Gene-educational attainment interactions in a multi-ancestry genome-wide meta-analysis identify novel blood pressure loci

Lisa de las Fuentes et al.

Received: 21 August 2019 / Revised: 19 March 2020 / Accepted: 24 March 2020 / Published online: 5 May 2020
© The Author(s), under exclusive licence to Springer Nature Limited 2020

Abstract
Educational attainment is widely used as a surrogate for socioeconomic status (SES). Low SES is a risk factor for hypertension and high blood pressure (BP). To identify novel BP loci, we performed multi-ancestry meta-analyses accounting for gene-educational attainment interactions using two variables, “Some College” (yes/no) and “Graduated College” (yes/no). Interactions were evaluated using both a 1 degree of freedom (DF) interaction term and a 2DF joint test of genetic and interaction effects. Analyses were performed for systolic BP, diastolic BP, mean arterial pressure, and pulse pressure. We pursued genome-wide interrogation in Stage 1 studies (N = 117 438) and follow-up on promising variants in Stage 2 studies (N = 293 787) in five ancestry groups. Through combined meta-analyses of Stages 1 and 2, we identified 84 known and 18 novel BP loci at genome-wide significance level (P < 5 × 10^-8). Two novel loci were identified based on the 1DF test of interaction with educational attainment, while the remaining 16 loci were identified through the 2DF joint test of genetic and interaction effects. Ten novel loci were identified in individuals of African ancestry. Several novel loci show strong biological plausibility since they involve physiologic systems implicated in BP regulation. They include genes involved in the central nervous system-adrenal signaling axis (ZDHHC17, CADPS, PIK3C2G), vascular structure and function (GNB3, CDON), and renal function (HAS2 and HAS2-AS1, SLIT3). Collectively, these findings suggest a role of educational attainment or SES in further dissection of the genetic architecture of BP.

Introduction
Educational attainment is among the most widely used indices of socioeconomic status (SES) in epidemiologic studies [1,2]. Multiple studies have demonstrated a stepwise decline in all-cause mortality with increasing levels of education [1]. Compared with other measures of SES, such as income and occupation, the use of educational attainment has several advantages: it is stable after young adulthood, simple to capture, has a low nonresponse rate, and is not affected by poor health in adulthood [1,3]. Furthermore, the relationship between educational attainment and cardiovascular disease traits tend to be more consistent and stronger [4]. Higher educational attainment is related to improved health efficacy (such as preventive health behaviors and problem-solving capacity), improved access to health care, and more favorable socio-psychological conditions (such as personal control and social support) [2,3].

Several variables of educational attainment investigated in epidemiologic studies in relation to cardiovascular risk traits include continuous variables (such as years of education) and various partitions (such as completing high school or completing college degree) [5–11]. Low educational attainment is related to high blood pressure (BP) and increased hypertension (HTN) risk as evidenced in a meta-analysis of 51 studies across 20 countries [3]. Educational attainment is also related to coronary artery disease [12], coronary calcification [13], and other cardiovascular risk traits including metabolic syndrome [10], lipid levels [9,10,14], smoking behavior [12,15], salt intake [16,17], and leisure-time physical activity [18]. Furthermore, the genetic effects on HTN may vary as a function of educational attainment. For example, a heritability study of EUR-ancestry male twins showed higher heritability of HTN at higher education levels ($h^2 = 0.63$ with >14 years of education compared with $h^2 = 0.46$ with ≤14...
years of education) [19], suggesting interactions between genes and educational attainment.

While genome-wide association studies have investigated the genetic contributions to educational attainment [6], there has been no comprehensive effort to examine the role played by gene-environment interactions in BP using educational attainment as the environmental exposure. Within the CHARGE Gene-Lifestyle Interactions Working Group [20], we performed genome-wide meta-analysis of systolic BP (SBP), diastolic BP (DBP), mean arterial pressure (MAP), and pulse pressure (PP), accounting for gene-educational attainment interactions. Based on the availability of data across participating studies, we considered two educational attainment variables, “Some College” (yes/no, for any education beyond high school) and “Graduated College” (yes/no, for completing a 4-year college degree). Herein, we report our findings based on up to 411,225 individuals from five ancestry groups.

Subjects and methods

Participating studies

We performed our analysis in two stages (Fig. 1). A total of 42 cohorts including 117,438 men and women (aged 18–80 years) from European (EUR), African (AFR), Asian (ASN), Hispanic (HIS), and Brazilian (BRZ) ancestries contributed to Stage 1 genome-wide interaction analyses (Table S1). An additional 49 cohorts including 293,787 individuals contributed to Stage 2 analyses of top single nucleotide variants (SNVs, also including a small number of insertion and deletion [indels] variants) selected from Stage 1 (Table S2). Participating studies are described in Supplementary Material. Since discoveries to date are largely from EUR populations, considerable effort was made to recruit most of the available non-EUR cohorts into Stage 1. Each study obtained informed consent from participants and approval from the appropriate institutional review boards.

Phenotype and lifestyle variables

We performed our analysis for SBP, DBP, MAP, and PP. After computing SBP and DBP when multiple measurements were available, we adjusted for antihypertensive medication use by adding 15 mmHg and 10 mmHg to SBP and DBP, respectively [21]. After medication adjustment, MAP was computed as (SBP + 2DBP)/3, and PP was computed as SBP minus DBP (SBP–DBP). To reduce the influence of possible outliers, Winsorizing was performed for each BP value that was more than six standard deviations away from the mean. Descriptive statistics for these four BP traits are presented in Tables S3 and S4. For educational attainment, two dichotomous variables were created. The first variable, “Some College” (SomeCol), was coded as 1 if the subject received any education beyond high school, including vocational school (and as 0 if no education beyond high school). The second variable, “Graduated College” (GradCol), was coded as 1 if the subject completed at least a 4-year college degree (and as 0 for any education less than a 4-year degree). Subjects with missing data for BP, education attainment, or any covariates were excluded from analysis.

Genotype data

Genotyping was performed by each participating study using Illumina (San Diego, CA, USA) or Affymetrix (Santa Clara, CA, USA) genotyping arrays. Imputation was performed using the 1000 Genomes Project [22] Phase I Integrated Release Version 3 Haplotypes (2010-11 data freeze, 2012-03-14 haplotypes) as a reference panel, in most cohorts. Information on genotype and imputation for each study is presented in Tables S5 and S6.

