Nonequilibrium effects of reactive flow based on gas kinetic theory*

Xianli Su and Chuandong Lin

Sino-French Institute of Nuclear Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China

E-mail: linchd3@mail.sysu.edu.cn

Received 17 November 2021, revised 16 January 2022
Accepted for publication 10 February 2022
Published 8 March 2022

Abstract
How to accurately probe chemically reactive flows with essential thermodynamic nonequilibrium effects is an open issue. Via the Chapman–Enskog analysis, the local nonequilibrium particle velocity distribution function is derived from the gas kinetic theory. It is demonstrated theoretically and numerically that the distribution function depends on the physical quantities and derivatives, and is independent of the chemical reactions directly as the chemical time scale is longer than the molecular relaxation time. Based on the simulation results of the discrete Boltzmann model, the departure between equilibrium and nonequilibrium distribution functions is obtained and analyzed around the detonation wave. In addition, it has been verified for the first time that the kinetic moments calculated by summations of the discrete distribution functions are close to those calculated by integrals of their original forms.

Keywords: discrete Boltzmann method, reactive flow, detonation, nonequilibrium effect

(Some figures may appear in colour only in the online journal)

1. Introduction

Chemical reactive flow is a complex physicochemical phenomenon which is ubiquitous in aerospace, energy and power fields, etc [1, 2]. It exhibits multiscale characteristics in temporal and spatial scales, incorporates various hydrodynamic and thermodynamic nonequilibrium effects [3]. The nonequilibrium effects exert significant influences on fluid systems especially in extremely complex environments [3], such as the spacecraft reentry into the atmosphere [4], multi-component reactive flow in porous media [5, 6], fuel cells [7, 8], phase separation [9], hydrodynamic instability [10], and detonation [11, 12]. At present, how to accurately probe, predict and analyze chemical reactive flows with essential nonequilibrium effects is still an open issue.

Actually, there are various classes of methodologies to retain the information of velocity distribution functions for fluid systems. For example, on the basis of the distribution function, Nagnibeda et al established the kinetic theory of transport processes and discussed the features of complex system strongly deviating from the thermal and chemical equilibrium [3]. Besides, on the microscopic level, the distribution function can be obtained by using the direct simulation Monte Carlo [13, 14], or molecular dynamics [15, 16]. As a kinetic mesoscopic methodology, the discrete Boltzmann method (DBM) is a special discretization of the Boltzmann equation in particle velocity space, and has been successfully developed to recover and probe the velocity distribution functions of nonequilibrium physical systems [11, 17–20].

In fact, the DBM is based on statistical physics and regarded as a variant of the traditional lattice Boltzmann method (LBM) [21–24]. Compared to standard LBMs, the DBM can address more issues, in particular to simulate the compressible fluid systems with significant nonequilibrium effects [17, 20, 25–30]. At present, there are two means to recover the velocity distribution functions. One relies on the analysis of the detailed nonequilibrium physical quantities to obtain the main features of the velocity distribution function in a qualitative way [11, 17, 18]. The other is to recover the detailed velocity distribution function by means of macroscopic quantities and their spatio derivatives quantitatively, which can be derived by using the Chapman–Enskog...
expansion [19, 20]. The two methods are consistent with each other [20].

In the rest of this paper, we firstly derive the nonequilibrium velocity distribution function of reactive fluid based on the Boltzmann equation in section 2. In section 3, we give a brief introduction of the DBM for compressible reactive flows. In section 4, we verify the consistency of the theoretical and numerical results of the equilibrium or nonequilibrium manifestations of reactive flows. The nonequilibrium and equilibrium distribution functions as well as their differences are obtained and analyzed in section 5. Finally, section 6 concludes.

2. Derivation of velocity distribution function of reactive fluid

Now, let us introduce the popular Bhatanger–Gross–Krook (BGK) Boltzmann equation

\[
\frac{\partial f}{\partial t} + \mathbf{v} \cdot \nabla f = \frac{1}{\tau} (f - f^{eq}) + R,
\]

where \(\tau\) denotes the relaxation time, \(t\) the time, \(f\) the velocity distribution function. The equilibrium distribution function [31, 32] is

\[
f^{eq} = n \left(\frac{1}{2\pi T} \right)^{D/2} \left\{ \frac{1}{(2\pi T)^{1/2}} \right\} \exp \left[-\frac{\mathbf{v} - \mathbf{u}^2}{2T} - \frac{\eta^2}{2TT^2} \right],
\]

where \(D = 2\) denotes the dimensional translational degree of freedom, \(I\) stands for extra degrees of freedom due to vibration and/or rotation, and \(\eta\) represents the corresponding vibrational and/or rotational energies. Here \(n\) is the particle number density, \(\mathbf{u}\) the hydrodynamic velocity, \(T\) the temperature, \(m = 1\) the particle mass, and \(\rho = nm\) the mass density.

