ABSTRACT: WRKY transcription factors play important roles in plant development and responses to various stresses in plants. However, little is known about the evolution of the WRKY genes in the desert poplar species *Populus euphratica*, which is highly tolerant of salt stress. In this study, we identified 107 *PeWRKY* genes from the *P. euphratica* genome and examined their evolutionary relationships with the WRKY genes of the salt-sensitive congener *Populus trichocarpa*. Ten *PeWRKY* genes are specific to *P. euphratica*, and five of these showed altered expression under salt stress. Furthermore, we found that two pairs of orthologs between the two species showed evidence of positive evolution, with dN/dS ratios >1 (nonsynonymous/synonymous substitutions), and both of them altered their expression in response to salinity stress. These findings suggested that both the development of new genes and positive evolution in some orthologs of the *WRKY* gene family may have played an important role in the acquisition of high salt tolerance by *P. euphratica*.

KEYWORDS: WRKY genes, expansion, *Populus euphratica*, adaptive evolution

Introduction

Transcription factors (TFs) regulating gene expression via a modular structure containing at least one DNA-binding domain play pivotal roles in signaling and regulatory networks.1-2 The WRKY TF family in plants comprises numerous members that regulate genes involved in seed germination, seed dormancy, trichome development, lignin biosynthesis, osmotic stress and disrupting cellular homeostasis and ion distribution. It also induces oxidative stress, damages membranes and proteins, and activates signaling cascades regulating gene expression.3-6 The regulatory networks that underlie salt tolerance are very complex.7 To date, a small number of *WRKY* genes have been identified as taking part in this process in plants. For instance, it has been reported that *OsWRKY45* plays a part in rice salt tolerance,8 while *GhWRKY39* has a positive role in cotton salt tolerance.9 Overexpression of a maize *WRKY58* gene enhances salt tolerance in transgenic rice.10 Similarly, in *Arabidopsis*, overexpression of either *AtWRKY25* or *AtWRKY33* increases salt tolerance.11 A recent study also showed that some *PeWRKY* genes are involved in salt tolerance.12 However, few studies have been designed in order to examine changes in the number of *WRKY* genes and adaptive evolution of orthologous genes between species that are closely related but show contrasting degrees of salt tolerances.

WRKY transcription factors play important roles in plant development and responses to various stresses in plants. However, little is known about the evolution of the WRKY genes in the desert poplar species *Populus euphratica*, which is highly tolerant of salt stress. In this study, we identified 107 *PeWRKY* genes from the *P. euphratica* genome and examined their evolutionary relationships with the WRKY genes of the salt-sensitive congener *Populus trichocarpa*. Ten *PeWRKY* genes are specific to *P. euphratica*, and five of these showed altered expression under salt stress. Furthermore, we found that two pairs of orthologs between the two species showed evidence of positive evolution, with dN/dS ratios >1 (nonsynonymous/synonymous substitutions), and both of them altered their expression in response to salinity stress. These findings suggested that both the development of new genes and positive evolution in some orthologs of the *WRKY* gene family may have played an important role in the acquisition of high salt tolerance by *P. euphratica*.

KEYWORDS: WRKY genes, expansion, *Populus euphratica*, adaptive evolution
In this study, we aimed to examine these issues using *Populus euphratica* and *Populus trichocarpa*. The model tree species *P. trichocarpa* grows in mesophytic habitats, while *P. euphratica* grows in deserts; it is well adapted to salt stress and has a high level of salt tolerance.27-29 Genome sequences for both species are available30,31 and preliminary analyses suggested that the expression of some WRKY genes is altered in response to salinity stress.30 The WRKY genes in the *P. trichocarpa* genome have been identified.15 In order to better understand the adaptive evolution of the WRKY genes in these two poplars of contrasting salt tolerance, we identified the WRKY genes of *P. euphratica* and examined the expression under salt stress of both species-specific genes and those that are orthologous in the two species. Our results provide further information about the roles that the WRKY genes may have played in the adaptive history of the desert poplar.

