Design and Analysis of a Uniform Meander RF MEMS Switch

C Leela Mohan¹, K Ch Sri Kavya² and K Sarat Kumar ³
¹Research Scholar, Dept. of ECE, KL Deemed to be University, Andhra Pradesh, India.
²Professor, Dept. of ECE, KL Deemed to be University, Andhra Pradesh, India.
¹leelamohan416@gmail.com; ²kavya@kluniversity.in; ³kksarat@kluniversity.in

Article History: Received: 11 January 2021; Accepted: 27 February 2021; Published online: 5 April 2021

Abstract: This paper projected to uniform meander RF MEMS capacitive shunt switch design and analysis. The less pull in voltage is obtained in flexure type membrane by proposed RF MEMS Switch. The materials selection for the dielectric layer and beam is explained in this paper and also shown the performance depends on materials utilized for the design. The good isolation of -31dB is achieved for the pull-in voltage of 11.97V with a spring constant of 2.38N/m is produced by the switch and is obtained by the optimization process at a frequency of 38GHz.

Keywords: RF MEMS Switch, Meanders, COMSOL, HFSS.

1. Introduction

MEMS technology presents miniaturization than other technologies like CMOS and GaAs technology. They present good electrical performance with low Consumption of power and good linearity. [1-4] RF MEMS is promising technology, because of superior performance; they are spread widely in wireless communications. RF switches enable switching in transmission line they use mechanical switching Classification of MEMS switches is to be done in two different ways i.e. metal to metal. Capacitive contact switches. They best configured for high frequency applications; resistive configured switches are meant for low frequency applications [5]. Configuration is of two types’ series and shunt. Switch with shunt configuration produce improved performance. In actuated state capacitive contact was achieved by fixed –fixed switch that use metal membrane [6-9]. Capacitive contact switches have capability of power handling. When the switch is in actuated state it provides an excellent isolation. It shorts the RF signal to the ground. MEMS technology is the integration of mechanical and electrical components on single platform i.e. substrate [10]. From the literature, various researcher have proposed different RF MEMS Switch, but still there few challenges on optimization of the Switch for best performance.

To enhance the functional behavior of switch a much better optimization approach for the proposed switch is carried out at specified frequency of application in terms of low pull in voltage, better isolation and lowest possible insertion loss [11]. The switch dimensions are extracted through optimization using proposed method. The modified switch is to obtain lowest possible pull in voltage, spring constant and stiction problem, by introducing the meanders in the proposed structure. Two types of meanders i.e uniform and non uniform meandering techniques are used for the switch, [12-14]. For both the switches solid mechanical analysis and electromechanical analysis and also electromagnetic analysis are done. The dimensions and material for substrate and coplanar waveguides are used for the impedance matching. In order to lower the pull in voltage overlapping area is to be increased [15]. By maximum power transfer, impedance matching is obtained with low return loss using RF MEMS switch. The high frequency ka-Band has lot of advantages comparatively with low frequency like less interference and compact sizes [16].

The organization of the paper follows; in Section-2, the RF MEMS proposed Switch and its specifications. In Section-3, the theoretical parameters description of uniform meanders RF MEMS Switch and the materials selection for the proposed Switch. In Section-4, the electromechanical analysis carried out by COMSOL software and RF analysis carried out by HFSS software and followed by Conclusion in Section-V.

2. The RF MEMS proposed switch and its specifications

2.1. The Proposed structure of Uniform Meander RF MEMS Switch
2.2. The proposed Device Dimensions

Table 1. Dimensions of uniform meander switch

Indicator	Elements	Dimensions
G/S/G	Coplanar waveguide	56μm/95μm/56μm
H	Substrate Height	400 μm
W	The width of membrane bridge beam	186 μm
L	Length of a membrane bridge beam	558 μm
g0	Air gap	3 μm
t_0	Dielectric thickness	0.2 μm
A	Square holes	6 μm x 6 μm
A	Actuation area	186 μm x 270μm

Table 2. Uniform meander dimensions

Indicator	Length	Width	Thickness
K1	48μm	5μm	1.2μm
K2	55μm	5μm	1.2 μm

3. Theoretical parameters of uniform meander RF MEMS Switch

3.1. Effect of spring constant

There exist a direct relationship between Spring constant and pull-in voltage. The spring constant is to be very small to attain very low pull-in voltage[17]. Spring constant can be mathematically expressed as

\[k = \frac{Ewt^3}{L^3} \]

(1)

Here K stands for Spring Constant stands for Young’s modulus, w,t,L stands for width, thickness and lengths respectively.

