Large versus bounded solutions to sublinear elliptic problems
by
Ewa DAMEK and Zeineb GHARDALLOU

Presented by Piotr BILER

Summary. Let L be a second order elliptic operator with smooth coefficients defined on a domain $\Omega \subset \mathbb{R}^d$ (possibly unbounded), $d \geq 3$. We study nonnegative continuous solutions u to the equation $Lu(x) - \varphi(x, u(x)) = 0$ on Ω, where φ is in the Kato class with respect to the first variable and it grows sublinearly with respect to the second variable. Under fairly general assumptions we prove that if there is a bounded nonzero solution then there is no large solution.

1. Introduction. Let L be a second order elliptic operator

$$L = \sum_{i,j=1}^{d} a_{ij}(x) \partial_{x_i} \partial_{x_j} + \sum_{i=1}^{d} b_i(x) \partial_{x_i}$$

with smooth coefficients a_{ij}, b_i defined on a domain $\Omega \subset \mathbb{R}^d$, $d \geq 3$ \(\text{(1)}\). No conditions are put on the behavior of a_{ij}, b_j near the boundary of $\partial \Omega$. We study nonnegative continuous functions u such that

$$Lu(x) - \varphi(x, u(x)) = 0 \quad \text{on} \quad \Omega,$$

in the sense of distributions, where $\varphi : \Omega \times [0, \infty) \to [0, \infty)$ grows sublinearly with respect to the second variable. Such u will be later called solutions. A solution u to \(\text{(1.2)}\) is called large if $u(x) \to \infty$ when $x \to \partial \Omega$ or $\|x\| \to \infty$.

2010 Mathematics Subject Classification: Primary 31D05, 35J08, 35J61; Secondary 31C05.

Key words and phrases: sublinear elliptic problems, Greenian domain, large solutions, bounded solutions, Green potentials, Kato class.

Received 21 December 2018; revised 1 February 2019.

Published online 15 March 2019.

\(\text{(1)}\) By a domain we always mean a set that is open and connected.
Large solutions, i.e. the boundary blow-up problems, are of considerable interest due to their applications in different fields. Such problems arise in the study of Riemannian geometry \[3\], non-Newtonian fluids \[1\], subsonic motion of a gas \[24\] and electric potentials in some bodies \[22\].

We prove that under fairly general conditions bounded and large solutions cannot exist at the same time. Classical examples the reader may have in mind are

\[(1.3) \quad \Delta u - p(x)u^\gamma = 0 \quad \text{with} \quad 0 < \gamma \leq 1 \quad \text{and} \quad p \in L^\infty_{\text{loc}},\]

where \(\Delta\) is the Laplace operator on \(\mathbb{R}^d\), but we go far beyond that. Not only the operator may be more general but the special form of the nonlinearity in (1.3) may be replaced by \(\varphi(x,t)\) satisfying

\[
(\text{SH}_1) \quad \text{There exists a function } p \in K^\text{loc}_d(\Omega) \quad (p \text{ is locally in the Kato class)} \quad \text{such that } \varphi(x,t) \leq p(x)(t+1) \quad \text{for all } t \geq 0 \quad \text{and} \quad x \in \Omega.
\]

\[
(\text{H}_2) \quad \text{For every } x \in \Omega, \ t \mapsto \varphi(x,t) \text{ is continuous nondecreasing on } [0,\infty).
\]

\[
(\text{H}_3) \quad \varphi(x,t) = 0 \quad \text{for every } x \in \Omega \quad \text{and} \quad t \leq 0.
\]

We recall that a Borel measurable function \(\psi\) on \(\Omega\) is locally in the Kato class in \(\Omega\) if

\[
\lim_{\alpha \to 0} \sup_{x \in D} \int_{D \cap \{|x-y| \leq \alpha\}} \frac{|\psi(y)|}{|x-y|^{d-2}} \, dy = 0
\]

for every open bounded set \(D\) with \(\bar{D} \subset \Omega\). Hypothesis (H\(_1\)) makes \(\varphi\) locally integrable against against the Green function \((2)\) for \(L\), which plays an important role in our approach. (H\(_3\)) is a technical extension of \(\varphi\) to \((-\infty,0)\) needed as a tool. For a part of our results we replace (SH\(_1\)) by a weaker condition:

\[
(\text{H}_1) \quad \text{For every } t \in [0,\infty), \ x \mapsto \varphi(x,t) \in K^\text{loc}_d(\Omega).
\]

Applying methods of potential theory we obtain the following result.

THEOREM 1. Assume that \(\Omega\) is Greenian for \(L\)(\(^3\)). Suppose that \(\varphi(x,t) = p(x)\psi(t)\) satisfies (SH\(_1\)), (H\(_2\)), (H\(_3\)) and there exists a nonnegative nontrivial bounded solution to (1.2). Then there is no large solution to (1.2).

Theorem \(^1\) considerably improves a similar result of El Mabrouk and Hansen \(^9\) for \(L\) being the Laplace operator \(\Delta\) on \(\mathbb{R}^d\), \(\varphi(x,t) = p(x)\psi(t)\), \(p \in L^\infty_{\text{loc}}(\mathbb{R}^d)\) and \(\psi(t) = t^\gamma, \ 0 < \gamma < 1\). It is proved in Section 4.

