Flavor SU(3) Topological Diagram and Irreducible Representation Amplitudes for Heavy Meson Charmless Hadronic Decays: Mismatch and Equivalence

Xiao-Gang He¹²³ *, and Wei Wang ¹ †

¹ T.-D. Lee Institute and INPAC, Shanghai Key Laboratory for Particle Physics and Cosmology, MOE Key Laboratory for Particle Physics, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240
² Department of Physics, National Taiwan University, Taipei 106
³ National Center for Theoretical Sciences, TsingHua University, Hsinchu 300

Flavor SU(3) analysis of heavy meson (B and D) hadronic charmless decays can be formulated in two different ways. One is to construct the SU(3) irreducible representation amplitude (IRA) by decomposing effective Hamiltonian according to the SU(3) transformation properties. The other is to use the topological diagrams (TDA). These two methods should give equivalent physical results in the SU(3) limit. Using $B \to PP$ decays as an example, we point out that previous analyses in the literature using these two methods do not match consistently in several ways, in particular a few SU(3) independent amplitudes have been overlooked in the TDA approach. Taking these new amplitudes into account, we find a consistent description in both schemes. These new amplitudes can affect direct CP asymmetries in some channels significantly. A consequence is that for any charmless hadronic decay of heavy meson, the direct CP symmetry cannot be identically zero.

I. INTRODUCTION

Hadronic charmless B decays provide an ideal platform to extract the CKM matrix elements, test the standard model description of CP violation and look for new physics effects beyond the standard model (SM). Experimentally, quite a number of physical observables like branching fractions, CP asymmetries and polarizations have been precisely measured by experiments at the electron-position colliders and hadron colliders. For a collection of these results, please see Refs. [1, 2]. On the other hand, theoretical calculations of the decay amplitudes greatly rely on the factorization ansatz. Depending on the explicit realizations of factorization, several QCD-based dynamic approaches have been established, such as QCDF [3], PQCD [4–6], SCET [7, 8]. Apart from factorization approaches, the flavor SU(3) symmetry has been also wildly used in two-body and three-body heavy meson decays [9–20]. An advantage of this method is its independence on the detailed dynamics in factorization. Since the SU(3) invariant amplitudes can be determined by fitting the data, the SU(3) analysis also provides a bridge between the experimental data and the dynamic approaches.

In the literature, the SU(3) analysis has been formulated in two distinct ways. One is to derive the decay amplitudes correspond to various topological diagrams (TDA) [15–20], and another is to construct the SU(3) irreducible representation amplitude (IRA) by decomposing effective Hamiltonian according to irreducible representations [10–14]. These two methods should give the same physical results in the SU(3) limit when all relevant contributions are taken into account. However, as we will show we find that previous analyses in the literature using these two methods do not match consistently in several ways, in particular a few SU(3) independent amplitudes have been overlooked in the
TDA approach for a heavy meson decaying into two light pseudoscalar SU(3) octet (or U(3) nonet) mesons. In this work, we carry out a systematic analysis and identify possible missing amplitudes in order to establish the consistence between the RRA and TDA approaches. We find that these new amplitudes are sizable and may affect direct CP asymmetries in some channels significantly. An important consequence of the inclusion of these amplitudes is that for any charmless hadronic decay of heavy mesons, the direct CP symmetry cannot be identically zero, though in some cases it is tiny.

The rest of this paper is organized as follows. In Sec. II, we introduce the SU(3) analysis using the TDA and IRA approaches. We summarize those amplitudes already discussed in the literature. In Sec. III we first point out the mismatch problem, and then identify those missed amplitudes. The complete sets of SU(3) independent amplitudes in both IRA and TDA approaches will be given to establish equivalence of these two approaches. In Sec. IV we include the missing amplitudes to discuss the implications for hadronic charmless decays of B and D and draw our conclusions.

II. BASICS FOR IRA AND TDA APPROACHES

A. SU(3) STRUCTURE

We start with the electroweak effective Lagrangian for hadronic charmless B meson decays in the SM. The Hamiltonian \mathcal{H}_{eff} responsible for such kind of decays at one loop level in electroweak interactions is given by

$$\mathcal{H}_{\text{eff}} = \frac{G_F}{\sqrt{2}} \left\{ V_{tb}V_{uq}^* [C_1 O_1 + C_2 O_2] - V_{tb}V_{tq}^* \sum_{i=3}^{10} C_i O_{1i} \right\} + \text{h.c.},$$

