Polarizabilities, Stark shifts, and lifetimes of In atom

M. S. Safronova1,2, U. I. Safronova3,4, and S. G. Porsev1,5

1Department of Physics and Astronomy, University of Delaware, Newark, Delaware 19716, USA
2Joint Quantum Institute, National Institute of Standards and Technology and the University of Maryland, Gaithersburg, Maryland, 20899-8410, USA
3Physics Department, University of Nevada, Reno, Nevada 89557,
4Department of Physics, University of Notre Dame, Notre Dame, IN 46556
5Petersburg Nuclear Physics Institute, Gatchina, Leningrad District, 188300, Russia

(Dated: February 11, 2013)

We evaluate the polarizabilities of the \(5p_{1/2}\), \(6s\), \(6p_{1/2}\), and \(6p_{3/2}\) states of In using two different high-precision relativistic methods: linearized coupled-cluster approach where single, double and partial triple excitations of the Dirac-Fock wave function are included to all orders of perturbation theory and an approach that combines the configuration interaction and the coupled-cluster method. Extensive comparison of the accuracy of these methods is carried out. The uncertainties of all recommended values are evaluated. Our result for the \(6s−5p_{1/2}\) Stark shift is in excellent agreement with the recent measurement [Ranjit et al., arXiv:1302.0821]. Combining our calculation with this precision measurement allows us to infer the values of the \(6p_{1/2}\) and \(6p_{3/2}\) lifetimes in In with 0.8% accuracy. Our predictions for the \(6p_{3/2}\) scalar and tensor polarizabilities may be combined with the future measurement of the \(6s−6p_{3/2}\) Stark shift to accurately determine the lifetimes of the \(5d_j\) states.

PACS numbers: 31.15.ap, 32.10.Dk, 31.15.ag, 31.15.ac

I. INTRODUCTION

An indium atom represents an excellent system to compare the accuracy of different high-precision theoretical methods since it may be considered as both the monovalent system (assuming a closed \(5s^2\) core) and a trivalent system. In this work, we use both linearized coupled-cluster approach where single, double and partial triple excitations (LCCSDpT) of the Dirac-Fock wave function are included to all orders and a method combining the configuration interaction (CI) and the coupled-cluster method (CI+all-order).

The monovalent LCCSDpT method has been applied to a large number of neutral and ionized monovalent systems and yielded very accurate predictions for a number of atomic properties (see review \[1\] and references therein). It has been used for a variety of applications ranging from the study of fundamental symmetries \[2,3\] to study of the degenerate quantum gases and quantum information \[4\]. This method has been tested against all high-precision alkali and monovalent ion experimental values which allowed to establish a systematic procedure to evaluate its uncertainties even when no experimental data exist \[5\].

The CI+all-order method was recently developed for the treatment of the more complicated systems \[6\]. It has been tested on a variety of divalent systems \[7−11\] and applied to Tl \[12\]. However, there are far less experimental benchmark experiments for the properties of the divalent and trivalent systems in comparison with the alkalis. A recent high-precision (0.27\%) measurement of the \(6s−5p_{1/2}\) Stark shift in In \[13\] provides an excellent opportunity to compare the accuracy of the CI+all-order and LCCSDpT approaches, and test the procedure for the evaluation of the uncertainties of theoretical data. In turn, the combination of the Stark shift measurement \[13\] and our calculations allows us to infer the values of the \(6p_{1/2}\) and \(6p_{3/2}\) lifetimes in In with 0.8% accuracy. It is extremely difficult to achieve such high accuracy via direct lifetime measurements. Moreover, we predict the values of the \(6p_{3/2}\) scalar and tensor polarizabilities which can be soon tested against the future measurement of the \(6s−6p_{3/2}\) Stark shift \[13\] and will allow to determine the \(5d_j\) lifetimes.

Precise knowledge of In properties is of interest to the study of the fundamental symmetries, including parity violation and search for the permanent electric-dipole moment, since it is similar to Tl (also group IIIB). Understanding of the theoretical and experimental uncertainties in In can be used in Tl studies. Both EDM \[14\] and parity-violation studies \[15,16\] had been carried our in Tl. The theory accuracy in Tl is still below the experimental accuracy, hindering further parity violation studies with this system. A recent controversy regarding the calculated values of Tl EDM enhancement factor is discussed in detail in \[12\].

