LABELED DOUBLE PANTS DECOMPOSITIONS

ANNA FELIKSON AND SERGEY NATANZON

Abstract. A double pants decomposition of a 2-dimensional surface is a collection of two pants decompositions of this surface introduced in [3]. There are two natural operations acting on double pants decompositions: flips and handle-twists. It is shown in [3] that the groupoid generated by flips and handle-twists acts transitively on admissible double pants decompositions where the class of admissible decompositions has a natural topological and combinatorial description. In this paper, we label the curves of double pants decompositions and show that for all but one surfaces the same groupoid acts transitively on all labeled admissible double pants decompositions. The only exclusion is a sphere with two handles, where the groupoid has 15 orbits.

Introduction

Consider a 2-dimensional orientable surface S of genus g with n holes. A pants decomposition of S is a decomposition into 3-holed spheres (called “pairs of pants”). In [3] we considered double pants decompositions of surfaces as a union of two pants decompositions (with an additional assumption that the homology classes of the curves contained in the double pants decomposition generate the whole homology lattice $H_1(S,\mathbb{Z})$). We introduced a simple groupoid acting on double pants decompositions (the groupoid is generated by transformations of two types called flips and handle-twists, each flip or handle-twist affecting only one curve of double pants decomposition) and proved that this groupoid acts transitively on all admissible double pants decompositions. The class of admissible double pants decompositions has a simple combinatorial definition (see Definition 1.10 below) as well as a nice description in terms of Heegaard splittings of 3-manifolds.

More precisely, for each pants decomposition P of S one may construct a handlebody S_+ such that S is the boundary of S_+ and all curves of P are contractible inside S_+. A union of two pants decompositions of the same surface define two different handlebodies bounded by S, attaching this handlebodies along S one obtains a Heegaard splitting of some 3-manifold. This connection of two pants decompositions to a Heegaard splitting was investigated in a row of papers ([2], [4], [8]) and many others, see [1] for further references). The two pants decompositions are considered usually as two vertices in a pants complex, using as the main tool the Hempel distance.

The admissible double pants decomposition defined in [3] are exactly ones resulting in Heegaard splittings of a 3-sphere. So, the transitive action of flip and handle-twists

Research of the second author is supported by grants RFBR 10-01-00678 and NSh 709.2008.1.
groupoid on admissible double pants decompositions may be interpreted as an action on Heegaard splitting of 3-sphere.

In this paper we consider double pants decompositions with curves labeled by distinct integer numbers. We define a trivial action of flips and handle-twists on the labels: all labels are preserved by these transformations, in particular, the label of the flipped or twisted curve coincides with its initial label. We consider the action of the groupoid generated by flips and handle-twist on labeled admissible double pants decompositions and obtain the following theorem:

Theorem A. (Main Theorem) The flip-twist groupoid acts transitively on labeled admissible double pants decompositions of $S_{g,n}$, $2g + n \geq 2$, unless $(g,n) = (2,0)$. The action of flip and twist groupoid on labeled admissible double pants decompositions of $S_{2,0}$ has 15 orbits.

Furthermore, we also may restrict ourselves to the case of one labeled pants decomposition. It is shown by Hatcher and Thurston [6], [5] that there are two types of transformations called flips and S-moves which are sufficient to connect all pants decompositions in the unlabeled case. We extend the statement to the labeled case:

Theorem B. The groupoid generated by flips and S-moves acts transitively on labeled pants decompositions of $S_{g,n}$, $2g + n \geq 2$.

The paper is organized as follows. In Section 1 we recall from [3] the definitions concerning double pants decompositions and flip-twist groupoid. We also introduce the notion of labeled double pants decomposition and define the action of flip-twist groupoid on the labels. For the aims of proofs we consider also a notion of strict-labeled double pants decompositions for which the action of flip-twist groupoid is unable to intermix the labels of one pants decomposition with the labels of another. In Section 2 we consider labeled pants decomposition and prove Theorem B. In Section 3 we prove transitivity of flip-twist groupoid on strict-labeled decompositions (to be exact, the groupoid acts transitively unless $(g,n) = (2,0)$ and has 6 orbits otherwise). Finally, in Section 4 we use the result of Section 3 to prove the Main Theorem.