Analysis methods

Each study performed association analyses using the following model:

\[E(Y) = \beta_0 + \beta_G G + \beta_{E} Educ + \beta_{GE} G \times Educ + \beta_C C, \]

where \(Y \) is the BP variable (SBP, DBP, MAP, or PP value), Educ is the educational variable (SomeCol or GradCol), and \(G \) is the dosage of the imputed genetic variant coded additively from 0 to 2. \(C \) is the vector of covariates, including age, sex, field center (for multi-center studies), and principal components. In addition, studies in Stage 1 performed
association analysis using the following genetic main-effect model with education attainment:

\[E(Y) = \beta_0 + \beta_G G + \beta_{E,\text{Educ}} + \beta_{C,\text{C}}. \]

Each study provided the estimated SNV effect (\(\beta_G\)), estimated SNV-educational attainment interaction effect (\(\beta_{GE}\)), their robust standard errors (SEs), and a robust estimate of the covariance between \(\beta_G\) and \(\beta_{GE}\). We performed meta-analysis using the 1 degree of freedom (DF) test of the interaction effect (\(\beta_{GE}\)) and 2DF test of both SNV (\(\beta_G\)) and interaction effects (\(\beta_{GE}\)). Inverse-variance weighted meta-analysis was performed for the 1DF test and the joint meta-analysis of Manning et al. [23] for the 2DF test, both using METAL [24]. In Stage 1 EUR, AFR, ASN meta-analyses, variants were included if they were available in more than 5,000 samples or at least three cohorts (these filters were not applied to BRZ or HIS because of the fewness of cohorts included in these meta-analyses). We applied genomic control correction [25] twice in Stage 1, first for study-specific GWAS results and again for meta-analysis results. Genome-wide significant (\(P < 5 \times 10^{-8}\)) and suggestive (\(P < 1 \times 10^{-6}\)) variants in Stage 1 were taken forward into Stage 2 analysis. Genomic control correction was not applied to the Stage 2 results as association test was performed for select variants. Results presented reflect meta-analyses combining Stages 1 and 2. Loci were defined by physical distance (±1 Mb around the index SNV of the respective locus).

Quality control (QC)

Each participating cohort in Stage 1 excluded variants with minor allele frequency (MAF) <1%. We performed extensive QC using the R package EasyQC [26] for all cohort-specific and meta-analysis results. For Stages 1 and 2, we excluded all variants with imputation quality measure <0.5. In addition, to remove unstable study-specific results that reflected small sample size, low minor allele count (MAC), or low imputation quality, we excluded variants for which the minimum of (MAC0, MAC1) x imputation quality <20, where MAC0 and MAC1 are the MAC in the two education strata (Educ = 0 and Educ = 1). The allele frequencies provided by each cohort were compared against those from the relevant ancestry-specific 1000 Genomes reference panel. Marker names were harmonized to ensure consistency across cohorts. In addition, we visually compared summary statistics (e.g., mean, median, standard deviation, inter-quartile range) of all effect estimates, SEs, and \(P\) values. We examined SE-N plots [26] and quantile-quantile (QQ) plots to reveal issues with trait transformation or other analytical problems. Any problems encountered during QC steps were resolved through communication with the analysts from the participating studies. More detailed information about the QC steps, including major QC problems encountered and how they were resolved, are described elsewhere [20,27].

Characterization of functional roles

A suite of tools implemented in FUMA GWAS [28] was used to identify functional roles for the index variants and nearby variants in linkage disequilibrium (LD; \(r^2 \geq 0.2\)) in each of the novel BP loci. LD information was obtained from the 1000 Genomes Project reference genome for the ancestry with the most significant ancestry-specific association. If the most significant association was in trans-ancestry analyses, the reference genome for the ancestry with the next most significant association was used instead [29]. One index insertion/deletion locus was not identified in any of the reference genomes by FUMA and therefore not detailed. Nearest gene annotations were limited to protein coding, long non-coding RNAs, and non-coding RNAs within 10 kb of index variants and variants in LD \((r^2 \geq 0.2)\) with the index variant [30].

For the index and LD variants, we used the RegulomeDB score [31], which reflects a summary of annotations with known and predicted regulatory elements such as DNAase hypersensitivity, binding sites of transcription factors, and promoter regions, and Combined Annotation Dependent Depletion (CADD) [32] scores, which predict deleteriousness of variants. The 15-core chromatin state (ChromHMM) [33,34] was assessed for 129 epigenomes (labeled E001-E129) to identify histone modifications consistent with epigenetic regulation of gene expression. Expression quantitative trait loci (eQTLs) were determined using the GTEx_v7 database [35] for index and LD variants. Using nearest-gene annotations, FUMA GWAS was used to generate tissue-specific gene expression data (GTEx V7 dataset, 53 tissue types); significance was determined as a Benjamini–Hochberg false discovery rate (FDR) <0.05.

Results

Overview

We performed a meta-analysis of gene-education interactions on SBP, DBP, MAP, and PP in two stages (Fig. 1). In Stage 1, we pursued genome-wide interrogation in 117 438 individuals of EUR, AFR, ASN, HIS, and BRZ ancestries (summary information, Table 1). After extensive quality control (QC), we performed genome-wide meta-analyses at ~18.8 million SNVs and a small number of insertion and deletion (indels) variants imputed using the 1000 Genomes Project reference panel (QQ plots, Fig. S1). Through the 1DF test of the interaction effect and the 2DF joint test of the SNV and interaction effects, we identified 1481
genome-wide significant \(P < 5 \times 10^{-8} \) and 3309 suggestive \(P < 1 \times 10^{-6} \) variants associated with any BP trait in any ancestry and/or in trans-ancestry analysis. All significant and suggestive variants were tested for association in 293,787 additional individuals of EUR, AFR, ASN, and HISP ancestries in Stage 2.

