Real Hypersurfaces in the Complex Hyperbolic Quadric with Reeb Parallel Structure Jacobi Operator

Hyunjin Lee1 · Young Jin Suh2

Received: 7 October 2019 / Accepted: 26 December 2019 / Published online: 26 February 2020
© Springer Nature B.V. 2020

Abstract
We introduce the notion of Reeb parallel structure Jacobi operator for real hypersurfaces in the complex hyperbolic quadric $Q^{*m} = SO_{2,m}^0 / SO_2 SO_m$, $m \geq 3$, and give a classification theorem for real hypersurfaces in Q^{*m}, $m \geq 3$, with Reeb parallel structure Jacobi operator.

Keywords
Complex hyperbolic quadric · Reeb parallel structure Jacobi operator · \mathfrak{A}-isotropic · \mathfrak{A}-principal · Complex structure · Real structure

Mathematics Subject Classification (2010) Primary: 53C40; Secondary: 53C55

1 Introduction

As a dual space of m-dimensional complex quadric Q^m, we can consider a Hermitian symmetric space with rank 2 of noncompact type Q^{*m}, which is said to be complex hyperbolic quadric. Montiel and Romero [11] proved that the complex hyperbolic quadric Q^{*m} can be immersed in the indefinite complex hyperbolic space $\mathbb{C}H_1^{m+1}(-c)$, $c > 0$, by interchanging the Kähler metric by its opposite as follows:

If we change the Kähler metric g of $\mathbb{C}P_{m-s}^{m+1}$ by its opposite $g' = -g$, we have that Q_{m-s}^m endowed with its opposite metric $g' = -g$ is also an Einstein hypersurface of $\mathbb{C}H_{s+1}^{m+1}(-c)$. When $s = 0$, we know that $(Q_m^m, g' = -g)$ can be regarded as

\begin{itemize}
 \item Hyunjin Lee
 lhjibis@hanmail.net

 Young Jin Suh
 yjsuh@knu.ac.kr
\end{itemize}

1 Research Institute of Real and Complex Manifolds, Kyungpook National University, Daegu 41566, Republic of Korea

2 Department of Mathematics & RIRCM, Kyungpook National University, Daegu 41566, Republic of Korea
$Q^{sm} = SO_{2,m}^0/SO_2SO_m$, which is immersed in $\mathbb{C}H_{1}^{m+1}(-c)$, $c > 0$ as a complex Einstein hypersurface. The complex hyperbolic quadric can be regarded as a kind of real Grassmann manifold of noncompact type with rank 2 (see [4, 10, 17, 18, 20], and [24]). Accordingly, Q^{sm} admits two important geometric structures, a real structure A and a complex structure J, which anti-commute with each other, that is, $AJ = -JA$.

Then for $m \geq 2$ the triple (Q^{sm}, J, g) is a Hermitian symmetric space of non-compact type with rank 2 and its minimal sectional curvature is equal to -4 (see [10] and [24]).

In addition to the complex structure J there is another distinguished geometric structure on Q^{sm}, namely a parallel rank two vector bundle \mathfrak{A} which contains an S^1-bundle of real structures, that is, complex conjugations A on the tangent spaces of Q^{sm}. This geometric structure determines a maximal \mathfrak{A}-invariant subbundle Q of the tangent bundle TM of a real hypersurface M in Q^{sm}, that is, for each point $p \in M$ we can define

$$Q_p = \{X \in T_pM \mid AX \in T_pM \text{ for all } A \in \mathfrak{A}_p\}.$$

Recall that a nonzero tangent vector $W \in T_pQ^{sm}$, $p \in Q^{sm}$, is called singular if it is tangent to more than one maximal flat in Q^{sm}. There are two types of singular tangent vectors for the complex hyperbolic quadric Q^{sm}:

- If there exists a conjugation $A \in \mathfrak{A}_p$ such that $W \in V(A) = \{X \in T_pQ^{sm} \mid AX = X\}$, then W is singular. Such a singular tangent vector is called \mathfrak{A}-principal.
- If there exist a conjugation $A \in \mathfrak{A}_p$ and orthonormal vectors $Z_1, Z_2 \in V(A)$ such that $W/||W|| = (Z_1 + JZ_2)/\sqrt{2}$, then W is singular. Such a singular tangent vector is called \mathfrak{A}-isotropic, where $V(A) = \{X \in T_pQ^{sm} \mid AX = X\}$ and $JV(A) = \{X \in T_pQ^{sm} \mid AX = -X\}$ are the $(+1)$-eigenspace and (-1)-eigenspace for the involution A on T_pQ^{sm}, $p \in Q^{sm}$.

Now, let M be a real hypersurface in a Kähler manifold \tilde{M}, and denote by (ϕ, ξ, η, g) the induced almost contact metric structure of M. As a typical classification theorem for such real hypersurface, many geometers considered the condition that a real hypersurface M in \tilde{M} has isometric Reeb flow, which means that the Riemannian metric is invariant along the Reeb direction $\xi = -JN$. Algebraically it is equivalent to the notion of commuting shape operator given by $S\phi = \phi S$, where S is the shape operator of M defined by $\nabla_XN = -SX, X \in TM$.

For instance, Okumura [13] proved that the Reeb flow on a real hypersurface in complex projective space $\mathbb{C}P^m = SU_{m+1}/S(U_1U_m)$ is isometric if and only if M is an open part of a tube around a totally geodesic $\mathbb{C}P^k \subset \mathbb{C}P^m$ for some $k \in \{0, \ldots, m-1\}$. For the complex 2-plane Grassmannian $G_2(\mathbb{C}^{m+2}) = SU_{m+2}/S(U_2U_m)$ a classification was obtained by Berndt and Suh [1]. The Reeb flow on a real hypersurface in $G_2(\mathbb{C}^{m+2})$ is isometric if and only if M is an open part of a tube around a totally geodesic $G_2(\mathbb{C}^{m+1})$ in $G_2(\mathbb{C}^{m+2})$. For the complex quadric $Q^m = SO_{m+2}/SO_2SO_m$, Berndt and Suh [2] have obtained the following result:
Theorem A Let M be a real hypersurface of the complex quadric Q^m, $m \geq 3$. Then the Reeb flow on M is isometric if and only if m is even, say $m = 2k$, and M is an open part of a tube around a totally geodesic $\mathbb{CP}^k \subset Q^{2k}$.

On the other hand, as non-compact type ambient spaces, for the complex hyperbolic space $\mathbb{CH}^m = SU_{1,m}/S(U_mU_1)$ a classification was obtained by Montiel and Romero [12]. They proved that the Reeb flow on a real hypersurface in \mathbb{CH}^m is isometric if and only if M is an open part of a tube around a totally geodesic \mathbb{CH}^k in \mathbb{CH}^m for some $k \in \{0, \ldots, m - 1\}$. For the complex hyperbolic 2-plane Grassmannian $G^*_2(\mathbb{C}^{m+2}) = SU_{2,m}/S(U_mU_2)$ the classification of isometric Reeb flow was obtained by Suh [22]. In this case, the Reeb flow on a real hypersurface in $G^*_2(\mathbb{C}^{m+2})$ is isometric if and only if M is an open part of a tube around a totally geodesic $G^*_2(\mathbb{C}^{m+1}) \subset G^*_2(\mathbb{C}^{m+2})$ or a horosphere with singular normal $JN \in \mathfrak{J}N$. The geometric construction of horospheres in a non-compact manifold of negative curvature was mainly discussed in the book due to Eberlein [3].

