ABSTRACT

Aims: Rairangpur forest division, Mayurbhanj, Odisha is a hub of diverse floral and faunal species. Apart from flora and fauna, it has a rich diversity of fungal species. The present study highlights the diversity of macro fungi with special reference to its medicinal and economic values available in Rairangpur Forest Division, Odisha.

Place and Duration of Study: Field surveys were carried out at regular intervals (Pre monsoon and Post monsoon) in Rairangpur Forest Division during 2019-2020.

Results: Mushroom samples were collected and then identified with the help of standard available literatures and books. 99 wild mushroom species belonging to 56 genera of 37 families were noted.

Conclusion: It was found that 41 species were edible in which 15 mushrooms were consumed by...
Mushrooms is, Celastrus -od and nutraceutical among theous-oms flourish- ion [8]. They are rich in-tant role in ecological processes. A-copper and potassium and dietary fiber chitin and minerals like magnesium, selenium, phosphorus, vitamin B and vitamin C. They are also used for-leucine and an excellent source of vitamins like- amino acids that are especially rich in lysine and-Mushroom protein contains all the essential-flavonoids, nucleotides and their derivatives [9].-terpenoids, steroids, phenolic compound-they also contain bioactive compounds such as-fatty acids, terpenoids, peptides, protein, amino-polysaccharides, oligosaccharides, unsaturated-exists in tropical reg-world. One third of total global fungal diversity-occur seasonally in several habitats all over the-world [7]. Mushrooms are cosmopolitan in nature and are quite specific in-their nutritional and ecological requirements. These are the richest and most diverse group in-the world [2]. Micro fungi play a vital role in-biodegradation and bio-deterioration [3]. Mushroom plays important role in ecological processes. A-good information is embedded as traditional-knowledge with the indigenous tribal people with-regard to mushrooms and the forest ecosystem. They are also aware of the wild edible and non-edible mushrooms [4]. Such mushrooms flourish-the forest floor well in the rainy season. Mushrooms are fleshy, spore bearing fruiting-body of a fungus and are the major biological constituent in forest ecosystem [5]. From-the ancient time wild mushrooms have been fulfilling-the need of food and nutraceutical among the-aboriginals. There are about 15,00,000 fungi present all over the world in which 14,000 are-recognized as mushroom species, among these 1154 mushrooms are reported as edible [6]. Total 140,000 mushroom species have been-reported till date and among them 700 species are-palatable with many therapeutic properties-[7]. Mushrooms are cosmopolitan in nature and occur-seasonally in several habitats all over the-world. One third of total global fungal diversity-exists in tropical region [8]. They are rich in-polysaccharides, oligosaccharides, unsaturated-fatty acids, terpenoids, peptides, protein, amino-acids and minerals element. In addition to this-they also contain bioactive compounds such as-terpenoids, steroids, phenolic compound, flavonoids, nucleotides and their derivatives [9]. Mushroom protein contains all the essential amino acids that are especially rich in lysine and-leucine and an excellent source of vitamins like-vitamin B and vitamin C. They are also used for-preparing alcohol beverage. They are also rich in-minerals like magnesium, selenium, phosphorus, copper and potassium and dietary fiber chitin and-B glucagon. The most cultivated edible-mushroom worldwide is Agaricus bisporus-(common mushroom) followed by Lentinus edodes (Shiitake mushroom), Pleurotus spp. (in-particular Oyster mushroom), and Flammulina velutipes (Enoki mushroom). Now a days many-organic pollutants are decomposed by-mushrooms such as Trametes versicolor [10-11].

