Association of Mammary Gland Disease With Metabolic Syndrome Factors in Japanese Women—Case-Control Study Based on Health Screening Results

Sakika Sumida1, Tadayuki Iida2,*, Masao Yoshikawa3 and Kaoru Nagaoaka3

1Department of Radiology, Yoshida General Hospital, Akitakata, Japan. 2Department of Physical Therapy, Faculty of Health and Welfare, Prefectural University of Hiroshima, Mihara, Japan. 3Preventive Medicine Promotion Research Center, Nisshin, Japan.

ABSTRACT

BACKGROUND: The association of obesity with breast cancer is clear. Although body mass index (BMI) is used as an indicator of obesity, its accuracy remains questionable. Although, there factors for diagnosing metabolic syndrome are caused by obesity, the association with breast cancer has not been clarified.

METHODS: Women who underwent breast cancer screening with mammography and measurements of metabolic syndrome factors, including waist circumference, blood glucose, triglycerides, HDL (high-density lipoprotein) cholesterol levels, and systolic and diastolic pressure, twice within a 2-year period were enrolled (n = 314), with a final sample size of 256. To determine the presence of mammary gland disease, 2 expert physicians interpreted radiogram findings, with category 3 or higher shown by mammography considered to indicate an abnormality.

RESULTS AND CONCLUSIONS: Waist circumference at the initial measurement was marginally significant as a risk factor for onset of mammary gland disease (odds ratio [OR] = 1.036, P = .045) and thus was concluded to be a risk factor for disease onset. Although not significant, a 2-year increase in systolic and diastolic blood pressure has been presumed to be risk factors (systolic: OR = 1.020, P = .085, diastolic: OR = 1.040, P = .065), while high levels of HDL cholesterol have been presumed to protect against the disease (OR = 0.982, P = .064). Based on these results, waist circumference and blood pressure are speculated to be related to development of mammary gland disease.

KEYWORDS: Mammary gland disease, metabolic syndrome factors, breast cancer screening

Introduction

According to the National Cancer Center of Japan, the number of breast cancer cases in 2016 in Japan was 73,997, with an increase to 91,605 noted in 2020. The Ministry of Health, Labor and Welfare of Japan has been conducting activities for raising awareness of breast cancer screening, although the rate of consultation has remained low. Obesity is defined as a state of excessive fatty tissue caused by hypertrophy that leads to an increase in that tissue, and the association between breast cancer and obesity in Japanese women has been clarified in recent years, with the westernization of dietary habits considered to be an important cause.1

Adipocytes produce estrogen based on male hormones (androgens) secreted by the adrenal cortex. Hypertrophy and increased adipose tissue are thought to promote exposure to estrogen and are closely related to the development of breast cancer. On the contrary, adipose tissue induces production and secretion of a variety of adipose cytokines. Furthermore, it has been reported that hypertrophy and increased adipose tissue can cause heterogeneous secretion of adipocytokines, which have effects on mammary tissue that can lead to breast cancer.2 Thus, it is considered that hypertrophy and increased fatty tissue enhance exposure to estrogen, indicating their close relationship with breast cancer development. Uneven levels of secreted adipocytokines also elevate insulin sensitivity, facilitate glucose metabolism, and suppress blood pressure increase by a vasodilating effect.3,4 As a result, hypertrophy and increased fatty tissue induce abnormal glucose metabolism and hypertension, causing advancement of metabolic syndrome.5,6

Although, there factors for diagnosing metabolic syndrome are caused by obesity, the association with breast cancer has not been clarified.

Studies of breast cancer that use body mass index (BMI) generally define obesity as the presence of excess fatty tissue. Four previous case-control studies reported that increases in BMI and hormones were significantly associated with increased risk for breast cancer.7-10 However, each of those cross-sectional studies examined the association with BMI at the time of breast cancer onset. While it has been established that BMI represents excessive fatty tissue, it may be inaccurate to use only
that to determine an increased state of adipose tissue.11
Although breast cancer studies have been conducted with BMI
used to determine adipose tissue increase, to the best of our
knowledge the association of metabolic syndrome caused by an
increase in adipose tissue with breast cancer has not been investi-
gated. Furthermore, because an increase in adipose tissue can
cause metabolic syndrome, those effects on breast cancer
should be investigated in a longitudinal manner.

This study was conducted to clarify the relationship between
metabolic syndrome index in healthy individuals and breast
disease so as to raise awareness of the importance of daily life
activities for prevention of disease onset. This was a longitudi-
nal examination of the association of metabolic syndrome fac-
tors, including waist circumference, glucose level, blood
pressure, triglycerides, and HDL (high-density lipoprotein)
cholesterol in blood, as well as blood pressure with develop-
ment of mammary gland disease such as breast cancer using
data obtained in routine health checkup examinations.

