RESEARCH ARTICLE

REvised Risk of lowering mortality from the improvement of inflammatory markers and disease progression among moderate, severe, and critical COVID-19 patients using anticoagulant: a cross-sectional study from two second referral hospitals in Surabaya, Indonesia [version 3; peer review: 1 approved with reservations]

Previously titled: The improvement of inflammatory markers and disease progression among moderate, severe, and critical COVID-19 patients: a cross-sectional study from two second referral hospitals in Surabaya, Indonesia

Pradana Zaky Romadhon, Siprianus Ugroseno Yudho Bintoro, Satriyo Dwi Suryantoro, Tri Pudy Asmarawati, Alfian Nur Rosyid, Merlyna Savitri, Putu Niken Ayu Amrita, Muhammad Noor Diansyah, Ami Ashariati Prayoga, Choirina Windradi, Bagus Aulia Mahdi, Krisnina Nurul Widiyastuti, Dwiki Novendrianto, Esthiningrum Dewi Agustin, Firas Farisi Alkaff, Kartika Prahasanti, Didi Darmahadi Dewanto

1Faculty of Medicine, Airlangga University, Surabaya, East Java, 60132, Indonesia
2Universitas Airlangga Hospital, Surabaya, East Java, 60115, Indonesia
3Department of Internal Medicine, Medical Centre University, Groningen, Groningen, 9713 GZ, Netherlands Antilles
4Faculty of Medicine, Muhammadiyah Surabaya University, Surabaya, East Java, 60115, Indonesia
5Husada Utama Hospital, Surabaya, East Java, 60131, Indonesia

Abstract

Background: To date, coronavirus diseases 2019 (COVID-19) has no definitive treatment. Thrombosis and hypercoagulation may occur in the advanced stage. Further study on how to use anticoagulants is still required to promote the best prognosis.

Methods: A cross-sectional study of 110 moderate, 140 severe, and 81
critical patients receiving unfractioned heparin (UFH), low-molecular-weight heparin (LMWH), and fondaparinux was conducted. Data were collected from March 15th to August 31st 2020 at Universitas Airlangga and Husada Utama Hospital. A comparative study of white blood cell (WBC), neutrophils, lymphocytes, neutrophil-lymphocyte ratio (NLR), c-reactive protein (CRP), procalcitonin (PCT), D-dimer, all-cause mortality rate, length of stay, and days of death among three severities of COVID-19 was done. Univariate and multivariate analysis were used to determine the correlation between inflammatory state after anti-coagulant with patients’ mortality.

Results: Two deaths occurred in moderate cases, 36 deaths in severe cases, and 70 deaths in critical cases on ventilators. On day 13, moderate and severe groups showed decreased WBC, neutrophils, NLR, CRP, and D-dimer (p < 0.05). NLR, CRP, and D-dimer (p<0.05) in critically ill and ventilated patients decreased. Day-13 evaluation revealed 32.73% decrease of inflammatory markers in moderate group; 32.86% in severe patients; and 16.05% in critically ill, ventilated patients. A significant correlation between day 13 inflammatory status with mortality was seen in moderate and critical cases with a ventilator (r=0.337; p< 0.05 and r=0.25; p 0.05). Inflammatory profile on day 6 (adjusted odds ratio [aOR] = 2.36; p < 0.05) and day 13 ([aOR] = 4.15; p < 0.05) was associated with patients' mortality.

Conclusions: Anticoagulants in COVID-19 patients lower inflammation markers. Evaluating inflammatory status is essential to predict the mortality. Inflammatory markers on day 13, based on the severity of COVID-19 and comorbidities, were associated with mortality in moderate and critical cases.

Keywords
COVID-19, Anti-coagulant, mortality, length of stay, severity, health

This article is included in the Emerging Diseases and Outbreaks gateway.
Corresponding authors: Siprianus Ugroseno Yudho Bintoro (ugroseno@fk.unair.ac.id), Satriyo Dwi Suryantoro (satriyo.dwi.suryantoro@fk.unair.ac.id)

