Newly reported chloroplast genome of *Sinosenecio albonervius* Y. Liu & Q. E. Yang and comparative analyses with other *Sinosenecio* species

Jing-Yi Peng1, Xiao-Shuang Zhang2, Dai-Gui Zhang1,3, Yi Wang1, Tao Deng2, Xian-Han Huang2, Tian-Hui Kuang2 and Qiang Zhou1,3*

Abstract

Background: *Sinosenecio* B. Nordenstam (Asteraceae) currently comprises 44 species. To investigate the interspecific relationship, several chloroplast markers, including *ndhC*-trnV, *rpl32-trnL*, *matK*, and *rbcL*, are used to analyze the phylogeny of *Sinosenecio*. However, the chloroplast genomes of this genus have not been thoroughly investigated. We sequenced and assembled the *Sinosenecio albonervius* chloroplast genome for the first time. A detailed comparative analysis was performed in this study using the previously reported chloroplast genomes of three *Sinosenecio* species.

Results: The results showed that the chloroplast genomes of four *Sinosenecio* species exhibit a typical quadripartite structure. There are equal numbers of total genes, protein-coding genes and RNA genes among the annotated genomes. Per genome, 49–56 simple sequence repeats and 99 repeat sequences were identified. Thirty codons were identified as RSCU values greater than 1 in the chloroplast genome of *S. albonervius* based on 54 protein-coding genes, indicating that they showed biased usage. Among 18 protein-coding genes, 46 potential RNA editing sites were discovered. By comparing these chloroplast genomes' structures, inverted repeat regions and coding regions were more conserved than single-copy and non-coding regions. The junctions among inverted repeat and single-copy regions showed slight difference. Several hot spots of genomic divergence were detected, which can be used as new DNA barcodes for species identification. Phylogenetic analysis of the whole chloroplast genome showed that the four *Sinosenecio* species have close interspecific relationships.

Conclusions: The complete chloroplast genome of *Sinosenecio albonervius* was revealed in this study, which included a comparison of *Sinosenecio* chloroplast genome structure, variation, and phylogenetic analysis for related species. These will help future research on *Sinosenecio* taxonomy, identification, origin, and evolution to some extent.

Keywords: *Sinosenecio*, Comparison of the chloroplast genome, Phylogenetic analysis

Background

The sophisticated oxygenic photosynthesis performed by chloroplasts is the most remarkable function of modern plastids. As a photosynthetic organelle capable of supplying energy to green plants, chloroplasts play an important role in photosynthetic oxygen production and secondary metabolism and the biosynthesis of starch,
fatty pigments, and amino acids. Chloroplasts and their complex signaling pathways provide a fine regulatory mechanism for plant development, metabolism, and environmental response, forming a major genetic system with the nucleus and mitochondria [1–3].

Chloroplasts also have their independent genomes. Most chloroplast genomes of angiosperms are highly conserved and exhibits a typical quadripartite structure, usually with 110–130 genes, including a large single-copy region (LSC), a small single-copy region (SSC), and two inverted repeat regions (IRs), ranging in size from 120 to 160 kb [4]. Due to its highly conserved nature, slow nucleotide substitution rate, and maternal inheritance, chloroplast DNA, an important information source for taxonomic and phylogenetic research, has been widely used in genomics to research plant phylogeny [5].

Sinosenecio B. Nordenstam (1978) (Asteraceae) contains 44 species that are primarily found in central and southwestern China [6–9]. This genus is distinguished by stems that are subscapiform or leafy, palmately or rarely pinnately veined, capitula that range from solitary to densely clustered, and so on. Sinosenecio is divided into two species assemblages based on chromosome number and endothecial cell wall thickening patterns, namely the Sinosenecio s.s. group and the S. oldhamianus group [10–13]. These two groups also differ in geographical distribution. The former is restricted to mountainous regions around Sichuan Basin, southwestern China, and the latter is widely distributed in central and southern China, with two species extending to Indochina.

Previously, several chloroplast markers, including ndhC-trnV, rpl32-trnL, matK, and rbcL, were used to determine the relationship of Sinosenecio species. However, the chloroplast genomes of this genus have not been thoroughly investigated. Here, we sequenced and assembled the chloroplast genome of Sinosenecio albonervius Y. Liu & Q. E. Yang. Combined with reported three Sinosenecio species (S. baojingensis Y. Liu & Q. E. Yang, S. jishouensis D. G. Zhang and S. oldhamianus (Maxim.) B. Nord) chloroplast genomes, a detailed comparative analysis was carried out in this study.

Results
Chloroplast genome basic characteristics of S. albonervius and three Sinosenecio species
We assembled a 151,224 bp closed circular chloroplast genome with a typical quadripartite structure from the sequencing data of S. albonervius, which includes a pair of inverted repeat regions (IRs) of 24,848 bp separated by large single-copy region (LSC) of 83,355 bp and small single-copy regions (SSC) of 18,173 bp (Fig. 1). The sequence of chloroplast genome encodes 134 (two pseudogenes), containing 87 protein-coding genes, 8 ribosomal RNA genes (rRNA) and 37 transfer RNA genes (tRNA) (Table 1). 20 duplicate genes are discovered in the IR regions, with 9 protein coding genes (rps7, rps12, rps19, rpl2, rpl23, ycf1, ycf2, ycf15, ndhB), 4 tRNAs (rrn16s, rrn23s, rrn4.5 s, rrn5s), and 7 tRNAs (trnN-GUU, trnR-ACG, trnA-UGC, trnL-CAA, trnL-CAU, trnV-GAC, trnL-LCAA). 16 genes (atpF, ndhA, ndhB, petB, petD, rps12, rps16, rpl2, rpoC1, trnA-UGC, trnG-UCC, trnL-GAU, trnK-UUU, trnL-UAA, trnV-UAC) have a single intron, and 2 genes (ycf3 and clpP) contain two introns (Table 2). The overall GC content of this genome is 37.4%, while the corresponding values of the LSC, SSC, and IR regions were 35.50%, 30.60%, and 43.00%, respectively. Additionally, comparison of S. albonervius and other Sinosenecio species chloroplast genomes was provided (Table 3). The size of chloroplast genomes range from 150,926 to 151,315 bp, of which S. oldhamianus is the smallest and S. baojingensis is the largest. They have the same number of genes (total genes, protein-coding genes and RNA genes). Moreover, there is no significant difference in GC content between the analyzed genomes.

