DC Decomposition of Nonconvex Polynomials with Algebraic Techniques

Amir Ali Ahmadi · Georgina Hall

Abstract We consider the problem of decomposing a multivariate polynomial as the difference of two convex polynomials. We introduce algebraic techniques which reduce this task to linear, second order cone, and semidefinite programming. This allows us to optimize over subsets of valid difference of convex decompositions (dcds) and find ones that speed up the convex-concave procedure (CCP). We prove, however, that optimizing over the entire set of dcds is NP-hard.

Keywords Difference of convex programming, conic relaxations, polynomial optimization, algebraic decomposition of polynomials

1 Introduction

A difference of convex (dc) program is an optimization problem of the form

\[
\begin{align*}
\min f_0(x) \\
\text{s.t. } f_i(x) &\leq 0, \ i = 1, \ldots, m,
\end{align*}
\]

where \(f_0, \ldots, f_m \) are difference of convex functions; i.e.,

\[
f_i(x) = g_i(x) - h_i(x), \ i = 0, \ldots, m,
\]

The authors are partially supported by the Young Investigator Program Award of the AFOSR and the CAREER Award of the NSF.

Amir Ali Ahmadi
ORFE, Princeton University, Sherrerd Hall, Princeton, NJ 08540
E-mail: aahma@princeton.edu

Georgina Hall
ORFE, Princeton University, Sherrerd Hall, Princeton, NJ 08540
E-mail: gh4@princeton.edu
and \(g_i : \mathbb{R}^n \to \mathbb{R}\), \(h_i : \mathbb{R}^n \to \mathbb{R}\) are convex functions. The class of functions that can be written as a difference of convex functions is very broad containing for instance all functions that are twice continuously differentiable \([18], [22]\).

Furthermore, any continuous function over a compact set is the uniform limit of a sequence of dc functions; see, e.g., reference \([25]\) where several properties of dc functions are discussed.

Optimization problems that appear in dc form arise in a wide range of applications. Representative examples from the literature include machine learning and statistics (e.g., kernel selection \([9]\), feature selection in support vector machines \([23]\), sparse principal component analysis \([30]\), and reinforcement learning \([37]\)), operations research (e.g., packing problems and production-transportation problems \([45]\)), communications and networks \([8], [31]\), circuit design \([30]\), finance and game theory \([17]\), and computational chemistry \([13]\).

We also observe that dc programs can encode constraints of the type \(x \in \{0, 1\}\) by replacing them with the dc constraints \(0 \leq x \leq 1, x - x^2 \leq 0\). This entails that any binary optimization problem can in theory be written as a dc program, but it also implies that dc problems are hard to solve in general.

As described in \([40]\), there are essentially two schools of thought when it comes to solving dc programs. The first approach is global and generally consists of rewriting the original problem as a concave minimization problem (i.e., minimizing a concave function over a convex set; see \([46], [44]\)) or as a reverse convex problem (i.e., a convex problem with a linear objective and one constraint of the type \(h(x) \geq 0\) where \(h\) is convex). We refer the reader to \([43]\) for an explanation on how one can convert a dc program to a reverse convex problem, and to \([21]\) for more general results on reverse convex programming. These problems are then solved using branch-and-bound or cutting plane techniques (see, e.g., \([45]\) or \([25]\)). The goal of these approaches is to return global solutions but their main drawback is scalability. The second approach by contrast aims for local solutions while still exploiting the dc structure of the problem by applying the tools of convex analysis to the two convex components of a dc decomposition. One such algorithm is the Difference of Convex Algorithm (DCA) introduced by Pham Dinh Tao in \([41]\) and expanded on by Le Thi Hoai An and Pham Dinh Tao. This algorithm exploits the duality theory of dc programming \([42]\) and is popular because of its ease of implementation, scalability, and ability to handle nonsmooth problems.

In the case where the functions \(g_i\) and \(h_i\) in (2) are differentiable, DCA reduces to another popular algorithm called the Convex-Concave Procedure (CCP) \([27]\). The idea of this technique is to simply replace the concave part of \(f_i\) (i.e., \(-h_i\)) by a linear overestimator as described in Algorithm \([1]\) By doing this, problem \([1]\) becomes a convex optimization problem that can be solved using tools from convex analysis. The simplicity of CCP has made it an attractive algorithm in various areas of application. These include statistical physics (for minimizing Bethe and Kikuchi free energy functions \([48]\), machine learning \([30], [15], [11]\), and image processing \([47]\), just to name a few. In addition, CCP enjoys two valuable features: (i) if one starts with a feasible solution, the solution produced after each iteration remains feasible, and (ii) the objective
value improves in every iteration, i.e., the method is a descent algorithm. The proof of both claims readily comes out of the description of the algorithm and can be found, e.g., in [30, Section 1.3], where several other properties of the method are also laid out. Like many iterative algorithms, CCP relies on a stopping criterion to end. This criterion can be chosen amongst a few alternatives. For example, one could stop if the value of the objective does not improve enough, or if the iterates are too close to one another, or if the norm of the gradient of f_0 gets small.

Algorithm 1 CCP

Input: x_0, $f_i = g_i - h_i, i = 0, \ldots, m$

1: $k \leftarrow 0$
2: while stopping criterion not satisfied do
3: Convexify: $f^i_k(x) := g_i(x) - \langle h_i(x_k) + \nabla h_i(x_k)^T (x - x_k) \rangle, i = 0, \ldots, m$
4: Solve convex subroutine: min $f^i_0(x)$, s.t. $f^i_k(x) \leq 0, i = 1, \ldots, m$
5: $x_{k+1} := \text{argmin}_{x} f^i_0(x)$
6: $k \leftarrow k + 1$
7: end while

Output: x_k

Convergence results for CCP can be derived from existing results found for DCA, since CCP is a subcase of DCA as mentioned earlier. But CCP can also be seen as a special case of the family of majorization-minimization (MM) algorithms. Indeed, the general concept of MM algorithms is to iteratively upperbound the objective by a convex function and then minimize this function, which is precisely what is done in CCP. This fact is exploited by Lanckriet and Sriperumbudur in [27] and Salakhutdinov et al. in [39] to obtain convergence results for the algorithm, showing, e.g., that under mild assumptions, CCP converges to a stationary point of the optimization problem (1).

1.1 Motivation and organization of the paper

Although a wide range of problems already appear in dc form [2], such a decomposition is not always available. In this situation, algorithms of dc programming, such as CCP, generally fail to be applicable. Hence, the question arises as to whether one can (efficiently) compute a difference of convex decomposition (dcd) of a given function. This challenge has been raised several times in the literature. For instance, Hiriart-Urruty [22] states “All the proofs [of existence of dc decompositions] we know are “constructive” in the sense that they indeed yield $[g_i]$ and $[h_i]$ satisfying (2) but could hardly be carried over to computational aspects”. As another example, Tuy [45] writes: “The dc structure of a given problem is not always apparent or easy to disclose, and even when it is known explicitly, there remains for the problem solver the hard task of bringing this structure to a form amenable to computational analysis.”
Ideally, we would like to have not just the ability to find one dc decomposition, but also to optimize over the set of valid dc decompositions. Indeed, dc decompositions are not unique: Given a decomposition \(f = g - h \), one can produce infinitely many others by writing \(f = g + p - (h + p) \), for any convex function \(p \). This naturally raises the question whether some dc decompositions are better than others, for example for the purposes of CCP.

In this paper we consider these decomposition questions for multivariate polynomials. Since polynomial functions are finitely parameterized by their coefficients, they provide a convenient setting for a computational study of the dc decomposition questions. Moreover, in most practical applications, the class of polynomial functions is large enough for modeling purposes as polynomials can approximate any continuous function on compact sets with arbitrary accuracy. It could also be interesting for future research to explore the potential of dc programming techniques for solving the polynomial optimization problem. This is the problem of minimizing a multivariate polynomial subject to polynomial inequalities and is currently an active area of research with applications throughout engineering and applied mathematics. In the case of quadratic polynomial optimization problems, the dc decomposition approach has already been studied [10], [21].

With these motivations in mind, we organize the paper as follows. In Section 2 we start by showing that unlike the quadratic case, the problem of testing if two given polynomials \(g, h \) form a valid dc decomposition of a third polynomial \(f \) is NP-hard (Proposition 1). We then investigate a few candidate optimization problems for finding dc decompositions that speed up the convex-concave procedure. In particular, we extend the notion of an undominated dc decomposition from the quadratic case [10] to higher order polynomials. We show that an undominated dcd always exists (Theorem 1) and can be found by minimizing a certain linear function of one of the two convex functions in the decomposition. However, this optimization problem is proved to be NP-hard for polynomials of degree four or larger (Proposition 4). To cope with intractability of finding optimal dc decompositions, we propose in Section 3 a class of algebraic relaxations that allow us to optimize over subsets of dcds. These relaxations will be based on the notions of \(dsos-\text{convex}, sdsos-\text{convex}, \) and \(sos-\text{convex} \) polynomials (see Definition 5), which respectively lend themselves to linear, second order cone, and semidefinite programming. In particular, we show that a dc decomposition can always be found by linear programming (Theorem 2). Finally, in Section 4 we perform some numerical experiments to compare the scalability and performance of our different algebraic relaxations.

