Disproof of a conjecture on the minimum Wiener index of signed trees

Songlin Guo Wei Wang* Chuanming Wang

School of Mathematics, Physics and Finance, Anhui Polytechnic University, Wuhu 241000, P. R. China

Abstract

The Wiener index of a connected graph is the sum of distances between all unordered pairs of vertices. Sam Spiro [The Wiener index of signed graphs, Appl. Math. Comput., 416(2022)126755] recently introduced the Wiener index for a signed graph and conjectured that the path P_n with alternating signs has the minimum Wiener index among all signed trees with n vertices. By constructing an infinite family of counterexamples, we prove that the conjecture is false whenever n is at least 30.

Keywords: Wiener index; signed tree; signed graph

AMS Classification: 05C09; 05C22

1 Introduction

A signed graph is a graph where each edge has a positive or negative sign. We usually write a signed graph as a pair (G, σ), where G is the underlying graph and $\sigma: E(G) \mapsto \{+1, -1\}$ describes the sign of each edge. For a path P in (G, σ), the length of P (under the signing σ) is $\ell_\sigma(P) = |\Sigma_{e \in E(P)} \sigma(e)|$. A path P in (G, σ) is called a uv-path if it has u and v as its endvertices. For two distinct vertices $u, v \in V(G)$, the signed distance $[3]$ of u, v in (G, σ), is

$$d_\sigma(u,v) = \min \{ \ell_\sigma(P): P \text{ is a } uv\text{-path in } (G, \sigma) \}.$$

Definition 1 ([3]). Let (G, σ) be a signed graph. The Wiener index of (G, σ), denoted by $W_\sigma(G)$, is $\Sigma d_\sigma(u,v)$, where the summation is taken over all unordered pairs $\{u, v\}$ of distinct vertices in G.

Let $(G, +)$ denote a signed graph where each edge is positive. It is easy to see that the Wiener index $W_+(G)$ coincides with the classic Wiener index $W(G)$ of the ordinary graph G, introduced by Harry Wiener [5] in 1947. As the oldest topological index of a molecule, Wiener index has many applications in molecular chemistry, see the monograph [4].

*Corresponding author. Email: wangwei.math@gmail.com
A tree is a connected graph with no cycles. There are numerous studies of properties of the Wiener indices of trees, see the survey paper [1]. Entringer, Jackson and Snyder [2] proved that, among all trees of any fixed order \(n \), the path \(P_n \) (resp. the star \(K_{1,n} \)) has the maximum (resp. minimum) Wiener index. Note that for any connected graph \(G \) together with any signing \(\sigma \), we have \(W_\sigma(G) \leq W_+(G) = W(G) \). Consequently, the above result of Entringer et al. indicates that \(W_\sigma(T) \leq W(P_n) \) for any signed \(n \)-vertex tree \((T, \sigma)\).

Let \(\sigma \) be a signing of the path \(P_n \). We call \(\sigma \) (or \((P_n, \sigma)\)) alternating if any two adjacent edges have opposite signs. We usually use \(\alpha \) to denote an alternating signing of a path. The following interesting conjecture was proposed recently by Spiro [3].

Conjecture 1 ([3]). Among all signed trees of order \(n \), the alternating path \((P_n, \alpha)\) has the minimum Wiener index.

In this short note, we disprove Conjecture [1] by constructing infinite counterexamples.

Theorem 1. Conjecture [1] fails for every \(n \geq 30 \).

The proof of Theorem [1] is given at the end of the next section.

2 An infinite family of counterexamples

Let \(k \geq 0 \) and \(a_1, a_2, \ldots, a_k \) be \(k \) nonnegative integers. Let \(T(a_1, a_2, \ldots, a_k) \) denote a rooted tree with \(1 + k + \sum_{i=1}^{k} a_i \) vertices constructing by the following two rules:

(i) The root vertex has \(k \) neighbors \(u_1, u_2, \ldots, u_k \); such \(k \) vertices will be called branch vertices.

