Research Article
Symmetry Classification and Solutions for the Third-Order of Kudryashov–Sinelshchikov Equation

Jina Li, Hong Li, and Tianhao Li

College of Science, Zhongyuan University of Technology, Zhengzhou 450007, China

Correspondence should be addressed to Jina Li; lijina@zut.edu.cn

Received 31 December 2021; Revised 30 May 2022; Accepted 22 June 2022; Published 31 July 2022

Academic Editor: Fausto Arpino

Copyright © 2022 Jina Li et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

This paper studies nonlinear wave propagation in a bubble-liquid mixture based on the third-order Kudryashov–Sinelshchikov (KS) equation. Symmetry is classified and reduced through the symmetry group method. Through the generalized conditional symmetry method, this equation is classified, and the generalized conditional symmetry considered are second, third, fourth, and fifth-order, respectively. Meanwhile, the classified equations are transformed into a system of ordinary differential equations and solved.

1. Introduction

The nonlinear evolution equation (NLEE) is essential to describe wave propagation in a bubble-liquid mixture, a typical nonlinear medium. The NLEE includes the Korteweg–de Vries (KdV) [1], the Burgers–Korteweg–de Vries equations. It is of significance to investigate the wave propagation in a bubble-liquid mixture.

Obtaining the solutions of the NLEE is vital due to the physical information and insights into the problems that the NLEE can provide [2–9]. In order to solve the NLEE, several methods were proposed, including Inverse Scattering transformation [10], symmetry approach [11–13], and Darboux transformation (DT) [14]. Among them, the symmetry group algorithm has been the most widely used in obtaining the exact solutions of the NLEE. The nonlinear partial differential equation was introduced in [1], which is a vanish dissipation defined as follows:

\[u_t + auu_x + u_{xxx} - (uu_{xx})_x - \beta u_x u_{xx} = 0, \]

where \(u \) represents a density that models viscosity and heat transfer. \(\alpha \) and \(\beta \) are parameters. Equation (1) is a generalized equation of the KdV and BKdV equations, and was called the Kudryashov–Sinelshchikov (KS) equation. This equation was studied for various methods [15–29]. In [19], the characteristics of a bubble-liquid mixture, such as peaked solitons, were studied. Also, the KS symmetry, optimal system, and solutions of the following KS equation were discussed,

\[u_t + auu_x + bu_{xxx} + c(uu_{xx})_x + du_x u_{xx} = 0. \]

This paper aims to study the following type of KS equation,

\[u_t = F(u)u_x + u_{xxx} + [G(u)u_{xx}]_x + u_x u_{xx}, \]

where \(F(u) \) and \(G(u) \) indicate arbitrary functions. By taking some appropriate forms for \(F(u) \) and \(G(u) \), equation (3) is simplified to the KdV equation [24].

\[u_t + 6uu_x + u_{xxx} = 0, \]

it was widely used to model various mechanical engineering and physical phenomena.

The rest of this paper is structured as follows. Section 2 presents the symmetry classification for the system (1), admitting the presence of GCS. Section 3 conducts the GCS method to reduce the symmetry and find exact solutions to the classified equations. Lastly, Section 4 is the conclusion.

2. Symmetry Classification

The symmetry group methods, especially the Lie point symmetry method, are effectively used to obtain the exact solution of partial differential equations. However, there are many problems that allow us to use symmetry groups. Based on the Lie point symmetry, many other methods were proposed to obtain the exact solutions, such as the
Theorem 1. Equation (3) admits the second-order GCSs in the form
\[
Q = \eta \frac{\partial}{\partial u} \equiv \left[u_2 - \sum_{i=0}^{1} a_i u_i \right] \frac{\partial}{\partial u} \quad \text{and}
\]
\[
\eta = u_{xx} - a_0 u,
\]
if and only if the equation is equivalent to one of the followings:

(i) \[
u_t = \left(G_0 u a_0 - a_0 G(u) - a_0 u + f_1 \right) u_x + u_{xxxx} + \left[(G_0^2 u^2 + G_0 u + G_0) u_{xxx} \right]_x + u_x u_{xxx}
\]

(ii) \[
u_t = \left(u f_1 + f_2 \right) u_x + u_{xxxx} + \left[(G_0^2 u^2 + G_0 u + G_0) u_{xxx} \right]_x + u_x u_{xxx}
\]

