Eradication of *Helicobacter Pylori* in Iran: A Review

Hafez Fakheri1, Mehdi Saberi Firoozi2, Zohreh Bari3,*

ABSTRACT

Helicobacter pylori (*H. pylori*) infection is one of the most common bacterial infections, affecting almost half of the world’s population. It is associated with peptic ulcer disease, gastric adenocarcinoma, and lymphoma. In Iran, the prevalence of *H. pylori* infection has been reported to be between 36% and 90% in different geographic regions.

Several studies have assessed the efficacy of different therapeutic options for first-line and second-line *H. pylori* eradication in Iran; however, the results are conflicting. Therefore, we conducted a review to evaluate different studies in order to select the best options and to provide recommendations for *H. pylori* eradication in Iran. Accordingly, we searched through PubMed to obtain relevant randomized clinical trials published in English language up to June 2017.

According to our study, among first-line eradication regimens, bismuth-based furazolidone- or clarithromycin-containing quadruple therapies, hybrid regimen, and concomitant therapy seem to be appropriate options. Also, 10- or 14-day clarithromycin-containing triple therapy can be used if local *H. pylori* resistance to clarithromycin is known to be less than 15%.

For second-line *H. pylori* eradication, bismuth-based quadruple therapies and 14-day levofloxacin-based triple therapy can be used, provided that antibiotics other than those used in the first-line regimen are used. Third-line *H. pylori* eradication regimens have not been addressed in Iranian studies. However, most guidelines recommend treatment according to the results of culture and susceptibility testing.

Although we limited our investigation to *H. pylori* eradication regimens in Iran, the results are transferrable to any region as long as the patterns of antibiotic resistance are the same.

KEYWORDS:

Helicobacter pylori, Eradication, Iran

Please cite this paper as:

Fakheri H, Saberi Firoozi M, Bari Z. Eradication of *Helicobacter Pylori* in Iran: A Review. *Middle East J Dig Dis* 2018;10:5-17. doi: 10.15171/mejdd.2017.84.

INTRODUCTION

Helicobacter pylori (*H. pylori*) infection is among the most common bacterial infections, affecting almost half of the world’s population.""
tissue lymphoma (MALT), long term non-steroidal anti-inflammatory drug (NSAID) therapy in patients with a history of peptic ulcer disease (PUD), patients receiving long term proton pump inhibitors (PPIs), unexplained iron deficiency anemia, idiopathic thrombocytopenic purpura, gastric cancer prevention in special situations (including first degree relatives or previous history of gastric neoplasia), gastric atrophy, chronic gastritis with dyspepsia, chronic gastritis with mucosal atrophy/erosions, and if requested by individual patient.

In order to treat H. pylori infection, antibiotic resistance is the most important issue. During the previous 20 years, resistance of H. pylori to antibiotics has increased in different parts of Iran (table 1). This is mainly due to common use of antibiotics in this country. Therefore, the most ideal option is to treat according to the results of culture and susceptibility tests. However, culture is not easily available.

In this article we have reviewed the efficacy of different first-line and second-line H. pylori eradication therapies in Iran.

Data Collection Method:

The present narrative review includes randomized controlled trials related to H. pylori eradication in Iran. In order to find the relevant papers, we searched through PubMed website for studies published in English language up to June 2017 with the following key words: (“Helicobacter pylori” or “H. pylori”), and (Iran), and (“eradication” or “therapy” or “treatment”). Two gastroenterologists selected relevant studies after reviewing their abstracts. Since the number of second-line H. pylori eradication regimens were very few, non-randomized clinical trials were also included for the assessments of second-line therapies.

Table 1: Resistance pattern of H. pylori to different antibiotics during the previous years in different parts of Iran

City	Year	Number	Method	Amox.	Met.	Tetra.	Cla.	Other	MDR	
Tehran	1997 - 2000	70	DDM	1.4	33	0	1.4			
Hamadan	2001 - 4	135	DDM	3.7	36.3	0.7	3.7			
Tehran	2005	120	DDM	1.6	57.5	0	16.7			
Tehran	2005 - 08	160	DDM	7.3	55.6	38.1	7.3	Fur: 4.5		
Mashhad	2008	124	DDM	9.8	64.6	0	17.1			
Tehran	2010	42	DDM	2.4	40.5	4.8	14.3	Cip: 2.4		
Sari	2011	197	DDM	23.9	65.5	37	45	Fur: 61	Dual Met + Cla: 22.6	
Sari	2012	10	78	9.3	34			Levo: 5.3	Moxi: 4.6	
Tabriz	2012	112	DDM	28	76.8	18.6	14.3	Cip: 33	Rif: 28.6	
Tehran	2013	153	-	7.2	63.8	-	26.5			
Ilam	2013	50	DDM	6	44	6	16	Azith: 4		
North of Iran	2015	20	DDM	5	57	27	24	Fur: 38	Azith: 19	
Kashan	2015	95	E test					33.7		
Isfahan	2013	78	DDM/E	6	55		15			
Mashhad	2013	124	DDM	9.8	64	0	17			
Tehran	2015	111	-	15	51	32		Cip: 30	Rif: 14	
Systematic review	2015	21 Studies		16	61	12	22	Cip: 21	Levo: 5	Fur: 21
Shiraz	2016	100	E test				20			
Sari	2016	30	DDM	10	63.3	6.6	16.6	Levo: 3.3		

Amox: Amoxicillin, Met: Metronidazole, Tetra: Tetracycline, Cla: Clarithromycin, Fur: Furazolidone, Cip: Ciprofloxacin, Levo: Levofloxacin, Azith: Azithromycin, Moxi: Moxifloxacin, Rif: Rifampin, MDR: Multi-drug resistance, DDM: disk diffusion method
Data including the kind of therapy, number of patients, indications for treatment, intention to treat, and per-protocol *H. pylori* eradication rates were recorded in data gathering forms.

First-line *H. pylori* Eradication Regimens:

The ideal first-line *H. pylori* therapy is the regimen with more than 90% per-protocol eradication rate. However, according to Toronto Consensus Report, achieving > 85% eradication rate can also be considered appropriate.23

Clarithromycin-Containing Triple Therapy:

Clarithromycin-containing triple therapy consisted of clarithromycin plus a proton pump inhibitor (PPI), and amoxicillin or metronidazole is considered as the standard triple therapy. According to Maas-tricht V and Toronto Consensus Reports, standard triple therapy is suitable only in countries with less than 15% *H. pylori* resistance to clarithromycin.4,23

In Iran, 14 studies have evaluated the efficacy of clarithromycin-containing triple therapy, but the durations of regimens were different. Three studies evaluated 7-day therapy and only one could achieve ideal eradication rate.24-26 Also, five studies assessed 10-day triple therapy. Four of these studies reported > 90% *H. pylori* eradication rate.27-31 Furthermore, five other studies evaluated the efficacy of 14-day standard therapy, of them three showed appropriate eradication of *H. pylori*,(32-36 (table 2). Accordingly, although *H. pylori* resistance to clarithromycin is increasing in our country, 10-day and 14-day standard triple therapies still seem to be appropriate options for first-line *H. pylori* eradication in Iran. In fact, the effects of antibiotics in vivo are not the same as those observed in vitro. Furthermore, low gastric pH may facilitate antibiotic activity. Most antibiotics have the most activity at neutral pH; however, clarithromycin especially has the most activity at higher pH (around 8). Thus, clarithromycin is the only antibiotic that benefits from a high pH caused by PPI.37

