ON THE EQUIVARIANT FORMAL GROUP LAW OF THE EQUIVARIANT COMPLEX COBORDISM RING

WILLIAM C. ABRAM

ABSTRACT. For a finite abelian group G, we compute the G-equivariant formal group law corresponding to the G-equivariant complex cobordism spectrum with its canonical complex orientation.

1. INTRODUCTION

The goal of the present paper is to provide an algebraic description of the equivariant formal group law corresponding to the equivariant complex cobordism ring MU_G for a finite abelian group G, which is given as Theorem 4.1 and is adapted from the author’s doctoral thesis [1]. The paper [2] of the author and Kriz provides the corresponding algebraic computation of the coefficient ring $(MU_G)_*$, which facilitates this work. As in [2], our description is in terms of pullback diagrams. The computation of [2] follows several other papers which contribute to the present algebraic understanding of the ring $(MU_G)_*$, namely the computations of Sinha [10], Strickland [11], and Kriz [6].

One motivation for pursuing this computation is the conjecture of Greenlees [4, Conjecture 2.4] that the coefficient ring of the equivariant complex cobordism ring classifies equivariant formal group laws in the same way that non-equivariant complex cobordism classifies non-equivariant formal group laws, vis à vis Quillen’s Theorem [8] (c.f.e. [9, Theorem 1.3.2]). This is vague, but will be made precise in Section 3 when we define the notion of an equivariant formal group law. Greenlees [4] shows that the equivariant complex cobordism ring classifies equivariant formal group laws over Noetherian rings, but the general conjecture is still open. The algebraic description of $(MU_G)_*$ in [2] and the corresponding description here of its equivariant formal group law are intended to partially illuminate the questions posed by the paper [4] of Greenlees.

Section 2 below recalls the computation of $(MU_G)_*$ given in [2]. Section 3 defines equivariant formal group laws and provides the relevant background. Section 4 provides the promised computation of the equivariant formal group law of MU_G for G a finite abelian group. The main result of this paper is Theorem 4.1. To illuminate the description, Section 5 treats the example case $MU_{\mathbb{Z}/p^n}$ of finite cyclic p-groups.

Acknowledgements. The author would like to thank his thesis adviser, Igor Kriz, for his mentorship and mathematical advice on this project, and Kyle Ormsby, who read this work carefully as it appeared in the author’s thesis. The author is also grateful to Andrew Blumberg, Jeanne Duflot, Dan Freed, Paul Goerss, Nitu Kitchloo, Tyler Lawson, J. Peter May, Jack Morava, Doug Ravenel, and others for enlightening discussions about the equivariant complex cobordism ring. This work was supported by a National Science Foundation Date: October 17, 2013.

This work was supported by an NSF Graduate Research Fellowship. MSC 2010 classification: 55N22, 55N91, 14L05, 57R85.

Graduate Research Fellowship, and the majority of the work was conducted at the University of Michigan, whose support the author acknowledges.

2. The Equivariant Complex Cobordism Ring of a Finite Abelian Group

Throughout this paper, fix a finite abelian group G. We recall now the computation of $(MU_G)_*$ given in [2], which is given in that paper as the combination of Theorem 1 and Theorem 2. First we need some definitions. Let

$$(2.1) \quad P(G) = \{ \{H_1 \subseteq H_2 \subseteq \cdots \subseteq H_k\} | H_i \subseteq G \text{ is a subgroup for every } i \}.$$

That is, elements of $P(G)$ are increasing chains of subgroups of G. Now suppose $S = \{H_1 \subseteq H_2 \subseteq \cdots \subseteq H_k\} \in P(G)$, and let $H_0 = \{e\}$, $H_{k+1} = G$. For $0 \leq j \leq k$, let R_j be G/H_j-representatives of the nontrivial complex H_{j+1}/H_j representations. We associate to the chain of subgroups S a ring

$${\text{AS}} = MU_*[u_L,u_M^{-1},u_N^{(i)}| i > 0, L \in R_0 \prod \cdots \prod R_k, M \in R_0 \prod \cdots \prod R_{k-1}, N \in R_0],$$

where of course MU_* is the nonequivariant complex cobordism ring, whose algebraic structure was computed by Milnor [7].

