Case Report

Linear Circumscribed Scleroderma-Like Folliculitis Decalvans: Yet Another Face of a Protean Condition

Hudson Dutra Rezende, Maria Fernanda Reis Gavazzoni Dias¹, Werner Kempf², Ralph Michel Trüeb³

Alvaro Alvim School Hospital, Department of Dermatology, Campos dos Goytacazes, ¹Antonio Pedro University Hospital, Center of Medical Sciences, Federal Fluminense University, Niterói, Rio de Janeiro, Brazil, ²Kempf and Pfaltz Laboratory, Diagnostic Histopathology, ³Center for Dermatology and Hair Diseases Professor Trüeb, Wallisellen, Zurich, Switzerland

ABSTRACT

Since Quinquaud’s original report of folliculitis decalvans (FD), further clinical variants have been described on the basis of common histopathological and microbiological findings. Histopathology reveals a neutrophilic primary scarring alopecia, and microbiological studies invariably reveal pathogenic strains of *Staphylococcus aureus*. The presence of thickening of lesional skin in FD has been previously described. We report a new presentation of FD, clinically mimicking linear circumscribed scleroderma of the scalp. Overlapping features of the scarring alopecias may blur the distinction between different conditions that ultimately share the common final pathway of replacement of follicle by fibrous tissue. Therefore, a careful patient history, clinical examination including dermoscopy, microbiological studies, and a scalp biopsy for histopathology, and immunofluorescence studies are prerequisites to an accurate diagnosis and appropriate treatment of the respective condition. The case is presented to illustrate the clinical variability in presentation of FD and to underline the necessity of performing a biopsy for an accurate diagnosis in the scarring alopecias.

Key words: Folliculitis decalvans, folliculitis decalvans with linear arrangement, linear circumscribed scleroderma, linear circumscribed scleroderma-like folliculitis decalvans

INTRODUCTION

I can add colours to the chameleon, Change shapes with Proteus for advantages

—William Shakespeare

The scarring alopecias represent a group of diverse disorders with permanent destruction of the pilosebaceous unit and irreversible hair loss. Where there is no obvious physical/chemical injury or acute infectious etiology, clinical differential diagnosis of scarring alopecia is often difficult. The clinical inspection is of limited usefulness in establishing a diagnosis. Overlapping features may blur the distinction between different conditions that ultimately share the common final pathway of replacement of follicle by fibrous tissue. Therefore, a careful patient history, clinical examination including dermoscopy, microbiological studies, and a scalp biopsy for histopathology, and immunofluorescence studies are prerequisites to an accurate diagnosis and appropriate treatment of the respective condition.[³]

Linear circumscribed scleroderma of the scalp and folliculitis decalvans (FD) represent two disparate scarring alopecias that are characterized by distinctive clinical, dermoscopic, microbiological, and histopathological features. A case of linear circumscribed scleroderma-like FD is presented to illustrate the clinical variability in presentation of FD and to underline the necessity of performing a biopsy for an accurate diagnosis in the scarring alopecias.

This is an open access journal, and articles are distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as appropriate credit is given and the new creations are licensed under the identical terms.

For reprints contact: reprints@medknow.com

How to cite this article: Rezende HD, Dias MF, Kempf W, Treüb RM. Linear circumscribed scleroderma-like folliculitis decalvans: Yet another face of a protean condition. Int J Trichol 2018;10:175-9.
CASE REPORT

A 39-year-old female patient was referred by her dermatologist because of a focal scarring alopecia of the vertex region with an unspecific histopathologic finding of fibrosing alopecia.

Clinical inspection revealed a 1.5 cm × 4 cm area of white porcelain-colored plaque of scarring alopecia with thickened skin in a linear pattern [Figure 1].

Dermoscopic examination of the active border showed discrete tufting, perifollicular scaling, erythema, telangiectasia, and tubular silver-white hair casts.

