TISSUE ENGINEERING BIOREACTORS: POTENTIAL APPLICATIONS AND SCALE UP STRATEGY
Serhat ALADAĞ, Evren ALGIN YAPAR
Department of Analysis and Control Laboratories, Turkish Medicines and Medical Devices Agency, 06430 Sıhhiye, Ankara, Turkey.

ABSTRACT
Tissue engineering bioreactors have been used in order to achieve production of artificial tissue, increasing cell proliferation capacity and yield and/or in vitro tissue/disease modelling. Although it is still discussing how to obtain functional and vascular tissue with these bioreactors, preclinical and clinical studies are ongoing. Tissue engineering bioreactors have been used as lab-scale bioreactors until now. Crucial potential application areas can be created by increasing the production capacity and bioprocess efficiency of these bioreactors. In this review, recent bioreactor technologies such as spinner flask, rotating wall/bed, hollow fiber membrane, perfusion and mechanical stimuli bioreactors are briefly presented in terms of their potential applications in medical field especially in the scope of scale-up approaches such as bubble column, stirred tank, membrane, air lift, fluidized packed and bed bioreactors. Keywords: Bioreactors, modelling in pharmaceutical/biological research, tissue engineering, organ support systems, tailor made treatment.

INTRODUCTION
Cell culture has begun to use in medical sciences as 2D cell culture accompanying with many disadvantages such as not mimicking the in vivo environment, mass transfer, gas exchange, waste management, inability to real time monitoring of the culture medium, harvesting the cells by enzymatic methods and eliminating the cell products from the medium during replacement. The 3D culture systems have been enhanced by using bioreactors in order to eliminate the disadvantages of the static culture. Bioreactor is a system that supports biological environment, which designed to gather cells/tissues in cell culture. They are developed to use in tissue, bioprocess/biochemical engineering. Bioreactors can be used for the tailor made treatment, the organ support systems, increasing the number of cells before autologous cell implantation, in vitro tissue/disease modelling in pharmaceutical research and producing recombinant human proteins, vaccines, drugs and tissue grafts. There are different types of bioreactors; spinner flask, rotating wall/bed, hollow fiber membrane, perfusion and mechanical stimuli bioreactors. In this review, recent bioreactor technologies for tissue engineering briefly presented in terms of their potential applications in medical field especially in the scope of scale-up approaches.

TISSUE ENGINEERING BIOREACTORS
Five types of bioreactors, which can be used for tissue engineering are currently in use and commercially available. These are; spinner flask, rotating wall/bed, hollow fiber membrane, perfusion and mechanical stimuli bioreactors. Their mechanisms are briefly indicated as follows.

Spinner Flask Bioreactors
Spinner flasks are simple and frequently utilized bioreactor type. In this system; scaffolds are fixed the needles, magnetic bar mixes the medium. Along seeding, suspended cells into medium are transferred to scaffold throughout by convection. In this way, cell seeding performance is increased by 3D seeding medium.

Rotating Wall/Bed Bioreactors
First discovered rotating wall bioreactor has been originally projected by National Aeronautics and Space Administration (NASA) in order to gather stable cell
culture research in space. At the same time, this is revealing a potential for culturing cells on Earth. Wall rotation rate allows the centrifugal force, hydrodynamic drag force and gravitational force.8,9 \textbf{Hollow Fiber Membrane Bioreactors} The bioreactors are frequently utilized for culturing sensitive and highly metabolic cells which are needed high mass transfer.10 Hollow fiber membrane bioreactors have increased surface for cell attachment. Cells can be seeded inner/outer surface of fibers. Hollow fiber membrane bioreactors are utilized for several purposes; cell population expansion and creation of engineered tissues in the field of regenerative medicine, \textit{in vitro} models for drug testing in pharmaceutical industry.11 \textbf{Perfusion Bioreactors} The perfusion bioreactors have continuous flow and oxygenated medium through seeded scaffold which is fixed part of bioreactor. These features enhance medium flow through scaffold pores also provide mechanical stimulus to cells with optimized shear stress. In this way, cell function and viability are improved.12 \textbf{Mechanical Stimuli Bioreactors} There are several types of mechanical stimuli bioreactors which are utilize static, dynamic or combined effect. Compression bioreactors utilized for development of cartilage tissue that are required mechanical stimulus for proliferation. In strain bioreactors; force applied to the construct is a tensile force. These systems are utilized for tendons and ligaments engineering.13

