Słowa kluczowe
badanie ultrasonograficzne śledziony, standardy badań ultrasonograficznych śledziony, choroby śledziony, zmiany ogniskowe śledziony, urazy śledziony

Streszczenie
Badanie ultrasonograficzne śledziony jest integralną częścią badania jamy brzusznej. Z uwagi na anatomiczne położenie badanie fizikalne śledziony często uzupełnia się badaniem ultrasonograficznym, odgrywającym szczególną rolę w diagnostyce różnicowej chorób śledziony, wyznaczającym kierunki dalszego postępowania diagnostycznego i terapeutycznego. Podobnie jak w przypadku innych rodzajów badań ultrasonograficznych, badający powinien mieć dostęp do wszystkich istotnych informacji klinicznych i wyników dotychczas wykonanych badań. Umówić to zawężenie obszaru poszukiwań czynniki etiologicznych ze wskazaniem, w wyniku badania, na konkretne jednostki chorobowe i dokładną ocenę współistniejących patologii. W artykule przedstawiono standardy badania ultrasonograficznego śledziony Polskiego Towarzystwa Ultrasonograficznego dotyczące aparatury, przygotowania do badania, jego techniki i opisu. Omówiono prawidłową budowę śledziony oraz jej najczęstsze zmiany patologiczne, zaczynając od splenomegalii, a kończąc na urazach śledziony. Przedstawiono wskazania do wykonania badania ultrasonograficznego z użyciem środków kontrastujących oraz omówiono charakterystyczne wzorce wzmocnienia poszczególnych zmian ogniskowych. Do pracy dołączono dokumentację zdjęciową, obrazującą omawiane zmiany. Wykonanie badań zgodnie z obowiązującymi standardami pozwala na optymalną ocenę narzędzia oraz prawidłową interpretację wykrytych zmian. Praca została przygotowana na podstawie publikacji pt. Standardy badań ultrasonograficznych Polskiego Towarzystwa Ultrasonograficznego (2011) i uzupełniona o aktualne doniesienia.

Standardy badań ultrasonograficznych Polskiego Towarzystwa Ultrasonograficznego – aktualizacja.
Badanie śledziony

Standards of the Polish Ultrasound Society – update.
Spleen examination

Joanna Walczyk, Maria Krystyna Walas

Oddział Kliniczny Kliniki Chorób Metabolicznych, Szpital Uniwersytecki, Kraków, Polska
Adres do korespondencji: Joanna Walczyk, Oddział Kliniczny Kliniki Chorób Metabolicznych, Szpital Uniwersytecki, ul. Kopernika 15, 31-501 Kraków, e-mail: joasia.walczyk@gmail.com

Praca poglądowa
Review

Journal of Ultrasonography 2013; 13: 50–64

© Polish Ultrasound Society. Published by Medical Communications Sp. z o.o. This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives license [CC BY-NC-ND]. Reproduction is permitted for personal, educational, non-commercial use, provided that the original article is in whole, unmodified, and properly cited.
Abstract

Ultrasound scan of the spleen is an integral part of the overall abdominal examination. Due to its anatomical position, physical examination of the spleen is frequently supplemented with an ultrasound which plays a special role in the differential diagnostics of splenic diseases and facilitates the determination of further diagnostic and therapeutic procedures. Similarly to other types of ultrasound scans, the examiner should be familiar with all significant clinical information as well as results of examinations and tests conducted so far. This enables to narrow the scope of search for etiological factors and indicate specific disease entities in the findings as well as allows for accurate assessment of coexistent pathologies. The article presents the standards of the Polish Ultrasound Society concerning the apparatus, preparation for the examination, technique and description of the findings. The authors discuss the normal anatomy of the spleen and the most common pathologies ranging from splenomegaly to splenic traumas. The indications for the contrast-enhanced ultrasound and characteristic patterns of enhancement of individual focal lesions are presented. This article is supplemented with photographic documentation, which provides images of the discussed lesions. The ultrasound examination, if carried out in compliance with current standards, allows for accurate interpretation of detected changes. This article has been prepared on the basis of the Ultrasound Examination Standards of the Polish Ultrasound Society (2011) and updated with the current knowledge.

Wstęp

Badanie ultrasonograficzne (USG) należy do badań diagnostycznych wykonywanych w pierwszej kolejności w przypadku dolegliwości ze strony jamy brzusznej. Wskazaniem do badania USG śledzony jest przede wszystkim ocena i monitorowanie wielkości tego narządu w przebiegu różnych chorób, diagnozy niejasnych operów w lewym nadbrzuszu oraz ocena zmian porażających. Właściwą interpretację tych patologii ułatwia dane kliniczne, w tym wyniki dotychczas wykonanych badań.

Postęp techniczny aparatury ultrasonograficznej powoduje, że niejednokrotnie ostateczne rozpoznanie można ustalić na podstawie badania USG, bez konieczności dalszej diagnostyki obrazowej, w tym inwazyjnej. Dowodem są wyniki badań klinicznych potwierdzające, że ultrasonografia z użyciem środków kontrastujących CEUS (contrast-enhanced ultrasound) daje porównywalne wyniki czułości i swoistości w wykrywaniu i określaniu charakteru zmian ogniskowych w śledzieniu jak tomografia komputerowa (TK) czy rezonans magnetyczny (MRI)(1). EFSUMB (European Federation of Societies for Ultrasound in Medicine and Biology) rekomenduje wykonanie CEUS śledzony w celu: 1) oceny charakteru zmian ogniskowych śledziony uwidocznionych w standardowym badaniu USG; 2) wykrycia zmian ogniskowych o charakterze złośliwym u pacjentów onkologicznych, kiedy wyniki innych badań obrazowych (TK, MRI) nie są jednoznaczne; 3) potwierdzenia zawalu śledziony; 4) potwierdzenia obecności śledziony dodatkowych (gdy stwierdzone są zmiany ogniskowe w okolicy wniku śledziony)(1). Badania CEUS są również zalecane u pacjentów po urazach jamy brzusznej w celu wykluczenia uszkodzenia śledziony, u osób z małą śledzioną pod kątem różnicowania aspelenii i czynnościowej hiposeplii, a także w celu potwierdzenia ropn, krwiaków(2).

Introduction

Ultrasound examination (US) is one of the first diagnostic examinations performed when abdominal symptoms appear. The US of the spleen is recommended to assess and monitor the size of the spleen in the course of various diseases, to diagnose uncharacteristic resistance in the left hypochondriac region as well as to assess posttraumatic changes. The correct interpretation of these pathologies is facilitated by clinical data including the results of the tests and examinations conducted so far.