Table 2: The efficacy of standard triple therapy with different durations of administration

Year	City	Therapy	Treatment duration (days)	Number of patients.	Underlying disease	Eradication assessment method.	Duration from therapy (week)	Per-protocol eradication rate
2003	Ardabi24	OAC	7	45	Gastritis	UBT	8	42
2006	Tehran25	OAC	7	120	*H. pylori (+)*	UBT	6	91.8
2012	Kerman26	OPC	7	34	*H. pylori (+)*	?	?	73
2010	Rasht27	OAC	10	107	NUD	Stool Antigen	8	90.7
2010	Tehran28	OAC	10	104	PUD	UBT	8	90.4
2013	Ghom29	OAC	10	76	*H. pylori (+)*	UBT	6	83
2013	Ahvaz20	OAC	10	98	*H. pylori (+)*	UBT	6	80.4
2013	Ahvaz31	OAC	10	100	*H. pylori (+)*	UBT	8	91.8
2007	Kermashah32	OAC (C: half dose) OAC 14	53	*H. pylori (+)*	UBT	6	88	
2009	Yazd35	OAC	14	53	*H. pylori (+)*	UBT	4 - 6	70
2013	Shiraz34	OAC	14	110	PUD	UBT	6	90.8
2014	Tehran33	OAC	14	39	GU	Biopsy	8	82.9
2015	Tehran36	OAC	14	33	*H. pylori (+)	Stool Antigen	4	63.6

O: Omeprazole, L: Lansoprazole, P: Pantoprazole, E: Esomeprazole, Amox: Amoxicillin, Cla: Clarithromycin, GU: Gastric ulcer, PUD: Peptic ulcer disease, NUD: Non-ulcer dyspepsia, UBT: Urea breath test
Furazolidone-Containing Triple Therapy:

Furazolidone is an alternative to metronidazole in areas with high *H. pylori* resistance to metronidazole. Seven studies have evaluated furazolidone-containing triple therapies in Iran (including a PPI + amoxicillin + furazolidone). One of the earliest studies had compared the efficacy of 4-day versus 7-day furazolidone-based triple therapy. But both regimens showed very low per-protocol *H. pylori* eradication rates (20% vs. 29%, respectively). During the previous 3 years, three other studies evaluated the efficacy of 10-day furazolidone-based triple therapies. Among these studies, those with higher doses of furazolidone (200 mg three times a day vs. 200 mg twice a day or daily) could achieve optimal eradication rates.\(^{30,38,39}\)

Furthermore, three other studies assessed the efficacy of 14-day furazolidone-based triple therapies, but only one study could achieve appropriate eradication rate.\(^{40-42}\) Administration of low doses of furazolidone seems to be the main reason for failure of the mentioned regimens (table 3).

Although regimens with higher doses of furazolidone could achieve acceptable eradication rates, adverse reactions to the treatment increased with higher doses of the drug. Therefore, this regimen cannot be suggested as a suitable option.

Bismuth-Metronidazole Quadruple Therapy:

Up to now, 12 studies have evaluated the efficacy of 10-day and 14-day bismuth plus metronidazole-containing quadruple therapies in Iran.\(^{25,27,28,33,43,49}\) However, only three of these studies could achieve acceptable *H. pylori* eradication rates (table 4).

According to Maastricht V Consensus Report, in countries with low or even high dual resistance to clarithromycin and metronidazole, bismuth-containing quadruple therapies can be used as suitable first-line options.\(^4\) However, the results of Iranian studies are not concordant with this recommendation. Searching through the mentioned studies shows that administration of sub-optimal doses of bismuth or metronidazole is probably the main reason for failure of this regimen in Iranian studies. On the other hand, *H. pylori* resistance to metronidazole has increased from 33% to 76.8% during the previous 10 years in Iran.\(^{5,13,22}\) This may also have contributed to the failure of this regimen in the country.

Table 3: The efficacy of furazolidone-containing triple therapy with different durations of administration

Year	City	Therapy	Treatment duration (days)	Number of patients.	Underlying disease	Eradication assessment method.	Duration from therapy (week)	Per-protocol eradication rate
2003	Ardabi\(^{2}\)	OFT OFT (T: 200 BID F: 500 BID)	4 7	41 42	Gastritis	UBT	8	20.6 29.4
2014	Sari\(^{19}\)	OAF OAF (F: 200 TDS)	10 10	105 105	PUD	UBT	8	81 89
2015	Ahvaz\(^{20}\)	OCipF OCipF (F: 100 BID)	10 10	100 100	*H. pylori* (+)	UBT	8	62
2015	Sari\(^{19}\)	OAF OAF (F: 200 TDS)	10 10	116 116	PUD	UBT	8	90.5
2003	Yazd\(^{21}\)	OAF OAF (F: 200 BID) OAF (F: 50 BID)	14 14	63 61	DU	Biopsy	6	88.9 67.9
2004	Sari\(^{20}\)	OAF OAF (F: 200 BID)	14 14	50 50	DU	UBT	12	54
2011	Ghom\(^{21}\)	OAF OAF (F: 200 BID)	14 14	43 43	PUD	UBT	12	61

O: Omeprazole, Amox: Amoxicillin, Tetra: Tetracycline, Fur: Furazolidone, DU: Duodenal ulcer, PUD: Peptic ulcer disease, NUD: Non-ulcer dyspepsia, UBT: Urea breath test, BID: twice daily, TDS: three times daily
Bismuth-Furazolidone Quadruple Therapies:

Furazolidone has been used in combination with bismuth in several studies in Iran. The first study was conducted in 2007 by Daghaghzadeh and colleagues. They evaluated the efficacy of 7-day bismuth-furazolidone quadruple therapy on 87 patients and reported 84.8% per-protocol eradication rate.

Further studies evaluated the efficacy of the same regimen with longer duration of therapy. Two studies assessed the efficacy of 10-day bismuth plus furazolidone-containing quadruple therapy, which both reported acceptable eradication rates.\cite{28,38} However, in one of these two studies, 13% of the patients reported severe adverse effects of the therapy\cite{51} (table 5).