1. INTRODUCTION

Mushroom belongs to the group of organisms known as Macrofungi which falls under phylum Ascomycotina and Basidiomycotina. Mushrooms lack chlorophylls and so they cannot prepare their own food. They get their nutrition from dead and decaying organic substances or living plant and animal, so they have saprophytic or parasitic or symbiotic mode of nutrition [1]. Fungi are heterotrophic in nature and they are quite specific in-theseir nutritional and ecological requirements. These are the richest and most diverse group in-the world [2]. Micro fungi play a vital role in biodegradation and bio-deterioration [3]. Mushroom plays important role in ecological processes. A good information is embedded as traditional knowledge with the indigenous tribal people with regard to mushrooms and the forest ecosystem. They are also aware of the wild edible and non-edible mushrooms [4]. Such mushrooms flourish the forest floor well in the rainy season. Mushrooms are fleshy, spore bearing fruiting body of a fungus and are the major biological constituent in forest ecosystem [5]. From the ancient time wild mushrooms have been fulfilling the need of food and nutraceutical among the aboriginals. There are about 15,00,000 fungi present all over the world in which 14,000 are recognized as mushroom species, among these 1154 mushrooms are reported as edible [6]. Total 140,000 mushroom species have been reported till date and among them 700 species are palatable with many therapeutic properties [7]. Mushrooms are cosmopolitan in nature and occur seasonally in several habitats all over the world. One third of total global fungal diversity exists in tropical region [8]. They are rich in polysaccharides, oligosaccharides, unsaturated fatty acids, terpenoids, peptides, protein, amino acids and minerals element. In addition to this they also contain bioactive compounds such as terpenoids, steroids, phenolic compound, flavonoids, nucleotides and their derivatives [9]. Mushroom protein contains all the essential amino acids that are especially rich in lysine and leucine and an excellent source of vitamins like vitamin B and vitamin C. They are also used for preparing alcohol beverage. They are also rich in minerals like magnesium, selenium, phosphorus, copper and potassium and dietary fiber chitin and B glucagon. The most cultivated edible mushroom worldwide is Agaricus bisporus (common mushroom) followed by Lentinus edodes (Shiitake mushroom), Pleurotus spp. (in particular Oyster mushroom), and Flammulina velutipes (Enoki mushroom). Now a days many organic pollutants are decomposed by mushrooms such as Trametes versicolor [10-11].

2. MATERIALS AND METHODS

2.1 Study Area

Rairangpur is situated at Mayurbhanj district of Odisha, between 22°16ˈ45̎ N and 86°11ˈ45̎ E. It has an average elevation of 248 m with an annual average temperature of (35-35) °C. The region receives total annual average rainfall of about 695 mm [12]. Ho, Santal, Mankadia, Bhui, Bathudi, Munda are the main tribal communities of this region. It is also surrounded by hills and Mining areas. Geographically it enjoys Dry Deciduous, Moist Deciduous and especially Sal forest. The most frequent flora of the study areas are Shorea robusta, Cassia fistula, Diospyros melanoxylon, Alangium salvifolium, Terminalia alata, Terminalia bellirica, Terminalia arjuna, Cipadessa baccifera, Cryptolepis buchanani, Careya arborea, Butea monosperma, Ougeinia oojeinens, Cryptolepis buchanani, Careya arborea, Butea monosperma, Ougeinia oojeinens, Celastrus paniculatus, Madhuca longifolia, Holarhenna pubescens, Smilax zeylanica, Schleichera oleosa, Haldina cordifolia etc [13]. Many types of Orchids are present in Rairangpur like Vanda tessellata, Acampe praemorsa, Acampe carinata, Aerides odorata, Hebenaria commelinifolia etc which makes the forest charming and beautiful. The forest enjoys some parasitic plants like Viscum articulatum, Drosera burmannii, Utricularia aurea, Utricularia caerulea etc.

2.2 Collection of Medicinal Values

The survey was made during the year 2020-2021 and photographed the samples was taken for easy identification using publish Research paper and books [14-17]. The regular field trips were
carried out in different places of Rairangpur Forest Division (Badampahar, Suleipat, Bangiriposi Ghati, Sanajhili, Badajhili, Jhiliondungri, Biso etc). The local communities, tribal’s, forest watcher of Rairangpur forest division confirm the food and medicinal values of wild edible Mushrooms. The ethnobotanical survey was done by Team APRF. From the survey information were collected regarding the edibility, medicinal value and nutraceutical values of mushroom from the villagers. Rairangpur is rich in resource of edible mushroom, which grow wild in forest and grassland (Plate 2).