(ii) For each \(i \in \{1, 2, \ldots, k\} \), the branch vertex \(u_i \) has \(a_i \) neighbors other than the root vertex; such \(a_i \) neighbors will be called leaf vertices.

Definition 2. Let \(\sigma \) be a signing of a rooted tree \(T(a_1, a_2, \ldots, a_k) \). We call \(\sigma \) nice if it satisfies the following two conditions:

(i) Among \(k \) edges incident to the root vertex, the numbers of positive edges and negative edges differ by at most one.

(ii) For each branch vertex \(u \), all edges connecting \(u \) and leaf vertices have the same sign which is opposite to the sign of the edge connecting \(u \) and the root vertex.

Figure 1 illustrates a nice signing for the rooted tree \(T(3, 4, 4, 4, 4, 4) \), where we use dashed (resp. solid) lines to represent negative (resp. positive) edges.

Theorem 2. If \(\sigma \) is a nice then

\[
W_\sigma(T(a_1, a_2, \ldots, a_k)) = 2 \sum_{i=1}^{k} \left(\frac{a_i}{2} \right) + 2 \left(\left\lfloor \frac{k}{2} \right\rfloor \right) + 2 \left(\left\lceil \frac{k}{2} \right\rceil \right) + k \left(1 + \sum_{i=1}^{k} a_i \right).
\]

Proof. Write \(T = T(a_1, a_2, \ldots, a_k) \) and let \(P \) be any path in \((T, \sigma)\). Clearly, \(P \) contains at most four edges. Since \(\sigma \) is nice, one easily sees from Definition [2]ii) that any path in \((T, \sigma)\) with 4 edges have exactly 2 positive edges and hence satisfies \(\ell_\sigma(P) = 0 \). Similarly, if \(P \) has
Figure 1: $T(3, 4, 4, 4, 4, 4)$ with a nice signing.

exactly 2 edges and $\ell_\sigma(P) > 0$ then the two endvertices of P must be either two leaf vertices adjacent to a common branch vertex, or two branch vertices adjacent to the root vertex by two edges sharing the same sign. Note that the numbers of positive edges and negative edges are $\lfloor \frac{k}{2} \rfloor$ and $\lceil \frac{k}{2} \rceil$ (or in reverse order) by Definition 2(i). Thus, the contribution of such paths to $W_\sigma(T)$ is

$$2 \sum_{i=1}^{k} \frac{a_i}{2} + 2 \left(\lfloor \frac{k}{2} \rfloor \right)^2 + 2 \left(\lceil \frac{k}{2} \rceil \right)^2.$$

Furthermore, noting that each path P with exactly one or three edges satisfies $\ell_\sigma(P) = 1$ and there exists such a path between branch vertices and the remaining vertices, we see that the contribution of path with one or three edges is exactly

$$k \left(1 + \sum_{i=1}^{k} a_i \right).$$

Adding the above two expressions completes the proof. \qed

Lemma 1. Let α be an alternating signing of P_n. Then $W_\alpha(P_n) = \lfloor \frac{n}{2} \rfloor \lceil \frac{n}{2} \rceil$.

Proof. Let (U, V) be the bipartition of P_n as a bipartite graph, where we assume $|U| \leq |V|$. Then $|U| = \lfloor \frac{n}{2} \rfloor$ and $|V| = \lceil \frac{n}{2} \rceil$. Let u, v be any two vertices of P_n. It is easy to see that $d_\alpha(u, v) = 0$ if u and v are in the same part, and $d_\alpha(u, v) = 1$ otherwise. Thus, $W_\alpha(P_n) = |U||V| = \lfloor \frac{n}{2} \rfloor \lceil \frac{n}{2} \rceil$, as desired. \qed

Noting that $T(3, 4, 4, 4, 4, 4)$ has exactly 30 vertices, the following proposition gives a counterexample to Conjecture 1.

Proposition 1. Let α be an alternating signing of P_{30} and σ be a nice signing of $T = T(3, 4, 4, 4, 4, 4)$. Then $W_\sigma(T) < W_\alpha(P_{30})$.

