Quantum gates by coupled asymmetric quantum dots and controlled-NOT-gate operation

Tetsufumi Tanamoto
Corporate Research and Development Center, Toshiba Corporation, Saiwai-ku, Kawasaki 210-8582, Japan
(August 23, 2018)

A quantum computer based on an asymmetric coupled dot system has been proposed and shown to operate as the controlled-NOT-gate. The basic idea is (1) the electron is localized in one of the asymmetric coupled dots. (2) The electron transfer takes place from one dot to the other when the energy-levels of the coupled dots are set close. (3) The Coulomb interaction between the coupled dots mutually affects the energy levels of the other coupled dots. The decoherence time of the quantum computation and the measurement time are estimated. The proposed system can be realized by developing the technology of the single-electron memory using Si nanocrystals and the direct combination of the quantum circuit and the conventional circuit is possible.

I. INTRODUCTION

Since Shor’s factorization program was proposed, many studies have been carried out with a view to realizing the quantum computer [1, 2]. Although coherence is necessary for a quantum calculation, it is considered to be difficult to maintain coherence in the entire calculation process throughout the entire circuit. Thus, it will be more efficient and more realistic to combine the quantum computational circuit and the conventional LSI circuit in the same chip. Some proposals regarding the quantum computer based on semiconductor physics have been made from this viewpoint [3, 4].

Kane [5] proposed the Si-based quantum dot computer using NMR of dopants (phosphorus). This idea is very promising because the qubits are isolated from the external environment which causes decoherence. However, controlling the implantation of phosphorus exactly into the definite positions of the Si substrate will depend on future technology and the usage of the magnetic field seems to be undesirable in the conventional Si LSI circuit. Here, we propose a coupled quantum dot system of a quantum computer which can be operated only by electrical effects and show that it can operate as a controlled-NOT-gate. It is shown to be realized by developing the technology of a single-electron memory of Si nanocrystals [6].

The controlled-NOT operation is given by [3]:

\[|\epsilon_1\rangle|\epsilon_2\rangle \rightarrow |\epsilon_1\rangle|\epsilon_1 \oplus \epsilon_2\rangle \text{(modulo2)} \]

which plays an important role in quantum cryptography gates [7]. In this paper we show the quantum gates of the semiconductor coupled quantum dots, emphasizing their controlled-NOT operation.

The structure of the paper is as follows. In Sec.I we discuss the fabrication process of the coupled quantum dot system. In Sec. II we estimate the decoherence time in the quantum operation and the measurement time in the detection process of the proposed coupled quantum dot system. We also discuss the fabrication process of the coupled quantum dot system. Conclusions are presented in Sec. IV.

II. CONTROLLED-NOT-GATE BY THE TWO COUPLED DOTS

Coupled quantum dot systems with a few electrons have been extensively investigated in regard to many-body effects such as Coulomb blockade [11–16]. From the experiments by van der Vaart [13], it can be seen that the electron transfer between dots occurs when the discrete energy-level of one of the dots matches that of the other dot of the coupled dots. Pfannkuche et al. [17] showed theoretically that, as a result of the correlations between a few electrons in quantum dots, the electrons behave as if they were noninteracting electrons. Crouch et al. [15, 16] showed that, if the tunneling barrier is low and the coupling of the two dots is strong, the coupled dots behave as a large single dot in a Coulomb blockade phenomenon. This means that, if the tunneling barrier between the dots is sufficiently small, it is possible that only one electron exists in the coupled dots.

Thus, we can consider the electronic state of the two coupled dots in the range of the free electron approximation [7, 8] at the first step of investigation. When two dots of different size are coupled and one excess electron is inserted, the system can be treated as a two-state system where the energy-levels of the total coupled dot system show the localized state of wave function reflecting the different energy-levels of the independent isolated dots [17]. When gate bias voltage is applied and the potential slope is changed, there appears a gate bias voltage, \(V_{\text{res}}\), at which the two energy-levels of the original single dots coincide and the electron transfers to another dot (resonant tunneling). Coupling removes the degeneracy of energy-levels in the single dot quantum states, and produces new states of delocalization such that the even-
parity and odd-parity wave functions spread over the two coupled dots. Thus, if we regard the perfect localization of the charge in one of the coupled dots as \(|1\rangle\) state and that in the other dot as \(|0\rangle\) state, we can constitute qubit by the coupled quantum dots (Fig. 1).

