Structure of a swirling jet with vortex breakdown and combustion

D K Sharaborin1,2, V M Dulin1,2, D M Markovich1,2
1Kutateladze Institute of Thermophysics, 630090, 1 Ak. Lavrentyev Avenue, Novosibirsk, Russia
2Novosibirsk State University, 2 Pirogov Street, Novosibirsk, 630090, Russia

Email: sharaborin.d@gmail.com

Abstract. An experimental investigation is performed in order to compare the time-averaged spatial structure of low- and high-swirl turbulent premixed lean flames by using the particle image velocimetry and spontaneous Raman scattering techniques. Distributions of the time-average velocity, density and concentration of the main components of the gas mixture are measured for turbulent premixed swirling propane/air flames at atmospheric pressure for the equivalence ratio $\Phi = 0.7$ and Reynolds number $Re = 5000$ for low- and high-swirl reacting jets. For the low-swirl jet ($S = 0.41$), the local minimum of the axial mean velocity is observed within the jet center. The positive value of the mean axial velocity indicates the absence of a permanent recirculation zone, and no clear vortex breakdown could be determined from the average velocity field. For the high-swirl jet ($S = 1.0$), a pronounced vortex breakdown took place with a bubble-type central recirculation zone. In both cases, the flames are stabilized in the inner mixing layer of the jet around the central wake, containing hot combustion products. O_2 and CO_2 concentrations in the wake of the low-swirl jet are found to be approximately two times smaller and greater than those in the recirculation zone of the high-swirl jet, respectively.

1. Introduction
Swirl is often used in combustors to enhance flame stabilization by creating a low velocity region in high speed flow, or by recirculating hot combustion products and radicals back toward the reactants in the low velocity shear layer where the flame is stabilized [1]. The swirl provides a successful ignition and stable combustion in a compact zone for a wide range of fuel-to-air ratios [2–4]. In particular, it allows stabilizing flames for fuel-lean conditions, which is an effective technology to reduce NOx emissions [5]. Optimization of the aerodynamics of combustion chambers is also important, because the oxidation of nitrogen to a sufficient extent takes place in hot combustion products behind the flame front [6]. Likewise, low-swirl flame concept (see [7, 8]) has been proved to decrease the amount of NOx in the combustion products in comparison to the high-swirl flame at similar conditions [9].

A detailed information on the flow structure of turbulent reacting flows can be retrieved by using low-intrusive tracer-based optical techniques such as laser Doppler velocimetry (LDV, [10]) and particle image velocimetry (PIV, [9, 11, 12]). PIV provides the spatial velocity distribution for a certain cross-section of the flow. For a more complete description of the processes occurring in the flame, information about the density and temperature distribution is necessary. Currently, there are several methods for measuring the fields of temperature, density and concentration in flames. These methods are based on registration of the local laser-induced fluorescence (LIF), Rayleigh scattering, spontaneous Raman scattering (SRS) and coherent anti-Stokes Raman scattering (CARS) [13–15].
LIF-based methods are characterized by high intensity of the detected signal, but the quantitative interpretation of the data is difficult, and sometimes impossible at all, due to the unknown quenching rate of the fluorescence. The planar registration of Rayleigh scattering allows estimating the local density in the flow cross section, but requires a priori information about the resulting scattering cross section of molecules at each measurement point. Interpretation of SRS signal during vibrational transitions of a specific type of molecule at temperature measurements does not require a priori information of the concentration of other molecules and provides information on the relative concentration of the main components of the gas mixture. SRS measurements can be also performed for 1D (along the beam) and 2D (in plane) configurations [16, 17].

The main aim of the present work is an experimental study of the effect of swirl on the spatial distribution of the local velocity, density, and concentration of the main species in low- and high-swirl turbulent lean premixed flames using the PIV and SRS methods.

