Associação entre Parâmetros Clínicos e Ecodopplercardiográficos com Morte Súbita em Pacientes de Hemodiálise

Association between Clinical and Doppler Echocardiographic Parameters with Sudden Death in Hemodialysis Patients

Silvio Henrique Barberato¹, Sérgio Cardano Elias Bucharles², Marcia Ferreira Alves Barberato¹, Roberto Peccois-Filho³
Cardioeco – Centro de Diagnóstico Cardiovascular³; Fundação Pró Renal³; Pontifícia Universidade Católica do Paraná³, Curitiba, PR – Brasil

Resumo

Fundamento: Morte súbita cardiovascular (MSC) é a principal causa de óbito nos pacientes em hemodiálise (HD) de manutenção, mas há escassa informação sobre os fatores de risco associados.

Objetivos: Avaliar a associação entre parâmetros clínicos e ecodopplercardiográficos com MSC em pacientes em HD.

Métodos: Estudo retrospectivo de caso-controle aninhado em pacientes em HD prospectivamente acompanhados. O desfecho primário foi MSC. As variáveis foram comparadas por teste \(t \) de Student, Mann-Whitney ou qui-quadrado, e preditores independentes foram evidenciados por análise de regressão logística multivariada.

Resultados: Foram acompanhados 153 indivíduos (idade 50 ± 15 anos, 58% homens) por 23 ± 14 meses, período em que ocorreram 35 mortes, das quais 17 MSC. Comparados ao grupo controle (pareado para sexo, idade e índice de massa corpórea) não houve diferenças no tempo de tratamento por HD, parâmetros laboratoriais usuais, pressão arterial, tabagismo, uso de drogas cardioprotetoras, fração de ejeção, dimensões do ventrículo esquerdo e índices de função diastólica. Por outro lado, encontrou-se no grupo MSC maior prevalência de insuficiência cardíaca prévia, infarto agudo do miocárdio e diabetes; maior massa ventricular esquerda indexada, tamanho do átrio esquerdo e menor desempenho miocárdico global. Após análise multivariada, diabetes (OR = 2,6; IC = 1,3-7,5; \(p = 0,023 \)) e massa ventricular esquerda indexada (OR = 1,04; IC = 1,01-1,08; \(p = 0,028 \)) mostraram associação independente com a ocorrência de MSC.

Conclusões: Pacientes em HD com diabetes mellitus e hipertrofia ventricular esquerda parecem ter o maior risco de MSC. Estratégias preventivas e terapêuticas devem ser estabelecidas na abordagem desses fatores de risco para diminuir a ocorrência de MSC. (Arq Bras Cardiol. 2016; 107(2):124-130)

Palavras-chave: Morte Súbita Cardíaca; Diálise Renal; Ecocardiografia Doppler; Hipertrofia Ventricular Esquerda; Fatores de Risco.

Abstract

Background: Sudden cardiac death (SCD) is the leading cause of death in maintenance hemodialysis (HD) patients, but there is little information about underlying risk factors.

Objectives: Evaluate the association between clinical and echocardiographic variables with SCD on HD patients.

Methods: Retrospective nested case-control study on chronic HD patients who were prospectively followed. The primary endpoint was SCD. Variables were compared by Student \(t \) test, Mann-Whitney or Chi-Square, and independent predictors of SCD were evidenced by multivariate logistic regression.

Results: We followed 153 patients (50 ± 15 years, 58% men) for 23 ± 14 months and observed 35 deaths, 17 of which were SCD events. When compared to the control group (matched for gender, age, and body mass index) there were no differences regarding time on dialysis, traditional biochemical parameters, blood pressure, smoking, use of cardiovascular protective drugs, ejection fraction, left ventricular dimensions, and diastolic function indices. On the other hand, in the SCD group, we found a higher prevalence of previous heart failure, acute myocardial infarction and diabetes, greater left ventricular mass index, greater left atrial size and lower global myocardial performance. After multivariable logistic regression analysis, diabetes (OR = 2.6; CI = 1.3-7.5; \(p = 0.023 \)) and left ventricular mass index ≥ 101 g/m².7 (OR = 1.04; CI = 1.01-1.08; \(p = 0.028 \)) showed independent association with SCD events.

Conclusions: HD patients with diabetes mellitus and left ventricular hypertrophy appear to have the highest risk of SCD. Preventive and therapeutic strategies should be encouraged in addressing these risk factors to minimize the occurrence of SCD in HD patients. (Arq Bras Cardiol. 2016; 107(2):124-130)

Keywords: Death Sudden, Cardiac; Renal Dialysis; Echocardiography, Doppler; Hypertrophy, Left Ventricular; Risk Factors.