In-like ions are excellent candidates for a search for the variation of the fine-structure constant \(\alpha\). Despite very large ionization energies, certain ions have transitions that lie in the optical range due to level crossing and are very sensitive to \(\alpha\)-variation \[17\]. In-like ions are particularly well suited for the experimental search for such transitions \[18\]. In fact, In-like isoelectronic sequence has by far the largest number of ions with long-lived metastable states with transition frequencies between 170 and 3000 nm, high sensitivity to \(\alpha\)-variation, and stable isotopes \[18\]. One of the main obstacles for the experimental work
in this direction is the lack of any experimental data for these systems and difficulty of accurate theoretical predictions. Testing the CI+all-order method on neutral In provides important information of the accuracy of this approach for further studies of the In-like ions.

II. METHOD

We use two different relativistic high-precision approaches for all calculations in this work. Such comparison of these two methods for the same system have never been done before. The first method (LCCSDpT) has been extremely successfully in predicting properties of alkali-metal atoms and other monovalent ions [1]. It can also be applied to In by treating $5s^2$ as a part of the $[1s^22s^22p^63s^23p^63d^{10}4s^24p^64d^{10}5s^2]$ core. The disadvantage of this approach is its inability to explicitly treat three-particle states, such as 5

of alkali-metal atoms and other monovalent ions [1]. It has also been applied to In by treating $5s^2$ as a part of the $[1s^22s^22p^63s^23p^63d^{10}4s^24p^64d^{10}5s^2]$ core. The disadvantage of this approach is its inability to explicitly treat three-particle states, such as $5s^2p^2$. However, LCCSDpT method produced the results for the $6p_{1/2}$ and $6p_{1/2} - 7p_{1/2}$ Stark shifts [10] of Tl, which is a similar Group IIIB system, in excellent agreement with the experiments [20,21]. For convenience, we will refer to the LCCSDpT approach as the CC method in text and tables below.

The CI+all-order method (we also refer to it as CI+All in text and tables below) was developed in [6]. It allows us to treat In as a three-particle system, so all three electrons above the $4d^{10}$ shell are considered valence. In this approach, the CC method is first used to accurately describe core-core and core-valence correlation and to incorporate them into the effective Hamiltonian. Therefore, the core-core and core-valence sectors of the correlation corrections for systems with few valence electrons will be treated with the same accuracy as in the all-order approach for monovalent atoms. Then, the CI method is used to treat valence-valence correlations. Since the CI space includes only three electrons, it can be made essentially complete. This method allows to include correlation corrections to the wave functions in a more complete way than the CC approach. In particular it is capable to accurately account for the configuration mixing.

The CI+all-order method yielded accurate wave functions for calculations of such atomic properties as lifetimes, polarizabilities, hyperfine structure constants, etc. for a number of divalent systems and Tl [6,12]. However, the various types of the corrections to the effective dipole operator D_{eff} are included in a more complete way in the CI approach at the present time. Therefore, both approaches are complementary and the difference in the results can serve as an estimate of the uncertainties.

First, we compare the In energy levels calculated using the CC and CI+all-order methods with experiment [22]. The CC values include the part of the third-order energy not included by the LCCSD method and Breit interaction in second order. The CI+all-order method includes Breit interaction on the same footing as the Coulomb interaction, which would include some higher-order Breit corrections. The Breit correction is small; however, it significantly improves the accuracy of the $5s5p^2 4P_{1/2}$ energy levels. Both calculations are carried out with $l_{max} = 6$ partial waves in all intermediate sums in the many-body expressions and include extrapolation for the contributions of the partial waves with $l > 6$.

In the CC calculations, extrapolation is carried out in second order using a separate code. This second-order calculation shows that the total contribution of the $l > 6$ partial waves is close to the contribution of the single $l = 6$ partial wave. This empirical observation is used to estimate the contribution of the higher-order partial waves in the CI+all-order approach. We find that while both methods give energy levels in very good agreement with experiment, the CI+all-order results systematically agree better with the experimental values.

