Production of an Alcoholic Beverage from Rice (Oryzae sativa) Using Nigerian Palm Wine Yeasts

I. A. Adesokan a*, D. A. Onifade a, O. O. Bolarinwa b, K. A. Aladeloye c and A. Adekola a

a Department of Science Laboratory Technology, The Polytechnic, Ibadan, Nigeria.
Department of Biology, The Polytechnic, Ibadan, Nigeria.
b Bashorun High School, Ibadan, Nigeria.

Authors’ contributions
This work was carried out in collaboration among all authors. All authors read and approved the final manuscript.

Article Information
DOI: 10.9734/CJAST/2022/v41i1331708

Open Peer Review History:
This journal follows the Advanced Open Peer Review policy. Identity of the Reviewers, Editor(s) and additional Reviewers, peer review comments, different versions of the manuscript, comments of the editors, etc are available here: https://www.sdiarticle5.com/review-history/74643

Received 17 October 2021
Accepted 23 December 2021
Published 13 May 2022

ABSTRACT

Rice wine is an alcoholic beverage of cereal produced as a result of fermentation of rice by selected yeasts isolated from different substrates. In this study the effects of starter cultures on physico-chemical and sensory properties of rice wine were investigated. The yeasts isolated belong to six genera and these are Saccharomyces, Kluveromyces, Schizosaccharomyces, Candida, Rhodotorula and Geotrichum. The species isolated included S. cerevisiae, S. uvarum, S. chevalieri, Klu. africanus, Schizosaccharomyces japonicus, S. pombe, C. castelli, C. intermedia, R. graminis and G. candidium. The wort produced from rice had fermentable sugars and nitrogen sources for yeast metabolism and alcoholic fermentation. The wort fermented with Saccharomyces cerevisiae had the highest ethanol concentration of 3.90% compared to 2.16% and 3.7% recorded for Klu. africanus and S. uvarum respectively. The taste results are appearance (2.6-3.8), taste (2.1-3.6), flavor (2.3-3.7), aroma (2.6-3.4) and overall acceptability (2.4-3.6). The rice wine produced with S. cerevisiae also received the highest scores in all the parameters evaluated by the taste panelist. Therefore, it could be concluded that rice wine of acceptable quality could be produced by using S. cerevisiae isolated from palm wine.
1. INTRODUCTION

Rice is the seed of the monocot plant *Oryza sativa* of the grass family gramineae [1]. Rice is an increasingly important crop in Nigeria. It is relatively easy to produce and it is grown for sale and for home consumption. In some areas there is a long tradition of rice growing but for many, it is considered a luxury food for special occasions only. Since rice has become more available, it is now part of the everyday diet of many people in Nigeria. There are different types of rice grown in Nigeria, some of these are local varieties while others have been introduced into the country [2]. Fermentation is the oldest transformation method used to preserve and enhance flavor, aroma and nutritive values of food [3]. In this regard, rice fermentation for the production of alcoholic beverage is an ancient process practiced in most Asian countries. Rice wine is widely consumed during social and cultural events and is part of offering for a good harvest, traditional medicine and postnatal recovery [4]. The Chinese Huangjiu, Indian Sonti, Japanese sake and Korean Yakju are a few examples of fermented rice wines [5]. In rice wine production, starch (sugar) from rice is converted into alcohol via fermentation by yeast, fungus and lactic acid bacteria (LAB) [6]. Palm wine is the fermented sap of various palm trees especially palmyra, silver date palm and coconut palms. Palm wine is an alcoholic beverage produced from the sap of various palm tree species and usually consumed in parts of Africa, Asia and South America [7]. In Africa, the sap is most often taken from mild date palms such as *Phoenix sylvesiris* (the palmyra) and *Caryotaurens* from oil palms such as *Elaeis guineensis* or from raphia, kithul or nipa palms. The liquid collected is a cloudy whitish beverage with a sweet alcoholic taste of flavors varying from sweet unfermented to sour fermented and vinegar [8]. The microorganisms in the palm wine after 12 hours have the effect on the palm wine and this effect is due to the increase in their population as well as their activities [9]. Upon fermentation by the natural microbial flora, the sugar level decreases rapidly as it is converted to alcohol and other products [10]. Palm wine contain good amount of microorganisms. The types and numbers of organisms encountered vary widely even from tree to tree [7]. From the microbial analysis of palm wine, it includes both yeast and bacteria. The present government in Nigeria is encouraging large scale production of rice and in the next few years, surplus quantity of rice will be produced. Therefore, there is need to develop alternative method of industrial utilization of rice apart from the traditional utilization as food. The present study was therefore carried out to produce wine from rice using local yeasts isolated from palm wine.