2 Polynomial dc decompositions and their complexity

To study questions around dc decompositions of polynomials more formally, let us start by introducing some notation. A multivariate polynomial \(p(x) \) in variables \(x := (x_1, \ldots, x_n)^T \) is a function from \(\mathbb{R}^n \) to \(\mathbb{R} \) that is a finite linear
combination of monomials:
\[p(x) = \sum_{\alpha} c_{\alpha} x^{\alpha} = \sum_{\alpha_1, \ldots, \alpha_n} c_{\alpha_1, \ldots, \alpha_n} x_1^{\alpha_1} \cdots x_n^{\alpha_n}, \tag{3} \]

where the sum is over \(n \)-tuples of nonnegative integers \(\alpha_i \). The degree of a monomial \(x^{\alpha} \) is equal to \(\alpha_1 + \cdots + \alpha_n \). The degree of a polynomial \(p(x) \) is defined to be the highest degree of its component monomials. A simple counting argument shows that a polynomial of degree \(d \) in \(n \) variables has \(\binom{n+d}{d} \) coefficients. A homogeneous polynomial (or a form) is a polynomial where all the monomials have the same degree. An \(n \)-variate form \(p \) of degree \(d \) has \(\binom{n+d-1}{d} \) coefficients. We denote the set of polynomials (resp. forms) of degree \(2d \) in \(n \) variables by \(\tilde{H}_{n,2d} \) (resp. \(H_{n,2d} \)).

Recall that a symmetric matrix \(A \) is positive semidefinite (psd) if \(x^T A x \geq 0 \) for all \(x \in \mathbb{R}^n \); this will be denoted by the standard notation \(A \succeq 0 \). Similarly, a polynomial \(p(x) \) is said to be nonnegative or positive semidefinite if \(p(x) \geq 0 \) for all \(x \in \mathbb{R}^n \). For a polynomial \(p \), we denote its Hessian by \(H_p \). The second order characterization of convexity states that \(p \) is convex if and only if \(H_p(x) \succeq 0, \forall x \in \mathbb{R}^n \).

\textbf{Definition 1} We say a polynomial \(g \) is a \textit{dcd} of a polynomial \(f \) if \(g \) is convex and \(g - f \) is convex.

Note that if we let \(h := g - f \), then indeed we are writing \(f \) as a difference of two convex functions \(f = g - h \). It is known that any polynomial \(f \) has a (polynomial) dcd \(g \). A proof of this is given, e.g., in [17], or in Section 3.2 where it is obtained as corollary of a stronger theorem (see Corollary 1). By default, all dcds considered in the sequel will be of even degree. Indeed, if \(f \) is of even degree \(2d \), then it admits a dcd \(g \) of degree \(2d \). If \(f \) is of odd degree \(2d - 1 \), it can be viewed as a polynomial \(f \) of even degree \(2d \) with highest-degree coefficients which are 0. The previous result then remains true, and \(f \) admits a dcd of degree \(2d \).

Our results show that such a decomposition can be found efficiently (e.g., by linear programming); see Theorem 3. Interestingly enough though, it is not easy to check if a candidate \(g \) is a valid dcd of \(f \).

\textbf{Proposition 1} Given two \(n \)-variate polynomials \(f \) and \(g \) of degree 4, with \(f \neq g \), it is strongly NP-hard\(^1\) to determine whether \(g \) is a dcd of \(f \).\(^2\)

\textit{Proof} We will show this via a reduction from the problem of testing nonnegativity of biquadratic forms, which is already known to be strongly NP-hard.

\(^1\) For a strongly NP-hard problem, even a pseudo-polynomial time algorithm cannot exist unless \(P=NP \) [16].

\(^2\) If we do not add the condition on the input that \(f \neq g \), the problem would again be NP-hard (in fact, this is even easier to prove). However, we believe that in any interesting instance of this question, one would have \(f \neq g \).
A biquadratic form \(b(x; y) \) in the variables \(x = (x_1, \ldots, x_n)^T \) and \(y = (y_1, \ldots, y_m)^T \) is a quartic form that can be written as

\[
b(x; y) = \sum_{i,j,k,l} a_{ijkl} x_i x_j y_k y_l.
\]

Given a biquadratic form \(b(x; y) \), define the \(n \times n \) polynomial matrix \(C(x, y) \) by setting

\[
C_{ij}(x, y) := \frac{\partial b(x; y)}{\partial x_i} \frac{\partial b(x; y)}{\partial y_j},
\]

and let \(\gamma \) be the largest coefficient in absolute value of any monomial present in some entry of \(C(x, y) \). Moreover, we define \(r(x; y) := n^2 \gamma^2 n \sum_{i=1}^n x_i^4 + n \sum_{i=1}^n y_i^4 + \sum_{1 \leq i < j \leq n} x_i^2 x_j^2 + \sum_{1 \leq i < j \leq n} y_i^2 y_j^2 \).

It is proven in \([4, \text{Theorem 3.2}]\) that \(b(x; y) \) is nonnegative if and only if \(q(x, y) := b(x; y) + r(x, y) \) is convex. We now give our reduction. Given a biquadratic form \(b(x; y) \), we take \(g = q(x, y) + r(x, y) \) and \(f = r(x, y) \). If \(b(x; y) \) is nonnegative, from the theorem quoted above, \(g - f = q \) is convex. Furthermore, it is straightforward to establish that \(r(x, y) \) is convex, which implies that \(g \) is also convex. This means that \(g \) is a dcd of \(f \). If \(b(x; y) \) is not nonnegative, then we know that \(q(x, y) \) is not convex. This implies that \(g - f \) is not convex, and so \(g \) cannot be a dcd of \(f \).

Unlike the quartic case, it is worth noting that in the quadratic case, it is easy to test whether a polynomial \(g(x) = x^T G x \) is a dcd of \(f(x) = x^T F x \). Indeed, this amounts to testing whether \(F \succeq 0 \) and \(G - F \succeq 0 \) which can be done in \(O(n^3) \) time.

As mentioned earlier, there is not only one dcd for a given polynomial \(f \), but an infinite number. Indeed, if \(f = g - h \) with \(g \) and \(h \) convex then any convex polynomial \(p \) generates a new dcd \(f = (g + p) - (h + p) \). It is natural then to investigate if some dcgs are better than others, e.g., for use in the convex-concave procedure.

Recall that the main idea of CCP is to upperbound the non-convex function \(f = g - h \) by a convex function \(f^k \). These convex functions are obtained by linearizing \(h \) around the optimal solution of the previous iteration. Hence, a reasonable way of choosing a good dcd would be to look for dcgs of \(f \) that minimize the curvature of \(h \) around a point. Two natural formulations of this problem are given below. The first one attempts to minimize the average curvature of \(h \) at a point \(\bar{x} \) over all directions:

\[
\min_y \text{Tr} H_h(\bar{x})
\text{s.t. } f = g - h, g, h \text{ convex,}
\]

Note that \(\text{Tr} H_h(\bar{x}) \) (resp. \(\lambda_{\max} H_h(\bar{x}) \)) gives the average (resp. maximum) of \(y^T H_h(\bar{x}) y \) over \(\{y : ||y|| = 1\} \).
The second one attempts to minimize the worst-case\(^3\) curvature of \(h\) at a point \(\bar{x}\) over all directions:

\[
\min_{g} \lambda_{\max} H_h(\bar{x})
\]

\[
\text{s.t. } f - g - h, g, h \text{ convex}
\]

A few numerical experiments using these objective functions will be presented in Section 4.2.

Another popular notion that appears in the literature and that also relates to finding dcds with minimal curvature is that of undominated dcds. These were studied in depth by Bomze and Locatelli in the quadratic case [10]. We extend their definition to general polynomials here.

Definition 2 Let \(g\) be a dcd of \(f\). A dcd \(g'\) of \(f\) is said to dominate \(g\) if \(g - g'\) is convex and nonaffine. A dcd \(g\) of \(f\) is undominated if no dcd of \(f\) dominates \(g\).

Arguments for choosing undominated dcds can be found in [10], [12, Section 3]. One motivation that is relevant to CCP appears in Proposition 2

Proposition 2 Let \(g\) and \(g'\) be two dcds of \(f\). Define the convex functions

\[
f_g(x) := g(x) - (h(x_0) + \nabla h(x_0)^T (x - x_0)),
\]

\[
f_g'(x) := g'(x) - (h'(x_0) + \nabla h'(x_0)^T (x - x_0)).
\]

Then, we have

\[
f_g'(x) \leq f_g(x), \forall x.
\]

Proof As \(g'\) dominates \(g\), there exists a nonaffine convex polynomial \(c\) such that \(c = g - g'\). We then have \(g' = g - c\) and \(h' = h - c\), and

\[
f_g'(x) = g(x) - c(x) - h(x_0) + c(x_0) - \nabla h(x_0)^T (x - x_0) + \nabla c(x_0)^T (x - x_0)
\]

\[
= f_g(x) - (c(x) - c(x_0) - \nabla c(x_0)^T (x - x_0)).
\]

The first order characterization of convexity of \(c\) then gives us

\[
f_g'(x) \leq f_g(x), \forall x.
\]

In the quadratic case, it turns out that an optimal solution to (4) is an undominated dcd [10]. A solution given by (5) on the other hand is not necessarily undominated. Consider the quadratic function

\[
f(x) = 8x_1^2 - 2x_2^2 - 8x_3^2
\]

\(^4\) A variant of this proposition in the quadratic case appears in [10, Proposition 12].
and assume that we want to decompose it using \(g \). An optimal solution is given by
\[
 g^* (x) = 8x_1^2 + 6x_1^2 + 8x_2^2 + 8x_3^2
\]
with \(\lambda_{\text{max}} H_h = 8 \). This is clearly dominated by \(g'(x) = 8x_1^2 \) as \(g^* (x) - g'(x) = 6x_2^2 \) which is convex.