\begin{table}[h]
\centering
\begin{tabular}{|l|l|l|}
\hline
\textbf{Applications Fields of Bioreactors} & \textbf{Types of Application} & \textbf{Application Examples} \\
\hline
Organ support systems & Bioartificial kidney system5,19 & Bioartificial liver support system20,21,22,23 \\
& Bioartificial pancreas system24,25 & Chondrocyte26 \\
The tailor made treatment & Hepatocyte27 & Stem cell28 \\
& Increasing the number of cells before autologous cell implantation & Platelet rich plasma29 \\
& \textit{In vitro} tissue modelling & Bone tissue30 \\
& Modelling in pharmaceutical/biological researches & Corneal tissue31 \\
& Disease modelling & Skeletal muscle32 \\
& Vaccines & Vascular smooth muscle tissue33 \\
& Recombinant human proteins & Micro-Bioreactors, Lab-on-Chips, Organ-on-Chips34,40 \\
& Human medicinal products bioprocess & Modelling fibrosis41 \\
& Drugs & Modelling colon cancer42 \\
& Tissue grafts & Modelling acute liver failure43 \\
& & Modelling chronic obstructive pulmonary disease44 \\
& & Modelling lung tumor45,46 \\
& & Modelling malignant peripheral nerve sheath tumor47 \\
& & Disease-on-Chips48,50 \\
& & Viral vaccine production (H1N1)17 \\
& & Monoclonal antibodies51 \\
& & Recombinant human serum albumin52 \\
& & Recombinant human insulin53 \\
& & Antibiotics (phenoxymethyl penicillin)54 \\
& & Citric acid55 \\
& & Pyruvic acid56 \\
& & \textalpha-Cyclodextrin57 \\
& & Vascular tissue graft58-62 \\
& & Osteochondral graft63,64 \\
& & Bone graft65-69 \\
\hline
\end{tabular}
\caption{Table 1: Application fields, types and examples of bioreactors in medical fields.}
\end{table}
applications arise due to the needs for them. Recent potential applications of bioreactors in the medical field can be listed as; i. taylor made treatment, ii. in vitro tissue/disease modelling in pharmaceutical/biological research, iii. producing recombinant human proteins, vaccines, drugs and tissue grafts. Although not in the near future; there is a potential that tissue/organ printing and personal bioreactor producing.

The Tailor Made Treatment
Conventional treatment methods include generalized protocols based on common indications. On the other hand in some clinical scenarios, patients’ individual feature and medical charts of patients may vary from patient to patient. The tailor made treatment with bioreactors can be achieved as application of organ support systems and increasing the number of cells before autologous cell implantation. Some organs have synthesis, filtration, metabolism and detoxification function such as kidney, liver and pancreas. In this point, the extracorporeal organ supporting systems is beneficial, especially on the cell based therapy for example; stem cell, platelet rich plasma, autologous cell implantation, etc., cell proliferation capacity and harvested cell number differ with patient to patient by cell origin, age and gender. Because of these individual changes, the tailor made treatment has been gained importance

Modelling in Pharmaceutical Research
Animal studies and their outcomes are naturally piece of development of therapeutic systems. However; there are some ethical concern come from 3R approach. In this point in vitro tissue, disease and physiological system modelling are preferable because of saving animals and also avoid consuming time, budget and working power. Scientists have still been working on tissue modelling such as cardiac, liver, pancreas, breast and bone tissue modelling in order to work targetted organ. On the other way, there are some studies as to disease modelling such as bone fracture, damaged tissue, cancer tissue in order to work disease based therapeutic agents. Multicellular spheroid, hollow fiber and multicellular layer are utilized for modelling pharmaceutical research such as understanding cytotoxicity, drug metabolism and pharmacokinetics.

