WHEN DEGREE OF ROUGHNESS IS A NEIGHBORHOOD OVER
LOCALLY SOLID RIESZ SPACES

SANJOY GHOSAL AND SOURAV MANDAL

Abstract. In this paper we introduce the notion of rough weighted I-τ-limit points set and weighted I-τ-cluster points set in a locally solid Riesz space which are more generalized version of rough weighted I-limit points set and weighted I-cluster points set in a θ-metric space respectively. Successively to compare with the following important results of Fridy [Proc. Amer. Math. Soc. 118 (4) (1993), 1187-1192] and Das [Topology Appl. 159 (10-11) (2012), 2621-2626], respectively be stated as

(i): Any number sequence $x = \{x_n\}_{n \in \mathbb{N}}$, the statistical cluster points set of x is closed,

(ii): In a topological space the I-cluster points set is closed,

we show that in general, the weighted I-τ-cluster points set in a locally solid Riesz space may not be closed. The resulting summability method unfollows some previous results in the direction of research works of Aytar [Numer. Funct. Anal. Optim. 29 (3-4) (2008) 291-303], Dündar [Numer. Funct. Anal. Optim. 37 (4) (2016) 480-491], Ghosal [Math. Slovaca 70 (3) (2020) 667-680] and Savaş, Et [Period. Math. Hungar. 71 (2015) 135-145].

1. Introduction

The idea of convergence of a sequence in a norm linear space $(X, ||.||)$ had been extended to rough convergence first by Phu [20] as follows: Let r be a non-negative real number, a sequence $x = \{x_n\}_{n \in \mathbb{N}}$ in X is said to be rough convergent to x_* w.r.t the roughness of degree r, denoted by $x_n \xrightarrow{r} x_*$ provided that

$$\forall \varepsilon > 0 \exists n_\varepsilon \in \mathbb{N} : n \geq n_\varepsilon \Rightarrow ||x_n - x_*|| \leq r + \varepsilon.$$

The set $LIM^r x = \{x_* \in X : x_n \xrightarrow{r} x_*\}$ is called the r-limit set of the sequence $x = \{x_n\}_{n \in \mathbb{N}}$. Phu studied the set $LIM^r x$ of all such points and showed that this set is bounded, closed and convex.

In the year 2013, the idea of rough I-convergence was introduced by Pal et al. [19] as a generalization of rough convergence [20, 21], statistical convergence [8, 28], rough statistical convergence [4] and I-convergence [14, 16] which is based on the structure of the ideal I of subsets of the set \mathbb{N} as: Let r be a non-negative real number. A sequence $x = \{x_n\}_{n \in \mathbb{N}}$ in X is said to be rough I-convergent to x_*, denoted by $x_n \xrightarrow{I, r} x_*$, provided for any $\varepsilon > 0$ the set

$$\{n \in \mathbb{N} : ||x_n - x_*|| \geq r + \varepsilon\} \in I.$$

The basic properties of this interesting concept were studied by Pal et al. [19] in an arbitrary norm linear space. We could follow references [3, 7, 9, 15, 24, 26] related to

2010 Mathematics Subject Classification. Primary 40A35, 46A40; Secondary 46B40.

Key words and phrases. Degree of roughness, locally solid Riesz space, rough weighted I-τ-convergence, weighted I-τ-cluster point.

Department of Mathematics, University of North Bengal, Raja Rammohunpur, Darjeeling-734013, West Bengal, India.

E-mail: sanjoykumarghosal@nbu.ac.in; sanjoyghosalju@gmail.com (S. Ghosal); sourav7478@gmail.com (S. Mandal).

Research of the second author is supported by UGC Research, HRDG, India.
the concepts of statistical convergence, rough convergence and others.

One of the most impressive generalizations of the notion of rough \mathcal{I}-convergence is the concept rough weighted \mathcal{I}-convergence. Motivated from the definitions of rough weighted statistical limit points set and weighted statistical cluster points set [9], recently Ghosal et al. [11] introduced the notion of rough weighted \mathcal{I}-limit points set and weighted \mathcal{I}-cluster points set on θ-metric space (X, d_θ) by using the weighted sequence of real numbers $\{t_n\}_{n \in \mathbb{N}}$ (i.e., $t_n > \delta$, for all $n \in \mathbb{N}$ for some positive real number δ) as follows:

Definition 1.1. [11] Let r be a non-negative real number and $\{t_n\}_{n \in \mathbb{N}}$ be a weighted sequence. A sequence $x = \{x_n\}_{n \in \mathbb{N}}$ in a θ-metric space X is said to be rough weighted \mathcal{I}-convergent to $x_\ast \in X$ w.r.t the roughness of degree r if for every $\varepsilon > 0$,

$$\{n \in \mathbb{N} : t_n d_\theta(x_n, x_\ast) \geq r + \varepsilon\} \in \mathcal{I}.$$

In this case we write $x_n \xrightarrow{\mathcal{I}}^r x_\ast$. The set $\mathcal{W}_r^\mathcal{I} - \text{LIM}^r x = \{x_\ast \in X : x_n \xrightarrow{\mathcal{I}}^r x_\ast\}$ is called the rough weighted \mathcal{I}-limit set of the sequence $x = \{x_n\}_{n \in \mathbb{N}}$ with degree of roughness r. The sequence $x = \{x_n\}_{n \in \mathbb{N}}$ is said to be rough weighted \mathcal{I}-convergent provided that $\mathcal{W}_r^\mathcal{I} - \text{LIM}^r x \neq \emptyset$. Visit [13] [17] for more references related this topic.

Definition 1.2. [11] Let $\{t_n\}_{n \in \mathbb{N}}$ be a weighted sequence and $c^\ast \in X$ is called a weighted \mathcal{I}-cluster point of a sequence $x = \{x_n\}_{n \in \mathbb{N}}$ in a θ-metric space X if for every $\varepsilon > 0$,

$$\{n \in \mathbb{N} : t_n d_\theta(x_n, c^\ast) < \varepsilon\} \notin \mathcal{I}.$$

We denote the set of all weighted \mathcal{I}-cluster points of the sequence $x = \{x_n\}_{n \in \mathbb{N}}$ by $\mathcal{W}_r^\mathcal{I}(x_\ast)$.

The notion of Riesz space was first introduced by Riesz [22] in 1928 and since then it has found several applications in measure theory, operator theory, optimization. It is well known that a topology on a vector space that makes the operations of addition and scalar multiplication continuous is called a linear topology and a vector space endowed with a linear topology is called a topological vector space. A Riesz space is an ordered vector space which is also a lattice, endowed with a linear topology. Further if it has a base consisting of solid sets at zero then it is known as a locally solid Riesz space. We briefly recall some of the basic notions in the theory of Riesz space and we refer readers to [2] [15] [23] [25] for more details.

Definition 1.3. [1] Let L be a real vector space and \leq be a partial order on this space. L is said to be an ordered vector space if it satisfies the following properties:

(i) If $x, y \in L$ and $y \leq x$, then $y + z \leq x + z$ for each $z \in L$.