When the degree is higher than 2, it is no longer true however that solving \((4) \) returns an undominated \(\text{dcd} \). Consider for example the degree-4 polynomial
\[
 f(x) = x_{12}^2 - x_{10}^6 + x_6^4 - x_4^4
\]
A solution to \((4) \) with \(\bar{x} = 0 \) is given by
\[
 g(x) = x_{12}^2 + x_6^4 \text{ and } h(x) = x_{10}^6 + x_4^4
\]
(\(\text{as } \text{Tr}_H g(0) = 0 \)). This is dominated by the \(\text{dcd} \) \(g(x) = x_{12}^2 - x_8^6 + x_6^4 \) as \(g - g' = x_8^6 \) is clearly convex.

It is unclear at this point how one can obtain an undominated \(\text{dcd} \) for higher degree polynomials, or even if one exists. In the next theorem, we show that such a \(\text{dcd} \) always exists and provide an optimization problem whose optimal solution will always be undominated \(\text{dcds} \). This optimization problem involves the integral of a polynomial over a sphere which conveniently turns out to be an explicit linear expression in its coefficients.

Proposition 3 ([14]) Let \(S^{n-1} \) denote the unit sphere in \(\mathbb{R}^n \). For a monomial \(x_1^{\alpha_1} \cdots x_n^{\alpha_n} \), define \(\beta_j := \frac{1}{2}(\alpha_j + 1) \). Then
\[
 \int_{S^{n-1}} x_1^{\alpha_1} \cdots x_n^{\alpha_n} d\sigma = \begin{cases}
 0 & \text{if some } \alpha_j \text{ is odd}, \\
 \frac{2\Gamma(\beta_1)\cdots\Gamma(\beta_n)}{\Gamma(\beta_1+\cdots+\beta_n)} & \text{if all } \alpha_j \text{ are even},
 \end{cases}
\]
where \(\Gamma \) denotes the gamma function, and \(\sigma \) is the rotation invariant probability measure on \(S^{n-1} \).

Theorem 1 Let \(f \in \tilde{H}_{n,2d} \). Consider the optimization problem
\[
 \min_{g \in \tilde{H}_{n,2d}} \frac{1}{\mathcal{A}_n} \int_{S^{n-1}} \text{Tr}_H g d\sigma
 \text{ s.t. } g \text{ convex, } g - f \text{ convex,}
\]
where \(\mathcal{A}_n = \frac{2 \pi^{n/2}}{\Gamma(n/2)} \) is a normalization constant which equals the area of \(S^{n-1} \).
Then, an optimal solution to \((6) \) exists and any optimal solution is an undominated \(\text{dcd} \) of \(f \).

Note that problem \((6) \) is exactly equivalent to \((4) \) in the case where \(n = 2 \) and so can be seen as a generalization of the quadratic case.

Proof We first show that an optimal solution to \((6) \) exists. As any polynomial \(f \) admits a \(\text{dcd} \), \((6) \) is feasible. Let \(\tilde{g} \) be a \(\text{dcd} \) of \(f \) and define \(\gamma := \int_{S^{n-1}} \text{Tr}_H g d\sigma \).
Consider the optimization problem given by (6) with the additional constraints:

\[
\min_{g \in H_{\mathbb{R},d,n}} \frac{1}{\mathcal{A}_n} \int_{S^{n-1}} \text{Tr} \ H_g \ d\sigma
\]

s.t. \(g \) convex and with no affine terms
\(g - f \) convex,
\[
\int_{S^{n-1}} \text{Tr} \ H_g \ d\sigma \leq \gamma.
\]

(7)

Notice that any optimal solution to (7) is an optimal solution to (6). Hence, it suffices to show that (7) has an optimal solution. Let \(U \) denote the feasible set of (7). Evidently, the set \(U \) is closed and \(g \rightarrow \int_{S^{n-1}} \text{Tr} \ H_g \ d\sigma \) is continuous. If we also show that \(U \) is bounded, we will know that the optimal solution to (7) is achieved. To see this, assume that \(U \) is unbounded. Then for any \(\beta \), there exists a coefficient \(c_g \) of some \(g \in U \) that is larger than \(\beta \). By absence of affine terms in \(g \), \(c_g \) features in an entry of \(H_g \) as the coefficient of a nonzero monomial. Take \(\bar{x} \in S^{n-1} \) such that this monomial evaluated at \(\bar{x} \) is nonzero: this entails that at least one entry of \(H_g(\bar{x}) \) can get arbitrarily large. However, since \(g \rightarrow \text{Tr} \ H_g \) is continuous and \(\int_{S^{n-1}} \text{Tr} \ H_g \ d\sigma \leq \gamma \), \(\exists \bar{\gamma} \) such that \(\text{Tr} \ H_g(x) \leq \bar{\gamma}, \forall x \in S^{n-1} \), which contradicts the fact that an entry of \(H_g(\bar{x}) \) can get arbitrarily large.

We now show that if \(g^* \) is any optimal solution to (6), then \(g^* \) is an undominated dcd of \(f \). Suppose that this is not the case. Then, there exists a dcd \(g' \) of \(f \) such that \(g^* - g' \) is nonaffine and convex. As \(g' \) is a dcd of \(f \), \(g' \) is feasible for (6). The fact that \(g^* - g' \) is nonaffine and convex implies that

\[
\int_{S^{n-1}} \text{Tr} \ H_{g^* - g'} \ d\sigma > 0 \iff \int_{S^{n-1}} \text{Tr} H_{g'} d\sigma > \int_{S^{n-1}} \text{Tr} H_{g} d\sigma,
\]

which contradicts the assumption that \(g^* \) is optimal to (6). \(\square \)

Although optimization problem (6) is guaranteed to produce an undominated dcd, we show that unfortunately it is intractable to solve.

Proposition 4 Given an \(n \)-variate polynomial \(f \) of degree 4 with rational coefficients, and a rational number \(k \), it is strongly NP-hard to decide whether there exists a feasible solution to (6) with objective value \(\leq k \).

Proof We give a reduction from the problem of deciding convexity of quartic polynomials. Let \(q \) be a quartic polynomial. We take \(f = q \) and \(k = \frac{1}{\mathcal{A}_n} \int_{S^{n-1}} \text{Tr} \ H_q(x) \). If \(q \) is convex, then \(g = q \) is trivially a dcd of \(f \) and

\[
\frac{1}{\mathcal{A}_n} \int_{S^{n-1}} \text{Tr} \ H_g d\sigma \leq k.
\]

(8)
If q is not convex, assume that there exists a feasible solution g for (6) that satisfies (8). From (8) we have
\[
\int_{S^{n-1}} \text{Tr} \ H_g(x) \leq \int_{S^{n-1}} \text{Tr} \ H_f d\sigma \iff \int_{S^{n-1}} \text{Tr} \ H_{g-f} d\sigma \geq 0.
\] (9)

But from (6), as $g-f$ is convex, $\int_{S^{n-1}} \text{Tr} \ H_{g-f} d\sigma \geq 0$. Together with (9), this implies that
\[
\int_{S^{n-1}} \text{Tr} \ H_{g-f} d\sigma = 0
\]
which in turn implies that $H_{g-f}(x) = H_g(x) - H_f(x) = 0$. To see this, note that $\text{Tr}(H_{g-f})$ is a nonnegative polynomial which must be identically equal to 0 since its integral over the sphere is 0. As $H_{g-f}(x) \geq 0, \forall x$, we get that $H_{g-f} = 0$. Thus, $H_g(x) = H_f(x), \forall x$, which is not possible as g is convex and f is not.

We remark that solving (6) in the quadratic case (i.e., $2d = 2$) is simply a semidefinite program.

3 Algebraic relaxations and more tractable subsets of the set of convex polynomials

We have just seen in the previous section that for polynomials with degree as low as four, some basic tasks related to dc decomposition are computationally intractable. In this section, we identify three subsets of the set of convex polynomials that lend themselves to polynomial-time algorithms. These are the sets of sos-convex, dsos-convex, and dsos-convex polynomials, which will respectively lead to semidefinite, second order cone, and linear programs. The latter two concepts are to our knowledge new and are meant to serve as more scalable alternatives to sos-convexity. All three concepts certify convexity of polynomials via explicit algebraic identities, which is the reason why we refer to them as algebraic relaxations.

3.1 DSOS-convexity, SDSOS-convexity, SOS-convexity

To present these three notions we need to introduce some notation and briefly review the concepts of sos, dsos, and sdsos polynomials.