Producing Human Medicinal Products
The batch processing is conventionally utilized in order to gather human medicinal products such as vaccine, drug and recombinant proteins. In this point, there are some concerns about Good Manufacturing Practices (GMP) requirements, yield performance, process management requirements, monitoring, which also must be evaluated in a standardized manner to ensure quality control. Some critical parameters such as proteomics, surface marker analysis, sterility testing and functional assays can be used to ensure the quality control. In spite of the mentioned concerns, the bioreactors seem to be a good a solution with acoustic settlers, hollow fiber bioreactors and hollow fiber based perfusion systems including tangential flow filtration or alternating tangential flow technologies.

CONCLUSION
The results obtained with tissue engineering bioreactors are promising. These systems increase cell number and efficiency, cell transplantation performance through tissue scaffolds, largely eliminate the disadvantages of the 2D cell culture medium, ensure real-time monitoring of the cell culture medium and achieve graft production. However; there are some problems such as lack of repeatability/reproducibility in production performance, standardizing treatment protocols for transplantation and achieve the same efficiency due to patients’ different age, gender and health status. It is also seen from the studies in the literature that functional and vascular structures cannot be obtained. On the other hand, GMP requirements and legislative infrastructure should be developed in advanced therapy medicinal products. Additionally; scale-up approaches and techniques are coming with problems to overcome. These problems are also parameters that need to be optimized such as operating time, production efficiency and capacity, temperature, pH, oxygenation, continuous monitoring, mass transfer, gas exchange, obtaining products and control of secondary processes. If repeatable and reproducible systems are obtained by optimizing scale-up conditions, potential applications of bioreactors in the medical field can be better succeeded. From the perspective of the future, it is anticipated by the related studies that while the developments in bioreactor systems continue, there will be significant developments regarding the use of plants as bioreactors in drug development.

REFERENCES
1. Zhao J, Griffin M, Cai J, Li S, Bulte PEM, Kalaskar DM. Bioreactors for tissue engineering: An update. Biochem Eng J 2016; 109: 268–281. https://doi.org/10.1016/J.BJE.2016.01.018
2. Plunkett N, O’Brien FJ. Bioreactors in tissue engineering. Tecnol Health Care 2011; 19(1): 55-69. https://doi.org/10.3233/THC-2011-0605
3. Martin I, Wendt D, Heberer M. The role of bioreactors in tissue engineering. Trends Biotechnol 2004; 22(2): 80-86. https://doi.org/10.1016/j.tibtech.2003.12.001
4. Ginai M, Elsby R, Hewitt CJ, Surry D, Fenner K, Coopman K. The use of bioreactors as in vitro models in pharmaceutical research. Drug Discov Today 2013; 18(19-20); 922-935. https://doi.org/10.1016/j.druds.2013.05.016
5. Attanasio C, Netti PA. Bioreactors for cell culture systems and organ bioengineering. Kidney Trans Bioeng Regen 2017; 889-899. https://doi.org/10.1016/B978-0-12-801734-0.00064-3
6. Martin I, Wendt D, Heberer M. The role of bioreactors in tissue engineering. Trends Biotechnol 2004; 22(2): 80-86. https://doi.org/10.1016/j.tibtech.2003.12.001
7. Qureshi AT, Chen C, Shah F, Thomas-Porch C, Gimble JM, Hayes DJ. Human adipose-derived stromal/stem cell isolation, culture, and osteogenic differentiation. Methods Enzymol 2014; 538: 67-88. https://doi.org/10.1016/B978-0-12-800280-3.00005-0
8. Schwarz RP, Goodwin TJ, Wolf DA. Cell culture for three-dimensional modeling in rotating-wall vessels: an application of simulated microgravity. J Tissue Cult Methods Tissue Cult Assoc Man Cell Tissue Organ Cult Proced 1992; 14(2): 51-57. https://doi.org/10.1007/BF01404744
9. Morabito C, Steinberg N, Mazzoleni G, et al. RCCS Bioreactor-based modelled microgravity induces
significant changes on in vitro 3D neuronal cell cultures. Bio Med Res Int 2015; 2015: e254283. https://doi.org/10.1155/2015/374283

