Evaluation Method of Shear Capacity of Steel Reinforced Concrete Beam Considering Shear-span Ratio and Support Condition

Yuki NAKATA Ken WATANABE Toshiya TADOKORO Masaru OKAMOTO
Concrete Structures Laboratory, Structures Technology Division

Manabu IKEDA
Steel and Hybrid Structures Laboratory, Structures Technology Division

A number of calculation equations for the design shear capacity of steel reinforced concrete (SRC) members with simple support are given in the Design Standards for Railway Structures and Commentary (Concrete Standard). In addition, experiments for Railway Structures and Commentary (Concrete Structures) [1] (Hybrid Standard). These equations have been formulated for SRC beams with simple support considering of the effect of the shear span effective depth ratio (a/d) on the shear capacity and the knowledge of reinforced concrete (RC) deep beams. However, there are some equations that are applicable to a certain member because the scope of application for these equations is unclear. In addition, support conditions for transverse beams on railway viaducts are different from simple supports because both transverse beam ends are fixed. In this study, the scope of application for existing equations was clarified, and an equation to calculate the shear capacity of SRC beams under asymmetric moment distribution was proposed.

Keywords: steel reinforced concrete, shear capacity, shear span effective depth ratio, support condition, steel-frame ratio

1. Introduction

A number of calculation equations for the design shear capacity of steel reinforced concrete (SRC) members with simple support are given in the Design Standards for Railway Structures and Commentary (Steel-Concrete Hybrid Structures). However, there are some equations that are applicable to a certain member because the scope of application for these equations is unclear. In addition, support conditions for transverse beams on railway viaducts are different from simple supports because both transverse beam ends are fixed. In this study, the scope of application for existing equations was clarified, and an equation to calculate the shear capacity of SRC beams under asymmetric moment distribution was proposed.

$$V_{sd} = f_{yld} \cdot \frac{z_w \cdot w_d}{t_h} \quad (\gamma_h = 1.15)$$

where, $f_{yld} = (1000/d)^{0.20} \leq 1.5, \beta_d = (100p_c)^{0.20} \leq 1.5, p_c = A_d/(b_w \cdot d), f_{cd} = 0.20 \cdot f'_{cd}^{0.15} (N/mm^2), V_{cdi}$ design shear capacity of linear members without shear reinforcing steel (N), V_{cdi}: design shear capacity of stirrups, V_{cd}: design shear capacity of steel frame, d: effective height (mm), A_d: area of tension reinforcement (mm2), b_w: web width (mm), f'_{cd}: design compressive strength of concrete (N/mm2), A_s: total area of stirrups placed in s (mm2), $f_{s,yd}$: design yield strength of stirrups, θ: angle between stirrups and member axis, z: spacing of stirrups, z_w: distance from the location of compressive stress resultant to the centroid of tension steel, f_{yld}: design shear yield strength of steel (N/mm2), t_h: web height of steel frame, z_w: web thickness of steel frame.

Equation (1) is a calculation equation which is assumed to be applied to various SRC members, for example, various support and load conditions, and members for which the a/d is uncertain. Thus, the shear capacity obtained using (1) must be estimated to be smaller than the actual shear capacity under various conditions.

Figure 1 shows the comparison of V_{yld} and experimental results. The experimental results were obtained through experiments on SRC beams with simple support [3] and SRC beams with both ends fixed, in chapter four. Also, the γ_h of V_{yld} and V_{sd} were set at 1.1 in reference to Standard Specifications for Hybrid Structures in JSCE [4]. From Fig 1, V_{yld} at a stirrup ratio $p_s = A_d/(b_w \cdot s)$ was 0.48% was larger than the experimental result.

Figure 2 shows the strain distributions of stirrups on specimens at $p_s = 0.48 \% \text{ at } V_{exp}$ (refer to 4.1). The strains of stirrups have not reached the yield strain. Because the yield of stirrups is presupposed in V_{yld}, the application of V_{yld} is undesirable. It is thought that V_{yld} can be estimated to be smaller than the actual shear capacity if the upper limit of p_s used for V_{yld} is 0.22%, of which all specimens reached the yield strains (Fig 1), though the upper limit
changes according to the specifications of members [5].

