Complete results for a numerical evaluation of interior point solvers for large-scale optimal power flow problems

Juraj Kardos¹, Drosos Kourounis¹, Olaf Schenk¹, Ray Zimmerman²

¹Institute of Computational Science, Universita della Svizzera italiana, Switzerland
²Charles H. Dyson School of Applied Economics and Management, Cornell University, NY, USA

Abstract
Recent advances in open source interior-point optimization methods and power system related software have provided researchers and educators with the necessary platform for simulating and optimizing power networks with unprecedented convenience. Within the MatPOWER software platform a combination of several different interior point optimization methods are provided and four different optimal power flow (OPF) formulations are recently available: the Polar-Power, Polar-Current, Cartesian-Power, and Cartesian-Current. The robustness and reliability of interior-point methods for different OPF formulations for minimizing the generation cost starting from different initial guesses, for a wide range of networks provided in the MatPOWER library ranging from 1951 buses to 193,000 buses, will be investigated. Performance profiles are presented for iteration counts, overall time, and memory consumption, revealing the most reliable optimization method for the particular metric.

1 Introduction
Modern industrial developments have greatly increased electric power system complexity. As a result, modern operation tools and software have to address strong nonlinearities, in system behavior in order to guarantee reliable and economic system operation. Approximation-based optimization techniques will be less attractive to cope with stressed operation conditions. The main advantage of NLP formulations for OPF is that they accurately capture power system behavior rendering them excellent solution methods for general purpose power system software.

MatPOWER [20] a package of free, open-source Matlab-language M-files has been available for power-system researchers and educators as a simulation tool for solving power flow (PF), and extensible optimal power flow (OPF) problems. It is packaged with a library of several power networks of increasing complexity. Interfaces to multiple, high-performance nonlinear optimizers such as FMINCON, IPOPT, KNITRO, and its included default solver, MIPS, are also available for its users. Recently, several different formulations of the standard AC-OPF problem were added, including polar and Cartesian representations of complex voltage variables and both current and power versions of the nodal mismatch equations.

In this paper, we attempt to use for the first time optimization benchmarking profiles to evaluate various optimization methods and software for power grid applications. In recent years, these performance profiles have become a very popular and widely used tool for benchmarking and evaluating the performance of several optimizers when run on a large test set. Performance profiles have been introduced in [6] in 2002 and have rapidly become a standard in benchmarking of optimization algorithms. Comparative studies using performance profiles have been performed throughout the optimization literature [11], and in the evaluation of sparse linear solvers [8] also pointing out some limitations [7].
We will focus on benchmarking metrics such as the total runtime, memory requirements, or iteration count with a particular emphasis on power-grid application within the MATPOWER software framework [20], [13]. In pursuing these objectives, we focus on single-objective optimization algorithms that run in serial (i.e., that do not use parallel processing).

The reason motivating optimization benchmarking in MATPOWER is twofold: to demonstrate the value of a novel algorithm and formulation versus more classical methods, and to evaluate the performance of an optimization algorithm and the related optimization software on networks of increasing complexity and sizes. Our key contribution is a detailed performance profile study of the effects of different optimizers for large-scale single-period optimal power flow problems that will assist users in making an informed decision about how and which software should be preferred.

2 Interior point methods and related optimization software

The OPF problem is defined in terms of the conventional economic dispatch problem, aiming at determining the optimal settings for optimization variables. The standard formulation of the OPF problem takes the form of a general non-linear programming problem, with the following form:

\[
\begin{align*}
\text{minimize} \quad & f(x) \\
\text{subject to} \quad & g(x) = 0, \\
& h(x) \leq 0, \\
& x_{\min} \leq x \leq x_{\max}.
\end{align*}
\]

The objective function \(f(x) \) consists of polynomial costs of generator injections, the equality constraints \(g(x) \) are the nodal balance equations, the inequality constraints \(h(x) \) are the branch flow limits, and the \(x_{\min} \) and \(x_{\max} \) bounds include reference bus angles, voltage magnitudes and active and reactive generator injections.

2.1 Primal-dual IPMs

Primal-dual IPMs have been successfully applied to OPF problems, demonstrating high robustness and convergence, in the sense that they converge to an optimal solution from any initial point [14], and they can exploit Hessian information that is easy to compute for all OPF problems. According to standard practice, slack variables \(s \) are introduced at first to convert inequality constraints from (1c) to equality constraints, and logarithmic barrier terms are added to the objective to ensure that the slacks \(s \) will remain within their bounds as the function is minimized. A sequence of \(\mu \)-subproblems is obtained this way:

\[
\begin{align*}
\text{minimize} \quad & f(x) - \mu \sum_i \ln(s_i) \\
\text{subject to} \quad & g(x) = 0, \\
& h(x) + s = 0.
\end{align*}
\]

The solution of each \(\mu \)-subproblem are critical points of the Lagrangian,

\[
L(x, s, \lambda_g, \lambda_h) = f(x) - \mu \sum_i \ln(s_i) - \lambda_g^T g(x) - \lambda_h^T (h(x) + s),
\]

where \(\lambda_g, \lambda_h \) are the vectors representing the Lagrange multipliers for the equality and inequality constraints. The critical points for (3) satisfy the KKT conditions

\[
\begin{bmatrix}
\nabla_x L \\
\nabla_s L \\
\nabla_{\lambda_g} L \\
\nabla_{\lambda_h} L
\end{bmatrix}
= \begin{bmatrix}
\nabla_x f(x) - J_g^T \lambda_g - J_h^T \lambda_h \\
-\mu e + \Lambda_h S \\
\lambda_b^T g(x) \\
\lambda_b^T h(x) + s
\end{bmatrix} = 0,
\]

where \(\Lambda_h = \text{diag}(\lambda_h), S = \text{diag}(s), \) and \(e \) is a vector with all its entries equal to one. For convenience, we also define \(J_g = \nabla_x g(x) \) and \(J_h = \nabla_x h(x) \) to be Jacobians of the equality and inequality constraints, respectively. Also note that \(\nabla_s L \) has been postmultiplied with \(S \).
Each μ-subproblem (2) is solved approximately and while μ decreases to zero, the solution of the next barrier problem is obtained using, as a starting guess, the approximate solution of the previous one [17]. The update strategy of the μ parameter influences the convergence properties of the algorithm as it is one of the factors distinguishing various optimizers. The MIPS update rule is based on scaled complementary slackness, while IPOPT uses monotone Fiacco–McCormic strategy [17] and BELTISTOS exploits adaptive Mehrotra’s probing heuristic.

The primal-dual update is obtained from the solution of the optimality conditions linearization

$$
\begin{bmatrix}
H & -J_g^T & -J_h^T \\
0 & \Lambda_h & 0 \\
-J_g & 0 & 0 \\
-J_h & I & 0
\end{bmatrix}
\begin{bmatrix}
\Delta x^k \\
\Delta s^k \\
\Delta \lambda_g^k \\
\Delta \lambda_h^k
\end{bmatrix}
=
\begin{bmatrix}
\nabla_x L \\
\nabla_s L \\
\nabla_{\lambda_g} L \\
\nabla_{\lambda_h} L
\end{bmatrix}
$$

(5)

where $H = \nabla^2 x x$. The linear system (LS) solution strategy is another factor distinguishing various optimizers. Performance of the optimizer is also greatly improved by a selection of a robust and memory efficient LS solver, since the resulting LSs are very large and highly ill-conditioned. It is also a common practice that the LS is simplified and reduced to a smaller set of equations.

2.2 Optimization Software

In what follows we describe several different primal-dual interior point methods used by many practitioners for OPF problems and provided in the software package MATPOWER.

IPOPT [17] is a software package for large-scale nonlinear optimization. It implements a primal-dual interior-point algorithm with a filter line-search method for nonlinear programming, second-order corrections, and inertia correction of the KKT matrix. It is written in C++ by Andreas Wächter and Carl Laird and it is released as open source code under the Eclipse Public License (EPL). It is distributed by the COIN-OR initiative. Pre-built MEX binaries for Windows available with OPTI Toolbox and high-performance IPOPT-PARDISO and MATPOWER pre-built MEX binaries for Mac and Linux from the PARDISO project.

BELTISTOS [10] contains a structure exploiting, data-compression algorithms for extreme scalability and low memory footprint for OPF problems and its multiperiod and security-constrained extensions.

MIPS [19], [18] is a primal-dual interior-point solver introduced by Wang for OPF problems. It is entirely implemented in MATLAB code and distributed with MATPOWER. We assume that step control is enabled (not by default), which implements additional step-size control in the MIPS algorithm.

FMINCON [3], [2] is a gradient-based method, the default optimization method of the MATLAB optimization toolbox, and it is designed to work on problems where the objective and constraint functions are both continuous and have continuous first derivatives. In its default setting it uses an interior point solver that can exploit the Hessian of the Lagrangian.

KNITRO [4] Artelys KNITRO is a commercial software package for solving large-scale mathematical optimization problems. KNITRO is specialized for nonlinear optimization. KNITRO offers four different optimization algorithms for solving optimization problems. Two algorithms are of the interior point type, and two are of the active set type. KNITRO provides both types of algorithm for greater flexibility in solving problems, and allows crossover during the solution process from one algorithm to another.

The solution of linear systems of equations is the cornerstone of a robust high-performance optimization package. Here we describe some sparse direct linear solvers. Specific results for the OPF problems are presented in section 4.

HSL 2002 [1] is an ISO Fortran library of packages for many areas in scientific computation. It is probably best known for its codes for the direct solution of sparse linear systems, including multifrontal algorithm with approximate minimum degree ordering (MA57). IPOPT provides support for a wide

1. https://projects.coin-or.org/Ipopt
2. https://www.pardiso-project.org
3. https://www.artelys.com/en/optimization-tools/knitro
variety of linear solvers, including HSL linear solvers MA27, MA57 and others. Evaluation of the individual solvers in terms of robustness and performance is provided in [9].

SuiteSparse [5] is a suite of sparse matrix packages, many of which are used in MATLAB. Multifrontal LU factorization from the UMPFACK appears in MATLAB as LU and backslash operators. The solver is used by default in MATLAB-based MIPS package.

PARDISO [15] is a thread-safe, high-performance, robust, memory efficient software for solving large sparse symmetric and unsymmetric linear systems of equations on shared-memory and distributed-memory multiprocessors. IPOPT and MIPS contain ready to use interfaces to the solver.

We note that in our study we consider IPOPT with PARDISO and HSL MA57 solvers and MIPS with the default backslash ‘\’ solver and PARDISO. KNITRO may utilize HSL routines MA27 or MA57 in order to solve linear systems arising at every iteration of the algorithm.

3 Performance Profiles

In order to evaluate the quality of the different optimization methods for OPF problems we will use performance profiles for compact comparison of the benchmark problems using different optimization packages. Theses profiles were first proposed in [6] for benchmarking optimization software and used in e.g. to evaluate the performance of various sparse direct linear solvers and optimizers [8, 16, 12].

The profiles are generated by running the set of optimizers \mathcal{M} on a set of OPF problems \mathcal{S} and recording information of interest, e.g., time to solution or memory consumption. Let us assume that a power flow optimizer $m \in \mathcal{M}$ reports a statistic $\theta_{ms} \geq 0$ for the OPF problem $s \in \mathcal{S}$; smaller statistics θ_{ms} indicates better solution strategies. We can further define $\hat{\theta}_{s} = \min_{m \in \mathcal{M}} \{ \theta_{ms} \}$, which represents the best statistic for a given OPF problem m. Then for $\alpha \geq 1$ and each $m \in \mathcal{M}$ and $s \in \mathcal{S}$ we define

$$k(\theta_{ms}, \hat{\theta}_{s}, \alpha) = \begin{cases} 1 & \theta_{ms} \leq \alpha \hat{\theta}_{s} \\ 0 & \theta_{ms} > \alpha \hat{\theta}_{s} \end{cases}$$

(6)

The performance profile $p_{m}(\alpha)$ of the power flow optimizer m is then defined by

$$p_{m}(\alpha) = \frac{\sum_{s \in \mathcal{S}} k(\theta_{ms}, \hat{\theta}_{s}, \alpha)}{|\mathcal{S}|}.$$

(7)

Thus, in these profiles, the values of $p_{m}(\alpha)$ indicate the fraction of all examples, which can be solved within α times, the time the best solver needed, e.g., $p_{m}(1)$ gives the fraction of which optimizer m is the most effective package and $p_{m}^* := \lim_{\alpha \to \infty} p_{m}(\alpha)$ indicates the fraction for which the algorithm succeeded. If we are just interested in the number of wins on \mathcal{S}, we need only compare the values of $p_{i}(1)$ for all the solvers $i \in \mathcal{M}$, but if we are interested in optimizers with a high probability of success on the set \mathcal{S}, we should choose those for which p_{i}^* is largest. Thereby, for a selected test set, performance profiles provide a very useful and convenient means of assessing the performance of optimizers relative to the best optimizer on each example from that set [7]. When commenting, e.g., on a performance profile presented in their paper, Dolan and Moré state that it “gives a clear indication” of the relative performance of each optimizer [6] and one can determine which optimizer has the highest probability $p_{i}(f)$ of being within a factor f of the
best optimizer for \(f \) in a chosen interval. In this paper we use performance profiles to compare various aspects of problem formulation, problem setup and performance of several optimizers on sets of smooth or piecewise-smooth power flow problems. Our results provide estimates for the best configuration of the problems and identification of the optimizer with the best possible performance.