We denote the set of nonnegative polynomials (resp. forms) in n variables and of degree d by $\tilde{P}SD_{n,d}$ (resp. $\tilde{P}SD_{n,d}$). A polynomial p is a sum of squares (sos) if it can be written as $p(x) = \sum_{i=1}^{r} q_i^2(x)$ for some polynomials q_1, \ldots, q_r. The set of sos polynomials (resp. forms) in n variables and of degree d is denoted by $\tilde{S}OS_{n,d}$ (resp. $SOS_{n,d}$). We have the obvious inclusion $\tilde{S}OS_{n,d} \subseteq P\tilde{S}D_{n,d}$ (resp. $SOS_{n,d} \subseteq P\tilde{S}D_{n,d}$), which is strict unless $d = 2$, or $n = 1$, or $(n,d) = (2,4)$ (resp. $d = 2$, or $n = 2$, or $(n,d) = (3,4)$) [21], [35].
Let $\tilde{z}_{n,d}(x)$ (resp. $z_{n,d}(x)$) denote the vector of all monomials in $x = (x_1, \ldots, x_n)$ of degree up to (resp. exactly) d; the length of this vector is $\binom{n+d}{d}$ (resp. $\binom{n+d-1}{d-1}$). It is well known that a polynomial (resp. form) p of degree $2d$ is sos if and only if it can be written as $p(x) = \tilde{z}_{n,d}(x)^T Q \tilde{z}_{n,d}(x)$ (resp. $p(x) = z_{n,d}(x)^T Q z_{n,d}(x)$), for some psd matrix Q. The matrix Q is generally called the Gram matrix of p. An SOS optimization problem is the problem of minimizing a linear function over the intersection of the convex cone $\text{SOS}_{n,d}$ with an affine subspace. The previous statement implies that SOS optimization problems can be cast as semidefinite programs.

We now define dsos and sdsos polynomials, which were recently proposed by Ahmadi and Majumdar as more tractable subsets of sos polynomials. When working with dc decompositions of n-variate polynomials, we will end up needing to impose sum of squares conditions on polynomials that have $2n$ variables (see Definition 3). While in theory the SDPs arising from sos conditions are of polynomial size, in practice we rather quickly face a scalability challenge. For this reason, we also consider the class of dsos and sdsos polynomials, which while more restrictive than sos polynomials, are considerably more tractable. For example, Table 2 in Section 4.2 shows that when $n = 14$, dc decompositions using these concepts are about 250 times faster than an sos-based approach. At $n = 18$ variables, we are unable to run the sos-based approach on our machine. With this motivation in mind, let us start by recalling some concepts from linear algebra.

Definition 3 A symmetric matrix M is said to be diagonally dominant (dd) if $m_{ii} \geq \sum_{j \neq i} |m_{ij}|$ for all i, and strictly diagonally dominant if $m_{ii} > \sum_{j \neq i} |m_{ij}|$ for all i. We say that M is scaled diagonally dominant (sdd) if there exists a diagonal matrix D, with positive diagonal entries, such that DAD is dd.

We have the following implications from Gershgorin’s circle theorem

$$M \text{ dd } \Rightarrow M \text{ sdd } \Rightarrow M \text{ psd}. \quad (10)$$

Furthermore, notice that requiring M to be dd can be encoded via a linear program (LP) as the constraints are linear inequalities in the coefficients of M. Requiring that M be sdd can be encoded via a second order cone program (SOCP). This follows from the fact that M is sdd if and only if

$$M = \sum_{i<j} M_{ij}^{2x2},$$

where each M_{ij}^{2x2} is an $n \times n$ symmetric matrix with zeros everywhere except four entries $M_{ii}, M_{ij}, M_{ji}, M_{jj}$ which must make the 2×2 matrix

$$\begin{pmatrix} M_{ii} & M_{ij} \\ M_{ji} & M_{jj} \end{pmatrix}$$

symmetric positive semidefinite [3]. These constraints are *rotated quadratic cone constraints* and can be imposed via SOCP [7].

Definition 4 ([3]) A polynomial $p \in \tilde{\mathcal{H}}_{n,2d}$ is said to be
- diagonally-dominant-sum-of-squares (dsos) if it admits a representation
 \(p(x) = \tilde{z}_{n,d}^T(x)Q\tilde{z}_{n,d}(x) \), where \(Q \) is a dd matrix.
- scaled-diagonally-dominant-sum-of-squares (sdsos) if it admits a represen-
tation \(p(x) = \tilde{z}_{n,d}^T(x)Q\tilde{z}_{n,d}(x) \), where \(Q \) is an sdd matrix.

Identical conditions involving \(z_{n,d} \) instead of \(\tilde{z}_{n,d} \) define the sets of dsos and sdsos forms.

The following implications are again straightforward:

\[p(x) \text{ dsos} \Rightarrow p(x) \text{ sdsos} \Rightarrow p(x) \text{ sos} \Rightarrow p(x) \text{ nonnegative.} \quad (11) \]

Given the fact that our Gram matrices and polynomials are related to each
other via linear equalities, it should be clear that optimizing over the set of
dsos (resp. sdsos, sos) polynomials is an LP (resp. SOCP, SDP).

Let us now get back to convexity.

Definition 5 Let \(y = (y_1, \ldots, y_n)^T \) be a vector of variables. A polynomial
\(p := p(x) \) is said to be

- dsos-convex if \(y^T H_p(x)y \) is dsos (as a polynomial in \(x \) and \(y \)).
- sdsos-convex if \(y^T H_p(x)y \) is sdsos (as a polynomial in \(x \) and \(y \)).
- sos-convex if \(y^T H_p(x)y \) is sos (as a polynomial in \(x \) and \(y \)).

We denote the set of dsos-convex (resp. sdsos-convex, sos-convex, convex)
forms in \(\mathcal{H}_{n,d} \) by \(\Sigma_{DC_{n,2d}} \) (resp. \(\Sigma_{SC_{n,2d}}, \Sigma_{C_{n,2d}}, C_{n,2d} \)). Similarly, \(\tilde{\Sigma}_{DC_{n,2d}} \)
(resp. \(\tilde{\Sigma}_{SC_{n,2d}}, \tilde{\Sigma}_{C_{n,2d}}, \tilde{C}_{n,2d} \)) denote the set of dsos-convex (resp. sdsos-
convex, sos-convex, convex) polynomials in \(\tilde{\mathcal{H}}_{n,2d} \).

The following inclusions

\[\Sigma_{DC_{n,2d}} \subseteq \Sigma_{SC_{n,2d}} \subseteq \Sigma_{C_{n,2d}} \subseteq C_{n,2d} \quad (12) \]

are a direct consequence of (11) and the second-order necessary and sufficient
condition for convexity which reads

\[p(x) \text{ is convex} \iff H_p(x) \succeq 0, \forall x \in \mathbb{R}^n \iff y^T H_p(x)y \geq 0, \forall x, y \in \mathbb{R}^n. \]

Optimizing over \(\Sigma_{DC_{n,2d}} \) (resp. \(\Sigma_{SC_{n,2d}}, \Sigma_{C_{n,2d}} \)) is an LP (resp. SOCP,
SDP). The same statements are true for \(\tilde{\Sigma}_{DC_{n,2d}}, \tilde{\Sigma}_{SC_{n,2d}} \) and \(\tilde{\Sigma}_{C_{n,2d}} \).

Let us draw these sets for a parametric family of polynomials

\[p(x_1, x_2) = 2x_1^4 + 2x_2^4 + ax_1^3x_2 + bx_1^2x_2^2 + cx_1x_2^3. \quad (13) \]

Here, \(a, b \) and \(c \) are parameters. It is known that for bivariate quartics, all
convex polynomials are sos-convex; i.e., \(\Sigma_{C_{2,4}} = C_{2,4} \) \(^6\). To obtain Figure 1.

\(^5\) The notion of sos-convexity has already appeared in the study of semidefinite repre-
sentability of convex sets \(^19\) and in applications such as shaped-constrained regression in
statistics \(^32\).

\(^6\) In general, constructing polynomials that are convex but not sos-convex seems to be
a nontrivial task \(^5\). A complete characterization of the dimensions and degrees for which
convexity and sos-convexity are equivalent is given in \(^6\).
we fix \(c \) to some value and then plot the values of \(a \) and \(b \) for which \(p(x_1, x_2) \) is s/d/sos-convex. As we can see, the quality of the inner approximation of the set of convex polynomials by the sets of dsos/sd/sos-convex polynomials can be very good (e.g., \(c = 0 \)) or less so (e.g., \(c = 1 \)).

![Fig. 1: The sets \(\Sigma D_{n,2d}, \Sigma S_{n,2d} \) and \(\Sigma C_{n,2d} \) for the parametric family of polynomials in (13)](image)

3.2 Existence of difference of s/d/sos-convex decompositions of polynomials

The reason we introduced the notions of s/d/sos-convexity is that in our optimization problems for finding dccs, we would like to replace the condition

\[
 f = g - h, \ g, h \text{ convex}
\]

with the computationally tractable condition

\[
 f = g - h, \ g, h \text{ s/d/sos-convex}.
\]

The first question that needs to be addressed is whether for any polynomial such a decomposition exists. In this section, we prove that this is indeed the case. This in particular implies that a dcc can be found efficiently.

We start by proving a lemma about cones.

Lemma 1 Consider a vector space \(E \) and a full-dimensional cone \(K \subseteq E \). Then, any \(v \in E \) can be written as \(v = k_1 - k_2 \), where \(k_1, k_2 \in K \).

Proof Let \(v \in E \). If \(v \in K \), then we take \(k_1 = v \) and \(k_2 = 0 \). Assume now that \(v \notin K \) and let \(k \) be any element in the interior of the cone \(K \). As \(k \in \text{int}(K) \), there exists \(0 < \alpha < 1 \) such that \(k' := (1 - \alpha)v + \alpha k \in K \). Rewriting the previous equation, we obtain

\[
 v = \frac{1}{1 - \alpha}k' - \frac{\alpha}{1 - \alpha}k.
\]

By taking \(k_1 := \frac{1}{1 - \alpha}k' \) and \(k_2 := \frac{\alpha}{1 - \alpha}k \), we observe that \(v = k_1 - k_2 \) and \(k_1, k_2 \in K \). \(\square \)
The following theorem is the main result of the section.

