WHEN IS $\overline{M}_{0,n}(\mathbb{P}^1, 1)$ A MORI DREAM SPACE?

CLAUDIO FONTANARI

Abstract. We prove that the moduli space of n-pointed stable maps $\overline{M}_{0,n}(\mathbb{P}^1, 1)$ is a Mori dream space whenever the moduli space $\overline{M}_{0,n+3}$ of $(n+3)$-pointed rational curves is. We also show that $\overline{M}_{0,n}(\mathbb{P}^1, 1)$ is a log Fano variety for $n \leq 5$.

1. Introduction

Given a normal projective \mathbb{Q}-factorial variety X over an algebraically closed field \mathbb{K} of any characteristic, X is a Mori dream space if X has the following properties (see for instance [3]): (1) The Picard group $\text{Pic}(X)$ of X is finitely generated, and $\text{Pic}(X)_\mathbb{Q} = N_1(X)_\mathbb{Q}$; (2) the cone of nef divisors $\text{Nef}(X)$ is generated by a finite number of semi-ample divisors; and (3) there are finitely many small, \mathbb{Q}-factorial modifications $f_i : X \to X_i$ of X such that each X_i has properties (1) and (2) and the moving cone of X is the union of the pullbacks of the nef cones of the X_i. In other words, if X is a Mori dream space, then one would be able, at least in principle, to explicitly describe the birational models X_i of X, which are isomorphic to X in codimension one, and to use them to describe the nef cone of X. It would also follow that the effective cone of X is polyhedral. The nef and effective cones of divisors are crucial in understanding the birational geometry of a variety. In particular, for moduli spaces of curves an understanding of how these cones relate to each other was a crucial ingredient in the proof that the moduli space of stable curves \overline{M}_g is of general type for $g = 22$ and $g \geq 24$ (see for instance [6]). Even for $g = 0$ the moduli space $\overline{M}_{0,n}$, parameterizing stable rational curves with n ordered marked points and not too far from being a toric variety, presents a surprisingly rich birational geometry. The partial results obtained in two decades of intensive investigation range from the positive side (for instance, $\overline{M}_{0,n}$ is a Mori dream space for $n \leq 6$, see [12] and [2]) to the negative one (as the breakthrough in [4] that $\overline{M}_{0,n}$ is not a Mori dream space for $n \geq 134$, later improved to $n \geq 13$ in [9] and then to $n \geq 10$ in [11]).

1991 Mathematics Subject Classification. 14H10, 14E30.

Key words and phrases. Moduli space, pointed stable map, pointed rational curve, Mori dream space, log Fano variety.

This research was partially supported by PRIN 2017 “Moduli Theory and Birational Classification” and by GNSAGA of INdAM (Italy).
Here we address the same question for a different but closely related moduli space. As it is well-known (see for instance [13], Remark 1.4), the Kontsevich moduli space $M_{0,n}(\mathbb{P}^1, 1)$ parameterizing n-pointed stable maps to \mathbb{P}^1 of genus 0 and degree 1 is isomorphic to the Fulton-MacPherson compactification $\mathbb{P}^1[n]$ of the configuration space of n distinct ordered points in \mathbb{P}^1. The natural projection $M_{0,n}(\mathbb{P}^1, 1) \to \overline{M}_{0,n}$ implies by [14] that if $\overline{M}_{0,n}(\mathbb{P}^1, 1)$ is a Mori dream space then $\overline{M}_{0,n}$ is a Mori dream space too. In particular, it follows that $\overline{M}_{0,n}(\mathbb{P}^1, 1)$ is not a Mori dream space for $n \geq 10$.

In Section 2 we establish a converse statement: if $\overline{M}_{0,n+3}$ is a Mori dream space then $\overline{M}_{0,n}(\mathbb{P}^1, 1)$ is a Mori dream space too (see Proposition 1). In order to do so, we introduce a natural birational map $\overline{M}_{0,n+3} \to \overline{M}_{0,n}(\mathbb{P}^1, 1)$ which is surjective in codimension one and we apply [15]. In particular, from the known results for $\overline{M}_{0,n}$ we recover the fact that $\overline{M}_{0,n}(\mathbb{P}^1, 1)$ is a Mori dream space for $n \leq 3$, which is already well understood: indeed, $\mathbb{P}^1[1] \cong \mathbb{P}^1$, $\mathbb{P}^1[2] \cong \mathbb{P}^1 \times \mathbb{P}^1$ and $\mathbb{P}^1[3]$ appears in the list of smooth Fano threefolds (for instance [13], p. 108), so it is a Mori dream space by [1], Corollary 1.3.2.

