A CHARACTERISATION OF THE \(n\langle 1 \rangle \oplus \langle 3 \rangle \) FORM AND APPLICATIONS TO RATIONAL HOMOLOGY SPHERES

BRENDAN OWENS AND SAŠO STRLE

Abstract. We conjecture two generalisations of Elkies’ theorem on unimodular quadratic forms to non-unimodular forms. We give some evidence for these conjectures including a result for determinant 3. These conjectures, when combined with results of Frøyshov and of Ozsváth and Szabó, would give a simple test of whether a rational homology 3-sphere may bound a negative-definite four-manifold. We verify some predictions using Donaldson’s theorem. Based on this we compute the four-ball genus of some Montesinos knots.

1. Introduction

Let \(Y \) be a rational homology three-sphere and \(X \) a smooth negative-definite four-manifold bounded by \(Y \). For any Spin\(^c\) structure \(t \) on \(Y \) let \(d(Y, \mathfrak{t}) \) denote the correction term invariant of Ozsváth and Szabó [8]. It is shown in [8, Theorem 9.6] that for each Spin\(^c\) structure \(\mathfrak{s} \in \text{Spin}^c(X) \),

\[
(1) \quad c_1(\mathfrak{s})^2 + \text{rk}(H^2(X; \mathbb{Z})) \leq 4d(Y, \mathfrak{s}|_Y).
\]

This is analogous to gauge-theoretic results of Frøyshov. These theorems constrain the possible intersection forms that \(Y \) may bound. The above inequality is used in [7] to constrain intersection forms of a given rank bounded by Seifert fibred spaces, with application to four-ball genus of Montesinos links. In this paper we attempt to get constraints by finding a lower bound on the left-hand side of (1) which applies to forms of any rank. This has been done for unimodular forms by Elkies:

Theorem 1.1 ([2]). Let \(Q \) be a negative-definite unimodular integral quadratic form of rank \(n \). Then there exists a characteristic vector \(x \) with \(Q(x, x) + n \geq 0 \); moreover the inequality is strict unless \(Q = n\langle -1 \rangle \).

Together with (1) this implies that an integer homology sphere \(Y \) with \(d(Y) < 0 \) cannot bound a negative-definite four-manifold, and if \(d(Y) = 0 \) then the only definite pairing that \(Y \) may bound is the diagonal form. Since \(d(S^3) = 0 \) this generalises Donaldson’s theorem on intersection forms of closed four-manifolds ([1]).

Date: March 29, 2022.

S.Strle was supported in part by the MSZS of the Republic of Slovenia research program No. P1-0292-0101-04 and research project No. J1-6128-0101-04.
In Section 2 we conjecture two generalisations of Elkies’ theorem to forms of arbitrary determinant. We prove some special cases, including Theorem 3.1 which is a version of Theorem 1.1 for forms of determinant 3. This implies the following

Theorem 1.2. Let Y be a rational homology sphere with $H_1(Y;\mathbb{Z}) = \mathbb{Z}/3$ and let t_0 be the spin structure on Y. If Y bounds a negative-definite four-manifold X then either

$$d(Y, t_0) \geq -\frac{1}{2},$$

or

$$\max_{t \in \text{Spin}^c(Y)} d(Y, t) \geq \frac{1}{6}.$$

If equality holds in both then the intersection form of X is diagonal.

In Section 4 we discuss further topological implications of our conjectures; in particular some predictions for Seifert fibred spaces may be verified using Donaldson’s theorem. We find two families of Seifert fibred rational homology spheres, no multiple of which can bound negative-definite manifolds. We use these results to determine the four-ball genus of two families of Montesinos knots, including one whose members are algebraically slice but not slice.

2. Conjectured generalisations of Elkies’ theorem

We begin with some notation. A quadratic form Q of rank n over the integers gives rise to a symmetric matrix with entries $Q(e_i, e_j)$, where $\{e_i\}$ are the standard basis for \mathbb{Z}^n; we also denote the matrix by Q. Let Q' denote the induced form on the dual \mathbb{Z}^n; this is represented by the inverse matrix. Two matrices Q_1 and Q_2 represent the same form if and only if $Q_1 = P^T Q_2 P$ for some $P \in GL(n, \mathbb{Z})$.

We call $y \in \mathbb{Z}^n$ a characteristic covector for Q if

$$(y, \xi) \equiv Q(\xi, \xi) \pmod{2} \quad \forall \xi \in \mathbb{Z}^n.$$

We call $x \in \mathbb{Z}^n$ a characteristic vector for Q if

$$Q(x, \xi) \equiv Q(\xi, \xi) \pmod{2} \quad \forall \xi \in \mathbb{Z}^n.$$

Note that the form Q induces an injection $x \mapsto Qx$ from \mathbb{Z}^n to its dual with the quotient group having order $|\det Q|$; with respect to the standard bases this map is multiplication by the matrix Q. For unimodular forms this gives a bijection between characteristic vectors and characteristic covectors; in general not every characteristic covector is a characteristic vector. Also for odd determinant, any two characteristic vectors are congruent modulo 2; this is no longer true for even determinant.

