Genetic diversity and different cross-neutralization capability of porcine circovirus type 2 isolates recently circulating in South Korea

Seok-Jin Kang
Animal and Plant Quarantine Agency

Hyeonjeong Kang
Animal and Plant Quarantine Agency

Su-Hwa Yu
Animal and Plant Quarantine Agency

Hye Jeong Lee
Animal and Plant Quarantine Agency

Nakhyung Lee
KBNP

Bang-Hun Hyun
Animal and Plant Quarantine Agency

Sang-Ho Cha
Animal and Plant Quarantine Agency
virusmania@korea.kr
https://orcid.org/0000-0002-5201-5867

Research article

Keywords: Porcine circovirus type 2, genotype, antigenic diversity, neutralization

Posted Date: November 12th, 2019

DOI: https://doi.org/10.21203/rs.2.17188/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License

Version of Record: A version of this preprint was published on September 14th, 2020. See the published version at https://doi.org/10.1186/s12917-020-02549-3.
Abstract

Background: Porcine circovirus type 2 (PCV2) is a small single-stranded DNA virus and a primary cause of PCV-associated diseases (PCVAD) that result in substantial economic loss for swine farms. Between 2016 and 2018, PCV2 field viruses were isolated from PCVAD-affected swine farms in South Korea and investigated for genetic and antigenic heterogeneity.

Results: The genetic analysis of ORF2 showed that the genotype of the Korean PCV2 field isolates has been rapidly shifted from PCV2a or 2b to mutant PCV2b known as PCV2d with 82.6% to 100% amino acid sequence similarity. PCV2-specific monoclonal antibodies (mAbs) demonstrated variable antigen-binding activity to four representative Korean PCV2 field isolates [QIA215 (PCV2a), QIA418 (PCV2b), QIA169 (PCV2d), and QIA244 (PCV2d)] without genotype specificity, and one mAb showed neutralization activity to QIA215. In a cross-virus neutralization assay using anti-PCV2 sera of pigs and guinea pigs injected with a commercial vaccine and the Korean PCV2 field isolates, the anti-porcine sera of a commercial vaccine had high neutralization activity against QIA215 and QIA418 with statistically lower activity against PCV2d viruses. Anti-guinea pig sera of QIA215, QIA418, QIA169, and a commercial vaccine had high neutralization activity against all of the viruses with significantly lower activity against QIA244. Importantly, anti-guinea pig sera of QIA244 had high neutralization activity against all of the viruses.

Conclusions: This study confirmed genetic and antigenic diversity among recent PCV2 field isolates in Korean swine farms, and the strain-based difference in virus neutralization capability should be considered for more effective control by vaccination.

Background

Porcine circovirus type 2 (PCV2) causes severe economic loss in the swine industry worldwide. PCV2 infection is associated with various diseases, including porcine circovirus-associated disease (PCVAD), postweaning multi-systemic wasting syndrome (PMWS), porcine dermatitis and nephropathy syndrome (PDNS), and reproductive failure in pigs, especially when infected with porcine reproductive respiratory syndrome (PRRS) virus, porcine parvovirus (PPV), and mycoplasma, which lead to decreased production efficiency.

PCV2 is a small, non-enveloped virus with a circular, single-stranded DNA genome, and it is comprised of two major proteins, ORF1 and ORF2. The ORF1 on the positive strand encodes two nonstructural proteins (Rep-Rep’), which are essential for viral replication. The ORF2, namely capsid protein on the complementary strand, binds to the host receptor and induces immune responses (Trible et al., 2011). Based on ORF2 nucleotide sequences, the genotypes of PCV2 have been commonly classified as PCV2a, 2b, 2c, 2d, and 2e (Dupont et al., 2008; Guo et al., 2010; Harmon et al., 2015; Segales et al., 2008).

PCV2a was the dominant genotype in pig herds until the early 2000s. After introduction of the PCV2a-derived vaccine in 2006, PCV2b became the dominant genotype in the late 2000s (Cortey et al., 2011;
Timmusk et al., 2008; Wiederkehr et al., 2009). Since the PCV2d genotype was first reported in China and the US in the early of 2010s, the rapid spread of PCV2d has been documented worldwide (Guo et al., 2010; Xiao et al., 2015). In 2013, the PCV2d genotype was first isolated from cases of vaccine failure in Korea (Seo et al., 2014) and appeared highly prevalent afterward (Kwon et al., 2017). Besides, the PCV2d genotype was reported to have virulence comparable to PCV2a and 2b (Opriessnig et al., 2014).

