Prospective Study

Regulatory and activated effector T cells in chronic hepatitis C virus: Relation to autoimmunity

Hanan Fouad, Maissa El Raziky, Eman Medhat Hassan, Ghada Mahmoud Abdel Aziz, Samar K Darweesh, Ahmed Reda Sayed

Hanan Fouad, Department of Medical Biochemistry, Faculty of Medicine, Cairo University, Cairo 11562, Egypt
Hanan Fouad, Department of Pharmacology and Toxicology, Faculty of Pharmacy, Hail University, Hail 81442, Saudi Arabia
Maissa El Raziky, Eman Medhat Hassan, Samar K Darweesh, Department of Hepato-gastroenterology and Tropical Medicine, Faculty of Medicine, Cairo University, Cairo 11562, Egypt
Ghada Mahmoud Abdel Aziz, Ahmed Reda Sayed, Department of Medical Biochemistry, Faculty of Medicine, Beni Suef University, Beni Suef 19206, Egypt

Author contributions: All authors contributed to this work.

Institutional review board statement: The research Ethics Committee of Faculty of Medicine, Cairo University approved the study.

Informed consent statement: Written consent was signed from all subjects of the study.

Conflict-of-interest statement: There are no conflicts of interest.

Data sharing statement: We have no data sharing statement.

Open-Access: This article is an open-access article which was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/

Manuscript source: Unsolicited manuscript

Correspondence to: Hanan Fouad, Professor, Department of Medical Biochemistry, Faculty of Medicine, Cairo University, 110 Manial Street, Manial El-Roda District, Cairo 11562, Egypt. hanan.fouad@kasralainy.edu.eg
Telephone: +20-22-5256002
Fax: +20-22-3632297

Received: April 23, 2016
Peer-review started: April 25, 2016
First decision: June 6, 2016
Revised: July 30, 2016
Accepted: August 27, 2016
Article in press: August 29, 2016
Published online: October 28, 2016

Abstract

AIM
To investigate how Tregs are regulated in chronic hepatitis C virus (HCV) patients via assessment of Tregs markers (granzyme 2, CD69 and FoxP3), Teffs markers [TNFRSF4 (OX40), INFγ] and CD4, CD25 genes.

METHODS
A prospective study was conducted on 120 subjects divided into 4 groups: Group I (n = 30) treatment naïve chronic HCV patients; Group II (n = 30) chronic HCV treated with Peg/Riba; Group III (n = 30) chronic HCV associated with non-organ specific autoantibody and Group IV (n = 30) healthy persons as a control group. Tregs and Teffs markers were assessed in peripheral blood mononuclear cells by quantitative real time reverse transciptase-polymerase chain reaction.

RESULTS
Chronic HCV patients exhibited significant higher levels of both Teffs and Tregs in comparison to healthy control group. Tregs markers were significantly decreased in Peg/Riba treated HCV patients in comparison to treatment naïve HCV group. In HCV patients with antinuclear...
antibody (ANA) +ve, Tregs markers were significantly decreased in comparison to all other studied groups. Teffs markers were significantly elevated in all HCV groups in comparison to control and in HCV group with ANA +ve in comparison to treatment naïve HCV group.

CONCLUSION
Elevated Tregs cells in chronic HCV patients dampen both CD4+ and CD8+ autologous T cell immune response. Interferon-α and ribavirin therapy suppress proliferation of Tregs. More significant suppression of Tregs was observed in HCV patients with autoantibodies favoring pathological autoimmune response.

Key words: Autoimmunity; T regulatory cells; Hepatitis C virus; T activator cells; Interferon

© The Author(s) 2016. Published by Baishideng Publishing Group Inc. All rights reserved.

Core tip: A prospective study conducted on 120 subjects divided into: Treatment naïve hepatitis C virus (HCV) patients, HCV patients treated with old standard of care, HCV associated with antinuclear antibody (ANA) and healthy control group. Teffs/Tregs imbalance was evaluated. Results showed that HCV patients exhibited significant higher levels of both Teffs and Tregs markers. Interferon-α and ribavirin therapy suppresses proliferation of Tregs. More significant suppression of Tregs was observed in HCV patients with autoantibodies favoring pathological autoimmune response. Teffs markers were significantly elevated in HCV treated group and in HCV group with ANA +ve in comparison to treatment naïve HCV group.