Let Q be a negative-definite integral form of rank n and let δ be the absolute value of its determinant. Denote by $\Delta = \Delta_\delta$ the diagonal form $(n-1)(-1) \oplus (-\delta)$. Both of the following give restatements of Theorem 1.1 when restricted to unimodular forms.
Conjecture 2.1. Every characteristic vector x_0 is congruent modulo 2 to a vector x with
$$Q(x, x) + n \geq 1 - \delta;$$
moreover the inequality is strict unless $Q = \Delta$.

Conjecture 2.2. There exists a characteristic covector y with
$$Q'(y, y) + n \geq \begin{cases} 1 - 1/\delta & \text{if } \delta \text{ is odd,} \\ 1 & \text{if } \delta \text{ is even;} \end{cases}$$
moreover the inequality is strict unless $Q = \Delta$.

We will discuss the implications of these conjectures in Section 4.

Proposition 2.3. Conjecture 2.1 is true when restricted to forms of rank ≤ 3, and Conjecture 2.2 is true when restricted to forms of rank 2 and odd determinant.

Proof. We will first establish Conjecture 2.1 for rank 2 forms. In fact we prove the following stronger statement: if Q is a negative-definite form of rank 2 and determinant δ, then for any $x_0 \in \mathbb{Z}^2$,
$$\max_{x \equiv x_0(2)} Q(x, x) \geq -1 - \delta,$$
and the inequality is strict unless $Q = \Delta$.

Every negative-definite rank 2 form is represented by a reduced matrix
$$Q = \begin{pmatrix} a & b \\ b & c \end{pmatrix},$$
with $0 \geq 2b \geq a \geq c$ and $-1 \geq a$. Any vector x_0 is congruent modulo 2 to one of $(0, 0), (1, 0), (0, 1), (1, -1)$; all of these satisfy $x^T Q x \geq a + c - 2b$. Thus it suffices to show
$$a + c - 2b \geq -1 - \delta.$$
Note that equality holds in (3) if $Q = \Delta$. Suppose now that $Q \neq \Delta$. Let $Q_\tau = \begin{pmatrix} a + 2\tau & b + \tau \\ b + \tau & c \end{pmatrix}$, and let $\delta_\tau = \det Q_\tau$. Then $a_\tau + c_\tau - 2b_\tau$ is constant and δ_τ is a strictly decreasing function of τ. Thus (3) will hold for Q if it holds for Q_τ for some $\tau > 0$. In the same way we may increase both b and c so that $a + c - 2b$ remains constant and the determinant decreases, or we may increase a and decrease c. In this way we can find a path Q_τ in the space of reduced matrices from any given Q to a diagonal matrix $\begin{pmatrix} -1 & 0 \\ 0 & -\delta \end{pmatrix}$, such that $a + b - 2c$ is constant along the path and the determinant decreases. It follows that (3) holds for Q, and the inequality is strict unless $Q = \Delta$.

A similar but more involved argument establishes Conjecture 2.1 for rank 3 forms. We briefly sketch the argument. Let Q be represented by a reduced matrix of rank 3.
(see for example [5]) and let \(x_0 \in \mathbb{Z}^3 \). By successively adding \(2\tau \) to a diagonal entry and \(\pm \tau \) to an off-diagonal entry one may find a path of reduced matrices from \(Q \) to \(\tilde{Q} \) along which \(\max_{x \equiv x_0(2)} x^T \tilde{Q} x \) is constant and the absolute value of the determinant decreases. One cannot always expect that \(\tilde{Q} \) will be diagonal but one can show that the various matrices which arise all satisfy

\[
\max_{x \equiv x_0(2)} x^T \tilde{Q} x \geq -2 - |\det \tilde{Q}|,
\]

(with strict inequality unless \(\tilde{Q} = \Delta \)) from which it follows that this inequality holds for all negative-definite rank 3 forms.

Finally note that for rank 2 forms, the determinant of the adjoint matrix \(\text{ad} Q \) is equal to the determinant of \(Q \). Conjecture [2,2] for rank 2 forms of odd determinant now follows by applying [2] to \(\text{ad} Q \) and dividing by the determinant \(\delta \).

\[\square\]

3. Determinant three

In this section we describe to what extent we can generalise Elkies’ proof of Theorem 1.1 to non-unimodular forms. For convenience we work with positive-definite forms. We obtain the following result.

Theorem 3.1. Let \(Q \) be a positive-definite quadratic form over the integers of rank \(n \) and determinant 3. Then either \(Q \) has a characteristic vector \(x \) with \(Q(x, x) \leq n + 2 \) or it has a characteristic covector \(y \) with \(Q'(y, y) \leq n - \frac{2}{3} \). Moreover, at least one of the above inequalities is strict unless \(Q \) is diagonal.