On the right-hand side of equation (1), \(R\) is the chemical term describing the change rate of the distribution function due to chemical reactions, i.e.

\[
R = \left. \frac{\partial f}{\partial t} \right|_r.
\]

To derive the explicit expression of the chemical term, the following qualifications are assumed [26]: \(t_{mr} < t_c < t_{sys}\), where \(t_{mr}\), \(t_c\), and \(t_{sys}\) represent the time scale of molecular relaxation, the time scale of chemical reaction and the characteristic time scale of the system, respectively. Under the condition \(t_{mr} < t_{cr}\), equation (3) can be approximated by

\[
R \approx \left. \frac{\partial f^{eq}}{\partial t} \right|_r = \left. \frac{\partial f^{eq}}{\partial \rho} \right|_r \frac{\partial \rho}{\partial t} + \left. \frac{\partial f^{eq}}{\partial \mathbf{u}} \right|_r \frac{\partial \mathbf{u}}{\partial t} + \left. \frac{\partial f^{eq}}{\partial T} \right|_r \frac{\partial T}{\partial t},
\]

as \(f^{eq}\) is the function of \(\rho\), \(\mathbf{u}\), and \(T\). Furthermore, the assumption \(t_c < t_{sys}\) leads to the following conclusion: the chemical reaction results in the change of temperature directly, as the density and flow velocity remain unchanged during the rapid reaction process. Consequently, equation (4) can be reduced to

\[
R = \left. \frac{\partial f^{eq}}{\partial T} \right|_r \frac{\partial T}{\partial t}.
\]

Substituting equation (2) into equation (5) gives

\[
R = f^{eq} \times \left\{ \frac{D + 1}{2T} + \frac{\mathbf{v} - \mathbf{u}^2}{2T^2} + \frac{\eta^2}{2TT^2} \right\} \frac{2Q\lambda^*}{D + 1},
\]

where \(Q\) indicates the chemical heat release per unit mass of fuel, \(\lambda^*\) is the change rate of the mass fraction of chemical product. Additionally, a two-step reaction scheme is employed to mimic the essential dynamics of a chain-branching reaction of detonation in this paper [33].

Via the Chapman–Enskog analysis, we derive the first-order approximation formula of the velocity distribution function of reacting flows through the macroscopic quantities and their spatial and temporal derivatives

\[
f = f^{eq} - \tau \left[\frac{\partial f^{eq}}{\partial \rho} \frac{\partial \rho}{\partial t} + v_r \frac{\partial \rho}{\partial r_3} \right] + \frac{\partial f^{eq}}{\partial T} \left(\frac{\partial T}{\partial t} + v_r \frac{\partial T}{\partial r_3} \right) + \frac{\partial f^{eq}}{\partial u_3} \left(\frac{\partial u_3}{\partial t} + v_r \frac{\partial u_3}{\partial r_3} \right)
\]

\[
+ \tau \left(\frac{\partial f^{eq}}{\partial T} \frac{\partial T}{\partial t} \right),
\]

in terms of

\[
\frac{\partial f^{eq}}{\partial \rho} = f^{eq} \times \frac{1}{\rho},
\]

\[
\frac{\partial f^{eq}}{\partial T} = f^{eq} \times \left(\frac{D + 1}{2T} + \frac{\mathbf{v} - \mathbf{u}^2}{2T^2} + \frac{\eta^2}{2TT^2} \right),
\]

and

\[
\frac{\partial f^{eq}}{\partial u_3} = f^{eq} \times \frac{(v_{3r} - u_{3r})}{T}.
\]

Note that the change rate of temperature consists of two parts, i.e.

\[
\frac{\partial T}{\partial t} = \frac{\partial T}{\partial t}_r = \frac{2T}{D + 1} \frac{\partial u_{3r}}{\partial r_3} - u_{3r} \frac{\partial T}{\partial r_3},
\]

on the right-hand side of which the first term describes the part caused by the heat release of chemical reactions

\[
\frac{\partial T}{\partial t}_r = \frac{2Q\lambda^*}{D + 1},
\]

and the other two terms reflect the parts due to the spatial gradients of velocity and temperature.