2. MATERIALS AND METHODS

2.1 Sample Collection

Indigenous rice which is the raw material used was collected from the Nigerian Cereal Research Institute (NCRI) Apata, Ibadan metropolis. The sample was collected in a clean polythene bag and taken to the laboratory. Also, palm wine was obtained from different sources at Mammy Market in Barracks, Ibadan. The samples were collected in sterile containers and were taken to the laboratory.

2.2 Isolation and Identification of Yeasts

The samples of palm wine were serially diluted in sterile distilled water and appropriate dilutions were plated on Potato Dextrose Agar (PDA) supplemented with 3μg/ml of streptomycin. The plates were incubated at 27°C for 48 hours under aerobic condition [7]. The yeasts that developed were sub-cultured on PDA and purified by repeated streaking. The pure yeast isolates were then characterized by physiological and biochemical tests which include sugar fermentation tests, acid production from glucose, nitrate assimilation and urease test. The sugars tested include glucose, fructose, mannitol, sucrose, melibiase, lactose, arabinose, galactose, raffinose and maltose. The yeasts were then identified according to the scheme of Barnett et al. [11].

2.3 Starter Culture Preparation

Pure cultures of yeast stocked on potato dextrose agar slants were made in sterile wort. Loopful of yeast from potato dextrose agar slants were inoculated into 10ml wort in cotton-plugged test tubes. The tubes were incubated for 12 hours after which 2ml of each were transferred to a fresh 10ml wort and incubated further for 12 hours under static conditions.

2.4 Malting of Rice Grains

Cleaned grains (4 kg of sorghum) were steeped in tap water at 28 % 2°C for 24 h and the water
drained off. The soaking continued with fresh water for another 24 h, with changes in water every 3 h. Germination of sprouted grains was then carried out at 28±2°C, with regular mixing to equalize heat output for 4 days and kilned in a forced draught oven at 50°C for 24 h [12].

2.5 Wort Preparation

Malted grains were ground in a hammer mill to pass through a sieve of pore 1.0mm. The grist (500g) was weighted into 2 liters of water at 50°C causing the temperature to drop to 48°C. It was stirred after 30 min and left to settle for another 30 min. A 500ml sample of the supernatant was decanted and held. The rest of the mash was gently boiled with stirring for 10 min cooled to 65°C and the supernatant added and mixed thoroughly. The temperature of the mash dropped to 60°C and was maintained at 60°C in the water bath. Filtration was very poor so the mash was centrifuged at 1300xg. The sediment was mixed with water and centrifuged at 1,300g. The supernatant from the second extract was used to adjust the first extract. The wort was divided into three equal portions (300ml) and was sterilized at 100°C for 30 min in an autoclave [13].

2.6 Determination of Reducing Sugar of the Wort

The reducing sugar was determined by (DNSA), 3, 5-dinitrosalicylic acid method according to the procedure by Shrestha [14]. Each reducing sugar was placed in three test tubes with pistons. Filtrate of the centrifuged wort (0.2 ml) and distilled water (1.8 ml) were added into the test tubes and evenly shaken. Data were substituted into the standard curve to calculate the reducing sugar.