Commercial vaccines based on PCV2a have been applied to the field since 2006 and are recognized as an effective tool to control outbreaks of PCVAD. However, many outbreaks of PCVAD have been recently reported from the farms vaccinated with PCV2a-based vaccines, from which field viruses of the PCV2d genotype have been isolated along with disappearance of PCV2a genotype strains. The genotype shift in the field has suggested that PCV field isolates may have gone through antigenic mutations, leading to escape from immune responses induced by commercially available vaccine strains (Franzo et al., 2016; Kekarainen et al., 2014; Reiner et al., 2015). In this study, we isolated PCV2 field viruses from swine farms vaccinated mostly with commercial PCV2a-based vaccines from 2016 to 2018, and investigated genetic diversity and difference of cross-neutralization activity of the field viruses.

Results

Genetic analysis of PCV2 circulating in swine farms of Korea

PCV2 infection was confirmed from the clinical samples, including lungs and lymph node tissues (n = 610) and serum (n = 717), obtained from 862 swine farms nationwide. Among the clinical samples subjected to ORF2 PCR, 66.2% (404/610) of the tissues and 24% (175/717) of the sera were positive. In the phylogenetic analysis based on ORF2 sequence (n = 164), all of the Korean isolates were classified into PCV2a (n = 4), 2b (n = 29), and 2d (n = 131), with 2.4%, 17.7%, and 79.9% infection rates, respectively (Fig. 1A and 1B). The isolation rate of PCV2a, 2b, and 2d field viruses from 2016 to 2017 was 2.7% to 5.7%, 27.8% to 28.3%, and 69.4% to 66.0%, respectively. In 2018, PCV2a was not detected, and PCV2b was isolated as 5.3% in the field, whereas PCV2d genotypes accounted for 94.7% of field isolates. In the pair-wise comparison of ORF2 NT and AA sequences, the NT (AA) sequence similarity of PCV2a, PCV2b, and PCV2d was 97.3% to 99.4% (96.2%–99.6%), 97.5% to 100% (97.0%–100%), and 97.6% to 100% (92.4%–100%), respectively, whereas the NT (AA) sequence similarity of all genotypes was 88.2% to 100% (82.6%–100%) (Fig. 1C).

Diverse reactivity of PCV2-specific mAbs against PCV2 genotypes

Based on the ORF2 AA sequence, the representative strains (QIA215, QIA418, QIA169, and QIA244) were examined for antigen-binding activity to mAbs. The six PCV2-specific mAbs showed diverse reactivity to PCV2 field viruses. As shown in Fig. 2, mAb–1 and mAb–3 had similar reactivity to PCV2 field viruses. In the case of mAb–2, it had significantly lower reactivity to QIA169 than the others. mAb–4 had significantly lower reactivity to QIA418 than other viruses. mAb–5 had significantly higher reactivity to QIA215 and QIA418 than other viruses. mAb–6 showed significantly lower reactivity to QIA244 than other viruses. The mAbs (1/200–1/3200 dilution) were mixed with the representative strains to evaluate
neutralization activity. In results (Fig. 3), most of the mAbs did not have neutralization activity against all of field viruses, whereas only mAb–2 showed neutralization activity (%VN of 30.5%–53.9%) only against QIA215 at 1/200 to 1/800 dilution.

