Mutation rate of SARS-CoV-2 and emergence of mutators during experimental evolution

Vítor Borges¹*, Maria João Alves²*, Massimo Amicone³*, Joana Isidro¹*, Libia Zé-Zé²,⁴, Sílvia Duarte⁵, Luís Vieira⁵,⁶, Raquel Guiomar⁷, João Paulo Gomes¹*, Isabel Gordo³,⁴

¹Bioinformatics Unit, Department of Infectious Diseases, National Institute of Health Doutor Ricardo Jorge (INSA), Lisbon, Portugal.
²Centre for Vectors and Infectious Diseases Research, Department of Infectious Diseases, National Institute of Health Doutor Ricardo Jorge (INSA), Águas de Moura, Portugal
³Instituto Gulbenkian de Ciência, Oeiras
⁴BioISI - Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, Portugal
⁵Innovation and Technology Unit, Department of Human Genetics, National Institute of Health Doutor Ricardo Jorge (INSA), Lisbon, Portugal.
⁶Centre for Toxicogenomics and Human Health (ToxOmics), Genetics, Oncology and Human Toxicology, Nova Medical School|Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisbon, Portugal.
⁷National Reference Laboratory for Influenza and other Respiratory Viruses, Department of Infectious Diseases, National Institute of Health Doutor Ricardo Jorge (INSA), Lisbon, Portugal.

*These authors contributed equally to this work.

*e-mail: igordo@igc.gulbenkian.pt; j.paulo.gomes@insa.min-saude.pt
Abstract

“How predictable is evolution?” is a key question in evolutionary biology. Experimental evolution has shown that the evolutionary path of microbes can be extraordinarily reproducible. Here, using experimental evolution in two circulating SARS-CoV-2, we estimate its mutation rate and demonstrate the repeatability of its evolution when facing a new cell type but no immune or drug pressures. We estimate a genomic mutation rate of 3.7×10^{-6} nt$^{-1}$ cycle$^{-1}$ for a lineage of SARS-CoV-2 with the originally described spike protein (CoV-2-D) and of 2.9×10^{-6} nt$^{-1}$ cycle$^{-1}$ for a lineage carrying the D614G mutation that has spread worldwide (CoV-2-G). We further show that mutation accumulation is heterogeneous along the genome, with the spike gene accumulating mutations at a mean rate 16×10^{-6} nt$^{-1}$ per infection cycle across backgrounds, five-fold higher than the genomic average. We observe the emergence of mutators in the CoV-2-G background, likely linked to mutations in the RNA-dependent RNA polymerase and/or in the error-correcting exonuclease protein. Despite strong bottlenecks, several de novo mutations spread to high frequencies by selection and considerable convergent evolution in spike occurs. These results demonstrate the high adaptive potential of SARS-CoV-2 during the first stages of cell infection in the absence of immune surveillance.

Introduction

Mutation is the principal process driving the origin of genetic diversity. The genomic mutation rate and spectrum are fundamental parameters to understand how predictable molecular evolution can be. It is also important to determine how natural selection fixes or purges new variants from natural populations. While the genomic mutation rate per cell per generation is close to a constant for DNA based microbes (Drake, 1991), for RNA viruses there is a remarkable variation (Drake, 1993; Drake et al., 1998). Mutation rates, expressed as nucleotide substitutions per site per cell infection (s/n/c), vary between 10^{-6} to 10^{-3} for the several positive ssRNA viruses which have been studied (Sanjuán et al., 2010). However, the mutation rate of the human beta-coronavirus SARS-CoV-2, which is the cause of the COVID-19 pandemic (Zhu et al., 2020), is currently unknown (Bar-On et al., 2020). This rate is critical for accurate inferences of SARS-CoV-2 demographic history (van Dorp et al., 2020) and potential molecular adaptations (Lässig et al., 2017), as it strives in the human population.
Microbial populations that evolve and adapt to novel environments under strong selection pressures typically show a pattern of evolutionary convergence (Bull et al., 1997; Tenaillon et al., 2012). Laboratory mutation accumulation experiments combined with high-throughput sequencing are one of the best methods to estimate mutation rates, determine how they vary along the genome (Lynch et al., 2016) and study the extent to which convergent evolution occurs (Bull et al., 1997). With an experimental evolution design where sequential propagation of the SARS-CoV-2 virus occurs under strong bottlenecks and at low multiplicity of infection (MOI), the intensity of selection is minimized (Chao, 1990; Duarte et al., 1992). Thus, most mutations observed reflect the rate at which they originate more closely than the ones observed under the complex selective pressures that may ensue in a real host infection. Using experimental evolution of SARS-CoV-2 propagated under relatively benign conditions, the spectrum of emergence of non-lethal mutations can be estimated. Such information is necessary to close a critical knowledge gap in the basic biology of this virus and quantify how predictable its evolution can be. It may also help determining some potential genomic constraints of the virus, which are key to the design of evolution proof vaccines and antiviral drugs.

Here we perform experimental evolution in two natural isolates of SARS-CoV-2 (Borges et al., 2020). We estimate SARS-CoV-2 genomic mutation rate and the extent to which it varies along the genome, via whole genome sequencing.

Results and Discussion

Two SARS-CoV-2 viruses were isolated from two non-related patients (see Materials and Methods) for continuous propagation in Vero cells. The viruses were chosen according to their polymorphism at amino acid position 614 of the spike protein: CoV-2-D carries a D (belonging to Nextstrain clade 19A) in this position and CoV-2-G (belonging to Nextstrain clade 20B) carries a derived mutation which changes this amino-acid to a G. D614G in spike emerged early in the pandemic, increased the infectivity of the virus and became prevalent worldwide (Korber et al., 2020). The rational of the design of the experimental evolution propagations (Fig. 1a) was motivated by the estimates of the mutation rate for the beta-coronavirus mouse hepatitis virus (MHV). For MHV the rate is about 3.5×10^{-6} nt$^{-1}$ cycle$^{-1}$ and an average number of virions produced by a single infected cell of the order of 1000 has been estimated (Bar-On et al., 2020, p.; Sanjuán et al., 2010). With a MOI of 1:10, i.e. 2000 virus for
2x10^4 cells at each passage, a 24h passage corresponds to ~1 infection cycle. Thus, 15 passages of 2x96 experimental evolution populations should lead to the emergence of hundreds of mutations.

