Scenario-Adaptive and Self-Supervised Model for Multi-Scenario Personalized Recommendation

Yuanliang Zhang∗
Alibaba Group
Hangzhou, China
kubert.zyl@alibaba-inc.com

Xiaofeng Wang∗
Alibaba Group
Hangzhou, China
aron.wxf@alibaba-inc.com

Jinxin Hu
Alibaba Group
Hangzhou, China
jinxin.hjx@alibaba-inc.com

Ke Gao
Alibaba Group
Hangzhou, China
gaoke.gao@alibaba-inc.com

Chenyi Lei
Alibaba Group
Hangzhou, China
chenyi.lcy@alibaba-inc.com

Fei Fang
Alibaba Group
Hangzhou, China
mingyi.ff@alibaba-inc.com

ABSTRACT
Multi-scenario recommendation is dedicated to retrieve relevant items for users in multiple scenarios, which is ubiquitous in industrial recommendation systems. These scenarios enjoy portions of overlaps in users and items, while the distribution of different scenarios is different. The key point of multi-scenario modeling is to efficiently maximize the use of whole-scenario information and granularly generate adaptive representations both for users and items among multiple scenarios. We summarize three practical challenges which are not well solved for multi-scenario modeling: (1) Lacking of fine-grained and decoupled information transfer controls among multiple scenarios. (2) Insufficient exploitation of entire space samples. (3) Item’s multi-scenario representation disentanglement problem. In this paper, we propose a Scenario-Adaptive and Self-Supervised (SASS) model to solve the three challenges mentioned above. Specifically, we design a Multi-Layer Scenario Adaptive Transfer (ML-SAT) module with scenario-adaptive gate units to select and fuse effective transfer information from whole scenario to individual scenario in a quite fine-grained and decoupled way. To sufficiently exploit the power of entire space samples, a two-stage training process including pre-training and fine-tune is introduced. The pre-training stage is based on a scenario-supervised contrastive learning task with the training samples drawn from labeled and unlabeled data spaces. The model is created symmetrically both in user side and item side, so that we can get distinguishing representations of items in different scenarios. Extensive experimental results on public and industrial datasets demonstrate the superiority of the SASS model over state-of-the-art methods. This model also achieves more than 8.0% improvement on Average Watching Time Per User in online A/B tests. SASS has been successfully deployed on multi-scenario short video recommendation platform of Taobao in Alibaba.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

ACM Reference Format:
Yuanliang Zhang, Xiaofeng Wang, Jinxin Hu, Ke Gao, Chenyi Lei, and Fei Fang. 2022. Scenario-Adaptive and Self-Supervised Model for Multi-Scenario Personalized Recommendation. In Proceedings of the 31st ACM International Conference on Information and Knowledge Management (CIKM ’22), October 17–21, 2022, Atlanta, GA, USA. ACM, New York, NY, USA, 10 pages. https://doi.org/10.1145/3511808.3557154

1 INTRODUCTION
In recent years, the Multi-Scenario Personalized Recommendation Problem[4, 17, 29, 30, 38], which focuses on retrieving relevant candidates in multiple scenarios, is well-known and ubiquitous in most industrial recommendation systems, such as Taobao in Alibaba, Amazon, TikTok etc. The scenario can be treated as a specific recommendation domain of users and items. As shown in Figure 1, there are diverse scenarios in short video recommendation platform of Taobao. From the user perspective, a user may access some of the scenarios and watch different videos. Form the video perspective, a short video may be pushed to different users in different scenarios.
There are some common users and videos among different scenarios, making it reasonable and beneficial to share information for model learning. However, each scenario will also have its own unique users and videos. Besides, the behaviors are diverse for the same user in different scenarios, and the exposure abilities of the same video in different scenarios are also distinguishing. Therefore, it is challenging to model the commonalities and distinctions of different scenarios when solving the multi-scenario problem.

Various types of strategies have been proposed to tackle the multi-scenario problem: (1) Training a separate model for each scenario (depicted as Figure 2(a)). The shared information among multiple scenarios is neglected in this strategy. It is challenging for new and minor scenarios with limited data to learn proper models. Besides, developing a separate model for each scenario will consume tremendous resources. (2) Training one common model with mixture of samples coming from multiple scenarios (depicted as Figure 2(b)). The operation of sample mixture destroys the original data distribution, making it hard for one model to make appropriate predictions for each scenario. Moreover, minor scenarios may be dominated by major scenario. (3) Training a model with whole-scenario samples and fine-tuning scenario-specific models with samples from corresponding scenario, depicted as Figure 2(c). This method can enjoy whole-scenario data and get scenario-specific results. However, little attentions are paid to model the correlations among multiple scenarios. (4) Building a unified framework based on multi-task learning and learning commonalities and correlations among multiple scenarios (depicted as Figure 2(d)), which has become a mainstream strategy to solve multi-scenario problem. However, previous works overlook three crucial challenges:

- **Lacking of fine-grained and decoupled information transfer controls.** The key point of learning scenario correlations is to model the information transfer among scenarios. Existing works conduct information transfer in quite implicit and coarse-grained ways, such as parameter factorization [30], mixture-of-experts mechanisms [17, 29] and dynamic weights network [38]. It is hard to determine the precise magnitude of transferred information from one scenario to another.