Theorem 2 Any polynomial $p \in \tilde{H}_{n,2d}$ can be written as the difference of two dsos-convex polynomials in $\tilde{H}_{n,2d}$.

Corollary 1 Any polynomial $p \in \tilde{H}_{n,2d}$ can be written as the difference of two sdsos-convex, sos-convex, or convex polynomials in $\tilde{H}_{n,2d}$.

Proof This is straightforward from the inclusions

$$\tilde{\Sigma} D C_n, 2d \subseteq \tilde{\Sigma} S C_n, 2d \subseteq \tilde{\Sigma} C_n, 2d \subseteq C_n, 2d.$$

In view of Lemma 1, it suffices to show that $\tilde{\Sigma} D C_n, 2d$ is full dimensional in the vector space $H_{n,2d}$ to prove Theorem 2. We do this by constructing a polynomial $p \in int(\tilde{\Sigma} D C_n, 2d)$ for any n, d.

Recall that $z_{n,d}$ (resp. $\tilde{z}_{n,d}$) denotes the vector of all monomials in $x = (x_1, \ldots, x_n)$ of degree exactly (resp. up to) d. If $y = (y_1, \ldots, y_n)$ is a vector of variables of length n, we define

$$w_{n,d}(x,y) := y \cdot z_{n,d}(x),$$

where $y \cdot z_{n,d}(x) = (y_1 z_{n,d}(x), \ldots, y_n z_{n,d}(x))^T$. Analogously, we define

$$\tilde{w}_{n,d}(x,y) := y \cdot \tilde{z}_{n,d}(x).$$

Theorem 3 For all n, d, there exists a polynomial $p \in \tilde{H}_{n,2d}$ such that

$$y^T H_p(x) y = \tilde{w}_{n,d-1}^T(x,y) Q \tilde{w}_{n,d-1}(x,y),$$

for some strictly dd matrix Q.

Any such polynomial will be in $int(\tilde{\Sigma} D C_n, 2d)$. Indeed, if we were to perturb the coefficients of p slightly, then each coefficient of Q would undergo a slight perturbation. As Q is strictly dd, Q would remain dd, and hence p would remain dsos-convex.

We will prove Theorem 3 through a series of lemmas. First, we show that this is true in the homogeneous case and when $n = 2$ (Lemma 2). By induction, we prove that this result still holds in the homogeneous case for any n (Lemma 3). We then extend this result to the nonhomogeneous case.

Lemma 2 For all d, there exists a polynomial $p \in \tilde{H}_{2,2d}$ such that

$$y^T H_p(x) y = w_{2,d-1}^T(x,y) Q w_{2,d-1}(x,y),$$

for some strictly dd matrix Q.

We remind the reader that Lemma 2 corresponds to the base case of a proof by induction on n for Theorem 3.
Proof In this proof, we show that there exists a polynomial \(p \) that satisfies (15) for some strictly dd matrix \(Q \) in the case where \(n = 2 \), and for any \(d \geq 1 \).

First, if \(2d = 2 \), we simply take \(p(x_1, x_2) = x_1^2 + x_2^2 \) as \(y^T H_p(x)y = 2y^T Iy \) and the identity matrix is strictly dd. Now, assume \(2d > 2 \). We consider two cases depending on whether \(d \) is divisible by 2.

In the case that it is, we construct \(p \) as

\[
p(x_1, x_2) := a_0 x_1^{2d} + a_1 x_1^{2d-2} x_2^2 + a_2 x_1^{2d-4} x_2^4 + \ldots + a_{d/2} x_1^d x_2^d + a_0 x_2^{2d},
\]

with the sequence \(\{a_k\}_{k=0,\ldots,d} \) defined as follows

\[
a_1 = 1 \\
\begin{equation}
a_{k+1} = \left(\frac{2d - 2k}{2k + 2} \right) a_k, \quad k = 1, \ldots, \frac{d}{2} - 1 \quad \text{(for } 2d > 4) \end{equation}
\]

\[
a_0 = \frac{1}{d} + \frac{d}{2(2d - 1)} a_{\frac{d}{2}}.
\]

Let

\[
\begin{align*}
\beta_k &= a_k (2d - 2k)(2d - 2k - 1), \quad k = 0, \ldots, \frac{d}{2} - 1, \\
\gamma_k &= a_k \cdot 2k(2k - 1), \quad k = 1, \ldots, \frac{d}{2}, \\
\delta_k &= a_k (2d - 2k) \cdot 2k, \quad k = 1, \ldots, \frac{d}{2}.
\end{align*}
\]
We claim that the matrix \(Q \) defined as

\[
\begin{pmatrix}
\beta_0 & 0 & \cdots & 0 & \delta_1 \\
\beta_k & \delta_{k+1} & \cdots & 0 & \delta_{k-1} \\
\beta_{k-1} & \delta_{k-2} & \cdots & \ddots & \vdots \\
\vdots & \vdots & \ddots & \ddots & \ddots \\
\beta_0 & \delta_1 & \cdots & \delta_{k-1} & \beta_d \\
\end{pmatrix}
\] is strictly dd and satisfies (15) with \(w_{2,d-1}(x,y) \) ordered as

\[
(y_1 x_1^{d-1}, y_1 x_1^{d-2} x_2, \ldots, y_1 x_1^{d-2} x_2^{d-2}, y_1 x_2^{d-1}, y_2 x_1^{d-1}, y_2 x_1^{d-2} x_2, \ldots, y_2 x_1^{d-2} x_2^{d-2}, y_2 x_2^{d-1})^T.
\]

To show (15), one can derive the Hessian of \(p \), expand both sides of the equation, and verify equality. To ensure that the matrix is strictly dd, we want all diagonal coefficients to be strictly greater than the sum of the elements on the row. This translates to the following inequalities

\[
\begin{align*}
\beta_0 &> \delta_1 + \delta_{\frac{d}{2}} \\
\beta_k &> \delta_{k+1}, \forall k = 1, \ldots, \frac{d}{2} - 2 \\
\beta_{\frac{d}{2} - 1} &> 0, \gamma_1 > 0 \\
\gamma_{k+1} &> \delta_k, \forall k = 1, \ldots, \frac{d}{2} - 1.
\end{align*}
\]

Replacing the expressions of \(\beta_k, \gamma_k \) and \(\delta_k \) in the previous inequalities using (17) and the values of \(a_k \) given in (16), one can easily check that these inequalities are satisfied.
We now consider the case where \(d \) is not divisible by 2 and take
\[
 p(x_1, x_2) := a_0 x_2^d + a_1 x_1^{d-2} x_2^2 + \ldots + a_{(d-1)/2} x_1^{d-1} x_2^1 + a_{(d-1)/2} x_1^{d-1} x_2^1 + \ldots + a_d x_1^{2d-2} + a_0 x_2^d,
\]
with the sequence \(\{a_k\}_{k=0,\ldots,d-1} \) defined as follows
\[
 \begin{align*}
 a_0 &= 1 \\
 a_{k+1} &= \left(\frac{2d - 2k}{2k + 2}\right) a_k, \quad k = 1, \ldots, \frac{d - 3}{2} \\
 a_0 &= 1 + \frac{2(2d - 2)}{2d(2d - 1)}.
\end{align*}
\] (18)

Again, we want to show existence of a strictly dd matrix \(Q \) that satisfies (15). Without changing the definitions of the sequences \(\{\beta_k\}_{k=1,\ldots,d-2}, \{\gamma_{\frac{d-1}{2}}\}_{k=1,\ldots,d-2} \) and \(\{\delta_k\}_{k=1,\ldots,d-2} \), we claim this time that the matrix \(Q \) defined as
\[
\begin{pmatrix}
 \beta_0 & \beta_1 & \ldots & \beta_{d-3} & \beta_{d-2} \\
 \gamma_1 & \gamma_2 & \ldots & \gamma_{d-3} & \gamma_{d-2} \\
 \delta_0 & \delta_1 & \ldots & \delta_{d-3} & \delta_{d-2} \\
 \delta_{d-3} & \delta_{d-2} & \ldots & \delta_1 & \delta_0 \\
 \delta_{d-2} & \delta_0 & \ldots & \delta_{d-3} & \delta_{d-1} \\
 \delta_0 & \delta_{d-1} & \ldots & \delta_1 & \delta_{d-2} \\
 \delta_{d-1} & \delta_{d-2} & \ldots & \delta_0 & \delta_{d-3} \\
 \delta_{d-3} & \delta_{d-2} & \ldots & \delta_1 & \delta_{d-1} \\
 \delta_{d-2} & \delta_0 & \ldots & \delta_{d-3} & \delta_{d-1} \\
 \delta_0 & \delta_{d-1} & \ldots & \delta_1 & \delta_{d-2} \\
 \end{pmatrix}
\]

satisfies (15) and is strictly dd. Showing (15) amounts to deriving the Hessian of \(p \) and checking that the equality is verified. To ensure that \(Q \) is strictly dd, the inequalities that now must be verified are
\[
 \begin{align*}
 \beta_k &> \delta_{k+1}, \quad \forall k = 0, \ldots, \frac{d - 1}{2} - 1 \\
 \gamma_k &> \delta_{k-1}, \quad \forall k = 2, \ldots, \frac{d - 1}{2} \\
 \gamma_1 &> 0.
\end{align*}
\]
These inequalities can all be shown to hold using (18).

