Impact of anticoagulation and antiplatelet drugs on surgery rates and mortality in trauma patients

Felix M. Bläsius1*, Markus Laubach1, Hagen Andruszkow1, Cavan Lübke2, Philipp Lichte1, Rolf Lefering3, Frank Hildebrand1 & Klemens Horst1

Preinjury anticoagulation therapy (AT) is associated with a higher risk for major bleeding. We aimed to evaluated the influence of preinjury anticoagulant medication on the clinical course after moderate and severe trauma. Patients in the TraumaRegister DGU ≥ 55 years who received AT were matched with patients not receiving AT. Pairs were grouped according to the drug used: Antiplatelet drugs (APD), vitamin K antagonists (VKA) and direct oral anticoagulants (DOAC). The primary end points were early (< 24 h) and total in-hospital mortality. Secondary endpoints included emergency surgical procedure rates and surgery rates. The APD group matched 1759 pairs, the VKA group 677 pairs, and the DOAC group 437 pairs. Surgery rates were statistically significant higher in the AT groups compared to controls (APD group: 51.8% vs. 47.8%, p = 0.015; VKA group: 52.4% vs. 44.8%, p = 0.005; DOAC group: 52.6% vs. 41.0%, p = 0.001). Patients on VKA had higher total in-hospital mortality (23.9% vs. 19.5%, p = 0.026), whereas APD patients showed a significantly higher early mortality compared to controls (5.3% vs. 3.5%, p = 0.011). Standard operating procedures should be developed to avoid lethal under-triage. Further studies should focus on detailed information about complications, secondary surgical procedures and preventable risk factors in relation to mortality.

Abbreviations
AT Anticoagulant therapy
AIS Abbreviated injury scale
APD Antiplatelet drugs
ASA American Society of Anesthesiologists
AUC AUC—Academy for Trauma Surgery
DGU German Trauma Society
DOAC Direct oral anticoagulant
ESP Emergency surgical procedures
ICU Intensive Care Unit
ISS Injury Severity Score
LOS Length of stay
PCC Prothrombin complex concentrates
PRBC Packed red blood cells
RISC II Revised Injury Severity Classification Score II
SD Standard deviation
TR-DGU TraumaRegister DGU
TTS Tertiary Trauma Survey
VKA Vitamin K antagonist

1Department of Trauma and Reconstructive Surgery, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074 Aachen, Germany. 2Department of Surgical Intensive Care, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074 Aachen, Germany. 3IFOM—Institute for Research in Operative Medicine, Faculty of Health, Witten/Herdecke University, Ostmerheimer Straße 200, 51109 Cologne, Germany. *email: fblaesius@ukaachen.de
It is well known that older trauma patients have poorer outcomes than younger ones. Physiological changes, comorbidities, nutritional deficits and pre-medication are discussed as reasons for this increased mortality. About 4% of trauma patients are on anticoagulation therapy (AT), mainly due to atrial fibrillation and other cardiovascular diseases (e.g. thromboembolic events, prosthetic heart valves). Demographic changes will lead to a further increase in the use of AT.

As AT has the potential to increase the risk of major bleeding, it represents a major concern for the post-traumatic course, especially in patients with severe haemorrhage. Several studies have reported preinjury medication with warfarin as an independent predictor of mortality. Moreover, impaired physiological reserve due to reduced cardiac function, loss of vessel elasticity and vasoconstriction might mask accelerated blood loss. In up to 20% of geriatric trauma patients, occult hypoperfusion has been described. These risk factors may lead to under-triage, which is associated with a four-fold higher mortality in the geriatric trauma population compared to accurately triaged trauma patients.

Despite the high relevance of AT treatment for the post-traumatic course, the specific impact of different drug groups remains largely unknown. We evaluated the impact of preinjury AT treatment on surgery, thromboembolic events and mortality.

Materials and methods

TraumaRegister DGU. The TraumaRegister DGU of the German Trauma Society (Deutsche Gesellschaft für Unfallchirurgie, DGU) was founded in 1993 with the aim of creating a multi-centre database for pseudonymized and standardized documentation of severely injured patients for the purposes of quality assurance and research. Participating hospitals are primarily located in Germany (90%), but a rising number of hospitals from other countries have begun to contribute data as well, to include Austria, Belgium, China, Finland, Luxembourg, Slovenia, Switzerland, The Netherlands, and the United Arab Emirates. Currently, approximately 33,000 cases from more than 650 hospitals are entered into the database per year. Participation in the TR-DGU is voluntary; however, hospitals associated with the TraumaNetzwerk DGU are obligated to enter at least one basic dataset for quality assurance purposes.

Data were collected prospectively over four consecutive time phases from site of injury until discharge from hospital, as follows: (A) prehospital phase, (B) emergency room and initial surgery, (C) intensive care unit (ICU), and (D) discharge. Documentation included detailed information on demographics, injury pattern, comorbidities, pre- and in-hospital management, course of care while in the ICU, relevant laboratory findings (including data on transfusion), and clinical outcome for each individual. Inclusion criteria were: admission to hospital via emergency room with subsequent ICU/intermediate unit care, or entrance to the hospital with vital signs and death prior to admission to the ICU.

Infrastructure for documentation and data management was provided by the Academy for Trauma Surgery (AUC—Akademie der Unfallchirurgie GmbH), a company affiliated with the German Trauma Society. Scientific leadership draws from the Committee on Emergency Medicine, Intensive Care and Trauma Management (Sektion NIS) of the German Trauma Society. Participating hospitals submitted pseudonymized data into a central database via web-based application. Scientific data analysis was approved according to a peer review procedure established by the NIS Committee.

