Morphology and Multi-Gene Phylogeny Reveal Pestalotiopsis pinicola sp. nov. and a New Host Record of Cladosporium anthropophilum from Edible Pine (Pinus armandii) Seeds in Yunnan Province, China

Saowaluck Tibpromma 1,2, Peter E. Mortimer 2,*, Samantha C. Karunarathna 2, Fangdong Zhan 1 ©, Jianchu Xu 2, Itthayakorn Promputtha 3,4 and Kai Yan 1,2, *

1 College of Resources and Environment, Yunnan Agricultural University, Kunming 650201, Yunnan, China; saowaluckfai@gmail.com (S.T.); zfd97@ynau.edu.cn (F.Z.)
2 Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Science, Kunming 650201, Yunnan, China; samanthakarunarathna@gmail.com (S.C.K.);
jxu@mail.kib.ac.cn (J.X.)
3 Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; ppam118@hotmail.com
4 Center of Excellence in Bioresources for Agriculture, Industry and Medicine, Department of Biology, Faculty of Science, Chiang Mai University, Muang District, Chiang Mai 50200, Thailand
* Correspondence: peter@mail.kib.ac.cn (P.T.E.); yankai@mail.kib.ac.cn (K.Y.)

Received: 17 October 2019; Accepted: 30 November 2019; Published: 4 December 2019

Abstract: This study contributes new knowledge on the diversity of conidial fungi in edible pine (Pinus armandii) seeds found in Yunnan Province, China and emphasizes the importance of edible seed products to ensure food safety standards. We isolated two fungal species, one on the pine seed coat and the other on the endosperm of the pine seed. The two fungal species were identified as Pestalotiopsis pinicola sp. nov. and a new host record Cladosporium anthropophilum. Characteristic morphological features of Pestalotiopsis pinicola were used alongside results from multi-gene phylogenetic analysis to distinguish it from currently known species within the genus. Cladosporium anthropophilum was identified as a new host record based on morphological features and phylogenetic analysis. In addition, detailed descriptions, scanned electron microscopy morphology, illustrations, and phylogenetic trees are provided to show the placement of these species.

Keywords: ascomycota; endophytic fungi; new taxon; saprobic fungi; taxonomy; weak pathogen

1. Introduction

Chinese white pine (P. armandii), one of the endemic conifer species of East Asia, is known throughout China, and particularly Yunnan Province, for its substantial ecological and economic value [1,2]. P. armandii seeds are suitable for use as a culinary ingredient after roasting, because the fatty acid profile of the seeds has a higher level of taxoleic acid and lower levels of octadecenoic acids compared to other species in Pinus [3,4].

Seeds are colonized by various types of fungi including fungal pathogens [5]. Several fungal species exist in seeds in the forms of spores and mycelium and can subsist for long periods of time on the seed coat and in the inner areas [6]. In general, fungi that are present within seeds are more harmful than those that merely contaminate the outer seed coat [6]. Common fungi genera that have been reported as associated with various seeds are Aspergillus, Mucor, Penicillium, Pestalotiopsis, Rhizopus,
and Trichoderma [7]. Some studies have confirmed that fungi that are usually thought to be saprobes act as pathogens under certain circumstances, while endophytes can also switch to a saprobic lifestyle [8,9]. Fungal invasions happen after injury to the seed or seed coat as well as when moisture levels and temperatures are favorable for fungal growth [10]. Many seed fungi are also important sources of bioactive compounds [11,12]. In this study, we were able to isolate and identify two micro-fungi belonging to the genera Cladosporium and Pestalotiopsis from the seeds of Pinus armandii.

The genus Cladosporium (Cladosporiaceae, Capnodiales) was introduced by Link [13] with C. herbarum (Pers.) Link as the type species. The members of this genus can be endophytes, pathogens, and saprobes with worldwide distribution across a wide range of disparate substrates [14–18]. Cladosporium species are also known as the most abundant fungi in indoor and outdoor environments and are also important as spoilage organisms and discoloration which have been screened from cereal grains, fruits, peanuts, and chilled meat [19–22]. While Cladosporium species have not been reported as mycotoxin producers, they may nonetheless represent a health threat. Furthermore, some species have been reported causing fungal allergies, especially in patients with severe asthma [23–31]. Recently, several Cladosporium species have been reported in China, Thailand, and the United Kingdom on the decaying seed pods of Delonix regia, Entada phaseoloides, Laburnum anagyroides, and Magnolia grandiflora [32]. Only two species, Cladosporium nigrellum and C. psoraleae, have been reported from Pinus armandii in China [33,34].

The genus Pestalotiopsis (Sporocadaceae, Amphisphaeriales) was introduced by Steyaert [35] with P. guepinii (Desm.) Steyaert as the type species. The members of this genus can be found worldwide as endophytes, saprobes or opportunistic pathogens [18,36–44]. Some of them are confirmed to cause human and animal diseases [42,45,46]. For example, Pestalotiopsis spp. have been isolated from a bronchial biopsy, corneal abrasions, eyes, feet, fingernails, scalp, and sinuses from the human body [45]. In addition, this genus is known as one of the common fungi genera reported on various seeds [7]. Pestalotiopsis algeriensis, P. carveri, P. caudata, P. cocculi, P. disseminate, P. heterocornis, P. lespedezae, P. neglecta, P. olivacea, and P. vismiae have been reported from Pinus armandii in China [33,34,38,47].

In the present study, we used multi-gene sequence analysis, morphological examinations, and culture characteristics for the identification and delimitation of fungi isolates belonging to the genera Cladosporium and Pestalotiopsis from seeds of Pinus armandii collected in Yunnan Province, China.

2. Materials and Methods

2.1. Sample Collection and Specimen Examination

Fresh fungal structures (mycelia and spore masses) were directly isolated in potato dextrose agar (PDA) from seed coats and endosperms of Pinus armandii seeds using aseptic techniques, and the PDA plates were incubated at room temperature. Pine seeds were obtained outside Kunming, Yunnan Province, China (Figure 1). The seeds were then carefully analyzed. Morphological structures of the fungi were examined under a stereo microscope. Scanning electron microscopy (SEM) micrographs were obtained under a ZEISS GeminiSEM and ZEISS Sigma 300 apparatus, following the methods described by Figueras and Guarro [48]. To observe the fungal structures, sporulated cultures were mounted on water. Microscopic fungal structures were observed under a compound microscope and photographs were captured with a digital camera fitted on to the microscope. All microscopic structures of fungi were measured by the Tarosoft Image Framework program v.0.9.0.7., and Adobe Photoshop CS3 Extended version 10.0 (Adobe Systems, USA) was used to process and edit the images used in the figures.

Isolation

The PDA medium was used for culturing the isolated fungi. Spore masses from the seed coat and mycelia from the endosperm were aseptically transferred to PDA plates (two isolates of each species). The pure culture plates were incubated at room temperature (20–25 °C) for 14–21 days, and
the fungal colonies were carefully observed and described. The herbarium specimens of the fungi were dehydrated using silica gel and deposited in the Mae Fah Luang University Herbarium. The pure cultures were deposited in the Kunming Institute of Botany Culture Collection (KMUCC). Index Fungorum (IF) and Facesoffungi (FoF) numbers were obtained as described by Index Fungorum [49] and Jayasiri et al. [50].

