A review on ethnopharmacological utility, traditional knowledge and phytochemistry of *Aristolochia* species in Assam, India

Punam J. BORAH¹, Dipankar BORAH²*, Udipta DAS³, Tridip J. DAS⁴, Ruma SARMA¹

¹Cotton University, Department of Botany, Guwahati 781001, Assam, India; punamborah1997@gmail.com; sarmaruma8@gmail.com
²Goalpara College, Department of Botany, Goalpara 783101, Assam, India; dipankar.borah@goalparacollege.ac.in (*corresponding author)
³Tripura University, Department of Botany, Agartala 799022, Tripura, India; udiptadas93@gmail.com
⁴NIT Arunachal Pradesh, Department of Biotechnology, Yupia 791112, Arunachal Pradesh, India; tridipjd31@gmail.com

Abstract

Aristolochia L. (Aristolochiaceae) is widely used throughout South-East Asia for the treatment of several diseases. Different species of this genus are known by similar local names in Assam. This review aims to provide up-to-date information on *Aristolochia* species distributed in Assam, including its traditional uses, phytochemical and pharmacological properties, in exploring future therapeutic and scientific potentials. The information on ethnobotany, phytochemistry and pharmacological aspects were collected by performing literature searches. Assam hosts a total of six species of *Aristolochia*. The taxonomy and distribution are presented. Traditionally the tubers are used by the local people to treat stomach pain, malaria, dysentery, high blood pressure, body pain, urinary tract infections, headache, impotency etc. It has considerable pharmacological properties including antimicrobial, antioxidant, anti-inflammatory, anti-cancer, anti-diabetic, anti-fertility, anti-venom, anti-diarrhoeal, anti-pruritic, anti-feedant and toxicological activities. Approximately a total of 200 compounds have been isolated from these species. So far, pharmacological investigations are only done on three *Aristolochia* species, whereas the other three are simultaneously used for the same purposes. Most of the medicinal properties attributed to these *Aristolochia*, have not yet been investigated and proven under a scientific study. This highlights the importance of *Aristolochia* as a valuable candidate for future studies.

Keywords: *Aristolochia*; bioactive compounds; distribution; flora of Assam; pharmacology; taxonomy; traditional knowledge

Introduction

Medicinal plants serve humans as a great source of therapeutics and pharmaceutical manufacturing. The practices of using medicinal plants in the treatment of common diseases are part of the traditional knowledge among the different communities throughout the world. The dependencies of the traditional communities on the naturally occurring herbs are due to better cultural acceptability, compatibility and adaptability of the
plants with the human body and lesser side effects (Gupta et al., 2010; Oladeji, 2016). Research carried out during the past few years have resulted in the isolation of more than a thousand bioactive compounds from medicinal plants having disease-preventing properties as antioxidants, detoxifying agents, immunity-potentiating agents and neuropharmacological agents (Saxena et al., 2013).

The increasing demands of herbal medicine in the 21st century in both developed and developing countries indicate the public interest in traditional, complementary and alternative medicines. There is a belief that herbal medicines provide long-lasting healing, minimal adverse effects, lesser cost, well-practiced knowledge and promote healthier living in contrast to the adverse effects of allopathic drugs (Gupta et al., 2010). In rapidly developing countries such as India and China, the role of plant-derived medicine in the health care system is about 80% (Khan, 2016). The active phytoconstituents may be a mixture of secondary metabolites like alkaloids, saponins, tannins, glycosides, phenols and flavonoids etc. The extraction, isolation, detection and identification of such phytochemicals are necessary for establishing the quality control, mechanism of their action on the body, safety and efficacy (Saxena, 2013; Ogunmefu, 2018).

The genus Aristolochia (Aristolochiaceae) is widely distributed in tropical to temperate regions throughout the world (Hwang et al., 2003). It is the largest genus in the family accounting for about 534 accepted species (POWO, 2019), of which India is represented by 20 species (Borah et al., 2019; revised). They are mostly perennial climbers, with ovate cordate leaves and fusiform rhizomes. It can be differentiated from its other congeners (Saruma Oliv., Thottea Rottb. and Asarum L.) by a combination of several characters such as woody or herbaceous habit, axillary flowers arranged in fascicules or solitary, uniseriate perianth, connate carpels and dry capsules.

Among the 20 species of Aristolochia distributed in the country, six of them are presently reported growing wild from the state of Assam (Borah et al., 2019). Aristolochia indica L. is found in Lower Assam, A. cathcartii Hook.f. is distributed towards the both the banks of the River Brahmaputra in Upper Assam, whereas A. saccata Wall. is towards its South bank (doubtful). A. platanifolia (Klotzsch) Duch., A. assamica D. Borah & T.V. Do towards the foothills of Arunachal Pradesh in Upper Assam, on either side of the Brahmaputra basin and A. acuminata Lam. (syn: A. tagala Cham.) is found throughout the region and is the most widespread species, among its congeners (Figure 1). A. cathcartii, A. platanifolia and A. saccata falls under the subgenus Siphisia and can be differentiated from all other species by their strongly curved perianth, U- or horseshoe shaped tube and a 3-lobed gynostemium. A. cathcartii and A. saccata are very close allies and are often confused, A. cathcartii is recognized by rectangular limb, inner surface of limb lobes covered with bristle-like papillae and purple dotted throat vs. irregularly circular limb, papillae and dots absent in A. saccata. Whereas, A. platanifolia can be distinguished from both of them, by its dissected leaves and a bell-shaped limb. The remaining three falls under the subgen. Aristolochia series Podanthemum and subgen. Aristolochia series Aristolochia. A. assamica can be recognized by the absence of stipe absent between the ovary and the utricle and terete branches (series Aristolochia) vs. stipe present between the ovary and the utricle and branches angular or ribbed (series Podanthemum with the remaining two species). A. acuminata is distinguished by orbicular to ovate lamina with a long petiole up to 5 cm whereas, A. indica by obtuse-oblong to oblong-lanceolate lamina with a short petiole up to 2 cm (Do et al., 2015; Borah et al., 2019).

However, no comprehensive review of the genus has been reported from this particular region. The present review is aimed to focus on providing information about traditionally used natural medicine, phytochemistry and pharmacology of Aristolochia species from Assam, India. We tried summarizing the best available evidence of traditional uses, phytoconstituents and pharmacological activities regarding Aristolochia spp. along with structural features of some important phytoconstituents. Multiple databases and platforms Google Scholar, Scopus, PubMed, Web of Science, ResearchGate and Academia were searched for relevant studies which included multiple keywords to elicit the data on Aristolochia. Chemical structures were drawn using Chem Draw Ultra 8.0 software by following the PubChem database (Figure 2).
Aristolochia species distributed in Assam: A. *A. platani*folia, B. *A. cathcartii*, C. *A. assamica*, D. *A. acuminata*, E. *A. indica*
(A by Khyanjeet Gogoi, B-D by Dipankar Borah & E by Goutam Panda)

Traditional uses of Aristolochia species

Aristolochia spp. has been used in traditional medicine by different communities around its occurrence for a long time. The tubers of *Aristolochia* are used against a multitude of ailments in Assam. Correlating the ethnomedicinal reports with modern pharmacological and phytochemistry studies, shows consistency with the latest findings. *A. acuminata* is used to treat diarrhoea and dysentery by several tribes residing in Assam (Rao, 2019). *A. saccata* is used to treat stomach ache, constipation, dysentery, fever, body pain, jaundice, sprains and fracture by the Karbi, Tiwa, Pnar and Bodo-Kachari people residing in Karbi-Anglong districts of Assam (Basumatary *et al.*, 2014; Teron, 2019). The population in Majuli Island and around Gibbon Wildlife Sanctuary uses its roots to treat tonsillitis, cough, piles, malaria fever and diarrhoea (Sarmah and Saikia, 2014; 2016). The roots of *A. indica* are used to heal wounds and to enhance fertility in males by the traditional healers of Dhemaji district of Assam (Taid *et al.*, 2014). It has also been reported to be used by the people of Dibrugarh-Saikhowa Biosphere Reserve for the treatment of certain asthmatic problems and skin diseases such as leucoderma (Nath *et al.*, 2008; Purkayastha *et al.*, 2007). The Deori, Muttak and Nepalese community residing in the Dibrugarh district of Assam reported using the decoction of the leaves of *A. indica* to treat dysentery, diarrhoea and melena (Borah *et al.*, 2006). *A. cathcartii* is used against stomach aches, urinogenital disorders and as an insect repellent by the people in and around Manas Biosphere Reserve (Paul *et al.*, 2011 a, b). Similarly, the roots of *A. assamica* and *A. cathcartii* are used to treat stomach pain, malaria, dysentery, high blood pressure, body pain, urinary tract infections, headache and cough by the fringe people of Behali reserve forest in Biswanath district (Borah *et al.*, 2020). However, several other ethnomedicinal reports have been published for the studied species of *Aristolochia* outside Assam are shown in Table 1.
Table 1. Summary of traditional uses of the studied *Aristolochia* species outside Assam