In the paper due to Suh [23] he investigated this problem of isometric Reeb flow for the complex hyperbolic quadric $Q^{*m} = SO_{0,m}/SO_m \otimes SO_m$. In view of the previous results, naturally, we expected that the classification might include at least the totally geodesic $Q^{*m-1} \subset Q^{*m}$. But, the results are quite different from our expectations. The totally geodesic submanifolds of the above type are not included. Now compared to Theorem A, the classification is as follows:

Theorem B Let M be a real hypersurface of the complex hyperbolic quadric Q^{*m}, $m \geq 3$. The Reeb flow on M is isometric if and only if m is even, say $m = 2k$, and M is an open part of a tube around a totally geodesic $\mathbb{CH}^k \subset Q^{2k*}$ or a horosphere whose center at infinity is \mathfrak{A}-isotropic singular.

Hereafter, we denote (\mathcal{T}_A) and (\mathcal{H}_A) such a tube and horosphere given in Theorem B, respectively. Then we see that (\mathcal{T}_A) and (\mathcal{H}_A) should be Hopf, that is, $S\xi = \alpha \xi$, and they have \mathfrak{A}-isotropic singular normal vector field.

On the other hand, Jacobi fields along geodesics of a given Riemannian manifold (\tilde{M}, g) satisfy a well known differential equation. This equation naturally inspires the so-called Jacobi operator. That is, if R denotes the curvature operator of \tilde{M}, and X is a tangent vector field to \tilde{M}, then the Jacobi operator $R_X \in \text{End}(T_p\tilde{M})$ with respect to X at $p \in \tilde{M}$, defined by $(R_X Y)(p) = (R(Y, X)X)(p)$ for any $Y \in T_p\tilde{M}$, becomes a self adjoint endomorphism of the tangent bundle $T\tilde{M}$ of \tilde{M}. Thus, each tangent vector field X to \tilde{M} provides a Jacobi operator R_X with respect to X. In particular, for the Reeb vector field ξ, the Jacobi operator R_ξ is said to be the structure Jacobi operator.

Actually, many geometers have considered the condition that a real hypersurface M in Kähler manifolds has parallel structure Jacobi operator (or Reeb parallel structure Jacobi operator, respectively), that is, $\nabla_X R_\xi = 0$ for any tangent vector field X on M (or $\nabla_\xi R_\xi = 0$, respectively). In [7], Ki, Pérez, Santos and Suh have investigated the Reeb parallel structure Jacobi operator in the complex space form $M_m(c)$, $c \neq 0$, and have used it to study some principal curvatures for a tube over a totally
geodesic submanifold. On the other hand, Pérez et al. [16] have investigated Hopf real hypersurfaces M in $G_2(\mathbb{C}^{m+2})$ with parallel structure Jacobi operator, that is, $\nabla_X R_\xi = 0$ for any tangent vector field X on M. Jeong et al. [6] and Pérez and Santos [14] have generalized such a notion to the recurrent structure Jacobi operator, that is, $(\nabla_X R_\xi)Y = \beta(X)R_\xi Y$ for a certain 1-form β and any vector fields X, Y on M in $G_2(\mathbb{C}^{m+2})$ or $\mathbb{C}P^m$. In [5], Jeong, Lee, and Suh have considered a Hopf real hypersurface with structure Jacobi operator of Codazzi type, $(\nabla_X R_\xi)Y = (\nabla_Y R_\xi)X$, in $G_2(\mathbb{C}^{m+2})$. Moreover, Pérez et al. [15] have further investigated the property of the Lie ξ-parallel structure Jacobi operator in complex projective space $\mathbb{C}P^m$, that is, $\mathcal{L}_\xi R_\xi = 0$. In [27] Suh, Pérez, and Woo investigated the parallelism property with respect to the structure Jacobi operator R_ξ defined on M in the complex hyperbolic quadric $Q^*_m = SO_{2,m}/SO_2SO_m$ and gave the following result.

Theorem C There does not exist a Hopf real hypersurface in the complex hyperbolic quadrics Q^*_m, $m \geq 3$, with parallel structure Jacobi operator, that is, $\nabla_X R_\xi = 0$ for any tangent vector field X on M.

Motivated by these results, in this paper we consider the case when R_ξ of M in Q^*_m is Reeb parallel, that is, $\nabla_\xi R_\xi = 0$, and first we prove the following:

Main Theorem 1 Let M be a Hopf real hypersurface in Q^*_m, $m \geq 3$, with Reeb parallel structure Jacobi operator. Then the unit normal vector field N is singular, that is, N is \mathfrak{A}-isotropic or \mathfrak{A}-principal.

On the other hand, in [26] we have considered the notion of Reeb parallel shape operator S for a real hypersurface M in Q^*_m, that is, $\nabla_\xi S = 0$, and have proved:

Theorem D Let M be a Hopf real hypersurface in complex hyperbolic quadric Q^*_m, $m \geq 3$, with Reeb parallel shape operator and non-vanishing Reeb curvature. Then M is an open part of the following:

1. a tube around the totally geodesic $\mathbb{C}H^k \subset Q^{*2k}$, where $m = 2k$,
2. a horosphere whose center at infinity is \mathfrak{A}-isotropic singular,
3. a tube around the totally geodesic Hermitian symmetric space Q^{*m-1} embedded in Q^*_m,
4. a horosphere in Q^*_m whose center at infinity is the equivalence class of an \mathfrak{A}-principal geodesic in Q^*_m,
5. a tube around the m-dimensional real hyperbolic space $\mathbb{R}H^m$ which is embedded in Q^*_m as a real space form, or otherwise
6. M has two distinct constant principal curvatures given by

$$\alpha, \quad \lambda = \frac{\alpha^2 - 2}{\alpha}$$

with multiplicities m and $(m - 1)$, respectively.

© Springer
Using Main Theorem 1 and Theorem D, we give a classification for Hopf real hypersurfaces in the complex hyperbolic quadric \(Q^{*m} \) with Reeb parallel structure Jacobi operator as follows:

Main Theorem 2 Let \(M \) be a Hopf real hypersurface in the complex hyperbolic quadric \(Q^{*m} \), \(m \geq 3 \), with Reeb parallel structure Jacobi operator. If the Reeb curvature function \(\alpha \) is non-vanishing, then \(M \) is locally congruent to the one of the following:

1. a tube around the totally geodesic \(CH^k \subset Q^{*2k} \), where \(m = 2k \),
2. a horosphere whose center at infinity is \(\mathbb{R} \)-isotropic singular.

2 The Complex Hyperbolic Quadric

In this section, let us introduce known results about the complex hyperbolic quadric \(Q^{*m} \) which are mentioned in [10, 25] and [26].

The \(m \)-dimensional complex hyperbolic quadric \(Q^{*m} \) is the non-compact dual of the \(m \)-dimensional complex quadric \(Q^m \), i.e. the simply connected Riemannian symmetric space whose curvature tensor is the negative of the curvature tensor of \(Q^m \).

The complex hyperbolic quadric \(Q^{*m} \) cannot be realized as a homogeneous complex hypersurface of the complex hyperbolic space \(CH^{m+1} \). In fact, Smyth [21, Theorem 3(ii)] has shown that every homogeneous complex hypersurface in \(CH^{m+1} \) is totally geodesic. This is in marked contrast to the situation for the complex quadric \(Q^m \), which can be realized as a homogeneous complex hypersurface of the complex projective space \(CP^{m+1} \) in such a way that the shape operator for any unit normal vector to \(Q^m \) is a real structure on the corresponding tangent space of \(Q^m \), (see [19]). Another related result by Smyth, [21, Theorem 1], which states that any complex hypersurface of \(CH^{m+1} \) for which the square of the shape operator has constant eigenvalues (counted with multiplicity) is totally geodesic, also precludes the possibility of a model of \(Q^{*m} \) as a complex hypersurface of \(CH^{m+1} \) with the analogous property for the shape operator.