(ii) If $x, y \in L$ and $y \leq x$, then $\lambda y \leq \lambda x$ for each $\lambda \geq 0$.

In addition, if L is a lattice with respect to the partial ordering, L is said to be a Riesz space (or a vector lattice).

For an element x in a Riesz space L the positive and negative parts of x are defined by $x^+ = x \vee \theta$ and $x^- = (-x) \vee \theta$ respectively. The absolute value of x by $|x| = x \vee (-x)$, where θ is the element zero of L.

A subset S of a Riesz space L is said to be solid if $y \in S$ and $|x| \leq |y|$ imply $x \in S$.

A topology τ on a real vector space L that makes the addition and the scalar multiplication continuous is said to be a linear topology, that is, the topology τ makes the functions

$$(x, y) \rightarrow x + y \ (\text{from} \ (L \times L, \tau \times \tau) \rightarrow (L, \tau)),$$

$$(\lambda, x) \rightarrow \lambda x \ (\text{from} \ (\mathbb{R} \times L, \sigma \times \tau) \rightarrow (L, \tau))$$
continuous, where \(\sigma \) is the usual topology on \(\mathbb{R} \). In this case, the pair \((L, \tau)\) is called a topological vector space.

Every linear topology \(\tau \) on a vector space \(L \) has a base \(\mathcal{N} \) for the neighborhoods of \(\theta \) (zero) satisfying the following properties:
\[(a) \text{ Each } V \in \mathcal{N} \text{ is a balanced set, that is, } \lambda x \in V \text{ holds for all } x \in V \text{ and every } \lambda \in \mathbb{R} \text{ with } |\lambda| \leq 1. \]
\[(b) \text{ Each } V \in \mathcal{N} \text{ is an absorbing set, that is, for every } x \in L, \text{ there exists a } \lambda > 0 \text{ such that } \lambda x \in V. \]
\[(c) \text{ For each } V \in \mathcal{N} \text{ there exists some } W \in \mathcal{N} \text{ with } W + W \subseteq V. \]

Definition 1.4. [1] A linear topology \(\tau \) on a Riesz space \(L \) is said to be locally solid if \(\tau \) has a base at zero consisting of solid sets. A locally solid Riesz space \((L, \tau)\) is a Riesz space \(L \) equipped with a locally solid topology \(\tau \).

The symbol \(\mathcal{N}_{\text{sol}} \) will stand for a base at zero consisting of solid sets and satisfying the properties (a), (b) and (c) in a locally solid topology.

Definition 1.5. [12] A subset \(A \) of a Riesz space \((L, \tau)\) is said to be topologically bounded or \(\tau \)-bounded if for every neighborhood \(U \) of zero there exists some \(\lambda > 0 \) such that \(A \subseteq \lambda U \). If \(A \) is not \(\tau \)-bounded then it is called \(\tau \)-unbounded.

Definition 1.6. [12] A subset \(B \) of a Riesz space \((L, \tau)\) is said to be order bounded if it is contained in some order interval.

Definition 1.7. [5] A sequence \(\{x_n\} \) in a topological space \((X, \tau)\) is said to be \(I \)-convergent to \(x \in X \) if for any \(U \in \tau \) containing \(x \), \(\{n \in \mathbb{N}: x_n \notin U\} \subseteq I \).

Naturally a prominent question may arise that, does there exists any notion of convergence in a topological vector space which could transform the core factor **degree of roughness** ‘\(\tau \)' to a **neighborhood** ‘\(V \)' of a topological vector space \((X, \tau)\). For answering this question, a different aspect of rough weighted \(I \)-convergence been prominently discussed, following the concepts of Definition 1.1 and 1.2, specifically by replacing ‘\(\theta \)-metric space \(X \)', ‘\(\tau \)' and ‘\(\varepsilon \)' by the ‘locally solid Riesz space \(L \)', ‘\(V \)' (where \(V \) is a fixed \(\tau \)-neighborhood of the zero element of \(L \)) and ‘\(U \)' (where \(U \) is any arbitrary \(\tau \)-neighborhood of the zero element of \(L \)) respectively. We introduce the following definitions:

Definition 1.8. Let \(I \) be an admissible ideal of \(\mathbb{N} \) and \(t = \{t_n\}_{n \in \mathbb{N}} \) be a weighted sequence of real numbers. A sequence \(x = \{x_n\} \) in a locally solid Riesz space \((L, \tau)\) is said to be rough weighted \(I \)-convergent to \(x_\ast \in L \) w.r.t the roughness of degree \(V \) (where \(V \) is a \(\tau \)-neighborhood of \(\theta \)) if for every \(\tau \)-neighborhood \(U \) of \(\theta \), denoted by \(x_n \xrightarrow{W I \tau \ast} x_\ast \), the following expression holds,
\[\{n \in \mathbb{N} : t_n(x_n - x_\ast) \notin V + U\} \subseteq I.\]

We shall write \(W I \tau - LIM^V x = \{x_\ast \in X : x_n \xrightarrow{W I \tau \ast} x_\ast\} \) to denote the set of all rough weighted \(I \)-limit points of the sequences \(x = \{x_n\} \) with degree of roughness \(V \).

Definition 1.9. An element \(c \in L \) is called weighted \(I \)-cluster point of a sequence \(x = \{x_n\} \) in \(L \) for every \(\tau \)-neighborhood \(U \) of \(\theta \), denoted by \(x_n \xrightarrow{W I \Gamma \ast} c \), the set
\[\{n \in \mathbb{N} : t_n(x_n - c) \notin U\} \notin I.\]

The set of all weighted \(I \)-cluster points of the sequence \(x = \{x_n\}_{n \in \mathbb{N}} \) is denoted by \(W I \Gamma \ast_x \).
Our main objective is to interpret the topological structure of the new convergence and characterize the rough weighted \mathcal{I}_r-limit set and weighted \mathcal{I}_r-cluster points set in a locally solid Riesz space. In addition, we give some results about the relationship between the sets $W\mathcal{I}_r - LIM^V x$ and $W\mathcal{I}_{\tau}^r$.

2. Main Results

Followed by the Definition 1.8 of rough weighted \mathcal{I}_r-convergence over locally solid Riesz spaces we give the necessary condition for $W\mathcal{I}_r - LIM^V x$ to be convex.

Theorem 2.1. If V is convex then the set $W\mathcal{I}_r - LIM^V x$ is convex.