Sequential Therapy:

Sequential therapy is a novel \textit{H. pylori} eradication regimen, which contains a PPI plus amoxicillin during the first half of therapy and the PPI + clarithromycin + metronidazole or tinidazole just during the second half. Three studies have evaluated the efficacy of sequential therapies in Iran,\cite{27,55,56} but only one study reported acceptable \textit{H. pylori} eradication rate,\cite{26} (table 6). On the other hand, 6% of the patients in the latter study reported severe adverse effects of the drugs. These results are in concordance

Table 4: The efficacy of bismuth and metronidazole-containing quadruple therapy for \textit{H. pylori} eradication

Year	City	Therapy	Treatment duration (days)	Number of patients	Underlying disease	Eradication assessment method	Duration from therapy (week)	Per-protocol eradication rate
2006	Tehran	OABM (M: 500 BID) OSBM (M: 500 BID)	10	120	\textit{H. pylori} (+)	UBT	6	85.8 92.8
2000	Tehran	RABM	14	53	DU	UBT	4	52
2001	Tehran	RTBM	14	73	DU	UBT	8	73
2006	Semnan	OABM (M: 500 BID)	14	63	\textit{H. pylori} (+)	UBT	4	75.7
2007	Tehran	OABM (M: 500 BID)	14	107	PUD	UBT	8	83.1
2009	Tehran	OABM (M: 500 BID)	14	30	\textit{H. pylori} (+)	UBT	8	69
2010	Rash	OABM (M: 500 BID)	14	107	NUD	Stool Antigen	8	85.7
2012	Tehran	OABM (M: 500 BID)	14	27	\textit{H. pylori} (+)	UBT	4	67.8
2013	Tehran	OABM (M: 500 BID)	14	110	PUD	UBT	6	56
2013	Bandar Abas	OABM (A: 500 TID) (M: 250 TID)	14	100	\textit{H. pylori} (+)	UBT	4	82.3
2015	Ahvaz	OABM (M: 500 BID) OTBM (T: 500 BID)	14	100	\textit{H. pylori} (+)	UBT	8	77.7 84.4

O: Omeprazole, Amox: Amoxicillin, B: Bismuth subsulfate, Tetra: Tetracycline, M: Metronidazole, S: Ampi-Sulbactam, DU: Duodenal ulcer, PUD: peptic ulcer disease, NUD: non-ulcer dyspepsia, UBT: urease breath test BID: twice daily, TID: three times daily
with the results of a meta-analysis by Gatta and co-workers who included 5666 patients to receive sequential therapy. The overall per-protocol *H. pylori* eradication rate by the mentioned meta-analysis was 84.3%, which was not ideal for first-line *H. pylori* eradication.57

Table 5: The efficacy of Bismuth plus Furazolidone- or Clarithromycin-containing quadruple therapies for *H. pylori* eradication

Year	City	Therapy	Treatment duration (days)	Number of patients.	Underlying disease	Eradication assessment method.	Duration from therapy (week)	Per-protocol eradication rate
2007	Isfahan50	OABF	7	78	*H. pylori* (+)	UBT	4	84.8
2010	Tehran51	OABM-F	10 (M: 5, F: 5, C: 5)	103	PUD	UBT	8	91.3 88.7
2015	Sari52	OABF	10 (M: 5, F: 5)	120	PUD	UBT	8	86.6 82.5
2000	Tehran53	RABF	14	53	DU	UBT	4	82
2001	Tehran54	OABF	14	63	DU	UBT	12	90
2004	Sari55	OABF (F: 100 BID)	14	50	DU	UBT	12	72
2007	Isfahan56	OABF	14	78	*H. pylori* (+)	UBT	4	82.6
2007	Tehran57	OABF (OABM-F)	14 (F: 7, M: 7)	104	PUD	UBT	8	95.2 95.3
2009	Shiraz58	OABF	14	69	*H. pylori* (+)	UBT	4-6	56
2011	Ghom59	OABF	14	43	*H. pylori* (+)	UBT	12	85.3
2012	Sari60	OABF (F: 7)	14	80	PUD	UBT	12	90.2
2011	Sari61	OABF	14	60	*H. pylori* (+)	UBT	8	88.7
2015	Tehran62	OABC	10	60	*H. pylori* (+)	UBT	8	65.2
2001	Tehran63	OBCT (C: 250 BID)	14	73	DU	UBT	8	88
2001	Tehran64	OABC	14	55	DU	UBT	12	90
2013	Isfahan65	OABC + probiotic	14	90	PUD	UBT	4	82.1 84.4

O: Omeprazole, R: Ranitidine, Amox: Amoxicillin, B: Bismuth subcitrate, Tetra: Tetracycline, M: Metronidazole, C: Clarithromycin, F: Furazolidone, DU: Duodenal ulcer, PUD: Peptic ulcer disease, UBT: Urea breath test, BID: twice daily

Table 6: The efficacy of non-bismuth quadruple therapies for *H. pylori* eradication

Year	City	Therapy	Treatment duration (days)	Number of patients.	Underlying disease	Eradication assessment method.	Duration from therapy (week)	Per-protocol eradication rate
2010	Rasht66	Sequential	14	107	NUD	Stool Antigen	8	81
2012	Sari67	Sequential	14	137	PUD	UBT	8	89.1
2013	Sari68	Sequential	14	199	PUD	UBT	8	79.9
2013	Sari69	Hybrid	14	197	PUD	UBT	8	92.9
2015	Sari70	Hybrid	10 (14)	124	PUD	UBT	8	83.8 92.8
2016	Sari71	Hybrid	14	100	PUD	UBT	8	89.3
2016	Sari72	Concomitant	10	100	PUD	UBT	8	85.9

PUD: Peptic ulcer disease, NUD: Non-ulcer dyspepsia, UBT: Urea breath test
Hybrid Therapy:
Hybrid therapy is another novel *H. pylori* eradication regimen consisted of a PPI + amoxicillin during the first half of the treatment and concurrent administration of PPI + amoxicillin + clarithromycin + metronidazole during the second half of the treatment.

Up to now, only three studies have evaluated the effects of hybrid regimen for eradication of *H. pylori* in Iran and all have achieved acceptable eradication rates,\(^{55,58,59}\) (table 6). Also, data from most other countries have shown ideal *H. pylori* eradication rates by hybrid regimen.\(^{60}\) The success of this regimen seems to be related to concurrent administration of three antibiotics in the second half of treatment course.

Concomitant Therapy:
Another type of non-bismuth quadruple regimen is the concomitant therapy. It includes concurrent administration of a PPI + amoxicillin + clarithromycin + metronidazole during the entire treatment protocol.

Up to now, only one study has evaluated the efficacy of concomitant therapy in Iran. In 2016, Alhooei and colleagues evaluated the efficacy of 10-day concomitant therapy on 126 patients with peptic ulcer disease. They reported 85.9% per-protocol eradication rate, which is almost suitable.\(^{59}\) Also, studies from other countries have mostly shown ideal *H. pylori* eradication by concomitant therapy.\(^{61-63}\) According to Maastricht V Consensus Report, concomitant therapy is the most effective non-bismuth quadruple therapy and can be used if the prevalence of dual resistant strains to clarithromycin and metronidazole is less than 15%. Furthermore, the recommended duration of concomitant therapy is 14 days, unless shorter durations of therapies are proven to be effective locally.\(^{26}\) Accordingly, further studies with longer duration of treatment by concomitant regimen may achieve higher eradication rates in Iran.