4 Performance Benchmarks

We proceed with the evaluation of various aspects for the set of benchmark cases with increasing complexity, listed in Table 2. The benchmarks are split into two groups, standard benchmarks used mainly to test robustness of optimization frameworks on wide spectrum of power grid networks and large-scale benchmarks used to test the performance. In collecting the test data we imposed only two conditions: The OPF problem be of order greater than 5’000 variables and the the data must be available to other users. The first condition was imposed because our interest in this study is in medium to large-scale scale problems. The second condition was to ensure that our tests could be repeated by other users and, furthermore, it enables other software developers to test their codes on the same set of examples and thus to make comparisons with other optimizers. Comparing algorithms for multiobjective optimization, or optimization algorithms that use parallel processing issues are outside of the scope of this paper since it would introduce another level of complexity to the benchmarking process and most of the users are using MATPOWER in default single core mode. For this reason we set the environment variable OMP_NUM_THREADS=1.

Simulations are performed on a workstation equipped with an Intel Xeon CPU E7-4880 v2 at 2.50 GHz and 1 TB RAM using latest MATPOWER release 7.0. The results are presented from four different perspectives, each being a contributing factor to complexity and behavior of the optimization procedure. These factors are (i) initial guess provided to the optimizer, (ii) OPF formulation and (iii) the optimization framework and (iv) an underlying direct sparse solver. The tolerance for the optimizers while solving the benchmarks was set to \(10^{-4} \) and maximum number of iterations was set to 500. A CPU limit of 12 hours was imposed for each optimizers on each problem; any optimizers that had not completed after this time was recorded as having failed.
4.1 OPF Benchmark Cases and Optimization Problem Properties

Table 2 lists the number of buses, generators and lines for each MATPOWER benchmark case. Additionally, we also show properties of the corresponding optimization problem such as number of variables, equality and inequality constraints. Size of the optimization problem in terms of number of nonlinear equality and inequality constraints, depends on the formulation. For the Cartesian coordinate voltage case, voltage magnitude constraints (which are simple variable bounds for the polar case) are now nonlinear inequality constraints. Presented problem sizes in Table 2 consider the polar voltage representation.

In addition to the standard MATPOWER cases, there are four larger cases, case21k – case193k, built from the case3012wp considering the largest generator outage and line contingencies. The cases are sorted in increasing order by the sum of the number of buses, number of generators, number of lines with flow limits and number of DC lines.

| MATPOWER case | \(n_b \) | \(n_g \) | \(n_l \) | nvar | \(|g(x)| \) | \(|h(x)| \) |
|-------------------|---------|--------|--------|------|---------|---------|
| case1951rte | 1,951 | 391 | 2,596 | 4,634| 3,902 | 4,198 |
| case2383wp | 2,383 | 327 | 2,896 | 5,420| 4,766 | 5,792 |
| case2868rte | 2,868 | 599 | 3,808 | 6,858| 5,736 | 4,562 |
| case_ACTIVSg2000 | 2,000 | 544 | 3,206 | 4,864| 4,000 | 6,412 |
| case2869pegase | 2,869 | 510 | 4,582 | 6,758| 5,738 | 5,486 |
| case2737sop | 2,737 | 399 | 3,506 | 5,912| 5,474 | 6,538 |
| case2736sp | 2,736 | 420 | 3,504 | 6,012| 5,472 | 6,538 |
| case2746wop | 2,746 | 514 | 3,514 | 6,354| 5,492 | 6,614 |
| case2746wp | 2,746 | 520 | 3,514 | 6,404| 5,492 | 6,558 |
| case3012wp | 3,012 | 502 | 3,572 | 6,794| 6,024 | 7,144 |
| case3120sp | 3,120 | 505 | 3,693 | 6,836| 6,240 | 7,386 |
| case3375wp | 3,374 | 596 | 4,161 | 7,706| 6,748 | 8,322 |
| case4648rte | 6,468 | 1,295 | 9,000 | 13,734| 12,936 | 4,626 |
| case4670rte | 6,470 | 1,330 | 9,005 | 14,462| 12,940 | 6,220 |
| case4955rte | 6,495 | 1,372 | 9,019 | 14,350| 12,990 | 6,218 |
| case5155rte | 6,515 | 1,388 | 9,037 | 14,398| 13,030 | 6,262 |
| case9241pegase | 9,241 | 1,445 | 16,049 | 21,372| 18,482 | 12,590 |
| case13659pegase | 13,659 | 4,092 | 20,467 | 35,502| 27,318 | 0 |
| case_ACTIVSg10k | 10,000 | 2,485 | 12,706 | 23,874| 20,000 | 20,488 |

Large-scale benchmarks
case_ACTIVSg25k
case_ACTIVSg70k
case21k
case42k
case99k
case193k
4.2 Initial guess for the OPF

Since we adopt gradient-based methods for our OPF benchmarks, we expect that the performance of all optimizers will be sensitive to the initial guess. In order to evaluate the influence of the initial guess, we solve the OPF problems from three different initial guesses currently provided by the MATPOWER option \texttt{opf.start} \cite{MATPOWER}. The initial guess for option 1 (flat start) is heuristically chosen to be the average of the upper and lower bounds, or close to the bound if bounded only from one side. This is the default option and does not provide any estimation of the optimal solution, nor does such guess satisfy the constraints. MATPOWER also provides two warm start options. Option 2 (MATPOWER case data, MPC) uses the values of variables specified in the input MATPOWER case and option 3 (power flow solution, PF) used the solution of the power flow equations as the initial guess. PF guarantees that the OPF constraints and variables’ bounds are satisfied. Newton’s method is used for the solution with tolerance set to 10^{-8} and maximum of 30 iterations. We consider the default OPF formulation with polar voltage representation and power balance equations for evaluation of the initial guess.

The most robust initial guess in our set of benchmark cases is the option “MATPOWER case data”, together with the start initialized with the power flow solution, being the two options best approximating the optimal solution. Optimizer starting from these initial points solved highest number of the benchmark cases with less iterations required and thus in lower amount of overall time. The option “MATPOWER case data” however assumes that the case is well constructed and contains high quality data, which might not be always the case. The PF solution would be more appropriate choice in such situations.

Table 3: Number of solved benchmarks for different starting points.

Optimizer	Flat start	MATPOWER case data	Power flow solution
MIPS-MATLAB'	16	23	23
MIPS-PARDISO	16	23	24
IPOPT-PARDISO	23	25	25
IPOPT-MA57	21	22	21
BELTISTOS	25	25	25
FMINCON 2015b	18	19	21
FMINCON 2017b	18	21	20
KNITRO 10	20	23	24
KNITRO 11	20	23	24

If the optimizer allows to set the initial value of the barrier parameter μ in the interior point method, the problems initialized by the MPC and PF should choose μ which is much closer to zero than the value used for the flat start. The reason is that MPC and PF initial points satisfy the constraints therefore the penalty for the barrier function should be very small, as opposed to the flat start where there is no guarantee of the constraints satisfaction by the initial point. The barrier parameter in this case should be very relaxed in the beginning and tightened as the current iterate approaches the solution.

We also note that since the flat start is a poor approximation of the solution nor does it satisfy the constraints, the optimizer might fail converging to solution. It thus helps if the optimizer performs a pre-solve phase, were it first tries to satisfy the constraints and only then proceeds with the regular optimization procedure.
Table 4: Overall time (s) (BELTISTOS).

Benchmark	Flat	MPC	PF
case1951rte	3.78	4.57	2.98
case2383wp	4.41	6.30	5.07
case2736sp	4.23	3.65	3.71
case2737sop	3.91	4.05	3.22
case2746wop	4.16	3.25	4.28
case2746wp	4.33	3.60	4.00
case2868rte	6.93	3.01	4.09
case2869pegase	4.58	4.52	3.77
case3012wp	4.69	7.18	6.76
case3120sp	5.73	6.83	6.40
case3375wp	5.81	6.70	5.88
case4688rte	9.77	8.01	7.06
case6468rte	7.07	6.49	8.73
case6495rte	8.09	10.72	8.35
case6515rte	7.66	9.42	7.47
case9241pegase	16.01	14.00	9.20
case_ACTIVSg2000	4.45	4.20	3.49
case_ACTIVSg10k	15.31	13.11	12.97
case13659pegase	16.17	9.06	8.37
case_ACTIVSg25k	43.65	30.26	29.19
case_ACTIVSg70k	185.63	111.10	129.16
case21k	58.87	81.35	58.78
case42k	193.80	251.13	184.28
case99k	540.80	782.43	670.59
case193k	1,866.94	1,854.40	2,557.72

*Algorithm was forced to switch to the feasibility restoration phase in the first iteration

Table 5: Number of iterations (BELTISTOS).

Benchmark	Flat	MPC	PF
case1951rte	34	23	19
case2383wp	32	42	39
case2736sp	28	15	18
case2737sop	23	14	17
case2746wop	28	9	25
case2746wp	30	14	23
case2868rte	65	12	22
case2869pegase	22	19	18
case3012wp	30	38	42
case3120sp	37	37	40
case3375wp	38	32	34
case4688rte	52	30	31
case6468rte	26	16	39
case6495rte	40	35	35
case6515rte	39	36	31
case9241pegase	45	33	23
case_ACTIVSg2000	37	21	22
case_ACTIVSg10k	43	28	30
case13659pegase	49	20	20
case_ACTIVSg25k	51	27	28
case_ACTIVSg70k	65	33	47
case21k	50	55	51
case42k	60	59	59
case99k	65	71	71
case193k	75	77	77

*Algorithm was forced to switch to the feasibility restoration phase in the first iteration
Table 6: Overall time (s) (IPOPT-PARDISO).

Benchmark	Flat	MPC	PF
case1951rte	25.55	4.79	4.01
case2383wp	9.00	6.89	26.33
case2736sp	9.80	7.46	6.70
case2737sop	8.37	5.82	4.78
case2746wop	8.06	6.89	4.69
case2746wp	7.40	5.91	4.29
case2868rte	—	—	13.07
case2869pegase	—	9.29	8.18
case3012wp	18.47	11.47	10.70
case3120sp	22.93	15.47	11.30
case3375wp	11.83	21.01	11.24
case6468rte	82.40	6.96	7.20
case6470rte	112.06	29.25	26.05
case6495rte	27.24	20.85	125.34
case6515rte	64.83	9.03	11.51
case9241pegase	184.50	66.13	37.38
case_ACTIVSg2000	15.80	5.22	6.83
case_ACTIVSg10k	95.91	18.18	20.59
case_ACTIVSg25k	341.29	219.95	349.49
case_ACTIVSg70k	116.85	89.49	88.00
case21k	41.64	435.86	222.09
case42k	692.54	641.81	644.92
case99k	3,136.65	2,763.08	1,924.00
case193k	13,236.02	10,169.78	9,599.37

Table 7: Number of iterations (IPOPT-PARDISO).

Benchmark	Flat	MPC	PF
case1951rte	122	30	28
case2383wp	36	36	114
case2736sp	39	43	26
case2737sop	27	25	36
case2746wop	38	24	30
case2746wp	40	35	24
case2868rte	—	45	46
case2869pegase	—	31	33
case3012wp	41	31	30
case3120sp	42	44	35
case3375wp	40	72	38
case6468rte	240	31	31
case6470rte	252	70	68
case6495rte	74	56	310
case6515rte	131	41	49
case9241pegase	119	56	38
case_ACTIVSg2000	51	29	27
case_ACTIVSg10k	139	35	36
case_ACTIVSg25k	244	193	249
case_ACTIVSg70k	58	51	46
case21k	141	126	50
case42k	65	53	54
case99k	81	61	63
case193k	98	76	76

Table 8: Overall time (s) (IPOPT-MA57).

Benchmark	Flat	MPC	PF
case1951rte	12.61	2.38	2.47
case2383wp	3.63	3.66	3.09
case2736sp	4.53	1.81	2.14
case_ACTIVSg10k	95.91	18.18	20.59
case_ACTIVSg25k	341.29	219.95	349.49
case_ACTIVSg70k	116.85	89.49	88.00
case21k	461.64	435.86	222.09
case42k	692.54	641.81	644.92
case99k	3,136.65	2,763.08	1,924.00
case193k	13,236.02	10,169.78	9,599.37

Table 9: Number of iterations (IPOPT-MA57).

Benchmark	Flat	MPC	PF
case1951rte	141	34	32
case2383wp	35	47	38
case2736sp	36	42	45
case_ACTIVSg10k	139	35	36
case_ACTIVSg25k	244	193	249
case_ACTIVSg70k	85	66	62
case21k	141	126	50
case42k	65	53	54
case99k	81	61	63
case193k	98	76	76
Table 10: Overall time (s) (MIPS-MATLAB).

