The combination of extracorporeal shock wave therapy and noncontact apoptosis-inducing radiofrequency achieved significant waist circumferential reduction: a pilot study

Hyeyeon Kim

Background and Aims: A paradigm shift towards noninvasive body contouring has occurred over the past few years. Radiofrequency (RF) is one popular treatment method. Noncontact-type RF systems with frequencies in the tens of megahertz represent a novel approach. The current pilot study investigated the efficacy of an interesting combination of extracorporeal shock wave therapy (ESWT) and an apoptosis-inducing RF (AiRF) system for circumferential reduction.

Subjects and Methods: Twenty-seven females, ages ranging from 13-69 years, (mean age 37.96 years) participated in the study. They were assigned to two treatment-based groups: Group A (n=19) and Group B (n=8). A voluntary daily dietary restriction plan of 500 kcal was put in place for all subjects. A combination of two different devices was used; an extracorporeal shock wave therapy (ESWT) system and a 27.12 MHz AiRF system. Either 4 (n=28) or 6 sessions (n=19) were given, one week apart. In Group A, the ESWT was applied before the RF with the reverse order of application in Group B. Weight and waist circumference were noted at baseline, then one week after the 4th and the 6th treatment sessions at which points clinical photography was also obtained.

Results: All patients showed statistically significant waist circumferential loss in both the 4- and 6-week treated groups: Group A, 6.3 cm and 8.8 cm; Group B, 5.9 cm and 6.4 cm, respectively. Greater circumference loss tended to be seen in Group A in both groups, but without statistical significance. No patient complained of pain during or after the treatment sessions, and there were no adverse events.

Conclusions: This pilot study showed that the combination of ESWT and AiRF was safe and effective for significant waist circumferential reduction. The results tended to be better when ESWT was applied before AiRF, although the difference was not significant.

Keywords: Waist circumference • body contouring • radiofrequency • apoptosis • shock wave therapy • lipolysis

Introductions

With awareness increasing in the general population regarding the importance of maintaining our health, the necessity to lose weight, to trim up the abdominal area and reduce waist circumference has attracted a great deal of attention. In particular, the relationship between waist circumference and the risk for cardiometabolic disease has been well-described, and a reasonable reduction in waist circumference can be expected not only to improve the overweight or obese patient’s quality of life, but also to reduce the potential for contracting cardiometabolic disease. The aggressive and invasive methods of fat reduction, such as conventional mechanical liposuction and other forms, including laser-assisted liposuction, may offer good results, but are associated with a range of known side effects from mild through severe, to death. In recent years, there has been a paradigm shift towards the patients’ desire for noninvasive methods, which represents one of the fastest growing areas in aesthetic medicine. These methods include cryolipolysis, high-intensity focused ultrasound (HIFU) and radiofrequency (RF). Although RF is usually associated with the necessity for a delivery and a return electrode (or

Received date: May 30th, 2016
Accepted date: May 9th, 2017

©2017 JMLL, Tokyo, Japan

Laser Therapy 26.2: 129-136
electrodes) in contact with the tissue and frequencies of from 1 – 8 MHz, a more recently-developed system involves an applicator positioned over the target tissue (e.g., abdomen, flank, thighs) delivering a higher frequency electromagnetic field at 27.12 MHz in noncontact mode, without the need for a return electrode contacting the body, known as field RF. 8)

In a recent meta-analysis on extracorporeal shock wave therapy (ESWT) for cellulite, in addition to suggesting the efficacy of ESWT, the authors proposed that ESWT could improve the results of other noninvasive modalities through its beneficial effects on blood supply and alterations in the permeability of the lipocyte membrane. 9) The author of the present study considered that these might also be beneficial in abdominal fat removal adjunctive to the effects of RF, although abdominal fat does not have the same anatomical characteristics as cellulite. The present study was therefore designed to assess the safety and efficacy of the combination of a new apoptosis-inducing RF (AiRF) system and ESWT for abdominal fat and waist circumferential reduction.