10. Egbiili H, Nava MM, Mohebbi-Kalhori D, Raimondi MT. Hollow fibre bioreactor technology for tissue engineering applications. Int J Artif Organs 2016; 39(1): 1-15. https://doi.org/10.5310/ijo.5000466

11. Wung N, Acott SM, Tosh D, Ellis MJ. Hollow fibre membrane bioreactors for tissue engineering applications. Biotechnol Lett 2014; 36(12): 2357-2366. https://doi.org/10.1007/s10529-014-1619-x

12. Holthoff HL, Sheffield TL, Ambrosen JS, Mikos AG. Flow perfusion culture of marrow stromal cells seeded on porous biphasic calcium phosphate ceramics. Ann Biomed Eng 2005; 33(9): 1238-1248. https://doi.org/10.1016/j.appbio.2005.05.5536-y

13. Demarteau O, Jakob M, Schäfer D, Heberer M, Martin I. Development and validation of a bioreactor for physical simulation of engineered cartilage. Bioresource 2003; 40(1-3): 331-336. PMID: 12454221

14. Kumar A, Tripathi A, Jain S. Extracorporeal bioartificial liver for treating acute liver diseases. J Extra Corpor Technol 2011; 43(4): 195–206. PMID: 22416599

15. Stephenson M, Grayson W. Recent advances in bioreactors for cell-based therapies. 2018, F1000Research, 7: http://dx.doi.org/10.12688/f1000research.12533.1

16. Elliott NT, Yuan FAN. A review of three-dimensional in vitro tissue models for drug discovery and transport studies. J Pharm Sci 2011; 100(1): 59-74. https://doi.org/10.1002/jps.22257

17. Tapia F, Vázquez-Ramírez D, Genzel Y, Reichl U. Bioreactors for high cell density and continuous multi-stage cultivations: Options for process intensification in cell culture-based viral vaccine production. Appl Microbiol Biotechnol 2016; 100: 2121–2132. https://doi.org/10.1007/s00253-015-7267-9

18. University of California - San Francisco. "Implantable artificial kidney achieves preclinical milestone." ScienceDaily, Science Daily, 7 November 2019. <www.sciencedaily.com/releases/2019/11/19110710503.html>

19. Tasnim F, Deng R, Hu M, et al. Achievements and challenges in bioartificial kidney development. Fibrogen Tissue Repair 2010; 3:14. https://doi.org/10.1186/1755-1356-3-14

20. Ebrahimkhani MR, Neiman JAS, Raredon MS, Hughes DJ, Griffith LG. Bioreactor technologies to support liver function in vitro. Adv Drug Deliv Rev 2014; 69: 132-157. https://doi.org/10.1016/j.addr.2014.02.011

21. Tilles AW, Berthiaume F, Yarmush ML, Tompkins RG, Toner M. Bioengineering of liver assist devices. J Hepato- Biliary- Pancreatic Surg 2002; 9: 686-696. https://doi.org/10.1016/S00340209003159

22. Allen JW, Hassanine T, Bhartia SN. Advances in bioartificial liver devices. Hepatol 2001; 34: 447-455. https://doi.org/10.1053/hep.2001.26753

23. Zeilinger K, Schreiter T, Darnell M, et al. Tissue Engineering Part C: Methods. 2011.549-556. http://dx.doi.org/10.1089/ten.tec.2010.0580

24. Lanza RP, Butler DH, Borland KM, et al. Xenotransplantation of canine, bovine, and porcine islets in diabetic rats without immunosuppression. Proc Natl Acad Sci U S A. 1991; 88(24):11100- 11104. https://doi.org/10.1073/pnas.88.24.11100