Methods

Identification of WRKY genes in two poplar genomes. Candidate WRKY proteins in the *P. euphratica* genome30 were identified using the BlastP program (P value = le-3). Sequences of *Arabidopsis* members of the WRKY protein family downloaded from the *Arabidopsis* genome website TAIR 9.0 (http://www.Arabidopsis.org/index.jsp) were used as query sequences. In addition, the Hidden Markov Model32 profile for the WRKY domain (PF03106.7) from the Pfam database33 was applied as a query against the *P. euphratica* genome using the program HMMER34 in order to identify WRKY sequences by searching for the WRKY-binding domain. To verify the authenticity of these candidate sequences, the Pfam database was used to confirm that each candidate *PeWRKY* protein was a member of the WRKY family. The gene model IDs of *P. trichocarpa* WRKY genes were obtained from the Plant Transcription Factor Database v3.0 (http://planttfdb.cbi.pku.edu.cn/index.php) and confirmed using the same method as above. The *PeWRKY* genes and *PtWRKY* genes were named according to their position on the scaffolds and chromosomes of the respective genomes.

Mapping the PeWRKY genes onto the P. trichocarpa chromosomes. To determine the chromosomal locations of potential poplar WRKY genes, the WRKY orthologs in *P. trichocarpa* were used as references. Data on gene position, gene length, chromosome size, and position relative to the centromere of *PtWRKY* were obtained from the Phytome v9.1 website (http://www.phytome.net/poplar). The MCScanX software package35 was used to complete the chromosomal distribution of *PtWRKY* genes. The map of the distribution of *PeWRKY* on 19 chromosomes was drawn, based on the above data, using custom-designed Perl scripts.

Phylogenetic analyses of WRKY genes. Alignments of WRKY protein and domain sequences were carried out separately using MUSCLE36 and then adjusted manually before the construction of phylogenetic trees. Phylogenetic trees were constructed based on the aligned WRKY-binding domains and full predicted protein sequences of the *PtWRKY* genes using CLUSTAL38 and MEGA 6,39 respectively. The neighbor-joining (NJ) method was used with the following parameters: Poisson correction, pairwise deletion, and bootstrap (1,000 replicates). Exons and introns were predicted by comparing the coding sequences with the corresponding genomic sequences using custom-designed Perl scripts. The MEME program39 was used to predict conserved motifs, with the following parameters: maximum number of motifs, 20; minimum motif width, 6; and maximum motif width, 70.

Divergence of orthologs between *P. euphratica* and *P. trichocarpa*. Identification of genes orthologous between *P. euphratica* and *P. trichocarpa* was performed using the bidirectional best hit method, as described in detail by Zhang et al.40,41 The MCScanX software toolkit and the phylogenetic tree were also used to provide further confirmation. Orthologous genes were aligned by the Probabilistic Alignment Kit software package.42 To detect divergence of orthologs between *P. euphratica* and *P. trichocarpa*, a maximum likelihood method in PAML was applied to calculate nonsynonymous (Ka) and synonymous (Ks) substitution ratios using the YN00 program.43 The elements in the promoter fragments (from -1500 to +1 bp) were predicted by PlantCARE online (http://bioinformatics.psb.ugent.be/webtools/plantcare/html/).

Gene expression analysis. We collected Illumina RNA-Seq data using the methods described previously by Ma et al.30 Calli induced from *P. euphratica* and *P. trichocarpa* shoots were collected from Tarim Basin desert in Xinjiang and the United States, respectively. RNA-Seq transcriptomic data from *P. euphratica* and *P. trichocarpa* calli under salt stress treatments (200 mM NaCl for 0, 6, 12, 24, and 48 hours) were generated using the Illumina HiSeqTM2000 platform. Three biological replicates were carried out. Gene expression levels were calculated as reads per kilobase of exon model per million mapped reads (RPKM).44 RPKM values were log2-transformed and used for heat map generation using the heatmap package in the R language.