2.2. DNA Extraction, PCR Amplification, and DNA Sequencing

The mycelia of the cultures grown on PDA at room temperature for 4 weeks were used for DNA extraction. The fungal mycelia were scraped off with a sterile scalpel and transferred to 1.5 mL micro-centrifuge tubes under aseptic conditions and kept at −20 °C to avoid contaminations until use. The Biospin Fungal Genomic DNA Extraction Kit (BioFlux, China) was used to perform DNA extraction from the fungal cultures, following the manufacturer’s protocols. To amplify partial gene regions of the 5.8S rRNA gene in the internal transcribed spacer (ITS), translation elongation factor 1-alpha gene (TEF1), actin gene (ACT), and beta-tubulin gene (TUB2), polymerase chain reaction (PCR) was used. The PCR conditions and primers were set under standard conditions as shown in Table 1. The total volume of PCR mixtures for amplifications was set as described in Tibpromma et al. [18]. Purification and sequencing of PCR products were done by Sangon Biotech Co., Shanghai, China.

Figure 1. (a) Seeds of Pinus armandii from Yunnan Province, China. (b) Fungal mass on a seed. (c) Endosperm covered with mycelia. (d) Mycelia on endosperm under a SEM micrograph. (e–h) Rows of rounded cells present on a seed coat skin under SEM micrographs that form aerial hyphae, conidia, and conidiophores. Scale bars: d = 1 mm, e = 100 µm, f = 10 µm, g = 2 µm, h = 1 µm.
Table 1. Gene regions and primers used in this study.

Genes	Primers (Forward/Reverse)	References
Cladosporium		
ACT	512F/783R	[51]
ITS	ITS5/ITS4	[52]
TEF1	728F/986R	[51]
Pestalotiopsis		
ITS	ITS5/ITS4	[52]
TEF1	526F/1567R	[53]
TUB2	T1/T2	[54]

2.3. Phylogenetic Analyses

The ITS and TEF1 sequence data produced in this study were used in BLAST searches in the GenBank database (www.blast.ncbi.nlm.nih.gov) to determine their most probable closely related taxa. The sequence data generated in this study were analyzed with closely related taxa retrieved from GenBank based on BLAST searches and recent publications [9,16,18,55,56]. Single gene sequence datasets were aligned using the MAFFT v.7.215 website [57] and manually edited in BioEdit v.7.0 when necessary [58]. Single sequence alignment datasets were combined using BioEdit v.7.2.5 [58]. The alignment of combined datasets in FASTA format was converted to PHYLIP and NEXUS formats using the Alignment Transformation Environment (ALTER) website [59]. Phylogenetic trees were run in randomized accelerated maximum likelihood (RAxML) and Bayesian posterior probabilities (BYPPs). The maximum likelihood (ML) analysis was performed via the CIPRES Science Gateway [60] using the RAxML-HPC BlackBox (8.2.4) section [61,62] with the general time reversible model (GTR) using a discrete gamma distribution as the evolutionary model. To carry out Bayesian analysis, the model of evolution was estimated using MrModeltest 2.2 [63] with HKY+I+G (for the Pestalotiopsis dataset) and GTR+I+G (for the Cladosporium dataset) as nucleotide substitution models selected for combined datasets. Posterior probabilities (PPs) [64] were determined by Markov chain Monte Carlo sampling (MCMC) in MrBayes v.3.0b4 [65]. The parameters were set as six simultaneous Markov chains ran for 5,000,000 generations and sampling every 100th generation for a total of 50,000 trees [66]. The first trees representing the burn-in phase of the analysis (20%) were discarded and the remaining (post-burn) trees were used for calculating PPs in the majority rule consensus tree (the critical value for the topological convergence diagnostic values reached 0.01) [67,68].

The phylograms were figured in FigTree v.1.4 [69] and reorganized using Microsoft Office PowerPoint 2007 and Adobe illustrator CS3 (Adobe Systems Inc., USA). The sequences generated in this study were submitted to GenBank (Tables 2 and 3).

Table 2. GenBank accession numbers and culture collection numbers of the nucleotide sequences of Cladosporium taxa used in this study. The new sequences generated in this study are in bold type.

Species	Culture Collection Number	GenBank Accession Numbers
Cercospora beticola	CBS 116456	NR_121315
Cladosporium acalyphae	CBS 125982	HM147994
C. alboflavescens	CBS 140690	LN834420
C. angustisporum	CBS 125983	HM147995
C. angustisporum	UTHSC-DI-13-240	LN834356
C. anthropophillum	CBS 117483	HM148007
C. anthropophillum	CBS 140685	LN834437
C. anthropophillum	KUMCC 19-0182	MN412638

Species	Culture Collection Number	GenBank Accession Numbers
C. anthropophillum	KUMCC 19-0182	MN417513

The sequences of **Cladosporium** taxa used in this study. The new sequences generated in this study are in bold type.
Species	Culture Collection Number	GenBank Accession Numbers	AIS	TEF1	ACT
C. anthropophilum	KUMCC 19-0202	MN412639	MN417514	MN417512	
C. anthropophilum	UTHSC-DI-13-168	LN834407	LN834503	LN834591	
C. anthropophilum	UTHSC-DI-13-169	LN834408	LN834504	LN834592	
C. anthropophilum	UTHSC-DI-13-178	LN834410	LN834506	LN834594	
C. anthropophilum	UTHSC-DI-13-179	LN834411	LN834507	LN834595	
C. anthropophilum	UTHSC-DI-13-207	LN834413	LN834509	LN834597	
C. anthropophilum	UTHSC-DI-13-226	LN834421	LN834517	LN834605	
C. anthropophilum	UTHSC-DI-13-228	LN834423	LN834519	LN834607	
C. anthropophilum	UTHSC-DI-13-244	LN834428	LN834524	LN834612	
C. anthropophilum	UTHSC-DI-13-246	LN834430	LN834526	LN834614	
C. anthropophilum	UTHSC-DI-13-269	LN834437	LN834533	LN834621	
C. anthroplhiulum	UTHSC-DI-13-271	LN834439	LN834535	LN834623	
C. asperulatum	CBS 126339	HM147997	HM148238	HM148484	
C. asperulatum	CBS 126340	HM147998	HM148239	HM148485	
C. australiense	CBS 125984	HM147999	HM148240	HM148486	
C. australiense	CBS 125985	HM147999	HM148240	HM148486	
C. cladosporioides	CBS 125985	HM148001	HM148242	HM148488	
C. chubutense	CBS 124457	FJ936158	FJ936161	FJ936165	
C. cloacae	CBS 125985	HM148001	HM148242	HM148488	
C. colombiae	CBS 113738	HM148004	HM148245	HM148491	
C. coloscaei	CBS 119542	HM148079	HM148325	HM148570	
C. cucumerinum	CBS 171.52	HM148091	HM148335	HM148580	
C. cucumerinum	CBS 173.54	HM148092	HM148336	HM148581	
C. delicatulum	CBS 126342	HM148093	HM148337	HM148582	
C. delicatulum	CBS 126344	HM148094	HM148338	HM148583	
C. exile	CBS 125987	HM148095	HM148339	HM148584	
C. flavovirens	CBS 126345	HM148096	HM148340	HM148585	
C. flavovirens	CBS 126346	HM148096	HM148340	HM148585	
C. gamsianum	CBS 125988	HM148096	HM148340	HM148585	
C. globisporum	CBS 125989	HM148096	HM148340	HM148585	
C. grevilleae	CBS 114271	JF770450	JF770472	JF770473	
C. hillianum	CBS 125988	HM148097	HM148341	HM148586	
C. intercellor	CBS 125991	HM148112	HM148356	HM148601	
C. ipereniae	CBS 134.65	HM148100	HM148344	HM148589	
C. ipereniae	CBS 140483	KT603994	KT60491	KT600589	
C. ipereniae	CPC 16855	KT603995	KT60492	KT600590	
C. iranicum	CBS 126364	HM148110	HM148354	HM148599	
C. limoniforme	CBS 113737	KT603996	KT60493	KT600591	
C. longicatenatum	CPC 17189	KT60403	KT60500	KT600598	
C. lycoperdiniun	CBS 126347	HM148122	HM148356	HM148601	
C. lycoperdiniun	CBS 574.78C	HM148115	HM148359	HM148604	
C. montecillanum	CPC 15605	KT60407	KT60505	KT600603	
C. montecillanum	CPC 17953	KT60406	KT60504	KT600602	
C. myrtacearum	CBS 126350	HM14817	HM148361	HM148606	
C. oxysepnum	CBS 125991	HM148118	HM148362	HM148607	
C. oxysepnum	CBS 126351	HM148119	HM148363	HM148608	
C. paraculosporoides	CBS 171.54	HM148120	HM148364	HM148609	
C. parapenidielloides	CPC 17193	KT60401	KT60508	KT600606	
Table 2. Cont.

