A NUMBER THEORETIC PROBLEM ON THE DISTRIBUTION OF POLYNOMIALS WITH BOUNDED ROOTS

PETER KIRSCHENHOFER AND MARIO WEITZER

Abstract. Let $E_d^{(s)}$ denote the set of coefficient vectors $(a_1, \ldots, a_d) \in \mathbb{R}^d$ of contractive polynomials $x^d + a_1 x^{d-1} + \cdots + a_d \in \mathbb{R}[x]$ that have exactly s pairs of complex conjugate roots and let $v_d^{(s)} = \lambda_d(E_d^{(s)})$ be its $(d$-dimensional) Lebesgue measure. We settle the instance $s = 1$ of a conjecture by Akiyama and Pethő, stating that the ratio $v_d^{(s)}/v_d^{(0)}$ is an integer for all $d \geq 2s$. Moreover we establish the surprisingly simple formula $v_d^{(1)}/v_d^{(0)} = (P_d(3) - 2d - 1)/4$, where $P_d(x)$ are the Legendre polynomials.

1. Introduction

Let E_d denote the set of all coefficient vectors $(a_1, \ldots, a_d) \in \mathbb{R}^d$ of polynomials $x^d + a_1 x^{d-1} + \cdots + a_d$ with coefficients in \mathbb{R} and all roots having absolute value less than 1, and let $E_d^{(s)}$ denote the subset of the coefficient vectors of those polynomials in E_d that have exactly s pairs of complex conjugate roots. Let furthermore $v_d = \lambda_d(E_d)$ and $v_d^{(s)} = \lambda_d(E_d^{(s)})$ denote the d-dimensional Lebesgue measures of the referring sets.

The sets E_d have been studied by several authors in different context, compare e.g. Schur [11], Fam and Meditch [4] or Fam [3]. More recently, the regions E_d have become of interest in the study of “shift radix systems”, since the regions where those systems have a certain periodicity property are in close connection with the regions E_d (compare e.g. Kirschenhofer et al. [7]). Fam [3] established the formula

\begin{equation}
(1.1) \quad v_d = \begin{cases} 2^{2m^2} \prod_{j=1}^{m} \frac{(j-1)!^4}{(2j-1)!^2} & \text{if } d = 2m, \\ 2^{2m^2+2m+1} \prod_{j=1}^{m} \frac{j!(j-1)!^2}{(2j-1)!(2j+1)!} & \text{if } d = 2m + 1. \end{cases}
\end{equation}

In [1] Akiyama and Pethő gave a number of results on the quantities $v_d^{(s)}$, including an integral representation for general s from which they derived an explicit formula in the...
instance $s = 0$ as well as a somewhat involved expression for $s = 1$ reading

$$v_d^{(0)} = \frac{2^{d+1/2}}{d!} S_d(1, 1, 1/2),$$

(1.2) $$v_d^{(1)} = 2^{d-1/2} \sum_{j=0}^{d-2} \sum_{k=0}^{d-2-j} \frac{(-1)^{d-k} 2^{d-2-2k-j}}{j!k!(d-2-j-k)!} B_{d-2}(d-2-k, d-2-k-j)$$

\[\int_{z=0}^{1} \int_{y=-2\sqrt{z}}^{2\sqrt{z}} y^j(y+z+1)^k dy dz \]

for $d \geq 2$ and $0 \leq k \leq j \leq d$ where

(1.3) $$S_d(1, 1, 1/2) := \frac{1}{\prod_{i=0}^{d-1} \left(\frac{2i+1}{i} \right)}$$

is a special instance of the Selberg integral $S_n(\alpha, \beta, \gamma)$ and where

(1.4) $$B_d(j, k) := \prod_{i=1}^{k} \frac{2 + (d - i - 1)/2}{3 + (2d - i - 1)/2} \prod_{i=1}^{j} (1 + (d - i)/2) \prod_{i=1}^{k} (1 + (d - i)/2)$$

\[\prod_{i=1}^{j+k} (2 + (2d - i - 1)/2) \]

is a special instance of Aomoto’s generalization of the Selberg integral (compare Andrews et al. [2, Section 8] for Selberg’s and Aomoto’s integrals).

