Secure Surveillance System Using Chaotic Image Encryption Technique

Gopal Ghosh¹, Kavita¹*, Sahil Verma¹, NZJhanji², M N Talib³

¹School of Computer Science and Engineering, Lovely Professional University, Phagwara, India
²School of Computer Science and Engineering, SCE, Taylor’s University, Malaysia
³Papua New Guinea University of Technology, Lae, PNG, Papua New Guinea

Corresponding author: kavita@ieee.org

Abstract:
In the current data transmission situation, digital images constitute a large part of visual communication. Their security is thus an essential field of concern. This paper analyses several chaotic maps for the encryption of images and discusses their advantages and disadvantages. The characteristics of chaotic maps such as stochastic, ergodicity and highly sensitive initial conditions allow them reliable to encrypt images. Many of the previously proposed imaging approaches used chaotic, low-dimensional charts that display the lowest security and have very less potential to handle force and attacks. To solve this challenge, scientists have proposed multiple broad chaotic charts. In this paper the characteristics and techniques of some chaotic maps used to encrypt images were reviewed. Also for images like boat, airplane, peppers, lake, house chaotic encryption is applied and analysed.

Keywords: Image encryption, Chaotic maps, security, analysis.

1.0 Introduction:
When digital technology advances rapidly, an enormous amount of material is conveyed through images. Consequently, the protection of the images is a significant issue of interest. A variety of methods have been proposed to address these problems in steganography and cryptography. Cryptography is a computer study for secure contact outside the scope of an intruder. It deals with issues like code, authentication, etc. Native information is encoded in cryptography until it is interpreted or distributed in an invisible cypher picture. In certain instances, the scanning of the picture we submit through twitter, MMS, etc. is accomplished by screen encryption. For example traditional encryption algorithms like DES, IDEA and RSE, because of their high know how limit, extreme overflow and tight links between the neighbouring pixels are not suitable for image
encryption. For example, the picture data has exceptional properties such as mass limit, strong reproducibility and a strong pixel connexion, which renders any encryption device subject to extraordinary conditions. The basic picture is translated into a cypher utilising data encryption. Could knowledge class has its own special features that guard against unauthorised access to information. Data encryption is then done for the safety of systems in which pixel meaning is altered during the unblocked phase. — the numerical value of the dot. The pixel value equals the matrix-specific value of the image. The size of the matrix is the amount of pixel in an image's length and width, and the dimension of the field of view. The original picture can be transformed into a clear image no unauthorised person can access by utilising any cryptography algorithm and key. On the other hand, picture decryption is the opposite image encoding process. The amount of keys is given in a combination of two forms of cryptographic formulae: a secret key Algorithm with only one main parameter for decrypting and deciphering data and the private key algorithm for encrypting and decoding utilising two parameters. First the symmetric key algorithm, and second the asymmetric algorithm is considered.

2.0 Image Encryption Using Chaotic System:
Two types of image encryption are common techniques are chaos and non-chaosbased strategies. Original chaos-related circumstances are particularly vulnerable. If we adjust everything about the original state, then the whole result will shift. The benefits of confusion-driven imaging techniques are easy to introduce, quick encryption. In the fields of health care, internet connectivity, military and cell telephone messaging systems, wireless networks, images used in medical, tele-medical, surveillance, government documents, etc., the chaos-based encryption mechanism has a distinction of role. Chaos is focused on two complex and diffusing levels of the encryption method. Chaotic Image Encryption approach is shown in Fig: 1.
Fig: 1 Chaotic Image Encryption approach