Therefore we realize the complex hyperbolic quadric \(Q^{*m} \) as the quotient manifold \(SO_{2,m}^0/SO_2SO_m \). As \(Q^{*1} \) is isomorphic to the real hyperbolic space \(RH^2 = SO_{1,2}^0/SO_2 \), and \(Q^{*2} \) is isomorphic to the Hermitian product of complex hyperbolic spaces \(CH^1 \times CH^1 \), we suppose \(m \geq 3 \) in the sequel and throughout this paper. Let \(G := SO_{2,m}^0 \) be the transvection group of \(Q^{*m} \) and \(K := SO_2SO_m \) be the isotropy group of \(Q^{*m} \) at the “origin” \(p_0 := eK \in Q^{*m} \). Then

\[
\sigma : G \to G, \quad g \mapsto sgs^{-1} \quad \text{with} \quad s := \begin{pmatrix}
-1 & -1 & \cdots & 0 \\
1 & 1 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & 1
\end{pmatrix}
\]

is an involutive Lie group automorphism of \(G \) with \(\text{Fix}(\sigma)_0 = K \), and therefore \(Q^{*m} = G/K \) is a Riemannian symmetric space. The center of the isotropy group \(K \) is isomorphic to \(SO_2 \), and therefore \(Q^{*m} \) is in fact a Hermitian symmetric space.
The Lie algebra $\mathfrak{g} := so_{2,m}$ of G is given by

$$\mathfrak{g} = \{ X ∈ \mathfrak{gl}(m + 2, \mathbb{R}) | X^t \cdot s = -s \cdot X \}$$

(see [8, p. 59]). In the sequel we will write members of \mathfrak{g} as block matrices with respect to the decomposition $\mathbb{R}^{m+2} = \mathbb{R}^2 \oplus \mathbb{R}^m$, i.e. in the form

$$X = \begin{pmatrix} X_{11} & X_{12} \\ X_{21} & X_{22} \end{pmatrix},$$

where $X_{11}, X_{12}, X_{21}, X_{22}$ are real matrices of orders $2 \times 2, 2 \times m, m \times 2$ and $m \times m$, respectively. Then

$$\mathfrak{g} = \left\{ \begin{pmatrix} X_{11} & X_{12} \\ X_{21} & X_{22} \end{pmatrix} \mid X_{11}^t = -X_{11}, X_{12}^t = X_{21}, X_{22}^t = -X_{22} \right\}.$$

The linearization $\sigma_L = \text{Ad}(s) : \mathfrak{g} → \mathfrak{g}$ of the involutive Lie group automorphism σ induces the Cartan decomposition $\mathfrak{g} = \mathfrak{k} \oplus \mathfrak{m}$, where the Lie subalgebra $\mathfrak{k} = \text{Eig}(\sigma_L, 1) = \{ X ∈ \mathfrak{g} | sXs^{-1} = X \}$

$$\cong so_2 \oplus so_m$$

is the Lie algebra of the isotropy group K, and the $2m$-dimensional linear subspace

$$\mathfrak{m} = \text{Eig}(\sigma_L, -1) = \{ X ∈ \mathfrak{g} | sXs^{-1} = -X \} = \left\{ \begin{pmatrix} 0 & X_{12} \\ X_{21} & 0 \end{pmatrix} \mid X_{12}^t = X_{21} \right\}$$

is canonically isomorphic to the tangent space $T_{p_0}Q^{*m}$. Under the identification $T_{p_0}Q^{*m} \cong \mathfrak{m}$, the Riemannian metric g of Q^{*m} (where the constant factor of the metric is chosen so that the formulae become as simple as possible) is given by

$$g(X, Y) = \frac{1}{2} \text{tr}(Y^t \cdot X) = \text{tr}(Y_{12} \cdot X_{21}) \quad \text{for} \quad X, Y ∈ \mathfrak{m}.$$

g is clearly $\text{Ad}(K)$-invariant, and therefore corresponds to an G-invariant Riemannian metric on Q^{*m}. The complex structure J of the Hermitian symmetric space is given by

$$JX = \text{Ad}(j)X \quad \text{for} \quad X ∈ \mathfrak{m}, \quad \text{where} \quad j := \begin{pmatrix} 0 & 1 \\ -1 & 0 \\ \vdots & \ddots & 1 \end{pmatrix} ∈ K.$$

Because j is in the center of K, the orthogonal linear map J is $\text{Ad}(K)$-invariant, and thus defines a G-invariant Hermitian structure on Q^{*m}. By identifying the multiplication with the unit complex number i with the application of the linear map J, the tangent spaces of Q^{*m} thus become m-dimensional complex linear spaces, and we will adopt this point of view in the sequel.

For any $p ∈ Q^{*m}$ and $A ∈ \mathfrak{A}_p := \{ \lambda A_0 | \lambda ∈ S^1 \}$, the real structure A induces a splitting

$$T_pQ^{*m} = V(A) ⊕ JV(A)$$

into two orthogonal, maximal totally real subspaces of the tangent space T_pQ^{*m}. Here $V(A)$ (resp., $JV(A)$) is the $(+1)$-eigenspace (resp., the (-1)-eigenspace) of
A. For every unit vector \(Z \in T_pQ^*m \) there exist \(t \in \left[0, \frac{\pi}{4} \right], A \in \mathfrak{A}_p \) and orthonormal vectors \(Z_1, Z_2 \in V(A) \) so that

\[
Z = \cos(t)Z_1 + \sin(t)JZ_2
\]

holds; see [19, Proposition 3]. Here \(t \) is uniquely determined by \(Z \). The vector \(Z \) is singular, i.e. contained in more than one Cartan subalgebra of \(m \), if and only if either \(t = 0 \) or \(t = \frac{\pi}{4} \) holds. The vectors with \(t = 0 \) are called \(\mathfrak{A} \)-principal, whereas the vectors with \(t = \frac{\pi}{4} \) are called \(\mathfrak{A} \)-isotropic. If \(Z \) is regular, i.e. \(0 < t < \frac{\pi}{4} \) holds, then also \(A \) and \(Z_1, Z_2 \) are uniquely determined by \(Z \).

As for the complex quadric, the Riemannian curvature tensor \(\bar{R} \) of \(Q^*m \) can be fully described in terms of the “fundamental geometric structures” \(g, J \) and \(\mathfrak{A} \). In fact, under the correspondence \(T_{po}Q^*m \cong m \), the curvature \(\bar{R}(X, Y)Z \) corresponds to \(-[[X, Y], Z] \) for \(X, Y, Z \in m \), see [9, Chapter XI, Theorem 3.2(1)]. By evaluating the latter expression explicitly, one can show that one has

\[
\bar{R}(X, Y)Z = -g(Y, Z)X + g(X, Z)Y - g(JY, Z)JX + g(JX, Z)JY - 2g(JX, Y)JZ - g(AY, Z)AX + g(AX, Z)AY - g(JAY, Z)JAX + g(JAX, Z)JAY
\]

(2.1)

for arbitrary \(A \in \mathfrak{A}_p \). Therefore the curvature of \(Q^*m \) is the negative of that of the complex quadric \(Q^m \), compare [19, Theorem 1]. This confirms that the symmetric space \(Q^*m \) which we have constructed here is indeed the non-compact dual of the complex quadric.