The present study is in line with the publication guidelines of the TR-DGU and registered as TR-DGU project ID 2018-006.

Definitions. The patients were treated according to the German Level 3 guideline on the treatment of patients with severe/multiple injuries (Version 1 from 2011 and 2016 Update). Injuries were coded according to the Abbreviated Injury Scale (AIS, Version 2005/2008, Association for the Advancement of Automotive Medicine, Barrington, IL). The severity of injuries was recorded according to the AIS as 1 (minor), 2 (moderate), 3 (severe, not life threatening), 4 (serious, life-threatening), 5 (critical, survival uncertain) and 6 (maximum, currently untreatable). Overall injury severity was calculated by the Injury Severity Score (ISS) as described by Baker et al. The outcome after severe brain damage has been assessed by using the Glasgow Outcome Scale (GOS).

Hypotension was defined as systolic blood pressure <90 mmHg at hospital admission. Thromboembolic events included deep vein thrombosis, pulmonary embolism and ischemic stroke during hospital stay. The definition of coagulopathy included at least one of the following criteria: (A) International normalized ratio (INR) >1.4, (B) Activated partial thromboplastin time (aPTT) ≥40 s, and (C) Quick ≤60% at hospital admission. Acidosis was defined as a pH value <7.35 in the first blood gas analysis within the resuscitation room. A mass transfusion was coded, if ≥10 units of packed red blood cells (PRBC) were transfused within 24 h.

Mortality was reported as early (<24 h) and total in-hospital mortality. Furthermore, we used the Revised Injury Severity Classification score, version II (RISC II) to predict the risk of death in severely injured patients that were primarily admitted to one of the reporting trauma centres.

The variable “surgery” included all surgical procedures performed within the hospital stay. Emergency Surgery procedures (ESP) included:

- Decompressive craniectomy
- Laminectomy
- Emergency thoracotomy
- Laparotomy
- Revascularisation
- Embolisation
Stabilisation of pelvic fractures

Stabilisation of extremity fractures

Anticoagulants and antiplatelet drugs investigated in this study are presented in Table 1.

Inclusion criteria.

The following inclusion criteria were applied:

- AIS ≥ 3 in at least one body region
- Age ≥ 55 years
- Treated in a German hospital
- Standard data entry form (Version 2015, admissions from 2015 to 2018)
- Data availability regarding AT
- Early (<48 h) transfer out excluded

Patients were then grouped according to their AT-medication (APD, VKA or DOAC). Patients who took a combination of two drugs were excluded. Each group of patients was matched to control patients who did not receive an anticoagulation drug (Fig. 1).

Matched-pair analysis.

Patients with and without AT were matched according to the following nine criteria (exact match):

- Age groups (years): 55–59, 60–64, 65–69, 70–74, 75–79, 80–84, 85–89, ≥ 90
- Sex (male vs. female)
- AISHead (0–1/2/3/4/5–6)
- AISThorax (0–1/2/3/4/5–6)
- AISAbdomen (0–1/2/3/4/5–6)
- AISExtremities (0–1/2/3/4/5–6)
- Pre-trauma ASA classification (1–2 vs. 3–4)
- Type of admission (primary vs. secondary)
- Systolic blood pressure on hospital admission (divided into four categories (mmHg): < 90, 90–110, 111–179, ≥ 180)

Statistics.

The subgroups resulting from the matching protocol according to the AT taken were compared and analyzed individually to controls. No statistical intergroup comparisons were performed. Categorical variables are presented as percentages if the underlying total is obvious. Metric data are presented as mean and median with standard deviation. Differences in categorical and metric variables were evaluated with the McNemar test and Wilcoxon test for paired data, respectively. A two-sided p-value < 0.05 was considered significant. The interpretation of results should generally focus on the clinical relevance of an observed difference rather than p-values alone. All statistical analyses were performed using SPSS statistical software (SPSS 25; IBM Inc., Armonk, NY, USA).

Consent for publication.

The TR-DGU gave permission for publication. All authors read and approved the final manuscript and gave permission for publication.

Results

A total of 18,125 patients met the inclusion criteria. The matched-pair analyses were performed with 5,746 patients (2,873 pairs), resulting in 1,759, 677 and 437 pairs with APD, VKA and DOAC pre-medication, respectively. By definition, the pairs were identical in terms of the nine matching factors. Table 2 summarises each matched-pair group’s baseline characteristics and injury mechanisms.

Length of stay (LOS), ICU length of stay and intubation rates showed no differences within the three matched-pair analyses (Table 2). Patients on APD treatment had a significantly higher early in-hospital mortality rate (<24 h) compared to the controls (5.3% vs. 3.5%, p = 0.011). However, total in-hospital mortality did not differ (14.0% vs. 13.6%, p = 0.73) (Table 2). The APD group had higher surgery rates compared to the controls (51.8% vs. 47.8%, p = 0.015), whereas ESP rates and time until ESP showed no differences. Prehospital hypotension

| Anticoagulants and antiplatelet agents and the agents included. |

| **Anticoagulants (APD)** | Acetylsalicylic acid
| P2Y_{12} receptor blockers (Clopidogrel, Prasugrel, Ticagrelor)
| Glycoprotein IIb/IIIa inhibitors (Abciximab, Eptifibatide, Tirolibant) |
| **Vitamin K antagonists (VKA)** | Phenprocoumon
| Warfarin |
| **Direct oral anticoagulants (DOAC)** | Factor IIa inhibitor (Dabigatran)
| Factor Xa inhibitors (Apicaban, Edoxaban, Otamixaban, Rivaroxaban) |

Table 1. The classes of anticoagulants and antiplatelet agents and the agents included.