(1)

where O_i is a four-quark operator or a moment type operator. The four-quark operators O_i are given as follows:

$$O_1 = (\bar{q}^i w^j)_{V-A} (\bar{q}^j b^i)_{V-A}, \quad O_2 = (\bar{q} u)_{V-A} (\bar{q} b)_{V-A},$$

$$O_3 = (\bar{q} b)_{V-A} \sum_{q'} (\bar{q}' q'^j)_{V-A}, \quad O_4 = (\bar{q}^j b^i)_{V-A} \sum_{q'} (\bar{q}'^j q'^i)_{V-A},$$

$$O_5 = (\bar{q} b)_{V-A} \sum_{q'} (\bar{q}'^j q'^i)_{V+A}, \quad O_6 = (\bar{q} b^i\bar{q}'_{V-A} \sum_{q'} (\bar{q}'^j q'^i)_{V+A},$$

$$O_7 = \frac{3}{2} (\bar{q} b)_{V-A} \sum_{q'} e_{q'}(\bar{q}' q'^j)_{V+A}, \quad O_8 = \frac{3}{2} (\bar{q} b^i\bar{q}'_{V-A} \sum_{q'} e_{q'}(\bar{q}'^j q'^i)_{V+A},$$

$$O_9 = \frac{3}{2} (\bar{q} b)_{V-A} \sum_{q'} e_{q'}(\bar{q}' q'^j)_{V-A}, \quad O_{10} = \frac{3}{2} (\bar{q} b^i\bar{q}'_{V-A} \sum_{q'} e_{q'}(\bar{q}'^j q'^i)_{V-A}.$$

(2)

In the above the q denotes a d quark for the $b \to d$ transition or an s quark for the $b \to s$ transition, while $q' = u, d, s$.

At the hadron level, QCD penguin operators behave as the $\mathbf{3}$ representation while tree and electroweak penguin operators can be decomposed in terms of a vector H_3, a traceless tensor antisymmetric in upper indices, H_6, and a traceless tensor symmetric in upper indices, $H_{\mathbf{15}}$. For the $\Delta S = 0(b \to d)$ decays, the non-zero components of the effective Hamiltonian are

$$\langle H_3 \rangle^2 = 1, \quad \langle H_6 \rangle^2 = -\langle H_6 \rangle^2, \quad \langle H_{\mathbf{15}} \rangle^2 = -\langle H_{\mathbf{15}} \rangle^2,$$

$$2\langle H_{\mathbf{15}} \rangle^2 = 2\langle H_{\mathbf{15}} \rangle^2 = -3\langle H_{\mathbf{15}} \rangle^2 = -6\langle H_{\mathbf{15}} \rangle^2 = -6\langle H_{\mathbf{15}} \rangle^2 = 6,$$

(3)

and all other remaining entries are zero. For the $\Delta S = -1(b \to s)$ decays the nonzero entries in the H_3, H_6, $H_{\mathbf{15}}$ can be obtained from Eq. (3) with the exchange $2 \leftrightarrow 3$ corresponding to the $d \leftrightarrow s$ exchange.
The above Hamiltonian can induce a B_i meson to decay into two light pseudoscalar nonet M_j^i mesons. There are three B mesons ($B_i = (B(bu), B(bd), B(bs))$ which form a flavor SU(3) fundamental representation 3. The light pseudoscalar mesons M_j^i contain nine hadrons:

$$
(M_j^i) = \left(\begin{array}{ccc}
\frac{\pi^0}{\sqrt{2}} + \frac{\eta}{\sqrt{6}} & \pi^+ & K^+ \\
\pi^- & -\frac{\pi^0}{\sqrt{2}} + \frac{\eta}{\sqrt{6}} & K^0 \\
K^- & 2\frac{\eta}{\sqrt{6}} & -\frac{2\eta}{\sqrt{6}} \\
\end{array} \right) + \frac{1}{\sqrt{3}} \begin{pmatrix}
\eta_1 & 0 & 0 \\
0 & \eta_2 & 0 \\
0 & 0 & \eta_3 \\
\end{pmatrix}.
$$

The first term forms an SU(3) octet and the second term is a singlet. Grouping them together it is a nonet of U(3). It is similar for other light mesons, like the vector or axial-vector mesons.

B. Irreducible Representation Amplitudes

To obtain irreducible representation amplitudes for $B \rightarrow P P$ (P is an element in M_j^i) decays, one takes the various representations in Eq. (3) and uses one B_i and light meson M_j^i to contract all indices in the following manner

$$
A_i^{IRA} = A_3^T B_i(H_3)\{M\}_k^j(M)^k + C_3^T B_i(M)^j(M)^k + B_3^T B_i(H_3)^j(M)^k + D_3^T B_i(M)^j(H_3)^k(M)^j_k + A_6^T B_i(H_6)\{M\}_k^j(M)^k + C_6^T B_i(M)^j(H_6)^j(M)^k_k + B_6^T B_i(H_6)^j(M)^k(M)^j_k + A_{15}^T B_i(H_{15})\{M\}_k^j(M)^k + C_{15}^T B_i(M)^j(H_{15})^j(M)^k(M)^j_k.
$$

There also exist the penguin amplitudes A_p^{IRA} which can be obtained by the replacements $A_i^T \rightarrow A_i^P$, $B_i^T \rightarrow B_i^P$, $C_i^T \rightarrow C_i^P$ and $D_i^T \rightarrow D_i^P$ ($i = 3, 6, 15$).

Expanding the above A_i^{IRA}, one obtains $B \rightarrow P P$ amplitudes in the first two columns in Tables I and II. Notice that the amplitude A_6^T can be absorbed into B_6^T and C_6^T with the following redefinition:

$$
C_6^{T'} = C_6^T - A_6^T, \quad B_6^{T'} = B_6^T + A_6^T.
$$

Thus we have 18 (tree and penguin contribute 9 each) SU(3) independent complex amplitudes. Since the phase of one amplitude can be freely chosen, there are 35 independent parameters to describe the two-body $B \rightarrow P P$ decays. If one also considers $\eta - \eta'$ (or $\eta_8 - \eta_1$) mixing, one more parameter, the mixing angle θ, is requested making total 36 independent parameters.

