Comparison between robotic-assisted and laparoscopic sphincter-preserving operations for ultra-low rectal cancer

Tadahiro Kojima | Hitoshi Hino | Akio Shiomi | Hiroyasu Kagawa | Yusuke Yamaoka | Shoichi Manabe | Shunichiro Kato | Marie Hanaoka

Division of Colon and Rectal Surgery, Shizuoka Cancer Center, Shizuoka, Japan

Correspondence
Hitoshi Hino, Division of Colon and Rectal Surgery, Shizuoka Cancer Center, Shizuoka, Japan.
Email: h.hino@scchr.jp

Abstract

Aim: Sphincter-preserving operations for ultra-low rectal cancer include low anterior and intersphincteric resection. In low anterior resection, the distal rectum is divided by a transabdominal approach, which is technically demanding. In intersphincteric resection, a perineal approach is used. We aimed to evaluate whether robotic-assisted surgery is technically superior to laparoscopic surgery for ultra-low rectal cancer. We compared the frequency of low anterior resection in cases of sphincter-preserving operations.

Method: We investigated 183 patients who underwent sphincter-preserving robotic-assisted or laparoscopic surgery for ultra-low rectal cancer (lower border within 5 cm of the anal verge) between April 2010 and March 2020. The frequency of low anterior resection was compared between laparoscopic and robotic-assisted surgeries. The clinicopathological factors associated with an increase in performing low anterior resection were analyzed by multivariate analyses.

Results: Overall, 41 (22.4%) and 142 (77.6%) patients underwent laparoscopic and robotic-assisted surgery, respectively. Patient characteristics were similar between the groups. Low anterior resection was done significantly more frequently in robotic-assisted surgery (67.6%) than in laparoscopic surgery (48.8%) \((P = 0.04)\). Multivariate analyses showed that tumor distance from the anal verge \((P < 0.01)\) and robotic-assisted surgery \((P = 0.02)\) were significantly associated with an increase in the performance of low anterior resection. The rate of postoperative complications or pathological results was similar between the groups.

Conclusion: Compared with laparoscopic surgery, robotic-assisted surgery significantly increased the frequency of low anterior resection in sphincter-preserving operations for ultra-low rectal cancer. Robotic-assisted surgery has technical superiority over laparoscopic surgery for ultra-low rectal cancer treatment.

KEYWORDS
intersphincteric resection, laparoscopic surgery, low anterior resection, robotic surgery, sphincter-preserving operations
1 | BACKGROUND

Surgical outcomes of robotic-assisted surgery (RS) for rectal cancer have recently been reported. Several studies have shown excellent outcomes with RS in terms of urinary function, sexual function, defecatory function, and local recurrence rate for rectal cancer compared to those achieved by laparoscopic surgery (LS) or open surgery (OS). To date, differences in the types of RS and LS for low rectal cancer have not been fully investigated. The advanced technology of RS allows sphincter-preserving operations (SPOs) to be performed more often than LS or OS. Further, RS enables patients with low rectal cancer to avoid abdominoperineal resection (APR) and the creation of a permanent stoma, suggesting that RS would be technically superior. Nevertheless, the indications for SPOs are determined not only by technical factors but also by anorectal function and lifestyle. SPOs markedly influence postoperative defecatory function. Consequently, preoperative anorectal functions and the patient’s acceptance of postoperative bowel dysfunction must always be considered when contemplating an SPO. Therefore, to evaluate the technical superiority of RS for rectal cancer in terms of selecting the type of operation, investigating only the frequency of SPOs would be insufficient.