2. Experimental setup

Sketch of the experimental setup for 2D measurements is shown in figure 1. The measurements were carried out using a combustion rig consisted of a swirl burner, flow seeding device, premixing pipe and section for the air and propane flow rate control. The burner was a contraction nozzle (with the exit diameter \(d = 15 \text{ mm} \)) with vane swirler inside. A swirl rate of the flow (the ratio between the angular and axial jet momentum fluxes) was varied by using swirlers with different inclination angles of the blades. The swirl rates were estimated based on the geometric parameters of the swirlers [2]:

\[
S = \frac{2}{3} \frac{1}{1 - \left(\frac{d_i}{d_s}\right)^3} \tan(\psi)
\]

(1)

Here \(d_i = 7 \text{ mm} \) is the diameter of the centerbody supporting the vanes, \(d_s = 27 \text{ mm} \) is the external diameter of the swirler, and \(\psi \) is the vanes inclination angle relative to the axis. Swirlers with \(\psi = 30^\circ \text{ and } 55^\circ \) were used to provide the swirl rates of \(S = 0.41 \) and 1.0, respectively. The Reynolds number \(\text{Re}_{\text{air}} \) (based on \(d \), the bulk velocity of the air flow at the nozzle exit \(U_0 = 5 \text{ m/s} \), and viscosity of the air) was 5 000. The equivalence ratio \(\Phi \) of the propane-air mixture was 0.7. In order to provide the PIV measurements, the flows were seeded by \(\text{TiO}_2 \) particles (with the average size of 1 \(\mu \text{m} \)). The mass fraction of the particles in the jet was less than 0.03%. The seeding device introduced solid particles to the air flow by using a stirring rod.

The PIV system included a double-pulsed Nd:YLF Pegasus PIV laser and a pair of PCO 1200HS CMOS cameras. The system was running at approximately 770 Hz repetition frequency. The PIV laser sheet, formed by a system of cylindrical and spherical lenses, passed through the central plane of the flow and had a thickness of 0.8 mm in the measurement region. The cameras were equipped with narrow-bandwidth optical filters, transmitting the light from the laser and suppressing the radiation of the flame. The system was operated by a computer with in-house "ActualFlow" software. Stereo calibration was performed using a multi-level calibration target and 3rd-order polynomial transform. For each flow case, 2400 instantaneous three-component velocity fields were measured in three independent runs. The data processing was similar to that in the previous stereo PIV investigation of the swirling flames [18]. The error analysis of the PIV measurements in the reacting flows due to finite spatial and temporal resolution, including those caused by the particle inertia, was reported by [12].

The third (355 nm) or the second (532 nm) harmonic of a pulsed Quanta-Ray Nd:YAG laser was used for the illumination during SRS measurements. The energy of 6 ns laser pulses was monitored by a Coherent LabMax-TOP energy meter. The pulse energy of 355 and 532 nm beams was 200 and 690 mJ, respectively, with 5% RMS fluctuations. During 1D measurements the laser beam was focused with the spot diameter less than 0.8 mm. In case of 2D measurements a collimating optics was used to produce the laser sheet with the width of 45 mm and thickness less than 0.8 mm in the measuring area. The SRS signal was registered by a 16-bit ICCD camera (Princeton instruments PI-MAX-4 with GEN II type of the photocathode). During 1D spectroscopy the scattered light was captured by a Czerny-Turner spectrograph (Newport MS127i 1/8 m), equipped with a UV lens. In the case of 2D SRS
spectroscopy, the camera was equipped with a band-pass tunable Lyot optical filter (VariSpec LC), based on liquid crystals. 2D intensity of the Stokes component of the 2D SRS by nitrogen molecules (vibrational-rotational transitions) was recorded in the wavelength range 607.3 ± 5 nm. An additional multi-notch holographic filter was used to block radiation of the Rayleigh scattering, which was not completely blocked by the tunable filter.