C. Topological Diagram Amplitudes

The topological diagram amplitudes are obtained by diagrams which connect initial and final states by quark lines as shown in Fig. 1 with vertices determined by the operators in Eq. (2). As shown in many references for instance Ref. [20], they are classified as follows:

(i) T denoting the color-allowed tree amplitude with W emission;

(ii) C, denoting the color-suppressed tree diagram;

(iii) E denoting the W-exchange diagram;

(iv) P, corresponding to the QCD penguin contributions;
(v) S, being the flavor singlet QCD penguin;

(vi) P_{EW}, the electroweak penguin.

In addition, there exists annihilation diagrams, usually abbreviated as A. In Fig. 1 we have only shown the diagrams for tree operators, and those for penguin operators can be derived similarly.

The electroweak penguins contain the color-favored contribution P_{EW} and the color-suppressed one P_{EW}^C. The electroweak penguin operators can be re-expressed as:

$$\bar{q}b \sum_{q'} c_{q'q} \bar{q}'q' = \bar{q}b \bar{u}u - \frac{1}{3} \bar{q}b \sum_{q'} \bar{q}'q',$$

where the second part can be incorporated into the penguins transforming as a $\bar{3}$ of SU(3). The contribution from $\bar{q}b \bar{u}u$ is similar to tree operators, and thus we will use the symbol P_T and P_C to denote this electro-weak penguin contribution. The $\bar{q}b \sum_{q'} \bar{q}'q'$ is a flavor triplet whose contribution P', as far as flavor SU(3) structure is concerned, can be absorbed into penguin contribution. We can write

$$P_{EW} = P_T - \frac{1}{3} P', \quad P_{EW}^C = P_C - \frac{1}{3} P'^C.$$

The three penguin type of amplitudes P, P' and P'^C, can be grouped together. We can redefine P by $P + P' + P'^C$.

Actually these TDAs can be derived in a similar way as done for IRAs earlier by indicating $q_i u_j b_k$ omitting the Lorentz indices γ by \hat{H}_{ij}^{kl}. For $\Delta S = 0$, the non-zero elements are $\hat{H}_{12}^{ij} = 1$ and for $\Delta S = -1$, $\hat{H}_{13}^{ij} = 1$. The penguin contribution (including P, P' and P'^C) is an SU(3) triplet $\hat{H}^{(i)}$ with $H^{(2)} = 1$ for the $b \to d$ transition and $H^{(3)}$ for the $b \to s$ transition. Eq. (7) implies that the loop induced term proportional to $V_{tb}^*V_{tb}$ has both \hat{H}_{ij}^{kl} and $\hat{H}^{(i)}$. Note that \hat{H}_{ij}^{kl} is no longer traceless.

The tree amplitude is given as

$$A_{TDA}^{T} = T \times B_{i}(M)_j^j \hat{H}_{kl}^{ij}(M)_l^k + C \times B_{i}(M)_j^j \hat{H}_{kl}^{ij}(M)_l^k + A \times B_{i}\hat{H}_{kl}^{ij}(M)_l^k + E \times B_{i}\hat{H}_{kl}^{ij}(M)_l^k,$$

while the penguin amplitude is given as:

$$A_{P}^{TDA} = P \times B_{i}(M)_j^j \hat{H}_{kl}^{ij}(M)_l^k + S \times B_{i}(M)_j^j \hat{H}_{kl}^{ij}(M)_l^k + P_A \times B_{i}\hat{H}_{kl}^{ij}(M)_l^k + P_C \times B_{i}\hat{H}_{kl}^{ij}(M)_l^k.$$

Expanding the above equations, we obtain the decay amplitudes for $B \to PP$ in the third column in Tables I and II. It is necessary to point out that the singlet contribution in the form M_1^3 requires multi-gluon exchanges. One might naively think that its contributions are small compared with other contributions because more gluons are exchanged. However, at energy scale of B decays, the strong couplings are not necessarily very small resulting in non-negligible contributions. One should include them for a complete analysis.
that some amplitudes have been missed and must be added. The effective Hamiltonian have the same SU(3) structure as the tree contributions. Taking these contributions into account, we have the following topological amplitudes:

\begin{align}
A^{TDA}_l &= TSB_i(M)_{ij}^{t}(M)^{k}_{k} + TPB_i(M)_{ij}^{t}(M)^{k}_{k} + TPA_i B_i(M)_{ij}^{t}(M)^{k}_{k} + TSS B_i(M)_{ij}^{t}(M)^{k}_{k} \\
A^{TDA}_p &= PSS B_i(M)_{ij}^{t}(M)^{k}_{k} + PTA B_i(M)_{ij}^{t}(M)^{k}_{k} + PTE B_i(M)_{ij}^{t}(M)^{k}_{k} + PAS B_i(M)_{ij}^{t}(M)^{k}_{k} + PES B_i(M)_{ij}^{t}(M)^{k}_{k}.
\end{align}