Histological examination revealed hyperplasia of the interfollicular epidermis with hair follicles merging to form hair tufts and a perifollicular-mixed inflammatory infiltrate with a large number of plasma cells [Figure 2a]. In the elastin stain, the dermal elastic network was effaced, consistent with diffuse dermal fibrosis [Figure 2b].

Borrelia serology tested positive for Borrelia burgdorferi IgG with 21.0 U/mL (normal: <16 U/mL) and negative for B. burgdorferi IgM.

The patient was treated with 200 mg oral doxycycline daily and topical clobetasol propionate lotion.

DISCUSSION

FD, as originally described by Quinquaud in 1888, represents a chronic and recurrent pustulofollicular scalp inflammation usually of the crown area with exudative crusted areas and grouped follicular pustules at the hair-bearing margin and centrifugal progression with central scarring. Since Quinquaud’s original report, further clinical variants have been described on the basis of common histopathological and microbiological findings. Histopathology reveals a neutrophilic primary scarring alopecia, and microbiological studies invariably reveal pathogenic strains of Staphylococcus aureus although a Gram-negative bacterial folliculitis may evolve in patients who receive prolonged courses of antibiotic therapy or use antibacterial topicals that selectively inhibit Gram-positive organisms.

In 1947, Laymon described cicatrizng seborrheic eczema as a condition of scarring alopecia combining features of seborrheic dermatitis and FD.

In 1977, Smith and Sanderson and at the same time Metz and Metz reported on tufted hair folliculitis, whereby the former considered the condition to be secondary to follicular inflammation and destruction, while the latter deemed the inflammation to be secondary to preexisting nevoid hair bundles. Since the original report of tufted hair folliculitis, there has been considerable controversy whether the condition represents a distinctive entity or an unspecific finding secondary to a variety of inflammatory and scarring alopecias. Based on clinical, histopathological, and microbiological criteria, the general consensus is that the

Figure 1: White porcelain-colored plaque of scarring alopecia with thickened skin in a linear pattern

Figure 2: (a) Histopathology (H and E): Hyperplasia of the interfollicular epidermis with hair follicles merging to form hair tufts, and a perifollicular-mixed inflammatory infiltrate with a large number of plasma cells. (b) Elastin stain: effaced dermal elastic network, consistent with diffuse dermal fibrosis
condition represents a variant of FD. Secondary tufting of hair follicles due to other inflammatory conditions of the scalp is usually less marked with <5 hair shafts per tuft, and dermoscopic features allow for differentiation. Histopathological studies reveal perifollicular inflammation around the upper portions of the follicles sparing the hair root level. Within areas of inflammation, several follicles converge toward a common follicular duct with a widely dilated opening. It is believed that the development of atrophy with loss of adnexal structures in classical FD or of hair tufts in tufting folliculitis depends on the depth and destructive potential of the inflammatory process, with sparing of the bulge area preserving an intact lower portion of hair follicles in the case of tufted hair folliculitis.

Very rarely, FD can present with an extensive ulcerated appearance of the scalp that has been reported to have been misinterpreted as a laceration of the scalp at the forensic scene.

Ultimately, the pseudopeladic state as originally defined by Degos in 1954 represents the nonspecific end stage of a variety of at least 60 types of cicatricial alopecias, including FD. It presents with a large area of scarring with irregular borders.

The pathogenesis and clinical presentation of FD are determined by three factors: (1) the infectious pathogen, (2) the incubatory microenvironment, and (3) the host immune response.

Occasionally, FD has been linked to a specific immune deficiency, ectodermal dysplasia, or hair transplantation, either autologous or synthetic, impairing the immune defense mechanisms of the hair follicle. Traditionally, the medical focus has been on the condition of either the hair or the scalp. Indeed, the proximate structural arrangement of the scalp and hair leads to an interdependent relationship between the two. The role of the scalp as an incubatory environment has only recently received appropriate attention. In fact, seborrhea, dandruff, and seborrheic dermatitis of the scalp are frequently associated with hair loss and superficial pustular folliculitis that nevertheless may eventually evolve to cicatrizing seborrheic eczema.