Figure 1. Sketch of the experimental setup for 2D SRS and stereo PIV measurements and example of Stokes SRS spectra along the laser beam intersecting a turbulent high-swirl ($S = 1.0$) propane/air flame at height of $y = 0.5d$ downstream the nozzle exit

To improve signal-to-noise ratio, each frame captured by the camera was accumulated from SRS signal of 250 laser pulses and was also processed by 8×8 pixels binning. Fifty images were captured and averaged for each measured flame regime to suppress read-out noise of CCD. For further increase of the signal-to-noise ratio, the SRS signal was recorded for two perpendicular linear polarizations of the laser radiation by using a half-wave plate. Signal for the polarization parallel to the scattering plane was subtracted from that for the perpendicular polarization to minimize contribution of the background light, fluorescence and dark current of the photocathode to the SRS data.

Figure 1 shows an example of 1D SRS signal in the cross section of a swirling jet with combustion. There are four different zones. The surrounding air is for $x/d > 0.75$. The annular fuel-air jet surrounds the flame front (a thin layer with remaining broadband fluorescence at approximately 0.5 of x/d) and mixing with the atmospheric air. The reaction zone surrounds the central wake region, containing hot combustion products with temperature above 1800 K, where the signal-to-noise ratio is evaluated as 1:9 and 1:1.7 for the Stokes and anti-Stokes components of the SRS for rotational-vibrational transitions of the N_2. Intensity of the anti-Stokes components of the SRS in the ambient air and reacting flow did not exceed 2% of the Stokes SRS intensity in the air. It was not accounted for during density evaluation because the population of the first vibrational energy level did not exceed 15% for the temperatures below 1800 K.

The data processing for the 1D measurement is similar to that performed by [16]. 2D data processing is based on the ratio between the Stokes components of the rotational-vibrational transitions of the nitrogen in the reacting jet and atmospheric air (when the jet flow was switched off). A more detailed description of the signal processing is given in [19].
3. Results

![Figure 2](image)

Figure 2. Photographs of the flames and distributions of the mean normalized density and velocity in low-swirl ($S=0.41$) and high-swirl ($S=1.0$) lean propane/air flames.

Figure 2 shows photographs and distributions of the mean velocity and local density of the nitrogen in the low- and high-swirl lean propane/air flames. For both swirl intensities, there are wake regions present at the jet axis, where the local gas density is approximately 6 times lower than that in the surrounding air. For the low-swirl flow the axial velocity reaches minimum near $y/d=0.5$ but remains positive, indicating that there is no recirculation zone. The flame front stabilizes around this region. For the high-swirl jet there is a central recirculation zone, partially present in the nozzle. The flame front surrounds it and penetrates into the nozzle. According to the photographs, the flame for the high-swirl flow is less turbulent. This could be due to suppression of turbulent fluctuations by the combustion inside the nozzle.

Figure 3 shows distributions of the temperature and main gas species concentrations for three cross-sections of the reacting jets. There was no sufficient concentration of CO detected in the spectra (see Figure 1). The molar fraction of N_2 is $76\pm2\%$ for the entire cross-section, indicating that it is a good passive tracer (since it is virtually not consumed during the chemical reactions) for 2D SRS measurements of the local gas density. For $y/d=0.5$ and $y/d=1.5$ cross-sections of the high-swirl
case, the fuel/air jet surrounds the recirculation zone, containing the combustion products with 11% of H\textsubscript{2}O, and 7±1% of CO\textsubscript{2} and O\textsubscript{2}. The temperature inside the recirculation zone reaches 1845 K. For the low-swirl flame, the hot combustion products also tend to concentrate inside the wake. Remarkable, that for the \(y/d = 1.5\) and \(y/d = 2.5\) cross-sections the O\textsubscript{2} concentration has minimum of approximately 3% at the axis of the low-swirl jet. CO\textsubscript{2} concentration in the wake is almost two times greater than that for the high-swirl jet.

![Distributions of the mean temperature and main species concentration in low-swirl (S = 0.41) and high-swirl (S = 1.0) lean propane/air flames (\(\Phi = 0.7\))](image)

Figure 3. Distributions of the mean temperature and main species concentration in low-swirl (\(S = 0.41\)) and high-swirl (\(S = 1.0\)) lean propane/air flames (\(\Phi = 0.7\)).

