Search for the rare decay of the W boson into a pion and a photon in proton-proton collisions at $\sqrt{s} = 13$ TeV

The CMS Collaboration

Abstract

A search is performed for the rare decay $W^\pm \rightarrow \pi^\pm \gamma$ in proton-proton collisions at $\sqrt{s} = 13$ TeV. Data corresponding to an integrated luminosity of 137 fb$^{-1}$ were collected during 2016 to 2018 with the CMS detector. This analysis exploits a novel search strategy based on W boson production in top quark pair events. An inclusive search for the $W^\pm \rightarrow \pi^\pm \gamma$ decay is not optimal at the LHC because of the high trigger thresholds. Instead, a trigger selection is exploited in which the W boson originating from one of the top quarks is used to tag the event in a leptonic decay. The W boson emerging from the other top quark is used to search for the $W^\pm \rightarrow \pi^\pm \gamma$ signature. Such decays are characterized by an isolated track pointing to a large energy deposit, and by an isolated photon of large transverse momentum. The presence of b quark jets reduces the background from the hadronization of light-flavor quarks and gluons. The $W^\pm \rightarrow \pi^\pm \gamma$ decay is not observed. An upper exclusion limit is set to this branching fraction, corresponding to 1.50×10^{-5} at 95% confidence level, whereas the expected upper exclusion limit is $0.85^{+0.52}_{-0.29} \times 10^{-5}$.

"Published in Physics Letters B as doi:10.1016/j.physletb.2021.136409."
1 Introduction

Rare hadronic decays of W bosons represent probes of the strong interaction at the boundary between the perturbative and nonperturbative domains of quantum chromodynamics (QCD), offering insights into factorization and meson form factors at large energy scales [1–3]. In particular, exclusive decays of the W boson into final states containing a single meson can be used to test these theoretical frameworks in a context where the energy scales are sufficiently large. At such scales, corrections that depend on the momentum transferred to the hadron in the final state can be neglected. The observation of these decays would validate the QCD factorization formalism, and enhance the possibility to perform precise calculations using such an approach. Furthermore, at future colliders they could provide a new way to measure the mass of the W boson that is based solely on visible single-particle decay products.

Theoretical calculations for such branching fractions (B) have large uncertainties: the expected value of $B(W^\pm \to \pi^\pm \gamma)$, for instance, is in the range of $10^{-9} - 10^{-7}$ [1, 4]. Upper limits on $B(W^\pm \to \pi^\pm \gamma)$ and on two other exclusive W boson decays were set previously at 95% confidence level (CL): $B(W^\pm \to \pi^\pm \gamma) < 7.0 \times 10^{-6}$ [5], $B(W^\pm \to D^\pm_s \gamma) < 1.3 \times 10^{-3}$ [6], and $B(W^\pm \to \pi^\pm \pi^\pm \pi^\mp) < 1.01 \times 10^{-6}$ [7]. For the Z boson, there are comparatively many more results on searches for such rare exclusive decay channels [8].

This Letter reports the results of the first search at the CERN LHC for the rare decay $W^\pm \to \pi^\pm \gamma$. The high energy thresholds for single photon triggers make an inclusive search, similar to the one performed by the CDF Collaboration [5], unsuitable at CMS. Therefore, this analysis uses a novel approach [4], focusing on W boson production from top quark-antiquark pair ($t \bar{t}$) events at the center-of-mass energy of 13 TeV. The muon or electron emerging from the leptonic decay of one of the two W bosons from the $t \bar{t}$ pair is used to select events at the trigger level. The other W boson in the event is employed to search for the rare decay $W^\pm \to \pi^\pm \gamma$.

The decay is characterized by an isolated photon of large transverse momentum (p_T), and an isolated track corresponding to a particle with large p_T. The analysis exploits the reduced jet activity expected in the vicinity of the pion [4], which is produced via electroweak processes, to reject background pions. The b quark jets are used in the multivariate event selection to reduce the contribution from non $t \bar{t}$ backgrounds. The $W^\pm \to \pi^\pm \gamma$ branching fraction is determined by parametrizing the number of observed signal events (N_{sig}) as:

$$N_{\text{sig}} = \sigma_{t \bar{t}} \mathcal{L}_{\text{int}} B(W^\pm \to \pi^\pm \gamma) \sum_{\ell} B(W^{\mp} \to \ell^{\mp} \nu) \varepsilon_{\ell}, \quad \ell = \mu, e, \tau, \tau$$

(1)

where $\sigma_{t \bar{t}}$ is the $t \bar{t}$ production cross section, $B(W^{\mp} \to \ell^{\mp} \nu)$ the branching fraction of the W boson into leptons, \mathcal{L}_{int} the integrated luminosity, and ε_{ℓ} the efficiency for the whole selection procedure (including acceptance effects). The symbol τ_{ℓ} indicates that the leptonic decays of the τ lepton originating from $W \to \tau \nu$ are also considered in the computation.

2 The CMS detector

The central feature of the CMS apparatus is a superconducting solenoid 6 m in internal diameter, providing a magnetic field of 3.8 T. A silicon pixel and strip tracker, a lead tungstate crystal electromagnetic calorimeter (ECAL), and a brass and scintillator hadron calorimeter reside within the solenoid volume. Each of these systems is composed of a barrel and two endcap sections. Forward hadron calorimeters extend the pseudorapidity (η) coverage provided by the barrel and endcap detectors. Muons are detected in gas-ionization chambers embedded in the steel flux-return yoke outside the solenoid.
Events of interest are selected using a two-tiered trigger system [9]. The first level, composed of custom hardware processors, uses information from the calorimeters and muon detectors to select events at a rate of around 100 kHz with a latency of about 4 μs. The second level, known as the high-level trigger, consists of a farm of processors running a version of the full event reconstruction software optimized for fast processing, and reduces the event rate to around 1 kHz before data storage. A more detailed description of the CMS detector, together with a definition of its coordinate system and relevant kinematic variables, can be found in Ref. [10].

3 Data samples and simulation

The analyzed collision data correspond to an integrated luminosity of 137 fb$^{-1}$ recorded by the CMS experiment in proton-proton (pp) collisions at $\sqrt{s} = 13$ TeV during 2016 (35.9 fb$^{-1}$), 2017 (41.5 fb$^{-1}$), and 2018 (59.7 fb$^{-1}$).

The signal process is simulated at leading order (LO) in perturbative QCD using the Monte Carlo (MC) event generator PYTHIA 8.226 (8.230) for 2016 (2017 and 2018) [11]. The transverse momentum of the W boson (p_T^W) decaying into a pion and a photon in the signal MC is weighted so that it matches that obtained in a next-to-LO (NLO) $W \rightarrow \ell \nu (\ell = \mu, e)$ simulation in POWHEG v2.0 [12–15], where the W boson originates from $t\bar{t}$ decay. This correction does not affect the total signal normalization.

The main background processes in this analysis are nonsignal $t\bar{t}$ production, Drell–Yan events, associated production of a vector boson and a photon or jets ($W\gamma \rightarrow \ell\nu\gamma$, $Z\gamma \rightarrow \ell\ell\gamma$ and $W + \text{jets}\rightarrow \ell\nu + \text{jets}$), along with standard model events comprised uniquely of jets produced through the strong interaction, referred to as QCD multijet events. The $t\bar{t}$ backgrounds are simulated at NLO using the POWHEG v2.0 framework [15], whereas the Drell–Yan, $W\gamma \rightarrow \ell\nu\gamma$, $Z\gamma \rightarrow \ell\ell\gamma$, $W + \text{jets} \rightarrow \ell\nu + \text{jets}$, and QCD multijet processes are simulated at NLO using the MADGRAPH5_aMC@NLO 2.2.2 (2.4.2) generator for 2016 (2017 and 2018) [16].

The NNPDF 3.0 NLO [17] (NNPDF 3.1 next-to-NLO [18]) parton distribution functions are used for generating all 2016 (2017 and 2018) MC samples. The generators are interfaced to PYTHIA for parton showering and parton fragmentation. The PYTHIA parameters affecting the description of the underlying event are set to the CUETP8M1 tune [19] (CP5 tune [20]) for the 2016 (2017 and 2018) simulation. For the 2016 $t\bar{t}$ backgrounds, the CP5 tune is used instead of CUETP8M1. The difference in generator version and configuration over the years of data taking reflects the improved knowledge of the production mechanisms in pp collisions at CMS.

All the simulated background samples are normalized to the cross sections obtained from the corresponding event generator. For the signal, the $t\bar{t}$ cross section measured by CMS with the 2015 data [21] is used, together with the most up-to-date measurements of $B(W \rightarrow \ell\nu)$ [8].

Generated events are processed through a simulation of the CMS detector based on GEANT4 [22] and reconstructed using the same algorithms used for collision data. Additional pp collisions in the same or nearby bunch crossings (pileup) are simulated and their distributions are weighted to reproduce the pileup multiplicity measured in data, which has an average of about 23 (32) interactions per bunch crossing in 2016 (2017 and 2018).

4 Event reconstruction

Events are reconstructed using the particle-flow (PF) algorithm [23], which combines information from the subdetectors to reconstruct and identify individual particles. The candidate
pp interaction vertex with the largest value of summed physics-object p_T^2 is referred to as the primary vertex (PV). The physics objects are the jets, clustered using the jet finding algorithm \cite{24, 25} with the tracks assigned to candidate vertices as inputs, and the associated missing transverse momentum \vec{p}_T^{miss}, computed as the negative vector p_T sum of all the PF candidates in an event. This vector, whose magnitude is denoted as p_T^{miss} \cite{26}, is modified to account for corrections to the energy scale of the reconstructed jets in the event.

Muon candidates are reconstructed by identifying signals from the muon subsystems together with those from the inner tracker \cite{27}. The inner detector track must be consistent with originating from the PV. The energy of muons is obtained from the curvature of the corresponding track. The p_T sum of the PF candidates within a cone of $\Delta R \equiv \sqrt{\Delta\eta^2 + \Delta\phi^2} < 0.4$ around the muon direction is required to be <25% of the muon p_T after implementing a correction for neutral PF objects not associated with the PV. Here ϕ indicates the azimuthal angle in radians in the plane transverse to the beam axis.

Electron candidates are reconstructed from clusters in the ECAL that are matched to tracks reconstructed using a Gaussian-sum filter algorithm. The track is required to be consistent with originating from the PV. Electron identification proceeds through a multivariate classifier that involves observables sensitive to bremsstrahlung along the electron trajectory, the geometrical and energy-momentum compatibility between the electron track and the associated energy cluster in the ECAL, the energy distribution of the electromagnetic shower, and discrimination against electrons originating from photon conversion. The PF-based isolation variables are also used as input variables in the multivariate classifier, including the p_T of photons, charged and neutral hadrons in the event \cite{28}.

Photon reconstruction is performed in the region $|\eta| < 2.5$, excluding the ECAL barrel-endcap transition region $1.44 < |\eta| < 1.57$. The energies of photons are obtained from the ECAL measurement. An electron veto is implemented to minimize photon misidentification, combining information from the ECAL and the pixel tracker. As in the electron case, photon identification proceeds through a multivariate classifier that makes use of PF-based isolation variables \cite{29, 30}.

Jets are reconstructed from the PF candidates using the anti-k_T clustering algorithm \cite{24} with a distance parameter of 0.4, as implemented in the FASTJET library \cite{25}. Jets originating from b quarks are tagged with the DEEPCSV algorithm \cite{31}, which uses secondary vertices, together with other lifetime information, and exploits a deep neural-network architecture. For the chosen working point, the efficiency to select b quark jets is around 90%, and the rate for incorrectly tagging jets originating from the hadronization of gluons or u, d, s quarks is about 10%. Jet momentum is determined as the vectorial sum of all particle momenta in the jet and, based on simulation, is typically within 5 to 10% of the true momentum over the whole p_T spectrum and detector acceptance. Additional pp interactions within the same or nearby bunch crossings can contribute additional tracks and calorimetric energy depositions, increasing the apparent jet momentum. To mitigate this effect, tracks identified as originating from pileup vertices are discarded and an offset correction is applied to correct for remaining contributions. Jet energy corrections are derived from simulation studies so the average measured energy of jets becomes identical to that of particle-level jets. In situ measurements of the momentum balance in dijet, photon+jet, Z+jet, and multijet events are used to determine any residual differences between the jet energy scale in data and in simulation, and appropriate corrections are made \cite{32}. Additional selection criteria are applied to remove jets potentially originating from instrumental effects or reconstruction failures.
5 Event selection

The analysis strategy and selection criteria were designed before inspecting the signal region (SR) in the collision data. Events are chosen at trigger level with either a muon or an electron with \(p_T \) above 24 (27) GeV for muons in the 2016 and 2018 (2017) samples, and 27 (32) GeV for electrons in the 2016 (2017 and 2018) samples, following changes in the trigger reconstruction algorithms for these particles throughout the data-taking periods. The reconstructed isolated muon and electron candidates that match the trigger conditions must satisfy specific offline identification criteria, and are required to be in the region \(|\eta| < 2.4\), with \(p_T > 25 \) GeV (or >28 GeV for 2017) for muons, and >33 GeV (or >30 GeV for 2016) for electrons. The muon and electron tracks should be within \(|d_z| < 0.5 \) cm of the PV along the beam axis, and \(|d_{xy}| < 0.2 \) cm in the transverse plane.

