Acoustic and optical superradiance from a vortex in a Bose-Einstein condensate

Nader Ghazanfar
Department of Physics, Koç University, 34450 Sariyer, Istanbul, Turkey
Department of Physics, Istanbul University, 34134 Vezneciler, Istanbul, Turkey

Özgür Esat Müstecaplıoğlu
Department of Physics, Koç University, 34450 Sariyer, Istanbul, Turkey

(Dated: January 7, 2014)

We consider the simultaneous scattering of an angular momentum carrying Laguerre-Gaussian light beam and an acoustic wave from an atomic Bose-Einstein condensate, under condition of optical superradiance induced vortex state. We derive the mean field dynamical equations of the light-superfluid system, and obtain the equations governing the elementary excitation of the system which result in a massless Klein-Gordon equation with source terms. This equation describes the propagation of the sound wave in an effective spacetime. Employing a simplifying draining bathtub model for the vortex, we investigate the scattering of the acoustic wave in the vortex phase and obtain a condition for the acoustic superradiance. We conclude that Laguerre-Gaussian beam induced sudden transition from homogeneous to vortex state in the superfluid simultaneously leads to the optical and acoustic superradiance.

I. INTRODUCTION

The achievements in cooling and trapping of the ultracold dilute gases, and developments in controlling their various properties makes it a favourite candidate for simulating different physical systems from solid state to high energy physics [1]. A fine control over dilute gases both experimentally and theoretically allows us, by analogy to analyse the systems which are not easy to study when dealing with the real one. In this paper, as an example of such efforts we theoretically investigate the possibility of observing the acoustic superradiance, the analogue version of the Penrose process, that is the extracting of energy from the rotating black holes [2], mutually with the optical superradiance which happens in Bose-Einstein condensates.

Acoustic superradiance occurs in Bose-Einstein condensation when a sound wave scatters from a vortex with an effective curved spacetime that is the geometry of rotating black holes. Event horizon in such a spacetime exists inside a region called ergoregion, and since the rotating energy of the black hole is located in between event horizon and ergosphere the extracting of energy becomes possible. In other words, in this process, the wave solution of the field equation is scattered from ergoregion with an increase in its amplitude [3-6].

The theoretical framework to study the possible connection between motion of sound waves in a fluid flow and behaviour of a quantum field in a classical gravitational field was constructed by W. G. Unruh in 1981. In his paper [7], Unruh showed that the equation describing the propagation of the acoustic fluctuation of the velocity potential in a barotropic, inviscid, and irrotational fluid is the same as the equation which governs the propagation of a massless scalar field in a curved spacetime. Since that time the acoustic black holes have gathered a lot of attention. Relatively respectable amount of work [3-6, 8-12] have been devoted to make analogies of different features of the black holes among which spontaneous radiation [13] and stimulated emissions [14-16] are the most engaged properties.

In the other hand, an ensemble of atoms optically driven above a threshold intensity radiates in the form of superradiance [17, 18]. The process occurs in Bose-Einstein condensates [19, 22] for which above a threshold intensity the condensate undergoes another phase transition and rest in vortex state, in case that the incident light carries angular momentum [24]. We aim to observe the acoustic aspect of superradiance along with optical superradiance in presence of an optically driven vortex. For this purpose, we consider a system of bosonic cold atoms cooled down to the condensate state in an elongated trap. The condensate is under a far off-resonant intense beam of laser (in our case Laguerre-Gaussian beams) pumped along the large axis of the trap. The light couples to the atoms and transfers angular momentum to the condensate.

The optical superradiance state can be thought as the jet creation in astrophysical black holes with an accretion disc around itself to provide the matter for jets [25]. In the universe "there exists astrophysical binary stellar systems where an ordinary star gravitates around a black hole" [25]. The black hole sucks the matter on the outer layer of the star atmosphere. This matter creates a disc around the black hole and rotates with the spinning black hole. This disc warms and emits large amount of X-rays and γ-rays. The accretion disc also produces relativistic plasma jets all along the axis of rotation of the black hole [25]. The optical superradiance is not an analogue for the jet emission in black holes but the description of such a mechanism could be created in the experiments with Bose-Einstein condensates and only can be considered as a toy model for the jet production in black holes.

