X-ray absorption spectroscopy of exemplary platinum porphyrin and corrole derivatives: metal-versus ligand-centered oxidation†

Benjamin D. Matson,a Kolle E. Thomas,b Abraham B. Alemayehu,b Abhik Ghoshb,ca and Ritimukta Sarangi D,a

A combination of Pt L3-edge X-ray absorption spectroscopy (EXAFS and XANES) and DFT (TPSS) calculations have been performed on powder samples of the archetypal platinum porphyrinoid complexes PtIV[TpCF3PP], PtIV[TpCF3PP]Cl2, and PtIV[TpCF3PP](Ar)(py), where TpCF3PP2− = meso-tetrakis(p-trifluoromethylphenyl)porphyrinato and TpCF3PC5− = meso-tris(p-trifluoromethylphenyl)corrolato. The three complexes yielded Pt L3-edge energies of 11 566.0 eV, 11 567.2 eV, and 11 567.6 eV, respectively. The 1.2 eV blueshift from the Pt(II) to the Pt(IV) porphyrin derivative is smaller than expected for a formal two-electron oxidation of the metal center. A rationale was provided by DFT-based Hirshfeld which showed that the porphyrin ligand in the Pt(IV) complex is actually substantially oxidized relative to that in the Pt(II) complex. The much smaller blueshift of 0.4 eV, going from PtIV[TpCF3PP]Cl2, and PtIV[TpCF3PP](Ar)(py), is ascribable to the significantly stronger ligand field in the latter compound.

Results and discussion

X-ray absorption spectroscopy (XAS)

Pt L3-edge X-ray absorption spectroscopy (XAS), including X-ray absorption near-edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) analysis, was performed on three complexes – PtII[TpCF3PP], PtIV[TpCF3PP]Cl2, and PtIV[TpCF3PC](Ar)(py) – which are analogues of PtIV[TpCF3PP](Ar)(py) to interrogate their electronic structure and bonding parameters. (The choice of CF3-substituted porphyrinoid ligands was prompted by the general expectation that the resulting complexes should be more resistant toward aerial oxidation and conducive to long-term storage.) The analyses were carried out on powder samples. The three complexes yielded Pt L3-edge energies of 11 566.0 eV, 11 567.2 eV, and 11 567.6 eV, respectively (Fig. 2). The Pt L3-edge energies and intensities are sensitive to the charge (or electrostatic potential) and the number of empty 5d states, respectively, at the Pt center.† The increase in the L3-edge energy and intensity of systems.† To assist such analyses, we carried out a Pt L3 XAS study of a set of well-characterized Pt porphyrin and corrole derivatives. (Given their broad importance, there have been surprisingly few XAS and related measurements on porphyrin and corrole derivatives.† The results, interpreted with density functional theory (DFT) calculations, provide detailed insights into the factors influencing the pre-edge shifts of Pt complexes.
PtIV[TpCF\textsubscript{3}PP]Cl\textsubscript{2} when compared to PtII[TpCF\textsubscript{3}PP] is thus consistent with oxidation of the Pt center from, formally, Pt(II) to Pt(IV). The slight increase in the edge position of PtIV[TpCF\textsubscript{3}PC](Ar)(py), compared to PtIV[TpCF\textsubscript{3}PP]Cl\textsubscript{2}, is consistent with an oxidized species with an increase in the strength of the ligand field due to the TpCF\textsubscript{3}PC, Ar and/or pyridine ligands. Support for this interpretation also comes from the approximately equal pre-edge intensities of PtIV[TpCF\textsubscript{3}PP]Cl\textsubscript{2} and PtIV[TpCF\textsubscript{3}PC](Ar)(py), as expected for two low spin d6 Pt(IV) species.

The bonding parameters of all three species were determined via EXAFS analysis (Fig. 3 and Table 1) and found to agree well with DFT optimized structures. Thus, the two Pt porphyrins PtIV[TpCF\textsubscript{3}PP]Cl\textsubscript{2} and PtII[TpCF\textsubscript{3}PP] were found to exhibit similar Pt–N distances of 2.03 Å and 2.01 Å, respectively. The Pt–Cl distance in PtIV[TpCF\textsubscript{3}PP]Cl\textsubscript{2} was determined to be 2.31 Å. EXAFS analysis of PtIV[TpCF\textsubscript{3}PC](Ar)(py) revealed 4 shortened Pt–N distances of 1.96 Å, as well as distances of 1.98 Å and 2.26 Å for the axial Pt–CPh and Pt–N\textsubscript{py} bonds, respectively. These distances also served as proof of the chemical integrity of the samples under the conditions of the XAS experiments.

Fig. 1 Platinum porphyrin and corrole derivatives studied in this work, along with selected TPSS Hirshfeld charges.

