Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Repurposing FDA-approved drugs to fight COVID-19 using *in silico* methods: Targeting SARS-CoV-2 RdRp enzyme and host cell receptors (ACE2, CD147) through virtual screening and molecular dynamic simulations

Soodeh Mahdian a, Mahboobeh Zarrabi b,*, Yunes Panahi c, Somayyeh Dabbagh b

a Department of Cellular and Molecular Biology, Faculty of Biological Sciences, North Tehran Branch, Islamic Azad University, Tehran, Iran
b Department of Biotechnology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran
cPharmacotherapy Department, Faculty of Pharmacy, Baqiyatallah University of Medical Sciences, Tehran, Iran

ARTICLE INFO

Keywords:
COVID-19
CD147
ACE2
RdRp
Drug repurposing

ABSTRACT

Background: Different approaches have been proved effective for combating the COVID-19 pandemic. Accordingly, *in silico* drug repurposing strategy, has been highly regarded as an accurate computational tool to achieve fast and reliable results. Considering SARS-CoV-2’s structural proteins and their interaction the host’s cell-specific receptors, this study investigated a drug repurposing strategy aiming to screen compatible inhibitors of FDA-approved drugs against viral entry receptors (ACE2 and CD147) and integral enzyme of the viral polymerase (RdRp).

Methods: The study screened the FDA-approved drugs against ACE2, CD147, and RdRp by virtual screening and molecular dynamics (MD) simulation.

Results: The results of this study indicated that five drugs with ACE2, four drugs with RdRp, and seven drugs with CD147 achieved the most favorable free binding energy (ΔG < −10). This study selected these drugs for MD simulation investigation whose results demonstrated that ledipasvir with ACE2, estradiol benzoate with CD147, and vancomycin with RdRp represented the most favorable ΔG. Also, paritaprevir and vancomycin have good binding energy with both targets (ACE2 and RdRp).

Conclusions: Ledipasvir, estradiol benzoate, and vancomycin and paritaprevir are potentially suitable candidates for further investigation as possible treatments of COVID-19 and novel drug development.

1. Introduction

Since the outbreak of the COVID-19 pandemic in late 2019, many have attempted to find a reliable treatment. Based on the reports of WHO, more than 17 million global cases have been confirmed thus far [1]. Given the data on structural properties of SARS-CoV-2, the causative agent of the COVID-19, and its homology to beta-coronaviruses of familiar viruses, such as SARS and MERS, similar therapeutic strategies have thus far been applied [2]. However, no effective drug has yet been introduced to treat and combat specific structures of viral components, despite the prescription of various medications, including hydroxychloroquine [3], azithromycin [4], remdesivir [5], idasanutlin [6], and favipiravir [7]. Therefore, pharmacological studies concerning COVID-19 treatment are still in progress. Many research studies have addressed the COVID-19 treatment, focusing on the drug repurposing technique for implementing which recognizing pathogenic targets is essential. In this case, biological insights toward genomic and structural properties of SARS-CoV-2 have identified many features of viral pathogenic targets [8]. RNA-dependent RNA polymerase (RdRp) is integral for preserving viral life, and several reports indicate that positive-sense viruses have conserved RdRp enzymes [9]. In line with these findings, X-ray crystallography and structural properties of SARS-CoV-2 RdRp were conducted to introduce novel antiviral drug designs and drug repurposing approaches [10]. Spike glycoprotein, as a structural protein of SARS-CoV-2, plays a critical role in the initial steps of pathogenesis. Structural studies and biochemical experiments have confirmed the binding of SARS-CoV2 spike to human angiotensin-converting enzyme (ACE2) receptors [11]. According to these studies, receptor-binding...
domains (RBD) of the spike undergo transient movements that trigger further up and down conformations for receptor attachment [12].