(iii) \[
u_t = \left(u f_1 + f_2 \right) u_x + u_{xxxx} + \left[\frac{1}{2} \left(2G_0 a_0^2 - a_0^2 - u f_1 \right) \right]_x + u_x u_{xxx}
\]

(iv) \[
u_t = \left(-3G_0 u^2 a_0 - G_0 u a_0 - a_0 u + f_2 \right) u_x + u_{xxxx} + \left[(G_0^2 u^2 + G_0 u + G_0) u_{xxx} \right]_x + u_x u_{xxx}
\]

(v) \[
u_t = \left(\frac{4}{27} \left(2G_0 a_0^2 + f_2 \right) \right) u_x + u_{xxxx} + \left[\left(G_0 - \frac{2}{3} \right) u_{xxx} \right] + u_x u_{xxx}
\]

Proof: According to the definition of the GCS method and the computation procedure, we obtain the following equation:
\[
F_1 u_x^4 + F_2 u_x^3 + F_3 u_x^2 + F_4 u + F_0 = 0,
\]
where
\[
F_1 = a_1 G_{uuu},
F_2 = a_0 u G_{uuu} + 5a_0^2 G_{uu} + 3a_0 G_{uu} + F_{uu},
F_3 = 8a_0 a_1 u G_{uu} + 4a_1^2 G_{u} + 7a_0 a_1 G_{u}
+ 2a_1^2 + 2a_1 F_u + 3a_0 a_1,
F_4 = 3a_0^2 u G_{uu},
F_0 = 3a_0^3 a_1 G_{u} + 3a_0^2 a_1.
\]

We solve the system of differential equations \(F_0 = 0, F_1 = 0, F_2 = 0, F_3 = 0, \) and \(F_4 = 0. \) When \(F_4 = 0, \) we obtain two cases, \(a_1 = 0 \) or \(G_{uuu} = 0. \)

Case 1. When \(a_1 = 0, \) we can show \(F(u) = G_0 u a_0 - a_0 G(u) - au + f_1. \)

Case 2. When \(G_{uu} = 0, \) we can obtain \(G(u) = G_1 u^2 + G_3 u + G_0, \) \(F(u) = -5G_1 u^2 a_0^2 - 3G_1 u^2 a_0 + u f_1 + f_2. \) By substituting \(F(u), G(u) \) into \(F_i (i = 0, 1, 2, 3, 4), \) so the classification results are shown above.

Theorem 2. The equation admits the third-order GCSs in the form
\[
Q = \eta \frac{\partial}{\partial u} \equiv \left[u_3 - \sum_{i=0}^{2} a_i u_i \right] \frac{\partial}{\partial u}
\]
\[
u_0 = u.
\]

if and only if the equation is equivalent to one of the followings:

(i) \[
u_t = f_2 u_x + u_{xxx} + \left[(G_1 u + G_2) u_{xxx} \right] + u_x u_{xxx}
\]

(ii) \[
u_t = \left[f_2 - (a_1 + 2a_0 G_1) u \right] u_x + u_{xxx}
\]
\[
\left[(G_1 u + G_3) u_{xxx} \right] + u_x u_{xxx}
\]

(iii) \[
u_t = \left(f_2 + a_0^2 u \right) u_x + u_{xxx} + \left[(G_2 - u) u_{xxx} \right] + u_x u_{xxx}
\]
\[
\left(a_1 u_x + 2a_0 G_1 \right) u_x
\]

Proof: ...
(iv)
\[u_t = \left(f_2 + \frac{4}{27} a_2 u \right) u_x + u_{xxx} \]
\[+ \left[\left(G_2 - \frac{2}{3} u \right) u_{xx} \right] + u_x u_{xx} \text{ and} \]
\[\eta = u_{xxx} - a_2 u_{xx} + \frac{2}{9} a_2^2 u_x. \]

\[\frac{d\phi_1}{dt} = f_1 \phi_1^2 \text{ and} \]
\[\frac{d\phi_2}{dt} = \phi_1 (f_1 \phi_2 + f_2), \]
and the solutions are
\[\phi_1 = \frac{1}{-f_1 t + c_1} \]
\[\phi_2 = \frac{f_2 t + c_2}{-f_1 t + c_1}. \]

Theorem 3. The equation admits the fourth- and fifth-order GCSs, if and only if the equation satisfies one of the followings

