Correlation between Disease Severity and the Intestinal Microbiome in Mycobacterium tuberculosis-Infected Rhesus Macaques

Sivaranjani Namasivayam, Keith D. Kauffman, John A. McCulloch, Wuxing Yuan, Vishal Thovarai, Lara R. Mittereder, Giorgio Trinchieri, Daniel L. Barber, Alan Sher

ABSTRACT The factors that determine host susceptibility to tuberculosis (TB) are poorly defined. The microbiota has been identified as a key influence on the nutritional, metabolic, and immunological status of the host, although its role in the pathogenesis of TB is currently unclear. Here, we investigated the influence of Mycobacterium tuberculosis exposure on the microbiome and conversely the impact of the intestinal microbiome on the outcome of M. tuberculosis exposure in a rhesus macaque model of tuberculosis. Animals were infected with different strains and doses of M. tuberculosis in three independent experiments, resulting in a range of disease severities. The compositions of the microbiotas were then assessed using a combination of 16S rRNA and metagenomic sequencing in fecal samples collected pre- and postinfection. Clustering analyses of the microbiota compositions revealed that alterations in the microbiome after M. tuberculosis infection were of much lower magnitude than the variability seen between individual monkeys. However, the microbiomes of macaques that developed severe disease were noticeably distinct from those of the animals with less severe disease as well as from each other. In particular, the bacterial families Lachnospiraceae and Clostridiaceae were enriched in monkeys that were more susceptible to infection, while numbers of Streptococcaceae were decreased. These findings in infected nonhuman primates reveal that certain baseline microbiome communities may strongly associate with the development of severe tuberculosis following infection and can be more important disease correlates than alterations to the microbiota following M. tuberculosis infection itself.

IMPORTANCE Why some but not all individuals infected with Mycobacterium tuberculosis develop disease is poorly understood. Previous studies have revealed an important influence of the microbiota on host resistance to infection with a number of different disease agents. Here, we investigated the possible role of the individual’s microbiome in impacting the outcome of M. tuberculosis infection in rhesus monkeys experimentally exposed to this important human pathogen. Although M. tuberculosis infection itself caused only minor alterations in the composition of the gut microbiota in these animals, we observed a significant correlation between an individual monkey’s microbiome and the severity of pulmonary disease. More importantly, this correlation between microbiota structure and disease outcome was evident even prior to infection. Taken together, our findings suggest that the composition of the microbiome may be a useful predictor of tuberculosis progression in infected individuals either directly because of the microbiome’s direct influence on host resistance or indirectly because of its association with other host factors that have this influence. This calls for exploration of...
the potential of the microbiota composition as a predictive biomarker through carefully designed prospective studies.

KEYWORDS microbiome, nonhuman primate, tuberculosis

Tuberculosis (TB) is the leading cause of death due to a single infectious agent (1). The WHO estimates a third of the world’s population to be latently infected with *Mycobacterium tuberculosis*. Nevertheless, only a small percentage of those individuals exposed to *M. tuberculosis* develop active disease during their lifetime. Furthermore, some exposed individuals appear to be able to clear the bacilli before the establishment of an adaptive host immune response (2). The factors that determine this broad spectrum of *M. tuberculosis* infection outcome remain poorly defined. One important candidate is the host intestinal microbiome, which in a wide range of previous studies has been shown to influence host resistance to a variety of different infectious and inflammatory diseases both in the gut and at extraintestinal sites (3–5).

Previous studies by our group and others have revealed effects of *M. tuberculosis* infection and treatment on the microbiota in both mouse models and humans (6, 7). Nevertheless, none of this work has directly investigated possible associations of the microbiome with outcome of TB exposure. Laboratory mice, while important experimental models, do not present with the same TB disease spectrum observed in humans (8) and present little interindividual variation in their intestinal microbiomes (9). Even in patients, longitudinal before and after *M. tuberculosis* infection sampling is not possible without sampling a large population over a long duration. To circumvent these issues, we employed a nonhuman primate rhesus macaque model to examine the possible association of the microbiome with TB disease outcome. While rhesus macaques are highly susceptible to *M. tuberculosis* and fail to develop latent infection under most experimental settings, their variable disease progression resembles that seen in humans (8, 10, 11). Additionally, their microbiotas display a high level of interindividual variability comparable to that observed in clinical sampling (12).

