Observation of nitrous acid (HONO) in Beijing, China: Seasonal variation, nocturnal formation and daytime budget

Jiaqi Wang a,b, Xiaoshan Zhang a,b,⁎, Jia Guo a, Zhangwei Wang a,b, Meigen Zhang b,c

a Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
b University of Chinese Academy of Sciences, Beijing 100049, China
c State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry (LAPC), Institute of Atmospheric Physics (IAP), Chinese Academy of Sciences, Beijing 100029, PR China.

HIGHLIGHTS
• Atmospheric HONO has been observed in Beijing over four different seasons.
• Seasonality of HONO conversion frequencies was closely related to RH levels.
• Daytime HONO formation was mainly controlled by the additional HONO source.
• Correlation studies evidenced the key role of JNO2 for HONO formation.
• Photolysis of adsorbed HNO3 and NO3− could be potential HONO source in autumn.

GRAPHICAL ABSTRACT

Abstract

Article history:
Received 13 January 2017
Received in revised form 12 February 2017
Accepted 18 February 2017
Available online 23 February 2017

Editor: D. Barcelo

Keywords:
Nitrous acid observation
Megacity air pollution
Heterogeneous conversion
Daytime source

ARTICLE INFO

Seasonal characteristics of atmospheric nitrous acid (HONO) were investigated with high time-resolution field measurements at an urban site of Beijing in four select months (representing four different seasons) from September 2015 to July 2016. The HONO concentrations displayed a pronounced seasonal profile with a maximum in autumn (2.27 ± 1.82 ppb) and a minimum in winter (1.05 ± 0.89 ppb). Significant diurnal cycles were also observed during the whole campaign. We found that the nighttime build-up of HONO was attributed to the heterogeneous conversion of NO2 on wet surface. The calculated NO2 to HONO conversion frequencies varied from 0.005 h−1 in spring to 0.010 h−1 in summer, with an average value of 0.008 h−1. The seasonality of these conversion frequencies was closely related to the RH levels in different seasons. During daytime, large additional HONO sources were calculated. The noontime additional source was the highest in autumn 3.82 ppb h−1, followed by summer 3.05 ppb h−1, spring 2.63 ppb h−1 and winter 1.30 ppb h−1. Correlation studies between the additional HONO source and related parameters demonstrated that the controlling processes responsible for HONO daytime formation varied in different seasons, and that the photo-enhanced formation on wet surface or the photolysis of adsorbed nitric acid and nitrate could be potential HONO sources in Beijing.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Nitrous Acid (HONO) is a key nitrogen-containing species in the atmosphere due to its contribution to the atmospheric oxidizing capacity.
The photochemistry of HONO (R1) is appreciated as a significant daytime source of hydroxyl radicals (OH) (Aumont et al., 2003; Kleffmann et al., 2005; Su et al., 2011; Villena et al., 2011), which acts as a dominant atmospheric oxidant and initiates the formation of ozone and secondary organic aerosol (SOA) (Hofzumahaus et al., 2009).

\[
\text{HONO} + \text{hv} \rightarrow \text{OH} + \text{NO} \quad (R1)
\]

The photochemistry of HONO has been and is still widely discussed in the world. Apart from the direct emissions from combustion processes and the heterogeneous reaction between nitric oxide (NO) and OH (R2), the heterogeneous conversion of NO2 on wet surface (R3) was considered to be a dominant source of HONO, especially during nighttime (Finlayson-Pitts et al., 2003). To further sustain the observed HONO concentration during daytime, other formation mechanisms have been proposed, such as photosensitized conversion of nitrogen dioxide (NO2) on soil (Monge et al., 2010) or humic acid surface (R4) (Han et al., 2016a; Han et al., 2016b; Stemmler et al., 2006; Stemmler et al., 2007), soil nitrite emission (R5) (Su et al., 2011), photolysis of nitrogen dioxide (Han et al., 2016a; Han et al., 2016b; Stemmler et al., 2006; Stemmler et al., 2007), soil nitrite emission (R5) (Su et al., 2011), photolysis of adsorbed nitric acid (HNO3) and nitrate (NO3−) (R6) (Ye et al., 2016; Zhou et al., 2011; Zhou et al., 2003), homogeneous nucleation of NO2, H2O and NH3 (R7) (Zhang and Tao, 2010), and the reaction between electronically excited nitrogen dioxide (NO2) and a molecule of water (H2O) (R8) (Li et al., 2008). However, the dominant mechanism responsible for HONO daytime formation remains unclear. More field observations in varieties of environments are still necessary for improving our understanding of HONO formation mechanisms.