Species	Culture Collection Number	GenBank Accession Numbers
C. phaenocomae	CBS 128769	JF499837 JF499875 JF499881
C. phylactiniicola	CBS 126353	HM148151 HM148395 HM148640
C. phylactiniicola	CBS 126355	HM148153 HM148397 HM148642
C. phyllophilum	CBS 125992	HM148154 HM148398 HM148643
C. phyllophilum	CBS 125990	HM148111 HM148355 HM148600
C. pini-ponderosae	CBS 124456	FJ936160 FJ936164 FJ936167
C. pseudochalastosporoides	CPC 17823	KT600515 KT600516 KT600611
C. pseudocladosporioides	CBS 125993	HM148158 HM148409 HM148654
C. pseudocladosporioides	CBS 667.80	HM148111 HM148417 HM148662
C. pseudocladosporioides	CPC 13683	HM148185 HM148429 HM148674
C. pseudocladosporioides	CPC 14295	HM148188 HM148432 HM148677
C. pseudocladosporioides	UTHSC-DI-13-165	LN834406 LN834502 LN834590
C. pseudocladosporioides	UTHSC-DI-13-190	LN834412 LN834508 LN834596
C. pseudocladosporioides	UTHSC-DI-13-210	LN834414 LN834510 LN834598
C. pseudocladosporioides	UTHSC-DI-13-218	LN834418 LN834514 LN834602
C. pseudocladosporioides	UTHSC-DI-13-227	LN834422 LN834518 LN834606
C. pseudocladosporioides	UTHSC-DI-13-234	LN834424 LN834520 LN834608
C. pseudocladosporioides	UTHSC-DI-13-238	LN834426 LN834522 LN834610
C. pseudocladosporioides	UTHSC-DI-13-241	LN834427 LN834523 LN834611
C. pseudocladosporioides	UTHSC-DI-13-245	LN834429 LN834525 LN834613
C. pseudocladosporioides	UTHSC-DI-13-251	LN834432 LN834528 LN834616
C. pseudocladosporioides	UTHSC-DI-13-268	LN834436 LN834532 LN834620
C. pseudocladosporioides	UTHSC-DI-13-270	LN834438 LN834534 LN834622
C. rectoides	CBS 125994	HM148193 HM148438 HM148683
C. ruguloflabelliforme	CPC 19707	KT600557 KT600655 KT600655
C. scabrellum	CBS 126358	HM148195 HM148440 HM148685
C. silenes	CBS 109082	EF679354 EF679429 EF679506
C. subinflatum	CBS 121630	EF679398 EF679467 EF679543
C. subinflatum	CBS 121630	EF679389 EF679467 EF679543
C. subuliforme	CBS 126500	HM148196 HM148441 HM148686
C. tenuissimum	CPC 13222	HM148210 HM148455 HM148700
C. tenuissimum	CPC 14250	HM148211 HM148456 HM148701
C. tenuissimum	UTHSC-DI-13-258	LN834404 LN834500 LN834588
C. varians	CBS 126362	HM148224 HM148470 HM148715
C. verrucocladosporioides	CBS 126363	HM148226 HM148472 HM148717
C. versiforme	CPC 19053	KT600417 KT600515 KT600613
C. xanthochromaticum	CBS 140691	LN834415 LN834511 LN834599
C. xylophilum	CBS 125997	HM148230 HM148476 HM148721

Table 3. GenBank accession numbers and culture collection numbers of the nucleotide sequences of the *Pestalotiopsis* taxa used in this study. The new sequences generated in this study are in black bold type.

Species	Culture Collection Number	GenBank Accession Numbers		
Neopestalotiopsis clavispora	CBS 447.73	KM199374 KM199443 KM199539		
N. formicarum	CBS 362.72	KM199358 KM199455 KM199517		
Pestalotiopsis adusta	MFLUCC 10-0146	JX390016 JX390037 JX390070		
P. aggestorum	LC8186	KY464140 KY464160 KY464150		
P. anacardiacearum	IFRDCC 2397	KC247154 KC247155 KC247156		
P. arceuthobii	CBS 434.65	KM199341 KM199427 KM199516		
P. arencae	CBS 331.92	KM199340 KM199426 KM199515		
Species	Culture Collection Number	GenBank Accession Numbers		
----------------------	----------------------------	---------------------------		
		ITS	TUB2	TEF1
P. australasia	CBS 114126	KM199297	KM199409	KM199499
P. australis	CBS 114193	KM199332	KM199383	KM199475
P. biciliata	CBS 124463	KM199308	KM199399	KM199505
P. biciliata	CBS 790.68	KM199305	KM199400	KM199507
P. biciliata	MFLUCC 12-0598	KX816920	KX816948	KX816890
P. brachiata	LC2988	KX894933	KX895265	KX895150
P. brassicae	CBS 170.26	KM199379	-	KM199558
P. camelliae	MFLUCC 12-0277	JX399010	JX399041	JX399074
P. chamaepitis	CBS 186.71	KM199326	KM199391	KM199473
P. chlorotically	MFLUCC 12-0268	JX398990	JX399025	JX399056
P. colombiensis	CBS 118553	KM199307	KM199421	KM199488
P. digitalis	ICMP 5434	KX816920	KX816948	KX816890
P. dilicida	LC3232	KX894961	KX895293	KX895178
P. diplocistius	CBS 115587	KM199320	KM199419	KM199486
P. distincta	LC8185	KY464139	KY464159	KY464149
P. diversiseta	MFLUCC 12-0287	JX399009	JX399040	JX399073
P. dractomamon	MFUCC 10-0149	KX895293	KX895293	KX895293
P. ericaeum	IFRDCC 2439	KX816920	KX816948	KX816890
P. ericaeum	OP023	KM199307	KM199421	KM199488
P. formosana	NTUCC 17-010	MH809382	MH809386	MH809390
P. furcata	MFLUCC 12-0054	JQ683724	JQ683708	JQ683740
P. gaultheria	IFRD 411-014	KC537807	KC537821	KC537814
P. gaultheria	OIP37	KC537807	KC537821	KC537814
P. grevilleae	CBS 114127	KM199300	KM199407	KM199504
P. haxaviiensis	CBS 114491	KM199339	KM199428	KM199514
P. hispanica	CBS 115391	MH553981	MH554640	MH554399
P. hollandica	CBS 265.33	KM199328	KM199388	KM199481
P. humus	CBS 336.97	KM199317	KM199420	KM199484
P. inflexa	MFLUCC 12-0270	JX399008	JX399039	JX399072
P. intermedia	MFLUCC 12-0259	JX398993	JX399028	JX399059
P. italiana	MFLUCC 12-0657	KP781877	KP781882	KP781881
P. jesteri	CBS109350	KM199380	KM199468	KM199554
P. jiangxiensis	LC4399	KX895293	KX895341	KX895227
P. jinchinghensis	LC8191	KY464145	KY464165	KY464155
P. kenyana	CBS 442.67	KM199302	KM199395	KM199502
P. knightiae	CBS 114138	KM199301	KM199408	KM199497
P. krabbiensis	MFLUCC 16-0260	MH388360	MH412722	MH388395
P. leucadendri	CBS 121417	MH553987	MH554654	MH554412
P. licualacola	HGUP 4057	KC492509	KC481683	KC481684
P. linearis	MFLUCC 12-0271	JX398992	JX399027	JX399058
P. longipendululata	LC3013	KX894939	KX895271	KX895156
P. lusinaensis	LC8183	KY464137	KY464157	KY464147
P. lusinensis	OP086	KC537804	KC537818	KC537811
P. macadamiae	BRIP 63738	KX186888	KX186680	KX186621
P. malayana	CBS 102220	KM199306	KM199411	KM199482
P. monochaeta	CBS 144.97	KM199327	KM199386	KM199479
P. montelica	MFLUCC 12-0279	JX399012	JX399043	JX399076
P. neoittineae	NTUCC 17-012	MH809388	MH809388	MH809392
P. novae-hollandiae	CBS 130973	KM199337	KM199425	KM199511
P. oryzae	CBS 353.69	KM199299	KM199385	KM199496
P. pandanicola	MFLUCC 16-0255	MH388361	MH412723	MH388396
P. papuana	CBS 331.96	KM199321	KM199413	KM199491
P. parva	CBS 265.37	KM199312	KM199404	KM199508
P. pinicola	KUMCC 19-0183	MN412636	MN417507	MN417509
P. piniola	KUMCC 19-0203	MN412637	MN417508	MN417510