Therefore, equation (7) can be simplified as

\[
f = f^{eq} - \tau \left[\frac{\partial f^{eq}}{\partial \rho} \frac{\partial \rho}{\partial t} + v_r \frac{\partial \rho}{\partial r_3} \right] + \frac{\partial f^{eq}}{\partial T} \left(\frac{2T}{D + 1} \frac{\partial u_{3r}}{\partial r_3} - u_{3r} \frac{\partial T}{\partial r_3} + v_r \frac{\partial T}{\partial r_3} \right) + \frac{\partial f^{eq}}{\partial u_3} \left(\frac{\partial u_3}{\partial t} + v_r \frac{\partial u_3}{\partial r_3} \right),
\]
with
\[
\frac{\partial \rho}{\partial t} = -\rho \frac{\partial u_i}{\partial x_i} - u_i \frac{\partial \rho}{\partial x_i},
\]
(14)
\[
\frac{\partial u_i}{\partial t} = -\frac{T}{\rho} \frac{\partial \rho}{\partial x_i} - \frac{\partial T}{\partial x_i} - u_j \frac{\partial u_i}{\partial x_j}.
\]
(15)

It can be found from equations (11), (12), (14) and (15) that the temporal derivatives can be expressed by the spatial derivatives. Those formulas are obtained from the Chapman–Enskog expansion. In fact, there are two ways to calculate the simulation results of \(\frac{\partial \rho}{\partial t} \) or \(\frac{\partial u_i}{\partial t} \). One method is to calculate the temporal change rate directly. For example
\[
\frac{\partial \rho}{\partial t} = \frac{\rho^{t+\Delta t} - \rho^{t-\Delta t}}{2\Delta t}.
\]
The other method is to use equation (11), (14) and (15) where the spatial derivatives can be computed by the finite difference scheme. The results given by the two methods are similar to each other.

Moreover, it can be inferred from equation (13) that the chemical reaction term is eliminated, so it has no contribution to the velocity distribution function directly. This is due to the aforementioned assumption that the chemical time scale is longer than the molecular relaxation time. The case where the chemical time scale is close to or less than the molecular relaxation time is not considered in this work.

3. Discrete Boltzmann method

In this work, the BGK DBM is used to mimic and measure the nonequilibrium reactive flows [34]. The discretization of the model in particle velocity space takes the form
\[
\frac{\partial f_i}{\partial t} + v_{io} \frac{\partial f_i}{\partial x_i} = \frac{1}{\tau} (f_i - f_i^{eq}) + R_i,
\]
(16)
where \(f_i \) and \(f_i^{eq} \) represent the discrete distribution function and its equilibrium counterpart, respectively. \(v_i \) denotes the discrete velocity with \(i = 1, 2, 3, \ldots, N \), and \(N = 16 \) is the total number of discrete velocities. Here a two-dimensional sixteen-velocity model is employed, see figure 1.

Physically, the DBM is approximately equivalent to a continuous fluid model plus a coarse-grained model for discrete effects. Meanwhile, the DBM is roughly equivalent to a hydrodynamic model plus a coarse-grained model of thermodynamic nonequilibrium behaviors. For the sake of recovering the NS equations in the hydrodynamic limit, the discrete equilibrium distribution functions \(f_i^{eq} \) are required to satisfy the following relationship
\[
\int f_i^{eq} \Psi dv dv' = \sum f_i^{eq} \Psi_i,
\]
(17)
with the particle velocities \(\Psi_i = 1, v, (v \cdot v + \eta^2), v v, (v \cdot v + \eta^2) v v, v v v, (v \cdot v + \eta^2) v v v \), and the corresponding discrete velocities, \(\Psi = 1, v, (v \cdot v + \eta^2), v v, (v \cdot v + \eta^2) v v, v v v, (v \cdot v + \eta^2) v v v \).

