Economic Value of Water Yields on Critical Land Conservation in Kuranji Watershed

E G Ekaputra¹, Yonariza², D Wardiman³

¹ Department of Agricultural and Biosystem Engineering, Faculty of Agricultural Technology, Andalas University
² Department of Environmental Science, Postgraduate Program, Andalas University
³ Department of Environmental Science, Postgraduate Program, Andalas University

Corresponding author’s e-mail address: dokwardimann@gmail.com

Abstract. The Kuranji watershed has a complex problem which cannot be studied with a single scientific approach. In addition to an ecological approach it is also necessary to consider social and economic influences. Conserving areas that have a negative impact on watersheds, such as critical lands, is one of the efforts made to conserve watersheds will reducing costs and speeding up the recovery. The aim of this research is to estimate the economic value of the water yield of the Kuranji watershed on land conservation efforts. To get the economic value of water yield in the watershed, the non-market price approach method is used with the Contingent Valuation Method (CVM). The results showed that there were 356.10 ha of critical land in the Kuranji watershed that could be conserved. The value of water yield in existing land use conditions is greater than water yield in land use conditions influenced by conservation efforts. In this study, it was determined that the estimated economic value of water yield in the Kuranji watershed is 272 IDR/m³ of water. This is supported with a conservation value of 80% of critical land.

Keywords: Kuranji Watershed, Water Yield, Economic Value, Critical Land.

1. Introduction

Water is one of the natural resources that fulfills human needs and serves as a source of life; in other words, without water, humans cannot live. Nearly 1 billion people in the world depend on water resources which are currently threatened in terms of both access and security. This is especially true when it comes to drinking water [1]. In general, problems in water resource management are related to the fact that there is too much water when it rains and too little when the weather is dry. Furthermore, there are high levels of pollution. Natural disasters that occur in the area of the watershed are an indication that the hydrological function of the watershed is disturbed. In such conditions the watershed cannot support an optimal water system. In addition, climate change and land use change have a major impact on the water balance of the watershed and sub-watershed, affecting various parameters such as water yield, surface runoff, evapotranspiration (ET) etc. [2]. Changes in land use and vegetation types on a large and permanent scale can affect the amount of water yield [3]. Water utilization activities in the upstream area will also have an effect on the downstream watershed in the form of changes in water retention capacity. Control of water release in the downstream area in the form of changes in water quantity and water quality [4].
There are 6 watersheds in the city of Padang which meet community water needs, including the Air Dingin Watershed, the Air Timbalun Watershed, the Batang Arau Watershed, the Batang Kandis Watershed, the Kuranji Watershed and the Sungai Pisang Watershed. However, the Kuranji Watershed is one of 2 watersheds with the status of being flood-prone areas in Padang (Regional Environmental Status (SLHD) of West Sumatra Province, 2014). The high level of activity in the Kuranji watershed has had an impact on the social and economic conditions of the community. This was proven in July 2012 when flash floods hit the city of Padang. The Kuranji watershed has a complex problem which cannot be studied with a single scientific approach. In addition to an ecological approach it is also necessary to consider social and economic influences.

Conserving areas that have a negative impact on watersheds, such as critical lands, is one of the efforts made to conserve watersheds. Conservation that is right on target will succeed in reducing costs and speeding up the recovery of the watershed. Individual preferences in terms of the value of environmental damage, inconvenience, increase or decrease in the level of welfare on the use and management of a resource differ from one another. Willingness to pay (WTP), for example, will reflect people's perceptions of the availability and importance of water for society [5]. The approach for analyzing the economic value of water yields will generate an economic value in an effort to improve the Kuranji watershed environment. The aim of this research is to estimate the economic value of the water yield of the Kuranji watershed on land conservation efforts.

2. Materials and Methods

This research was conducted from October to December 2019 in the Kuranji watershed area, Padang City, West Sumatra Province - Indonesia. The conservation area of the Kuranji watershed was analyzed based on the output of a SWAT analysis, e.g. the level of land criticality, based on the Ministry of Forestry Regulation No P.32 / Menhut-II / 2009 concerning Procedures for Preparing Technical Plans for Forest and Watershed Land Rehabilitation (RTkRHL-DAS) [6].

To get the economic value of water yield in the watershed, the non-market price approach method is used. The economic value obtained from the respondents will determine the community's perception of the sustainability of the Kuranji watershed. The non-market price approach is carried out using the Contingent Valuation Method (CVM). The survey is limited by the definition of a sample survey, which is information collected from a segment of the population meant to represent the entire population [7]. The number of samples was calculated using the Slovin formula, with an error rate of 10%. Based on the results of preliminary observations, the total number of people who use water resources in the Kuranji watershed is 286,147; these live in 34 villages in the city of Padang. The Slovin formula for determining the number of samples is as follows:

\[
n = \frac{N}{1 + Ne^2}
\]

with \(n\) is number of samples, \(N\) is total population, and \(e\) is Error. When using a percentage error of 10%, the number of samples studied is 100 people.

