Linear-Programming Approximations of AC Power Flows

Carleton Coffrin and Pascal Van Hentenryck

NICTA and University of Melbourne
Outline

• Motivation
• The LPAC Models
• Experimental Results
 • LDC versus LPAC versus AC solutions
 • LPAC Variants
• Capacitor Placement Problem
• Power Restoration
Motivation

Collaboration with LANL
Motivation
Power Restoration

• One challenge (PSCC’11)
 • Schedule a fleet of repair crews to repair the grid and minimize the overall size of the blackout after a disaster

• Two fundamental aspects
 • Scheduling the repairs
 • Scheduling the power restoration
 • Both are challenging in their own right

• Assumptions for Last-Mile Restoration
 • Steady state behavior of the power grid
 • Ability to shed load and generation continuously
 • Transient/configuration aspects in a second step
Power Restoration

Restoration Timeline

Minimize

Power Flow

Time

Increase in served demand
Component repair
Power Restoration

- **Optimal Activation Problem**
 - Generalized optimal line switching [Fisher et al, 98]

- **Approximate the power flows equations**
 - Linear DC Model

- **Discrete optimization over the LDC model**
 - MIP solver

- **Solutions to large benchmarks [CPAIOR’12]**
 - 4000 components, a third of which were damaged
 - Using hybrid optimization (MIP + CP + LNS)
Optimal Activation

- find which items to activate
- find how much power to produce and consume
- find the phase angles at buses
- to maximize the served load

Generalized optimal line switching [Fisher et al, 98]

Figure 1: A MIP Model for the Unserved Load.
Power Restoration
A fundamental open question

- Is this “optimal” restoration plan “feasible” operationally?

- These are not normal operating conditions
 - “Maddeningly difficult” to find an AC solution in cold start contexts [Overbye et al, 2004]

- The network is stressed
 - Does the LDC model “overfit”?

- How accurate is the LDC model?
 - Can the LDC solution be turned into an AC solution?
N-3 Contingencies (IEEE-30)

Line Apparent Power Correlation (MVA)

- Small Line Phase Angle
- Large Line Phase Angle

LDC Power Flow

AC Power Flow

IEEE PES’12
N-3 Contingencies
N-3 Contingencies
Power Restoration

AC Restoration Timeline

AC Power Flow (MW)

Restoration Action

HELP WANTED

NICTA Copyright 2012
From imagination to impact
• Find an approximation of AC power flows that
 • is more accurate than the LDC model
 • is useful outside normal operating conditions
 • reasons about voltage magnitudes and reactive power
 • can be embedded in discrete optimization solvers
 • mixed integer programming solvers

• Applications
 • Power restoration, vulnerability analysis, capacitor placement, expansion planning, …
Outline

• Motivation
• The LPAC Models
• Experimental Results
 • LDC versus LPAC versus AC solutions
 • LPAC Variants
• Capacitor Placement Problem
• Power Restoration
\[p_n = \sum_{m \neq n} p_{nm} \]

\[q_n = \sum_{m \neq n} q_{nm} \]

\[p_{nm} = |\tilde{V}_n|^2 g_{nm} - |\tilde{V}_n||\tilde{V}_m|g_{nm} \cos(\theta_n^\circ - \theta_m^\circ) - |\tilde{V}_n||\tilde{V}_m|b_{nm} \sin(\theta_n^\circ - \theta_m^\circ) \]

\[q_{nm} = -|\tilde{V}_n|^2 b_{nm} + |\tilde{V}_n||\tilde{V}_m|b_{nm} \cos(\theta_n^\circ - \theta_m^\circ) - |\tilde{V}_n||\tilde{V}_m|g_{nm} \sin(\theta_n^\circ - \theta_m^\circ) \]
Linear Programming Approximations

• Hot-Start Context
 • An AC base-point solution is available

• Warm-Start Context
 • Target voltage magnitudes are available and “useful”
 • E.g., from normal operating conditions

• Cold-Start Context
 • No useful information is available on voltage magnitudes
Hot-Start LP Approximation

\[\hat{p}_{nm}^h = |\tilde{V}_n^h|^2 g_{nm} - |\tilde{V}_n^h||\tilde{V}_m^h|g_{nm}\cos(\theta_n^o - \theta_m^o) - |\tilde{V}_n^h||\tilde{V}_m^h|b_{nm}(\theta_n^o - \theta_m^o) \]

\[\hat{q}_{nm}^h = -|\tilde{V}_n^h|^2 b_{nm} + |\tilde{V}_n^h||\tilde{V}_m^h|b_{nm}\cos(\theta_n^o - \theta_m^o) - |\tilde{V}_n^h||\tilde{V}_m^h|g_{nm}(\theta_n^o - \theta_m^o) \]

