The 5-CNL front-of-pack nutrition label appears an effective tool to achieve food substitutions towards healthier diets across dietary profiles

Chantal Julia, Caroline Mejean, Sandrine Péneau, Camille Buscail, Benjamin Allès, Leopold Fezeu, Mathilde Touvier, Serge Hercberg, Emmanuelle Kesse-Guyot

To cite this version:
Chantal Julia, Caroline Mejean, Sandrine Péneau, Camille Buscail, Benjamin Allès, et al.. The 5-CNL front-of-pack nutrition label appears an effective tool to achieve food substitutions towards healthier diets across dietary profiles. PLoS ONE, 2016, 11 (6), 10.1371/journal.pone.0157545. hal-02634850

HAL Id: hal-02634850
https://hal.inrae.fr/hal-02634850
Submitted on 27 May 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License
The 5-CNL Front-of-Pack Nutrition Label Appears an Effective Tool to Achieve Food Substitutions towards Healthier Diets across Dietary Profiles

Chantal Julia1,2*, Caroline Méjean1, Sandrine Péneau1, Camille Buscail1, Benjamin Alles1, Léopold Fézeu1, Mathilde Touvier1, Serge Hercberg1,2, Emmanuelle Kesse-Guyot1

1 Université Paris 13, Equipe de Recherche en Epidémiologie Nutritionnelle (EREN), Centre d’Epidémiologie et Biostatistiques Sorbonne Paris Cité (CRESS), Inserm U1153, Inra U1125, Cnam, COMUE Sorbonne-Paris-Cité, F-93017, Bobigny, France, 2 Département de Santé Publique, Hôpital Avicenne (AP-HP), F-93017, Bobigny, France

* c.julia@eren.smbh.univ-paris13.fr

Abstract

Background

Front-of-pack (FOP) nutrition labels are considered helpful tools to help consumers making healthier food choices, thus improving their diet. In France, the implementation of a FOP nutrition label—the 5-Colour Nutrition Label (5-CNL)—is currently under consideration. Our objective was to investigate dietary profiles in a French adult population using the 5-CNL, and to assess its potential impact in improving the diet through substitution of foods.

Methods and Findings

Subjects included in the NutriNet-Santé cohort, who had completed three 24-h dietary records were included in this cross-sectional analysis. Mutually exclusive clusters of individuals were identified using the percentage of energy derived from foods of each of the 5-CNL colours as input variables. Three scenarios of substitution of foods for healthier alternative using the 5-CNL were tested. Food group and dietary intakes, socio-demographic and lifestyle data were compared across clusters using ANOVAs or Chi-square tests, as appropriate. We identified three mutually exclusive dietary profiles: ‘Healthy’ (N = 28 095, 29.3% of the sample), with high consumption of fruit, vegetables, whole cereals and fish; ‘Western’ (N = 33 386, 34.8%); with high consumption of sweetened beverages, breakfast cereal, cheese, fatty and sugary foods; ‘Traditional’ (N = 34 461, 35.1%), with high consumption of potatoes, bread, meat and dairy desserts. Overall, substitutions strategies led to an increase in the number of subjects reaching the recommended intakes in energy, macro and micronutrients. Increases were particularly high in the ‘Western’ pattern for lipids and saturates intakes: from 16.2% reaching the recommended amount for lipids (13.5% for saturates) to 60.6% and 85.7% respectively.
Conclusion
The use of the 5-CNL as an indicator of food choice meaningfully characterizes clusters of dietary habits and appears as an effective tool to help improving the nutritional quality of the diet.

What This Paper Adds
What Is Already Known on the Subject
- In France, the introduction of the 5-Colour Front-of-pack Nutrition Label (5-CNL) is under consideration. The 5-CNL is based on a nutrient profiling system and classifies foods into 5 categories of nutritional quality, from ‘Green’ to ‘Red’.
- The 5-CNL has been shown to adequately classify foods according to their nutritional quality, and to help consumers understanding nutritional quality of foods and making healthier food choices.
- The contribution of each of the 5-CNL ‘colour’ foods in individual diets, as well as the potential impact of food substitutions using the 5-CNL on nutritional quality of the diet has not been investigated.

What This Study Adds
- Contribution of each ‘colour’ of the 5-CNL allowed for the identification of three dietary profiles: ‘Healthy’, ‘Western’ and ‘Traditional’
- The use of the 5-CNL for food substitutions strategies led to an increase in the number of subjects reaching the recommended amounts in macro and micro-nutrients, with a more important impact for subjects with lower nutritional quality profiles, highlighting the potential contribution of the 5-CNL to public health nutrition programs.

Introduction
Front-of-pack (FOP) nutrition labels have received growing attention from policy makers worldwide, as they are considered promising tools in public health nutrition [1,2]. The introduction of a FOP nutrition label is thought to help consumers making healthier choices in purchasing situations [2,3]. Moreover, it is believed that they would serve as incentives for manufacturers to reformulate their products towards healthier compositions [2,3]. Some western countries have introduced FOP nutrition labels, the earliest adopters being Sweden in 1989 (Green Keyhole) [4], and more recently the Netherlands in 2006 (Choices) [5], or Australia and New Zealand in 2014 (Health Star Rating System) [6]. In France, the government has recently proposed to introduce a simplified FOP nutrition label [7] following a report to the Minister of Health in 2014 [8]. This label would complement the set of measures coordinated by the French Nutrition and Health Program (Programme National Nutrition Santé, PNNS), a nationwide program initiated in 2001 and aiming at improving health in the population by acting on one of its main modifiable determinants, nutrition [9]. The PNNS actions include population education and information through multimedia communication campaigns and dissemination of booklets, local initiatives of health promotion and modification of the

Abbreviations: 5-CNL, Five-colour nutrition label; DI, Dietary Index; FOP, Front-of-pack; FSA, Food Standards Agency; FSA-NPS DI, Food Standards Agency Nutrient Profiling System Dietary Index; NPS, Nutrient Profiling System; NuVal, ONQI score denomination; OfCom, Office of Communication; ONQI, Overall Nutritional Quality Index; PNNS, Programme National Nutrition Santé, UK, United Kingdom.

Competing Interests: The authors have declared that no competing interests exist.
environment (e.g. modification of the walkability of the built environment) and state-level regulations [9]. The proposed label is based on the British Food Standards Agency nutrient profiling system (FSA score) currently used to regulate advertising of foods and beverages to children in the United Kingdom (UK) [10,11]. This nutrient profiling system provides a global assessment of the nutritional quality of foods and beverages, combining into one indicator several nutrients entering the composition of the food or beverage. Among the various nutrient profiling systems currently available, the FSA score has been estimated as one of the most validated [12,13], and is currently serving as a basis for several public health initiatives, including the Australian Health Star Rating System [6]. The French proposal derives five categories of nutritional quality from the continuous FSA score, each associated with a different colour, from ‘Green’ for the highest nutritional quality category to ‘Red’ for the lowest nutritional quality category, representing the 5-Colour Nutrition Label, (5-CNL) (see Fig 1) [8].