Given a positive-definite integral quadratic form \(Q \) of rank \(n \), we consider lattices \(L \subset L' \) in \(\mathbb{R}^n \) (equipped with the standard inner product), with \(Q \) the intersection pairing of \(L \), and \(L' \) the dual lattice of \(L \). Note that the discriminant of the lattice \(L \) is equal to the determinant of \(Q \).

For any lattice \(L \subset \mathbb{R}^n \) and a vector \(w \in \mathbb{R}^n \) let \(\theta^w_L \) be the generating function for the norms of vectors in \(\frac{w}{2} + L \),

\[
\theta^w_L(z) = \sum_{x \in L} e^{i\pi |x + \frac{w}{2}|^2 z};
\]

this is a holomorphic function on the upper half-plane \(H = \{ z \mid \text{Im}(z) > 0 \} \). The *theta series* of the lattice \(L \) is \(\theta_L = \theta^0_L \).

Recall that the modular group \(\Gamma = \text{PSL}_2(\mathbb{Z}) \) acts on \(H \) and is generated by \(S \) and \(T \), where \(S(z) = -\frac{1}{z} \) and \(T(z) = z + 1 \).
Proposition 3.2. Let L be an integral lattice of odd discriminant δ, and L' its dual lattice. Then

\begin{equation}
\theta_L(S(z)) = \left(\frac{z}{i}\right)^{n/2} \delta^{-1/2} \theta_{L'}(z)
\end{equation}

\begin{equation}
\theta_L(TS(z)) = \left(\frac{z}{i}\right)^{n/2} \delta^{-1/2} \theta_{L'}^w(z)
\end{equation}

\begin{equation}
\theta_{L'}(T^\delta S(z)) = \left(\frac{z}{i}\right)^{n/2} \delta^{1/2} \theta_{L'}^w(z),
\end{equation}

where w is a characteristic vector in L.

Remark 3.3. Note that if $w \in L$ is a characteristic vector, then $\theta_{L'}^w$ is a generating function for the squares of characteristic covectors. Under the assumption that the discriminant of L is odd, $\theta_{L'}^w$ is a generating function for the squares of characteristic vectors.

Proof. All the formulas follow from Poisson inversion [10, Ch. VII, Proposition 15]. We only need odd discriminant in (6). Note that in $\theta_{L'}^w(z + \delta)$ we can use

\begin{equation}
\delta |y|^2 \equiv |\delta y|^2 \equiv (\delta y, w) \equiv (y, w) \pmod{2}
\end{equation}

and then apply Poisson inversion. \qed

Corollary 3.4. Let L_1 and L_2 be integral lattices of the same rank and the same odd discriminant δ. Then

\begin{equation}
R(z) = \frac{\theta_{L_1}(z)}{\theta_{L_2}(z)}
\end{equation}

is invariant under T^2 and $ST^{2\delta}S$. Moreover, R^8 is invariant under $(T^2S)\delta$ and $ST^{\delta-1}ST^{\delta-1}S$.

Proof. Since L is integral, $\theta_L(z + 2) = \theta_L(z)$, hence R is T^2 invariant. The squares of vectors in L' belong to $\frac{1}{\delta} \mathbb{Z}$, so $\theta_{L'}(z + 2\delta) = \theta_{L'}(z)$. From (4) it follows that

\begin{equation}
R(S(z)) = \frac{\theta_{L_1}(z)}{\theta_{L_2}(z)}
\end{equation}

which gives the $ST^{2\delta}S$ invariance of R.

To derive the remaining symmetries of R^8 we need to use (5) and (6). Let w be a characteristic vector in L. Clearly

\begin{equation}
\delta |y + \frac{w}{2}|^2 = \delta |y|^2 + \delta (y, w) + \frac{\delta}{4} |w|^2
\end{equation}

holds for any $y \in L'$, so it follows from (4) that

\begin{equation}
\theta_{L'}^w(z + \delta) = e^{i\pi |w|^2/4} \theta_{L'}^w(z).
\end{equation}

Using (5) we now conclude that R^8 is invariant under $TST^\delta ST^{-1} = (ST^{-2})\delta$; the last equality follows from the relation $(ST)^3 = 1$ in the modular group. The remaining invariance of R^8 is derived in a similar way from (6). \qed
From now on we restrict our attention to discriminant $\delta = 3$. Consider the subgroup Γ_3 of Γ generated by T^2, ST^3S and ST^2ST^2S. Clearly Γ_3 is a subgroup of $\Gamma_+ = \langle S, T^2 \rangle \subset \Gamma$.

Lemma 3.5. A full set of coset representatives for Γ_3 in Γ_+ is I, S, ST^2, ST^4. Hence a fundamental domain D_3 for the action of Γ_3 on the hyperbolic plane H is the hyperbolic polygon with vertices $-1, -\frac{1}{3}, -\frac{1}{5}, 0, 1, i\infty$.

