Synthesis of Galactosyl-Queuosine and Distribution of Hypermodified Q-Nucleosides in Mouse Tissues

Peter Thumbs*, Timm T. Ensfelder*, Markus Hillmeier*, Mirko Wagner*, Matthias Heiss, Constanze Scheel, Alexander Schö~n, Markus M/C252ller, Stylianos Michalakis, Stefanie Kellner, and Thomas Carell*

In memory of Rolf Huisgen

Abstract: Queuosine (Q) is a hypermodified RNA nucleoside that is found in tRNAHis, tRNAsn, tRNAAsp, and tRNAAsp. It is located at the wobble position of the tRNA anticodon loop, where it can interact with U as well as C bases located at the wobble position of the tRNA anticodon loop. Queuosine is one of the most complex of these so-called hypermodified nucleosides. (Figure 1). It is found in a large number of different species and also present in the cytosolic and mitochondrial tRNAAsp, tRNAAsp, tRNAHis, and tRNAAsp of humans. Interestingly, in the human cytosolic tRNAAsp and tRNAAsp, Q is further modified with galactose (galQ) and mannose (manQ), respectively. In these tRNAs, the sugar is proposed to be attached to the homoallyl hydroxyl group of the cyclopentene ring system that is linked to the 7-deazaheterocycle. While the chemical synthesis of Q has been achieved, no reports exist about the preparation of its sugar-modified derivatives galQ and manQ, which has hampered investigations of their biological role. Accordingly, the exact function of galQ and manQ as part of the human cytosolic tRNAAsp and tRNAAsp is unknown. In addition, we do not know to which extent the corresponding tRNAs are modified with different Q-family nucleosides, and how the G/Q-exchange process and the sugar derivatization is orchestrated. Furthermore, quantitative data about Q-modification levels in different organs is also lacking.

To address these questions, we performed the first total synthesis of galactosyl-queuosine 2. This allowed us to confirm its proposed structure and to report the absolute levels of all Q-family members in different tissues of newborn and adult mice. Finally, we were able to measure to which extent human cytosolic tRNAs are modified with the three Q-family nucleosides.

![Figure 1. Depiction of the hypermodified RNA nucleoside queuosine (Q) and of the galactosylated and mannosylated Q derivatives galQ (2) and manQ (3) present in human cytosolic tRNAAsp and tRNAAsp, respectively.](image-url)
Galactosyl-Q 2 was constructed from three appropriately protected parts (Figure 2): The 7-formyl-7-deazaguanosine 6 was prepared, as reported by us, with Bz-protected hydroxyl groups at the ribose, and a pivaloylate protection group at the 2-amino residue.[14] The galactose sugar was introduced as a TBS- and 2-chloroisobutyryl-protected trichloroacetimidate 4, and the cyclopentene unit 5 was used with Fmoc-protected allyl amine and a TBS-protected allylic alcohol. We choose the 2-chlorobutyl protecting group for the sugar-donor 4 because of its bulkiness in order to avoid unwanted orthoester formation as the main product of the glycosylation reaction, a strategy reported by Szpilman et al.[15]

The galactosyl-donor 4 itself was prepared from d-galactal 7, which was first TBS-protected (Scheme 1 A).[16] cis-Dihydroxylation of the double bond from the sterically less shielded side furnished compound 8.[17] This step was followed by protection of the two newly introduced hydroxyl groups with 2-chloroisobutyric acid to give the galactose-donor precursor 9. Deprotection of the anemic hydroxyl group with hydrazine provided the galactose precursor with a free anemic hydroxyl group which was subsequently converted into the trichloroacetimidate donor 4 using a standard procedure.

Scheme 1 B shows the synthesis of the protected 5(S)-amino-3(R),4(R)-dihydroxycyclopent-1-ene 5. The starting point was mannose 10.[18] which was converted as reported into the double-acetonide-protected mannofuranoside 11 with an acetyl-protected anemic center to give the galactose-donor precursor 9. Deprotection of the anemic hydroxyl group with hydrazine provided the galactose precursor with a free anemic hydroxyl group which was subsequently converted into the trichloroacetimidate donor 4 using a standard procedure.