Correspondência: Silvio Henrique Barberato *
Rua Rezala Simão, 1316/ Casa 28; CEP 80330-180, Santa Quitéria, Curitiba, PR – Brasil
E-mail: silvohb@cardiol.br; sbarberato@hotmail.com
Artigo recebido em 21/02/16; revisado em 26/02/16; aceito em 03/05/16

DOI: 10.5935/abc.20160098
Morte súbita na hemodiálise

Barberato et al

Resumo

As doenças cardiovasculares são as principais causas de morbidade e mortalidade nos portadores de doença renal crônica (DRC) em seus estágios mais avançados, sobretudo nos pacientes em tratamento por diálise. Morte súbita cardiovascular (MSC) é a causa mais comum de óbito nos indivíduos em hemodiálise (HD) de manutenção, ocorrendo 30 vezes mais do que na população geral e sendo responsável por até 25% das mortes nesse grupo de indivíduos. Conceitua-se MSC como morte inesperada de origem cardíaca que ocorra dentro da primeira hora do início dos sintomas em um paciente que não apresenta uma condição cardiovascular potencialmente fatal conhecida. Entre os casos documentados de parada cardíaca nos pacientes em HD, a principal causa é arritmia ventricular (fibrilação ou taquicardia) e, mesmo resistindo ao esforço agudo, o porcentual de sobrevida, nesse grupo de indivíduos, é de aproximadamente 15% ao final de um ano. A alta prevalência da doença arterial coronariana obstrutiva nos pacientes de HD não é capaz de explicar inteiramente o risco excessivo de MSC, uma vez que outros precipitantes patológicos potenciais parecem estar envolvidos. Em tal contexto clínico, a identificação de fatores de risco associados à ocorrência do evento MSC em uma população de pacientes de HD no “mundo real” pode auxiliar na avaliação prognóstica e no emprego de estratégias de intervenção. Embora diversas variáveis tenham sido ligadas à ocorrência de MSC na vigência da DRC terminal, há escassez de estudos abordando simultaneamente aspectos clínicos e morfológicos cardíacos. Sabe-se que o achado de alterações ecodopplercardiográficas do ventrículo esquerdo (VE), tais como hiperтроfia, dilatação, disfunção sistólica e disfunção diastólica, é um passo importante para a caracterização de indivíduos com maior risco. Postula-se que as anormalidades estruturais cardíacas aliadas ao estresse regular das sessões de HD tradicionais (alterações hidroeletrolíticas e volêmicas) possam propiciar o desencadeamento de arritmias cardíacas fatais. Este estudo tem o objetivo de avaliar a associação entre parâmetros clínicos e ecodopplercardiográficos com o desfecho MSC em pacientes estáveis recebendo tratamento por HD.

Métodos

População

Trata-se de estudo retrospectivo, tipo caso-controle aninhado, analisando coorte de pacientes em HD, com parâmetros prospectivamente coletados em dois centros de terapia renal substitutiva. Os critérios de inclusão foram: idade ≥ 18 anos, terapia hemodialítica de manutenção (tempo ≥ 3 meses, acesso vascular definitivo e sessões com duração de quatro horas, três vezes por semana) e assinatura do termo de consentimento. Os critérios de exclusão foram:

- Dados clínicos e desfecho

Características demográficas, fatores de risco cardiovascular tradicionais (diabetes mellitus, hipertensão arterial, dislipidemia, tabagismo), afeções cardiovasculares prévias (insuficiência cardíaca congestiva, infarto agudo do miocárdio, acidente vascular cerebral ou insuficiência arterial periférica), hipotensão intradialítica (2 ou mais episódios de hipotensão sintomática requequerendo interrupção da HD em período ≤ 6 meses), medicações cardiovasculares em uso e achados laboratoriais rotineiros foram obtidos por meio de análise dos prontuários. A causa do óbito foi obtida pela análise do atestado de óbito, além de entrevista com o médico assistente responsável, quando necessário. O desfecho do estudo foi MSC, definida como óbito inesperado, menos de 1 hora após início dos sintomas. Outros eventos, como morte cardiovascular não súbita e morte não cardiovascular, foram excluídos da análise.