The mismatch problem can be partly traced to the fact that \(\hat{H}^{ij}_k \) defined in the TDA analysis is not traceless, that is \(\hat{H}^{ij}_l \neq 0 \). Because of this fact, \(B_i \) and the two \(M^i_j \) can contract with \(\hat{H}^{ij}_l \) to form SU(3) invariant amplitudes and also

III. MISMATCH AND EQUIVALENCE

From previous discussions, one can see that the total decay amplitudes for \(B \rightarrow PP \) decays for IRA and TDA can be written as

\begin{align}
A^{IRA} &= V_{ub}V_{uq}^{*}A^{IRA}_t + V_{ub}V_{q}^{*}A^{IRA}_p, \\
A^{TDA} &= V_{ub}V_{uq}^{*}A^{TDA}_t + V_{ub}V_{q}^{*}A^{TDA}_p.
\end{align}

For the amplitudes given in the previous section, it is clear that for both \(A^t_l \) and \(A^t_p \), the amplitudes do not have the same number of independent parameters: there are 18 independent complex amplitudes in the IRA, while only 9 amplitudes are included in the TDA. There seems to be a mismatch between the IRA and TDA approaches. However since both approaches are rooted in the same basis, the same physical results should be obtained. It is anticipated that some amplitudes have been missed and must be added.

A close inspection shows that several topological diagrams were not included in the previous TDA analysis. For the tree amplitudes we show the relevant diagrams in Fig. 2. The missing penguin diagrams can be obtained similarly. Since there are electroweak penguin operator contributions, as far as the SU(3) irreducible components are concerned, the effective Hamiltonian have the same SU(3) structure as the tree contributions. Taking these contributions into account, we have the following topological amplitudes:

\begin{align}
A^{TDA}_l &= TSB_i(M)_{ij}^{t}(M)^{k}_{k} + TPB_i(M)_{ij}^{t}(M)^{k}_{k} + TPA_i B_i(M)_{ij}^{t}(M)^{k}_{k} + TSS B_i(M)_{ij}^{t}(M)^{k}_{k} \\
A^{TDA}_p &= PSS B_i(M)_{ij}^{t}(M)^{k}_{k} + PTA B_i(M)_{ij}^{t}(M)^{k}_{k} + PTE B_i(M)_{ij}^{t}(M)^{k}_{k} + PAS B_i(M)_{ij}^{t}(M)^{k}_{k} + PES B_i(M)_{ij}^{t}(M)^{k}_{k}.
\end{align}

The mismatch problem can be partly traced to the fact that \(\hat{H}^{ij}_k \) defined in the TDA analysis is not traceless, that is \(\hat{H}^{ij}_l \neq 0 \). Because of this fact, \(B_i \) and the two \(M^i_j \) can contract with \(\hat{H}^{ij}_l \) to form SU(3) invariant amplitudes and also
Here we have absorbed the A^T_j into B^T_6 and C^T_6. In the appendix, we give a direct derivation of relations between IRA and TDA amplitudes, in which the amplitude A^T_j is kept.

Naively there are total 10 tree amplitudes and 10 penguin amplitudes defined in Eq. (9,12). However, only 9 of the 10 tree amplitudes are independent. Choosing the option to eliminate the W-exchange E, we can express the TDA amplitudes in terms of the IRA ones:

\begin{align}
T + E &= 4A^T_{15} + 2C^T_6 + 4C^T_{15}, \quad C - E = -4A^T_{15} - 2C^T_6 + 4C^T_{15}, \\
A + E &= 8A_{15}, \quad T_P - E = -5A^T_{15} + C^T_6 - C^T_{15}, \\
T_{PA} + \frac{E}{2} &= A^T_3 + A^T_{15}, \quad T_{AS} + E = 4A^T_{15} - 2B^T_6 + 4B^T_{15}, \\
T_{ES} - E &= -4A^T_{15} + 2B^T_6 + 4B^T_{15}, \quad T_{SS} - \frac{E}{2} = -2A^T_{15} + B^T_3 + B^T_6 - B^T_{15}, \\
T_S + E &= 4A^T_{15} - B^T_6 - B^T_{15} + C^T_6 - C^T_{15} + D^T_3. \quad (15)
\end{align}
TABLE II: Decay amplitudes for two-body B decays induced by the $b \to s$ transition.

