New activation cross section data on longer lived radio-nuclei produced in proton induced nuclear reaction on zirconium

F. Tárkányia, F. Ditrója,∗, S. Takácsa, A. Hermanneb, M. Al-Abyadd, H. Yamazakid, M. Babad, M.A. Mohammadid

aInstitute for Nuclear Research, Hungarian Academy of Sciences (ATOMKI), Debrecen, Hungary
bCyclotron Laboratory, Vrije Universiteit Brussel (VUB), Brussels, Belgium
cPhysics Department, Cyclotron Facility, Nuclear Research Centre, Atomic Energy Authority, Cairo 13759, Egypt
dCyclotron and Radioisotope Center (CYRIC), Tohoku University, Sendai, Japan

Abstract

In the frame of a systematic study of charged particle production routes of medically relevant radionuclei, the excitation function for indirect production of \(^{178}\text{m} \text{Ta}\) through \(^{184}\text{Hf}(\alpha,\text{x}n)\) nuclear reaction was measured for the first time up to 40 MeV. In parallel, the side reactions \(^{180} \text{Hf}(\alpha,\text{x})\)\(^{179},177,176,175\text{W},\) \(^{182} \text{Hf}\) were also assessed. Stacked foil irradiation technique and \(\gamma\)-ray spectrometry were used. New experimental cross section data for the \(^{180} \text{Ta}(\text{d},\text{x}n)\)\(^{178}\text{W}\) reaction are also reported up to 40 MeV. The measured excitation functions are compared with the results of the ALICE-IPPE, and EMPIRE nuclear reaction model codes and with the TALYS 1.4 based data in the TENDL-2013 library. The thick target yields were deduced and compared with yields of other charged particle \((\text{p},4\text{n}), (\text{d},5\text{n})\) and \((^{3}\text{He},\text{x})\) production routes for \(^{178}\text{W}\).

Keywords: proton activation, cross section measurement, yield calculation, Nb, Zr and Y radioisotopes

1. Introduction

Production cross sections of proton induced nuclear reactions on metals are important for many applications and for development of improved nuclear reaction theory. In most applications high intensity, low and high energy direct or secondary proton beams activate technological elements and produce highly active radio-products. After recognizing the importance of knowledge of production cross sections we concluded that a systematic coordinated experimental and theoretical study is necessary, and we started a set of experiments with a large scope. Our research in connection with the activation cross sections on zirconium is of importance and applies to different projects:

- Preparation of a nuclear database for production of \(^{90}\text{Nb,}^{95}\text{Nb,}^{89}\text{Zr,}^{88}\text{Y}\) medical radioisotopes in the frame of IAEA Coordinated Research Project [Gul et al. 2001, IAEA 2001, 2012-2016] using the \(^{90}\text{Zr}(\text{p},\text{n})^{90}\text{Nb,}^{95}\text{Zr}(\text{p,2n})^{95}\text{Nb,}^{90}\text{Zr}(\text{p,2n})^{89}\text{Nb-}
^{89}\text{Zr and}^{184}\text{Hf}(\alpha,\text{x})^{178}\text{W,}^{179},177,176,175\text{W,}^{182} \text{Hf,}^{178} \text{m} \text{Ta}\) production routes. We have also investigated alternative production routes of these radio-products on yttrium [Uddin et al., 2007, 2005].

- Preparation of proton and deuteron activation cross section database for the Fusion Evaluated Nuclear Data Library [IAEA 2004].

- Preparation of a database for the Thin Layer Activation (TLA) technique for wear measurement [IAEA-NDS, 2010] and every day practice of wear measurement of zirconium alloy samples.

We earlier reported on experimental activation cross section data on Zr targets for deuteron induced reactions up to 50 MeV [Tárkányi et al. 2004, 1985] and for proton reactions up to 17 MeV [Al-Abyad et al. 2012]. During the compilation of the experimental data of proton induced activation a large disagreements in the database at higher energies were noted. Hence we decided to extend our investigations up to higher energies and to complete them by testing the prediction capabilities of the widely used TALYS model code.

\\[\text{Preprint submitted to Applied Radiation and Isotopes January 20, 2016}\]

*Corresponding author: ditroi@atomki.hu
2. REVIEW OF EARLIER INVESTIGATIONS

2.1. Earlier experimental investigations

The earlier experimental investigations reported in the literature (also from our group) are compiled and shown in Table 1 that includes information on the used target, accelerator, beam monitoring, measurement of the activity, the measured data points, and the covered energy range. According to our tradition we have investigated the earlier experimental results and the theoretical results in detail before new experiments were designed and performed.