III. POLARIZABILITIES

Static polarizability of the state with total angular momentum J, its projection M, and the energy E can be expressed as a sum over unperturbed intermediate states:

$$\alpha(J, M) = 2 \sum_n \frac{|\langle J, M | D_Z | J_n, M \rangle|^2}{E_n - E},$$

(1)

where J_n and E_n are the total angular momenta and the energies of the intermediate states.

The static polarizability $\alpha(J, M)$ can be conveniently

State	Expt.	CC	Diff.	CI+All	Diff.
$5s^2 5p^2 \ ^2P_{1/2}^o$	425060	425719	0.15%		
$5s^2 5p^2 \ ^2P_{3/2}^o$	2213	2168	2.02%		
$5s^2 6p^2 \ ^2P_{1/2}^o$	31817	31468	1.10%		
$5s^2 6p^2 \ ^2P_{3/2}^o$	32115	31769	1.08%		
$5s^2 7p^2 \ ^2P_{1/2}^o$	38861	38513	0.90%		
$5s^2 7p^2 \ ^2P_{3/2}^o$	38973	38625	0.89%		
$5s^2 6s \ ^2S_{1/2}$	24733	23862	2.10%		
$5s^2 5d \ ^2D_{3/2}$	32892	32563	1.00%		
$5s^2 5d \ ^2D_{5/2}$	32916	32754	0.49%		
$5s^2 5p^2 \ ^2P_{1/2}$	34978	35299	-0.92%		
$5s^2 5p^2 \ ^2P_{3/2}$	36021	36346	-0.90%		
$5s^2 7s \ ^2S_{1/2}$	37452	37770	-0.85%		
$\Delta(6p_{1/2} - 6s)$	7444	7696	-2.18%		
$\Delta(5d_{5/2} - 6p_{3/2})$	800	985	-23%		
decomposed into scalar and tensor parts according to

$$\alpha = \alpha_0 + \alpha_2 \frac{3M^2 - J(J + 1)}{J(2J - 1)}$$

where the scalar (α_0) and tensor (α_2) polarizabilities can be expressed as

$$\alpha_0 = \frac{2}{3(2J + 1)} \sum_n \frac{|\langle J||D||J_n\rangle|^2}{E_n - E},$$

and

$$\alpha_2 = 4 \left(\frac{5J(2J - 1)}{6(2J + 3)(2J + 1)(J + 1)} \right)^{1/2} \times \sum_n (-1)^{j + J_n} \left\{ \begin{array}{ccc} j & 1 & J_n \\ 1 & J & 2 \end{array} \right\} \frac{|\langle J||D||J_n\rangle|^2}{E_n - E}.$$

For an open-shell atom, α_0 may be separated into a contribution from the valence electrons, α_{0v}, contribution from the core electrons, α_c, and a core modification due to the presence of the valence electrons, α_{vc}. We calculate core and α_{vc} terms using RPA in both approaches. The valence parts are calculated differently in the CC and CI+all-order methods.

In the CC approach, the valence polarizability of the single-electron valence state $|w\rangle$ is calculated using the sum-over-states method:

$$\alpha_{0v} = \frac{2}{3(2J_w + 1)} \sum_k \frac{\langle k||D||w\rangle^2}{E_k - E_w},$$

where j_w is the total angular momentum of the state $|w\rangle$, $\langle k||D||w\rangle$ are the single-electron reduced electric-dipole matrix elements and sum over k runs over all accessible excited states allowed by the electric-dipole transition rules.

In the CI+all-order approach, the valence part of the polarizability is determined by solving the inhomogeneous equation of perturbation theory in the valence space, which is approximated as

$$(E - H_{\text{eff}})|\gamma, M'\rangle = (D_{\text{eff}})_{\gamma q} |\gamma, J, M\rangle,$$

where γ incorporates all other quantum numbers except J and M. The wave function $|\gamma, M'\rangle$, where $M' = M + q$, is composed of parts that have angular momenta of $J' = J, J \pm 1$. The construction of the effective Hamiltonian H_{eff} using the all-order approach is described in [23]. The effective dipole operator D_{eff} includes RPA corrections.

While we do not use the sum-over-state approach in the calculations of the polarizabilities in the CI+all-order method, it is useful to calculate several dominant contributions to polarizabilities by combining the CI+all-order values of the E1 matrix elements and energies according to the sum-over-states formula [23] above. This allows us to compare dominant terms and total remainders calculated by the CC and CI+all-order methods.

