A Criterion for Dualizing Modules

Kamran DIVAANI-AAZAR, Massoumeh NIKKHAH BABAEI and Massoud TOUSI

Alzahra University and *Shahid Beheshti University
(Communicated by K. Onishi)

Abstract. We establish a characterization of dualizing modules among semidualizing modules. Let R be a finite dimensional commutative Noetherian ring with identity and C a semidualizing R-module. We show that C is a dualizing R-module if and only if $\text{Tor}_i^R(E, E')$ is C-injective for all C-injective R-modules E and E' and all $i \geq 0$.

1. Introduction

Throughout this paper, R will denote a commutative Noetherian ring with non-zero identity. The injective envelope of an R-module M is denoted by $E_R(M)$.

A finitely generated R-module C is called semidualizing if the homothety map $R \rightarrow \text{Hom}_R(C, C)$ is an isomorphism and $\text{Ext}_R^i(C, C) = 0$ for all $i > 0$. Immediate examples of such modules are free R-modules of rank one. A semidualizing R-module C with finite injective dimension is called dualizing. Although R always possesses a semidualizing module, it does not possess a dualizing module in general. Keeping [BH, Theorem 3.3.6] in mind, it is straightforward to see that the ring R possesses a dualizing module if and only if it is Cohen-Macaulay and it is homomorphic image of a finite dimensional Gorenstein ring.

Let (R, m, k) be a local ring. There are several characterizations in the literature for a semidualizing R-module C to be dualizing. For instance, Christensen [C, Proposition 8.4] has shown that a semidualizing R-module C is dualizing if and only if the Gorenstein dimension of k with respect to C is finite. Also, Takahashi et al. [TYY, Theorem 1.3] proved that a semidualizing R-module C is dualizing if and only if every finitely generated R-module can be embedded in an R-module of finite C-dimension. Our aim in this paper is to give a new characterization for a semidualizing R-module C to be dualizing.

Let C be a semidualizing R-module. An R-module M is said to be C-projective (respectively C-flat) if it has the form $C \otimes_R U$ for some projective (respectively flat) R-module U. Also, a C-free R-module is defined as a direct sum of copies of C. We can see that every...
C-projective R-module is a direct summand of a C-free R-module and over a local ring every finitely generated C-flat R-module is C-free. Also, an R-module M is said to be C-injective if it has the form $\text{Hom}_R(C, I)$ for some injective R-module I.

Yoneda raised a question of whether the tensor product of injective modules is injective. Ishikawa in [I, Theorem 2.4] showed that if $E_R(R)$ is flat, then $E \otimes_R E'$ is injective for all injective R-modules E and E'. Further, Enochs and Jenda [EJ, Theorem 4.1] proved that R is Gorenstein if and only if for every injective R-modules E and E' and any $i \geq 0$, $\text{Tor}_i^R(E, E')$ is injective. We extend this result in terms of a semidualizing R-module. More precisely, for a semidualizing R-module C, we show that the following are equivalent (see Theorem 2.7):

(i) C_p is a dualizing R_p-module for all $p \in \text{Spec } R$.

(ii) For any prime ideal p of R and any $i \geq 0$,

$$\text{Tor}_i^R(E_C(R/p), E_C(R/p)) = \begin{cases} 0 & \text{if } i \neq \dim_{R_p} C_p \\ E_C(R/p) & \text{if } i = \dim_{R_p} C_p \end{cases},$$

where $E_C(R/p) := \text{Hom}_R(C, E_R(R/p))$.

(iii) For any C-injective R-modules E and E' and any $i \geq 0$, $\text{Tor}_i^R(E, E')$ is C-injective.

2. The Results

Let p be a prime ideal of R. Recall that an R-module M is said to have property $t(p)$ if for each $r \in R - p$, the map $M \to M$ is an isomorphism and if for each $x \in M$ we have $p^m x = 0$ for some $m \geq 1$. If an R-module M has $t(p)$-property, then it has the structure as an R_p-module. It is known that $E_R(R/p)$ has $t(p)$-property.

To prove Theorem 2.7, which is our main result, we shall need the following five preliminary lemmas.

Lemma 2.1. Let C be a semidualizing R-module. Then the following statements hold true.

(i) $E_C(R/p) := \text{Hom}_R(C, E_R(R/p))$ has $t(p)$-property for each $p \in \text{Spec } R$.

