Lipschitz type inequalities for noncommutative perspectives of operator monotone functions in Hilbert spaces

Silvestru Sever Dragomir

Abstract
Assume that \(f : [0, \infty) \to \mathbb{R} \) is a continuous function. We can define the perspective \(P_f(B, A) \) by setting
\[
P_f(B, A) := A^{1/2}f\left(A^{-1/2}BA^{-1/2}\right)A^{1/2},
\]
where \(A, B > 0 \). We show in this paper among others that
\[
\|P_f(B, P) - P_f(A, P)\| \\leq \|P\|^2 \|B - A\| \left\{ \begin{array}{ll}
\frac{P_f(m_2, p) - P_f(m_1, p)}{m_2 - m_1} & \text{if } m_1 \neq m_2, \\
f'(\frac{m}{p}) & \text{if } m_1 = m_2 = m
\end{array} \right.
\]
for all \(A \geq m_1 > 0, B \geq m_2 > 0 \) and \(P \geq p > 0 \). If \(f \) is operator monotone on \([0, \infty) \), then for all \(C \geq n_1 > 0, D \geq n_2 > 0, Q > q > 0 \) we also have

To Audrey and Sienna.

Communicated by M. S. Moslehian.

This work was completed with the support of our TeX-pert.
\[\| \mathcal{P}_f(Q, D) - \mathcal{P}_f(Q, C) \| \leq \frac{\| Q \|^2 \| D - C \|}{q^2} \left\{ \begin{array}{ll}
\frac{\mathcal{P}_f(q, n_2) - \mathcal{P}_f(q, n_1)}{n_2 - n_1} & \text{if } n_2 \neq n_1, \\
\left[f \left(\frac{q}{n_2} \right) - f' \left(\frac{q}{n_2} \right) \right] & \text{if } n_2 = n_1 = n.
\end{array} \right. \]

Some applications for weighted operator geometric mean and relative operator entropy are also given.

Keywords Operator monotone functions · Noncommutative perspectives

Mathematics Subject Classification 47A63 · 47A30 · 15A60 · 26D15 · 26D1

1 Introduction

Let \(B(H) \) be the Banach algebra of bounded linear operators on a complex Hilbert space \(H \). The absolute value of an operator \(A \) is the positive operator \(|A| \) defined as \(|A| := (A^*A)^{1/2} \).

It is known that [3] in the infinite-dimensional case the map \(f(A) := |A| \) is not Lipschitz continuous on \(B(H) \) with the usual operator norm, i.e. there is no constant \(L > 0 \) such that

\[\| |A| - |B| \| \leq L \| A - B \| \]

for any \(A, B \in B(H) \).

However, as shown by Farforovskaya in [10, 11] and Kato in [18], the following inequality holds

\[\| |A| - |B| \| \leq \frac{2}{\pi} \| A - B \| \left(2 + \log \left(\frac{\| A \| + \| B \|}{\| A - B \|} \right) \right) \]

for any \(A, B \in B(H) \) with \(A \neq B \).

If the operator norm is replaced with Hilbert–Schmidt norm \(\| C \|_{HS} := (\text{tr}C^*C)^{1/2} \) of an operator \(C \), then the following inequality is true [1]

\[\| |A| - |B| \|_{HS} \leq \sqrt{2} \| A - B \|_{HS} \]

for any \(A, B \in B(H) \).

The coefficient \(\sqrt{2} \) is best possible for a general \(A \) and \(B \). If \(A \) and \(B \) are restricted to be self-adjoint, then the best coefficient is 1.

It has been shown in [3] that, if \(A \) is an invertible operator, then for all operators \(B \) in a neighborhood of \(A \) we have
\[\|A| - |B|\| \leq a_1\|A - B\| + a_2\|A - B\|^2 + O\left(\|A - B\|^3\right), \]

(2)

where

\[a_1 = \|A^{-1}\|\|A\| \text{ and } a_2 = \|A^{-1}\| + \|A^{-1}\|^3\|A\|^2. \]

In [2] the author also obtained the following *Lipschitz type inequality*

\[\|f(A) - f(B)\| \leq f'(a)\|A - B\| \]

(3)

where \(f \) is an *operator monotone function* on \((0, \infty)\) and \(A, B \geq aI_H > 0 \).

One of the central problems in perturbation theory is to find bounds for

\[\|f(A) - f(B)\| \]

in terms of \(\|A - B\| \) for different classes of measurable functions \(f \) for which the function of operator can be defined. For some results on this topic, see [5, 12] and the references therein.

Consider a complex Hilbert space \((H, \langle \cdot, \cdot \rangle)\). An operator \(T \) is said to be positive (denoted by \(T \geq 0 \)) if \(\langle Tx, x \rangle \geq 0 \) for all \(x \in H \) and also an operator \(T \) is said to be *strictly positive* (denoted by \(T > 0 \)) if \(T \) is positive and invertible. A real valued continuous function \(f \) on \((0, \infty)\) is said to be operator monotone if \(f(A) \geq f(B) \) holds for any \(A \geq B > 0 \).

We have the following integral representation for the power function when \(t > 0, r \in (0, 1] \), see for instance [4, p. 145]

\[t^{r-1} = \frac{\sin(r\pi)}{\pi} \int_0^\infty \frac{\lambda^{r-1}}{\lambda + t} d\lambda. \]

(4)

Observe that for \(t > 0, t \neq 1 \), we have

\[\int_0^u \frac{d\lambda}{(\lambda + t)(\lambda + 1)} = \frac{\ln t}{t - 1} + \frac{1}{1-t} \ln\left(\frac{u + t}{u + 1}\right) \]

for all \(u > 0 \).

By taking the limit over \(u \to \infty \) in this equality, we derive

\[\frac{\ln t}{t - 1} = \int_0^\infty \frac{d\lambda}{(\lambda + t)(\lambda + 1)}, \]

which gives the representation for the logarithm

\[\ln t = (t - 1) \int_0^\infty \frac{d\lambda}{(\lambda + 1)(\lambda + t)} \]

(5)

for all \(t > 0 \).