To address possible interactions between the rhesus macaque microbiome and TB disease, we analyzed the composition of the intestinal microbiota in fecal samples from monkeys in a published retrospective (13) as well as two newly performed infection studies involving different *M. tuberculosis* strains and intrapulmonary inoculation doses. Fecal samples were collected at multiple time points pre- and postinfection (Fig. 1A), and the V4 region of the 16S rRNA gene was sequenced to determine the composition of the microbiota. In the first experiment analyzed involving six monkeys and pooling the time points from all animals, we failed to observe a significant difference in the alpha diversities before and after *M. tuberculosis* exposure or at different time points during infection (data not shown). However, we did observe major differences in alpha diversity between individual animals (Fig. 1B). Similarly, beta-diversity analyses using the Bray-Curtis dissimilarity index revealed that irrespective of infection status, the microbiota in the different fecal samples cluster by animal (Fig. 1C), indicating that the microbiome communities in the animals were different. When clustering analyses were performed for all of the time points from each individual animal, we observed a significant separation in the compositions of the pre- and postinfection microbiotas (Fig. 1D). Similar results were observed in the two additional independent infection experiments performed with two additional *M. tuberculosis* strains (see Fig. S1 in the supplemental material). Together, the above findings suggested that *M. tuberculosis* infection alters the intestinal microbiome in rhesus macaques, although in the absence of uninfected controls, the influence of age-related alterations cannot be ruled out. Regardless, the changes observed postinfection were of much lower magnitude than those associated with the interindividual variability of the animals involved.

As reported previously, the rhesus macaques whose results are depicted in Fig. 1C presented with a wide range of disease severities, as determined by positron emission tomography-computed tomography (PET/CT) score and generalized weight loss (13). This enabled us to ask whether the extent of disease is associated with microbiota
composition. To do so, we calculated the distance of the microbiome of each infected monkey relative to that of the healthiest macaque (ZK38) in the group and asked if that distance correlated with weight loss as a shared disease correlate. Indeed, there was a significant correlation between weight loss and the graphical distance from the time point-matched microbiome of the monkey with the least severe disease (Fig. 2A).
FIG 2 Microbiota clustering in rhesus macaques associates with disease severity both before and after *M. tuberculosis* infection. (A) The distance of the composition of the microbiota from each macaque from the corresponding time points of the animal with the least severe disease (ZK38) was quantified from the 3D space in Fig. 1C and plotted against percent weight change over the course of infection. The significance of the entire comparison \(P < 0.01 \) was determined by regression analysis. (B) Clustering analysis of the 16S sequence data from all time points of the three independent experiments was performed using the Bray-Curtis dissimilarity index. Each circle/triangle represents one time point and is colored by animal, as indicated in the key. Animals that developed (Continued on next page)
Moreover, when clustering analysis was performed on the sequenced 16S rRNA data pooled from all three experiments described above, we observed that the animals that lost more weight grouped together and that the monkeys that were more resistant (i.e., failed to lose weight) formed a separate cluster (Fig. 2B). Of particular note, we observed this clustering pattern using just the preinfection microbiome points (Fig. S2). Employing Procrustes analysis, a tool which determines the statistical similarities of distribution patterns, no significant difference was observed in the clustering patterns between the pre- and postinfection microbiome time points (Fig. 2C). This finding suggests that it may be possible to predict the severity of TB disease progression from the composition of the baseline preinfection microbiome.

To further validate the association of microbiota composition with disease progression, we constructed a Dirichlet multinomial mixture model (14) of the pooled data from the three experiments to identify community types. The different samples were found to partition into two community types, with all time points from each monkey grouping into the same community (Fig. S3). Specifically, all animals that presented with mild disease partitioned into one community, and monkeys with severe disease grouped into the other community. Additionally, multivariate statistical analysis, in the absence of animal identification as a metadata variable, identified disease severity and not infection status or time point during the course of infection as the parameter that most significantly associates with microbiota composition (data not shown).

We next asked which taxa are statistically distinct between the macaques with severe versus mild disease. A total of 15 or 36 taxa were significantly altered between the two groups before and after infection, respectively. Among those significantly increased in the animals with severe disease both pre- and postinfection were taxa belonging to the families Lachnospiraceae and Clostridiaceae, 1, while members of the family Streptococcaceae and the Bacteroidales RF16 and Clostridiales vadin B660 groups were decreased in the same group (Fig. 2D). Members of the family Erysipelotrichaceae decreased and Ruminococcaceae increased in the severe-disease group following infection (Fig. 2D), with a number of taxa fluctuating in their abundances over the course of infection (Fig. S4).