Acknowledgments. We are grateful to Robert Penner for suggestion to consider the orbits of labeled double pants decompositions.

1. **Double pants decompositions**

In this section we introduce double pants decompositions and their transformations.

1.1. **Pants decompositions.** Let $S = S_{g,n}$ be an oriented closed surface of genus $g \geq 0$ with n holes. A curve c on S is an embedded closed non-contractible curve considered up to a homotopy of S.

Given a set of curves we always assume that there are no “unnecessary intersections”, so that if two curves of this set intersect each other in k points then there are no homotopy equivalent pair of curves intersecting in less than k points.
For a pair of curves c_1 and c_2 we denote by $|c_1 \cap c_2|$ the number of (geometric) intersections of c_1 with c_2.

Definition 1.1 (Pants decomposition). A pants decomposition of S is a system of (non-oriented) mutually disjoined curves $P = \langle c_1, \ldots, c_m \rangle$ decomposing S into pairs of pants (i.e. into spheres with 3 holes).

It is easy to see that any pants decomposition of a surface $S_{g,n}$ consists of $m = 3g - 3 + n$ curves. For abuse of notation we will always write m instead of $3g - 3 + n$.

Note, that we do allow self-folded pants, two of whose boundary components are identified in S. A surface which consists of one self-folded pair of pants will be called a handle.

Definition 1.2 (Lagrangian plane of pants decomposition). Let $P = \langle c_1, \ldots, c_m \rangle$ be a pants decomposition. A Lagrangian plane $\mathcal{L}(P) \subset H_1(S, \mathbb{Z})$ is a subspace spanned by the homology classes $h(c_i), i = 1, \ldots, m$ (here c_i is taken with any orientation).

Definition 1.3 (Flip). Let $P = \langle c_1, \ldots, c_m \rangle$ be a pants decomposition. Define a flip of P in the curve c_i as a replacing of a regular curve $c_i \subset P$ by any curve c'_i satisfying the following properties:

- c'_i does not coincide with any of c_1, \ldots, c_m;
- $|c'_i \cap c_i| = 2$;
- $c'_i \cap c_j = \emptyset$ for all $j \neq i$.

See Fig. 1.1 for an example of a flip. Clearly, an inverse operation to a flip is also a flip (so that the set of flips compose a groupoid acting on pants decompositions).

Figure 1.1. Flips of pants decomposition.

1.2. Double pants decompositions.

Definition 1.4 (Lagrangian planes in general position). Two Lagrangian planes \mathcal{L}_1 and \mathcal{L}_2 are in general position if $\mathcal{L}_1 \cap \mathcal{L}_2 = 0$ and $H_1(S, \mathbb{Z}) = \langle \mathcal{L}_1, \mathcal{L}_2 \rangle$.

See Fig. 1.2 for an example of two pants decompositions spanning a pair of Lagrangian planes in general position.

Definition 1.5 (Double pants decomposition). A double pants decomposition $DP = (P_a, P_b)$ is a pair of pants decompositions P_a and P_b of the same surface such that the
Lagrangian planes $\mathcal{L}_a = \mathcal{L}(P_a)$ and $\mathcal{L}_b = \mathcal{L}(P_b)$ spanned by these pants decompositions are in general position.

There are several natural transformations on the set of double pants decompositions:

- flips of P_a;
- flips of P_b;
- handle-twists (see Definition 1.6 below).

Definition 1.6 (Handle-twists). Given a double pants decomposition $DP = (P_a, P_b)$ we define an additional transformation which may be performed if P_1 and P_2 contain the same curve $a_i = b_i$ separating the same handle \mathfrak{h}, see Fig. 1.3(b). Let $a \in \mathfrak{h}$ and $b \in \mathfrak{h}$ be the only curves from P_a and P_b respectively. Then a *handle-twist* $T_a(b)$ (respectively, $T_b(a)$) is a Dehn twist along a (respectively, b) in any of two directions (see Fig. 1.3(b)).

![Figure 1.2. Pair of pants decompositions (P_a, P_b).](image)

Definition 1.7 (Flip-twist groupoid). A *flip-twist groupoid* FT is a groupoid generated by flips and twists.

