Quantum Policy Iteration via Amplitude Estimation and Grover Search – Towards Quantum Advantage for Reinforcement Learning

Simon Wiedemann∗
Professur für Machine Learning
Technische Universität München
Theresienstr. 90, 80333 München
simonw.wiedemann@tum.de

Daniel Hein
Siemens AG
Corporate Technology
Otto-Hahn-Ring 6, 81739 München
hein.daniel@siemens.com

Steffen Udluft
Siemens AG
Corporate Technology
Otto-Hahn-Ring 6, 81739 München
steffen.udluft@siemens.com

Christian B. Mendl
Professur für Quantum Computing
Technische Universität München
Boltzmannstr. 3/Ii, 85748 Garching b. München
christian.mendl@tum.de

Abstract

We present a full implementation and simulation of a novel quantum reinforcement learning (RL) method and mathematically prove a quantum advantage. Our approach shows in detail how to combine amplitude estimation and Grover search into a policy evaluation and improvement scheme. We first develop quantum policy evaluation (QPE) which is quadratically more efficient compared to an analogous classical Monte Carlo estimation and is based on a quantum mechanical realization of a finite Markov decision process (MDP). Building on QPE, we derive a quantum policy iteration that repeatedly improves an initial policy using Grover search until the optimum is reached. Finally, we present an implementation of our algorithm for a two-armed bandit MDP which we then simulate. The results confirm that QPE provides a quantum advantage in RL problems.

1 Introduction

Successful reinforcement learning (RL) algorithms for challenging tasks come at the cost of computationally expensive training [1]. Since quantum computers can perform certain complex tasks much faster than classical machines [2, 3] a hope is that the use of quantum computers could also enable more efficient RL algorithms. Today, there is theoretical and practical evidence that quantum interaction between agent and environment can indeed reduce the time it takes for the agent to learn (Section 2).

Herein, we describe an optimization-based quantum algorithm for RL that makes use of a direct quantum mechanical realization of a finite MDP, in which agent and environment are modelled by unitary operators and exchange states, actions and rewards in superposition (Section 3.1). Using this model, we show in detail how to use amplitude estimation to estimate the value function of a policy in a finite MDP with finite horizon (Section 3.2). This quantum policy evaluation (QPE) algorithm can be compared to a classical Monte Carlo (MC) method, i.e., sampling from agent-environment interactions to estimate the value function. QPE uses quantum samples (qsamples)

∗Work done while at Siemens AG.

Preprint. Under review.
instead of classical ones and provides a quantum advantage over any possible classical MC approach; it needs quadratically fewer samples to estimate the value function of a policy up to a given precision. We embed QPE into an optimization scheme that uses repeated Grover-like searches of the set of policies to find a decision rule with \(\epsilon \)-optimal performance (Section 3.3). The resulting routine shares similarities with the policy iteration method from dynamic programming (DP) \[4\] and, thus, we call it quantum (approximate) policy iteration. A major contribution of our work is a detailed description of how to implement quantum policy iteration for a two-armed bandit MDP at the level of standard single and multi qubit gates on a digital quantum computer. Simulations of this implementation numerically confirm the mathematically proven quantum advantage of QPE (Appendix B) and illustrate the behavior of quantum policy iteration (Section 4).

2 Related Work

Existing quantum RL approaches can be roughly divided into two categories: quantum enhanced agents that learn in classical environments, and scenarios where the agent and environment can interact quantum mechanically.

An example for the first category, is quantum projective simulation \[5\], where an agent makes decisions using a quantum random walk on a learned graph that represents its internal memory. In this approach, the special properties of quantum walks allow for fast decision making and thus less active learning time than classical agents. Furthermore, various quantum-enhanced agents have been described that learn in classical environments by replacing components of classical learning algorithms with quantum counterparts. There are approaches for deep Q-learning and policy gradient methods, where classical artificial neural networks are replaced by analogous variational quantum circuits (VQCs) with trainable parameters \[6–10\].

Theoretical work by Dunjko et al. indicates that the possibility of quantum interaction between agent and environment can be leveraged to design quantum-enhanced agents that provably outperform the best possible classical learner in certain environments \[11–13\]. One such approach is related to our ideas and uses Grover searches in deterministic environments to find sequences of actions that lead to high rewards \[12\]. The possibility of using amplitude estimation similar to QPE to be applied to stochastic environments are also discussed. Further extensions were proposed in \[14\] and \[15\]. Recently, Wang et al. used similar tools as in this work (i.e., amplitude estimation and quantum optimization) to obtain quantum speedups for subroutines of otherwise classical algorithms based on modern DP methods \[16\]. Their methods require access to a generative quantum model of the environment, which is similar to the environment operator \(\mathcal{E} \) from Section 3.1.

Contrary to the methods by Wang et al., our novel quantum (approximate) policy iteration is not a quantum-enhanced version of an existing classical method. It also differs from the ideas of Dunjko et al. as it directly searches for the optimal policy instead of looking for rewarded actions that are then used to improve the decision rule.

