Prebiotic supplementation effect on *Escherichia coli* and *Salmonella* species associated with experimentally induced intestinal coccidiosis in rabbits

Shawky M Aboelhadid\(^1\) Corresp., Equal first author, \(^1\) \(1\) Shaymaa Hashem \(^2\), El-Sayed Abdel-Kafy \(^2\), Lilian N Mahrous \(^1\), Eman M Fargahly \(^2\), Abdel-Azeem Abdel-Baki \(^3\), Saleh AlQuraishy \(^4\), Asmaa Kamel \(^1\) Equal first author, \(^1\)

1 Parasitology Department, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, Egypt
2 Animal Production Research Institute, Agricultural Research Center, Dokki, Giza, Egypt
3 Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
4 Zoology Department, College of Science, King Saud University, Riqah, Saudi Arabia

Corresponding Author: Shawky M Aboelhadid
Email address: shawky.abohadid@vet.bsu.edu.eg

Background: Coccidian infection may enhance the proliferation of gut Enterobacteriaceae. Bacterial infections in rabbits can negatively affect the body condition and cause high mortality, especially at young ages. Therefore, the effect of prebiotic supplementation on the presence of *Escherichia coli* and *Salmonella* species in rabbits experimentally infected with intestinal coccidiosis was investigated. **Methods:** Thirty male rabbits aged 35–40 days were divided into 3 equal groups. These groups were; prebiotic supplemented (PS), positive control (PC), and negative control (NC) groups. The prebiotic group was supplemented with 2 g/L of Bio-Mos® until the end of the experiment. At day ten post prebiotic supplementation; the PS and PC groups were inoculated orally with 5.0\(\times\)10\(^4\) sporulated oocysts of mixed species of rabbit *Eimeria*. The daily fecal examination was carried out from the day 4 post-infection (PI) until the day 8 PI. At day 5 and day 8 PI, 5 rabbits from each group (PS, PC, and NC) were humanely slaughtered and parts of intestinal tissue were collected for microbiological analysis. **Results:** There was a significant decrease \((P \leq 0.05)\) in the oocyst count in the PS group \((25.12 \times 10^4 \pm 10.36)\) when compared with the PC group \((43.43 \times 10^4 \pm 11.52)\) and this decrease was continued till the end of the experiment. Eleven *E. coli* isolates were detected in the collected samples with an overall prevalence of 24.4%. The highest prevalence of *E. coli* was in the PC group (13.33%) while the lowest one was in the PS group (4.44%). Meanwhile, four *Salmonella* serovars were isolated with an overall prevalence of 8.89%. The NC group showed one serovar (2.22%) and PC revealed three serovars (6.67%) while the prebiotic supplemented group didn’t show any *salmonella* isolate. Of *E. coli* isolates, five isolates \((O78, O125, O152, O115, O168)\) showed high resistance to florfenicol and neomycin.
(100%). Also, of salmonella serovars, thee serovars (Salmonella enterica subsp. enterica serovar Macclesfield, Salmonella enterica Subsp. enterica serovar canada and Salmonella enterica Subsp. enterica serovar Kisangani) showed high resistance to sulphamazole, amoxicillin and flumequin (75%) while it was sensitive to levofoxacin and ciprofoxacine (75%). The bacterial colony in this study was the same results at days 5 and 8 PI.

Conclusion: The use of prebiotic as prophylaxis in this experiment significantly reduced the prevalence of *E. coli* and *salmonella* associated with the intestinal coccidiosis in rabbits.
Prebiotic supplementation effect on *Escherichia coli* and *Salmonella* species associated with experimentally induced intestinal coccidiosis in rabbits

Shawky M Aboelhadid¹, Shaymaa Hashem², El-Sayed Abdel-Kafy², Lilian N Mahrous¹, Eman M Farghly², Abdel-Azeem Abdel-Baki³, Saleh AlQuraishy⁴, Asmaa Kamel¹

¹Parasitology Department, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, Egypt; ²Animal Production Research Institute, Agricultural Research Center, Dokki, Giza, Egypt; ³Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt; ⁴Zoology Department, College of Science, King Saud University, Saudi Arabia

Correspondence to: Shawky M Aboelhadid, E.mail: drshawky2001@yahoo.com;

Abstract

Background: Coccidian infection may enhance the proliferation of gut Enterobacteriaceae. Bacterial infections in rabbits can negatively affect the body condition and cause high mortality, especially at young ages. Therefore, the effect of prebiotic supplementation on the presence of *Escherichia coli* and *Salmonella* species in rabbits experimentally infected with intestinal coccidiosis was investigated.

