Genotypic and phenotypic relationships among methicillin-resistant Staphylococcus aureus from three multicentre bacteraemia studies

Pamela A. Moise†, Davida S. Smyth2, D. Ashley Robinson2, Nadia El-Fawal2, Carlo McCalla2 and George Sakoulas2,3*

1University of the Pacific, Stockton, CA, USA; 2New York Medical College, Valhalla, NY, USA; 3Infectious Diseases, Sharp Memorial Hospital, San Diego, CA, USA

Received 19 October 2008; returned 23 December 2008; revised 7 January 2009; accepted 30 January 2009

Background: At a time when the molecular epidemiology of methicillin-resistant Staphylococcus aureus (MRSA) was changing, we sought to characterize several genotypic markers and glycopeptide susceptibility features of clinical isolates from patients with bacteraemia.

Methods: One hundred and sixty-eight MRSA bloodstream isolates obtained from three multicentre clinical trials were microbiologically and genotypically characterized.

Results: All isolates were susceptible to vancomycin (MIC ≤2 mg/L); 38% belonged to accessory gene regulator (agr) group I, 52% belonged to group II and 10% belonged to group III. Typing of the staphylococcal cassette chromosome mec (SCCmec) showed that 67% were type II and 33% were type IV. The agr group II polymorphism was associated with SCCmec II (P < 0.001). Fifty-three percent of SCCmec II and 27% of SCCmec IV isolates had vancomycin MICs ≥1 mg/L (P = 0.001). One hundred percent of agr II strains were predicted to be members of clonal complex 5. SCCmec II was the genetic marker most predictive of vancomycin MICs of ≥1 mg/L. SCCmec IV isolates were more likely to have vancomycin MICs ≤0.5 mg/L.

Conclusions: Given that SCCmec IV is a marker for a community-based organism for which less prior vancomycin exposure is predicted, we conclude that prior antibiotic exposure in agr group II organisms may account for their increased vancomycin MICs.

Keywords: MRSA, SCCmec types, clonal types, Staphylococcus spp.

Introduction

Vancomycin has served as the cornerstone of therapy for serious methicillin-resistant Staphylococcus aureus (MRSA) infections for 50 years.1 Despite the fact that microbiological resistance to vancomycin in S. aureus remains very rare, recent years have seen a shift upwards in vancomycin MICs (i.e. the ‘MIC creep’) within the susceptible range,2–4 with consequential effects on vancomycin efficacy in MRSA bacteremia and pneumonia.5–8 In addition to microbiological susceptibility phenotype, certain genotypic markers may also serve as a predictor of vancomycin treatment failure in MRSA bacteremia.5,9 However, the relationship between the MRSA genotype and glycopeptide susceptibility in vitro has not been extensively studied. We evaluated a multicentre collection of 168 MRSA bloodstream isolates compiled from three prior clinical trials to further evaluate the relationship between the MRSA agr type, spa type, and SCCmec type and vancomycin susceptibility and to evaluate for MRSA strain differences between the trials.

*Corresponding author. Infectious Diseases, Sharp Memorial Hospital, 7910 Frost Street, Suite 320, San Diego, CA 92123, USA.
Tel: +1-858-292-4211; Fax: +1-858-292-7117; E-mail: george.sakoulas@sharp.com
†Present address: Cubist Pharmaceuticals, 65 Hayden Avenue, Lexington, MA 02421, USA.

873

© The Author 2009. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please e-mail: journals.permissions@oxfordjournals.org

The online version of this article has been published under an open access model. Users are entitled to use, reproduce, disseminate, or display the open access version of this article for non-commercial purposes provided that: the original authorship is properly and fully attributed; the Journal and Oxford University Press are attributed as the original place of publication with the correct citation details given; if an article is subsequently reproduced or disseminated not in its entirety but only in part or as a derivative work, this must be clearly indicated. For commercial re-use, please contact journals.permissions@oxfordjournals.org
Methods