Simple sequences repeats (SSRs) and repeat sequences
S. albonervius chloroplast genome contained 53 simple sequence repeats (SSRs), including 26 mononucleotide repeats, seven dinucleotide repeats, eight trinucleotide repeats, and 12 tetranucleotide repeats (Fig. 2A). We counted the number of SSRs in SC and IR regions (Fig. 2B) and the different types of SSRs, in each chloroplast genome (Fig. 2C, Table S1). It can be seen that SSRs mainly occur in LSC, while SSRs are not detected in the IR regions of S. baojingensis and S. albonervius. The SSRs in S. albonervius, S. jishouensis, S. baojingensis, and S. oldhamianus are 53, 55, 49, and 56. It is worth noting that mononucleotide repeats of S. baojingensis and S. oldhamianus are more than the sum of other types. The most common SSRs are mononucleotide repeats composed of A or T (Fig. 2D), and S. oldhamianus has the most (35 mononucleotide repeats). In contrast, S. albonervius has 26, as do S. jishouensis and S. baojingensis. Furthermore, we discovered repeat sequences (>10 bp) in the chloroplast genomes (Fig. 3, Table S2). Palindromic and forward repetitions are more universal than other repetition types. For S. albonervius, 99 repeat sequences were identified, which are composed of 37 forward (F), 21 reverse (R), 37 palindromic (P), and four complements (C) repeats, and the largest repeat is a palindromic repeat with a size of 48 bp.

Codon usage and RNA editing sites
The codon usage frequency and relative synonymous codon usage (RSCU) frequency were calculated using 54
protein-coding sequences from the chloroplast genome of *S. albonervius* (Table 4). There are 21,301 codons in these protein-coding sequences. With 2281 and 238 codons, Leu and Cys are the most and the least frequently used amino acids respectively. Relative synonymous codon usage analysis (Fig. 4) showed that RSCU value of 30 codons is greater than one, indicating some biased usage for these codons. At the same time, Met and Trp are encoded by a single codon (RSCU = 1), showing no biased usage. Additionally, among the codons with RSCU > 1, only the Leu codon (UUG) is G-ending, and the other 29 codons are A or U-ending.

A total of 46 potential RNA editing sites were found in 18 protein-coding genes from the chloroplast genome of *S. albonervius* (Table 5). The ndhB genes contain the most RNA editing sites (9 sites), while several genes (*atpl*,...
psbf, rpl20, rpoA, rpoB, and rpsi2) include only one editing site. C-T conversion occurred at the first (21.7%) and second codon positions (78.3%) of all RNA editing sites, indicating that the editing frequency of the third codon position was lower than that of the second or first codon positions. Furthermore, serine codons were edited more

Table 1 The gene composition of *S. albonervius* chloroplast genome, “a” labeled genes have intron

Group of genes	Name of genes
ATP synthase	atpA, atpB, atpE, atpF, atpH, atpI
Photosystem II	psbA, psbB, psbC, psbD, psbE, psbF, psbH, psbI, psbL, psbM, psbT, psbZ
NADPH dehydrogenase	ndhA, ndhB, ndhC, ndhD, ndhE, ndhF, ndhG, ndhH, ndhI, ndhK
Cytochrome b/f complex	petA, petB, petD, petG, petL, petN
C-type cytochrome synthesis	ccsA
Photosystem I	psaA, psaB, psaC, psaI, psaJ
Photosystem biogenesis factor	pfd1
Large subunit of rubisco	rbcL
Small ribosomal units	rps11, rps12, rps14, rps15, rps16, rps18, rps19, rps2, rps3, rps4, rps7, rps8
Large ribosomal units	rpl14, rpl16, rpl20, rpl22, rpl23, rpl32, rpl33, rpl36
RNA polymerase sub-units	ndhA
Translation initiation factor	rnr16s, rnr23s, rnr5s, rnr4.5s s
Ribosomal RNA	trnA-UGC, trnC-GCA, trnD-GUC, trnE-UUC, trnF-GAA, trnG-GCC, trnG-UCU
Transfer RNA	trnH-GUG, trnL-CAU, trnL-GAU, trnL-UUU, trnL-CAC, trnL-UAA, trnL-UAG, trnM-GAU, trnN-GUU, trnP-UGG, trnQ-UGG, trnR-AGG, trnR-UCU, trnS-GCU, trnS-GGA, trnS-UAG, trnT-GGU, trnV-GAC, trnV-UAC, trnW-CCA, trnY-GUA, trnM-GAU
Acetyl-CoA-carboxylase sub-unit	accD
Envelope membrane protein	cemA
Protease	clpP
Maturase	matK
Hypothetical genes reading frames	ycf1, ycf2, ycf3, ycf15, ycf4