Proof. Let U be an arbitrary τ-neighborhood of zero. Then there exists a $W \in \mathcal{N}_{sol}$ such that $W + W \subseteq U$. Since W is a balanced set, we get $\lambda W \subseteq W$ and $(1 - \lambda)W \subseteq W$ for all $0 < \lambda < 1$. If $x_s, y_s \in W\mathcal{I}_r - LIM^V x$ then we have $A = \{k \in \mathbb{N} : t_k(x_k - x_s) \in V + W\} \in \mathcal{F}(\mathcal{I})$, $B = \{k \in \mathbb{N} : t_k(x_k - y_s) \in V + W\} \in \mathcal{F}(\mathcal{I})$, where $\mathcal{F}(\mathcal{I}) = \{M \subseteq \mathbb{N} : M \in \mathcal{I}\}$ is a filter associated with the ideal \mathcal{I}. Consequently $A \cap B \subseteq \mathcal{F}(\mathcal{I})$. Further let $k \in A \cap B$. Thus

$$t_k[x_k - \{\lambda x_s + (1 - \lambda)y_s\}] = \lambda t_k(x_k - x_s) + (1 - \lambda)t_k(x_k - y_s) \in V + W + W \subseteq V + U.$$

This implies $A \cap B \subseteq \{k \in \mathbb{N} : t_k[x_k - \{\lambda x_s + (1 - \lambda)y_s\}] \in V + U\}$. So it follows that $W\mathcal{I}_r - LIM^V x$ is convex. □

The converse of Theorem 2.1 is not true in general. To prove this important fact, we consider an example as follows:

Example 1. Let \mathcal{I} be the ideal of subsets of \mathbb{N} of natural density zero. Let us consider the locally solid Riesz Space $(\mathbb{R}^2, || \cdot ||)$ with the max norm $|| \cdot ||$ and coordinate-wise ordering. The family \mathcal{N}_{sol} of all $U(\varepsilon)$ defined as $U(\varepsilon) = \{\alpha \in \mathbb{R}^2 : ||\alpha|| < \varepsilon\}$ where $\varepsilon > 0$, constitutes a base at $\theta = (0,0)$. Let us define the sequence $x = \{x_n\}_{n \in \mathbb{N}}$, the weighted sequence $t = \{t_n\}_{n \in \mathbb{N}}$ and τ-neighborhood of θ, say V, in the following manner:

$$x_n = \begin{cases}
(1,0) & \text{if } n \neq m^2 \text{ for all } m \in \mathbb{N}, \\
(n,n) & \text{otherwise},
\end{cases}$$

$$t_n = n \text{ for all } n \in \mathbb{N}, \text{ and } V = \{(\xi,\eta) \in \mathbb{R}^2 : ||(\xi,\eta)|| \leq 1\} \cup \{(\xi,\eta) \in \mathbb{R}^2 : \xi = \eta\}.$$

Therefore $W\mathcal{I}_r - LIM^V x = \{(\xi,\eta) \in \mathbb{R}^2 : \xi - \eta = 1\}$ is a convex set but not V. □

Eliminating the condition of convexity from the aforementioned theorem, then the result may not be true.

Example 2. Consider the locally solid Riesz Space $(\mathbb{R}^2, || \cdot ||)$, where $|||\xi,\eta||| = |\xi| + |\eta|$ for $(\xi,\eta) \in \mathbb{R}^2$ and coordinate-wise ordering. The family \mathcal{N}_{sol} of all $U(\varepsilon)$ defined as $U(\varepsilon) = \{\alpha \in \mathbb{R}^2 : ||\alpha|| < \varepsilon\}$ where $\varepsilon > 0$, constitutes a base at $\theta = (0,0)$. Consider the similar sequence as in Example 1, weighted sequence $t_n = e$ for all $n \in \mathbb{N}$ and $V = \{(\xi,\eta) \in \mathbb{R}^2 : ||(\xi,\eta)|| \leq \pi\} \cup \{(\xi,\eta) \in \mathbb{R}^2 : \eta = \sin(\xi)\}$. Taking the similar ideal as in example 1, we get $W\mathcal{I}_r - LIM^V x = \{(\xi,\eta) \in \mathbb{R}^2 : \xi = e\eta, |\xi| + |\eta| \leq \pi\} \cup \{(\xi,\eta) \in \mathbb{R}^2 : e\eta = \sin(e\xi - e)\}$, which is not a convex set. We conclude that if V is not a convex set then the set $W\mathcal{I}_r - LIM^V x$ may or may not be convex.

Ghosal et al. [11, Theorem 3.1], had shown that if the weighted sequence is not \mathcal{I}-bounded the the set $W\mathcal{I} - LIM^r x$ contains at most one element. While reformulating the above theorem based over locally solid Riesz Space, the object of “$W\mathcal{I} - LIM^r x$
contains at most one element” violates. We exemplify this assertion below i.e., if the weighted sequence is not \(I \)-bounded then the set \(W_{\mathcal{I}} - LIM^V x \) may not be singleton in fact it may be infinite and \(\tau \)-unbounded.

Example 3. Consider the ideal \(\mathcal{I} = \{ A \subset \mathbb{N} : \sum_{a \in A} a^{-1} < \infty \} \) and the locally solid Riesz Space \((\mathbb{R}^2, || \cdot ||)\), where \(|| \cdot || \) is the Euclidean norm. Let us define the sequence \(x = \{ x_n \}_{n \in \mathbb{N}} \) and the weighted sequence \(t = \{ t_n \}_{n \in \mathbb{N}} \) in the following manner:

\[
x_n = \begin{cases}
((-1)^n, 0) & \text{if } n \neq m^p \text{ for all } m \in \mathbb{N} \text{ and } p \in \mathbb{N} \setminus \{1\}, \\
(n, 0) & \text{otherwise},
\end{cases}
t_n = n \text{ for all } n \in \mathbb{N}.
\]

It is very obvious that the sequence \(x = \{ x_n \}_{n \in \mathbb{N}} \) is not \(\mathcal{I} \)-convergent to any point of \(\mathbb{R}^2 \). Let \(V = \{ (\xi, \eta) \in \mathbb{R}^2 : -1 < \eta < 1 \} \). Then \(W_{\mathcal{I}} - LIM^V x = \{ (\xi, \eta) \in \mathbb{R}^2 : \eta = 0 \} \). This example shows that the sequence \(\{ x_n \}_{n \in \mathbb{N}} \) is not \(\mathcal{I} \)-convergent to any point but the rough weighted \(\mathcal{I} \)-limit set is \(\{ (\xi, \eta) \in \mathbb{R}^2 : \eta = 0 \} \) which is infinite and \(\tau \)-unbounded. \(\square \)

Theorem 2.2. If the weighted sequence \(t = \{ t_n \}_{n \in \mathbb{N}} \) is not \(\mathcal{I} \)-bounded and \(V \) be \(\tau \)-bounded then the rough weighted \(\mathcal{I} \)-limit set \(W_{\mathcal{I}} - LIM^V x \) of a sequence \(x = \{ x_n \}_{n \in \mathbb{N}} \) in locally solid Hausdorff Riesz spaces can have at most one element.

Proof. If \(W_{\mathcal{I}} - LIM^V x = \emptyset \), the theorem is obvious. So assuming \(W_{\mathcal{I}} - LIM^V x \neq \emptyset \). If possible let \(x_\ast \) and \(y_\ast \) be two distinct elements in \(W_{\mathcal{I}} - LIM^V x \). Let \(\alpha = x_\ast - y_\ast \).

If \(\alpha \neq \theta \) then there exists \(U \in \mathcal{N}_{sol} \) such that \(\theta \in U \) but \(\alpha \notin U \) (since the Riesz space is \(T_2 \)).

