PREVALENCIA DE ESTEATOSE HEPÁTICA EM CRIANÇAS E ADOLESCENTES COM FIBROSE CÍSTICA E ASSOCIAÇÃO COM O ESTADO NUTRICIONAL
Prevalence of hepatic steatosis among children and adolescents with cystic fibrosis and its association with nutritional status

Amanda Oliva Gobatoa,*, Ana Carolina Junqueira Vasquesa, Antonio Fernando Ribeiroa, Roberto Massao Yamadaa, Gabriel Hesself

RESUMO
Objetivo: Determinar a prevalência de esteatose hepática (EH) em crianças e adolescentes com fibrose cística (FC) e associá-la com o estado nutricional.
Métodos: Estudo transversal com crianças e adolescentes com diagnóstico de FC. Foram aferidos o peso e a altura para o cálculo do índice de massa corpórea (IMC) e classificação do estado nutricional. A circunferência do braço (CB), a dobra cutânea tricipital (DCT) e a circunferência muscular do braço (CMB) foram empregadas para avaliação da composição corporal. A ultrassonografia abdominal foi realizada para o diagnóstico de EH. Os testes estatísticos empregados foram o teste t de Student, o teste de Mann-Whitney e o teste do qui-quadrado, com nível de significância de 5%.
Resultados: Dos 50 pacientes avaliados, 18 (36%) apresentaram EH (Grupo A) e 32 (64%) não (Grupo B). Para as médias de idade (Grupo A: 13,3±4,9 anos; e Grupo B: 11,7±4,9 anos), IMC (Grupo A: 18,0±4,1; e Grupo B: 15,7±3,8) e DCT (Grupo A: 8,4±3,5 mm; e Grupo B: 7,0±2,5 mm), não houve diferença significativa entre os grupos. A média da CB e da CMB diferiram significativamente entre os grupos, sendo mais elevada no grupo com EH, com valores p respectivos de 0,047 e 0,043.
Conclusões: É alta a frequência de EH em pacientes com FC e ela não está relacionada com a desnutrição, segundo os parâmetros de IMC, DCT e CMB. Os valores de CB e CMB indicaram maior reserva de massa muscular nos pacientes com EH.
Palavras-chave: Fibrose cística; Esteatose hepática; Desnutrição; Estado nutricional; Criança; Adolescente.

ABSTRACT
Objective: To determine the prevalence of hepatic steatosis (HS) in children and adolescents with cystic fibrosis (CF) and associate it with nutritional status.
Methods: Cross-sectional study with children and adolescents with CF diagnosis. Weight and height were used to calculate the body mass index (BMI) and subsequent classification of the nutritional status. The midarm circumference (MAC), triceps skinfold thickness (TSF) and midarm muscle circumference (MAMC) were used to evaluate body composition. Abdominal ultrasonography was performed for diagnosis of HS. The statistical tests used were Student’s t test, Mann-Whitney test and chi-square test with significance level of 5%.
Results: 50 patients with CF were evaluated, 18 (36%) were diagnosed with HS (Group A) and 32 (64%) without HS (Group B). The mean age of Group A was 13,2±4,9 years old and Group B 11,7±4,9; for BMI, the value for Group A was 18,0±4,1 and Group B was 15,7±3,8; the TSF of Group A was 8,4±3,5 mm and Group B was 7,0±2,5 mm. For these variables, there was no significant difference between the groups. The mean of MAC and MAMC differed significantly between the groups, being higher in the HS group, with p values of 0,047 and 0,043.
Conclusions: The frequency of HS in patients with CF is high and it is not related to malnutrition, according to the parameters of BMI, TSF and MAMC. The values of MAC and MAMC indicated a greater reserve of muscle mass in patients with HS.
Keywords: Cystic fibrosis; Fatty liver; Malnutrition; Nutritional status; Child; Adolescent.
INTRODUÇÃO