Events where multiple leptons satisfy the selection criteria are discarded to reduce the Drell–Yan background contribution. Pions are selected by searching for particle tracks with \(p_T > 20 \) GeV and charge opposite to that of the lepton. To reduce contamination from pion candidates misidentified as leptons, the requirements \(\Delta \phi (\mu, \pi) > 0.09 \) and \(\Delta \phi (e, \pi) > 0.05 \) are imposed on the angle between the lepton and the candidate pion. These requirements remove the region where the lepton and the candidate pion overlap. Their effect on the signal efficiency is negligible. To ensure the compatibility of the pion track with the PV, we also require \(|d_z| < 0.5 \) cm and \(|d_{xy}| < 0.2 \) cm. The pion with largest \(p_T \) that satisfies all these requirements is chosen for further analysis. Isolated photons with \(p_T > 20 \) GeV and \(|\eta| < 2.5 \) are selected. The condition \(\Delta \phi (\ell, \gamma) > 0.04 \) reduces the misidentification of the trigger lepton as the selected photon. The photon with the largest \(p_T \) that satisfies all these requirements is chosen for further analysis, and the event is retained if the pion-photon invariant mass is in the range 50 < \(m_{\pi\gamma} \) < 100 GeV.

5.1 Pion isolation

Since the pion from the \(W^\pm \to \pi^\pm \gamma \) decay originates from an electroweak process, minimal jet activity related to this decay is expected in its vicinity. For this reason, the analysis implements a pion-isolation variable based on the \(p_T \) sum of all the PF candidates (excluding the pion itself) contained in a cone with radius \(\Delta R \) around the pion, divided by the pion \(p_T (\Sigma p_T / p_T^\pi) \). The cone is defined to be \(0.02 < \Delta R < 0.5 \), with the lower bound helping to exclude from the sum the single charged particles generating two nearby reconstructed tracks. To reduce the contribution from pileup, charged particles entering the sum are required to originate from the PV, with the same \(d_{xy} \) and \(d_z \) criteria as used for the pion. Figure 1 shows the distribution of the pion-isolation variable for signal events, which appear to be highly isolated, whereas background events indicate a clear presence of jet activity. A discrepancy between data and MC is observed for background events at low values of the pion-isolation variable. This discrepancy, independent of the data-taking period, does not affect the background characterization extracted from data, but somewhat reduces the effectiveness of the multivariate selection technique described in Section 5.2, which is trained on simulated events. As far as the signal is concerned, this discrepancy is included in the systematic uncertainty as discussed in Section 7.

5.2 Multivariate selection

The final event selection is performed using a multivariate analysis technique. A boosted decision tree (BDT) classifier is trained using half of the signal and background MC events, and is validated through the other half. The requirement of a muon or an electron generates differences in the background distributions and the two cases are therefore handled as separate chan-
5.2 Multivariate selection

The steps in the training and validation are carried out on the merged sample corresponding to the three years of data taking. The BDT input variables with good discriminating power and whose distributions are well described by the simulation are the transverse momenta of the lepton (p_T^ℓ), pion (p_T^π), and photon (p_T^γ), the p_T^{miss} in the event, the pion-isolation variable, and the number of the b-tagged jets in the event with $p_T > 25$ GeV (n_b), which provides particularly good suppression of the background topologies characterized by no b-tagged jets. Distributions of the BDT discriminant for collision data with simulated signal and background are shown in Fig. 2. The shape of the data is in agreement with the MC background.

Finally, thresholds for the BDT discriminant are defined for the two channels to identify a unique SR and a unique control region (CR) from the merging of the two lepton channels. These thresholds aim at obtaining the highest possible significance, while fulfilling the requirements discussed in the following. The CR, which includes a negligible signal contribution with respect to the SR, is chosen so that the $m_{\pi\gamma}$ distribution contains enough events to be well fitted and to limit the impact of the systematic uncertainty in the background description. This is obtained for $0.206 < \text{BDT discriminant} < 0.281$ in the muon channel and $0.209 < \text{BDT discriminant} < 0.269$ in the electron channel. The SR should contain a number of events comparable to that in the CR, which is the case for values of the BDT discriminant >0.281 in the muon channel and >0.269 in the electron channel.

The products of the signal efficiency and the acceptance for the two channels, ϵ_ℓ, are computed separately for the 2016, 2017, and 2018 samples. They are evaluated as the ratio between the number of signal events in the MC sample in the SR, and the initial number of events generated in each channel. The efficiencies are given in Table 1 with their total uncertainties.
Figure 2: Event distributions as a function of the BDT discriminant for the muon (left) and electron (right) channels. The green and orange arrows indicate the intervals of the BDT discriminant used to define a signal (SR) and a control region (CR). The signal histogram is enhanced so that the signal and background histograms are normalized to the same area. The statistical uncertainties in the data are small and thus not visible.

Table 1: The product of signal efficiency and acceptance per year and per lepton channel.

Year	ϵ_μ	ϵ_e
2016	0.12 ± 0.01	0.07 ± 0.01
2017	0.11 ± 0.01	0.07 ± 0.01
2018	0.12 ± 0.01	0.07 ± 0.01

6 Signal and background yield extraction

The signal and background yields are extracted using an unbinned maximum likelihood fit to the $m_{\pi\gamma}$ distribution in the SR. The probability density function (pdf) used to perform the fit is defined as follows:

$$f = \left(\frac{N_{\text{sig}}}{N_{\text{sig}} + N_{\text{bkg}}(\text{SR})} f_{\text{sig}} + \frac{N_{\text{bkg}}(\text{SR})}{N_{\text{sig}} + N_{\text{bkg}}(\text{SR})} f_{\text{bkg}} \right) G,$$

where $N_{\text{bkg}}(\text{SR})$ is a floating parameter representing the number of background events in the SR, and G is a Gaussian pdf used to account for the nuisance parameters that model the systematic uncertainties. The functional form of the signal is determined fitting the $m_{\pi\gamma}$ distribution obtained from simulation. The sum of a double crystal ball (DCB) function and a Gaussian pdf is chosen to characterize the signal lineshape f_{sig}, whose parameters, excluding the normalization, are then fixed in the fit to the $m_{\pi\gamma}$ distribution of the data.

The CR is used to estimate the functional form of the background directly from data. A linear polynomial (f_{bkg}) is chosen to describe the background. The values of the slope and the intercept (normalization) of this straight line can then vary in the fit to the $m_{\pi\gamma}$ distribution of the data in the SR.

The number of signal events N_{sig} is not sensitive to the contribution of W bosons that are not produced via $t\bar{t}$ decay. It was verified in simulation that such processes are rejected by the...
requirement of $t\bar{t}$ production with a large p_T lepton and jets originating from the hadronization of b quarks. Another contribution to the number of signal events that is not considered arises from the associated production of a top quark and a W boson, which is expected to be two orders of magnitude smaller than that from $t\bar{t}$ events.

7 Systematic uncertainties

Systematic uncertainties are treated as nuisance parameters in the fit to the $m_{\pi\gamma}$ distribution. These uncertainties are included as log-normal pdfs in the likelihood and will be discussed in the following in descending order of impact on the final result.

The $t\bar{t}$ production cross section in pp collisions at $\sqrt{s} = 13\text{ TeV}$, which is included in Eq. (1), was measured by CMS using the 2015 data [21] to be $815 \pm 43\text{ pb}$, where the total uncertainty is the quadratic sum of the statistical, systematic, and luminosity-related components. The integrated luminosities of the 2016, 2017, and 2018 data-taking periods are individually known with uncertainties in the 2.3–2.5% range [34–36], whereas the total 2016–2018 integrated luminosity has an uncertainty of 1.8%; the improvement in precision reflects the uncorrelated time evolution of some systematic effects.

The choice of pdfs used to describe the background has an influence on the measured $W^\pm \to \pi^\pm \gamma$ branching fraction. To estimate this effect, a fit is performed to the data in the SR with the nominal background pdf, i.e., a linear function. The same distribution is then fitted again using an alternative pdf, namely an exponential. The following pull is calculated for the branching fraction:

$$\frac{|B_{\text{lin}} - B_{\text{exp}}|}{\sigma_{B_{\text{lin}}}},$$

where B_{lin} represents the value of the $W^\pm \to \pi^\pm \gamma$ branching fraction as extracted from the fit with a linear function, $\sigma_{B_{\text{lin}}}$ is its uncertainty, and B_{exp} indicates the value of the branching fraction extracted from the fit using the exponential function. The pull amounts to 14.6% and is taken as an estimate of the systematic uncertainty associated with the background parametrization.

The parameters representing the peak and width of the Gaussian component of the DCB pdf for the signal are extracted with their uncertainties through a fit to the simulated events. To include the limited event count in the MC sample, we take the width of the DCB function and its uncertainty as extracted from the fit to the MC events. Moreover, we include a 1% uncertainty in the position of peak of the DCB function to account for the photon energy scale, which dominates the uncertainty in the pion-photon invariant mass. First, we fit the data in the SR fixing the values of the peak and the width of the DCB function to their central values (nominal case). We then repeat the fit after increasing and decreasing these parameters by their uncertainties (shifted parameters). We compare the results by calculating a set of pulls in the parameter of interest:

$$\frac{|B_{\text{nominal}} - B_{\text{shifted}}|}{\sigma_{B_{\text{nominal}}}},$$

where $\sigma_{B_{\text{nominal}}}$ represents the uncertainty associated to B_{nominal}. The largest pull of 10.6% is an estimate of the systematic uncertainty associated with the parametrization of the signal. Since the other parameters of the signal lineshape are highly correlated with each other, as well as with the peak and the width of the Gaussian component of the DCB function, it is not necessary to float them within their uncertainties.
The contributions to the uncertainties in ϵ_ℓ include the statistical uncertainties, the BDT modeling, the modeling of kinematic variables for the signal in PYTHIA, the scale factors that correct for differences between detector conditions in collision data and simulation, and the charge-misidentification in the tracking algorithm. To assess the uncertainty in modeling of the BDT, the performance of a BDT trained and validated with the nominal input variables is compared with that of a BDT trained with the same variables, and validated with variables to which a Gaussian spreading or a shift is applied. The width of the spreading corresponds to 5% of the value of p_T^ℓ, p_T^π, p_T^γ, and p_T^{miss}. The pion isolation is shifted upwards by 10%, based on the agreement between collision data and simulation observed in Fig. 1. The number of b jets, n_b, is increased or decreased by 1 for 5% of the events in the training samples of 2016 and 2017, and for 10% of the events in the training sample of 2018, thus accounting for the larger uncertainties in the jet energy calibration during part of the 2018 data taking. For energy and momentum, this spreading corresponds to the largest expected resolution. For charged particle tracks, it includes the uncertainties in the tracking efficiency. The largest change in ϵ_ℓ is 1% for a given background rejection efficiency in the muon channel, and 2% in the electron channel.

The procedure for modeling a process in PYTHIA represents another source of systematic uncertainty, since inaccuracies of the model have an impact on the signal acceptance. As a first step in the evaluation of this uncertainty, we consider the p_T distribution of the generated signal W bosons, which is corrected to match that obtained from NLO $t\bar{t}$ MC generated events in POWHEG v2 (as discussed in Section 3). To assess the effect of a systematic change in the p_T^W reweighting, the p_T^W spectrum is shifted upwards and downwards by 5%, which corresponds to the maximum uncertainty in the weights used. The performance of the BDT trained and validated through the nominal variables is compared to that of a BDT trained on the nominal variables, and tested using MC events where the p_T^W-based reweighting is shifted by 5%. The most significant changes in signal efficiency for a given background rejection efficiency are about 2% and 3% in the muon and the electron channels, respectively.

The signal acceptance also depends on the angular spectrum of the particles involved in the $W^{\pm} \rightarrow \pi^{\pm}\gamma$ decay. To evaluate the uncertainty on ϵ_ℓ related to the PYTHIA modeling of the W polarization, we modify this angular spectrum. Specifically, we consider the generated distribution in θ^*, the angle between the pion direction in the W boson rest frame and the direction of the W boson momentum in the laboratory. We use $\sin^2 \theta^*$ and $\cos \theta^*$ distributions, corresponding to longitudinal and transverse polarizations of the W boson, respectively. By taking the ratio of each of these to the observed θ^* distributions, we obtain two sets of weights that are used to reweight the signal. In similarity with p_T^W, a BDT is trained on a set of nominal events, and validated on a set that has the signal renormalization implemented. The most significant changes in terms of ϵ_ℓ for a given background rejection efficiency are about 3% and 5% for the muon and the electron channels, respectively.