Benchmark	Flat	MPC	PF
case1951rte	---	3.38	3.60
case2383wp	5.69	4.72	5.01
case2736sp	6.47	5.13	4.85
case2737sp	6.42	4.51	4.92
case2746wp	7.18	5.25	5.29
case2748wp	7.23	5.18	5.50
case2868rte	---	4.54	4.88
case2869pegase	9.47	28.74	6.25
case3012wp	10.26	5.44	5.54
case3120sp	9.97	29.65	7.15
case3375wp	12.57	6.72	6.47
case6468rte	---	16.71	15.18
case6470rte	---	17.29	17.72
case6495rte	---	26.85	27.89
case6515rte	---	27.55	20.42
case9241pegase	31.75	47.34	30.25
case_ACTIVSg2000	7.86	4.63	9.50
case_ACTIVSg10k	---	29.24	67.86
case13659pegase	64.55	30.83	39.65
case_ACTIVSg25k	---	99.76	152.40
case_ACTIVSg70k	---	---	---
case21k	336.77	191.82	191.09
case42k	1,215.27	816.24	818.85
case99k	27,695.39	24,168.30	33,890.39
case193k	129,846.69	---	---

Table 12: Overall time (s) (MIPS-PARDISO).

Benchmark	Flat	MPC	PF
case1951rte	---	3.81	4.21
case2383wp	6.70	5.27	5.58
case2736sp	7.08	5.15	5.13
case2737sp	6.55	4.61	5.01
case2746wp	7.45	5.33	5.59
case2748wp	7.55	5.65	5.76
case2868rte	---	5.46	5.40
case2869pegase	9.89	21.91	6.80
case3012wp	11.04	5.96	6.57
case3120sp	10.89	26.63	7.31
case3375wp	13.22	7.25	7.20
case6468rte	---	17.46	16.69
case6470rte	---	19.02	19.72
case6495rte	---	29.91	31.51
case6515rte	---	23.00	
case9241pegase	34.17	51.09	32.38
case_ACTIVSg2000	7.18	4.45	9.34
case_ACTIVSg10k	---	29.96	66.89
case13659pegase	66.44	36.05	52.77
case_ACTIVSg25k	---	100.54	148.73
case_ACTIVSg70k	---	---	---
case21k	165.52	102.68	105.03
case42k	464.73	307.20	311.32
case99k	2,036.95	1,284.73	1,303.73
case193k	4,743.55	3,175.67	3,240.64

Table 11: Number of iterations (MIPS-MATLAB).

Benchmark	Flat	MPC	PF
case1951rte	---	26	26
case2383wp	31	29	31
case2736sp	29	28	27
case2737sp	27	25	25
case2746wp	30	26	28
case2748wp	30	28	28
case2868rte	---	26	26
case2869pegase	36	113	29
case3012wp	43	28	29
case3120sp	43	112	33
case3375wp	47	30	30
case6468rte	---	42	39
case6470rte	---	43	44
case6495rte	---	65	67
case6515rte	---	64	51
case9241pegase	40	64	41
case_ACTIVSg2000	32	24	43
case_ACTIVSg10k	---	39	80
case13659pegase	73	38	50
case_ACTIVSg25k	---	53	73
case_ACTIVSg70k	---	---	---
case21k	67	49	49
case42k	78	59	59
case99k	92	73	73
case193k	106	---	---

Table 13: Number of iterations (MIPS-PARDISO).

Benchmark	Flat	MPC	PF
case1951rte	---	26	26
case2383wp	31	29	31
case2736sp	29	28	27
case2737sp	27	25	25
case2746wp	30	26	28
case2748wp	30	28	28
case2868rte	---	26	26
case2869pegase	36	82	29
case3012wp	43	28	29
case3120sp	43	101	33
case3375wp	47	30	30
case6468rte	---	42	39
case6470rte	---	43	44
case6495rte	---	65	67
case6515rte	---	64	51
case9241pegase	40	64	41
case_ACTIVSg2000	32	24	43
case_ACTIVSg10k	---	39	79
case13659pegase	63	38	55
case_ACTIVSg25k	---	53	73
case_ACTIVSg70k	---	---	---
case21k	67	49	49
case42k	78	59	60
case99k	92	73	73
case193k	106	87	87
Table 14: Overall time (s) (FMINCON 2015b).

Benchmark	Flat	MPC	PF
case1951rte	—	37.82	19.27
case2383wp	30.39	60.74	64.53
case2736sp	14.39	—	13.49
case2737sop	10.70	12.01	9.02
case2746wop	11.42	19.94	12.35
case2746wvp	13.08	140.85	12.61
case2868rte	—	49.16	37.26
case2869pegase	10.40	22.05	9.40
case3012wp	33.27	404.88	—
case3120sp	31.65	—	17.85
case3375wp	35.74	—	—
case6468rte	—	92.66	87.63
case6495rte	—	31.31	34.66
case6515rte	—	108.86	79.90
case9241pegase	149.04	304.81	191.83
case_ACTIVSg2000	56.89	10.62	12.38
case_ACTIVSg10k	19.30	—	58.32
case13659pegase	1,259.17	2,601.37	2,960.30
case_ACTIVSg25k	481.70	214.44	272.03
case_ACTIVSg50k	1,359.42	836.19	923.42
case21k	669.99	2,742.73	2,228.12
case42k	1,834.85	—	6,163.04
case699k	26,188.50	56,236.69	62,359.75
case193k	49,073.79	—	—

Table 15: Number of iterations (FMINCON 2015b).

Benchmark	Flat	MPC	PF
case1951rte	—	77	62
case2383wp	111	184	85
case2736sp	46	—	44
case2737sop	33	42	31
case2746wop	33	61	39
case2746wvp	39	333	41
case2868rte	—	58	61
case2869pegase	27	50	28
case3012wp	91	434	—
case3120sp	90	—	52
case3375wp	82	—	—
case6468rte	—	57	45
case6495rte	—	45	47
case6515rte	—	108	74
case9241pegase	39	81	44
case_ACTIVSg2000	67	35	40
case_ACTIVSg10k	—	18	52
case13659pegase	65	63	63
case_ACTIVSg25k	116	48	48
case_ACTIVSg70k	114	79	82
case21k	128	437	396
case42k	135	—	386
case999k	141	297	354
case193k	153	—	—

Table 16: Overall time (s) (FMINCON 2017b).

Benchmark	Flat	MPC	PF
case1951rte	—	42.13	20.69
case2383wp	33.49	69.35	66.65
case2736sp	15.75	324.89	16.20
case2737sop	11.84	14.92	11.93
case2746wop	12.68	24.39	15.46
case2746wvp	14.30	165.37	15.86
case2868rte	—	54.29	41.41
case2869pegase	11.18	25.07	12.53
case3012wp	36.38	—	21.58
case3375wp	36.06	—	21.58
case6468rte	40.65	183.98	—
case6470rte	—	92.65	97.92
case6495rte	—	37.76	38.41
case6515rte	—	123.73	80.07
case6241pegase	141.15	281.36	186.36
case_ACTIVSg2000	52.67	12.81	14.06
case_ACTIVSg10k	—	26.88	61.70
case13659pegase	1,848.93	1,866.80	2,269.08
case_ACTIVSg25k	442.05	210.12	254.40
case_ACTIVSg70k	1,280.10	786.05	874.72
case21k	590.86	—	2,311.17
case42k	1,624.20	8,428.31	—
case999k	8,330.90	20,554.62	24,267.84
case193k	16,680.00	70,150.87	—

Table 17: Number of iterations (FMINCON 2017b).

Benchmark	Flat	MPC	PF
case1951rte	—	77	62
case2383wp	111	184	85
case2736sp	46	—	44
case2737sop	33	42	31
case2746wop	33	61	39
case2746wvp	39	333	41
case2868rte	—	58	61
case2869pegase	27	50	28
case3012wp	91	434	—
case3120sp	90	—	52
case3375wp	82	—	—
case6468rte	—	57	45
case6495rte	—	45	47
case6515rte	—	108	74
case9241pegase	39	81	44
case_ACTIVSg2000	67	35	40
case_ACTIVSg10k	—	18	52
case13659pegase	62	81	99
case_ACTIVSg25k	116	48	48
case_ACTIVSg70k	114	79	82
case21k	128	—	383
case42k	135	435	—
case999k	141	324	359
case193k	153	482	—
Table 18: Overall time (s) (KNITRO 10).

Benchmark	Flat	MPC	PF
case1951te	—	10.22	11.44
case2383wp	5.09	4.92	4.84
case2736wp	4.05	—	4.36
case2737wp	4.01	3.97	4.40
case2746wop	3.94	45.41	4.56
case2746wp	4.11	13.07	4.65
case2868rte	—	—	23.06
case2869pegase	4.53	4.74	4.95
case3012wp	5.15	7.02	7.86
case3120wp	5.15	5.35	5.06
case3375wp	5.48	6.73	7.38
case6468rte	94.71	42.25	45.22
case6470rte	—	10.17	9.91
case6495rte	—	9.33	9.50
case6515rte	114.61	12.58	13.54
case9241pegase	101.92	16.87	14.42
case_ACTIVSg2000	4.16	4.37	4.70
case_ACTIVSg10k	12.47	12.37	
case13609pegase	166.12	93.37	160.42
case_ACTIVSg25k	49.66	46.64	48.47
case_ACTIVSg70k	163.39	162.04	183.33
case21k	51.71	206.98	224.30
case42k	164.11	1,147.66	—
case99k	785.26	2,398.32	7,541.11
case193k	1,038.66	2,778.65	2,914.72

Table 19: Number of iterations (KNITRO 10).

Benchmark	Flat	MPC	PF
case1951te	—	97	107
case2383wp	34	32	29
case2736wp	20	—	20
case2737wp	20	20	20
case2746wop	20	440	22
case2746wp	20	117	20
case2868rte	—	—	169
case2869pegase	22	25	23
case3012wp	28	48	55
case3120wp	27	28	24
case3375wp	28	39	42
case6468rte	360	185	194
case6470rte	—	33	33
case6495rte	—	36	36
case6515rte	469	46	46
case9241pegase	188	32	28
case_ACTIVSg2000	18	21	20
case_ACTIVSg10k	23	25	—
case13609pegase	363	203	355
case_ACTIVSg25k	46	45	45
case_ACTIVSg70k	52	52	52
case21k	43	181	163
case42k	50	325	—
case99k	60	150	437
case193k	59	145	156

Table 20: Overall time (s) (KNITRO 11).

Benchmark	Flat	MPC	PF
case1951te	—	11.39	13.09
case2383wp	5.61	5.28	5.40
case2736wp	4.33	—	5.15
case2737wp	4.27	4.48	4.87
case2746wop	4.23	51.25	4.76
case2746wp	4.30	14.48	4.71
case2868rte	—	—	25.16
case2869pegase	4.77	4.92	5.05
case3012wp	5.34	8.09	9.11
case3120wp	5.37	5.50	5.64
case3375wp	6.01	6.92	7.75
case6468rte	98.29	43.70	45.99
case6470rte	—	11.30	10.80
case6495rte	—	9.70	11.30
case6515rte	123.62	13.28	13.29
case9241pegase	97.82	17.22	14.87
case_ACTIVSg2000	4.34	4.55	5.04
case_ACTIVSg10k	12.17	13.06	
case13609pegase	172.98	100.72	184.77
case_ACTIVSg25k	53.18	50.18	50.18
case_ACTIVSg70k	169.53	167.55	195.43
case21k	52.13	219.83	229.28
case42k	167.34	1,162.01	—
case99k	792.86	2,558.94	7,209.15
case193k	1,052.30	2,654.42	2,919.41

Table 21: Number of iterations (KNITRO 11).

Benchmark	Flat	MPC	PF
case1951te	—	97	107
case2383wp	34	32	29
case2736wp	20	—	20
case2737wp	20	20	20
case2746wop	20	440	22
case2746wp	20	117	20
case2868rte	—	—	169
case2869pegase	22	25	23
case3012wp	28	48	55
case3120wp	27	28	24
case3375wp	28	39	42
case6468rte	360	185	194
case6470rte	—	33	33
case6495rte	—	36	36
case6515rte	469	46	46
case9241pegase	188	32	28
case_ACTIVSg2000	18	21	20
case_ACTIVSg10k	23	25	—
case13609pegase	363	203	355
case_ACTIVSg25k	46	45	45
case_ACTIVSg70k	52	52	52
case21k	43	181	163
case42k	50	325	—
case99k	60	150	437
case193k	59	145	156
Figure 2: Initial guess performance profiles using IPOPT-PARDISO considering small and medium sized benchmarks.

Figure 3: Performance profiles for the initial guess using IPOPT-PARDISO considering large-scale benchmarks.

Figure 4: Performance profiles for the initial guess using BELTISTOS considering large-scale benchmarks.

Figure 5: Performance profiles for the initial guess using BELTISTOS considering all benchmarks.
4.3 OPF variants

The bus voltages in the standard AC OPF problem can be represented either in Cartesian, or polar coordinates. Another variation of the standard AC OPF problem uses current balance constraints in place of the power balance constraints. Different representations of the complex voltage variables and formulation of the nodal balance equations lead to a different number of constraints and sparsity structure of the problem, which, in turn, influences the numerical behavior of the optimizer. The corresponding MATPOWER options are `opf.v_cartesian`, specifying whether to use polar or Cartesian voltage coordinates, and option `opf.current_balance`, which selects using either a current or power balance formulation for AC OPF.

The results presented in Table 22 suggest that robust solver such as BELTISTOS is able to solve all OPF formulations, while for the rest of the solvers the choice of formulation can significantly influence whether the case can be successfully solved. MIPS (Section 4.3.2), and IPOPT-PARDISO optimizers are more robust with polar voltage coordinates and nodal power balance while the opposite is true for FMINCON and KNITRO, which is more robust with Cartesian voltage coordinates (see Section 4.3.4). Less robust optimizers are also not able to solve the large-scale cases due to the extensive time requirements of the linear solver or insufficient precision of the solution. The performance of various formulations is discussed in detail for BELTISTOS and IPOPT in Section 4.3.1.