Recentemente, tem se dado mais atenção ao acometimento hepático na fibrose cística (FC), pois é a terceira principal causa de morte, após insuficiência respiratória e complicações relacionadas ao transplante pulmonar.1 A FC é a doença genética potencialmente letal comum na raça branca, com incidência de aproximadamente um em cada três mil nascidos vivos.2 É uma doença multissistêmica que afeta glândulas sudoríparas, pâncreas, pulmões, fígado, intestino e ductos de Wolff.3 O diagnóstico da FC é realizado pelo teste do suor, confirmado quando a concentração de cloretos é superior a 60 mEq/L, em dois exames realizados em dias diferentes.4

Há vários motivos que dificultam saber a real prevalência da doença hepática na FC: não há uma definição universalmente aceita de critérios de diagnóstico de doença hepática na FC, a maioria dos pacientes é assintomática, e faltam testes não invasivos altamente sensíveis e específicos. O termo doença hepática na FC é inespecífico e tem sido utilizado em vários estudos para descrever um amplo espectro de doenças hepatobiliares, incluindo: colestase neonatal, elevação de enzimas hépáticas, anormalidades de imagem como heterogeneidade do parênquima hepático encontrada durante a ultrassonografia, hipertensão portal, insuficiência hepática e anormalidades histológicas como fibrose, cirrose e estatose hepática (EH).5 O desenvolvimento de cirrose e hipertensão portal ocorre em 5 a 8% dos pacientes e, na maioria dos casos, inicia-se na primeira década de vida.6

A EH é citada nas casuísticas com frequência de 20 a 60%.7 Embora a etiopatogênese na maioria dos pacientes seja desconhecida, ela tem sido associada a deficiências nutricionais específicas, alteração no metabolismo de fosfolipídeo8 e desnutrição.9 A deficiência de ácidos grasos essenciais tem sido descrita em pacientes com FC e insuficiência pancreática,10 e estudos experimentais em ratos relacionaram essa deficiência com EH.11 De acordo com o grupo de consenso das doenças hepatobiliares da FC, quando a estatose ocorre em pacientes sem desnutrição, é importante investigar a possibilidade de diabetes melito.12 Por outro lado, a fisiopatologia da desnutrição na EH é pouco conhecida. Van Zutphen et al.13 induziram desnutrição grave em ratos e mostraram que os mecanismos principais que conduzem à EH são a perda do peroxissoma e a disfunção mitocondrial.

Nesse contexto, o objetivo do presente estudo foi determinar a prevalência de EH avaliada por ultrassonografia abdominal em crianças e adolescentes com FC e associá-la com o estado nutricional.

MÉTODO

Realizou-se um estudo transversal com 50 crianças e adolescentes de 2 a 19 anos de idade incompletos, de ambos os sexos, com diagnóstico de FC estabelecido por duas dosagens de sódio e cloro no suor acima de 60 mEq/L.4

Os critérios de inclusão foram: pacientes atendidos no ano de 2016 no Ambulatório de Fibrose Cística do Hospital de Clínicas da Faculdade de Ciências Médicas da Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brasil, e cujos responsáveis assinaram o termo de consentimento livre e esclarecido. Os critérios de exclusão foram: pacientes em uso de medicamentos hepatotóxicos com elevação das aminotransferases, dislipidemia grave ou com outras hepatopatias que podem cursar com a EH (infecções virais por hepatites B e C, deficiência de alfa-1 antitripsina e doença de Wilson).

As técnicas antropométricas para aferir o peso, a altura, a circunferência do braço (CB) e a dobra cutânea tricipital (DCT) foram as recomendadas por Lohman. Utilizaram-se um compasso de drobas cutâneas Lange para aferição da DCT e uma fita métrica Sanny para a CB. Calculou-se o índice de massa corpórea (IMC)/idade pelo índice de Quetelet (IMC=peso/estatura²), e o IMC foi classificado de acordo com as curvas de crescimento da Organização Mundial da Saúde (OMS).14 Consideraram-se desnutridos os pacientes com percentil <3, eutróficos os pacientes com percentil ≥3 e <85, e com excesso de peso aqueles com percentil ≥85.