Table 3. Cont.
Table 3. Cont.

Species	Culture Collection Number	GenBank Accession Numbers		
		ITS	**TUB2**	**TEF1**
P. portugalis	CBS 393.48	KM199335	KM199422	KM199510
P. rhodendri	IFRDCC 2399	KC537804	KC537818	KC537811
P. rhodomyrtus	HGUP 4230	KF412648	KC537818	KF412645
P. rosea	CL0441	KY228790	-	-
P. rosea	MFLUCC 12-0258	JX399005	JX399036	JX399069
P. rhodomyrtus	HGUP 4230	KF412648	KC537818	KF412645
P. rosea	MFLUCC 12-0258	JX399005	JX399036	JX399069
P. scoparia	CBS 176.25	KM199330	KM199393	KM199478
P. sequoia	MFLUCC 13-0399	KX572339	-	-
P. shorea	MFLUCC 12-0314	KJ503811	KJ503814	KJ503817
P. spathulata	CBS 356.86	KM199338	KM199423	KM199513
P. spathulappendiculata	CBS 144035	MH554172	MH554845	MH554607
P. telopeae	CBS 114161	KM199296	KM199403	KM199500
P. terricola	CBS 141.69	MH554004	MH554680	MH554438
P. trachicarpicola	IFRDCC 2240	NR_120109	-	-
P. trachicarpicola	OP143	JQ845947	JQ845945	JQ845946
P. unicolor	MFLUCC 12-0276	JX398999	JX399030	JX399063
P. verruculosa	MFLUCC 12-0274	JX398996	-	JX399061
P. yanglingensis	LC3375	KX894975	KX895307	KX895192

3. Results

3.1. Phylogenetic Analysis of Combined Sequence Data

The combined dataset of genera *Cladosporium* and *Pestalotiopsis* were analyzed using maximum likelihood and Bayesian analyses (Figure 2; Figure 4). Both the ML and BYPP trees showed similar results in topology and no significant differences were seen (data not presented).

In the *Cladosporium* tree (Figure 2), the final alignments contained 104 strains with 1484 characters, including 594 characters for *TEF1*, 306 characters for *ACT*, and 584 characters for *ITS*. *Cercospora beticola* (CBS 116456) was used as an outgroup taxon. The tree topology of the ML analysis was similar to the BYPP. The best scoring RAxML tree with a final likelihood value of $-14,457.527098$ is presented. The matrix had 681 distinct alignment patterns with 30.20% undetermined characters or gaps. Estimated base frequencies were as follows: $A = 0.228336$, $C = 0.290122$, $G = 0.251877$, $T = 0.229664$; substitution rates $AC = 1.724785$, $AG = 2.866615$, $AT = 1.692026$, $CG = 1.001444$, $CT = 5.300862$, $GT = 1.000000$; gamma distribution shape parameter $\alpha = 0.312597$. The phylogram of the genus *Cladosporium* based on a combined dataset showed that our strains grouped together with *Cladosporium anthropophilum* clade with relatively high bootstrap supports (Figure 2).

In the *Pestalotiopsis* tree (Figure 4), the final alignments contained 81 strains with 1562 characters, including 549 characters for *TEF1*, 440 characters for *TUB2*, and 573 characters for *ITS*. *Neopestalotiopsis formicarum* (CBS 362.72) and *N. clavispora* (CBS 447.73) were used as outgroup taxa. The tree topology of the ML analysis was similar to the BYPP. The best scoring RAxML tree with a final likelihood value of -11413.131729 is presented. The matrix had 696 distinct alignment patterns, with 12.40% undetermined characters or gaps. Estimated base frequencies were as follows: $A = 0.235816$, $C = 0.293897$, $G = 0.211788$, $T = 0.258500$; substitution rates $AC = 1.049115$, $AG = 3.327441$, $AT = 1.067008$, $CG = 0.861291$, $CT = 3.485808$, $GT = 1.000000$; gamma distribution shape parameter $\alpha = 0.312597$. The phylogram of the genus *Pestalotiopsis* based on a combined dataset showed that our new species, *Pestalotiopsis pinicola*, was well separated from *P. rosea* with relatively high bootstrap supports (100% ML/1 BYPP, Figure 4). Therefore, we propose *Pestalotiopsis pinicola* as a distinct new species and *Cladosporium anthropophilum* as a previously known species.
Figure 2. Phylogram generated from RAxML analysis based on combined TEF1, ACT and ITS sequence data of the genus Cladosporium. Related sequences were obtained from Sandoval-Denis et al. [16] and Bensch et al. [56]. Bootstrap support values for ML equal to or greater than 60% and BYPP from MCMC analyses equal to or greater than 0.95 are given above/below the nodes. The ex-type strains are indicated in bold type. Newly generated sequences are indicated in red with two asterisks.

3.2. Taxonomy

Cladosporium anthropophilum Sand.-Den., Gené and Wiederhold, Persoonia 36: 290 (2016) [16]. Index Fungorum number: IF815334, Facesoffungi number: FoF 06275, Figure 3. Saprobic or weak pathogen on seed coat of Pinus armandii. Sexual morph: Undetermined. Asexual morph: Mycelium sparsely formed, superficial, overgrowing entire pod, thin to dense, later often
forming colonies on the surface, hyphae straight to strongly flexuous-sinuous, branched, subhyaline to olivaceous-brown. Conidiophores erect, stipes, slightly attenuated towards the apex, yellow-brown to dark-brown, smooth and thick-walled, branched, septate. Conidiogenous cells 5–15 × 2.5–5.5 µm (X = 8.7 × 4 µm; n = 20), cylindrical, sometimes geniculate-sinuous, proliferation sympodia with distinctive scar. Secondary ramoconidia 5.9–9.1 × 2–3.5 µm (X = 7.7 × 2.9 µm; n = 40), olivaceous-brown, ellipsoid-ovoid, obovoid, fusiform, subcylindrical, aseptate, smooth to rough-walled, granulate and scars. Conidia 2.7–5.6 × 2–3.2 µm (X = 4.1 × 2.7 µm; n = 40), in simple or branched chains, subhyaline to olivaceous, ellipsoid-ovoid, aseptate, a scar at base, rough-walled with granulate.