Table 2 Genes with introns in the chloroplast genomes of *S. albonervius* as well as the lengths of the exons and introns

Gene	Location	Exon 1 (bp)	Intron 1 (bp)	Exon 2 (bp)	Intron 2 (bp)	Exon 3 (bp)
trnK-UUU	LSC	37	2560	35		
rps16	LSC	41	841	214		
rpoC1	LSC	432	719	1635		
atpF	LSC	145	704	410		
trnG-UCU	LSC	23	725	47		
ycf3	LSC	124	696	230	740	153
trnL-UAA	LSC	37	452	50		
trnV-UAC	LSC	38	573	37		
rpi12	LSC / IR	114	530	232	26	
clpP	LSC	71	806	291	606	229
petB	LSC	6	772	642		
petD	LSC	8	718	475		
rpi16	LSC	9	1061	399		
rpi2	IR	393	667	435		
ndhB	IR	777	671	756		
trnM-GAU	IR	42	772	35		
trnA-UGC	IR	38	821	35		
ndhA	SSC	553	1072	539		
frequently than other amino acid codons, and the conversion from serine to leucine occurred the most frequently.

Comparative genomic and nucleotide diversity analyses

The chloroplast genomes of *Sinosenecio* species were compared and analyzed to determine the level of divergence, with *S. oldhamianus* as a reference (Fig. 5). IR regions and the coding regions are more conserved than the SC and non-coding regions. The coding regions of the *ycf1* gene, on the other hand, are the most divergent, with greater diversity than the coding regions of other genes. We also compared IR, SC, and junction sites of *Sinosenecio* species (Fig. 6). The size of IR regions in different chloroplast genomes ranges from 24,848 to

Table 3 Comparison of four *Sinosenecio* species chloroplast genomes

Characteristics	S. albonervius	S. jishouensis	S. baojingensis	S. oldhamianus
Accession number	OL678114	NC057061	MZ325394	NC057622
Total length (bp)	151,224	151,257	151,315	150,926
LSC length (bp)	83,355	83,373	83,445	83,092
SSC length (bp)	18,173	18,178	18,172	18,130
IR length (bp)	24,848	24,853	24,849	24,852
Total number of genes	134	134	134	134
Protein coding genes	87	87	87	87
tRNA genes	37	37	37	37
rRNA genes	8	8	8	8
Total GC content	37.4%	37.4%	37.4%	37.3%
GC content in IRs	43.0%	43.0%	43.0%	43.0%
GC content in LSC	35.5%	35.5%	35.5%	35.4%
GC content in SSC	30.6%	30.6%	30.6%	30.6%

Fig. 2 Simple sequence repeats. A Proportion of SSR types in *S. albonervius* chloroplast genome. B The number of SSRs in LSC, SSC and IRs in *Sinosenecio*. C SSR types in *Sinosenecio*. D Specific forms of SSRs in *Sinosenecio*.
Table 4 Codon usage for *S. albonervius* chloroplast genome by using 54 CDS

Amino Acid	Codon	Number	RSCU	Amino Acid	Codon	Number	RSCU
Phe	UUU	828	1.37	Ser	UCU	478	1.81
	UUC	382	0.63		UCC	231	0.87
Leu	UUA	738	1.94		UCA	324	1.22
	UAG	472	1.24		UCG	126	0.48
	CUU	490	1.29	Pro	CCU	342	1.55
	CUC	136	0.36	CCC	159	0.72	
	CUA	301	0.79	CCA	262	1.19	
	CUG	144	0.38	CCG	120	0.54	
Ile	AUU	897	1.47	Thr	ACU	427	1.63
	AUC	328	0.54		ACC	197	0.75
	AUA	601	0.99		ACA	330	1.26
Met	AUG	518	1		ACG	92	0.35
Val	GUU	424	1.49	Ala	GCU	533	1.77
	GUC	123	0.43	GCC	189	0.63	
	GUA	433	1.53	GCA	343	1.14	
	GUG	155	0.55	GCG	139	0.46	
Tyr	UAU	670	1.64	Cys	UGU	166	1.39
	UAC	148	0.36		UGC	72	0.61
TER	UAA	32	1.78	TER	UGA	12	0.67
	UAG	10	0.56	Trp	UGG	383	1
His	CAU	373	1.49	Arg	CGU	285	1.36
	CAC	128	0.51	CGC	85	0.41	
Gln	CAA	594	1.53	CGA	277	1.33	
	CAG	180	0.47	CGG	84	0.4	
Asn	AAU	830	1.59	Ser	AGU	340	1.28
	AAC	217	0.41		AGC	89	0.34
Lys	AAA	836	1.51	Arg	AGA	389	1.86
	AAG	273	0.49		AGG	134	0.64
Asp	GAU	671	1.58	Gly	GGU	490	1.33
	GAC	177	0.42		GGC	178	0.48
Glu	GAA	834	1.50		GGA	565	1.53
	GAG	275	0.50		GGG	242	0.66
24,853 bp. IR regions contain the rpl2 gene, three genes psbA, rpl22 and trnH in LSC region. SSC/IRa border is located within the coding region of the ycf1 gene, while rps19 exists at the junction of LSC/IRb region. Moreover, at JSB, the ycf1 gene extends into SSC region with 2 bp, and ndhF creates a location of 1 bp at the IRb region of each chloroplast genome. The rps19 gene at JLA extends into SSC region in S. jishouensis, S. baojingensis and S. albonervius with 3 bp, and in S. oldhamianus with 1 bp, respectively. DnaSP analyzed the nucleotide diversity to determine the mutation hot spot regions in the chloroplast genome (Fig. 7). Pi values range from 0.00083 to 0.02611. The highest Pi values occurs in accD–pasI area with 0.02611, and other high-level peaks (Pi > 0.013) are found in following regions: trnK_UUU-rps16 (0.01583), ycf1 (0.01444), ccsA-ndhD (0.01333) and trnT_UGU-trnL_UAA (0.01306). However, these regions are primarily concentrated in LSC, implying that the LSC contains the most highly diverse regions.