Subjects and Methods

A total of 27 female patients with intention to treat abdominal fat comprised the study subjects, ages ranging from 13-69 years, with a mean age of 37.96 years. (Tables 1 and 2) All subjects gave written informed consent to participate in the study and for the use of their clinical photography. The study was conducted under the precepts of the World Medical Association Declaration of Helsinki (as amended 2013).

In the first 19 subjects (Group A, Table 1), the ESWT was delivered before the RF treatment, but in the final 8 subjects (Group B, Table 2) the order of treatment was reversed as the author decided to check which order was more effective. Six treatment sessions were given at weekly intervals. Body weight (in kg, digital scale) and waist circumference (in cm) were measured and tabulated at baseline, with digital clinical photography. All 27 patients received 4 sessions at weekly intervals, and 19 patients went on to receive a further 2 sessions, also at weekly intervals. Body weight and waist circumference were measured again 1 week after the 4th and 6th treatments. Standardised weight and waist circumference were measured again around the same time of the day for each patient.

| Table 1 | Table 2 |

Results

All 27 subjects completed the treatment and the 4-week treatment protocol. Nineteen subjects went on to complete the 6-week treatment program. No erythema or edema was seen in any patient at any time during the study period, and there were no instances of delayed late-onset pain. Subjects reported gentle warmth during the 30-min AiRF treatment with no discomfort either during or after the treatment. Subjects could physically feel the impact of each shot during the ESWT session, but did not find it uncomfortable.

At the first assessment, 1 week after the 4th treatment session, all subjects had some weight loss: this was probably attributable at least in part to the subjects’ dietary regimen. All 27 subjects had achieved significant reduction in their waist circumference. Table 1 shows the separate data for Group A (ESWT followed by RF) and Table 2 for Group B (RF followed by ESWT). In Group A, the average weight loss at 4 weeks was 3.6 ± 0.39 kg (mean ± SEM, range 0.4 – 7.2 kg), and average circumference loss was 6.3 cm (range 1 – 11.5 cm, P < 0.0001 for both). In Group B (Table
Pat No / age	WB (kg)	WE4 (kg)	WL4 (kg)	WE6 (kg)	WL6 (kg)	CB (cm)	CE4 (cm)	CL4 (cm)	CE6 (cm)	CL6 (cm)
1 / 48	75.0	72.1	2.9	72.5	2.5	99.0	92.5	6.5	93	6.0
2 / 49	67.1	65.5	1.6	—	—	86.5	83.0	3.5	—	—
3 / 69	68.2	62.8	5.4	62.4	5.8	99.0	95.0	4.0	94	5.0
4 / 31	61.5	57.9	3.6	57.9	3.6	89.5	82.0	7.5	79	9.5
5 / 37	113.4	106.2	7.2	105.4	8	132.0	124.0	8.0	124	8.0
6 / 44	60.9	57.4	3.5	59.2	1.7	87.0	82.5	4.5	82	5.0
7 / 47	64.2	60.8	3.4	60.5	3.7	89.0	82.5	6.5	83	6.0
8 / 30	80.9	75.3	5.6	74.3	6.6	93.0	85.0	8.0	85	8.0
9 / 45	63.1	59.2	3.9	58.2	4.9	87.0	76.0	11.0	72.5	14.5
10 / 47	51.0	47.9	3.1	47.9	3.1	84.0	72.5	11.5	69.5	14.5
11 / 42	70.7	67.4	3.3	68.6	2.1	93.0	86.5	6.5	88	5.0
12 / 56	63.3	60	3.3	62.1	4.7	86.0	85.0	1.0	80	7.0
13 / 27	71.2	65.3	5.9	64.3	6.9	93.0	86.5	6.5	85	8.0
14 / 23	57.8	52.6	5.2	51.8	6.0	87.0	75.0	12.0	71	16.0
15 / 35	62.0	59.3	2.7	—	—	90.5	85.5	5.0	—	—
16 / 20	72.3	69.7	2.6	—	—	90.0	84.5	5.5	—	—
17 / 13	66.3	64.8	1.5	—	—	89.5	87.0	2.0	—	—
18 / 43	52.4	52	0.4	—	—	89.0	87.5	1.5	—	—
19 / 20	58.5	57	1.5	—	—	84.5	79.0	5.5	—	—
	67.4	63.8	3.6**	65.0	4.6**	92.0	85.8	6.3**	85	8.8**
	(3.07)	(2.8)	(0.39)	(3.94)	(0.55)	(2.43)	(2.48)	(0.76)	(3.87)	(1.09)