The two clinical isolates Portugal/PT0054/2020 and Portugal/PT1136/2020 were used to produce the ancestors of the experimental evolution, CoV-2-D and CoV-2-G, which seeded the two mutation accumulation experiments. The clinical isolates and the corresponding ancestors were sequenced using Illumina technology at a high depth of coverage (mean = 4835x) and mapped to the Wuhan-Hu-1/2019 reference genome sequence (Wu et al., 2020). The clinical isolate Portugal/PT1136/2020 and ancestral (CoV-2-G) viral populations share eight fixed or nearly fixed nucleotide changes: C241T (5' UTR); C3037T (orf1ab); C14408T (orf1ab); C19041T (orf1ab); A23403G (S gene), which causes the D614G replacement in spike protein; and, the 20B clade-defining triplet mutation GGG to AAC in genome positions 28881-3 (NGene) (Fig. 1b). Another mutation present at lower frequency was also shared and 10 mutations unique to the CoV-2-G were detected (Fig. 1b). The clinical isolate Portugal/PT0054/2020 and the ancestral CoV-2-D share the fixed mutation G1440A (orf1ab) and the mutation G2891A (orf1ab), which is at high frequency in both populations (98% and 73% in the clinical and ancestral populations, respectively), and two other mutations (T9843A and C12921T; orf1ab) at lower frequencies. CoV-2-D ancestral line carried 10 other minor frequency mutations not shared with those of the clinical isolate (Fig. 1b).

Propagation of the 96 CoV-2-D derived lines resulted in the accumulation of 1753 de novo mutations that reached a frequency of at least 1%, supported by a minimum of 10 reads (Supplementary Table 1). We assume these to be de novo mutations accumulated during the propagations, as they were not detected in either the ancestor or the original clinical isolate from which the ancestor was derived. Of these de novo mutations, 415 were synonymous, 971 were non-synonymous SNPs, 367 were other events (e.g., frameshift SNP, indels, etc) (Supplementary Table 1). From all the mutations accumulated in the 96 lines, and the frequencies at which they are observed at passage 15, we estimate a mutation rate of 0.11 per genome per infection cycle, corresponding to a rate of 3.7x10^-6 nt^1 cycle^-1 for CoV-2-D. The estimates of mutation rate from the mutations accumulated in each lineage propagated are shown in Fig. 2a.
The propagation of the 96 lines derived from CoV-2-G resulted in 6181 de novo mutations (n=94 as in 2 lines the sequencing had poor coverage). Of these 724 were synonymous, 4313 were non-synonymous SNPs and 1144 were other events (e.g., frameshift SNP, indels, etc) (Supplementary Table 1). The much higher number of mutations in the lines of CoV-2-G, compared to CoV-2-D, was due to the emergence of mutator virus in some of the lines (see below). These mutator lines had a median of number of de novo mutations of 30 (IQR=28-34), when compared with 19 (IQR=16-22) observed for non-mutators. Excluding those lines (n=15) led us to an estimate of the mutations rate of 2.9x10^-6 nt^-1 cycle^-1 for the lineage CoV-2-G (Fig. 2a). Interestingly the rate for lineages CoV-2-G is slightly but significantly lower than that of lineages CoV-2-D (P<10^-7, T-test) (Fig. 2a). Assuming that all mutations accumulated are neutral, this difference could indicate a reduction in the rate of mutation for the CoV-2-G viral background. However, if selection is acting on some of the mutations (see below), then the differences may just reflect differences in selective pressures in the two viral backgrounds.

Both genomic backgrounds show a strong mutation bias of C>T, a well-known bias of SARS-CoV-2(Matyášek and Kovařík, 2020; Rice et al., 2021) (Fig. 2b). A lower rate than expected was observed for C>G and G>C mutations. Interestingly, in the lines that evolved mutators the mutation bias changed from C>T to G>T (Fig. 2b). The genetic cause of the mutator phenotype is difficult to determine but it could likely be hidden within the mutations that occurred in the nsp12 RNA-dependent RNA polymerase and/or its nsp14. Indeed, we find 8 non-synonymous mutations in nsp12, one leading to a stop at amino-acid 670, that are specific to the lineages with mutators (Supplementary Table 2), and 9 non-synonymous mutations specific to the mutators in the error-correcting exonuclease protein - nsp14 (one mutation leading to a stop at amino acid 78) (Supplementary Table 3). Any of these mutations could potentially lead to the observed change in mutation rate, but none of these mutations are similar to those that have been associated with an increased mutational load of the circulating viruses(Eskier et al., 2020). Thus the in vitro and in natura results suggest that many changes in either nsp12 or nsp14 could cause the genomic mutation rate of SARS-CoV-2 to increase.