Channel	IRA	TDA
$B^- \to \pi^0 K^-$	$\frac{1}{\sqrt{2}} (A_0^T + 3A_{15}^T + C_{15}^T - C_{0}^T + 7C_{15}^T)$	$\frac{1}{\sqrt{2}} (A + C + TP + T)$
$B^- \to \pi^- K^0$	$A_0^T + 3A_{15}^T + C_{15}^T - C_{0}^T + 7C_{15}^T$	$A + TP$
$B^- \to K^- \eta_8$	$-\frac{1}{\sqrt{2}} (A_0^T + 3A_{15}^T + C_{15}^T - C_{0}^T + 9C_{15}^T)$	$\frac{1}{\sqrt{2}} (-A + C - TP + T)$
$B^- \to K^- \eta_1$	$\frac{1}{\sqrt{2}} (2A_0^T + 6A_{15}^T + 3B_{0}^T + 9B_{15}^T + 2C_{15}^T + 3C_{0}^T + 3C_{15}^T + 3D_{15}^T)$	$\frac{1}{\sqrt{2}} (2A + C + 3T_{ES} + 2TP + 3T_S + T)$
$B_s^- \to \pi^- \pi^-$	$2 (A_0^T + A_{15}^T)$	$E + 2TP_A$
$B_s^- \to \pi^0 \eta^0$	$2 (A_0^T + A_{15}^T)$	$E + 2TP_A$
$B_s^- \to \pi^0 \eta_1$	$-\sqrt{2} (2A_0^T - 4A_{15}^T + 3B_{0}^T - 6B_{15}^T + C_{15}^T - 2C_{0}^T)$	$\frac{1}{\sqrt{2}} (3T_{AS} + C + 2E)$
$B_s^- \to K^0 K^0$	$2A_0^T - A_{15}^T + A_{0}^T + C_{15}^T + C_{0}^T + 3C_{15}^T$	$E + TP + 2TP_A + T$
$B_s^- \to K^- K^-$	$2A_0^T + A_{15}^T - 3A_{15}^T + C_{0}^T - C_{0}^T - C_{15}^T$	$TP + 2TP_A$
$\bar{B_s}^- \to \eta_8 \eta_8$	$2A_0^T - 2A_{15}^T + 4C_{15}^T - 4C_{0}^T$	$\frac{1}{\sqrt{3}} (-3T_{AS} + C - 2E + 4TP + 6T_S)$
$\bar{B_s}^- \to \eta_1 \eta_1$	$\frac{1}{\sqrt{2}} (6A_0^T + 9B_{15}^T - 2C_{15}^T + 3C_{0}^T - 3D_{15}^T)$	$\frac{1}{\sqrt{2}} (3T_{AS} + C + E + TP + 3TP_A + 3T_S + 9T_{SS})$

The analysis of penguin contributions is similar with the replacement for TDA amplitudes:

$$ T \to TP, \quad C \to PC, \quad A \to PT_A, \quad TP \to P, \quad E \to PT_E, \quad TP_A \to PA, \quad T_AS \to PAS, \quad T_ES \to PES, \quad T_SS \to PSS, \quad TS \to S. $$

(16)

From the above discussions we see that the two sets of amplitudes in IRA and TDA can be mutually expressed by each other. The IRA and TDA approaches are completely equivalent. As long as all amplitudes are taken into account in the analysis, they give the same results for $B \to PP$ decays, and we expect the equivalence for other decays

IV. DISCUSSIONS AND CONCLUSIONS

We now make a few remarks about our results obtained.

Several missing terms in the TDA analysis involve the trace M_j^T. The trace actually singles out the singlet in the nonet representation M_j^T. To have a color singlet in the diagram shown in Figs. 1 and 2 the single M_j^T need to exchange two or more gluons. As pointed out earlier that these contributions are expected to be small compared with other contributions. However, at energy scale of B decays, the strong couplings are not necessarily very small resulting in non-negligible contributions. Terms associated with the trace H_j^T actually can be thought of as turning the tree operator into penguin operator with quark exchange in the loop whose Wilson coefficient contains the large logarithms $\ln(\mu/m_u)$ which can also make non-negligible contributions. One should include them for a complete analysis.

1 In a recent study, TDA amplitudes have been obtained. However, the independence of amplitudes is not discussed in TDA approach.
Recently, Ref. [14] has performed a fit of $B \to PP$ decays in the IRA scheme. Depending on various options to use the data, four cases are considered in Ref. [14]. As an example, we quote the results in their case 4:

\[
|C_T^3| = -0.211 \pm 0.027, \quad \delta_T^3 = (-140 \pm 6)^\circ, \quad |B_T^{15}| = -0.038 \pm 0.016, \quad \delta_B^{15} = (78 \pm 48)^\circ, \tag{17}
\]

where the magnitudes and strong phases relative to C_P^3 have been given. From Eq. (14), one can see that the C_T^3 is a combination of color-allowed tree T, color-suppressed tree amplitude C and others while the B_T^{15} corresponds to $(T_{ES} + T_{TS})/8$ in TDA approach. The fitted result in Eq. (17) indicates that compared to C_T^3, the B_T^{15} can reach 20% in magnitude, and more importantly, the strong phases are different significantly. The B_T^{15}, equivalently T_{ES} and T_{TS}, have non-negligible contributions supporting our call for a complete analysis. With more and more accurate data for $B \to PP$ from experiments, one can now carry out a more careful analysis to obtain the amplitudes and derive implications for model calculations of the relevant amplitudes.

Without the new contributions in the TDA analysis, some of the amplitudes only have terms proportional to $V^*_{tq}V_{tb}$, such as $\overline{B}_0 \to K^0\overline{K}^0$ and $\overline{B}_s \to K^0\overline{K}^0$. This implies that CP violation in these two decays are identically zero. However, these two decay modes receive contributions from the new terms $T_F + 2T_{PA}$ which is multiplied by $V^*_{uq}V_{ub}$. In principle they can have non-zero CP violation. Therefore if one takes into account the missing tree and penguin amplitudes, an important consequence is that no charmless and hadronic B decay channel has a vanishing direct CP asymmetry.