3. RESULTS

A total of 99 mushroom species belonging to 56 genera of 37 families were identified from Rairangpur Forest Division during survey. Table 1 represents the list of collected mushroom species during the survey period. Family Agaricaceae and Polyphoraceae (11 species) was reported the most dominant while Russulaceae (8 species), Marasmiaceae (7 species), Amanitaceae (5 species), Lyophyllaceae (5 species), Xylariaceae (5 species), Hymenochaetaceae (4 species), Ganodermataceae (4 species), Clavariaceae (3 species), Mycenaceae (3 species), Hygrophanaceae (3 species), Auriculariaceae (2 species), Geastraceae (2 species), Gomphaceae (2 species), Leptotubaeceae (2 species), Psathyrellaceae (2 species), Pluteaceae (2 species), and Bolbitiaceae, Coniophoraceae, Dacrymycetaceae, Entolomataceae, Fomitopsidaceae, Helotiaceae, Hydnangiaceae, Meripilaceae, Meruliaceae, Peniophoraceae, Pleurotaceae, Pyronemataceae, Schizophyllaceae, Sclerodermafragae, Sillaceae, Strochriaceae, Stereaceae, Tricholomataceae, Tuberafragae have contains only one species (Fig 1). During field and ethnobotanical survey 41 species of mushrooms were reported as edible. The most common edible mushrooms are Amanita caesarea, Clavaria amoena, Lactarius resimus, Leucocoprinus cepesitapes, Lactarius resimus, Macrolepiota dolicha, Microporus xanthopus, Russula nigricans, Termitomyces cylpeatus, Tuber rufum, Volvariella volvaceae, T. heimii, T. microcarpus, R. rosea, R. xerampelina, Schizophyllum commune., Among them Agaricus campestris, Tuber rufum, Volvariella volvaceae are considered highly delicious. During survey some medicinal mushrooms are observed which are used by tribal and local communities, these are Ganoderma, Agaricus, Auricularia, Trametes etc. Ganoderma tsugae is used to boost immune system, induce sleeping and to reduce cholesterol level. According to them Agaricus species has anti-ageing activity. Volvorella volvacea used to lower blood pressure, Lycoperdon pyriformi used to cure wound and Termitomyces microcarpus used for curing rheumatism and diarrhoea. Local tribal communities collect wild medicinal mushrooms species like Ganoderma, Auricularia, Trametes and sold the traders for their livelihood. They used Auricularia auricular to cure various stomach disease and Pycnopoporous cinnabarinus to cure wounds (Plate 1).
Table 1. Wild mushroom diversity of Rairangpur forest division, Odisha, India