Results and Discussion

Identification of the WRKY genes in *P. euphratica*. The entire *P. euphratica* genome was searched by BlastP analysis using 70 Arabidopsis WRKY genes as query sequences. A total of 107 full-length putative WRKY genes were identified. To confirm that these were WRKY genes, the Pfam database was used to search for WRKY domains in each; as a result, all 107 (that were named *PeWRKY* and *PtWRKY* were confirmed as WRKY genes (Table S1). The conserved WRKY domain, which contains approximately 60 amino acid residues, is considered to be a crucial element that usually interacts with the W-box (C/T)TGAC(T/C) to activate a large number of defense-related genes.15,18 Mutations in the WRKY motif will result in the loss of DNA-binding ability.16 Most WRKY genes contain one WRKY domain except 23 Group I genes, which contain two WRKY domains. Multiple sequence
alignments of the 128 WRKY domains showed that 119 contained the conserved amino acid sequence WRKYGQK, while the others had one or two mismatched amino acids in this domain (Fig. S1): WRKYGHK (PeWRKY38), WRKYGRK (PeWRKY71), WAKYQGK (PeWRKY94), WRDGQK (PeWRKY40), WKKYQGK (PeWRKY102), and WRYKQK (PeWRKY81).

Chromosomal distribution of PeWRKY genes on the reference poplar genome. PeWRKYs were widely distributed within the *P. trichocarpa* reference genome (Fig. 1). We found that 97 of the 107 PeWRKY genes could be mapped to 18 of the 19 *P. trichocarpa* chromosomes (Chr) according to the positions of orthologous PtWRKYs or linked genes (Table S2). Thirteen WRKY genes were found on Chr 1, 12 on Chr 2, and 11 on Chr 14. In contrast, Chrs 12, 15, and 19 each possess only two of the genes. We recovered 10 tandemly duplicated gene pairs that contained 20 PeWRKY genes on these chromosomes. We also found that 9 of these 10 duplicated gene pairs were shared with *P. trichocarpa* (Fig S2), suggesting that they existed before the divergence of the two species. We found one tandemly duplicated gene pair (PeWRKY06 and PeWRKY07) specific to *P. euphratica* and one pair (PeWRKY31 and PeWRKY32) specific to *P. trichocarpa*; these probably either formed after the divergence of the two poplars or represent ancestral sequences retained in one species but lost in the other.

Exon–intron organization and motif identification in PeWRKY genes. Next we examined the exon–intron structure and motifs of all the PeWRKY genes identified (Fig. 2). Most PeWRKY genes have two to four introns: 56 out of 107 PeWRKYs possess two introns, 14 have three introns, and 15 have four introns. However, 8 PeWRKY genes have only one intron and 13 genes have five introns, while only 1 has six introns. Changes in exon–intron organization may have contributed to evolutionary divergence between the different members of the gene family.

In addition, the online Multiple Expectation Maximization for Motif Elicitation program was used to find conserved motifs in the PeWRKY proteins (Table S4). As illustrated in Figure 2, other than motifs 1, 2, 3, and 5, which characterize the WRKY domains, PeWRKY members of the same subgroup were generally found to share a common motif composition. For instance, motif 17 is specific to 8 out of 12 genes in Group III while motif 10 and motif 15 are only present in Subgroup IId. Both Subgroup Ia and Subgroup Iib contain motif 7; Subgroup IIc could be divided into two sections, of which one contains motif 14, which is specific to Subgroup IIc and the other only contains motifs 1, 2, and 19, which comprise WRKY domains. Members of Subgroup IId mostly shared a conserved CaM-binding domain (motif 10), which is associated with calmodulin in *Arabidopsis*, implying that these WRKY proteins may play pivotal roles in signal transduction by regulating the activity of target proteins. In general, the motifs within each group were relatively consistent and are probably associated with the similar functions carried out by members of that subgroup.

Phylogenetic analyses. To examine the evolutionary relationships among the WRKY domains, phylogenetic relationships were constructed using the amino acid sequences of the conserved domains of AtWRKYs, PtWRKYs, and PeWRKYs (Fig. 3) and the protein sequences encoded by PeWRKYs (Fig. 2). Based on AtWRKY classification and PeWRKY sequences, all the PeWRKY genes identified could be divided into three tentative groups. The first group (Group I) comprised...
23 members, most of which contained two WRKY domains. Group II, which had one WRKY domain could be divided into five subgroups (Subgroups IIa–e), which contained 5, 11, 27, 16, and 14 members, respectively. The third group contained the remaining 10 members, which contained the WRKY domains and C_{2}HC zinc-finger structure (C–X_{4}–C–X_{23}–H–X_{1}–C).47 One gene (PeWRKY17), which lacked this structure, clustered weakly with the third group. The three groups recovered here were consistent with the previous classification of WRKYs in Arabidopsis10 and grape.48 The ortholog of PeWRKY17 in