Table 22: Number of solved benchmarks for different OPF formulations.

Optimizer	Polar Power	Polar Current	Cartesian Power	Cartesian Current
MIPS-MATLAB'	23	21	21	20
MIPS-PARDISO	23	20	23	17
IPOPT-PARDISO	25	20	25	22
IPOPT-MA57	22	21	21	21
BELTISTOS	25	25	25	25
FMINCON 2015b	19	18	24	23
FMINCON 2017b	21	18	25	25
KNITRO 10	23	24	25	24
KNITRO 11	23	24	25	24

4.3.1 BELTISTOS and IPOPT

The performance profiles for various OPF formulations presented in Figure 9 and 10 were obtained using the BELTISTOS optimizer, which successfully solved all benchmark cases with all possible OPF formulations (Figure 6). The performance profiles reveal the gap between the polar and Cartesian voltage formulations. The polar formulations were observed to lead up to twofold speedup in the solution times when compared to the Cartesian voltage formulations.

When it comes to other optimizers, IPOPT-MA57 also displays slightly slower convergence with Cartesian voltage formulation for small and medium sized benchmarks. Neither OPF formulation was solved for large-scale benchmarks case21k–case193k due to prohibitive time requirements (see Figure 8). IPOPT-PARDISO does not seem to be influenced by voltage formulation, although it fails for large-scale benchmarks using current nodal balance equations, as can be observed in Figure 7. The MIPS solver performs better with polar voltage coordinates, while the opposite is true for FMINCON, which successfully converges for more benchmarks with Cartesian voltage coordinates, as presented in Table 22. There is also non-negligible influence of the nodal balance formulation. All optimizers prefer power based formulation of the nodal balance equations. The power balance was observed to be more robust and exhibit faster solution times in conjunction with both polar and Cartesian voltage formulations.
Figure 6: Iterations until convergence for various OPF formulations. Results obtained by BELTISTOS using MATPOWER case data as an initial guess.

Figure 7: Iterations until convergence for various OPF formulations. Results obtained by IPOPT-PARDISO using MATPOWER case data as an initial guess.

Figure 8: Iterations until convergence for various OPF formulations. Results obtained by IPOPT-MA57 using MATPOWER case data as an initial guess.
Table 23: Overall time (s) (BELTISTOS).

Benchmark	Polar-Power	Polar-Current	Cartesian-Power	Cartesian-Current
case1951rte	4.57	3.53	3.60	3.71
case2383wp	6.30	6.80	7.91	6.71
case2736sp	3.65	4.33	5.08	4.77
case2737sop	4.05	3.83	4.14	4.77
case2746wp	3.25	2.99	3.89	4.89
case2868rte	3.01	4.05	4.37	3.74
case2869pegase	4.52	4.11	5.31	4.90
case3012wp	7.18	6.95	6.91	6.52
case3120sp	6.83	6.53	8.70	8.53
case3375wp	6.70	6.74	6.61	6.51
case6470rte	8.01	8.29	9.22	9.17
case6470rte	6.49	5.28	8.78	8.02
case6495rte	10.72	9.29	11.41	12.21
case6515rte	9.42	10.61	14.87	10.45
case9241pegase	14.00	11.62	16.36	20.98
case_ACTIVSg2000	4.20	3.92	3.86	3.62
case_ACTIVSg10k	13.11	12.98	9.71	9.50
case13659pegase	9.06	11.11	12.46	17.75
case_ACTIVSg25k	30.26	28.45	45.94	38.78
case_ACTIVSg70k	111.10	146.02	161.20	116.57
case21k	81.35	76.88	89.55	80.70
case42k	251.13	412.33	327.75	326.30
case99k	782.43	1,458.81	854.51	1,393.17
case193k	1,854.40	2,809.14	2,172.67	3,671.13

Table 24: Number of iterations (BELTISTOS).

Benchmark	Polar-Power	Polar-Current	Cartesian-Power	Cartesian-Current
case1951rte	23	20	16	18
case2383wp	42	44	45	42
case2736sp	15	21	22	19
case2737sop	14	18	15	16
case2746wp	9	10	17	24
case2868rte	14	15	27	27
case2869pegase	12	22	20	16
case3012wp	38	38	34	35
case3120sp	37	35	49	43
case3375wp	32	39	31	29
case6468rte	30	34	33	35
case6470rte	16	17	27	25
case6495rte	35	37	46	50
case6515rte	36	51	56	42
case9241pegase	33	27	30	46
case_ACTIVSg2000	21	21	22	15
case_ACTIVSg10k	28	28	15	15
case13659pegase	20	30	26	43
case_ACTIVSg25k	27	27	36	34
case_ACTIVSg_70k	33	46	43	27
case21k	55	54	52	52
case42k	59	58	62	62
case99k	71	79	72	72
case193k	77	81	86	86
Table 25: Overall time (s) (IPOPT-PARDISO).

Benchmark	Polar-Power	Polar-Current	Cartesian-Power	Cartesian-Current
case1951rte	7.16	3.62	5.31	3.60
case2383wp	9.66	5.97	12.81	13.95
case2736sp	6.54	4.00	3.61	3.75
case2737sp	6.09	3.94	3.77	4.03
case2746wp	5.43	3.32	2.89	3.16
case2868rte	7.46	3.59	4.20	3.70
case2869rte	9.21	16.97	12.08	13.62
case3012wp	10.37	9.10	12.65	32.17
case3120sp	12.95	6.57	15.04	8.92
case3375wp	13.06	—	12.42	205.81
case6468rte	12.23	8.91	11.52	10.36
case6470rte	41.56	50.25	36.67	54.12
case6495rte	21.73	10.39	15.52	15.51
case6515rte	16.85	11.67	12.15	11.39
case9241pegase	45.79	98.38	49.23	179.06
case_ACTIVSg2000	7.45	4.66	5.69	5.22
case_ACTIVSg10k	26.64	19.06	18.60	17.46
case_ACTIVSg25k	266.01	259.19	400.67	559.03
case_ACTIVSg70k	83.68	63.04	67.87	94.37
case21k	262.59	—	166.43	—
case42k	747.87	—	621.89	—
case99k	3,101.47	—	3,080.08	47,944.78
case193k	10,105.87	—	12,489.93	—

Table 26: Number of iterations (IPOPT-PARDISO).

Benchmark	Polar-Power	Polar-Current	Cartesian-Power	Cartesian-Current
case1951rte	33	34	33	31
case2383wp	33	35	40	40
case2736sp	40	23	27	25
case2737sp	26	24	27	25
case2746wp	24	17	18	21
case2746wp	37	20	26	25
case2868rte	54	59	44	46
case2869rte	31	45	36	57
case3012wp	31	31	34	31
case3120sp	43	47	43	41
case3375wp	38	—	30	262
case6468rte	31	34	34	38
case6470rte	70	81	66	72
case6495rte	59	52	57	56
case6515rte	52	46	42	44
case9241pegase	44	71	41	79
case_ACTIVSg2000	29	28	27	29
case_ACTIVSg10k	35	38	34	34
case_ACTIVSg25k	214	193	197	241
case_ACTIVSg70k	83	69	72	76
case21k	48	—	49	—
case42k	52	—	54	—
case99k	62	—	63	312
case193k	77	—	77	—
Table 27: Overall time (s) (IPOPT-MA57).

Benchmark	Polar-Power	Polar-Current	Cartesian-Power	Cartesian-Current
case1951rte	4.77	2.61	2.56	2.58
case2383wp	5.20	3.90	4.21	3.95
case2736sp	3.28	2.15	2.54	2.28
case2737sop	3.84	1.80	2.25	2.20
case2746wop	3.08	1.50	2.08	2.96
case2868rte	3.21	1.67	2.90	2.87
case2869pegase	4.48	4.38	4.21	4.05
case3012wp	4.94	3.35	4.76	3.83
case3120sp	5.67	3.97	4.57	4.66
case3375wp	5.53	4.14	4.96	4.92
case3630rte	6.28	4.39	4.67	4.52
case6470rte	7.91	5.26	9.06	11.37
case6495rte	10.96	6.92	10.66	11.42
case6515rte	12.41	8.75	184.76	162.49
case9241pegase	11.16	8.10	118.26	51.35
case_ACTIVSg2000	21.78	14.05	21.35	16.33
case_ACTIVSg10k	3.70	2.60	3.25	3.05
case_ACTIVSg10k	16.21	11.60	12.71	14.63
case_ACTIVSg25k	30.32	15.69	27.97	22.44
case_ACTIVSg70k	62.12	33.39	49.59	51.31
case_ACTIVSg2000	198.12	149.67	330.07	292.97
case_ACTIVSg2000	—	—	—	—
case_ACTIVSg10k	75,386.85	—	—	—
case_ACTIVSg70k	32	32	38	34
case_ACTIVSg2000	42	39	40	40
case_ACTIVSg10k	41	38	55	42
case_ACTIVSg70k	42	42	39	40
case_ACTIVSg2000	35	37	48	55
case_ACTIVSg25k	50	43	50	55
case_ACTIVSg70k	56	55	71	70
case_ACTIVSg25k	54	55	64	62
case_ACTIVSg70k	47	42	51	46
case_ACTIVSg25k	30	32	32	36
case_ACTIVSg70k	66	67	62	70
case_ACTIVSg25k	46	41	47	50
case_ACTIVSg70k	57	55	66	65
case_ACTIVSg25k	—	—	—	—
case_ACTIVSg70k	—	—	—	—
case_ACTIVSg2000	—	—	—	—
case_ACTIVSg25k	—	—	—	—
case_ACTIVSg70k	—	—	—	—

Table 28: Number of iterations (IPOPT-MA57).

Benchmark	Polar-Power	Polar-Current	Cartesian-Power	Cartesian-Current
case1951rte	34	33	30	32
case2383wp	47	46	46	45
case2736sp	19	22	25	22
case2737sop	23	18	22	21
case2746wop	14	14	29	30
case2746wp	16	16	29	27
case2868rte	33	43	39	38
case2869pegase	32	32	38	34
case3012wp	42	39	40	40
case3120sp	41	38	55	42
case3375wp	42	42	39	40
case6468rte	35	37	48	55
case6470rte	50	43	50	55
case6495rte	56	55	71	70
case6515rte	54	55	64	62
case9241pegase	47	42	51	46
case_ACTIVSg2000	24	26	33	31
case_ACTIVSg10k	30	32	32	36
case_ACTIVSg25k	66	67	62	70
case_ACTIVSg70k	46	41	47	50
case_ACTIVSg25k	57	55	66	65
case_ACTIVSg70k	—	—	—	—
case_ACTIVSg25k	—	—	—	—
case_ACTIVSg70k	—	—	—	—
case_ACTIVSg2000	—	—	—	—
case_ACTIVSg25k	—	—	—	—
case_ACTIVSg70k	—	—	—	—
case_ACTIVSg25k	—	—	—	—
case_ACTIVSg70k	—	—	—	—

18
Figure 9: Performance profiles for the OPF formulations using BELTISTOS considering large-scale benchmarks.

Figure 10: Performance profiles for the OPF formulations using BELTISTOS considering all benchmarks.

Figure 11: Performance profiles for the OPF formulations using IPOPT-PARDISO considering small and medium sized benchmarks.

Figure 12: Performance profiles for the OPF formulations using IPOPT-PARDISO considering large-scale benchmarks.
4.3.2 MIPS

MIPS with default MATLAB \backslash\ LS solver performs best with the Polar-Power formulation, failing only for 2 large-scale cases altogether. All large scale benchmarks were solved using the Cartesian-power formulation, while 4 small sized benchmarks failed. Overall time is very large compared to MIPS-PARDISO, where the majority of the time is spent by solving the KKT linear systems. Contribution of the LS solver to the overall performance is discussed in detail in Section 4.4.

Table 29: Overall time (s) (MIPS).

Benchmark	Polar-Power	Polar-Current	Cartesian-Power	Cartesian-Current
case1951rte	5.57	2.99	11.71	41.08
case2383wp	4.69	4.29	4.61	6.70
case2736sp	5.19	3.78	4.86	7.71
case2737op	5.04	4.04	4.20	4.78
case2746wop	5.46	3.89	4.15	4.65
case2746wp	5.88	4.27	4.84	4.91
case2868rte	4.84	—	5.00	29.21
case2869pegase	26.87	14.32	17.05	—
case3012wp	6.33	5.52	6.35	6.63
case3120op	29.96	9.30	11.35	10.34
case3375wp	7.62	7.67	7.99	9.01
case6460rte	17.48	88.08	—	99.81
case6470rte	19.51	—	—	—
case6495rte	29.85	43.03	73.43	73.41
case6515rte	30.03	20.55	—	68.62
case9241pegase	50.50	104.00	106.71	—
case_ACTIVSg2000	6.03	16.43	4.87	16.20
case_ACTIVSg10k	32.08	53.12	65.39	68.48
case_ACTIVSg25kg	37.24	—	—	—
case_ACTIVSg50kg	109.44	104.71	156.68	192.00
case_ACTIVSg70kg	—	1,075.49	1,079.36	1,322.40
case21k	171.01	142.27	183.87	171.01
case42k	2,639.47	2,672.00	2,897.26	2,601.01
case99k	25,936.42	18,011.52	19,458.39	18,472.06
case193k	—	—	81,198.04	—

Table 30: Number of iterations (MIPS).

