Dynamic Online Gradient Descent with Improved Query Complexity: A Theoretical Revisit

Yawei Zhao1, En Zhu1, Xinwang Liu1, and Jianping Yin2

1National University of Defense Technology, Changsha, 410073, China.
2Dongguan University of Technology, Dongguan, Guangdong, 523808, China.
E-mail: \{zhaoyawei, enzhu, xinwangliu\}@nudt.edu.cn; jpyin@dgut.edu.cn.

Abstract

We provide a new theoretical analysis framework to investigate online gradient descent in the dynamic environment. Comparing with the previous work, the new framework recovers the state-of-the-art dynamic regret, but does not require extra gradient queries for every iteration. Specifically, when functions are α strongly convex and β smooth, to achieve the state-of-the-art dynamic regret, the previous work requires $O(\kappa)$ with $\kappa = \frac{\beta}{\alpha}$ queries of gradients at every iteration. But, our framework shows that the query complexity can be improved to be $O(1)$, which does not depend on κ. The improvement is significant for ill-conditioned problems because that their objective function usually has a large κ. Those ill-conditioned problems wildly exist in image processing applications, e.g., image deblurring.

1 Introduction

Online Gradient Descent (OGD) has drawn much attention in the community of machine learning \cite{Zhu2015, Hazan07, Hall2013, Shalev12, Garber13, Bedi18}. It is widely used in various applications such as online recommendation \cite{Song2008}, search ranking \cite{Moon2010}. Generally, OGD is formulated as a game between a learner and an adversary. At the t-th round of the game, the learner submits x_t from the feasible set X, and the adversary selects a function $f_t : X \rightarrow \mathbb{R}$. Then, the function f_t is returned to the learner, and incurs the loss $f_t(x_t)$.

Recently, there has been a surge of interest in analyzing OGD by using the dynamic regret \cite{Zinkevich03, Mokhtari16, Yang16, Lei17}. The dynamic regret is usually defined as

$$R^*_T = \sum_{t=1}^{T} f_t(x_t) - \sum_{t=1}^{T} f_t(x^*_t),$$

where $x^*_t \in \arg\min_{x \in X} f_t(x)$. Unfortunately, it is well-known that a sublinear dynamic regret bound cannot be achieved in the worst case \cite{Zinkevich03}. The reason is that the functions $f_1,...,f_T$ may be changed arbitrarily in the dynamic environment. But, it is possible to upper bound the dynamic regret in terms of certain regularity of the comparator sequence. Those regularities are usually defined as the path length \cite{Mokhtari16, Yang16, Lei17}:

$$P^*_T := P(x^*_1,...,x^*_T) = \sum_{t=2}^{T} \|x^*_t - x^*_{t-1}\|,$$

or squared path length \cite{Zhang17}:

$$S^*_T := S(x^*_1,...,x^*_T) = \sum_{t=2}^{T} \|x^*_t - x^*_{t-1}\|^2.$$
Table 1: Our method OGD recovers the state-of-the-art regret with improved query complexity.

Algo.	Obj. type	Dynamic regret	Avg. queries
Mokhtari et al. [2016]	strongly convex	$O(T)$	$O(1)$
Zhang et al. [2017]	strongly convex	$O(\min\{\nabla f_1^1, \nabla f_1^2\})$	$O(\kappa)$
Ours	strongly convex	$O(\min\{\nabla f_1^1, \nabla f_1^2\})$	$O(1)$

They capture the cumulative Euclidean norm or the square of Euclidean norm of the difference between successive comparators. When all the functions f_1, \ldots, f_T are α-strongly convex and β-smooth, the dynamic regret is bounded by $O(T)$ [Mokhtari et al. 2016]. When the local variations are small, ∇f_1^1 is much smaller than ∇f_1^2. Thus, the state-of-the-art dynamic regret of OGD is improved to be $O(\min\{\nabla f_1^1, \nabla f_1^2\})$ [Zhang et al. 2017].

But, to achieve the state-of-the-art dynamic regret, i.e., $O(\min\{\nabla f_1^1, \nabla f_1^2\})$, the variant of OGD in [Zhang et al. 2017] has to query $O(\kappa)$ gradients for every iteration. Here, $\kappa := \frac{\varrho}{\alpha}$ represents the condition number for the β smooth and α strongly convex objective function f_1. For a large κ, the extremely large query complexity makes it not practical in the online setting. In the paper, we investigate the basic online gradient descent, and provide a new theoretical analysis framework. **Using the new analysis framework, we show that the dynamic regret $O(\min\{\nabla f_1^1, \nabla f_1^2\})$ can be achieved with $O(1)$, instead of $O(\kappa)$ queries of gradients in [Zhang et al. 2017]**. Main theoretical results are outlined in Table 1 briefly.

The improvement of the query complexity is vitally important for ill-conditioned problems [Tarantola 2004, Hansen et al. 2006, Marroquin et al. 1987] whose objective function usually has a large condition number, i.e., κ. Let us take the image deblurring problem as an example [Hansen et al. 2006]. Suppose we have a blurred image y, which is modeled by using an unknown real image x and a blurring matrix A. That is, $y = Ax$. Here, A is usually a non-singular matrix with a large condition number, e.g., $\kappa = 10^6$. We want to recover the real image x from the blurred image y, that is, $x = A^{-1}y$. Comparing with the method in [Zhang et al. 2017], our new analysis framework shows that OGD is good enough, and the required queries of gradients can be reduced by multiple orders.

The paper is organized as follows. Section 2 reviews the related work. Section 3 presents the preliminaries. Section 4 presents our theoretical analysis framework. Section 5 presents the improved bounds of regret and query complexity for the strongly convex case. Section 6 concludes the paper.