Superradiance induced vortex phase has been studied in detail in [24] and we work in this regime searching for the conditions of the acoustic superradiance for the system. Then, the equation of motion for acoustic fluctuation of the velocity field is derived from mean field equations for the condensate order parameter and light modes. The resulted equation is a nonhomogeneous massless scalar field in an effective curved
spacetime. The possibility of observing superradiance for the system is discussed throughout the analytical method used in \[4\]. If we illustrate the paper particularly, we describe the system writing the Hamiltonian in the first section giving the details of laser and also deriving the equations of motion for condensate and light modes order parameters. In addition we discuss the superradiance induced vortex state qualitatively. In the second section, we introduce the effective geometry of the acoustic black hole, writing the field equation for the phase perturbation of the condensate and discussing the metric and properties of rotating acoustic black hole. In section III, we discuss the possibility of superradiance for the system. Finally we summarise the results in section IV.

## II. SUPERRADIANCE INDUCED VORTEX STATE

We first review the main results and equations in Ref. \[24\], where the generation of a superradiance induced vortex state by angular momentum carrying LG beam is studied. We consider a cigar-shaped Bose-Einstein condensate coupled to a far off-resonant intense laser field along the long axis of the trap. Atoms are interacting via short-range s-wave interaction. The many-body Hamiltonian describing the system is

\[
H = \int d^3r \hat{\Psi}^\dagger(r) H_0 \hat{\Psi}(r) + \sum_m d^3k \hbar \omega a^\dagger_{km} a_{km} + \sum_{m,m'} d^3k \hbar k \mathcal{J}(k,k';r) \hat{\Psi}^\dagger(r) a^\dagger_{km} a_{km'} \hat{\Psi}(r) + \frac{1}{2} \int d^3r d^3r' \hat{\Psi}^\dagger(r) \hat{\Psi}^\dagger(r') V(r-r') \hat{\Psi}(r') \hat{\Psi}(r'),
\]

where \( H_0 \) is the atomic single particle Hamiltonian consisting of a kinetic term and an external trapping potential, \( V_{\text{ext}}(r) \), \( \hat{\Psi}(r) \) and \( a_{km} \) are the annihilation operators for atoms and optical field, respectively, and \( m \) and \( m' \) are labelling the angular momentum for optical modes. Here \( V(r-r') = 4\pi\hbar^2 a_s / M \delta(r-r') \) is the two body potential with \( a_s \) being the s-wave scattering length and \( M \) the mass of a single atom. The effective atom-light coupling coefficients \( \mathcal{J}(k,k';r) \) are given by

\[
\mathcal{J}(k,k';r) = -\frac{\hbar J^+(k)J^+(k')}{\Delta} \Phi^*_{km}(r) \Phi_{km'}(r),
\]

and determined by the single atom-photon dipole matrix element \( g(k) \). Here, \( \Delta \) is the detuning frequency, and \( \Phi_{km}(r) \) are the mode functions (in our case Laguerre-Gaussian modes) for the light field with the wave number \( k \). These mode functions are given as

\[
\Phi_{km}(r) = \phi_m(r) e^{im\phi} e^{ikz},
\]

where

\[
\phi_m(r) = \frac{1}{\sqrt{\pi}} \left( \frac{r}{a_m} \right)^m e^{-r^2 / 2a_m} e^{im\phi} e^{ikz}.
\]

The laser beam has a width of \( a_m \) and carries \( m\hbar \) units of orbital angular momentum. We write the Heisenberg equation of motion for four annihilation operators, and apply mean field approximation, whereby the field operators are replaced by c-numbers. In particular, we replace \( \hat{\Psi} \rightarrow \psi \), \( a_{-k_01} \rightarrow \alpha_1 \), \( a_{-k_02} \rightarrow \alpha_2 \), \( a_{k_00} \rightarrow \alpha_3 \), and \( a_{k_01} \rightarrow \alpha_L \) that lead us to expressions

\[
i\partial_t \psi = \left[ \frac{-\hbar}{2M} \nabla^2 + V + \frac{4\pi a_s \hbar}{M} |\psi|^2 - J_1 \right] \psi \quad \text{(4)}
\]

\[
i\partial_t \alpha_1 = -\Delta_1 - 2U_0 \mathcal{J}(11) \alpha_1 - U_0 I^{(1)} \alpha_L \quad \text{(5)}
\]