Methods: Thirty male rabbits aged 35-40 days were divided into 3 equal groups. These groups were; prebiotic supplemented (PS), positive control (PC), and negative control (NC) groups. The prebiotic group was supplemented with 2 g/L of Bio-Mos® until the end of the experiment. At day ten post prebiotic supplementation; the PS and PC groups were inoculated orally with 5.0×10⁴ sporulated oocysts of mixed species of rabbit *Eimeria*. The daily fecal examination was carried out from the day 4 post-infection (PI) until the day 8 PI. At day 5 and day 8 PI, 5 rabbits from each group (PS, PC, and NC) were humanely slaughtered and parts of intestinal tissue were collected for microbiological analysis.
Results: There was a significant decrease ($P \leq 0.05$) in the oocyst count in the PS group ($25.12 \times 10^4 \pm 10.36$) when compared with the PC group ($43.43 \times 10^4 \pm 11.52$) and this decrease was continued till the end of the experiment. Eleven *E. coli* isolates were detected in the collected samples with an overall prevalence of 24.4%. The highest prevalence of *E. coli* was in the PC group (13.33%) while the lowest one was in the PS group (4.44%). Meanwhile, four *Salmonella* serovars were isolated with an overall prevalence of 8.89%. The NC group showed one serovar (2.22%) and PC revealed three serovars (6.67%) while the prebiotic supplemented group didn’t show any *salmonella* isolate. Of *E. coli* isolates, five isolates (O78, O125, O152, O115 and O168) showed high resistance to florfenicol and neomycin (100%). Also, of *salmonella* serovars, thee serovars (*Salmonella* enterica subsp. *enterica* serovar *Macclesfield*, *Salmonella* enterica Subsp. *enterica* serovar *canada* and *Salmonella* enterica Subsp. *enterica* serovar *Kisangani*) showed high resistance to sulphamazole, amoxicillin and flumequin (75%) while it was sensitive to levofloxac in and ciproflox a cine (75%). The bacterial colony in this study was the same results at days 5 and 8 PI.

Conclusion: The use of prebiotic as prophylaxis in this experiment significantly reduced the prevalence of *E. coli* and *salmonella* associated with the intestinal coccidiosis in rabbits.

Keywords: Rabbits; Coccidiosis; Prebiotic; *Salmonella* species, *Escherichia coli*; antibiotic resistance.

Introduction

Nowadays, the antibiotic resistance has emerged as the greatest challenge in the animal production and human health. The extensive use of antibiotics as growth promoters for livestock is the major cause of antibiotic resistance (WHO 2000; Millman et al. 2013; Mitchell et al. 2013). Rabbit is a good source of animal protein to fill the gap of the red meat shortage in some parts of the world, and sometimes reared for fur production as well as for medical and biological purposes (Dalle and Szendro 2011; Aboelhadid et al. 2019). Rabbit coccidiosis is caused by apicomplexan...
parasites of the genus *Eimeria* (Pakandl 2009). Coccidiosis is mainly occurring in young rabbits of one to three months’ age especially after weaning. The clinical signs of coccidiosis are: reduced appetite, enteritis, diarrhea, and in severe cases infection may result in death (El-Shahawi et al. 2011). There are two types of rabbit coccidiosis; intestinal coccidiosis which caused by several species including *E. intestinalis*, *E. perforans*, *E. magna*, *E. media*, and *E. irresidua* and, hepatic coccidiosis which caused by only *E. steidae* (Pakandl 2008). Rashwan and Marai (2000) postulated that the coccidian infection may enhance the proliferation of the gut Enterobacteriaceae. Bacterial infections in rabbits can negatively affect the body condition and cause high mortality, especially in young ages (Zahraei et al. 2009). Infections with Enterobacteriaceae are more challenging to treat, because few, and in some cases no, antimicrobials remain effective against them, because of their extensive resistance patterns and in addition the antibiotic chemical residue in animal products may create problems for human wellbeing (Smith et al. 2002).

Salmonella species were reported to infect rabbits in several rabbitries and the infection can lead to severely diseased condition (Agnoletti et al. 1999; Zahraei et al. 2009, Saco et al. 2012, Borelli et al. 2011).

Escherichia coli is an important cause of diarrhea in both animals and humans (Nguyen et al. 2006; Garcia et al. 2010). Also, it was reported to cause morbidity and mortality in large laboratory rabbits (Swennes et al. 2012, 2014). *Escherichia coli* was known as a reason for diarrhea in new born of New Zealand rabbits (Camarda et al. 2012, Hamed et al. 2013). Prescott (1978) found that the outbreak of severe diarrhea and death in young rabbits was associated with non-enterotoxigenic *Escherichia coli* (O153).

Recently, the prebiotics were defined as “a substrate that is selectively utilized by host microorganisms conferring a health benefit” (Gibson et al. 2017). The prebiotics administration could regulate specific gastrointestinal tract microorganisms to modify the microbiome (Gibson...
Abdelhady and El-Abasy (2015) found that the prebiotic and probiotic as dietary supplementation reduced the mortality rate and improved the adverse clinical signs of *Pasterella multocida* in experimentally infected rabbits. Tzortzis et al. (2005) realized that the oligosaccharides greatly inhibited the adhesion of *E. coli* and *Salmonella* to HT29 cells. Also, Yusrizal and Chen (2003) revealed that fructans supplementation induced an increase in *Lactobacillus* bacteria and a reduction in *Salmonella* in the broiler chickens. Moreover, it was noticed that prebiotics intake reduced the establishment of *Salmonella* in the course of hen molting (Donalson et al. 2008). Spring et al. (2015) demonstrated that Bio-Mos®, which has been used in the animal husbandry industry, plays a crucial role in animal nutrition and production. It was extracted from a selected strain of *Saccharomyces cerevisiae* yeast. Bio-Mos is inserted into animal diets to support overall animal performance and rapid growth. It is supported by over 734 trials and 114 peer-reviewed publications. There is considerable evidence now that Bio-Mos is among the best alternatives to antibiotic and growth promotants (Ferket et al. 2002).

The present study was therefore conducted to explore the effect of a prebiotic supplement as a prophylaxis on the presence of *E. coli* and *Salmonella* species in rabbits with experimentally induced intestinal coccidiosis.