2 Related work

2.1 Regrets of OGD in the static environment.

Online gradient descent in the static environment has been extensively investigated over the last ten years. The sublinear static regrets for smooth or strongly convex functions have been obtained in many literatures [Shalev-Shwartz 2012, Hazan 2010, Duchi et al. 2011, Zinkevich 2003]. Specifically, when $f_t(\cdot)$ is strongly convex, the regret of online gradient descent is $O(\log T)$ [Hazan 2010]. When $f_t(\cdot)$ is convex but not strongly convex, the regret of online gradient descent is $O(\sqrt{T})$ [Hazan 2010].

2.2 Regrets of OGD in the dynamic environment.

When all the functions f_1, \ldots, f_T are α strongly-convex and β smooth, the dynamic regret of OGD is $O(T)$ [Mokhtari et al. 2016, Yang et al. 2016]. If OGD queries $O(\kappa)$ gradients at every iteration, the dynamic regret of OGD can be improved to be $O(\min\{\nabla f_1^1, \nabla f_1^2\})$ [Zhang et al. 2017]. But, our analysis framework shows that the $O(1)$ gradient queries for every iteration is enough to obtain $O(\min\{\nabla f_1^1, \nabla f_1^2\})$ dynamic regret. Additionally, there are some other regularities including the functional variation [Zhu and Xu 2015].

\footnote{"ill-conditioned" may be notated by "ill-posed" or "badly posed" in some literatures.}
Besbes, Omar et al. [2015] and the gradient variation Chiang et al. [2012]. Those regularities measure different aspects of the variation in the dynamic environment. Since they are not comparable directly, some researchers consider to bound the dynamic regret by using the mixed regularity Jadabaie et al. [2015]. Extending our theoretical framework to different regularities is an interesting avenue for future work.

Besides, the new proposed theoretical analysis framework is inspired by Joulani et al. [2017]. Joulani et al. [2017] provides a theoretical analysis framework in the static environment, but our theoretical analysis framework works in the dynamic environment.

3 Preliminaries

3.1 Notations and assumptions

We use the following notation.
- The bold lower-case letters, e.g., \mathbf{x} represent vectors. The normal letters, e.g., β represent a scalar number.
- η_t represents the learning rate of Algorithm 1 at the t-th iteration, and $\eta_{\min} := \min \{\eta_1, ..., \eta_T\}$.
- The condition number κ is defined by $\kappa := \frac{\beta}{\alpha}$ for any β smooth and α strongly convex function f_i.
- $\|\cdot\|$ represents the l_2 norm of a vector.
- $\Pi_Y(\cdot)$ represents the projection to a set Y.
- $X^* := \arg\min_{x \in X} f_i(x)$ represents the minimizer set at the t-th iteration.
- Bregman divergence $B_f(x, y)$ is defined by $B_f(x, y) := f(x) - f(y) - \langle \nabla f(y), x - y \rangle$ for any function f.

In the paper, functions $\{f_i\}_{t=1}^T$ are assumed to be convex and β smooth (defined as follows).

Definition 1 (β smoothness). A function $f : X \mapsto \mathbb{R}$ is β smooth, if, for any $x \in X$ and $y \in X$, we have $f(y) \leq f(x) + \langle \nabla f(x), y - x \rangle + \frac{\beta}{2} \|y - x\|^2$.

If the function f_i is β smooth, according to the definition of the Bregman divergence, we have $B_{f_i}(x, y) \leq \frac{\beta}{2} \|x - y\|^2$ holds for any $x \in X$ and $y \in X$. The other assumptions used in the paper are presented as follows.

Assumption 1 (α strong convexity). For any t, the function $f_t : \mathcal{X} \mapsto \mathbb{R}$ is α strongly convex. That is, for any $x \in \mathcal{X}$ and $y \in \mathcal{X}$, $f_t(y) \geq f_t(x) + \langle \nabla f_t(x), y - x \rangle + \frac{\alpha}{2} \|y - x\|^2$.

Assumption 2 (Boundedness of gradients). We assume $\|\nabla f_t(x_i)\|^2 \leq G$ for any t.

Assumption 3 (Boundedness of the domain of x). We assume $\|x_t - x^*_t\|^2 \leq R$ for any t.

The above assumptions, i.e., Assumptions 1-3, are the basic assumptions, which are used widely in previous researches Shalev-Shwartz [2012], Hazan [2016], Duchi et al. [2011], Zinkevich [2003]. Additionally, we make the following assumption, which is used to model the dynamic environment.

The above assumptions, i.e., Assumptions 1-3, are the basic assumptions, which are used widely in previous researches. Shalev-Shwartz [2012], Hazan [2016], Duchi et al. [2011], Zinkevich [2003]. Additionally, we make the following assumption, which allows the environment to change within a range. It is a mild assumption for many tasks such as time-serise prediction Kuznetsov and Mohri [2016], Anya et al. [2013], traffic forecasting Buch et al. [2011], time-varying medical image analysis Wang et al. [2008], Lee and Shen 2003, online recommendation Chang et al. 2017.

Assumption 4 (Boundedness of variations in the dynamic environment). Denote $x_0^* = x_0$. For any $0 \leq i \leq T$ and $0 \leq j \leq T$, when $\|x_{i+1}^* - x_i^*\| > 0$ and $\|x_{j+1}^* - x_j^*\| > 0$, there exists a constant $V \geq 1$ such that $\|x_{i+1}^* - x_i^*\| \leq V \|x_{j+1}^* - x_j^*\|$.
Algorithm 1 OGD: Online Gradient Descent.