There are four techniques for collecting data and information on WTP, i.e.:

1. Desk study: This technique consists of collecting and studying secondary data from related agencies in the Kuranji watershed.
2. In-depth interview: This technique is used to obtain data and information from the community, users and managers of the Kuranji watershed.
3. Observation: This technique is used to see the real existing conditions of the Kuranji watershed.
4. Questionnaire, This technique is used by giving questionnaires to respondents who are drawn based on samples to obtain information on the benefits and willingness to pay of the Kuranji watershed.
The value of the WTP is both qualitative and quantitative in nature, including the condition of the area, the history of natural resource utilization and management. The respondents' personal data covers age, gender, education, income, number of dependents, status of population and residence, perceptions of the importance of conservation, and perceptions of the level of need for water. The questions mentioned are variables that might affect the WTP of the Kuranji watershed.

The Contingent Valuation method is used in several developing countries to determine individual preferences regarding non-use products such as clean water and sanitation services [8]. The community’s desire and ability to earn environmental benefits is obtained by directly interviewing respondents. The stages of CVM research are as follows:

a. Making a hypothetical market
b. Getting bids value
An analysis of the estimated auction value is obtained based on the area of conservation and the amount of water produced. The water price offered is a conservation price which refers to several conservation activities, in accordance with the Regulation of the Director General of Conservation of Natural Resources and Ecosystems Number: P.8/KSDAE/SET/REN.2/10/2017 Concerning Standard Activities and Costs in the Sector of Natural Resources and Ecosystem Conservation in 2018. Conservation will be carried out biologically, namely, in the form of forest rehabilitation, with plants that have an economic value, such as durian, mangosteen, and other types of plants that the local community is familiar with. This effort can reduce water yield by increasing groundwater, and can improve the quality of surface water and especially groundwater [3]. Therefore, the land cover of the conservation area will turn into a mixed forest. Conservation areas for simulation activities are made into 3 scenarios, e.g. 100% conservation, 80% conservation and 50% conservation. This scenario is carried out to see the differences in the results of water yield, runoff, and groundwater from the simulation results of the SWAT model.

The bids value in this study is obtained by means of the referendum model technique or discrete choice (dichotomous choice). This model consists of offering respondents a certain amount of money and asking whether they are willing to pay that amount of money to obtain environmental quality improvements. This method makes it easier to classify respondents who have a tendency to pay for environmental improvements and those who do not have the desire to do so. To determine community water needs, an analysis is carried out based on SNI 19-6728.1-2002 and SNI T-01-2003. So, the auction bids value is therefore obtained as shown in table 1.

c. Calculating the Average WTP
The techniques for calculating the average value of WTP are as follows:

$$\Sigma WTP = \Sigma_{i=1}^{n} W_i. P_f i$$ \hspace{1cm} (2)

With WTP is estimated average of WTP, W_i is the lower limit of the WTP class, $P_f i$ is the relative frequency of a particular class, n is number of classes, and i is Class i.

d. Calculating the Aggregate of WTP

$$TWTP = \Sigma_{i=1}^{n} WTP. \left(\frac{n_i}{N}\right) P$$ \hspace{1cm} (3)

Activities	Luas (ha)	Price of Conservation	Price of Water
100 % Conservation	356,10	Rp 33,679.581.900,00	Rp/m³ 395,02 ≈ Rp/m³ 400
80 % Conservation	284,68	Rp 26,924.749.720,00	Rp/m³ 315,78 ≈ Rp/m³ 300
50 % Conservation	178,14	Rp 16,848.303.060,00	Rp/m³ 197,60 ≈ Rp/m³ 200

Source: SNI 19-6728.1-2002 and SNI T-01-2003
with TWTP is the willingness of the population to pay, WTP is the willingness of respondents (sample) to pay, n is the number of samples willing to pay in WTP amount, n is Number of classes; P is total population; and i is Sample i.

3. Result and Discussion

Water yield is one of the outputs of the SWAT model. Besides generating water yield, the SWAT model also unravels all hydrological processes that take place in an area. The water yield of the watershed is influenced by several parameters such as runoff and groundwater. Consequently, the offer given to respondents is not only related to water yields but also to runoff and groundwater.

The value of water yield in existing land use conditions is greater than water yield in land use conditions influenced by conservation efforts. Judging from the water needs of the people of this area, there is a high yield of water that has not been used and thus has the potential to cause runoff. The value of water yield has decreased since the conservation of critical land began in the Kuranji watershed (Table 2). This decrement of water yield does not indicate bad conditions of critical land conservation. One of the causes of reduced water yield can be higher evaporation due to increased forest area but this decrease has little impact as long as the temporal flow is evenly distributed throughout the year [9].