Now \(V \) is \(\tau \)-bounded so is \(B = V + V + V \). So there exists a positive real number \(p \) such that \(B \subset pU \). Let \(A_1 = \{ k \in \mathbb{N} : t_k \geq p \} \). Since \(t = \{ t_n \}_{n \in \mathbb{N}} \) is not \(\mathcal{I} \)-bounded so \(A_1 \notin \mathcal{I} \). Since \(V \) is a \(\tau \)-neighborhood of \(\theta \) so there exists \(W \in \mathcal{N}_{sol} \) such that \(W + W + W \subset V \).

Let

\[
A_2 = \{ k \in \mathbb{N} : t_k(x_\ast - x_\ast) \in V + W \}
\]

and

\[
A_3 = \{ k \in \mathbb{N} : t_k(x_\ast - y_\ast) \in V + W \}.
\]

then \(A_2, A_3 \in \mathcal{F}(\mathcal{I}) \). Let \(A = A_1 \cap A_2 \cap A_3 \) then \(A \neq \emptyset \) as well as \(A \) is an infinite subset of \(\mathbb{N} \).

Therefore \(A \subseteq \{ k \in \mathbb{N} : t_k \alpha \in B \} \) and so \(\{ k \in \mathbb{N} : t_k \alpha \in B \} \neq \emptyset \), i.e., \(t_k \alpha \in B \) for all \(k \in A \).

Since \(\alpha \notin U \), we get \(t_k \alpha \notin t_k U \) for all \(k \in A \).

\[
\{ t_k \alpha : k \in A \} \notin t_1 U \Rightarrow B \subseteq t_l U \text{ for no } l \in A,
\]

which is a contradiction. Hence \(\alpha = \theta \) and our result is established. \(\square \)

Our next example proves that if \(V \) be \(\tau \)-bounded then the set \(W_{\mathcal{I}} - LIM^V x \) may not be an order bounded set.

Example 4. Let \(\mathcal{I} \) is the ideal of subsets of \(\mathbb{N} \) of natural density zero and \(L \) be the space of all Lebesgue measurable functions on \(I = [0, 1] \) with the usual point-wise ordering, i.e., for \(x, y \in L \), we define \(x \leq y \) if and only if \(x(t) \leq y(t) \) for every \(t \in I \). Consider the map \(|| \cdot || : L \to \mathbb{R} \) defined by \(||x|| = (\int_I x^2(s) ds)^{1/2} \), where \(x \in L \). Then \((L, \tau) \) forms a locally solid Riesz space. Put \(V = \{ x \in L : ||x|| \leq 1 \} \). Again we consider the weighted sequence \(t = \{ t_n \}_{n \in \mathbb{N}} \) and the sequence \(x = \{ x_n \}_{n \in \mathbb{N}} \) in the following manner:

\[
t_n = \begin{cases}
2 + \frac{1}{n} & \text{if } n \neq m^2 \text{ for all } m \in \mathbb{N}, \\
3 & \text{otherwise},
\end{cases}
\]

and

\[
x_n(s) = \begin{cases}
\frac{1}{n} & \text{if } n \neq m^2 \text{ for all } m \in \mathbb{N}, \\
1 & \text{otherwise},
\end{cases}
\]

for all \(s \in I, n \in \mathbb{N} \). Thus it follows that \(W \mathcal{I}_\tau - \text{LIM}^V x = \frac{1}{2}V \) is \(\tau \)-bounded but not order bounded. \(\square \)

Theorem 2.3. Let \((L, \tau)\) be a Hausdorff locally solid Riesz space and \(V \in \mathcal{N}_{sol} \) such that \(V + V + U \in \mathcal{N}_{sol} \) for all \(U \in \mathcal{N}_{sol} \). For a sequence \(x = \{x_n\}_{n \in \mathbb{N}} \) in \(L \), we have

\[
x_* - y_* \in \frac{V + V}{\inf t_n} \text{ for all } x_*, y_* \in W \mathcal{I}_\tau - \text{LIM}^V x.
\]

In addition, if \(V \) is \(\tau \)-bounded then \(W \mathcal{I}_\tau - \text{LIM}^V x \) is a \(\tau \)-bounded set.

Proof. Let \(U \) be an arbitrary \(\tau \)-neighborhood of zero. Then there exist \(U_0, U_1 \in \mathcal{N}_{sol} \) such that \(U_0 \subseteq U \) and \(U_1 + U_1 \subseteq U_0 \). Thus \(K_1, K_2 \in \mathcal{F}(\mathcal{I}) \), where \(K_1 = \{k \in \mathbb{N} : t_k(x - x_*) \in V + U_1\} \) and \(K_2 = \{k \in \mathbb{N} : t_k(x - y_*) \in V + U_1\} \). Consequently \(K_1 \cap K_2 \in \mathcal{F}(\mathcal{I}) \).

Moreover if \(k \in K_1 \cap K_2 \) then \(t_k(x_* - y_*) = t_k(x_* - x_k) + t_k(x_k - y_*) \in V + U_1 + V + U_1 \subseteq V + V + U_0 \). Thus we get \(t_k(x_* - y_*) \in V + V + U_0 \) for all \(k \in K_1 \cap K_2 \). Also for \(k \in K_1 \cap K_2 \),

\[
\inf t_n |(x_* - y_*)| \leq t_k |(x_* - y_*)| \in V + V + U_0.
\]

This implies \((x_* - y_*) \in \frac{V + V}{\inf t_n} + \frac{U_0}{\inf t_n} \subseteq \frac{V + V}{\inf t_n} + \frac{U}{\inf t_n} \). Hence \((x_* - y_*) \in \frac{V + V}{\inf t_n} \) since \((L, \tau)\) is Hausdorff and the intersection of all \(\tau \)-neighborhoods \(U \) of zero is the singleton \(\{0\} \).

Now we proceed to the second part of the theorem. Let \(W \mathcal{I}_\tau - \text{LIM}^V x \neq \emptyset \) and \(x_* \in W \mathcal{I}_\tau - \text{LIM}^V x \). From the above argument we get \(W \mathcal{I}_\tau - \text{LIM}^V x \subseteq \frac{V + V}{\inf t_n} + \{x_*\} \). \(\square \)

Remark 1. Naturally a question may arise that, does there exist any neighborhood \(V \in \mathcal{N}_{sol} \) in a Hausdorff locally solid Riesz space such that \(V + V + U \in \mathcal{N}_{sol} \) for all \(U \in \mathcal{N}_{sol} \)?

For answering the above question we consider the Hausdorff locally solid Riesz space same as in Example 1 and define the neighborhood \(V \in \mathcal{N}_{sol} \) in the following manner:

\(V = U(1) \in \mathcal{N}_{sol} \) where \(U(\varepsilon) = \{\alpha \in \mathbb{R}^2 : ||\alpha|| < \varepsilon\} \) for all \(\varepsilon > 0 \) and it is clear that \(V + V + U(\varepsilon) \in \mathcal{N}_{sol} \) for all \(U(\varepsilon) \in \mathcal{N}_{sol} \).

Further we discuss the closeness of rough weighted \(\mathcal{I}_\tau \)-limit set over locally solid Riesz spaces. Our next example assures that rough weighted \(\mathcal{I}_\tau \)-limit set is not closed.