Figure 3. *Cladosporium anthropophilum* (KUMCC 19-0182). (a,b) Colony on PDA media. (c) Mycelium masses. (d,e) Conidiophores and conidiogenous cells and conidia. (f-i) Conidiogenous cells with secondary ramoconidia and coidia. (j) Conidia. Scale bars: (d,e) = 10 µm, (f-i) = 5 µm, (j) = 2 µm.

Culture characters: Colonies on PDA reaching 9 cm in diameter after 3 weeks at room temperature. Colonies olivaceous-grey to olivaceous, pale-olivaceous to black at the margin and circular with slightly
regular colony, powdery, radially furrowed, aerial mycelium sparse with raised elevation, numerous small prominent exudates formed, sporulation profuse.

Material examined: CHINA, Yunnan Province, on seed coat of *Pinus armandii* Franch., May 2019, Kai Yan, Seed01 (MFLU19-2362); living culture KUMCC 19-0182 = KUMCC 19-0202.

Figure 4. Phylogram generated from RAxML analysis based on combined *TEF1*, *TUB2*, and *ITS* sequence data of the genus *Pestalotiopsis*. Related sequences were obtained from Ariyawansa et al. [55] and Tibpromma et al. [9,18]. Bootstrap support values for ML equal to or greater than 60% and BYPP from MCMC analyses equal to or greater than 0.95 are given above/below the nodes. The ex-type strains are indicated in bold type. Newly generated sequences are indicated in red with two asterisks (**).
Note that Cladosporium anthropophilum was established by Sandoval-Denis et al. [16] which belongs to the C. cladosporioides species complex. Cladosporium anthropophilum is probably known as a common saprobic fungus and also represents a clinically relevant fungus [16,70]. In this study, we found a strain of C. anthropophilum from a seed coat of Pinus armandii which was confirmed based on morphology and multi-gene analysis (Figures 2 and 3). The morphology of our strain was similar to the C. anthropophilum described by Sandoval-Denis et al. [16]. In addition, this is the first report of C. anthropophilum from P. armandii (Figure 4).

Pestalotiopsis pinicola Tibpromma, Karunaratha and Mortimer, sp. nov.

Index Fungorum number: IF556765, Facesoffungi number: FoF 06276, Figure 5.

Etymology: named after the host genus, Pinus.

Holotype: MFLU19-2363.

Figure 5. Pestalotiopsis pinicola (KUMCC 19-0183, ex-type). (a,b) Colony on PDA media. (c) Fruiting body on PDA media. (d–g) Conidia, conidiogenous cells and conidia. (h–j) Conidia. Scale bars: (d) = 5 µm, (e) = 10 µm, (f,g) = 5 µm, (h) = 20 µm, (i–j) = 5 µm.
Saprobic or endophytic on seed endosperm of Pinus armandii. Sexual morph: Undetermined. Asexual morph: Conidiophores short, unbranched, reduced to conidiogenous cells. Conidiogenous cells discrete, holoblastic, simple, filiform, smooth and thin-walled, hyaline. Conidia fusoid to ellipsoidal, straight to slightly curved, 3–4 septate (mostly 4 septate), 18–23 × 5–7 µm (X = 21 × 6 µm, n = 40), basal cell conic to obconic with obtuse end, subhyaline, thin-walled, verruculose, 3.5–5 µm long (X = 4 µm); three median cells, doliform, yellow-brown and becoming brown with age, septa and periclinal walls darker than rest of the cell, together 11–16 µm long (X = 13 µm); second cell from base 3–6 µm long (X = 4.5 µm); third cell 3–5.5 µm long (X = 4.6 µm); fourth cell 3–5.5 µm long (X = 3.9 µm); apical cell hyaline, conic 3–5 µm long (X = 3.9 µm), with 2–3 tubular apical appendages; appendages arising from the apex of the apical cell, unbranched, 5–17 µm long (X = 10.3 µm); single basal appendage usually present, 2–7 µm long (X = 4.7 µm), tubular, unbranched, centric.

Culture characteristics: Colonies on PDA reaching 9 cm in diameter after 2 weeks at room temperature, edge undulate with curled, whitish, aerial mycelium on surface, spore masses form after 1 month, black spore masses; reverse of culture yellow-white to yellow-orange with black dots.

Material examined: China, Yunnan Province, on endosperm of pine seed of Pinus armandii Franch., May 2019, Kai Yan, Seed02 (MFLU19-2363, holotype); ex-type living culture KUMCC 19-0183 = KUMCC 19-0203.

Note that Pestalotiopsis pinicola is introduced based on morphological and phylogenetic data. In the phylogenetic analysis, our new species cluster with P. rosea Maharachch. and K.D. Hyde [40] but are well separated with high support (100% ML/1 BYPP, Figure 4). In addition, base pair differences of our new taxa with closest taxa were checked based on the recommendations of Jeewon and Hyde [71]; our isolate differs from P. rosea (MFLUCC12-0258 and CL0441) with five ITS base pairs (2.65%), four TUB base pairs (1.64%), and ten RPB2 base pairs (4.65%). In addition, the culture of P. rosea was seen as a reddish colony [40], while our new species produces a whitish colony.

In a BLASTn search on the NCBI GenBank, the closest ITS sequence match of KUMCC 19-0183 is Pestalotiopsis sp. with a 99.31% identity to the strain JSM 06261592 (KY086253), KUMCC 19-0203 is P. neglecta with 99.82% identity to the strain CBS 357.71 (MH860161.1), the closest TEF1 sequence matches of KUMCC 19-0183 and KUMCC 19-0203 were with the P. rosea strain MFLUCC12-0258 with 98.72% (JX399069), while the closest matches with the TUB2 sequence were with the 99.53% identical P. olivacea strain PSHI2002 (DQ787834) by KUMCC 19-0183 and 99.53% identical P. vismiae strain Q15DY (EF055259) by KUMCC 19-0203.

4. Discussion

In this paper, we describe a novel taxon belonging to Pestalotiopsis and a new host record of Cladosporium isolated from seeds of Pinus armandii obtained from Yunnan Province, China. Mature agar colonies sporulated with masses of conidia.

We isolated a new Pestalotiopsis species from mycelia-covered endospersms of pine seeds. Past research has yielded new species from Pestalotiopsis with similar origins; for example, several endophytic Pestalotiopsis species were isolated from the bark and needles of Pinus armandii in China [38]. Furthermore, Pestalotiopsis brassicae and P. oryzae were isolated from seeds of Oryza sativa and Brassica napus [42]. Several have often been isolated as endophytes and many pathogens or endophytes may persist as saprobes, which mean Pestalotiopsis species are able to switch life-modes [42]. The present study illustrates a novel species of Pestalotiopsis as Pestalotiopsis pinicola, taking both morphology and phylogeny into consideration (Figures 4 and 5). The phylogenetic tree construction of the DNA sequences of single and combined genes provides confirmation with high bootstrap support that P. pinicola is a characteristic new species separate from other known species of the genus (Figure 4). Moreover, this genus is known as one of the fungal groups that can produce a wide range of chemically novel secondary metabolites and mycotoxins; for example, pestaloside exhibiting significant antifungal properties was produced by P. microspora, obtained from Torreya laxifolia [42,72–74]. There is, consequently, a potential health threat in the sale of these seeds as an edible foodstuff. Follow-up research investigating the potential
Toxins produced by *P. pinicola* should be conducted to clarify this issue. We conclude that fungi live inside seeds as endophytes and then switch life-modes to saprobes or weak pathogens when conditions become unfavorable. In the future, knowledge about pestalotioid fungi associated with seeds will help provide a basis for developing proper management of these pathogens.

