Title
Accumulation of 99mTc-low-density lipoprotein in human malignant glioma.

Permalink
https://escholarship.org/uc/item/9xq455vb

Journal
British Journal of Cancer, 71(2)

ISSN
0007-0920

Authors
Leppälä, J
Kallio, M
Nikula, T
et al.

Publication Date
1995-02-01

DOI
10.1038/bjc.1995.78

Peer reviewed
Accumulation of 99mTc-low-density lipoprotein in human malignant glioma

J Leppälä1, M Kallio2, T Nikula3, P Nikkinen4, K Liewendahl1, J Jääskeläinen1, S Savolainen1, H Gylling3, J Hiltunen1, J Callaway1, S Kahl1 and M Färkkilä2

1Department of Neurosurgery; 2Department of Neurology, University of Helsinki, Helsinki, Finland; 3MAP Medical Technologies, Tikkakoski, Finland; 4Department of Clinical Chemistry, Division of Nuclear Medicine and 2II Department of Medicine, University of Helsinki, Helsinki, Finland; 5Department of Pharmaceutical Chemistry, University of California, San Francisco, USA.

Summary

Low-density lipoprotein (LDL) uptake in gliomas was studied to find out if LDL has potential as a drug carrier of boron, especially for boron neutron capture therapy. Single photon emission tomography (SPET) was performed 2 h and 20 h after intravenous injection of autologous 99mTc-labelled LDL in four patients with untreated and five patients with recurrent glioma. 99mTc-LDL uptake was compared with the uptake of 99mTc-labelled human serum albumin (HSA), an established blood pool marker. The intra- and peritumoral distributions of radioactivity in the SPET images were not identical for radiolabelled LDL and HSA. The mean LDL tumour to brain ratio, determined from transversal SPET slices at 20 h post injection, was 1.5 in untreated and 2.2 in recurrent gliomas; the corresponding ratios for HSA were 1.6 and 3.4. The brain to blood ratio remained constant at 2 h and 20 h in both types of tumours. These data are not consistent with highly selective, homogeneous uptake of LDL in gliomas. However, the different tumoral distribution and rate of uptake of 99mTc-LDL, as compared with 99mTc-HSA, indicate that the uptake of LDL is different from that of HSA and that further studies on the mechanism of LDL uptake in glioma are warranted.

Keywords: brain neoplasm; glioma; radionuclides; 99mTc-albumin; 99mTc-LDL.

Brain tumours, about half of which are gliomas, are among the ten most common human tumours (Fogelholm et al., 1984; Cancer Society of Finland, 1992). More than half of the gliomas are malignant with a median survival time of about 1 year (Kallio et al., 1991). In recent decades there has been no significant improvement in survival of patients with malignant glioma in spite of efforts to improve conventional treatments and to develop new ones. Boron neutron capture therapy (BNCT) is a relatively new binary therapy utilising low-energy neutrons and the neutron capture reaction of boron (Barth and Soloway, 1992). Gliomas have been treated with BNCT and are still the main target of research in this field (Barth and Soloway, 1992). BNCT requires sufficiently high and selective uptake of boron in the tumour tissue. The boronated agent mainly used in BNCT has been water-soluble borocaptate (BSH). The tumour to brain (T:Br) boron concentration ratios obtained with BSH have been rather low and are apparently dependent on blood flow (Dewit et al., 1990; Barth and Soloway, 1992; Haritz et al., 1994). Low-density lipoprotein (LDL), the main cholesterol carrier in blood, has been suggested as a more selective vehicle for boron since growing tumour tissue requires cholesterol for cell membrane synthesis (Kahl and Callaway, 1989: Laster et al., 1991; Vitols, 1991).

LDL is carried into the cell by a receptor-mediated mechanism (Brown and Goldstein, 1986). Leukaemic cells, lung cancers, brain tumours and glioma cell lines have LDL receptors (Murakami et al., 1990; Rudling et al., 1990; Vitols et al., 1990, 1992) and LDL has been used for drug delivery in ovarian cancer therapy trials (Gal et al., 1981; Filipowska et al., 1992). LDL can be boronated by substituting boronate esters of fatty alcohols for core cholesterol esters (Kahl and Callaway, 1989). The amount of LDL taken up by gliomas in vivo is not known. High-grade gliomas exhibit vast morphological, biochemical, immunochemical, biological and chromosomal heterogeneity (McComb and Bigner, 1984). Consequently, the LDL receptor status of gliomas in vivo cannot be defined by studying glioma cell lines or tumour homogenates. Lipoprotein metabolism in rodents and rabbits, the animals carrying most of the glioma models, is markedly different from that in humans. For this reason, most animal data for this mode of drug delivery cannot be directly applied to human gliomas. In order to evaluate LDL as a potential carrier agent of boron for BNCT we performed brain scintigraphy on glioma patients after administering 99mTc-labelled autologous LDL intravenously and using 99mTc-labelled human serum albumin (HSA) as a control.