- **Insufficient exploitation of entire space samples.** Most existing multi-scenario models are trained only with labeled data, making huge amount of unlabeled data (users or items without interactive behaviors in a specific scenario) under no use. These unlabeled data are of great potential for reflecting scenario characteristics. It is also challenging to model some spare or new scenarios with little labeled data. Although ZEUS [9] has made some attempts to model unlabeled data through a self-supervised Next-Query Prediction task, it only focuses on query-side modeling. Besides, there are little unions between the self-supervised task and multi-scenario modeling in ZEUS.

- **Item’s multi-scenario representation disentanglement problem.** From the perspective of item side, an item may have distinguishing characteristics and behaviors in different scenarios. It is quite suitable to generate distinguishing representations for items in different scenarios. To the best of our knowledge, previous methods mainly focus on scenario-aware intention modeling from user perspective, with little concerns on the item side.

In order to tackle the challenges mentioned above, we propose the Scenario-Adaptive and Self-Supervised (SASS) model and demonstrate its rationality and effectiveness. We design a Multi-Layer Scenario Adaptive Transfer (ML-SAT) module to learn user and item representations in scenario-specific scope and whole-scenario scope. In ML-SAT a scenario-adaptive gate unit with explicit gate controls is proposed to regulate and facilitate the fine-grained information transfer from global shared network to scenario-specific network. To adequately exploit the entire space samples, we introduce a two-stage training process (pre-training and fine-tune). In pre-training stage, we build a scenario-supervised contrastive learning task with the training samples drawn from labeled and unlabeled data spaces. In fine-tune stage, the user-item similarity matching objective is achieved with a scenario-specific and a global-auxiliary matching task. The model architecture of SASS is created symmetrically both in user side and item side, so that we can get distinguishing representations for items in different scenarios. We creatively combine the multi-scenario problem and self-supervised contrastive learning problem in a unified paradigm and tackle the challenges of multi-scenario modeling mentioned above.

The main contributions of this work are summarized as follows:

- We propose an effective Scenario-Adaptive and Self-Supervised (SASS) framework to solve multi-scenario problem. In SASS, we design a Multi-Layer Scenario Adaptive Transfer module with a scenario-adaptive gate unit to regulate and facilitate the fine-grained information transfer from global shared network to scenario-specific network.

- We introduce a two-stage training process to strengthen the exploitation of entire space samples, especially unlabeled data in corresponding scenario. We design a novel scenario-supervised contrastive learning task and closely correlate the scenario-supervised task with multi-scenario problem.

- The proposed model structure is symmetrically designed in item side, so that we can generate distinguishing representations for items in different scenarios.
• Extensive experimental results on public and industrial datasets demonstrate the superiority of the SASS model over state-of-the-art methods. SASS has also been successfully deployed on multi-scenario short video recommendation platform of Taobao in Alibaba and achieved more than 8.0% improvement on Average Watching Time Per User in online A/B tests. We believe the strategies proposed in SASS are universally applicable in most multi-scenario recommendation systems.

2 RELATED WORK

2.1 Multi-Scenario Recommendation Models

As mentioned above, the mainstream strategies of tackling the multi-scenario problem is to create a unified framework to model all scenarios simultaneously. Thus, we mainly survey works related to this paradigm. Specifically, HMoe[17] utilizes multi-gate mixture-of-experts[20] to implicitly model commonalities and distinctions among multiple scenarios. SAML[4] distinguishes user behaviors in different scenarios with scenario-specific attention mechanisms and proposes a scenario-mutual unit to learn differences and similarities between scenarios. ICAN[35] treats each data channel as a scenario and designs a scenario-aware contextual attention layer to generate distinguishing user representations in different scenarios. SAR-Net[29] proposes a unified multi-scenario architecture and introduces two scenario-aware attention modules to extract scenario-specific features in user side. After that, SAR-Net implements implicit scenario information transfer with the gate fusion of scenario-specific experts and scenario-shared experts. STAR[30] designs a star topology framework, with one centered network to maintain whole-scenario commonalities and a set of domain-specific networks to distinguish scenario distinctions. The combination strategy of element-wise product of layer weights is treated as the information transfer mechanism from whole scenarios to individual scenario. M2M[38] pays attention to advertiser modeling in multiple scenarios and proposes a dynamic weights meta unit to model inter-scenario correlations. The methods mentioned above learn scenario information transfer in quite implicit ways, making it hard to determine the precise impacts among multiple scenarios. Besides, these models are only trained with labeled data, without making full use of the entire space samples. Although ZEUS[9] tackles the feedback loop problem with a Next-Query Prediction self-supervised manner on unlabeled data, the pre-training task is mainly based on user spontaneous query sequences. Moreover, all of the previous works overlook the problem of generating distinguishing representations of items in different scenarios.