An additional uncertainty of 1.4% arises from the use of scale factors in the simulation, and an uncertainty of 1% covers the effects of charge misidentification in the tracking algorithm. These uncertainties, derived from detector performance studies [27–29, 37], are summed in quadrature to the statistical and to the other systematic uncertainties, described above, in the signal efficiency, as presented in Table 1.

8 Results

The $m_{\pi\gamma}$ distribution is shown in Fig. 3 for the combination of the two lepton channels and the three data-taking periods.
Figure 3: Event distribution as a function of $m_{\pi\gamma}$ for the combination of the lepton channels. The simulated MC distribution for the signal is given by the dashed red line and corresponds to a 10^{-4} branching fraction for the $W^\pm \rightarrow \pi^\pm \gamma$ decay. The uncertainties in the data are statistical only. The blue line represents the best fit to the data using the model described in Eq. (2). In the lower plot, the ratio between data and the background component of the MC is shown. The gray bands represent the uncertainty (statistical + systematic) in the MC background.

No significant excess is observed above the expected background. An observed upper limit at 95% CL is set on the branching fraction of the W boson to a pion and a photon using the asymptotic CL$_s$ method [38, 39]:

$$B(W^\pm \rightarrow \pi^\pm \gamma) < 1.50 \times 10^{-5},$$

and the expected upper limit is $0.85^{+0.52}_{-0.29} \times 10^{-5}$.

The total uncertainty is dominated by the statistical contributions, which account for \approx80%. The largest systematic uncertainties arise from the measurements of the $t\bar{t}$ cross section (\approx5%) and the integrated luminosity (\approx2%).

9 Summary

A first search is reported for the rare decay $W^\pm \rightarrow \pi^\pm \gamma$ at the LHC. The search is based on the proton-proton collision data collected at a center-of-mass energy of 13 TeV at the CMS experiment in 2016–2018, corresponding to an integrated luminosity of 137 fb$^{-1}$. Because of the high trigger thresholds for single photons, which make an inclusive search unsuitable at CMS, the measurement is performed using top quark-antiquark pair events, where one of the produced W bosons decays into leptons. This is the first search for $W^\pm \rightarrow \pi^\pm \gamma$ that adopts such a strategy. The rare decay is characterized by an isolated track, for which a specific pion-isolation variable is defined, and an isolated photon with large transverse momentum. The data are compatible with the background-only hypothesis. The upper limit on the branching fraction of the W boson to a pion and a photon is 1.50×10^{-5} at the confidence level of 95%.

Since this result is statistically limited, it can be significantly improved with larger integrated luminosities. Our study demonstrates the feasibility of a search for such rare decays of the W
bosons at the LHC and defines a search strategy that can be adopted at future hadron colliders. This paves the way to increasingly precise measurements that could, on the one hand, provide effective validation of the QCD factorization formalism and, on the other, offer an alternative way to measure the mass of the W boson.

Acknowledgments

We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC and thank the technical and administrative staffs at CERN and at other CMS institutes for their contributions to the success of the CMS effort. In addition, we gratefully acknowledge the computing centers and personnel of the Worldwide LHC Computing Grid for delivering so effectively the computing infrastructure essential to our analyses. Finally, we acknowledge the enduring support for the construction and operation of the LHC and the CMS detector provided by the following funding agencies: BMBWF and FWF (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, FAPERGS, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES and CSF (Croatia); RIF (Cyprus); SENEXCYT (Ecuador); MoER, ERC PUT and ERDF (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBE, DFG, and HGF (Germany); GSRT (Greece); NKFIA (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); MSIP and NRF (Republic of Korea); MES (Latvia); LAS (Lithuania); MOE and UM (Malaysia); BUAP, CINVESTAV, CONACYT, LNS, SEP, and UASLP-FAI (Mexico); MAE (Moldova); MIBg (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portugal); JINR (Dubna); MON, RosAtom, RAS, RFBR, and NRC KI (Russia); MESTD (Serbia); SEIDI, CPAN, PCTI, and FEDER (Spain); MOSTR (Sri Lanka); Swiss Funding Agencies (Switzerland); MST (Taipei); ThEPCenter, IPST, STAR, and NSTDA (Thailand); TUBITAK and TAEK (Turkey); NASU (Ukraine); STFC (United Kingdom); DOE and NSF (USA).

Individuals have received support from the Marie-Curie program and the European Research Council and Horizon 2020 Grant, contract Nos. 675440, 724704, 752730, and 765710 (European Union); the Leventis Foundation; the A.P. Sloan Foundation; the Alexander von Humboldt Foundation; the Belgian Federal Science Policy Office; the Fonds pour la Formation à la Recherche dans l’Industrie et dans l’Agriculture (FRIA-Belgium); the Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium); the F.R.S.-FNRS and FWO (Belgium) under the “Excellence of Science – EOS” – be.h project n. 30820817; the Beijing Municipal Science & Technology Commission, No. Z191100007219010; the Ministry of Education, Youth and Sports (MEYS) of the Czech Republic; the Deutsche Forschungsgemeinschaft (DFG) under Germany’s Excellence Strategy – EXC 2121 “Quantum Universe” – 390833306; the Lendület (“Momentum”) Program and the János Bolyai Research Scholarship of the Hungarian Academy of Sciences, the New National Excellence Program ÚNKP, the NKFI grants 123842, 123959, 124845, 124850, 125105, 128713, 128786, and 129058 (Hungary); the Council of Science and Industrial Research, India; the HOMING PLUS program of the Foundation for Polish Science, cofinanced from European Union, Regional Development Fund, the Mobility Plus program of the Ministry of Science and Higher Education, the National Science Center (Poland), contracts Harmonia 2014/14/M/ST2/00428, Opus 2014/13/B/ST2/02543, 2014/15/B/ST2/03998, and 2015/19/B/ST2/02861, Sonata-bis 2012/07/E/ST2/01406; the National Priorities Research Program by Qatar National Research Fund; the Ministry of Science and Higher Education, project no. 02.03.21.0005 (Russia); the Tomsk Polytechnic University Competitiveness Enhancement Program; the Programa Estatal de Fomento de la Investigación Científica y Técnica de Excelencia María de Maeztu, grant MDM-2015-0509 and the Programa Severo Ochoa del Principado de Asturias; the Thalis and Aristeia programs cofinanced by EU-ESF and the Greek
References

[1] Y. Grossman, M. König, and M. Neubert, “Exclusive radiative decays of W and Z bosons in QCD factorization”, *JHEP* 04 (2015) 101, [doi:10.1007/JHEP04(2015)101](https://link.springer.com/article/10.1007%2fJHEP04%2f2015%2f0101), arXiv:1501.06569.

[2] T. Melia, “Exclusive hadronic W decay: W → πγ and W → πππ”, *Nucl. Part. Phys. Proc.* 273 (2016) 2012, [doi:10.1016/j.nuclphysbps.2015.09.341](https://doi.org/10.1016%2fj.nuclphysbps.2015.09.341).

[3] G. Perez, Y. Soreq, E. Stamou, and K. Tobioka, “Prospects for measuring the Higgs boson coupling to light quarks”, *Phys. Rev. D* 93 (2016) 013001, [doi:10.1103/PhysRevD.93.013001](https://doi.org/10.1103%2fPhysRevD.93.013001), arXiv:1505.06689.

[4] M. Mangano and T. Melia, “Rare exclusive hadronic W decays in a tf environment”, *Eur. Phys. J. C* 75 (2015) 258, [doi:10.1140/epjc/s10052-015-3482-x](https://doi.org/10.1140%2fepjc%2fs10052-015-3482-x), arXiv:1410.7475.

[5] CDF Collaboration, “Search for the rare radiative decay: W → πγ in p ¯p collisions at √s = 1.96 TeV”, *Phys. Rev. D* 85 (2012) 032001, [doi:10.1103/PhysRevD.85.032001](https://doi.org/10.1103%2fPhysRevD.85.032001), arXiv:1104.1585.

[6] CDF Collaboration, “Search for the rare decay W± → D±γ in p ¯p collisions at √s = 1.8 TeV”, *Phys. Rev. D* 122 (1998) 091101, [doi:10.1103/PhysRevD.58.091101](https://doi.org/10.1103%2fPhysRevD.58.091101).

[7] CMS Collaboration, “Search for W boson decays to three charged pions”, *Phys. Rev. Lett.* 122 (2019) 151802, [doi:10.1103/PhysRevLett.122.151802](https://doi.org/10.1103%2fPhysRevLett.122.151802), arXiv:1901.11201.

[8] Particle Data Group, P. A. Zyla et al., “Review of particle physics”, *Prog. Theor. Exp. Phys.* 2020 (2020) 083C01, [doi:10.1093/ptep/ptaa104](https://doi.org/10.1093%2fptep%2fptaa104).

[9] CMS Collaboration, “The CMS trigger system”, *JINST* 12 (2017) P01020, [doi:10.1088/1748-0221/12/01/P01020](https://doi.org/10.1088%2f1748-0221%2f12%2f01%2fP01020), arXiv:1609.02365.

[10] CMS Collaboration, “The CMS experiment at the CERN LHC”, *JINST* 3 (2008) S08004, [doi:10.1088/1748-0221/37/08/S08004](https://doi.org/10.1088%2f1748-0221%2f37%2f08%2fS08004).

[11] T. Sjöstrand et al., “An introduction to PYTHIA 8.2”, *Comput. Phys. Commun.* 191 (2015) 159, [doi:10.1016/j.cpc.2015.01.024](https://doi.org/10.1016%2fj.cpc.2015.01.024), arXiv:1410.3012.

[12] P. Nason, “A new method for combining NLO QCD with shower Monte Carlo algorithms”, *JHEP* 11 (2014) 040, [doi:10.1007/1126-6708/2004/11/040](https://doi.org/10.1007%2f1126-6708%2f2004%2f11%2f040), arXiv:hep-ph/0409146.

[13] S. Frixione, P. Nason, and C. Oleari, “Matching NLO QCD computations with parton shower simulations: the POWHEG method”, *JHEP* 11 (2017) 070, [doi:10.1007/1126-6708/2007/11/070](https://doi.org/10.1007%2f1126-6708%2f2007%2f11%2f070), arXiv:0709.2092.
[14] S. Alioli, P. Nason, C. Oleari, and E. Re, “A general framework for implementing NLO calculations in shower Monte Carlo programs: the POWHEG BOX”, JHEP 06 (2010) 043, doi:10.1007/JHEP06(2010)043, arXiv:1002.2581

[15] J. M. Campbell, R. K. Ellis, P. Nason, and E. Re, “Top-pair production and decay at NLO matched with parton showers”, JHEP 04 (2015) 114, doi:10.1007/JHEP04(2015)114, arXiv:1412.1828

[16] J. Alwall et al., “The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations”, JHEP 07 (2014) 079, doi:10.1007/JHEP07(2014)079, arXiv:1405.0301

[17] NNPDF Collaboration, “Parton distributions for the LHC Run II”, JHEP 04 (2015) 040, doi:10.1007/JHEP04(2015)040, arXiv:1410.8849

[18] NNPDF Collaboration, “Parton distributions from high-precision collider data”, Eur. Phys. J. C 77 (2017) 663, doi:10.1140/epjc/s10052-017-5199-5, arXiv:1706.00428

[19] CMS Collaboration, “Event generator tunes obtained from underlying event and multiparton scattering measurements”, Eur. Phys. J. C 76 (2016) 155, doi:10.1140/epjc/s10052-016-3988-x, arXiv:1512.00815

[20] CMS Collaboration, “Extraction and validation of a new set of CMS PYTHIA8 tunes from underlying-event measurements”, Eur. Phys. J. C 80 (2020) 4, doi:10.1140/epjc/s10052-019-7499-4, arXiv:1903.12179

[21] CMS Collaboration, “Measurement of the $t\bar{t}$ production cross section using events in the $e\mu$ final state in pp collisions at $\sqrt{s} = 13$ TeV”, Eur. Phys. J. C 77 (2017) 172, doi:10.1140/epjc/s10052-017-4718-8, arXiv:1611.04040

[22] GEANT4 Collaboration, “GEANT4—a simulation toolkit”, Nucl. Instrum. Meth. A 506 (2003) 250, doi:10.1016/S0168-9002(03)01368-8

[23] CMS Collaboration, “Particle-flow reconstruction and global event description with the CMS detector”, JINST 12 (2017) P10003, doi:10.1088/1748-0221/12/10/p10003, arXiv:1706.04965

[24] M. Cacciari, G. P. Salam, and G. Soyez, “The anti-k_T jet clustering algorithm”, JHEP 04 (2008) 063, doi:10.1088/1126-6708/2008/04/063, arXiv:0802.1189

[25] M. Cacciari, G. P. Salam, and G. Soyez, “FastJet user manual”, Eur. Phys. J. C 72 (2012) 1896, doi:10.1140/epjc/s10052-012-1896-2, arXiv:1111.6097

[26] CMS Collaboration, “Performance of missing transverse momentum reconstruction in proton-proton collisions at $\sqrt{s} = 13$ TeV using the CMS detector”, JINST 14 (2019) P07004, doi:10.1088/1748-0221/14/07/P07004, arXiv:1903.06078

[27] CMS Collaboration, “Performance of the CMS muon detector and muon reconstruction with proton-proton collisions at $\sqrt{s} = 13$ TeV”, JINST 13 (2018) P06015, doi:10.1088/1748-0221/13/06/P06015, arXiv:1804.04528

[28] CMS Collaboration, “Performance of electron reconstruction and selection with the CMS detector in proton-proton collisions at $\sqrt{s} = 8$ TeV”, JINST 10 (2015) P06005, doi:10.1088/1748-0221/10/06/P06005, arXiv:1502.02701
[29] CMS Collaboration, “Performance of photon reconstruction and identification with the CMS detector in proton-proton collisions at $\sqrt{s} = 8$ TeV”, *JINST* 10 (2015) P08010, doi:10.1088/1748-0221/10/08/P08010, arXiv:1502.02702.