- Two approximations
 - \(\sin(x) \) is approximated by \(x \)
 - piecewise approximation of \(\cos(x) \)
Fig. 1. A Piecewise-Linear Approximation of Cosine using 7 Inequalities.
Warm-Start LP Approximation

• Understanding power flows [Grainger, 94]
 • Phase angle differences determine active power
 • Voltage magnitude differences determine reactive power

• Experiments
 • Per unit system
 • Look at how the equations behave when
 • $g = 0.2$ and $b = 1.0$
 $$|\tilde{V}_n| = 1.0, |\tilde{V}_m| \in (1.2, 0.8), \theta_n^\circ - \theta_m^\circ \in (-\pi/6, \pi/6)$$
Warm-Start LP Approximation

Active Power Field

Reactive Power Field

Voltage Difference

Angle Difference (rad)

0.4
0.3
0.2
0.1
0
-0.1
-0.2
-0.3
-0.4

0.8 0.9 1.0 1.1 1.2

0.8 0.9 1.0 1.1 1.2

0.4
0.3
0.2
0.1
0
-0.1
-0.2
-0.3
-0.4

0.1 0.05 0
-0.05
-0.1
-0.2
-0.25
-0.3

NICTA Copyright 2012 From imagination to impact 23
Warm-Start LP Approximation

• Assumptions
 • We have target voltages

• Basic approach
 • Active power as in the hot-start model
 • Reactive power should capture voltage magnitudes and phase angles

• Key idea
 • Substitute $|\tilde{V}| = |\tilde{V}^t| + \phi$ into the power flow equations
Warm-Start LP Approximation

- Reactive power

\[q_{nm} = q_{nm}^t + q_{nm}^\Delta \]

- Target part

\[q_{nm}^t = -|\tilde{V}_n^t|^2 b_{nm} + |\tilde{V}_n^t| |\tilde{V}_m^t| b_{nm} \cos(\theta_n^\circ - \theta_m^\circ) - |\tilde{V}_n^t| |\tilde{V}_m^t| g_{nm} \sin(\theta_n^\circ - \theta_m^\circ) \]

- Delta part

\[q_{nm}^\Delta = -(2|\tilde{V}_n^t|\phi_n + \phi_n^2) b_{nm} - (|\tilde{V}_n^t|\phi_m + |\tilde{V}_m^t|\phi_n + \phi_n\phi_m)(g_{nm} \sin(\theta_n^\circ - \theta_m^\circ) - b_{nm} \cos(\theta_n^\circ - \theta_m^\circ)) \]
Warm-Start LP Approximation

- Target part approximation

\[\hat{q}^t_{nm} = -|\tilde{V}_n^t|^2 b_{nm} + |\tilde{V}_n^t||\tilde{V}_m^t|b_{nm}\cos(\theta^o_n - \theta^o_m) - |\tilde{V}_n^t||\tilde{V}_m^t|g_{nm}(\theta^o_n - \theta^o_m) \]

- Delta part approximation

\[\hat{q}^\Delta_{nm} = -|\tilde{V}_n^t|b_{nm}(\phi_n - \phi_m) - (|\tilde{V}_n^t| - |\tilde{V}_m^t|)b_{nm}\phi_n \]
Model 1 The Warm LPAC Model.

Inputs:
\[\mathcal{PN} = \langle N, L, G, s \rangle \]
- the power network

\[|\tilde{V}^t| \]
- target voltage magnitudes

\[c_s \]
- cosine approximation segment count

Variables:
\[\theta_n^o \in (-\infty, \infty) \]
- phase angle on bus \(n \) (radians)

\[\phi_n \in (-|V^t|, \infty) \]
- voltage change on bus \(n \) (Volts p.u.)

\[\hat{\cos}\delta_{nm} \in (0, 1) \]
- Approximation of \(\cos(\theta_n^o - \theta_m^o) \)

Maximize:
\[\sum_{(n,m) \in L} \hat{\cos}\delta_{nm} \]
(M1.1)

