Ferromagnetic domain wall on nanometer scale

To cite this article: D A Christian et al 2005 J. Phys.: Conf. Ser. 17 101

View the article online for updates and enhancements.

Related content
- Soliton theory and the dynamics of a ferromagnetic domain wall
 D Ray
- S=1/2 magnetic chains as domain wall systems
 H J Mikeska, S Miyashita and G H Ristow
- Efficient stopping of current-driven domain wall using a local Rashba field
 Gen Tatara, Henri Saarikoski and Chiharu Mitsumata

Recent citations
- Temperature-dependent dynamics of stochastic domain-wall depinning in nanowires
 Clemens Wuth et al
Ferromagnetic Domain Wall on Nanometer Scale

D A Christian\(^{1}\), K S Novoselov\(^{1}\), S V Dubonos\(^{2}\), S V Morozov\(^{2}\),
E W Hill\(^{3}\), I V Grigorieva\(^{1}\) and A K Geim\(^{1}\),

\(^{1}\) Department of Physics and Astronomy, University of Manchester,
Oxford Road, M13 9PL, Manchester, UK

\(^{2}\) Institute for Microelectronics Technology,
142432 Chernogolovka, Russia

\(^{3}\) Department of Computer Science, University of Manchester,
Oxford Road, M13 9PL, Manchester, UK

Abstract. Movements of individual domain walls in a ferromagnetic garnet were studied
with angstrom resolution. The measurements reveal that domain walls can be locked between
adjacent crystallographic planes and propagate by distinct steps matching the lattice periodicity.
PACS numbers: 05.70 Ln, 05.70 Jk, 64.

1. Introduction
The discrete nature of the crystal lattice bears on virtually every material property but it
is only when the size of condensed-matter objects - e.g. dislocations \([1, 2, 3]\), vortices in
superconductors \([4, 5, 6]\), domain walls \([7, 8, 9]\) - become comparable to the lattice period,
that the discreteness reveals itself explicitly. The associated phenomena are usually described
in terms of the Peierls (“atomic washboard”) potential, which was first introduced for the case
of dislocations at the dawn of the condensed-matter era \([1, 2]\). Since then, the concept has been
invoked in many situations to explain certain features in bulk behaviour of various materials,
but so far has eluded direct detection and experimental scrutiny on the microscopic level.

In the particular case of magnetic materials, a domain wall (DW) has to pass through different
spin configurations as it moves from one atomic plane to another \([7, 8, 10, 11]\). Fig. 1a shows
two principal configurations for a DW in a simple spin lattice, which have the maximum and
minimum energy and correspond to the center of the wall lying at and between atomic planes,
respectively. This spatial variation of the wall energy is generally referred to as the Peierls
potential. Its amplitude depends on the ratio between DW’s width \(\delta\) and the lattice periodicity
\(d\) and, realistically, the Peierls potential is only observable for \(\delta/d < 10\). For larger \(\delta/d\),
the potential becomes so small \((\ll 1 \text{ G})\) that pinning on defects should conceal it completely.
The vast theoretical and experimental evidence gathered over several decades and based on
studies of bulk properties of magnetic rare-earth alloys has confirmed the existence of the Peierls
potential, with probably the most definite conclusions drawn from measurements of magnetic
viscosity \([11, 12, 13]\).

In the present work, we revisit the Peierls potential by employing a state-of-the-art technique
of ballistic Hall micromagnetometry \([14]\) imported from another research area (mesoscopic
superconductivity \([15]\), which allows us to resolve sub-atomic changes in the position of micron-
sized segments of DWs and study their inter-Peierls valley movements. We clearly see that a
domain wall can become trapped between crystalline planes, which results in its propagation by clear jumps corresponding to the periodicity of the Peierls potential.