Chiarini et al. proposed that the infection of hair follicles with S. aureus induces an intense peri- and intrafollicular migration of neutrophils, recruited by innate immunity mechanisms, involving interleukin-8 (IL-8). Furthermore, T-lymphocytes may be activated either by microbial antigens through processing by Langerhans cells or by superantigens through the Vβ domain of the T-cell receptor with consecutive release of pro-inflammatory such as interferons alpha-gamma and tumor necrosis factor-alpha and profibrotic mediators such as transforming growth factor-beta, beta-fibroblast growth factor, IL-1β, and II-4, resulting in both inflammation and fibrosis.

The observation of simultaneous occurrence of secondary cutis verticis gyrata, FD, and folliculitis keloidalis nuchae in a male patient of African origin with dreadlocks underlines a putative pathogenic role of traction or trauma and the activation of different fibroblast growth factor members.

According to Pujol's hypothesis, tufted hair folliculitis observed in FD and in folliculitis keloidalis nuchae is secondary to follicular damage and caused by inflammatory cytokine secretion. Accordingly, tufted hair folliculitis has been reported following scalp injury (scalp laceration).

A more recent study provided evidence of the presence of bacterial biofilms in the infrainfundibular part of human scalp hair follicles in FD. A biofilm is any group of microorganisms in which cells stick to each other on a surface. These adherent cells are frequently embedded within a self-produced matrix of extracellular polymeric substance. Biofilms form on living or nonliving surfaces and in the case of FD on the surfaces of the hair shaft. Bacteria living in a biofilm usually have significantly different properties from free-floating bacteria of the same species, as the dense and protected environment of the film allows them to cooperate and interact in various ways. One benefit of this environment is increased resistance to antibiotics, as the dense extracellular matrix and the outer layer of cells protect the interior of the community. Biofilms have been found to be involved in a wide variety of microbial infections in the body, and more recently, it has been noted that bacterial biofilms may impair cutaneous wound healing and reduce topical antibacterial efficiency in healing or treating infected skin wounds. The presence of a bacterial biofilm at the interface of the hair shaft may provide an explanation for the chronicity and high relapse rate of FD.

With time, FD tends to develop clinical and dermoscopic features of lichen planopilaris (LPP). More important tufting, and on histopathology, a more diffuse pattern of effaced dermal elastic fibers versus selective loss of elastic fibers at the site of selectively destroyed hair follicles, in combination with a more important number of plasma cells in the inflammatory infiltrate helps distinguish late phases of FD from LPP. It can be assumed that through the destruction of hair follicles in the course of the primary
infectious disease, follicular antigens are exposed and give rise to an autoimmune reaction. In fact, LPP is regarded to be a T cell-mediated autoimmune reaction in response to some antigenic challenge with apoptosis of the follicular epithelial cells. Harries et al.\[28\] provide the first evidence that LPP may result from an immune privilege collapse of the hair follicle’s epithelial stem cell niche. Where a causal or triggering agent is identified, this is termed a lichenoid reaction rather than lichen planus; therefore, the term chronic lichenoid phase of FD is proposed for this presentation of FD.

We report yet another presentation of FD, clinically mimicking linear circumscribed scleroderma of the scalp.

Linear circumscribed scleroderma or linear morphea of the scalp is a form of localized scleroderma that characteristically affects the scalp to produce a line of ivory- or porcelain-colored thickened skin with loss of hair. The thickening and hardening of the skin and underlying subcutaneous tissue result from excessive collagen deposition. On histopathological examination, the dermal elastic network remains preserved.\[26\] The cause is unknown although reports of morphea coexisting with other systemic autoimmune diseases support that morphea is also a condition of autoimmune origin. It has been proposed that linear morphea follows Blaschko’s lines, giving rise to the hypothesis that in patients with linear morphea, susceptible cells are present in a mosaic state, and exposure to some trigger factor, including trauma, may result in the development of this condition.\[29\]

