Global embedding of the Kerr black hole event horizon into hyperbolic 3-space

G. W. Gibbons1,*, C. A. R. Herdeiro2,† and C. Rebelo2,‡

1D.A.M.T.P.
Cambridge University
Wilberforce Road, Cambridge CB3 0WA, U.K.

2Departamento de Física e Centro de Física do Porto
Faculdade de Ciências da Universidade do Porto
Rua do Campo Alegre, 687, 4169-007 Porto, Portugal

June 15, 2009

Abstract

An explicit global and unique isometric embedding into hyperbolic 3-space, \(H^3 \), of an axisymmetric 2-surface with Gaussian curvature bounded below is given. In particular, this allows the embedding into \(H^3 \) of surfaces of revolution having negative, but finite, Gaussian curvature at smooth fixed points of the \(U(1) \) isometry. As an example, we exhibit the global embedding of the Kerr-Newman event horizon into \(H^3 \), for arbitrary values of the angular momentum. For this example, considering a quotient of \(H^3 \) by the Picard group, we show that the hyperbolic embedding fits in a fundamental domain of the group up to a slightly larger value of the angular momentum than the limit for which a global embedding into Euclidean 3-space is possible. An embedding of the double-Kerr event horizon is also presented, as an example of an embedding which cannot be made global.

1 Introduction

Since Gauss proved his famous \textit{Theorema Egregium}, it has become customary to make a clear distinction between the intrinsic properties of a closed surface \(S \), whether local quantities such as its Gauss curvature

\[
K = \frac{1}{R_1 R_2}, \quad \text{where } R_1, R_2 \text{ are the principal radii of curvature,} \tag{1}
\]

or non-local quantities such as its area \(A \), which depend only on the metric, and extrinsic properties such as its mean curvature

\[
H = \frac{1}{2} \left(\frac{1}{R_1} + \frac{1}{R_2} \right), \tag{2}
\]

*G.W.Gibbons@damtp.cam.ac.uk
†crherdei@fc.up.pt
‡mrebelo@fc.up.pt
which is local, or its largest diameter \(D\), which is non-local, since these may depend on which particular embedding one adopts.

However, this distinction may break down if the embedding in question is \textit{rigid}, that is unique. By theorems of Weyl, Pogorelov and others (see [11][2]), this is true of smooth 2-surfaces whose Gauss curvature is everywhere positive; then there exists, up to isometries, a unique isometric embedding into Euclidean 3-space \(\mathbb{E}^3\). Since this embedding \(\mathbf{x} = \mathbf{x}(u^i)\) is given by three highly non-linear partial differential equations depending on the intrinsic metric,

\[
g_{ij} = \partial_i \mathbf{x} \cdot \partial_j \mathbf{x},
\]

the extrinsic quantities depend in a highly non-local fashion on the metric.

If the Gauss curvature is somewhere negative then \(S\) may or may not admit a global isometric embedding into \(\mathbb{E}^3\). In [3] an example of a 2-surface with a patch of negative curvature that can be globally embedded into \(\mathbb{E}^3\) is given (another simple example is a “donut” like surface); in the same reference it is also shown that if the 2-surface admits a \(U(1)\) action and the Gaussian curvature is negative at a smooth fixed point of such action, then a vicinity of the fixed point cannot be embedded, not even locally, into \(\mathbb{E}^3\). If the fixed point having negative Gaussian curvature is not smooth, however, a global embedding may exist. An example is the Kerr ergo-sphere [4].

But if the Gauss curvature is bounded below by some negative constant,

\[
K \geq -\frac{1}{L^2},
\]

then Pogorelov [3] has shown that there is always an isometric embedding, unique up to isometries, into hyperbolic space \(H^3\) with radius of curvature \(L\). By scaling \(L\) may always be taken to be unity.

These facts have clear relevance to general relativity, both at the classical and the quantum level:

- Historically (e.g. [6][7][8][9]; see also [10]) isometric embeddings have frequently been used to gain intuition about geometric features of spacetimes. If the embedding is rigid, then such intuition is less likely to be misleading than if the embedding is flexible, and many equivalent embeddings exist. For an interesting account of flexible non-convex polyhedra see [11].

- In recent efforts to define a so-called quasi-local mass [12], functional associated with a two surface \(S\), embedded in a four-dimensional Lorentzian spacetime, use has been made of the Pogorelov theorem to embed \(S\) isometrically into \(H^3\) and hence considering \(H^3\) as points equidistant to the future from some origin (i.e the mass shell), in flat Minkowski spacetime \(\mathbb{E}^{3,1}\). The embedding into \(\mathbb{E}^{3,1}\) is not expected to be unique.