Author roles: Romadhon PZ: Conceptualization, Data Curation, Formal Analysis, Investigation, Methodology, Resources, Software, Supervision, Validation, Writing – Original Draft Preparation, Writing – Review & Editing; Bintoro SUY: Conceptualization, Data Curation, Formal Analysis, Investigation, Methodology, Supervision, Validation, Writing – Original Draft Preparation, Writing – Review & Editing; Suryantoro SD: Conceptualization, Data Curation, Formal Analysis, Investigation, Methodology, Resources, Software, Supervision, Validation, Writing – Original Draft Preparation, Writing – Review & Editing; Asmarawati TP: Data Curation, Formal Analysis, Investigation, Methodology, Resources, Supervision, Validation, Writing – Original Draft Preparation, Writing – Review & Editing; Nur Rosyid A: Data Curation, Formal Analysis, Investigation, Methodology, Resources, Supervision, Validation, Writing – Original Draft Preparation, Writing – Review & Editing; Savitri M: Data Curation, Formal Analysis, Investigation, Methodology, Resources, Supervision, Validation, Writing – Original Draft Preparation, Writing – Review & Editing; Amrita PNA: Data Curation, Formal Analysis, Investigation, Methodology, Resources, Supervision, Validation, Visualization, Writing – Original Draft Preparation, Writing – Review & Editing; Diansyah MN: Data Curation, Formal Analysis, Investigation, Methodology, Project Administration, Resources, Supervision, Validation, Visualization, Writing – Original Draft Preparation, Writing – Review & Editing; Prayoga AA: Conceptualization, Data Curation, Formal Analysis, Investigation, Methodology, Project Administration, Resources, Supervision, Visualization, Writing – Original Draft Preparation, Writing – Review & Editing; Windradi C: Data Curation, Formal Analysis, Investigation, Methodology, Resources, Supervision, Validation, Writing – Original Draft Preparation, Writing – Review & Editing; Mahdi BA: Conceptualization, Data Curation, Formal Analysis, Investigation, Methodology, Resources, Software, Supervision, Writing – Original Draft Preparation; Widiyastuti KN: Data Curation, Investigation, Methodology, Resources, Supervision, Validation, Visualization, Writing – Original Draft Preparation; Novendrianto D: Data Curation, Investigation, Methodology, Resources, Software, Supervision, Writing – Review & Editing; Agustin ED: Data Curation, Investigation, Project Administration, Resources, Supervision, Validation, Writing – Review & Editing; Alkaff FF: Data Curation, Investigation, Methodology, Project Administration, Resources, Software, Supervision, Validation, Visualization, Writing – Original Draft Preparation; Prahasanti K: Data Curation, Formal Analysis, Investigation, Methodology, Resources, Software, Supervision, Writing – Original Draft Preparation; Dewanto DD: Formal Analysis, Investigation, Methodology, Project Administration, Supervision, Validation, Writing – Original Draft Preparation

Competing interests: No competing interests were disclosed.

Grant information: The author(s) declared that no grants were involved in supporting this work.

Copyright: © 2022 Romadhon PZ et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

How to cite this article: Romadhon PZ, Bintoro SUY, Suryantoro SD et al. Risk of lowering mortality from the improvement of inflammatory markers and disease progression among moderate, severe, and critical COVID-19 patients using anticoagulant: a cross-sectional study from two second referral hospitals in Surabaya, Indonesia [version 3; peer review: 1 approved with reservations] F1000Research 2022, 11:61 https://doi.org/10.12688/f1000research.75135.3

First published: 19 Jan 2022, 11:61 https://doi.org/10.12688/f1000research.75135.1
Introduction
Coronavirus disease 2019 (COVID-19) infection has caused widespread novel COVID-19 pneumonia, causing respiratory problems.\(^{1}\) The World Health Organization (WHO) declared this as a global pandemic affecting many aspects of life.\(^{2}\) A severe degree of COVID-19 pneumonia is defined as a condition in patients complaining of difficulty in breathing, plus one of: respiratory rate >30 times per minute; severe respiratory distress; or oxygen saturation (SpO\(_2\)) <93% in room air or a PaO\(_2\)/FiO\(_2\) ratio (PF Ratio) <300. In children, it is defined as having a cough or difficulty breathing, plus at least one of: central cyanosis or SpO\(_2\) <90%; severe respiratory distress (such as snoring, heavy chest wall traction); signs of severe pneumonia, namely inability to suckle/drink; lethargy or decreased consciousness, or seizures. Other signs of pneumonia are chest retractions, rapid breathing >60	imes/minute in children aged <2 months, >50	imes/minute in children aged 2-11 months, >40	imes/minute in children aged 1-5 years, or >30	imes/minute in children aged >5 years.\(^{2}\)

Severe SARS-CoV2 infection promotes a syndrome related to prothrombotic conditions, in which blood clots easily. This condition is characterized by several specific abnormal laboratory values, such as mild thrombocytopenia, increased fibrin, degradation of fibrin products, fibrinogen, and D-dimers. Increased D-dimers are strongly correlated with worsened clinical conditions and increased risk of death in COVID-19.\(^{3,5}\) Based on reports from several studies, there is a growing incidence of several thromboembolic states in patients with COVID-19 admitted to the intensive care unit (ICU), one of which is pulmonary embolism. COVID-19 patients suspected of experiencing a thromboembolic event should be given anticoagulant therapy when radiological imaging is difficult to perform.\(^{3–5}\)

The pathophysiology of hypercoagulation in COVID-19 patients is still currently being explored. A case series presenting three cases of COVID-19 with antiphospholipid syndrome has recently been reported by The New England Journal of Medicine.\(^{5}\) SARS-CoV-2 infection is associated with antiphospholipid antibodies, which predispose to hypercoagulation. The study of Campbell et al. reported severe COVID-19 patients with increased levels of lactate dehydrogenase (LDH), D-Dimer, bilirubin, decreased platelets, mild anemia, heart and kidney injury, and diffused thrombotic micro-angiopathy.\(^{5–7}\)

Patients with severe COVID-19 experience complications of coagulopathy in the form of disseminated intravascular coagulation (DIC) which might result in death. Severe COVID-19 patients experience respiratory problems and increased virulence, according to the criteria of the Third International Consensus Definitions for Sepsis (Sepsis-3). Severe COVID-19 patients are also at risk of venous thromboembolism (VTE) due to prolonged bed rest. The International Society of Thrombosis and Haemostasis (ISTH) provides a new category to identify the early phase of sepsis-associated DIC which is also called sepsis-induced coagulopathy (SIC). COVID-19 patients who fit the diagnostic criteria for SIC can be also given anticoagulant therapy.\(^{5–6}\)