[30] CMS Collaboration, “Electron and photon reconstruction and identification with the CMS experiment at the CERN LHC”, *JINST* 16 (2021) P05014, doi:10.1088/1748-0221/16/05/P05014, arXiv:2012.06888.

[31] CMS Collaboration, “Identification of heavy-flavour jets with the CMS detector in pp collisions at 13 TeV”, *JINST* 13 (2018) P05011, doi:10.1088/1748-0221/13/05/p05011, arXiv:1712.07158.

[32] CMS Collaboration, “Jet energy scale and resolution in the CMS experiment in pp collisions at 8 TeV”, *JINST* 12 (2017) P02014, doi:10.1088/1748-0221/12/02/P02014, arXiv:1607.03663.

[33] M. J. Oreglia, “A study of the reactions $\psi' \rightarrow \gamma \gamma \psi$” PhD thesis, Stanford University, 1980. SLAC Report SLAC-R-236.

[34] CMS Collaboration, “CMS luminosity measurements for the 2016 data-taking period”, CMS Physics Analysis Summary CMS-PAS-LUM-17-001, 2017.

[35] CMS Collaboration, “CMS luminosity measurement for the 2017 data-taking period at $\sqrt{s} = 13$ TeV”, CMS Physics Analysis Summary CMS-PAS-LUM-17-004, 2017.

[36] CMS Collaboration, “CMS luminosity measurement for the 2018 data-taking period at $\sqrt{s} = 13$ TeV”, CMS Physics Analysis Summary CMS-PAS-LUM-18-002, 2018.

[37] CMS Collaboration, “Description and performance of track and primary-vertex reconstruction with the CMS tracker”, *JINST* 9 (2014) P10009, doi:10.1088/1748-0221/9/10/P10009, arXiv:1405.6569.

[38] T. Junk, “Confidence level computation for combining searches with small statistics”, *Nucl. Instrum. Meth. A* 434 (1999) 435, doi:10.1016/S0168-9002(99)00498-2, arXiv:hep-ex/9902006.

[39] A. L. Read, “Presentation of search results: the CL$_s$ technique”, *J. Phys. G* 28 (2002) 2693, doi:10.1088/0954-3899/28/10/313.
A The CMS Collaboration

Yerevan Physics Institute, Yerevan, Armenia
A.M. Sirunyan§, A. Tumasyan

Institut für Hochenergiephysik, Wien, Austria
W. Adam, T. Bergauer, M. Dragicevic, J. Erö, A. Escalante Del Valle, R. Frühwirth, M. Jeitler, N. Krammer, L. Lechner, D. Liko, I. Mikulec, F.M. Pitters, N. Rad, J. Schieck, R. Schöfbeck, M. Spanring, S. Templ, W. Waltenberger, C.-E. Wulz, M. Zarucki

Institute for Nuclear Problems, Minsk, Belarus
V. Chekhovsky, A. Litomin, V. Makarenko, J. Suarez Gonzalez

Universiteit Antwerpen, Antwerpen, Belgium
M.R. Darwish, E.A. De Wolf, D. Di Croce, X. Janssen, T. Kello, A. Lelek, M. Pieters, H. Rejeb Sfar, H. Van Haevermaet, S. Van Putte, N. Van Remortel

Vrije Universiteit Brussel, Brussel, Belgium
F. Blekman, E.S. Bols, S.S. Chhibra, J. D’Hondt, J. De Clercq, D. Lontkovskyi, S. Lowette, I. Marchesini, S. Moortgat, A. Morton, Q. Python, S. Tavernier, W. Van Doninck, P. Van Mulders

Université Libre de Bruxelles, Bruxelles, Belgium
D. Beghin, B. Bilin, B. Clerbaux, G. De Lentdecker, B. Dorney, L. Favart, A. Grebenyuk, A.K. Kalsi, I. Makarenko, L. Moureaux, L. Pétré, A. Popov, N. Postiau, E. Starling, L. Thomas, C. Vandering, P. Vanlaer, D. Vannerom, L. Wezenbeek

Ghent University, Ghent, Belgium
T. Cornelis, D. Dobur, M. Gruchala, I. Khvastunov, M. Niedziela, C. Roskas, K. Skovpen, M. Tytgat, W. Verbeke, B. Vermaesen, M. Vit

Université Catholique de Louvain, Louvain-la-Neuve, Belgium
G. Bruno, F. Bury, C. Caputo, P. David, C. Delaere, M. Delcourt, I.S. Donertas, A. Giammanco, V. Lemaitre, K. Mondal, J. Prisciandaro, A. Taliercio, M. Teklishyn, P. Vischia, S. Wertz, S. Wuyckens

Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro, Brazil
G.A. Alves, C. Hensel, A. Moraes

Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
W.L. Aldá Júnior, E. Belchior Batista Das Chagas, H. BRANDAO MALBOUISSON, W. Carvalho, J. Chinellato, E. Coelho, E.M. Da Costa, G.G. Da Silveira, D. De Jesus Damiao, S. Fonseca De Souza, J. Martins, D. Matos Figueiredo, M. Medina Jaime, C. Mora Herrera, L. Mundim, H. Nogima, P. Rebello Telles, L.J. Sanchez Rosas, A. Santoro, S.M. Silva Do Amaral, A. Szajder, M. Thiel, F. Torres Da Silva De Araujo, A. Vilela Pereira

Universidade Estadual Paulista, Universidade Federal do ABC, São Paulo, Brazil
C.A. Bernardes, L. Calligarí, T.R. Fernandez Perez Tomei, E.M. Gregores, D.S. Lemos, P.G. Mercadante, S.F. Novaes, Sandra S. Padula

Institute for Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences, Sofia, Bulgaria
A. Aleksandrov, G. Antchev, I. Atanasov, R. Hadjiiska, P. Iaydjiev, M. Misheva, M. Rodozov, M. Shopova, G. Sultanov

University of Sofia, Sofia, Bulgaria
A. Dimitrov, T. Ivanov, L. Litov, B. Pavlov, P. Petkov, A. Petrov

1
2
3
4
5
6
7
8
a
b
Beihang University, Beijing, China
T. Cheng, W. Fang9, Q. Guo, H. Wang, L. Yuan

Department of Physics, Tsinghua University, Beijing, China
M. Ahmad, G. Bauer, Z. Hu, Y. Wang, K. Yi9,10

Institute of High Energy Physics, Beijing, China
E. Chapon, G.M. Chen11, H.S. Chen11, M. Chen, T. Javaid11, A. Kapoor, D. Leggat, H. Liao, Z.-A. LIU11, R. Sharma, A. Spiezia, J. Tao, J. Thomas-wilsker, J. Wang, H. Zhang, S. Zhang11, J. Zhao

State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, China
A. Agapitos, Y. Ban, C. Chen, Q. Huang, A. Levin, Q. Li, M. Lu, X. Lyu, Y. Mao, S.J. Qian, D. Wang, Q. Wang, J. Xiao

Sun Yat-Sen University, Guangzhou, China
Z. You

Institute of Modern Physics and Key Laboratory of Nuclear Physics and Ion-beam Application (MOE) - Fudan University, Shanghai, China
X. Gao3

Zhejiang University, Hangzhou, China
M. Xiao

Universidad de Los Andes, Bogota, Colombia
C. Avila, A. Cabrera, C. Florez, J. Fraga, A. Sarkar, M.A. Segura Delgado

Universidad de Antioquia, Medellin, Colombia
J. Jaramillo, J. Mejia Guisao, F. Ramirez, J.D. Ruiz Alvarez, C.A. Salazar Gonzalez, N. Vanegas Arbelaez

University of Split, Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture, Split, Croatia
D. Giljanovic, N. Godinovic, D. Lelas, I. Puljak

University of Split, Faculty of Science, Split, Croatia
Z. Antunovic, M. Kovac, T. Sculac

Institute Rudjer Boskovic, Zagreb, Croatia
V. Brigljevic, D. Ferencek, D. Majumder, M. Roguljic, A. Starodumov12, T. Susa

University of Cyprus, Nicosia, Cyprus
M.W. Ather, A. Attikis, E. Erodotou, A. Ioannou, G. Kole, M. Kolosova, S. Konstantinou, J. Mousa, C. Nicolaou, F. Ptochos, P.A. Razis, H. Rykaczewski, H. Saka, D. Tsiakkouri

Charles University, Prague, Czech Republic
M. Finger13, M. Finger Jr.13, A. Kveton, J. Tomsa

Escuela Politecnica Nacional, Quito, Ecuador
E. Ayala

Universidad San Francisco de Quito, Quito, Ecuador
E. Carrera Jarrin
Academy of Scientific Research and Technology of the Arab Republic of Egypt, Egyptian
Network of High Energy Physics, Cairo, Egypt
H. Abdalla, A.A. Abdelalim, S. Elgamal

Center for High Energy Physics (CHEP-FU), Fayoum University, El-Fayoum, Egypt
A. Lotfy, M.A. Mahmoud

National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
S. Bhowmik, A. Carvalho Antunes De Oliveira, R.K. Dewanjee, K. Elataat, M. Kadastik,
M. Raidal, C. Veelken

Department of Physics, University of Helsinki, Helsinki, Finland
P. Eerola, L. Forthomme, H. Kirschenmann, K. Osterberg, M. Voutilainen

Helsinki Institute of Physics, Helsinki, Finland
E. Brücken, F. Garcia, J. Havukainen, V. Karimäki, M.S. Kim, R. Kinnunen, T. Lampén,
K. Lassila-Perini, S. Lehti, T. Lindén, H. Siikonen, E. Tuominen, J. Tuominiemi

Lappeenranta University of Technology, Lappeenranta, Finland
P. Luukka, T. Tuuva

IRFU, CEA, Université Paris-Saclay, Gif-sur-Yvette, France
C. Amendola, M. Besancon, F. Couderc, M. Dejardin, D. Denegri, J.L. Faure, F. Ferri, S. Ganjour,
A. Givernaud, P. Gras, G. Hamel de Monchenault, P. Jarry, B. Lenzi, E. Locci, J. Malcles,
J. Rander, A. Rosowsky, M.O. Sahin, A. Savoy-Navarro, M. Titov, G.B. Yu

Laboratoire Leprince-Ringuet, CNRS/IN2P3, Ecole Polytechnique, Institut Polytechnique
de Paris, Palaiseau, France
S. Ahuja, F. Beaudette, M. Bonanomi, A. Buchot Perraguin, P. Busson, C. Charlot, O. Davignon,
B. Diab, G. Falmagne, R. Granier de Cassagnac, A. Hakimi, I. Kucher, A. Lobanov,
C. Martin Perez, M. Nguyen, C. Ochando, P. Paganini, J. Rembser, R. Salerno, J.B. Sauvan,
Y. Sirois, A. Zabi, A. Zghiche

Université de Strasbourg, CNRS, IPHC UMR 7178, Strasbourg, France
J.-L. Agram, J. Andrea, D. Bloch, G. Bourgatte, J.-M. Brom, E.C. Chabert, C. Collard, J.-
C. Fontaine, D. Gelé, U. Goerlach, C. Grimault, A.-C. Le Bihan, P. Van Hove

Université de Lyon, Université Claude Bernard Lyon 1, CNRS-IN2P3, Institut de Physique Nucléaire de Lyon, Villeurbanne, France
E. Asilar, S. Beauceron, C. Bernet, G. Boudoul, C. Camen, A. Carle, N. Chanon,
D. Contardo, P. Depasse, H. El Mamouni, J. Fay, S. Gascon, M. Gouzevitch, B. Ille, Sa. Jain,
I.B. Laktineh, H. Lattaud, A. Lesauvage, M. Lethuillier, L. Mirabito, L. Torrebertot, G. Touquet,
M. Vander Donckt, S. Viret

Georgian Technical University, Tbilisi, Georgia
A. Khvedelidze, Z. Tsamalaidze

RWTH Aachen University, I. Physikalisches Institut, Aachen, Germany
L. Feld, K. Klein, M. Lipinski, D. Meuser, A. Pauls, M. Preuten, M.P. Rauch, J. Schulz,
M. Teroerde

RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany
D. Eliseev, M. Erdmann, P. Fackeldey, B. Fischer, S. Ghosh, T. Hebbeke, K. Hoepfner, H. Keller,
L. Mastrolorenzo, M. Merschmeyer, A. Meyer, G. Mocellin, S. Mondal, S. Mukherjee, D. Noll,
MTA-ELTE Lendület CMS Particle and Nuclear Physics Group, Eötvös Loránd University, Budapest, Hungary
M. Bartók, M. Csanad, M.M.A. Gadallah, S. Lőkös, P. Major, K. Mandal, A. Mehta, G. Pasztor, O. Surányi, G.I. Veres

Wigner Research Centre for Physics, Budapest, Hungary
G. Bencze, C. Hajdu, D. Horvath, F. Sikler, V. Veszpremi, G. Vesztergombi

Institute of Nuclear Research ATOMKI, Debrecen, Hungary
S. Czellar, J. Karancsi, J. Molnar, Z. Szillasi, D. Teyssier

Institute of Physics, University of Debrecen, Debrecen, Hungary
P. Raics, Z.L. Trocsanyi, B. Ujvari

Eszterhazy Karoly University, Karoly Robert Campus, Gyongyos, Hungary
T. Csorog, F. Nemes, T. Novak

Indian Institute of Science (IISc), Bangalore, India
S. Choudhury, J.R. Komaragiri, D. Kumar, L. Panwar, P.C. Tiwari

National Institute of Science Education and Research, HBNI, Bhubaneswar, India
S. Bahinipati, D. Dash, C. Kar, P. Mal, T. Mishra, V.K. Muraleedharan Nair Bindhu, A. Nayak, D.K. Sahoo, N. Sur, S.K. Swain

Panjab University, Chandigarh, India
S. Bansal, S.B. Beri, V. Bhatnagar, G. Chaudhary, S. Chauhan, N. Dhinag, R. Gupta, A. Kaur, S. Kaur, P. Kumari, M. Meena, K. Sandeep, S. Sharma, J.B. Singh, A.K. Virdi

University of Delhi, Delhi, India
A. Ahmed, A. Bhardwaj, B.C. Choudhary, R.B. Garg, M. Gola, S. Keshri, A. Kumar, M. Naimuddin, P. Priyanka, K. Ranjan, A. Shah

Saha Institute of Nuclear Physics, HBNI, Kolkata, India
M. Bharti, R. Bhattacharya, S. Bhattacharya, D. Bhowmik, S. Dutta, S. Ghosh, B. Gomber, M. Maity, S. Nandan, P. Palit, P.K. Rout, G. Saha, B. Sahu, S. Sarkar, M. Sharan, B. Singh, S. Thakur

Indian Institute of Technology Madras, Madras, India
P.K. Behera, S.C. Behera, P. Kalbhor, A. Muhammad, R. Pradhan, P.R. Pujahari, A. Sharma, A.K. Sikdar

Bhabha Atomic Research Centre, Mumbai, India
D. Dutta, V. Kumar, K. Naskar, P.K. Netrakanti, L.M. Pant, P. Shukla

Tata Institute of Fundamental Research-A, Mumbai, India
T. Aziz, M.A. Bhat, S. Dugad, R. Kumar Verma, G.B. Mohanty, U. Sarkar

Tata Institute of Fundamental Research-B, Mumbai, India
S. Banerjee, S. Bhattacharya, S. Chatterjee, R. Chudasama, M. Guchait, S. Karmakar, S. Kumar, G. Majumder, K. Mazumdar, S. Mukherjee, D. Roy

Indian Institute of Science Education and Research (IISER), Pune, India
S. Dube, B. Kansal, S. Pandey, A. Rane, A. Rastogi, S. Sharma

Department of Physics, Isfahan University of Technology, Isfahan, Iran
H. Bakhshiansohi, M. Zeinali
Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
S. Chenarani42, S.M. Etesami, M. Khakzad, M. Mohammadi Najafabadi

University College Dublin, Dublin, Ireland
M. Felcini, M. Grunewald

INFN Sezione di Bari a, Università di Bari b, Politecnico di Bari c, Bari, Italy
M. Abbresciaa,b,c, R. Alya,b, C. Arutaa,b, A. Colaleoa, D. Creanzaa,c, N. De Filippisa,c, M. De Palmaa,b, A. Di Florioa,b, A. Di Pilatoa,b, W. Elmetenaweea,b, L. Fiorea, A. Gelmia,b, M. Gula, G. Iasellia,c, M. Incea,b, S. Lezkia,b, G. Maggia,c, M. Maggia, I. Margjekaa,b, V. Mastrapasquaa,b, J.A. Merlina, S. Mya,b, S. Nuzzoa,b, A. Pompilia,b, G. Pugliesea,c, A. Ranieria, G. Selvaggia,b, L. Silvestrisd, F.M. Simonea,b, R. Vendittia, P. Verwilligena

INFN Sezione di Bologna a, Università di Bologna b, Bologna, Italy
G. Abbiendia, C. Battilanaa,b, D. Bonacorsia,b, L. Borgonovia, S. Braibant-Giacomellia,b, R. Campaninia,b, P. Capiluppia,b, A. Castroa,b, F.R. Cavalloa, C. Cioccaa, M. Cuffiania,b, G.M. Dallavallea, T. Diotallevia,b, F. Fabbria, A. Fanfania,b, E. Fontanesia,b, P. Giacomellia, L. Giommia,b, C. Grandia, L. Guiduccia,b, F. Iemmia,b, S. Lo Meoa,44, S. Marcellinia, G. Masettia, F.L. Navarriaa,b, A. Perrottaa, F. Primaveraa,b, A.M. Rossia,b, T. Rovellia,b, G.P. Sirolia,b, N. Tosia

INFN Sezione di Catania a, Università di Catania b, Catania, Italy
S. Albergoa,b,45, S. Costaa,b, A. Di Mattiaa, R. Potenzaa,b, A. Tricomia,b,45, C. Tuvea,b

INFN Sezione di Firenze a, Università di Firenze b, Firenze, Italy
G. Barbarghia, A. Cassesea, R. Ceccarellia,b, V. Ciullia,b, C. Civininia, R. D’Alessandroa,b, F. Fioria, E. Focardia,b, G. Latinoa,b, P. Lenzia,b, M. Lizzoa,b, M. Meschinia, S. Paolettia, R. Seiditaa,b, G. Sguazzonia, L. Viliania

INFN Laboratori Nazionali di Frascati, Frascati, Italy
L. Benussi, S. Bianco, D. Piccolo

INFN Sezione di Genova a, Università di Genova b, Genova, Italy
M. Bozzoa,b, F. Ferroa, R. Mulargiaa,b, E. Robuttia, S. Tosia,b

INFN Sezione di Milano-Bicocca a, Università di Milano-Bicocca b, Milano, Italy
A. Benagliaa, A. Beschia,b, F. Brivioa,b, F. Cetorellia,b, V. Cirioloa,b,21, F. De Guioa,b, M.E. Dinardoa,b, P. Dinia, S. Gennaia, A. Ghezzia,b, P. Govonia,b, L. Guzzia,b, M. Malbertia, S. Malvezzii, A. Massironii, D. Menascei, F. Montii,a,b, L. Moronii,a, M. Paganonii,a,b, D. Pedrinii,a, S. Ragazzii,a,b, T. Tabarelli de Fatisi,a,b, D. Valsecchii,a,b,21, D. Zuoi,a,b

INFN Sezione di Napoli a, Università di Napoli ‘Federico II’ b, Napoli, Italy, Università della Basilicata c, Potenza, Italy, Università G. Marconi d, Roma, Italy
S. Buontempoa, N. Cavalloa,c, A. De Iorioa,b, F. Fabozzia,c, F. Fiengaa, A.O.M. Iorioa,b, L. Listaa,b, S. Meolaa,d,21, P. Paoluccia,b,21, B. Rossia, C. Sciaccaa,b, E. Voevodinaa,b

INFN Sezione di Padova a, Università di Padova b, Padova, Italy, Università di Trento c, Trento, Italy
P. Azzia, N. Bacchettaa, D. Biselloa,b, P. Bortignona, A. Bragagnoloa,b, R. Carlina,b, P. Checciaa, P. De Castro Manzanoa, T. Dorigoa, F. Gasparinia,b, U. Gasparini,a,b, S.Y. Hoha,b, L. Layi,a,46, M. Margonia,b, A.T. Meneguzzoa,b, M. Presillaa,b, P. Ronchesea,b, R. Rossinia,b, F. Simonettoa,b, G. Stronga, M. Tosia,b, H. YARARa,b, M. Zanettia,b, P. Zottoa,b, A. Zucchettaa,b, G. Zumerlea,b

INFN Sezione di Pavia a, Università di Pavia b, Pavia, Italy
C. Aimea,b, A. Braghieria, S. Calzaferria,b, D. Fiorinaa,b, P. Montagnaa,b, S.P. Rattia,b, V. Rea, M. Ressegottia,b, C. Riccardia,b, P. Salvinia, I. Vaia, P. Vitulloa,b
INFN Sezione di Perugia, Università di Perugia, Perugia, Italy
M. Biasini, G.M. Bilei, D. Ciangottini, L. Fanò, P. Lariccia, G. Mantovani, V. Mariani, M. Menichelli, F. Moscatelli, A. Piccinelli, A. Rossi, A. Santocchia, D. Spiga, T. Tedeschi.

INFN Sezione di Pisa, Università di Pisa, Scuola Normale Superiore di Pisa, Pisa, Italy
K. Androsov, P. Azzurri, G. Bagliesi, V. Bertacchi, L. Bianchini, T. Boccali, R. Castaldi, M.A. Ciocci, R. Dell’Orso, M.R. Di Domenico, S. Donato, L. Giannini, A. Giassi, M.T. Grippo, F. Ligabue, E. Manca, G. Mandorli, A. Messineo, F. Palla, G. Ramirez-Sanchez, A. Rizzi, G. Rolandi, S. Roy Chowdhury, A. Scribano, N. Shafiei, P. Spagnolo, R. Tenchini, G. Tonelli, M. Tornago, P. Lariccia, M. Menichelli, F. Moscatelli, A. Piccinelli, A. Rossi, A. Santocchia, G. Mantovani, A. Santocchia.

INFN Sezione di Roma, Sapienza Università di Roma, Rome, Italy
F. Cavallari, M. Cipriani, D. Del Re, E. Di Marco, M. Diemoz, E. Longo, P. Meridiani, G. Organtini, F. Pandolfi, R. Paramatti, C. Quaranta, S. Rahatlou, C. Rovelli, F. Santanastasio, L. Soffi, R. Tramontano.

INFN Sezione di Torino, Università di Torino, Torino, Italy, Università del Piemonte Orientale, Novara, Italy
N. Amapane, R. Arcidiacono, S. Argiro, M. Arneodo, N. Bartosik, R. Bellan, A. Bellora, J. Berenguer Antequera, C. Biino, A. Cappati, N. Cartiglia, S. Cometti, M. Costa, R. Covarelli, N. Demaria, B. Kiani, F. Legger, C. Mariotti, S. Maselli, E. Migliore, V. Monaco, E. Montel, M. Monteno, M.M. Obertino, G. Ortona, L. Pacher, N. Pastrone, M. Pelliccioni, G.L. Pinna Angioni, M. Ruspia, R. Salvatico, F. Siviero, V. Sola, A. Solano, D. Soldi, A. Staiano, M. Tornago, D. Trocino.

INFN Sezione di Trieste, Università di Trieste, Trieste, Italy
S. Belforte, V. Candelise, M. Casarsa, F. Cossutti, A. Da Rold, G. Della Ricca, F. Vazzoler.

