Evaluation of the Coulomb and exchange integrals for higher excited states of helium atom, taking into account the interaction between magnetic moments of the electrons.

Voicu Dolocan

Faculty of Physics, University of Bucharest, Bucharest, Romania

We have calculated numerically the total energy of the helium atom in higher excited state. The Coulomb and exchange integrals are evaluated via spherical harmonics. The interaction of the magnetic moments of the electrons between them, was taken into account through a cosine term in the Coulomb potential. The obtained results are in agreement with experimental data. Lamb shift appears as a natural result of the solution of Schrödinger equation.

PACS numbers: 03.65.Ge, 03.65.Ca, 31.10.+z

I. INTRODUCTION

Many studies have been devoted to solve Schrödinger equation as accurately as possible for two electron helium atom [1-12]. The perturbation theory, as well as the variational calculation are the most common and valuable methods which achieved a good precision for energy values. Also, the improved hyper-spherical harmonic method and the hyper-spherical coordinate approach have been developed for calculating the energy levels and wave functions directly from the Schrödinger equation in the three-body problem. The helium atom has two electrons and a nucleus of charge +2\(e\). The total energy in the case when one of the electrons is in the ground state and the other in a higher excited state characterized by \((nlm)\) is

\[
E = E_{100} + E_{nlm} + \Delta E \tag{1}
\]

where, in the first perturbation theory, \(\Delta E\) is obtained by evaluating the expectation value of the potential energy of interaction between the two electrons. It is written

\[
\Delta E = C \pm K \tag{2}
\]

where \(C\) is the Coulomb integral and \(K\) is the exchange integral. In the singlet case the spatial function

\[
\Psi|\text{r}_1,\text{r}_2\rangle = \frac{1}{\sqrt{2}} \left[\Psi_{100}(|\text{r}_1\rangle \Psi_{nlm}(|\text{r}_2\rangle + \Psi_{100}(|\text{r}_2\rangle \Psi_{nlm}(|\text{r}_1\rangle) \right] \tag{3}
\]

is symmetric, and

\[
E_s = E_{100} + E_{nlm} + (C_s + K_s) \tag{4}
\]

while, in the triplet case the spatial function

\[
\Psi|\text{r}_1,\text{r}_2\rangle = \frac{1}{\sqrt{2}} \left[\Psi_{100}(|\text{r}_1\rangle \Psi_{nlm}(|\text{r}_2\rangle - \Psi_{100}(|\text{r}_2\rangle \Psi_{nlm}(|\text{r}_1\rangle) \right] \tag{5}
\]

is antisymmetric, and
\[E_t = E_{100} + E_{nlm} + \{C_t - K_t\} \]

(6)

\(r_1 \) and \(r_2 \) are the position vectors of the two electrons, 1 and 2, respectively.

The difference between our paper and the earlier papers is that we add the indices \(s \) and \(t \) to the Coulomb and exchange integrals, respectively, because as we will see in the next sections, due to the interaction between spins of the two electrons, we have \(C_s < C_t, K_s < K_t \), which justifies the Pauli principle. In the next section we will show how is modified the Coulomb’s law due to the interaction between magnetic moments of the electrons. Further we will calculate the energy of the higher excited states of helium atom.

II. SPIN-SPIN INTERACTION AND THE COULOMB’S LAW

The theory and experiments demonstrate that the free electron has a magnetic moment equal to the Bohr magneton \(\mu_0 \), whose projections on a specified direction are \(s_z = \pm \hbar/2 = \hbar m_s \).

where \(m_s = \pm 1/2 \) is the spin quantum number. We write \(\mu_s = \mu_B g m_s \) where \(g = 2 \). We define the vector potential

\[A = \frac{\mu_s \times r}{r^3} \]

where \(\mu_s \) is the spin magnetic dipole moment and \(r \) is the vector from the electron to an observation point. The magnetic moment generated by the spin is

\[\mu_s = -\frac{e\hbar}{mc} m_s \]

where \(m_s \) is a vector and \(m_s \) is the spin quantum number. The wave function for an electron movement along a given path through a magnetic field contains at exponent the term

\[q_o \cdot r - \frac{e}{\hbar c} \oint A \cdot d\mathbf{r} \]

instead of \(q_o \mathbf{r} \) only. Now, the energy of the electron-electron interaction may be written as[13,14]

\[E_I = -\frac{\hbar^2 D^2}{32m^2 r^2} \sum_{q,q_o} \frac{|q \cdot q_o|^2}{\omega_q^2 \omega_{q_o}^2} \frac{1}{2} \sum_n e^{i(q \cdot r - \frac{e}{\hbar c} \oint n \cdot d\mathbf{r})} \]

\[\frac{1}{|\epsilon_k - \epsilon_{k-q}| - \omega_q} |n_k + 1| |n_{q_o} + 1| n_k n_{k-q} \]