Com os valores obtidos da DCT e da CB, foi calculada a circunferência muscular do braço (CMB), conforme Equação 1:

\[\text{CMB} = \text{CB} - 0.314 \times \text{DCT} \]

(1)

A % de adequação foi mensurada conforme Equação 2:

\[\text{CMB ou DCT}/\text{percentil} \times 100 \]

(2)

Foram classificados como desnutridos os pacientes com valores ≤90% e eutróficos aqueles com >90. Consideraram-se com excesso de gordura corporal os portadores de valores >110% somente para DCT.15

A ultrassonografia do abdômen é o método de imagem mais empregado para identificar a EH, por seu custo ser relativamente baixo, por não ser invasivo, por ser de fácil aplicabilidade e por estar disponível na maioria dos serviços. A sensibilidade do método é de 89%, e a especificidade, de 93%.16 Realizou-se o exame ultrassonográfico por meio de aparelho Toshiba, Power Vision 6000, mediante transdutores setorial de 3,75 MHz e linear de 5 MHz, por dois examinadores experientes em ultrassonografia abdominal pediátrica. O paciente permaneceu em posição supina para avaliação do figado após jejum de 12 horas. O diagnóstico de EH foi considerado em caso de contraste hepatorenal moderado ou intenso e/ou diferença de ≥7 no histograma
da relação do lobo direito do figado/côrtex do rim direito, como mostrado na Figura 1.

Em relação à insuficiência pancreática, considerou-a como presente nos pacientes em uso de enzimas pancreáticas e/ou com estatorreia. Para o diabetes melito, admitiu-o como presente de acordo com a classificação das Diretrizes Brasileiras de Diagnóstico e Tratamento da Fibrose Cística.

No que tange ao método de seleção dos participantes para o estudo, trata-se de amostra por conveniência; os 85 pacientes atendidos no ano de 2016 foram convidados a participar e 50 deles participaram, seguindo os critérios de inclusão e exclusão. Os pacientes foram divididos em dois grupos conforme o resultado do ultrassom:
- Grupo A: pacientes com FC e EH.
- Grupo B: pacientes com FC e sem EH.

Os dados foram analisados no software IBM Statistical Package for the Social Sciences (SPSS) versão 20.0. Realizou-se o teste de Kolmogorov-Smirnov para avaliar a distribuição das variáveis quantitativas na curva de Gauss. A análise descritiva das variáveis contínuas compreendeu o cálculo das médias e seus respectivos desvios padrão para as variáveis com distribuição normal e o cálculo da mediana e percentis 25 e 75 para as variáveis que não aderiram ao teste de normalidade. As variáveis categóricas foram expressas em valores percentuais. Utilizou-se o teste t de Student para comparar as variáveis com distribuição normal segundo presença de EH; para as variáveis sem distribuição normal, foi aplicado o teste de Mann-Whitney. Usou-se o teste do qui-quadrado para investigar a associação entre EH e indicadores antropométricos categorizados. Como algumas variáveis possuíam mais do que duas categorias, a verificação de associação local entre categorias foi analisada calculando-se os resíduos ajustados. Valores de resíduos ajustados maiores que 1,96 indicaram a presença de associação estatística significante entre as duas categorias.

O presente estudo foi aprovado pelo Comitê de Ética em Pesquisa da Faculdade de Ciências Médicas da UNICAMP, sob parecer n° 494.781.

RESULTADOS
Foram avaliados 50 pacientes procedentes do Ambulatório de Fibrose Cística do Hospital de Clínicas da UNICAMP, sendo 23 (46%) do sexo feminino e 27 (54%) do masculino, com idades entre 2 e 19 anos incompletos (12,2 ± 4,9), sendo quatro crianças e 14 adolescentes no Grupo A e 13 crianças e 19 adolescentes no Grupo B, considerando a classificação da faixa etária para crianças com idade <10 anos.