2. Methods

2.1. System input setup and initial structures

Proteins: It was the ACE2-SARS-CoV-2 RBD complex, as the crystal structure of ACE2 (PDB id: 6MOJ), that justified its use in this study [23]. The crystal structure of CD147 (PDB id: 3B5H) at the 2.8 Å resolution provides a suitable structural explanation by homo/hetero-oligomerizations and represents a general structure of other CD147 family members [24]. The predicted structure of RdRp coordinate files was also obtained from the I-TASSER server. The structural PDB files were investigated to detect various problems, such as undesirable HETATOMs, attached ligands, missing atoms, and possible chain breaks. Then, all crystallographic waters were removed from the structures, and molecular hydrogens were added to optimize hydrogen bonds and minimized using the GROMACS 5.1.7 package before docking [25].

Small molecules: The study used the section of small-molecules in the DrugBank database (https://www.drugbank.ca/about) to obtain all FDA-approved drugs [26]. Non-unique structures removed during the process included compounds containing rare atoms and organometallic compounds. Eventually, 2471 compounds were selected.

2.2. Virtual screening

The study used the Pyrx tool for virtual screening [27,28]. The unit-docking cell was defined with Pockdrug server [29] and Uniprot databases. Input pdbqt files for Autodock Vina and minimization steps were generated by the Pyrx tool. Finally, to screen libraries of compounds against targets, the study implemented AutoDock Vina for drug discovery. Docking was done using a 92 Å × 84 Å × 98 Å binding site grid box for ACE2, a 120 Å × 110 Å × 117 Å binding site grid box for CD147 and a 140 Å × 122 Å × 111 Å binding site grid box for RdRp. A total of the top eight poses were retained from the docking run. The interaction established in two dimensions was illustrated in Biovia Discovery Studio, and for 3D visualization of drug/target complexes, Molegro Virtual Docker was used [30].

2.3. Molecular dynamics simulation

The results of virtual screening indicated that five drugs with ACE2, four drugs with RdRp, and seven drugs with CD147 achieved the most favorable free binding energy (ΔG < −10 kcal/mol). For further evaluations, these drugs were chosen for MD simulation to calculate the number of H-bonds and free energy of interaction. MD simulations were directed using the GROMACS 5.1.4 package [31]. The GROMOS 54A7 force field was utilized for the complexes [32]. The study used the ATB server for the preparation of the coordinates and topology of ligands. The study applied appropriate amounts of chloride ions and sodium to all simulation boxes to neutralize the system. Periodic Boundary Condition (PBC) was applied along every simulation box axis, and the SP3 water model was also utilized for system solvation [33] in each simulation system. The LINCS algorithms constrained all covalent bonds. MD simulations were done through a short-range electrostatic interaction as well as a 1.2 nm distance cutoff for the van der Waals interaction. The Particle Mesh Ewald (PME) algorithm calculated the long-range electrostatic interaction. The steepest descent algorithm fulfilled the energy minimization of all systems, and then the NVT ensemble for 500 ps equilibrated all the systems. Then, the NPT ensemble progressively directed the equilibration of each system and the Nose-Hoover algorithm temperature [34,35] was preserved at a temperature of 310 K. During the NPT equilibration, the Parrinello-Rahman barostat [36] maintained the pressures at 1 bar. The MD simulation was completed for the complexes in 100 ns.

2.4. Analyses

The nonpolar and polar interactions between CD147, ACE2, and RdRp with drugs are explainable by binding free-energy calculation. By exercising the MM-PBSA method, the binding free-energy was calculated using the g_mmpbsa tool [37]. The total amount of binding free-energy (ΔG) is realized by adding up the nonpolar interaction free-energy (ΔG_{nonpolar}) and the polar interaction free-energy (ΔG_{polar}) that can be explained as follows:

\[
\Delta G_{\text{total}} = \Delta G_{\text{elec}} + \Delta G_{\text{int}} + \Delta G_{\text{vdw}} + \Delta G_{\text{hbg}}
\]

Where \(\Delta G_{\text{elec}}\), \(\Delta G_{\text{int}}\), \(\Delta G_{\text{vdw}}\), and \(\Delta G_{\text{hbg}}\) are respectively the electrostatic energy, polar solvation energy, van der Waals energy, nonpolar solvation energy.

3. Results

This study applied virtual screening FDA-approved drugs against RdRp, ACE2, and CD147.