\[
i\partial_t \alpha_2 = -\Delta_2 - 2U_0 \mathcal{J}(00) \alpha_2 - U_0 I^{(0)} \alpha_L
\]

\[
i\partial_t \alpha_3 = -\Delta_3 - 2U_0 \mathcal{J}(00) \alpha_3 - U_0 I^{(0)} \alpha_L,
\]

where \( U_0 = J^2 / \Delta_1 \Delta_3 \), \( \alpha_i \)'s are the end-fire mode frequencies in the rotating frame at frequency \( \omega_0 \), \( J_1 \) is the light-atom coupling

\[
J_1 = 2U_0 \left[ |\alpha_L|^2 |\Phi_{k_01}|^2 + |\alpha_1|^2 |\Phi_{-k_01}|^2ight. + |\alpha_2|^2 |\Phi_{-k_00}|^2 + |\alpha_3|^2 |\Phi_{k_00}|^2 \right.
\]

\[
+ U_0 \left( \alpha_L \alpha_1^* \Phi_{-k_01} \Phi_{k_01} + \alpha_2^* \Phi_{-k_00} \Phi_{k_01} + \alpha_3^* \Phi_{k_00} \Phi_{k_01} + \text{c.c.} \right),
\]

and

\[
I^{(mm')}_{s\gamma} = \int d^3r \sigma_{s\gamma} \mathcal{J}_{k_0m}(r) \mathcal{J}_{k_0m'}(r) |\psi(r)|^2.
\]

Here \( \sigma \) and \( \gamma = \pm 1 \) label the sign of the wavevectors with amplitude \( k_0 \).

The Eq.\[4\] is the Gross-Pitaevskii equation for a condensate coupled with a laser beam. The Eqs.\[5\] and \[6\] have been solved numerically in \[24\] and the optical superradiance has been observed. In that paper, Tasgin et al. illustrate the dynamics of the transition from a condensate at its non-rotating ground state to a normal superradiance and then a rotatory superradiance and finally a superradiance induced vortex phase for the condensate. We will work in this phase where after a certain density of laser beam two transitions happens and the superradiance with a topological vortex coexist. According to the dynamics of the transition discussed in Ref. \[24\], the mean photon number in mode \( \alpha_1 \) decreases dramatically, \( \alpha_2 \) remains unchanged but very small and only the \( \alpha_3 \) mode survive in this phase where it increases sharply when superradiance take place. Assuming that the system reside in this regime we aim to find the possibility of observing the acoustic superradiance along with the optical superradiance when a sound wave scatters from the vortex.

## III. ACOUSTIC BLACK HOLE EFFECTIVE GEOMETRY

In order to investigate the possibility of observing the acoustic superradiance we need to write the equation governing the propagation of the acoustic fluctuation of the velocity potential in the effective geometry created by the vortex. We start from Gross-Pitaevskii Eq.\[4\] and Express the condensate order parameter in terms of its amplitude and phase, i.e
the speed of sound. Now Eqs.(11) and (12) can be combined to two equations for real and imaginary parts of the Eq.(4) as

\[ \partial_t \rho(t, r) = -\frac{\hbar}{M} \left[ \nabla \rho \cdot \nabla S + \rho \nabla \nabla^2 S \right] \]
\[ \partial_t S(t, r) = -\frac{\hbar}{2M} \left( \nabla^2 \rho - \frac{\hbar}{2M} \nabla S \right)^2 - V_{\text{ext}} - 4\pi a_s \hbar \rho + J_{1} \]

By linearizing the Eqs.(8)-(9) and (5) for density, phase, and the light-atom coupling around the background values \( \rho_{0}, S_{0}, \) and \( J_{0} \) in the optical superradiance induced vortex phase, we obtain

\[ \rho = \rho_{0} + \rho_{1}, \quad S = S_{0} + S_{1}, \quad J_{1} = J_{0} + J_{1}, \]

where \( g_{0}, \) and \( g_{1} \) are

\[ J_{0} = 2U_{0} \left[ |\alpha_{l}|^2 |\Phi_{k_{0}1}|^2 + |\alpha_{2}|^2 |\Phi_{k_{0}0}|^2 \right] + U_{0} \alpha_{L} \left[ \alpha_{3} \Phi_{k_{0}0} \Phi_{k_{0}1}^{*} + c.c. \right], \]
\[ J_{1} = U_{0} \alpha_{L} \left[ \delta \alpha_{1} \Phi_{k_{0}0} \Phi_{k_{0}1} + \delta \alpha_{2} \Phi_{k_{0}0} \Phi_{k_{0}1}^{*} + c.c. \right], \]