Anticoagulant therapy in COVID-19 patients is administered to those who show signs of thrombosis, such as elevated inflammatory factors and D-dimers within 7-14 days, with threefold D-Dimer value. The option would be to use low molecular weight heparin (LMWH) at a dose of 100 IU/kg twice a day, for 3-5 days. The European Society of Cardiology also includes anticoagulants in the COVID-19 therapy algorithm. For patients admitted to the ICU, the parenteral heparin drip protocol must be strictly controlled and the time value of the active prothrombin time is 60-85 seconds. For non-ICU patients, the subcutaneous dose of enoxaparin is started at 1mg/kg twice daily. After all the completed researches, further study on how to use anticoagulants is still being analysed to promote the best prognosis.\(^{3,11,12}\)
Methods
Ethics approval
Approval was issued by the research ethics board Universitas Airlangga Hospital (No: 179/KEP/2020) on 2nd October 2020. The consent to participate was not applicable since our data were obtained from medical records.

Study design and population
We performed a retrospective cohort study with consecutive sampling among COVID-19 adult patients admitted to two referral hospitals for COVID-19, Universitas Airlangga Hospital (UAH) and Husada Utama Hospital, Surabaya, East Java, Indonesia, from March 15th 2020 to August 31st 2020. The patients included were ones in moderate, severe, or critical condition. We assessed patients referring to WHO guidelines and Indonesian Ministry of Health guidelines, and tested for SARS-CoV-2 Polymerase Chain Reaction (PCR) through oropharyngeal and nasopharyngeal swabs. Sequential chest x-ray and laboratory inflammatory marker evaluation were performed, then we did three timeframes of assessment. The first evaluation was done at the admission, followed by a second evaluation on the sixth day, and lastly evaluated before discharge or death (mean time 13 days).

Data collection
In October 2020, we collected the data from medical records of those admitted to UAH and Husada Utama hospital between March 15th, 2020 to August 31st, 2020. We had 331 patients with moderate to critically ill COVID-19. Incomplete medical records were excluded. From this selection, we organized patient records into 110 moderate cases, 140 severe cases, and 81 critically ill cases with ventilator (see Figure 1).

Patients were categorized as a moderate case if they had either or both of 1) signs of pneumonia; 2) O₂ sat ≥93% free air. Meanwhile, patients were classified into severe cases if there were clinical signs of pneumonia, with one of the following: 1) respiratory rate (RR) >30 times per minutes; 2) severe respiratory distress; 3) oxygen saturation < 93% free air. They were grouped into critically ill if they suffered from acute respiratory distress syndrome (ARDS), sepsis, and septic shock.2

Figure 1. Selection of patients (CRP: c-reactive protein).
The criteria of inflammatory markers were: 1) white blood cell (WBC) $>6.16 \times 10^3 \text{cells/μL}$; 2) neutrophil-lymphocyte ratio (NLR) >6.5; 3) absolute lymphocyte count ALC $< 1.0 \times 10^3 \text{cells/μL}$; 4) c-reactive protein (CRP) $>41.8 \text{mg/L}$; and 5) Procalcitonin $> 0.07 \text{ng/mL}$.

Statistical analysis
We examined the data using SPSS version 24.0 (Chicago, IL, USA). Descriptive analysis incorporated categorical variables reported as number (percentage) and continuous variables as mean (standard deviation). We displayed categorical variables as number (%) and continuous variables as mean (standard deviation) or median (range), depending on whether the data are normally distributed. Means of Chi square or McNemar was used to assess statistical significance for dichotomous variables, while paired t-test or Wilcoxon test were used to examine continuous variables, depending on the data distribution. We compared the mean/median difference of the first to the second evaluation and the second to the third evaluations of the laboratory results, length of stay, days of death, and mortality rate according to severity of COVID-19 using ANOVA or Kruskal Wallis. Bivariate analysis between inflammatory state and mortality was conducted using Spearman. We also determined the relationship between inflammatory state after anti-coagulant (UFH vs non-UFH) with patients’ mortality, along with some variables, which were age, gender, disease severity, and comorbidity.

Results
Baseline data
Of 331 patients enrolled, 200 were male and 131 were female. Patients were grouped based on the category of severity of disease and resulted in 110 moderate patients, 140 severe patients, and 81 critically ill patients with ventilator support. The average age of patients with severe COVID-19 was 57.45 ± 13.5 years. In the anticoagulant group, the most frequent comorbid factors found were diabetes mellitus (DM) (52.86%), hypertension (HT) (46.91%), and geriatric age (47.14%) while others had history of heart disease (5.45%), stroke (3.7%), and chronic kidney disease (1.82%). We evaluated inflammatory markers as baseline study data. There were significant differences in laboratory markers between each severity group (p value <0.05). The highest white blood count was $8.53 \pm 5.41 \times 10^3 \text{/μL}$, neutrophils $83.75 \pm 9.51\%$, lymphocyte $17.1 \pm 9.9\%$, lymphocyte absolute $1.1 \pm 0.57 \times 10^3 \text{/μL}$, neutrophil lymphocyte ratio (NLR) 8.38 ± 12.5, the C-reactive protein (CRP) $40.1 \pm 42.43 \text{mg/L}$ and d-dimer $1.2 \pm 8.53 \text{mcg/L}$. The outcome analysis showed significant differences in the mean length of stay (p value <0.05) (see Table 1).

