Shadow-wall lithography of ballistic superconductor–semiconductor quantum devices

Sebastian Heedt1,2,6✉, Marina Quintero-Pérez2,6, Francesco Borsoi1,6, Alexandra Fursina2, Nick van Loo1, Grzegorz P. Mazur1, Michał P. Nowak3, Mark Ammerlaan1, Kongyi Li1, Svetlana Korneychuk1, Jie Shen1, May An Y. van de Poll1, Ghada Badawy4, Sasa Gazibegovic4, Nick de Jong1,5, Pavel Aseev2, Kevin van Hoogdalem2, Erik P. A. M. Bakkers4 & Leo P. Kouwenhoven1,2

The realization of hybrid superconductor–semiconductor quantum devices, in particular a topological qubit, calls for advanced techniques to readily and reproducibly engineer induced superconductivity in semiconductor nanowires. Here, we introduce an on-chip fabrication paradigm based on shadow walls that offers substantial advances in device quality and reproducibility. It allows for the implementation of hybrid quantum devices and ultimately topological qubits while eliminating fabrication steps such as lithography and etching. This is critical to preserve the integrity and homogeneity of the fragile hybrid interfaces. The approach simplifies the reproducible fabrication of devices with a hard induced superconducting gap and ballistic normal-/superconductor junctions. Large gate-tunable supercurrents and high-order multiple Andreev reflections manifest the exceptional coherence of the resulting nanowire Josephson junctions. Our approach enables the realization of 3-terminal devices, where zero-bias conductance peaks emerge in a magnetic field concurrently at both boundaries of the one-dimensional hybrids.

1 QuTech and Kavli Institute of Nanoscience, Delft University of Technology, Delft, The Netherlands. 2 Microsoft Quantum Lab Delft, Delft, The Netherlands. 3 AGH University of Science and Technology, Academic Centre for Materials and Nanotechnology, Krakow, Poland. 4 Department of Applied Physics, Eindhoven University of Technology, Eindhoven, The Netherlands. 5 Netherlands Organisation for Applied Scientific Research (TNO), Delft, The Netherlands. 6 These authors contributed equally: Sebastian Heedt, Marina Quintero-Pérez, Francesco Borsoi. ✉ Email: Sebastian.Heedt@Microsoft.com

Hybrid superconducting/semiconducting nanowires are a promising material platform for the formation of one-dimensional topological superconductors bounded by pairs of Majorana modes. Owing to their non-Abelian exchange statistics, these localised Majorana bound states (MBSs) are the fundamental constituents for fault-tolerant topological quantum computing. Individual qubits comprise at least four MBS in several interconnected nanowire segments with a hard induced superconducting gap. Residual fermionic states within the gap would compromise the topological protection of the Majorana modes. Hence, a fundamental challenge in the development of topological qubits is the engineering of complex, interconnected hybrid devices with hard superconducting gaps and clean, homogeneous interfaces. Here, we introduce a fabrication technique that resolves these challenges and provides high-quality hybrid quantum devices, reflected by the absence of chemical intermixing, a high interface transparency and hard induced gaps, while involving minimal nanofabrication steps compared with previously established methods. Our approach is based on the deposition of superconducting thin films at a shallow angle onto semiconducting nanowires, which have been selectively placed on substrates with pre-patterned gates and shadow-wall structures. It enables complex hybrid devices while eliminating lithography, etching, and other fabrication steps after the deposition of the superconductor, in the following referred to as post-interface fabrication. While shadow-wall lithography is compatible with a large variety of materials, we utilise InSb nanowires coated with Al half-shells to induce superconducting correlations – a suitable material combination to study Majorana physics. The homogeneity of the interface between InSb and Al ultimately determines the device quality, but it is known to have very limited chemical and thermal stability. Therefore, the reduction or elimination of post-interface fabrication steps represents a paradigm shift that enables pristine hybrid interfaces. Similar advances in quality and reproducibility (Supplementary Note 1) were made possible by the reverse fabrication process established for carbon nanotube devices.