In fact, we prove a few statements more general than Theorem \(^1\) but a little more technical to formulate (see Theorem \(^3\) in Section 2). Generally, we do not assume that \(\varphi\) has product form, and in particular we characterize

\(^2\) See \((1.1)-(4.3)\) for the definition of \(G_\Omega\).

\(^3\) See Section 4 for the definition, more precisely, \((4.2), (4.3)\).
a class of functions $p(x)$ in (SH$_1$) for which there are bounded solutions but no large solutions to (1.2) (see Theorem 9 in Section 4).

Besides the theorem due to El Mabrouk and Hansen [9] there are other results indicating that the equation $\Delta u - p(x)u^\gamma = 0$, or more generally $\Delta u - p(x)\psi(u) = 0$, cannot have bounded and large solutions at the same time [10], [17], [21]. We prove such a statement in considerable generality:

- L is an elliptic operator (1.1);
- Ω is Greenian for L, generally unbounded;
- the nonlinearity is assumed to have only sublinear growth; no concavity with respect to the second variable and no product form of φ is required.

Our main strategy adopted from [7] and [9] is to relate solutions of (1.2) to L-harmonic functions and to make extensive use of potential theory. We rely on the results of [11] and [12] where this approach was developed.

Existence of large solutions for the equation

$$\Delta u = p(x)f(u)$$

was studied under more regularity: p Hölder continuous and f Lipschitz (not necessarily monotone) [19] (4) or on the whole of \mathbb{R}^d [29]. In our approach very little regularity is involved but monotonicity of φ with respect of t is essential. Suppose φ is not of the product form but the following condition is satisfied:

(H$_4$) For every $x \in \Omega$, $t \mapsto \varphi(x,t)$ is concave on $[0, \infty)$.

Then we have

Theorem 2. Suppose that (H$_1$)–(H$_4$) hold and that there is a bounded solution to

$$Lu(x) - \varphi(x, u(x)) = 0.$$

Then there is no large solution.

Theorem 2 follows directly from Theorem 3. Our strategy for the proof of Theorem 1 is to construct a function $\varphi_1 \geq \varphi$ satisfying (SH$_1$), (H$_2$)–(H$_4$) and to apply Theorem 3 to φ and φ_1 (5). To make use of both equations, for φ and φ_1, we need a criterion for existence of bounded solutions to (1.2) (see Theorem 8). The latter, proved in this generality, is itself interesting.

Semilinear problems $\Delta u + g(x, u) = 0$ have been extensively studied under a variety of hypotheses on g, and various questions have been asked. The function g is not necessarily monotone or negative but there are often other restrictive assumptions like more regularity of g or the product form. The problem is usually considered either in bounded domains or in $\Omega = \mathbb{R}^d$.

(4) More generally, $\Delta u = p(x)f(u) + q(x)g(u)$, p, q Hölder continuous [18].

(5) The main difficulty is to guarantee that $\varphi_1(x, 0) = 0$ (see Section 3).
Finally, there are not many results for general elliptic operators, and they mostly have the same restrictions \[4\], \[15\], \[25\], \[27\]. Clearly, stronger regularity of \(g\) or \(\Omega\) is used to obtain conclusions other than the one we are interested in.

2. Large solutions to \(Lu - \varphi(\cdot, u) = 0\) under (H\(_1\))–(H\(_3\)). In this section we replace (SH\(_1\)) by (H\(_1\)) which is weaker. Our aim is to prove that under fairly general assumptions, bounded and large solutions to (1.2) cannot occur at the same time \((6)\).

Theorem 3. Let \(\Omega\) be a domain and suppose \(\varphi, \varphi_1\) satisfy (H\(_1\))–(H\(_3\)). Assume that \(\varphi \leq \varphi_1\) and \(\varphi_1\) is concave with respect to the second variable. If the equation \(Lu = \varphi_1(\cdot, u)\) has a nontrivial nonnegative bounded solution in \(\Omega\) then \(Lu = \varphi(\cdot, u)\) does not have a large solution in \(\Omega\).

Theorem 3 gives, in particular, the most general conditions for \(\Delta\) implying nonexistence of a bounded and a large solution at the same time. Compare with Theorem 3.1 in \[9\], where the statement was proved for \(\varphi(x, u) = p(x)u^\gamma, p \in L^\infty_{\text{loc}}(\Omega)\).

Applying Theorem 3 to \(\varphi\) being concave with respect to the second variable we obtain Theorem 2. In the next section, we will prove that under (SH\(_1\)) such a \(\varphi_1\) always exists, which makes Theorem 3 widely applicable.

For the proof we need to recall a number of properties satisfied by solutions to (1.2). For \(L = \Delta\) they were proved in \[7\], and the general case is similar (see \[12\]).

Let \(C^+(\Omega)\) and \(C^+(\partial \Omega)\) be the sets of nonnegative continuous functions on \(\Omega\) and \(\partial \Omega\) respectively.

