INTRODUCTION

Pandemics are an uncommon and upsetting time for health care workers \(^1\). India prepares for the COVID-19 pandemic by uplifting the various medical services by leaps and bounds so that they can handle the current situation\(^2\). The infection that causes COVID-19 was at first called as 2019-nCov and was then named as COVID-19 by the ICTV \(^3\). It is another strain of coronavirus found in 2019 which was not found beforehand in people. The extreme respiratory condition coronavirus (SARS-CoV) and the center east respiratory disorder coronavirus (MERS-CoV) have been known to affect the respiratory tract most commonly\(^4\).

The target for the virus being the respiratory system, it can be transmitted by person to person transmission (aerosol, touch, fomites, etc). The incubation period for the coronavirus was approximately 5.2 days and the death can occur within 6 to 41 days. The most common symptoms of COVID-19 were fever, cough, fatigue, sputum production, headache, hemoptysis, diarrhea, dyspea, etc\(^4\). The coronavirus disease has 3 stages, the stage 1 will be an asymptomatic state and the period of infection will be 1-2 days, first, the virus enters into the nasal cavity and starts replicating. Then it will go to conducting airways and affect the surrounding areas. This stage can be detected by the nasal swab. Stage-2 will be upper airways and conducting airways responses, 80% of the infected patients, the disease will be affected upper and conducting airways\(^4\). COVID-19 is most often associated with severe disease that requires intensive care in approximately 5% of proven infections. Also, it is suggested in the recent literature.
that pneumonia is the most frequent serious manifestation of this COVID-19 infection

Owing to its wide-spread nature in a short period of time, World Health Organization (WHO) announced coronavirus infection as a pandemic on March 11,2020. With the suggested method of transmission through contact and aerosol transmission, health care workers are among the most noteworthy dangers of being infected. All possible actions must be taken to control the spread of the infection among health care workers, by identifying the risk factors for infection and then by taking appropriate measures to reduce these risks.

Paramedics are at the frontline of healthcare delivery systems, especially during the current coronavirus pandemic. The main contributions of paramedics include not only treating and transporting infected patients but also pay attention to decontamination and disinfection of ambulances and medical equipment. Paramedics especially have found to play a key role in the care of patients with pneumonia. The effective management of the disease by the paramedic involves prompt recognition and early administration of oxygen, intravenous fluids, antibiotics, and transfer to hospital.

Previously our team had conducted numerous research studies on a plethora of oral diseases and also awareness programs on various fields which led us to conduct another awareness study which is of importance in the current situation. The aim of this survey is to assess the awareness of COVID-19 ailment and its infection control practices among paramedics, being the frontline caregivers in the pandemic situation.

MATERIALS AND METHODS

The study was conducted among paramedics handling the emergency situations in various hospitals. People involved in this study were the paramedics in Tamilnadu. We were able to reach more people and the study population was educated so they were able to make better knowledge choices. The total sampling size of the survey was 100 and the sampling method used was a simple random sampling method.

The primary data collection was done through an online portal (https://forms.gle/BEQJkf1m5g3qTerU9) known as Google forms. The questionnaire totally consisted of ten questions. Questionnaire validity checking was done using the standard protocol. Output variables, the data collection software scores represent the participant’s awareness depicted as pie-charts.

Statistical Analysis

The statistical software used was SPSS. The statistical test used for comparative analysis and the association was Chi-square test (p<0.05 was considered statistically significant). The steps followed in software analysis were entering the data into an excel sheet and entering them in SPSS and generating the graphs.

RESULT AND DISCUSSION

96% of the health care workers use personal protection equipment like gloves, masks very few that are 4% are unaware of it, and don’t use them (Figure 1). 79.03% of the paramedics/health care workers are aware that health workers should notify the local public health unit and 92% answered yes and 8% answered no (Figure 4). 99% agreed to the fact that paramedics are supposed to be educated. Very few that are 1% disagreed with it (Figure 5). They were asked whether they know the fact that if the patient is suspected with corona they should notify the local public health unit and 92% answered yes and 8% answered no (Figure 6). The paramedics were questioned about the recovery time of the corona infected patient. 20% answered 1 to 2 weeks. 41.8% answered 3 to 4 weeks. 19.1% of them answered 5 to 6 weeks and 18.2% of them answered 6 to 7 weeks (Figure 7). 58.06% of the paramedics said that sufficient isolation beds are available in their clinics/hospitals. 41.94% of the paramedics don’t have sufficient isolation beds in their hospitals (Figure 8). The association between gender and the people following the guidance of the government was analyzed using chi-square test and was found to be insignificant (Figure 9). The association between gender and the availability of isolation beds was analyzed using chi-square test and was found to be significant (Figure 10). The association between gender and the availability of isolation beds was analyzed using chi-square test and was found to be insignificant (Figure 11). The association between gender and the awareness in following the infection control policies was analyzed using chi-square test and was found to be insignificant (Figure 12).