2.2. Earlier theoretical estimates and systematics

For estimation of production cross sections of proton induced reaction cross sections a few systematic theoretical calculations exist in the TENDL-2013 library (Koning et al., 2012) based on TALYS version 1.4 code (Koning et al., 2007), in the MENDL-2p library (Shubin et al., 1998) based on the ALICE-IPPE code (Dityuk et al., 1998), in the publication of Ren et al. up to 100 MeV (Ren et al., 2011) by using the MENDL (Cai, 2006) code, and in the publication by Sadeghi et al. and Broeders et al. based on the ALICE-ASH code (Broeders and Konobeyev, 2007) Sadeghi et al. (2011). Nuclear reaction systematics, semi-empirical formulas are also used for the evaluation of reaction cross-sections to supplement to the result of measurements and calculations by theoretical models (Tel et al., 2010).

3. Experimental techniques and data evaluation

3.1. Experiment

The excitation functions for the natZr(p,x) reactions were measured at the cyclotrons of the Vrije Universiteit Brussel (VUB, Brussels, Belgium) and of Tohoku University (CYRIC, Sendai, Japan) using the stacked foil technique. The experimental method used was similar to the techniques used in our numerous earlier investigations of charged particle induced nuclear reactions for different applications. Two stacks were irradiated using the 36 MeV (VUB) and 70 MeV (CYRIC) incident proton energy respectively. In both experiments natural, high purity Zr foils (Goodfellow, 99.98%, thickness 98.42 μm and 103 μm) were assembled together with target foils of other elements for separate investigations and with monitor and degrader foils. The target stack at VUB was composed of Ho (26.2 μm), Zr (98.42 μm), Al degraders (156.56 μm), Pb (15.74 μm) and Ti monitor (12 μm) foils, repeated 12 times. The stack composition at higher energy irradiation at CYRIC: Zr(103 μm), Rh (12.3 μm), Al (520 μm, degrader, and monitor), Mn(10 μm), Al (520 μm, degrader, and monitor) and Ag (52 μm), repeated 19 times. The Ti and Al monitors foils were used for determination of beam intensity and energy by re-measuring the excitation function for the natTi(p,x)48V reaction at VUB and 27Al(p,x)22Na reactions at CYRIC over the entire covered energy range. The target stacks were irradiated in a Faraday-cup like target holder. Irradiations took place at beam current of 160 nA for 60 min (VUB) and 24 nA for 30 min (CYRIC) respectively. The gamma activity of the majority of the produced radionuclides was measured with standard high purity Ge detectors coupled to acquisition/analysis software. No chemical separation was performed and the measurements were repeated several times up to several months after EOB. Due to large number of simultaneously irradiated targets and the limited detector capacity the first measurements of the induced activity started on both cases after relatively long cooling times (VUB: 1.5 day, CYRIC: 3 day after EOB).

3.2. Data processing

For most of the assessed radionuclides different independent γ-lines are available allowing an internal check of the consistency of the calculated activities. The decay and spectrometric characteristics were taken from the NUDAT2 data base [NuDat (2014)] and are summarized in Table 2. The cross sections were calculated from the well-known activation formula with measured activity, particle flux and number of target nuclei as input parameters. Some of the radionuclides formed are the result of cumulative processes as decay of metastable states or parent nuclides contribute to the production process. The exact physical situation for the individual studied nuclides will be discussed in the next sections. The particle flux was initially derived through total charge on target by the Faraday cup using a digital integrator. The incident beam energy was determined from the accelerator settings and the mean energy in each foil was calculated by polynomial approximation of Andersen and Ziegler (Andersen and Ziegler, 1977) or calculated with the help of the SRIM code (Ziegler, 2013). The beam energy and intensity parameters were corrected by taking into account the comparison of the excitation function of natTi(p,x)48V and 27Al(p,x)22Na reactions, re-measured over the whole energy domain studied, with the recommended values in the updated version of IAEA-TECDOC 1211 (Tarkanyi et al., 2001) (Fig. 1). The uncertainty of the incident energy on the first foil in both cases was around ± 0.3 MeV. Taking into account the cumulative effects of possible variation on incident energy and thickness of the
different targets, the uncertainty on the median energy in the last foil was around ± 1.2 MeV. The uncertainty on each cross-section was estimated in the standard way (of Weights and Measures, 1993) by taking the square root of the sum in quadrature of all individual contributions, supposing equal sensitivities for the different parameters appearing in the formula. The following individual uncertainties are included in the determination of the peak areas including statistical errors (0.1–20 %): the number of target nuclei including non-uniformity (5 %), detector efficiency (5 %) and incident particle intensity (7 %). The total uncertainty of the cross-section values was evaluated to vary from 8 to 14 %, except for few cases where the statistical errors where high.