The point is, by adjusting the gate bias, we can control the electronic state from the localized regions (\(|1\rangle\) and \(|0\rangle\)) to the intermediate delocalized region only where the electron transfers from one dot to the other in the coupled dots in a short time \((\sim\text{picosecond})\) [17,18]. As the tunneling barrier structure is asymmetric, the leak current through the coupled dot system is extremely small [19] and neglected actually.

When the above coupled dots (qubits) are arrayed side by side, the charge distribution of the electron in a qubit changes the potential profiles and the energy-levels of the neighboring qubits by its electric field. We assume that the electron transfer between different qubits can be neglected. Then the electronic state in a qubit is affected by whether the electrons in other qubits stay in the \(|1\rangle\) state, \(|0\rangle\) state or arbitrary superposition state of \(|1\rangle\) and \(|0\rangle\). By changing the charge distribution of the array of qubits, we can operate the total charge distribution of the electrons and the quantum circuit. Figure 2 shows the case of the two-qubit controlled-NOT-gate where one set of the coupled dots operates as a control qubit and the other as a target qubit. Later, it is shown numerically that this array of the coupled quantum dot operates as the controlled-NOT-gate.

One of the candidates for the coupled dots of the quantum computer is considered to be the Si nanocrystals embedded in the gate insulator (Fig. 3). This is based on the Si LSI technology similar to that of Tiwari’s single-electron memory [8,9] which is extensively investigated because it operates at room temperature. The excess charge is supplied from the inversion layer in the substrate. By setting larger dots near the channel, the structure shown in Fig. 3 can be realized. The arrangement of the gate electrodes which control the individual qubits depends on the individual algorithm. The simplest form is the case where there are two gate electrodes and two sets of coupled dots (Fig. 3), which works as the controlled-NOT-gate explained in this paper. The measurements process is operated by the upper gate electrode which controls the overall channel carrier density. The upper gate also protects the electronic states in the dots from disturbance by shielding the external electromagnetic field. The qubits interact mutually and the distribution of the charges affects the current flow (channel conductance) between the source and drain and the threshold gate voltage. A \(|11\rangle\) state shifts the threshold voltage most and a \(|00\rangle\) state shifts it least. Because of the sloping channel depth from the source to the drain, the \(|10\rangle\) state and \(|01\rangle\) state can be distinguished. Thus the quantum mechanical calculation proceeds as follows: (0) To initialize the charge distribution (initial quantum states), a large voltage is applied on the upper gate over the coupled dots, and unifies the charge distribution in the coupled dots, (1) The input and output signals are added through the gates over each qubit, (2) the final distribution of charges (final quantum states) is detected by the current between the source and drain and the threshold voltage shifts of the upper gates over the coupled dot system.

When there are many qubits, the controlled-NOT operation of pairs of qubits is affected by the quantum states of the surrounding qubits. That is, the applied gate voltage of operation changes depending on the quantum states of other qubits. This is the same situation as the qubits of Bareno et al. [3]. Although the decoupling schemes used in NMR experiments can be applied to avoid the coupling between qubits, it is considered to be desirable that the general quantum calculations are designed by considering the arrangement of qubits [4].

This structure of the proposed system has the merit that the charge distribution in the coupled dot system, which is considered to be a very small signal, is expected to be detected by the channel conductance with high sensitivity like that of the single-electron memory [8].

Similar to Tiwari’s single-electron memory, the charging effect appears between the coupled dots and the channel region and the probability that two electrons come into the qubits is very small as long as the capacitance of the junction is sufficiently small.

In principle, the qubits by the semiconductor quantum dots with discrete energy-levels do not directly require that quantum dots be asymmetric. Two coupled quantum dots with discrete energy-levels can organize the two-state system. However, when the coupled dots are embedded in the FET-type insulating layer that we propose, the asymmetry of the coupled dots is required for the following two reasons. First, in order to prevent the electron in the coupled dots from returning to channel region in the substrate during the quantum operation, a finite voltage is required. The second reason is related to the measurement process. For the current to flow, a finite gate voltage that is larger than the threshold voltage is required. Because, as discussed below, a large gate voltage breaks the coherent state of the coupled dots, much voltage cannot be applied on the gate electrode. Thus, it is desirable that the two discrete energy-levels of quantum dots coincide under the applied gate voltage and the quantum calculation and the measurement be carried out near the threshold gate voltage. These are the reasons why the asymmetry of the coupled quantum dots is required.

Below, we show the static properties of the wave function of the localized electron by using the S-matrix theory and the controlled-NOT operation of the coupled dots. The periodical motion of the localized electron is shown by solving a time-dependent Schrödinger equation. The exact theoretical treatment of the coupled dot system would be to solve the exact three-dimensional Schrödinger equation. However, since this direct method is difficult to apply in practice, we use the following approximations. The static behavior is studied by solving
the one-dimensional Schrödinger equation, and the dynamic behavior, which is more difficult to treat, is studied by regarding the quantum dots as zero-dimensional objects.