Subgroup analysis
We evaluated and compared inflammatory markers up to three times. To analyze the relationship between the administration of anticoagulants in each severity of COVID-19 cases, we calculated the decrease or increase in these inflammatory markers.

Based on the first and second laboratory evaluations, there were differences in decreasing leukocyte count and D-dimer in severe cases (p 0.03; p 0.026), decreasing neutrophils neutrophil-lymphocyte ratio and CRP in moderate cases, (p 0.004; p 0.028; and p <0.05), and increasing lymphocyte in critically ill cases (p<0.05). In this initial evaluation, there were no differences in inflammatory status between each degree of COVID-19 cases.

In contrast to the initial evaluation, the comparison of the inflammatory status between the second and third examinations found that there were differences in each severity group (moderate (p<0.05); severe (p<0.05) and critically ill (p 0.001)). Inflammation marker examination found decreasing leukocytes in moderate and severe cases (p<0.05; p 0.001), decreasing neutrophils in moderate, severe and critically ill cases (p<0.05; p<0.05; p 0.007), increasing lymphocyte count in moderate cases (p<0.05); increasing absolute lymphocyte in moderate and severe cases (p<0.05; p<0.05), decreasing NLR in moderate, severe and critically ill cases (p<0.05; p<0.05; p<0.05), decreasing CRP in moderate and severe cases (p<0.05; p<0.05), and decreasing d-dimer in all case groups (p<0.05; p<0.05; p<0.05).

With these significant results, we evaluated the inflammatory parameters from the initial to the last examination. In moderate group, there was an improvement in inflammation parameters in all variables (p<0.05). In severe cases, significant improvements in inflammatory parameters were recorded, including decreasing leukocytes, decreasing neutrophils, decreasing lymphocytes, increasing absolute lymphocytes, decreasing NLR, decreasing CRP and d-dimer (p 0.01; p<0.05; p<0.05; p 0.0; p<0.05; p<0.05 p<0.05).

In the critically ill with ventilator support group, significant results were also obtained on each inflammatory marker variable except for decreasing leukocytes (p 0.6). From the clinical aspect, analysis of the use of anticoagulants on day of death found significant differences among groups of severity (p<0.05). Significant correlation of inflammatory status on
Univariate and multivariate analysis using regression logistic revealed that no decline of inflammatory profile both on day 6 (adjusted odds ratio [aOR] = 2.36; 95% CI: 1.46-3.83, p<0.05) and day 13 (adjusted odds ratio [aOR]=4.15; 95% CI: 2.33-7.42, p<0.05) was related to the mortality event (see Table 3).

Between UFH versus non UFH showed that in the overall case UFH significantly reduced mortality (OR=1.27; 95% CI=1.06-1.53; p=0.015), but not for moderate case and severe and critical case UFH vs non UFH showed no difference in the reduction of inflammation in overall cases, moderate cases, and severe cases (p>0.05) (see Table 4).

Table 1. Characteristics of subjects (DM: diabetes mellitus; HT: hypertension).

Severity of COVID-19	Moderate	Severe	Critically ill with ventilator support	Total
	110	140	81	331

Sex

- Male (n,%) 64 58,18 82 58,57 54 66,67 200
- Female (n,%) 46 41,82 58 41,43 27 33,33 131

Age (mean/SD) 53,62 13,67 57,45 13,5 56,11 13,63 167,18

Comorbid

- Geriatric age (age>60 years old) (n,%) 40 36,36 66 47,14 29 35,80 135
- DM (n,%) 33 30,00 74 52,86 23 28,40 130
- HT (n,%) 40 36,36 54 38,57 38 46,91 132
- Heart Disease (n,%) 6 5,45 7 5,00 4 4,94 17
- Chronic kidney Disease (n,%) 2 1,82 2 1,43 1 1,23 5
- Stroke (n,%) 1 0,91 4 2,86 3 3,70 8

Anticoagulant

- UFH (n,%) 50 45,5 82 58,6 56 69,1 188
- Enoxaparin (n,%) 35 31,8 58 41,4 25 30,9 118
- Rivaroxaban (n,%) 15 13,6 0 0 0 0 15
- Fondaparinux (n,%) 10 9,1 0 0 0 0 10

Laboratory

Laboratory	P value
Leucocyte (10^3/uL; median, SD)	<0.05*
Neutrophil (%; median, SD)	<0.05*
Lymphocyte (%; median, SD)	<0.05*
Lymphocyte absolute (10^3/uL; median, SD)	<0.05*
Neutrophil-Lymphocyte Ratio (NLR) (median, SD)	<0.05*
C-Reactive Protein (mg/L; median, SD)	<0.05*
D-Dimer (mcg/l; median, SD)	<0.05*
Outcome	<0.05*
Length of Stay (mean, SD)	
Discharge (n,%)	
Death (n,%)	