Due to technological progress of ultrasound equipment, final diagnoses may be frequently established solely on the basis of the ultrasound scan without the need to perform further imaging examinations, including invasive ones. The evidence for the foregoing is provided in the clinical tests which say that ultrasound examinations conducted with the use of contrast agents (CEUS – contrast-enhanced ultrasound) give comparable results regarding sensitivity and specificity of detecting and determining the character of focal lesions in the spleen, to computed tomography (CT) or magnetic resonance imaging (MRI)(1). The EFSUMB (European Federation of Societies for Ultrasound in Medicine and Biology) recommends the CEUS of the spleen in order to: 1) assess the character of the focal lesions in the spleen visualized in a standard US examination; 2) detect malignant focal lesions in oncological patients when the findings of other imaging examinations (CT, MRI) are unclear; 3) confirm the infarction of the spleen; 4) confirm the presence of accessory spleens (when focal lesions in the splenic hilum are detected)(1). CEUS examinations are also recommended in patients with abdominal trauma in order to exclude injuries of the spleen, in patients with little spleen to differentiate between asplenia and functional hypoplasenia as well as to confirm abscesses and hematomas(2).
Aparatura

Według standardów PTU aparaty do badań ultrasonograficznych jamy brzusznej powinny spełniać następujące wymogi techniczne(3):

- elektroniczna głowica konweksowa szerokopasmowa w zakresie częstotliwości od 2 do 5 MHz; najczęściej badanie wykonuje się głowicą konweksową 3,5 MHz;
- co najmniej 128 rzeczywistych kanałów nadawczo-odbiorczych;
- monitor z 256-stopniową skalą szarości;
- obrazowanie w opcji drugiej harmonicznej;
- kolorowy doppler, doppler pulsacyjny, doppler mocy;
- powiększanie obrazu zamrożonego oraz w czasie rzeczywistym, bez istotnej utraty rozdzielczości;
- odwracanie badania z pęti pamięciowej;
- regulacja stref ogniskowania wizji;
- oprogramowanie pomiarowe;
- system archiwizacji obrazu.

Do badań z wykorzystaniem środków kontrastujących używane są ultrasonografy z elektronicznymi głowicami szerokopasmowymi lub wieloczastotliwościowymi, z oprogramowaniem do badań z niskim i wysokim indeksem mechanicznym, z pełnym zakresem pomiarów doplerowskich oraz możliwością pomiaru czasu.

Przygotowanie do badania

W celu uzyskania optymalnych warunków do oceny śledziony wskazane jest, aby pacjent przed badaniem pozostawał na czczo, ewentualnie nie jadł 6–8 godzin i nie przyjmował płynów 2 godziny przed badaniem(3).

Technika badania

Z uwagi na anatomiczne położenie śledziony najlepszy dostęp uzyskuje się u pacjenta w pozycji na wznak, a następnie na prawym boku, z lewym ramieniem ułożonym za głową, co pozwala na poszerzenie przestrzeni międzyżebrowych. Badanie można uzupełnić oceną w pozy cii siedzącej lub stojącej, w niektórych przypadkach jest to wręcz najlepsza metoda obrazowania tego narządu. Głowicę należy przyłożyć skośnie wzdłuż IX lub X międzyżebra w linii pachowej przedniej, środkowej, czasem w tylnej(3). Wahadłowe ruchy głowicą wzdłuż międzyżebra pomagają uzyskać podłużne przekroje śledziony, z których najbardziej optymalnym jest przekrój uwidaczniający śledzionę na całej długości, od górnego biegunu po dolny, wnękę i naczynia śledzionowe(4). W tych projekcjach oce nia się także zachylek przeponowo-żebrowy, okolicę pod-przeponową, zachylek między śledzioną a nerką lewą oraz ogn trzustki. Uzupełnieniem badania w przekrojach podłużnych jest ocena w przekrojach poprzecznych i skośnych(3). Podczas badania pacjent powinien swobodnie oddychać, gdyż po nabraniu głębokiego wdechu górny biegun śledziony ulega przesunięciu przez przemieszczające się niżej płucu(4).

Apparatus

According to the standards of the Polish Ultrasound Society, the equipment for abdominal ultrasound examinations should meet the following requirements(3):

- electronic convex broadband transducers with the frequency from 2 to 5 MHz. The examination is most frequently conducted with the convex probe of 3.5 MHz;
- at least 128 transmit/receive channels;
- display with the grey scale of 256 shades;
- second harmonic imaging option;
- color, pulsed and power Doppler;
- the possibility to enlarge a frozen and real-time images without much loss in resolution;
- examination playback stored in the memory (loop playback);
- regulation of the beam focus sites;
- measurement software;
- ultrasound image storing system.

For contrast enhanced examinations, the ultrasound equipment must meet the following requirements: electronic broadband or multi-frequency transducers, the software to conduct examinations with low or high mechanical indices, complete Doppler options and the possibility to measure time.
Określanie kształtu, ekhogeniczności i wielkości

Śledziona w przekroju podłużnym ma kształt półksiężyca, przy czym proporcje długości do szerokości mogą być różne. U niektórych pacjentów śledziona jest wąska i długą, u innych szeroka i krótsza (4). Na kształt narządu mają wpływ jej warianty anatomiczne, m.in. śledziona mnoga, wydatne bieguny, przetwarza płatowość płodowa (6). Jeśli śledziona nie jest widoczna w typowej lokalizacji, należy jej szukać w miejscu ektopowym, ku tylowi do lewej nerki lub w miednicy mniejszej. Śledziona wędrująca jest zawieszona na długiej szypule naczyń niewidzialnej, która umożliwia jej przemieszczanie się, niosąc rzyzyko skrętu z następnym zawalem śledziona (6).

Echodrganiczność prawidłowej śledziony z reguły jest wyższa niż wątroby, u niektórych badanych może być normo- lub hipoechogeniczna względem wątroby (6). Echostruktura narządu jest jednorodna, drobnoziarnista. Rozlani lub niskie ogniska echogeniczności ma miejsce w schorzeniach układu siateczkowo-śródbłonkowego. Podwyższenie echogeniczności miąższu obserwuje się u części chorych na choroby spichrzeniowe.

Wymiary prawidłowej śledziony nie powinny przekraczać: długość – 120 mm, szerokość – 70 mm, grubość – 40 mm (4). Zazwyczaj długość śledziony jest uznawana za pojedynczą, wystarczający i adekwatny wykładnik jej wielkości, używany do monitorowania w przebiegu różnych chorób (5). W przypadku znacznego powiększenia śledziony, sięgającej do lewego talerza biodrowego, częsty problem stanowi dokładny pomiar wielkości. Można wówczas sumować obrazy w tych samych przekrojach, mierzyć odcinek wystający spód lewego luku żebrowego lub w opisie badania podać przybliżoną lokalizację dolnego bieguna śledzony.

Ocena wnęki śledzony

We wnęce śledzony widoczne są tętnica śledzionowa oraz szerzysza od niej żyła śledzionowa, której średnica w warunkach prawidłowych nie powinna przekraczać 10 mm (4). Poszukuje się tu również naczyń krążenia obocznego występujących w nadciśnieniu wrotnym, które przybierają postać drobnych, okrągłych lub krętych hipoechogenicznych struktur, posiadających anastomozy, dobrze widoczne w badaniu dopplerowskim. Badanie dopplerowskie umożliwia różnicowanie naczyń krążenia obocznych i węzłów chlonnych (ryc. 1, 2). We wnęce śledzony można uwidocznić guz ogona trzustki, guz zagięcia śledzionowego jelita grubego oraz zmiany nowotworowe występujące w nerkach i odnogach bocznej lewego nadnercza.