Quinolone-Containing Regimens:
Up to now, only three studies have evaluated the efficacy of fluoroquinolone-containing regimens for *H. pylori* eradication; however, all of them reported sub-optimal eradication rates. In 2010, Aminian and co-workers assessed the effects of a 14-day triple therapy in which ciprofloxacin had been administered just during the first 7 days. They reported 70% per-protocol eradication rate.\(^{27}\) Another study was conducted by Karbasi and colleagues in 2013. They divided 60 patients with *H. pylori* into two groups to receive pantoprazole-bismuth-ciprofloxacin with or without N-acetyl cysteine. Per-protocol eradication rates were 60.7% and 70%, respectively.\(^{64}\) Also, in 2015, Masoodi and others evaluated the effects of 10-day bismuth-based gemifloxacin-containing quadruple therapy. They reported 72.7% per-protocol eradication rate.\(^{53}\)

In Iran, the rates of *H. pylori* resistance to fluoroquinolones, especially to ciprofloxacin has increased dramatically during the previous 5 years; playing an important role in the failure of this regimen.\(^{10,19}\)

Azithromycin-Containing Therapy:
During the previous years, four studies have evaluated the efficacy of azithromycin-containing regimens for *H. pylori* eradication, but none of these regimens could achieve acceptable eradication rates.\(^{29,35,44,47}\) In 2006, Mousavi and colleagues assessed the efficacy of bismuth-based azithromycin-containing regimen in Semnan.\(^{47}\) Also, in 2009, a subsequent study evaluated the efficacy of the same regimen in Tehran. The *H. pylori* eradication rates were 78% and 68%, respectively.\(^{44}\) On the other hand, two recent studies evaluated the effects of azithromycin-containing triple therapy. The per-protocol eradication rates were 75% and 77%, respectively.\(^{29,35}\) Accordingly, azithromycin-containing therapies do not seem to be ideal options for first-line *H. pylori* eradication in Iran.

Treatment Failure:
As we have previously described,\(^{65}\) failure of *H. pylori* treatment depends on multiple factors related to both the bacterium and the host. In fact, the effects of antibiotics in vivo are not the same as those observed in vitro, because antibiotics must diffuse to the gastric mucosal layer where the bacteria reside. Moreover, low gastric pH may compromise antibiotic
activity. Most antibiotics have the greatest activity at neutral pH; nevertheless, clarithromycin has especially the greatest activity at higher pH (around 8) and metronidazole has the greatest activity at lower pH (around 6). Thus, clarithromycin is the only antibiotic that benefits from a high pH caused by PPI.

Furthermore, sometimes *H. pylori* transforms into coccoid shape, which keeps it from the effects of antibiotics. Also, some strains, including Cag A-negative strains and those carrying Vac As2m2 allele, show resistance to antibiotics. However, the most important factor influencing response to treatment is primary resistance to antibiotics, which is increasing all over the world due to extensive use of antibiotics.

Among host factors, compliance to treatment plays an important role. Patients may not completely adhere to treatment due to adverse effects or combination of multiple drugs in multiple daily doses. Besides, the patient’s underlying disease also affects the *H. pylori* eradication rate. Some studies have shown that patients with non-ulcer dyspepsia have lower eradication rates compared with those with PUD.

Since low gastric pH lowers the effects of antibiotics, PPIs are administered to increase gastric pH. Most PPIs are metabolized by cytochrome P450 in the liver. Therefore, patients with extensive metabolizing do not attain sufficient PPI levels to achieve optimal pH level for antibiotic effects. Smoking is also another factor influencing the response to treatment. It reduces gastric mucosal blood flow and increases gastric acid secretion; therefore lowering antibiotics activity.

All the mentioned factors should be kept in mind in patients with treatment failure.

Second-Line Treatment Regimens:

The ideal second-line *H. pylori* eradication therapy is the regimen that can achieve > 80% per-protocol eradication rate. Few studies have addressed second-line therapies in Iran (table 7).

- In 2001, Sotoudehmanesh and colleagues evaluated the effects of 14-day OTBF (O: omeprazole, T: tetracycline, B: bismuth, F: furazolidone) on 80 patients who had previously failed treatment with 2 weeks of omeprazole + amoxicillin + bismuth + metronidazole (OABM) therapy. The per-protocol eradication rate was 90%.

- In 2003, Ebrahimi-Daryani and co-workers conducted a study to evaluate the effects of 14-day bismuth- and furazolidone containing quadruple therapy on 90 patients who had failed treatment with metronidazole-based quadruple therapy. The per-protocol eradication rate was 78.7%.

- In 2010, 220 patients who had failed treatment with OABM were randomized to receive either OABC (C: clarithromycin) or OAzBOf (Az: azithromycin, Of: ofloxacin). Per-protocol eradication rates were 74.7% and 86.7%, respectively.

Table 7: The efficacy of second line therapies for *H. pylori* eradication

Year	City	First Regimen	Second Regimen	Number of Patients	Per-protocol Eradication Rate
2001	Tehran	OABM	OTBF	80	90
2003	Tehran	OABM	OABF	90	78.7
2010	Isfahan	OABM	OABC OAzBOf	110 110	74.7 86.7
2012	Sari	Sequential	OABF (F: 7days)	36	82.9
2015	Rasht	OABM	OBTMOf OABCT	104 104	86.7 76
2016	Sari	OABM OABF	OABC OABC	32 31	87 82.7
2016	Sari	Non-bismuth clarithromycin-containing	PAL	61	91.8

Note: O: Omeprazole, Amox: Amoxicillin, B: Bismuth subcitrate, Tetra: Tetracycline, M: Metronidazole, C: Clarithromycin, F: Furazolidone, Of: Ofloxacin, Az: Azithromycin.
In 2012, Fakheri and colleagues investigated the efficacy of a modified bismuth- and furazolidone-containing 14-day quadruple therapy after failure with classic sequential therapy. The regimen contained furazolidone only during the first 7 days. They achieved 82.9% per-protocol eradication rate.

In 2015, Mansour Ghanaei and others investigated the effects of two different 7-day quintuple therapies on 208 patients who had failed previous therapy with OABM regimen. The patients were randomly given OBTMO or OABCTi (Ti: tinidazole). The per-protocol eradication rates were 86.7% and 76%, respectively.

In 2016, Fakheri and colleagues assessed the efficacy of 14-day bismuth- and clarithromycin-containing quadruple therapy on two groups of patients who had failed previous therapy with OABF or OABM regimens. The eradication rates were 82.7% and 87%, respectively.

Also, in 2017, Fakheri and co-workers evaluated the efficacy of 14-day levofloxacin-based triple therapy. They achieved 91.8% per-protocol eradication rate. Of note, the frequency of severe adverse effects was very low (3.2%).

According to Maastricht V Consensus Report, either a bismuth quadruple therapy or a fluoroquinolone-containing triple or quadruple therapy are recommended after failure of standard triple therapy or even after failure of a non-bismuth quadruple regimen. The results of studies performed in Iran are in concordance with the statements of the Maastricht V Consensus Report.