We performed meta-analyses combining Stages 1 and 2 (Manhattan Plots, Fig. S2). We identified 84 known BP loci. This includes 82 loci identified through main-effect only analyses [36–41], including 18 recently reported by Hoffmann et al. [42], Evangelou et al. [43], and Giri et al. [44]; and two loci (\(TFAP2A \) and \(PCDH9 \)) recently reported by our consortium through gene-smoking and gene-alcohol interaction analyses [27,45], which suggest the inter-correlated nature of the various lifestyle traits.

We identified 18 novel genome-wide significant loci \((P < 5 \times 10^{-8}) \) located at least 1 Mb away from any known BP loci (Table 2). Nine loci were identified through the combined analyses of Stage 1 and 2; the remaining nine loci were identified in Stage 1 but not available in Stage 2 for combined analyses (Tables S7). The LocusZoom plots of these novel loci are presented in Fig. S3. Two loci (\(SLIT3 \) and \(HRH4 \)) were identified through the 1DF test of interaction effects. At both loci, the genetic effect on DBP was stronger and beneficial in higher education and weaker and detrimental in lower education. For example, at \(SLIT3 \), the minor allele \(A \) was associated with a 4.82 mmHg lower DBP in higher education (GradCol = 1), whereas it was associated with a 2.25 mmHg higher DBP in GradCol = 0.

The remaining 16 loci were identified through the 2DF joint test of the SNV and interaction effects; twelve loci were identified considering ‘Some College’ (SomeCol) and four loci were identified considering ‘Graduated College’ (GradCol).

Ancestry-specific and trans-ancestry analyses

Novel loci were identified through separate analyses of AFR (12 loci), EUR (1 locus), trans-ancestry (4 loci), and in both AFR and trans-ancestry (1 locus). This highlights the importance of including non-EUR populations to identify novel BP loci. By nature, AFR populations carry more rare and low-frequency variants that may be very rare or monomorphic in other ancestral groups [22]; the MAF for the novel index SNVs range from 0.02 to 0.04 in AFR. The enhanced discovery of novel loci in AFR ancestry may be attributable to the relatively higher MAF in this population versus in EUR. For example, rs141962517 (\(CAPDS \)) with a MAF = 0.02 in AFR was significantly associated with SBP \((2DF P = 3.07 \times 10^{-10}; 1DF Interaction P = 1.99 \times 10^{-7}) \); this variant was not present in other ancestries after filtering.

Among the 18 novel loci, three loci were identified only through trans-ancestry analyses, as none of the
Locus	Nearest Gene	rsID	Chr:Pos	EA	EAF (AFR/ASN/EUR/HIS)	Genetic Effect	GxE Interaction	P value	Trait	Educ.	Anc.			
						Effect	SE	Effect	SE					
1	CDC14A	rs114558965	1:100829685	a	0.97/. ./.1.00	-0.23	1.02	5.02	1.27	2.54E-03	2.86E-09	SBP	SC	AFR
2	LIN01249	rs9308788	2:4711095	a	0.02/0.22/0.06/0.06	2.97	2.13	-11.93	2.64	5.04E-05	4.47E-08	SBP	GC	AFR
3	ARL4C	rs145586115	2:235604646	t	0.97/. ./.99	4.80	0.87	-2.57	1.29	1.16E-01	1.92E-08	SBP	SC	AFR
4	CADPS	rs141962517	3:62514061	t	0.98/. ./.	-2.46	1.54	12.85	2.23	1.99E-07	3.07E-10	SBP	GC	AFR
5	PCDH7	rs7448816	4:31363388	a	0.03/0.22/0.06/0.06	4.80	0.87	-2.57	1.29	1.16E-01	1.92E-08	SBP	SC	AFR
6	EIF4E	rs2141284	4:99704167	a	./. ./. ./0.01/0.01	-1.35	0.22	1.01	0.38	2.16E-02	6.73E-09	MAP	SC	TRANS
7	SPEF2	rs115523707	5:35756623	t	0.03/. ./.00/0.00	-0.83	0.64	-2.73	0.88	5.91E-02	7.22E-09	PP	SC	AFR
8	ANKRD34B	rs66907226	5:79863455	d	0.46/0.81/0.58/0.69	0.48	0.14	0.04	0.18	9.86E-01	4.43E-08	SBP	SC	EUR
9	SLCO4C1	rs114175587	7:100994204	t	0.02/0.22/0.06/0.06	-4.84	1.18	-5.28	1.45	3.73E-01	3.07E-08	SBP	SC	AFR
10	SLIT3	rs142385399	7:11948906	d	0.03/0.22/0.06/0.06	-4.84	1.18	-5.28	1.45	3.73E-01	3.07E-08	SBP	SC	AFR
11	THSD7A	rs200612978	7:122673983	d	0.02/0.22/0.06/0.06	-4.84	1.18	-5.28	1.45	3.73E-01	3.07E-08	SBP	SC	AFR
12	HAS2-AS1	rs112332671	8:122673983	d	0.02/0.22/0.06/0.06	-4.84	1.18	-5.28	1.45	3.73E-01	3.07E-08	SBP	SC	AFR
13	CDON	rs1295584	11:125841078	a	0.95/0.99/0.99/0.99	2.87	0.57	-1.07	0.84	2.20E-01	4.71E-08	SBP	SC	TRANS
14	DSTNP2	rs75535814	12:6996683	t	0.02/0.22/0.06/0.06	-8.78	1.45	7.24	1.95	3.17E-04	5.79E-09	SBP	SC	AFR
15	PK3C2G	rs189555401	12:18443065	t	0.02/0.22/0.06/0.06	-3.23	0.57	1.82	1.15	8.92E-02	4.10E-08	SBP	SC	TRANS
16	E2F7; ZDHHC17	rs17043233	12:77648216	t	0.02/0.22/0.06/0.06	-4.07	0.58	4.26	0.90	1.72E-05	1.39E-11	MAP	SC	TRANS
17	HRH4	rs8099516	18:22108763	t	0.04/0.22/0.06/0.06	1.71	0.61	-5.39	0.95	7.83E-09	5.04E-08	DBP	GC	AFR
18	LOC100289473	rs113809930	20:1711768	a	0.98/0.88/0.97/0.94	-0.69	0.79	3.67	0.94	1.70E-03	3.48E-08	DBP	SC	AFR

Positions are based on build 37. Effect is in mmHg unit.