2.2 Self-Supervised Learning in Recommendation System

Self-supervised learning which focuses on learning feature embeddings and initial network weights on unlabeled data, is widely utilized in areas of Compute Vision[2, 3, 27] and Natural Language Processing[7, 10]. Many efforts based on self-supervised learning have also been made in the area of Recommendation Systems. [21] proposes a sequence-to-sequence self-supervised training strategy for sequential recommendation, while [31] models user behavior sequences by predicting the random masked items in the sequence with bidirectional self-attention. SGL[33] proposes a self-supervised task on user-item graph with various operators to generate different graph views. To tackle the label sparsity problem, [36] introduces the self-supervised strategy based on the contrastive learning on the item side. CLRRec[39] also utilizes contrastive learning to reduce the exposure bias in deep candidate generation. S2Rec[40] models sequence recommendation by building four auxiliary self-supervised objectives with the mutual information maximization principle. Moreover, ZEUS[9] proposes a Next-Query Prediction self-supervised task on user’s query sequences for spontaneous search Learning-To-Rank tasks.

3 PROBLEM FORMULATION

We propose a unified framework to solve multi-scenario problem, which is definitely applicable to serve both matching and ranking tasks in recommendation system. In this paper, we describe and demonstrate our method in matching task. Few modifications can be made when it is served for ranking tasks, which we remain for future research.

3.1 Multi-Scenario Matching Problem

A Scenario can be treated as a specific recommendation domain, denoted as D_1 in this paper. Given a set of scenarios $D = \{D_1\}_{i=1}^{D}$, which share a common feature space F and label space Y. For scenario D_i, the labeled training data are drawn from a domain-specific distribution P_i over $F \times Y$. Although there may be many common users and items between two scenarios, the distribution P_i are quite distinguishing in different scenarios. The Multi-Scenario Matching Problem can be formulated as follows:

$$
\overline{V}_i = \max_{1 \leq k \leq K} \{\text{sim}(e_u, e_i^v)\}, \, v \in V
$$

where V denotes the large-scale candidate item set, e_u, e_i^v is the user and item representation vectors in scenario D_i, $\text{sim}(e_u, e_i^v)$ is the relevance score between user u and item v, and \overline{V}_i is the final top K matching results for D_i.

The multi-scenario problem can be treated as a specific case of multi-domain learning problem with three important characteristics: (a) All scenarios have the same user/item type and enjoy a common feature schema; (b) All scenarios share the same learning objective (multiple inputs and one objective); (c) The key points of multi-scenario learning focus on the information sharing and transfer among scenarios, so that all scenarios’ performances can be improved simultaneously. It should be emphasized that the multi-scenario problem is quite different from cross domain problem[12, 18, 26, 34] (mainly focusing on improving target domain’s performance), multi-task learning problem[20, 24, 32] (one input and multiple objectives) and heterogeneous multi-domain task[11] with different item types.

4 PROPOSED METHOD

In this section, we describe the proposed Scenario-Adaptive and Self-Supervised Model (SASS). SASS has two stages, Pre-Training Stage and Fine-Tune Stage:

• Pre-Training Stage, as shown in Figure 3(a). There are user-side and item-side pre-training task in this stage. Both of the two tasks have the same model structure. The embedding layer is shared between the two tasks. The pre-training stage is based
on a self-supervised contrastive learning strategy, which will be described in detail in subsection 4.1.

- **Fine-Tune Stage**, as shown in Figure 3(b). The model structure in fine-tune stage utilizes a dual double-tower framework to generate user and item representation vectors separately. The fine-tune and online serving operations will be illustrated in subsection 4.2 and 4.3. The embedding layer and network weights in fine-tune stage are restored from the pre-training stage, so that the model in fine-tune stage can reuse well-trained information from the entire sample space.

Both of the two stages utilize a Multi-Layer Scenario Adaptive Transfer Module (ML-SAT) to regulate the fine-grained and decoupled information transfer from whole scenarios to specific scenario. We minutely describe it in subsection 4.1.2.

4.1 Self-Supervised Framework Based on Contrastive Learning

We introduce the paradigm of contrastive learning for our pre-training task and creatively correlate the multi-scenario matching framework and contrastive learning framework in a unified way. Training samples in pre-training stage are drawn from both labeled(clicked) and unlabeled(exposed but not clicked) data space.