3 Quantum (Approximate) Policy Iteration

3.1 Quantum Mechanical Realization of a Finite Markov Decision Process

Consider an MDP with finitely many states \(S \), actions \(A \) and rewards \(R \). We can identify these sets with finite-dimensional complex Hilbert spaces \(\mathcal{S}, \mathcal{A} \) and \(\mathcal{R} \), which we call state, action and reward spaces. Formally, we use maps from the sets to the corresponding spaces, i.e.,

\[
\begin{align*}
s & \mapsto |s\rangle, & a & \mapsto |a\rangle, & r & \mapsto |r\rangle.
\end{align*}
\]

In order to be able to distinguish quantum states, actions and rewards we require that

\[
\begin{align*}
\langle s|s'\rangle & = \delta_{s,s'}, & \langle a|a'\rangle & = \delta_{a,a'}, & \langle r|r'\rangle & = \delta_{r,r'},
\end{align*}
\]

holds for all pairs \(s, s' \in S, a, a' \in A \) and \(r, r' \in R \). On a digital quantum computer, we can for example arbitrarly enumerate all states and actions and use strings of qubits as quantum representatives, i.e., \(s_i \mapsto |\text{bin}(i)\rangle \) and \(a_j \mapsto |\text{bin}(j)\rangle \). As the rewards are real numbers, we can for example approximate them with fixed point binaries which can be again represented as strings of qubits.
Agent and environment are modelled by unitary operators that act on S, A and R. For any policy π, we define the policy operator as a unitary operator $\Pi \in U(S \otimes A)$ which satisfies

$$|s\rangle |0\rangle_A \xmapsto{\Pi} |\pi_s\rangle = \sum_{a\in A} c_{a|s} |s\rangle |a\rangle ,$$

for all states $s \in S$. The state $|0\rangle_A$ is an arbitrary reference state in A and each amplitude $c_{a|s} \in \mathbb{C}$ has to satisfy $|c_{a|s}|^2 = \pi(a|s)$. The policy operator Π can be chosen as any unitary that satisfies these conditions. To see why such a unitary operator indeed exists, note that (3) describes a bijection between two orthonormal bases (ONBs) of two subspaces of $S \otimes A$. We can extend both ONBs to ONBs of the full space and define an arbitrary bijection between the newly added basis states while maintaining (3) on the original ones. The linear extension of this assignment is then unitary by construction. Using an analogous argument, we define the environment operator $E \in U(S \otimes A \otimes R \otimes S)$ as any unitary operator that satisfies

$$|s\rangle |0\rangle_R |0\rangle_S \xmapsto{E} \sum_{a,r,s'} c_{a,r,s'|s} |s\rangle |a\rangle |r\rangle |s'\rangle ,$$

with amplitudes that satisfy $|c_{a,r,s'|s}|^2 = p(r,s'|s,a)$ for all state-action pairs $s \in S, a \in A$. A single interaction between agent and environment is modelled by the step operator $S := E \circ \Pi$. For any state $s \in S$, it holds that

$$|s\rangle |0\rangle_A |0\rangle_R |0\rangle_S \xmapsto{S} \sum_{a,r,s'} c_{a,r,s'|s} |s\rangle |a\rangle |r\rangle |s'\rangle ,$$

where $c_{a,r,s'|s} = c_{r,s'|s,a} c_{a|s}$. We use S to construct a unitary operator that prepares a quantum state which represents the distribution of all trajectories with a fixed finite horizon H. We call it MDP operator and denote it as M. While the step operator acts on $S \otimes A \otimes R \otimes S$, the MDP operator is a unitary on the trajectory space $T^H := S \otimes (A \otimes R \otimes S)^\otimes_H$ which is large enough to store H quantum agent-environment interactions. The states in this space represent trajectories of length H and are of type

$$|t^H\rangle = |s_0^H\rangle |a_0^H\rangle |r_1^H\rangle |s_1^H\rangle \cdots |r_H^H\rangle |s_H^H\rangle .$$

We define the MDP operator as

$$M := \prod_{h=1}^H S_h \in U(T^H) ,$$

where S_h denotes a local version of S that acts on the h-th $S \otimes A \otimes R \otimes S$ subsystem of T^H. It holds that

$$|s\rangle \otimes (|0\rangle_A |0\rangle_R |0\rangle_S)^\otimes_H \xmapsto{M} \sum_{t^H} c_{t^H} |t^H\rangle ,$$

where $|c_{t^H}|^2 = p(t^H)$ which is the classical probability of trajectory t^H. This can be seen by inductive application of (5). If we measure the state from (8), we observe a trajectory t^H (or more precisely its quantum analogue $|t^H\rangle$) with probability $p(t^H)$. Therefore, this state is a quantum version of the distribution of all trajectories and we refer to it as qsample of the trajectories.