\[
\begin{align*}
\text{NO} + \text{OH} & \rightarrow \text{HONO} + \text{H}^+ \\
2\text{NO}_2 + \text{H}_2\text{O}_{\text{ads}} & \rightarrow \text{HONO} + \text{HNO}_3 \\
\text{NO}_2 + \text{surface(light)} & \rightarrow \text{HONO}_{(g)} \\
\text{NO}_2^- \rightarrow \text{H}^+ \rightarrow \text{HONO}_{(aq)} & \rightarrow \text{HONO}_{(g)} \\
\text{HNO}_3/\text{NO}_3^- + \text{hv} & \rightarrow \text{HONO/NO}_2 + \text{O} \\
2\text{NO}_{2(g)} + \text{H}_2\text{O}_{(g)} + \text{NH}_3_{(g)} & \rightarrow \text{HONO}_{(g)} + \text{NH}_4\text{NO}_3_{(s)} \\
\text{NO}_2 + \text{hv} & \rightarrow \text{NO}_2 \\
\text{NO}_2^- + \text{H}_2\text{O} & \rightarrow \text{HONO} + \text{OH} \\
\text{HONO} + \text{OH} & \rightarrow \text{H}_2\text{O} + \text{NO}_2 \\
\end{align*}
\]

Compared with HONO production, the loss of HONO is well understood. During daytime, except for the photolysis process (R1), HONO can also be removed through reaction with OH:

\[
\text{HONO} + \text{OH} \rightarrow \text{H}_2\text{O} + \text{NO}_2 \quad (R9)
\]

The main loss process during nighttime is dry deposition due to the absence of solar radiation and the low OH concentration. During the first half of the night, the HONO sink is weak. With the accumulation of HONO concentration, the strength of HONO dry deposition dominates. Then the concentration of HONO can reach a steady state when production, vertical mixing and dry deposition balance each other.

Due to the important role of HONO in atmospheric chemistry, numerous HONO measurements have been carried out in the world during the last three decades (Acker and Moelleri, 2007; Elshorbany et al., 2009; Legrand et al., 2014; Perner and Platt, 1979; Pusde et al., 2015). With the fast economic growth, Beijing has been suffering from severe air pollution problems. In recent years, high levels of atmospheric HONO have been observed (up to 9.71 ppb) in urban areas of Beijing in winter (Spataro et al., 2013). The unknown HONO nocturne source observed can reach up to 5 ppb h−1 (Liu et al., 2014). However, the existing HONO measurements mostly carried out over short periods during summer or winter, and the on-line long-term HONO observations over different seasons were still rare in Beijing.

Hereby, we conducted continuous HONO measurements in four select months (covering four different seasons) from September 2015 to July 2016 in Beijing urban area with the Ambient Ion Monitor-Ion Chromatography (AIM-IC) analysis system. In addition, other water-soluble compounds, such as gaseous HNO3 and particulate nitrate (NO3−), trace gases (NOx, CO and O3), BC, PM2.5 aerosol optical properties (total light scattering and absorption coefficients) and meteorological parameters were also measured simultaneously. The main objectives of this work were to investigate the seasonal characteristics of HONO concentrations, nocturnal formation and daytime budget, and to examine the relative importance of different HONO sources to daytime budget.

2. Experimental

2.1. Site description

The measurements were conducted in the campus of Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, which was located in the northwestern urban area of Beijing (40°00′ 28″N, 116°20′ 15″E) and outside the fourth ring road. The sampling site was located on the roof of a fifth-floor building (18 m above the ground level).

2.2. Instruments

Ambient concentrations of gaseous nitrous acid (HONO), nitric acid (HNO3) and particulate nitrate (NO3−) were measured by the AIM-IC analysis system (URG Corp., Chapel Hill, NC). The time resolution of this system was 1 h. A detailed description of this inlet design and the operation characteristics can be found in VandenBoer et al. (2014) and Markovic et al. (2012). Briefly, the ambient air was drawn at 3 L min−1 through a 2.5 μm particulate matter (PM2.5) cyclone before being directed into two parallel liquid diffusion denuders. As the ambient air flow passed through the denuders, the water-soluble gases were scrubbed into deionized water containing 5 mM H2O2. The remaining water-soluble particles were transported into the aerosol supersaturation chamber and collected as aqueous solution in a cyclone assembly. Finally, these aqueous samples from both channels were analyzed continuously via anion and cation IC units. The system detection limits of HONO, HNO3 and NO3− were 65 ppt, 65 ppt and 45 ng m−3, respectively. Previous works have demonstrated that the HONO observations measured with this AIM-IC system consisted well with those by the Stripping Coil-UV/Vis Absorption Photometer (SC-AP) system (VandenBoer et al., 2014), which utilized coil scrubbers,azo-dye derivatization and absorption detection.

Trace gases of NO, NO2, NOx, CO and O3 were measured by NO–NO2–NOx analyzer (42i, Thermo, USA), CO analyzer (48i, Thermo, USA) and O3 analyzer (49i, Thermo, USA), respectively, with a time resolutions of 1 min. Measurements of the total light scattering coefficient and absorption coefficient (Wu et al., 2009) were carried out by a nephelometer (Aurora-1000; Ecotech) and a seven-channel (370–940 nm) aethalometer (Model AE33; Magee Scientific, USA) with the time resolutions of 5 min. The PM2.5 mass concentration and meteorological parameters, including ambient temperature (T) and relative humidity (RH), were given by TEOM (1405-DF). Daily maintenance and routinely calibration have been carried out to ensure the accuracy of these data.