1. Attribution of points, based on the content of nutrients and other elements per 100 g of a food/beverage

Points A	Specific cut-offs: Beverages	Specific cut-offs: Fats	Points C									
Points	Energy (kJ)	Sugars (g)	Energy (kJ)	Sugars (g)	Saturated fat (g)	Saturated fat/Lipids (%)	Sodium (mg)	Fruits, veg (%)	Fruits, veg (%)	Fiber (g)	Protein (g)	
0	≤ 335	≤ 4.5	≤ 0	≤ 0	≤ 1	< 10	< 90	0	≤ 40	≤ 40	≤ 0.7	≤ 1.6
1	> 335	> 4.5	≤ 30	≤ 1.5	> 1	< 16	> 90	1	> 40	> 40	> 0.7	> 1.6
2	> 670	> 9	≤ 60	≤ 3	> 2	< 22	> 180	2	> 60	> 60	> 1.4	> 3.2
3	> 1005	> 13.5	≤ 90	≤ 4.5	> 3	< 28	> 270	3	-	-	> 2.1	> 4.8
4	> 1340	> 18	≤ 120	≤ 6	> 4	< 34	> 360	4	> 60	> 60	> 2.8	> 6.4
5	> 1675	> 22.5	≤ 150	≤ 7.5	> 5	< 40	> 450	5	> 80	> 80	> 3.5	> 8.0
6	> 2010	> 27	≤ 180	≤ 9	> 6	< 46	> 540	6	> 100	> 100	> 4.3	> 12.0
7	> 2345	> 31	≤ 210	≤ 10.5	> 7	< 52	> 630	7	> 120	> 120	> 5.0	> 15.0
8	> 2680	> 36	≤ 240	≤ 12	> 8	< 58	> 720	8	> 140	> 140	> 6.0	> 18.0
9	> 3015	> 40	≤ 270	≤ 13.5	> 9	< 64	> 810	9	> 160	> 160	> 7.0	> 21.0
10	> 3350	> 45	> 270	> 13.5	> 10	≥ 64	> 900	10	> 180	> 180	> 8.0	> 24.0

| Total | Points A = (a) + (b) + (c) + (d) [0 – 40] | Points C = (a) + (b) + (c) [0 – 15] |

2. Final score: -15 to 40 points.

- **Points A ≥ 11**: Points fruits and vegetables = 5
- **Points A < 11 or for cheese**: Points fruits and vegetables < 5

- **Final score = Points A − Points C**

3. Attribution of colors:

Foods (points)	Beverages (points)	Color
Min to -1	Water	Green
0 to 2	Min to 1	Yellow
2 to 5	11 to 18	Orange
6 to 9	19 to Max	Pink
10 to Max		Red

Green: highest quality, Red: lowest quality

Fig 1. FSA score computation and 5-CNL allocation. Footnotes: Exceptions were made for cheese, fat, and drinks to take into account their specific composition, consistently with nutritional recommendations. The percentage of fruits and vegetables was calculated taking into account fruits, legumes and vegetables as defined in the PNNS (the French nutritional and health policy). Tubers, oleaginous fruits, dried fruits and olives are therefore not considered in this computation. FSA score allocates different thresholds for fibers, depending on the measurement method used. We used NSP cut-offs to compute fibers score.

doi:10.1371/journal.pone.0157545.g001
This approach, using a global indicator of nutritional quality, with an ‘across-the-board’
application (i.e. the score computation is identical whatever the food group considered) has
been found helpful to guide consumers’ food choices toward food groups with higher nutritional
quality instead of low nutritional quality groups (‘displacement’). It also allows con-
sumer to choose products with higher nutritional quality among the products from the same
food group (‘substitution’).[14].

The application of the FSA score to foods in the French context indicated that the score
could be used as a basis for a five-category system, provided marginal adjustments in a few
food groups (beverages, cheese and fats) were made to maintain a high consistency with the
French official nutritional recommendations [15]. Moreover, the use of the 5-CNL was shown
to accurately discriminate the nutritional quality between food groups, within a food group
and for similar products from different brands [16,17]. For example, vegetables and whole
grains are mainly classified as ‘Green’ while chocolate products are mainly classified as ‘Red’.
Moreover, in a given food group, for example breakfast cereals, oat meals are classified as
‘Green’ while chocolate stuffed cereals are classified as ‘Red’[17]. These elements confirms the
potential of the 5-CNL for the implementation of both ‘displacement’ and ‘substitution’ strate-
gies in individual diets.

However, the potential impact of the use of the 5-CNL label on individual diets has not been
investigated. The heterogeneity in dietary behaviour observed in the population suggests that
the use of the label, and therefore its impact, would also be heterogeneous. Identifying dietary
profiles using the 5-CNL classification would allow investigating the potential impact of the
5-CNL across various dietary profiles.

Our objectives were therefore: 1) to identify dietary profiles according to the 5-CNL classifi-
cation of the foods consumed; 2) to investigate the potential impact of the substitution of foods
using the 5-CNL across dietary profiles through simulations. The highest possible gain in nutri-
tional quality of the diet through the substitution of all foods was simulated, as well as a sce-

nario involving the substitution of a fraction of the foods consumed. The overall aim was to
assess the potential gain in the nutritional quality of the diet at the population level through
this novel tool, in a public health perspective.

Material and Methods

Population

Participants were selected from the NutriNet-Santé cohort. Briefly, the NutriNet-santé study is
a prospective cohort study set in France in which inclusion and follow-up of volunteer partici-
pants are performed on the Internet [18]. The main objectives of the NutriNet-santé study are:
1) to investigate the relationship between nutrition and health outcomes; and 2) to investigate
the determinants of dietary patterns and nutritional status. Inclusion in the study began in
May, 2009, and is still ongoing. Volunteer participants aged >18 years-old subscribe to the
study, and are included when they have completed a set of questionnaires assessing: diet
(through repeated 24h dietary records), physical activity, anthropometry, lifestyle and socio-
economic conditions and health status. Detailed information on the NutriNet-Santé study can
be found elsewhere [18].

For the present study, all participants having completed three dietary records at baseline,
with no under-reporting of energy intake [19] were included.