Scientific Reports | (2021) 11:15172 | https://doi.org/10.1038/s41598-021-94675-7
incidence, coagulopathy, the number of received PRBC and prothrombin complex concentrate (PCC) transfusions were comparable between groups (Table 3).

Total in-hospital mortality (23.9% vs. 19.5%, p = 0.026), RISC II prognosis (25.6% vs. 19.4%, p < 0.001) (Table 2) and INR values (2.36 ± 1.07 vs. 1.08 ± 0.2, p < 0.001) were higher in the VKA group. Furthermore, this group presented with coagulopathy (84.7% vs. 6.1%, p < 0.001) and received PCC more frequently (26.3% vs. 1.9%, p < 0.001), and surgical treatment was more frequent compared to the controls (52.4% vs. 44.8%, p = 0.005). However, no differences in ESP rates were found. Patients on VKA less often presented with prehospital hypotension (2.9% vs. 5.5%, p = 0.038) (Table 4).

DOAC therapy was associated with a significant increase in the coagulopathy rate (37.5% vs. 5.2%, p < 0.001), number of received PCC transfusions (10.2% vs. 0.5%, p < 0.001) and incidence of surgical procedures (52.6% vs. 41.0%, p = 0.001). INR values were significantly higher in the DOAC group compared to the controls (1.41 ± 0.63
Discussion

Demographic changes and comorbidities will result in an increased incidence of geriatric trauma patients with AT. The recent approval of novel anticoagulants has further increased the diversity of AT medication. Trauma care of these patients is still debated, with inconsistent data regarding the clinical course after moderate or severe trauma. To elucidate to what extent different anticoagulants (APD, DOAC or VKA) affect the clinical course after severe trauma, we performed a retrospective study based on trauma registry data.

The main findings of our matched-pair analyses can be summarised as follows:

1. AT did not influence the incidence of ESP but resulted in higher surgery rates over the further clinical course in all medication groups.
2. In contrast to APD and VKA, DOAC affected neither early nor total in-hospital mortality.
3. Coagulopathy rates and PCC transfusion rates were significantly higher in patients with both DOAC and VKA treatment.

Patients with VKA and DOAC treatment had significantly higher coagulopathy rates. As increased INR values represent a VKA treatment goal and have also been associated with DOAC treatment\cite{22}, this supported our expectations. Surprisingly, about 15% of VKA patients had an INR < 1.5 and were thus in the non-therapeutic range. This observation could be explained by two main reasons. First, a non-adherence to VKA therapy is described in up to 20% of the respective patients\cite{23}. On the other hand, monitoring in the patient group we investigated (patients > 75 years of age) is mostly performed by the primary care physician. Monitoring takes place once a month. Between these monitoring appointments, non-therapeutic and overshooting INR values may occur. Moreover, only a few patients of this age perform close-meshed self-monitoring (e.g., CoaguChek or INRatio2 point-of-care-systems at least once a week)\cite{24}.

vs. 1.09 ± 0.39, $p < 0.001$). However, no differences in ESP rate, incidence of prehospital hypotension or thromboembolic events and PRBC transfusion rates were observed (Table 5). Furthermore, no differences could be seen in total in-hospital mortality, early mortality (< 24 h) and RISC II prognosis (Table 2).

Table 2. Demographics, trauma mechanisms, injury pattern and outcome. Continuous values are presented as mean/median (SD).

Demographics	APD group 1,759 pairs	VKA group 877 pairs	DOAC group 437 pairs
Male (%)	64.2	60.7	56.3
Age (mean/median) (SD)	75.1/76 (9.6)	75.0/76 (9.7)	76.7/78 (8.5)
Age >65 years (%)	82.3	89.1	88.6
Injury mechanism			
Blunt trauma (%)	98.3	98.7	98.5
Low fall <3 m (%)	54.6	50.8	56.8
High fall >3 m (%)	10.5	12.1	7.5
Car (%)	10.4	12.0	11.2
Motorcycle (%)	6.0	4.2	3.1
Bicycle (%)	9.3	9.9	6.1
Pedestrian (%)	5.0	5.4	3.0