Figure 2. Phylogenetic relationship, intron–exon structures, and conserved motif compositions in the PeWRKY family. The unrooted phylogenetic tree was aligned by MUSCLE and constructed using MEGA 6 by the maximum likelihood method with 1,000 bootstrap replicates. The tree was divided into seven phylogenetic subgroups, indicated with different colored backgrounds. The intron–exon structures of 107 PeWRKY genes are shown in the middle panel. The right panel is a schematic representation of the conserved motifs in the PeWRKY proteins as detected by MEME analysis, represented by different colored boxes. Narrow rectangles representing the E values of motif are not significant as others. The length of each protein can be estimated using the scale at the bottom.
P. trichocarpa was found to have lost the characteristic structure of Group III WRKYs.\(^49\) The small group of IIc genes in Figure 3 (orthologs of AtWRKY49) that separated from the larger group were mainly the result of domain sequences and also agreed with the result in grape.\(^48\) In addition, two genes (PeWRK71 and PeWRKY98) of Group I were found to have lost the WRKYGQK motif at the C-terminal, according to the WRKY domains predicted by the Pfam database (Fig. S1). Because genes of Group I have been found to exist in all plants and in some organisms with ancient origins, they may be ancestral to the other two groups and subgroups.\(^47\)

Through phylogenetic analysis, we found 10 PeWRKY genes specific to P. euphratica while P. trichocarpa has five species-specific genes. One P. euphratica–specific gene was formed by tandem duplication, while the other nine genes in this species, although located in different scaffolds, show high sequence similarity to the other PeWRKY genes and cluster together with them in the phylogenetic tree. The latter nine genes probably either originated by segmental duplication after the two species diverged or were retained in P. euphratica but lost in P. trichocarpa after genome duplication in the ancestor of the two species. Comparison of the number of WRKY genes in the different groups in other species with those in P. euphratica shows that among the PeWRKYS, duplication occurred mainly in Group I and Subgroups IIb and IId. We also found five unique genes (PeWRKYs) specific to P. trichocarpa. These results indicated that either the WRKY gene family expanded separately in the two species or some members were selectively retained in each poplar species after genome duplication in their common ancestor.

Evolutionary divergence of orthologs between P. euphratica and P. trichocarpa. To examine the divergence of orthologs between PeWRKYs and PtWRKYs, nonsynonymous substitutions (dN) and synonymous substitutions (dS) per site between orthologous genes were calculated: dN/dS = 1, <1, and >1 indicate, respectively, neutral selection, purifying selection, and accelerated evolution with positive selection.\(^50\) A total of 97 pairs of orthologous genes were identified, and the dN/dS value of each was determined (Table S1). The results indicated that most of the gene pairs (95/97) showed dN/dS ratios <1, showing that purifying selection predominated (Table S3) as is the case for other gene families. However, we found that two pairs of genes (PeWRKY45 ver-
sus PtWRKY6 and PeWRKY102 versus PtWRKY52) had dN/dS ratios >1, suggesting that positive evolution was likely for these two genes.

Expression data showed that the positive evolved gene pairs showed different expression levels under salt stress in two poplar species (Fig. S3, Fig. 4). We examined the functions of the Arabidopsis orthologs of PeWRKY45 and PeWRKY102 and AtWRKY17 and AtWRKY50. Both of them negatively regulate jasmonic acid (JA) signaling.51,52 JA concentration have also been found to be associated with salt tolerance in P. euphratica.53 We further found that the promoter regions of these pairs of genes varied slightly (Table S5–S6). Taken together, these results suggest that PeWRKY45 and PeWRKY102 probably mediate the response to salt stress by increasing the level

Figure 4. Heat map representation of expression of orthologous genes between PeWRKYs and PtWRKYs under salt stress. The Illumina RNA-Seq data were analyzed, and the RPKM values were log2-transformed and a heat map generated. The left and right panels represent RNA-Seq data from Populus euphratica and Populus trichocarpa, respectively. Blue and red colors are used to represent low and high levels of expression, respectively. Adaptive evolved genes were marked by red asterisk.
of expression of JA-related genes, and this may shed light on how *P. euphratica* tolerates salt stress.