Ethics

The NutriNet-Santé study is conducted in accordance with the Declaration of Helsinki, and all
procedures have been approved by the Institutional Review Board of the French Institute for
Health and Medical Research (0000388FWA00005831) and the Commission Nationale de l'Informatique et des Libertés (908450 and 909216). Electronic informed consent was obtained from all participants. The Nutrinet-santé study is registered under EudraCT registration number 2013-000929-31.

Socio-Demographic and Lifestyle Data

Socio-demographic and lifestyle data were collected at enrollment through self-administered questionnaires, including age, gender, education (no diploma and primary education, secondary education, university, other), marital status (in couple, single/divorced/widowed), income per household unit [20] (<900, 900–1199, 1200–1799, 1800–2299, 2300–2699, 2700–3699, >3700 €/month) and smoking status (current smoker, former smoker and never smoker). Physical activity was computed using self-declared data from the International Physical Activity Questionnaire, completed at baseline (low, moderate and high physical activity levels) [21]. Self-reported weight and height were collected at baseline and were used to compute body mass index (WHO categories: <18.5, [18.5–25[, [25–30[, ≥30kg/m²) [22].

Dietary Data

Dietary data were derived from three repeated 24-hour records at enrollment, randomly distributed in a two-week period, with two week days and one week-end day. Food consumption was weighted according to the representativeness of the day of the week of each record in the whole diet (five days for a week day and two days for week-end days). Portion size for each reported food and beverage item was estimated by participants using validated photographs [23]. Nutrient intake was computed using a published food composition database structured for epidemiologic purposes and including 70 dietary compounds reflecting foods usually consumed in the French diet [24]. No information on brand or price of foods was included in the records. Under-reporters for energy intake were identified using Goldberg/Black’s method and were excluded [19].

Score Computation, 5-CNL Allocation and Application to the Diet

Score computation. The FSA score for foods and beverages was computed taking into account the nutrient content for 100g [11]. It allocates positive points (0–10) for content in energy (KJ), total sugar (g), saturated fatty acids (g) and sodium (mg). Negative points (0–5) are allocated to content in fruits, vegetables, legumes and nuts (%), fibers (g) and proteins (g). Scores for foods and beverages were therefore based on a discrete continuous scale from -15 (most healthy) to +40 (less healthy) (Fig 1). Modifications to the original score were used in order to ensure a higher consistency with French nutritional recommendations for dried fruits and nuts, beverages, cheese and added fats [25].

5-CNL allocation. Products were then classified into five categories, corresponding to the 5-CNL classification. The cut-offs to define the five categories of the 5-CNL were based on the independent reports conducted by the French Agency for Food, Environmental and Occupational Health Safety (ANSES) and the High Council for Public Health (HCSP) [25,26], as follows from higher nutritional quality to lower nutritional quality: for foods ‘Green’ (-15 to -1), ‘Yellow’ (0 to 2), ‘Orange’ (3 to 10), ‘Pink’ (11 to 18) and ‘Red’ (19 and above); for beverages ‘Green’ only for non-flavoured water and non-sugared hot beverages, ‘Yellow’ (Min to 1), ‘Orange’ (2 to 5), ‘Pink’ (6 to 9) and ‘Red’ (10 and above) (Fig 1).

Dietary clusters. For each individual, the mean daily energy intake (excluding energy from alcoholic beverages) derived from the foods of each colour of the 5-CNL was computed. The mean daily energy intake of each individual was therefore separated in ‘Energy from
Green-labelled foods’ to ‘energy from Red-labelled foods’. The five variables obtained were used as input variables in a clustering procedure (SAS CLUSTER and FASCLUS procedures). The plot of the semi-partial R², the semi-partial T² and the Cubic Clustering Criterion by the number of clusters were used to identify that a model with three mutually exclusive clusters of individuals was adequate.

Scenarios of Substitution

In order to investigate the potential impact of substitutions of foods using the 5-CNL, we modelled substitutions within food groups of similar use, using a gradual approach. Three scenarios of substitution were modelled, in order to highlight the potential gain in diet quality through substitution (S1 Fig). Food groups tested for the substitution are presented in S1 Table.

Simulation scenario n°1 substitution of all food for all healthier foods. In this first scenario, foods classified in the highest nutritional quality class of the 5-CNL within a food group were considered not substituted. Foods and beverages classified in lower nutritional quality classes of the 5-CNL were substituted, and were attributed the mean nutritional values of all the healthier foods and beverages (e.g. Red-labelled foods were attributed the mean nutritional values of foods from the ‘Pink’ to the ‘Green’ classes). The initial quantity of the food was retained. This scenario models the substitution from lower nutritional quality foods, as classified in the 5-CNL to higher nutritional quality foods, with an even probability of choice for all foods in healthier classes of the 5-CNL. This scenario was used to investigate the highest nutritional gain possible through substitutions.

Simulation scenario n°2 substitution of all food for healthier foods in the adjacent class of the 5-CNL. This second scenario is similar to the previous, but substituted foods were attributed the mean nutritional values of foods in the immediately adjacent colour within a food group (e.g. Red-labelled foods were attributed the mean nutritional values of foods in the ‘Pink’ category).

Simulation scenario n°3 Scenario n°2 applied to 30% of foods. In this third scenario, 30% of foods were randomly selected in each 24h-record for each subject, and were applied the second scenario of substitution. This scenario, retaining a fraction of eligible foods for substitution was considered as the most realistic in real-life settings.

Statistical Analysis

Sociodemographic, lifestyle, anthropometrics, food group consumption and nutrient intake were compared across clusters using ANOVAs or Chi-square tests, as appropriate. Energy-adjusted nutrient intakes [27] were compared across clusters. Percentages of subjects with adequate intakes (energy, lipids, carbohydrates, proteins, added sugars, saturates, fibers) according to French national recommendations were compared across clusters and scenarios of substitution. Cut-offs for adequate intakes were determined using French national nutrition and health program objectives (Programme National Nutrition Santé, PNNS) [28] or recommendations from the French Agency for Food, Environmental and Occupational Health Safety (ANSES) [29] (See S2 Table). Basal metabolic rate and individual expenditure were computed using Schofield equations. Energy intakes <105% of expenditures were considered as adequate [30].

All tests were two-sided and a P value < 0.001 was considered significant, given the high number of statistical tests performed. Statistical analyses were performed using SAS Software (version 9.3, SAS Institute Inc, Cary, NC, USA). Figures were obtained using R software (version 3.0.3)

Results

Among the 158 291 subjects included in the NutriNet-Santé study up to March 23rd, 2015, 95 942 subjects had three available normo-energy dietary records at baseline and were included in
the analysis. The sample included 78.1% of women, and the mean age of the sample was 43.1 ± 14.6 years old.