Furthermore, Akiyama and Pethő in [1] proved that the ratios $v_d^{(s)}/v_d^{(0)}$ are rational, and, motivated by extensive numerical evidence, stated the following

Conjecture 1.1. [1, Conjecture 5.1] The quotient

$$v_d^{(s)}/v_d^{(0)}$$

is an integer for all non-negative integers d, s with $d \geq 2s$.

In Section 2 of this paper we will prove this conjecture for the instance $s = 1$ and in addition give a surprisingly simple explicit formula for the quotient in this case involving the Legendre polynomials evaluated at $x = 3$. In the proof we will combine several transformations of binomial sums, one of them corresponding to a special instance of Pfaff’s reflection law for hypergeometric functions. We refer the reader in particular to the standard reference [6, Section 5] for the techniques that we will apply.

In Section 3 we will use our main theorem to establish a linear recurrence for the sequence $(v_d^{(1)}/v_d^{(0)})_{d \geq 0}$, and from its generating function will derive its asymptotic behaviour for $d \to \infty$. Combined with a result from [1], this also gives information on the asymptotic behaviour of the probability $p_d^{(1)} = v_d^{(1)}/v_d$ of a contractive polynomial of degree d to have exactly one pair of complex conjugate roots.

In the final section we discuss possible generalizations of our results.
2. Main result

Theorem 2.1. The quotient $v_d^{(1)}/v_d^{(0)}$ is an integer for each $d \geq 2$. Furthermore we have

$$\frac{v_d^{(1)}}{v_d^{(0)}} = \frac{P_d(3) - 2d - 1}{4},$$

where

$$P_d(x) := 2^{-d} \sum_{k=0}^{\lfloor d/2 \rfloor} (-1)^k \binom{d-k}{k} \binom{2d-2k}{d-k} x^{d-2k}$$

$$= \sum_{k=0}^{d} \binom{d+k}{2k} \binom{2k}{k} \left(\frac{x-1}{2} \right)^k$$

are the Legendre polynomials (cf. [10, p. 66]).

Proof. In a first step we solve the double integral in identity (1.2) for $v_d^{(1)}$. Let $j \geq 0$, $k \geq 0$. Then

$$\int_{y=-2}^{y=2} \int_{z=0}^{2\sqrt{z}} y^j (y+z+1)^k \, dy \, dz = \int_{y=0}^{y=2} \int_{z=y^2/4}^{z=2} y^j (y+z+1)^k \, dz \, dy$$

$$= \frac{1}{k+1} \left(\int_{y=2}^{y=0} y^j (y+2)^{k+1} \, dy - \int_{y=0}^{y=2} y^j (y/2 + 1)^{2k+2} \, dy \right)$$

$$= \frac{1}{k+1} \left(2^{j+k+2} \int_{y=-1}^{y=1} y^j (y+1)^{k+1} \, dy - 2^{j+1} \int_{y=-1}^{y=1} y^j (y+1)^{2k+2} \, dy \right)$$

where we performed the substitution $y/2 \to y$ in the last step. By iterated partial integration we gain now from the last expression that

$$(2.1) \quad \int_{z=0}^{1} \int_{y=-2\sqrt{z}}^{2\sqrt{z}} y^j (y+z+1)^k \, dy \, dz = \frac{2^{j+2k+4}}{k+1} \left(\sum_{r=1}^{j+1} (-2)^{r-1}(j)_{r-1} \frac{1}{(k+r+1)_r} - \sum_{r=1}^{j+1} (-2)^{r-1}(j)_{r-1} \frac{1}{(2k+r+2)_r} \right)$$

with $(x)_j := \prod_{i=0}^{j-1}(x-i)$.