Require: The learning rate η_t with $1 \leq t \leq T$.
1: for $t = 1, 2, \ldots, T$ do
2: Submit $x_t \in X$ and receive the function f_t with $f_t : X \rightarrow \mathbb{R}$.
3: Query the gradient $\nabla f_t(x_t)$ of f_t.
4: $x_{t+1} = \Pi_X (x_t - \eta_t \nabla f_t(x_t)).$
return x_{T+1}

Algorithm 2 OMGD: Online Multiple Gradient Descent [Zhang et al. 2017].

Require: The learning rate η_t with $1 \leq t \leq T$.
1: for $t = 1, 2, \ldots, T$ do
2: Submit $x_t \in X$ and receive the function f_t with $f_t : X \rightarrow \mathbb{R}$.
3: $z^{(1)}_t = x_t$, and $K = \frac{\kappa+1}{2}$.
4: for $j = 1, 2, \ldots, K$ do
5: Query the gradient $\nabla f_t(z^{(j)}_t)$ of f_t.
6: $z^{(j+1)}_t = \Pi_X (z^{(j)}_t - \eta_t \nabla f_t(z^{(j)}_t)).$
7: $x_{t+1} = z^{(K+1)}_t$.
return x_{T+1}

3.2 Algorithm

Recall the algorithm of the OGD. At the t-th iteration, it submits x_t, and receives the loss function $f_t(x_t)$. Querying the gradient of $f_t(x_t)$, it updates x_t by using the projected gradient descent method. The details are presented in Algorithm 1.

Comparing with the state-of-the-art method, i.e., Algorithm 2, OGD only requires one query of gradient for every iteration, while Algorithm 2 requires $\frac{\kappa+1}{2}$ queries of gradient. When κ is large, the query complexity of Algorithm 2 is much higher than OGD. Comparing with OMGD, i.e., Algorithm 2 our new theoretical analysis framework shows that OGD is good enough to recover the state-of-the-art dynamic regret yielded by OMGD, but it only leads to $O(1)$ query of gradient, instead of $O(\kappa)$ queries of gradient required by OMGD.

4 A new theoretical analysis framework

In the section, we first provide a modular analysis framework, which does not depend on the assumption on the functions. Then, equipped with the strongly convex assumption, it yields specific results.

4.1 High-level thought

Our original goal is equivalent to investigate whether the basic OGD, i.e., Algorithm 1 can obtain the state-of-the-art dynamic regret, i.e., $\min\{P_T, S_T\}$. Using the divide-and-control strategy, we divide the dynamic regret of OGD into two parts.

1. The first part, denoted by R_T^O, is caused by the online setting in the dynamic environment. It does not depend on the strongly convex assumption on the function f_t.

2. The second part, denoted by R_T^P, is due to the projected gradient descent step in Algorithm 1. It depends on the assumption on the function f_t such as convexity or strong convexity.
In the paper, our first contribution is to provide an upper bound of \(R_T^o \) without the strongly convex assumption of \(f_t \). Then, benefiting from the rich theoretical tools in the static optimization, we successfully bound \(R_T^m \) by using the strongly convex assumption of \(f_t \).

4.2 Meta framework

Generally, the dynamic regret of OGD is bounded as follows.

Theorem 1. For any \(\eta_t > 0 \) in Algorithm \(\mathcal{T} \) the dynamic regret of OGD defined in \(\mathcal{T} \) is bounded by

\[
R_T \leq R_T^o + R_T^m
\]

where

\[
R_T^o := \sum_{t=1}^{T} \frac{1}{2\eta_t} \left(-\|x_t^* - x_{t+1}\|^2 + \|x_t^* - x_t\|^2 \right)
\]

and

\[
R_T^m := \sum_{t=1}^{T} \frac{1}{\eta_t} \left(-B_{\eta_t f_t}(x_t^*, x_t) + \eta_t (f_t(x_t) - f_t(x_{t+1})) \right) + \sum_{t=1}^{T} \frac{1}{\eta_t} \left(\frac{\beta \eta_t - 1}{2} \|x_{t+1} - x_t\|^2 \right).\]

In Theorem \(\mathcal{T} \), \(R_T^o \) represents the regret due to the online setting, and \(R_T^m \) represents the regret due to the projected gradient descent updating step in Algorithm \(\mathcal{T} \).

Remark 1. Note that the upper bound of \(R_T^m \) depends on the strongly convex assumption of the function \(f_t \).

Theorem 2. Use Assumption \(\mathcal{T} \) and set \(\eta_t > 0 \) in Algorithm \(\mathcal{T} \). Denote \(x_0^* = x_1 \) and \(\eta_\text{min} = \min\{\eta_1, ..., \eta_T\} \). For any \(0 < \rho \leq 1 \), the regret due to the online setting, i.e., \(R_T^o \) is bounded by

\[
R_T^o \leq \frac{1 - \rho + 2\rho V}{2\eta_\text{min}(1-\rho)} S_T^o + \frac{1}{2\eta_1} \|x_1^* - x_1\|^2 + \frac{1}{2} \left(\sum_{t=1}^{T-1} \left(\frac{1}{\eta_{t+1}} - \frac{1}{\eta_t} \right) \|x_t^* - x_{t+1}\|^2 \right).
\]

Remark 2. Note that this upper bound of \(R_T^o \) does not depend on the strongly convex assumption of the function \(f_t \). It still holds for the convex function \(f_t \).

Lemma 1 (Appeared in Proposition 2 in Mokhtari et al., 2016). Use Assumption \(\mathcal{T} \). Let \(v_{t+1} = \Pi_X (v_t - \eta_t \nabla f_t(v_t)) \) and \(x_t^* := \arg\min_{v \in \mathcal{X}} f_t(v) \). Denote \(\kappa = \frac{\alpha}{\beta} \). If \(\eta_t \leq \frac{1}{\beta} \) and \(\rho = \sqrt{\frac{\alpha - 1}{\kappa}} \), we have \(\|v_{t+1} - x_t^*\| \leq \rho \|v_t - x_t^*\| \).