In 1934, Löwner [20] had given a definitive characterization of operator monotone functions as follows, see for instance [4, p. 144-145]:

\[\frac{\ln t}{t - 1} = \int_0^\infty \frac{d\lambda}{(\lambda + t)(\lambda + 1)}, \]

which gives the representation for the logarithm

\[\ln t = (t - 1) \int_0^\infty \frac{d\lambda}{(\lambda + 1)(\lambda + t)} \]

(5)

for all \(t > 0 \).
Theorem 1.1 A function $f : [0, \infty) \rightarrow \mathbb{R}$ is operator monotone if and only if it has the representation

$$f(t) = f(0) + bt + \int_0^\infty \frac{t \lambda}{1 + \lambda} \, dw(\lambda)$$

(6)

where $b \geq 0$ and a positive measure w on $(0, \infty)$ such that

$$\int_0^\infty \frac{\lambda}{1 + \lambda} \, dw(\lambda) < \infty.$$

We recall the important fact proved by Löwner and Heinz that states that the power function $f : [0, 1) \rightarrow \mathbb{R}$, $f(t) = t^a$ is an operator monotone function for any $a \in [0, 1]$. The function \ln is also operator monotone on $(0, 1)$.

For other examples of operator monotone functions, see [15] and [16]. For Kwong matrices and operator monotone functions on $(0, 1)$, see [22].

Let f be a continuous function defined on the interval I of real numbers, B a self-adjoint operator on the Hilbert space H and A a positive invertible operator on H. Assume that the spectrum $Sp(A^{-1/2}BA^{-1/2}) \subset \hat{I}$. Then by using the continuous functional calculus, we can define the perspective $\mathcal{P}_f(B, A)$ by setting

$$\mathcal{P}_f(B, A) := A^{1/2}f\left(A^{-1/2}BA^{-1/2}\right)A^{1/2}.$$

If A and B are commutative, then

$$\mathcal{P}_f(B, A) = Af(BA^{-1})$$

provided $Sp(BA^{-1}) \subset \hat{I}$.

For any function $f : (0, \infty) \rightarrow \mathbb{R}$ the transpose \tilde{f} of f is defined by

$$\tilde{f}(x) = xf(x^{-1}), \quad x > 0.$$

It is well known that (see for instance [24]), if $f : (0, \infty) \rightarrow \mathbb{R}$ is continuous on $(0, \infty)$, then for all $A, B > 0$,

$$\mathcal{P}_f(A, B) = \mathcal{P}_f(B, A).$$

If f is non-negative and operator monotone on $(0, \infty)$, then \tilde{f} is operator monotone on $(0, \infty)$, see [24].

The following inequality is of interest, see [24] and [19]:

Theorem 1.2 Assume that f is non-negative and operator monotone on $(0, \infty)$. If $A \geq C > 0$ and $B \geq D > 0$, then

$$\mathcal{P}_f(A, B) \geq \mathcal{P}_f(C, D).$$
It is well known that (see [8] and [21] or [9]), if \(f \) is an operator convex function defined in the positive half-line, then the mapping

\[
(B, A) \mapsto \mathcal{P}_f(B, A)
\]

defined in pairs of positive invertible operators, is operator convex.

Motivated by the above results, we show in this paper among others that

\[
\| \mathcal{P}_f(B, P) - \mathcal{P}_f(A, P) \|
\leq \frac{\|P\| \|B - A\|}{p^2} \left\{ \begin{array}{ll}
\frac{\mathcal{P}_f(m_2, p) - \mathcal{P}_f(m_1, p)}{m_2 - m_1} & \text{if } m_1 \neq m_2, \\
f'(\frac{m}{p}) & \text{if } m_1 = m_2 = m
\end{array} \right.
\]

for all \(A \geq m_1 > 0, B \geq m_2 > 0 \) and \(P \geq p > 0 \).

If \(f \) is operator monotone on \([0, \infty) \), then for all \(C \geq n_1 > 0, D \geq n_2 > 0, Q > q > 0 \) we also have

\[
\| \mathcal{P}_f(Q, D) - \mathcal{P}_f(Q, C) \|
\leq \frac{\|Q\| \|D - C\|}{q^2} \left\{ \begin{array}{ll}
\frac{\mathcal{P}_f(q, n_2) - \mathcal{P}_f(q, n_1)}{n_2 - n_1} & \text{if } n_2 \neq n_1, \\
\left[f\left(\frac{q}{n}\right) - q f'\left(\frac{q}{n}\right)\right] & \text{if } n_2 = n_1 = n.
\end{array} \right.
\]

Some applications for weighted operator geometric mean and relative operator entropy are also given.

2 Some preliminary facts

We start to the following identity of interest [7]:

Lemma 2.1 Assume that the function \(f : [0, \infty) \to \mathbb{R} \) is operator monotone and has the representation (6). Then for all \(U, V > 0 \),

\[
f(V) - f(U) = b(V - U)
\]

\[
+ \int_0^\infty \lambda^2 \left[\int_0^1 ((1 - t)U + tV + \lambda)^{-1} \right.
\]

\[
\times (V - U)((1 - t)U + tV + \lambda)^{-1} dt \left. \right] d\lambda.
\]

Proof Since the function \(f : (0, \infty) \to \mathbb{R} \) is operator monotone in \((0, \infty)\) and has the representation (6), then for \(U, V > 0 \) we have the representation
\begin{equation}
 f(V) - f(U) = b(V - U) + \int_0^\infty \lambda \left[V(V + \lambda)^{-1} - U(U + \lambda)^{-1} \right] dw(\lambda). \quad (8)
\end{equation}

Observe that for $\lambda > 0$

\[V(V + \lambda)^{-1} - U(U + \lambda)^{-1} = (V + \lambda - \lambda)(V + \lambda)^{-1} - (U + \lambda - \lambda)(U + \lambda)^{-1} = (V + \lambda)(V + \lambda)^{-1} - \lambda(V + \lambda)^{-1} - (U + \lambda)(U + \lambda)^{-1} + \lambda(U + \lambda)^{-1} = \lambda \left[(U + \lambda)^{-1} - (V + \lambda)^{-1} \right]. \]

Therefore, (8) becomes, see also [16]

\begin{equation}
 f(V) - f(U) = b(V - U) + \int_0^\infty \lambda^2 \left[(U + \lambda)^{-1} - (V + \lambda)^{-1} \right] dw(\lambda). \quad (9)
\end{equation}

Let $T, S > 0$. The function $f(t) = -t^{-1}$ is operator monotonic on $(0, \infty)$, operator Gâteaux differentiable and the Gâteaux derivative is given by

\[\nabla f_T(S) := \lim_{t \to 0} \frac{f(T + tS) - f(T)}{t} = T^{-1}ST^{-1} \quad (10) \]

for $T, S > 0$.