As shown in Figure 3(a), in the user side, behaviors of the same user in different scenario can be treated as a mechanism of data augmentation. After that, a Multi-Layer Scenario Adaptive Transfer Module (ML-SAT) is proposed to generate distinguishing representation vectors for the same user in different scenarios. Finally, the contrastive loss function [2] is introduced as the optimization loss to maximize agreements between different latent representations of same user in different scenarios. If a user \(u \) accessed \(k \) scenarios, we simply split these scenarios and make a combination of two to generate \(C^2_k = \frac{k(k-1)}{2} \) samples for contrastive learning.

In the item side, exposures and interactions of the same item in different scenario can also be treated as a mechanism of data augmentation. Siamese model network and contrastive loss function will be adopted to the pre-training process for the same item. Similar operations of sample combination are conducted to generate multiple samples for item side, just as user side did.

4.1.1 Feature Composition and Embedding Layer

In the user side, every training sample contains user profiles, scenario context features and two groups of user-scenario cross behavior features which are drawn from two scenarios separately. Specifically, user profiles contain age, gender, etc. Scenario context features mainly include scenario ID. User-scenario cross behavior features including user behavior sequences, category preferences and user statistic characteristics in the corresponding scenario.

For user behavior sequence features, the list of feature field embeddings will be concatenated to form the item embedding for each item in the behavior sequence. The final user behavior sequence embeddings will be generated by sequence pooling strategies. We utilize self-attention mechanism [7] as our sequence pooling operation, other strategies [19, 29] can be investigated for better performance, which we remain for future research.

In the item side, item profiles contain item ID, item category ID, account ID, etc. item-scenario cross features mainly include item statistic characteristics in the corresponding scenario.

To highlight the significance of scenario context features, we introduce a separate auxiliary network to model scenario characteristic, as formulated below:

\[
a = f(W_\alpha x_\alpha + b_\alpha)
\]

where \(x_\alpha \) is the embedding of scenario context features, \(f(\cdot) \) is a multi-layer perceptron.

4.1.2 Multi-Layer Scenario Adaptive Transfer Module (ML-SAT)

We propose a novel network to extract representation vectors in corresponding scenario both for users and items. The structures between user side and item side are nearly the same, as shown in Figure 3. Thus, we only describe the user side network in the following of the paper.

To make full use of whole-scenario information and regulate the fine-grained information transfer from whole scenarios to specific scenario, we introduce a global shared network to learn the information of all scenarios, and propose a Multi-Layer Scenario Adaptive Transfer Module (ML-SAT) as the scenario specific network for each individual scenario. As shown in Figure 4(a), the global shared network is a multi-layer perceptrons shared by all the scenarios. Training samples coming from the whole scenarios will be fed into global shared network to train a whole-scenario model.
ML-SAT, which is parameter-specific in separate scenarios, is trained with training samples coming from corresponding scenarios.

Motivated by GRU[5], in each network layer, we design a scenario-adaptive gate unit with explicit gate mechanisms to regulate the fine-grained information transfer from whole scenarios to specific scenarios. As shown in Figure 4(b), the scenario-adaptive gate unit can be formulated as follows:

\[
\begin{align*}
 r_l &= \sigma(W^r_l[gl, sl_{l-1}] + W_h \cdot a) \\
 h_l &= \tanh(W^h_l[r_l \cdot gl, sl_{l-1}]) \\
 z_l &= \sigma(W^z_l[gl, sl_{l-1}] + W_z \cdot a) \\
 s_l &= (1 - z_l) \cdot sl_{l-1} + z_l \cdot h_l
\end{align*}
\]

where \(gl\) denote the \(l\)th layer output of global shared network, \(sl_{l-1}\) denote the \((l-1)\)th layer output of scenario specific network. \(W^r_l\) and \(W_h\) are the projection matrix weights and bias matrix weights of update gate \(z_l\) in \(l\)th layer. \(W^z_l\) and \(W_z\) are the projection matrix weights and bias matrix weights of adaptive gate \(r_l\) in \(l\)th layer. \(a\) is the output of the scenario auxiliary network, which is introduced as a strong scenario indicator bias.

In Equation (3), adaptive gate \(r_l\) decides the degree of useful information the global shared network can transfer, \(h_l\) reflects the new adaptive state transfer information, considering the correlation between \(gl\) and \(sl_{l-1}\), as depicted in Equation (4). With the update gate \(z_l\) as fusion weights, the new output \(s_l\) can be updated by the fusion of \(sl_{l-1}\) and adaptive transfer output \(h_l\). The network layer with scenario-adaptive gate unit can be stacked to multiple layers for more progressive layered extraction[52].

