Mechanisms of instantaneous inactivation of SARS-CoV-2 by silicon nitride bioceramic

G. Pezzotti a,b,c,d,e,*, F. Boschetto a,f, E. Ohgitani b, Y. Fujita a, M. Shin-Ya b, T. Adachi f, T. Yamamoto f, N. Kanamura f, E. Marina a,b, W. Zhu a, I. Nishimura a, O. Mazda b

a Ceramic Physics Laboratory, Kyoto Institute of Technology, Sakyo-ku, Matsugasaki, Kyoto, 606-8585, Japan
b Department of Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamiyacho, Kyoto, 602-8566, Japan
c Department of Orthopedic Surgery, Tokyo Medical University, 6-7-1 Nishi-Shinjuku, Shinjuku-ku, 160-0023, Tokyo, Japan
d The Center for Advanced Medical Engineering and Informatics, Osaka University, 2-2 Yamadaoka,Suita, Osaka, 565-0854, Japan
e Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-0062, Japan
f Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamiyacho, Kyoto, 602-8566, Japan
g Division of Advanced Prosthodontics, The Jane and Jerry Weintraub Center for Reconstructive Biotechnology, UCLA School of Dentistry, Los Angeles, CA, 90095, USA

ARTICLE INFO

Keywords:
Silicon nitride
Virus
Surface chemistry
Ammonia
SARS-CoV-2
Hydrolysis

ABSTRACT

The hydrolytic processes occurring at the surface of silicon nitride (Si₃N₄) bioceramic have been indicated as a powerful pathway to instantaneous inactivation of SARS-CoV-2 virus. However, the virus inactivation mechanisms promoted by Si₃N₄ remain yet to be elucidated. In this study, we provide evidence of the instantaneous damage incurred on the SARS-CoV-2 virus upon contact with Si₃N₄. We also emphasize the safety characteristics of Si₃N₄ for mammalian cells. Contact between the virions and micrometric Si₃N₄ particles immediately targeted a variety of viral molecules by inducing post-translational oxidative modifications of S-containing amino acids, nitration of the tyrosine residue in the spike receptor binding domain, and oxidation of RNA purines to form formamidopyrimidine. This structural damage in turn led to a reshuffling of the protein secondary structure. These clear fingerprints of viral structure modifications were linked to inhibition of viral functionality and infectivity. This study validates the notion that Si₃N₄ bioceramic is a safe and effective antiviral compound; and a primary antiviral candidate to replace the toxic and allergenic compounds presently used in contact with the human body and in long-term environmental sanitation.

1. Introduction

In a previous study on the effect of silicon nitride bioceramic powder on SARS-CoV-2, we found that simple contact of the powder with the virus in a dilute aqueous suspension resulted in instantaneous and complete inactivation of the virus [1]. The degree of instantaneous inactivation recorded was similarly observed for other single-stranded RNA (ssRNA) viruses [2]. Subsequently, it was hypothesized that the agent responsible for this effect is ammonia. Conversion into virucidal ammonia from ammonium increasingly occurs with increasing the pH of the aqueous environment [3]. Since the pH at the biological interface between solid Si₃N₄ and the virion surface likely exceed the pK value [4], a steep concentration gradient is established at the solid/virion interface with a far greater percentage of indigenous ammonia in the virucidal state at the local contact. We used this argument to explain why ssRNA virus inactivation is greatly accelerated upon contact with Si₃N₄ particles in suspension.

Studies on the inactivation rates of enterovirus [5] and other enteric viruses [6] with ammonia have been reported, and locate the viral sensitivity to this agent as a general property of viruses belonging to the enterovirus group with few exceptions (e.g., the reovirus, an enteric virus insensitive to ammonia) [5–7]. It should be immediately apparent from the structural features that the interaction of viruses exposed to Si₃N₄ with hydrolytically eluted ammonia results in structural and chemical damage.

Si₃N₄ is a biocompatible ceramic with the unique property of concurrently supporting cell-cycle progression in eukaryotic cells and counteracting pathogens [4,8–14]. Such dual (and uncommon) behavior is the result of its peculiar surface chemistry, which features a

* Corresponding author.
** Corresponding author.
E-mail addresses: pezzotti@kit.ac.jp (G. Pezzotti), mazda@koto.kpu-m.ac.jp (O. Mazda).

https://doi.org/10.1016/j.mtbio.2021.100144
Received 9 August 2021; Received in revised form 20 September 2021; Accepted 24 September 2021
Available online 1 October 2021
2590-0064/© 2021 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
cell-proliferation supportive cation (silicon) and the formation of ammonia/ammonium (and nitrogen radicals) as byproducts of the hydrolytic interaction between surface secondary amines and aqueous environment at the biological interface [4]. Such reactions in turn induce a robust pH buffering effect. Accordingly, optimal biological properties in Si$_3$N$_4$ strongly depend on its surface stoichiometry, which could be modulated to enhance either cell proliferation or pathogen lysis. The different capacity of eukaryotic cells and pathogens of metabolizing un-ionized species of ammonia and, thus, of resisting under NH$_3$ stress is key in the observed “antibiotic-like” behavior of Si$_3$N$_4$. In the specific context of the present study, we build upon the widely accepted notion that ssRNA virions have in general no capacity to resist inactivation by ammonia attack to their RNA and viral proteins [2,15].

With the scenarios by which SARS-CoV-2 could actually have arisen and its immunevasive mechanisms yet under discussion [16], we looked for a safe antiviral material with wide effectiveness and, concurrently, for an analytical tool capable of screening the virions for a safe antiviral material with wide effectiveness and, concurrently, for and its immunoevasive mechanisms yet under discussion [16], we looked for an analytical tool capable of screening the virions’ structure at the molecular scale. Accordingly, the main emphasis of this study was placed on elucidating the mechanisms of virus inactivation by means of Raman vibrational analyses of SARS-CoV-2 virions before and after exposure to Si$_3$N$_4$ micrometric particles (5 vol%) suspended in aqueous solution. We then compared the results with the susceptibility of other viruses to the same Si$_3$N$_4$ powder. The present spectroscopic characterizations, which are in line with our previous in situ Raman studies in microbiology [17], focused on the antiviral mechanisms, and clarified the pathway by which eluted ammonia and related reactive nitrogen species inactivate the virus, in comparison with other ssRNA viruses. Understanding the viral effects of Si$_3$N$_4$ at the molecular scale is key in controlling and optimizing its surface stoichiometry for the development of advanced environmental sanitation approaches capable to counteract the COVID-19 pandemic without affecting human health even in the long term.