3. Evaluation method of the shear capacity of SRC beams with simple support considering the effect of \(a/d \)

Equation (2), (3) are calculation equations for SRC beams with simple support considering the effect of \(a/d \) given in the Hybrid Standard.

\[
V_{\text{eff}} = V_{\text{sd}} + V_{\text{sd}}^\prime + \alpha V_{\text{sd}} \tag{2}
\]

\[
V_{\text{sd}} = \beta_a a/d \cdot f_{cd1}^{1/2} \cdot \beta_p b_s \cdot d / \gamma_b \quad (\gamma_b = 1.3)
\]

\[
\beta_a = 0.20 \cdot (0.75 + 1.4 \alpha a/d), \quad \alpha \geq 2.5
\]

\[
= 0.76 \cdot (a/d)^{1.10}, \quad 0.5 \leq a/d \leq 2.5
\]

\[
\alpha = 2.7 + 0.16 k - 0.68(a/d),
\]

\[
1.0 \leq a/d \leq 3.5, \quad 2.0 \leq k \leq 7.0, \quad 0.6 \leq \alpha \leq 2.5 \tag{3}
\]

\[
V_{\text{sd}}^\prime = V_{\text{dd}} + V_{\text{dd}} \cdot h < 2.0 \quad \text{(simple beam)}
\]

\[
V_{\text{dd}} = \beta_d \cdot \beta_p \cdot b_s \cdot f_{cd2} \cdot d / \gamma_b \quad (\gamma_b = 1.3)
\]

where, \(\beta_a = 5/[(1+a/d^2)], f_{cd1} = 0.19 f_{cd1}^{1/2}, a/d: \) shear span effective height ratio, \(k: \) steel-frame ratio \((=100 \cdot A_s (b_s \cdot d))\) (%), \(A_s: \) area of steel frame, \(l: \) span of beam, \(h: \) section height of beam. \(V_{\text{dd}} \) is the sum of \(V_{\text{dd}}, \) which is the design shear capacity of a deep beam, and \(V_{\text{sd}} \) [1]. Moreover, \(\beta_d \) is 1.0 in this study.

The applicable scope of (3) is \(h < 2.0 \) (simple beam), and it nearly equals to \(a/d = 1.0 \) in the case that the distance from the support front end to the loading point \(a \) is \(2.0 \). So that, it follows that both (2) and (3) are applicable in the region of a small \(a/d \).

By the way, \(V_{\text{sd}} \) \((0.5 \leq a/d \leq 2.5)\) of (2) and \(V_{\text{dd}} \) of (3) interfaced with the equation based on the experiments of footings [6] and the design shear capacity of deep beams. These equations, however, were unified and modified into the equation of shear compression capacity \(V_{\text{dd}}, \) which considered the effect of stirrups in the Concrete Standard [2].

\[
V_{\text{dd}} = \beta_d \cdot \beta_p \cdot b_s \cdot f_{cd2} \cdot b_s \cdot d / \gamma_b \quad a/d < 2.0 \quad (\gamma_b = 1.2.0) \tag{4}
\]

where, \(\beta_a = 4.2 \cdot (100 p_{w}^{1/2} \cdot (a/d - 0.75) / \gamma_b^{1/2} \) (when \(p_{w} < 0.002), \beta_a \) is taken as 0), \(\beta_p = (1+(100 p_{w}^{1/2}) / p_{w}: \) shear reinforcement ratio (when \(p_{w} < 0.002), \beta_p \) is taken as 0)

Therefore, \(V_{\text{dd}} \) shall be applicable at \(a/d < 2.0, \) and shear capacity \(V_{\text{uf}} \) of SRC beam with simple support shall be obtained using (5).

\[
V_{\text{uf}} = V_{\text{sd}} + V_{\text{sd}} \cdot 2.0 \leq a/d \leq 3.5 \tag{5}
\]

\[
= V_{\text{dd}} + \alpha \cdot V_{\text{sd}}, \quad a/d < 2.0
\]

\[
V_{\text{sd}} = 0.20 \cdot (0.75 + 1.4 \alpha a/d) \cdot f_{cd1}^{1/2} \cdot \beta_p b_s \cdot d / \gamma_b \quad (\gamma_b = 1.3)
\]

The \(\gamma_b \) of \(V_{\text{sd}} \) and \(V_{\text{uf}} \) were 1.1 [4]. Figure 3 shows the comparison of \(V_{\text{uf}}, \) which is the maximum value of the shear force \(V_{\text{uf}} \) obtained experiments on SRC beams with simple support [3]. It was confirmed that \(V_{\text{uf}} \) could estimate the experimental results \(V_{\text{uf}} \). Also, (1) shall be used when \(a/d \) is over 3.5 or unknown.

