Crystal structure of 2-amino-5,6,7,8-tetrahydro-7,7-dimethyl-4-(naphthalen-2-yl)-5-oxo-4H-chromene-3-carbonitrile

Ali M. S. Hebisy, Galal H. Elgemeie, Rasha A. E. Ali and Peter G. Jones

Chemistry Department, Faculty of Science, Helwan University, Cairo, Egypt, and Institut für Anorganische und Analytische Chemie, Technische Universität Braunschweig, Hagenring 30, D-38106 Braunschweig, Germany.

*Correspondence e-mail: p.jones@tu-bs.de

In the title compound, C\textsubscript{22}H\textsubscript{20}N\textsubscript{2}O\textsubscript{2}, both six-membered rings of the fused heterocyclic system display envelope conformations; the two carbon atoms bearing the methyl groups and the naphthyl substituent both lie outside the planes of the other atoms of each ring. In the crystal, the amino group forms hydrogen bonds of the types N—H···O and N—H···N, leading to the formation of a double layer structure propagating parallel to the \textit{bc} plane. Weak C—H···O and C—H···\pi interactions may reinforce the layers.

1. Chemical context

Six-membered heterocycles involving 4\textit{H}-pyran units represent an important class of biologically active synthetic and natural products, many of which attract the interest of the drug industry (Le

Pyrans possess antimicrobial (Dazmiri \textit{et al.}, 2020), antituberculosis (Kalario \textit{et al.}, 2014) and antitumor (Wang \textit{et al.}, 2014) activities, whereby 4\textit{H}-pyrans are moieties in a series of natural products (Singh \textit{et al.}, 1996). A number of 4\textit{H}-pyrans are used, for example, as photoactive ingredients (Armesto \textit{et al.}, 1989) or agrochemicals (Kumar \textit{et al.}, 2009). Syntheticlly, they are intermediates for the synthesis of heterocyclic compounds such as pyranopyrimidines and pyranopyrazoles (Elgemeie \textit{et al.}, 1987, 1988) and consequently the synthesis of 4\textit{H}-pyrans themselves is of interest to organic chemists.

Some time ago, we reported the synthesis of pyridine-2(1\textit{H})-thiones and their condensed derivatives from the reactions of arylmethylenecyanothioacetamides with suitable active methylene compounds (Elgemeie \textit{et al.}, 2002). We also described the reaction of the dimedone 1 with naphthylmethylene cyanthioacetamide to produce a condensed pyridine-2(1\textit{H})-thione (Attia \textit{et al.}, 1997). The course of this reaction prompted us to investigate how 1 would react with naphthylmethylene cyanthioacetamide [2-cyano-3-(naphthalen-2-yl)acrylamide, 2] in boiling ethanol containing triethylamine. The product was shown to be neither of the expected condensed pyridin-2(1\textit{H})-ones 3 or 4 but rather the condensed pyran nitrile 5 (Scheme 1). The latter structure was inferred on the basis of elemental analysis and spectroscopic data: thus, the mass spectrum of 5 was compatible with the molecular formula C\textsubscript{22}H\textsubscript{20}N\textsubscript{2}O\textsubscript{2} (\textit{M}^+, 344), and the \textit{1H} NMR spectrum had signals at 4.37 (pyran-\textit{4H}), 7.06 (\textit{br}, NH\textsubscript{2}) and 7.29–7.90 (\textit{m}, ArH).
We assume that the formation of 5 proceeds via addition of the active methylene group of 1 to the double bond of 2 to give the intermediates 6, 7 and then 8, the latter finally losing one molecule of water to give the final product 5 (Scheme 2). In order to establish the structure of this compound unambiguously, its crystal structure was determined and is reported here.

2. Structural commentary

The molecular structure of 5 is shown in Fig. 1 and it confirms the postulated structure noted above. Both six-membered rings display envelope conformations in which five atoms are reasonably coplanar (for torsion angles see Table 1): C4 deviates by 0.317 (1) Å from the mean plane (I) of atoms O1/C2/C3/C4 (r.m.s. deviation = 0.031 Å), and C7 lies 0.653 (2) Å outside the mean plane (II) of C4/C5–C8 (r.m.s. deviation = 0.030 Å). The interplanar angle I/II is 9.97 (4)°. The naphthyl ring system (r.m.s. deviation = 0.012 Å) is effectively perpendicular to plane I [interplanar angle = 86.56 (3)°]. The amino group is almost planar (r.m.s. deviation of C2/N1/H01/H02 = 0.01 Å) and deviates slightly from plane I [interplanar angle = 10.0 (6)°].