Materials and Methods

Examination procedure
From 2010 to 2013, each of the participants (n = 314) was
examined twice (initial and 2 years later), with physical charac-
teristics and blood markers of metabolic syndrome noted, and
also underwent breast cancer screening. Of those enrolled in
this study, 89 participated in screening tests conducted in 2010
(first) and 2012 (2 years later) and 225 underwent screening in
2011 (first) and 2013 (2 years later). Mammograms and blood
tests were performed during a voluntarily desired physical
examination, where weight and height were measured for
physical characteristics and blood markers for metabolic syn-
drome, and screening for breast cancer was also performed.
Each was given a full explanation of the study content and
methods in advance, and written consent was obtained.

This study is a nonrandomized trial for all women health
checkups at one medical examination center. Of a total of 6249
breast cancer screenings conducted from 2010 to 2013, 4376
cases were classified as category 1 based on mammogram find-
ings in the first year, while 2504 were selected for breast cancer
screening 2 years later. It was assumed that the examinees had
no abnormalities at the time of the initial examination. The
number of examinees who underwent a biochemical examina-
tion at the same time as the mammography examination was
314. Of those, 89 participated in screening tests in 2010 (first)
and 2012 (2 years later), and 225 underwent screening tests in
2011 (first) and 2013 (2 years later). Of 301 females with
anomalies detected in the first screening and who responded to
a questionnaire, 80 were assigned to the case group following
the second examination. In addition, 221 females with no
anomalies detected and consistent with the case group in
terms of age (±2 years) and BMI (±2 kg/m²) were designated
as the control group. Thus, each individual in the case group
was matched with at least 2 individuals in the control group for
range of age (±2 years) and BMI (±2 kg/m²). Later, 36 in the
control group were excluded because of missing test data or
with data outside of the matching values; thus, the total num-
er of participants in the control group was 185 (Figure 1). The
sample size was determined according to waist circumference
and presence/absence of breast cancer using G-power.12,13
Based on the findings of studies conducted by Elías et al.14 on
the relationship between control participants without breast
cancer and breast cancer survivors, and in consideration of
results showing M1 = 88.52 (mean score of control group),
SD1 = 9.61, M2 = 93.65 (mean score of breast cancer survivor
group), and SD2 = 10.48, as well as one-sided α = 0.05 and
power = 90%, the sample size per group was determined to be
80, for a total sample size of 265.

This study was approved by the Ethics Committee of
Hiroshima Koseiren Yoshida General Hospital (approval num-
ber 201607) and was performed in accordance with the
Declaration of Helsinki.

Physical characteristics
For physical characteristics, age, height, body weight, and waist
circumference were determined. The BMI was calculated on
the basis of height and weight. Systolic and diastolic pressure,
known to be major risk factors for circulatory disease, were
used for blood pressure evaluation.

Metabolic syndrome factors
Among the metabolic syndrome factors examined, blood test-
ing to determine glucose, triglyceride, and HDL cholesterol
levels was performed as a biochemical examination using a
HITACHI DM-JACS device. For the reagents, Determiner L
GLU HK was used for blood glucose, Determiner L TG for
triglycerides, and MetaboLead HDL-C for HDL cholesterol
measurements. All reagents were provided by Kyowa Medex
Co, Ltd (presently, Hitachi Chemical Diagnostics Systems Co,
Ltd).

Breast cancer screening
An MGU-100D mammographic device (Toshiba Medical
Systems Corporation; presently, Canon Medical Systems
Corporation), which met the criteria of the Japan Radiological
Society, was used for breast cancer screening. Mammography
examinations were conducted at a certified facility, which has
been accredited by the Japan Central Organization on Quality
Assurance for Breast Cancer Screening (specified nonprofit
organization). The screening criteria were fulfilled on the basis
of evaluations of mammography equipment, actual radiograms,
and radiation dose for the purpose of enhancing and maintain-
ing screening precision. For determining abnormal status, we
used the 5-category assessment of final malignancy shown in the
Mammography Screening Guidelines based on the Breast
Imaging Reporting and Data System (BI-RADS) prepared by the American College of Radiology (ACR). For judgment of a mammography examination in the BI-RADS category, category 0 (insufficient examination: additional diagnostic imaging
required = close examination required), or categories 1 and 2 (normal and benign: recommended management for regular mammography examination) were used. In Japan, the conventional mammography guideline category, which expresses the degree of malignancy, has been renamed as “examination mammography category” and examination category 3 or higher requires a close examination. In other words, according to Japanese mammography guidelines, examination categories 3, 4, and 5 correspond to BI-RADS examination category 0. Two qualified physicians with experience with mammogram interpretation (B1) certified by the Japan Central Organization on Quality Assurance of Breast Cancer Screening were in charge of the breast cancer screening examinations and 2 radiogram interpretations, first and second, were used for grading. Participants classified as category 1 or 2 in the mammography results obtained 2 years after the initial screening were considered as other than abnormality detected, while those classified as category 3 or higher were considered to be abnormality detected related to onset of mammary gland disease.