Isolates were obtained as part of three multicentre clinical trials evaluating MRSA bacteraemia.10–12 PCR was used to characterize mec cassettes and to characterize accessory gene regulator (agr) types as described previously.13–15 spa X-repeat polymorphisms were determined by nucleotide sequencing, as described previously.15,16 A semi-quantitative delta-haemolysin functional assay was performed to assess agr function.17 Vancomycin susceptibility testing was performed by CLSI microdilution methods and was evaluated for differences based on agr and SCCmec type (MIC≤ 0.5 versus ≥ 1 mg/L).18 Ordinal data were compared using Kruskal–Wallis analysis of variance. Categorical data were compared using χ^2 or Fisher’s exact test where appropriate. All statistical procedures were performed with Systat 11 (Systat Software Inc., Point Richmond, CA, USA).

Results

One hundred and sixty-eight \textit{S. aureus} isolates from 168 unique patients were studied. All isolates were susceptible to vancomycin, with MICs of 0.25 mg/L (n=1), 0.5 mg/L (n=92), 1.0 mg/L (n=68) and 2.0 mg/L (n=7). The isolates consisted of 64 (38%) \textit{agr} group I, 86 (52%) group II and 18 (10%) group III MRSA. One hundred and thirteen (67%) were staphylococcal cassette chromosome mec (SCCmec) II and 55 (33%) were SCCmec IV. Of the 164 isolates that were tested by spa typing, 83 (50%) were predictive of clonal complex 5.

The \textit{agr} group II polymorphism was associated with the presence of SCCmec II (P<0.001) (Figure 1); 73% (83/113) of SCCmec II were \textit{agr} group II. Eighty-seven percent (48/55) of SCCmec IV were \textit{agr} group I. All (100%) of the \textit{agr} group II isolates were predicted to be of clonal complex 5.

Vancomycin MICs were significantly higher among SCCmec II MRSA (P=0.001) (Figure 2). Fifty-three percent of SCCmec II and 27% of SCCmec IV isolates had vancomycin MICs ≥ 1 mg/L. Statistically significant differences in vancomycin MICs were not noted between \textit{agr} groups or spa types. Among the isolates showing vancomycin MICs of ≥ 1 mg/L, 49% were \textit{agr} group II, 42% were \textit{agr} group I and 33% were \textit{agr} group III (P=0.24). Thirty-nine of the 83 (47%) isolates whose spa typing predicted clonal complex 5 and 33 of 81 (41%) other clonal complex types had vancomycin MICs ≥ 1 mg/L (P=0.661).

The function at the \textit{agr} locus was significantly more reduced among MRSA with higher MICs within the susceptible range (Figure 3). Decreased delta-haemolysin production was noted in 86%, 66% and 36% of MRSA with vancomycin MICs of 2, 1 and ≤ 0.5 mg/L, respectively (P<0.001).

Analysis of the microbiological and genotypic properties of MRSA was segregated by the clinical studies from which they were obtained (Table 1). The earlier two studies enrolling patients in Phase III/IV protocols from 1998 to 2003 highly weighted towards persistent MRSA bacteraemia (>5 days) and inclusive of patients in renal failure showed a different spectrum of organisms from the randomized Phase III trial enrolling from 2002 to 2005 evaluating daptomycin versus comparator and exclusive of renal failure patients. When compared with the later daptomycin \textit{S. aureus} bacteraemia trial, the earlier trials had MRSA with a lower percentage of \textit{agr} group I strains (25% versus 51%) and SCCmec IV strains (88% versus 46%), and a significantly higher percentage of MRSA with vancomycin MICs ≥ 1 mg/L (77% versus 16%) and \textit{agr} dysfunction (75% versus 24%).