In this article, we investigate the transport properties of hybrid nanowire shadow-wall devices. Initially, we examine Josephson junctions and detect subharmonic gap features that arise from multiple Andreev reflections. These junctions exhibit gate-tunable supercurrents of up to 90 nA, which is exceptionally large for InSb/Al nanowires compared to previous works on InSb Josephson junction devices. The shadow-wall method also facilitates 3-terminal hybrid devices with two normal metal/superconductor (N–S) interfaces, which are crucial to corroborate earlier Majorana signatures. We investigate the transport at a single N–S interface and observe a crossover between a hard induced gap and pronounced Andreev enhancement upon increasing the junction transparency, consistent with the expected behaviour for ballistic junctions. Finally, we report the emergence of discrete subgap states in the tunnelling conductance at both nanowire ends and detect stable zero-energy conductance peaks that coexist at certain magnetic fields and chemical potentials.

Our fabrication method paves the way for more advanced nanowire devices, including qubit implementations and other multi-terminal devices that are essential for fundamental research on topological superconductors. The versatility of the shadow-wall technique introduces a convenient and quick way to implement new device geometries with various combinations of semiconductor and superconductor materials.

Results
Shadow-wall lithography. A well-established approach to realise hybrid devices is based on the epitaxial growth of nanowires followed by the in-situ evaporation of a superconductor. This method requires a subsequent etching step to expose gate-tunable wire segments without metal. Nanowires have also been grown on opposite crystal facets of etched trenches, which enables the formation of shadowed junctions without the need to etch the superconductor. The native oxide that forms during the ex-situ processing is removed prior to the deposition of the superconductor. Another recent study employed growth chips with bridges and trenches that act as selectively shadowing objects during the evaporation of a superconductor. Common to these methods is that the hybrid nanowires are removed from the growth substrate following the evaporation and undergo several post-interface fabrication steps such as alignment via scanning electron microscopy (SEM), electron-beam lithography involving resist coating, or etching. The latter, in particular, degrades the electrical device performance compared with shadowed junctions. Moreover, hybrid devices are prone to degradation. High-temperature processing (e.g. certain dielectric deposition methods or resist baking) cannot be performed, as it would lead to chemical intermixing at the superconductor/superconductor interface. The limited chemical stability of the interface requires sample storage in vacuum at a temperature $T < 0 \, ^\circC$, which is hardly compatible with standard fabrication methods. The low thermal budget and the additional fabrication steps limit the achievable device performance in terms of electrical noise, lithographical alignment accuracy, contamination and disorder. The considerable variation from device to device imposes singular rather than standardised designs and results in a limited reproducibility of basic transport measurements.

In contrast, the core principle of our approach is to minimise or eliminate post-interface fabrication. We have engineered scalable substrates that comprise all desired functionalities, which is hardly compatible with standard fabrication methods. Our fabrication method paves the way for more advanced nanowire devices, including qubit implementations and other multi-terminal devices that are essential for fundamental research on topological superconductors. The versatility of the shadow-wall technique introduces a convenient and quick way to implement new device geometries with various combinations of semiconductor and superconductor materials.

Materials analysis. The quality of the InSb nanowires, Al thin films, and InSb/Al interfaces is assessed by transmission electron microscopy (TEM) of cross-sectional lamellae prepared via focused ion beam (FIB). These lamellae are cut out from devices like the one depicted in Fig. 2a (cf. dashed line). A continuous high-quality polycrystalline Al layer is formed on three facets of the InSb nanowires and the samples exhibit a sharp superconductor–semiconductor interface (see Fig. 2c, e and...
Supplementary Fig. 1). No oxide formation is observed between the Al grains, which is evident in the elemental energy-dispersive X-ray spectroscopy (EDX) composite image (Fig. 2c). The middle facet has twice the Al layer thickness (16 nm) compared to the top and bottom facets (8 nm) due to the evaporation angle of 30° with respect to the substrate plane. The InSb/Al interface is clean and there is no residual native oxide (see Fig. 2d, e), which confirms that our procedure of atomic hydrogen radical cleaning can effectively remove the oxide without damaging the InSb crystal structure. The nanowires are single-crystalline, defect-free, and exhibit a hexagonal geometry. The polycrystalline Al layer forms a continuous metallic connection from the nanowire to the substrate. This connection is crucial for the contact between the shell and the thin Al lead on the substrate and it is fundamental for more complex devices such as superconducting interferometers (see Supplementary Fig. 30) and 3-terminal Majorana devices that can reveal the opening of a topological gap.18