Proof. Using Theorem 2 and Lemma 1 we find that $W_\sigma(T) = 222$ while $W_\alpha(P_{30}) = 225$. Thus $W_\sigma(T) < W_\alpha(P_{30})$, as desired. \qed

We shall show that for any $n \geq 30$, there exists a counterexample to Conjecture 1.

Definition 3.

$$T_k = \bigcup_{0 \leq s \leq k} \left\{ T(k-1, \ldots, k-1, k, \ldots, k), T(k, \ldots, k, k+1, \ldots, k+1) \right\}.$$
Note that \mathcal{T}_k contains exactly $2k + 1$ rooted trees of consecutive orders from $k^2 + 1$ to $(k + 1)^2$, see Figure 2 for the five rooted trees in \mathcal{T}_2.

\begin{figure}[h]
\centering
\includegraphics[width=0.8\textwidth]{trees.png}
\caption{The family \mathcal{T}_2.}
\end{figure}

Lemma 2. Let $k \geq 10$ and T be any rooted tree in \mathcal{T}_k. Let $n = |V(T)|$. Then $W_\sigma(T) < W_\alpha(P_n)$ where σ is nice while α is alternating.

Proof. Write $m = k^2 + 1$ and $M = (k + 1)^2$. By Theorem 2 and Lemma 1, it is not difficult to see that both $W_\sigma(T)$ and $W_\alpha(P_n)$ are increasing as a function of $n = |V(T)|$. Thus we are done if we can show that $W_\sigma(T_M) < W_\alpha(P_m)$ where $T_M = T(k+1, \ldots, k+1)$.

By Theorem 2 we have

$$W_\sigma(T_M) = 2k \left(\frac{k+1}{2} \right) + 2 \left(\frac{k}{2} \right) + 2 \left(\frac{k+1}{2} \right) + k(1 + k(k+1)) \quad (1)$$

$$< 2k \left(\frac{k+1}{2} \right) + 2 \left(\frac{k}{2} \right) + 2 \left(\frac{k+1}{2} \right) + k(1 + k(k+1))$$

$$= 2k^3 + \frac{5}{2}k^2 + \frac{1}{2}k - \frac{1}{4}.$$

On the other hand, by Lemma 1 we have

$$W_\alpha(P_m) = \left\lfloor \frac{m}{2} \right\rfloor \left\lceil \frac{m}{2} \right\rceil = \left\lfloor \frac{k^2 + 1}{2} \right\rfloor \left\lceil \frac{k^2 + 1}{2} \right\rceil > \frac{1}{4} k^4.$$

It follows that

$$\frac{W_\sigma(T_M)}{W_\alpha(P_m)} < \frac{8}{k} + \frac{10}{k^2} + \frac{2}{k^3} - \frac{1}{k^4} < \frac{8}{k} + \frac{10}{k^2} + \frac{2}{k^3} \leq \frac{8}{10} + \frac{10}{10^2} + \frac{2}{10^3} < 1.$$

Thus $W_\sigma(T_M) < W_\alpha(P_m)$, as desired. The proof is complete.

Proof of Theorem 7. Let $\mathcal{T} = \bigcup_{k=0}^\infty \mathcal{T}_k$. It is clear that \mathcal{T} contains exactly one n-vertex (rooted) tree for every positive integer n. We use T_n to denote the unique n-vertex tree in the family \mathcal{T}. Let σ be a nice signing of T_n and α be an alternating signing of P_n. By Lemma 2, we see that $W_\sigma(T_n) < W_\alpha(P_n)$ whenever $n \geq 10^2 + 1$. On the other hand, we
We claim that \(W_\sigma(T_n) < W_\alpha(P_n)\) for each \(n \in \{31, 32, \ldots, 100\}\). This can be checked directly using Theorem 2 and Lemma 1. Take \(n = 31\) as an example. As \(31 \in [5^2 + 1, (5+1)^2]\), we find that \(T_{31} \in T_5\) and moreover \(T_{31} = T(5, 5, 5, 5, 5)\). Using Theorem 2 for \(T_{31}\), we obtain that \(W_\sigma(T_{31}) = 238\). By Lemma 1 we have \(W_\alpha(P_{31}) = \left\lfloor \frac{31}{2} \right\rfloor \left\lceil \frac{31}{2} \right\rceil = 240\). Thus \(W_\sigma(T_n) < W_\alpha(P_n)\) for \(n = 31\). The proof is complete.