Heterogeneity of the mutation rate can occur across the genome of SARS-CoV-2, irrespectively of the emergence of mutators. Such heterogeneity can be caused solely by variation in mutation rate, due to the mutation bias (Fig. 2b), and/or it can arise due to selection acting on some gene but not in others(Sasaki et al., 2021). The distribution of allele frequencies
in a sample, *i.e.* the site frequency spectrum, has a well-known theoretical expectation under a simple equilibrium neutral model of molecular evolution (Chap. 5 pg. 233 of (Charlesworth and Charlesworth, 2010)). This distribution is sensitive to the action of selection and also to complex demographic events, such as population bottlenecks. Given the strong bottlenecks occurring in the experimental evolution setup (Fig. 1a) and the slow evolutionary time elapsed during the 15 infection cycles, the simple equilibrium neutral theoretical expectation may not apply. To obtain a non-equilibrium expectation of the frequency spectrum of mutations, we performed forward-simulations to model the acquisition of neutral mutations at a rate 3.3×10^{-6} nt$^{-1}$ cycle$^{-1}$, as inferred from the data obtained. We observe that the site frequency spectrum of the mutations detected on the evolved lines of CoV-2-D or CoV-2-G deviates significantly from that expected from simulated population genetics neutral model of this type of viral propagations (Fig. 3a). Under neutrality the bump in the distribution of mutations for the higher frequencies is not expected to occur. Furthermore, and to account for some contamination that can occur when the lines were propagated, and/or during the sequencing process, we performed another set of simulations where migration is allowed to occur during the passages. We find that even when considering a contamination level of 10% (migration rate $m=0.1$), the neutral site frequency spectrum is still incompatible with the experimental data (Fig. 3b). This strongly suggests that selection may have shaped the frequency dynamics of the mutations that were detected, despite the strong bottlenecks that were used in the propagations (see Supplementary Fig. S2 showing the mutations that reached the highest frequencies). We also analyzed how migration would affect our estimation of the mutation rate. We observed that 10% of between well contamination can cause a slight overestimation of the mutation rate, but within the 95%CI of our initial estimate (Fig. 3b and 2a).

Our experiment was designed to minimize selection on the virus (Chao, 1990), however several other patterns indicate that selection played a significant role. Firstly, considerable variation in the rate of mutation accumulation is observed across the genome (Fig. 4a-c, Supplementary Fig. S1). When comparing the mutation rates across the different gene regions in the CoV-2-D background, we find that the S gene, coding for the spike protein, has the highest rate of mutation accumulation. Even excluding spike, there is significant rate variation across the genes (χ^2 = 238.09, df = 7, p-value $< 10^{-16}$) (Fig. 4). In the CoV-2-G background, we again find that the S gene has the highest rate of mutation accumulation (Fig. 4a-c), when excluding the lines with mutators. Remarkably, the mutation rate estimated for the spike gene was 17.1×10^{-6} (95% CI 16.1×10^{-6}, 18.1×10^{-6}) for the background CoV-2-D. This
rate is 4.6 times the genome average suggesting the action of selection in these lines despite the strong bottlenecks in the experiment. The rate for spike for CoV-2-G was 15.5x10^{-6} (95% CI 14.5x10^{-6}, 16.5x10^{-6}), considering lines with both mutator and non-mutator viruses. This is significantly different from that estimated for the CoV-2-D background (P=0.024, T-test).

When excluding the mutator lines, that only were detected when evolving the CoV-2-G background, the rate of mutation accumulation in spike is 13.5x10^{-6} (95% CI 13.1x10^{-6}, 13.9x10^{-6}) significantly lower than that for background CoV-2-D (P<10^{-7}, T-test).

Indeed, the spike gene evolved ~2 times faster in the mutator lines than the non-mutators (Fig. 4c, Supplementary Fig. S1). Secondly, the accumulation of non-synonymous vs synonymous SNPs was also indicative of selection in some coding regions. We find that spike accumulated the highest number of non-synonymous mutations in both genetic backgrounds and showed a ratio of non-synonymous to synonymous mutations well above 1, 14 for CoV-2-D and 22 for the CoV-2-G background (Supplementary Fig. S3 and Supplementary Table 4). This further shows that natural selection shaped the evolution of the spike when the virus propagates in cells.

One important signature of selection is the level of genetic convergence across independent populations evolving in the same environment. We quantified the level of convergence at the nucleotide and amino levels between CoV-2-D and CoV-2-G. Convergence between the two backgrounds reflects true independent origin of the mutations, as the lines of each background were propagated and processed for sequencing independently. In contrast, convergence within replicates of the same background can result from the same mutation originating independently or from migration due to some possible cross-contamination. Conditioning on the same mutation occurring across backgrounds, we find that for spike, 17 sites and 3 small regions out of its 3822 nucleotides show evolutionary convergence (Fig. 4d). At the amino level 20 specific sites and 3 regions were hit independently (Fig. 4d, Supplementary Table 5) Consistent with previous reports(Sasaki et al., 2021) we find high evolutionary convergence at the S1/S2 cleavage site: three distinct deletions (675-QTQTN-679 del; 679-NSPRRAR-685 del and 679-NSPRRARSVA-688 delTNSPRRARSVA678-688T, emerge multiple times in both backgrounds. Such changes have been previously shown to emerge rapidly in Vero cells and to be important for the virus cell tropism(Sasaki et al., 2021). Apart from these deletions, mutations in 682 site were also highly convergent, most likely because they trigger a similar functional effect, i.e., knock out of the furin cleavage site(Liu et al., 2020). Notably, another deletion in this region (678-TNSPRRARS-686 del) was frequently observed, still it was
exclusive of CoV-2-D lines \((n=58)\), suggesting that the conformation changes mediated by Spike D614G may influence the directionality of the evolution towards the knock out of the furin-cleavage site\((\text{Gobeil et al., 2021})\).

Evolutionary convergence could also be found for the structural genes N, E and M \((\text{Supplementary Table 6})\). The convergence was however not as high as it was for the S gene: 3 cases of convergence at the nucleotide level for N, leading to the P13L, T379I amino acid changes and a stop at Q418; 6 cases of convergence at the nucleotide level for E, leading to the T9I, L19F, V24M, T30I, L37F and S68F amino acid changes; 2 cases for the gene M, one of which leading to the H125Y amino acid change. The cases of convergence suggest that adaptation could also have occurred in these genes.