BP blood pressure, DBP diastolic BP, EA effect allele, EAF effect allele frequency observed in our cohorts, MAP mean arterial pressure, P value of the joint test with 2 degrees of freedom of genetic main and interaction effects, PP pulse pressure, SBP systolic BP, SE standard error, 2DF joint 1DF interaction, P value of the interaction test with 1 degree of freedom. The smallest P values between 1DF interaction test and the joint 2DF test are in boldface, SC SomeCol, GC GradCol, EUR European, AFR African, TRANS, trans-ancestry (i.e., combining all ancestry groups through meta-analysis).
ancestry-specific analyses reached genome-wide significance. For example, the index SNV (rs189555401) representing the four-variant locus within PIK3C2G was suggestively associated with DBP ($P = 1.31 \times 10^{-7}$) in AFR and not even nominally associated in HIS ($P = 9.67 \times 10^{-2}$). However, in trans-ancestry analysis combining these two ancestral groups, the association reached genome-wide significance ($P = 4.10 \times 10^{-8}$).

Functional annotation and eQTL evidence

To obtain functional annotations for the index variants and nearby variants in LD ($r^2 \geq 0.2$), we used FUMA GWAS [28]. Among the 18 index variants representing our novel loci, two variants were intronic to a non-coding RNA (ncRNA), six variants were intronic, nine variants were intergenic, and the remaining variant (rs66907226) was an indel without available annotation. Among the 499 variants that include both the index variants and nearby variants in LD, there were four exonic, four exonic-ncRNA, 119 intronic, 67 intronic-ncRNA, two 3′ untranslated region (UTR), seven up/downstream flanking, and 296 intergenic variants (Table S8). Of the 499 variants, 13 had RegulomeDB [31] scores better than or equal to 3a, suggesting at least moderate evidence for involvement in transcription regulation (Table S9). In total, 32 SNVs have CADD [32] scores ≥ 10, representing the top 10% of predicted deleteriousness for SNVs genome-wide. A single SNV (rs112332671) ~20 kb upstream of HAS2 and 16 kb downstream of the ncRNA HAS2-AS1 had a CADD score of 20.1, placing it in the top 1% of predicted deleteriousness.

The 15-core chromatin state (ChromHMM) [33] was assessed for 127 epigenomes in the 17 index variants (Table S9). Two had histone chromatin markers in regions flanking the transcription start site and one in a region associated with strong transcription in relevant tissues including brain. Among all 499 LD variants, 45 had histone chromatin markers characteristic of a transcription start site, 64 had markers consistent with strong transcription, and 25 were in enhancer regions. One LD variant (rs555713705) was identified as cis-acting eQTLs [46,47] for heart tissue in the GTEx_v7 database (FDR P value ranging from 3.90×10^{-3}).

Biologic plausibility of the new BP loci

Three novel BP loci are related to the central nervous system (CNS)-adrenal signaling axis that is critical for BP regulation. A locus (Fig. 2a) adjacent to ZDHHC17, identified in AFR and in trans-ancestry analyses, encodes a membrane protein that mediates fusion of synaptic vesicles to the plasma membrane. CADPS (Fig. 2b), identified in
AFR, is expressed in CNS tissue. Three variants in LD have CADD scores >10, and four SNVs have ChromHMM state signals consistent with strong evidence of transcription regulation. PIK3C2G, identified in trans-ancestry analyses, also shows roles in CNS-adenal signaling. Three variants in LD in this locus have CADD scores >10, including one with a CADD score of 18 that is predicted to reside in an enhancer region in fetal adrenal cells.

Two novel BP loci are related to renal fibrosis and cation exchange. A locus, which includes a variant intragenic to SLIT3, showed interaction evidence with educational attainment in AFR (rs142385399, \(P = 2.79 \times 10^{-8} \)). A locus also identified in AFR includes HAS2 and HAS2-AS1, which play roles in renal fibrosis. In addition, we identified two novel BP loci related to pathways involved in vascular smooth muscle cell structure and function. A locus identified by trans-ancestry analyses included a variant intragenic to CDON, which is expressed in vascular smooth muscle cells. A locus identified in AFR includes GNB3, which encodes a subunit critical for signal transduction of several vasoactive peptide G protein-coupled receptors involved in BP regulation. A SNV in this locus shows ChromHMM chromatin states consistent with strong transcription regulation in multiple tissues, and three SNVs have strong cis-eQTL association with GNB3 expression in nerve, artery, and skeletal muscle tissue (minimum FDR \(P \) value \(1.20 \times 10^{-43} \)).

Discussion

A relationship between educational attainment and BP has been well demonstrated [48–51]. Furthermore, AFR ancestry individuals have been shown to have a higher burden of HTN than EUR-ancestry [52]. However, higher-educated AFR ancestry individuals bear approximately twice the burden of HTN as compared with their EUR-ancestry counterparts [48,51], demonstrating that educational differences did not fully account for this observed racial disparity. Herein, we reported genome-wide meta-analyses for SBP, DBP, MAP, and PP accounting for gene-educational attainment interactions across five ancestry groups. We pursued a genome-wide interrogation in 117,438 individuals (in Stage 1) and follow-up analysis at selected variants in 293,787 additional individuals (in Stage 2). Through the combined meta-analysis of stages 1 and 2, we identified 84 known and 18 novel loci at genome-wide significance. As known loci have been discussed elsewhere, this report highlights several novel loci show biologic plausibility by involving physiologic systems implicated in BP regulation.

The CNS-adenal signaling axis is critical for BP regulation. Three novel BP loci (ZDHHC17, CADPS, and PIK3C2G) are related to these pathways. In neurons, ZDHHC17 encodes a membrane protein that mediates fusion of synaptic vesicles to the plasma membrane, enabling the release of neurotransmitters [53]. Murine zdhhc17 knockout models show impaired hippocampal memory and reduced synaptic plasticity, providing potential biological links to working memory and subsequent educational attainment [54]. Although a biological connection between ZDHHC17 and BP traits is not well established, zdhhc17 expression induces neurite outgrowth in a rodent adrenal-derived cell line [55]. Cadps plays a role in regulating the fusion of neuroendocrine vesicles and release of vasoactive catecholamines in calf adrenal and neural tissue [56]. Pik3c2g encodes a phosphoinositide kinases that are expressed in a sexually dimorphic pattern specifically in a zone of the mouse adrenal cortex believed to play a role in steroid sex hormone production [57]. Furthermore, PIK3C2G is underexpressed in human hypertensive kidneys, providing a potential biological link between the expression of adrenal mineralocorticoid hormones and their target organ [58]. Among alcohol-prefering rats, pik3c2g expression is also increased in the cerebral periaqueductal gray, a region involved in pain, fear, and anxiety responses [59], possibly providing a link to drivers of SES in humans [60]. Notably, the loci including ZDHHC17 and CADPS demonstrated some evidence of interaction with educational attainment \((P = 1.72 \times 10^{-5} \) and 1.99 \(\times 10^{-7} \), respectively).