Cross-virus neutralization of anti-PCV2 sera

To evaluate cross-neutralization activity among PCV2 strains, anti-PCV2 sera produced from pigs and guinea pigs were reacted with homologous and/or heterologous (genotype) viruses. For anti-pig sera injected with a commercial vaccine containing PCV2a capsid protein, the %VN was larger than 95% against QIA215 and QIA418 at 1:4 and 1:8 SN titer, and was significantly lower against PCV2d strains (69.9% for QIA169 at 1:8 SN titer, 29.3% and 0.3% for QIA244 at 1:4 and 1:8 SN titer, respectively) than against QIA215 or QIA418 (Fig. 4). When anti-guinea pig sera were applied to the virus neutralization assay, the %VN of anti-commercial vaccine sera was 80% to 95% against QIA215, QIA418, and QIA169 at all SN titers (Fig. 5A). The %VN of anti-QIA215 sera was approximately 80% to 100% against the homologous viruses, QIA418 and QIA169, without statistical difference at all SN titers (Fig. 5B). The %VN of anti-QIA418 sera was more than 85% against the homologous viruses, QIA215 and QIA169, at all SN titers (Fig. 5C). The %VN of anti-QIA169 sera was 80% to 100% against the homologous viruses, QIA418 and QIA215, without statistical difference (Fig. 5D). It was noted that the %VN of all of anti-sera except anti-QIA244 sera was statistically lower against QIA244 than the homologous or other heterologous viruses. The %VN against the QIA244 strain was 7.0% to 39.6%, 25.2% to 39.1%, 43.5% to 82.3%, and 56.4% to 68.8% for anti-sera of CircoFLEX, QIA215, QIA418, and QIA169 at all SN titers, respectively. Moreover, the %VN of anti-QIA244 sera was 80% to 98% against all of the homologous and heterologous viruses at all SN titers without statistical difference (Fig. 5E). In the further evaluation of viral neutralization activity against QIA244 using anti-PCV2 guinea pig sera between <1:2 and 1:32 SN titer, the %VN against QIA244 were 0% to 88.0%, 0% to 76.6%, 0% to 87.0%, and 0% to 89.0% at all SN titers for anti-sera of CircoFLEX, QIA215, QIA418, and QIA169, respectively, which were significantly lower than those against each homologous virus (Fig. 6).

Discussion

In the present study, 164 PCV2 field viruses were isolated from clinical samples from 2016 to 2018 in Korea to investigate genetic diversity and antigenic relatedness based on PCV2-specific mAb reaction and cross-neutralization activity of anti-PCV2 sera. ORF2 (capsid protein) sequence analysis showed that PCV2d has become a predominant genotype circulating in Korean swine farms with approximately 80% of isolation rates, whereas other genotypes were hardly isolated, with less than 3% and 18% for PCV2a and PCV2b, respectively. Further, the Korean field isolates of PCV2d showed up to 82.6% with PCV2a isolates, and also ranged from 92.4% to 100% among the same genotype for amino acid sequence similarity of the capsid protein. The prevalence of PCV2 genotypes was similar to the recent study (Xiao et al., 2016). The rapid shift of PCV2 genotypes has been observed throughout the world since the emergence of PCV2d in 2010 and 2012 in China and the US, respectively (Guo et al., 2010; Xiao et al., 2015). PCV2a was the only genotype isolated in the field before the PCV2a-based vaccination. However,
since the PCV2a vaccine was applied to the field in 2006, the genotype shift to PCV2b and PCV2d emerged and was expedited over time. The possible effect of the PCV2a vaccination on the genotype shift was documented in previous reports (Franzo et al., 2016; Kekarainen et al., 2014; Reiner et al., 2015), suggesting that the vaccination has the great potential to be a cause of vaccine-escaping mutants in the field. Therefore, along with the drastic genotype shift, the wide range of amino acid sequence differences in capsid protein for Korean recent field isolates suggested that the substantial antigenic variability including neutralization activity of the viruses also should be investigated. Despite extensive documentation of the genetic variation of PCV2, the antigenic diversity of PCV2 has not been well studied. The antigenic diversity among PCV2 strains was first demonstrated by the use of monoclonal antibodies (Lefebvre et al., 2008), whereas there was no difference of antigenic reactivity in Korean field PCV2d isolated from a vaccine failure farm (Seo et al., 2014). We also investigated the antigenic diversity among PCV2 field viruses by the antigenic reaction and virus neutralizing activity of mAbs and anti-PCV2 sera. One mAb (mAb–5) was strongly reacted against PCV2a and 2b, but not PCV2d. Two mAb (mAb–1 and mAb–3) were bound to all of the genotypes in similar specificity. The others (mAb–2, mAb–4, and mAb–6) were reacted with PCV2 viruses, regardless of genotype. Also, it was noted that mAb–2 had neutralizing activity only against QIA215, as shown in Fig. 3. The previous study also reported that mAb 8E4, an antibody produced against a PCV2a isolate, neutralized only PCV2a (Huang et al., 2011). Even if there has been no information about neutralization activity between the mAbs and PCV2d strains, the diverse reactivity of the mAbs against field isolates in this study suggested that the antigenic variability of neutralizing or non-neutralizing epitopes may exist among PCV2 genotypes as well as within the same genotype, failing to find genotype-specific mAb, as in the previous studies.

