Characterization and manipulation of individual defects in insulating hexagonal boron nitride using scanning tunneling microscopy

Dillon Wong1*, Jairo Velasco Jr.1*, Long Ju1*, Juwon Lee1, Salman Kahn1, Hsin-Zon Tsai1, Chad Germany1, Takashi Taniguchi4, Kenji Watanabe4, Alex Zettl1,2,3, Feng Wang1,2,3 and Michael F. Crommie1,2,3

1Department of Physics, University of California, Berkeley, California 94720, USA
2Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
3Kavli Energy NanoSciences Institute at the University of California, Berkeley and the Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
4National Institute for Materials Science, 1-1 Namiki, Tsukuba, 305-0044, Japan

*These authors contribute equally to this manuscript.
† Email:crommie@berkeley.edu

Defects play a key role in determining the properties of most materials and, because they tend to be highly localized, characterizing them at the single-defect level is particularly important. Scanning tunneling microscopy (STM) has a history of imaging the electronic structure of individual point defects in conductors1, semiconductors2-7, and ultrathin films8, but single-defect electronic characterization at the nanometer-scale remains an elusive goal for intrinsic bulk insulators. Here we report the characterization and manipulation of individual native defects in an intrinsic bulk hexagonal boron nitride (BN) insulator via STM. Normally, this would be impossible due to the lack of a conducting drain path for electrical current. We overcome this problem by employing a graphene/BN heterostructure, which exploits graphene’s atomically thin nature to allow visualization of defect phenomena in the underlying bulk BN. We observe three different defect structures that we attribute to defects within the bulk insulating boron nitride. Using scanning
tunneling spectroscopy (STS), we obtain charge and energy-level information for these BN defect structures. In addition to characterizing such defects, we find that it is also possible to manipulate them through voltage pulses applied to our STM tip.

BN is an essential component in many new devices9-11 that incorporate two-dimensional materials. Therefore it is crucial to understand the nature of intrinsic defects in BN. Previous cathodoluminescence and elemental analysis of BN indicated the existence of residual impurities and defects in high-purity single crystal BN synthesized at high pressure and temperature11,12. Optoelectronic experiments have revealed that these defects give rise to photoactive states within the BN band gap13,14. So far, however, these studies have been limited to spatially averaged defect behavior, and investigation of individual defects at the nanoscale remains an outstanding challenge.

Here we visualize individual BN defects by capping a BN crystal with a monolayer of graphene. Fig. 1a shows a typical STM topographic image of our graphene/BN heterostructures, where a 7 nm moiré pattern can be seen on top of long-range height fluctuations spanning tens of nanometers, similar to previous imaging of graphene on BN15,16. Localized shallow dips and a protrusion are also visible ($\Delta z < 0.1$ Å). More revealing, however, are the differential conductance (dI/dV) maps shown in Fig. 1b. Striking new features are visible in these data. We observe randomly distributed bright (high dI/dV) and dark (low dI/dV) circular dots of ~ 20 nm in diameter that have varying degrees of intensity (see Supplement for densities and intensities). Another common feature, as seen in the right edge of the map in Fig. 1b, is a sharp ring structure with an interior that does not obscure the moiré pattern. Close-up topographic studies of these defects reveal unblemished atomically resolved graphene honeycomb structure with occasional
slight dips or a protrusion having $|\Delta z| < 0.1$ Å (see Supplement). Maps obtained at numerous locations with many tips across three different devices replicate these observations.

Figs 2a and 2b show higher resolution dI/dV maps of representative bright and dark dot defects. These maps show clearly that the graphene moiré pattern is not obscured by the defects. To determine the effect of these defects on the electronic structure of graphene, we performed dI/dV spectroscopy at varying distances from the dot centers (each spectrum was started with the same tunnel current I and sample bias V_s). These data are plotted in Figs 2c and 2d for the bright and dark dots, respectively. The spectra are characteristic of undamaged graphene17, but show an electron/hole asymmetry that is dependent on the tip position relative to the center of a defect. In Fig. 2c, for example, we see that $dI/dV (V_s > 0)$ increases as the tip approaches the bright-dot center. Fig. 2d shows the opposite trend as seen by the decrease in $dI/dV (V_s > 0)$ as the STM tip approaches the dark-dot center. These basic trends were seen for all bright and dark dot defects, regardless of intensity and tip-height configuration (see Supplement). These observations can be understood by recalling that dI/dV reflects the graphene local density of states (LDOS). The distance-dependent enhancement of dI/dV above the Dirac point ($V_s \approx -0.17$ V) as the tip nears a bright dot in Fig. 2c can therefore be interpreted as arising from the attraction of negatively charged Dirac fermions to the dot center. We thus conclude that the bright dot in Fig. 2a reflects a positively charged defect in BN18,19. Similarly, the distance-dependent reduction of dI/dV above the Dirac point in Fig. 2d arises from the repulsion of negatively charged Dirac fermions from the defect. We thus conclude that the dark dots are negatively charged18,19.