2. Experimental procedures

SARS-CoV-2 viral stock of the original Japanese isolate (JPN/TY/WK-521) was obtained from the Japanese National Institute of Infectious Diseases. The viral stock was propagated using VeroE6/TMPRSS2 cells at 37 °C for 2 days and harvested by centrifugation at 4800 rpm for 20 min. Samples for Raman spectroscopy were supernatant virions with a concentration of 3.0–4.5 × 106 TCID$_{50}$ laid on a glass sheet with an area of ∼38.5 mm2. Five volume percent (5 vol%) of Si$_3$N$_4$ powder was dispersed in 1 mL of Phosphate Buffer Solution (PBS (−)), followed by the addition of the viral suspension (2 × 106 median tissue culture infectious dose (TCID$_{50}$) in 20 µL). The Si$_3$N$_4$ powder (SINTX Technologies, Inc., Salt Lake City, UT USA) had an average particle size of 0.8 ± 1.0 µm. Mixing was gently performed at room temperature for 1 min by slow manual rotation. After exposure, the powders were pelleted by centrifugation (2400 rpm for 2 min) followed by filtration through a 0.22 µm filter (Hawach Sterile PES Syringe Filter, HAWACH SCIENTIFIC CO., LTD., Xi’an, China). Supernatants were collected, aliquotted, and subjected to TCID$_{50}$ assays, real-time RT-PCR, and fluorescence assays. The full details of sample preparation and analyses were described in a previous study [1]. SARS-CoV-2 virus experiments were conducted in a biosafety level 3 (BSL-3) biocontainment facility using BSL-3 work practices.

A Raman spectrometer (LabRAM HR800, Horiba/Jobin-Yvon, Kyoto, Japan) operating with a 50x optical lens was used for in situ spectral analysis of the virus sample. The preparation procedure of the isolate JPN/TY/WK-521 sample is described in the Supplementary Information. The spectroscope was set in confocal mode and used a holographic notch filter, which concurrently provided high-efficiency and high-resolution spectral acquisitions. The incoming light was from a 532 nm solid-state laser source operating at 10 mW. A spectral resolution of ~1 cm$^{-1}$ was achieved upon analyzing the Raman scattered light by a double monochromator connected with an air-cooled charge-coupled device (CCD) detector (Andor DV420-OE322; 1024 × 256 pixels). The acquisition time of one spectrum was ∼15 s. To obtain an average spectrum, thirty spectra were collected at different locations over areas of ∼2 mm2 and averaged.

The average Raman spectrum was treated with a baseline subtraction and automatically deconvoluted into series of Voigtian sub-bands using commercial software (LabSpec 4.02, Horiba/Jobin-Yvon, Kyoto, Japan). Baseline subtraction applied the criterion of polynomial fitting. For spectral analysis, we applied a machine-learning algorithm specially crafted for the Raman spectrum. This consisted of an automatic solver exploiting a linear polynomial expression of Voigtian functions. An algorithm searching for the minimum value of the difference between the experimental and the fitted spectrum was then applied through a computer program. The program chose a series of Voigtian sub-bands from the deconvoluted spectra of pre-selected compounds from a database of key biomolecules in aqueous solution and in a solid state according to the chemical and structural peculiarities of the virions. According to the spectra of pre-selected compounds, the algorithm pinpointed the closest matches to the experimental spectra according to established criteria of relative intensity, spectral position and bandwidth. These conditions provided the required mathematical constraints to unequivocally deconvolute the experimental spectrum. Additional details about the spectral deconvolution procedure and the machine-learning algorithm were given in a previous report [12].

3. Experimental results

3.1. Evidences of the antiviral behavior of Si$_3$N$_4$

Fig. 1 summarizes the salient immunochemistry evidences so far collected on the antiviral behavior of Si$_3$N$_4$ powder vs. SARS-CoV-2 [1]. Details of the procedures adopted are given in the Supplementary Information. Immunofluorescence images of VeroE6/TMPRSS2 cells are shown for (a) non-inoculated cells (mock), (b) cells inoculated with virions unexposed to the Si$_3$N$_4$ powder (sham), and (c) cells inoculated with supernatant virions exposed for 1 min to 5 vol% Si$_3$N$_4$ powder, respectively. In the images, the envelope antibody of the anti-SARS coronavirus is stained red, the viable cell F-actin (Phalloidin-stained) green, and the cell nuclei (DAPI-stained) blue. The red fluorescent signal is thus a marker for the synthesis of viral protein. As expected, the as-cultured cells unexposed to virions (mock sample) showed no red staining (cf. Fig. 1(a)), while the images of the sham cell sample revealed extensive cell infection by the virus (cf. Fig. 1(b)). Remarkably, the cells inoculated with supernatant virions treated with Si$_3$N$_4$ were viable, showed no infected cells, and even appeared to further proliferate (cf. Fig. 1(c)). The plot in Fig. 1(d), which quantifies a series of fluorescence images, and shows ∼35% fraction of cells in the sham sample (negative control) and only 2% of cells inoculated with Si$_3$N$_4$-exposed supernatant virions. Moreover, the fraction of viable cells was up to 10% higher than that in the mock sample although lacked statistical significance. Data by fluorescence imaging were confirmed by testing with TCID$_{50}$ assay (cf. data in inset to Fig. 1(b) and (c)). Compared with the negative control (sham sample), the Si$_3$N$_4$ powder produced >99% effective inactivation of SARS-CoV-2 virions.

The fragmentation of viral RNA upon 1-min contact with the Si$_3$N$_4$ powder was evaluated by means of RT-PCR experiments on the virions N-gene sequence (Fig. 1(e)). Both supernatant virions and virions on pellets were tested. Unlike the case of powder-unexposed control supernatant (sham sample), the viral RNA underwent severe damage after Si$_3$N$_4$ contact, and viral RNA could not be detected on pelleted powder.