4.1.3 Scenario Bias Fusion. After the multi-layer network with scenario-adaptive gate unit, we can get the scenario main output of the corresponding scenario. Considering the significant importance of scenario context features in distinguishing scenario characteristics, we treat the output of scenario auxiliary network as scenario bias and fuse it with scenario main output to generate the final scenario-specific representation vector, as shown in Figure 4(c). Let \(\mathbf{e}_1, \mathbf{e}_2\) be scenario main output and scenario bias, respectively. The objective of pre-training task is to extract agreements and model corrections between different scenarios. Thus, we adopt the same self-supervised contrastive loss of [2] as our optimizing loss. Specifically, for a minibatch training samples with batch size \(N\), we can get \(2N\) vectors after ML-SAT. We treat \(\mathbf{e}_1, \mathbf{e}_2\) as a positive pair. The other \(2(N - 1)\) scenario vectors are regarded as negative vectors. The loss function for a positive pair \((\mathbf{e}_1, \mathbf{e}_2)\) is defined as

\[
\mathcal{L}_{ij} = -\log \frac{\exp(sim(\mathbf{e}_1, \mathbf{e}_2)/\tau)}{\sum_{k=1, k \neq i}^{2N} \exp(sim(\mathbf{e}_1, \mathbf{e}_k)/\tau)}
\]

where \(sim(\mathbf{e}_1, \mathbf{e}_2) = \frac{(\mathbf{e}_1^T \mathbf{e}_2)/\|\mathbf{e}_1\|\|\mathbf{e}_2\|}{\tau}\) and \(\tau\) is the temperature parameter. The final loss is the sum of all losses in the minibatch, as denoted in equation (10).

\[
\mathcal{L} = \sum_{k=1}^{N} (\mathcal{L}_{ij})^{(k)}
\]

4.2 Fine-Tune Stage

Most model components in fine-tune stage are identical with pre-training stage, such as ML-SAT module and Scenario Bias Fusion.
module. For brevity, we only describe components different from pre-training stage in the following subsections.

4.2.1 Feature Composition and Embedding Layer. The training samples in fine-tune stage are labeled data drawn from target scenario. A user can only access one scenario at a time, so the features in one training sample only contain features in a single scenario. User side features contain user profiles, scenario context feature (scenario ID), user’s behavior sequences, statistic features and prefer features of user in target scenario. Item side features contain item profiles, scenario context feature (scenario ID), statistic features and prefer features of item in target scenario. Then, as shown in Figure 5, user side features and item side features are separately fed into embedding layer and upper ML-SAT modules to generate final scenario-specific vectors in corresponding scenario both for users and items. It should be emphasized that the embedding layer and networks weights of ML-SAT in fine-tune stage are restored from pre-training stage.

4.2.2 Fine-Tune Optimization Objective. The final optimization loss in fine-tune stage is the combination of Scenario Specific Loss and Global Auxiliary Loss.

Scenario Specific Loss Function: Similar with other matching tasks[13, 25, 37], we adapt pairwise loss to optimize our fine-tune matching task. For a scenario \(s \), the \(k \)th training sample in fine-tune stage is a triplet \((u^k_s, p^k_s, n^k_s)\). \(u^k_s \) denotes user representation vector, \(p^k_s \) and \(n^k_s \) denote corresponding positive and negative item vector, respectively. Negative items are randomly sampled from whole user or item representations in a global perspective. Modeling the similarity of users and items in the global scope is beneficial to the convergence of training and performance improvement. So we introduce a global auxiliary loss defined as:

\[
L_{auxiliary} = \frac{1}{N} \sum_{k=1}^{N} \log(1 + \sigma(\text{sim}(u^k_s, n^k_s) - \text{sim}(u^k_s, p^k_s)))
\]

where \(u^k_s, p^k_s, n^k_s \) denote the representation vectors of a triplet (user, positive item, negative item) respectively, which are all generated through global shared network. Finally, the loss function in fine-tune stage is formulated as below with a hyper-parameter \(\beta \):

\[
L = L_{scenario} + \beta \cdot L_{auxiliary}
\]

4.3 Online Serving
When SASS is trained, the whole model in fine-tune stage can be deployed for online serving. For a specific scenario \(s \), all the items with their features will be fed into the model and generate item vectors \(e_i \) from corresponding scenario specific network in the item side architecture. Then, all the item vectors are saved as an item corpus. During online serving, when a user accesses scenario \(s \), the user features are fed into SASS and the user vectors \(u_s \) is generated from corresponding scenario specific network in the user side architecture. Finally, an online real-time top-k retrieval operation based on approximate near neighbor algorithms[15] is implemented. These retrieved results are treated as candidates for subsequent ranking tasks.

5 EXPERIMENTS
To adequately evaluate the proposed SASS model, we conduct experiments to answer the following research questions:

- How about SASS model compared with state-of-art matching models trained with one scenario data for each scenario or trained with whole-scenario data for all scenarios?
- How about SASS model compared with other state-of-art multi-scenario matching models?
- How about the impact of each part on the overall model?
5.1 Experimental Settings

5.1.1 Datasets. We conduct experiments on our industrial dataset and two public datasets. Table 1 summarizes the basic information of these datasets.