Table 1
Selected torsion angles (°).

Bond/Angle	Value (°)
C8A–O1–C2–C3	-8.36 (13)
O1–C2–C3–C4	-9.65 (14)
C2–C3–C4–C4A	22.65 (13)
C3–C4–C4A–C8A	-20.86 (12)
C8A–C4A–C5–C6	6.61 (14)
C4A–C5–C6–C7	-31.83 (13)
C8A–O1–C8A–C4A	54.40 (11)
O1–C8A–C4A–C8A	-47.78 (11)
C4A–C4A–C8A–C8A	5.99 (15)
C5–C4A–C8A–C8A	5.73 (15)
C8A–C8A–C5–C6	10.40 (13)
C4A–C5–C6–C7	19.52 (14)

Figure 1
The molecular structure of 5 in the crystal. Ellipsoids represent 50% probability levels.
3. Supramolecular features

In the crystal, the amino group acts as donor for two classical hydrogen bonds (Table 2). This leads to a double layer structure (Fig. 2) propagating parallel to the bc plane. The H⋯O separation of the weak hydrogen bond C6—H6B⋯N2 (x, −1 + y, z) is rather long at 2.69 Å but acceptably linear (160°) and presumably reinforces the layer structure, but is not shown in Fig. 2. The short contact C10—H10B⋯Cg (C12–16/C21), with H⋯Cg 2.79 Å and a C—H⋯Cg angle of 139°, may represent a C—H⋯π interaction between the double layers. There are no short π⋯π stacking contacts.

4. Database survey

A search of the Cambridge Database (Version 2021.3.0; Groom et al., 2016) showed that the motif of a 4-substituted 2-amino-5,6,7,8-tetrahydro-7,7-dimethyl-5-oxo-4H-chromene-3-carbonitrile has been the subject of many structure determinations. A total of 54 hits with variously substituted phenyl groups was found, which reduces to 32 when duplicate structure determinations, various solvates and polymorphs are not considered. For all but one of these structures, the 4-position also bears a hydrogen atom, the exception being the 4-methyl, 4-nitrophenyl derivative (Cai et al., 2012; refcode TESNEM). Additionally, the 4-(1-naphthyl) derivative was found (Nesterov et al., 2004; refcode ETOKIH), which is an isomer of the title compound 5. The packing of ETOKIH is quite different from that of 5; the hydrogen atom corresponding to H01 in 5 forms N—H⋯N hydrogen bonds, leading to inversion dimers, whereas the other NH hydrogen atom is not involved in hydrogen bonding. A least-squares overlay of 5 and ETOKIH (excluding methyl groups and all naphthyl carbon atoms except the ipso C atom) gave an r.m.s. deviation of 0.15 Å; Fig. 3 shows the slight differences in ring conformation.

5. Synthesis and crystallization

A mixture of dimedone 1 (0.010 mol), 2-cyano-3-(naphthalen-2-yl)acrylamide 2 (0.010 mol) and triethylamine (0.010 mol) in ethanol (10 ml) was refluxed for 2 h. The solid precipitate that formed was filtered off and recrystallized from ethanol solution to give pale yellow crystals of 5 in 90% yield, m.p. 474–475 K; IR (KBr, cm⁻¹): ν 3345, 3258 (NH 2), 2188 (CN), 1683 (C=O). 1H NMR (400 MHz DMSO-d6): 1.11 (s, 3H, CH3), 1.53 (s, 3H, CH3), 2.07 (d, 2H, CH2), 2.14 (d, 2H, CH2), 4.37 (s, 1H, CH-pyran), 7.06 (s, br, 2H, NH2), 7.29–7.90 (m, 7H, C10H7). 13C NMR (100 MHz, DMSO-d6): δ: 27.2, 28.8, 32.2, 36.3, 50.4, 58.6 (aliphatic C), 120.2 (CN), 113.0, 142.2, 158.9, 163.0 (ethylene C), 120.2-133.3 (aromatic C), 196.2 (C=O).