To go further we need to implement a different strategy. After rephrasing in Section 3 the characterization of ample divisors on $\overline{M}_{0,n}(\mathbb{P}^1, 1)$ provided by [5], in Section 4 we check that $\overline{M}_{0,n}(\mathbb{P}^1, 1)$ is a log Fano variety for $n \leq 5$ but not for $n = 6$. We conclude that $\overline{M}_{0,n}(\mathbb{P}^1, 1)$ is a Mori dream space for $n \leq 5$ (see Corollary 1) and we point out that new ideas are required to address the remaining open cases $6 \leq n \leq 9$ (see Remark 1).

We work over the complex field \mathbb{C}.

We are grateful to the anonymous referee for detailed suggestions in order to improve the above Introduction.

2.

First we recall the definition and the basic properties of both $\overline{M}_{0,n}$ and $\overline{M}_{0,n}(\mathbb{P}^1, 1)$ following [7].

The moduli space $\overline{M}_{0,n}$ parameterizes isomorphism classes of stable curves of genus 0 with n ordered marked points:

$$(C, p_1, \ldots, p_n).$$

For every subset $S \subset \{1, \ldots, n\}$ with $2 \leq |S| \leq n - 2$ the boundary component Δ_S is the closure in $\overline{M}_{0,n}$ of the locus of stable curves

$$(C_1 = \mathbb{P}^1, (p_i)_{i \in S}) \cup (C_2 = \mathbb{P}^1, (p_i)_{i \in S^c}).$$

The moduli space $\overline{M}_{0,n}(\mathbb{P}^1, 1)$ parameterizes isomorphism classes of stable maps of degree 1 from curves of genus 0 with n ordered marked points to \mathbb{P}^1:

$$(C, p_1, \ldots, p_n, f : C \to \mathbb{P}^1).$$
collapsing the first component to the point $C_1 \cap C_2$ and mapping the second component identically to \mathbb{P}^1.

Both $\overline{M}_{0,n}$ and $\overline{M}_{0,n}(\mathbb{P}^1, 1)$ are smooth projective varieties and in both cases the union of the boundary components is a normal crossing (see for instance [10], Theorem 2.3).

Proposition 1. If $\overline{M}_{0,n+3}$ is a Mori dream space then $\overline{M}_{0,n}(\mathbb{P}^1, 1)$ is a Mori dream space.

Proof. By [15], Proposition 1.3 and Remark 2.2, the claim follows if there is a birational map $\overline{M}_{0,n+3} \dashrightarrow \overline{M}_{0,n}(\mathbb{P}^1, 1)$ which is surjective in codimension one.

Let

$$U_0 := \{(C_0 \cup \ldots \cup C_k, p_1, \ldots, p_{n+3}) \in \overline{M}_{0,n+3} : p_{n+1}, p_{n+2}, p_{n+3} \in C_0\}$$

and notice that U_0 is dense in $\overline{M}_{0,n+3}$ since it contains the open part $M_{0,n+3} \subset \overline{M}_{0,n+3}$ parameterizing smooth rational curves.