According to Lemma \(\mathcal{T} \) when \(f_t \)'s are strongly convex, \(0 < \rho < 1 \) (See Lemma \(\mathcal{T} \)). When \(f_t \)'s are just convex, \(\rho = 1 \) (that is, \(\alpha \to 0 \)). Recall that \(R_T^m \) depends on the strongly convex assumption of \(f_t \)'s. Equipped by Lemma \(\mathcal{T} \) we find that as long as \(R_T^m \) is further bounded, we are able to provide an upper bound for the dynamic regret.

5 Improved query complexity for strongly convex \(f_t \)

When all \(f_t \)'s are smooth and strongly convex, the dynamic regret of our method OGD is upper bounded by the following theorem.

Theorem 3. Use Assumptions \(\mathcal{T} \) and \(\mathcal{T} \). Setting \(\eta_t = \eta = \frac{1}{2(\beta + \beta \rho^2 / \alpha)} \) in Algorithm \(\mathcal{T} \) and \(\rho = \sqrt{\frac{\alpha - 1}{\kappa}} < 1 \), we bound the dynamic regret of OGD as

\[
R_T \leq \min\{J_1, J_2\},
\]
where
\[
J_1 = \frac{(1 - \rho + 2\rho V) (\beta + \frac{\beta^2}{\alpha}) S_T^* + \left(\frac{\beta + \beta^2}{\alpha} \right) \|x_1^* - x_1\|^2 + \frac{1}{2\left(\frac{\beta + \beta^2}{\alpha} \right)}}{1 - \rho} \sum_{t=1}^T \|\nabla f_t(x_t^*)\|^2
\]
\[
\lesssim S_T^* + \sum_{t=1}^T \|\nabla f_t(x_t^*)\|^2,
\]
and
\[
J_2 = \frac{G \|x_1 - x_1^*\|}{1 - \rho} P_T^* + \frac{G}{1 - \rho} \lesssim P_T^*.
\]

Corollary 1. Suppose \(\sum_{t=1}^T \|\nabla f_t(x_t^*)\|^2 = O(S_T^*)\). According to Theorem B, the dynamic regret of OGD is bounded by
\[
R_T^* = \min\{J_1, J_2\} \lesssim \min\{P_T^*, S_T^*\},
\]
where \(J_1\) and \(J_2\) are defined in Theorem B.

Proof. Recall Assumption E and we have \(\|x_1^* - x_1\|^2 \leq R\). When \(\sum_{t=1}^T \|\nabla f_t(x_t^*)\|^2 = O(S_T^*)\), we have \(J_1 \lesssim S_T^*\). Similarly, we have \(J_2 \leq \frac{G\sqrt{R} P_T^*}{1 - \rho} + \frac{G}{1 - \rho} \lesssim P_T^*\). Thus, we finally obtain
\[
R_T^* \leq \min\{J_1, J_2\} \lesssim \min\{P_T^*, S_T^*\}.
\]
It completes the proof.

Recall the previous method, i.e., Algorithm 2. Its dynamic regret has been proved, and we present it as follows.

Lemma 2 (Appeared in Theorem 3 and Corollary 4 in Zhang et al. [2017]). Use Assumptions E, F, and G and choose \(\eta_t \leq \frac{1}{\sigma}\) in Algorithm E. Denote the dynamic regret of Algorithm 2 by \(\tilde{R}_T^*\). Then, for any constant \(\sigma > 0\), \(\tilde{R}_T^*\) is bounded by
\[
\tilde{R}_T^* \leq \min\{J_3, J_4\},
\]
where
\[
J_3 = 2GP_T^* + 2G \|x_1 - x_1^*\| \lesssim P_T^*,
\]
\[
J_4 = \frac{1}{2\sigma} \sum_{t=1}^T \|\nabla f_t(x_t^*)\|^2 + (\beta + \sigma) \left(2S_T^* + \|x_1 - x_1^*\|^2 \right)
\]
\[
\lesssim S_T^* + \sum_{t=1}^T \|\nabla f_t(x_t^*)\|^2.
\]
Furthermore, suppose \(\sum_{t=1}^T \|\nabla f_t(x_t^*)\|^2 = O(S_T^*)\), and we thus have \(\tilde{R}_T^* \lesssim \min\{P_T^*, S_T^*\}\).

Comparing with Lemma 2, our new result achieves the same bound of the regret. But, OGD, i.e., Algorithm 1, only requires one query of gradient for every iteration, which does not depend on \(\kappa\), and thus outperforms Algorithm 2 by reducing the query complexity significantly. The following remarks highlight the advantages of our analysis framework.
Remark 3. Our analysis framework achieves the state-of-the-art dynamic regret presented in Zhang et al. [2017] with a constant factor, and outperforms the dynamic regret $O(P^*)$ presented in Mokhtari et al. [2016].

Remark 4. Our analysis framework shows that $O(1)$ queries of gradients for every iteration is enough to achieve the state-of-the-art dynamic regret, but Zhang et al. [2017] requires $O(\kappa)$ queries of gradients for every iteration.

6 Conclusion

We provide a new theoretical analysis framework to analyze the regret and query complexity of OGD in the dynamic environment. Comparing with the previous work, our framework achieves the state-of-the-art dynamic regret, and improve the required queries of gradient to be $O(1)$.

Proof of theorems.