25. Minter DM, Gerlach JC, Marra KG. Bioreactors addressing diabetes mellitus. J Diabetes Technol Sci 2014;8(6):1227- 1232. https://doi.org/10.1177/1932996814548215

26. Wang N, Grad S, Stoddart M, Niemeyer P, et al. Bioreactor-induced chondrocyte maturation is dependent on cell passage and onset of loading. Cartilage 2013; 4(2): 165–176. https://doi.org/10.4175/cartilage.2013.01.0557

27. Agarwal N, Popovic B, Martucci NJ, Fraunhofer NA, Soto-Gutierrez A. Biofabrication of autologous human hepatocytes for transplantation: How do we get there? Gene Expression Liver Res 2019; 19(2): 89-95. https://doi.org/10.3727/105221618X135036647899

28. Dos Santos FF, Andrade PZ, da Silva CL, Cabral JM. Bioreactor chondrocyте-based expansion of stem cells. Biotechnol J 2013; 8(6): 644-654. https://doi.org/10.1002/biot.20120373

29. Li H, Sun S, Liu H, Chen H, Rong X, Lou J. et al. Use of a biological reactor and platelet-rich plasma for the construction of tissue-engineered bone to repair articular cartilage defects. Exp Ther Med 2016; 12(2): 711-719. https://doi.org/10.3892/etm.2015.3202

30. Ye H, Xia Z, Fergusson DJ, Trifitt JT, Cui Z. Studies on the use of hollow fibre membrane bioreactors for tissue generation by using rat bone marrow fibroblastic cells and a composite scaffold. J Mater Sci Mater Med 2007; 18(4): 641-648. https://doi.org/10.1085/s10529-007-2314-4

31. Ovando-Roche P, West EL, et al. Use of bioreactors for culturing human retinal organoids improves photoreceptor yields. Stem Cell Res Ther 2018; 9(1): 156. https://doi.org/10.1186/s13287-018-0907-0

32. Hutmacher DW. Scaffold design and fabrication technologies for engineering tissues-State of the art and future perspectives. J Biomater Sci Polym Ed 2001; 12: 107-124. https://doi.org/10.1080/156856201754448

33. Stankus JJ, Girgenti J, Fujimoto K, Wagner WR. Microintegrating smooth muscle cells into a biodegradable, elastomeric fiber matrix. Biomaterials 2006; 27(5): 735-744. https://doi.org/10.1016/j.biomaterials.2005.06.020

34. Mandenius CF. Conceptual Design of Micro-Bioreactors and Organ-on-Chips for Studies of Cell Cultures. Bioeng. 2018; 5, 56. https://doi.org/10.3390/biomechanics500056

35. Bahmemann J, Rajabi N, Fuge G, et al. A New Integrated Lab-on-a-Chip System for Fast Dynamic Study of Mammalian Cells under Physiological Conditions in Bioreactor. Cells. 2013; 2(2):349-360. https://doi.org/10.3390/cells2020349

36. Kang YBA, Raوات S, Duchemin N, Bouchard M, Noh M. Human Liver Sinusoid on a Chip for Hepatitis B Virus Replication Study. Micromachines 2017, 8, 27. https://doi.org/10.3390/mi8010027

37. Zhang X, Wang T, Wang P, Hu N. High-Throughput Assessment of Drug Cardiac Safety Using a High-Speed Impedance Detection Technology-Based Heart-on-a-Chip. Micromach 2016; 7, 122. https://doi.org/10.3390/mi7070122

38. Rezaei KA, Khadem MN, Pezeshgi MH, et al. Microfluidic-based multi-organ platforms for drug discovery. Micromachines 2016, 7, 162. https://doi.org/10.3390/mi7090162

39. Paoli R, Samitier J. Mimicking the kidney: a key role in organ-on-chip development. Micromachines 2016, 7, 126. https://doi.org/10.3390/mi7070126

40. Kang TH, Kim HJ. Farewell to Animal Testing: Innovations on Human Intestinal Microphysiological Systems. Micromachines 2016; 7, 107. https://doi.org/10.3390/mi7070107