Furthermore, one merit of the DBM is to capture nonequilibrium information described by the following (but not limited to) high-order kinetic moments
\[
M_2 = \sum f_i v_i v_i,
\]
(18)
\[
M_2^{eq} = \sum f_i^{eq} v_i v_i,
\]
(19)
\[
M_{3,1} = \sum f_i (v_i \cdot v_i + \eta_i^2) w_i,
\]
(20)
\[
M_{3,1}^{eq} = \sum f_i^{eq} (v_i \cdot v_i + \eta_i^2) w_i,
\]
(21)
\[
M_3 = \sum f_i v_i v_i w_i,
\]
(22)
\[
M_{3,2}^{eq} = \sum f_i^{eq} v_i v_i w_i,
\]
(23)
\[
M_{4,2} = \sum f_i v_i v_i (v_i \cdot v_i + \eta_i^2) w_i,
\]
(24)
\[
M_{4,2}^{eq} = \sum f_i^{eq} v_i v_i (v_i \cdot v_i + \eta_i^2) w_i,
\]
(25)
\[
\Delta_2 = M_2 - M_2^{eq},
\]
(26)
\[
\Delta_{3,1} = M_{3,1} - M_{3,1}^{eq},
\]
(27)
\[
\Delta_3 = M_3 - M_3^{eq},
\]
(28)
\[
\Delta_{4,2} = M_{4,2} - M_{4,2}^{eq},
\]
(29)
where \(M_2, M_{3,1}, M_3 \) and \(M_{4,2} \) are the kinetic moments of the distribution functions, \(M_2^{eq}, M_{3,1}^{eq}, M_3^{eq} \) and \(M_{4,2}^{eq} \) denote the corresponding equilibrium counterparts, \(\Delta_2, \Delta_{3,1}, \Delta_3 \) and \(\Delta_{4,2} \) are the differences between them. Here, \(\Delta_2 \) represents the viscous stress tensor and disorganized momentum flux, \(\Delta_{3,1} \) and \(\Delta_3 \) are relevant to the disorganized energy fluxes, \(\Delta_{4,2} \) is related to the flux of unorganized energy flux.
4. Verification and validation

To verify the consistency of theoretical and numerical results of the nonequilibrium manifestations of reactive flows, firstly, we simulate a reaction process in a uniform rest system. The specific-heat ratio is $\gamma = 5/3$, the chemical heat release $Q = 1$, the space step $\Delta x = \Delta t = 5 \times 10^{-5}$, the time step $\Delta t = 2 \times 10^{-6}$, and the discrete velocities $(v_x, v_y, v_x, v_y, \eta_x, \eta_y, \eta_y, \eta_y) = (3.7, 3.2, 1.4, 1.4, 2.4, 0, 0, 0)$, respectively. In order to possess a high computational efficiency, only one mesh grid $(N_x \times N_y = 1 \times 1)$ is used, and the periodic boundary condition is adopted in each direction, because the physical field is uniformly distributed. It is found that all simulated nonequilibrium physical quantities (including $\Delta 2$, $\Delta 3$, and $\Delta 4$) remain zero during the evolution. Therefore, in the process of the chemical reaction, the deviation of velocity distribution function f from its equilibrium counterpart f^{eq} is zero, i.e., $f = f^{eq}$. Besides, all physical gradients are zero in the simulation process due to the uniform distribution of physical quantities. Consequently, it is numerically verified that the chemical reaction does not contribute to the nonequilibrium effects directly. This result is consistent with the aforementioned theory that the distribution function depends on the physical quantities and derivatives, and is independent of chemical reactions directly, see equation (13).

For the purpose of further validation, the one-dimensional (1D) steady detonation is simulated. The initial configuration, obtained from the Hugoniot relation, takes the form

\[
\left\{ (\rho, u_x, u_y, T, \xi, \lambda)_L = (1.38549, 0.70717, 0, 2.01882, 1, 1), \right.
\left\{ (\rho, u_x, u_y, T, \xi, \lambda)_R = (1, 0, 0, 1, 0, 0), \right.
\]

where the subscript L indicates $0 \leq x \leq 0.00555$, and R indicates $0.00555 < x \leq 0.555$. The Mach number is 1.96. To ensure the resolution is high enough, the grid is chosen as $N_x \times N_y = 1100 \times 1$, other parameters are the same as before. Furthermore, the inflow and/or outflow boundary conditions are employed in the x direction, and the periodic boundary condition is adopted in the y direction.

Figure 2 displays the kinetic moments of velocity distribution function ($M_{2,xx}$, $M_{2,xy}$, $M_{2,yy}$, $M_{3,1,x}$, $M_{3,1,y}$, $M_{3,1,y}$), the equilibrium counterparts ($M_{2,xx}^{eq}$, $M_{2,xy}^{eq}$, $M_{2,yy}^{eq}$, $M_{3,1,x}^{eq}$, $M_{3,1,y}^{eq}$), and the nonequilibrium quantities ($\Delta 2_{xx}$, $\Delta 2_{xy}$, $\Delta 2_{yy}$, $\Delta 3_{1,x}$, $\Delta 3_{1,y}$) around the detonation front. Here $\Delta 2_{xx}$ represents twice the disorganized energy in the x degree of freedom, and $\Delta 2_{xy}$ twice the disorganized energy in the y degree of freedom. $\Delta 3_{1,x}$ and $\Delta 3_{1,y}$ denote twice the disorganized energy fluxes in the x and y directions, respectively. The legends are in each plot, where the dashed line is located at the position $x = 0.50375$.