(i)
\[u_t = \left(f_2 + f_1 u \right) u_x + u_{xxx} \]
\[+ \left[\left(G_2 + G_1 u \right) u_{xx} \right] + u_x u_{xx} \text{ and} \]
\[\eta = u_{xxx}, \]

(ii)
\[u_t = \left(f_2 + a_2 u \right) u_x + u_{xxx} \]
\[+ \left[\left(G_2 - u \right) u_{xx} \right] + u_x u_{xx} \text{ and} \]
\[\eta = u_{xxx} - a_2 u_{xx}, \]

(iii)
\[u_t = \left(f_2 + \frac{4}{15} a_2 u \right) u_x + u_{xxx} \]
\[+ \left[\left(G_2 - \frac{2}{3} u \right) u_{xx} \right] + u_x u_{xx} \text{ and} \]
\[\eta = u_{xxx} - a_2 u_{xx} + \frac{4}{25} a_2^2 u_x; \]

(iv)
\[u_t = \left(f_2 + f_1 u \right) u_x + u_{xxx} \]
\[+ \left[\left(G_2 - \frac{2}{3} u \right) u_{xx} \right] + u_x u_{xx} \text{ and} \]
\[\eta = u_{xxx} - \frac{15}{4} f_1 u_{xxx} + \frac{9}{4} f_1 a_2 u_x. \]

3. Symmetry Reduction and Solution

Example 1. Symmetry reduction of equation (7a), which admits symmetry operator (7b).

We obtain the solutions form by integrating \(u_{xx} = 0 \),
\[u_t = \phi_1 (t) x + \phi_2 (t). \]

In the following, solution (22) is inserted into equation (7a), yielding the system of ordinary differential equations as follows:

\[\frac{d\phi_1}{dt} = f_1 \phi_1^2 \text{ and} \]
\[\frac{d\phi_2}{dt} = \phi_1 (f_1 \phi_2 + f_2), \]
and the solutions are
\[\phi_1 = \frac{1}{-f_1 t + c_1} \]
\[\phi_2 = \frac{f_2 t + c_2}{-f_1 t + c_1}. \]

Example 2. Symmetry reduction of equation (8a), which admits operator (8b).

We obtain the solutions form by integrating \(u_{xx} = a_1 u_x = 0 \),
\[u = \phi_1 (t) + \phi_2 (t) e^{ax}. \]

Equation (8a) can be reduced to the following system of ordinary differential equations:
\[\frac{d\phi_1}{dt} = 0 \text{ and} \]
\[\frac{d\phi_2}{dt} = -\frac{1}{2} a_1 \left(a_1^2 - f_1 \right) \phi_1 \phi_2 + a_1 \left(G_3 a_1^2 + a_1^2 + f_2 \right) \phi_2, \]
the solutions of (27) are
\[\phi_1 = c_1 \text{ and} \]
\[\phi_2 = c_2 e^{-\frac{1}{2} a_1 \left(c_1 a_1^2 - 2G_3 a_1^2 - c_1 f_1 - 2a_1^2 - 2f_2 \right) t}. \]

So we can obtain the solution of (8a) \(u = c_1 + c_2 e^{-\frac{1}{2} a_1 \left(c_1 a_1^2 - 2G_3 a_1^2 - c_1 f_1 - 2a_1^2 - 2f_2 \right) t + a_1 x} \).
When \(f_2 = 0 \) and \(G_3 = 0 \), the special solution is \(u = c_1 + c_2 e^{-\frac{1}{2} a_1 \left(c_1 a_1^2 - c_1 f_1 - 2a_1^2 \right) t + a_1 x} \).

Example 3. Symmetry reduction of equation (16a), which admits operator (16b).

By integrating \(u_{xxx} - a_2 u_{xx} = 0 \), the solutions can be obtained as follows:
\[u = \phi_1 (t) + \phi_2 (t) x + \phi_3 (t) e^{a_2 x}. \]

Accordingly, we can reduce the equation (16a) to the system of ODEs,
\[\frac{d\phi_1}{dt} = \phi_1 \phi_2 a_1^2 + \phi_2 f_2, \]
\[\frac{d\phi_2}{dt} = \phi_2 a_2^2, \text{ and} \]
\[\frac{d\phi_3}{dt} = \phi_3 \phi_2 a_2^2 + \phi_2 a_2 (G_2 a_2^2 + a_2^2 + f_2), \]
the solutions of above equations are

\[\phi_1 (t) = \frac{f_2 t + C_3}{-a_2^2 t + C_1}, \]
\[\phi_2 (t) = \frac{1}{-a_2^2 t + C_1}, \text{ and} \]
\[\phi_3 (t) = \frac{C_2 e^{a_2 f (G_2 a_2^2 t^2 + f_2 t)}}{-a_2^2 t + C_1}. \]

By inserting \(\phi_1 (t), \phi_2 (t) \) into (29), we get the solution of (16a).