Ecodopplercardiograma

Os exames foram realizados em dia interdialítico, com horário entre 12 e 18 horas, exceto nas segunda-feiras, com o intuito de minimizar a influência da pós-carga nos diversos índices ecodopplercardiográficos. Todos os pacientes foram examinados empregando-se o ecocardiograma HD 7XE (Phillips Inc., Bothell, Washington, EUA) equipado com transdutor de 2,5 MHZ, para a realização de completo estudo aos modos M, bidimensional e Doppler (pulsátil, contínuo, colorido e tecidual). Os seguintes parâmetros foram obtidos ao modo M: diâmetro anteroposterior do átrio esquerdo, espessura diastólica do septo interventricular, espessura diastólica da parede interó-lateral, diâmetro diastólico final e sistólico final do VE. A massa ventricular esquerda foi estimada pela equação de Devereux e indexada de duas formas: pela superfície corpórea em metros quadrados e pela altura elevada à potência de 2,7. Definiu-se como hiperтроfia ventricular esquerda a presença de massa/altura ≥ 45 g/m² para mulheres e ≥ 49 g/m² para homens. A função sistólica foi avaliada pelo cálculo da fração de ejeção pelo método de Simpson. O fluxo transvalvar mitral foi registrado no corte apical 4 câmaras com a amostra do Doppler pulsátil posicionada entre as extremidades das
cúspides da valva mitral, medindo-se as velocidades de enchimento rápido precoce (onda E), de contração atrial (onda A), a relação E/A e o tempo de desaceleração da onda E (TD). O índice de performance miocárdica (IPM, ou índice de Tei), representando o desempenho miocárdico global, foi calculado pela equação a-b/b, na qual a = intervalo intermitral (tempo entre o final de um fluxo mitral e o início do subsequente); e b = tempo do fluxo de ejeção aórtico, obtido em via de saída de VE. As velocidades do Doppler tecidual miocárdico foram registradas no corte apical 4 câmaras com amostra posicionada consecutivamente na junção das paredes lateral e septal do VE com o anel mitral. Foram medidas velocidade diastólica precoce (e’), velocidade diastólica de contração atrial ou tardia (a’), velocidade sistólica (s’) do anel, e calculadas as relações e’/a’ e E/e’ (média dos dois lados do anel mitral). O volume do átrio esquerdo foi determinado ao bidimensional pela técnica biplanar de Simpson e indexado de duas formas: pela superfície corpórea em metros quadrados e pela altura elevada à potência de 2,7.

Análise estatística

O grupo que sofreu MSC foi retrospectivamente identificado dentro da população do estudo e pareado por gênero, idade e IMC, na proporção 1 caso: 2 controles. Os resultados foram expressos como médias e desvio padrão (para variáveis contínuas com distribuição paramétrica), mediana (para variáveis contínuas com distribuição não paramétrica) e porcentual (para variáveis categóricas). Os grupos foram comparados por meio dos testes t de Student não pareado, Mann-Whitney ou qui-quadrado. A associação independente entre os diversos parâmetros estudados e a ocorrência do desfecho foi testada pela análise de regressão logística condicional multivariada, com o objetivo de derivar razões de chance (odds ratio) com 95% de intervalo de confiança. Os preditores univariados significativos foram adicionados ao modelo multivariado (entrada e retenção com significância de 0,1 e 0,05, respectivamente). Para definição de valor de partição, foi utilizada a análise de curva receptor-operador (sigla “ROC” em inglês). O nível de significância estatística foi definido como p < 0,05. Empregou-se o programa estatístico “SPSS 13.0 for Windows” (SPSS Inc., Chicago, IL EUA) para todas as análises.

Resultados

Características básicas da população geral

As características demográficas, clínicas, bioquímicas e ecodopplercardiográficas básicas dos indivíduos que formaram a população geral do estudo estão expostas na tabela 1. Foram acompanhados 153 pacientes de HD, com idade média 50 ± 15 anos, 89 homens (58%) e 64 mulheres. Ao ingressar no estudo, 45% tinham hipertensão arterial, 23% diabetes mellitus, 25% dislipidemia, 11% eram tabagistas e 9% obesos. Referiam história prévia de insuficiência cardíaca 31%, de infarto agudo do miocárdio 5% e de acidente vascular cerebral, aproximadamente 3%. A maioria dos pacientes (80%) estava em uso de medicação anti-hipertensiva, em especial os inibidores da enzima conversora (47%), betabloqueadores (16%), alfabloqueadores (13%), antagonistas dos canais de cálcio (12%) e bloqueadores dos receptores da angiotensina (12%), isolados ou em combinação. Dilatação do VE estava presente em 26% dos pacientes, hipertrofia de VE em 89%, disfunção sistólica em 18% e disfunção diastólica em 73% - achados ecocardiográficos isolados ou em associação.

Desfechos

Houve 35 mortes durante o período de acompanhamento de 23 ± 14 meses. Entre os eventos, na população geral do estudo, ocorreram 8 mortes de etiologia não cardiovascular, 10 mortes cardiovasculares não súbitas e 17 mortes súbitas de causa cardíaca. Este grupo de 17 pacientes, caracterizados como “casos”, foi pareado por gênero, idade e IMC com 34 controles que estavam vivos quando seu respectivo caso faleceu.