Basic parameter	APD	Control	p-value	VKA	Control	p-value	DOAC	Control	p-values
Primary admission (%)	92.9	90.7		92.0					
LOS, mean/median (SD), d	15.3/12 (13.6)	15.3/12 (14.1)	15.4/12 (13.5)	14.9/12 (12.6)	p = 0.97	14.3/11 (11.7)	14.5/12 (11.8)	p = 0.96	
Duration on ICU, mean/median (SD), d	5.5/2 (8.5)	5.5/2 (8.4)	5.6/3 (9.3)	6.1/3 (8.9)	p = 0.46	5.7/2 (9.2)	5.6/2 (8.6)	p = 0.74	
Intubation, mean/median (SD), d	2.1/0 (6.2)	2.3/0 (6.1)	2.9/0 (7.3)	2.5/0 (5.7)	p = 0.44	2.2/0 (5.9)	2.5/0 (6.6)	p = 0.083	
ASA Score 3–4 (%)	34.8	52.6		34.8	52.6				
ISS, mean/median (SD)	17.2/16 (7.2)	17.3/16 (7.8)	18.4/17 (8.3)	18.9/17 (9.1)	p = 0.38	17.5/16 (8.1)	17.6/16 (8.8)	p = 0.63	
AIS\text{\textregistered} \text{2,3} \geq 3 (%)	20.2	17.1		19.5					
AIS\text{2,3} \text{4,5} \geq 3 (%)	2.4	1.6		1.1					
AIS\text{2,3} \text{6,7} \geq 3 (%)	37.6	32.8		35.0					
AIS\text{2,3} \text{8,9} \geq 3 (%)	50.7	37.8		53.5					
Total in-hospital mortality (%)	14.0	13.6	p = 0.73	23.9	19.5	p = 0.026	19.0	19.7	p = 0.84
Early in-hospital mortality; <24 h (%)	5.3	3.5	p = 0.011	8.7	7.5	p = 0.49	5.7	6.9	p = 0.58
RISC II prognosis (%), primary admissions only	13.5	13.1	p = 0.83	25.6	19.4	p < 0.001	19.4	19.5	p = 0.17
Level I trauma center (%)	52.5	49.4		56.6	57.0		48.5	56.1	
As coagulopathy is part of the "lethal triad" and typically associated with severe bleeding, we assessed preclinical and in-hospital hypotension rates. Interestingly, the controls showed a significantly higher prehospital hypotension rate compared to patients with VKA treatment. This might be explained by the higher risk of vascular calcification in patients with low vitamin K levels\(^25\). Vitamin K is needed to synthesise matrix glad protein (MGP), a natural calcification inhibitor. In mice, targeted deletion of the MGP gene resulted in rapid and complete arterial calcification, resulting in death by 6 weeks\(^26\). Vitamin K antagonism with warfarin, which antagonises the vitamin K-dependent MGP carboxylation, leads to rapid arterial calcification in rats\(^27\). Furthermore, diets high in vitamin K have been shown to reverse aortic calcification and improve arterial elasticity in warfarin-treated rats, suggesting that the calcification in response to warfarin treatment is due to the inhibition of the vitamin K-dependent MGP γ-carboxylation\(^28\). Due to vessel calcification, elasticity decreases and hypertension might develop. The higher hypertension risk in patients with low vitamin K and D levels has been described earlier\(^29\). Thus, the observed difference might be biased by the patients' comorbidities. Pathological hypertension may affect patients on VKA treatment. In cases of blood loss, these patients might present with physiological blood pressure rather than hypotension. Although vitamin K's role in vascular calcification has been demonstrated in animal and in vitro studies, evidence from human studies needs to be further elucidated. Our data may present useful references for the trauma population.

As haemostasis control is the goal in anticoagulated patients during resuscitation, we also investigated PCC, FFP and PRBC transfusion rates. PCC transfusion rates were significantly increased in patients with VKA and also with DOAC treatment. This was expected as guidelines recommend PCC application for reversal of VKA- and DOAC-associated coagulopathy in trauma patients\(^31\). As ESP rates and time to ESP did not differ between patients on AT and controls, the decision to perform ESP likely was not influenced by AT and the transfusion therapy was sufficient to achieve haemostasis in most patients with VKA and DOAC treatment. This supports treatment algorithms, which recommend antagonisation of known pharmacological coagulopathies before surgery\(^30\).

We found a significantly higher incidence of overall surgical procedures in patients with AT in all groups. As the AIS was comparable between AT and control patients, different injury severities as a reason can be excluded. We assume that AT-related development of clinically relevant haematomas, ongoing bleeding or compartment syndromes were indications for the higher number of operations. This has been reported to cause surgical interventions and is likely to contribute to higher surgical rates in AT patients\(^31,32\). Furthermore, several studies have associated relevant anticoagulation with prolonged wound drainage, which is conducive for infection development, due to hematoma formation, which predisposes towards infection\(^33,34\). More numerous persistent drainage or infections, although mostly superficial, may have contributed to the observed higher surgical intervention

Table 3. Clinical data of APD group. Continuous values are presented as mean/median (SD).
HEMS (%)
CT (%)
WBCT (%)
Emergency surgical procedures (%)
Time to emergency surgical procedures, mean/median (SD), min
Surgery (%)
Packed red blood cells (%)
Massive transfusion (%)
Fresh frozen plasma (%)
Prothrombin complex concentrates (%)
Coagulopathy (%)
…INR, mean/median (SD)
Platelet count in ER (per µl)
Hypotension – pre-hospital (%)
Hypotension in ER (%)
Tranexamic acid (%)
Prehospital fluid resuscitation, mean/median (SD), ml
ER fluid resuscitation mean/median (SD), ml
Acidosis (%)
Platelet count in ER (per µl)
Thrombembolic event (%)
Glasgow outcome scale 4–5 (%)

Scientific Reports | (2021) 11:15172 | https://doi.org/10.1038/s41598-021-94675-7
Table 4. Clinical data of VKA group. Continuous values are presented as mean/median (SD).

	Vitamin K antagonist	Control	Data available (n)	p-value
HEMS (%)	13.4	14.3	1,183	0.64
CT (%)	86.0	85.7	1,354	0.88
WBCT (%)	60.2	61.4	1,344	0.66
Emergency surgical procedures (%)	17.9	18.2	1,309	0.50
Time to emergency surgical procedures, mean/median (SD), min	68.4/69.5 (27.7)	71.6/73 (24.5)	159	0.44
Surgery (%)	52.4	44.8	1,354	0.005
Packed red blood cells (%)	3.8	2.2	1,352	0.083
Massive transfusion (%)	0.1	0.1	1,352	
Fresh frozen plasma (%)	1.6	0.6	1,352	0.070
Prothrombin complex concentrates (%)	26.3	1.9	612	< 0.001
Platelet count in ER (per µl)	201,023/195,500 (63,724)	211,285/206,000 (81,792)	626	0.044
Coagulopathy (%)	84.7	6.1	1,305	< 0.001
…INR, mean/median (SD)	2.36/2.22 (1.07)	1.08/1.03 (0.20)	1,303	< 0.001
Acidosis (%)	10.1	7.0	1,064	0.071
Hypotension – prehospital (%)	2.9	5.5	1,093	0.038
Hypotension in ER (%)	2.7	2.8	1,279	0.88
Tranexamic acid (%)	2.5	2.6	1,143	0.91
Prehospital fluid resuscitation, mean/median (SD), ml	558/500 (424)	576/500 (482)	1,124	0.75
ER fluid resuscitation mean/median (SD), ml	720/500 (714)	728/500 (921)	537	0.21
Thrombembolic event (%)	5.0	3.2	607	0.27
ER fluid mean/median (SD), ml	720/500 (714)	728/500 (921)	537	0.21
Glasgow outcome scale 4–5 (%)	67.7	67.8	1,347	0.97