we obtain

\[ \partial_t \rho_{1} = -\frac{\hbar}{M} \left[ \nabla \cdot (\rho_{1} \nabla S_{1}) - \nabla \cdot (\rho_{1} \nabla S_{0}) \right], \]
\[ \partial_t S_{1} = -\frac{\hbar}{M} \nabla S_{0} \cdot \nabla S_{1} - \frac{4\pi a_{s} \hbar}{M} \rho_{1} + J_{1}. \]

It should be noted that in Eq.(12) we have neglected the quantum pressure term,

\[ \frac{\hbar^2}{2M} \left( \frac{1}{2\sqrt{\rho_{0}}} \nabla \frac{\rho_{1}}{\sqrt{\rho_{0}}} - \frac{\rho_{1}}{2\rho_{0}^{1/2}} \nabla^2 \sqrt{\rho_{0}} \right). \]

The Eqs.(11) and (12) should be solved together with the linearized equations of the modes \( \alpha_{1}, \alpha_{2}, \) and \( \alpha_{3}. \)

\[ i \partial_t \delta \alpha_{1} = -\Delta_{1} \delta \alpha_{1} - \frac{U_{0}}{\hbar} l_{11}^{11} \delta \alpha_{1}, \]
\[ i \partial_t \delta \alpha_{2} = -\Delta_{2} \delta \alpha_{2} - \frac{U_{0}}{\hbar} l_{22}^{22} \delta \alpha_{2}, \]
\[ i \partial_t \delta \alpha_{3} = -\Delta_{3} \delta \alpha_{3} - \frac{U_{0}}{\hbar} l_{33}^{33} \delta \alpha_{3}. \]

In order to write the Eqs.(11) and (12) in a compact form we can use the definitions for the background flow velocity \( v, \) and the speed of sound \( c, \) in a condensate,

\[ v = \frac{\hbar}{M} \nabla S_{0}, \quad c = \frac{\hbar}{M} \sqrt{4\pi a_{s} \rho_{0}}. \]

We assume that the background density \( \rho_{0} \) is constant, thus the speed of sound. Now Eqs.(11) and (12) can be combined and rewritten in a single equation for sound waves as

\[ \frac{1}{\sqrt{-g}} \partial_{\mu} \left( \sqrt{-g} g^{\mu \nu} \partial_{\nu} S_{1} \right) = \partial_{\nu} J_{1} + \nabla \cdot (v J_{1}), \]

where \( \mu \) and \( \nu \) are 0, 1, 2, 3, and \( g^{\mu \nu}, \) the inverse metric tensor is obtained as

\[ g^{\mu \nu} = \frac{1}{c} \begin{pmatrix} -1 & -v_r & -v_{\theta} & 0 \\ \\ -v_r & c^2 - v_r^2 - \frac{v_{\theta} v_r}{r} & 0 & 0 \\ \\ -\frac{v_{\theta} v_r}{r} & \frac{v_{\theta} v_r}{r} & c^2 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}. \]

The Eq.(17) is a non-homogeneous massless Klein-Gordon equation in curved spacetime, for which \( g = \det(g_{\mu \nu}) \) and the metric tensor in polar coordinates is defined as

\[ g_{\mu \nu} = \frac{1}{c} \begin{pmatrix} -(c^2 - v_r^2) & -v_r & -rv_{\theta} & 0 \\ \\ -v_r & c^2 & 0 & 0 \\ \\ -rv_{\theta} & 0 & r^2 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}. \]

This metric governs the propagation of the fluctuations (sound waves) and depends on the velocity field, and speed of sound thus the density of the condensate. Even though the dynamics of the atomic Bose-Einstein condensates is driven from a non-relativistic equation, the behaviour of the sound waves is specified by a relativistic equation in a curved space time. The homogeneous form of the Eq.(17) introduced by Unruh [7] for a barotropic, inviscid, and irrotational fluid establishes the connection between the propagation of the scalar field in classical gravitational field and the wave sounds in curved spacetime. We will discuss later, but it worth to note that the optical superradiance dose not affect the effective curved spacetime.