Patients and methods

Patients

Nine patients with supratentorial glioma participated in this study after informed consent (Table I). Four patients presented a previously untreated tumour and five had a recurrent tumour. Previously untreated tumours were diagnosed by computerised tomography (CT) and the diagnosis was subsequently verified by operation; for recurrent tumours there was a histological diagnosis available from the previous operation. All patients with recurrent tumours had received radiotherapy. The mean age of the patients was 51 years (range 29–69). All patients were on dexamethasone during the study. Five patients had slightly elevated serum hepatic enzyme levels resulting from anticonvulsive medication. This study was approved by the Ethical Committees of the Department of Neurology and the Department of Neurosurgery, Helsinki University Central Hospital.

Radiolabelling of LDL and HSA

LDL was separated from 50–100 ml of autologous venous blood by ultracentrifugation (DHEW, 1974). Human serum albumin (HSA) was purchased from the Blood Transfusion Service of the Finnish Red Cross. LDL and HSA were radiolabelled by direct attachment of 99mTc via partial reduc-
procedure was 95%. The radionuclide purity was 99.99% and the radiochemical purity was 95%. The improved efficiency in labelling with ascorbic acid, as compared with previously described methods, has been shown to be valid also for the labelling of other types of proteins with ascorbic acid as a reducing agent (Thakur and DeFulvio, 1991).

\[^{99m}\text{Tc}\text{-LDL}\] (2–3 mg, 20–35 mCi) and \[^{99m}\text{Tc}\text{-HSA}\] (60–150 mg, 14–29 mCi) were administered intravenously into a cubital vein in a solution containing 0.17 m sodium acetate buffer (pH 7.5) and 0.9% sodium chloride. The \[^{99m}\text{Tc}\text{-LDL}\] solution also contained 30–50 g l\(^{-1}\) unlabelled HSA. On an average 98.0% (range 95.8–99.2%) of the \[^{99m}\text{Tc}\] activity in blood samples was attached to protein as measured by trichloroacetic acid precipitation at various time intervals. The study with \[^{99m}\text{Tc}\text{-HSA}\] was performed 2–7 days before the injection of \[^{99m}\text{Tc}\text{-LDL}\]. One recurrent tumour patient (number 8) did not undergo the \[^{99m}\text{Tc}\text{-HSA}\] study.

Imaging

CT (Siemens Somatom HiQ, Erlangen, Germany) of the head, using contrast enhancement, was performed on all patients prior to the nuclear medicine imaging procedures. Brain SPET and abdominal planar scintigraphy were performed at 2 h and at 17–21 h after the injection of radiolabelled protein. Data were acquired with a Picker DDC4096 square detector gamma camera equipped with a LEAP collimator (Picker International, Cleveland, OH, USA). In SPET, 64 × 40 s frames were collected into a 64 × 64 matrix. Transversal sections (thickness 1.4 cm) parallel to the orbitomeatal line were reconstructed using NUD SPETS software (Nuclear Diagnostics, Stockholm, Sweden) with a modified Shepp–Logan filter and attenuation correction (\(\mu = 0.11\) cm\(^{-1}\)) prior to reconstruction (Larsson, 1980). Regions of interest (ROI) were drawn manually on the transversal SPET images using information obtained from the CT scans. An ROI drawn around the tumour area represented tumour tissue and an ROI of similar size on the contralateral side represented normal brain tissue, and an ROI around the superior sagittal sinus represented blood. The background activity was subtracted when calculating the tumour to brain (T:Br), tumor to blood (T:B), and brain to blood (Br:B) ratios from the counts per pixel recorded.