Materials and methods

This experiment was conducted under the roles of the ethical standards approved by Faculty of Veterinary Medicine, Beni-Suef University, Egypt and its specific approval number was (BSUV-39/2019).

1. **Rabbits**

A total of thirty male rabbits recently weaned (V-Line breed) aged 35-40 days with an average weighed of one kg, were used in the current work. The experiment was carried out in a rabbit farm in a station of animal production in Sedes station for agriculture research, Beni-Suef, Egypt. The rabbits were housed in metal cages where a single rabbit was located in a separate
cage. Rabbits fed on anticoccidial drugs free commercial pelleted diet (18% crude protein, 14% crude fiber, 2500 k calories digestible energy /kg, 1% calcium and 0.5% phosphorus). The water and feed were *ad libitum*. The fecal examination was done daily before induction of the infection to be sure that the rabbits were free from any other parasites.

2. Experimental design of prebiotic prophylaxis efficacy

The thirty rabbits were randomly divided into 3 groups with 10 rabbits in each group. These groups were as following: Prebiotic supplemented group (PS), positive control group (PC), and negative control group (NC). The prebiotic group was supplemented with 2 g/L of prebiotic (BioMos®, ALLTECH, INC.CO. USA) derived from a selected strain of *Saccharomyces cerevisiae* yeast in the drinking water for ten days while the other groups remained as they were. At day ten post prebiotic supplementation; the PS and PC groups were orally inoculated with 5.0×10^4 sporulated oocysts of mixed *Eimeria* species including *E. media*, *E. flavescens*, *E. intestinalis* and *E. magna* for each rabbit. The supplementation of prebiotic in PS group continued till the day 8 post infection. Daily fecal examination and oocysts count were carried out from day 3 until day 8 post infection (PI). The oocyst count was done using McMaster chamber (Lillehoj and Ruff 1987). At the day 5 and the day 8 PI, 5 rabbits from each group at each period were humanely slaughtered. These days was selected based on a preliminary work in which the oocyst shedding started at day 5 PI and reached to its peak at day 8 PI as shown in the supplemented figure. Parts of the intestinal tissue were excised for microbiological analysis. These parts were labeled and kept in ice tank then rapidly transported to the laboratory for examination. The rabbits were handled and euthanized with least distressful to them. Cervical dislocation was done because they were not of heavy weight (Walsh et al. 2017). Death was verified by lack of breathing, stop palpable heartbeat and fixed dilated pupil.

3. Bacteriological examination
The intestinal tissue samples (jejunum, ileum, and cecum) were collected separately in sterile manner for each point of microbial investigation at 5 and 8 days PI. Consequently, a total 45 samples representing 15 animals at the selected days, 5 animals from each group and three organs (jejunum, ileum, and cecum) for each animal. These samples were subjected to microbiological examination for the presence of *Salmonella* and *E. coli*. Two intestinal swabs were taken from each part. The first swab was seeded onto MacConkey Agar (Difco) to isolate *E. coli*, and the subsequent colonies were recognized using Enterokit B and identified according to Lee et al. (2009). To isolate *Salmonella*, the second swab was processed according to Michael et al. (2003). The produced colonies were confirmed according to the standard procedures suggested by Holt et al. (1994), ISO 6579:2002 and Lee and Arp (1998). *Salmonella* isolates were serologically identified referring to somatic (O) and flagellar (H) antigens by slide agglutination using commercial antisera (Popof and Le Minor 2001).

4. **Antimicrobial susceptibility test**

The disk-diffusion method was applied to assess the antibiogram of the isolated microorganisms (Cruickshank 1975, CLSI/NCCLS 2009) against a series of 12 antibiotic discs (Tetracycline, Sulphamazole, Naldixic acid, Trimethoprim, Gentamycin, Levoflaxacin, Florfenicol, Amoxicillin, Flumequin, Ciproflaxacin, Amikacin, Neomycin) (Oxoid, Basingstoke, UK) (Supplemented table 1).

5. **Statistics**

ANOVA tests and subsequent Duncan’s multiple range tests were used to analysis of oocysts counts in different groups. Results were expressed as means ± SE. Probability of values less than 0.05 (p ≤ 0.05) was considered significant.

Results

1. **Prebiotic prophylaxis effect on the oocyst count and prevalence of both E. coli and Salmonella species at day 5 and day 8 post infection**
The oocyst excretion in the feces of infected rabbits began at the day 5 PI in PS and PC groups. Also, the OPG was significantly reduced in the PS group (25.12 × 10⁴ ± 10.36) when compared with the PC group (43.43 × 10⁴ ± 11.52) (Table 1). This significant (p ≤ 0.05) decrease in the oocyst count in the PS group continued till the end of the experiment (day 8 PI). Eleven E. coli isolates were detected during the present study with overall prevalence of 24.4%. These eleven isolates were three serotypes in NC with prevalence of 6.66%, six serotypes PC with prevalence of 13.33% and two serotypes in PS with a prevalence of 4.44% (Table 2). The highest prevalence of E. coli was in the PC group while the lowest one was in the PS group. Meanwhile, four salmonella serovars were isolated with overall prevalence of 8.89%. The NC group showed only one serovars with a prevalence of 2.22% and the PC group revealed three serovars with a prevalence of 6.67% while prebiotic supplemented group didn’t show any salmonella isolates (Table 2). The same results of E. coli and Salmonella prevalence were recorded at day 8 PI.