To observe the certain properties of the spacetime it is better to write the metric from the metric tensor

\[ ds^2 = g_{\mu \nu} dx^\mu dx^\nu = (v_r^2 - c^2) dt^2 - 2 v_r dr dt - 2 v_r v_{\theta} d\theta dt + dr^2 + r^2 d\theta^2. \]

The ergosphere radius can be easily found from this metric and it is exactly where the temporal component of metric, i.e. \( g_{00} \) changes sign. However to find the event horizon one need to apply a coordinate transformation of form

\[ dt \rightarrow dt - \frac{v_r}{c^2 - v_r^2} dr, \]
\[ d\theta \rightarrow d\theta - \frac{v_r v_{\theta}}{r (c^2 - v_r^2)} dr, \]

which results in the metric

\[ ds^2 = -(c^2 - v_r^2) dt^2 + \left( \frac{c^2}{c^2 - v_r^2} - v_r^2 \right) dr^2 + 2v_r v_{\theta} d\theta dt + r^2 d\theta^2. \]
The metric in the new coordinates has an obvious singularity at radial component which gives the radius of event horizon. Now we need to specify the form of the flow velocity. The spatial profile of the superradiance generated vortex is numerically determined in Ref. [24]. For our analytical examination, we simply choose a draining bathtub profile, which is typical description of rotating acoustic black holes. This model was first used in [29] for rotating acoustic black holes which is a $(2+1)$-dimensional flow with a sink or source at the origin. We assume that the density and velocity have pure radial dependency. The continuity equation with irrotationality and incompressibility of the flow lead us to write the velocity field as

$$v = \frac{A}{r} \hat{e}_r + \frac{B}{r} \hat{e}_\theta,$$  \hspace{1cm} (23)

where $A$, and $B$ are constants and can be defined in terms of the black hole properties. The field equations derived from conservation laws mentioned above also result in a position independent background density $\rho_0$ throughout the flow which automatically gives the constant speed of sound according to Eq. (15). Having the velocity field defined by Eq. (23), it can be easily checked that the ergosphere and event horizon are formed at $r_{\text{erg}}$, and $r_h$, respectively

$$r_{\text{erg}} = \sqrt{\frac{A^2 + B^2}{c^2}}, \hspace{1cm} r_h = \frac{|A|}{c}. \hspace{1cm} (24)$$

The sign of $A$ is of no importance in determining the ergoregion, but it make difference when dealing with event horizon. For positive $A$ the past event horizon is defined that means we work with an acoustic white hole, while for negative $A$ the future event horizon is defined this time that means we work with an acoustic black hole. We choose $A = -ac$, and $B = a^2\Omega$ where $a$ is the radius of the event horizon, and $\Omega$ is the angular velocity of the rotating black hole [31]. We will see that the growth of the ergosphere with increasing angular velocity of black hole will increase the amount of acoustic superradiance from vortex. Now, we write the Klein-Gordon equation introduced above on this background in more explicit form of

$$\left[-\frac{1}{c^2} \partial^2_t + \frac{2a}{c^2} \partial_r \partial_t - \frac{2\Omega a^2}{c^2 r^4} \partial_t \partial_\theta + \left(\frac{c^2 r^2 - \Omega^2 a^4}{c^2 r^4}\right) \partial^2_\theta \right] + \left(1 - \frac{\Omega a^2}{c^2 r^2}\right) \partial^2_r + \frac{2a^3 \Omega}{c^2 r^4} \partial_\theta \partial_r + \frac{a^2 + r^2}{r^3} \partial_r$$

$$- \frac{2a^3 \Omega}{c r^4} \partial_\theta \right] S_1(r,t) = \partial_t J_1(r,t) + \nabla \cdot (v J_1(r,t)). \hspace{1cm} (25)$$

The homogeneous version of the equation above has been solved analytically [3,5], and numerically [6] and the super radiance has been observed. Since the superradiance is the extraction of energy from vortex, the problem can be reduced to find the reflection and transmission coefficients and discuss the possibility of finding a reflection probability greater than unity. The analytical method with some transformations gives the result relatively easily, but the numerical solution is not as easy. The method developed in [26] reduces the the Klein-Gordon equation to a set of first-order equations by defining two conjugate fields. But the resulted set of equations itself need a large amount of numerical stuff to be solved. The method has been implied in [6, 27] and the superradiance state has been discussed in details. In the case of our system the problem becomes even more difficult since the equation must be solved along with the linearized equations of motions for $\delta\alpha_1, \delta\alpha_2,$ and $\delta\alpha_3$. However, considering the dynamics of the condensate throughout the optical superradiance, since the $\alpha_1$ and $\alpha_2$ modes nearly vanish in this phase, one can neglect the contribution from these modes. Therefore, the analytical calculations reduce to solving the Eq. (17), where the source term is determined by Eq. (15).