(ii) If p and q are two distinct prime ideals of R, then $\text{Tor}_i^R(E_C(R/p), E_C(R/q)) = 0$ for all $i \geq 0$.

Proof. (i) As $E_R(R/p)$ has $t(p)$-property, one can easily check that for any finitely generated R-module M, the R-module $\text{Hom}_R(M, E_R(R/p))$ has $t(p)$-property.

(ii) By (i) $E_C(R/p)$ has $t(p)$-property and $E_C(R/q)$ has $t(q)$-property. So, [EH, 5] implies that

$$\text{Tor}_i^R(E_C(R/p), E_C(R/q)) = 0$$

for all $i \geq 0$. \qed
LEMMA 2.2. Let \((R, m, k)\) be a local ring, \(C\) a semidualizing \(R\)-module and \(I\) an Artinian \(C\)-injective \(R\)-module. Then \(\text{Hom}_R(I, E_R(k))\) is a finitely generated \(\hat{C}\)-free \(\hat{R}\)-module.

PROOF. Denote the functor \(\text{Hom}_R(-, E_R(k))\) by \((-)^\vee\). We have \(I = \text{Hom}_R(C, I')\) for some injective \(R\)-module \(I'\). Clearly, \(C \otimes_R I\) is also an Artinian \(R\)-module. Since

\[C \otimes_R I \cong C \otimes_R \text{Hom}_R(C, I') \cong \text{Hom}_R(\text{Hom}_R(C, C), I') \cong I', \]

we deduce that \(I'\) is also Artinian. So, \(I' \cong n \oplus E_R(k)\) for some nonnegative integer \(n\).

Now, one has

\[I^\vee = \text{Hom}_R(C, I')^\vee \cong C \otimes_R I'^{\vee} \cong n \oplus \hat{C}, \]

and so \(I^\vee\) is a finitely generated \(\hat{C}\)-free \(\hat{R}\)-module. \(\square\)

In the next result, we collect some useful known properties of semidualizing modules. We may use them without any further comments.

LEMMA 2.3. Let \(C\) be a semidualizing \(R\)-module and \(\underline{r} := r_1, \ldots, r_n\) a sequence of elements of \(R\). The following statements hold.

(i) \(\text{Supp}_R C = \text{Spec} R\), and so \(\text{dim}_R C = \text{dim} R\).

(ii) If \(R\) is local, then \(\hat{C}\) is a semidualizing \(\hat{R}\)-module.

(iii) \(\underline{r}\) is a regular \(R\)-sequence if and only if \(\underline{r}\) is a regular \(C\)-sequence.

(iv) If \(\underline{r}\) is a regular \(R\)-sequence, then \(C/(\underline{r})C\) is a semidualizing \(R/(\underline{r})\)-module.

(v) If \(R\) is local and \(\underline{r}\) is a regular \(R\)-sequence, then \(C\) is a dualizing \(R\)-module if and only if \(C/(\underline{r})C\) is a dualizing \(R/(\underline{r})\)-module.

PROOF. (i) and (ii) follow easily by the definition of a semidualizing module.

(iii) and (iv) are hold by [S, Corollary 3.3.3].

(v) Assume that \(R\) is local and \(\underline{r}\) is a regular \(R\)-sequence. Then by (iv), \(C/(\underline{r})C\) is a semidualizing \(R/(\underline{r})\)-module. On the other hand, [BH, Corollary 3.1.15] yields that

\[\text{id}_R C \underline{r} (\underline{r})C = \text{id}_R C - n. \]

This implies the conclusion. \(\square\)

In the proof of the following result, \(R \times C\) will denote the trivial extension of \(R\) by \(C\). For any \(R \times C\)-module \(X\), its Gorenstein injective dimension will be denoted by \(\text{Gid}_{R \times C} X\). Also, we recall that for a module \(M\) over a local ring \((R, m, k)\), the width of \(M\) is defined by \(\text{width}_R M := \inf \{ i \in \mathbb{N}_0 | \text{Tor}_i^R(k, M) \neq 0 \}\).