A. Static properties of the qubit of the coupled quantum dots

The static properties of the wave function in the coupled dots can be shown by applying the S-matrix theory \[21\] to the one-dimensional case. The one-dimensional Schrödinger equation is given:

\[-\frac{\hbar^2}{2m_i} \frac{\partial^2}{\partial z^2} + V_i(z) \psi_i(z) = E \psi_i(z) \]

(1)

where \(i(=1,..,N_m)\) show the number of the mesh in the calculation. It is well known that a relatively small number of \(N_m\) is sufficient for the calculation (here \(N_m \sim 1000\)). The electric fields by other coupled dots are considered to be included in the potential, \(V_i(z)\). We use the plane wave approximation for the wave functions:

\[\psi_i(x) = A_i e^{ik_i x} + B_i e^{-ik_i x} \]

(2)

The boundary conditions are given

\[\psi_i(x) = \psi_{i+1}(x), \quad \frac{1}{m_i} \frac{\partial \psi_i}{\partial x} = \frac{1}{m_{i+1}} \frac{\partial \psi_{i+1}}{\partial x} \]

(3)

which determines the coefficient \(A_i, B_i:\)

\[\begin{bmatrix} A_{i+1} \\ B_{i+1} \end{bmatrix} = \begin{bmatrix} (1 + r_i) e^{ik_i x} & (1 - r_i) e^{-ik_i x} \\ (1 - r_i) e^{ik_i x} & (1 + r_i) e^{-ik_i x} \end{bmatrix} \begin{bmatrix} A_i \\ B_i \end{bmatrix} \]

(4)

where \(r_i = (k_i/m_i^*)/(k_{i+1}/m_{i+1}^*)\). Here we assume that the electron is inserted from the channel layer \((i = 0\) part) and neglect the reflection amplitude of the wave function of the gate electrode \((B_{N_m} = 0)\), similar to Ref. \[21\]. Then the transmission coefficient is given:

\[T_{N_m}(E) = \left| \frac{k_{N_m}}{k_0} \right| |A_{N_m}|^2. \]

(5)

Discrete energy-levels of the coupled dots are those when this transmission coefficient has a maximum. We can estimate the effects of the Coulomb interaction of the control qubit on the target qubit shown in Fig. 3. The Coulomb interaction on the dot \(a_1\) from the dot \(a_2\), and that from the dot \(b_2\) are given by \(U_{a_1a_2} = e^2/\epsilon r_{a_1a_2} p_{a_2}\), \(U_{a_1b_2} = e^2/\epsilon r_{a_1b_2} p_{b_2}\), respectively, where \(\rho_i\) is the density of the wave function of dot \(i\) and \(r_{ij}\) shows the distance between the center of the dot \(i\) and \(j\). We set \(\rho_i = 0\) or 1 depending on the existence of the localized electron of the neighboring qubits. The Coulomb interaction on the dot \(b_1\) is treated similarly. These Coulomb interactions are added to the potential bottom of the target qubit. For simplicity, we neglect the self-consistent effects.

The localized electron in one of the coupled dots moves into the other dot only if the two discrete energy-levels are set close (on resonance). The slight change of the relative energy-level by the electric field generated by the other set of coupled dots makes impossible the transfer of the localized electron from one dot to the other. The basic concept of this scheme is similar to that of Barenco et al. \[3\]. Whereas Barenco et al. use the ground state and excited state in a single dot with optical resonant effects, we are using only the ground state of the coupled dots only with electrical resonant effects \((ground\ state\ operation)\). The smaller the size of the dot, the more stable is the operation.

Figures 4 and 5 show the calculated results of the controlled-NOT operation in Si/SiO\(_2\) (\(\epsilon = 4\)) material. The barrier height of SiO\(_2\) is assumed to be 3.1 eV and the effective mass of Si and SiO\(_2\) are assumed to be 0.2\(m_0\). The tunneling barrier is sufficiently high, the coupled dot system can be made smaller in the Si/SiO\(_2\) system than in the GaAs/AlGaAs system \[22\]. The diameter of the larger quantum dot is 6nm and that of the smaller is 4nm where the thickness of the tunneling barrier is 1.5nm. The distance between centers of the dots of the same size is assumed to be 20nm \((4 \times 10^{12} \text{ dots/cm}^2)\). These values are taken from the experiments by Tiwari et al. \[8\]. The thinner tunneling barrier between the dots in a qubit becomes \((\leq 1\) nm), the weaker the rate of the localization effect is.