Third-Line Treatment Regimens:

In Iran, no study has dealt with patients who have failed second-line *H. pylori* eradication regimens. According to Maastricht V Consensus Report, after failure of second-line treatment, regimens should be chosen according to the results of culture and susceptibility testing or molecular determination of genotype resistance. However, if culture is not available, fluoroquinolone-containing regimen is

Table 8: Recommended treatment regimens for *Helicobacter pylori* eradication in Iran

First-line therapeutic options:
- 10- or 14-day clarithromycin-containing triple therapy*
- PPI twice daily + amoxicillin 1g BD + clarithromycin 500 mg BD
- 10-day bismuth-based furazolidone-containing quadruple therapy
- PPI BD + amoxicillin 1g BD + bismuth 240 mg BD + furazolidone 200 mg BD
- PPI BD + amoxicillin 1g BD + bismuth 240 mg BD for 10 days; metronidazole 500 mg BD just over the first 5 days and furazolidone 200 mg BD over the second 5 days
- 14-day bismuth-based clarithromycin-containing quadruple therapy
- PPI twice daily + amoxicillin 1g BD + bismuth 240 mg BD + clarithromycin 500 mg BD
- 14-day hybrid therapy:
- PPI BD and amoxicillin 1 g BD for 14 days and clarithromycin 500 mg BD + tinidazole 500 mg BD just over the last 7 days
- 10-day concomitant regimen:
- PPI twice daily + amoxicillin 1 g BD + clarithromycin 500 mg BD+ metronidazole 500 mg BD for 10 days

Second-line therapeutic options:**
- 14-day bismuth-based quadruple therapies
- PPI BD + amoxicillin 1 g BD + bismuth 240 mg BD + furazolidone 200 mg BD#
- PPI BD + amoxicillin 1 g BD + bismuth 240 mg BD + clarithromycin 500 mg BD
- PPI BD + tetracycline 500 mg BD + bismuth 240 mg BD + furazolidone 200mg BD
- 14-day levofloxacin-based triple therapy
- PPI BD + amoxicillin 1 g BD + levofloxacin 500 mg BD

Third-line therapeutic options:
- The optimal regimen must be chosen according to the pattern of antibiotic susceptibility of *H. pylori* &

* In case of known *H. pylori* clarithromycin resistance < 15%.
** If antibiotics other than those used in the first-line regimen are used.
Furazolidone can be used only during the first 7 days.
& Rifabutin-containing triple therapy may also be a suitable option.
recommended after failure of a second-line treatment with bismuth-containing quadruple therapy. However, in countries with a known high fluoroquinolones resistance, or in case of failure with second-line fluoroquinolone-containing therapies, a combination of bismuth with different antibiotics or a rifabutin-containing rescue therapy should be considered.4

Limitations:
The present narrative review has some limitations, including the unavailability of data about the results of *H. pylori* culture in each study, heterogeneity of studies in the number of patients, doses of antibiotics, duration of therapies, kinds of PPIs, and the underlying peptic disorders. These could lead to discrepancies in eradication rates, because higher doses and longer duration of therapy can increase the success rates and the underlying peptic disorder would influence the rate of *H. pylori* eradication. Furthermore, our study was restricted to English reports.

In conclusion, according to our study, among first-line eradication options, bismuth-based furazolidone- or clarithromycin-containing quadruple therapies, hybrid regimen, and concomitant therapy seem to be appropriate options. Also, 10- or 14-day clarithromycin-containing triple therapy can be used if local *H. pylori* resistance to clarithromycin is known to be less than 15% (table 8).

For second-line *H. pylori* eradication, bismuth-based quadruple therapies and 14-day levofloxacin-based triple therapy seem to be suitable options, provided that antibiotics other than those had been used in the first-line regimen. Third-line *H. pylori* eradication regimens have not been addressed in Iranian studies. However, most guidelines recommend treatment according to the results of culture and susceptibility testing (table 8).

Although we limited our investigation to *H. pylori* eradication regimens in Iran, the results are transferable to any region as long as the patterns of antibiotic resistance are the same.

ETHICAL APPROVAL
There is nothing to be declared.

CONFLICT OF INTEREST
The author declares no conflict of interest related to this work.

REFERENCES
1. Go MF. Review article: natural history and epidemiology of *Helicobacter pylori* infection. Aliment Pharmacol Ther 2002;16 Suppl 1:3-15. doi: 10.1046/j.1365-2036.2002.0160x1003.x.
2. Moosazadeh M, Lankarani KB, Afshari M. Meta-analysis of the Prevalence of Helicobacter Pylori Infection among Children and Adults of Iran. *Int J Prev Med* 2016;7:48. doi: 10.4103/2008-7802.177893.
3. Malekzadeh R, Sotoudeh M, Derakhshan MH, Mikaeli J, Yazdanbod A, Merat S, et al. Prevalence of gastric precancerous lesions in Ardabil, a high incidence province for gastric adenocarcinoma in the northwest of Iran. *J Clin Pathol* 2004;57:37-42. doi: 10.1136/jcp.57.1.37.
4. Malfertheiner P, Megraud F, O’Morain CA, Gisbert JP, Kuipers EJ, Axon AT, et al. Management of *Helicobacter pylori* infection—the Maastricht V/Florence Consensus Report. *Gut* 2017;66:6-30. doi: 10.1136/gutjnl-2016-312288.
5. Safaralizadeh R, Siavoshi F, Malekzadeh R, Akbari MR, Derakhshan MH, Sohrabi MR, et al. Antimicrobial effectiveness of furazolidone against metronidazole-resistant strains of *Helicobacter pylori*. *East Mediterr Health J* 2006;12:286-93.
6. Majlesi A, Sayedin Khorasani M, Khalilian AR, Aslani MM, Jaefari M, Alikhani MY. A. Antibiotic Susceptibility of *Helicobacter pylori* Clinical Isolates in Hamadan, West of Iran. *Int J Enteric Pathog* 2013;1:e9344. doi: 10.17795/ijep9344.
7. Mohammad M, Doroud D, Mohajerani N, Massarrat S. *Helicobacter pylori* antibiotic resistance in Iran. *World J Gastroenterol* 2005;11:6009-13. doi: 10.3748/wjg.v11.i38.6009.
8. Siavoshi F, Sanice P, Latifi-Navid S, Massarrat S, Sheykholeslami A. Increase in resistance rates of *H. pylori* isolates to metronidazole and tetracycline—comparison of three-year studies. *Arch Iran Med* 2010;13:177-87.
9. Zendedel A, Moradimoghdam F, Almasi V, Zivarifar H. Antibiotic resistance of *Helicobacter pylori* in Mashhad, Iran. *J Pak Med Assoc* 2013;63:336-9.
10. Shokrzadeh L, Jafari F, Dabiri H, Baghaei K, Zojaji H, Alizadeh AH, et al. Antibiotic susceptibility profile of *Helicobacter pylori* isolated from the dyspepsia patients in Tehran, Iran. *Saudi J Gastroenterol* 2011;17:261-4. doi: 10.4103/1319-3767.82581.
11. Abadi AT, Taghvaei T, Mobarez AM, Carpenter BM, Merrell DS. Frequency of antibiotic resistance of *Helicobacter pylori* strains isolated from the northern population of Iran. *J Microbiol* 2011;49:987-93. doi: 10.1007/s12275-011-1170-6.
12. Talebi Bezmin Abadi A, Ghasemzadeh A, Taghvaei T, Mobarez AM. Primary resistance of *Helicobacter pylori*
13. Milani M, Ghotasrou L, Akhi MT, Naheiri MR, Hasani A, Somi MH, et al. The status of antimicrobial resistance of Helicobacter pylori in Eastern Azerbaijan, Iran: comparative study according to demographics. J Infect Chemother 2012;18:848-52. doi: 10.1007/s10156-012-0425-4.

