Research Article

The “Spatial Equilibrium” Evolution of the Tourism Ecosystem and Theoretical Construction from a Multidisciplinary Perspective

Chunyu Yang,¹ Na Gong,² Huanzhou Hong,³ and Biying You³

¹Institute of Tourism Economics and Management, Guizhou University of Finance and Economics, Guiyang, Guizhou, China
²International Tourism and Culture Department, Guizhou Normal University, Guiyang, Guizhou, China
³Business School, Guizhou University of Finance and Economics, Guiyang, Guizhou, China

Correspondence should be addressed to Na Gong; gongna0915@gznu.edu.cn

Received 18 May 2022; Accepted 5 August 2022; Published 23 August 2022

Academic Editor: Zheng Liu

Copyright © 2022 Chunyu Yang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The evolution of the tourism ecosystem is characterized by its complexity, imbalance, and spatial heterogeneity. As a result, it has been the focus of academic attention across a wide range of disciplines, including geography, ecology, economics, management, sociology, and philosophy. Firstly, this article explores the connotations and characteristics of the spatial evolution of tourism ecosystems, subsequently proposing that the spatial evolution of tourism ecosystems is essentially different and “mutually inclusive.” To do so, it searches through the relevant research results on “spatial equilibrium” in ecosystems from the perspectives of different disciplines and analyzes their different core concepts, theoretical systems, and research methods. Second, the coupling force acts as a key character and exerts an influence on “spatial equilibrium” in ecosystems as a dynamic mechanism, internal stability mechanism, and dynamic mechanism. Third, nonlinear, dynamic, evolutionary, systematic thinking, and axiomatic theories are combined to construct an internal stable evolution mechanism and abstract tourism ecosystem model to form an explanatory theoretical system. The results of the research show that the construction of the “spatial equilibrium” of the tourism ecosystem model should pertain to the initial state of the comprehensive environmental carrying capacity of the tourism ecosystem as it evolves to form a tourism ecosystem based on the coupling relationship between the internal and external elements of the “spatial equilibrium” state. Finally, the future research approaches in this field are summarized and assessed. The methodology and theoretical exploration discussed in this article will contribute to a better understanding of how to sustainably develop tourism destinations.

1. Introduction

Since the Earth entered the Anthropocene (Paul Jozef Crutzen, the Nobel laureate in chemistry, proposed in 2000, based on human influence on geology and ecology, that the year of 1950 could be considered the starting point of the Anthropocene) [1], the degree and pace of human influence on many aspects of the planet have reached an unprecedented scale. Notably, during this era, its ecosystem structure and function are changing faster than in any other period in human history [2, 3]. The cost of human survival continues to increase, although this is at the expense of the environment (cited from Guang ya-Shigu III). By the turn of the millennium, most countries and regions in the world had entered or were entering into the era of mass tourism. In 2018, the Oxford English Dictionary selected the word “overtourism” as the word of the year. In the intervening years, “overtourism” has become something of a global focus and has been widely discussed in both industry and academia to examine the essence and coping strategies underpinning the global phenomenon [4].

As a typical social-ecological system (SES) [5–9], the evolution and development of the tourism ecosystem have been explored from the perspective of various academic disciplines, such as geography, ecology, economics, management, sociology, and philosophy due to its complexity,
spatial heterogeneity, and imbalances [10–12]. For example, researchers have attempted to analyze the “spatial imbalance” problem of the tourism ecosystem by means of philosophical reflection as well as science and technology in an effort to redress this imbalance. However, at the beginning of this process, attempts to solve problems through technological solutions proved unsatisfactory. Since then, the issue has been explored using a philosophical lens, based on the Eastern environmental philosophy of “The Unity of Heaven and Man” [2] and Western environmental philosophy [3]. Unfortunately, these attempts were unsuccessful in fundamentally solving the complex problem of “spatial imbalance” in the tourism ecosystem [13]. Furthermore, based on their respective ontology, each discipline has sought to define the concept, explore the methodology, and construct the theoretical framework of the spatial evolution of the tourism ecosystem. However, in terms of practical research, the discussion of the “spatial equilibrium” of the tourism ecosystem and its sustainable development has not yet progressed past the descriptive analysis level, and there is a notable lack of a scientific and operable evaluation system. In its current state, the theoretical research on the “spatial equilibrium” of the tourism ecosystem has yet to progress past the “preparadigm” stage.

On the basis of the above, it is necessary to examine the theoretical system and research methods related to the “spatial equilibrium” of the tourism ecosystem from the perspectives of different academic disciplines. The basic concepts, characteristics, evolitional mechanisms, and theoretical models should be evaluated by adhering to a systematic and scientific thinking mode of “nonlinearity,” “dynamic,” and “evolution.” Then, based on the previously articulated theory of ecological sustainability of “spatial imbalance” and the differences and correlations between the evolution of “balance” and “equilibrium,” a new research method pertaining to the “spatial equilibrium” of the tourism ecosystem is constructed. These theoretical and practical methods will enrich our understanding of the sustainable development of tourism destinations.

2. The Connotations of “Spatial Equilibrium” from the Perspectives of Different Disciplines

Equilibrium has different manifestations across different disciplines, such as average, balance, harmony, and unity. Each manifestation is a state that presents a different facet of the object. The average is a mathematical concept describing a statistic of a position in a data set by counting statistical averages; balance is a physical concept that represents the resting state of an object when subjected to the influence of two or more forces; equilibrium is a philosophical concept and also of the states used to describe moving objects, which can also be employed to reflect a state in a mutually causal relationship. Although equilibrium has the meaning of average and balanced, it describes things less precisely than the other concepts [14].

2.1. Harmonious/Balanced Evolution: From Thought to Economy

2.1.1. Philosophy: Harmonious Thought. In ancient Chinese philosophy, the Chinese character “he” means “harmony” [15]. The classic texts of Tao Te Ching say that the Tao gives birth to one, one to two, two to three, and three to all things. At the same time, all things bear yin and embrace yang, and the middle qi is harmonious. That is to say, “harmony” is the optimal state of existence for “all things.” Where there is “a moderate mix of yin and yang,” the yin and yang come into conflict and intermingle with each other to form a new unity, thus achieving a specific harmonious state. In the Western Zhou Dynasty, Shi Bo argued that the coexistence of different elements is the premise of harmony and can produce new things [4]. Confucianism posits that the world exists in the form of a complex “human-society-nature” ecosystem. The interrelationship between these three elements is the essence of the Confucian worldview, practicing the “Way of the Three Talents,” but also the natural law followed by Confucianism to achieve its goals [16].