2.3. Simulations of photolysis rates

Direct measurements of the photolysis rates of HONO, NO2 and O (1D) were unavailable in this work. The NCAR Tropospheric Ultraviolet and Visible (TUV) transfer model was used to calculate $\text{J}_{\text{HONO, NO}_2}$ and J_{O} (Hendrick et al., 2014; Hou et al., 2016; Soergel et al., 2011; Su...
et al., 2008b; VandenBoer et al., 2014). To reflect the effect of aerosols on the values of photolysis rates, aerosol optical depth (AOD), single scattering albedo (SSA) and Angstrom exponent values were used as input data in the TUV model. The AOD and Angstrom exponent values were measured by Moderate Resolution Imaging Spectroradiometer (MODIS) satellite (Remer et al., 2005). The SSA value was determined by an aethalometer and a nephelometer (Coen et al., 2004). The TUV model was run every hour from 9:00 to 15:00 during the whole campaign. Su et al. (2008b) have showed that under high AOD conditions, the uncertainties of J_{HONO-JNO2} and J_{O1D} simulated by the TUV model were 18%, 18% and 27%, respectively.

3. Results and discussions

3.1. General results

We performed HONO observations in four non-consecutive months: September 22 to October 21, 2015 (autumn); January 3 to January 27, 2016 (winter); April 1 to May 14, 2016 (spring) and June 20 to July 25, 2016 (summer) (Fig. 1). Table 1 documents the statistics of HONO, NO2, gaseous HNO3, particulate NO3−, HONO/NO2 and meteorological parameters in four seasons. A marked seasonality of HONO concentration was observed in Beijing. The highest concentration of HONO was found in autumn (2.27 ± 1.82 ppb), followed by summer (1.38 ± 0.90 ppb), spring (1.05 ± 0.95 ppb) and winter (1.05 ± 0.89 ppb). Such seasonal variation in Beijing was different from that in Shanghai (Wang et al., 2013), where weak seasonality was found. In autumn, our sampling site had experienced two severe haze periods with extremely high concentrations of PM2.5, particulate nitrate and associated gaseous pollutants, such as NOX, CO and O3 (Fig. 1). During the haze periods, the accumulation of other pollutants, HONO concentration increased and reached up to 9.00 ppb. In summer, in spite of the efficient solar radiation, the HONO concentration was still much higher comparing with that observed in winter. On average, the HONO concentrations in Beijing were comparable with the measurements performed in polluted cities, such as Kathmandu and Shanghai, while significantly higher than the observations in rural sites, such as Ontario and Alaska (Table 2).

Comparing with the individual HONO concentration, HONO/NO2 has the advantage of being less influenced by dilution during transport process and can be used to evaluate the level of HONO formed from the heterogeneous conversion of NO2 (Kleffmann et al., 2003; Li et al., 2012; Liu et al., 2014; Spataro et al., 2013; Xu et al., 2015; Yu et al., 2009). When the observed air mass was freshly emitted, the value of HONO/NO2 would be the lowest (ranging from 0.1 to 0.8%) (Kirchstetter et al., 1996). If the air mass got aged (experiencing the conversion from NO2 to HONO), this ratio will increase. In Table 1, we found that the HONO/NO2 value also demonstrated a distinct seasonality, ranging from 4.08% in spring to 7.89% in summer, with the mean value of around 5.97%. The higher value in summer indicates more efficient heterogeneous conversion from NO2 to HONO in this season. The average HONO/NO2 value during the whole campaign was in the same magnitude as the observations previously reported in Shanghai and Back Garden (Table 2) but much higher than those observed in vehicle exhaust, which suggests that the HONO production in Beijing was mainly controlled by secondary mechanisms.

3.2. Diurnal variation of HONO

The diurnal profiles of HONO, NO2, O3 and HONO/NO2 averaged every hour during the whole campaign were demonstrated in Fig. 2. Ozone showed a typical bell shaped profile with an average maximum around 16:00 in each season. It should be noted that the peak in summer (80 ppb) was more significant than those in other seasons, especially in winter (25 ppb). The diurnal cycle of NO2 reflects the balance between direct emissions and photochemical sinks. In four seasons, the diurnal cycles of NO2 were overall similar, characterized by two peaks occurring in the morning and evening rush hours and a continuous decrease during the daytime due to the strong photochemical reaction with OH radicals.

HONO concentrations showed pronounced diurnal cycles in four seasons. The nighttime variation pattern of HONO concentration presented two types: in autumn and winter, it increased rapidly in the first half of night and then gradually dropped to the low point at around 3:00; in spring and summer, after sunset the concentration gradually climbed to this maximum in the morning rush hour. The accumulation during nighttime indicates the presence of significant HONO source surpassing the dry deposition sink of HONO. The daytime HONO concentrations showed similar variation patterns in different seasons: it dropped rapidly after sunrise and remained relatively constant from local noon until 16:00. The morning decrease was due to the onset of photolysis and the vertical mixing of HONO. It is evident that this drop point varied seasonally according to different sunrise time. In winter, the HONO concentration began to decrease at around 8:00; whereas it began to decrease at around 7:00 in autumn and around 6:00 in summer/spring.