Highly transparent Josephson junctions. We employ mesoscopic InSb/Al Josephson junctions like the one depicted in Fig. 2a to study the induced superconductivity in the nanowires. Each device comprises two Al contacts (1.8 μm wide) separated by a 110–150-nm-long bare nanowire segment that is tunable by the back-gate voltage, V_BG. The source–drain voltage, V_SD, is applied or measured between the two Al electrodes (Fig. 2b). Figure 3a shows the differential resistance, R = dV_SD/dI_SD, as a function of bias current, I_SD, and temperature for a typical device. The blue region (R = 0 Ω) denotes the superconducting phase, which persists up to ~1.8 K, consistent with the enhanced superconducting critical temperature for thin films with respect to bulk Al.31 At low temperatures (T < 0.6 K), the hysteretic behaviour of the asymmetric V_SD–I_SD traces is caused by self-heating of the junction. This effect disappears at higher temperatures (T > 0.6 K), which can be attributed to enhanced thermalisation via electron–phonon coupling.32 Remarkably, at T = 30 mK, the switching current, I SW, i.e. the observable supercurrent, ranges from 30 to 90 nA across all devices in the open-channel regime. The magnitude of the intrinsic supercurrent, I c, in ballistic and short junctions can be predicted via the Ambegaokar–Baratoff formula: I c = πΔ ind/2e, with the normal-state resistance R_N, the induced gap Δ ind, and the electron charge e. Here, the typical I SW/R_N product is ~110 μV, i.e. only one-third of πΔ ind/2e ~ 360 μV. The discrepancy between I SW and I c is consistent with previous experiments16,17,34 and can be explained by premature switchings due to thermal activation and current fluctuations.35,36 We note that the magnitude of I SW as well as the normalised quantity I SW/R_N/Δ ind ~ 0.5 are significantly larger than in previous reports on InSb Josephson junctions.9,16,17

In Fig. 3b, we show the differential conductance, G = dI_SD/ dV_SD, as a function of V_SD (red curves) for the same Josephson junction (top) and for a second device (bottom). The traces display subharmonic conductance peaks originating from multiple Andreev reflection (MAR) processes.15 By fitting the conductance with a coherent scattering model (green curves), we can estimate the induced superconducting gap, Δ ind ~ (235 μeV and 229 μeV for device 1 and 2, respectively), and the gate-tunable tunnelling probability of the different subbands (see Supplementary Figs. 8–10).37

In Fig. 3c, we report the evolution of the MAR pattern as a function of magnetic field, B∥, parallel to the nanowire axis of device 2. Here, the presence of subgap states close to the gap edge alters the typical MAR pattern and gives rise to an intricate energy dispersion in magnetic field that is further discussed in Supplementary Note 3. Eventually, the magnetic field quenches the superconductivity at a critical value of B∥ = 1.2–1.3 T. This limit can be enhanced to about 2 T by using a thinner Al shell (Supplementary Fig. 14). These values are well above the magnetic field at which a topological phase transition should occur in hybrid InSb/Al nanowires.38

In Fig. 3c, the out-of-gap conductance displays a dense pattern of faint peaks with an average spacing of about 30 μV and an effective Landé g factor of ~20 (extracted from the energy
dispersion in magnetic field). This g factor is larger than in Al ($|g| = 2$) but smaller than in InSb ($|g| = 30-50$), which indicates that these peaks stem from discrete states of the nanowire hybridised with the ones in the metal39. The observation of this structure might be correlated with our choice of nanowire surface treatment. In fact, the gentle atomic hydrogen cleaning preserves the pristine semiconductor crystal quality, unlike the invasive chemical or physical etching methods adopted in previous works9,16,17,34,40.