Definition 1.8 (Double curve). A curve $c \in (P_a, P_b)$ is *double* if $c \in P_a \cap P_b$.

Definition 1.9 (Standard decomposition, principle curves). A double pants decomposition (P_a, P_b) is *standard* if there exist g double curves $c_1, \ldots, c_g \in (P_a, P_b)$ such that c_i cut out of S a handle \mathfrak{h}_i.
Definition 1.10 (Admissible decomposition). A double pants decomposition \((P_a, P_b)\) is admissible if it is possible to transform \((P_a, P_b)\) to a standard pants decomposition by a sequence of flips.

The following theorem is the main result of [3].

Theorem 1.11 ([3]). A flip-twist groupoid acts transitively on admissible double pants decompositions of \(S = S_{g,n}\) (for any \((g,n)\) such that \(2g + n > 2\)).

1.3. Labeled double pants decompositions. A pants decomposition \(P = \langle c_1, \ldots, c_m \rangle\) is labeled if each curve \(c_i \in P\) is labeled by a number \(x_i \in \{1, \ldots, m\}\), \(x_i \neq x_j\) for \(i \neq j\), in other words we assign to the curves of \(P\) distinct numbers \(\{1, \ldots, m\}\).

Similarly, a double pants decomposition \(DP = (P_a, P_b) = \langle c_1, \ldots, c_m; c_{m+1}, \ldots, c_{2m} \rangle\) is labeled if each curve \(c_i \in P_a\) is labeled by a number \(x_i \in \{1, \ldots, 2m\}\).

In unlabeled version of double pants decomposition we consider \(\langle c_1, \ldots, c_m \rangle\) as a set, so we do not distinguish between two pants decompositions shown in Fig. 1.5. In labeled version this two decompositions are considered as different (they differ by their labelings).

The flips and handle-twists preserve the labelings, i.e. the new curve curries the same number as the deleted one had. In case of a double curve \(c = c_i = c_j \in DP\) we assign two labels \(x_i\) and \(x_j\) to the same curve. Flipping the double curve we can not differ between the labels, so for any given topological flip \(f\) of a double curve we define two labeled flips \(f_1\) and \(f_2\): both result in the same set of curves on the surface as \(f\) does, but the curve \(c\) is labeled by \(x_i\) after \(f_1\) and by \(x_j\) after \(f_2\).

In [3] we have proved transitivity of flip-twist groupoid on admissible double pants decompositions. It is natural to ask if this groupoid act transitively on labeled admissible double pants decompositions.

1.4. Strict-labeled double pants decompositions. In a labeled double pants decomposition the labels of a double curve are fully equal in rights. It would be convenient for the proof of our theorem to define also strict-labeled double pants decompositions, where each label of a double curve remembers to which of two pants decompositions it belongs (so that flips and twists do not intermix labels of \(P_a\) with labels of \(P_b\)).

A double pants decomposition \(DP = (P_a, P_b) = \langle c_1, \ldots, c_m; c_{m+1}, \ldots, c_{2m} \rangle\) is strict-labeled if each curve \(c_i \in P_i\) is labeled by a number \(x_i \in \{1, \ldots, m\}\) and each curve
Figure 1.5. These two labeled decompositions are different.

c_i \in P_j \text{ is labeled by a number } x_i \in \{m + 1, \ldots, 2m\}, \text{ where either } P_i = P_a, P_j = P_b \text{ or } P_i = P_b, P_j = P_a. \text{ In other words, instead of the whole permutation group } S_{2m} \text{ the set of labels is permuted only by } S_m \times \mathbb{Z}_2.

The flips and handle-twists preserve the labeling, i.e. the new curve curries the same number as the deleted one had. In case of a double curve \(c = c_i = c_j \in DP \) we do not mix \(c_i \) with \(c_j \) since one of these curves belong to \(P_a \) and another belong to \(P_b \). This mean that if \(c_i \in P_a \) and we make flip \(f \) of \(c \in P_a \), then the new curve \(f(c) \in P_a \) has the same label as \(c_i \), not as \(c_j \). So the labels assigned to one component always stay together.

We will first work with strict-labeled double pants decompositions and then in Section 4 extend the results to the labeled double pants decompositions.