14. Siavoshi F, Safari F, Doratotaj D, Khatami GR, Fallahi GH, Mirnaseri MM. Antimicrobial resistance of Helicobacter pylori isolates from Iranian adults and children. Arch Iran Med 2006;9:308-14.

15. Sadeghifard N, Seidnazari T, Ghafourian S, Soleimani M, Maleki A, Qomi MA, et al. Survey in Iran of clarithromycin resistance in Helicobacter pylori isolates by PCR-RFLP. Southeast Asian J Trop Med Public Health 2013;44:89-95.

16. Maleknejad S, Mojtabehi A, Safaei-Asl A, Taghavi Z, Kazemnejad E. Primary Antibiotic Resistance to Helicobacter pylori Strains Isolated From Children in Northern Iran: A Single Center Study. Iran J Pediatr 2015;25:e2661. doi: 10.5812/ijp.2661.

17. Keshavarz Azizi Raftar S, Moniri R, Saffari M, Razavi Zadeh M, Arj A, Mousavi SG, et al. The Helicobacter pylori resistance rate to clarithromycin in Iran. Microb Drug Resist 2015;21:69-73. doi: 10.1089/mdr.2014.0104.

18. Khademi F, Faghi J, Poursina F, Esfahani BN, Moghim S, Fazeli H, et al. Resistance pattern of Helicobacter pylori strains to clarithromycin, metronidazole, and amoxicillin in Isfahan, Iran. J Res Med Sci 2013;18:1056-60.

19. Shokrzadeh L, Alebouyeh M, Mirzaei T, Farzi N, Zali MR. Prevalence of multiple drug-resistant Helicobacter pylori strains among patients with different gastric disorders in Iran. Microb Drug Resist 2015;21:105-10. doi: 10.1089/mdr.2014.0081.

20. Khademi F, Poursina F, Hosseini E, Akbari M, Safaei HG. Helicobacter pylori in Iran: A systematic review on the antibiotic resistance. Iran J Basic Med Sci 2015;18:2-7.

21. Khashhi R, Dara M, Bazargani A, Bagheri Lankarani K, Taghavi A, Moeini M, et al. High rate of A2142G point mutation associated with clarithromycin resistance among Iranian Helicobacter pylori clinical isolates. APMB 2016;124:787-93. doi: 10.1111/apm.12567.

22. Moradi Golrokh M, Fakheri H, Haghshenas MR, M. A. The determination of antibiotic resistance of Helicobacter pylori isolated from patients living in north of Iran (Sari). Univ J Microbiol Res 2016;4:6-10.

23. Fallone CA, Chiba N, van Zanten SV, Fischbach L, Gisbert JP, Hunt RH, et al. The Toronto Consensus for the Treatment of Helicobacter pylori Infection in Adults. Gastroenterology 2016;151:51-69 e14. doi: 10.1053/j.gastro.2016.04.006.

24. Malekzadeh R, Merat S, Derakhshan MH, Siavoshi F, Yazdanbod A, Mikaeli J, et al. Low Helicobacter pylori eradication rates with 4- and 7-day regimens in an Iranian population. J Gastroenterol Hepatol 2003;18:13-7. doi: 10.1046/j.1440-1746.2003.02897.x.

25. Mirbagheri SA, Hasibi M, Abouzari M, Rashidi A. Triple, standard quadruple and ampicillin-sulbactam-based quadruple therapies for H. pylori eradication: a comparative three-armed randomized clinical trial. World J Gastroenterol 2006;12:4888-91. doi: 10.3748/wjg.v12.i30.4888.

26. Mirzaei V, Rezahosseini O. Randomized control trial: Comparison of Triple Therapy plus Probiotic Yogurt vs. Standard Triple Therapy on Helicobacter Pylori Eradication. Iran Red Crescent Med J 2012;14:657-66.

27. Aminian K, Farsad F, Ghanbari A, Fakhrreih S, Hasheminassab SM. A randomized trial comparing four Helicobacter pylori eradication regimens: standard triple therapy, ciprofloxacin based triple therapy, quadruple and sequential therapy. Trop Gastroenterol 2010;31:303-7.

28. Riahizadeh S, Malekzadeh R, Agah S, Zendehdel N, Sotoudehmanesh R, Ebrahimi-Darani N, et al. Sequential metronidazole-furazolidone or clarithromycin-furazolidone compared to clarithromycin-based quadruple regimens for the eradication of Helicobacter pylori in peptic ulcer disease: a double-blind randomized controlled trial. Helicobacter 2010;15:497-504. doi: 10.1111/j.1523-5378.2010.00798.x.

29. Sarkeshikian SS, Iranikah A, Ghadir MR. Azithromycin based triple therapy versus standard clarithromycin based triple therapy in eradication of Helicobacter pylori infection in Iran: a randomized controlled clinical trial. Turk J Gastroenterol 2013;24:10-4.

30. Masjedizadeh A, Zaeemzadeh N, Mard SA, Vanani GS. Comparing the efficacy of four different protocols for eradicating Helicobacter pylori infection in Ahvaz, southwest Iran. Prz Gastroenterol 2015;10:94-9. doi: 10.5114/pg.2015.49001.

31. Masjedizadeh A, Hajiani E, Hashemi J, Shayesteh A, S. Prospective Randomized Trial of Esomeprazole versus Lansoprazole and Omeprazole Based Triple Therapy for H. pylori Eradication in an Iranian Population. Shiraz E Med J 2012;13:15-168.

32. Keshavarz AA, Bashiri H, Rahbar M. Omeprazole-based triple therapy with low-versus high-dose of clarithromycin plus amoxicillin for H pylori eradication in Iranian population. World J Gastroenterol 2007;13:930-3.

33. Seyyedmajidi S, Mirmattari D, Zojaji H, Zanganeh E, Seyyedmajidi M, Almasi S, et al. Penbactam for triple therapies for eradication of H. pylori in an Iranian Population. Arab J Gastroenterol 2013;14:1-5. doi: 10.1016/j.ajg.2012.12.004.

