk factors entail variations within the angiotensin-converting enzyme 2 (ACE2) gene, genes regulating multiple Toll-like receptors, and many complement pathways and others [3–5]. Clinical risk factors include obesity diabetes poor diabetic control, and vitamin D deficiency [6–9]. In addition, there is a wide spectrum of biochemical markers that were studied as correlates of Covid-19 severity including immune parameters [10], coagulation factors [11], metabolic mediators [12], and inflammatory markers [13].

In spite of the fact that many of these risk factors proved to successfully predict bad prognostic scenarios in some studies, other studies failed to document such relations. So, the pursuit of other metabolic mediators like receptors, and many complement pathways and others converting enzyme 2 (ACE2) gene, genes regulating multiple Toll-like receptors, and many complement pathways and others.

In our work, we adopted the same steps for CT assessment of lung involvement. Thus, the lobar scores were summed up to yield the total CT score as a measure of the total lung involvement in a given patient. The total lung involvement was categorized according to the total score into groups, which for the purposes of this study we reduced to two categories only: mild (≤7) and moderate/severe (≥8).

Results

The present study included 100 Covid-19 patients. They comprised 44 males and 56 females with an age of [median (IQR): 54.5 (42.0–62.0)] year. According to the CT severity score, patients were classified into patients with moderate/severe (n = 49) and mild (n = 51) pulmonary involvement (Table 1). Comparison between the studied groups regarding the clinical and laboratory data revealed that patients with moderate/severe involvement had significantly higher D-dimer [median (IQR): 1.51 (0.99–2.51) versus 0.73 (0.4–0.93) mg/L, p < 0.001], lower INF-alpha [median (IQR): 54.1 (48.2–65.1) versus 68.8 (59.4–82.9) pg/mL, p < 0.001], higher IL-6 [median (IQR): 51.7 (32.9–124.3) versus 25.1 (14.9–45.4) pg/mL, p < 0.001] and higher TNF-α [median (IQR): 35.2 (32.1–44) versus 31.3 (23.2–35.3) pg/mL, p < 0.001] when compared with patients with mild involvement (Table 1). Moreover, moderate/severe involvement was associated with significantly higher MIP-1α [median (IQR): 8.38 (7.27–10.69) versus 6.45 (5.14–7.3) pg/mL, p < 0.001] and ICAM-1 [median (IQR): 216381 (100513–379289) versus 73033 (52595–11681) pg/mL, p < 0.001] (Table 1). Patients with moderate/severe involvement had significantly longer ICU stay [17.0 (9.0–35.5) versus 7.0 (4.0–10.0) days, p < 0.001] and higher mortality rate (18.4% versus 0%, p < 0.001) (Table 1).
Correlation analysis identified significant positive correlations between MIP-1α and age (r = 0.3), D-dimer (r = 0.592), TNF-α (r = 0.42), IL6 (r = 0.368) and inverse correlation with INF-alpha (r = -0.225) (Table 2). Also, ICAM-1 showed significant positive correlations with patients’ age (r = 0.241), D-Dimer (r = 0.746), TNF-α (r = 0.471), IL6 (r = 0.475) and inverse correlation with INF-alpha (r = -0.336) (Table 3).

Receiver operator characteristic analysis showed both markers (MIP-1α and ICAM-1) had good performance in distinguishing moderate/severe from mild lung involvement with an AUC of 0.852 and 0.829 respectively (Figs. 1 and 2). The performance of other parameters compared to MIP-1α and ICAM-1 is shown in Table 4.

Discussion

The present study identified significant relations between MIP-1α and also ICAM-1 levels and the severity of pulmonary involvement in Covid-19 patients. Moreover, both markers were well-correlated with inflammatory and coagulation markers related to Covid-19 infection. To the best of our knowledge, no previous study documented a relation between these markers and the extent of lung involvement in similar patients. The relation between MIP-1α and pro-inflammatory markers (IL-6 and TNF-α) reflects a probable contribution of this mediator in the Covid-19-related cytokine storm.

Yang et al., [29] published their findings in China, where they examined the CT scan results of 102 people infected with COVID-19 and discovered that patients with severe COVID-19 infections had a significantly higher total CT severity score than those with moderate infections.