For further confirmation, the above characterizations were repeated for virions exposed for 10 min to Si$_3$N$_4$ particles (n = 3). The results, shown in Fig. S1 of the Supplementary Information, validated the trend observed at 1 min exposure as shown in Fig. 1. The combination of fluorescence spectroscopy and RT-PCR results unequivocally proves the occurrence of SARS-CoV-2 inactivation by Si$_3$N$_4$ bioceramic powder. Based on this evidence and our previous work on the antipathogenic
properties of the Si$_3$N$_4$ [1,2,4,12,13,18], we hypothesized that ammonia likely plays a fundamental role in inactivating SARS-CoV-2 and we attempted to prove this hypothesis using Raman spectroscopy.

3.2. Raman spectroscopic results

Fig. 2 shows normalized and deconvoluted Raman spectra as collected in the frequency interval 600–1800 cm$^{-1}$ on SARS-CoV-2 Japanese isolate JPN/TY/WK-521 virions (a) before and (b) after 1 min exposure to Si$_3$N$_4$ powder in aqueous solution. The spectra collected before and after Si$_3$N$_4$ exposure appeared very different to each other, thus proving that the Raman spectrum captured the fundamental differences caused to the virus structure upon contact with Si$_3$N$_4$ particles at the molecular level. Precise analyses of spectral differences are discussed with respect to four selected spectral zones labeled as Zones I ~ IV and located at 600–750 cm$^{-1}$, 750–900 cm$^{-1}$, 900–1200 cm$^{-1}$, and 1600–1750 cm$^{-1}$. Raman spectra in the selected spectral zones were collected with high spectral resolution, normalized, and deconvoluted into sub-band components according to the procedure discussed in Section 2. Frequencies at maximum and proposed vibrational origins are given in the Supplementary Information (Fig. S-2 and Tables S-I(a)~(d)).

Fig. 3(a)–(d) show the spectra collected in Zone I, II, III, and IV. The upper and lower spectra in each section are from virions before and after exposure (cf. labels). Zone I is dominated by vibrational signals related to...
the C–S bond [19–21], and thus belongs to methionine and cysteine rotamers, namely, the only amino acids incorporated into viral proteins that contain sulfur. Zone II was selected because it contains a doublet from tyrosine (often referred to as “Fermi doublet”) at 854 and 826 cm⁻¹. The doublet intensity ratio, referred to as I_{854}/I_{826}, is diagnostic of an H-bonding environment around the tyrosine units; the lower the ratio the more hydrophobic the environment in which the tyrosine residue is embedded [22,23]. Zone III contains a prominent Raman signal from phenylalanine at 1004 cm⁻¹ (symmetric ring breathing) and incorporates ring-related signals assignable to individual RNA purine and pyrimidines. Cytosine (C) and uracil (U) pyrimidine bands from C–N–C in-plane deformation of heterocyclic aromatic ring care entered at 1038 cm⁻¹ and 1054 cm⁻¹, respectively [24–26]; guanine purine shows the same vibrational mode at 959 cm⁻¹, while the C–N stretching mode at 1150 cm⁻¹ is cumulative of the imidazole and pyridine rings of the adenine (A) [27,28]. Finally, Zone IV designates the Amide I frequency region, which is representative of the secondary structure of viral proteins. The deconvoluted Amide I band components are assigned to β-sheet (at 1638–1640), α-helix (at 1657–1661), random coil (rc; 1675–1679), and β-turn rotamers (βC1 and βC2; at 1692–1698 and 1713–1716 cm⁻¹, respectively).

Structural changes in methionine residues are among the most important post-translational modifications of the proteins engendered by the presence of non-radical and free radical species [29,30]. Raman spectroscopy is uniquely poised to capture such structural modifications because of its high sensitivity to C–S bond vibrations, which strongly display in Zone I. Fig. 4(a) shows a draft of the vibrational modes in different methionine rotamers. The C–S stretching modes on the CH₃ side of the molecule give rise to two Raman bands at ~716 and ~698 cm⁻¹, which are attributed to the trans and gauche rotamers, respectively [31]. On the other hand, the C–S signal on the CH₂ side found at ~650 cm⁻¹ belongs to both rotamers. However, the C–S + S–C in-plane stretching mode appears at distinct frequencies in different rotamers (669 and 642 cm⁻¹ for trans and gauche configurations, respectively). In the Raman spectrum of the pristine SARS-CoV-2 virus, the most intense methionine band at ~698 cm⁻¹ suggests that methionine residues are mainly in the gauche rotameric configuration with respect to the $\text{C}^\text{III}–\text{S}$ bond (cf. labels in Fig. 4(a)). Exposure to the Si₃N₄-surface environment stressed the structural changes in methionine residues and induced a change in the population ratio of the two rotameric forms, as shown by the significant decrease in the intensity ratio, I_{650}/I_{698} (from 3.5 to ~1; cf. Fig. 3(a) and the schematic draft in Fig. 4(b)). The complete disappearance of the gauche C–S + S–C in-plane stretching band at 642 cm⁻¹ confirms this trend. However, additional fingerprint features could be found in the methionine spectrum, which were induced by environmental interactions with Si₃N₄. They corresponded to a clear shift toward higher frequencies of the C–S stretching band from 698 to 707 cm⁻¹ and a more than two fold increase in the relative intensity of the C–S + S–C in-phase stretching signal at

