Adjustable recessions in horizontal comitant strabismus: A pilot study

Siddharth Agrawal, Vinita Singh, Priyanka Singh

Aim: To compare the surgical outcome of adjustable with the conventional recession in patients with horizontal comitant strabismus. Patients and Methods: A prospective comparative nonrandomized interventional pilot study was performed on patients with horizontal comitant strabismus. Fifty-four patients (27 in each group) were allocated into 2 groups to undergo either adjustable suture (AS) recession or non-AS (NAS) recession along with conventional resection. The patients were followed up for 6 months. A successful outcome was defined as deviation ±10 prism diopters at 6 months. The results were statistically analyzed by Chi-square test, Fisher’s exact test, and Student’s t-test. Results: A successful outcome was found in 24 (88.8%) patients in AS and 17 (62.9%) in NAS group (P = 0.02). The postoperative adjustment was done in 13 (48.1%) patients in AS group. There was one complication (tenon’s cyst) in AS group. Conclusion: AS recession may be considered in all cooperative patients undergoing strabismus surgery for comitant deviations.

Key words: Adjustable recession, comitant deviation, strabismus

Adjustable suture (AS) is an attempt to overcome the unpredictability and reduce the need for reoperation, which were first described in 1885 and later made popular by Jampolsky in 1975 and others with several modifications.[1]

There are studies that describe the use and advantages of ASs in patients with fusion potential and those who have unpredictable outcomes such as paralytic strabismus, restrictive strabismus, thyroid ophthalmopathy, etc.[2] However, there are few studies discussing its role in comitant deviations.[3,4]

The purpose of this study was to compare the two suture techniques in terms of successful outcome and complications in the treatment of horizontal comitant strabismus.

Patients and Methods

Patients with horizontal comitant strabismus requiring surgery between April 2010 and March 2012 were allocated alternately into two groups to undergo either AS recession using shoelace knot or non-AS (NAS) recession [Fig. 1]. Conventional resection was performed in both the groups. The surgeries were performed by the standard limbal incision.

The patients with age <8 years (likely to be uncooperative for postoperative adjustment procedure), history of previous surgery, nystagmus, and eccentric fixation were excluded.

In the AS group, where indicated the adjustment was done 48 h after the surgery, under topical anesthesia (proparacaine)

Department of Ophthalmology, King Georges’ Medical University, Lucknow, Uttar Pradesh, India

Correspondence to: Dr. Siddharth Agrawal, Department of Ophthalmology, King Georges’ Medical University, Lucknow, Uttar Pradesh, India. E-mail: agrawalsiddharth@rediffmail.com

Manuscript received: 14.02.13; Revision accepted: 11.08.15

Access this article online
Website: www.ijo.in
DOI: 10.4103/0301-4738.167117

Cite this article as: Agrawal S, Singh V, Singh P. Adjustable recessions in horizontal comitant strabismus: A pilot study. Ind J Ophthalmol 2015;63:611-3.

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as the author is credited and the new creations are licensed under the identical terms.
be approximately 70 in each arm as per the nomogram for comparing proportions. For having this sample size, the study duration would be unduly prolonged as we planned to study the surgical effect in a not so common group of patients (unlike cataract). We, therefore, decided to plan this as a prospective interventional pilot study over a 3 years period.

Results

The result is summarized in Figure 2 and Tables 2-4. A patient of tenon’s cyst which recurred 2 times was reported in AS group.

Discussion

Our data suggest higher success rate ($P = 0.02$, with 95% confidence interval) in the AS group at the end of 6 months without any significant risks.

We compared the deviation at 6 months as the postoperative drift would have occurred by that time. The success rate improved from 62.9% to 88.8% when AS was used. Various studies are favoring AS surgery show success rates between 60% and 85%. Adjustment was done in 13 (48.12%) patients, other published data shows the rate of adjustment between 39% and 64%.

A major advantage of AS is supra-maximal recessions for large angle squints, which is not possible where one does not have the option of reversing the effect of recessions. This enables managing large angle deviations with single stage surgery. This also gives rise to the observation that large recessions are not associated with complications such as motility limitations, enophthalmos, and palpebral fissure narrowing as reported in the literature. Berland et al. reported maximum recession of 8–9 mm lateral rectus, whereas we performed up to 12 mm lateral rectus and 9 mm medial rectus recessions without any permanent ocular motility restriction.

We also performed the procedure in a small angle deviation of 16 PD in which adjustment of suture was successfully done for over-correction. This indication has not been reported earlier.

At 6 months resurgery for residual or consecutive deviations was advised in 10 (37.0%) patients in NAS group and in 3 (11.1%) in AS group ($P = 0.02$). In addition, one patient in AS group underwent removal tenon’s cyst. The mean deviation at 6 months was lesser in AS group ($P = 0.04$). This observation supports the primary outcome. It also demonstrates that the group of patients who did not achieve a satisfactory outcome in the AS group did not have serious complications such as muscle or suture slippage, which would cause very large deviations disturbing the significance in the means.