LEMMA 2.4. Let \((R, m, k)\) be a local ring and \(C\) a semidualizing \(R\)-module. Then \(E_C(k) \otimes_R E_C(k)\) is a non-zero \(C\)-injective \(R\)-module if and only if \(C\) is a dualizing \(R\)-module of dimension 0.
Suppose that $E_C(k) \otimes_R E_C(k)$ is a non-zero C-injective R-module. As $E_C(k)$ is Artinian, by [KLS, Corollary 3.9] the length of $E_C(k) \otimes_R E_C(k)$ is finite. So, also, $(E_C(k) \otimes_R E_C(k))^\vee$ has finite length. Since

$$\text{Hom}_R(E_C(k), \hat{C}) \cong (E_C(k) \otimes_R E_C(k))^\vee,$$

by Lemma 2.2, we deduce that $\text{Hom}_R(E_C(k), \hat{C})$ is isomorphic to a direct sum of finitely many copies of \hat{C}. This, in particular, implies that \hat{C} has finite length. Thus Lemma 2.3 yields that

$$\dim R = \dim R C = \dim \hat{R} \hat{C} = 0,$$

and so, in particular, R is complete. Next, one has

$$\text{Hom}_R(E_C(k), R) \cong \text{Hom}_R(E_C(k), \text{Hom}_R(C, C))$$

$$\cong \text{Hom}_R(C, \text{Hom}_R(E_C(k), C))$$

$$\cong \bigoplus \text{Hom}_R(C, C)$$

$$\cong R^n$$

for some $n > 0$. This, in particular, implies that

$$\text{Ann}_R(\text{Hom}_R(E_C(k), R)) = \text{Ann}_R R.$$

Since R is Artinian, $m' = 0$ and $m'^{-1} \neq 0$ for some $t > 0$. If for every $f \in \text{Hom}_R(E_C(k), R)$, $\text{im} f \subseteq m$, then $m'^{-1} f = 0$ so $m'^{-1} \text{Hom}_R(E_C(k), R) = 0$ a contradiction. Thus there is an epimorphism $E_C(k) \to R \to 0$, and so R is a direct summand of $E_C(k)$. Next, [HJ1, Lemma 2.6] implies that R is a Gorenstein injective $R \times C$-module. This yields that C is a dualizing R-module, because by [HJ2, Proposition 4.5], one has

$$\text{id}_R C \leq \text{Gid}_{R \times C} R + \text{width}_R R.$$

Conversely, if C is a dualizing R-module of dimension 0, then $\dim R = 0$ by Lemma 2.3 (i). Hence, $E_R(k)$ is a dualizing R-module, and then by [BH, Theorem 3.3.4 (b)] we have $C \cong E_R(k)$. Thus

$$E_C(k) \otimes_R E_C(k) \cong \text{Hom}_R(E_R(k), E_R(k)) \otimes_R \text{Hom}_R(E_R(k), E_R(k))$$

$$\cong R \otimes_R R$$

$$\cong R$$

$$\cong \text{Hom}_R(C, E_R(k)),$$

which is a non-zero C-injective R-module. \qed

Remark 2.5 (See [B, (2.5)]). Let M be an R-module and let $r \in R$ be a non-unit which is a non-zero divisor of both R and M. Let $0 \to M \to I^0 \xrightarrow{d^0} I^1 \to \cdots$ be a
minimal injective resolution of M. Then there is a natural $R/(r)$-isomorphism $M/(r)M \cong \text{Hom}_R(R/(r), \text{im } d^0)$ and

$$0 \to \text{Hom}_R(R/(r), I^1) \to \text{Hom}_R(R/(r), I^2) \to \cdots$$

is a minimal injective resolution of the $R/(r)$-module $M/(r)M$.

Next, we recall the definition of the notion of co-regular sequences. Let X be an R-module. An element r of R is said to be co-regular on X if the map $X \to X$ is surjective. A sequence r_1, \ldots, r_n of elements of R is said to be a co-regular sequence on X if r_i is co-regular on $(0 :_M (r_1, \ldots, r_{i-1}))$ for all $i = 1, \ldots, n$.

The following result plays a crucial role in the proof of Theorem 2.7.