(7)

where \(D \) is a coupling constant, \(m \) is the mass of an electron, \(\rho_o \) is the massive density of the interacting field, \(Dr/c^2 \) is the “mass less density” of the interacting field, \(\omega_q = cq \) is the classical oscillation frequency of the interacting field, \(\omega_{q_o} \) is the oscillation frequency of an electron, \(q \) is the wave vector of the interacting field, \(q_o \) is the wavevector of the boson.
associated with the electron, \mathbf{k} is the wave vector of the electron, $\varepsilon_k = \hbar^2 k^2 / 2m$, n_{q_0} is the occupation number of the bosons associated with an electron, n_q is the occupation number of the bosons associated with the interacting field, n_k is the occupation number of the electrons. In the case when the interacting field is a photon field, $\rho_q = 0$; for quasi free electron when $\omega_{q_0} = \hbar q_0^2 / 2m$, $\varepsilon_k - \varepsilon_{q_0} \ll \omega_{q_0}$, and for n_q, $n_{q_0} = 0$, n_k, $n_{k-q} = 1$, Eq. (1) becomes

$$E_I = \frac{\hbar^3 c^4}{32 m^2 r^4} \sum_{q, q_0, k} \frac{q \cdot q_0}{q_0^2 \omega_q^2} \left[\sum_{n} e^{i q_n \cdot r} n^2 \right]$$

where

$$q_o = q_o - \frac{e \hbar}{mc} \frac{m_s \times R}{R^3}$$

Further,

$$\sum_{q} \frac{|q \cdot q_o|^2}{\omega_q^2 \omega_{q_o}} = \left[\frac{2m}{\hbar} \right] \frac{1}{q_o^2} \frac{1}{12 c^3} \frac{\Omega}{2 \pi} \int_0^\pi \cos^2 \alpha \sin \alpha d\alpha \int_0^{q_o} qdq = \left[\frac{2m}{\hbar} \right]^2 r^3 \frac{9 \pi c^3}{9 \pi c^3}$$

$$|\sum_{n=1,2} e^{i q_n \cdot r} n^2| = 2 |1 + \cos \Gamma|$$

where

$$\Gamma = q_2 \cdot r_2 - q_1 \cdot r_1 - \frac{e^2}{mc^2} \left(\frac{m_2 \times r_2}{r_2^3} \frac{d \cdot r_2}{r_2} - \frac{m_1 \times r_1}{r_1^3} \frac{d \cdot r_1}{r_1} \right)$$

$$\frac{1}{2} |q_2 + q_1| |r_2 - r_1| + \frac{1}{2} |q_2 - q_1| |r_2 + r_1| - \Gamma_o$$

$$\Gamma_o = \frac{e^2}{mc^2} \left(\frac{m_2 \times r_2}{r_2^3} \frac{d \cdot r_2}{r_2} - \frac{m_1 \times r_1}{r_1^3} \frac{d \cdot r_1}{r_1} \right) = \frac{e^2}{mc^2} \frac{2\pi}{r} |m_2 - m_1| = \frac{2\pi e^2}{mr c^2}$$

We have considered $m_2 = 1/2$, $m_1 = -1/2$. For $r_1 = -r_2$ and $r_1 = r_2 = r$, $q_1 = q_2 = q_o$ we write

$$\Gamma_o = q_o r \cos \theta - \Gamma_o = q_o r \cos \theta - \Gamma_o$$

By using the integral

$$\int_0^\pi \cos (q_o r \cos \theta - \Gamma_o) \sin \theta d\theta = 2 \cos (\Gamma_o / q_o r) \sin (q_o r / q_o r)$$

and integrating over q_o from 0 to 0.94π / R, one obtains
\[E_I = \frac{\hbar c}{144 \pi r} \left[2 + 1.3 \cos \left(\frac{2\pi e^2}{mrc^2} \right) \right] \]

(11)

For \(\Gamma_o = 0 \), one obtains just Coulomb’s law

\[E_I = \frac{\alpha \hbar c}{r} \]

(12)

where \(\alpha = 1/137 \) is the fine structure constant. The upper limit of the integral over \(q' \) was chosen for the agreement of value of \(\alpha \) with experimental data. We specify that the upper limit of \(q' \) should be of \(0.76\pi/r \), as it is imposed by the constraint condition

\[\left(\frac{4\pi^3}{3} / \left| 2\pi^3 \right| \right) \times 4\pi q_o^3 / 3 = 1 \]

This given that \(\alpha = 1/147 \), which differ some few from the fine structure constant. It is observed that when the spins of the two interacting electrons are anti-parallel, the interacting energy is modulated by a term \(\cos \) which depends on the spin magnetic moment and on the distance between the two electrons.