Subject to:
\[\theta_s^o = 0, \phi_s = 0 \]
(M1.2)

\[\phi_i = 0 \quad \forall i \in G \]
(M1.3)

\[p_n = \sum_{\substack{m \in N \\cap L \\cap L}} p_{n,m} \quad \forall n \in N \quad n \neq s \]
(M1.4)

\[q_n = \sum_{\substack{m \in N \\cap L \\cap L}} q_{n,m} + q_{n,m}^\Delta \quad \forall n \in N \quad n \neq s \quad n \neq G \]
(M1.5)

\[\forall (n,m), (m,n) \in L \]

\[\hat{p}_{n,m} = |\tilde{V}_n^t|^2 g_{nm} - |\tilde{V}_m^t|^2 |\tilde{V}_m^t| (g_{nm} \hat{\cos}\delta_{nm} + b_{nm}(\theta_n^o - \theta_m^o)) \]
(M1.6)

\[\hat{q}_{n,m} = -|\tilde{V}_n^t|^2 b_{nm} - |\tilde{V}_m^t|^2 |\tilde{V}_m^t| (g_{nm}(\theta_n^o - \theta_m^o) - b_{nm} \hat{\cos}\delta_{nm}) \]
(M1.7)

\[\text{PWL} \langle \cos\rangle(\hat{\cos}\delta_{nm}, (\theta_n^o - \theta_m^o)，-\pi/3, \pi/3, c_s) \]
(M1.8)

\[\hat{q}_{n,m}^\Delta = -|\tilde{V}_n^t| b_{nm}(\phi_n - \phi_m) - (|\tilde{V}_n^t| - |\tilde{V}_m^t|) b_{nm} \phi_n \]
(M1.9)
Cold-Start LP Approximation

- Simply use the warm-start model with
 - Target voltages at 1.0
 - Use an appropriate ϕ for voltage-controlled generators

- Note that the delta part of reactive power becomes

$$\hat{q}_{nm}^\Delta = -b_{nm}(\phi_n - \phi_m)$$
Extensions of the LPAC Model

- **Range for generators**
 - Simply include a decision variable

- **Removing the slack bus**
 - No need for a slack bus in the LPAC model

- **Shedding load**
 - Simply use decision variables for loads

- **Additional constraints**
 - **Voltages:** \[|V| \leq |V_n^t| + \phi_n \quad \forall n \in N \]
 - **Apparent power:** \[(\hat{P}_{nm}^t)^2 + (\hat{q}_{nm}^t + \hat{q}_{nm}^\Delta)^2 \leq |S_{nm}|^2 \]
 - **Reactive power** \[\sum_{m \in N} \hat{q}_{nm}^t + \hat{q}_{nm}^\Delta \leq q_n \quad \forall n \in G \]
Outline

• Motivation
• The LPAC Models
• Experimental Results
 • LDC versus LPAC versus AC solutions
 • LPAC Variants
• Capacitor Placement Problem
• Power Restoration
Experimental Results

- Wide variety of IEEE and MATPOWER Benchmarks
 - ieee14, mp24, ieee30, mp30, mp39, ieee57, ieee118, ieedd17, mp300
 - Small benchmarks are easy in general
 - IEEE 118 is also easy
 - All LPAC models solved almost instantly (LPs)
- This talk
 - MP300 for scalability and brevity
- Comparison with an AC Solver
 - LDC and LPAC solutions versus an AC solution
- Comparison with alternative linearizations
 - Evaluating the importance of all components
Line Active Power

LDC Model

Cold-start LPAC Model
Line Active Power

Table 1: Active Power Flow Accuracy Comparison

Benchmark	Corr	$\mu(\Delta)$	max(\Delta)	$\delta(\text{arg max}(\Delta))$	$\mu(\delta)$	max(\delta)	$\Delta(\text{arg max}(\delta))$	approx(%)
The LDC Model								
ieee14	0.9994	1.392	10.64	6.783	6.052	24.33	0.3927	65
mp24	0.9989	5.659	19.7	23.65	6.447	29.89	6.656	47.06
ieee30	0.9993	1.046	13.1	7.562	6.406	31.23	0.5646	80.49
mp30	0.9993	0.2964	2.108	19.36	3.086	19.36	2.108	82.93
mp39	0.9995	7.341	43.64	6.527	9.566	52.18	12.86	76.09
iee57	0.9989	1.494	8.216	8.055	105.8	4193	0.9607	52.56
iee118	0.9963	3.984	56.3	44.74	29.2	445.9	6.526	51.96
ieeedd17	0.9972	4.933	201.3	13.84	15.2	215	0.5265	50.71
ieeedd17m	0.9975	4.779	191.1	13.23	14.56	231.3	3.066	51.43
mp300	0.991	11.09	418.5	90.02	29.35	2859	46.14	67.73
The LPAC-Cold Model								
ieee14	0.9989	1.636	5.787	13.13	11.52	35.67	2.623	40
mp24	0.9999	1.884	6.159	2.933	3.871	17.23	3.837	41.18
ieee30	0.9998	0.5475	2.213	2.523	5.751	31.33	0.5666	75.61
mp30	0.9995	0.2396	1.641	15.07	2.402	15.07	1.641	78.05
mp39	1	2.142	8.043	3.288	4.357	24.78	6.106	43.48
iee57	0.9995	0.9235	4.674	9.728	110.1	4500	1.031	46.15
iee118	1	0.622	3.708	2.038	5.318	99.61	0.5519	55.31
ieeedd17	0.9999	1.827	30.38	2.088	10.92	420.2	1.029	55.36
ieeedd17m	0.9999	1.475	20.21	1.399	7.766	144.5	2.547	56.79
mp300	0.9998	2.455	18	8.675	7.104	337.2	6.95	57.21
Bus Angles