3 Some General Equations

Let \(M \) be a real hypersurface in the complex hyperbolic quadric \(Q^*m \). Then, at each point \(p \in M \) we can choose \(A \in \mathfrak{A}_p \) such that

\[
N = \cos(t)Z_1 + \sin(t)JZ_2
\]

(3.1)

for some orthonormal vectors \(Z_1, Z_2 \in V(A) \) and \(0 \leq t \leq \frac{\pi}{4} \) (see Proposition 3 in [19]). Note that \(t \) is a function on \(M \). In addition, for any vector field \(X \) on \(M \) in \(Q^*m \), we may decompose \(JX \) as

\[
JX = \phi X + \eta(X)N \]

where \(N \) denotes a unit normal vector field to \(M \). The vector field

\[
\xi = -JN
\]

is said to be the Reeb vector field, and the 1-form \(\eta \) is given by \(\eta(X) = g(\xi, X) \). Then naturally \(M \) admits an almost contact metric structure \((\phi, \xi, \eta, g)\) induced from the Kähler structure \((J, g)\) of \(Q^*m \) satisfying \(\phi^2 = -I + \eta \otimes \xi, \phi \xi = 0 \) and \(\eta(\xi) = 1 \). The tangent bundle \(TM \) of \(M \) splits orthogonally into \(TM = C \oplus \mathbb{R} \xi \), where \(C = \ker(\eta) \) is the maximal complex subbundle of \(TM \). The structure tensor field \(\phi \) restricted to \(C \) coincides with the complex structure \(J \) restricted to \(C \). Real hypersurfaces in a Kähler manifold for which the maximal complex subbundle is invariant under the shape operator are known as Hopf hypersurfaces. This condition is equivalent to the
Reeb flow on M, that is, the flow of the structure vector field ξ, to be geodesic. We assume now that M is a Hopf hypersurface. Then the shape operator S of M in Q^{*m} satisfies

$$S\xi = \alpha\xi$$

for the Reeb vector field ξ and the smooth function $\alpha = g(S\xi, \xi)$ on M.

Moreover, since the ambient space Q^{*m} has also the real structure A, we decompose AX into its tangential and normal components for a fixed $A \in \mathfrak{A}_p$ and $X \in T_pM$, $p \in M$:

$$AY = BY + \rho(Y)N,$$

where BY denotes the tangential component of AY and $\rho(Y) = g(AY, N)$. Thus (3.1) gives us

$$\xi = \sin(t)Z_2 - \cos(t)JZ_1,$$

$$AN = \cos(t)Z_1 - \sin(t)JZ_2,$$

$$A\xi = \sin(t)Z_2 + \cos(t)JZ_1.$$

So, we get $g(A\xi, N) = g(AN, \xi) = 0$.

As the normal part of (2.1) we have the following equation, which is called the Codazzi equation,

$$g(\nabla X Y - \nabla Y X, Z) = \eta(X)g(\phi Y, Z) + \eta(Y)g(\phi X, Z) + 2\eta(Z)g(\phi X, Y)$$

$$- g(X, AN)g(AY, Z) + g(Y, AN)g(AX, Z)$$

$$- g(X, A\xi)g(JAY, Z) + g(Y, A\xi)g(JAX, Z). \quad (3.2)$$

By virtue of (3.2) we obtain the following lemma.

Lemma 3.1 [26] Let M be a Hopf real hypersurface in the complex hyperbolic quadric Q^{*m} with (local) unit normal vector field N. For each point $p \in M$ we choose $A \in \mathfrak{A}_p$ such that $N_p = \cos(t)Z_1 + \sin(t)JZ_2$ holds for some orthonormal vectors $Z_1, Z_2 \in V(A)$ and $0 \leq t \leq \frac{\pi}{4}$. Then

$$Y\alpha = (\xi\alpha)\eta(Y) - 2g(Y, AN)g(\xi, A\xi). \quad (3.3)$$

and

$$2g(S\phi SX, Y) = \alpha g((\phi S + S\phi)X, Y) - 2g(\phi X, Y)$$

$$+ g(X, AN)g(Y, A\xi) - g(Y, AN)g(X, A\xi)$$

$$- g(X, A\xi)g(JY, A\xi) + g(Y, A\xi)g(JX, A\xi)$$

$$+ 2g(\xi, AN)g(X, A\xi)\eta(Y) - 2g(X, AN)g(\xi, A\xi)\eta(Y)$$

$$- 2g(\xi, AN)g(Y, A\xi)\eta(X) + 2g(Y, AN)g(\xi, A\xi)\eta(X). \quad (3.4)$$

Moreover, by virtue of (3.3), we can assert:

Lemma 3.2 Let M be a Hopf real hypersurface in complex hyperbolic quadric Q^{*m}, $m \geq 3$. If the Reeb curvature function $\alpha = g(S\xi, \xi)$ is constant, then the normal vector field N should be singular, that is, N is either \mathfrak{A}-isotropic or \mathfrak{A}-principal.
Proof Assume the Reeb curvature function $\alpha = g(S\xi, \xi)$ is constant. From this, together with (3.3) and $g(A\xi, N) = 0$, it follows that

$$g(A\xi, \xi)g(Y, AN) = g(AN, Y) = 0$$

for any $Y \in T_p M$, $p \in M$. The first part $g(A\xi, \xi) = 0$ implies N is \mathfrak{A}-isotropic. Now let us work on the open subset $\mathcal{U} = \{ p \in M | \beta(p) = g(A\xi, \xi)(p) \neq 0 \}$. Then it follows that $g(AN, Y) = 0$ for all $Y \in T_p M$, $p \in \mathcal{U}$. Then, for the orthonormal basis $\{ e_1, e_2, \cdots, e_{2m-1}, e_{2m} := N \}$ of $T_p Q^*m$, the tangent vector $AN \in T_p Q^*m$ given by

$$AN = \sum_{i=1}^{2m-1} g(AN, e_i)e_i + g(AN, N)N$$

(3.5)

Applying the complex conjugate A to this equation and using $A^2 = I$ and (3.5) again, we get

$$N = A^2 N = g(AN, N)AN = g(AN, N)N$$

which means that N is \mathfrak{A}-principal. In fact, from (3.1), we see that $g(AN, N) = \cot 2t$, $t \in [0, \frac{\pi}{4})$ on \mathcal{U}. So, $g(AN, N) = \pm 1$ leads to $t = 0$. This completes the proof of our Lemma.

Remark 3.1 By virtue of Lemma 3.2, we assert that if the Reeb function α is identically vanishing on M then N should be singular. Now let us denote by ∇ and $\bar{\nabla}$ the covariant derivative of M and the covariant derivative of Q^*m, respectively.

If N is \mathfrak{A}-principal, that is, $A\xi = -\xi$ and $AN = N$, we have $\rho = 0$, because $\rho(Y) := g(Y, AN) = g(Y, N) = 0$ for any tangent vector field Y on M in Q^*m. So we have $AY = BY$ for any tangent vector field Y on M in Q^*m. Now we want to give some lemmas which will be useful to prove our main theorem as follows:

Lemma 3.3 [27] Let M be a Hopf hypersurface in the complex hyperbolic quadric Q^*m, $m \geq 3$, such that the normal vector field N is \mathfrak{A}-principal everywhere. Then the following statements hold:

(i) The Reeb curvature function α is constant.

(ii) If $X \in \mathcal{C}$ is a principal curvature vector of M with principal curvature λ, then $\alpha = \pm 2$, $\lambda = \pm 1$ for $\alpha = 2\lambda$ or ϕX is a principal curvature vector with principal curvature $\mu = \frac{\alpha\lambda - 2}{2\lambda - \alpha}$ for $\alpha \neq 2\lambda$.

(iii) $\bar{\nabla}X A = 0$ for any $X \in \mathcal{C}$.

(iv) $ASX = SX$ for any $X \in \mathcal{C}$.

Finally, let us induce the structure Jacobi operator R_{ξ} of a Hopf real hypersurface M in the complex hyperbolic quadric. As the tangential part of (2.1), the curvature tensor R of M in complex quadric Q^*m is defined as follows. For any $A \in \mathfrak{A}$

$$R(X, Y)Z = -g(Y, Z)X + g(X, Z)Y - g(\phi Y, Z)\phi X + g(\phi X, Z)\phi Y + 2g(\phi X, Y)\phi Z - g(AY, Z)(AX)^T + g(AX, Z)(AY)^T - g(JAY, Z)(JAX)^T + g(JAX, Z)(JAY)^T + g(SY, Z)SX - g(SX, Z)SY,$$
where \((AX)^T\) and \(S\) denote the tangential component of the vector field \(AX\) and the shape operator of \(M\) in \(Q^{*m}\), respectively.