4. RESULTS

4.1. Cross sections

The numerical data of excitation functions of 96Nb, 95Nb, 93Nb, 88Zr, 87Y, 86Y, 85Y, 92mNb, 91mNb, 90Nb, 89Zr, 88Zr, 86Zr, 85Y, 87mY, 86Y, 85Y, 87mY, 86Y are presented in Tables 3-5 and are shown in graphical form in Figures 2-15 for comparison with the earlier experimental data and with the theoretical values taken from the TENDL-2013 online library (Koning et al., 2012) calculated with the 1.4 version of TALYS (Koning et al., 2007). The contributing reactions and decay processes are presented in Table 2. The excitation functions are shortly discussed for each activation product separately.

4.1.1. Cross sections of 96Nb

The radionuclide 96Nb ($T_{1/2} = 23.35$ h) can only be produced via the 96Zr(p,n) reaction. Due to the experimental circumstances we could obtain data only from the high energy irradiation (Fig. 2) and the results have large uncertainties due to the low counting statistics. The agreement with the literature data and with the theory is acceptable.

4.1.2. Cross sections of 95Nb

The radionuclide 95Nb has shorter-lived metastable state 95mNb ($T_{1/2} = 86.64$ h) and a longer-lived ground state 95gNb ($T_{1/2} = 34.991$ d). The isomeric state decays to the ground state by 94.4% IT process. We obtained experimental data for 95Nb only from the low energy irradiation, the 235 keV γ-line of the metastable state could not be separated reliably in our spectra from the high energy experiment. Our results and the data of (Levkovskii, 1991) are in good agreement (Fig. 3). The data of (Michel et al., 1997) are surprisingly higher by a factor of five. The TENDL-2013 follows the trend of the experimental data but gives lower values.

4.1.3. Cross sections of 95gNb

The measured cross-sections of the 95gNb ($T_{1/2} = 34.991$ d) are cumulative, as they are deduced from spectra taken after a cooling time resulting in nearly complete IT decay of 95mNb ($T_{1/2} = 86.64$ h). The agreement with the earlier experimental data is acceptable for both experiments (Fig. 4). The results of the nuclear model code TALYS from the TENDL-2013 library are in good agreement with the experiments.
4.1.4. Cross sections of 92mNb

The half-life of the ground state of the 92Nb is very long ($T_{1/2} = 3.47 \times 10^7$ a) and 92gNb can hence be considered as stable in our experimental conditions. The isomeric state 92mNb ($T_{1/2} = 10.15$ d) has no IT, but decays directly to stable 92Zr. Our results for both experiments are in acceptable agreement with the earlier experimental results and with the data in TENDL-2013 (Fig. 5).

4.1.5. Cross sections of 91mNb

The very long-lived ground state of 91Nb ($T_{1/2} = 6800$ a) has no measurable gamma lines. We obtained some results for the activation cross sections of the shorter-lived isomeric state ($T_{1/2} = 60.86$ d), mostly from the high energy irradiation. Our data show large uncertainties due to the low statistics. The agreement with the earlier experimental results is acceptable (Fig. 6). The TENDL-2013 prediction overestimates the experimental data.

4.1.6. Cross sections of 90Nb

The cross-sections for production of 90Nb ($T_{1/2} = 14.6$ h) obtained in the VUB experiment are shown in Fig. 7. The cross sections include, apart from the direct production, the contribution through IT decay (100%) of the 18.8 s half-life isomeric state. The agreement with the earlier experimental results is good, except for the data of (Kondratev et al., 1991; Blosser and Handley, 1955; Birjukov et al., 1979; Al-Abyad et al., 2012) (Fig. 7). The TENDL-2013 results are well representing the energy dependence of the contributions of the different reactions and their maximum values.
4.1.7. Cross sections of 95Zr

The radionuclide 95Zr ($T_{1/2} = 64.032$ d) is formed directly through the 96Zr(p,pn) reaction and indirectly from the decay of the short-lived parent 95Y ($T_{1/2} = 10.3$ min) produced via the 96Zr(p,2p) reaction. The agreement with earlier experimental data and with the TENDL-2013 predictions is acceptable for our 2 new experiments (Fig. 8).

4.1.8. Cross sections of 89Zr

The cross sections for 89Zr ($T_{1/2} = 78.41$ h) production include, apart from the direct (p,pxn) processes on different stable Zr isotopes, also the contributions from the decay of the short-lived metastable parent 89mZr ($T_{1/2} = 4.161$ min) and the decay of 89Nb ($T_{1/2} = 66$ min). Our data from both experiments do not support the low cross section values of (Khandaker et al., 2009) and the TENDL-2013 predictions near in the 20-30 MeV energy range but are in agreement with the other literature values (Fig. 9).