TABLE II: Contributions to the 6s and 5p$_{1/2}$ static polarizabilities are given in α_0 in columns labeled “α_0” . The experimental energies (in cm$^{-1}$) and the theoretical electric-dipole reduced matrix elements (in a.u.) used to calculate dominant contributions are listed in columns labeled “ΔE” and “D”. The CC and CI+all-order electric-dipole matrix elements and the polarizability contributions are listed in columns labeled “CC” and “CI+All”, respectively.

Contribution	ΔE	D	α_0
$5p_{1/2}$	-24373	1.191	-11.0(6)
$6p_{1/2}$	7444	6.110	6.081
$7p_{1/2}$	14488	0.683	0.648
$8p_{1/2}$	17454	0.277	0.265
$9p_{1/2}$	17508	0.489	0.479
$10p_{1/2}$	-22160	2.935	-28.1(1)
$11p_{1/2}$	7742	8.529	8.491
$12p_{1/2}$	14600	1.131	1.084
$13p_{1/2}$	17508	0.489	0.479
$14p_{1/2}$	17508	0.489	0.479
Other Core	39.6(4.0)		3.2
VC	0.0		0.0
Main	1024.9		1015.5
Remainder	31.1		26.2
Total	1056(27)		1042

The uncertainty is the sum of the core and vc uncertainties.

We compare the contributions to the 6s and 5p$_{1/2}$ polarizabilities α_0 calculated by two approaches in Table II. The CC and CI+all-order reduced electric-dipole matrix elements and the contributions to the polarizability α_0 are listed in columns labeled “CC” and “CI+All”, respectively. The experimental energies listed in column ΔE are used to calculate the dominant contributions for consistency and to improve accuracy. We find generally very good agreement of the CC and CI+all-order results, with the exception of the $5p_{1/2} - 6d_{3/2}$ and the $5p_{1/2} - 7d_{3/2}$
TABLE III: Contributions to the $6p_{1/2}$ static polarizability are listed (in a_0^3) in columns labeled “a_0”. The experimental energies (in cm$^{-1}$) and the theoretical electric-dipole reduced matrix elements (in a.u.) used to calculate dominant contributions are listed in columns labeled “ΔE” and “D”. The CC and CI+all-order matrix elements and the polarizability contributions are listed in columns labeled “CC” and “CI+All”, respectively. The contributions from the terms 6s, 7s, 8s, 5$d_{3/2}$, 6$d_{3/2}$, and 7$d_{3/2}$ are grouped together in row “Main”.

Contribution	ΔE	D	a_0		
	Expt.	CC	CI+All	CC	CI+All
6s	-7444	6.110	6.081	-367(12)	-363
7s	4485	6.289	6.239	645(5)	635
8s	8820	1.294	1.317	14	14
$(9 - 12)s$				5(1)	
$(n > 12)s$				4(1)	
5$d_{3/2}$	1075	10.095	9.893	6933(140)	6659
6$d_{3/2}$	7232	6.470	6.477	423(65)	424
7$d_{3/2}$	10019	2.861	2.848	60(7)	59
$(8 - 12)d_{3/2}$		35(11)	35(6)		
$(n > 12)d_{3/2}$		35(6)			
Other				81	
Core		30(4)	3.2		
Main		7709(154)	7429		
Remainder		108(13)	84		
Total		7817(155)	7513		
Recommended		7817(300)			

cases. These matrix elements are small and have very large correlation corrections. The uncertainties in the CC contributions are evaluated using the well-defined approach described in detail in [8]. It involves calculation of the spread of four different CC calculations of increasing accuracy for each matrix element. The results labeled “Other” in the “CI+All” column are obtained by subtracting the separately listed dominant terms from the final valence value.

We note that the core contribution in the CC approach is substantially larger then the one in the CI+all-order approach since the 5s shell is included in the core in the CC method, but not in the CI+all-order one. The uncertainty of the CC core+vc term is evaluated as the difference of the DHF an RPA total core+vc values. The uncertainties in the tail are determined based on the difference of the RPA and all-order values for terms with $n = 9 - 12$.