Hard induced gap and ballistic superconductivity. A common technique to search for evidence of Majorana bound states is N–S tunnelling spectroscopy, which probes the local density of states. Signatures of MBS in proximitized InSb nanowires are zero-bias peaks (ZBPs) in the differential conductance at moderately large magnetic fields41. The ZBP height in the zero-temperature limit is predicted to be $G_0 = 2e^2/h$, independent of the tunnel-coupling strength, due to resonant Andreev reflection via a Majorana zero mode42. ZBPs of non-topological origin, which mimic the subgap behaviour of MBS, may arise from disorder or potential inhomogeneities43. A major challenge is to reduce the detrimental role of disorder at the superconductor–semiconductor interface, which determines the final device quality. The measure of success is a hard induced gap at a finite magnetic field and quantised Andreev enhancement as a signature of ballistic transport44,45.

An exemplary N–S device is depicted in Fig. 4a. Here, the N contact to the InSb nanowire was formed in a post-interface fabrication step, similar to the contacting of conventional shadow junctions (Supplementary Note 1). Alternatively, Al leads that are defined by the shadow walls – microns away from the N–S junction – can serve as N contacts but require additional bottom gates to render all nanowire segments fully conducting (cf. Fig. 1b). Another option to fabricate N contacts in situ involves
using two deposition angles, which we describe in detail elsewhere. In Fig. 4b, we present voltage-bias spectroscopy of the N–S junction in Fig. 4a where the transmission is tunable via a pre-fabricated bottom tunnel gate. The line-cuts in Fig. 4c at low tunnel-gate voltage, \(V_{TG} \), highlight the pronounced suppression of the subgap conductance, \(G_S \), by about two orders of magnitude compared with the normal-state conductance, \(G_N \) (cf. Supplementary Fig. 23). As the first one-dimensional subband starts to conduct fully at \(V_{TG} > 0.6 \) V, the above-gap conductance reaches the conductance quantum, \(2e^2/h \), and the quantisation manifests itself as a plateau in the tunnel-gate dependence (Fig. 4d). At the same time, the conductance below the gap edge reaches \(4e^2/h \) owing to two-particle transport via Andreev reflection. This pronounced doubling of the normal-state conductance together with the quantisation of \(G_N \) signifies a very low disorder strength in the junction and a strong coupling at the nanowire/Al interface. While the subgap conductance reaches up to \(2G_0 \), it drops again at \(V_{TG} \sim 0.8 \) V, possibly due to inter-subband scattering as a result of residual disorder. The plot of \(G_S \) versus \(G_N \) (Fig. 4e) follows the Beenakker model reasonably well without any fitting parameter, which shows that in the single-subband regime electrical transport below the gap edge is dominated by Andreev processes. The data are well-described by the BTK theory across the entire gate voltage range, demonstrating a hard induced gap of \(\Delta_{ind} \sim 230 \) μeV (see Methods and Supplementary Fig. 25). Discrete subgap states and ZBPs appear at a finite magnetic field and field-dependent voltage-bias spectroscopy for this N–S device is presented in Supplementary Fig. 26.

Fig. 4 Ballistic Andreev transport. a False-colour SEM image of an exemplary N–S junction. The W bottom gates (brown) underneath the 100-nm-wide InSb nanowire (green) are covered by 18 nm of Al2O3 dielectric. b Differential conductance, \(G \), as a function of source-drain voltage, \(V_{SD} \), and bottom tunnel-gate voltage, \(V_{TG} \). The so-called super gate, which controls the chemical potential of the hybrid nanowire segment, is grounded. c \(G \) versus \(V_{SD} \) line-cuts of the data in panel b at the locations designated by the coloured lines. d Subgap conductance (green) and above-gap conductance (red) averaged over the \(V_{SD} \) intervals designated in panel b. e \(G_S \) (subgap conductance at zero bias) as a function of \(V_{TG} \) (normal-state conductance at \(V_{SD} = 650 \) μV) together with the theoretically predicted dependence, which assumes Andreev-dominated transport in a single channel (blue line trace).