For a more detailed investigation of the technical superiority of RS with regards to the operation type, we focused on two SPOs, low anterior resection (LAR) and intersphincteric resection (ISR), performed for ultra-low rectal cancer. Generally, LAR is performed when the distal rectum can be divided using linear staplers via a transabdominal approach, and ISR is performed when this is not possible. Dividing the distal rectum via the transabdominal approach is technically demanding, and the type of SPOs that can be performed depends mainly on technical factors. Therefore, the frequency of conducting LAR by a specific procedure can indicate the technical superiority of that procedure for ultra-low rectal cancer. Thus, in this study, we compared the frequency of LAR between RS and LS in patients who underwent SPOs for ultra-low rectal cancer to evaluate whether RS was technically superior to LS.

2 | METHODS

2.1 | Patient selection

Data were collected from the institutional database at Shizuoka Cancer Center and analyzed retrospectively. Between April 2010 and March 2020, 322 patients with primary ultra-low rectal adenocarcinoma (lower edge of the tumor within 5 cm from the anal verge [AV]) underwent SPO with curative intent. SPOs included LAR and ISR, and all patients underwent transabdominal total mesorectal excision (TME). No patient underwent transanal TME (TaTME). During LAR, both TME and division of the distal rectum using a linear stapler were performed via a transabdominal approach. The coloanal anastomosis was performed using the double-stapling technique. ISR was defined as a surgical procedure that included both the transabdominal and transanal approaches. In ISR, TME was performed using the transabdominal approach, followed by transanal resection. This involved surgical dissection of the intersphincteric space and en bloc resection of the rectum, together with the internal anal sphincter within the anatomical anal duct. After removal of the specimen, a coloanal anastomosis was performed using transanal manual suturing in all patients. Patients in whom the intersphincteric space could be entered and partial excision of the internal anal sphincter was performed via the transabdominal approach were included in the LAR group, as previously described.

We excluded patients with tumors that extended into the anal canal, those who underwent OS, those who received preoperative treatment such as chemotherapy and/or radiotherapy, those with multivisceral resection, and those with a history of colectomy other than appendectomy (Figure 1). Consequently, 183 patients were enrolled in this study.
Preoperative assessment included digital rectal examination, colonoscopy, computed tomography, contrast enema, and magnetic resonance imaging. If necessary, positron-emission tomography/computed tomography was performed. Tumor staging was performed using the tumor node metastasis classification. When the serosa of the rectum above the peritoneal reflection was invaded by the tumor, tumor depth was classified as T4a. Cases with T4b tumors were excluded from this study because multivisceral resection was required for these tumors. The indications for lateral lymph node dissection (LLD) were low rectal adenocarcinoma with cT3-4 or cT1-2 with metastasis to the lateral lymph nodes. However, LLD was not performed if the patients without lateral lymph node metastasis on preoperative images were 75 years or older, had severe comorbidities, or received preoperative chemoradiation. Consistent with a previous report, we regarded lateral lymph nodes as regional lymph nodes.

The study was approved by the institutional review board of Shizuoka Cancer Center (Approval Code: J2020-37-2020-1-3).

2.2 | Indications for surgical approach

During the study period, we generally performed minimally invasive surgery (MIS), including LS and RS. However, tumors that required multivisceral resection with urinary diversion or reconstruction or total pelvic exenteration were treated using OS. Since there were significant differences in patient background between the OS and MIS groups, patients who underwent OS were excluded from this study. Furthermore, in the early to mid-stages of the study period, LLD was performed via OS or RS; LS was not performed for the cases of LLD. At our institution, RS was introduced in December 2011. Further, RS for rectal cancer was not covered under the national public health insurance plan in Japan until March 2018, making it more expensive than LS or OS until this period. After the patients provided informed consent, they indicated their preference for RS, LS, or OS, and the procedure was selected accordingly. All treatment strategies were approved in a multidisciplinary team conference.

2.3 | Indications for SPO

Sphincter-preserving operation was indicated only for patients with the following characteristics: a clear resection margin, acceptable postoperative anal function, and absence of invasion into the levator ani muscles and external anal sphincter. The standard operative rule was total TME with autonomic nerve preservation. Japanese D2 or D3 lymph node dissection was performed. LAR was indicated for patients in whom the transabdominal approach could divide the distal rectum using linear staplers. ISR was performed when the distal rectum could not be divided via the transabdominal approach, either because of technical difficulties or to ensure a sufficient distal resection margin. ISR was excluded for patients with poorly differentiated adenocarcinoma or with decreased anal sphincter tonus.