The neutralization activity of anti-PCV2 sera varied among the field viruses. Importantly, anti-PCV2 swine sera of the current commercial vaccine had low virus neutralization activity by less than 30% VN against a PCV2d strain, QIA244. At the same time, in cross-neutralization using anti-PCV2 guinea pig sera, each of the anti-PCV2 sera effectively neutralized the same genotype virus or the different genotype viruses except one of the PCV2d strains, QIA244. As shown in the results, while a PCV2d virus, QIA169, was efficiently neutralized by anti-sera of all viruses, the other PCV2d virus, QIA244, was not fully neutralized by anti-guinea pig sera of up to 1:32 SN titer. The low neutralization activity against the PCV2d virus, QIA244, was expected from the lowest ORF2 amino acid sequence similarity of QIA244 with other viruses (91.6% between QIA215 and QIA418; 89.7% between QIA215 and QIA169; 89.4% between QIA215 and QIA244; 93.1% between QIA418 and QIA169; 92.8% between QIA418 and QIA244; and 99.3% between QIA169 and QIA244). Importantly, the low neutralization activity within the PCV2d viruses (QIA244 vs. QIA169) was unexpected. In terms of cross-protection among different genotype viruses, experimental studies for cross-protection between genotypes showed that PCV2a- or PCV2b-based commercial vaccine was protective against concurrent infection of different genotype viruses (PCV2b and PCV2d strains) in pigs (Jeong et al., 2015). Nevertheless, experimental evidence from the controlled studies also supported that a viremia was effectively decreased by homologous vaccine more than heterologous vaccine in a concurrent PCV2a and PCV2d challenge (Opriessnig et al., 2013). Besides, viremia and shedding of virus were still observed in PCV2a-vaccinated pigs, although the viral load was decreased after the PCV2d
challenge (Opriessnig et al., 2017), which was observed from the studies using challenging viruses of other genotypes (Beach et al., 2010; Opriessnig et al., 2014; Opriessnig et al., 2017; Rose et al., 2016). Moreover, mutant PCV2b (PCV2d) was isolated from vaccinated farms (Guo et al., 2010; Seo et al., 2014). Therefore, the different virus neutralization efficiency among the same genotypes in this study and inconsistent protective efficacy of vaccine against the same genotype challenges in the previous studies suggest that the neutralization activity of PCV2 may be highly diverse among field strains in the field. Besides, since we observed differences of amino acid residues of the capsid protein between QIA169 and QIA244, further studies to clarify which amino acid is responsible for the difference of neutralization activity are needed to be conducted by mutating the amino acid residue of QIA244 to that of QIA169.

Conclusions

This study confirmed genetic variation including a dramatic genotype shift (from PCV2a or PCV2b to PCV2d) and demonstrated different virus neutralization activity of field isolates recently circulating in Korean swine farms, suggesting that the strain-based difference in virus neutralization capability should be considered for more effective control by vaccination

Methods

Clinical samples and isolation of viruses

A total of 717 sera and 489 tissues samples (422 lungs, 45 lymph nodes) were collected from domestic swine farms between 2016 and 2018. Clinical samples were obtained from the nationwide farms where the disease diagnosis was requested due to the problem of respiratory diseases.

The tissue samples (300–500 mg) were homogenized in phosphate-buffered saline (PBS) with MagNALyser Green Beads (Roche Diagnostics, Mannheim, Germany) and Precellys 24 homogenizer (Bertin Technologies, Montigny-le-Bretonneux, France) according to the manufacturer’s instructions. Homogenized tissues were centrifuged at 13,000 rpm, at 4°C for 5 minutes, and the supernatants were transferred into sterile Eppendorf tubes. The tissue homogenates and sera were kept at –70°C until use.

PCV2-positive clinical tissue extracts were infected with PK15 cells and PCV2 isolates, including PCV2a, 2b, and 2d genotypes, and were propagated with high titer ($10^5–10^6$ TCID$_{50}$/mL), confirming the viral infection with immunostaining using PCV2-specific monoclonal antibodies (mAbs). Based on the amino acid sequence of ORF2 and growth efficiency in PK15 cells, representative isolates of two PCV2d (QIA169 and QIA244) were selected for evaluation of cross-reactivity along with PCV2a (QIA215) and PCV2b (QIA418) genotypes.