- **Ali-MSSV.** Our industrial Multi-Scenario Short Video (MSSV) dataset in Taobao. Data from 2022-03-24 to 2022-04-04 is utilized for training and 2022-04-05 for testing. We evaluate models on two dense scenarios (denoted as #A1 and #A2) with abundant user behaviors and two sparse scenarios (#A3 and #A4) with sparse data.
- **Ali-CCP[22].** A public dataset released by Taobao with prepared training and testing set. We split the dataset into 3 scenarios according to the scenario id; denoted as #B1 to #B3 for simplicity.
- **Ali-Mama[8].** A public dataset released by Alimama, an online advertising platform in China. Data from 2017-05-06 to 2017-05-011 is utilized for training and 2022-05-11 for testing. We arrange the dataset into 5 scenarios according to the city level, denoted as #C1 to #C5 for simplicity.

5.1.2 Competitors. We release two types of SASS models to compare with other methods.

- **SASS-Base:** It is the model trained with labeled data without pre-training. We will evaluate the performance of SASS-Base on all of the three datasets.
- **SASS:** It is our proposed model with two stages. The Ali-CCP dataset is unsuitable for pre-training task due to the lack of indispensable features, so we only evaluate the performance of SASS on our Ali-MSSV dataset and Ali-Mama dataset.

The compared **Single-Scenario** matching models (trained with single-scenario data) are listed as follows:

- **YoutubeDNN:** YoutubeDNN[6] adopts average pooling to extract user’s interest with a sampled softmax loss to optimize similarities between users and items.
- **DSSM:** DSSM[14] builds a relevance score model to extract user and item representations with double-tower architecture.
- **BST:** BST[1] leverages transformer to build the user behavior sequence. In this paper we use the inner product of user and item representations instead of MLP.
- **MIND:** MIND[16] clusters users’ multiple interests by capsule network to improve the effect of multi-interest promotion.

The model ment above will also be trained with all-scenario data for **Mix-Scenario** versions.

The multi-scenario matching models are listed as follows. To the best of our knowledge, most of the existing multi-scenario models are mainly proposed for ranking problems. Therefore, for original multi-scenario ranking models, some necessary but slight modifications are made for unified evaluation on matching tasks, denoted by a postfix -M for each model.

- **SAR-Net-M:** Modified version of SAR-Net[29] which propose a multi-scenario architecture for scenario information migration with scenario-specific users’ behaviors and attention mechanism;
- **STAR-M:** Modified version of STAR[30] which constructs star topology for multi scenarios and operate an element-wise operation to control information transferred from central network to specific networks;
- **HMoE-M:** Modified version of HMoE[17] which constructs relationship between multiple scenarios in label implicit space through stacked model;
- **ZEUS-M:** Modified version of ZEUS[9] which learns unlabeled Next-Query Prediction task;
- **ICAN:** ICAN[35] is one of the SOTA models for multi-domain matching, which is most related works of our task. It highlights the interactions between feature fields in different domains for cold-start matching.

5.1.3 Parameter Settings and Metrics. For all methods, the truncation length of user behavior is 50. AdamGrad is used as the optimizer with learning rate of 0.001 for all methods and the batch size is 512. Hit Ratio (HR) and Normalized Discounted Cumulative Gain (NDCG) are adopted as the performance metrics. We set HR@20 and NDCG@20 in top-20 matching results as final metrics.

5.2 Overall Experimental Results: RQ1 & RQ2

We evaluate our methods with other compared models, as illustrated in Table 2. We can summarize three significant observations: (1) The experiment performances of mix-scenario models are generally better than single-scenario models in sparse scenarios (such as scenario #A4, #B1). We suspect that it is challenging for sparse scenarios to train perfect models with limited training samples. Additional samples coming from other scenarios can partly improve the performance of sparse scenarios. However, in dense scenarios (such as #A1, #C2), mix-scenario models perform worse than single-scenario models. One possible reason may be that the crude mixture of multi-scenario samples introduces non-negligible noise data, which is harmful to the model performances. These two observations are consistent with the conclusions in SAR-Net[29].

(2) Unified multi-scenario modes all get better performances than single-scenario models and mix-scenario models. The results indicate that the strategies with information share and modeling of scenario commonalities and distinctions are beneficial to solving multi-scenario problems. (3) SASS-Base (without pre-training) outperforms other compared models (single-scenario, mix-scenario and multi-scenario) in nearly all scenarios (with comparable performance with SAR-Net-M and STAR-M in scenario #A2). It shows that SASS-Base has a leading performance over other multi-scenario models in building commonalities and characteristics of different

Table 1: Basic information of three datasets
Scenario

Ali-MSSV (#A)
#A1
#A2
#A3
#A4
Ali-CCP (#B)
#B1
#B2
#B3
Ali-Mama (#C)
#C1
#C2
#C3
#C4
#C5

- **HMoE-M:** Modified version of HMoE[17] which constructs relationship between multiple scenarios in label implicit space through stacked model;
- **ZEUS-M:** Modified version of ZEUS[9] which learns unlabeled Next-Query Prediction task;
- **ICAN:** ICAN[35] is one of the SOTA models for multi-domain matching, which is most related works of our task. It highlights the interactions between feature fields in different domains for cold-start matching.
scenarios. Moreover, SASS (with pre-training) can further improve the performance, especially for sparse scenarios. The performance gain of SASS in scenarios #A3 is much higher than that in other scenarios, indicating the excellent improvements of pre-training task in sparse scenarios.

