HALL EFFECT IN THE HEAVY FERMION SYSTEMS CeCu₆ AND UBe₁₃

T. PENNEY, J. STANKIEWICZ *, S. von MOLNAR, Z. FISK **, J.L. SMITH *** and H.R. OTT

IBM Thomas J. Watson Research Center, Yorktown Heights, NY 10598, USA

The Hall effect in both UBe₁₃ and CeCu₆ becomes very large at low temperature, showing, with the resistivity and specific heat, the transition into the heavy fermion state. The Hall constant of CeCu₆ changes sign, on cooling into the coherently scattering regime.

Heavy fermion systems [1,2] have a large density of states at the Fermi level, as indicated by their enormous low temperature specific heats. The origin of this narrow (of order 10 K) peak is a many-body Abrikosov–Suhl resonance, as occurs for Kondo impurities and/or the hybridization of a very narrow f level with a d band. Surprisingly, these systems can be superconducting, as well as magnetically ordered, or unordered. Previous studies of the Hall effect in the heavy fermion systems, CeCu₂Si₂, CeAl₃ and UB₃₃ have shown a positive Hall constant, Rₜ, which increases to a very large value, without a sign change, with decreasing temperature.[2–6]. For CePd₃, which is not extremely heavy, Rₜ is large and positive above 10 K, but is negative below [6].

The purpose of this study is to see if the Hall effect of superconducting UBe₁₃ [7] and normal CeCu₆ [8] shows behavior characteristic of the heavy fermion state and the transition into that state. CeCu₆ has similar electrical resistivity [9–12] to CeAl₃, the first known heavy fermion compound [13]. On cooling from room temperature, the resistivity of CeCu₆ rises, as in a Kondo impurity system, where all impurities scatter incoherently (fig. 1). However, below 10 K it drops rapidly to a low value, in contrast to the behavior of Kondo impurity systems. This observation has led to the suggestion that CeAl₃ and CeCu₆ are periodic Kondo lattices with all of the Ce ions scattering coherently at low temperature.

The temperature dependence of the Hall constant and the resistivity, ρ, have remarkably similar shape when drawn with a zero shift as in fig. 1. Our major new result is that the Hall constant, Rₜ, of CeCu₆ is slightly positive at room temperature, rises to a large positive peak and then changes sign going strongly negative as the scattering changes from incoherent to coherent and ρ approaches a constant small value. The linear temperature dependence of Rₜ below 1 K is shown in fig. 2 for a second similar sample. The Hall results on a CeCu₆ single crystal of ref. [14] show a small positive Hall constant at room temperature, which rises monotonically to a large value at the lowest temperature measured, about 4 K. This behavior is similar to ours above 20 K, but there is no peak and no sign change.

* Permanent address: Centro de Física, Instituto Venezolano de Investigaciones Científicas, Apartado 1827, Caracas 1010A, Venezuela.

** Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, NM 87545.

† Laboratorium für Festkörperphysik, ETH-Zentrum, 8093, Zürich.
The reason for this difference may be that our samples (and those of refs. [11] and 12) have considerably lower resistivities at low temperature than those of ref. [9], and may therefore be closer to the 'coherent regime. For comparison, R_H of CeAl$_3$ increases positively to a large value at 2 K, where ρ is large, but was not measured in the very low temperature coherent regime [5].

The electronic (linear) contribution to the specific heat is normally determined from a plot of C/T vs. T^2. For CeCu$_6$, such a plot [8] is linear between about 10 K and 30 K with an intercept of about 250 mJ/mol K2. As the temperature decreases below 8 K, C/T (from ref. [8], replotted in fig. 1) shows a sharp rise. According to ref. [11], $C/T = 1530$ mJ/mol K2 between 0.1 and 0.5 K and is slightly higher at 1.0 K. The C/T results of ref. [15] are in general agreement with these. For comparison Cu has a C/T value of less than 1 mJ/mol K2. These results indicate that CeCu$_6$ is already very heavy at 30 K in the region where ρ and R_H are increasing with decreasing T, showing increasing incoherent scattering. The transition from incoherent to coherent scattering which occurs below 10 K, correlates with the strong increase in C/T. UBe$_{13}$ makes an interesting comparison with CeCu$_6$. The resistivity of UBe$_{13}$ also rises as T decreases from room temperature. (fig. 2). It reaches a shoulder around 20 K, then below 4 K rises slightly to a small peak at 2 K. Below this peak, the decrease in ρ may indicate the onset of coherent scattering, as in CeCu$_6$. However, before a small ρ is reached, the sample becomes superconducting at 0.9 K [7]. The Hall constant is positive at room temperature T and increases with decreasing T. At 4 K, the rate of change increases sharply as the extreme heavy regime is entered. R_H peaks at about 1.5 K, below the resistivity peak, then decreases by about 20% before superconductivity sets in. One wonders if R_H would go strongly negative and ρ would tend smoothly to a low value, as in CeCu$_6$, had superconductivity not occurred first. Our Hall results are in agreement with the previous ones [4] at the temperatures reported (100, 4.2, 3, 1.9 K).