Botanical Name	Family	Class	Edibility
Agaricus campestris	Agaricaceae	Agaricomycetes	Edible
Agaricus trisulpharatus	Agaricaceae	Agaricomycetes	Non-edible
Aleuria aurantia	Pyronemataceae	Pezizomycetes	Non-edible
Amanita australis	Amanitaceae	Agaricomycetes	Edible
Amanita caesarea	Amanitaceae	Agaricomycetes	Edible
Amanita loossii	Amanitaceae	Agaricomycetes	Edible
Amanita ovalispora	Amanitaceae	Agaricomycetes	Non-edible
Amanita vaginata	Amanitaceae	Agaricomycetes	Non-edible
Auricularia auricular-judae	Auriculariaceae	Agaricomycetes	Edible
Bjerkandera citrinea	Helotiaceae	Leotiomycetes	Non-edible
Clavaria amoena	Clavariaceae	Agaricomycetes	Edible
Clavaria vermicularis	Clavariaceae	Agaricomycetes	Edible
Clavulinopsis aurantiocinnaabarina	Clavariaceae	Basidiomycetes	Non-edible
Coltricia cinnamomia	Hymenochaetaceae	Agaricomycetes	Non-edible
Coniophora puteana	Coniophoraceae	Agaricomycetes	Non-edible
Conocybe apala	Bolbitiaceae	Agaricomycetes	Non-edible
Coprinus disseminates	Psathyrellaceae	Agaricomycetes	Non-edible
Dacryopinax spathularia	Dacrymycetaceae	Dacrymycetes	Non-edible
Daldinia concentrica	Xylariaceae	Sordariomycetes	Non-edible
Entoloma sinuatum	Entolomataceae	Agaricomycetes	Non-edible
Fomitopsis pinicola	Fomitopsiaceae	Agaricomycetes	Non-edible
Ganoderma austrole	Ganodermataceae	Agaricomycetes	Non-edible
Ganoderma lucidum	Ganodermataceae	Agaricomycetes	Non-edible
Ganoderma tsugae	Ganodermataceae	Agaricomycetes	Edible
Geastrum fimbriatum	Geastraceae	Agaricomycetes	Edible
Geastrum sacculatum	Geastraceae	Agaricomycetes	Edible
Gomphus floccosus	Gomphaceae	Agaricomycetes	Non-edible
Grifola frondosa	Meripilaceae	Agaricomycetes	Edible
Hirneola auricular	Auriculariaceae	Agaricomycetes	Edible
Hygrocybe aurantiosplendens	Hygrophoraceae	Agaricomycetes	Non-edible
Hygrocybe cantharelius	Hygrophoraceae	Agaricomycetes	Non-edible
Hygrocybe russocoriacea	Hygrophoraceae	Agaricomycetes	Non-edible
Laccaria fraterna	Hydnangiaceae	Agaricomycetes	Non-edible
Lactarius deliciosus	Russulaceae	Agaricomycetes	Edible
Lactarius resimus	Russulaceae	Agaricomycetes	Edible
Langermannia gigantean	Agaricaceae	Agaricomycetes	Edible
Lentinus fusipes	Polyporaceae	Agaricomycetes	Edible
Lentinus torulosus	Polyporaceae	Agaricomycetes	Edible
Lentinus tubergium	Pleurotaceae	Agaricomycetes	Edible
Lenzites betulina	Polyporaceae	Basidiomycetes	Non-edible
Lepiota clupeolaria	Agaricaceae	Agaricomycetes	Non-edible
Lepiota cristata	Agaricaceae	Agaricomycetes	Non-edible
Leucocoprinus brebiissonii	Agaricaceae	Agaricomycetes	Non-edible
Leucocoprinus cepetipes	Agaricaceae	Agaricomycetes	Non-edible
Leucocoprinus cretceus	Agaricaceae	Agaricomycetes	Non-edible
Lycoperdon perlatum	Agaricaceae	Agaricomycetes	Edible
Lycoperdon pyriformi	Agaricaceae	Agaricomycetes	Edible
Macrolepiota clelandii	Lepiotaceae	Agaricomycetes	Edible
Botanical Name	Family	Class	Edibility
--------------------------------	----------------------	------------------	-------------
Macrolepiota dolichaula	Lepiotaaceae	Agaricomycetes	Edible
Macrolepiota procera	Agaricaceae	Agaricomycetes	Edible
Marasmius anomalous	Marasmiaceae	Agaricomycetes	Edible
Marasmius capillaris	Marasmiaceae	Agaricomycetes	Edible
Marasmius elegans	Marasmiaceae	Agaricomycetes	Non-edible
Marasmius haematocephalus	Marasmiaceae	Agaricomycetes	Non-edible
Marasmius plicatulus	Marasmiaceae	Agaricomycetes	Non-edible
Marasmius rotula	Marasmiaceae	Agaricomycetes	Non-edible
Marasmius siccus	Marasmiaceae	Agaricomycetes	Non-edible
Microporous xanthopus	Polyporaceae	Basidiomycetes	Edible
Mycena acicula	Mycenaceae	Agaricomycetes	Non-edible
Mycena adscendens	Mycenaceae	Agaricomycetes	Non-edible
Mycena haematopus	Mycenaceae	Agaricomycetes	Non-edible
Nigroporous vinosus	Sterclerinaceae	Agaricomycetes	Non-edible
Parasola conopilus	Psathyrellaceae	Agaricomycetes	Non-edible
Peniophora incarnata	Peniophoraceae	Agaricomycetes	Non-edible
Phellinus gigus	Hymenochaetaeae	Agaricomycetes	Non-edible
Phellinus igniarus	Hymenochaetaeae	Agaricomycetes	Non-edible
Pisolithus arrhizus	Sclerodermataeae	Agaricomycetes	Non-edible
Pluteus lutescens	Pluteaceae	Agaricomycetes	Edible
Polyporous sulphureus	Polyporaceae	Agaricomycetes	Edible
Porodaealae pini	Hymenochaetaeae	Basidiomycetes	Non-edible
Pycnoporus cinnabarinus	Polyporaceae	Agaricomycetes	Non-edible
Pycnoporus sanguineus	Polyporaceae	Agaricomycetes	Non-edible
Ramaria stricta	Gomphaceae	Agaricomycetes	Non-edible
Russula brevipes	Russulaceae	Agaricomycetes	Edible
Russula cyanoxantha	Russulaceae	Agaricomycetes	Edible
Russula emetica	Russulaceae	Agaricomycetes	Non-edible
Russula nigricans	Russulaceae	Agaricomycetes	Edible
Russula rosea	Russulaceae	Agaricomycetes	Edible
Russula xerampelina	Russulaceae	Agaricomycetes	Edible
Schizophyllum commune	Schizophyllaceae	Agaricomycetes	Non-edible
Suillus luteus	Sillaceae	Agaricomycetes	Edible
Termitomyces clypeatus	Lyophyllaceae	Agaricomycetes	Edible
Termitomyces eurrhizus	Lyophyllaceae	Agaricomycetes	Edible
Termitomyces heimii	Lyophyllaceae	Agaricomycetes	Edible
Termitomyces medicus	Lyophyllaceae	Agaricomycetes	Edible
Termitomyces microcarpus	Lyophyllaceae	Agaricomycetes	Edible
Trametes elegans	Polyporaceae	Agaricomycetes	Non-edible
Trametes gibbosa	Polyporaceae	Agaricomycetes	Non-edible
Trametes sanquinea	Polyporaceae	Agaricomycetes	Non – edible
Trametes versicolor	Polyporaceae	Agaricomycetes	Non-edible
Tricholoma lobayense	Tricholomataeae	Agaricomycetes	Edible
Tuber rufum	Tuberaceae	Pezizymyces	Edible
Volvariella volvacea	Pluteaceae	Agaricomycetes	Edible
Xylaria cubensis	Xylariaceae	Sordariomycetes	Non-edible
Xylaria filiformis	Xylariaceae	Sordariomycetes	Non-edible
Xylaria hypoxylon	Xylariaceae	Sordariomycetes	Non-edible
Xylaria longipes	Xylariaceae	Sordariomycetes	Non-edible
Xylobolous subpileatus	Stereaceae	Agaricomycetes	Non-edible
Plate 1. Mushroom diversity in study area; a) *Lycoperdon pyriforme*, b) *Daldinia concentrica*, c) *Microcarpus xanthopus*, d) *Russula emetic*, e) *Tuber rufum*, f) *Schizophyllum commune*