Desses pacientes, 18 (36%) foram diagnosticados pela ultrassonografia abdominal com EH (Grupo A) e 32 (64%) diagnosticados sem EH (Grupo B). Na avaliação da associação entre EH e estado nutricional, as variáveis IMC e DCT não diferiram significativamente entre os grupos, não apresentando associação entre EH e desnutrição. A CB e a CMB diferiram significativamente entre os grupos, sendo a diferença mais elevada no grupo com EH, indicando maior reserva de massa muscular (Tabela 1 e Figura 2).

Do total de pacientes avaliados, 48 (96%) apresentaram insuficiência pancreática e sete (14%) diabetes melito, e não apresentaram associação significativa com presença ou ausência de EH. Os dados mostram que a média do IMC do grupo com EH (18,0 ± 4,1) é maior quando comparada com a do grupo sem EH (15,7 ± 3,8), mas sem diferença estatística significativa, e 15/18 pacientes (83,3%) com EH são eutróficos (Tabela 1). Quando comparada a média do percentil do IMC, o grupo com EH manteve-se mais elevado (percentil 39,05) em relação ao grupo sem EH (percentil 27,28), porém sem diferença estatística significativa (Tabela 2).

DISCUSSÃO
Há um amplo espectro de acometimento hepático na FC incluindo a EH, sendo a desnutrição uma das causas implica- das. No presente trabalho, observou-se alta frequência de EH, mas ela não foi relacionada com a desnutrição. Não se conhece o mecanismo exato da doença hepática na FC. Sabe-se que a alteração primária envolve um defeito genético da proteína regulator de condutância transmembrana da fibrose cística (cystic fibrosis transmembrane conductance regulator — CFTR) das células epiteliais biliares, que leva à produção de secreção biliar espessa, evoluindo com obstrução ductal biliar e progressando.
para o desenvolvimento de fibrose e cirrose biliar. No sistema hepatobiliar, a CFTR é expressa em colangiócitos intra e extra-hepáticos, incluindo a vesícula biliar, mas não nos hepatócitos. Por outro lado, a fisiopatologia do desenvolvimento da EH está associada aos distúrbios metabólicos: aumento na mobilização de ácidos graxos do tecido adiposo, aumento na síntese hepática de ácidos graxos, aumento na produção de triglicérides e aprisionamento de triglicérides no fígado.

As causas da EH secundária à FC ainda não foram totalmente elucidadas. A patogênese pode estar relacionada à desnutrição, a deficiências de ácidos graxos essenciais, carnitina, colina, estresse oxidativo e resistência à insulina, e não somente a um gene CFTR. Nessas circunstâncias, avaliar a deficiência de ácidos graxos essenciais e carnitina faz-se necessário, considerando que a deficiência desses nutrientes pode levar a EH por diminuição do metabolismo de gorduras. Essa condição não parece evoluir para cirrose, contudo essa afirmação pode ser modificada com novas pesquisas, tendo em vista que em adultos já está comprovado que a esteato-hepatite não alcoólica pode evoluir para cirrose.

Quando avaliada a relação da EH com o IMC/idade, 16,7% dos pacientes apresentaram desnutrição, mas sem associação significativa com o grupo sem EH, uma vez que 31,2% dos pacientes sem EH estavam desnutridos. A DCT demonstrou depleção do tecido adiposo em ambos os grupos, mas sem diferença estatística, diferentemente da CB e CMB, que tiveram diferença significativa entre os grupos, demonstrando que na presença de EH o paciente mantém melhor reserva de massa muscular e por conseguinte maior CB. A análise isolada da CB não permite afirmar que há aumento de massa magra, porém, analisando os baixos valores de DCT, pode-se concluir que os valores de CB refletem maiores reservas musculares no presente estudo. Esse resultado deve ser confirmado com ampliação da casuística e outros métodos que avaliem a massa muscular.