3.0 Literature Review:

Multimedia apps have been popular in all engineering sectors[1]. Knowledge can be easily transmitted around the world via photographs, videos and audio data[2]. The range of applications such as image analysis, military communications, remote sensing, telemedicine, etc.[3,4] are focused on imaging[4]. In the sense of security and protection, the knowledge given by the photographs is often quite relevant. Consequently, the picture information must be shielded such that only the expected user may view it[5,6]. It is primarily known as shielding and encrypting. Computer management technologies The methods used to conceal details are steganography and watermarking[7,8]. For the original details, cryptography is used[9]. Steganography masks information[10] by inserting hidden details into images. Watermarking is used for authentication of results. Cryptography is our primary concern in this paper[11]. To transform substantial images to sound images in picture cryptography, use the encryption algorithm. The noisy picture is transformed to use the decryption algorithm[13] to coherent pictures. The techniques of encryption are classified into three groups, spacial, transformational and hybrid[13] among others. During space exploration, the photographs are split down into frequency domains to more precisely interpret the functions. The gains and inconveniences with both approaches are their own[14]. Space methods are simple to implement and quick to use. In comparison to spatial technology[15], technology
transition is not so much complicated but more stable. Both methods are used primarily in the encryption of photos to ensure a secure algorithm[16]. Random keys [17,18] are created by widespread use of chaotic maps. Over time, numerous variants of chaotic maps were published. Two distinct kinds of unstable maps are the first and multidimensional [19,20]. The challenge and scope of interrupting disorderly maps in many dimensions[21]. Chai et al. also introduced colour pictures utilising DNA and hyper-chaotic four-wing charts. The computational processes for permutation and diffusion are based on the images entered. The SHA 384 input image-based computer has also been able to withstand plaintext attack[22]. Hua et al. addressed the dynamic nature of unstable maps by implementing a complicated method based on a cosine transformation. It is also used in the encryption of photos as a secret key creation. For scrambling is used the random order permutation. The cosy spot. The fragmented mechanism dependent on transition has become more complex[23][33]. Luo and the rest. To construct a more complicated hidden random key, logistic and baker maps, a hyper-chaotic method has been introduced. Photos are then secured with processes of permutation and transfer. The processes are focused on the hyperchaotic method that creates arbitrarily encrypted images. Broumandnia introduced a technique of 3D image encryption. The 3D modular chaste framework is used to boost the main space to build the hidden keys[24].

The dilemma of changing the hyperparameter still concerns these strategies. Investigators use strike and trial in literature to change hyperparameters. The values obtained could be optimal for one image form and cannot function for other images. Therefore, noisy map hyperparameters need to be configured or completed.

Meta-heuristic methods may be used for tuning hyperparameters[25–32]. However, meta-heuristic strategies have different challenges, so an appropriate meta-heuristic strategy is challenging to pick. Sreelaja and Pai found optimising the Ant colony (ACO) in the form of the optimum hidden keys[25]. However, the convergence rate is poor. Accordingly, Abdullah et al. used the Genetic Algorithm (GA) to encrypt artefacts more effectively[26]. The outcome is fine, but it may also go poorly, since it is caught in problems of local ambition and premature convergence.

Initial chaotic map parameters Enayatifar, etc. were considered by an ICA[27]. Effective weighted capitalist manufacturing (CIT). Enayatifar et al. then thought of GA as a more positive way of measuring hidden keys[28]. Talarposhti and Jamei saw the battle for complex
equilibrium as more secret[29]. Kaur and Kumar[30] suggested a non-domestically validated genetic classification algorithm (NSGA)[29][62] to establish the ideal hidden key. The evolution of the discrepancy was then used to achieve the strongest beta-chaotic map parameters[31]. Nematzadeh et al. in the Updated GA (MGA). It proposed that a more hidden key be developed[32]. Although [30–31] might be, substantial rates of convergence remain, compared to [25–29], particularly when imaging is bigger.

Table 1 Recent Studies in Chaotic Image Encryption:

S.No	Authors	Publication Year	Remarks
1	T. S. Ali; R. Ali	2020	Author Proposed A Novel Medical Image Signcryption Scheme Using TLTS and Henon Chaotic Map
2	H. Li; L. Deng; Z. Gu	2020	Author Proposed A Robust Image Encryption Algorithm Based on a 32-bit Chaotic System
3	Q. Lu; C. Zhu; X. Deng	2020	Author Implemented An Efficient Image Encryption Scheme Based on the LSS Chaotic Map and Single S-Box
4	O. S. Faragallah; A. Afifi; W. El-Shafai; H. S. El-Sayed; E. A. Naeem; M. A. Alzain; J. F. Al-Amri; B. Soh; F. E. A. El-Samie	2020	Author Investigated Chaotic Image Encryption in Spatial and FrFT Domains for Cybersecurity Applications
5	L. Liu; Y. Lei; D. Wang	2020	Author studied A Fast Chaotic Image Encryption Scheme With Simultaneous Permutation-Diffusion Operation
6	M. Li; P. Wang; Y. Liu; H. Fan	2019	Author Proposed Cryptanalysis of a Novel Bit-Level Color Image Encryption Using Improved 1D Chaotic Map
7	Q. Zhang; J. Han; Y. Ye	2019	Author Proposed Image encryption algorithm based on image hashing, improved chaotic mapping and DNA coding
8	L. OtekoTresor; M. Sumbwanyambe	2019	Author Proposed A Selective Image Encryption Scheme Based on 2D DWT, Henon Map and 4D Qi Hyper-Chaos
9	A. A. Abd El-Latif; B. Abd-El-Atty; M. Talha	2018	Author worked on Robust Encryption of Quantum Medical Images
The literature review on Chaotic Image Encryption is tabulated in Table: 2