Awareness of the use of personal protective equipment (PPE) for suspected or confirmed COVID-19 cases was good among our study population. The protocol followed was provided by CDC for interim infection prevention and control for patients with suspected or confirmed coronavirus diseases 2019n (COVID-19). A face mask/ N95 respirator should be used when entering into the patient room. The N95 respirator is preferred over face mask when performing aerosol-generating procedures. Proper disposal of the used masks and hand hygiene should be followed. According to previous reports, a clean gown with goggles.
or disposable face shields must be used. Clean non-sterile gloves are recommended upon entry to the patient room area. In case of shortage, gowns should be prioritized for aerosol-generating procedures \(^{28,29}\). A nurse or paramedic should also treat the patient’s fears, concerns and in addition should also treat their physical pain \(^{31}\). They are significantly linked to human interactions and contribute substantially in establishing a high-quality relationship with patients. The clinical case of patients with suspected or confirmed cases is a real challenge for healthcare professionals \(^{32}\). Indeed, special strategies should be put in place with the aim of reducing the risk of transmission of these diseases \(^{33}\). These strategies include the application of infection control procedures \(^{34}\), including the isolation of patients in a room with specific technical features. It may take 2 weeks for your body to get over the illness. That’s the average recovery time for mild cases according to the world health organisation\(^{35}\). Empathy is the main component in effective healthcare provider-patient relationships\(^{11}\). For those with severe or critical cases, recovery time can take up to 6 weeks and vaccine development is underway according to current literature \(^{36}\).

Figure 1: The pie chart depicts the percentage distribution of the usage of personal protection equipment. 96% answered yes (blue). 4% answered no (red).

Figure 2: The pie chart depicts the percentage distribution of the awareness of COVID - 19 among paramedics. 79% answered yes (blue). 21% answered no (red).

Figure 3: The pie chart depicts the percentage distribution of the infection control policies followed by paramedics. 94% answered yes (blue). 6% answered no (red).

Figure 4: The pie chart depicts the percentage distribution of people following the guidance of the government. 77% answered yes (blue). 23% answered no (red).

Figure 5: The pie chart depicts the percentage distribution of the education of paramedics. 99% answered yes (blue). 1% answered no (red).
Figure 6: The pie chart depicts the percentage distribution of the paramedics to inform the local public health unit when the patient is affected. 92% answered yes (blue). 8% answered no (red).

Figure 7: The pie chart depicts the percentage distribution of the recovery time of a coronavirus infected person. 17.74% answered 1 to 2 weeks (blue). 49.1% answered 3 to 4 weeks (red). 17% answered 5 to 6 weeks (blue). 16.1% answered 6 to 7 weeks (orange).

Figure 8: The pie chart depicts the percentage distribution of the availability of isolation beds. 58% answered yes (blue). 42% answered no (red).

Figure 9: The bar graph depicting the association between gender and the people following the guidance of the government. X-axis represents gender and Y-axis represents the number of individuals following the guidance of the government (blue) and the number of individuals who don’t follow the guidance of the government (red). Among the 78% of the people, 35% constitutes males and 43% constitutes females. Females are more aware of government policies than males though there is no significant difference in responses between males and females. Chi-square test P= 0.41 - statistically not significant.

Figure 10: The bar graph depicting the association between gender and the availability of isolation beds. X-axis represents the gender and Y-axis represents the number of individuals who have sufficient number of isolation beds in their hospitals (blue) and the number of individuals who don’t have a sufficient number of isolation beds in their hospitals (red). Among the 58% of the people who have a sufficient isolation beds in their hospitals, 23% constitute males and 35% constitutes females. There is a significant difference in responses between males and females. Chi-square test P= 0.03 - statistically significant.