The observed emergence of mutators in the CoV-2-G background \((\text{Fig. 2a})\) is worrisome as despite these being found at low frequency \((-1-2\% \text{ after 15 infection cycles})\), they carry many mutations in the spike protein including in the receptor binding domain \(-\text{RBD} \) (amino acid changes at positions 328, 339, 364, 416, 454, 465, 474, 479, 482, 522 and 524) and multi cleavage site regions (positions 798 and 799) \((\text{Supplementary Table 1})\). We did not observe any mutation causing either a N501Y or a E484K change, which are mutations of concern due to the fitness advantages they confer to SARS-CoV-2 as it infects the human population. However, we do find changes in amino-acids 80 and 215 that are mutated in the South African variant, in 190 and 655\((\text{Makoni, 2021})\), mutated in the P1 variant originated in Brazil and the D253G found in an emerging lineage of viral isolates in the New York region \((\text{Fig 4e})\). The emergence of mutators also shows that the genomic mutation rate of SARS-CoV-2 can increase without significant loss of viability, at least in the short run. This implies that strategies to reduce viral fitness using mutagens should be tested with great precaution\((\text{Jensen et al., 2020; Jensen and Lynch, 2020})\).

The SARS-CoV-2 betacoronavirus, first observed in the Wuhan province of China\((\text{Zhu et al., 2020})\) has infected at least 111 million people causing more than a 2 million toll of deaths in the human population \((\text{as of February 2021})\). Since it was first sequenced\((\text{Wu et al., 2020})\) the virus has been accumulating 0.44 substitutions per week at close to linear rate. Here we estimate that its rate of spontaneous mutation is 0.1 per genome per cell infection and that viruses with an increased genomic mutation rate can emerge within 15 days of its propagation in cells. Despite the bottlenecks at each passage, new beneficial mutations in spike did spread
to high frequencies and considerable convergent evolution was detected across different
genomic backgrounds. Overall the results show the remarkable ability of SARS-CoV-2
adaptation to new environments in particular via convergent evolution of its spike protein in
cells and is fully consistent to its rapid adaptation to different hosts (Gu et al., 2020; Tegally et
al., 2020).

Materials and Methods

Virus growth and in vitro assay
Vero E6 (african green monkey, *Cercopithecus aethiops* kidney epithelial cells, ATCC® CRL
1586™) cells were cultured at 37°C and 5% CO₂ in Minimum Essential Medium (MEM 1X,
Gibco®) supplemented with 10% foetal bovine serum (FBS), penicillin (100 units/ml) and
streptomycin (100 µg/ml) + fungizone. All work with infectious SARS-CoV-2 strains
Portugal/PT0054/2020 and Portugal/PT1136/2020, isolated by the National Institute of Health
Doutor Ricardo Jorge (INSA), was done inside a class III microbiological safety cabinet in a
containment level 3 facility at the Centre for Vectors and Infectious Diseases Research (INSA).
A SARS-CoV-2 stock was produced by infecting Vero E6 cells (freshly grown for 24h) and
incubating the cells for 72 h. The culture supernatant was stored in aliquots at -80°C. The
TCID₅₀ of viral stock was calculated according to the method of Reed and Muench (Reed and
Muench, 1938).
The *in vitro* assay was developed for 15 consecutive days in 96-well plates, one for each SARS-
CoV-2 strain in study. Two 96-well plates fully inoculated with 50 µl of Vero E6 cells (2.0x10⁴
cells) grown for 24h were infected with 50 µl of SARS-CoV-2 strains Portugal/PT0054/2020
and Portugal/PT1136/2020 viral suspension ((2.0x10³ viruses) at a multiplicity of infection
(MOI) of 0.1. MEM supplemented with 10% FBS, penicillin (100 units/ml) and streptomycin
(100 µg/ml) + fungizone was added to each well (50 µl) and the plates were incubated for 24
h. Each well had a final volume of 150 µl. During 15 days, with 24 h intervals serial passages
of each of the 96 previous day inoculation well were done into a new 96-well plate, using the
same procedure (MOI, Vero E6 cells, volumes and concentration) and incubated in the same
conditions. At day 15, total nucleic acids were extracted from 100 µl of viral suspension of
each well in each plate (96 samples of the day 15th of serial passages of SARS-CoV-2 strain
Portugal/PT0054/2020 and 96 samples of the day 15th of serial passages of SARS-CoV-2 strain
Portugal/PT1136/2020) using the automated platform NUCLISENS easyMAG (Biomérieux).
Confirmation of nucleic acid integrity and rough concentration estimative was made before sequencing experiment by RT-qPCR of 8 random chosen samples from each plate at day 15 (CoV-2-D and CoV-2-G) using Novel Coronavirus (2019-nCoV) RT-PCR Detection Kit (Fosun Diagnostics). Samples from inoculation suspension (day 1) were also analyzed. All samples presented values of 7-10 Ct (Cycle threshold).