Species	Local names	Parts used	Traditional uses	Regions	References
A. indica	Nagbel, Nalla Eshwari, Nalla Eswari, Saapsun, Safed ishri, Sivan mooligai, Cheriyaarayan, Chong-khengsum, Ishwarmul, Isramuli, Israul, Iswar, Karudakodi, Kirmar, Nagasaram, Thalaisuruli, Thazhaisurulikodi, Ishwarmula, Kalesar, Karakalam, Eswaramooleekai, Garudakodi, Beelieshwariballi, Bhedi Janete, Iswaramuli, Iswari, Iswarmul, Sunanda, Tang gwaysobawai, Ghorth, Gorisal, Ichegach, Eswaramulli, Eachamulla, Chotoishe, Eeshwariballi, Ishwaraberu, Ishwarmon, Nalleshwari, Nalleswari, Peru eswaramooligai, Aduthinnapalai', Garudakkody, Malaiarasam, Khurthlong, Mala aryan, Thella usiri, Kirmar	Root, Root-bark, Bark, Fruit, Leaf, Fruits, Leaves, Twig, Whole plant	Abortifacient, Anxiolytic, Analgesic, Anodyne, Anti-inflammatory, Anaphoric, Analgesic, Aphrodisia, Asthma, Blood purifier, Bowel complaints, Burns, Cardio tonic, Cattle blast, Cattle diarrhea, Cattle fever, Cholera, Cold & cough, Cole, Dandrell, Diarrhoea, Diuretic, Dyspepsia, Eczema, Emmenagogus, Ephedrinal, Fever, Folk belief, Gaunt diseases, Gonorrhoea, Hernorrhagic septicaemia, Headache, Herpes, High blood pressure, Horn ablation, Injuy, Insect bite, Intermittent fever, Jaundice, Leishmaniasis, Leptospo, Leucoderma, Leucorrhoea, Liver diseases, Madness, Malatul fever, Mamitis, Menstrual problems, Mosquito bite, Nervous disorders, Neuro-Tonic, Oral infection, Paralytic disease of cattle, Piles, Psoromia, Poison bite, Pousse, Rash, Rheumatic Arthritis, Rheumatic fever, Rheumatic pain, Scabies, Scorpion bite, Septic due to skin allergies, Sexual problems, Skin diseases, Snake bite, STD, stomach ache, Stomach disorders, Snake repellant, Tooth ache, Tumour, Ulcers, Unconcosciousness, Urine flow, Urine infection, Treating wounds.	India (Andhara Pradesh, Gadwal, Bandarbanomowran Wildlife Sanctuary, Eastern Ghats, Himachal Pradesh, Jharkhand, Naoradehi Wildlife sanctuary, Nagaland, Tamil Nadu, Western Ghats, Andhra Pradesh, Uttar Pradesh, West Bengal), Bangladesh (Arunachal Pradesh, U.T of Puducherry, Tamil Nadu, Kodiakarai Reserve Sanctuary, Eastern Ghats), Indonesia, Philippines, The Western Ghats, Trincomalee hills), Bangladesh, Indonesia, Philippines, Thailand	Borah et al., 2016; Bhat et al., 2007; Biswas et al., 2010; Bose et al., 2014; Chakraborty and Bhattacharjee, 2006; Chowdhury et al., 2011; Das and Bandyo, 2015; Das and Mondal, 2012; Devendrakumar and Anshagun, 2012; Dey and De, 2012; Galar et al., 2013; Ganesan et al., 2006; Gentes et al., 2015; Hemanth and Taneemath, 2010; Jan et al., 2008; Jyvola et al., 2011; Johnny et al., 2012; Kamble et al., 2016; Kannan et al., 2015; Kingston et al., 2007; Kinna et al., 2006; Kumar et al., 2014; Kumar et al., 2019; Marandhi and Britto, 2014; Mandal et al., 2013; Murthy, 2012; Nair et al., 2013; Nithyadevi and Sivakumar, 2014; Nisar et al., 2015; Pandu and Padday, 2008; Partha and Hossain, 2007; Prasanna et al., 2012; Prakash et al., 2010; Pradeepkumar and Vyshnavag, 2006; Ragupathy and Newman, 2009; Rahman et al., 2013; Rajakumar and Shivanna, 2010; Rajakumar et al., 1989; Rao et al., 2010; Ramana and Raju, 2005; Reddy et al., 2009; Reddy et al., 2015; Bose and Panda, 2010; Sanmamband and Dhanamathanmeswri, 2012; Sen, 2008; Senthilkumar et al., 2006; Shrikumar and Parabaramma, 2014; Shivanna and Rajakumar, 2011; Skhala et al., 2018; Sambanthan et al., 2017; Sevuparamal et al., 2009; Sivakumar et al., 2014; Sudeesh et al., 2012; Sukechana et al., 2014; Swarnadipa et al., 2017; Twari and Yadav, 2017; Tripathi and Sikawar, 2013; Usha et al., 2015; Vjitan et al., 2007; Yadav and Prakash, 2014; Yesudharsan and Sujana, 2007
Reported phyto-compounds from Aristolochia species

The phytochemical analysis is must to justify the scientific accuracy in the usage of herbal medicine and unearth the basis of treating diseases efficiently. During the last couple of decades, extensive studies were done on the phytochemical constituents found in various plant species and the genus Aristolochia was no exception. The phytoconstituents of the genus were extensively studied and many scholars have reported numerous compounds of significant importance from the plants of this genus. Aristolochic acids and its derivatives, aristolactams, aporphines, protoberberines, isoquinolines, benzylisoquinolines, amides, flavonoids, lignans, diphenyl ethers, coumarins, tetralones, terpenoids, benzenoids, steroids were the secondary metabolites that have been characterized from the Aristolochia species (Kuo et al., 2012). In this section of the review, the constituents found in 3 out of 6 species of Aristolochia found in Assam are compiled and comprehensively presented in tabulated form (Table 2). Reliable data regarding the phytochemical constituents present in three species viz. A. saccata, A. platanifolia and A. assamica were not found which indicates that scientific analysis of phytochemical constituents present in those species is yet to be isolated and studied.