Benchmark	Polar-Power	Polar-Current	Cartesian-Power	Cartesian-Current
case1951rte	26	27	73	219
case2383wp	29	33	35	46
case2736sp	28	27	34	47
case2737op	25	28	30	32
case2746wop	26	25	28	31
case2746wp	28	29	34	35
case2868rte	26	—	34	142
case2869pegase	113	75	76	—
case3012wp	28	29	34	35
case3120wp	112	47	54	54
case3375wp	30	36	37	40
case6468rte	42	196	—	214
case6470rte	43	—	—	—
case6495rte	65	98	152	150
case6515rte	64	54	—	141
case9241pegase	64	132	120	—
case_ACTIVSg2000	24	69	27	68
case_ACTIVSg10k	39	66	77	86
case_ACTIVSg25k	53	59	80	94
case_ACTIVSg70k	—	157	154	199
case21k	49	49	57	57
case42k	59	59	67	68
case99k	73	73	79	79
case193k	—	—	93	—
MIPS with PARDISO LS solver displays preference for solving formulation with nodal power balance equations, while current formulation fails for larger number of cases, especially in combination with Cartesian voltage. Note the significantly lower solution times as compared with the default MATLAB’s LS solver.

Table 31: Overall time (s) (MIPS-PARDISO).

Benchmark	Polar-Power	Polar-Current	Cartesian-Power	Cartesian-Current
case1951rte	6.55	4.06	8.35	58.03
case2383wp	5.89	5.44	6.05	8.25
case2736sp	6.69	5.25	6.43	9.81
case2737sop	6.07	5.28	5.46	5.96
case2746wop	6.76	4.95	5.37	6.14
case2746wp	7.01	5.87	6.74	7.02
case2868rte	6.32	—	6.91	—
case2869pegase	22.90	17.17	18.82	—
case3012wp	7.15	6.14	7.19	7.55
case3120sp	27.89	10.25	12.42	11.84
case3375wp	8.29	8.61	8.61	9.03
case6468rte	19.20	27.73	—	102.66
case6470rte	20.83	—	107.49	—
case6495rte	32.97	42.32	95.03	—
case6515rte	—	24.12	—	80.58
case9241pegase	57.58	89.40	88.03	—
case_AACTIVSg2000	6.09	16.60	4.87	15.45
case_AACTIVSg10k	36.11	58.64	59.41	76.56
case13659pegase	42.16	—	115.57	—
case_AACTIVSg25k	118.95	118.36	164.44	208.94
case_AACTIVSg70k	—	627.72	879.13	1,475.98
case21k	140.35	126.71	141.39	142.27
case42k	518.21	—	438.26	541.52
case99k	1,612.29	4,077.31	1,524.19	—
case193k	4,484.02	—	3,530.59	—

Table 32: Number of iterations (MIPS-PARDISO).

Benchmark	Polar-Power	Polar-Current	Cartesian-Power	Cartesian-Current
case1951rte	26	27	48	242
case2383wp	29	33	35	46
case2736sp	28	27	34	47
case2737sop	25	28	30	32
case2746wop	26	25	28	31
case2746wp	28	29	34	35
case2868rte	26	—	34	—
case2869pegase	82	72	73	—
case3012wp	28	29	34	35
case3120sp	101	47	54	54
case3375wp	30	36	37	40
case6468rte	42	67	—	200
case6470rte	43	—	191	—
case6495rte	65	88	174	—
case6515rte	—	54	—	146
case9241pegase	64	103	94	—
case_AACTIVSg2000	24	69	27	68
case_AACTIVSg10k	39	66	67	82
case13659pegase	38	—	110	—
case_AACTIVSg25k	53	59	78	94
case_AACTIVSg70k	—	91	118	186
case21k	49	53	56	59
case42k	59	—	67	78
case99k	73	207	80	—
case193k	87	—	101	—
4.3.4 FMINCON

FMINCON is exceptionally robust with Cartesian voltage formulation, solving all the small benchmarks and all of the large-scale cases up to 42k buses. The number of iterations until convergence is also significantly improved with the Cartesian formulations. The overall time starts to rapidly grow for the large-scale cases above 42k buses, as compared to the performance of IPOPT or BELTISTOS.

Table 33: Time to solution in seconds (FMINCON 2015b).

Benchmark	Polar-Power	Polar-Current	Cartesian-Power	Cartesian-Current
case1951rte	41.30	172.36	10.71	26.93
case2383wp	60.49	186.78	92.97	25.56
case2736sp	—	53.72	15.83	19.31
case2737sop	12.81	10.81	11.92	11.78
case2746wop	20.92	386.63	9.81	14.69
case2746wp	138.32	—	13.75	13.36
case2868rte	47.87	52.78	35.28	20.59
case2869pegase	21.91	28.90	24.45	92.40
case3012wp	390.19	—	22.30	22.46
case3120sp	—	—	40.37	51.10
case3375wp	—	—	30.87	57.18
case6468rte	—	64.31	46.83	128.46
case6470rte	89.38	72.50	36.29	442.63
case6495rte	31.74	174.01	42.59	474.82
case6515rte	105.27	191.54	81.70	149.07
case9241pegase	292.17	386.13	226.68	1,137.05
case_ACTIVSg2000	11.41	11.22	12.03	15.07
case_ACTIVSg10k	25.48	43.15	39.23	235.09
case13659pegase	2,510.03	5,061.67	6,468.63	1,850.49
case_ACTIVSg25k	214.47	217.22	523.42	381.75
case_ACTIVSg70k	798.08	1,440.00	15,290.34	2,961.66
case21k	2,460.14	5,140.34	367.37	406.98
case42k	—	—	4,602.00	5,093.77
case99k	53,656.32	—	42,371.89	—
case193k	—	—	—	—

Table 34: Iterations until convergence (FMINCON 2015b).

Benchmark	Polar-Power	Polar-Current	Cartesian-Power	Cartesian-Current
case1951rte	77	90	39	45
case2383wp	184	465	60	70
case2736sp	—	162	42	50
case2737sop	42	40	32	32
case2746wop	61	342	25	38
case2746wp	333	—	35	35
case2868rte	58	51	31	29
case2869pegase	50	61	52	96
case3012wp	434	—	51	53
case3120sp	—	—	72	106
case3375wp	—	—	65	19
case6468rte	—	50	51	71
case6470rte	57	73	35	54
case6495rte	45	141	55	68
case6515rte	108	94	65	58
case9241pegase	81	92	75	94
case_ACTIVSg2000	35	36	35	40
case_ACTIVSg10k	18	35	27	50
case13659pegase	63	98	96	62
case_ACTIVSg25k	48	51	100	65
case_ACTIVSg70k	79	73	129	160
case21k	437	410	59	68
case42k	—	—	64	64
case99k	297	—	83	—
case193k	—	—	—	—
Table 35: Time to solution in seconds (FMINCON 2017b).

Benchmark	Polar-Power	Polar-Current	Cartesian-Power	Cartesian-Current
case1951rte	42.13	46.21	14.09	32.63
case2383wp	69.35	163.32	102.23	30.05
case2736wp	324.89	60.62	19.03	22.62
case2737sop	14.92	13.87	15.33	14.60
case2746wp	24.39	511.82	13.01	17.44
case2868rte	165.37	—	17.27	16.61
case2869pegase	54.29	284.08	40.68	24.92
case3012wp	25.07	32.82	30.08	103.72
case3120sp	—	230.33	25.37	27.22
case3375wp	183.98	—	45.17	56.38
case6470rte	—	69.92	51.51	280.19
case6495rte	92.65	86.24	42.04	294.48
case6515rte	37.76	538.31	48.09	701.07
case9241pegase	123.73	183.28	93.03	157.91
case_ACTIVSg2000	281.36	311.00	247.35	1,126.93
case_ACTIVSg10k	12.81	14.73	15.30	19.94
case_ACTIVSg10k	26.88	56.26	52.87	274.61
case_ACTIVSg25k	1,866.80	1,140.71	6,085.81	4,190.40
case_ACTIVSg70k	210.12	224.92	549.13	397.45
case_ACTIVSg70k	786.05	1,464.73	15,831.40	10,398.00
case21k	—	—	434.96	486.57
case42k	8,428.31	—	1,322.59	1,461.98
case99k	20,554.62	—	16,603.51	20,352.13
case193k	70,150.87	—	14,281.20	45,494.82

Table 36: Iterations until convergence (FMINCON 2017b).

Benchmark	Polar-Power	Polar-Current	Cartesian-Power	Cartesian-Current
case1951rte	77	78	39	45
case2383wp	184	462	60	70
case2736wp	455	159	42	50
case2737sop	42	40	32	32
case2746wp	61	407	25	38
case2868rte	343	—	35	35
case2869pegase	58	66	31	29
case3012wp	50	61	52	87
case3120sp	—	495	51	53
case3375wp	383	—	65	19
case6468rte	—	50	51	71
case6470rte	57	73	35	45
case6495rte	45	135	55	74
case6515rte	108	88	65	58
case9241pegase	81	94	75	81
case_ACTIVSg2000	35	36	35	40
case_ACTIVSg10k	18	35	27	50
case_ACTIVSg25k	81	79	75	126
case_ACTIVSg70k	79	78	88	91
case21k	—	59	68	68
case42k	435	—	64	64
case99k	324	—	83	82
case193k	482	—	106	108
4.3.5 KNITRO

For KNITRO, the default OPF formulation with polar voltage and power balance displays the weakest performance, failing to solve two cases and more than one third of the benchmarks require extensive number of iterations, and thus time, in order to converge when compared to other formulations. In general, Cartesian voltage coordinates should be the preferred choice.

Benchmark	Polar-Power	Polar-Current	Cartesian-Power	Cartesian-Current
case1951rte	10.22	5.44	4.40	8.62
case2383wp	4.92	4.84	4.77	4.91
case2736sp	—	4.85	4.39	4.53
case2737sop	3.97	4.21	4.55	4.21
case2746wop	45.41	3.94	5.27	4.13
case2746wp	13.07	4.61	4.51	4.67
case2868rte	—	9.32	5.48	10.41
case2869pegase	4.74	5.69	5.63	6.46
case3012wp	7.02	5.26	5.61	5.36
case3120sp	5.35	5.31	5.12	5.82
case3375wp	6.73	5.89	5.79	6.07
case6468rte	42.25	9.35	8.94	14.71
case6470rte	10.17	12.52	10.58	14.80
case6495rte	9.33	13.31	11.81	21.10
case6515rte	12.58	13.80	10.01	17.39
case9241pegase	16.87	21.66	18.16	119.23
case_ACTIVSg2000	4.37	4.30	4.41	4.77
case_ACTIVSg10k	12.47	11.98	14.02	15.82
case13659pegase	93.37	—	133.52	51.77
case_ACTIVSg25k	46.64	47.32	55.67	51.77
case_ACTIVSg70k	162.04	150.89	200.42	216.53
case21k	206.98	57.54	66.96	68.14
case42k	1,147.66	160.24	157.81	156.70
case99k	2,396.32	491.46	531.30	517.16
case193k	2,778.65	949.67	1,085.04	987.93

Table 37: Overall time (s) (KNITRO 10).

Benchmark	Polar-Power	Polar-Current	Cartesian-Power	Cartesian-Current
case1951rte	97	42	26	68
case2383wp	32	32	29	29
case2736sp	—	25	21	22
case2737sop	20	23	21	21
case2746wop	440	18	19	20
case2746wp	117	25	22	22
case2868rte	—	65	24	66
case2869pegase	25	34	28	33
case3012wp	48	28	25	24
case3120sp	28	30	28	30
case3375wp	39	27	26	26
case6468rte	185	39	31	51
case6470rte	33	45	35	46
case6495rte	36	54	40	68
case6515rte	46	52	35	59
case9241pegase	32	47	37	240
case_ACTIVSg2000	21	20	22	23
case_ACTIVSg10k	23	26	28	32
case13659pegase	203	—	234	—
case_ACTIVSg25k	45	48	47	48
case_ACTIVSg70k	52	53	55	57
case21k	181	43	42	42
case42k	325	48	48	47
case99k	150	48	54	54
case193k	145	57	54	53

Table 38: Number of iterations (KNITRO 10).
Table 39: Overall time (s) (KNITRO 11).

Benchmark	Polar-Power	Polar-Current	Cartesian-Power	Cartesian-Current
case1951rte	11.39	5.70	4.68	9.24
case2383wp	5.28	5.01	5.19	4.87
case2736wp	—	5.62	4.46	5.20
case2737wp	4.48	4.67	4.61	4.67
case2746wp	51.25	4.20	4.39	4.74
case2868rte	14.48	4.92	4.82	4.65
case2869rte	—	10.21	5.38	10.38
case2869rte	4.92	6.06	6.08	7.06
case2869rte	8.09	5.44	5.55	5.62
case3012wp	5.50	5.68	6.15	6.59
case3012wp	6.92	5.79	6.18	7.05
case6468rte	43.70	10.10	8.96	14.69
case6470rte	11.30	12.58	11.11	14.02
case6495rte	9.70	15.02	11.31	21.06
case6515rte	13.28	14.40	11.04	18.88
case9241rte	17.22	20.67	19.75	125.74
case9241rte	4.55	4.38	4.79	5.34
case9241rte	12.17	12.84	15.96	16.13
case13659rte	100.72	—	141.17	—
case13659rte	50.18	49.10	56.12	54.33
case13659rte	167.55	157.18	196.43	213.33
case21k	219.83	57.65	67.32	70.69
case24k	1,162.01	166.12	163.23	156.66
case24k	2,558.94	528.73	523.98	559.30
case24k	2,654.42	960.44	1,058.22	1,118.77

Table 40: Number of iterations (KNITRO 11).