Proof of Theorem 1

Proof.

$$R_T^* = \sum_{t=1}^{T} \frac{1}{\eta_t} (\eta_t f_t(x_t) - \eta_t f_t(x^*_t))$$

$$= \sum_{t=1}^{T} \frac{1}{\eta_t} \left(\langle \eta_t \nabla f_t(x_t), x_{t+1} - x^*_t \rangle - B_{\eta_t} f_t(x^*_t, x_t) \right) + \sum_{t=1}^{T} \frac{1}{\eta_t} \left(\langle \eta_t \nabla f_t(x_t), x_t - x_{t+1} \rangle \right).$$

(2)

Now, we begin to bound I_1. According to Lemma 3 we obtain

$$I_1 \leq \frac{1}{2} \left(-\|x_t^* - x_{t+1}\|^2 + \|x_t^* - x_t\|^2 - \|x_{t+1} - x_t\|^2 \right).$$

(3)

After that, we begin to bound I_2.

$$I_2 = \langle \eta_t \nabla f_t(x_t), x_t - x_{t+1} \rangle$$

$$= \eta_t f_t(x_t) - \eta_t f_t(x_{t+1}) + \eta_t B_{\eta_t} f_t(x_{t+1}, x_t)$$

$$\leq \eta_t (f_t(x_t) - f_t(x_{t+1})) + \frac{\beta \eta_t}{2} \|x_{t+1} - x_t\|^2.$$

(4)

The last inequality holds because that all f_t’s are β smooth. Substituting (3) and (4) into (2), we finally complete the proof.

Proof of Theorem 2

Proof. According to the cosine theorem, we have

$$-\|x_t^* - x_{t+1}\|^2 + \|x_t^* - x_{t+1}\|^2 \leq 2 \|x_t^* - x_t^*\| \|x_{t+1} - x_t^*\| - \|x_t^* - x_t^*\|^2.$$

(5)

According to Lemma 1 if f_t is convex and smooth, $\|x_{t+1} - x_t^*\| \leq \rho \|x_t - x_t^*\|$ holds for $0 < \rho \leq 1$. Specifically, $0 < \rho < 1$ holds when f_t is strongly convex, and $\rho = 1$ holds when f_t is just convex. We thus have

$$2 \|x_t^* - x_t^*\| \|x_{t+1} - x_t^*\| - \|x_t^* - x_t^*\|^2 \geq -\rho^2 \|x_t - x_t^*\|^2 + \|x_t^* - x_t^*\|^2.$$

7
Let $A_{t+1} = \|x_{t+1} - x_{t+1}^*\|$, $M_{t+1} = \|x_{t+1}^* - x_t^*\|$, and we thus have
\[
2A_{t+1}M_{t+1} - M_{t+1}^2 \geq A_{t+1}^2 - \rho^2 A_t^2,
\]
that is, $(A_{t+1} - M_{t+1})^2 \leq \rho^2 A_t^2$. Thus, we have
\[
A_{t+1} - M_{t+1} \leq \rho A_t - \rho M_t \leq \rho^2 A_{t-1} \leq \cdots \leq \rho^t A_2 - \rho^{t-1} M_2 \leq \rho^t A_1.
\]
Summing up, we obtain
\[
A_{t+1} \leq \rho^t A_1 + (M_{t+1} + \rho M_t + \ldots + \rho^{t-1} M_2)
= \rho^t \|x_1 - x_1^*\| + \sum_{i=2}^{t+1} \rho^{t+1-i} \|x_i^* - x_{i-1}^*\|
= 1 \sum_{i=1}^{t+1} \rho^{t+1-i} \|x_i^* - x_{i-1}^*\|
= \|x_{t+1}^* - x_t^*\| + \sum_{i=1}^t \rho^i \|x_{t+1-i}^* - x_{t-i}^*\|.
\]
(6)

(1) holds due to letting $x_0^* = x_1$.
Substituting (6) into (5), we obtain,
\[
-\|x_t^* - x_{t+1}\|^2 + \|x_{t+1}^* - x_{t+1}\|^2 \leq 2 \|x_{t+1}^* - x_t^*\| A_{t+1} - \|x_{t+1}^* - x_t^*\|^2
\leq \|x_{t+1}^* - x_t^*\|^2 + 2 \|x_{t+1}^* - x_t^*\| \left(\sum_{i=1}^t \rho^i \|x_{t+1-i}^* - x_{t-i}^*\| \right).
\]
(7)

Case 1. When $\|x_{t+1}^* - x_t^*\| > 0$, according to (7), we have
\[
-\|x_t^* - x_{t+1}\|^2 + \|x_{t+1}^* - x_{t+1}\|^2 \overset{1}{\leq} \|x_{t+1}^* - x_t^*\|^2 + 2 \|x_{t+1}^* - x_t^*\| \left(\sum_{i=1}^t \rho^i \right)
\leq \|x_{t+1}^* - x_t^*\|^2 + \frac{2 \rho V}{1 - \rho} \|x_{t+1}^* - x_t^*\|^2
= \frac{1 - \rho + 2 \rho V}{1 - \rho} \|x_{t+1}^* - x_t^*\|^2.
\]
(8)

(1) holds according to Assumption 4.