4. Conclusion

In this paper, using the symmetry group theory and maple software, we investigated the symmetry classification, symmetry reduction, and solutions of the Kudryashov–Sinelshchikov equation for the third-order. We also obtain the polynomial and exponential solutions of the classical KS equation and enrich the results of KS equations. We will study the other type of KS equations and extend the application scope of the symmetry group method in the future.

Data Availability

The data used to support the findings of this study are included within the article.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

The work has been supported by the Training Plan for Key Young Teachers of Colleges and Universities in Henan Province (No. 2019GJS143), the Key Research Projects of Henan Higher Education Institutions (No. 21A110026), and the Research Team Development Project of Zhongyuan University of Technology (No. K2020TD004).

References

[1] L. V. Wijngaarden, “On the equations of motion for mixtures of liquid and gas bubbles,” Journal of Fluid Mechanics, vol. 33, no. 3, pp. 465–474, 1968.
[2] G. W. Wazwaz and A. M. Wazwaz, “On the modified Gardner type equation and its time fractional form,” Chaos, Solitons & Fractals, vol. 155, Article ID 111964, 2022.
[3] R. C. Zhang and S. L. Zhang, “Invariant analysis, conservation laws, and some exact solutions for (2+1)-dimension fractional long-wave dispersive system,” Computational and Applied Mathematics, vol. 39, no. 4, p. 249, 2020.
[4] R. C. Ren, S. L. Zhang, and W. G. Rui, “Applications of homogenous balance principles combined with fractional calculus approach and separate variable method on investigating exact solutions to multidimensional fractional non-linear PDEs,” Mathematical Problems in Engineering, Article ID 901982, 2020.
[5] G. W. Wang, “Symmetry analysis, analytical solutions and conservation laws of a generalized KdV-Burgers-Kuramoto equation and its fractional version,” Fractals, vol. 29, no. 04, Article ID 2150101, 2021.
[6] M. S. Hashemi, “Constructing a new geometric numerical integration method to the nonlinear heat transfer equations,” Communications in Nonlinear Science and Numerical Simulation, vol. 22, no. 1-3, pp. 990–1001, 2015.
[7] X. R. Hu, Y. Li, and Y. Chen, “Constructing two-dimensional optimal system of the group invariant solutions,” Journal of Mathematical Physics, vol. 57, no. 2, Article ID 023518, 2016.
[8] Z. L. Liu and X. Q. Liu, “Bifurcations and exact traveling wave solutions for the KdV-like equation,” Nonlinear Dynamics, vol. 95, no. 1, pp. 465–477, 2019.
[9] G. W. Wang, K. T. Yang, H. C. Guan, F. Kara, and A. Kara, “A (2+1)-dimensional sine-Gordon and sinh-Gordon equations with symmetries and kink wave solutions,” Nuclear Physics B, vol. 953, Article ID 114956, 2020.
[10] M. J. Ablowitz and P. A. Clarkson, Solitons, Nonlinear Evolution Equations and Inverse Scattering, Cambridge University Press, Cambridge, 1991.
[11] G. W. Bluman and S. C. Anco, Symmetry and Integration Methods for Differential Equations, Springer-Verlag, New York, 2002.
[12] M. Azadi and H. Jafari, “Lie symmetry reductions of a coupled KdV system of fractional order,” Nonlinear Dynamics and Systems Theory, vol. 18, pp. 22–28, 2018.
[13] P. J. Olver, Application of Lie Groups to Differential Equations, Springer-Verlag, New York, 1986.
[14] C. Rogers and W. K. Schief, Bäcklund and Darboux Transformations, Geometry and Modern Applications in Soliton Theory, Cambridge University Press, Cambridge, 2002.
[15] N. A. Kudryashov and D. I. Sinelshchikov, “Nonlinear waves in bubbly liquids with consideration for viscosity and heat transfer,” Physics Letters A, vol. 374, no. 19-20, pp. 2011–2016, 2010.
[16] X. L. Tang and Y. Chen, “Lumps, breathers, rogue waves and interaction solutions to a (3+1)-dimensional Kudryashov-Sinelshchikov equation,” Modern Physics Letters B, vol. 34, no. 12, Article ID 2050117, 2020.
[17] P. N. Ryabov, “Exact solutions of the Kudryashov-Sinelshchikov equation,” Applied Mathematics and Computation, vol. 217, no. 7, pp. 3585–3590, 2010.
[18] B. He, Q. Meng, and Y. Long, “The bifurcation and exact peakons, solitary and periodic wave solutions for the Kudryashov-Sinelshchikov equation,” Communications in Nonlinear Science and Numerical Simulation, vol. 17, no. 11, pp. 4137–4148, 2012.
[19] J. M. Tu, S. F. Tian, M. J. Xu, and T. T. Zhang, “On Lie symmetries, optimal systems and explicit solutions to the Kudryashov-Sinelshchikov equation,” Applied Mathematics and Computation, vol. 275, pp. 345–352, 2016.
[20] M. Randrūt, M. Braun, Cnoidal waves governed by the Kudryashov-Sinelshchikov equation,” *Physics Letters*, vol. 377, pp. 1868–1874, 2013.