In the following we insert (2.1) in formula (1.2) and perform stepwise a first evaluation of \(v^{(1)}_d / v^{(0)}_d \) mainly as a sum of products of factorials.

\[
\frac{v^{(1)}_d}{v^{(0)}_d} = \left(\frac{2^{d-1}(d-2)/2-2}{d-2} \sum_{j=0}^{d-2} \frac{d-2-j}{j!}!((d-2-j-k)! \prod_{i=1}^{d-2-k-j} (1 + (d-2-i)/2)^{-1} + (2(d-2) - i - 1)/2 \prod_{i=0}^{d-1} (2i+1)}{2^{d-2-k}k^{d-2-k-j}(2 + (2(d-2) - i - 1)/2) \prod_{i=0}^{d-2-k} (2i+1)} \right) \\
\sum_{j=0}^{d-1} \frac{(-1)^{d+k+2}d-j-2}{j!(k+1)!(d-j-k-2)!} \prod_{i=1}^{d-j-k-2} \frac{1}{(d-i)^{1/2}} \prod_{i=1}^{d-1} \frac{2^{d+i+1}}{d-i+1} \\
= \sum_{j=0}^{d-1} \frac{(-1)^{d+k+1}}{j!(k+1)!(d-j-k-2)!} \prod_{i=1}^{d-j-k-2} \frac{1}{(d-i)^{1/2}} \prod_{i=1}^{d-1} \frac{2^{d+i+1}}{d-i+1} \\
= \sum_{j=0}^{d-1} \frac{(-2)^r(-1)^{r-1}(j)_r}{k(r-1)!} \prod_{i=1}^{d-r-1} \frac{1}{(2k+r+2)!} \\
= \sum_{j=0}^{d-1} \frac{(-2)^r(-1)^{r-1}(j)_r}{k(r-1)!} \prod_{i=1}^{d-r-1} \frac{1}{(2k+r+2)!} \\
= \sum_{j=0}^{d-1} \frac{(-2)^r(-1)^{r-1}(j)_r}{k(r-1)!} \prod_{i=1}^{d-r-1} \frac{1}{(2k+r+2)!} \\
= \sum_{j=0}^{d-1} \frac{(-2)^r(-1)^{r-1}(j)_r}{k(r-1)!} \prod_{i=1}^{d-r-1} \frac{1}{(2k+r+2)!}
\]

In the next step we rewrite the last expression as a sum over products of binomial coefficients.
Using the substitution \(j + k + 2 \to a, k + 1 \to b \) the latter expression reads

\[
\sum_{a=2}^{d} \sum_{b=0}^{a-1} \sum_{r=1}^{a-b} (-1)^{d+b}(-2)^{r-2} \frac{a}{a+b} \binom{d}{a} \binom{d+a}{b} \binom{a+b}{2b+r} \binom{2b+r}{b} - \sum_{a=2}^{d} \sum_{b=0}^{a-1} \sum_{r=1}^{a-b} (-1)^{d+b}(-2)^{r-2} \frac{a}{a+b} \binom{d}{a} \binom{d+a}{b} \binom{a+b}{2b} \binom{2b}{b}
\]

so that

\[
\left(\begin{array}{c}
\sum_{a=2}^{d} (-1)^{d}a \binom{d}{a} \left(\binom{d+a}{b} \binom{a+b}{2b+r} \binom{2b+r}{b} \right) - \sum_{r=1}^{a} \left(-1 \right)^{r} \frac{1}{a+b} \binom{a+b}{2b+r} \binom{2b}{b} \right) = 0.
\]

(2.2)

In the following we will simplify the two innermost sums.