For QPE, we need the distribution of the returns in order to approximate the value function. With this in mind, we use the qsample of the trajectories and calculate for each trajectory state $|t^H\rangle$ the associated return defined as $G(t^H) := \sum_{h=1}^H \gamma^{h-1} r_h$, where $\gamma \in [0, 1]$ is a fixed discount factor. As the reward states of $|t^H\rangle$ are qubit binary encodings of (real) numbers, we can use quantum arithmetic to calculate their discounted sum. Formally, we use a unitary return operator G that maps

$$|r_1\rangle \cdots |r_H\rangle |0\rangle_G \xmapsto{G} |r_1\rangle \cdots |r_H\rangle \sum_{h=1}^H \gamma^{h-1} r_h ,$$

where $|0\rangle_G$ is a reference state in the return space G, which represents a system of sufficiently many qubits to encode all returns. Ruiz-Perez and Garcia-Escartin show an explicit construction of such an operator which performs the weighted addition in the Fourier domain [17]. By letting G act on all reward subsystems and the return component of $T^H \otimes G$, we can define $G \circ M$ which satisfies

$$|0\rangle \xmapsto{G \circ M} |\psi\rangle := \sum_{t^H} c_{t^H} |t^H\rangle |G(t^H)\rangle .$$
As all \(|t^H \rangle\,|G(t^H)\rangle\) states are (by construction) orthonormal, it follows that if we measure the second subsystem of \(|\psi\rangle\), we receive an individual return with the classical probability determined by the MDP and the agent’s policy. \(|\psi\rangle\) can be thought of as qsample of the return.

3.2 Quantum (Approximate) Policy Evaluation

Consider the problem of (approximately) evaluating the value function \(v^H_{\pi} \) of a policy \(\pi \) for some finite horizon \(H \in \mathbb{N} \). The value function is defined pointwise via

\[
v^H_{\pi}(s) = \mathbb{E}_{t^H}[G(t^H)|S_0 = s], \tag{11}
\]

where \(s \in S \) is the initial state, and the expectation is taken with respect to the distribution of all trajectories of length \(H \). Even if we assume perfect knowledge of the MDP dynamics \(p \), evaluating \(v^H_{\pi}(s) \) exactly is usually infeasible: the complexity of directly calculating the expectation grows exponentially in the horizon \(H \). Techniques from DP such as iterative policy evaluation reduce the computational complexity but come at the cost of high memory consumption [4]. An alternative approach is to use an MC method to estimate \(v^H_{\pi}(s) \). The arguably most straightforward MC algorithm for policy evaluation is to collect a dataset of trajectories and to average the returns. This requires the possibility to sample from the distribution of the trajectories.

Montanaro developed a quantum algorithm to estimate the expectation of a random variable using qsamples [18]. The method is quadratically more sample efficient than the best possible classical MC routine and it forms the foundation of QPE. To approximate the expected return, we use qsamples of the returns to which we have access via the operator \(A_{\text{QPE}} := G \circ M \) from (10). The first step towards QPE is to note that we can encode \(v^H_{\pi}(s) \) as amplitude of a basis vector in a quantum superposition. To this end, assume that we know a lower bound \(\bar{g} \) and an upper bound \(\tilde{g} \neq g \) on all returns. Using an affine function \(\phi \) defined by \(\phi(x) = (x - g)/(\tilde{g} - g) \), we construct a unitary operator \(\Phi \) that maps

\[
|x\rangle \langle 0 | \Phi \rightarrow |x\rangle \left(\sqrt{1 - \phi(x)} |0\rangle + \sqrt{\phi(x)} |1\rangle \right), \tag{12}
\]

where \(|x\rangle \) is a binary (qubit) representation of a real number \(x \in \mathbb{R} \) and the second subsystem is a single qubit. If we now apply \(\Phi \) to the return component of \(|\psi\rangle \) from (10) and an additional qubit, we get

\[
|\psi\rangle \rightarrow |\psi^{\phi}\rangle := c_0 |\psi_0^{\phi}\rangle + c_1 |\psi_1^{\phi}\rangle , \tag{13}
\]

where

\[
|\psi_1^{\phi}\rangle \propto \sum_{t^H} c_{t^H} \sqrt{\phi(G(t^H))}|t^H\rangle |G(t^H)\rangle |1\rangle , \tag{14}
\]

The state \(|\psi_0^{\phi}\rangle \) contains all the states in which the last qubit is in state \(|0\rangle \) and is therefore orthonormal to \(|\psi_1^{\phi}\rangle \). The amplitude \(c_1 \in \mathbb{C} \), which is the norm of the (non-normalized) state on the right-hand side of (14), satisfies

\[
|c_1|^2 = \sum_{t^H} p(t^H)\phi(G(t^H)) = \mathbb{E}_{t^H} \left[\phi(G(t^H)) \right] . \tag{15}
\]

By affinity of \(\phi \), it holds that

\[
\phi^{-1}(|c_1|^2) = \mathbb{E}_{t^H} \left[G(t^H) \right] = v^H_{\pi}(s). \tag{16}
\]

Therefore, approximately evaluating the value function can be done by estimating \(|c_1|^2 \) for which we can use an amplitude estimation algorithm.