LDC Model

Cold-Start LPAC Model
Line Reactive Power

Cold-Start LPAC Model

Warm-Start LPAC Model
Bus Voltages

Cold-Start LPAC Model

Warm-Start LPAC Model
Cosine Approximation

Quality of a Piece-wise Linear Cosine Approximation

\[\cos(x) \]

\[\text{pwl-\cos}(x) \]

Radians

NICTA Copyright 2012
Outline

• Motivation
• The LPAC Model
• Experimental Results
 • LDC versus LPAC versus AC solutions
 • LPAC Variants
• Capacitor Placement Problem
• Power Restoration
Importance of g: Reactive Power

Cold-Start LPAC Model (g=0) Cold-Start LPAC Model
Importance of g: Bus Voltages

Cold-Start LPAC Model ($g=0$)

Cold-Start LPAC Model
Importance of cos: Reactive Power

Cold-Start LPAC Model (cos=1)
Importance of cos: Bus Voltages

Cold-Start LPAC Model (cos=1)
Outline

- Motivation
- The LPAC Model
- Experimental Results
 - LDC versus LPAC versus AC solutions
 - LPAC Variants
- Capacitor Placement Problem
 - Build on top of the cold LPAC model
- Power Restoration
Capacitor Placement

- The Problem
 - place capacitors in a power network to improve voltage stability

- Minimize the number of capacitors subject to
 - lower bounds on the voltages
 - upper bounds on reactive capacitor injection
 - upper bounds on reactive generation injection
Capacitor Placement

Inputs:
\[
\begin{align*}
\overline{q}_n & \quad \text{- injection bound for generator } n \\
\overline{q}_c & \quad \text{- capacitor injection bound} \\
|\overline{V}| & \quad \text{- minimum desired voltage magnitude}
\end{align*}
\]
Inputs from The Cold LPAC Model

Variables:
\[
\begin{align*}
q_c & \in (0, \overline{q}_c) \quad \text{- capacitor reactive injection} \\
c_n & \in \{0, 1\} \quad \text{- capacitor placement indicator}
\end{align*}
\]
Variables from The Cold LPAC Model

Minimize:
\[
\sum_{n \in N} c_n
\]
Subject to:
\[
\begin{align*}
|\overline{V}| & \leq 1.0 + \phi_n \leq 1.05 \quad \forall n \in N \\
q_c & \leq M c_n \\
q_n & \leq \overline{q}_n \quad \forall n \in G \\
q_n & = \sum_{m \in N, n \neq m} \hat{q}_{nm} + \hat{q}_{nm}^\Delta \quad \forall n \in G \\
q_n - q_c & = \sum_{m \in N, n \neq m} \hat{q}_{nm} + \hat{q}_{nm}^\Delta \quad \forall n \in N : n \neq s \land n \notin G
\end{align*}
\]
Constraints from The Cold LPAC Model
Experimental Results

- Modified IEEE 57 Benchmark
 - Remove the transformers
 - Remove the synchronous condensers
 - This induces severe voltage problems
 - Impose increasingly tighter voltage lower bounds
- The capacitor placement model
 - Meets all voltage requirements but is an approximation

How well does it do compared to the AC model?
IEEE57: 0 Capacitor
Table 1: Capacitor Placement: Effects of $|\tilde{V}|$ on IEEE57-C, $q^c = 30$ MVar

| $|\tilde{V}|$ | $\min(|\tilde{V}|)$ | $\max(|\tilde{V}|)$ | $\max(q_n)$ | $\sum c_n$ | Time (sec.) |
|------------|-----------------|-----------------|-------------|----------|-------------|
| 0.8850 | 0.000000 | 0.0 | 0.0 | 1 | 1 |
| 0.9350 | 0.000000 | 0.0 | 0.0 | 3 | 8 |
| 0.9600 | 0.000000 | 0.0 | 0.0 | 5 | 156 |
| 0.9750 | -0.000000 | 0.0 | 0.0 | 6 | 177 |
| 0.9775 | -0.000000 | 0.0 | 0.0 | 6 | 139 |
| 0.9800 | -0.000000 | 0.0 | 0.0 | 6 | 75 |
| 0.9840 | -0.000802 | 0.0 | 0.0 | 7 | 340 |
Bus Voltage Correlation (Volts p.u.)