We start with the first sum. If \(r = a \) the sum trivially equals \(\frac{1}{a} \). Let us assume \(1 \leq r < a \) now. Then we have

\[
\sum_{b=0}^{a-r} (-1)^{b} \frac{1}{a+b} \binom{a+b}{2b+r} \binom{2b+r}{b} = \frac{1}{a-r} \sum_{b=0}^{a-r} (-1)^{b} \binom{a-r}{b} \binom{a+b-1}{b+r} = \frac{(-1)^{r}}{a-r} \sum_{b=0}^{a-r} \binom{a-r}{b} \binom{r-a}{b+r} = \frac{(-1)^{r}}{a-r} \binom{0}{a} = 0,
\]

where we used

\[
\left(-1 \right)^{k} \binom{k-n-1}{k} = \binom{n}{k} \quad (n \in \mathbb{Z}, k \geq 0)
\]

for the second identity, and Vandermonde’s identity

\[
\sum_{k=0}^{n} \binom{n}{k} \binom{s}{k+t} = \sum_{k=0}^{n} \binom{n}{k} \binom{s}{n+t-k} = \binom{n+s}{n+t} \quad (s \in \mathbb{Z}, n, t \geq 0)
\]

for the third one.

Altogether we have established

\[
\sum_{b=0}^{a-r} (-1)^{b} \frac{1}{a+b} \binom{a+b}{2b+r} \binom{2b+r}{b} = \frac{1}{a} \delta_{r,a} \quad (1 \leq r \leq a),
\]

(2.3)

where \(\delta_{r,a} \) denotes the Kronecker symbol.

Now we turn to the second sum in question. Since this is a sum reminiscent of a sum treated in [6, Section 5.2, Problem 7] we first try to adopt the strategy followed there and
use [6, Section 5.1, identity 5.26]

\[(2.4) \quad \binom{l+q+1}{m+n+1} = \sum_{0 \leq k \leq l} \binom{l-k}{m} \binom{q+k}{n} \quad (l, m \geq 0, n \geq q \geq 0).\]

With \(l = a + b - 1, q = 0, m = 2b, n = r - 1\) and \(k = s\) we get

\[
\sum_{b=0}^{a-r} (-1)^b \frac{1}{a+b} \binom{a+b}{2b+r} \binom{2b}{b} = \sum_{b=0}^{a-r} \sum_{s=0}^{a+b-1} (-1)^b \frac{1}{a+b} \binom{a+b-s-1}{2b} \binom{s}{r-1} \binom{2b}{b}
\]

which by a change of summations yields

\[
\sum_{s=r-1}^{2a-r-1} \binom{s}{r-1} \sum_{b=0}^{a-s-1} (-1)^b \frac{1}{a+b} \binom{a+b-s-1}{2b} \binom{2b}{b}
\]

\[(2.5) \quad \sum_{s=r-1}^{a-1} \binom{s}{r-1} \sum_{b=0}^{a-s-1} (-1)^b \frac{1}{a+b} \binom{a+b-s-1}{2b} \binom{2b}{b}.
\]

Now we are ready to apply sum \(S_m\) from [6, Section 5.2, Problem 8]

\[(2.6) \quad S_m = \sum_{k=0}^{n} (-1)^k \frac{1}{k+m+1} \binom{n+k}{2k} \binom{2k}{k} = (-1)^n \frac{m!n!}{(m+n+1)!} \binom{m}{n} \quad (m, n \geq 0).
\]

With \(m = a - 1, n = a - s - 1\) and \(k = b\) we find that \(2.5\) from above equals

\[
\sum_{s=r-1}^{a-1} \binom{s}{r-1} (-1)^{a+s+1} (a-1)! (a-s-1)! \binom{a-1}{a-s-1}
\]

\[(2.7) \quad \frac{(-1)^{a+1} (a-1)! (a-s-1)!}{(2a-1)!} \frac{2a-1}{r-1} \binom{2a-1}{r-1} \sum_{s=r-1}^{a-1} (-1)^s \binom{2a-r}{s-r+1}
\]

\[
\frac{(-1)^{a+r} (a-1)! (a-1)!}{(2a-1)!} \frac{2a-1}{r-1} \sum_{s=0}^{a-r} (-1)^s \binom{2a-r}{s}
\]