The energy levels of atomic electrons are affected by the interaction between the electron spin magnetic moment and the orbital magnetic moment of the electron. It can be visualized as a magnetic field caused by the electron’s orbital motion interacting with the spin magnetic moment. The effective magnetic field can be expressed in terms of the electron orbital angular momentum. We consider the vector potential

\[A = \frac{\bm{\mu} \times \bm{r}}{r^3} \]

where \(\bm{\mu} \) is the magnetic dipole moment and \(\bm{r} \) is a vector from the middle of the loop to an observation point. An electron in a stationary state in an atom, having a definite angular momentum projection \(L_z = \hbar m_l \) (the quantum magnetic number), has a magnetic moment \(\mu_z = \mu_B m_l \)

where \(\mu_B = e \hbar / 2mc \) is the Bohr magneton. In these conditions \(\Gamma_o \) becomes

\[\Gamma_o = \frac{e^2}{2mc^2} \left[\frac{2\pi}{r_2} m_{l_2} - \frac{2\pi}{r_1} m_{l_1} \right] + \frac{2pe^2}{mr_{12} c^2} \left[m_{s_2} - m_{s_1} \right] \]

In this case \(r_1 \) and \(r_2 \) are the radii of the electrons 1 and 2, respectively and \(r_{12} = \left| r_1 - r_2 \right| \).

III. EVALUATION OF THE COULOMB AND EXCHANGE INTEGRALS FOR HIGHER EXCITED STATES OF HELIUM ATOM BY TAKING INTO ACCOUNT THE INTERACTION BETWEEN MAGNETIC MOMENTS OF THE ELECTRONS.

We calculate the Coulomb integral and the exchange integral for higher excited states of helium atom by using spherical harmonics approach. The Coulomb integral can be written as

\[C = \iint \left| \Psi_{100} \right| r_1 \left| \frac{\hbar c}{144 \pi r_2 - r_1} \right| \left[2 + 1.3 \cos \left(\Gamma_o \right) \right] \left| \Psi_{nlm} \right| r_2 \left| \frac{\hbar c}{144 \pi r_2 - r_1} \right| \left| \frac{\hbar c}{144 \pi r_2 - r_1} \right| d^3r_1 d^3r_2 \]

(14)

where \(\Gamma_o \) is given by expression (13). The exchange integral can be written as
\[K = \iint \psi_{100}^*(r_2) \psi_{nlm}^*(r_1) \frac{\hbar c}{144 \pi |r_2 - r_1|} \left[2 + 1.3 \cos \left(\Gamma_0 \right) \right] \psi_{100}(r_1) \psi_{nlm}(r_2) \, d^3r_1 \, d^3r_2 \]

(15)

where

\[\psi_{nlm}(r) = R_{nl}(r) \, \Upsilon_{lm}(\theta, \phi) \]

\[d^3r = r^2 \, dr \, d\Omega = r^2 \, dr \sin \theta \, d\theta \, d\phi \]

The wave functions used in our calculations are given in Appendix. The obtained results are presented in Table I. The values of \(\Gamma_0 \) (13) \textit{cosine} argument are given in Table II. We have used non dimensional quantities \(x_i = r_i / a_o \), where \(a_o \) is Bohr radius. The obtained results are in agreement with experimental data[11,12, 15,16], which are also written in Table I. The integrals were performed in Mathematica 5.2. We believe that by using a better accuracy of calculation, a splitting of the the m levels one obtains, in according to the values of \(\Gamma_0 \) (Table II).

IV. CONCLUSIONS

We have calculated the total energy of the helium atom in higher excited state. The Coulomb and exchange integrals were evaluated via spherical harmonics. We have introduced the interaction between the magnetic moments of the electrons via a term \textit{cosine} in the potential of interaction. The obtained values of the energy levels are in agreement with experimental data. The Lamb shift appears as a natural result of the solution of Schrodinger equation. In another paper we have calculated the energy levels of the states in hydrogen atom, and likewise we have obtained the Lamb shift as a natural result of the solution of Schrodinger equation with modified Coulomb potential[17].