Flavor SU(3) symmetry is an approximate symmetry, and symmetry breaking sources exist in QCD, mostly caused by the unequal masses for the light u, d, s quarks. How SU(3) breaking effect manifest itself is not completely clear. Experimental data [2, 25] for $B \to K^+\pi^-$ and $B_s \to K^+\pi^-$ agree with relation predicted for these two modes under SU(3) symmetry [12, 26]. Therefore the use of SU(3) symmetry for B decays might be justified. With new data from BELLE II and LHCb, one can study SU(3) symmetry in B decays with a high precisions. One should keep in mind that for an appropriate analysis of SU(3) symmetry breaking, one must take into account the missing amplitudes, otherwise, the missing amplitudes will be disguised as symmetry breaking effects. As we have shown above, the modification due to the missing amplitudes can reach 20%, which is comparable with the generic SU(3) symmetry breaking effects. Thus the additional TDAs must be treated carefully to correctly interpret the data.

Our analysis is also applicable to other decay channels of heavy mesons and baryons. In the appendix, we give a discussion on the D meson decays. For charm quark decay, penguin operators are often negligible and the $\overline{3}$ representation does not contribute either. So there are five independent tree amplitudes, while in TDA only four amplitudes, T, C, E, A, are used for the global fit.

In summary, we have carried out an analysis comparing two different approaches, the irreducible representation amplitude and topological diagram amplitude, to study $B \to PP$ decays. We find that previous analyses in the literature using these two methods do not match consistently in several ways. A few SU(3) independent amplitudes have been overlooked in the TDA approach. Taking these new amplitudes into account, we find a consistent description in both approaches. These new amplitudes can affect direct CP asymmetries in some channels significantly. A consequence is that for any charmless hadronic decays of heavy mesons, the direct CP symmetry cannot be identically zero. With more data become available, we can have a a better understanding of the role of flavor SU(3) symmetry in B decays.
Acknowledgement

The authors are grateful to Cheng-Wei Chiang for useful discussions and valuable comments. WW thanks the hospitality from Tsinghua University at Hsinchu where this work was finalized. This work is supported in part by National Natural Science Foundation of China under Grant No.11575110, 11575111, 11655002, 11735010, Natural Science Foundation of Shanghai under Grant No. 15DZ2272100, and by MOST (Grant No. MOST104-2112-M-002-015-MY3 and 106-2112-M-002-003-MY3).

Appendix A: A derivation of Decomposition

Using $O_1^{12} = \bar{u}bd\bar{u}$ as an example, we have the decomposition of tree operator:

$$O_1^{12} = \frac{1}{8}O_{15} + \frac{1}{4}O_6 - \frac{1}{8}O_3 + \frac{3}{8}O_{3'},$$ \hspace{1cm} (A1)

with

$$O_{15} = 3\bar{u}b\bar{u} + \bar{d}b\bar{u} - \bar{2}bd\bar{d} - \bar{s}\bar{b}\bar{d}s - \bar{d}\bar{s}\bar{b}s, \quad O_6 = \bar{u}bd\bar{u} - \bar{d}b\bar{d} - \bar{s}\bar{b}\bar{d}s + \bar{d}\bar{s}\bar{b}s,
$$

$$O_3 = \bar{d}b\bar{u} + \bar{d}b\bar{d} + \bar{s}\bar{b}s, \quad O_{3'} = \bar{u}bd + \bar{d}b\bar{d} + s\bar{b}s.$$ \hspace{1cm} (A2)

It implies:

$$H_{ij}^{kl} = \frac{1}{8}(H_{15})_{ij}^{kl} + \frac{1}{4}(H_6)_{ij}^{kl} - \frac{1}{8}(H_3)_{ij}^{kl} + \frac{3}{8}(H_{3'})_{ij}^{kl}.$$ \hspace{1cm} (A3)

Substituting this expression into the amplitude T for instance, we have

$$T \times B_i(M)^j_{ij}(M)^k_{ij} = T \times B_i(M)^j_{ij}(M)^k_{ij} \times \left(\frac{1}{8}(H_{15})_{ij}^{kl} + \frac{1}{4}(H_6)_{ij}^{kl} - \frac{1}{8}(H_3)_{ij}^{kl} + \frac{3}{8}(H_{3'})_{ij}^{kl} \right),$$ \hspace{1cm} (A4)

contributing to

$$C_{15}^T = \frac{1}{8}T + \ldots, \quad C_{6}^T = \frac{1}{4}T + \ldots, \quad C_{3}^T = \frac{3}{8}T + \ldots, \quad D_{3}^T = -\frac{1}{8}T + \ldots.$$ \hspace{1cm} (A5)

Others TDA amplitudes can be analyzed similarly, and thus one has

$$A_{15}^T = -\frac{A}{8} + \frac{3E}{8} + T_{PA}, \quad B_{15}^T = T_{SS} + \frac{3T_{AS} - T_{ES}}{8},$$

$$C_{3}^T = \frac{1}{8}(3A - C - E + 3T) + T_P, \quad D_{3}^T = T_S + \frac{1}{8}(3C - T_{AS} + 3T_{ES} - T),$$

$$A_{6}^T = \frac{1}{4}(A - E), \quad B_{6}^T = \frac{1}{4}(T_{ES} - T_{AS}),$$

$$C_{6}^T = \frac{1}{4}(C + T), \quad A_{15}^T = \frac{A + E}{8},$$

$$B_{15}^T = \frac{T_{ES} + T_{AS}}{8}, \quad C_{15}^T = \frac{C + T}{8}.$$ \hspace{1cm} (A6)