Statistical significance: *=0.0004; **=0.0001;

Table 2: Patient demographics for the 8 female patients in Group B, in whom the RF treatment was delivered before the ESWT. Also shown (all in kg) are the baseline weight (WB), the weight after the 4-week treatment for all 8 patients (W4) and weight loss (WL4); the weight at 6 weeks for those 6 patients who completed the additional 2 weeks (WE6) and the weight loss (WL6). In addition (all in cm) are the baseline abdominal circumference (CB), the circumference at the 4 week assessment (CE4) and circumferential loss (CL4), and the circumference after the 6-week treatment for those 6 patients who had it (CE6) and circumferential loss (CL6). The grey highlighted columns indicate the weight and circumferential losses. The final row shows the mean values with the standard error of means in brackets.

Pat No / age	WB (kg)	WE4 (kg)	WL4 (kg)	WE6 (kg)	WL6 (kg)	CB (cm)	CE4 (cm)	CL4 (cm)	CE6 (cm)	CL6 (cm)
20 / 45	77.1	74	3.1	—	—	99.0	94.0	5.0	—	—
21 / 23	102.8	96.4	6.4	97	5.5	104.5	96.0	8.5	98.0	6.5
22 / 29	100.6	92.8	7.8	90.1	10.5	118.0	111.0	7.0	110.0	7.5
23 / 38	76.7	72.8	3.9	73.3	3.5	89.0	84.5	5.0	82.5	6.5
24 / 26	69.0	64.8	4.2	—	—	96.0	86.5	9.5	—	—
25 / 43	63.3	60	3.3	60.7	2.5	86.0	85.0	1.0	83.5	2.5
26 / 47	76.2	71.9	4.3	71	5.0	99.5	93.0	6.5	94.5	5.0
27 / 48	56.1	54.5	1.6	52.6	3.5	84.0	79.0	5.0	74.5	9.5
	77.7	73.4	4.3**	74.1	5.2**	97.0	91.1	5.9*	90.5	6.4***
	(5.83)	(5.21)	(0.69)	(6.91)	(1.17)	(3.91)	(3.49)	(0.93)	(5.26)	(0.98)

Statistical significance: *=0.0004; **=0.007; ***=0.0013
The average weight loss was 4.3 kg (range 1.6 – 7.8 kg) and circumference loss was 5.9 cm (range 1 – 9 cm, P=0.0004 for both). The data for the 2nd assessment point, one week after the 6th treatment session are given for 13 subjects in Group A (Table 1), and 6 subjects in Group B (Table 2). In Group A the average weight loss at 6 weeks was 4.6 ± 0.55 kg (range 1.7 – 6.9 kg), and average circumference loss was 8.8 ± 1.09 cm (range 5 – 14.8 cm, P < 0.001 for both). Both weight and circumference loss were still highly statistically significant in the 2nd assessment compared with the baseline values, however there was not a statistically significant difference between the groups (P = 0.2839 and P = 0.0589, respectively, for weight and circumference). A trend towards better results was seen in Group A, particularly for the circumference loss which just failed to reach statistical significance.

