Neuronal Excitability

Isoflurane Inhibits Dopaminergic Synaptic Vesicle Exocytosis Coupled to CaV2.1 and CaV2.2 in Rat Midbrain Neurons

Christina L. Torturo,1,2 Zhen-Yu Zhou,1 Timothy A. Ryan,1,3 and Hugh C. Hemmings1,2

https://doi.org/10.1523/ENEURO.0278-18.2018

1Department of Anesthesiology, Weill Cornell Medicine, New York, NY 10065, 2Department of Pharmacology, Weill Cornell Medicine, New York, NY 10065, and 3Department of Biochemistry, Weill Cornell Medicine, New York, NY 10065

Abstract

Volatile anesthetics affect neuronal signaling by poorly understood mechanisms. Activation of central dopaminergic pathways has been implicated in emergence from general anesthesia. The volatile anesthetic isoflurane differentially inhibits glutamatergic and GABAergic synaptic vesicle (SV) exocytosis by reducing presynaptic Ca2+ influx without affecting the Ca2+-exocytosis relationship, but its effects on dopaminergic exocytosis are unclear. We tested the hypothesis that isoflurane inhibits exocytosis in dopaminergic neurons. We used electrical stimulation or depolarization by elevated extracellular KCl to evoke exocytosis measured by quantitative live-cell fluorescence imaging in cultured rat ventral tegmental area neurons. Using trains of electrically evoked action potentials (APs), isoflurane inhibited exocytosis in dopaminergic neurons to a greater extent (30 ± 4% inhibition; \(p < 0.0001 \)) than in non-dopaminergic neurons (15 ± 5% inhibition; \(p = 0.014 \)). Isoflurane also inhibited exocytosis evoked by elevated KCl in dopaminergic neurons (35 ± 6% inhibition; \(p = 0.0007 \)), but not in non-dopaminergic neurons (2 ± 4% inhibition). Pharmacological isolation of presynaptic Ca2+ channel subtypes showed that isoflurane inhibited KCl-evoked exocytosis mediated exclusively by either CaV2.1 (P/Q-type Ca2+ channels; 30 ± 5% inhibition; \(p = 0.0002 \)) or by CaV2.2 (N-type Ca2+ channels; 35 ± 11% inhibition; \(p = 0.015 \)). Additionally, isoflurane inhibited single AP-evoked Ca2+ influx by 41 ± 3% and single AP-evoked exocytosis by 34 ± 6%. Comparable reductions in exocytosis and Ca2+ influx were produced by lowering extracellular \([\text{Ca}^{2+}]\). Thus, isoflurane inhibits exocytosis from dopaminergic neurons by a mechanism distinct from that in non-dopaminergic neurons involving reduced Ca2+ entry through CaV2.1 and/or CaV2.2.

Key words: anesthesia; calcium; dopamine; exocytosis; neuropharmacology; synaptic transmission

Significance Statement

Despite their medical importance, the mechanisms of action of general anesthetics have not been fully elucidated. Isoflurane, a widely used volatile anesthetic, inhibits voltage-gated sodium channels and differentially inhibits synaptic vesicle exocytosis depending on neurotransmitter phenotype. Here, we show that in dopaminergic neurons of the ventral tegmental area isoflurane acts via a sodium channel-independent mechanism to inhibit synaptic vesicle exocytosis in proportion to reduced presynaptic Ca2+ flux mediated by CaV2.1 and/or CaV2.2, in contrast to its effects in non-dopaminergic neurons. These findings provide a synaptic mechanism for the observed role of reduced dopamine release in anesthetic-induced unconsciousness and implicate presynaptic Ca2+ channels of dopaminergic neurons as important targets of isoflurane.
Introduction

General anesthetics are essential medicines that induce a reversible state of amnesia, unconsciousness, and immobility in the face of intensely painful stimuli. Despite their widespread use in modern medicine, their mechanisms of action are not well understood (Hemmings et al., 2005b). The amnestic, hypnotic, and immobilizing effects of anesthetics differ in dose dependence, neuroanatomical regions involved, and molecular targets consistent with multiple mechanisms working in parallel to produce the state of anesthetic-induced unresponsiveness (Brown et al., 2011). However, general anesthesia can produce serious adverse side effects, including cardiovascular, respiratory, and cognitive dysfunction. It is therefore critical to identify the anesthetic mechanisms relevant for both their on-target and off-target actions, with the ultimate goals of designing safer and more selective anesthetics and of using currently available anesthetics in a rational mechanism-based manner to maximize therapeutic ratio.

Volatile anesthetics such as isoflurane modulate synaptic and extrasynaptic neurotransmission through multiple postsynaptic targets, primarily by potentiating inhibitory GABA_A receptors and depressing excitatory glutamatergic transmission via ionotropic glutamate receptors (Rudolph and Antkowiak, 2004). However, the GABA_A receptor antagonist bicuculline does not antagonize isoflurane-induced immobility, indicating a role for other targets in this effect (Zhang et al., 2004). The presynaptic effects of volatile anesthetics are not as well characterized as their postsynaptic effects due to the small sizes of nerve terminals and technical limitations of conventional electrophysiological techniques in recording presynaptically. Nevertheless, considerable neurochemical and neurophysiological evidence indicates that volatile anesthetics directly inhibit neurotransmitter release (Hemmings et al., 2005a,b).

Synaptic vesicle (SV) exocytosis is tightly coupled to the amount of Ca^{2+} entering the presynaptic bouton (Wu et al., 2004), which is determined primarily by presynaptic voltage-gated ion channels (Na^+, Ca^{2+}, and K^- channels) and modulatory receptors. Isoflurane depresses action potential (AP) amplitude in axons and boutons, which results in downstream reductions in Ca^{2+} influx and neurotransmitter release (Wu et al., 2004; Hemmings et al., 2005a; Ouyang and Hemmings, 2005). Isoflurane also inhibits neurotransmitter release from isolated nerve terminals with greater potency from glutamatergic than from GABAergic terminals (Westphalen and Hemmings, 2003, 2006), consistent with neurotransmitter-specific presynaptic anesthetic mechanisms. The cellular and molecular bases of this synaptic selectivity are unclear.

Voltage-gated Ca^{2+} channels play an essential role in neurotransmission by mediating Ca^{2+} influx that is closely coupled to exocytosis. Presynaptic Ca^{2+} channels are possible targets for inhibition of neurotransmitter release by volatile anesthetics, and are also involved in producing myocardial depression and vasodilation leading to significant cardiovascular side effects (Lynch et al., 1981; Bosnjak et al., 1991). Synaptic transmission at most central nervous system synapses is mediated by multiple Ca^{2+} channel subtypes that are closely coupled to SV exocytosis, most prominently Ca_{V2.1} (P/Q-type Ca^{2+} channels) and Ca_{V2.2} (N-type Ca^{2+} channels; Wheeler et al., 1994; Wu et al., 1999). The degree of Ca_{V2.1} and Ca_{V2.2} involvement differ not only between different neuron classes (Murakami et al., 2002; Evans and Zapomini, 2006) but also between nerve terminals of the same afferent axon (Reid et al., 1997; Ariel et al., 2013). Reports of the effects of volatile anesthetics on specific Ca^{2+} channel subtypes are inconsistent (Hall et al., 1994; Study, 1994; White et al., 2005; Jokovic et al., 2009) such that the extent to which inhibition of Ca^{2+} channels contributes to inhibition of SV exocytosis remains unclear.