LL-LDC Power Flow

AC Power Flow
Bus Voltage Correlation (Volts p.u.)

LL-LDC Power Flow vs. AC Power Flow
Bus Voltage Correlation (Volts p.u.)

- AC Power Flow
- LL-LDC Power Flow

NICTA Copyright 2012 From imagination to impact
Bus Voltage Correlation (Volts p.u.)
Bus Voltage Correlation (Volts p.u.)

LL-LDC Power Flow

AC Power Flow
Bus Voltage Correlation (Volts p.u.)

AC Power Flow vs. LL-LDC Power Flow

NICTA Copyright 2012
From imagination to impact
Bus Voltage Correlation (Volts p.u.)
Outline

• Motivation
• The LPAC Model
• Experimental Results
 • LDC versus LPAC versus AC solutions
 • LPAC Variants
• Capacitor Placement Problem
 • Build on top of the cold LPAC model
• Power Restoration
 • Build on top of the warm LPAC model
Demand Maximization

Inputs:
\[
\begin{align*}
\bar{p}_n^g & \quad - \text{maximum active injection for bus } n \\
\underline{p}_n^l & \quad - \text{desired active load at bus } n \\
q_n^l & \quad - \text{desired reactive load at bus } n
\end{align*}
\]
Inputs from the Warm LPAC Model

Variables:
\[
\begin{align*}
p_n^g & \in (0, \bar{p}_n^g) \quad - \text{active generation at bus } n \\
q_n^g & \in (-\infty, \infty) \quad - \text{reactive generation at bus } n \\
l_n & \in (0, 1) \quad - \text{percentage of load served at bus } n
\end{align*}
\]
Variables from the Warm LPAC Model

Maximize:
\[
\sum_{n \in N} l_n
\]

Subject to:
\[
\begin{align*}
p_n & = -\underline{p}_n^l l_n + \bar{p}_n^g \quad \forall n \in N \\
q_n & = -q_n^l l_n + q_n^g \quad \forall n \in N \\
q_n^g & = 0 \quad \forall n \in N \setminus G \\
q_n & = \sum_{m \in N} \hat{q}_{nm}^t + \hat{q}_{nm}^\Delta \quad \forall n \in G
\end{align*}
\]
Constraints from the Warm LPAC Model
IEEE-30 Contingencies

	N-9	N-11	N-12	N-13	N-15	N-16	N-17	%
LDC	7436	6511	5344	6805	5931	7236	6877	66%
LPAC	9998	10000	9996	9981	9998	10000	9911	99.8%

	N-9	N-11	N-12	N-13	N-15	N-16	N-17
LDC	14.2	20.14	57.77	73.67	44.54	64.58	67.88
LPAC	35.96	30.38	57.74	62.83	57.49	66.69	64.73
Power Restoration

AC Restoration Timeline

AC Power Flow (MW)

Restoration Action

LDC–ROP
Power Restoration

AC Restoration Timeline

AC Power Flow (MW)

Restoration Action

- LDC–ROP
- LPAC–ROP
Power Restoration

DC Restoration Timeline

DC Power Flow (MW)

Restoration Action

LDC–ROP
LPAC–ROP
Power Restoration

AC Line Overloads

Cumulative Overload (MVA)

Restoration Action

- LDC
- LPAC+R
- LPAC+R+V

NICTA Copyright 2012

From imagination to impact
AC Voltage Stability

Restoration Action

Cumulative Instability (Volts p.u.)

LDC
LPAC+R
LPAC+R+V
Conclusion

- **LPAC Models: Linear-Programming approximations**
 - Much more accurate than the LDC model
 - useful outside normal operating conditions
 - reason about voltage magnitudes and reactive power
 - can be embedded in MIP solvers

- **Experimental results**
 - Very high accuracy when compared to AC solutions

- **Case studies**
 - Capacitor placement problem
 - Power Restoration