Title
Infection with host-range mutant adenovirus 5 suppresses innate immunity and induces systemic CD4+ T cell activation in rhesus macaques.

Permalink
https://escholarship.org/uc/item/7wg9g8xj

Journal
PloS one, 9(9)

ISSN
1932-6203

Authors
Qureshi, Huma
Genescà, Meritxell
Fritts, Linda
et al.

Publication Date
2014

DOI
10.1371/journal.pone.0106004

Peer reviewed
Introduction

Since the initial description in the 1950s, adenoviruses have been known as a cause of common childhood respiratory illnesses [1–4]. In immunocompetent patients, most of these infections are asymptomatic, mild, or self-limited. The prevalence of Ad5 in North American and other populations has been assessed serologically; almost all subjects tested have Ad5-specific binding antibodies, of which 30–60% also have neutralizing antibody responses [5–7]. Adenoviruses infect a broad range of animals in a relatively species-specific manner and adenoviruses can be persistently shed in respiratory secretions and stool [8–11]. Adenoviruses isolated from macaque monkey species (rhesus, cynomolgus) are in a different phylogenetic group from the human adenoviruses and do not segregate with human Ad5 or other Group C adenoviruses [11].

The biology of wild type adenoviruses is considerably different from adenoviral vectors designed for gene therapy or as vaccine vectors. Adenoviral vectors carry gene deletions to create space for transgenes and/or to attenuate replication, and they are known to induce strong inflammatory responses following administration in humans and animal models [12,13]. In contrast, infection with wild type Ads suppress host inflammation [14–17], a property that may help the viruses establish persistent infection. Adenovirus infections and adenoviral vectors induce neutralizing antibodies and T cell immunity in nonhuman primates (NHP) and humans [10,18–25]. Pre-existing immunity to simian Ads does not affect Ad vector testing in NHP as the immune responses to simian Ads do not cross-react with Ad5 [10]. However, very little is known about modulation of innate immunity or immune activation following adenovirus infection in humans or NHP.

Understanding the immune effects of wild type adenovirus infection is of interest because of the prevalence of adenoviruses in humans and the continued development of adenoviruses as gene therapy and vaccine vectors for use in humans [26]. There have been several reports that the immunity to adenoviruses acquired through infection alters the immune response to vaccines in many people [27–30]. In the present study, we characterized innate and adaptive immune responses in a rhesus macaque model after infection with a host-range mutant adenovirus type 5 (Ad5hr).
Ad5hr infection induced systemic T cell activation in RM

Ad5hr infection induces polyfunctional hexon-specific T cell responses in blood

We evaluated the T cell responses in PBMCs of the Ad5hr-inoculated RM to 3 pools of overlapping peptides representing the

Ad5hr infection induced polyfunctional hexon-specific T cell responses in blood

We evaluated the T cell responses in PBMCs of the Ad5hr-inoculated RM to 3 pools of overlapping peptides representing the

Ad5hr infection induces polyfunctional hexon-specific T cell responses in blood

We evaluated the T cell responses in PBMCs of the Ad5hr-inoculated RM to 3 pools of overlapping peptides representing the

Ad5hr infection induced polyfunctional hexon-specific T cell responses in blood

We evaluated the T cell responses in PBMCs of the Ad5hr-inoculated RM to 3 pools of overlapping peptides representing the
aa sequence of the Ad5 hexon protein. Moderate Ad5 hexon-specific CD8+ and CD4+ T cell responses (≥2 fold increase vs pre-infection) were detected in about half of the RM at week 2 (Table 1). The hexon-specific T cells induced after primary Ad5hr infection produced 1–3 of the cytokines measured (Fig 5). Subsequent Ad5hr exposures (week 8 and 12) led to detectable hexon-specific CD4+ T cell responses in about 77% of RM (Table 1). By week 14, after 3 mucosal Ad5hr exposures, the hexon-specific CD4+ and CD8+ T cell responses were more polyfunctional than the hexon-specific T cells detected at week 2 (Fig 5). Of note, the breadth of the hexon-specific T cell responses, as measured by the number of peptide pools eliciting positive responses, was maximum at week 10 after the second Ad5hr inoculation and most restricted at week 14 after 3 Ad5hr inoculations (Table 1).