Consider the continuous function f defined on an interval I for which the corresponding operator function is Gâteaux differentiable and for C, D self-adjoint operators with spectra in I we consider the auxiliary function defined on $[0, 1]$ by

\[f_{C,D}(t) = f((1 - t)C + tD), \quad t \in [0, 1]. \]

If $f_{C,D}$ is Gâteaux differentiable on the segment $[C, D] := \{(1 - t)C + tD, \quad t \in [0, 1]\}$, then we have, by the properties of the Bochner integral, that

\begin{equation}
 f(D) - f(C) = f_{C,D}(1) - f_{C,D}(0) = \int_0^1 \frac{d}{dt} f_{C,D}(t) dt = \int_0^1 \nabla f_{(1-t)C+tD}(D - C) dt. \quad (11)
\end{equation}

This equality can also be seen as Taylor’s formula with integral reminder, see for instance [6, p. 112].

If we write this equality for the function $f(t) = -t^{-1}$ and $C, D > 0$, then we get the representation

\begin{equation}
 C^{-1} - D^{-1} = \int_0^1 ((1 - t)C + tD)^{-1}(D - C)((1 - t)C + tD)^{-1} dt. \quad (12)
\end{equation}

Now, if we replace in (12) $C = U + \lambda$ and $D = V + \lambda$ for $\lambda > 0$, then
\[(U + \lambda)^{-1} - (V + \lambda)^{-1} = \int_0^1 \left((1-t)U + tV + \lambda \right)^{-1} \left((1-t)U + tV + \lambda \right)^{-1} dt. \tag{13} \]

By the representation (9), we derive (7). \(\square\)

We have the following identity for the difference of perspectives in the first variable [7]:

Theorem 2.2 Assume that the function \(f : [0, \infty) \to \mathbb{R}\) is operator monotone and has the representation (6). Then for all \(A, B, P > 0,\)

\[
P_f(B, P) - P_f(A, P) = b(B - A) + \int_0^\infty \lambda^2 \left[\int_0^1 P((1-t)A + tB + \lambda P)^{-1}(B - A) \right. \\
\times \left. ((1-t)A + tB + \lambda P)^{-1} P dt \right] d\lambda. \tag{14} \]

Proof If we take \(V = P^{-1/2}BP^{-1/2}\) and \(U = P^{-1/2}AP^{-1/2}\) in (7), then we get

\[
f\left(P^{-1/2}BP^{-1/2} \right) - f\left(P^{-1/2}AP^{-1/2} \right) = b\left(P^{-1/2}BP^{-1/2} - P^{-1/2}AP^{-1/2} \right) \\
\quad + \int_0^\infty \lambda^2 \left[\int_0^1 \left((1-t)P^{-1/2}AP^{-1/2} + tP^{-1/2}BP^{-1/2} + \lambda \right)^{-1} \right. \\
\quad \times \left. \left(P^{-1/2}BP^{-1/2} - P^{-1/2}AP^{-1/2} \right) \right] \\
\quad \times \left((1-t)P^{-1/2}AP^{-1/2} + tP^{-1/2}BP^{-1/2} + \lambda \right)^{-1} dt \right] d\lambda. \tag{15} \]

Observe that

\[
P^{-1/2}BP^{-1/2} - P^{-1/2}AP^{-1/2} = P^{-1/2}(B - A)P^{-1/2}, \quad \text{and} \]

\[
(1-t)P^{-1/2}AP^{-1/2} + tP^{-1/2}BP^{-1/2} + \lambda = P^{-1/2}((1-t)A + tB + \lambda P)P^{-1/2}, \]

which gives

\[
\left((1-t)P^{-1/2}AP^{-1/2} + tP^{-1/2}BP^{-1/2} + \lambda \right)^{-1} = P^{1/2}((1-t)A + tB + \lambda P)^{-1}P^{1/2} \]

and by (15),
\[f\left(P^{-1/2}BP^{-1/2} \right) - f\left(P^{-1/2}AP^{-1/2} \right) = bP^{-1/2}(B - A)P^{-1/2} \]
\[+ \int_0^\infty \lambda^2 \left[\int_0^1 P^{1/2}((1 - t)A + tB + \lambda P)^{-1} P^{1/2}P^{-1/2}(B - A)P^{-1/2} \right] \right] \, dw(\lambda) \]
\[= bP^{-1/2}(B - A)P^{-1/2} \]
\[+ \int_0^\infty \lambda^2 \left[\int_0^1 P^{1/2}((1 - t)A + tB + \lambda P)^{-1}(B - A) \right. \]
\[- \left. ((1 - t)A + tB + \lambda P)^{-1} P^{1/2} \right] \, dw(\lambda). \]

If we multiply both sides of (16) by \(P^{1/2} \) we obtain the desired identity (14). □

Lemma 2.3 Assume that the function \(f : [0, \infty) \to \mathbb{R} \) is operator monotone and has the representation (6). Then for all \(U, V > 0 \),
\[
\tilde{f}(V) - \tilde{f}(U) = f(0)(V - U) + \int_0^\infty \lambda \left(\int_0^1 (1 + \lambda[(1 - t)U + tV])^{-1} \right. \]
\[\times (V - U)(1 + \lambda[(1 - t)U + tV])^{-1} \right) \, dw(\lambda). \]

Proof From (6) we have
\[
f(t) = f(0) + bt + t \int_0^\infty \frac{\lambda}{t + \lambda} \, dw(\lambda), \quad t > 0.
\]
If we put \(\frac{1}{t} \) instead of \(t \) we get
\[
f\left(\frac{1}{t} \right) = f(0) + \frac{1}{t} \int_0^\infty \frac{\lambda}{\frac{1}{t} + \lambda} \, dw(\lambda)
\]
\[= f(0) + \frac{1}{t} \int_0^\infty \frac{t\lambda}{1 + t\lambda} \, dw(\lambda)
\]
and by multiplication with \(t > 0 \), we get
\[
\tilde{f}(t) = b + tf(0) + \int_0^\infty \frac{t\lambda}{1 + t\lambda} \, dw(\lambda)
\]
\[= b + tf(0) + \int_0^\infty \left(1 - \frac{1}{1 + t\lambda} \right) \, dw(\lambda).
\]
Therefore
\[f(V) - f(U) = f(0)(V - U) + \int_0^\infty \left[(1 + U\lambda)^{-1} - (1 + V\lambda)^{-1} \right] dw(\lambda). \quad (18) \]