Benchmark	Polar-Power	Polar-Current	Cartesian-Power	Cartesian-Current
case1951rte	97	42	26	68
case2383wp	32	32	29	29
case2736wp	20	23	21	22
case2737wp	440	18	19	20
case2746wp	117	25	22	22
case2868rte	—	65	24	66
case2869rte	25	34	28	33
case3012wp	48	28	25	24
case3012wp	28	30	28	30
case3375wp	39	27	26	26
case6468rte	185	39	31	51
case6470rte	33	45	35	46
case6495rte	36	54	40	68
case6515rte	46	52	35	59
case9241rte	32	47	37	240
case9241rte	21	20	22	23
case9241rte	23	26	28	32
case13659rte	203	—	234	—
case13659rte	45	48	47	48
case13659rte	52	53	55	57
case21k	181	43	42	42
case24k	325	48	48	47
case99k	150	48	54	54
case193k	145	57	54	53
4.4 Linear solvers

The robustness and performance of the optimization package heavily depends on used sparse direct solver used to compute update of the solution in each iteration. Linear systems resulting from the IPM methods are known to be very ill-conditioned, especially in the last iterations before convergence and depending on the benchmark case, can be also very large.

Tables 41, 42, 43 and 44 demonstrate the difference between build-in Matlab linear solver (SuiteSparse UMFPACK, also known as the ‘\’ operator) and PARDISO, which are currently the two linear solvers supported by MIPS framework. The difference is particularly visible in Table 42 and 44 for the large-scale cases, where PARDISO outperforms MATLAB’s backslash operator by a factor up to 26. PARDISO also reduces the number of iterations until convergence for some cases due to more accurate solution and thus better descent search direction provided to the optimizer.

Table 41: Performance of MIPS with various linear solvers - number of iterations.

Benchmark	Flat					
	PARDISO	Backslash	PARDISO	Backslash	PARDISO	Backslash
case1951rte	—	—	26	26	26	26
case2363wp	31	31	29	29	31	31
case2736sp	29	29	28	28	27	27
case2737sop	27	27	25	25	25	25
case2746wop	30	30	26	26	28	28
case2746wp	30	30	28	28	28	28
case2868rte	—	—	26	26	26	26
case2869pegase	36	36	82	113	29	29
case3012wp	43	43	26	26	29	29
case3120sp	43	43	101	112	33	33
case3375wp	47	47	30	30	30	30
case6468rte	—	—	42	42	39	39
case6470rte	—	—	43	43	44	44
case6495rte	—	—	65	65	67	67
case6515rte	—	—	64	51	51	51
case9241pegase	40	40	64	64	41	41
case_ACTIVSg2000	32	32	24	24	43	43
case_ACTIVSg10k	—	—	39	39	79	80
case_ACTIVSg25k	—	—	53	53	73	73
case_ACTIVSg70k	63	73	38	38	55	50
case21k	67	67	49	49	49	49
case42k	78	78	59	59	60	59
case99k	92	92	73	73	73	73
case193k	106	—	87	—	87	—
Table 42: Performance of MIPS with various linear solvers - overall time (s).

Benchmark	Flat	MPC	PF			
	PARDISO	Backslash	PARDISO	Backslash	PARDISO	Backslash
case1951rte	—	—	3.81	3.38	4.21	3.60
case2383wp	6.70	5.69	5.27	4.72	5.58	5.01
case2736wp	7.08	6.47	5.15	5.13	5.13	4.85
case2737sop	6.55	6.42	4.61	4.51	5.01	4.92
case2746wop	7.45	7.18	5.33	5.25	5.59	5.29
case2746wp	7.55	7.23	5.65	5.18	5.76	5.50
case2868rte	—	—	5.46	4.54	5.40	4.88
case2869pegase	9.89	9.47	21.91	28.74	6.80	6.25
case3012wp	11.04	10.26	5.96	5.44	6.57	5.54
case3120sp	10.89	9.97	26.65	29.65	7.31	7.15
case3375wp	13.22	12.57	7.25	6.72	7.20	6.47
case6468rte	—	—	17.46	16.71	16.60	15.18
case6470rte	—	—	19.02	17.29	19.72	17.72
case6495rte	—	—	29.91	26.85	31.51	27.89
case6515rte	—	—	27.55	23.00	—	—
case9241pegase	34.17	31.75	51.09	47.34	32.38	30.25
case_ACTIVSg2000	7.18	7.86	4.45	4.63	9.34	9.50
case_ACTIVSg10k	—	—	29.96	28.24	66.89	67.86
case_ACTIVSg25k	—	—	100.54	99.76	148.73	152.40
case13659pegase	66.44	64.55	36.05	34.34	35.34	35.35
case13659rte	26	26	29.11	26.85	31.51	27.89
case21k	—	101	336.77	102.68	191.82	105.03
case42k	464.73	1215.27	367.20	311.24	613.85	613.85
case99k	2036.95	27695.39	1284.73	1284.73	33890.39	33890.39
case193k	4743.55	3175.67	73.17	61.69	1518.40	1518.40

Table 43: Performance of MIPS with various linear solvers - number of iterations.

Benchmark	Polar-Power	Polar-Current	Cartesian-Power	Cartesian-Current				
	PARDISO	Backslash	PARDISO	Backslash	PARDISO	Backslash	PARDISO	Backslash
case1951rte	24	55	27	55	—	—	24	55
case2383wp	29	29	29	55	27	27	27	27
case2736wp	28	28	28	28	28	28	28	28
case2737sop	25	25	25	25	25	25	25	25
case2746wop	28	28	28	28	28	28	28	28
case2746wp	26	26	26	26	26	26	26	26
case2868rte	26	26	26	26	26	26	26	26
case2869pegase	82	113	72	72	73	73	73	73
case3012wp	28	28	28	28	28	28	28	28
case3120sp	101	112	47	47	54	54	54	54
case3375wp	30	30	30	30	30	30	30	30
case6468rte	42	42	42	42	42	42	42	42
case6470rte	43	43	43	43	43	43	43	43
case6495rte	65	65	65	65	65	65	65	65
case6515rte	64	64	64	64	64	64	64	64
case9241pegase	64	64	64	64	64	64	64	64
case_ACTIVSg2000	24	24	24	24	24	24	24	24
case_ACTIVSg10k	39	39	39	39	39	39	39	39
case_ACTIVSg25k	53	53	53	53	53	53	53	53
case13659pegase	38	38	38	38	38	38	38	38
case_ACTIVSg70k	—	—	—	—	—	—	—	—
case21k	49	49	49	49	49	49	49	49
case42k	59	59	59	59	59	59	59	59
case99k	73	73	73	73	73	73	73	73
case193k	87	87	87	87	87	87	87	87
Benchmark	Polar-Power	Polar-Current	Cartesian-Power	Cartesian-Current				
-------------	-------------	---------------	-----------------	-------------------				
	PARDISO	Backslash	PARDISO	Backslash				
case1951rte	6.55	5.57	4.06	2.99				
case2383wp	5.89	4.69	5.44	4.29				
case2736sp	6.69	5.19	5.25	3.78				
case2737sop	6.07	5.04	5.28	4.04				
case2746wop	6.76	5.46	4.95	3.89				
case2746wp	7.01	5.88	5.87	4.27				
case2868rte	6.32	4.84	—	—				
case2869pegase	22.90	26.87	17.17	14.32				
case3012wp	7.15	6.33	6.14	5.52				
case3120sp	27.89	29.96	10.25	9.30				
case3375wp	8.29	7.62	8.61	7.67				
case6468rte	19.28	17.48	27.73	28.08				
case6470rte	20.83	19.51	—	107.49				
case6495rte	32.97	29.85	42.32	43.03				
case6515rte	—	30.03	24.12	20.55				
case9241pegase	57.58	50.50	89.40	104.00				
case_ACTIVSg2000	6.09	6.03	16.60	16.43				
case_ACTIVSg10k	36.11	32.08	58.64	53.12				
case_ACTIVSg25k	118.95	109.44	118.36	104.71				
case_ACTIVSg70k	42.16	37.24	—	115.57				
case13659pegase	—	—	627.22	1,075.49				
case21k	140.55	171.01	126.71	142.27				
case42k	518.21	2,639.47	—	2,672.00				
case99k	1,612.28	25,936.42	4,077.31	18,011.52				
case193k	4,484.02	—	—	3,530.59				
Tables 45, 46, 47, and 48 demonstrate performance of the IPOPT with two different linear solvers, PARDISO and HSL MA57. MA57 is a robust solver but as the problem size increases it requires significantly higher computational resources than PARDISO. On the other hand, computational times using IPOPT with PARDISO remain feasible also for the large-scale networks and it is thus possible to solve more benchmarks.

Table 45: Performance of IPOPT with various linear solvers - number of iterations.

Benchmark	Flat	MPC	PF
case1951rte	122	141	30
case2383wp	38	32	34
case2736sp	27	28	23
case2746wop	38	32	24
case2746wp	40	33	35
case2868rte	—	90	45
case3012wp	41	36	31
case3120sp	42	39	44
case3375wp	40	40	72
case4688rte	240	149	31
case6495rte	74	177	56
case6515rte	131	133	41
case9241pveage	119	41	56
case_ACTIVSg2000	51	94	29
case_ACTIVSg10k	139	47	35
case_ACTIVSg25k	244	60	193
case_ACTIVSg70k	85	75	66
case21k	141	—	126
case42k	65	—	53
case99k	81	—	61
case193k	98	—	76

Table 46: Performance of IPOPT with various linear solvers - overall time (s).

Benchmark	Flat	MPC	PF
case1951rte	25.55	12.61	4.79
case2383wp	9.00	3.63	6.89
case2736wp	9.80	4.53	7.46
case2737wp	8.37	3.93	5.82
case2746wp	8.06	4.41	4.60
case2746wp	7.40	4.40	5.91
case2868rte	—	10.30	13.07
case3012wp	18.47	4.92	11.47
case3120wp	22.93	5.79	15.47
case3375wp	11.83	5.82	21.01
case6468rt	82.40	29.45	6.96
case6470rte	112.06	22.02	29.25
case6495rte	27.24	35.88	20.85
case6515rte	64.83	25.45	9.03
case9241pveage	184.50	21.99	66.13
case_ACTIVSg2000	15.80	15.52	5.22
case_ACTIVSg10k	95.91	22.63	18.18
case_ACTIVSg25k	341.29	33.40	219.95
case_ACTIVSg70k	116.85	81.03	89.49
case_ACTIVSg25k	419.38	273.04	301.24
case_activs_g2000	341.29	33.40	219.95
case_activs_g10k	116.85	81.03	89.49
case_activs_g70k	419.38	273.04	301.24
case21k	131.46	—	343.86
case42k	692.54	—	641.81
case99k	3,136.65	—	2,763.08
case193k	13,236.02	—	10,169.78

29

Table 47: Performance of IPOPT with various linear solvers - number of iterations.

Benchmark	Polar-Power	Polar-Current	Cartesian-Power	Cartesian-Current
	PARDISO	MA57	PARDISO	MA57
case1951rte	33	34	34	33
case2383wp	33	47	33	46
case2736sp	40	19	23	22
case2737sop	26	23	24	18
case2746wp	37	16	20	16
case2868rte	54	33	59	43
case2869pegase	31	32	45	32
case3012wp	31	42	31	39
case3120sp	43	41	47	38
case3375wp	38	42	42	39
case6468rte	31	35	34	37
case6470rt	70	50	81	43
case6495rte	59	56	52	55
case6515rte	52	54	46	55
case9241pegase	44	47	71	42
case_ACTIVSg2000	29	24	28	26
case_ACTIVSg10k	35	30	38	32
case13659pegase	214	66	193	67
case_ACTIVSg25k	44	46	48	41
case_ACTIVSg70k	83	57	69	55
case21k	48	—	—	—
case42k	52	370	—	—
case_ACTIVSg20000	29	24	28	26
case_ACTIVSg10k	35	30	38	32
case13659pegase	214	66	193	67
case_ACTIVSg25k	44	46	48	41
case_ACTIVSg70k	83	57	69	55
case21k	48	—	—	—
case42k	52	370	—	—
case_ACTIVSg20000	29	24	28	26
case_ACTIVSg10k	35	30	38	32
case13659pegase	214	66	193	67
case_ACTIVSg25k	44	46	48	41
case_ACTIVSg70k	83	57	69	55
case21k	48	—	—	—
case42k	52	370	—	—
case99k	62	—	—	—
case193k	77	—	—	—

Table 48: Performance of IPOPT with various linear solvers - overall time (s).