3.2. Effect of pull in voltage

The amount of voltage required for beam to pull down and make a contact with signal dielectric known as Pull in voltage. It can be calculated as [18]
The capacitance of a switch developed due to displacement of a beam with signal dielectric, i.e. gap is known as Upstate Capacitance C_{ON}. It can be calculated by using

$$C_{ON} = \frac{\varepsilon_0 \varepsilon_r xy}{g + \frac{t_d}{\varepsilon_r}} \text{ Farad} = 103 \text{ fFarads} \quad (3)$$

x stands for beam width, y stands for beam length, g stands for gap from beam to dielectric, t_d stands for dielectric thickness, ε_r stands for beam material relative permittivity.

3.4 Effect of OFF state capacitance (C_{OFF})

The capacitance of a switch developed when the beam touches signal dielectric i.e. no air gap is known as downstate capacitance. It can be mathematically expressed as

$$C_{OFF} = \frac{\varepsilon_0 \varepsilon_r xy}{t_d} \text{ Farad} = 7.03 \text{ pFarads} \quad (4)$$

x stands for beam width, y stands for beam length, g stands for gap from beam to dielectric, t_d stands for dielectric thickness, ε_r stands for beam material relative permittivity.

3.5 Effect of Capacitance Ratio (C_{ratio})

The ratio of the OFF capacitance to the ON capacitance is known as capacitance ratio.

$$C_{ratio} = \frac{C_{OFF}}{C_{ON}} = 68.25 \quad (5)$$

3.6 Effect of switching time

The amount of time required for a switch for initiating a transition from ON state to OFF state and from OFF state to ON state is known as switching time [19] and is mathematically expressed as

$$T_s = \frac{3.67 V_p}{V_0 \omega_b} \text{ Seconds} \quad (6)$$

V_p stands for pull-in voltage, V_0 stands for supply voltage, ω stands for resonant frequency. Therefore switch switching time equals to 0.14msec.

3.7 Effect of Quality Factor

The quality factor relates with spring constant, damping coefficient and resonant frequency. The technique used for minimizing it lies in choosing actuation electrode with different dimensions and fixed beam, so that air gap between actuation electrode can be easily minimized [20]. The damping coefficient mathematically expressed as

$$b = \frac{3 \mu A^2}{2\pi g^3} = 0.033 \times 10^{-3} \quad (7)$$

μ stands for viscosity of air, A stands for an overlapping area and g stands for gap between the electrodes. The quality factor is mathematically expressed as

$$Q = \frac{K}{2\pi f_d b} \quad (8)$$

It is always better to choose quality factor of a switch between 0.5 and 2. The proposed switch achieve the quality factor of 0.55 which helps in enhancing switching activity.

3.8 Substrate Material selection

We chosen different possible suitable materials for substrate and the separate the graph between young’s modulus versus Poisson’s ratio. As shown in fig.6, substrate material as silicon has low Poisson’s ratio and high Young’s modulus which offers high stiffness. The switch performance is enhanced by the matching the impedance which relies on substrate material and dielectric constant [21]. Silicon is chosen as a substrate material because of its phase velocity, maximum resistivity and cheap in cost [22-23]. High dielectric constant 11.9 offers low signal loss. The dimensions of CPW plays predominant role in RF signal transmission which is another important one (Figure 6).
3.9. **Dielectric Material Selection**

![Graph showing dielectric material selection for a switch.](image)

Different useful materials are fitting for the dielectric layer are considered and develop the graph against the electrical resistivity and dielectric constant. Whichever is the material is having max dielectric constant with moderate resistivity is chosen as a dielectric. Because of maximum dielectric constant HfO2 (Hafnium oxide) is chosen as material for the dielectric as shown in the fig.7. The dielectric constant of the material increases the pull-down capacitance is directly depends on the switch capacitance ratio and by increasing the pull-down capacitance and capacitance ratio we can easily attain the caring and stability of the switch (Fig.7).

![Graph showing beam material selection for a switch.](image)

Table 3. Different dielectric Material Properties

Type of Material	\(\varepsilon_r \)	Resistivity (\(\rho \))	\(t/\varepsilon_r \)	log (\(\rho \))
SiO2	3.9	1.00E+14	0.25641	14
Si3N4	7.5	1.00E+14	0.33333	14
Al2O3	9.8	1.00E+14	0.302041	14
AlN	8.5	1.00E-04	0.17847	-4
HfO2	25	1.00E+14	0.04	14

3.10. **Beam Material Selection**

![Graph showing beam material selection for a switch.](image)