[21] M. Randrūt, M. Braun, On identical traveling-wave solutions of the Kudryashov-Sinelshchikov and related equations,” *International Journal of Non-Linear Mechanics*, vol. 58, pp. 206–211, 2014.

[22] Y. L. Feng, W. R. Shan, W. R. Sun, H. Zhong, and B. Tian, “Bifurcation analysis and solutions of a three-dimensional Kudryashov-Sinelshchikov equation in the bubbly liquid,” *Communications in Nonlinear Science and Numerical Simulation*, vol. 19, no. 4, pp. 880–886, 2014.

[23] H. Yang, W. Liu, B. Yang, and B. He, “Lie symmetry analysis and exact explicit solutions of three-dimensional Kudryashov-Sinelshchikov equation,” *Communications in Nonlinear Science and Numerical Simulation*, vol. 27, no. 1-3, pp. 271–280, 2015.

[24] M. Inc, A. I. Aliyu, A. Yusuf, and D. Baleanu, “New solitary wave solutions and conservation laws to the Kudryashov-Sinelshchikov equation,” *Optik*, vol. 142, pp. 665–673, 2017.

[25] A. K. Gupta and S. Saha Ray, “On the solitary wave solution of fractional Kudryashov-Sinelshchikov equation describing nonlinear wave processes in a liquid containing gas bubbles,” *Applied Mathematics and Computation*, vol. 298, pp. 1–12, 2017.

[26] Y. L. Jiang and C. Chen, *Lie Symmetry Method of Differential Equation* Science Education Press, Beijing, 2021.

[27] P. D. Lax, “Integrals of nonlinear equations of evolution and solitary waves,” *Communications on Pure and Applied Mathematics*, vol. 21, no. 5, pp. 467–490, 1968.

[28] N. A. Kudryashov and D. I. Sinelshchikov, “Nonlinear evolution equations for describing waves in bubbly liquids with viscosity and heat transfer consideration,” *Applied Mathematics and Computation*, vol. 217, no. 1, pp. 414–421, 2010.

[29] N. A. Kudryashov and D. I. Sinel’shchikov, “Nonlinear waves in liquids with gas bubbles with account of viscosity and heat transfer,” *Fluid Dynamics*, vol. 45, no. 1, pp. 96–112, 2010.

[30] A. S. Liu and Q. M. Liu, “Nonlinear interaction of traveling waves of nonintegrable equations,” *Physical Review Letters*, vol. 72, no. 21, pp. 3293–3296, 1994.

[31] A. S. Liu and Q. M. Liu, “Generalized conditional symmetries and exact solutions of non-integrable equations,” *Theoretical and Mathematical Physics*, vol. 99, no. 2, pp. 571–582, 1994.

[32] R. Z. Zhdanov, “Conditional Lie-Backlund symmetry and reduction of evolution equations,” *Journal of Physics A: Mathematical and General*, vol. 28, no. 13, pp. 3841–3850, 1995.