Expression profiling of PeWRKYs and PtWRKYs under salt stress. A total of 92/107 *PeWRKY* genes and 84/102 *PtWRKY* genes were detected as being expressed in calli with or without salt stress (Table S7). Of 92 *PeWRKY* genes, 23 showed changes in expression in response to salt stress: most (16/23) were downregulated while seven were upregulated. However, only five of the *PtWRKY* genes altered expression in response to salt stress. Further analysis showed that a total of 11 *PeWRKY* genes, among which are included two pairs of orthologs (*PeWRKY45* versus *PtWRKY6* and *PeWRKY102* versus *PtWRKY52*) that show evidence of adaptive evolution (Fig. 3), underwent different changes in expressions in response to salt stress compared to their *P. trichocarpa* orthologs (Fig. 4). Of the 23 *PtWRKY* genes differentially expressed under salt stress, nine belong to Group I and five to Subgroup IId while the others are members of the remaining groups or subgroups. Members of Subgroup IId mostly share the conserved CaM-binding domain that is associated with calmodulin in *Arabidopsis*. The upregulated genes include the one reported to mediate salt stress in *P. euphratica*. These findings suggest that members of Group I and Subgroup IId may play more roles in response to salt stress than members of the other groups of genes.

It is believed that Group III of the WRKY gene family evolved more recently than the other two groups. Many members of this group in *Arabidopsis*, including *AtWRKY30*, *53, 54*, and 70, have been identified as regulators of senescence. They are involved in a number of signaling pathways in response to different stresses. We calculated the dN/dS ratios for *WRKY* genes in the two *Populus* species; the average ratio in Group III was found to be 0.42 while the average in the other groups was 0.37, a finding consistent with the above assertion. In addition, no difference in expression was detected for Group III members when *P. trichocarpa* was subjected to salt stress. However, in the present study we found that *PeWRKY78*, a member of this group, was downregulated, whereas its *P. trichocarpa* ortholog *PtWRKY44* was slightly upregulated under salt stress.

Of the 10 *PeWRKY* genes unique to *P. euphratica*, three were downregulated and two were upregulated in response to salt stress (Fig. 5); this supports the notion that the origin or retention of these species-specific genes may have been driven by the need for high salt tolerance in this desert poplar. Overall, the results suggest that *WRKY* genes play an important role in salt stress tolerance in *P. euphratica*.

Conclusion

A total of 107 WRKY genes were identified in *P. euphratica* with 10 of them being species-specific genes that had originated through tandem and segmental duplication. When members of the WRKY family were compared between *P. euphratica* and *P. trichocarpa*, two pairs of genes exhibited evidence of positive selection (dN/dS > 1); they are probably significant in the adaptation of this poplar species to salt stress. Expression profiling of the *PeWRKY* genes revealed that five genes specific to *P. euphratica* and two that showed evidence of adaptive evolution showed alterations in expression in response to salt stress. These findings suggested that the formation of new genes and the occurrence of adaptive evolution in other genes may have played an important role in the evolution of high salt tolerance in *P. euphratica*.

![Figure 5. Expression levels of 10 PeWRKY genes specific to Populus euphratica under salt stress. The y-axis shows the log2-transformed RPKM values of genes expressed in callus after different periods of salt stress, and the x-axis shows the duplicated WRKY genes.](image-url)
Ma et al

Author Contributions
Conceived and designed the experiments: J.Liu. Analyzed the data: J.M. Wrote the first draft of the manuscript: J.M. Contributed to the writing of the manuscript: J.Liu, JX, XH. Agree with manuscript results and conclusions: J.Liu, JM. Jointly developed the structure and arguments for the paper: J.Liu, XH. Made critical revisions and approved final version: J.M, XH, BD. All authors reviewed and approved of the final manuscript.

Supplementary Material

Supplementary Table S1. Identification of WRKY TF genes in *Populus euphratica*.

Supplementary Table S2. WRKY TF genes in *Populus trichocarpa*.

Supplementary Table S3. Divergent selection between *PeWRKY* and *PiWRKY* genes.

Supplementary Table S4. The details of the motif sequences.

Supplementary Tables S5–S6. Cis-acting elements analysis of positive evolved genes.