SARS-CoV-2 genome sequencing and bioinformatics analysis

Genome sequencing was performed at INSA following an amplicon-based whole-genome amplification strategy using tiled, multiplexed primers (Quick et al., 2017), according to the ARTIC network protocol (https://artic.network/ncov-2019; https://www.protocols.io/view/ncov-2019-sequencing-protocol-bbmuik6w) with slight modifications, as previously described (Borges et al., 2020). Briefly, after cDNA synthesis, whole-genome amplification was performed using two separate pools of tiling primers [pools 1 and 2; primers version V3 (218 primers) was used for all samples: https://github.com/artic-network/artic-ncov2019/tree/master/primer_schemes/nCoV-2019]. The two pools of multiplexed amplicons were then pooled for each sample, followed by post PCR clean-up and Nextera XT dual-indexed library preparation, according to the manufacturers' instructions. Sequencing libraries were paired-end sequenced (2x150bp) on an Illumina NextSeq 550 apparatus, as previously described (Borges et al., 2018). Sequence read quality analysis and mapping was conducted using the bioinformatics pipeline implemented in INSaFLU (https://insaflu.insa.pt; https://github.com/INSaFLU; https://insaflu.readthedocs.io/en/latest/) as of 10 March 2021, which is a web-based (and also locally installable) platform for amplicon-based next-generation sequencing data analysis (Borges et al., 2018). Briefly, we performed raw reads quality analysis using FastQC v0.11.9 (https://www.bioinformatics.babraham.ac.uk/projects/fastqc), followed by quality improvement using Trimmomatic v.0.27 (http://www.usadellab.org/cms/index.php?page=trimmomatic; HEADCROP:30 CROP:90 SLIDINGWINDOW:5:20 LEADING:3 TRAILING:3 MINLEN:35 TOPHRED33) (Bolger et al., 2014), with reads being conservatively cropped 30bp at both ends for primer clipping. Reference-based mapping was performed against the Wuhan-Hu-1/2019 reference genome sequence (https://www.ncbi.nlm.nih.gov/nuccore/MN908947.3; NC_045512.2) (Wu et al., 2020) using the Burrow-Wheeler Aligner (BWA_MEM) v.0.7.12 (r1039) (http://bio-bwa.sourceforge.net/) (Li and Durbin, 2009) integrated in multisoftware tool Snippy (https://github.com/tseemann/snippy) available in INSaFLU. The obtained median depth of
coverage throughout the genome for CoV-2-D and CoV-2-G samples (except two samples excluded due to low coverage) was 4807 (IQR=3969-5242) and 5154 (IQR=4802-5439), respectively. Variant (SNP/indels) calling was performed over BAM files using LoFreq v.2.1.5 (call mode, including --call-indels)(Wilm et al., 2012), with indel qualities being assessed using Dindel(Albers et al., 2011). Mutation frequency analysis was dynamic and contingent on the depth of coverage of each processed site, e.g, minor mutations at “allele” frequencies of 10%, 2% and 1% (minimum cut-off used) were validated for sites with depth of coverage of at least 100-fold, 500-fold and 1000-fold, respectively. The median depth coverage per site for all validated mutations in CoV-2-D and CoV-2-G samples was 4219 (IQR=2508-6649) and 6424 (IQR=3076-10104), respectively. In order to assess if proximal SNPs and/or indels belong to the same mutational event (and thus, avoid overestimating the mutation rate), we identified all consecutive mutations separated by ≤12 bp. The mutations more likely to represent a single mutation event, i.e., those with similar frequencies (differing by ≤ 2.5%), were further visually inspected using IGV (http://software.broadinstitute.org/software/igv/) to confirm/exclude their co-localization in the same reads. In total, this curation led to the identification 37 SNPs/indels that were collapsed into 13 complex or multi-nucleotide polymorphisms (MNP). The effect of mutations on genes and predicted protein sequences was determined using Ensembl Variant Effect Predictor (VEP) version 103.1 (https://github.com/Ensembl/ensembl-vep; available as a self-contained Docker image)(McLaren et al., 2016). To obtain a refined annotation including all ORF1ab sub-peptides, the GFF3 genome annotation file (relative to the reference Wuhan-Hu-1/2019 genome of SARS-CoV-2, acc. no. NC_045512.2) available in the coronapp COVID-19 genome annotator (http://giorgilab.unibo.it/coronannotator/) (Mercatelli et al., 2020) was adapted to generate an annotation GTF file for input for the --gtf parameter. The parameter --distance was set to 0. Supplementary Table 1 summarizes all mutations detected in this study and their distribution across clinical, ancestral cultures and end-point cultured lines (15th passage). SARS-CoV-2 consensus sequences obtained directly from clinical samples for CoV-2-D (Portugal/PT0054/2020) and CoV-2-G (Portugal/PT1136/2020) viruses are available in GISAID under the accession numbers EPI_ISL_421457 and EPI_ISL_511683, respectively. Reads generated at the end of the experimental evolution study were deposited in the European Nucleotide Archive (ENA) (https://www.ebi.ac.uk/ena/data/view/PRJEB43731).

Simulations of the neutral mutation accumulation

To obtain a non-equilibrium neutral expectation of the frequency spectrum of mutations, we performed forward-simulations to model mutation accumulation using the mutation rate
inferred from the experiment. We model a virus with a genome of size \(L = 30000 \) (\(\sim \) SARS-CoV-2) and a bi-allelic model per site is assumed. An initially isogenic population undergoes 15 cycles of growth, mutation and bottleneck (as in the experiment) under a neutral model. The viral life cycle assumed is as follows:

1. A clonal population starts with an inoculum size of 2000 viral particles.
2. To simulate the replication that occurs within a cell, each viral genome replicates \(X \) times, where \(X \) is the burst size. We assume an average burst size of 1000 and assume \(X \) to be Poisson distributed.
3. For each of the replicating genomes we introduce a Poisson number of mutations with mean 0.1 (corresponding to a rate of \(3.3 \times 10^{-6} \text{ nt}^{-1} \text{ cycle}^{-1} \), similar to what we inferred from the data). We assume mutations to emerge with uniform probability in the parental genome and we allow for back-mutation. The total population size after replication is on average \(2 \times 10^6 \), implying that an average of \(2 \times 10^5 \) mutations emerge every generation.
4. After replication and mutation, the population undergoes 1:1000 dilution (bottleneck) as in the experiment.
5. Repeat steps 2-4, 15 times for 100 independent populations.

We validated the simulation code by confirming expected outcomes: mutations accumulate linearly over time and the posterior estimation of the mutation rate retrieves the original value (right plot in Fig. 3b).

After 15 cycles we collect the artificial genomes from 100 independent simulations, and compute the simulated site frequency spectrum as in the experiment. Neutral processes do not explain the high frequency mutations in the observed distribution (Fig. 3a). In order to test whether cross-well contamination could justify the right tail of the site frequency distribution, we modified the previous algorithm by introducing migration. At each cycle \(t \), after each bottleneck event, a fraction of viral genomes (\(m = 0.1 \)) is replaced by migrants sampled from a pool of genomes that have undergone \(t \) cycles of growth. The process of migration under neutrality can lead to an overestimation of the mutation rate but cannot not explain mutations at high frequency (Fig. 3). The algorithm was written in R (version 3.6.1) and the results analyzed in RStudio.