(\text{where we applied the substitution } s-r+1 \to s \text{ in the last step}). Using the basic identity

\[
\sum_{j=0}^{k} (-1)^j \binom{n}{j} = (-1)^k \binom{n-1}{k} \quad (n, k \geq 0)
\]

to evaluate the last sum in \(2.7\) we finally get

\[
\sum_{b=0}^{a-r} (-1)^b \frac{1}{a+b} \binom{a+b}{2b+r} \binom{2b}{b} = \frac{(a-1)! (a-1)!}{(2a-1)!} \frac{2a-1}{r-1} \binom{2a-r-1}{a-r}
\]

\[(2.8) \quad \frac{1}{2a-r} \binom{a-1}{a-r}.
\]
Now we go on plugging the results (2.3) and (2.8) from above in (2.2) and find

\[
\frac{v_d^{(1)}}{v_d^{(0)}} = \sum_{a=2}^{d} (-1)^d a \binom{d}{a} \binom{d+a}{d} \left(\frac{(-2)^{d-2}}{a} - \sum_{r=1}^{a} \frac{(-2)^{d-2}}{2a-r} \frac{a-1}{a-r} \right)
\]

(2.9)

\[
= \sum_{a=2}^{d} (-1)^{d+1} a \binom{d}{a} \binom{d+a}{d} \left(\sum_{r=0}^{a-1} \frac{(-2)^{d-2}}{2a-r-1} \frac{a-1}{r} - \frac{(-2)^{d-2}}{a} \right).
\]

In order to get rid of the inner sum we use an identity that may be proved as an application of the classical reflection law

(2.10)

\[
\frac{1}{(1-z)^a} F \left(\begin{array}{c} a, b \\ c \end{array} \bigg| \frac{-z}{1-z} \right) = F \left(\begin{array}{c} a, c-b \\ c \end{array} \bigg| \frac{z}{c} \right)
\]

for hypergeometric functions by J.F. Pfaff [8], namely

(2.11)

\[
\sum_{k=0}^{m} (-2)^{k} \frac{2^{m}+1}{2^{m}-k+1} \binom{m}{k} = \left(-1 \right)^{m} 2^{2m} \binom{2m}{m}
\]

compare [6, identity (5.104)]. In this way we find

\[
\frac{v_d^{(1)}}{v_d^{(0)}} = \sum_{a=2}^{d} (-1)^{d+a+1} a \binom{d}{a} \binom{d+a}{d} \left(2^{2a-3} \frac{1}{2a-1} - \frac{1}{(2a-2)} - \frac{1}{a} \right)
\]

(2.12)

\[
= \sum_{a=2}^{d} (-1)^{d+a} \binom{d}{a} \binom{d+a}{d} \left(2^{2a-2} - 2^{2a-2} \frac{1}{(2a)} \right)
\]

so that we have proved that the ratio \(v_d^{(1)}/v_d^{(0)} \) is an integer.

In the last step of the proof we establish the explicit formula for the ratios. Recall the Legendre polynomials \(P_d(x) \), as defined in the theorem, and let

(2.13)

\[
\rho_d(x) := \sum_{k=0}^{d} \binom{d+k}{d-k} x^k
\]

denote the associated Legendre polynomials (cf. [10] p. 66]). Then (2.12) yields

(2.14)

\[
\frac{v_d^{(1)}}{v_d^{(0)}} = (-1)^d \frac{P_d(-3) - \rho_d(-4)}{4}.
\]

Now (cf. [3] p. 158)]

(2.15)

\[
P_d(-x) = (-1)^d P_d(x).
\]
Furthermore \(\rho_d \) satisfies the recursive formula
\[
\rho_d(x) = (x + 2)\rho_{d-1}(x) - \rho_{d-2}(x)
\]
(2.16)
\[
\rho_0(x) = 0, \rho_1(x) = x + 1
\]
(compare [10, p. 66]) so that we have
\[
(-1)^d \rho_d(-4) = 2d + 1
\]
which completes the proof of (2.1).