Fig. 1 Validation of accuracy of \(V_{\text{uf}} \)

Fig. 2 Stirrup strain distribution \((p_{w}=0.48\%)\)

3. Evaluation method of the shear capacity of SRC beams with simple support considering the effect of \(a/d \)

![Image](Fig_3.png)

Fig. 3 Validation of accuracy of \(V_{\text{uf}} \)

4. Investigation on the shear capacity of SRC beams with both ends fixed

4.1 Summary of experimental results

Table 1 shows the list of specimens of SRC beams with both ends fixed under antisymmetric moment distribution [7]. It should be noted that stirrups on specimens with \(p_{w}=0.48\% \) did not yield (Fig. 2), shear forces contributed by steel frames, stirrups and concrete interact with each other [7] and \(V_{\text{exp}} \) increases if the width of the flange decreases (Fig. 4). \(V_{\text{exp}} \) is the shear force at the point where stiffness changes just after the web or flange of the steel frame yields. It is considered that the flexural stiffness before the flexural yield point is commonly applied if a shear failure member is modeled as a beam element.

In this chapter, experimental results were reproduced using the 3D finite element method (FEM), and shear mechanisms were analytically investigated after validity of the analysis model was verified.
4.2 Analysis outline

3D nonlinear analyses were conducted with DIANA (ver.9.4.4). Figure 5 shows an example of the analysis model. The whole span and a half of the cross-section width of the specimen was discretized. Adopted elements are shown in Fig.5, and the stress transfer between the steel frame and the concrete were expressed by setting a series of interface elements. The parabolic model and the tension softening model proposed by Hordijk [8] were utilized as the concrete constitutive model for compression and tension. The fracture energy for demonstrating the softening curve was calculated according to the Concrete Standard and a study proposed by Nakamura and Higai [9].

Elements near loading and supporting points in two stubs at both ends of the test span were assumed to be a perfect elastic body having an elastic modulus. The stress-strain relationship of the rebar was expressed as bi-linear. The rotating crack model was used for the expression of cracked concrete element.

4.3 Reproduction analyses of experimental results

Figure 6 shows the comparisons of shear force- relative displacement relationships of the analyses and experiments. Analytical results, corresponding to the case where the adhesional properties between the steel frame and the concrete were perfect (Perfect bond) and did not exist (No bond), were shown. Initial stiffness of No bond corresponded to the experiments. After that, stiffness was changed with the occurrence of diagonal cracks and horizontal cracks along the longitudinal rebars and the flanges of the steel frame in the experiments, and the shear forces at points where stiffness changed in the Perfect bond were larger than in the experiments. On the other hand, stiffness after diagonal cracks occurred and V_{exp} in the experiments tended to be between Perfect bond and No bond. Though the adhesional properties between steel frame and the concrete in the experiments were unknown, the analytical model was considered valid because the experimental results fell between those obtained from the analysis on the assumption of Perfect bond and those assuming No bond.

Table 1 List of specimens

Specimen	b_w (mm)	a/d	f_c (N/mm²)	Longitudinal rebar	Stirrup	Steel frame	V_{exp} (kN)
SRC1	300	1.0	25.6	D29 (381)	970	244 × 175 × 7 × 11	509
SRC2	300	1.5	24.5	D25 (225)	968	250 × 200 × 9 × 14	629
SRC3	300	1.5	27.4	D28 (256)	941	250 × 200 × 9 × 14	463
SRC4	300	1.5	28.1	D10 (100)	0.48	379	532
SRC5	400	1.0	34.4	D25 (225)	968	250 × 200 × 9 × 14	747
SRC6	400	1.5	32.6	D25 (225)	968	250 × 200 × 9 × 14	747
SRC7	400	1.5	29.0	D25 (225)	941	250 × 200 × 9 × 14	664
SRC8	400	1.5	66.4	D25 (225)	941	250 × 200 × 9 × 14	920
SRC9	400	2.5	36.5	D29 (286)	941	250 × 200 × 9 × 14	590
SRC10	400	2.5	34.9	D29 (286)	941	250 × 200 × 9 × 14	493
SRC11	400	1.5	33.9	D25 (225)	972	125 × 200 × 9 × 14	446
SRC12	400	1.0	33.0	D25 (225)	972	125 × 200 × 9 × 14	556
SRC13	400	1.5	35.2	D25 (225)	993	250 × 200 × 9 × 14	463