Table 2

D—H⋯A	D—H	H⋯A	D⋯A	D—H⋯A
N1⋯H01⋯N2’	0.90 (1)	2.11 (1)	2.9948 (12)	170 (1)
N1⋯H02⋯O2’ii	0.90 (1)	1.94 (1)	2.8404 (11)	176 (1)
C6⋯H6B⋯N2iii	0.99	2.69	3.6366 (14)	160

Symmetry codes: (i) x, y+1, z; (ii) x, y+1, z—1; (iii) x, y, z.

Figure 2

Crystal packing of 5 viewed parallel to the a axis in the region x ≈ 0.5. Dashed lines indicate classical hydrogen bonds. Naphthyl rings are reduced to the ipso carbon atoms for clarity. Hydrogen atoms not involved in classical hydrogen bonding are omitted. The figure is depth-coded; molecules of the lower layer are drawn with thinner bonds. Atom labels indicate the asymmetric unit (which lies in the lower layer).

Figure 3

A least-squares fit of 5 (violet, full bonds) to ETOKIH (Nesterov et al., 2004; green, dashed bonds). Hydrogen atoms were not considered.
MS (EI): m/z 344 [M⁺]. Analysis calculated for C_{22}H_{20}N_{2}O_{2}: C 76.72; H 5.85; N 8.13%. Found: C 76.6; H 5.7; N 8.1%.

6. Refinement
Crystal data, data collection and structure refinement details are summarized in Table 3. The hydrogen atoms of the NH₂ group were refined freely, but with N—H distances restrained to be approximately equal using a SADI instruction in SHELXL. The methyl groups were included as idealised rigid groups allowed to rotate but not tip (C—H = 0.98 Å; H—C—H = 109.5°). The other hydrogen atoms were included using a riding model starting from calculated positions (C—H = 0.95 Å; H—C—H = 109.5°; iso(H) values were fixed at 1.5). The methyl groups were included as idealised rigid groups allowed to rotate but not tip (C—H = 0.98 Å; H—C—H = 109.5°). The other hydrogen atoms were included using a riding model starting from calculated positions (C—H = 0.95, 0.98 and 1.00 Å for aromatic, methylene and methine H atoms, respectively). The U(eq) values were fixed at 1.5 × U(eq) of the parent carbon atoms for the methyl groups and 1.2 × U(eq) for other hydrogen atoms.

Acknowledgements
The authors acknowledge support by the Open Access Publication Funds of the Technical University of Braunschweig.

References
Armesto, D., Horspool, W. M., Martin, N., Ramos, A. & Seoane, C. (1989). J. Org. Chem. 54, 3069–3072.
Attia, A., Elgemeie, G. H. & Shahada, L. A. (1997). Tetrahedron, 53, 17441–17448.
Cai, P., Guo, X., Huo, J. & Shi, C. (2012). Acta Cryst. B 78, 124–1246.
Elgemeie, G. H., Alinzerad, H., Hossaini, Z. & Bekhradnia, A. R. (2020). Appl. Organomet. Chem. 34, e5731. https://doi.org/10.1002/aoc.5731
Elgemeie, G. H., El-Kerim, A., Gohar, M., Regaila, H. A. & Elfahham, H. A. (1988). Arch. Pharm. Pharm. Med. Chem. 321, 131–133.
Elgemeie, G. H., Hussein, M. M. & Jones, P. G. (2002). Acta Cryst. E58, o1244–o1246.
Elgemeie, G. H., Riad, B. Y., Nawwar, G. A. & Elgamal, S. (1987). Arch. Pharm. Pharm. Med. Chem. 320, 223–228.
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.
Kalari, P. N., Satasia, S. P. & Raval, D. K. (2014). New J. Chem. 38, 1512–1521.
Kumar, D., Reddy, V. B., Sharad, S., Dube, U. & Kapur, S. (2009). Eur. J. Med. Chem. 44, 3805–3809.

Table 3
Experimental details.

