Assessment of SARS-CoV-2 Transmission Among Attendees of Live Concert Events in Japan Using Contact Tracing Data

*Naoru Koizumi, PhD¹, Abu Bakkar Siddique, MPP¹, *Ali Andalibi, PhD²

¹ Schar School of Policy and Government, George Mason University, Arlington, VA, United States;
² College of Science, George Mason University, Fairfax, VA, United States

Corresponding author
Naoru Koizumi
Schar School of Policy and Government, George Mason University, Van Metre Hall, 3351 Fairfax Dr, Arlington, VA 22201. Email: nkoizumi@gmu.edu. Cell: +1 703 993 8380. ORID ID: 0000-0001-8722-0898

Word count: 1100

Competing interest: None

Funding: None

Data sharing: Data will be made available upon acceptance

Ethics committee approval: Not required

Author Contributions:

*Naoru Koizumi, PhD – Accessed and organized the prefecture data, co-designed the study, and performed data analysis

*Ali Andalibi, PhD – Designed the study, contextualized the results and analyzed the medical aspects of the data

Abu Bakker Siddique, MPP – Cleaned and co-organized the data, designed and created the transmission flow chart

*These authors contributed equally to the study

© International Society of Travel Medicine 2020. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com
COVID-19 is caused by a novel coronavirus named SARS-CoV-2. The virus is relatively infectious, with the basic reproduction number ranging from 2.24 to 3.581. To date, public health officials have relied on the identification and quarantining of symptomatic patients and their contacts to contain the virus. Yet, there is strong evidence that a significant proportion of infected individuals may show no symptoms2,3. As we have learned more about the virus, it has become clear that we need to identify infected individuals and their contacts regardless of their symptoms.

Japan has not been spared the COVID-19 pandemic, and as of early-June 2020, there have been over 16,900 cases of infected cases reported across the country. Yet, this number is relatively small, given the density of population in Japanese cities, as well as the central role that Japan plays as a nexus of today’s interconnected world economy. As such, it appears that the active contact tracing measures – called “cluster countermeasure” - implemented by the government of Japan have helped the nation to reduce the potential impact of the virus. One of the most important aspects of Japan’s national strategy has been the establishment of a detailed registry of COVID-19 patients and their contacts at the level of each prefecture. The scheme identifies all individuals who were in contact with each confirmed cluster or case in the 2 weeks before the diagnosis.

Between February 15th and 25th, 2020, a series of “Live House” (LH) concert events were held in the Osaka prefecture. These concerts are small (~50) to medium size (~100) live music venues, often filled to capacity with standing room only. Subsequent to the concerts, many individuals who attended the venues, as well as others who were exposed to the attendees, developed symptoms of COVID-19. The COVID-19 pandemic was still in its early stages in mid-February, and thus neither social distancing nor the ban on mass gatherings was being enforced at these events. Moreover, it was not until later that the testing and tracing of the attendees and their contacts started being performed by the Japanese public health officials and documented as part of their contact tracing program. We used the Japanese registry data to study this LH outbreak cluster of COVID-19.

We queried the central and local government registries for the two months between February 15 (the date of the first LH event) and April 15, 2020, and identified 74 individuals who participated in one or more of the 8 LH events and who were subsequently confirmed as SARS-CoV-2-positive by PCR.
The LH events by and large attracted women in their thirties and forties, which is reflected in the large percentage of female infected cases in this group (Table 1).

We were able to relate all infections in this cluster to a 30-year old woman whose symptoms at the February 15 concert were cough, fever, rhinitis, and sore throat. Her condition subsequently worsened and she was given a positive diagnosis of COVID-19 on February 28, 2019. This suggests that the spread of the virus from one event to another was facilitated by infected participants who attended multiple events.

Including secondary and tertiary cases, the 8 LH events resulted in a total of 103 COVID-19 cases across 15 prefectures. Infected individuals ranged from being asymptomatic (21 total) to displaying one, or more symptoms (78 total). The youngest patient (<6) was asymptomatic (Table 1). The data demonstrate that densely populated venues such as live concerts can “seed” infections that can spread to other, distant areas. This observation is consistent with prior reports that document transmission of various communicable diseases, including influenza A (H1N1), through mass gatherings and “music tourism”.