Plate 2. Mushroom diversity in study area; g) *Clavaria vermicularis*, h) *Marasmius haematocephala*, i) *Geastrum fimbriatum*, j) *Russula rosea*, k) *Macropleiotra procera*, l) *Russula cyanoxantha*
Plate 3. Mushroom diversity in study area; m) Amanita ovalispora, n) Lentinus fuscipes, o) Ganoderma lucidum, p) Microporous xanthopus, q) Dacryopinax spathularia, r) Trametes sanguine

Plate 4. Field survey for the documentation of mushroom diversity
4. DISCUSSION

Mushrooms are diverse organisms which play a vital role in maintaining forest ecosystem and biodiversity. Odisha, with its diverse landscapes provides fertile platform for wild mushroom diversity. Earlier 11 mushrooms are reported from Odisha state which are edible [18]. These are Amanita caeserea, T. heimii, T. eurrhizus, A. loosi, Termitomyces microcarpus, T. clypeatus, Tuber rufum, Russula lepida, R. brevipes, Lentinus fusipes and Microporus xanthopus. Later in 2013 Sachan et al. reported 14 edible mushroom species from Similipal Biosphere Reserve [19]. Panda et al. in 2019 were reported about 20 edible mushroom species like Lycoperdon pyriforme, Lycoperdon pyriformi, Volvariella volvacea, Amanita egregia, Termitomyces microcarpus, Termitomyces eurhizus, Termitomyces heimii, Russula rosea etc. from Northern Odisha, India [6]. Recently in 2020 Rout et al. reported 60 wild mushroom from Dhenkanal district of Odisha in which 20 mushrooms are edible [7].

5. CONCLUSION

Rairangpur Forest Division with its varied topography and diverse vegetation enjoys a rich diversity of mushrooms in wild habitats. This region is rich in resources of edible macrofungi. A total of 99 mushroom species belonging to 56 genera of 37 families were identified from Rairangpur Forest Division during survey and it was found that 41 species were edible in which 15 mushrooms were consumed by local and tribal communities. The rest species are poisonous or bitter in taste and further research on them could lead to isolate some bioactive compounds which could be a better preventive against many lethal diseases. The above results provide more scopes to identify the edible and non-edible mushrooms for future food and medicines. Therefore it is very important to explore, document and conserve these natural wealth.

CONSENT

It is not applicable.

ETHICAL APPROVAL

It is not applicable.

ACKNOWLEDGEMENTS

Authors are thankful to local communities, forest officials and team members of Ambika Prasad Research Foundation, Odisha, India.

COMPETING INTERESTS

Authors have declared that no competing interests exist.

