Introduction

Acute life-threatening situations cause an intense stress response. These situations promote immuno-inflammatory and metabolic responses that are entangled in an intricate way, as the cells involved in these key events ontogenetically originate from a unique primordial organ combining both immune and metabolic functions, namely the ‘fat body’ [1]. Acute stress-induced hyperglycaemia [2] is observed in many conditions, such as myocardial infarct [3], and shock states, especially septic [4], but also traumatic [5], as well as stroke [6]. The observed concordance between elevated blood glucose and mortality raised the question of a causative relationship between hyperglycaemia and prognosis [7].

A landmark monocenter study published in 2001 suggested that hyperglycaemia has a deleterious impact on prognosis in mostly surgical ICU patients, since tight glucose control by intravenous insulin dramatically improved mortality [8]. The large debate following this publication questioned the population studied (mainly cardiovascular surgical patients), the respective roles of glycaemia control versus additional insulin, and the impact of the amount of exogenous carbohydrate [9]. In 2006, the same group published another study performed on medical ICU patients testing the same protocol used in the first study [10]. In this new study, global mortality did not improve with tight control of glycaemia and a worsening of the death rate in a subgroup of patients staying less than 3 days in the ICU was observed. The group treated with tight control of glycaemia for more than 3 days had a reduction in severity and number of organ failures, which surprisingly did not translate to outcome benefit. Subsequent ICU trials published recently [11-15] have failed to confirm a benefit of tight control of glycaemia on prognosis in critically ill patients while emphasizing the potential role of hypoglycaemia in explaining the divergent results.

The recently published meta-analysis by Marik and Preiser [9] showed that, overall, tight glycaemic control...
did not reduce 28-day mortality (odds ratio (OR) 0.95; 95% confidence interval (CI), 0.87 to 1.05), the incidence of blood stream infections (OR 1.04; 95% CI, 0.93 to 1.17), or the requirement for renal replacement therapy (OR 1.01; 95% CI, 0.89 to 1.13). The incidence of hypoglycemia was significantly higher in patients randomized to tight glycaemic control (OR 7.7; 95% CI, 6.0 to 9.9; P < 0.001). Metaregression demonstrated a significant relationship between the 28-day mortality and the proportion of calories provided parenterally (P = 0.005), suggesting that the difference in outcome between the two Leuven Intensive Insulin Therapy Trials and the subsequent trials could be related to the use of parenteral nutrition. More importantly, when the two Leuven Intensive Insulin Therapy Trials were excluded from the meta-analysis, mortality was lower in the control patients (OR 0.90; 95% CI, 0.81 to 0.99; P = 0.04; I²(2) = 0%).

The focus of this review is an integrative description of the main pathways and mechanisms involved in the acute stress conditions responsible for hyperglycaemia, and the description of complex situations involving both the stimulation of systemic inflammation and changes in metabolic requirements [16] in an attempt to clarify apparent contradictory results.

Metabolic pathways using glucose during acute critical conditions
The normal response to a stress situation associates the activation of central nervous system and neuroendocrine axes with increased release of hormones such as cortisol, macrophage inhibiting factor (MIF) [17,18], epinephrine and norepinephrine, growth hormone, and glucagon. These hormones profoundly modify the inflammatory response, especially cytokine release. Stress hormones generate globally a systemic pro-inflammatory profile while anti-inflammation is predominant at the tissue level (for a review, see [19]). These hormones, except for MIF, also stimulate, among other mechanisms, gluconeogenesis and hepatic glucose production, thus aggravating hyperglycaemia [20].

The pancreatic insulin release in response to blood glucose elevation leads to the blocking of hepatic glucose production and the stimulation of glucose uptake and storage by the liver, muscle and adipose tissue. If this first line of regulation fails to control glucose levels, the microenvironment of cells will contain high levels of glucose. To enter the cell, glucose uses transporters that allow facilitated diffusion (via concentration gradients) through the cytoplasmic membrane. These transporters are part of the superfamily of glucose transporters encoded by the GLUT genes; there are several isoforms, such as GLUT4, and their expression on the cell surface is amplified by insulin [21].

After entering the cell, glucose may go through different metabolic pathways in addition to glycolysis, as summarized in Figure 1. During the early hours of stress, the metabolic stimulation of the cell corresponds to increased mitochondrial energy production (ATP) with increased O₂ and glucose consumption [22]. Similarly, during cell proliferation, glucose availability is necessary for the induction of glycolytic enzymes, such as hexokinase, pyruvate kinase or lactate dehydrogenase. This glycolysis favours lactate production despite O₂ availability [23], and regeneration of NAD⁺, which is required for additional cycles of glycolysis [24].

Recognition and cellular mechanisms of acute conditions
Acute critical conditions cause cellular injuries that are known to initiate repair or cell death pathways (Figure 2). These integrative mechanisms tend to either contain the response at the local level or, on the contrary, spread it by recruiting circulating cells and factors for repair.