*1 SRC1-13 is buildup steel, others are rolled material, *2 Height of steel frame × width of flange × thickness of web of steel frame × thickness of flange (mm), *3 Cut flange of steel frame (rolled material) with 250 × 250 × 9 × 14mm

Fig. 4 Relationship of shear force and relative displacement

Fig. 5 An example of analysis model (a/d=1.0)
4.4 Investigation of shear mechanisms

4.4.1 Outline of parameter analyses

Analyses with parameters such as thickness of the web of the steel frame t_w, stirrup ratio p_w, width of flange and the adhesional properties between the steel frame and the concrete, were conducted using the model shown in 4.3 to investigate the shear mechanisms and the effect of reinforcement with steel.

Table.2 shows case specific analyses. The longitudinal rebar was elastic and the elastic modulus was 2.0×10^5 N/mm2. The yield strength and elastic modulus of the stirrups were 380 N/mm2 and 2.0×10^5 N/mm2, respectively. The compressive strength of concrete f'_c was 27 N/mm2. The tension strength and elastic modulus of the concrete were calculated using the Concrete Standard. The fracture energies of compression and tension were 50 N/mm and 0.10 N/mm, respectively. The yield strength and elastic modulus of the steel frame were 300 N/mm2 and 2.0×10^5 N/mm2, respectively. The flanges of the steel frame were elastic.

4.4.2 Effect of the stirrup ratio p_w

Figure 7 shows stirrup strain distribution at the maximum value of shear force V_{ana} obtained from the analyses. Stirrup strain fell with the increase in p_w, and did not reach yield strain at $p_w = 0.23\%$. This confirmed that the minimum principal stress stood out in the compression zone of both ends of the test span. Thus, it is thought that stirrups become less likely to yield because the damage of the concrete precedes the yield of the stirrups with the increase in p_w. In the other cases, stirrup strain also fell with the increase in p_w though the distribution shapes of stirrup strain were different among the specimens.

Figure 8 shows examples of the relationship between p_w and V_{ana}. In each case, stirrups become less likely to yield at $p_w = 0.09\%$. Figure 9 shows an example of the relationship between p_w and V_{ana}. In each case, stirrups become less likely to yield at $p_w = 0.09\%$.

Table 2 Analyses cases

CASE	Base specimens	Property of interface	Width of flange (mm)	a/d	Stirrup ratio p_w (%)	Thickness of web of steel frame t_w (mm)	
1	SRC1 ~ 4	No bond	175	1.0	1.5 2.0 0.00 0.10 0.20 0.25 0.30 0.35 0.40 0.45 0.50	3 6 9 12 15	
2	Perfect bond			1.0	1.5 2.0 0.00 0.10 0.20		
3	No bond		250	1.0	1.5	0.00 0.05 0.09 0.19 0.23	3 6 9
4	Perfect bond			1.0	1.5	0.00 0.05 0.09 0.19 0.23	
5	No bond		113	1.0	0.00 0.05 0.09 0.19 0.23	3 6 9	
6	Perfect bond			1.0	0.00 0.05 0.09 0.19 0.23		

Fig. 6 Relationship of shear force and relative displacement (Comparison of analyses and experiments)

Fig. 7 Stirrup strain distribution (CASE 4)

Fig. 8 The effect of p_w on V_{ana} (CASE 3,4) ($a/d=1.0$)

QR of RTRI, Vol. 55, No. 4, Nov. 2014
yield at relatively small values of $p_w=0.19$-0.50 \%. It is found that the rate of increase in V_{uana} falls against as p_w increases.