Data and materials availability
SARS-CoV-2 consensus genome sequences obtained directly from clinical samples for CoV-2-D (Portugal/PT0054/2020) and CoV-2-G (Portugal/PT1136/2020) viruses are available in GISAID under the accession numbers EPI_ISL_421457 and EPI_ISL_511683, respectively. Reads generated throughout the experimental evolution in this study were deposited in the European Nucleotide Archive (ENA) (https://www.ebi.ac.uk/ena/data/view/PRJEB43731). The code for the neutral model was deposited on github/AmiconeM/neutralviralpassage.

References

Albers, C.A., Lunter, G., MacArthur, D.G., McVean, G., Ouwehand, W.H., Durbin, R., 2011. Dindel: accurate indel calls from short-read data. Genome Res 21, 961–973. https://doi.org/10.1101/gr.112326.110

Bar-On, Y.M., Flamholz, A., Phillips, R., Milo, R., 2020. SARS-CoV-2 (COVID-19) by the numbers. Elife 9. https://doi.org/10.7554/eLife.57309

Bolger, A.M., Lohse, M., Usadel, B., 2014. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120. https://doi.org/10.1093/bioinformatics/btu170

Borges, V., Isidro, J., Cortes-Martins, H., Duarte, S., Vieira, L., Leite, R., Gordo, I., Caetano, C.P., Nunes, B., Sá, R., Oliveira, A., Guiomar, R., Portuguese network for SARS-CoV-2 genomics, Gomes, J.P., 2020. Massive dissemination of a SARS-CoV-2 Spike Y839 variant in Portugal. Emerg Microbes Infect 9, 2488–2496. https://doi.org/10.1080/22221751.2020.1844552

Borges, V., Pinheiro, M., Pechirra, P., Guiomar, R., Gomes, J.P., 2018. INSaFLU: an automated open web-based bioinformatics suite “from-reads” for influenza whole-genome-sequencing-based surveillance. Genome Med 10, 46. https://doi.org/10.1186/s13073-018-0555-0

Bull, J.J., Badgett, M.R., Wichman, H.A., Huelsenbeck, J.P., Hillis, D.M., Gulati, A., Ho, C., Molineux, I.J., 1997. Exceptional convergent evolution in a virus. Genetics 147, 1497–1507.

Chao, L., 1990. Fitness of RNA virus decreased by Muller’s ratchet. Nature 348, 454–455. https://doi.org/10.1038/348454a0

Charlesworth, B., Charlesworth, D., 2010. Elements of evolutionary genetics. Roberts and Co. Publishers, Greenwood Village, Colo.

Drake, J.W., 1993. Rates of spontaneous mutation among RNA viruses. Proc Natl Acad Sci U S A 90, 4171–4175. https://doi.org/10.1073/pnas.90.9.4171

Drake, J.W., 1991. A constant rate of spontaneous mutation in DNA-based microbes. Proc Natl Acad Sci U S A 88, 7160–7164. https://doi.org/10.1073/pnas.88.16.7160

Drake, J.W., Charlesworth, B., Charlesworth, D., Crow, J.F., 1998. Rates of spontaneous mutation. Genetics 148, 1667–1686.
Duarte, E., Clarke, D., Moya, A., Domingo, E., Holland, J., 1992. Rapid fitness losses in mammalian RNA virus clones due to Muller’s ratchet. Proc Natl Acad Sci U S A 89, 6015–6019. https://doi.org/10.1073/pnas.89.13.6015

Eskier, D., Suner, A., Oktay, Y., Karakülah, G., 2020. Mutations of SARS-CoV-2 nsp14 exhibit strong association with increased genome-wide mutation load. PeerJ 8, e10181. https://doi.org/10.7717/peerj.10181

Gobeil, S.M.-C., Janowski, K., McDowell, S., Mansouri, K., Parks, R., Manne, K., Stalls, V., Kopp, M.F., Henderson, R., Edwards, R.J., Haynes, B.F., Acharya, P., 2021. D614G Mutation Alters SARS-CoV-2 Spike Conformation and Enhances Protease Cleavage at the S1/S2 Junction. Cell Reports 34, 108630. https://doi.org/10.1016/j.celrep.2020.108630

Gu, H., Chen, Q., Yang, G., He, L., Fan, H., Deng, Y.-Q., Wang, Y., Teng, Y., Zhao, Z., Cui, Y., Li, Yuchang, Li, X.-F., Li, J., Zhang, N.-N., Yang, Xiaolan, Chen, S., Guo, Y., Zhao, G., Wang, X., Luo, D.-Y., Wang, H., Yang, Xiao, Li, Yan, Han, G., He, Y., Zhou, X., Geng, S., Sheng, X., Jiang, S., Sun, S., Qin, C.-F., Zhou, Y., 2020. Adaptation of SARS-CoV-2 in BALB/c mice for testing vaccine efficacy. Science 369, 1603–1607. https://doi.org/10.1126/science.abc4730

Jensen, J.D., Lynch, M., 2020. Considering mutational meltdown as a potential SARS-CoV-2 treatment strategy. Heredity (Edinb) 124, 619–620. https://doi.org/10.1038/s41437-020-0314-z

Jensen, J.D., Stikeleather, R.A., Kowalik, T.F., Lynch, M., 2020. Imposed mutational meltdown as an antiviral strategy. Evolution 74, 2549–2559. https://doi.org/10.1111/evo.14107