Na casuística apresentada, 13/50 pacientes (26%) exibiram desnutrição quando classificados pelo IMC/idade, independentemente da EH. Quando avaliada a média do percentil, esta se apresentou abaixo do recomendado (percentil 31,52). A Cystic Fibrosis Foundation estabeleceu como objetivo nas diretrizes de 2012 que se tenham como pontos de corte para IMC, CB, DCT e CMB os percentis 30 e 50, respectivamente. Neste estudo, cujo objetivo foi avaliar a prevalência de desnutrição e dislipidemia em crianças com fibrose cística, observou-se que 13,7% e 16,7% dos pacientes apresentaram IMC e CB abaixo dos percentis, respectivamente. Os baixos valores de DCT e CMB encontrados neste estudo, embora não estejam diretamente relacionados à desnutrição, podem refletir uma condição de massa muscular decepcionante, que deve ser considerada no planejamento do tratamento nutricional.

Tabela 1 Estado nutricional, insuficiência pancreática e presença de diabetes melito em pacientes fibrocísticos com e sem esteatose hepática.

	Presente (n=18)	Ausente (n=32)	p-valor	Total
Idade (anos) média*** e DP				
	13,2±4,9	11,7±4,9	0,291	12,2±4,9
Gênero**				
Feminino (%)	8 (44,4)	15 (46,9)	0,869	23 (46)
Masculino (%)	10 (55,6)	17 (53,1)	0,275	27 (54)
IMC*** (média e DP)				
	18,0±4,1	15,7±3,8	0,058	16,6±4,0
Classificação IMC**				
Desnutrição (%)	3 (16,7)	10 (31,2)	0,165	13 (26)
Eutrofia (%)	15 (83,3)	19 (59,4)	0,348	34 (68)
Excesso de peso (%)	0	3 (9,4)	0,3	3 (6)
CB*** (cm) média e DP				
	20,3±6,8	16,5±4,5	0,047	17,9±5,7
DCT*** (mm) média e DP				
	8,4±3,5	7,0±2,5	0,134	7,5±2,9
Classificação DCT**				
Desnutrição (%)	13 (72,2)	26 (81,2)	0,071	39 (78)
Eutrofia (%)	1 (5,6)	5 (15,6)	0,3	6 (12)
Excesso de peso (%)	4 (22,2)	1 (3,1)	0,051	5 (10)
CMB*** (mm) média e DP				
	177,7±61,1	143,3±41,1	0,043	155,7±51,4
Classificação CMB**				
Desnutrição (%)	9 (50)	26 (81,2)	0,021*	35 (70)
Eutrofia (%)	9 (50)	6 (18,8)	0,051	15 (30)
Insuficiência pancreática**				
Presente (%)	18 (100)	30 (93,8)	0,279	48 (96)
Ausente (%)	0 (0)	2 (6,2)	0,2	2 (4)
Diabetes melito**				
Presente (%)	3 (16,7)	4 (12,5)	0,684	7 (14)
Ausente (%)	15 (83,3)	28 (87,5)	0,43	43 (86)

DP: desvio padrão; IMC: índice de massa corporal; CB: circunferência do braço; DCT: dobra cutânea tricipital; CMB: circunferência muscular do braço; *p<0,05; ** teste do qui-quadrado para variáveis categóricas; *** teste t de Student para variáveis contínuas.
nutricionais que crianças de 2 a 19 anos devem apresentar IMC igual ou superior ao percentil 50.

De acordo com a publicação de 2014 da European Cystic Fibrosis Society, que obtém registros epidemiológicos de 35.582 pacientes com FC de toda a Europa, quase metade das crianças e adultos com FC foi considerada eutrófica. Do total de pacientes acompanhados, 3.981 (11,1%) apresentaram EH. Dados semelhantes são encontradas no Cystic Fibrosis Foundation, que possui registrados 28.983 indivíduos com FC, sendo 49,3% até 18 anos e revelando que percentis médios de IMC/idade em crianças com FC aumentaram de 40,3 em 2010 para 54,2 em 2015. Em 2015, dos pacientes tratados, 0,5% desenvolveram EH e 2,3% cirrose hepática até 18 anos. Essas informações foram obtidas por inquérito e suplementação nutricional.