As an additional comparison between two approaches, we group eight contributions to the 6s polarizability ($6s-(5-8)p_{1/2,3/2}$) together and list them in row “Main”. The contributions from six terms (6s, 7s, 8s, 5$d_{3/2}$, 6$d_{3/2}$, and 7$d_{3/2}$) are grouped together in row “Main” for the $5p_{1/2}$ polarizability. These main terms are subtracted from the totals to obtain the contributions from remaining terms. These terms are listed in rows labeled “Remainder”. The difference of the remainder part for the 6s polarizability appears to indicate lower lower value of the core polarizability when $5s^2$ is included in the core. Overall, there is good agreement of both main and remainder part between the two calculations. The final values for the 6s and $5p_{1/2}$ polarizabilities, the $6s - 5p_{1/2}$ Stark shift, and their uncertainties are discussed in the next section.

Contributions to the $6p_{1/2}$ and $6p_{3/2}$ polarizabilities of In (in a_0^3) are listed in Tables III and IVI, respectively. The tensor polarizability a_2 of the $6p_{3/2}$ state is given in Table IVI. These tables are structured in exactly the same way as Table II. The results of both CC and CI+all-order calculations are given. The only difference is the listing of the $5s5p^2^3P_2/5P_2$ contribution to the $6p_{3/2}$ polarizability. The contributions of the $5s5p^2^3P_2$ state to all other polarizabilities considered here were found to be negligible.

We find 3.9% difference between the CC and CI+all-order values for both scalar $6p_j$ polarizabilities and 3.1% difference between the values of the tensor a_2 polarizability for the $6p_{3/2}$ state. These differences are caused by the 2% difference in the values of the $6p_{1/2} - 5d_{3/2}$, $6p_{3/2} - 5d_{3/2}$, and $6p_{3/2} - 5d_{5/2}$ matrix elements which dominate the $6p_j$ polarizability values. This 2% difference is consistent with the expected accuracy of the CI+all-order method for these transitions.
ing. A high-precision measurement of the 6p$_{3/2}$–6s Stark shift should resolve this question. The final values for the 6p$_{3/2}$ polarizabilities are listed in the last rows of Tables III and IV.

IV. DISCUSSION OF THE RESULTS AND THEIR UNCERTAINTIES

While we have estimated the uncertainties of the CC calculation, it is possible to improve our evaluation of the uncertainties by comparing the CC and CI+all-order results. As we have described above, these two high-precision approaches include somewhat different higher-order effects. The CI+all-order calculations include the valence-valence correlation corrections to the wave functions very precisely, as indicated by excellent agreement of the respective energies with experiment. On the other hand, the effective dipole operator D_{eff} includes only RPA corrections in the CI+all-order method at the present time, omitting the structure radiation, normalization, and other small corrections. These corrections to the electric-dipole matrix elements are included in the CC method.

In the polarizability calculations, we use the experimental energies for the main terms. Therefore, more accurate method of calculating individual matrix elements is somewhat more important for the 6s polarizability. In the framework of the CC method, the 5s shell is included in the core and we have the large core polarizability. It leads to increasing the total uncertainty of the polarizability because the core polarizability is calculated with less accuracy. But it cancels out when the Stark shift of a transition is calculated. The CI+all-order method treats contributions with high α with better accuracy, since it is done by solving the inhomogeneous equation instead of using the sum-over-states method. This is not significant for the 6s polarizability where such tail contributions are small, but is important for the 5p$_{1/2}$ polarizability.

In summary, the CC and CI+all-order methods together include all correlation corrections that are expected to be dominant for the present polarizability calculations. Therefore, the uncertainty can be approximated as the difference $\delta\alpha = |\alpha(\text{CC}) - \alpha(\text{CI+all})|$ of the CC and CI+all-order results. All other omitted higher-order corrections are expected to be smaller than already included ones, therefore, we can also assume that they do not exceed $\delta\alpha$. Therefore, we take our final uncertainty in the polarizabilities and their difference to be $\sqrt{2}\delta\alpha$, calculated separately for each of the properties. We list our final values of the 6s and 5p$_{1/2}$ polarizabilities and their difference $\Delta\alpha(6s - 5p_{1/2})$ in Table IV in a.u.