Proof. Call $x, y \in \Gamma_+$ equivalent if $y = zx$ for some $z \in \Gamma_3$. Let $x = T^{k_1}ST^{k_2}S \cdots T^{k_n}$ with all $k_i \neq 0$; then the length of x, Sx, xS and SxS is defined to be n. Any element $x \in \Gamma_+$ of length $n \geq 2$ is equivalent to one of the form ST^kSy with $k = 0, \pm 2$ and length at most n. If $x = ST^kST^l y$ with $k = \pm 2$ and length $n \geq 2$, then x is equivalent to $ST^{4-k}y$, which has length $\leq n - 1$. It follows by induction on length that any element of Γ_+ is equivalent to one with length at most 1. Moreover, if the element has length 1, it is equivalent to ST^k, $k = 2, 4$.

Finally, recall that a fundamental domain for Γ_+ is $D_+ = \{z \in H \mid -1 \leq \Re(z) \leq 1, \ |z| \geq 1\}$ so we can take D_3 to be the union of D_+ and $S(D_+ \cup T^2(D_+) \cup T^4(D_+))$. \hfill \Box

Proof of Theorem 3.4. Suppose that L is a lattice of discriminant 3 and rank n for which the square of any characteristic vector is at least $n + 2$ and the square of any characteristic covector is at least $n - \frac{2}{3}$. Let Δ be the lattice with intersection form $(n - 1)(1) \oplus \langle 3 \rangle$; recall from [2] that θ_Δ does not vanish on H. Then

$$R(z) = \frac{\theta_L(z)}{\theta_\Delta(z)}$$

is holomorphic on H and it follows from Corollary 3.4 that R^8 is invariant under Γ_3. We want to show that R is bounded. We will use the following identities that follow from Proposition 3.2

$$R(S(z)) = \frac{\theta_L(z)}{\theta_\Delta(z)}, \quad R(TS(z)) = \frac{\theta_L^w(z)}{\theta_\Delta^w(z)}, \quad R(ST^2S(z)) = \frac{\theta_L^w(z)}{\theta_\Delta^w(z)}.$$

Since the theta series of any lattice converges to 1 as $z \to i\infty$, $R(z) \to 1$ as $z \to 0, i\infty$. By assumption the square of any characteristic covector for L is at least as large as the square of the shortest characteristic covector for Δ. Since the asymptotic behaviour as $z \to i\infty$ of the generating function for the squares of characteristic covectors is determined by the smallest square, it follows from the middle expression for R above that $R(z)$ is bounded as $z \to 1$. Similarly, using the condition on characteristic vectors and the right-most expression for R as $z \to i\infty$, it follows that $R(z)$ is bounded as $z \to -\frac{1}{3}$. Note that $T^{-2}(1) = -1$ and $ST^0S(1) = -\frac{1}{5}$, so $R(z)$ is also bounded as $z \to -1, -\frac{1}{5}$.

Let f be the function on $\Sigma = H/\Gamma_3$ induced by R^8. Then f is holomorphic and bounded, so it extends to a holomorphic function on the compactification of Σ. It follows that $R(z) = 1$, so the theta series of L is equal to the theta series of Δ. Then
A CHARACTERISATION OF THE $n(1) \oplus (3)$ FORM

L contains $n - 1$ pairwise orthogonal vectors of square 1, so its intersection form is $(n - 1)(1) \oplus (3)$. \hfill \square

4. Applications

In this section we consider applications to rational homology spheres and four-ball genus of knots. We begin with the proof of Theorem 1.2.

Proof of Theorem 1.2. Suppose that $Y = \partial X$ and that Q is the intersection form on $H_2(X; \mathbb{Z})$. Then Q is a quadratic form of determinant ± 3. For any $s \in \text{Spin}^c(X)$, let $c(s)$ denote the image of the first Chern class $c_1(s)$ modulo torsion. Then $c(s)$ is a characteristic covector for Q; moreover if $s|_Y$ is spin then $c(s)$ is Qx for some characteristic vector x. The result now follows from Theorem 3.1 and (1). \hfill \square

Conjectures 2.1 and 2.2 imply the following more general statement.

Conjecture 4.1. Let Y be a rational homology sphere with $|H_1(Y; \mathbb{Z})| = h$. If Y bounds a negative-definite four-manifold X with no torsion in $H_1(X; \mathbb{Z})$ then

$$\min_{t_0 \in \text{Spin}(Y)} d(Y, t_0) \geq (1 - h)/4,$$

and

$$\max_{t \in \text{Spin}^c(Y)} d(Y, t) \geq \begin{cases} \left(1 - \frac{1}{h}\right)/4 & \text{if } h \text{ is odd,} \\ 1/4 & \text{if } h \text{ is even.} \end{cases}$$

If equality holds in either inequality the intersection form of X is Δ_h.

More generally if Y bounds X with torsion in $H_1(X; \mathbb{Z})$, the absolute value of the determinant of the intersection pairing of X divides h with quotient a square (see for example [7, Lemma 2.1]). One may then deduce inequalities as above corresponding to each choice of determinant; care must be taken since for example not all spin structures on Y extend to spinc structures on X.