Finally, to investigate differences in the gene coding capacity of the microbiomes of animals that progressed to either severe or mild disease, we performed metagenomic shotgun sequencing on the fecal samples from the preinfection time points. In addition to corroborating the 16S rRNA gene data by showing an association between disease severity and the taxonomic structure of the microbiota (Fig. S5, first panel), metagenomic sequencing also revealed a functional (taxonomically naive) difference between the predicted proteomes of microbiota samples as classified by seven different databases in the InterPro consortium (15) (Fig. S5). Specifically, as also found in the 16S rRNA analysis, Roseburia intestinalis (family Lachnospiraceae), Succinivibrio dextrinosolvens, certain Ruminococcaceae, and Weissella (family Leuconostocaceae) were enriched and Streptococcus equinus (family Streptococcaceae) was decreased in some or all animals with severe disease (Fig. 2E). Although specific enzyme classes were found at different relative abundances between the two severity groups (Fig. S5B), the enzyme classes identified did not associate with a particular functional pathway.

In a prior study employing cynomolgus macaques, modest changes in the pulmonary...
microbiome were detected following *M. tuberculosis* infection, which failed to correlate with the degree of lung inflammation observed (16). The present study focused on the intestinal microbiome of a different nonhuman primate species (rhesus macaques) and likewise showed only minor *M. tuberculosis* infection-induced changes in the microbiota. Instead, this work revealed a significant association between the composition of the gut microbiome and disease outcome as reflected in weight loss, which in this experimental model has been shown to reflect disease severity as determined by PET/CT score (13). Importantly, this association was evident at baseline before the animals encountered the infection, implicating the microbiome as a potential predictor of TB progression. Furthermore, this correlation evident in an initial experiment involving one *M. tuberculosis* strain was robustly maintained by the addition of data generated from two additional experiments employing less virulent bacterial strains. The functional significance of the observed microbiome/disease association is currently unclear. One straightforward hypothesis is that specific microbiota communities directly modify host responses involved in pathogenesis. However, an equally plausible explanation of the data is that these specific communities are instead indirect biomarkers of other host differences that themselves directly impact disease outcome. Since the mechanisms that underlie the heterogeneous pathogenesis of *M. tuberculosis* infection in rhesus monkeys are poorly understood, it is impossible at present to distinguish between the above-described alternative hypotheses. Nevertheless, this report further highlights the need to investigate TB pathophysiology in more-relevant animal models, as recent mouse model studies of the TB microbiome interaction have revealed only a minimal role for the microbiome in host resistance to TB (17). Experiments involving large animal and human cohorts and assessing the innate as well as adaptive host resistance parameters previously linked to the microbiome are needed both to extend the association documented here and to identify possible mechanistic links between disease outcomes and the specific bacterial species associated with them.

Methods. All experimental procedures were in compliance with protocols approved by the NIAID Animal Care and Use Committee. Fecal samples were collected and processed as described previously (18). The V4 region of the 16S rRNA gene was amplified and sequenced as previously described (18, 19). The sequence data were processed and analyzed using the QIIME2/DADA2 (20, 21) pipeline, and the operational taxonomic units (OTUs) were classified using the SILVA database (22). For alpha- and beta-diversity analyses, samples were rarefied to 23,000 reads/sample. The week 7 time point of monkey ZK26 was not included in the analyses due to insufficient numbers of reads. Procrustes analysis was performed on the pre- and postinfection beta-diversity clustering pattern using their principal-component distances to determine the congruence of the two shapes. The Dirichlet multinomial mixture model implemented in mothur (23) was used to identify community types, while LEfSe (24) was employed to identify differentially abundant taxa. Whole-genome shotgun sequencing was performed according to the Nextera DNA Flex protocol using the Illumina NextSeq 500 platform and the metagenomic data analyzed as previously described (25). Briefly, reads were first filtered for quality and removal of host DNA sequences, after which they were *de novo* assembled and the contigs were annotated *ab initio*. Taxonomic classification was performed by means of a k-mer spectrum analysis using custom databases built from NCBI genome entries. The predicted proteome from the contigs of each sample was characterized using InterProScan (15).