One way to estimate \(|c_1|^2 \) (or any amplitude in general) is to encode it via the phases of two eigenvalues of a unitary operator and to estimate them using phase estimation [19]. Following the original construction of Brassard et al., we define this unitary as

\[
Q_{\text{QPE}} := -A^0_{\text{QPE}} \circ S_0 \circ \left(A^0_{\text{QPE}} \right)^\dagger \circ \left(\text{id}_{t^H \otimes G} \circ Z \right) , \tag{17}
\]

where \(A^0_{\text{QPE}} := (\text{id}_{t^H} \otimes \Phi) \circ A_{\text{QPE}} \). In this expression, \(\Phi \) acts on the return subsystem and the ancillary qubit. The operator \(S_0 \) is a phase oracle that, considering the basis states, flips the phase of a state precisely when all components (in this case the trajectory and the return component as well
as the additional qubit) are in the corresponding $|0\rangle$ ground states. The Z operator corresponds to a Pauli-Z gate and therefore the last operator is also a phase oracle which flips the phase of a state precisely when the ancillary qubit is in state $|1\rangle$. Brassard et al. showed that $|\psi^{\phi}\rangle$ can be decomposed as $|\psi^{\phi}\rangle = c_+ |\psi^+_\phi\rangle + c_- |\psi^-_\phi\rangle$ where $|\psi^+_\phi\rangle$ and $|\psi^-_\phi\rangle$ are orthonormal, $|c_+|^2 = |c_-|^2 = 1/2$ and $Q_{\text{QPE}} |\psi^+_\phi\rangle = e^{i2\phi}\psi^+_\phi\rangle$, which means that $|\psi^+_\phi\rangle$ are eigenstates of Q_{QPE}. The phase θ is the unique value in $[0, 1)$ that satisfies $\sin^2(\pi\theta) = \sin^2(-\pi\theta) = |c_1|^2$. Therefore, we can use a phase estimation algorithm to estimate θ and $-\theta$. The classical phase estimation routine uses a system of

$$t := n + \left\lfloor \log_2 \left(\frac{1}{2\delta} + \frac{1}{2} \right) \right\rfloor,$$

(18)

qubits where $n \in \mathbb{N}$ and $\delta \in (0, 1]$ are arbitrary. The basis states of these qubits are interpreted as binary numbers. Phase estimation exploits the fact that $|\psi^+_\phi\rangle$ are eigenstates of Q_{QPE} to bring the t qubits into a joint state X which, when measured, satisfies

$$P(\{|X/2t - \theta| \leq 1/2^{n+1} \}) \geq 1/2 - \delta/2$$

and

$$P(\{|X/2t + \theta| \leq 1/2^{n+1} \}) \geq 1/2 - \delta/2,$$

(19)

i.e., the distribution of $X/2t$ is concentrated at θ and $-\theta$. In case $t = n$, we get the same result with total probability at least δ/π^2. For more details, please refer to Appendix A.

As $|c_1|^2 = \sin^2(\pi\theta)$ and $v_x^H(s) = \phi^{-1}(\sin^2(\pi x/2))$, we define the QPE approximation $\tilde{v}_x^H(s)$ of $v_x^H(s)$ for any realization x of X as

$$\tilde{v}_x^H(s) := \phi^{-1}\left(\sin^2\left(\pi x/2\right)\right).$$

(20)

The approximation error of θ given in (19) can be translated to an approximation error of the value function

$$P(\{ |\tilde{v}_x^H(s) - v_x^H(s)| \leq \epsilon \}) \geq 1 - \delta,$$

where the error ϵ is (as shown in Appendix B) given by

$$\epsilon = (\bar{g} - g)(\pi/2^{n+1} + \pi^2/2^{2n+2}) \in \mathcal{O}(1/2^n).$$

(22)

Phase estimation uses $\mathcal{O}(2^n) = \mathcal{O}(1/\epsilon \cdot 1/\delta)$ applications of A_{QPE}^ϕ and $(A_{\text{QPE}}^\phi)^\dagger$ (via Q_{QPE}) to achieve this error bound (c.f. Figure A.1). Each such application corresponds to the collection of one qsample. According to the optimality results on MC methods due to Dagum et al., the sample efficiency of the best possible classical MC type algorithm to estimate $v_x^H(s)$ via averaging has sample complexity in $\Omega(1/\epsilon^2 \cdot \log_2(1/\delta))$. Therefore, QPE yields a quadratic reduction of the sample complexity w.r.t. to the approximation error ϵ.

3.3 Quantum Policy Improvement

The task of improving a given policy μ is to find another policy μ' such that $v_{\mu'}^H(s) \geq v_{\mu}^H(s)$ holds for all $s \in S$ and that strict inequality holds for at least one $s' \in S$. Once we know the value function v_{μ}^H of μ, such a μ' can be explicitly constructed via greedification. In this section, we derive quantum policy improvement (QPI) which instead uses a Grover search over a set of policies to find an improved decision rule. For simplicity, we assume from now on that the MDP always starts in some fixed initial state $s_0 \in S$. In this case, instead of using the whole value function, we can restrict ourselves to the value of policy π which, under abuse of notation, we define as $v_\pi^H := v_{\pi}^H(s_0)$.