2. The intestinal isolates E. coli

Five E. coli isolates were recovered from the intestinal tissues and identified as: O78, O125, O152, O115 and O168. The most common isolates were O78 and O152 with prevalence of (27.27%) and they were isolated from jejunum and ileum. While the least common one was O125 (18.18%) which was isolated from ileum (Table 3). The isolates from the NC group were (O152, O152, O168), while the PC group had six serotypes (O168, O152, O125, O125, O78, O78). The PS group showed only two serotypes (O78, O115). The antimicrobial sensitivity tests of E. coli serotypes showed high resistance to florfenicol and neomycin (100%), tetracycline, nalidixic acid, trimethoprim and flumequin (81.81%) (Table 4 & Supplemented table 2).

3. Prevalence of Salmonellae species recovered from intestinal tissue

Three serovars were identified for four isolates; one Salmonella enterica subsp. Enterica serovar Macclesfield with prevalence of 25%, one Salmonella enterica subsp. enterica serovar canada with prevalence of 25% and two Salmonella enterica subsp. enterica serovar Kisangani
with prevalence of 50% (Table 5). *Salmonella* serovars isolates according the organs of isolation showed one *Salmonella enterica* subsp. *enterica* serovar *Maccles* isolated from caecum, one *Salmonella enterica* subsp. *enterica* serovar *Canada* isolated from jejunum and two *Salmonella enterica* subsp. *enterica* serovar *Kisangani* isolated from ileum (Table 5). The antimicrobial sensitivity tests of the isolated *Salmonella serovars* showed higher resistance to sulfamazole, amoxicillin and flumequin (75%) while they were sensitive to levofloxacine and ciprofloxacine (75%) (Table 6 & Supplemented table 3).

Discussion

The use of antibiotics as growth promoters in animals was banned by the European Union Commission (European Union Commission 2005), and since then, prebiotics and probiotics were actively investigated as safe natural alternatives to the antibiotics. Prebiotics were known to have valuable effects on the improvement of the host immune system, productivity and performance in addition to its bactericidal / bacteriostatic activities. The prebiotics were also used as growth promoters in the form of feed additives to increase growth of chickens (Ashayerizadeh et al. 2009). It was found that coccidial infection in most cases was associated with secondary bacterial and viral infections that may lead to mortality in infected host (Taylor et al. 2003, Kowalska et al. 2012).

Therefore, the present study was suggested to investigate the prevalence of bacterial infection in rabbit intestines experimentally infected with coccidiosis and the effect of prebiotic supplementation on it. In the prophylactic trial, the prevalence of *E. coli* was 6.66.11% in the NC group and 13.33% in the PC group while, it was 4.4% in the PS group. These findings were in agreement with those of Jouany et al. (2008), Kimse (2009) and Michelland et al. (2010). Prebiotics were proven to have positive effect on certain pathogens where they able to control enteric diseases associated with *E. coli* (Kritas and Morrison 2005, Timmerman et al. 2005). In this respect, Servin-Coccoonier (2003) found that the gram-positive bacterium *Lactobacillus lactis*
produced hydrogen peroxide and reduced the growth of *Escherichia coli* 0157:H7. In the present study the isolated *E. coli* showed high resistance against neomycin, florfenicol, flumequin, sulphamazole, trimethoprim, nalidixic acid and tetracycline while, they were sensitive to ciprofloxacin and amikacin. These outcomes similar to those of Flickinger and Fahey (2002), Zhao et al. (2018) and Makhol et al. (2011).

On the other hand, the prevalence of *Salmonella* was 2.22% in the NC group and 6.7% in the PC group while it was not detected in the PS group. The presence of *Salmonella* species with coccidiosis was previously reported by Arwaka et al. (1992). They suggested that the infection with *E. tenella* leading to changes in the balance of competitive adherence of bacteria which allowing more colonization of *S. typhimurium* and *Clostridium perfringens*. *Salmonella* isolates reported in the present study showed high resistance to sulphamazole, florfenicol, amoxicillin, flumequin and nalidixic acid while it revealed high sensitivity to ciprofloxacin, levofloxacin and gentamycin. Several previous studies have demonstrated antimicrobial sensitivity outcomes similar to those reported in the present study (Kumar et al. 2009, Camarda et al. 2012, Kim et al. 2012, Albuquerque et al. 2014, Agrawal et al. 2016, Lamas et al. 2016).

The present study showed high prevalence of *E. coli* and *Salmonella* serovars in the PC group that indicates a relation between the infection by the intestinal coccidiosis and the proliferation of enterobacteriaceae micro-organisms. This finding was supported by Szabóová et al. (2012) as they observed significant decrease in the bacterial prevalence in association with reduction in the *Eimeria* oocysts count in rabbits which were administered a dietary supplementation of natural substances. In addition, El-Ashram et al. (2020) found that the coccidiosis infection in post weaning rabbits mostly associated with *E. coli* and *Salmonella* species.