Blood, urine and tumour samples

Blood samples were collected at 0, 10, 20 and 40 min and at 1, 2, 3, 4, 7–9, 10–12, 18–21 and 22–25 h after the injection of \[^{99m}\text{Tc}\text{-LDL}\]. These data were fitted to the sum of two exponentials as in an earlier study (Vallabhbajosula et al., 1988). In one patient the blood time–activity curve was exponential rather than biexponential. Seven patients were subsequently operated on within 22–25 h of administration of \[^{99m}\text{Tc}\text{-LDL}\]. Urine samples were collected from two patients between the injection and operation. Radioactivity in blood, urine, and tumour samples (wet weight) was measured with a standard gamma counter (1282 Compugamma, LKB-Wallac, Turku, Finland).

Statistical analysis

Group differences were analysed with the chi-square test and correlations were calculated with the least-squares method.

Results

In the SPET images \[^{99m}\text{Tc}\text{-LDL}\] and \[^{99m}\text{Tc}\text{-HSA}\] accumulated in the tumour area as defined by the CT scan (Figures 1–4). The distribution of radioactivity in the tumour areas was not identical for \[^{99m}\text{Tc}\text{-LDL}\] and \[^{99m}\text{Tc}\text{-HSA}\], and particularly at 20 h dissimilarities were observed, as can be seen in the three studies presented in Figures 1–3. The tumour to brain (T:Br) ratio increased from 2 h to 20 h (Figure 4) in all patients (Table II). The mean T:Br ratio at 20 h was higher in

![Figure 1 Patient no. 3: previously untreated glioblastoma in right temporal lobe. a. CT scan. b. \[^{99m}\text{Tc}\text{-HSA}\] SPET image at 20 h. c. \[^{99m}\text{Tc}\text{-LDL}\] SPET image at 20 h.](image-url)

Table 1 Characteristics of patients with previously untreated and recurrent malignant glioma

Patient no.	Age (years)	Sex	Histological diagnosis	Location	Type of tumour	Previous radiotherapy
1	69	Male	Glioblastoma	L parieto-occipital	Untreated	No
2	29	Male	Malignant glioma, grade III	L frontal	Untreated	No
3	51	Female	Glioblastoma	R temporal	Untreated	No
4	62	Male	Glioblastoma	R temporoparietal	Untreated	No
5	43	Male	Oligodendroglioma, grade III	Frontotemporoparietal	Recurrent	Yes
6	65	Female	Astrocytoma, grade III*	L frontoparietal	Recurrent	Yes
7	56	Female	Oligodendroglioma, grade III	L frontal	Recurrent	Yes
8	42	Male	Astrocytoma, grade III*	L frontoparietal	Recurrent	Yes
9	43	Female	Astrocytoma, grade II	R frontal	Recurrent	Yes

*Patient was not considered reoperable; the histological diagnosis was from the initial operation. L, left; R, right.
recurrent tumours than in untreated tumours for both tracers, although the difference was not statistically significant \((P > 0.3) \). In recurrent cases the T:Br ratios for radio-labelled LDL and HSA correlated at 20 h, whereas in the untreated cases there was no correlation (Figure 5). The mean tumour to blood (T:B) ratio in untreated tumours was 0.7 for both \(^{99}\text{Tc}-\text{LDL} \) and \(^{99}\text{Tc}-\text{HSA} \), in recurrent tumours the T:B ratio was 0.9 for \(^{99}\text{Tc}-\text{LDL} \) and 1.2 for \(^{99}\text{Tc}-\text{HSA} \). The brain to blood (Br:B) ratio remained constant between 2 h and 20 h for both groups. The mean half-life of the slow component of the \(^{99}\text{Tc}-\text{LDL} \) was 21.5 h (range 14–31); the mean half-life of the fast component was 19 min (range 4–80) (Figure 6). One day after the injection of \(^{99}\text{Tc}-\text{LDL} \) about 35\% of the injected radioactivity remained in the circulation. Urinary excretion was 7.3\% and 10.9\% of the injected dose (ID) during the first 24 h in two patients given \(^{99}\text{Tc}-\text{LDL} \).

The \(^{99}\text{Tc}-\text{LDL} \) activity (per tissue wet weight) in the tumour samples varied from 0.02 to 0.56 mCi g\(^{-1} \) \((0.09–2.29 \times 10^{-4}\% \text{ ID} \ g^{-1})\); the mean being 0.27 mCi g\(^{-1} \) \((1.05 \times 10^{-3}\% \text{ ID} \ g^{-1})\). There was no correlation between the T:B ratios derived from the SPET images or the T:B ratio determined from the tumour samples.

Figure 2 Patient no. 4: previously untreated glioblastoma in right temporoparietal area. a. CT scan. b. \(^{99}\text{Tc}\)-HSA SPET image at 20 h. c. \(^{99}\text{Tc}-\text{LDL} \) SPET image at 20 h.