We can topologize AS as follows. Say that a sequence of monomials from AS

$$\left\langle a_t, L \in R_t, \prod \cdots \prod R_k \right| u_L^{n(L,t)} \right\rangle_{t=1}^\infty$$

with $0 \neq a_t \in MU_*[u_L^{\pm 1}, u_L^{(i)}| i > 0, L \in R_0]$ converges to 0 if there is a $j \in \{1, \ldots, k\}$ such that $n(L,t)$ is eventually constant in t when $L \in R_t$ and $i > j$, and

$$n(L,t) \to \infty \text{ as } t \to \infty$$

for $L \in R_j$. A sequence $\langle p_i \rangle$ of polynomials from AS converges to 0 if and only if every choice of nonzero monomial summands m_t from p_t gives a sequence of monomials $\langle m_t \rangle$ that converges to 0. We can now define a topology T_S on AS by saying that $C \subseteq AS$ is closed with respect to T_S if and only if the limit of every sequence in C convergent in AS is in C.

We will consider the completion $(AS)_{T_S}$ of the ring AS with respect to the topology T_S. Let F denote the universal formal group law. We define an ideal by

$${IS} = \left(u_{L_1} + F u_{L_2} - \left(\sum_{i=1}^m \right) \left| L_1 L_2 \cong \prod M_i \text{ and there is a } j \in \{1, \ldots, k\} \right. \right.$$

\hspace{1cm} \text{s.t. } \left. L_1, L_2 \in R_j \text{ and } M_i \in R_j \prod \cdots \prod R_k \right).$

Note that the definitions of AS, T_S, and IS above depend on the group G, so when necessary for clarity we will denote these by $A_{G,S}$, $T_{G,S}$ and $I_{G,S}$, respectively.

Theorem 2.1. (Abram and Kriz) For G a finite abelian group, we have

$$(MU_G)_* \cong \lim_{S} (AS)_{T_S} / IS.$$

This computation is illuminated somewhat by the following corollary of Theorem 2.1 and the exposition of [2], which corollary appears in [11]. The notation $[k]_{F,x}$ denotes the k-fold sum $x + F x + F^{2} x + \cdots + F^{k-1} x$ of x under the nonequivariant universal formal group law.
Corollary 2.2. Let \(u_{[k]} \) denote \([p^k]_{F_u} \) and
\[
R_k = MU_*[u_j, u_j^{-1}, b_j^{(i)} | i > 0, j \in \{1, 2, \ldots, p^k - 1\}]/([u_{[k]}])/([p^{k-1}]_{F_u_{[k]}},
\]
\[
S_k = MU_*[u_j, u_j^{-1}, b_j^{(i)} | i > 0, j \in \{1, 2, \ldots, p^k - 1\}]/([u_{[k]}])/([p^{k-1}]_{F_u_{[k]}}, [u_{[k]}]^{-1}),
\]
\[
R^n = MU_*[u_j, u_j^{-1}, b_j^{(i)} | i > 0, j \in \{1, 2, \ldots, p^n - 1\}].
\]
Then \((MU_{Z/p^n})_* \) is the \(n \)-fold pullback of the diagram of rings
(2.2)

\[
\begin{array}{c}
R^n \\
\downarrow \phi_{n-1} \\
R_{n-1} \\
\downarrow \phi_{n-2} \\
\vdots \\
\downarrow \phi_1 \\
R_2 \\
\downarrow \phi_0 \\
R_1 \\
\downarrow \phi_0 \\
R_0 \\
\end{array}
\]

The maps \(\psi_k \) are localization by inverting \(u_{[k]} \), and the maps \(\phi_k \) are determined by the properties of sending \(u_{[k+1]} \) to \([p]_{F_u_{[k]}} \) and \(b_j^{(i)} u_j \) to the coefficient of \(x^i \) in \(x + F [j]_{F_u_{[k]}} \).