Diferenças em pacientes com MS e controles

A tabela 2 demonstra as principais diferenças clínicas e laboratoriais entre indivíduos que sofreram, ou não, MSC. Não houve diferenças significativas em idade, gênero, IMC, período de tempo sob HD, pressão arterial e parâmetros laboratoriais, como hemoglobina, albumína e produto cálcio-fósforo. Da mesma forma, foram encontradas proporções similares de história de hipertensão arterial, tabagismo e hipotensão intradialítica, bem como uso de betabloqueadores ou inibidores da enzima conversora da angiotensina. Nos pacientes que tiveram MSC encontrou-se maior prevalência de insuficiência cardíaca, infarto do miocárdio prévio e diabetes mellitus.

Tabela 1 – Principais características clínicas e fatores de risco cardiovascular básais na população geral do estudo

Característica	Total (n = 153)
Idade (anos)	50 ± 15
Seguimento (meses)	23 ± 14
Gênero masculino (%)	58
Tempo em HD (meses)	22*
Hipertensão arterial (%)	45
Diabetes mellitus (%)	23
Dislipidemia (%)	25
Tabagismo (%)	11
Hipertrofia Ventricular Esquerda (%)	89
Disfunção sistólica (%)	18
Disfunção diastólica (%)	73
IAM prévio (%)	5
IC prévia (%)	31
AV/C prévio (%)	3

Dados apresentados em média ± DP, mediana* ou porcentagens. HD: hemodiálise; IAM: infarto agudo do miocárdio; IC: insuficiência cardíaca; AV/C: acidente vascular cerebral.

Arq Bras Cardiol. 2016; 107(2):124-130
Tabela 2 – Comparação das características clínicas e laboratoriais entre os pacientes com morte súbita cardíaca e o grupo controle

Variável	Morte súbita cardíaca (n = 17)	Controle (n = 34)	Valor de p
Idade (anos)	56 ± 16	52 ± 13	0,43
Gênero masculino (%)	70	62	0,75
SC (m²)	1,69 ± 0,2	1,73 ± 0,2	0,23
IMC	25 ± 6	25 ± 5	0,68
Tempo sob HD (meses)	26	22	0,60*
PA sistólica (mmHg)	153 ± 23	141 ± 27	0,37
PA diastólica (mmHg)	87 ± 11	84 ± 11	0,54
Hipertensão arterial (%)	70	59	0,54
Diabetes mellitus (%)	53	21	0,03
Uso de betabloqueador (%)	12	26	0,30
Uso de IECA (%)	59	47	0,55
Tabagismo (%)	6	6	1,00
IC prévia (%)	59	23	0,03
IAM prévio (%)	12	0	0,04
Hipotensão ID (%)	12	6	0,30
Hemoglobina (g/dl)	10,1 ± 2,4	10,0 ± 2	0,27
Albúmina (mg/L)	3,4 ± 0,4	3,7 ± 0,6	0,48
Produto Ca x P	49 ± 16	53 ± 18	0,50

SC: superfície corpórea; IMC: índice de massa corpórea; HD: hemodiálise; PA: pressão arterial; IECA: inibidor da enzima conversora da angiotensina; IC: insuficiência cardíaca; IAM: infarto agudo do miocárdio; ID: intradialítica; Ca x P: cálcio x fósforo. * – teste Mann-Whitney.

Na tabela 3, estão comparadas as principais características ecocardiográficas dos pacientes com MSC e daqueles do grupo controle. Foram semelhantes as dimensões do VE, a fração de ejeção e os parâmetros de função diastólica. Por outro lado, o grupo MSC mostrou maior massa ventricular esquerda (indexada por ambos os métodos), menor desempenho miocárdico global (avaliado pelo IPM) e maior tamanho do átrio esquerdo (avaliado pelo volume indexado dividido pela altura elevada à potência 2,7).

Associação independente com MS

As variáveis significativas na análise univariada foram incluídas no modelo de regressão logística multivariada, corrigido para gênero, idade e IMC. Para evitar colinearidade estatística e diminuir a influência das variações de peso/volemia, optou-se por incluir a massa ventricular esquerda (indexada pela altura) e a massa ventricular esquerda indexada pela superfície corpórea. Não houve associação independente entre ocorrência de MSC e história de insuficiência cardíaca, IAM ou desempenho miocárdico global pelo IPM (Tabela 4). Por outro lado, história de diabetes mellitus (RC = 2,6; IC = 1,3-7,5; p = 0,023) e massa ventricular esquerda indexada (RC = 1,04; IC = 1,01-1,08; p = 0,028) emergiram como parâmetros associados de forma independente com MSC. Em particular, indivíduos com massa ventricular esquerda ≥ 101 g/m²,7 (curva ROC, p = 0,02) evidenciaram maior risco do desfecho.