APPENDIX

The radial wave functions \(R_{nl} \) used in our calculations are presented in Table III. Further,

\[Y_{oo}(\theta_1, \phi_1) = \frac{1}{\sqrt{4\pi}} \]

\[\int |Y_{lm}(\theta_2, \phi_2)|^2 \sin \theta_2 \, d\theta_2 \, d\phi_2 = 1 \]

REFERENCES

[1] E.A. Hylleraas, Z. Phys. 54, 347(1929).
[2] T. Kinoshito, Phys. Rev. 105, 1490(1957).
[3] K. Frankovski and C. L. Pekeris, Phys. Rev. 146, 46(1966).
[4] A. J. Thakkar and T. Koga, Phys. Rev. A 50,854(1994).
[5] S. P. Goldman, Phys. Rev. A 57, R677(1998).
[6] J. S. Sims and S. A. Hagstrom, Int. J. Quantum. Chem. 90, 1600(2002).
[7] G. W. F. Drake, M. M. Cassar, and R. A. Nistor, Phys. Rev. A 65,054501(2001).
[8] V. I. Korobov, Phys. Rev. A 66, 024501(2002).
[9] C. Schwartz, Int. J. Mod. Phys. E 15, 877(2006).
[10] H. Nakashima and H. Nakatsuji, J. Chem. Phys. 128,154107(2008).
[11] B. Duan, Xiao-Yan Gu and Zhong-Qi Ma, Eur. Phys. J. D 19, 9(2002).
Table I. The Coulomb integral C, the exchange integral K and the total energy E of the helium atom in higher excited states

Spectral term	C, eV	K, eV	E, eV	Experimental
1s2s 1S	11.41573333967	1.19033533943	-57.67460200476	-58.3624572424563
1s3s 1S	5.411489756968	0.313731985586	-54.63033380901	-56.0579202431514
1s4s 1S	3.148677499813	0.12782091469	-54.43850159872	-55.2491296415375
1s5s 1S	2.040721787947	0.066826210720	-54.38525200133	-56.35876043217
1s6s 1S	1.433422772975	0.03294316262	-56.35876043217	-56.35876043217
1s2s 3S	11.41569905002	1.19376374161	-55.29050457582	-59.1581011131610
1s3s 3S	5.41150073834	0.313734833949	-55.25778031586	-56.2604609645120
1s4s 3S	3.148601997296	0.127821649383	-54.69421966209	-55.363424356413
1s5s 3S	2.040718737378	0.06865072945	-54.5207363557	-54.5207363557
1s6s 3S	1.433422772975	0.03294316262	-56.35876043217	-56.35876043217
1s2p 1P	13.20668283822	4.377358489379	-50.3159586724	-57.7604441467894
1s3p 1P	5.919429448189	1.132920895331	-53.30320529204	-55.891513904001
1s4p 1P	3.34175054095	0.50625293162	-53.86699662743	-55.192768960000
1s5p 1P	2.13804836033	0.212860084362	-54.1418915553	-54.1418915553
1s6p 1P	1.573228618317	0.131393496193	-54.12476679210	-54.12476679210
1s2p 3P	13.206682683827	4.377369917556	-59.0768707934	-58.0143534226402
1s3p 3P	5.919445500939	1.132920895331	-55.56903809369	-55.9717377584023
Table II. The values of cosine argument $\Gamma_o; S = m_{s1} + m_{s2}$