Two new BP loci (HAS2 and HAS2-AS1, SLIT3) show potential roles in renal function. A locus that includes a variant intragenic to SLIT3 had a significant interaction term with educational attainment. SLIT3 encodes a cell-cell adhesion molecule that binds its receptor, ROBO4, in human-derived endothelial stem cells directing the formation of vascular networks [61]. SLIT3 also plays a role in directing neuronal growth in the brain [62,63], and in renal and cardiac development [64]. A locus including HAS2 and HAS2-AS1 is also of interest for roles played in renal fibrosis. HAS2-AS1 is an antisense ncRNA simultaneously expressed and thought to stabilize the HAS2 transcript [65].

Two new BP loci (GNB3, CDON) have been shown to regulate pathways involved in vascular smooth muscle cell structure and function. We identified a locus in GNB3, which encodes a G protein-coupled receptor subunit involved in BP regulation. Several candidate gene association studies have identified the synonymous GNB3 variant C825T (rs5443), resulting in a splice variant of the \(\beta \)3 subunit, as significantly associated with essential HTN [66,67], with BP response to diuretic [68] and \(\beta \)-adrenergic receptor blockade [69], and other cardiovascular traits [70]. Another locus identified by trans-ancestry analyses included a variant intragenic to CDON; this gene is expressed in vascular smooth muscle cells [71], and encodes a cell-surface receptor complex that regulates myocyte differentiation in rodents [72].

This large-scale multi-ancestry study has several limitations. First, the practice of adjusting SBP and DBP by...
adding 15 and 10 mmHg for antihypertensive use is based on a method derived from a EUR-ancestry cohort [21]. While this approach is common among GWAS of BP traits [36], we acknowledge that this practice may not be equally appropriate and/or justified in all ancestry groups. Second, while the sample sizes in diverse ancestries are a strength, resulting in the identification of several novel BP loci particularly in AFR ancestry, several identified loci included low-frequency variants that require further validation. Third, main effect only analysis without educational attainment was not performed, and this limits our ability to resolve if novel loci identified through the 2DF joint test could be found without considering educational attainment. Fourth, the use of educational attainment as a proxy for SES can present some challenges. The socioeconomic impact of education has changed over time and may differ according to birth cohort, as well as in other subgroups defined by gender, ancestry, region, and/or country [1,49]. Even with similar levels of educational attainment, social and environmental experiences were different between AFR and EUR individuals in the United States, especially those educated in the 1960s and 1970s, resulting in residual confounding inequities between the ancestral groups [9,73]. This additional source of heterogeneity may have reduced power for trans-ancestry analyses.

In summary, this multi-ancestry study that used gene-education interactions on BP traits identified 18 novel loci and validated 84 known BP loci. Ten novel loci were identified in individuals of AFR ancestry, demonstrating the need for pursuing genetic studies in diverse populations. Several novel loci involve physiologic systems implicated in BP regulation including genes involved in CNS-adrenal signaling, vascular structure and function, and renal function. Two loci showed interaction evidence with educational attainment. These findings may identify a role for educational attainment and SES in further dissection of the genetic architecture of BP.

Acknowledgements This project was largely supported by a grant from the U.S. National Heart, Lung, and Blood Institute (NHLBI), the National Institutes of Health, RO1HL118305. A Career Development Award (K25HL121091), also from the NHLBI, enabled Dr. Sung to play a major role on this project. Dr. Kilp¨ai¨ainen was supported by the Novo Nordisk Foundation (NNF18CC0034900 and NNF17OC0026848). Full set of study-specific funding sources and acknowledgments appear in the Supplementary Material. These authors constitute the writing group: LdLF, Y.J.S., R.N., T.W., M.F.F., K.S., P.B.M., P.W.F., D.C.R., M.F.

Compliance with ethical standards

Conflict of interest The authors declare that they have no conflict of interest.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