2. Transitivity for labeled pants decompositions

Let \(P \) be a pants decomposition of a surface \(S = S_{g,n} \). It is shown in [6] and [5] that \(P \) may be transformed to any other pants decomposition of \(S \) via a sequence of flips and \(S \)-moves, where an \(S \)-move is defined as in Fig. 2.1. In this section we show that the groupoid generated by flips and \(S \)-moves acts transitively on labeled pants decompositions.

First we will prove transitivity for the case of sufficiently large surfaces, namely for \(S_{g,n} \) satisfying \(2g + n > 4 \), or in other words, to the surfaces whose pants decomposition contain at least three pairs of pants.
Lemma 2.1. Let P be a pants decomposition of a surface $S_{g,n}$, $2g + n > 4$. If $c_1, c_2 \in P$ are two curves in the boundary of the same pair of pants then the label of c_1 may be swapped with the label of c_2 by a sequence of flips.

Proof. Let p be a pair of pants containing both c_1 and c_2 as boundary components. Let p_1 and p_2 be the adjacent pairs of pants ($c_i = p \cap p_i$). There are two possibilities: either p_1 and p_2 are two distinct pairs of pants or they coincide.

If $p_1 \neq p_2$ then the labels on c_1 and c_2 are swapped by a sequence of 5 flips shown in Fig. 2.2 (usually called “pentagon relation”). Notice that some of five boundary components of the “pentagon” may be identified, but this does not affect the procedure.

![Figure 2.2. “Pentagon relation” exchanges the labels](image)

Suppose that $p_1 = p_2$. Since S contains at least 3 pairs of pants, there exists a pair of pants p_3 such that $p \cup p_1 \cup p_3$ looks as shown in Fig. 2.3 left (up to possible interchange of p and p_1 and possible identification of some boundary components). Then after one flip we obtain a configuration on Fig. 2.3 right, which suits to the case $p_1 \neq p_2$ considered above.

Corollary 2.2. Let P be a labeled pants decomposition of $S = S_{g,n}$ where $2g + n > 4$. Then flips act transitively on labeling of P.

Proof. The statement follows immediately from Lemma 2.1 and the fact that S is connected.

It is clear that Corollary 2.2 together with transitivity of flips and S-moves on unlabeled pants decompositions imply transitivity on the labeled pants decompositions. So, we are left to consider only finitely many surfaces $S_{g,n}$ satisfying the inequality $2g + n \leq 4$, i.e. $S_{0,3}$, $S_{0,4}$, $S_{1,1}$, $S_{1,2}$ and $S_{2,0}$. Notice, that pants decompositions of
surfaces $S_{0,3}$, $S_{0,4}$ and $S_{1,1}$ contain at most one curve, so there is nothing to prove in these cases. A pants decomposition of $S_{1,2}$ contains two curves whose labels could be swapped as in Fig. 2.4. So, the only question left concerns $S_{2,0}$. A pants decomposition of $S_{2,0}$ contains 3 curves. After at most one flip we may assume that all three curves are homologically non-trivial. Then we cut $S_{2,0}$ along one of the curves and use the procedure described above for $S_{1,2}$ to swap the labels of the other two curves. Thus, we have all transpositions of the labels on P, and hence, all permutations.

We summarize the results of this section in the following theorem:

Theorem 2.3. For any surface $S_{g,n}$, $2g + n > 2$ flips and S-moves act transitively on labeled pants decompositions of S.

3. TRANSITIVITY FOR STRICT-LABELED DOUBLE PANTS DECOMPOSITIONS

Our next step is to prove transitivity of flips-twist groupoid on the strict-labeled double pants decompositions.
Theorem 3.1. Let DP and DP' be two strict-labeled admissible double pants decompositions of \(S = S_{g,n} \) where \(2g + n > 4 \). Then there exists a sequence of flips and handle-twists transforming DP to DP'.

Proof. By Theorem 1.11 there exists a sequence \(\psi \) of flips and handle-twists which takes \(DP = (P_a, P_b) \) to \(DP' = (P'_a, P'_b) \) as an unlabeled decomposition. There are two possibilities: either \(\psi \) takes \(P_a \) to \(P'_a \) and \(P_b \) to \(P'_b \) or \(\psi \) changes the components \(P_a \) and \(P_b \).