Discussion

We previously showed that after RM are inoculated with Ad5hr, virus is consistently shed in feces and respiratory secretions after the first Ad5hr inoculation but shedding is intermittent after the second and third inoculations [32]. The pattern of virus shedding in Ad5hr-infected RM mirrors Ad5hr shedding in humans. Adenovirus shedding from the lower GI tract is common in children during symptomatic and asymptomatic infections and it also occurs in healthy adults [36–39]. A recent study found adenoviruses in 7.1% of approximately 12,000 respiratory samples from pediatric populations with respiratory symptoms, and there was a high rate of adenovirus co-infection (21.7%) with multiple serotypes in many positive samples [40]. Although Ad5 infected RM and humans develop potent neutralizing antibody responses [10,18–25,32], the pattern of virus shedding suggests that this immunity does not prevent re-infection. Further anti-Ad5 immunity is often incapable of completely clearing Ad5 infections as the virus can persist in mucosal surfaces of humans [8] and RM [9] for months.

The tropism of Ad5hr in RM and Ad5 in humans is similar and could explain how Ad5 infection affects innate immunity. The coxsackie virus adenovirus receptor (CAR) which binds to the knob domain of the fiber protein, is described as the primary receptor for human adenoviruses [41,42]. However, a number of cells that do not express CAR support adenovirus replication. In fact CAR has been shown to play a minor role in Ad5 infection of many cell types including epithelial cells. Further, human monocytes and dendritic cells (DCs) are susceptible to Ad5 infection despite their lack of CAR expression [43,44]. Although Langerhans cells and dermal DCs from skin express CAR, blocking CAR does not block Ad5 infection, indicating that other receptor pathways mediate viral entry into these cells [45]. Ad5hr in rhesus macaques and Ad5 in humans target lung and gut macrophages and dendritic cells [9]. Thus biology of Ad5hr infection of RM and Ad5 infection of humans are very similar. The affinity of Ad5 for long-lived antigen presenting cells, macrophages and DC in mucosal sites may partially explain the ability of these infections to suppress innate immunity and induce systemic CD4+ T cell activation.
Here we find report that Ad5hr infection affects the RM immune system in a variety of ways, with repeated exposures having complex and additive effects. The host innate immune system was suppressed by Ad5hr infection as evidenced by changes in the number and function of pDC in blood and decreased expression of pro-inflammatory and immunoregulatory cytokines and chemokine mRNAs in PBMC. Ad5hr infection also altered the adaptive immune system of the host, transiently increasing the frequency of activated T cells and CD4+ T cells expressing Treg markers in blood.

There was a transient increase in pDC frequency and function 2 weeks after the initial Ad5hr exposure (Fig 1A & 1B); however, there was no change from pre-inoculation levels in the pDC frequency or function at week 1 after Ad5hr inoculation while viral replication was at its peak. Thus primary Ad5hr exposure did not appear to induce strong antiviral pDC immune responses in blood. To further understand the Ad5hr induced effects on the immune system, we characterized the antiviral/proinflammatory cytokine and chemokine mRNA expression levels in PBMCs of Ad5hr-infected RM. There was little change in cytokine or chemokine mRNA levels in PBMC at week 1 after the first Ad5hr exposure. Thus, at the gene expression level primary Ad5hr exposure did not induce, and may have suppressed, strong antiviral and pro-inflammatory immune responses in blood 7 days after oral inoculation. In contrast, 7-14 days after subsequent Ad5hr exposures there was a very transient increase in IFN-gamma mRNA in PBMCs. Although IFN-gamma is a key molecule of antiviral defenses [46,47], it also increases the levels of immune activation and inflammation in response to infection [48,49]. Thus the expression of molecules associated with innate antiviral response was suppressed in PBMC by primary Ad5 infection and, with the exception of IFN-gamma, secondary Ad5 infections/exposures reinforced and broadened this effect.