Damaged cells communicate with innate immune cells by releasing intracellular factors named damage-associated molecular pattern molecules (DAMPs), such as calgranulines [25] and alarmins [26,27] (Figure 2). Together with pathogen-associated molecular pattern molecules (PAMPs), they activate the cellular expression of Toll-like receptors (TLRs) [28]. Accumulation of abnormal proteins, which are processed by the proteasome S26 system in the endoplasmic reticulum [29], as well as fluctuations of nutrients or energy availability, hypoxia, viruses and toxins activate a complex transcriptional response called the endoplasmic reticulum stress response (Figure 2), or the unfolded protein response [30].

Receptors for recognition of inflammation appear on both target cells and inflammatory cells. The alteration of the extracellular milieu is transmitted into the cell, modifying its functions. In peripheral blood mononuclear cells, for instance [31], an increased energy demand associated with a simultaneous metabolic failure can occur [32,33]. The increased permeability of the injured mitochondria leads to energy loss and cell death, which by itself fuels the inflammatory process through the release of the cell contents.

Injuries due to cellular environment
Hypoxia
Hypoxia induces hypoxia-inducible factors (HIFs), O₂-sensing transcription factors that regulate the transcription of genes [34] encoding numerous molecules involved in vascular reactivity, recruitment of endothelial progenitors, and cytoprotection [35,36]. During hypoxia (Figure 3), liver and skeletal muscle glycogenolysis is stimulated, increasing glucose availability [37]. Increased expression of GLUTs on any cell type [38-40] is mediated by the activation of AMP kinase and p38
mitogen-activated protein kinase [41,42], with an altered cellular redox status [41,43].

While glycolysis is activated by hypoxia, phosphofructokinase-1 and lactate dehydrogenase activity is stimulated by increased lactate production [44] associated with decreased mitochondrial oxygen consumption. This mechanism, described since 1910 in tumour cells as the ‘Warburg effect’ [45], seems to be adaptive to the lack of oxygen while maintaining cell redox status. A sufficient amount of energy is then produced but without an increase in reactive oxygen species (ROS) production by the mitochondria [46].

Adenosine

Adenosine production mainly results from ATP degradation during stress when it is released into the extracellular space. Adenosine regulates innate and adaptive immune functions by interacting with almost every immune cell.
It inhibits antigen presentation, pro-inflammatory cytokine production and immune cell proliferation, and participates in tissue repair and remodelling. Adenosine induces increased intracellular cAMP, which stimulates protein kinase (PK)A, which in turn activates the transcription factor CREB (cAMP response element-binding), thus linking the inflammatory response to alterations of glucose metabolism [48].

Oxidative stress

Oxidative stress produces ROS, which alter normal cell function. ROS are permanently released at a low rate at the cytoplasmic membrane (NADPH oxidase, myeloperoxidase, cyclooxygenase) and in the cytoplasm (heme oxygenase, xanthine oxidase), and also within the mitochondria. When activated, phagocytic cells display a specific response called the ‘respiratory burst,’ which is an acute overproduction of ROS by the activation of the NADPH oxidase Nox 2. Oxidative stress may indirectly modify glucose metabolism since it induces DNA alterations that activate the nuclear enzyme poly-ADP-ribose polymerase 1 (PARP-1). This activation consumes NAD+ and depletes its intracellular stores, which in turn hampers glycolysis and ATP production, in parallel with altered cell functions [49]. A transient low level of oxidative stress with redox alterations stimulates glucose uptake via insulin-independent GLUT transporters mediated by the AMP kinase pathway [50,51].
Sepsis, an integrative condition

Sepsis corresponds to a systemic inflammation related to the abnormal presence of bacterial antigens and involves different mechanisms such as hypoxia and oxidative stress. At the early phase, inhibition of glycogen synthesis results in increased global glucose availability and increased cellular uptake [52-54]. Glucose uptake appears to be most increased in organs containing a vast population of phagocytic cells (liver, spleen, gut, lung) [55-57]. In rats injected with endotoxin or TNF-α, insulin-independent glucose uptake is increased in liver non-parenchymal cells (Küpffer cells, endothelial cells) [58], as observed in circulating immune cells, including polymorphonuclear leukocytes [59,60], lymphocytes, monocytes and macrophages [61-63]. Skeletal muscle displays only a limited increase in glucose uptake, probably because of the development of insulin resistance.

Sepsis also modifies cytoplasmic glycolysis at the transcriptional level. In healthy volunteers receiving intravenous endotoxin, there was an early under-expression of genes encoding metabolic enzymes [64]. In particular, the key enzymes of glycolysis and those of the
mitochondrial respiratory chain (MRC) were transiently under-expressed. In the diaphragm of septic rats, transcription, synthesis and activity of the constituents of the MRC, as well as of phosphofructokinase-1, a key-enzyme of glycolysis, are reduced [65]. In muscle of septic rats, the activity of pyruvate dehydrogenase is reduced, with a simultaneous increase in the activity of its inhibitor, pyruvate dehydrogenase kinase. The net result of these modifications is a reduction in pyruvate entering the mitochondria while the conversion of pyruvate to lactate is promoted [66].

In septic shock patients, increased use of glucose and increased lactate production was observed under aerobic conditions [67]. A microdialysis study of quadriceps muscles showed lactate overproduction during septic shock resulting from exaggerated aerobic glycolysis through Na/K-ATPase stimulation. To maintain cell functions, stimulation of glycolysis was shown to adaptively compensate for the metabolic rate increase [68]. Elevated circulating epinephrine stimulates Na/K-ATPase, which promotes lactate hyperproduction without any oxygen debt [69].