3. EQUIVARIANT FORMAL GROUP LAWS

Let \(G \) be a finite abelian group, and \(E \in GSL \) a \(G \)-equivariant spectrum. Let \(\hat{G} \) denote the character group of \(G \). Cole, Greenlees, and Kriz \[5\] makes the following definition.

Definition 3.1. A \(G \)-equivariant formal group law over a commutative ring \(k \) consists of:

(1) A \(k \)-algebra \(R \) complete at an ideal \(I \) and a cocommutative, coassociative, counital comultiplication

\[
\Delta : R \to R \hat{\otimes} R \quad (R \hat{\otimes} R = (R \otimes R)_{I \otimes R \otimes R \otimes I}),
\]

(2) An \(I \)-continuous map of \(k \)-algebras \(\epsilon : R \to k^G \) compatible with comultiplication:

\[
\begin{array}{c}
R \\
\downarrow \Delta \\
R \hat{\otimes} R \\
\downarrow \epsilon \hat{\otimes} \epsilon \\
k^G \otimes k^G \otimes k^G
\end{array}
\]
(3) A system of elements $x_L \in R$, $L \in \hat{G}$ such that

$$x_L \text{ is regular for each } L \in \hat{G},$$

$$R/(x_L) \cong E_\ast \text{ for each } L \in \hat{G},$$

$$I = \left(\prod_{L \in \hat{G}} x_L \right),$$

and

$$x_L = (\epsilon(L) \otimes 1) \Delta(x_1) \text{ for } L \in \hat{G}.$$

One can adapt this definition to the case where G is a compact Lie group by replacing the ideal I above with the system of finite product ideals $(\prod_i x_{L_i})$ (cf. [3]). Greenlees [4] makes the following conjecture.

Conjecture 3.2. For any complex oriented G-equivariant spectrum E there is a unique homomorphism of rings $\theta : MU_G^\ast \rightarrow E^\ast$ such that θ induces maps that send the structures (1), (2), and (3) for the canonical equivariant formal group law corresponding to MU_G to the corresponding structure for E.

In [3, Example 11.3(i)] it is shown that a complex orientation on a G-equivariant spectrum E over the complete universe U specifies a G-equivariant formal group law with $k = E^\ast$ and $R = E^\ast \mathbb{C}P_G^\infty$. Here $\mathbb{C}P_G^\infty$ is the complex projective space on the complete G-universe. Our goal is to follow the construction of [3] to compute the equivariant formal group law corresponding to the equivariant complex cobordism spectrum MU_G, for the case where G is a finite abelian group. We can do this because MU_G^\ast has a canonical complex orientation. Our goal at present is to describe the equivariant formal group law corresponding to MU_G for G a finite abelian group, with an eye toward Greenlees’ Conjecture 3.2.

4. **The Equivariant Formal Group Law of MU_G**

Our description of the equivariant formal group law of MU_G is a direct consequence of Theorem 2.1 and Definition 3.1 and the description is similar in nature to that of Theorem 2.1. Before we can state our main theorem, we need a few definitions. For $S = \{H_1 \subseteq H_2 \subseteq \cdots \subseteq H_k \} \in P(G)$, $H_0 = \{e\}$, and $H_{k+1} = G$, define

$$Q_j = \prod_{L \in H_j} (A_{H_j, S})_{\mathcal{T}H_j, S}/[u_L | L \in R_j]/(u_L + F u_M = u_{LM})[[x_L]]$$

$$T_j = \prod_{L \in H_{j+1}} (A_{H_j, S})_{\mathcal{T}H_j, S}/[u_L | L \in R_j]/(u_L + F u_M = u_{LM})[[x_L]].$$
Q^k is defined similarly, also using the computations in the proof of [2 Theorem 2]. Here $A^* = \text{Hom}(A, S^1)$ and $\mathcal{A} = A - \{0\}$. We then define \mathcal{N}_S to be the diagram

\[
\begin{array}{c}
\xymatrix{
& Q^k
\ar[d]_{\phi_{k-1}} \\
Q_{n-1} \ar[r]_{\psi_{k-1}} & T_{k-1} \\
\vdots & \\
Q_2 \ar[r]_{\psi_2} & T_{k-2} \\
Q_1 \ar[r]_{\psi_1} & T_1 \\
Q_0 \ar[r]_{\psi_0} & T_0,
}
\end{array}
\]

where the horizontal maps are given by localization by inverting Euler classes and the condition

\[
x_L \mapsto \prod_{M \equiv L \pmod{H_j}} x_M + F(u_L - u_M),
\]

and the vertical maps are determined by sending $u_L^{(i)}$ to the coefficient of x^i in $x + F u_L$ and by sending

\[
x_L \mapsto x_L.
\]