Fig. 3. Enlarged Raman spectral zones of the JPN/TY/WK-521 isolate before and after exposure to 5 vol% Si₃N₄ micrometric powder in aqueous suspension: Zone I (600–750 cm⁻¹), Zone II (750–900 cm⁻¹), Zone III (900–1200 cm⁻¹), and Zone IV (1600–1750 cm⁻¹); spectra are deconvoluted into a sequence of Voigtian sub-bands (frequencies for selected bands shown in inset). The abbreviations Met and Cys refer to methionine and cysteine, respectively (with (t) and (g) locate trans and gauche rotamers, respectively); the abbreviations G, C, U, pl, and A refer to guanine, cytosine, uracil, phosphodiester linkages, and adenosine, respectively.
Concurrently, two new bands appeared at 1043 and 1623 cm\(^{-1}\) (cf. arrowed asterisks in Fig. 3(c) and (d), respectively). These two signals can be assigned to S=O stretching and NH\(_3^+\) in-plane bending, respectively; both vibrations appeared as shoulder bands, but were clearly missing in the spectrum of unexposed virions. According to a vibrational spectroscopy study by Torreggiani et al. [32], the appearance of the above S=O and NH\(_3^+\) signals coupled with a reduction in the C=S band at 698 cm\(^{-1}\), which was found replaced by a more intense signal at 707 cm\(^{-1}\), reveals the formation of methionine sulfoxide (cf. Fig. 4(b)). This molecule, depicted in Fig. 4(a), is a post-translational product of methionine, which forms upon oxidation and occurs as a consequence of environmental stress exposure operated by non-radical and free radical species. In support of this interpretation, one could note a significant enhancement of two bands from –COO– terminal bonds, whose symmetric and asymmetric stretching vibrations display at 1414 and 1590 cm\(^{-1}\), respectively (cf. Fig. 2(b)). The intensity ratio of these two signals, \(I_{854}/I_{826}\), has been indicated as a sensor of hydrophobic/hydrophilic balance in environmental interactions involving the tyrosine phenol ring [23]. Ammonia is known to induce protein tyrosine nitration in biological systems [33], and to be the cause of several pathologies [34]. The process of tyrosine nitration (depicted in Fig. 5(a)), which leads to 3-nitrotyrosine formation, has been studied using Raman spectroscopy [35]. The intensity ratio of the phenol ring tyrosine doublet, \(I_{854}/I_{826}\), is a useful nitration indicator. Additional markers of nitration are signals from the nitro group, –NO\(_2\) (cf. Fig. 5(a)): stretching (i.e., symmetric and asymmetric at ~1330 cm\(^{-1}\) and ~1550 cm\(^{-1}\), respectively) and in-plane bending vibrations (i.e., at ~821 cm\(^{-1}\)) [36,37]. Upon nitration, the relative intensity of the tyrosine doublet undergoes a trend inversion (cf. Fig. 5(b)) due to the contribution of –NO\(_2\) bending at ~821 cm\(^{-1}\) [25]. The spectroscopic signals of Fig. 3(b) in the frequency interval of the tyrosine doublet before and after exposure to Si\(_3\)N\(_4\) powder (labels in inset give band frequencies and types of rotamer).
expected to induce severe alterations of protein secondary structure [40].

Fig. 5. (a) Structure of tyrosine and 3-nitrotyrosine (cf. labels): shown together with in-plane ring breathing and out-of-plane C-H bending vibrational modes; frequencies of the phenol ring in the former and symmetric and in-plane bending modes/frequencies in the nitro group, –NO2, of the latter; (b) Voigtian components representing signals of the tyrosine doublet components as detected before and after exposure of the virions to Si3N4 powder (Raman ratios I_{854}/I_{826} and I_{854}/I_{811-821} given in inset).

Indeed observed a trend inversion for the tyrosine doublet upon exposure to Si3N4, with the intensity ratio, I_{854}/I_{826}, changing from 1.9 to 0.12. This bold variation is partly due to overlap with the –NO2 signal (the low-frequency band of the doublet appears split into two sub-bands), but predominantly arises from a perturbation of benzene ring symmetry (causing intensity increase and shift of the low-frequency band toward lower wavenumbers). Confirmation of the tyrosine nitration process was also obtained by the enhancement of the relative intensity of lower wavenumbers. Concomitant, indeed observed a trend inversion for the tyrosine doublet upon exposure to Si3N4, with the intensity ratio, I_{854}/I_{826}, changing from 1.9 to 0.12.

The Amide I Zone IV at 1600–1750 cm\(^{-1}\) (Fig. 3(d)) gives information about the secondary structure of proteins. A comparison between pristine and Si3N4-exposed virions reveals marked variations, with a relative increase in \(\beta\)-sheet fraction mainly at the expenses of random coil, and a reshuffling in the balance of \(\beta\)-turn rotamers. The usefulness of Raman spectroscopy in assessing post-translational modifications in proteins is widely exploited in therapeutic production, a field in which subtle changes are associated with key structural rearrangements hardly detected by conventional methods of protein analysis [49]. Post-translational modifications of Coronavirus proteins, including spike, envelope, membrane, and nucleocapsid proteins have recently been reviewed by Fung and Liu [50], with emphasis on their impact on viral replication and pathogenesis. Although the present Raman spectroscopic assessments do not provide enough information to link changes in protein secondary structure to specific proteins responsible for the observed changes are associated with key structural rearrangements hardly detected by conventional methods of protein analysis [49].
loss of viral infectivity, the rotameric variations observed in S-containing amino acids are the key to interpreting protein structural changes and amply justify viral inactivation; since disulfide bond formation is fundamental for a correct folding, trafficking, and trimerization of the spike protein. The observed rotameric modifications in Zone I can be connected to the unfolding of the α-helical structure after coming in contact with Si3N4, because methionine has an especially high helix-forming propensity [51]. On the other hand, a recent computational simulation study of the impact of methionine oxidation on the dynamics and energetics of proteins’ α-fold conformation has shown that the sulfoxidation of helical methionines is a strong trigger for the destabilization of the native α-fold configuration and leads to protein conformational switch in the β-sheet structure [52]. This change gives a more flexible secondary structure, but it also favors alternative states which maybe essential in the observed viral inactivation pathway.

4. Discussion

4.1. Post-translational modifications uncovered by Raman spectroscopy

Taken together, these results provide a set of unequivocal spectroscopic markers of the main structural changes occurring to SARS-CoV-2 virions as a consequence of their exposure to Si3N4-eluted ammonia and related radicals. Despite the impressive experimental methods presently available in virology, there are currently no techniques that can provide molecular-scale insights into rotameric modifications at specific residues. However, Raman spectroscopy, with its unique capacity to unfold differences in molecular symmetry, has revealed rotameric transactions and the formation of sulfoxidated helical methionines destabilizing the structure of the spike receptor binding domain (RBD) recombinant proteins. Methionine residues are highly susceptible to oxidation and form methionine sulfoxide [53]. Oxidation modifications of methionine residues within proteins is mediated by a variety of oxygen and nitrogen radicals, including peroxynitrite, O2·−NOO− [54]. Oxidation of free and peptide-bound methionine to sulfoxide results in significant conformational and functional changes in proteins. Dado and Weissbach [55] have shown that methionine oxidation serves as a conformational switch toward increasing the fraction of β-sheet structure, which is indeed what we observed in this study. The rationale for the formation of peroxynitrite at the virion/Si3N4 interface is given in the next section in discussing the formation of Fapy structures.