Table 2. Phyto-constituents of Aristolochia species distributed in Assam

Species	Phyto-constituents reported	Plant part	References
A. saccata	Aristolochic acid I	Leaves	Borah PJ et al., 2021
	Aristolochic acid A, Ariskanin D		Leete et al., 2002
	Aristolochic acid A, Tuberonine		Chen et al., 1987
A. acuminata	Aristolactam C IIIa, Dihydropseudoperezone, Pteryrimine A, Isoaristolone, Lycioside A, Kupchan and Doskotch, 1962	Roots	Hadem et al., 2019
	Aristolactone		
A. assamica	Aristolactone	Stem	Liu et al., 2020
	Bisabolene, Pinocarveol, δ-Cadinol, β-Elemene, α-Terpineol, β-Farnesol, Octanol, Nonanol, Humulene oxide, Nerolidol, β-Farnesene	Whole plant	Teron and Borthakur, 2020
A. indica	β-Carophyllene, α-Humulene, β-Iodowere, Carophyllene oxide I, β-Iodowere, Luteol, α-Terpineol, Isoborneol, Ariskanone, n-Hexadecyl acetate, Camphor, Nonanol, Humulene oxide, Nerylalcohol, β-Farnesene, β-Bisabolene, Pinocarveol, d-Cadinol, d-Elemene, α-Terpineol, β-Farnesene, Octanol, Carophyllene oxide II, n-Bisabol, Germacrene A, Ledol, 2-Octanol, Hexadecyl acetate, Thymol, Indole, β-Phellandrene, Teratostane, SFH[7,7,10a]selenin(4)-11-tetrazen, β-Pinene, Bornyl Terpinene-4-ol, d-Selinene, Hesperet, (12S)-7, 12-Secondostrazen-12-ol, Camphene, Tricyclene	Aerial part	Jinver et al., 2000
	Aristolactone N-β-D-glucoside, 3β-hydroxy-stigmast-5-en-3-one, 6β-hydroxy-stigmast-4-en-3-one	Stem	Ashari et al., 1981
A. indicia	Aristolochic acid I, Aristolochic acid A, Methyl Ariskanolate, Aristolactam A II, Aristolactone C, N-β-D Glucoside, Aristolactam A II, D-Glucoside	Root	Liu et al., 2020
	Aristolochic acid I	Root	Mix et al., 1982
	Aristolochic acid I	Root	Kepelkan and Dosehock, 1982
	Aristolochic acid I	Root	Cho et al., 1984
Compound	Plant Part	Reference	
----------------------------------	------------	------------------------------------	
Ishwarone, Ishwarol, 5βH, 7β, 10 α-selina4(14), 11-diene, Aristolochine alkaline, Isoaristolochic acid, Allatonin, (12S)-7, 12-secoishwaran-12-ol, Aristolactam N-β-D-Glucoside, 3β-hydroxy-stigmast-5-en-7-one, 6β-hydroxy-stigmast-4-en-3-one, Aristolindiquinone, Aristololide, 2-hydroxy-1-methoxy-4-Dihydro-quinolone-4,5-(6H)-dione, Cepharadione, Aristolactam Ia, Aristolactam glycide I, Stigmasterones II, Stigmasterones III, Methyl Aristolactam, β-strocardol-D-glucoside, α-Pinene, trans-Pinocarveol, Pinocarvone	Root	Gerindradhut et al., 1970	
Antragalin, (-) hinokinin, Aristolochic acid I, Aristolactam I, Aristolochic acid II	Aerial part	Desai et al., 2014	
Ishwarone, Aristolochene	Aerial part	Dey et al., 2011	
5αH-7, 12-secoishwaran-12-ol, α-linalool, Ishwarone	Root	Karan et al., 2012	
a-pinene, Camphene, β-pinene, p-cymene, Limonene, trans-pinocarveol, Pinocarvone, Terpinen-4-ol, Myrtenol, Myrtenal, Carvone, α-terpinyl acetate, Aromadendrene, (E)-β-ionone, α-cadinol	Stem	Kajjil et al., 2009	
Aristolochic acid-D, Aristolochic acid n-methyl ether lactam, Aristolactam β-D-glucoside	Root	Kupchan and Marston, 1968	
Aristolochic acid I, Aristolochic acid II, Aristolochic acid IV, Aristolochic acid D, Aristolochic acid Ia, Aristolochic acid IIa, Aristolactam A, Aristolactam A I, Aristolactam I, Aristolactam II, Aristolactam III, Aristolactam IV, Aristolactam Ia, Aristolactam IIa, Aristolactam IIIa, Aristolactam Ia; N-β-D-glucopyranoside, Aristolactam II, Aristolactam III, Aristolactam IVa, Aristolactam II, Aristolactam III, Aristolactam I, Aristolactam IV, Aristolactam Ia, aristolactam, Aristolactam I, Aristolactam II, Aristolactam III, Aristolactam IV, Aristolactam Ia, aristolactam, Aristolactam I, Aristolactam II, Aristolactam III, Aristolactam IV, Aristolactam Ia, aristolactam, Aristolactam I, Aristolactam II, Aristolactam III, Aristolactam IV, Aristolactam Ia	Leaves	Michl et al., 2013	
Aristolochic acid A, Aristolochic acid C	Roots	Mix et al., 1982	
(S)-Linalool, α –Terpinolene, β –Caryophyllene, Caryophyllene oxide, Caryophyllene oxide, 9-Methoxyaristolactam II, Norcepharadione A	Stems	Paknshi et al., 1980	
Methyl ester of 12-nonacosenoic acid, n-heptadecane, n-triacontane, Palmitic acid, hexacosanoic acid, Friedelin, Cycloeucalenol, Rutin, Aristolactone	Root	Rao et al., 1955	
(S)-Linalool, α –Terpinolene, β –Caryophyllene, Caryophyllene oxide, Caryophyllene oxide, 9-Methoxyaristolactam II, Norcepharadione A	Root	Sati et al., 2011	
A. cathcartii	Whole herb	Zhang et al., 2016	
A. saccata	-	-	
A. platanifolia	-	-	
A. assamica	-	-	
Figure 2. Chemical structures of some important Phyto-constituents of *Aristolochia* species
Pharmacological activity of reported Phyto-compounds of *Aristolochia*

Antimicrobial activity

The antibacterial activity of leaves of *A. acuminata* was studied by disc diffusion method against gram-positive *Staphylococcus lentus* and *Bacillus cereus*, gram-negative *Serratia marcescens*, *Candida albicans*, bacteria and fungi *Candida dublinesis* and *Cryptococcus neoformans*. Acetone extract showed the highest inhibition zone against gram-positive organisms than against gram-negative organisms such as *Staphylococcus lentus* and *Bacillus cereus* (Hercluis et al., 2018).

Similarly, aerial parts of *A. indica* were also studied by disc diffusion method against *Pseudomonas aeruginosa*, *Bacillus subtilis*, *Staphylococcus aureus*, *Escherichia coli*, *Bacillus sphaericus* (syn. of *Lysinibacillus sphaericus*), *Salmonella typhimurium*. The extracts showed a moderate antibacterial activity (Shafi, 2002). Murugan and Mohan (2012) tested against *Staphylococcus aureus*, *Klebsiella pneumoniae*, *Bacillus subtilis*, *Escherichia coli*, *Salmonella typhi* and *Pseudomonas aeruginosa* and found that petroleum ether, acetone and methanol plant extracts showed good results against all the tested pathogens. Venkatadri et al. (2015) studied the whole plant extracts by agar well diffusion method against multidrug-resistant β-lactamases producing bacteria and ethanolic extract showed minimum inhibitory concentration values of 50-100 μg/ml and 100-200 μg/ml. Naik et al. (2015) studied against three Gram-positive (*Staphylococcus aureus*, *Bacillus coagulans*, *B. subtilis*) and three Gram-negative (*Escherichia coli*, *Pseudomonas aeruginosa* and *Salmonella typhi*) bacteria. The leaf extract caused high inhibition of *B. coagulans* followed by *B. subtilis* and the least inhibition caused by leaf extract was recorded against *S. aureus*. In the case of flower extract, *S. typhi* and *B. coagulans* were inhibited to a higher extent when compared to other bacteria. Antifungal activity was studied by poisoned food technique against test fungi namely *Bipolaris sorokiniana* (from root rot of wheat), *Fusarium oxysporum f.sp. zingiberi* (from rhizome rot of ginger), *Colletotrichum capsici* (from anthracnose of chilli) and *Curvularia sp.* (from mouldy grains of sorghum) and the results revealed that *F. oxysporum* displayed higher susceptibility to leaf and flower extracts followed by *Curvularia sp.*, *B. sorokiniana* and *C. capsici*. Umamaheshwari and Murthy (2012) studied against *Bacillus subtilis*, five different antibiotics namely Ciprofloxacin, Nitrofurantoin, Ofloxacin, Pefloxacin and Sparfloxacin were used as standard, results showed that the root extracts exhibited different degrees of antibacterial activity of which butanol extract of inhibition zone (2.4 cm) and ether extract (2.0 cm) showed maximum activity.

Antioxidant activity

The free radical scavenging activity of methanolic root extracts of *A. acuminata* was tested by Hadem et al. (2016) by DPPH method and, found significant value as compared to standard compound ascorbic acid. At 1000 μg/ml concentration, aqueous stem extract of *A. indica* showed higher scavenging activity of 66.66±4.67% compared to chloroform leaf extract of 48.33±3.38% in DPPH method (Subramaniyan et al., 2015). Naik et al. (2015) found the ethyl alcohol extracts of leaves and flowers of *A. indica* at 100μg/ml concentration showed 48.68% and 10.52% DPPH radical scavenging activity respectively where ascorbic acid was used as standard. The aerial parts of *A. indica* exhibited IC50 value of 7.325 μg/ml at 25 μg/ml concentration when tested by DPPH radical scavenging method using ascorbic acid as standard and IC50 value of 8.498 μg/ml at 10 μg/ml concentration when tested by superoxide anion radical scavenging method with curcumin as standard (Karan et al., 2012). Thirugnanasampandan et al. (2008) studied the antioxidant activities of both *A. acuminata* and *A. indica* using three solvents e.g., petroleum ether, chloroform and ethyl acetate extract. Among the extracts, the highest reducing power activity has shown by the ethyl acetate extract of *A. acuminata* (1.28%) and *A. indica* (1.01%). In Ammonium thiocyanate assay, petroleum ether (10 ml) extract of *A. acuminata* showed the highest activity of 57.42% and *A. indica* ethyl acetate extract showed the highest activity of 40.21% compared to Linoleic acid.
Anti-inflammatory activity

Ethyl acetate and ethanol extracts of *A. acuminata* roots at doses 200 and 400 mg/kg produced a significant reduction in the Carrageenan-induced paw edema on Wistar albino rats. The test samples exhibited an inhibitory effect for both COX and LOX enzymes, in in-vitro MTT colorimetric assay. Among the isolated phytoconstituents from the plant "Kaempferol" was responsible for the highest inhibition of PGE2 and LTB4 at 87.7% and 91.4% released from calcium ionophore and LPS IFN-γ–stimulated macrophages than standard drug indomethacin (Battu et al., 2011). Aristolactam I and (-) Hinokinin isolated from *A. indica* also exerted anti-inflammatory effects and inhibited the production of IL-6 and cytokines TNF-α in LPS-stimulated THP-1 cells (Desai et al., 2014). Retardation of inflammation has resulted when combined administration of *A. indica* plant extract and venom Ichthyocrinotoxin administered on Carrageenan induced male albino rats (Das et al., 2010). Ethanolic extract of *A. indica* roots at dose 150 mg/kg showed a potent anti-inflammatory effect on compound 48/80 induced paw edema in Wistar male albino rats (Mathew et al., 2011).