2. Samples and technique

For our experiments, we have used a 10 μm thick film of yttrium-iron garnet (YBi$_3$(FeGa)$_5$O$_{12}$ (YIG) grown in [111] direction. The films exhibit a saturation magnetization $4\pi M_s$ of ≈ 200 G, exchange energy A of $\approx 1.8 \times 10^{-7}$ erg/cm and, below 10 K, crystal anisotropy K of $\approx 1.4 \times 10^6$ erg/cm3. The above values were found with accuracy $\approx 10\%$. The experimental system combines relatively narrow walls ($\delta = \pi(A/K)^{1/2} \approx 11$ nm at helium temperatures) with a large unit cell of size $a \approx 1.24$ nm and provides $\delta/d \approx 6$. Equally important is the high crystal quality of our samples [16, 17, 18] manifested in a coercivity of $\ll 0.1$ G at room temperature and $\ll 10$ G at helium temperatures, such that obscuring effects due to pinning on defects are relatively small. The YIG films have perpendicular magnetization and a domain structure shown in Fig. 2. A sub-mm piece of the film was placed in immediate contact with the surface of a device, which consisted of several micron-sized Hall sensors made from a two-dimensional electron gas (2DEG), following the microfabrication procedure described in Refs. [14, 15] (Fig. 2).

Due to in-plane crystal anisotropy, DWs in our YIG films tend to lie in three equivalent planes $\{110\}$. This crystallographic alignment is already seen in Fig. 2 at 300 K, and it becomes stronger as the anisotropy increases at lower temperatures, where domain walls become straight over distances of many μm. Using alignment marks, we placed our 2DEG sensors on a chosen area of YIG film with many parallel domains and aligned the sensors parallel to them, i.e. perpendicular to one of $\langle 110 \rangle$ axes. By measuring simultaneously the response at different Hall crosses, we ensured that at low temperatures the studied DWs were parallel to the set of sensors as shown on Fig. 2. The spacing between the garnet and 2DEG was measured to be less than 100 nm [18, 19]. We restricted the reported experiments to temperatures below 30 K, mainly because of thermally activated relaxation processes, which led to irreproducible changes in the domain structure and did not allow accurate measurements that require slow sweeps of magnetic field.

In our experiments, submicron Hall probes play the role of highly sensitive position detectors, which provide a spatial resolution of < 1 Å with respect to DW movements. When a DW enters
Figure 2. The micrographs show a set of micron-sized Hall probes placed on top of a ferromagnetic garnet. Their image overlays a photograph of the domain structure taken in transmitted polarized light at room temperature. The inset magnifies the central part of the experimental structure.

the sensitive area of a probe, its response R_H starts changing. A shift Δx in DW’s position leads to a change in magnetic field B and flux Φ through the Hall cross (Fig. 1b), which in turn induces a Hall response such that $\Delta R_H = \alpha \Delta \Phi = \beta \Delta x$ (see Ref. [14, 20]). The second part of the equation assumes that a DW is straight within the sensitive area of the Hall cross. This is justified for the reported experiments because we could simultaneously measure R_H at different crosses and, at low T, found a nearly perfect correlation between movements of DWs detected by adjacent Hall crosses [18]. This indicates that DWs move as rigid, straight objects so that their large segments (for $T < 10$ K, we have estimated their size to be up to 10 microns) shift as a whole (i.e. without bending). α and β are found experimentally [14, 18, 20]. For brevity, we discuss only experiments where the DWs were aligned parallel with the Hall device, as shown in Fig. 2, and moved in $\langle 110 \rangle$ direction. In this well-defined geometry, changes in the wall position Δx can be calculated from changes in R_H directly, without using any fitting parameters.