From (12) we get
\[
(1 + U\lambda)^{-1} - (1 + V\lambda)^{-1} = \int_0^1 (1 - (1 + U\lambda) + t(1 + V\lambda) - (1 + U\lambda)) \times ((1 - t)(1 + U\lambda) + t(1 + V\lambda))^{-1} dt
\]
\[
= \int_0^1 x(1 + \lambda[(1 - t)U + tV])^{-1}(V - U)(1 + \lambda[(1 - t)U + tV])^{-1} dt.
\]
Therefore, by (18) we get
\[
\begin{align*}
\tilde{f}(V) - \tilde{f}(U) &= f(0)(V - U) + \int_0^\infty \left[(1 + U\lambda)^{-1} - (1 + V\lambda)^{-1} \right] dw(\lambda) \\
&= f(0)(V - U) + \int_0^\infty \lambda \left(\int_0^1 (1 + \lambda[(1 - t)U + tV])^{-1} dt \right) dw(\lambda) \\
&\quad \times (V - U)(1 + \lambda[(1 - t)U + tV])^{-1} dt)
\end{align*}
\]
and the identity (17) is proved. \(\square\)

The dual identity is as follows [7]:

Theorem 2.4 Assume that the function \(f : [0, \infty) \to \mathbb{R} \) is operator monotone and has the representation (6). Then for all \(C, \ D, \ Q > 0 \),
\[
\mathcal{P}_f(D, Q) - \mathcal{P}_f(C, Q) = f(0)(D - C) + \int_0^\infty \lambda \left(\int_0^1 Q[Q + \lambda[(1 - t)C + tD]]^{-1}(D - C) \right. \\
\left. \times [Q + \lambda[(1 - t)C + tD]]^{-1} Q dt \right) dw(\lambda).
\]

Proof If we take \(V = Q^{-1/2}DQ^{-1/2} \) and \(U = Q^{-1/2}CQ^{-1/2} \) in (17), then we get
If we multiply both sides by \(Q^{1/2} \) we get the desired result (21). □

Corollary 2.5 Assume that the function \(f : [0, \infty) \rightarrow \mathbb{R} \) is operator monotone and has the representation (6). Then for all \(C, D, Q > 0 \),

\[
\mathcal{P}_f(Q, D) - \mathcal{P}_f(Q, C) = f(0)(D - C) + \int_0^\infty \lambda \left(\int_0^1 \frac{Q + \lambda[(1 - t)C + tD]}{(Q + \lambda[(1 - t)C + tD])^{-1}(D - C)} dt \right) dw(\lambda).
\]

(23)

We also have:

Corollary 2.6 Assume that the function \(f : [0, \infty) \rightarrow \mathbb{R} \) is operator monotone and has the representation (6). Then for all \(A, B, C, D > 0 \),
\[\mathcal{P}_f(A, B) - \mathcal{P}_f(C, D) = b(A - C) + f(0)(B - D) \]
\[+ \int_0^\infty \lambda^2 \left[\int_0^1 B((1 - t)C + tA + \lambda B)^{-1}(A - C) \right. \]
\[\times ((1 - t)C + tA + \lambda B)^{-1}Bdt \left. dw(\lambda) \right] \]
\[+ \int_0^\infty \lambda \left(\int_0^1 C[C + \lambda[(1 - t)D + tB]]^{-1}(B - D) \right. \]
\[\times [C + \lambda[(1 - t)D + tB]]^{-1}Cdt \left. dw(\lambda) \right]. \]

Proof Observe that
\[\mathcal{P}_f(A, B) - \mathcal{P}_f(C, D) = \mathcal{P}_f(A, B) - \mathcal{P}_f(C, B) + \mathcal{P}_f(C, B) - \mathcal{P}_f(C, D). \] (25)

Since, by (14),
\[\mathcal{P}_f(A, B) - \mathcal{P}_f(C, B) \]
\[= b(A - C) + \int_0^\infty \lambda^2 \left[\int_0^1 B((1 - t)C + tA + \lambda B)^{-1}(A - C) \right. \]
\[\times ((1 - t)C + tA + \lambda B)^{-1}Bdt \left. dw(\lambda) \right] \]
\[+ \int_0^\infty \lambda \left(\int_0^1 C[C + \lambda[(1 - t)D + tB]]^{-1}(B - D) \right. \]
\[\times [C + \lambda[(1 - t)D + tB]]^{-1}Cdt \left. dw(\lambda) \right], \]
and by (23),
\[\mathcal{P}_f(C, B) - \mathcal{P}_f(C, D) \]
\[= f(0)(B - D) + \int_0^\infty \lambda \left(\int_0^1 C[C + \lambda[(1 - t)D + tB]]^{-1}(B - D) \right. \]
\[\times [C + \lambda[(1 - t)D + tB]]^{-1}Cdt \left. dw(\lambda) \right), \]

hence by (25)–(27) we obtain (24). \(\square \)

3 Lipschitz type inequalities

We have the following Lipschitz type inequality for the perspective in the first variable:

Lemma 3.1 Assume that the function \(f : [0, \infty) \rightarrow \mathbb{R} \) is operator monotone and has the representation (6). Then for all \(A \geq m_1 > 0, B \geq m_2 > 0 \) and \(P \geq p > 0 \),

\[
\| \mathcal{P}_f(B, P) - \mathcal{P}_f(A, P) - b(B - A) \|
\leq \frac{\|P\|^2 \|B - A\|}{p^2} \left\{ \begin{array}{ll}
\left(\frac{\mathcal{P}_f(m_2, p) - \mathcal{P}_f(m_1, p)}{m_2 - m_1} - b \right) & \text{if } m_1 \neq m_2, \\
\left(f' \left(\frac{m_1}{p} \right) - b \right) & \text{if } m_1 = m_2 = m.
\end{array} \right.
\]

Proof Assume that \(m_1 \neq m_2 \). From (14), by taking the norm, we get that

\[
\| \mathcal{P}_f(B, P) - \mathcal{P}_f(A, P) - b(B - A) \|
\leq \int_0^\infty \lambda^2 \left[\int_0^1 \|P((1 - t)A + tB + \lambda P)^{-1}(B - A) \times ((1 - t)A + tB + \lambda P)^{-1}P\| \, dt \right] \, dw(\lambda)
\leq \|P\|^2 \|B - A\| \int_0^\infty \lambda^2 \left(\int_0^1 \|((1 - t)A + tB + \lambda P)^{-1}\|^2 \, dt \right) \, dw(\lambda)
\]

for \(A, B, P > 0 \).