In the present study, the used prebiotic reduced the prevalence of *E. coli* and *Salmonella* species associated with experimentally induced coccidiosis in rabbits with reduction of the
adverse effect of coccidiosis. This in agreement with the results of El-Ashram et al. (2019) as they found that the prebiotic supplementation reduced the adverse effects of the intestinal coccidiosis in rabbits. Interestingly, Salmonella species was absent in the PS group which may reflect the ability of prebiotic to inhibit colonization of Salmonella. This finding supported by Micciche et al. (2018) as they showed that prebiotic creates of an environment that and inhibit Salmonella colonization and growth in chicken intestine. In addition, Tran et al. (2018) found that a prebiotic supplementation can cause inhibition to Salmonella and E. coli infections in pigs. Moreover, Girgis et al. (2020) realized that prebiotic (Actigen® a mannan-rich yeast cell wall-derived preparation) supplementation diminished the prevalence of Salmonella enteritis in cecal contents of layer chickens. Prebiotics are always used as feed additives to improve growth, endorse beneficial gastrointestinal microbiota, and decrease pathogens. The prebiotics increase short chain fatty acid (SCFA) production in the cecum which leading to pathogen reduction (Micciche et al. 2018, Girgis et al. 2020). The prebiotics promote the overall health and well-being of the bird through creation of an intestinal environment unfavorable for Salmonella colonization (Micciche et al. 2018).

In conclusion, the using of prebiotic as prophylaxis in this study, significantly reduced the prevalence of the E. coli and prevented the salmonella infection that associated with intestinal coccidiosis in rabbits. In addition, it reduced the intestinal coccidiosis adverse effect from the way of reduction of oocysts count.

Conflict of interest

None

Acknowledgements

This work was supported by Researcher supporting Project (RSP-2019/3), King Saud University.

References
Abdelhady DH, El-Abasy MA (2015) Effect of Prebiotic and Probiotic on Growth, Immuno-hematological responses and Biochemical Parameters of infected rabbits with Pasteurella multocida. Benha Vet Med J 28 (2):40–51

Aboelhadid SM, El-Ashram S, Hassan KM, Arafa WM, Darwish AB (2019) Hepato-protective effect of curcumin and silymarin against Eimeria stiedae in experimentally infected rabbits. Livst Sci. 2019, 221, 33–38.

Agnoletti F, Lenarduzzi M, Ricci A, Marotta A. (1999) Isolation of Salmonella spp, from Italian commercial rabbitries. CIHEAM-Options Méditerranéennes

Agrawal R and Hirpurkar SD (2016) prevalence of Salmonella spp. on exterior and interior of fertile eggs from vaccinated breeding hens of different breeds. J Dairy Vet Anim Res 3(5): 00095

Albuquerque AH, Maciel WC, Souza Lopes E, Castro Teixeira RS, Salles RPR, Machado DN, Bezerra WGA, Vasconcelos RH, Mendonça SV, Carbo CB (2014) Presence of Salmonella spp. in Oneday- old Chicks from Hatcherries in the Metropolitan Region of Fortaleza, Brazil Acta Sci Vet 42: 12-22

Ashayerizadeh A, Dabiri N, Ashayerizadeh O, Mirzadeh KH, Roshanfekr H, Mamooee M (2009) Effect of dietary antibiotic, probiotic and probiotic as growth promoters on growth performance, carcass characteristics and haematological indices of broiler chickens. Pak. J. Biol. Sci. 12: 52 – 57

Arakawa A, Fukaton T, Baba E, McDougald LR, Bailey JS, Blankenship LC (1992) Influence of coccidiosis on colonisation in broiler chickens under floor pen conditions. Poultry Science 71: 59Ñ63

Brink D, Schroder G, Pauwels P (2006) “The effect of strategic and tactical cause-related marketing on consumers’ brand loyalty”, Journal of Consumer Marketing 23(1): 15-25
Borrelli L, Fioretti A, Ruggiero V, Santaniello A, Cringoli G, Ricci A, Barco L, Menna LF, Dipinoto L (2011) *Salmonella Typhimurium* DT104 in Farmed Rabbits. J Vet Med Sci 73: 385–387

Camarda A, Pugliese N, Circella E, Caroli A, Legretto M, Pazzani C (2012) *Salmonella* Ser. *Typhimurium* isolated from rabbit farms: characterization and epidemiological implications. 10th World Rabbit Conger 1155–1158

CLSI/NCCIS (2009) Performance Standards for Antimicrobial Disk Susceptibility Tests, Approval Standard Tenth Edition and Performance Standards for Antimicrobial Susceptibility Test, M02-A10 and M100-S20

Cruickshank H, Duguid JP, Marmon BP, Swain RHA (1975) Medical Microbiology. The practice of Medical Microbiology, Vol. 150, 12th Ed. Churchill Livingstone, Edinburgh. London and New York

Dalle Zotte A, Szendro Z (2011) The role of rabbit meat as functional food. Meat Sci 88: 319–331

Donalson LM, McReynolds JL, Kim WK, Chalova VI, Woodward CL, Kubena LF, Nisbet DJ, Ricke SC (2008) The influence of a fructooligosaccharide prebiotic combined with alfalfa molt diets on the gastrointestinal tract fermentation, *Salmonella* enteritidis infection, and intestinal shedding in laying hens. Poult Sci. 87(7):1253-62

El-Ashram SA, Aboelhadid S M, Abdel-Kafy E M, Hashem SA, Mahrous L N, Farghly EM, Moawad UK, Kamel AA (2019) Prophylactic and Therapeutic E_cacy of Prebiotic Supplementation against Intestinal Coccidiosis in Rabbits. Animals 9: 965; doi:10.3390/ani9110965

El-Ashram S, Aboelhadid SM, Abdel-Kafy EM, Hashem SA, Mahrous LN, Farghly EM, Kamel AA (2020) Investigation of Pre- and Post-Weaning Mortalities in Rabbits Bred in Egypt, with Reference to Parasitic and Bacterial Causes. Animals, 10, 537; doi:10.3390/ani10030537
European Union Commission (2005) Ban on antibiotics as growth promoters in animal feed enters into effect. Regulation 1831/2003/ec on additives for use in animal nutrition, replacing directive 700/524//333c on additives in feedstuffs, Brussels, 22 December