For those who were confirmed in Osaka, we traced their contacts to identify secondary and tertiary cases. Osaka’s records have a uniform format that reduces the potential of systematic errors in the data collection process. Osaka is also the second-largest prefecture with a significantly higher population density than the other affected prefectures (except Tokyo). Of the 74 primary cases identified, 48 (65%) were found in Osaka. The contact-tracing data for these cases identified that 12 of the 48 primary cases (25%) transmitted the virus to 20 cases (secondary cases). Of those 20 secondary cases, 6 cases transmitted the virus to 7 tertiary cases.

Of the 48 primary cases, the numbers of symptomatic and asymptomatic cases were 36 (75%) and 12 (25%) cases, respectively. Asymptomatic patients transmitted virus at a similar rate to symptomatic patients: Among the 36 symptomatic cases, 9 cases (25%) infected 1 to 3 individuals. Among the 12 asymptomatic cases, 3 cases (25%) infected 1 or 2 individuals subsequently. Among the secondary cases, 4 out of 18 (22%) cases were asymptomatic. None of these 4 secondary cases transmitted virus, while the 14 symptomatic patients transmitted the virus to 1 or 2 tertiary cases (Figure 1).

The classification of the relationships between infectors and infectees are also shown in the figure - family member (FM), friend (FR), or co-worker or client at work (CW). Transmission occurred predominantly among family members (12 cases, 45%). The transmission rate among friends was the same as that among co-workers/clients at work (7 cases, 27% for both).
families, where close contact is inevitable, also results in the spread of the infection, but, as expected, is more localized.

The contact tracing measures implemented by the Japanese government resulted in the containment of the cluster within a month. The 2-month registry data that we examined indicates that all except 1 case was identified before March 10 and that no primary or subsequent cases were found in the registry after March 25th. The evidence seems to confirm the effectiveness of the contact tracing measure. The quick containment of the virus may also be attributable to cultural behavior or customs that are common in Japan. The notes available as part of the individual-level records suggested that many patients did not socialize after symptoms appeared. Many individuals also wore a facial mask while traveling after symptoms appeared. Such behavior may have limited the number of individuals with whom they interacted when symptomatic. At the same time, the evidence also suggests that communities may see a resurgence of infections when public health advice, or self-imposed constraints are ignored.

The main limitation of the current study stems from the skewed age distribution of the cases. The fact that the majority of the audience of the LH events were middle-aged women prevented us from investigating the spread of COVID-19 among male and younger (<20) patients, as well as in septuagenarians and octogenarians, who are known to be affected by the disease more severely.

Figure S2. Live House Cluster Locations
Table S2. Live House Event List
References

1. Lai C-C, Shih T-P, Ko W-C, et al. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and coronavirus disease-2019 (COVID-19): the epidemic and the challenges. Int J Antimicrob Agents. 2020;105924.

2. Bai Y, Yao L, Wei T, et al. Presumed Asymptomatic Carrier Transmission of COVID-19. JAMA. 2020 Apr 14;323(14):1406–7.

3. Rothe C, Schunk M, Sothmann P, et al. Transmission of 2019-nCoV infection from an asymptomatic contact in Germany. N Engl J Med. 2020;382(10):970–971.

4. Botelho-Nevers E, Gautret P. Outbreaks associated to large open air festivals, including music festivals, 1980 to 2012. Eurosurveillance. 2013;18(11):20426.

5. Lu TS, Flaherty GT. Tuning into the travel health risks of music tourism. J Travel Med. 2018;
List of figures

Figure 1. Virus Transmission from Primary to Secondary and to Tertiary Cases
List of tables

Table 1. Patient Information

Age Group	Male (n=32)	Female (n=67)		
	Symptomatic	Asymptomatic	Symptomatic	Asymptomatic
1-9	0 (0%)	0 (0%)	0 (0%)	1 (7%)
20-29	1 (4%)	0 (0%)	8 (15%)	1 (7%)
30-39	5 (19%)	3 (50%)	10 (19%)	2 (13%)
40-49	8 (31%)	1 (17%)	17 (33%)	10 (67%)
50-59	7 (27%)	1 (17%)	10 (19%)	1 (7%)
60-69	3 (12%)	1 (17%)	5 (10%)	0 (0%)
>70	2 (8%)	0 (0%)	4 (8%)	0 (0%)
Total	26 (100%)	6 (100%)	52 (100%)	15 (100%)

P-value* 0.781 0.299

* Fisher's exact test