Consider the natural rational map:

$$\Phi : U_0 \dashrightarrow \overline{M}_{0,n}(\mathbb{P}^1, 1)$$

$$(C_0 = \mathbb{P}^1, (p_i)_{i \in S_0}, p_{n+1}, p_{n+2}, p_{n+3}) \cup \bigcup_{j=1}^{k}(C_j = \mathbb{P}^1, (p_i)_{i \in S_j})$$

$$\mapsto (C_0 = \mathbb{P}^1, (\pi(p_i))_{i \in S_0}, \text{id}) \cup \bigcup_{j=1}^{k}(C_j = \mathbb{P}^1, (p_i)_{i \in S_j}, \text{pt})$$

where $k \geq 0$ (for $k = 0$ we adopt the standard convention $\bigcup_{j=1}^{0} = \emptyset$), $S_0 \cup \ldots \cup S_k = \{1, \ldots, n\}$, $\pi : \mathbb{P}^1 \rightarrow \mathbb{P}^1$ is the automorphism of \mathbb{P}^1 such that $\pi(p_{n+1}) = 0$, $\pi(p_{n+2}) = 1$, $\pi(p_{n+3}) = \infty$, $\text{id} : \mathbb{P}^1 \rightarrow \mathbb{P}^1$ is the identity on \mathbb{P}^1 and $\text{pt} : \mathbb{P}^1 \rightarrow \mathbb{P}^1$ collapses \mathbb{P}^1 to a point.

By definition, Φ is injective, it is surjective onto the open part $M_{0,n}(\mathbb{P}^1, 1) \subset \overline{M}_{0,n}(\mathbb{P}^1, 1)$ parameterizing stable maps with smooth domain \mathbb{P}^1 and for every subset $S \subset \{1, \ldots, n\}$ with $2 \leq |S| \leq n$ the image $\Phi(\Delta_S \cap U_0)$ is dense in B_S, so that every boundary component of $\overline{M}_{0,n}(\mathbb{P}^1, 1)$ is dominated by Φ. It follows that Φ induces a birational map $\overline{M}_{0,n+3} \dashrightarrow \overline{M}_{0,n}(\mathbb{P}^1, 1)$ which is surjective in codimension one.

\[\square\]
According to [5], the ample cone of $\overline{M}_{0,n}(\mathbb{P}^1, 1)$ can be described in terms of natural maps:

$$\alpha : \overline{M}_{0,n+1} \rightarrow \overline{M}_{0,n}(\mathbb{P}^1, 1)$$

$$\beta_i : \mathbb{P}^1 \rightarrow \overline{M}_{0,n}(\mathbb{P}^1, 1), \ i = 1, \ldots, n$$

defined in [5], 2.1 and 2.2. Indeed, by [5], Theorem 2.3, a divisor H on $\overline{M}_{0,n}(\mathbb{P}^1, 1)$ is ample if and only if α^*H is ample on $\overline{M}_{0,n+1}$ and β_i^*H is ample on \mathbb{P}^1 for $i = 1, \ldots, n$.

In addition to the divisors $\Delta_S \subset \overline{M}_{0,n}$ and $B_S \subset \overline{M}_{0,n}(\mathbb{P}^1, 1)$, for $i = 1, \ldots, n$ we introduce also the classes

$$\psi_i := c_1(T_i^*),$$

where T_i^* is the line bundle on $\overline{M}_{0,n}$ whose fiber over (C, p_1, \ldots, p_n) is the cotangent space $(T_pC)^*$, and

$$L_i := \{(C, p_1, \ldots, p_n, f : C \rightarrow \mathbb{P}^1) \in \overline{M}_{0,n}(\mathbb{P}^1, 1) : f(p_i) = 0\}.$$

The pullback of the classes B_S and L_i under the maps α and β_i is computed in [5], Proposition 2.5 (see also [5], Table 1), in terms of the classes Δ_S and ψ_i, namely:

$$\alpha^*B_S = \Delta_S \text{ if } |S| \leq n - 1$$

$$\alpha^*B_S = -\psi_{n+1} \text{ if } |S| = n$$

$$\alpha^*L_i = 0 \text{ for every } i = 1, \ldots, n$$

$$\beta_i^*B_S = O_{\mathbb{P}^1}(-1) \text{ for } S = \{1, \ldots, n\} \text{ and } S = \{i\}^c$$

$$\beta_i^*B_S = 0 \text{ otherwise}$$

$$\beta_i^*L_i = O_{\mathbb{P}^1}(1)$$

$$\beta_j^*L_i = 0 \text{ for every } j \neq i.$$

The canonical class of $\overline{M}_{0,n}(\mathbb{P}^1, 1)$ is

$$K_n = -2L + \sum_{s=3}^{n} (s - 2)B[s]$$

where

$$L := \sum_{i=1}^{s} L_i$$

$$B[s] := \sum_{|S|=s} B_S, \ 2 \leq s \leq n$$
WHEN IS $\overline{M}_{0,n}(\mathbb{P}^1, 1)$ A MORI DREAM SPACE?