Ferket PR, Parks CW, Grimes JL. BENEFITS OF DIETARY ANTIBIOTIC AND MANNANOLIGOSACCHARIDE SUPPLEMENTATION FOR POULTRY. Multi-State Poultry Meeting May 14-16, 2002

Flickinger EA, Fahey GC (2002) Pet food and feed applications of inulin, oligofructose and other oligosaccharide. Br J Nutr 87: 297 - 300

García A, Fox J G, Besser T E (2010) Zoonotic Enterohemorrhagic Escherichia coli : A One Health Perspective ILAR Journal 51(3): 221–232, https://doi.org/10.1093/ilar.51.3.221

Gibson GR, Hutkins R, Sanders ME, Prescott SL, Reimer RA, Salminen SJ, Scott K, Stanton C, Swanson KS, Cani PD, Verbeke K, Reid G. Expert consensus document: The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nat Rev Gastroenterol Hepatol. 2017 Aug;14(8):491-502. doi: 10.1038/nrgastro.2017.75. Epub 2017 Jun 14. PMID: 28611480.Gibson GR, Roberfroid MB (1995) Dietary modulation of the human colonic microbiota: introducing the concept of prebiotics. J Nutr 125, 1401– 1412

Girgis G, Powell M, Youssef M, Graugnard DE, King WD, Dawson KA (2020) Effects of a mannan-rich yeast cell wall-derived preparation on cecal concentrations and tissue prevalence of Salmonella Enteritidis in layer chickens. PLoS One. 15(4):e0232088. doi:10.1371/journal.pone.0232088

Hamed AM, Eid AAM, El-Bakrey RMM (2013) A review of rabbit diseases in Egypt. Wartazoa 23 (4): 185–194

Holt JG, Krieg NR, Sneath PH, Staley JT, Williams ST (1994) Bergey’s Manual of determinate bacteriology, ninth Edition. Williams and Wilkins, Baltimore
ISO 6579: (2002) International Organization for Standardization (2002). Horizontal method for the detection of *Salmonella* spp. Microbiology of food and animal feeding stuff.

Jouany JP, Gobert J, Medina B (2008) Effect of live yeast culture supplementation on apparent digestibility and rate of passage in horses fed a high fiber or high-starch diet. J Anim Sci 86: 339-347

Kimse M (2009) Caracterisation de l’ecosysteme cecal et digestive du lupin: controle nutritionnel et interaction avec la levure probiotique *Saccharomyces cerevisiae*. These de doctorat de l’universite’ de Toulouse

Kim MS, Lim TH, Jang JH, Lee DH, Kim BY, Kwon JH, Choi SW, Noh JY, Hong YH, Lee SB, Yang SY, Lee HJ, Lee JB, Park SY, Choi IS, Song CS (2012) Prevalence and antimicrobial resistance of *Salmonella* species isolated from chicken meats produced by different integrated broiler operations in Korea. Poult Sci 91: 2370-5

Kritas SK, Morrison RB (2005) Evaluation of probiotics as substitute for antibiotics in a large pig nursery. Vet. Rec. 2; 156 (14): 447–448

Kowalska Dorota, Bielański Paweł, Nosal Paweł, Kowal Jerzy (2012) Natural alternatives to coccidiostats in rabbit nutrition. Ann Anim Sci 12 (4): 561–574

Kumar Y, Sharma A, Mani KA (2009) High level of resistance to nalidixic acid in *Salmonella enterica* serovar Typhi in Central India. J Infect Dev Ctries 3(6): 467-469

Lamas A, Fernandez-No IC, Miranda JM, Vazquez B, Cepeda A, Franco CM (2016) Prevalence, molecular characterization and antimicrobial resistance of *Salmonella* serovars isolated from northwestern Spanish broiler flocks (2011-2015). Poult Sci 95: 2097-105

Lee MD, Arp LH (1998) A laboratory manual for the isolation and identification of avian pathogen Daviv E. Swayne, Chairman, John R. Glisson, Mark W. Jackwood, James E. Pearson, Willie M. Reed. Editorial Board for the American Association of Avian Pathologists, 4th ed., Chapter 3, Colibacillosis. 14–16
Lee GY, Jang HI, Hwang IG, Rhee MS (2009) Prevalence and classification of pathogenic Escherichia coli isolated from fresh beef, poultry, and pork in Korea. Int J Food Microbiol 134 (3): 196–200

Lillehoj, H.S., Ruff M.D., 1987. Comparison of disease susceptibility and subclass-specific antibody response in SC and FP chickens experimentally inoculated with E. tenella, E. acervulina, or E. maxima. Avian Dis. 31, 112–119.

Makhol BM, Habreh N, Sakural K (2011) Antibiotic resistance of E.coli isolated from poultry in Syria. Assiut Vet Med J 57 (128): 265-275

Michelland RJ, Combes S, Monteils V, (2010) Molecular analysis of the bacterial community in digestive tract of rabbit. Anaerobe 16: 61-65

MICHAEL, Geovana Brenner; SIMONETI, Roselis; COSTA, Marisa da and CARDOSO, Marisa (2003) Comparison of different selective enrichment steps to isolate Salmonella sp. from feces of finishing swine. Braz. J. Microbiol. [online]. 2003, vol.34, n.2 [cited 2020-12-07], pp.138-142. Available from: ISSN 1678-4405. https://doi.org/10.1590/S1517-83822003000200009.