Supplementary Table S7. RNA-seq data of *PeWRKY*s and *PiWRKY*s in calli.

Supplementary Figure S1. Multiple sequence alignment of WRKY domains using DNAMAN.

Supplementary Figure S2. Chromosome distribution of *PeWRKY* and *PiWRKY*s.

Supplementary Figure S3. Expression levels of positive evolutionary orthologous genes.

REFERENCES

1. Tomboloudi H, Kecke G, Sakcali MS, Unver T. Transcriptome-wide identification of R2R3-MYB transcription factors in barley with their boron responsive expression analysis. *Mod Genet Genomics*. 2013;288:141–55.

2. Jang J-Y, Choi CH, Hwang D-J. The WRKY superfamily of rice transcription factors. *Plant Pathol* J. 2010;15:247–58.

3. Wenck AR, Conger BV, Trigiano RN, Sams CE. Inhibition of somatic embryogenesis in orchardgrass by endogenous cytokinins. *Plant Growth Regul*. 1994;22:4673–80.

4. Pnueli L, Hallak-Herr E, Rozenberg M, et al. Molecular and biochemical mechanisms of abiotic stresses. *Plant Stress*. 2012;31:1199–217.

5. Ma et al. Genomic insights into salt adaptation in a desert poplar, *Populus euphratica*. *Nat Commun*. 2013;8:e66370.

6. Guillaumie S, Mzid R, Méchin V, et al. The grapevine transcription factor PeWRKY2 encodes a WRKY transcription factor, SUSIBA2, participates in sugar signaling in barley by binding to the sugar-responsive elements of the iso1 promoter. *Plant Cell*. 2003;15:2076–92.

7. Chen S, Li J, Wang S, Fritz E, Hüttermann A, Altman A. Effects of NaCl on shoot growth, transpiration, ion compartmentation, and transport in regenerant plants of *Populus euphratica* and *Populus tomentosa*. *Can J For Res*. 2003;33:967–75.

8. Jiang Y, Deyholos MK. Comprehensive transcriptional profiling of *NaCl*-stressed *Arabidopsis* roots reveals novel classes of responsive genes. *BMC Plant Biol*. 2006;6:25.

9. Qi Y, Yu D. Over-expression of the stress-induced *GmWRKY25* enhances disease resistance and drought tolerance in *Arabidopsis*. *Environ Exp Bot*. 2009;65:35–47.

10. Shi W, Liu D, Hao L, Wu C-A, Guo X, Li H. *GmWRKY39*, a member of the *WRKY* transcription factor family in cotton, has a positive role in disease resistance and salt stress tolerance. *Plant Cell Tissue Organ Cult*. 2014;118:17–32.

11. Cai E, Zhao Y, Wang Y, et al. Overexpression of a maize *MaWRKY25* enhances drought and salt tolerance in transgenic rice. *Plant Cell Tissue Organ Cult*. 2014;119:565–77.

12. Jiang Y, Deyholos MK. Functional characterization of *Arabidopsis* *NAC*-inducible *WRKY25* and *FRI* transcription factors in abiotic stresses. *BMC Plant Biol*. 2009;69:91–105.

13. Chen S, Li J, Fritz E, Wang S, Hüttermann A. Sodium and chloride distribution in roots and transport in three poplar genotypes under increasing NaCl stress. *For Ecol Manage*. 2002;168:217–30.

14. Ottow EA, Brinker M, Teichmann T, et al. *Populus euphratica* displays apoplastic sodium accumulation, somatic adjustment by decrease in calcium and soluble carbohydrates, and develops leaf succulence under salt stress. *Plant Physiol*. 2005;139:1762–72.

15. Ma T, Wang J, Zhou G, et al. Genomic insights into salt adaptation in a desert poplar, *Populus euphratica*. *Nat Commun*. 2013;4:2797.

16. Tsuchan GA, Dirafoto S, Jansson S, et al. The genome of black cottonwood, *Populus trichocarpa* (Torr. & Gray). *Science*. 2006;313:1596–604.