3.1. Virtual screening

According to the results, five drugs with ACE2, four drugs with RdRp, and seven drugs with CD147 achieved the most favorable free binding energy (Docking score < −10 kcal/mol) (Table 1). The hydrogen bonding of docked molecules was calculated using Molegro Virtual Docker and Biovia Discovery Studio v.4.5. 2D (Supplementary data).

3.2. Molecular dynamics simulation

MD simulation for all complexes of the ACE2, RDRP, and CD147 with the top-selected drugs is performed for 100 ns. RMSD of alpha carbon atoms, RMSF of all amino acid residues, the number of hydrogen bonds, and free energy of interaction for the drug/protein complexes are investigated.

3.2.1. RMSD and RMSF

Figs. 1A, 2A and 3A depict the RMSD of ACE2, CD147, and RdRp
Table 1
Docking results of FDA-approved drugs and ACE2, CD147 and RdRp with the best binding free energy (Docking score < -10) and the number of hydrogen bonds at 0, 20, 40, 60, 80 and 100 ns. The length of the hydrogen bond ranges from 2.6 to 3.1 Å.

Complexes	Binding energy (kcal/mol)	H-bond Donor/acceptor (0, 20, 40, 60, 80 and 100 ns)	H-bond Interactions (Interacting residues) (0, 20, 40, 60, 80 and 100 ns)
ACE2_Paritaprevir	-11.2	0 ns 4 Asn 394, Asp 206, Lys 562, Gln 102	60 2 Glu 64, Lys 36
		20 2 Lys 562, Asp 206	80 3 Glu 64, Lys 36, His 53
		40 3 Lys 562, Asp 206, Gln 102, Gly 104	100 4 Glu 64, Lys 36, Gln 73, Gln 70
ACE2_Ledipasvir	-11	0 ns 3 Lys 441, His 378, Gln 402	60 2 Lys 441
		20 1 Lys 441	80 2 Lys 441
		40 2 Lys 441, Ile 291	100 4 Lys 441, Arg 273, His 345, His 505
ACE2_Vancomycin	-10.8	0 ns 4 Asn 117, Am 103, Tyr 202, Lys 394	60 2 Lys 187, Gln 102, Tyr 199, Asp 117, Gln 205, Am 394, Lys 562
		20 5 His 401, His 378, Arg 514, Lys 562, Am 117	80 7 Lys 187, Gln 102, Tyr 199, Phe 390, Arg 393, Gln 98, Tyr 196, Asp 509, Am 117, Tyr 196
		40 6 Asn 394, Asp 206, Arg 514, Gln 402, Ser 105, Ser 113	100 10 Lys 187, Gln 102, Tyr 199, Phe 390, Arg 393, Gln 98, Tyr 196, Asp 509, Am 117, Tyr 196
ACE2_Sirolimus	-10.7	0 ns 3 Asn 210, Gln 98, Lys 562	60 2 Lys 94, Asn 210
		20 2 Lys 94, Asn 210	80 2 Lys 94, Asn 210
		40 2 Lys 94, Asn 210	100 2 Lys 94, Asn 210
		60 2 Lys 94, Asn 210	20 3 Lys 75, Gln 57, Lys 71
		80 2 Lys 94, Asn 210	100 2 Glu 64, Asp 77
CD147_Inirotecan	-11.6	0 ns 2 Glu 64, Lys 75	60 2 Glu 64, Lys 75
		20 2 Glu 64, Lys 75	80 3 Ser 130, Glu 129, Arg 106
		40 2 Glu 64, Lys 75	0 ns 1 Glu 73

Table 1 (continued)