Mitochondrial dysfunction during sepsis [70] involves alterations in the structure [71] and function of the MRC, including impairment of key enzymes of electron transport and ATP synthesis [72,73] and mitochondrial biogenesis [74]. These results were also found with monocytes [75] and skeletal muscle [76] harvested from septic shock patients. ATP levels in skeletal muscle cells were maintained despite mitochondrial ultrastructural alterations [76]. This mitochondrial dysfunction results from plasmatic factors that promote uncoupled MRC oxygen consumption [77] that correlates with sepsis-induced modifications of the immune phenotype and is associated with increased mitochondrial permeability [78].

In summary, glucose metabolism alterations in acute critical conditions can be viewed as a ‘redistribution of glucose consumption away from mitochondrial oxidative phosphorylation’ towards other metabolic pathways, such as lactate production. This re-channelling does not seem to affect energy supply to the cells. This may result from decreased ATP consumption by the cells, which in turn lose some of their characteristics, indicating metabolic failure [79].

Why does glycaemia finally increase during acute injury?

Stress-induced hyperglycaemia results from the combined effects of increased counter-regulatory hormones that stimulate glucose production and reduced uptake associated with insulin resistance, that is, decreased insulin activity. There is also inadequate pancreatic insulin release with regard to glycaemia (or adaptive ‘pancreas tolerance’). Insulin release during stress is decreased mainly through the stimulation of α-adrenergic pancreatic receptors [20]. Pro-inflammatory cytokines may directly inhibit insulin release by β pancreatic cells [80]. A new glucose balance results, allowing a higher blood 'glucose pressure', which affects tissues differently depending on whether they are insulin-dependent or not.

Glucose availability also relies on delivery to cells, analogous to oxygen diffusion. For glucose to arrive at a cell with reduced blood flow (ischemia, sepsis), it must move from the blood stream across the interstitial space. Glucose movement is dependent entirely on a concentration gradient, and for adequate delivery to occur across an increased distance, the concentration at the origin (blood) must be greater. Therefore, in the face of reduced or redistributed blood flow, hyperglycaemia is adaptive.

Development of insulin resistance

Insulin resistance (IR) is a reduction in the direct effect of insulin on its signalling process leading to metabolic consequences [81], very similar to type 2 diabetes, and is commonly observed during sepsis [82].

Insulin acts mainly on the liver, muscle and fat (metabolic effects), but it also targets many cellular subtypes to stimulate essentially protein and DNA synthesis as well as apoptosis (mitogenic effects). Hepatic IR involves increased hepatic glucose production (gluconeogenesis) together with decreased glycogen synthesis. During sepsis, however, gluconeogenesis can be limited by inhibition of important enzymes [83,84]. Muscle IR corresponds to decreased glycogen deposition and glucose uptake linked to decreased expression of GLUT4, while a transient defect in insulin signalling has also been described [85]. IR in adipocytes leads to inhibition of lipogenesis and activation of lipolysis.

The main mediators

Pro-inflammatory cytokines (IL-6, TNF-α), as well as endotoxins via TLR4, participate in the development of IR by stimulating hepatic glucose production [86] and altering insulin signalling [87]. These cytokines activate numerous kinases that inhibit insulin signal transduction [88-91]. TNF-α has been shown to induce the expression of SOCS-3 (Suppressor of cytokine signalling-3), which specifically inhibits insulin receptor phosphorylation [92].

MIF is not only produced by various immune cells [93] and the anterior pituitary gland, but also by islet β cells, where it positively regulates insulin secretion [94]. During inflammation in skeletal muscle, locally produced MIF stimulates glucose use and lactate production [95]. In endotoxemic mice genetically deficient in MIF, glucose metabolism is almost normalized when compared to wild-type mice [96]. Increased circulating cortisol participates in the maintenance of blood glucose not only by
increasing its production or decreasing its utilization, but also by directly inhibiting insulin secretion by β cells [97].

Endogenous catecholamines are also involved in the alteration of glucose metabolism during endotoxaemia [98], especially in the liver [99]. Exogenous epinephrine metabolic effects on glucose turnover were, however, attenuated in endotoxic rats when compared to controls [100].

Role of exogenous glucose supply and induced hyperglycaemia

Glucose acts not only as an energetic substrate but also as a signalling molecule of the cellular environment, as shown in diabetes with chronic hyperglycaemia. Stress-induced acute hyperglycaemia has been less studied up to now as it has been considered an adaptive response. Some concepts from chronic hyperglycaemia may, however, be used in acute conditions. Intravenous administration of exogenous glucose yielded similar glycaemia in control and septic animals despite higher insulin levels in the septic group [101]. Hepatic glycogen deposition was observed only when glucose was infused via the portal vein [31,102].

Glucose-controlled genomic modifications

In fasted animals, increased circulating glucagon induces a gluconeogenic program by activating the nuclear transcription factor CREB through a molecule named Crtc2 (CREB regulated transcription coactivator 2) or TORC 2 (Transducer of regulated CREB activity 2) [103,104]. The expression rate of gluconeogenic enzymes is thus increased, especially for glucose-6-phosphatase.