The clustering procedure identified three mutually exclusive groups of subjects (Table 1). In all clusters, the proportion of energy from foods from each colour category was >8% of total energy intake. Clusters were characterized and labelled according to the food group consumption patterns observed, as: ‘Healthy’ (N = 28 095, 29.3% of the sample), ‘Western’ (N = 33 386, 34.8%) and ‘Traditional’ (N = 34 461, 35.1%).

Socio-Demographic Characteristics

Subjects in the ‘Traditional’ pattern were more often men, middle-aged, with low incomes, living in a rural setting, and were more likely overweight or obese (Table 1). Subjects in the ‘Western’ pattern were younger, with low income and higher education (university students) and were more often smokers (Table 1). Subjects in the ‘Healthy’ pattern were more likely women, middle-aged, with high income, living in urban areas and former smokers (Table 1).

Food Consumption and Nutritional Intake

The ‘Healthy’ pattern was characterized by high consumption of fruit, vegetables, legumes, whole cereals and fish and seafood (Table 2). This led to high intakes in fibers, vitamins and minerals (Table 3). The ‘Western’ pattern was characterized by high consumption of sweetened beverages, breakfast cereal, cheese and fatty and sugary foods (Table 2). This led to high intakes in energy, saturated fat, cholesterol, and added sugar (Table 3). The ‘Traditional’ pattern was characterized by high consumption of potatoes, bread, meat and dairy desserts (Table 2). This led to high sodium and added fat intakes (Table 3).

Substitution Scenarios

Overall, substitutions strategies led to a decrease in lipid, sugars and added sugars intakes and an increase in fibers intakes, leading to an increase in the number of subjects reaching the recommended intakes in energy, macro and micronutrients (Fig 2). The most important increases were observed for lipids and saturates intakes, more particularly in the ‘Western’ patterns (Fig 2). Before substitution, 16.2% of subjects in the ‘Western’ pattern reached the recommended amount of lipid intakes (13.5% for saturates); in scenario n°3, 22.0% reached the recommended amount for lipids (17.8% for saturates); finally, in scenario n°1, 60.6% reached the recommended amount for lipids (85.7% for saturates) (Fig 2). On the other hand, as expected, the number of subjects reaching the recommended intakes in the ‘Healthy’ pattern was more important at baseline, but the magnitude of effect of the substitution scenarios in this group of consumers was lower (e.g. 50.9% of subjects reached the recommended lipid amount before substitution, and they were 56.8% in scenario n°1) (Fig 2).

For added sugars, fibers and sodium, substitutions using the 5-CNL significantly increased the number of subjects reaching the recommended amounts, but the magnitude of these effects was comparatively lower. For carbohydrates and proteins intakes, substitutions using the 5-CNL did not modify significantly the number of subjects reaching the recommendations.

Discussion

Our results allowed for the identification of three mutually exclusive dietary profiles using the 5-CNL, characterized by specific dietary behaviours. Whatever the cluster considered, foods from each colour category of the 5-CNL composed a substantial part of the diet. Finally, the simulated substitution of foods allowed for substantial modifications in macro- and micro-
Table 1. Consumption of foods from each colour (% energy intake) and sociodemographic, lifestyle and anthropometric characteristics across identified clusters (N = 95942).

N	Cluster 1 = HEALTHY	Cluster 2 = WESTERN	Cluster 3 = TRADITIONAL	P
	28095	33386	34461	
Consumption from 'colour' foods				
Green	44 ± 9.81	21.2 ± 7.93	22.5 ± 7.29	<0.0001
Yellow	13.8 ± 7.63	14.6 ± 6.88	27.3 ± 9.05	<0.0001
Orange	13.2 ± 8.62	11.7 ± 7.51	13.1 ± 8.39	<0.0001
Pink	20.6 ± 8.22	40.3 ± 7.94	22.8 ± 6.94	<0.0001
Red	8.31 ± 6.84	12.2 ± 7.88	14.4 ± 9.16	<0.0001
Sex				
Male	5440 (19.4)	6866 (20.6)	8708 (25.3)	<0.0001
Female	22655 (80.6)	26520 (79.4)	25753 (74.7)	
Age category (y)				
18–24 years old	1965 (7)	5657 (16.9)	3569 (10.4)	<0.0001
25–44 years old	9315 (33.2)	16567 (49.6)	14329 (41.6)	
45–64 years old	14023 (49.9)	9895 (29.6)	14026 (40.7)	
≥ 65 years old	2792 (9.9)	1267 (3.8)	2537 (7.4)	
Monthly income (€)				
<900	2548 (9.1)	4172 (12.5)	3606 (10.5)	<0.0001
900–1200	1522 (5.4)	2321 (7)	2414 (7)	
1201–1800	6425 (22.9)	8462 (25.3)	8641 (25.1)	
1801–2300	4227 (15)	4712 (14.1)	4814 (14)	
2301–2700	2591 (9.2)	2753 (8.2)	3010 (8.7)	
2701–3700	4249 (15.1)	4135 (12.4)	4910 (14.2)	
>3700	3105 (11.1)	2765 (8.3)	3212 (9.3)	
Missing	3428 (12.2)	4066 (12.2)	3854 (11.2)	
Educational level				
No diploma and primary	952 (3.4)	701 (2.1)	1044 (3)	<0.0001
Secondary	9565 (34)	10429 (31.2)	12006 (34.8)	
University	17365 (61.8)	22049 (66)	21169 (61.4)	
Other	213 (0.8)	207 (0.6)	242 (0.7)	
Living area				
Urban	21691 (77.2)	25832 (77.4)	26456 (76.8)	<0.0001
Rural	5825 (20.7)	6892 (20.6)	7591 (22)	
Abroad	579 (2.1)	662 (2)	414 (1.2)	
Marital status				
Single/divorced/widowed	8497 (30.3)	10314 (30.9)	9031 (26.2)	<0.0001
In couple	19589 (69.7)	23065 (69.1)	25419 (73.8)	
Smoking statut				
Never smoker	14135 (50.3)	16989 (50.9)	16784 (48.7)	<0.0001
Former smoker	10650 (37.9)	9778 (29.3)	11779 (34.2)	
Current smoker	3301 (11.8)	6612 (19.8)	5891 (17.1)	
Body mass index category				
Underweight	1548 (5.5)	1971 (5.9)	1585 (4.6)	<0.0001
Normal weight	17558 (62.5)	22244 (66.6)	21689 (62.9)	
Overweight	6368 (22.7)	6416 (19.2)	7838 (22.7)	
Obese	2611 (9.3)	2751 (8.2)	3343 (9.7)	

Data are N(%) and Mean ± SD. P value for Chisquare tests across clusters

doi:10.1371/journal.pone.0157545.t001
Table 2. Food group consumption (g/day) according to the identified clusters (N = 95942).