1. Kaplan GA, Keil JE. Socioeconomic factors and cardiovascular disease: a review of the literature. Circulation. 1993;88:1973–98.
2. Liberatos P, Link BG, Kelsey JL. The measurement of social class in epidemiology. Epidemiol Rev. 1988;10:87–121.
3. Leng B, Jin Y, Li G, Chen L, Jin N. Socioeconomic status and hypertension: a meta-analysis. J Hypertens. 2015;33:221–9.
4. Winkley MA, Jatulis DE, Frank E, Fortmann SP. Socioeconomic status and health: how education, income, and occupation contribute to risk factors for cardiovascular disease. Am J Public Health. 1992;82:816–20.
5. Basson J, Sung YJ, Schwander K, Kume R, Simino J, de las Fuentes L, et al. Gene-education interactions identify novel blood pressure loci in the Framingham Heart Study. Am J Hypertens. 2014;27:431–44.
6. Lee JJ, Wedow R, Okbay A, Kong E, Maghzian O, Zacher M, et al. Gene discovery and polygenic prediction from a genome-wide association study of educational attainment in 1.1 million individuals. Nat Genet. 2018;50:1112–21.
7. Hertz RF, Unger AN, Cornell JA, Saunders E. Racial disparities in hypertension prevalence, awareness, and management. Arch Intern Med. 2005;165:2098–104.
8. Steptoe A, Hamer M, Butcher L, Lin J, Brydon L, Kivimaki M, et al. Educational attainment but not measures of current socioeconomic circumstances are associated with leukocyte telomere length in healthy older men and women. Brain Behav Immun. 2011;25:1292–8.
9. Metcalf PA, Sharrett AR, Folsom AR, Duncan BB, Patsch W, Hutchinson RG, et al. African American-white differences in lipids, lipoproteins, and apolipoproteins, by educational attainment, among middle-aged adults: the atherosclerosis risk in communities study. Am J Epidemiol. 1998;148:750–60.
10. Matthews KA, Kelsey SF, Meilahn EN, Kuller LH, Wing RR. Educational attainment and behavioral and biologic risk factors for coronary heart disease in middle-aged women. Am J Epidemiol. 1989;129:1132–44.
11. Rietveld CA, Medland SE, Derringer J, Yang J, Esko T, Martin NW, et al. GWAS of 126,559 individuals identifies genetic variants associated with educational attainment. Science. 2013;340:1467–71.
12. Smith GD, Hart C, Watt G, Hole D, Hawthorne V. Individual social class, area-based deprivation, cardiovascular disease risk factors, and mortality: the Renfrew and Paisley Study. J Epidemiol Community Health. 1998;52:399–405.
13. Gallo LC, Matthews KA, Kuller LH, Sutton-Tyrrell K, Edmondowicz D. Educational attainment and coronary and aortic calcification in postmenopausal women. Psychosom Med. 2001;63:925–35.
14. Jacobsen BK, Thelle DS. Risk factors for coronary heart disease and level of education. The Tromso Heart Study. Am J Epidemiol. 1988;127:923–32.
15. Pierce JP, Fiore MC, Novotny TE, Hatziandreu EJ, Davis RM. Trends in cigarette smoking in the United States. Educational differences are increasing. JAMA. 1989;261:56–60.
16. Stamler J, Elliott P, Appel L, Chan Q, Buzzard M, Dennis B, et al. Higher blood pressure in middle-aged American adults with less education-role of multiple dietary factors: the INTERMAP study. J Hum Hypertens. 2003;17:655–775.
17. Tian HG, Hu G, Dong QN, Yang XL, Nan Y, Pietinen P, et al. Dietary sodium and potassium, socioeconomic status and blood pressure in a Chinese population. Appetite. 1996;26:235–46.
18. Kaplan GA, Lazarus NB, Cohen RD, Leu DJ. Psychosocial factors in the natural history of physical activity. Am J Prev Med. 1991;7:12–17.
Gene-educational attainment interactions in a multi-ancestry genome-wide meta-analysis identify novel... 2119