Table 3 summarizes the average and total weight and circumference losses at one week after the 4th and 6th treatment sessions. Table 4 compares the difference between the baseline values and the 1st and 2nd assessment values for both the weight loss (expressed as ΔW in kg) and circumference loss (expressed as ΔC in cm) from the baseline values as seen in Tables 1 and 2 between the 2 assessment points for all patients (Patients: Nos 1-19, Group A; Nos 20-27, Group B; see Tables 1 and 2 for patient ages). “--” denotes subjects who completed only 4 sessions. Whereas the majority of those 19 subjects who completed 6 treatment sessions showed increased weight and circumference loss at the 2nd assessment, 7/19 and 5/19 subjects regained some slight weight and circumference, respectively.

Item	4 weeks Tx	6 week Tx
Avge. Weight loss	3.95 kg	4.9 kg
Min. weight loss	0.4 kg	1.7 kg
Max. weight loss	7.8 kg	6.9 kg
Avge. circ. loss	6.1 cm	7.6 cm
Min. circ. loss	1.0 cm	2.5 cm
Max. circ. loss	12.0 cm	14.5 cm

Table 4: Differences between weight loss (ΔW in kg) and circumferential loss (ΔC in cm) from the baseline values as seen in Tables 1 and 2 between the 2 assessment points for all patients (Patients: Nos 1-19, Group A; Nos 20-27, Group B; see Tables 1 and 2 for patient ages). “--” denotes subjects who completed only 4 sessions. Whereas the majority of those 19 subjects who completed 6 treatment sessions showed increased weight and circumference loss at the 2nd assessment, 7/19 and 5/19 subjects regained some slight weight and circumference, respectively.

Pats (No)	WL-4	WL-6	ΔW	CL-4	CL-6	ΔC
1	2.9	2.5	+0.4	6.5	6.0	+0.5
2	1.6	---	---	3.5	---	---
3	5.4	5.8	-0.4	4.0	5.0	-1.0
4	3.6	3.6	0.0	8.5	9.5	-1.0
5	7.2	8.0	-0.8	8.0	8.0	0.0
6	3.5	1.7	+1.8	4.5	5.0	-0.5
7	3.4	3.7	0.3	6.5	6.0	+0.5
8	5.6	6.6	-1.0	8.0	8.0	0.0
9	3.9	4.9	-1.0	11.0	14.5	-3.5
10	3.1	3.1	0.0	11.5	14.5	-3.0
11	3.3	2.1	+1.0	6.5	5.0	+0.5
12	3.3	4.7	-1.4	1.0	7.0	-6.0
13	5.9	6.9	-1.0	6.5	8.0	-1.5
14	5.2	6.0	-0.8	12.0	16.0	-4.0
15	2.7	---	---	5.0	---	---
16	2.6	---	---	5.5	---	---
17	1.5	---	---	2.0	---	---
18	0.4	---	---	1.5	---	---
19	1.5	---	---	5.5	---	---
20	3.1	---	---	5.0	---	---
21	6.4	5.8	+0.6	8.5	6.5	+2.0
22	7.8	10.5	-2.7	7.0	7.5	-0.5
23	3.9	3.4	+0.5	5.0	6.5	-1.5
24	4.2	---	---	9.5	---	---
25	3.3	2.6	+0.7	1.0	2.5	-1.5
26	4.3	5.2	-0.9	6.5	5.0	+1.5
27	1.6	3.5	-1.9	5.0	9.5	-4.5
Representative cases:

Case 1: Figure 1a, c and d show the baseline front, right profile and back findings in a 31-year-old female from Group A (Patient No 4), who weighed 61.5 kg at baseline, with a waist circumference of 89.5 cm. Figure 1b, d and e illustrate the good results at 1 week after the 6 weekly sessions with a total circumference loss of 9.5 cm. She received the ESWT intervention first, followed immediately by the AiRF. There is clear flattening of the abdomen around the waist area, and reduction in the size of the flanks. This patient lost an additional 2 cm from her waistline between the 1st and 2nd assessments. She was extremely satisfied with the result.