Micciche AC, Foley SL, Pavlidis HO, McIntyre DR, Ricke SC (2018) A Review of Prebiotics Against Salmonella in Poultry: Current and Future Potential for Microbiome Research Applications. Front Vet Sci 5:191 doi:10.3389/fvets.2018.00191.

Millman JM, Waits K, Grande H, Marks AR, Marks JC, Price LB, Hungate BA. (2013) Prevalence of antibiotic-resistant E. coli in retail chicken: comparing conventional, organic, kosher, and raised without antibiotics. F1000Res. 2013 Jul 11;2:155. doi: 10.12688/f1000research.2-155.v2. PMID: 24555073; PMCID: PMC3901448. Mitchell SM, Ullman JL, Teel AL, Watts RJ, Frear C. 2013. The effects of the antibiotics ampicillin, florfenicol, sulfamethazine, and tylosin on biogas production and their degradation efficiency during anaerobic digestion. Bioresour. Technol. 149:244–52
Nguyen RN, Taylor LS, Tauschek M, Robins-Browne RM (2006) Atypical enteropathogenic Escherichia coli infection and prolonged diarrhea in children. Emerg Infect Dis 12:597–603

Pakandl M (2009) “Coccidia of rabbit: A review,” Folia Parasitol 56 (3): 153–166

Popoff M, Le Minor L (2001) Antigenic formulas of the Salmonella serovars, WHO Collaborating Centre for Reference and Research on Salmonella. World Health Organ

Prescott JF (1978) Escherichia Coli and Diarrhoea in the Rabbit. Vet Pathol 15(2):237-48

Rashwan AA, Marai IFM (2000) Mortality in young rabbits: a review. World Rabbit Sci 8(3): 111–124

Saco M1, Pérez de Rozas A, Aloy N, González J, Rosell JM, Badiola JI (2012) Salmonellosis in rabbits. Field and laboratory Results during 1999-2011. 10th World Rabbit Congress – September 3 - 6, Sharm El- Sheikh –Egypt, 1165- 1168

Servin AL, Coconnier MH (2003) Adhesion of probiotic strains to the intestinal mucosa and interaction with pathogens. Best Practice & Research Clinic Gastroenterol17 (5): 741–754

Smith DL, Harris AD, Johnson JA, Silbergeld EK, Morris JG (2002) Proceedings of the National Academy of Sciences, U.S.A. 99:6434-6439.

Spring P, Wenk C, Connolly A, Kiers A (2015) A review of 733 published trials on Bio-Mos®, a mannan oligosaccharide, and Actigen®, a second generation mannose rich fraction, on farm and companion animals. Journal of Applied Animal Nutrition, Vol. 3; e7; page 1 of 11

Szabóová R, Lauková A, Chrastinová I, Strompřová V, Monika SP, Plachá I, Vasilková Z, Chrenková M, Faix S (2012) Beneficial effect of plant extracts in rabbit husbandry. Acta Vet Brno 81: 245–250
Swennes AG, Ellen MB, Nicola MAP, Carolyn MM, Alexis G, Peter B M, Keith MA, James GF (2012) Enzootic Enteropathogenic Escherichia coli Infection in Laboratory Rabbits. J Clinic Microbiol 50 (7): 2353–2358

Swennes AG, Buckley EM, Madden CM, Byrd CP, Donocoff RS, Rodriguez L, Parry N M A, Fox JG (2014) Enteropathogenic Escherichia coli Prevalence in Laboratory Rabbits. Vet Microbiol 163(3-4): 395–398

Taylor MA, Catchpole J, Marshall J, Marshall, RN, Hoeben D (2003) Histopathological observations on the activity of diclazuril (Vecoxan) against the endogenous stages of Eimeria crandallis in sheep. Vet Parasitol 116(4): 305-14

Timmerman HM, Mulder L, Everts H, van Espen DC, van der Wal E, Klaassen G, Rouwers SM, Hartemink R, Rombouts FM, Beynen AC (2005) Health and growth of veal calves fed milk replacers with or without probiotics. J Dairy Sci 88(6): 2154–2165

Tran K, Jethmalani Y, Jaiswal D, Green EM (2018) Set4 Is a Chromatin-Associated Protein, Promotes Survival During Oxidative Stress, and Regulates Stress Response Genes in Yeast. J Biol Chem 14; 293(37):14429-14443 doi: 10.1074/jbc.RA118.003078

Tzortzis G, Goulas AK, Gee JM, Gibson GR (2005) A novel galactooligosaccharide mixture increases the bifidobacterial population numbers in a continuous in vitro fermentation system and in the proximal colonic contents of pigs in vivo. J Nutr 135(7):1726–31

Walsh JL, Percival A, Turner PV. (2017) Efficacy of blunt force trauma, a novel mechanical cervical dislocation device, and a non-penetrating captive bolt device for on-farm euthanasia of pre-weaned kits, growers, and adult commercial meat rabbits. Animals (Basel) 2017;7:100.