Statistical Analysis

Age, physical characteristics, and metabolic syndrome factors, including waist circumference, glucose, triglyceride, and HDL cholesterol level, as well as systolic and diastolic pressure, were recorded, with the normality of the initial test values confirmed by use of a histogram and Kolmogorov-Smirnov test results ($P > .05$). Values from the initial measurements were subtracted from those obtained 2 years later for determining changes, with normality tested and confirmed in the same manner ($P > .05$). Mean and standard deviation values were calculated for each test item. Furthermore, age, height, weight, and waist circumference, blood glucose, triglyceride, and HDL cholesterol levels, and diastolic and systolic pressure were compared between included and excluded participants using Student t test.

Results obtained in the breast cancer screening test were used as dependent variables for examining the association of risk factors with binomial logistic regression analysis. Before selecting the explanatory variables, the correlations of waist circumference, glucose, triglyceride, and HDL cholesterol blood levels, and systolic and diastolic pressure determined at the initial measurement were examined using Pearson correlation coefficient, with a strong correlation between systolic and diastolic pressure noted ($r = 0.806, P < .001$). Accordingly, in model 1, waist circumference, glucose, triglyceride, HDL cholesterol, and systolic pressure were used as explanatory variables, while in model 2, systolic pressure was replaced with diastolic pressure. For both models 1 and 2, the effect of age was taken into consideration by using that at the initial screening as a regulating factor. Furthermore, for changes in waist circumference, blood glucose, triglyceride, and HDL cholesterol levels, and systolic and diastolic pressure, the correlation of each variable was examined using Pearson correlation coefficient. As a result, a strong correlation between changes in systolic and diastolic pressure was demonstrated ($r = 0.633, P < .001$). In model 3, changes in waist circumference, blood glucose, triglyceride, HDL cholesterol, and systolic pressure were used as explanatory variables. By taking into consideration the association of those at the initial measurement, each was used as a regulator factor. In model 4, change in systolic pressure was replaced with diastolic pressure, while the other explanatory and regulator factors were the same as in model 3. For all of these tests, a risk ratio $\leq 5\%$ was considered to indicate statistical significance. For statistical analysis, SPSS 25.0J (KBM Japan, Tokyo) was used. The level of significance was set at $P < .05$.

Results

Physical characteristics and biochemical test results as metabolic syndrome factors for participants included and excluded from analysis conducted in the period from 2010 to 2013 are shown in Table 1. There were no significant differences between the 265 included participants and 36 excluded regarding height, weight, BMI, or waist circumference, glucose, triglyceride, or HDL cholesterol in blood, or diastolic pressure, whereas significant differences were confirmed for age and systolic pressure. In the participants classified as other than abnormality detected, systolic pressure was significantly lower at the second as compared with the initial measurement. Comparisons of the examined metabolic syndrome factors between the initial measurements and those obtained 2 years later are shown in Table 2. In the group with an abnormality detected, HDL cholesterol level was significantly higher at the second measurement. In all participants, waist circumference was significantly higher and systolic pressure significantly lower at the second measurement.

Results of binominal logistic regression analysis based on grading of breast cancer screening findings as an objective variable are shown in Tables 3 and 4. Those presented in Table 3 indicate an association of metabolic syndrome factors noted at the initial assessment on development of mammary gland disease 2 years later. Using model 1, waist circumference showed a significant association (odds ratio = 1.036, $P = .045$), while that of HDL cholesterol levels tended to be associated as protective factor, but this association was not statistically significant (odds ratio = 0.982, $P = .064$). In model 2, waist circumference again showed a significant association (odds ratio = 1.036, $P = .044$) and HDL cholesterol levels tended to be associated as protective factor, but this association was not statistically significant (odds ratio = 0.982, $P = .064$). Results presented in Table 4 demonstrate the association of changes in the examined metabolic syndrome factors at 2 years after the initial examination on development of mammary gland disease. With model 3, which included waist circumference, glucose, triglyceride, and HDL cholesterol levels in blood, as well as systolic pressure at the initial measurement, change in systolic pressure tended to be associated as risk factor; but this association was not statistically significant.
significant (odds ratio = 1.020, \(P = .085\)). With model 4, which replaced systolic pressure with diastolic pressure, change in diastolic pressure tended to be associated as risk factor, but this association was not statistically significant (odds ratio = 1.040, \(P = .065\)).

Discussion

It is considered that obesity, namely, expanded waist circumference, and BMI are associated with onset of breast cancer, the causal relationship of metabolic syndrome factors, including waist circumference with risk for breast cancer development, has yet to be elucidated. The present results confirmed that waist circumference is a significant risk factor associated with development of mammary gland disease, with risk increasing as the circumference becomes larger. In Japan, voluntary health examinations are conducted for prevention of metabolic syndrome and breast cancer, and the results supported by evidence from the findings presented here show that a large abdominal circumference is a risk factor associated with larger waist circumference may lead to increased risk of mammary gland disease.

