On the decay rate for degenerate gradient flows subject to persistent excitation

Dario Prandi
Université Paris-Saclay, CNRS, CentraleSupélec, Laboratoire des signaux et des systèmes

Joint work with Yacine Chitour and Paolo Mason

SMAI 2021 – 10ème Biennale
24 juin 2021
Degenerate gradient flows

Consider

\[\dot{x}(t) = -c(t)c(t)^\top x(t), \quad x \in \mathbb{R}^n, \quad c : [0, +\infty) \to \mathbb{R}^n. \quad \text{(DGF)} \]

These systems appear in algorithms for, e.g.,

1. Gradient descent with incomplete knowledge of the gradient
2. Identification and model reference adaptive control
3. Consensus in multi-agent systems

Objective

Guarantee convergence and stability of (DGF) at the origin, and extract information on the decay rate.
Motivation: Adaptive filters

Consider the scalar output system

\[z(t) = h^\top c(t). \]

Problem

Estimate the parameter \(h \in \mathbb{R}^n \), knowing the input \(c : \mathbb{R}_+ \to \mathbb{R}^n \) and the output \(z : [0, +\infty) \to \mathbb{R} \).

Given an estimate \(\hat{h} : [0, +\infty) \to \mathbb{R}^n \), we let \(\hat{z}(t) = \hat{h}(t)^\top c(t) \). Then let

\[\frac{d}{dt} \hat{h}(t) = (z(t) - \hat{z}(t))c(t). \]

Then, the misalignement vector \(x(t) = h - \hat{h}(t) \) satisfies (DGF):

\[\dot{x}(t) = - (z(t) - \hat{z}(t)) c(t) = - (x(t)^\top c(t)) c(t) \]
Consider the scalar output system
\[z(t) = h^\top c(t). \]

Problem

Estimate the parameter \(h \in \mathbb{R}^n \), knowing the input \(c : \mathbb{R}_+ \rightarrow \mathbb{R}^n \) and the output \(z : [0, +\infty) \rightarrow \mathbb{R} \).

Given an estimate \(\hat{h} : [0, +\infty) \rightarrow \mathbb{R}^n \), we let \(\hat{z}(t) = \hat{h}(t)^\top c(t) \). Then let
\[
\frac{d}{dt} \hat{h}(t) = (z(t) - \hat{z}(t))c(t).
\]

Then, the misalignment vector \(x(t) = h - \hat{h}(t) \) satisfies (DGF):
\[
\dot{x}(t) = - (z(t) - \hat{z}(t))c(t) = - (x(t)^\top c(t)) c(t)
\]

Convergence to 0 of (DGF) \(\iff \) Quality of the estimator \(\hat{h} \)
Persistent excitation

We say that \(c \) verifies the *persistent excitation* condition if there exists \(a, b, T > 0 \) such that

\[
\forall t \geq 0, \quad a \mathbf{1} \mathbb{R}^n \leq \int_t^{t+T} c(s)c(s)\top ds \leq b \mathbf{1} \mathbb{R}^n.
\]

(PE)

Theorem (cf., Anderson, Narendra, et al.)

A signal \(c \) verifies (PE) if and only if (DGF) is uniformly globally exponentially stable at 0. That is, there exist \(C, \alpha > 0 \) such that

\[
\|x(t)\| \leq Ce^{-\alpha(t-s)}\|x(s)\|, \quad \forall t > s \geq 0.
\]

- (PE) says that \(c \) “visits all directions of \(\mathbb{R}^n \) during a time window”.
- The upper bound \(b \) is essential. Indeed, by Barabanov et al. (2005), if \(b = +\infty \) it can happen that

\[
x(t) \rightarrow \bar{x} \neq 0 \quad \text{as } t \rightarrow +\infty
\]
Under (PE), the system $\dot{x} = -cc^T x$ is **globally exponentially stable**:

$$\|x(t)\| \leq Ce^{-\alpha t}\|x(0)\|, \quad \forall t \geq 0.$$ \hspace{1cm} (GES)

The **decay rate** for (DGF) is

$$R(c) := \sup\{\alpha > 0 \mid \text{(GES) holds}\} = -\limsup_{t \to +\infty} \frac{\log \|\Phi_c(t, 0)\|}{t},$$

where $\Phi_c(t, 0)$ is the fundamental matrix of (DGF) from 0 to t.