INTRODUCTION
Over 200 million people worldwide are suffering from chronic hepatitis C virus (HCV) infection and liver cirrhosis will be developed in about a quarter of these patients[9]. The prevalence rate of HCV genotype 4 in high risk populations in Egypt ranges from 73% to 90% and it was also found to be highly prevalent in sub-Saharan Africa and in the Middle East[13].

T lymphocytes play a major role in cell mediated immunity[8]. The several subsets of T cells have distinct functions and the majority is part of the adaptive immune system. Other subtypes can effectively present antigens to other T cells and are considered to be part of the innate immune system[5].

HCV is accompanied with different autoimmune manifestations[7], and could be a stimulator for the autoimmune reactions causing production of autoantibodies[8]. More recently, Acay et al[9] stated that the auto-antibodies in chronic HCV infection are highly incident. The authors stated that high percentages of patients with chronic hepatitis C had anti-mitochondrial antibodies, anti-smooth muscle antibodies, antinuclear antibody (ANA), thyroid antibody and anti-liver kidney microsomal antibodies.

The old HCV therapeutic protocol recommended by National Institutes of Health[10] was pegylated interferon (PEG-IFN) and ribavirin. Either endogenous or exogenous IFN-α leads to down regulation of CD4+ FoxP3+IFN-γ+ activated T regulatory cells (aTregs) while at the same time induces induction of of CD4+ FoxP3+FoxP3-IFN-γ+ T-activated cells (aTeffs). IFN-α play an essential role in suppression of Tregs via inhibition of interleukin-2 secretion[11].

Together, these observations support the fact that in early antiviral response there is a production of IFN-α which enhances CD4 effector functions by inhibiting Tregs activation, whereas sustained elevation of IFN-α reverses Tregs/Teffs balance towards Teffs activation, generation of auto antibody and development of autoimmunity.

The objective of the present study is to evaluate the extent of Teffs/Tregs imbalance in chronic HCV and its association with old standard of care as well as the presence of ANA.

MATERIALS AND METHODS

Study outcomes
Our research hypothesis was that HCV with or without IFN-α and ribavirin is usually associated with Tregs/Teffs imbalance with subsequent generation of autoantibodies.

The primary outcome for this study was to evaluate Teffs/Tregs balance and regulation in chronic HCV through assessment of Tregs markers (granzyme 2, CD69 and FoxP3), Teffs markers (TNFRSF4, INFγ) and CD4, CD25 genes. Assessment of the effect of IFN-α and ribavirin on Teffs/Tregs balance as well as the association of Teffs/Tregs balance with the presence of antinuclear antibody were also conducted.

Study population
This was a prospective study conducted in Biochemistry and Molecular Biology Unit, Cairo University, Faculty of Medicine. The study included one hundred and twenty subjects categorized into 4 groups: Group I (30 patients) treatment naïve chronic HCV patients; Group II (30 patients) chronic HCV patients treated with the old standard of care therapy; Peg-IFN-α and ribavirin (Peg/Riba), group III (30 patients) chronic HCV patients associated with non-organ specific autoantibody and group IV, 30 healthy persons served as a control group. The patients attended the Internal Medicine Department at Beni-Sueif General Hospital. Healthy controls matched the age and sex of other patients. Cairo University Institutional
Table 1 Primers for TNFRSF4/(OX40), granzyme 2, CD69, CD4, CD25, FoxP3 and interferon γ genes