An additional finding in the RBD was the nitration of tyrosine residues, which are dominant component of the SARS-CoV-2 spike structure [56]. An important feature of the interface between the spike RBD protein and angiotensin-converting enzyme (ACE 2) receptor (i.e., the entry point for the virus to hook into human cells) is its dense network of hydrophilic interactions. With thirteen hydrogen bonds and two salt bridges at the SARS-CoV-2 RBD/ACE2 interface [56], the involvement of multiple tyrosine residues in forming hydrogen-bonding interactions with the polar hydroxyl groups is key in determining the level of infectivity. The present Raman assessments revealed the formation of nitrotyrosine and, consequently, a dramatic impairment of hydrophobic/hydrophilic interactions.
balance in phenol ring environmental interactions.

Methionine sulfoxidation and tyrosine nitration represent oxidative post-translational modifications of the viral spike protein that block the SARS-CoV-2 virions from entering cells. Post-translational modifications of the spike protein create this block as the virions insert the wrong key inside the cell lock. These findings exemplify well the antiviral pathway and justify the loss of infectivity of the viral strain upon contact with Si3N4. As an additional finding of this study, we suggest that Raman assessments of rotameric methionine fractions, and the degree of nitration in tyrosine residues could represent promising spectroscopic protocols for assessing the effectiveness of antiviral therapies.

4.2. Formamidopyrimidine formation and the origin of free radicals

As mentioned in Section 3.2, breakage of the imidazole ring in RNA purines to form Fapy structures necessarily requires the presence of oxygen/nitrogen radicals, and the peroxynitrite anion is believed to be the main agent of purine oxidation because of its strong oxidation capacity. The formation of O=='NO' at the Si3N4/pathogen biological interface has been proved in a previous investigation using stimulated emission depletion microscopy of fungal pathogens and explained according to a cascade of off-stoichiometric reactions starting from the formation of ammonia. Briefly, the homolytic cleavage of Si–N bonds occurring upon hydrolysis at the Si3N4 surface concurrently liberates nitrogen anions and unpaired electrons [57]; free electrons split the surrounding water molecules to form oxygen radicals, which in turn catalyze NH3 oxidation into hydroxylamine and initiate a cascade of off-stoichiometric reactions leading to the formation of reactive nitrogen species (i.e., including NO, NO2, and O=='NO') [58,59]. Note that the present study supports the above interpretation by documenting the presence of nitrotyrosine residues as a proof for the existence of peroxynitrite at the virions’ biological interface. This follows the same argument used by Beckman et al. [60] proving the formation of peroxynitrite in arterial plaques, since tyrosine is nitrated by peroxynitrite, but not directly by nitric oxide [61]. A successive study showed that O=='NOO' does not directly react with tyrosine [62], but promotes tyrosine nitration through reactions with the peroxynitrite-derived hydroxyl radicals and nitrogen dioxide.

For a similarly definitive degree of viral inactivation, a comparison of the effects of Si3N4 hydrolytic reactions on SARS-CoV-2 and Influenza A virions [2] revealed similarities, but also interesting differences in the mechanisms of viral inactivation. Radical driven post-translational alterations of methionine C–S bonds upon contact with Si3N4 were a common feature in both viral strains. However, rather than methionine sulfoxidation as in the case of SARS-CoV-2, C–S bond alterations in Influenza A virions pointed to the formation of thioether groups in methionine residues. Deprived of the C–S bond on the CH3 side, methionine transformed into homocysteine. Regarding the effect of reactive nitrogen species on RNA bases, ring opening was also observed for Influenza A, but only in the guanine base (to form FapyGua), not in the adenine base. On the other hand, the amide-imidic acid tautomeric shift of uracil pyrimidine similarly appeared in the spectra of both SARS-CoV-2 and Influenza A virions. The observed differences are in line with the notion that different viruses can exhibit different inactivation pathways and kinetics when treated with the same biocide [63]. Structural and genomic differences have a significant impact on type and extent of structural damage that a virus can sustain before losing its infectivity. The resistance to biocidal inactivation of a specific virus remains related to its ability to cope with and adapt to the applied stressor. However, taken together, the present results suggest that the Si3N4 inactivation pathways have a broad effectiveness, and preserve chemical similarities among quite dissimilar ssRNA viral strains.

4.3. Comparison of Si3N4 inactivation kinetics vs. other viral strains

Aqueous ammonia, NH3(aq), is the neutral dissolved form of the total ammonia (NH4+/NH3) released by the Si3N4 surface upon hydrolysis. NH3(aq) possesses biocidal activity against most pathogenic microorganisms through a number of different mechanisms [64–66]. It was also recognized as the main agent responsible for virus die-off in sludge [67]. In a previous comparative study of Influenza A–H1N1, A–H2N3, and B/98 strains [17], the structural characteristics of methionine components (including the matrix protein M1, which plays a key role in nuclear import and viral replication) were found to greatly differ for different viral strains. Similar to the present case of SARS-CoV-2 virions, Si3N4 was found to be effective as a solid-state virus inactivator by various concurrent mechanisms including thioether cleavage of methionine residues, RNA phosphodiester bond cleavage, and nucleotide damage [2]. However, clear differences in inactivation kinetics could be detected among different ssRNA viruses. Although the effect of differences in the genomic structure between different viruses might have a role (i.e., longer genome lengths involve a higher probability of RNA cleavage), variations in inactivation kinetics are believed to mainly depend on the different levels of electrical attraction of virions toward the Si3N4 particles; namely, the probability that a virion enters in contact with a Si3N4 particle for a given volume fraction of particles in aqueous solution. This hypothesis is supported by studies of the isoelectric point (IEP) of different viruses [68,69]. For example, the reported IEP of Feline Calicivirus (FCV) is ~3.9, [70] which is very close to that of Si3N4 (~4.4) [71]. An electrical charge very close to that of the Si3N4 surface over a wide range of pH makes the FCV experiment a low probability of encountering a Si3N4 particle in suspension due to weak electrical attraction. This ultimately results in a slower inactivation kinetics of FCV in an homeostatic aqueous dispersion of Si3N4 particles [2]. On the other hand, Influenza A (H1N1) and Enterovirus (EV-71) viruses possess IEPs significantly greater than that of Si3N4 (i.e., 7.47 and 10.9, respectively) [72,73]. Accordingly, they undergo a faster inactivation kinetics [2], because of the high electrical attraction enhancing the probability of virions entering in contact with a Si3N4 particle in aqueous suspension. The IEP values of SARS-CoV-2 viruses have been measured as ~10.1 in nucleoproteins, ~9.5 in membrane proteins, and ~6.2 in the spike glycoproteins [74]. In all cases, IEP values are far from that of Si3N4. Accordingly, the attraction toward Si3N4 particles in aqueous environments at homeostatic pH could be strong, which fully justifies the quite fast inactivation kinetics reported in Fig. 1. Once in contact with the surface of Si3N4 particles, the virions become almost instantaneously “poisoned” by the eluted NH3(aq) molecules. Such a two-steps antiviral mechanism has been branded as the “catch-and-kill” effect [1].

