generous support of the American people through the US Agency for International Development Emerging Pandemic Threats PREDICT project. The contents are the responsibility of the authors and do not necessarily reflect the views of the US Agency for International Development or the US Government.

About the Author
Dr. Islam is a research scientist at EcoHealth Alliance, currently working in Bangladesh as the country coordinator for the US Agency for International Development’s PREDICT project. His research focuses on understanding the drivers of zoonotic disease emergence at the animal, human, and ecosystem interface.

References
1. Memish ZA, Mishra N, Olival KJ, Fagbo SF, Kapoor V, Epstein JH, et al. Middle East respiratory syndrome coronavirus in bats, Saudi Arabia. Emerg Infect Dis. 2013;19:1819–23. http://dx.doi.org/10.3201/eid1911.131172
2. Azhar EI, El-Kafrawy SA, Farraj SA, Hassan AM, El-Saeed MS, Hashem AM, et al. Evidence for camel-to-human transmission of MERS coronavirus. N Engl J Med. 2014;370:2499–505. http://dx.doi.org/10.1056/NEJMoa1401505
3. Younan M, Bornstein S, Gluecks IV. MERS and the dromedary camel trade between Africa and the Middle East. Trop Anim Health Prod. 2016;48:1277–82. http://dx.doi.org/10.1007/s11250-016-1089-3
4. Abroug F, Slim A, Ouanes-Besbes L, Hadj Kacem MA, Müller MA, Corman VM, Jores J, Meyer B, Younan M, Quan PL, Firth C, Street C, Henriquez JA, Petrosov A, Saqib M, Sieberg A, Hussain MH, Mansoor MK, Zohaib A, Perera RA, Wang P, Alhammadi MA, Siu LY, Li M, Dachraoui F, Ouanes I, et al.; World Health Organization Global Outbreak Alert and Response Network Middle East Respiratory Syndrome Coronavirus International Investigation Team. Family cluster of Middle East respiratory syndrome coronavirus infections, Tunisia, 2013. Emerg Infect Dis. 2014;20:1527–30. http://dx.doi.org/10.3201/eid2009.140378
5. Müller MA, Corman VM, Jores J, Meyer B, Younan M, Liljander A, et al. MERS coronavirus neutralizing antibodies in camels, Eastern Africa, 1983–1997. Emerg Infect Dis. 2014;20:2093–5. http://dx.doi.org/10.3201/eid2014.140126
6. Hemida MG, Elnassemy A, Al-Hizab F, Alnaeem A, Almather F, Faye B, et al. Dromedary camels and the transmission of Middle East respiratory syndrome coronavirus (MERS-CoV). Transbound Emerg Dis. 2017;64:344–53. http://dx.doi.org/10.1111/ tbed.12401
7. Liu J, Li, Yang Y, Yang Z, et al. Serologic evidence for MERS-CoV infection in dromedary camels, Punjab, Pakistan, 2012–2015. Emerg Infect Dis. 2017;23:550–1. http://dx.doi.org/10.3201/eid2303.161285
8. Reusken CB, Raj VS, Koopmans MP, Haagmans BL. Cross-host transmission in the emergence of MERS coronavirus. Curr Opin Virol. 2016;16:55–62. http://dx.doi.org/10.1016/j.coovi.2016.01.004
9. Reusken CB, Raj VS, Koopmans MP, Haagmans BL. Cross-host transmission in the emergence of MERS coronavirus. Curr Opin Virol. 2016;16:55–62. http://dx.doi.org/10.1016/j.coovi.2016.01.004
10. Hemida MG, Elmoslemany A, Al-Hizab F, Alnaeem A, Almather F, Faye B, et al. Dromedary camels and the transmission of Middle East respiratory syndrome coronavirus (MERS-CoV). Transbound Emerg Dis. 2017;64:344–53. http://dx.doi.org/10.1111/ tbed.12401

Borrelia miyamotoi sensu lato in Père David Deer and Haemaphysalis longicornis Ticks

Yi Yang, Zhangping Yang, Patrick Kelly, Jing Li, Yijun Ren, Chengming Wang*

Author affiliations: Yangzhou University College of Veterinary Medicine, Yangzhou, China (Y. Yang, J. Li, C. Wang); Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou (Y. Yang, J. Li, C. Wang); Yangzhou University College of Animal Science and Technology, Yangzhou (Z. Yang); International Corporation Laboratory of Agriculture and Agricultural Products Safety, Yangzhou University, Yangzhou (Z. Yang); Ross University School of Veterinary Medicine, Basseterre, St. Kitts and Nevis (P. Kelly); Dafeng Elk National Natural Reserve, Yancheng, China (Y. Ren); Auburn University, Auburn, Alabama, USA (C. Wang)

By sequence analysis of 16S rRNA, flaB, p66, and glpQ, we identified Borrelia miyamotoi in 1 of 4 Père David deer (n = 43) seropositive for Borrelia spp. and 1.2% (3/244) of Haemaphysalis longicornis ticks from Dafeng Elk National Natural Reserve, China. Future studies should assess Borrelia pathogenesis in deer.