Crystal data	Chemical formula	C_{22}H_{20}N_{2}O_{2}
M(r)		344.40
Crystal system, space group	Monoclinic, C2/c	
Temperature (K)		100
a (Å)		25.3144 (3), 9.25765 (11)
b (Å)		15.6778 (2)
c (Å)		8
β (°)		97.8724 (10)
V (Å³)		3639.51 (8)
Z		8
Radiation type		Cu Kα
μ (mm⁻¹)		0.65
Crystal size (mm)		0.08 × 0.05 × 0.02

Data collection
Diffractometer: XtaLAB Synergy, HyPix
Absorption correction: Multi-scan (CrysAlis PRO; Rigaku OD, 2021)
Tmin, Tmax: 0.826, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections: 61093, 3856, 3694
Rint: 0.030
(wR2)max: 0.634

Refinement
R[F² > 2σ(F²)], wR(F²), S: 0.036, 0.086, 1.07
No. of reflections: 3856
No. of parameters: 245
No. of restraints: 1
H-atom treatment: H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å⁻³): 0.22, −0.20

Computer programs: CrysAlis PRO (Rigaku OD, 2021). SHELXL (Sheldrick, 2015a), SHELXL2018/3 (Sheldrick, 2015b) and XP (Siemens, 1994).

Lega, D. A., Gorobets, N. Y., Chernykh, V. P., Shishkina, S. V. & Shemchuk, L. A. (2016). RSC Adv. 6, 16087–16099.
Nesterov, V. N., Wiedenfeld, D. J., Nesterova, S. V. & Minton, M. A. (2004). Acta Cryst. C60, o334–o337.
Rigaku OD (2021). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
Siemens (1994). XP. Siemens Analytical X-Ray Instruments, Madison, Wisconsin, USA.
Singh, K., Singh, J. & Singh, H. (1996). Tetrahedron, 52, 14273–14280.
Wang, D. C., Xie, Y. M., Fan, C., Yao, S. & Song, H. (2014). Chin. Chem. Lett. 25, 1011–1013.
Crystal structure of 2-amino-5,6,7,8-tetrahydro-7,7-dimethyl-4-(naphthalen-2-yl)-5-oxo-4H-chromene-3-carbonitrile

Ali M. S. Hebishy, Galal H. Elgemeie, Rasha A. E. Ali and Peter G. Jones

Computing details
Data collection: CrysAlis PRO (Rigaku OD, 2021); cell refinement: CrysAlis PRO (Rigaku OD, 2021); data reduction: CrysAlis PRO (Rigaku OD, 2021); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: XP (Siemens, 1994); software used to prepare material for publication: SHELXL2018/3 (Sheldrick, 2015b).

2-Amino-5,6,7,8-tetrahydro-7,7-dimethyl-4-(naphthalen-2-yl)-5-oxo-4H-chromene-3-carbonitrile

Crystal data
C_{22}H_{20}N_{2}O_{2}
Mr = 344.40
Monoclinic, C2/c
a = 25.3144 (3) Å
b = 9.25765 (11) Å
c = 15.6778 (2) Å
β = 97.8724 (10)°
V = 3639.51 (8) Å³
Z = 8

F(000) = 1456
D_{x} = 1.257 Mg m⁻³
Cu Kα radiation, λ = 1.54184 Å
Cell parameters from 35871 reflections
θ = 3.5–77.4°
µ = 0.65 mm⁻¹
T = 100 K
Lath, colourless
0.08 × 0.05 × 0.02 mm

Data collection
XtaLAB Synergy, HyPix diffractometer
Radiation source: micro-focus sealed X-ray tube
Detector resolution: 10.0000 pixels mm⁻¹
ω scans
Absorption correction: multi-scans
(CrystalisPro; Rigaku OD, 2021)
T_{min} = 0.826, T_{max} = 1.000