From this, putting \(Y = Z = \xi\) and using \(g(A\xi, N) = 0\), the structure Jacobi operator is defined by

\[
R_{\xi}(X) = R(X, \xi)\xi
= -X + \eta(X)\xi - g(A\xi, \xi)(AX)^T + g(AX, \xi)A\xi
\]

\[
+ g(X, AN)(AN)^T + g(S\xi, \xi)SX - g(SX, \xi)S\xi.
\]

Then we may put the following

\[(AY)^T = AY - g(AY, N)N.\]

By using the Gauss and Weingarten formulas we obtain:

Lemma 3.4 [27] Let \(M\) be a real hypersurface in the complex quadric \(Q^{*m}\). Then

\[
\nabla_X(AY)^T = q(X)JAY + A\nabla_X Y + g(SX, Y)AN
- g([q(X)JAY + A\nabla_X Y + g(SX, Y)AN], N)N + g(AY, SX)N + g(AY, N)SX - g(SX, AY)N,
\]

and

\[
\nabla_X(AN)^T = q(X)JAN - ASX
- g(q(X)JAN - ASX, N)N + g(AN, N)SX.
\]

where \(q\) denote a certain 1-form defined on \(T_pQ^{*m}\), \(p \in Q^{*m}\), satisfying \((\tilde{\nabla}_U A)V = q(U)JAV\) for any vector fields \(U, V \in T_pQ^{*m}\).

In particular, by putting \(Y = \xi\) in (3.6) and using \(g(A\xi, N) = 0\), we have

\[
\nabla_X(A\xi) = q(X)JA\xi + A\phi SX + \alpha \eta(X)AN
- [q(X)g(JA\xi, N) + g(A\phi SX, N) + \alpha \eta(X)g(AN, N)] N.
\]

Moreover, we know that

\[
X\beta = X(g(A\xi, \xi))
= g((\tilde{\nabla}_X A)\xi + A\tilde{\nabla}_X \xi, \xi) + g(A\xi, \tilde{\nabla}_X \xi)
= g(q(X)JA\xi + A\phi SX + g(SX, \xi)AN, \xi) + g(A\xi, \phi SX + g(SX, \xi)N)
= 2g(A\phi SX, \xi).
\]

4 Reeb Parallel Structure Jacobi Operator and Proof of Main Theorem 1

The curvature tensor \(R(X, Y)Z\) for a Hopf real hypersurface \(M\) in the complex hyperbolic quadric \(Q^{*m} = SO_{2,m}^0/\SO_2 \SO_m\) induced from the curvature tensor of \(Q^{*m}\)
is given in Section 3. Now the structure Jacobi operator R_{ξ} from Section 3 can be rewritten as follows:

$$
R_{\xi}(Y) = R(Y, \xi) \xi
- Y + \eta(Y) \xi - \beta(AY)^T + g(AY, \xi) A\xi + g(AY, N)(AN)^T \\
+ \alpha SY - g(SY, \xi) S\xi,
$$

(4.1)

where we have put $\alpha = g(S\xi, \xi)$ and $\beta = g(A\xi, \xi)$, because we assume that M is Hopf. The Reeb vector field $\xi = -JN$ and the anti-commuting property $AJ = -JA$ gives that the function β becomes $\beta = -g(AN, N)$. When this function $\beta = g(A\xi, \xi)$ identically vanishes, we say that a real hypersurface M in Q^{*m} is A-isotropic as in Lemma 3.2.

Here we use the assumption of Reeb parallel structure Jacobi operator, that is, $\nabla_\xi R_{\xi} = 0$. Then (4.1), (3.6), and (3.7) give that

$$(\nabla_\xi R_{\xi})Y = \nabla_\xi (R_{\xi}Y) - R_{\xi}(\nabla_\xi Y)
= -((\xi \beta)g(AY, \xi) - \beta g(q(\xi)g(JAY, \xi) + g(\nabla_\xi Y, A\xi) + \alpha g(AY, N))
+ g(q(\xi)JAX + \alpha AN, Y)g(A\xi, \xi)
+ g(Y, AN)\{q(\xi)g(JAN, \xi) - \alpha A\xi + \alpha g(AN, N)\xi - g(q(\xi)JAN - \alpha A\xi, N)\}
+ (\xi \alpha)SY + \alpha(\nabla_\xi S)Y - ((\xi \alpha^2)\eta(Y)\xi,
$$

where we have used $g(A\xi, N) = 0$.

From this, by taking the inner product with the Reeb vector field ξ, and using $\nabla_\xi R_{\xi} = 0$, we have

$$
0 = -((\xi \beta)g(AY, \xi) - \beta g(q(\xi)g(JAY, \xi) + g(\nabla_\xi Y, A\xi) + \alpha g(AY, N))
+ g(q(\xi)JAX + \alpha AN, Y)g(A\xi, \xi)
+ g(Y, AN)\{q(\xi)g(JAN, \xi) - \alpha A\xi + \alpha g(AN, N)\xi - g(q(\xi)JAN - \alpha A\xi, N)\}
+ (\xi \alpha)SY + \alpha(\nabla_\xi S)Y - ((\xi \alpha^2)\eta(Y)\xi.
$$

(4.2)

Then first, using $g(A\xi, N) = 0$ and $(\xi \beta) = 0$ in (3.9), we have

$$
0 = \beta\{g(\nabla_\xi Y, A\xi) - (q(\xi) - 2\alpha)g(Y, AN)\}.
$$

(4.3)

From this we have $\beta = 0$ or $g(\nabla_\xi Y, A\xi) = (q(\xi) - 2\alpha)g(Y, AN)$. The first part $\beta = g(A\xi, \xi) = 0$ implies N is A-isotropic. Now let us work on the open subset $U = \{p \in M | \beta(p) \neq 0 \}$. Then it follows that

$$
g(\nabla_\xi Y, A\xi) = (q(\xi) - 2\alpha)g(Y, AN)
$$

(4.4)
Then by putting \(Y = (AN)^T \) in (4.4), we have
\[
\begin{align*}
g(\nabla_\xi (AN)^T, A\xi) &= (q(\xi) - 2\alpha)g((AN)^T, AN) \\
&= (q(\xi) - 2\alpha)(1 - \beta^2) \\
&= q(\xi) - 2\alpha - q(\xi)\beta^2 + 2\alpha\beta^2
\end{align*}
\]
(4.5)

On the other hand, by (3.7) the left term of (4.5) becomes
\[
\begin{align*}
g(\nabla_\xi (AN)^T, A\xi) &= q(\xi)g(JAN, A\xi) - \alpha g(A\xi, A\xi) + \alpha g(AN, N)g(\xi, A\xi) \\
&= q(\xi) - \alpha - \alpha\beta^2.
\end{align*}
\]
(4.6)

Then from (4.5) and (4.6) it follows that
\[
\alpha + q(\xi)\beta^2 - 3\alpha\beta^2 = 0. \tag{4.7}
\]

So for any \(Y \) orthogonal to \(A\xi \) by (3.8), we have
\[
g(\nabla_\xi Y, A\xi) = -g(Y, \nabla_\xi A\xi) = (q(\xi) - \alpha)g(Y, AN).
\]
(4.8)

From this, comparing with (4.4), we have
\[
\alpha g(AN, Y) = 0 \tag{4.9}
\]
for all \(Y \) orthogonal to \(A\xi \).