*Kruskal Wallis.
First to second evaluation	Moderate	P value	Severe	P value	Critically Ill with ventilator	P value
	n=110		n=140		n=81	
Inflammatory status						
1st	40	36.36	73	52.14	0.142	41
2nd	21	19.09	61	43.57		48
Laboratory evaluation						
Decreasing leucocyte (10^3/uL; median, SD (n,%))	7.3	5.74	51	46.364	0.71	8.46
Decreasing neutrophil (%)	67.85	26.25	69	62.727	0.004	77.25
Increasing lymphoctx (%)	16.85	12.05	55	50	0.866	9.65
Increasing lymphocyte absolute (10^3/uL, median, SD (n,%))	1.2	0.83	64	58.182	0.16	0.925
Decreasing neutrophil-lumphoctx ratio (NLR) (median, SD (n,%))	3.12	7.98	68	61.818	0.028	5.67
Decreasing C-reactive protein (mg/L; median, SD (n,%))	17.26	31.429	63	57.273	<0.05	23.64
Decreasing D-dimer (mg/L; median, SD (n,%))	0.51	3.19	58	52.727	0.598	1.362
Second to third evaluation	Moderate	P value	Severe	P value	Critically Ill with ventilator	P value
	n=110		n=140		n=81	
Inflammatory status						
2nd	21	19.09	61	43.57	<0.05	48
3rd	4	19.29	28	19.29		
Laboratory evaluation						
Decreasing leucocyte (10^3/uL; median, SD (n,%))	3.73	4.76	67	60.909	<0.05	5.57
Decreasing neutrophil (%)	31.1	35.19	73	66.364	<0.05	40.95
Increasing lymphoctx (%)	10	14.58	31	28.182	<0.05	7.6
Increasing lymphocyte absolute (10^3/uL, median, SD (n,%))	0.757	1.067	34	30.909	<0.05	0.564
Decreasing neutrophil-lumphoctx ratio (NLR) (median, SD (n,%))	2.23	4.37	77	70	<0.05	5.02
Decreasing C-reactive protein (mg/L; median, SD (n,%))	2.71	7.38	64	58.182	<0.05	6.37
Decreasing D-dimer (mg/L; median, SD (n,%))	0.39	0.822	62	56.364	<0.05	1.078

First to third evaluation

Moderate	P value	Severe	P value	Critically Ill with ventilator	P value
Decreasing leucocyte (%)	69.09	<0.05	57.86	0.01	51.85
Decreasing neutrophil (%)	77.27	<0.05	70.71	<0.05	65.43
Increasing lymphoctx (%)	25.45	<0.05	30.71	<0.05	19.75
Increasing lymphocyte absolute (%)	34.55	<0.05	39.29	0.00	35.80
Decreasing neutrophil-lumphoctx ratio (%)	78.18	<0.05	70.71	<0.05	62.96
Decreasing C-reactive protein (%)	69.09	<0.05	73.57	<0.05	72.84
Decreasing D-dimer (%)	73.64	<0.05	71.43	<0.05	76.54
Decreasing inflammation status (%)	32.73	32.86	16.05		
Days of death (mean)	30.50	11.70	12.95	<0.05	
Correlation of inflammation status with mortality (r)	0.337	<0.05	0.136	0.109	0.25

*p value from Wilcoxon test.
**p value from Spearman correlation.
COVID-19 has been linked to coagulation disorders which cause various complications. An increase in coagulation parameters, such as D-dimers, is an independent risk factor for death. Patients with D-dimers of more than 1000 ng/mL have a 20 times greater risk of death due to infection. Although the pathogenesis of coagulopathy in COVID-19 cannot be fully explained, the mechanism may resemble septic coagulopathy in bacterial infections. Overabundant pro-inflammatory cytokines increases the level of damage-associated molecular patterns (DAMP). Activation of coagulation factors due to cell and endothelial damage is the most common mechanism of infection. Both the pathogen and DAMP from damaged tissue activate monocytes. The activated monocytes release pro-inflammatory cytokines (IL-1, IL-6, Table 3. Odds for inflammation profile on day 1, day 6, and day 13 of anti-coagulant treatment (OR: odds ratio).

Status inflammation	Outcome death	Unadjusted OR	95% CI	P value	Adjusted OR	95% CI	P value
Inflammation 1st day	1.23	0.98-1.55	0.091	1.29	0.76-2.18	0.34	
Inflammation 6th day	1.59	1.24-2.06	0.001*	2.36	1.46-3.83	<0.05**	
Inflammation 13th day	1.67	1.48-1.89	<0.05*	4.15	2.33-7.42	<0.05**	

*p < 0.05 from univariate analysis.

**p < 0.05 from multivariate regression logistic analysis with adjusted from potential confounder variable.

Table 4. Association between UFH versus non-UFH anticoagulants on mortality, decreased inflammation on day 6, and day 13.

Category anticoagulant	Mortality	Inflammation status 6th day	Inflammation status 13th day	
	OR 95% CI	P value	OR 95% CI	P value
Overall case	1.27	1.06-1.53	1.02	0.84-1.24
Moderate case	1.1	0.27-4.47	1.45	0.76-2.75
Severe and critical case	1.14	0.93-1.39	1.06	0.86-1.30

*p value Chi Square Test; p < 0.05.