Figure 3 Patient no. 5: recurrent anaplastic oligodendroglioma in right frontotemporoparietal area. a. CT scan. b. \(^{99}\text{Tc}-\text{HSA} \) SPET image at 20 h. c. \(^{99}\text{Tc}-\text{LDL} \) SPET image at 20 h.

| Table II Uptake of radioactivity in gliomas in SPET images after intravenous administration of \(^{99}\text{Tc}-\text{LDL} \) and \(^{99}\text{Tc}-\text{HSA} \) |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Patient no. | T:Br | 2 h SPET T:B | HSA LDL | HSA LDL | T:Br | 20 h SPET T:B | HSA LDL | HSA LDL |
| 1 | 1.2 | 1.2 | 0.5 | 0.6 | 0.4 | 0.5 | 1.5 | 1.7 | 0.8 | 0.7 | 0.5 | 0.4 |
| 2 | 0.9 | 1.1 | 0.3 | 0.6 | 0.3 | 0.5 | 1.1 | 1.7 | 0.4 | 0.5 | 0.4 | 0.4 |
| 3 | 1.3 | 1.7 | 0.5 | 0.7 | 0.4 | 0.4 | 1.6 | 1.8 | 0.8 | 1.0 | 0.5 | 0.6 |
| 4 | 1.3 | 1.3 | 0.5 | 0.5 | 0.4 | 0.4 | 1.8 | 1.5 | 0.7 | 0.6 | 0.4 | 0.4 |
| Mean | 1.18 | 1.33 | 0.45 | 0.60 | 0.38 | 0.45 | 1.50 | 1.68 | 0.68 | 0.70 | 0.45 | 0.45 |
| 15 | 1.5 | 2.3 | 0.6 | 1.2 | 0.4 | 0.5 | 2.7 | 4.8 | 1.0 | 1.8 | 0.4 | 0.4 |
| 16 | 0.9 | 1.0 | 0.3 | 0.4 | 0.3 | 0.4 | 1.6 | 1.3 | 0.5 | 0.6 | 0.3 | 0.5 |
| 17 | 1.4 | 1.7 | 0.6 | 1.0 | 0.4 | 0.6 | 1.6 | 2.8 | 0.8 | 1.3 | 0.5 | 0.5 |
| 18 | 1.4 | ND | 0.6 | ND | 0.4 | ND | 2.6 | ND | 1.2 | ND | 0.5 | ND |
| 19 | 1.6 | 1.3 | 0.5 | 0.7 | 0.3 | 0.5 | 2.6 | 4.5 | 1.2 | 1.0 | 0.5 | 0.2 |
| Mean | 1.36 | 1.58 | 0.5 | 0.83 | 0.4 | 0.50 | 2.22 | 3.35 | 0.94 | 1.18 | 0.44 | 0.40 |

*Patients with recurrent, previously operated and radiated tumours. T:Br, tumour to brain ratio; T:B, tumour to blood ratio; Br:B, brain to blood ratio; ND, not determined.
Investigation of Tumour Brains Using 99mTc-LDL SPET Imaging

Discussion

The metabolism of lipoproteins in gliomas is poorly understood and there is no earlier information on the uptake of LDL in human gliomas in vivo, although LDL radiolabelling and metabolism in general has been extensively investigated in humans (Kesäniemi et al., 1983; Lees et al., 1985; Goldstein and Brown, 1989; Lees and Lees, 1991; Virgolini et al., 1991; Leitha et al., 1993). Our observations show that radiolabelled LDL accumulates in gliomas. The uptake of labelled LDL was, however, not higher than that of labelled albumin, a standard blood pool marker, and therefore this study does not provide conclusive evidence of a homogeneous, specific uptake of LDL in gliomas. The observed differences in the distribution of radioactivity in the tumour areas in patients given LDL and HSA indicate, nevertheless, that the mechanism for accumulation of LDL could be different from that of HSA. Albumin, with a molecular weight of 66 kDa, is known to diffuse passively through the disrupted blood-brain barrier (BBB). The molecular weight of LDL is much higher (3 MDa) and therefore the diffusion rate through the disrupted BBB is correspondingly slower, which could explain the somewhat lower T:Br ratio for LDL than for albumin. The rise in the 99mTc-LDL T:Br ratio between 2 h and 20 h is probably due primarily to the decrease in blood radioactivity with time, but LDL receptor-mediated uptake may also play a role.