Electron in a target qubit is localized in a larger dot at lower gate bias region (region \(A^{(1)}\) in the case where control qubit is in \(|1\rangle\) state in Fig. 4). As the gate voltage is applied, the energy-level of the localization in the larger dot exceeds that of the smaller dot. At \(V_G = V_{res}^{(1)}\) \((center\ of\ the\ left\ hatched\ region\ in\ Fig. 4)\), the wave function of the lowest energy state \((even-parity)\) and that of the excited state \((odd-parity)\) spread over the two dots with equal weight, when the control qubit is in \(|1\rangle\) state. The degenerate energy-levels of the single dots are split by the coupling of the dots and show the small energy difference, \(\Delta E (\sim 6.28 \times 10^{-5} \text{ eV})\) which is not distinguishable in the figure. This resonant gate bias shifts toward the higher bias region in the case where the control bit is in \(|0\rangle\) state. This is because the electron in the control qubit is localized in a smaller dot and the band bottom of the smaller dot in the target qubit is raised (Fig 3(b)). Thus, when we apply the voltage, \(V_{res}^{(1)}\), in a half time of the oscillation with time period, \(\tau^{(1)}_G \sim \hbar/2\Delta E (\sim 5.2\ \text{ picosec})\), the electron moves between alternate dots only if the control qubit is in \(|1\rangle\) state and we can show the controlled-NOT operation in the coupled quantum dot system.
B. Dynamic properties of the qubit of the coupled quantum dots

Note that the wave function shown in Fig.4 is the static one and dynamical properties can be easily discussed by solving the time-dependent Schrödinger equation [18] as follows. The localized wave functions in a quantum dot \(a \) and \(b \) and the eigenenergies are expressed as \(\psi_a(x) \) and \(\psi_b(x) \), and, \(E_a \) and \(E_b \), respectively, which are assumed to be far apart from each other. Then the coupled wave function is constituted by these wave functions as,

\[
\psi(x, t) = a(t)\psi_a(x) + b(t)\psi_b(x). \tag{6}
\]

The Hamiltonian of the Schrödinger equation, \(i\hbar \partial \psi / \partial t = H\psi \), is given by

\[
H = -\frac{\hbar^2}{2m} \frac{\partial^2}{\partial x^2} + V_a(x) + V_b(x) - V_0, \tag{7}
\]

where \(V_0(=3.1 \text{ eV}) \) is a barrier height between the quantum dot \(a \) and \(b \). This equation is easily solved and the eigenenergies are given as

\[
\omega_{\pm} = (\omega_a + \omega_b)/2 \pm \omega_0 \tag{8}
\]

where \(\omega_a = E_a/\hbar, \omega_b = E_b/\hbar, c_a = \langle 1|V_a - V_0|2\rangle/\hbar, c_b = \langle 2|V_b - V_0|1\rangle/\hbar \) and \(\omega_0 = \sqrt{[(\omega_a - \omega_b)/2]^2 + c_a c_b} \).

When the applied bias puts the energy-level of dot \(a \) and dot \(b \) at the same level and makes the two dots symmetric (\(\omega_a = \omega_b \) and \(c_a = c_b \)),

\[
\begin{pmatrix}
 a(t) \\
 b(t)
\end{pmatrix} =
\begin{pmatrix}
 \cos(\omega_0 t) & -i \sin(\omega_0 t) \\
 -i \sin(\omega_0 t) & \cos(\omega_0 t)
\end{pmatrix}
\begin{pmatrix}
 a(0) \\
 b(0)
\end{pmatrix} e^{-i\omega_0 t} \tag{9}
\]

When the time-dependent phase is removed by the interaction picture, this solution shows that it includes the NOT operation in quantum computing, one of the basic single qubit operations. In particular, when the charge is localized in one of the coupled dots in the initial state \(a(0) = 1, b(0) = 0 \), we have:

\[
a(t) = e^{-i\omega_a t} \cos \omega_0 t, \quad b(t) = -ie^{-i\omega_a t} \sin \omega_0 t. \tag{10}
\]

This shows that the localized electron moves completely between dot \(a \) and dot \(b \) with a period, \(\pi/(2\omega_0) \). Thus we can show the charge transfer is realized when we apply the voltage at which the energy-levels of the initially isolated dot coincide, which also corresponds to the case where the energy-level of ground state and that of the excited state of the coupled dots approach most closely (hatched area in Fig.4), in the time period of \(\pi/(2\omega_0) \).