Discussion

Basic characteristics of Sinosenecio species chloroplast genome

We assembled the complete chloroplast genome of S. albonervius, and deposited it in Genbank (OL678114). Comparing the chloroplast genomes of S. albonervius and the other three Sinosenecio species revealed that their genomes have a uniformly typical quadripartite structure with the same numbers of total genes, protein-coding genes and RNA genes as well as consistent GC content. Meanwhile, they differ slightly in the size of the SC and IR regions, which reflects the high degree of conservativeness in angiosperms chloroplast genomes to some extent. 18 genes in S. albonervius contain introns that significantly affect RNA stability, regulation of gene expression, and alternative splicing [14]. Additionally, some genes are also sometimes absent from chloroplast genomes of plants. The loss of rps7 gene is unique to gymnosperms, while the loss of at least seventeen genes (accD, ndhA, ndhB, ndhC, ndhD, ndhE, ndhF, ndhG, ndhH, ndhJ, ndhK, psaJ, rpl23, rpl32, rps15 and rps16) was found to be common in angiosperms. However, it is noteworthy that the four Sinosenecio species retain the above seventeen genes that are easy to be deleted, and most of these genes are related to NADPH-quinone oxidoreduction [15, 16].
liverworts [31]. It is a process that converts specific RNA editing sites in the S. albonervius chloroplast genome

Gene Name	Nt pos	AA pos	Align Col	Effect	Score
accD	451	151	162	CAC (H) = > UAC (Y)	1
accD	824	275	304	UCG (S) = > UUG (L)	0.8
accD	1225	409	450	CCA (P) = > UCA (S)	1
accD	1433	478	519	CCU (P) = > CUU (L)	1
atpA	773	258	258	UCA (S) = > UUA (L)	1
atpA	791	264	264	CCC (P) = > CUC (L)	1
atpI	629	210	213	UCA (S) = > UUA (L)	1
cciA	110	37	39	CCA (P) = > UUA (L)	1
cciA	370	124	127	CCC (P) = > CUC (L)	1
matK	284	95	108	UCA (S) = > UUA (L)	1
matK	637	213	229	CAU (H) = > UAU (Y)	
ndhA	566	189	189	UCA (S) = > UUA (L)	1
ndhA	1073	358	358	UCC (P) = > UUC (F)	1
ndhB	149	50	50	UCA (S) = > UUA (L)	1
ndhB	467	156	156	CCA (P) = > CUA (L)	1
ndhB	586	196	196	CAU (H) = > UAU (Y)	
ndhB	611	204	204	UCA (S) = > UUA (L)	0.8
ndhB	737	246	246	CCA (P) = > CUA (L)	1
ndhB	746	249	249	UCU (S) = > UUC (F)	1
ndhB	830	277	277	UCA (S) = > UUA (L)	1
ndhB	836	279	279	UCA (S) = > UUA (L)	1
ndhB	1481	494	494	CCA (P) = > CUA (L)	1
ndhD	359	120	128	UCA (S) = > UUA (L)	1
ndhD	575	192	200	UCA (S) = > UUA (L)	1
ndhD	854	285	293	UCA (S) = > UUA (L)	1
ndhD	863	288	296	CCC (P) = > CUC (L)	1
ndhD	1286	429	437	UCA (S) = > UUA (L)	0.8
ndhF	290	97	97	UCA (S) = > UUA (L)	1
ndhF	1340	447	447	UCU (S) = > UUC (F)	1
ndhG	166	56	56	CAU (H) = > UAU (Y)	0.8
ndhG	314	105	105	ACA (U) = > AUU (G)	
petB	418	140	140	CGG (R) = > UGG (W)	1
petB	611	204	204	CCA (P) = > CUA (L)	1
psbF	77	26	26	UCU (S) = > UUC (F)	1
rpoD0	308	103	103	UCA (S) = > UUA (L)	0.86
rpoA	824	275	279	UCA (S) = > UUA (L)	1
rpoB	983	328	345	GCG (A) = > GUG (V)	
rpoC1	511	171	171	CCC (P) = > UCC (S)	1
rpoC1	1592	531	548	GCA (A) = > GUA (V)	0.86
rpoC1	2039	680	710	CCC (P) = > CUC (L)	1
rpoC2	2701	901	1101	CAU (H) = > UAU (Y)	1
rpoC2	3695	1232	1452	UCG (S) = > UUG (L)	0.86

SSRs and repeat sequences

Simple sequence repeats (SSR) are tandem DNA repeats with short motifs found in plant nuclear, mitochondrial and chloroplast genomes, and exhibit polymorphism and a codominant inheritance pattern. These sequences have been widely used to speculate genetic variation among plant genotypes and as DNA markers in population genetic researches [17, 18]. The SSR abundances in different species are varied [19]. Different numbers of SSR were detected from Sinosenecio species chloroplast genomes, while most of the SSRs appear in the SC regions, especially in the LSC region. We found that A or T mononucleotide repetition is the most primary repetitive type, and all mononucleotide repeats are composed of A and T. Such results are consistent with previous reports that A and T are the most abundant repeats in the most angiosperms chloroplast genome, and rarely contain tandem G or C repeats [20]. Furthermore, we discovered 99 repeat sequences in S. albonervius chloroplast genomes, the largest of which is a 48-bp palindrome repeat. Repeat sequences are essential genetic resources that play a significant role in phylogenetic studies. Larger and more complex repeat sequences may significantly impact chloroplast genome rearrangement and sequence divergence [21–24].