Looking at the study retrospectively, the difference in means is significant with the sample size (although the power of the study is less than the desired 80%). Furthermore, the clinical relevance of the results motivated us to publish the results early, as a pilot study. We expect subsequent reports with larger samples to reduce the dispersion and overlaps; and make the results more plausible statistically.

The main limitations of the study include a small sample size and some heterogeneity introduced as we were dealing...
Agrawal, et al.: Adjustable recessions in comitant strabismus

with both esotropia and exotropia, nevertheless, the results are encouraging enough to advocate a larger usage of ASs in concomitant deviations.

Financial support and sponsorship
Nil.

Conflicts of interest
There are no conflicts of interest.

References
1. Jampolsky A. Strabismus reoperation techniques. Trans Sect Ophthalmol Am Acad Ophthalmol Otolaryngol 1975;79:704‑17.
2. Lueder GT, Scott WE, Kutschke PJ, Keech RV. Long‑term results of adjustable suture surgery for strabismus secondary to thyroid ophthalmopathy. Ophthalmology 1992;99:993‑7.
3. Park YC, Chun BY, Kwon JY. Comparison of the stability of postoperative alignment in sensory exotropia: Adjustable versus non‑adjustable surgery. Korean J Ophthalmol 2009;23:277‑80.
4. Bishop F, Doran RM. Adjustable and non‑adjustable strabismus surgery: A retrospective case‑matched study. Strabismus 2004;12:3‑11.
5. Keech VR. Adjustable suture strabismus surgery. In: Duane TD, Jaeger EA, editors. Duane's Clinical Ophthalmology. Vol. 6. Philadelphia, PA, USA: Lippincott Williams and Wilkins; 2009. [Oculist. Web].
6. Whitley E, Ball J. Statistics review 4: Sample size calculations. Crit Care 2002;6:335‑41.
7. Zhang MS, Hutchinson AK, Drack AV, Cleveland J, Lambert SR. Improved ocular alignment with adjustable sutures in adults undergoing strabismus surgery. Ophthalmology 2012;119:396‑402.
8. Awadein A, Sharma M, Bazemore MG, Saeed HA, Guyton DL. Adjustable suture strabismus surgery in infants and children. J Pediatr Ophthalmol Strabismus 2008;12:585‑90.
9. Santiago AP, Ing MR, Kushner BJ, Rosenbaum AL. Intermittent exotropia. In: Clinical Strabismus Management: Principles and Surgical Techniques. 1st ed. Philadelphia: W.B Saunders; 1999. p. 163‑73.
10. Berland JE, Wilson ME, Saunders RB. Results of large (8‑9 mm) bilateral lateral rectus muscle recessions for exotropia. Binocul Vis Strabismus Q 1998;13:97‑104.

Table 2: Descriptive data for the groups

Variables	AS group (n=27)	NAS group (n=27)	P
Gender			
Male:female	16:11	17:10	0.78
Mean age at the time of surgery in years	18.5±6.5	19.1±5.9	0.74
Patients with ET (n) (%)	8 (29.6)	9 (33.3)	0.65
Mean angle for ET (PD)	42.37±16.06 PD	47.22±12.52 PD	0.49
Patients with XT (n) (%)	19 (70.3)	18 (66.6)	0.74
Mean angle for XT (PD)	48.15±12.27 PD	50.83±11.91 PD	0.50
Mean preoperative deviation (PD)	46.4±13.4 PD	49.6±12.0 PD	0.36
Patients undergoing resection (n) (%)	23 (85.1)	25 (92.5)	0.66
Mean postoperative deviation at 6 months (PD)	10.2±7.5 PD	15.8±7.0 PD	0.04

Table 3: Postoperative data comparing both the groups

Variables	Number of patients (%)	Significance	
Adjusted	AS group (n=27)	NAS group (n=27)	P
Deviation±10 PD			
Day 2 (preadjustment)	14 (50.0)	16 (59.3)	0.78
Day 2 (postadjustment)	24 (85.7)	16 (59.3)	0.01
Successful outcome (6 months) ET (success/n)	7/8 (87.5)	6/9 (66.6)	
XT (success/n)	17/19 (94.7)	11/18 (61.1)	
Total	24 (88.9)	17 (62.9)	0.02
Motility restriction			
Day 2 (preadjustment)	2 (6.7)	0	
Day 2 (postadjustment)	0	0	
6 months	0	0	
Complications	1 (3.3)	0	

Table 4: Details of adjustments in the AS group

Variables	Number of patients (%)
Total patients in AS group	27 (100)
Adjusted	13 (48.1)
Pulled up (recession reduced)	11
For overcorrection only	9
For overcorrection + motility restriction	2
For motility restriction only	0
Loosened (further recessed)	2
For residual deviation	2
Mean deviation preadjustment	19.16 PD (P=0.001)
Postadjustment	4.83 PD

PD: Prism diopters, AS: Adjustable suture, NAS: Nonadjustable suture, ET: Esotropia, XT: Exotropia