2.7 Determination of Specific Gravity

Specific gravity measures the density of the liquid wort. Brewers utilize this measurement to indicate the amount of sugar in solution and to determine the rate of fermentation. Specific gravity was measured using a triple scale hydrometer (Northern Brewer, St. Paul, MN.). Approximately 237 mL of wort or beer was placed into a 1 in. plastic cylinder (included with the hydrometer). The hydrometer was placed in the liquid within the column and gently spun to prevent the hydrometer from sticking to the side. The liquid level was read at eye level for all three scales [15].

2.8 Determination of pH of Wort

pH was measured to evaluate the brewing process and the rate of fermentation. The pH was measured using a Hanna HI98129 handheld pH meter (Hanna Instruments, Woonsocket, RI). Approximately 25 mL of wort or beer were placed into a 50 mL beaker. The probe was inserted into the liquid and gently stirred until a stable pH reading was displayed [15].

2.9 Determination of Titratable Acidity (TA) of Wort

Acidity of the wort was measured by titrating 10ml of the sample with 0.1M NaOH and indicated as the volume of 0.1M NaOH (ml) needed for neutralization and the TA was expressed as the percentage lactic acid [16].

2.10 Fermentation of the Wort

Concentrated yeast cells in 10ml of 0.9% NaCl were made in sterile worts. Two ml of each strain (Kluyveromyces africanaus, Saccharomyces cerevisiae and S. uvarum) were aseptically transferred to a fresh 10ml of wort in separate test tubes and incubated for 12 hours. Five ml each of the yeast cultures were then used to inoculate 200ml of fresh wort in 300ml cotton-plugged Erlenmeyer flask. Fermentation was then carried out at 30°C under static conditions, and samples were withdrawn at 24 hours intervals for analysis. After three days of fermentation, organoleptic assessment was carried out on the samples of rice wine prepared with different starter cultures [13].

2.11 Analysis of the Rice Wine

2.11.1 pH determination

pH of the samples was recorded by using a digital pH meter as described above [15].

2.11.2 Alcohol content

Rice wine sample (100 ml) was poured in to the 100 ml of volumetric flask. The samples were distilled until 25 ml of distillate is collected. The volume of distillate was restored to 100 ml with distilled water. Then the specific gravity was measured by using hydrometer and recorded and corresponding alcohol percentage volume [17].
2.11.3 Determination of titratable acidity (TA)

Sodium hydroxide (0.1M NaOH) was prepared, poured into burette attached to a retort stand. Ten ml of each sample of rice wine was pipetted into a conical flask, and then two drops of phenolphthalein indicator was added and then titrated. Development of pink coloration was observed as the end point. The titer volume of each homogenate was multiplied by 0.09 to give the percentage TA as lactic acid [18].

2.11.4 Microbial analysis (Yeast count)

Each sample of rice wine was thoroughly mixed together and then serially diluted in sterile distilled water. Appropriate dilutions of the rice wine samples were then plated on potato dextrose agar supplemented with streptomycin (3µg/ml). Enumeration was carried out at 24 hours interval for three days [19].

2.11.5 Sensory evaluation

Sensory evaluation of rice wine samples was estimated by ten consumer sensory panelists. Sensory parameters which include flavor, taste, aroma, appearance and overall acceptability of rice wine were evaluated using a Hedonic scale of 1 to 5 where 5 being "excellent" and 1 "poor" [17].

2.12 Statistical Analysis

All data obtained from sensory evaluation were subjected to statistical analysis by using Analysis of Variance and DUNCAN Multiple Range Test. Significance of variations in the analyzed data was tested at 95% confident limit.

3. RESULTS

A total of 50 yeasts were isolated from seven different samples of palm wine analyzed. The yeast isolates belong to six genera and these are Saccharomyces, Kluyveromyces, Schizosaccharomyces, Candida, Rhodotorula, and Geotrichum (Table 1). S. cerevisiae had the highest frequency of occurrence of 36% while Schizosaccharomyces japonicus and Schizosaccharomyces pombe had 2% each.