Fig. 1. Temporal trends of HONO, HNO3, particulate NO3−, NO, NO2, O3, CO, PM2.5, relative humidity (RH) and temperature (T) in four seasons (autumn, winter, spring and summer).
The nighttime values (between sunset and sunrise) ranged from 1.26 ppb in spring to 2.78 ppb in autumn, with the mean value of 1.74 ppb. The average HONO concentration at daytime (± 3 h around local noon) over the whole measurement period varied from 0.75 ppb in winter to 1.66 ppb in autumn, with the average value of 0.95 ppb.

Our observed HONO values were comparable to those in Guangzhou (Qin et al., 2009) and Santiago (Elshorbany et al., 2009), while much higher than the observations in other places, such as California (VandenBoer et al., 2014), Milan (Alicke et al., 2002) and Seoul (Song et al., 2009). Given the short lifetime of HONO against photolysis, the high HONO concentration during daytime indicates the presence of large HONO production sources.

The HONO to NO2 ratio also showed marked diurnal cycle with a maximum in the early morning and a minimum around 18:00. Of note, the daytime decrease was weak. In summer, this ratio almost reached 100% (shown with the red dash line in Fig. 3). Therefore, we concluded that water was necessary for HONO formation and the accumulation of HONO at night was most likely resulted from heterogeneous conversion of NO2 on wet surfaces.

Table 1

Location	Date	Mean SD	Ref.					
Beijing/China	Jul 2008–Apr 2009	0.19 (Spring)	1.5% (Spring)	0.18 (Summer)	0.8% (Summer)	0.18 (June)	14.14 (Night)	1
		0.46 (Autumn)	2.0% (Autumn)	0.48 (Winter)	1.5% (Winter)	0.34 (Winter)	2.0% (Winter)	
		0.16 (Spring)	2.4% (Spring)	0.09 (Summer)	1.7% (Summer)	0.38 (Summer)	1.8% (Summer)	
		0.50 (Summer)	5.0% (Summer)	0.38 (Autumn)	1.7% (Autumn)	0.34 (Winter)	2.0% (Winter)	
		1.04 (Winter)	3.0% (Winter)	0.92 (Day)	4.9% (Day)	0.24 (Day)	7.1% (Day)	4
		0.95 (Night)	46.74 (Night)	0.93 (Autumn)	15.50 (Spring)	0.91 (Winter)	19.80 (Summer)	5
		0.12	56.16	0.36	0.7%	0.10 (Night)	24.70 (Winter)	
		1.55	14.14	1.55	1.6%	10		
		0.06 (Day)	1.6%	0.10 (Summer)	1.6%	9		
		0.10	18.30 (Day)	0.10–0.21 (Summer)	1.6%	10		
		0.50 (Night)	33.20 (Night)	0.50 (Day)	2.8% (Night)	11		
		0.03	0.51	0.92 (Night)	2.8% (Night)	12		
		1.44	353	0.03	5.97%	(This work)		

1: (Hendrick et al., 2014); 2: (Spataro et al., 2013); 3: (Wang et al., 2013); 4: (Li et al., 2012); 5: (Su et al., 2008b); 6: (Xu et al., 2015); 7: (Song et al., 2009); 8: (Yu et al., 2009); 9: (Wentzell et al., 2010); 10: (Michoud et al., 2014); 11: (Alicke et al., 2002); 12: (Villena et al., 2011).

a Only daytime data available.

b 14 km southwest of Paris in a semi-urban environment.
As illustrated in Fig. 4, we found a particular case on the night of January 20, 2016 (21:00–02:00): the HONO formation rate or the ratio of HONO/NO2 increased with the concurrent decrease of other pollutants, such as PM2.5, CO, NO and O3. This indicates that this increasing formation rate of HONO was not driven by the gas-phase reaction between nitric oxide (NO) and OH (related to O3 concentration (Kanaya et al., 2007)) or the decrease of boundary layer height (BLH). Interestingly, we found that within these 4 h, the value of RH increased from 40% to 60%. This phenomenon strengthened the conclusion we proposed before: water vapor level was essential for nocturnal HONO formation.

3.3.2. HONO conversion frequency

In order to reduce the uncertainties resulted from diffusion processes, we adopted a combined scaling method proposed by Su et al. (2008a) to calculate the HONO conversion frequency $C_{\text{HONO}} \ (h^{-1})$. In this work, we only took the night with wind speed lower than
4 m s^{-1} into consideration. Because of the increasing role of HONO sink in the second half of night, we restricted this analysis to the time frame from 18:00 to 24:00. Here we adopted CO and NO\textsubscript{2} as the reference gases, and the C\textsubscript{HONO} can be expressed as:

\[
C_{\text{HONO}} = \frac{2 \left(\frac{[\text{HONO}]_{t1}}{[X]_{t1}} \times [X]_{t2} - \frac{[\text{HONO}]_{t2}}{[X]_{t2}} \times [X]_{t1} \right)}{(t_1 - t_2)}
\]

\[
C_{\text{HONO}} = \frac{2 \left(\frac{[\text{NO}_2]_{t1}}{[X]_{t1}} \times [X]_{t2} + \frac{[\text{NO}_2]_{t2}}{[X]_{t2}} \times [X]_{t1} \right)}{(t_1 - t_2)}
\]