- In a recent paper [13], one of us gave an intrinsic formulation of Thorne’s Hoop conjecture, and used as a technical tool an isometric embedding into \(\mathbb{E}^3\) to prove it in some particular cases.

In this paper, we shall, with these motivations in mind, provide explicit isometric embeddings of the horizons of Kerr-Newman and double Kerr-Newman black holes into \(H^3\). The former is global. The latter is local, because of the presence of a strut which is required to keep the two black holes apart.
An isometric embedding of the Kerr-Newman horizon into \mathbb{E}^3 was first given by Smarr [7] who discovered that for $J > \sqrt{3}M^2/2$ the Gauss curvature K at the north and south poles becomes negative and a global isometric embedding into \mathbb{E}^3 is no longer possible. A local embedding into 3-dimensional Minkowski spacetime $\mathbb{E}^{2,1}$ is possible but this is not global [14]. To circumvent this problem Frolov [3] has given a global embedding into four-dimensional Euclidean space \mathbb{E}^4. It is not known whether the Frolov embedding is rigid, but it seems unlikely.

2 The upper half space model

Events (T, X, Y, Z) in $\mathbb{E}^{3,1}$ are in one-to-one correspondence with Hermitian two by two matrices

$$X = \begin{pmatrix} T + Z & X + iY \\ X - iY & T - Z \end{pmatrix},$$

and the Lorentz group $SO(3, 1) = PSL(2, \mathbb{C})$ acts as

$$X \rightarrow SXS^\dagger, \quad X \in SL(2, \mathbb{C}).$$

Translations act as matrix addition:

$$X \rightarrow X + A.$$

Hyperbolic space H^3 corresponds to events

$$X = \begin{pmatrix} \frac{1}{z} & \frac{x + iy}{z} \\ \frac{x - iy}{z} & \frac{x^2 + y^2 + z^2}{z} + z \end{pmatrix}, \quad z > 0, \ x + iy \in \mathbb{C}.$$

To embed H^3 into Minkowski spacetime $\mathbb{E}^{3,1}$ one simply equates the two matrix formulas above. The induced metric on the surface

$$X^2 + Y^2 + Z^2 - T^2 = -1,$$

is then

$$ds^2 = \frac{1}{z^2} (dz^2 + dx^2 + dy^2).$$

It is now simple to embed any surface in the upper half space model of H^3 [10] into $\mathbb{E}^{3,1}$.

3 Identifications

Rather than embedding into H^3, one might consider making identifications under the action of some discrete subgroup $\Gamma \subset SO(3, 1)$. Quotients H^3/Γ which are closed or possibly merely of finite volume are of interest in cosmology, in models where the spatial sections of $k = -1$ Friedman-Lemaître universes are taken to be of the so-called non-Euclidean honeycomb form H^3/Γ [15]; they are also of interest in some Kaluza-Klein compactifications [16, 17]. The simplest non-compact quotient of finite volume is obtained by taking Γ to be the Picard group [18] $SL(2, \mathbb{G})$, where \mathbb{G} are the Gaussian integers $m + in, m, n \in \mathbb{Z}$. This is a double quotient $SL(2, \mathbb{G}) \backslash SL(2, \mathbb{C})/SU(2)$.

3
This example has been used in cosmology for studies of the effects of global spatial topology on the CMB \[19, 20\].

A fundamental domain, completely analogous to the fundamental domain of the modular group \(SL(2, \mathbb{Z})\), acting on the upper half plane is \[18\]
\[
|x| \leq \frac{1}{2}, \quad |y| \leq \frac{1}{2}, \quad x^2 + y^2 + z^2 \geq 1.
\] (11)

Below we shall exhibit the embedding of the Kerr-Newman event horizon into \(H^3\) and show that, up to a certain value of the angular momentum, it can be taken to lie completely inside this fundamental domain.

There is an interesting connection with the unique four-dimensional self-dual Lorentzian lattice \(\Pi^3,1\) \[21\]. The mathematics and physics literatures differ somewhat in their use of the word lattice. In the mathematical literature a \textit{lattice} \(\Lambda\) is taken to be a finitely generated discrete abelian group. Thinking of \(\Lambda\) as a subgroup of \(\mathbb{R}^n\) leads us to the toroidal quotient \(T^n = (S^1)^n = \mathbb{R}^n/\Lambda\). In the present case one may think of the lattice as matrices \(A\) in \(7\) whose entries are Gaussian integers.