Hence we have

$$\alpha^*K_n = -(n - 2)\psi_{n+1} + \sum_{s=3}^{n-1} (s - 2) \sum_{|S|=s} \Delta_S$$

$$\beta^*K_n = \mathcal{O}_{\mathbb{P}^1}(-2) \otimes \mathcal{O}_{\mathbb{P}^1}(-(n - 2)) \otimes \mathcal{O}_{\mathbb{P}^1}(-(n - 3)) = \mathcal{O}_{\mathbb{P}^1}(-(2n - 3)).$$

According to Fulton’s conjecture (see [8], Conjecture 0.2), a divisor on $\overline{M}_{0,n}$ is ample if and only if it has positive intersection with all one-dimensional strata, parameterizing n-pointed rational curves with at least $n - 4$ singular points. More explicitly, let

$$H = \sum_{|S| \geq 1} c_S \Delta_S,$$

where we adopt the convention $\Delta_{\{i\}} := -\psi_i$ for every $i = 1, \ldots, n$. By [8], Theorem 2.1, the divisor H has positive intersection with all one-dimensional strata if and only if

$$c_{I \cup J} + c_{I \cup K} + c_{I \cup L} - c_I - c_J - c_K - c_L > 0$$

for every partition $I \cup J \cup K \cup L$ of $\{1, \ldots, n\}$.

By [12], Theorem 1.2(3), Fulton’s conjecture holds for $n \leq 7$.

Finally we are going to check that $\overline{M}_{0,n}(\mathbb{P}^1, 1)$ is a log Fano variety (hence a Mori dream space) for $n \leq 5$ but not for $n = 6$.

Lemma 1. On $\overline{M}_{0,4}(\mathbb{P}^1, 1)$ the divisor $K_4 + B[4]$ is anti-ample, hence $\overline{M}_{0,4}(\mathbb{P}^1, 1)$ is log Fano.

Proof. By [5], Proposition 2.5, we have

$$\alpha^*(K_4 + B[4]) = -3\psi_5 + \sum_{|S|=3} \Delta_S$$

$$\beta^*(K_4 + B[4]) = \mathcal{O}_{\mathbb{P}^1}(-2) \otimes \mathcal{O}_{\mathbb{P}^1}(-3) \otimes \mathcal{O}_{\mathbb{P}^1}(-1) = \mathcal{O}_{\mathbb{P}^1}(-6).$$

It is clear that $\beta^*(K_4 + B[4])$ is anti-ample on \mathbb{P}^1; on the other hand, in order to check that $\alpha^*(K_4 + B[4])$ is anti-ample on $\overline{M}_{0,5}$, by [8], Theorem 2.1, we have to consider the following partitions $I \cup J \cup K \cup L$ of $\{1, \ldots, 5\} = \{a, b, c, d, 5\}$:

- $\{a\} \cup \{b\} \cup \{c\} \cup \{d, 5\}$
- $\{a\} \cup \{b\} \cup \{5\} \cup \{c, d\}$.

If

$$\alpha^*(K_4 + B[4]) = \sum_{|S| \geq 1} c_S \Delta_S$$
then
\[c_{I \cup J} + c_{I \cup K} + c_{I \cup L} - c_I - c_J - c_K - c_L = -1 \]
in both cases listed above, hence \(\alpha^*(K_4 + B[4]) \) is anti-ample by [12], Theorem 1.2(3), and \(K_4 + B[4] \) is anti-ample by [3], Theorem 2.3.

\[\square \]

Lemma 2. Let \(D = \frac{1}{4}B[2] + \frac{1}{4}B[4] + B[5] \) on \(\overline{M}_{0,5}(\mathbb{P}^1,1) \). The divisor \(K_5 + D \) is anti-ample, hence \(\overline{M}_{0,5}(\mathbb{P}^1,1) \) is log Fano.