Lemma 4 (\[12\] Lemma 5). Suppose that \(\varphi\) satisfies (H\(_2\)). Let \(u, v \in C^+(\Omega)\) be such that \(Lu, Lv \in L^1_{\text{loc}}(\Omega)\). If

\[Lu - \varphi(\cdot, u) \leq Lv - \varphi(\cdot, v)\]

in the sense of distributions and

\[\lim_{x \to y} \inf_{y \in \partial \Omega} (u - v)(x) \geq 0,\]

then

\[u - v \geq 0\quad \text{in } \Omega.\]

For a bounded regular domain \(D \subset \mathbb{R}^d\) and a nonnegative function \(f\) continuous on \(\partial D\), we define \(U_D^\varphi f\) to be the function such that

\(U_D^\varphi f = f\)
on $\mathbb{R}^d \setminus D$ and $U_D^\varphi f \mid_D$ is the unique solution of

$$
\begin{cases}
Lu - \varphi(\cdot, u) = 0 & \text{in } D \text{ in the sense of distributions,} \\
u \geq 0 & \text{in } D, \\
u = f & \text{on } \partial D.
\end{cases}
$$

Existence of $U_D^\varphi f$ was proved in [12, Theorem 4]. Let G_D be the Green function for D. Then

$$
H_D f = U_D^\varphi f + G_D \varphi(\cdot, U_D^\varphi f) \quad \text{in } D,
$$

where $H_D f$ is an L-harmonic function in D with boundary values f, and for a function u we set

$$
G_D(\varphi(\cdot, u))(x) = \int_D G_D(x, y) \varphi(y, u(y)) dy.
$$

In particular $U_D^\varphi f$ is not identically 0 in D if f is not identically 0 on ∂D.

Now we focus on the properties of $U_D^\varphi f$. We say that u is a supersolution to (1.2) if $Lu - \varphi(\cdot, u) \leq 0$, and a subsolution if $Lu - \varphi(\cdot, u) \geq 0$. In the following lemma we shall apply U_D^φ to $f, g, u, v \in C^+(\Omega)$, that is, to their restrictions to ∂D. The lemma is a direct consequence of Lemma 4 and existence of solutions to (2.1). For $L = \Delta$ it was proved in [7].

Lemma 5. Suppose that φ satisfies (H$_1$)–(H$_3$) and let D be a bounded regular domain such that $\bar{D} \subset \Omega$. Then U_D^φ is nondecreasing in the following sense:

$$
U_D^\varphi f \leq U_D^\varphi g \quad \text{if } f \leq g \text{ in } \Omega.
$$

Let u be a continuous supersolution and v a continuous subsolution of (1.2) in Ω. Suppose further that D and D' are regular bounded domains such that $D' \subset D \subset \Omega$. Then

$$
\begin{align*}
U_D^\varphi u &\leq u \quad \text{and} \quad U_D^\varphi v \geq v, \\
U_{D'}^\varphi u &\geq U_D^\varphi u \quad \text{and} \quad U_{D'}^\varphi v \leq U_D^\varphi v.
\end{align*}
$$

If in addition (H$_4$) holds (7) then U_D^φ is a convex function on $C^+(\partial D)$, i.e. for every $\lambda \in [0, 1]$,

$$
U_D^\varphi(\lambda f + (1 - \lambda)g) \leq \lambda U_D^\varphi f + (1 - \lambda)U_D^\varphi g.
$$

In particular, for every $\alpha \geq 1$,

$$
U_D^\varphi(\alpha f) \geq \alpha U_D^\varphi f.
$$

Now, let (D_n) be a sequence of bounded regular domains such that for every $n \in \mathbb{N}$, $D_n \subset D_{n+1} \subset \Omega$ and $\bigcup_{n=1}^\infty D_n = \Omega$. Such a sequence will be called a regular exhaustion of Ω and it is used to generate solutions to (1.2).

(7) Notice that concavity together with (H$_1$) and (H$_2$) implies (SH$_1$).
Proposition 6 ([12, Proposition 10]). Let \(g \in C^+(\Omega) \) be an \(L \)-superharmonic function. Then the sequence \((U^{\varphi}_{D_n}g) \) is decreasing to a solution \(u \in C^+(\Omega) \) of (1.2) satisfying \(u \leq g \).

Now we are ready to prove the main result of this section.

Proof of Theorem 3. Suppose that \(Lu - \varphi_1(\cdot, u) = 0 \) has a nontrivial nonnegative bounded solution \(\tilde{u} \) in \(\Omega \). Let \((D_n) \) be an increasing sequence of bounded regular domains exhausting \(\Omega \). Then by Proposition 6 for every \(\lambda \geq \lambda_1 = \|\tilde{u}\|_{L^\infty} > 0 \), \(v_\lambda = \lim_{n \to \infty} U^{\varphi_1}_{D_n}\lambda \) is a nontrivial nonnegative bounded solution of \(Lu - \varphi_1(\cdot, u) = 0 \) in \(\Omega \) too.