S	m_l	Γ_o		
1s4p 3P	3.346098605808	0.506255610099	-54.87515700439	-55.236126608000
1s5p 3P	2.14811373709	0.21286040472	-54.55754686738	
1s6p 3P	1.494869376612	0.13139632756	-54.46541347503	
1s3d 1D	6.038936224483	0.138938872622	-54.17768040845	-55.90432560000
1s4d 1D	3.39449163709	0.073433604472	-54.24707473844	-55.185460112000
1s5d 1P	2.179248482903	0.040714971468	-54.2788365462	
1s6d 1D	1.5578325773892	0.024486715885	-54.24656959562	
1s3d 3D	6.038954110872	0.13893929351	-54.45554073819	-55.904782880000
1s4d 3D	3.396896310627	0.073433808768	-54.39151743814	-55.187986721000
1s5d 3D	2.174201938516	0.040715081461	-54.36531314295	
1s6d 3D	1.509987410785	0.024480785005	-54.3433826311	
1s4f 1F	3.399099891361	0.009643500679	-54.30625660796	
1s5f 1F	2.185613795383	0.001574564257	-54.3116164036	
1s6f 1F	1.605041072059	0.001281489028	-54.2225663269	
1s4f 3F	3.399576055473	0.00964750493	-54.32506744946	
1s5f 3F	2.175724708252	0.001574564757	-54.32464985501	
1s6f 3F	1.6076422135588	0.001281492409	-54.22252824371	
1s5g 1G	2.178870296447	0.000015726533	-54.31391397702	
1s6g 1G	1.483713154824	0.000016880836	-54.34515885323	
1s5g 3G	2.175749816148	0.000015726658	-54.316466591051	
1s6g 3G	1.510933520492	0.000016880972	-54.31797224917	
1s6h 1H	0.051672384008	0.000000002782	-55.7772165021	
1s6h 3H	0.051938436641	0.000000002782	-55.77695345509	
\[
\begin{align*}
0 & \quad 0 & & \frac{3.3839 \times 10^{-4}}{\sqrt{x_1^2 + x_2^2 - 2x_1x_2 \cos \theta_1}} &= \Gamma_1 \\
0 & \quad -1 & & \Gamma_1 + \frac{1.6919 \times 10^{-4}}{x_2} \\
0 & \quad -2 & & \Gamma_1 + \frac{3.3839 \times 10^{-4}}{x_2} \\
0 & \quad -3 & & \Gamma_1 + \frac{5.0758 \times 10^{-4}}{x_2} \\
0 & \quad -4 & & \Gamma_1 + \frac{6.6768 \times 10^{-4}}{x_2} \\
0 & \quad -5 & & \Gamma_1 + \frac{8.4597 \times 10^{-4}}{x_2} \\
0 & \quad 5 & & \Gamma_1 - \frac{8.4597 \times 10^{-4}}{x_2} \\
0 & \quad 4 & & \Gamma_1 - \frac{6.6768 \times 10^{-4}}{x_2} \\
0 & \quad 3 & & \Gamma_1 - \frac{5.0758 \times 10^{-4}}{x_2} \\
0 & \quad 2 & & \Gamma_1 - \frac{3.3839 \times 10^{-4}}{x_2} \\
0 & \quad 1 & & \Gamma_1 - \frac{1.6919 \times 10^{-4}}{x_2} \\
1 & \quad 0 & & 0 \\
1 & \quad -1 & & -\frac{1.6919 \times 10^{-4}}{x_2} \\
1 & \quad -2 & & -\frac{3.3839 \times 10^{-4}}{x_2} \\
1 & \quad -3 & & -\frac{5.0758 \times 10^{-4}}{x_2}
\end{align*}
\]
Table III. Radial wave functions $R_{nl}(r)$

n	l	$R_{nl}(r)$
1	0	$\frac{2}{a_o} \left(\frac{2}{a_o}\right)^{3/2} e^{-2r/a_o}$
2	0	$\left(\frac{1}{a_o}\right)^{3/2} \left(2 - \frac{2r}{a_o}\right) e^{-r/a_o}$
2	1	$\left(\frac{1}{a_o}\right)^{3/2} \frac{2}{3a_o} r e^{-r/a_o}$
3	0	$2 \left(\frac{2}{3a_o}\right)^{3/2} \left[1 - \frac{4r}{3a_o} + \frac{8}{27} \left(\frac{r}{a_o}\right)^2\right] e^{-2r/3a_o}$
3	1	$\left(\frac{2}{3a_o}\right)^{3/2} \frac{4\sqrt{2}}{3} \left[1 - \frac{2r}{3a_o}\right]^{-2r/3a_o}$
3	2	$2 \left(\frac{2}{3a_o}\right)^{3/2} \frac{2\sqrt{2}}{27\sqrt{5}} \left(\frac{2r}{a_o}\right)^2 e^{-2r/3a_o}$
$\frac{1}{96} \left(\frac{2}{a_o} \right)^{3/2} \left[24 - 36 \frac{r}{a_o} + 12 \left(\frac{r}{a_o} \right)^2 - \left(\frac{r}{a_o} \right)^3 \right] e^{-r/2a_o}$