Codon usage analysis and RNA editing sites

Synonymous codons encode the same amino acids with different frequencies in many organisms, known as codon bias. The genetic code is usually conserved between organisms but differs in the frequency of codons usage for each amino acid. The selection for which codons are frequent and rare is generally consistent within each genome [25–28]. In our study, the RSCU values of 30 codons are greater than one, indicating a codon bias in the amino acids. Twenty-nine of these codons end in A or T, similar to the codons ending in A/T in most chloroplast genomes, most likely due to the composition bias of high A/T ratio [29]. The codon usage bias is a common characteristic of eukaryotic genomes and is critical for regulating gene expression [30]. Subsequent research has revealed that RNA editing patterns are a universal phenomenon in higher plants, except the complex leafy licheniformes, a subclass of complex thalloid marchantid liverworts [31]. It is a process that converts specific RNA
Fig. 5 The chloroplast genomes comparison of four Sinosenecio species is visualized with S. oldhamianus as a reference. The X-axis represents the coordinate in the chloroplast genome. The Y-axis shows different species names, and sequence similarity of aligned regions is displayed as horizontal bars, which expresses as a percentage within 50–100%.

Fig. 6 Comparison of connection sites of LSC, IRb, SSC, and IRA in the chloroplast genomes. JLB (IRB/LSC), JSB (IRB/SSC), JSA (SSC/IRA), and JLA (IRA/LSC) represent the junction sites between two adjacent regions in the genome.
nucleotide from C to U and alters the RNA sequence encoded by the genome, but with less frequent conversion from U to C in mitochondria and plastids [32, 33]. In our study, 46 potential RNA editing sites of 18 protein-coding genes in the chloroplast genome of *S. albonervius* were all C-T conversions at the codon's second or third position (21.7 vs. 78.3%). According to previous research, the editing site is usually in the first or second base of codons, resulting in the hydrophilic amino acid being transformed into hydrophobic [1, 32].

Genomes comparison and nucleotide diversity

We discovered that the chloroplast genomes of *Sinosenecio* species are highly conserved, with high similarity and gene order conservancy. However, the IR and coding regions are more conserved than the SC and non-coding regions, supported by previous findings [34, 35]. The expansion and contraction of boundary regions are evolutionary events and influence chloroplast genomes in size [36]. The length of IR regions ranges from 24,848 to 24,853 bp in *Sinosenecio* genomes. There were two
models proposed to explain the extension of the IR regions. Small IR expansion and movement are due to gene conversion, while double-stranded DNA breaks and recombination cause major IR expansion [37, 38]. Furthermore, IRs can stabilize plastomes, and species with IRs in their genomes are more stable in terms of genomic alignment than plastomes lacking one or all IRs [5]. Nucleotide diversity analysis found the hotspot regions for genome divergence, which can be used as new DNA barcodes in species identification [39]. These high Pi loci \((\text{accD–pasI, trnK_UUU–rps16, ycfI, ccsA_ndhD, trnT_UGU–trnl_UAA})\) are mostly found in the LSC regions. Some of these regions, such as \(\text{ycfI, ccsA_ndhD, and trnT_UGU–trnl_UAA}\), have been reported in previous studies on the chloroplast genome [40]. The IR regions are more conserved than SC regions, which may be due to copy correction between IR sequences by gene conversion [41].

Phylogenetic relationships
The chloroplast genome sequences with sufficient variable loci have been successfully used for classification and phylogenetic studies [42]. To determine \(\text{Sinosenecio}\) phylogenetic relationship, we assembled a dataset of chloroplast genome sequences. The interspecific relationship within \(\text{Sinosenecio}\) has been strongly supported by phylogenetic analysis, and this result is essentially consistent with their taxonomy. However, \(\text{Sinosenecio}\) is a large genus with 44 species, and only four species’ chloroplast genome sequences were used in this analysis, making a more comprehensive comparison with phylogenetic results inferred from other chloroplast fragments \((\text{ndhC–trnV, rpl32–trnl})\) or nuclear genes impossible. In addition, according to Liu 2010, \(\text{S. albonervius, S. baojingensis, S. jishouensis, and S. oldhamianus}\), based on chromosome number and patterns of endothecial cell wall thickenings, were considered to be partial members of \(\text{S. oldhamianus}\) group. This group is closely related to \(\text{Nemosenecio}\) (Kitam.) B. Nord of subtribe Tephroseridinae may represent a new genus or should be merged into \(\text{Nemosenecio}\) [10, 43, 44]. Still, there is not enough molecular data on \(\text{Nemosenecio}\) that we can use to illustrate this conclusion from the level of chloroplast genome at present. Therefore, more taxon sampling and a more rounded analysis of chloroplast genomes are necessary to deeply understand the \(\text{Sinosenecio}\) genetic relationship.