By virtue of Lemma 3.2 in Section 3, if the Reeb curvature function \(\alpha = g(S\xi, \xi) \) is vanishing, then the unit normal vector field is singular. Thus now we only consider the case \(\alpha \neq 0 \) on \(U \). By (4.9), together with \(AN = AJ\xi = -JA\xi = -\phi A\xi - g(A\xi, \xi)N \), it follows that \(g(\phi A\xi, Y) = 0 \) for all \(Y \in \mathcal{F} \). Here we denote \(\mathcal{F} = \{ Y \in T_pM \mid Y \perp A\xi, \ p \in U \} \). Substituting \(Y = \phi A\xi(\in \mathcal{F}) \), we get \(0 = 1 - g^2(A\xi, \xi) = 1 - \beta^2 \). This implies that the unit normal \(N \) is \(\mathfrak{A} \)-principal on \(U \). Together with Lemma 3.2 and this observation we give the following lemma.

Lemma 4.1 Let \(M \) be a Hopf real hypersurface in the complex hyperbolic quadric \(Q^{*m}, m \geq 3 \), with Reeb parallel structure Jacobi operator. Then the unit normal vector field \(N \) is \(\mathfrak{A} \)-principal or \(\mathfrak{A} \)-isotropic.

By virtue of Lemma 3.2, we can consider two classes of real hypersurfaces in complex hyperbolic quadric \(Q^{*m} \) with Reeb parallel structure Jacobi operator: with \(\mathfrak{A} \)-principal unit normal vector field \(N \) or otherwise, with \(\mathfrak{A} \)-isotropic unit normal vector field \(N \). We will consider each case in Sections 5 and 6 respectively.

5 Reeb Parallel Structure Jacobi Operator with \(\mathfrak{A} \)-Isotropic Normal Vector Field

In this section we assume that the unit normal vector field \(N \) of a real hypersurface \(M \) in the complex hyperbolic quadric \(Q^{*m} = SO_{2,m}^0/SO_2SO_m \) is \(\mathfrak{A} \)-isotropic. Then the normal vector field \(N \) can be written as
\[
N = \frac{1}{\sqrt{2}}(Z_1 + JZ_2)
\]
for \(Z_1, Z_2 \in V(A) \), where \(V(A) \) denotes the \((+1)\)-eigenspace of the complex conjugation \(A \in \mathfrak{A} \). Here we note that \(Z_1 \) and \(Z_2 \) are orthonormal, i.e., we have \(\|Z_1\| = \|Z_2\| = 1 \) and \(Z_1 \perp Z_2 \). Then it follows that

\[
AN = \frac{1}{\sqrt{2}}(Z_1 - JZ_2), \quad AJN = -\frac{1}{\sqrt{2}}(JZ_1 + Z_2), \quad \text{and} \quad JN = \frac{1}{\sqrt{2}}(JZ_1 - Z_2).
\]

Then it gives that

\[
g(\xi, A\xi) = g(JN, AJN) = 0, \quad g(\xi, AN) = 0, \quad \text{and} \quad g(AN, N) = 0.
\]

By virtue of these formulas for \(\mathfrak{A} \)-isotropic unit normal vector field, the structure Jacobi operator is given by

\[
R_\xi(X) = R(X, \xi)\xi - X + \eta(X)\xi + g(AX, \xi)A\xi + g(JAX, \xi)JA\xi + g(S\xi, \xi)SX - g(SX, \xi)S\xi. \tag{5.1}
\]

On the other hand, we know that \(JA\xi = -JAJN = AJ^2N = -AN \), and \(g(JAX, \xi) = -g(AX, J\xi) = -g(AX, N) \). Now the structure Jacobi operator \(R_\xi \) can be rearranged as follows:

\[
R_\xi(X) = -X + \eta(X)\xi + g(AX, \xi)A\xi + g(X, AN)AN + \alpha SX - \alpha^2\eta(X)\xi. \tag{5.2}
\]

Differentiating (5.2) we obtain

\[
(\nabla Y R_\xi)X = \nabla_Y (R_\xi(X)) - R_\xi(\nabla_Y X)
\]

\[
= (\nabla_Y \eta)(X)\xi + \eta(X)\nabla_Y \xi + g(X, \nabla_Y (AX))A\xi + g(X, \nabla_Y (AN))AN + g(X, AN)\nabla_Y (AN)
\]

\[
+ (Y\alpha)SX + \alpha(\nabla_Y S)X - (Y\alpha^2)\eta(X)\xi - \alpha^2(\nabla_Y \eta)(X)\xi - \alpha^2\eta(X)\nabla_Y \xi. \tag{5.3}
\]

On the other hand, by virtue of Lemma 3.4, we obtain the following for a Hopf real hypersurface in \(Q^{*m} \) with \(\mathfrak{A} \)-isotropic unit normal as follows:

Lemma 5.1 [26] Let \(M \) be a Hopf real hypersurface in the complex hyperbolic quadric \(Q^{*m} \), \(m \geq 3 \), with \(\mathfrak{A} \)-isotropic unit normal. Then

\[
SAN = 0, \quad \text{and} \quad SA\xi = 0.
\]

Substituting these formulas into (5.3) and using our assumption that \(M \) is a Hopf real hypersurface with \(\mathfrak{A} \)-isotropic singular normal vector \(N \) in \(Q^{*m} \), it yields

\[
(\nabla_Y R_\xi)X = g(X, \phi SY)\xi + \eta(X)\phi SY
\]

\[
- g(\phi SY, \xi)BX - g(AX, \phi SY)BX
\]

\[
+ \left\{ g(\phi SY, X) + \alpha \eta(Y)g(AN, X) \right\}A\xi
\]

\[
+ g(AX, X)\left\{ B\phi SY + \alpha \eta(Y)AN \right\}
\]

\[
- g(AX, SY)AN - g(AN, X)BSY
\]

\[
+ (Y\alpha)SX + \alpha(\nabla_Y S)X - 2\alpha(Y\alpha)\eta(X)\xi
\]

\[
- \alpha^2 g(X, \phi SY)\xi - \alpha^2\eta(X)\phi SY. \tag{5.4}
\]

\[\square\]
From this and using the assumption of Reeb parallel structure Jacobi operator, it follows:

\[(\xi \alpha)SX + \alpha(\nabla_{\xi} S)X - 2\alpha(\xi \alpha)\eta(X)\xi = 0.\]

(5.5)

Lemma 5.2 Let M be a real hypersurface in the complex hyperbolic quadric \(Q^m\), \(m \geq 3\), with Reeb parallel structure Jacobi operator and non-vanishing geodesic Reeb flow. If the unit normal vector field N of M is \(\mathfrak{A}\)-isotropic, then the Reeb curvature function \(\alpha\) is constant. Moreover, the shape operator S should be Reeb parallel, that is, the shape operator S satisfies the property \(\nabla_{\xi} S = 0\).