Case 2: A 48-year-old female from Group B (Patient No 27, AiRF followed immediately by the ESWT) is seen at baseline in Figure 2a, c and e. Her baseline weight and waist circumference were 56.1 kg and 84 cm, respectively. She was also treated over 6 weekly sessions. At the 2nd assessment she had lost an additional 4.5 cm from her waist measurement by 1 week after the additional 2 treatments, losing a total of 9.5 cm after the 6 weekly sessions.

ESWT and RF for body contouring
Discussion

The present study has some limitations. First, although the order of treatment was compared in the study protocol, (ESWT + AiRF vs AiRF + ESWT), there was no comparison between the effect of each modality on its own to see if the ESWT did in fact add something to the effect of the apoptosis-inducing RF. This should be addressed in a future study, with a controlled arm to further verify the results. Having said that, in previous studies using ESWT only, very little if any circumferential loss was observed. Rather, the beneficial result was believed to be an osmotic effect which increased local blood flow and altered the permeability of the target adipocyte membranes. 9) It could therefore be suggested that the circumferential loss experienced in the present study was mostly due to the effect of the AiRF, with some benefit accruing from the addition of the ESWT. Second, a longer follow-up than just 1 week should be used in any future study: this was a pilot study, however, and the author wanted to review the results reasonably quickly to assess efficacy of the combined treatment approach. Thirdly, the daily dietary restriction of 500 kcal could be a possible confounder, since no record was taken of what the original dietary calorific intake for each patient was prior to the reduction, and the restriction was in any event voluntary. The main drive of the study was to observe the effect of the treatment regimen on circumferential reduction rather than weight loss although the latter was also recorded. Relevant studies have suggested that, while dietary restriction can achieve weight loss over an extended period, circumferential reduction is hardly affected. 10) It may therefore be inferred that the comparatively small restriction, when it was in fact in place, over the 4 – 6 week period of the present study would have had little effect on circumferential reduction.

Taking the above limitations into consideration, the results were nevertheless reasonably solid and clear. The combination of the ESWT and AiRF delivered significant circumference reduction at 1 week after the 4th treatment session, which was mostly maintained or improved at the 2nd assessment in the 19 subjects who went on to compete a total of 6 sessions. All reduced values were statistically significant at both assessments compared with the baseline values. There was no pain or discomfort, and no immediate or delayed side effects, making this noninvasive approach ideal for patients wishing to resume their normal activities of daily living immediately after treatment. This would make a “lunchtime body contour” possible.

Although significant weight reduction was achieved in the study, this may have been attributable to the dietary regimen in which the subjects were voluntarily participating, as argued above. Unfortunately there is no record of how assiduously the subjects followed the program, so it is difficult to assign any value to weight loss possibly induced by the AiRF/ESWT treatment. It should be noted from Tables 1-3 that some subjects with similar weight loss values had much greater circumference loss. For example, patients 3, 8, 13 and 14 lost 5.5-7 kg, but with a significantly different loss in waist circumference. This could point to the efficacy of AiRF/ESWT specifically for waist circumference reduction, and it is waist circumference that has been linked with the potential risk for cardiometabolic disease (CMD), including the components of the metabolic syndrome (METs). 1) The cut-off point for males is 102 cm, and for females it is 88 cm. 11) Most of the subjects in the present study were over the 88 cm cut-off point. It should be noted that a reasonable reduction of a few centimetres in waist circumference in those who are over the at-risk borderline has been linked to improvement in quality of life, and reduction of the risk for CMD. 2)