Complexes	Binding energy (kcal/mol)	H-bond Donor/acceptor (0, 20, 40, 60, 80 and 100 ns)	H-bond Interactions (Interacting residues) (0, 20, 40, 60, 80 and 100 ns)
CD147_Acemaciclib	-11.1	0 ns 1 Glu 73	60 2 Glu 64, Lys 36
		20 1 Lys 36	80 3 Glu 64, Lys 36, His 53
CD147_Estradiol	-10.7	0 ns 1 Lys 75	60 3 Glu 64, Lys 75, Gln 73
benzoate		20 2 Lys 75, Tyr 85	80 3 Lys 75, Gln 73, Gln 85
CD147_Capmatinib	-10.7	0 ns 0 –	60 4 Lys 36, Lys 57, Tyr 85
		20 3 Lys 36, Lys 57	80 4 Lys 36, Lys 57, Asp 80
CD147_Olaparib	-10.6	0 ns 1 Lys 75	60 4 Lys 57, Gln 73, Gln 85
		20 3 Lys 75	80 4 Lys 57, Gln 73, Asp 80
CD147_Lumacaftor	-10.6	0 ns 1 Glu 73	60 2 Lys 75, Gln 73
		20 3 Lys 75, Gln 73	80 2 Lys 75, Gln 73
CD147_Pazopanib	-10.5	0 ns 1 Lys 75	60 2 Lys 75, Gln 73
		20 3 Lys 75, Gln 73	80 2 Lys 75, Gln 73
CD147_Estradiol	-10.7	0 ns 1 Lys 75	60 4 Lys 36, Lys 57, Tyr 85
benzoate		20 2 Lys 75, Tyr 85	80 4 Lys 36, Lys 57, Asp 80
complexes. The ACE2 complexes follow a similar trend in the MD trajectory like RdRp complexes, but CD147 complexes are different. The RMSF is explored to understand how the binding of drug molecules changes the behavior of the amino acid residues of the protein. A low RMSF is observed for the RdRp complexes, while ACE2 and CD147 complexes show high flexibility (Figs. 1B, 2B and 3B).

3.2.2. The number of hydrogen bonds and free energy of interaction

For further evaluations, the study utilized the MD simulation method to calculate the number of H-bonds and the amount of free energy of interaction. The number of H-bonds and free energy of interaction between ACE2, CD147, and RdRp and the drugs essential for stabilizing the complexes. The ACE2_vancomycin, ACE2_paritaprevir, CD147_estradiol, RdRp_vancomycin and RdRp_dactinomycin have the most hydrogen bonds over the 100 ns simulation time. Fig. 4 illustrated the number of H-bonds versus time at 310 K. The snapshots were generated at 0, 20, 40, 60, 80 and 100 ns, to investigate the stable hydrogen bonds between protein and ligands (Table 1). The figures of these complexes were drawn using Molegro Virtual Docker (The figures for hydrogen bonds in these intervals are provided in supplementary data). Tables 2-4 illustrate the calculation of ΔG for the polar & nonpolar interactions between protein and drugs, indicating that ledipasvir with ACE2, estradiol benzoate with CD147, vancomycin with RDRP had the most favorable ΔG.