The constant Br:B ratio shows that 99mTc-LDL does not cross the intact BBB, and that the radioactivity in the normal brain probably reflects the radioactivity in the circulation. The T:B ratios were quite low in both treated and untreated tumours. However, previous studies conducted with brain phantoms in this laboratory show that a single-head SPET camera underestimates the true target-to-non-target ratio in brain SPET images (Nikkinen et al., 1993). The somewhat higher T:B ratios in recurrent tumours, compared to untreated tumours, are probably due to an additional radiation-induced disruption of the BBB.

Gliomas are known to be very heterogeneous and often contain necrotic and cystic components, explaining why tumour activities determined from SPET scans did not correlate with activities measured from tissue samples. Therefore tissue samples can only be considered representative if taken from a relatively homogeneous tumour, which is not the case with gliomas.

In conclusion, this study shows that the magnitude of 99mTc-LDL accumulation in human malignant glioma is...
similar to that of 99mTc-HSA and that the mechanism of LDL uptake may be mostly passive diffusion, in addition to a blood pool effect. However, the different intratumoral distribution of radioactivity in patients given LDL and albumin, along with the different rate of uptake in the tumours, shows that the behaviour of these two substances in glomas is not identical. Consequently, the uptake of LDL might therefore result from both non-specific and LDL receptor-mediated processes. Further studies on cellular and receptor mechanisms will be needed to elucidate the nature of LDL uptake into human glomas.

Acknowledgements
The authors acknowledge the financial support from the Clinical Research Institute, Helsinki University Central Hospital, Finland.

References

BARTH RF AND SOLOWAY AH. (1992). Boron neutron capture therapy for cancer. Realities and prospects. Cancer, 70, 2995–3007.

BROWN MS AND GOLDSTEIN JL. (1986). A receptor-mediated pathway for cholesterol homeostasis. Science, 232, 34–47.

CAREW TE, WARD CH, HAUSBERGER ED and TIDESTROM R. (1987). The role of low density lipoprotein in malignant neoplasms. Cancer, 59, 717–723.

CHORVÁTH ZS, HUTTINER A, URSAH N, NARAMOTO T, INOMATA N, Tsuru Y, AND SAKAI S. (1993). Technetium-99m labelled LDL as an effective treatment for cholesterol. Cancer Res., 53, 3002–3006.

DHEW (1974). Lipid and lipoprotein analysis. In Manual of Laboratory Operations. Lipid Research Clinics Program. Publication NIH 75-628. DHEW: Washington DC.

FILIPOWSKA D, FILIPOWSKI T, MORELowska B, KAZANOWSKA W, LANDANSKI T, LAPIENIOKI S, AKERLUND M AND BREEZE A. (1992). Treatment of cancer patients with a low-density lipoprotein delivery vehicle containing a cytotoxic drug. Cancer Chemother. Pharmacol., 29, 396–400.

FOEGELHOLM M, UTIELA T AND MURROS K. (1984). Epidemiology of central nervous system tumors. A regional survey in Central Finland. Acta Neurol. Scand., 69, 129–136.

GAL D, OHASHI M, MACDONALD PC, BUCHBAUM HI AND SIMPSON ER. (1981). Low-density lipoprotein as a potential vehicle for chemotherapeutic agents and radionuclides in the management of gynecologic neoplasms. Am. J. Obstet. Gynecol., 139, 877–885.

GOLDSTEIN JL AND BROWN MS. (1989). Familial hypercholesterolemia. In The Metabolic Basis of Inherited Disease, 6th edn. SCIENCE SOCIETY Beaudet AL, Sly W and Valle D. (eds) pp 1215–1250. McGraw Hill: New York.

HARITZ D, GABEL D AND HUISKAMP R. (1994). Clinical phase-I study of Na131-BSH (BSH) in patients with malignant glioma as precondition for boron neutron capture therapy (BNCT). Int. J. Radiat. Oncol. Biol. Phys., 28, 1175–1181.

KAHL SB AND CALLAWAY JC. (1989). New tumor localizers: advances in the use of low density lipoproteins (LDL). Strahlenther. Onkol., 165, 137–39.

KALLIO M, SANKILA R, JÄÄSKELÄINEN J, KARjalainen S AND Hakulinen T. (1991). A population based study on the incidence and survival rates of 3857 glioma patients diagnosed from 1953 to 1984. Cancer, 68, 1394–1400.