Refinement
Refinement on F²
Least-squares matrix: full
R[F² > 2σ(F²)] = 0.036
wR(F²) = 0.086
S = 1.07
3856 reflections
245 parameters
1 restraint
Primary atom site location: dual
Hydrogen site location: mixed
H atoms treated by a mixture of independent and constrained refinement
w = 1/[σ²(F²) + (0.0362P)² + 2.6486P]
where P = (F² + 2F_c²)/3
(Δ/σ)_{max} < 0.001
Δρ_{max} = 0.22 e Å⁻³
Δρ_{min} = −0.20 e Å⁻³
Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Least-squares planes (x,y,z in crystal coordinates) and deviations from them (* indicates atom used to define plane)
24.6913 (0.0028) x - 2.0266 (0.0045) y - 2.5063 (0.0065) z = 7.9737 (0.0050)
* -0.0099 (0.0006) C4A * -0.0265 (0.0007) C5 * 0.0300 (0.0005) C6 * -0.0353 (0.0005) C8 * 0.0417 (0.0007) C8A
-0.6525 (0.0015) C7
Rms deviation of fitted atoms = 0.0306
23.4020 (0.0039) x - 3.5289 (0.0034) y - 1.8463 (0.0073) z = 7.1162 (0.0054)
Angle to previous plane (with approximate esd) = 9.967 (0.036)
* -0.0423 (0.0006) O1 * 0.0228 (0.0006) C2 * -0.0021 (0.0005) C3 * -0.0200 (0.0005) C4A * 0.0415 (0.0006) C8A
-0.3166 (0.0014) C4
Rms deviation of fitted atoms = 0.0298
- 6.0033 (0.0056) x - 6.6409 (0.0023) y + 10.6832 (0.0042) z = 0.1010 (0.0050)
Angle to previous plane (with approximate esd) = 86.556 (0.027)
* -0.0188 (0.0008) C12 * -0.0048 (0.0008) C13 * 0.0149 (0.0009) C14 * 0.0098 (0.0010) C15 * -0.0015 (0.0011) C16 *
-0.0151 (0.0011) C17 * -0.0093 (0.0011) C18 * 0.0169 (0.0011) C19 * 0.0111 (0.0010) C20 * -0.0032 (0.0010) C21
Rms deviation of fitted atoms = 0.0119

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å²)