Figure 11: The bar graph depicting the comparison between the gender and the number of individuals who use personal protective equipment. X-axis represents the gender and Y-axis represents the number of individuals who use personal protection equipment (blue) and the number of individuals who don’t use personal protection equipment (red). Among 95% who use personal protection equipment, 43% are males and 52% are females. Hence females are more conscious in using PPE than males. There is no significant difference in responses between males and females. Chi-square test P= 0.17 - statistically not significant.
CONCLUSION

The population should have a better knowledge and should follow protective measures and preventive measures so that it helps to overcome COVID-19. The COVID-19 pandemic is a quickly changing worldwide well being. Paramedics from Tamilnadu indicated a sufficient consciousness of COVID-19 in the medical services setting. Few limitations of this study include the limited sample size and non-availability of paramedic personnel for survey. Females are more aware of the government policies, PPE requirements, and infection control protocol than the males who participated in the study. This study shows that there is a solid need to execute occasional instructive mediations and prepare programs on disease control policies for COVID-19 over all paramedics and health care workers. Conducting online courses for Paramedics could be a valuable and safe device to improve their knowledge and attitude towards handling the patients with utmost care and concern.

ACKNOWLEDGMENT

Authors acknowledge the immense help received from the scholars whose articles are cited and included in references to this manuscript. The authors are also grateful to authors / editors / publishers of all those articles, journals, and books from which the literature for this article has been reviewed and discussed.

Conflict of Interest: Nil

REFERENCE

1. Mears L. COVID-19 The Battle for Humanity [Internet]. Toasted Marshmellow; 2020. 246 p. Available from: https://play.google.com/store/books/details?id=J1LaDwAAQBAJ
2. Higginson R, Parry A, Williams M, Jones B. Paramedics and pneumonia associated with COVID-19 [Internet]. Vol. 12, Journal of Paramedic Practice. 2020. p. 179–85. Available from: http://dx.doi.org/10.12968/jpar.2020.12.5.179
3. Gideon Informatics, Inc, Berger S. COVID-19, MERS and SARS: Global Status [Internet]. GIDEON Informatics Inc; 2020. Available from: https://play.google.com/store/books/details?id=YvzVDwAAQBAJ
4. Park SE. Epidemiology, virology, and clinical features of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2; Coronavirus Disease-19) [Internet]. Vol. 63, Clinical and Experimental Pediatrics. 2020. p. 119–24. Available from: http://dx.doi.org/10.3354/cep.2020.0493
5. Likassa HT. The Impacts of Covariates on Spatial Distribution of CORONA Virus 2019 (COVID-19): WHO Data through Multivariate Analysis of Covariance (MANCOVA) [Internet]. Eurasian Journal of Medicine and Oncology. 2020. Available from: http://dx.doi.org/10.14744/ejmno.2019.81104
6. Zhang Y. Epidemic Features and Control of the 2019 Novel Coronavirus [Internet]. Vol. 01, Current Chinese Medical Science. 2020. Available from: http://dx.doi.org/10.2174/266600320199200304123229
7. Sarbeen Ji, Insira Sarbeen J, Gheena S. Microbial variation in climatic change and its effect on human health [Internet]. Vol. 9, Research Journal of Pharmacy and Technology. 2016. p. 1777. Available from: http://dx.doi.org/10.5958/0974-360x.2016.00359.0
8. Sukumaran G, Padavala S. Molar incisor hypomineralization and its prevalence [Internet]. Vol. 9, Contemporary Clinical Dentistry. 2018. p. 246. Available from: http://dx.doi.org/10.4103/ccd.ccd_161_18
9. Hema Shree K, Ramani P, Sherlin H, Sukumaran G, Jayaraj G, Don KR, et al. Saliva as a Diagnostic Tool in Oral Squamous Cell Carcinoma - a Systematic Review with Meta Analysis. Pathol Oncol Res [Internet]. 2019 Apr;25(2):447–53. Available from: http://dx.doi.org/10.1007/s12253-019-00588-2
10. Abitha T, Santhanam A. Correlation between bizygomatic and maxillary central incisor width for gender identification [Internet]. Vol. 22, Brazilian Dental Science. 2019. p. 458–66. Available from: http://dx.doi.org/10.14295/bds.2019.v22i4.1775
11. Prasanna GE, Gheena S. A study of empathy across students from 4 health disciplines among 1st years and Final years [Internet]. Vol. 9, Research Journal of Pharmacy and Technology. 2016. p. 1472. Available from: http://dx.doi.org/10.5958/0974-360x.2016.00286.9
12. Harrita S, Santhanam A. Determination of Physical Height Using Clinical Crown Height of Deciduous Teeth [Internet]. Vol. 13, Indian Journal of Forensic Medicine & Toxicology. 2019. p. 23. Available from: http://dx.doi.org/10.5958/0973-9130.2019.00255.x
13. Palati S, Ramani P, Herald. J. Sherlin, Gheena S, Don KR, Jayaraj G, et al. Age Estimation of an Individual Using Olze’s Method in Indian Population-A Cross-Sectional Study [Internet]. Vol. 13, Indian Journal of Forensic Medicine & Toxicology. 2019. p. 121. Available from: http://dx.doi.org/10.5958/0973-9130.2019.00179.8