We used Hall sensors made from a high-mobility 2DEG because of their exceptional sensitivity to flux variations $\delta \Phi$ on a submicron scale. At temperatures $T < 80$ K, such sensors effectively work as fluxmeters and are capable of resolving $\delta \Phi \approx 10^{-4} \phi_0$, where ϕ_0 is a flux quantum. This technique has previously been used in studies of submicron superconducting [14, 15] and ferromagnetic [21, 22, 23, 24] particles, and its detailed description can be found therein. In the context of the present work, we have exploited this unique flux sensitivity to achieve an angstrom resolution in the average position of individual DWs. Indeed, if a DW passes the whole width w of a cross, Φ changes by several ϕ_0 (for the given value of M_s in our garnets). On the other hand, we can resolve $\delta \Phi \approx 10^{-4} \phi_0$ and this corresponds to a shift of a DW by $\Delta x \approx w(\Delta \Phi/\phi_0) \approx 1$ Å. Note that many magnetic materials have larger values of M_s and, hence, the magnetometers should then provide even higher spatial resolution (< 0.1 Å).

3. Results and discussion
To move a DW, we slowly varied external field H applied perpendicular to the garnet film. Figure 3 shows a typical example of changes in local field B detected by a Hall sensor as a DW crosses it from one side to the other. One can see that B changes its sign, which reflects the change in polarity of the domain above the sensor, and zero B corresponds to the state where the wall lies exactly in the middle. The overall shape of the transition curve is in good agreement with a simple theory [18, 19]. Overlaid on this universal behaviour, one can see a number of
Figure 3. Nanometer movements of domain walls over submicron distances. The central plot shows a typical Hall response measured by a 1.5 µm Hall cross as a domain wall slowly creeps from one of its sides to the other ($T = 0.5$ K). For convenience, the Hall response is plotted in terms of the average local field B inside the cross, which is calculated by using the measured Hall coefficient. The insets show examples of local hysteresis loops.

small sample- and sweep- dependent steps, indicating that a DW does not move smoothly but covers micron-long distances in a series of small jumps. Such jumps have previously been studied by many techniques (e.g., see Ref. [18, 25, 26, 27, 28]) and are usually referred to as Barkhausen noise. A typical step in Fig. 3 corresponds to a wall moving by 10 to 50 nm. While a DW was located within the Hall cross, we could reverse a field sweep to investigate local coercivity of the wall (left inset in Fig. 3). Such hysteresis loops are usually reproducible for many field cycles, and we attribute them to pinning on individual defects [18, 19, 26].

Since we were able to detect Barkhausen noise using our apparatus (see Fig. 3), we investigated the probability distribution of the jump size $P(\Delta x)$, (see Fig. 1b for notation) to determine whether it displayed an exponential form of the type found in previous experiments [27, 29, 30].

In order to build up enough data to allow useful statistical analysis, the magnetic field H was ramped up and down at a constant rate, producing several thousand sweeps of the kind shown in Fig. 3. The size of each individual shift was measured, and these sizes suitably binned. The results produced at helium temperature are displayed in Fig. 4. The double-logarithmic plot clearly shows the expected power law distribution, of the form $P(\Delta x) = \Delta x^{-\tau} f(\Delta x/\Delta x_0)$, where Δx_0 is the upper cutoff value of Δx. The same relation is seen for $T = 77$ K, with τ being 1.11 ± 0.05 in both cases.

The upper limit of the distribution in Fig. 4 is not a cutoff point, as many larger jumps were recorded, up to the maximum 1.5µm dictated by the physical size of the cross. However, jumps above 350 nm were not common enough to be used to draw any conclusions. Even the included data in the range 130–350 nm shows significant dips which causes the distribution to fall below the fitted line.

As noted earlier, as a result of the very high uniaxial anisotropy of the garnet, the low number of defects, and the low temperature, the DW propagates as a flat plane, and can therefore be considered to behave as a one-dimensional structure. Although at higher temperatures more kinks are able to form, meaning that the wall is straight over a smaller average length, by comparison to the size of the Hall crosses the wall will still be flat. However, the section of wall
Figure 4. Power-law distribution in jump size, Δx, resulting from Barkhausen effect measurements. The raw data consisted of 1430 sweeps taken at 4.2 K. The frequency, plotted on the ordinate, is a count of the number of occurrences of jumps of a given size, normalised per 1000 sweeps. The gradient of the fitted line gives a value of 1.11 ± 0.15 for τ.

being observed is still coupled via both long and short range interactions to the rest of the DW structure, which is essentially two-dimensional. This causes the measured statistics to match those expected from a two-dimensional sample containing a wall able to deform, with a value of τ close to the value of 1.14 measured for a two-dimensional Fe sample [31]. This means that ballistic Hall micromagnetometry is a viable method for studying the Barkhausen effect in spite of the small size of the cross used.