Definition

The **worst decay rate** is

$$R(a, b, T, n) := \inf\{R(c) \mid c \text{ satisfies (PE) with parameters } a, b, T\}.$$

\rightsquigarrow **Yields the guaranteed** convergence rate of the system.
Main result

Many lower bounds for $R(a, b, T, n)$ exist in the literature, of the type:

Theorem (cf., Andersson and Krishnaprasad (2002))

There exists $C_1 > 0$ such that

$$R(a, b, T, n) \geq \frac{C_1 a}{(1 + nb^2)T}, \quad \forall T > 0, \ a < b, \ n \in \mathbb{N}.$$

Problem: Are these bounds optimal?
Main result

Many lower bounds for $R(a, b, T, n)$ exist in the literature, of the type:

Theorem (cf., Andersson and Krishnaprasad (2002))

There exists $C_1 > 0$ such that

$$R(a, b, T, n) \geq \frac{C_1 a}{(1 + nb^2)T}, \quad \forall T > 0, \, a < b, \, n \in \mathbb{N}.$$

Problem: Are these bounds optimal?

Theorem (Chitour-Mason-Prandi)

There exists $C_0 > 0$ such that

$$R(a, b, T, n) \leq \frac{C_0 a}{(1 + b^2)T}, \quad \forall T > 0, \, a < b, \, n \in \mathbb{N}.$$

\Rightarrow We recover the result by Barabanov et al. (2005)
Application I: Generalized persistent excitation

More general condition considered in Barabanov and Ortega (2017), Praly (2017), Efimov et al. (2018):

\[a_\ell \text{Id}_n \leq \int_{\tau_\ell}^{\tau_{\ell + 1}} c(s)c(s)^T \, ds \leq b_\ell \text{Id}_n, \quad \forall \ell \in \mathbb{N} \tag{GPE} \]

where \(a_\ell, b_\ell > 0 \), and \((\tau_\ell)_{\ell \in \mathbb{N}} \) is strictly increasing with \(\tau_\ell \to +\infty \).

Theorem (Praly (2017))

Condition (GPE) guarantees global asymptotic stability of (DGF) if

\[\sum_{\ell=1}^{\infty} \frac{a_\ell}{(1 + b_\ell)^2} = +\infty. \tag{2} \]
Application I: Generalized persistent excitation

More general condition considered in Barabanov and Ortega (2017), Praly (2017), Efimov et al. (2018):

\[a_\ell \text{Id}_n \leq \int_{\tau_\ell}^{\tau_\ell+1} c(s)c(s)^T \, ds \leq b_\ell \text{Id}_n, \quad \forall \ell \in \mathbb{N} \]

where \(a_\ell, b_\ell > 0 \), and \((\tau_\ell)_{\ell \in \mathbb{N}}\) is strictly increasing with \(\tau_\ell \to +\infty \).

Theorem (Praly (2017))

Condition (GPE) guarantees global asymptotic stability of (DGF) if

\[\sum_{\ell=1}^{\infty} \frac{a_\ell}{(1 + b_\ell)^2} = +\infty. \]

Theorem (Chitour-Mason-Prandi)

For every sequence \((a_\ell)_{\ell \in \mathbb{N}}, (b_\ell)_{\ell \in \mathbb{N}} \subset (0, +\infty)\) not satisfying (2), there exists a signal \(c \) satisfying (GPE) for which (DGF) is not globally asymptotically stable.
Application II: L^2-gain for (DGF) systems with linear input

Consider the controlled (DGF) system:

$$\dot{x}(t) = -c(t)c(t)^{\top}x(t) + u(t), \quad u \in L^2([0, +\infty), \mathbb{R}^n).$$

Let $\gamma(c)$ be the L^2-gain of the input/output map $u \mapsto x$:

$$\gamma(c) = \sup_{u \in L^2 \setminus \{0\}} \frac{\|x_u\|_2}{\|u\|_2}$$

Rantzer (1999) posed the problem of determining the worst L^2 gain:

$$\gamma(a, b, T, n) = \sup\{\gamma(c) \mid c \text{ satisfies (PE)}\}.$$
Consider the controlled (DGF) system:
\[\dot{x}(t) = -c(t)c(t)^T x(t) + u(t), \quad u \in L^2([0, +\infty), \mathbb{R}^n). \]

Let \(\gamma(c) \) be the \(L^2 \)-gain of the input/output map \(u \mapsto x \):
\[\gamma(c) = \sup_{u \in L^2 \setminus \{0\}} \frac{\|x_u\|_2}{\|u\|_2} \]

Rantzer (1999) posed the problem of determining the worst \(L^2 \) gain:
\[\gamma(a, b, T, n) = \sup\{ \gamma(c) \mid c \text{ satisfies (PE)} \}. \]

Theorem (Chitour-Mason-Prandi)

There exists \(\kappa_0, \kappa_1 > 0 \) such that for all \(T > 0, a \leq b, n \geq 2 \), it holds
\[\kappa_0 \frac{(1 + b^2)T}{a} \leq \gamma(a, b, T, n) \leq \kappa_1 \frac{(1 + nb^2)T}{a}. \]
Idea

Connect $R(a, b, T, n) = \inf R(c)$ with an optimal control problem.
Sketch of the proof

Idea

Connect $R(a, b, T, n) = \inf R(c)$ with an optimal control problem.