Define another diagram $\tilde{\mathcal{N}}_S$ as

\[
\begin{array}{c}
\xymatrix{
& \tilde{Q}^k
\ar[d]_{\tilde{\phi}_{k-1}} \\
\tilde{Q}_{n-1} \ar[r]_{\tilde{\psi}_{k-1}} & \tilde{T}_{k-1} \\
\vdots & \\
\tilde{Q}_2 \ar[r]_{\tilde{\psi}_2} & \tilde{T}_{k-2} \\
\tilde{Q}_1 \ar[r]_{\tilde{\psi}_1} & \tilde{T}_1 \\
\tilde{Q}_0 \ar[r]_{\tilde{\psi}_0} & \tilde{T}_0,
}
\end{array}
\]
where
\[
\bar{Q}_j = \prod_{L \in \mathcal{H}_j} (A_{H_j}S)[T_{H_j,S}/I_{H_j,S}[[u_L|L \in R_j]]/(u_L + F u_M = u_{LM})]\]
\[
\tilde{T}_j = \prod_{L \in \mathcal{H}_{j+1}} (A_{H_j}S)[T_{H_j,S}/I_{H_j,S}[[u_L|L \in R_j]]/(u_L + F u_M = u_{LM})]\]
and \(\bar{Q}^k\) is defined similarly. The maps \(\bar{\phi}_j\) and \(\bar{\psi}_j\) are defined as were \(\phi_j\), and \(\psi_j\), with the additional conditions that
\[
\bar{\psi}_j(y_L) = \prod_{M \equiv L (\text{mod } H_j)} y_M + F (u_L - u_M) \tag{4.5}
\]
and
\[
\bar{\phi}_j(y_L) = y_L \tag{4.6}
\]
Let \(\mathbb{CP}_G^\infty = \mathbb{CP}(U)\) denote the complex projective space on the complete \(G\)-universe. We are now ready to state our main theorem.

Theorem 4.1. The equivariant formal group law of \(MU_G\) consists of the following structures:

(a) the commutative ring \(k = MU^*_G\), whose algebraic description is given by Theorem 2.1
(b) the \(k\)-algebra \(R = \text{ho lim } NS\);
(c) the ideal \(I = (\prod_{L \in \mathcal{G}} x_L)\);
(d) the \(k\)-algebra \(R \hat{\otimes} R = \text{ho lim } \tilde{NS}\);
(e) the coproduct \(\Delta : R \to R \hat{\otimes} R\) is determined by maps \(\Delta_S : NS \to \tilde{NS}\) of diagrams, which send \(Q_j \to \bar{Q}_j, T_j \to \tilde{T}_j\), and are determined by the identity maps away from power series variables and by the conditions
\[
x_L \mapsto \prod_{M \equiv L (\text{mod } H_j)} (x_M + F y_N); \tag{4.7}
\]
(f) the map \(\epsilon : R \to (MU^*_G)^G\) is defined by choosing a basepoint \(*_L\) in each connected component of
\[
\mathbb{CP}_G^\infty = \bigoplus_{L \in \mathcal{G}} \mathbb{CP}^\infty,
\]
where the superscript \(G\) denotes fixed points. \(\epsilon\) is the induced map in cohomology of the \(G\)-equivariant map
\[
\prod_{L \in \mathcal{G}} *_L \to G.
\]