Example 5. Consider the locally solid Riesz Space \(\mathbb{R}^2 \) and the ideal \(\mathcal{I} \) as in Example 3. Let us define the sequence \(x = \{x_n\}_{n \in \mathbb{N}} \) and the weighted sequence \(t = \{t_n\}_{n \in \mathbb{N}} \) in the following manner;

\[
x_n = \begin{cases} (1, -\frac{2}{n}) & \text{if } n \neq m^2 \text{ for all } m \in \mathbb{N}, \\ (n, -n) & \text{otherwise} \end{cases}
\]

and \(t_n = n \) for all \(n \in \mathbb{N} \).

Let \(V = \{||\xi, \eta|| \in \mathbb{R}^2 : -1 < \xi < 1, \eta \geq -1\} \). Therefore \(W \mathcal{I}_\tau - \text{LIM}^V x = \{||\xi, \eta|| \in \mathbb{R}^2 : \xi = 1, \eta < 0\} \) is not closed. In fact it is not an open set. \(\square \)

A careful inspection of the previous examples exhibit how the set \(W \mathcal{I}_\tau - \text{LIM}^V x \) could be generalized. We do so in the next theorem.
Theorem 2.4. Let \((L, \tau)\) be a Hausdorff locally solid Riesz space. Hence we assert

\[
W\mathcal{I}_\tau - \text{LIM}^V x \begin{cases}
\text{is closed; if weighted sequence be } \mathcal{I}\text{-bounded,} \\
\text{is closed; if weighted sequence is not } \mathcal{I}\text{-bounded and } V \text{ be } \tau\text{-bounded,} \\
\text{has no definite conclusion; if weighted sequence is not } \mathcal{I}\text{-bounded and } V \text{ be } \tau\text{-unbounded.}
\end{cases}
\]

Proof. Case 1: Let the weighted sequence \(t = \{t_n\}_{n \in \mathbb{N}}\) be \(\mathcal{I}\)-bounded. In this case there exists a positive real number \(M\) such that \(K_1 = \{k \in \mathbb{N} : t_k < M\} \subseteq \mathcal{F}(\mathcal{I})\). Assume \(p_* \in W\mathcal{I}_\tau - \text{LIM}^V x\). Then there exists a sequence \(\{p_n\}_{n \in \mathbb{N}}\) in \(W\mathcal{I}_\tau - \text{LIM}^V x\) such that \(p_n \to p_*\) as \(n \to \infty\) (by using 1st countable property of \(L\)). Naturally \(M p_n \to M p_*\) as \(n \to \infty\).

Again we consider \(U\) is any neighborhood of \(\theta\) and corresponding to \(U\) there exists \(U_0 \in \mathcal{N}_{\text{col}}\) such that \(U_0 + U_0 \subset U\). Hence \(M(p_n - p_*) \in U_0\) for all \(n \geq k_0\), where \(k_0\) is a positive integer depends on \(U_0\).

On the other hand if \(k \in K_1\) then \(t_k < M\) implies \(t_k|p_{k_0} - p_*| \leq M|p_{k_0} - p_*|\) and finally \(|t_k(p_{k_0} - p_*)| \leq |M(p_{k_0} - p_*)|\).

Since \(M(p_{k_0} - p_*) \in U_0\) and \(U_0\) is a solid set so \(t_k(p_{k_0} - p_*) \in U_0\) for all \(k \in K_1\).

We define the set \(K_2 = \{k \in \mathbb{N} : t_k(x_k - p_{k_0}) \in V + U_0\}\). Then \(p_{k_0} \in W\mathcal{I}_\tau - \text{LIM}^V x\) follows \(K_2 \subseteq \mathcal{F}(\mathcal{I})\). For \(k \in K_1 \cap K_2\), \(t_k(x_k - p_*) = t_k(x_k - p_{k_0}) + t_k(p_{k_0} - p_*) \in V + U_0 + U_0 \subset V + U\).

This implies \(K_1 \cap K_2 \subseteq \{k \in \mathbb{N} : t_k(x_k - p_*) \in V + U\}\). Clearly \(\{k \in \mathbb{N} : t_k(x_k - p_*) \in V + U\} \subseteq \mathcal{F}(\mathcal{I})\). So we conclude case 1.

Case 2: If the weighted sequence \(t = \{t_n\}_{n \in \mathbb{N}}\) is not \(\mathcal{I}\)-bounded and \(V\) is \(\tau\)-bounded then from Theorem 2.2, the set \(W\mathcal{I}_\tau - \text{LIM}^V x\) becomes either singleton or empty. Hence it is closed.

Case 3: From Examples 1, 2 and 5 it is clear that the the set \(W\mathcal{I}_\tau - \text{LIM}^V x\) neither open nor closed. \(\square\)

We initiate this section with the definitions of weighted \(\tau\)-boundedness and weighted \(\mathcal{I}\tau\)-boundedness over a locally solid Riesz space \(L\).

Definition 2.1. Let \((L, \tau)\) be a locally solid Riesz space and \(t = \{t_n\}_{n \in \mathbb{N}}\) is a weighted sequence. A sequence \(x = \{x_n\}_{n \in \mathbb{N}}\) in \(L\) is said to be weighted \(\tau\)-bounded if for every \(\tau\)-neighborhood \(U\) of \(\theta\) there exists some \(\lambda > 0\) such that \(\lambda t_k x_k \notin U\) at most for finitely many \(k\).

Definition 2.2. Let \((L, \tau)\) be a locally solid Riesz space and \(t = \{t_n\}_{n \in \mathbb{N}}\) is a weighted sequence. A sequence \(x = \{x_n\}_{n \in \mathbb{N}}\) in \(L\) is said to be weighted \(\mathcal{I}\tau\)-bounded if for every \(\tau\)-neighborhood \(U\) of \(\theta\) there exists some \(\lambda > 0\) such that \(\{k \in \mathbb{N} : \lambda t_k x_k \notin U\} \subseteq \mathcal{I}\).

Theorem 2.5. If a sequence \(x = \{x_n\}_{n \in \mathbb{N}}\) be weighted \(\mathcal{I}\tau\)-bounded then for every \(\tau\)-neighborhood \(V\) of \(\theta\) there exists a positive real number \(\mu\) such that \(W\mathcal{I}_\tau - \text{LIM}^\mu V x \neq \emptyset\).

Proof. Since \(x = \{x_n\}_{n \in \mathbb{N}}\) is weighted \(\mathcal{I}\tau\)-bounded then for every \(\tau\)-neighborhood \(V\) of \(\theta\) there exists some \(\lambda > 0\) such that

\[
\{k \in \mathbb{N} : \lambda t_k x_k \in V\} = \{k \in \mathbb{N} : \lambda t_k(x_k - \theta) \in V\} \subseteq \mathcal{F}(\mathcal{I}).
\]

Therefore \(\{k \in \mathbb{N} : t_k(x_k - \theta) \in \frac{1}{\lambda}V + U\} \subseteq \mathcal{F}(\mathcal{I})\), where \(U\) is an arbitrary \(\tau\)-neighborhood of \(\theta\). Setting \(\mu = \frac{1}{\lambda}\). Hence the set \(W\mathcal{I}_\tau - \text{LIM}^\mu V x\) contains the null element of \(L\). \(\square\)
But the converse is not true. We choose an example to emphasis our assertion.