Apoptosis-inducing RF relies on oscillating an electric current at very high frequencies in the treatment head: in the case of the system used in the present study the frequency is 27.12 MHz. This frequency has been used in diathermy for the selective treatment of tumors, 12) and has been shown to have a specific affinity for lipocytes, rather than blood vessels or other organs. At this frequency, the epidermis and dermis are not directly affected, whereas the incident energy is absorbed in the lipocyte membranes, inducing brisk vibrational and rotational changes in the membrane molecule electrons. This generates a great deal of heat through friction between the vibrating components, and the membranes are partially denatured at a temperature at or over 43°C. In a recent human study using the same AiRF device used in the present study, adipose tissue temperature averaged over several readings in 5 subjects reached 45°C after 30 min at 200 W power, whereas the overlying skin never exceeded an average of 42.5°C. 13) At temperatures of over 23°C, the target lipocytes enter apoptosis, programmed cell death, over periods from hours to days, depending on the degree of apoptosis related to the level of heat induced in the target cells. 14) It has been suggested that either a limited increase in cytosolic calcium levels resulting from mild membrane changes following heating might trigger apoptosis, or it may be induced by nuclear DNA damage following enzyme activity from

ORIGINAL ARTICLES

available at www.jstage.jst.go.jp/browse/islsm
heat-affected lysosomes. Following eventual cell death, the membranes disintegrate, and the lipid droplets contained within the cells are allowed to escape. These debris become a good target for the macrophages recruited into the target area as a result of the response to the “wounding” of the fatty tissues. Both lipid droplets and cellular debris are therefore phagocytosed up by the macrophages, and excreted from the body. Extracorporeal shock wave therapy (ESWT) is now well established and is used more than 90% worldwide as the principal method for treating kidney and urethral stones. Its use for fat-related conditions is more recent. In the previously cited meta-analysis on ESWT for the treatment of cellulite by Knobloch and Kraemer, the authors postulated applications for ESWT beyond cellulite, and suggested interest in exploring the combination of ESWT with other non-invasive body contouring modalities. It has been suggested that ESWT acts on cellulite tissues through the delivery of an extracorporeally-administered, electromagnetically induced radial shock wave. There is no electromagnetic energy delivered, simply a series of very short pulses of osmotic energy. This is suggested to temporarily alter the permeability of the lipocyte membranes, enhance the blood supply, and accelerate clearance of debris by macrophages. The author felt that these aspects would add value to the use of AiRF for body contouring, and so for the first 19 patients in the study, ESWT was applied immediately before the AiRF, with the aim of affecting lipocyte membrane permeability and blood supply to the area to prepare the way for the AiRF. However, the author was interested to see what would happen if the order of treatment was reversed, and so the final 8 patients were treated with AiRF first followed by ESWT. The author’s idea was that mopping up of debris by the endogenous macrophage response would be accelerated by this order of treatment: the blood supply and lipocyte membranes would have already been altered by the RF and would no longer be the primary target for the ESWT. As can be seen from Tables 1-3, the order of application using the ESWT first followed by the AiRF gave better results in waist circumferential loss than AiRF followed by ESWT, although the difference was not statistically different between Groups A and B. Having said that, Group A almost showed significance in waist circumference reduction after the 6th treatment session, where the P value was 0.0589, just short of the P < 0.05 criterion for significance.

Conclusions
The noninvasive combination of ESWT with non-contact apoptosis-inducing RF proved safe and effective for circumferential reduction in all patients enrolled in the study at 1 week after the 4th treatment in all 27 subjects, which mostly improved in the 19 subjects who went on for a further 2 treatment sessions. The results therefore suggested that 6 treatment sessions could deliver overall better results than 4 sessions. The treatment was well-tolerated by all patients and was pain- and side effect-free. Both ESWT followed by AiRF and AiRF followed by ESWT gave significant girth reductions, with the first of these combinations showing slightly better (though not statistically significant) results, especially in circumferential reduction which may have added health benefits as far as prophylaxis against cardiometabolic disease. Further controlled trials separating the AiRF and ESWT components with larger populations and longer follow-ups are warranted to confirm the optimistic results presented by the present study.