Suppose that \(\psi(P_a) = P'_a, \psi(P_b) = P'_b \). Then we apply Corollary 2.2 to take labeling of \(\psi(P_a) \) and \(\psi(P_b) \) to labeling of \(P'_a \) and \(P'_b \) respectively.

Suppose that \(\psi(P_a) = P'_b, \psi(P_b) = P'_a \). Consider a sequence of flips and handle-twists \(\varphi \) which takes \((P'_a, P'_b) \) to a standard pants decomposition (it does exists by Theorem 1.11). In a standard double pants decomposition we may swap the curve of \(P_a \) with the curve of \(P_b \) in each handle separately: see Fig. 3.1.

\[\text{Figure 3.1. Exchange of labels in a handle via 3 handle-twists}\]

In view of Theorem 2.2 we are left to consider only finitely many surfaces \(S_{g,n} \) satisfying the inequality \(2g + n \leq 4 \), i.e. \(S_{0,3}, S_{0,4}, S_{1,1}, S_{1,2} \) and \(S_{2,0} \). Below, we consider these five surfaces one by one.

3.1. **Surface \(S_{0,3} \).** A pants decomposition of this surface is trivial (contains no curve), so the transitivity of flip-twist groupoid on strict-labeled pants decompositions follows trivially.

3.2. **Surface \(S_{0,4} \).** A pants decomposition of the sphere with 4 holes consists of one curve, a double pants decomposition is an arbitrary pair of curves \(\langle a, b \rangle \). In particular, after one flip \(f \) we may assume that the \(a \) and \(f(b) \) coincide, and the inverse of this flip applied to \(a \) gives \(\langle f^{-1}a, f(b) \rangle = \langle b, a \rangle \). This shows that applying flips we may swap the label of \(a \) with the label of \(b \).

3.3. **Surface \(S_{1,1} \).** A pants decomposition of the sphere with 4 holes consists of one curve, a double pants decomposition is a pair of curves \(\langle a, b \rangle \), such that \(|\langle a, b \rangle| = 1 \). The labels of these curves may be swapped by a sequence of three handle-twists, as in Fig. 3.1.
3.4. **Surface** $S_{1,2}$. A pants decomposition of $S_{1,2}$ consists of two curves, a double pant decomposition consists of two pairs of curves. The labels of the two components P_a and P_b may be swapped in the usual way: in a standard double pant decomposition we change the labels via three handle-twists, as in Fig. 3.1. So, the only thing to check is that there exists a sequence of flips and handle-twists which exchanges the labels of two curves of P_a and preserves the labels of P_b. This sequence is shown in Fig. 3.2.

![Diagram](image)

Figure 3.2. Changing the labels of P_a and preserving the labels of P_b (F_i stays for a flip of i-th curve, T_i stays for a handle-twist along i-th curve)

3.5. **Surface** $S_{2,0}$. This is the only surface where flip-twist groupoid do not act transitively on strict-labeled admissible double pants decompositions. To investigate this action we consider the double pants decompositions of the combinatorial type shown in Fig. 3.3 (we call this type of double pants decomposition *hexagonal*). This type of double pants decomposition may be characterized by the following property: we have $|a_i \cap b_{i+1}| = 1$, $|b_i \cap a_{i+1}| = 1$, $|a_i \cap b_i| = 0$, where indexes are considered modulo 3. In other words, the curves $[a_1, b_3, a_2, b_1, a_3, b_2]$ compose “hexagon”, where the neighbours do intersect and other sides do not. More precisely, the curves of the hexagonal decomposition decompose the surface $S_{2,0}$ into 4 hexagons.
Our aim now is to label the curves \([1, 4, 2, 5, 3, 6]\) and check which permutations of these labels may be performed via flips and handle-twists.

Consider any of the four hexagons on \(S_{2,0}\) and read the labels on its sides in a clockwise direction. The obtained sequence should be considered modulo cyclic shifts of all labels and modulo reversing of the order. We obtain a cyclic order of the labeling. Notice that the cyclic order does not depend on the choice of one of the four hexagons (the choice of any of the two adjacent hexagons reverse the order of the labels in the sequence, the choice of the hexagon opposite to the initial one does not affects the order).