In support of our conclusions, Fonseca et al., [30] noted an association between elevated MIP-1α levels and ICU admission and mortality among African American Covid-19 patients. In another work, cytokine profiling including MIP-1α was performed during the early and late phases of COVID-19 onset. Results showed that MIP-1α in the early and late phases of illness could reliably distinguish mild from severe cases [31]. Moreover, the study of Pons et al., [32], reported an association between elevated MIP-1α levels and Covid-19 severity in Peruvian patients. Similar conclusions were reported by Young et al., [33], Chi et al., [34] and Patterson et al., [35], using a bioinformatics approach.

The relation between ICAM-1 level and Covid-19 severity was previously reported by many studies. The retrospective study of Tong et al., [36], found a link between ICAM-1 level and Covid-19 severity. This finding was confirmed by other studies [37]. Moreover, Kaur et al., [38] found that elevated ICAM-1 level is related to 28-day mortality. In another work, an association was detected between Covid-19 viral RNA load and ICAM-1 level [39].
The findings of our work may have therapeutic implications. The study of Bermejo-Martin et al. [40] studied the antiviral and anti-inflammatory activities of a traditional Chinese agent against Covid-19. The investigators demonstrated that the efficacy of this agent was associated with a significant decline in MIP-1α levels. Likewise, it was shown that the use of bromelain and acetyl cysteine resulted in a significant reduction of MIP-1α levels in the tracheal aspirate of Covid-19 patients [41].
Table 4: Performance of acute inflammatory proteins in identifying cases with CT determined severity of lung involvement.

	AUC	CI (LI-UL)	SE	Cutoff	Sensitivity	Specificity	PPV	NPV	P-value	
D-Dimer	0.878	0.813	0.942	0.033	> 1.01	0.735	0.882	0.857	0.776	< 0.001
MIP-1α	0.852	0.779	0.925	0.037	7.280	0.755	0.745	0.740	0.760	< 0.001
ICAM-1	0.829	0.751	0.907	0.040	> 126279	0.633	0.843	0.795	0.705	< 0.001
IFN-α	0.782	0.693	0.872	0.046	59.550	0.745	0.694	0.723	0.717	< 0.001
IL6	0.754	0.660	0.848	0.048	> 44.3	0.633	0.725	0.589	0.673	< 0.001
TNF-α	0.760	0.645	0.835	0.049	> 33.8	0.612	0.725	0.674	0.649	< 0.001

AUC=Area under the curve; CI= 95% confidence interval; LL=Lower limit; UL=Upper limit; SE=Standard error; PPV= Positive predictive value; NPV=Negative predictive value

Conclusions

In conclusion, MIP-1α and ICAM-1 levels are related to CT-scored radiological severity in Covid-19 patients regardless of the severity of clinical illness. Moreover, these markers are well-correlated with other inflammatory markers suggesting that they can be used as reliable prognostic markers in Covid-19 patients. ROC curve results showed the performance of MIP-1α and ICAM-1 level in identifying cases with higher CT chest severity scores.

Ethical consideration

The study protocol was approved by the ethical committee of King Abdullah Bin Abdulaziz University Hospital with IRB registration Number (20–0073):H-01-R-059 (July,13,2020). A written informed consent was obtained from all patients.

Funding

This project was funded by Deputyship of Research and Innovation, Ministry of Education in Saudi Arabia for funding this research work through project number (PNU-DRI-Targeted-20–004).

CRediT authorship contribution statement

All authors made substantial contributions to conception and design, acquisition of data, or analysis and interpretation of data; took part in drafting the article or revising it critically for important intellectual content; agreed to submit to the current journal; gave final approval of the version to be published; and agree to be accountable for all aspects of the work.

Conflict of interest

None declared.

Acknowledgements

The authors extend their appreciation to the Deputyship of Research and Innovation, Ministry of Education in Saudi Arabia for funding this research work through project number (PNU-DRI-Targeted-20–004) for funding this project. The authors would also like to acknowledge the research and scientific Center in Sultan Bin Abdulaziz Humanitarian city for assisting them in paper submission.

Consent for publication

All authors reviewed the manuscript and approved its submission.

Availability of data and materials

The datasets used and analyzed during the current study are available from the corresponding author on reasonable request.

Research involving Human Participants and/or Animals

Not applicable.

Informed consent

Informed consent was obtained from all patients.