Discussão

O principal achado deste estudo foi apontar a associação independente entre presença de diabetes mellitus e hipertrofia ventricular esquerda com maior risco de MSC em pacientes em HD. MSC é a principal causa de morte em pacientes recebendo tratamento dialítico crônico.2 Estimativas recentes apontam que aproximadamente um quarto dos óbitos de pacientes em diálise deve-se à MSC, essencialmente após arritmias graves e/ou parada cardíaca inesperada.2 Apesar da elevada incidência do fenômeno, persiste limitada compreensão dos fatores de risco e mecanismos fisiopatológicos subjacentes, o que restringe o delineamento de estratégias preventivas e terapêuticas. Interessante ressaltar que a incidência de MSC é semelhante em estudos prospectivos com populações de pacientes em HD15 ou diálise peritoneal.16 A fisiopatologia da MSC é complexa e incerta, mas acredita-se que deva ser necessária a interação entre um evento transitório (mudança brusa na volemia e/ou concentração eletrolítica, exercendo o papel de “gatilho”) e um substrato anatomopatológico (como a “miocardiopatia urêmica”). A combinação dessas alterações seria responsável por desencadear arritmias complexas e instabilidade hemodinâmica, seguidas de colapso circulatório.8

A DRC induz diversas modificações estruturais no sistema cardiovascular, entre as quais a hipertrofia ventricular esquerda é a mais frequente.7 A fisiopatologia da hipertrofia do VE na DRC é multifatorial e depende da interação...
entre diversos fatores, como o aumento da pré-carga (por sobrecarga de volume, anemia e fluxos elevados na fístula arteriovenosa), aumento da pós-carga (hipertensão arterial e calcificação vascular) e outras consequências peculiares da uremia (estresse oxidativo, inflamação sistêmica, hipparapariretoidismo secundário, hipovitaminose D e hiperfosfatemia).\(^1\)\(^,\)\(^17\) A hipertrofia miocárdica resultante do ambiente urêmico exibe características distintas, em especial fibrose bioquímica, parâmetros intermiocárdicos e espessamento arteriolar, que promovem diminuição da complacência ventricular e instabilidade elétrica, predispondo ao desenvolvimento de disfunção diastólica avançada e arritmias potencialmente fatais.\(^13\)\(^,\)\(^17\)

Nossos achados corroboram a noção de que a massa ventricular esquerda, reconhecido preditor de mortalidade geral e eventos cardiovasculares,\(^18\) está ligada, também, à ocorrência específica de MSC nos pacientes de HD. Em paralelo, já se demonstrou que, o aumento da hipertrofia ventricular esquerda ao longo do tempo durante a terapia dialítica, está relacionado com maior chance de MSC.\(^19\)

Por outro lado, diversas variáveis ecodopplercardiográficas, indicadoras de risco cardiovascular em distintos contextos clínicos, não mostraram associação independente com o risco de MSC na população em HD. A disfunção sistólica do VE, representada por reduzida fração de ejeção, é um clássico predutor de MSC em pacientes com insuficiência cardíaca, cardiomiopatia dilatada e infarto do miocárdio.\(^20\) Em contraste, a fração de ejeção reduzida não, necessariamente, opera como fator de risco independente para MSC em pacientes de HD, como já evidenciado na literatura\(^21\) e também no presente estudo. O mesmo comportamento foi observado com outros marcadores ecodopplercardiográficos de risco cardiovascular, como o IPM e o volume de átrio esquerdo, os quais não atingiram significância estatística na análise multivariada. Ressalta-se que um estudo prévio sugeriu que os biomarcadores séricos pro-BNP e troponina são capazes de substituir a importância dos dados ecodopplercardiográficos na predição da MSC.\(^16\) Entretanto, a população analisada difere do presente estudo, pois foi constituída exclusivamente de pacientes em diálise peritoneal e com menor massa ventricular esquerda média.\(^16\) A dosagem de tais biomarcadores não foi realizada em nossa amostra.

Entre os parâmetros clínicos, apenas o diabetes mellitus associou-se de forma independente com o fenômeno da MSC, após a correção para gênero, idade e IMC. O diabetes mellitus é, na literatura médica, um conhecido fator de risco independente para MSC. Diversos mecanismos fisiopatológicos para a gênese da MSC foram aventados em diabéticos.\(^12\)\(^,\)\(^17\)

Por outro lado, diversas variáveis ecodopplercardiográficas, indicadoras de risco cardiovascular em distintos contextos clínicos, não mostraram associação independente com o risco de MSC na população em HD. A disfunção sistólica do VE, representada por reduzida fração de ejeção, é um clássico preditor de MSC em pacientes com insuficiência cardíaca, cardiomiopatia dilatada e infarto do miocárdio.\(^20\) Em contraste, a fração de ejeção reduzida não, necessariamente, opera como fator de risco independente para MSC em pacientes de HD, como já evidenciado na literatura\(^21\) e também no presente estudo. O mesmo comportamento foi observado com outros marcadores ecodopplercardiográficos de risco cardiovascular, como o IPM e o volume de átrio esquerdo, os quais não atingiram significância estatística na análise multivariada. Ressalta-se que um estudo prévio sugeriu que os biomarcadores séricos pro-BNP e troponina são capazes de substituir a importância dos dados ecodopplercardiográficos na predição da MSC.\(^16\) Entretanto, a população analisada difere do presente estudo, pois foi constituída exclusivamente de pacientes em diálise peritoneal e com menor massa ventricular esquerda média.\(^16\) A dosagem de tais biomarcadores não foi realizada em nossa amostra.