We wnęce śledzony u 0,1–11% badanej populacji można uwidocznić wariant anatomiczny, jakim jest śledziona dodatkowa. Jest to najczęściej zmiana pojedyncza, o średnicy 10–40 mm i echogeniczności identycznej jak echogeniczność miąższu śledziony. Najczęściej jest zlokalizowana w 1/3 dolnej długości wnęki, czasem w okolicy biegunów (5) (ryc. 3). Śledziona dodatkowa może ulegać powiększeniu we wszystkich chorobach prowadzących do splenomegalii, może również przerażać po zabiegu usunięcia śledzony (7).

Evaluation of the shape, echogenicity and size of the spleen

In the longitudinal section, the spleen takes the shape of a crescent but the proportion of its length to its width may differ. In some patients, the spleen is narrow and long whereas in others, it is wide and short (4). Moreover, anatomical variants also affect its shape. Such variants include: accessory spleens, prominent poles and persistent fetal lobulation (3). If the spleen is not visible in its typical localization, it should be searched for in an ectopic position: to the back towards the left kidney or in the pelvis minor. Wandering spleen is anchored on a long vascular pedicle which enables its movement and entails the risk of torsion with subsequent splenic infarction (6).

The echogenicity of the normal spleen is usually higher than that of the liver. However, in some patients, it may be normo- or hypoechoic in relation to the liver (6). The echostructure of this organ is homogenous and fine-grained. Diffuse or focal loss of echogenicity may accompany the pathologies of the reticuloendothelial system and increased echogenicity of the parenchyma is observed in some patients suffering from storage diseases.

The dimensions of the normal spleen should no exceed the following values: 120 mm in length, 70 mm in width and 40 mm in thickness (4). Frequently, the length of the spleen is considered a single, sufficient and adequate factor determining its size, which is helpful in monitoring the course of various diseases (7). In the case of substantial splenomegaly, reaching the left wing of the ilium, the precise measurement of the spleen size is frequently problematic. In such situations, one may sum up the images in the same sections, measure the fragment which is not covered by the left costal margin or in the examination description, provide the approximate localization of the inferior pole.

Evaluation of the splenic hilum

In the splenic hilum, one may see the splenic artery and slightly wider splenic vein whose diameter should not exceed 10 mm in normal conditions (4). The vessels of the collateral circulation occurring in portal hypertension may also be noticed as slight, round or tortuous hypoechoic structures with anastomoses that are clearly visible in a Doppler examination. Doppler ultrasound scan enables to differentiate between the collateral vessels and lymph nodes (figs. 1, 2). In the splenic hilum, the following structures may be visualized: tumor of the tail of the pancreas, tumor of the splenic flexure of the colon as well as neoplasm arising from the kidney and the lateral limb of the left adrenal gland.

In 0.1–11% of the examined population, an anatomical variant is detected in the hilum, i.e. accessory spleen. It is usually a single change with the size of 10–40 mm and the echogenicity identical to that of the splenic parenchyma. In most cases, it is located at one third of the lower length of the hilum or sometimes, in the area of the poles (5, fig. 3).
Zmiany patologiczne śledziony

Splenomegaly

Najczęstszą nieprawidłowością śledziony jest jej powiększenie (splenomegaly). Jest to objaw nieswoisty, obserwowany w przebiegu m.in.:

• uogólnionych i miejscowych procesów zapalnych;
• chorób hematologicznych i rozrostowych;
• zmian naczyniowych (marskość wątroby, nadciśnienie wrotne, zakrzepica żyły wrotnej i śledzionowej, zespół Budda-Chiariego, niedrożność żyły głównej dolnej, niewydolność prawokomorowa serca, zaciskające zapalenie osierdzia);
• chorób spichrzeniowych (choroby Gauchera, choroby Huntera, choroby Niemanna-Picka);
• ziarniniaka Wegenera, amyloidozy, sarkoidozy;
• zaburzeń immunologicznych (tocznia rumieniowatego, AIDS, zespołu Felty’ego);
• idiopatycznej splenomegalii.

The accessory spleen may become enlarged in the course of all the diseases which result in splenomegaly. Additionally, it may hypertrophy after splenectomy.

Pathologies of the spleen

Splenomegaly

The enlargement of the spleen (splenomegaly) is the most common splenic pathology. It is a non-specific symptom and may occur in:

• generalized or local inflammation;
• hematological and proliferative diseases;
• vascular changes (hepatic cirrhosis, portal hypertension, thrombosis of the portal and splenic veins, Budd-Chiari syndrome, obstruction of the inferior vena cava, right-sided cardiac failure and constrictive pericarditis);
• storage diseases (Gaucher disease, Hunter syndrome and Niemann-Pick disease);
Choroby spichrzeniowe

W tej grupie chorób uwarunkowanych genetycznie na skutek braku aktywności jednego z enzymów dochodzi do gromadzenia w lisozomach substancji, które nie ulegają degradacji i odkładają się w tkankach[8,9]. Następstwem zajęcia wątroby i śledziony jest rozwój marskości i hipersplenizmu. Śledziona jest powiększona w różnym stopniu, jej echogeniczność pozostaje prawidłowa lub obserwuje się obszary zwłóknień i zawyły. Do najczęściej spotykanych chorób spichrzeniowych zalicza się chorobę Gauchera, Huntera oraz Niemann-Picka.

Zmiany ogniskowe

Wśród zmian ogniskowych występujących w śledzieniu nieco ponad połową stanowią zmiany o charakterze łagodnym (najczęściej zawal i torbiel), w pozostałych przypadkach stwierdza się zmiany złożliwe (najczęściej chłoniak). Pod względem echogeniczności wyróżnia się zmiany torbielowate oraz lite, w tym hipo- i hiperchłoniczne (tab. 1).

W diagnoście charakteru zmian może pomóc badanie z użyciem ultrasonograficznego środka kontrastowego.

Zmiany ogniskowe łagodne

Zmiany łagodne w badaniu CEUS wykazują taki sam stopień perfuzji jak miąższ, tym samym są izointensywne w porównaniu z otaczającym miąższem, z długotrwałym wzmożeniem w późnej fazie[10,11]. Niekiedy wzorzec wzmożenia zmian łagodnych i złożliwych może się jednak pokrywać, na przykład w przypadku naczyniaków, wykazujących wymykanie kontrastu identycznie jak w zmianach złożliwych[11].

Zawal

Jest jedną z najczęstszych zmian łagodnych w śledzieniu. Powstaje wskutek zakrzepu gałęzi tętnicy śledzionej, przede wszystkim w przebiegu chorób hematologicznych (chłoniaki, białaczk, włóknięcie szpiku, nadkrzepliwość krawienica, anemia sierpowata), ponadto w chorobach układu krążenia (zapalenie wśniadzie, migotanie przedszonków, sztuczne zastawki, protezy naczyniowe, zakrzep lewego przedszonka), w urazach, zapaleniach i raku trzustki, w uogólnionych stanach septycznych oraz zaburzeniach immunologicznych[5]. O możliwości wystąpienia zawalu należy pamiętać u pacjenta z nagłym bóлем opuchlowym w okolicy lewego podżebrza, z gorączką, dreszczami, nudnościami i wymiotami. W obrazie USG zawal ma postać zmiany zróżnicowanej podstawą, glowe, i jej echogeniczność zmienia się w zależności od fazy zawalu. Początkowo jest to obszar hipoechochogeniczny, a nawet echogeniczny, następnie dochodzi do wzrostu echogeniczności. W przeciwwieściu do sąsiadującej zdrowej tkanki obszar zawalu charakteryzuje się brakiem przepływu w badaniu dopplerowskim[7]. Jest to cenne kryterium, pozwalające odróżnić zawalu o niecharakterystycznym kształcie i echogeniczności od innych zmian ogniskowych w badaniu CEUS, w którym obszar zawalu pozostaje hipointensywny we wszystkich fazach w stosunku do otaczającego miąższu[2].