41. Paish HL, Reed LH, Brown H, et al. A Bioreactor technology for modeling fibrosis in human and rodent precision- cut liver slices. Hepatology 2019; 70(4): 1377- 1391. https://doi.org/10.1002/hep.30651

42. Nietzer S, Baur F, Sieber S, et al. Mimicking metastases including tumor stroma: A new technique to generate a three-dimensional colorectal cancer model based on a biological decellularized intestinal scaffold. Tissue Eng Part C Methods 2016; 22(7): 621–635. https://doi.org/10.1089/ten.tec.2015.0857

43. Aron J, Agarwal B, Davenport A. Extracorporeal support for patients with acute and acute on chronic liver failure. Exp Rev Med Dev 2016; 13: 367–380. https://doi.org/10.1586/17434440.2016.1154455
44. Selden C, Fuller B. Role of bioreactor technology in tissue engineering for clinical use and therapeutic target design. Bioeng 2018; 5(2): 32-41. https://doi.org/10.3390/bioengineering5020032

45. Göttlich, C., Müller, L., C., Kunz, et al. Combined 3D tissue engineered in vitro in vitro silico lung tumor model for predicting drug effectiveness in specific mutational backgrounds. J Vis Exp 2016; (110), e53885. https://doi.org/10.3791/53885

46. Stratmann AT, Fecher D, Wangorsch G, et al. Establishment of a human 3D lung cancer model based on a biological tissue matrix combined with a Boolean in silico model. Mol Oncol 2014; 8(2): 351-365. https://doi.org/10.1016/j.molonc.2013.11.009

47. Moll C, Reboledo J, Schwarz T, et al. Tissue engineering of a human 3D in vitro tumor test system. J Vis Exp 2013; (78), e50460. https://doi.org/10.3791/50460

48. Kashaninejad N, Nikmaneshi MR, Moghadas H, et al. Organ-tumor-on-a-chip for chemosensitivity assay: a critical review. Micromachines 2016; 7: 130. https://doi.org/10.3390/mi7080130

49. Low LA, Tagle DA. Tissue chips - innovative tools for drug development and disease modeling. Lab Chip 2017; 17(18):3026- 3036. https://doi.org/10.1039/c7lc00462a

50. Wu J, Dong M, Rigatto C, et al. Lab-on-chip technology for chronic disease diagnosis. NPJ Digital Med 2018; 1: 7. https://doi.org/10.1038/s41746-018-0014-0

51. Gerber R, McAllister P, Smith C, Simth T, Zabriskie D, Gardner A. Establishment of proven acceptable process control ranges for production of a monoclonal antibody by cultures of recombinant CHO cells. In: Validation of biopharmaceutical manufacturing processes. Kelley, B., Ramelmeier, A., Eds., ACS Symposium Series 698, ACS, Washington, 1998; 44-54. https://doi.org/10.1021/fk-1998-0698.ch004

52. Schilling B, Goodrick J, Wan NC. Scale-up of a high cell density continuous culture with Pichia pastoris X-33 for the constitutive expression of rh-Chitinase. BiotechProg 2001; (17): 629–633. https://doi.org/10.1021/bp001004e

53. Ainsworth S. Biopharmaceuticals. Chem Eng News 2005; 83(6): 21–29.

54. Penicillin V. Development of sustainable bioprocesses: modeling and assessment, Eds: Heinzle E, Biwer AP, Cooney CL. 2006 John Wiley & Sons, Ltd. ISBN: 0-470-01559-4, 2006; 193-206.

55. Citric Acid– Alternative Process using Starch In: Development of Sustainable Bioprocesses: Modeling and Assessment, Eds: Heinzle E, Biwer AP, Cooney CL. 2006 John Wiley & Sons, Ltd. ISBN: 0-470-01559-4, 2006, p. 125-135.

56. Pyruvic Acid– Fermentation with Alternative Downstream Processes, In: Development of Sustainable Bioprocesses: Modeling and Assessment, Eds: Heinzle E, Biwer AP, Cooney CL. 2006 John Wiley & Sons, Ltd. ISBN: 0-470-01559-4, 2006, p. 137-145.