High levels of HDL cholesterol have been presumed to be a possible protective factor in the development of mammary gland disease, but have not shown a significant association. The relationship between the anti-inflammatory effect and metabolic mechanisms is speculated. Fiorenza et al. suggested that low HDL cholesterol level, a risk factor for cardiovascular disease development, is related to cancer occurrence in a variety of sites. In another study, hypo-HDL-cholesterolemia (50 mg/dL) was shown to be related to onset of breast as well as prostate cancer. Furberg et al. investigated the association between breast cancer and HDL cholesterol level both before and after menopause, and their results support the notion that a high HDL cholesterol level is associated with decreased risk of breast cancer development, which was confirmed by the present results. Should HDL cholesterol be involved in immune stimulation and inhibition of inflammatory response, it is possible that an increased level might inhibit malignant tumor epithelium and interstitium. The incidence of breast cancer was increased in association with a decrease in blood adiponectin level of adipokine can be a cause of carcinogenesis.

On the contrary, because adipocytes produce estrogen by use of the male hormone androgen secreted from the adrenal cortex, it is considered that exposure to estrogen might have a close relationship with onset of breast cancer. Estrogen is known to be associated with development of mammary gland diseases, including those with a benign nature. Together, these findings indicate that hypertrophy and an increase in number of adipocytes associated with larger waist circumference may lead to increased risk of mammary gland disease.

N	INCLUDED PARTICIPANTS	EXCLUDED PARTICIPANTS (INCLUDING LACK OF DATA)	\(P\) VALUE	NORMAL REFERENCE VALUE						
\(N\)	MEAN	SD	MIN-MAX	\(N\)	MEAN	SD	MIN-MAX			
Age (y)	265	47.8	(8.0)	35.0-78.0	36	56.5	(11.6)	38.0-77.0	<.001	–
Height (cm)	265	158.6	(5.3)	144.1-174.0	22	156.5	(5.5)	147.2-167.7	.071	–
Body weight (kg)	265	53.2	(8.2)	40.1-108.3	22	53.1	(6.2)	40.6-64.7	.980	–
Waist circumference (cm)	265	76.9	(8.9)	60.0-122.5	20	80.3	(8.9)	64.5-95.8	.107	90
BMI (kg/m²)	265	21.2	(3.2)	16.2-45.1	22	21.8	(2.9)	16.6-28.9	.393	18.5-25
Blood glucose (mg/dL)	265	90.0	(11.0)	66.0-171.0	7	86.7	(5.8)	79.0-92.0	.430	<110
Triglycerides (mg/dL)	265	80.6	(48.5)	27.0-428.0	22	82.0	(38.7)	40.0-213.0	.897	<150
HDL cholesterol (mg/dL)	265	76.8	(16.0)	33.0-130.0	22	79.2	(11.5)	56.0-97.0	.493	>40
Systolic pressure (mmHg)	265	115.3	(16.0)	82.0-181.0	22	123.0	(15.4)	106.0-160.0	.030	<130
Diastolic pressure (mmHg)	265	68.5	(11.2)	43.0-100.0	22	71.4	(8.2)	60.0-91.0	.239	<85

Abbreviations: BMI, body mass index; HDL, high-density lipoprotein.

\(P\) value: Student \(t\) test between included and excluded participants. Normal reference value: Value determined by Member of the Metabolic Syndrome Diagnostic Criteria Review Committee.
Breast Cancer: Basic and Clinical Research

Table 2. Comparisons of metabolic syndrome factors (waist circumference, glucose, triglycerides, HDL cholesterol in blood, systolic pressure, and diastolic pressure) between initial measurements and values obtained 2 years later.

PARTICIPANTS WITH OTHER THAN ABNORMAlITY DETECTED (N = 185)	INITIAL	2 YEARS LATER	DIFFERENCE BETWEEN SECOND AND INITIAL MEASUREMENTS	P VALUE			
	MEAN	SD	MEAN	SD	MEAN	SD	MIN-MAx
BMI (kg/m²)	20.9 (2.9)	16.2 to 45.1	21.0 (3.0)	15.2 to 46.7	0.03 (0.8)	−4.3 to 2.6	.598
Waist circumference (cm)	76.3 (8.1)	60.0 to 119.0	77.2 (8.6)	60.5 to 128.5	0.85 (4.0)	−12.0 to 14.2	.161
Blood glucose (mg/dL)	90.3 (8.4)	85.0 to 119.0	90.6 (8.8)	85.0 to 120.0	0.30 (7.4)	−4.0 to 23.0	.584
Triglycerides (mg/dL)	79.8 (42.9)	27.0 to 347.0	83.4 (42.5)	19.0 to 269.0	3.60 (36.6)	−204.0 to 140.0	.182
HDL cholesterol (mg/dL)	78.3 (16.3)	44.0 to 125.0	78.4 (16.6)	42.0 to 129.0	0.07 (9.6)	−24.0 to 35.0	.921
Systolic pressure (mmHg)	115.8 (16.5)	82.0 to 181.0	113.8 (14.5)	85.0 to 166.0	−2.04 (12.0)	−39.0 to −10.0	.022
Diastolic pressure (mmHg)	68.8 (11.3)	43.0 to 97.0	67.9 (11.0)	44.0 to 111.0	−0.85 (8.3)	−27.0 to 24.0	.161