We remark that the counterexamples constructed in this note also disprove another conjecture of Spiro. For a graph \(G\), the minimal signed Wiener index of \(G\), denoted by \(W_*(G)\), is the minimum of \(W_\sigma(G)\) for all possible signings \(\sigma\). Spiro [3] conjectured that \(W_*(T) \geq W_*(P_n)\) for any \(n\)-vertex tree \(T\). Let \(n \geq 30\) and \(T_n\) be the tree used in the proof of Theorem 1. Clearly, \(W_*(T_n) \leq W_\sigma(T_n)\), where \(\sigma\) is a nice signing of \(T_n\). On the other hand, it is easy to see that \(W_*(P_n) = W_\alpha(P_n)\). Since \(W_\sigma(T_n) < W_\alpha(P_n)\), we obtain \(W_*(T_n) < W_*(P_n)\), disproving this conjecture.

3 Asymptotic property

It is still unknown which signed trees have the minimum Wiener index among all signed trees of a fixed order \(n\). We use \((\hat{T}_n, \hat{\sigma})\) to denote an \(n\)-vertex signed tree whose Wiener index is minimum among all signed trees of order \(n\). And let \((T_n, \sigma)\) be the \(n\)-vertex tree in \(\cup_{k=0}^\infty T_k\) with a nice signing \(\sigma\). One referee kindly points out that \((T_n, \sigma)\) is optimal up to a constant factor. Precisely,

\[
\limsup_{n \to \infty} \frac{W_\sigma(T_n)}{W_\sigma(\hat{T}_n)} \leq C,
\]

for some constant \(C\).

Lemma 3. \(W_\sigma(T_n) = (2 + o(1))n^{\frac{3}{2}}\).

Proof. Let \(k = \lfloor \sqrt{n-1} \rfloor\), \(m = k^2 + 1\) and \(M = (k+1)^2\). Then we have \(m \leq n \leq M\). Note that \(T_m = T(k, \ldots, k)\) and \(T_M = T(k+1, \ldots, k+1)\). Using Theorem 2 we have

\[
W_\sigma(T_m) = 2k \left(\frac{k}{2} \right) + 2 \left(\frac{\lfloor \frac{k}{2} \rfloor}{2} \right) + 2 \left(\frac{\lceil \frac{k}{2} \rceil}{2} \right) + k(1 + k^2) = (2 + o(1))k^3 \tag{2}
\]

and

\[
W_\sigma(T_M) = 2k \left(\frac{k+1}{2} \right) + 2 \left(\frac{\lfloor \frac{k}{2} \rfloor}{2} \right) + 2 \left(\frac{\lceil \frac{k}{2} \rceil}{2} \right) + k(1 + k(k+1)) = (2 + o(1))k^3. \tag{3}
\]

Noting that \(k^3 \sim n^{\frac{3}{2}}\) and \(W_\sigma(T_m) \leq W_\sigma(T_n) \leq W_\sigma(T_M)\), we have \(W_\sigma(T_n) = (2 + o(1))n^{\frac{3}{2}}\) by Squeeze Theorem.

The following lower bound is due to Sam Spiro.