Proof. By [5], Proposition 2.5, we have

\[
\alpha^*(K_5 + D) = -4\psi_6 + \frac{1}{4} \sum_{|S|=2} \Delta_S + \sum_{|S|=3} \Delta_S + \left(2 + \frac{1}{4}\right) \sum_{|S|=4} \Delta_S
\]

\[
\beta_1^*(K_5 + D) = \mathcal{O}_{\mathbb{P}^1}(-2) \otimes \mathcal{O}_{\mathbb{P}^1}(-4) \otimes \mathcal{O}_{\mathbb{P}^1}\left(-2 - \frac{1}{4}\right)
\]

\[= \mathcal{O}_{\mathbb{P}^1}\left(-8 - \frac{1}{4}\right) \).

It is clear that \(\beta_1^*(K_5 + D) \) is anti-ample on \(\mathbb{P}^1 \); on the other hand, in order to check that \(\alpha^*(K_5 + D) \) is anti-ample on \(\overline{M}_{0,6} \), by [8], Theorem 2.1, we have to consider the following partitions \(I \cup J \cup K \cup L \) of \(\{1, \ldots, 6\} = \{a, b, c, d, e, 6\} \):

- \(\{a\} \cup \{b\} \cup \{c\} \cup \{d, e, 6\} \)
- \(\{a\} \cup \{b\} \cup \{6\} \cup \{c, d, e\} \)
- \(\{a\} \cup \{b\} \cup \{c, d\} \cup \{e, 6\} \)
- \(\{a\} \cup \{6\} \cup \{b, c\} \cup \{d, e\} \).

If

\[
\alpha^*(K_5 + D) = \sum_{|S|\geq 1} c_S \Delta_S
\]

then

\[c_{I \cup J} + c_{I \cup K} + c_{I \cup L} - c_I - c_J - c_K - c_L = -\frac{1}{4} \]
in all cases listed above, hence \(\alpha^*(K_5 + D) \) is anti-ample by [12], Theorem 1.2(3), and \(K_5 + D \) is anti-ample by [3], Theorem 2.3.

\[\square \]

Lemma 3. Let \(D = a_2B[2] + a_3B[3] + a_4B[4] + a_5B[5] + a_6B[6] \) on \(\overline{M}_{0,6}(\mathbb{P}^1,1) \) with \(a_i \in \mathbb{Q} \). If \(a_4 \geq 0 \) and \(a_6 \leq 1 \) then \(K_6 + D \) is not anti-ample.

Proof. By [3], Proposition 2.5, we have

\[
\alpha^*(K_6 + D) = \sum_{|S|\geq 1} c_S \Delta_S
\]
with
\[
c_S = \begin{cases}
4 + a_6 & \text{if } S = \{7\} \\
0 & \text{if } |S| = 1, S \neq \{7\} \\
3 + a_5 & \text{if } |S| = 2, 7 \in S \\
a_2 & \text{if } |S| = 2, 7 \notin S \\
2 + a_4 & \text{if } |S| = 3, 7 \in S \\
1 + a_3 & \text{if } |S| = 3, 7 \notin S.
\end{cases}
\]

Consider the following partitions of \(\{1, \ldots, 7\} = \{a, b, c, d, e, f, 7\}\):

(i) \(\{a\} \cup \{b\} \cup \{c\} \cup \{d, e, f, 7\}\)

(ii) \(\{a\} \cup \{b\} \cup \{c, d\} \cup \{e, f, 7\}\)

(iii) \(\{7\} \cup \{a, b\} \cup \{c, d\} \cup \{e, f\}\).

According to [8], Theorem 2.1, the corresponding necessary conditions for \(\alpha^*(K_6 + D)\) to be anti-ample are:

(i) \(3a_2 - a_3 - 1 < 0\)

(ii) \(2a_3 - a_4 < 0\)

(iii) \(3a_4 - 3a_2 - a_6 + 2 < 0\).