\section{IV. SUPERRADIANCE}

The scattering properties of a sound wave from a superradiance induced vortex is described by analyzing the massless Klein-Gordon equation (25). We separate the phase fluctuations $S_1$ into its variables by substitution of

$$S_1(t;r,\theta) = R(r)S(t;\theta) = R(r)e^{i(\alpha \theta - \omega t)}, \hspace{1cm} (26)$$

which results in a nonhomogeneous second order differential equation for the perturbed phase. Here $n$ is the azimuthal quantum number with respect to the axis of rotation, and $\omega$ is the sound wave frequency. We divide both sides by factor $l = 1 - a^2/r^2$ to obtain more familiar form of

$$\frac{d^2 R(r)}{dr^2} + P(r) \frac{dR(r)}{dr} + Q(r) R(r) = G(t;r,\theta), \hspace{1cm} (27)$$

where

$$P(r) = \frac{1}{cr^2 - a^2} \left[c(a^2 + r^2) - 2i\omega ar^2 + 2i\omega \Omega a^3\right],$$

$$Q(r) = \frac{1}{cr^2 - a^2} \left[n^2\Omega^2 a^4 + \omega^2 a^4 - n^2 a^2 r^2 - 2n\omega a^3 r^2 - 2n\omega \Omega a^3\right].$$

The source term in Eq. (25) includes the time and spatial derivatives, where the time dependency of $J_1$ in optical superradiance state is governed by Eq. (15). We can write $J_1(r,t) = \tilde{G}(t;\theta)$, with $\tilde{G}(t;\theta)$ has the simple time dependency of the form $e^{i\omega t}$, with $\omega_l = \Delta_3 + 2U_0 \Omega_0 / \hbar$. Now, the source term in Eq. (27) can be then conveniently expressed as

$$G(t;r,\theta) = \frac{1}{iS(t;\theta)} \left[\partial_t \tilde{G}(t;\theta) + \frac{\Omega a^2}{r^2} \partial_\theta \tilde{G}(t;\theta) \right.$$

$$\left. - \tilde{G}(t;\theta) \frac{ca}{r} \frac{d}{dr} J(r)\right]. \hspace{1cm} (28)$$

At the end of the previous section we discussed the dynamics of the condensate throughout the optical superradiance and emphasized that $J_1$ is a very simple expression only carrying $\phi_0$, and $\phi_1$ modes of Laguerre-Gaussian beam since only $\alpha_3$ survives in this phase. Thus, the position derivatives of $J$
gives a simple expression,
\[
\frac{dJ(r)}{dr} = \frac{d}{dr} [\phi_0 \phi_1] = \frac{d}{dr} \left( \frac{r}{a_1} e^{\frac{a_1^2}{r^2}} \right)
\]
\[
= \left( \frac{1}{r} - \frac{r^2}{a_2} \right) J(r),
\]
where \(a_2^2 = a_0^2 a_1^2 / (a_0^2 + a_1^2)\) is the reduced width of the Laguerre-Gaussian beam.