Moreover, in the case of a different initial condition of charge distribution, \((|0\rangle + |1\rangle)/\sqrt{2}\) is realized as a static state.

Time spent for the transfer of the charge in a coupled quantum dot is given as \(\tau_d^A = \pi/(2\omega_0) \) with:

\[
\omega_0 = \frac{4}{\hbar} \left(\frac{V_0 - E}{V_0} \right) \frac{E}{1 + K l_w^2} e^{-K l_d} \tag{11}
\]

where \(l_w \) is an average width of the quantum dot (= 5nm), \(l_d = 1.5 \text{ nm} \) is the width of the tunneling barrier between the two dots, \(K = \sqrt{2m(V_0 - E)/\hbar^2} \) and \(E \) is the energy of incident electron. We obtained \(\tau_d^A \sim 12 \text{ picosec} \) in the case of Fig.4, which is longer than the time obtained above(\(\tau_d^F \)). This is because this time-dependent approach numerically identifies the exact results when the two dots are far apart [17]. In any event, this numerical mismatch never changes the physical aspects of the coupled dot system.

Although the speed of the operation becomes faster as the tunneling barrier between the coupled dots in a qubit becomes thinner, the wave function of the qubit of thin tunneling barrier does not localize sufficiently. In the case of our calculation of SiO\(_2\), the criterion of the minimum thickness of the tunneling barrier is considered to be around 1nm, where the switching speed is estimated to be sub-picosecond. Below, the switching speed is also discussed in relation to the measurement time.

III. DISCUSSION

A. Estimation of decoherence time

Here we roughly estimate the decoherence time in quantum computation of the proposed coupled dots embedded in the SiO\(_2\) material based on the results by Leggett et al. [23]. During the quantum computation, the voltage between the source and drain is kept zero and there is no flow of the detecting channel current. The decoherence in this case is considered mainly to originate from the phonon environments. The SiO\(_2\) is a polar material and the optical phonon mode (\(\sim 0.153 \text{ eV} \)) will be the major dissipation mechanism of the high temperature and high energy region. Here, we consider the low temperature region where only the acoustic phonons play the major role in the decoherence mechanism. The effects of this dissipative environment on the two-state system is treated by the infinite bath of harmonic oscillators of acoustic phonons (spin-boson Hamiltonian) where the interaction term between the two-state system and the acoustic phonons is derived from that of the amorphous SiO\(_2\) [21,22]. The spectral function, \(J(\omega) \), is given in the Debye approximation as:

\[
\frac{1}{2\pi\hbar} J(\omega) = \frac{\gamma^2}{2\pi^2 h \rho c^3} \omega^3 + \frac{\gamma^2 \nu^2}{2\pi^2 h \rho c^3 d^2} \omega, \tag{12}
\]

where \(\gamma \sim 10 \text{ eV}, \ c \sim 4300 \text{ m/sec}, \ \rho \sim 2200 \text{ kg/m}^3, \ d \sim 0.5 \text{ nm}, \ \nu \sim 10^{-3} \) are a deformation potential, a sound velocity, a density, a lattice constant, and a dimensionless parameter, respectively. Here, we use the value of the deformation potential of the electrons in the bulk Si,
because in the model of Ref. [24], the particle in the two-state system is assumed to be an atom. The first term of Eq. (12) is the superohmic part and the second is the ohmic part. From Ref. [23], the temperature where the ohmic part appears is estimated to be less than mK.

First we estimate the decoherence time of the superohmic term. Here we treat the case of no bias and denote the bare tunneling frequency, ∆, defined as

\[\tilde{\Delta} = \Delta \exp \left(-\frac{1}{2\pi D} \int_0^\infty \omega J(\omega) \right) \]

so

\[\tilde{\Delta} = \Delta \exp \left(-\frac{\omega^2 \gamma^2}{2\pi^2 \hbar \rho c^2} \right). \] (14)