Table 5. Clinical data of DOAC group. Continuous values are presented as mean/median (SD).

	DOAC	Control	Data available (n)	p-value
HEMS (%)	13.0	12.8	775	0.92
CT (%)	88.3	85.4	874	0.19
WBCT (%)	62.2	65.7	866	0.28
Emergency surgical procedures (%)	14.4	14.9	848	0.85
Time to emergency surgical procedures, mean/median (SD), min	77.7/83.5 (26.4)	77.8/75 (23.3)	83	0.82
Surgery (%)	52.6	41.0	874	0.001
Packed red blood cells (%)	3.4	1.8	874	0.14
Massive transfusion (%)	0	0.2	437	
Fresh frozen plasma (%)	1.1	0.7	474	0.48
Prothrombin complex concentrates (%)	10.2	0.5	376	< 0.001
Platelet count in ER (per µl)	206,952/203,000 (69,450)	218,785/202,000 (99,165)	386	0.42
Coagulopathy (%)	37.5	5.2	842	< 0.001
…INR, mean/median (SD)	1.41/1.20 (0.63)	1.09/1.03 (0.39)	842	< 0.001
Acidosis (%)	9.7	8.7	643	0.63
Hypotension – prehospital (%)	4.0	6.9	711	0.084
Hypotension in ER (%)	1.9	2.3	837	0.49
Tranexamic acid (%)	3.8	2.6	749	0.37
Prehospital fluid, mean/median (SD), ml	501/500 (416)	546/500 (427)	726	0.11
ER fluid mean/median (SD), ml	712/500 (667)	740/500 (636)	342	0.28
Thrombembolic event (%)	2.7	2.1	382	0.70
Glasgow outcome scale 4–5 (%)	69.8	69.7	872	0.96
be the different effects on the coagulation system50. Whereas exposed tissue factor induces thrombin generation (adjusted risk difference in favour of DOACs, 15%) 47. Beneficial effects of DOAC have also been described by difference was accentuated among patients pre-treated with antiplatelet therapy in addition to VKA treatment lower in DOAC-associated intracranial haemorrhage (adjusted risk difference in favour of DOACs, 5.7%). This markedly comparable baseline data. Our findings support recent safety studies reporting bleeding complications because of the isolated matched-pair analyses, cautious comparisons can be made because the matched-pairs had haematoma expansion compared to VKA-associated haemorrhage 46. Hence, the in-hospital mortality rate was associated intracranial haemorrhage resulted in smaller baseline haematoma volumes and a lower likelihood of head trauma patients on APD medication, due to intracranial haematoma enlargement 44,45. In contrast, DOAC-APD patients. Head trauma is common in multiply injured patients and was a leading injury (more than 50%) in each medication group. A meta-analysis by Batchelor et al. reported a trend towards increased mortality rates in head trauma patients on APD medication, due to intracranial haematoma enlargement44,45. In contrast, DOAC-associated intracranial haemorrhage resulted in smaller baseline haematoma volumes and a lower likelihood of haematoma expansion compared to VKA-associated haemorrhage 46. Hence, the in-hospital mortality rate was lower in DOAC-associated intracranial haemorrhage (adjusted risk difference in favour of DOACs, 5.7%). This difference was accentuated among patients pre-treated with antiplatelet therapy in addition to VKA treatment (adjusted risk difference in favour of DOACs, 15%) 47. Beneficial effects of DOAC have also been described by Mullins et al., who found no difference in 30-day mortality in a matched-pair analysis of 124 patients with proximal femoral fractures 48. Although no statistical comparison of mortality rates between analyses was permitted because of the isolated matched-pair analyses, cautious comparisons can be made because the matched-pairs had markedly comparable baseline data. Our findings support recent safety studies reporting bleeding complications and thromboembolic events in patients on DOACs compared to VKA treatment 37. A potential explanation might be the different effects on the coagulation system 30. Whereas exposed tissue factor induces thrombin generation that can overcome DOACs’ inhibitory effects, the markedly reduced levels of FVIIa by VKA impair this response and increase the likelihood of severe bleeding even in modest trauma. Although statistical comparison of matched-pair analyses was not feasible within this study, the observed findings might support previous findings: PCC rates—as a potential reversal therapy—were markedly increased in VKA compared to controls (Table 4) and were also 2.5-fold higher compared to differences between DOACs and their controls (Table 5). Yet, further studies need to investigate this findings in more detail. In line with previous studies, patients with VKA treatment showed a significantly higher total mortality compared to controls (23.9% vs. 19.5%, p = 0.026) 51. Other reasons include higher thromboembolic event rates due to VKA reversal and higher surgery rates in patients with VKA treatment 52. Although the present study did not reveal higher thromboembolic event rates in patients on AT, higher surgery rates in patients with VKA treatment were observed. It is likely that bleeding complications during the further clinical course potentially influence the total in-hospital mortality in this subgroup, and careful monitoring of patients with VKA treatment within the Tertiary Trauma Survey remains crucial for early identification of patients at risk of ongoing bleeding 53. Further studies exploring traumatic bleeding in patients with non-vitamin K oral anticoagulants are warranted 54. The large number of included patients, the strict inclusion criteria and the rigorous matching protocol were sufficient to provide clinically relevant data for geriatric trauma patients on AT. There were some limitations, however. Other combinations of matching criteria and extended matching criteria would have been possible, but additional criteria would have resulted in a loss of statistical power. The criteria were therefore carefully selected and, in our opinion, represent a good balance between goal-oriented matching results and statistical power. Although geriatric trauma is usually defined as patients older than 65 years 39, vascular diseases leading to AT by DOAC predominantly occur by the age of 55 years 36. Thus, this lower age threshold was included. Additionally, patients who died before hospital admission are not included in the TR-DGU. Therefore, preclinical causes of death cannot be investigated. This risks overlooking AT-related prehospital deaths of trauma patients. Another limitation results from the reduced data set (standard data entry form) of the TR-DGU that we used. Detailed information on the diseases for which the medications were prescribed or specific laboratory parameters (e.g. kidney function) were not recorded in this data set. No detailed information about comorbidities leading to AT and their potential influence on the clinical course and mortality was available. Moreover, registry studies are restricted to documented data quality. The TR-DGU is not designed to monitor anticoagulant use, and time since the last medication ingestion was not recorded. Additionally, subgroup analyses for different DOAC (Factor Ila
and Xa inhibitors), PCC (three-factor PCC; four-factor PCC and activated PCC), and APD (single vs. dual APD treatment) could not be performed due to missing data. Nevertheless, the TR-DGU data quality is very high.