Recall that

$$R(c) = -\limsup_{t \to +\infty} \frac{1}{t} \sup \left\{ \log \frac{\|x(t)\|}{\|x(0)\|} \mid x(0) \in \mathbb{R}^n \right\}$$

• The dynamics of ω are independent of r.
• The dynamics of r yield:

$$-\log \frac{\|x(T)\|}{\|x(0)\|} = -\log r(T) r(0) = \int_0^T (c^\top \omega)^2 \, ds =: J_T(c, \omega_0).$$
Sketch of the proof

Idea

Connect \(R(a, b, T, n) = \inf R(c) \) with an optimal control problem.

Recall that

\[
R(c) = \lim_{t \to +\infty} \inf \frac{1}{t} \inf \left\{ -\log \frac{\|x(t)\|}{\|x(0)\|} \mid x(0) \in \mathbb{R}^n \right\}
\]
Sketch of the proof

Idea
Connect $R(a, b, T, n) = \inf R(c)$ with an optimal control problem.

Recall that

$$R(c) = \liminf_{t \to +\infty} \frac{1}{t} \inf \left\{ -\log \frac{\|x(t)\|}{\|x(0)\|} \mid x(0) \in \mathbb{R}^n \right\}$$

Polar coordinates: Letting $x = r\omega$ for $r > 0$ and $\omega \in \mathbb{S}^{n-1}$, (DGF) reads

$$\begin{aligned}
\dot{r} &= -(c^T \omega)^2 r, \\
\dot{\omega} &= -c^T \omega (c - (c^T \omega)\omega), \quad r_0 = \|x(0)\|, \quad \omega_0 = \frac{x(0)}{\|x(0)\|}.
\end{aligned}$$

- The dynamics of ω are independent of r.
- The dynamics of r yield:

$$-\log \frac{\|x(T)\|}{\|x(0)\|} = -\log \frac{r(T)}{r(0)} = \int_0^T (c^T \omega)^2 \, ds =: J_T(c, \omega_0).$$
Sketch of the proof

Idea
Connect $R(a, b, T, n) = \inf R(c)$ with an optimal control problem.

Recall that

$$R(c) = \lim_{t \to +\infty} \inf \frac{1}{t} \inf \left\{ J_t(c, \omega_0) \mid \omega_0 \in \mathbb{R}^n \right\}$$

Polar coordinates: Letting $x = r\omega$ for $r > 0$ and $\omega \in S^{n-1}$, (DGF) reads

$$\begin{aligned}
\dot{r} &= -(c^T \omega)^2 r, \\
\dot{\omega} &= -c^T \omega (c - (c^T \omega)\omega), \\
\end{aligned}$$

where $r_0 = \|x(0)\|$, $\omega_0 = \frac{x(0)}{\|x(0)\|}$.

- The dynamics of ω are independent of r.
- The dynamics of r yield:

$$- \log \frac{\|x(T)\|}{\|x(0)\|} = - \log \frac{r(T)}{r(0)} = \int_0^T (c^T \omega)^2 \, ds =: J_T(c, \omega_0).$$
Optimal control problem:

\[
\mu(a, b, T, n) := \min J_T(c, \omega_0) = \min \int_0^T (c^T \omega)^2 \, ds
\]

Here, \(c : [0, T] \to \mathbb{R}^n \) runs over all signals satisfying

\[
a \mathbf{1}d_n \leq \int_0^T c(s)c(s)^T \, ds \leq b \mathbf{1}d_n,
\]

and \(\omega \) is a solution to (Pol) with \(\omega(0) = \omega_0 \in \mathbb{S}^{n-1} \).
Sketch of the proof II

Optimal control problem:

\[\mu(a, b, T, n) := \min J_T(c, \omega_0) = \min \int_0^T (c^T \omega)^2 \, ds \]

Here, \(c : [0, T] \to \mathbb{R}^n \) runs over all signals satisfying

\[a \mathbb{I} \leq \int_0^T c(s)c(s)^T \, ds \leq b \mathbb{I}, \]

and \(\omega \) is a solution to (Pol) with \(\omega(0) = \omega_0 \in S^{n-1} \).

Steps:

1. Prove that

\[R(a, b, T, n) \leq 2 \frac{\mu(a/2, b/2, T, n)}{T} \]

Show that \(\mu(a/2, b/2, T, n) \) is realized by an optimal control \(c_* : [0, T] \to \mathbb{R}^n \), which extends to a 2T-periodic (PE) signal \(c_* : \mathbb{R}_+ \to \mathbb{R}^n \)
Sketch of the proof II

Optimal control problem:

\[
\mu(a, b, T, n) := \min J_T(c, \omega_0) = \min \int_0^T (c^T \omega)^2 \, ds
\]

Here, \(c : [0, T] \to \mathbb{R}^n \) runs over all signals satisfying

\[
a \text{Id}_n \leq \int_0^T c(s)c(s)^T \, ds \leq b \text{Id}_n,
\]

and \(\omega \) is a solution to \((\text{Pol})\) with \(\omega(0) = \omega_0 \in \mathbb{S}^{n-1} \).