Recent work suggests that presynaptic Ca^{2+} channels are not the principal targets involved in the inhibition of glutamate and GABA release by volatile anesthetics (Westphalen et al., 2013). Despite their central roles in wakefulness and arousal (Monti and Monti, 2007), few studies have investigated anesthetic effects on amimergic neurons, which have distinct mechanisms of transmitter release (Liu et al., 2018). Electrical stimulation of dopaminergic neurons in the rat ventral tegmental area (VTA), one of the principal midbrain dopaminergic nuclei (Barrot, 2014), induces emergence from isoflurane anesthesia in rats (Solt et al., 2014). We sought to clarify the neurotransmitter selectivity and presynaptic targets of volatile anesthetics by investigating the effects of isoflurane, a representative halogenated ether anesthetic, on SV exocytosis from central dopaminergic neurons to test the hypothesis that isoflurane inhibits dopamine release by a mechanism distinct from that involved in non-dopaminergic neurons.

Materials and Methods

Reagents and solutions

Isoflurane was obtained from Abbott, ω-conotoxin GVIA and ω-agatoxin IVA from Alomone Labs, and 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) and (2R)-amino-5-phosphonovaleric acid (AP5) from Tocris. All other reagents were from Sigma-Aldrich. Rat VMAT2-pHluorin
was kindly provided by Robert Edwards (University of California, San Francisco, CA), and mouse VAMP-mCherry was from [Timothy Ryan]. Tyrode’s solution (119 mM NaCl, 2.5 mM KCl, 2 mM CaCl₂, 2 mM, MgCl₂, 25 mM HEPES, and 30 mM glucose; pH 7.4) was used as the standard buffer in all experiments. The glutamate receptor antagonists CNQX (10 μM) and AP5 (50 μM) were added to Tyrode’s solution to block postsynaptic excitatory synaptic transmission. For single AP studies, Tyrode’s solution contained 4 mM CaCl₂. Saturated stock solutions of isoflurane were prepared and diluted to 0.7 mM [two times the minimum alveolar concentration (2 MAC)] in Tyrode’s solution and into gas-tight glass syringes for focal perfusion onto imaged neurons through a 150-μm diameter polytetrafluoroethylene tube in the imaging chamber. Accounting for 10–20% loss, the predicted final concentration of isoflurane was 0.64 mM, which corresponds to 2 MAC in rats, a clinically relevant concentration of isoflurane was 0.64 mM, which corresponds to 2 MAC in rats, a clinically relevant concentration for focal perfusion onto imaged neurons through a 150-μm diameter polytetrafluoroethylene tube in the imaging chamber.

Isoflurane was applied for 5 min before imaging to allow uptake and equilibration. At the conclusion of each experiment, a sample was taken from the chamber for analysis of delivered isoflurane concentration using a Shimadzu GC-2010 Plus gas chromatography with external standard calibration (Ratnakumari and Hemmings, 1998).

Cell culture
Experiments were conducted according to protocols approved by the [Weill Cornell Medicine] Institutional Animal Care and Use Committee and conformed to National Institutes of Health Guidelines for the Care and Use of Animals. Glial monolayers were prepared from cerebral cortex as feeder layers for primary VTA neuron cultures from Sprague Dawley postnatal day 1 male and female rats (Charles River Laboratories) as described previously (Mena et al., 1997). After 7 d in vitro (DIV), neurons were transfected with vMAT2-pHluorin or VAMP-mCherry using a DNA-calcium phosphate coprecipitation protocol (Goetze et al., 2004; Jiang and Chen, 2006) modified to ensure low density transfection so that images could be obtained from a single neuron. Data were acquired from only one neuron per coverslip to avoid the contaminating and potentially irreversible effects of each drug treatment. Each experimental group contained coverslips from two to four different batches of primary neuron cultures to minimize artifacts due to differing culture conditions.

Imaging SV exocytosis
Live-cell epifluorescence imaging employed a Zeiss Axio Observer microscope with images acquired using an Andor iXon+ CCD camera (model DU-897E-BV) and APs were evoked with 1-ms current pulses delivered via platinum-iridium electrodes. Depolarization with elevated K⁺ Tyrode’s solution (50 mM KCl substituted for 50 mM NaCl and buffered to pH 7.4) was used to evoke SV exocytosis independent of Na⁺ involvement (57). Elevated K⁺ Tyrode’s solution was applied onto imaged neurons using a pressurized injector (PDES System, ALA) for 4 s at 29 μL/s as the chamber was continuously perfused with Tyrode’s solution with or without added drugs. Fluorescence data were acquired as described, and total pool (TP) of SVs was identified by perfusion with Tyrode’s solution containing 50 mM NH₄Cl (substituted for 50 mM NaCl and buffered to pH 7.4).

Imaging calcium influx
VAMP-mCherry, a red fluorescent protein fused to VAMP (vesicle associated membrane protein), was used to identify synaptic boutons for Ca²⁺ imaging experiments. Transfected neurons were loaded with 7 μM Fluo-5F AM, incubated for 10 min at 30°C, and washed by superfusion with Tyrode’s solution for 15 min. Neurons were stimulated with a single AP 5 times at 2-min intervals during superfusion with Tyrode’s solution containing 2 mM Ca²⁺ with or without 2 MAC isoflurane.

Immunocytochemistry
Post hoc immunolabelling with mouse anti-tyrosine hydroxylase (TH) monoclonal antibody (MAB318, Millipore) was used to identify dopaminergic neurons following live cell imaging. Fixed neurons were immunolabelled with either a 1:1000 dilution of Alexa Fluor 594 goat anti-mouse (for SV exocytosis experiments using vMAT2-pHluorin) or Alexa Fluor 488 goat anti-mouse (for Ca²⁺ imaging experiments). Imaged neurons were identified by coordinates on the coverslips and photographed.

Image and statistical analysis
Fluorescence data were analyzed in ImageJ (http://rsb.info.nih.gov/ij) with a custom plug-in (http://rsb.info.nih.gov/ij/plugins/time-series.html). Transfected boutons were selected as regions of interest (ROIs) based on their response to 50 mM NH₄Cl for SV exocytosis experiments or labeling with VAMP-mCherry for Ca²⁺ measurements. Each bouton was subjected to a signal-to-noise ratio (SNR) calculation based on its response to the first control electrical stimulation, and ΔF was calculated as the difference of the average intensities between Fpeak and Fbaseline. Fluorescence intensity changes for Ca²⁺ measurements were normalized to baseline as ΔF/F: (Fpeak – Fbaseline)/Fbaseline. Boutons with SNR > 5 were used in the analysis. Data are expressed as mean ± SD. To allow expression of inhibition or potentiation, drug effects are shown as a percentage of either TP or control response. Statistical significance was determined by paired or unpaired two-tailed or one-tailed Student’s t tests and by paired or unpaired one-way ANOVA with Tukey’s post hoc test, with p < 0.05 considered significant. Normality was assayed using the Shapiro–Wilk normality test. All statistical data are displayed in Table 1. Statistical analysis and graph preparation used GraphPad Prism v7.05 (GraphPad Software, Inc.).