Kyungpook National University, Daegu, Korea
S. Dogra, C. Huh, B. Kim, D.H. Kim, G.N. Kim, J. Lee, S.W. Lee, C.S. Moon, Y.D. Oh, S.I. Pak, B.C. Radburn-Smith, S. Sekmen, Y.C. Yang

Chonnam National University, Institute for Universe and Elementary Particles, Kwangju, Korea
H. Kim, D.H. Moon

Hanyang University, Seoul, Korea
B. Francois, T.J. Kim, J. Park

Korea University, Seoul, Korea
S. Cho, S. Choi, Y. Go, S. Ha, B. Hong, K. Lee, K.S. Lee, J. Lim, J. Park, S.K. Park, J. Yoo

Kyung Hee University, Department of Physics, Seoul, Republic of Korea
J. Goh, A. Gurtu

Sejong University, Seoul, Korea
H.S. Kim, Y. Kim

Seoul National University, Seoul, Korea
J. Almond, J.H. Bhyun, J. Choi, S. Jeon, J. Kim, J.S. Kim, S. Ko, H. Kwon, H. Lee, K. Lee, S. Lee, K. Nam, B.H. Oh, M. Oh, S.B. Oh, H. Seo, U.K. Yang, I. Yoon
University of Seoul, Seoul, Korea
D. Jeon, J.H. Kim, B. Ko, J.S.H. Lee, I.C. Park, Y. Roh, D. Song, I.J. Watson

Yonsei University, Department of Physics, Seoul, Korea
H.D. Yoo

Sungkyunkwan University, Suwon, Korea
Y. Choi, C. Hwang, Y. Jeong, H. Lee, Y. Lee, I. Yu

College of Engineering and Technology, American University of the Middle East (AUM), Kuwait
Y. Maghrbi

Riga Technical University, Riga, Latvia
V. Veckalns

Vilnius University, Vilnius, Lithuania
A. Juodagalvis, A. Rinkevicius, G. Tamulaitis, A. Vaitkevicius

National Centre for Particle Physics, Universiti Malaya, Kuala Lumpur, Malaysia
W.A.T. Wan Abdullah, M.N. Yusfi, Z. Zolkapli

Universidad de Sonora (UNISON), Hermosillo, Mexico
J.F. Benitez, A. Castaneda Hernandez, J.A. Murillo Quijada, L. Valencia Palomo

Centro de Investigacion y de Estudios Avanzados del IPN, Mexico City, Mexico
G. Ayala, H. Castilla-Valdez, E. De La Cruz-Burelo, I. Heredia-De La Cruz, R. Lopez-Fernandez, C.A. Mondragon Herrera, D.A. Perez Navarro, A. Sanchez-Hernandez

Universidad Iberoamericana, Mexico City, Mexico
S. Carrillo Moreno, C. Oropeza Barrera, M. Ramirez-Garcia, F. Vazquez Valencia

Benemerita Universidad Autonoma de Puebla, Puebla, Mexico
J. Eysermans, I. Pedraza, H.A. Salazar Ibarguen, C. Uribe Estrada

Universidad Autonoma de San Luis Potosi, San Luis Potosi, Mexico
A. Morelos Pineda

University of Montenegro, Podgorica, Montenegro
J. Mijuskovic, N. Raicevic

University of Auckland, Auckland, New Zealand
D. Krofcheck

University of Canterbury, Christchurch, New Zealand
S. Bheesette, P.H. Butler

National Centre for Physics, Quaid-I-Azam University, Islamabad, Pakistan
A. Ahmad, M.I. Asghar, A. Awais, M.I.M. Awan, H.R. Hoorani, W.A. Khan, M.A. Shah, M. Shoaib, M. Waqas

AGH University of Science and Technology Faculty of Computer Science, Electronics and Telecommunications, Krakow, Poland
V. Avati, L. Grzanka, M. Malawski

National Centre for Nuclear Research, Swierk, Poland
H. Bialkowska, M. BluJ, B. Boimska, T. Frueboes, M. Gorski, M. Kazana, M. Szleper, P. Traczyk, P. Zalewski
Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland
K. Bunkowski, K. Doroba, A. Kalinowski, M. Konecki, J. Krolikowski, M. Walczak

Laboratório de Instrumentação e Física Experimental de Partículas, Lisboa, Portugal
M. Araujo, P. Bargassa, D. Bastos, A. Boletti, P. Faccioli, M. Gallinaro, J. Hollar, N. Leonardo, T. Niknejad, J. Seixas, K. Schedelina, O. Toldaiev, J. Varela

Joint Institute for Nuclear Research, Dubna, Russia
S. Afanasiev, V. Alexakhin, P. Bunin, M. Gavrilenko, I. Golutvin, I. Gorbunov, A. Kamenev, V. Karjavine, V. Korenkov, A. Lanev, A. Malakhov, V. Matveev, V. Mitsyn, V. Palichik, V. Perelygin, M. Savina, S. Shmatov, S. Shulha, V. Smirnov, O. Teryaev, V. Trofimov, A. Zarubin

Petersburg Nuclear Physics Institute, Gatchina (St. Petersburg), Russia
G. Gavrilov, V. Golovtsov, Y. Ivanov, V. Kim, E. Kuznetsova, V. Murzin, V. Oreshkin, I. Smirnov, D. Sosnov, V. Sulimov, L. Uvarov, S. Volkov, A. Vorobyev

Institute for Nuclear Research, Moscow, Russia
Yu. Andreev, A. Dermenev, S. Gninenko, N. Golubev, A. Karneyeu, M. Kirsanov, N. Krasnikov, A. Pashenkov, G. Pivovarov, D. Tlisov, A. Toropin

Institute for Theoretical and Experimental Physics named by A.I. Alikhanov of NRC ‘Kurchatov Institute’, Moscow, Russia
V. Epshteyn, V. Gavrilov, N. Lychkovskaya, A. Nikitenko, V. Popov, G. Safronov, A. Spiridonov, A. Stepanov, M. Toms, E. Vlasov, A. Zhokin

Moscow Institute of Physics and Technology, Moscow, Russia
A. Aushev

National Research Nuclear University ‘Moscow Engineering Physics Institute’ (MEPhI), Moscow, Russia
O. Bychkova, M. Chadeeva, D. Philippov, E. Popova, E. Zhemchugov

P.N. Lebedev Physical Institute, Moscow, Russia
V. Andreev, M. Azarkin, I. Dremin, M. Kirakosyan, A. Terkulov

Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia
A. Belyaev, E. Boos, M. Dubinin, L. Dudko, A. Ershov, V. Klyukhin, O. Kodolova, I. Lokhtin, S. Obraztsov, M. Perfilov, S. Petrushanko, V. Savrin, A. Snigirev

Novosibirsk State University (NSU), Novosibirsk, Russia
V. Blinov, T. Dimova, L. Kardapoltsev, I. Ovtin, Y. Skovpen

Institute for High Energy Physics of National Research Centre ‘Kurchatov Institute’, Protvino, Russia
I. Azhgirey, I. Bayshev, V. Kachanov, A. Kalinin, D. Konstantinov, V. Petrov, R. Ryutin, A. Sobol, S. Troshin, N. Tyurin, A. Uzunian, A. Volkov

National Research Tomsk Polytechnic University, Tomsk, Russia
A. Babaev, A. Iuzhakov, V. Okhotnikov, L. Sukhikh

Tomsk State University, Tomsk, Russia
V. Borchsh, V. Ivanchenko, E. Tcherniaev
University of Belgrade: Faculty of Physics and VINCA Institute of Nuclear Sciences, Belgrade, Serbia
P. Adzic, P. Cirkovic, M. Dordevic, P. Milenovic, J. Milosevic

Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain
M. Aguilar-Benitez, J. Alcaraz Maestre, A. Álvarez Fernández, I. Bachiller, M. Barrio Luna, Cristina F. Bedoya, C.A. Carrillo Montoya, M. Cepeda, M. Cerrada, N. Colino, B. De La Cruz, A. Delgado Peris, J.P. Fernández Ramos, J. Flix, M.C. Fouz, A. García Alonso, O. González Lopez, S. Goy Lopez, J.M. Hernandez, M.I. Josa, J. León Holgado, D. Moran, Á. Navarro Tobar, A. Pérez-Calero Yzquierdo, J. Puerta Pelayo, I. Redondo, L. Romero, S. Sánchez Navas, M.S. Soares, A. Triossi, L. Urda Gómez, C. Willmott

Universidad Autónoma de Madrid, Madrid, Spain
C. Albajar, J.F. de Trocóniz, R. Reyes-Almanza

Universidad de Oviedo, Instituto Universitario de Ciencias y Tecnologías Espaciales de Asturias (ICTEA), Oviedo, Spain
B. Alvarez Gonzalez, J. Cuevas, C. Erice, J. Fernandez Menendez, S. Folgueras, I. Gonzalez Caballero, E. Palencia Cortezon, C. Ramón Álvarez, J. Ripoll Sau, V. Rodríguez Bouza, S. Sanchez Cruz, A. Trapote

Instituto de Física de Cantabria (IFCA), CSIC-Universidad de Cantabria, Santander, Spain
J.A. Brochero Cifuentes, I.J. Cabrillo, A. Calderon, B. Chazin Quero, J. Duarte Campderros, M. Fernandez, P.J. Fernandez Manteca, G. Gomez, C. Martinez Rivero, P. Martinez Ruíz del Arbol, F. Matorras, J. Piedra Gomez, C. Prieeles, F. Ricci-Tam, T. Rodrigo, A. Ruiz-Jimeno, L. Scodellaro, I. Vila, J.M. Vizan Garcia

University of Colombo, Colombo, Sri Lanka
MK Jayananda, B. Kailasapathy, D.U.J. Sonnadara, DDC Wickramarathna

University of Ruhuna, Department of Physics, Matara, Sri Lanka
W.G.D. Dharmaratna, K. Liyanage, N. Perera, N. Wickramage

CERN, European Organization for Nuclear Research, Geneva, Switzerland
T.K. Ararrestad, D. Abbaneo, E. Auffray, G. Auzinger, J. Baechler, P. Baillon, A.H. Ball, D. Barney, J. Bendavid, N. Beni, M. Bianco, A. Bocci, E. Bossini, E. Brondolin, T. Camporesi, M. Capeans Garrido, G. Cerminara, L. Cristella, D. d’Enterria, A. Dabrowski, N. Daci, V. Daponte, A. David, A. De Roeck, M. Deile, R. Di Maria, M. Dobson, M. Dünser, N. Dupont, A. Elliott-Peisert, N. Emriskova, F. Fallavollita, D. Fasanella, S. Fiorendi, A. Florent, G. Franzoni, J. Fulcher, W. Funk, S. Giani, D. Gigi, K. Gill, F. Glege, L. Gouskos, M. Guilbaud, D. Gulhan, M. Haranko, J. Hegeman, Y. Iiyama, V. Innocente, T. James, P. Janot, J. Kaspar, J. Kieseler, M. Komm, N. Kratochwil, C. Lange, S. Laurila, P. Lecoq, K. Long, C. Lourenço, L. Malgeri, S. Mallios, M. Mannelli, F. Meijers, S. Mersi, E. Meschi, F. Moortgat, M. Mulders, S. Orfanelli, L. Orsini, F. Pantaleo, L. Pape, E. Perez, M. Peruzzi, A. Petrilli, G. Petrucciani, A. Pfeiffer, M. Pierini, T. Quast, D. Rabady, A. Racz, M. Rieger, M. Rovere, H. Sakulin, J. Salfeld-Nebgen, S. Scarfi, C. Schäfer, C. Schwik, M. Selvaggi, A. Sharma, P. Silva, W. Snoeys, P. Sphicas, S. Summers, V.R. Tavolaro, D. Treille, A. Tsiou, G.P. Van Onsem, A. Vartak, M. Verzetti, K.A. Wozniak, W.D. Zeuner

Paul Scherrer Institut, Villigen, Switzerland
L. Caminada, W. Erdmann, R. Horisberger, Q. Ingram, H.C. Kaestli, D. Kotlinski, U. Langenegger, T. Rohe
ETH Zurich - Institute for Particle Physics and Astrophysics (IPA), Zurich, Switzerland
M. Backhaus, P. Berger, A. Calandri, N. Chernyavskaya, A. De Cosa, G. Dissertori, M. Dittmar, M. Donegà, C. Dorfer, T. Gadek, T.A. Gómez Espinosa, C. Grab, D. Hits, W. Lueßmann, A.-M. Lyon, R.A. Manzoni, M.T. Meinhard, F. Michel, F. Nessi-Tedaldi, J. Niedziela, F. Pauss, V. Perovic, G. Perrin, S. Pigazzini, M.G. Ratti, M. Reichmann, C. Reissel, T. Reitenspiess, B. Ristic, D. Ruini, D.A. Sanz Becerra, M. Schönberger, V. Stampf, J. Steggemann, M.L. Vesterbacka Olsson, R. Wallny, D.H. Zhu

Universität Zürich, Zurich, Switzerland
C. Amsler, C.M. Kuo, W. Lin, A. Roy, T. Sarkar, S.S. Yu

National Central University, Chung-Li, Taiwan
C. Adloff, T. Chang, Y. Chao, K.F. Chen, P.H. Chen, W.-S. Hou, Y.y. Li, R.-S. Lu, E. Paganis, A. Psallidas, A. Steen, E. Yazgan

National Taiwan University (NTU), Taipei, Taiwan
L. Cead, P. Chang, Y. Chao, K.F. Chen, P.H. Chen, W.-S. Hou, Y.y. Li, R.-S. Lu, E. Paganis, A. Psallidas, A. Steen, E. Yazgan

Chulalongkorn University, Faculty of Science, Department of Physics, Bangkok, Thailand
B. Asavapibhop, C. Asawatangtrakuldee, N. Srimanobhas