Steps:

1. Prove that

\[
R(a, b, T, n) \leq 2 \frac{\mu(a/2, b/2, T, n)}{T}
\]

≈ Show that \(\mu(a/2, b/2, T, n) \) is realized by an optimal control \(c_* : [0, T] \to \mathbb{R}^n \),

which extends to a \(2T \)-periodic (PE) signal \(c_* : \mathbb{R}_+ \to \mathbb{R}^n \).

2. Show that \(\mu(a, b, T, n) \leq \mu(a, b, T, 2) \);
Sketch of the proof II

Optimal control problem:

\[\mu(a, b, T, n) := \min J_T(c, \omega_0) = \min \int_0^T (c^\top \omega)^2 \, ds \]

Here, \(c : [0, T] \to \mathbb{R}^n \) runs over all signals satisfying

\[a \text{Id}_n \leq \int_0^T c(s)c(s)^\top \, ds \leq b \text{Id}_n, \]

and \(\omega \) is a solution to (Pol) with \(\omega(0) = \omega_0 \in \mathbb{S}^{n-1} \).

Steps:

1. Prove that

\[R(a, b, T, n) \leq 2 \frac{\mu(a/2, b/2, T, n)}{T} \]

\(\leadsto \) Show that \(\mu(a/2, b/2, T, n) \) is realized by an optimal control \(c_* : [0, T] \to \mathbb{R}^n \),

which extends to a 2T-periodic (PE) signal \(c_* : \mathbb{R}_+ \to \mathbb{R}^n \)

2. Show that \(\mu(a, b, T, n) \leq \mu(a, b, T, 2) \);

3. Precisely estimate \(\mu(a, b, T, 2) \).
Sketch of the proof II

Optimal control problem:

\[\mu(a, b, T, n) := \min J_T(c, \omega_0) = \min \int_0^T (c^T \omega)^2 \, ds \]

Here, \(c : [0, T] \to \mathbb{R}^n \) runs over all signals satisfying

\[a \text{Id}_n \leq \int_0^T c(s)c(s)^T \, ds \leq b \text{Id}_n, \]

and \(\omega \) is a solution to (Pol) with \(\omega(0) = \omega_0 \in \mathbb{S}^{n-1} \).

Steps:

1. Prove that

\[R(a, b, T, n) \leq 2 \frac{\mu(a/2, b/2, T, n)}{T} \]

\(\leadsto \) Show that \(\mu(a/2, b/2, T, n) \) is realized by an optimal control \(c^* : [0, T] \to \mathbb{R}^n \), which extends to a 2T-periodic (PE) signal \(c^* : \mathbb{R}_+ \to \mathbb{R}^n \).

2. Show that \(\mu(a, b, T, n) \leq \mu(a, b, T, 2) \);
3. Precisely estimate \(\mu(a, b, T, 2) \).

PMP
More general systems

We obtain the same result for the worst rate of decay for the more general system

\[
\dot{x}(t) = -S(t)x(t)
\]

were \(S(t) \in \mathbb{R}^{n \times n} \) is such that \(S(t) \geq 0 \) and for \(a, b, T > 0 \)

\[
a \mathbf{I}d_n \leq \int_{t}^{t+T} S \, ds \leq b \mathbf{I}d_n
\]

\(\hookrightarrow \) The family of signals \(S \) is obtained as the convexification of the family \(cc^\top \) where \(c : [0, T] \to \mathbb{R}^n \) satisfies (PE)

\(\hookrightarrow \) the worst rate of decay is realized by (DGF), e.g., \(S = cc^\top \)
Open question

For a, b, T fixed, what dependence on the dimension?

$$
\frac{C_1}{n} \leq \lim_{b \to \infty} R(a, b, T, n) \left(\frac{1 + b^2 T}{a} \right) \leq C_0.
$$

- The technique used in the proof yields also the lower bound

 $$
 R(a, b, T, n) \geq \frac{\mu(a, b, T, n)}{T}.
 $$

- At the moment we cannot directly access $\mu(a, b, T, n)$ for $n \neq 2$.

Thank you for your attention!

Y. Chitour, P. Mason, D. Prandi

Worst Exponential Decay Rate for Degenerate Gradient flows subject to persistent excitation

To appear on SIAM Journal on Control and Optimization (SICON)
arXiv:2006.02935