Korber, B., Fischer, W.M., Gnanakaran, S., Yoon, H., Theiler, J., Abfalterer, W., Hengartner, N., Giorgi, E.E., Bhattacharya, T., Foley, B., Hastie, K.M., Parker, M.D., Partridge, D.G., Evans, C.M., Freeman, T.M., de Silva, T.I., Sheffield COVID-19 Genomics Group, McDanal, C., Perez, L.G., Tang, H., Moon-Walker, A., Whelan, S.P., LaBranche, C.C., Saphire, E.O., Montefiori, D.C., 2020. Tracking Changes in SARS-CoV-2 Spike: Evidence that D614G Increases Infectivity of the COVID-19 Virus. Cell 182, 812–827.e19. https://doi.org/10.1016/j.cell.2020.06.043

Lässig, M., Mustonen, V., Walczak, A.M., 2017. Predicting evolution. Nat Ecol Evol 1, 77. https://doi.org/10.1038/s41559-017-0077

Li, H., Durbin, R., 2009. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25, 1754–1760. https://doi.org/10.1093/bioinformatics/btp324

Liu, Z., Zheng, H., Lin, H., Li, M., Yuan, R., Peng, J., Xiong, Q., Sun, J., Li, B., Wu, J., Yi, L., Peng, X., Zhang, H., Zhang, W., Hulswit, R.J.G., Loman, N., Rambaut, A., Ke, C., Bowden, T.A., Pybus, O.G., Lu, J., 2020. Identification of Common Deletions in the Spike Protein of Severe Acute Respiratory Syndrome Coronavirus 2. J Virol 94. https://doi.org/10.1128/JVI.00790-20

Lynch, M., Ackerman, M.S., Gout, J.-F., Long, H., Sung, W., Thomas, W.K., Foster, P.L., 2016. Genetic drift, selection and the evolution of the mutation rate. Nat Rev Genet 17, 704–714. https://doi.org/10.1038/nrg.2016.104

Makoni, M., 2021. South Africa responds to new SARS-CoV-2 variant. Lancet 397, 267. https://doi.org/10.1016/S0140-6736(21)00144-6

Matyášek, R., Kovářík, A., 2020. Mutation Patterns of Human SARS-CoV-2 and Bat RaTG13 Coronavirus Genomes Are Strongly Biased Towards C>U Transitions, Indicating Rapid Evolution in Their Hosts. Genes (Basel) 11. https://doi.org/10.3390/genes11070761
McLaren, W., Gil, L., Hunt, S.E., Riat, H.S., Ritchie, G.R.S., Thomann, A., Flicek, P., Cunningham, F., 2016. The Ensembl Variant Effect Predictor. Genome Biol 17, 122. https://doi.org/10.1186/s13059-016-0974-4

Mercatelli, D., Triboli, L., Fornasari, E., Ray, F., Giorgi, F.M., 2020. Coronapp: A web application to annotate and monitor SARS-CoV-2 mutations. J Med Virol jmv.26678. https://doi.org/10.1002/jmv.26678

Quick, J., Grubaugh, N.D., Pullan, S.T., Claro, I.M., Smith, A.D., Gangavarapu, K., Oliveira, G., Robles-Sikisaka, R., Rogers, T.F., Beutler, N.A., Burton, D.R., Lewis-Ximenez, L.L., de Jesus, J.G., Giovanetti, M., Hall, W.W., Orba, Y., Sawa, H., 2021. SARS-CoV-2 variants with mutations at the S1/S2 cleavage site are generated in vitro during propagation in TMPRSS2-deficient cells. PLoS Pathog 17, e1009233. https://doi.org/10.1371/journal.ppat.1009233

Tegally, H., Wilkinson, E., Giovanetti, M., Irazadeh, A., Fonseca, V., Giandhari, J., Doolabh, D., Pillay, S., San, E.J., Msomi, N., Mlisana, K., van Gottberg, A., Walaza, S., Allam, M., Ismail, A., Mohale, T., Glass, A.J., Engelbrecht, S., Van Zyl, G., Preiser, W., Petruccione, F., Sigal, A., Hardie, D., Marais, G., Hsiao, M., Korsman, S., Davies, M.-A., Tyers, L., Mudau, I., York, D., Maslo, C., Goedhals, D., Abrahams, S., Laguda-Akingba, O., Alisoltani-Dehkordi, A., Godzik, A., Wibmer, C.K., Sewell, B.T., Lourenço, J., Alcantara, L.C.J., Pond, S.L.K., Weaver, S., Martin, D., Lessells, R.J., Bhiman, J.N., Williamson, C., de Oliveira, T., 2020. Emergence and rapid spread of a new severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) lineage with multiple spike mutations in South Africa (preprint). Epidemiology. https://doi.org/10.1101/2020.12.21.20248640

Tenaillon, O., Rodriguez-Verdugo, A., Gaut, R.L., McDonald, P., Bennett, A.F., Long, A.D., Gaut, B.S., 2012. The molecular diversity of adaptive convergence. Science 335, 457–461. https://doi.org/10.1126/science.1212986

van Dorp, L., Richard, D., Tan, C.C.S., Shaw, L.P., Acman, M., Balloux, F., 2020. No evidence for increased transmissibility from recurrent mutations in SARS-CoV-2. Nat Commun 11, 5986. https://doi.org/10.1038/s41467-020-19818-2

Wilm, A., Aw, P.P.K., Bertrand, D., Yeo, G.H.T., Ong, S.H., Wong, C.H., Khor, C.C., Petric, R., Hibberd, M.L., Nagarajan, N., 2012. LoFreq: a sequence-quality aware, ultra-sensitive variant caller for uncovering cell-population heterogeneity from high-throughput sequencing datasets. Nucleic Acids Res 40, 11189–11201. https://doi.org/10.1093/nar/gks918
Wu, F., Zhao, S., Yu, B., Chen, Y.-M., Wang, W., Song, Z.-G., Hu, Y., Tao, Z.-W., Tian, J.-H., Pei, Y.-Y., Yuan, M.-L., Zhang, Y.-L., Dai, F.-H., Liu, Y., Wang, Q.-M., Zheng, J.-J., Xu, L., Holmes, E.C., Zhang, Y.-Z., 2020. A new coronavirus associated with human respiratory disease in China. Nature 579, 265–269. https://doi.org/10.1038/s41586-020-2008-3