Çukurova University, Physics Department, Science and Art Faculty, Adana, Turkey
F. Boran, S. Damarseckin, Z.S. Demiroglu, F. Dolek, C. Dozen, I. Dumanoglu, E. Eskut, G. Gokbulut, Y. Guler, E. Gürpinar Guler, I. Hos, I. Isik, E.E. Kangal, O. Kara, A. Kayis Topaksu, U. Kimsu, G. Onengut, K. Ozdemir, A. Polatoz, B. Tali, U.G. Tok, S. Turkapar, I.S. Zorbakir, C. Zorbilmez

Middle East Technical University, Physics Department, Ankara, Turkey
B. Isildak, G. Karapinar, K. Ocalan, M. Yalvac

Bogazici University, Istanbul, Turkey
B. Akgun, I.O. Atakisi, E. Gülmez, M. Kaya, O. Kaya, Ö. Özcèlik, S. Tekten, E.A. Yetkin

Istanbul Technical University, Istanbul, Turkey
A. Cakir, K. Cankocak, Y. Komurcu, S. Sen

Istanbul University, Istanbul, Turkey
F. Aydınogus Sen, S. Cerci, B. Kaynak, S. Ozkorucuklu, D. Sunar Cerci

Institute for Scintillation Materials of National Academy of Science of Ukraine, Kharkov, Ukraine
B. Gryniov

National Scientific Center, Kharkov Institute of Physics and Technology, Kharkov, Ukraine
L. Levchuk

University of Bristol, Bristol, United Kingdom
E. Bhal, S. Bologna, J.J. Brooke, E. Clement, D. Cussans, H. Flacher, J. Goldstein, G.P. Heath, H.F. Heath, L. Kreczko, B. Krikler, S. Paramesvaran, T. Sakuma, S. Seif El Nasr-Storey, V.J. Smith, N. Stylianou, J. Taylor, A. Titterton

Rutherford Appleton Laboratory, Didcot, United Kingdom
K.W. Bell, A. Belyaev, C. Brew, R.M. Brown, D.J.A. Cockerill, K.V. Ellis, K. Harder,
S. Harper, J. Linacre, K. Manolopoulos, D.M. Newbold, E. Olaiya, D. Petyt, T. Reis, T. Schuh, C.H. Shepherd-Themistocleous, A. Thea, I.R. Tomalin, T. Williams

Imperial College, London, United Kingdom

R. Bainbridge, P. Bloch, S. Bonomally, J. Borg, S. Breeze, O. Buchmuller, A. Bundock, V. Cepaitis, G.S. Chaha84, D. Colling, P. Dauncey, G. Davies, M. Della Negra, G. Fedi, G. Hall, G. Iles, J. Langford, L. Lyons, A.-M. Magnan, S. Malik, A. Martelli, V. Milosevic, J. Nash85, V. Palladino, M. Pesaresi, D.M. Raymond, A. Richards, A. Rose, E. Scott, C. Seez, A. Shtipliyski, M. Stoye, A. Tapper, K. Uchida, T. Virdee21, N. Wardle, S.N. Webb, D. Winterbottom, A.G. Zecchinelli

Brunel University, Uxbridge, United Kingdom

J.E. Cole, P.R. Hobson, A. Khan, P. Kyberd, C.K. Mackay, I.D. Reid, L. Teodorescu, S. Zahid

Baylor University, Waco, USA

S. Abdullin, A. Brinkerhoff, K. Call, B. Caraway, J. Dittmann, K. Hatakeyama, A.R. Kanuganti, C. Madrid, B. McMaster, N. Pastika, S. Sawant, C. Smith, J. Wilson

Catholic University of America, Washington, DC, USA

R. Bartek, A. Dominguez, R. Uniyal, A.M. Vargas Hernandez

The University of Alabama, Tuscaloosa, USA

A. Buccilli, O. Charaf, S.I. Cooper, S.V. Gleyzer, C. Henderson, C.U. Perez, P. Rumerio, C. West

Boston University, Boston, USA

A. Akpınar, A. Albert, D. Arcaro, C. Cosby, Z. Demiragli, D. Gastler, J. Rohlf, K. Salyer, D. Sperka, D. Spitzbart, I. Suarez, S. Yuan, D. Zou

Brown University, Providence, USA

G. Benelli, B. Burkle, X. Coubez22, D. Cutts, Y.t. Duh, M. Hadley, U. Heintz, J.M. Hogan86, K.H.M. Kwok, E. Laird, G. Landsberg, K.T. Lau, J. Lee, M. Narain, S. Sagir87, R. Syarif, E. Usai, W.Y. Wong, D. Yu, W. Zhang

University of California, Davis, Davis, USA

R. Band, C. Brainerd, R. Breedon, M. Calderon De La Barca Sanchez, M. Chertok, J. Conway, R. Conway, P.T. Cox, R. Erbacher, C. Flores, G. Funk, F. Jensen, W. Ko7, O. Kukral, R. Lander, M. Mulhearn, D. Pellett, J. Pilot, M. Shi, D. Taylor, K. Tos, M. Tripathi, Y. Yao, F. Zhang

University of California, Los Angeles, USA

M. Bachtis, R. Cousins, A. Dasgupta, D. Hamilton, J. Hauser, M. Ignatenko, M.A. Iqbal, T. Lam, N. Mccoll, W.A. Nash, S. Regnard, D. Saltzberg, C. Schnaible, B. Stone, V. Valuev

University of California, Riverside, Riverside, USA

K. Burt, Y. Chen, R. Clare, J.W. Gary, G. Hanson, G. Karapostoli, O.R. Long, N. Manganelli, M. Olmedo Negrete, M.I. Paneva, W. Si, S. Wimpenny, Y. Zhang

University of California, San Diego, La Jolla, USA

J.G. Branson, P. Chang, S. Cittolin, S. Cooperstein, N. Deelen, J. Duarte, R. Gerosa, D. Gilbert, V. Krutelyov, J. Letts, M. Masciovecchio, S. May, S. Padhi, M. Pieri, V. Sharma, M. Tadel, F. Würthwein, A. Yagil

University of California, Santa Barbara - Department of Physics, Santa Barbara, USA

N. Amin, C. Campagnari, M. Citron, A. Dorsett, V. Dutta, J. Incandela, B. Marsh, H. Mei, A. Ovcharova, H. Qu, M. Quinnan, J. Richman, U. Sarica, D. Stuart, S. Wang
California Institute of Technology, Pasadena, USA
A. Bornheim, O. Cerri, I. Dutta, J.M. Lawhorn, N. Lu, J. Mao, H.B. Newman, J. Ngadiuba, T.Q. Nguyen, J. Pata, M. Spiropulu, J.R. Vlimant, C. Wang, S. Xie, Z. Zhang, R.Y. Zhu

Carnegie Mellon University, Pittsburgh, USA
J. Alison, M.B. Andrews, T. Ferguson, T. Mudholkar, M. Paulini, M. Sun, I. Vorobiev

University of Colorado Boulder, Boulder, USA
J.P. Cumalat, W.T. Ford, E. MacDonald, T. Mulholland, R. Patel, A. Perloff, K. Stenson, K.A. Ulmer, S.R. Wagner

Cornell University, Ithaca, USA
J. Alexander, Y. Cheng, J. Chu, D.J. Cranshaw, A. Datta, A. Frankenthal, K. Mcdermott, J. Monroy, J.R. Patterson, D. Quach, A. Ryd, W. Sun, S.M. Tan, Z. Tao, J. Thom, P. Wittich, M. Zientek

Fermi National Accelerator Laboratory, Batavia, USA
M. Albrow, M. Alyari, G. Apollinari, A. Apresyan, A. Apyan, S. Banerjee, L.A.T. Bauerick, A. Beretvas, D. Berry, J. Berryhill, P.C. Bhat, K. Burkett, J.N. Butler, A. Canepa, G.B. Cerati, H.W.K. Cheung, F. Chlebana, M. Cremonesi, V.D. Elvira, J. Freeman, Z. Gecse, E. Gottschalk, L. Gray, D. Green, S. Grünendahl, O. Gutsche, R.M. Harris, S. Hasegawa, R. Heller, T.C. Herwig, J. Hirschauer, B. Jayatilaka, S. Jindariani, M. Johnson, U. Joshi, P. Klabbers, T. Klimsma, B. Klima, M.J. Kortelainen, S. Lammel, D. Lincoln, R. Lipton, M. Liu, T. Liu, J. Lykken, K. Maeshima, D. Mason, P. McBride, P. Merkel, S. Mrenna, S. Nahn, V. O’Dell, V. Papadimitriou, K. Pedro, C. Pena55, O. Prokofyev, F. Ravera, A. Reinsvold Hall, L. Ristori, B. Schneider, E. Sexton-Kennedy, N. Smith, A. Soha, W.J. Spalding, L. Spiegel, S. Stoynev, J. Strait, L. Taylor, S. Tkaczyk, N.V. Tran, L. Uplegger, E.W. Vaandering, H.A. Weber, A. Woodard

University of Florida, Gainesville, USA
D. Acosta, P. Avery, D. Bourilkov, L. Cadamuro, V. Cherepanov, F. Errico, R.D. Field, D. Guerrero, B.M. Joshi, M. Kim, J. Konigsberg, A. Korytov, K.H. Lo, K. Matchev, N. Menendez, G. Mitselmakher, D. Rosenzweig, K. Shi, J. Sturdy, J. Wang, S. Wang, X. Zuo

Florida State University, Tallahassee, USA
T. Adams, A. Askew, D. Diaz, R. Habibullah, S. Hagopian, V. Hagopian, K.F. Johnson, R. Khurana, T. Kolberg, G. Martinez, H. Prosper, C. Schiber, R. Yohay, J. Zhang

Florida Institute of Technology, Melbourne, USA
M.M. Baarmand, S. Butalla, T. Elkafrawy88, M. Hohlmann, D. Noonan, M. Rahmani, M. Saunders, F. Yumiceva

University of Illinois at Chicago (UIC), Chicago, USA
M.R. Adams, L. Apanasevich, H. Becerril Gonzalez, R. Cavanaugh, X. Chen, S. Dittmer, O. Evdokimov, C.E. Gerber, D.A. Hangal, D.J. Hofman, C. Mills, G. Oh, T. Roy, M.B. Tonjes, N. Varelas, J. Vinnikainen, X. Wang, Z. Wu, Z. Ye

The University of Iowa, Iowa City, USA
M. Alhusseinii, K. Dilis89, S. Dürgut, R.P. Gandrajula, M. Haytmyradov, V. Khristenko, O.K. Köseyan, J.-P. Merlo, A. Mestvirishvili90, A. Moeller, J. Nachtman, H. Ogul91, Y. Onel, F. Ozok92, A. Penzo, C. Snyder, E. Tiras, J. Wetzel

Johns Hopkins University, Baltimore, USA
O. Amram, B. Blumenfeld, L. Corcodilos, M. Eminiizer, A.V. Gritsan, S. Kyriacou, P. Maksimovic, C. Mantilla, J. Roskes, M. Swartz, T.Á. Vámi
The University of Kansas, Lawrence, USA
C. Baldenegro Barrera, P. Baringer, A. Bean, A. Bylinkin, T. Isidori, S. Khalil, J. King, G. Krintiras, A. Kropivnitskaya, C. Lindsey, N. Minafra, M. Murray, C. Rogan, C. Royon, S. Sanders, E. Schmitz, J.D. Tapia Takaki, Q. Wang, J. Williams, G. Wilson

Kansas State University, Manhattan, USA
S. Duric, A. Ivanov, K. Kaadze, D. Kim, Y. Maravin, T. Mitchell, A. Modak, A. Mohammadi

Lawrence Livermore National Laboratory, Livermore, USA
F. Rebassoo, D. Wright

University of Maryland, College Park, USA
E. Adams, A. Baden, O. Baron, A. Belloni, S.C. Eno, Y. Feng, N.J. Hadley, S. Jabeen, G.Y. Jeng, R.G. Kellogg, T. Koeth, A.C. Mignerey, S. Nabili, M. Seidel, A. Skuja, S.C. Tonwar, L. Wang, K. Wong

Massachusetts Institute of Technology, Cambridge, USA
D. Abercrombie, B. Allen, R. Bi, S. Brandt, W. Busza, I.A. Cali, Y. Chen, M. D’Alfonso, G. Gomez Ceballos, M. Goncharov, P. Harris, D. Hsu, M. Hu, M. Klute, D. Kovalskyi, J. Krupa, Y.-J. Lee, P.D. Luckey, B. Maier, A.C. Marini, C. Mccginn, C. Mironov, S. Narayanan, X. Niu, C. Paus, D. Rankin, C. Roland, G. Roland, Z. Shi, G.S.F. Stephens, K. Sumorok, K. Tatar, D. Velicanu, J. Wang, T.W. Wang, Z. Wang, B. Wyslouch

University of Minnesota, Minneapolis, USA
R.M. Chatterjee, A. Evans, P. Hansen, J. Hiltbrand, Sh. Jain, M. Krohn, Y. Kubota, Z. Lesko, J. Mans, M. Revering, R. Rusack, R. Saradhy, N. Schroeder, N. Strobbe, M.A. Wadud