PARTICIPANTS WITH ABNORMAlITY DETECTED (N = 80)	INITIAL	2 YEARS LATER	DIFFERENCE BETWEEN SECOND AND INITIAL MEASUREMENTS	P VALUE			
	MEAN	SD	MEAN	SD	MEAN	SD	MIN-MAx
BMI (kg/m²)	21.7 (3.7)	16.5 to 35.3	21.7 (3.7)	17.2-34.6	0.07 (1.1)	−4.8 to 3.1	.588
Waist circumference (cm)	78.4 (10.3)	62.1 to 122.5	79.2 (10.5)	60.5-115.7	0.75 (4.8)	−15.0 to 13.5	.164
Blood glucose (mg/dL)	89.3 (15.5)	82.0 to 171.0	89.2 (12.9)	82.0-153.0	−0.06 (8.0)	−3.0 to 25.0	.945
Triglycerides (mg/dL)	82.5 (59.8)	27.0 to 428.0	83.1 (66.9)	32.0-585.0	0.59 (33.2)	−115.0 to 157.0	.875
HDL cholesterol (mg/dL)	73.4 (14.7)	33.0 to 130.0	75.5 (15.7)	36.0-125.0	2.05 (8.3)	−26.0 to 21.0	.030
Systolic pressure (mmHg)	114.2 (14.8)	86.0 to 163.0	114.8 (15.5)	92.0-173.0	0.63 (11.2)	−24.0 to −6.3	.618
Diastolic pressure (mmHg)	67.9 (11.2)	49.0 to 100.0	69.1 (12.3)	47.0-112.0	1.20 (8.8)	−29.0 to 24.0	.226

TOTAL (N = 265)	INITIAL	2 YEARS LATER	DIFFERENCE BETWEEN SECOND AND INITIAL MEASUREMENTS	P VALUE			
	MEAN	SD	MEAN	SD	MEAN	SD	MIN-MAx
BMI (kg/m²)	21.2 (3.2)	16.2 to 45.1	21.2 (3.2)	15.2 to 46.7	0.04 (0.9)	−4.8 to 3.1	.449
Waist circumference (cm)	76.9 (8.9)	60.0 to 122.5	77.8 (9.2)	60.5 to 128.5	0.82 (4.2)	−15.0 to 14.2	.002
Blood glucose (mg/dL)	90.0 (11.0)	66.0 to 171.0	90.2 (10.2)	69.0 to 153.0	0.19 (7.6)	−32.0 to 4.0	.685
Triglycerides (mg/dL)	80.6 (48.5)	27.0 to 428.0	83.3 (51.0)	19.0 to 585.0	2.69 (35.5)	−204.0 to −157.0	.219
HDL cholesterol (mg/dL)	76.8 (16.0)	33.0 to 130.0	77.5 (16.4)	36.0 to 129.0	0.67 (9.2)	−26.0 to 35.0	.240
Systolic pressure (mmHg)	115.3 (16.0)	82.0 to 105.0	114.1 (14.8)	85.0 to 102.0	−1.23 (11.8)	−39.0 to −9.0	<.001
Diastolic pressure (mmHg)	68.5 (11.2)	43.0 to 100.0	68.3 (11.4)	44.0 to 112.0	−0.23 (8.5)	−29.0 to 24.0	.653

Abbreviations: BMI, body mass index; HDL, high-density lipoprotein.

P value: Paired t-test between initial and 2 years later. Other than abnormality detected: Participants classified as category 1 or 2 in the mammography results obtained 2 years after the initial screening. Abnormality detected: Participants with a normal initial screening and a mammogram result classified as category 3 or higher after 2 years.
Table 3. Association of metabolic factors at initial measurement on onset of mammary gland disease 2 years later.

Model 1	ODDS RATIO	95% CI	P VALUE
Waist circumference (cm)	1.036	1.001-1.073	.045
Blood glucose (mg/dL)	0.987	0.960-1.016	.371
Triglycerides (mg/dL)	0.999	0.992-1.005	.717
HDL cholesterol (mg/dL)	0.982	0.963-1.001	.064
Systolic pressure (mmHg)	0.997	0.977-1.017	.737

Model 2	ODDS RATIO	95% CI	P VALUE
Waist circumference (cm)	1.036	1.001-1.072	.044
Blood glucose (mg/dL)	0.987	0.959-1.015	.345
Triglycerides (mg/dL)	0.999	0.992-1.005	.736
HDL cholesterol (mg/dL)	0.982	0.963-1.001	.064
Diastolic pressure (mmHg)	0.995	0.969-1.022	.729

Abbreviations: CI, confidence interval; HDL, high-density lipoprotein.
Model was adjusted for: model 1: age at a initial measurement, model 2: age at a initial measurement. P value: Binominal logistic regression analysis with dependent variable to use results obtained in the breast cancer screening.

Table 4. Association of metabolic syndrome factors over 2-year period on onset of mammary gland disease.