Human pDC infected in vitro with Ad5 or other Group C adenoviral strains do not produce inflammatory cytokines, in contrast to Group B and E strains [10], and in marked contrast to E1-deleted Ad5 vectors [50]. It seems likely that the inhibition of pDC responses and antiviral/proinflammatory cytokine and chemokine responses that we found in PBMCs of RM infected with Ad5hr is due to the expression of immunomodulatory viral gene products in the initial stages of infection when viral replication is unrestricted by host immunity. The viral proteins, E1 & E3, are the most likely mediators of this immunomodulation. These viral proteins suppress NFkB activation and the subsequent inflammatory response following Ad5 infection [14–16]. However, after the second and third Ad5hr inoculations, Ad5hr-specific immune responses may have blunted virus replication, with reduced expression of E1 & E3 and less suppression of interferon but not other innate immune responses.

After primary Ad5hr infection there was an increased frequency of circulating CD4+ T cells in blood, although the levels of these cells quickly returned to baseline. However, subsequent Ad5hr exposures induced recurrent CD4+ T cell activation, including expression of Ki67, a marker associated with T cell proliferation. Thus, as with IFN-gamma expression in PBMC, repeated Ad5hr exposure was necessary to induce systemic CD4+ T cell activation, which although not sustained, recurred upon re-exposure to Ad5. Similar transient CD4+ T cell activation was observed in RM after vaccination with an E1-deleted, replication defective Ad 5 vector [51]. As people are likely to be repeatedly exposed to Ad5,
Ad5hr Infection Induces Systemic T Cell Activation in RM

A) IFN-gamma
 p<0.0001, One way anova

B) IFN-alpha

C) IL-1
 p<0.0001, One way anova

D) TNF
 p<0.0001, One way anova

E) CCL20 (LARC)
 p<0.001, One way anova
frequent periods of transient T cell activation probably occur with some frequency in Ad5 seropositive individuals.

A recent report showed that Ad5 immune complexes interact with Fc receptors on DC to enter the endosomal compartment where Ad5 genomic DNA interacts with TLR9 [52]. This TLR9 ligation activates DCs and results in production of proinflammatory cytokines. If this type of interaction occurs in vivo, it could activate Ad5-specific and bystander T cells after secondary Ad5hr exposures. Because as we previously reported Ad5hr infection of RM induces Ad5-specific antibodies [32], this phenomenon could explain the enhanced virus transmission after Ad5 seropositive individuals were immunized with Ad5 Merck Step vaccine.

The frequency of Tregs in blood after the primary Ad5hr infection increased (Fig 2). This response to Ad5hr infection by RM is not unique, as upregulation of Tregs early after pathogen infection [53–55] with concomitant modulation of pathogenic-specific immunity has been recently reported [54,56]. Furthermore, CTLA4 expression on Tregs is associated with Treg-mediated immune suppression 36 [57]. It has been shown that Tregs promote pathogen persistence in leishmania and TB infection [53,55].

After Ad5hr infection RM develop weak and variable hexon-specific CD4+ and CD8+ T cell responses in the blood. These hexon-specific T cells predominantly secreted 1–3 cytokines in various combinations (Table 1, Fig 5). Secondary Ad5hr exposure expanded hexon-specific CD4+ T cell responses (Table 1) with increases in polyfunctional T cells; especially IFN-gamma +/-TNF+/+IL-2+ CD4+ T cells (Fig 5). Similarly Ad5-specific CD4+ and CD8+ T cells are found in humans and CD4+ T cell responses are focused on the hexon protein [21,23].

Although, preexisting Ad5 specific immunity does not prevent infection, it does affect the immunogenicity of Ad5-based vaccines in RM and humans [27–30,32]. Adenovirus Immunovirus at the time of immunization with the Step vaccine modified T helper cell cytokine responses to the vaccine [28], reduces innate immune responses [30] and is associated with relatively poor HIV-specific T cell responses in both human and RM Step vaccine recipients [27,32]. Ad5-immunity present in the host prior to Ad5 vaccine immunization result in weaker HIV or SIV-specific T cell responses in that less vaccines respond, and the magnitude, antigenic breadth and cytokine functions of the HIV/SIV-specific T cells were reduced compared to their Ad5 seronegative counterparts [27,32]. How the pre-existing Ad5 immunity affects the responses to vaccines has not been rigorously determined. The lower immune responses to HIV antigens in Ad5 seropositive people immunized with an Ad5 vector is assumed to be due to the killing of these APC as they express HIV and Ad5 antigens by pre-existing Ad5-specific memory cytotoxic T cells. In addition, preexisting Ad5-specific antibodies could form immune complexes with Ad5 vaccine virus that activate and expand Ad5-specific memory T cell responses. These Ad5-specific T cells, in turn, could limit HIV-specific immune responses to the vaccine by killing the DCs co-expressing Ad5 and HIV antigens [52].