Emergence of zero-bias peaks at both nanowire ends. The shadow-wall technique enables 3-terminal Majorana devices for nonlocal correlation experiments by harnessing the continuous connection of the Al shell to the substrate, as depicted in Fig. 5a. Here, the Al thin film serves as the superconducting drain lead. Established fabrication methods do not allow for the implementation of such devices since etching away the superconductor causes disorder at the InSb surface and contacting the Al shell requires selective removal of the native oxide of Al, which affects the integrity of the thin film. As shown in Fig. 5a, optional Ti/Au contacts are again added at both nanowire ends in the same fabrication run and on the same substrate as the sample in Fig. 4. With this device type, we can study the simultaneous emergence of ZBPs at both N–S boundaries in a magnetic field oriented along the wire. Here, the hybrid nanowire segment is \(1 \) μm long and the chemical potential, \(\mu \), is controlled via a bottom gate (super gate) at potential \(V_{SG} \). The differential conductance is measured concurrently at both N–S boundaries by alternating the \(V_{SD} \) sweep between the left and right N terminals for every increment of \(B_N \) or \(V_{SG} \). Using this technique, we demonstrate the formation of zero-energy subgap states at both nanowire ends for \(V_{SG} = 0 \) V (see Fig. 5e, f). The effective \(g \) factor extracted from the linear energy dispersion at the two boundaries is ~10, albeit the values of \(g \) can be strongly gate-dependent. Many experiments have demonstrated ZBPs in tunnelling spectroscopy at a single N–S boundary, indicating the presence of a robust state at zero energy. The robustness of ZBPs in the parameter space (defined by chemical potential and magnetic field) has been used to substantiate their topological origin. So far, no experiment...
Differential conductance, $G = dI/dV_{SD}$, as a function of bias voltage, V_{SD}, and magnetic field, B_S, measured concurrently at the left and right junction, respectively. Here, the super gate underneath the hybrid nanowire segment is grounded ($V_{SG} = 0 \text{ V}$).

Figure 5b,c show differential conductance line-cuts, which reveal a zero-bias conductance close to $2e^2/h$ for the ZBP at the left boundary of the device, as highlighted in Fig. 5d. While ZBP conductance close to G_0 has been observed for several N–S junctions, it depends on the fine-tuning of the tunnel barriers, which can be strongly affected by transmission resonances. Experimentally, ZBPs are in general substantially lower than the expected value of G_0.

Theoretical studies recently pointed out that partially or fully overlapping MBS can cause quantised ZBPs, indistinguishable from those resulting from isolated MBS. Hence, the quantised ZBP conductance is a critical but not sufficient hallmark of MBS.

Discussion

The 3-terminal hybrid nanowire devices provide a fundamental tool to study the evolution of the induced superconducting gap in the bulk of the hybrid, where electron- and hole-type bands become inverted at the topological phase transition. There, the closing and reopening of the induced gap are accompanied by the emergence of delocalised MBS, hallmarkled by ZBPs at both boundaries of the hybrid nanowire. Here, we demonstrate hard-gap N–S junctions in a magnetic field where only discrete subgap states move to zero energy to form ZBPs at both boundaries and that respond similarly to variations in the chemical potential.
While these are critical signatures of MBS, upcoming studies will attempt to correlate the local tunnelling conductance with the evolution of the induced bulk gap via the nonlocal conductance and quasiparticle poisoning. While these are critical signatures of MBS, upcoming studies will attempt to correlate the local tunnelling conductance with the evolution of the induced bulk gap via the nonlocal conductance and quasiparticle poisoning.