19. McCaffery JM, Papandonatos GD, Lyons MJ, Niaura R. Educational attainment and the heritability of self-reported hypertension among male Vietnam-era twins. Psychosom Med. 2008;70:781–6.
20. Rao DC, Sung YJ, Winkler TW, Schwander K, Borecki I, Cupples LA et al. Multiancestry study of gene–lifestyle interactions for cardiovascular traits in 610,475 individuals from 124 cohorts: design and rationale. Circ Cardiovasc Genet. 2010;7:601–9.
21. Tobin MD, Sheehan NA, Scurrah KJ, Burton PR. Adjusting for treatment effects in studies of quantitative traits: antihypertensive therapy and systolic blood pressure. Stat Med. 2005;24:2911–35.
22. 1000 Genomes Project Consortium, Abecasis GR, Auton A, Brooks LD, DePristo MA, Durbin RM, et al. An integrated map of genetic variation from 1,092 human genomes. Nature. 2012;491:56–65.
23. Manning AK, LaValley M, Liu CT, Rice K, An P, Liu Y, et al. Meta-analysis of gene–environment interaction: joint estimation of SNP and SNP x environment regression coefficients. Genet Epidemiol. 2011;35:11–18.
24. Willer CJ, Li Y, Abecasis GR. METAL: fast and efficient meta-analysis of genomewide association scans. Bioinformatics. 2010;26:2190–1.
25. Devlin B, Roeder K. Genomic control for association studies. Biometrics. 1999;55:997–1004.
26. Winkler TW, Day FR, Croteau-Chonka DC, Wood AR, Locke AE, Magi R, et al. Quality control and conduct of genome-wide association meta-analyses. Nat Protoc. 2014;9:1192–212.
27. Sung YJ, Winkler TW, de Las Fuentes L, Bentley AR, Brown MR, Kraja AT, et al. A large-scale multi-ancestry genome-wide study accounting for smoking behavior identifies multiple significant loci for blood pressure. Am J Hum Genet. 2018;102:375–400.
28. Watanabe K, Taskesen E, van Bochoven A, Posthuma D. Functional mapping and annotation of genetic associations with FUMA. Nat Commun. 2017;8:1826.
29. Ward LD, Kellis M. HaploReg: a resource for exploring chromatin states, conservation, and regulatory motif alterations within sets of genetically linked variants. Nucleic Acids Res. 2012;40:D930–934.
30. Wang K, Li M, Hakonarson H. ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res. 2010;38:e164.
31. Boyle AP, Hong EL, Hariharan M, Cheng Y, Schaub MA, Kasowski M, et al. Annotation of functional variation in personal genomes using RegulomeDB. Genome Res. 2012;22:1790–7.
32. Kircher M, Witten DM, Jain P, O’Roak BJ, Cooper GM, Shendure J. A general framework for estimating the relative pathogenicity of human genetic variants. Nat Genet. 2014;46:310–5.
33. Roadmap Epigenomics Consortium, Kudarave A, Meuleman W, Ernst J, Bilenky M, Yen A, et al. Integrative analysis of 111 reference human epigenomes. Nature. 2015;518:317–29.
34. Ernst J, Kellis M. ChromHMM: automating chromatin-state discovery and characterization. Nat Methods. 2012;9:215–6.
35. GTEx Consortium. Genetic effects on gene expression across human tissues. Nature. 2017;550:204–13.
36. Newton-Cheh C, Johnson T, Gateva V, Tobin MD, Bochud M, Coin L, et al. Genome-wide association study identifies eight loci associated with blood pressure. Nat Genet. 2009;41:666–76.
37. Ehret GB, Munroe PB, Rice KM, Bochud M, Johnson AD, Chasman DI, et al. Genetic variants in novel pathways influence blood pressure and cardiovascular disease risk. Nature. 2011;478:103–9.
38. Ehret GB, Ferreira T, Chasman DI, Jackson AU, Schmidt EM, Johnson T, et al. The genetics of blood pressure regulation and its target organs from association studies in 342,415 individuals. Nat Genet. 2016;48:1171–84.
39. Liu C, Kraja AT, Smith JA, Brody JA, Franceschini N, Bis JC, et al. Meta-analysis identifies common and rare variants influencing blood pressure and overlapping with metabolic trait loci. Nat Genet. 2016;48:1162–70.
profiling reveals renin mRNA overexpression in human hypertensive kidneys and a role for microRNAs. Hypertension. 2011;58:1093–8.
59. McClintick JN, McBride WJ, Bell RL, Ding ZM, Liu Y, Xuei X, et al. Gene expression changes in glutamate and GABA-A receptors, neuropeptides, ion channels, and cholesterol synthesis in the periaqueductal gray following binge-like alcohol drinking by adolescent alcohol-prefering (P) rats. Alcohol Clin Exp Res. 2016;40:955–68.
60. McEwen BS, Gianaros PJ. Central role of the brain in the stress and adaptation: links to socioeconomic status, health, and disease. Ann NY Acad Sci. 2010;1186:190–220.
61. Paul JD, Coulombe KLK, Toth PT, Zhang Y, Marsboom G, Bindokas VP, et al. SLIT3-ROBO4 activation promotes vascular network formation in human engineered tissue and angiogenesis in vivo. J Mol Cell Cardiol. 2013;64:124–31.
62. Ypsilanti AR, Zagar Y, Chedotal A. Moving away from the midline: new developments for Slit and Robo. Development. 2010;137:1939–52.
63. Blockus H, Chedotal A. Slit-Robo signaling. Development. 2016;143:3037–44.
64. Liu J, Zhang L, Wang D, Shen H, Jiang M, Mei P, et al. Congenital diaphragmatic hernia, kidney agenesis and cardiac defects associated with Slit3-deficiency in mice. Mech Dev. 2003;120:1059–70.
65. Michael DR, Phillips AO, Krupa A, Martin J, Redman JE, Altuher A, et al. The human hyaluronan synthase 2 (HAS2) gene and its natural antisense RNA exhibit coordinated expression in the renal proximal tubular epithelial cell. J Biol Chem. 2011;286:19523–32.
66. Siffert W, Rosskopf D, Siffert G, Busch S, Moritz A, Erbel R, et al. Association of a human G-protein beta3 subunit variant with hypertension. Nat Genet. 1998;18:45–48.
67. Bagos PG, Elefihnioti AL, Nikolopoulous GK, Hamodrakas SJ. The GNB3 C825T polymorphism and essential hypertension: a meta-analysis of 34 studies including 14,094 cases and 17,760 controls. J Hypertens. 2007;25:487–500.
68. Turner ST, Schwartz GL, Chapman AB, Boerwinkle E. C825T polymorphism of the G protein beta3-subunit and anti-hypertensive response to a thiazide diuretic. Hypertension. 2001;37:739–43.
69. Filigheddu F, Reid JE, Trofia C, PinnaParpaglia P, Argiolas G, Testa A, et al. Genetic polymorphisms of the beta-adrenergic system: association with essential hypertension and response to beta-blockade. Pharmacogenomics J. 2004;4:154–60.
70. Bojic T, Milovanovic B, Cupic SJ. Genetic polymorphisms of neurocardiovascular disorders. Arch Med. 2015;7:1–22.
71. Aoki T, Kataoka H, Ishibashi R, Nozaki K, Hashimoto N. Gene expression profile of the intima and media of experimentally induced cerebral aneurysms in rats by laser-microdissection and microarray techniques. Int J Mol Med. 2008;22:595–603.
72. Takaesu G, Kang JS, Bae GU, Yi MJ, Lee CM, Reddy EP, et al. Activation of p38alpha/beta MAPK in myogenesis via binding of the scaffold protein JLP to the cell surface protein Cdo. J Cell Biol. 2006;175:383–8.
73. Tyrolo HA. Socioeconomic status in the epidemiology and treatment of hypertension. Hypertension. 1989;13 5 Suppl:B94–97.