Results
We used high resolution microscopy to quantify exocytosis at dopaminergic nerve terminals by the fluorescence change of pH-sensitive pHluorin fused to the luminal domain of the vesicular monoamine transporter vMAT2 (Anantharam et al., 2010; Pan and Ryan, 2012). Cultured rat midbrain neurons transfected with vMAT2-pHluorin were stimulated with trains of 100 APs at 10 Hz to elicit SV
exocytosis (Fig. 1A). Increases in fluorescence (ΔF) following stimulation indicate alkalization of intravesicular pHluorin due to SV exocytosis. The difference between baseline and stimulus-evoked peak fluorescence reflects the amount of SV exocytosis; quenching of fluorescence in the post-stimulus period indicates SV endocytosis and re-acidification (Sankaranarayanan et al., 2000; Atluri and Ryan, 2006; Fig. 1B). The biosensor vMAT2-pHluorin reliably measured SV exocytosis over time with minimal decay in signal over the course of three control stimulations (stimulation 1 = 6.7 ± 0.9% of TP; stimulation 2 = 6.9 ± 0.9% of TP; stimulation 3 = 6.8 ± 0.9% of TP; $n = 8$; $p = 0.93$). Fluorescence data from each cell were normalized to the total SV pool defined by perfusion with 50 mM NH$_4$Cl, which alkalizes the acidic SV interior and unquenches pHluorin fluorescence of the entire SV pool (Fig. 1A,B). Both dopaminergic and non-dopaminergic neurons can be transfected by vMAT2-pHluorin; dopaminergic neurons were positively identified by post hoc immunolabeling with mouse anti-TH (Fig. 1C).

Isoflurane inhibits SV exocytosis in dopaminergic neurons

Isoflurane at an immobilizing concentration (0.7 mM) inhibited SV exocytosis evoked by trains of 100 APs at 10 Hz in both dopaminergic (TH+) neurons and non-dopaminergic (TH−) neurons (Fig. 2). In dopaminergic neurons, control exocytosis was 9.4 ± 0.8% of TP, which was reduced to 6.7 ± 0.7% of TP by 0.7 mM (−2× ED$_{50}$) isoflurane (30 ± 4% inhibition; $p < 0.0001$; $n = 12$). In non-dopaminergic neurons, control exocytosis was 10.4 ± 0.9% of TP, which was reduced to 8.6 ± 0.7% of TP by isoflurane (15 ± 5% inhibition; $p = 0.014$; $n = 9$). The degree of inhibition of exocytosis was greater in dopaminergic neurons ($p = 0.017$; Fig. 2D). The time constant of pHluorin recovery was not significantly affected by isoflu-

Table 1 Statistical Data

Data structure	Type of test	Confidence intervals	
a	Normally distributed	Two-tailed paired t test	1.91 to 3.53
b	Normally distributed	Two-tailed paired t test	0.456 to 2.99
c	Normally distributed	One-tailed t test	−27.5 to −1.25
d	Normally distributed	One-way ANOVA Tukey’s post hoc	−3.968 to 3.116
e	Normally distributed	Two-tailed paired t test	2.13 to 5.11
f	Normally distributed	Two-tailed paired t test	−0.91 to 1.22
g	Normally distributed	One-way ANOVA Tukey’s post hoc	3.47 to 47.34
h	Normally distributed	One-way ANOVA Tukey’s post hoc	20.3 to 59.9
i	Normally distributed	One-way ANOVA Tukey’s post hoc	−28.97 to 18.66
j	Normally distributed	Two-tailed paired t test	17.26 to 29.82
k	Normally distributed	Two-tailed paired t test	6.35 to 37.58
l	Normally distributed	One-tailed t test	−23.96 to 32.65
m	Normally distributed	One-way ANOVA Tukey’s post hoc	0.115 to 0.515
n	Normally distributed	One-way ANOVA Tukey’s post hoc	−0.134 to 0.265
o	Normally distributed	Paired one-way ANOVA Tukey’s post hoc	0.071 to 0.135
p	Normally distributed	Paired one-way ANOVA Tukey’s post hoc	0.043 to 0.086
q	Normally distributed	Paired one-way ANOVA Tukey’s post hoc	−0.072 to 0.064

Figure 1. Measurement of SV exocytosis in dopaminergic neurons. **A,** Representative fluorescence images of a cultured VTA neuron transfected with vMAT2-pHluorin at rest (left), after stimulation with a train of 100 APs delivered at 10 Hz (middle), and after perfusion with 50 mM NH$_4$Cl in Tyrode’s solution (with an equivalent reduction in NaCl) to alkalinize the SV interior (right). Scale bar, 10 μm. **B,** Representative traces of fluorescence responses to 100 APs at 10 Hz after 5 s of baseline fluorescence values (top), and to perfusion with 50 mM NH$_4$Cl (bottom). Vertical arrow represents the change in fluorescence (ΔF). Blue bars indicate electrical stimulation (top) or NH$_4$Cl perfusion that defines the TP (bottom). **C,** Fluorescence images of a neuron transfected with vMAT2-pHluorin (green, left) and stained post hoc with anti-TH (red, middle). Composite image shows overlap of vMAT2-pHluorin and TH indicating this neuron is dopaminergic (right). Scale bar, 10 μm.
Isoflurane effect is Na$^+$ channel independent in dopaminergic neurons

Ca$^{2+}$-dependent SV exocytosis evoked by elevated extracellular KCl occurs by sustained depolarization that is independent of Na$_v$ activation: it is insensitive to the specific Na$_v$ blocker tetrodotoxin (TTX), in contrast to phasic AP-evoked SV exocytosis, which is completely blocked by TTX (Westphalen and Hemmings, 2003). Superoxension of TTX abolished SV exocytosis evoked electrically to −0.5 ± 0.2% of TP, yet had no effect on the response to elevated KCl (control with KCl = 12.9 ± 1.8% of TP, KCl with TTX = 13.3 ± 1.7% of TP; $p = 0.92; n = 6$; Fig. 3). We compared the effects of isoflurane on SV exocytosis evoked by elevated KCl, which directly activates Ca$^{2+}$ channels, to SV exocytosis evoked electrically to determine whether isoflurane acts upstream or downstream of Ca$^{2+}$ entry (Fig. 4A). We used a KCl concentra-

![Figure 2](image)

Figure 2. Isoflurane differentially inhibits SV exocytosis in dopaminergic and non-dopaminergic neurons. A, Schematic of protocol used to assess the effect of isoflurane on SV exocytosis. 100 APs were delivered at 10 Hz (blue arrows) under control conditions, followed by perfusion with 0.7 mM (2 MAC) isoflurane for 5 min (red bar), and a second stimulation of 100 APs at 10 Hz in the presence of isoflurane. Lastly, NH$_4$Cl was perfused to determine the TP (blue bar). B, C, Mean values of vMAT2-pHluorin response amplitudes in control and isoflurane-treated neurons stimulated with 100 APs at 10 Hz; ****$p < 0.0001$; *$p < 0.05$ by two-tailed paired t test. Representative raw traces from a dopaminergic (DA) and a non-dopaminergic (non-DA) neuron are shown. D, The effect 0.7 mM isoflurane on 100 AP-evoked exocytosis was greater in dopaminergic than in non-dopaminergic neurons; *$p < 0.05$ by one-tailed t test.