Tabela 2 Caracterização da amostra de acordo com o percentil (p) do índice de massa corpórea, segundo presença/ausência de esteatose hepática.

Percentil de IMC para idade	EH	Total
	**	
P-valor		
Total	31,5±30,7	
Presente (n=18)	38 (15–75)	20 (1–50)
Ausente (n=32)	15 (1–50)	
p	0,175	

DP: desvio padrão; * teste de Mann-Whitney.

Figura 2 (A) Classificação do estado nutricional pelo índice de massa corpórea segundo presença/ausência de esteatose hepática. (B) Distribuição dos percentis de índice de massa corpórea em box plot dos pacientes com e sem esteatose hepática. (C) e (D) Associação da dobra cutânea tricipital e da circunferência muscular do braço segundo presença/ausência de esteatose hepática.
e destoam de toda a literatura sobre a frequência de EH em pacientes com FC.

O Registro Brasileiro de Fibrose Cística (REBRAFC), coordenado pelo Grupo Brasileiro de Estudos de Fibrose Cística (GBEFC), contém dados demográficos de diagnóstico e tratamento desses pacientes. Com 3.511 pacientes registrados até 2014, 75% são menores de 18 anos, com média de 11,5 anos. Em relação ao estado nutricional, os dados mostram que os pacientes estão em situação nutricional inadequada, com média do percentil do IMC de 21,3 (IMC abaixo do percentil 50). Dos pacientes avaliados, 8,8% apresentaram algum acometimento hepático, sendo 1% cirrose, e 0,04% precisaram do transplante hepático no ano de 2014.

Estudo realizado no Rio Grande do Sul com 82 pacientes com idades entre 7 meses e 16 anos mostrou que 26,8% estavam desnutridos, por meio do ponto de corte IMC-percentil 10 para desnutridos. Outra pesquisa com 85 pacientes, com média de idade 11,2±3,2, observou a prevalência de pacientes desnutridos de 22,3%, considerando o IMC abaixo do percentil 25 como ponto de corte.

Para avaliação do estado nutricional no presente estudo, foram utilizados os padrões propostos pela OMS. Outras investigações empregaram as recomendações dos consensos internacionais de FC, tornando divergente a comparação dos estudos, uma vez que há redução no número de indivíduos considerados eutróficos e aumento dos casos de desnutrição. Esse fato foi identificado em outro estudo. Há pesquisas relacionando doença hepática e estado nutricional, mas levando em conta vários espectros de acometimento hepático, desde elevação de enzimas hepáticas até cirrose. Nesses estudos, não foi observada associação entre doença hepática e estado nutricional. Como exceção, há apenas um estudo recente de Ayoub et al., que analisaram os fatores de risco para EH em pacientes adultos com FC, contudo não foi possível a comparação dos resultados por se tratar de pacientes com diferença importante de faixa etária (mediana de 29 anos) e também porque os autores encontraram associação da EH com sobrepeso e concluíram que a EH em pacientes adultos com FC compartilha semelhanças com a doença hepática gordurosa não alcoólica.

A desnutrição é multifatorial na FC, incluindo a ingestão alimentar deficiente, a necessidade diária energética aumentada e associada à má digestão de nutrientes. Aqueles que são diagnosticados por meio de programas de rastreamento do recém-nascido se beneficiam da intervenção precoce, que está associada a resultados positivos no estado nutricional. Uma intervenção precoce na FC é capaz de manter o bom estado nutricional do paciente e minimizar o efeito do ciclo vicioso desnutrição-infeção. É importante manter o controle das complicações secundárias da FC, pois elas estão associadas ao aumento da morbidade e mortalidade, que afetam diretamente a saúde e a qualidade de vida do paciente.