Case 2. When $\|x_{t+1}^* - x_t^*\| = 0$, according to (7), we have
\[
-\|x_t^* - x_{t+1}\|^2 + \|x_{t+1}^* - x_{t+1}\|^2 = 0 = \frac{1 - \rho + 2 \rho V}{1 - \rho} \|x_{t+1}^* - x_t^*\|^2.
\]
(9)

Combining Case 1 and Case 2, we obtain
\[
-\|x_t^* - x_{t+1}\|^2 + \|x_{t+1}^* - x_{t+1}\|^2 \leq \frac{1 - \rho + 2 \rho V}{1 - \rho} \|x_{t+1}^* - x_t^*\|^2.
\]
(10)
Thus, we obtain
\[
2R_T^2 = \sum_{t=1}^T \frac{1}{\eta_t} \left(-\|x_t^* - x_{t+1}\|^2 + \|x_t^* - x_t\|^2 \right)
\]
\[
= \sum_{t=1}^{T-1} \frac{1}{\eta_t} \left(-\|x_t^* - x_{t+1}\|^2 + \|x_{t+1}^* - x_{t+1}\|^2 \right) + \sum_{t=1}^{T-1} \left(\frac{1}{\eta_{t+1}} - \frac{1}{\eta_t} \right) \|x_{t+1}^* - x_{t+1}\|^2
\]
\[
+ \frac{1}{\eta_t} \|x_t^* - x_t\|^2 - \frac{1}{\eta_t} \|x_t^* - x_{t+1}\|^2
\]
\[
\leq \sum_{t=1}^{T-1} \frac{1}{\eta_t} \left(-\|x_t^* - x_{t+1}\|^2 + \|x_{t+1}^* - x_{t+1}\|^2 \right) + \frac{1}{\eta_t} \|x_t^* - x_t\|^2 + \sum_{t=1}^{T-1} \left(\frac{1}{\eta_{t+1}} - \frac{1}{\eta_t} \right) \|x_{t+1}^* - x_{t+1}\|^2
\]
\[
\leq \frac{1}{\eta_{\min}(1 - \rho)} S_T^* + \sum_{t=1}^{T-1} \left(\frac{1}{\eta_{t+1}} - \frac{1}{\eta_t} \right) \|x_{t+1}^* - x_{t+1}\|^2 + \frac{1}{\eta_t} \|x_t^* - x_t\|^2.
\]
Here, \(\eta_{\min} = \min\{\eta_1, \eta_2, \ldots, \eta_T\}\). ① holds due to (10). Dividing \(\frac{1}{2}\) on both sides, we complete the proof. □

Proof of Theorem [3]

Proof. When the function \(f_t\) is \(\alpha\) strongly convex, we have
\[
B_{f_t}(x_t^*, x_t) \geq \frac{\alpha}{2} \|x_t^* - x_t\|^2.
\]
Substituting (11) into Theorem [1] we obtain
\[
R_T^2
\]
\[
\leq \sum_{t=1}^T \frac{1}{\eta_t} \left(-\frac{1}{2} \|x_t^* - x_{t+1}\|^2 + \frac{1 - \alpha \eta_t}{2} \|x_t^* - x_t\|^2 \right) + \sum_{t=1}^T \frac{1}{\eta_t} \left(\frac{\beta \eta_t - 1}{2} \|x_{t+1}^* - x_t\|^2 \right)
\]
\[
+ \sum_{t=1}^T \frac{1}{\eta_t} (\eta_t f_t(x_t) - f_t(x_{t+1}))
\]
\[
\leq \sum_{t=1}^T \frac{1}{2\eta_t} \left(-\|x_t^* - x_{t+1}\|^2 + \|x_t^* - x_t\|^2 \right)
\]
\[
+ \sum_{t=1}^T \frac{\eta_t}{2\eta_t} \left(\beta + \frac{\beta^2}{\alpha} \right) - \frac{1}{2\eta_t} \|x_{t+1}^* - x_t\|^2 + \sum_{t=1}^T \eta_t \|\nabla f_t(x_t^*)\|^2
\]
\[
\leq \frac{(1 - \rho + 2\rho V)}{1 - \rho} \left(\beta + \frac{\beta^2}{\alpha} \right) S_T^* + \left(\beta + \frac{\beta^2}{\alpha} \right) \|x_t^* - x_t\|^2 + \frac{1}{2} \left(\beta + \frac{\beta^2}{\alpha} \right) \sum_{t=1}^T \|\nabla f_t(x_t^*)\|^2.
\]
① holds due to (16) in Lemma [5] by setting \(\theta_1 = \alpha\) and \(\theta_2 = 2\eta_t\). ② holds because of \(\eta_t = \frac{1}{2(\beta + \frac{\beta^2}{\alpha})}\) for

1 \(\leq t \leq T\). The last inequality holds due to Theorem [2]

Combining Lemma [4] we finally complete the proof. □
Proof of lemmas.

Lemma 3. Denote \(h(x) = \langle \eta t f_t(x_t), x \rangle + \frac{1}{2} \| x - x_t \|^2 \). If \(x_{t+1} = \Pi_{X_t} (x_t - \eta_t f_t(x_t)) \), we have \(x_{t+1} \in \argmin_{x \in X} h(x) \).

Proof. Consider the following convex optimization problem

\[
\min_{x \in X} h(x) = \min_{x \in X} \langle \eta t f_t(x_t), x \rangle + \frac{1}{2} \| x - x_t \|^2
\] \hspace{1cm} \tag{12}

Denote the optimum set is \(X_t^* \), that is, for any \(x^* \in X_t^* \), \(h(x^*) = \min_{x \in X} h(x) \) holds.