Example 6. Consider the ideal \mathcal{I} and the locally solid Riesz Space \mathbb{R}^2 as defined in Example 3. Let us define the sequence $x = \{x_n\}_{n \in \mathbb{N}}$ and the weighted sequence $t = \{t_n\}_{n \in \mathbb{N}}$ in the respective order:

$$
x_n = \begin{cases}
(2 + \frac{1}{n}, 1 + \frac{3}{n}) & \text{if } n \neq m^2 \text{ for all } m \in \mathbb{N}, \\
(5, -5) & \text{otherwise}
\end{cases}
$$

and $t_n = \sqrt{n}$ for all $n \in \mathbb{N}$.

If V be any arbitrary τ-neighborhood of θ and μ be any positive real number then obviously $(2, 1) \in W_{\mathcal{I}} - \text{LIM}^\mu V x$ and so $W_{\mathcal{I}} - \text{LIM}^\mu V x \neq \varnothing$. For any positive real number λ we get

$$
\lambda t_n x_n = \begin{cases}
(2\lambda \sqrt{n} + \frac{1}{n}, \lambda \sqrt{n} + \frac{3}{\sqrt{n}}) & \text{if } n \neq m^2 \text{ for all } m \in \mathbb{N}, \\
(5\lambda \sqrt{n}, -5\lambda \sqrt{n}) & \text{otherwise}.
\end{cases}
$$

In this case $\{k \in \mathbb{N} : \lambda t_k x_k \notin V\} \notin \mathcal{I}$ Therefore the sequence $x = \{x_n\}_{n \in \mathbb{N}}$ is not weighted \mathcal{I}_τ-bounded although $W_{\mathcal{I}} - \text{LIM}^\mu V x \neq \varnothing$. □

If we consider the sequence $x_n = (\frac{1}{n}, 0)$ for all $n \in \mathbb{N}$ in \mathbb{R}^2 as taken in Example 3, $t_n = n^2$ for all $n \in \mathbb{N}$ and \mathcal{I} an arbitrary ideal. Hence the sequence $x = \{x_n\}_{n \in \mathbb{N}}$ is \mathcal{I}_τ-bounded as well as τ-bounded, but $W_{\mathcal{I}} \Gamma_x^\tau = \varnothing$.

As an immediate consequence the following example shows that the set $W_{\mathcal{I}} \Gamma_x^\tau$ is empty even if the sequence $x = \{x_n\}_{n \in \mathbb{N}}$ is weighted \mathcal{I}_τ-bounded.

Example 7. Consider the infinite dimensional normed space l^2 space with the norm

$$
||\alpha|| = \left(\sum_{j=1}^{\infty} |\xi_j|^2\right)^{\frac{1}{2}} \text{ where } \alpha = (\xi_1, \xi_2, \ldots) \in l^2
$$

with coordinatewise ordering. So l^2 is a locally solid Riesz Space. The family \mathcal{N}_{sol} of all $U(\varepsilon)$ defined as $U(\varepsilon) = \{\alpha \in l^2 : ||\alpha|| < \varepsilon\}$ where $\varepsilon > 0$, constitutes a base at $\theta = (0, 0, \ldots)$. We consider the ideal $\mathcal{I} = \{K \subset \mathbb{N} : \lim_{n \rightarrow \infty} \frac{|K \cap \{1, 2, 3, \ldots, n\}|}{n} = 0\}$, the sequence $\{x_n\}_{n \in \mathbb{N}}$ in l^2 such that $x_n = e_n$, where e_n has n^{th} term 1 and other terms are 0 and $t_n = 2$ for all $n \in \mathbb{N}$. Therefore the sequence $x = \{x_n\}_{n \in \mathbb{N}}$ is weighted \mathcal{I}_τ-bounded as well as \mathcal{I}_τ-bounded but $W_{\mathcal{I}} \Gamma_x^\tau = \varnothing$. □

In the above example, if we reassume $t_n = n$ for all $n \in \mathbb{N}$ keeping the space l^2 and the sequence $x = \{x_n\}_{n \in \mathbb{N}}$ unaltered, the sequence $x = \{x_n\}_{n \in \mathbb{N}}$ is \mathcal{I}_τ-bounded as well as τ-bounded but $W_{\mathcal{I}} \Gamma_x^\tau = \varnothing$.

On the other hand, another important question may arise that does the set $W_{\mathcal{I}} \Gamma_x^\tau$ is compact if the space is infinite dimensional? Answer is no. We sketch an important example below to answer this question.

Example 8. Let $\mathbb{N} = \bigcup_{j=1}^{\infty} \Delta_j$ where $\Delta_j = \{2^{j-1}(2s - 1) : s \in \mathbb{N}\}$ and $\mathcal{I} = \{A \subset \mathbb{N} : A \cap \Delta_j \neq \varnothing \text{ for finitely many } j\}$. Then \mathcal{I} forms an admissible ideal. Consider another decomposition of \mathbb{N}, i.e., $D_r = \{p_r^s : s \in \mathbb{N}\}$, for all $r \in \mathbb{N} \setminus \{1\}, \{p_2 < p_3 < p_4, \ldots\}$ is a sequence of distinct primes and $D_1 = \mathbb{N} \setminus \bigcup_{r=2}^{\infty} D_r$. Setting $t_n = n$, if $n \in \mathbb{N}$ and the sequence $x = \{x_n\}_{n \in \mathbb{N}}$ such that $x_n = e_r$, for all $n \in D_r$ (in the locally solid Riesz
space l^2 as above). For each $0 < \varepsilon < 1$ and $r \in \mathbb{N}$, \{k \in \mathbb{N} : t_k(\ell_k - e_r) \in U(\varepsilon)\} \notin I.
This shows that $e_r \in W_2\Gamma_x^r$ for all $r \in \mathbb{N}$. Let $A = \{e_1, e_2, e_3, \ldots\}$. Then, $A(\subset W_2\Gamma_x^r)$ is closed but not compact. So the set $W_2\Gamma_x^r$ is not compact. □

In [10] Fridy shown that for any number sequence $x = \{x_n\}_{n \in \mathbb{N}}$, the statistical cluster points set of x is closed. Also in [5] Das had shown that in a topological space the I-cluster points set is closed. But the following example shows that in general, the weighted I_{τ}-cluster points set in a locally solid Riesz space may not be closed.

Example 9. Consider two decompositions of \mathbb{N}, as in previous Example 8 and the locally solid Riesz Space \mathbb{R}^2 same as Example 3. Let us define the sequence $x = \{x_n\}_{n \in \mathbb{N}}$ and the weighted sequence $t = \{t_n\}_{n \in \mathbb{N}}$ in the following manner, $x_k = \left(\frac{1}{k^2} + \frac{1}{k^2}, 0\right)$ for all $k \in D_j$ (where $j = 1, 2, 3, \ldots$) and $t_k = k$ for all $k \in \mathbb{N}$.

