Supplementary Table 1. The characteristics of included trials

Studies	Regions	Number of centers	Patients	Comparisons	Duration of intervention	Outcome measurements	Questionnaire for life quality	Time points of data collection
Headley S 2014[1]	USA	1	CKD stage 3 with diabetes and/or hypertension	Supervised exercise training at 50%-60% peak oxygen uptake, 3 times per week ($n=25$)	16 weeks	Arterial stiffness; Aerobic capacity; Various blood parameters; Quality of life	SF-36	Baseline 16 weeks later
Van Craenenbroeck AH 2015[2]	Greece	1	CKD stages 3 to 4 without established cardiovascular disease	4 daily cycling sessions of 10 minutes each at a target heart rate ($n=19$)	3 months	Peripheral endothelial function; Aerobic capacity; Arterial stiffness Numbers of endothelial and osteogenic progenitor cells; Migratory function of circulatory angiogenic cells; Quality of life	KDQOL-SF	Baseline 3 months later
Rahimimoghadam Z 2018[3]	Iran	1	CKD stages 2 to 3	Modified classical Pilates exercises three times a week over a 12-week period ($n=25$)	12 weeks	Quality of life	KDQOL-SF	Baseline 12 weeks later
Rossi AP 2014[4]	Portland	1	CKD stages 3 to 4	Renal rehabilitation exercise intervention consisting of usual care plus guided exercise two times per week for 12 weeks ($n=59$)	12 weeks	Physical function; Quality of life	RAND-36	Baseline 12 weeks later
Mustata S 2011[5]	Canada	1	CKD stages 3 to 5	Exercise and standard care ($n=10$)	1 year	VO2 peak and endurance time; Arterial stiffness; Quality of life	SF-36	Baseline 12 months later
Aoki DT 2018[6]	Brazil	1	Overweight CKD stages 3 to 4	The home-based training consisted of walking three times per week on alternate days ($n = 12$); Center-based group used a treadmill, three times per week on alternate days ($n = 13$)	24 weeks	Cardiopulmonary exercise test; Functional capacity tests; Quality of life; Quality of sleep; Clinical parameters	SF-36	Baseline 12 weeks later 24 weeks later
Tang Q 2016[7]	China	1	CKD stages 1 to 3	Individualized home-based exercise program ($n=45$)	12 weeks	Physical function; Psychological dimensions; Quality of life	KDQOL-36	Baseline 12 weeks later

CKD: chronic kidney disease; SF-36: the 36-Item Short Form Health Survey; KDQOL-SF: the Kidney Disease Quality of Life questionnaire; RAND-36: the RAND 36-item Health Survey; VO2 peak: peak oxygen uptake; KDQOL-36: the Kidney Disease Quality of Life-36 Questionnaire.
Studies	Details of interventions	Control group
Headley S 2014 [1]	Patients were prescribed 16 weeks of aerobic training 3 times per week, but allowed to make up missed sessions within a 2-week period. Most participants started with 15–30 minutes of continuous aerobic exercise using a variety of apparatus and gradually progressed toward a goal of 55 minutes (composed of 5 minutes of warm-up, 45 minutes of conditioning, and 5 minutes of cooldown). Participants worked at 50%–60% of the peak oxygen uptake achieved during the graded exercise test. Heart rate and rate of perceived exertion were monitored.	Follow the instructions of nephrologist or primary care physician without a structured exercise program
Van Craenenbroeck AH 2015 [2]	A 3-month home-based intermittent aerobic training program at moderate intensity consisted of 4 daily cycling sessions of 10 minutes each at a target heart rate calculated as 90% of the heart rate achieved at the anaerobic threshold on baseline testing. Magnetically braked home exercise bikes and heart rate transmitters were provided. In the first 2 weeks of the study period, at least 3 training sessions were supervised in the hospital by an experienced medical doctor. For the following 2 weeks, a supervised training session was organized once a week. Adherence was monitored monthly by heart rate data.	Standard therapy without specific instructions about physical activity
Rahimimoghadam Z 2018 [3]	A four-hour education session about exercise was provided. The experimental group's participants performed exercises at 11 a.m. every Monday, Wednesday, and Friday at the hospital. In the first session, basic principles of pilates exercises were reviewed, and basic pilates movements (Bridging, Hundred, Roll Up, One Leg Circle [both ways], Roller with closed legs, Single Straight Leg Stretch, Double Leg Stretch, Spine Stretch Forward, Single Leg Kick, Side Kick up and down, Side Kick circles, Rest position [stretch and relaxation], and Curling) were trained and performed. In the first and second sessions, the number of exercises began with 10 repetitions (45 min in total). In the subsequent sessions, stretching exercises (about 5 min), pilates exercises (about 50 min), and cooling down movements (about 5 min) were completed. In sessions 3–12, the number of exercises reached 70–80 repetitions (70 min in total).	CKD routine care
Rossi AP 2014 [4]	Participate in guided exercise two times per week for 12 weeks. Exercise sessions consisted of cardiovascular (included treadmill walking and/or stationary cycling), weight training (upper and lower extremity extensions and flexions with free weights), and stretching exercises (started at one set of 10 repetitions of each exercise using 1 to 10 pounds weights and increased to three sets of 15 repetitions).	Usual care
Mustata S 2011 [5]	The training program included supervised and home-based exercise. Supervised training consisted of twice-weekly in-center sessions throughout the study period and included choice of treadmill, stationary cycle, and elliptical trainer. Home training (walking) was initiated in the second month and progressed over 3 months to a frequency of 3 days/week. Exercise duration was increased by 5–10% weekly, and patients used heart rate monitors and ratings of perceived exertion to guide exercise intensity.	Standard care alone
Aoki KE 2018 [6]	Home-based group initially underwent three supervised exercise sessions. Each subject in this group received a heart rate monitor and a manual with detailed instructions on how to perform the exercise. The home-based training consisted of walking at locations near the patient’s home, such as a backyard, park or street, three times per week on alternate days. Center-based group used a treadmill, three times per week on alternate days under the supervision. All training sessions were preceded by stretching of the large muscle groups and warm-up (5 min) and ended with cooling down and stretching (5 min) in both exercise groups. The training was performed for 30 min with increments of 10 min in duration every 4 weeks until week eight.	Usual care
Tang Q 2016 [7]	One-to-one exercise education and guidance were provided for 3 times firstly. The home-based aerobic exercise at least 3 times a week involved walking, cycling, and jogging. Individuals were told to initiate the program from a low intensity.	Usual care
and progressive transition to a moderate level on the basis of their own rating of perceived exertion. Every exercise session consisted of 3 parts: warm-up, exercise, and cool-down. Stretching exercises were the main components of warm-up and cool-down parts that continued for 3–5 min. Formal exercise was delivered for 20–30 min.