Lemma 3 For all n,d, there exists a form $p_{n,2d} \in H_{n,2d}$ such that

$$y^TH_{p_{n,2d}}(x)y = w_{n,d-1}^T(x,y)Q_{p_{n,2d}}w_{n,d-1}(x,y)$$

and $Q_{p_{n,2d}}$ is a strictly dd matrix.

Proof We proceed by induction on n with fixed and arbitrary d. The property is verified for $n = 2$ by Lemma 2. Suppose that there exists a form $p_{n,2d} \in H_{n,2d}$ such that

$$y^TH_{p_{n,2d}}y = w_{n,d-1}^T(x,y)Q_{p_{n,2d}}w_{n,d-1}(x,y),$$

for some strictly dd matrix $Q_{p_{n,2d}}$. We now show that

$$p_{n+1,2d} := q + \alpha v$$

with

$$q := \sum_{(i_1,\ldots,i_n) \in \{1,\ldots,n\}^n} p_{n,2d}(x_{i_1},\ldots,x_{i_n})$$

and $\alpha > 0$ small enough, verifies

$$y^TH_{p_{n+1,2d}}y = w_{n+1,d-1}^T(x,y)Q_{p_{n+1,2d}}w_{n+1,d-1}(x,y),$$

for some strictly dd matrix $Q_{p_{n+1,2d}}$. Equation (21) will actually be proved using an equivalent formulation that we describe now. Recall that

$$w_{n+1,d-1}(x,y) = y \cdot z_{n+1,d-1},$$

where $z_{n+1,d-1}$ is the standard vector of monomials in $x = (x_1,\ldots,x_{n+1})$ of degree exactly $d - 1$. Let \hat{w}_n be a vector containing all monomials from $w_{n+1,d-1}$ that include up to n variables in x and \hat{w}_{n+1} be a vector containing all monomials from $w_{n+1,d-1}$ with exactly $n + 1$ variables in x. Obviously, $w_{n+1,d-1}$ is equal to

$$\hat{w} := \begin{pmatrix} \hat{w}_n \\ \hat{w}_{n+1} \end{pmatrix}$$

up to a permutation of its entries. If we show that there exists a strictly dd matrix Q such that

$$y^TH_{p_{n+1,2d}}(x)y = \hat{w}^T(x,y)\hat{Q}\hat{w}(x,y)$$

then one can easily construct a strictly dd matrix $Q_{p_{n+1,2d}}$ such that (21) will hold by simply permuting the rows of Q appropriately.

We now show the existence of such a Q. To do this, we claim and prove the following:
Claim 1: there exists a strictly dd matrix \hat{Q}_q such that
\[
y^T H_q(x)y = \begin{pmatrix} \hat{w}_n \\ \hat{w}_{n+1} \end{pmatrix}^T \begin{pmatrix} \hat{Q}_q & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} \hat{w}_n \\ \hat{w}_{n+1} \end{pmatrix}.
\] (23)

Claim 2: there exist a symmetric matrix \hat{Q}_v, and $q_1, \ldots, q_m > 0$ (where m is the length of \hat{w}_{n+1}) such that
\[
y^T H_v(x)y = \begin{pmatrix} \hat{w}_n \\ \hat{w}_{n+1} \end{pmatrix}^T \begin{pmatrix} \hat{Q}_v & 0 \\ 0 & \text{diag}(q_1, \ldots, q_m) \end{pmatrix} \begin{pmatrix} \hat{w}_n \\ \hat{w}_{n+1} \end{pmatrix}.
\] (24)

Using these two claims and the fact that $p_{n+1,2d} = q + \alpha v$, we get that
\[
y^T H_{p_{n+1,2d}}(x)y = y^T H_q(x)y + \alpha y^T H_v(x)y = \hat{w}^T(x,y)\hat{Q}\hat{w}(x,y)
\]

where
\[
\hat{Q} = \begin{pmatrix} \hat{Q}_q + \alpha \hat{Q}_v & 0 \\ 0 & \alpha \text{diag}(q_1, \ldots, q_m) \end{pmatrix}.
\]

As \hat{Q}_q is strictly dd, we can pick $\alpha > 0$ small enough such that $\hat{Q}_q + \alpha \hat{Q}_v$ is strictly dd. This entails that \hat{Q} is strictly dd, and (22) holds.

It remains to prove the two claims to be done.

Proof of Claim 1: Claim 1 concerns the polynomial q, defined as the sum of polynomials $p_{n,2d}(x_i_1, \ldots, x_i_n)$. Note from [19] that the Hessian of each of these polynomials has a strictly dd Gram matrix in the monomial vector $w_{n,d-1}$. However, the statement of Claim 1 involves the monomial vector \hat{w}_n. So, we start by linking the two monomial vectors. If we denote by
\[
M = \bigcup_{(i_1, \ldots, i_n) \in \{1, \ldots, n+1\}^n} \{\text{monomials in } w_{n,d-1}(x_i_1, \ldots, x_i_n, y)\},
\]
then M is exactly equal to $\hat{M} = \{\text{monomials in } \hat{w}_n(x,y)\}$ as the entries of both are monomials of degree 1 in y and of degree $d-1$ and in n variables of $x = (x_1, \ldots, x_{n+1})$.

By definition of q, we have that
\[
y^T H_q y = \sum_{(i_1, \ldots, i_n) \in \{1, \ldots, n+1\}^n} w_{n,d-1}(x_i_1, \ldots, x_i_n, y)^T Q_{p_{n,2d}(x_i_1, \ldots, x_i_n)} w_{n,d-1}(x_i_1, \ldots, x_i_n, y)
\]

We now claim that there exists a strictly dd matrix \hat{Q}_q such that
\[
y^T H_q y = \hat{w}_n^T \hat{Q}_q \hat{w}_n.
\]

This matrix is constructed by padding the strictly dd matrices $Q_{p_{n,2d}(x_i_1, \ldots, x_i_n)}$ with rows of zeros and then adding them up. The sum of two rows that verify the strict diagonal dominance condition still verifies this condition. So we only need to make sure that there is no row in \hat{Q}_q that is all zero. This is indeed the case because $\hat{M} \subseteq M$.
Proof of Claim 2: Let \(I := \{ i_1, \ldots, i_n \mid i_1 + \ldots + i_{n+1} = d, i_1, \ldots, i_{n+1} > 0 \} \) and \(\bar{w}_{n+1}^i \) be the \(i \)th element of \(\bar{w}_{n+1} \). To prove (24), we need to show that
\[
y^TH_v(x)y = \sum_{i_1, \ldots, i_n \in I} n+1 \sum_{k=1}^{2i_k} (2i_k - 1)x_1^{2i_1} \cdots x_k^{2i_k-2} \cdots x_{n+1}^{2i_{n+1} - 2} y_k^2
+ 4 \sum_{i_1, \ldots, i_n \in I} n+1 \sum_{j \neq k} i_k i_j x_1^{2i_1} \cdots x_j^{2i_j} \cdots x_k^{2i_k-1} \cdots x_{n+1}^{2i_{n+1} - 1} y_j y_k.
\]

This can equal
\[
\bar{w}_{n+1}^T(x, y) \tilde{Q}_v \bar{w}_{n+1}^T(x, y) + \sum_{i=1}^m q_i (\bar{w}_{n+1}^i)^2
\]

for some symmetric matrix \(\tilde{Q}_v \) and positive scalars \(q_1, \ldots, q_m \). We first argue that all monomials contained in \(y^T H_v(x)y \) appear in the expansion (26). This means that we do not need to use any other entry of the Gram matrix in (24). Since every monomial appearing in the first double sum of (25) involves only even powers of variables, it can be obtained via the diagonal entries of \(Q_v \) together with the entries \(q_1, \ldots, q_m \). Moreover, since the coefficient of each monomial in this double sum is positive and since the sum runs over all possible monomials consisting of even powers in \(n + 1 \) variables, we conclude that \(q_i > 0 \), for \(i = 1, \ldots, m \).

Consider now any monomial contained in the second double sum of (25). We claim that any such monomial can be obtained from off-diagonal entries in \(\tilde{Q}_v \). To prove this claim, we show that it can be written as the product of two monomials \(m' \) and \(m'' \) with \(n \) or fewer variables in \(x = (x_1, \ldots, x_{n+1}) \). Indeed, at least two variables in the monomial must have degree less than or equal to \(d - 1 \). Placing one variable in \(m' \) and the other variable in \(m'' \) and then filling up \(m' \) and \(m'' \) with the remaining variables (in any fashion as long as the degrees at \(m' \) and \(m'' \) equal \(d - 1 \)) yields the desired result.

Proof (of Theorem 3) Let \(p_{n, 2k} \in H_{n, 2k} \) be the form constructed in the proof of Lemma 3 which is in the interior of \(\Sigma_D C_{n, 2k} \). Let \(Q_k \) denote the strictly diagonally dominant matrix which was constructed to satisfy
\[
y^T H_{p_{n, 2k}} y = w_{n, 2k}^T(x, y)Q_k w_{n, 2k}.
\]

To prove Theorem 3 we take
\[
p := \sum_{k=1}^d p_{n, 2k} \in H_{n, 2d}.
\]

We have
\[
y^T H_p(x)y = \left(\begin{array}{c} w_{n, 1}(x, y) \\ \vdots \\ w_{n, d-1}(x, y) \end{array} \right)^T \left(\begin{array}{c} Q_1 \\ \vdots \\ Q_d \end{array} \right) \left(\begin{array}{c} w_{n, 1}(x, y) \\ \vdots \\ w_{n, d-1}(x, y) \end{array} \right)
= \bar{w}_{n, d-1}(x, y)^T Q \bar{w}_{n, d-1}(x, y).
\]
We observe that Q is strictly dd, which shows that $p \in \text{int}(\Sigma D_{C_n,2d})$.