- Wegener’s granulomatosis, amyloidosis and sarcoidosis;
- immune system disorders (lupus erythematosus, AIDS and Felty’s syndrome);
- idiopathic splenomegaly.

Storage diseases

These are a group of inherited disorders caused by the lack of the activity of one of the enzymes. Consequently, the substances accumulate in lysosomes and do not undergo degradation but are deposited in body tissues[8,9]. As a consequence of the affected liver and spleen, cirrhosis and hypersplenism may occur. The spleen is enlarged to various degrees, its echogenicity remains normal or the areas of fibrosis and infarction may occur. The most common storage diseases include Gaucher disease, Hunter syndrome and Niemann-Pick disease.

Focal lesions

More than a half of all splenic focal lesions are benign (the most common are infarctions and cysts). In the remaining cases, malignant lesions, such as lymphoma, are diagnosed. As far as echogenicity is concerned, the lesions are divided into cystic and solid, including hypo- and hyperchonic ones (tab. 1). In order to facilitate the differentiation of the character of lesions, a contrast-enhanced ultrasound examination might be conducted.

Benign focal lesions

In the CEUS examination, benign lesions present the same level of perfusion as the parenchyma. Thus, they are isointense in comparison to the surrounding parenchyma with long-lasting enhancement in the delayed phase[10,11]. Sometimes, however, the patterns of enhancement of benign and malignant lesions may overlap as in angiomas which show contrast wash-out in an identical way to malignant lesions[1].

Infarction

It is one of the most common benign lesions of the spleen. It is caused by a thrombus in the branch of the splenic artery and appears in the course of various hematological diseases (lymphomas, leukemias, myelofibrosis, hypercoagulability, polycythemia or sickle-cell anemia), cardiovascular conditions (endocarditis, atrial fibrillation, artificial valves, vascular prostheses or left atrial thrombosis), traumas, pancreatitis and pancreatic neoplasms, generalized septic conditions as well as immune system disorders[5]. The possibility of infarction needs to be taken into account in patients reporting sudden pleural pain in the left hypochondriac region as well as temperature, chills, nausea and vomiting. In the US image, infarction takes the form of a pyramid turned upside down towards the capsule of the spleen (fig. 4). The echogenicity changes depending on the infarction phase. At first, it is hypoechoic, or sometimes, anechoic. Next, the echogenicity increases.
Najczęstszym odległym skutkiem zawału jest powstanie pseudotorbieli, ropnia lub zwapnienia w miąższu śledzionym.

Torbiel
Torbiele pierwotne (wrodzone), wyściełone nabłonkiem lub śródblonkiem, występują w śledzieniu dosyć rzadko. Częścią spotyka się torbiele wtóre (pseudotorbiel), które zazwyczaj są zejściem zmian pourzawowych, pozapalnych bądź zawału. Niewielki procent stanowią torbiele pasożytnicze nabłonka płucnego, które przeważnie rozwijają się w wątrobie (60%), mózgu lub płucach, a które rzadziej w śledziennik. Grube ściany, zwapnienia, przegrody, torbiele siostrzane wewnątrz śledzióta są cechami charakterystycznymi tego rodzaju torbieli. Niemniej podobne cechy mogą mieć również torbiele wrodzone i inne nabyte zmiany torbielowate. Jeśli średnica torbieli, pierwotnej lub wtórnej, przekracza 50 mm, istnieje zwiększone ryzyko powikłań w postaci jej pęknięcia lub krwawienia do świadztwa torbieli (ryc. 5). Z reguły takim powiklaniom towarzyszą objawy ostrego bólu w lewym podżebrzu. Duże wymiary torbieli są wskazaniem do interwencji chirurgicznej, w miarę możliwości z zachowaniem zdrowego miąższu śledzionego.

Naczyniak
Naczyniaki stanowią niecałe 10% zmian łagodnych śledzionych. Pod względem histologicznym wyróżnia się naczyniaki krwionośne i limfatyczne, przy czym limfatyczne należą do rzadkości. W badaniu USG są widoczne jako zmiany dobrze odgraniczone, zazwyczaj hiperechogeniczne (ryc. 6), ale mogą mieć również niską lub mieszaną echogeniczność. W badaniu CEUS ulegają wzmocnieniu w fazie tętniecznej, po czym w kolejnych fazach pozostają.

Contrary to adjacent healthy tissue, the infarction area is characterized by the lack of flow in Doppler examination(7). This is a valuable factor which enables to distinguish infarcts of uncharacteristic shape and echogenicity from other focal lesions during CEUS examination in which the infarction area remains hypointense in all phases in relation to the surrounding parenchyma(21). The most common remote consequence of infarction is the formation of pseudocysts, abscesses or calcifications in the splenic parenchyma.

Cyst
Primary (congenital) cysts are lined with epithelium or endothelium and rarely occur in the spleen. Secondary cysts (pseudocysts) are more common. They usually occur as a result of traumatic changes, post-inflammatory lesions and infarction. Parasitic hydatid cysts, on the other hand, usually develop in the liver (60%), brain or lungs and, more seldom, in the spleen. They are characterized by thick walls, septations and the presence sister cysts inside the lumen. Nonetheless, congenital and acquired cysts may present similar features. If the diameters of primary or secondary cysts exceed 50 mm, the risk of rupturing or bleeding into the lumen is increased (fig. 5). Such complications are usually accompanied by severe pain in the left hypochondriac region. Large cysts constitute an indication for a surgical intervention with the preservation of the healthy splenic parenchyma to the extent possible(8).

Angioma
Angiomas constitute nearly 10% of benign lesions of the spleen. Histologically, they may be divided into...
hipointensywne w porównaniu z otaczającym miąższem śledziona. W postaci torbielowato-litej najczęściej występują naczyniaki limfatyczne, które w badaniu techniką Dopplera wykazują brzegowe unaczynienie. W naczyńkach osiągających znaczne rozmiary na skutek zalegającej w nich krwi może dochodzić do koagulopatii, anemii i trombocytopenii (zespół Kasabach-Merritt).

Zwapnienia
Przeważnie są zejściem torbieli, ropni, ognisk zawalowych lub przebytego urazu/krwiaka. Mogą występować w ścianach naczyń, torbieli, w zmianach nowotworowych. Najczęściej stwierdza się zwapnienia pojedyncze, które nie mają znaczenia klinicznego. Liczne nasuwają podejrzenie etiologii zakaźnej, takiej jak: zakażenie wirusem HIV, gruźlica, pneumocystoza, grzyby (kandydoza, aspergillosa). Dość często towarzyszą różnego rodzaju zaburzeniom metabolicznym.