N	Cluster 1 = HEALTHY	Cluster 2 = WESTERN	Cluster 3 = TRADITIONAL	P
	28095	33386	34461	
Fruits and vegetables	550 ± 264	335 ± 185	378 ± 191	<0.0001
Fruits	270 ± 188	149 ± 125	171 ± 131	<0.0001
Vegetables	280 ± 143	185 ± 106	206 ± 110	<0.0001
Starchy foods	254 ± 125	219 ± 93.5	261 ± 106	<0.0001
Pasta, rice and bread	120 ± 92.7	131 ± 75.9	174 ± 88.9	<0.0001
Whole grains	62.9 ± 66.1	26.6 ± 37.9	20.9 ± 33.1	<0.0001
Breakfast cereals	6.56 ± 16.5	9.12 ± 20.1	5.21 ± 14.4	<0.0001
Potatoes and tubers	46.3 ± 55	43.2 ± 47.6	51 ± 52.1	<0.0001
Legumes	18.1 ± 35.3	9.03 ± 21.9	10.3 ± 23.4	<0.0001
Fish, meat and eggs	162 ± 86.7	148 ± 71.5	165 ± 74.8	<0.0001
Milk, dairy and fresh desserts	82.8 ± 62.7	78.6 ± 53.6	88 ± 57.3	<0.0001
Fish and seafood	51.1 ± 51.2	31.1 ± 37.5	35.6 ± 40.2	<0.0001
Processed meat and fish	15.2 ± 23.7	25.5 ± 30.2	26 ± 31.1	<0.0001
Eggs	13.2 ± 21.6	12.5 ± 19.7	15.2 ± 23.1	<0.0001
Milk and poultry	261 ± 186	221 ± 148	232 ± 154	<0.0001
Milk	27.1 ± 47.5	36.6 ± 52.2	43.4 ± 59.7	<0.0001
Cheese	27.4 ± 25	44.8 ± 33.4	35.5 ± 27.7	<0.0001
Yogurt and cottage cheese	90.3 ± 140	79.7 ± 119	80.5 ± 122	<0.0001
Fats	23 ± 15.9	26.7 ± 18.4	25.2 ± 16.5	<0.0001
Sugary products	62.9 ± 47.9	128 ± 75.4	88.2 ± 60.1	<0.0001
Dried fruits	3.37 ± 11.2	1.98 ± 8.22	1.8 ± 7.01	<0.0001
Biscuits and cakes	23.7 ± 31	56.6 ± 55.5	38.9 ± 43.8	<0.0001
Pastries	4.03 ± 11.4	17.6 ± 28	7.33 ± 15.3	<0.0001
Fatty and sugary products	12.9 ± 20.8	29.8 ± 37.9	18.5 ± 26.5	<0.0001
Confectionery	18.9 ± 21.9	22.4 ± 24.7	21.7 ± 22.4	<0.0001
Salty snacks	12.7 ± 19.8	19.8 ± 23	14.1 ± 18.8	<0.0001
Beverages	1340 ± 616	1320 ± 575	1280 ± 563	<0.0001
Non-sugared beverages	1200 ± 606	1080 ± 555	1070 ± 543	<0.0001
Soft drinks	20.9 ± 61.2	69 ± 135	48.1 ± 112	<0.0001
Alcohol	43.9 ± 76.1	70.8 ± 96.4	54.1 ± 82.4	<0.0001
Dry fruits	76.2 ± 129	104 ± 165	107 ± 169	<0.0001

Data are Means±SD in g/day. P value for ANOVA across clusters

doi:10.1371/journal.pone.0157545.t002

nutrient intakes in individuals, with a higher impact in patterns characterized with a lower diet quality. Though scenario n°1 appears unrealistic, it shows the margin of progression attainable in the population, highlighting the potential of the 5-CNL to contribute in reaching the French National Nutrition and Health Program (PNNS) objectives.

The dietary profiles that were identified in our study are consistent with the existing literature [31–33]. Subjects with healthier dietary profiles have been frequently reported to be more often women, with higher education and income, while ‘Western’ dietary patterns are more frequently followed by younger subject with lower incomes [31]. "Traditional" patterns are more often reported in older subjects with lower education [33,34].

To the best of our knowledge, this is the first study to use FOP nutrition labels to characterize dietary behaviour using this type of methodology. Some studies have used FOP nutrition labels to...
labels to investigate diet, but all considered a binary indicator of the nutritional quality of foods, which prevents direct comparisons across studies [35–38]. Lichtenstein et al. investigated the association between dietary behavior and consumption of American Heart Association (AHA) Heart Check Certifiable (HCC) foods [38]. Nutritional requirements for AHA HCC foods vary for 6 categories of foods, and include content in saturated fat and sodium (as in the 5-CNL) but also content in trans-fat, cholesterol, and some vitamins and minerals, leading to a binary assessment of the nutritional quality of the food (Heart Check vs. no Heart Check) [39]. Comparison with the 5-CNL suggests that AHA HCC foods would correspond to ‘Green’ labeled foods. In the NHANES population, consumption of AHA HCC foods was positively associated with consumption of fruit, vegetables and total grain, and inversely associated with the percentage of energy from saturated fat, alcohol, cholesterol and sodium [38]. These results are consistent with ours, as subjects with high consumption of AHA HCC foods would more likely be in the ‘Healthy diet’ cluster. Another study showed that the NuVal system, which ranks foods from 0 to 100 according to their content in 30 different nutrients, applied to individual diets was correlated to the Healthy Eating Index and to the DASH diet [37]. Such results are in line with ours, as subjects with high ONQI would more likely correspond to the ‘Healthy’ pattern. However, the NuVal system differs from the 5-CNL, as it delivers a quantitative continuous information to the consumer (0–100), compared to five classes of nutritional quality. Moreover, no direct comparison was possible with the FSA score, given that the NuVal uses a proprietary algorithm [40].

Table 3. Energy, macro- and micronutrient intake in the identified clusters (N = 95942).