4.4.3 Effect of the width of the flange

Figure 9 shows the relationships between p_w and the ratio of V_{uana} for CASE 5 to 3 and CASE 6 to 4. Regarding the analytical conditions, the only difference between CASE 5 and 3, and CASE 6 and 4, is flange width. In common with each comparison, V_{uana} ratios had a tendency to be over 1.0 in case p_w or t_w is small. V_{uana} ratios decreased p_w or t_w increased.

When flange width was small, the flexural yield of both ends of the steel frame preceded the shear yield of center with the increase in p_w or t_w. As a result, the region of the shear yield of the steel frame decreases. Thus, the ratios of V_{uana} decrease with the increase in p_w or t_w because the shear force contributed by the steel frame decreases in addition to the increase of the shear force contributed by steel. This tendency, which was caused by the flexural yield of both ends of the steel frame, was confirmed in the experiments (comparison between SRC9 and SRC10).

Figure 10 shows an example of the distributions of minimum principal stress at V_{uana}. This was shown in eight elements (eight layers) divided width ways. The amplitude of the minimum principal stress and the distributional width became large in all layers as the width of the flanges decreased. In particular, as the flange got smaller, a significant amount of the load was transferred and V_{uana} increased because the amplitude of the minimum principal stress and the distributional width of the layers (1-6 layers) positioned outside the flanges were large.

5. Proposed calculation equation for the shear capacity of SRC beams with both ends fixed in consideration of the effect of a/d

A calculation equation for the shear capacity of SRC beams with both ends fixed for a small a/d was proposed on the basis of the aforementioned experiments and analyses. The proposed equation was expressed by adding the effect of the steel frame to the calculation equation of the shear capacity of RC beams with both ends fixed V_{yd4} [10].

$$V_{\text{yd4}} = V_{\text{cd4}} + V_{\text{atd}}, \quad 1 \leq a/d \leq 2.0 \quad (6)$$

$$V_{\text{cd4}} = (1.0 - 0.75 + 4.0(a/d)/f_{\text{cd}}p_w f_{\text{yd}} b_w d / \gamma_h \quad (\gamma_h = 1.3)$$

$$V_{\text{atd}} = p_\gamma \cdot p_\gamma' \cdot \gamma_b \cdot \cot \theta \cdot \exp \{0.44 \times (a/d) - 0.35 p_\gamma + 0.58 \} \leq 1.0$$

Figures 11 shows the comparisons of the values, which is after subtracting V_{cd4} ($\gamma_h = 1.0$) in consideration of the upper limit of p_w and V_{atd} ($\gamma_h = 1.0$) from V_{exp} (SRC1-7, 11-13), and V_{atd}. A steel ratio k % was selected as a comprehensive parameter, which expresses the interaction of the effect of the reinforcement by the steel frame and the effect of the width of the flanges. It was found that $(V_{\text{exp}}-V_{\text{cd4}})/V_{\text{cd4}}$ correlated with k. Therefore, shear capacity contributed by material other than the steel V_{cd4} shall be obtained from (7), in which V_{cd4} is multiplied by (1-0.08k). (1-0.08k) was obtained by linear regression in Fig.11, and when $k=0$, (1-0.08k) shall be 0.

$$V_{\text{cd4}}=1-(1-0.08k) \cdot V_{\text{cd4}} \quad (7)$$

where, $3.0 \leq k(\%) \leq 5.1$.

The equation to calculate the shear capacity of SRC beams with both ends fixed is shown as (8).

$$V_{\text{yd4}}=V_{\text{cd4}}+V_{\text{atd}}+V_{\text{et}}, \quad 1 \leq a/d < 2.0 \quad (8)$$

where, V_{et}: when $p_w>0.22$ %, p_w is taken as 0.22 %.

Figure 12 shows the comparisons between V_{yd4} and V_{exp}. It was confirmed that V_{yd4} could be used to accurately estimate the results obtained by experimental means, and all
experimental results could be safely estimated by considering γ_b. Also, (1) shall be used when $a/d \geq 2.0$.

6. Conclusions

(1) The scope of application of a/d in the case of SRC beams with simple support, was clarified for existing equations while matching the calculation method of shear capacities to the one in the Concrete Standards. An equation to calculate shear capacity of SRC beams with simple support in consideration of the effect of a/d was proposed.