Now we introduce a new coordinate \(\tilde{r}\), known as tortoise coordinate \([28]\) and use the definition \(dr = ld\tilde{r}\) which lead us to a transformation relation of
\[
\tilde{r} = r - \frac{a}{2} \log \left| \frac{r + a}{r - a} \right|.
\]
Note that this transformation maps the horizon at \(r_h = a\) to \(\tilde{r} \to -\infty\), and also maps \(r \to \infty\) to \(\tilde{r} \to \infty\). These mapping will be important when we check the behaviour of the system at its asymptotic points. We also set \(R(r) = K(r)F(\tilde{r})\) which along with the transformation \([30]\) help us to write the second order differential equation \([27]\) in more appropriate way of
\[
\frac{d^2F(\tilde{r})}{d\tilde{r}^2} + W(r)F(\tilde{r}) = \frac{l^2}{K(r)}G(t; r, \theta),
\]
where
\[
W(r) = \frac{l^2}{K(r)} \left[ \frac{d^2K(r)}{dr^2} + P(r) \frac{dK(r)}{dr} + Q(r)K(r) \right]
\]
\[
= \frac{1}{c^2} \left( \omega - \frac{n\Omega a^2}{r^2} \right) - \frac{1}{r^2} \left( n^2 - \frac{1}{4} \right)
\]
\[
+ \frac{a^2}{r^4} \left( n^2 - \frac{3}{2} \right) + \frac{5a^4}{4r^6}.
\]
Here \(K(r)\) is obtained from elimination of the first derivative term from differential equation,
\[
\frac{dK(r)}{dr} + \frac{1}{2} \left[ P(r) + l \frac{d}{dr} \left( \frac{1}{r} \right) \right] K(r) = 0.
\]
We scale the radial coordinate with length of the horizon, i.e. \(r_{new} = r/a\), and the frequencies with sound wave frequency, \(\omega_{new} = \omega/c\), and \(\Omega_{new} = \alpha \Omega/c\). However to avoid using the new index we drop it and continue with writing as old parameters.

In the asymptotic region when \(r\), and \(\tilde{r} \to +\infty\) the terms with \(1/O(\tilde{r})\) in \(W(r)\) vanishes, and only the term with \(\omega\) survives. In The source term also vanished in this region due the Gaussian term in \(J(r)\). Thus, the Eq. \([31]\) becomes
\[
\frac{d^2F(\tilde{r})}{d\tilde{r}^2} + \omega^2 F(\tilde{r}) = 0,
\]
which can be readily solved and written as a combination of incident wave and reflected one
\[
F(\tilde{r}) = Re^{i\omega \tilde{r}} + e^{-i\omega \tilde{r}},
\]
so \(R\) is the reflection coefficient. Now let us check the behaviour of the differential equation around horizon when \(r \to 1\), and \(\tilde{r} \to -\infty\). In this region the non-homogeneous term vanishes due to \(l\) which is zero at horizon. Thus, the Eq. \([31]\) reduces to
\[
\frac{d^2F(\tilde{r})}{d\tilde{r}^2} + (\omega - n\Omega)^2 F(\tilde{r}) = 0,
\]
for which the solution can be written in terms of transmission wave as
\[
F(\tilde{r}) = T e^{i(\omega-n\Omega)\tilde{r}}.
\]
where \(T\) is the transmission coefficient. From conservation law for current density we obtain the relation between reflection and transmission coefficients
\[
|R|^2 = 1 + \left( \frac{n\Omega}{\omega} - 1 \right) |T|^2,
\]
which leads us to the famous relation for acoustic superradiance
\[
\Omega > \omega.
\]
\(\Omega\) is related to the amount of angular momentum pumped to the condensate to create a superradiance induced vortex state.

V. SUMMARY AND DISCUSSION

For a superradiance phase with an induced topological vortex in an atomic Bose-Einstein condensate we theoretically reveal the acoustic superradiance. This phenomenon is the analogue of the Penrose process for rotating black holes \([2, 14]\). The vortex state and superradiance phase are created by a sudden transfer of an incident angular momentum to the condensate \([24]\). In order to observe the optical superradiance mutually with the acoustic superradiance we assume that the condensate has gone through a phase transition to the optical superradiance state. Since the optical superradiance phase happens with pumping a large amount of angular momentum around vortex core, the extracting of the energy from ergoregion becomes easier. The effect of phase transition does not appear in the effective geometry of the vortex, but appears as a nonhomogeneous part in the Klein-Gordon equation describing the propagation of the sound wave in the introduced effective geometry, which is the geometry of a rotating black hole. The draining bathtub model fits the velocity field created by the optical superradiance. This model introduces an event horizon and an ergoregion. It is shown that the existence of the event horizon is not necessary to observe the Penrose process \([5]\). However, since the optical superradiance happens inside the event horizon the use of a fitting velocity field becomes essential.