When we take the above parameters of a-SiO₂ of Ref. [24] and cutoff, \(\omega_c = k_B \Theta D / \hbar \) with \(\Theta D \sim 450K \), the value of the factor in the exponential is less than \(-10^4\), which extremely reduces the value of \(\tilde{\Delta} \) (\(\hbar \Delta \sim 10^{-5} \)) eV in the above case). The decoherence time derived from the superohmic dissipation, \(\tau_{so} = 1/\Gamma_{so} \), increases, as the \(\tilde{\Delta} \) decreases. The direct calculation of the decoherence time becomes more than seconds. This will be the true microscopic values will be different from those used above, which will be partly the same situation as Ref. [23]. When we use bare tunneling frequency, ∆ instead of \(\tilde{\Delta} \) in Eq. (13) in order to estimate the shortest decoherence time at the present, \(\tau_{so} \sim 4.8\times10^{-7} \) sec, during which thousands of quantum calculations can be realized in the proposed system where the one-step calculation is executed in a few picoseconds. Because \(\Delta \ll \omega_c \), this underdamped behavior persists up to the finite temperature (see Leggett et al. [23]). However, in order to get the numerical behavior at the finite temperature, we need the microscopic material values which appear in Eq. (14). Thus, we cannot show the maximum temperature of operation limited by the above superohmic term here.

At low temperature region less than mK, ohmic dissipation should be considered. The dimensionless ohmic dissipation coefficient, \(\alpha = \gamma^2 \nu^2 / (2\pi^2 \hbar \rho c^2 \bar{D}^2) \sim 2\times10^{-7} \), shows that in our case the coherent oscillations survive and the contribution of the incoherent part vanishes in this small \(\alpha \) regime (Ref. [23]).

These ‘long’ decoherence times will originate from the high potential barrier(SiO₂) between the two coupled quantum dots. By contrast, the short transition time via acoustic phonons in the two-state model of glasses is estimated to be of the order of \(10^{-12} \) sec, which is derived from a low barrier height (\(\sim 0.2eV \)) and a short distance of the two states (\(\sim 0.1nm \)). These ‘long’ decoherence times will be related with the ‘phonon bottleneck’ of Ref. [28] and effects of phonons are different from those in the bulk [29].

The promising results of the above estimation of the ‘long’ decoherence time might be due to the simple two-state model of the ideal quantum dots apart from the question of the true microscopic values. When we consider the transitions to the excited energy-levels in each quantum dot (about 0.018eV(\(\sim 210K \)) above the ground state in the 10nm Si quantum dot), which will occur at higher temperature regions (> 210K), it is possible to show that the desirable quantum operation will be limited. Also, as the temperature rises, the effects of optical phonons cannot be neglected and the decoherence time will be reduced by the energy exchange between the electron and the optical phonon modes. In particular, when the quantum gate is operated in the AC gate voltage mode of high frequency in a general quantum operation, the dipole of the charge distribution in the coupled quantum dots will be more strongly affected by the electronic environment and the decoherence time will be reduced. Although there are many problems that need to be investigated in more detail, the above results show that the quantum computing in the semiconductor coupled quantum dots seems to be realizable from the viewpoint of one of the elementary steps of the investigation [30].

B. Measurement process

Next, the measurement process of the MOSFET structure is discussed in more detail. We treat the linear region of channel current, \(I_d \), as \(I_d = g_m(V_G - V_{th}) \), where \(g_m \) is a transconductance of the FET, and \(V_{th} \) is a threshold voltage. The change of the charge distribution in the coupled dots induces a shift of the threshold gate voltage, \(\Delta V_{th} \), which is measured through the variation of the detecting channel current, \(\Delta I_d \). This measurement process is considered to be similar to that of a quantum point contact (QPC). The measurement process of the coupled dots by QPC has been intensively investigated [31,22]. Here we use the results of Gurvitz [31]. The measurement time, \(\tau_{ms} \), at the channel current of \(I_d \), can be described as

\[\frac{1}{\tau_{ms}} = \left(\frac{\sqrt{\Delta I_d} + \Delta I_d}{e} - \sqrt{\frac{I_d}{e}} \right)^2. \] (15)

The behavior of the detector can be classified depending on whether \(1/\tau_{ms} \ll \Delta \) or \(1/\tau_{ms} \gg \Delta \), where \(\Delta \) is the
tunneling frequency of the electron in a qubit. The first case, \(1/\tau_{ms} \ll \Delta\), is called a ‘weak damping’ which implies that the electron oscillation in the qubit is faster than the detection and we will not be able to decide the position of the electron in a qubit. The second case, \(1/\tau_{ms} \gg \Delta\), is called a ‘strong damping’ which implies that many electrons can flow through the channel region during an electron oscillation in a qubit. In the latter case, we can induce a ‘Zeno time’, \(\tau_Z \sim (1/\tau_{ms})/(8\Delta^2)\), and observe the position of the electron in the time interval between \(\tau_{ms}\) and \(\tau_Z\) by the continuous measurements by Zeno effect.