We now focus on the ring defects, as displayed at the right edge of Fig. 1b. We find that the ring radius depends on the values of V_s and back-gate V_g. Fig. 3 shows that the ring radius changes from 2 nm (Fig. 3a) to 11 nm (Fig. 3b) as V_g is changed from $V_g = 17$ V to $V_g = 9$ V (for
a constant $V_s = -0.3$ V). Fig. 3c shows the dependence of the ring radius on V_g for various V_s values (denoted by distinct symbols). These data were obtained by measuring the ring radius from dI/dV maps taken at the same location as Figs 3a and 3b, but with different V_s and V_g configurations. Although the precise ring radius depends on the sharpness of the STM tip4, the qualitative behavior shown in Fig. 3c is typical of the vast majority of ring defects observed here. In general, for fixed V_s, the ring radius increases with decreasing V_g until a critical back-gate voltage ($V_c = 6 \pm 1$V) is reached, upon which the ring vanishes.

We now discuss the origin of the “dot” and “ring” defects observed in our dI/dV maps. Three general scenarios are possible: (i) Adsorbates bound to the surface of graphene, (ii) adsorbates trapped at the interface between graphene and BN, and (iii) intrinsic defects within the insulating BN substrate. Our data imply that (iii) is the correct scenario, as follows: First we rule out scenario (i) because weakly bound adsorbates would have a higher height profile than the topographically small features observed18,20 (see Supplement), and would also likely get swept away by the STM tip when it is brought close enough to observe the graphene honeycomb structure19. Strongly bound adsorbates in scenario (i) would also likely have taller height profiles as seen for other graphene adsorbates (see Supplement) and should disrupt the graphene honeycomb lattice21,22 (which was not observed). Also, strongly bound adsorbates should lead to changes in the graphene spectroscopy due to formation of localized bonding states22, which are not seen. Scenario (ii) can be ruled out because an adsorbate trapped beneath graphene would cause a bump in graphene at least an order of magnitude larger than the $\Delta z < 0.1$ Å feature observed here23. We would also expect a trapped adsorbate to locally delaminate the graphene from the BN substrate, thus disrupting the moiré pattern, which is not seen.
Scenario (iii), intrinsic charged BN defects, is thus the most likely explanation of the defects observed here. Polycrystalline BN has been shown to host several varieties of charged defects, as seen from electron paramagnetic resonance 24 and luminescence experiments25,26, as well as theoretical investigations27. In those studies the most abundantly reported defects were N-vacancies, which were shown to act as donors, and C impurities substituted at N sites, which were shown to act as acceptors. Secondary ion mass spectroscopy studies of high-purity single crystal BN synthesized at high pressure and temperature have identified oxygen and carbon impurities12. Comparison between optoelectronic experiments13,14 of high-purity single crystal BN and recent theoretical work28 shows that the nature of the BN crystal defects is consistent with the observations of C impurities and N-vacancies. Such defects, when ionized, could induce the bright and dark dots observed in graphene/BN via a graphene screening response29 (Figs 1 and 2). The fact that these defects are embedded in the BN explains why the dots have such small topographic deflection, as well as why the graphene lattice and moiré pattern are not disrupted, and also why no new states arise in the graphene spectroscopy20,22. Variations in the intensity of bright and dark defects are explained by BN defects lying at different depths relative to the top graphene layer.