We take the CC results to be the final values since CC method accounts for more higher-order corrections to the
TABLE V: Final values of the 6s and 5p_{1/2} polarizabilities and their difference \(\Delta \alpha_0 \) (a.u.). Determination of the reduced electric-dipole 6s–6p_{1/2} matrix elements (in a.u.) and 6p_{1/2} lifetimes (in ns) from the combination of the recently measured Stark shift \[13\] and theoretical values. The quantity \(C \) is the value of \(\Delta \alpha_0 \) (6s–5p_{1/2}) with the contribution of 6s–6p_{1/2} transitions subtracted out. The results are compared with other theory and experiment.

Method	\(\alpha_0 \) (6s)	\(\alpha_0 \) (5p_{1/2})	\(\Delta \alpha_0 \) (6s–5p_{1/2})	\(C \)	\(D \) (6s–6p_{1/2})	\(\tau \) (6p_{1/2})	\(\tau \) (6p_{3/2})	
CC	1056	61.5	995	-59.6	6.126	8.551		
CI+All	1042	62.4	980	-65.2	6.141	8.575		
Final	1056(20)	61.5(1.3)	995(21)	-59.6(7.8)	6.126(24)	8.551(34)	63.77(50)	58.17(45)
Expt. [13]								
Expt. [28]								
Theory [26]								
Theory [27]								
Theory [29]								

E1 matrix elements that dominate the 6s polarizability. For consistency, CC value of the 5p_{1/2} polarizability is used when calculating the final value for the 6s–5p_{1/2} Stark shift. Our final result is in excellent agreement with recent high-precision measurement of the 6s–5p_{1/2} Stark shift \[13\], which allows for benchmark comparison of the theoretical approachers. We find that the CC value is closer to the experimental measurement than the CI+all-order result. Our calculated polarizability of the 5p_{1/2} state is in excellent agreement with recent coupled-cluster single, double, and perturbative triples excitation (CCSD(T)] calculations of Refs. [26, 27]. We note that our implementation of the coupled-cluster method differs significantly from that of Refs. [26, 27] (see recent review [24] for details).

V. DETERMINATION OF THE LIFETIMES

Recent precision measurement of the 6s–5p_{1/2} Stark shift \[13\] can be combined with the present calculations to obtain very accurate lifetimes of the 6p_{1/2} and 6p_{3/2} states. This is possible since the 6s–6p_{j} matrix elements overwhelmingly dominate the values of this Stark shift as illustrated by Table [II]. Separating the 6s–6p_{j} contributions (see Eq. (5)), we write the \(\Delta \alpha_0 \) (6s–5p_{1/2}) Stark shift as

\[
\Delta \alpha_0 (6s–5p_{1/2}) = BS + C, \tag{7}
\]

where

\[
B = \frac{1}{3} \left(\frac{1}{E(6p_{1/2}) - E(6s)} + \frac{R^2}{E(6p_{3/2}) - E(6s)} \right), \tag{8}
\]

\(S = D^2 \) is the 6s–6p_{1/2} line strength, \(R \) is the ratio of the \(D(6s–6p_{1/2}) \) and \(D(6s–6p_{1/2}) \) reduced E1 matrix elements, and the term \(C \) contains all other contributions to the Stark shift. We calculate the ratio \(R \) to be 1.396(1). The uncertainty (0.001) is very small since the ratio \(R \) is very insensitive to different corrections. Using the results presented in Table [II] we see that the CC and CI+all-order methods give \(R \) equal to each other up to fourth significant figure. Substituting the ratio \(R \) and the corresponding experimental energies in Eq. (8) gives \(B = 28.24(3) \) a.u.

The values of \(C \) in the CC and CI+all-order methods are obtained from the results presented in Table [II] and are equal to -59.6 a.u. and -65.2 a.u., respectively (see Table [V]). Adding the relevant uncertainties from CC calculations of Table [II] in quadrature leads to the uncertainty \(\delta C = 4.9 \) a.u. This number is consistent with the difference of the CC and CI+all-order values, 5.6 a.u. We note that the uncertainty of the core term does not contribute to \(\delta C \), since this term is canceled when the Stark shift is calculated. The 5p_{1/2} \(\alpha_{cc} \) term does contribute, and its uncertainty is 1.3 a.u. To evaluate the final uncertainty in \(C \) we use the same rule as for the polarizability: multiply the difference of the CC and CI+all-order values by \(\sqrt{2} \) to account for other small uncertainties not included in our consideration. Again, we assume that they cannot exceed the difference of the CC and CI+all-order values. The final value for \(C \) is presented in Table [V].