34. Taghavi SA, Jafari A, Eshraghian A. Efficacy of a new therapeutic regimen versus two routinely prescribed treatments for eradication of Helicobacter pylori: a randomized, double-blind study of doxycycline, co-amoxiclav, and omeprazole in Iranian patients. Dig Dis Sci 2009;54:599-603. doi: 10.1007/s10620-008-0374-z.

35. Khoshnoood A, Hakimi P, Salman-Roghani H, Reza Mirjalili M. Replacement of clarithromycin with azithromycin in triple therapy regimens for the eradication of Helicobacter pylori: A randomized clinical trial. J Med Life 2014;7:254-9.
36. Ehsani-Ardakani MJ, Sedaghat M, Esfami G, Mohaghegh Shalmani H. The Helicobacter pylori eradication in the group receiving standard -dose and group continue taking amoxicillin for 4 weeks; a clinical trial study. Gas troenterol Hepatol Bed Bench 2015;8:354-9.
37. Morini S, Zullo A, Hassan C, Lorenzetti R, Stella F, Martini MT. Gastric cardia inflammation: role of Helicobacter pylori infection and symptoms of gastroesophageal reflux disease. Am J Gastroenterol 2001;96:2337-40. doi:10.1111/j.1572-0241.2001.04038.x
38. Mokhtare M, Hosseini V, Tirgar Fakheri H, Maleki I, Taghvaei T, Valizadeh M, et al. Comparison of quadruple and triple Furazolidone containing regimens on eradication of Helicobacter pylori. Med J Islam Repub Iran 2015;29:195.
39. Hosseini V, Mokhtare M, Gholami M, Taghvaei T, Maleki I, Valizadeh M, et al. A Comparison between Moderate- and High-dose Furazolidone in Triple Regimens for Helicobacter pylori Eradication in Iran. Middle East J Dig Dis 2014;6:195-202.
40. Fakheri H, Merat S, Hosseini V, Malekzadeh R. Low-dose furazolidone in triple and quadruple regimens for Helicobacter pylori eradication. Aliment Pharmacol Ther 2004;19:89-93.
41. Ghadir MR, Shafaghi A, Iranikiah A, Pakdin A, Joukar F, Mansour-Ghañaei F. Furazolidone, amoxicillin and omeprazole with or without bismuth for eradication of Helicobacter pylori in peptic ulcer disease. Turk J Gastroenterol 2011;22:1-5.
42. Roghani HS, Massarrat S, Shirekhoda M, Butorab Z. Effect of different doses of furazolidone with amoxicillin and omeprazole on eradication of Helicobacter pylori. J Gastroenterol Hepatol 2003;18:778-82. doi:10.1046/j.1440-1746.2003.03058.x.
43. Masoodi M, Panahian M, Rezadoost A, Heidari A. Eradication Rate of Helicobacter pylori using a Two-week Quadraple Therapy: A Report from Southern Iran. Middle East J Dig Dis 2013;5:81-5.
44. Agah S, Shazad B, Abbaszadeh B. Comparison of azithromycin and metronidazole in a quadruple-therapy regimen for Helicobacter pylori eradication in dyspepsia. Saudi J Gastroenterol 2009;15:225-8. doi:10.4103/1319-3767.56091.
45. Khatibian M, Ajvadi Y, Nasseri-Moghaddam S, et al. Furazolidone-based, metronidazole-based, or a combination regimen for eradication of Helicobacter pylori in peptic ulcer disease. Arch Iran Med 2007;10:161-7.
46. Malekzadeh R, Ansari R, Vahedi H, Siavoshi F, Alizadeh BZ, Eshraghian MR, et al. Furazolidone versus metronidazole in quadruple therapy for eradication of Helicobacter pylori in duodenal ulcer disease. Aliment Pharmacol Ther 2000;14:299-303. doi:10.1046/j.1365-2036.2000.00709.x.
47. Mousavi S, Toussy J, Yaghmaie S, Zahmatkesh M. Azithromycin in one week quadruple therapy for H pylori eradication in Iran. World J Gastroenterol 2006;12:4553-6. doi:10.3748/wjg.v12.i12.4553.
48. Shidfar F, Agah S, Ekhlasir G, Salehpour A, Ghourchian S. Lycopen as an adjunctive therapy for Helicobacter pylori eradication: a quasi-control trial. J Complement Integr Med 2012;9:Article 14. doi: 10.1515/1553-3840.1588.
49. Sotudehmanesh R, Malekzadeh R, Fazel A, Massarrat S, Ziad-Alizadeh B, Eshraghian MR. A randomized controlled comparison of three quadruple therapy regimens in a population with low Helicobacter pylori eradication rates. J Gastroenterol Hepatol 2001;16:264-8. doi: 10.1046/j.1440-1746.2001.02416.x.
50. Daghaghzadeh H, Emami MH, Karimi S, Raeisi M. One-week versus two-week furazolidone-based quadruple therapy as the first-line treatment for Helicobacter pylori infection in Iran. J Gastroenterol Hepatol 2007;22:1399-403. doi:10.1111/j.1440-1746.2007.05029.x.
51. Fakheri H, Malekzadeh R, Merat S, Khatibian M, Fazel A, Alizadeh BZ, et al. Clarithromycin vs. furazolidone in quadruple therapy regimens for the treatment of Helicobacter pylori in a population with a high metronidazole resistance rate. Aliment Pharmacol Ther 2001;15:411-6. doi:10.1046/j.1365-2036.2001.00931.x.
52. Fakheri H, Bari Z, Sardarian H. A modified bismuth-containing quadruple therapy including a short course of furazolidone for Helicobacter pylori eradication after sequential therapy failure. Helicobacter 2012;17:264-8. doi:10.1111/j.1523-5378.2012.00946.x.
53. Masoodi M, Talebi-Taher M, Tabatabaie K, Khaleghi S, Faghihi AH, Agah S, et al. Clarithromycin vs. Gemifloxacin in Quadruple Therapy Regimens for Empiric Primary Treatment of Helicobacter pylori Infection: A Randomized Clinical Trial. Middle East J Dig Dis 2015;7:88-93.
54. Shavakhi A, Tabesh E, Yaghoutkar A, Hashemi H, Tabesh F, Khodadoostan M, et al. The effects of multistrain probiotic compound on bismuth-containing quadruple therapy for Helicobacter pylori infection: a randomized placebo-controlled triple-blind study. Helicobacter 2013;18:280-4. doi:10.1111/hec.12047.
55. Sardarian H, Fakheri H, Hosseini V, Taghvaei T, Maleki I, Mokhtare M. Comparison of hybrid and sequential therapies for Helicobacter pylori eradication in Iran: a prospective randomized trial. Helicobacter 2013;18:129-34. doi:10.1111/hec.12017.
56. Fakheri H, Taghvaei T, Hosseini V, Bari Z. A comparison between sequential therapy and a modified bismuth-based quadruple therapy for Helicobacter pylori eradication in Iran: a randomized clinical trial. Helicobacter 2012;17:43-8. doi:10.1111/j.1523-5378.2011.00896.x.
57. Gatta L, Vakil N, Vaira D, Scarpignato C. Global eradication rates for Helicobacter pylori infection: systematic review and meta-analysis of sequential therapy. BMJ 2013;347:f4587. doi:10.1136/bmj.f4587.
58. Metanat HA, Valizadeh SM, Fakheri H, Maleki I, Taghvaei T, Hosseini V, et al. Comparison Between 10- and 14-Day Hybrid Regimens for Helicobacter pylori Eradication: A Randomized Clinical Trial. Helicobacter 2015;20:299-304. doi:10.1111/hec.12202.
59. Alhooei S, Tirgar Fakheri H, Hosseini V, Maleki I, Taghvaei T, Valizadeh SM, et al. A Comparison between Hy-
brid and Concomitant Regimens for *Helicobacter pylori* Eradication: A Randomized Clinical Trial. *Middle East J Dig Dis* 2016;8:219-25.