Fig. 2 Normalized Pt L\textsubscript{3}-edge XAS spectra for PtII[TpCF\textsubscript{3}PP] (red), PtIV[TpCF\textsubscript{3}PP]Cl\textsubscript{2} (green), and PtIV[TpCF\textsubscript{3}PC](Ar)(py) (blue). The inset depicts first derivative spectra.

Fig. 3 Non-phase shift corrected Fourier transforms of the Pt L-edge EXAFS data (gray, solid) and corresponding fits (black, dashed) for PtII[TpCF\textsubscript{3}PP] (top), PtIV[TpCF\textsubscript{3}PP]Cl\textsubscript{2} (middle), and PtIV[TpCF\textsubscript{3}PC](Ar)(py) (bottom). Insets show the EXAFS regions and their fits.
The estimated standard deviations for the distances are in order of ±0.02 Å. b The σ² values are multiplied by 10⁴. A * indicates that the σ² value was linked to that of the Pt–N path.

Density functional theory

To shed additional light on the electronic structure of the three Pt species, DFT (TPSS) calculations were performed with SARC-ZORA (Pt)[30] and def2-TZVP[35–37] basis sets. As noted above, the Pt L₃-edge blueshifts by 1.2 eV upon oxidation of Pt⁴⁺[TpCF₃PP] to Pt⁴⁺[TpCF₃PP]Cl₂. While this shift to higher energy is expected upon oxidation, the magnitude of the energy shift is significantly lower than expected for 2-e⁻ oxidation, i.e., Pt(II) to Pt(IV). Hirshfeld charges obtained from the calculations showed that both the Pt centers and TpCF₃PP ligands are oxidized by an appreciable amount, when going from Pt⁴⁺[TpCF₃PP] to Pt⁴⁺[TpCF₃PP]Cl₂. In Pt⁴⁺[TpCF₃PP], the charge on the Pt center is calculated to be +0.120 e (e being the absolute value of the electronic charge) and, accordingly, the charge on the TpCF₃PP ligand is −0.120 e in the neutral species. By comparison, Pt⁴⁺[TpCF₃PP]Cl₂ shows an increased charge on Pt (+0.316 e) and TpCF₃PP (+0.237 e), with the two chlorido groups (+0.277 e each) balancing out yield the neutral species. Taken together, these Hirshfeld charges suggest that the relatively small Pt L₃-edge blueshift upon oxidation of Pt⁴⁺[TpCF₃PP] to Pt⁴⁺[TpCF₃PP]Cl₂ reflects substantial oxidation of the TpCF₃PP ligand (∆q = +0.357 e), as well as, of course, the Pt center (∆q = +0.196 e).

Further insight into the electronic structures came from visualization of the d-based frontier molecular orbitals (FMOs, Fig. 4–6). The 6-coordinate, d⁶ species Pt⁴⁺[TpCF₃PP]Cl₂ (Fig. 5) shows the expected d-manifold splitting in which the fully occupied, non-bonding dσ orbital lies lowest in energy and a fully occupied, degenerate set of (dₓz, dᵧ)−derived π-

nonbonding orbitals at a relative energy of +2.9 eV. Higher still in energy are the unoccupied d* orbitals derived from dₓz (+5.3 eV relative to dᵧ) and dₓz,yz (+6.1 eV relative to dᵧ). Comparison of these FMOs to those of the structurally similar Pt⁴⁺[TpCF₃PC](Ar)(py) reveals some crucial differences in the bonding and ligand field strength of the associated ligands. Although the d-based FMOs appear in the same order in both
species, they occur at slightly different orbital energies. Thus, the d_{xy} orbital has a slightly higher orbital energy (by ~ 1 eV) in PtIV[TpCF$_3$PP](Ar)(py) relative to PtIV[TpCF$_3$PP]Cl$_2$. The difference appears to be related to the decrease in symmetry in PtIV[TpCF$_3$PC](Ar)(py), which allows the orbital, which is strictly non-bonding in PtIV[TpCF$_3$PP]Cl$_2$, to engage in weak σ/σ^* interactions. The (d_{xz}, d_{yz}) pair shown in Fig. 5 exhibits the opposite behavior, with these orbitals lying slightly lower in energy (~ 0.3 eV) in PtIV[TpCF$_3$PC](Ar)(py) compared to PtIV[TpCF$_3$PP]Cl$_2$, indicating the combined effects of a number of interactions, especially the π-antibonding interactions with the chlorido ligands. Finally, the d_{z^2} and $d_{x^2-y^2}$ orbitals appear at higher energies (~ 1.3 and 1.2 eV, respectively) in PtIV[TpCF$_3$PC](Ar)(py), as expected for the higher σ-donating abilities of both the equatorial corrole and axial aryl and pyridine ligands and consistent with the higher Pt L$_3$-edge energy in PtIV[TpCF$_3$PC](Ar)(py).