Model 3	ODDS RATIO	95% CI	P VALUE
Change in waist circumference (cm)	1.020	0.953-1.090	.571
Change in blood glucose (mg/dL)	0.982	0.940-1.020	.401
Change in triglycerides (mg/dL)	0.999	0.991-1.010	.830
Change in HDL cholesterol (mg/dL)	1.010	0.979-1.050	.445
Change in systolic pressure (mmHg)	1.020	0.997-1.050	.085

Model 4	ODDS RATIO	95% CI	P VALUE
Change in waist circumference (cm)	1.010	0.948-1.090	.673
Change in blood glucose (mg/dL)	0.978	0.937-1.020	.323
Change in triglycerides (mg/dL)	0.999	0.990-1.010	.769
Change in HDL cholesterol (mg/dL)	1.010	0.974-1.040	.631
Change in diastolic pressure (mmHg)	1.040	0.998-1.080	.065

Abbreviations: CI, confidence interval; HDL, high-density lipoprotein.
Model was adjusted for: model 3: age, waist circumference, blood glucose, triglycerides, HDL cholesterol, and systolic pressure at initial measurement; model 4: age, waist circumference, blood glucose, triglycerides, HDL cholesterol, and diastolic pressure at initial measurement. P value: Binominal logistic regression analysis with dependent variable to use results obtained in the breast cancer screening.

As for mastopathy and fibroadenoma, benign mammary gland diseases, it is considered likely that associated inflammation is induced by a change in estrogen secretion by mammary gland epithelial cells. When considering the present findings, it is possible that even benign mammary gland diseases are suppressed by the anti-inflammatory effect of HDL cholesterol. Changes in systolic and diastolic blood pressure have been presumed to be risk factors for the development of mastopathy, but have not shown a significant association. However, this may be related to reactive oxygen species associated with elevated blood pressure. Hypertension is known to be a pathological condition associated with vascular endothelial disorder and one of its causes, and previous studies have shown that a variety of physiological active substances are produced in and secreted by vascular endothelium. Once vascular endothelium becomes impaired, the balance of active oxygen is disrupted, resulting in breakdown of the vascular structure. Another study showed that oxidative reaction caused by active oxygen disturbed intravascular cells and the resultant oxidant stress elevated blood pressure, while other findings indicated that a blood pressure increase causes further oxidant stress. Furthermore, it is known that DNA undergoes oxidative damage caused by oxidant stress, while others have shown that tetradecanoyl phorbol,
a carcinogen formed as a result of DNA damage, induces activation of breast cancer cells.\(^{29-31}\) Therefore, it is likely that an increased concentration of active oxygen impairs mammary gland cells, leading to onset of mammary gland disease.

In this study, participants who received breast cancer screening and showed a mammography grade of 3 or higher underwent detailed examinations at Atami Hospital Department of Surgery, International University of Health and Welfare, Japan. Those results showed that approximately 12% of the category 3 participants and approximately 55.5% of those classified as category 4 had a malignant tumor, while the ratio of benign tumors was 60.5% for category 3 and 30% for category 4, indicating that category 3 cases are a mixture of benign and malignant tumors.\(^{32}\) When a multifocal genetic mutation occurs in normal epithelial cells, they become precancer cells, and with excessive proliferation of those, a benign tumor is formed.\(^{33}\) This study was not designed to clarify the mechanism of tumorigenesis from a benign to malignant tumor. However, based on our understanding that a benign tumor has the possibility of malignant alteration, we consider that careful examination of routine screening data of metabolic syndrome factors, such as waist circumference, blood pressure, and HDL cholesterol level, in participants with mammary gland disease graded as category 3 or higher might lead to effective treatments for control of breast cancer onset.

For this study, 2 accredited physicians provided the mammogram interpretations; thus, internal validity was considered high even though screening was performed with mammography alone. While potential confounders, such as smoking,\(^{34}\) age at menarche,\(^{35}\) physical activity,\(^{36}\) and food type,\(^{37}\) and gene (BRCA1/2),\(^{38}\) have been noted, those were not considered as factors in this study and not included in the analysis. In a future study, we intend to include those items in the questionnaire to verify their relationship.

The physical constitution of the present participants was similar to that of participants of the same age in another survey conducted in Japan.\(^{39}\) Furthermore, the measurements were approximately the same as those excluded from analysis. Accordingly, the results of the present study, at least from the viewpoint of physical constitution, are considered to be valid to represent young women in Japan. In addition, the participants were not inpatients at health care settings and care facilities, but rather those who voluntarily underwent health examinations. Because this study was a nonrandomized study of all women who underwent a health examination, it cannot be denied that it may include healthy people and people with high health consciousness. And recent studies have pointed out the relevance of lifestyle-related factors and risk of breast cancer in healthy individuals are considered to be useful to promote lifestyle-related improvements for preventing disease onset.