There are three sources of the uncertainties contributing to the uncertainty in \(D(6s–6p_{1/2}) \): uncertainties in \(C \), \(B \), and experimental values of \(\Delta \alpha_0 \). For convenience, we calculate first the uncertainty in line strength \(S \) using formula:

\[
\delta S = \frac{1}{B} \sqrt{\delta C^2 + (\delta \Delta \alpha_0)^2 + (\delta B)^2}. \tag{9}
\]

The relative uncertainty in \(D \) is a half of the relative uncertainty in \(S \). The uncertainty in \(B \) is negligible. The final values of the matrix elements are listed in Table [V]. The lifetimes of the 6p_{1/2} and 6p_{3/2} states are obtained using the formula \(\tau_a = 1/A_{ab} \), since there is only one E1 decay channel for each state. The transition rate \(A_{ab} \) is given by

\[
A_{ab} = \frac{2.02613 \times 10^{18}}{\lambda_{ab}^3} \frac{S_{ab}}{2J_a + 1} \text{s}^{-1}, \tag{10}
\]

where the transition wavelength \(\lambda_{ab} \) is in Å. The relative uncertainties in the lifetimes are twice that of the relative uncertainties of the corresponding E1 matrix elements. The final values are given in Table [V].
To simplify the extraction of the $5d_j$ lifetimes from future experimental value of the $6p_{3/2} - 6s$ Stark shift, we evaluated the sum of all contributions to the $6p_{1/2}$ and $6p_{3/2}$ polarizabilities with the $5d - 6p$ terms excluded. These quantities, which we designate as $\tilde{C}(6p_j)$, are obtained from the data in Tables III and IV. We note that $\tilde{C}(6p_{1/2})$ and $\tilde{C}(6p_{3/2})$ refer to the contributions to the polarizabilities, rather than their differences as in Eq. (7).

We find that the CC and CI+all-order results are very close together, and are well within the uncertainty estimates of the CC data. The CC values (in a.u.) are $\tilde{C}(6p_{1/2}) = 884(68)$, $C_0(6p_{3/2}) = 1123(60)$, and $\tilde{C}_2(6p_{3/2}) = -514(19)$, where S_0 and S_2 are related to the scalar and tensor polarizabilities, respectively. The corresponding CI+all-order values are 854, 1098 and -506 (in a.u.). The ratio of the $6p_{1/2} - 5d_{3/2}$ and $6p_{3/2} - 5d_{3/2}$ matrix elements is 2.238(4) and the ratio of the $6p_{3/2} - 5d_{5/2}$ and $6p_{3/2} - 5d_{3/2}$ matrix elements is 3.0095(16).

VI. CONCLUSION

We carried out a first systematic comparison of the linearized coupled-cluster and CI+all-order method using the polarizabilities of the low-lying states of the In atom as a benchmark testing case. We find that the CI+all-order method produces more accurate data for the energy levels. It appears that the CC data for the E1 matrix elements are somewhat more accurate due to more complete inclusion of the small higher-order corrections to the matrix elements in the cases where relevant configuration mixing of trivalent states is negligible. This is an additional motivation to incorporate such corrections into the CI+all-order formalism at the all-order level in the future.

Our result for the $6s - 5p_{1/2}$ Stark shift is in excellent agreement with the recent high-precision experiment [13]. We also provide predictions for the polarizabilities of the $6p_{1/2}$ and $6p_{3/2}$ states. A precise experimental measurement of the $6p_{3/2} - 6s$ Stark shift proposed in [13] would be a good test of our calculations. This will also provide an excellent test of the theoretical approaches. Combining the present calculations with the experimental Stark shift data allows very accurate extraction of the lifetimes of the low-lying In states.

Acknowledgements

We thank P. K. Majumder for bringing this problem to our attention and helpful discussions. We thank M. G. Kozlov for discussion of the CI+all-order calculations and construction of the CI spaces and A. Borschevsky for providing unpublished CCSD and CCSD(T) values for the In$^+$ core polarizabilities. The work of M.S.S was supported in part by the NSF Grant No. PHY-1068699. The work of S.G.P. was supported in part by US NSF Grant No. PHY-1068699 and RFBR Grant No. 11-02-00943.