We have

\[(1 - t)A + tB + \lambda P \geq (1 - t)m_1 + tm_2 + \lambda p,\]

which implies that

\[((1 - t)A + tB + \lambda P)^{-1} \leq ((1 - t)m_1 + tm_2 + \lambda p)^{-1}\]

for all \(t \in [0, 1] \) and \(\lambda \geq 0 \).

By taking the norm, we then get

\[\|((1 - t)A + tB + \lambda P)^{-1}\| \leq ((1 - t)m_1 + tm_2 + \lambda p)^{-1},\]

which implies that

\[\|((1 - t)A + tB + \lambda P)^{-1}\|^2 \leq ((1 - t)m_1 + tm_2 + \lambda p)^{-2},\]

for all \(t \in [0, 1] \) and \(\lambda \geq 0 \).

By (29) we derive

\[
\| \mathcal{P}_f(B, P) - \mathcal{P}_f(A, P) - b(B - A) \|
\leq \|P\|^2 \|B - A\| \int_0^\infty \lambda^2 \left(\int_0^1 ((1 - t)m_1 + tm_2 + \lambda p)^{-2} \, dt \right) \, dw(\lambda).
\]

From the identity (14) for \(B = m_2, A = m_1 \) and \(P = p \) we get
\[\mathcal{P}_f(m_2, p) - \mathcal{P}_f(m_1, p) = b(m_2 - m_1) + \int_0^\infty \lambda^2 \left(\int_0^1 p((1-t)m_1 + tm_2 + \lambda p)^{-1} (m_2 - m_1) \right) \right) \, dw(\lambda) \]
\[= b(m_2 - m_1) + (m_2 - m_1)p^2 \int_0^\infty \lambda^2 \left(\int_0^1 ((1-t)m_1 + tm_2 + \lambda p)^{-2} dt \right) \, dw(\lambda), \]

which gives
\[\int_0^\infty \lambda^2 \left(\int_0^1 ((1-t)m_1 + tm_2 + \lambda p)^{-2} dt \right) \, dw(\lambda) = \frac{\mathcal{P}_f(m_2, p) - \mathcal{P}_f(m_1, p)}{(m_2 - m_1)p^2} - \frac{b}{p^2} \]

and the inequality in the first branch of (28) is proved.

Let \(m_1 = m_2 = m \). Let \(\epsilon > 0 \). Then \(B + \epsilon \geq m + \epsilon > 0 \). From the first branch of (28) we get
\[\| \mathcal{P}_f(B + \epsilon, P) - \mathcal{P}_f(A, P) - b(B + \epsilon - A) \| \]
\[\leq \|P\|^2 \|B + \epsilon - A\| \left[\frac{\mathcal{P}_f(m + \epsilon, p) - \mathcal{P}_f(m, p)}{\epsilon p^2} - \frac{b}{p^2} \right]. \]

(31)

and by taking the limit over \(\epsilon \to 0^+ \), using the continuity and differentiability of \(f \),
\[\| \mathcal{P}_f(B, P) - \mathcal{P}_f(A, P) - b(B - A) \| \leq \|P\|^2 \|B - A\| \left(\frac{\partial \mathcal{P}_f(m, p)}{\partial x p^2} - \frac{b}{p^2} \right). \]

(32)

Since
\[\mathcal{P}_f(x, y) := yf \left(\frac{x}{y} \right), \]

hence
\[\frac{\partial \mathcal{P}_f(x, y)}{\partial x} := f' \left(\frac{x}{y} \right) \]

which give that
\[\frac{\partial \mathcal{P}_f(m, p)}{\partial x} = f' \left(\frac{m}{p} \right) \]

and by (32) we deduce the second inequality in (28). \(\square \)

If the parameter \(b \geq 0 \) is not available, then we can state the following more practical bounds:
Theorem 3.2 Assume that the function $f : [0, \infty) \to \mathbb{R}$ is operator monotone. Then for all $A \geq m_1 > 0$, $B \geq m_2 > 0$ and $P \geq p > 0$,

$$\| \mathcal{P}_f(B, P) - \mathcal{P}_f(A, P) \| \leq \frac{\|P\|^2\|B - A\|}{p^2} \begin{cases} \left(\frac{\mathcal{P}_f(m_2, p) - \mathcal{P}_f(m_1, p)}{m_2 - m_1} \right) & \text{if } m_1 \neq m_2, \\ f'(\frac{m}{p}) & \text{if } m_1 = m_2 = m. \end{cases} \quad (33)$$

Proof By the triangle inequality we get from (28) that

$$\| \mathcal{P}_f(B, P) - \mathcal{P}_f(A, P) \| - b\|B - A\| \leq \| \mathcal{P}_f(B, P) - \mathcal{P}_f(A, P) - b(B - A) \| \leq \begin{cases} \frac{\|P\|^2\|B - A\|}{p^2} \left[\frac{\mathcal{P}_f(m_2, p) - \mathcal{P}_f(m_1, p)}{m_2 - m_1} - b \right] & \text{if } m_1 \neq m_2, \\ \frac{\|P\|^2\|B - A\|}{p^2} \left[f'(\frac{m}{p}) - b \right] & \text{if } m_1 = m_2 = m, \end{cases}$$

which implies that

$$\| \mathcal{P}_f(B, P) - \mathcal{P}_f(A, P) \| \leq \begin{cases} \frac{\|P\|^2\|B - A\|}{p^2} \left[\frac{\mathcal{P}_f(m_2, p) - \mathcal{P}_f(m_1, p)}{m_2 - m_1} - b \right] + b\|B - A\| \\ \frac{\|P\|^2\|B - A\|}{p^2} \left[f'(\frac{m}{p}) - b \right] + b\|B - A\| \\ \frac{\|P\|^2\|B - A\|}{p^2} \left[\frac{\mathcal{P}_f(m_2, p) - \mathcal{P}_f(m_1, p)}{m_2 - m_1} \right] + b\|B - A\| \left(1 - \frac{\|P\|^2}{p^2} \right) \\ \frac{\|P\|^2\|B - A\|}{p^2} \left[f'(\frac{m}{p}) \right] + b\|B - A\| \left(1 - \frac{\|P\|^2}{p^2} \right). \end{cases} \quad (34)$$