Entre os parâmetros clínicos, apenas o diabetes mellitus associou-se de forma independente com o fenômeno da MSC, após a correção para gênero, idade e IMC. O diabetes mellitus é, na literatura médica, um conhecido fator de risco independente para MSC. Diversos mecanismos fisiopatológicos para a gênese da MSC foram aventados em diabéticos, tais como a produção de radicais livres, processo de inflamação sistêmica e disfunção do endotelio.\(^12\)\(^,\)\(^17\) Assim, o diabetes mellitus pode desempenhar um papel importante na gênese da MSC, tanto diretamente como efeito sobre a formação de lipídios, como a característica esquelética e a disfunção do sistema nervoso autônomo.

A tabela 3 apresenta uma comparação das características ecodopplercardiográficas entre pacientes com morte súbita cardíaca e grupo controle.

Tabela 3 – Comparação das características ecodopplercardiográficas entre os pacientes com morte súbita cardíaca e o grupo controle

Variável	Morte súbita cardíaca (n = 17)	Controle (n = 34)	Valor de p
DDVE (mm)	53 ± 7	51 ± 6	0,52
DSVE (mm)	36 ± 6	35 ± 7	0,62
IMVE (g/m²)	211 ± 66	171 ± 45	0,014
IMVE (g/m²²)	121 ± 43	92 ± 24	0,003
Porcentual da FE	67 ± 8	67 ± 9	0,76
E (cm/s)	89 ± 27	77 ± 23	0,12
A (cm/s)	94 ± 31	83 ± 29	0,22
E/A	1,2 ± 0,9	1,1 ± 0,7	0,66
TRIV (ms)	117 ± 31	103 ± 28	0,13
TD (ms)	174 ± 51	198 ± 57	0,15
IPM	0,64 ± 0,1	0,53 ± 0,1	0,019
DAE (mm)	38 ± 5	37 ± 4	0,53
IVAE (m/s/m²)	41 ± 17	34 ± 11	0,13
IVAE (m/s/m alt²)	12 ± 5,5	9 ± 3,3	0,032
e’ (cm/s)	7,1 ± 1	7,3 ± 1,8	0,57
a’ (cm/s)	7,8 ± 2,8	8,2 ± 2,5	0,37
s’ (cm/s)	10 ± 2,9	11 ± 3,1	0,58
e’ / a	0,71 ± 0,2	0,68 ± 0,2	0,53
E/e’ media	13 ± 5	11 ± 5	0,30
Calcularização valvar (%)	53	29	0,13

Legenda:
- DDVE: diâmetro diastólico final do ventrículo esquerdo (VE);
- DSVE: diâmetro sistólico final do VE;
- IMVE: índice de massa do VE;
- FE: fração de ejeção;
- E: velocidade de enchimento rápido precoce;
- A: velocidade de contração atrial;
- TRIV: tempo de relaxamento isovolumétrico;
- TD: tempo de desaceleração de E;
- IPM: índice de performance miocárdica;
- DAE: diâmetro anteroposterior do átrio esquerdo;
- IVAE: índice do volume de átrio esquerdo;
- e’: velocidade diastólica precoce do anel mitral;
- a’: velocidade diastólica tardia do anel mitral;
- s’: velocidade sistólica do anel mitral.
como intervalo QT longo secundário à hipoglicemia noturna (ambiente pró-arrítmico), coroniopatia obstrutiva e neuropatia autonômica. Adicionalmente, parece existir paralelismo entre controle glicêmico inadequado e risco aumentado de MSC. Diabéticos em HD com hemoglobina glicada ≥ 8% apresentaram incremento no risco de MSC quando comparados aos pacientes com controle glicêmico rigoroso (< 6%).

A doença arterial coronariana obstrutiva, embora frequentemente observada nos pacientes com DRC avançada, não parece ter clara associação com a ocorrência de MSC nos pacientes em HD. Estudo prospectivo avaliando fatores de risco para MSC em coorte de HD não apontou a doença arterial coronariana como variável significativamente associada ao desfecho. Em concordância, estudo que investigou a causa da MSC por meio de autópsia em pacientes em HD evidenciou o infarto agudo do miocárdio em apenas 5,7% dos casos. No presente estudo, não excluímos a presença de coronariopatia obstrutiva subclínica por meio de testes funcionais ou anatômicos, porém, a história de infarto do miocárdio não teve significado prognóstico independente para o desfecho MSC, assim como observado em relato prévio.