Benchmark	Polar-Power	Polar-Current	Cartesian-Power	Cartesian-Current
	PARDISO	MA57	PARDISO	MA57
case1951rte	7.16	4.77	3.62	2.61
case2383wp	9.66	5.20	5.97	3.90
case2736sp	6.54	3.28	4.00	2.15
case2737sop	6.09	3.84	3.94	1.80
case2746wp	5.43	3.08	3.32	1.50
case2746wp	7.46	3.21	3.59	1.67
case2868rt	9.21	4.48	16.97	4.38
case2869pegase	10.37	4.94	9.10	3.35
case3012wp	12.95	5.67	6.57	3.97
case3120sp	10.83	5.53	9.78	4.14
case3375wp	13.06	6.28	—	4.39
case42k	12.23	7.91	8.91	5.26
case_ACTIVSg2000	29	24	28	26
case_ACTIVSg10k	35	30	38	32
case13659pegase	214	66	193	67
case_ACTIVSg25k	44	46	48	41
case_ACTIVSg70k	83	57	69	55
case21k	48	—	—	—
case42k	52	370	—	—
case99k	62	—	—	—
case193k	77	—	—	—

30
4.5 Optimization frameworks performance

In this section we evaluate high-performance nonlinear optimizers that are supported by MATPOWER. These include BELTISTOS, IPOPT, FMINCON 2017b, KNITRO 11, and MATPOWER’s included default solver, MIPS. For the performance benchmark, we consider MATPOWER case data as a starting point and the default polar-power OPF formulation, as their superior performance was demonstrated in the previous sections.

The summary of the results is presented in tables 49, 50 and 51 for the metrics including overall time, number of iterations and memory requirements for the large-scale benchmarks, respectively. The performance profiles for each of the three aspects for the large-scale benchmarks are shown in Figures 13, 14, and 15, respectively.

The results reveal that only BELTISTOS and IPOPT-PARDISO optimizers converged to the optimal solution for all benchmark cases, followed by KNITRO and MIPS-PARDISO which numerically failed for two benchmark cases. We report that other optimizers were not competitive, both in terms of robustness and performance, failing for the large-scale cases and being slower up to a factor of 300. It is important to state that since the FMINCON and KNITRO perform better with the Cartesian formulations, this benchmark setup undermines their robustness and performance. Figure 13 reveals that BELTISTOS was the fastest optimizer for all large-scale cases. MIPS-PARDISO was slower by a factor of 4 when compared to the best optimizer, while KNITRO and IPOPT-PARDISO were up to 5.5 times slower. When it comes to the number of iterations, BELTISTOS is also the best optimizer, while MIPS-PARDISO and IPOPT-PARDISO perform up to 2, or 3 times more iterations, respectively. Considering the maximum memory requirements, MIPS-PARDISO is the most efficient optimizer for roughly 50% of the benchmark cases, very closely followed by BELTISTOS and IPOPT-PARDISO. KNITRO needed up to 50% more memory, while MIPS with the default LS solver required up to 7 times more memory while solving the largest benchmark.

Table 49: Time to solution (s).

Benchmark	MIPS-PARDISO	IPOPT-PARDISO	IPOPT-MAT7	BELTISTOS	FMINCON	KNITRO	
case1951rte	5.57	6.55	7.16	4.77	4.57	42.13	11.39
case2383wp	4.69	5.89	9.66	5.20	6.30	69.35	5.28
case2736sp	5.19	6.69	6.54	3.28	3.65	324.89	—
case2737sop	5.04	6.07	6.09	3.84	4.65	14.92	4.48
case2746wop	5.46	6.76	5.43	3.08	3.25	24.39	51.25
case2746wpe	5.88	7.01	7.46	3.21	3.60	165.37	14.48
case2868rte	4.84	6.32	9.21	4.48	3.01	54.29	—
case2869wpe	26.87	22.90	10.37	4.94	4.52	25.07	4.92
case3012wpe	6.33	7.15	12.95	5.67	7.18	—	8.09
case3120sp	29.96	27.89	10.83	5.53	6.83	183.98	6.92
case3375wp	7.62	8.29	13.06	6.28	6.70	43.70	—
case4646rte	17.48	19.29	12.23	7.91	8.01	—	43.70
case4647rte	19.51	20.83	41.56	10.96	6.49	92.65	11.30
case4648rte	29.85	32.97	21.73	12.41	10.72	37.76	9.70
case6515rte	30.03	—	16.85	11.16	9.42	123.73	13.28
case9241pegase	50.30	57.58	45.79	21.78	14.00	281.36	17.22
case13659pegase	6.03	6.09	7.45	3.70	4.20	12.81	4.55
case_ACTIVSg10k	32.08	36.11	26.64	16.21	13.11	26.88	12.17
case_ACTIVSg25k	37.24	42.16	266.01	30.32	9.06	1,866.80	100.72
case_ACTIVSg70k	109.44	118.95	83.68	62.12	30.26	210.12	50.18
case_ACTIVSg70k	—	—	491.83	192.12	111.10	786.05	167.55
case21k	171.01	140.55	262.59	—	81.35	—	219.83
case42k	2,639.47	518.21	747.87	75,386.85	251.13	8,428.31	1,162.01
case99k	25,936.42	1,612.29	1,011.47	—	782.43	20,554.62	2,558.94
case193k	4,484.02	10,105.87	—	1,854.40	70,150.87	2,654.42	
Table 50: Number of iterations.

Benchmark	MIPS-\`\`	MIPS-PARDISO	IPOPT-PARDISO	IPOPT-MA57	BELTISTOS	FMINCON	KNITRO
case1951rte	26	26	33	34	23	77	97
case2383wp	29	29	33	47	42	184	32
case2736x	28	28	40	19	15	455	—
case2737sop	25	25	26	23	14	42	20
case2746wp	26	26	24	14	9	61	440
case2746wp	28	28	37	16	14	343	117
case2868rte	26	26	54	33	12	58	—
case2869pegase	113	82	31	32	19	50	25
case3012wp	28	28	31	42	38	—	48
case3120sp	112	101	43	41	37	—	28
case3375wp	30	30	38	42	32	383	39
case6469rte	42	42	31	35	30	—	185
case6470rte	43	43	70	50	16	57	33
case6495rte	65	65	59	56	35	47	36
case6515rte	64	—	52	54	36	108	46
case9241pegase	64	64	44	47	33	81	32
case_ACTIVSg2000	24	24	29	24	21	35	21
case_ACTIVSg10k	39	39	35	30	28	18	23
case13659pegase	38	38	214	66	20	81	203
case_ACTIVSg23k	53	53	44	46	27	48	45
case_ACTIVSg70k	—	—	83	57	33	79	52
case21k	49	49	48	—	55	—	181
case42k	59	59	52	370	59	435	325
case99k	73	73	62	—	71	324	150
case193k	—	87	77	—	77	482	145

Table 51: Maximum memory requirements (MB).

Benchmark	MIPS-\`\`	MIPS-PARDISO	IPOPT-PARDISO	IPOPT-MA57	BELTISTOS	FMINCON	KNITRO
case_ACTIVSg25k	1,029.90	931.84	938.35	947.64	920.61	1,658.48	1,183.79
case_ACTIVSg70k	—	—	1,875.51	1,840.02	1,890.28	3,029.68	2,549.75
case21k	1,681.94	1,201.12	1,188.38	—	1,210.98	—	1,482.34
case42k	3,777.44	1,974.29	2,050.20	2,117.25	2,332.96	3,350.01	2,663.84
case99k	15,211.34	4,107.19	4,270.91	—	4,245.63	8,362.46	6,288.27
case193k	—	7,478.32	7,942.22	—	8,007.13	14,646.67	11,065.25

Table 52: Ratio of the solved benchmark cases.

Optimizer	All benchmarks	Large-scale benchmarks
MIPS-\`\`	92%	67%
MIPS-PARDISO	92%	83%
IPOPT-PARDISO	100%	100%
IPOPT-MA57	88%	50%
BELTISTOS	100%	100%
FMINCON 2017b	84%	83%
KNITRO 11	92%	100%
Figure 13: Overall time profile, large-scale benchmarks.

Figure 14: Profile for iterations until convergence, large-scale benchmarks.

Figure 15: Memory efficiency profile, large-scale benchmarks.
4.6 Validation of the optimization results

We conclude our study by reporting the optimal solutions found by all the optimization frameworks and for all initial guesses. We consider the different solutions with the same objective function value to be equivalent. We report that all optimizers found the same solution up to a relative difference 10⁻⁷.

The OPF problems are non-convex and thus different local minima can be reached from different starting points. We report that the relative difference between the solutions for any given optimizer using different initial guesses is up to 10⁻³. The optimizers thus converged to the same solution, no matter which starting point was used (but it is the case that for poor initial guess the optimizer might not converge at all as can be seen in Tables 53, 54, 55, 56, 57, 58 and 59).

Table 53: Final objective function value ($/h$) for IPOPT-PARDISO.

Benchmark	Flat start	MATPOWER case data	Power flow solution	Rel. error
case1951trte	81,737.68	81,737.68	81,737.68	1.22 × 10⁻⁹
case2383wp	1,868,511.76	1,868,511.76	1,868,511.76	5.35 × 10⁻¹⁰
case2736sp	1,307,883.09	1,307,883.10	1,307,883.10	1.68 × 10⁻⁹
case2737sp	777,629.28	777,629.28	777,629.28	1.29 × 10⁻⁹
case2746wop	1,208,279.78	1,208,279.78	1,208,279.78	1.66 × 10⁻⁹
case2746wp	1,631,775.05	1,631,775.05	1,631,775.05	1.47 × 10⁻⁹
case2868trte	—	79,794.68	79,794.68	0.10 × 10⁻⁹
case2869pegase	—	133,999.29	133,999.29	0.10 × 10⁻⁹
case3012vp	2,591,706.50	2,591,706.50	2,591,706.50	1.54 × 10⁻³
case3126sp	2,142,703.72	2,142,703.72	2,142,703.72	6.53 × 10⁻³
case3375wp	7,412,030.65	7,412,030.65	7,412,030.65	7.69 × 10⁻⁴
case6460trte	86,829.02	86,829.02	86,829.02	2.3 × 10⁻⁹
case6470trte	98,345.49	98,345.49	98,345.49	1.02 × 10⁻⁹
case6495trte	106,283.38	106,283.37	106,283.37	2.82 × 10⁻⁹
case6515trte	109,804.24	109,804.23	109,804.23	9.11 × 10⁻⁹
case9241pegase	315,912.02	315,911.56	315,911.56	1.47 × 10⁻⁶
case_ACTIVSg2000	1,228,487.05	1,228,487.05	1,228,487.05	4.56 × 10⁻⁹
case_ACTIVSg10k	2,485,898.72	2,485,898.71	2,485,898.71	7.84 × 10⁻⁹
case13659pegase	386,106.52	386,106.52	386,106.52	1.01 × 10⁻⁷

Table 54: Final objective function value ($/h$) for BELTISTOS.

Benchmark	Flat start	MATPOWER case data	Power flow solution	Rel. error
case1951trte	81,737.68	81,739.99	81,743.35	6.94 × 10⁻⁵
case2383wp	1,868,511.96	1,868,511.76	1,868,511.76	1.04 × 10⁻⁷
case2736sp	1,307,883.13	1,307,883.13	1,307,883.13	1.24 × 10⁻⁸
case2737sp	777,632.48	777,629.30	777,632.28	4.09 × 10⁻⁸
case2746wop	1,208,279.97	1,208,280.38	1,208,279.85	4.41 × 10⁻⁷
case2746wp	1,631,775.17	1,631,775.09	1,631,775.13	4.67 × 10⁻⁸
case2868trte	79,795.03	79,834.74	79,795.12	4.98 × 10⁻⁴
case2869pegase	134,000.51	134,000.25	134,000.25	3.45 × 10⁻⁶
case3012wp	2,591,707.55	2,591,707.71	2,591,707.64	4.11 × 10⁻⁷
case3126sp	2,142,703.72	2,142,703.72	2,142,703.72	0 × 10⁻⁹
case3375wp	7,412,043.31	7,412,043.70	7,412,041.01	3.63 × 10⁻⁷
case6460trte	86,829.02	86,829.05	86,829.05	3.75 × 10⁻⁷
case6470trte	98,405.22	98,397.88	98,347.19	5.9 × 10⁻⁴
case6495trte	106,321.55	106,316.60	106,325.79	8.64 × 10⁻⁵
case6515trte	109,823.73	109,823.82	109,824.59	7.81 × 10⁻⁶
case9241pegase	315,911.57	315,912.64	315,914.93	1.06 × 10⁻⁵
case_ACTIVSg2000	1,228,487.06	1,228,487.97	1,228,498.32	3.67 × 10⁻⁷
case_ACTIVSg10k	2,485,898.74	2,485,898.74	2,485,898.74	4.83 × 10⁻¹⁰
case13659pegase	386,106.62	386,260.62	386,205.20	3.99 × 10⁻⁴
Table 55: Final objective function value ($/h$) for IPOPT-MA57.