We finally opened the acetal and protected the allylic hydroxyl group selectively with TBS-OTf in DMF at −55°C. In this reaction, the temperature is particularly important. When the reaction was performed at higher temperatures and with prolonged reaction times, we noted selective protection of the homoallylic position.

The assembly of the galQ nucleoside 2 from the precursors 4-6 is shown in Scheme 2. We first galactosylated the cyclopentene derivative 5. This sterically demanding step was successfully achieved by activation of the trichloroacetimidate with 2-chloro-6-methylpyridinium triflate in dichloromethane at room temperature.[19,20] We achieved selective formation of the β-configured galactoside due to the neighboring-group effect. Subsequent cleavage of the Fmoc protection group gave product 16, which was followed by a two-step reductive amination. First, the imine was formed in benzene, subsequently followed by reduction of the imine with NaBH₄ in methanol to afford protected galQ 17. In a two-step deprotection protocol, we first removed the TBS groups with HF·NEt₃, followed by cleavage of ester-type

![Figure 2. Retrosynthetic analysis for galQ 2, showing the three key precursors 4, 5, and 6.](image-url)
protector groups under Zemplén conditions. For the cleavage of the pivaloyl amide protecting group, we needed to use 0.5 M NaOMe in methanol. This strategy provided the target compound 2 with an overall yield of 0.5% in 20 linear steps from the mannose starting molecule for the cyclopentene unit. The synthesis provided a sufficient amount of material for all further investigations.

We next investigated whether our synthetic \(\beta \)-homoallylic \(\text{galQ} \) 2 is identical with the natural product, because analytical data available for \(\text{galQ} \) was very limited.[11] For this experiment, we isolated total RNA from mouse liver and performed an enzymatic digestion of the isolated RNA to the nucleoside level. This nucleoside mixture was analyzed by HPLC-MS. Indeed, under our HPLC conditions, we detected two signals with the appropriate \(m/z \) value for \(\text{galQ} \) and \(\text{manQ} \) in the extracted ion chromatogram with a retention time of around 32 and 35 min. No other peaks were present in the same \(m/z \) range. We next co-injected our synthetic \(\beta \)-homoallylic \(\text{galQ} \) 2, which led to a marked increase of the second signal with a retention time of about 35 min (Figure 3). This result unambiguously showed that our synthetic compound \(\text{galQ} \) 2 and the natural compound \(\text{galQ} \) from their gut microbiome.[23] We therefore speculate that the organ-specific differences in the levels of \(\text{galQ} \), \(\text{manQ} \), and \(\text{Q} \) are due to a combination of two independent effects: The organ-specific protein-synthesis ratio and the organ-specific mitochondrial density.

From our data it is clearly evident that the levels of all three modifications (\(\text{galQ} \), \(\text{manQ} \), and \(\text{Q} \)) generally increase with age. This effect is by far most pronounced with \(\text{Q} \), while \(\text{galQ} \) and \(\text{manQ} \) only show a modest increase, if at all. Furthermore, and for all three modifications investigated, we see differences between the six organs at the same age. Heart, followed by brain tissues, contains the largest levels of \(\text{Q} \) and its sugar-modified derivatives, followed by kidney, liver, and spleen. In general, the changes of the modification levels observed by us positively correlate with the respective organ-specific density of mitochondria. It was shown before that the \(\text{Q} \)-base in mitochondrial tRNA\textsuperscript{\text{Amp}} and tRNA\textsuperscript{\text{Amp}} is not sugar-modified.[8] We therefore speculate that the organ-specific differences in the levels of \(\text{galQ} \), \(\text{manQ} \), and \(\text{Q} \) are due to a combination of two independent effects: The organ-specific protein-synthesis ratio and the organ-specific mitochondrial density.

It is well-established that for biosynthesis of \(\text{Q} \) (and its sugar-modified derivatives), eukaryotes have to take up the queuine base from their diet.[21,22] Mammals thereby profiting from their gut microbiome.[23] We therefore speculate that the low levels of \(\text{Q} \)-family nucleosides in newborn mice observed here may be caused by a lack of queuine supply in newborn mice, which only later establish their microbiome. Furthermore, high rates of cell division and tissue development in young mice may cause additional queuine supply problems.