Let \(\lambda \geq \lambda_1 \). Then by Lemma 5, \(U^{\varphi_1}_{D_n}\lambda \geq \frac{\lambda}{\lambda_1} U^{\varphi_1}_{D_n}\lambda_1 \). Therefore, letting \(n \to \infty \) we obtain
\[
v_\lambda \geq \frac{\lambda}{\lambda_1} v_{\lambda_1}, \quad \text{where} \quad v_{\lambda_1} = \lim_{n \to \infty} U^{\varphi_1}_{D_n}\lambda_1.
\]

Furthermore, \(\varphi \leq \varphi_1 \) implies, by Lemma 4, that \(U^{\varphi}_{D_n}\lambda \geq U^{\varphi_1}_{D_n}\lambda \), because \(U^{\varphi}_{D_n}\lambda \) is a supersolution to \(Lu - \varphi_1(\cdot, u) = 0 \). Hence
\[
u_\lambda = \lim_{n \to \infty} U^{\varphi}_{D_n}\lambda \geq v_\lambda.
\]

Suppose now that there is a large solution \(u \) to (1.2). Then it satisfies \(\liminf_{x \to \partial \Omega} u(x) = \infty \). Hence for sufficiently large \(n \), \(u \geq U^{\varphi}_{D_n}\lambda \) on \(\partial D_n \), and so by Lemma 4
\[
u \geq u_\lambda \geq v_\lambda.
\]

Consequently, \(u \geq \frac{\lambda}{\lambda_1} v_{\lambda_1} \) and so \(\frac{v}{\lambda} \geq \frac{1}{\lambda_1} v_{\lambda_1} \) for every \(\lambda \geq \lambda_1 \). When \(\lambda \) tends to infinity, we get \(v_{\lambda_1} = 0 \), which gives a contradiction.

3. Domination by a concave function. The aim of this section is to show that (SH\(_1\)), (H\(_2\)), (H\(_3\)) imply existence of a function \(\varphi_1 \) concave with respect to the second variable and such that
\[
\varphi(x, t) \leq \varphi_1(x, t), \quad \varphi_1(x, 0) = 0.
\]

Clearly, a nonnegative function \(\psi \) concave on \([0, \infty)\), continuous at zero, and with \(\psi(0) = 0 \) is dominated by an affine function. Indeed, given \(\beta > 0 \), we have
\[
\psi(t) \leq \frac{t}{\beta} \psi(\beta), \quad t \geq \beta,
\]
and so
\[
\psi(t) \leq \frac{t}{\beta} \psi(\beta) + \sup_{0 \leq s \leq \beta} \psi(s).
\]

(\(^8\)) Note here that \(u \) may be zero and usually an extra argument is needed to ensure it is not.
The idea behind (SH\(_1\)) is to formulate a condition as weak as possible to go beyond concavity in Theorem 1. It turns out that (SH\(_1\)) together with Theorem 7 below does the job. Clearly, the most delicate part is to guarantee that \(\varphi_1(x,0) = 0\).

Theorem 7. Suppose that \(\varphi(x,t)\) satisfies (SH\(_1\)), (H\(_2\)), (H\(_3\)). Then there is \(\varphi_1(x,t)\) satisfying (SH\(_1\)), (H\(_2\))–(H\(_4\)) such that

\[
\varphi(x,t) \leq \varphi_1(x,t).
\]

Moreover, there exists a constant \(C > 0\) such that

\[
\varphi_1(x,t) \leq Cp(x)(t + 1).
\]

Proof. For \(t \geq 1\),

\[
\varphi(x,t) \leq 2p(x)t.
\]

We need to dominate \(\varphi\) for \(t \leq 1\). Let \(\eta \in C^\infty(\mathbb{R})\), \(\eta \geq 0\), \(\text{supp}\ \eta \subset (-1,1)\), \(\eta(-t) = \eta(t)\) and \(\int_{\mathbb{R}} \eta(s) \, ds = 1\). Given \(0 < \delta \leq 1\), let \(\eta_\delta(t) = \frac{1}{\delta} \eta(\frac{1}{\delta} t)\), \(t \in \mathbb{R}\). Let \(x \in \Omega\). We write \(\varphi_x(t) = \varphi(x,t)\), \(t \in \mathbb{R}\). Then

\[
(3.1) \quad \varphi_x \ast \eta_\delta(0) = \int_{-\delta}^{\delta} \varphi_x(-t)\eta_\delta(t) \, dt = \int_{-1}^{1} \varphi(x, \delta s) \eta(s) \, ds.
\]

Hence

\[
(3.2) \quad 0 \leq \inf_{\delta} \varphi_x \ast \eta_\delta(0) = \lim_{\delta \to 0} \varphi_x \ast \eta_\delta(0) = \varphi_x(0) = 0.
\]

Secondly, \((\varphi_x \ast \eta_\delta)' = \varphi_x \ast (\eta_\delta)'\) and

\[
(3.3) \quad (\eta_\delta)'(t) = \frac{1}{\delta^2} \eta' \left(\frac{1}{\delta} t \right).
\]

Moreover,

\[
\int_{\mathbb{R}} |(\eta_\delta)'(t)| \, dt \leq \frac{1}{\delta^2} \int_{\mathbb{R}} \left| \eta' \left(\frac{1}{\delta} t \right) \right| \, dt = \frac{1}{\delta} \int_{\mathbb{R}} |\eta'(s)| \, ds.
\]

Therefore, if \(0 \leq t \leq 2\) then

\[
|(\varphi_x \ast \eta_\delta)'(t)| \leq \int_{\mathbb{R}} \varphi_x(t-s) |(\eta_\delta)'(s)| \, ds \leq p(x) \frac{4}{\delta} \int_{\mathbb{R}} |\eta'(s)| \, ds.
\]