Table: 2 Literature review on Chaotic Image Encryption

S.No	Authors	Publication Year	Remarks
1	N. A. Loan; N. N. Hurrah; S. A. Parah; J. W. Lee; J. A. Sheikh; G. M. Bhat	2018	Author Proposed Secure and Robust Digital Image Watermarking Using Coefficient Differencing and Chaotic Encryption
2	H. Diab	2018	Author Proposed An Efficient Chaotic Image Cryptosystem Based on Simultaneous Permutation and Diffusion Operations
3	M. Dridi; M. A. Hajjaji; B. Bouallegue; A. Mtiaba	2016	Author given Cryptography of medical images based on a combination between chaotic and neural network
4	W. Feng; Y. He	2018	Author Proposed Cryptanalysis and Improvement of the Hyper-Chaotic Image
4.0 Application Chaotic Image Encryption Techniques:

In this paper images like boat, airplane, peppers, lake, house are considered as examples for image encryption. All the image are encrypted using chaotic image encryption technique. The plain images and its histogram of boat, airplane, peppers, lake, house before encryption are shown in Fig: 2
Fig: 2 Plain images and its histogram before encryption

Encrypted images and its histogram of boat, airplane, peppers, lake, house after chaotic encryption are shown in Fig: 3
After the chaotic encryption the image are again decrypted. The decrypted images are show in Fig: 4
5.0 Summary:
The security of information becomes particularly necessary as we exchange details by way of inappropriate contact strategies. There can be few methods for secure exchanging data, and one of them is software encryption, which can be stored in a blended way and decoded as necessary by the programme. The paper reviewed many chaotic maps of vulnerability used to encrypt images, and analysed their merits and drawbacks. Finally this paper applies chaotic encryption process on images like boat, airplane, peppers, lake, house.

References:
[1] N. Zhou, H. Jiang, L. Gong, X. Xie, Double-image compression and encryption algorithm based on co-sparse representation and random pixel exchanging, Opt. Lasers Eng. 110 (2018) 72–79.
[2] S.-S. Yu, N.-R. Zhou, L.-H. Gong, Z. Nie, Optical image encryption algorithm based on phase-truncated short-time fractional Fourier transform and hyper-chaotic system, Opt. Lasers Eng. 124 (2020) 105816.
[3] M. Brindha, N.A. Gounden, A chaos based image encryption and lossless compression algorithm using hash table and Chinese Remainder Theorem, Appl. Soft Comput. 40 (2016) 379–390.
[4] A. Mohan, V. Saravana Karthika, J. Ajith, Lenin dhal, M. Tholkapiyan, “Investigation on ultra high strength slurry infiltrated multiscale fibre reinforced concrete”, Materials Today : Proceedings, ISSN: 1904-4720, Volume 22, 904-911, 2020.
[5] D. Ravichandran, P. Praveenkumar, J.B.B. Rayappan, R. Amirtharajan, DNA chaos blend to secure medical privacy, IEEE Trans. Nanobiosci. 16 (8) (2017) 850–858.
[6] H. Liu, X. Wang, A. kadir, Image encryption using DNA complementary rule and chaotic maps, Appl. Soft Comput. 12 (5) (2012) 1457–1466.
[7] N.R. Zhou, T.X. Hua, L.H. Gong, D.J. Pei, Q.H. Liao, Quantum image encryption based on generalized Arnold transform and double random-phase encoding, Quantum Inf. Process. 14 (4) (2015) 1193–1213.
[8] G. Ye, C. Pan, X. Huang, Q. Mei, An efficient pixel-level chaotic image encryption algorithm, Nonlinear Dynam. 94 (1) (2018) 745–756.
[9] V. Saravana Karthika, A. Mohan, R. Dinesh Kumar, Chippymol James, “Sustainable Consideration By Characterization Of Concrete Through Partial Replacement Of Fine Aggregate Using Granite Powder And Iron Powder”, Journal of Green Engineering.
[10] G. Ye, X. Huang, Spatial image encryption algorithm based on chaotic map and pixel frequency, Sci. China Inf. Sci. 61 (5) (2018) 058104.

[11] A. Cheddad, J. Condell, K. Curran, P. McKeveit, Digital image steganography: Survey and analysis of current methods, Signal Process. 90 (3) (2010) 727–752.