We found another species, *Cladosporium anthropophilum*, growing on pine seed coats. The etymology of this species comes from Greek which refers to the sample’s source which was isolated from a human clinical sample [16]. This species can be found in human clinical samples, indoor air, food and plant materials, such as seeds or leaves, and it is also a common saprobic fungus [56]. In addition, this species is known as the second-most prevalent species from clinical environments from the US after *C. halotolerans*, and it also has been isolated quite frequently from indoor environments [16,69]. However, we continue to lack information about the chemistry or secondary metabolites of this species along with the potential serious health effects associated with long-term exposure to a large amount of *Cladosporium anthropophilum*.

The present study illustrates two species of *Pestalotiopsis* and *Cladosporium* based on both morphology and phylogeny. These two species of fungi were isolated from pine seeds from Yunnan Province, China. The fungal mycelia in the seeds were observed after the seeds were broken open to eat, and these seeds can be found in many food markets around Yunnan Province. We recommend that consumers should carefully check seed products before purchase and consumption, as these fungi may cause adverse health effects in the long term. Therefore, to address this health concern, in the future we will focus our research on the secondary metabolites and mycotoxins of *Cladosporium anthropophilum* and *Pestalotiopsis pinicola*.

Author Contributions: S.T., P.E.M., S.C.K. and K.Y. designed the experiments. S.T. and S.C.K. conducted the experiments. S.T. performed the morphological study and phylogenetic data. S.T., P.E.M., K.Y., and S.C.K. analyzed the data. S.T., P.E.M., I.P., F.Z., K.Y., and S.C.K. provided funding and financial support for this study. S.T. wrote the manuscript and P.E.M., F.Z., J.X., S.C.K., I.P., and K.Y. gave comments, suggestions, and edited the manuscript. All authors reviewed and approved the final manuscript.

Funding: This research was funded by National Science Foundation of China (NSFC) [project codes 41761144055, 31750110478, 41807524 and 41771063], the Southeast Asian Biodiversity Research Institute [project code Y4ZK111B01] and Chiang Mai University.

Acknowledgments: S.T. would like to thank the International Postdoctoral Exchange Fellowship Program (number 918082251), CAS President’s International Fellowship Initiative (PIFI) (number 2020PC0009), China Postdoctoral Science Foundation, and the Yunnan Human Resources and Social Security Department Foundation for funding her postdoctoral research. Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Science, Kunming, China and Gu Zhi-Jia are thanked for the scanning electron microscopy morphology. P.E.M. thanks the National Science Foundation of China (NSFC), project codes 41761144055 and 41771063, and the Southeast Asian Biodiversity Research Institute (Y4ZK111B01) for support. S.C.K. thanks CAS President’s International Fellowship Initiative (PIFI) for funding his postdoctoral research (number 2018PC0006) and the National Science Foundation of China (NSFC) for funding this research under project code 31750110478. This research was partially supported by the Chinese National Science Foundation (41807524) and Chiang Mai University. Austin Smith at World Agroforestry (ICRAF), Kunming Institute of Botany, China, is thanked for English editing.

Conflicts of Interest: There is no conflict of interest.

References

1. Anon. *Dendrology (Southern Edition)*; China Forest Press: Beijing, China, 1994. (In Chinese)
2. Yan, K.; He, X.Y.; Wei, C.; Tao, L.; Zhang, G. Variation of Antioxidant System in *Pinus armandii* under Elevated O3 in an Entire Growth Season. *Acta Hydrochim. Hydrobiol.* 2013, 41, 5–10.
3. Destaillats, F.; Cruzhernandez, C.; Giuffrida, F.; Dionisi, F. Identification of the botanical origin of pine nuts found in food products by gas-liquid chromatography analysis of fatty acid profile. *J. Agric. Food Chem.* 2010, 58, 2082–2087. [CrossRef] [PubMed]
4. CCCFNA. Chinese pine nuts. In *China Chamber of Commerce of Imports/Exports of Foodstuffs, Native Produce, and Animal by-Products;* The International Tea Committee, International Nut and Dried Fruit Council: Reus, Spain, 2011.
5. Joshi, V.; Mukerji, K.G. Seed-borne mycflora of two under-exploited legumes: Vigna umbellata and psophocarpus tetragonolobus from Northeastern parts of India. In From Ethnomycology to Fungal Biotechnology; Springer: Boston, MA, USA, 1999; pp. 257–268.

6. Cram, M.M.; Fraedrich, S.W. Seed diseases and seedborne pathogens of North America. Tree Plant. Notes. 2010, 53, 35–44.

7. Sutherland, J.R.; Miller, T.; Quinard, R.S. Cone and seed diseases of North American conifers. N. Am. For. Comm. Publ. Number 1 1987, 1, 1–70.

8. Promptputha, I.; Lumyong, S.; Dhanasekaran, V.; Mckenzie, E.H.C.; Hyde, K.D.; Jeewon, R. A phylogenetic evaluation of whether endophytes become saprotrophs at host senescence. Microb. Ecol. 2007, 53, 579–590. [CrossRef]

9. Tibpromma, S.; Hyde, K.D.; Bhat, J.D.; Mortimer, P.E.; Xu, J.C.; Promptputha, I.; Doilm, M.; Yang, J.-B.; Tang, A.M.C.; Karunaratna, S.C. Identification of endophytic fungi from leaves of Pandanaceae based on their morphotypes and DNA sequence data from southern Thailand. MycoKeys 2018, 33, 25–67. [CrossRef]

10. Mittal, R.K.; Anderson, R.L.; Mathur, S.B. Microorganisms associated with tree seeds: World checklist Petawawa National Forestry Institute, Chalk River, Ontario. Available online: https://cfs.nrcan.gc.ca/publications?id=10573 (accessed on 29 November 2019).

11. Pittayakhojanwut, P.; Theerasilp, M.; Kongsaeeree, P.; Rungrod, A.; Tanticharoen, M.; Thebtaranonth, Y.; Pughinian, A. A sesqui-terpene from the fungus Kionochaeta pughii BCC 3878. Planta Med. 2002, 68, 1017–1019. [CrossRef]

12. Chinworrungsee, M.; Kittakoop, P.; Isaka, M.; Maithip, P.; Supothina, S.; Thebtaranonth, Y. Isolation and structure elucidation of a novel antimalarial macrolactone, menisporasin A, from the fungus Menisporopsis theobromae. J. Nat. Prod. 2004, 67, 689–692. [CrossRef]

13. Link, H.F. Observationes in ordinis plantarum naturales. Observationes in ordinis plantarum naturales. 2. Mag. Gesell. Naturf. Freunde Berlin 1816, 8, 25–45.