Proof By putting \(X = \xi\) in the equation of Codazzi in Section 3, we have

\[(\nabla_{\xi} S)Y = (\nabla_{Y} S)\xi - \phi Y + g(Y, AN)A\xi - g(Y, A\xi)AN = (Y\alpha)\xi + \alpha(\phi SX - \phi SY) - \phi Y + g(Y, AN)A\xi - g(Y, A\xi)AN.\]

(5.6)

From this, together with (5.5), it follows that

\[(\xi \alpha)SX + \alpha(\xi \alpha)\eta(X)\xi + \alpha\left\{\alpha\phi SX - \phi SY - \phi Y + g(Y, AN)A\xi - g(Y, A\xi)AN\right\} = 0.\]

(5.7)

Then by taking the inner product (5.7) with the Reeb vector field \(\xi\), we have \(\alpha X\alpha = \alpha(\xi \alpha)\eta(X)\). Then (5.7) gives

\[(\xi \alpha)SX - \alpha(\xi \alpha)\eta(X)\xi + \alpha\left\{\alpha\phi SX - \phi SY - \phi Y + g(X, AN)A\xi - g(X, A\xi)AN\right\} = 0.\]

(5.8)

Since the unit normal vector field \(N\) is \(\mathfrak{A}\)-isotropic, Lemma 3.1 gives

\[S\phi SX - \alpha(\phi S + S\phi)X = -\phi X + g(X, AN)A\xi - g(X, A\xi)AN.\]

Substituting this one into (5.8), we have

\[2(\xi \alpha)SX - 2\alpha(\xi \alpha)\eta(X)\xi + \alpha^2(\phi S - S\phi)X = 0.\]

(5.9)

On the other hand, by (3.4) in Lemma 3.1, when a unit normal vector field \(N\) of \(M\) is \(\mathfrak{A}\)-isotropic, we get

\[2S\phi SX - \alpha(\phi S + S\phi)X + 2\phi X - 2g(AN, X)A\xi + 2g(X, A\xi)AN = 0\]

for any \(X \in T_pM, p \in M\). For some \(X_0 \in Q := \{X \in TM \mid X \perp \xi, A\xi, AN\}\) such that \(SX_0 = \lambda X_0\), it becomes \((2\lambda - \alpha)S\phi X_0 = (\alpha \lambda - 2)\phi X_0\). Thus we obtain:

- if \(\alpha = 2\lambda\), then \(\lambda = \pm 1\). Moreover, \(\alpha = \pm 2\).
- if \(\alpha \neq 2\lambda\), then the vector \(\phi X_0\) is also principal with eigenvalue \(\mu\), where \(\mu = \frac{\alpha \lambda - 2}{2\lambda - \alpha}\).

From this, let us consider two cases as follows.
Case I. $\alpha = 2\lambda$

Since S is symmetric, we can choose a basis $\{e_1 = \xi, e_2 = A\xi, e_3 = AN, e_4, \ldots, e_{2m-1}\}$ for T_pM such that $Se_i = \lambda_i e_i$ (in particular, $\lambda_1 = \alpha, \lambda_2 = \lambda_3 = 0$). It follows that the expression of the shape operator S becomes

$$S = \text{diag}(\alpha, 0, 0, \lambda_4, \ldots, \lambda_{2m-1})$$

$$= \text{diag}(\pm 2, 0, 0, \pm 1, \ldots, \pm 1),$$

where $\text{diag}(a_1, \ldots, a_n)$ denote a diagonal matrix whose diagonal entries starting in the upper left corner are a_1, \ldots, a_n. From this and (5.5), we see that M becomes a Hopf real hypersurface in $Q^{*m}, m \geq 3$, with Reeb parallel shape operator, $\nabla_\xi S = 0$.

Case II. $\alpha \neq 2\lambda$

For some unit $X_0 \in Q$ such that $SX_0 = \lambda X_0$, we have $S\phi X_0 = \mu \phi X_0, \mu = \frac{\alpha^3 - 2}{2\lambda - \alpha}$. Then (5.9) gives

$$2(\xi \alpha)\lambda X_0 + \alpha^2(\lambda - \mu)\phi X_0 = 0. \quad (5.10)$$

From this, by taking the inner product with X_0 we have $(\xi \alpha)\lambda = 0$. Now let us consider an open subset $\mathcal{U} = \{p \in M \mid (\xi \alpha)(p) \neq 0\}$ in M. Then on such an open subset \mathcal{U} the principal curvature λ identically vanishes. Then (5.10) gives that the Reeb curvature function α identically vanishes on \mathcal{U}. This gives a contradiction. So such an open subset \mathcal{U} can not exist. This means that $\xi \alpha = 0$ on M. That is, $X\alpha = 0$ for any X on M in Q^{*m}. From this and using our assumption, $\alpha \neq 0$, (5.5) implies that M is a Hopf real hypersurface with Reeb parallel shape operator in $Q^{*m}, m \geq 3$.

Then by Theorem D in the introduction we can assert the following:

Theorem 5.3 Let M be a real hypersurface in the complex hyperbolic quadric $Q^{*m}, m \geq 3$, with Reeb parallel structure Jacobi operator. If the unit normal vector field N is A-isotropic and M has non-vanishing Reeb curvature, then M is locally congruent to

1. a tube around the totally geodesic $\mathbb{CH}^k \subset Q^{*2k}$, where $m = 2k$,
2. a horosphere whose center at infinity is A-isotropic singular.

6 Reeb Parallel Structure Jacobi Operator with A-Principal Normal Vector Field

Let M be a real hypersurface with non-vanishing geodesic Reeb flow, $\alpha \neq 0$, in the complex hyperbolic quadric $Q^{*m} = SO_{2,m}^0 / SO_2 SO_m, m \geq 3$. In addition, we assume that M has Reeb parallel structure Jacobi operator and A-principal normal vector field. Then the unit normal vector field N satisfies $AN = N$ for a complex conjugation $A \in A$. Then it follows that $A\xi = -\xi$ and $g(A\xi, \xi) = -1$.

\copyright Springer
By the assumption of Reeb parallel structure Jacobi operator, we have

\[
0 = (\nabla_\xi R_\xi)X = \left\{ q(\xi)JAX + g(SX, \xi)N - g(S_\xi, AX)N \right\} + (\xi \alpha)SX + \alpha(\nabla_\xi S)X - (\xi \alpha^2)\eta(X)\xi \quad (6.1)
\]

On the other hand, differentiating \(g(AN, JN) = 0 \) along any \(X \in T_pM, p \in M \), then it follows that

\[
q(X) = g(ASX, JN) + g(\xi, S_\xi),
\]

which implies that \(q(X) = 2\alpha \eta(X) \) if \(N \) is \(A \)-principal. From this, we know \(q(\xi) = 2\alpha \). By Lemma 3.3, the Reeb curvature function \(\alpha \) is constant on \(M \). So (6.1) reduces to the following

\[
\alpha(\nabla_\xi S)X = -2\alpha \phi AX.
\]

Since \(M \) has non-vanishing geodesic Reeb flow, that is, \(\alpha = g(S_\xi, \xi) \neq 0 \), we have

\[
(\nabla_\xi S)X = -2\phi AX. \quad (6.2)
\]

On the other hand, by using the equation of Codazzi in Section 3, we have

\[
g\left((\nabla_X S)\xi - (\nabla_\xi S)X, Z\right) = g(\phi X, Z) - g(X, AN)g(A_\xi, Z) - g(X, A_\xi)g(JA_\xi, Z) + g(\xi, A_\xi)g(JAX, Z) = g(\phi X, Z) - g(\phi AX, Z).
\]

In addition, since \(M \) is Hopf, it leads to

\[
(\nabla_\xi S)X = (\nabla_X S)\xi - \phi X + \phi AX = \alpha \phi SX - S\phi SX - \phi X + \phi AX
\]

From this, together with (6.2), it follows that

\[
\alpha \phi SX - S\phi SX - \phi X = -3\phi AX. \quad (6.3)
\]

By virtue of Lemma 3.1, for the \(A \)-principal unit normal vector field, we obtain

\[
2S\phi SX = \alpha(S\phi + \phi S)X - 2\phi X. \quad (6.4)
\]

Therefore, (6.3) can be written as

\[
\alpha(\phi S - S\phi)X = -6\phi AX. \quad (6.5)
\]

Inserting \(X = SY \) for \(Y \in \mathcal{C} \) into (6.5) and applying the structure tensor \(\phi \) leads to

\[
-\alpha S^2 Y - \alpha \phi S\phi SY = 6ASY,
\]

where \(\mathcal{C} = \ker \eta \) denotes the maximal complex subbundle of \(TM \).