4.1.9. Cross sections of 88Zr

The measured cross-sections for 88Zr ($T_{1/2} = 83.4$ d) production contain the direct formation and contributions from the decay of the two states of the short-lived parent 88m,gNb ($T_{1/2}$ = 7.78 min and 14.55 min). Our both experimental data sets support the high maximum as found by (Michel et al., 1997). The agreement with the TENDL-2013 is acceptable (Fig. 10).

4.1.10. Cross sections of 86Zr

The radionuclide 86Zr (16.5 h) was produced directly and from the decay of the two states of 88m,gNb ($T_{1/2}$...
= 56.3 s and 88 s). Our data agree with the experimental data of Michel et al. [1997] and are lower than the TENDL-2013 results (Fig. 11).

4.1.11. Cross sections of ^{88}Y

The cross sections of ^{88}Y ($T_{1/2} = 106.627$ d) were obtained from the first spectra measured after EOB in order to minimize the contribution from the decay of the ^{88}Zr parent nuclide with similar half-life ($T_{1/2} = 83.4$ d). Up to 22-25 MeV no contribution from decay (also not from parent ^{88}Nb). Decay contribution does exist at higher energies. To get independent cross sections, the contribution from the decay of ^{88}Zr was subtracted based on the measured counts at 393 keV, resulting in corrections on the count rate of the independent 898 keV γ-line. Unfortunately, because of the relative long half-life and the shorter measuring time the ^{88}Y peak could not be evaluated reliably from the high energy spectra. The agreement is acceptable (Fig. 12).

4.1.12. Cross sections of ^{87m}Y

The radionuclide ^{87}Y has a metastable state ^{87m}Y ($T_{1/2} = 13.37$ h) that decays completely to the ground state ^{87}Y ($T_{1/2} = 79.8$ h). The cross-sections for ^{87m}Y (Fig. 13) contain the contributions from both the direct production through $(p,2p\alpha n)$ reactions and the decay of ^{87}Zr ($T_{1/2} = 1.68$ h, $\varepsilon = 100\%$) that could not be assessed independently. As the reaction with lowest threshold to produce ^{87}Zr is the $^{90}\text{Zr}(p,p3n)$ process with a threshold above 33 MeV, the cross sections at low energy are due to emission of clusters (α-particles) in the direct reaction. The results of our two new data sets
agree well with the earlier studies both in the low (cluster emission) and high energy (individual nucleons) regions. The TENDL-2013 predictions underestimate by a factor of 6 the high energy individual nucleons emission.

4.1.13. Cross sections of 87gY

The cumulative cross sections of 87gY ($T_{1/2} = 79.8$ h) contain the direct production, the contribution from the decay of 87mY isomeric state ($T_{1/2} = 13.37$ h) and contributions from the decay of parents 87gZr ($T_{1/2} = 1.6$ h) and 87mZr ($T_{1/2} = 14$ s, IT: 100 %). The same remark concerning the contributions of clusters and individual nucleons emissions as for 87mY are valid. The agreement with the earlier experimental data and with TENDL-2013 is shown in Fig. 14.

4.1.14. Cross sections of 86Y

The production cross sections for 86gY ($T_{1/2} = 14.74$ h) contain the direct production and the contribution from the decay of short-lived isomeric state 86mY ($T_{1/2} = 48$ min, IT 99.3 %). The contributions from the decay of 86Zr at high energies (see Fig. 11) were subtracted. The experimental and theoretical data are shown in Fig. 15.

5. Integral yields

Thick target yields (integrated yield for a given incident energy down to the reaction threshold) were calcu-
lated from fitted curves to our experimental cross section data. The results for physical yields (production rates) (Bonardi, 1987) are presented in Figs. 16-18. Some earlier experimental thick target yield data found in the literature are also presented.

6. Production of medically relevant radioisotopes by charged particle induced reactions on Zr targets

Among the studied activation products the radionuclides 90Nb, 95Nb, 89Zr, 88Y are of interest in nuclear medicine. The possible production routes for these nuclides using medium energy cyclotrons are shown in Table 6 and will be discussed for each nuclide separately with the aim to identify the possible role of proton induced reactions on Zr studied in this work. Nuclear reactions having low production yields, or resulting carrier added, low specific activity product are not included in the comparison.