Consequently, there exists a constant \(c_1\) such that for \(0 \leq t \leq 2\) we have

\[
(3.4) \quad \varphi_x \ast \eta_\delta(t) \leq \frac{c_1}{\delta} p(x)t + \varphi_x \ast \eta_\delta(0).
\]
Moreover,
\[
\varphi_x * \eta_\delta(t) = \int_{\mathbb{R}} \varphi_x(t - s) \eta_\delta(s) \, ds \geq \int_{-\delta}^{0} \varphi_x(t - s) \eta_\delta(s) \, ds
\geq \varphi_x(t) \int_{-\delta}^{0} \eta_\delta(s) \, ds = \frac{1}{2} \varphi_x(t).
\]
Hence
\[
\varphi_x(t) \leq 2 \varphi_x * \eta_\delta(t)
\]
and so for \(t \in [0, 2] \),
\[
\varphi_x(t) \leq \frac{2c_1}{\delta} p(x)t + 2 \varphi_x * \eta_\delta(0).
\]
Let
\[
\psi_\delta(x, t) = \frac{2c_1}{\delta} p(x)t + 2 \varphi_x * \eta_\delta(0), \quad \psi(x, t) = \inf_{0<\delta<1} \psi_\delta(x, t).
\]
First we prove that for every fixed \(x \in \Omega \), \(\psi(x, t) \) is concave on \([0, 2]\). For \(t, s \in [0, 2] \) and \(\alpha \in [0, 1] \), we have
\[
\psi(x, \alpha t + (1 - \alpha)s) = \inf_{\delta} \psi_\delta(x, \alpha t + (1 - \alpha)s)
= \inf_{\delta} \left(\alpha \psi_\delta(x, t) + (1 - \alpha) \psi_\delta(x, s) \right)
\]
and
\[
\inf_{\delta} \left(\alpha \psi_\delta(x, t) + (1 - \alpha) \psi_\delta(x, s) \right) \geq \inf_{\delta} \alpha \psi_\delta(x, t) + \inf_{\delta} (1 - \alpha) \psi_\delta(x, s).
\]
Hence
\[
\psi(x, \alpha t + (1 - \alpha)s) \geq \alpha \psi(x, t) + (1 - \alpha) \psi(x, s)
\]
and so \(\psi(x, t) \) is continuous on \((0, 2)\) in \(t \). Secondly,
\[
\psi(x, 0) = \inf_{\delta} 2 \varphi_x * \eta_\delta(0) = 2 \varphi(x, 0) = 0,
\]
and for every \(\delta \),
\[
\limsup_{t \to 0} \psi(x, t) \leq \limsup_{t \to 0} \left(\frac{2c_1 c(x)}{\delta} \frac{1}{2} t + 2 \varphi_x * \eta_\delta(0) \right)
\leq 2 \varphi_x * \eta_\delta(0) \leq 2 \varphi_x(\delta).
\]
Hence \(\lim_{t \to 0^+} \psi(x, t) = 0 \) and so \(\psi(x, t) \) is continuous on \([0, 2]\). Moreover, \(\psi(x, \cdot) \) is nondecreasing and
\[
\psi(x, t) \leq \psi_1(x, t) \leq 2c_1 p(x)t + 2 \varphi(x, 1)
\leq 2c_1 p(x)t + 4 p(x) \leq 4c_1 p(x)(t + 1).
\]
Finally, we define
\[
\varphi_1(x, t) = \begin{cases}
2p(x)t + \psi(x, t) & \text{if } 0 \leq t \leq 1, \\
2p(x)t + \psi(x, 1) & \text{if } t > 1,
\end{cases}
\]
and we set \(\varphi_1(x, t) = 0 \) if \(t \leq 0 \).

4. Large solutions to \(Lu - \varphi(\cdot, u) = 0 \) under (SH\(_1\)), (H\(_2\)), (H\(_3\)). In this section we prove Theorem \(\boxed{1} \). The argument is based on a very convenient characterization of existence of bounded solutions to \(\boxed{1.2} \). It is formulated in terms of thinness at infinity.

Let \(\Omega \subset \mathbb{R}^d, d \geq 3 \), be a domain. A subset \(A \subset \Omega \) is called \textit{thin at infinity} if there is a continuous nonnegative \(L \)-superharmonic function \(s \) on \(\Omega \) such that
\[
\begin{cases}
s \geq 1 & \text{on } A, \\
 s(x_0) < 1 & \text{for some } x_0 \in \Omega.
\end{cases}
\]

We say that \(\Omega \) is \textit{Greenian} if there is a function \(G_\Omega \) called the \textit{Green function for} \(L \) satisfying
\[
G_\Omega(x, y) \in C^\infty(\Omega \times \Omega \setminus \{(x, x) : x \in \Omega\}),
\]
for every \(y \in \Omega \) we have
\[
LG_\Omega(\cdot, y) = -\delta_y \quad \text{in the sense of distributions,}
\]
and
\[
G_\Omega(\cdot, y) \quad \text{is a potential,}
\]
i.e. every nonnegative \(L \)-harmonic function \(h \) such that \(h(x) \leq G_\Omega(x, y) \) is identically zero. For a given domain \(\Omega \), the Green function \(G_\Omega \) may or may not exist, but existence of \(s \) as above implies that it does.