The results reported here further demonstrate that Ad5hr infection alters the host immune system in complex ways that could affect the host response to subsequent vaccination, particularly if an immunization was given just before, or after, a secondary Ad5 infection/exposure. The Step Trial HIV vaccine resulted in enhanced infection in some Ad5-seropositive, uncircumcised vaccinees [58]. A vaccine study in macaques that modeled the Step Trial recapitulated the lack of protection and a greater risk of infection in immunized macaques with pre-existing Ad5 seropositivity [32]. In both the Step trial and the monkey study, enhanced susceptibility to infection was only seen in individuals with a prior or ongoing Ad5 infection. However, there is no evidence from these studies, or from HVTN 505 (the most recent efficacy trial of a HIV vaccine using a replication defective Ad5 vector in Ad5 seronegative men), that a replication defective Ad5 vector vaccine can enhance HIV transmission in individuals that are not, or have not been, infected with Ad5. Further, Ad5 infection alone is not associated with increased risk of HIV infection AIDS [59]. Thus the results reported here, taken together with the results of the clinical trials, raise the possibility that Ad5 infection alters the responses to immunizations in general. Additional experiments are needed to determine the relative contributions of the Ad5 vector and Ad5 infections to the

Table 1. Adenovirus hexon-specific T cell responses in PBMCs after Ad5hr infection.

Peptides/T cell	Week 2		Week 10		Week 14	
	# events	% positive	# events	% positive	# events	% positive
Pool 1/CD4	101±36	44	175±41	78	68±19	56
Pool 2/CD4	92±30	44	264±48	72	65±16	56
Pool 3/CD4	106±75	50	164±29	72	110±25	78
Pool 1/CD8	186±76	33	85±14	67	73±18	28
Pool 2/CD8	73±34	44	99±14	61	43±12	56
Pool 3/CD8	122±52	28	113±35	61	97±28	56

* Flow cytometric events (mean ±SE) normalized to 10^8 CD3+ T cells.
† Percentage of responders /18 animals tested.
‡ Responses that were ≥two-fold compared to pre-infection levels were considered strongly positive.

doi:10.1371/journal.pone.0106004.g004
unexpected outcomes of the Step trial and nonhuman primate studies.

Materials and Methods

Ethics Statement

As previously reported [32], the captive-bred 4–9 year old male rhesus macaques (Macaca mulatta) used in this study were from the California National Primate Research Center and they were housed in accordance with the recommendations of the Association for Assessment and Accreditation of Laboratory Animal Care International Standards and with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. The Institutional Animal Use and Care Committee of the University of California, Davis, approved these experiments (Protocol #15835). When immobilization was necessary, the animals were injected intramuscularly with 10 mg/kg of ketamine HCl (Parke-Davis, Morris Plains N.J.). All efforts were made to minimize suffering. Details of animal welfare and steps taken to ameliorate suffering were in accordance with the recommendations of the Weatherall report, “The use of non-human primates in research”. Animals were housed in an air-conditioned facility with an ambient temperature of 21–25°C, a relative humidity of 40%–60% and a 12 h light/dark cycle. Animals were individually housed in suspended stainless steel wire-bottomed cages and provided with a commercial primate diet. Fresh fruit was provided once daily and water was freely available at all times. A variety of environmental enrichment strategies were employed including housing of animals in pairs, providing toys to manipulate and playing entertainment videos in the animal rooms. In addition, the animals were observed twice daily and any signs of disease or discomfort were reported to the veterinary staff for evaluation.

Ad5hr infection

As previously reported [32], 18 RM were infected with 1.5×10^9 infectious particles/dose/route of Ad5hr [31], by nasal & oral routes at week 0 and by the intratracheal route at week 8 and 12.