The specific heat of UBe$_{13}$, is nearly linear between 12 K and 7 K, with C/T about 150 mJ/mol K2. [7]. However, between 4 and 0.9 K, C/T increases to 800 mJ/mol K2. Like CeCu$_6$, UBe$_{13}$ goes from moderately heavy to extremely heavy, where C is not linear with T. Both C/T and χ should be very large for $T < T_F$ if T_F is very small. However, C/T shows the onset of the heavy fermion regime more clearly than χ (figs. 1 and 3) because χT is already large at high temperature in the local moment regime.

In magnetic systems, the Hall resistivity [16] may be written as $\rho_H = R_H + R_A$ where R_H and R_A are the ordinary and spontaneous Hall coefficients. In paramagnetic systems, $R_H = R_A + R_A 4 \pi \chi^*$ where $\chi^* = \chi/(1 + 4 \pi \chi)$. If skew scattering dominates both ρ and R_A, then R_A is proportional to ρ. For side jump scattering, R_A is proportional to ρ^2. These relations are not obeyed for either system.

The Hall effect for the Kondo lattice and mixed valence has been treated in the incoherent regime as a collection of independent resonant scatterers. [17]. The resonant levels at the Fermi energy causes skew scattering [18], resulting in a large anomalous Hall constant, R_A, which may change sign with temperature. This single impurity approach does not apply to the coherent regime.

It has been suggested [2,4,5] that a two band model with light and heavy bands could explain the large Hall effect in CeAl$_3$ and UBe$_{13}$. Sharp structure in the density of states, suggested to explain the strongly temperature dependent specific heat and thermopower in Kondo lattices [19] could also cause R_A, to change rapidly with temperature.

Hall and resistivity measurements were made on two samples of each system, with essentially the same results. The preparation and properties of the UBe$_{13}$ single crystals are described in ref. [7]. The CeCu$_6$ was cooled slowly from the melt in a Ta crucible. Our sample, a large grain polycrystalline disk, showed some anisotropy in the susceptibility. The χ data in fig. 1 is for the field in the plane of the disk, the direction with the largest χ. The Hall measurements were made with the field perpendicular to the disk.

In conclusion, the first Hall measurements on a heavy fermion system, CeCu$_6$, showing the transition to the coherently scattering regime, have been made. On cooling from the incoherently scattering high resistivity region to the low resistivity region, the Hall constant changes from strongly positive to strongly negative. In both systems studied, the behavior of ρ and R_H are correlated with the transition into the heavy fermion state, as determined by C/T.

![Fig. 3. Hall coefficient, R_H (10$^{-3}$ cm2/C); resistivity, ρ (10$^{-5}$ Ohm cm); C/T, χ (10$^{-3}$ cm3/mol); vs. temperature for UBe$_{13}$. C/T and susceptibility from ref. [7].](image-url)
We thank J.M. Rigotty, H.R. Lilienthal, T.R. McGuirc, D. L. Cox and J.N. Karasinski for their help. Work at Los Alamos was supported by the U.S. Dept. of Energy.

[1] G.R. Stewart, Rev. Mod. Phys. 56 (1984) 755.
[2] N.B. Brandt and V.V. Moschalkov, Adv. Phys. 33 (1984) 373.
[3] G.R. Stewart, Z. Fisk and J.O. Willis, Phys. Rev. B28 (1983) 172.
[4] N.E. Alekseevski et al., JETP Lett. 40 (1984) 1241.
[5] N.B. Brandt et al., Solid State Commun. 53 (1985) 645.
[6] E. Cattaneo, J. Magn. Magn. Mat. 47 & 48 (1985) 529.
[7] H.R. Ott, H. Rudigier, Z. Fisk and J.L. Smith, Phys. Rev. Lett. 50 (1983) 1595; also Moment Formation in Solids, ed. (W.J.L. Buyers (Plenum, New York, 1984) p. 305; also J. Appl. Phys. 57 (1985) 3044.
[8] G.R. Stewart, Z. Fisk and M.S. Wire, Phys. Rev. B30 (1984) 482.
[9] Y. Onuki, Y. Shimizu and T. Komatsubara, J. Phys. Soc. Japan 53 (1984) 1210, 54 (1985) 304.
[10] J.D. Thompson and Z. Fisk, Phys. Rev. B31 (1985) 389.
[11] H.R. Ott, H. Rudigier, Z. Fisk, J.O. Willis and G.R. Stewart, Solid State Commun. 53 (1985) 235.
[12] J. Frouquet, P. Haen, C. Marcenat, P. Legay, A. Amato, D. Jaccard and E. Walker J. Magn. Magn. Mat. (to be published), A. Amato et al., to be published.
[13] K. Andres, J.E. Graebner and H.R. Ott, Phys. Rev. Lett. 35 (1975) 1779.
[14] H. Sato et al., J. Magn. Magn. Mat. 52 (1985) 357.
[15] T. Fujita et al., J. Magn. Magn. Mat. 47 & 48 (1985) 66.
[16] The Hall Effect and Its Applications, eds. C.L. Chien and C.R. Westgate (Plenum, New York, 1980).
[17] P. Coleman, P.W. Anderson and T.V. Ramakrishnan, Phys. Rev. Lett. 55 (1985) 414; J. Magn. Magn. Mat. 47 & 48 (1985) 493.
[18] A. Fert, A. Friederich and A. Hamzic, J. Magn. Magn. Mat. 24 (1981) 231.
[19] F. Steglich et al., J. Appl. Phys. 57 (1985) 3054.