Remark 4.2. Given a rational homology sphere Y bounding X with no torsion in $H_1(X; \mathbb{Z})$, the intersection pairing of X gives a presentation matrix for $H^2(Y; \mathbb{Z})$ (and also determines the linking pairing of Y). There should be analogues of Conjectures 2.1 and 2.2 which restrict to forms presenting a given group (and inducing a given linking pairing). These should give stronger bounds than those in Conjecture 4.1.

4.1. Seifert fibred examples. In Examples 4.5 and 4.6 we list families of Seifert fibred spaces Y which bound positive-definite but not negative-definite four-manifolds. It follows as in [4, Theorem 10.2] that no multiple of Y bounds a negative-definite four-manifold. In Examples 4.7 through 4.9 we list families of Seifert fibred spaces which can only bound the diagonal negative-definite form Δ_δ (or sometimes Δ_1). We found these examples using predictions based on Conjecture 4.1 and verified them using Donaldson’s theorem via Proposition 4.4. Finally, in Example 4.10 we exhibit
a family of Seifert fibred spaces which according to the conjecture can only bound Δ_8. For this family the method of Proposition 4.3 does not apply.

In what follows we extend the definition of Δ_1 to include the trivial form on the trivial lattice. Also note that a lattice uniquely determines a quadratic form, and a form determines an equivalence class of lattices; in the rest of this section we use the terms lattice and form interchangeably.

Definition 4.3. Let L be a lattice of rank m and determinant δ. We say L is rigid if any embedding of L in \mathbb{Z}^n is contained in a \mathbb{Z}^m sublattice. We say L is almost-rigid if any embedding of L in \mathbb{Z}^n is either contained in a \mathbb{Z}^m sublattice, or contained in a \mathbb{Z}^{m+1} sublattice with orthogonal complement spanned by a vector v with $|v|^2 = \delta$.

Proposition 4.4. Let Y be a rational homology sphere and let h be the order of $H_1(Y; \mathbb{Z})$. Suppose Y bounds a positive-definite four-manifold X_1 with $H_1(X_1; \mathbb{Z}) = 0$. Let Q_1 be the intersection pairing of X_1 and let m denote its rank.

If Q_1 does not embed into \mathbb{Z}^n for any n then Y cannot bound a negative-definite four-manifold.

If Q_1 is rigid and Y bounds a negative-definite X_2 then h is a square and $Q_2 = \Delta_1$; if $h > 1$, then there is torsion in $H_1(X_2; \mathbb{Z})$.

If Q_1 is almost-rigid and Y bounds a negative-definite X_2 then either

- $Q_2 = \Delta_1$ or
- Q_1 embeds in \mathbb{Z}^m, h is a square and $Q_2 = \Delta_1$; if $h > 1$, then there is torsion in $H_1(X_2; \mathbb{Z})$.

Proof. Suppose Y bounds a negative-definite X_2 with intersection pairing Q_2. Then $X = X_1 \cup_Y \neg X_2$ is a closed positive-definite manifold. The Mayer-Vietoris sequence for homology and Donaldson’s theorem yield an embedding $\iota : Q_1 \oplus -Q_2 \to \mathbb{Z}^{m+k}$, where k is the rank of Q_2.

If the image of Q_1 under ι is contained in a \mathbb{Z}^m sublattice, then the image of $-Q_2$ is contained in the orthogonal \mathbb{Z}^k sublattice. Now consider the Mayer-Vietoris sequence for cohomology:

$$
0 \to H^2(X; \mathbb{Z}) \to H^2(X_1; \mathbb{Z}) \oplus H^2(X_2; \mathbb{Z}) \to H^2(Y; \mathbb{Z}) \cong Q_1' \oplus -Q_2' \oplus T_2
$$

where T_2 is the torsion subgroup and Q' denotes the dual lattice to Q. This yields an embedding $\iota' : \mathbb{Z}^{m+k} \to Q_1' \oplus -Q_2'$. The mapping ι' is hom-dual to ι and hence also decomposes orthogonally, sending \mathbb{Z}^m to Q_1' and \mathbb{Z}^k to $-Q_2'$. The image of \mathbb{Z}^m in Q_1' has index \sqrt{h}, since h is the determinant of Q_1. (In general if $L_1 \subset L_2$ are lattices of the same rank then the square of the index $[L_2 : L_1]$ is the quotient of their discriminants.) The restriction map from $H^2(X_1; \mathbb{Z})$ to $H^2(Y; \mathbb{Z})$ is onto, so its kernel K is a subgroup of \mathbb{Z}^m of index \sqrt{h}. It follows that \mathbb{Z}^m/K injects into T_2 and that
the image of T_2 in $H^2(Y; \mathbb{Z})$ has order $t \geq \sqrt{h}$. Then by [12, Lemma 2.1], $t = \sqrt{h}$ and Q_2 is unimodular. Since $-Q_2$ is a sublattice of \mathbb{Z}^k we have $Q_2 = \Delta_1$.