14. Bensch, K.; Braun, U.; Groenewald, J.Z.; Crous, P.W. The genus Cladosporium. Stud. Mycol. 2012, 72, 1–401. [CrossRef]

15. Crous, P.W.; Shivas, R.G.; Quaedvlieg, W.; van der Bank, M.; Zhang, Y.; Summerell, B.A.; Guarro, J.; Wingfield, M.J.; Wood, A.R.; Alfenas, A.C.; et al. Fungal planet description sheets: 214–280. Persoonia 2013, 37, 188. [CrossRef][PubMed]

16. Sandoval-Denis, M.; Genä, J.; Sutton, D.A.; Wiederhold, N.P.; Cano-Lira, J.F.; Guarro, J. New species of Cladosporium associated with human and animal infections. Persoonia 2016, 36, 281–298. [CrossRef][PubMed]

17. Ma, R.; Chen, Q.; Fan, Y.; Wang, Q.; Chen, S.F.; Liu, X.Z.; Cai, L.; Yao, B. Six new soil–inhabiting Cladosporium species from plateaus in China. Mycologia 2017, 109, 1–17. [CrossRef][PubMed]

18. Tibpromma, S.; Hyde, K.D.; Mckenzie, E.H.C.; Bhat, J.D.; Phillips, A.J.L.; Wanasinghe, D.N.; Samarakoon, M.C.; Jayawardena, R.S.; Dissanayake, A.J.; Tennakoon, D.S.; et al. Fungal diversity notes 840–928: Micro-fungi associated with Pandanaceae. Fungal Divers. 2018, 72, 1–160. [CrossRef]

19. Fradkin, A.; Tarlo, S.M.; Tobin, R.S.; Tucic–Porretta, M.; Malloch, D. Species identification of airborne molds and its significance for the detection of indoor pollution. Air Repair. 1987, 37, 51–63. [CrossRef]

20. Flannigan, B.; Samson, R.A.; Miller, J.D. Microorganisms in Home and Indoor Work Environments; CRC Press: Boca Raton, FL, USA, 2011; Volume 3, pp. 55–58.

21. Bullerman, L.B. SPOILAGEFungi in food—An overview. Encycl. Food Sci. Nutr. 2003, 1, 5511–5522.

22. Horner, W.E.; Worthan, A.G.; Morey, P.R. Air-and dustborne mycflora in houses free of water damage and fungal growth. Appl. Environ. Microbiol. 2004, 70, 6394–6400. [CrossRef]

23. Horner, W.E.; Helbling, A.; Salvaggio, J.E.; Lehrer, S.B. Fungal allergens. Clin. Microbiol. Rev. 1995, 8, 161–179. [CrossRef]

24. Sundell, J. On the history of indoor air quality and health. Indoor Air. 2004, 14, 8–51. [CrossRef]

25. Matheson, M.C.; Abramson, M.J.; Dharmage, S.C.; Forbes, A.B.; Raven, J.M.; Thien, F.C.; Walters, E.H. Changes in indoor allergen and fungal levels predict changes in asthma activity among young adults. Clin. Exp. Allergy 2010, 35, 907–913. [CrossRef][PubMed]

26. Denning, D.W.; O’Driscoll, B.R.; Hogaboam, C.M.; Bowyer, P.; Niven, R.M. The link between fungi and severe asthma: A summary of the evidence. Eur. Respir. J. 2006, 27, 615–626. [CrossRef][PubMed]

27. Simonnobbe, B.; Denk, U.; Pöll, V.; Rid, R.; Breitenbach, M. The spectrum of fungal allergy. Int. Arch. Allergy Immunol. 2008, 145, 58–86. [CrossRef][PubMed]
28. Mari, A.; Rasi, C.; Palazzo, P.; Scala, E. Allergen databases: Current status and perspectives. *Curr. Allergy Asthma Rep.* 2009, 9, 376–384. [CrossRef] [PubMed]

29. Reboux, G.; Bellanger, A.P.; Roussel, S.; Grenouillet, F.; Millon, L.oulds in dwellings: Health risks and involved species. *Rev. Mal. Respir.* 2010, 27, 169–179. [CrossRef] [PubMed]

30. Heinzelering, L.; Mari, A.; Bergmann, K.C.; Bresciani, M.; Burbach, G.; Darsow, U.; Durham, S.; Fokkens, W.; Gjørup, M.; Haatela, T.; et al. The skin prick test—European standards. *Clin. Transl. Allergy* 2013, 3, 1–10. [CrossRef]

31. Segers, F.J.J.; Meijer, M.; Houbraeken, J.; Samson, R.A.; Han, A.B.W.; Dijksterhuis, J. Xerotolerant *Cladosporium sphaerospermum* are predominant on indoor surfaces compared to other *Cladosporium* species. *PLoS ONE* 2015, 10, 145–150. [CrossRef]

32. Jayasiri, S.C.; Hyde, K.D.; Jones, E.B.G.; McKenzie, E.H.C.; Jeewon, R.; Phillips, A.J.L.; Bhat, D.J.; Wanasinghe, D.N.; Liu, J.K.; Lu, Y.Z.; et al. Diversity, morphology and molecular phylogeny of Dothideomycetes on decaying wild seed pods and fruits. *Mycosphere* 2019, 10, 1–186. [CrossRef]

33. Chen, M.M. *Forest Fungi Phytoecology of China, North America, and Siberia and International Quarantine of Tree Pathogens*; Pacific Mushroom Research and Education Center: Sacramento, CA, USA, 2002.

34. Farr, D.F.; Rossman, A.Y. Fungal Databases, US National Fungus Collections, ARS, USDA. Available online: https://nt.ars-grin.gov/fungaldatabases (accessed on 1 August 2019).

35. Steyaert, R.L. Contribution a l’etude monographique de Pestalotia de Not. et Monochaetia Sacc. *(Truncatella gen. nov. et Pestalotiopsis gen. nov.)*. Available online: https://www.jstor.org/stable/3666710?seq=1 (accessed on 1 August 2019).

36. Jeewon, R.; Liew, E.C.Y.; Hyde, K.D. Phylogenetic relationships of *Pestalotiopsis* and allied genera inferred from ribosomal DNA sequences and morphological characters. *Mol. Phylogenet. Evol.* 2002, 25, 378–392. [CrossRef]

37. Jeewon, R.; Liew, E.C.Y.; Simpson, J.A.; Hodgkiss, I.J.; Hyde, K.D. Phylogenetic significance of morphological characters in the taxonomy of *Pestalotiopsis* species. *Mol. Phylogenet. Evol.* 2013, 27, 372–383. [CrossRef]

38. Hu, H.; Jeewon, R.; Zhou, D.; Zhou, T.; Hyde, K.D. Phylogenetic diversity of endophytic *Pestalotiopsis* species in *Pinus armandii* and *Ribes* spp.: Evidence from rDNA and β–tubulin gene phylogenies. *Fungal Divers.* 2007, 45, 89.

39. Maharachchikumbura, S.S.N.; Guo, L.D.; Chukeatirote, E.; Bahkali, A.H.; Hyde, K.D. *Pestalotiopsis*-morphology, phylogeny, biochemistry and diversity. *Fungal Divers.* 2011, 50, 167–187. [CrossRef]

40. Maharachchikumbura, S.S.N.; Guo, L.D.; Chukeatirote, E.; Wu, W.P.; Sun, X.; Crous, P.W.; Bhat, D.J.; McKenzie, E.H.C.; Bahkali, A.H.; Hyde, H.D. A multi-locus backbone tree for *Pestalotiopsis*, with a polyphasic characterization of 14 new species. *Fungal Divers.* 2012, 56, 95–129. [CrossRef]

41. Maharachchikumbura, S.S.N.; Guo, L.D.; Chukeatirote, E.; Hyde, K.D. Improving the backbone tree for the genus *Pestalotiopsis*: addition of *P. steaertii* and *P. magna* sp. nov. *Mycol. Prog.* 2013, 13, 617–624. [CrossRef]

42. Maharachchikumbura, S.S.N.; Hyde, K.D.; Groenewald, J.Z.; Xu, J.; Crous, P.W. *Pestalotiopsis* revisited. *Stud. Mycol.* 2014, 79, 121–186. [CrossRef] [PubMed]

43. Maharachchikumbura, S.S.N.; Guo, L.D.; Liu, Z.Y.; Hyde, K.D. *Ps. camelliae* sp. nov. associated with grey blight disease of tea in China. *Mycol. Prog.* 2016, 15, 22–58. [CrossRef]

44. Maharachchikumbura, S.S.N.; Hyde, K.D.; Jones, E.B.G.; McKenzie, E.H.C.; Bhat, J.D.; Dayaratne, M.C.; Huang, C.-K.; Norphanphoun, C.; Senanayake, I.C.; Perera, R.H.; et al. Families of Sordariomycetes. *Fungal Divers.* 2016, 79, 1–317. [CrossRef]

45. Sutton, D.A. Coelomyceteous fungi in human disease. A review: Clinical entities, pathogenesis, identification and therapy. *Rev. Iberoam. Micol.* 1999, 16, 171–179.