Discussion
COVID-19 has been linked to coagulation disorders which cause various complications. An increase in coagulation parameters, such as D-dimers, is an independent risk factor for death. Patients with D-dimers of more than 1000 ng/mL have a 20 times greater risk of death due to infection. Although the pathogenesis of coagulopathy in COVID-19 cannot be fully explained, the mechanism may resemble septic coagulopathy in bacterial infections. Overabundant pro-inflammatory cytokines increases the level of damage-associated molecular patterns (DAMP). Activation of coagulation factors due to cell and endothelial damage is the most common mechanism of infection. Both the pathogen and DAMP from damaged tissue activate monocytes. The activated monocytes release pro-inflammatory cytokines (IL-1, IL-6,
IL-10, TNF-α) and chemokines that animate neutrophils, lymphocytes, platelets, and vascular endothelial cells. The coagulation cascade is commenced by tissue factor and phosphatidylserine on the cells’ surface. Healthy endothelial cells retain anti-thrombogenic properties by expressing glycoalyx and binding with anti-thrombin proteins. Damaged endothelial cells change their nature to become more procoagulant due to glycoalyx disorders and loss of anticoagulant proteins. Markers of hypercoagulation and high levels of inflammatory mediators are consistent with poor outcome in patients with acute respiratory distress syndrome (ARDS) and sepsis. These observations have led to several studies focused on inflammation and coagulation pathways in acute lung injury, ARDS or sepsis.

Our study included 110 moderate cases, 140 severe cases, and 81 critically ill cases with a ventilator. Patients with pneumonia category and those who have comorbid hospitalized with a history of heart problems, use a central venous line, respiratory failure and have a risk of thrombosis according to the guidelines of the European Society of Cardiology and ISTH are recommended to use a prevention and therapeutic dose of anticoagulant.

The routine use of anticoagulant regimens in COVID-19 patients requiring hospitalization has been recommended, after several studies found an association between viral inflammation and coagulation disorders. Several guidelines for the management of COVID-19 have included anticoagulant regimens regarding COVID-19-related coagulation disorders. Recommendations issued by the Anticoagulation Forum (ACF) and the American College of Chest Physicians (ACCP) selected Low Molecular Weight Heparin (LMWH) over Unfractioned Heparin (UFH) to minimize laboratory evaluation. ACCP also recommends fondaparinux over UFH in patients with a high risk of bleeding, kidney problems, and any plans for procedures in the near future. UFH is more recommended by the ACF for patients with renal impairment with creatinine clearance <15-30 mL/min. The American Society of Hematology (ASH) states that LMWH or UFH is the therapy of choice over oral anticoagulants due to the potential for drug interactions and short half-lives. In our study, the population involved was a group of patients requiring hospitalization due to SARS-CoV2 infection ranging from moderate to critically ill. At all three severity groups, patients receiving anticoagulant therapy had increased D-dimer values. This increase in D-dimers expresses clusters of fibrin lysis and thrombus in the pulmonary vessels. Previously, Guan et al. (2020) found that 46% of 1099 COVID-19 patients had an increase in D-dimer and only 5% experienced a decrease in platelet count.

The relationship between coagulation function and indicators of inflammation and infection has been previously analyzed by Long et al. (2020). D-dimers were positively correlated with CRP (r=0.36, p=0.0007) and procalcitonine (r=0.45, p<0.001). Increased CRP was also found in patients with coagulation disorders by Friedrich et al. (2020) to a mean level of 131 ± 106 mg/l. In our study, there was an increase in CRP by a mean of 40.1 ± 42.43/l in the severe group population receiving anticoagulants that met the criteria for anticoagulant according to The International Society of Thrombosis Haemostasis (ISTH) or due to an increase in D-dimer. A meta-analysis regarding dosing of anticoagulant therapy on the COVID-19 mortality rate found that there was a slight decrease in the mortality rate in COVID-19 patients in need of a ventilator. Several studies have shown different results on the mortality outcome of COVID-19 patients receiving anticoagulant therapy. In theory, the coagulation cascade is active when inflammation is present due to SARS-CoV2 infection. Therefore, it may be possible to obtain beneficial effects from the use of anticoagulants as anti-inflammatory agents.

According to the theory of hypercoagulation disorders, there is a two-way relationship between the immune system and thrombin formation, where inhibition of thrombin formation may reduce the inflammatory response. The positive effects of using anticoagulants on mortality were reported by Nadkarni et al.; compared to non-users, recipients of anticoagulants for both therapy and prophylaxis had reduced mortality (adjusted hazard ratio [aHR] = 0.53; 95% CI: 0.45-0.62, and aHR = 0.50; 95% CI: 0.45-0.57, respectively), and intubation rates (aHR 0.69; 95% CI: 0.51-0.94, and aHR 0.72; 95% CI: 0.58-0.89, respectively). Our study revealed that no reduction in inflammatory markers was significantly correlated with the mortality.

