Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Cadaver surgical training of orthopedic surgery during the SARS-CoV-2 pandemic in Japan

Takane Suzuki a, Toshiaki Shichinohe b, Eiji Kobayashi c,*

a Department of Bioenvironmental Medicine, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670 Japan
b Department of Gastroenterological Surgery II, Hokkaido University Faculty of Medicine, Kita 15, Nishi 7, Kita-ku, Sapporo, Hokkaido, 060-8638, Japan
c Department of Kidney Regenerative Medicine, The Jikei University School of Medicine, 3-25-8 Nishi-Shimbashi, Minato-ku, Tokyo, 105-8461, Japan

ARTICLE INFO

Article history:
Received 14 September 2022
Received in revised form 27 October 2022
Accepted 2 November 2022
Available online 14 November 2022

Keywords:
CST
Cadaver surgical training
Biomechanical research
COVID-19
Pandemic

In the field of orthopedics, there are many parts of the body that cannot be replaced by animals, and therefore, cadaver surgical training (CST) is well implemented [1–3]. In addition, along with the development of medical engineering technologies such as surgical navigation systems and robotic arms, the development of orthopedic surgery is constantly evolving. It is not yet known when and at what level surgeons should acquire new skills in technologies that are constantly being developed in order to have the greatest effect. Will the new technology make it easier for residents to perform successful surgeries, or will only experienced specialists be able to use the technology?

For example, the question was whether a young, inexperienced orthopedic surgeon could benefit from the latest robotic arm-assisted technology and successfully perform total knee arthroplasty (TKA) surgery as planned. Scholl et al. recently showed that with computer assistance, even inexperienced orthopedic surgeons could perform the surgery as planned better than with traditional manual TKA [4]. They reported, “The first robotic-arm assisted TKA (RATKA) performed by one of the two surgeons had higher stacked errors when compared with the manual procedure performed on the same cadaver. It was also noted that the stacked errors decreased after this first RATKA, indicating a learning curve”. Doesn’t this combination of an inexperienced orthopedic surgeon and robotic-arm technology indicate that learning RATKA initially via cadaver surgery training may reduce the risk to patients?

In Japan, cadavers have been used almost exclusively for education of human anatomy and basic medical research on morphology; therefore, cadavers have only been preserved with formalin fixation, which is unsuitable for dynamic assessments and surgical training. For this reason, Japanese orthopedic surgeons have conducted surgical simulations and biomechanical research abroad. The inability to use cadavers in clinical medical research has closed doors for companies that developed medical devices.

In addition, most companies had to go overseas to conduct demonstrative tests to confirm that the new medical devices they had developed would actually function in surgery. Amid these unfavorable circumstances for CST and research and development (R&D) using cadavers, the Japan Surgical Society and the Japanese Association of Anatomists have attempted to establish a more suitable environment. “Guidelines for autopsies in clinical medical education and research” were published in 2012 and have gradually progressed over time [8]. With the publication of the guidelines and the budgetary measures of the Ministry of Health, Labour and Welfare that began in 2018, 47% (n = 38/81) of medical universities in Japan are now able to implement CST.

Many institutions in Japan use Thiel’s embalming method [9–11] which maintains joint mobility; however fresh frozen cadavers, which do not suffer from tissue strength loss due to fixative solutions, are also necessary for studies that require biomechanical evaluation. The total number of CST and research programs reported to the CST Promotion Committee of the Japanese Surgical Association between 2012 and 2021 was 1173. Of these, 27% (314 programs) were reported from the field of orthopedics (Fig. 1), with a total of 21 CSTs for TKA. Following the introduction of the Ministry
Despite the unfavorable situation, using donated cadavers should be continued. Similarly, in Japan, where CST has finally started to spread, activity decreased in 2020 and 2021 due to the COVID-19 pandemic [8].

This shows the significant impact of the SARS-CoV-2 pandemic on education and research in the field of orthopedic surgery. However, it is essential to continue building a practical foundation despite the unfavorable situation. Using donated cadavers should not be completely discontinued to preserve the availability of R&D. The risk of infection among participating doctors can be reduced by testing cadavers for SARS-CoV-2 antigens and limiting the number of participants in order to avoid crowded spaces. These measures in orthopedic surgery can make clinical autopsies safer because of the minimal risk of aerosol infections from the respiratory tract and lungs of cadavers compared with the risk of aerosol infection during otolaryngology and respiratory surgeries. To maintain and develop the necessary medical standards, a minimum level of medical research using cadavers should be maintained even during a pandemic.