4.4. The importance of a safe solid-state “non-nano” antiviral agent

As the COVID-19 pandemic continues to pose significant risks worldwide, antiviral materials with “smart” surface chemistry, capable of multiple and broad mechanisms of viral inactivation, are being actively searched for. Environmental disinfection, sterilization of surfaces, and the sanitization of protective equipment have traditionally been pursued by means of chemical disinfectants, such as chlorines, quaternary amines, alcohols, and peroxides [75]. However, chemical disinfectants generally exhibit low durability and require high concentrations in order to reach a full viral inactivation. Additionally, while being often an inevitable choice, they represent a severe risk factor for public health and environmental pollution [76]. In an attempt to foster long-term persistence and to reach high effectiveness at low doses, nano-sized solid-state particles, both metallic and non-metallic, have been proposed, which include Ag, Cu, TiO2, and graphene [77,78]. Nanoparticles possess an inherently broad antiviral effectiveness, which originates from the generation of reactive oxygen species at their surface. However, the majority (if not the totality) of nanomaterials also present adverse effects on both human health and the environment [79]. In vitro, in vivo, and genomic studies have clearly shown how nanoparticles, due to their small size, can easily enter and remain trapped in the human body upon inhalation or even through the skin; their toxicity arises from strong chemical
interactions with proteins and enzymatic molecules that alter gene expression and biological functions at the cellular and subcellular levels [80].

Based on previous and present data of viral inactivation by micro-meter-sized Si3N4 powder, we challenge here the commonplace idea that a solid-state antiviral agent should be “nano” to be broad, effective, and efficient. Moreover, we propose the use of a “smart” antiviral chemistry employing a volume fraction of powder as low as 5 vol% and based on nitrogen rather than oxygen radicals. This new approach becomes highly efficient in terms of virus inactivation kinetics upon exploiting the above-mentioned “catch-and-kill” effect. Note that nanotechnology-based approaches are generally proclaimed as the most promising antipathogenic formulations since benefiting from high surface-to-volume ratio and enhanced surface reactivity [81,82]. Accordingly, even the most recent reviews in the field of functional materials continue to list silver, TiO2, and copper-derived nano-sized chemicals, which are toxic to human cells, as the only possible alternatives to counteract the COVID-19 pandemic [83]. These are indeed options that feature an old chemistry, whereas the present Si3N4 approach belongs to the category that does not need to exploit a nano-scale dimension to be highly effective. The physiological gap in nitrogen radical metabolism existing between eukaryotic cells and pathogens (especially viruses) indeed renders Si3N4 supportive of the former and fatal to the latter (cf. Fig. 1) [4]. As a solid-state compound, Si3N4 matches the Ehrlich’s concept of “magic bullet”, namely, a chemical compound with selective toxicity: toxic for the infecting microbe but safe for the human host [85].

Si3N4 has been used for more than 15 years in the human body in contact with bone and soft tissue without any adverse effect being so far reported [86]. Moreover, several in vitro studies have shown the compatibility of Si3N4 with different cell lines, including mature osteoblasts [87], mesenchymal cells [4,88,89], and primary odontoblasts [90]. As a fine micrometric powder, Si3N4 can remain suspended in the air for some period, but its effect on human health is comparable to inert dust [91]. Si3N4 presents enormous potential as a disinfectant against SARS-CoV-2 and other ssRNA viruses, due to the intrinsic anti-viral property exerted by reactive nitrogen species in aqueous (or moist) environments. Lacking the adverse effects of nanomaterials on human health and the environment, micron-sized Si3N4 bioceramic powder is a primary candidate to replace toxic and allergenic compounds in long-term environmental sanitation.

In a recent review [92], an highlight was given of the contribution of materials science to the development of personal protective equipment to counteract the COVID-19 pandemic. Methods were also reviewed for the design of simple, accurate, and low-cost virus-detection devices. This study matches both these two fundamental items by proposing a potent and safe antiviral bioceramic and by showing the power of Raman spectroscopy in detecting the related mechanisms of viral inactivation.

4.5. Comparison with other nitrides and possible future developments

The mechanism of hydrolysis and nitrogen elution at the biological interface between virions and Si3N4 particles is, in principle, also exploit-able by other inorganic nitride compounds, although with different kin-etics. For example, aluminum nitride (AlN), which shares with Si3N4 the chemical similarity of N atoms with strong electronegativity, is also known to undergo hydrolysis and to liberate nitrogen species in aqueous (or moist) environments. Lacking the adverse effects of nanomaterials on human health and the environment, micron-sized Si3N4 bioceramic powder is a primary candidate to replace toxic and allergenic compounds in long-term environmental sanitation.

In a recent review [92], an highlight was given of the contribution of materials science to the development of personal protective equipment to counteract the COVID-19 pandemic. Methods were also reviewed for the design of simple, accurate, and low-cost virus-detection devices. This study matches both these two fundamental items by proposing a potent and safe antiviral bioceramic and by showing the power of Raman spectroscopy in detecting the related mechanisms of viral inactivation.

Following the discovery of the strong antiviral effect of Si3N4 micrometer powdered [1,2], this study delved into the molecular chemistry mechanisms of this unambiguous phenomenon. High spectral resolution Raman spectroscopy enabled us to form a picture of the viral inactivation pathways. We discovered two distinct types of structural degenerative effects on SARS-CoV-2 virions: (i) oxidative post-translational modific-a-tions of the viral spike protein blocking the SARS-CoV-2 virions from entering cells; and, (ii) breakage of the imidazole ring to form for-mamidopyrimidine structures, causing a severe damage to the ssRNA genomic structure. Both types of degradation originated from the formation of reactive nitrogen species at the virion/Si3N4 interface, and held similarities with the structural damages previously observed in other ssRNA viral strains.

