A Noether-Lefschetz theorem for vector bundles

Jeroen G. Spandaw

July 7, 1995

Abstract

In this note we use the monodromy argument to prove a Noether-Lefschetz theorem for vector bundles.

1 Introduction

Let \(X \) be a smooth complex projective manifold of dimension \(n \) and let \(E \) be a very ample vector bundle on \(X \) of rank \(r \). This means that the tautological quotient line bundle \(L \) on the bundle \(Y = \mathbb{P}(E^*) \) of hyperplanes in \(E \) is very ample. For almost all \(s \in H^0(X, E) \) the zero-locus \(Z \) is smooth, irreducible and of dimension \(n - r \). In [8, prop. 1.16] Sommese proved that \(H^i(X, Z; \mathbb{Z}) \) vanishes for \(i < n - r + 1 \) and is torsion free for \(i = n - r + 1 \). Assume that \(n - r \) is even, say \(n - r = 2p \). Let \(\text{Alg} \subset H^{n-r}(Z) \) be the space of algebraic classes and let \(\text{Im} = \text{Im}(H^{n-r}(X) \hookrightarrow H^{n-r}(Z)) \). (We always take coefficients in \(\mathbb{C} \) unless other coefficients are mentioned explicitly (cf. Remark 3).) In this note we prove the following Noether-Lefschetz theorem for this situation.

Theorem 1 If \(E \) is very ample and \(s \) is general, then either \(\text{Alg} \subset \text{Im} \) or \(\text{Alg} + \text{Im} = H^{n-r}(Z) \).

(With “general” we shall always mean general in the usual Noether-Lefschetz sense.) The following theorem, which generalizes the Noether-Lefschetz theorem for complete intersections in projective space (see [2, pp. 328–329]) is an immediate corollary.

Theorem 2 If \(h^{\alpha \beta}(X) < h^{\alpha \beta}(Z) \) for some pair \((\alpha, \beta)\) with \(\alpha + \beta = n - r \) and \(\alpha \neq \beta \), then every algebraic class on \(Z \) is induced from \(X \).

Remark 3 Notice that the unique pre-images of algebraic classes are themselves Hodge classes, i.e. lie in \(H^{p,q}(X) \cap H^{n-r}(X; \mathbb{Z}) \). This follows from the fact that the cokernel of \(H^{n-r}(X, \mathbb{Z}) \to H^{n-r}(Z, \mathbb{Z}) \) is torsion free.
It is not difficult to show that after replacing E with $E \otimes L^k$, where $k \gg 0$ and L is an ample line bundle, the assumption of theorem 2 is satisfied. (E.g. the geometric genus of X goes to infinity as k goes to infinity.) In [9] we used the notion of Castelnuovo-Mumford regularity (cf. [7, p. 99]) to make the positivity assumption on E more precise if $X = \mathbb{P}^n$. Notations are as in theorem 1.

Hdg is defined to be the space of Hodge classes on Z of codimension p, i.e.
$$Hdg = H^{p,p}(Z) \cap H^{n-r}(Z,\mathbb{Z}).$$

Theorem 4 If E is a (-3)-regular vector bundle of rank r on $X = \mathbb{P}^n$ and Z is the zero-locus of a general global section of E, then $Hdg \subset \text{Im}$, unless $(X, E) = (\mathbb{P}^3, \mathcal{O}(3))$. If $\dim Z = 2$, then it suffices that E be (-2)-regular unless $(X, E) = ((\mathbb{P}^3, \mathcal{O}(2)), (\mathbb{P}^3, \mathcal{O}(3))$ or $(\mathbb{P}^4, \mathcal{O}(2) \oplus \mathcal{O}(2))$.

(Notice that (-3)-regularity \Rightarrow (-1)-regularity \Rightarrow very ampleness.) For the case $\dim Z = 2$ theorem 4 is due to Ein [3, thm. 3.3]. The advantage of theorem 4 is that it applies to Hodge rather than algebraic classes on Z. For example, it implies that if all Hodge classes of codimension $n-r$ on \mathbb{P}^n are algebraic, then the same holds for Z. The advantage of theorem 4 is that the positivity condition on E is more geometric: the cohomological conditions from [9] are replaced with the condition that E be very ample plus a Hodge number inequality (cf. theorem 2).

In other words, for very ample vector bundles, the Noether-Lefschetz property holds as soon as this is allowed by the Hodge numbers. However, this Hodge number inequality condition is of course a cohomological condition on E in disguise.

Acknowledgement I am grateful to professor Sommese for the suggestion that I look at the bundle $\pi: \mathbb{P}(E^*) \to X$ of hyperplanes in E.

2 Proof of the main result

Let $V = H^0(X, E)$, let $\mathbb{P}(V)$ be the set of lines in V, let $N = \dim \mathbb{P}(V) = h^0(X, E) - 1$ and set $X' = \mathbb{P}(V) \times X$. Set $E' = p_1^* \mathcal{O}(1) \otimes p_2^* E$, where p_i are the projections. E' has a canonical section s'. Let Z be the zero locus of s'. The restriction $p: Z \to \mathbb{P}(V)$ of p_1 to Z is the universal family of zero loci of sections in E. We leave the proof of the following easy lemma to the reader.