The famous 19th-century French philosopher Auguste Comte (1798–1857) regarded “order” as a rule of stability and harmony; as such, it is the cornerstone of social existence and development [17]. The idea of “harmony” was first introduced into Western social science by Socrates, who explored the “harmonious society” [5] concept. Heraclitus, one of the founders of Western dialectics, believed that “opposites create harmony.” Later, in his “Theory of Harmony,” Hegel explained that harmony is produced by the interaction of opposites; the corollary of this argument is that things that are the same cannot produce harmony [6]. Plato’s social view that “justice is harmony” proposes that the foundation of social harmony lies in justice. Furthermore, justice is realized when each level of society performs its duties, holds its place, and does not transgress the other levels [18]. From Plato’s Republic, Rousseau’s social contract theory, and the economic harmony of Adam Smith to the political harmony of Grimm and Rawls’ theories of fairness and justice, Western philosophers have engaged in multidimensional, multilevel thinking about social harmony. Their core philosophical logic is that harmony is equal to justice, which falls within the remit of the “essentialist harmony theory” of social existence [19].

2.1.2. Economics: Equilibrium. Economic equilibrium is the maximization of both efficiency and fairness. Equilibrium is both the start and end point of all research questions in economics.

Under the conditions of regional division of labor, location selection, and new economic geography, the application of equilibrium ideas in economics at the spatial level is mainly reflected in the three main research stages of spatial equilibrium [20]. Together, these gradually gave rise to the agricultural location theory (Johan Heinrich von Thunnen, 1783–1850), industrial location theory (Alfred Weber, 1868–1958), and the central Earth theory (Walter
In physics, "equilibrium" was first formally proposed by the American economist Paul Krugman (1991) proposed the "core-edge" (CP) model. Specifically, he successfully incorporated spatial dimensions into the analysis framework, demonstrating how agglomerations form in space and how the spatial distribution of activities of economic agents is balanced [21]. However, the concept of "space" in economics is premised on the assumption that a given geographical space is homogeneous. This model can be deployed to study the maximization of economic profits and the mode of spatial allocation. However, it should be noted that it ignores the differences in natural, social, economic, cultural, and other conditions from place to place, as well as the coordination between development intensity and ecological environment [22, 23]. With the quickening, more intense expansion of regional spatial planning and development, the decline in the carrying capacity of the environment will inevitably become the most significant bottleneck in regional development, thus leading to a slowdown in economic development [24–27].

2.2. The Evolution of Equilibrium in Science and Technology

2.2.1. Physics: Equilibrium. In physics, "equilibrium" (a system in equilibrium must meet three equilibrium conditions: mechanical equilibrium (requiring that there is no unaltered interaction force within the system and between the system and the outside world); thermal equilibrium (requiring that there is no temperature difference between the parts of the system and between the system and the outside world); and chemical equilibrium (requiring that the parts of the system no longer spontaneously tend to change in the internal structure). The disruption of any one of these equilibriums will cause the disruption of the equilibrium state of the system) refers to the state of a macroscopic system in which its state does not change over time when external conditions remain unchanged [28]. In this context, the simplest manifestation of equilibrium is symmetry. Accordingly, space-time symmetry is a fundamental concept in physics (the law of conservation of energy derives from temporal symmetry, the law of conservation of angular momentum from spatial rotational symmetry, and the law of conservation of momentum from spatial translational symmetry) [29]. At the same time, physics research shows that forces do not exist in isolation; rather, they must interact with other forces. Hence, any action between things does not propagate in a one-way direction. That is to say, if there is a force, there must be an equal reactive force (Wei Lin). In physics, the "equilibrium state" is called "thermodynamic equilibrium" [30]. When the system enters a certain "equilibrium state," the temporary deviation caused by the fluctuation of the system around the "equilibrium state" is expected and always present. This fluctuation phenomenon can be observed and measured without destroying its systemic characteristics.

Second, the “equilibrium” of a system in physics is assumed to be an ideal concept; specifically, it is an abstract description of how the world works under specific conditions. However, there is no situation in which objects can be entirely independent of external influences. To be precise, all things in the world are interconnected and interact with each other, and the nature of the system remains absolutely unchanged. To minimize the complexity of practical research, the actual state of the system is often treated as an "equilibrium state" [31].

2.2.2. Systems Science: Balance. Systems science is the study of the objective world carried out by examining the relationship between parts and wholes, and the hierarchical relationship between them. The system has a specific structure and function composed of interrelated, interacting, and mutually restricting elements (Qian) [32, 33]. Notably, system equilibrium constitutes an important part of “some kind of function” (system optimization and equalization problems can be expressed in a triplet (S, F, P), where S represents a system, F represents a metric that judges the state of the system, F is usually represented as an objective function, and P represents a criterion for comparing the size of the “value” of the objective function, also known as preference. The size of the objective function “value” corresponds to the quality of the system state. For example, if S is a system described by a polynomial inequality, F is a linear or nonlinear function, and P is the preference for natural numerical size, and then, (S, F, P) characterizes a linear or nonlinear programming problem in operations research. If S is a system described by a differential equation and F is a functional objective function, then (S, F, P) characterizes an optimal control problem [34]. In a system, the balance between its elements is the foundation of its order. Contrarily, imbalance is the source of power for the evolution and development of the system, which underscores the role of “balance” as the dynamic evolution mechanism of everything in the world [35].

Synergetics argues that ecological synergy is always replaced by old symmetrical equilibrium and harmony by a new one, resulting in systematic evolution and adaptation to the external environment. Prigogine, who first articulated the theory of dissipative structures, emphasized the dynamic behavior of open systems that moves away from equilibrium and the nonlinear interrelationships between constituent elements (Nicolis and Prigogine) [36]. His theory broke down the unbalanced state problem into a number of local equilibrium problems so they can be more readily studied and, in doing so, found a bridge between equilibrium and unbalanced posture mechanics (Chen Gong).