6.1. Production routes of 90Nb

The 90Nb ($T_{1/2} = 23.35$ h) can be produced at low energy accelerators in various ways on Zr or Y targets (89Zr(p,n)90Nb, 90Zr(d,2n)90Nb, 91Zr(p,2n)90Nb, 88Y(α,2n)90Nb, 89Y(3He,n)90Nb, see Table 6). Out of them only the 90Zr(p,n) and 89Y(3He,n) reactions on enriched targets give products with high radionuclidic purity, as by limitations of the incident energy, reactions leading to Nb radionuclides with lower mass number can be suppressed (Q-value of 90Zr(p,2n) reaction is -17.002 MeV). In the case of natural Zr targets long-lived, higher mass Nb radionuclides are produced
simultaneously e.g. 91mNb ($T_{1/2}=60.86$ d) and 91X Nb ($T_{1/2} = 680$ a) through the 90Zr(p,n) reaction. In Fig. 19 we reproduce the experimental cross section data of the 90Zr(p,n) reaction (obtained on enriched 90Zr or derived from measurements on natZr (corrected by the TENDL 91Zr(p,2n) data), threshold of 91Zr(p,2n)90Nb reaction is -14.244 MeV). As it is shown the TENDL-2013 data reproduce well the experimental values for this reaction cross section. In Fig. 20 for discussion we reproduce the excitation functions for 90Zr(d,2n)90Nb, 89Y(α,$3n$)90Nb and 89Y(3He,$2n$)90Nb reactions taken from the TENDL-2013 library. The deduced integral yields are shown in Fig. 21. It is clear from the cross sections and the integral yields, that the 90Zr(p,n)90Nb reaction is the method of choice but requires highly enriched targets.

6.2. Production routes of 95Nb

The radionuclide 95Nb ($T_{1/2}=3.61$ d) can be produced with high specific activity and free from contaminants (if suitable cooling time is applied) with 96Zr(p,2n), 94Zr(d,n) and 96Zr(d,3n) reactions. The cross sections from experiments on enriched targets or the values derived from irradiations on natZr targets are shown on Fig. 22 together with the data from the TENDL-2013 library. All of these reactions require highly enriched targets to obtain an end product with high specific activity and minimal contaminations. The 96Zr(p,2n) reaction is the most promising, considering both the yield and the required accelerator energy.
6.3. Production routes of 89Zr

The low and medium energy production routes for 89Zr ($T_{1/2} = 78.41$ h) are 89Y(p,n)89Zr and 89Y(d,2n)89Zr as direct routes and 90Zr(p,2n)89Nb-89Zr as indirect route. A large number of experimental data sets exist for the direct (p,n) and (d,2n) reactions (see Fig. 23 and 24, the experimental data were taken from EXFOR). Both reactions result in non-carrier added (nca) product and the yttrium has only one stable isotope. The (p,n) route hence seems to be the most beneficial, both in yield and the required accelerator characteristics. In principle 89Zr can be produced carrier free indirectly by using Zr targets through the 90Zr(p,2n)89Nb-89Zr reaction. No experimental data are available for this reaction. The theoretical data from TENDL-2013 are shown in Fig. 23. When considering integral yields the 90Zr(p,2n)89Nb-89Zr indirect production route is the most productive, but it requires highly enriched targets and only short irradiations are possible due to the short half-life of the isomeric states of the 89Nb (89mNb $T_{1/2} = 66$ min), 89Nb $T_{1/2} = 2.13$ h) and the need to separate the Nb from the Zr target to obtain high specific activity NCA end-product.

6.4. Production routes of 88Y

The direct production of 88Y ($T_{1/2} = 106.627$ d) is possible through the natSr(p,xn), natSr(d,xn), natRb(r,xn), natZr(p,x) and 90Zr(p,x) reactions. The excitation functions for the direct production are shown in Figs. 25-26 (the data were taken from EXFOR or from TENDL-2013 for the (d,xn) reaction) and in Fig. 12. By using natZr(p,x) the cross section is low and
long-lived 91Y (58.51 d) is produced simultaneously. To get high radionuclidic purity highly enriched 90Zr should be used. As Rb has only two stable isotopes (85Rb:72.165 % and 87Rb:27.83%) and 90Y with a significantly shorter half-life is produced by (α,n) reaction, natural Rb targets can be used. However the limitation on incoming γ-energy is important for avoiding production of stable 89Y through 87Rb$(\alpha,2n)$, which would decrease specific activity. The maximum production cross section on natRb will hence be only around 230 mb. The indirect production routes include the nat90Zr(p,x)nat88Y, 90Zr(p,x)nat88Zr, 89Y$(p,2n)$ nat88Y reactions. The excitation functions are shown in Fig. 10 and Fig. 27 (the experimental data for 89Y were taken from EXFOR). By using Zr target the production requires highly enriched 90Zr material. In case of natural composition other long-lived Zr radioisotopes as 93Zr ($T_{1/2} = 1.61106$ a) and 95Zr $T_{1/2} = 64.032$ d) are produced simultaneously, followed by Y decay product. In case 90Zr target the 88Y is produced directly, simultaneously with 88Zr via $(p,2p2n)$ reaction, which can be separated after EOB (the other Y radio-products are short-lived). Comparison of the two production routes shows, that the $(p,2n)$ reaction on monoisotopic yttrium has advantages as no enriched targets are required, and the required beam energy is lower up to 30 MeV (in the range of commercial medium energy cyclotrons).