![Figure 3](image)

Figure 3. Elevated KCl depolarization-evoked SV exocytosis is Na$_v$ independent. A, Schematic of the protocol used to determine the effect of TTX on exocytosis evoked by elevated KCl or electrical stimulation. B, Representative traces of vMAT2-pHluorin response to elevated KCl depolarization or electrical stimulation in the absence or presence of 250 nM TTX (left). Mean values of vMAT2-pHluorin response amplitudes (right). ns, not significant by paired one-way ANOVA with Tukey’s post hoc test.
tion that evoked similar peak SV exocytosis compared to that obtained with the 100 AP stimulus train. Isoflurane inhibited elevated KCl-evoked exocytosis in dopaminergic neurons from 11.4 ± 1.3% of TP in control to 7.8 ± 1.5% of TP with isoflurane (35 ± 6% inhibition; \(p = 0.0007; n = 8; \) Fig. 4A). In contrast, isoflurane did not inhibit KCl-evoked SV exocytosis in non-dopaminergic neurons: 10.4 ± 0.9% of TP in control and 10.3 ± 1.1% of TP with isoflurane (2 ± 4% inhibition; \(p = 0.72; n = 6; \) Fig. 4B). Thus, isoflurane inhibited SV exocytosis in dopaminergic neurons by an \(\text{Na}^+ \)-independent pathway, in contrast to its \(\text{Na}^+ \)-dependent inhibition of SV exocytosis in non-dopaminergic neurons (Wu et al., 2004; Westphalen et al., 2013; Baumgart et al., 2015).

Ca\(^{2+}\) channel subtypes mediating exocytosis in dopaminergic neurons

The role of specific Ca\(^{2+}\) channel subtypes in isoflurane inhibition of SV exocytosis was studied using the subtype-specific neurotoxin \(\omega \)-conotoxin GVIA to block Ca\(_{v2.2}\) or \(\omega \)-agatoxin IVA to block Ca\(_{v2.1}\) (Fig. 5A). Conotoxin alone inhibited SV exocytosis by 43 ± 3% \((n = 9) \) in dopaminergic neurons and by 68 ± 3% \((n = 5) \) in non-dopaminergic neurons, consistent with a greater contribution of Ca\(_{v2.2}\) in non-dopaminergic neurons than in dopaminergic neurons \((p = 0.015; \) Fig. 5B). The Ca\(_{v2.1}\) blocker agatoxin alone inhibited SV exocytosis by 83 ± 5% \((n = 7) \) in dopaminergic neurons and by 63 ± 11% \((n = 6) \) in non-dopaminergic neurons, confirming a greater contribution of Ca\(_{v2.1}\) to SV exocytosis in dopaminergic neurons (conotoxin inhibition = 43 ± 3%; agatoxin inhibition = 83 ± 5%; \(p < 0.0001 \)). In non-dopaminergic neurons, there was no significant difference in inhibition by conotoxin or agatoxin \((p = 0.99) \), indicating similar contributions by both Ca\(_{v2.1}\) and Ca\(_{v2.2}\). There was no effect of the L-type Ca\(^{2+}\) channel inhibitor nimodipine (10 \(\mu \text{M}, \) Nimo) on SV exocytosis from dopaminergic or non-dopaminergic neurons (DA Ctrl = 7.8 ± 0.4% vs DA + Nimo = 7.2 ± 0.5% of TP, \(n = 7, p = 0.139; \) non-DA Ctrl = 10.1 ± 1.8% vs non-DA + Nimo = 9.8 ± 1.9% of TP, \(n = 5, p = 0.122 \)). SV exocytosis in both dopaminergic and non-dopaminergic neurons was mediated exclusively by Ca\(_{v2.1}\) and Ca\(_{v2.2}\) since conotoxin and agatoxin together completely blocked SV exocytosis (Fig. 5B). A bouton by bouton analysis from all recorded neurons examined the effect of conotoxin (Fig. 5C) and agatoxin (Fig. 5D) in dopaminergic neurons and showed that the effects of the toxins correlated to the averaged effects (Fig. 5B).
Isoflurane inhibits exocytosis mediated by Ca\textsubscript{2.1} and Ca\textsubscript{2.2}

We investigated the isoflurane sensitivity of SV exocytosis mediated by either Ca\textsubscript{2.1} or Ca\textsubscript{2.2} using pharmacological isolation (Fig. 6A). To examine the effect of isoflurane on Ca2+ channels without contributions by inhibition of upstream Na+ channels, we evoked exocytosis with elevated KCl depolarization. Conotoxin reduced KCl-evoked exocytosis to 81\% of control, and agatoxin plus isoflurane reduced exocytosis to 57\% of control (30\% \\
\% 5\% inhibition; \(p = 0.0002\), \(n = 5\); Fig. 6B). A similar degree of isoflurane inhibition was obtained using 100 AP electrical stimulation with conotoxin and isoflurane (Cono = 8.3 \(\pm\) 1.0\% vs Cono + Iso = 5.4 \(\pm\) 0.7\% of TP, 35\% \(\pm\) 5\% inhibition, \(n = 8\), \(p < 0.001\)). Agatoxin reduced KCl-evoked exocytosis to 74\% \(\pm\) 10\% of control, and agatoxin plus isoflurane reduced exocytosis to 51\% \(\pm\) 13\% of control (35\% \(\pm\) 11\% inhibition; \(p = 0.015\); \(n = 6\); Fig. 6C). There was no significant difference in the degree of isoflurane inhibition of Ca\textsubscript{2.1} versus Ca\textsubscript{2.2}-mediated KCl-evoked exocytosis in dopaminergic neurons (\(p = 0.37\); Fig. 6D).