[12] M. Jothilakshmi, L. Chandrakanthamma, K. S. Dhaya Chandhran, A. Mohan, “Flood control and water management at basin level at Orathur of kanchipuram district”, International Journal of Engineering and Advanced Technology, ISSN: 2249-8958, Volume8, Issue 6S3, 1418-1421. September 2019.

[13] Huda, J. Yearwood, M.M. Hassan, A. Almogren, Securing the operations in SCADA-IoT platform based industrial control system using ensemble of deep belief networks, Appl. Soft Comput. 71 (2018) 66–77.

[14] S. Lian, X. Chen, Traceable content protection based on chaos and neural networks, Appl. Soft Comput. 11 (7) (2011) 4293–4301, Soft Computing for Information System Security.

[15] Dhayachandhran K S, Jothilakshmi M, Tholkapiyan M, Mohan A, “Performance Evaluation and R-Value for Thermally Insulated Wall With Embedding Fluted Sheets”, Materials Today : Proceedings, ISSN: 1904-4720, Volume 22, 912-919, 2020.

[16] C.-H. Yuen, K.-W. Wong, A chaos-based joint image compression and encryption scheme using DCT and SHA-1, Appl. Soft Comput. 11 (8) (2011) 5092–5098.

[17] R. Gopalakrishnan , VM Sounthararajan , A. Mohan , M. Tholkapiyan, “The strength and durability of flyash and quarry dust light weight foam concrete”, Materials Today : Proceedings, ISSN: 1904-4720, Volume 22, 1117-1124, 2020.

[18] W.-S. Yap, R.C.-W. Phan, Commentary on “A block chaotic image encryption scheme based on self-adaptive modelling” [Applied Soft Computing 22 (2014) 351–357], Appl. Soft Comput. 52 (2017) 501–504.

[19] D. Ravichandran, P. Praveenkumar, J.B.B. Rayappan, R. Amirtharajan, Chaos based crossover and mutation for securing DICOM image, Comput. Biol. Med. 72 (2016) 170–184.

[20] K. S. Dhaya Chandhran, M. Jothilakshmi, L. Chandhrkanthamma, A. Mohan, “Thermal Insulation and R-Value Analysis for wall Insulated with PCM”,
International Journal of Innovative Technology and Exploring Engineering, ISSN: 2278-3075, Volume8, Issue 11-16, October 2019.

[21] Y.-Q. Zhang, X.-Y. Wang, A new image encryption algorithm based on non-adjacent coupled map lattices, Appl. Soft Comput. 26 (2015) 10–20.

[22] G. Ye, J. Zhou, A block chaotic image encryption scheme based on self-adaptive modelling, Appl. Soft Comput. 22 (2014) 351–357.

[23] X. Chai, X. Fu, Z. Gan, Y. Lu, Y. Chen, A color image cryptosystem based on dynamic DNA encryption and chaos, Signal Process. 155 (2019) 44–62.

[24] Z. Hua, Y. Zhou, H. Huang, Cosine-transform-based chaotic system for image encryption, Inform. Sci. 480 (2019) 403–419.

[25] A. Broumandnia, The 3D modular chaotic map to digital color image encryption, Future Gener. Comput. Syst. 99 (2019) 489–499.

[26] N. Sreelaja, G. Pai, Stream cipher for binary image encryption using Ant Colony Optimization based key generation, Appl. Soft Comput. 12 (9) (2012) 2879–2895.

[27] Srividhya K., Mohan A, Tholkapiyam M, Arunraj A, “Earth Quake Mitigation (EQDM) Through Engineering Design”, Materials Today: Proceedings, ISSN:1904-4720, Volume 22, 1074-1077, 2020.

[28] R. Enayatifar, A.H. Abdullah, M. Lee, A weighted discrete imperialist competitive algorithm (WDICA) combined with chaotic map for image encryption, Opt. Lasers Eng. 51 (9) (2013) 1066–1077.

[29] R. Enayatifar, A.H. Abdullah, I.F. Isnin, Chaos-based image encryption using a hybrid genetic algorithm and a DNA sequence, Opt. Lasers Eng. 56 (2014) 83–93.

[30] K.M. Talarposhti, M.K. Jamei, A secure image encryption method based on dynamic harmony search (DHS) combined with chaotic map, Opt. Lasers Eng. 81 (2016) 21–34.

[31] M. Kaur, V. Kumar, Fourier–Mellin moment-based intertwining map for image encryption, Mod. Phys. Lett. B 32 (09) (2018) 1850115.