Hemangiomas and lymphangiomas. The latter, however, are very rare. In US examinations, they are visualized as well-circumscribed and usually hyperechoic lesions but their echogenicity may as well be low or mixed. Their signal becomes enhanced in CEUS examinations in the arterial phase. In the subsequent phases, they remain hypointense in relation to the surrounding parenchyma. The solid-cystic forms usually concern lymphangiomas which in Doppler examinations show peripheral vascularity. As a result of the blood deposited in large angiomas, coagulopathy, anemia or thrombocytopenia (Kasabach-Merritt syndrome) may occur.

Calcifications
They are usually outcomes of cysts, abscesses, infarction foci or trauma/haematoma. They may form in the wall of vessels, cysts and neoplastic lesions. Single calcifications of little clinical significance are the most common. Numerous ones however, raise suspicions of infections such as HIV viral infection, tuberculosis, pneumocystosis, mycosis (candidosis or aspergillosis). They frequently accompany various metabolic disorders.

Abscesses
Abscesses of the spleen result from infections spreading by the blood (usually in generalized septic conditions), by contiguity (inflammatory processes of organs such as pancreas, kidney or splenic flexure of the colon) or they are
Ropnie

Ropnie śledziony są wynikiem szerzenia się zakażenia drogą krwionośną (zwł. w uogólnionych stanach septycznych), rzadziej przez sąsiedztwo (procesy zapalne takich narządów, jak trzustka, nerka, zagęszczenie śledzionowe jelita grubego), bądź są powikłaniem zawału lub urazu śledziony(5). W zależności od czynnika wywołującego zakażenie wyróżnia się ropnie bakteryjne i grzybiczne. Mogą osiągnąć różną wielkość, mieć charakter mnogi lub występować pojedynczo w postaci jedno-, dwu- lub wielokomorowej.

Ropnie bakteryjne posiadają zazwyczaj dobrze wykształconą i unaczynioną torebkę (tzw. pseudotorebkę), są okrągłe lub owalne. Światło ropnia może być całkowicie bezzechowe, hipoechoiczne, o mieszanej lub o podwyższonej echogeniczności(5). Obecność we wnętrzu zmiany odbić typowych dla gazu z niepełnym, czyli brudnym (ang. dirty shadow) cieniem akustycznym lub artefaktem „ogona komety” (ang. comet-tail artifact) świadczy o zakażeniu bakteriami bezłuskowymi.

W przypadku infekcji gruźliczej, szczególnie w postaci proświadowej, śledziona jest zajęta w około 80–100%. Drobné hipoechoiczne obszary są wówczas widoczne w całym miaszu śledziony, a ich cezje mogą być rozszane zwapnienia (ryc. 7). Zawsze w przypadku gruźlicy należy dodatkowo ocenić wątrowę, węzły chłonne oraz jamę otrzewną pod kątem obecności wilgoci płynu.

Szczególną trudność stwarza diagnostyka mikroropni grzybicznych, które stanowią około 25% wszystkich ropon śledziony. W obrazie USG mają postać drobnych, 2–4-milimetrowych hipoechoicznych obszarów rozsianych w całym narządzie. Mikroropnie występują przede wszystkim u chorzych z deficytami odporności (chorzy z AIDS, po chemioterapiach, przeszczepach narządowych)(5).

Dojrzałe ropnie grzybiczne, wywoływane najczęściej przez grzyby rodzaju Candida and Aspergillus, mają różne obrazy ultrasonograficzne. Najbardziej charakterystyczny jest obraz „koła w kółce” (hipoechochogeniczny środek zawierający martwicze tkanki otoczone przez hipoechochogeniczną warstwę komórek zapalnych). Pozostałe warianty, takie jak objaw „tarcza” (naprzemiennie ułożone koncentryczne pierścienie hipo- i hiperchogeniczne), zmiany hipo- czy hiperchogeniczne, są mniej swoiste (ryc. 8). W diagnostyce różnicowej roponi bardzo ważna jest łączna analiza obrazu USG z danymi klinicznymi i wynikami badań laboratoryjnych. W przypadku wątpliwości wskazane są weryfikacja zmian w biopsji aspiracyjnej cienkoigły monitorowanej ultrasonograficznie lub wykonanie badań z użyciem środków kontrastujących. Wnętrze roponi wypełnione płynem, martwicą jest hipointensywne w porównaniu z prawidłowym miaszem śledziony, w późniejszej fazie można zauważyć jedynie wzmocnienie przegród i pseudotorebki(1,2).

Odpryskowik (splenoma)

Jest łagodnym guzem zbudowanym z „mieszaniny” tkaneń śledziony różnej szerokości kanały naczyńowe wyścienne endothelium bez cech atypii oraz podobne do czerwonej miąższy śledziony podścielisko z obecnością lub bez grudek a consequence of splenic infarction or trauma(5). Depending on the factors responsible for infection, there are bacterial and mycotic abscesses. They may reach various sizes and be multiple or single in the form of uni-, bi-, or multilocular lesions.

Bacterial abscesses usually have a well-developed and vascularized capsule (so called pseudocapsule). They are round or oval. Their lumina may be anechoic, hypoechoic, of mixed echogenicity or hyperechoic(5). The presence of reflections inside the lesion, which are typical of gas with incomplete, i.e. dirty, shadowing or the comet-tail artifact attest to anaerobic bacterial infection.

In the case of tuberculous infections especially in the military form, the spleen is affected in about 80–100%. In such a situation, slight hyperechoic areas are visible in the entire spleen parenchyma and diffuse calcifications may constitute their outcome (fig. 7). In the case of tuberculosis, it is necessary to assess the liver, lymph nodes and peritoneal cavity in search for the free fluid.

The diagnostics of fungal microabscesses may cause certain difficulties. They constitute 25% of all splenic abscesses. In the US image they present themselves as slight (2–4 mm) hypoechoic areas scattered in the entire organ. First and foremost, microabscesses are found in immunocompromised patients (with AIDS, the history of chemotherapy or organ transplant)(5).

Mature mycotic abscesses, which are usually caused by Candida and Aspergillus, may present various ultrasound images. Their most characteristic feature is the “wheel-within-a-wheel” pattern (hypoechoic center made of necrotic cells surrounded by hyperechoic layer of inflamed cells). The remaining variants, such as a “target” pattern (alternating concentric hypo- and hyperechoic rims), hypoor hyperechoic lesions are non-specific (fig. 8). In the differential diagnostics of abscesses, it is very important to combine US findings with clinical data and results of laboratory tests. In the case of doubts, it is recommended to verify the findings by performing ultrasound-guided fine-needle aspiration biopsy or contrast-enhanced examinations. The inside of the abscess, which is filled with fluid or necrosis, is hypointense in relation to the normal splenic parenchyma and in the delayed phase, one may solely observe the enhancement of the septations and pseudocapsule(1,2).

Splenoma

It is a benign tumor formed from a “mixture” of splenic tissues (vascular channels of various width which are lined with endothelium without the features of atypia and stroma, similar to the red splenic pulp with or without lymphatic nodules)(12). It usually occurs as a solitary formation. Its multiple form may be observed in the course of tuberous sclerosis and Wiskott-Aldrich syndrome. In US examinations, the lesion is well-circumscribed, homogeneous or non-homogeneous and includes cysts, calcifications or areas of necrosis. Sometimes, its echogenicity is decreased or mixed (fig. 9). In CEUS examinations in the early phase, choristomas present enhancement which
Malignant focal lesions

The most common malignant lesions in the spleen include: generalized lymphoma, leukemic infiltrations and angiosarcoma. In CEUS examinations, the enhancement in the early phase with subsequent quick contrast wash-out is characteristic of lymphomas and metastases\(^{(1,2,11)}\).