The results of wort analysis are presented in Table 2. The results showed that the wort had reducing sugar, soluble nitrogen, specific gravity, pH and acidity of 6.55mg/ml, 0.35%, 1.062, 5.88 and 0.27% respectively. The wort was fermented with selected starter culture based on ethanol production. The results of the characteristics of the fermented wort are presented in Tables 3-5. The results showed that pH of the fermented wort decreased steadily with corresponding increase in titratable acidity. The pH ranged between 3.09 and 4.68 after 72 hours of fermentation. The titratable acidity ranged between 0.313 and 0.477% at the end of fermentation. Also, the reducing sugar and the soluble nitrogen ranged between 3.07 and 4.26 mg/ml and 0.09 and 0.24% respectively. Moreover, ethanol concentration ranged between 2.16 and 3.90% (v/v).

The results of the yeast count are presented in Table 6. The results revealed that viable cell count increased with incubation period and ranged between 3.80 and 4.71 log_{10}cfu/ml at the end of fermentation. The organoleptic evaluation is presented in Table 7. The sensory evaluation is as follows: appearance (2.6-3.8), taste (2.1-3.6), flavor (2.3-3.7), aroma (2.6-3.4) and overall acceptability (2.4-3.6). Sample prepared with S. cerevisiae as starter culture had the highest scores for all the attributes considered. The results from this study indicated that acceptable alcoholic beverage could be produced from rice by using Saccharomyces cerevisiae isolated from palm wine.

4. DISCUSSION

The yeasts isolated in this study are Saccharomyces cerevisiae, Candida intermedia, Candida castelli, Rhodotorula graminis, Kluyveromyces africanaus, Schizosaccharomyces pombe, S. uvarum and S. chevallieri. Similar yeasts have been reported from palm wine by other workers [20, 21, 7]. The wort produced from the rice indicated the presence of enough fermentable medium for the yeast isolates to be able to produce alcoholic beverage. During fermentation the yeast consumed the fermentable sugar which resulted in decrease in pH and a corresponding increase in titratable acidity. Decrease in pH, increase in acidity and production of ethanol must have resulted in inhibition of pathogenic and spoilage organisms.

The pH, acidity (%) and alcohol (%) reported during fermentation of rice for wine production vary from one author to another [22,23 and 17]. The reasons for this could be the use of different variety of rice and methods of wine production in different locality. The yeast population was increasing throughout the period of fermentation.
This could be as a result of their ability to multiply rapidly in the presence of increasing concentration of ethanol. The total count of *Saccharomyces cerevisiae* was the highest at the end of wort fermentation. The wine produced by this yeast also received the highest scores for appearance, taste, flavor, aroma and overall acceptability.

Table 1. Percentage occurrence of yeasts isolated from palm wine

Isolates	Frequency of occurrence	Percentage occurrence
Saccharomyces cerevisiae	18	36
Saccharomyces chevallieri	4	8
Saccharomyces uvarum	3	6
Schizosacharomyces japanicus	1	2
Schizosacharomyces pombe	1	2
Candida intermedia	2	4
Candida castelli	5	10
Rhodotorula graminis	2	4
Kluyveromyces africanus	12	24
Geotrichum candidum	2	4

Table 2. Characteristic of wort produced from rice

Reducing Sugar (mg/ml)	6.55
Soluble nitrogen (%)	0.35
Specific gravity	1.062
pH	5.88
Acidity (%)	0.27

Table 3. Characteristics of wort fermented with *Klu .africanus*

Fermentation time (Hours)	0	24	48	72
Ethanol (%, v/v)	Nd	2.03	2.09	2.16
Acidity (%)	0.27	0.297	0.311	0.313
pH	5.88	5.80	5.01	4.68
Reducing sugar (mg/ml)	6.55	6.26	5.32	4.26
Soluble nitrogen (%)	0.35	0.32	0.27	0.24