Père David deer (Elaphurus davidianus) are extinct in the wild and found only in captivity, principally in China, England, and the United States. Just 5,000 animals remain, with 40% located in Dafeng Elk National Natural Reserve in China, which attracts >1 million tourists annually. Ticks are common in the Dafeng Elk National Natural Reserve (1), so we investigated the tickborne bacterial pathogens in Père David deer at this reserve.

The institutional animal care and use committee of Yangzhou University College of Veterinary Medicine (Yangzhou, China) (YZU-CVM#2015–076) approved this study. We took whole blood samples from 43 apparently healthy Père David deer (20 males, 23 females), separated out the plasma (1,800 × g for 10 min), and used the plasma to detect antibodies against bacterial pathogens with the

*These senior authors contributed equally to this article.
Figure. Neighbor-joining phylogenetic trees constructed with 16S rRNA, flaB, p66, and glpQ gene sequences of *Borrelia* spp. isolates collected from Père David deer (*Elaphurus davidianus*) and *Haemaphysalis longicornis* ticks, Dafeng Elk National Natural Reserve, China, and reference isolates. The isolates identified in this study (bold; GenBank accession nos. MF521973, MF541143, MG763228, MG763229) are most similar to *B. miyamotoi* of the relapsing fever group. Numbers at branch nodes show bootstrap support (1,000 replicates). Scale bars indicate nucleotide substitutions per site.
SNAP 4Dx kit (IDEXX, Westbrook, ME, USA) (2) according to the manufacturer’s instructions. Further, ELISAs and Western blots using Borrelia miyamotoi GlpQ recombinant protein (RayBiotech, Norcross, GA, USA) and peroxidase-labeled rabbit anti-deer IgG (SeraCare, Milford, MA, USA) were performed as described previously (3) to detect GlpQ antibodies specific to B. miyamotoi.

We collected a convenience sample of Haemaphysalis longicornis ticks (n = 244) from elk in the Dafeng Elk National Natural Reserve during the summer of 2016 and stored the collection at −80°C. We used the High Pure PCR Template Preparation Kit (Roche Diagnostics GmbH, Mannheim, Germany) according to the manufacturers instructions to extract DNA from Père David deer whole blood samples and entire H. longicornis ticks. We used published PCR protocols targeting the 16S rRNA (4), flaB (5), and glpQ (6) genes and an in-house p66 PCR (forward primer 5¢-CGATTTTTCTATATTTGGACACAT-3¢, reverse primer 5¢-GATATAGATTCTACAGGTATTG-CATAATC-3¢) to screen blood samples and ticks for B. miyamotoi. We sequenced both strands of PCR products using BGI’s (Shanghai, China) services and aligned them using ClustalW in MEGA 7 (http://www.megasoftware.net/) with the nucleotide sequences of 11 relapsing fever group borreliae and 7 Lyme disease group borreliae found in GenBank.

Four (9.3%; 1 male, 3 females) of the 43 deer were seropositive by SNAP 4Dx, demonstrating an immunodominance of antibodies against synthetic C6 peptide variable region 6 of the pathogenic Borrelia genospecies, B. burgdorferi sensu stricto, B. garinii, and B. afzelii (7). Seropositivity was confirmed by GlpQ antibody ELISA and Western blot with GlpQ recombinant protein, indicating exposure to B. miyamotoi.

One of the seropositive female deer (2.3% of overall deer population) and 3 (1.2%) of the 244 ticks were positive for the 4 Borrelia genes tested (16S rRNA, flaB, glpQ, p66) by PCR. The sequences obtained from the PCR products showed the 4 animals had identical sets of Borrelia genes. The 16S rRNA, flaB, and p66 sequences were more similar to those of the relapsing fever group borreliae (16S rRNA 97.9%–99.3%, flaB 83.7%–88.9%, p66 72.4%–83.3%) than the Lyme disease group borreliae (16S rRNA 96.6%–97.2%, flaB 79.2%–80.9%, p66 66.1%–68.1%). The B. miyamotoi glpQ gene sequence obtained from the deer and ticks also clustered with those of the relapsing fever group borreliae (81.1%–88.9%), and all analyzed gene sequences had greatest similarity with B. miyamotoi genes (16S rRNA 99.3% [576/580], flaB 88.9% [321/361], p66 83.3% [423/508], glpQ 88.9% [377/424]) (Figure).