Anti-cancer activity

Hepatocellular carcinoma (HCC) in Swiss albino BALB/c mice was induced by carcinogen diethylnitrosamine (DEN) which elevates aspartate transaminases, alanine transaminase, alkaline phosphatase activities. *A. acuminata* root extract significantly attenuated the increased activities of these marker enzymes (Hadem et al., 2014). It was found the root extracts had lowered the levels of tumour necrosis factor-α (TNF-α) levels and nuclear factor kappa-B (NF-κB) activation when analysed the serum and nuclear extracts of DEN induced hepatocellular carcinoma in Albino BALB/c mice. Leaves and stem extracts of this plant also showed chemo-preventive potentiality when tested against six human cancer cell lines (Garg et al., 2007). Fractions of *A. acuminata* root aqueous-methanol extract of 2.5-5mg/ml concentration exhibited the highest inhibition with IC₅₀ value of 0.320 mg/ml and induced the effective apoptotic activity determined by MTT assay in HeLa cells (Hadem et al., 2019). The chloroform leaves extract of *A. indica* showed an inhibitory effect at IC₅₀ value at 347 µg/ml compared to the standard anti-cancer therapy drug Taxol when evaluated in human breast cancer cell line (MCF-7 Michigan Cancer Foundation-7) by MTT assay (Subramaniyan et al., 2015).

Anti-diabetic activity

The experimental findings of Karan et al. (2012) confirmed the aerial parts of *A. indica* possess significant anti-diabetic properties. A single intravenous injection of aqueous alloxan monohydrate (150 mg/kg) induced diabetes mellitus in Swiss albino mice and Glibenclamide considered as standard drug resulted that after four hours of the administration of chloroform plant extract showed maximum reduction in serum glucose level at the doses of (100, 250, 500, 750 mg/kg, p.o) from 226.3±4.502 to 198.7±2.16 mg/dl, 244.2±3.76 to 206.5±1.871 mg/dl, 414.2±3.869 to 187.2±2.312 and 273±3.742 to 184.7±3.141 mg/dl. Methanolic extracts of *A. indica* roots at doses 100, 200 and 400 mg/kg showed anti-hyperglycemic effect on alloxan induced diabetic mellitus in Sprague Dawley rats and compared with the oral hypoglycemic agent glibenclamide (10 mg/kg). The effect of crude extract on blood glucose levels was measured at various time intervals of 0, 1, 2, 4, 6 and 8 hours. The dose of 400 mg/kg of the crude extract produced a significant maximum fall of 28.94 ± 2.8 on the blood glucose levels of diabetic rats after 6 hours of the treatment compared with disease control group (Goverdhan et al., 2008).

Anti-fertility activity

The anti-fertility activity was evaluated by determining the anti-implantation and early abortifacient activity of ethanolic extract of *A. acuminata* leaves in Wistar rats of either sex orally at the doses of 100 and 200 mg/kg considering 1% Tween 80 as control drug showed significant (100%) antifertility activity on 200 mg/kg in female rats by a significant reduction in the number of corpora lutea and increase in the number of
resorptions (Balaji et al., 2004). The post-coital administration of *A. indica* ethanolic root extract decreased fertility in both Wistar rats and hamsters (Che et al., 1984).

Anti-venom activity

Screening of *A. indica* plant extract against snake (*Daboia russelli*) venom (Meenatchisundaram et al., 2009) and scorpion (*Mesobuthus tamulus*) venom (Attarde and Apte, 2013) showed potent venom neutralizing capacity. 0.11 mg of plant extracts were able to completely inhibit PLA2 dependent haemolysis of sheep RBC’s induced by *D. russelli* venom and 4 mg of plant extracts were able to completely inhibit PLA2 dependent haemolysis of mice RBC’s induced by red scorpion venom in dose dependent manner. The plant extract of *A. indica* is effective in neutralization of lethal venom effects of 2LD50 of *D. russelli* venom and LD99 of *M. tamulus* (red scorpion) venom. Additionally, the pro-coagulant activity showed 1.6 mg and 1 mg of plant extracts were able to completely neutralize coagulant activity in *D. russelli* venom and red scorpion venom clotted human citrated plasma. The modified plaque assay was used to test the fibrinolytic activity, showed 0.11 mg of plant extract was able to completely inhibit fibrinolytic activity (ED50 of 0.5 mg) induced by *D. russelli* venom. The popular bioactive compound of this plant such as Aristolochic acid, Sesquiterpenes, Aristololide works in the modification of the actions of proteins and enzymes which are responsible for the anti-scorpion venom property.

Anti-diarrhoeal activity

The anti-diarrhoeal activity of *A. indica* ethanol and aqueous root extract tested in castor oil-induced diarrhoea male Swiss albino mice resulted the inhibition of 72.38% and 61.94% at a higher dose level 400 mg/kg as compared with diphenoxylate HCl. A delay of the intestinal transit in charcoal meal-induced mice was recorded at the doses of 200 mg/kg and 400 mg/kg of plant extract confirmed the significant result in charcoal induced gastrointestinal motility test (Dharmalingama et al., 2014).

Anti-pruritic activity

Compound 48/80 induced scratched behaviour model was used to evaluate the scratching response of *A. indica* root. The ethanolic plant extract at the dose of 150 mg/kg showed significant effect and decreased the scratching incidence (Mathew et al., 2011). The wound healing potency *A. saccata* leaf extract was studied by Bolla et al. (2019). *In vitro* cell-based scratch assay in L929 cells resulted after 48 hours of treatment with 125 μg/mL of plant extract closed the gap created by the scratch by 93.525%. The extracellular matrix (ECM) factor, collagen type-1 might be enhanced by the plant extract which initiated the migration of fibroblasts (Bolla et al., 2019).

Anti-feedant activity

Antifeedant activity studied by Baskar et al. (2011) reported the leaf extract of *A. acuminata* was more toxic than the root extract. Maximum anti-feedant activities of 56.06% and 49.86% were recorded on ethyl acetate and hexane leaf extracts of *A. acuminata* at 5.0% concentration against *Spodoptera litura* using leaf disc no-choice method while the root ethyl acetate extract expressed minimum activity of 31.71%. At the same concentration, the ethyl acetate leaf extract exhibited the highest larvicidal activity (40.66%) and pupicidal activity (68.06%). Significant larval toxicity showed by *A. indica* leaf against *A. stephensi*. The formulation of Aristolochic acid I at concentrations of 1000 ppm reduced the survival of all larval instars (Murugan et al., 2015; Pradeepa et al., 2015).

Toxicology

The aristolochic acids found among the species of *Aristolochia* are famous for nephrotoxicity after the tragic Belgian cohort where the women have taken the weight reducing pills contained Chinese herb, *Stephania tetrandra* was inadvertently replaced by aristolochic acid-containing *A. fangchi* were reported to suffering renal
interstitial fibrosis (Balachandran et al., 2005; Debelle et al., 2008). The nephrotoxic and carcinogenic properties of the compound aristolochic acids have been recognised and can cause permanent kidney injury, renal failure (Han et al., 2019). The toxicological risk on the consumption of drugs made up of A. indica depends upon several factors like processing, preparation of drugs and mode of administration (Michl et al., 2013). In the quality control of the herbal recipe Homnawakod, Tripatara et al. (2012) demonstrated that one of its formulations e.g., the dried roots of A. acuminata were not causing nephrotoxicity in rats even the daily administration for 21 days. The acute toxicity study revealed no cytotoxic effects of A. acuminata leaves and root, A. indica aerial parts and roots when tested in both Swiss albino mice and Wistar albino rats (Balaji et al., 2004; Battu et al., 2011; Mathew et al., 2011; Karan et al., 2012). Leaves of A. sacata exhibited mild toxicity against L929 fibroblast cell line at minimum percentage resulted in the death of only 2.88% of cells (Bolla et al., 2019). Michl et al. (2013) also reported the contents of Aristolochic acid is higher in leaves, fruits and young stem than roots and woody stems.