QPI uses Grover search on QPE results to find an improved decision rule. For a fixed policy π, QPE can be summarized as one unitary QPE (consisting of the phase estimation circuit from Figure A.1 without the measurements) that maps $|0\rangle \xrightarrow{\text{QPE}} |\psi_{\text{QPE}}^\pi\rangle$. Now consider the finite set P that contains all deterministic policies. By mapping each $\pi \in P$ onto a member $|\pi\rangle$ of an ONB of some suitable Hilbert space \mathcal{P}, we can construct a unitary, π-controlled version QPE_{π} of QPE that satisfies

$$|\pi'\rangle |0\rangle \xrightarrow{\text{QPE}_{\pi}} \begin{cases} |\pi\rangle |\psi_{\text{QPE}}^\pi\rangle & \text{if } \pi' = \pi \\ |\pi'\rangle |0\rangle & \text{else} \end{cases},$$

(23)

for all policies $\pi' \in P$. Using these operators, we define another unitary that prepares the search state for QPI Grover search. Consider

$$A_{\text{QPI}} := \prod_{\pi \in P} \text{QPE}_{\pi} \circ (H_{\mathcal{P}} \otimes \text{id}),$$

(24)
We propose that the complexity of quantum policy iteration is best measured in terms of the total number of Grover rotations performed in all QPI steps. This number is proportional to the runtime of QPE output v_k, but still $v_k < v^*$, QPI may nevertheless find a policy π_{k+1} with $v_{\pi_{k+1}} > v_k$. This mitigates QPE errors.

We propose that the complexity of quantum policy iteration is best measured in terms of the total number of Grover rotations performed in all QPI steps. This number is proportional to the runtime of

\[|0\rangle_p |0\rangle \xrightarrow{A_{QPI}} \frac{1}{|P|} \sum_{\pi \in P} |\pi\rangle_v |\psi^\pi_{QPE}\rangle. \]

(25)

As the $|\psi^\pi_{QPE}\rangle$ states encode the value of policy π, we can define a suitable oracle and use it to amplify the amplitudes of those policies that are likely to yield higher returns. For a policy μ and an approximation \tilde{v}_μ of its value, consider a phase oracle $O_{>\tilde{v}_\mu}$ that satisfies

\[
|x\rangle \xrightarrow{O_{>\tilde{v}_\mu}} \begin{cases} -|x\rangle & \text{if } \phi^{-1}\left(\sin^2\left(\pi x/2^k\right)\right) > \tilde{v}_\mu. \\ |x\rangle & \text{else.} \end{cases}
\]

(26)

Using this oracle, we define the QPI Grover operator as

\[
Q_{QPI}^{\tilde{v}_\mu} := -A_{QPI} \circ S_0 \circ A_{QPI}^{\dagger} \circ (id_\mathcal{P} \otimes O_{>\tilde{v}_\mu}).
\]

(27)

According to the principle of amplitude amplification, which is used in Grover search and was described in detail by Brassard et al., if we apply this operator a certain number of times to the search state prepared by A_{QPI}, this amplifies the amplitude of all $|\pi\rangle |x\rangle$ states whose $|x\rangle$ component satisfies the oracle condition $\phi^{-1}\left(\sin^2\left(\pi x/2^k\right)\right) > \tilde{v}_\mu$. As a result, the probability of measuring a policy that has better performance than \tilde{v}_μ (up to an error of ϵ) is increased. Due to the QPE failure probability of δ, the procedure may also amplify amplitudes of policies that do not yield an improvement (within ϵ) as QPE may overestimate their performance. However, the probability of such errors can be limited by choosing small values for δ.

For the amplitude amplification to work, we need to specify the number of Grover rotations, i.e., the number of times we apply $Q_{QPI}^{\tilde{v}_\mu}$, which determines how the amplitudes of the desired states are scaled. Although there is a theoretically optimal number of Grover rotations, this value is inaccessible in QPI as it would require knowledge of the probability of obtaining a desired state when measuring the search state [19]. To circumvent this problem, we use the exponential Grover search strategy introduced by Boyer et al.: We initialize a parameter $m = 1$. In each iteration, we uniformly sample the Grover rotations from $\{0, ..., \lfloor m - 1 \rfloor\}$ and measure the resulting state. If the result corresponds to an improvement, we reset $m \leftarrow 1$. Otherwise, we overwrite $m \leftarrow \lambda m$ for some $\lambda > 1$ which stays the same over all iterations. For a theoretical justification of this technique, please refer to the original work of Boyer et al..

Quantum (approximate) policy iteration as described in Algorithm 1 starts with an initial policy π_0 and repeatedly applies QPI to generate a sequence of policies with increasing values. Note that the procedure is similar to Durr and Høyer’s quantum minimization algorithm [22]. In each iteration k, quantum policy iteration runs QPI which is a Grover search and can therefore also fail to produce a policy whose estimated value exceeds the current best v_k. In this case, the policy and its value are not updated. As we typically do not know the value of the optimal policy, the algorithm uses a patience criterion to interrupt the iteration if there was no improvement in the last C steps.

As quantum policy iteration relies on QPE, it can only find a policy with ϵ-optimal behavior and may also fail to do so. This is because QPE yields an ϵ-approximation of the value only with probability $1 - \delta$. We conjecture that the failure probability of quantum policy iteration can be made arbitrarily small by choosing a sufficiently small δ. Moreover, note that if in some iteration k the QPE output v_k overestimates v_{π_k} but still $v_k < v^*$, QPI may nevertheless find a policy π_{k+1} with $v_{\pi_{k+1}} > v_k$. This mitigates QPE errors.