In the physics literature a \textit{lattice} is usually taken to be a set of points in \(\mathbb{R}^n\) invariant under the action of a lattice \(\Lambda\). Typically these points are the orbits in \(\mathbb{R}^n\) of a lattice \(\Lambda\). A further source of confusion is that the underlying affine space \(\mathbb{R}^n\), is frequently endowed with a metric of signature \((s, t)\). Thus, the mathematicians at least, should speak of a lattice with metric, especially since the theory of the classification of such lattices depends crucially on the signature of the metric.

In the present case \((s, t) = (3, 1)\), corresponding to restricting \((T, X, Y, Z)\) to take integer values \[21\]. The point group of the lattice is \(SO(3;1;\mathbb{Z})\) \[15\] which is covered by Picard’s group \(SL(2, \mathbb{C})\). The corresponding lattice, in the physical sense, was used by Schild in an attempt to model a discrete spacetime \[22, 23\]. One can also think of the associated quotient as a spacetime which is periodic both in space and in time. An interesting question is then whether one may embed our surfaces into a unit cell of this lattice universe, which we shall address in the example of section 5.

4 General embedding formulae

We shall now present the explicit embedding formulas for a 2-surface admitting a \(U(1)\) action in \(H^3\). We start with the upper half space model for hyperbolic 3-space \(H^3\), discussed in section 2
\[
\begin{align*}
 ds^2 &= \frac{L^2}{z^2} (dx^2 + dy^2 + dz^2) = \frac{L^2}{z^2} (dr^2 + r^2 d\phi^2 + dz^2), \\
 \text{where} \quad L &\text{is the “radius” of the hyperbolic space, } z > 0 \text{ and in the last equality we have used polar coordinates.}
\end{align*}
\] (12)

We wish to construct a global embedding of the 2-surface
\[
\begin{align*}
 ds^2 &= R^2 (a^2(u)du^2 + b^2(u)d\phi^2), \\
 \text{in } H^3. \quad \text{The functions } a(u), b(u) \text{ are dimensionless; } u \text{ is a polar coordinate with range } -1 \leq u \leq 1, \text{ with equalities attained, respectively, at the “south” and “north” poles; } R \text{ is a length scale. The embedding functions are}
\end{align*}
\] (13)

\[
\begin{align*}
 r(u) &= \frac{b(u)z(u)}{k}, \\
 (b(u)^2 + k^2) \frac{z'(u)}{z(u)} &= -b(u)b'(u) \pm \sqrt{[a(u)b(u)]^2 + k^2 [a(u)^2 - b'(u)^2]}, \\
\end{align*}
\] (14)
where \(k = L/R \). To make contact with the embedding used in [7] for the Kerr-Newman horizon and in [24] for the double-Kerr horizons we take \(a(u)^2 = 1/b(u)^2 = 1/g(u) \); then, the embedding functions are

\[
\begin{align*}
r(u) &= \sqrt{g(u)}z(u)/k, \\
(g(u) + k^2)\frac{z'(u)}{z(u)} &= -\frac{g'(u)}{2} \pm \sqrt{1 + \frac{k^2}{g(u)}} \left[1 - \frac{g'(u)^2}{4} \right].
\end{align*}
\]

In limit of large radius \(k \) (i.e. flat space limit) these functions reduce to

\[
\begin{align*}
\tilde{r}(u) &= R\sqrt{g(u)}, \\
\tilde{z}'(u) &= \pm \sqrt{\frac{R^2}{g(u)}} \left[1 - \frac{g'(u)^2}{4} \right],
\end{align*}
\]

where \(\tilde{r} \) and \(\tilde{z} \) are cylindrical polar coordinates in \(\mathbb{E}^3 \). These are exactly the embedding functions used in [24]. Thus, while the embedding in \(\mathbb{E}^3 \) will fail when \(g'(u)^2 > 4 \), the same embedding in \(H^3 \) will be possible if \(g'(u) \) is bounded. The advantage of using hyperbolic space becomes therefore manifest. Note that the Gaussian curvature of the 2-surface is

\[
K = -\frac{g''(u)}{2R^2}.
\]

From this formula one can see that the failure of the embedding is not directly associated to the Gaussian curvature becoming negative. This is manifest in the Kerr-Newman example - see Fig. 1.