3. Recurrence, asymptotic behaviour and probabilities

In this section we apply Theorem 2.1 in order to establish a recurrence for the quotients \(v_d^{(1)}/v_d^{(0)} \) as well as to establish the asymptotic behaviour of this sequence for \(d \to \infty \) and its consequence on the probabilities \(v_d^{(1)}/v_d^{(0)} \).

Since the Legendre polynomials satisfy the recursive formula
\[
dP_d(x) - (2d - 1)xP_{d-1}(x) + (d - 1)P_{d-2}(x) = 0
\]
(3.1)
\[
P_0(x) = 1, P_1(x) = x
\]
(cf. [9, p. 160]) we get the following second order linear recurrence for our ratios \(v_d^{(1)}/v_d^{(0)} \).

Corollary 3.1.
\[
d \frac{v_d^{(1)}}{v_d^{(0)}} - 3(2d - 1) \frac{v_{d-1}^{(1)}}{v_{d-1}^{(0)}} + (d - 1) \frac{v_{d-2}^{(1)}}{v_{d-2}^{(0)}} = 2d(d - 1), \quad (d \geq 2)
\]
(3.2)
\[
\frac{v_0^{(1)}}{v_0^{(0)}} = \frac{v_1^{(1)}}{v_1^{(0)}} = 0.
\]

We turn our attention now to the asymptotic behaviour of the ratios for \(d \to \infty \) and start by their generating function. The generating function of the Legendre polynomials is given by ([10, p. 78])
\[
\sum_{d \geq 0} P_d(x)z^d = \frac{1}{\sqrt{1 - 2xz + z^2}},
\]
(3.3)
so that the generating function of our ratios reads

Corollary 3.2.
\[
V_1(z) := \sum_{d \geq 0} \frac{v_d^{(1)}}{v_d^{(0)}} z^d = \frac{1}{4} \left(\frac{1}{\sqrt{1 - 6z + z^2}} - \frac{1 + z}{(1 - z)^2} \right).
\]
(3.4)

Performing singularity analysis the latter result allows to establish the asymptotic behaviour of the ratios for \(d \to \infty \) as follows.
Proposition 3.3. For \(d \to \infty \)

\[
\frac{v_d^{(1)}}{v_d^{(0)}} = \frac{1}{8\sqrt{2}\sqrt{\pi d}} (3 + 2\sqrt{2})^{d+\frac{1}{2}} \left(1 + O\left(\frac{1}{d}\right) \right).
\]

Proof. We adopt the usual technique of singularity analysis of generating functions, compare e.g. \([3, \text{Chapter IV}]\) or \([12, \text{Chapter 8}]\). The dominating singularity of the generating function \(V_1(z) \) is given by the zero \(3 - 2\sqrt{2} \) of \(1 - 6z + z^2 \) closest to the origin, whereas the other zero of \(1 - 6z + z^2 \) as well as the term \(\frac{1+z}{(1-z)^2} \) will give a contribution that is exponentially smaller than the contribution of the main term. The local expansion of \(V_1(z) \) about the dominating singularity reads

\[
V_1(z) = \frac{1}{8\sqrt{2}\sqrt{3 - 2\sqrt{2}}} \left(1 - \frac{z}{3 - 2\sqrt{2}} \right)^{-1/2} \left(1 + O\left(\frac{z}{3 - 2\sqrt{2}}\right) \right)
\]

for \(z \to 3 - 2\sqrt{2} \), from which the asymptotics is immediate. \(\square \)

