One-step atmospheric pressure synthesis of the ground state of Fe based LaFeAsO$_{1-\delta}$ superconductor

V. P.S. Awana*, Arpita Vajpayee, Monika Mudgel, Anuj Kumar, R.S. Meena, Rahul Tripathi, Shiv Kumar, R.K. Kotnala and Hari Kishan

National Physical Laboratory, Dr K.S. Krishnan Road, New Delhi-110012, India

*e-mail: awana@mail.nplindia.ernet.in; Web page: www.freewebs.com/vpsawana

Abstract

We report an easy and versatile one-step route of synthesis for newly discovered Fe based superconductor LaFeAsO$_{1-\delta}$ with $0.0 \leq \delta \leq 0.15$. Instead of widely used high-pressure-high-temperature (HPHT) synthesis, we applied the normal atmosphere solid-state reaction route. The stoichiometric mixtures of Fe, La$_2$O$_3$, La and As in ratio LaFeAsO$_{1-\delta}$ with $0.0 \leq \delta \leq 0.15$ are sealed in an evacuated quartz tube and further heated at 500, 850 and 1100 °C in Ar for 12, 12 and 33 hours respectively in a single step. The resulting compounds are single phase LaFeAsO crystallized in tetragonal $P4/nmm$ structure. These samples showed the ground state spin density wave (SDW) like metallic behavior below around 150 K. In conclusion the ground state of newly discovered Fe based superconductor is synthesized via an easy one-step solid-state reaction route.

Introduction

The search for new superconducting materials got a boost after the invention of high T_c superconductivity in 1987 by Muller and Bednorz [1]. Soon after various Cu based high T_c superconducting (HTSc) compounds were invented with their critical transition temperatures ranging from 20 to 134 K [2-4]. However this search remained strictly confined to cuprates until the invention of superconductivity in MgB$_2$ at 40 K in year 2001 [5]. Later the superconductivity was observed at around 5 K in oxy-cobalt hydrate (Na$_x$CoO:H$_2$O) [6]. Another important
compound outside the popular cuprates family was Sr_2RuO_4 with triplet pairing [7]. As far as the pairing mechanisms are concerned though the MgB_2 still seems to follow the strong electron phonon coupling, the others; in particular the HTSc cuprates, are still a scientific mystery for the theoreticians [8]. In this direction very recent reports on superconductivity of up to 55 K in REFeAsO (RE = La, Pr, Sm, Nd, Gd) had renewed the interest of scientific community to search for high T_c superconductors outside the cuprates family [9-24].

The recent compound i.e. REFeAsO is the only known superconductor yet having its T_c outside the so-called strong BCS (Bardeen Cooper and Schreifer) limit i.e. 40 K. Further the normal state resistivity behavior and with some other features of the REFeAsO are very similar to that of HTSc cuprates [18-21]. The Fe based compound provides an opportunity to the theoreticians to think outside the cuprate families in search for the mechanism of high T_c superconductivity [22-24]. The newly discovered Fe based superconducting material is mainly synthesized by the high pressure high temperature (HPHT) process with pressure as high as 6 Gpa at 1150 ^0C [9-12]. Few scant reports are for the normal pressure synthesis as well, but with complicated two or three step reaction routes [13-17]. In the current short rapid communication, we report an easy and versatile single step route for the synthesis of the ground state of the Fe based superconductor $\text{LaFeAsO}_{1-\delta}$ with $0.0 \leq \delta \leq 0.15$.

Experimental

Stoichiometric amounts of better than 3 N purity of As, Fe, La metal and La_2O_3 were weighed and mixed thoroughly in formula ratio $\text{LaFeAsO}_{1-\delta}$ with $0.0 \leq \delta \leq 0.15$. For example in case of $\text{LaAsFeO}_{0.9}$ the stoichiometric amounts used are: Fe+As+0.3La_2O_3+0.4La. The weighed and mixed powders are sealed in evacuated (better than 10^{-4} Torr) quartz tubes. The sealed quartz tubes containing various respective samples are heated at 500, 850 and 1100 ^0C in Ar for 12, 12 and 33 hours respectively in a single step. The x-ray diffraction patterns of these compounds are taken on Rigaku mini-flex diffractometer. The resistivity measurements are carried out by four-probe method on a close cycle refrigerator in temperature range of 12 to 300 K.
Results and Discussion