7. Summary

We present experimental activation cross sections for production of 96Nb, 95Nb, 95gNb, 92mNb, 91mNb, 90Nb, C. Y. Kandil et al., J. Nucl. Sci. Technol. 34, 574 (1997).

[Figure 25: Excitation function of the natSr(p,x)nat88Y and natSr(d,x)nat88Y reaction]

[Figure 26: Excitation function of 85Rb(α) reaction]

[Figure 27: Excitation function of the 89Y$(p,2n)$nat88Zr reaction]
95Zr, 89Zr, 88Zr, 86Zr, 88Y, 78Y, 87Y, 95Y on zirconium measured up to 70 MeV proton energy. The agreement between the new and the earlier experimental data (except for a few cases) is acceptable. TALYS 1.4 based model results in TENDL-2013 library describe well the reactions of zirconium, niobium, and tantalum in a cyclotron. Soviet Atomic Energy 60 (5), 390–395.

Kuzmenko, V. A., Lobach, Y. N., Prokopenko, V. F., Skilyarenko, V. D., Tokarevsky, V. V., 1987. Excitation functions of (p, 4n) reactions on zr nuclei at proton energy up to 70 mev. In: 38th Ann. Conf. Nucl. Spectrosc. Struct. At. Nuclei. p. 310.

Gul, K., Hermanne, A., Mustafa, M. G., Nortier, F. M., Oblozinsky, P., Qaim, S. M., Scholten, B., Shubin, Y. N., Takacs, S., Tarkanyi, F., Zhuang, Y., 2001. Charged particle cross-section database for medical radioisotope production diagnostic radioisotopes and monitor reactions. Vienna, iaea. iaea-tecdoc-1211, http://www.nds.or.at/medical.

IAEA, 2001. Nuclear data for the production of therapeutic radionuclides. Tech. rep., IAEA.

IAEA, 2004. Fusion evaluated nuclear data library fendl 3.0. IAEA, 2008. Exfo formats description for users (exfo basics) iaeas-n206.

IAEA, 2012-2016. Crp on nuclear data for charged-particle monitor reactions and medical isotope production. IAEA-NDS, 2010. Thin layer activation (tla) technique for wear measurement.

Ishikki, M., Fukuda, Y., Igaki, K., 1984. Proton activation-analysis of trace impurities in purified cobalt. Journal of Radioanalytical and Nuclear Chemistry 82 (1), 135–142.

Kantelo, M. V., Hogan, J. J., 1976. Charged-particle emission in reactions of zr-90 with 10-86-mev protons. Physical Review C 14 (1), 64–74.

Khandaker, M. U., Kim, K., Lee, M. W., Kim, K. S., Kim, G. N., Cho, Y. S., Lee, Y. O., 2009. Experimental determination of proton-induced cross-sections on natural zirconium. Applied Radiation and Isotopes 67 (7-8), 1341–1347.

Konstantinov, I. O., Dmitriev, P. P., Bolotskikh, V. I., 1986. Activation of zirconium, niobium, and tantalum in a cyclotron. Soviet Atomic Energy 60 (5), 390–395.

Kuzmenko, V. A., Lobach, Y. N., Prokopenko, V. F., Skilyarenko, V. D., Tokarevsky, V. V., 1987. Excitation functions of (p, 4n) reactions on zr nuclei at proton energy up to 70 mev. In: 38th Ann. Conf. Nucl. Spectrosc. Struct. At. Nuclei. p. 310.

Gul, K., Hermanne, A., Mustafa, M. G., Nortier, F. M., Oblozinsky, P., Qaim, S. M., Scholten, B., Shubin, Y. N., Takacs, S., Tarkanyi, F., Zhuang, Y., 2001. Charged particle cross-section database for medical radioisotope production diagnostic radioisotopes and monitor reactions. Vienna, iaea. iaea-tecdoc-1211, http://www.nds.or.at/medical.

IAEA, 2001. Nuclear data for the production of therapeutic radionuclides. Tech. rep., IAEA.

IAEA, 2004. Fusion evaluated nuclear data library fendl 3.0. IAEA, 2008. Exfo formats description for users (exfo basics) iaeas-n206.