5 The Kerr-Newman horizon

As a first application of the general formulae of section 4 let us consider the Kerr-Newman event horizon. In this case [7],

\[
g(u) = \frac{(1-u^2)(1+c^2)}{1+c^2u^2}, \quad c \equiv \frac{J}{M(M + \sqrt{M^2 - J^2/M^2})}, \quad R^2 = 2M \left(M + \sqrt{M^2 - J^2/M^2} \right),
\]

where \(M, J \) are the ADM mass and angular momentum of the black hole. Note that \(0 \leq c \leq 1 \) for black hole solutions, with the equalities attained for Schwarzschild and extreme Kerr, respectively. The embedding in flat space will fail when the function

\[f(u) \equiv (1 - g'(u)^2/4)/g(u),\]

becomes negative. This function is plotted in Fig. 1. The figure shows that, for \(J > \sqrt{3}/2 \), the embedding in \(\mathbb{E}^3 \) fails in two patches around each of the poles (two polar caps). The function \(f(u) \) is bounded from below, and has a minimum given by \(f = -1 \). Therefore to embed the complete surface in \(H^3 \) it suffices to take \(L = R \), i.e \(k = 1 \). In Fig. 2 the profiles of the embeddings in \(\mathbb{E}^3 \) and \(H^3 \), \(z = z(r) \), are displayed. In the latter case, the overall scaling is irrelevant, since it is determined by an arbitrary integration constant.

Surprisingly, the embedding of the round sphere (the \(J = 0 \) case) in \(\mathbb{E}^3 \) and \(H^3 \) are identical. The hyperbolic embedding of the round sphere can be treated analytically. From (15) one gets

\[
(ln z)' = \frac{u \pm \sqrt{1 + k^2}}{1 + k^2 - u^2}.
\]
Figure 1: $f(u)$ (left) and Gauss curvature (right) for the Kerr-Newman solution, for fixed mass $M = 1$ and various values of the angular momentum J. The embedding in \mathbb{E}^3 fails when the $f(u)$ becomes negative; this function is bounded by -1 for any J. Note that there are regions where the curvature is positive but the embedding fails.

Figure 2: Profile of the embedding in \mathbb{E}^3 (left, first presented in [24]) and H^3 (right, using $k = 1$) of the Kerr horizon, for fixed mass $M = 1$ and various values of the angular momentum J. For the hyperbolic embedding only the shape is relevant, not the overall scaling, since the latter depends on an arbitrary integration constant.

The two solutions are interchanged by the reparameterisation $u \rightarrow -u$. Integrating yields

$$z = \frac{\alpha}{\sqrt{1 + k^2} - u}, \quad \alpha = \text{constant} > 0.$$ \hfill (21)

Using (15), one arrives at the surface equation

$$r^2 + \left(z - \frac{\alpha \sqrt{1 + k^2}}{k^2}\right)^2 = \frac{\alpha^2}{k^4}.$$ \hfill (22)
This is indeed the standard equation of a spherical surface (but note that these are the coordinates of the upper half space model for \(H^3 \)). In Fig 2 we have taken \(k = 1 = \alpha \) and we have performed a \(z \) translation so that the plot intersects the origin.

Observe that the embedding of the round sphere can be fitted in the fundamental domain discussed in section 3. Indeed, if suffices to take \(k, \alpha \) such that \(\alpha/k^2 < 1/2 \) and \((\sqrt{1+k^2} - 1)\alpha/k^2 > 1 \). This is possible if \(k \) is sufficiently large and choosing the value of \(\alpha \) appropriately - Fig. 3; in this figure the effect of increasing \(\alpha \) for constant \(k \) can be seen: it raises the centre of the sphere and increases its radius. The same effect is obtained, for constant \(\alpha \), decreasing the value of \(k \) - Fig. 4.

![Figure 3: Embedding the round 2-sphere (\(J=0 \)) into \(H^3 \) for \(k = 1 \) (left) and \(k = 3 \) (right) and various values of \(\alpha \). For \(k = 1 \) (\(k = 3 \)) the embedding cannot (can, taking an appropriate \(\alpha \)) be fitted completely inside the fundamental domain - shaded region. We display the \(x, z \) plane - as in Fig. 4, 7 and 8 - but note that the embedded surface has a \(U(1) \) isometry in the \(x - y \) plane.](image)

We can use the embedding of \(H^3 \) in four dimensional Minkowski space given in section 2 to check that (22) describes a round sphere. Noting that \(r^2/z^2 = X^2 + Y^2 \) and \(z = 1/(T + Z) \) we find the surface

\[
X^2 + Y^2 + \left(\frac{\alpha}{k} (T + Z) - \frac{\sqrt{1+k^2}}{k} \right)^2 = \frac{1}{k^2}.
\]