Conclusions
The complete chloroplast genome of \(\text{S. albonervius}\) was assembled and compared to other \(\text{Sinosenecio}\) species. \(\text{Sinosenecio}\) chloroplast genomes shared structural characteristics such as strict gene order, stable GC content, and relatively conservative IR and coding regions, while boundary region expansion and contraction influence genome size. Some codons encoding amino acids in \(\text{S. albonervius}\) have codon usage bias, which is critical for regulating gene expression. 46 RNA editing sites were detected based on 18 protein-coding genes showing that editing events often occurred in the first and second positions of the codon. Furthermore, the phylogenetic analysis strongly supported the interspecific relationship within \(\text{Sinosenecio}\), and partial hotspot regions for this genus genome divergence can be used as new DNA barcodes in species identification. Our study provides valuable information for future research on taxonomy, identification, and systematic evolution in \(\text{Sinosenecio}\).

Methods
Plant materials, DNA extraction and sequencing
Fresh \(\text{S. albonervius}\) leaves were collected from Hupingshan Natural Reserve in Hunan Province, China, and dried with silica gel. The voucher specimen was deposited at the herbarium of Jishou University. Plant Genomic DNA Kit DP305 (Beijing, China) was used to extract high-quality total DNA from the silica-dried leaf. Whole-genome sequencing was performed on the Illumina Hiseq platform by Guangdong Mercells Cell Biotechnology Co., Ltd. (Foshan, China).

Assembly and annotation
The clean data were used to assemble the complete chloroplast genome sequence of \(\text{S. albonervius}\) by the program GetOrganelle [45], and this sequence was annotated on the web page GeSeq (\(\text{https://chlorobox.mpimp-golm.mpg.de/geseq.html}\)) [46]. The obtained results were checked and manually adjusted in the program Geneious-9.0.2 using \(\text{S. jishouensis}\) as a reference. Finally, the \(\text{S. albonervius}\) chloroplast genome was uploaded to NCBI (Genbank: OL678114). Furthermore, the chloroplast genome map of \(\text{S. albonervius}\) was drawn using the web link (\(\text{https://chlorobox.mpimp-golm.mpg.de/ OGDdraw.html}\)) [47].

Chloroplast genome analysis
The simple sequence repeats (SSR) were detected by using MISA online tool (\(\text{https://webblast.ipk-gatersleben.de/misa/}\)) [48], and the parameters were set to ten, five, and four repeats for mononucleotide, dinucleotide, and trinucleotide. Three repeats were used for tetranucleotide, pentanucleotide, and hexanucleotide [49]. REPuter was used to analyze forward, palindrome, reverse, and complementary sequences with a minimum repeat length of 10 bp and minimum sequence identity greater than 90% [1, 50].

The expansion and contraction of IR regions in \(\text{Sinosenecio}\) chloroplast genome sequences were studied...
using the IRsScope online program (https://irscope.shinyapps.io/irapp/) [51]. The codon usage of *S. albonervius* chloroplast genome was analyzed using CodonW in MEGA [52], and protein-coding genes with less than 300 nucleotides in length and repeated gene sequences were deleted to reduce the deviation of the results. Besides, the putative RNA editing sites of 18 protein-coding genes were predicted via the PREP-Cp Web server (http://prep.unl.edu/cgi-bin/cp-input.pl), with a cutoff value of 0.8 [53].

Sinosenecio chloroplast genomes obtained from Genbank were compared with *S. albonervius* on the mVISTA online program using the Shuffle-Lagan model [54], with *S. oldhamianus* as the reference.

For the nucleotide diversity analysis, *Sinosenecio* complete chloroplast genome sequences were aligned using MAFFT [55]. A sliding window analysis of window length of 600 bp and step size of 200 bp was used in DnaSP to estimate the nucleotide diversity values [5, 56].

Phylogenetic analysis

Thirteen complete chloroplast genome sequences, including three *Sinosenecio* species and other ten Asteraceae species sequences, were downloaded from GenBank to clarify the phylogenetic position and relationship of *S. albonervius* with other related species. The genus *Aster* was selected as an out-group. All these sequences were aligned by using MAFFT, and RAxML-8.2.12 was used for maximum likelihood analysis on Cipres Portal (https://www.phylo.org/portal2) with the GTR+GAMMA model, and 1000 bootstrap replicates [57].

Abbreviations

IR: Inverted repeat regions; SC: Single copy regions; LSC: Large single copy region; SSC: Small single copy region; SSR: Simple sequence repeats; ML: Maximum Likelihood.

Supplementary Information

The online version contains supplementary material available at https://doi.org/10.1186/s12864-022-08872-3.

Additional file 1.

Acknowledgements

Thank all those who have helped us.

Authors’ contributions

TK collected the study materials; DZ and YW cultivated the living plants; JP and XZ analyzed the study data and wrote the manuscript; TD, QZ and XH reviewed and commented on this paper. All authors read and approved the final manuscript.

Funding

This work was supported by the National Natural Science Foundation of China under Grant [31860117].

Availability of data and materials

All the study data used for this analysis can be downloaded from GenBank (accession numbers MF539931 - MF539933, MT929248, NC057061, MZ235394, OL678114, NC057622, NC046693, MH483946, MZ2935743, MZ677242, NC034996, MT796625). The raw sequence data was uploaded to NCBI SRA database (BioProject: PRJNA783444).

Declarations

Ethics approval and consent to participate

The collection of plant materials strictly complied with relevant institutional, national, as well as international guidelines and legislation, and was approved by the Hupingshan Natural Reserve (Voucher number, *Sinosenecio albonervius*: 0411009, *Sinosenecio jishouensis*: YDJ01022, *Sinosenecio baajingensis*: JIU202112Q017).

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Author details

1. College of Biology and Environmental Sciences, Jishou University, Jishou 416000, Hunan, China.
2. CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China.
3. Key Laboratory of Plant Resources Conservation and Utilization, Jishou University, College of Hunan Province, Jishou 416000, Hunan, China.