Figure 1 depicts the X-ray diffraction (XRD) patterns of fitted and observed LaFeAsO$_{0.9}$. The XRD patterns of the compound is fitted on the basis of tetragonal, $P4/nmm$ space group. Besides the main phase (tetragonal $P4/nmm$) some very small intensity un-reacted lines arising from either FeAS, or LaAs are also seen in the XRD pattern. Worth mentioning is the fact that quality of our one-step atmospheric pressure synthesized material is as good as the HPHT or the complicated multi-step route [9-21,25]. The Lattice parameters are: $a = 4.03421(23)\,\text{Å}$ and $c = 8.73545(74)\,\text{Å}$ for LaFeAsO$_{0.9}$. The co-ordinates positions and the quality of fitting parameters are given in Table 1. The XRD fitting of other samples of LaFeAsO$_{1-\delta}$ with $0.0 \leq \delta \leq 0.15$ is same to that as observed in Fig. 1 for LaFeAsO$_{0.9}$. The lattice parameters for all the studied samples are tabulated in Table 2. With increase in oxygen vacancies the a and c lattice parameters and unit cell volume decrease continuously. This is in agreement with a recent report on LaFeAsO$_{1-\delta}$ [25].

The Resistance versus temperature (R-T) plot for the LaFeAsO$_{0.85}$ sample is shown in Figure 2. The resistance behaviour is metallic from room temperature down to 250 K and later is semiconductor like till 150 K, below 150 K a shallow metallic step is seen down to 90 K and than again semiconducting down to 12 K. The 150 K shallow metallic step is clear indication of the spin density wave (SDW) transition of the system [9,13, 16, 19]. It is known that the ground state of this newly discovered Fe based superconductor is magnetic with SDW character [9-19, 22-24]. With induction of electron or hole carriers either by F doping [9-21,24] or aliovalent substitutions [16,25,27], the superconductivity can be introduced with T_c of up to 26 K. For our sample the SDW character is reminiscent in conductivity measurements as a metallic shallow step below 150 K. Though for sack of brevity the R-T plot of only LaFeAsO$_{0.85}$ sample is shown in Fig.2, but the SDW characteristic metallic step is seen in all LaFeAsO$_{1-\delta}$ samples with $0.0 \leq \delta \leq 0.15$. Further all these samples are crystallised in single phase. Our results demonstrate that the SDW ground state of LaFeAsO$_{1-\delta}$ is versatile and stable over a wide range of oxygen content. The method of synthesis applied by us is easy and versatile and could be tailored for F doped superconducting REFeAsO$_{1-\delta}$ (RE = La, Pr, Sm, Nd, Gd) compounds.
In summary, the ground state of newly discovered LaFeAsO superconductor was synthesized via an easy and versatile one step route over a wide range of oxygen content. The method applied by us is unique and versatile and hence can be tailored easily for the F doped or substituted LaFeAsO superconductor.

Table 1. Reitveld refined parameters for LaFeAsO$_{0.90}$.

Atom	Site	x	y	z
La	2c	0.25	0.25	0.1398(4)
Fe	2b	0.75	0.25	0.5
As	2c	0.25	0.25	0.6508(6)
O	2a	0.75	0.25	0

R_p: 5.54\%, R_{wp}: 7.37\%, R_{exp}: 3.32\%, χ^2: 4.92

Table 2. Lattice parameters and cell volume of LaFeAsO$_{1-\delta}$ ($\delta=0.0 - 0.15$).

Sample	a(Å)	c(Å)	V(Å3)
LaFeAsO	4.0363(3)	8.7356(7)	142.322(11)
LaFeAsO$_{0.90}$	4.0342(2)	8.7354(7)	142.168(17)
LaFeAsO$_{0.85}$	4.0321(7)	8.7353(24)	142.023(54)

Acknowledgement

Authors thank their director Professor Vikram Kumar for encouragement. Professor O.N. Srivastava from Banaras Hindu University (BHU) is acknowledged for various fruitful discussions and encouragement.
References