(2) For SRC beams with both ends fixed, stirrups became less likely to yield because the damage of the concrete preceded the yield of the stirrups with the increase in p_w. So, it was found that the shear capacity of stirrups had an upper limit.

(3) The shear capacity increased with the decrease in the width of the flanges because the amplitude of the minimum principal stress and the distributional width of the concrete outside the flanges were large.

(4) An equation to calculate the shear capacity of SRC beams with both ends fixed in consideration of the effect of the a/d was proposed on the basis of the experiments and analyses.

The contents of this paper will be described in the Design Standards for Railway Structures (Steel-Concrete Hybrid Structures).

Acknowledgement

The contents of this paper have been discussed in the committee on Design Standards for Railway Structures (Steel-Concrete Hybrid Structures). The authors would like to express their appreciation for contributions from committee members, in particular, Prof. Dr. Tamon Ueda (Hokkaido University) : chairman, Prof. Dr. Akinori Nakajima (Utsunomiya University) : secretary-general.

References

[1] Railway Technical Research Institute, Design Standard for Railway Structures and Commentary (Steel-Concrete Hybrid Structures). Maruzen, 2002 (in Japanese).

[2] Railway Technical Research Institute, Design Standard for Railway Structures and Commentary (Concrete Structures). Maruzen, 2004 (in Japanese).

[3] Kiyomitsu, M., Manabu, I., Tadatomo, W. and Shinya, T., “Shear Strength of Concrete Encased Steel Members,” Journal of Japan Society of Civil Engineers, 626/1-48, pp.207-218, 1999 (in Japanese).

[4] Japan Society of Civil Engineers, Standard Specifications for Hybrid Structures -2009, Maruzen, 2009 (in Japanese).

[5] Junichi, S., Satoshi, T., Tadatomo, W., Shigehiko, S. and Takeshi M., “Shear Strength of Reinforced Concrete Beams with a Large Amount of Shear Reinforcement,” Journal of Japan Society of Civil Engineers, Ser.E2 (Materials and Concrete Structures), JSCE, Vol.69, No.2, pp.192-206, 2013 (in Japanese).

[6] Tadayoshi, I., Yoshihumi, M. and Keiichi, S., “Proposed Design Method of the Shear Strength of Reinforced Concrete Footings with a Few Piles,” Journal of Japan Society of Civil Engineers, JSCE, No.337, pp.197-204, 1983 (in Japanese).

[7] Yuki, N., Ken, W., Toshiya, T., Manabu, I. and Masaru, O., “Study on Stress Distribution and Reinforced Effect on Shear of Steel Reinforced Concrete Beams under Antisymmetric Moment Diagram,” Proceedings of the 10th Symposium on Research and Application of Hybrid and Composite Structures, AIJ and JSCE, pp.10-1 – 10-8, 2013 (in Japanese).

[8] Hordijk, A. D., “Local Approach to Fatigue of Concrete,” Delft University of Technology, 1991.

[9] Nakamura, H. and Higai, T., “Compressive fracture energy and fracture zone length of concrete, seminar on post-peak behavior of RC structures subjected to seismic loads,” JCI-C51E, Vol.2, pp.259-272, 1999.

[10] Tomaaki, M., Toshiya, T. and Yukihiro, T., “Evaluation Method for Shear Strength of Reinforced Concrete Beam Subjected to Antisymmetrical Moment,” RTRI REPORT, Vol.22, No.10, pp.17-22, 2008 (in Japanese).
Authors

Yuki NAKATA
Researcher, Concrete Structures Laboratory, Structures Technology Division
Research Areas: Concrete Structures

Ken WATANABE, Ph.D.
Assistant Senior Researcher, Concrete Structures Laboratory, Structures Technology Division
Research Areas: Concrete Structures

Toshiya TADOKORO, Dr. Eng.
Senior Researcher, Concrete Structures Laboratory, Structures Technology Division
Research Areas: Concrete Structures

Masaru OKAMOTO, Dr. Eng.
Laboratory Head, Concrete Structures Laboratory, Structures Technology Division
Research Areas: Concrete Structures

Manabu IKEDA, Dr. Eng.
Laboratory Head, Steel and Hybrid Structures Laboratory, Structures Technology Division
Research Areas: Hybrid Structures, Steel Structures