(1)

\[
C_{\text{HONO}} = \frac{1}{2} (C_{HONO}^0 + C_{HONO}^{\text{CO}} + C_{HONO}^{\text{NO}_2})
\]

(2)

where \([\text{HONO}]_t\), \([\text{NO}_2]_t\), and \([X]_t\) represent the mixing ratios of HONO, NO\textsubscript{2}, and reference gases at the sampling time \(t\), \(X\) is the mean mixing ratio of reference gas during the time interval of \((t_1 - t_2)\), and \(C_{\text{HONO}}\) stands for the conversion frequency scaled with \(X\) reference gas (\(C_{\text{HONO}}^0\) indicates the conversion frequency that is not scaled).

Table 3 summarized the \(C_{\text{HONO}}\) derived during the nighttime period over four different seasons. The calculated \(C_{\text{HONO}}\) varied from 0.005 h\(^{-1}\) in spring to 0.010 h\(^{-1}\) in summer, with an average value of 0.008 h\(^{-1}\), which was in line with the observations conducted by Wang et al. (2013) in Shanghai (0.007 h\(^{-1}\)), while lower than the values in other places, such as Back Garden (0.024 h\(^{-1}\)) (Li et al., 2012), Milan (0.012 h\(^{-1}\)) (Alicke et al., 2002) and Kathmandu (0.014 h\(^{-1}\)) (Yu et al., 2009). It is interesting to note that the variation pattern of \(C_{\text{HONO}}\) followed well with the seasonality of RH. In order to further test the influence of RH on the conversion reaction from NO\textsubscript{2} to HONO, we studied the relationship between \(C_{\text{HONO}}\) and RH values in each individual night over different seasons. In Fig. 5, HONO conversion frequency was plotted against RH. It can be found that when RH was lower than 65%, the \(C_{\text{HONO}}\) value tended to increase along with RH; however, when RH was higher than 65%, \(C_{\text{HONO}}\) depended inversely on RH. This phenomenon consisted well with the work carried out by Yu et al. (2009) in Kathmandu.

This negative dependence (RH \(> 65\%\)) was probably attributed to the efficient HONO uptake by the rapidly growing aqueous layer on the ground or aerosol surface. It has been reported that the dependence of water coverage (number of monolayers of water) on RH values was different upon various material surfaces (Sumner et al., 2004). In the case of soil and stone, the increase of water coverage from one monolayer to 3–5 monolayers was accompanied by the increase of RH from 20% to 80%. Above 80%, the monolayers rapidly increased (Stutz et al., 2004). As for the glass, the turning point of this dependence was 70% (Saliba et al., 2001). Considering the complex structure of natural surface, this dependence was uncertain in the field. Through our in-situ observation, we can conclude that the turning point in Beijing city center was 65%. When RH was above 65%, the number of monolayers formed upon atmospheric surface would increase rapidly. Besides, we found that this dependence was consistent for different seasons, which indicates that the responsible surface for HONO conversion changed little under varying environments. The seasonality of HONO conversion frequencies during the whole campaign was determined by RH levels.

3.4. Daytime HONO budget

Given the short lifetime of HONO against photolysis, the gas phase reaction between OH and NO was not sufficient to explain the high HONO concentration observed during daytime (Fig. 2). Therefore, the presence of additional HONO daytime source (\(R_{\text{unknown}}\)) was needed. The magnitude of this additional source was estimated from the measured constraints on the HONO concentration observed during the day via (i) reaction of OH with NO (\(R_{\text{OH} + \text{NO}}\), (ii) photolysis of HONO

Season	\(N\) (day)	\(C_{\text{HONO}}\) (h\(^{-1}\))	RH (°C)	\(\text{NO}_2\) (ppb)	\(\text{PM}_{2.5}\) (µg m\(^{-3}\))	NO (ppb)		
Autumn	18	0.009	51.32	3.63	58.77	99.28	16.84	
Winter	17	0.006	44.39	2.25	43.78	95.75	65.65	−5.84
Spring	20	0.005	41.24	1.72	37.02	56.60	21.39	16.14
Summer	19	0.010	62.36	1.83	26.71	49.55	3.08	25.39
(R_{\text{phot}}), and (iii) reaction of OH with HONO (ROH+HONO):

\[\frac{\partial [\text{HONO}]}{\partial t} = (R_{\text{OH+NO}} + R_{\text{unknown}}) - (R_{\text{OH+HONO}} + R_{\text{phot}}) \] \hspace{1cm} (3)