Hence we deduce:

(ii) \(a_3 < \frac{a_4}{3}\)

(i) \(a_2 < \frac{1}{3} + \frac{a_3}{3} < \frac{1}{3} + \frac{a_6}{6}\)

(iii) \(a_2 > \frac{2 - a_6}{3} + a_4\)

which is impossible if \(a_4 \geq 0\) and \(a_6 \leq 1\).

\[\square\]

Corollary 1. If \(n \leq 5\) then \(\overline{M}_{0,n}(\mathbb{P}^1, 1)\) is a Mori dream space.

Proof. If \(n \leq 3\) we exploit the isomorphism \(\overline{M}_{0,n}(\mathbb{P}^1, 1) \cong \mathbb{P}^1[n]\), where \(\mathbb{P}^1[n]\) denotes the Fulton-MacPherson compactification (see [13], Remark 1.4) and the fact that \(\mathbb{P}^1[n]\) is Fano for \(n \leq 3\) (see [13], p. 108). If \(n = 4, 5\) then \(\overline{M}_{0,n}(\mathbb{P}^1, 1)\) is log Fano by Lemma [1] and Lemma [2]. Hence \(\overline{M}_{0,n}(\mathbb{P}^1, 1)\) is a Mori dream space for \(n \leq 5\) by [1], Corollary 1.3.2.

\[\square\]

Remark 1. By Lemma [3] there is no hope to deduce from [1], Corollary 1.3.2, that \(\overline{M}_{0,6}(\mathbb{P}^1, 1)\) is a Mori dream space.

References

[1] C. Birkar, P. Cascini, C. D. Hacon, and J. McKernan: Existence of minimal models for varieties of log general type. J. Amer. Math. Soc. 23 (2010), 405–468.

[2] A.-M. Castravet: The Cox Ring of \(\overline{M}_{0,6}\). Trans. Amer. Math. Soc. 361 (2009), 3851–3878.

[3] A.-M. Castravet: Mori dream spaces and blow-ups. Algebraic geometry: Salt Lake City 2015, 143–167, Proc. Sympos. Pure Math. 97, Part 1, Amer. Math. Soc., Providence, RI, 2018.
[4] A.-M. Castravet and J. Tevelev: $\overline{M}_{0,n}$ is not a Mori dream space. Duke Math. J. 164 (2015), 1641–1667.
[5] I. Coskun, J. Harris, and J. Starr: The ample cone of the Kontsevich moduli space. Canad. J. Math. 61 (2009), 109–123.
[6] G. Farkas: The global geometry of the moduli space of curves. Algebraic geometry—Seattle 2005. Part 1, 125–147, Proc. Sympos. Pure Math. 80, Part 1, Amer. Math. Soc., Providence, RI, 2009.
[7] W. Fulton and R. Pandharipande: Notes on stable maps and quantum cohomology. Algebraic geometry–Santa Cruz 1995, 45–96, Proc. Sympos. Pure Math. 62, Part 2, Amer. Math. Soc., Providence, RI, 1997.
[8] A. Gibney, S. Keel, and I. Morrison: Towards the ample cone of $\overline{M}_{g,n}$. J. Amer. Math. Soc. 15 (2002), 273–294.
[9] J. L. González and K. Karu: Some non-finitely generated Cox rings. Compos. Math. 152 (2016), 984–996.
[10] B. Hassett and Y. Tschinkel: Integral points and effective cones of moduli spaces of stable maps. Duke Math. J. 120 (2003), 577–599.
[11] J. Hausen, S. Keicher, and A. Laface: On blowing up the weighted projective plane. Math. Z. 290 (2018), 1339–1358.
[12] S. Keel and J. McKernan: Contractible Extremal Rays on $\overline{M}_{0,n}$. arXiv:9607009 (1996).
[13] A. Massarenti: On the biregular geometry of the Fulton-MacPherson compactification. Adv. Math. 322 (2017), 97–131.
[14] S. Okawa: On images of Mori dream spaces. Math. Ann. 364 (2016), 1315–1342.
[15] S. Okawa: Addendum to “On images of Mori dream spaces”, available online at http://www4.math.sc.i.osaka-u.ac.jp/~okawa/papers/notes.pdf (2015).

E-mail address: claudio.fontanari@unitn.it
Current address: Dipartimento di Matematica, Università degli Studi di Trento, Via Sommarive 14, 38123 Trento, Italy.