Conclusions
This was a longitudinal study of the association of metabolic syndrome factors (waist circumference, glucose, triglyceride, HDL cholesterol levels in blood, blood pressure) with development of mammary gland disease, including breast cancer using routine test data obtained for 265 participants who underwent breast cancer screening by mammography twice in a 2-year period from 2010 to 2013. A significant association of waist circumference with mammary gland disease was confirmed, as participants with greater waist circumference had an increased risk of mammary gland disease development. Furthermore, high levels of HDL cholesterol have been presumed to be a possible protective factor in the development of mammary gland disease, with a higher level found to lower the risk. Changes in systolic and diastolic blood pressure have been presumed to be risk factors for the development of mastopathy and it is likely that an increase in blood pressure over the 2-year period between examinations increased the risk of mammary disease. The results of the current longitudinal study showing an association between metabolic syndrome factors and risk of breast cancer in healthy individuals are considered to be useful to promote lifestyle-related improvements for preventing disease onset.

Declarations

Ethical Approval and Consent to Participate
This study was conducted in accordance with the Declaration of Helsinki and performed after receiving approval from the Hiroshima Welfare Ren Yoshida General Hospital Ethics Committee (approval number 201607). Informed consent was obtained from all individual participants included in the study. Each was given a full explanation of the study content and methods in advance, and their written consent was obtained. Obtained data and materials were used only for the present study, and are available only to researchers who participated in the study project.
Consent for Publication
None.

Author Contributions
TI developed the study protocol, and KN, SS, and MY obtained measurements and interview results. All authors contributed to writing the manuscript and TI revised the text. Each provided critical contributions to interpretation of the data and associated comments. The final version was approved by all of the authors.

Acknowledgements
The authors express their gratitude to all who so generously cooperated with the questionnaire survey.

Availability of Data and Materials
None.