In 2021, the CST Promotion Committee organized a working group under a Ministry of Health, Labour and Welfare project on regional medical infrastructure research and development (“Research on promoting the dissemination of effective medical technology educational system using donated bodies”) and includes leading figures in CST from the fields of orthopedic surgery, neurosurgery, and otolaryngology. We have begun studying how to properly promote usage of cadavers in all clinical fields not only for surgical training but also development of medical devices. Recently, the working group established the following 4 proposals to stakeholders (academic societies, governments, businesses, citizens) how to properly develop clinical medicine through education and research using donated cadavers [13].

1. Improving the current reporting system: Optimize the reporting system so that each academic society can evaluate implementation programs and provide guidance.

2. Strengthening professional autonomy: Offer seminars at the conferences of each academic society to disseminate rules on implementation.

3. Prepare new guidelines and recommendations: Work with academic societies to prepare new guidelines on items of shared interest, including the implementation guidelines for medical device development, and take recommendations for academic societies by field that align with the new guidelines.

4. Activities to gain public acceptance: To gain public acceptance on the use of cadavers for clinical medicine and promote it, provide materials that review the historical background and status quo of CST in Japan.

All programs conducted at the universities were approved by their respective ethical boards. In addition, anonymized data reported to the JSS, in accordance with the guidelines, were used for the current study. No identifiable information of the participants is included in the manuscript.

Declaration of competing interest

The authors have no conflict of interest to declare.

Acknowledgment

We thank Professor Hiroshi Taneichi (Department of Orthopaedic Surgery, Dokkyo Medical University, Tochigi, Japan) for discussing this article.

References

[1] Burns DM, Bell I, Katchky R, Dwyer T, Toor J, Whyne CM, et al. Saturated salt solution cadaver-embalming method improves orthopaedic surgical skills training. J Bone Joint Surg Am 2018 Aug 1;100(15):e104.
[2] Aude A, Alhazmy H, Fortin M, Jarzem P, Duetel J, Weber MH. The use of computer-assisted surgery as an educational tool for the training of orthopedic surgery residents in pedicle screw placement: a pilot study and survey among orthopedic residents. Can J Surg 2016 Dec;59(6):391–8.
[3] Coleman JR, Lin Y, Shaw R, Kuwayama M. A cadaver-based course for humanitarian surgery improves manual skill in powerless external fixation. J Surg Res 2019 Oct;242:270–5.
[4] Scholl LY, Hampp EL, de Souza KM, Chang TC, Deren M, Vennia ZC, et al. How does robotic-arm assisted technology influence total knee arthroplasty implant placement for surgeons in fellowship training? J Knee Surg 2022 Jan;35(2):198–203.
[5] De Caro R, Boscolo-Berto R, Artico M, Bertelli E, Cannas M, Cappello F, et al. The Italian law on body donation: a position paper of the Italian College of Anatomists. Ann Anat 2021 Nov;238:151761.
[6] Hutchinson EF, Kramer R, Billings BK, Brits DM, Patter N. The law, ethics and body donation: a tale of two bequestal programs. Anat Sci Educ 2020 Jul;13(4):512–9.
[7] Kobayashi E, Nudeshima J. Current state of surgical training using cadavers in Japan compared with Western countries. Surg Today 2018 Sep;48(9):891–3.
[8] Shichinohe T, Kobayashi E. Cadaver surgical training in Japan: its past, present, and ideal future perspectives. Surg Today 2022 Feb;52(2):354–8.
[9] Miyake S, Suenaga J, Miyazaki R, Sasame J, Akimoto T, Tanaka T, et al. Thiel’s embalming method with additional intra-cerebral ventricular formalin injection (TEIF) for cadaver training of head and brain surgery. Anat Sci Int 2020 Sep;95(4):564–70.
[10] Mitsugashira H, Tokodai K, Nakashishi W, Fujio A, Kashiwadate T, Miyazawa K, et al. Usefulness of thiel-embalmed cadavers for training in organ procurement. Transplant Proc 2022 Mar;54(2):230–2.
[11] Usami T, Fujioka T, Yoshida A, Miyaue H, Yashouka T, Uchikura Y, et al. Assessment of laparoscopic training for gynecological malignancies using Thiel-embalmed human cadavers. Mol Clin Oncol 2018 Nov;9(5):51–4.
[12] Liles J, Danilowicz R, Digas JR, Safian M, Taylor D, Amendola AN, et al. In response to COVID-19: current trends in orthopaedic surgery sports medicine fellowships. Orthop J Sports Med 2021 Feb 9;9(2):2325967120987004.
[13] Kobayashi E, Shichinohe T. Assessment of reports on cadaver surgical training (CST) implementation in Japan: current status and challenges. Surg Today 2022 Jul 18:1–4.