Remark 1 If we had only been interested in showing that any polynomial in $\tilde{H}_{n,2d}$ could be written as a difference of two sos-convex polynomials, this could have been easily done by showing that $p(x) = (\sum_i x_i^2)^d \in \text{int}(\Sigma C_{n,2d})$. However, this form is not dsos-convex or sdsos-convex for all n,d (e.g., for $n = 3$ and $2d = 8$). We have been unable to find a simpler proof for existence of sdsos-convex dcds that does not go through the proof of existence of dsos-convex dcds.

Remark 2 If we solve problem (6) with the convexity constraint replaced by a dsos-convexity (resp. sdsos-convexity, sos-convexity) requirement, the same arguments used in the proof of Theorem 1 now imply that the optimal solution g^* is not dominated by any dsos-convex (resp. sdsos-convex, sos-convex) decomposition.

4 Numerical results

In this section, we present a few numerical results to show how our algebraic decomposition techniques affect the convex-concave procedure. The objective function $p \in \tilde{H}_{n,2d}$ in all of our experiments is generated randomly following the ensemble of [36, Section 5.1.]. This means that

$$p(x_1,\ldots,x_n) = \sum_{i=1}^n x_i^{2d} + g(x_1,\ldots,x_n),$$

where g is a random polynomial of total degree $\leq 2d-1$ whose coefficients are random integers uniformly sampled from $[-30,30]$. An advantage of polynomials generated in this fashion is that they are bounded below and that their minimum p^* is achieved over \mathbb{R}^n. We have intentionally restricted ourselves to polynomials of degree equal to 4 in our experiments as this corresponds to the smallest degree for which the problem of finding a dc decomposition of f is hard, without being too computationally expensive. Experimenting with higher degrees however would be a worthwhile pursuit in future work. The starting point of CCP was generated randomly from a zero-mean Gaussian distribution.

One nice feature of our decomposition techniques is that all the polynomials $f_i^k, i = 0,\ldots,m$ in line 4 of Algorithm 1 in the introduction are sos-convex. This allows us to solve the convex subroutine of CCP exactly via a single SDP [26, Remark 3.4.], [28, Corollary 2.3.]:

$$\begin{align*}
\min \gamma \\
\quad \text{s.t. } f_0^k - \gamma &= \sigma_0 + \sum_{j=1}^m \lambda_j f_j^k \\
\quad \sigma_0 \text{ sos, } \lambda_j &\geq 0, j = 1,\ldots,m.
\end{align*}$$ (27)
The degree of σ_0 here is taken to be the maximum degree of f_0^k, \ldots, f_m^k. We could have also solved these subproblems using standard descent algorithms for convex optimization. However, we are not so concerned with the method used to solve this convex problem as it is the same for all experiments. All of our numerical examples were done using MATLAB, the polynomial optimization library SPOT [33], and the solver MOSEK [1].

4.1 Picking a good dc decomposition for CCP

In this subsection, we consider the problem of minimizing a random polynomial $f_0 \in \tilde{H}_{8,4}$ over a ball of radius R, where R is a random integer in $[20, 50]$. The goal is to compare the impact of the dc decomposition of the objective on the performance of CCP. To monitor this, we decompose the objective in 4 different ways and then run CCP using the resulting decompositions. These decompositions are obtained through different SDPs that are listed in Table 1.

Feasibility	$\lambda_{\text{max}} H_h(x_0)$	$\lambda_{\text{max}} B H_h$	Undominated
min 0 s.t. $f_0 = g - h$, g, h sos-convex	min t s.t. $f_0 = g - h$, g, h sos-convex $tI - H_h(x_0) \succeq 0$	min $\frac{1}{n} \int \text{Tr} H_h d\sigma$ s.t. $f_0 = g - h$, g, h sos-convex $y^T \tau(x) y \succeq 0$	$\lambda_{\text{max}} H_h$

Table 1: Different decomposition techniques using sos optimization

The first SDP in Table 1 is simply a feasibility problem. The second SDP minimizes the largest eigenvalue of H_h at the initial point x_0 inputed to CCP. The third minimizes the largest eigenvalue of H_h over the ball B of radius R. Indeed, let $f_1 := \sum x_i^2 - R^2$. Notice that $\tau(x) \succeq 0, \forall x$ and if $x \in B$, then $f_1(x) \leq 0$. This implies that $tI \succeq H_h(x), \forall x \in B$. The fourth SDP searches for an undominated ded.

Once f_0 has been decomposed, we start CCP. After 4 mins of total runtime, the program is stopped and we recover the objective value of the last iteration. This procedure is repeated on 30 random instances of f_0 and R, and the average of the results is presented in Figure 2. From the figure, we can see that the choice of the initial decomposition impacts the performance of CCP considerably, with the region formulation of λ_{max} and the undominated decomposition giving much better results than the other two. It is worth noting that all formulations have gone through roughly the same number of iterations of CCP (approx. 400). Furthermore, these results seem to confirm that it is best to pick an undominated decomposition when applying CCP.

\[\tau(x) \text{ is an } n \times n \text{ matrix where each entry is in } \tilde{H}_{n,2d-4}. \]
4.2 Scalibility of s/d/sos-convex dcds and the multiple decomposition CCP

While solving the last optimization problem in Table 1 usually gives very good results, it relies on an sos-convex dc decomposition. However, this choice is only reasonable in cases where the number of variables and the degree of the polynomial that we want to decompose are low. When these become too high, obtaining an sos-convex dcd can be too time-consuming. The concepts of dsos-convexity and sdsos-convexity then become interesting alternatives to sos-convexity. This is illustrated in Table 2, where we have reported the time taken to solve the following decomposition problem:

$$\min \frac{1}{A_n} \int_{S_n-1} \text{Tr } H_g d\sigma$$

s.t. $f = g - h, g, h$ s/d/sos-convex

In this case, f is a random polynomial of degree 4 in n variables. We also report the optimal value of (28) (we know that (28) is always guaranteed to be feasible from Theorem 3). Notice that for $n = 18$, it takes over 30 hours to obtain an sos-convex decomposition, whereas the run times for s/dsos-convex decompositions are still in the range of 10 seconds. This increased speed comes at a price, namely the quality of the decomposition. For example, when $n = 10$, the optimal value obtained using sos-convexity is nearly 10 times lower than that of dsos-convexity.

Now that we have a better quantitative understanding of this tradeoff, we propose a modification to CCP that leverages the speed of s/dsos-convex dcds.
for large \(n \). The idea is to modify CCP in such a way that one would compute a new \(s/d/sos-convex \) decomposition of the functions \(f_i \) after each iteration. Instead of looking for dcds that would provide good global decompositions (such as undominated sos-convex dcds), we look for decompositions that perform well locally. From Section 2, candidate decomposition techniques for this task can come from formulations (4) and (5) that minimize the maximum eigenvalue of the Hessian of \(h \) at a point or the trace of the Hessian of \(h \) at a point. This modified version of CCP is described in detail in Algorithm 2. We will refer to it as multiple decomposition CCP.

We compare the performance of CCP and multiple decomposition CCP on the problem of minimizing a polynomial \(f \) of degree 4 in \(n \) variables, for varying values of \(n \). In Figure 3, we present the optimal value (averaged over 30 instances) obtained after 4 mins of total runtime. The “SDSOS” columns correspond to multiple decomposition CCP (Algorithm 2) with \(sdsos-convex \) decompositions at each iteration. The “SOS” columns correspond to classical CCP where the first and only decomposition is an undominated sos-convex dc.

From Figure 2, we know that this formulation performs well for small values of \(n \). This is still the case here for \(n = 8 \) and \(n = 10 \). However, this approach performs poorly for \(n = 12 \) as the time taken to compute the initial decomposition is too long. In contrast, multiple decomposition CCP combined with \(sdsos-convex \) decompositions does slightly worse for \(n = 8 \) and \(n = 10 \), but significantly better for \(n = 12 \).

Algorithm 2 Multiple decomposition CCP (\(\lambda_{\text{max}} \) version)

\[
\begin{align*}
\text{Input:} & \quad x_0, f_i, i = 0, \ldots, m \\
1: & \quad k \leftarrow 0 \\
2: & \quad \text{while stopping criterion not satisfied do} \\
3: & \quad \quad \text{Decompose:} \quad \forall i \text{ find } g_i^k, h_i^k \text{ s/d/sos-convex that min. } t, \text{ s.t. } tI - H_{h_i^k}(x_k) \text{ s/dd} \text{ and } f_i = g_i^k - h_i^k \\
4: & \quad \quad \text{Convexify: } f_i^k(x) := g_i^k(x) - (h_i^k(x_k) + \nabla h_i^k(x_k)^T(x - x_k)), \quad i = 0, \ldots, m \\
5: & \quad \quad \text{Solve convex subroutine: min } f_i^0(x), \text{ s.t. } f_i^k(x) \leq 0, \quad i = 1, \ldots, m \\
6: & \quad \quad x_{k+1} := \text{argmin } f_i^0(x) \\
7: & \quad \quad k \leftarrow k + 1 \\
8: & \quad \text{end while} \\
\text{Output: } & \quad x_k
\end{align*}
\]

In conclusion, our overall observation is that picking a good dc decomposition noticeably affects the performance of CCP. While optimizing over all dc decompositions is intractable for polynomials of degree greater or equal to 4, the algebraic notions of sos-convexity, sds-convexity and dsos-convexity can provide valuable relaxations. The choice among these options depends on the number of variables and the degree of the polynomial at hand. Though these

8 Here \(dd \) and \(sdd \) matrices refer to notions introduced in Definition 3. Note that any \(t \) which makes \(tI - A \) \(dd \) or \(sdd \) gives an upperbound on \(\lambda_{\text{max}}(A) \). By formulating the problem this way (instead of requiring \(tI \geq A \)) we obtain an LP or SOCP instead of an SDP.
DC Decomposition of Nonconvex Polynomials with Algebraic Techniques

Fig. 3: Comparing multiple decomposition CCP using sdos-convex decompositions against CCP with a single undominated sos-convex decomposition

classes of polynomials only constitute subsets of the set of convex polynomials, we have shown that even the smallest subset of the three contains dccds for any polynomial.