4. Conclusion

The time-averaged flow and flame structure of turbulent premixed propane/air lean flames with low- and high-swirl has been studied using the PIV and SRS techniques. In both cases the swirling jet flows from the burner were featured by the presence of a wake zone at the jet axis. The flame stabilized in the inner mixing layer between the wake and the annular fuel/air jet flow. For the high-swirl jet there is a recirculation of the hot combustion products with remaining oxygen. For the low-swirl jet, the oxygen and carbon dioxide concentration in the wake are found to be twice lower and higher, respectively, than those in the recirculation zone of the high-swirl jet.
Acknowledgments
Financial support has been obtained from the Russian Science Foundation (grant № 16-19-10566).

References
[1] Beer J M and Chigier N A 1972 Combustion Aerodynamics (Applied Science Publishers, London)
[2] Gupta A K, Lilley D G and Syred N 1984 Swirl Flows (Abacus Press, Kent, U.K)
[3] Syred N and Beer J M 1974 Combustion in swirling flows: a review. Combust. and flame 23(2) 143-201
[4] Weber R and Dugué J 1992 Combustion accelerated swirling flows in high confinements. Progress in Energy and Combustion Science 18(4) 349-367
[5] Dunn-Rankin D 2008 Lean combustion: technology and control (Academic Press, Elsevier)
[6] Zel’dovich Ya B Sadovnikov P Ya and Frank-Kamenetskiy D A 1947 Okislenie azota pri gorenii [Oxidation of nitrogen during combustion] (Izd-vo AN SSSR, Moscow–Leningrad)
[7] Yegian D T and Cheng R K 1998 Development of a lean premixed low-swirl burner for low NOx practical applications. Combust. Sci. Technology 139(1) 207-227
[8] Cheng R K 2006 Low swirl combustion (The Gas Turbine Handbook)
[9] Johnson M R, Littlejohn D, Nazeer W A, Smith K O and Cheng R K 2005 A comparison of the flowfields and emissions of high-swirl injectors and low-swirl injectors for lean premixed gas turbines. Proceedings of the Combustion Institute 30(2) 2867-2874
[10] Edwards C F, Fornaciari N R Dunsky C M Marx K D and Ashurst W T 1993 Spatial structure of a confined swirling flow using planar elastic scatter imaging and laser Doppler velocimetry. Fuel 72(8) 1151-1159
[11] Stella A, Guj G, Kompenhans J, Raffel M and Richard H 2001 Application of particle image velocimetry to combusting flows: design considerations and uncertainty assessment. Experiments in Fluids 30(2) 167-180
[12] Korobeinichev O P, Shmakov A G, Chernov A A, Markovich D M, Dulin V M and Sharaborin D K 2014 Spatial and temporal resolution of the particle image velocimetry technique in flame speed measurements. Combust., Explosion, and Shock Waves 50(5) 510-517
[13] Kohse-Höinghaus K 1994 Laser techniques for the quantitative detection of reactive intermediates in combustion systems. Progress in Energy and Combustion Science 20(3) 203-279
[14] Hassel E P and Linow S 2000 Laser diagnostics for studies of turbulent combustion. Meas. Sci. Technol. 11(2) R37
[15] Miles R B, Lempert W R and Forkey J N 2001 Laser Rayleigh scattering. Meas. Sci. Technol. 12(5) R33-R51
[16] Rabenstein F and Leipertz A 1998 One-dimensional, time-resolved Raman measurements in a sooting flame made with 355-nm excitation. Appl. Optics. 37(21) 4937-4943
[17] Schefer R W 1997 Three-dimensional structure of lifted, turbulent-jet flames. Combust. Sci. Technology 125(1-6) 371-394
[18] Alekseenko S V, Dulin V M, Kozorezov Y S, Markovich D M, Shtork S I and Tokarev M P 2011. Flow structure of swirling turbulent propane flames. Flow, turbulence and combustion 87(4) 569-595
[19] Sharaborin D K, Dulin V M, Lobasov A S and Markovich D M 2016 Measurements of density field in a swirling flame by 2D spontaneous Raman scattering. AIP Conf. Proc. 1770(1) 030027