Source of Funding: Nil
Ruskin et al.: Awareness about covid-19 precautions and case management among paramedics - a questionnaire based survey

14. Krishnan RP, Ramani P, Sherlin HJ, Sukumaran G, Ramasubramanian A, Jayaraj G, et al. Surgical Specimen Handover from Operation Theater to Laboratory: A Survey. Ann Maxillofac Surg [Internet]. 2018 Jul;8(2):234–8. Available from: http://dx.doi.org/10.4103/ams.ams_51_18

15. Palati S, Ramani P, Sherlin HJ, Sukumaran G, Ramasubramanian A, Don KR, et al. Knowledge, Attitude and practice survey on the perspective of oral lesions and dental health in geriatric patients residing in old age homes. Indian J Dent Res [Internet]. 2020 Jan;31(1):22–5. Available from: http://dx.doi.org/10.4103/ijdrd.IJDR_195_18

16. Sheriff KAH, Ahmed Hilal Sheriff K, Santhanam A. Knowledge and Awareness towards Oral Biopsy among Students of Saveetha Dental College [Internet]. Vol. 11, Research Journal of Pharmacy and Technology. 2018. p. 543. Available from: http://dx.doi.org/10.5958/0974-360X.2018.00101.4

17. Gunasekaran G, Abilasha R. Tooth sensitivity among resid'ential university students in chennai [Internet]. Asian Journal of Pharmaceutical and Clinical Research. 2016. p. 63. Available from: http://dx.doi.org/10.22159/ajpcr.2016.v9i2.13228

18. Ahad M, Gheena S. Awareness, attitude and knowledge about evidence based dentistry among the dental practitioner in Chennai city [Internet]. Vol. 9, Research Journal of Pharmacy and Technology. 2016. p. 1863. Available from: http://dx.doi.org/10.5958/0974-360X.2016.00380.2

19. Manohar J, Abilasha R. A Study on the Knowledge of Causes and Prevalance of Pigmentation of Gingiva among Dental Students [Internet]. Vol. 10, Indian Journal of Public Health Research & Development. 2019. p. 95. Available from: http://dx.doi.org/10.5958/0976-5506.2019.01859.x

20. Hamnah R, Ramani P, Herald. J. Sherlin, Ranjith G, Ramasubramanian A, Jayaraj G, et al. Awareness about the use, Ethics and Scope of Dental Photography among Undergraduate Dental Students Dentist Behind the lens [Internet]. Vol. 11, Research Journal of Pharmacy and Technology. 2018. p. 1012. Available from: http://dx.doi.org/10.5958/0974-360X.2018.00189.0

21. Uma PK, Ramani P, Sherlin HJ, Others. Knowledge about Legal Aspects of Medical Negligence in India among Dentists- A Questionnaire Survey. Medico Legal Update [Internet]. 2020;20(1):111–5. Available from: http://ijon.net/index.php/mlu/article/view/337

22. Mahmood SU, Crimblly F, Khan S, Choudry E, Mehwish S. Strategies for Rational Use of Personal Protective Equipment (PPE) Among Healthcare Providers During the COVID-19 Crisis [Internet]. Cureus. 2020. Available from: http://dx.doi.org/10.7759/cureus.8248

23. Delgado D, Wyy Quintana F, Perez G, Sosa Lipranti A, Ponce-Negretti C, Mendoza I, et al. Personal Safety during the COVID-19 Pandemic: Realities and Perspectives of Healthcare Workers in Latin America. Int J Environ Res Public Health [Internet]. 2020 Apr 18;17(8). Available from: http://dx.doi.org/10.3390/ijerph17082978