4. Discussion

This study assessed the potential of FDA-approved small molecules to disrupt the interaction of virus-host cell components and interfere with the viral proliferation mechanism using drug repurposing approaches. The SARS-CoV-2 ACE2 receptor is integral in cardiovascular and renal diseases, diabetes, and lung injury [38]. Furthermore, the observations indicated that the expression of ACE2 correlated with the infection severity in vitro [15], which makes it a suitable candidate for pharmaceutical studies. Accordingly, many cases have been reported in which the administration of soluble ACE2 is observed as a competitive method for inhibiting virus binding to the host cell [29]. MD simulation results indicated that Ledipasvir with ACE2 had the most favorable ΔG (Table 2). Also, the results of molecular docking in a relevant study showed that Ledipasvir could interfere with the binding of S protein to ACE2 [40]. The stable binding energy during 100 ns MD simulations (ΔG = 399.33 kcal/mol), together with RMSD and RMSF, confirm Ledipasvir inhibitory effects. Additionally, paritaprevir has good binding energy with both ACE 2 and RdRp targets. In this study, paritaprevir-ACE2 in 0–100 ns, Asp 206, have a key part in the hydrogen interactions during MD simulation (Table 1). Based on structural data, Asp 206 is located in the interaction surface with SARS-CoV-2 spike proteins [40]. Also, the complexes of ACE2 are stabilized by H-bonded interactions offered by residues that some of which are in the binding site [41]. The recent studies aiming at screening the FDA against SARS-CoV-2 proteins indicated that ledipasvir, paritaprevir, and simeprevir are promising medication candidates for COVID-19 treatment [42,43]. The clinical trials to evaluate the efficacy of ledipasvir in the treatment of COVID-19 are underway [44,45]. Ledipasvir and paritaprevir are direct-acting antiviral (DAA) medications used as part of combination therapy to treat chronic Hepatitis C, which is an infectious liver disease due to HCV infection. The RdRp enzyme is involved in viral genome replication and transcription of structural and peripheral small guided mRNAs (sgmRNAs) [46]. Therefore, it has been considered a primary target for many antiviral drugs, such as Remdesivir [5]. RdRp has conserved structural motifs like other polymerases, such as thumb (residues 816–932), palm (residues 860–932), and finger (residues 366–581) [47]. Vancomycin has the highest hydrogen bond with ACE2 and RdRp (Fig. 4). Also, MD simulation results indicated that vancomycin with RdRp had the most favorable ΔG (Table 4). In such a case, most of the residues involved in the interaction sites of the Vancomycin-RdRp complex, are located in the preferred conserved motifs and it was observed that Asn 459, Asp 390, Thr 393 and Lys 391 have strong hydrogen bonds in 100 ns simulation. Relevant studies show that vancomycin has the main part in infection treatment in severe coronavirus disease patients. Secondary bacterial infections associated with COVID-19 are caused by gram-positive bacteria, including methicillin-resistant Staphylococcus aureus (MRSA), methicillin-resistant, coagulase-negative staphylococci (MR CNS), and Enterococci species. These common nosocomial infections can cause ventilator-associated complications, like pneumonia, and are commonly treated with an antibiotic known as vancomycin. However, it has a narrow treatment window and some patients react differently to the drug leading to sub-optimal vancomycin concentrations in patients [48]. As you can see in Tables 2 and 4, sirolimus and dactinomycin also have suitable binding energy with ACE2 and RdRp. A recent study used a network-based drug repurposing sirolimus plus dactinomycin as

Table 1 (continued)

Complexes	Binding energy (kcal/mol)	H-bond Interactions (Interacting residues) (0, 20, 40, 60, 80 and 100 ns)
RdRp_Rifabutin	−10.4	0 ns 1 Arg 553, Lys 551
		20 ns 2 Arg 836, Ile 548
		60 ns 1 Arg 836
		80 ns 3 Ile 548, Arg 555, Ser 549
		100 ns 1 Ile 548
RdRp_Dactinomycin	−10.2	0 ns 3 Asp 721, Thr 208, Arg 721
		20 ns 2 Arg 39, Asp 3
		40 ns 2 Lys 41, Ser 1
		60 ns 4 Lys 41, Tyr 728, Tyr 129, Arg 721
		80 ns 5 Arg 132, Asp 208, Leu 207, Lys 41, Asp 3
RdRp_Vancomycin	−10.2	0 ns 7 Ser 255, Val 320, Phe 321, Arg 461, Leu 460, Lys 391, Thr 393
		20 ns 5 Ser 255, Val 320, Asp 459, Phe 461
		40 ns 3 Asp 390, Asp 459, Val 320
		60 ns 6 Asp 390, Thr 393, Phe 396, Phe 461
		80 ns 8 Lys 391, Thr 393, Cys 395, Arg 390
		100 ns 9 Lys 391, Asp 390, Tyr 265, Thr 319, Asp 459, Arg 390, Thr 393, Arg 249, His 256
RdRp_Paritaprevir	−10	0 ns 2 Ala 554, Thr 556
		20 ns 1 Ala 554
		40 ns 2 Ala 554, Arg 836
		60 ns 1 Ala 554
		80 ns 2 Ala 554, Lys 621
		100 ns 2 Ala 554, Arg 858
treatment candidates for COVID-19 [49]. Nowadays, CD147 is regarded as an integral target in treating inflammatory diseases [50]. In 2016, a study investigated the role of small molecules in inhibiting CD147, which was used a Pharmacophore model derived from the structure of CD147. The results confirmed that the small molecule targeting CD147 was able to disrupt CD147 dimerization specifically and inhibit the

Fig. 1. A) Root mean square deviation (RMSD) for protein in ACE2 complexes B) Root mean square fluctuation (RMSF) for protein in ACE2 complexes.