Affiliations

Lisa de las Fuentes 1,2, Yun Ju Sung 2, Raymond Noordam 3, Thomas Winkler 4, Mary F. Feitosa 5, Karen Schwanzer 2, Amy R. Bentley 6, Michael R. Brown 7, Xiuxing Guo 8, Alisa Manning 9,10, Daniel I. Chasan 11,12, Hughes Aschard 13,14, Traci M. Bartz 15, Lawrence F. Bielak 16, Archie Campbell 17, Ching-Yu Cheng 18,19, Rajkumar Dorajoo 20, Fernando P. Hartwig 21,22, A. R. V. R. Horimoto 23, Changwei Li 24, Rufang Li-Gao 25, Yongmei Liu 26, Jonathan Marten 27, Solomon K. Musani 28, Ioanna Ntalla 29, Tuomo Rankinen 30, Melissa Richard 31, Xueling Sim 32, Albert V. Smith 33,34, Salman M. Tajuddin 35, Bamidele O. Tayo 36, Dina Vojinovic 37, Helen R. Warren 29,38, Deng Xuan 39, Maris Alver 40,41, Mathilde Boissel 42, Jin-Fang Chai 32, Xu Chen 43, Kaare Christensen 44, Jasmin Divers 45, Evangelos Evangelou 46,47, Chuan Gao 48, Giorgia Girotto 49,50, Sarah J. Hanks 51, Faming Hsu 52, Fang-Chi Huang 53,54, Brigitte Kühne 55,56, Federica Laguzzi 57, Xiaoyin Li 58,59, Leo-Pekka Lyytikäinen 60, Ilja M. Nolte 61, Alaitz Poveda 62, Rainer Rauramaa 63, Muhammad Riaz 64, Rico Ruedei 65, Xiao-ou Shu 66, Harold Snieder 67, Fumihiko Takeuchi 68, Niek Verweij 69, Erin B. Ware 70, Stefan Weiss 71,72, Lisa R. Yanek 73, Najaf Amin 74, Dan E. Arking 75, Donna K. Arnett 76, Sven Bergmann 77, Eric Boerwinkle 78, Jennifer A. Brody 79, Ulrich Broeckel 80, Marco Brumat 81, Gregory Burke 79, Claudia P. Cabrera 29,38, Mickaël Canouil 82, Miao Li Chee 80, Yil-Der Ida Chen 83, Massimiliano Cocca 84, John Connelly 85, Jan Haaka de Silva 86, Paul S. de Vries 7, Gudny Eiriksdottir 48, Jessica D. Faul 87, Virginia Fisher 88, Terrence Forrester 89, Ervin F. Fox 90, Yechez Friedlander 91, He Gao 92, Bruna Gigante 93,87, Franco Giuliani 94, Chi Charles Gu 95, Dongfeng Gu 96, Tamara B. Harris 97, Jianguo He 98,99, Sami Heikkinen 100, Chris Heitmann 101, Steven Hunt 102,103, Marjan Ikram 104, Margaret R. Irvin 105,106, Mika Kählönen 107,108, Maryam Kavousi 109, Chiea Chuen Khor 110,111, Tuomas O. Kilpäinen 112,113, Moom-Puyah Kool 114,115, Pirjo Komulainen 116, Aldi T. Kraja 117, J. E. Krieger 118, Carl D. Langefeld 119, Yize Li 120, Jingjing Liang 121, David C. M. Liewald 122, Ching-Ti Liu 123, Jianjun Liu 124, Kurt K. Lohman 125, Reedi Magi 126, Colin A. McKenzie 127, Thomas Meitinger 128, Andres Metspalu 40,41, Yuri Milaneshchi 111, Lili Milani 112, Dennis O. Mook-Kanamori 129, Mike A. Nalls 130, Christopher P. Nelson 115,116, Jill M. Norris 117, Jeff O’Connell 118,119, Adesola Oggunyili 120, Sandosh Padmanabhan 121, Nicholette D. Palmer 122, Nancy L. Pedersen 43, Thomas Perl 123, Annette Peters 124, Astrid Petersmann 125, Patricia A. Peyser 16, Ozren Polasek 126,127,128, David J. Porteous 129,130.
Gene-educational attainment interactions in a multi-ancestry genome-wide meta-analysis identify novel...
Gene-educational attainment interactions in a multi-ancestry genome-wide meta-analysis identify novel...
111 Department of Psychiatry, Amsterdam Neuroscience and Amsterdam Public Health Research Institute, VU University Medical Center, Amsterdam 1081 BT, The Netherlands
112 Department of Public Health and Primary Care, Leiden University Medical Center, Leiden 2333ZA, Netherlands
113 Molecular Genetics Section, Laboratory of Neurogenetics, National Institute on Aging, Bethesda, MD 20895, USA
114 Data Tecnica International, Glen Echo, MD 20812, USA
115 Department of Cardiovascular Sciences, University of Leicester, Leicester LE3 9QP, UK
116 NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester LE3 9QP, UK
117 Department of Epidemiology, University of Colorado Denver, Aurora, CO 80045, USA
118 Division of Endocrinology, Diabetes, and Nutrition, University of Maryland School of Medicine, Baltimore, MD, USA
119 Program for Personalized and Genomic Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
120 Department of Medicine, University of Ibadan, Ibadan, Oyo, Nigeria
121 British Heart Foundation Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK
122 Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
123 Department of Medicine, Geriatrics Section, Boston Medical Center, Boston University School of Medicine, Boston, MA 02118, USA
124 DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, 85764 Neuherberg, Germany
125 Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, 17475 Greifswald, Germany
126 University of Split School of Medicine, Split, Croatia
127 University Hospital Split, Split, Croatia
128 Psychiatric Hospital “Sveti Ivan”, Zagreb, Croatia
129 Division of Genetic and Genomic Medicine, Department of Pediatrics, University of California, Irvine, CA 92668, USA
130 Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, Edinburgh EH8 9AG, UK
131 Division of Epidemiology & Community Health, School of Public Health, University of Minnesota, Minneapolis, MN 55454, USA
132 Division of Preventive Medicine, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 25249, USA
133 Division of Research, Kaiser Permanente of Northern California, Oakland, CA, USA
134 Alzheimer Scotland Dementia Research Centre, The University of Edinburgh, Edinburgh EH8 9AZ, UK
135 Centre for Cognitive Ageing and Cognitive Epidemiology, The University of Edinburgh, Edinburgh, UK
136 Institute of Genetic Epidemiology, Helmholtz Zentrum Munchen, German Research Center for Environmental Health, 85764 Neuherberg, Germany
137 Institute of Medical Informatics Biometry and Epidemiology, Ludwig-Maximilians-Universitat Munich, 80539 Munich, Germany
138 University of Groningen, University Medical Center Groningen, Department of Genetics, Groningen 9700RB, The Netherlands
139 Institute for Community Medicine, University Medicine Greifswald, 17475 Greifswald, Germany
140 Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
141 Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Ophthalmology and Visual Science Key Lab, Beijing Tongren Hospital, Capital Medical University, 100730 Beijing, China
142 Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, 100730 Beijing, China
143 Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA
144 Division of Cancer Control and Population Sciences, UPMC Hillman Cancer, , University of Pittsburgh, Pittsburgh, PA 15232, USA
145 Behavioral Epidemiology Section, Laboratory of Epidemiology and Population Sciences, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
146 Department of Internal Medicine B, University Medicine Greifswald, 17475 Greifswald, Germany
147 Broad Institute of the Massachusetts Institute of Technology and Harvard University, Boston, MA 02142, USA
148 Section on Nephrology, Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
149 Department of Genomics of Common Disease, Imperial College London, London W12 0NN, UK
150 German Center for Diabetes Research (DZD e.V.), 85764 Neuherberg, Germany
151 Department of Ophthalmology, Medical Faculty Mannheim, University Heidelberg, 68167 Mannheim, Germany
152 Beijing Institute of Ophthalmology, Beijing Ophthalmology and Visual Science Key Lab, Beijing Tongren Eye Center, Capital Medical University, 100730 Beijing, China
153 Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA
154 Department of Clinical Physiology and Nuclear Medicine, Kuopio University Hospital, Kuopio 70211, Finland
155 Lifelines Cohort, Groningen 9700RB, The Netherlands
Gene-educational attainment interactions in a multi-ancestry genome-wide meta-analysis identify novel...