Conclusion

Although not influencing ESP or the time span until ESP, AT significantly affects the entire clinical course with higher overall surgical rates compared to controls. Further research should focus on improvement of diagnostic procedures and treatment algorithms for the early phase of trauma care. Prospective studies are needed to investigate possible risk factors and complications in trauma patients with AT to ultimately reduce the higher overall surgical and mortality rates.

Data availability

Data are provided by the TraumaRegister DGU. Data are available from the TraumaRegister DGU for researchers who meet the criteria for access to confidential data.

Received: 19 June 2020; Accepted: 8 July 2021
Published online: 26 July 2021

References

1. Hashmi, A. *et al.* Predictors of mortality in geriatric trauma patients: A systematic review and meta-analysis. *J. Trauma Acute Care Surg.* 76, 894–901. https://doi.org/10.1097/TA.0b013e318138b076 (2014).

2. Bonville, D. J. *et al.* Impact of preinjury warfarin and antiplatelet agents on outcomes of trauma patients. *Surgery* 150, 861–868. https://doi.org/10.1016/j.surg.2011.07.070 (2011).

3. Hildebrand, F. *et al.* Impact of age on the clinical outcomes of major trauma. *Eur. J. Trauma Emerg. Surg.* 42, 317–332. https://doi.org/10.1007/s00068-015-0557-1 (2016).

4. Joseph, B. *et al.* Redefining the association between old age and poor outcomes after trauma: The impact of frailty syndrome. *J. Trauma Acute Care Surg.* 82, 575–581. https://doi.org/10.1097/TA.0000000000000129 (2017).

5. Dossett, L. A., Riesel, J. N., Griffin, M. R. & Cotton, B. A. Prevalence and implications of preinjury warfarin use: An analysis of the National Trauma Databank. *Arch. Surg.* 146, 565–570. https://doi.org/10.1001/archsurg.2010.313 (2011).

6. Wood, B. *et al.* The Anticoagulated trauma patient in the age of the direct oral anticoagulants: A Canadian perspective. *Scand. J. Trauma Resuscit. Emerg. Med.* 25, 76. https://doi.org/10.1186/s13049-017-0420-y (2017).

7. Eckman, M. H. *et al.* Atrial fibrillation decision support tool: Population perspective. *Am. Heart J.* 194, 49–60. https://doi.org/10.1016/j.ahj.2017.08.016 (2017).

8. Lippi, G., Mattiuzzi, C., Cervellin, G. & Favaloro, E. J. Direct oral anticoagulants: Analysis of worldwide use and popularity using Google Trends. *Ann. Transl. Med.* 5, 322. https://doi.org/10.21037/atm.2017.06.65 (2017).

9. Fan, P. *et al.* Recent progress and market analysis of anticoagulant drugs. *J. Thorac. Dis.* 10, 2011–2025. https://doi.org/10.21037/td.2018.03.95 (2018).

10. Bonne, S. & Schuerer, D. J. Trauma in the older adult: Epidemiology and evolving geriatric trauma principles. *Clin. Geriatr. Med.* 29, 137–150. https://doi.org/10.1016/j.cger.2012.10.008 (2013).

11. Adams, S. D. & Holcomb, J. B. Geriatric trauma. *Curr. Opin. Crit. Care* 21, 520–526. https://doi.org/10.1097/mcc.0000000000000246 (2015).

12. Lecky, F. *et al.* The effect of preinjury warfarin use on mortality rates in trauma patients: A European multicentre study. *Emerg. Med. J.* 32, 916–920. https://doi.org/10.1136/emermed-2014-203899 (2015).