Primary malignant neoplasms

Primary malignant neoplasms of the spleen occur seldom.

Angiosarcoma is usually a solitary, well-circumscribed, hypo- or normoechogenic tumour with high growth potential. It quickly metastasises to the lymph nodes and liver. It is detected in patients exposed to asbestos or polyvinyl chloride.

Primary splenic lymphoma constitutes about 1% of all lymphomas\(^{(5)}\). Similarly to the secondary involvement of the lymphatic system and irrespective of the form of the lesion (uni- or multilocular), it usually presents low echogenicity, which very rarely is higher that the echogenicity of the healthy spleen.

Metastases to the spleen

Secondary involvement of the spleen or other structures of the lymphatic system by malignant neoplasms constitutes the evidence of the generalization of the disease\(^{(4)}\). In US examinations, such lesions are more frequently diagnosed in patients with non-Hodgkin lymphomas than in those with Hodgkin’s disease. This happens because non-Hodgkin lymphomas much more often affect the organs in the

Ryc. 8. Ropień grzybiczy śledziony – obraz tzw. tarczy

Fig. 8. Mycotic abscess of the spleen – the appearance of the “target”

Ryc. 9. Odpryskowiak śledziony (strzałka)

Fig. 9. Splenoma (arrow)
Przerzuty do śledziony
Wtórne zajęcie śledzony czy innych struktur układu limfatycznego przez nowotwory złośliwe jest dowodem uogólniania się procesu chorobowego⁴⁴. W badaniach USG zmiany są częściej rozpoznawane u pacjentów z chloniakami nieziarniczymi niż z ziar nicą złośliwą, gdyż częściej niż ziarnica zajmują narządy jamy brzusznej, w tym śledzionę, wątrołę i zaotrzewnowe węzły chlonne⁵⁵.

W przypadku chloniaków nieziarniczych w początkowym etapie choroby wątroba i śledziona są zajęte u 30% chorych, w późnym etapie u 60% pacjentów. W przypadku ziarnicy złośliwej zajęcie śledziony stwierdza się w 30% przypadków, dopiero w zaawansowanym stadium choroby. Brzuszna postać ziarnicy częściej obejmuje węzły chlonne i wątrobę niż śledzionę. Obrapy USG są zróżnicowane, zarówno w przypadku chloniaków ziarniczych, jak i nieziarniczych. Śledziona może ulegać powiększeniu w nieznacznym lub średnim stopniu. Echogeniczność mięśni może pozostać prawidłowa; w części chorych obserwuje się rozlane lub ogniskowe obszary o obniżonej echogeniczności bądź pojedyncze lub mnogie obszary torbielowodobne (ryc. 10, 11).

W białaczkach dochodzi do uogólnionego powiększenia śledzony, czemu rzadko towarzyszy zmiana echogeniczności narządu. Ponadto tak jak w chloniakach obserwuje się limfadenopatę brzuszną⁷⁷.

Przerzuty do śledzony występują u 7,5% chorych z nowotworami złośliwymi. Z nowotworów nabłonkowych najczęściej przerzuty do śledziony pochodzą z raka jajnika, sutka, oskrzela, jelita grubego, trzonu i szyjki macicy, gruczołu kroko wego, żołądka, trzustki, przełyku i tarczycy, natomiast z nowotworów złośliwych nienabłonkowych najczęściej przerzuty daje czerniak w postaci skórnej¹³,¹⁴ (ryc. 12 A, B). Obraz przerzutów w śledzionate, podobnie jak w wątrobie, jest różnorodny nawet dla jednego rodzaju nowotworu złośliwego, z drugiej strony kilka nowotworów złośliwych może dawać podobny obraz USG zmian abdominal cavity, including the spleen, liver and retroperitoneal lymph nodes⁵⁵.

In the case of non-Hodgkin lymphomas at the early stage, the liver and spleen are involved in 30% of patients and in further stages – in 60% of patients. In Hodgkin lymphoma, however, the spleen becomes affected in 30% of patients only in the advanced stages. The abdominal form of the disease more often affects the lymph nodes and liver than the spleen. US images are diversified both in Hodgkin and non-Hodgkin lymphomas. The spleen may become slightly or moderately enlarged and the echogenicity of the parenchyma may remain normal. Some patients present diffuse or focal areas of decreased echogenicity or cyst-like areas which may be single or multiple (figs. 10, 11).

In the course of leukemias, the spleen undergoes enlargement, which is rarely accompanied by the change of echogenicity. Furthermore, as in the case of lymphomas, abdominal lymphadenopathy is observed⁷⁷.

The metastases to the spleen occur in 7.5% of patients suffering from malignant neoplasms. Out of epithelial neoplasms, metastases to the spleen come from carcinomas of: the ovary, mammary gland, colon, uterine body and cervix, prostate gland, stomach, pancreas, esophagus and thyroid gland. Out of non-epithelial neoplasms, however, most of the metastases come from cutaneous melanoma¹³,¹⁴ (fig. 12 A, B). Similarly to the liver, the image of the metastases in the spleen is diversified even in the case of one malignant neoplasm. On the other hand, several malignancies may present similar US images. Therefore, the origin of the neoplasm cannot be determined on the basis of US examinations.

Most of the tumors present decreased echogenicity (it is more rarely increased). They may be cystic-solid and include the areas of necrosis as well as calcifications or
przerzutowych, a zatem na podstawie obrazu USG nie jest możliwe określenie punktu wyjścia nowotworu.

Większość guzów ma obniżoną, rzadziej podwyższoną echogeniczność, mogą mieć charakter torbielowato-lity, zawierać obszary martwicy, zwapnienia lub przedstawiać geniczno-przerzutowych, a może być izolowane przerzuty do śleźdżonych pozostawia zwykle z raka jajnika oraz czerniaka i są wskaźnikiem do interwencji chirurgicznej. Rządko przerzuty do śleźdżonych stanowią pierwszy objaw choroby nowotworowej. Ultrasonografia stwarza możliwość weryfikacji przerzutów za pomocą biopsji aspiracyjnej cienkoigiennej monitorowanej obrazem USG w przypadku braku ogniska pierwotnego.

Zmiany naczyniowe

Zakrzepica żyły śleźdżonowej często współistnieje z zakrzepicą żyły wrotnej i ma tę samą etiologię (zazwyczaj zapalenie trzustki lub skrzelina pochodzenia nowotworowego). Skutkiem zakrzepicy jest rozwój splenomegalii i sztywności trzustki lub skrzeplina pochodzenia nowotworowego. Aneurysma tętnicy wrotnej jest rzadki stanowiło jedynie 1–2% wszystkich aneurysm tętniczych. Aneurysma tętnicy wrotnej jest rzadko. W badaniu USG zmienność jest powiększeniem śleźdżoną. Badanie dopplerowskie potwierdza brak przypływu w żyły śleźdżonowej, obecność naczyń krążenia obocznego, obecność skrzeliny w świetle poszerzonej powyżej 10 mm żyły śleźdżonowej(7).