When we apply these arguments to the experiments of Guo et al.\cite{3} at \(\Delta V_{th} = 30\) meV, we have \(g_m \sim 1.8 \times 10^{-9}\Omega^{-1}\) and \(\tau_{ms} \sim 1.7 \times 10^{-6}\) sec (\(\gg 1/\Delta\)), if \(h\Delta = 10^{-5}\) eV. This shows that the measurement parameters in the results of Ref.\cite{3} are not those of a good detection for \(h\Delta = 10^{-5}\) eV. The \(g_m\) can be simply increased by increasing the bias between the source and drain\cite{3}. These quantum-dot memories are considered to be prototypes, and, in the future, great improvement can be expected, for example, by reducing the resistive parasitics between the source and drain. However, when we would be unable to find a solution capable of improving the speed of transconductance by three orders, it would be necessary to reduce the speed of the gate operation, which can be controlled by the thickness of the tunneling barrier between the coupled dots, so as to realize better detection. In any events, the optimal speed of the gate operation will be able to be increased as the developing fabrication technology improves the measurement speed.

Lastly, we consider whether the SET structure proposed by Shnirman et al.\cite{4} is more suitable for the measurement than the MOSFET structure. If we adopt the SET instead of MOSFET, the Josephson coupling energy, \(E_J\), of Shnirman et al.\cite{4} corresponds to our tunneling matrix element, \(h\Delta\), and their charging energy term corresponds to our bias term, \(E_m \sim E_b\), respectively. This is possible because the Hamiltonian of Shnirman et al.\cite{4} is described by the two-state system, and their model is considered to be universal in the measurement process in quantum computing. In this case we have to reduce the \(E_m\) less than that of Shnirman et al.\cite{4} in order to suppress the bias term in the coupled dots and prevent the breakdown of coherence of the two-state system. Thus, the MOSFET structure seems to be available for the read-out device of the semiconductor qubit system, although the strict comparison will be needed. Moreover, problems may be ameliorated as the process technology of conventional LSI advances.

C. Fabrication of the coupled quantum dots

The coupled dots (qubits) can be fabricated by applying the self-limiting oxidation process of Si nanostructure\cite{5}. For example, the oxidation process after forming Si nanocrystals on a thin amorphous Si layer via SiO2 thin film changes the amorphous Si layer and leaves Si dots only under the top Si nanocrystals which also remain. Thus forming the coupled dot system is more feasible than controlling donor atoms in substrates. The small fluctuation of the dot sizes is not serious because the on/off gate voltage can be adjusted to be initialized depending on each energy-level of each qubit. Another concern is that interface traps may be another localized state and break coherence of the quantum calculation. However, the density of the trap state (\(\sim 10^{10}\) cm\(^{-2}\)) is smaller than the assembly of the nanocrystals (\(\sim 10^{12}\) cm\(^{-2}\)).

IV. CONCLUSIONS

We have proposed a quantum computer based on the coupled dot system, which can be realized by developing the technology of the single-electron memory with Si nanocrystals. The basic idea is (1) the electron is localized in one of the asymmetric coupled dots. (2) The electron transfer takes place from one dot to the other when the energy-levels of the coupled dots are set close. (3) The Coulomb interaction between the coupled dots mutually affects the energy levels of the other coupled dots. The estimated decoherence time is found to permit a sufficient number of quantum calculations to be executed. The proposed system, where the direct combination of the quantum circuit and the conventional circuit is possible, is shown to be a promising candidate for the quantum computer.