	x	y	z	Uiso/Ueq
O1	0.42046 (3)	0.54277 (7)	0.46059 (4)	0.01878 (16)
C2	0.44459 (4)	0.67304 (10)	0.48220 (6)	0.01719 (19)
N1	0.45324 (4)	0.74447 (10)	0.41141 (6)	0.02197 (19)
H01	0.4646 (6)	0.8361 (15)	0.4146 (9)	0.038 (4)*
H02	0.4446 (6)	0.7028 (15)	0.3594 (8)	0.036 (4)*
C3	0.45648 (4)	0.71509 (10)	0.56594 (6)	0.0174 (2)
C4	0.43643 (4)	0.63303 (11)	0.63906 (6)	0.0175 (2)
H4	0.465617	0.629568	0.688927	0.021*
C4A	0.42383 (4)	0.48120 (10)	0.60884 (6)	0.0172 (2)
C5	0.42044 (4)	0.36809 (11)	0.67350 (6)	0.0198 (2)
O2	0.42982 (3)	0.39810 (8)	0.75024 (5)	0.02716 (18)
C6	0.40710 (4)	0.21643 (11)	0.64222 (7)	0.0231 (2)
H6A	0.389602	0.164811	0.686041	0.028*
H6B	0.440604	0.164729	0.636056	0.028*
C7	0.37033 (4)	0.21205 (11)	0.55576 (7)	0.0223 (2)
C8	0.39608 (4)	0.30239 (11)	0.49014 (6)	0.0204 (2)
H8A	0.426832	0.248784	0.473153	0.025*
H8B	0.369856	0.316614	0.437883	0.025*
C8A	0.41454 (4)	0.44589 (10)	0.52524 (6)	0.01697 (19)
C9	0.48381 (4)	0.84661 (11)	0.58446 (6)	0.0183 (2)
N2	0.50703 (4)	0.95261 (10)	0.60116 (6)	0.0238 (2)
C10	0.36359 (5)	0.05655 (12)	0.52270 (8)	0.0311 (3)
H10A	0.338967	0.055087	0.468724	0.047*
H10B	0.349210	-0.003296	0.565660	0.047*
H10C	0.398300	0.018361	0.512555	0.047*
C11	0.31556 (4)	0.27340 (14)	0.56747 (8)	0.0312 (3)
Atomic displacement parameters (Å²)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
O1	0.0252 (4)	0.0155 (3)	0.0155 (3)	-0.0050 (3)	0.0022 (3)	0.0003 (3)
C2	0.0174 (4)	0.0155 (4)	0.0189 (5)	-0.0018 (3)	0.0030 (3)	-0.0002 (4)
N1	0.0322 (5)	0.0182 (4)	0.0159 (4)	-0.0071 (4)	0.0049 (3)	-0.0012 (3)
C3	0.0179 (4)	0.0165 (5)	0.0176 (5)	-0.0017 (4)	0.0024 (3)	0.0004 (4)
C4	0.0204 (5)	0.0176 (5)	0.0141 (4)	-0.0018 (4)	0.0005 (3)	0.0008 (4)
C4A	0.0162 (4)	0.0164 (5)	0.0190 (5)	0.0003 (3)	0.0025 (3)	0.0014 (4)
C5	0.0195 (5)	0.0199 (5)	0.0204 (5)	0.0019 (4)	0.0036 (4)	0.0030 (4)
O2	0.0386 (4)	0.0249 (4)	0.0177 (4)	0.0001 (3)	0.0028 (3)	0.0039 (3)
C6	0.0281 (5)	0.0175 (5)	0.0238 (5)	-0.0008 (4)	0.0038 (4)	0.0050 (4)
C7	0.0246 (5)	0.0179 (5)	0.0247 (5)	-0.0042 (4)	0.0042 (4)	0.0025 (4)
C8	0.0238 (5)	0.0171 (5)	0.0207 (5)	-0.0023 (4)	0.0042 (4)	-0.0006 (4)
C8A	0.0163 (4)	0.0160 (4)	0.0189 (5)	0.0003 (3)	0.0036 (3)	0.0030 (4)
C9	0.0196 (5)	0.0203 (5)	0.0148 (4)	0.0007 (4)	0.0023 (3)	0.0008 (4)
N2	0.0290 (5)	0.0208 (4)	0.0210 (4)	-0.0049 (4)	0.0018 (3)	-0.0004 (3)
C10	0.0423 (7)	0.0197 (5)	0.0308 (6)	-0.0092 (5)	0.0036 (5)	0.0022 (4)
C11	0.0219 (5)	0.0343 (6)	0.0380 (6)	-0.0061 (5)	0.0062 (5)	0.0034 (5)
C12	0.0256 (5)	0.0172 (5)	0.0188 (5)	0.0001 (4)	0.0054 (4)	0.0007 (4)
C13	0.0265 (5)	0.0162 (5)	0.0148 (4)	-0.0013 (4)	0.0057 (4)	0.0018 (4)
C14	0.0361 (6)	0.0251 (5)	0.0183 (5)	-0.0046 (4)	0.0041 (4)	-0.0030 (4)
C15	0.0524 (7)	0.0264 (6)	0.0228 (5)	0.0005 (5)	0.0143 (5)	-0.0063 (4)
C16	0.0433 (7)	0.0259 (6)	0.0274 (6)	0.0071 (5)	0.0193 (5)	0.0043 (5)
C17	0.0621 (9)	0.0411 (8)	0.0421 (7)	0.0186 (7)	0.0304 (7)	0.0038 (6)
C18	0.0496 (8)	0.0577 (9)	0.0551 (9)	0.0287 (7)	0.0329 (7)	0.0181 (7)
C19	0.0308 (7)	0.0577 (9)	0.0527 (8)	0.0146 (6)	0.0174 (6)	0.0211 (7)
Geometric parameters (Å, °)