In addition to the above behaviour, the high resolution of the micromagnetometry allowed us to discern very small DW jumps (right inset in Fig. 3) which stood out from the ”ordinary” ones for two reasons. Firstly, they matched closely the lattice periodicity in the direction of DW travel ⟨110⟩ (d = √2a ≈ 1.75 nm) and, secondly, they were practically the only jumps observed in the range below ≈ 10 nm. The use of statistical analysis techniques (standard in e.g. particle physics) shows that - with a confidence level of 94% - the right inset corresponds to an event comprising several steps of equal length (4 single and 3 double steps), where the length of a single step is d. To obtain a further proof that such steps indeed reveal jumps between equivalent crystal lattice positions, we carried out complementary experiments described below.

As a DW moves through a crystal, it interacts with a large number of pinning sites and becomes bent and strained in the process. For a strained wall, one can generally expect that it would jump between strong pinning sites without noticing the weaker ones. This is clearly seen by magnetic force microscopy (at room temperature). To release the strain, we demagnetized the sample by applying an ac magnetic field with an amplitude h gradually decreasing from ≈ 5 G to zero, while a constant field H kept the wall close to the center of the probe. This proved to be a critical improvement: in the demagnetized state, DWs started to propagate via clear quantized jumps matching the lattice periodicity. The distance between the equivalent sites was measured to be 1.6 ± 0.2 nm, in agreement with the Peierls potential periodicity d ≈ 1.75 nm. Figure 5 shows an example of such behaviour, which leaves no doubt of the presence of a periodic atomic landscape impeding DW movements.

We note that there are two periodic sets of equivalent crystallographic positions for a {110} DW, which are separated by b and 2b (where b = a/√2 is the distance between the nearest basal planes). They require the translation of wall’s spin configuration in directions ⟨001⟩ and ⟨110⟩,
Figure 5. Jumps of a domain wall between equivalent lattice sites. The data were taken during a very slow sweep ($\approx 1 \text{ h}$) required to achieve the sub-atomic resolution. For such time intervals, relaxation processes lead to irreproducible changes in the domain structure usually far away from the detection site (this can be seen as occasional DW jumps at a constant H). On the graph, this results in the same position of a DW for different values of H. For clarity, we subtracted a small smooth background in B associated with changes in the local stray field induced by other domains.

respectively, and involve different exchange interactions [10]. Both periods should contribute to the Peierls potential but because of the exponential dependence on δ/d only the longest periodicity $d = 2a/\sqrt{2} \approx 1.75 \text{ nm}$ can be expected to remain observable. Our measurements did find this periodicity but it remains unclear why a DW could not avoid the observed Peierls barriers by exploiting ”the third dimension“ (i.e. moving by twice smaller oblique jumps in $\langle 001 \rangle$ rather than by the straight jumps perpendicular to DW’s plane). It is also possible that the complex unit cell structure of garnets also plays some role in defining the dominant period.

From Fig. 5, one can estimate that it requires a field of $\approx 1 \text{ G}$ to move a DW out of the well created by adjacent crystal planes (i.e. intrinsic pinning is several times weaker than pinning on a typical defect in our garnets; see Fig. 3). Further experiments [19, 32] yielded a value of the intrinsic coercive field $H_C \approx 0.7 \text{ G}$ at $T < 10 \text{ K}$. Theory of the magnetic Peierls potential predicts H_C to be of the order of [10, 11, 12]

$$H_C \approx C_\Delta \frac{A}{d^2 M_s} \exp(-\pi \delta/d)$$

where constant C is $\approx 10^3$ (see Ref. [10]). Taking into account the exponential dependence of H_C on δ, which is known to $\approx 10\%$ accuracy, the formula yields H_C in the range from 0.1 to 5 G, in agreement with the experiment.