Zhu, N., Zhang, D., Wang, W., Li, X., Yang, B., Song, J., Zhao, X., Huang, B., Shi, W., Lu, R., Niu, P., Zhan, F., Ma, X., Wang, D., Xu, W., Wu, G., Gao, G.F., Tan, W., China Novel Coronavirus Investigating and Research Team, 2020. A Novel Coronavirus from Patients with Pneumonia in China, 2019. N Engl J Med 382, 727–733. https://doi.org/10.1056/NEJMoa2001017
Fig. 1| Experimental evolution design and ancestor backgrounds. a, Schematic of the experimental design of the mutation accumulation experiments where two viral backgrounds were propagated in Vero cells (created with BioRender.com). b, Mutations and their frequencies in the clinical isolates and their corresponding derived ancestors for the propagations. For the sake of figure simplicity, the complex mutations indicated in the figure with an asterisk correspond to: 8869-75_TTTGCCT>CAAAC; 17543-26_TGTTCCTCGGAACT>AGTTCCGAGGAACA; 25314-17_GATC>TATG; 26714-23_TTTTGTGCTT>---GTTGTAC;
Fig. 2 | Mutation rate per genome per infection cycle of SARS-CoV-2. Mutation rate estimate (U) of Sars-CoV-2 was calculated from the number of mutations accumulated (M) and their frequency (f) as: $U = \frac{\sum M f}{P \times G}$, where P is the number of passages ($P=15$) and G is the genome size ($G = 29903$).

(a) Distribution of U for the lines derived from the genomic background CoV-2-D (background 19A), which give rise to an estimated $U=3.70 \times 10^{-6}$ (+ 0.11 $\times 10^{-6}$, s.e.m., gray dashed line) and for the lines derived from the genomic background CoV-2-G (background 20B). Some of CoV-2-G lines evolved an elevated mutation rate and thus have mutator viruses.

From the lines that did not evolve mutator clones an estimated $U=2.9 \times 10^{-6}$ (+ 0.12 $\times 10^{-6}$, s.e.m., red dashed lines) can be derived. The non-mutator lines of CoV-2-D (background 19A) have a higher mutation rate than those of CoV-2-G.

(b) Fraction of substitutions observed in CoV-2-D and CoV-2-G. Dots indicated the expectation given the genome composition under equal mutation probability for each type of nucleotide change.
Fig. 3 Site frequency spectrum of the mutations observed after 15 infection cycles.

a, The observed site frequency spectrum after 15 cycles of propagation, for CoV-2-D and CoV-2G, and the site frequency spectrum predicted under a neutral model of mutation accumulation. The bump observed at high frequencies in the data is not compatible with the expectation of a neutral model. **b,** The neutral site frequency spectrum expected under 10% cross contamination (m=0.1) between wells at each infection cycle and its effect for estimation of mutation rate. The dashed line represents the simulated U while the continuous lines represent the average estimated U.
Fig. 4 Heterogeneity of mutation rates across genes and selection on spike.

a, b, c, Mutation rates across the different gene regions for CoV-2-D and CoV-2-G. Mutation rate estimates were calculated from the number of mutations accumulated and their frequency.

d, Mutation rate of the spike (U_s) for the lines derived from the genomic background CoV-2-D gives rise to an estimated $U_s=17.1 \times 10^{-6}$ (± 1.2 x 10^{-6}, s.e.m.), ~5 times higher than the genomic average.

e, Evidence for selection on the spike gene at the level of nucleotide site and amino-acid. Selection can be inferred by the level of convergent evolution observed across the two genomic backgrounds (see **Supplementary Table 1** for detailed annotations).

f, Non-synonymous mutations on the spike detected in the populations where the mutators were observed (the number of wells where the mutations were observed are in the Y-axis).

The color annotation represents the N-terminal domain (NTD, 14–305), the receptor-binding domain (RBD, 319–541), the cleavage site (S1/S2, 669-688), the fusion peptide (FP, 788–806), the heptapeptide repeat sequences (HR1, 912–984 and HR2, 1163–1213), the TM domain (1213–1237), and cytoplasm domain (CP, 1237–1273).

Acknowledgments: We would like to thank the personnel of the IGC Genomic Facility for their assistance.

Funding: M.A. was supported by “Fundação para a Ciência e Tecnologia” (FCT), fellowships PD/BD/138735/2018, respectively. Research was supported by FCT Project PTDC/BIA-EVL/31528/2017 to I.G. and by funds from Portuguese NIH.

Author contributions: IG, MJA and JPG designed the project. MJA and LZZ performed the culture and RNA extraction experiments. VB and JI performed the pre-sequencing wet-lab procedures, bioinformatic analysis and data analysis. SD and LV performed and supervised the wet-lab sequencing procedures. IG, MA performed the data analysis and the simulations. MJA, LV and JPG provided materials and reagents. IG wrote the initial draft of manuscript. VB, MJA, MA and JI contributed equally to this work. All authors contributed in the final writing of the manuscript and gave final approval for publication.
Ethical statement: The Portuguese NIH is authorized by the Portuguese Authorities’ (General-Directorate of Health and the Authority for Working Conditions) to handle and propagate Risk group 2 and 3 microorganisms. All culture procedures were performed inside a class III microbiological safety cabinet in a containment level 3 facility. This study is covered by the ethical approval issued by the Ethical Committee (“Comissão de Ética para a Saúde”) of the Portuguese National Institute of Health.

Competing interests: The authors declare no competing interests.

Additional information: Supplementary information is available for this paper. Correspondence and requests for materials should be addressed to igordo@igc.gulbenkian.pt; j.paulo.gomes@insa.min-saude.pt.