The 2-surface described by (22) is the intersection of (23) with \(H^3 \) embedded in \(E^{3,1} \) as the surface (9). This yields the co-dimension two set in \(E^{3,1} \) described by

\[
X^2 + Y^2 + \left(\sqrt{1-v^2}Z + \frac{v\sqrt{1+k^2}}{k} \right)^2 = \frac{1}{k^2}, \quad \frac{1}{\sqrt{1-v^2}}(T + vZ) = \frac{\sqrt{1+k^2}}{k},
\]

where the “velocity” \(v \) is defined as

\[
v \equiv \frac{\alpha^2 - k^2}{\alpha^2 + k^2}.
\]
Introducing “boosted” coordinates

\[T' = \frac{1}{\sqrt{1-v^2}} (T + vZ), \quad Z' = \frac{1}{\sqrt{1-v^2}} (Z + vT), \]

(26)

(9) becomes \(X^2 + Y^2 + Z'^2 - T'^2 = -1 \) and the 2-surface \((24) \) becomes

\[X^2 + Y^2 + Z'^2 = \frac{1}{k^2}, \quad T' = \frac{\sqrt{1+k^2}}{k} > 1. \]

(27)

This is indeed a round 2-sphere; the apparent ellipsoid exhibited in \((24) \) is a result of Lorentz contraction.

In Fig. 5 and Fig. 6 we present 3D plots of the embeddings of the Kerr-Newman event horizon in \(\mathbb{E}^3 \) and \(H^3 \), respectively, for various values of the angular momentum. In the hyperbolic case the embedding is global for any value of \(J \). Note that in the Euclidean case, even a local embedding of the region around the poles is impossible for \(J > \sqrt{3}/2 \) [3].

For \(J \neq 0 \) it is still possible to fit the embedding completely inside the fundamental domain, but only up to a maximal value of \(J/M^2 \) which is in \([0.8725, 0.8735]\). This interval has been determined numerically with the following strategy. First observe that, fixing the black hole, i.e. \(J \) and \(M \), the embedding depends on \(k \) and on an additional integration constant \(\alpha \), as in the \(J = 0 \) case treated above analytically. Fixing \(k \), the effect of increasing \(\alpha \) is to move the embedding profile up in the \(z \) coordinate, making it simultaneously larger, as in the \(J = 0 \) case (cf. Fig. 3). Thus, our strategy is:

i) for each \(k \), \(\alpha \) is fixed at \(\alpha = \alpha_{\text{touch}} \), such that the points in the embedding profile with the smallest \(z \) touch tangentially the boundary of the fundamental domain at \(r^2 + z^2 = 1 \);
ii) analysing different values of k, each with $\alpha = \alpha_{\text{touch}}$, one realises that the effect of decreasing k is to increase the size of the profile - see Fig. 7 for an example.

iii) since k is bounded above for $J/M^2 = \sqrt{3}/2$ we investigate, beyond this value of the angular momentum, the embedding profile for the maximum allowed $k = k_{\text{max}}$ and $\alpha = \alpha_{\text{touch}}$.

It turns out that for values of J/M^2 slightly above $\sqrt{3}/2 \simeq 0.866$ (we checked up to 0.8725) it is still possible to fit the embedding in the fundamental domain; but for $J/M^2 = 0.8735$ this is not the case anymore - Fig. 8.
Figure 7: Embedding the Kerr-Newman event horizon for $M = 1$ and $J = 0.95$ into H^3 for various values of k and of an additional integration constant α, fixed at $\alpha = \alpha_{\text{touch}}$. No choice can fit the embedding completely inside the fundamental domain (shaded region).

Figure 8: Embedding the Kerr-Newman event horizon for $M = 1$, $J = 0.8725$ (left) and $J = 0.8735$ (right) into H^3 for various values of k, including for each case k_{max} and $\alpha = \alpha_{\text{touch}}$. In the former case the embedding can still be fitted inside the fundamental domain (shaded region), but not in the latter case, which is explicit in the detail (middle).