According to the first-order optimality condition Boyd and Vandenberghe [2004], we have, for any \(z \in X \) and \(x^* \in X_t^* \),

\[
0 \leq \langle \nabla h(x^*), z - x^* \rangle = \langle \eta t f_t(x_t) + x^* - x_t, z - x^* \rangle.
\] \hspace{1cm} \tag{13}

Recall that \(x_{t+1} = \Pi_{X_t} (x_t - \eta_t f_t(x_t)) \). Thus, we have

\[
\langle \eta t f_t(x_t) + x_{t+1} - x_t, z - x_{t+1} \rangle = \langle \Pi_{X_t} (x_t - \eta_t f_t(x_t)) - (x_t - \eta_t f_t(x_t)), z - x_{t+1} \rangle \geq 0.
\]

That is, \(x_{t+1} \) satisfies the first-order optimality condition of \(\tag{12} \). It completes the proof. \(\square \)

Lemma 4. Use Assumption 3. For any minimizer \(x_t^* \in X_t^* \) and \(X_t^* := \argmin_{x \in X} f_t(x) \), we have

\[
2 \langle \eta t f_t(x_t), x_{t+1} - x_t^* \rangle \leq - \| x^*_t - x_{t+1} \|^2 - \| x_{t+1} - x_t \|^2 + \| x_t^* - x_t \|^2.
\] \hspace{1cm} \tag{14}

Proof. First, we construct an auxiliary function \(h(x) = \langle \eta t f_t(x_t), x \rangle + \frac{1}{2} \| x - x_t \|^2 \). According to Lemma 3, we have \(x_{t+1} \in \argmin_{x \in X} h(x) \). Let \(\bar{x} = x_{t+1} + \tau (x_t^* - x_{t+1}) \) with \(\tau \in (0, 1] \).

\[
0 \leq h(\bar{x}) - h(x_{t+1}) = \langle \eta t f_t(x_t), (x_t^* - x_{t+1}) \rangle + \frac{1}{2} \| \bar{x} \|^2 - \frac{1}{2} \| x_{t+1} \|^2 + \tau \langle x_t, x_{t+1} - x_t^* \rangle.
\] \hspace{1cm} \tag{15}

Dividing \(\tau \) on both sides, we obtain

\[
0 \leq \langle \eta t f_t(x_t), x_t^* - x_{t+1} \rangle + \frac{1}{2\tau} \left(\| \bar{x} \|^2 - \| x_{t+1} \|^2 \right) + \langle x_t, x_{t+1} - x_t^* \rangle \leq \langle \eta t f_t(x_t), x_t^* - x_{t+1} \rangle + \lim_{\tau \to 0^+} \frac{1}{2\tau} \left(\| \bar{x} \|^2 - \frac{1}{2} \| x_{t+1} \|^2 \right) + \langle x_t, x_{t+1} - x_t^* \rangle
\]

\[
= \langle \eta t f_t(x_t), x_t^* - x_{t+1} \rangle + \frac{1}{2} \| x_t^* - x_{t+1} \|^2 + \langle x_{t+1}, x_t^* - x_t \rangle + \langle x_t, x_{t+1} - x_t^* \rangle
\]

\[
= \langle \eta t f_t(x_t), x_t^* - x_{t+1} \rangle - \frac{1}{2} \| x_t^* - x_{t+1} \|^2 - \frac{1}{2} \| x_{t+1} - x_t \|^2 + \frac{1}{2} \| x_t^* - x_t \|^2.
\]

\(\square \)
Lemma 5. Suppose that all f_t’s are β smooth. For any $\theta_1 > 0$, $\theta_2 > 0$ and any minimizer $x^*_t \in \arg\min_{x \in X} f_t(x)$, we have

$$f_t(x_t) - f_t(x_{t+1}) \leq \frac{\theta_1}{2} \|x_t - x^*_t\|^2 + \left(\frac{\beta^2}{2\theta_1} + \frac{1}{2\theta_2}\right) \|x_{t+1} - x_t\|^2 + \frac{\theta_2}{2} \|\nabla f_t(x^*_t)\|^2. \tag{16}$$

Proof. For any $\theta_1 > 0$ and $\theta_2 > 0$, we have

$$f_t(x_t) - f_t(x_{t+1}) - \frac{\theta_2}{2} \|\nabla f_t(x^*_t)\|^2 - \frac{1}{2\theta_2} \|x_t - x_{t+1}\|^2 \leq \langle \nabla f_t(x_t), x_t - x_{t+1} \rangle - \langle \nabla f_t(x^*_t), x_t - x_{t+1} \rangle \leq \frac{\theta_1}{2\beta^2} \|\nabla f_t(x_t) - \nabla f_t(x^*_t)\|^2 + \frac{\beta^2}{2\theta_1} \|x_{t+1} - x_t\|^2 \leq \frac{\theta_1}{2} \|x_t - x^*_t\|^2 + \frac{\beta^2}{2\theta_1} \|x_{t+1} - x_t\|^2.$$

The last inequality holds because that all f_t’s are β smooth. Re-arranging the items, we thus complete the proof.

Lemma 6 (Appeared in Theorem 1 in Mokhtari et al. [2016]). Suppose that Assumptions 1-3 hold, and all f_t are β smooth. Thus, $\rho = \sqrt{\frac{\kappa - 1}{\kappa}} < 1$ with $\kappa := \frac{\beta}{\delta}$. Set $\eta_t \leq \frac{1}{L}$ in OGD, i.e., Algorithm 1. The dynamic regret of OGD is bounded as

$$R_T^* \leq \frac{G \|x_1 - x^*_1\|}{1 - \rho} P_T^* + \frac{G}{1 - \rho}.$$

Acknowledgment

This work was supported by the National Key R & D Program of China 2018YFB1003203 and the National Natural Science Foundation of China (Grant No. 61672528, 61773392, and 61671463).

References

O. Anava, E. Hazan, S. Mannor, and O. Shamir. Online learning for time series prediction. In Proceedings of the 26th Annual Conference on Learning Theory, volume 30, pages 172–184, 12–14 Jun 2013.