Suppose now that the image of Q_1 under ι is contained in a \mathbb{Z}^{m+1} sublattice, and its orthogonal complement in \mathbb{Z}^{m+1} is spanned by a vector v with $|v|^2 = h$. Then the image of $-Q_2$ is a sublattice of $(k-1)\langle 1 \rangle \oplus \langle h \rangle$; it therefore has determinant at least h. On the other hand its determinant divides h [7, Lemma 2.1]. It follows that Q_2 is equal to Δ_h. □

If Y is the Seifert fibred space $Y(e; (\alpha_1, \beta_1), (\alpha_2, \beta_2), (\alpha_3, \beta_3))$, let

$$k(Y) = e\alpha_1\alpha_2\alpha_3 + \beta_1\alpha_2\alpha_3 + \alpha_1\beta_2\alpha_3 + \alpha_1\alpha_2\beta_3.$$

If $k(Y) \neq 0$ then Y is a rational homology sphere and $|k(Y)|$ is the order of $H_1(Y; \mathbb{Z})$. Furthermore, if $k(Y) < 0$ then Y bounds a positive-definite plumbing. For our conventions for lens spaces and Seifert fibred spaces see [7]. Recall in particular that (α_i, β_i) are coprime pairs of integers with $\alpha_i \geq 2$. We will also assume here that $1 \leq \beta_i < \alpha_i$.

Example 4.5. Seifert fibred spaces $Y = Y(-2; (\alpha_1, \beta_1), (\alpha_2, \beta_2), (\alpha_3, \beta_3))$ with

$$\frac{\alpha_1}{\beta_1} \leq 2, \quad \frac{\alpha_2}{\beta_2} < 2, \quad \frac{\alpha_3}{\beta_3} < 2, \quad k(Y) < 0,$$

cannot bound negative-definite four-manifolds.

![Plumbing graph](image)

Figure 1. Plumbing graph.

Proof. Note that Y is the boundary of the positive-definite plumbing shown in Figure 1 where vertices u, v_1, w_1 and x_1 have square 2 and v_2 and w_2 have square at least 2. This lattice does not admit an embedding in any \mathbb{Z}^n. To see this let e_1, \ldots, e_n be the standard basis of \mathbb{Z}^n. The vertex u must map to an element of square 2, which we may suppose is $e_1 + e_2$. The 3 adjacent vertices must be mapped to elements of the form $e_1 + e_3$, $e_1 - e_3$ and $e_2 + e_4$. Now we see that it is not possible to map the remaining 2 vertices v_2 and w_2; we are only able to further extend the map along the leg of the graph emanating from the vertex mapped to $e_2 + e_4$. □
Example 4.6. Seifert fibred spaces \(Y = Y(-2; (\alpha_1, \beta_1), (\alpha_2, \alpha_2 - 1), (\alpha_3, \alpha_3 - 1)) \) with
\[
\alpha_2, \alpha_3 \geq \frac{\alpha_1}{\beta_1}, \quad \alpha_3 \geq 3, \quad k(Y) < 0,
\]
cannot bound negative-definite four-manifolds unless
\[
\beta_1 = 1, \quad \min(\alpha_2, \alpha_3) = \alpha_1.
\]
In the latter case, if \(Y \) bounds a negative-definite \(X \) then the intersection pairing of \(X \) is \(\Delta_1 \) and the torsion subgroup of \(H_1(X; \mathbb{Z}) \) is nontrivial.

Proof. In this case \(Y \) is again the boundary of a positive-definite plumbing as in Figure 4. The vertices \(u, v, \) and \(w \) have square 2, and \(p = \alpha_2 - 1, q = \alpha_3 - 1. \) Vertex \(x_1 \) has square \(a = \left\lfloor \frac{n}{\beta_1} \right\rfloor. \) If \(\frac{n}{\beta_1} = \min(\alpha_2, \alpha_3) = a \) then by inspection this pairing is rigid with determinant \(a^2 > 1; \) otherwise it does not admit any embedding into \(\mathbb{Z}^n. \)
For more details see the proof of Example 4.8. \(\square \)

Example 4.7. The only negative-definite pairing that \(L(p, 1) \) can bound is the diagonal form \(\Delta_p \) unless \(p = 4 \) in which case it may also bound \(\Delta_1. \) (Note that \(L(p, 1) \) is the boundary of the disk bundle over \(S^2 \) with intersection pairing \(\langle -p \rangle). \)

Proof. Observe that \(L(p, 1) \) is the boundary of the positive-definite plumbing \(A_{p-1} \). If \(p \neq 4 \) then up to automorphisms of \(\mathbb{Z}^n \) there is a unique embedding of \(A_{p-1} \) in \(\mathbb{Z}^n; \) the image is contained in a \(\mathbb{Z}^p \) and its orthogonal complement in \(\mathbb{Z}^p \) is generated by the vector \((1, 1, \ldots, 1). \) Hence \(A_{p-1} \) is almost-rigid and does not embed in \(\mathbb{Z}^{p-1}. \)
However, \(A_3 \) also admits an embedding in \(\mathbb{Z}^3. \) \(\square \)