Preparation of monoclonal antibodies (mAbs) and anti-sera

Six PCV2-specific mAbs named mAb–1, mAb–2, mAb–3, mAb–4, mAb–5, and mAb–6 produced against PCV2a genotype strains were kindly provided by Median Diagnostics Inc and BioPOA Ltd, Korea. Anti-
PCV2 sera of specific pathogen-free (SPF) pigs vaccinated with Ingelvac CircoFLEX (Boehringer Ingelheim Vetmedica, Rohrdorf, Germany) were also kindly provided by Median Diagnostics Inc. The anti-PCV2 pig sera were pooled to be used for viral neutralization assay. Anti-PCV2 sera of guinea pigs were prepared by injection of QIA215, QIA418, QIA169, QIA244, and Ingelvac CircoFLEX into guinea pigs (three heads for each virus). For the first injection, the field viruses (10⁶ TCID₅₀/mL) were mixed with Freund's complete adjuvants and intramuscularly injected into the guinea pigs. After 2 weeks, the second injection was conducted with the field viruses (10⁶ TCID₅₀/mL) mixed with Freund's incomplete adjuvants. The commercial vaccine was injected following the same immunization schedule as the field viruses. After 2 weeks of the second injection, all guinea pigs were euthanized, and the sera were collected. The sera were aliquoted and stored at −20°C until use. All guinea pigs were euthanized by an intramuscular injection of ketamine/xylazine under the guideline for use of controlled drugs.

Nucleotide (NT)/amino acid (AA) sequence and phylogenetic analysis

Viral genomic DNAs were extracted from tissue homogenates and sera using the DNeasy Blood & Tissue Kit (Qiagen, Hilden, Germany) according to the manufacturer's instructions. The full-length of the ORF2 gene was amplified using the HotStarTaq Plus Master Mix Kit and ORF2-specific forward primers (5'-CACGGATATTGTAGTCCTGGTCG-3') and reverse primers (5'-GCACCTTCGGATATACTG-3'). The resulting polymerase chain reaction (PCR) products were purified by the QIAquick PCR Purification Kit (Qiagen) and were confirmed by DNA nucleotide sequencing (Macrogen, Seoul, South Korea).

To analyze the genetic relatedness between the PCV2 isolates detected from swine farms in Korea, we performed multiple sequence alignment with CLC Main Workbench (Qiagen, Version 7.0.3). A neighbor-joining tree was constructed using MEGA software (Version 7.0), and the reliability of the constructed tree was evaluated by bootstrap analysis of 1000 replications.

Quantitative real-time PCR (qPCR)

Total DNA was isolated from the cells and supernatants obtained by the freezing-thawing method using the DNeasy Mini Kit (Qiagen). qPCR was performed using the LightCycler 480 II (Roche Diagnostics) and SYBER green script premix (Bio-Rad, CA, USA). The PCR cycling conditions consisted of denaturation at 95°C for 10 seconds, annealing at 64°C for 10 seconds, and extension at 72°C for 20 seconds for up to 40 cycles. The viral titer was estimated by standard curve.

Immunofluorescence assay

For immunofluorescence assay, infected PK15 cells were fixed with 80% acetone for 10 minutes at −20°C. After washing with 1×PBS, mAbs (1:200) as primary antibodies were reacted by incubating for 1 hour at room temperature (RT). After rinsing, Alexa fluoTM 488 goat anti-mouse immunoglobulin G (IgG, 1:200, Invitrogen, CA, USA) as a secondary antibody was incubated for 30 minutes at RT. The nuclei were stained for 5 minutes with Hoechst33258 (Invitrogen) diluted in 1×PBS (1:10,000). For the detection of PCV2-infected cells, fluorescent intensity of PCV2-positive cells per 1×10⁴ cellular nuclei was measured.
by ArrayScan VTI HCS (Thermo Scientific, MA, USA), and the number of PCV2-positive cells was counted with by the naked eye.