Uma das limitações deste estudo foi a falta de avaliação da composição corporal por meio da bioimpedância elétrica, para melhor interpretação dos resultados das medidas antropométricas, que relacionaram maior reserva de massa magra no grupo com EH. Outra limitação foi a inexistência de um inquérito alimentar capaz de identificar alimentação desbalanceada e uso de suplementos alimentares que poderiam interferir no estado nutricional. Maior um limitação foi o número reduzido de pacientes que participou da pesquisa, que foram selecionados por amostra de conveniência. Em conclusão, é alta a frequência de EH em pacientes com FC e ela não está associada com a desnutrição, segundo os parâmetros de IMC, DCT e CMB. Os valores de CB e CMB indicaram maior reserva de massa muscular nos pacientes com EH.

Fonte de financiamento
Este projeto teve o auxílio de bolsa de estudos da Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES).

Conflito de interesses
Os autores declararam não haver conflito de interesses.

REFERÊNCIAS

1. Cystic Fibrosis Foundation [homepage on the Internet]. Cystic Fibrosis Foundation Patient Registry 2015 Annual Data Report. Maryland (USA): Cystic Fibrosis Foundation; 2015. [cited 2017 Aug 03]. Available from: https://www.cff.org/Our-Research/CF-Patient-Registry/2015-Patient-Registry-Annual-Data-Report.pdf

2. O’Sullivan BP, Freedman SD. Cystic fibrosis. Lancet. 2009;373:1891-904.

3. Colombo C, Battezzati PM. Liver involvement in cystic fibrosis: primary organ damage or innocent bystander? J Hepatol. 2004;41:1041-4.

4. Farrell PM, White TB, Ren CL, Hempstead SE, Accurso F, Derichs N, et al. Diagnosis of cystic fibrosis: Consensus Guidelines from the Cystic Fibrosis Foundation. J Pediatr. 2017;181S:S4-15.

5. Wilschanski M, Durie PR. Patterns of GI disease in adulthood associated with mutations in the CFTR gene. Gut. 2007;56:1153-63.

