Expression of the Burkholderia cenocepacia Bep exopolysaccharide is under negative control of the BDSF-dependent quorum sensing system

Elisabeth Steinera, Rebecca E. Shillinga, Anja M. Richterb, Nadine Schmida, Mustafa Fazlib, Volkhard Kaeverc, Urs Jenald, Tim Tolker-Nielsenb# and Leo Eberl#

aDepartment of Microbiology, University of Zürich, Zürich, Switzerland; bDepartment of Immunology and Microbiology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark; cResearch Core Unit Metabolomics, Hannover Medical School, Hannover, Germany; dFocal Area of Infection Biology, Biozentrum, University of Basel, Basel, Switzerland
Supplementary Figure 1. Colony morphology of *B. cenocepacia* strains on NYG, AB 1.5% glycerol or AB glucose 10mM. Cell suspensions of wild-type *B. cenocepacia* H111 (WT) and mutants carrying an in-frame deletion of *rpfF*, *rpfR* or both genes were spotted on NYG or AB minimal media with 1.5% glycerol or 10mM glucose as the carbon source agar plates. Colony morphology was assayed after growth for 6 and 12 days.
Supplementary Figure. 2. Macrocolony morphology and localized β-galactosidase expression of the bepB::lacZ reporter strains with and without ectopic expression of berA after growth for 12 days on NYG agar plates supplemented with X-gal and appropriate antibiotics.

Supplementary Figure. 3. Influence of growth media on Bep expression. Quantification of β-galactosidase activity (Miller units) of strains harbouring the bepB::lacZ reporter in the wild-type (WT) and rpfR mutant (∆rpfR) background. Reporter strains were grown for 24 h in LB Lennox broth (LB), NYG medium (NYG), AB minimal medium supplemented with 1 % glucose (AB_Glucose), and AB minimal medium supplemented with 1.5 % glycerol (AB_Glycerol).
Supplementary Table 1: Oligonucleotides used in this study