Algorithm 1 Quantum Policy Iteration
input: A policy $\pi_0 \in \mathcal{P}$, an estimate \tilde{v}_{π_0} of its value, parameters for QPE and QPI, an initial policy $\pi_0 \in \mathcal{P}$ and an approximation v_0 of its value
output: Guesses $\tilde{\pi}^* \in \mathcal{P}$ and \tilde{v}^* for π^* and v^*
for $k=1,2,3,...$ **while** $c \leq C$ **do**
Run QPI on π_{k-1}, $\tilde{v}_{\pi_{k-1}}$ to obtain $\tilde{\pi}_k$, \tilde{v}_k
if $\tilde{v}_{\pi_k} > \tilde{v}_{\pi_{k-1}}$ then
$\pi_k \leftarrow \tilde{\pi}_k$, $v_k \leftarrow \tilde{v}_k$, $c \leftarrow 0$
else
$\pi_k \leftarrow \pi_{k-1}$, $v_k \leftarrow v_{k-1}$, $c \leftarrow c + 1$
return $\tilde{\pi}^* = \pi_T$, $\tilde{v}^* = v_T$ from last iteration T
the procedure and at the same time measures the number of times we ran QPE which in turn relates via the MDP model to the total number of quantum agent-environment interactions. Therefore, the number of Grover rotations also measures the qsample complexity. We conjecture that the complexity grows linear in $\sqrt{|P|}$. Our intuition behind this is that quantum policy iteration is essentially Grover search except that it uses changing, inaccurate oracles. This differentiates it from Dürr and Høyer’s more general quantum optimization algorithm for which complexity proportional to the square root of the number of elements in the search space is known [22].

4 Experiments

Existing quantum hardware is not yet ready to run QPE, let alone quantum policy iteration. Both methods use far more gates than what is possible with existing, non-error-corrected digital quantum computers. To nevertheless illustrate the operation of our methods, we conducted simulations in which we applied them to a two-armed bandit toy problem. Imagine a slot machine with two arms (levers). Upon pulling an arm, one receives a reward of either 0 or 1. This translates to an MDP with one state and two actions, i.e., $A = \{←, →\}$ where “←” means “pull the left arm” and “→” means “pull the right arm”. The reward set is $R = \{0, 1\}$. The MDP dynamics are determined by the two probabilities $p(0|←)$ and $p(0|→)$ of losing, i.e., “winning” 0, when pulling the left or right arm. Each policy is determined by $\pi(←)$ which denotes the probability of choosing the left arm. The learning problem is to identify the arm that yields the highest value v^*, given by $v^* = \max \{p(1|←), p(1|→)\}$.

Before we discuss the experiments with QPE and quantum policy iteration, we show how the policy, environment and MDP operator for the toy problem can be implemented on a gate based quantum computer. We encode the actions via $|0\rangle_A = |0\rangle$ and $|1\rangle_A = |1\rangle$ which requires a single qubit. We use another qubit to encode the rewards as $|0\rangle_R = |0\rangle$ and $|1\rangle_R = |1\rangle$. In this encoding, we can represent the step operator S as a quantum circuit shown in Figure 1. The angles of the Y-axis rotations R_y are given by $\theta^\pm = 2 \arccos (\sqrt{\pi(←)})$, $\theta^- = 2 \arccos (\sqrt{p(0|←)})$ and $\theta^+ = 2 \arccos (\sqrt{p(0|→)})$. A direct calculation shows that this S indeed prepares a qsample of one agent-environment interaction.

Now consider the two-armed bandit for horizon $H = 2$, i.e., the agent gets to play two rounds. The MDP operator of this decision process is given by two step operators according to Figure 1 that act on two separate $A \otimes R$ subsystems represented by four qubits. For simplicity, we set the discount factor $\gamma = 1$. The return operator G adds the two reward qubits and stores the result using another two-qubit subsystem that represents the return space G. It can be implemented using two CNOT gates and one Toffoli gate to realize the logical expressions that determine which qubit of the return register must be set to $|1\rangle$ or $|0\rangle$ depending on the rewards. Φ can be realized using three doubly-controlled R_y gates that rotate another ancillary qubit depending on the two reward qubits.
We now turn to policy iteration. As a toy learning problem, we used a two-armed bandit where the agent always loses when it chooses the left arm and always wins when it chooses the right arm, i.e., $p(0|←) = 1$ and $p(1|→) = 0$. We want to use quantum policy iteration to find an $(\epsilon$-optimal) decision rule for this scenario. In DP, one typically only considers deterministic policies as, under...
mild assumptions, every finite MDP has an optimal deterministic policy \[4\]. For the two-armed
bandit, there are only two such policies, which results in an uninteresting problem. To make
the search for an optimal decision rule more challenging, we instead used a set of \(N \in \mathbb{N} \) stochastic
policies given by

\[
P_N = \{ \pi^n : \pi^n(\epsilon-) = \frac{n - 1}{N - 1}; n = 1, ..., N \}.
\]

We let the agent start with the worst policy \(\pi^1 \) which chooses the left arm with unit probability and
want to find the optimal decision rule \(\pi^* = \pi^N \).

