A GPU Implementation for Two-Dimensional Shallow Water Modeling

Kerry A. Seitz, Jr.*, Alex Kennedy†, Owen Ransom2, Bassam A. Younis2, and John D. Owens3

1Department of Computer Science
2Department of Civil and Environmental Engineering
3Department of Electrical and Computer Engineering
University of California, Davis

August 30, 2013

1 Introduction

Two dimensional water flow simulations are useful for engineering firms to model floods, river/reservoir behavior, and dam break scenarios. These models allow us to estimate the consequences of such events, which can determine the allocation of funds towards high-risk areas. Much of the work in flood modeling still uses one-dimensional solutions, which model the river as a series of cross-sectional slices spanning the entire breadth of the river. At each computational slice, they simulate water elevation and velocity based on the nearby upstream and downstream slices. The advantage of 1D solutions is that they vastly simplify the computational difficulty of the problem. However, they only model velocity in one direction per cross-sectional slice. This method works well for large, steady rivers with low lateral velocity, but
these solutions are less apt at solving problems where water will be flowing in multiple directions simultaneously.

To get more accurate results, we can instead use a two-dimensional water model. These models require more computation because the domain must be subdivided into cells in both the x- and y-direction to account for flow velocities in multiple directions. Programs exist to solve 2D flow problems (such as SRH-2D), though most of them are solved on the CPU [4]. These types of problems are massively parallel; therefore, our goal is to develop a parallel implementation of a 2D shallow water equation solver to improve runtime performance over current serial implementations.

Our solution is taken directly from Owen Ransom’s graduate thesis, where he contrasts several numerical and discretization methods for solving the shallow water equations [5]. Regarding his solution, he says: “the methods are based on approximate solutions of partial differential equations of mass and momentum conservation for unsteady free-surface flow of long waves.” Owen provided us with his serial Fortran code, which uses a 2D predictor-corrector MacCormack method to solve for elevation, downstream velocity, and tangential velocity for every time step. In theory our solution is explicit, so solving each time step is only dependent on a previous time step’s values. Practically, our 2D predictor/corrector adaptation requires us to split one time step into 16 discrete sub-steps because each sub-step requires neighboring cell information that was computed in the previous sub-step (for the relevant mathematics of the model, refer to Ransom’s thesis [5]). However, within each of these 16 steps, each cell’s intermediate values can be computed independently of its neighboring cells. Thus, our domain’s cells can be solved in an arbitrary order and our solution will remain deterministic. This cell-level independence becomes important when we want to solve our problem in a massively parallel manner. With GPU parallelization schemes, there is no guarantee that cell N will be solved before cell N+1; if cell N+1 relies on cell N’s computation, the solution becomes much less parallelizable.

We chose to parallelize our problem on the Graphics Processing Unit (GPU) to take advantage of its massively parallel hardware[1] Modern consumer-grade GPUs are designed with about 8-15 Streaming Multiprocessors (SMs), which act as independent brains inside a GPU. Each SM can issue a vector

\[1\] We will be using NVIDIA terminology to identify GPU hardware because they are dominant in the scientific computations community. Other GPUs use similar hardware but are named differently.
operation every clock-cycle, which executes the same math operation across many pieces of data. These are known as Single Instruction Multiple Data (SIMD) operations. Each piece of data is associated with a very lightweight thread. Adjacent threads run on the same SM in groups called “blocks.” This mapping allows threads within a block to share a pool of local, fast, “shared” memory. GPUs do not guarantee the order in which blocks and threads will be processed. Fortunately, our water modeling method is explicit, so it operates on each cell independently. Thus, the order of execution is not important to the correctness of our solution. Because our problem requires the same calculations to be performed on many different pieces of data, this problem is well suited for SIMD-style processors like the GPU. Therefore, we hope to achieve a significant runtime speedup over CPU implementations using our GPU 2D shallow water model.

2 Related Works

In recent years, several projects have developed 2D GPU-based solutions for the shallow water equations. One such work by Brodtkorb et al. uses a second-order Kurganov-Petrova scheme to calculate flux across cell boundaries [2]. They suggest some interesting improvements over the naive scheme, including an “early exit optimization”, where they prematurely stop a block’s computations if it is completely dry. This optimization becomes particularly useful for dam break datasets; many cells start dry, and early time steps need to be short because of the rapidly moving water.