Table 4. Characteristics of wort fermented with *S. uvarum*

Fermentation time (Hours)	0	24	48	72
Ethanol (%, v/v)	Nd	3.24	3.53	3.70
Acidity (%)	0.27	0.324	0.423	0.459
pH	5.88	5.68	4.33	3.14
Reducing sugar (mg/ml)	6.55	5.94	5.14	3.22
Soluble nitrogen (%)	0.35	0.30	0.21	0.13

Table 5. Characteristics of wort fermented with *S. cerevisiae*

Fermentation time (Hours)	0	24	48	72
Ethanol (%, v/v)	Nd	3.40	3.70	3.90
Acidity (%)	0.27	0.325	0.441	0.477
pH	5.88	5.63	4.30	3.09
Reducing Sugar (mg/ml)	6.55	5.89	5.08	3.07
Soluble nitrogen (%)	0.35	0.22	0.14	0.09
Table 6. Viable count (yeast) (log$_{10}$cfu/ml)

Sample	0 (Hr)	24 (Hrs)	48 (Hrs)	72 (Hrs)
A	ND	nd	3.76	3.80
B	2.40	2.57	4.59	4.66
C	2.45	2.61	4.63	4.71

Key: Sample A-Wort fermented with *Klu. africanus*; Sample B-wort fermented with *S. uvarum* and Sample C-wort fermented with *S. cerevisiae*. nd means not detected

ND means not determined

Table 7. Organoleptic attributes of rice beer as determined by a sensory panel

Sample	Appearance	Taste	Flavor	Aroma	Overall acceptability
A	2.6ab	2.1ab	2.3a	2.6a	2.4a
B	3.6ab	3.4a	3.5b	3.2ab	3.4ab
C	3.8a	3.6a	3.7ab	3.4b	3.6b

Key: The sample codes are as stated in table 6. The values in the table with different superscripts are significantly different at $P<0.05$

5. CONCLUSION

Different species of yeasts were isolated from palm wine with fermentative *S. cerevisiae* having the highest frequency of occurrence. Based on ethanol tolerance, *S. cerevisiae, Klu. africanus* and *S. uvarum* were used as starter cultures. The rice wine produced with *S. cerevisiae* had the highest ethanol quantity and scores for sensory analysis. Therefore, it could be concluded that rice wine of acceptable quality could be produced by using *S. cerevisiae* isolated from palm wine.

ACKNOWLEDGEMENT

The authors are grateful to Sunday Ebere of International Institute of Tropical Agriculture Ibadan, Nigeria for his assistance in carrying out some of these experiments.

COMPETING INTERESTS

Authors have declared that no competing interests exist.