KESÁNIEMI YA, WITZTUM JL AND STEINBACHER UP. (1983). Receptor-mediated catabolism of low density lipoprotein in man. J. Clin. Invest., 71, 950–959.

LARSSON SA. (1980). Gamma camera emission tomography. Acta Radiol. 363 (Suppl.), 1–75.

LASTER BH, KAHL SB, POPENOE EA, PATE DW AND FAIRCHILD RG. (1991). Biological efficacy of boronated low-density lipoprotein for boron neutron capture therapy as measured in cell culture. Cancer Res., 51, 4588–4593.

LEES AM AND LEES RS. (1991) 99mTechnetium-labelled low density lipoprotein: receptor recognition and intracellular sequestration of radiolabel. J. Lipid Res., 32, 1–9.

LEES RS, GARABEDIAN HD, LEES AM, SCHUMACHER DJ, MILLER A, ISAACSOHN JL, DERKSEN A AND STRAUSS HW. (1985). Technetium-99m low density lipoproteins: preparation and biodistribution. J. Nucl. Med., 26, 1056–1062.

LEITHA T, STAUGENHERZ A, GMEINER B, HERMANN M, HÜTTINGER M AND DUDCZAK R. (1993). Technetium-99m labelled LDL as a tracer for quantitative LDL scintigraphy. In vivo validation. LDL receptor-dependent and unspecific hepatic uptake and scintigraphic results. Eur. J. Nucl. Med., 20, 675–679.

MCCONRD BD AND BIGNER DD. (1984). The biology of malignant gliomas – a comprehensive survey. Clin. Neurosurg., 3, 93–106.

MURAKAMI M, USHIO Y, MIHARA Y, KURATSU J-L, HORIUCHI S AND MORINO Y. (1990). Cholesterol uptake by human glioma cells via receptor-mediated endocytosis of low-density lipoprotein. J. Neurosurg., 73, 760–767.

NIKINEN P, LIEWENAHAL K, SAVOLAINEN S AND LAUNES J. (1993). Validation of quantitative brain dopamine D2 receptor imaging with a conventional single-head SPET camera. Eur. J. Nucl. Med., 20, 680–683.

RUDLING MJ, ANGELIN B, PETERSON CO AND COLLINS VP. (1990). Low density lipoprotein receptor activity in human intracranial tumours and its relation to the cholesterol requirement. Cancer Res., 50, 483–487.

THAKUR ML AND DE FULVIO JD. (1991). Technetium-99m-labeled monoclonal antibodies for immunoscintigraphy. J. Immunol. Methods, 137, 217–224.

THAKUR ML, ESHBACH J, WILDER S, JOHN E AND MCDEVITT MR. (1992). Tc-99m labeled sandostatin: preparation and preliminary evaluation (abstract). IX International Symposium on Radiopharmaceutical Chemistry, pp. 365–367. Conservatoire National des Arts et Metiers: Paris.

VALA BAIJOSULA S, PAIDI M, BADMON J, LE N-A, GOLDSMITH SJ, FUSTER V AND GINSBERG HN. (1988). Radiotracers for low density lipoprotein biodistribution studies in vivo: Technetium-99m low density lipoprotein versus radiolabeled low density lipoprotein preparations. J. Nucl. Med., 29, 1237–1245.

VIRGOLINI I, RAUSCH F, LUPATELLI G, ANGELBERGER P, VENTURA A, O'GRADY J AND SINZINGER H. (1991). Autologous low-density lipoprotein labelling allows characterization of human atheroscrotic lesions in vivo as to presence of foam cells and endothelial coverage. Eur. J. Nucl. Med., 18, 948–951.

VITOLS S. (1991). Uptake of low-density lipoprotein by malignant cells: possible therapeutic applications. Rev. Cancer Cells, 3, 488–495.

VITOLS S, ANGELIN B, ERICSSON S, GAHRTON G, JULIUSSSON G, MASQUELIER M, PAUL C, PETERSON C, RUDLING M, SÖDERBERG-REID K AND TIDEFELT U. (1990). Uptake of low density lipoproteins by human leukemic cells in vivo: relation to plasma lipoprotein levels and possible relevance for selective chemotheraphy. Proc. Natl Acad. Sci. USA, 87, 2598–2602.

VITOLS S, PETERSON C, LARSSON O, HOLM P AND ÅBERG B. (1992). Elevated uptake of low density lipoproteins by human lung cancer tissue in vivo. Cancer Res., 52, 6244–6247.