Isoflurane inhibits exocytosis by reducing Ca2+ entry

Isoflurane inhibits SV exocytosis in glutamatergic and GABAergic hippocampal neurons by reducing Ca2+ influx without affecting Ca2+ sensitivity indicated by the relationship between intracellular Ca2+ concentration and SV exocytosis (Baumgart et al., 2015). We examined this in dopaminergic neurons by comparing the effects of reduced extracellular Ca2+ concentration ([Ca2+]\textsubscript{o}) on SV exocytosis and Ca2+ influx using single AP stimuli to determine Ca2+ sensitivity (Fig. 7A–C). Isoflurane inhibited single AP-evoked SV exocytosis by 34\% \(\pm\) 6\% (0.89 \(\pm\) 0.19\% of control) in 2 mM [Ca2+]\textsubscript{o} control vs 58\% \(\pm\) 12\% of TP with isoflurane (\(p = 0.005\)). This reduction in exocytosis was mimicked by reducing [Ca2+]\textsubscript{o} from 4 mM to 2 mM in the absence of isoflurane. Exocytosis in 2 mM [Ca2+]\textsubscript{o} was 51\% \(\pm\) 13\% of TP (44\% \(\pm\) 5\% reduction vs 4 mM [Ca2+]\textsubscript{o}), which was not significantly different from the inhibition by isoflurane in 4 mM [Ca2+]\textsubscript{o} (\(p = 0.63\); \(n = 6\); Fig. 7B). A comparable effect was observed using the Ca2+ indicator Fluo-5F to measure changes in intracellular [Ca2+] (Fig. 7D–G), which is proportional to presynaptic Ca2+ influx (Hoppa et al., 2012). Isoflurane inhibited Ca2+ influx by 41\% \(\pm\) 3\% in 4 mM Ca2+ (0.25 \(\pm\) 0.02 \(\Delta F/\text{Fo}\) for 4 mM Ca2+ control vs 0.15 \(\pm\) 0.02 \(\Delta F/\text{Fo}\) with isoflurane; \(p = 0.0003\)). Presynaptic Ca2+ influx was inhibited to the same degree by reducing [Ca2+]\textsubscript{o} from 4 mM to 2 mM: Ca2+ influx in 2 mM [Ca2+]\textsubscript{o} was 15\% \(\pm\) 0.11 \(\Delta F/\text{Fo}\) (36\% \(\pm\) 8\% reduction vs 4 mM [Ca2+]\textsubscript{o}). Additionally, isoflurane inhibited Ca2+ influx to a similar degree in 2 mM Ca2+ (42\% \(\pm\) 3\%; \(p = 0.0004\)), indicating the noncompetitive nature of isoflurane with respect to the ability of Ca2+ ions to flow through Ca2+ channels. There was no significant difference between Ca2+ influx with 2 mM [Ca2+]\textsubscript{o} compared...
Discussion

Isoflurane inhibited SV exocytosis from cultured dopaminergic neurons by reducing CaV2+ entry though both CaV2.1 and CaV2.2 by a mechanism that is independent of Na+ channel activation (Fig. 8). This is in contrast to the predominant Na+ channel-dependent mechanism observed for release of glutamate or GABA in non-dopaminergic cortical and hippocampal neurons (Westphalen et al., 2010; Baumgart et al., 2015). These findings reveal important neurotransmitter-selective differences in the presynaptic mechanisms of isoflurane, a clinically essential volatile anesthetic. These differences provide a pharmacological rationale for developing novel anesthetics targeting specific anesthetic endpoints mediated by a single neurotransmitter system, for example dopaminergic control of emergence from unconsciousness.

Relationship between Ca2+ channel subtypes and exocytosis

The Ca2+ channel subtypes present in dopaminergic neuron somata identified using whole-cell voltage-clamp recordings do not necessarily reflect the presynaptic Ca2+ channels involved in SV exocytosis. In rat dopaminergic midbrain neurons, somatic Ca2+ currents are inhibited by the L-type channel blocker nimodipine (by 28%), the CaV2.2 blocker conotoxin (by 22%), and the CaV2.1 blocker agatoxin (by 37%; Cardozo and Bean, 1995). However, synaptic boutons in rat dopaminergic neurons are too small for such direct electrophysiological recording of presynaptic Ca2+ currents. We used high-resolution live-cell imaging to measure SV exocytosis and Ca2+ influx, employing specific Ca2+ channel toxins to determine contributions of the major presynaptic Ca2+ channel subtypes. SV exocytosis in rat dopaminergic VTA neurons was mediated exclusively by CaV2.1 and CaV2.2, with CaV2.1 predominating. Using KCl-induced depolarization to evoke SV exocytosis independent of Na+ channel involvement, isoflurane inhibited exocytosis mediated by either CaV2.1 or CaV2.2 to a similar degree, suggesting a lack of subtype selectivity. Alternatively, the effects of isoflurane are mediated via an unknown mechanism distinct to dopaminergic VTA neurons. One possibility is that K+ channel activity alters the resting membrane potential and therefore modifies open probability of CaV2.1 and CaV2.2.

Isoflurane inhibited SV exocytosis in dopaminergic neurons evoked by electrical stimulation of APs or elevated KCl depolarization, in contrast to non-dopaminergic neurons in which isoflurane inhibited AP-evoked but not KCl-evoked exocytosis. AP-evoked exocytosis requires activation of Na+ channels to sufficiently depolarize boutons and activate the presynaptic Ca2+ channels linked to exocytosis. Clamped depolarization by elevated KCl is less physiologic than repetitive electrical stimulation by causing sustained depolarization (Tibbs et al., 1989), which could alter Ca2+ channel relationship to exocytosis. This is suggested by the finding that with electrical stimulation conotoxin inhibited exocytosis in dopaminergic neurons by ~40% and agatoxin inhibited by ~80%, while with KCl-evoked depolarization both conotoxin and agatoxin inhibited exocytosis by 20–30%. The linkage between SV exocytosis to critical presynaptic Ca2+ channels in dopaminergic neurons is selectively sensitive to isoflurane, since isoflurane inhibition of KCl-evoked exocytosis was observed in dopaminergic, but not in non-dopaminergic, neurons. This fundamental neurotransmitter-specific difference in the relationship be-

Figure 6. Isoflurane inhibits elevated KCl-evoked SV exocytosis mediated by CaV2.1 or CaV2.2 in dopaminergic neurons. A, Schematic of protocol using depolarizing pulses of 50 mM KCl with 1 μM conotoxin and 0.7 mM isoflurane or with 400 nM agatoxin and 0.7 mM isoflurane in dopaminergic neurons. B, Mean values of vMAT2-pHluorin response amplitudes in conotoxin and conotoxin + isoflurane treated dopaminergic neurons stimulated with elevated KCl; ***p < 0.001 by two-tailed paired t test. C, Mean values of vMAT2-pHluorin response amplitudes in agatoxin and agatoxin + isoflurane treated dopaminergic neurons stimulated with elevated KCl; *p < 0.05 by two-tailed paired t test. D, Comparison of the effect of isoflurane on CaV2.1 and CaV2.2 mediated elevated KCl-evoked exocytosis. ns, not significant by one-tailed t test.

with 4 mM [Ca2+]o plus isoflurane (p = 0.99; n = 5; Fig. 7G)
Figure 7. Isoflurane inhibits SV exocytosis in dopaminergic neurons by reducing Ca\(^{2+}\) influx.