Data availability. Sequence data are available in the NCBI Short Read Archive (SRA) database under BioProject ID PRJNA541010 (https://trace.ncbi.nlm.nih.gov/Traces/study/?acc=SRP194962).

SUPPLEMENTAL MATERIAL

Supplemental material for this article may be found at https://doi.org/10.1128/mBio.01018-19.

FIG S1, PDF file, 0.6 MB.

FIG S2, PDF file, 0.4 MB.

FIG S3, PDF file, 0.4 MB.
ACKNOWLEDGMENTS

This work was supported in whole or part by the Intramural Research Programs of the NIAID and the NCI, NIH.

We are grateful to members of the NIAID Building 33 Animal Facility staff for their help with fecal sample collection. We also acknowledge the NIH HPC Biowulf cluster, NIAID Bioinformatics and Computational Biosciences Branch and NIH library for providing computational resources and Bruno Andrade for helpful discussions.

We declare that we have no conflicts of interest.

REFERENCES

1. WHO. 2018. Global tuberculosis report 2018. WHO, Geneva, Switzerland.
2. Simmons JD, Stein CM, Seshadi C,campo M, Alter G, Fortune S, Schurr E, Wallis RS, Churchyard G, Mayanja-Kizza H, Boom WH, Hawn TR. 2018. Immune evasion mechanisms of human resistance to persistent Mycobacterium tuberculosis infection. Nat Rev Immunol 18:575–589. https://doi.org/10.1038/s41577-018-0025-3.
3. Kamada N, Sae SU, Chen GY, Nunez G. 2013. Role of the gut microbiota in immunity and inflammatory disease. Nat Rev Immunol 13:321–335. https://doi.org/10.1038/nri3430.
4. Honda K, Littman DR. 2012. The microbiome in infectious disease and inflammation. Annu Rev Immunol 30:759–795. https://doi.org/10.1146/annurev-immunol-020711-074937.
5. Rooks MG, Garrett WS. 2016. Gut microbiota, metabolites and host immunity. Nat Rev Immunol 16:341–352. https://doi.org/10.1038/nri.2016.42.
6. Namasivayam S, Sher A, Glickman MS, Wipperman MF. 2018. The microbiome and tuberculosis: early evidence for cross talk. mBio 9:e01420-18. https://doi.org/10.1128/mBio.01420-18.
7. Hong BY, Mau len NP, Adami AJ, Granados H, Balc lons ME, Cervantes J. 2016. Microbiome changes during tuberculosis and antituberculosis therapy. Clin Microbiol Rev 29:915–926. https://doi.org/10.1128/CMR.00096-15.
8. O’Garra A, Redford PS, McNab FW, Bloom CI, Wilkinson RJ, Berry MP. 2013. The immune response in tuberculosis. Annu Rev Immunol 31:475–527. https://doi.org/10.1146/annurev-immunol-032712-095939.
9. Nguyen TLA, Vieira-Silva S, Liston A, Raes J. 2015. How informative is the mouse for human gut microbiota research? Dis Model Mech 8:1–16. https://doi.org/10.1242/dmm.017400.
10. Sharpe S, White A, Gleeson F, McIntyre A, Clark S, Sarfas C, Laddy D, Rayner E, Hall G, Williams A, Dennis M. 2016. Ultra low dose aerosol challenge with Mycobacterium tuberculosis leads to divergent outcomes in rhesus and cynomolgus macaques. Tuberculosis (Edinb) 96:1–12. https://doi.org/10.1016/j.tube.2015.10.004.
11. Maiello P, DiFazio RM, Cadena AM, Rodgers MA, Lin PL, Flynn JL. 2018. Rhesus macaques are more susceptible to progressive tuberculosis than wild-type mice. Genome Biol 19:65. https://doi.org/10.1186/s13059-018-1369-2.
12. Simmons JD, Stein CM, Seshadri C, Campo M, Alter G, Fortune S, Schurr E, Wallis RS, Churchyard G, Mayanja-Kizza H, Boom WH, Hawn TR. 2018. Immune evasion mechanisms of human resistance to persistent Mycobacterium tuberculosis infection. Nat Rev Immunol 18:575–589. https://doi.org/10.1038/s41577-018-0025-3.