4. Conclusions

The reported results show a possibility to study the physics of individual domain walls and solitons within them at a new level of experimental resolution. This should lead not only to refinement of the existing models but also to a greater depth of understanding of fundamental and technologically important phenomena governed by movements of domain walls.
Acknowledgments
This work was supported by EPSRC (UK). One of us (S. V. D.) is grateful to Russian Academy of Science for financial support within program Low-Dimensional Quantum Systems.

References
[1] Peierls R E 1940 Proc. Phys. Soc. 52 34
[2] Nabarro F R N 1947 Proc. Phys. Soc. 59 256
[3] Kolar H R, Spence J C H and Alexander H 1996 Phys. Rev. Lett. 77 4031
[4] Ivlev B I and Kopnin N B 1990 Phys. Rev. Lett. 64 1828
[5] Ossena M, de Groot P A J, Gagnon R and Taillefer L 1994 Phys. Rev. Lett. 72 3606
[6] Kleiner R, Steinmeyer F, Kunkel G and Muller P 1992 Phys. Rev. Lett. 68 2394
[7] Barbara B 1973 J. Phys. 34 1039
[8] van den Broek J J and Zijlstra H 1971 IEEE Trans. Magn. 7 226
[9] Mnyukh Y 2001 Fundamentals of solid-state phase transitions, ferromagnetism and ferroelectricity. (1st Books Library, IN)
[10] Hilzinger H R and Kronmuller H 1972 Physica Status Solidi B 54 593
[11] Egami T 1973 Physica Status Solidi A 19 747
[12] Arnaudas J I, del Moral A and Abell J S 1986 J. Magn. Magn. Mater. 61 370
[13] Musnikov N V, Andreev A V, Korolyov A V and Shiokawa Y 2000 J. Alloys Comp. 305 188
[14] Geim A K et al. 1997 Appl. Phys. Lett. 71 2379
[15] Geim A K et al. 1997 Nature 390 259
[16] Pisarev R V et al. 1993 J. Phys. 5 8621
[17] Pavlov V V, Pisarev R V, Kirilyuk A and Rasing T 1997 Phys. Rev. Lett. 78 2004
[18] Novoselov K S et al. 2002 IEEE Trans. Magn. 38 2583
[19] Novoselov K S 2004 Development and Applications of Mesoscopic Hall Microprobes, Thesis, ISBN: 90-9018366-3
[20] Peeters F M and Li X Q 1998 Appl. Phys. Lett. 72 572
[21] Kent A D, von Molnar S, Gider S and Awschalom D D 1994 J. Appl. Phys. 76 6656
[22] Li Y Q et al. 2002 Appl. Phys. Lett. 80 4644
[23] Hengstmann T M, Grundler D, Heyn C and Heitmann D 2001 J. Appl. Phys. 90 6542
[24] Schuh D, Biberger J, Bauer A, Breuer W and Weiss D 2001 IEEE Trans. Magn. 37 2091
[25] Vergne R, Cotillard J C and Porteseil J L 1981 Rev. Phys. Appl. 16 449
[26] Wunderlich J et al. 2001 IEEE Trans. Magn. 37 2104
[27] Kim D H, Choe S B and Shin S C 2003 Phys. Rev. Lett. 90 087203
[28] Schwartz A et al. 2004 Phys. Rev. Lett. 92 077206
[29] Babcock K L and Westervelt R M 1990 Phys. Rev. Lett. 64 2168
[30] Cizeau P, Zapperi S, Durin G and Stanley H E 1997 Phys. Rev. Lett. 79 4669
[31] Puppin E 2000 Phys. Rev. Lett. 84 5415
[32] Novoselov K S et al. 2003 Nature 426 812