A. Schematic of single AP (1 AP) evoked exocytosis protocol with 2 mM [Ca\(^{2+}\)]\(_{e}\) (black bar), 4 mM [Ca\(^{2+}\)]\(_{e}\) (gray bar), and 2 MAC isoflurane in 4 mM [Ca\(^{2+}\)]\(_{e}\) (red bar).

B. Ensemble average traces and mean values of 1 AP-stimulated exocytosis reported by vMAT2-pHluorin; *p < 0.01; ns, not significant.
tween Ca\(^{2+}\) channels and exocytosis results in profound neurotransmitter-specific differences in anesthetic sensitivity with potential neuropharmacological implications. This neurochemical difference is preserved in nigrostriatal dopaminergic nerve terminals prepared from rat striatum in which isoflurane also inhibits dopamine release via a Na\(^+\) channel-independent mechanism, an action that might contribute to the motor effects of anesthetics (Westphalen et al., 2013). The cellular and molecular attributes underlying this selective anesthetic pharmacology in dopaminergic neurons are unknown and await further characterization of the neurobiology of dopaminergic compared to non-dopaminergic neurons.

Mechanisms of dopamine SV exocytosis

Monoamine neurotransmitters such as dopamine are packaged into both small SVs and large dense core vesicles (LDCVs) for release. The biosensor vMAT2-pHluorin labels both small SVs and LDCVs (Fei et al., 2008); however, only small SVs localize to presynaptic active zones of synaptic boutons for exocytosis, while LDCVs engage primarily in extrasynaptic exocytosis (Thureson-Klein, 1983; Südhof and Rizo, 2012). Moreover, the kinetics of SV exocytosis from small SVs and LDCVs are distinct: small SVs fuse within 1 ms of Ca\(^{2+}\) channel opening (Cohen et al., 1991), while LDCV fusion is 100-fold slower and therefore less tightly regulated to AP stimulation (Almers, 1990; Martin, 1994). Based on these characteristics, the SV exocytosis measured by the vMAT2-pHluorin method is primarily from small SVs (Pothos et al., 2000; Leenders et al., 2002). Anesthetic effects on asynchromous neuronal LDCV exocytosis might involve distinct mechanisms.

Neuroendocrine cells such as adrenal chromaffin cells or PC12 cells are frequently used to study catecholaminergic SV exocytosis but exhibit release mostly from LDCVs (Voets et al., 2001). This is an important distinction as the subcellular and molecular organization of the secretory machinery differ between dopaminergic neurons and neuroendocrine cells, which makes the latter poor models for midbrain neurons. For example, neuroendocrine cells do not have active release zones co-localized with Ca\(^{2+}\)-microdomains, and the functional linkage of Ca\(^{2+}\) channels to release sites is not as tight as in neurons (Wu et al., 2009). Moreover, the Ca\(^{2+}\) channel subtypes linked to SV exocytosis differ between small SVs and LDCVs, with L-type channels closely linked to LDCV exocytosis (Park and Kim, 2009). In contrast, we found dopaminergic SV exocytosis to be independent of L-type Ca\(^{2+}\) channels.

Differences between dopaminergic and non-dopaminergic neurons

When comparing the effects of isoflurane on dopaminergic and non-dopaminergic neurons it is important to consider that vMAT2 is not endogenously expressed in non-dopaminergic neurons (Yoo et al., 2016). However, vMAT2-pHluorin is still effective in measuring SV exocytosis in non-dopaminergic neurons due to ectopic expression. Transfection of vMAT2-pHluorin involves overexpression of vMAT2, which can increase quantal size, but this does not interfere with its use as an indicator of SV fusion (Pothos et al., 2000; Erickson et al., 2006).

In contrast to dopaminergic neurons, elevated KCl-evoked SV exocytosis from non-dopaminergic neurons was insensitive to isoflurane. This is consistent with previous observations of a Na\(^+\)-dependent/Ca\(^{2+}\)-independent mechanism for rat glutamatergic and GABAergic hippocampal neurons (Hemmings et al., 2005a; Westphalen and Hemmings, 2006), despite their expression of both Ca\(_{\text{v}2.1}\) and Ca\(_{\text{v}2.2}\) (Qian and Noebels, 2001; Kamp et al., 2012). There are other important differences between dopaminergic and non-dopaminergic neurons that could explain their differential sensitivities to anesthetics. Non-dopaminergic neurons from the VTA are primarily GABAergic, some of which are capable of co-releasing glutamate (Carr and Sesack, 2000; Creed et al., 2014; Barker et al., 2016). In cultured rat hippocampal neurons, isoflurane...
inhibits SV exocytosis from glutamatergic boutons more potently than from GABAergic boutons due to a greater reduction in presynaptic Ca\(^{2+}\) influx (Baumgart et al., 2015), indicating that GABAergic neurons are less sensitive to isoflurane. This neuronal phenotypic difference in anesthetic sensitivity is consistent with the data presented here, as isoflurane more potently inhibited electrically-evoked SV exocytosis in dopaminergic neurons than in non-dopaminergic VTA neurons. It is likely that the non-dopaminergic VTA neurons were primarily GABAergic given their abundance in this nucleus. These neurotransmitter-specific differences in presynaptic sensitivity to isoflurane are likely due to differential presynaptic expression of specific ion channel subtypes (Johnson et al., 2017) with different anesthetic sensitivities that contribute to SV exocytosis.

Considering their numerous possible subunit compositions and splice variants, different ion channel subtypes and variants could contribute to presynaptic Ca\(^{2+}\) entry and SV release in different boutons (Meir et al., 1999). Differences in ion channel expression and degree of functional linkage (tight or loose) between Ca\(^{2+}\) entry and SV exocytosis also exist between various neuronal phenotypes (Eggermann et al., 2011). Differences in expression of various presynaptic Ca\(^{2+}\) binding proteins (e.g., calmodulin, present in all neurons, or calbindin, selectively expressed in some dopaminergic neurons) might also determine observed nerve terminal-specific differences in anesthetic sensitivity (Pan and Ryan, 2012). Further studies are necessary to determine the molecular specializations that underlie these presynaptic differences in anesthetic sensitivity.

Role of dopaminergic neurons in general anesthesia

Mammalian dopaminergic neurons are located primarily in the substantia nigra pars compacta and the VTA. They project widely to forebrain regions including the dorsal striatum and nucleus accumbens, where dopamine release is essential to motor function and motivated behaviors, respectively (Kenny et al., 2015). Anesthesia is associated with isoflurane-induced unconsciousness. Improved understanding of these mechanisms is critical to elucidating how general anesthetics work to optimize their safe use and develop more specific drugs with fewer adverse effects.