13. Banks, S. E. & Lewis, M. C. Trauma in the elderly: Considerations for anesthetic management. *Anesthesiol. Clin.* 31, 127–139. https://doi.org/10.1016/j.anclin.2012.11.004 (2013).

14. Salotolo, K. M., Mains, C. W., Offner, P. J., Bourg, P. W. & Bar-Or, D. A retrospective analysis of geriatric trauma patients: Venous lactate is a better predictor of mortality than traditional vital signs. *Scand. J. Trauma Resuscit. Emerg. Med.* 21, 7. https://doi.org/10.1186/s13049-017-0241-7 (2013).

15. Lehmann, R., Beeckley, A., Casey, L., Salim, A. & Martin, M. The impact of advanced age on trauma triage decisions and outcomes: A statewide analysis. *Am. J. Surg.* 197, 571–574. https://doi.org/10.1016/j.amjsurg.2008.12.037 (2009).

16. TraumaRegister, D. G. U. 20 years TraumaRegister DGU((R)): Development, aims and structure. *Injury 45* (Suppl 3), S6–S13. https://doi.org/10.1016/j.injury.2014.08.011 (2014).

17. Bouillon, B. & Marzi, I. The updated German “Polytrauma—Guideline”: An extensive literature evaluation and treatment recommendation for the care of the critically injured patient. *Eur. J. Trauma Emerg. Surg.* 44, 1. https://doi.org/10.1007/s00068-018-0949-0 (2018).

18. Baker, S. P., O’Neill, B., Haddon, W. Jr. & Long, W. B. The injury severity score: A method for describing patients with multiple injuries and evaluating emergency care. *J. Trauma* 14, 187–196 (1974).

19. Jennett, B. & Bond, M. Assessment of outcome after severe brain damage. *Lancet* 1, 480–484. https://doi.org/10.1016/s0140-6736(73)90085-5 (1975).

20. Pisciotta, A. V. Concepts of haemostasis and thrombosis: A study of the coagulation defect in hemophilia and in jaundice (Quick, Stanley-Brown and Bancroft 1935). Armand J. Quick (1894–1978)—a short biography. *Thrombosis and haemostasis* 67, 1. https://doi.org/10.1038/386078a0 (1997).

21. Price, P. A., Faus, S. A. & Williamson, M. K. Warfarin causes rapid calcification of the elastic lamellae in rat arteries and heart valves. *Arterioscler. Thromb. Vasc. Biol.* 18, 1400–1407. https://doi.org/10.1161/01.ATV.18.9.1400 (1998).

22. Schurgers, L. J. *et al.* Regression of warfarin-induced medial elastocalcinosis by high intake of vitamin K in rats. *Blood* 109, 2823–2831. https://doi.org/10.1182/blood-2006-07-355345 (2007).
29. Ballegooijen, A. J. et al. Joint association of low vitamin D and vitamin K status with blood pressure and hypertension. Hypertension 69, 1165–1172. https://doi.org/10.1161/HYPERTENSIONAHA.116.08609 (2017).

30. Bouillon, B. & Marzi, I. The updated German “Polytrauma – Guideline”: An extensive literature evaluation and treatment recommendation for the care of the critically injured patient. Eur. J. Trauma Emerg. Surg. 44, 1–1. https://doi.org/10.1007/s00068-018-0949-0 (2018).

31. Gaines, R. J., Randall, C. J., Browne, K. L., Carr, D. R. & Enad, J. G. Delayed presentation of compartment syndrome of the proximal lower extremity after low-energy trauma in patients taking warfarin. Am. J. Orthop. (Belle Mead NJ) 37, E201-204 (2008).

32. Byrne, A. M., Kearns, S. R. & Kelly, E. P. Posterior compartment syndrome associated with clopidogrel therapy following trivial injury. Emerg. Med. J. EMJ 23, 697–698. https://doi.org/10.1136/emj.2006.037150 (2006).

33. Hassan, K. et al. Bleeding complications after use of novel oral anticoagulants in patients undergoing cardiac surgery. Ann. Thorac. Surg. 105, 702–708. https://doi.org/10.1016/j.athoracsur.2017.11.066 (2018).

34. Wang, Z., Anderson, F. A. Jr., Ward, M. & Bhattacharyya, T. Surgical site infections and other postoperative complications following prophylactic anticoagulation in total joint arthroplasty. PLoS ONE 9, e91755. https://doi.org/10.1371/journal.pone.0091755 (2014).

35. Steffel, J. et al. The 2018 European Heart Rhythm Association Practical Guide on the use of non-vitamin K antagonist oral anticoagulants in patients with atrial fibrillation. Eur. Heart J. 39, 1330–1393. https://doi.org/10.1093/eurheartj/ehy136 (2018).

36. Sorensen, B., Spahn, D. R., Innerhofer, P., Spannagl, M. & Rossaint, R. Clinical review: Prothrombin complex concentrates–evaluation of safety and thrombogenicity. Crit. Care 15, 201. https://doi.org/10.1186/cc9311 (2011).

37. Majeed, A., Eelde, A., Agren, A., Schulman, S. & Holmstrom, M. Thromboembolic safety and efficacy of prothrombin complex concentrates in the emergency reversal of warfarin coagulopathy. Thromb. Res. 129, 146–151. https://doi.org/10.1016/j.thromres.2011.07.024 (2012).

38. Ghadimi, K., Levy, J. H. & Welsby, I. J. Prothrombin complex concentrates for bleeding in the perioperative setting. Anesth. Analg. 122, 1287–1300. https://doi.org/10.1213/ane.0000000000001188 (2016).