Several other studies have classified the use of anticoagulants according to their intended use for therapeutic and prophylaxis purpose. Klok et al. (2020) found that 15% of the population needed ICU while Helms et al. (2020) revealed 25 of their patients had pulmonary embolism despite receiving anticoagulant therapy. Therefore, anticoagulant prophylaxis is rational. In addition, the prophylactic use of apixaban (odds ratio [OR] 0.46, p=0.001) and enoxaparin (OR=0.49, p=0.001) exhibited a significant decrease in mortality. There was also an association between therapeutic apixaban and decreased mortality rates (OR 0.57, p=0.006). Pawlowski et al. (2020) compared the effects of enoxaparin and heparin, showing that patients receiving heparin had a higher risk of death and higher ICU admission than ones in enoxaparin group (risk ratio: 6.76; 95% C.I.: [3.39, 12.7]; adjusted p-value <0.0001); (risk ratio of ICU admission: 1.51; 95% C.I.: [1.12, 2.03]; adjusted p-value 0.01). Additionally, ICU and hospital length of stay were shorter in the enoxaparin population (mean ICU duration: 0.9 days [standard deviation: 2.5], mean hospital duration: 5.4 days [standard deviation: 4.3]).
In this study, we found favorable changes in inflammatory markers such as white blood cells, neutrophils, lymphocytes, CRP, and D-dimers after the use of anticoagulants. The analysis of the results of this study has been divided based on the subgroup of the severity of COVID-19 disease. From the clinical aspect, analysis of the use of anticoagulants on day of death found significant differences among groups of severity (p<0.05). There was also a significant correlation between inflammatory status on the thirteenth day and mortality based on patient comorbidities obtained from moderate and critical cases on a ventilator (r=0.337; p< 0.05 and r=0.25; p 0.05). Univariate and multivariate analysis exhibited that no reduction in inflammatory profile on day 6 (adjusted odds ratio [aOR]=2.36; 95% CI: 1.46-3.83, p value < 0.05) and day 13 (adjusted odds ratio [aOR]=4.15; 95% CI: 2.33-7.42, p value < 0.05) were linked to the patients’ mortality. Meanwhile, the comparison of UFH versus non-UFH showed that in the overall case, UFH significantly reduced mortality, although there was no difference in the decrease in inflammation on days 6 and 13. This study is able to explain that the values of inflammatory and hypercoagulable markers go hand in hand with the severity of the patient. Although not all inflammatory markers improve after anticoagulant treatment, inflammatory variables mostly manifested good results. This study we update to distinguish one regimen of anticoagulant from another based on UFH versus non UFH. Conclusively, it is necessary to carry out further subgroup analysis of the types of anticoagulants and the comparison of therapeutical effects and prophylactic use of anticoagulant towards the mortality outcome and length of stay based on larger data.

Conclusion

Administration of anticoagulants to COVID-19 patients with moderate to critical presentation promoted significant outcomes of inflammatory markers which ultimately showed a statistical difference in mortality. Most of the inflammatory markers in patients improved after anticoagulant administration. Therefore, our findings confirm that the administration of anticoagulants can be optimized since they are able to work as anti-inflammatories.

Data availability

Underlying data

figshare: Data of Inflammatory Parameters after Anti-coagulant among Moderate, Severe, and Critically Ill COVID-19 Patients. https://doi.org/10.6084/m9.figshare.16910905.v2

This project contains the following files:

- Data_antikoagulan_all_join_3.xlsx (raw data file)

- Legend (Anti-coagulant_311021).docx (data key)

Data are available under the terms of the Creative Commons Attribution 4.0 International license (CC-BY 4.0).

Authors’ contributions

Pradana Zaky Romadhon: Conceptualization, Formal Analysis, Investigation, Methodology, Software, Supervision, Validation, Writing – Original Draft Preparation, Writing – Review & Editing

Siprianus Ugroseno Yudho Bintoro: Conceptualization, Formal Analysis, Investigation, Methodology, Supervision, Validation, Writing – Original Draft Preparation, Writing – Review & Editing

Satriyo Dwi Suryantoro: Conceptualization, Formal Analysis, Investigation, Methodology, Software, Supervision, Validation, Writing – Original Draft Preparation, Writing – Review & Editing

Tri Pudy Asmarawati: Data Curation, Formal Analysis, Investigation, Methodology, Resources, Supervision, Validation, Writing – Original Draft Preparation, Writing – Review & Editing

Alfian Nur Rosyid: Data Curation, Formal Analysis, Investigation, Methodology, Resources, Supervision, Validation, Writing – Original Draft Preparation, Writing – Review & Editing

Merlyna Savitri: Conceptualization, Formal Analysis, Investigation, Methodology, Software, Supervision, Validation, Writing – Original Draft Preparation, Writing – Review & Editing

Putu Niken Ayu Amrita: Conceptualization, Formal Analysis, Investigation, Methodology, Software, Supervision, Validation, Writing – Original Draft Preparation, Writing – Review & Editing
Acknowledgements
We would like to thanks Prof. Dr. Nasronudin dr, Sp. PD KPTI for supporting this research.