Bond	Distance (Å)	Angle (°)	
O1—C2	1.3733 (11)	C17—C18	1.359 (2)
O1—C8A	1.3769 (11)	C18—C19	1.405 (2)
C2—N1	1.3355 (13)	C19—C20	1.3724 (18)
C2—C3	1.3628 (13)	C20—C21	1.4172 (17)
C3—C9	1.4109 (13)	N1—H01	0.895 (13)
C3—C4	1.5193 (13)	N1—H02	0.901 (13)
C4—C4A	1.5035 (13)	C4—H4	1.0000
C4—C13	1.5278 (14)	C6—H6A	0.9900
C4A—C8A	1.3400 (14)	C6—H6B	0.9900
C4A—C5	1.4681 (13)	C8—H8A	0.9900
C5—O2	1.2259 (13)	C8—H8B	0.9900
C5—C6	1.5101 (14)	C10—H10A	0.9800
C6—C7	1.5362 (15)	C10—H10B	0.9800
C7—C10	1.5316 (15)	C10—H10C	0.9800
C7—C11	1.5323 (15)	C11—H11A	0.9800
C7—C8	1.5384 (14)	C11—H11B	0.9800
C8—C8A	1.4885 (13)	C11—H11C	0.9800
C9—N2	1.1553 (13)	C12—H12	0.9500
C12—C13	1.3721 (14)	C14—H14	0.9500
C12—C21	1.4173 (14)	C15—H15	0.9500
C13—C14	1.4164 (14)	C17—H17	0.9500
C14—C15	1.3678 (17)	C18—H18	0.9500
C15—C16	1.4135 (18)	C19—H19	0.9500
C16—C21	1.4206 (17)	C20—H20	0.9500
C16—C17	1.4244 (17)		