2.4 | Surgical procedure

The institutional standard surgical procedure has been described elsewhere. The surgical procedure was almost the same in both LAR and ISR up until dividing the rectum. In brief, the inferior mesenteric artery and vein ligations and colon mobilization were performed via a medial-to-lateral approach. The rectum was mobilized down to the pelvic floor for TME. During LAR, the distal rectum was divided using linear staplers via the transabdominal approach. In RS, a robotic-assisted or a conventional laparoscopic linear stapler was used. In LS, only a conventional laparoscopic linear stapler was used. The specimen was extracted through a mini-laparotomy at the umbilical site. The standard double-stapling technique was utilized for end-to-end anastomosis. A diverting stoma was constructed if necessary. In patients who underwent ISR, intersphincteric dissection and specimen extraction were performed via the transanal approach. The coloanal anastomosis was hand-sewn. A diverting stoma was constructed in all patients who underwent ISR. During the transanal part of the surgery, the surgical procedure was the same in both RS and LS.

2.5 | Outcome variables

We collected data on patient characteristics as well as perioperative outcomes, including the frequency of LAR, postoperative complications, and pathological results. Postoperative complications within 30 days were categorized according to the Clavien-Dindo classification system. The association between the clinicopathological factors and SPO type was analyzed. The radicality of each surgical procedure was defined as R0 (macroscopic complete resection with no microscopic residual tumor), R1 (macroscopic complete resection with microscopic residual tumor at the resection margin), or R2 (macroscopic residual tumor).

2.6 | Statistical analyses

Parametric variables are expressed as median values. The Fisher’s exact test, chi-squared test, and Mann-Whitney U test were appropriately used to assess the significance of between-group differences. Univariate and multivariate logistic regression analyses were performed to identify factors associated with the performance of LAR. A P-value of <0.05 was considered significant. All statistical analyses were performed using R software version 3.5.2 (The R Foundation for Statistical Computing).
3 | RESULTS

A total of 183 consecutive patients who underwent SPOs for ultra-low rectal cancer were analyzed. The characteristics of the 41 (22.4%) patients who underwent LS and 142 (77.6%) patients who underwent RS are summarized in Table 1. Although the clinical stage in the RS group tended to be more advanced than that in the LS group, the difference was not statistically significant. In the RS group, the lower edge of the tumor was located just 2 cm from the AV in only one case. In the remaining 182 cases, the lower edge of the tumor was located within 3-5 cm of the AV.

Table 2 summarizes the perioperative outcomes. Compared to the LS group, LLD was performed significantly more frequently in the RS group. Operative times were significantly longer in the RS group than in the LS group. However, when the patients who underwent LLD were excluded, operative times in the RS group tended to be shorter than those in the LS group (Table S1). The frequency of LAR was significantly higher and blood loss was significantly lower in the RS group than in the LS group. The distal cut-end lines in ISR cases are summarized in Table S2.

Table 3 shows the pathological results. Complete local resection (R0) rates and distal resection margins were similar between the LS and RS groups.

Table 4 summarizes the postoperative complications. The rate of postoperative complications (≥Clavien-Dindo grade II) was similar between the groups. Postoperative mortality did not occur in either group. Table 5 shows the pathological results. Complete local resection (R0) rates and distal resection margins were similar between the LS and RS groups.

4 | DISCUSSION

In this study, we evaluated whether RS has technical superiority over LS for ultra-low rectal cancer by comparing LAR frequency in patients who underwent SPOs. Compared to LS, RS was significantly associated with an increased frequency of LAR in SPOs for ultra-low rectal cancer. Our findings support the argument that RS has technical superiority over LS for ultra-low rectal cancer treatment.