Name	Sequence (5'-3')	Restriction site
GmR_F	ACTGCTCGAGCTAATTCATTAATTGCG	XhoI
GmR_R	ACTGGTCAACTTCATTAGGTGGCGGTA	SalI
MCS_GPI_F	AAATTCATGGATATCCATTCGGCTGAGCATGCGGTAC	NcoI
MCS_GPI_R	CTAGGTAATCGAGCTGACCACATGAGATTCAATCAGATCTG	NcoI
MCS2_GPI_F	CATGGACTAGTTCTAGACTCGAGCATGCAGGCTGAC	NcoI
MCS2_GPI_R	CGCATGCTGGATATCGAGACCACCCGCATCCAGAC	NcoI
pQE-rpfR-F	GGATCCATATGGGATGACGAAACGATAGCGCG	NcoI
pQE-rpfR-R	AAGCTTACGCGGATCAGGCTGAGCTG	NcoI
P14	GTAGAATTCGCACTGCTCATCAGGAT	NcoI
P15	ACTGAGATTCATGGAGACCGCCCGATCCAGAC	NcoI
P16	ACTGGTAGCATGAGCCCTGACGTCG	NcoI
P20	TCGAAAGCTTTGATCGGCTGCGTACGCTG	NcoI
P46	TGACGGTTACCCAGGATGCTAGCGG	NcoI
P47	AGTCATGCTATAGCTCAGTGAG	NcoI
P48b	GACGGAATTCGCACTGCTCATGACG	NcoI
P49	CTGACCATGCGAGCTGACTCGACG	NcoI
P50b	TGACGGTTACCCAGGATGCTAGCGG	NcoI
P66	AGTCGAAATTCGGCAGATGATGTGTCG	KpnI
P67	CAGTCCATGCGCACTTTGCTGACG	KpnI
P68	AGTCGCAATTCGCACTGCTGACTCG	KpnI
P69	GTACAGGTATCCCGCATGTCATGTCG	KpnI
P73	TACGAGATTCGCACTGCTCATGACG	KpnI
P74	AGTCGCAATTCGCACTGCTCATGACG	KpnI
P75	AGTCGCAATTCGCACTGCTCATGACG	KpnI
P76	CTGAGAATTTCGCACTGCTCATGACG	KpnI
P80	AGTCGGAATTCGCACTGCTCATGACG	KpnI
P81	GTACGCAATTCGCACTGCTCATGACG	KpnI
P82	GTACGCAATTCGCACTGCTCATGACG	KpnI
P83	GTACGCAATTCGCACTGCTCATGACG	KpnI
P86	TACGAGATTCGCACTGCTCATGACG	KpnI
P87	ACTGCGATGCGAAGAGGGAG	NcoI
P88	GTACGCAATTCGCACTGCTCATGACG	NcoI
P89	CTGAGAATTCGCACTGCTCATGACG	NcoI
P90	AGTCGCAATTCGCACTGCTCATGACG	KpnI
P91	GTACGCAATTCGCACTGCTCATGACG	KpnI
P92	GTACGCAATTCGCACTGCTCATGACG	KpnI
P93	GTACGCAATTCGCACTGCTCATGACG	KpnI
P94	GTACGCAATTCGCACTGCTCATGACG	KpnI
P95	GTACGCAATTCGCACTGCTCATGACG	KpnI
P96	GTACGCAATTCGCACTGCTCATGACG	KpnI
P103	ACTGCTAGAACATCCCTGGAGCATGTAAC	XbaI
P104	ACTGAAAGCTTTATTAAAGAGACCTGCGCAG	XbaI
P120	ACTGGAATTTCGCAAGAGGACTGTCGGAATG	KpnI
P121	ACTGCGATGCGAAGAGGGAGAATGATGATG	KpnI
P122	ACTGCGGATGCGAAGAGGGAGA	KpnI
P214	AGTCATGCTATAGCGGCAAGAGCATGACG	XbaI
P221	AGTCGGAATTCGCACTGCTCATGACG	KpnI
P226	AGTCGGAATTCGCACTGCTCATGACG	KpnI
P237	ACTGCTAGAACATCCCTGGAGCATGTAAC	XbaI
P238	ACTGCGGATGCGAAGAGGGAGAATGATGATG	KpnI
P239	ACTGCGGATGCGAAGAGGGAGAATGATGATG	XbaI
P272	ACTGCTAGAACATCCCTGGAGCATGTAAC	XbaI
P273	AGTCGGTACCCACGAGGCG	KpnI
Supplementary Table 2: Plasmids used in this study.

Plasmid	Characteristics	Source/Reference
pBluescript SK(+)	Standard cloning vector	Stratagene
pGPI-SceI	Suicide plasmid vector with I-SceI restriction site, TpR	1
pDAIGm-SceI	Plasmid encoding the I-SceI nuclelease gene, GmR	This study
pBBR1MCS-5	Broad-host-range cloning vector, GmR	2
pYhck	pRK404A carrying the *E. coli* yedQ (yhck) gene, TeR	3
pYedQ	pBBR1MCS-5 carrying the *E. coli* yedQ (yhck) gene, GmR	This study
pPA5295	Pseudomonas aeruginosa PDE on pBBR1MCS-5, GmR	4
pBBR-rpfR	pBBR1MCS carrying H111 wild-type rpfR, CmR	5
pBBR-rpfRGGAAF	pBBR-rpfR harboring D318A and E319A amino acid substitutions, CmR	6
pBBR-rpfRAAL	pBBR-rpfR harboring an E443A amino acid substitution, CmR	6
pRpfR	pBBR1MCS-5 carrying the berA gene, GmR	7
pBerA	pBBR1MCS-5 carrying the berA gene, GmR	This study
pRpoN	pBBR1MCS-5 carrying the bc0813 gene, GmR	This study
pBerB	pBBR1MCS-5 carrying the berB gene, GmR	This study
pQE-32	Expression vector for 6xHis-tagged proteins	Qiagen
pQE-RpfR	Expression vector for 6xHis-tagged RpfR	This study
pQE-RpfRGGAAF	Expression vector for 6xHis-tagged RpfRGGAAF	This study
pQE-RpfRAAL	Expression vector for 6xHis-tagged RpfRAAL	This study
pGPI-ArpR	pGPI-SceI based deletion plasmid for rpfR, TpR	This study
pGPI-ΔrpfF	pGPI-SceI based deletion plasmid for rpfF, TpR	This study
pGPI-ΔrpfFR	pGPI-SceI based deletion plasmid for rpfR and rpfF, TpR	This study
pGPI-ΔrpfOc	pGPI-SceI based deletion plasmid for rpoN, TpR	This study
pGPI-AcbeC	pGPI-SceI based deletion plasmid for bceC, TpR	This study
pGPI-ΔgtaB	pGPI-SceI based deletion plasmid for gtaB, TpR	This study
pGPI-AcbeB	pGPI-SceI based deletion plasmid for bepB, TpR	This study
pGPI-ΔberA	pGPI-SceI based deletion plasmid for berA, TpR	This study
pGPI-beP-B::lacZ	Plasmid for insertion of lacZ downstream of bepB, TpR	This study
pSUP3535	transcriptional lacZ fusion vector, TeR	8
pGPI2-SceI	pGPI-SceI with modified multiple cloning site, TpR	This study
pGPI2-rpfRGGAAF	pGPI-SceI based knock-in plasmid for rpfRGGAAF, TpR	This study
pGPI2-rpfRAAL	pGPI-SceI based knock-in plasmid for rpfRAAL, TpR	This study
pGPI2-ΔrpfWT	pGPI-SceI based knock-in plasmid for rpfRWW, TpR	This study
pUT18-BerB	Euromedex plasmid with BerB-adenylate cyclase domain 18, Ap100	This study
pUT18C-BerB	Euromedex plasmid with adenylate cyclase domain 18-BerB, Ap100	This study
pKKT25-RpfR	Euromedex plasmid with adenylate cyclase domain 25 -BerB, Kn50	This study
pKNT25-RpfR	Euromedex plasmid with RpfR- adenylate cyclase domain 25, Kn50	This study