Re-feeding in turn increases insulin levels, which inhibits hepatic glucose production partly by ubiquitin-dependent destruction of Crtc2 [105]. During sustained hyperglycaemia, the hexosamine pathway can be activated [106]. In hepatocytes, Crtc2 is then O-glycosylated on a serine residue instead of being phosphorylated. It can thus migrate into the nucleus to activate CREB and the gluconeogenic program, contributing to maintain hyperglycaemia [107]. This has been described as the ‘sweet conundrum’ [105]. Regulation of this pathway during acute injury remains to be proven.

Hyperglycaemia and the inflammatory response

In diabetics, glucose channelling through alternative glycolytic pathways seems to depend on MRC activity [106,108]. The accumulation of energy substrates induced by isolated hyperglycaemia without a concomitant increase in energy demand may enhance the flux of carbon hydrates to the mitochondria with increased activity of the MRC and proton driving force. Once the activity of ATPase is saturated, intermediate radicals from the MRC will accumulate and may react with the surrounding available O₂ to produce ROS [109], as shown in bovine endothelial cells. When inhibiting this radical production, the activity of alternative glycolytic pathways is decreased as well as the expression of transcription factor NF-κB [110]. Inhibition of glyceraldehyde-3-phosphate dehydrogenase, an enzyme involved in cytoplasmic glycolysis, has also been observed. Metabolites accumulate upstream of this enzyme and are funnelled towards alternative pathways (Figure 1). Polymers of ADP-ribose, produced by nuclear PARP to repair DNA altered by mitochondrial ROS, may be involved in this inhibition. PARP, by migrating into the cytosol, may be a key to glucose toxicity [111]. There is still a lack of evidence to fully extrapolate these theories to explain mitochondrial dysfunction and organ failure observed during stress-induced hyperglycaemia.

Glucose also acts as a pro-inflammatory molecule [81,112]. Glucose ingestion in healthy volunteers rapidly increases the activity of NF-κB [113] and the production of mRNA for TNF-α [114]. Under the same conditions, acute hyperglycaemia increased the activity of the transcription factors AP-1 (Activator protein-1) and EGR-1 (Early growth response-1), which in turn activate the production of matrix metalloproteinase-2 (MMP-2) by monocytes, an enzyme that facilitates the diffusion of inflammation by hydrolyzing extracellular matrix. Production of tissue factor, a prothrombotic and proaggregant molecule [115], is increased, as is production of cellular adhesion molecules [116]. Acute hyperglycaemia induced in healthy volunteers by octreotid, an inhibitor of insulin release, leads to a rapid and transient secretion of proinflammatory cytokines (IL-6, TNFα, IL-8). This effect is amplified in insulin-resistant subjects and blunted with antiradical treatment [117].

Glucose-cytokine interactions

In vitro, an increased release of IL-1β has been measured in the culture medium of human monocytes exposed to hyperglycaemic conditions after endotoxin stimulation [118]. In our model of endotoxaemia [102], glucose supply interfered with haemodynamic, metabolic and inflammatory responses, with a dramatic increase in circulating TNF-α when intraportal glucose was administered. Fasting on the other hand seemed to attenuate the response to endotoxin.

In liver transplant patients, glucose feeding during the early postoperative period induced major haemodynamic modifications within the graft, where the immunoinflammatory insult occurs [119], including almost halted arterial hepatic inflow. This vasoconstriction was specifically related to glucose since fructose, amino acids and fatty acids did not provoke this effect. One tempting hypothesis for this effect involves increased production of ROS, which are well known to vasoconstrict arteries.
Glucose and ROS production

Nutrients, and especially glucose, are able to stimulate oxidative stress and inflammatory responses [106]. The body thus needs to regulate nutrient excesses in order to maintain metabolic homeostasis. STAMP2 (Six-transmembrane protein of prostate 2) has recently been detected in adipose tissue, a key organ in the management of nutrient excesses, and is also expressed in the heart, liver, lung, and platelets [120]. In STAMP2 genetically deficient mice, the effects of insulin on liver, muscle, and adipose tissue are altered; all three being essential organs for glucose homeostasis. STAMP2 is a metalloredoxase involved in iron handling, which may influence ROS production [121]. Ingestion of glucose in healthy volunteers led to increased production of ROS in circulating monocytes and polymorphonuclear leukocytes. This was associated with the rapidly increased synthesis of NADPH oxidase subunits [122].

These data suggest that glucose induces profound modifications of the monocyte pro-inflammatory response. In peripheral blood mononuclear cells harvested from healthy volunteers and septic patients [77,123], increasing extracellular glucose increased glucose uptake. Subsequent stimulation of these cells by various agonists increased ROS production via NADPH oxidase in both the healthy volunteers and the septic patients. The link between ROS and intracellular glucose levels could be the increased production of NADPH via the pentose phosphate cycle [123] (Figure 4). More studies are needed to confirm these multifaceted effects and to confirm that such a coordinated regulation between nutrient availability and the intensity of the inflammatory response is also at play during acute insults. To cite Leverve, ‘it appears that glucose obviously plays a very subtle role in oxidant cellular signaling. It can either increase or decrease ROS production and can either increase or decrease the antioxidant defense [...]’. Therefore it is not surprising that any change in blood glucose must be considered as a complex event, and taking care of glycemia and redox homeostasis will be probably central in the management of ICU patients in the next years’ [124].