It is possible to extract quantitative information regarding the electronic configuration of BN defects from the STM dI/dV signal measured from the graphene capping layer. This can be achieved for the ring defects by analyzing the gate (V_g) and bias (V_s) dependent ring radius, shown in Fig. 3c. Similar rings have been observed in other systems and have been attributed to the charging of an adsorbate or defect4,20,30-32. Because the ring in Fig. 3 is highly responsive to the presence of the STM tip and displays no charge hysteresis, we expect that it lies in the topmost BN layer and is strongly coupled to the graphene electronic structure. The STM tip is
capacitively coupled to the graphene directly above the defect through the equation $|e|\delta n = C(r)\Delta V_{\text{tip}}$, where δn is the local change in graphene electron density, $C(r)$ is a capacitance that increases with decreasing lateral tip-defect distance r, and ΔV_{tip} is the tip electrostatic potential ($\Delta V_{\text{tip}} = -V_s + \text{constant}$, see Supplement). For the dI/dV maps in Fig. 3, $\Delta V_{\text{tip}} < 0$, so the electrostatic gating from the tip lowers the electron density of the (n-doped) graphene directly beneath the tip.

Fig. 3d schematically depicts the local electronic structure of the graphene immediately above the defect when r is large and V_{g} is set such that the defect level is filled and carries negative charge. As the tip approaches the defect, $C(r)$ increases, and thus δn becomes more negative. Eventually the defect level crosses the Fermi level (and switches to a neutral state) when the tip is at a distance R away from the defect, thus causing a perturbation in the tunnel current that leads to the observation of a ring of radius R. Fig. 3e shows the case ($r < R$) where the defect is in a neutral charge state through interaction with the tip. The energy level of the defect can be found by tuning V_{g} such that the Fermi level matches the defect level in the absence of the tip. This will cause the radius of the charging ring to diverge. As seen in Fig. 3c, this occurs for the observed ring defects when $V_g = 6 \pm 1$ V, thus resulting in a defect level approximately 30 ± 10 meV above the graphene Dirac point energy (since the Dirac point energy can be measured with respect to the Fermi level), which is expected to be ~ 4 eV below the BN conduction band edge33. Interestingly, this is similar to a previously observed carbon substitution defect level25, suggesting that the ring defect arises from a carbon impurity.

Additional microscopic information regarding the observed BN defects can be obtained by directly manipulating their charge state with the STM tip. Similar manipulation has been performed previously to switch the charge state of defects in semiconductors34 as well as adatoms on top of ultrathin insulating films8,35, but this type of STM-based manipulation is
unprecedented for defects inside bulk insulators. Fig. 4a shows a dI/dV map exhibiting numerous charged defects. In order to manipulate the charge state of the observed BN defects, the STM tip was positioned over the center point of this area and a bias of $V_s = 5$ V was applied (see Supplement). After applying this voltage pulse, a dI/dV map was acquired over the same region at low bias, as shown in Fig. 4b. Fig. 4c shows the same region after similar application of a second pulse. Inspection of Figs 4b and 4c shows that the BN defect configurations are significantly altered by application of such voltage pulses. The defects are seen to reversibly switch between charged and neutral states, as well as between states having opposite charge. To highlight this behavior, we denote changes to defect states (compared to the preceding image) with colored arrows. A red arrow signifies the disappearance of a charged defect, a blue arrow represents the appearance of a charged defect, and a green arrow indicates where a defect has changed the sign of its charge. We find that defects that disappear after a tip pulse always reappear in the same location after subsequent tip pulses. Additionally, dark dots tend to switch into metastable neutral states (i.e. disappear) at a higher rate than bright dots. Ring defects, as well as the darkest and brightest dots, remain unchanged by tip pulses.

This tip-induced manipulation of BN defects can be explained by electric-field-induced emission of charge carriers from BN defect states. By tilting the local potential landscape, the STM tip causes charge carriers to tunnel through the ionization barrier between different defects, charging some while neutralizing others (see Supplement). This accounts for the disappearance and reappearance of the dots in the same location, which cannot be described by defect migration through the BN lattice. In addition, the observation of a higher rate of switching for the dark dots (acceptors) than bright dots (donors) suggests it is more energetically favorable for neutral acceptors to emit holes than for neutral donors to emit electrons; hence the acceptor states are
likely closer to the valence band than the donor states are to the conduction band. Since the rings, as well as the darkest and brightest dots, never change under tip pulses, we surmise that they are in the topmost layer of BN and in direct electrical contact with the graphene. Their charge states thus depend only on graphene’s local chemical potential and show no hysteresis with electric field. The defects that switch into new metastable charge states (i.e., exhibit hysteresis) must thus be in lower BN layers, out of direct contact with the graphene.