46. Monden, Y.; Yamamoto, S.; Sunada, A.; Asari, S.; Makimura, K.; Inoue, Y. First case of fungal keratitis caused by *Pestalotiopsis clavispora*. *Clin. Ophthalmo. Mycol.* 2013, 7, 2261–2264. [CrossRef]

47. Zhuang, W.Y. Fungi of Northwestern China. *Mycotaxon*, Ltd.: Ithaca, NY, USA, 2005.

48. Figueras, M.J.; Guarro, J. A scanning electron microscopic study of ascoma development in *Clathromonium Malaya*. *Mycologia* 1988, 80, 298–306. [CrossRef]

49. Index Fungorum. Available online: http://www.indexfungorumorg/Names/Namesasp (accessed on 15 July 2019).
50. Jayasiri, S.C.; Hyde, K.D.; Ariyawansa, H.A.; Bhat, J.; Buyck, B.; Cai, L.; Dai, Y.C.; Abd-Elsalam, K.A.; Ertz, D.; Hidayat, I.; et al. The Faces of Fungi database: Fungal names linked with morphology, phylogeny and human impacts. *Fungal Divers.* 2015, 74, 3–18. [CrossRef]

51. Carbone, I.; Kohn, L.M. A method for designing primer sets for speciation studies in filamentous ascomycetes. *Mycologia* 1999, 91, 553–556. [CrossRef]

52. White, T.J.; Bruns, T.; Lee, S.; Taylor, J. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In *PCR Protocols: A Guide to Methods and Applications*; Innis, M.A., Gelfand, D.H., Sninsky, J.J., White, T.J., Eds.; Academic Press: New York, NY, USA, 1990; pp. 315–322.

53. Rehner, S.A. Primers for Elongation Factor 1–alpha (EF1–alpha). 2001. Available online: http://www.aftol.org/pdfs/EF1primer.pdf (accessed on 15 July 2019).

54. O’Donnell, K.; Cigelnik, E. Two divergent intragenomic rDNA ITS2 types within a monophyletic lineage of the fungus *fusarium* nonorthologous. *Mol. Phylogenet. Evol.* 1997, 7, 103–116. [CrossRef] [PubMed]

55. Ariyawansa, H.A.; Hyde, K.D. Additions to *Pestalotiopsis* in Taiwan. *Mycosphere* 2018, 9, 999–1013. [CrossRef]

56. Bensch, K.; Groenewald, J.Z.; Meijer, M.; Dijksterhuis, J.; Jurjevic, Z.; Houbraken, J.; Crous, P.W.; Samson, R.A. *Cladosporium* species in indoor environments. *Stud. Mycol.* 2018, 89, 177–301. [CrossRef]

57. Katoh, K.; Standley, D.M. A simple method to control over-alignment in the MAFFT multiple sequence alignment program. *Bioinformatics* 2016, 32, 1933–1942. Available online: http://mafft.cbrc.jp/alignment/server/index.html (accessed on 15 September 2019). [CrossRef]

58. Hall, T. *Bioedit Version 6.0.7*; Department of Microbiology, North Carolina State University: Raleigh, NC, USA, 2004.

59. Glez-Peña, D.; Gómez-Blanco, D.; Rebióro-Jato, M.; Fdez-Riverola, F.; Posada, D. ALTER: Program-Oriented Format Conversion of DNA and Protein Alignments. Nucleic Acids Research. Web Server Issue. 2010. Available online: http://www.sing-group.org/ALTER/ (accessed on 15 September 2019).

60. Miller, M.A.; Pfeiffer, W.; Schwartz, T. Creating the CIPRES Science Gateway for inference of large phylogenetic trees. In Proceedings of the Gateway Computing Environments Workshop (GCE), New Orleans, LA, USA, 14 November 2010; Institute of Electrical and Electronics Engineers: New Orleans, LA, USA, 2010. Available online: http://www.phylo.org/ (accessed on 15 September 2019).

61. Stamatakis, A. RAxML VI-HPC: Maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. *Bioinformatics* 2006, 22, 2688–2690. [CrossRef]

62. Stamatakis, A. RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. *Bioinformatics* 2014, 30, 1312–1313. [CrossRef]

63. Nylander, J.A.A. MrModeltest 20 Program Distributed by the Author. Uppsala University, Evolutionary Biology Centre: Uppsala, Sweden, 2004.

64. Rannala, B.; Yang, Z.H. Probability distribution of molecular evolutionary trees: A new method of phylogenetic inference. *J. Mol. Evol.* 1996, 43, 304–311. [CrossRef]

65. Liu, J.K.; Doilom, M.; Wikee, S.; Li, Y.M.; Ariyawansha, H.; Boonmee, S.; Chomnunti, P.; Dai, D.Q.; Bhat, J.D.; Romano, A.; et al. Towards a natural classification of *Botryosphaeriales*. *Fungal Divers.* 2012, 57, 149–210. [CrossRef]

66. Cai, L.; Jeewon, R.; Hyde, K.D. Phylogenetic investigations of Sordariaceae based on multiple gene sequences and morphology. *Mycol. Res.* 2006, 110, 137–150. [CrossRef] [PubMed]

67. Zhaxybayeva, O.; Gogarten, J.P. Bootstrap, Bayesian probability and maximum likelihood mapping: Exploring new tools for comparative genome analyses. *Genomics* 2002, 3, 4. [PubMed]

68. Ariyawansa, H.A.; Thambugala, K.M.; Manamgoda, D.S.; Jayawardena, R.; Camporesi, E.; Boonmee, S.; Wanasinghe, D.N.; Phookamsak, R.; Hongsanan, S.; Singtripop, C.; et al. Towards a natural classification and backbone tree for Pleosporaceae. *Fungal Divers.* 2015, 71, 85–139. [CrossRef]

69. Rambaut, A.; Drummond, A. FigTree: Tree figure drawing tool, version 1.2.2. *Institute of Evolutionary Biology*; University of Edinburgh: Edinburgh, Scotland, 2008.

70. Sandoval-Denis, M.; Sutton, D.A.; Martin-Vicente, A.; Cano-Lira, J.F.; Wiederhold, N.; Guarro, J.; Gené, J. *Cladosporium* species recovered from clinical samples in the United States. *J. Clin. Microbiol.* 2015, 53, 2990–3000. [CrossRef] [PubMed]

71. Jeewon, R.; Hyde, K.D. Establishing species boundaries and new taxa among fungi: Recommendations to resolve taxonomic ambiguities. *Mycosphere* 2016, 7, 1669–1677. [CrossRef]
72. Lee, J.C.; Yang, X.S.; Schwartz, M.; Strobel, G.; Clardy, J. The relationship between an endangered North American tree and an endophytic fungus. *Chem. Biol.* 1995, 2, 721. [CrossRef]
73. Xu, J.; Ebada, S.S.; Proksch, P. *Pestalotiopsis* a highly creative genus: Chemistry and bioactivity of secondary metabolites. *Fungal Divers.* 2010, 44, 15–31. [CrossRef]
74. Yang, X.L.; Zhang, J.Z.; Luo, D.Q. The taxonomy, biology and chemistry of the fungal *Pestalotiopsis* genus. *Nat. Prod. Rep.* 2012, 29, 622–641. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).