\[1\] A. Ekert and R. Jozsa, Rev. Mod. Phys. 68, 733 (1996).
\[2\] N. A. Gershenfeld and I. L. Chaung, Science 275, 350 (1997).
\[3\] A. Barenco, D. Deutsch, A. Ekert and R. Jozsa, Phys. Rev. Lett. 74, 4083 (1995).
\[4\] D. Loss and D. P. Divincenzo, Phys. Rev. A 57, 120 (1998). G. Burkard, D. Loss and D. P. Divincenzo, Phys. Rev. B 59, 2070 (1999).
\[5\] B. E. Kane, Nature 393, 133 (1998).
\[6\] A. Shnirman, G. Schön and Z. Hermon, Phys. Rev. Lett. 79, 2371 (1997).
\[7\] Y. Nakamura, Y. A. Pashkin and J. S. Tsai, Nature 398, 786 (1999).
\[8\] S. Tiwari, F. Rana, H. Hanafi, A. Hartstein, E. F. Crabbe and K. Chan, Appl. Phys. Lett. 68, 1377 (1996), J. J. Welser, S. Tiwari, S. Rishton, K. Y. Lee and Y. Lee, IEEE Trans. Electron Device Lett. 18, 278 (1997).
\[9\] L. Guo, E. Leobandung and S. Y. Chou, Science 275, 649 (1997).
\[10\] C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A.
Peres, and W. K. Wootters, Phys. Rev. Lett. 70 1895 (1993).
[11] C. A. Stafford and S. Das Sarma, *ibid.* 72, 3590 (1994).
[12] J. Weiss, R. J. Haug, K. v. Klitzing and K. Ploog, *ibid.* 71, 4019 (1993).
[13] N.C. van der Vaart, S. F. Godijn, Y. V. Nazarov, C. J. P. M. Harmans, J. E. Mooij, L. W. Molenkamp and C. T. Foxon, *ibid.* 74, 4702 (1995).
[14] D. Pfannkuche and S. E. Ulloa, *ibid.*, 1194 (1995).
[15] C. H. Crouch, C. Livermore, R. M. Westervelt, K. L. Campman, A. C. Gossard, Appl. Phys. Lett. 71, 817 (1997).
[16] F. R. Waugh, M. J. Berry, D. J. Mar, R. M. Westervelt, K. L. Campman and A. C. Gossard, Phys. Rev. Lett. 75, 705 (1995).
[17] A. Yariv, C. Lindsey and U. Sivan, J. Appl. Phys. 58, 366 (1985).
[18] N. Tsukada, A. D. Wieck and K. Ploog, Appl. Phys. Lett. 56, 2527 (1990).
[19] R. Tsu, Physica B 252, 235 (1993).
[20] P. Zanardi and F. Rossi, Phys. Rev. Lett. 81, 15215 (1998), preprints, quant-phys/9811029.

ACKNOWLEDGMENTS

The author is grateful to K. Sato, N. Gemma, S. Fujita, K. Ichimura, K. Yamamoto, J. Koga and R. Ohba for fruitful discussion.

FIG. 1. Coupled quantum dot as qubit: large quantum dot and small quantum dot are coupled such that the larger dot is set close to the channel from where one excess electron is inserted into the coupled dots. The smaller dot is set near the gate electrode via thick tunnel barrier which controls the energy-levels of the coupled dots. The localized electron in a larger dot expresses the $|1\rangle >$ state and that in a smaller dot expresses the $|0\rangle >$ state.

FIG. 2. Quantum gates (controlled-NOT-gate) are constituted by setting the coupled dots of Fig.1 close to each other with the common channel. Solid lines show the path of electron tunneling. Dotted lines show the electric fields generated between quantum dots or between quantum dots and gates.

FIG. 3. An example of the N coupled dot system of quantum computing. Dots are coupled in the longitudinal direction. The electron transfer in the lateral direction is assumed to be neglected. The FET channel structure enables the detection of the small signal of the charge distribution in coupled quantum dots.

FIG. 4. Relation between the energy-levels of electrons of a target qubit and the gate bias for the cases in which the control qubit is in $'|1\rangle >$ state and $'|0\rangle >$ state. The structure is: channel/SiO$_2$(2.5nm)/Si nanocrystals (6nm:dot A)/SiO$_2$(1.5nm)/ Si nanocrystals (4nm:dot B)/SiO$_2$(7nm)/Gate. $A(1)$ and $B(1)$ show the localized regions in gate bias for a larger dot (dot a_1 in Fig.2) and a smaller dot (dot b_1 in Fig.2), respectively, when the control qubit is in $|1\rangle >$ state. $A(0)$ and $B(0)$ show similar regions when the control qubit is in $|0\rangle >$ state. Hatched areas show the regions of the delocalization where the wave functions spread over the two dots. This area shifts depending on whether the control qubit is in $|1\rangle >$ state or $|0\rangle >$ state. At the boundaries of these areas, wave functions are delocalized less than 98 % in one of the dots and at their centers, V_{res} (or V_{res}), wave functions are equally distributed in both dots.

FIG. 5. Spatial dependence of $|\psi|^2$ of the target qubit when the gate bias is V_{res}: (a) the control qubit is in $'|1\rangle >$ state (the charge of the control qubit is localized in a larger dot near the channel and the potential of the dot near the channel in target qubit is raised), (b) the control qubit is in $'|0\rangle >$ state (the charge of the control qubit is localized in a smaller dot and the potential of the smaller dot in target qubit is raised). Wave functions are normalized in the lateral regions of the figures. The amplitude of the normalized wave function refers to the left scale and the potential profile of the qubit refers to the right one. This shows the controlled-NOT operation in which the state of the target qubit is changed in a few picoseconds (dynamical properties) only if the control qubit is in $|1\rangle >$ state.