6 The double-Kerr horizon

As a second example we shall now consider the embedding of the double-Kerr event horizon. The double-Kerr solution is a 7-parameter vacuum spacetime. It was originally generated using a
Bäcklund transformation [25]. But it can also be generated using the inverse scattering technique [26]. The general solution is extremely complex. But two 3-parameter sub-families have been recently analysed. These are the counter rotating [26] and co-rotating case [24]. These two families describe two stationary co-axial Kerr black holes, with the same mass and the same (co-rotating) or opposite (counter-rotating) angular momentum. They are asymptotically flat and they obey the “axis condition”, which guarantees that the azimuthal Killing vector field has zero norm on the symmetry axis. The three parameters of the solutions are, therefore, the mass of each black hole \(M_1 = M_2 \equiv M \), their angular momentum \(J_1 = \pm J_2 \equiv J \) and the distance between them \(\zeta \). The latter parameter is the coordinate distance in Weyl canonical coordinates. But it is a measure of the proper distance \(d \), in the sense that the latter is a monotonic function of \(\zeta \) [24].

The asymptotically flat double Kerr solution for two black holes always has a strut. Physically, this strut provides the necessary force to keep the two black holes in equilibrium. Mathematically it is described by a conical singularity with a conical excess.

In [24], the embedding of the double-Kerr horizon was performed in \(\mathbb{E}^3 \). We shall now perform it in \(\mathbb{H}^3 \). The first observation is that, unlike the Kerr horizon, the embedding in hyperbolic space is not global. The reason can be appreciated in Fig. 9 and 10 where we have plotted the function \(f(u) \), for the counter-rotating case, for various values of \(\zeta \) and \(J \), fixing \(M = 1 \) and choosing the “lower” black hole in the double-Kerr system, i.e the one with the strut on its north pole \((u = 1) \). It can be seen that the function \(f(u) \) always diverges at \(u = 1 \). This is to be expected and corresponds to the location of the strut. Thus, irrespectively of the value of \(k \), the embedding will never completely cover the surface.

![Figure 9: Function \(f(u) \) for \(\zeta = 100 \) (left) and \(\zeta = 10 \) (right), fixed mass \(M = 1 \) and various values of the angular momentum \(J \). The left plot corresponds to a large distance and therefore resembles Fig. 1 (i.e the case of an isolated black hole), except at the north pole \((u = 1) \), where the strut meets the horizon.](image)

Fig. 9 shows that the behaviour of \(f(u) \) is very similar in the double Kerr system and in the single Kerr system for large distance \((\zeta = 100) \). There is however, a difference in behaviour at the north pole, where the strut meets the horizon. As the distance between the two black holes decreases, the function \(f(u) \) approaches that of a non-rotating black hole, albeit somewhat deformed, cf. Fig. 9 and 10. This was interpreted in [26] as being caused by the mutual rotational dragging slow down that the black holes exert on one another.

One may ask how much of the horizon surface is covered by the hyperbolic embedding, fixing a
Figure 10: Function $f(u)$ for $\zeta = 5$ (left) and $\zeta = 2.2$ (right), fixed mass $M = 1$ and various values of the angular momentum J. As the distance decreases, the function becomes less sensitive to the angular momentum, and approaches that of a non-rotating black hole, albeit deformed near the north pole.

Figure 11: Profile of the embedding in \mathbb{E}^3 (left, first presented in [24]) and H^3 (right, using $k = 1$) of the double-Kerr horizon, for fixed mass and angular momentum $M = 1 = J$ and various values of the physical distance in between the two black holes. At the north pole there is a "strut", and the embedding always fails. The grey (black) lines correspond to the counter-rotating (co-rotating) case.

value of k. Somewhat surprisingly, choosing the minimal value of k that covers the whole surface in the limit of infinite distance ($k = 1$) and for two black holes with $|J| = M^2$, the hyperbolic embedding does not appear to cover more of the horizon surface than the Euclidean one, for small distances - Fig. 11.

In Fig. 12 and 13 we present 3D plots of the embeddings in \mathbb{E}^3 and H^3 of the "lower" black hole in the counter-rotating double Kerr system.
Figure 12: Embedding the “lower” black hole in double Kerr horizon for fixed mass and angular momentum $M = 1 = J$ and various values of the physical distance d ($d = 25, 10, 3$) in \mathbb{E}^3. As the distance decreases: i) the south pole gets covered by the embedding (this is a consequence of the smaller angular velocity of the black hole); ii) there is a growing patch around the north pole that is not covered by the embedding, manifesting the deformation induced by the strut, which becomes stronger as the interaction between the two black holes becomes stronger.

Figure 13: Embedding the double Kerr horizon for fixed mass and angular momentum $M = 1 = J$ and various values of the physical distance d ($d = 25, 10, 3$) in H^3, with $k = 1$. Unlike the Euclidean embedding, the south pole is always covered by the hyperbolic embedding. As in the Euclidean embedding, there is a growing patch around the north pole that is not covered by the hyperbolic embedding, manifesting the deformation induced by the strut. The patch does not appear smaller than in the Euclidean embedding.