39. Pfeifer, R. & Pape, H. C. Missed injuries in trauma patients: A literature review. Patient Saf. Surg. 2, 20. https://doi.org/10.1186/1754-9493-2-20 (2008).

40. Enderson, B. L. The tertiary trauma survey: A prospective study of missed injury. J. Trauma 30, 666–669 (1990).

41. Beck, B. et al. Differences in the epidemiology of out-of-hospital and in-hospital trauma deaths. PLoS ONE 14, e0217158. https://doi.org/10.1371/journal.pone.0217158 (2019).

42. Greco, E., Lupia, E., Bosco, O., Vizio, B. & Montrucchio, G. Platelets and multi-organ failure in sepsis. Int. J. Mol. Sci. https://doi.org/10.3390/ijms11082200 (2017).

43. Yadav, H. & Kor, D. J. Platelets in the pathogenesis of acute respiratory distress syndrome. Am. J. Physiol. Lung Cell Mol. Physiol. 309, L195–223. https://doi.org/10.1152/ajplung.00266.2015 (2015).

44. Batchelor, J. S. & Grayson, A. A meta-analysis to determine the effect of preinjury antiplatelet agents on mortality in patients with blunt head trauma. Br. J. Neurosurg. 27, 12–18. https://doi.org/10.3109/0014048080235361 (2013).

45. de Gaa-Garcia, J. H. et al. Antiplatelet therapies are associated with hematoma enlargement and increased mortality in intracranial hemorrhage. Med. Intensiva 36, 548–555. https://doi.org/10.1016/j.intensive.2012.01.004 (2012).

46. Toivongul, G. et al. Direct oral anticoagulant- vs vitamin K antagonist-related nontraumatic intracerebral hemorrhage. Neurology 89, 1142–1151. https://doi.org/10.1212/wnl.0000000000004362 (2017).

47. Inohara, T. et al. Association of intracerebral hemorrhage among patients taking non-vitamin K antagonist vs vitamin K antagonist oral anticoagulants with in-hospital mortality. JAMA 319, 463–473. https://doi.org/10.1001/jama.2017.21917 (2018).

48. Mullins, B., Akehurst, H., Slattery, D. & Chesser, T. Should surgery be delayed in patients taking direct oral anticoagulants who suffer a hip fracture? A retrospective, case-controlled observational study at UK major trauma centre. BMJ Open 8, e020625. https://doi.org/10.1136/bmjopen-2017-020625 (2018).

49. Risks and benefits of direct oral anticoagulants versus warfarin in a real world setting: cohort study in primary care. BMJ 363, k4413. https://doi.org/10.1136/bmj.k4413 (2018).

50. Siegbahn, A. et al. D-dimer and factor VIIa in atrial fibrillation - prognostic values for cardiovascular events and effects of anticoagulation therapy: A BE-LY substudy. Thromb. Haemost. 115, 921–930. https://doi.org/10.1161/thh15-07-0529 (2016).

51. Maung, A. A., Bhattacharya, B., Schuster, K. M. & Davis, K. A. Trauma patients on new oral anticoagulants have lower mortality than those on warfarin. J. Trauma Acute Care Surg. 81, 652–657. https://doi.org/10.1097/ta.0000000000001189 (2016).

52. Hackam, D. G., Kopp, A. & Redelmeier, D. A. Prognostic implications of warfarin cessation after major trauma: A population-based cohort analysis. Circulation 111, 2230–2235. https://doi.org/10.1161/cir.012013548.38396.e7 (2005).

53. Rubboh, A., Becattini, C. & Verheugt, F. W. Incidence, clinical impact and risk of bleeding during oral anticoagulation therapy. World J. Cardiol. 3, 351–358. https://doi.org/10.4330/wjc.v3.i11.351 (2011).

54. Friberg, L. & Oldgren, J. Efficacy and safety of non-vitamin K antagonist oral anticoagulants compared with warfarin in patients with atrial fibrillation. Open Heart 4, e000682. https://doi.org/10.1136/openhrt-2017-000682 (2017).

55. Fallon, W. F. Jr. et al. Geriatric outcomes are improved by a geriatric trauma consultation service. J. Trauma 61, 1040–1046. https://doi.org/10.1097/ta.0b013e318196c72d (2006).

56. Chao, T. F. et al. Age threshold for the use of non-vitamin K antagonist oral anticoagulants for stroke prevention in patients with atrial fibrillation: insights into the optimal assessment of age and incident comorbidities. Eur. Heart J. https://doi.org/10.1093/eurheartj/ehy837 (2019).

Acknowledgements

We would like to thank all staff and volunteer colleagues of the Trauma Register DGU for their cooperation and support (traumaregister@auc-online.de).

Author contributions

F.M.B., F.H. and K.H. designed the trial. F.M.B., H.A., M.L., C.L., P.L., F.H. and K.H. performed the data collection and reviewed the manuscript. R.L. provided statistical advice. F.M.B., R.L. and M.L. analysed the data. F.M.B., F.H. and K.H. drafted the manuscript. F.M.B. takes responsibility for the article as a whole. K.H. supervised the trial. All authors contributed substantially to the manuscript revision, read and approved the final manuscript for publication.

Funding

Open Access funding enabled and organized by Projekt DEAL.
Competing interests
The authors declare the following competing interests: RL declares that his institution (IFOM) receives an ongo-
ing financial support from AUC GmbH, the owner of TR-DGU, which includes statistical support of data analysis
from registry data. The other authors declare no personal competing interests.

Additional information
Correspondence and requests for materials should be addressed to F.M.B.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or
format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons licence, and indicate if changes were made. The images or other third party material in this
article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article's Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2021