From a more general viewpoint, the originality of this work resided in debunking the widely spread idea that an inorganic powder to be effective against pathogens must exploit nanometer dimensions. We instead put forward here the new concept of Si3N4 as a long-term “solid-state anti-biotic” matching the Ehrlich’s selective toxicity concept of “magic bullet”: toxic for the infecting virus but safe for human host cells. An additionally original achievement here is the demonstration that high-resolution Raman spectroscopy aided by a machine-learning algorithm specially crafted for the Raman spectrum is capable to provide invaluable insight into molecular-scale mechanisms behind viral inactivation.

In summary, the use of micron-sized Si3N4 particles could easily and safely be implemented in disinfectant sprays and coatings. Direct embed-ment in personal protective equipment fabrics, including facemasks, sur-gical drapes, and other garments, could help limit viral transmission in hospitals and nursing homes. As neither anion- nor cation-side surface chemistry of Si3N4 will affect human health and the environment, even in the long term, this unique bioceramic could become an invaluable tool in fighting SARS-CoV-2 and future pandemics.
Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.mbio.2021.100144.

References

[1] G. Pezzotti, E. Ohgiti, M. Sin-Ya, T. Adachi, E. Marin, F. Boschetti, W. Zhu, O. Mazda, Instantaneous “catch-and-kill” inactivation of SARS-CoV-2 by niteric ceramics, Clin. Transl. Med. 10 (2020) e212.

[2] G. Pezzotti, F. Boschetti, E. Ohgiti, Y. Fujita, W. Zhu, E. Marin, B.J. McIntire, B.S. Bal, O. Mazda, Silicon nitrile: a potent solid-state bioceramic inactivator of ssRNA viruses, Sci. Rep. 11 (2021) 2977.

[3] R.L. Ward, Mechanism of poliovirus inactivation by ammonia, J. Virol. 26 (1978) 299–305.

[4] G. Pezzotti, Silicon nitrile: a bioceramic with a gift, ACS Appl. Mater. Interfaces 11 (2019) 26619–26636.

[5] R.L. Ward, C.S. Ashley, Identification of the virucidal agent in wastewater sludge, Appl. Environ. Microbiol. 33 (1977) 860–864.

[6] L. Dercy, S. Kazama, T. Kohn, Ammonia as an in situ sanitizer: influence of virus genome type on inactivation, Appl. Environ. Microbiol. 82 (2016) 4909–4920.

[7] B.D. Katz, A.B. Margolin, Inactivation of hepatitis A HM-175/18F, reovirus T1 Lang and MS2 during alkaline stabilization of human bio-solids, J. Appl. Microbiol. 103 (2007) 2225–2233.

[8] G. Pezzotti, A spontaneous solid-state NO donor to fight antibiotic resistant bacteria, Mater. Today Chem. 9 (2018) 80–90.

[9] A. Neumann, T. Reske, M. Held, K. Jahnke, C. Ragoss, H.R. Maier, Comparative study of the grapevine downy mildew pathogen C27 (2007) 148–90.

[10] N. Nonoyama, H. Oshima, C. Shoda, H. Suzuki, The reaction of peroxynitrite with thymine, J. Raman Spectrosc. 36 (2005) 305–527.

[11] R. Tuma, Raman spectroscopy of proteins: from peptides to large assemblies, J. Raman Spectrosc. 36 (2005) 307–419.

[12] A. Neumann, T. Reske, M. Held, K. Jahnke, C. Ragoss, H.R. Maier, Comparative study of the grapevine downy mildew pathogen C27 (2007) 148–90.

[13] A. Neumann, T. Reske, M. Held, K. Jahnke, C. Ragoss, H.R. Maier, Comparative study of the grapevine downy mildew pathogen C27 (2007) 148–90.

[14] A. Neumann, T. Reske, M. Held, K. Jahnke, C. Ragoss, H.R. Maier, Comparative study of the grapevine downy mildew pathogen C27 (2007) 148–90.

[15] A. Neumann, T. Reske, M. Held, K. Jahnke, C. Ragoss, H.R. Maier, Comparative study of the grapevine downy mildew pathogen C27 (2007) 148–90.

[16] A. Neumann, T. Reske, M. Held, K. Jahnke, C. Ragoss, H.R. Maier, Comparative study of the grapevine downy mildew pathogen C27 (2007) 148–90.

[17] G. Pezzotti, Raman spectroscopy in cell biology and microbiology, J. Raman Spectrosc. (2021), https://doi.org/10.1002/jrs.6204.
[50] T.S. Fung, D.X. Liu, Post-translational modifications of coronavirus proteins: roles and function, Future Virol 13 (2018) 405–430.

[51] C.N. Pace, J.M. Scholtz, A helix propensity scale based on experimental studies of peptides and proteins, Biophys. J. 75 (1998) 422–427.

[52] G. Colombo, M. Meli, G. Morra, R. Gabizon, M. Gasset, Methionine sulfoxides on prion protein helix-3 switch on the α-foil destabilization required for conversion, Protein Sci 6 (2000) 10119–10126.

[53] V. Vogt, Oxidation of methionyl residues in proteins: tools, targets, and reversal, Free Radic. Biol. Med. 18 (1995) 93–105.

[54] D. Perrin, W.H. Koppenol, The quantitative oxidation of methionine to methionine sulfoxide by peroxynitrite, Arch. Biochem. Biophys. 377 (2000) 266–272.

[55] G.P. Dado, H. Weissbach, Redox control of secondary structure in a designed peptide, J. Am. Chem. Soc. 115 (1993) 12609–12616.

[56] J. Yan, G. J. L. X. Shi, Z. Wang, L. Zhang, X. Wang, Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor, Nature 581 (2020) 215–220.

[57] D.J. Arp, L.Y. Stein, Metabolism of inorganic N compounds by ammonia-oxidizing bacteria, Critical Rev. Biochem. Mol. Biol. 38 (2003) 471–495.

[58] G.L. squidrito, W.A. Pryor, The formation of peroxynitrite in vivo from nitric oxide and superoxide, Chemico-Biol. Interactions 96 (1995) 203–206.

[59] F.C. Fang, Perspectives series: host/pathogen interactions. Mechanisms of nitric oxide-related antimicrobial activity, J. Clin. Invest. 99 (1997) 2818–2825.