Received: 31 May 2022 Accepted: 31 August 2022

Published online: 08 September 2022

References

1. Dong F, Lin ZC, Lin J, Ming R, Zhang WP. Chloroplast Genome of Rambutan and Comparative Analyses in Sapindaceae. Plants 2021;10(2):283.
2. Bobik K, Burch-Smith TM. Chloroplast signaling within, between and beyond cells. Front Plant Sci. 2015;6(6):781.
3. Qian J, Song J, Gao H, Zhu Y, Xu J, Pang XH, Yao H, Sun C, Li YE, Li CY, Liu JJ, Xu HB, Chen SL. The complete chloroplast genome sequence of the medicinal plant salvia miltiorrhiza. PLoS One. 2013;8(2):e57607.
4. Cheng H, Li JF, Zhang H, Cai BH, Gao ZH, Qiao YS, Mi L. The complete chloroplast genome sequence of strawberry (Fragaria × ananassa Duch.) and comparison with related species of Rosaceae. PeerJ. 2017;5:e3919.
5. Wang A, Dong X, Oulu MA, Mala EM, Yang JX, Onjalalaina GE, Gichua MK, Kinka PM, Gituru RW, Hu GW, Wang QF. Complete Chloroplast Genomes of Acanthochlamys bracteata (China) and Xerophyta GE (Vellozioaceae): Comparative Genomics and Phylogenomic Placement. Front Plant Sci. 2021;12:691833.
6. Chen YL, Liu Y, Yang QE, Nordenstam B, Jeffrey C, Sinosenecio B. Nord. In: Wu ZY & Raven PH. (Eds.) Flora of China. 2011; vols. 20–21:464–481.
7. Liu Y, Yang QE. Sinosenecio jiangxiensis (Asteraceae), a new species from Jiangxi. China Botanical Studies. 2019;406(3):206–12.
8. Liu Y, Xu Y, Yang QE. Sinosenecio peltatus (Asteraceae, Senecioneae), a remarkably distinctive new species from Guangdong. China Phytotaxa. 2019;406(3):206–12.
9. Zou CY, Liu Y, Liu Y. Sinosenecio ovatifolius (Asteraceae), a new species from Guangxi. China Phytotaxa. 2020;460(2):149–59.
10. Liu Y. Systematics of the genus Sinosenecio B. Nord (Asteraceae). Ph.D. thesis, Institute of Botany, Chinese Academy of Sciences, Beijing. 2010. p. 277.
11. Liu Y, Yang QE. Cytology and its systematic implications in Sinosenecio (Senecioneae-Asteraceae) and two closely related genera. Plant Syst Evol. 2011;291:7–24.
12. Liu Y, Yang QE. Floral morphomorphology and its systematic implications in the genus Sinosenecio (Senecioneae-Asteraceae). Plant Syst Evol. 2011;291(4):53–59.
13. Gong W, Liu Y, Chen J, Hong Y, Kong HH. DNA barcodes identify Chinese medicinal plants and detect geographical patterns of Sinosenecio (Asteraceae). J Syst Evol. 2016;54(1):83–91.
14. Nguyen-Dinh S, Sai TTT, Nawaz G, Lee K, Kang H. Abiotic stresses affect differently the intron splicing and expression of chloroplast genes in coffee plants (Coffea arabica) and rice (Oryza sativa). J Plant Physiol. 2016;201:85–94.
15. Wang YH, Wang S, Liu YL, Yuan QJ, Sun JH, Guo LP. Chloroplast genome variation and phylogenetic relationships of Atractylodes species. BMC Genomics. 2021;22(1):103.
16. Mohanta TK, Mishra AK, Khan A, Hashem A, Abd_Allah EF, Al-Harrasi A. Gene loss and evolution of the plastome. Genes (Basel). 2020;11(10):1133.
17. Deguilloux MF, Pemonge MH, Pettit RJ. Use of chloroplast microsatellites to differentiate oak populations. Ann For Sci. 2004;61(8):825–30.
18. Redwan RM, Saimin A, Kumar SV. Complete chloroplast genome sequence of MD-2 pineapple and its comparative analysis among nine other plants from the subclass Commelinales. BMC Plant Biol. 2015;15(1):196.
19. Gao X, Zhang X, Meng H, Li J, Zhang D, Liu C. Comparative chloroplast genomes of Paris Sect. Marmorata: insights into repeat regions and evolutionary implications. BMC Genomics. 2018;19(Suppl 10):878.
20. Xuang DY, Wu H, Wang YL, Gao LM, Zhang S, Li L. Complete chloroplast genome sequence of Magnolia kwangsiensis (Magnoliaceae): implication for DNA barcoding and population genetics. Genome. 2011;54(6):663–73.
21. Cavalier-Smith T. Chloroplast evolution: secondary symbiogenesis and multiple losses. Curr Biol. 2002;12(2):R62–4.
22. Lee J, Kang Y, Shin SC, Park H, Lee H. Combined analysis of the chloroplast genome and transcriptome of the Atropastrum arcticum vascular plant Deschampsia antarctica Desv. PLoS One. 2014;9(3):e92501.
23. Timme RE, Kuehl JV, Boore JL, Janssen RK. A comparative analysis of the Lactuca and Helianthus (Asteraceae) plastid genomes: identification of divergent regions and categorization of shared repeats. Am J Bot. 2007;94(3):302–12.
24. Weng ML, Blazier JC, Govindu M, Janssen RK. Reconstruction of the ancestral plastid genome in Geraniaceae reveals a correlation between genome rearrangements, repeats, and nucleotide substitution rates. Mol Biol Evol. 2014;31(3):643–59.