13. Kamada N, Sae SU, Chen GY, Nunez G. 2013. Role of the gut microbiota in immunity and inflammatory disease. Nat Rev Immunol 13:321–335. https://doi.org/10.1038/nri3430.
14. Honda K, Littman DR. 2012. The microbiome in infectious disease and inflammation. Annu Rev Immunol 30:759–795. https://doi.org/10.1146/annurev-immunol-020711-074937.
15. Rooks MG, Garrett WS. 2016. Gut microbiota, metabolites and host immunity. Nat Rev Immunol 16:341–352. https://doi.org/10.1038/nri.2016.42.
16. Namasivayam S, Sher A, Glickman MS, Wipperman MF. 2018. The microbiome and tuberculosis: early evidence for cross talk. mBio 9:e01420-18. https://doi.org/10.1128/mBio.01420-18.
17. Hong BY, Mau len NP, Adami AJ, Granados H, Balc lons ME, Cervantes J. 2016. Microbiome changes during tuberculosis and antituberculosis therapy. Clin Microbiol Rev 29:915–926. https://doi.org/10.1128/CMR.00096-15.
18. O’Garra A, Redford PS, McNab FW, Bloom CI, Wilkinson RJ, Berry MP. 2013. The immune response in tuberculosis. Annu Rev Immunol 31:475–527. https://doi.org/10.1146/annurev-immunol-032712-095939.
19. Nguyen TLA, Vieira-Silva S, Liston A, Raes J. 2015. How informative is the mouse for human gut microbiota research? Dis Model Mech 8:1–16. https://doi.org/10.1242/dmm.017400.
20. Sharpe S, White A, Gleeson F, McIntyre A, Clark S, Sarfas C, Laddy D, Rayner E, Hall G, Williams A, Dennis M. 2016. Ultra low dose aerosol challenge with Mycobacterium tuberculosis leads to divergent outcomes in rhesus and cynomolgus macaques. Tuberculosis (Edinb) 96:1–12. https://doi.org/10.1016/j.tube.2015.10.004.
21. Maiello P, DiFazio RM, Cadena AM, Rodgers MA, Lin PL, Flynn JL. 2018. Rhesus macaques are more susceptible to progressive tuberculosis than wild-type mice: a quantitative comparative infection. Immune Netw 8:e00505-17. https://doi.org/10.21871/ijn.00505-17.
22. Yasuda K, Oh K, Ren B, Tickel TL, Franzosa EA, Wachtman LM, Miller AD, Westmoreland SV, Mansfield KG, Vallenberd E, Miller GM, Rowlett JK, Gevers D, Huttenhower C, Morgan XC. 2015. Biogeography of the intestinal mucosal and luminal microbiome in the rhesus macaque. Cell Host Microbe 17:385–391. https://doi.org/10.1016/j.chom.2015.01.015.
23. Kauffman KD, Sallin MA, Sakai S, Kamenyeva O, Kabat J, Weiner D, Sutphin M, Schimmel D, Via L, Barry CE, Wilder-Kofie T, Moore I, Moore R, Barber DL. 2018. Defective positioning in granulomas but not lung homing limits CD4 T-cell interactions with Mycobacterium tuberculosis. Front Immunol 9:2656. https://doi.org/10.3389/fimmu.2018.02656.
24. Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ, Sahl JW, Stres B, Thallinger GG, Van Horn DJ, Weber CF. 2009. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75:7577–7581. https://doi.org/10.1128/AEM.01541-09.
25. Segata N, Izard J, Loves JC, Gevers D, Miropolsky L, Garrett WS, Huttenhower C. 2011. Metagenomic biomarker discovery and explana- tion. Genome Biol 12:R60. https://doi.org/10.1186/gb-2011-12-6-60.
26. Rosshart SP, Vassallo BG, Angeletti D, Hutchinson DS, Morgan AP, Kedak A, Hickman HD, McCulloch JA, Badger JH, Ajami NJ, Trinchieri G, Pardo-Manuel de Villena F, Yewdell JW, Rehermann B. 2017. Wild mouse gut microbiota promotes host fitness and improves disease resistance. Cell 171:1015–1028. https://doi.org/10.1016/j.cell.2017.09.016.

FIG S4 PDF file, 0.4 MB.
FIG S5 PDF file, 0.6 MB.

The Microbiome in M. tuberculosis-Infected Macaques

May/June 2019 Volume 10 Issue 3 e01018-19
mbio.asm.org