1. J.G. Bednorz and K.A. Muller, Z. Phys. B, 1986, 64, 189.
2. J.M. Tranquada et al, Phys. Rev. Lett. 1988, 60, 156.
3. D. Vaknin et al. Phys. Rev. Lett. 1987, 58, 2802.
4. H. Maeda et al, Jpn. J. Appl. Phys. 1988, 27, L209.
5. J. Nagamatsu, N. Nakagawa, T. Muranaka, Y. Zentani and J. Akimitsu, Nature 2001, 410, 63.
6. K. Takada, H. Sakurai, E. Takayama-Muromachi, F. Izumi, R.A. Dilanian and T. Sasaki, Nature 2003, 422, 53.
7. Y. Maeno, H. Hashimoto, K. Yoshida, S. Nishizaki, T. Fujita, J. Bednorz and F. Lichtenberg, Nature 1994, 372, 532.
8. P. W. Anderson, Science 1987, 235,1196.
9. Y. Kamihara, T. Watanabe, M. Hirano and H. Hosono, J. Am. Chem. Soc. 2008, 130, 3296
10. Zhi-An Ren, Jie Yang, Wei Lu, Wei Yi, Xiao-Li Shen, Zheng-Cai Li, Guang-Can Chi, Xiao-Li Dong, Li-Lung Sun, Feng Zhou, Zhong-Xian Zhao, arXiv: 0803.4234 2008.
11. Jie Yang, Zheng-Cai Li, Wei Lu, Wei Yi, Xiao-Li Shen, Zhi-An Ren, Guang-Can Che, Xiao-Li Dong, Li-Ling Sun, Fang Zhou, Zhong-Xian Zhao arXiv:0804.3727
12. Wei Lu, Xiao-Li Shen, Jie Yang, Zheng-Cai Li, Wei Yi, Zhi-An Ren, Xiao-Li Dong, Guang-Can Che, Li-Ling Sun, Fang Zhou, Zhong-Xian Zhao arXiv:0804.3725
13. G. F. Chen, Z. Li, D. Wu, J. Dong, G. Li, W. Z. Hu, P. Zheng, J. L. Luo, N. L. Wang, arXiv: 0803.4384v1 2008.
14. W. Lu, J. Yang, X. L. Dong, Z. A. Ren, G. C. chi, Z. X. Zhao, arXiv: 0803.4266 2008.
15. A. S. Sefat, M.A. McGuire, B.C. Sales, R. Jin, J.Y. Howe and D. Mandrus et al, arXiv: 0803.2528 2008.
16. Hai-Hu Wen, Mu Gang, Lei Fang, Huan Yang, Zhu Xiyu, Europhys. Lett. 2008, 82, 17009.
17. X. H. Chen, T. Wu, G. Wu, R. H. Liu, H. Chen, D. F. Fang, arXiv:0803.3603 2008.
18. F. Hunte, J. Jaroszynski, A. Gurevich, D.C. Larbalestier, R. Jin, A.S. Sefat, M.A. McGuire, B.C. Sales, D.K. Christen, D. Mandrus arXiv:0804.0485
19. M. A. McGuire, A. D. Christianson, A. S. Sefat, R. Jin, E. A. Payzant, B. C. Sales, M. D. Lumsden, D. Mandrus arXiv:0804.0796 2008.

20. Takatoshi Nomura, Sung Wng Kim, Yoichi Kamihara, Masahiro Hirano, Peter V. Sushko, Kenichi Kato, Masaki Takata, Alexander L. Shluger, Hideo Hosono arXiv:0804.3569 2008.

21. Clarina de la Cruz, Q. Huang, J. W. Lynn, Jiying Li, W. Ratcliff II, J. L. Zarestky, H. A. Mook, G. F. Chen, J. L. Luo, N. L. Wang, Pengcheng Dai, arXiv:0804.0795 2008.

22. D. J. Singh, M. H. Du, arXiv:0803.2528 2008.

23. Z. P. Yin, S. Lebègue, M. J. Han, B. Neal, S. Y. Savrasov, W. E. Pickett arXiv:0804.3355 2008.

24. Chen Fang, Hong Yao, Wei-Feng Tsai, JiangPing Hu, Steven A. Kivelson arXiv:0804.3843 2008.

25. Zhi-An Ren, Guang-Can Che, Xiao-Li Dong, Jie Yang, Wei Lu, Wei Yi, Xiao-Li Shen, Zheng-Cai Li, Li-Ling Sun, Fang Zhou, Zhong-Xian Zhao arXiv:0804.2582 2008.

26. Zhi-An Ren, Wei Lu, Jie Yang, Wei Yi, Xiao-Li Shen, Zheng-Cai Li, Guang-Can Che, Xiao-Li Dong, Li-Ling Sun, Fang Zhou, Zhong-Xian Zhao arXiv:0804.2053 2008.

27. Cao Wang, Linjun Li, Shun Chi, Zengwei Zhu, Zhi Ren, Yuke Li, Yuetao Wang, Xiaolin, Yongkang Luo, Xiangfan Xu, Guanghan Cao and Zhuan Xu arXiv:0804.4290 2008.

Figure Captions

Fig. 1: Figure 1: Fitted and observed X-ray diffraction patterns of LaFeAsO$_{0.9}$.

Fig. 2: R(T) of the LaFeAsO$_{0.85}$, the SDW transition at around 150K is marked.
Fig. 1

LaFeAsO$_{0.91}$, P4/nmm

a = 4.03421(23) Å
c = 8.73545(74) Å

Fig. 2

LaFeAsO$_{0.85}$

T_{SDW}

500°C - 12 hrs
850°C - 12 hrs
1100°C - 33 hrs
Vacuum sealed & Ar flow