To further study the influence of queuine availability on \(\text{Q} \)-family modification levels, cell culture experiments were performed: Human embryonic kidney cells (HEK 293T) were grown either in culture medium supplemented with 20 μM queuine (enriched medium) or in medium without additional

\[\text{galQ} \rightarrow \text{manQ} \rightarrow \text{Q} \]

\[\text{galQ} \rightarrow \text{manQ} \rightarrow \text{Q} \]
Queuine (standard medium). Queuine is the substrate of the TGT enzyme, which performs the exchange of a guanine base by the queuine heterocycle during tRNA maturation.[24–26] From both cell populations, cytosolic tRNA\textsubscript{Tyr}, tRNA\textsubscript{Asp}, tRNA\textsubscript{His}, and tRNA\textsubscript{Asn} were isolated and digested to the nucleoside level. For each of these four individual tRNA species, the number of galQ, manQ, and Q modifications per tRNA was then determined by a mass-spectrometry-based isotope-dilution method using the reference compound synthesized here (see the Supporting Information).

Indeed, our data show that the extent of Q-modification in the wobble position of cytosolic tRNA\textsubscript{Tyr}, tRNA\textsubscript{Asp}, tRNA\textsubscript{His}, and tRNA\textsubscript{Asn} is strongly dependent on queuine availability (Figure 4B).[24] In the case of tRNA\textsubscript{Tyr} (galQ), tRNA\textsubscript{Asp} and tRNA\textsubscript{Asn} (Q), the difference in modification extent between cells grown in enriched versus standard medium is threefold, while for tRNA\textsubscript{Asp} (manQ) it is 1.7 fold. These results are well in line with our hypothesis and might therefore explain the lower modification levels in newborn mice. Of note, in all of our experiments even a sufficient queuine supply did not lead to fully modified tRNAs. This might again be an indication of the modification machinery lagging behind the de novo synthesis of tRNA in highly proliferating cells.

Furthermore, we detected a Q-only-modified tRNA\textsubscript{Tyr} form in our experiments lacking the galactose sugar, while tRNA\textsubscript{Asp} was always found to be either modified with manQ or completely unmodified. It seems that, in our experimental setup, mannosylation of tRNA\textsubscript{Asp} may be more tightly connected to G/Q-exchange than the galactosylation of Q-only-bearing tRNA\textsubscript{Tyr}. Testing this exciting hypothesis is an interesting starting point for future studies.

In summary, we here report the first total synthesis of the human natural product galactosyl-queuosine 2. Our synthetic material allowed us to confirm the proposed galQ structure by direct comparison with natural material, and we show that this hypermodified nucleoside is present in all tissues of newborn and adult mice. We furthermore report the absolute levels of all three Q-family members in six different mouse organs and in human cytosolic tRNAs. Taken together, our results confirm the crucial importance of tRNA galQ and manQ modification.

Acknowledgements
This work was funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) -Project-ID 255344185 – SPP 1784; Project-ID 325871075 – SFB 1309, and Project-ID 393547839 – SFB 1361. This project has received additional funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No. 765266 (LightDyNAmics) and from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme under grant agreement No 741912 (EPiR).

Conflict of interest
The authors declare no conflict of interest.

Keywords: galactosylation · mannosylation · mannosyl-queuosine · queuosine · RNA modifications

[1] P. Boceletto, M. A. Machnicka, E. Purta, P. Piątkowski, B. Bagiński, T. K. Wirecki, V. de Crécy-Lagard, R. Ross, P. A. Limbach, A. Kotter, M. Helm, J. M. Bukницki, *Nucleic Acids Res.*, 2018, 46, D303–D307.
[2] F. Harada, S. Nishimura, *Biochemistry* 1972, 11, 301 – 308.
[3] H. Kasai, Y. Kuchino, K. Nihei, S. Nishimura, *Nucleic Acids Res.* 1975, 2, 1931 – 1940.
[4] H. Grosjean, M. Sprinzl, S. Steinberg, *Biochimie* 1995, 77, 139 – 141.
[5] A. Costa, J.-P. Pais de Barros, G. Keith, W. Baranowski, J. Desgrès, J. Chromatogr. B 2004, 801, 257–247.