Observe that $1 - \frac{\|P\|^2}{p^2} \leq 0$ and since $b \geq 0$, we get by (34) the desired result (33). □

Theorem 3.3 Assume that the function $f : [0, \infty) \to \mathbb{R}$ is operator monotone and has the representation (6). Then for all $C \geq n_1 > 0$, $D \geq n_2 > 0$, $Q > q > 0$,
\[
\begin{aligned}
&\| \mathcal{P}_f(Q,D) - \mathcal{P}_f(Q,C) - f(0)(D-C) \| \\
&\leq \frac{\|Q\|^2\|D-C\|}{q^2} \left\{ \begin{array}{ll}
\frac{\mathcal{P}_f(q,n_2) - \mathcal{P}_f(q,n_1)}{n_2-n_1} - f(0) & \text{if } n_2 \neq n_1, \\
\frac{f\left(\frac{q}{n}\right) - f\left(\frac{q}{n}\right)}{q} & \text{if } n_2 = n_1 = n.
\end{array} \right.
\end{aligned}
\]

(35)

Proof From the representation (23) we get, by taking the norm, that
\[
\| \mathcal{P}_f(Q,D) - \mathcal{P}_f(Q,C) - f(0)(D-C) \| \\
\leq \|Q\|^2\|D-C\| \int_0^\infty \lambda \left(\int_0^1 \| Q + \lambda[(1-t)C + tD] \|^{-2} \right) dt \, d\lambda.
\]

(36)

Since \(C \geq n_1 > 0, D \geq n_2 > 0, Q > q > 0, \)
\[
Q + \lambda[(1-t)C + tD] \geq q + \lambda[(1-t)n_1 + m_2],
\]

namely
\[
(Q + \lambda[(1-t)C + tD])^{-1} \leq (q + \lambda[(1-t)n_1 + m_2])^{-1},
\]

which implies that
\[
\| (Q + \lambda[(1-t)C + tD])^{-1} \| \leq (q + \lambda[(1-t)n_1 + m_2])^{-1}.
\]

Therefore
\[
\| (Q + \lambda[(1-t)C + tD])^{-1} \|^2 \leq (q + \lambda[(1-t)n_1 + m_2])^{-2}
\]

and by integration,
\[
\int_0^\infty \lambda \left(\int_0^1 \| Q + \lambda[(1-t)C + tD] \|^{-2} \right) dt \, d\lambda \\
\leq \int_0^\infty \lambda \left(\int_0^1 (q + \lambda[(1-t)n_1 + m_2])^{-2} dt \right) d\lambda.
\]

(37)

By utilising (36) and (37) we obtain
\[
\begin{aligned}
&\| \mathcal{P}_f(Q,D) - \mathcal{P}_f(Q,C) - f(0)(D-C) \| \\
&\leq \|Q\|^2\|D-C\| \int_0^\infty \lambda \left(\int_0^1 (q + \lambda[(1-t)n_1 + m_2])^{-2} dt \right) d\lambda.
\end{aligned}
\]

(38)

If in the identity (23) we choose \(D = n_2, C = n_1 \) and \(Q = q \) then we get...
\[\mathcal{P}_f(q, n_2) - \mathcal{P}_f(q, n_1) \]
\[= f(0)(n_2 - n_1) + \int_0^\infty \lambda \left(\int_0^1 q[q + \lambda[(1 - t)n_1 + n_2]]^{-1}q dt \right) dw(\lambda) \]
\[\times [q + \lambda[(1 - t)n_1 + n_2]]^{-1}q dt \right) dw(\lambda) \]
\[= f(0)(n_2 - n_1) \]
\[+ q^2(n_2 - n_1) \int_0^\infty \lambda \left(\int_0^1 [q + \lambda[(1 - t)n_1 + n_2]]^{-2} dt \right) dw(\lambda). \] (39)

If \(n_2 \neq n_1 \), then by (39) we get
\[\int_0^\infty \lambda \left(\int_0^1 [q + \lambda[(1 - t)n_1 + n_2]]^{-2} dt \right) dw(\lambda) \]
\[= \frac{1}{q^2} \left[\mathcal{P}_f(q, n_2) - \mathcal{P}_f(q, n_1) - f(0) \right]. \] (40)

By making use of (38) and (40) we derive the first branch in (35).

Let \(n_1 = n_2 = n \). Let \(\epsilon > 0 \). Then \(D + \epsilon \geq n + \epsilon > 0 \). From the first branch of (35) we get
\[\| \mathcal{P}_f(Q, D + \epsilon) - \mathcal{P}_f(Q, C) - f(0)(D + \epsilon - C) \| \]
\[\leq \| Q \|_2 \| D + \epsilon - C \| \left[\mathcal{P}_f(q, n + \epsilon) - \mathcal{P}_f(q, n) \right] \]
\[= \frac{1}{q^2} \left[\mathcal{P}_f(q, n_2) - \mathcal{P}_f(q, n_1) - f(0) \right]. \]

and by taking the limit over \(\epsilon \to 0^+ \), using the continuity and differentiability of \(f \),
\[\| \mathcal{P}_f(Q, D) - \mathcal{P}_f(Q, C) - f(0)(D - C) \| \]
\[\leq \| Q \|_2 \| D - C \| \left[\mathcal{P}_f(q, n) - f(0) \right]. \] (41)