Viral neutralization assay

Viral neutralization assay was conducted following the method of Meerts and colleagues (Meerts et al., 2005). Briefly, 200 TCID₅₀ PCV2 at a volume of 100 μL was incubated for 1 hour at 37°C with 100 μL of serially diluted mAbs or anti-PCV2 sera. After incubation, this mixture was added to 5×10³ PK15 cells in four wells of a 96-well plate. After 2 hours at 37°C, the cell culture media were washed twice in 1×PBS, and fresh medium was added. Cells were fixed 5 days later. PCV2-infected PK15 cells were stained as previously described. The neutralization activity of mAbs and serum was expressed as a percentage of the viral neutralization (%VN) using the number of PCV2-positive cells.

[Due to technical limitations, the formula could not be displayed here. Please see the supplementary files section for the formula.]

Statistical analysis

The results were expressed as the mean ± standard error (SE) for triplicate experiments (n = 3). The statistical significance was determined using Statistica5.5 (StatSoft, OK, USA) with one-way analysis of variance (ANOVA) and post-hoc comparisons between the control group and each treatment group using Duncan's multiple comparison test. A p value <0.05 was considered to be statistically significant.

Abbreviations

AA: Amino Acid, mAb: monoclonal antibody, NT: Nucleotide, ORF: Open Reading Frame, PCV: Porcine circovirus, PCVAD: Porcine circovirus-associated disease, PDNS: porcine dermatitis and nephropathy syndrome, PMWS: Postweaning multi-systemic wasting syndrome, PPV: Porcine parvovirus, PRRS: Porcine reproductive respiratory syndrome, SN: Serum neutralization, TCID: Tissue culture infective dose, VN: Viral neutralization

Declarations

Ethics approval and consent to participate

The samples were collected from animal by authorized veterinarians during clinical examination following standard procedures and with the agreement of the farmers. All animal experiments were approved by Institutional Animal Care and Use Committee of Animal and Plant Quarantine Agency (QIA) and performed according to the Code of Laboratory Animal Welfare Ethics, QIA, Republic of Korea.

Consent for publication

Not applicable.
Competing interests

The authors declare that they have no competing interests.

Funding

This project was supported by research fund (Project No. QIA M–1543083–2019–21–02) from Animal and Plant Quarantine Agency (QIA), Republic of Korea.

Availability of data and materials

All data generated or analyzed during this study are included in this published article.

Authors’ contributions

SJK and HJK conducted the experiments and produced data. SHY, HJL, NHL and BHH provided field samples and worked for analysis of the data. SHC designed and supervised the study. SJK and SHC wrote the manuscript. All authors contributed to the final editing and approval of the manuscript.

Acknowledgments

Not applicable.

References

1. Beach, N.M., Ramamoorthy, S., Opriessnig, T., Wu, S.Q., Meng, X.J., 2010. Novel chimeric porcine circovirus (PCV) with the capsid gene of the emerging PCV2b subtype cloned in the genomic backbone of the non-pathogenic PCV1 is attenuated in vivo and induces protective and cross-protective immunity against PCV2b and PCV2a subtypes in pigs. Vaccine 29, 221-232.
2. Cortey, M., Olvera, A., Grau-Roma, L., Segales, J., 2011. Further comments on porcine circovirus type 2 (PCV2) genotype definition and nomenclature. Vet Microbiol 149, 522-523.
3. Dupont, K., Nielsen, E.O., Baekbo, P., Larsen, L.E., 2008. Genomic analysis of PCV2 isolates from Danish archives and a current PMWS case-control study supports a shift in genotypes with time. Vet Microbiol 128, 56-64.
4. Franzo, G., Cortey, M., Segales, J., Hughes, J., Drigo, M., 2016. Phylodynamic analysis of porcine circovirus type 2 reveals global waves of emerging genotypes and the circulation of recombinant forms. Mol Phylogenet Evol 100, 269-280.
5. Guo, L.J., Lu, Y.H., Wei, Y.W., Huang, L.P., Liu, C.M., 2010. Porcine circovirus type 2 (PCV2): genetic variation and newly emerging genotypes in China. Virol J 7, 273.
6. Harmon, K.M., Gauger, P.C., Zhang, J., Pineyro, P.E., Dunn, D.D., Chriswell, A.J., 2015. Whole-Genome Sequences of Novel Porcine Circovirus Type 2 Viruses Detected in Swine from Mexico and the United States. Genome Announc
7. Huang, L.P., Lu, Y.H., Wei, Y.W., Guo, L.J., Liu, C.M., 2011. Identification of one critical amino acid that determines a conformational neutralizing epitope in the capsid protein of porcine circovirus type 2. BMC Microbiol 11, 188.