Lemma 2.6. Let (R, \mathfrak{m}, k) be a local ring and C a semidualizing R-module. Let $r \in \mathfrak{m}$ be a non-zero divisor of R. Assume that r is co-regular on $\text{Tor}_i^R(E_C(k), E_C(k))$ for all i. Then for any $i \geq 0$, we have a natural \bar{R}-isomorphism

$$\text{Tor}_{i-1}^\bar{R}(E_{\bar{C}}(k), E_{\bar{C}}(k)) \cong \text{Hom}_R(\bar{R}, \text{Tor}_i^R(E_C(k), E_C(k))),$$

where $\bar{R} := R/(r)$, $\bar{C} := C/(r)C$, $E_C(k) := \text{Hom}_R(C, E_R(k))$ and $E_{\bar{C}}(k) := \text{Hom}_\bar{R}(\bar{C}, E_\bar{R}(k))$.

Proof. Let $0 \to I^0 \to I^1 \to \cdots$ be a minimal injective resolution of C. Then

$$\cdots \to \text{Hom}_R(I^1, E_R(k)) \to \text{Hom}_R(I^0, E_R(k)) \to 0$$

is a flat resolution of $E_C(k)$. Applying $E_C(k) \otimes_R -$, we get the complex

$$\cdots \to E_C(k) \otimes_R \text{Hom}_R(I^1, E_R(k)) \to E_C(k) \otimes_R \text{Hom}_R(I^0, E_R(k)) \to 0.$$

We will denote $E_C(k) \otimes_R \text{Hom}_R(I^i, E_R(k))$ by X_i and set

$$X_* := \cdots \to X_i \to \cdots \to X_1 \to X_0 \to 0.$$

Then for each $i \geq 0$, we have $H_i(X_*) = \text{Tor}_{i}^R(E_{\bar{C}}(k), E_{\bar{C}}(k))$.

By Remark 2.5,

$$0 \to \text{Hom}_\bar{R}(\bar{R}, I^1) \to \text{Hom}_\bar{R}(\bar{R}, I^2) \to \cdots$$

is a minimal injective resolution of \bar{C} as an \bar{R}-module. So,

$$\cdots \to \text{Hom}_\bar{R}(\text{Hom}_\bar{R}(\bar{R}, I^2), E_{\bar{R}}(k)) \to \text{Hom}_\bar{R}(\text{Hom}_\bar{R}(\bar{R}, I^1), E_{\bar{R}}(k)) \to 0$$

is a flat resolution of $E_{\bar{C}}(k)$ as an \bar{R}-module. Thus for each $i \geq 1$, the \bar{R}-module $\text{Tor}_{i-1}^\bar{R}(E_{\bar{C}}(k), E_{\bar{C}}(k))$ is isomorphic to the ith homology of the following complex

$$(\ast) \cdots \to E_{\bar{C}}(k) \otimes_\bar{R} \text{Hom}_\bar{R}(\text{Hom}_\bar{R}(\bar{R}, I^2), E_{\bar{R}}(k))$$
We shall show that the later complex is isomorphic to the complex $Y_\bullet := \text{Hom}_R(\bar{R}, X_\bullet)$.

Noting that $E_{\bar{R}}(k) \cong \text{Hom}_R(\bar{R}, E_{\bar{R}}(k))$ and using Adjointness yields that

$$E_{\bar{C}}(k) = \text{Hom}_{\bar{R}}(\bar{C}, E_{\bar{R}}(k)) \cong \text{Hom}_R(\bar{R}, E_{\bar{C}}(k)).$$

Hence for each $i \geq 0$, by using Adjointness, Hom-evaluation and Tensor-evaluation, one has the following natural \bar{R}-isomorphisms:

$$E_{\bar{C}}(k) \otimes \bar{R} \text{Hom}_{\bar{R}}(\text{Hom}_R(\bar{R}, I^i), E_{\bar{R}}(k)) \cong E_{\bar{C}}(k) \otimes \bar{R} \text{Hom}_R(I^i, E_{\bar{R}}(k)) \cong E_{\bar{C}}(k) \otimes \bar{R} \text{Hom}_R(I^i, E_{\bar{R}}(k)) \cong Y_i.$$

Note that $\text{Hom}_R(I^i, E_{\bar{R}}(k))$ is a flat R-module. As r is a non-zero divisor of R, it is also a non-zero divisor of C. This implies that r is a non-zero divisor of I^0, and so $\text{Hom}_R(\bar{R}, I^0) = 0$. Thus

$$Y_0 \cong E_{\bar{C}}(k) \otimes \bar{R} \text{Hom}_R(\bar{R}^0, E_{\bar{R}}(k)) = 0.$$

Therefore, the two complexes (\ast) and Y_\bullet are isomorphic, and so we deduce that $\text{Tor}^R_{i-1}(E_{\bar{C}}(k), E_{\bar{C}}(k)) = H_i(Y_\bullet)$ for all $i \geq 0$.