Figure 4 documents one successful run of quantum policy iteration for the toy learning problem with
\(N = 1000 \) policies and parameters \(\epsilon = 0.0125, \delta = 0.07, C = 30 \) and \(\lambda = 8/7 \). We set \(H = 1 \)
so the agent plays one round and the value of the optimal policy is \(v^* = 1 \). In the beginning, the policy
value rapidly increases even when no or only few Grover rotations are applied. This is because we
start with the worst possible policy, and better policies are easily found by chance. The steep increase
stops after a few iterations, as the policy then is close to optimal. It takes increasingly more rotations
and some minor improvements until the procedure makes the final jump (dotted vertical line) after
which the values stagnate at the maximum of 1 as from then on, no further improvement is possible.
In the end, the algorithm tries more and more Grover rotations as \(m \) (that determines their maximum
number) grows exponentially.

Finally, we investigated our conjecture that the runtime of quantum policy iteration is proportional
to \(\sqrt{|\mathcal{P}|} \). To empirically test this, we ran quantum policy iteration for the same bandit and using
the same parameters as in the previous experiment. We quadratically increased the size \(N \) of the policy
set \(\mathcal{P}_N \) from \(N = 40^2 = 1600 \) to \(N = 60^2 = 3600 \). For each \(N \), we ran quantum policy iteration
1000 times and calculated statistics of the resulting distribution of the number of Grover rotations.
As the number of rotations depends on the patience \(C \), we omitted the ones that happened in the
last \(C \) iterations. We only considered "successful" runs where quantum policy iteration returned an
\(\epsilon \)-optimal policy. Due to the low QPE failure probability, at least 99% of all runs were successful
for any \(N \). The results of the complexity experiment are shown in Figure 5. We see that the average
number of rotations indeed seems to grow linear in \(\sqrt{N} \). The line through the means was found
by linear regression and fits the data well: the mean squared error is 1.50. Note that for each \(N \),
the empirical distribution of the runtimes (we hid the outliers for the sake of clarity), appears to
be quite symmetric. This is expected because sometimes, the algorithm is lucky and samples the
optimal policy in an early iteration while in other runs, the routine suffers from many incremental
improvements.
5 Conclusion

In this work, we showed in detail how to use amplitude estimation and Grover search to obtain a quantum version of classical policy iteration that consists of QPE and QPI. The foundation of all our algorithms is a quantum mechanical realization of a finite MDP in which states, actions and rewards are exchanged in superposition. QPE exploits this via amplitude estimation, and uses the distribution of the returns represented as superposition state. The quantum advantage of QPE is a quadratic reduction of the sample complexity compared to sampling from this distribution classically. QPI and quantum policy iteration use the superposition principle and consider all policies “simultaneously”. Both methods are an example of how to use Grover search to find an optimal decision rule in a way that is analogous to database search. While existing quantum hardware is not yet ready for our methods, the implementation details we presented and the simulations we conducted shed light on how gate based quantum computers can be used to solve classical reinforcement learning problems.

References

[1] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van Den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, et al. Mastering the game of go with deep neural networks and tree search. *nature*, 529(7587):484–489, 2016.

[2] Lov K Grover. A fast quantum mechanical algorithm for database search. In *Proceedings of the twenty-eighth annual ACM symposium on Theory of computing*, pages 212–219, 1996.

[3] Peter W Shor. Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. *SIAM review*, 41(2):303–332, 1999.

[4] Richard S Sutton and Andrew G Barto. *Reinforcement learning: An introduction*. MIT press, 2018. ISBN 9780262039246.

[5] Hans J Briegel and Gemma De las Cuevas. Projective simulation for artificial intelligence. *Scientific reports*, 2(1):1–16, 2012.

[6] Samuel Yen-Chi Chen, Chao-Han Huck Yang, Jun Qi, Pin-Yu Chen, Xiaoli Ma, and Hsi-Sheng Goan. Variational quantum circuits for deep reinforcement learning. *IEEE Access*, 8:141007–141024, 2020.

[7] Owen Lockwood and Mei Si. Reinforcement learning with quantum variational circuits. In *Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment*, volume 16, pages 245–251, 2020.

[8] Maximilian Moll and Leonhard Kunczik. Comparing quantum hybrid reinforcement learning to classical methods. *Human-Intelligent Systems Integration*, 3(1):15–23, 2021.

[9] Andrea Skolik, Sofiene Jerbi, and Vedran Dunjko. Quantum agents in the gym: a variational quantum algorithm for deep Q-learning. *arXiv preprint arXiv:2103.15084*, 2021.

[10] Sofiene Jerbi, Casper Gyurik, Simon Marshall, Hans J Briegel, and Vedran Dunjko. Variational quantum policies for reinforcement learning. *arXiv preprint arXiv:2103.05577*, 2021.

[11] Vedran Dunjko, Jacob M Taylor, and Hans J Briegel. Framework for learning agents in quantum environments. *arXiv preprint arXiv:1507.08482*, 2015.

[12] Vedran Dunjko, Jacob M Taylor, and Hans J Briegel. Quantum-enhanced machine learning. *Physical review letters*, 117(13):130501, 2016.