Minimally invasive surgery for low rectal cancer requires highly advanced surgical skills. The lower the tumor location in the deep and narrow pelvis, the more technically challenging the procedure becomes. Previously, APR was the standard procedure for low...
However, ISR is now widely recognized as an acceptable SPO procedure. Moreover, recent advances in surgical techniques have made it possible to perform LAR, including partial excision of the internal anal sphincter, via a transabdominal approach for ultra-low rectal cancer. In other words, LAR for ultra-low rectal cancer requires mobilization of the rectum, even in the anal canal, by the transabdominal approach, which still requires highly advanced surgical techniques.

In this study, LAR frequency was significantly higher in the RS group (67.6%) than in the LS group (48.8%), and multivariate analyses showed that RS and the tumor distance from the AV were significantly associated with an increased frequency of LAR for ultra-low rectal cancer. Furthermore, there were no significant differences in the postoperative complications or the pathological results between the RS and LS groups. Although the operative time was longer in the RS group, this was attributed to the higher proportion of patients who underwent LLD in the RS group. Hence, compared to LS, RS allows transection of the distal rectum for ultra-low rectal cancer via the transabdominal approach without compromising surgical and pathological outcomes. These findings suggest that RS has technical superiority over LS for

Table 3: Univariate and multivariate analyses of factors linked to LAR performance frequency

	ISR (n = 67)	LAR (n = 116)	Univariate	Multivariate				
			Odds ratio	95% CI	P	Odds ratio	95% CI	P
Age (years)			1.01	0.98-1.04	0.46	1.01	0.98-1.05	0.54
Sex								
Male	45 (36.3%)	79 (63.7%)	0.96	0.50-1.82	0.90	1.03	0.46-2.33	0.94
Female	22 (37.3%)	37 (62.7%)						
BMI (kg/m²)	23.1 (12.8-32.3)	23.0 (15.7-37.6)	0.99	0.91-1.07	0.76	1.03	0.93-1.14	0.58
Tumor distance from the AV (cm)	4.0 (2.0-5.0)	5.0 (3.0-5.0)	3.40	2.06-5.61	<0.01	3.52	1.93-6.40	<0.01
Tumor size (mm)	33 (2-121)	38 (2-122)	1.01	0.99-1.02	0.20	1.01	0.99-1.03	0.48
Clinical T stage								
T1-2	36 (40.0%)	54 (60.0%)	1.33	0.73-2.44	0.35	0.99	0.39-2.49	0.98
T3-4	31 (33.3%)	62 (66.7%)						
Clinical N stage								
N0	43 (37.4%)	72 (62.6%)	1.09	0.59-2.04	0.78	0.83	0.36-1.91	0.66
N1-2	24 (35.3%)	44 (64.7%)						
Surgical approach								
LS	21 (51.2%)	20 (48.8%)	2.19	1.08-4.44	0.03	2.93	1.22-7.03	0.02
RS	46 (32.4%)	96 (67.6%)						

Note: Values are expressed as number (percentage) or median value (range).

Table 4: Postoperative complications

	LS (n = 41)	RS (n = 142)	P
≥Grade II (Clavien-Dindo)	11 (26.8%)	35 (24.6%)	0.84
Ileus	3 (7.3%)	4 (2.8%)	0.19
Anastomotic leakage	2 (4.9%)	8 (5.6%)	1.00
Enteritis	2 (4.9%)	2 (1.4%)	0.22
Urinary tract infection	1 (2.4%)	7 (4.9%)	0.69
Urinary retention	1 (2.4%)	6 (4.2%)	1.00
Wound infection	1 (2.4%)	3 (2.1%)	1.00
Pneumonia	1 (2.4%)	2 (1.4%)	0.54
Abdominal abscess	1 (2.4%)	1 (0.7%)	0.40
Intra-abdominal bleeding	0 (0.0%)	3 (2.1%)	1.00
Others	1 (2.4%)	3 (2.1%)	1.00
Mortality	0 (0.0%)	0 (0.0%)	1.00

Note: Values are expressed as number (percentage) or median value (range).