Note from Editor-in-Chief
Readers will note that this article by Dr HY Kim is not on laser or other light-based device, but on an energy-based device (EBD), namely a field radiofrequency system. I realize that in an earlier editorial I suggested we should consider publishing EBD-related articles due to the rise in interest in these interesting technologies, and the fact that they share a position in the electromagnetic spectrum with light-based devices including lasers, IPLs, LEDs and so on. However, I have had second thoughts, based on suggestions from our panel of expert reviewers. The Journal is entitled Laser Therapy and our remit should be to look at articles on light-based devices. We will from now on not accept articles exclusively on procedures or research performed with EBDs. However, if valid and meaningful points are made in the Abstract, Introduction and Discussion sections as to how the EBD can be compared and contrasted with the same procedure highlighted in the article when carried out using light-based devices, with suitable references to back up the author’s/authors’ opinions, we will consider publication of such articles.
References

1: Han TS, Richmond P, Avenell A and Lean MEJ. Waist circumference reduction and cardiovascular benefits during weight loss in women. International Journal of Obesity (1997) 21, 127-134
2: Han TS and Lean MEJ: A clinical perspective of obesity, metabolic syndrome and cardiovascular disease. JRSM Cardiovascular Dis, 2016; 5: 1-13.
3: Tierney EP, Kouba DJ, Hanke CW: Safety of tumescent and laser-assisted liposuction: review of the literature. J Drugs Dermatol, 2011; 10: 1363-1369.
4: Kennedy J, Verne S, Griffith R, Falto-Aizpurua L, Nouri K: Non-invasive subcutaneous fat reduction: a review. J Eur Acad Dermatol Venereol, 2015; 29: 1679-1688.
5: Derrick CD, Shridharani SM, Broyles JM: The safety and efficacy of cryolipolysis: a systematic review of available literature. Aesthet Surg J. 2015; 35: 830-836 Epub 2015 Feb 9.
6: Robinson DM, Kaminer MS, Baumann L, Burns AJ, Brauer JA: High-intensity focused ultrasound for the reduction of subcutaneous adipose tissue using multiple treatment techniques. Dermatol Surg, 2014; 40: 641-651.
7: McKnight B, Tobin R, Kabir Y, Moy R: Improving Upper Arm Skin Laxity Using a Tripolar Radiofrequency Device. J Drugs Dermatol, 2015;14: 1463-1466.
8: Moradi A, Palm M: Selective non-contact field radiofrequency extended treatment protocol: evaluation of safety and efficacy. J Drugs Dermatol, 2015; 14: 982-985.
9: Knobloch K, Kraemer R: Extracorporeal shock wave therapy (ESWT) for the treatment of cellulite-A current metaanalysis. Int J Surg, 2015; 24(Pt B): 210-217.
10: Foster-Schubert KE, Alfano CM, Duggan CR, Xiao L, Campbell KL, et al.: Effect of diet and exercise, alone or combined, on weight and body composition in overweight-to-obese post-menopausal women. Obesity (Silver Spring), 2012; 20: 1628-1638.
11: Clinical guidelines on the identification, evaluation, and treatment of overweight and obesity in adults. NIH Publication No. 98-4083 (Sep. 1998). National Heart, Lung, and Blood Institute in cooperation with The National Institute of Diabetes and Digestive and Kidney Diseases
12: Joiner MC, Vojnovic B: Radiofrequency diathermy for uniform heating of mouse tumours. Br J Cancer Suppl. 1982;5: 71-76.
13: Goo BL, Kim DS: Impact of contactless apoptosis-inducing RF on temperature of human skin and subcutaneous layer as well as porcine histology: a pilot study. Med Laser, 2016; 5: 29-33
14: BV Harmon, AM Corder, RJ Collins, GC Gobé, J Allen, et al.: Cell Death Induced in a Murine Mastocytoma by 42–47°C Heating in Vitro: Evidence that the Form of Death Changes from Apoptosis to Necrosis Above a Critical Heat Load. , 1990, 58: 845-858
15: Angehrn F, Kuhn C, Voss A: Can cellulite be treated with low-energy extracorporeal shock wave therapy? Clin Interv Aging. 2007; 2: 623-630.