Device fabrication. Bottom gates are fabricated on Si/SiO₂ substrates via dry-etching of W thin films, which are subsequently covered by Al₂O₃ gate dielectric via atomic layer deposition (ALD). Shadow walls of ~600 nm height are created via reactive-ion etching of thick layers of Si₃N₄ formed via plasma-enhanced chemical vapour deposition (PECVD). Using a micromanipulator, individual nanowires are placed deterministically next to the shadow walls. The native oxide of the nanowires is removed via atomic hydrogen radical cleaning (see Supplementary Note 1). The Al thin films are deposited by evaporation under a shallow angle that forms continuous contacts between the nanowires and the substrate and creates segments on the chip that are electrically isolated from one another. This allows to immediately cool down the devices without the need for additional post-interface fabrication steps. We have not observed a decreased stability or performance of devices that were made with an extra fabrication step to create N contacts. We attribute this to the fact that the hybrid segments are not directly exposed and resist baking is avoided during the fabrication of the contacts.

TEM analysis. The cross-sectional lamellae for TEM are prepared using the focused ion beam technique with a Helios G4 UX FIB/SEM from Thermo Fisher Scientific after sputtering the devices with a 5 nm Al protective layer. TEM analysis is carried out at an acceleration voltage of 200 kV with a Talos electron microscope from Thermo Fisher Scientific equipped with a Super-X EDX detector.

Superconducting gap extraction. The BCS–Dynes term is given by a smeared BCS density of states with the broadening parameter \(\Gamma \):

\[
\frac{dI_{SD}}{dV_{SD}} = G_0 \text{Re} \left[\frac{eV_{SD} - iT}{\sqrt{(eV_{SD} - iT)^2 - \Delta_{SD}^2}} \right]
\]

For all of our N–S devices, the fit of the BCS–Dynes term yields typical broadening parameters of \(<10\) μeV. The model by Blonder, Tinkham and Klapwijk (BTK) incorporates the transition between BCS tunnelling and Andreev reflection in the open channel regime51. Fits of the BCS–Dynes term and of the BTK model to the N–S junction data (including the data in Fig. 4b) are presented in Supplementary Note 4.

The subgap conductance for a ballistic N–S junction with a single subband, where the transport is dominated by Andreev processes, has been described by Beenakker52. At a large enough chemical potential53, it is given by

\[
G_S = \frac{4e^2}{h} \left(\frac{\gamma}{2 - \gamma} \right) = 2 \frac{G_0}{(2G_0 - G_N)^2} T^2
\]

where the transmission probability, \(T \), has been substituted with the normal-state conductance, \(G_N \), in units of \(2e^2/h\). This function is plotted together with the measured data in Fig. 4c.

Data availability

The data that support the plots within this paper and other findings of this study are available at https://doi.org/10.5281/zenodo.5034524.

Code availability

The code used to calculate Andreev transport in Josephson junctions is available from the corresponding author upon reasonable request.
Fundamental Research on Matter (FOM) and Microsoft Corporation Station Q, M.P.N. acknowledges support within the POIR.04.04.00-00-3FD8/17 project as part of the HOMING programme of the Foundation for Polish Science co-financed by the European Union under the European Regional Development Fund.

Author contributions

S.H., M.Q.P., F.B., N.d.J., P.A., K.v.H. and L.P.K. conceived the experiment. S.H., M.Q.P., F.B., N.v.L., G.P.M., J.S. and M.A.Y.v.d.P. contributed to the fabrication and/or electrical transport measurements of the devices. S.H. and F.B. analysed the transport data. A.F. fabricated the substrates. M.P.N. performed numerical simulations of the MAR processes. M.A. made critical upgrades to the equipment and provided technical support. G.B., S.G. and E.P.A.M.B. carried out the nanowire synthesis. K.L. prepared the FIB lamellae. S.K. performed the TEM analysis. S.H., M.Q.P. and F.B. wrote the manuscript. All authors provided critical feedback. L.P.K. supervised the project.

Competing interests

The authors declare no competing interests.

Additional information

Supplementary information The online version contains supplementary material available at https://doi.org/10.1038/s41467-021-25100-w.

Correspondence and requests for materials should be addressed to S.H.

Peer review information *Nature Communications* thanks Hongqi Xu, Thomas Sand Jespersen and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2021