References

Almers W (1990) Exocytosis. Annu Rev Physiol 52:607–624. Cross-Ref Medline

Anantharam A, Onoa B, Edwards RH, Holz RW, Axelrod D (2010) Localized topological changes of the plasma membrane upon exocytosis visualized by polarized TIRFM. J Cell Biol 188:415–428. Cross-Ref Medline

Ariel P, Hoppa MB, Ryan TA (2013) Intrinsic variability in Prv, RRP size, Ca\(^{2+}\) channel repertoire, and presynaptic potentiation in individual synaptic boutons. Front Synaptic Neurosci 4:9. Cross-Ref Medline

Atluri PP, Ryan TA (2006) The kinetics of synaptic vesicle reacidyfication at hippocampal nerve terminals. J Neurosci 26:2313–2320. Cross-Ref Medline

Barker DJ, Root DH, Zhang S, Morales M (2016) Multiplexed neurochemical signaling by neurons of the ventral tegmental area. J Chem Neuroanat 73:33–42. Cross-Ref Medline

Barrot M (2014) The ventral tegmentum and dopamine: a new wave of diversity. Neuroscience 282:243–247. Cross-Ref Medline

Baumgart JP, Zhou ZY, Hara M, Cook DC, Hoppa MB, Ryan TA, Hemmings HC Jr (2015) Isoflurane inhibits synaptic vesicle exocytosis through reduced Ca\(^{2+}\) influx, not Ca\(^{2+}\)-exocytosis coupling. Proc Natl Acad Sci USA 112:11959–11964. Cross-Ref Medline

Bosnjak ZZ, Supan FD, Rutsch NJ (1991) The effects of halothane, enflurane, and isoflurane on calcium current in isolated canine ventricular cells. Anesthesiology 74:340–345. Cross-Ref Medline

Brown EN, Purdon PL, Van Dort CJ (2011) General anesthesia and altered states of arousal: a systems neuroscience analysis. Annu Rev Neurosci 34:601–628. Cross-Ref Medline

Cardozo DL, Bean BP (1995) Voltage-dependent calcium channels in rat midbrain dopamine neurons: modulation by dopamine and GABAB receptors. J Neurophysiol 74:1137–1148. Cross-Ref Medline

Carr DB, Sesack SR (2000) GABA-containing neurons in the rat ventral tegmental area project to the prefrontal cortex. Synapse 38:114–123. Cross-Ref Medline

Chemali JJ, Van Dort CJ, Brown EN, Solt K (2012) Active emergence from propofol general anesthesia is induced by methylphenidate. Anesthesiology 116:998–1005. Cross-Ref Medline

Creed MC, Ntamati NR, Tan KR (2014) VTA GABA neurons modulate specific learning behaviors through the control of dopamine and cholinergic systems. Front Behav Neurosci 8:8. Cross-Ref Medline

Cohen MW, Jones OT, Angelides KJ (1991) Distribution of Ca\(^{2+}\) channels on frog motor nerve terminals revealed by fluorescent omega-conotoxin. J Neurosci 11:1032–1039. Cross-Ref Medline

Eggermann E, Bucurenciu I, Goswami SP, Jonas P (2013) Nanodomain coupling between Ca\(^{2+}\) channels and Ca\(^{2+}\) sensors of exocytosis at fast mammalian synapses. Nat Rev Neurosci 13:7–21. Cross-Ref Medline

Erickson JD, De Gois S, Varoqui H, Schafer MK, Weihe E (2006) Activity-dependent regulation of vesicular glutamate and GABA transporters: a means to scale quantal size. Neurochem Int 48: 643–649. Cross-Ref Medline

Evans RM, Zamponi GW (2006) Presynaptic Ca\(^{2+}\) channels–integrates centers for neuronal signaling pathways. Trends Neurosci 29:617–624. Cross-Ref Medline

Fei H, Grygoruk A, Brooks ES, Chen A, Krantz DE (2008) Trafficking of vesicular neurotransmitter transporters. Traffic 9:1425–1436. Cross-Ref Medline

January/February 2019, 6(1) e0278-18.2018

eNeuro.org
Franks NP, Lieb WR (1993) Selective actions of volatile general anaesthetics at molecular and cellular levels. Br J Anaesth 71:65–76.
CrossRef Medline

Goetze B, Grunewald B, Baldassa S, Kiebler M (2004) Chemically controlled formation of a DNA/calcium phosphate coprecipitate: application for transfection of mature hippocampal neurons. J Neurobiol 60:517–525.
CrossRef Medline

Hall AC, Lieb WR, Franks NP (1994) Insensitivity of P-type calcium channels to inhalational and intravenous general anaesthetics. Anesthesiology 81:117–123.
CrossRef Medline

Hemmings HC Jr, Yan W, Westphalen RI, Ryan TA (2005a) The general anesthetic isoflurane depresses synaptic vesicle exocytosis. Mol Pharmacol 67:1591–1599.
CrossRef Medline

Hemmings HC, Akabas MH, Goldstein PA, Trudell JR, Orser BA, Harrison NL (2005b) Emerging molecular mechanisms of general anesthetic action. Trends Pharmacol Sci 26:503–510.
CrossRef Medline

Hoppa MB, Lana B, Margas W, Dolphin AC, Ryan TA (2012) \(\eta \)2 shifts expression sets presynaptic calcium channel abundance and release probability. Nature 486:122–125.
CrossRef Medline

Jiang M, Chen G (2006) High Ca2+ -phosphate transfection efficiency in low-density neuronal cultures. Nat Protoc 1:695–700.
CrossRef Medline

Johnson KW, Herold KF, Milner TA, Hemmings HC Jr, Platholi J (2017) Sodium channel subtypes are differentially localized to presynaptic and postsynaptic sites in rat hippocampus. J Comp Neurol 525: 3563–3578.
CrossRef Medline

Jokovic PM, Weiergräber M, Lee W, Struck H, Schneider T, Todrovic SM (2009) Isoflurane-sensitive presynaptic R-type calcium channels contribute to inhibitory synaptic transmission in the rat thalamus. J Neurosci 29:1434–1445.
CrossRef Medline

Kamp MA, Hänggi D, Steiger HJ, Schneider T (2012) Diversity of presynaptic calcium channels displaying different synaptic properties. Rev Neurosci 23:179–190.
CrossRef Medline

Kenny JD, Taylor NE, Brown EN, Solt K (2015) Dextroamphetamine properties. Rev Neurosci 113:27–36.
CrossRef Medline

Liu C, Kersherberg L, Wang J, Schneeberger S, Kaeser PS (2018) Dopamine secretion is mediated by sparse active zone-like release sites. Cell 172:706–718.
CrossRef Medline

Lynch C 3rd, Vogel S, Spereklas N (1981) Halothane depression of myocardial slow action potentials. Anesthesiology 55:360–368.
CrossRef Medline

Martin TF (1994) The molecular machinery for fast and slow neurotrans. Curr Opin Neurobiol 4:626–632.
CrossRef Medline

Meir A, Ginsburg S, Butkevich A, Kachalsky SG, Iadhut I, Adhut R, Demirgoner S, Rahamimoff R (1999) Ion channels in presynaptic nerve terminals and control of transmitter release. Physiol Rev 79:1019–1088.
CrossRef Medline