Sabe-se que a hipercalemia pode determinar maior risco de arritmias ventriculares, sendo que nível sérico de potássio pré-hemodiálise > 6,0 meq/L associou-se a maior risco de MSC. Uma das limitações do nosso estudo, durante o período de observação da pesquisa, é o fato de não ter sido possível resgatar os valores de potássio sérico de todos os pacientes. Entretanto, o grupo de pacientes acompanhado recebeu tratamento dialítico com concentração de potássio no dialisato de 2,0 meq/L, que confere mais proteção contra variações séricas se comparado às concentrações de potássio no dialisato abaixo de 2,0 meq/L. Finalmente, distúrbios do metabolismo mineral e ósseo, frequentemente observados em pacientes de HD, podem estar relacionados ao fenômeno da MSC. Demonstrou-se que pacientes em HD com hiperfosfatemia parecem correr maior risco cardiovascular e de MSC do que pacientes com níveis séricos normais de fósforo e paratormônio. Entretanto, na nossa análise, os níveis de cálcio e fósforo foram semelhantes entre os que sofreram MSC e os controles. Nosso estudo tem, além das acima citadas, outras limitações: desenho retrospectivo, baixo número relativo de eventos (restringindo a análise multivariada), rigor dos critérios de exclusão e ausência da dosagem dos biomarcadores séricos (como pro-BNP e troponina).

Conclusões
Concluímos que, em pacientes clinicamente estáveis, a ocorrência de MSC, durante tratamento regular por HD de manutenção, foi independentemente associada à história de diabetes mellitus e à massa ventricular esquerda. Estratégias preventivas e terapêuticas devem ser estimuladas no manejo da diabetes e DRC para diminuir a ocorrência de MSC. Serão necessários novos estudos, amplos e prospectivos, capazes de corroborar nossos achados, apontar outras variáveis potencialmente relacionadas à MSC no ambiente da DRC e investigar a adoção de intervenções que minimizem o risco do evento nesse grupo de indivíduos.

Contribuição dos autores
Concepção e desenho da pesquisa e Análise e interpretação dos dados: Barberato SH; Obtenção de dados e Redação do manuscrito: Barberato SH, Bucharles SGE; Análise estatística: Barberato SH, Barberato MFA; Obtenção de financiamento: Barberato SH, Pecoits-Filho R; Revisão crítica do manuscrito quanto ao conteúdo intelectual importante: Barberato SH, Bucharles SGE, Barberato MFA, Pecoits-Filho R.

Fontes de financiamento
O presente estudo não teve fontes de financiamento externas.

Vinculação acadêmica
Não há vinculação deste estudo a programas de pós-graduação.
Referências

1. Bucharles SG, Varella A, Barberato SH, Pecoits-Filho R. Assessment and management of cardiovascular disease in patients with chronic kidney disease. J Bras Nefrol. 2010;32(1):118-25.

2. Collins AJ, Foley RN, Gilberston DT, Chen SC. United States Renal Data System public health surveillance of chronic kidney disease and end-stage renal disease. Kidney Int Suppl (2011). 2015;5(1):2-7.

3. Zipes DP, Camm AJ, Borggrefe M, Buxton AE, Chan-Huh, et al. ACC/AHA/ESC 2006 Guidelines for Management of Patients With Ventricular Arrhythmias and the Prevention of Sudden Cardiac Death: a report of the American College of Cardiology/American Heart Association Task Force and the European Society of Cardiology Committee for Practice Guidelines. Circulation. 2006;114(10):e385-484.

4. Davis TR, Young BA, Eisenberg M, Rea TD, Copass MK, Cobb LA. Outcome of cardiac arrests attended by emergency medical services staff at community outpatient dialysis centers. Kidney Int. 2008;73(8):933-9.

5. Herzog CA, Strief JW, Collins AJ, Gilbertson DT. Cause-specific mortality of dialysis patients after coronary revascularization: why don’t dialysis patients have better survival after coronary intervention? Nephrol Dial Transplant. 2008;23(8):2629-33.

6. Herzog CA, Mangrum J, Passman R. Sudden cardiac death and dialysis patients. Semin Dial. 2008;21(4):300-7.

7. Barberato SH, Pecoits-Filho R. Echocardiographic alterations in patients with chronic kidney failure undergoing haemodialysis. Arq Bras Cardiol. 2010;94(1):140-6.

8. Whitman IR, Feldman HI, Deo R. CKD and sudden cardiac death: epidemiology, mechanisms, and therapeutic approaches. J Am Soc Nephrol. 2012;23(12):1929-39.