2.3. Evolution from Ecological Equilibrium to Geographical Equilibrium

2.3.1. Ecology: Ecological Equilibrium. The term "ecological equilibrium" was first formally proposed by the American scholar Vogt [37]. In his theory, the energy flow of an ecosystem corresponds to its structural equilibrium.
(structural equilibrium is that the types and energy of the producers, consumers, and decomposers in the ecosystem can remain relatively stable for a long time), while the material cycle of the ecosystem corresponds to its functional equilibrium (functional equilibrium refers to the fact that the material and energy inputs and outputs of ecosystems are basically equal). In the 1980s, scholars around the world tried to define and theoretically construct ecology in a systematic way. American ecologist Odum (Odum) proposed the system ecology model in 1982 [38]. Around the same time, Chinese scholars Ma et al. proposed the “socio-economic-natural composite ecosystem,” which promoted a return of ecology to the holistic theoretical research paradigm. These two approaches were the precursors to the sustainable development of human and natural systems. \(\text{E.C. Lindeman notes that “ecology is a middle ground left over from physics and biology and beginning to grow in the social sciences.”} \) Odum believes that ecology is a systematic science independent of biology and even natural science, linking life, environment, and human society to sustainable development; in their view, ecology is a systematic science that studies the life and death process of organisms, the process of life and death of matter, the rise and fall of things, and the relationship between the environment) [39].

The structure and function of the ecosystem are constantly in the process of dynamic change, such that “ecological equilibrium” constitutes a kind of dynamic equilibrium and follows the law of material recycling and dynamic equilibrium (Ma) [5]. Therefore, the equilibrium evolution of the ecosystem requires the system components to form a comprehensive evolutionary synergy by constituting coupling relationships, which then adaptively regulate the structure and function of the system through the positive- and negative-feedback mechanisms. In this way, chaos is replaced by order, and the system presents an “S” growth curve during its evolutionary process (this is mathematically expressed in the logistics model). The “S-shaped” evolutionary growth of an ecosystem disrupts the existing equilibrium and continuously alternates evolution when forming a new equilibrium, so as to achieve the coordination of the spatiotemporal coupling relationship of the system (Wang) [40].

2.3.2. Geography: Spatial Equilibrium. Geography has always adhered to the perspective of the coordination of human-land relationships in the exploration of geospatial states. Meanwhile, the coordination relationship between the intensity of regional development and the carrying capacity of the environment [41–44] can be regarded as balanced or imbalanced.

Compared with the single spatial target model of spatial economics, which exclusively focuses on economic growth, the geographical research perspective places greater emphasis on the study of the “spatially balanced” development model from the aspects of politics, economy, society, culture, and ecological environment to improve the deep understanding of the “spatial equilibrium” of the system in the practice of rational planning in the land space [45–47]. Jie Fan constructed “spatial equilibrium models” in 2007 and 2012, respectively, both of which had a unique logic. One is a three-dimensional spatial equilibrium model based on “economic single equilibrium,” while the other is a comprehensive spatial equilibrium model based on the comprehensive economic-ecological-environmental benefits and the production-distribution-consumption three-dimensional system [48]. These models focus on the evaluation of the carrying capacity of resources and the environment under the influence of the coupling mechanism of the human-earth system (Jie Fan, Kan Zhou, Dong Chen).

The above research results reflect a paradigm shift in geographical research; that is to say, the geographical research on “spatial equilibrium” has evolved from the initial exploration of a single “spatial equilibrium” in traditional economic geography into a regionally comprehensive “spatial equilibrium” based on the harmonious development of the relationship between man and Earth. Through the development and application of research methods such as systems science and big geographic data, the process and driving mechanism of regional “spatial equilibrium” factors will be further studied.

3. Summary
As a typical social-ecological system (SES) [5–9], he evolution and development of the tourism ecosystem has been the focus of academic attention in geography, ecology, economics, management, sociology, philosophy, and other disciplines due to its complexity, spatial heterogeneity, and imbalances [10–12]. From the perspective of evolving research on equilibrium in the above disciplines, the same method of discussing the evolution of balance to construct the development theory of equilibrium is always selected, regardless of whether the investigation is from the perspective of ideology, technology, space, and so on. Thus, from a multidisciplinary perspective, there needs to be a focus on the base of “balance” and “equilibrium” to discuss how to construct the “spatial equilibrium” of the tourism ecosystem and its theoretical construction.

4. The Connotations and Characteristics of the “Spatial Equilibrium” of the Tourism Ecosystem
The “spatial equilibrium” of the tourism ecosystem needs to be defined. First of all, in terms of the research on the development of the “spatial equilibrium” of the tourism ecosystem, different disciplines have tried to define this concept based on their ontology and through the use of various research perspectives. In fact, no matter how the division of perspectives and criteria are selected and determined, the definition and research are premised on two assumptions. First, the tourism ecosystem itself, as a giant open and complex system, covers tourist sources, tourist passages, and tourist destinations, including resource development and protection, the tourism economy, the contradictions between social and ecological benefits, and the contradictions between tourism supply and demand.
Second, these can be condensed into two contradictions: between people and nature and between people and people. These contradictions are universal and absolute, and found in all the evolutionary processes of the tourism ecosystem. The interactions between these contradictions promote the evolution of the tourism ecosystem (As Mao Zedong said: “We Marxists believe that imbalance, contradiction, struggle and development are absolute, while balance and stillness are relative”) [49].

The tourism ecosystem—the definition of a tourism ecosystem varies in three angles. From the tourist-centred point of view, the tourism ecosystem is the systemic wholeness of various tourist destinations and external conditions such as natural, social, and cultural conditions that enable tourism activities to exist, proceed, and develop. From the perspective of tourism resources as the centre, the tourism ecosystem refers to the system of natural ecological, cultural, and social factors influencing tourism resources. From the perspective of a tourism destination in time and space as the centre, it is built around tourism activities. The tourism destination system constitutes the elements formed on a basis of the interaction between the coupling of both the specific structure and function and with the external environment to realize the material circulation, energy flow, and information transfer to adapt to the external environment, to achieve internal and external balance system of a complex system. The third definition of the concept of “tourism ecosystem” is adopted in this paper specifically. It is a complex and dynamic evolution system built on tourism activities. Due to the inherent complexity of its characteristics, it cannot be studied in an isolation rather, and it needs to be studied in a systematic manner. However, static ways of thinking and one-dimensional research approaches, such as those of the widely used static mechanical equilibrium models, cannot satisfy the status quo of the tourism ecosystem. As a result, in the study field of tourism ecosystem, a unified theoretical paradigm and common platform has yet to form. On this basis, a beneficial research approach is to construct the theoretical framework and methodology system of the “spatial equilibrium” of the tourism ecosystem based on the paradigm of ecological civilization theory and systematic scientific research. Moreover, the spatial-temporal differentiation characteristics, evolution driving force, dynamic process, and dynamic mechanism of the tourism ecosystem need to be further explored. Finally, the coupling interaction mechanism between the “spatial equilibrium” of the tourism ecosystem and regional ecological-social-economic development warrants further discussion.