Acknowledgements We would like to thank Pablo Parrilo for insightful discussions and Mirjam Dür for pointing out reference [10].

References

1. MOSEK reference manual (2013). Version 7. Latest version available at http://www.mosek.com/
2. Ahmadi, A.A., Majumdar, A.: DSOS and SDSOS optimization: LP and SOCP-based alternatives to sum of squares optimization. In: Proceedings of the 48th Annual Conference on Information Sciences and Systems. Princeton University (2014)
3. Ahmadi, A.A., Majumdar, A.: DSOS and SDSOS optimization: more tractable alternatives to sum of squares and semidefinite optimization (2015). In preparation
4. Ahmadi, A.A., Olshevsky, A., Parrilo, P.A., Tsitsiklis, J.N.: NP-hardness of deciding convexity of quartic polynomials and related problems. Mathematical Programming 137(1-2), 453–476 (2013)
5. Ahmadi, A.A., Parrilo, P.A.: A convex polynomial that is not sos-convex. Mathematical Programming 135(1-2), 275–292 (2012)
6. Ahmadi, A.A., Parrilo, P.A.: A complete characterization of the gap between convexity and sos-convexity. SIAM Journal on Optimization 23(2), 811–833 (2013). Also available at arXiv:1111.4587
7. Alizadeh, F., Goldfarb, D.: Second-order cone programming. Mathematical Programming 95(1), 3–51 (2003)
8. Alvarado, A., Scutari, G., Pang, J.: A new decomposition method for multiuser dc-programming and its applications. Signal Processing, IEEE Transactions on 62(11), 2984–2998 (2014)
9. Argyriou, A., Hauser, R., Micchelli, C.A., Pontil, M.: A DC-programming algorithm for kernel selection. In: Proceedings of the 23rd international conference on Machine learning, pp. 41–48. ACM (2006)
10. Bomze, I., Locatelli, M.: Undominated dc decompositions of quadratic functions and applications to branch-and-bound approaches. Computational Optimization and Applications 28(2), 227–245 (2004)
11. Chapelle, O., Do, C.B., Teo, C.H., Le, Q.V., Smola, A.J.: Tighter bounds for structured estimation. In: Advances in Neural Information Processing Systems, pp. 281–288 (2009)
12. Dür, M.: A parametric characterization of local optimality. Mathematical Methods of Operations Research 57(1), 101–109 (2003)
13. Flassas, C., Pardalos, P.: Optimization in computational chemistry and molecular biology: local and global approaches, vol. 40. Springer Science & Business Media (2013)
14. Folland, G.: How to integrate a polynomial over a sphere. American Mathematical Monthly pp. 446–448 (2001)
15. Fung, G., Mangasarian, O.: Semi-supervised support vector machines for unlabeled data classification. Optimization methods and software 15(1), 29–44 (2001)
16. Garey, M.R., Johnson, D.S.: Computers and Intractability. W. H. Freeman and Co., San Francisco, Calif. (1979)
17. Gulpinar, N., Hoai An, L.T., Moene, M.: Robust investment strategies with discrete asset choice constraints using DC programming. Optimization 59(1), 45–62 (2010)
18. Hartman, P.: On functions representable as a difference of convex functions. Pacific J. Math 9(3), 707–713 (1959)
19. Helton, J.W., Nie, J.: Semidefinite representation of convex sets. Mathematical Programming 122(1), 21–64 (2010)
20. Hilbert, D.: Über die Darstellung Definiter Formen als Summe von Formenquadraten. Math. Ann. 32 (1888)
21. Hillestad, R., Jacobsen, S.: Reverse convex programming. Applied Mathematics and Optimization 6(1), 63–78 (1980)
22. Hiriart-Urruty, J.B.: Generalized differentiability, duality and optimization for problems dealing with differences of convex functions. In: Convexity and duality in optimization, pp. 37–70. Springer (1985)
23. Hoai An, L.T., Le, H.M., Tao, P.D., et al.: A DC programming approach for feature selection in support vector machines learning. Advances in Data Analysis and Classification 2(3), 259–278 (2008)
24. Hoai An, L.T., Tao, P.D.: Solving a class of linearly constrained indefinite quadratic problems by dc algorithms. Journal of Global Optimization 11(3), 253–285 (1997)
25. Horst, R., Thoai, N.; DC programming: overview. Journal of Optimization Theory and Applications 103(1), 1–43 (1999)
26. de Klerk, E., Laurent, M.: On the Lasserre hierarchy of semidefinite programming relaxations of convex polynomial optimization problems (2010). Available at http://www.optimization-online.org/DB-FILE/2010/11/2800.pdf
27. Lanckriet, G., Sriperumbudur, B.: On the convergence of the concave-convex procedure. In: Advances in neural information processing systems, pp. 1759–1767 (2014)
28. Lasserre, J.B.: Convexity in semialgebraic geometry and polynomial optimization. SIAM Journal on Optimization 19(4), 1995–2014 (2008)
29. Ling, C., Nie, J., Qi, L., Ye, Y.: Biquadratic optimization over unit spheres and semidefinite programming relaxations. SIAM Journal on Optimization 20(3), 1286–1310 (2009)
30. Lipp, T., Boyd, S.: Variations and extensions of the convex-concave procedure (2014). Available at http://web.stanford.edu/~boyd/papers/cvx_ccv.html
31. Lou, Y., Osher, S., Xin, J.: Computational Aspects of Constrained $l_1−l_2$ Minimization for Compressive Sensing. In: Modelling, Computation and Optimization in Information Systems and Management Sciences, pp. 169–180. Springer (2015)
32. Magnani, A., Lall, S., Boyd, S.: Tractable fitting with convex polynomials via sum of squares. In: Proceedings of the 44th IEEE Conference on Decision and Control (2005)
33. Megretski, A.: SPOT: systems polynomial optimization tools (2013)
34. Parrilo, P.A.: Structured semidefinite programs and semialgebraic geometry methods in robustness and optimization. Ph.D. thesis, California Institute of Technology (2000)
35. Parrilo, P.A.: Semidefinite programming relaxations for semialgebraic problems. Mathematical Programming 96(2, Ser. B), 293–320 (2003)
36. Parrilo, P.A., Sturmfels, B.: Minimizing polynomial functions. Algorithmic and Quantitative Real Algebraic Geometry, DIMACS Series in Discrete Mathematics and Theoretical Computer Science 60, 83–99 (2003)
37. Plot, B., Geist, M., Pietquin, O.: Difference of convex functions programming for reinforcement learning. In: Advances in Neural Information Processing Systems, pp. 2519–2527 (2014)
38. Reznick, B.: Some concrete aspects of Hilbert’s 17th problem. In: Contemporary Mathematics, vol. 253, pp. 251–272. American Mathematical Society (2000)
39. Salakhutdinov, R., Roweis, S., Ghahramani, Z.: On the convergence of bound optimization algorithms. In: Proceedings of the Nineteenth conference on Uncertainty in Artificial Intelligence, pp. 509–516. Morgan Kaufmann Publishers Inc. (2002)
40. Tao, P.; D. and Hoai An, L.T.: Convex analysis approach to dc programming: Theory, algorithms and applications. Acta Mathematica Vietnamica 22(1), 289–355 (1997)
41. Tao, P.D.: Duality in dc (difference of convex functions) optimization. Subgradient methods. In: Trends in Mathematical Optimization, pp. 277–293. Springer (1988)
42. Toland, J.: On subdifferential calculus and duality in non-convex optimization. Mémoires de la Société Mathématique de France 60, 177–183 (1979)
43. Tuy, H.: A general deterministic approach to global optimization via dc programming. North-Holland Mathematics Studies 129, 273–303 (1986)
44. Tuy, H.: Global minimization of a difference of two convex functions. In: Nonlinear Analysis and Optimization, pp. 150–182. Springer (1987)
45. Tuy, H.: DC optimization: theory, methods and algorithms. In: Handbook of global optimization, pp. 149–216. Springer (1995)
46. Tuy, H., Horst, R.: Convergence and restart in branch-and-bound algorithms for global optimization. Application to concave minimization and dc optimization problems. Mathematical Programming 41(1-3), 161–183 (1988)
47. Wang, S., Schwing, A., Urtasun, R.: Efficient inference of continuous Markov random fields with polynomial potentials. In: Advances in Neural Information Processing Systems, pp. 936–944 (2014)
48. Yuille, A., Rangarajan, A.: The concave-convex procedure (CCCP). Advances in neural information processing systems 2, 1033–1040 (2002)