Ament et al. uses a version of the MacCormack method similar to ours to solve for velocity and pressure [1]. Their work focuses largely on real-time visualization of fluid-flow. They use Lagrangian Coherent Structures (LCS) with Finite-Time Lyapunov Exponents (FTLE) to visualize a time-dependent vector field. The impressive part of their work is that their simulation is fully interactive; they can dynamically change the boundary conditions in their simulation and maintain a reasonable 15fps for computing the shallow water equations and visualizing them over a 512x512 grid. They achieved this performance on three year old hardware, so we are quickly reaching a point where modern hardware could reproduce these results for a fully interactive screen-sized grid.
3 Implementation

We wrote our GPU implementation using NVIDIA’s CUDA platform [3]. This implementation consists of two versions: a non-shared memory version and a shared memory version. Each SM on a GPU contains shared memory with much faster access time than the GPU’s main/global memory. Therefore, a program that intelligently takes advantage of shared memory provides some optimization opportunities. We present an overview of these two implementations in the sections below.

3.1 Non-Shared Memory Version

Our initial CUDA implementation consists of multiple kernels, each of which must be executed for every time step. Kernel breaks provide synchronization within a time step, which is necessary because each cell requires intermediate data from neighboring cells (e.g. predictor values when calculating the corrector value). We grouped threads into 1D thread blocks, where each block operates on one row of data.

All data is stored in GPU global memory, so each thread must make multiple global memory accesses to retrieve all of the data it needs. Because we are operating on a 2D grid and retrieving adjacent cells simultaneously, most memory accesses are coalesced.

Like many other explicit methods, Ransom’s model uses a variable time step. Calculating the next step size is an inherently serial process, which is not well suited for GPU execution. Thus, we decided to perform this computation on the CPU. This computation requires data generated on the GPU, so we must copy this data to the CPU after each time step. Memory copy overhead is significant, especially as the size of the grid increases. Running the step size calculation on the GPU resulted in a 10x slowdown in overall runtime versus the version which uses the CPU. Thus, we are willing to incur the memory transfer overhead to avoid performing a serial

\(^2\text{Discrete GPUs, such as those made by NVIDIA and AMD, communicate with the CPU via the PCI Express bus. This connection is much slower than the connection between the CPU and the main Random Access Memory (RAM) on the computer. Intel and AMD are now shipping chips with a CPU and a GPU on a single die, so the CPU and GPU can communicate efficiently using the main RAM. However, the GPUs on these chips are not as powerful as high-end discrete GPUs, so there exists a trade-off between communication speed and processing speed.}\)
calculation on the GPU.

3.2 Shared Memory Version

Within each thread block, data is reused multiple times — a cell must retrieve previously computed data not only from its own cell, but also from its neighboring cells, most of which are also being operated on within that block. Ideally, we only want to read each value from global memory once. Therefore, we can use shared memory to store local copies of the values that will be accessed multiple times, which should improve runtime performance. To further expose data reuse opportunities, we grouped threads into two-dimensional blocks of size 16-by-16. Each thread copies the data from the cell on which it is operating into shared memory, and all other threads within the same block are free to read that data directly from shared memory.

Threads on the top, bottom, left, and right edges of a thread block still require neighboring cell values. Because a thread block will not be operating on, e.g., the north neighbors of the threads at the top of the block, we must make special considerations to copy these outer cells into shared memory. The extra data that must be copied into shared memory is referred to as the “halo” (Figure 1). These halo values will be copied into shared memory multiple times, likely on different SMs. Even though this repeated copy is an inefficiency, the benefits of using shared memory outweigh this downside.

4 Results

In order to evaluate the performance of our CUDA implementations, we compared the runtime of the original Fortran code to the runtimes of our shared and non-shared memory versions. We used five datasets to test our code. These datasets varied in number of cells, length of simulation, domain topology, and initial conditions. We ran these tests on a machine running Ubuntu 12.04 with an Intel Core i7-3370K CPU and an NVIDIA GeForce GTX 680 GPU. We used CUDA version 5.0 for our CUDA implementations. Our performance results are presented in Table [1].

As shown, the CUDA code ran much faster than the Fortran code. The degree to which the CUDA implementation outperformed the Fortran version increases as the size of the domain increase, but not as the length of the simulation increases. The reason for this behavior is that larger grids require more
Figure 1: A data halo representation. The “thread cells” are the cells on which the current thread block are operating, and the “halo cells” are the extra data that the thread cells need to compute their values.

parallelizable work whereas longer simulations require more unparallelizable work (because the model requires synchronization between time steps).

The shared memory version resulted in roughly a 10% to 15% speedup over the non-shared memory version. We expect that this speedup would be even greater with increased shared memory capacity because each SM could execute more thread blocks in parallel. With more thread blocks, an SM has more work it can execute in parallel and, thus, is better able to hide latencies such as global memory accesses. However, each block requires its own shared memory partition, so the shared memory capacity limits the number of blocks an SM can run in parallel. We expect that larger thread block sizes would also result in better performance because we would get more data reuse within each block. However, current NVIDIA GPUs are
Table 1: The performance results of the original Fortran code and our CUDA implementations.