University of Mississippi, Oxford, USA
J.G. Acosta, S. Oliveros

University of Nebraska-Lincoln, Lincoln, USA
K. Bloom, S. Chauhan, D.R. Claes, C. Fangmeier, L. Finco, F. Golf, J.R. González Fernández, C. Joo, I. Kravchenko, J.E. Siado, G.R. Snow†, W. Tabb, F. Yan

State University of New York at Buffalo, Buffalo, USA
G. Agarwal, H. Bandyopadhyay, C. Harrington, L. Hay, I. Iashvili, A. Kharchilava, C. McLean, D. Nguyen, J. Pekkanen, S. Rappoccio, B. Roozbahani

Northeastern University, Boston, USA
G. Alverson, E. Barberis, C. Freer, Y. Haddad, A. Hortiangtham, J. Li, G. Madigan, B. Marzocchi, D.M. Morse, V. Nguyen, T. Orimoto, A. Parker, L. Skinnari, A. Tishelman-Charny, T. Wamorkar, B. Wang, A. Wisecarver, D. Wood

Northwestern University, Evanston, USA
S. Bhattacharya, J. Bueghly, Z. Chen, A. Gilbert, T. Gunter, K.A. Hahn, N. Odell, M.H. Schmitt, K. Sung, M. Velasco

University of Notre Dame, Notre Dame, USA
R. Bucci, N. Dev, R. Goldouzian, M. Hildreth, K. Hurtado Anampa, C. Jessop, D.J. Karmgard, K. Lannon, N. Loukas, N. Marinelli, I. Mcaulster, F. Meng, K. Mohrman, Y. Musienko, R. Ruchti, P. Siddireddy, S. Taroni, M. Wayne, A. Wightman, M. Wolf, L. Zygala

The Ohio State University, Columbus, USA
J. Alimena, B. Bylsma, B. Cardwell, L.S. Durkin, B. Francis, C. Hill, A. Lefeld, B.L. Winer, B.R. Yates
Princeton University, Princeton, USA
B. Bonham, P. Das, G. Dezoort, P. Elmer, B. Greenberg, N. Haubrich, S. Higginbotham, A. Kalogeropoulos, G. Kopp, S. Kwan, D. Lange, M.T. Lucchini, J. Luo, D. Marlow, K. Mei, I. Ojalvo, J. Olsen, C. Palmer, P. Piroué, D. Stickland, C. Tully

University of Puerto Rico, Mayaguez, USA
S. Malik, S. Norberg

Purdue University, West Lafayette, USA
V.E. Barnes, R. Chawla, S. Das, L. Gutay, M. Jones, A.W. Jung, G. Negro, N. Neumeister, C.C. Peng, S. Piperov, A. Purohit, H. Qiu, J.F. Schulte, M. Stojanovic18, N. Trevisani, F. Wang, A. Wildridge, R. Xiao, W. Xie

Purdue University Northwest, Hammond, USA
J. Dolen, N. Parashar

Rice University, Houston, USA
A. Baty, S. Dildick, K.M. Ecklund, S. Freed, F.J.M. Geurts, M. Kilpatrick, A. Kumar, W. Li, B.P. Padley, R. Redjimi, J. Roberts†, J. Rorie, W. Shi, A.G. Stahl Leiton

University of Rochester, Rochester, USA
A. Bodek, P. de Barbaro, R. Demina, J.L. Dulemba, C. Fallon, T. Ferbel, M. Galanti, A. Garcia-Bellido, O. Hindrichs, A. Khukhunaishvili, E. Ranken, R. Taus

Rutgers, The State University of New Jersey, Piscataway, USA
B. Chiarito, J.P. Chou, A. Gandrakota, Y. Gershtein, E. Halkiadakis, A. Hart, M. Heindl, E. Hughes, S. Kaplan, O. Karacheban25, I. Laflotte, A. Lath, R. Montalvo, K. Nash, M. Osherson, S. Salur, S. Schnetzer, S. Somalwar, R. Stone, S.A. Thayil, S. Thomas, H. Wang

University of Tennessee, Knoxville, USA
H. Acharya, A.G. Delannoy, S. Spanier

Texas A&M University, College Station, USA
O. Bouhali93, M. Dalchenko, A. Delgado, R. Eusebi, J. Gilmore, T. Huang, T. Kamon94, H. Kim, S. Luo, S. Malhotra, R. Mueller, D. Overton, L. Perniè, D. Rathjens, A. Safonov

Texas Tech University, Lubbock, USA
N. Akchurin, J. Damgov, V. Hegde, S. Kunori, K. Lamichhane, S.W. Lee, T. Mengke, S. Muthumuni, T. Peltola, S. Undleeb, I. Volobouev, Z. Wang, A. Whitbeck

Vanderbilt University, Nashville, USA
E. Appelt, S. Greene, A. Gurrola, R. Janjam, W. Johns, C. Maguire, A. Melo, H. Ni, K. Padeken, F. Romeo, P. Sheldon, S. Tuo, J. Velkovska

University of Virginia, Charlottesville, USA
M.W. Arenton, B. Cox, G. Cummings, J. Hakala, R. Hirosky, M. Joyce, A. Ledovsky, A. Li, C. Neu, B. Tannenwald, Y. Wang, E. Wolfe, F. Xia

Wayne State University, Detroit, USA
P.E. Karchin, N. Poudyal, P. Thapa

University of Wisconsin - Madison, Madison, WI, USA
K. Black, T. Bose, J. Buchanan, C. Caillol, S. Dasu, I. De Bruyn, P. Everaerts, C. Galloni, H. He, M. Herndon, A. Hervé, U. Hussain, A. Lanaro, A. Loeliger, R. Loveless, J. Madhusudanan Sreekala, A. Mallampalli, D. Pinna, A. Savin, V. Shang, V. Sharma, W.H. Smith, D. Teague, S. Trembath-reichert, W. Vetens
†: Deceased

1: Also at Vienna University of Technology, Vienna, Austria

2: Also at Institute of Basic and Applied Sciences, Faculty of Engineering, Arab Academy for Science, Technology and Maritime Transport, Alexandria, Egypt, Alexandria, Egypt

3: Also at Université Libre de Bruxelles, Bruxelles, Belgium

4: Also at IRFU, CEA, Université Paris-Saclay, Gif-sur-Yvette, France

5: Also at Universidade Estadual de Campinas, Campinas, Brazil

6: Also at Federal University of Rio Grande do Sul, Porto Alegre, Brazil

7: Also at UFMS, Nova Andradina, Brazil

8: Also at Universidade Federal de Pelotas, Pelotas, Brazil

9: Also at Nanjing Normal University Department of Physics, Nanjing, China

10: Now at The University of Iowa, Iowa City, USA

11: Also at University of Chinese Academy of Sciences, Beijing, China

12: Also at Institute for Theoretical and Experimental Physics named by A.I. Alikhanov of NRC ‘Kurchatov Institute’, Moscow, Russia

13: Also at Joint Institute for Nuclear Research, Dubna, Russia

14: Also at Cairo University, Cairo, Egypt

15: Also at Helwan University, Cairo, Egypt

16: Now at Zewail City of Science and Technology, Zewail, Egypt

17: Now at British University in Egypt, Cairo, Egypt

18: Also at Purdue University, West Lafayette, USA

19: Also at Université de Haute Alsace, Mulhouse, France

20: Also at Erzincan Binali Yildirim University, Erzincan, Turkey

21: Also at CERN, European Organization for Nuclear Research, Geneva, Switzerland

22: Also at RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany

23: Also at University of Hamburg, Hamburg, Germany

24: Also at Department of Physics, Isfahan University of Technology, Isfahan, Iran, Isfahan, Iran

25: Also at Brandenburg University of Technology, Cottbus, Germany

26: Also at Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia

27: Also at Institute of Physics, University of Debrecen, Debrecen, Hungary, Debrecen, Hungary

28: Also at Physics Department, Faculty of Science, Assiut University, Assiut, Egypt

29: Also at Eszterhazy Karoly University, Karoly Robert Campus, Gyongyos, Hungary

30: Also at Institute of Nuclear Research ATOMKI, Debrecen, Hungary

31: Also at MTA-ELTE Lendület CMS Particle and Nuclear Physics Group, Eötvös Loránd University, Budapest, Hungary, Budapest, Hungary

32: Also at Wigner Research Centre for Physics, Budapest, Hungary

33: Also at IIT Bhubaneswar, Bhubaneswar, India, Bhubaneswar, India

34: Also at Institute of Physics, Bhubaneswar, India

35: Also at G.H.G. Khalsa College, Punjab, India

36: Also at Shoolini University, Solan, India

37: Also at University of Hyderabad, Hyderabad, India

38: Also at University of Visva-Bharati, Santiniketan, India

39: Also at Indian Institute of Technology (IIT), Mumbai, India

40: Also at Deutsches Elektronen-Synchrotron, Hamburg, Germany

41: Also at Sharif University of Technology, Tehran, Iran

42: Also at Department of Physics, University of Science and Technology of Mazandaran,
Behshahr, Iran
43: Now at INFN Sezione di Bari a, Università di Bari b, Politecnico di Bari c, Bari, Italy
44: Also at Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Bologna, Italy
45: Also at Centro Siciliano di Fisica Nucleare e di Struttura Della Materia, Catania, Italy
46: Also at Università di Napoli ‘Federico II’, NAPOLI, Italy
47: Also at Riga Technical University, Riga, Latvia, Riga, Latvia
48: Also at Consejo Nacional de Ciencia y Tecnologia, Mexico City, Mexico
49: Also at Institute for Nuclear Research, Moscow, Russia
50: Now at National Research Nuclear University ‘Moscow Engineering Physics Institute’ (MEPhI), Moscow, Russia
51: Also at St. Petersburg State Polytechnical University, St. Petersburg, Russia
52: Also at University of Florida, Gainesville, USA
53: Also at Imperial College, London, United Kingdom
54: Also at P.N. Lebedev Physical Institute, Moscow, Russia
55: Also at California Institute of Technology, Pasadena, USA
56: Also at Budker Institute of Nuclear Physics, Novosibirsk, Russia
57: Also at Faculty of Physics, University of Belgrade, Belgrade, Serbia
58: Also at Trincomalee Campus, Eastern University, Sri Lanka, Nilaveli, Sri Lanka
59: Also at INFN Sezione di Pavia a, Università di Pavia b, Pavia, Italy, Pavia, Italy
60: Also at National and Kapodistrian University of Athens, Athens, Greece
61: Also at Universität Zürich, Zurich, Switzerland
62: Also at Ecole Polytechnique Fédérale Lausanne, Lausanne, Switzerland
63: Also at Stefan Meyer Institute for Subatomic Physics, Vienna, Austria, Vienna, Austria
64: Also at Laboratoire d’Annecy-le-Vieux de Physique des Particules, IN2P3-CNRS, Annecy-le-Vieux, France
65: Also at Şırnak University, Şırnak, Turkey
66: Also at Department of Physics, Tsinghua University, Beijing, China, Beijing, China
67: Also at Near East University, Research Center of Experimental Health Science, Nicosia, Turkey
68: Also at Beykent University, Istanbul, Turkey, Istanbul, Turkey
69: Also at Istanbul Aydin University, Application and Research Center for Advanced Studies (App. & Res. Cent. for Advanced Studies), Istanbul, Turkey
70: Also at Mersin University, Mersin, Turkey
71: Also at Piri Reis University, Istanbul, Turkey
72: Also at Adiyaman University, Adiyaman, Turkey
73: Also at Ozyegin University, Istanbul, Turkey
74: Also at Izmir Institute of Technology, Izmir, Turkey
75: Also at Necmettin Erbakan University, Konya, Turkey
76: Also at Bozok Universitesi Rektörlüğü, Yozgat, Turkey, Yozgat, Turkey
77: Also at Marmara University, Istanbul, Turkey
78: Also at Milli Savunma University, Istanbul, Turkey
79: Also at Kafkas University, Kars, Turkey
80: Also at Istanbul Bilgi University, Istanbul, Turkey
81: Also at Hacettepe University, Ankara, Turkey
82: Also at Vrije Universiteit Brussel, Brussel, Belgium
83: Also at School of Physics and Astronomy, University of Southampton, Southampton, United Kingdom
84: Also at IPPP Durham University, Durham, United Kingdom
85: Also at Monash University, Faculty of Science, Clayton, Australia
86: Also at Bethel University, St. Paul, Minneapolis, USA, St. Paul, USA
87: Also at Karamanoğlu Mehmetbey University, Karaman, Turkey
88: Also at Ain Shams University, Cairo, Egypt
89: Also at Bingol University, Bingol, Turkey
90: Also at Georgian Technical University, Tbilisi, Georgia
91: Also at Sinop University, Sinop, Turkey
92: Also at Mimar Sinan University, Istanbul, Istanbul, Turkey
93: Also at Texas A&M University at Qatar, Doha, Qatar
94: Also at Kyungpook National University, Daegu, Korea, Daegu, Korea