Kim et al.\[30\] originally reported tufted hair folliculitis in a linear arrangement and again discussed Pujol’s trauma hypothesis. We present the second case of histopathologically proven FD in linear arrangement, though with a linear circumscribed scleroderma-like appearance due to thickening of the epidermis. The presence of thickening of lesional skin in FD has been previously commented on. In a retrospective histological analysis of 26 patients with FD, the authors found follicular hyperkeratosis in 77%, hyperplasia of the interfollicular epidermis in 92% with a psoriasiform aspect in 88%, plasma cells in infiltrate in 92%, in 42% in large quantities, and hair tufting in 54%.\[31\]

We propose adding linear circumscribed scleroderma-like FD to the protean clinical manifestations of FD, and as a subset of FD with linear arrangement, as presented in Table 1.

Table 1: Clinical variants of folliculitis decalvans

Condition	Description
Classical folliculitis decalvans of Quinquaud	
Cicatrizing seborrhoeic eczema	
Tufted hair folliculitis	
Ulcerative folliculitis decalvans	
Folliculitis decalvans with linear arrangement	Tufted hair folliculitis with linear arrangement
Linear scleroderma-like folliculitis decalvans	
Folliculitis decalvans associated with immune deficiency	
Ectodermal dysplasia with clefing	
Cutis verticis gyrata and folliculitis keloidalis nuchae	
Hair transplantation, either autologous or synthetic	
End-stage folliculitis decalvans	
Chronic lichenoid phase of folliculitis decalvans	
Pseudopeladic state (of Degos) resulting from folliculitis decalvans	

Financial support and sponsorship

Nil.

Conflicts of interest

There are no conflicts of interest.

REFERENCES

1. Harries MJ, Trueb RM, Tosti A, Messenger AG, Chaudhry I, Whiting DA, et al. How not to get scar(ed): Pointers to the correct diagnosis in patients with suspected primary cicatricial alopecia. Br J Dermatol 2009;160:482-501.
2. Quinquaud E. Folliculite épilante et destructive des régions values. Bull Mém Soc Méd Paris 1888;5:395-8.
3. Garcia-Bustinduy M, Lecuona M, Guimerà F, Saez M, Dorta S, Sanchez R, et al. Citrobacter koseri in scalp folliculitis. Cutis 2002;69:393-4.
4. Laymon CW. The cicatricial alopecias: an historical and clinical review and an histologic investigation. J Invest Dermatol 1947;8:99-122.
5. Smith NP, Sanderson KV. Tufted hair folliculitis of the scalp. J R Soc Med 1978;71:606-8.
6. Metz J, Metz G. Nevroid hair bundles in man. Hautarzt 1978;29:586-9.
7. Dalziel KL, Telfer NR, Wilson CL, Dawber RP. Tufted folliculitis. A specific bacterial disease? Am J Dermatopathol 1990;12:37-41.
8. Annessi G. Tufted folliculitis of the scalp: A distinctive clinicohistological variant of folliculitis decalvans. Br J Dermatol 1998;138:799-805.
9. Powell JJ, Dawber RP, Gatter K. Folliculitis decalvans including tufted folliculitis: Clinical, histological and therapeutic findings. Br J Dermatol...
Rezende, et al.: Linear folliculitis decalvans

1999;140:328-33.

10. Rakowska A, Skowinska M, Kowalska-Olejdzka E, Warszawik O, Czuraw J, Olczewska M, et al. Trichoscopy of cicatricial alopecia. J Drugs Dermatol 2012;11:753-8.

11. Miura M, Deigo I, Yamasaki Y, Ohyama M. Sparing of the bulge area could preserve intact lower portion of hair follicles in a case of tufted folliculitis. J Eur Acad Dermatol Venereol 2009;23:87-9.