Conservation status of Aristolochia at the local level

Mostly the roots of the Aristolochia sp. are used for a different form of traditional medicine, which arise a problem, as most plants are uprooted directly from the wild before reaching reproductive maturity. This poses a serious threat and is also elucidated by Kayang (2007). However, effective planning on cultivation and management of Aristolochia on a small scale can help address this issue, as well as introduction in the home gardens can solve this problem. They can also be planted as beautiful ornamental. The attractive flowers add aesthetic value to its present traditional utilities.

Conclusions

The plants of the genus Aristolochia have always been recognized as plants of high medicinal importance by the people of Northeast India. But in recent years, the genus Aristolochia L. has been recognized globally for possessing remarkable medicinal value and is reportedly used by people throughout the Indian sub-continent against various diseases and illnesses such as snake bites, muscular ailments, lung, liver and gastrointestinal disorders etc. Hence, in this present study, we have comprehensively reviewed the traditional knowledge on six species of Aristolochia found in the northeastern state of Assam along with the various phytoconstituents present in those species. Also, the various properties viz. antimicrobial, antioxidant, anti-inflammatory, anticancer, anti-diabetic, anti-fertility, anti-venom, anti-diarrhoecal, anti-pruritic, antifeedant and toxic activity exhibited by various parts of the plant. In short, this review is designed to provide insight into the necessity of further research of important plant compounds to investigate and develop new drugs. Additionally, more comprehensive reviews regarding the activity of the compounds found in Aristolochia will help in further development of using Aristolochia as an effective drug. Hopefully, these studies will explore the full potential of Aristolochia and optimize its use as a promising herbal medicine, thereby promoting global health.

Authors’ Contributions

Conceptualization: DB; Data Curation: DB, PJB; Formal analysis: DB, RS; Writing original draft: PB; Writing-review and editing: UD, TJD.

All authors read and approved the final manuscript.
Acknowledgements

The authors are thankful to Mr. Khyanjeet Gogoi and Mr. Goutam Panda for their pictures of *A. platanifolia* and *A. indica*.

Conflict of Interests

The authors declare that there are no conflicts of interest related to this article.

References

Achari B, Chakrabarty S, Pakrashi SC (1981). An N-glycoside and steroids from *Aristolochia indica*. Phytochemistry 20(6):1444-1445. https://doi.org/10.1016/0031-9422(81)80066-0

Attarde S, Apte K (2013). Studies on antivenom activity of *Aristolochia indica* plant extract against red scorpion venom by *in vivo* and *in vitro* methods. International Journal of Pharmacognosy and Phytochemical Research 5(3):168-172.

Balachandran P, Wei F, Lin RC, Khan IA, Pasco DS (2005). Structure activity relationships of aristolochic acid analogues: Toxicity in cultured renal epithelial cells. Kidney International 67:1797-1805. https://doi.org/10.1111/j.1523-1755.2005.00277.x

Balaji S, Raj PP, Thomas J, Kumar KA (2004). Antifertility activity of ethanol extract of *Aristolochia tagala* leaf. Indian Journal of Pharmaceutical Sciences 66:843.

Basak S, Banerjee A, Manna CK (2016). Role of some ethno medicines used by the Santal tribal people, of the district Bankura, W.B., India, for abortifacient purposes. Journal of Medicinal Plants Studies 4:125-129.

Baskar K, Sasikumar S, Muthu C, Kingsley S, Ignacimuthu S (2011). Bio efficacy of *Aristolochia tagala* Cham. against *Spodoptera litura* Fab. (Lepidoptera: Noctuidae). Saudi Journal of Biological Sciences 18(1):23-27. https://doi.org/10.1016/j.sjbs.2010.09.004

Basumatary N, Teron R, Saikia M (2014). Ethnomedicinal practices of the Bodo-Kachari tribe of Karbi Anglong district of Assam. International Journal of Life Sciences Biotechnology and Pharma Research 3(1):161-167.

Battu GR, Parimi R, Chandra Shekar KB (2011). *In vivo* and *in vitro* pharmacological activity of *Aristolochia tagala* (syn: *Aristolochia acuminata*) root extracts. Pharmaceutical Biology 49(11):1210-1214. https://doi.org/10.3109/13880209.2011.589855

Bhandary MJ, Chandrasekhar KR (2011). Herbal therapy for herpes in the ethno-medicine of Coastal Karnataka. Indian Journal of Traditional Knowledge 10(3):528-532.

Bhat P, Hedge GR, Hedge G, Mulgund GS (2014). Ethnomedicinal plants to cure skin diseases- An account of the traditional GR knowledge in the coastal parts of Central Western Ghats, Karnataka, India. Journal of Ethnopharmacology 151:493-502. https://doi.org/10.1016/j.jep.2013.10.062

Biswas A, Bari MA, Roy M, Bhadra SK (2010). Inherited folk pharmaceutical knowledge of tribal people of Chittagong Hill tracts, Bangladesh. Indian Journal of Traditional Knowledge 9(1):77-89.

Bolla SR, Al-Subaie AM, Al-Jindan RY, Balakrishna JP, Ravi PK, Veeraraghavan VP, Pillai AA, ... Surapaneni KM (2019). *In vitro* wound healing potency of methanolic leaf extract of *Aristolochia saccata* is possibly mediated by its stimulatory effect on collagen-1 expression. Heliyon 5(5):e01648. https://doi.org/10.1016/j.heliyon.2019.e01648

Borah D, Tangjang S, Das AP, Upadhyaya A, Mipun P (2020). Assessment of non-timber forest products (NTFPs) in Behali Reserve Forest, Assam, Northeast India. Ethnobotany Research and Applications 19(43):1-15. https://doi.org/10.32859/era.19.43.1-15

Borah D, Taram M, Das AP, Tangjang S, Do TV (2019). *Aristolochia assamica* (*Aristolochiaceae*), a new species from the East Himalayas. Annales Botanica Fennici 56:253-257. https://doi.org/10.5735/085.056.0410

Borah PK, Gogoi P, Phukan AC, Mahanta J (2006). Traditional medicine in the treatment of gastrointestinal diseases in upper Assam. Indian Journal of Traditional Knowledge 5(4):510-512.

Bose NMJF, Aron S, Mehalingam P (2014). An ethnomedicinal study of medicinal plants used by Paliyars aboriginal community in Virudhunagar district, Tamil Nadu, India. Indian Journal of Traditional Knowledge 13:613-618.
Borah PJ et al. (2021). Not Sci Biol 13(3):11027

Britto JD, Mahesh R (2007). Exploration of Kani tribal botanical knowledge in Agasthyamalai Biosphere Reserve, South India, India. Ethnobotanical Leaflets 11:258-265.

Chakraborty MK, Bhattacharjee A (2006). Some common ethnomedicinal uses for various diseases in Purulia district, West Bengal. Indian Journal of Traditional Knowledge 5(4):554-558.

Che CT, Ahmed MS, Kang SS, Waller DP, Bingel AS, Larkin DC, ... Fong HHS (1984). Studies on Aristolochia III isolation and biological evaluation of constituents of Aristolochia indica roots for fertility-regulating activity. Journal of Natural Products 47(2):331-341.

Chen ZL, Zhu DY (1987). Aristolochia alkaloids. In: Arnold B (Ed). The Alkaloids: Chemistry and Pharmacology. Academic Press pp 3-9.

Choudhary MK, Bhattacharjee A (2006). Some common ethnomedicinal uses for various diseases in Purulia district, West Bengal. Indian Journal of Traditional Knowledge 5(4):554-558.

Che CT, Ahmed MS, Kang SS, Waller DP, Bingel AS, Larkin DC, ... Fong HHS (1984). Studies on Aristolochia III isolation and biological evaluation of constituents of Aristolochia indica roots for fertility-regulating activity. Journal of Natural Products 47(2):331-341.

Chen ZL, Zhu DY (1987). Aristolochia alkaloids. In: Arnold B (Ed). The Alkaloids: Chemistry and Pharmacology. Academic Press pp 3-9.

Choudhary MK, Bhattacharjee A (2006). Some common ethnomedicinal uses for various diseases in Purulia district, West Bengal. Indian Journal of Traditional Knowledge 5(4):554-558.
Borah PJ et al. (2021). Not Sci Biol 13(3):11027

Goverdhan P, Sandhya Rani M, Thirupathi K, Rani S, Sathesh S, Ravi Kumar B, Mohan GK (2008). Hypoglycemic and antihyperglycemic effect of Aristolochia indica normal and alloxan induced diabetic rats. Pharmacologyonline 1:20-29.