The inverse relation is given as:

$$T = 2C_{15}^T + 4C_{15}^T, \quad C = 4C_{15}^T - 2C_{15}^T, \quad A = 2A_{15}^T + 4A_{15}^T, \quad E = 4A_{15}^T - 2A_{15}^T,$$

$$T_P = -A_{15}^T - A_{15}^T + C_{3}^T - C_{6}^T - C_{15}^T, \quad T_{PA} = A_{15}^T + A_{15}^T - A_{15}^T, \quad T_{AS} = 4B_{15}^T - 2B_{6}^T,$$

$$T_{ES} = 2B_{15}^T + 4B_{15}^T, \quad T_{SS} = B_{3}^T + B_{6}^T - B_{15}^T, \quad T_S = -B_{15}^T - B_{15}^T + C_{6}^T - C_{15}^T + D_{3}^T.$$ \hspace{1cm} (A7)

From the expansion of IRA amplitudes, one can notice that the A_{6}^T can be absorbed into B_{6}^T and C_{6}^T.

and other operators can be obtained by replacing the d, s quark fields. In the above equations, we have neglected the highly-suppressed penguin contributions. Tree operators transform under the flavor SU(3) symmetry as $\mathbf{3} \otimes \mathbf{3} \otimes \mathbf{3} = \mathbf{\bar{3}} \otimes \mathbf{3} \oplus \mathbf{6} \oplus \mathbf{\overline{15}}$. For the $c \rightarrow s d \bar{u}$ transition, we have

$$\langle H_6 \rangle^d_2 = -\langle H_6 \rangle^u_2 = 1, \quad \langle H_{15} \rangle^d_2 = \langle H_{15} \rangle^u_2 = 1,$$

(B3)
while for the doubly Cabibbo suppressed $c \to du\bar{s}$ transition, we have
\[
(H_6)_{3}^{31} = -(H_6)_{3}^{12} = -\sin^2 \theta_C, \quad (H_{15}^{3})_{3}^{21} = (H_{15}^{3})_{3}^{12} = -\sin^2 \theta_C.
\]

The CKM matrix elements for $c \to u\bar{d}d$ and $c \to u\bar{s}s$ transitions are approximately equal in magnitude but different in sign: $V_{cd}V_{ud}^* = -V_{cs}V_{us}^* - V_{cb}V_{ub}^* \approx -V_{cs}V_{us}^*$ (accurate at 10^{-3}). With both contributions, the contributions from the 3 representation vanish, and one has the nonzero components:
\[
(H_6)_{3}^{31} = -(H_6)_{3}^{13} = (H_6)_{2}^{12} = -(H_6)_{2}^{21} = \sin(\theta_C),
\]
\[
(H_{15}^{3})_{3}^{21} = -(H_{15}^{3})_{3}^{13} = -(H_{15}^{3})_{2}^{12} = -(H_{15}^{3})_{2}^{21} = \sin(\theta_C).
\]

A few remarks are in order.

- The expanded amplitudes are given in Tab. [III] for Cabibbo-allowed channels, Tab. [IV] for singly Cabibbo-suppressed modes, and Tab. [V] for doubly Cabibbo-suppressed decay channels.
- One can derive the following relations between the two sets of amplitudes:
\[
A_6^T = \frac{1}{2}(A - E), \quad A_{15}^T = \frac{1}{2}(A + E), \quad B_6^T = \frac{1}{2}(T_{ES} - T_{AS}),
\]
\[
B_{15}^T = \frac{1}{2}(T_{ES} + T_{AS}), \quad C_6^T = \frac{1}{2}(T - C), \quad C_{15}^T = \frac{1}{2}(T + C).
\]
- The amplitudes A_6^T can be incorporated in $B_6^{T'}$ and $C_6^{T'}$, and then we have
\[
A_{15}^T = \frac{1}{2}(A + E),
\]
\[
B_{15}^{T'} = \frac{1}{2}(T_{ES} - T_{AS} + A - E), \quad B_{15}^T = \frac{1}{2}(T_{ES} + T_{AS}),
\]
\[
C_{6}^{T'} = \frac{1}{2}(T - C - A + E), \quad C_{15}^{T'} = \frac{1}{2}(T + C),
\]
with the inverse relation:
\[
T = A_{15}^T + C_{6}^{T'} - C_{15}^{T'}, \quad C = -A_{15}^T - C_{6}^{T'} + C_{15}^{T'}, \quad A = 2A_{15}^T - E,
\]
\[
T_{ES} = -A_{15}^T + B_{6}^{T'} + B_{15}^T + E, \quad T_{AS} = A_{15}^T - B_{6}^{T'} + B_{15}^T - E.
\]
[1] Y. Amhis et al. [HFLAV Collaboration], Eur. Phys. J. C 77, no. 12, 895 (2017) doi:10.1140/epjc/s10052-017-5058-4 [arXiv:1612.07233 [hep-ex]].