Whenever we need to compare two labeling of the same hexagonal double pants decomposition we always refer to the same hexagon on the surface, so that the notions of rotation of the labels and reversing of the order of the labels make sense. Comparing the cyclic orders of two distinct hexagonal decompositions we think of the cyclic order modulo reversing of the order and cyclic shifts of the labels.

Figure 3.3. A hexagonal double pants decomposition

Definition 3.2 (Hexagonal twist). Let \([a_1, b_3, a_2, b_1, a_3, b_2]\) be a hexagonal double pants decomposition. A hexagonal twist \(T_{a_i}\) (or \(T_{b_i}\)) is a Dehn twist along \(a_i\) (respectively, along \(b_i\)), \(i = 1, 2, 3\).

Lemma 3.3.

1) Any hexagonal twist is a composition of flips and handle-twists;
2) Any handle-twist is a composition of flips and hexagonal twists;
3) A hexagonal twist preserves the cyclic order in a hexagonal double pants decomposition.

Proof. Parts 1) and 2) follow from the commutative diagram shown in Fig. 3.4 part 3) is evident.

Lemma 3.4. There exists a sequence of flips and handle-twists which takes the set of curves \([a_1, b_3, a_2, b_1, a_3, b_2]\) to itself and the labels \([1, 4, 2, 5, 3, 6]\) to \([6, 1, 4, 2, 5, 3]\).

Proof. Consider the system \([a_1, b_3, a_2, b_1, a_3, b_2]\) and apply five hexagonal twists in a row, namely \(T_2, T_4, T_3, T_5, T_1\), where \(T_i\) is a twist in the curve labeled by \(i\). Then we return to the same set of curves, but the labels are shifted, see Fig. 3.5.
Hexagonal twist

![Hexagonal twist](image1)

Handle-twist

![Handle-twist](image2)

Figure 3.4. Hexagonal twist as a composition of flips and handle-twists

Figure 3.5. Rotation of the hexagon realized by 5 hexagonal twists.

Lemma 3.5. There exists a sequence of flips and handle-twists which takes the set of curves $[a_1, b_3, a_2, b_1, a_3, b_2]$ to itself and the labels $[1, 4, 2, 5, 3, 6]$ to $[6, 3, 5, 2, 4, 1]$.

Proof. First, we make a flip in 3 and 6, and then apply hexagonal twists in 4, 2, 1, 5, 1, 4, see Fig. 3.6

Lemmas 3.4 and 3.5 show that each element of the dihedral group D_6 acting on the labels of hexagon $[a_1, b_3, a_2, b_1, a_3, b_2]$ may be realized as a sequence flips and
Remark 3.6. We generate D_6 be rotation of order 6 and one reflection. Another possibility is to generate D_6 by two reflections, but then we need to find a presentation (via flips and twists) of a reflection saving two opposite sides of the hexagon.

In Lemma 3.8 we will show that there are no other permutations of labels of the hexagon that can be realized by flips and handle-twists. For the proof we will consider \mathbb{Z}_2 homology classes. Denote $\bar{h}(c) \in H_1(S, \mathbb{Z}_2)$ a \mathbb{Z}_2 homology class of the curve c. Notice that a homology class $h(c) \in H_1(S, \mathbb{Z})$ is defined only up to a change of sign (depending on the orientation of the curve c), however, the class $\bar{h}(c) \in H_1(\mathbb{Z}_2, S)$ is well defined for a non-oriented curve.

Lemma 3.7. Let $DP = [a_1, b_3, a_2, b_1, a_3, b_2]$ be a hexagonal double pants decomposition of $S_{2,0}$. Let ψ be a sequence of flips of $P_a = \langle a_1, a_2, a_3 \rangle$ such that $\psi(P_a)$ contains no homologically trivial curves. Then $\bar{h}(\psi(a_i)) = \bar{h}(a_i)$, $i = 1, 2, 3$.