[60] J.S. Beckman, Y.Z. Ye, P. Anderson, J. Chen, N. Ciof, Can nanotechnology and materials science help the fight against SARS-CoV-2? Nanomaterials 10 (2020) 802.

[61] H.T. Ball, B.J. McIntyre, B.S. Bal, Accelerated cervical fusion of silicon nitride versus PEEK spacers: a comparative clinical study, J. Spine 6 (2017) 396.

[62] G. Pezzotti, E. Marin, T. Adachi, A. Rondinella, F. Boschetti, W. Zhu, N. Sugano, R.M. Bock, B. McIntyre, S.B. Bal, Bioactive silicon nitride: a new therapeutic material for osteoarthropathy, Sci. Rep. 7 (2017) 44848.

[63] G. Pezzotti, T. Adachi, F. Boschetti, W. Zhi, M. Nanno, E. Marin, B.S. Bal, B.J. McIntyre, Off-stoichiometric reactions at the cell-substrate biomaterials interface and in situ and ex situ monitoring of cell proliferation, differentiation, and bone tissue formation, Int. J. Mol. Sci. 20 (2019) 4080.

[64] G. Pezzotti, R.M. Bock, T. Adachi, A. Rondinella, F. Boschetti, W. Zhi, E. Marin, B. McIntyre, B.S. Bal, O. Mazda, Silicon nitride surface chemistry: a potent regulator of mesenchymal progenitor cell activity in bone formation, Appl. Mater. Today 9 (2019) 82–95.

[65] Y. Geng, Y. Honda, T. Adachi, E. Marin, K. Yoshihara, G. Pezzotti, K. Yamamoto, Optimization of Silicon Nitride Surface Chemistry for Facilitating Osteogenic Differentiation of Rat Dental Pulp Cells, (manuscript in preparation).

[66] S. Lal, E.A. Casey, R.M. Hall, J.L. Tipper, Biological impact of silicon nitride for orthopaedic applications: role of particle size, surface composition and donor variation, Sci. Rep. 8 (2018) 9109.

[67] Z. Tang, N. Kongo, X. Zhang, Y. Liu, P. Hu, S. Mou, P. Jilejstroem, J. Shi, W. Tan, J.S. Kim, Y. Cao, R. Langer, K.W. Leong, O.C. Farokhzad, W. Tsoo, A materials science perspective on tackling COVID-19, Nat. Rev. Mater. 5 (2020) 847–860.

[68] S. Fukumoto, T. Hokkabe, H. Tsubakino, Hydrolisis behavior of aluminum nitride in various solutions, J. Mater. Sci. 35 (1999) 860–864.

[69] B. Mochen, T. Grade, Isoelectric points of viruses, J. Appl. Microbiol. 109 (2010) 388–397.

[70] E. Joonoii, A. Hananpouryoubzand, C.L. Heldt, O. Hefter, O. Arco, Surface chemistry can unlock drivers of stability of SARS-CoV-2 in a variety of environmental conditions, Chem 6 (2020) 2135–2146.

[71] I. Samandoulgou, I. Fliss, J. Jean, Zeta potential and aggregation of virus-like particle of human Norovirus and feline calicivirus under different physicochemical conditions, Food Environ. Virol. 7 (2015) 2399–2402.

[72] G. Pezzotti, T. Adachi, F. Boschetti, W. Zhi, M. Nanno, E. Marin, B.S. Bal, B.J. McIntyre, Off-stoichiometric reactions at the cell-substrate biomaterials interface and in situ and ex situ monitoring of cell proliferation, differentiation, and bone tissue formation, Int. J. Mol. Sci. 20 (2019) 4080.

[73] S. Fukumoto, T. Hokkabe, H. Tsubakino, Hydrolisis behavior of aluminum nitride in various solutions, J. Mater. Sci. 35 (2000) 2749–2754.

[74] P. Bowen, J.G. Highfield, A. Mecellin, T.A. Ring, Degradation of aluminum nitride powder in an aqueous environment, J. Am. Ceram. Soc. 73 (1990) 724–728.

[75] J.G. Highfield, P. Bowen, Diffuse-reflection Fourier-transform infrared spectroscopic studies of the stability of aluminum nitride powder in an aqueous environment, Anal. Chem. 65 (1993) 1606–1611.

[76] G.B. Alexander, W.M. Henton, R.K. Her, The solubility of amorphous silica in water, J. Phys. Chem. 58 (1954) 453–455.

[77] S. Goel, S. Havii, G. Goel, V.K. Thakur, A. Agrawal, C. Hosskins, O. Pearce, T. Hussain, H.M. Upadhyaya, G. Cross, A.H. Barber, Resilient and agile engineering solutions to address societal challenges such as coronavirus pandemic, Mater. Today Chem. 17 (2020) 100300.

[78] T. Sano, S. Totsuki, K. Koshe, T. Hirakawa, Y. Teramoto, N. Negishi, K. Takeuchi, Activation of graphene carbon nitride (g-C3N4) by alkaline hydrothermal treatment for photocatalytic NO oxidation in gas phase, J. Mater. Chem. A 1 (2013) 6489–6496.

[79] H. Zhang, X. Meng, S. Liu, Z. Liu, L. Huang, H. Lou, Y. Xie, F. Du, Wu, Construction of functional nanonetwork-structured carbon nitride with Au nanoparticle yolks for highly efficient photocatalytic applications, Chem. Commun. 52 (2016) 7159–7162.

[80] D. Gao, X. Guo, X. Zhang, S. Chen, Y. Wang, T. Chen, G. Huang, Y. Gao, Z. Tian, Z. Yang, Multifunctional nanoparticles for cancer imaging and treatment, Mater. Today Bio 5 (2020) 100035.

[81] X. Zhang, Y. Wei, N. Zhang, J. Zheng, X. Chen, Q. Wen, X. Liu, C.-Y. Lee, X. Liu, X. Zhang, J. Chen, C. Tao, X. Zhang, X. Fan, A non-printed integrated-circuit textile for wireless theranostics, Nat. Commun. 12 (2021) 4876.

[82] Z. Tang, X. Zhang, Y. Shu, M. Guo, H. Zhang, W. Tsoo, Insights from nanotechnology in COVID-19 treatment, Nano Today 36 (2021) 101019.