12. James C, Langlois NE. Folliculitis decalvans: A rare scarring alopecia misinterpreted as a laceration of the scalp at the scene. Forensic Sci Med Pathol 2013;9:594-5.

13. Degos R, Rabut R, Duperrat B, Leclercq R. Pseudopeladic state; comments on one hundred cases of circumscribed cicatricial alopecia, apparently primary, of pseudopelade type. Ann Dermatol Syphiligr (Paris) 1954;81:5-26.

14. Schwartz JR, Henry JP, Kerr KM, Flagler MJ, Page SH, Redman-Furey N, et al. Incubatory environment of the scalp impacts pre-emergent hair to affect post-emergent hair cuticle integrity. J Cosmet Dermatol 2018;17:105-11.

15. Shitara A, Igareshi R, Morohashi M. Folliculitis decalvans and cellular immunity – Two brothers with oral candidosis. J Dermatol 1974;28:133.

16. Frazier NG, Grant PW. Folliculitis decalvans and hypocomplementemia. Br J Dermatol 1982;107 Suppl 22:88.

17. Wheeland RG, Thurmond RD, Gilmore WA, Blackstock R. Chronic blepharitis and pyoderma of the scalp: An immune deficiency state in a father and son with hypercalcemia and decreased intracellular killing. Pediatr Dermatol 1983;1:134-42.

18. Trieb RM, Tsambaos D, Spycher MA, Müller J, Burg G. Scarring folliculitis in the ectrodactyly-ectodermal dysplasia-clefting syndrome. Histologic, scanning electron-microscopic and biophysical studies of hair. Dermatology 1997;194:191-4.

19. Otberg N, Wu WY, Kang H, Martinha M, Alzolibani AA, Restrepo I, et al. Folliculitis decalvans developing 20 years after hair restoration surgery in punch grafts: Case report. Dermatol Surg 2009;35:1852-6.

20. Colli P, Fellas A, Trich R. Staphylococcus lugdunensis and Trichophyton tonsurans infection in synthetic hair implants. Int J Trichology 2017;9:82-6.

21. Chiarini C, Torchia D, Bianchi B, Volpi W, Caproni M, Fabbri P, et al. Immunopathogenesis of folliculitis decalvans: Clues in early lesions. Am J Clin Pathol 2008;130:526-34.

22. Pujol RM, García-Patos V, Ravela-Mateu A, Casanova JM, de Moragas JM. Tufted hair folliculitis: A specific disease? Br J Dermatol 1994;130:259-60.

23. Fernandes JC, Correia TM, Azevedo F, Mesquita-Guimaraes J. Tufted hair folliculitis after scalp injury. Cuts 2001;67:243-5.

24. Matard B, Meybuc M, Briandet R, Casin I, Assouly P, Cavelier-balloy B, et al. First evidence of bacterial biofilms in the anaerobe part of scalp hair follicles: A pilot comparative study in folliculitis decalvans. J Eur Acad Dermatol Venereol 2013;27:853-60.

25. Fung MA, Sharon VR, Ratnamarthon M, Konia TH, Barr KL, Mirmirani P, et al. Elastin staining patterns in primary cicatricial alopecia. J Am Acad Dermatol 2013;69:776-82.

26. Harries MJ, Meyer K, Chaudhry I, Kloepper J, Poblet E, Griffiths CE, et al. Lichen planopilaris is characterized by immune privilege collapse of the hair follicle’s epithelial stem cell niche. J Pathol 2013;231:236-47.

27. Weibel L, Harper JI. Linear morphoea follows Blaschko’s lines. Br J Dermatol 2008;159:175-81.

28. Kim JH, Park HY, Lee WS. Tufted hair folliculitis with linear arrangement. Indian J Dermatol Venereol Leprol 2011;77:535.

29. Matard B, Cavelier-Ballo B, Reygagne P. Epidermal psoriasiform hyperplasia, an unrecognized sign of folliculitis decalvans: A histological study of 26 patients. J Cutan Pathol 2017;44:552-7.