Recent in vitro data suggest that giving glucose boluses after hypoglycaemia may trigger neuronal death due to ROS overproduction [125]. In healthy volunteers, hyperglycaemic spikes induced increased pro-inflammatory cytokine levels that were blunted by antioxidant pretreatment [117]. This introduces the concept of glucose variability, which by itself seems to be deleterious with regard to outcome in critically ill patients [126,127].

Future prospects

Many questions regarding glycaemia remain to be solved for daily critical care practice. How should we achieve glycaemic control: should we take into account nutritional support, especially parenteral nutrition [9]? Should we control the physiological response to an induced hyperglycaemia or should we control the endogenous stress-induced hyperglycaemia that may be adaptive in the absence of exogenous glucose intake? Is there a place for new therapeutics such as incretins [128]? Does endogenous hyperglycaemia have a similar impact as hyperglycaemia induced by nutritional support? These questions in turn prompt investigation of the role of glucose deprivation induced by fasting with regard to normoglycaemia achieved by insulin therapy. Similarly, the consequences of spontaneous versus insulin-induced hypoglycaemia remain to be investigated. Answers to these questions will probably help to solve the conflict between supporters and opponents of tight glycaemia control in the ICU. This discussion is in accordance with the concerns raised by several authors about early initiation of parenteral nutrition in acute critical patients [129,130], as supported by the results of two large multicentre studies, Nice-Sugar [14] and Glucontrol [15].

Conclusion

Glucose metabolism is profoundly altered during acute conditions, from its uptake to the induction of complex programs of gene expression [14]. The increased glucose availability in cells is not necessarily used to produce ATP by mitochondria. Glucose seems able to activate pro-inflammatory metabolic pathways. While chronic exposure to these end products seems deleterious (diabetes), their actual roles during acute conditions need to be further elucidated. Early stress-induced hyperglycaemia has been described as an adaptive response that could in turn sustain an adaptive inflammatory response (host
defence, wound healing, and so on). Glucose intake-induced hyperglycaemia may, however, lead to maladjusted and disproportionate inflammation that should be avoided. How then should this subsequent hyperglycaemia be prevented? should we limit glucose supply at the early phase of inflammation?

Si quis febricitanti cibum det, convalescenti quidem, robur: aerotanti verò, morbus fit

Hippocrates [131]

(\textit{Food given to those who are convalescent from fever, increases strength; but if there be still disease, increases the disease})

Abbreviations

Abbreviation	Description
CI	confidence interval
CREA	cAMP response element-binding
GLUT	glucose transporter
HIF	hypoxia-inducible factor
IL	interleukin
IR	insulin resistance
MIF	macrophage inhibiting factor
MRC	mitochondrial respiratory chain
NF-κB	nuclear factor kappa-light-chain-enhancer of activated B cells
PARP-1	poly-ADP-ribose polymerase 1
PK	protein kinase
ROS	reactive oxygen species
TLR	toll-like receptor
TNF	tumour necrosis factor

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

MRL, CD, and DP participated in the analysis of references and writing of this review.

Acknowledgements

This work was partially supported by grant ‘Plan Quadriennal Ministère de la Recherche’ 2009-2013.

Author details

Laboratoire de Recherche Paris 7 (EA 3509), Service d’Anesthésie-Réanimation, Hôpital Lariboisière, Assistance Publique - Hôpitaux de Paris, Université Diderot Paris 7, 75475 Paris Cedex 10, France. “Service d’Anesthésie-Réanimation, Hôpital Saint-Louis, Assistance Publique - Hôpitaux de Paris, Université Diderot Paris 7, 75475 Paris Cedex 10, France.