Lemma 5 If E is very ample, then it is generated by its sections. If E is generated by its sections, then Z is smooth, irreducible and of dimension $N + n - r$.

Let $\Delta \subset \mathbb{P}(V)$ be the discriminant of p, i.r.

$$\Delta = p\{z \in Z : \text{rk}_z p \leq N - 1\}$$
$$= \{[s] \in \mathbb{P}(V) : p^{-1}(s) \text{ is not smooth of dimension } n - r\}.$$
Fix a point \([s_0] \in \mathbb{P}(V) \setminus \Delta\) and let \(Z \subset X\) be the corresponding smooth fibre of \(p\). Let \(\Gamma\) the image of the monodromy representation \(\pi_1(\mathbb{P}(V) \setminus \Delta) \to \text{Aut}(H^{n-r}(Z))\).

Let \(\text{Im}^\perp\) be the orthogonal complement of \(\text{Im}\) with respect to the intersection form on \(H^{n-r}(Z)\). Since for general \(s \in H^0(X, E)\), \(\text{Alg}\) is a \(\Gamma\)-module (cf. [5, p. 141]), theorem [4] from the following proposition.

Proposition 6 (*Second Lefschetz Theorem*)

1. \(H^{n-r}(Z) = \text{Im} \oplus \text{Im}^\perp\)
2. \(\text{Im} = H^{n-r}(Z)\Gamma\)
3. \(\text{Im}^\perp\) is an irreducible \(\Gamma\)-module

Proof:

1. Arguing as in the proof of [4, thm. 6.1 (i)] one shows that if \(Z\) is submanifold of a compact Kähler manifold \(X\) such that \(H^i(X, Z) = 0\) for \(i \leq m = \dim Z\), then the restriction of the intersection form to \(\text{Im}(H^m(X) \to H^m(Z))\) is non-degenerate.

2. The inclusion \(\text{Im} \subset H^{n-r}(Z)\Gamma\) is trivial. To prove that \(H^{n-r}(Z)\Gamma \subset \text{Im}\), we argue as in [4, thm. 6.1 (iii)]. Consider the commutative diagram

\[
\begin{array}{ccc}
H^{n-r}(\mathbb{P}(V) \times X) & \longrightarrow & H^{n-r}(Z) \\
\downarrow & & \downarrow \\
H^{n-r}(X) & \longrightarrow & H^{n-r}(Z)\Gamma.
\end{array}
\]

By [4, théorème 4.1.1 (ii)] the map \(H^{n-r}(Z) \to H^{n-r}(Z)\Gamma\) is surjective. By [4, prop. 1.16] the map \(H^{n-r}(\mathbb{P}(V) \times X) \to H^{n-r}(Z)\) is surjective.

3. Since the monodromy respects the intersection form, \(I^\perp\) is a \(\Gamma\)-module.

The standard argument using Lefschetz pencils and the theory of vanishing cycles reduces the problem of irreducibility to proposition [6] below (cf. [4, pp. 46–48]).

\(\blacksquare\)

Proposition 7

1. The discriminant \(\Delta\) is an irreducible, closed, proper subvariety of \(\mathbb{P}(V)\).

2. Let \(G \subset \mathbb{P}(V)\) be a general line. Then \(Z_G := p^{-1}(G)\) is smooth, irreducible of dimension \(n-r+1\) and the restricted family \(p_G: Z_G \to G\) is a holomorphic Morse function, i.e. all critical points are non-degenerate and no two lie in the same fibre (cf. [4, p. 34]). \(g \in G\) is a critical value of \(p_G\) if and only if it is a critical value of \(p\).
PROOF: The statements about \mathcal{Z}_C follow from Bertini. The remaining assertions are well-known if $\text{rk} E = 1$ (cf. p. 19]). In particular, they are true for (Y, L), where Y is the hyperplane bundle $\mathbb{P}(E)$ of E and L is the tautological quotient line bundle $\mathcal{O}_Y(1)$. The following proposition reduces the general case (X, E) to this line bundle case (Y, L), thus finishing the proof.

Before we state the last proposition, notice that the natural map $s \mapsto \bar{s}: H^0(X, E) \to H^0(Y, L)$, where $\bar{s}(x, h) := s(x) \in E(x)/h = L(x, h)$ for $(x, h) \in Y$, is an isomorphism. Indeed, the map is clearly injective and $h^0(Y, L) = h^0(X, \pi_* L) = h^0(X, E)$. For $s \in H^0(X, E)$ we denote by $Z_X(s)$ the zero-locus of s in X and by $Z_Y(\bar{s})$ the zero-locus of \bar{s} in Y.