Proof. This is mostly a matter of chasing definitions, and much of the discussion is accomplished merely by reconciling [3] with Theorem 2.1. Since \(MU^*_G\) is complex stable and complex oriented, we can take \(k = MU^*_G\) and
\[
R = MU^*_G \mathbb{CP}_G^\infty. \tag{4.7}
\]
The elements \(x_L \in \tilde{MU}_G^2 T(\gamma_G \otimes L)\) are Thom classes, computed just as in [3 Section 4], where \(\gamma_G\) is the canonical line bundle on \(\mathbb{CP}_G^\infty\) and \(T\) denotes the Thom space. Let \(x_0 \in \tilde{MU}_G^2 T(\gamma_G)\) be the orientation class. Now let \(\phi : \mathbb{CP}_G^\infty \to \mathbb{CP}_G^\infty\) classify \(\gamma_G \otimes L\), i.e. \(\phi^*(\gamma_G) = \gamma_G \otimes L\). Then we define
\[
x_L = \text{Im}(\tilde{MU}_G^2 T(\gamma_G) \to \tilde{MU}_G^2 T \phi \tilde{MU}_G^2 T(\gamma_G \otimes L)). \tag{4.8}
\]
Let \(U = \bigotimes_{L \in \hat{G}} L \). The ideal \(I \) is

\[
(4.9) \quad I = \left(\prod_{L \in \hat{G}} x_L \right),
\]

where the product on the right is computed by the Thom diagonal

\[
\Delta_1 : T(\gamma_G \otimes U) \to \bigwedge_{L \in \hat{G}} T(\gamma_G \otimes L),
\]

as proposed in Theorem [4, Theorem 11.2].

It follows from the Splitting Theorem [3] Theorem 4.3] of Cole that \(R = MU_G^* \mathbb{C}P_G^\infty \) is complete at \(I \), and

\[
(4.10) \quad R \hat{\otimes} R \cong MU_G^*(\mathbb{C}P_G^\infty \times \mathbb{C}P_G^\infty).
\]

The comultiplication \(\Delta \) is induced by the map classifying the tensor multiplication of line bundles:

\[
\mu : \mathbb{C}P_G^\infty \times \mathbb{C}P_G^\infty \to \mathbb{C}P_G^\infty,
\]

i.e. for line bundles \(\epsilon = f^*\gamma_G, \omega = g^*\gamma_G, \epsilon \otimes \omega = (\mu(f \times g))^* \). Choosing basepoints \(u_1 \) in each connected component of \((\mathbb{C}P_G^\infty)^G \), the description of the map \(\epsilon \) given as Theorem [4, Theorem 4.1(e)] follows from [3].

All of the above is documented in the note [5] of Kriz. Our goal now is to understand better the algebraic structure of the ring \(MU_G^* \mathbb{C}P_G^\infty \). By Theorem 4.3 of [3], we have

\[
(4.11) \quad MU_G^* \mathbb{C}P_G^\infty \cong MU_G^*\{\{x_0, x_{L_1}, x_{L_1L_2}, \ldots \}\},
\]

where \(L_1 \oplus L_2 \oplus \cdots \) is any splitting of the complete \(G \)-universe \(U \). Thus \(x_0, x_{L_1}, x_{L_1L_2}, \ldots \) are a flag basis of the complete universe \(U \), and \(MU_G^*\{\{x_0, x_{L_1}, x_{L_1L_2}, \ldots \}\} \) denotes

\[
(4.12) \quad \left\{ \sum_{i=0}^{\infty} a_i x_0 x_{L_1} \cdots x_{L_i} \mid a_i \in MU_G^* \right\}.
\]

We define

\[
(4.13) \quad x_{L_1} \oplus x_{L_2} \oplus \cdots x_m = \prod x_{L_i},
\]

and now the right hand side of (4.11) is well-defined.