Conclusion

A combined XAS and DFT study of a set of three well-characterized Pt porphyrinoid complexes has shed light on the factors affecting Pt L$_3$ pre-edge energies. From PtII[TpCF$_3$PP] to PtIV[TpCF$_3$PC]Cl$_2$, the Pt L$_3$ pre-edge energy upshifts by 1.2 V, which is unexpectedly small for a two-electron oxidation of the metal. An explanation comes from DFT calculations, which showed that the oxidation is far from purely metal-centered; instead, the porphyrin ligand in PtIV[TpCF$_3$PP]Cl$_2$ is substantially oxidized. From PtIV[TpCF$_3$PC]Cl$_2$ to PtIV[TpCF$_3$PC](Ar)(py), the Pt L$_3$ pre-edge energy upshifts by a further 0.4 eV. This upshift is largely attributable to an increase in overall ligand field strength in PtIV[TpCF$_3$PC](Ar)(py).

Experimental section

Materials and instruments

Benzonitrile was pre-dried over and distilled from P$_4$O$_{10}$ and stored over activated 4 Å molecular sieves. Ultraviolet-visible (UV-vis) spectra were recorded on an HP 8454 spectrophotometer in CH$_2$Cl$_2$. 1H (400 MHz) and 19F (376 MHz) NMR spectra were acquired on a 400 MHz Bruker Avance III HD spectrometer equipped with a 5 mm SmartProbe BB/1H (BB = 19F, 31P-15N) in CDCl$_3$ and referenced to CHCl$_3$ ($\delta = 7.26$ ppm) for 1H and to 2,2,2-trifluoroethanol- d_3 ($\delta = -77.8$ ppm) for 19F. High resolution electrospray ionization mass spectra (HRMS) were recorded on an LTQ Orbitrap XL spectrometer.

Syntheses

PtII[TpCF$_3$PP] was synthesized according to Buchler et al., by refluxing free-base meso-tetra(4-trifluoromethylphenyl) porphyrin with PtCl$_2$ (3 equiv.) in dry benzonitrile for 2.5 h. Purification of the crude product was performed via column chromatography on silica gel with n-hexane/CH$_2$Cl$_2$ as eluent. Subsequent crystallization from 1 : 2 CHCl$_3$/MeOH yielded the desired product as an orange-red solid. Spectroscopic data obtained for PtII[TpCF$_3$PP] matched those reported earlier. PtIV[TpCF$_3$PC](Ar)(py) was also synthesized as reported recently.
\[\text{Pt}^{IV}[\text{TPFP}][\text{Cl}_2] \] was prepared according to Mink et al., with a few modifications, as follows: a saturated solution \(\text{Cl}_2(g) \) in \(\text{CHCl}_3 \) (1 mL) solution was added dropwise over 2 min to a stirred, chilled (0 °C) solution of \(\text{Pt}^{IV}[\text{TPFP}][\text{PP}] \) (40 mg, 0.037 mmol) in \(\text{CHCl}_3 \) (5 mL). The orange solution thereupon turned red and was stirred for an additional 20 min at room temperature. UV-vis spectroscopy at this point showed that \(\text{Pt}^{IV}[\text{TPFP}][\text{PP}] \) was still not fully consumed. An additional 1 mL of saturated \(\text{Cl}_2/\text{CHCl}_3 \) solution was accordingly added dropwise and the reaction mixture was stirred for a further 40 min, whereupon the \(399 \text{ nm} \) soret band of \(\text{Pt}[\text{TPFP}][\text{PP}] \) disappeared completely. The dark red solution was evaporated under vacuum and the distillate, essentially \(\text{Cl}_2/\text{CHCl}_3 \), was dechlorinated with a saturated aqueous solution of sodium thiosulfate \((\text{Na}_2\text{S}_2\text{O}_3)\) prior to disposal. The residue was redissolved in a minimum volume of \(\text{CHCl}_3 \) and the resulting solution was layered with three times its volume of cold MeOH. After 3 days, \(\text{Pt}^{IV}[\text{TPFP}][\text{PP}][\text{Cl}_2] \) was obtained as shiny, purple crystals (31 mg, 0.021 mmol, 73%). UV-vis \(\lambda_{\text{max}} \left[\text{nm} \right] \) \([\text{nM}, \chi \times 10^4 \left(\text{M}^{-1} \text{cm}^{-1} \right)] \): 324 (2.22), 420 (27.82), 536 (2.21), 600 (0.44). \(^{1} \text{H} \text{NMR} \) (CDCl\(_3\), \(\delta = 7.26 \text{ ppm} \)): 9.05 (s, 8H, \(\beta-\text{H} \)); 8.42 (d, 8H, \(J = 8.0 \text{ Hz} \), 5,10,15,20-\(\text{m} \), \(p\text{CF}_3\text{Ph} \)); 8.11 (d, 8H, \(J = 8.0 \text{ Hz} \), m or o, \(p\text{CF}_3\text{Ph} \)) \(^{19} \text{F} \text{NMR} \) (CDCl\(_3\), \(\delta = -62.63 \text{ ppm} \)): 12F, 5,10,15,20-\(p\text{CF}_3\text{Ph} \)) HRMS (ESI, major isotopomer) \([\text{M}]^+ \): 1150.0842 (expt), 1150.0825 (calcd); \([\text{M} – 2\text{Cl}]^+ \): 1079.1475 (expt), 1079.1455 (calcd).