Since
\[\mathcal{P}_f(x, y) := yf \left(\frac{x}{y} \right), \]

hence
\[\frac{\partial \mathcal{P}_f(x, y)}{\partial y} := f \left(\frac{x}{y} \right) + yf' \left(\frac{x}{y} \right) \left(\frac{x}{y} \right)' = f \left(\frac{x}{y} \right) - \frac{yx}{y^2}f' \left(\frac{x}{y} \right) \]
\[= f \left(\frac{x}{y} \right) - \frac{x}{y}f' \left(\frac{x}{y} \right), \]

which give that
\[\frac{\partial \mathcal{P}_f(q, n)}{\partial y} = f\left(\frac{q}{n}\right) - \frac{q}{n} f'\left(\frac{q}{n}\right) , \]

and the second branch of (35) is also proved. \(\square \)

Corollary 3.4 Assume that the function \(f : [0, \infty) \to \mathbb{R} \) is operator monotone. Then for all \(C \geq n_1 > 0, D \geq n_2 > 0, Q > q > 0, \)
\[\| \mathcal{P}_f(Q, D) - \mathcal{P}_f(Q, C) \| \leq \frac{\|Q\|^2\|D - C\|}{q^2} \left\{ \begin{array}{ll}
\frac{\mathcal{P}_f(q, n_2) - \mathcal{P}_f(q, n_1)}{n_2 - n_1} & \text{if } n_2 \neq n_1 , \\
\left[f\left(\frac{q}{n}\right) - \frac{q}{n} f'\left(\frac{q}{n}\right) \right] & \text{if } n_2 = n_1 = n .
\end{array} \right. \] (42)

The proof is similar to the one provided in the proof of Theorem 3.2.

Corollary 3.5 Assume that the function \(f : [0, \infty) \to \mathbb{R} \) is operator monotone and has the representation (6). Then for all \(A \geq m_1 > 0, B \geq m_2 > 0, C \geq n_1 > 0, D \geq n_2 > 0, \)
\[\| \mathcal{P}_f(A, B) - \mathcal{P}_f(C, D) - b(A - C) - f(0)(B - D) \| \leq \frac{\|B\|^2\|A - C\|}{m_2} \left\{ \begin{array}{ll}
\frac{\mathcal{P}_f(m_1, m_2) - \mathcal{P}_f(n_1, m_2)}{m_1 - n_1} & , m_1 \neq n_1 \\
\left[f\left(\frac{m_1}{m_2}\right) - b \right] , m_1 = n_1 \end{array} \right. \]
\[+ \frac{\|C\|^2\|B - D\|}{n_1} \left\{ \begin{array}{ll}
\frac{\mathcal{P}_f(n_1, m_2) - \mathcal{P}_f(n_1, n_2)}{m_2 - n_2} & - f(0) , m_2 \neq n_2 \\
\left[f\left(\frac{n_1}{n_2}\right) - \frac{n_1}{n_2} f'\left(\frac{n_1}{n_2}\right) - f(0) \right] , m_2 = n_2 .
\end{array} \right. \] (43)

Proof From Theorems 3.2 and 3.3 we have
\[\| \mathcal{P}_f(A, B) - \mathcal{P}_f(C, D) - b(A - C) - f(0)(B - D) \| \\
= \| \mathcal{P}_f(A, B) - \mathcal{P}_f(C, B) + \mathcal{P}_f(C, B) - \mathcal{P}_f(C, D) - b(A - C) - f(0)(B - D) \| \\
\leq \| \mathcal{P}_f(A, B) - \mathcal{P}_f(C, B) - b(A - C) \| \\
+ \| \mathcal{P}_f(C, B) - \mathcal{P}_f(C, D) - f(0)(B - D) \| \\
\leq \frac{\| B \|^2}{m_2} \| A - C \| \begin{cases} \\
\left[\frac{\mathcal{P}_f(m_1, m_2) - \mathcal{P}_f(n_1, m_2)}{m_1 - n_1} - b \right], & m_1 \neq n_1 \\
\left[f'(\frac{m_1}{m_2}) - b \right], & m_1 = n_1 \\
\end{cases} \\
+ \frac{\| C \|^2}{n_1} \| B - D \| \begin{cases} \\
\left[\frac{\mathcal{P}_f(n_1, m_2) - \mathcal{P}_f(n_1, n_2)}{m_2 - n_2} - f(0) \right], & m_2 \neq n_2 \\
\left[f\left(\frac{n_1}{n_2}\right) - \frac{n_1}{n_2} f'(\frac{n_1}{n_2}) - f(0) \right], & m_2 = n_2, \\
\end{cases} \\
\]

which proves (43). □

4 Some examples

If \(f_r : [0, \infty) \to [0, \infty), f_r(t) = t^r, r \in [0, 1], \) then

\[\mathcal{P}^r_f(B, A) := A^{1/2} \left(A^{-1/2}BA^{-1/2} \right)^r A^{1/2} =: A^r_{\#}, B, \]

is the \textit{weighted operator geometric mean} of the positive invertible operators \(A \) and \(B \) with the weight \(r \).

Observe also that

\[\mathcal{P}^r_f(x, y) = y^{1/2} \left(y^{1/2}xy^{-1/2} \right)^r y^{1/2} = x^r y^{1-r}, \ x, y > 0. \]

From (33) we get for the power function

\[\| A^r_{\#} - A^m_{\#} \| \leq \frac{\| B \|^2 \| D - A \|}{p^{r+1}} \begin{cases} \\
\left(\frac{m_2 - m_1}{m_2 - m_1} \right)^r & \text{if } m_1 \neq m_2, \\
rm^{r-1} & \text{if } m_1 = m_2 = m \\
\end{cases} \] (44)

for all \(A \geq m_1 > 0, B \geq m_2 > 0 \) and \(P \geq p > 0 \).

From (42) we obtain

\[\| D^r_{\#}Q - C^r_{\#}Q \| \leq \frac{\| Q \|^2 \| D - C \|}{q^{2-r}} \begin{cases} \\
\left(\frac{n_2^{1-r} - n_1^{1-r}}{n_2 - n_1} \right) & \text{if } n_2 \neq n_1, \\
\frac{(1 - r)}{n_{r}} & \text{if } n_2 = n_1 = n \\
\end{cases} \] (45)

for all \(C \geq n_1 > 0, D \geq n_2 > 0, Q > q > 0. \)
If we take the function $f = \ln$, then

$$P_{\ln}(B, A) := A^{1/2} \ln \left(A^{-1/2} BA^{-1/2} \right) A^{1/2} =: S(A|B),$$

is the relative operator entropy, for positive invertible operators A and B.