17. Eddy SR. Profile hidden Markov models. *Bioinformatics*. 1998;14:755–63.

18. Finn RD, Mistry J, Tate J, et al. The Pfam protein families database. *Nucleic Acids Res*. 2010;38:D212–21.

19. Finn RD, Clements J, Eddy SR. *HMMER* web server: interactive sequence similarity searching. *Nucleic Acids Res*. 2011;19.

20. Wang Y, Tang H, Debarry JD, et al. MCScanX: a toolkit for detection and evolutionary analysis of gene synteny and collinearity. *Nucleic Acids Res*. 2012;40:e49–9.

21. Edgar RC. *MUSCLE*: multiple sequence alignment with high accuracy and high throughput. *Nucleic Acids Res*. 2004;32:1792–7.

22. Thompson JD, Higgins DG, Gibson TJ. *CLUSTAL W*: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. *Nucleic Acids Res*. 1994;22:4673–80.

23. Tamura K, Stecher G, Peterson D, Filipski A, Kuma S. *MEGA6*: molecular evolutionary genetics analysis version 6.0. *Mol Biol Evol*. 2013;30:2725–9.

24. Bailey TL, Boden M, Buske FA, et al. *MEME SUITE*: tools for motif discovery and searching. *Nucleic Acids Res*. 2009;37:W280–8.

25. Overbeek R, Fonstein M, D'ouzo A, Pusch GD, Mazev S. The use of gene clusters to infer functional coupling. *Proc Natl Acad Sci U S A*. 1999;96:2896–901.

26. Zhang J, Xie P, Lascoux M, Meagher TR, Liu J. Rapidly evolving genes and the gold standard for genome annotation. *Science*. 2007;318:121–5.

27. Overbeek R, Fonstein M, D’souza M, Pusch GD, Maltsev N. The use of gene clusters to infer functional coupling. *Proc Natl Acad Sci U S A*. 1999;96:2896–901.

28. Lässigma A, Goldman N. An algorithm for progressive multiple alignment of sequences with insertions. *Proc Natl Acad Sci U S A*. 2005;102:10557–62.

29. Yang Z. *PAML*: phylogenetic analysis by maximum likelihood. *Mol Biol Evol*. 2007;24:1586–9.

30. Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B. Mapping and quantifying mammalian transcriptomes by RNA-Seq. *Nat Methods*. 2008;5:621–8.
45. Zhang Y, Mao L, Wang H, et al. Genome-wide identification and analysis of grape aldehyde dehydrogenase (ALDH) gene superfamily. *PLoS One*. 2012;7:e32153.

46. Park CY, Lee JH, Yoo JH, et al. WRKY group IId transcription factors interact with calmodulin. *FEBS Lett*. 2005;579:1545–50.

47. Zhang Y, Wang L. The WRKY transcription factor superfamily: its origin in eukaryotes and expansion in plants. *BMC Evol Biol*. 2005;5:1.

48. Wang M, Vannozzi A, Wang G, et al. Genome and transcriptome analysis of the grapevine (*Vitis vinifera* L.) WRKY gene family. *Hortic Res*. 2014;16:1.

49. Jiang Y, Duan Y, Yin J, et al. Genome-wide identification and characterization of the *Populus* WRKY transcription factor family and analysis of their expression in response to biotic and abiotic stresses. *J Exp Bot*. 2014;65:6629–44.

50. Yang Z, Nielsen R. Estimating synonymous and nonsynonymous substitution rates under realistic evolutionary models. *Mol Biol Evol*. 2000;17:32–43.

51. Journot-Catalino N, Somssich IE, Roby D, Kroj T. The transcription factors WRKY11 and WRKY17 act as negative regulators of basal resistance in *Arabidopsis thaliana*. *Plant Cell*. 2006;18:3289–302.

52. Gao Q-M, Venugopal S, Navarre D, Kachroo A. Low oleic acid-derived repression of jasmonic acid-inducible defense responses requires the WRKY50 and WRKY51 proteins. *Plant Physiol.* 2011;155:464–76.

53. Yuan S, Hu Q. The function of jasmonic acid in the salt tolerance of *Populus euphratica*. *J Beijing Forestry Univ*. 2002;24:66–9.

54. Besseau S, Li J, Palva ET. WRKY54 and WRKY70 co-operate as negative regulators of leaf senescence in *Arabidopsis thaliana*. *J Exp Bot*. 2012;63:2667–79.