\[
\begin{align*}
C2—O1—C8A & = 118.69 (7) & C12—C21—C16 & = 118.93 (10) & \\
N1—C2—C3 & = 128.28 (9) & C2—N1—H01 & = 120.8 (9) & \\
N1—C2—O1 & = 110.35 (8) & C2—N1—H02 & = 119.5 (9) & \\
C3—C2—O1 & = 121.37 (9) & H01—N1—H02 & = 119.5 (13) & \\
C2—C3—C9 & = 118.82 (9) & C4A—C4—H4 & = 108.6 & \\
C2—C3—C4 & = 122.11 (9) & C3—C4—H4 & = 108.6 & \\
C9—C3—C4 & = 118.77 (8) & C13—C4—H4 & = 108.6 & \\
C4A—C4—C3 & = 107.94 (8) & C5—C6—H6A & = 109.0 & \\
C4A—C4—C13 & = 112.25 (8) & C7—C6—H6A & = 109.0 & \\
C3—C4—C13 & = 110.83 (8) & C5—C6—H6B & = 109.0 & \\
C8A—C4A—C5 & = 118.84 (9) & C7—C6—H6B & = 109.0 & \\
C8A—C4A—C4 & = 122.52 (9) & H6A—C6—H6B & = 107.8 & \\
C5—C4A—C4 & = 118.63 (8) & C8A—C8—H8A & = 109.2 & \\
O2—C5—C4A & = 119.62 (9) & C7—C8—H8A & = 109.2 & \\
O2—C5—C6 & = 122.28 (9) & C8A—C8—H8B & = 109.2 & \\
C4A—C5—C6 & = 118.07 (9) & C7—C8—H8B & = 109.2 & \\
C5—C6—C7 & = 113.12 (8) & H8A—C8—H8B & = 107.9 & \\
\end{align*}
\]
C10—C7—C11 109.17 (9) C7—C10—H10A 109.5
C10—C7—C6 110.45 (9) C7—C10—H10B 109.5
C11—C7—C6 109.48 (9) H10A—C10—H10B 109.5
C10—C7—C8 108.80 (9) C7—C10—H10C 109.5
C11—C7—C8 110.60 (9) H10A—C10—H10C 109.5
C6—C7—C8 108.34 (8) C7—C10—H10D 109.5
C8A—C8—C7 112.23 (8) C7—C11—H11A 109.5
C4A—C8A—O1 122.61 (9) C7—C11—H11B 109.5
C4A—C8A—C8 125.70 (9) H11A—C11—H11B 109.5
O1—C8A—C8 111.69 (8) C7—C11—H11C 109.5
N2—C9—C3 178.34 (11) H11A—C11—H11C 109.5
C13—C12—C21 121.76 (10) C7—C11—H11D 109.5
C12—C13—C14 118.75 (10) C13—C12—H12 119.1
C12—C13—C4 121.77 (9) C21—C12—H12 119.1
C14—C13—C4 119.37 (9) C15—C14—H14 119.5
C15—C14—C13 120.90 (11) C13—C14—H14 119.5
C14—C15—C16 121.22 (11) C14—C15—H15 119.4
C15—C16—C21 118.42 (10) C16—C15—H15 119.4
C15—C16—C17 123.10 (12) C18—C17—H17 119.4
C21—C16—C17 118.48 (13) C16—C17—H17 119.4
C18—C17—C16 121.23 (14) C17—C18—H18 119.9
C17—C18—C19 120.17 (12) C19—C18—H18 119.9
C20—C19—C18 120.53 (14) C20—C19—H19 119.7
C19—C20—C21 120.63 (13) C18—C19—H19 119.7
C20—C21—C12 122.14 (11) C19—C20—H20 119.7
C20—C21—C16 118.93 (11) C21—C20—H20 119.7
C8A—O1—C2—N1 171.82 (8) C4—C4A—C8A—C8 -172.89 (9)
C8A—O1—C2—C3 -8.36 (13) C2—O1—C8A—C4A 10.40 (13)
N1—C2—C3—C9 -3.54 (16) C2—O1—C8A—C8 -170.59 (8)
O1—C2—C3—C9 176.67 (9) C7—C8—C8A—C4A 19.52 (14)
N1—C2—C3—C4 170.13 (10) C7—C8—C8A—O1 -159.46 (8)
O1—C2—C3—C4 -9.65 (14) C21—C12—C13—C14 -0.51 (15)
C2—C3—C4—C4A 22.65 (13) C21—C12—C13—C4 -176.64 (9)
C9—C3—C4—C4A -163.67 (8) C4A—C4—C13—C12 -37.80 (12)
C2—C3—C4—C13 -100.65 (11) C3—C4—C13—C12 82.98 (11)
C9—C3—C4—C13 73.03 (11) C4A—C4—C13—C14 146.09 (9)
C3—C4—C4A—C8A -20.86 (12) C3—C4—C13—C14 -93.12 (11)
C13—C4—C4A—C8A 101.57 (11) C12—C13—C14—C15 -0.50 (16)
C3—C4—C4A—C5 160.51 (8) C4—C13—C14—C15 175.72 (10)
C13—C4—C4A—C5 -77.05 (11) C13—C14—C15—C16 0.66 (17)
C8A—C4A—C5—O2 178.62 (9) C14—C15—C16—C21 0.19 (17)
C4—C4A—C5—O2 -2.71 (14) C14—C15—C16—C17 -179.62 (12)
C8A—C4A—C5—C6 0.61 (14) C15—C16—C17—C18 -179.19 (13)
C4—C4A—C5—C6 179.28 (8) C21—C16—C17—C18 0.99 (19)
O2—C5—C6—C7 150.21 (10) C16—C17—C18—C19 0.3 (2)
C4A—C5—C6—C7 -31.83 (13) C17—C18—C19—C20 -1.2 (2)
C5—C6—C7—C10 173.48 (9) C18—C19—C20—C21 0.8 (2)
C5—C6—C7—C11	−66.28 (11)	C19—C20—C21—C12	−179.56 (11)	
C5—C6—C7—C8	54.40 (11)	C19—C20—C21—C16	0.47 (17)	
C10—C7—C8—C8A	−167.89 (9)	C13—C12—C21—C20	−178.63 (10)	
C11—C7—C8—C8A	72.21 (11)	C13—C12—C21—C16	1.34 (15)	
C6—C7—C8—C8A	−47.78 (11)	C15—C16—C21—C20	178.82 (10)	
C5—C4A—C8A—O1	−175.40 (8)	C17—C16—C21—C20	−1.36 (16)	
C4—C4A—C8A—O1	5.99 (15)	C15—C16—C21—C12	−1.16 (16)	
C5—C4A—C8A—C8	5.73 (15)	C17—C16—C21—C12	178.66 (10)	

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D···A	D—H···A
N1—H01···N2i	0.90 (1)	2.11 (1)	2.9948 (12)	170 (1)
N1—H02···O2ii	0.90 (1)	1.94 (1)	2.8404 (11)	176 (1)
C6—H6B···N2iii	0.99	2.69	3.6366 (14)	160

Symmetry codes: (i) −x+1, −y+2, −z+1; (ii) x, −y+1, z+1/2; (iii) x, −y+1, z.