4.1. The Connotations of Spatial Balance and Spatial Equilibrium of the Tourism Ecosystem. Many factors of space-time change have less or more contributed to the realization of the “spatial equilibrium” of the tourism ecosystem. These include, but are not limited to, the development of tourism resources, investment in tourism technology, tourism policy support, the upgrading of tourism industry structure, population migration, and capital flow. This is an S-shaped evolitional process of energy transformation from potential energy to kinetic energy, which gradually exhausts to potential energy again. It must be made clear here that the term “spatial equilibrium” of the tourism ecosystem is set for the discussion of whether the system is in a state of balanced or unbalanced in the process of transformation. Hence, the two concepts of “balance” and “equilibrium” are involved here.

The “spatial equilibrium” of the tourism ecosystem means that the system remains in its original state following transformation; that is, it does not change over time. If time is determined by \(t \), then the state \(X(t') = X(t) \). Expressed in algebraic terms, if \(T(X) = X \), then \(X \) is the equilibrium state under \(T \).

The “spatial equilibrium” state of the tourism ecosystem is kind of invariance, and all the state components are invariable. In terms of derivatives, if a state has only two components, \(x \) and \(y \), the equilibrium is \(x = 0 = y \).

This is expressed by a system of differential equations as follows:

Differential equations are given as follows:

\[
\begin{align*}
\frac{dx}{dt} &= 2x - y^2, \\
\frac{dy}{dt} &= xy - \frac{1}{2}.
\end{align*}
\]

The equations are in equilibrium at the state point of \((1/2, 1/2)\), because \(x = 1/2 \), when \(y = 1 \), \(dx/dt = dy/dt = 0 \).

This point in the state space in equilibrium is referred to as the equilibrium point. If the system is not subjected to other interferences, the state of the system should remain at this point (Zexian Yan).

On this premise, we can gain insights into the differences and correlations between the connotations of “balance” and “equilibrium.”

First, regarding the ability to balance and the state of equilibrium, the “spatial balance” of the tourism ecosystem describes the system’s capabilities. The system balance can be mathematically expressed and measured using the differential equations detailed above. In contrast, the “spatial equilibrium” of the tourism ecosystem describes its specific state at specific point in time. The main difference between the two is that the former emphasizes “ability,” while the latter emphasizes “state.”

Second, the capability of balance determines the state of equilibrium. For a tourism ecosystem, its “spatial balance” should be a measurable point under its stability. The “spatial balance” and “spatial equilibrium” of the tourism ecosystem stem from the integrity of the structure and function of the system. The system’s capacity for self-regulation is the common basis of its system balance and equilibrium, both of which depend on biodiversity, which is the direct link between the two.

Third, the state of equilibrium contains many points of balances. A system balance is a point, while the equilibrium is the line. Just as “wave-particle duality” tells us that particles are the primary form matter exists in, waves are another form matter can take. This way of thinking profoundly reveals the evolutionary essence of the “spatial equilibrium” of tourism ecosystems, namely, that it contains several
balances. The “spatial balance” of the tourism ecosystem is the “particle,” while the “spatial equilibrium” of the system is the “wave” (Figure 1). While balance is a certain space-time point of the system, equilibrium is the evolution curve composed of the system’s countless balance points. In the process of movement, equilibrium, once formed, is destroyed by development. Similar views have been expounded from the perspective of ecology and philosophy (see above). Although it is always possible to determine the state of the system following the previous measurement, the system is influenced by unpredictable factors. As a result, the sustainable development of the tourist destination itself is a concept that is difficult to measure and evaluate [50]. In socio-ecosystem theory, sustainability is regarded as an evolutionary process, not an end goal [51]. At the same time, the uncertainty principle is an objective limitation of our cognition: the exact trajectory of the balance point of the tourism ecosystem can usually be used to observe the short-term evolution trend of the system, although it is impossible to accurately predict the future long-term evolution direction of system. A single balance point is nothing more than a formal statement of equilibrium probability. The amplitude determines the probability of finding the particle at a certain location.

4.2. The Characteristics of “Spatial Equilibrium” of the Tourism Ecosystem. As an open system, the succession and renewal of functions and structures of the tourism ecosystem are maintained by the continuous flow of material, energy, and information. The system state continuously changes; as a result, the “spatial equilibrium” of the tourism ecosystem forms a dynamic equilibrium. This dynamic “spatial equilibrium” is also reflected in the local and tolerable disturbances to the tourism ecosystem that act on the whole through positive and negative feedback and are regulated and compensated for by the system regulation mechanism.

When the external interference factors exceed the overall regulation limit of the tourism ecosystem, its self-regulation mechanism will fail, meaning that the “spatial equilibrium” of the system will not be restored. From this, we can discern the basic characteristics of “spatial equilibrium” in a tourism ecosystem (Jian Wang):

(1) Equilibrium is relative and dynamic. Compared with balance, equilibrium is a dynamic, nonabsolute value that is fixed in a state of continuous evolution. As a typical “natural-economic-social” composite ecosystem, the tourism ecosystem has a systemic internal stability mechanism stemming from its own positive and negative feedback (Chunyu Yang), which can resist the constant disturbance of the external environment (i.e., extreme climate conditions and natural disasters). External disturbances force the tourism ecosystem to depart from the equilibrium point formed by the internal stability mechanism, which comes from the adaptability of the tourism ecosystem [52] (detailed below). At this point, the internal stability mechanism regulates the system by comparing the input and output differences of the tourism ecosystem to maintain its equilibrium state, or at the very least ensure it remains within the scope of the structural existence permits.

(2) Equilibrium exhibits the characteristics of oscillation in a short term, although it charts a trend of periodicity in the long run. The adaptive function of the system formed by the stabilization mechanism in the tourism ecosystem ensures that its evolution process remains in a state of dynamic equilibrium. As mentioned above, the dynamic and nonlinearity of the evolutionary process of tourism ecosystems are its intrinsic characteristics. The external characteristics are presented as short-term oscillation and the long-term “periodic” curve of evolution Chunyu Yang. The premise of this evolutionary process is that oscillation and periodicity cannot exceed the systems’ limits; otherwise, the dynamic balance of the system will be disrupted, leading to the collapse of the system.