IAEA, 2012-2016. Crp on nuclear data for charged-particle monitor reactions and medical isotope production. IAEA-NDS, 2010. Thin layer activation (tla) technique for wear measurement.
Table 1: Summary of earlier experimental investigations on activation cross sections and yields of the proton induced nuclear reaction on zirconium. The investigated quantities of the nuclear reactions are indicated according to the conventions of the EXFOR system (IAEA, 2008).

Author	Target	Irradiation	Beam current measurement and measurement of activity	Separation method and measurement of activity	Nuclear reaction and measured quantity and number of measured data points	Covered energy range (MeV)
Blaise et al. (1981)	14Zr single foil	cyclotron stacked foil	65Cu(p,n)65Zn, 60Cu(p,d)60Zn	Faraday cup	40-Zr(0.05-0.4)A 65Cu, 15	2.73-6.97, 3.5-6.44, 3.5-6.46
Blais et al. (1981)	14Zr single foil	cyclotron stacked foil	65Cu(p,n)65Zn, 60Cu(p,d)60Zn	Faraday cup	40-Zr(0.05-0.4)A 65Cu, 15	2.73-6.97, 3.5-6.44, 3.5-6.46
Abe et al. (1984)	14Zr single foil	cyclotron stacked foil	65Cu(p,n)65Zn, 60Cu(p,d)60Zn	Faraday cup	40-Zr(0.05-0.4)A 65Cu, 15	2.73-6.97, 3.5-6.44, 3.5-6.46
Delagacki et al. (1990)	12C	14Zr(3.55 %)	cyclotron single target	Faraday cup	40-Zr(0.05-0.4)A 65Cu, 15	2.73-6.97, 3.5-6.44, 3.5-6.46
Delagacki et al. (1990)	12C	14Zr(3.55 %)	cyclotron single target	Faraday cup	40-Zr(0.05-0.4)A 65Cu, 15	2.73-6.97, 3.5-6.44, 3.5-6.46
Rings et al. (1985)	12C	14Zr(3.55 %)	cyclotron single target	Faraday cup	40-Zr(0.05-0.4)A 65Cu, 15	2.73-6.97, 3.5-6.44, 3.5-6.46
Bertolotti et al. (1991)	12C	14Zr(3.55 %)	cyclotron single target	Faraday cup	40-Zr(0.05-0.4)A 65Cu, 15	2.73-6.97, 3.5-6.44, 3.5-6.46

Covered energy range (MeV)
Author	Target	Irradiation	Beam current measurement and monitor reaction	Separation method and measurement of activity	Nuclear reaction and measured quantity and covered energy range (MeV)
[Hakulinen et al. 2006]	Zr	cyclotron-stacked foil	62Zr, 64Zr, 66Zr	no chemical separation	62Zr, 64Zr, 66Zr, 68Zr
Khandaker et al., 2008	Zr	cyclotron-stacked foil	62Zr, 64Zr, 66Zr, 68Zr	no chemical separation	62Zr, 64Zr, 66Zr, 68Zr
Uddin et al., 2008	Zr	cyclotron-stacked foil	62Zr, 64Zr, 66Zr, 68Zr	no chemical separation	62Zr, 64Zr, 66Zr, 68Zr
Bringas et al., 2008	Zr	cyclotron-stacked foil	62Zr, 64Zr, 66Zr, 68Zr	no chemical separation	62Zr, 64Zr, 66Zr, 68Zr
Table 1: continued					

SIG: Cross section, TTV: thick target yield, TTD: differential thick target yield, DERIV: derived data, IND: independent formation, CUM: cumulative formation, REL: relative

15
Table 2: Decay characteristics of the investigated activation products and Q-values of contributing reactions

Nuclide	Decay path	Half-life	Eγ	Iγ	Contributing reactions	Q-value(keV)	
96Nb	β−: 100 %	23.35 h	460.040	568.471	96Zr(p,n)	-620.13	
96Zr+5	γ−: 5.6 %	3.61 d	235.890	24.8	96Zr+5	-7613.22	
95mNb	γ−: 100 %	10.15 d	765.803	99.808	95mNb	-7513.22	
95mNb	IT: 94.4	235.692 keV	3.61 d	235.690	95mNb	-7513.22	
92mNb	ε: 100 %	60.86 d	934.448	0.574	92mNb	-2788.25	
91mNb	IT: 96.6 %	104.605 keV	60.86 d	934.448	0.574	91mNb	-2788.25
91mNb	β−: 0.0013 %	78.41 h	724.192	44.275	91mNb	-2788.25	
90zr+6	γ−: 1.53 %	16.5 d	242.861	12.0	90zr+6	-43090.19	
90zr+6	γ−: 100 %	83.4 d	192.87	97.29	90zr+6	-43090.19	
90zr+6	ε: 0.05 %	14.74 h	443.13	627.72	90zr+6	-43090.19	