60. Hsu PI, Wu DC, Wu JY, Graham DY. Modified sequential *Helicobacter pylori* therapy: proton pump inhibitor and amoxicillin for 14 days with clarithromycin and metronidazole added as a quadruple (hybrid) therapy for the final 7 days. *Helicobacter* 2011;16:139-45. doi: 10.1111/j.1523-5378.2011.00828.x.

61. Wu DC, Hsu PI, Wu JY, Opekun AR, Kuo CH, Wu IC, et al. Sequential and concomitant therapy with four drugs is equally effective for eradication of *H. pylori* infection. *Clin Gastroenterol Hepatol* 2010;8:36-41. doi: 10.1016/j.cgh.2009.09.030.

62. Gisbert JP, Calvet X. Update on non-bismuth quadruple (concomitant) therapy for eradication of *Helicobacter pylori*. *Clin Exp Gastroenterol* 2012;5:23-34. doi: 10.2147/CEG.S25419.

63. Zullo A, Scaccianoce G, De Francesco V, Ruggiero V, D’Ambrosio P, Castorani L, et al. Concomitant, sequential, and hybrid therapy for *H. pylori* eradication: a pilot study. *Clin Res Hepatol Gastroenterol* 2013;37:647-50. doi: 10.1016/j.clinre.2013.04.003.

64. Karbasi A, Hossein Hosseini S, Shohrati M, Amini M, Najafi B. Effect of oral N-acetyl cysteine on eradication of *Helicobacter pylori* in patients with dyspepsia. *Minerva Gastroenterol Dietol* 2013;59:107-12.

65. Fakheri H, Bari Z, Aarabi M, Malekzadeh R. *Helicobacter pylori* eradication in West Asia: a review. *World journal of gastroenterology* 2014;20:10355-67. doi: 10.3748/wjg.v20.i30.10355.

66. Kusters JG, Gerrits MM, Van Strijp JA, Vandenbroucke-Grauls CM. Cocoid forms of *Helicobacter pylori* are the morphologic manifestation of cell death. *Infect Immun* 1997;65:3672-9.

67. van Doorn LJ, Schneeberger PM, Nouhan N, Plaisier AP, Quint WG, de Boer WA. Importance of *Helicobacter pylori* cagA and vacA status for the efficacy of antibiotic treatment. *Gut* 2000;46:321-6. doi: 10.1136/gut.46.3.321.

68. Graham DY, Fischbach L. *Helicobacter pylori* treatment in the era of increasing antibiotic resistance. *Gut* 2010;59:1143-53. doi: 10.1136/gut.2009.192757.

69. Gisbert JP. *Helicobacter pylori* eradication therapy is more effective in peptic ulcer than in non-ulcer dyspepsia. *Gut* 2001;46:321-6.

70. Hokari K, Sugiyama T, Kato M, Saito M, Miyagishima T, Kudo M, et al. Efficacy of triple therapy with roxithromycin for *Helicobacter pylori* infection and CYP2C19 genetic polymorphism. *Aliment Pharmacol Ther* 2001;15:1479-84. doi: 10.1046/j.1365-2036.2001.01063.x.

71. Labenz J, Stolte M, Blum AL, et al. Intragastric acidity as a predictor of the success of *Helicobacter pylori* eradication: a study in peptic ulcer patients with omeprazole and amoxicillin. *Gut* 1995;37:39-43. doi: 10.1136/gut.37.1.39.

72. Boyanova L, Mitov I. Geographic map and evolution of primary *Helicobacter pylori* resistance to antibacterial agents. *Expert Rev Anti Infect Ther* 2010;8:59-70. doi: 10.1586/eri.09.113.

73. Sotoudehmanesh R, Malekzadeh R, Vahedi H, Dariani NE, Asgari AA, Massarat S. Second-line *Helicobacter pylori* eradication with a furazolidone-based regimen in patients who have failed a metronidazole-based regimen. *Digestion* 2001;64:222-5. doi: 10.1159/000048865.

74. Ebrahimi-Dariani N, Mirmomen S, Mansour-Ghanaei F, Noormohammadpoor P, Sotoudehmanesh R, Haghipanah B, et al. The efficacy of furazolidone-based quadruple therapy for eradication of *Helicobacter pylori* infection in Iranian patients resistant to metronidazole-based quadruple therapy. *Med Sci Monit* 2003;9:P1105-8.

75. Minakari M, Davarpanah Jazi AH, Shavakhki A, Moghare-abed N, Fatahi F. A randomized controlled trial: efficacy and safety of azithromycin, ofloxacin, bismuth, and omeprazole compared with amoxicillin, clarithromycin, bismuth, and omeprazole as second-line therapy in patients with *Helicobacter pylori* infection. *Helicobacter* 2010;15:154-9. doi: 10.1111/j.1523-5378.2009.00739.x.

76. Mansour-Ghanaei F, Joukar F, Naghipour MR, Forouhari A, Saadat SM. Seven-day quintuple regimen as a rescue therapy for *Helicobacter pylori* eradication. *World J Gastroenterol* 2015;21:661-6. doi: 10.3748/wjg.v21.i2.661.

77. Fakheri H, Bakhshi Z, Bari Z, Alhooei S. Effects of Clarithromycin-Containing Quadruple Therapy on *Helicobacter pylori* Eradication after Nitroimidazole-Containing Quadruple Therapy Failure. *Middle East J Dig Dis* 2016;8:51-6. doi: 10.15171/mejdd.2016.07.

78. Fakheri H, Bari Z, Taghvaei T, Hosseini V, Maleki I, Valizadeh SM, et al. The Efficacy of Levofloxacin-based Triple Therapy for *Helicobacter pylori* Eradication after Failure with Clarithromycin-Containing Regimens. *Gastrovarsh* 2018;22:in press.

79. Fakheri H, Bari Z, Taghvaei T, Hosseini V, Maleki I, Valizadeh SM, et al. The Efficacy of Levofloxacin-based Triple Therapy for *Helicobacter pylori* Eradication after Failure with Clarithromycin-Containing Regimens. *Gastrovarsh* 2018;22:in press.