[6] D. Globisch, D. Pearson, A. Hienzsch, T. Brückl, M. Wagner, I. Thoma, P. Thumbs, V. Reiter, A. C. Kneuttinger, M. Müller, S. A. Sieber, T. Carell, Angew. Chem. Int. Ed. 2011, 50, 9739–9742; Angew. Chem. 2011, 123, 9913–9916.

[7] C. Brandmayr, M. Wagner, T. Brückl, D. Globisch, D. Pearson, A. C. Kneuttinger, V. Reiter, A. Hienzsch, S. Koch, I. Thoma, P. Thumbs, S. Michalakis, M. Müller, M. Biel, T. Carell, Angew. Chem. Int. Ed. 2012, 51, 11162–11165; Angew. Chem. 2012, 124, 11324–11326.

[8] T. Suzuki, T. Suzuki, Nucleic Acids Res. 2014, 42, 7346–7357.

[9] N. Okada, N. Shindo-Okada, S. Nishimura, Nucleic Acids Res. 1977, 4, 415–423.

[10] N. Okada, S. Nishimura, Nucleic Acids Res. 1977, 4, 2931–2937.

[11] H. Kasai, K. Nakanishi, R. D. Macfarlane, D. F. Torgerson, Z. Ohashi, J. A. McCloskey, H. J. Gross, S. Nishimura, J. Am. Chem. Soc. 1976, 98, 5044–5046.

[12] T. Ohgi, T. Kondo, T. Goto, J. Am. Chem. Soc. 1979, 101, 3629–3633.

[13] T. Kondo, K. Okamoto, T. Ohgi, T. Goto, Tetrahedron 1986, 42, 207–213.

[14] F. Klepper, E.-M. Jahn, V. Hickmann, T. Carell, Angew. Chem. Int. Ed. 2007, 46, 2325–2327; Angew. Chem. 2007, 119, 2377–2379.

[15] A. M. Szpilman, E. M. Carreira, Org. Lett. 2009, 11, 1305–1307.

[16] D. Crich, T. J. Ritchie, Carbohydr. Res. 1989, 190, C3–C6.

[17] U. P. Singhi, R. K. Brown, Can. J. Chem. 1971, 49, 1179–1186.

[18] D. Vonlanthen, C. J. Leumann, Synthesis 2003, 1087–1090.

[19] H. Ovaa, B. Lastdrager, J. D. C. Codee, G. A. van der Marel, H. S. Overkleeft, J. H. van Boom, J. Chem. Soc. Perkin Trans. J 2002, 2370–2377.

[20] A. M. Szpilman, J. M. Manthorpe, E. M. Carreira, Angew. Chem. Int. Ed. 2008, 47, 4339–4342; Angew. Chem. 2008, 120, 4411–4414.

[21] J. P. Reyniers, J. R. Pleasant, B. S. Westmann, J. R. Katze, W. R. Farkas, J. Biol. Chem. 1981, 256, 11591–11594.

[22] J. R. Katze, B. Basile, J. A. McCloskey, Science 1982, 216, 55–56.

[23] W. R. Farkas, J. Biol. Chem. 1980, 255, 6832–6835.

[24] N. Okada, F. Harada, S. Nishimura, Nucleic Acids Res. 1976, 3, 2593–2604.

[25] N. Shindo-Okada, N. Okada, T. Ohgi, T. Goto, S. Nishimura, Biochemistry 1980, 19, 395–400.

[26] C. Boland, P. Hayes, I. Santa-Maria, S. Nishimura, V. P. Kelly, J. Biol. Chem. 2009, 284, 18218–18227.

[27] F. Tuorto, C. Legrand, C. Cirzi, G. Federico, R. Liebers, M. Müller, A. E. Ehrenhofer-Murray, G. Dittmar, H.-J. Gröne, F. Lyko, EMBO J. 2018, 37, e99777.