Discussion

It is well understood that there is a differential response to the treatment of infection based on host, pathogen and antimicrobial selection. While appearing straightforward, antibiotic susceptibility as measured \textit{in vitro} via the determination of an MIC in a clinical laboratory may be complicated by phenotypes too subtle
to be detected by standard methods. For example, the heterogeneous nature of susceptibility to glycopeptides has resulted in a recently appreciated discordance between microbiological and clinical vancomycin resistance among serious *S. aureus* infections such as bacteraemia and pneumonia.19

In addition to vancomycin MIC, *agr* group II MRSA have also been linked to vancomycin treatment failure in one study,5 but not in another.5 With the understanding that different MRSA clones with specific genotypic characteristics may predominate in specific epidemiological settings with consequential differences in antimicrobial selection, we sought to determine the relationships between the MRSA *agr* type, SCC*mec* type and vancomycin susceptibility.

We found that MRSA harbouring SCC*mec* II were more likely to have vancomycin MICs of ≥1 mg/L. SCC*mec* IV isolates were more likely to have vancomycin MICs ≤0.5 mg/L. SCC*mec* II predominated among *agr* group II strains and SCC*mec* IV among *agr* group I strains.

We noted a strong association between increased vancomycin MIC within the susceptible range and *agr* dysfunction shown by reduced delta-haemolysin activity. Loss of *agr* has been associated with the glycopeptide-intermediate *S. aureus* phenotype,17 glycopeptide tolerance17,19 and prolonged bacteraemia.9 Since a vancomycin MIC of 2 mg/L has been associated with prolonged bacteraemia, this new observation is to be expected, based on prior data.

Given that SCC*mec* II has been a marker for a healthcare-associated organism with consequential vancomycin selection pressure, these data suggest that the prior finding of *agr* group II being associated with vancomycin treatment failure may reflect the fact that these clones have predominated in settings of antecedent vancomycin selection pressure. Consistent with this premise is the *agr* group II, clonal complex 5 USA 100 MRSA clone includes the first US and Japanese VISAs and vancomycin-resistant *S. aureus*.20,21 This inference is strengthened by the finding of another single-centre study, where *agr* group III MRSA clones predominated, that the *agr* group III genotype was associated with vancomycin treatment failure.9 Thus, differences in vancomycin response at the genetic level likely reflect microbiological differences rather than intrinsic differences in antibiotic susceptibility. However, the reasons for the establishment of different specific MRSA clones in different settings or even different hospitals are unknown and warrant further study.

In addition to spatial differences in MRSA susceptibility, an evaluation of the microbiological and phenotypic properties of the 168 bacteraemia isolates as they sort out by the previous studies from which they were derived shows temporal shifts in MRSA as well. Collectively, the majority (52%) of MRSA in this study belonged to clonal complex 5 (*agr* group II). However, this genotype was not evenly distributed between the three studies. In the first two studies, where patients were derived from Phase III/IV linezolid and quinupristin/dalfopristin protocols and enriched for patients with prolonged bacteraemia on vancomycin, isolates were heavily weighted towards *agr* group II (60%), contain SCC*mec* II, have vancomycin MICs of at least 1 mg/L and have reduced *agr* function. In the third study, where isolates were more contemporary and excluded patients with renal dysfunction, MRSA were much more likely to be *agr* group I, contain SCC*mec* IV and have lower vancomycin MICs and preserved *agr* function. Only 44% of MRSA from the third study are *agr* group II. These latter attributes are features of MRSA that have generally been seen in community-onset infections. Nevertheless, the ‘hospital’ and ‘community’ labels associated with specific MRSA genotypes are certain to break down over time, likely in a fashion similar to that of *S. aureus* with penicillin resistance over the past decades.

The findings from this multicentre study are in agreement with the recent single-centre study from Detroit by Chua et al.,20 showing *agr* group II MRSA to be associated with hospital-onset infection, SCC*mec* II and higher vancomycin MICs, and showing *agr* group I strains to be associated with community-onset infection, SCC*mec* IV and lower vancomycin MICs. Many *agr* group I SCC*mec* IV MRSA have recently been seen in healthcare-onset infections.