Since r is a non-zero divisor of C, it is co-regular on $E_{\bar{C}}(k)$, and so it is co-regular on X_i for all i. Thus, we can deduce the following exact sequence of complexes

$$0 \longrightarrow Y_\bullet \longrightarrow X_\bullet \overset{r}{\longrightarrow} X_\bullet \longrightarrow 0.$$

It yields the following exact sequences of modules

$$\cdots \longrightarrow \text{Tor}^R_{i+1}(E_{\bar{C}}(k), E_{\bar{C}}(k)) \overset{r}{\longrightarrow} \text{Tor}^R_{i+1}(E_{\bar{C}}(k), E_{\bar{C}}(k)) \longrightarrow \text{Tor}^R_{i-1}(E_{\bar{C}}(k), E_{\bar{C}}(k)) \overset{f_i}{\longrightarrow} \text{Tor}^R_i(E_{\bar{C}}(k), E_{\bar{C}}(k)) \longrightarrow \cdots.$$

As r is a co-regular element on $\text{Tor}^R_i(E_{\bar{C}}(k), E_{\bar{C}}(k))$ for all i, we deduce that f_i is a monomorphism for all i. This implies our desired isomorphisms. \square

Theorem 2.7. Let C be a semidualizing R-module. The following are equivalent:

(i) C_p is a dualizing R_p-module for all $p \in \text{Spec } R$.

(ii) For any prime ideal p of R and any $i \geq 0$,

$$\text{Tor}^R_i(E_{C}(R/p), E_{C}(R/p)) = \begin{cases} 0 & \text{if } i \neq \dim_{R_p} C_p \\ E_{C}(R/p) & \text{if } i = \dim_{R_p} C_p. \end{cases}$$
where \(E_C(R/p) := \text{Hom}_R(C, E_R(R/p)) \).

(iii) For any \(C \)-injective \(R \)-modules \(E \) and \(E' \) and any \(i \geq 0 \), \(\text{Tor}_i^R(E, E') \) is \(C \)-injective.

Proof. (i) \(\Rightarrow \) (ii) Let \(p \) be a prime ideal of \(R \). There are natural \(R_p \)-isomorphisms
\[
E_C(R/p) \cong E(R/p/R_p) \quad \text{and} \quad \text{Tor}_i^R(E_C(R/p), E_C(R/p)) \cong \text{Tor}_i^{R_p}(E_C(p, R_p), E_C(R/p))
\]
for all \(i \geq 0 \). Hence, we can complete the proof of this part by showing that if \(C \) is a dualizing module of a local ring \((R, m, k)\), then
\[
\text{Tor}_i^R(E(k), E(k)) = \begin{cases} 0 & \text{if } i \neq \dim_R C, \\ E(k) & \text{if } i = \dim_R C. \end{cases}
\]

Set \(d := \dim_R C \). As \(C \) is a dualizing \(R \)-module, [BH, Theorem 3.3.10] implies that for any prime ideal \(p \), one has
\[
\mu^i(p, C) = \begin{cases} 0 & \text{if } i \neq \text{ht } p, \\ 1 & \text{if } i = \text{ht } p. \end{cases}
\]

So, if \(I^\bullet = 0 \rightarrow I^0 \rightarrow I^1 \rightarrow \cdots \) is a minimal injective resolution of \(C \), then \(I^d \cong E_R(k) \) and for any \(i \neq d \), \(E_R(k) \) is not a direct summand of \(I^i \). In particular, \(\text{Hom}_R(R/m, I^i) = 0 \) for all \(i \neq d \). Now, \(\text{Hom}_R(I^\bullet, E_R(k)) \) is a flat resolution of \(E_C(k) \). Clearly, one has
\[
E_C(k) \otimes_R \text{Hom}_R(I^d, E_R(k)) \cong E_C(k) \otimes_R \widehat{R} \cong E_C(k).
\]