In figure 2(a), the solid squares, circles and triangles stand for the DBM results of kinetic moments of distribution

$M_{2,xx}$, $M_{2,xy}$, and $M_{2,yy}$, respectively. The hollow squares, circles and triangles represent the DBM results of the kinetic moments of equilibrium distribution function $M_{2,xx}^{eq}$, $M_{2,xy}^{eq}$, and $M_{2,yy}^{eq}$, respectively. And the solid lines indicate the corresponding analytic solutions, $M_{2,xx}^{eq} = \rho(T + u_x^2)$, $M_{2,xy}^{eq} = \rho u_x u_y$, and $M_{2,yy}^{eq} = \rho(T + u_y^2)$, respectively. With the detonation wave propagating from left to right, $M_{2,xx}$, $M_{2,xy}$, $M_{2,yy}$, $M_{3,1,x}$, $M_{3,1,y}$ first increase due to the compressible effect, then decrease owing to the rarefaction effect, and form a peak around the detonation front. Meanwhile, $M_{2,xx}$ and $M_{2,yy}$ remain zero, because the detonation wave propagates forwards in the x direction. In addition, as for the equilibrium kinetic moments ($M_{2,xx}^{eq}$, $M_{2,xy}^{eq}$, and $M_{2,yy}^{eq}$), the DBM results are in good agreement with the analytical solutions.

In figure 2(b), the solid squares and circles represent $M_{3,1,x}$ and $M_{3,1,y}$, respectively. The hollow symbols denote the equilibrium counterparts $M_{3,1,x}^{eq}$, and $M_{3,1,y}^{eq}$. And the solid lines indicate the analytic solutions $M_{3,1,x}^{eq} = \rho u_x[(D + I + 2)T + u_x^2]$ and $M_{3,1,y}^{eq} = \rho u_y[(D + I + 2)T + u_y^2]$. Similarly, $M_{3,1,x}$ and $M_{3,1,y}$ ascend rapidly and then decline slowly due to the compressible and rarefaction effects, respectively. $M_{3,1,x}$ and $M_{3,1,y}$ are still zero in the one-dimensional simulation.

In figure 2(c), as the detonation wave travels from left to right, $\Delta 2_{xx}$ expressed by the solid line with squares first increases, then decreases, and increases afterwards, so it forms a high positive peak and a negative trough. Actually, figure 2(c) is consistent with figure 2(a) where $\Delta 2_{xx}$ is first greater than $M_{2,xx}^{eq}$ and then less than $M_{2,xx}^{eq}$ as the detonation wave travels forwards. Physically, $\Delta 2_{xx}$ stands for twice the disorganized energy in the x direction, its positive peak and the negative trough correspond to the compression and rarefaction effects, respectively. The solid line with triangles denotes twice the disorganized energy in the y direction $\Delta 2_{yy}$, which first decreases to form a negative trough and then increases to form a low positive peak. This trend is also consistent with the results of $M_{2,yy}$ and $M_{2,yy}^{eq}$ in figure 2(a). Additionally, $\Delta 2_{xy} = M_{2,xy} - M_{2,xy}^{eq} = 0$ in figure 2(c) is in line with $M_{2,xy} = M_{2,xy}^{eq}$ in figure 2(a).

In figure 2(d), $\Delta 3_{1,x}$ and $\Delta 3_{1,y}$ denote twice the disorganized energy fluxes in the x and y directions, respectively. $\Delta 3_{1,x}$ and $\Delta 3_{1,y}$ are the differences between the kinetic moment $M_{3,1,x}$, $M_{3,1,y}$ and their equilibrium counterparts $M_{3,1,x}^{eq}$, $M_{3,1,y}^{eq}$, respectively. Obviously, $\Delta 3_{1,x}$ forms a positive peak and then a low negative trough. Because the $M_{3,1,x}$ is first greater and then less than $M_{3,1,x}^{eq}$. Besides, $M_{3,1,y}$ and $M_{3,1,y}^{eq}$ are zero, which causes $\Delta 3_{1,y} = M_{3,1,y} - M_{3,1,y}^{eq}$ to be zero as well.