Proof. Label the curves a_1, a_2, a_3 of P_a by numbers 1, 2, 3 respectively and consider the sequence ψ as a composition of subsequences $\psi_1 \circ \cdots \circ \psi_k$, where ψ_i is a composition of flips of the curve with the same label, while ψ_i and ψ_{i+1} are compositions of flips
of curves with different labels. It is easy to see that after applying any subsequence \(\psi_1 \circ \cdots \circ \psi_j \), \(0 \leq j \leq k \) the pants decomposition \(P_a \) turns in a decomposition without homologically trivial curves (otherwise \(\psi_j \) and \(\psi_{j+1} \) can not flip the curve with distinct labels). So, it is sufficient to prove the statement of the lemma for one subsequence \(\psi_1 \).

Now, suppose that all flips in \(\psi_1 \) change the curve labeled 1. Consider a pair of pants \(p \) in \(\psi_1 \) containing the curve \(\psi_1(a_1) \). Then the boundary of \(p \) consists of curves \(\psi_1(a_1), a_2 \) and \(a_3 \) (notice that \(\partial p \neq \psi_1(a_1) \cup a_i \), \(i = 2 \) or \(3 \) since \(\psi_1(a_1) \) is homologically non-trivial). This implies that \(h(\psi_1(a_1)) = \pm(h(a_2) \pm h(a_3)) \) (the choices of signs depend on the orientations of curves). So, for \(\mathbb{Z}_2 \)-homology classes we always have

\[
\bar{h}(\psi_1(a_1)) = \bar{h}(a_2) + \bar{h}(a_3) = \bar{h}(a_1),
\]

and the statement for \(\psi_1 \) is proved. Applying this \(k \) times we obtain the lemma.

\[\square \]

Lemma 3.8. Let \(\varphi \) be a sequence of flips and handle-twists transforming the hexagonal set of curves \([a_1, b_3, a_2, b_1, a_3, b_2] \) to itself and permuting the labels \([1, 4, 2, 5, 3, 6] \) of these curves. Then the permutation coincides with some permutation obtained by an action of dihedral group \(D_6 \) on the hexagon \([a_1, b_3, a_2, b_1, a_3, b_2] \).

Proof. Consider a sequence \(\varphi \) of flips and handle-twists transforming the set of curves \(\langle a_1, b_3, a_2, b_1, a_3, b_2 \rangle \) to itself. By Lemma 3.3 any handle-twist is a composition of flips and hexagonal twists. So, \(\varphi \) is a composition of flips and hexagonal twists. By Lemma 3.3 hexagonal twist does not change cyclic order. We will show that if a sequence of flips takes a hexagonal double pants decomposition to a hexagonal one, then it either preserves the cyclic order or changes it to the opposite. Then the statement of the lemma follows.

So, we are left to show that if a sequence of flips \(\varphi \) takes a hexagonal double pants decomposition to a hexagonal one, then \(\varphi \) either does not change the cyclic order or . By Lemma 3.7 \(\varphi \) preserves \(\mathbb{Z}_2 \)-homology classes of all curves of \(P_a \) and \(P_b \). This implies that \(\varphi(a_i) \) intersects \(\varphi(b_j) \) if and only if \(a_i \) intersects \(b_j \). So, the cyclic order of curves \([a_1, b_3, a_2, b_1, a_3, b_2] \) is either preserved by \(\varphi \) or changed to the opposite.

\[\square \]

Corollary 3.9. The action of flip and twist groupoid on strict-labeled admissible double pants decompositions of \(S_{2,0} \) has \(6 \) orbits.

Proof. Consider a hexagonal double pants decomposition. Notice that the labels from the set \(\{1, 2, 3\} \) alternate with the labels from the set \(\{3, 4, 5\} \), since curves from the same pants decomposition do not intersect each other.

Now, the action of the dihedral group \(D_6 \) is sufficient to put the labels 1, 2, 3 of \(P_a \) into required position. There are 6 possibilities left to put the labels 4, 5, 6. Distinct possibilities result in distinct cyclic orders, so the obtained labeling are not equivalent under the action of flip and twist groupoid.

\[\square \]

The results of Section 3.1–Section 3.5 may be summarized in the following theorem:
Theorem 3.10. The flip-twist groupoid acts transitively on strict-labeled admissible double pants decompositions of $S_{g,n}$ unless $(g,n) = (2,0)$. The action of flip and twist groupoid on strict-labeled admissible double pants decompositions of $S_{2,0}$ has 6 orbits.