In conclusion, we have shown that a single graphene capping layer enables STM imaging and manipulation of individual point defects in an insulating bulk BN substrate. We are able to identify the charge state of individual defects, and we have quantitatively extracted the energy level location for one species of defect (suggesting that it is a carbon impurity). We find that voltage pulses applied to our STM tip enable ionization, neutralization, and even toggling of the charge state for defects in BN. This new method of using an atomically thin conducting capping layer to probe and control defects in bulk insulators might be extended to other insulator/defect systems previously inaccessible to STM, such as diamond with nitrogen-vacancy centers.
Methods:

Our samples were fabricated with the transfer technique developed by Zomer and colleagues36 using standard electron-beam lithography. We used BN crystals with 60-100 nm thickness and an SiO\textsubscript{2} thickness of 285 nm as the dielectric for electrostatic gating. Monolayer graphene was exfoliated from graphite and deposited onto methyl methacrylate (MMA) polymer and transferred onto BN (that was also annealed) sitting on an SiO\textsubscript{2}/Si wafer. Completed devices were annealed in flowing Ar/H\textsubscript{2} forming gas at 350°C and their electrical conductance was measured with a standard ac voltage bias lock-in technique with a 50 μV signal at 97.13 Hz. Samples that exhibited good electron transport curves were then transferred into our Omicron ultra-high vacuum (UHV) low temperature STM. A second anneal was then performed for several hours at ~300°C and 10-11 torr before moving the device into the STM chamber for measurements at $T = 5$ K. Before all STM measurements, our platinum iridium STM tip was calibrated by measuring the surface state of an independent Au(111) crystal. All STM topographic images were acquired in a constant current mode with sample bias V_s defined as the voltage applied to the sample with respect to the STM tip. All STS measurements were obtained by lock-in detection of the ac tunnel current induced by a modulated voltage (6 mV at 613 Hz) added to V_s.

Acknowledgements:

The authors thank P. Jarillo-Herrero, N. Gabor, A. Young, P. Yu and A. Rubio for stimulating discussions. This research was supported by the sp2 program (STM measurement and instrumentation) and the LBNL Molecular Foundry (graphene characterization) funded by the Director, Office of Science, Office of Basic Energy Sciences of the US Department of Energy under Contract No. DE-AC02-05CH11231. Support also provided by National Science
Foundation award CMMI-1235361 (device fabrication, image analysis). J.V.J. acknowledges support from the UC President's Postdoctoral Fellowship. D.W. was supported by the Department of Defense (DoD) through the National Defense Science & Engineering Graduate Fellowship (NDSEG) Program. S.K. acknowledges support from the Qualcomm Scholars Research Fellowship.

Author Contributions:

L.J. and J.V.J. conceived the work and designed the research strategy. J.V.J., D.W., S.K. and J.L. performed data analysis. J.V.J., S.K., L.J. and A.Z. facilitated sample fabrication. D.W., J.L. and J.V.J. carried out STM/STS measurements. J.V.J. and S.K. carried out electron transport measurements. K.W. and T.T. synthesized the h-BN samples. D.W., J.V.J. and L.J. formulated theoretical model with advice from F.W. and M.F.C. M.F.C. supervised the STM/STS experiments. J.V.J., D.W. and M.F.C. co-wrote the manuscript. J.V.J. and M.F.C. coordinated the collaboration. All authors discussed the results and commented on the paper.
1. Madhavan, V., Chen, W., Jamneala, T., Crommie, M.F. & Wingreen, N.S. Tunneling into a Single Magnetic Atom: Spectroscopic Evidence of the Kondo Resonance. *Science* **280**, 567-569 (1998).
2. Feenstra, R.M., Woodall, J.M. & Pettit, G.D. Observation of bulk defects by scanning tunneling microscopy and spectroscopy: Arsenic antisite defects in GaAs. *Physical Review Letters* **71**, 1176-1179 (1993).
3. Zheng, J.F. *et al.* Scanning tunneling microscopy studies of Si donors in GaAs. *Physical Review Letters* **72**, 1490-1493 (1994).
4. Teichmann, K. *et al.* Controlled Charge Switching on a Single Donor with a Scanning Tunneling Microscope. *Physical Review Letters* **101**, 076103 (2008).
5. Wijnheijmer, A.P. *et al.* Enhanced Donor Binding Energy Close to a Semiconductor Surface. *Physical Review Letters* **102**, 166101 (2009).
6. Lee, D.H. & Gupta, J.A. Tunable Field Control Over the Binding Energy of Single Dopants by a Charged Vacancy in GaAs. *Science* **330**, 1807-1810 (2010).
7. Kitchen, D., Richardella, A., Tang, J.-M., Flatte, M.E. & Yazdani, A. Atom-by-atom substitution of Mn in GaAs and visualization of their hole-mediated interactions. *Nature* **442**, 436-439 (2006).
8. Repp, J., Meyer, G., Olsson, F.E. & Persson, M. Controlling the Charge State of Individual Gold Adatoms. *Science* **305**, 493-495 (2004).
9. Dean, C.R. *et al.* Boron nitride substrates for high-quality graphene electronics. *Nat Nano* **5**, 722-726 (2010).
10. Britnell, L. *et al.* Strong Light-Matter Interactions in Heterostructures of Atomically Thin Films. *Science* **340**, 1311-1314 (2013).
11. Watanabe, K., Taniguchi, T. & Kanda, H. Direct-bandgap properties and evidence for ultraviolet lasing of hexagonal boron nitride single crystal. *Nat Mater* **3**, 404-409 (2004).
12. Taniguchi, T. & Watanabe, K. Synthesis of high-purity boron nitride single crystals under high pressure by using Ba–BN solvent. *Journal of Crystal Growth* **303**, 525-529 (2007).
13. Remes, Z., Nesladek, M., Haenen, K., Watanabe, K. & Taniguchi, T. The optical absorption and photoconductivity spectra of hexagonal boron nitride single crystals. *physica status solidi (a)* **202**, 2229-2233 (2005).
14. Ju L *et al.* Photoinduced doping in heterostructures of graphene and boron nitride. *Nat Nano* **9**, 348-352 (2014).
15. Xue, J. *et al.* Scanning tunnelling microscopy and spectroscopy of ultra-flat graphene on hexagonal boron nitride. *Nat Mater* **10**, 282-285 (2011).
16. Decker, R.g. *et al.* Local Electronic Properties of Graphene on a BN Substrate via Scanning Tunneling Microscopy. *Nano Letters* **11**, 2291-2295 (2011).
17. Zhang, Y. *et al.* Giant phonon-induced conductance in scanning tunneling spectroscopy of gate-tunable graphene. *Nature Physics* **4**, 627 (2008).
18. Wang, Y. *et al.* Mapping Dirac quasiparticles near a single Coulomb impurity on graphene. *Nat Phys* **8**, 653-657 (2012).
19. Wang, Y. *et al.* Observing Atomic Collapse Resonances in Artificial Nuclei on Graphene. *Science* **340**, 734-737 (2013).
20. Brar, V.W. *et al.* Gate-controlled ionization and screening of cobalt adatoms on a graphene surface. *Nat Phys* **7**, 43-47 (2011).
21. Johns, J.E. & Hersam, M.C. Atomic Covalent Functionalization of Graphene. *Accounts of Chemical Research* **46**, 77-86 (2012).
22. Scheffler, M. *et al.* Probing Local Hydrogen Impurities in Quasi-Free-Standing Graphene. *ACS Nano* **6**, 10590-10597 (2012).
23. Bunch, J.S. *et al.* Impermeable atomic membranes from graphene sheets. *Nano Letters* **8**, 2458-2462 (2008).
24. Fanciulli, M. & Moustakas, T.D. Study of defects in wide band gap semiconductors by electron paramagnetic resonance. *Physica B: Condensed Matter* 185, 228-233 (1993).

25. Katzir, A., Suss, J.T., Zunger, A. & Halperin, A. Point defects in hexagonal boron nitride. I. EPR, thermoluminescence, and thermally-stimulated-current measurements. *Physical Review B* 11, 2370-2377 (1975).

26. Andrei, E.Y., Katzir, A. & Suss, J.T. Point defects in hexagonal boron nitride. III. EPR in electron-irradiated BN. *Physical Review B* 13, 2831-2834 (1976).

27. Zunger, A. & Katzir, A. Point defects in hexagonal boron nitride. II. Theoretical studies. *Physical Review B* 11, 2378-2390 (1975).

28. Attaccalite, C., Bockstedte, M., Marini, A., Rubio, A. & Wirtz, L. Coupling of excitons and defect states in boron-nitride nanostructures. *Physical Review B* 83, 144115 (2011).