7 Conclusions and final remarks

In this paper we have discussed global and unique isometric embeddings of 2-surfaces in hyperbolic 3-space. Such embeddings are possible as long as the Gaussian curvature of the 2-surface is bounded below. As an example we considered the embedding for the Kerr-Newman black hole event horizon. According to a fundamental theorem of Riemannian geometry [27], every smooth n-dimensional Riemannian manifold can be globally isometrically embedded in an N-dimensional Euclidean space,
where \(N = (n + 2)(n + 3)/2 \). For \(n = 2 \) this yields \(N = 10 \). An embedding in a lower dimensional space may, nevertheless, be possible. Indeed it was shown by Frolov that, for the Kerr-Newman case, a global embedding in \(\mathbb{E}^4 \) is possible. Herein, we have shown that a global and unique embedding in a 3-dimensional hyperbolic space is possible for all values of the angular momentum, in contrast with the embedding in Euclidean 3-space, first described in [7], which is only global for \(J/M^2 \leq \sqrt{3}/2 \). Moreover we have shown that up to \(J/M^2 \simeq 0.873 > \sqrt{3}/2 \), the hyperbolic embedding can be fitted in a fundamental domain of the Picard group, which is used to construct interesting quotients of hyperbolic space.

Recently, various physical properties of the double-Kerr system were studied [26, 24]. One novel feature unveiled in these studies is that the angular velocity of the two black holes decreases as they are approached, keeping their mass and angular momentum fixed, for both the counter-rotating [26] and co-rotating [24] cases. This effect was interpreted as a consequence of the mutual rotational dragging of the black holes. The angular velocity decrease is visible in the horizon geometry, and therefore in its embedding in a higher dimensional space. Although the effect of the angular velocity decrease is clearer in the Euclidean embedding, it is also visible in the hyperbolic embedding exhibited herein. Due to the existence of a stratum which provides the force balance between the black holes, there is a curvature singularity at one of the poles of the horizon and therefore the embedding (both Euclidean and hyperbolic) is not global.

Other possible applications of the hyperbolic embedding are to Kerr-(Anti) de Sitter black holes and to a Schwarzschild black hole immersed in a magnetic field. In the latter case it has been shown [30] that a patch of negative Gaussian curvature develops, near the equator, if the magnetic field parameter exceeds a certain limit. Curiously, for a certain range of magnetic field values, the Gaussian curvature of a Kerr black hole immersed in a magnetic field becomes positive for all values of the angular momentum, and an embedding in \(\mathbb{E}^3 \) is possible [31].

Acknowledgements

C.H. would like to thank the hospitality of D.A.M.T.P., University of Cambridge, where part of this work was done. C.H. is supported by a “Ciência 2007” research contract. C.R. is funded by FCT through grant SFRH/BD/18502/2004

References

[1] H. Hopf, “Differential geometry in the large. Notes taken by Peter Lax and John W. Gray. With a preface by S. S. Chern.” Second edition. With a preface by K. Voss. Lecture Notes in Mathematics, 1000. Springer-Verlag, Berlin, (1989).

[2] L. Nirenberg, “Rigidity of a class of closed surfaces,” in R. E. Langer ed. *Non-linear problems*, University of Wisconsin, 1963.

A local embedding, is possible in a lower dimensional Euclidean space, \(\mathbb{E}^N \), with \(N = n(n + 1)/2 \), according to a theorem first proved by Janet for 2-manifolds [28] and subsequently generalised by Cartan for \(n \)-dimensional manifolds [29]. Note that the dimension of the embedding space is the number of components of the metric tensor of the manifold.
[3] V. P. Frolov, ‘Embedding of the Kerr-Newman Black Hole Surface in Euclidean Space,” Phys. Rev. D 73, 064021 (2006) arXiv:gr-qc/0601104.

[4] N. Pelavas, N. Neary and K. Lake, “Properties of the instantaneous ergo surface of a Kerr black hole,” Class. Quant. Grav. 18 (2001) 1319 arXiv:gr-qc/0012052.

[5] A. V. Pogorelov, “Some results on surface theory in the large,” Advances in Math. 1 (1964) 191-264.

[6] L. Flamm, “Beiträge zur Einsteinischen Gravitationstheorie,” Physikalische. Zeitschrift 17 (1916) 448-454 (in particular p. 450).