Lemma 4. \(W_\sigma(\hat{T}_n) \geq (\sqrt{2} + o(1))n^{\frac{3}{2}}\).
Proof. Let U, V be the bipartition of \hat{T}_n with $|U| \leq |V|$. Label vertices in U as u_1, u_2, \ldots, u_k, where $k = |U|$. Let d_i^+ (resp. d_i^-) denote the number of positive (resp. negative) edges incident with u_i for each i. It is not too difficult to show that

$$W_\sigma(\hat{T}_n) \geq |U||V| + 2 \sum_{i=1}^{k} \left(\left(\frac{d_i^+}{2} \right) + \left(\frac{d_i^-}{2} \right) \right).$$

Indeed, the first term comes from all paths of odd length and the term $\left(\frac{d_i^+}{2} \right) + \left(\frac{d_i^-}{2} \right)$ comes from the paths of length 2 between two neighbors of u_i with the same sign. As the function $\left(\frac{x^2}{2} \right) = \frac{1}{2}x(x-1)$ is convex, we have

$$\sum_{i=1}^{k} \left(\left(\frac{d_i^+}{2} \right) + \left(\frac{d_i^-}{2} \right) \right) \geq 2k \left(\frac{1}{2k} \sum_{i=1}^{k} (d_i^+ + d_i^-) \right),$$

by Jensen’s Inequality. As $|U| = k$, $|V| = n - k$ and $\sum_{i=1}^{k} (d_i^+ + d_i^-)$ equals $n - 1$, which is the number of edges in \hat{T}_n, we obtain from Eqs. (4) and (5) that

$$W_\sigma(\hat{T}_n) \geq k(n - k) + 4k \left(\frac{n-1}{2k} \right).$$

Using the basic inequality $a + b \geq 2\sqrt{ab}$ for $a, b > 0$, we have

$$kn + \frac{n^2}{2k} \geq 2 \sqrt{\frac{n^3}{2}} = \sqrt{2n^\frac{3}{2}}.$$

Recall that $k \leq n/2$. Thus $n - k \geq n/2$. If $k \geq 2\sqrt{2n}$ then from the trivial inequality $W_\sigma(\hat{T}_n) \geq k(n - k)$ we obtain

$$W_\sigma(\hat{T}_n) \geq (2\sqrt{2n}) \cdot \frac{n}{2} = \sqrt{2n^\frac{3}{2}}.$$

Now assume $k < 2\sqrt{2n}$. Then by (6) and (7), we find

$$W_\sigma(\hat{T}_n) \geq \sqrt{2n^\frac{3}{2}} - k^2 - 2n \geq \sqrt{2n^\frac{3}{2}} - 10n = (\sqrt{2} + o(1))n^\frac{3}{2}.$$

Thus we always have $W_\sigma(\hat{T}_n) \geq (\sqrt{2} + o(1))n^\frac{3}{2}$, as desired. \hfill \Box

The following theorem is a direct consequence of Lemmas 3 and 4.

Theorem 3.

$$\limsup_{n \to \infty} \frac{W_\sigma(T_n)}{W_\sigma(\hat{T}_n)} \leq \sqrt{2}.$$

We end this note by leaving the following problem suggested by one referee.

Problem 1. Is it true that

$$\lim_{n \to \infty} \frac{W_\sigma(T_n)}{W_\sigma(\hat{T}_n)} = 1?$$
Acknowledgments

The authors would like to thank the anonymous reviewer for her/his instructive suggestions. In particular, the results in the final section are suggested by the reviewer. We thank Sam Spiro for pointing out a preliminary version of Lemma[4] The second author is supported by the National Natural Science Foundation of China under the grant number 12001006.

References

[1] A. A. Dobrynin, R. Entringer, I. Gutman, Wiener index of trees: Theory and applications, Acta Appl. Math. 66(2001) 211-249.

[2] R. C. Entringer, D. E. Jackson, D. A. Snyder, Distance in graphs, Czechoslovak Math. J. 26(1976) 283-296.

[3] S. Spiro, The Wiener index of signed graphs, Appl. Math. Comput., 416(2022)126755.

[4] N. Trinajstić, Chemical Graph Theory, 2nd ed., CRC Press, 1992

[5] H. Wiener, Structural determination of paraffin boiling points, J. Am. Chem. Soc. 69 (1947) 17-20.