Next, let \(i \neq d \). Since \(\text{Hom}_R(I^i, E_R(k)) \) is a flat \(R \)-module, [M, Theorem 23.2 (ii)] implies that
\[
\text{Ass}_R(E_C(k) \otimes_R \text{Hom}_R(I^i, E_R(k))) = \text{Ass}_R(R/m \otimes_R \text{Hom}_R(I^i, E_R(k))).
\]

But,
\[
R/m \otimes_R \text{Hom}_R(I^i, E_R(k)) \cong \text{Hom}_R(\text{Hom}_R(R/m, I^i), E_R(k)) = 0,
\]
and so \(E_C(k) \otimes_R \text{Hom}_R(I^i, E_R(k)) = 0 \). Therefore, it follows that the complex \(E_C(k) \otimes_R \text{Hom}_R(I^\bullet, E_R(k)) \) has \(E_C(k) \) in its \(d \)-place and 0 in its other places. Thus, we deduce that
\[
\text{Tor}_i^R(E_C(k), E_C(k)) = H_i(E_C(k) \otimes_R \text{Hom}_R(I^\bullet, E(k))) = \begin{cases} 0 & \text{if } i \neq d, \\ E_C(k) & \text{if } i = d. \end{cases}
\]

(ii) \(\Rightarrow \) (iii) Let \(E \) be an injective \(R \)-module. Since \(E \cong \bigoplus_{p \in \text{Spec } R} E_R(R/p) \mu^0(p, E) \) and \(C \...
is finitely generated, we have
\[\text{Hom}_R(C, E) \cong \bigoplus_{p \in \text{Spec } R} E \mu_0(p, E). \]

As \(R \) is Noetherian, clearly any direct sum of \(C \)-injective \(R \)-modules is again \(C \)-injective, and so (ii) yields (iii) by Lemma 2.1 (ii).

(iii) \(\Rightarrow \) (i) It is easy to check that a given \(R_p \)-module is \(C_p \)-injective if and only if it is the localization at \(p \) of a \(C \)-injective \(R \)-module. Thus, it is enough to show that if \(C \) is a semidualizing module of a local ring \((R, m, k)\) such that \(\text{Tor}_i^R(E, E') \) is \(C \)-injective for all \(C \)-injective \(R \)-modules \(E \) and \(E' \) and all \(i \geq 0 \), then \(C \) is dualizing.

Let \(\underline{\mathfrak{r}} = r_1, \ldots, r_d \in m \) be a maximal regular \(R \)-sequence. Then \(\underline{\mathfrak{r}} \) is also a regular \(C \)-sequence. It is easy to verify that \(\underline{\mathfrak{r}} \) is a co-regular sequence on any \(C \)-injective \(R \)-module, and consequently \(\underline{\mathfrak{r}} \) is a co-regular sequence on \(\text{Tor}_i^R(E_C(k), E_C(k)) \) for all \(i \geq 0 \). Letting \(\tilde{\mathfrak{r}} : = R/(\underline{\mathfrak{r}}) \) and \(\tilde{C} : = C/(\underline{\mathfrak{r}})C \), by Lemma 2.3 (iv), it turns out that \(\tilde{C} \) is a semidualizing \(\tilde{R} \)-module. Making repeated use of Lemma 2.6, we can establish the following natural \(\tilde{R} \)-isomorphism
\[E_{\tilde{C}}(k) \otimes_{\tilde{R}} E_{\tilde{C}}(k) \cong \text{Hom}_{\tilde{R}}(\tilde{R}, \text{Tor}_d^R(E_C(k), E_C(k))). \]

So, \(E_{\tilde{C}}(k) \otimes_{\tilde{R}} E_{\tilde{C}}(k) \) is a \(\tilde{C} \)-injective \(\tilde{R} \)-module. Lemma 2.3 implies that
\[\text{depth}_{\tilde{R}} \tilde{C} = \text{depth}_{\tilde{R}} \tilde{C} = \text{depth}_{\tilde{R}} \tilde{R} = 0, \]
and so there are natural inclusion maps \(k \xhookrightarrow{i} \tilde{C} \) and \(k \xhookrightarrow{j} \hat{\tilde{C}} \). By applying the functor \(\text{Hom}_{\tilde{R}}(\cdot, E_{\tilde{R}}(k)) \) on \(i \), we get an epimorphism \(E_{\tilde{C}}(k) \twoheadrightarrow k \). Next, by applying the functor \(\text{Hom}_{\tilde{R}}(\cdot, \hat{\tilde{C}}) \) on the later map, we see that
\[\text{Hom}_{\tilde{R}}(E_{\tilde{C}}(k) \otimes_{\tilde{R}} E_{\tilde{C}}(k), E_{\tilde{R}}(k)) \cong \text{Hom}_{\tilde{R}}(E_{\tilde{C}}(k), \hat{\tilde{C}}) \neq 0. \]