Theorem 8 (\cite[Theorem 19]{12}). Suppose that \(\Omega \) is Greenian and \(\varphi \) is a measurable function satisfying (H\(_1\))–(H\(_3\)). Equation \(\boxed{1.2} \) has a nonnegative nontrivial bounded solution in \(\Omega \) if and only if there exists a Borel set \(A \subset \Omega \) which is thin at infinity and \(c_0 > 0 \) such that
\[
\int_{\Omega \setminus A} G_\Omega(\cdot, y) \varphi(y, c_0) \, dy \neq \infty.
\]

In the case of \(L = \Delta \) and \(\varphi(x, t) = p(x)t^\gamma, 0 < \gamma < 1, p \in L^\infty_{\text{loc}} \), Theorem 8 was proved in \cite{7}. Notice that no concavity (H\(_4\)) is required.

In view of Theorems 8 and 7, the proof of Theorem \(\boxed{1} \) is straightforward:

Proof of Theorem \(\boxed{1} \) If \(Lu - p(x)\psi(u) = 0 \) has a nonnegative nontrivial bounded solution then by Theorem 8 there is a set \(A \subset \Omega \) thin at infinity
such that
\[
\int_{\Omega \setminus A} G_\Omega(\cdot, y)p(y) \, dy \neq \infty.
\]

Let \(\varphi_1\) be the function constructed in Theorem 7. Then \(\varphi_1\) can be taken such that
\[
\varphi_1(x,t) \leq C p(x)(t + 1),
\]
and so again by Theorem 8, \(L u - \varphi_1(\cdot, u) = 0\) has a nonnegative nontrivial bounded solution. Hence the conclusion follows by Theorem 3.

Now we are going to apply Theorem 3 to \(\varphi\) that satisfies (SH1).

Theorem 9. Let \(\Omega\) be a Greenian domain. Assume that \(\varphi\) satisfies (SH1), (H2), (H3) and there exists a set \(A \subset \Omega\) thin at infinity such that the function \(p(x)\) in (SH1) satisfies
\[
\int_{\Omega \setminus A} G_\Omega(\cdot, y)p(y) \, dy \neq \infty.
\]
Then (1.2) has a nonnegative nontrivial bounded solution and it has no large solution.

Proof. By Theorem 8 there is a nonnegative nontrivial bounded solution to (1.2). Let \(\varphi_1(x,t)\) be the function constructed in Theorem 7. Then
\[
\varphi_1(x,t) \leq C p(x)(t + 1).
\]
Hence there is a nonnegative nontrivial bounded solution to \(L u - \varphi_1(\cdot, u) = 0\), and so by Theorem 3 there is no large solution to (1.2).

Suppose now that for every \(t_0 > 0\) there is a constant \(C_{t_0} > 0\) such that for every \(t \geq 0\) and \(x \in \Omega\), \(\varphi(x,t) \leq C_{t_0} \varphi(x,t_0)(t + 1)\). We do not assume any integrability of \(\varphi(x,t_0)\) in the spirit of (4.6). Then

Theorem 10. Let \(\Omega\) be a Greenian domain. Assume that \(\varphi\) satisfies (H1)–(H3). Suppose further that for every \(t_0 > 0\) there is \(C_{t_0} > 0\) such that
\[
\varphi(x,t) \leq C_{t_0} \varphi(x,t_0)(t + 1).
\]
If (1.2) has a nonnegative nontrivial bounded solution, then (1.2) has no large solution.

Proof. By Theorem 8 there exists a set \(A \subset \Omega\) thin at infinity and \(t_0 > 0\) such that
\[
\int_{\Omega \setminus A} G_\Omega(\cdot, y)\varphi(y,t_0) \, dy \neq \infty.
\]
Let $\varphi_1(x, t)$ be the function constructed in Theorem 7. We can take φ_1 such that $\varphi_1(x, t) \leq C(t_0)\varphi(x, t_0)(t + 1)$. Then

\[(4.8) \int_{\Omega \setminus A} G_\Omega(\cdot, y)\varphi_1(y, t_0) dy \neq \infty.\]

Hence there is a nonnegative nontrivial bounded solution to $Lu - \varphi(\cdot, u) = 0$, and so by Theorem 3 there is no large solution to (1.2).

5. Bounded solutions to $Lu - \varphi(\cdot, u) = 0$. Theorems 7 and 8 allow us to remove concavity and get the following characterization of bounded solutions.

Proposition 11. Let Ω be a Greenian domain. Suppose that $\varphi(x, t) = p(x)\psi(t)$ satisfies (SH1), (H2) and (H3). Let (D_n) be an increasing sequence of regular bounded domains exhausting Ω. The following statements are equivalent:

1. Equation (1.2) has a nonnegative nontrivial bounded solution.
2. For every $c > 0$, $v_c = \inf_{n \in \mathbb{N}} U_{D_n}^\varphi c$ is a nonnegative nontrivial bounded solution of (1.2).
3. There exists $c > 0$ such that $v_c = \inf_{n \in \mathbb{N}} U_{D_n}^\varphi c$ is a nonnegative nontrivial bounded solution of (1.2).

Furthermore if any of the above conditions holds then

\[(5.1) \sup_{x \in \Omega} v_c(x) = c.\]

The proof of Proposition 11 is given at the end of this section. We proceed as before: first we obtain the result for a concave nonlinear term, i.e. under (H1)–(H4), and then we apply Theorem 7.