	Cluster 1 = HEALTHY	Cluster 2 = WESTERN	Cluster 3 = TRADITIONAL	P
N 28095	33386	34461		
Energy intake (kcal/d)	1740 ± 447	2000 ± 510	1930 ± 495	<0.0001
Carbohydrates (g/day)	196 ± 35.4	186 ± 34.5	194 ± 34.7	<0.0001
Lipids (g/day)	73.1 ± 13.5	83.3 ± 12.8	76.6 ± 13.2	<0.0001
Proteins (g/d)	84 ± 19	71.9 ± 14.1	76.7 ± 14.3	<0.0001
Sugars (g/d)	93.5 ± 26.8	91.8 ± 28.2	85.5 ± 26.4	<0.0001
Added sugars (g/d)	28.7 ± 16.4	44.3 ± 22.9	35.4 ± 20.6	<0.0001
Added fat (g/d)	22 ± 11	22 ± 12.3	23.4 ± 11.7	<0.0001
Added animal fat (g/d)	6.71 ± 6.29	7.44 ± 7.24	8.7 ± 7.85	<0.0001
Added vegetable fat (g/d)	15.3 ± 9.94	14.6 ± 10.9	14.7 ± 9.87	<0.0001
Saturated fat (g/d)	27.4 ± 7.19	35.6 ± 7.55	31.3 ± 7.43	<0.0001
Monounsaturated fat (g/d)	28.1 ± 7.49	31.1 ± 7.1	28.7 ± 6.74	<0.0001
Polyunsaturated fat (g/d)	11.9 ± 4.94	10.8 ± 4.23	10.8 ± 4.4	<0.0001
Cholesterol (g/d)	281 ± 128	311 ± 116	309 ± 123	<0.0001
Sodium (mg/d)	2600 ± 705	2500 ± 701	2720 ± 678	<0.0001
Fibres (g/d)	24.1 ± 7.46	16.5 ± 5.21	17.7 ± 5.11	<0.0001
Beta-carotene (µg/d)	4410 ± 3390	2870 ± 2350	3180 ± 2380	<0.0001
Calcium (mg/d)	978 ± 277	884 ± 267	863 ± 246	<0.0001
Iron (mg/d)	15.2 ± 4.41	11.9 ± 3.7	12.4 ± 3.82	<0.0001
Magnesium (mg/d)	396 ± 112	297 ± 82.3	303 ± 75.9	<0.0001
Vitamin B6 (mg/d)	2.02 ± 0.56	1.55 ± 0.49	1.62 ± 0.46	<0.0001
Vitamin B9 (µg/d)	384 ± 123	293 ± 93.8	304 ± 95.5	<0.0001
Vitamin B12 (µg/d)	5.77 ± 5.85	4.53 ± 4.2	5.03 ± 5.19	<0.0001
Vitamin C (mg/d)	138 ± 85.2	108 ± 86.1	108 ± 74.5	<0.0001

Data are Mean ±SD. Macro and Micronutrient intake adjusted on energy intake.

doi:10.1371/journal.pone.0157545.t003
Fig 2. Percentage of subjects reaching the recommended amounts for energy, lipids, proteins, carbohydrates, added sugar, saturates and fibers across substitution scenarios and clusters.

doi:10.1371/journal.pone.0157545.g002
Our results are in line with modelling studies investigating the potential impact of substitutions within the diet [41–44]. Vyth et al. simulated the effect of substituting foods not complying with the Dutch Choices program with complying foods in the Dutch population [44]. In a maximal scenario where diets were simulated to include 100% of foods complying with the Choices program, 60.2% of the population complied with the recommended sodium intake, 54.0% to the recommended saturated fatty acids intake and 32.2% to the recommended sugar intake. In comparison, in scenario n°1 from our study, 91.0% to 91.7% of subjects (in the ‘Western’ and ‘Healthy’ patterns respectively) reached the recommended intake for sodium, 85.7% to 91.7% of subjects (same patterns) reached the recommended intakes for saturated fatty acids and 94.5% to 99.8% of subjects reached the recommended intakes for added sugars. Though the recommended amounts set at targets in the paper by Vyth et al. were more stringent than those we used, the observed differences suggest that the 5-CNL may have a higher impact compared to the Dutch Choices program. These differences can be partly explained by the fact that, contrarily to the Choices program, the 5-CNL would apply to all foods, allowing for a larger number of possible substitutions across the spectrum of available foods, including those with lower nutritional quality.

Modeling studies using observational dietary data have shown that both an increase in the panel of foods consumed and substitutions of foods would be required to achieve a balanced diet [45,46]. However, modifying the structure of one’s diet with the introduction of unfamiliar foods is constraining, while substitutions appear as more easily achievable. Therefore, at the individual level, the 5-CNL could be a helpful tool in implementing substitution strategies, allowing for an improvement in the nutritional quality of the diet. Subjects with already healthy diets would however have a lower gain from this strategy, while the potential lever for improvement in subjects with lower quality diets is more important. Indeed, the relative increase in the number of subjects reaching the recommended amount of saturates in the diet using scenario n°3 (the less constraining) is 11.7% in the ‘Healthy’ pattern compared to 32.4% in the ‘Western’ pattern. At the population level, even if subjects with lower quality diets would use the 5-CNL less, the gain in terms of nutritional quality would be more important. This aspect of the 5-CNL is to be taken into account while the major focus of public health nutrition in France is tackling social inequalities in health, including nutrition [47,48]. However, the introduction of a FOP nutrition label is only one of the multiple contributors that might help in improving the diet at the population level, along with other actions in the framework of a national program. The expectations in terms of impact for the 5-CNL should therefore take into account its connection and consistency with education, information and regulation policies.

Two methodological elements concur to the magnitude of the simulated effect in a substitution scenario: the level of aggregation of foods (the higher the aggregation, the higher the effects) [43], and the number of foods substituted (the higher the number of foods substituted, the higher the effects) [42]. In our study, foods were regrouped using a moderate level of aggregation, and considering food groups with similar use. The number of foods substituted was also considered in the third scenario, where 30% of foods were eligible for substitution. However, the use of the 5-CNL in real-life settings might lead to other substitution strategies, which we were not able to take into account. Indeed, substitutions could occur for similar products from different brands rather than other foods within the same food group. The potential impact of such substitutions should also be evaluated, in order to better take into account all the strategies that could be implemented in real-life settings. Finally, it is probable that in real-life setting, only a fraction of the population will use the FOP nutrition label, to substitute also a fraction of the foods they consume. Future studies should therefore simulate the potential impact of the FOP system, taking into account not only the number of foods substituted, but also the number of subjects using the FOP system.
Strengths of our study include its large sample size, and the use of validated dietary collection data, using repeated dietary records [49]. Moreover, the implementation of several substitution scenarios allowed for a more detailed evaluation of the potential impact of the 5-CNL on the nutritional quality of the diet across dietary profiles.