Change in forest land use almost certainly follows a pattern as urban areas develop, moving from forest to agricultural, plantation, and residential use types. Such changes clearly have a profound effect on the regional water balance and the relevant watershed hydrological regime [10]. The scenarios developed in this model can be used as a direction in planning future watershed management with due regard to economic value. The simulation results in the four scenarios show that the 100%-conservation scenario results is better hydrological conditions. This is because the area of land cover in the form of forest increases more than in other scenarios, which prevents direct rainwater from falling to the soil surface, thereby reducing erosion and surface runoff (Table 3). In addition, if land is conserved, this increases groundwater (Table 4). The resulting groundwater will become a stock if a water crisis occurs in the Kuranji watershed. The increase in groundwater is caused by a decrease in surface runoff due to changes in land use. Therefore, a lot of water will be absorbed by the soil. This condition is of course very beneficial when it comes to the water in the Kuranji watershed area meeting community needs.

Months	50 % Conservation	80 % Conservation	100 % Conservation	
January	249,534	249,652	249,665	250,001
February	396,502	396,309	396,186	396,150
March	359,171	358,829	358,675	358,415
April	321,867	321,909	321,937	321,996
May	318,329	318,315	318,334	318,293
June	230,518	230,981	231,196	231,670
July	274,214	274,444	274,562	274,740
August	182,393	182,840	183,076	183,402
September	289,179	289,218	289,273	289,195
October	465,043	464,572	464,401	463,842
November	534,081	533,544	533,317	532,765
December	573,513	573,364	573,265	573,235
Total	4,194,344	4,193,977	4,193,887	4,193,704
Table 3. Runoff Simulations on Land Conservation of Kuranji Watershed

Months	Existing	50% Conservation	80% Conservation	100% Conservation
January	65,991	65,473	65,256	64,789
February	237,610	236,848	236,522	235,802
March	147,562	146,438	145,982	144,907
April	117,552	116,734	116,405	115,644
May	103,444	102,465	102,071	101,157
June	55,456	55,079	54,925	54,606
July	94,385	93,780	93,542	92,945
August	32,030	31,668	31,543	31,163
September	122,636	121,827	121,494	120,746
October	255,798	254,369	253,771	252,457
November	275,758	274,156	273,475	272,025
December	301,474	300,205	299,636	298,557
Total	1,809,696	1,799,042	1,794,622	1,784,798

Table 4. Ground water Simulations on Land Conservation of Kuranji Watershed

Months	Existing	50% Conservation	80% Conservation	100% Conservation
January	141,273	141,802	141,998	142,716
February	118,858	119,301	119,465	120,062
March	132,700	133,296	133,541	134,230
April	136,911	137,622	137,934	138,650
May	147,400	148,207	148,571	149,333
June	142,798	143,566	143,912	144,638
July	132,756	133,448	133,756	134,438
August	119,000	119,686	120,003	120,634
September	104,077	104,778	105,117	105,691
October	119,923	120,693	121,064	121,694
November	150,631	151,461	151,845	152,589
December	189,795	190,716	191,124	192,034
Total	1,636,122	1,644,576	1,648,330	1,656,709

The environmental conditions in the Kuranji watershed are quite alarming. Almost every year floods occur in the Kuranji watershed. The high activity in the upstream part of the Kuranji watershed is one of the causes of the decline in the function of the watershed. The general characteristics of respondents who use water in the Kuranji watershed are obtained based on a survey conducted on 100 respondents. The general characteristics of these respondents are explained by several criteria, as described below (Figure 1.).
A total of 83 respondents affirmed their willingness to participate in the conservation efforts directed at the Kuranji watershed. Respondents who are willing to conserve the Kuranji watershed also expressed a desire to secure water availability and a better environment (Figure 2).

Respondents who were unwilling to pay thought that conservation efforts would affect their income. As the survey results show, the respondents who are not willing to pay are low-income
farmers. Apart from that, this category of respondents also believed that conservation efforts had no significant effect on water availability.

No	Bids Value (Rp/m³)	Frequency (Responden)	Relative Frequency (Pfi)	WTP (Rp/m³)
1	400	44	0.44	176
2	300	18	0.18	54
3	200	21	0.21	42
4	Tidak Bersedia	17	0.17	-
Total	100	1	272	

A total of 44 respondents were willing to pay for environmental services at a water price of 400 IDR/m³, while 17 respondents were not willing to pay for or participate in the conservation efforts aimed at the Kuranji watershed. Therefore, the average value of WTP obtained in this study is 272 IDR/ m³ of water (Table 5). If it is assumed that the average use of the community is 22 m³/month (data from PDAM Kota Padang), the WTP value obtained is 5,984 IDR per month. This value is smaller when compared to the WTP value obtained by other researchers, which is 33,601.93 IDR in a month (RM 10.13) [11], as well as the WTP value that appears in several related studies carried out previously.