5.3 Ablation Study: RQ3

5.3.1 Scenario-Adaptive Gate Unit. Scenario-Adaptive Gate Unit controls the information transfer from whole scenarios to specific scenarios, which is essential for modeling scenario commonalities and distinctions. In this subsection, we investigate different transfer gate mechanisms and compare their performance on the SASS-Base model (SASS without pre-training stage). The baseline model is SASS∗, which is a SASS-Base version without transfer gate. SASS∗ can be treated as a variant framework of MOE\cite{28}. In particular, we compare the following settings: (1) Sigmoid Gate: concatenating scenario specific layer’s output \(s_l\) with global shared layer’s output \(g_l\) and feeding the results into MLP with sigmoid to control information transfer. SASS∗+Sigmoid Gate can be treated as a variant framework of MMoE\cite{20} or Cross-Stitch\cite{24}, which is also the fundamental transfer and fusion structure in SAR-Net\cite{29} and HMoE\cite{17}. (2) Production Gate: taking the element-wise production of scenario specific layer’s output \(s_l\) and global shared layer’s output \(g_l\) to generate the final scenario output, which can be partly treated as an equivalent of information mapping of STAR\cite{30}. (3) Simnet Gate: an updated version for the fusion of information with other gate mechanisms \#A3, which is a SASS-Base version without pre-training stage. The baseline model is SASS∗, which is a SASS-Base version without transfer gate. SASS∗ can be treated as a variant framework of MOE\cite{28}. In particular, we compare the following settings: (1) Sigmoid Gate: concatenating scenario specific layer’s output \(s_l\) with global shared layer’s output \(g_l\) and feeding the results into MLP with sigmoid to control information transfer. SASS∗+Sigmoid Gate can be treated as a variant framework of MMoE\cite{20} or Cross-Stitch\cite{24}, which is also the fundamental transfer and fusion structure in SAR-Net\cite{29} and HMoE\cite{17}. (2) Production Gate: taking the element-wise production of scenario specific layer’s output \(s_l\) and global shared layer’s output \(g_l\) to generate the final scenario output, which can be partly treated as an equivalent of information mapping of STAR\cite{30}. (3) Simnet Gate: an updated version for the fusion of information with other gate mechanisms

Table 3: Ablation study of Scenario-Adaptive Gate Unit.

#A1 HR@20 NDCG@20	#A3 HR@20 NDCG@20	
SASS∗	0.054 0.021	0.029 0.019
SASS∗+Production Gate	0.059 0.022	0.033 0.018
SASS∗+Simnet Gate	0.065 0.027	0.037 0.017
SASS∗+Sigmoid Gate	0.071 0.029	0.042 0.023
SASS-Base	**0.082 0.039**	**0.047 0.025**

Figure 6: Ablation study of different layer number.

Table 2: Performance of different models on three datasets. Single-scenario models are trained with data in individual scenario independently while multi-scenario models are trained with data from all scenarios. Multi-Scenario models are trained with multi-scenario data in unified frameworks. Due to the lack of indispensable features for pre-training task on Ali-CCP dataset, we only evaluate the performance of SASS on Ali-MSSV and Ali-Mama datasets.