Fig. 2. A) Root mean square deviation (RMSD) for protein in CD147 complexes B) Root mean square fluctuation (RMSF) for protein in CD147 complexes.
Fig. 3. A) Root mean square deviation (RMSD) for protein in RdRp complexes B) Root mean square fluctuation (RMSF) for protein in RdRp complexes.

Fig. 4. A) The number of H-bonds between drugs and ACE2 B) The number of H-bonds between drugs and CD147 C) The number of H-bonds between drugs and RdRp.
motility and invasion of hepatocellular carcinoma (HCC) cells [51]. Therefore, inhibition of CD147, with the help of small molecules, can play an effective role in treating some cancers and viral infections, including COVID-19. However, no small-molecule inhibitors for CD147 have been developed to date as an FDA-approved drug. A new study assessing the efficacy and safety of Meplazumab, a humanized anti-CD147 antibody, examined patients with SARS-CoV-2 pneumonia. Meplazumab efficiently improved the recovery of patients with COVID-19 pneumonia with a favorable safety profile [20]. These results support the inhibition of CD147 as a treatment host-targeted strategy for COVID-19 pneumonia. Besides, MD simulation results indicated that estradiol benzoate with CD147 had the most favorable combination of irinotecan (topoisomerase I inhibitor) and etoposide (a topoisomerase II inhibitor) can potentially inhibit cytokine storms in COVID-19 [52]. A type of clinical study using a drug repositioning strategy indicated the inhibitory effects of olaparib and mefuparib, as two PARP1 inhibitors, on COVID-19 [53]. Abemaciclib is an antitumor agent and dual inhibitor of cyclin-dependent kinases 4 (CDK4) and 6 (CDK6), that are involved in the cell cycle and promotion of cancer cell growth in case of unregulated activity.

5. Conclusion

The inhibition of CD147 and ACE2, as two main receptors of SARS-CoV-2, can prevent the entering of the virus into the host cells.
Besides, the inhibition of RdRp, as the main enzyme for viral replication, is effective in fighting the COVID-19. Accordingly, this study aimed to use drug repurposing by virtual screening to identify inhibitors for CD147, ACE2, and RdRp. The results of this study showed that five drugs with ACE2, four drugs with RdRp, and seven drugs with CD147 achieved the most favorable free binding energy (Docking score with ACE2, four drugs with RdRp, and seven drugs with CD147). The results of this study showed that five drugs also prevent disease progression. It was also shown for the first time in this study that, paritaprevir and vancomycin have good binding energy with both targets (ACE2 and RdRp). These drugs can be suitable candidates for further investigation as possible treatments of COVID-19 infection.

Funding sources
This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author contributions
Soodeh Mahdian collected and interpreted the data and prepared the manuscript. Yunes Panahi revised the manuscript and contributed to its design. Mahboobeh Zarrabi contributed to the design and revision of the manuscript, and Somayeh Dabbagh contributed to the authorship of the manuscript.
18. Mahdian S, Shahboseini M, Moini A. COVID-19 mediated by basigin can affect male and female fertility. Int J Fertil Steril 2020;14(3):262-3. https://doi.org/10.22074/ijfs.2020.134792.

19. Muramatsu Takashi. Basigin (CD147), a multifunctional transmembrane glycoprotein with various binding partners. J Biochem 2016;159(5):481-90. https://doi.org/10.1093/jb/mvw127.

20. Ulrich Henning, Pillat Michail M. CD147 as a target for COVID-19 treatment: suggested effects of azithromycin and stem cell engagement. Stem Cell Rev Rep 2020;16(3):434-40. https://doi.org/10.1007/s12015-020-09976-7. 2020.

21. Crosnier C. PockDrug. In: Ward J, editor. DrugBank 5.0: a major update to the DrugBank database for 2018. Nucleic Acids Res 2019;47:D1046-52. https://doi.org/10.1093/nar/gky1037.