Our study is subject to some limitations. First, the actual use of the FOP system once implemented can’t be anticipated, as food choices at the point of purchase are influenced by individual characteristics (socio-demographical, lifestyle and dietary data), but also by the characteristics of the food offer (price, brands and marketing). A nutritional label would therefore be only one in many cues the consumer faces when grocery shopping. Stimulating awareness towards the label in itself can be considered as a challenge. Therefore, the actual use of the FOP label is likely to be low [50]. The results of the simulation scenarios presented in this paper should therefore be interpreted as best case scenarios and potential nutritional gains that could be achieved when using the label for food substitutions. Second, the substitution strategies we modelled do not take into account potential dietary modification induced by substitutions themselves (e.g. substitution from a sweetened yogurt to a non-sweetened option could lead to a concurrent increased consumption in sugar). Third, the use of the 5-CNL to implement substitutions in a real-life setting is likely dependent on the dietary pattern, which was not taken into account in the substitution models. Indeed, subjects who are more concerned about their diet, and therefore more likely to have ‘Healthy’ dietary patterns, are also more likely to use a nutrition label when grocery shopping [50]. Finally, our sample consists of volunteer subjects included in a cohort study on nutrition, who are therefore more likely to have healthier behaviours. Moreover, the methodology used is highly data-driven, which might also impair generalizability of our results. However, the dietary profiles that were identified included groups with less healthy dietary behaviours (‘Western’ and ‘Traditional’), which represented the majority of our sample (69.9% of the total sample). Moreover, the profiles identified in our study are similar to other studies, allowing for meaningful international comparisons [32].

More research is needed to help anticipating the potential of FOP systems to modify choices at the point of purchase, among all the factors influencing food choices.

Use of the 5-CNL to identify food choices allowed for the identification of three meaningful dietary patterns. Moreover, the 5-CNL could be a useful tool to help consumers substitute foods for a healthier alternative, and reach significant nutritional improvements in the diet, especially in individuals with poorer diets.

Supporting Information

S1 Fig. Scenarios of substitution used in the simulations. (PPTX)

S1 Table. Food groups used for substitution strategies. (DOCX)

S2 Table. Cut-offs used to define adequate intakes in energy, macro- and micronutrients. (DOCX)

Acknowledgments

We thank Paul Flanzy, Mohand Ait Oufella, Yasmina Chelghoum, Than Duong Van (computer scientists), Cédric Agaesse (dietitian), Nathalie Arnault, Veronique Gourlet, Fabien Szabo, Laurent Bourhis, Stephen Besseau (statisticians) and Rachida Mehroug (logistics assistant) for their technical contribution to the NutriNet-Sante study. We especially thank Karen Assmann for her contribution to the development of Fig 1.
Author Contributions
Conceived and designed the experiments: CJ EKG. Performed the experiments: CJ. Analyzed the data: CJ CM SP LF CB SH EKG MT BA. Contributed reagents/materials/analysis tools: CJ SH. Wrote the paper: CJ CM SP LF CB SH EKG MT BA.

References
1. Organization for Economic Co-operation and Development. Promoting sustainable consumption—good practices in OECD countries. 2008.
2. World Health Organization. Global strategy on diet, physical activity and health. 2004.
3. Vyth EL, Steenhuis IMH, Roodenburg AJC, Brug J, Seidell JC. Front-of-pack nutrition label stimulates healthier product development: a quantitative analysis. International Journal of Behavioral Nutrition and Physical Activity. 2010 7.
4. Asp NG, Bryngelsson S. Health claims in the labelling and marketing of food products: the Swedish food sector's Code of Practice in a European perspective. Food & Nutrition Research; Vol 51, No 3 (2007).
5. Vyth EL, Steenhuis IMH, Mallant SF, Mol ZL, Brug J, Temminghoff M et al. A Front-of-Pack Nutrition Logo: A Quantitative and Qualitative Process Evaluation in the Netherlands. Journal of Health Communication. 2009; 14: 631–645. doi: 10.1080/10810730903204247 PMID: 19851915
6. Commonwealth of Australia. Health Star Rating System. A joint Australian, state and territory governments initiatives in partnership with industry, public health and consumer groups. 2015.
7. Touraine M. Projet de loi n°2302 relatif à la Santé, présenté au nom de M. Manuel Valls, Premier ministre, par Mme Marisol Touraine, ministre des affaires sociales, de la santé et des droits des femmes. Exposé des motifs. 2015.
8. Hercberg S. Propositions pour un nouvel élan de la politique nutritionnelle française de santé publique dans le cadre de la stratégie nationale de santé. 1ère partie: mesures concernant la prévention nutritionnelle. 2013.
9. Hercberg S, Chat-Yung S, Chauliac M. The French National Nutrition and Health Program: 2001-2006-2010. Int J Public Health. 2008; 53: 68–77. PMID: 18681335
10. Rayner M, Scarborough P, Stockley L, Boxer A. Nutrient profiles: development of Final model. Final Report [online]. 2005.
11. Rayner M, Scarborough P, Lobstein T. The UK Ofcom Nutrient Profiling Model—Defining 'healthy' and 'unhealthy' food and drinks for TV advertising to children. 2009.
12. Azais-Braesco V, Goffi C, Labouze E. Nutrient profiling: comparison and critical analysis of existing systems. Public Health Nutr. 2006; 9: 613–622. PMID: 16923293
13. Townsend MS. Where is the science? What will it take to show that nutrient profiling systems work? Am J Clin Nutr. 2010; 91: 1109S–1115S. doi: 10.3945/ajcn.2010.28450F PMID: 20164310
14. Scarbrough P, Arambepola C, Kaur A, Bhatnagar P, Rayner M. Should nutrient profile models be 'category specific' or 'across-the-board'? A comparison of the two systems using diets of British adults. Eur J Clin Nutr. 2010; 64: 559–560. doi: 10.1038/ejcn.2010.31 PMID: 20236662
15. Julia C, Kesse-Guyot E, Touvier M, Mejean C, Fezeu L, Hercberg S. Application of the British Food Standards Agency nutrient profiling system in a French food composition database. The British journal of nutrition. 2014; 112: 1699–1705. doi: 10.1017/S0007114514002761 PMID: 25277084
16. Julia C, Ducrot P, Peneau S, Deschamps V, Mejean C, Fezeu L et al. Discriminating nutritional quality of foods using the 5-Color nutrition label in the French food market: consistency with nutritional recommendations. Nutr J. 2015; 14: 100. doi: 10.1186/s12970-015-0090-4 [pii]. PMID: 26416389
17. Julia C, Kesse-Guyot E, Ducrot P, Peneau S, Touvier M, Mejean C et al. Performance of a five category front-of-pack labelling system—the 5-colour nutrition label—to differentiate nutritional quality of breakfast cereals in France. BMC Public Health. 2015; 15: 179. doi: 10.1186/s12889-015-1522-y [pii]. PMID: 25885583
18. Hercberg S, Castetbon K, Czernichow S, Malon A, Mejean C, Kesse E et al. The Nutrinet-Sante Study: a web-based prospective study on the relationship between nutrition and health and determinants of dietary patterns and nutritional status. Bmc Public Health. 2010; 10.
19. Black AE. Critical evaluation of energy intake using the Goldberg cut-off for energy intake: basal metabolic rate. A practical guide to its calculation, use and limitations. Int J Obes Relat Metab Disord. 2000; 24: 1119–1130. PMID: 11033980
20. INSEE (Institut National de la Statistique et des Etudes Economiques). Méthodes. 2014.
21. Craig CL, Marshall AL, Sjostrom M, Bauman AE, Booth ML, Ainsworth BE et al. International physical activity questionnaire: 12-country reliability and validity. Med Sci Sports Exerc. 2003; 35: 1381–1395. PMID: 12900694

22. World Health Organization. Obesity: Preventing and managing the global epidemic. Report of a WHO consultation. WHO Technical Report Series 894. Geneva: WHO. 2000.