Abbreviations: AV, anal verge; BMI, body mass index; CI, confidence interval; ISR, intersphincteric resection; LAR, low anterior resection; LS, laparoscopic surgery; RS, robotic-assisted surgery.
This study has several limitations. First, this was a retrospective study performed at a single institution. Second, long-term outcomes were not investigated. Randomized controlled trials are necessary to validate our findings. Third, although this study focused on the technical aspects, it was unclear whether LAR or ISR is better in terms of postoperative anorectal function. Previous studies have reported that patients who have undergone ISR have a higher risk of fecal incontinence and bowel dysfunction than those who have undergone LAR. However, the characteristics of patients in previous studies were different from those in this study, and these results could not be extrapolated to the present study. Further studies are necessary to clarify the effects on postoperative anal function. Fourth, we excluded OS in this study. Therefore, we could not evaluate the superiority of RS over OS.

5 | CONCLUSION

The findings of this present study revealed that RS significantly increased the frequency of transection of the rectum by the transabdominal approach in SPOs, supporting that RS has technical superiority over LS for the treatment of ultra-low rectal cancer.

DISCLOSURES

Funding: This manuscript did not receive sponsorship for publication. Conflict of Interest: Authors declare no conflict of interest for this article.

Author Contributions: Tadahiro Kojima and Hitoshi Hino drafted the paper. Hitoshi Hino designed this study. Akio Shiomio, Hiroyasu Kagawa, Yusuke Yamaoka, Shochi Manabe, Shunichiro Kato, and Marie Hanawa obtained and analyzed data. All authors critically revised the report, commented on drafts of the manuscript, and approved the final report.

Ethical approval: The protocol for this research project has been approved by a suitably constituted Ethics Committee of the Shizuoka Cancer Center, and it conforms to the provisions of the Declaration of Helsinki. Committee of Shizuoka Cancer Center, Approval No. J2020-37-2020-1-3. All informed consent was obtained from the subject(s) and/or guardian(s).

ORCID

Hitoshi Hino https://orcid.org/0000-0001-7273-612X
Akio Shiomio https://orcid.org/0000-0001-5657-8686
Hiroyasu Kagawa https://orcid.org/0000-0001-8741-8992

REFERENCES

1. Prete FP, Pezzolla A, Prete F, et al. Robotic versus laparoscopic minimally invasive surgery for rectal cancer: a systematic review and meta-analysis of randomized controlled trials. Ann Surg. 2018;267(6):1034–46.
2. Kim J, Baek S-J, Kang D-W, et al. Robotic resection is a good prognostic factor in rectal cancer compared with laparoscopic resection: long-term survival analysis using propensity score matching. Dis Colon Rectum. 2017;60(3):266–73.
1. Jayne D, Pigazzi A, Marshall H, et al. Effect of robotic-assisted vs conventional laparoscopic surgery on risk of conversion to open laparotomy among patients undergoing resection for rectal cancer. JAMA. 2017;318(16):1569.

2. Yamaoka Y, Kagawa H, Shiomi A, et al. Robotic-assisted surgery may be a useful approach to protect urinary function in the modern era of diverse surgical approaches for rectal cancer. Surg Endosc. 2020;35(3):1317–23.

3. Chang W, Wei Y, Ren L, et al. Short-term and long-term outcomes of robotic rectal surgery—from the real world data of 1145 consecutive cases in China. Surg Endosc. 2020;34(9):4079–88.

4. Yamaguchi T, Kinugasa Y, Shiomi A, et al. Oncological outcomes of robotic-assisted laparoscopic versus open lateral lymph node dissection for locally advanced low rectal cancer. Surg Endosc. 2018;32(11):4498–505.