	single-scenario models	mix-scenario models	multi-scenario models												
	MIND	DSSM	BST	YoutubeDNN	MIND	DSSM	BST	YoutubeDNN	SAR-Net-M	STAR-M	HMoE-M	ZEUS-M	ICAN	SASS-Base	SASS
#A1 HR@20	0.052	0.039	0.042	0.034	0.044	0.032	0.035	0.027	0.079	0.082	0.061	0.072	0.072	0.082	0.087
NDCG@20	0.021	0.012	0.014	0.015	0.024	0.010	0.012	0.009	0.033	0.036	0.022	0.031	0.025	0.039	0.042
#A2 HR@20	0.032	0.016	0.029	0.023	0.027	0.012	0.023	0.016	0.025	0.034	0.027	0.032	0.031	0.034	0.043
NDCG@20	0.014	0.009	0.013	0.012	0.011	0.007	0.008	0.004	0.014	0.012	0.011	0.014	0.016	0.019	0.029
#A3 HR@20	0.041	0.032	0.036	0.029	0.045	0.033	0.041	0.028	0.042	0.045	0.041	0.039	0.039	0.047	0.068
NDCG@20	0.023	0.017	0.021	0.015	0.021	0.017	0.019	0.013	0.021	0.019	0.017	0.016	0.013	0.025	0.037
#A4 HR@20	0.017	0.010	0.012	0.006	0.023	0.011	0.012	0.009	0.027	0.021	0.029	0.031	0.025	0.032	0.047
NDCG@20	0.007	0.003	0.007	0.002	0.011	0.007	0.004	0.005	0.012	0.013	0.010	0.012	0.010	0.017	0.023
#B1 HR@20	0.153	0.112	0.144	0.120	0.164	0.133	0.156	0.137	0.185	0.211	0.194	0.212	0.175	0.234	-
NDCG@20	0.061	0.043	0.057	0.049	0.091	0.052	0.069	0.062	0.082	0.102	0.097	0.117	0.083	0.137	-
#B2 HR@20	0.191	0.143	0.167	0.136	0.212	0.168	0.193	0.151	0.241	0.227	0.219	0.231	0.199	0.252	-
NDCG@20	0.121	0.093	0.103	0.092	0.137	0.112	0.117	0.096	0.117	0.106	0.094	0.123	0.104	0.131	-
#B3 HR@20	0.043	0.029	0.037	0.021	0.067	0.042	0.058	0.039	0.074	0.069	0.081	0.079	0.069	0.092	-
NDCG@20	0.019	0.013	0.013	0.011	0.029	0.019	0.028	0.021	0.032	0.041	0.043	0.037	0.033	0.051	-
better performances. Thus, we set SASS-Base model with different layers for comparison. The results can be shown in Figure 6. The performances become better when the number of layers are stacked from 2 to 3, while getting worse with the further increase of layer number. We suspect that, with the layer number increasing, the distinctions of scenario-specific representation are decreasing if much more information is transferred from whole scenarios to specific scenario.

5.3.3 Self-supervised Learning based Pre-training. In this part, we investigate the performances of different self-supervised strategies in pre-training stage. We set SASS-Base (model without pre-training) as baseline model. We compare SASS-Base with SASS (with pre-training task) and another self-supervised Next Video Prediction task, which is introduced in ZEUS[9]. The results shown in Table 4 exhibit the superior performance of SASS, especially in online evaluation metric is AWT (average watching time per user) and CTR (the number of clicks over the number of video impressions). As shown in Table 7, the online results have demonstrated the feasibilities and effectiveness of our proposed SASS model on real industrial recommendation systems.

6 CONCLUSION

In this paper, we propose the Scenario-Adaptive and Self-Supervised (SASS) model to tackle three core problems of multi-scenario modeling mentioned above. To model multi-scenario commonalities and distinctions, SASS build a global shared network for all scenarios and a Multi-Layer Scenario Adaptive Transfer Module (ML-SAT) as scenario-specific network for each scenario. In ML-SAT, the Scenario-Adaptive Gate Unit is introduced to select and control information transfer from global shared network to scenario-specific network in a much fine-grained and decoupled way. To sufficiently exploit the power of entire space samples, a two-stage training framework including pre-training and fine-tune is introduced. The pre-training stage is based on a scenario-supervised contrastive learning task with the training samples drawn from labeled and unlabeled data spaces. Moreover, the model architecture of SASS is created symmetrically both in user side and item side, so that we can get distinguishing representations for items in individual scenarios.

The experimental results on both offline datasets (industrial and public) and online A/B tests demonstrate the superiority of SASS over state-of-the-art methods for solving multi-scenario problems. SASS has been deployed on the online short video recommendation platform in Taobao, Alibaba, bringing more than 8% improvement on AWT.

REFERENCES

[1] Qiwei Chen, Huan Zhao, Wei Li, Pipei Huang, and Wenwu Ou. 2019. Behavior sequence transformer for e-commerce recommendation in alibaba. In Proceedings of the 1st International Workshop on Deep Learning Practice for High-Dimensional Sparse Data. 1–4.

[2] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. 2020. A simple framework for contrastive learning of visual representations. In International conference on machine learning. PMLR, 1597–1607.

[3] Xindu Chen and Kaiming He. 2021. Exploring simple siamese representation learning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 15750–15758.

[4] Yuting Chen, Yanshi Wang, Yabo Ni, An-Xiang Zeng, and Lanfen Lin. 2020. Scenario-aware and Mutual-based approach for Multi-scenario Recommendation in E-Commerce. In 2020 International Conference on Data Mining Workshops (ICDMW). IEEE, 127–135.

[5] Kunyishun Cho, Bart Van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares, Holger Schwenk, and Yoshua Bengio. 2014. Learning phrase representations using RNN encoder-decoder for statistical machine translation.