The acoustic superradiance is determined for the vortex state as the amplification of the reflection coefficient, which becomes larger than unity \([2, 5]\). We analytically show that the optical superradiance happens inside the effective event
horizon and it does not affect the acoustic superradiance. The solutions of the nonhomogeneous Klein-Gordon equation in the asymptotic region gives the conservation law for the current density, which lead us to the acoustic superradiance mutually with optical superradiance. We obtain the same condition already introduced in [3, 4]. The acoustic superradiance condition exhibits that it happens for non-zero modes when the vortex angular frequency becomes larger than the sound wave propagation frequency. The full numerical solution of this problem would be illuminating to reveal the details of the superradiance transitions more explicitly.

Acknowledgments

N.G. thanks to TÜBİTAK for the support and also thanks to Mimar Sinan Fine Arts University, Department of Physics for hospitality.

[1] I. Bloch, J. Dalibard, and w. Zwerger, Many-body physics with ultracold gases, Rev. Mod. Phys. 80, 885 (2008).
[2] R. Penrose, Riv. Nuovo Cimento I, 252 (1969); reprinted in Gen. Relat. Grav. 34, 1141 (2002).
[3] S. Basak and P. Majumdar, Class. Quantum Grav. 20, 2929 (2003); S. Basak and P. Majumdar, Class. Quantum Grav. 20, 3907 (2003).
[4] E. Berti, V. Cardoso, and J. P. S. Lemos, Phys. Rev. D 70, 124006 (2004).
[5] T. R. Slatyer, and C. M. Savage, Class. Quantum Grav. 22 3833 (2005).
[6] F. Federici, C. Cherubini, S. Succi, and M. P. Tosi, Phys. Rev. A 73, 033604 (2006).
[7] W. G. Unruh, Phys. Rev. Lett. 46, 1351 (1981).
[8] W. G. Unruh, Phys. Rev. D 51, 2827 (1995).
[9] M. Visser, Class. Quantum Grav. 15, 1767 (1998).
[10] A. Retzker, J. I. Cirac, M. B. Plenio, and B. Reznik, Phys. Rev. Lett. 101, 110402 (2008).
[11] Mariona Aspachs, Gerardo Adesso, and Ivette Fuentes, Phys. Rev. Lett. 105, 151301 (2010).
[12] J. Macher, and R. Parentani, Phys. Rev. A 80, 043601 (2009).
[13] S. W. Hawking, Nature (London) 248, 30 (1974); S. W. Hawking, Commun. Math. Phys. 43, 199 (1975).
[14] Y. Zeldovich, JETP Lett. 14, 180 (1971); Y. Zeldovich, Sov. Phys. JETP 35, 1085 (1972).
[15] A. Starobinski, Sov. Phys. JETP 37, 28 (1973).
[16] B. DeWitt, Phys. Rep. 19, 295 (1975).
[17] R. H. Dicke, Phys. Rev. 93, 99 (1954).
[18] N. Skribanowitz et al., Phys. Rev. Lett. 30, 309 (1973).
[19] S. Inouye et al., Science 285, 571 (1999).
[20] D. Schneble, G. K. Campbell, E. W. Streed, M. Boyd, D. E. Pritchard, and W. Ketterle, Phys. Rev. A 69, 041601(R) (2004).
[21] L. Fallani, C. Fort, N. Piovella, M. Cola, F. S. Cataliotti, M. Inguscio, and R. Bonifacio, Phys. Rev. A 71, 033612 (2005).
[22] J. Li, X. Zhou, F. Yang, X. Chen, Phys. Lett. A 372, 4750 (2008).
[23] L. Deng, M. G. Payne, and E. W. Hagley, Phys. Rev. Lett. 104, 050402 (2010).
[24] M. E. Taşgun, Ö. E. Müstecaplıoğlu, and L. You, Phys. Rev. A 84, 063628 (2011).
[25] T. Belloni (Ed.), The Jet Paradigm: From Microquasars to Quasars, Lect. Notes Phys. 794, Springer, Berlin Heidelberg (2010).
[26] M. A. Scheel, A. L. Erickcek, L. M. Burko, L. E. Kidder, H. P. Pfeiffer, and S. A. Teukolsky Phys. Rev. D 69, 104006 (2004).
[27] C. Cherubini, F. Federici, S. Succi, and M. P. Tosi, Phys. Rev. D 72, 084016 (2005).
[28] R. M. Wald, General Relativity (The University of Chicago Press, Chicago, 1984).