Now the splitting map \(MU \to MU_G \) induces an isomorphism

\[
(4.14) \quad \pi^G_*(F(EG_+, MU)) \cong \pi^G_*(F(EG_+, MU_G)),
\]

and it follows that

\[
(4.15) \quad \pi^G_*(F(EG_+, MU_G)^* \mathbb{C}P_G^\infty) \cong MU_*\{[u_L|L \in \widehat{G^G}] / (u_L + F u_M = u_{LM})[[x]]\}.
\]

We are now able to give a better description of the elements \(x_L \). Clearly,

\[
(4.16) \quad x_0 = x \in MU_*\{[u_L|L \in \widehat{G^G}] / (u_L + F u_M = u_{LM})[[x]]\},
\]

while

\[
(4.17) \quad x_L = x_0 + F u_L.
\]

Greenlees [4, Theorem 11.2] gives

\[
(4.18) \quad \Phi^G MU_G^* \mathbb{C}P_G^\infty \cong \prod_{L \in \hat{G}} \Phi^G MU_G^*[x_L] = \prod_{L \in \hat{G}} \Phi^G MU_G^*[x + F u_L].
\]

Now the description of \(R \) given as Theorem 4.1(a) is a formal consequence of the above. Theorem 4.1(b) concerning \(R \hat{\otimes} R \) is obtained by a direct computation, and the description
of the coproduct Δ in Theorem 4.1(c) follows from the definition of Δ above and from the work of [2] as summarized in Section 2. Conditions (1)-(3) of Definition 3.1 are guaranteed by [3] and [5], since the definitions of the algebras, maps, and elements of the equivariant formal group law given here are direct consequences of the example of complex stable, complex oriented cohomology theories and equivariant formal group laws as given in those papers.

\[\square \]

5. The Case $G = \mathbb{Z}/p^n$

There is intricate structure hiding beneath the surface of our description of the equivariant formal group law for MU_G in the previous section. To illuminate some of this hidden structure, we present here the description of $MU_{\mathbb{Z}/p^n}$ as given by Theorem 4.1.

We give a useful description of the elements x_j arising from the diagram (2.2). Of course $x_0 = x \in MU_*[[u]]/(p^n u)[[x]]$, and $x_j = x_0 + F[j] u$. Let $R_k, S_k, 0 \leq k \leq n - 1$, and R^n be as in Corollary 2.2 and refer to that result for notation. Then the element $u_j b_j^{(i)}$ of R^n maps to an element of S_{n-1} that does not include the term $u_{n-1}^{[n-1]}$, so this element really lives in R_{n-1}. For $0 < k < n$, the resulting element of R_k maps to an element of S_{k-1} which does not include the term $u_{k-1}^{[k-1]}$, so it really lives in R_{k-1}.

This allows us to map the elements $u_j b_j^{(i)}$ of R^n to $R_0 = MU_*[[u]]/(p^n u)$; call this map ϕ. Then there is an implied map $\phi : MU_*[u_j b_j^{(i)}][i > 0, 1 \leq j \leq p^n - 1][[x]] \to MU_*[[u]]/(p^n u)[[x]]$. Since $u_j b_j^{(i)}$ maps to the coefficient of x^i in $x + F[j] u$, x_j is the image under ϕ of the element

\[
\sum_{i=0}^{\infty} u_j b_j^{(i)} x^i.
\]

We would also like a nice description of the $MU_{\mathbb{Z}/p^n}^*$-algebra

\[R = MU_{\mathbb{Z}/p^n}^* (\mathbb{C}P_{\mathbb{Z}/p^n}^\infty) = MU_{\mathbb{Z}/p^n}^* \{ \mathcal{U} \} \]

as a product. Greenlees [4, Theorem 11.2] gives us the following:

\[\Phi^{\mathbb{Z}/p^n} MU_{\mathbb{Z}/p^n}^* \{ \mathcal{U} \} = \prod_{j=0}^{p^n-1} \Phi^{\mathbb{Z}/p^n} MU_{\mathbb{Z}/p^n}^*[[x_j]] = \prod_{j=0}^{p^n-1} \Phi^{\mathbb{Z}/p^n} MU_{\mathbb{Z}/p^n}^*[[x + F[j] u]]. \]

Moreover, we obtain R as an n-fold pullback, using Corollary 2.2. The various powers of the Euler class which are invertible on the diagram (2.2) allow for certain product decompositions of the ring $R = MU_{\mathbb{Z}/p^n}^* (\mathbb{C}P_{\mathbb{Z}/p^n}^\infty)$. Let R^n, S_k, R_k stand for the cohomology rings now, rather than homology. Then R is the pullback of the following diagram of rings:
The horizontal maps, as implied, are induced by the maps ψ_k and the condition $x_j \mapsto \prod_{r \equiv j \pmod{p^k}} (x_r + F(j-r)F_u[k])$. The vertical maps are induced by the maps ϕ_k and the condition $x_j \mapsto x_j$ for all j.