4. Transitivity on labeled double pants decompositions

Now, we will extend Theorem 3.10 from the class of strict-labeled decompositions to the class of labeled decompositions.

Instead of thinking that two labels x_1 and x_2 of a double curve c do not know to which of P_a and P_b they do belong, we will add one more transformation which we will call switch: a switch in c just changes the places of x_i and x_j.

Theorem 4.1. The flip-twist groupoid acts transitively on labeled admissible double pants decompositions of $S_{g,n}$ unless $(g,n) = (2,0)$. The action of flip and twist groupoid on labeled admissible double pants decompositions of $S_{2,0}$ has 15 orbits.

Proof. First, consider all surfaces $S_{g,n}$, $(g,n) \neq (2,0)$. By Theorem 3.10 flip-twist groupoid acts transitively on strict-labeled double pants decompositions of these surfaces. So, it is sufficient to check that applying flips, handle-twists and switches in double curves we may arrive in a double pants decomposition $DP = (P_a, P_b)$ where the labels of P_a contain any given set of m numbers from $\{1, 2, \ldots, 2m\}$. Clearly, it is sufficient to check that we may change the places of two labels, assigned to curves in P_a and P_b respectively. More precisely, if $c_i \in P_a$, $c_j \in P_b$, then we may change the labels i and j of the curves c_i and c_j in the following way:

1) find an admissible decomposition DP' with a double curve c (we can get to DP' from DP by flips and handle-twists in view of Theorem 1.11);

2) use transitivity of flip-twist groupoid on labeled double pants decompositions to get to the decomposition DP' with labels i and j on the double curve c;

3) switch i and j;

4) return to the decomposition DP with c_i and c_j labeled j and i respectively.

This implies that if $(g,n) \neq (2,0)$ then the flip-twist groupoid acts transitively on labeled admissible double pants decompositions.

Now consider the case $(g,n) = (2,0)$. The switch of the labels on the double curve in terms of hexagonal decomposition describes as exchange of the labels of two opposite sides of the hexagon. This implies that under the action of flip-twist groupoid the labels of opposite sides always remain the opposite. There are 15 possibilities to split 6 labels into 3 pairs (the label 1 may be in pair with each of 5 other labels, for each of these 5 possibilities the smallest of the remaining labels may be paired with any of 3 other labels).

Choose one of the possible pairings, for example, $\langle (1, 4), (2, 5), (3, 6) \rangle$. Using switches we make the labels 1, 2, 3 mutually non-adjacent in the hexagon. Using rotations and reflections as in Lemmas 3.4 and 3.5 we may put the labels 1, 2, 3 in any three mutually non-adjacent positions. The pairing then determines the positions of all remaining labels.
References

[1] Cameron McA Gordon (editor) *Heegaard splittings of 3-manifolds (Haifa 2005)*, Problems Geom. Topol. Monographs 12 (2007) 401-411.

[2] A. Casson and C. Gordon, *Manifolds with irreducible Heegaard splittings of arbitrarily high genus*, preprint.

[3] A. Felikson, S. Natanzon, *Double pants decompositions of 2-surfaces*, arXiv:1005.0073v2.

[4] J. Hempel, *3-manifolds as viewed from the curve complex*, Topology 40, No. 3 (2001), 631–657.

[5] A. Hatcher, *Pants decompositions of surfaces*, http://www.math.cornell.edu/~hatcher/Papers/pantsdecomp.pdf

[6] A. Hatcher, W. Thurston, *A presentation for the mapping class group of a closed orientable surface*, Topology 19 (1980), 221–237.

[7] J. Johnson, *Heegaard splittings and the pants complex*. Algebr. Geom. Topol., 6 (2006), 853–874.

[8] F. Luo, *On Heegaard diagrams*, Math. Res. Lett., 4 (1997), no 2-3, 365–373.

Independent University of Moscow

Current address: School of Engineering and Science, Jacobs University Bremen

E-mail address: felikson@mccme.ru

Independent University of Moscow,
Belozersky Institute of Physico-Chemical Biology, Moscow State University,
Institute Theoretical and Experimental Physics

E-mail address: natanzons@mail.ru