ORCID iD
Tadayuki Iida https://orcid.org/0000-0003-4934-3576

REFERENCES
1. Andrew GR, Margaret T, Matthias E, et al. Body—mass index and incidence of cancer: a systematic review and meta—analysis of prospective observational studies. Lancet. 2008;371:569-578.
2. Ponnandai S, McFadden DW, Hileman SM, et al. Leptin is growth factor in human serum, and clinical significance of the measurement of C1q-adiponectin/total adiponectin ratio. Metabolism. 2013;62:109-120.
3. Nakatsuji H, Kobayashi H, Kishida K, et al. Binding of adiponectin and C1q in human serum, and clinical significance of the measurement of C1q-adiponectin/total adiponectin ratio. Metabolism. 2013;62:109-120.
4. Oouchi N, Jennifer LP, Jesse J, et al. Adipokines: the missing link between insulin resistance and obesity. Diabetes Metab. 2008;34:2-11.
5. Miller WM, Nori-Janetz KE, Lillystone M, et al. Obesity and lipids. Curr Cardiol Rep. 2005;7:465-470.
6. Miyoishi Y, Funahashi T, Kihara S, et al. Association of serum adiponectin levels with breast cancer risk. Clin Cancer Res. 2003;9:5649-5704.
7. Sasaki Y, Mikiko Y, Hirakawa H, et al. Immunolocalization of estrogen—producing and metabolizing enzymes in benign breast disease: comparison with normal breast and breast carcinoma. Cancer Sci. 2010;101:2286-2292.
8. Fiorena AM, Branchi A, Sommariva D. Serum leptinoprotein profile in patients with cancer. A Comparison with non—cancer subjects. Int J Clin Lab Res. 2000;30:141-145.
9. Kucharska-Newton AM, Rosmond WD, Mink PJ, Alberg AJ, Shahar E, Folsom AR. HDL—cholesterol and incidence of breast cancer in the ARIC cohort study. Ann Epidemiol. 2008;18:671-677.
10. Furberg AS, Veieroad MB, Wilsgaard T, Bernstein L, Thune I. Serum high density lipoprotein cholesterol metabolic profile Breast cancer risk. J Nat Cancer Inst. 2004;96:1152-1160.
11. Shoer R, Wainstein J, Oa D, et al. Low HDL levels and the risk of death, sepsis and malignancy. Clin Res Cardiol. 2008;97:227-233.
12. Seki R. HISTOLOGICAL STUDIES ON THE MAMMARY GLAND—Comparison in Mammary glands of autopsy, biopsy, and amputation cases. Showa Med School. 1961;20:1392-1441 (in Japanese).
13. Vanhoutte PM. Endothelium and control of vascular function n. Hypertension. 1989;13:658-667.
14. Lucher TF. Imbalance of endothelium—derived relaxing and contracting factors. Ann J Hypert. 1990;3:317-330.
15. Oouchi N, Jennifer LP, Jesse J, et al. Adipokines: the missing link between insulin resistance and obesity. Diabetes Metab. 2008;34:2-11.
16. Nagaeta C, Tagashira Y, Kodama M, loki Y, Oboshi S. Effect of hydrogen peroxide, Fenton’s reagent, and iron ions on the carcinogenicity of 3, 4-benzopyrene. Gan. 1973;64:277-285.
17. Tsur C, Coleman MC, Pennington D, et al. Sirt3-mediated deacetylation of evo-lutionarily conserved lysine 122 regulates MssosD activity in response to stress. Molecular Cell. 2010;40:893-904.
18. Inari H, Usugeki H, Hatori S, et al. The Examination of Category 3,4, and 5 Mam-mography Case. Japan Aisi Br Cancer Screen. 2011;20: 135-138 (in Japanese).
19. Obuwa S, Sato Y, Enomoto M, et al. Mitochondrial defect drives non-autono-mous tumour progression through Hippo signalling in Drosophila. Nature. 2012;490:547-551.
20. Hamajima H, Hirose K, Tajima K, et al. Collaborative group on hormonal fac-tors in breast cancer. Alcohol, tobacco and breast cancer——collaborative reanalysis of individual data from 53 epidemiological studies, including 58,515 women with breast cancer and 95,067 women without the disease. Br J Cancer. 2002;87:1234-1245.
21. Minami Y, Nishio Y, Kawasaki M, et al. Reproductive and breast cancer sur-vival: a prospective patient cohort study in Japan. Breast Cancer. 2015;26:687-702.
22. Ueno M, Ueno E, Oshiro-Hyiaman D, et al. Physical activity and the risk of breast cancer: a case—control study of Japanese women. J Epidemiol. 1998;8:116-122.
23. Beroukhim R, Leshkowitz D, et al. Immunolocalization of estrogen-producing and metabolizing enzymes in benign breast disease: comparison with normal breast and breast carcinoma. Cancer Sci. 2010;101:2286-2292.
24. Furberg AS, Veieroad MB, Wilsgaard T, Bernstein L, Thune I. Serum high density lipoprotein cholesterol metabolic profile Breast cancer risk. J Nat Cancer Inst. 2004;96:1152-1160.
25. Shoer R, Wainstein J, Oa D, et al. Low HDL levels and the risk of death, sepsis and malignancy. Clin Res Cardiol. 2008;97:227-233.
26. Seki R. HISTOLOGICAL STUDIES ON THE MAMMARY GLAND—Comparison in Mammary glands of autopsy, biopsy, and amputation cases. Showa Med School. 1961;20:1392-1441 (in Japanese).
27. Vanhoutte PM. Endothelium and control of vascular function n. Hypertension. 1989;13:658-667.
28. Lucher TF. Imbalance of endothelium—derived relaxing and contracting factors. Ann J Hypert. 1990;3:317-330.
29. Oouchi N, Jennifer LP, Jesse J, et al. Adipokines: the missing link between insulin resistance and obesity. Diabetes Metab. 2008;34:2-11.
30. Nagaeta C, Tagashira Y, Kodama M, loki Y, Oboshi S. Effect of hydrogen perox-ide, Fenton’s reagent, and iron ions on the carcinogenicity of 3, 4-benzopyrene. Gan. 1973;64:277-285.
31. Tsur C, Coleman MC, Pennington D, et al. Sirt3-mediated deacetylation of evo-lutionarily conserved lysine 122 regulates MssosD activity in response to stress. Molecular Cell. 2010;40:893-904.
32. Inari H, Usugeki H, Hatori S, et al. The Examination of Category 3,4, and 5 Mam-mography Case. Japan Aisi Br Cancer Screen. 2011;20: 135-138 (in Japanese).
33. Obuwa S, Sato Y, Enomoto M, et al. Mitochondrial defect drives non-autono-mous tumour progression through Hippo signalling in Drosophila. Nature. 2012;490:547-551.
34. Hamajima H, Hirose K, Tajima K, et al. Collaborative group on hormonal fac-tors in breast cancer. Alcohol, tobacco and breast cancer——collaborative reanalysis of individual data from 53 epidemiological studies, including 58,515 women with breast cancer and 95,067 women without the disease. Br J Cancer. 2002;87:1234-1245.
35. Minami Y, Nishio Y, Kawasaki M, et al. Reproductive and breast cancer sur-vival: a prospective patient cohort study in Japan. Breast Cancer. 2015;26:687-702.
36. Ueno M, Ueno E, Oshiro-Hyiaman D, et al. Physical activity and the risk of breast cancer: a case—control study of Japanese women. J Epidemiol. 1998;8:116-122.
37. World Cancer Research and Fund American Institute for Cancer Research. Food, Nutrition, Physical Activity, and the Prevention of Cancer: A Global Perspec-tive. Washington, DC: AICR; 2007.
38. Buonomo B, Massarotti C, Dellino M, et al. Reproductive issues in carriers of germline pathogenic variants in the BRCA1/2 genes: an expert meeting. BMC Med. 2021;19:205.
39. Health Welfare Statistics Association. J Health Welfare Stat. 2010;57:460 (in Japanese).
40. Silvestris E, Cornio G, Skyperts T, et al. Novel aspects on gonadotoxicity and fertility preservation in lymphoproliferative neoplasms. Ovst Rev Oncol Hemanol. 2020;151:102981.
41. Silvestris E, Dellino M, Caffffoio P, Paradiso AV, Cornio G, D'Oonzo S. Breast cancer: an update on treatment—related infertility. J Cancer Res Clin Oncol. 2020;146:647-657.
42. Silvestris E, D'Oonzo S, Caffffoio P, et al. In vitro generation of oocytes from ovarian stem cells (OSC): in search of major evidence. Int J Mol Sci. 2019;20:6225.