23. Hercberg S., Deheeger M., and Preziosi P. (2002) SU.VI.MAX Portions alimentaires. Manuel photos pour l'estimation des quantités. Paris: Editions polytechnica. 132 p.

24. Etude Nutrinet-Santé (2013) Table de composition des aliments de l'étude Nutrinet-Santé. Paris: Economica.

25. Haut Conseil de la Santé Publique. Avis relatif à l'information sur la qualité nutritionnelle des produits alimentaires. Paris: HCSP. 2015. Available: http://www.hcsp.fr/Explore.cgi/avisrapportsdomaine?clefr=519.

26. ANSES. Evaluation de la faisabilité du calcul d'un score nutritionnel tel qu'élaboré par Rayner et al. Rapport d'appui scientifique et technique. Paris: ANSES. 2015.

27. Willett W, Stampfer MJ. Total energy intake: implications for epidemiologic analyses. Am J Epidemiol. 1986; 124: 17–27. PMID: 3521261

28. Ministère du travail, de l'emploi et de la santé. Programme National Nutrition Santé 2011–2015. Paris: Ministère du travail, de l'emploi et de la santé. 2011. Available: http://www.sante.gouv.fr/IMG/pdf/PNNS_2011-2015.pdf.

29. AFSSA. Apports en protéines: consommation, qualité, besoins et recommandations. Paris: Agence Française de Sécurité Sanitaire des Aliments. 2007. Available: https://www.anses.fr/fr/system/files/NUT-Ra-Proteines.pdf.

30. Estaquio C, Kesse-Guyot E, Deschamps V, Bertrais S, Dauchet L, Galan P et al. Adherence to the French Programme National Nutrition Sante Guideline Score Is Associated with Better Nutrient Intake and Nutritional Status. J Am Diet Assoc. 2009; 109: 1031–1041. doi:10.1016/j.jada.2009.03.012 PMID: 19465185

31. Kesse-Guyot E, Bertrais S, Peneau S, Estaquio C, Dauchet L, Vergnaud AC et al. Dietary patterns and their sociodemographic and behavioural correlates in French middle-aged adults from the SU.VI.MAX cohort. Eur J Clin Nutr. 2009; 63: 521–528. doi: 10.1038/sj.ejcn.1602978 PMID: 18212801

32. Pryer JA, Nichols R, Elliott P, Thakrar B, Brunner E, Marmot M. Dietary patterns among a national random sample of British adults. J Epidemiol Community Health. 2001; 55: 29–37. PMID: 11112948

33. Villegas R, Salim A, Collins MM, Flynn A, Perry IJ. Dietary patterns in middle-aged Irish men and women defined by cluster analysis. Public Health Nutrition. 2004; 7: 1017–1024. PMID: 15548339

34. Chiuve SE, Sampson L, Willett WC. The Association Between a Nutritional Quality Index and Risk of Chronic Disease. Am J Prev Med. 2011; 40: 505–513. doi: 10.1016/j.amepre.2010.11.022 PMID: 21496749

35. Schickenberg B, van Assema P, Brug J, Verkaik-Kloosterman J, Ocke MC, de Vries NK. Replacing foods high in saturated fat by low-saturated fat alternatives: a computer simulation of the potential effects on reduction of saturated fat consumption. Br J Nutr. 2009; 102: 472–483. doi: 10.1017/S00071145089190298 PMID: 19139448

36. Thomson JL, Tussing-Humphreys LM, Omufrak SJ, Zoellner JM, Connell CL, Bogle ML et al. A Simulation Study of the Potential Effects of Healthy Food and Beverage Substitutions on Diet Quality and...
Total Energy Intake in Lower Mississippi Delta Adults. J Nutr. 2011; 141: 2191–2197. doi: 10.3945/jn.111.144659 PMID: 22031664

43. Verger EO, Holmes BA, Huneau JF, Mariotti F. Simple Changes within Dietary Subgroups Can Rapidly Improve the Nutrient Adequacy of the Diet of French Adults. J Nutr. 2014; 144: 929–936. doi: 10.3945/jn.113.188284 PMID: 24699804

44. Vyth EL, Hendriksen MAH, Roordenburg AJC, Steenhuis IHM, van Raaij JMA, Verhagen H et al. Consuming a diet complying with front-of-pack label criteria may reduce cholesterol levels: a modeling study. Eur J Clin Nutr. 2012; 66: 510–516. doi: 10.1038/ejcn.2011.193 PMID: 22085871

45. Maillot M, Vieux F, Ferguson EF, Volatier JL, Amiot MJ, Darmon N. To Meet Nutrient Recommendations, Most French Adults Need to Expand Their Habitual Food Repertoire. J Nutr. 2009; 139: 1721–1727. doi: 10.3945/jn.109.107318 PMID: 19625703

46. Maillot M, Issa C, Vieux F, Lairon D, Darmon N. The shortest way to reach nutritional goals is to adopt Mediterranean food choices: evidence from computer-generated personalized diets. Am J Clin Nutr. 2011; 94: 1127–1137. doi: 10.3945/ajcn.111.016501 PMID: 21900460

47. INPES. Réduire les inégalités sociales de santé. Institut National de Prévention et d’Education pour la Santé. 2010.

48. Inserm. Inégalités sociales de santé - Expertise collective INSERM. Centre d’expertise collective ITMO Santé Publique—Aviesan. 2013.

49. Touvier M, Kesse-Guyot E, Mejean C, Pollet C, Malon A, Castetbon K et al. Comparison between an interactive web-based self-administered 24 h dietary record and an interview by a dietitian for large-scale epidemiological studies. Br J Nutr. 2011; 105: 1055–1064. doi: 10.1017/S0007114510004617 PMID: 21080983

50. Van Kleef E, Dagevos H. The Growing Role of Front-of-Pack Nutrition Profile Labeling: A Consumer Perspective on Key Issues and Controversies. Crit Rev Food Sci Nutr. 2015; 55: 291–303. doi: 10.1080/10408398.2011.653018 PMID: 24915389