a.m.: ante meridiem; CKD: Chronic kidney disease.
Supplementary Table 3. The quality of included randomized trials

Study	Truly random	Concealed allocation	Baseline features	Eligibility criteria	Blinding assessment	Loss to follow-up	Intention to treat	Study quality scores‡
Headley S 2014[1]	Yes	Unclear	Yes	Yes	No	Yes	Partly Yes†	10.5
Van Craenenbroeck AH 2015[2]	Yes	Yes	Yes	Yes	Yes	Yes	Yes	14
Rahimimoghadam Z 2018[3]	Yes	Unclear	Yes	Yes	No	Yes	Yes	11
Rossi AP 2014[4]	Yes	Unclear	Partly Yes†	Yes	No	Yes	No	8.5
Mustata S 2011[5]	Yes	Yes	Yes	Yes	Yes	Yes	Yes	14
Aoike DT 2018[6]	Yes	Unclear	Yes	Yes	Unclear	Yes	Yes	12
Tang Q 2016[7]	Yes	Unclear	Yes	Yes	Unclear	Yes	Yes	12

* There was at least one item of baseline characteristics being not balanced between the two groups. † Only one patient in the control group who did not receive the allocated intervention was excluded for analysis. ‡ The maximum quality score is 14.
Supplementary Figure 1.

MD: Mean difference; SE: Standardized effect.
REFERENCES

1. Headley S, Germain M, Wood R, Joubert J, Milch C, Evans E, et al. Short-term aerobic exercise and vascular function in CKD stage 3: a randomized controlled trial. Am J Kidney Dis. 2014;64:222-229.doi:10.1053/j.ajkd.2014.02.022.

2. Van Craenenbroeck AH, Van Craenenbroeck EM, Van Ackeren K, Vrints CJ, Conraads VM, Verpooten GA, et al. Effect of Moderate Aerobic Exercise Training on Endothelial Function and Arterial Stiffness in CKD Stages 3-4: A Randomized Controlled Trial. Am J Kidney Dis. 2015;66:285-296.doi:10.1053/j.ajkd.2015.03.015.

3. Rahimimoghadam Z, Rahemi Z, Sadat Z, Mirbagher Ajorpaz N. Pilates exercises and quality of life of patients with chronic kidney disease. Complement Ther Clin Pract. 2019;34:35-40. doi:10.1016/j.ctcp.2018.10.017.

4. Rossi AP, Burris DD, Lucas FL, Crocker GA, Wasserman JC. Effects of a renal rehabilitation exercise program in patients with CKD: a randomized, controlled trial. Clin J Am Soc Nephrol. 2014;9:2052-2058. doi:10.2215/CJN.11791113.

5. Mustata S, Groeneveld S, Davidson W, Ford G, Kiland K, Manns B. Effects of exercise training on physical impairment, arterial stiffness and health-related quality of life in patients with chronic kidney disease: a pilot study. Int Urol Nephrol. 2011;43:1133-1141.doi:10.1007/s11255-010-9823-7.

6. Aoike DT, Baria F, Kamimura MA, Ammirati A, Cuppari L. Home-based versus center-based aerobic exercise on cardiopulmonary performance, physical function, quality of life and quality of sleep of overweight patients with chronic kidney disease. Clin Exp Nephrol. 2018;22:87-98.doi:10.1007/s10157-017-1429-2.

7. Tang Q, Yang B, Fan F, Li P, Yang L, Guo Y. Effects of individualized exercise program on physical function, psychological dimensions, and health-related
quality of life in patients with chronic kidney disease: A randomized controlled trial in China. Int J Nurs Pract. 2017;23:e12519. doi:10.1111/ijn.12519.