8. Jeong, J., Park, C., Choi, K., Chae, C., 2015. Comparison of three commercial one-dose porcine circovirus type 2 (PCV2) vaccines in a herd with concurrent circulation of PCV2b and mutant PCV2b. Vet Microbiol 177, 43-52.

9. Kekarainen, T., Gonzalez, A., Llorens, A., Segales, J., 2014. Genetic variability of porcine circovirus 2 in vaccinating and non-vaccinating commercial farms. J Gen Virol 95, 1734-1742.

10. Kwon, T., Lee, D.U., Yoo, S.J., Je, S.H., Shin, J.Y., Lyoo, Y.S., 2017. Genotypic diversity of porcine circovirus type 2 (PCV2) and genotype shift to PCV2d in Korean pig population. Virus Res 228, 24-29.

11. Lefebvre, D.J., Costers, S., Van Doorselaere, J., Misinzo, G., Delputte, P.L., Nauwynck, H.J., 2008. Antigenic differences among porcine circovirus type 2 strains, as demonstrated by the use of monoclonal antibodies. J Gen Virol 89, 177-187.

12. Meerts, P., Van Gucht, S., Cox, E., Vandebosch, A., Nauwynck, H.J., 2005. Correlation between type of adaptive immune response against porcine circovirus type 2 and level of virus replication. Viral Immunol 18, 333-341.

13. Opriessnig, T., Gerber, P.F., Xiao, C.T., Halbur, P.G., Matzinger, S.R., Meng, X.J., 2014. Commercial PCV2a-based vaccines are effective in protecting naturally PCV2b-infected finisher pigs against experimental challenge with a 2012 mutant PCV2. Vaccine 32, 4342-4348.

14. Opriessnig, T., O'Neill, K., Gerber, P.F., de Castro, A.M., Gimenez-Lirola, L.G., Beach, N.M., Zhou, L., Meng, X.J., Wang, C., Halbur, P.G., 2013. A PCV2 vaccine based on genotype 2b is more effective than a 2a-based vaccine to protect against PCV2b or combined PCV2a/2b viremia in pigs with concurrent PCV2, PRRSV and PPV infection. Vaccine 31, 487-494.

15. Opriessnig, T., Xiao, C.T., Halbur, P.G., Gerber, P.F., Matzinger, S.R., Meng, X.J., 2017. A commercial porcine circovirus (PCV) type 2a-based vaccine reduces PCV2d viremia and shedding and prevents PCV2d transmission to naive pigs under experimental conditions. Vaccine 35, 248-254.

16. Reiner, G., Hofmeister, R., Willems, H., 2015. Genetic variability of porcine circovirus 2 (PCV2) field isolates from vaccinated and non-vaccinated pig herds in Germany. Vet Microbiol 180, 41-48.

17. Rose, N., Andraud, M., Bigault, L., Jestin, A., Grasland, B., 2016. A commercial PCV2a-based vaccine significantly reduces PCV2b transmission in experimental conditions. Vaccine 34, 3738-3745.

18. Segales, J., Olvera, A., Grau-Roma, L., Charreyre, C., Nauwynck, H., Larsen, L., Dupont, K., McCullough, K., Ellis, J., Krakowka, S., Mankertz, A., Fredholm, M., Fossum, C., Timmusk, S., Stockhofe-Zurwieden, N., Beattie, V., Armstrong, D., Grassland, B., Baekbo, P., Allan, G., 2008. PCV-2 genotype definition and nomenclature. Vet Rec 162, 867-868.

19. Seo, H.W., Park, C., Kang, I., Choi, K., Jeong, J., Park, S.J., Chae, C., 2014. Genetic and antigenic characterization of a newly emerging porcine circovirus type 2b mutant first isolated in cases of vaccine failure in Korea. Arch Virol 159, 3107-3111.
20. Timmusk, S., Wallgren, P., Brunborg, I.M., Wikstrom, F.H., Allan, G., Meehan, B., McMenamy, M., McNeilly, F., Fuxler, L., Belak, K., Podersoo, D., Saar, T., Berg, M., Fossum, C., 2008. Phylogenetic analysis of porcine circovirus type 2 (PCV2) pre- and post-epizootic postweaning multisystemic wasting syndrome (PMWS). Virus Genes 36, 509-520.