Kamei and Fujii [13, 14] defined the relative operator entropy $S(A|B)$, for positive invertible operators A and B, which is a relative version of the operator entropy considered by Nakamura-Umegaki [23].

Observe also that

$$P_{\ln}(x, y) := y^{1/2} \ln \left(y^{-1/2} xy^{-1/2} \right) y^{1/2} = y \ln \left(\frac{x}{y} \right), \quad x, y > 0.$$

Let $\varepsilon > 0$. If we use the inequality (33) for the function $f_{\varepsilon}(t) = \ln(t + \varepsilon), \ t \in [0, \infty)$, then we obtain

$$\left\| P^{1/2} \ln \left(P^{-1/2} BP^{-1/2} + \varepsilon \right) P^{1/2} - P^{1/2} \ln \left(P^{-1/2} AP^{-1/2} + \varepsilon \right) P^{1/2} \right\|
\leq \frac{\|P\|^2 \|B - A\|}{p} \left\{ \begin{array}{ll}
\frac{\ln(m_2 + \varepsilon) - \ln(m_1 + \varepsilon)}{m_2 - m_1} & \text{if } m_1 \neq m_2, \\
\frac{1}{m + \varepsilon} & \text{if } m_1 = m_2 = m,
\end{array} \right. \tag{46}$$

where $A \succeq m_1 > 0, B \succeq m_2 > 0$ and $P \succeq p > 0$.

If we take in $\varepsilon \to 0^+$ in (46), then we get

$$\|S(P|B) - S(P|A)\| \leq \frac{\|P\|^2 \|B - A\|}{p} \left\{ \begin{array}{ll}
\frac{\ln m_2 - \ln m_1}{m_2 - m_1} & \text{if } m_1 \neq m_2, \\
\frac{1}{m} & \text{if } m_1 = m_2 = m,
\end{array} \right. \tag{47}$$

where $A \succeq m_1 > 0, B \succeq m_2 > 0$ and $P \succeq p > 0$.

Acknowledgements The author would like to thank the anonymous referees for their valuable suggestions that have been implemented in the final version of the paper.

References

1. Araki, H., Yamagami, S.: An inequality for Hilbert–Schmidt norm. Commun. Math. Phys. **81**, 89–96 (1981)
2. Bhatia, R.: First and second order perturbation bounds for the operator absolute value. Linear Algebra Appl. **208**(209), 367–376 (1994)
3. Bhatia, R.: Perturbation bounds for the operator absolute value. Linear Algebra Appl. **226**(228), 639–645 (1995)
4. Bhatia, R.: Matrix analysis. Graduate Texts in Mathematics, vol. 169, p. xii+347. Springer, New York (1997). (ISBN: 0-387-94846-5)
5. Bhatia, R., Singh, D., Sinha, K.B.: Differentiation of operator functions and perturbation bounds. Commun. Math. Phys. **191**(3), 603–611 (1998)
6. Coleman, R.: Calculus on Normed Vector Spaces. Springer, Berlin (2010)
7. Dragomir, S.S.: Noncommutative perspectives of operator monotone functions in Hilbert spaces. Preprint RGMIA Res. Rep. Coll. 23, Art. 118 (2020). Preprint https://arxiv.org/abs/2009.00241
8. Effros, E.G.: A matrix convexity approach to some celebrated quantum inequalities. Proc. Natl. Acad. Sci. USA 106, 1006–1008 (2009)
9. Effros, E.G., Hansen, F.: Noncommutative perspectives. Ann. Funct. Anal. 5(2), 74–79 (2014)
10. Farforovskaya, YuB: Estimates of the closeness of spectral decompositions of self-adjoint operators in the Kantorovich–Rubinshtein metric (in Russian). Vesln. Leningrad. Gos. Univ. Ser. Mat. Mekh. Astronom. 4, 155–156 (1967)
11. Farforovskaya, YuB: An estimate of the norm \(\| f(B) - f(A) \| \) for self-adjoint operators \(A \) and \(B \) (in Russian). Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. 56, 143–162 (1976)
12. Farforovskaya, YuB, Nikolskaya, L.: Modulus of continuity of operator functions. Algebra i Analiz 20(3), 224–242 (2008). [translation in St. Petersburg Math. J. 20 (2009), no. 3, 493–506]
13. Fujii, J.I., Kamei, E.: Uhlmann’s interpolational method for operator means. Math. Jpn. 34(4), 541–547 (1989)
14. Fujii, J.I., Kamei, E.: Relative operator entropy in noncommutative information theory. Math. Jpn. 34(3), 341–348 (1989)
15. Fujii, J.I., Seo, Y.: On parametrized operator means dominated by power ones. Sci. Math. 1, 301–306 (1998)
16. Furuta, T.: Precise lower bound of \(f(A) - f(B) \) for \(A > B > 0 \) and non-constant operator monotone function \(f \) on \([0, \infty) \). J. Math. Inequal. 9(1), 47–52 (2015)
17. Heinz, E.: Beiträge zur Störungstheorie der Spektralzerlegung. Math. Ann. 123, 415–438 (1951)
18. Kato, T.: Continuity of the map \(S \mapsto |S| \) for linear operators. Proc. Jpn. Acad. 49, 143–162 (1973)
19. Kubo, F., Ando, T.: Means of positive linear operators. Math. Ann. 246(3), 205–224 (1979/80)
20. Löwner, K.: Über monotone MatrixFunktionen. Math. Z 38, 177–216 (1934)
21. Moslehian, M.S., Kian, M.: Non-commutative \(f \)-divergence functional. Math. Nachr. 286(14–15), 1514–1529 (2013)
22. Morishita, J., Sano, T., Tachibana, S.: Kwong matrices and operator monotone functions on \((0, 1) \). Ann. Funct. Anal. 5(1), 121–127 (2014)
23. Nakamura, M., Umegaki, H.: A note on the entropy for operator algebras. Proc. Jpn. Acad. 37, 149–154 (1961)
24. Nikoufar, I., Shamohammadi, M.: The converse of the Loewner–Heinz inequality via perspective. Linear Multilinear Algebra 66(2), 243–249 (2018)

Affiliations

Silvestru Sever Dragomir

Silvestru Sever Dragomir
sever.dragomir@vu.edu.au

1 Mathematics, College of Engineering and Science, Victoria University, PO Box 14428, Melbourne, MC 8001, Australia