References

[1] Rod JF, Oviedo-Trespalacios O, Cortes-Ramirez J. A brief-review of the risk factors for COVID-19 severity. 60.1011606/s1518-8787.202005402481. Rev Sao Paulo Publica 2020;54. https://doi.org/10.1016/j.rspupa.2020.05.0402481
[2] Zhang J, Dong X, Liu GH, Gao YD. Risk and protective factors for COVID-19 morbidity, severity, and mortality. Clin Rev Allergy Immunol 2022;19:1–18. https://doi.org/10.1007/s12014-022-00851-1
[3] Debshah M, Baneeji M, Berk M. Genetic gateways to COVID-19 infection: implications for risk, severity, and outcomes. FASEB J 2020;34:8778–95. https://doi.org/10.1096/fj.20200115SR
[4] Ozyavuznikova IG, Haralambieva H, Cooke SN, Poland GA, Kennedy RB. The role of host genetics in the immune response to SARS-CoV-2 and COVID-19 susceptibility and severity. Immunol Rev 2020;296:206–209–19. https://doi.org/10.1111/imr.13287
[5] Saengsawang W, Jitpradist J, Chartkchai P, Udomsinpraset W. Genetic polymorphisms of ACE1, ACE2, and TMPRSS2 associated with COVID-19 severity: A systematic review with meta-analysis. Rev Med Virol 2020;8:e2323.
[6] Santos AP, Couto CF, Pereira SS, Monterio MP. Is soroalbumin the missing link between COVID-19 severity observed in patients with diabetes and obesity? Neuroendocrinology 2022 21. https://doi.org/10.1159/000522115
[7] Aggarwal G, Lippi G, Lavie CJ, Henry BM, Sanchis-Gomar F. Diabetes mellitus association with coronavirus disease 2019 (COVID-19) severity and mortality: A pooled analysis. J Diabetes 2020;12:851–5–. https://doi.org/10.1111/jdi.13491
[8] Singh AK, Singh R. Does poor glucose control increase the severity and mortality in patients with diabetes and COVID-19. Diabetes Metab Syndr 2020;14:725–7–. https://doi.org/10.1016/j.dsx.2020.05.037
[9] Ali N. Role of vitamin D in preventing of COVID-19 infection, progression and severity. J Infect Public Health 2020;13:1373–80. https://doi.org/10.1016/j.jiph.2020.06.021
[10] Jesenak M, Brdliarova M, Urbancikova L, et al. Immune parameters and COVID-19 infection - associations with clinical severity and disease prognosis. Front Cell Infect Microbiol 2020 30:10.364. https://doi.org/10.3389/fcimb.2020.00364
[11] Nasif WA, El-Moursy Ali AS, Hasan Mukhtar M, et al. Elucidating the correlation of D-dimer levels with COVID-19 severity: a scoping review. Anemia 2022 8;2022:9104209https://doi.org/10.1155/2022/9104209
[12] Ahmed DS, Isnard S, Berini C, Lin J, Routy JP, Roslyon L. Coping with stress: the mitokine GDF-15 as a biomarker of COVID-19 severity. Front Immunol 2022 16:13.820350https://doi.org/10.3389/fimmu.2022.820350
[13] Hu H, Pan H, Li R, He K, Zhang H, Liu L. Increased circulating cytokines have a role in COVID-19 severity and death with a more pronounced effect in males: a systematic review and meta-analysis. Front Pharmacol 2022;14(13):802228https://doi.org/10.3389/fphar.2022.802228
[14] Ottersbach K, McLean J, Isaacs NW, Graham GJ. A310 helix turn is essential for the proliferation-inhibiting properties of macrophage inflammatory protein-1 alpha (CCL3). Blood 2006;107:1284–91. https://doi.org/10.1182/blood-2005-08-3112
[15] Ciechanowska A, Popiolek-Barczyk K, Pawlik K, et al. Changes in macrophage inflammatory protein-1 (MIP-1) family members expression induced by traumatic brain injury in mice. Immunology 2020;225:151911https://doi.org/10.1016/j.imunol.2020.151911
[16] Chen YL, Wang HT, Lin PT, Chuang JH, Yang MY. Macrophage Inflammatory Protein-1 Alpha, a Potential Biomarker for Predicting Left Atrial Remodeling in Patients with Atrial Fibrillation. Front Cardiovasc Med 2021;9(8):784792. https://doi.org/10.3389/fcvm.2021.784792
[17] Peric A, Baletic N, Sotirovic J, Spadijer-Mirkovic C. Macrophage inflammatory protein-1 production and eosinophil infiltration in chronic rhinosinusitis with nasal polypos. Ann Otol Rhinol Laryngol 2015;124:666–72. https://doi.org/10.1177/0003489414554944

A.M. Hamza, W.D.K. Ali, N. Hassanein et al. Journal of Infection and Public Health 15 (2022) 1497–1502