World Health Organization. Communicable Diseases Cluster. (2000). Overcoming antimicrobial resistance. https://apps.who.int/iris/handle/10665/66672

Yusrizal, Chen TC (2003) Effect of adding chicory fructans in feed on fecal and intestinal microflora and excreta volatile ammonia. Int J Poult Sci 2: 188-194
Zahraei T, Mahzouniehand M, Khaksar E (2010) Detection of Salmonella serovars in zoo and pet reptiles, rabbits, and rodents in Iran by culture and PCR methods. Comp Clin Pathol 19:199–202. doi: 10.1007/s00580-009-0841-8

Zhao Xiaonan, Jie Yang, Zijing Ju, Weishan Chang, Shuhong Sun (2018) Molecular Characterization of Antimicrobial Resistance in Escherichia coli from Rabbit Farms in Tai’an, China. BioMed Research International, Article ID 8607647, 7 pages.
Table 1 (on next page)

The oocysts count per gram of feces (OPG) in experimental infected rabbits for eight days post infection
Table 1. The oocysts count per gram of feces (OPG) in experimental infected rabbits for eight days post infection.

Group	4th day PI	5th day PI	6th day PI	7th day PI	8th day PI
Negative Control (NC)	0.00 ±0.00	0.00 ±0.00	0.00 ±0.00	0.00 ±0.00	0.00 ±0.00
Positive Control (PC)	0.00 ±0.00	43333.33±4409.58	173666.67±3282.95	380000±6082.95	440666.67±2962.73
Prebiotic supplemented (PS)	0.00 ±0.00	25166.67±2743.67	107666.67±4333.33	207000±4618.80	262000±2309.40

Data are presented as the means for each group and standard error of the mean (Mean ± SE). a, b, c means within the same column with different superscripts are significantly different at (P ≤ 0.05).
Table 2 (on next page)

Prevalence of *Enterobactericeae* infection in examined samples for each group after prebiotic supplementation as a prophylaxis for rabbit intestinal coccidiosis
Table 2. Prevalence of *Enterobacteriaceae* infection in examined samples for each group after prebiotic supplementation as a prophylaxis for rabbit intestinal coccidiosis

Group	Examined samples	E. coli infection Positive (%)	Examined samples	Salmonella infection Positive (%)	Total prevalence
Non-supplemented non-infected control group (NC)	15	3 (20%)	15	1 (6.67%)	4 (8.89%)
Non-supplemented infected control group (PC)	15	6 (40%)	15	3 (20%)	9 (60%)
Prebiotic supplemented infected group (PS)	15	2 (13.33)	15	0	2 (13.33%)
Total	45	11 (24.44%)	45	4 (8.89%)	15
Table 3 (on next page)

Grouping of *E. coli* isolates recovered from different organs of prebiotic supplemented rabbits
Table 3. Grouping of *E. coli* isolates recovered from different organs of prebiotic supplemented rabbits

E. coli serogroups	No. of isolates	%	Organs of isolation
O78	3	27.27	Jejunum and Ilium.
O125	2	18.18	Ilium.
O152	3	27.27	Jejunum and Ilium.
O115	1	9.09	Caecum.
O168	2	18.18	Caecum and Ilium.
Total	**11**	**100**	
Table 4 (on next page)

Antimicrobial sensitivity of *E.coli* isolates in examined samples of prebiotic supplemented rabbits
Table 4. Antimicrobial sensitivity of *E.coli* isolates in examined samples of prebiotic supplemented rabbits

Antimicrobial agents	Resistance	Intermediate	Sensitive			
	NO	%	NO	%	NO	%
Tetracycline	9	81.81	2	18.18	0	
Sulphamazole	8	72.72	3	27.27	0	
Naldixic acid	9	81.81	2	18.18	0	
Trimethoprim	9	81.81	2	18.18	0	
Gentamycin	6	54.54	4	36.36	1	
Levofloxacin	8	72.72	3	27.27	0	
Florfenicol	11	100	0	0	0	
Amoxicillin	4	36.36	6	54.54	1	
Flumequin	9	81.81	1	9.09	1	
Ciprofloxacin	4	36.36	5	45.45	2	
Amikacin	1	9.09	4	36.36	6	
Neomycin	11	100	0	0	0	
Table 5 (on next page)

Prevalence of *Salmonella* serovars isolated from the examined samples of prebiotic supplemented rabbits
Table 5. Prevalence of *Salmonella* serovars isolated from the examined samples of prebiotic supplemented rabbits

Salmonella serovars	No. of isolates	Group	Organ of isolation	Prevalence %
S.Macclesfield	1	PC	Caecum	25%
S.Canada	1	NC	Jujenum	25%
S.Kisangani	2	PC	Ilium	50%
Table 6 (on next page)

Antimicrobial sensitivity of *Salmonella* serovars from the examined samples of prebiotic supplemented rabbits
Table 6. Antimicrobial sensitivity of *Salmonella* serovars from the examined samples of prebiotic supplemented rabbits

Antimicrobial agents	Resistance	Intermediate	Sensitive			
	NO	%	NO	%	NO	%
Tetracycline	2	50	2	50	0	0
Sulphamazole	3	75	1	25	0	0
Naldixic acid	2	50	2	50	0	0
Trimethoprim	0	0	2	50	2	50
Gentamycin	1	25	1	25	2	50
Levofloxacine	0	0	1	25	3	75
Florfenicol	2	50	2	50	0	0
Amoxicillin	3	75	1	25	0	0
Flumequin	3	75	1	25	0	0
Ciprofloxacine	0	0	1	25	3	75
Amikacin	1	25	1	25	2	50
Neomycin	1	25	3	75	0	0