REFERENCES

1. Kadiri FA, Eze CC, Orebiyi JS, Lemchi JL, Ohajanya DO, Nwaiwu IU. Technical efficiency in paddy rice production in Niger Delta region of Nigeria. Global Journal of Agriculture Research. 2014;2(2):33–44.
2. Shittu AA, Orukotan AA, Mohammed SSD. Comparative studies of rice wine production from synergistic and individual activities of lactic acid bacteria and yeast isolated from fermented foods. Science World Journal. 2019;14(2):93–100.
3. Kishneth P, Charles SV. Biochemical properties of rice wine produced from three different starter cultures. Journal of Tropical Biology and Conservation. 2013; 10: 31-41
4. Chiang YW, Chye FY, Mohd IA. Microbial diversity and proximate composition of Tapai, A Sabah’s fermented beverage. Malaysian Journal of Applied Science and Environmental Management. 2006;9:25–30.
5. Steinkraus KH. Fermentation in World Food Processing. Comprehensive Reviews in Food Science and Food Safety. 2002;1: 23 – 27.
6. Chuenchomrat PA, Assavanag A, Lertsiri S. Volatile flavor compounds analysis of solid state fermented Thai rice wine (OU). Science Asia. 2008;34:199 – 206.
7. Nwakanma C, Unachukwu NM, Onah P, Engwa AG. Isolation and sensory evaluation of *Saccharomyces cerevisiae* from palm wine (*Elaeis guineensis*) from different sites in Enugu. European Journal of Biomedical and Pharmaceutical Sciences. 2015;2(7):19-26.
8. Chandrasekhar K, Sreevani S, Seshapani P, Pramodhakumari. A review on palm wine. International Journal of Research in Biological Sciences. 2012;2:33-38.
9. Ogbuile TE, Ogibuile TN, Njoku MO. Comparative study on the shelf life stability of palm wine from *Elaeis guineensis* and *Raphia hookeri* obtained from Okigure,
Nigeria. African Journal of Biotechnology. 2007;6(7):914-922.
10. Obire O. Activity of yeast species in palm sap obtained from three areas in Edo State, Nigeria. Journal of Applied Science and Environmental Management. 2005; 9:25-30.
11. Barnett JA, Payne RW, Yarrow D. Yeast characteristics and identification. London, Cambridge University Press. 2000;100 – 121.
12. Agu RC, Okenchi MU, Aneke G, Onwmelu AH. Short Communication: Brewing properties of Nigerian white and yellow malted sorghum varieties mashed with external enzymes. World Journal of Microbiology & Biotechnology. 1995;11: 591-692.
13. Ogundiwin JO, Tehinse JF. Fermentation tests on malted sorghum wort. Brewing and Distilling International. 1981;8:42-43.
14. Shretha B. Practical biochemistry and biotechnology. SNEMP, Swoyambhu, Kathmandu. 2002;35-40.
15. Veith KN. Evaluation of four sorghum hybrids through the development of gluten-free beer. MSc thesis, Kansas State University, USA; 2007.
16. Teramoto Y, Hano T, Ueda S. Characteristics of a rice beer (zutho) and a yeast isolated from the fermented product in Nagaland, India. World Journal of Microbiology and Biotechnology. 1998; 18:813–816.
17. Henock WW, Hilegebreal AA, Hileyesus RO, Gebrehana GS. Effects of variety and fermentation time on the quality of rice wine. Science, Technology and Arts Research Journal. 2014;3(3):44-47.
18. Adesokan IA, Abiola OP, Ogundiya MO. Influence of ginger on sensory properties and shelf-life of Ogi, a Nigerian traditional fermented food. African Journal of Biotechnology. 2010;9(12):1803-1808.
19. Adesokan IA, Sanni A, Lachance MA. Biochemical and molecular characterization of yeasts isolated from Nigerian traditional fermented food products. African Journal of Microbiology Research. 2020;14(9):481-486.
20. Adesokan IA, Sanni AI, Kanwar SS. In vitro evaluation of probiotic properties of indigenous yeasts isolated from Nigeria fermented food products. Asian Food Science Journal. 2021;20(5):75-85.
21. Yahaya A, Bobai M, Adebayo LR. Production of wine from fermentation of Vitis vinifera (grape) juice using Saccharomyces cerevisiae strain isolated from palm wine. International Journal of Information Research and Review. 2016; 3(10):2834 – 2840.
22. Pakuwal E, Manandhar P. Production of rice based alcoholic beverages and their quality evaluation. Journal of food Science and Technology Nepal. 2020; 12:38-49.
23. Bhuyan DJ, Barooah MS, Bora SS, Singaravelvel K. Biochemical and nutritional analysis of rice beer of North East India. Indian Journal of Traditional Knowledge. 2014;13(1):142–148.

© 2022 Adesokan et al.; This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Peer-review history:
The peer review history for this paper can be accessed here:
https://www.sdiarticle5.com/review-history/74643