25. Hersberg R, Petrov DA. Selection on Codon Bias. Annu Rev Genet. 2008;42(1):287–99.
26. Chen SL, Lee W, Hottes AK, Shapiro L, McAdams HH. Codon usage catalog analysis version 7.0 for bigger datasets. Mol Biol Evol. 2016;33(7):1870–4.
27. Grantham R, Gautier C, Gouy M, Mercier R, Pave A. Codon catalog usage for DNA barcoding and population genetics. Genome. 2011;54(6):663–73.
28. Asaf S, Khan AL, Lubna, Khan A, Khan G, Lee IJ, Al-Harrasi A. Differentiated inverted repeat region with large scale inversion in the first complete plastid Genome sequence of Plantago ovata. Sci Rep. 2020;10:3881.
29. Yu X, Tan W, Zhang H, Gao H, Tian X. Complete chloroplast genomes of *ampelopsis humifolia* and *ampelopsis japonica*: molecular structure, comparative analysis, and phylogenetic analysis. Plants. 2019;8:410.
30. Sun J, Dong X, Cao Q, Xu T, Zhu M, Sun J, Dong T, Ma D, Han Y, Li Z. A systematic comparison of eight new plastome sequences from *Pomoia l. Peer*. 2019;7:e6653.
31. Khayy S, Gaboun F, Pirro S, Tatsusova T, E Louis Mousadik A, Ghazal H, Mentag R. Complete chloroplast genome of *organia spinosa*: structural organization and phylogenetic relationships in sapotaceae. Plants. 2020;9(10):1354.
32. Wolfe RH, Li W, Sharp PM. Rates of nucleotide substitution vary greatly among plant mitochondrial, chloroplast, and nuclear DNAs. Proc Natl Acad Sci. 1987;84(24):9054–8.
33. Hurst LD. The Ka/Ks ratio: diagnosing the form of sequence evolution. Trends Genet. 2002;18(9):486–7.
34. Yang Z, Biehlavski JP. Statistical methods for detecting molecular adaptation. Trends Ecol Evol. 2000;15(12):496–503.
35. Carbonell-Caballero J, Alonso R, Ibarz V, Tertol J, Talon M, Dapozio J. A phylogenetic analysis of 34 chloroplast genomes elucidates the relationships between wild and domestic species within the genus citrus. Mol Biol Evol. 2015;32(8):2015–35.
36. Liu Y, Chen GX, Yang QE. *Sinosenecio bambusimensis* (Asteraceae), a new species from Hunan. China Botanical Studies. 2009;50:107–13.
37. Zhang DG, Li Y, Yang QE. *Sinosenecio jioushanensis* (Compositae), a new species from north-west Hunan, China. Botanical Studies. 2009;49:287–94.
38. Yu J, Yu WB, Yang J, Song Y, Yi TS, Li DZ. GetOrganelle: a fast and versatile toolkit for accurate de novo assembly of organelle genomes. Genome Biol. 2020;21:241.
39. Tillisch M, Lehvkirr P, Pellitzer T, Ulbricht-Jones ES, Fischer A, Bock R, Greiner S. GeSeq – versatile and accurate annotation of organelle genomes. Nucleic Acids Res. 2017;45(W1):W6–11.
40. Kohde M, Drechsel O, Bock R. Organellar GenomeDRAW (OGDRAW): A Tool for the Easy Generation of High-Quality Custom Graphical Maps of Plastid and Mitochondrial Genomes. Curr Genet. 2007;52:267–74.
41. Beier S, Thiel M, Tunch T, Scholz U, Mascher M. MSA-web: a web server for microsatellite prediction. Bioinformatics. 2017;33(16):2583–5.
42. Li Q, Wam JAN. SSRHunter: development of a local searching software for SSR sites. Yi Chuan. 2005;27(5):808–10.
43. Kurtz S, Choudhari JV, Oehlbusch E, Schleiermacher C, Stoye J, Giegerich R. REPuter: the manifold applications of repeat analysis on a genomic scale. Nucleic Acids Res. 2001;29(22):4633–42.
44. Amiriyoushef A, Hynoven J, Pizzaci P. RIScope: an online program to visualize the junction sites of chloroplast genomes. Bioinformatics. 2018;34(17):3020–1.
45. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol. 2016;33(7):1870–4.
46. Mover JP. The PREP suite: predictive RNA editors for plant mitochondrial genomes, chloroplast genomes and user-defined alignments. Nucleic Acids Res. 2009;37(Web Server):W253–9.
47. Frazer KA, Pachter L, Polakow A, Rubin EM, Dubchak I. VISTA: Computational tools for comparative genomics. Nucleic Acids Res. 2004;32(Web Server):W273–9.
48. Katoh K, Standley DM. MAFFT multiple sequence alignment version 7: improvements in performance and usability. Mol Biol Evol. 2013;30(4):772–80.
49. Rozas J, Ferrer-Mata A, Sanchez-DelBarrio JC, Guirao-Rico S, Librado P, Ramos-Onsins SE, Sanchez-Gracia A. DNApS 6: DNA sequence polymorphism analysis of large data sets. Mol Biol Evol. 2017;34(12):3299–302.
50. Stamatakis A. RAxML version 8: a tool for the Easy Generation of High-Quality Custom Graphical Maps of Plastid and Mitochondrial Genomes. Curr Genet. 2007;52:267–74.
51. Ramos-Onsins SE, Sanchez-Gracia A. DnaSP 6: DNA sequence polymorphism analysis of large data sets. Mol Biol Evol. 2017;34(12):3299–302.