$\frac{1}{32 \sqrt{15}} \left(\frac{2}{a_o} \right)^{3/2} \left[20 - 10 \frac{r}{a_o} + \left(\frac{r}{a_o} \right)^2 \right] e^{-r/2a_o}$

$\frac{1}{96 \sqrt{5}} \left(\frac{2}{a_o} \right)^{3/2} \left(6 - \frac{r}{a_o} \right) \left(\frac{r}{a_o} \right)^2 e^{-r/2a_o}$

$\frac{1}{96 \sqrt{35}} \left(\frac{2}{a_o} \right)^{3/2} \left(\frac{r}{a_o} \right)^3 e^{-r/2a_o}$

$\frac{1}{300 \sqrt{5}} \left(\frac{2}{a_o} \right)^{3/2} \left[120 - 192 \frac{r}{a_o} + 76.8 \left(\frac{r}{a_o} \right)^2 - 10.24 \left(\frac{r}{a_o} \right)^3 + 0.4096 \left(\frac{r}{a_o} \right)^4 \right] e^{-2r/5a_o}$

$\frac{1}{150 \sqrt{30}} \left(\frac{2}{a_o} \right)^{3/2} \left[120 - 72 \frac{r}{a_o} + 288 \left(\frac{r}{a_o} \right)^2 - 64 \left(\frac{r}{a_o} \right)^3 \right] \left(\frac{5}{a_o} \right) e^{-2r/5a_o}$

$\frac{1}{150 \sqrt{70}} \left(\frac{2}{a_o} \right)^{3/2} \left[42 - \frac{56}{5} \frac{r}{a_o} + 16 \left(\frac{r}{a_o} \right)^2 \right] \left(\frac{16}{25} \frac{r}{a_o} \right)^2 e^{-2r/5a_o}$

$\frac{1}{300 \sqrt{70}} \left(\frac{2}{a_o} \right)^{3/2} \left(8 - \frac{4}{5} \frac{r}{a_o} \right) \left(\frac{64}{125} \frac{r}{a_o} \right)^3 e^{-2r/5a_o}$

$\frac{1}{900 \sqrt{70}} \left(\frac{2}{a_o} \right)^{3/2} \left(\frac{256}{625} \frac{r}{a_o} \right)^4 e^{-2r/5a_o}$

$\frac{1}{2160 \sqrt{6}} \left(\frac{2}{a_o} \right)^{3/2} \left[720 - 1200 \frac{r}{a_o} + 1600 \left(\frac{r}{a_o} \right)^2 - 800 \left(\frac{r}{a_o} \right)^3 \right. + \left. \frac{160}{27} \left(\frac{r}{a_o} \right)^4 \right] e^{-r/3a_o}$

$\frac{1}{432 \sqrt{210}} \left(\frac{2}{a_o} \right)^{3/2} \left[840 - 560 \frac{r}{a_o} + 112 \left(\frac{r}{a_o} \right)^2 - \frac{224}{27} \left(\frac{r}{a_o} \right)^3 + \frac{16}{81} \left(\frac{r}{a_o} \right)^4 \right] \frac{2}{3} \frac{r}{a_o} e^{-r/3a_o}$

$\frac{1}{864 \sqrt{105}} \left(\frac{2}{a_o} \right)^{3/2} \left[336 - 112 \frac{r}{a_o} + \frac{32}{3} \left(\frac{r}{a_o} \right)^2 - \frac{8}{27} \left(\frac{r}{a_o} \right)^3 \right] \frac{4}{9} \left(\frac{r}{a_o} \right)^2 e^{-r/3a_o}$

$\frac{1}{2592 \sqrt{35}} \left(\frac{2}{a_o} \right)^{3/2} \left(72 - 12 \frac{r}{a_o} + \frac{4}{9} \left(\frac{r}{a_o} \right)^2 \right) \frac{8}{27} \left(\frac{r}{a_o} \right)^3 e^{-r/3a_o}$
\[
\begin{align*}
6 \quad 4 & \quad \frac{1}{12960 \sqrt{7}} \left(\frac{2}{a_o} \right)^{3/2} \left(10 - \frac{2}{3} \frac{r}{a_o} \right) \frac{16}{81} \left(\frac{r}{a_o} \right)^4 e^{-r/3a_o} \\
6 \quad 5 & \quad \frac{1}{12960 \sqrt{77}} \left(\frac{2}{a_o} \right)^{3/2} \frac{32}{243} \left(\frac{r}{a_o} \right)^5 e^{-r/3a_o}
\end{align*}
\]