[7] L. Smarr, “Surface Geometry of Charged Rotating Black Holes,” Phys. Rev. D 7 (1973) 289.

[8] A. Friedman, “Isometric Embeddings of Riemannian manifolds into Euclidean spaces,” Rev. Mod. Phys. 37 (1965) 201.

[9] J. Rosen, “Embedding various relativistic Riemannian spaces in Pseudo-Euclidean spaces,” Rev. Mod. Phys. 37 (1965) 204.

[10] H. Goenner, “Local Isometric embeddings of Riemannian Manifolds and Einstein’s Theory of Gravitation, in ‘General Relativity and Gravitation: One hundred years after the birth of Einstein’, Edited by A.Held, Vol.1, Plenum Press, 1980.

[11] I. Stewart, “The Bellows Conjecture,” Sci. Amer. July (1998) 90-92.

[12] Mu-Tao Wang, Shing-Tung Yau “Isometric embeddings into the Minkowski space and new quasi-local mass,” Mu-Tao Wang, Shing-Tung Yau, arXiv:0805.1370 [math.DG].

[13] G. W. Gibbons, “Birkhoff’s invariant and Thorne’s Hoop Conjecture,” arXiv:0903.1580 [gr-qc].

[14] G. W. Gibbons, C. A. R. Herdeiro, C. M. Warnick and M. C. Werner, “Stationary Metrics and Optical Zermelo-Randers-Finsler Geometry,” Phys. Rev. D 79, 044022 (2009) arXiv:0811.2877 [gr-qc].

[15] H. S. M. Coxeter and G. J. Whitrow, “World Structure and non-Euclidean honeycombs,” Proc. Roy. Soc. A 201 (1950) 417-437.

[16] M. Gell-Mann and B. Zwiebach, “Dimensional Reduction Of Space-Time Induced By Nonlinear Scalar Dynamics And Noncompact Extra Dimensions,” Nucl. Phys. B 260 (1985) 569.

[17] A. A. Bytsenko, M. E. X. Guimares, Hyperbolic Spaceforms and Orbifold Compactification in M-Theory, hep-th/0502031

[18] M. E. Picard, ”Sur un group de transformations des point d l’espace situés du même d’un plan,” Bull. Math. Soc. France 12 (1884) 43-47.

[19] B. Aurich, S. Lustig, F. Steiner and H. Then, “Hyperblic Universe with a Horned Topology and the CMB Anisotropy,” Class. Quant. Grav. 21 (2004) 4901-4926, astro-ph /0403597.
[20] B. Aurich, S. Lustig, F. Steiner and H. Then, “Can one hear the shape of the Universe?,” Phys. Rev. Lett. 94 (2005) 021301, astro-ph/0412407.

[21] P. Goddard and D. Olive, “Algebras, Latices and Strings”, DAMTP-83/22, Nov 1983. 54pp. Talks given at the Workshop on Vertex Operators in Mathematics and Physics, Berkeley, Calif.

[22] A. Schild, “Discrete Spacetime and Integral Lorentz Transformations,” Phys. Rev. 73 (1947) 414-415.

[23] A. Schild, “Discrete Spacetime and Integral Lorentz Transformations,” Canadian Journal of Mathematics 1 (1949) 29-47.

[24] M. S. Costa, C. A. R. Herdeiro and C. Rebelo, “Dynamical and Thermodynamical Aspects of Interacting Kerr Black Holes,” [arXiv:0903.0264 [gr-qc]].

[25] G. Neugebauer and D. Kramer, “The superposition of two Kerr solutions,” Phys. Lett. A75 (1980) 259.

[26] C. A. R. Herdeiro and C. Rebelo, “On the interaction between two Kerr black holes,” JHEP 0810 (2008) 017 [arXiv:0808.3941 [gr-qc]].

[27] J. Nash, “The imbedding problem for Riemannian manifolds,” Annals of Math. 63 (1956) 20.

[28] M. Janet, “Sur la possibilité de plonger un espace Riemannien donné dans un espace Euclidien,” Ann. Soc. Polon. Math. 5 (1926) 38.

[29] E. Cartan, “Sur la possibilité de plonger un espace Riemannien donné dans un espace Euclidien,” Ann. Soc. Polon. Math. 6 (1927) 1.

[30] W. J. Wild and R. M. Kerns, “Surface geometry of a black hole in a magnetic field,” Phys. Rev. D 21 (1980) 332.

[31] R. Kulkarni and N. Dadhich, “Surface geometry of a rotating black hole in a magnetic field,” Phys. Rev. D 33 (1986) 2780.