29. Das Sarma, S., Adam, S., Hwang, E.H. & Rossi, E. Electronic transport in two-dimensional graphene. *Reviews of Modern Physics* 83, 407-470 (2011).

30. Woodside, M.T. & McEuen, P.L. Scanned Probe Imaging of Single-Electron Charge States in Nanotube Quantum Dots. *Science* 296, 1098-1101 (2002).

31. Zhu, J., Brink, M. & McEuen, P.L. Single-Electron Force Readout of Nanoparticle Electrometers Attached to Carbon Nanotubes. *Nano Letters* 8, 2399-2404 (2008).

32. Pradhan, N.A., Liu, N., Silien, C. & Ho, W. Atomic Scale Conductance Induced by Single Impurity Charging. *Physical Review Letters* 94, 076801 (2005).

33. Kharche, N. & Nayak, S.K. Quasiparticle Band Gap Engineering of Graphene and Graphone on Hexagonal Boron Nitride Substrate. *Nano Letters* 11, 5274-5278 (2011).

34. Garleff, J.K., Wijnheijmer, A.P., v. d.Enden, C.N. & Koenraad, P.M. Bistable behavior of silicon atoms in the (110) surface of gallium arsenide. *Physical Review B* 84, 075459 (2011).

35. Gross, L. et al. Measuring the Charge State of an Adatom with Noncontact Atomic Force Microscopy. *Science* 324, 1428-1431 (2009).

36. Zomer, P.J., Dash, S.P., Tombros, N. & van Wees, B.J. A transfer technique for high mobility graphene devices on commercially available hexagonal boron nitride. *Applied Physics Letters* 99, 232104-232107 (2011).
Figure 1: STM topography and corresponding dI/dV map for a graphene/BN device. (a) STM topographic image of a clean graphene/BN area. (b) dI/dV map ($I = 0.4$ nA, $V_s = -0.25$ V) acquired simultaneously with (a) exhibiting various new features: bright dots, a dark dot, and a ring.
Figure 2: dI/dV maps and spatially dependent dI/dV spectroscopy determines defect charge state. (a-b) dI/dV maps ($I = 0.4$ nA, $V_s = -0.3$ V, $V_g = 5$ V) for bright and dark dot defects. (c) dI/dV spectroscopy (initial tunneling parameters: $I = 0.4$ nA, $V_s = -0.5$ V, $V_g = 20$ V) measured on graphene at different lateral distances from the center of the bright dot in (a). (d) Same as (c), but for the dark dot in (b). From the distance-dependent dI/dV spectroscopy, it can be deduced that (a) and (b) represent positively and negatively charged defects in BN, respectively.
Figure 3: \(\frac{dI}{dV} \) maps of defect ring enable energy level characterization. (a-b) \(\frac{dI}{dV} \) maps \((I = 0.4 \text{ nA}, V_s = -0.3 \text{ V}) \) of the same ring defect at back-gate voltages \(V_g = 17 \text{ V} \) and \(V_g = 9 \text{ V} \), respectively. (c) Ring radius \(R \) for different \(V_s \) (denoted by distinct symbols) and \(V_g \). The ring radius was extracted through \(\frac{dI}{dV} \) maps all taken at the same location as (a-b). (d-e) Schematic model (energies not to scale) for ring formation due to charge transfer between graphene and a defect in the top layer of BN. When the distance \(r \) between the tip and the defect is larger than \(R \), the defect level is filled and negatively charged. When \(r < R \), the local gating effect of the tip lowers the local electron density such that the Fermi level is below the defect level, neutralizing the defect. For negative tip potentials and n-doped graphene, \(R \) increases as reduced \(V_g \) shifts the unperturbed defect level closer to the Fermi energy.
Figure 4: Manipulating defects in BN with an STM tip. Tip pulses having $V_s = 5$ V are used to toggle the charge states of the dot defects. (a) dI/dV map ($I = 0.4$ nA, $V_s = -0.25$ V) of graphene/BN reveals various dots and rings. (b) dI/dV map of same region after a tip pulse is applied at the center of region in (a). (c) dI/dV map of same region after another tip pulse. Red arrows mark the disappearance of dots relative to the previous image, blue arrows mark the appearance of dots, and green arrows mark dot defects that have changed the sign of their charge.