Mena MA, Khan U, Togasaki DM, Sulzer D, Epstein CJ, Przedborski S (1997) Effects of wild-type and mutated copper/zinc superoxide dismutase on neuronal survival and L-DOPA-induced toxicity in postnatal midbrain culture. J Neurochem 69:21–33.
CrossRef Medline

Monti JM, Monti D (2007) The involvement of dopamine in the modulation of sleep and waking. Sleep Med Rev 11:113–133.
CrossRef Medline

Murakami N, Ishishashi H, Katsurabayashi S, Akaike N (2002) Calcium channel subtypes on single GABAergic presynaptic terminal projecting to rat hippocampal neurons. Brain Res 951:121–129.
CrossRef Medline

Ouyang W, Hemmings HC Jr (2005) Depression by isoflurane of the action potential and underlying voltage-gated ion currents in isolated rat neurohypophyseal nerve terminals. J Pharmacol Exp Ther 312:801–808.
CrossRef Medline

Pan PY, Ryan TA (2012) Calbindin controls release probability in ventral tegmental area dopamine neurons. Nat Neurosci 15:813–815.
CrossRef Medline

Park Y, Kim KT (2009) Dominant role of lipid rafts L-type calcium channel in activity-dependent potentiation of large dense-core vesicle exocytosis. J Neurochem 110:520–529.
CrossRef Medline

Pothos EN, Larsen KE, Krantz DE, Liu Y, Haycock JW, Sellik W, Gershon MD, Edwards RH, Sulzer D (2000) Synaptic vesicle transporter expression regulates vesicle phenotype and quantal size. J Neurosci 20:7297–7306.
CrossRef Medline

Qian J, Noebels JL (2001) Presynaptic Ca2+ channels and neurotransmitter release at the terminal of a mouse cortical neuron. J Neurosci 21:3721–3728.
CrossRef Medline

Ratnakumari L, Hemmings HC Jr (1998) Inhibition of presynaptic sodium channels by halothane. Anesthesiology 88:1043–1054.
CrossRef Medline

Reid CA, Clements JD, Bekkerm J (1997) Nonuniform distribution of Ca2+ channel subtypes on presynaptic terminals of excitatory synapses in hippocampal cultures. J Neurosci 17:2738–2745.
CrossRef Medline

Rudolph U, Antkowiak B (2004) Molecular and neuronal substrates for general anaesthetics. Nat Rev Neurosci 5:709–720.
CrossRef Medline

Sankaranarayanan S, De Angeli D, Rothman JE, Ryan TA (2000) The use of pHLuor for optical measurements of presynaptic activity. Biophys J 79:2199–2208.
CrossRef Medline

Solt K, Cotten JF, Cimenser A, Wong KF, Chemali JJ, Brown EN (2011) Methyleneephedrile actively induces emergence from general anesthesia. Anesthesiology 115:791–803.
CrossRef Medline

Solt K, Van Dort CJ, Chemali JJ, Taylor NE, Kenny JD, Brown EN (2014) Electrical stimulation of the ventral tegmental area induces reanimation from general anesthesia. Anesthesiology 121:311–319.
CrossRef Medline

Study RE (1994) Isoflurane inhibits multiple voltage-gated calcium currents in hippocampal pyramidal neurons. Anesthesiology 81: 104–116.
CrossRef Medline

Südhof TC, Rizo J (2012) Synaptic vesicle exocytosis. Cold Spring Harb Perspect Biol 3:a005637.
CrossRef Medline

Thureson-Klein A (1983) Exocytosis from large and small dense-cored vesicles in noradrenergic nerve terminals. Neuroscience 10:245–259.
CrossRef Medline

Tibbs GR, Barrie AP, Van Mieghem FJ, McMahon HT, Nicholls DG (1989) Receptive action potentials in isolated nerve terminals in the presence of 4-aminoypyridine: effects on cytotoxic free Ca2+ and glutamate release. J Neurochem 53:1693–1699.
CrossRef Medline

Vorbs T, Moser T, Lund PE, Chow RH, Geppert M, Südhof TC, Neher E (2001) Intracellular calcium dependence of large dense-core vesicle exocytosis in the absence of synaptotagmin I. Proc Natl Acad Sci USA 113:12826–12831.
CrossRef Medline

Westphalen RI, Hemmings HC Jr (2003) Selective depression by general anaesthetics of glutamate versus GABA release from isolated cortical nerve terminals. J Pharmacol Exp Ther 304:1188–1196.
CrossRef Medline

Westphalen RI, Hemmings HC Jr (2006) Volatile anaesthetic effects on glutamate versus GABA release from isolated rat cortical nerve terminals: 4-aminoypyridine-evoked release. J Pharmacol Exp Ther 316:216–223.
CrossRef Medline

Westphalen RI, Yu J, Krivitski M, Jih TY, Hemmings HC Jr (2010) Regional differences in nerve terminal Na+ channel subtype
expression and Na+ channel-dependent glutamate and GABA release in rat CNS. J Neurochem 113:1611–1620. CrossRef Medline
Westphalen RI, Desai KM, Hemmings HC Jr (2013) Presynaptic inhibition of the release of multiple major central nervous system neurotransmitter types by the inhaled anaesthetic isoflurane. Br J Anaesth 110:592–599. CrossRef Medline
Wheeler DB, Randall A, Tsien RW (1994) Roles of N-type and Q-type Ca2+ channels in supporting hippocampal synaptic transmission. Science 264:107–111. CrossRef Medline
White IL, Franks NP, Dickinson R (2005) Effects of isoflurane and xenon on Ba2+-currents mediated by N-type calcium channels. Br J Anaesth 94:784–790. CrossRef Medline
Wise RA (2004) Dopamine, learning and motivation. Nat Rev Neurosci 5:483–494. CrossRef Medline
Wu LG, Westenbroek RE, Borst JA, Catterall WA, Sakmann B (1999) Calcium channel types with distinct presynaptic localization couple differentially to transmitter release in single calyx-type synapses. J Neurosci 19:726–736. CrossRef Medline
Wu MM, Llobet A, Lagnado L (2009) Loose coupling between calcium channels and sites of exocytosis in chromaffin cells. J Physiol 587:5377–5391. CrossRef Medline
Wu XS, Sun JY, Evers AS, Crowder M, Wu LG (2004) Isoflurane inhibits transmitter release and the presynaptic action potential. Anesthesiology 100:663–667. CrossRef Medline
Yoo JH, Zell V, Gutierrez-Reed N, Wu J, Ressler R, Shenasa MA, Johnson AB, Fife KH, Faget L, Hnasko TS (2016) Ventral tegmental area glutamate neurons co-release GABA and promote positive reinforcement. Nat Commun 7:13697. CrossRef Medline
Zhang Y, Sonner JM, Eger EI 2nd, Stabernack CR, Laster MJ, Raines DE, Harris RA (2004) Gamma-aminobutyric acidA receptors do not mediate the immobility produced by isoflurane. Anesth Analg 99:85–90. CrossRef Medline