Proposition 12. Suppose that φ satisfies (H1)–(H4). Then the conclusion of Proposition 11 holds true.

Proposition 12 was proved in [7] for $L = \Delta$ and $\varphi(x, t) = p(x)t^\gamma$ where $0 < \gamma < 1$ and $p \in L^\infty_{\text{loc}}$. Generalization to elliptic operators and φ satisfying (H1)–(H4) is straightforward and φ need not to be of the product form.

Proof of Proposition 12. The proof is the same as in [7] Lemmas 3 and 4], but we include the argument here for the reader’s convenience. Let $u_n = U_{D_n}^\varphi c$ and $u_c = \inf_{n \in \mathbb{N}} u_n$. Under hypotheses (H1)–(H4), $\sup_{x \in \Omega} u_c(x)$ is either zero or c. Indeed, by Proposition 6 u_c is a nonnegative solution of (1.2) bounded above by c. Suppose now that there exists $0 < c_0 \leq c$ such that $\sup_{x \in \Omega} u_c = c_0$. By Lemma 4

\[U_{D_n}^\varphi \left(\frac{c}{c_0} u_c \right) \leq U_{D_n}^\varphi c = u_n.\]
Also by Lemma 5,
\[
\frac{c}{c_0} U_{D_n}^\varphi u_c \leq U_{D_n}^\varphi \left(\frac{c}{c_0} u_c \right).
\]
Hence
\[
U_{D_n}^\varphi u_c = u_c \leq \frac{c_0}{c} u_n,
\]
and letting \(n\) tend to infinity we obtain
\[
u_c \leq \frac{c_0}{c} u_c,
\]
which implies \(c = c_0\).

Therefore, under (H4), if any of conditions (1)–(3) is satisfied then (5.1) follows. It is clear that (2)⇒(3)⇒(1). So it is enough to prove that (1) implies (2). Let \(w\) be a nonnegative nontrivial bounded solution of (1.2).

Suppose first that \(r \geq \sup_\Omega w\). Then \(v = \lim_{n \to \infty} U_{D_n}^\varphi r\) is a nonnegative nontrivial bounded solution satisfying \(w \leq v \leq r\) in \(\Omega\). Hence
\[
\sup_{x \in \Omega} v(x) = r.
\]
Secondly, we take \(0 < c < \sup_\Omega w\).

By Lemma 5, \(u_n = U_{D_n}^\varphi c \leq U_{D_n}^\varphi r = v_n\) in \(D_n\). Hence
\[
G_{D_n}(\varphi(\cdot, u_n)) \leq G_{D_n}(\varphi(\cdot, v_n)) \quad \text{in} \quad D_n.
\]
Furthermore by (2.2),
\[
v_n + G_{D_n}(\varphi(\cdot, v_n)) = r \quad \text{in} \quad D_n,
\]
and
\[
u_n + G_{D_n}(\varphi(\cdot, u_n)) = c \quad \text{in} \quad D_n.
\]
We can deduce
\[0 \leq c - u_n \leq r - v_n \quad \text{in} \quad D_n.
\]
When \(n\) tends to infinity, we get
\[c - u \leq r - v \quad \text{in} \quad \Omega.
\]
Suppose now that \(u\) is trivial. Then
\[v \leq r - c \quad \text{in} \quad \Omega.
\]
But \(\sup_\Omega v = r\), which gives a contradiction.

Proof of Proposition 11. As before, it is enough to prove that (1) implies (2). By Theorem 8, there is a set \(A \subset \Omega\) thin at infinity such that
\[
\int_{\Omega \setminus A} G_\Omega(\cdot, y)p(y) \, dy \neq \infty.
\]
Let \(\varphi_1(x, t)\) be the function constructed in Theorem 7. We can take \(\varphi_1\) such that \(\varphi_1(x, t) \leq Cp(x)(t + 1)\), so again by Theorem 8, \(Lu - \varphi_1(\cdot, u) = 0\) has
a nonnegative nontrivial bounded solution. Let $c > 0$. By Proposition 12,
\[v_1^c = \lim_{n \to \infty} U^\varphi_{D_n} c \]
is a nonnegative nontrivial bounded solution of $Lu - \varphi_1(\cdot, u) = 0$ and
\[\sup_{x \in \Omega} v_1^c(x) = c. \]
(5.4)
But in view of Lemma 4,
\[c \geq v_c = \lim_{n \to \infty} U^\varphi_{D_n} c \geq \lim_{n \to \infty} U^\varphi_{D_n} c = v_1^c. \]
Thus v_c is a nonnegative nontrivial solution to (1.2) satisfying
\[\sup_{x \in \Omega} v_c(x) = c. \]

Acknowledgements. The first author was supported by the NCN Grant UMO-2014/15/B/ST1/00060.