Tętniki tętnicy śleźdżonowej występują rzadko. Znaczenie kliniczne mają po przekroczeniu średnicy 20 mm, niosąc ryzyko płuknięcia i krwawienia. Zwykle powstają na tle naczyń wrotnej lub w ciąży. W obrazie USG prezentują się jako zmiany torbielowate widoczne we wnęce śleźdżoną, wykazujące obecność przypływu tętniczego w badaniu za pomocą doplera kolorowego i spektralnego(7) (ryc. 13 A, B).

Tętniki rzeźkowy tętnicy śleźdżonowej jest bardzo rzadkim powikłaniem, zazwyczaj ostrego, rzadziej przewlekłego zapalenia trzustki lub urazu jamy brzusznej(15).

Vascular changes

Splenic vein thrombosis usually accompanies portal vein thrombosis and presents identical etiology (usually pancreatitis or a clot of neoplastic origin). Thrombosis results in splenomegaly and collateral circulation. In the B-mode examination, the enlargement of the spleen is a specific symptom. Doppler examination, however, confirms the lack of flow in the splenic vein as well as the presence of collateral vessels and the clot in the lumen of the splenic vein, whose width exceeds 10 mm(7).

Aneurysms of the splenic artery are uncommon. They become clinically significant when the diameter exceeds 20 mm, which raises the risk of rupturing and hemorrhage. They usually appear in connection with portal hypertension or during pregnancy. In US examinations, they present themselves as cystic lesions in the splenic hilum. They show the evidence of arterial flow in color and spectral Doppler examinations(7) (fig. 13 A, B).

False aneurysm of the splenic artery is a very rare complication of usually acute (and more seldom, chronic) pancreatitis and abdominal trauma(15). Sometimes, it appears as a result of splenic infarction or neoplastic infiltration(7). In B-mode examinations, pseudoaneurysms are frequently mistaken for cysts or fluid reservoir around the pancreas after its inflammation. For accurate diagnosis, Doppler examination or angio-CT are necessary(15).
Niekiedy powstaje w wyniku zawału śledzony czy nacieku nowotworowego\(^{(2)}\). W badaniu USG B-mode tętniaki rze- kome są często mylnie interpretowane jako torbiele lub zbiorniki płynu wokół trzustki po przebytym zapaleniu. Istotne w rozpoznaniu jest badanie dopplerowskie lub angio-TK\(^{(16)}\).

Urazy śledzony

Śledziona jest narzędziem szczególnie podatnym na uszkodzenia w mechanizmie urazów bezpośrednich okolicy lewego podżebrza bądź IX-XI żeber lub urazów pośrednich, tętnych, takich jak upadek z wysokości czy wypad komunikacyjny. Klinicznie obrażenia śledzony dziel się na pęknięcia jednoczasowe, z natychmiastowym krwawieniem do jamy otrzewnowej, oraz dwuczasowe, z powstawaniem krwiaka podtorebkowego, który w różnym czasie od urazu pęka do jamy otrzewnej lub ulega wchłonięciu\(^{(16)}\).

Powszechnie obowiązujące kryteria USG urazu śledziony (tzw. kryteria Ashera), uwzględniają następujące cechy jej uszkodzenia: powiększenie śledzony, nieregularne zarysy torebki, zmiana zarysów przy zmianie pozycji w czasie badania, objaw podwujonego konturu, obecność wolnego płynu w jamie otrzewnowej\(^{(17)}\). U pacjentów niestabilnych krążeniowo badanie USG przeprowadza się według standaryzowanej procedury FAST (Focused Assessment Sonography for Trauma). U chorych stabilnych, bez bezpośredniego zagrożenia życia, badanie USG wykonuje się według standardów PTU\(^{(3)}\).

Pęknięcie torebki śledziony z rozerwaniem jej miąższu i krwawiением do jamy otrzewnej stanowi najpoważniejsze uszkodzenie śledzony, zwykle wymagające natychmiastowej operacji\(^{(18)}\). W obrazie USG stwierdza się hipoechogeniczny, nieregularny obszar krwiaka pomiędzy rozdzielonymi fragmentami miąższu. Pojawią się płyn wokół śledziony oraz w innych okolicach jamy brzusznej. Wewnątrztorbowe zbiorniki krwi resorbują się do 2–4 tygodni, natomiast krew w obrębie samej śledziony wchłania się w ciągu kilku miesięcy do roku. Zejściem

Splenic traumas

The spleen is especially susceptible to direct injuries as a result of trauma to the left hypochondriac region or 9\(^{th}\)–11\(^{th}\) ribs as well as to indirect blunt injuries such as a fall from height or traffic accident. Clinical injuries of the spleen are divided into the single-stage lesions, resulting in an immediate rupture with instant hemorrhage into the peritoneal cavity, and two-stage lesions resulting in a delayed rupture. In the latter, a subcapsular hematoma occurs which may either rupture into the peritoneal cavity or absorb after various periods of time\(^{(16)}\).

Generally applicable US criteria concerning splenic traumas (so called Asher criteria) include the following features of the injury: enlargement, irregular contour of the capsule, alteration of the contours with the change of the patient’s position, double contour sign and the presence of free fluid in the peritoneal cavity\(^{(17)}\). In unstable patients, a US examination is conducted according to a standardized procedure called FAST (Focused Assessment Sonography for Trauma). Stable patients, who are not in a life-threatening condition, undergo US examinations according to the standards of the Polish Ultrasound Society\(^{(3)}\).

The most severe splenic trauma, which is an indication for emergency surgery, comprises rupture of the splenic capsule with the laceration of the parenchyma and intraperitoneal hemorrhage\(^{(18)}\). The US image presents hypoechoic, irregular area of the hematoma between the divided parenchymal fragments. Some fluid appears around the spleen as well as in other areas of the abdomen. The intraperitoneal blood resorbs within 2–4 weeks. However, several months to a year are needed for the blood within the spleen to absorb. The outcomes of hematoma may include its complete resorption, formation of pseudocyst or, more rarely, superinfection with the formation of an abscess\(^{(4)}\).

Splenic rupture without the laceration of the parenchyma is undetectable in US examinations. The only sign of such a condition may be the presence of the fluid in the peritoneal cavity\(^{(4)}\).
krwiaka mogą być pełna resorpcja, wytworzenie pseudotorbieli, rzadko nadkażenie z powstaniem ropnia(4).

Pęknięcie torebki bez uszkodzenia miąższu jest w badaniu USG nieuchwytno; jedną oznaką może być pojawienie się płynu w jamie otrzewnej(4).

Skutkiem urazu bywają również krwaki podtorebkowe i śródmiejszowe z zachowaniem ciągłości torebki (ryc. 14, 15). W takich przypadkach objawy kliniczne są często skąpe, niemniej pacjent wymaga monitorowania, z uwagi na ryzyko opóźnionego pęknięcia śledzony(4).

Krwiaki śródmiejszowe/stłuczenie miąższu początkowo jest obszarem izoechogenicznym, trudnym do odróżnienia od prawidłowego miąższu. W późniejszym okresie obszar stłuczenia staje się niejednorodny, ostatecznie hipoechogeniczny, z rozproszonymi elementami tkankowymi(4).