B. miyamotoi is a member of the relapsing fever group first isolated in Japan and subsequently found in North America, Europe, and Russia (8). B. miyamotoi has not been reported in deer but can be pathogenic in humans, usually resulting in an acute febrile influenza-like illness but occasionally causing severe disease, including meningocencephalitis (9). Further studies are needed to determine the effects of B. miyamotoi infections in deer, especially because studies on Ixodes scapularis ticks in the United States have indicated that deer might be a sylvatic reservoir (10).

I. persulcatus and I. pavlovskyi ticks are known to be infected with B. miyamotoi in Asia, whereas other Ixodes spp. ticks are vectors in the United States and Europe (9). Tick control in semi–free-ranging animals is challenging; the Père David deer we studied are commonly infested with ticks. The only tick species identified on Père David deer in Dafeng Elk National Natural Reserve was H. longicornis (1), which can reach high densities in the environment (summer 89.5 ± 17.1 ticks/10 m², winter 1.47 ± 0.35 ticks/10 m²) and cause anemia and even death in heavily infested animals. Our finding of B. miyamotoi in H. longicornis ticks adds to the list of organisms reported in this tick, primarily B. burgdorferi sensu lato and unclassified Borrelia spp.

In summary, we have shown that B. miyamotoi sensu lato occurs in Père David deer and H. longicornis ticks in Dafeng Elk National Natural Reserve. Further studies are needed on the pathogenicity of the organism in deer and the role of H. longicornis ticks in the epidemiology of infections in deer and humans.

This project was supported by the National High Technology Research and Development Program of China (2013AA102505-5), National Natural Science Foundation of China (31472067), Scientific Innovation Research of College Graduate Program in Jiangsu Province (KYZZ16_0496), the Excellent Doctoral Dissertation Scholarship of Yangzhou University, and the Priority Academic Program Development of Jiangsu Higher Education Institutions.

About the Author
Dr. Yang is a doctoral student at the Yangzhou University College of Veterinary Medicine in Yangzhou, China. His primary research interests are veterinary pathogens with zoonotic potential.

References
1. Shen H, Ding YH, Xu AH, Ren YJ, Hou LB, Yuan GX. Haemaphysalis longicornis in captive and free-ranging Père David’s deer (Elaphurus davidianus). Chin J Vet Parasitol. 2007;15:60–1.
2. Chandrashekar R, Daniluk D, Moffitt S, Lorentzen L, Williams J. Serologic diagnosis of equine borreliosis: evaluation of an in-clinic enzyme-linked immunosorbent assay (SNAP4® 4Dx®). Int J Appl Res Vet Med. 2008;6:145–50.
3. Krause PJ, Narasimhan S, Wormser GP, Barbour AG, Platonov AE, Brancato J, et al.; Tick Borne Diseases Group.
Borrelia miyamotoi sensu lato seroreactivity and seroprevalence in the northeastern United States. Emerg Infect Dis. 2014;20:1183–90. http://dx.doi.org/10.3201/eid2007.131587
4. Zhai B, Niu Q, Yang J, Liu Z, Liu J, Yin H, et al. Identification and molecular survey of Borrelia burgdorferi sensu lato in sika deer (Cervus nippon) from Jilin Province, north-eastern China. Acta Trop. 2017;166:54–7. http://dx.doi.org/10.1016/j.actatropica.2016.11.002
5. Clark KL, Leydet B, Hartman S. Lyme borreliosis in human patients in Florida and Georgia, USA. Int J Med Sci. 2013;10:915–31. http://dx.doi.org/10.7187/ijms.6273
6. Fomenko NV, Livanova NN, Borgoiaakov VL, Kozlova IV, Shulakíina IV, Pukhovskaia NM, et al. Detection of Borrelia miyamotoi in ticks Ixodes persulcatus from Russia [in Russian]. Parazitologiia. 2010;44:201–11.
7. Liang FT, Aberer E, Cinco M, Gern L, Liu Z, Liu J, Yin H, et al. Identification of the VlsE lipoprotein among European pathogenic genospecies of Borrelia burgdorferi SL. J Infect Dis. 2000;182:1455–62. http://dx.doi.org/10.1086/315862
8. Fonville M, Friesema IH, Docters van Leeuwen A, et al. Human exposure to tickborne relapsing fever spirochete Borrelia miyamotoi, the Netherlands. Emerg Infect Dis. 2014;20:1244–5. http://dx.doi.org/10.3201/eid2007.131525
9. Krause PJ, Fish D, Narasimhan S, Barbour AG. Borrelia miyamotoi infection in nature and in humans. Clin Microbiol Infect. 2015;21:631–9. http://dx.doi.org/10.1016/j.cmi.2015.02.006
10. Han S, Hickling GJ, Tsao JI. High prevalence of Borrelia miyamotoi among adult blacklegged ticks from white-tailed deer. Emerg Infect Dis. 2016;22:316–8. http://dx.doi.org/10.3201/eid2202.151218