6. Colombo C, Battezzati PM, Crosignani A, Morabito A, Costantini D, Padoan R, et al. Liver disease in cystic fibrosis: a prospective study on incidence, risk factors, and outcome. Hepatology. 2002;36:1374-82.
7. Feranchak AP, Sokol RJ. Cholangiocyte biology and cystic fibrosis liver disease. Semin Liver Dis. 2001;21:471-88.
8. Staufer K, Hallibasic E, Trauner M, Kazemi-Shirazi L. Cystic fibrosis related liver disease - another black box in hepatology. Int J Mol Sci. 2014;15:13529-49.
9. Brown KJ, Lingard C, Narkewicz MR. Nutrition and cystic fibrosis related liver disease. In: Yen EH, Leonard AR, editors. Nutrition in cystic fibrosis: a guide for clinicians. New York (USA): Humana Press; 2015. p.165-78.
10. Maqbool A, Schall JI, Gallagher PR, Zemel BS, Strandvik B, Stalling VA. Relation between dietary fat intake type and serum Fatty acid status in children with cystic fibrosis. J Pediatr Gastroenterol Nutr. 2012;55:605-11.
11. Nakajima T, Yang Y, Lu Y, Kamiyo Y, Yamada Y, Nakamura K, et al. Decreased Fatty Acid β-Oxidation is the main cause of fatty liver induced by polysaturated fatty acid deficiency in mice. Tohoku J Exp Med. 2017;242:229-39.
12. Moran A, Pillay K, Becker DJ, Acerini CL, International Society for Pediatric and Adolescent Diabetes. ISPAD Clinical Practice Consensus Guidelines 2014. Management of cystic fibrosis-related diabetes in children and adolescents. Pediatr Diabetes. 2014; Suppl 20:65-76.
13. van Zutphen T, Ciapaite J, Bloks VW, Ackerey C, Gerding A, Jurdzinski A, et al. Malnutrition-associated liver steatosis and ATP depletion is caused by peroxisomal and mitochondrial dysfunction. J Hepatol. 2016;65:1198-208.
14. Organização Mundial da Saúde [homepage on the Internet]. Curvas de crescimento. Brasil: Ministério da Saúde [cited 2017 Aug 03]. Available from: http://dab.saude.gov.br/portaldab/ape_vigilancia_alimentar.php?conteudo=curvas_de_crescimento
15. Frisancho AR. New norms of upper limb fat and muscle areas for assessment of nutritional status. Am J Clin Nutr. 1981;34:2540-5.
16. Joseph AE, Saverymuttu SH, a1-Sam S, Cook MG, Maxwell JD. Comparison of liver histology with ultrasonography in assessing diffuse parenchymal liver disease. Clin Radiol. 1991;43:26-31.
17. Osawa H, Mori Y. Sonographic diagnosis off fatty liver using a histogram technique that compares liver and renal cortical echo amplitudes. J Clin Ultrasonound. 1996;24:25-9.
18. Athanazio RA, Silva Filho LV, Vergara AA, Ribeiro AF, Riedi CA, Prociaco EF, et al. Brazilian guidelines for the diagnosis and treatment of cystic fibrosis. J Bras Pneumol. 2017;43:219-45.
19. Herrmann U, Dockter G, Lammert F. Cystic fibrosis-associated liver disease. Best Pract Res Clin Gastroenterol. 2010;24:585-92.
20. Angulo P, Linder KD. Non-alcoholic fatty liver disease. J Gastroenterol Hepatol. 2002;17 Suppl:S186-90.
21. Kobelska-Dubiel N, Kliniczewicz B, Cichy W. Liver disease in cystic fibrosis. Prz Gastroenterol. 2014;9:136-41.
22. European Cystic Fibrosis Society Patient Registry [homepage on the Internet]. ECFS PR Annual Data Report 2014. Denmark: ECFSPR; 2014 [cited 2017 Aug 03]. Available from: https://www.ecfs.eu/sites/default/files/general-content/files/working-groups/ecfs-patient-registry/ECFSPR_Annual%20Report%202014_Nov2016.pdf
23. Brazilian Cystic Fibrosis Study Groups [homepage on the Internet]. The Brazilian Cystic Fibrosis Patient Registry 2014. Brazil: GBEFC; 2014 [cited 2017 Aug 03]. Available from: http://portalgbefc.org.br/wp-content/uploads/2016/11/Registro2014_Ingles_v04.pdf
24. Pereira JS, Forte GC, Simon MI, Drehmer M, Behling EB. Nutritional status in patients with cystic fibrosis in a specialized centre in South Brazil. Rev HCPA. 2011;3:131-7.
25. Simon MI, Drehmer M, Menna-Barreto SS. Association between nutritional status and dietary intake in patients with cystic fibrosis. J Bras Pneumol. 2009;35:966-72.
26. Pinto IC, Silva CP, Britto MC. Nutritional, clinical and socioeconomic profile of patients with cystic fibrosis treated at a referral center in northeastern Brazil. J Bras Pneumol. 2009;35:137-43.
27. Fustik S, Trajkovska M, Jakovska T, Spirevska L, Josifovska T, Koceva S. Screening for liver disease in cystic fibrosis: analysis of clinical and genetic risk factors for its development. Turk J Pediatr. 2008;50:526-32.
28. Rowland M, Gallagher CG, O’Laoide R, Canny G, Broderick A, Hayes R, et al. Outcome in cystic fibrosis liver disease. Am J Gastroenterol. 2011;106:104-9.
29. Ayoub F, Trillo-Alvarez C, Morelli G, Lascano J. Risk factors for hepatic steatosis in adults with cystic fibrosis: Similarities to non-alcoholic fatty liver disease. World J Hepatol. 2018;10:34-40.
30. Gaskin KJ. Nutritional care in children with cystic fibrosis: are our patients becoming better? Eur J Clin Nutr. 2013;67:558-64.