Isolation of lymphocytes from blood

PBMCs were isolated from heparinized blood using Lymphocyte Separation Medium (ICN Biomedicals). PBMC samples were frozen in 10% dimethyl sulfoxide (DMSO; Sigma-Aldrich) and 90% fetal bovine serum (Gemini BioProducts), stored in liquid nitrogen until future use in immunological assays [32].

T cell phenotyping in blood

Blood samples were surface stained with 4 color panels of antibodies. Panel 1; anti-CD3 PerCP clone no. SP34, anti-CD4 APC clone no. M-T477, anti-CD95 FITC clone no. DX2 and anti-CCR5 PE clone no. 3A9. Panel 2; anti-CD3 PerCP clone no. SP34, anti-CD8 APC clone no. SK1, anti-CD38 PE clone OKT10, anti-HLADR FITC clone no G46-6. Surface stained samples were fixed with Q prep (Beckman Coulter). All antibodies were purchased from Pharmingen/Becton-Dickinson, San Diego, CA, unless specified. Data were acquired using a FACS Calibur cytometer (Becton Dickinson), and analyzed using FlowJo software (Treestar, Inc.) and a Macintosh G5 computer (Apple, Inc.). At least 100,000 small lymphocyte events were collected from each tube analyzed.

Intracellular staining for Ki-67 in blood

Blood samples were surface stained with the following antibodies; anti-CD3-Pacific Blue (Clone SP3F2), anti-CD4-
Intracellular staining for cytokine and degradation markers

As previously described in detail [32], for intracellular staining of PBMCs, cryopreserved samples were thawed and rested overnight at 37°C, in 5% CO2 atmosphere, in RPMI media (Gibco, Invitrogen Inc.) containing 10% fetal cell serum. To stimulate cells, 3 peptide pools spanning the hexon protein, 20mer peptides overlapping by 10 residues (Anaspec, Inc.), were prepared at 5 µg/ml/peptide in DMSO. The negative control contained co-stimulatory molecules and DMSO, and the positive control was staphylococcal enterotoxin B (0.2 µg/ml, Sigma-Aldrich). At least 100,000 events in the forward scatter/side scatter lymphocyte gate were acquired. Further, samples that had a large discrepancy between the number of events in the negative control and the peptide-stimulated tubes were eliminated. The background level of cytokine staining varied from sample to sample. Samples were considered positive in which, after subtracting the negative control, there were at least 5 positive events for a single functional marker, 3 positive events for two or more functional markers, and the sum of the different combinations of responses represented at least 10 events. In addition, a sample was not considered positive for a particular combination of functions if the frequency of T cells responding with that particular combination of functions was lower than 0.02%. The software program Simplified Presentation of Incredibly Complex Evaluations (SPICE, a gift from M. Roederer, Vaccine Research Center, NIAID/NIH) was used to create the pie charts that represent the average of all positive responses [60].

Relative quantification of cytokine/chemokine mRNA expression levels in PBMC

The mRNA levels were determined by real-time PCR as described previously [61,62] for IL-1, IFN-alpha, IFN-gamma, TNF and CCL20. The comparative threshold cycle (Ct) method was used for quantification of mRNA levels (User Bulletin No. 2, ABI PRISM 7700 Sequence Detection System, Applied Biosystems). GAPDH was used as the reference gene and all samples were tested in duplicate. A ΔCt value was generated by subtracting the Ct value of GAPDH from the Ct value of the target mRNA.

To compare the target gene mRNA levels pre- and post-Ad5hr infection, the mean ΔCt of a target gene at a pre-infection time point in an individual animal was used as a reference value to generate the ΔΔCt for the same target gene in the that particular animal at post-infection time points [63]. Thus, the ΔΔCt value of a target gene in study animals at post-infection time point is equal to difference between ΔCt value of the target gene in the study animal at a post-infection time point and the ΔCt value of the target gene in that animal at the pre-infection time point. The fold-change in target gene mRNA levels in study animals post-Ad5hr infection relative to target gene mRNA levels in the study animals pre-Ad5hr infection was calculated using one of 2 formulas based on the ΔΔCt:

1. Fold change of decreased mean mRNA level = −1/2−ΔΔCt (If the ΔΔCt was positive).
2. Fold change of increased mean mRNA level = 2−ΔΔCt (If the ΔΔCt was negative).

pDC enumeration and assessment of IFN-alpha production

Plasmacytoid DCs were phenotyped using a lineage marker Ab cocktail (CD3, CD14, CD16, CD19, CD20, CD56) and anti-CD123, as previously described [34].