Address for correspondence: Zhangping Yang, Yangzhou University College of Animal Science and Technology, 12 East Wenhui Rd, Yangzhou, China, 225009; email: yzp@yzu.edu.cn; Chengming Wang, 1130 Wire Rd, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA; email: wangche@auburn.edu

Rickettsia asembonensis

Characterization by Multilocus Sequence Typing of Complete Genomes, Peru

Steev Loyola, Carmen Flores-Mendoza, Armando Torre, Claudine Kocher, Melanie Melendrez, Alison Luce-Fedrow, Alice N. Maina, Allen L. Richards, Mariana Leguia

Author affiliations: US Naval Medical Research Unit No. 6, Lima, Peru (S. Loyola, C. Flores-Mendoza, A. Torre, C. Kocher, M. Leguia); Pontificia Universidad Católica del Perú, Lima (A. Torre, C. Kocher, M. Leguia); Walter Reed Army Institute of Research, Silver Spring, Maryland, USA (M. Melendrez); Naval Medical Research Center, Silver Spring (A. Luce-Fedrow, A.N. Maina, A.L. Richards)

DOI: https://doi.org/10.3201/eid2405.170323

While studying rickettsial infections in Peru, we detected Rickettsia asembonensis in fleas from domestic animals. We characterized 5 complete genomic regions (17kDa, gltA, ompA, ompB, and sca4) and conducted multilocus sequence typing and phylogenetic analyses. The molecular isolate from Peru is distinct from the original R. asembonensis strain from Kenya.

Rickettsia asembonensis belongs to a group of R. felis–like organisms (RFLOs) that are similar, yet distinct, from their closest known relative, R. felis (1, 2). Although R. felis causes disease in humans (3), the pathogenicity of RFLOs remains unknown (4–5). R. asembonensis was initially identified in domestic fleas from Kenya (1). Subsequently, reports from the Americas, Asia, and Africa established that R. asembonensis is ubiquitous and closely associated with human habitats because of its arthropod hosts (4–7). However, reports of R. asembonensis rarely include robust genomic information needed to establish degrees of genetic diversity. Consequently, many rickettsial infections remain underdiagnosed, even when prevalence is high (8).

We recently described R. asembonensis in multiple ectoparasites (Ctenocephalides felis fleas and Rhipicephalus sanguineus ticks) collected in the Peruvian Amazon (9). Here, we detail multilocus sequence typing of a single molecular isolate using next-generation sequencing data for 5 complete genomic regions, including conserved (17kDa and gltA) and variable (ompA, ompB, and sca4) genes.

The internal review board of the US Naval Medical Research Unit No. 6 and the Institutional Animal Care and Use Committee approved the study protocol in compliance with all applicable regulations. Genomic DNA was mechanically extracted from half of a single C. felis flea as described (9) and fragmented by Bioruptor (Diagenode, Denville, NJ, USA). Fragmented DNA served as template to prepare IonPGM libraries using IonPlus Fragment Library Kits (ThermoFisher, Lima, Peru) according to the manufacturer’s directions. We conducted quality control using Bioanalyzer High Sensitivity chips (Agilent, Lima, Peru). We prepared libraries for sequencing using IonPGM Template OT2 200 Kits (ThermoFisher, Lima, Peru) and conducted sequencing on 318 chips using IonPGM Sequencing v2 (ThermoFisher). We processed raw data by reference mapping against NMRCi from Kenya (10). Of the 20,575,878 shotgun sequencing reads generated, ≈12% matched Rickettsiaceae.

Comparison of the consensus sequences we generated (GenBank accession nos. KY650696–KY650700) with those of strain NMRCi (GenBank accession no.