In summary, these findings highlight important genotypic and phenotypic characteristics of MRSA bloodstream isolates as they relate to one another, with SCC*mec* II being the strongest

Table 1. Shifting molecular epidemiology of MRSA bacteraemia

Characteristic	Sample from studies 1 and 2 (n=81)	Sample from study 3 (n=87)	P value
Year MRSA isolated	1998–2003	2002–05	
agr group, n (%)			
I	20 (25%)	44 (51%)	0.001
II	49 (60%)	38 (44%)	0.029
III	12 (15%)	4 (5%)	0.024
SCC*mec* II, n (%)	71 (88%)	40 (46%)	<0.001
Vancomycin MIC ≥1 mg/L, n (%)	62 (77%)	14 (16%)	<0.001
8-lysin 0/1, n (%)	61 (75%)	21 (24%)	<0.001

Study 1: Moise-Broder et al., 2002. Study continued through year 2003.
Study 2: Moise et al., 2002.
Study 3: Fowler et al., 2006.

*a*Delta-lysin scoring system: 0, absent; 1, diminished; 2, comparable to *agr* wild-type strain RN6607 (see reference 17); 3, increased; and 4, markedly increased.
predictor of vancomycin MIC at the upper limit of the susceptibility range. Prior vancomycin exposure in CC5 \textit{agr} II SCCmec II organisms may account for their higher vancomycin MICs. Currently, the molecular epidemiology of MRSA is a moving target, both geographically and temporally, and therefore, considerable strain heterogeneity may be found among different clinical studies. Therefore, generalizability of findings from clinical trials on MRSA bacteraemia to individual clinical centres needs to be done with caution.

Acknowledgements

Previously presented in part at the Forty-seventh Interscience Conference on Antimicrobial Agents and Chemotherapy, Chicago, IL, USA, 2007 (Poster C1-1446).

Funding

This study was not funded by external sources.

Transparency declarations

P. A. M. is currently employed by Cubist. G. S. has received research funding from Cubist and Pfizer, has been a consultant for Cubist, Pfizer, Targanta and Ortho McNeil and has been on the speakers’ bureau for Cubist, Pfizer and Wyeth. All other authors (D. S. S., D. A. R., N. E.-F. and C. M.) have no conflicts to disclose.