Name	Number of Cells	Simulation End Time	Fortran Time (sec)	CUDA Time (sec)	CUDA shared memory Time (sec)
Five Drops	40401	100	15.16	0.54	0.46
Inlet Flood	40401	1000	25.68*	6.21	5.69
Five Drops Big	1,048,576	100	1,115.67	10.33	9.13
Channel Flood	1,048,576	1000	N/A	57.02	48.26
Vortex	1,048,576	1000	N/A	352.07	295.35

*The results from this test contained NaN values, indicating a bug in the code.
†We created these two datasets in order to run more interesting tests using the CUDA code and to better observe the speedup of the shared-memory version over the non-shared memory version. Thus, we did not use these datasets with the Fortran code.

5 Conclusion

In this paper, we have presented a GPU implementation of Ransom’s two-dimensional shallow water model [5]. Our implementation achieves a significant runtime speedup over our serial test code. This improvement allows researchers and engineers to study water systems more efficiently and in greater detail. Our shared memory optimization resulted in even better performance, and it has the potential to scale linearly as the capacity of SM shared memory increases.

As demonstrated by our performance results, GPUs and other massively parallel architectures have the capability to greatly impact scientific research involving fluid modeling. By taking advantage of these devices, engineers and scientists can improve their work by using more accurate, larger scale models that would otherwise take prohibitively long to simulate on the CPU.
6 Future Work

6.1 Scaling the Solution

Because each cell can be computed independently, our explicit method demonstrates very good scalability. Our execution time has the desirable property of scaling linearly with the size of our problem. Unfortunately, this scalability is limited by a single GPU's computational and memory resources.

One of our future goals is to distribute our domain’s entire work-load across multiple GPUs as efficiently as possible. Dividing our computational domain requires careful and intelligent design to maximize performance. Since the 16 kernel calls of each time step must occur serially, distributing these kernels across multiple GPUs is pointless. Dividing our problem so each of our N GPUs solves \(\frac{1}{N} \) of the time steps is equally unsuitable. However, we can split our domain so each GPU solves one sub-grid per time step. We expect a near-linear speedup as we increase the number of GPUs used in our implementation. Redundant calculations, memory overhead, and synchronization between devices will limit the actual speedup.

Each cell only relies on itself and a few neighboring cells to find its solution from one time step to the next. Because of this, each GPU can work on one portion of our entire grid without interfering with the others. This design introduces new problems and challenges; cells on the edge of our domain require neighbors that belong to a different GPU. Normally this would require device-to-device data transfers and synchronizations to occur between each kernel. However, GPU programming guidelines suggest that this memory overhead is expensive enough to justify additional computations instead. To avoid the costly synchronizations and memory transfers within each time step, each GPU would do a minimal amount of duplicate work to calculate, e.g., their north and south neighbors’ predictor/corrector values. With this extra work, we can avoid the otherwise necessary synchronization points within a single time step. The best way to design our problem would be to split our work into groups of horizontal scanlines. Each scanline consists of multiple rows of our domain, and each of the N GPUs can work on \(\frac{1}{N} \) of the scanlines. This would allow our GPU-to-GPU memory transfers to be coalesced, so we have minimal downtime between time steps.
6.2 Cell Drying

Our current solution is unable to handle dry cells. Because of this, we had to carefully design our test-cases to make sure our computations did not go unstable with negative water-elevations. This simplification makes our code run faster than it otherwise would, but we suspect the performance difference will be minimal. To tackle the cell-drying problem, we will be working with Owen Ransom and other local civil engineers. This is mandatory for our solution to become practical and useful, so it is one of our top priorities.

References

[1] M. Ament, S. Frey, F. Sadlo, T. Ertl, and D. Weiskopf. GPU-based two-dimensional flow simulation steering using coherent structures. In Proceedings of the Second International Conference on Parallel, Distributed, Grid and Cloud Computing for Engineering. Civil-Comp Press, 2011.

[2] André R. Brodtkorb, Martin L. Sætra, and Mustafa Altinakar. Efficient shallow water simulations on GPUs: Implementation, visualization, verification, and validation. Computers & Fluids, 55:1–12, April 2011.

[3] John Nickolls, Ian Buck, Michael Garland, and Kevin Skadron. Scalable parallel programming with CUDA. Queue, 6(2):40–53, March 2008.

[4] US Bureau of Reclamation. SRH-2D. http://www.usbr.gov/pmts/sediment/model/srh2d/index.html. Accessed March 17, 2013.

[5] Owen Thomas Ransom. Linked one-dimensional/two-dimensional model for the solution of the shallow water equations. Master’s thesis, University of California, Davis, 2008.