9. Pecoits-Filho R, Gonçalves S, Barberato SH, Bignelli A, Lindholm B, Riella MC, et al. Impact of residual renal function on volume status in chronic renal failure. Blood Purif. 2004;22(3):285-92.

10. Barberato SH, Pecoits-Filho R. Echocardiographic alterations in patients with chronic kidney failure undergoing haemodialysis. Arq Bras Cardiol. 2010;94(1):140-6.

11. Lang RM, Badano LP, Mor-Avi V, Afilalo J, Armstrong A, Ernande L, et al. Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J Am Soc Echocardiogr. 2013;26(1):1-39.e14.

12. Barberato SH, Pecoits-Filho R. Influence of preload reduction on Tei index and other Doppler echocardiographic parameters of left ventricular function. Arq Bras Cardiol. 2006;86(6):425-31.

13. Pecoits-Filho R, Bucharles S, Barberato SH. Diastolic heart failure in dialysis patients: mechanisms, diagnostic approach, and treatment. Semin Dial. 2012;25(1):35-41.

14. Barberato SH, Pecoits-Filho R. Prognostic value of left atrial volume index in hemodialysis patients. Arq Bras Cardiol. 2007;88(6):643-50.

15. Parekh RS, Plantinga LC, Kao WH, Meoni LA, Jaar BG, Fink N, et al. The association of sudden cardiac death with inflammation and other traditional risk factors. Kidney Int. 2008;74(10):1335-42.

16. Wang Y, Lam IH, Chan IH, Wang M, Lui SF, Sanderson JE. Sudden cardiac death in end-stage renal disease patients: a 5-year prospective analysis. Hypertension. 2010;56(2):210-6.

17. Glassock RJ, Pecoits-Filho R, Barberato SH. Left ventricular mass in chronic kidney disease and ESRD. Clin J Am Soc Nephrol. 2009;4(Suppl 1):S79-91.

18. Barberato SH, Bucharles SG, Sousa AM, Costantini CO, Costantini CR, Pecoits-Filho R. Prevalence and prognostic impact of diastolic dysfunction in patients with chronic kidney disease on hemodialysis. Arq Bras Cardiol. 2010;94(4):457-62.

19. Paolleti E, Specchia C, Di Maio G, Bellino D, Darnabio E, Cassottana P. The worsening of left ventricular hypertrophy is the strongest predictor of sudden cardiac death in haemodialysis patients: a 10 year survey. Nephrol Dial Transplant. 2004;19(7):1829-34.

20. Hayashi M, Shimizu W, Albert CM. The spectrum of epidemiology underlying sudden cardiac death. Circ Res. 2015;116(12):1887-906.

21. Genovesi S, Valasecchi MG, Rossi E, Fogliani D, Acquapacqua I, De Cristofaro V, et al. Sudden death and associated factors in a historical cohort of chronic haemodialysis patients. Nephrol Dial Transplant. 2009;24(8):2529-36.

22. Gill GV, Woodward A, Casson IF, Weston PJ. Cardiac arrhythmia and nocturnal hypoglycaemia in type 1 diabetes—‘the dead in bed’ syndrome revisited. Diabetologia. 2009;52(1):42-5.

23. Suarez GA, Clark VM, Norell JE, Kottke TE, Callahan MJ, O’Brien PC, et al. Sudden cardiac death in diabetes mellitus: risk factors in the Rochester diabetic neuropathy study. J Neurol Neurosurg Psychiatry. 2005;76(2):240-5.

24. Balicioiu S, Arslan U, Türgüloğlu S, Özdemir M, Cengel A. Heart rate variability and heart rate turbulence in patients with type 2 diabetes mellitus with versus without cardiac autonomic neuropathy. Am J Cardiol. 2007;100(5):890-3.

25. Dreichler C, Krame V, Ritz E, Mähr W, Wanner C. Glycemic control and cardio-vascular events in diabetic hemodialysis patients. Circulation. 2009;120(24):2421-8.

26. Takeda K, Harada A, Okuda S, Fujimi S, Oh Y, Hattori I, et al. Sudden death in chronic dialysis patients. Nephrol Dial Transplant. 1997;12(5):952-5.

27. Pun PH. The interplay between CKD, sudden cardiac death, and ventricular arrhythmias. Adv Chronic Kidney Dis. 2014;21(6):480-8.

28. Bucharles S, Barberato SH, Shinghenn AE, Gruber B, Meister H, Machala et al. Hypovitaminosis D is associated with systemic inflammation and concentric myocardial geometric pattern in hemodialysis patients with low 25(1)OH levels. Nephron Clin Pract. 2011;118(4):e384-91.

29. Ganesh SK, Stack AG, Levin NW, Hubert-Shenour T, Port FK. Association of elevated serum PO4(3-) with parathyroid hormone with cardiac mortality risk in chronic hemodialysis patients. J Am Soc Nephrol. 2001;12(10):2131-8.