21. Trible, B.R., Kerrigan, M., Crossland, N., Potter, M., Faaberg, K., Hesse, R., Rowland, R.R., 2011. Antibody recognition of porcine circovirus type 2 capsid protein epitopes after vaccination, infection, and disease. Clin Vaccine Immunol 18, 749-757.

22. Wiederkehr, D.D., Sydler, T., Bueri, E., Haessig, M., Zimmermann, D., Pospischil, A., Brugnera, E., Sidler, X., 2009. A new emerging genotype subgroup within PCV-2b dominates the PMWS epizooty in Switzerland. Vet Microbiol 136, 27-35.

23. Xiao, C.T., Halbur, P.G., Opriessnig, T., 2015. Global molecular genetic analysis of porcine circovirus type 2 (PCV2) sequences confirms the presence of four main PCV2 genotypes and reveals a rapid increase of PCV2d. J Gen Virol 96, 1830-1841.

Figures

Figure 1
Genetic analysis of PCV2 ORF2 isolated from 2016 to 2018 in Korea. ORF2 sequences of 164 PCV2 isolates were analyzed with 47 PCV2 references. (A) Phylogenetic-tree analysis of Korean isolates by genotypes, PCV2a (●), PCV2b (□), and PCV2d (■). The phylogenetic tree was constructed using MEGA6 software with the neighbor-joining method, and bootstrap values were calculated on 1000 replicates. (B) Genotype isolation rate for PCV2 eld viruses according to isolation year. The parentheses indicate the number of isolates. (C) ORF2 nucleotide (NT) and amino acid (AA) sequence similarity of PCV2 isolates.

Figure 2

Diverse antigenic reactivity of mAbs to PCV2 genotypes. 200 TCID50 of QIA215, QIA418, and two PCV2d isolates (QIA169 and QIA244) were infected to PK15 cells, and the infected cells were reacted with mAb-1 (A), mAb-2 (B), mAb-3 (C), mAb-4 (D), mAb-5 (E), and mAb-6 (F). The average of fluorescent intensity per 1×10^4 cellular nuclei was measured by ArrayScan VTI HCS. Different superscript letters indicate significant differences (p<0.05).
Figure 3

Neutralization assay using mAbs for PCV2 genotypes. 200 TCID50 of QIA215 (●), QIA418 (□), QIA169 (○), and QIA244 (■) were neutralized with diluents (1/200 to 1/3200) of mAb-1 (A), mAb-2 (B), mAb-3 (C), mAb-4 (D), mAb-5 (E), and mAb-6 (F), and the neutralized mixtures were infected on PK15 cells. The fluorescent intensity of PCV2-positive cells at day 5 of post-infection was determined as a %VN by immunostaining with mAb-2 having the reactivity against all PCV2 genotypes. *Significantly different from control at p<0.05.

Figure 4
Viral neutralization assay using anti-PCV2 pig sera. (A) Anti-sera collected from SPF pigs vaccinated with Ingelvac CircoFLEX were neutralized with homologous and heterologous genotypes of PCV2. *Significantly different from control at p<0.05. (B) The %VN of Fig 4A was converted from the number of PCV2-positive cells counted per 1×10⁴ cells using ArrayScan VTI HCS. Nuclei were counterstained with Heches33258. The merged images were magnified as 100×.

Figure 5

Evaluation of cross-protection capability (%VN) among different PCV2 genotypes. The anti-sera collected from guinea pigs vaccinated with Ingelvac CircoFLEX (A), QIA215 (B), QIA418 (C), QIA169 (D), and QIA244 (E) were neutralized with four PCV2 viruses: QIA215 (●), QIA418 (□), QIA169 (●), and QIA244 (■). Cross-protection efficiency among genotypes was evaluated using anti-sera of 1:2 to 1:8 SN titer against homologous viruses (dot line). *Significantly different from control at p<0.05.
Figure 6

Further evaluation of viral neutralization activity (%VN) against QIA244 using anti-PCV2 guinea pig sera derived from different genotypes of PCV2. QIA244 isolates were neutralized with anti-sera of Ingelvac CircoFLEX (A), QIA215 (B), QIA418 (C), and QIA169 (D) of up to 1:32 SN titer. As a control, homologous viruses were compared for each anti-serum. *Significantly different from control at p<0.05.

Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

- Methodsformula.docx
- ARRIVEchecklist.pdf