Table 4. Different beam Material Properties

Type of Material	\(E \) (Gpa)	\(\rho \)	\(\sqrt{E} \)	\(\sqrt{E}/\rho \)
Gold	79	19.3	8.88819	2.02318
Aluminum	70	2.7	8.36666	5.9975
Platinum	168	21.45	12.96148	2.7986
Si3N4	385	3.1	19.523142	11.14422
Ni	200	8.902	14.14214	4.73992
Si	196	2.3	14	9.23333
SiO2	73	2.27	8.544	5.67085
Figure 8. Beam material selections of switch
For beam material selection different suitable materials are examined and mark the graph with different indices against Poisson's ratio and Young's modulus. The material for beam is selected based on low Poisson's ratio and moderate young's modulus as shown in the above fig.8. Aluminum is the best material to be chosen. The Au (Gold) is costlier than Al (Aluminum), so we prefer beam material as aluminum here we preferred Al as the beam material as shown in (Figure 8).

Selection	Type of Material
Substrate	Silicon(Si)
Coplanar Wave Guide	Aluminum(Al)
Dielectric Layer	Hafnium oxide(HfO₂)
Anchors	Aluminum(Al)
Fixed Fixed Beam	Aluminum(Al)

4. Results and Discussions
4.1. Uniform Meander Switch Electromechanical Analysis
Case i) Exchange of beam materials

Figure 9. Voltage Vs displacement by changing different materials

Case ii) Exchange of gaps
Figure 10. Voltage Vs displacement for distinct gaps
Case iii) Exchange of distinct dielectric materials

![Graph showing voltage vs. displacement for different dielectric materials.](image)

Figure 11. Voltage Vs displacement by changing dielectric materials

![Graph showing voltage vs. displacement with different materials.](image)

Figure 12. Voltage Vs displacement

![Graph showing voltage vs. displacement.](image)

Figure 13. View of total displacement for pull in voltage through FEM tool

![Image showing total displacement view.](image)

Figure 14. Simulated ON state capacitance

![Image showing simulated ON state capacitance.](image)
4.2. Stress Analysis
Aluminum is selected as a material for beam which exhibits a stress of 1.78×10^5 Pa and the force of 1.9606×10^{-6} N.
4.3. Uniform Meander Switch Electromagnetic Analysis

Return Loss: It is existing because of impedance misalliance between the circuits (Figure 19).

![Figure 19. Uniform meander switch Return loss](image)

Insertion loss: Other than frequency selection, critical to test insertion loss. At high frequencies power is expensive. So electromechanical switches provide lowest possible loss (Figure 20).

![Figure 20. Uniform meander switch Insertion loss](image)

Isolation loss: It is the degree of attenuation from an unwanted signal detected at the port of interest. It is important at higher frequencies (Figure 21).

![Figure 21. Uniform meander switch Isolation loss](image)

5. Conclusion:
This paper is an optimization model and is operated at 35GHz, which is modeled by Chen lei chu [5]. The existing switch dimensions are modified with optimization approach. The optimization yields enhanced operational characteristics with a isolation of -29dB for the pull in voltage of 9.36V for the existing switch. The proposed switch dimensions are modified with optimization approach. The optimization yields enhanced operational characteristics with a isolation of -31dB for the pull in voltage of 11.97V and the spring constant is 2.38N/m. The electromechanical analysis is carried out using COMSOL software for measuring Upstate and Downstate capacitance, Pull in voltage and stress analysis (Fig.9 to Fig 17). The RF MEMS proposed switch can be effectively integrated as a switching element within the antenna patches for achieving reconfigurability [9&19] at high frequency of 38GHz. Therefore switch is best suited for future 5G communication applications[10].