The difference in WTP value is due to the difference in the bids value offered. Previous researchers determined the auction value based on the applicable water bill in that country. Meanwhile, in this study, the determination of the bids value offered is based on the price of water that emerges from the land conservation simulation model. The price of water is therefore the result of calculating the cost of planning activities that will be carried out for watershed restoration according to the Regulation of the Director General of Natural Resources and Ecosystem Conservation No. P.8/KSDAE/SET/REN.2/10/2017 Regarding the Standard Activities and Costs for the Conservation of Natural Resources and Ecosystems in 2018. Based on this calculation, the total WTP (TWTP) value is 27,464,389.06 IDR/m³ (Table 6). This means that the emerging economic value is only 80%, or 284.68 ha, sufficient for conservation activities directed at critical land.

No	WTP (Rp/m³)	Respondents who are willing to pay (n)	TWTP (Rp/m³)
1	176	44	22,159,223,68
2	54	18	2,781,348,84
3	42	21	2,523,816,54
4	Unwilling to pay	17	-
Total	100	27,464,389,06	

Based on the results of the observations made, the majority of people who want to pay the highest price are in the downstream area of the watershed. The downstream communities of the watershed are users of the Drinking Water Company (PDAM) in the Central Region of Padang City, who directly benefit from the Kuranji watershed and experience the consequences of floods every year. With efforts to improve the condition of the upstream area of the Kuranji watershed, people in the downstream areas hope that the sustainability of water resources can be improved, and the potential for flood disasters can be gradually reduced.
4. Conclusion

In this study, it was determined that the estimated economic value of water yield in the Kuranji watershed is 272 IDR/m3 of water. This is supported by the fairly high desire of the community to pay for water resources in the Kuranji watershed, with a conservation value of 80% of critical land.

References

[1] Young, M.D., 2011. Water: Investing in natural capital. United Nations Environmental Programme Report.

[2] Kundu, S., Khare, D. and Mondal, A., 2017. Past, present and future land use changes and their impact on water balance. Journal of environmental management, 197, pp.582-596.

[3] Asdak, Chay. 2014. Hidrologi dan Pengelolaan Daerah Aliran Sungai. Yogyakarta : Gadjah Mada University Press.

[4] Ekaputra, 2007. Dinamika Hasil Air Daerah Aliran Sungai Ditinjau dari Keberlanjutan Sumber daya Air untuk Pertanian. [Disertasi]. Sekolah Pascasarjana Universitas Gadjah Mada, Yogyakarta.

[5] Afifah, Kurniasih Nur., Bambang, Azis Nur., dan Sudarno. 2013. Pengelolaan Jasa Lingkungan Air di Dusun Kerandangan Kabupaten Lombok Barat. Prosiding Seminar Nasional Pengelolaan Sumber daya Alam dan Lingkungan.

[6] Wardiman, D., Ekaputra, E.G. and Yonariza, Y., 2020. Simulasi Konservasi Lahan Kritis Terhadap Hasil Air (Water Yield) Daerah Aliran Sungai (Das) Kuranji Menggunakan Model Swat (Soil And Water Assessment Tool). Jurnal Teknologi Pertanian Andalas, 24(1), pp.76-84.

[7] Singarimbun, Masri dan Sofian Effendi. 1989. Metode Penelitian Survei. Jakarta : LP3ES.

[8] Venkatachalam, L. 2004. The Contingent Valuation Method : A Review. Environmental Impact Assessment Review 24 (2004) 89 – 124.

[9] Nilda. 2014. Analisis Perubahan Penggunaan Lahan dan Dampaknya terhadap Hasil Air di Derah Aliran Sungai Cisadane Hulu. [Tesis]. Denpasar. Program Pascasarjana Universitas Udayana.

[10] Pawitan, H., 2004. Perubahan penggunaan lahan dan pengaruhnya terhadap hidrologi Daerah Aliran Sungai. Laboratorium Hidrometeorologi FMIPA IPB, Bogor.

[11] Mohammed N, Shamsudin M. N, Ghani A. N. A, Radam A, Kaffâshi S, Rahim N. N. R. N. A, dan Bin Hassin N. H. 2012. Willingness to Pay Watershed Conservation at Hulu Langat, Selangor. Journal of Applied Sciences 12 (17) : 1859 – 1864, 2012 ISSN 1812 – 2654 / DOI : 10.3923/jas.2012.1859.1864.