24. Martin-Rodiguez F. Occupational health and safety among health care personnel in a COVID-19 pandemic [Internet]. http://isrctn.com/. Available from: http://dx.doi.org/10.1186/isrctn18348009

25. Wiwanitkit V. N95 respirator, COVID-19, and health care worker [Internet]. International Wound Journal. 2020. Available from: http://dx.doi.org/10.1111/iwj.13419

26. Feng S, Shen C, Xia N, Song W, Fan M, Cowling BJ. Rational use of face masks in the COVID-19 pandemic [Internet]. Vol. 8, The Lancet Respiratory Medicine. 2020. p. 434–6. Available from: http://dx.doi.org/10.1016/s2213-2600(20)30134-x

27. Wong P, Ong SG, Lim WY. COVID-19 and cardiopulmonary resuscitation: an N95 respirator mask may not be adequate [Internet]. British Journal of Anaesthesia. 2020. Available from: http://dx.doi.org/10.1016/j.bja.2020.05.008

28. Field RI. Regulation of Physicians and Other Health Care Professionals [Internet]. Health Care Regulation in America. 2006. p. 19–40. Available from: http://dx.doi.org/10.1093/acprof:oso/9780195159684.003.0002

29. Buick JE, Cheskes S, Feldman M, Richard Verbeek P, Hillier M, Leong YC, et al. COVID-19: What paramedics need to know! [Internet]. CJEM. 2020. p. 1–5. Available from: http://dx.doi.org/10.1017/cem.2020.367

30. Perkins A, Kelly S, Dumbleton H, Whitfield S. Pandemic pupils: COVID-19 and the impact on student paramedics [Internet]. Vol. 17, Australasian Journal of Paramedicine. 2020. Available from: http://dx.doi.org/10.33151/ajp.17.811

31. M G, Geetha M, Seshadri LN. COVID-19: A “Violent” pandemic for health care workers in India [Internet]. Vol. 1, COVID-19 Special Issue. 2020. p. 32–40. Available from: http://dx.doi.org/10.18231/j.covid.100

32. COVID-19 Special Issue [Internet]. Available from: http://dx.doi.org/10.18231/j.covid.100

33. Mandal D. Coronavirus threat to Indian population: risk factors, transmission dynamics and preparedness to prevent the spread of the virus [Internet]. VirusDisease. 2020. Available from: http://dx.doi.org/10.1007/s13337-020-00581-3

34. Timmerman T, Lawlar E, Reinhardt B. Health care facilities in a rural state: An examination of infection control policies [Internet]. Vol. 2, Healthcare Facilities in Rural Georgia: Strategies for Rational Use of Personal Protective Equipment (PPE) Among Healthcare Providers During the COVID-19 Pandemic [Internet]. Cureus. 2020. Available from: http://dx.doi.org/10.7759/cureus.8248

35. Ranasinghe R. Post-COVID19 (Novel Corona) Economic Recovery: Critical Review on Economic Immunity of Sri Lanka [Internet]. SSRN Electronic Journal. Available from: http://dx.doi.org/10.2139/ssrn.3587179

36. Pote Y. COVID19 vaccine: Time to go the Jennerian way [Internet]. Available from: http://dx.doi.org/10.22541/au.158921689.97134381

37. Ramasamy K, Jayakumar S, Chinnu G.COVID-19 Situation at Chennai city – Forecasting for the Better Pandemic Management. Int J Cur Res Rev Vol 12 Issue 12 June 2020, 37-47.

QUESTIONNAIRE

1. Are paramedics supposed to be educated?
 A. Yes
 B. No

2. Government machinery has been able to reach out, guide and assure the people
 A. Yes
 B. No
3. Paramedics should also screen for COVID-19 using the latest “COVID-19 Screening Tool for Paramedics
 A. Yes
 B. No
4. Are sufficient isolation beds available
 A. Yes
 B. No
5. Are essential services functioning and essential goods available?
 A. Yes
 B. No
6. Health workers should contact their local public health unit to report a probable or confirmed case
 A. Yes
 B. No
7. What is the recovery time?
 A. 1-2 weeks
 B. 3-4 weeks
 C. 5-6 weeks
 D. 6-7 weeks
8. When a suspect patient is identified by the CACC, the CACC will notify the responding paramedics crew?
 A. Yes
 B. No
9. Are you following the infection control policies?
 A. Yes
 B. No
10. Do you use personal protection like gloves, mask?
 A. Yes
 B. No