References
1. Wu Y, Huang X, Sun J, et al.: Clinical Characteristics and Immune Injury Mechanisms in 71 Patients with COVID-19. medRxiv. 2020; 5.
PubMed Abstract | Publisher Full Text
2. Burhan E, Susanto AD, Nasution SA, et al.: Predemokrasi COVID-19 SOP Edisi 3 2020. Jakarta, Indonesia: PDPI, PERKI, PAPDI, PERDATIN, IDAI; 3 ed.2020 December; 2020. 149 p.
3. Tang N, Bai H, Chen X, et al.: Anticoagulant treatment is associated with decreased mortality in severe coronavirus disease 2019 patients with coagulopathy. Journal of Thrombosis and Haemostasis. 2020; 18(5): 1094–1099.
PubMed Abstract | Publisher Full Text
4. Campbell CM, Kahwash R: Will Complement Inhibition Be the New Target in Treating COVID-19-Related Systemic Thrombosis?. Circulation. 2020; 141(22): 1760–1766.
PubMed Abstract | Publisher Full Text
5. Kichloo A, Dettloff K, Aljadah M, et al.: COVID-19 and Hypercoagulability: A Review. Clinical and Applied Thrombosis/ Hemostasis. 2020; 26: 1076029620962385.
PubMed Abstract | Publisher Full Text
6. Abou-Ismail MV, Diamond A, Kapoor S, et al.: The hypercoagulable state in COVID-19: Incidence, pathophysiology, and management. Thrombosis Research. 2020; 194: 101–115.
PubMed Abstract | Publisher Full Text
7. Iba T, Levy JH, Levi M, et al.: Coagulopathy in COVID-19. J Thromb Haemost. Journal of Thrombosis and Haemostasis. 2020; 18: 2103–2109.
PubMed Abstract | Publisher Full Text
8. Saleh NY, Abolghar HM, Salem SS, et al.: The severity and atypical presentations of COVID-19 infection in pediatrics. BMC Pediatrics. 2021; 21(1): 144.
PubMed Abstract | Publisher Full Text
9. Vidalí S, Morosetti D, Cossu E, et al.: D-dimer as an indicator of prognosis in SARS-CoV-2 infection: a systematic review. ERJ Open Research. 2020; 6: 00280–2020.
PubMed Abstract | Publisher Full Text
10. Favaloro EJ, Thachil J: Reporting of D-dimer data in COVID-19: Some confusion and potential for misinformation. Clinical Chemistry and Laboratory Medicine. 2020; 58: 1191–1199.
PubMed Abstract | Publisher Full Text
11. Wadaa-Allah A, Emharmed MS, Sadeq MA, et al.: Efficacy of the current investigational drugs for the treatment of COVID-19: a scoping review. Annals of Medicine. 2021; 53(1): 318–334.
PubMed Abstract | Publisher Full Text
12. Bikkeli B, Madhavan MV, Jimenez D, et al.: COVID-19 and Thrombotic or Thromboembolic Disease: Implications for Prevention, Antithrombotic Therapy, and Follow-Up: JACC State-of-the-Art Review. Journal of the American College of Cardiology. 2020; 75(23): 2950–2973.
PubMed Abstract | Publisher Full Text
13. Feng X, Zhu B, Jiang C, et al.: Correlation between White Blood Cell Count at Admission and Mortality in COVID-19 Patients. A Retrospective Study. 2020.
Open Peer Review

Current Peer Review Status: ?

Version 2

Reviewer Report 09 March 2022

https://doi.org/10.5256/f1000research.122136.r126644

© 2022 Zhang Z. This is an open access peer review report distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Zhongheng Zhang ID
Department of Emergency Medicine, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China

This is an interesting clinical question relevant to the risk stratification for COVID-19. However, I can find numerous risk stratification studies by utilizing exactly the lab measurements for the disease and there is lack of novelty in the current study. I also have several detailed comments:

1. I do not think the discussion on anticoagulation strategy is relevant for the current study. The current study is a risk factor analysis and the causality of heparin intervention is not explored.

2. The data analysis results described in the abstract do not support the conclusion that "Anticoagulants in COVID-19 patients lower inflammation markers."; the causal inference has not been implemented formally.

3. Many patients would be discharged/dead before day 13, how did you handle such competing risk? In such a situation, death can be regarded as competing risk if you are focusing on inflammation outcomes.

4. "After all the completed researches, further study on how to use anticoagulants is still being analysed to promote the best prognosis."---this discussion is irrelevant to the current study.

5. I suggest that the authors should extract data on heparin use and then explore the causality between heparin and mortality, while stratified by subgroups of population.

6. "We also determined the relationship between inflammatory state after anti-coagulant with patients' mortality, along with some variables, which were age, gender, disease severity, and comorbididy."---this statement is confusing. You need to specify to use multivariable regression model to adjust for confounding. Furthermore, the model specification described here does allow replication of the study. For example, did you consider interaction or non-linearity for the relationship between covariates and outcome? You assumed linearity but may not hold true in real
world data. You need to discuss the limitation of current study in adjusting for confounding factors. However, another approach is to use ensemble modelling, which can address non-linearity automatically without pre-specification. At least you need to mention this in the discussion section.

References
1. Zhang Z, Chen L, Xu P, Hong Y: Predictive analytics with ensemble modeling in laparoscopic surgery: A technical note. *Laparoscopic, Endoscopic and Robotic Surgery*. 2022. Publisher Full Text

Is the work clearly and accurately presented and does it cite the current literature?
Partly

Is the study design appropriate and is the work technically sound?
Yes

Are sufficient details of methods and analysis provided to allow replication by others?
Partly

If applicable, is the statistical analysis and its interpretation appropriate?
Partly

Are all the source data underlying the results available to ensure full reproducibility?
Yes

Are the conclusions drawn adequately supported by the results?
Yes

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: emergency and critical care

I confirm that I have read this submission and believe that I have an appropriate level of expertise to confirm that it is of an acceptable scientific standard, however I have significant reservations, as outlined above.
The benefits of publishing with F1000Research:

- Your article is published within days, with no editorial bias
- You can publish traditional articles, null/negative results, case reports, data notes and more
- The peer review process is transparent and collaborative
- Your article is indexed in PubMed after passing peer review
- Dedicated customer support at every stage

For pre-submission enquiries, contact research@f1000.com