Let U be a τ-neighborhood of θ, so there exists some $U(\varepsilon) \in \mathcal{N}_{\text{sol}}$, $\varepsilon > 0$ such that $U(\varepsilon) \subset U$. Then for each $j \in \mathbb{N}$, we get \{k \in \mathbb{N} : t_k(x_k - (\frac{1}{j}, 0)) \in U(\varepsilon)\} \notin I$. This shows that $(\frac{1}{j}, 0) \in W_2\Gamma_x^r$ for all $j \in \mathbb{N}$. Next we assume $k \in \mathbb{N}$ then there exists an integer $j \in \mathbb{N}$ such that $k \in D_j$ for some $j \in \mathbb{N}$. If $k \in D_j$ for some $j \in \mathbb{N} \setminus \{1\}$, then k is of the form $k = p_j^s$ where $s \in \mathbb{N}$ then

$$t_k(x_k - \theta) = p_j^s \left(\frac{1}{j} + \frac{1}{p_j^s}, 0\right) = \left(\frac{p_j^s}{j} + \frac{1}{p_j^s}, 0\right) \geq (1, 0).$$

Then \{k \in \mathbb{N} : t_k(x_k - \theta) \in U(\alpha)\} \in I$, where $0 < \alpha < 1$. This implies $\theta \notin W_2\Gamma_x^r$. On the other hand if $k \in D_1$, then \{k \in \mathbb{N} : t_k(x_k - \theta) \in U(1)\} \in I$. Therefore the set $W_2\Gamma_x^r$ is not closed.

Theorem 2.6. For a sequence $x = \{x_n\}_{n \in \mathbb{N}}$, the weighted I_{τ}-cluster points set $W_2\Gamma_x^r$ is closed if the weighted sequence $\{t_n\}_{n \in \mathbb{N}}$ is I-bounded.

Proof. As the weighted sequence $\{t_n\}_{n \in \mathbb{N}}$ is I-bounded, there exists a non negative real number M such that the set $A = \{n \in \mathbb{N} : t_n < M\} \in \mathcal{F}(I)$. Let U is any neighborhood of θ and so there exists a $U_0 \in \mathcal{N}_{\text{sol}}$ such that $U_0 + U_0 \subset U$. Consider a sequence $\{p_n\}_{n \in \mathbb{N}} \in W_2\Gamma_x^r$ such that $p_n \to p$. Hence $M(p_n - p) \in U_0$ for all $n \geq k_0$, where k_0 is a positive integer depends on U_0.

Also $p_{k_0} \in W_2\Gamma_x^r$ implies $B = \{n \in \mathbb{N} : t_n(x_n - p_{k_0}) \in U_0\} \notin I$. Therefore $A \cap B \notin I$ otherwise $A^c \cup (A \cap B) \in I$ (since $A \in \mathcal{F}(I)$) we end up with a contradiction that $B \in I$. For $k \in A \cap B$, we have $t_k(x_k - p) = t_k(x_k - p_{k_0}) + t_k(p_{k_0} - p) \in U_0 + U_0 \subset U$.
Thus $A \cap B \subseteq \{n \in \mathbb{N} : t_n(x_n - p) \in U\}$ demonstrates that $p \in W_2\Gamma_x^r$ and the closeness of $W_2\Gamma_x^r$ is established. □

Theorem 2.7. Let (L, τ) be a locally solid Riesz space, $x_n \xrightarrow{W_2\Gamma_x^r} c$ and $x_n \xrightarrow{W_2\Gamma_x^r} d$.

Then

(i) $|x_n| \xrightarrow{W_2\Gamma_x^r} |c|$, (ii) $x_n^+ \xrightarrow{W_2\Gamma_x^r} c^+$, (iii) $x_n^- \xrightarrow{W_2\Gamma_x^r} c^-$,

(iv) $x_n^\tau \xrightarrow{W_2\Gamma_x^r} c \cap d$, (v) $x_n \xrightarrow{W_2\Gamma_x^r} c \cap d$.

Proof. Proof of (i), (ii) and (iii) are similar to proof of Theorem 4.2 [1], so omitted.

For the proof of (iv) and (v) we consider the locally solid Riesz Space \mathbb{R}^2 as in Example 3. Let us define the sequence $x = \{x_n\}_{n \in \mathbb{N}}$ and the weighted sequence $t = \{t_n\}_{n \in \mathbb{N}}$ in the manner;

$$x_n = \begin{cases}
(1, -2) & \text{if } n \in \{2^p : p \in \mathbb{N}\}, \\
(-1, 2) & \text{otherwise}
\end{cases} \quad \text{and } t_n = n \text{ for all } n \in \mathbb{N} \text{ respectively}.$$
Consider the ideal \mathcal{I} as in Example 8. Then the weighted \mathcal{I}_x-cluster points set of the sequence x, $W_{\mathcal{I}_x} \Gamma_x = \{(1, -2), (-1, 2)\}$. So $x_n \xrightarrow{W_{\mathcal{I}_x}} (1, -2)$ and $x_n \xrightarrow{W_{\mathcal{I}_x}} (-1, 2)$ but $(1, 2), (-1, -2) \notin W_{\mathcal{I}_x} \Gamma_x$. Hence the results.

From the above Theorem 2.6 it is clear that the set $W_{\mathcal{I}_x} \Gamma_x$ may not be a convex set.

We finally draw a significant relationship between the sets $W_{\mathcal{I}_x} - LIM^V_x$ and $W_{\mathcal{I}_x} \Gamma_x$.

Theorem 2.8. Let (L, τ) be a Hausdorff locally solid Riesz space and $V \in \mathcal{N}_{sol}$ such that $V + U \in \mathcal{N}_{sol}$ for all $U \in \mathcal{N}_{sol}$. If $x = \{x_n\}_{n \in \mathbb{N}}$ be a sequence in L, then

$$x_* - c \in \frac{V}{\inf_{n \in \mathbb{N}} t_n} \text{ where } x_* \in W_{\mathcal{I}_x} - LIM^V_x \text{ and } c \in W_{\mathcal{I}_x} \Gamma_x.$$

Moreover if V is τ-bounded, $V + V + U \in \mathcal{N}_{sol}$ for all $U \in \mathcal{N}_{sol}$ and $W_{\mathcal{I}_x} - LIM^V_x$ is non-empty then $W_{\mathcal{I}_x} \Gamma_x$ is τ-bounded.