Statistical analyses

Data are reported as the median and the standard error of the mean (SEM) for each animal group using Prism 5.0 software (GraphPad Software). Statistical analyses were performed by one-way ANOVA with Dunnett’s multiple comparison test if more than two groups were compared. The flow cytometric data analysis program, SPICE, was used to analyze T cell responses detected by polychromatic flow cytometry. A P value of <0.05 was considered significant.

Acknowledgments

We thank the Primate Services Unit at the CNPRC. Zhong-Min Ma, Jun Li and Tracy Roarke provided excellent technical assistance.

Author Contributions

Conceived and designed the experiments: CJM MRG. Performed the experiments: HQ MG LF CJM. Analyzed the data: HQ MG CJM MRG. Contributed reagents/materials/analysis tools: MRG. Contributed to the writing of the manuscript: HQ MG CJM MRG MBM. Contributed reagents/materials/analysis tools: MRG. Contributed to the writing of the manuscript: HQ MG CJM MRG MBM.

References

1. Chany C, Lepine P, Lelong M, Le TV, Satge P, et al. (1958) Severe and fatal pneumonia in infants and young children associated with adenovirus infections. Am J Hyg 67: 367–378.
2. Edwards KM, Thompson J, Paolini J, Wright PF (1985) Adenovirus infections in young children. Pediatrics 76: 420–424.
3. Evans AS (1958) Adenovirus infections in children and adults; with comments on vaccination. N Engl J Med 259: 464–468.
4. Rowe WP, Huebner RJ, Gilmore LR, Parrott RH, Ward TG (1953) Isolation of a cytopathogenic agent from human adenoids undergoing spontaneous degeneration in tissue culture. Proc Soc Exp Biol Med 84: 570–573.
5. Barouch DH, Kirk SV, Weaverling GJ, Dihan R, King SL, et al. (2011) International seroepidemiology of adenovirus serotypes 5, 26, 35, and 48 in pediatric and adult populations. Vaccine 29: 5203–5209.
6. Nwanegbe E, Vardas E, Gao W, Whittle H, Sun H, et al. (2004) Prevalence of neutralizing antibodies to adenoviral serotypes 5 and 35 in the adult populations of The Gambia, South Africa, and the United States. Clin Diagn Lab Immunol 11: 351–357.
7. Thornton AR, Vogel R, Kaspers J, Weereling GJ, Holterman L, et al. (2006) Age dependence of adenovirus-specific neutralizing antibody titers in individuals from sub-Saharan Africa. J Clin Microbiol 44: 3781–3783.
8. Alkhafal MA, Guiver M, Cooper RJ (2013) Prevalence and quantitation of adenovirus DNA from human tonsil and adenoid tissues. J Med Virol 85: 1947–1954.
9. Patterson LJ, Kuase T, Daltabaït-Test M, Li Q, Xiao P, et al. (2012) Replicating adenovirus-simian immunodeficiency virus (SIV) vectors efficiently prime SIV-specific systemic and mucosal immune responses by targeting myeloid dendritic cells and persisting in rectal macrophages, regardless of immunization route. Clin Vaccine Immunol 19: 629–637.
10. Calcedo R, Vandenbergh LE, Roy S, Somanathan S, Wang L, et al. (2009) Host immune responses to chronic adenovirus infections in human and nonhuman primates. J Virol 83: 2623–2631.
11. Roy S, Calcedo R, Medina-Jasek A, Krouch M, Peng H, et al. (2011) Adenoviruses in lymphocytes of the human gastrointestinal tract. PLoS One 6: e24859.
12. Murnane DA (2000) The innate immune response to adenovirus vectors. Hum Gene Ther 15: 1157–1166.
25. Tang J, Olive M, Champagne K, Flomenberg N, Eisenlohr L, et al. (2004) Identification of the hexon protein. J Gen Virol 85: 2417–2425.

26. Tomko RP, Ns R, Philipson L (1997) HCAR and MCB: the human cellular receptors for subgroup C adenoviruses and group B adeno- viruses. Proc Natl Acad Sci U S A 101: 3124–3129.