A. S. Bedi, P. Sarma, and K. Rajawat. Tracking moving agents via inexact online gradient descent algorithm. IEEE Journal of Selected Topics in Signal Processing, 12(1):202–217, Feb 2018.

Besbes, Omar, Gur, Yonatan, and Zeevi, Assaf J. Non-Stationary Stochastic Optimization. Operations Research, 63(5):1227–1244, 2015.

S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press, New York, NY, USA, 2004. ISBN 0521833787.

N. Buch, S. A. Velastin, and J. Orwell. A review of computer vision techniques for the analysis of urban traffic. Trans. Intell. Transport. Syst., 12(3):920–939, Sept. 2011.

S. Chang, Y. Zhang, J. Tang, D. Yin, Y. Chang, M. A. Hasegawa-Johnson, and T. S. Huang. Streaming recommender systems. In Proceedings of the 26th International Conference on World Wide Web, WWW ’17, pages 381–389, 2017.
C. K. Chiang, T. Yang, C. J. Lee, M. Mahdavi, C. J. Lu, R. Jin, and S. Zhu. Online optimization with gradual variations. *Journal of Machine Learning Research*, 23, 2012.

J. Duchi, E. Hazan, and Y. Singer. Adaptive subgradient methods for online learning and stochastic optimization. *Journal of Machine Learning Research (JMLR)*, 12:2121–2159, 2011.

D. Garber. Fast Rates for Online Gradient Descent Without Strong Convexity via Hoffman’s Bound. *arXiv.org*, 2018.

E. C. Hall and R. M. Willett. Online Convex Optimization in Dynamic Environments. *IEEE Journal of Selected Topics in Signal Processing*, 9(4):647–662, 2015.

P. C. Hansen, J. G. Nagy, and D. P. O’Leary. *Deblurring Images: Matrices, Spectra, and Filtering (Fundamentals of Algorithms)*. 2006.

E. Hazan. Introduction to online convex optimization. *Foundations and Trends in Optimization*, 2(3-4):157–325, 2016.

E. Hazan and C. Seshadhri. Adaptive algorithms for online decision problems. *Electronic Colloquium on Computational Complexity*, 14, 2007.

A. Jadabaie, A. Rakhlin, S. Shahrampour, and K. Sridharan. Online Optimization : Competing with Dynamic Comparators. In *Proceedings of International Conference on Artificial Intelligence and Statistics (AISTATS)*, pages 398–406, 2015.

P. Joulani, A. György, and C. Szepesvári. A Modular Analysis of Adaptive (Non-)Convex Optimization - Optimism, Composite Objectives, and Variational Bounds. In *Proceedings of International Conference on Algorithmic Learning Theory (ALT)*, 2017.

V. Kuznetsov and M. Mohri. Time series prediction and online learning. In *Proceedings of the 29th Annual Conference on Learning Theory*, pages 1190–1213, 23–26 Jun 2016.

T. Lee and H. Shen. Visualization and exploration of temporal trend relationships in multivariate time-varying data. *IEEE Transactions on Visualization & Computer Graphics*, 15:1359–1366, 09 2009.

Y. Lei, L. Shi, and Z.-C. Guo. Convergence of unregularized online learning algorithms. *Journal of Machine Learning Research*, 18(1):6269–6301, Jan. 2017.

J. Marroquin, S. Mitter, and T. Poggio. Probabilistic solution of ill-posed problems in computational vision. *Journal of the American Statistical Association*, 82(397):76–89, 1987.

A. Mokhtari, S. Shahrampour, A. Jadabaie, and A. Ribeiro. Online optimization in dynamic environments: Improved regret rates for strongly convex problems. In *Proceedings of IEEE Conference on Decision and Control (CDC)*, pages 7195–7201. IEEE, 2016.

T. Moon, L. Li, W. Chu, C. Liao, Z. Zheng, and Y. Chang. Online learning for recency search ranking using real-time user feedback. In *Proceedings of ACM International Conference on Information and Knowledge Management (CIKM)*, CIKM ’10, pages 1501–1504, New York, NY, USA, 2010. ACM.

S. Shalev-Shwartz. Online Learning and Online Convex Optimization. *Foundations and Trends® in Machine Learning*, 4(2):107–194, 2012.

Y. Song, Z. Zhuang, H. Li, Q. Zhao, J. Li, W.-C. Lee, and C. L. Giles. Real-time automatic tag recommendation. In *Proceedings of ACM SIGIR Conference on Research and Development in Information Retrieval*, SIGIR ’08, pages 515–522, New York, NY, USA, 2008.

A. Tarantola. *Inverse Problem Theory and Methods for Model Parameter Estimation*. Society for Industrial and Applied Mathematics, Philadelphia, PA, USA, 2004. ISBN 0898715725.
C. Wang, H. Yu, and K. Ma. Importance-driven time-varying data visualization. *IEEE Transactions on Visualization and Computer Graphics*, 14(6):1547–1554, Nov 2008.

T. Yang, L. Zhang, R. Jin, and J. Yi. Tracking Slowly Moving Clairvoyant - Optimal Dynamic Regret of Online Learning with True and Noisy Gradient. In *Proceedings of the 34th International Conference on Machine Learning (ICML)*, 2016.

L. Zhang, T. Yang, J. Yi, R. Jin, and Z.-H. Zhou. Improved Dynamic Regret for Non-degenerate Functions. In *Proceedings of Neural Information Processing Systems (NIPS)*, 2017.

C. Zhu and H. Xu. Online Gradient Descent in Function Space. *arXiv.org*, 2015.

M. Zinkevich. Online convex programming and generalized infinitesimal gradient ascent. In *Proceedings of International Conference on Machine Learning (ICML)*, pages 928–935, 2003.