Example 4.8. If \(Y = Y(-2; (\alpha_2 \beta_1 + 1, \beta_1), (\alpha_2, \alpha_2 - 1), (\alpha_3, \alpha_3 - 1)) \) with \(\alpha_3 > \alpha_2, \)
then the only negative-definite pairing that \(Y \) may bound is the diagonal form \(\Delta_{|k(Y)|} \) unless
\[
\beta_1 = 1, \quad \alpha_3 = \alpha_2 + 1.
\]
In the latter case the only negative-definite pairings that \(Y \) may bound are \(\Delta_{|k(Y)|} \) and \(\Delta_1. \)

Proof. Note this is a borderline case of Example 4.6. In the notation of that example \(\alpha_2 = a - 1. \) The positive-definite plumbing is similar to that in Example 4.6 with \(r = \beta_1; \) also the vertices \(x_l \) with \(l > 1 \) all have square 2. Denote the pairing associated to this plumbing by \(Q. \) We consider an embedding of \(Q \) into \(\mathbb{Z}^n. \) Let \(e_i, f_j \) and \(g_l \) denote unit vectors in \(\mathbb{Z}^n. \) Without loss of generality the vertex \(u \) maps to \(e_1 + f_1. \) Then \(v_i \) maps to \(e_{i-1} + e_i \) and \(w_j \) maps to \(f_{j-1} + f_j. \)

Now consider the image of \(x_1. \) This may map to \(e_1 - e_2 + \cdots + e_{a-1} + g_1; \) then \(x_l \) maps to \(g_{l-1} + g_l \) for \(l > 1. \) Thus the image of \(Q \) is contained in a \(\mathbb{Z}^{p+q+r+2} \) sublattice. The determinant of \(Q \) is \(|k(Y)| = \alpha_2^2 \beta_1 + \alpha_2 + \alpha_3 \) (note \(k(Y) < 0). \) The orthogonal complement of \(Q \) in \(\mathbb{Z}^{p+q+r+2} \) is spanned by the vector \(\sum (-1)^{i-1} e_i + \sum (-1)^j f_j + \alpha_2 \sum (-1)^l g_l, \) whose square is \(|k(Y)|. \) Up to automorphism this is the only embedding
of Q into \mathbb{Z}^n unless $\alpha_3 = a$ and $\beta_1 = 1$. In this case x_1 may map to the alternating sum $f_1 - f_2 + \cdots \pm f_a$; the image of the resulting embedding is contained in $\mathbb{Z}^{p+q+r+1}$.

Example 4.9. If $Y = Y(-1; (3, 1), (3a + 1, a), (5b + 3, 2b + 1))$ with $k(Y) < 0$, then the only negative-definite pairing that Y may bound is the diagonal form $\Delta_{|k(Y)|}$ unless $a = b = 1$ in which case it may also bound Δ_1.

Proof. Note that the condition $k(Y) < 0$ implies $a = 1$ or $b = 0$ or $a = b + 1 = 2$. Again, Y is the boundary of a positive-definite plumbing as in Figure 11 with $p = a$, $q = b + 1$ and $r = 1$. The vertex u has square 1, w_1 and x_1 have square 3, v_1 has square 4. If $a > 1$ then v_j has square 2 for $j > 1$. If $b > 0$ then w_2 has square 3, and any remaining w_i has square 2. Denote the pairing associated to this plumbing by Q. We consider an embedding of Q into \mathbb{Z}^n. Let e_i denote unit vectors in \mathbb{Z}^n. Without loss of generality the vertex u maps to e_1, x_1 maps to $e_1 + e_2 + e_3$ and w_1 maps to $e_1 - e_2 + e_4$. Then v_1 has to map to $e_1 - e_3 - e_4 + e_5$. Now w_2, if present, has to map to $e_4 + e_5 + e_6$ or $-e_2 + e_3 + e_5$; the second possibility only works if $a = b = 1$. Finally v_2, if present, has to map to $e_5 - e_6$. The reader may verify that Q is almost-rigid.

Example 4.10. Let $Y_a = Y(-2; (2, 1), (3, 2), (a, a-1))$ with $a \geq 7$. Then $h = k(Y) = a - 6$,

$$\min_{t_0 \in \text{Spin}(Y)} d(Y, t_0) = (1 - h)/4$$

and

$$\max_{t \in \text{Spin}^+(Y)} d(Y, t) = \begin{cases} (1 - \frac{1}{h})/4 & \text{if } h \text{ is odd,} \\ 1/4 & \text{if } h \text{ is even.} \end{cases}$$

If a is 7 or 9 then the only negative-definite form Y_a bounds is Δ_h. If Conjecture 4.1 holds then the same is true for all Y_a.

Proof. Y_a is the boundary of the negative-definite plumbing with intersection pairing given by

$$Q = \begin{pmatrix} -1 & 1 & 1 & 1 \\ 1 & -2 & 0 & 0 \\ 1 & 0 & -3 & 0 \\ 1 & 0 & 0 & -a \end{pmatrix},$$

which represents $3(-1) \oplus (-a + 6)$. The computations of $d(Y)$ follow as in [9]. The claim for Y_7 follows from the discussion following Theorem 1.1. The claim for Y_9 follows from Theorem 1.2.