Published: 20 August 2010

References

1. Hotamisligil GS: Inflammation and metabolic disorders. Nature 2006, 444:860-867.
2. Bernard C: Leçon sur les Phénomènes de la Vie Communs aux Animaux et aux Végétaux. Paris, France: JB Baillière et Fils; 1877.
3. Capes SE, Hunt D, Malmberg K, Gerstein HC: Stress hyperglycaemia and increased risk of death after myocardial infarction in patients with and without diabetes: a systematic overview. Lancet 2000, 355:773-778.
4. Van den Berghe G: Molecular biology: a timely tool for further unraveling the “diseases of stress”. Crit Care Med 2001, 29:910-911.
5. Laird AM, Miller PR, Kigo PD, Meredith JW, Chang MC: Relationship of early hyperglycaemia to mortality in trauma patients. J Trauma 2004, 56:1058-1062.
6. Capes SE, Hunt D, Malmberg K, Pathak P, Gerstein HC: Stress hyperglycaemia and prognosis of stroke in nondiabetic and diabetic patients: a systematic overview. Stroke 2001, 32:2426-2432.
7. Mizock BA: Alterations in carbohydrate metabolism during stress: a review of the literature. Am J Med 1995, 98:75-84.
8. Van den Berghe G, Wouters P, Weekers F, Vervaet C, Bruyninckx F, Schetz M, Vlasselaers D, Ferdinande P, Lauwers P, Bouwaerts E, Bouillon R: Intensive insulin therapy in the critically ill patients. N Engl J Med 2001, 345:1359-1367.
9. Mark PE, Presler JC: Toward understanding tight glycemic control in the ICU: a systematic review and metaanalysis. Chest 2010, 137:544-551.
10. Van den Berghe G, Wilmer A, Hermans G, Meersman W, Wouters PJ, Mihants I, Van Wijngaarden E, Bobbaers H, Boulou R: Intensive insulin therapy in the medical ICU. N Engl J Med 2006, 354:449-461.
11. Bruninkorst FM, Engel C, Bloos F, Meier-Hellmann A, Richter M, Weller N, Moerer O, Gruenhagen M, Oppert T, Grond S, cowboy H, Jaschinski U, John H, Rossaint R, Welte T, Schafer M, Kern P, Kuhnt E, Kielhuth M, Hartog C, Natanson C, Loefler M, Reinhart K: Intensive insulin therapy and pentastarch resuscitation in severe sepsis. N Engl J Med 2008, 358:125-139.
12. De La Rosa Gdel C, Donado JH, Restrepo AH, Quintero AM, Gonzalez LG, Saldarriaga NE, Bedoya M, Toro JM, Velasquez JA, Valencia JC, Arango CM, Aleman PH, Vasquez EM, Chavarriaga JC, Yepes A, Pulido W, Cadavid CA: Strict glycaemic control in patients hospitalised in a mixed medical and surgical intensive care unit: a randomised clinical trial. Crit Care 2008, 12:R20.
13. Arabi YM, Dabbagh OC, Tamim HM, Al-Shemerie AA, Memish ZA, Haddad SH, Syed SJ, Girdhar HR, Rishu AH, Al-Daker MD, Kahouli SH, Britts RJ, Sakkiha MH: Intensive versus conventional insulin therapy: a randomized controlled trial in medical and surgical critically ill patients. Crit Care Med 2008, 36:190-197.
14. Finfer S, Chittock DR, Su SY, Blair D, Foster D, Dhingra V, Bellomo R, Cook D, Dodel K, Henderson WR, Hebert PC, Hentshler S, Heyland DK, McArthur C, McDonal D, Mitchell I, Myburgh JA, Norton R, Porter J, Robinson BG, Ronco JJ: Intensive versus conventional glucose control in critically ill patients. N Engl J Med 2009, 360:1283-1297.
15. Preiser JC, Devos P, Ruiz-Santana S, Melot C, Aassane D, Groeneveld J, Iapichino G, Reviere V, Nitenberg G, Singer P, Wiernerman J, Joannis M, Stecher A, Chiodero R: A prospective randomised multi-centre controlled trial on tight glucose control by intensive insulin therapy in adult intensive care units: the Glucostudy Control. Intensive Care Med 2009, 35:1738-1748.
16. Dandona P, Chaudhuri A, Ghairn K, Mohnaty P: Anti-inflammatory effects of insulin and the pro-inflammatory effects of glucose. Semi Thorac Cardiovasc Surg 2006, 18:293-301.
17. Calandra T, Echtenacher B, Roy DL, Pugin J, Metz CN, Hultner L, Heumann D, Barton GM: Anti-infl ammatory eff ects of insulin and the pro-infl ammatory eff ects of glucose. Nat Rev Immunol 2008, 8:919-930.
18. Calandra T, Roger T: Macrophage migration inhibitory factor: a regulator of innate immunity. Nat Rev Immunol 2003, 3:291-300.
19. Calagna E, Elenkov I: Stress system activity, innate and T helper cytokines, and susceptibility to immune-related diseases. Ann N Y Acad Sci 2006, 1069:62-76.
20. Mizock BA: Alterations in fuel metabolism in critical illness: hyperglycaemia. Best Pract Res Clin Endocrinol Metab 2001, 15:533-551.
21. Shepherd PR, Kahn BB: Glucose transporters and insulin action – implications for insulin resistance and diabetes mellitus. N Engl J Med 1999, 341:248-257.
22. Singer M, Brealey D: Mitochondrial dysfunction in sepsis. Biochem Soc Symp 1999, 66:149-166.
23. Greener EF, Guppy M, Brand K: Glucose is essential for proliferation and the glycolytic enzyme induction that provokes a transition to glycolytic energy production. J Biol Chem 1994, 269:31484-31490.
24. Denko NC, Hypoxia, HIF 1 and glucose metabolism in the solid tumour. Mol Med 2003, 9:164-170.
25. Bianchi ME, Manfredi AA: Glucose transporters and insulin action - implications for insulin resistance and diabetes mellitus. N Engl J Med 1999, 341:248-257.
26. Bianchi ME, Manfredi AA: High-mobility group box 1 (HMGB1) protein at the crossroads between innate and adaptive immunity. Immunol Rev 2007, 220:15-46.
27. Klüne JR, Dhupar R, Cardinal J, Billar TR, Tsang A: HMGB1: endogenous danger signaling. Mol Med 2008, 14:767-484.
28. Barton GM: A calculated response: control of inflammation by the innate immune system. J Clin Invest 2008, 118:413-420.
29. Marcinak SJ, Ron D: Endoplasmic reticulum stress signaling in disease. Physiol Rev 2006, 86:1133-1149.
30. Schroder M, Kaufman RJ: The mammalian unfolded protein response. Annu Rev Biochem 2005, 74:739-789.
31. Atkins BH, Myers SR, Hendrick G, Stevenson RW, Williams PE, Cherning AD: Importance of the route of intravenous glucose delivery to hepatic glucose balance in the conscious dog. J Clin Invest 1987, 79:557-565.
32. Crouser E, Eslin M, Knebel D, Wieders MW: Sepsiq links between pathogen sensing and organ damage. Curr Pharm Des 2008, 14:1890-1852.
carboxykinase gene. Am J Physiol 1995, 269:R584-591.