Krwiaki podtorebkowe najczęściej lokalizują się przy wypukłej powierzchni śledzony, przybierając kształt sierpowaty. W zależności od czasu wytworzenia mają różną echogeniczność. W ostrej fazie, na skutek tworzenia fibryny, echogeniczność krwiaka jest podwyższona. W późniejszym okresie dochodzi do obniżenia echogeniczności, aż do wytworzenia obszarów bezechowych(18).

Pierwszym objawem krwawienia śródmiejszowego lub wykształcania krwiaka podtorebkowego może być różnego stopnia powiększenie śledzony.

Samoistne pęknięcia śledzony zdarzają się rzadko, przeźwajnie w chorobach przebiegających ze splenomegalią(4).

Opis badania

 Wynik badania powinien zawierać dane osobowe pacjenta, datę badania, nazwę placówki, w której wykonano bada nie, nazwę aparatu, rodzaj głowicy oraz jej częstotliwość. Następnie należy opisać wielkość (długość i szerokość w mm), zarysy i echogeniczność śledzony, ewentualne warianty anatomiczne, wszystkie nieprawidłowe zmiany

Examination description

The examination description should include the patient’s personal details, date of examination, name of the facility in which the examination was performed, name of the scanner as well as the type of the transducer and its frequency. Next, the size (length and width in mm), contours and echogenicity of the spleen should be described as well as possible anatomical variants, all abnormal morphological changes and (if possible) their number, size, echogenicity, echostructure (solid or cystic), localization and, finally, vascularity. Moreover, the splenic hilum should be thoroughly checked for the presence of the collateral vessels or enlarged lymph nodes. The examination description should be ended with specific conclusions as well as suggestions for further diagnostic algorithm and check-up.
morfologiczne i podać ich liczbę (jeśli to możliwe), wymiary, echogeniczność, echostrukturę (lita, torbielowata), lokalizację oraz unaczynienie. Ponadto należy dokładnie ocenić wnękę śledzony pod kątem obecności naczyn krażenia obocznego czy powiększonych węzłów chłonnich. Wynik badania powinien być zakończony konkretnym wnioskami, propozycją dalszego algorytmu diagnostycznego oraz badań kontrolnych(3). W przypadku stwierdzenia nieprawidłowych zmian morfologicznych do wyniku powinna być załączona dokumentacja zdjęciowa z podaniem liczby wydanych zdjęć. Opis badania powinien być potwierdzony pieczątką i podpisem osoby wykonującej badanie.

Podsumowanie

Badanie ultrasonograficzne śledzony jest podstawową metodą diagnostyczną służącą do rozpoznawania i różnicowania zmian patologicznych w tym narzędzi. Wykonanie badania zgodnie ze standardami badania PTU pozwoli na optymalną ocenę narzędzia i właściwą interpretację stwierdzonych zmian, ze wskazaniem, w odpowiednich przypadkach, na kolejne badania diagnostyczne lub bezpośrednio na metodę terapeutyczną.

Conflict of interest

Authors do not report any financial or personal links with other persons or organizations, which might affect negatively the content of this publication and/or claim authorship rights to this publication.

Piśmiennictwo/References

1. Piscaglia F, Nolsøe C, Dietrich CF, Cosgrove DO, Gilja OH, Bachmann Nielsen M et al.: The EFSUMB Guidelines and Recommendations on the Clinical Practice of Contrast Enhanced Ultrasound (CEUS): update 2011 on non-hepatic applications. Ultraschall Med 2012; 33: 33–59.

2. Popescu A, Sporea I, Piştea I, Mincu I, Nicoliţă D, Martaie A: The role of contrast-enhanced ultrasonography with second generation contrast agents in the evaluation of focal splenic lesions. Med Ultrason 2009; 11: 61–65.

3. Jakubowski W (red.): Standardy badań ultrasonograficznych Polskiego Towarzystwa Ultrasonograficznego. Wyd. 4, Praktyczna Ultrasonografia, Roztoczańska Szkoła Ultrasonografii, Warszawa – Zamość 2011: 158–160, 355–357.

4. Jakubowski W (red.): Diagnostyka ultrasonograficzna w gabinecie lekarza rodzinnego. Praktyczna Ultrasonografia, Roztoczańska Szkoła Ultrasonografii, Warszawa – Zamość 2003: 134–143.

5. Jakubowski W (red.): Błody i pomyłki w diagnostyce ultrasonograficznej. Praktyczna Ultrasonografia, Roztoczańska Szkoła Ultrasonografii, Warszawa – Zamość 2003: 124–137.

6. Bates JA: Ultrasonografia jamy brzusznej. Wyd. 2, red. wyd. pol. Jakubowski W, Elsevier Urban & Partner, Wrocław 2012: 175.

7. Bates JA: Ultrasonografia jamy brzusznej. Wyd. 1, red. wyd. pol. Jakubowski W, Elsevier Urban & Partner, Wrocław 2006: 135–148.

8. Kubicka K, Kawałec W (red.): Pediatria. Wydawnictwo Lekarskie PZWL, Warszawa 2010.

9. Dobrzanka A, Ryżko J (red.): Pediatria. Podręcznik do Państwowego Egzaminu Lekarskiego i egzaminu specjalizacyjnego. Urban & Partner, Wrocław 2005.

10. Yu X, Yu J, Liang P, Liu F: Real-time contrast-enhanced ultrasound in diagnosing of focal spleen lesions. Eur J Radiol 2012; 81: 430–436.

11. von Herbay A, Barreiros AP, Ignee A, Westendorff J, Gregor M, Galle PR et al.: Contrast-enhanced ultrasonography with Sonovue: differentiation between benign and malignant lesions of the spleen. J Ultrason Med 2009; 28: 421–434.

12. Lee H, Maeda K: Hamartoma of the spleen. Arch Pathol Lab Med 2009; 133: 147–151.

13. Compérat E, Bardier-Dupas A, Camparo P, Capron F, Charlotte F: Splenic metastases: clinicopathologic presentation, differential diagnosis, and pathogenesis. Arch Pathol Lab Med 2007; 131: 965–969.

14. Hadasik D, Kostecki J, Zanieński M: Guzy przerzutowe do śledzony – przegląd literatury. Chirurgia Polska 2008; 10: 175–180.

15. Wroński K, Dziki L, Cywiński J, Pakula D, Bocian R, Dziki A: Chirurgiczne leczenie tętniaka rzekomego tętnicy śledzionowej po ostrym za- paleniu trzustki – opis dwóch przypadków i przegląd literatury. Ostry Dyżur 2010; 3: 68–71.

16. Góral R (red.): Zarys chirurgii. Wydawnictwo Lekarskie PZWL, Warszawa 1992: 673.

17. Jakubowski W (red.): Diagnostyka ultrasonograficzna w ostrych chorobach jamy brzusznej. Praktyczna Ultrasonografia, Roztoczańska Szkoła Ultrasonografii, Warszawa – Zamość 2004: 180–189.

18. Kremer H, Dobrinski W (red.): Diagnostyka ultrasonograficzna. Wyd. 1, Urban & Partner, Wrocław 1996: 159–169.