From the perspectives of physics and systems science, based on the tourism ecosystem “oscillation” evolution process, we can find that under the action of inertia (the inertial effect of the tourism ecosystem comes from the cumulative effect and time-delay phenomenon in the process of system evolution), the oscillation evolution of the system not disrupts the original equilibrium, but also cannot immediately reach the new equilibrium point formed by the stabilization mechanism. Rather, it gradually moves away from the new equilibrium position until it is returned back to the balance position by the elastic-like force (If the elastic force disappears, it means that the tourism ecosystem has entered a new equilibrium state or the system has collapsed in evolution. The further the system evolves from its equilibrium point, the greater the corresponding rebound force is, so that the tourism ecosystem beyond the equilibrium point can no longer continue to move forward and return to the equilibrium point, and it is getting faster and faster. When it reaches the equilibrium point due to inertia, the action crosses the equilibrium point again, but in the opposite direction of the first transcendence.) stemming from the system’s internal stability mechanism. From this, we can see that the “oscillation” of the tourism ecosystem is an evolutionary process that has undergone many repeated attenuation oscillations and gradually returned a state of
balance to the system. The system sequentially realizes self-succesion and renewal through the dissipative evolution process of “equilibrium-to-oscillation-to-new equilibrium” (Figure 2), thereby providing a premise for us to dynamically understand the evolution mechanism through the characteristics and external manifestations of the “spatial equilibrium” evolution of tourism ecosystem.

5. “Spatial Equilibrium” Research Method for the Tourism Ecosystem

5.1. “Spatial Equilibrium” Mechanism of the Tourism Ecosystem. The difference of growth factors [53, 54] including resource endowments’ growth factors, transportation locations’ growth factors, infrastructure’s growth factors, the profit-seeking and decentralized [55] of tourism policy formulation, and the Benefit Game between tourism development entities produces the “spatial disorders.” These factors all exert a significant influence on the sustainable development of tourism destinations [56, 57]. Moreover, all of the constituent elements of the tourism ecosystem present in the process of its evolution and development reflect its existence in the form of “individual physical strength” comprehensively forming the “coupling force” [58]. This force then influences the evolutionary trend [18] that the system follows, pointing to the generative theory that “equilibrium” is both a systematic form of motion and a systematic motion mechanism.

First, the coupling force reveals the dynamic mechanism of “spatial balance” in the tourism ecosystem.

Each component of the tourism ecosystem affects the evolution process of the system through its own forces. These elements include differences in natural resource endowments, ecological stability, dynamic changes in environmental carrying capacity, global climate change, exchange rate changes, sudden terrorist incidents, the harmony of political and ecological environment between countries, the advantages and disadvantages of internal and external transportation conditions in tourism areas, the status and importance of tourism industry in regional economic development, the supply of tourism products and tourism demand, and sudden major public health emergencies, such as SARS and COVID-19. However, the constituent forces of tourism ecosystems do not directly impact the process of system evolution and replacement; instead, they indirectly form a comprehensive influence through the interactions between the constituent elements of the system or form a synergy-coupling force [19] to determine how the system evolves (Chunyu Yang). In fact, the positive and passive feedback loops (the nonlinear interaction of the self-organizing process is mainly manifested by the feedback relationship between the components of the system and the components and the structure of the system, including the positive-feedback loop and the negative-feedback loop. (Zexian Yan. Introduction to System Science-Exploration of Complexity [M], Beijing: People’s Publishing House, 2006, P346)) [59–61] are formed based on the coupling relationships between the constituent elements of the tourism ecosystem. In the tourism ecosystems evolution process, these relationships form a “push-and-pull” interactive force. This leads the tourism ecosystem to “rise and fall” around its spatial evolution balance point, thus providing the requisite development momentum for the evolution of the tourism ecosystem.

Secondly, the coupling force determines the internal stability mechanism of the “spatial balance” of the tourism ecosystem.

By investigating the “spatial equilibrium” of the tourism ecosystem from the perspective of tourism resources, it can be seen that the maximization of tourism resource efficiency is always in the pursuit of certain predefined goals. On the one hand, the tourism economy, driven by the desire for efficiency, will lead to an imbalance occupation of tourism resources. On the other hand, the tourism economy strives for a balance of resource ownership under the constraints of sustainable development concepts and the related systems. The above two modes of action are the result of the evolution of the tourism ecosystem and reaching equilibrium at a certain time. The allocation of tourism resources is carried out through market competition and redistribution. When the above information is reflected in the market, the price of tourism resources promotes the transition of tourism resources in the tourism trade exchange from an unbalanced state to a balanced state. It should be noted that it is not feasible to retrospectively analyze the one-way causal relationship between all the components of the tourism ecosystem in the “spatial equilibrium” evolution process. However, through theoretical analysis, it is possible to comprehensively summarize the logical relationships that exist between the constituent elements of the tourism ecosystem at the macrolevel in the evolution of “spatial equilibrium.” For example, when examining the comprehensive carrying capacity of the tourism ecosystem in terms of “spatial equilibrium,” the entire system can only be analyzed by determining the reasonable value of the comprehensive carrying capacity of the system environment in advance. Even so, the reasonable value of the comprehensive carrying capacity of the system can be accurately confirmed.

By starting from the coupling relationships that form between the constituent elements of the system, it can be seen that the rise or fall in the number of tourists in the tourism ecosystem at different stages of spatial-temporal evolution has a corresponding impact on the environment’s comprehensive carrying capacity. There is a reasonable
corresponding threshold of the comprehensive bearing capacity of the environment related to the positive- and negative-feedback mechanisms of the system. It should be noted here that this threshold is a value in the ideal state of the system; more specifically, it is a reasonable value of the corresponding tourist ecosystem visitor reception through the coupling mechanism. It is this coupling mechanism that determines the existence of "spatial equilibrium points" in different evolutionary periods of tourism ecosystems and maintains the feedback regulation of tourism ecosystems when tourism ecosystems deviate from the balance points. In fact, the coupling relationships between the constituent elements of the tourism ecosystem determine the existence of the balance point. According to Ashby's cybernetic theory and method [62], we can reduce the number of balance points from the interaction model of the coupling relationship of the tourism ecosystem and, in doing so, determine whether the feedback from the stability of the balance point is positive or negative. In this way, the coupling force of tourism ecosystems can effectively explain the origin of the internal stability mechanism, including its purpose itself [21].

Finally, the coupling force indicates the transformation mechanism of the "spatial balance" of the tourism ecosystem.