84. Deutschman CS, Andrejko KM, Haber BA, Bellin L, Elenko E, Harrison R, Taub R: Sepsis-induced depression of rat glucose-6-phosphatase gene expression and activity. Am J Physiol 1997, 273:H709-718.

85. Thompson LH, Kim HT, Ma Y, Kohsaka NA, Messina JL: Acute, muscle-type specific insulin resistance following injury. Mol Med 2006, 142:17-23.

86. Petit F, Babgy GJ, Lang CH. Tumor necrosis factor mediates mizomos-increased glucose flux and insulin resistance. Am J Physiol 1995, 268:E219-226.

87. Addo KA, Westwood ME, Thornalley PJ: Synthesis and secretion of macrophage colony stimulating factor by mature human monocytes and role of TNFalpha. J Leukoc Biol 2004, 76:1526-1534.

88. McCowen KC, Ling PR, Ciccarone A, Mao Y, Chow JC, Bistrian BR, Smith RJ:

89. Abordo EA, Westwood ME, Thornalley PJ: Glucose catabolism in muscle. Diabetes 2000, 49:1991-1996.

90. Starke J, Fradera M, Nimmle M, Young JC, Bistrian BR, Smith RJ: Effects of dietary glucose and fructose on hepatic glucose production and ketogenesis in acute and chronic alcohol-fed rats. Alcohol 2000, 25:249-257.

91. Pei S, Ganten D, Sies H, Goresky CA: Direct glucocorticoid inhibition of gluconeogenesis in the perfused liver. J Biol Chem 1993, 268:10898-10903.

92. Ghanim H, Aljada A, Daoud N, Deopurkar R, Chaudhuri A, Dandona P: Mechanisms of hemorrhage-induced hepatic insulin resistance: role of tumor necrosis factor-alpha. Endocrinology 2004, 145:5168-5176.

93. Leng L, Metz CN, Fang Y, Xu J, Donnelly S, Baugh J, Delohery T, Chen Y, Metz C, Niwa H, Takeuchi J, Onodera S, Umino T, Yoshioka N, Koike T, Kim JK, Bistrian BR, Smith RJ: The proinflammatory cytokine macrophage migration inhibitory factor mediates mizomos-increased glucose flux and insulin resistance. Am J Physiol 1995, 268:E219-226.

94. Waeber G, Calandra T, Roduit R, Hafeliger JA, Bonny C, Thompson N, Thorens B: The CREB coactivator c-Jun N-terminal kinase 2 regulates glucose transport in skeletal muscle. J Cell Physiol 2006, 207:249-255.

95. Okumura K, Kato M, Minami M, Motomura M: The CREB coactivator TORC2 functions as a calcium- and cAMP-sensitive coincidence detector. Cell 2004, 119:611-74.

96. Bamboe MJ: Signal transduction. Sweet canundrum. Science 2008, 319:1348-1349.

97. Brownlee M: Biochemistry and molecular cell biology of diabetic complications. Nature 2001, 414:813-820.

98. Dentin R, Heding 8, Xie Y, Yates J 3rd, Montminy M: Hepatic glucose sensing via the CREB coactivator c-Jun. Science 2008, 319:402-410.

99. Brownlee M: The pathobiology of diabetic complications: a unifying mechanism. Diabetes 2005, 54:1615-1625.

100. Korshunov SS, Skulachev VP, Starkov AA: High protonic potential actuates a mechanism of production of reactive oxygen species in mitochondria. FEBS Lett 1997, 416:11-18.

101. Nikshakta T, Edelsten D, Du XL, Yamagishi S, Matsuura T, Keneda Y, Yorek MA, Beebe D, Gates PJ, Hammers H, Giardino L, Brownlee M: Normalizing mitochondrial superoxide production blocks three pathways of hyperglycaemic damage. Nature 2000, 404:787-790.

102. Du X, Matsuura T, Edelsten D, Rossetti L, Zienegeller Z, Szabo C, Brownlee M: Inhibition of GAPDH activity by poly(ADP-ribose) polymerase activates three major pathways of hyperglycemic damage in endothelial cells. J Clin Invest 2003, 112:1049-1057.

103. Dandona P, Mohanthy R, Chaudhuri R, Garg A, Aljada A: Insulin infusion in acute illness. J Clin Invest 2005, 115:2069-2072.