In \([1]\) Akiyama and Pethó also discussed the probabilities

\[
p_d^{(s)} := \frac{v_d^{(s)}}{v_d}
\]

for a contractive polynomial of degree \(d \) in \(\mathbb{R}[x] \) to have \(s \) pairs of complex conjugate roots. In particular they derived (cf. \([1, \text{Theorem 6.1}]\))

\[
\log p_d^{(0)} = -\frac{\log 2}{2} d^2 + \frac{1}{8} \log d + \mathcal{O}(1), \quad \text{for} \quad d \to \infty,
\]

for the probability of totally real polynomials and, by numerical evidence for \(d \leq 100 \), conjectured that

\[
\log p_d^{(1)} \leq -\frac{\log 2}{2} d^2 + d \log q
\]

for some constant \(q \). Now, obviously,

\[
p_d^{(1)} = \frac{v_d^{(1)}}{v_d^{(0)}} p_d^{(0)},
\]

so that from \((3.7)\) and our Proposition 3.3 we gain

Corollary 3.4. The probability \(p_d^{(1)} \) for a contractive polynomial of degree \(d \) in \(\mathbb{R}[x] \) to have exactly one pair of complex conjugate roots fulfills

\[
\log p_d^{(1)} = -\frac{\log 2}{2} d^2 + d \log(3 + 2\sqrt{2}) + \mathcal{O}(\log d) \quad \text{for} \quad d \to \infty.
\]
4. Concluding remarks

In this paper we were able to settle the instance $s = 1$ of Conjecture 1.1. The question arises, whether our methods could be used to prove the conjecture for additional instances of $s \geq 2$ or even for general $s \geq 1$. A crucial point for a possible application of our method would be to establish a generalization of the Selberg-Aomoto integral for integrands that will occur with the evaluation of $v_d^{(s)}$ for $s \geq 2$ similar to formula (1.2) in the instance $s = 1$. Work is in progress on this question, but even the explicit evaluation of the integrals that appear in instance $s = 2$ seems to be very hard.

References

[1] S. Akiyama and A. Pethö, On the distribution of polynomials with bounded roots, I. polynomials with real coefficients, J. Math. Soc. Japan, to appear.
[2] G. Andrews, R. Askey, and R. Roy, Special Functions, Encyclopedia of Mathematics and its Applications 71, Cambridge University Press, Cambridge, UK, 1999.
[3] A. Fam, The volume of the coefficient space stability domain of monic polynomials, in IEEE Symposium on Circuits and Systems 1989, vol.3 (Debrecen, 1989), 1989, pp. 1780–1783.
[4] A. T. Fam and J. S. Meditch, A canonical parameter space for linear systems design, IEEE Trans. Autom. Control, 23 (1978), pp. 454–458.
[5] P. Flajolet and R. Sedgewick, Analytic Combinatorics, Cambridge University Press, Cambridge, UK, 2009.
[6] R. L. Graham, D. E. Knuth, and O. Patashnik, Concrete Mathematics, Addison Wesley, Boston, MA, USA, 2nd ed., 1994.
[7] P. Kirschenhofer, A. Pethö, P. Surer, and J. Thuswaldner, Finite and periodic orbits of shift radix systems, J. Théor. Nombres Bordeaux, 22 (2010), pp. 421–448.
[8] J. Pfaff, Observationes analyticae ad L. Euleri institutiones calculi integralis, Vol. IV, Supplem. II & IV, Nova acta academiae scientiarum imperialis Petropolitanae, 11 (1798), pp. 37–57.
[9] D. Rainville, Special Functions, The Macmillan Company, 1960.
[10] J. Riordan, Combinatorial identities, Wiley Series in Probability and Mathematical Statistics, Wiley, New York, NY, USA, 1968.
[11] I. Schur, Über Potenzreihen, die im Innern des Einheitskreises beschränkt sind. II, J. Reine Angew. Math., 148 (1918), pp. 122–145.
[12] W. Szpankowski, Average Case Analysis of Algorithms and Sequences, Wiley-Interscience Series in Discrete Mathematics and Optimization, John Wiley & Sons.

Chair of Mathematics and Statistics, Montanuniversitaet Leoben, Franz Josef-Strasse 18, A-8700 Leoben, AUSTRIA
E-mail address: Peter.Kirschenhofer@unileoben.ac.at, Mario.Weitzer@unileoben.ac.at