27. Bradley RR, Lynch DM, Lampaiero MJ, Borchardt EK, Brown D, Kublin J, Monahan K, Wright DP, et al. (2008) Safety and immunogenicity of an adenovirus type 5 vaccine in healthy adults. Clin Infect Dis 46: 1769–1781.

28. Pine SO, Kublin JG, Hammer SM, Borgerding J, Huang Y, et al. (2011) Pre-and post-vaccination assessment of polyclonal antibodies against HIV-1 transmitted and nontransmitted Env (IPCAVD 002). J Infect Dis.

29. Priddy FH, Brown D, Nason M, King CR, Koup RA, et al. (2010) Adenovirus-specific human T cells are pervasive, polyfunctional, and cross-reactive. Vaccine 28: 1992–1991.

30. Kessler T, Hämmerköt T, Schricker T, Jahn G (2010) Dendritic cells are susceptible to infection with wild-type adenovirus, inducing a differentiation arrest in precursor cells and inducing a strong T-cell stimulation. J Gen Virol 91: 1150–1154.

31. Klessig DF, Grothicker T (1979) Mutations that allow human Ad2 and Ad5 to induce a cytokine response to an Ad5/HIV-1 vaccine candidate in humans. PLoS One 6: e18526.

32. Cheng C, Gall JG, Kong WP, Sheets RL, Gomez PL, et al. (2007) Mechanism of Ad2-virus-mediated HIV-1 infection. J Clin Invest 112: 1237–1247.

33. Pine SO, Kublin JG, Naon M, King CR, Koup RA, et al. (2010) Differential specificity and immunogenicity of adenovirus type 5 neutralizing antibodies elicited by natural infection or immunization. J Virol 84: 630–638.

34. Baum JH, Castron D, Demmers K, Maklewicz G, Ertl HG, et al. (2010) Adenovirus-specific human T cells are pervasive, polyfunctional, and cross-reactive. Vaccine 28: 1992–1991.

35. Wing K, Onishi Y, Prieto-Martin P, Yamaguchi T, Miyara M, et al. (2008) Gene Expression Patterns in Rhesus Monkey Peripheral Blood Mononuclear Cells and Langerhans cells are more efficiently transduced than dermal dendritic cells by adenovirus vectors expressing either group C or group B fibre protein: implications for mucosal vaccines. Eur J Immunol 35: 2617–2626.

36. Buimovici-Klein E, Lange M, Ong KR, Grieco MH, Cooper LZ (1988) Virus gene expression patterns in rhesus monkeys. J Virol 63: 2983–2993.

37. Scott-Browne JP, Shafiani S, Tucker-Heard G, Ishida-Tsubota K, Fontenot JD, et al. (2010) Virus-responsive plasmacytoid dendritic cells in the rhesus macaque. Clin Diagn Lab Immunol 12: 426–435.

38. Buchbinder SP, Mehrotra DV, Duerr A, Fitzgerald DW, Mogg R, et al. (2008) Adenovirus serotype 5 neutralizing antibodies target multiple hexon hypervariable regions. J Virol 82: 1267–1272.

39. Cheng C, Gall JG, Nason M, King CR, Koup RA, et al. (2010) Adenovirus-specific human T cells are pervasive, polyfunctional, and cross-reactive. Vaccine 28: 1992–1991.

40. Wong S, Pabbaraju K, Pang XL, Lee BE, Fox JD (2008) Detection of a broad spectrum of respiratory viruses in the nasopharynx of healthy adults. Diagn Lab Immunol 12: 426–435.

41. Bergelson JM, Cunningham JA, Droogert G, Kurt-Jones EA, Knihinaths A, et al. (1997) Isolation of a common receptor for Coxsackie B viruses and adenoviruses 2 and 3. Science 275: 1320–1323.

42. Reinhart TA, Fallett BA, Pfeifer ME, Sanghavi S, Cappucca S, et al. (2002) Increased expression of the inflammatory chemokine CXCL-9 chemokine ligand 9/mammalian major histocompatibility class I molecule induced by intranasal adenovirus infection in infected nasal tissues in the rabbit model of simian immunodeficiency virus infection and acquired immunodeficiency syndrome. Blood 99: 3119–3128.