Govindachari TR, Mohamed PA, Parthasarathy PC (1970). Ishwarane and Aristolochene, two new sesquiterpene hydrocarbons from Aristolochia indica. Tetrahedron 26(2):615-619. https://doi.org/10.1016/S0040-4020(01)97854-8

Gritto MJ, Nanadagopalan V, Doss A (2015). Ethnobotanical survey of medicinal plants used by traditional healers in Shobanapuram village of Pachamalai Hill, Tamilnadu. Advances in Applied Science Research 6(3):157-164.

Gupta VK, Singh GD, Singh S, Kaul A (2010). Medicinal plants: phytochemistry, pharmacology and therapeutics, Vol 1. Daya Publishing House, Delhi, India.

Hadem K, Sen A (2019). Identification of compounds of Aristolochia tagala and apoptotic activity in HeLa cells. Pharmacognosy Magazine 14(59):571-577.

Hadem K, Sharan RN, Kma L (2014). Inhibitory potential of methanolic extracts of Aristolochia tagala and Curcuma caesia on hepatocellular carcinoma induced by diethylnitrosamine in BALB/c mice. Journal of Carcinogenesis 13:7. https://doi.org/10.4103/1477-3163.133520

Hadem K, Sharan RN, Kma L (2016). Phytochemicals of Aristolochia tagala and Curcuma caesia exert anticancer effect by tumor necrosis factor-α-mediated decrease in nuclear factor kappaB binding activity. Journal of Basic and Clinical Pharmacy 7(1):1-11. https://doi.org/10.4103/0976-0105.170585

Han J, Xian Z, Zhang Y, Liu J, Liang A (2019). Systematic overview of Aristolochic acids: Nephrotoxicity, carcinogenicity, and underlying mechanisms. Frontiers in Pharmacology 10:648. https://doi.org/10.3389/fphar.2019.00648

Herculius, Kumar DS, Koilpillai YJ (2018). Evaluation of the antimicrobial efficacy of Aristolochia tagala leaf extract against selected human pathogenic bacteria and fungi. International Journal of Innovative Research in Technology 5(2):344-347.

Hiremath VT, Taranath TC (2010). Traditional phytotherapy for snake bites by tribes of Chitradurga District, Karnataka, India. Ethnobotanical Leaflets 14:120-125.

Hwang SM, Kelly LM, Gilbert MG (2003). Aristolochiaceae. In: Wu Z, Peter HR, Hong D (Eds). Flora of China. Science Press, Beijing and Missouri Botanical Garden Press, St. Louis pp 246-269.

Ignacimuthu S, Ayyanar M (2005). Medicinal plants used by the tribals of Tirunelveli hills, Tamil Nadu to treat poisonous bites and skin diseases. Indian Journal of Traditional Knowledge 4(3):229-236.

Ioset J, Raoelison GI, Hostettmann K (2002). An LC/DAD-UV/MS method for the rapid detection of aristolochic acid in plant preparations. Planta Medica 68:856-858. https://doi.org/10.1055/s-2002-34413

Jain A, Katawa SS, Galav P, Nag A (2008). Some therapeutic uses of biodiversity among the tribals of Rajasthan. Indian Journal of Traditional Knowledge 7(2):256-262.

Jeeva S, Kiruba S, Mishra BP, Venugopal N, Dhas SSM, Regini GS, ... Laloo R (2006). Weeds of Kanyakumari district and their value in real life. Indian Journal of Traditional Knowledge 5(4):501-509.

Jeyaprakash K, Ayyanan M, Geetha KN, Sekar T (2011). Traditional uses of medicinal plants among the tribal people in Theni District (Western Ghats), Southern India. Asian Pacific Journal of Tropical Biomedicine S20-S25. https://doi.org/10.1016/S2221-1691(11)60115-9

Jirovetz L, Buchbauer G, Puschmann C, Fleischhacker W, Shafi PM, Rosamma MK (2000). Analysis of the essential oil of the aerial parts of the medicinal plant Aristolochia indica Linn. (Aristolochiaceae) from South India. Scientia Pharmaceutica 68:309-316.

Johnsy G, Sargunam SD, Kaviyarasan V (2012). Indigenous knowledge of medicinal plants used for the treatment of skin diseases by the Kaani Tribe of Kanyakumari District. International Journal of Pharmacy and Pharmaceutical Sciences 4(1):309-313.

Kamble RB, Somkuwar S, Sharma S, Kamble N, Chaturvedi A (2016). Documentation of aboriginal traditional knowledge and use pattern of folk biomedicines of Deolapar Forest Range, Ramtek. International Journal of Life Sciences A6:153-156.

Kanjilal PB, Koroty R, Couladis M (2009). Chemical composition of the stem oil of Aristolochia indica L. Journal of Essential Oil Research 21(1):24-25. https://doi.org/10.1080/10412905.2009.9700098

Kanneboyena O, Suthari S, Vatsavaya SR (2015). Ethnomedicinal knowledge of inhabitants from Gundlabrahmeswaram Wildlife Sanctuary (Eastern Ghats), Andhra Pradesh, India. American Journal of Ethnomedicine 2(6):333-346.
Karan SK, Mishra SK, Pal D, Mondal A (2012). Isolation of β-sitosterol and evaluation of antidiabetic activity of *Aristolochia indica* in alloxan-induced diabetic mice with a reference to *in-vitro* antioxidant activity. Journal of Medicinal Plants Research 6(7):1219-1223. https://doi.org/10.5897/JMPR11.973

Kayang H (2007). Conservation of medicinal plants diversity of Meghalaya in India. In: Pramod T, Yash PA, Suman A (Eds). Biodiversity and its Significance. IK International Publishing House Pvt. Ltd., New Delhi, India pp 233-253.

Khan MA (2016). Introduction and Importance of Medicinal Plants and Herbs. Unani. Zahid, India.

Kingston C, Nisha BS, Kiruba S, Jeeva S (2007). Ethnomedicinal plants used by indigenous community in a traditional healthcare system. Ethnobotanical Leaflets 11:32-37.

Kiruba S, Jeeva S, Dhas SSM (2006). Enumeration of ethnoveterinary plants of Cape Comorin, Tamil Nadu. Indian Journal of Traditional Knowledge 5:576-578.

Kumar N, Choyal R, Sharma A (2014). Traditional uses of some plants of Hamirpur district as a blood purifier. International Journal of Theoretical and Applied Sciences 6(2):106-112.

Kumar SJU, Chaitanya KMJ, Semoriuk AJ, Krishna V (2019). Indigenous knowledge of medicinal plants used by ethnic communities of South India. Ethnobotany Research and Applications 18(4):1-112. https://ethnobotanyjournal.org/index.php/era/article/view/1291/801

Kuo PC, Li YC, Wu TS (2012). Chemical constituents and pharmacology of the *Aristolochia* species. Journal of Traditional and Complementary Medicine 2(4):249-266. https://doi.org/10.1016/s2225-4110(16)30111-0

Kupchan SM, Doskotch RW (1962). Tumor inhibitors I aristolochic acid, the active principle of *Aristolochia indica*. Journal of Medicinal Chemistry 5:657-659. https://doi.org/10.1021/jm01238a029

Kupchan SM, Meriano JJ (1968). The isolation and structural elucidation of novel derivatives of Aristolochic acid from *Aristolochia indica*. Journal of Organic Chemistry 33(10):3735-3738.

Liu R, Zhang HC (2020). Chemical constituents from *Aristolochia raga* and their chemotaxonomic significance. Biochemical Systematics and Ecology 90:10437. https://doi.org/10.1016/j.jses.2020.10437

Marandi RR, Britto SJ (2014). Ethnomedicinal plants used by the Oraon tribals of Latehar district of Jharkhand, India. Asian Journal of Pharmaceutical Research 4(3):126-133.

Mathew JE, Kaitheri SK, Vachala SD, Jose M (2011). Anti-inflammatory, antipruritic and mast cell stabilizing activity of *Aristolochia indica*. Iranian Journal of Basic Medical Sciences 14(5):422-427.

Meenatchisundaram S, Parameswari G, Michael A (2009). Studies on antivenom activity of *Andrographis paniculata* and *Aristolochia indica* plant extracts against *Daboia russelli* venom by in vivo and in vitro methods. Indian Journal of Science and Technology 2(4):76-79.

Michl J, Jennings HM, Kite GC, Ingrouille MJ, Simmonds MSJ, Heinrich M (2013). Is aristolochic acid nephropathy a widespread problem in developing countries? A case study of *Aristolochia indica* L. in Bangladesh using an ethnobotanical-phytochemical approach. Journal of Ethnopharmacology 149(1):235-244. https://doi.org/10.1016/j.jep.2013.06.028

Mix DB, Guinaudeau H, Shamma M (1982). The aristolochic acids and aristolactams. Journal of Natural Products 45(6):657-666. https://doi.org/10.1021/np50024a001

Murthy EN (2012). Ethnomedicinal plants used by Gonds of Adilabad district, Andhra Pradesh, India. International Journal of Pharmacy and Life Sciences 3(10):2034-2043.