There is a similar description of $R \otimes R$ as a pullback:

The maps are determined by the maps of (5.2) and the corresponding conditions for y_r. Namely, under the horizontal maps, $y_r \mapsto \prod_{s \equiv r \pmod{p^k}} (y_s + F(r-s)F_u[k])$. Under the vertical maps, $y_r \mapsto y_r$.

We now specify the coproduct $\Delta : R \rightarrow R \otimes R$ on the terms of the diagrams (5.2) and (5.3). The map $\prod_{k \in (\mathbb{Z}/p^n)^*} R_j[[x_k]] \rightarrow \prod_{k,r \in (\mathbb{Z}/p^n)^*} R_j[[x_k, y_r]]$ is determined by the identity map on R_j and the condition $x_k \mapsto \prod_{k_1 + k_2 = k}(x_{k_1} + F y_{k_2})$, where $k_1 + k_2 = k$ we of course mean $k_1 + k_2 \equiv k \pmod{p^j}$. The map on the top right of the diagrams is defined similarly. The map

\[\prod_{k \in (\mathbb{Z}/p^n)^*} S_{j-1}[[x_k]] \rightarrow \prod_{k,r \in (\mathbb{Z}/p^n)^*} S_{j-1}[[x_k, y_r]] \]
is determined by the identity map on S_{j-1} and the condition
\[x_k \mapsto \prod_{k_1+k_2=k} x_{k_1} + x_{k_2}. \]

Having nothing to add to the description of the map ϵ as given for general finite abelian groups G, this completes our description of the equivariant formal group law corresponding to $MU_{\mathbb{Z}/p^n}$.

REFERENCES

[1] W.C. Abram, “Equivariant Complex Cobordism”, Ph.D. Thesis, University of Michigan, 2013.
[2] W.C. Abram and I. Kriz, “The equivariant complex cobordism ring of a finite abelian group”, preprint.
[3] M. Cole, J.P.C. Greenlees, and I. Kriz, “Equivariant formal group laws”, Proceedings of the London Mathematical Society, Volume 81, Issue 3, Number 2, 2000, pp. 355-386.
[4] J.P.C. Greenlees, “The coefficient ring of equivariant homotopical bordism classifies equivariant formal group laws over Noetherian rings”, preprint, 2001.
[5] I. Kriz “Some remarks on equivariant formal group laws”, unpublished.
[6] I. Kriz, “The \mathbb{Z}/p-equivariant complex cobordism ring”, Homotopy invariant algebraic structures, Contemporary Mathematics, American Mathematical Society Publications, Providence, Volume 239, 1999, pp. 217-223.
[7] J. Milnor, “On the cobordism ring Ω^* and a complex analogue”, Part 1, American Journal of Mathematics, Volume 82, Number 3, July 1960, pp. 505-521.
[8] D.G. Quillen. “On the formal group laws of unoriented and complex cobordism theory”, Bulletin of the American Mathematical Society, Volume 75, Number 6, 1969, pp. 1293-1298.
[9] D.C. Ravenel, Complex Cobordism and Stable Homotopy Groups of Spheres, 2nd edition, AMS Chelsea Publishing, Providence, 2004.
[10] D.P. Sinha, “Computations of complex equivariant bordism rings”, American Journal of Mathematics, Volume 123, Number 4, August 2001, pp. 577-605.
[11] N.P. Strickland, “Complex cobordism of involutions”, Geometry and Topology, Volume 5, 2001, pp. 335-345.

DEPARTMENT OF MATHEMATICS, HILLSDALE COLLEGE, HILLSDALE, MI 49242 USA
E-mail address: wabram@hillsdale.edu