57. α-Cyclodextrin, In: Development of Sustainable Bioprocesses: Modeling and Assessment, Eds: Heinzle E, Biwer AP, Cooney CL. 2006 John Wiley & Sons, Ltd. ISBN: 0-470-01559-4, 2006, p. 181-189.

58. Elliott MB, Gerecht S. Three-dimensional culture of small-diameter vascular grafts. J Mater Chem B 2016; 4(20): 3443-3453. https://doi.org/10.1039/c6tb0024j

59. Sundaram S, Echter A, Angustina A, Qiu C, Niklasen L. Small-Diameter Vascular Graft Engineered Using Human Embryonic Stem Cell-Derived Mesenchymal Cells. Tissue Eng Part A. Feb 2014.750. http://doi.org/10.1089/ten.tea.2012.0738

60. Liqiong Gui, Laura E Niklasen, Vascular tissue engineering: building perfusable vasculature for implantation. Curr Opin Chem Eng 2014; 3: 68-74. https://doi.org/10.1016/j.coche.2013.11.004

61. Best C, Strouse R, Hor K, Pepper V, Tipton A, Kelly J, Shinoka T, Breuer. Toward a patient-specific tissue engineered vascular graft. J Tissue Eng 2018; 9. https://doi.org/10.1177/2047296317748176

62. Melchiorri AF, Bracaglia LG, Kimerrer LK, Hibino N, Fisher JP. In vitro endothelialization of biodegradable vascular grafts via endothelial progenitor cell seeding and maturation in a tubular perfusion system bioreactor. Tissue Eng Part C: Methods 2016; 22(7):663-670. http://doi.org/10.1089/ten.tec.2015.0562

63. Wendt D, Jakob M, Martin I. Bioreactor-based engineering of osteochondral grafts: from model systems to tissue manufacturing. J Bionics Bioeng 2005; 100(5): 489-94. https://doi.org/10.1016/j.jbioncs.2005.07.004

64. Maciulaitis J, Rekštytė S, Usas A, et al. Characterization of tissue engineered cartilage products: Recent developments in advanced therapy, Pharmacological Research, Volume 113, Part B, 2016; 823-832. https://doi.org/10.1016/j.phrs.2016.02.022

65. Fröhlich M, Grayson WL, Wan LQ, et al. Tissue engineered bone grafts: Biological requirements, tissue culture and clinical relevance. Curr Stem Cell Res Ther 2008; 3(4): 254- 264. https://doi.org/10.2174/157488808786733962

66. Huang RL, Kobayashi E, Liu K, Li Q. Bone graft prefabrication following the in vivo bioreactor principle. EBioMedicine. 2016; 12:43– 54.

67. Rauh J, Milan F, Günther KP, Stiehler M. Bioreactor Systems for Bone Tissue Engineering. Tissue Eng. Part B: Reviews 2011; 17(4):263-280. http://doi.org/10.1089/ten.teb.2010.0612

68. Rahyassalim AJ, Marsetio AF, Kurniawati T. Bioreactor as a New Resource of Autologous Bone Graft to Overcome Bone Defect In Vivo. Clin Rev Bone Miner Metab 2017; 15: 139–150. https://doi.org/10.1007/s12018-017-9237-5

69. Grayson WL, Bhumiratana S, Canez R, Vanjak-Novakovic G. Bioreactor cultivation of functional bone grafts. Methods Mol Biol. 2011; 698:231-41. https://doi.org/10.1007/978-1-60761-999-4_18

70. Maas MV, Nikiforov S. The why, what, and how of the new FACT standards for immune effector cells. J Immunother Cancer 2017; 5(1): 36.

71. Eaker S, Abraham E, Allickson J, Brieva TA, Baksh D, Heathman TR, et al. Bioreactors for cell therapies: current status and future advances. Cytotherapy 2017; 19(1): 9-18. https://doi.org/10.1016/j.jcyt.2016.09.01