The "spatial equilibrium" and harmonious development of the tourism ecosystem are both historical category. The state and magnitude of the "spatial equilibrium" of the tourism ecosystem differ across different evolutionary periods, as is the case with its connotations and the external performance of its balanced development (Chen Gong). However, in the "spatial equilibrium" development process of the tourism ecosystem, the contradiction between maximizing the "utilization efficiency" of tourism resources and the "principle of fairness" emphasized in sustainable development is akin to Kant's antinomy, which has long been a key point of contradiction plaguing the development of human society. From a logical point of view, tourism resources can be categorized based on their efficiency and fairness, and then merged to form a combination of the equilibrium of tourism resources, thus forming a logical loop. The evolution of tourism ecosystems constitutes the cycles in this process. Hegel notes this in a profound way, proposing that this is the manner in which things exist.

The internal stability mechanism of the tourism ecosystem maintains equilibrium and balance in the system in the continuous progress of external interference and internal activities of the system. However, due to the multicausal nature of the phased threshold of phylogenetic evolution, emergencies can easily interrupt the steady changes that occur in the tourism ecosystem and turn them into another steady state, namely, the transformation of homeostasis [63]. The succession of tourism ecosystems is also a matter of inabilities and multistability. Therefore, the tourism ecosystem is unpredictable, self-organizing, and nonlinear, and exhibits threshold effects, historical dependence, and multistable mechanisms [64, 65].

5.2. The "Spatial Equilibrium" Model of the Tourism Ecosystem. Based on the above analysis of the logical system of "spatial equilibrium" connotation and characteristics of the tourism ecosystem, this article seeks to explore the rational development and utilization efficiency of tourism resources based on the function and value of the system resource elements, with reference to the logical trajectory of man and nature.

Based on the evolutionary path of man and society, we can explore the intergenerational equity use of tourism resources. More specifically, through the use of multidisciplinary spatial equilibrium theory and systematic scientific dynamic mechanism, it is possible to find the dynamic balance point and equilibrium state of the evolution of the tourism ecosystem and achieve efficiency and fairness. This is the "spatial equilibrium" model of the tourism ecosystem constructed in the paper [22].

The evolution curve in the model diagram is a highly abstract "S"-shaped evolution curve pertaining to the "spatial equilibrium" of the tourism ecosystem (Figure 3) [23]. The natural order is seen as a negative-feedback mechanism that functions to limit the overloading of system resources. The system in the evolution process requires a high degree of tourism resource utilization efficiency from the natural system. At the same time, the social system develops equitably and the economic and social systems based on market allocation are taken as a supervisory guarantee system to ensure fair use within and between generations. The two visible and invisible hands mentioned above act together during the evolutionary process of the system, alternately making the tourism ecosystem either over-loaded or insufficient.

From this, it can be concluded that the evolution process of the tourism ecosystem takes the shape of an evolution curve around its "spatial equilibrium." This evolution curve has generated related theories, such as tourism life cycle, tourism environment carrying capacity, tourism ecological footprint, tourism ecological efficiency and compensation, and sustainable tourism development, among others. Just as efficiency is the theoretical basis of Adam Smith's economics, fairness is the theoretical basis of Marx's economics. Analogously, the theory of "spatial equilibrium" is the theoretical basis of the evolution of tourism ecosystems. Tourism resources, which are the material basis for the evolution of tourism ecosystems, have always been derived from two channels. The first channel is to increase the utilization efficiency of natural systems and expand ecological ownership, while the second is to strive to structure a social system that can coordinate the demands of contemporary stakeholders through multiparty games and ensure that there is equitable use between generations.

Based on the meaning of "spatial equilibrium" in the tourism ecosystem, this study proposes the axiomatic definition of \(T_e = C \times (E_c) \), which is the "spatial equilibrium" of the tourism ecosystem. This is proposed on the basis of analyzing the characteristics of the "spatial equilibrium" and the graph of evolutionary equilibrium function [24].

\(Ec \) represents the tourism ecosystem's capacity, which is the initial value of the system state. It is an independent or endogenous variable.

\(Te \) represents the tourism equilibrium of the tourism ecosystem, which is the system state value. It is the dependent or exogenous variable.
C indicates the coupling relationship (Coupling) between the components inside and outside of the tourism ecosystem, and \(= \) indicates the “spatial equilibrium” state of the tourism ecosystem:

(1) In the comprehensive environmental carrying capacity \((Ec) \) and coupling relationship \((C) \) of the tourism ecosystem, one is the power source and the other is the driving force.

(2) The comprehensive environmental carrying capacity \((Ec) \) of the tourism ecosystem is the independent variable, while the spatial balance point \((Te) \) of the tourism ecosystem is the dependent variable.

(3) “\(= \)” and “\(Ec \)” are objects, while “\(Te \)” and “\(C \)” are subjects.

The object is the existence of the system, which is not influenced by people’s desire for it to develop. The comprehensive environmental carrying capacity \((Ec) \) of the tourism ecosystem is the initial value. The initial conditions of the tourism ecosystem are determined prior to it coming into existence, but a new evolutionary development started due to the intervention of human activities. “\(= \)” reflects the “evolutionary order” of the “spatial equilibrium” of the tourism ecosystem. Regardless of the similarities and differences in the intensity and direction of the internal and external forces of the system, a comprehensive evolutionary force will eventually be formed the “coupling force” to determine the system’s evolutionary state and the future development trend it will follow.

Definition of \(Te = C \ (Ec) \): The “spatial equilibrium” function model of the tourism ecosystem refers to the initial state \((Ec) \) of the total environmental carrying capacity of the tourism ecosystem, which then evolves to form a tourism ecosystem based on the coupling relationship between internal and external elements’ \((C) \) “spatial equilibrium” state \((=) \).

There are three stages in the evolution and development process of the “spatial equilibrium” of the tourism ecosystem:

(1) Equilibrium state \(Te = C \ (Ec) \).
(2) Overload state \(Te > C \ (Ec) \).
(3) Hysteresis state \(Te < C \ (Ec) \).

Among them, (1) Equilibrium state: \(Te = C \ (Ec) \). This is when the evolution and development of the tourism ecosystem meet this condition, which is compatible with its comprehensive environmental carrying capacity. The natural, social, economic, cultural, and institutional settings are aligned with the interests of all participants in the system. The entire tourism ecosystem feeds back to form a virtuous cycle; the energy input and output are balanced, the system’s functions and structure are stable, and sustainable development momentum is achieved.

(2) Overload state \(Te > C \ (Ec) \). When this state occurs, the evolution and development of the tourism ecosystem deviates from the spatial equilibrium of the system and exceeds the system’s total environmental carrying capacity. In the short term, the ecological occupation transgresses the spatial equilibrium point of the tourism ecosystem. In the case of unsustainable development, the ecosystem may collapse where there is a long-term deviation from the “spatial equilibrium” that exceeds the carrying limit of the ecosystem.