References:
1. G. M. Rebeiz, RF MEMS Theory, Design and Technology (John Wiley & Sons, USA, 2003)
2. J. B. Muldavin and G. M. Rebeiz, IEEE Trans. Microw. Theory Tech., "High-Isolation CPW MEMS Shunt Switches –Part-2", 48, 1053 (2000)
3. Z. J. Yao, S. Chen, E. Eshelman, D. Denniston and C. L. Goldsmith, "Micro machined Low-Loss Microwave Switches", IEEE J. Microelectromech. Systems, 8, 129 (1999)
4. S. P. Pacheco, L. P. B. Katehi and C. T. Nguyen, "Design of Low Actuation Voltage RF MEMS Switch", Microwave Symposium Digest. 2000 IEEE MTT-S International (USA)
5. Chenlei Chu1, Xiaoping Liao1, Hao Yan1, “Ka-band RF MEMS capacitive switch with high isolation, lowloss, long-term reliability and high power handling based on GaAs MMIC”, IET Microw. Antennas Propag., 2017, Vol. 11 No. 6, pp. 942-948.
6. P.B. Katehi Linda, F. Harvey James, Elliott Brown, “MEMS and Si Micromachined circuits for high
frequency applications”, IEEE Trans. Microw. Theory Tech, March 2002, vol. 50 No 3, pp. 858–866.
7. Roh, W., Seol, J.-Y., Park, J., Lee, B., et al., “Millimeter wave beamforming as an enabling technology for 5G cellular communications: theoretical feasibility and prototype results”, IEEE Communications Magazine, 2014, vol. 52 No 2, pp. 106–113.
8. S.D. Keller, “Coplanar Waveguide Slot-coupled Ka-band Patch Antenna for Integration with Wafer-scale Beam-steering MEMS Control Board”, ACES JOURNAL, June 2008, Vol. 23, No. 2, pp. 1054-4887.
9. Rahim, M. K. A., Hamid, M. R., Samsuri, N. A., et al., “Frequency reconfigurable antenna for future wireless communication system”, 46th European Microwave Conference (EuMC), London, UK, 4–6 Oct 2016.
10. Hong, W., Baek, K.-H., & Ko, S., “Millimeter-Wave 5G Antennas for Smartphones: Overview and Experimental Demonstration”, IEEE Transactions on Antennas and Propagation, 2017, Vol. 65 No. (12), pp. 6250–6261.
11. Korany R. Mahmoud, Ahmed M. Montaser,” Design of dual-band circularly polarized array antenna package for 5G mobile terminals with beam-steering capabilities”, IET Microwaves, Antennas & Propagation, 2017, Vol. 12 No 1, pp. 29–3.
12. Demirel, K., Yazgan, E., Demir, S., & Akin, T., ”A New Temperature-Tolerant RF MEMS Switch Structure Design and Fabrication for Ka-Band Applications”, Journal of Microelectromechanical Systems, 2016, Vol. 25 No. 1, pp. 60–68.
13. Molaei, S., & Ganji, B. A., “Design and simulation of a novel RF MEMS shunt capacitive switch with low actuation voltage and high isolation”, Microsystem Technologies, 2016, Vol. 23 No. 6, pp. 1907–1912.
14. Ashok Kumar, P. A., Sravani, K. G., “Performance analysis of series: shunt configuration based RF MEMS switch for satellite communication applications.” Microsystem Technologies, 2018, doi:10.1007/s00542-018-3907-1.
15. Osor Pertin, Kurmendra,” Pull-in-voltage and RF analysis of MEMS based high performance capacitive shunt switch”, Microelectronics Journal, July 2018, Vol. 77, Pp. 5-15.
16. Ravirala, A.K., Bethapudi, L.K., Kommareddy, J. et al. Design and performance analysis of uniform meander structured RF MEMS capacitive shunt switch along with perforations. Microsyst Technol 24, 901–908 (2018). https://doi.org/10.1007/s00542-017-3403-z
17. Sateesh, J., Girija Sravani, K., Akshay Kumar, R. et al. Design and Flow Analysis of MEMS based Piezo-electric Micro Pump. Microsyst Technol 24, 1609–1614 (2018). https://doi.org/10.1007/s00542-017-3563-x
18. M. Venkateswarlu, M.V.V.K.S. Prasad, K. Swapna, Sk. Mahmuda, A. Srinivasa Rao, A. Mohan Babu, D. Haranath, Pr3+ doped lead tungsten tellurite glasses for visible red lasers, Ceramics International, Volume 40, Issue 4, 2014.
19. Mohan, C.L., Kavya, K.C.S. & Kotamraju, S.K. Design, and Analysis of Capacitive Shunt RF MEMS Switch for Reconfigurable Antenna. Trans. Electr. Electron. Mater. (2020). https://doi.org/10.1007/s42341-020-00212-0
20. K.S. Rao, P.A. Kumar, K. Guha, B.V.S. Sailaja, K.V. Vineeth, K. L. Baishnab, K.G. Sravani,” Design and simulation of fixed-fixed flexure type RF MEMS switch for reconfigurable antenna”, Microsystems Technologies, June 2018
21. N.T. Lakshmi, S.K. Girija, R.K. Srinivasa, Design and analysis of CPW based shunt capacitive RF MEMS switch. Cogent Eng. 4(1), 1–9 (2017)
22. S.Girish Gandhi, I.Govardhani, Sarat kumar K, “Improving the performance of a novel capacitive shunt RF MEMS switch by beam and dielectric material,” IEEE Transactions on Electrical and Electronic Materials, Springer, Online ISSN 2092-7592, Oct. (2019).
23. S. Girish Gandhi, I. Govardhani, M. Venkata Narayana, K. Sarat Kumar. "Design and performance analysis of novel bridge type RFMEMS switch for X-band", Materials Today:Proceedings, 2021