Next, let us verify that the kinetic moments calculated by the summations of the discrete distribution functions are close to those calculated by integrals of their original forms at the location $x = 0.50375$. The kinetic moments calculated by the summations of the discrete distribution functions are ($\Delta 2_{xx}$, $\Delta 3_{xy}$, $\Delta 2_{xy}$, $\Delta 3_{1,x}$, $\Delta 3_{1,y}$) = (0.48449, 0, −0.35844, 2.89123, 0), while the results of the corresponding integration counterparts are ($\Delta 2_{xx}$, $\Delta 2_{xy}$, $\Delta 3_{1,x}$, $\Delta 3_{1,y}$) = (0.56488, 0, −0.72725, 2.80181, 0). The relative errors are (17%, 0%, 24%, 3%, 0%), which is roughly satisfactory. For the first time, this test demonstrates the accuracy of the nonequilibrium manifestations.
measured by the DBM, and validates the consistence of the DBM with its theoretical basis.

5. Recovery of velocity distribution function around detonation wave

To further perform a quantitative study of the nonequilibrium state around the detonation wave, figure 3(a) displays the velocity distribution function at the peak of $\Delta_{2,\infty}$, which is on the vertical dashed line in figure 2. It is clear that the velocity distribution function has a peak in the two-dimensional velocity space. Actually, due to the nonequilibrium effects, the velocity distribution function deviates from its local equilibrium counterpart, i.e. the Maxwellian velocity distribution function.

In order to have an intuitive study of the local velocity distribution function, figure 3(b) shows its contours in the velocity space, which is in line with figure 3(a). Clearly, the peak is asymmetric in the v_x direction and symmetric in the v_y direction. The contour lines are close to each other near the peak (especially on the left side), and becomes sparse away from the peak (especially on the right side). That is to say, the gradient is sharp near the peak (especially on the left side), and smooth far from the peak (especially on the left side).

To have a deep understanding of the deviation of the velocity distribution function from the equilibrium state, figure 3(c) depicts the difference between the nonequilibrium and equilibrium distribution functions in the two-dimensional velocity space. It is obvious that there are both positive and negative deviations around the detonation wave. Along the v_x direction, a high positive peak first appears, then decreases to form a valley, and then increases to a low positive peak.

As can be seen in figure 3(d), the deviation is symmetric about $v_y = 0$, and asymmetric about $v_x = u_c$. The contour plot consists of three segments along the v_x direction. The leftmost segment is in the region of the first peak, where the contour lines are approximately elliptical. The middle part is in the low valley area that seems like a ‘moon’ shape. And the rightmost one is in the low peak area, which likes a ‘cobblestone’. The contour lines between the high peak and the valley are closer to each other than those between the valley and low peak, because the gradients between the leftmost and middle parts are sharp than those between the middle and rightmost regions.

Finally, let us investigate the one-dimensional distribution functions and the corresponding deviations from the equilibrium states. Figures 4(a) and (b) depict the velocity distribution functions in the v_x and v_y directions, respectively. The solid lines represent the velocity distribution functions $f(v_x) = \int f dv_y d\eta$ and $f(v_y) = \int f dv_x d\eta$, the dashed curves express the equilibrium counterparts $f_{eq}(v_x) = \int f_{eq} dv_y d\eta$ and $f_{eq}(v_y) = \int f_{eq} dv_x d\eta$, respectively. Figures 4(c) and (d) show $f_{neq}(v_x) = f(v_x) - f_{eq}(v_x)$ and $f_{neq}(v_y) = f(v_y) - f_{eq}(v_y)$ which indicate the departures of distribution functions from the

![Figure 2](image-url)
equilibrium state in the v_x and v_y directions, respectively. The following points can be obtained.

(I) In figures 4(a)–(b), there is a peak for each curve of $f(v_x), f_{\text{eq}}(v_x)$, and $f_{\text{neq}}(v_x)$. In figures 4(c)–(d), there are two peaks and a trough for $f_{\text{neq}}(v_x)$, while a peak and two troughs for $f_{\text{neq}}(v_y)$. Along the v_x direction, $f_{\text{neq}}(v_x)$ forms a positive peak firstly, then decreases to form a valley, and then increases to a second positive peak. Because $f(v_x)$ is first greater than $f_{\text{eq}}(v_x)$, then less than $f_{\text{eq}}(v_x)$, and finally greater than $f_{\text{eq}}(v_x)$ again. Similarly, the relation $f(v_x) > f_{\text{eq}}(v_x)$ or $f(v_x) < f_{\text{eq}}(v_x)$ in figure 4(b) leads to the results $f_{\text{neq}}(v_x) > 0$ or $f_{\text{neq}}(v_x) < 0$ in figure 4(d).