Hence, \(E_{\tilde{C}}(k) \otimes_{\tilde{R}} E_{\tilde{C}}(k) \) is a non-zero \(\tilde{C} \)-injective \(\tilde{R} \)-module, and so Lemma 2.4 yields that \(\hat{\tilde{C}} \) is a dualizing \(\tilde{R} \)-module. Now, by Lemma 2.3 (v), we deduce that \(C \) is a dualizing \(R \)-module. \(\square \)

We end the paper with the following immediate corollary.

Corollary 2.8. Let \(R \) be a finite dimensional ring and \(C \) a semidualizing \(R \)-module. Then \(C \) is a dualizing \(R \)-module if and only if \(\text{Tor}_i^R(E, E') \) is \(C \)-injective for all \(C \)-injective \(R \)-modules \(E \) and \(E' \) and all \(i \geq 0 \).

References

[B] H. Bass, On the ubiquity of Gorenstein rings, Math. Z. **82** (1963), 8–28.
CRITERION FOR DUALIZING MODULES

[BH] W. BRUNS and J. HERZOG, Cohen-Macaulay rings, Cambridge Studies in Advanced Mathematics 39, Cambridge University Press, Cambridge, 1998.

[C] L. W. CHRISTENSEN, Semi-dualizing complexes and their Auslander categories, Trans. Amer. Math. Soc. 353(5), (2001), 1839–1883.

[EH] E. E. ENOCHS and Z. HUANG, Canonical filtrations of Gorenstein injective modules, Proc. Amer. Math. Soc. 139(7), (2011), 2415–2421.

[EJ] E. E. ENOCHS and O. M. G. JENDA, Tensor and torsion products of injective modules, J. Pure Appl. Algebra 76(2), (1991), 143–149.

[HJ1] H. HOLM and P. JØRGENSEN, Semi-dualizing modules and related Gorenstein homological dimensions, J. Pure Appl. Algebra 205(2), (2006), 423–445.

[HJ2] H. HOLM and P. JØRGENSEN, Cohen-Macaulay homological dimensions, Rend. Semin. Mat. Univ. Padova 117 (2007), 87–112.

[I] T. ISHIKAWA, On injective modules and flat modules, J. Math. Soc. Japan 17(3), (1965), 291–292.

[KLS] B. KUBIK, M. J. LEAMER and S. SATHER-WAGSTAFF, Homology of Artinian and Matlis reflexive modules, I, J. Pure Appl. Algebra 215(10), (2011), 2486–2503.

[M] H. MATSUMURA, Commutative ring theory, Cambridge Studies in Advanced Mathematics 8, Cambridge University Press, Cambridge, 1986.

[S] S. SATHER-WAGSTAFF, Semidualizing modules, 2009, preprint.

[TYY] R. TAKAHASHI, S. YASSEMI and Y. YOSHINO, On the existence of embeddings into modules of finite homological dimensions, Proc. Amer. Math. Soc. 138(7), (2010), 2265–2268.

Present Addresses:

K. DIVAANI-AAZAR
DEPARTMENT OF MATHEMATICS,
ALZAHRA UNIVERSITY,
VANAK, POST CODE 19834, TEHRAN, IRAN.

M. NIKKHAIH BAABEI
DEPARTMENT OF MATHEMATICS,
ALZAHRA UNIVERSITY,
VANAK, POST CODE 19834, TEHRAN, IRAN.
e-mail: massnikkhah@yahoo.com

M. TOUSI
DEPARTMENT OF MATHEMATICS,
SHAHID BEHESHITI UNIVERSITY, G.C.,
TEHRAN, IRAN.

School of Mathematics,
Institute for Research in Fundamental Sciences (IPM),
P.O. Box 19395–5746, Tehran, Iran.
e-mail: mtousi@ipm.ir