104. Dhindsa S, Tripathy D, Mohanthy P, Ghanim H, Syed T, Aljada A, Dandona P: Differential effects of glucose and alcohol on reactive oxygen species generation and intranuclear factor-kappa B in mononuclear cells. Metabolism 2004, 53:330-334.

105. Aljada A, Friedman J, Ghanim H, Mohanthy P, Hofmeyer D, Chaudhuri R, Dandona P: Glucose ingestion induces an increase in intranuclear factor kappa B, a fall in cellular inhibitor kappa B, and an increase in tumor necrosis factor alpha messenger RNA by mononuclear cells in healthy human subjects. Metabolism 2006, 55:1177-1185.

106. Aljada A, Ghanim H, Mohanthy P, Syed T, Bandypadhyay A, Dandona P: Glucose intake induces an increase in activator protein 1 and early growth response 1 binding activities, in the expression of tissue factor and matrix metalloproteinase in mononuclear cells, and in plasma tissue factor and matrix metalloproteinase concentrations. Am J Clin Nutr 2004, 80:51-57.

107. Ceriello A, Quagliaro L, Piconi L, Assaloni R, Da Ros R, Maier A, Esposito K, Giugliano D: Effect of postprandial hypertriglyceridaemia and hyperglycaemia on circulating adhesion molecules and oxidative stress generation and the possible role of simvastatin treatment. Diabetes 2004, 53:701-710.

108. Esposito K, Nappo F, Marfella R, Giugliano G, Giugliano F, Ciottola M, Quagliaro L, Ceriello A, Giugliano D: Effect of postprandial hypertriglyceridaemia and hyperglycaemia on circulating adhesion molecules and oxidative stress generation and the possible role of simvastatin treatment. Diabetes 2004, 53:701-710.

109. Orhinska U, Newton RC: Role of glucose in interleukin-1 beta production by lipopolysaccharide-activated human monocytes. J Cell Physiol 1995, 157:201-208.

110. Payen DM, Fratacci MD, Dupuy P, Gatteau C, Viguourov C, Ozier Y, Houssin D, Chapuis Y: Portal and hepatic arterial blood flow measurements of human transplanted liver by implanted Doppler probes: interest for early complications and nutrition. Surgery 1990, 107:417-427.

111. Korkmaz CG, Korkmaz KS, Kunys P, Ebi C, Wang L, Kokki TL, Hammarstrom C, Toren G, Svardland A, Hagel GL, Saaij M, Fanciulli F: Molecular cloning and characterization of STAMP2, an androgen-regulated six transmembrane protein that is overexpressed in prostate cancer. Oncogene 2005, 24:4934-4945.

112. Welten KE, Fuclo R, Gregor MF, Furushashi M, Morgan C, Lindstad T, Vaillancourt E, Gorgun CZ, Saatcioglu F, Hotamisligil GS: The CREB coactivator c-Jun N-terminal kinase 2 regulates glucose homeostasis. Cell 2007, 129:537-548.

113. Mohanthy P, Hamouda W, Garg R, Aljada A, Ghanim H, Dandona P: Glucose challenge stimulates reactive oxygen species (ROS) generation by leucocytes. J Clin Endocrinol Metab 2003, 88:2970-2973.

114. Damsel C, Belkiva I, Favier V, Louther A: Hyperglycaemia alters human peripheral blood mononuclear cells oxygen consumption in control and septic conditions [Abstract]. Intensive Care Med 2007, 33(5):s119.

115. Leverve X: Hyperglycaemia and oxidative stress: complex relationships with attractive prospects. Intensive Care Med 2003, 29:511-514.

116. Suh SW, Gum ET, Hamby AM, Chan PH, Swanson RA: Hyperglycemic neuronal death is triggered by glucose reperfusion and activation of neuronal NADPH oxidase. J Clin Invest 2007, 117:910-918.
126. Ali NA, O’Brien JM Jr, Dungan K, Phillips G, Marsh CB, Lemeshow S, Connors AF Jr, Preiser JC: Glucose variability and mortality in patients with sepsis. *Crit Care Med* 2008, 36:2316-2321.

127. Hermanides J, Vriesendorp TM, Bosman RJ, Zandstra DF, Hoekstra JB, Devries JH: Glucose variability is associated with intensive care unit mortality. *Crit Care Med* 2010, 38:838-842.

128. Deane AM, Chapman MJ, Fraser RJ, Burgstad CM, Besanko LK, Horowitz M: The effect of exogenous glucagon-like peptide-1 on the glycaemic response to small intestinal nutrient in the critically ill: a randomised double-blind placebo-controlled cross over study. *Crit Care* 2009, 13:R67.

129. Marik PE, Pinsky M: Death by parenteral nutrition. *Intensive Care Med* 2003, 29:867-869.

130. Marik PE: Death by total parenteral nutrition: part deaux. *Crit Care Med* 2006, 34:3062; author reply 3062-3063.

131. Hippocrates: The Aphorisms of Hippocrates. New York: The Classics of Medicine Library; 1982.

doi:10.1186/cc9100

Cite this article as: Losser M-R, et al.: Glucose and stress conditions in the intensive care unit. *Critical Care* 2010, 14:231.