Gm, gentamycin; Tc, tetracycline, Tp, trimethoprim, Ap, ampicillin, Kn, kanamycin
Supplementary References

1. Flannagan, R. S., Linn, T. & Valvano, M. A. A system for the construction of targeted unmarked gene deletions in the genus *Burkholderia*. *Environ. Microbiol.* **10**, 1652-1660 (2008). https://doi.org/10.1111/j.1462-2920.2008.01576.x

2. Kovach, M. E. *et al.* Four new derivatives of the broad-host range cloning vector pBBR1MCS, carrying different antibiotic-resistance cassettes. *Gene* **166**, 175-176 (1995). https://doi.org/10.1016/0378-1119(95)00584-1

3. Ausmees, N. *et al.* Genetic data indicate that proteins containing the GGDEF domain possess diguanylate cyclase activity. *FEMS Microbiol. Lett.* **204**, 163-167 (2001). https://doi.org/10.1016/s0378-1097(01)00394-9

4. Duerig, A. *et al.* Second messenger-mediated spatiotemporal control of protein degradation regulates bacterial cell cycle progression. *Genes & Dev.* **23**, 93-104 (2009). https://doi.org/10.1101/gad.502409

5. Huber, B. *et al.* Genetic analysis of functions involved in the late stages of biofilm development in *Burkholderia cepacia* H111. *Mol. Microbiol.* **46**, 411-426 (2002). https://doi.org/10.1046/j.1365-2958.2002.03182.x

6. Deng, Y. Y. *et al.* Cis-2-dodecenoic acid receptor RpfR links quorum-sensing signal perception with regulation of virulence through cyclic dimeric guanosine monophosphate turnover. *Proc. Natl. Acad. Sci.* **109**, 15479-15484 (2012). https://doi.org/10.1073/pnas.1205037109

7. Fazli, M. *et al.* The CRP/FNR family protein Bcam1349 is a c-di-GMP effector that regulates biofilm formation in the respiratory pathogen *Burkholderia cenocepacia*. *Mol. Microbiol.* **82**, 327-341 (2011). https://doi.org/10.1111/j.1365-2958.2011.07814.x

8. Mesa, S., Bedmar, E. J., Chanfon, A., Hennecke, H. & Fischer, H. M. *Bradyrhizobium japonicum* NnrR, a denitrification regulator, expands the FixLJ-FixK(2) regulatory cascade. *J. Bacteriol.* **185**, 3978-3982 (2003). https://doi.org/10.1128/jb.185.13.3978-3982.2003