(3) Hysteresis state \(Te < C \ (Ec) \). When this state occurs, the insufficiency of the evolution of the tourism ecosystem and its development result in a diminished tourism resource utilization rate. This forms an evolutionary cycle in which there is sluggish development of the tourism ecosystem.

The first system stated above offers a positive solution for the evolution and development of the tourism ecosystem. Meanwhile, the second and third pertain to an excessive or lack of development and use of the system, which fails to achieve the “Pareto optimal solution” of spatial equilibrium.

6. Summary and Future Prospects

6.1. Summary. This article draws on multidisciplinary spatial equilibrium theory and the dynamic mechanism of system science to research the efficiency and fairness of the evolution of the development of the tourism ecosystem. In the process, it tries to build the basic idea and framework of the “spatial equilibrium” theory of tourism ecosystems. The results show that the construction of the “spatial equilibrium” of the tourism ecosystem model should be the initial state of the comprehensive environmental carrying capacity
of the tourism ecosystem. This can then evolve to form a tourism ecosystem based on the coupling relationship between internal and external elements’ “spatial equilibrium” state. In this state, the left end of the spatial equilibrium model of the tourism ecosystem is the spatial balance point, while the right end is the comprehensive environmental carrying capacity of the tourism ecosystem. These two ends encompass all the connotations and extensions of the natural and social subsystems involved in the tourism ecosystem. Referring to the capacity of carrying all kinds of material and spiritual bodies used in tourism, the comprehensive environmental carrying capacity of the tourism ecosystem is the initial point and development basis of the system evolution. The spatial balance point and its state model are the methods, tools, and structures employed in the theoretical research of the evolution of tourism ecosystems; with their development, the basic idea and framework of the spatial equilibrium theory of the tourism ecosystem have been established.

6.2. Research Limitations and Future Prospects. In the above research, this is the first step is to construct a framework of the spatial equilibrium theory of the tourism ecosystem. Future studies should select corresponding cases to carry out a certain theoretical and empirical analysis. It is expected that they will further this theory in a systemic and in-depth fashion to form a complete theoretical “paradigm.”

6.2.1. Exploring the Coupling Theory of the Tourism Ecosystem from the Perspective of Ecological Civilization. Adhering to the systems science and evolutionary generative theories, future studies should seek to observe, understand, explain, and predict the spatial equilibrium development trend, driving mechanism, and coupled evolution process of the tourism ecosystem. Moreover, they should try to construct the theory, method, and model of the coupling effect of the internal and external components of the tourism ecosystem in order to achieve a scientific understanding of the sustainable development status, evolution law, and temporal and spatial differentiation of different types of regions.

6.2.2. Building a Dynamic Threshold Measurement Model for the Spatially Balanced Development of the Tourism Ecosystem. Based on the “multisource data-model fusion” research method, the system science, modern measurement theory, and dynamic threshold model are introduced to construct a dynamic threshold measurement model and index system to pursue the spatially balanced development of tourism ecosystems. This is carried out to scientifically measure the degree and performance of the spatially balanced development of tourism ecosystems. It will provide the basis for scientifically defining the development status and evaluating the degree of the spatially balanced development of the tourism ecosystem.

6.2.3. Comprehensive Evaluation of the Correlation Effect of the Spatially Balanced Development of the Tourism Ecosystem. Through spatial autocorrelation analysis and spatial heterogeneity analysis, the spatial correlation, and the effects of spatial flow, spatial spillover, and agglomeration of the balanced development of tourism ecosystems can be analyzed. Doing so will reveal the characteristics of regional differences in the evolution process and objectively evaluate the status quo, and changes and trends present in the balanced development of tourism ecosystems in space. This will provide the premise and basis for exploring the system regulation mechanism and governance path.

6.2.4. Creating an Adaptive Governance Model for the Spatially Balanced Development of the Tourism Ecosystem. Based on the complexity and uncertainty of the evolution of the tourism ecosystem and the difficulties experienced exerting control due to the conflict of multiple stakeholders’ interests, a complex analysis framework involving many human factors and natural factors is created. This framework pays close attention to the nonlinear relationship between adaptive subjects. From this, it expected that an adaptive governance model that optimizes the control mechanism for the spatially balanced development of the tourism ecosystem and negotiates with multiple subjects will be established. This will highlight the downward causal relationship of multiple levels, along with the monitoring and early warning control mechanism.

Data Availability

Our research did not use data to analyze the study. In our research, a nonlinear, dynamic, evolutionary, systematic thinking and axiomatic theories are combined to construct the internal stable evolution mechanism and abstracted model of tourism ecosystem in order to form a set of explanatory theoretical system. We constructed a new theory from interdisciplinary review. The theories cited in the article can be found in the reference.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

This study was supported by the National Natural Science Foundation of China, Research on the Theory and Dynamic Evaluation Method of “Spatial Equilibrium” Coupled Evolution of Tourism Ecosystems: A Case Study of Four World Natural Heritage Sites in Guizhou (42161035), and the Smart Tourism Innovation Team of Colleges and Universities in Guizhou Province (QIIAOJI (2022) No. 017).