43. Varnavski AN, Zhang Y, Schnell M, Tselezze L, Louboutin JP, et al. (2002) Pre-existing immunity to adenovirus vectors limits alpha adenovirus vaccines in rhesus monkeys. J Virol 76: 5711–5719.

44. Reherre P, Pancelo E, Kinzer J (2008) Activation of a dendritic cell-T cell axis by Ad5 immune complexes creates an improved environment for replication of HIV in T cells. J Exp Med 205: 2717–2725.

45. Tomko RP, Ns R, Philipson L (1997) Isolation of a common receptor for Coxsackie B viruses and adenoviruses 2 and 5. Science 275: 1320–1323.

46. Maraskovsky E, Chen WF, Shortman K (1989) IL-2 and IFN-gamma are two cytokines from human peripheral blood mononuclear cells in vitro that induce anergy of antigen-activated human T lymphocytes. J Immunol 143: 1209–1214.

47. Kessler T, Hämmerköt T, Schricker T, Jahn G (2010) Dendritic cells are susceptible to infection with wild-type adenovirus, inducing a differentiation arrest in precursor cells and inducing a strong T-cell stimulation. J Gen Virol 91: 1150–1154.

48. herramienta T, Añorbe M, Bernal L, Marchena L, Barrios F, et al. (2010) Adenovirus serotype 5 neutralizing antibodies target multiple hexon hypervariable regions. J Virol 82: 1267–1272.

49. Kessler T, Hämmerköt T, Schricker T, Jahn G (2010) Dendritic cells are susceptible to infection with wild-type adenovirus, inducing a differentiation arrest in precursor cells and inducing a strong T-cell stimulation. J Gen Virol 91: 1150–1154.

50. Sun Y, Bailer RT, Rao SS, Mascola JR, Nabel GJ, et al. (2009) Systemic and mucosal T-lymphocyte activation induced by recombinant adenovirus vaccines in rhesus monkeys. J Virol 83: 10596–10604.

51. Sun Y, Bailer RT, Rao SS, Mascola JR, Nabel GJ, et al. (2009) Systemic and mucosal T-lymphocyte activation induced by recombinant adenovirus vaccines in rhesus monkeys. J Virol 83: 10596–10604.

52. Perreau M, Pantaleo G, Kremer EJ (2008) Activation of a dendritic cell-T cell axis by Ad5 immune complexes creates an improved environment for replication of HIV in T cells. J Exp Med 205: 2717–2725.

53. Belkaid Y, Piccirillo CA, Mendez S, Shevach EM, Sacks DL (2002) CD4 regulatory T cell function. Science 322: 271–275.

54. Fulton RB, Meyerholz DK, Varga SM (2010) Foxp3 T cells. Blood 115: 5310–5318.

55. Scott-Browne JP, Shafiani S, Tucker-Heard G, Ishida-Tsubota K, Fontenot JD, et al. (2007) Detection of a broad spectrum of respiratory viruses in the nasopharynx of healthy adults. Diagn Lab Immunol 12: 426–435.

56. Shafiani S, Tucker-Heard G, Kariyone A, Takatsu K, Urdahl KB (2010) Virus-responsive plasmacytoid dendritic cells in the rhesus macaque. J Infect Dis 198: 841–854.

57. Varnavski AN, Zhang Y, Schnell M, Tselezze L, Louboutin JP, et al. (2002) Pre-existing immunity to adenovirus vectors limits alpha adenovirus vaccines in rhesus monkeys. J Virol 76: 5711–5719.

58. Reherre P, Pancelo E, Kinzer J (2008) Activation of a dendritic cell-T cell axis by Ad5 immune complexes creates an improved environment for replication of HIV in T cells. J Exp Med 205: 2717–2725.
62. Abel K, Compton L, Rourke T, Montefiori D, Lu D, et al. (2003) Simian-human immunodeficiency virus SHIV89.6-induced protection against intravaginal challenge with pathogenic SIVmac239 is independent of the route of immunization and is associated with a combination of cytotoxic T-lymphocyte and alpha interferon responses. J Virol 77: 3099–3118.

63. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25: 402–408.