When complex particles are emitted instead of individual protons and neutrons the Q-values have to be decreased by the respective binding energies of the compound particles: np-d, +2.2 MeV; 2np-t, +8.48 MeV; 2p2n-α, +28.30 MeV. In the case of metastable states a further correction with the level energy in column 1 is also necessary.
Table 3: Activation cross sections of niobium radioisotopes in proton induced reactions on zirconium

Energy(MeV)	Nb (mbarn)	Nb(229) (mbarn)	Nb(230) (mbarn)	Nb(231) (mbarn)	Nb(232) (mbarn)	Nb(233) (mbarn)
25.0 ± 0.8	9.7 ± 0.7	11.5 ± 0.8	13.7 ± 0.9	16.0 ± 1.0	18.3 ± 1.1	20.6 ± 1.2
20.0 ± 0.8	7.0 ± 0.7	8.9 ± 0.8	10.8 ± 1.0	12.7 ± 1.1	14.6 ± 1.2	16.5 ± 1.3
15.0 ± 0.8	4.3 ± 0.7	6.1 ± 0.8	7.9 ± 0.9	9.6 ± 1.0	11.3 ± 1.1	13.0 ± 1.2
10.0 ± 0.8	2.0 ± 0.7	3.7 ± 0.8	5.4 ± 0.9	7.1 ± 1.0	8.7 ± 1.1	10.3 ± 1.2
5.0 ± 0.8	0.9 ± 0.7	1.9 ± 0.8	2.9 ± 0.9	3.9 ± 1.0	4.9 ± 1.1	5.9 ± 1.2

Table 4: Activation cross sections of zirconium radioisotopes in proton induced reactions on zirconium

Energy(MeV)	Zr(226) (mbarn)	Zr(228) (mbarn)	Zr(230) (mbarn)	Zr(232) (mbarn)
25.0 ± 0.8	11.5 ± 0.8	13.7 ± 0.9	16.0 ± 1.0	18.3 ± 1.1
20.0 ± 0.8	9.7 ± 0.7	11.5 ± 0.8	13.7 ± 0.9	16.0 ± 1.0
15.0 ± 0.8	7.0 ± 0.7	8.9 ± 0.8	10.8 ± 1.0	12.7 ± 1.1
10.0 ± 0.8	4.3 ± 0.7	6.1 ± 0.8	7.9 ± 0.9	9.6 ± 1.0
5.0 ± 0.8	2.0 ± 0.7	3.7 ± 0.8	5.4 ± 0.9	7.1 ± 1.0

CU REAC. 1

Energy(MeV)	Cu(226) (mbarn)	Cu(228) (mbarn)	Cu(230) (mbarn)	Cu(232) (mbarn)
25.0 ± 0.8	11.5 ± 0.8	13.7 ± 0.9	16.0 ± 1.0	18.3 ± 1.1
20.0 ± 0.8	9.7 ± 0.7	11.5 ± 0.8	13.7 ± 0.9	16.0 ± 1.0
15.0 ± 0.8	7.0 ± 0.7	8.9 ± 0.8	10.8 ± 1.0	12.7 ± 1.1
10.0 ± 0.8	4.3 ± 0.7	6.1 ± 0.8	7.9 ± 0.9	9.6 ± 1.0
5.0 ± 0.8	2.0 ± 0.7	3.7 ± 0.8	5.4 ± 0.9	7.1 ± 1.0
Table 5: Activation cross sections of yttrium radioisotopes in proton induced reactions on zirconium

Energy (MeV)	Y(90)	Y(95)	Y(89)	Y(88)
16.8	0.29	0.16	0.10	0.06
16.8	0.29	0.16	0.10	0.06
16.8	0.29	0.16	0.10	0.06
16.8	0.29	0.16	0.10	0.06
16.8	0.29	0.16	0.10	0.06

Table 6: Possible production routes of 90Nb, 95Nb, 89Zr and 88Y radioisotopes at medium energy cyclotrons (Enr. = enriched target material)

Product	Route	Reaction	Energy range	Target
90Nb	direct	90Zr(p,n)90Nb	12-25	90Zr
95Nb	direct	95Zr(p,2n)95Nb	20-30	95Zr
89Zr	direct	89Y(p,n)89Zr	30-80	89Zr
88Y	direct	88Zr(p,x)88Y	30-80	88Y

Product	Route	Reaction	Energy range	Target
90Nb	indirect	90Zr(p,2n)89Nb	20-30	89Zr
95Nb	indirect	95Zr(p,3n)95Nb	30-80	89Zr
89Zr	indirect	89Y(p,xn)88Zr	10-20	88Zr
88Y	indirect	88Zr(p,xn)88Zr	20-30	88Zr