Such that,

\[R_{\text{unknown}} = \frac{\Delta [\text{HONO}]/\Delta t + J_{\text{HONO}} [\text{HONO}]/C_{138} - k_{\text{OH+HONO}} [\text{OH}]/[\text{NO}]}{\Delta [\text{HONO}] - k_{\text{OH+NO}} [\text{OH}]/[\text{NO}]} \] \hspace{1cm} (4)

where \(\Delta [\text{HONO}] \) indicates the observed variation of HONO concentration (ppb s\(^{-1}\)), \(J_{\text{HONO}} \) means the photolysis rate of HONO (s\(^{-1}\)). The rate constants of \(k_{\text{OH+NO}} \) and \(k_{\text{OH+HONO}} \) are \(9.8 \times 10^{-12} \) and \(6.0 \times 10^{-12} \) cm\(^3\) molecules\(^{-1}\) s\(^{-1}\), respectively, at 298 K and 1010 hPa (Atkinson et al., 2004). Considering the larger uncertainty in estimates of the photolysis rates at sunrise and sunset, we only investigated the HONO budget from 9:00 to 15:00. Here we ignored the influence of HONO direct emission source, dry deposition and transport processes, because these terms were several orders smaller than \(R_{\text{phot}} \) (Li et al., 2014) in Paris (0.7 and 0.25 ppb h\(^{-1}\)) in summer and winter, respectively.

As NO\(_2\) was thought to be the dominant precursor of HONO daytime formation, here we normalized \(R_{\text{unknown}} \) by NO\(_2\) mixing ratios (Fig. 7). The normalized \(R_{\text{unknown}} \) has the same unit (h\(^{-1}\)) as the nocturnal HONO conversion frequency, and can be referred to as the daytime HONO conversion frequency from NO\(_2\) (Soergel et al., 2011). We found that the normalized \(R_{\text{unknown}} \) was much larger than the nighttime conversion frequency calculated before. For example, in summer, the average normalized \(R_{\text{unknown}} \) was 0.305 h\(^{-1}\), which was about 30 times faster than the nighttime conversion (0.010 h\(^{-1}\)). If this nighttime conversion reaction continued at daytime, its contribution to \(R_{\text{unknown}} \) would be small. Besides, we noticed that the normalized \(R_{\text{unknown}} \) showed a typical bell shaped profile with the maximum around noon; the peak of the normalized \(R_{\text{unknown}} \) coincided with the maximum solar radiation. Therefore, we assumed that the heterogeneous conversion from NO\(_2\) to HONO during daytime should be light-induced, or some other sources which were independent of NO\(_2\), such as the photolysis of adsorbed nitrate, were responsible for the observed \(R_{\text{unknown}} \).

In order to identify the reactions responsible for the additional HONO source, correlations of \(R_{\text{unknown}} \) with various parameters were investigated (Table 4). Here, we focused on the parameters that were related to the processes identified as HONO sources in the literature.

During the whole campaign, the correlations of \(R_{\text{unknown}} \) against NO\(_2\), PM\(_{2.5}\), BC, J\(_{\text{NO}}\), and RH did not show any clear relationships. The weak dependence of \(R_{\text{unknown}} \) on BC, PM\(_{2.5}\), PM\(_{2.5}\)×[NO\(_2\)] or BC×[NO\(_2\)] suggests that the aerosol or the soot surface might not be the place...
where unknown HONO production took place. When we multiplied JNO2 to RH instead of considering JNO2 or RH alone, the correlation significantly increased, especially in summer, with R2 value of 0.68. This improvement indicates that the calculated Runknown may be photolytic and heterogeneous occurring upon wet surface. Besides, we found that the significance of this relationship in different seasons was in line with the seasonality of RH values (Table 1).

Li et al. (2012) have provided evidence that the photolysis of adsorbed nitric acid (HNO3) and nitrate (NO3−) contributed to the HONO formation in the Pearl River Delta region. In this work, we also found significant correlation between Runknown and JNO2×[THNO3] in autumn (R2 = 0.48). Comparing with other seasons, the ambient THNO3 (the sum of particulate nitrate and gaseous HNO3) concentration in autumn was the highest, with the value of 5.62 ppb. The production of HONO derived from Eq.(5) could be one likely source for daytime HONO formation in autumn. However, the correlations were comparably weaker in other seasons. This difference could be explained by the seasonal variation of ambient THNO3 concentrations levels. In other seasons, the ambient THNO3 concentrations were much lower. Large part of the additional HONO source could be explained by the photo-enhanced production upon wet surface or some other sources we have not taken into account, such as the ground deposited HONO during nighttime, which may form a nitrite reservoir in the following day (VandenBoer et al., 2013; VandenBoer et al., 2014; VandenBoer et al., 2015), and the direct HONO emission from soil (Su et al., 2011).

4. Conclusion

The measurements of nitrous acid (HONO) have been taken over four select months in different seasons in Beijing, China. The observed HONO concentration levels were comparable to those in heavily polluted regions. During nighttime, the correlation analyses and case study suggest that the accumulation of HONO was most likely attributed to the conversion of NO2 on wet surfaces. The calculated HONO conversion frequency was closely related to RH levels. Of note, the turning point of this dependence was 65% and consistent over four different seasons.
This result may help to improve the operation of air-quality models to simulate nocturnal HONO conversion frequency in Beijing urban area. During daytime, we found that HONO formation was different from that dominated in the nighttime and was mainly controlled by the additional HONO source in all seasons. The correlation studies demonstrated that the photo-enhanced production upon wet surface or the photosynthesis of adsorbed nitric acid and nitrate can be potential candidates to explain the unknown HONO daytime source; however, the contributions of these sources varied in different seasons. Our results suggest that the photochemical models should consider this seasonal variability to better simulate realistic HONO concentrations in the future.