By using (6.4) and Lemma 3.3 this equation gives

\[
\alpha^2 \phi S\phi Y = -2\alpha S^2 Y + \alpha^2 SY - 2\alpha Y - 12SY \quad (6.6)
\]

for all \(Y \in \mathcal{C} \).

On the other hand, in this section we have assumed that the normal vector field \(N \) of \(M \) is \(2\xi \)-principal. So it follows that \(AX \in TM \) for all \(X \in TM \). From this, the anti-commuting property with respect to \(J \) and \(A \) implies \(\phi AX = -A\phi X \). Hence (6.5) can be expressed as

\[
\alpha(\phi S - S\phi)X = 6A\phi X. \quad (6.7)
\]
Putting $X = \phi Y$ into (6.7), it gives

\[\alpha \phi S \phi Y = -\alpha SY - 6AY \]

for all $Y \in C$. Inserting this into (6.6), we get

\[3\alpha AY - \alpha S^2Y + \alpha^2 SY - \alpha Y - 6SY = 0. \] \hspace{1cm} (6.8)

Applying the complex conjugate A to (6.8) again and using the fourth equation in Lemma 3.3, we get

\[3\alpha Y - \alpha S^2Y + \alpha^2 SY - \alpha AY - 6SY = 0, \] \hspace{1cm} (6.9)

for all $Y \in C$. Summing up (6.8) and (6.9), we have

\[AY = Y \] for all $Y \in C$. This gives a contradiction. In fact, it is well known that the trace of the real structure A is zero, that is, $\text{Tr}A = 0$ (see Lemma 1 in [20]). For an orthonormal basis $\{ e_1, e_2, \cdots, e_{2m-2}, e_{2m-1} = \xi, e_{2m} = N \}$ for TQ^*m, where $e_j \in C$ ($j = 1, 2, \cdots, 2m - 2$), the trace of A is given by

\[\text{Tr}A = \sum_{i=1}^{2m} g(Ae_i, e_i) \]
\[= g(AN, N) + g(A\xi, \xi) + \sum_{i=1}^{2m-2} g(Ae_i, e_i) \]
\[= 2m - 2. \]

It implies that $m = 1$. But we consider $m \geq 3$.

Consequently, this completes the proof that there does not exists a Hopf real hypersurface ($\alpha \neq 0$) in complex hyperbolic quadrics Q^*m, $m \geq 3$, with Reeb parallel structure Jacobi operator and ϕ-principal normal vector field.

Acknowledgments H Lee is supported by grant Proj. No. NRF-2019-R111A1A-01050300 from National Research Foundation of Korea and Y J Suh by NRF-2018-R1D1A1B-05040381.

References

1. Berndt, J., Suh, Y.J.: Real hypersurfaces with isometric Reeb flow in complex two-plane Grassmannians. Monatsh. Math. 137, 87–98 (2002)
2. Berndt, J., Suh, Y.J.: Real hypersurfaces with isometric Reeb flow in complex quadrics. Internat. J. Math. 24(1350050), 18 (2013)
3. Eberlein, P.B.: Geometry of Nonpositively Curved Manifolds. University of Chicago Press, Chicago (1996)
4. Helgason, S.: Differential geometry, Lie groups and symmetric spaces, Graduate Studies in Math. Amer. Math. Soc., p. 34 (2001)
5. Jeong, I., Lee, H., Suh, Y.J.: Real hypersurfaces in complex two-plane Grassmannians whose structure Jacobi operator is of Codazzi type. Acta Math. Hungar. 125, 141–160 (2009)
6. Jeong, I., Suh, Y.J., Woo, C.: Real hypersurfaces in complex two-plane Grassmannians with recurrent structure Jacobi operator. Real and Complex Submanifolds, Springer Proc. Math. Stat. Springer, Tokyo 106, 267–278 (2014)
7. Ki, U.-H., Pérez, J.D., Santos, F.G., Suh, Y.J.: Real hypersurfaces in complex space forms with ξ-parallel Ricci tensor and structure Jacobi operator. J. Korean Math. Soc. 44, 307–326 (2007)
8. Knapp, A.W.: Lie Groups Beyond an Introduction. Progress in Mathematics, 2nd edn. Birkhäuser, Boston (2002)
9. Kobayashi, S., Nomizu, K.: Foundations of Differential Geometry, vol. II. A Wiley-Interscience Publ., Wiley Classics Library Ed. (1996)
10. Klein, S., Suh, Y.J.: Contact real hypersurfaces in the complex hyperbolic quadric. Ann. Mat. Pura Appl. 198(4), 1481–1494 (2019)
11. Montiel, S., Romero, A.: CompleX Einstein hypersurfaces of indefinite complex space form. Math. Proc. Cambridge Philos. Soc. 94, 495–508 (1983)
12. Montiel, S., Romero, A.: On some real hypersurfaces of a complex hyperbolic space. Geom. Dedicata 20, 242–2615 (1986)
13. Okumura, M.: On some real hypersurfaces of a complex projective space. Trans. Amer. Math. Soc. 212, 355–364 (1975)
14. Pérez, J.D., Santos, F.G.: Real hypersurfaces in complex projective space with recurrent structure Jacobi operator. Differential Geom. Appl. 26, 218–223 (2008)
15. Pérez, J.D., Santos, F.G., Suh, Y.J.: Real hypersurfaces in complex projective space whose structure Jacobi operator is Lie ξ-parallel. Differential Geom. Appl. 22, 181–188 (2005)
16. Pérez, J.D., Jeong, I., Suh, Y.J.: Real hypersurfaces in complex two-plane Grassmannian with parallel structure Jacobi operator. Acta Math. Hungar. 122, 173–186 (2009)
17. Romero, A.: Some examples of indefinite complete complex Einstein hypersurfaces not locally symmetric. Proc. Amer. Math. Soc. 98, 283–286 (1986)
18. Romero, A.: On a certain class of complex Einstein hypersurfaces in indefinite complex space forms. Math. Z. 192, 627–635 (1986)
19. Reckziegel, H.: On the Geometry of the Complex Quadric, Geometry and Topology of Submanifolds. Lect. Notes in Math. VIII, pp. 302–315. World Sci. Publ., River Edge (1995)
20. Smyth, B.: Differential geometry of complex hypersurfaces. Ann. Math. 85, 246–266 (1967)
21. Smyth, B.: Homogeneous complex hypersurfaces. J. Math. Soc. Japan 20, 643–647 (1968)
22. Suh, Y.J.: Hypersurfaces with isometric Reeb flow in complex hyperbolic two-plane Grassmannians. Adv. Appl. Math. 50, 645–659 (2013)
23. Suh, Y.J.: Real hypersurfaces in the complex hyperbolic quadric with isometric Reeb flow. Commun. Contemp. Math. 20, 1750031 (2018). (20 pages)
24. Suh, Y.J.: Pseudo-anti commuting Ricci tensor for real hypersurfaces in the complex hyperbolic quadric. Sci. China Math. 62(4), 679–698 (2019)
25. Suh, Y.J.: Real hypersurfaces in the complex hyperbolic quadric and related topics. In: Proceedings of the 22nd International Workshop on Differential Geometry of Submanifolds in Symmetric Spaces and Related Problems, pp. 15–36, Daegu (2019)
26. Suh, Y.J., Hwang, D.H.: Real hypersurfaces in the complex hyperbolic quadric with Reeb parallel shape operator. Ann. Mat. Pura Appl. 196, 1307–1326 (2017)
27. Suh, Y.J., Pérez, J.D., Woo, C.: Real hypersurfaces in the complex hyperbolic quadric with parallel structure Jacobi operator. Publ. Math. Debrecen 94(1–2), 75–107 (2019)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.