[1] M. S. Safronova and W. R. Johnson, Adv. At. Mol. Opt. Phys. 55, 191 (2008).
[2] S. G. Porsev, K. Beloy, and A. Derevianko, Phys. Rev. Lett. 102, 181601 (2009).
[3] M. S. Safronova, Can. J. Phys. 89, 371 (2011).
[4] M. S. Safronova, C. J. Williams, and C. W. Clark, Phys. Rev. A 67, 040303 (2003).
[5] M. S. Safronova and U. I. Safronova, Phys. Rev. A 83, 052508 (2011).
[6] M. S. Safronova, M. G. Kozlov, W. R. Johnson, and D. Jiang, Phys. Rev. A 80, 012516 (2009).
[7] M. S. Safronova, S. G. Porsev, and C. W. Clark, Phys. Rev. Lett. 109, 230802 (2012).
[8] M. S. Safronova, M. G. Kozlov, and C. W. Clark, Phys. Rev. Lett. 107, 143006 (2011).
[9] M. S. Safronova, M. G. Kozlov, and C. W. Clark, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control 59, 439 (2012).
[10] M. S. Safronova, M. G. Kozlov, and U. I. Safronova, Phys. Rev. A 85, 012507 (2012).
[11] M. S. Safronova, S. G. Porsev, M. G. Kozlov, and C. W. Clark, Phys. Rev. A 85, 052506 (2012).
[12] S. G. Porsev, M. S. Safronova, and M. G. Kozlov, Phys. Rev. Lett. 108, 173001 (2012).
[13] G. Ranjit and N. A. Schine and A. T. Lorenzo and A. E. Schneider and P. K. Majumder, arXiv:1302.0821v1.
[14] B. C. Regan, E. D. Commings, C. J. Schmidt, and D. DeMille, Phys. Rev. Lett. 88, 071805 (2002).
[15] N. H. Edwards, S. J. Phipp, P. E. G. Baird, and S. Nakayama, Phys. Rev. Lett. 74, 2654 (1995).
[16] P. A. Vetter, D. M. Meekhof, P. K. Majumder, S. K. Lamoreaux, and E. N. Fortson, Phys. Rev. Lett. 74, 2658 (1995).
[17] J. C. Berengut, V. A. Dzuba, and V. V. Flambaum, Phys. Rev. Lett. 105, 120801 (2010).
[18] M. S. Safronova, V. A. Dzuba, V. V. Flambaum, and M. G. Kozlov, in preparation (2013).
[19] M. S. Safronova, W. R. Johnson, U. I. Safronova, and T. E. Cowan, Phys. Rev. A 74, 022504 (2006).
[20] S. C. Doret, P. D. Friedberg, A. J. Speck, D. S. Richardson, and P. K. Majumder, Phys. Rev. A 66, 052504 (2002).
[21] D. Demille, D. Budker, and E. D. Commins, Phys. Rev. A 50, 4657 (1994).
[22] Yu. Ralchenko, A. Kramida, J. Reader, and NIST ASD Team (2011). NIST Atomic Spectra Database (version 4.1), http://physics.nist.gov/asd National Institute of Standards and Technology, Gaithersburg, MD.
[23] M. G. Kozlov and S. G. Porsev, Eur. Phys. J. D 5, 59 (1999).
[24] J. Mitroy, M. S. Safronova, and C. W. Clark, J. Phys. B 43, 202001 (2010).
[25] S. G. Porsev, Yu. G. Rakhlina, and M. G. Kozlov, Phys. Rev. A 60, 2781 (1999).
[26] A. Borschevsky, T. Zelovich, E. Eliav, and U. Kaldor, Chem. Phys. 395, 104 (2012).
[27] T. Fleig, Phys. Rev. A 72, 052506 (2005).
[28] T. P. Guella, T. M. Miller, B. Bederson, J. Stockdale, and B. Jaduszliwer, Phys. Rev. A 29, 2977 (1984).
[29] B. K. Sahoo and B. P. Das, Phys. Rev. A 84, 012501 (2011).