22. Lan Jun, et al. Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor. Nature 2020;581(7807):215-20. https://doi.org/10.1038/s41586-020-2180-z.

23. Hussein HA, Borrel A, Geneix C, Petitjean M, Regad L, Camproux AC. PockDrugServer: a new web server for predicting pocket druggability on holo and apo crystal structures. J Comput Chem 2019;40:1804-11. https://doi.org/10.1002/jcc.28298.

24. Wishart DS, Feunang YD, Guo AC, Lo EJ, Marcu A, Grant JR, Assempour N. DrugBank 5.0: a major update to the DrugBank database for 2018. Nucleic Acids Res 2018;46(D1):D1046-52. https://doi.org/10.1093/nar/gky1037.

25. Bhattacharya D, Nowotny J, Cao R, Cheng J. 3Drefine. An interactive web server for protein structure refinement. Nucleic Acids Res 2015;43(W1):W436-42. https://doi.org/10.1093/nar/gkv462. Epub 2015 May 8.

26. Berendsen HJC, van der Spoel D, van Drunen, Gromacs R. A message-passing molecular dynamics framework. J Comput Chem 1995;16:116-22. https://doi.org/10.1002/jcc.880160205.

27. Hoover WG. Canonical dynamics: equilibrium phase-space distributions. Phys Rev A 1985;31(3):1695-7. https://doi.org/10.1103/physreva.31.1695.

28. Bitencourt-Ferreira G, de Azevedo WF. Molegro virtual docker for docking. J Chem Theor Comput 2008;4(1). https://doi.org/10.1021/ct700200b. 116-22.

29. Gao Y, Yan L, Huang Y, Liu F, Zhao Y, Cao L, Rao Z. Structure of the RNA-dependent RNA polymerase from COVID-19 virus. Science 2020;368(6492):779-82. https://doi.org/10.1126/science.aay7489.

30. Pagliano P, Scarpati G, Sellitto C, Conti V, Spera AM, Asincd F, Filippelli A. Experimental pharmacotherapy for COVID-19: the latest advances. J Exp Pharmacol 2021;13:1. https://doi.org/10.2174/17782974.42206.

31. Sola I, Almanza F, Zuniga S, Eijjannen L. Continuous and discontinuous RNA synthesis in coronaviruses. Annu Rev Virol 2015;2:265-88. https://doi.org/10.1146/annurev-virology-100114-055218.

32. Mevada V, Dadhagara P, Gandhi H, Vaghamshi N, Beladuya U, Patel R. Drug repurposing of approved drugs elbasvir, ledipasvir, paritaprevir, velpatasvir, antrafenine and ergotamine for combating COVID19. 2020. https://doi.org/10.26434/chemrxiv.12115251.v1.

33. Gao Y, Yan L, Huang Y, Liu F, Zhao Y, Cao L, Rao Z. Structure of the RNA-dependent RNA polymerase from COVID-19 virus. Science 2020;368(6492):779-82. https://doi.org/10.1126/science.aay7489.

34. Kumar R, Kumar R, Lynn A, Lynn A. g_mmpbsa A GROMACS tool for high-throughput MM-PBSA calculations. J Chem Inf Model 2014;54:1951-62. https://doi.org/10.1021/ci500626m.

35. Dhakal L, Khanal S, Shahhoseini M, Moini A. COVID-19 mediated by basigin can affect male and female fertility. Int J Fertil Steril 2020;14(3):262-3. https://doi.org/10.22074/ijfs.2020.134792.

36. Giegiey S, Giegiey E, Malan S, Christoffels A, Fielding B. Computational drug repurposing strategy predicted peptide-based drugs that can potentially inhibit the interaction of SARS-CoV-2 spike protein with its target (humanACE2). PloS One 2021;16(11):e0254258. https://doi.org/10.1371/journal.pone.0254258.

37. Thuy BT, Kaur I, Bungau S, Kumar A, Uddin MS, Kumar C, et al. The dual impact of ACE2 in COVID-19 and ironical actions in geriatrics and pediatrics with possible therapeutic solutions, vol. 257. Life Sciences; 2020. https://doi.org/10.1016/j.lifes.2020.118675.