Benchmark	Flat start	MATPOWER case data Power flow solution	Rel. error	
case1951rte	81,737.68	81,737.68	81,737.68	
case2383wp	1,868,511.76	1,868,511.76	1,868,511.76	2.68·10^-10
case2736sp	1,307,883.10	1,307,883.10	1,307,883.10	4.59·10^-10
case2737sop	777,629.28	777,629.28	777,629.28	1.29·10^-10
case2746wp	1,208,279.78	1,208,279.78	1,208,279.78	2.48·10^-10
case2746sp	1,631,775.05	1,631,775.05	1,631,775.05	3.68·10^-10
case2868rte	79,794.68	79,794.68	79,794.68	2.51·10^-9
case2869pegase	133,999.29	133,999.29	133,999.29	0·10^0
case3012wp	2,591,706.50	2,591,706.50	2,591,706.50	0·10^0
case3126sp	2,142,703.72	2,142,703.72	2,142,703.72	5.13·10^-10
case3357wp	7,412,030.65	7,412,030.65	7,412,030.65	9.98·10^-9
case4646rte	86,829.02	86,829.02	86,829.02	5.76·10^-9
case6470rte	98,345.49	98,345.49	98,345.49	1.02·10^-8
case6495rte	106,283.38	106,283.38	106,283.38	4.7·10^-9
case6515rte	109,804.23	109,804.23	109,804.23	4.55·10^-9
case9241pegase	315,911.56	315,911.56	315,911.56	1.47·10^-6
case_ACTIVSg2000	1,228,487.06	1,228,487.06	1,228,487.06	1.23·10^-8
case_ACTIVSg10k	2,485,898.73	2,485,898.71	2,485,898.73	8.25·10^-9
case13659pegase	386,106.56	386,106.55	386,106.55	1.17·10^-7

Table 56: Final objective function value ($/h$) for MIPS-MATLAB ‘.’

Benchmark	Flat start	MATPOWER case data Power flow solution	Rel. error	
case1951rte	—	81,737.68	81,737.68	2.45·10^-9
case2383wp	1,868,512.99	1,868,512.12	1,868,511.97	7.82·10^-9
case2736sp	1,307,883.13	1,307,883.13	1,307,883.13	7.63·10^-9
case2737sop	777,629.30	777,629.30	777,629.30	5.73·10^-9
case2746wp	1,208,279.81	1,208,279.81	1,208,279.81	2.98·10^-9
case2746sp	1,631,775.10	1,631,775.10	1,631,775.10	6.13·10^-11
case2868rte	—	79,794.69	79,794.69	8.77·10^-9
case2869pegase	133,999.29	133,999.29	133,999.29	7.46·10^-10
case3012wp	2,591,706.57	2,591,706.57	2,591,706.57	1.97·10^-9
case3126sp	2,142,703.76	2,142,703.76	2,142,703.77	1.03·10^-9
case3357wp	7,412,030.69	7,412,030.69	7,412,030.69	4.72·10^-10
case4646rte	—	86,829.02	86,829.02	4.95·10^-8
case6470rte	—	98,345.49	98,345.49	4.47·10^-8
case6495rte	—	106,283.40	106,283.40	4.7·10^-9
case6515rte	—	109,804.26	109,804.26	1.55·10^-9
case9241pegase	315,911.58	315,911.58	315,911.58	2.74·10^-9
case_ACTIVSg2000	1,228,487.33	1,228,487.24	1,228,487.41	1.34·10^-7
case_ACTIVSg10k	2,485,898.79	2,485,898.76	2,485,898.76	1.04·10^-8
case13659pegase	386,114.08	386,117.51	386,113.57	1.02·10^-5
Table 57: Final objective function value ($/h$) for MIPS-PARDISO.

Benchmark	Flat start	MATPOWER case data	Power flow solution	Rel. error
case1951rte	—	81,737.68	81,737.68	2.45×10⁻⁶
case2383wp	1,868,512.09	1,868,512.12	1,868,511.97	7.82×10⁻⁸
case2736sp	1,307,883.13	1,307,883.13	1,307,883.13	7.65×10⁻¹¹
case2737sop	777,629.30	777,629.30	777,629.30	3.73×10⁻⁹
case2746wop	1,208,279.81	1,208,279.81	1,208,279.81	2.98×10⁻⁹
case2748wp	1,631,775.10	1,631,775.10	1,631,775.10	6.13×10⁻¹³
case2868rte	—	79,794.69	79,794.69	8.77×10⁻⁹
case2869ppegase	133,999.29	133,999.29	133,999.29	2.24×10⁻⁹
case3012wp	2,591,706.57	2,591,706.57	2,591,706.57	1.97×10⁻⁹
case3126sp	2,142,703.76	2,142,703.76	2,142,703.77	1.03×10⁻⁹
case3575wp	7,412,030.69	7,412,030.69	7,412,030.69	4.72×10⁻¹⁰
case6468rte	—	86,829.02	86,829.02	4.95×10⁻⁸
case6470rte	—	98,345.50	98,345.49	4.47×10⁻⁸
case6495rte	—	106,283.40	106,283.40	4.7×10⁻⁸
case6515rte	—	—	109,804.26	0.10
case9241ppegase	315,912.45	315,912.18	315,911.59	2.72×10⁻⁹
case_ACTIVSg2000	1,228,487.33	1,228,487.24	1,228,487.35	8.09×10⁻⁹
case_ACTIVSg10k	—	2,485,898.79	2,485,898.78	1.29×10⁻⁹
case13659ppegase	386,114.09	386,117.51	386,114.37	8.86×10⁻⁶

Table 58: Final objective function value ($/h$) for FMINCON 2017b.

Benchmark	Flat start	MATPOWER case data	Power flow solution	Rel. error
case1951rte	—	81,737.76	81,737.69	8.52×10⁻⁷
case2383wp	1,868,511.08	1,868,511.92	1,868,511.85	4.49×10⁻⁷
case2736sp	1,307,883.17	1,307,883.18	1,307,883.10	6.25×10⁻⁹
case2737sop	777,629.44	777,629.30	777,629.33	1.76×10⁻⁷
case2746wop	1,208,281.12	1,208,279.88	1,208,279.88	1.03×10⁻⁶
case2748wp	1,631,775.12	1,631,819.03	1,631,775.17	2.69×10⁻⁵
case2868rte	—	79,794.79	79,794.79	1.06×10⁻⁶
case2869ppegase	133,999.37	133,999.29	133,999.40	8.06×10⁻⁷
case3012wp	2,591,706.66	2,591,706.66	2,591,706.66	0.10
case3126sp	2,142,703.84	2,142,711.45	2,142,711.45	3.56×10⁻⁸
case3375wp	7,412,030.80	7,412,030.80	7,412,030.80	2.43×10⁻⁸
case6468rte	—	—	—	—
case6470rte	—	—	—	—
case6495rte	—	106,287.86	106,287.86	4.7×10⁻⁹
case6515rte	—	109,804.41	109,804.39	1.27×10⁻⁷
case9241ppegase	315,912.34	315,911.85	315,911.62	2.29×10⁻⁹
case_ACTIVSg2000	1,228,487.08	1,228,486.37	1,228,487.15	7.57×10⁻⁶
case_ACTIVSg10k	—	2,485,940.14	2,485,899.14	1.65×10⁻⁵
case13659ppegase	386,107.83	386,106.64	386,106.64	3.09×10⁻⁶
Table 59: Final objective function value ($/h$) for KNITRO 11.

Benchmark	Flat start	MATPOWER case data	Power flow solution	Rel. error
case1951rte	—	81,737.68	81,737.68	1.22 \cdot 10^{-9}
case2383wp	1,868,511.83	1,868,511.83	1,868,511.83	1.61 \cdot 10^{-10}
case2736sp	1,831,775.10	1,831,775.10	1,831,775.10	6.19 \cdot 10^{-9}
case2737sop	1,307,883.13	—	1,307,883.13	0
case2746wop	1,208,279.82	1,208,279.82	1,208,279.82	5.05 \cdot 10^{-9}
case2746wp	1,631,775.10	1,631,775.10	1,631,775.10	6.19 \cdot 10^{-9}
case2868rte	—	—	79,794.68	0
case2869pegase	133,999.29	133,999.29	133,999.29	0
case3012wp	2,591,706.57	2,591,706.57	2,591,706.57	2.32 \cdot 10^{-10}
case3120sp	2,142,703.77	2,142,703.77	2,142,703.77	4.67 \cdot 10^{-11}
case3375wp	7,412,030.68	7,412,030.68	7,412,030.68	1.62 \cdot 10^{-10}
case_ACTIVSg2000	1,228,487.06	1,228,487.06	1,228,487.06	2.44 \cdot 10^{-9}
case_ACTIVSg10k	—	2,485,898.75	2,485,898.75	8.05 \cdot 10^{-11}
case9241pegase	315,912.41	315,912.41	315,911.56	2.69 \cdot 10^{-6}
case13659pegase	386,107.53	386,106.56	386,106.56	2.52 \cdot 10^{-6}

5 Conclusions

We investigated several OPF solution strategies combining different optimizers with four OPF formulations. All optimization frameworks demonstrate similar performance for small and medium size networks. Significant performance differences between optimizers tend to appear for sufficiently large cases. The choice of the initial guess was demonstrated to be crucial since it may either speed up convergence to the optimal solution, or delay it significantly. Reliable optimizers such as BELTISTOS seem to be marginally influenced by the choice of the OPF formulation. On the contrary all other optimizers seem to prefer one formulation over another. Although failures to converge may be attributed to the LS employed for the solution of the KKT systems, we observed that all methods favor power-based formulations with either polar or Cartesian voltage coordinates.

Acknowledgement

This project is carried out within the frame of the Swiss Centre for Competence in Energy Research on the Future Swiss Electrical Infrastructure (SCCER-FURIES) with the financial support of the Swiss Innovation Agency (Innosuisse - SCCER program).

References

[1] HSL. A collection of Fortran codes for large scale scientific computation.

[2] Richard H. Byrd, Jean Charles Gilbert, and Jorge Nocedal. A trust region method based on interior point techniques for nonlinear programming. *Mathematical Programming*, 89(1):149–185, Nov 2000.

[3] Richard H. Byrd, Mary E. Hribar, and Jorge Nocedal. An interior point algorithm for large-scale nonlinear programming. *SIAM Journal on Optimization*, 9(4):877–900, 1999.

[4] Richard H. Byrd, Jorge Nocedal, and Richard A. Waltz. *Knitro: An Integrated Package for Nonlinear Optimization*, pages 35–59. Springer US, Boston, MA, 2006.

[5] T. Davis. *Direct Methods for Sparse Linear Systems*. Society for Industrial and Applied Mathematics, 2006.

[6] Elizabeth D. Dolan and Jorge J. Moré. Benchmarking optimization software with performance profiles. *Mathematical Programming*, 91(2):201–213, Jan 2002.

[7] Nicholas Gould and Jennifer Scott. A note on performance profiles for benchmarking software. *ACM Trans. Math. Softw.*, 43(2):15:1–15:5, August 2016.

[8] Nicholas I. M. Gould and Jennifer A. Scott. A numerical evaluation of hsl packages for the direct solution of large sparse, symmetric linear systems of equations. *ACM Trans. Math. Softw.*, 30(3):300–325, September 2004.

[9] Nicholas I. M. Gould and Jennifer A. Scott. A numerical evaluation of hsl packages for the direct solution of large sparse, symmetric linear systems of equations. *ACM Trans. Math. Softw.*, 30(3):300–325, September 2004.
[10] D. Kourounis, A. Fuchs, and O. Schenk. Toward the next generation of multi-period optimal power flow solvers. *IEEE Transactions on Power Systems*, 33(4):4005–4015, 2018.

[11] Helmut Maurer and Hans D. Mittelmann. Optimization techniques for solving elliptic control problems with control and state constraints. part 2: Distributed control. *Computational Optimization and Applications*, 18(2):141–160, Feb 2001.

[12] Jorge J. More and Stefan M. Wild. Benchmarking derivative-free optimization algorithms. *SIAM Journal on Optimization*, 20(1):172–191, 2009.

[13] C. E. Murillo-Sánchez, R. D. Zimmerman, C. L. Anderson, and R. J. Thomas. Secure planning and operations of systems with stochastic sources, energy storage, and active demand. *IEEE Transactions on Smart Grid*, 4(4):2220–2229, Dec 2013.

[14] Victor H Quintana, Geraldo L Torres, and Jose Medina-Palomo. Interior-point methods and their applications to power systems: a classification of publications and software codes. *IEEE Transactions on Power Systems*, 15(1):170–176, 2000.

[15] O. Schenk and K. Gärtner. On Fast Factorization Pivoting Methods for Sparse Symmetric Indefinite Systems. *Elec. Trans. Numer. Anal.*, 23:158–179, 2006.

[16] Jennifer A. Scott, Yifan Hu, and Nicholas I. M. Gould. *An Evaluation of Sparse Direct Symmetric Solvers: An Introduction and Preliminary Findings*, pages 818–827. Springer Berlin Heidelberg, Berlin, Heidelberg, 2006.

[17] Andreas Wächter and Lorenz T. Biegler. On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. *Math. Program.*, 106(1, Ser. A):25–57, 2006.

[18] H. Wang. *On the Computation and Application of Multi-period Security-constrained Optimal Power Flow for Real-time Electricity Market Operations*. PhD thesis, Electrical and Computer Engineering, Cornell University, May 2007.

[19] H. Wang, C. E. Murillo-Sanchez, R. D. Zimmerman, and R. J. Thomas. On computational issues of market-based optimal power flow. *IEEE Trans. on Power Syst.*, 22(3):1185–1193, Aug 2007.

[20] R. D. Zimmerman, C. E. Murillo-Sanchez, and R. J. Thomas. MATPOWER: Steady-State Operations, Planning, and Analysis Tools for Power Systems Research and Education. *IEEE Trans. on Power Syst.*, 26(1):12–19, Feb 2011.

[21] Ray Zimmerman and Carlos Murillo-Sanchez. *Matpower 6.1-dev User’s manual*. Power Systems Engineering Research Center.