Acknowledgements

This work was supported by "Strategic Priority Research Program" of the Chinese Academy of Sciences, Grant No. XDB14020205, and the National Natural Science Foundation of China (91544221).

References

Acker, K., Moeller, D., 2007. Atmospheric variation of nitrous acid at different sites in Europe. Environ. Chem. 4, 242–255.
Alicki, B., Platt, U., Stutz, J., 2002. Impact of nitrous acid photolysis on the total hydroxyl radical budget during the ozone formation period. Pianura Padana Produzione di Ozono in studio. Milan. J. Geophys. Res. 107, 8196.
Atkinson, R., Baulch, D.L., Cox, R.A., Crowley, J.N., Hampson, R.F., Hynes, R.G., et al., 2004. Evaluated kinetic and photochemical data for atmospheric chemistry: volume I – gas phase reactions of Ox, HOx, NOx and SOx species. Atmos. Chem. Phys. 4, 1461–1738.
Atmont, B., Chervier, F., Laval, S., 2003. Contribution of HONO sources to the NOx/HOx/O3 radical budget of urban air masses during the PUMA campaign 1: comparison of modelled OH and HO2 concentrations with measurements. J. Atmos. Chem. 52, 143–164.
Finlayson-Pitts, B.J., Wingen, L.M., Sumner, A.L., Syomin, D., Ramazan, K.A., 2003. The heterogeneous production of NO2 in laboratory systems and implications for heterogeneous hydrolysis of NO2 in the presence of water at room temperature. J. Phys. Chem. A 107, 9348–9356.
Stemmler, K., Ammann, M., Donders, C., Kleffmann, J., George, C., 2006. Photosensitized heterogeneous production at ground surface. Atmos. Environ. 106, 100 – 103.
Hendrick, F., Müller, J.F., Clémer, K., Wang, P., De Mazère, M., Fayt, C., et al., 2014. Four years of ground-based MAX-DOAS observations of HONO and NO2 in the Beijing area. Atmos. Chem. Phys. 14, 765–781.
Hofzumahus, A., Rohrer, F., Lu, K.D., Bohn, B., Brauers, T., et al., 2012. Characterization and optimization of an online system for the simultaneous measurement of atmospheric water-soluble constituents in the gas and particle phases. J. Environ. Monit. 14, 1882–1884.
Michoud, V., Colomb, A., Borbon, A., Metz, K., Beekman, M., Camredon, M., et al., 2014. Study of the unknown NO2/D/H2O source at a rural site in the Beijing urban area during the MEGAPOLI summer and winter field campaigns. Atmos. Chem. Phys. 14, 2805–2822.
Monge, M.E., D'Anna, B., Mazli, I., Giroir-Fendler, A., Ammann, M., Donaldson, D.J., et al., 2010. Light changes the atmospheric reactivity of soot. Proc. Natl. Acad. Sci. 107, 6678–6682.
Perner, D., Platt, U., 1979. Detection of nitrous-acid in the atmosphere by differential optical-absorption. Geophys. Res. Lett. 6, 917–920.
Puseveda, S.E., VandenBoer, T.C., Murphy, J.G., Markovic, M.Z., Young, C.J., Veres, P.R., et al., 2015. An atmospheric constraint on the NO2 dependence of daytime near-surface nitric acid (HONO). Environ. Sci. Technol. 49, 12774–12781.
Qin, M., Xie, P., Su, H., Gu, J., Peng, F., Li, S., et al., 2009. An observational study of the HONO-NO2 coupling at an urban site in Guangzhou City, South China. Atmos. Environ. 43, 5731–5742.
Rohrer, F., Berresheim, H., 2006. Strong correlation between levels of tropospheric hydroxyl, peroxy radicals and solar ultraviolet radiation. Nature 441, 184–187.
Seropol, M., Grabowska, L., Pawlowski, M., 2005. Observations of nitrous acid (HONO) and its daytime sources at a rural site during the 2004 PRIDE-PRD experimental campaign. Atmos. Chem. Phys. 5, 1391–1409.
Stutz, J., Alicki, B., Ackermann, R., Geyer, A., Wang, S.H., White, A.B., et al., 2004. Relative nitrite formation and its atmospheric implications inferred from the observations in Seoul, Korea. Atmos. Chem. Phys. 4, 2168–2173.
Spataro, F., Iannelli, A., Esposito, C., Allegreni, I., Zhu, T., Hu, M., 2013. Occurrence of atmospheric nitrous acid in the urban area of Beijing (China). Sci. Total Environ. 447, 210–224.
Stemmler, K., Ammann, M., Donders, C., Kleffmann, J., George, C., 2006. Photosensitized reduction of nitrogen dioxide on humid surface as a source of nitric acid. Nature 440, 194–197.