(II) $f(v_x)$ and $f_{\text{neq}}(v_x)$ are asymmetric about the vertical dashed line located at $v_x = u_x$, while $f_{\text{eq}}(v_x)$ is symmetric. Physically, as the detonation evolves, the compressible effect plays a significant role in the front of the detonation wave, and the internal energy in the x degree of freedom increases faster than in other degrees of freedom, and there exists disorganized heat flux in the x direction.

(III) In figures 4(b) and (d), each curve of $f(v_y), f_{\text{eq}}(v_y)$ and $f_{\text{neq}}(v_y)$ has a positive peak which is symmetric about $v_y = 0$. On the left and right parts of $f_{\text{neq}}(v_y)$ are two identical troughs that are symmetrically distributed in figure 4(d). Because the periodic boundary condition is imposed on the y direction, the equilibrium and nonequilibrium velocity distributions for $v_y > 0$ and $v_y < 0$ are symmetrical.

(IV) The nonequilibrium manifestations in figures 2(a)–(d) are consistent with the deviations of distribution
functions in figures 4(a)–(d). Specifically, the trend of $f^\text{neq}(v_x)$ indicates that $f(v_x)$ is ‘fatter’ and ‘lower’ than $f^\text{eq}(v_x)$, which means the disorganized momentum flux $\Delta_{2,xx} > 0$. The trend of $f^\text{neq}(v_y)$ means that $f(v_y)$ is ‘thinner’ and ‘higher’ than $f^\text{eq}(v_y)$, which indicates $\Delta_{2,yy} < 0$. Meanwhile, the portion $f(v_x > u_x)$ is ‘fatter’ than the part $f(v_x < u_x)$, which is named ‘positive skewness’ and indicates $\Delta_{3,1,x} > 0$. And the symmetry of $f^\text{neq}(v_y)$ means $\Delta_{3,1,y} = 0$.

6. Conclusions

Via the Chapman–Enskog expansion, the velocity distribution function of compressible reactive flows is expressed by using the macroscopic quantities and their spatial derivatives. The equilibrium and nonequilibrium distribution functions in one- and two-dimensional velocity spaces are recovered quantitatively from the physical quantities of the DBM, which is an accurate and efficient gas kinetic method. The departure between the equilibrium and nonequilibrium distribution functions is in line with the nonequilibrium quantities measured by the DBM. Moreover, it is for the first time to verify that the kinetic moments measured by summations of the distribution function resemble those assessed by integrals of the original forms, which consists with the theoretical basis of the DBM. In addition, under the condition that the chemical time scale is longer than the molecular relaxation time, it is numerically and theoretically demonstrated that the chemical reaction imposes no direct impact on the thermodynamic nonequilibrium effects.

References

[1] Oran E S and Boris J P 2005 Numerical Simulation of Reactive Flow (Cambridge: Cambridge University Press)
[2] Law C K 2006 Combustion Physics (Cambridge: Cambridge University Press)
[3] Nagibedza E and Kustova E 2009 Non-equilibrium Reacting Gas Flows: Kinetic Theory of Transport and Relaxation Processes (Berlin: Springer)
[4] Regan F J 1993 Dynamics of Atmospheric Re-Entry (Washington, DC: AIAA)
[5] Juanes R 2008 Nonequilibrium effects in models of three-phase flow in porous media Adv. Water Resour. 31 661–73
[6] He Z X, Yan W W, Zhang K, Yang X L and Wei Y K 2017 Simulation of effect of bottom heat source on natural convective heat transfer characteristics in a porous cavity by lattice Boltzmann method Acta Phys. Sin. 66 145–53
[7] Li C, Mengyi W, Qijun K and Wenzheng T 2018 Pore scale study of multiphase multiphase reactive transport during CO2 dissolution trapping Adv. Water Resour. 116 208–18
[8] Wu H, Berg P and Li X 2010 Steady and unsteady 3D non-isothermal modeling of PEM fuel cells with the effect of non-equilibrium phase transfer Appl. Energy 87 2778–84
[9] Gan Y, Xu A, Zhang G and Succi S 2015 Discrete Boltzmann modeling of multiphase flows: hydrodynamic and thermodynamic non-equilibrium effects Soft Matter 11 5336–45
[10] Lai H, Xu A, Zhang G, Gan Y, Ying Y and Succi S 2016 Nonequilibrium thermohydrodynamic effects on the
Rayleigh–Taylor instability in compressible flows *Phys. Rev. E* **94** 023106