38. Miroshmychenko K, Shestopalova AV. Combined use of aminoflavone and ledipasvir can interfere with binding of spike glycoprotein of SARS-CoV-2 to ACE2: the results of molecular docking study. 2020. https://doi.org/10.26434/chemrxiv.12044538.v8.

39. Mokdad V, Dadhagara P, Gandhi H, Vaghamshi N, Beladuya U, Patel R. Drug repurposing of approved drugs elbasvir, ledipasvir, paritaprevir, velpatasvir, antrafenine and ergotamine for combating COVID19. 2020. https://doi.org/10.26434/chemrxiv.12115251.v1.

40. Yilmaz M, Qin X, Gao M, Shi H, Fan Y, Guo M. Pharmacokinetics and pharmacodynamics of vancomycin in severe COVID-19 patients: a preliminary study in a Chinese tertiary hospital. 2020. https://doi.org/10.21203/rs.3.rs.37635/v1.

41. Zhou Y, Hou Y, Shen J, Huang Y, Martin W, Cheng F. Network-based drug repurposing for novel coronavirus 2019-ncov/SARS-CoV-2. Cell Discov 2020;6(1):e02012. https://doi.org/10.26434/chemrxiv.12377870.v1.

42. Xu Z, Song Z, Zhang S, Nanda A, Li G. CD147: a novel modulator of inflammatory and immune disorders. Curr Med Chem 2014;21(19). https://doi.org/10.2174/092986732166132271923522.

43. Thuy BT, Kaur I, Bungau S, Kumar A, Uddin MS, Kumar C, et al. The dual impact of ACE2 in COVID-19 and ironical actions in geriatrics and pediatrics with possible therapeutic solutions, vol. 257. Life Sciences; 2020. https://doi.org/10.1016/j.lifes.2020.118675.

44. Lovret M. The AI-discovered etiology of COVID-19 and rationale of the lirntocan + etoposide combination therapy for critically ill COVID-19 patients. Med Hypotheses 2020;144:110180. https://doi.org/10.1016/j.mehy.2020.110180.

45. Thuy BT, Kaur I, Bungau S, Kumar A, Uddin MS, Kumar C, et al. The dual impact of ACE2 in COVID-19 and ironical actions in geriatrics and pediatrics with possible therapeutic solutions, vol. 257. Life Sciences; 2020. https://doi.org/10.1016/j.lifes.2020.118675.
Update
Informatics in Medicine Unlocked
Volume , Issue , , Page

DOI: https://doi.org/10.1016/j.imu.2023.101263
Corrigendum to “Repurposing FDA-approved drugs to fight COVID-19 using in silico methods: Targeting SARS-CoV-2 RdRp enzyme and host cell receptors (ACE2, CD147) through virtual screening and molecular dynamic simulations” [Inform. Med. Unlocked 23 (2021) 1-9/100541]

Soodeh Mahdian a, Mahboobeh Zarrabi b,*, Yunes Panahi c, Somayyeh Dabbagh Sadeghpour b

a Department of Cellular and Molecular Biology, Faculty of Biological Sciences, North Tehran Branch, Islamic Azad University, Tehran, Iran
b Department of Biotechnology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran
c Pharmacotherapy Department, Faculty of Pharmacy, Baqiyatallah University of Medical Sciences, Tehran, Iran

Unfortunately, I was not careful enough in checking the proof of the article and my address has some problems. I request you to add the amendment to the original article. Thank you very much for your cooperation.

DOI of original article: https://doi.org/10.1016/j.imu.2021.100541.
* Corresponding author.
E-mail address: mzarrabi@alzahra.ac.ir (M. Zarrabi).
https://doi.org/10.1016/j.imu.2023.101263

Available online 4 May 2023
2352-9148/© 2023 The Author(s). Published by Elsevier Ltd. All rights reserved.

Please cite this article as: Soodeh Mahdian et al., Informatics in Medicine Unlocked, https://doi.org/10.1016/j.imu.2023.101263