4.2. Four-ball genus of Montesinos knots. Let K be a knot in S^3 and let g denote its Seifert genus. The four-ball genus g^* of K is the minimal genus of a smooth surface in B^4 with boundary K. A classical result of Murasugi states that $g^* \geq |\sigma|/2$, where σ is the signature of K. If this lower bound is attained then the double
branched cover of S^3 along K bounds a definite four-manifold with signature σ. The double branched cover of the Montesinos knot or link $M(e; (\alpha_1, \beta_1), (\alpha_2, \beta_2), (\alpha_3, \beta_3))$ is $Y(-e; (\alpha_1, \beta_1), (\alpha_2, \beta_2), (\alpha_3, \beta_3))$. (For more details see [7].)

The following generalises an example of Fintushel and Stern [4].

Example 4.11. The pretzel knot $K(p, q, r) = M(2; (p, 1), (q, q-1), (r, r-1))$ for odd p, q and r satisfying

$$q, r > p > 0 \quad \text{and} \quad pq + pr - qr \text{ is a square}$$

is algebraically slice but has $g^* = 1$.

Proof. The knot has a genus 1 Seifert surface yielding the Seifert matrix

$$M = \left(\begin{array}{cc} \frac{p-r}{2} & \frac{p+1}{2} \\ \frac{p-1}{2} & \frac{p-q}{2} \end{array} \right).$$

The vector $x = (p-l, r-p)$, where $l = \sqrt{pq + pr - qr}$, satisfies $x^T M x = 0$, demonstrating the knot is algebraically slice. The double branched cover Y of the knot has $k(Y) = -l^2$. From Example 4.6 we see that Y does not bound a rational homology ball. It follows that $0 < g^* \leq g = 1$.

It is shown by Livingston [6] that $K(p, q, r)$ has $\tau = 1$, where τ is the Ozsváth-Szabó knot concordance invariant. This also gives $g^* = 1$. \hfill \square

Example 4.12. The Montesinos knot $K_{q,r} = M(0; (qr-1, q), (r+1, r), (r+1, r))$ with odd $q \geq 3$ and even $r \geq 2$, has signature $\sigma = 1 - q$ and has

$$g = g^* = \frac{q+1}{2}.$$ Computations suggest that the Taylor invariant of $K_{q,r}$ is $\frac{q-1}{2}$.

Proof. The knot $K_{q,r}$ is equal to $M(0; (qr-1, q), (r+1, -1), (r+1, -1))$. It is easily seen that $K_{q,r}$ has a spanning surface with genus $\frac{q+1}{2}$. Using the resulting Seifert matrix one gets the formula for the signature. The double branched cover Y of $K_{q,r}$ has $k(Y) < 0$. From Example 4.6 we see that Y does not bound a negative-definite four-manifold; the genus formula follows.

We have computed the Taylor invariant of $K_{q,r}$ for $q < 10000$ and any r. \hfill \square

Remark 4.13. We have discussed Conjectures 2.1 and 2.2 with Noam Elkies. He has suggested an alternative proof of Theorem 3.1 using gluing of lattices [3]. His proof works for odd determinants δ up to 11, under the additional assumption that there is an element of L' whose square is congruent to $1/\delta$ modulo 1. He also indicated a way to remove this assumption.

Using his result it follows that Δ_{a-6} is the only negative-definite form bounded by the manifold Y_a of Example 4.10 for $a = 11, 13, 15$ and 17.
A CHARACTERISATION OF THE $n(1) \oplus (3)$ FORM

References

[1] S. K. Donaldson. *An application of gauge theory to four-dimensional topology*, J. Diff. Geom. *18* 1983, 279–315.

[2] N. D. Elkies. *A characterization of the \mathbb{Z}^n lattice*, Math. Res. Lett. *2* 1995, 321–326.

[3] N. D. Elkies. *Private communication*.

[4] R. Fintushel & R. J. Stern, *Pseudofree orbifolds*, Ann. of Math. *122* 1985, 335–364.

[5] B. W. Jones. *The arithmetic theory of quadratic forms*, Math. Assoc. of America, 1950.

[6] C. Livingston. *Computations of the Ozsváth-Szabó knot concordance invariant*, math.GT/0311036.

[7] B. Owens & S. Strle. *Rational homology spheres and four-ball genus*, math.GT/0308073.

[8] P. Ozsváth & Z. Szabó. *Absolutely graded Floer homologies and intersection forms for four-manifolds with boundary*, Advances in Mathematics *173* 2003, 179–261.

[9] P. Ozsváth & Z. Szabó. *On the Floer homology of plumbed three-manifolds*, Geometry and Topology *7* 2003, 225–254.

[10] J.-P. Serre. *A course in arithmetic*, Springer, 1973.