Murugan K, Labeeba MA, Panneerselvam C, Dinesh D, Suresh U, Subramaniam J, ... Benelli G (2015). *Aristolochia indica* green-synthesized silver nanoparticles: a sustainable control tool against the malaria vector *Anopheles stephensi*. Research in Veterinary Science 102:127-135. https://doi.org/10.1016/j.tvesc.2015.08.001

Murugan M, Mohan VR (2012). Efficacy of different solvent extracts of *Vitex trifolia* L. and *Aristolochia indica* L. for potential antibacterial activity. Science Research Reporter 2(1):110-114.

Naik AS, Siddiqua S, Shrunga MN, Sunita KL, Prashith KTR, Raghavendra HL (2015). Antimicrobial and radical scavenging efficacy of leaf and flower of *Aristolochia indica* Linn. Science, Technology and Arts Research 4(1):103-108. https://doi.org/10.4314/star.v4i1.17

Nath KK, Deka P, Borkataki S, Borthakur SK (2008). Traditional remedies of respiratory disorders from Assam, India. Pleione 2(2):211-216.

Naturu S, Pulicherla Y, Mattigunta L, Devi VRC (2013). Traditional phytotherapy treatment for snake bite and scorpion sting by ethnic groups of Kadapa district, Andhra Pradesh, India. International Journal of Pharmaceutical Sciences Review and Research 20(1):64-70.
Nithyadevi J, Sivakumar R (2014). Documentation of traditional knowledge of herbal plant in Kalvarayan Hills, Vallupuram District, Tamil Nadu. International Letters of Natural Sciences 7:21-28. https://doi.org/10.18052/www.scipress.com/ILNS.12.21

Nizar MK, Gopakumar S, Kumar V, Ajeesh R (2015). Indigenous Ethnomedicines and victuals of Malayans: An indigenous population of Pecchi-Vazhani Wildlife Sanctuary, Western Ghats, India. Indian Journal of Ecology 42(1):9-15.

Ogunmefun OT (2018). Phytochemicals - god’s endowment of curative power in plants. Phytochemicals-source of antioxidants and role in disease prevention. IntechOpen.

Oladeji O (2016). The characteristics and roles of medicinal plants: some important medicinal plants in Nigeria. Natural Products: An Indian Journal 12(3):102.

Pakrashi SC, Dastidar PPG, Chakrabarty S, Achari B (1980). (12S)-7,12-Secoishwaran-12-01, a new type of sesquiterpene from *Aristolochia indica* Linn. Journal of Organic Chemistry 45:4765-4767. https://doi.org/10.1021/jo01311a043

Panda T, Padhiy RN (2008). Ethnomedicinal plants used by tribes of Kalahandi district, Orissa. Indian Journal of Traditional Knowledge 7(2):242-249.

Partha P, Hossain ABME (2007). Ethnobotanical investigation into the Mandi ethнич community in Bangladesh. Bangladesh Journal of Plant Taxonomy 14(2):129-145. https://doi.org/10.3329/bjpt.v14i2.532

Paul S, Devi N, Sarma GC (2011). Medicinal plants of Subankhata Reserve Forest under Dhansiri forest division, Manas Biosphere Reserve in Assam, India. Pleione 5(2):286-291.

Paul S, Devi N, Sarma GC (2011). Medicinal plants of Ultapani forest range under Holturnaon Division, Manas Biosphere Reserve (Assam). International of Journal of Applied Biology and Pharmaceutical Technology 2(4):257-263.

Poornima G, Manasa M, Rudrappa D, Kekuda PTR (2012). Medicinal plants used by herbal healers in Narasipura and Manchale villages of Sagara Taluk, Karnataka, India. Science, Technology and Arts Research Journal 1(2):12-17.

Pradeepa V, Narayanan SS, Kirubakaran SA, Thanigaiel A, Nathan SS (2015). Toxicity of aristolochic acids isolated from *Aristolochia indica* Linn (Aristolochiaceae) against the malarial vector *Anopheles stephensi* Liston (Diptera: Culicidae). Experimental Parasitology 153:8-16. https://doi.org/10.1016/j.exppara.2015.01.017

Prakash HM, Krishnappa M, Krishnamurthy YL, Poornima SV (2010). Folk medicine of NR Pura taluk in Chikmagalur district of Karnataka. Indian Journal of Traditional Knowledge 9(1):55-60.

Prashantkumar P, Vidyasagar GM (2006). Documentation of traditional knowledge on medicinal plants of Bidar district, Karnataka. Indian Journal of Traditional Knowledge 5(3):295-299.

Purkayastha J, Dutta M, Nath SC (2007). Ethnomedicinal plants from Dibru-Saikhowa biosphere reserve, Assam. Indian Journal of Traditional Knowledge 6(3):477-480.

Ragupathy S, Newmaster SG (2009). Valorizing the ‘Irulas’ traditional knowledge of medicinal plants in the Kodiakkrai Reserve Forest, India. Journal of Ethnobiology and Ethnomedicine 5(10). https://doi.org/10.1186/1746-4269-5-10

Rahman AM, Uddin SB, Wilcock CC (2007). Medicinal plants used by the Chakma tribes in Hill Tracts district of Bangladesh. Indian Journal of Traditional Knowledge 6(3):508-517.

Rahmatullah M, Khatun Z, Barua D, Alam M, Jahan S, Rownak Jahan R (2013). Medicinal plants used by traditional practitioners of the Kole and Rai Tribes of Bangladesh. The Journal of Alternative and Complementary Medicine 19(6):483-491. https://doi.org/10.1089/acm.2012.0227

Rajakumar N, Shivanna MB (2010). Traditional herbal medicinal knowledge in Sagar Taluk of Shimoga District, Karnataka, India. Indian Journal of Traditional Knowledge 1(1):102-108.

Rajashekharan S, Pushpangadan P, Ratheesh Kumar PK, Jawahar CR, Nair CPR, Sarada Amma L (1989). Ethno-medico-botanical studies of *CheriyaArayan-and ValiyaArayan-* (*Aristolochia indica* Linn; *Aristolochiatagala*, Cham). Ancient Science of Life 9(2):99-106.

Rao AS, Muthana MS (1955). Preliminary studies on the essential oil from *Aristolochia indica*. Journal of Indian Institute of Science 37.

Rao RR (2019). Medicinal plants of India: diversity, conservation and bioprospection-concerns and strategies for 21st century. TTPP 1.

Rao VLN, Busi BR, Rao CS, Bharati K, Venkiah M (2010). Ethnomedical study among Savaras of Srikakulam district, Andhra Pradesh. Indian Journal of Traditional Knowledge 9(1):166-168.

Ratnam VK, Raju VRR (2005). Folk medicine used for common women ailments by Adivasis in the Eastern Ghats of Andhra Pradesh. Indian Journal of Traditional Knowledge 4(3):267-270.
Reang I, Goswami S, Pala NA, Kumar M, Russmann RW (2016). Ethnoveterinary applications of medicinal plants by traditional herbal healers in Reang Tribe South District Tripura, India. Medicinal and Aromatic Plants 5:1-4. https://doi.org/10.4172/2167-0412.1000234

Reddy CS, Reddy KN, Murthy EN, Raju VS (2009). Traditional medicinal plants in Seshachalam hills, Andhra Pradesh, India. Journal of Medicinal Plants Research 3(5):408-412.

Reddy SR, Reddy AM, Babu MVS (2015). Traditional medicinal plants of Lankamalleswara Wildlife Sanctuary, Kadapa District, Andhra Pradesh, India. American Journal of Ethnomedicine 2(6):379-391.

Rout SD, Panda SK (2010). Ethnomedicinal plant resources of Mayurbhanj district, Orissa. Indian Journal of Traditional Knowledge 9(1):68-72.

Sambandan K, Dhatchanamoorthy N (2012). Studies on the phytodiversity of a sacred grove and its traditional uses in Karaikal District, U.T. Puducherry. Journal of Phytopharmacy 4(2):16-21.

Saradha M, Samydurai P, Divya Bharati G (2017). Documentation of aboriginal traditional knowledge and inherent indigenous therapeutic plants of Coimbatore district, Tamil Nadu, India. Kongunadu Research Journal 4(1):114-120.

Sarmah R, Saikia A (2014). Non-timber forest products: diversity and used pattern at Majuli the Brahmaputra River Island of Assam, India. Journal of Botanical Sciences 3(3):41-43.