References

1. Levine DP. Vancomycin: a history. \textit{Clin Infect Dis} 2006; 42 Suppl 1: S5–12.
2. Rhee KY, Gardiner DF, Charles M. Decreasing \textit{in vitro} susceptibility of clinical \textit{Staphylococcus aureus} isolates to vancomycin at the New York Hospital: quantitative testing redux. \textit{Clin Infect Dis} 2005; 40: 1705–6.
3. Steinkraus G, White R, Friedrich L. Vancomycin MIC creep in non-vancomycin-intermediate \textit{Staphylococcus aureus} (VISA), vancomycin-susceptible clinical methicillin-resistant \textit{S. aureus} (MRSA) blood isolates from 2001–05. \textit{J Antimicrob Chemother} 2007; 60: 788–94.
4. Wang G, Hindler JF, Ward KW \textit{et al}. Increased vancomycin MICs for \textit{Staphylococcus aureus} clinical isolates from a university hospital during a 5-year period. \textit{J Clin Microbiol} 2006; 44: 3883–6.
5. Moise-Broder PA, Sakoulas G, Eliopoulos GM \textit{et al}. Accessory gene regulator group II polymorphism in methicillin-resistant \textit{Staphylococcus aureus} is predictive of failure of vancomycin therapy. \textit{Clin Infect Dis} 2004; 38: 1700–5.
6. Hidayat LK, Hsu DI, Quist R \textit{et al}. High-dose vancomycin therapy for methicillin-resistant \textit{Staphylococcus aureus} infections: efficacy and toxicity. \textit{Arch Intern Med} 2006; 166: 2138–44.
7. Moise PA, Sakoulas G, Forrest A \textit{et al}. Vancomycin \textit{in vitro} bactericidal activity and its relationship to efficacy in clearance of methicillin-resistant \textit{Staphylococcus aureus} bacteraemia. \textit{Antimicrob Agents Chemother} 2007; 51: 2582–6.
8. Lodise TP, Graves J, Evans A \textit{et al}. Relationship between vancomycin MIC and failure among patients with methicillin-resistant \textit{Staphylococcus aureus} bacteraemia treated with vancomycin. \textit{Antimicrob Agents Chemother} 2008; 52: 3315–20.
9. Fowler VG Jr, Sakoulas G, McIntyre LM \textit{et al}. Persistent bacteraemia due to methicillin-resistant \textit{Staphylococcus aureus} infection is associated with \textit{agr} dysfunction and low-level \textit{in vitro} resistance to thrombin-induced platelet microbicidal protein. \textit{J Infect Dis} 2004; 190: 1140–9.
10. Fowler VG Jr, Boucher HW, Corey GR \textit{et al}. Daptomycin versus standard therapy for bacteremia and endocarditis caused by \textit{Staphylococcus aureus}. \textit{N Engl J Med} 2006; 355: 653–65.
11. Moise PA, Forrest A, Birmingham MC \textit{et al}. The efficacy and safety of linezolid as treatment for \textit{Staphylococcus aureus} infections in compassionate use patients who are intolerant of, or who have failed to respond to, vancomycin. \textit{J Antimicrob Chemother} 2002; 50: 1017–26.
12. Moise-Broder PA, Forrest A, Jagodzinski LM \textit{et al}. Methicillin-resistant \textit{Staphylococcus aureus} bloodstream infections failing vancomycin: results of increasing vancomycin versus adding quinupristin–dalfopristin to vancomycin. In: Fortyith IDSA Annual Meeting, Chicago, IL, 2002. Poster 182.
13. Gilot P, Lina G, Cochard T \textit{et al}. Analysis of the genetic variability of genes encoding the RNA III-activating components \textit{Agr} and TRAP in a population of \textit{Staphylococcus aureus} strains isolated from cows with mastitis. \textit{J Clin Microbiol} 2002; 40: 4060–7.
14. Ito T, Katayama Y, Asada K \textit{et al}. Structural comparison of three types of staphylococcal cassette chromosome \textit{mec} integrated in the chromosome in methicillin-resistant \textit{Staphylococcus aureus}. \textit{Antimicrob Agents Chemother} 2001; 45: 1323–36.
15. Robinson DA, Enright MC. Evolutionary models of the emergence of methicillin-resistant \textit{Staphylococcus aureus}. \textit{Antimicrob Agents Chemother} 2003; 47: 3926–34.
16. Koreen L, Ramaswamy SV, Graviss EA \textit{et al}. \textit{spa} typing method for discriminating among \textit{Staphylococcus aureus} isolates: implications for use of a single marker to detect genetic micro- and macrovariation. \textit{J Clin Microbiol} 2004; 42: 792–9.
17. Sakoulas G, Eliopoulos GM, Moellerling RC Jr \textit{et al}. Accessory gene regulator (\textit{agr}) locus in geographically diverse \textit{Staphylococcus aureus} isolates with reduced susceptibility to vancomycin. \textit{Antimicrob Agents Chemother} 2002; 46: 1492–502.
18. Clinical and Laboratory Standards Institute. \textit{Performance Standards for Antimicrobial Susceptibility Testing: Sixteenth Informational Supplement M100-S16}. CLSI, Wayne, PA, USA, 2006.
19. Sakoulas G, Moellerling RC Jr, Eliopoulos GM. Adaptation of methicillin-resistant \textit{Staphylococcus aureus} in the face of vancomycin therapy. \textit{Clin Infect Dis} 2006; 42 Suppl 1: S40–50.
20. McDougall LC, Steward CD, Killgore GE \textit{et al}. Pulsed-field gel electrophoresis typing of oxacillin-resistant \textit{Staphylococcus aureus} isolates in the United States: establishing a national database. \textit{J Clin Microbiol} 2003; 41: 5113–20.
21. Chua T, Moore CL, Perri MB \textit{et al}. Molecular epidemiology of methicillin-resistant \textit{Staphylococcus aureus} bloodstream isolates in urban Detroit. \textit{J Clin Microbiol} 2008; 46: 2345–52.