X-ray absorption spectroscopy

The Pt \(L_3 \)-edge X-ray absorption spectra of the three complexes of interest were measured at the Stanford Synchrotron Radiation Lightsource (SSRL) on the unfocused 20-pole 2 T wiggler sidestation beamline 7–3 under nonstandard ring conditions of 3 GeV and \(\sim 100 \text{ mA} \) (low-alpha operations mode at SSRL). An Si(220) double crystal monochromator was used for energy selection. A Rh-coated harmonic rejection mirror was used on beamline 7–3 to reject components of higher harmonics. The monochromator was further detuned by 50% to eliminate components of higher harmonics. All species were ground with boron nitride (BN) as a diluent and then placed in 1 mm aluminum spacer for solid-state analysis. During data collection, the samples were maintained at a constant temperature of \(\sim 10-15 \text{ K} \) using an Oxford Instruments CF 1208 liquid helium cryostat. Data were collected to \(k = 14 \text{ Å}^{-1} \) using an ionization chamber detector placed directly downstream of the sample. Internal energy calibration was accomplished via simultaneous measurement of the absorption of a Pt foil placed between two ionization chambers situated after the sample. The first inflection point of the foil spectrum was fixed at 11 563.7 eV. No visual change in the rising-edge energy was observed over successive scans, indicating that the samples survived photoreduction/damage under experimental conditions. The data presented here are averages over 2 to 4 scans. The data were processed in the Athena utility of the Demeter 0.9.26 package by fitting a second order polynomial to the pre-edge region and subtracting this from the entire spectrum as background. A three-region spline of orders 2, 3, and 3 was used to model the smoothly decaying post-edge region.

Theoretical EXAFS signals \(\chi(k) \) were calculated by using FEFF42-44 (Macintosh version 8.4). Structural models were obtained from crystal structures. The input structures were successful in generating reasonable phase and amplitude parameters required to obtain a good fit. Data fitting was performed in Artemis utility in the Demeter version 0.9.26 code. The structural parameters varied during the fitting process were the bond distance (\(r \)) and the bond variance \(\sigma^2 \), which is related to the Debye–Wallner factor resulting from thermal motion, and static disorder of the absorbing and scattering atoms. The nonstructural parameter \(\Delta E_0 \) (\(E_0 \) is the energy at which \(k = 0 \)) was also allowed to vary but was restricted to a common value for every component within a given fit. Coordination numbers were systematically varied in the course of the fits but were fixed within a given fit.

Computational details

All DFT calculations were performed using ORCA 3.0.3,\(^{21}\) the TPS\(s \) meta-GGA functional, Pantazi and Neese’s SARC-ZORA basis set on Pt\(^{4+}\) and Ahlrich’s all-electron def2-TZVP basis set on all other atoms.\(^{15-17}\)

Conflicts of interest

There are no conflicts to declare.

Acknowledgements

This research was supported in part by grants 262229 and 324139 to AG from the Research Council of Norway. The Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, is supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Contract No. DE-AC02-76SF00515. The SSRL Structural Molecular Biology Program is supported by the DOE Office of Biological and Environmental Research, and by the National Institutes of Health, National Institute of General Medical Sciences (including P41GM103393). The contents of this publication are solely the responsibility of the authors and do not necessarily represent the official views of NIGMS or NIH.

References

1. D. McDonald and L. B. Hunt, A History of Platinum and its Allied Metals, Johnson Matthey, London, 1982, p. 450.
2. G. Pinto, J. Chem. Educ., 2017, 94, 970–975.
3. B. Rosenberg, L. van Camp and T. Krigas, Nature, 1965, 205, 698–699.
4. L. Kelland, Nat. Rev. Cancer, 2007, 7, 573–584.
5. S. Rottenberg, C. Disler and P. Perego, Nat. Rev. Cancer, 2021, 21, 37–50.
6. Z. Wang, Z. Deng and G. Zhu, Dalton Trans., 2019, 48, 2536–2544.
7. M. Gouberman, in The Porphyrins, ed. D. Dolphin, Academic Press, New York, 1978, pp. 1–165.