Proposition 8 For $s \in H^0(X, E) \setminus \{0\}$, $Z = Z_X(s)$ is singular if and only if $W = Z_Y(\bar{s})$ is singular. More precisely, if $x \in \text{Sing} Z$, then there exists a $y \in \text{Sing} W$ with $\pi(y) = x$ and conversely, if $(x, h) \in \text{Sing} Z$, then $x \in \text{Sing} W$. Finally, if (x, h) is a non-degenerate quadratic singularity, then so is x.

Proof: This is a calculation in local coordinates. Let $x_0 \in Z$, i.e. $s(x_0) = 0$. After choosing local coordinates x_1, \ldots, x_n on X and a local trivialization of E near x_0 we may regard s to be a function in x_1, \ldots, x_n. Then $x_0 \in \text{Sing} Z$ if and only if $\left\{ \frac{\partial s}{\partial x_j}(x_0) \right\}_{j=1}^n$ does not span \mathbb{C}^r. Let $h_0 \subset \mathbb{C}^r$ be a hyperplane containing span $\left\{ \frac{\partial s}{\partial x_j}(x_0) \right\}_{j=1}^n$. We claim that $y_0 = (x_0, h_0) \in \text{Sing} W$. We may assume that the local trivialization of E has been chosen in such a way that h_0 is given by $z_r = 0$, where z_1, \ldots, z_r are coordinates on \mathbb{C}^r. Let $s = (f_1, \ldots, f_r)$. Local coordinates on Y near y_0 are provided by the local coordinates x_1, \ldots, x_n on X near x_0 together with $(y_1, \ldots, y_{r-1}) \in \mathbb{C}^{r-1}$: we let $(y_1, \ldots, y_{r-1}) \in \mathbb{C}^{r-1}$ correspond to the hyperplane $\sum_{i=1}^r y_i z_i = 0$, where $y_r := 1$. The point y_0 has coordinates $(x_0, 0)$. In these local coordinates $\bar{s}(x, y) = \sum_{i=1}^r y_i f_i(x)$. It now suffices to calculate $\frac{\partial \bar{s}}{\partial y_j}(x_0, 0) = 0$ for $k = 1, \ldots, n$ and $\frac{\partial \bar{s}}{\partial y_0}(x_0, 0) = f_j(x_0) = 0$ for $j = 1, \ldots, r-1$. The converse is proven similarly.

Let $y_0 = (x_0, h_0) \in \text{Sing} W$. We may again assume that h_0 is given by $z_r = 0$. The Hessian of \bar{s} in y_0 is of the form $\begin{pmatrix} h & d' \\ d & 0 \end{pmatrix}$, where the $n \times n$ matrix h is the Hessian of f_r and the $(r-1) \times n$ matrix d is the Jacobian of $f' := (f_1, \ldots, f_{r-1})$ in x_0. Let $Z' = \{ x \in X : f'(x) = 0 \}$. We have to check that the Hessian of $f_r|_{Z'}$ in 0 is non-degenerate. Since we assume that the Hessian of \bar{s} has maximal rank in y_0, so has d. Thus, after a change of coordinates, we may assume that $f_i(x) = x_i$ for $i < r$. Then $\bar{s}(x, y) = \sum_{i=1}^{r-1} x_i y_i + f_r(x)$, hence the Hessian of \bar{s} in y_0 is

$$
\begin{pmatrix}
* & * & E_{r-1} \\
* & H & 0 \\
E_{r-1} & 0 & 0
\end{pmatrix},
$$

where H is the Hessian of $f_r|_{Z'}$ in x_0. It follows that H is non-degenerate. \(\square\)
References

[1] P. Deligne, *Théorie de Hodge II*, Publ. Math. IHES 40 (1971), 5–59.

[2] P. Deligne, N. Katz, *Groupes de Monodromie en Géométrie Algébrique*, Lecture Notes in Mathematics 340, Springer Verlag Berlin, (1973).

[3] L. Ein, *An analogue of Max Noether’s theorem*, Duke Math. J. 52 No. 3 (1985), 689–706.

[4] N. Goldstein, *A second Lefschetz theorem for general manifold sections in complex projective space*, Math. Ann. 246 (1979), 41–68.

[5] R. Hartshorne, *Equivalence relations on algebraic cycles and subvarieties of small codimension*, Proc. of Symp. of Pure Math. 29 (1975), 129–164.

[6] K. Lamotke, *The topology of complex projective varieties after S. Lefschetz*, Topology 20 (1981), 15–51.

[7] D. Mumford, *Lectures on curves on an algebraic surface*, Annals of Math. Studies 59, Princeton University Press (1966).

[8] A. Sommese, *Submanifolds of abelian varieties*, Math. Ann. 233 (1978), 229–256.

[9] J. Spandaw, *Noether-Lefschetz problems for vector bundles*, Math. Nachr. 169 (1994), 287–308.

Jeroen Spandaw
Institut für Mathematik
Universität Hannover
Postfach 6009
D-30060 Hannover
Germany
e-mail: spandaw@math.uni-hannover.de