Sarmah R, Saikia A (2016). Folklore medicine practiced by traditional healers of fringe villages of Gibbon Wildlife Sanctuary, Assam, India. Acta Biomed Scientia 3(4):227-233.

Satya H, Saty B, Saklan S, Bharti PC, Mishra AP (2011). Phytochemical and pharmacological potential of Aristolochia indica. A review. Research Journal Pharmaceutical, Biological and Chemical Sciences 2(4):647-654.

Saxena M, Saxena J, Nema R, Singh D, Gupta A (2013). Phytochemistry of medicinal plants. Journal of Pharmacognosy and Phytochemistry 1(6):168-182.

Sen B (2008). Knowledge of wild plants for human and veterinary use in West Bengal; sustainable forest management and poverty alleviation: roles of traditional forest-related knowledge. Vol. 21, IUFRO World Series, Vienna.

Senthilkumar M, Gurumoorthi P, Janardhanan K (2006). Some medicinal plants used by Iruurar, the tribal people of Marudhamalai hills, Coimbatore, Tamil Nadu. Natural Product Radiance 5(5):383-388.

Shafi PM, Rosamma MK, Jamil K, Reddy PS (2002). Antibacterial activity of the essential oil from Aristolochia indica. Fitoterapia 73(5):439-441. https://doi.org/10.1016/S0367-326X(02)00130-2

Shivakumar HM, Parashurama TR (2014). Phyto-ethnomedicinal knowledge of folklore people in Kappathgudda region of Gadaga District, Karnataka, South India. International Journal of Science and Research 3(11):3081-3091.

Shivanna MB, Rajakumar N (2011). Traditional medico-botanical knowledge of local communities in Hosanagara Taluk of Shimoga District in Karnataka, India. Journal of Herbs, Spices and Medicinal Plants 17:291-317. https://doi.org/10.1080/1049675.2011.602617

Shukla AN, Srivastava S, Rawat AKS (2010). An ethnobotanical study of medicinal plants of Rewa district, Madhya Pradesh. Indian Journal of Traditional Knowledge 9(1):191-202.

Silambaraman R, Sureshkumar J, Krupa J, Alamaraj S, Ayyanar M (2017). Traditional herbal medicines practiced by the ethnic people in Sathyamangalam forests of Western Ghats, India. European Journal of Integrative Medicine 16:61-72. https://doi.org/10.1016/j.eujim.2017.10.010

Sivaperumal R, Ramya S, Raví AJ, Rajasekaran C, Jayakumararaj R (2009). Herbal remedies practiced by Malayalis’s to treat skin diseases. Environment and We - An International Journal of Science and Technology 4:35-44.

Sivasankari B, Anandharaj M, Gunasekaran P (2014). An ethnobotanical study of indigenous knowledge on medicinal plants used by the village peoples of Thoppampatri, Dindigul district, Tamilnadu, India. Journal of Ethnopharmacology 153:408-423. https://doi.org/10.1016/j.jep.2014.02.040

Subramaniyan V, Saravanan R, Baskaran D, Ramalingam S (2015). In vitro free radical scavenging and anticancer potential of Aristolochia indica L. against MCF-7 cell line. International Journal of Pharmacy and Pharmaceutical Sciences 7(6):392-396.

Sudeesh S (2012). Ethnomedicinal plants used by Malayaraya tribes of Vannapuram village in Idukki, Kerala, India. Indian Journal of Scientific Research and Technology 1(1):7-11.

Sulochana AK, Raveendran D, Krishnamma AP, Oommen V (2014). Ethnomedicinal plants used for snake envenomation by folk traditional practitioners from Kallar forest region of South Western Ghats, Kerala, India. Journal of Intercultural Ethnopharmacology 4(1):47-51. https://doi.org/10.5455/jic.2014jic410101227750

Swarnalatha AM, Buraka KS, Kalavatamma PC (2017). Indigenous healthcare practices of rural women for digestive disorders in Andhra Pradesh. Journal of Pharmacognosy and Phytochemistry SP1:882-886.
Syiem D, Kharbuli B, Myrboh B, Buam DRM (2006). Medicinal plants and herbal medicine: A case study in Meghalaya. Biodiversity in Northeast India. NEHU publications, Shillong, India.

Taid TC, Rajkhowa RC, Kalita JC (2014). A study on the medicinal plants used by the local traditional healers of Dhemaji district, Assam, India for curing reproductive health related disorders. Advances in Applied Science Research 5(1):296-301.

Teron R (2019). Cross-Cultural ethnobotanical exploration of diversity and utilization of medicinal plants in KarbiAnglong district, Assam, Northeast India. NeBIO 10:35-46.

Teron R, Borthakur SK (2013). Folklore claims of some medicinal plants as antidote against poisons among the Karbis of Assam, India. Pleione 7(2):346-356.

Thirugnanasampandan R, Mahendran G, Narmatha Bai V (2008). Antioxidant properties of some medicinal Aristolochiaceae species. African Journal of Biotechnology 7(4):357-361. https://doi.org/10.5897/AJB07.476

Tiwari DK, Yadav A (2017). Ethnobotanical investigation of some medicinal plants availed by Gond Tribe of Naoradehi Wild Life Sanctuary, Madhya Pradesh. Anthropologist 5(3):201-202. https://doi.org/10.1080/09720073.2003.11890805

Tripatha P, Onlamul W, Booranasubkajorn S, Wattanarangsan J, Huabprasert S, Lumlerdkij N, Akarasreenont P, Laohapand T (2012). The safety of Homnawakod herbal formula containing Aristolochiastagala Cham. in Wistar rats. BMC Complementary and Alternative Medicine 12(1):170. https://doi.org/10.1186/1472-6882-12-170

Tripathi M, Sikarwar RLS (2013). Some traditional herbal formulations of Chitrakoot region, Madhya Pradesh, India. Indian Journal of Traditional Knowledge 12(2):315-320.

Tynsong H, Tiwari BK, Lynser MB (2011). Medicinal plants of Meghalaya, India. Newsletter of MAPPA/ICIMOD, NMPB and MPCN, NEHU, Shillong, India pp 7-10.

Umamaheshwari S, Murthy SM (2012). Antibacterial activity of root of Aristolochia indica on Bacillus subtilis. RGUHS Journal of Pharmaceutical Sciences 2(2):82-85.

Usha S, Rajasekaran C, Siva R (2015). Ethnoveterinary medicine of the Shervaroy Hills of Eastern Ghats, India as alternative medicine for animals. Journal of Traditional and Complementary Medicine 6(1):118-125. https://doi.org/10.1016/j.jtcm.2014.11.013

Venkatadri B, Arunagirinathn N, Rameshkumar MR, Ramesh L, Dhanasezhian A, Agastian P (2015). In vitro antibacterial activity of aqueous and ethanol extracts of Aristolochia indica and Toddalia asiatica against multidrug-resistant bacteria. Indian Journal of Pharmaceutical Sciences 77:788-791. https://doi.org/10.4103/0250-474X.174991

Vijayan A, Lizu VB, John RJV, Parthiban P, Renuka C (2007). Traditional remedies of Kani tribes of Kotroor reserve forest, Agasthyavanam, Thiruvananthapuram, Kerala. Indian Journal of Traditional Knowledge 6(4):589-594.

Wu TS, Damu AG, Su CR, Kuo PC (2004). Terpenoids of Aristolochia and their biological activities. Natural Product Reports 21:594-624. https://doi.org/10.1039/b401950d

Yadav RK, Prakash A (2014). Aromatic medicinal plant resources in Uttar Pradesh, India. Medicinal and Aromatic Plants 3(3):160. https://doi.org/10.1472/2167-0412.1000160

Yesodharan K, Sujana KA (2007). Ethnomedicinal knowledge among Malamalasar tribe of Parambikulam wildlife sanctuary, Kerala. Indian Journal of Traditional Knowledge 6(3):481-485.

Zhang HC, Liu R, An ZP, Li H, Zhang R, Zhou F (2016). Aristolactam-type alkaloids and aristolochic acids from Aristolochia mouspensis and Aristolochia cathcartii. Biochemical Systematics and Ecology 65:198-201.

The journal offers free, immediate, and unrestricted access to peer-reviewed research and scholarly work. Users are allowed to read, download, copy, distribute, print, search, or link to the full texts of the articles, or use them for any other lawful purpose, without asking prior permission from the publisher or the author.

License - Articles published in Notulae Scientiae Biologicae are Open-Access, distributed under the terms and conditions of the Creative Commons Attribution (CC BY 4.0) License.
© Articles by the authors; SHST, Cluj-Napoca, Romania. The journal allows the author(s) to hold the copyright/to retain publishing rights without restriction.