[2] C. Patrignani et al. [Particle Data Group], Chin. Phys. C 40, no. 10, 100001 (2016). doi:10.1088/1674-1137/40/10/100001

[3] M. Beneke, G. Buchalla, M. Neubert and C. T. Sachrajda, Nucl. Phys. B 606, 245 (2001) doi:10.1016/S0550-3213(01)00251-6 [hep-ph/00104110].

[4] Y. Y. Keum, H. N. Li and A. I. Sanda, Phys. Lett. B 504, 6 (2001) doi:10.1016/S0370-2693(01)00247-7 [hep-ph/0104110].

[5] Y. Y. Keum, H. N. Li and A. I. Sanda, Phys. Rev. D 63, 054008 (2001) doi:10.1103/PhysRevD.63.054008 [hep-ph/0004173].

[6] C. W. Bauer, S. Fleming, D. Pirjol and I. W. Stewart, Phys. Rev. D 63, 114020 (2001) doi:10.1103/PhysRevD.63.114020 [hep-ph/0011336].

[7] C. D. Lu, K. Ukai and M. Z. Yang, Phys. Rev. D 63, 074009 (2001) doi:10.1103/PhysRevD.63.074009 [hep-ph/0004213].

[8] C. W. Bauer, D. Pirjol and I. W. Stewart, Phys. Rev. Lett. 87, 201806 (2001) doi:10.1103/PhysRevLett.87.201806 [hep-ph/0107002].

[9] D. Zeppenfeld, Z. Phys. C 8, 77 (1981). doi:10.1007/BF01429835

[10] M. J. Savage and M. B. Wise, Phys. Rev. D 39, 3346 (1989) Erratum: [Phys. Rev. D 40, 3127 (1989)]. doi:10.1103/PhysRevD.39.3346, 10.1103/PhysRevD.40.3127

[11] N. G. Deshpande and X. G. He, Phys. Rev. Lett. 75, 1703 (1995) doi:10.1103/PhysRevLett.75.1703 [hep-ph/9412393].

[12] X. G. He, Eur. Phys. J. C 9, 443 (1999) doi:10.1007/s100529900064 [hep-ph/9810397].

[13] X. G. He, Y. K. Hsiao, J. Q. Shi, Y. L. Wu and Y. F. Zhou, Phys. Rev. D 64, 034002 (2001) doi:10.1103/PhysRevD.64.034002 [hep-ph/0011337].

[14] Y. K. Hsiao, C. F. Chang and X. G. He, Phys. Rev. D 93, no. 11, 114002 (2016) doi:10.1103/PhysRevD.93.114002 [arXiv:1512.09223 [hep-ph]].

[15] L. L. Chau and H. Y. Cheng, Phys. Rev. Lett. 56, 1655 (1986). doi:10.1103/PhysRevLett.56.1655

[16] L. L. Chau and H. Y. Cheng, Phys. Rev. D 36, 137 (1987) Addendum: [Phys. Rev. D 39, 2788 (1989)]. doi:10.1103/PhysRevD.39.2788, 10.1103/PhysRevD.36.137

[17] L. L. Chau, H. Y. Cheng, W. K. Sze, H. Yao and B. Tseng, Phys. Rev. D 43, 2176 (1991) Erratum: [Phys. Rev. D 58, 019902 (1998)]. doi:10.1103/PhysRevD.43.2176, 10.1103/PhysRevD.58.019902

[18] M. Gronau, O. F. Hernandez, D. London and J. L. Rosner, Phys. Rev. D 50, 4529 (1994) doi:10.1103/PhysRevD.50.4529 [hep-ph/9404283].

[19] M. Gronau, O. F. Hernandez, D. London and J. L. Rosner, Phys. Rev. D 52, 6356 (1995) doi:10.1103/PhysRevD.52.6356 [hep-ph/9504326].

[20] H. Y. Cheng, C. W. Chiang and A. L. Kuo, Phys. Rev. D 91, no. 1, 014011 (2015) doi:10.1103/PhysRevD.91.014011 [arXiv:1409.5026 [hep-ph]].

[21] G. Buchalla, A. J. Buras and M. E. Lautenbacher, Rev. Mod. Phys. 68, 1125 (1996) doi:10.1103/RevModPhys.68.1125 [hep-ph/9512380].

[22] M. Ciuchini, E. Franco, G. Martinelli and L. Reina, Nucl. Phys. B 415, 403 (1994) doi:10.1016/0550-3213(94)90118-X [hep-ph/9304257].

[23] N. G. Deshpande and X. G. He, Phys. Lett. B 336, 471 (1994) doi:10.1016/0370-2693(94)90560-6 [hep-ph/9403266].

[24] C. K. Chua, arXiv:1802.00155 [hep-ph].

[25] R. Aaij et al. [LHCb Collaboration], Phys. Rev. Lett. 110, no. 22, 221601 (2013) doi:10.1103/PhysRevLett.110.221601 [arXiv:1304.6173 [hep-ex]].

[26] X. G. He, S. F. Li and H. H. Lin, JHEP 1308, 065 (2013) doi:10.1007/JHEP08(2013)065 [arXiv:1306.2658 [hep-ph]].