References

[1] G. Astarita and G. Marrucci, Principles of Non-Newtonian Fluid Mechanics, McGraw-Hill, 1974.
[2] C. Bandle and M. Marcus, Large solutions of semilinear elliptic equations: existence, uniqueness and asymptotic behavior, J. Anal. Math. 58 (1992), 9–24.
[3] K.-S. Cheng and W.-M. Ni, On the structure of the conformal scalar curvature equation on \mathbb{R}^n, Indiana Univ. Math. J. 41 (1992), 261–278.
[4] M. G. Crandall, P. H. Rabinowitz and L. Tartar, On a Dirichlet problem with a singular nonlinearity, Comm. Partial Differential Equations 2 (1977), 193–222.
[5] J. I. Díaz, J. Hernández and J. M. Rakotoson, On very weak positive solutions to some semilinear elliptic problems with simultaneous singular nonlinear and spatial dependence terms, Milan J. Math. 79 (2011), 233–245.
[6] T.-L. Dinu, Entire solutions of sublinear elliptic equations in anisotropic media, J. Math. Anal. Appl. 322 (2006), 382–392.
[7] K. El Mabrouk, Entire bounded solutions for a class of sublinear elliptic equations, Nonlinear Anal. 58 (2004), 205–218.
[8] K. El Mabrouk, Positive solutions to singular semilinear elliptic problems, Positivity 10 (2006), 665–680.
[9] K. El Mabrouk and W. Hansen, Nonradial large solutions of sublinear elliptic problems, J. Math. Anal. Appl. 330 (2007), 1025–1041.
[10] W. J. Feng and X. Y. Liu, Existence of entire solutions of a singular semilinear elliptic problem, Acta Math. Sinica 20 (2004), 983–988.
[11] Z. Ghardallou, Positive solution to a nonlinear elliptic problem, Potential Anal. 44 (2016), 449–472.
[12] Z. Ghardallou, Positive solutions to sublinear elliptic problems, Colloq. Math. 155 (2019), 107–125.
[13] J. V. Goncalves and A. Roncalli, Existence, non-existence and asymptotic behavior of blow-up entire solutions of semilinear elliptic equations, J. Math. Anal. Appl. 321 (2006), 524–236.
[14] Z. Guo, D. Ye and F. Zhou, Existence of singular positive solutions for some semi-linear elliptic equations, Pacific J. Math. 236 (2008), 57–71.
[15] J. Hernández, F. J. Mancebo and J. M. Vega, Positive solutions for singular nonlinear elliptic equations, Proc. Roy. Soc. Edinburgh Sect. A 137 (2007), 41–62.
[16] A. V. Lair, Large solutions of semilinear elliptic equations under the Keller–Osserman condition, J. Math. Anal. Appl. 328 (2007), 1247–1254.
[17] A. V. Lair, Large solutions of mixed sublinear/linear elliptic equations, J. Math. Anal. Appl. 346 (2008), 99–106.
[18] A. Lair and A. Mohammed, Entire large solutions of semilinear elliptic equations of mixed type, Comm. Pure Appl. Anal. 8 (2009), 1607–1618.
[19] A. Lair, Z. J. Proano and A. W. Wood, Existence of large solutions to non-monotone semilinear elliptic equations, Austral. J. Math. Anal. Appl. 4 (2007), no. 2, art. 14, 7 pp.
[20] A. V. Lair and A. W. Shaker, Classical and weak solutions of a singular semilinear elliptic problems, J. Math. Anal. Appl. 211 (1997), 371–385.
[21] A. V. Lair and A. W. Wood, Large solutions of sublinear elliptic equations, Nonlinear Anal. 39 (2000), 745–753.
[22] A. C. Lazer and P. J. McKenna, On a problem of Bieberbach and Rademacher, Nonlinear Anal. 21 (1993), 327–335.
[23] A. Mohammed, Ground state solutions for singular semi-linear elliptic equations, Nonlinear Anal. 71 (2009), 1276–1280.
[24] S. L. Pohozaev, The Dirichlet problem for the equation $u = u^2$, Soviet Math. Dokl. 1 (1960), 1143–1146.
[25] D. H. Sattinger, Monotone methods in nonlinear elliptic and parabolic boundary value problems, Indiana Univ. Math. J. 21 (1972), 979–1000.
[26] J. Shi and M. Yao, Positive solutions for elliptic equations with singular nonlinearity, Electron. J. Differential Equations 2005, no. 04, 11 pp.
[27] C. A. Stuart, Existence and approximation of solutions of non-linear elliptic equations, Math. Z. 147 (1976), 53–63.
[28] Y. Sun and S. Li, Structure of ground state solutions of singular semilinear elliptic equations, Nonlinear Anal. 55 (2003), 399–417.
[29] D. Ye and F. Zhou, Existence and nonexistence of entire large solutions for some semilinear elliptic equations, J. Partial Differential Equations 21 (2008), 253–262.
[30] Z. Zhang, A remark on the existence of positive entire solutions of a sublinear elliptic problem, Nonlinear Anal. 67 (2007), 147–153.
[31] Z. Zhang and J. Cheng, Existence and optimal estimates of solutions for singular nonlinear Dirichlet problems, Nonlinear Anal. 57 (2004), 473–484.

Ewa Damek
Institute of Mathematics
Wrocław University
Pl. Grunwaldzki 2/4
50-384 Wrocław, Poland
E-mail: edamek@math.uni.wroc.pl

Zeineb Ghardallou
Department of Mathematical Analysis and Applications
University Tunis El Manar, LR11ES11
2092 El Manar 1, Tunis, Tunisia
E-mail: zeineb.ghardallou@ipeit.rnu.tn