Stemmler, K., Ndour, M., Elshobany, Y., Kleffmann, J., D’Anna, B., George, C., et al., 2007. Light induced conversion of nitrogen dioxide into nitric acid on submicron humid aerosol. Atmos. Chem. Phys. 7, 4237–4248.
Su, H., Cheng, Y., Oswald, R., Behrendt, T., Trebs, I., Meixner, F.X., et al., 2011. Soil nitrite as a source of atmospheric HONO and NOx radicals. Science 333, 1616–1618.
Su, H., Cheng, Y.F., Cheng, P., Zhang, Y.H., Song, Z., Leng, L., et al., 2008a. Observation of nitrous acid (HONO) formation at a non-urban site during PRIDE-PRD2004 in China. Atmos. Environ. 42, 6219–6232.
Su, H., Cheng, Y.F., Shao, M., Zhang, Y.H., Lu, Y.Z., Zeng, L., et al., 2008b. Nitric acid (HONO) and its daytime sources at a rural site at the 2004 PRIDE-PRD experiment in China. J. Geophys. Res. 113, D14312.
Sumner, A.L., Menke, E.J., Dubowsky, Y., Newburg, J.T., Perner, R.M., Hemminger, J.C., et al., 2012. The nature of water vapor in laboratory systems and implications for heterogeneous chemistry in the troposphere. Phys. Chem. Chem. Phys. 6, 604–613.
VandenBoer, T.C., Brown, S.S., Murphy, J.G., Keene, W.C., Young, C.J., Pizynsky, A.A., et al., 2013. Understanding the role of the ground surface in HONO vertical structure: high resolution vertical profiles during NACHT-1. J. Geophys. Res. Atmos. 118, 10155–10171.
VandenBoer, T.C., Markovic, M.Z., Sanders, J.E., Ren, X., Puseveda, S.E., Browne, E.C., et al., 2014. Evidence for nitrous acid (HONO) reservoir at the ground surface in Bakersfield, CA, during CalNex 2010. J. Geophys. Res. Atmos. 119, 9921–9936.
VandenBoer, T.C., Young, C.J., Taludarki, R.K., Markovic, M.Z., Brown, S.S., Roberts, J.M., et al., 2015. Nocturnal loss and daytime conversion of nitrous acid through reactive uptake and displacement. Nat. Geosci. 8, 55–60.
Wentzell, J.J.B., Schiller, C.L., Harris, G.W., 2010. Measurements of HONO during BAQS-SEoul, Korea. Atmos. Environ. 43, 2168–2173.
Wang, S., Zhou, R., Zhao, H., Wang, Z., Chen, L., Zhou, B., 2013. Long-term observation of atmospheric nitrous acid (HONO) during polar spring in Barrow, Alaska: A net source of OH radicals? Atmos. Chem. Phys. 13, 1618–1625.
Wang, S., Zhou, R., Zhao, H., Wang, Z., Chen, L., Zhou, B., 2013. Long-term observation of atmospheric nitrous acid (HONO) and its daytime sources at a rural site during the 2004 PRIDE-PRD experiment in China. J. Geophys. Res. Atmos. 113, D14322.
Xie, P., Su, H., Gu, J., Peng, F., Li, S., et al., 2010. An observational study of the HONO-NO2 coupling at an urban site in Guangzhou City, South China. Atmos. Environ. 44, 2168–2173.
Xiong, J., Jiang, X., Li, J., Wang, X., Hou, Z., Liu, X., et al., 2009. Evidence of aerosol as a media for rapid daytime HONO production over China. Environ. Sci. Technol. 43, 4856–4864.
Ye, C., Gao, H., Zhang, N., Zhou, X., 2016. Photolysis of nitric acid and nitrate on natural and artificial surfaces. Environ. Sci. Technol. 50, 3530–3536.
Yu, Y., Galle, B., Panday, A., Hodson, E., Prinn, R., Wang, S., 2009. Observations of high rates of NO2–HONO conversion in the nocturnal atmospheric boundary layer in Kathmandu, Nepal. Atmos. Chem. Phys. 9, 6401–6415.
Zhang, B., Tao, F.-M., 2010. Direct homogeneous nucleation of NO2, H2O, and NH3 for the production of ammonium nitrate particles and HONO gas. Chem. Phys. Lett. 489, 143–147.
Zhou, X., Zhang, N., TerAvest, M., Tang, D., Hou, J., Bertman, S., et al., 2011. Nitric acid photolysis on forest canopy surface as a source for tropospheric nitrous acid. Nat. Geosci. 4, 440–443.
Zhou, X.L., Gao, H.L., He, Y., Huang, G., Bertman, S.B., Civerolo, K., et al., 2003. Nitric acid photolysis on surfaces in low-NOx environments: significant atmospheric implications. Geophys. Res. Lett. 30, 2217.
Zhou, X.L., Huang, G., Civerolo, K., Roychowdhury, U., Demerjian, K.L., 2007. Summertime observations of HONO, HCHO, and O3 at the summit of Whiteface Mountain, New York. J. Geophys. Res. Atmos. 112, D08311.