REFERENCES

1. Pandey VV, Kumari A, Kumar M, Saxena J, Kainthola C, Pandey A. Mushroom cultivation: substantial key to food security. Journal of Applied and Natural Science. 2018;10:1325–1331.
2. Seen-Irlet B, Heilmann-Clausen J, Genney D, Dahlberg A. Guidance for the conservation of mushrooms in Europe. Convention on the conservation of European wildlife and natural habitats. 27 th meeting, Strasbourg: 2007.
3. Juma I, Mshandete AM, Tibuhwa DD, Kivaisi AK. Identification of Tanzanian saprophytic edible mushrooms by amplification and sequencing of ITS/LSU regions of ribosomal RNA operon. Tanzania Journal of Science. 2016;42:109-121.
4. Bhattacharjee J, Bhattacharjee D, Paul T, Kumar A, Chowdhury S. Diversity of mushrooms in Indo-Bangladesh region of North-East India. Journal of the Andaman Science Association. 2015;19(1):75-82.
5. Debnath S, Upadhyay RC, Saha R, Majumdar K, Das P, Saha AK. A checklist of Macrofungi (mushroom) diversity and distribution in the forest of Tripura, India. Journal of Threatened Taxa. 2020;12(10):16314-16346.
6. Panda MK, Thatoi HN, Sahu SC, Tayung K. Wild edible mushrooms of Northern Odisha, India: Data on distribution and Utilization by ethnic communities. Research Journal of Life Sciences, Bioinformatics, Pharmaceutical and Chemical Sciences. 2019; 5(2):248-268.
7. Rout Y, Behera F, Kumar S, Sahoo MP, Devi RK. Mushroom diversity of Dhenkanal District, Odisha, India: Source of Alternate Foods and Medicines. European Journal of Medicinal Plants. 2020;31(7):33-41.
8. Priyamvada H, Akila M, Singh RK, Ravikrishna R, Verma RS, Philip L, Marathe RR, Sahu LK, Sudheer KP, Gunthe SS. Terrestrial Macrophungal Diversity from the Tropical Dry Evergreen Biome of Southern India and Its Potential Role in Aerobiology; 2017. Available:https://doi.org/10.1371/journal.pone.0169333.
9. Rahi DK, Malik D. Diversity of Mushrooms and Their Metabolites of Nutraceutical and Therapeutic Significance. Journal of Mycology. 2016;18. Available: https://doi.org/10.1155/2016/7654123.

10. Tran NH, Urase T, Kusakabe O. Biodegradation characteristics of pharmaceutical substances by whole fungal culture Trametes versicolor and its laccase. Journal of Water Environment Technology. 2010;8:125-140.

11. Warsewicz HG, Laskowski W, Kulykovets O, Chylak AK, Czeczotko M, Rejman K. Food Products as Sources of Protein and Amino Acids—The Case of Poland. Nutrients; 2018. DOI: 10.3390/nu10121977.

12. Chawpattnayak BN, Barik KL. Phytodiversity of a Grassland Community of Rairangpur in the district of Mayurbhanj, Odisha. International Journal of Scientific Research in Science, Engineering and Technology. 2014; 1 (1): 106-110.

13. Sahoo T, Panda PC, Acharya L. Structure, composition and diversity of tree species in tropical moist deciduous forests of Eastern India: a case study of Nayagarh Forest Division, Odisha. Journal of Forestry Research. 2017; 20(1): 2007-2017.

14. Mohapatra AK, Tripathy SS, Kaviyarasan V. Diversity in Eastern Ghats of India.

15. Ostry ME, Anderson NA, O Brien JG. Field guide to common macrofungi in Eastern forests and their ecosystem functions. Gen. Tech. Rep. NRS-79. Newtown Square, PA: U.S. Department of Agriculture, Forest Service, Northern Research Station. 2017;82. Available: https://doi.org/10.2737/NRS-GTR-79.

16. Abulude FO, Ndamitso MM. Fungi a Review Mushrooms. Knowledge for Global Development. 2017;18-31.

17. Joty AA, Aminuzzaman FM, Sultana N, Tanjina A, Sonchita DRB, Islam NMD. Diversity, Distribution and Morphology of Wild Mushrooms collected from Gajni Forest of Bangladesh. International Journal of Environment. 2020;9(2):235-255.

18. Tripathy SS, Rajoriya A, Gupta N. Wild indigenous mushrooms as a source of food from different forest divisions of Odisha. Journal of Pharmaceutical Biology. 2014;4(3):138-147.

19. Sachan SKS, Patra JK, Thatoi HN. Indigenous knowledge of ethnic tribes for utilization of wild mushrooms as food and medicine in Similipal Biosphere Reserve, Odisha, India. Journal of Agricultural Technology's. 2013;9(2):335-348.

© 2021 Mishra et al.; This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Peer-review history:
The peer review history for this paper can be accessed here:
https://www.sdiarticle4.com/review-history/70183