5. Shiomi A, Kinugasa Y, Yamaguchi T, Kagawa H, Yamakawa Y. Robot-assisted versus laparoscopic surgery for lower rectal cancer: the impact of visceral obesity on surgical outcomes. Int J Colorectal Dis. 2016;31(10):1701–10.

6. D’Annibale A, Pernazza G, Monsellato I, et al. Total mesorectal excision: a comparison of oncological and functional outcomes between robotic and laparoscopic surgery for rectal cancer. Surg Endosc. 2013;27(6):1887–95.

7. Baik SH, Kwon HY, Kim JS, et al. Robotic versus laparoscopic low anterior resection of rectal cancer: short-term outcome of a prospective comparative study, Ann Surg Oncol. 2009;16(6):1480–7.

8. Colombo PE, Bertrand MM, Alline M, et al. Robotic versus laparoscopic total mesorectal excision (TME) for sphincter-saving surgery: is there any difference in the transanal TME rectal approach? A single-center series of 120 consecutive patients. Ann Surg Oncol. 2016;23(5):1594–600.

9. Kang J, Yoon KJ, Min BS, Hur H, Baik SH, Kim NK, et al. The impact of robotic surgery for mid and low rectal cancer: a case-matched analysis of a 3-arm comparison—open, laparoscopic, and robotic surgery. Ann Surg. 2013;257(1):95–101.

10. Hashiguchi Y, Muro K, Saito Y, et al. Japanese society for cancer of the colon and rectum (JSCCR) guidelines 2019 for the treatment of colorectal cancer. Int J Clin Oncol. 2019;5(1):1–42.

11. Ito M, Saito N, Sugito M, Kobayashi A, Nishizawa Y, Tsunoda Y. Analysis of clinical factors associated with anal function after intersphincteric resection for very low rectal cancer. Dis Colon Rectum. 2009;52(1):64–70.

12. Heald RJ, Husband EM, Ryall RD. The mesorectum in rectal cancer surgery—the clue to pelvic recurrence? Br J Surg. 1982;69(10):613–6.

13. Japanese Society for Cancer of the Colon and Rectum (JSCCR) guidelines 2019 for the treatment of colorectal cancer. Int J Clin Oncol. 2019;5(1):1–42.

14. European Society of Coloproctology collaborating group. An international multicentre prospective audit of elective rectal cancer surgery; operative approach versus outcome, including transanal total mesorectal excision (TaTME). Colorectal Dis. 2018;20(Suppl 6):33–46.

15. Penna M, Hompes R, Arnold S, et al. Transanal total mesorectal excision: international registry results of the first 720 cases. Ann Surg. 2017;266(1):111–7.

16. Deijen CL, Tsai A, Koedam TW, et al. Clinical outcomes and case volume effect of transanal total mesorectal excision for rectal cancer: a systematic review. Tech Coloproctol. 2016;20(12):811–24.

17. Wasmuth HH, Faerden AE, Myklebust TA, et al. Transanal total mesorectal excision for rectal cancer has been suspended in Norway. Br J Surg. 2020;107(1):121–30.

18. Yamaguchi T, Kinugasa Y, Shiomi A, et al. Short- and long-term outcomes of robotic-assisted laparoscopic surgery for rectal cancer: results of a single high-volume center in Japan. Int J Colorectal Dis. 2018;33(12):1755–62.

19. Bretagnol F, Rullier E, Laurent C, Zerib F, Gontier R, Saric J. Comparison of functional results and quality of life between intersphincteric resection and conventional coloanal anastomosis for low rectal cancer. Dis Colon Rectum. 2004;47(6):832–8.
oncological. A 25-year experience from Bordeaux. Colorectal Dis. 2020;22(11):1603–13.

SUPPORTING INFORMATION
Additional supporting information may be found in the online version of the article at the publisher’s website.