[13] Vedran Dunjko, Yi-Kai Liu, Xingyao Wu, and Jacob M Taylor. Exponential improvements for quantum-accessible reinforcement learning. *arXiv preprint arXiv:1710.11160*, 2017.

[14] Vedran Dunjko, Jacob M Taylor, and Hans J Briegel. Advances in quantum reinforcement learning. In *2017 IEEE International Conference on Systems, Man, and Cybernetics (SMC)*, pages 282–287. IEEE, 2017.
[15] A Hamann, V Dunjko, and S Wölk. Quantum-accessible reinforcement learning beyond strictly epochal environments. arXiv preprint arXiv:2008.01481, 2020.

[16] Daochen Wang, Aarthi Sundaram, Robin Kothari, Ashish Kapoor, and Martin Roetteler. Quantum algorithms for reinforcement learning with a generative model. In International Conference on Machine Learning, pages 10916–10926. PMLR, 2021.

[17] Lidia Ruiz-Perez and Juan Carlos Garcia-Escartin. Quantum arithmetic with the quantum Fourier transform. Quantum Information Processing, 16(6):152, 2017.

[18] A. Montanaro. Quantum speedup of Monte Carlo methods. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 471(2181):20150301, 2015.

[19] Gilles Brassard, Peter Høyer, Michele Mosca, and Alain Tapp. Quantum amplitude amplification and estimation. Contemporary Mathematics, 305:53–74, 2002.

[20] Paul Dagum, Richard Karp, Michael Luby, and Sheldon Ross. An optimal algorithm for Monte Carlo estimation. SIAM Journal on computing, 29(5):1484–1496, 2000.

[21] Michel Boyer, Gilles Brassard, Peter Høyer, and Alain Tapp. Tight bounds on quantum searching. Fortschritte der Physik: Progress of Physics, 46(4-5):493–505, 1998.

[22] Christoph Dürr and Peter Høyer. A quantum algorithm for finding the minimum. arXiv preprint quant-ph/9607014, 1996.

[23] Richard Cleve, Artur Ekert, Chiara Macchiavello, and Michele Mosca. Quantum algorithms revisited. Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 454(1969):339–354, 1998.
A Phase Estimation

Figure A.1: Phase estimation circuit for amplitude estimation in QPE.

Figure A.1 shows the classical phase estimation circuit. Note that the input state \(A_{QPE} |0\rangle = |\psi^\phi\rangle \) of the second (working) register is not a single eigenstate of \(Q_{QPE} \) but an equal superposition of the two orthonormal eigenstates \(|\psi^\phi_+\rangle \) and \(|\psi^\phi_-\rangle \). After all gates have been applied, the state of the first register is a superposition of close approximations of \(\pm \theta \) as formally stated in (19). This is because the circuit from Figure A.1 applies phase estimation to \(|\psi^\phi_+\rangle \) and \(|\psi^\phi_-\rangle \) in superposition and thus estimates the corresponding phases \(\theta \) and \(-\theta \) "at the same time". The error bounds (19) follow from a detailed analysis of the phase estimation circuit as done in [23].

B Proof of (21) and (22)

The proof makes use of the following technical result:

Lemma 1 ([19], Lemma 7). Let \(\mu = \sin^2(\alpha) \) and \(\bar{\mu} = \sin^2(\bar{\alpha}) \) with \(0 \leq \alpha, \bar{\alpha} \leq 2\pi \). Then it holds that
\[
|\bar{\alpha} - \alpha| \leq a \Rightarrow |\bar{\mu} - \mu| \leq 2a \sqrt{\mu(1 - \mu)} + a^2. \tag{29}
\]

Recall from (19) that the random variable \(X \) that corresponds to the final measurements of phase estimation in QPE satisfies
\[
P\left(\{|X|/2^t - \theta| \leq 1/2^{n+1}\} \cup \{|X|/2^t + \theta| \leq 1/2^{n+1}\} \right) \geq 1 - \delta. \tag{30}
\]

We set \(\bar{\mu} := \sin^2(\pi X/2^t) = \phi(v^H_\pi(s)) \) and \(\mu := \sin^2(\pi \theta) = \phi(v^H(s)) \) and obtain
\[
P\left(|\bar{\mu} - \mu| \leq \frac{\pi}{2^{n+1}} + \frac{\pi^2}{2^{2n+2}} \right) \geq P\left(|\bar{\mu} - \mu| \leq \frac{\pi \sqrt{\mu(1 - \mu)}}{2^n} + \frac{\pi^2}{2^{2n+2}} \right) \geq 1 - \delta, \tag{31}
\]

where the first inequality holds as \(\sqrt{\mu(1 - \mu)} \leq 1/2 \) and the second inequality is due to Lemma 1. Now the form of \(\epsilon \) as stated in (22) follows from
\[
|\bar{v}_\pi^H(s) - v_\pi^H(s)| = |\phi^{-1}(\bar{\mu}) - \phi^{-1}(\mu)| = (\bar{g} - g)|\bar{\mu} - \mu|, \tag{32}
\]

where in the last step, we used the definition of \(\phi \) given in Section 3.2.