References

[1] J. Zalasiewicz, M. Williams, W. Steffen, and P. Crutzen, “The new world of the Anthropocene,” Environmental Science and Technology, vol. 44, no. 7, pp. 2228–2231, 2010.
[2] X. Cai, *Ecosystem Ecology*, Science Press, Beijing, China, 2000.
[3] Millennium Ecosystem Assessment, *Ecosystems and Human Well-Being: Synthesis*, Island Press, Washington, DC, USA, 2007.
[4] “Guangrui the context of the global phenomenon of “over-tourism”: an overview,” *Business Management Journal*, vol. 12, no. 5, pp. 195–208, 2020.
[5] S. J. Ma and S. R. Wang, “The social-economic-natural complex ecosystem,” *Acta Ecologica Sinica*, vol. 4, no. 1, pp. 1–7, 1984.
[6] J. Z. Zhao, Z. Y. Ouyang, and G. Wu, Research on Sustainable Development of a Social-Economic-Natural Compound System, China Environmental Science Press, Beijing, China, 1999.
[7] G. S. Cumming, G. Barnes, S. Perz et al., “An exploratory framework for the empirical measurement of resilience,” *Ecosystems*, vol. 8, no. 8, pp. 975–987, 2005.
[8] O. E. Euston, “A general framework for analyzing sustainability of social-ecological systems,” *Science*, vol. 325, no. 5939, pp. 419–422, 2009.
[9] Z. Yu, L. I. Bo, and X. Zhang, “Social ecological system and vulnerability driving mechanism analysis,” *Acta Ecologica Sinica*, vol. 34, no. 7, pp. 1870–1879, 2014.
[10] W. Lin, “On the role of imbalance in the development of things,” *Lanzhou Journal*, vol. 132, no. 3, 2003.
[11] Y. Lu, C. Fu, and S. Zeng, *University Dictionary of Physics*, Chemical Industry Press, Beijing, China, 1993.
[12] P. Qin, “Comparison of equilibrium state and stationary state in physics,” *Journal of Xinxiang Demonstration College*, vol. 19, no. 5, pp. 16–17, 2005.
[13] X. Qian, *Establishing Systems Science*, Shanxi Science and Technology Press, Taiyuan, China, 2001.
[14] X. Qian, “On system science system again,” *Systems engineering theory and practice*, vol. 1, no. 1, pp. 2–4, 1981.
[15] G. Chen, “Optimization and equilibrium—an important issue of system theory,” *Journal of Shanghai University of Science and Technology*, vol. 33, no. 6, 2011.
[16] J. Wang, *Equilibrium Theory Research from the Perspective of Equilibrium*, University of Electronic Science and Technology of China, Chengdu, China, 2008.
[17] Z. Yan, *Introduction to Systems Science - Exploration of Complexity*, People’s Publishing House, Beijing, China, 2006.
[18] W. Voigt, *The Road to Survival*, The Commercial Press, Beijing, China, 1981.
[19] H. T. Oдум, *Systems Ecology: An introduction*, John Wiley & Sons, Hoboken, NY, USA, 1982.
[20] E. P. Oдум, *Basic Ecology*, Saunders College Publishing, Philadelphia, PA, USA, 1983.
[21] R. Wang, “Ecological integration and civilization development,” *Journal of ecology. Acta Ecologica Sinica*, vol. 33, no. 1, pp. 1–11, 2013.
[22] C. Wu, “On the core of geography-the regional system of human-land relationship,” *Economic Geography*, vol. 11, no. 3, pp. 1–6, 1991.
[23] D. Lu, “Theoretical studies of man-land system as the core of geographical science,” *Geographical Research*, vol. 21, no. 2, pp. 135–145, 2002.
[24] X. Li, J. Xu, and X. Ren, “Man-land relationship and development in the regions along Yellow River,” *Human Geography*, vol. 28, no. 1, pp. 1–5, 2012.
[25] Y. Ou, “Evaluation of man-land coordination degree at village scale in the farming-grazing transition belt of the horqin sandy land: a case in the muzishan village of aohan banner of inner Mongolia, China,” *Journal of Desert Research*, vol. 31, no. 5, 2011.
[26] D. Lu, J. Fan, and W. Liu, *China’s Regional Space, Function and Development*, pp. 13–20, China Earth Press, Beijing, China, 2011.
[46] J. Ren and P. Zhou, “Comparison and reflection of development track in shandong Province,” Scientia Geographica Sinica, vol. 26, no. 5, pp. 513–519, 2006.

[47] Y. U. Cheng, J. Ren, and H. Cui, “A research using perspective of the Entropy-Topsis Method on regional development modes in perspective of the three-dimensional framework: a Case Study of Shandong Province,” Economic Geography, vol. 32, no. 6, pp. 27–31, 2012.

[48] J. Fan, “The scientific basis of my country’s main function zoning,” Acta Geographica Sinica, vol. 62, no. 4, pp. 339–350, 2007.

[49] Selected Works of MAO Zedong. People’s Publishing House, Beijing, China, 1978.

[50] J. C. Dernbach, “Sustainable development: now more than ever,” ELR News & Analysis, vol. 1, 2002.

[51] F. Berkes and J. Colding, Navigating Social-Ecological Systems: Building Resilience for Complexity and Change, Cambridge University Press, Cambridge, UK, 2003.

[52] G. Jin, Systematic Philosophy, pp. 174-175, Xinxing Press, Beijing, 2005.

[53] L. Lu and F. L. Yu, “A study on the spatial characteristic of provincial difference of tourism economy,” Economic Geography, vol. 25, no. 3, pp. 406–410, 2005.

[54] D. Wang and C. Tian, “Spatial analysis for regional difference of tourism economy in China,” Geographical Science, vol. 31, no. 5, pp. 528–536, 2011.

[55] Y. U. Hu, C. Tian, K. Wang, F. Zhu, and X. Zhang, “The impact of decentralization on the uneven development of tourism destinations,” Advances in Geographical Sciences, vol. 33, no. 9, pp. 1279–1288, 2014.

[56] C. Tosun, “Challenges of sustainable tourism development in the developing world: the case of Turkey,” Tourism Management, vol. 22, no. 3, pp. 289–303, 2001.

[57] L. Kuang, “Centralization or decentralization: the governments are in a dilemma in developing tourism industry,” Tourism Tribune, vol. 16, no. 2, pp. 23–26, 2001.

[58] C. Yang, New Theory on the Development of Tourist Destinations: The Theory of Complex System Evolution of Tourist Destinations Method Application, Science Press, Beijing, China, 2010.

[59] H. Xu, “Potential tourist market and tourism product life cycle—system dynamics model method,” Systems Engineering, vol. 19, no. 3, pp. 69–75, 2001.

[60] H. Xu, “System dynamic model of urban tourism destination life cycle,” Human Geography, vol. 20, no. 5, pp. 66–69, 2005.

[61] H. Xu, “Model research on the development of eco-tourism destinations,” Tourism Tribune, vol. 26, no. 8, pp. 75–80, 2006.

[62] W. R. Ashby, Trans. Zhang Lijing. Introduction to Cybernetics, Science Press, Beijing, China, 1965.

[63] M. Scheffer, S. R. Carpenter, J. A. Foley, C. Folke, and B. Walker, “Catastrophic shifts in ecosystems,” Nature, vol. 413, no. 6856, pp. 591–596, 2001.

[64] B. E. Beisner, D. T. Haydon, and K. Cuddington, “Alternative stable states in ecology,” Frontiers in Ecology and the Environment, vol. 1, no. 7, pp. 376–382, 2003.

[65] B. Walker, C. S. Holling, S. R. Carpenter, and A. P. Kinzig, “Resilience, adaptability and transformability in social-ecological systems,” Ecology and Society, vol. 9, no. 2, pp. 5-6, 2004.