[11] Lin C and Luo K H 2018 Mesoscopic simulation of nonequilibrium detonation with discrete Boltzmann method *Combust. Flame* **198** 356–62

[12] Lin C and Luo K H 2019 Discrete Boltzmann modeling of unsteady reactive flows with nonequilibrium effects *Phys. Rev. E* **99** 012142

[13] Cercignani C, Frezzotti A and Grosfils P 1999 The structure of an infinitely strong shock wave *Phys. Fluids* **11** 2757–64

[14] Shoja Sani A, Roohi E and Stefanov S 2021 Homogeneous relaxation and shock wave problems: assessment of the simplified and generalized Bernoulli trial collision schemes *Phys. Fluids* **33** 032004

[15] Zhakhovskii V V, Nishihara K and Anisimov S I 1997 Shock wave structure in dense gases *JETP Lett.* **66** 99–105

[16] Dubey A K, Bodrova A, Puri S and Brilliantov N 2013 Velocity distribution function and effective restitution coefficient for a granular gas of viscoelastic particles *Phys. Rev. E* **87** 062202

[17] Lin C, Xu A, Zhang G and Li Y 2014 Polar coordinate lattice Boltzmann kinetic modeling of detonation phenomena *Commun. Theor. Phys.* **62** 737

[18] Lin C, Xu A, Zhang G, Li Y and Succi S 2014 Polar-coordinate lattice Boltzmann modeling of compressible flows *Phys. Rev. E* **89** 013307

[19] Zhang Y, Xu A, Zhang G, Chen Z H and Wang P 2018 Discrete ellipsoidal statistical BGK model and Burnett equations *Front. Phys.* **13** 1–13

[20] Lin C, Su X and Zhang Y 2020 Hydrodynamic and thermodynamic nonequilibrium effects around shock waves: based on a discrete Boltzmann method *Entropy* **22** 1397

[21] Novozhilov V and Byrne C 2013 Lattice Boltzmann modeling of thermal explosion in natural convection conditions *Numer. Heat Transfer, A* **63** 824–39

[22] Li Q, Luo K H, Kang Q J, He Y L, Chen Q and Liu Q 2016 Lattice Boltzmann methods for multiphase flow and phase-change heat transfer *Prog. Energy Combust. Sci.* **52** 62–105

[23] Ashna M, Rahimian M H and Fakhari A 2017 Extended lattice Boltzmann scheme for droplet combustion *Phys. Rev. E* **95** 053301

[24] Du R, Wang J and Sun D 2020 Lattice-Boltzmann simulations of the convection-diffusion equation with different reactive boundary conditions *Mathematics* **8** 13

[25] Yan B, Xu A, Zhang G, Ying Y and Li H 2013 Lattice Boltzmann model for combustion and detonation *Front. Phys.* **8** 94–110

[26] Xu A, Lin C, Zhang G and Li Y 2015 Multiple-relaxation-time lattice Boltzmann kinetic model for combustion *Phys. Rev. E* **91** 043306

[27] Lin C, Xu A, Zhang G and Li Y 2016 Double-distribution-function discrete Boltzmann model for combustion *Combust. Flame* **164** 137–51

[28] Lin C, Luo K H, Fei L and Succi S 2017 A multi-component discrete Boltzmann model for nonequilibrium reactive flows *Sci. Rep.* **7** 14580

[29] Lin C and Luo K H 2018 MRT discrete Boltzmann method for compressible exothermic reactive flows *Comput. Fluids* **166** 176–83

[30] Gan Y, Xu A, Zhang G, Zhang Y and Succi S 2018 Discrete Boltzmann trans-scale modeling of high-speed compressible flows *Phys. Rev. E* **97** 053312

[31] Lin C, Xu A, Zhang G, Luo K H and Li Y 2017 Discrete Boltzmann modeling of Rayleigh–Taylor instability in two-component compressible flows *Phys. Rev. E* **96** 053305

[32] Watari M 2007 Finite difference lattice Boltzmann method with arbitrary specific heat ratio applicable to supersonic flow simulations *Physica A* **382** 502–22

[33] Ng H D, Radulescu M I, Higgins A J, Nikiforakis N and Lee J H S 2005 Numerical investigation of the instability for one-dimensional Chapman–Jouguet detonations with chain-branching kinetics *Combust. Theory Model.* **9** 385–401

[34] Lin C and Luo K H 2020 Kinetic simulation of unsteady detonation with thermodynamic nonequilibrium effects *Combust. Explosion* **56** 435–43