Proof. Let us consider U be an arbitrary τ-neighborhood of zero. Then there exist $U_0, U_1 \in \mathcal{N}_{sol}$ such that $U_0 \subseteq U$ and $U_1 + U_1 \subseteq U_0$. We know that $K_1 \in \mathcal{F}(\mathcal{I})$ and $K_2 \notin \mathcal{I}$, where $K_1 = \{k \in \mathbb{N} : t_k(x_k - x) \in V + U_1\}$ and $K_2 = \{k \in \mathbb{N} : t_k(x_k - c) \in U_1\}$. So it follows that $K_1 \cap K_2$ is nonempty and an infinite set. Further $k \in K_1 \cap K_2$ then $t_k(x_* - c) = t_k(x_* - x_k) + t_k(x_k - c) \in V + U_1 + U_1 \subseteq V + U_0$. Thus we get $t_k(x_* - c) \in V + U_0$ for all $k \in K_1 \cap K_2$. For $k \in K_1 \cap K_2$,

$$\inf_{n \in \mathbb{N}} |(x_* - c)| \leq | \inf_{k \in K_1 \cap K_2} t_k(x_* - c)|. $$

This implies $(x_* - c) \subseteq \frac{V}{\inf_{n \in \mathbb{N}} t_n} + \frac{U_0}{\inf_{n \in \mathbb{N}} t_n} \subseteq \frac{V}{\inf_{n \in \mathbb{N}} t_n} + \frac{U}{\inf_{n \in \mathbb{N}} t_n}$. Since (L, τ) is Hausdorff and the intersection of all τ-neighborhoods U of zero is the singleton set $\{\theta\}$. This shows that $(x_* - c) \subseteq \frac{V}{\inf_{n \in \mathbb{N}} t_n}$.

To start the second part of the theorem, let $x_* \in W_{\mathcal{I}_x} - LIM^V_x$. Applying the above argument as well as Theorem 2.3, we get $W_{\mathcal{I}_x} \Gamma_x \subseteq \frac{V}{\inf_{n \in \mathbb{N}} t_n} + W_{\mathcal{I}_x} - LIM^V_x$ is τ-bounded. Hence the results conclude.

Remark 2. In retrospect to Remark 1, if we consider $V = U(1) \in \mathcal{N}_{sol}$ where $U(\varepsilon) = \{\alpha \in \mathbb{R}^2 : ||\alpha|| < \varepsilon\}$ for all $\varepsilon > 0$ prominently $V + U(\varepsilon), V + V + U(\varepsilon) \in \mathcal{N}_{sol}$ for all $U(\varepsilon) \in \mathcal{N}_{sol}$. So the existence of such neighbourhood V is guaranteed.

Example 10. In view of the above Theorem 2.8 one would naturally like to seek an example for which $W_{\mathcal{I}_x} \Gamma_x$ will be τ-unbounded, i.e., in general $W_{\mathcal{I}_x} \Gamma_x$ is not τ-bounded. If we replace the sequence $x = \{x_n\}_{n \in \mathbb{N}}$ by the sequence $z = \{z_n\}_{n \in \mathbb{N}}$ where $z_n(t) = j$ for all $n \in \Delta_j$ (where $j = 1, 2, 3, ...$), for all $t \in I$ and $t_n = n$ for all $n \in \mathbb{N}$ as in Example 4 then we get $\{z_n : n \in \mathbb{N}\} \subset W_{\mathcal{I}_x} \Gamma_x$ where \mathcal{I} is the ideal as in Example 8.

References

[1] H. Albayrak, S. Pehlivan, Statistical convergence and statistical continuity on locally solid Riesz spaces, Topology Appl. 159 (2012), 1887-1893.

[2] A. Aydin, The statistically unbounded τ-convergence in locally solid Riesz spaces, Turkish J. Math., 44 (2020) 949-956.

[3] S. Aytar, The rough limit set and the core of a real sequence, Numer. Funct. Anal. Optim. 29 (3-4) (2008), 283-290.
[4] S. Aytar, Rough statistical convergence, Numer. Funct. Anal. Optim. 29 (3-4) (2008), 291-303.
[5] P. Das, Some further results on ideal convergence in topological spaces, Topology Appl. 159 (10-11) (2012), 2621-2626.
[6] P. Das, S. Ghosal, A. Ghosh, S. Som, Characterization of rough weighted statistical limit set, Math. Slovaca 68 (4) (2018), 881-896.
[7] E. Dündar, On rough I_2-convergence of double sequences, Numer. Funct. Anal. Optim. 37 (4) (2016), 480-491.
[8] H. Fast, Sur la convergence statistique, Colloq. Math. 2 (1951), 241-244.
[9] J. A. Fridy, On statistical convergence, Analysis 5 (4) (1985), 301-313.
[10] J. A. Fridy, Statistical limit points, Proc. Amer. Math. Soc. 118 (4) (1993), 1187-1192.
[11] S. Ghosal, A. Ghosh, Rough weighted I-limit points and weighted I-cluster points in θ-metric space, Math. Slovaca 70 (3) (2020) 667-680.
[12] L. Hong, On order bounded subsets of locally solid Riesz spaces, Quaest. Math. 39 (3) (2016), 381-389.
[13] V. Karakaya, T. A. Chishti, Weighted statistical convergence. Iranian J. Sci. Technol. Trans. A 33 (A3) (2009) 219-223.
[14] P. Kostyrko, M. Mačaj, T. Šalát, M. Sleziak, I-convergence and extremal limit points, Math Slovaca 55 (4) (2005) 443-464.
[15] P. Kostyrko, M. Mačaj, T. Šalát, O. Strauch, On statistical limit points, Proc. Amer. Math. Soc. 129 (9) (2001), 2647-2654.
[16] P. Kostyrko, T. Šalát, W. Wilczyński, I-convergence, Real Anal. Exchange, 30 (2000/2001), 669-685.
[17] M. C. Listán-García, F. Rambla-Barreno, Rough convergence and Chebyshev centers in Banach spaces, Numer. Funct. Anal. Optim. 35 (4) (2014), 432-442.
[18] W. A. J. Luxemburg, A. C. Zaanen, Riesz Space-I, North Holland, Amsterdam, 1971.
[19] S. K. Pal, D. Chandra, S. Dutta, Rough ideal convergence, Hacet. J. Math. Stat. 42 (6) (2013), 633-640.
[20] H. X. Phu, Rough convergence in normed linear spaces, Numer. Funct. Anal. Optim. 22 (1-2) (2001), 199-222.
[21] H. X. Phu, Rough convergence in infinite dimensional normed space, Numer. Funct. Anal. Optim. 24 (3-4) (2003), 285-301.
[22] F. Riesz, Sur la decomposition des operations functionelles lineaires, Atti del Congr. Internaz. del Mat. Bologna 1928, 3, Zanichelli (1930) 143-148.
[23] G. T. Roberts, Topologies in vector lattices, Math. Proc. Cambridge Philos. Soc. 48 (1952), 533-546.
[24] T. Šalát, On statistically convergent sequences of real numbers, Math. Slovaca 30 (2) (1980), 139-150.
[25] E. Savaş, On generalized double statistical convergence in locally solid Riesz spaces, Miskolc Math. Notes 17(1) (2016), 591-603.
[26] E. Savaş, P. Das, A generalized statistical convergence via ideals, Appl. Math. lett. 24 (2011), 826-830.
[27] E. Savaş, M. Et, On $(\Delta_\alpha^\theta, I)$-statistical convergence of order α, Period. Math. Hungar. 71 (2015) 135-145.
[28] H. Steinhaus, Sur la convergence ordinaire et la convergence asymptotique. Colloq. Math. 2 (1951), 73-74.