Gene/Sample	Forward	Reverse
TNFRSF4OX40	Forward: '5 GCA ATA GCT CGG ACG CAA TCT T3'	Reverse: '5 GAG GGT CCC TGG TCC ATA GGA GA T3'
DQ032625.1	Forward: '5 TAC CAT TGA GTG GTG GGT GGG T3'	Reverse: '5 GCC ATT GTT TCG TCC ATA GGA GA 3'
Granzyme 2	Forward: '5 GCC ATT GTT TCG TCC ATA GGA GA 3'	Reverse: '5 GGT CAC CCA TGG AAG TGG TC T3'
NM_004131.4	Forward: '5 GGT CAC CCA TGG AAG TGG TC T3'	Reverse: '5 GAC TTC GGA CCA CAG AGC AG 3'
CD69	Forward: '5 GCT CAC CCA TGG AAG TGG TC T3'	Reverse: '5 GAC TTC GGA CCA CAG AGC AG 3'
NM_001781.2	Forward: '5 CTG CAA GTT CCA ACA CGG TC T3'	Reverse: '5 GAC TTC GGA CCA CAG AGC AG 3'
CD4 NM_00195017.2	Forward: '5 CTG CAA GTT CCA ACA CGG TC T3'	Reverse: '5 GAC TTC GGA CCA CAG AGC AG 3'
CD25 IL2R NM_000417.2	Forward: '5 GCT CTA CAC AGA GGT CCT GC T3'	Reverse: '5 ACC ATG ACT AGG GGC ACT GTA T3'
FoxP3	Forward: '5 ACC ATG ACT AGG GGC ACT GTA T3'	Reverse: '5 CTG CCT TAG GTT GGC TGC CT T3'
NG_007392.1	Forward: '5 ACC ATG ACT AGG GGC ACT GTA T3'	Reverse: '5 CTG CCT TAG GTT GGC TGC CT T3'
Interferon γ	Forward: '5 ATG GTT GTC CTG CCT GCA AT T3'	Reverse: '5 CTG CCT TAG GTT GGC TGC CT T3'
NG_015840.1	Forward: '5 ATG GTT GTC CTG CCT GCA AT T3'	Reverse: '5 CTG CCT TAG GTT GGC TGC CT T3'

review board in Faculty of Medicine approved the study. Informed written consent was signed by all subjects of the study.

The eligibility of selected patients included: (1) age between 18 and 65 years old; (2) anti-HCV positive serum; (3) positive HCV RNA detected by reverse-transcription/polymerase chain reaction (RT/PCR); (4) non-HIV-positive patients, co-morbid serious conditions, schisto-somiasis mansoni, past history of alcohol abuse or long use of hepatotoxic drugs.

All HCV-infected patients in the treated group had a 48 wk course of old standard of care (Peg/Riba therapy) and achieved sustained virologic response. The T cells markers were analyzed after more than 6 mo of the end of the Peg/Riba course.

Study analytic procedure

Whole blood was obtained from all subjects of the study. The mononuclear cell layer was isolated using Ficoll (Sigma, St. Louis, MO, United States) and centrifugation was conducted for 30 min at 400 g in cooling centrifuge.

RNA extraction: Total RNA was isolated from mononuclear cell layer using Qiagen purification reagent (Qiagen, CA, United States). The extracted RNA was quantified and checked for purity using a spectrophotometer (260/280 nm). Five microliter of total RNA was used to generate cDNA using 20 pmol antisense primer and 0.8 μL AMV reverse transcriptase at 37 °C for 60 min. The relative abundance of mRNA species was evaluated using the SYBR® Green method (Applied Biosystems, CA, United States).

All cDNA were prepared for all gene markers, glyceraldehyde 3-phosphate dehydrogenase (GAPDH), and for non-template negative control.

Five microliter of total RNA was used to generate cDNA using 20 pmol antisense primer and 0.8 μL AMV reverse transcriptase at 37 °C for 60 min. The relative abundance of mRNA species was evaluated using the SYBR® Green method (Applied Biosystems, CA, United States).

Annealing temperature of 60 °C was optimized for all primer sets. Real time polymerase reaction was performed in 25 μL reaction volume consisting of Mater Mix of SYBR Green, 3 μL of cDNA, 900 nmol/L of every primer. Amplification conditions were conducted according to the manufacturer specifications: 2 min at 50 °C, 10 min at 95 °C, 40 repeated cycles with 15 s denaturation and 10 min of annealing/extension at 60 °C.

Calculation of relative quantification (relative expression)

The resulting data were expressed in Cycle threshold (Ct). The PCR data results show Ct values of all studied genes (CD69, CD4, granzyme 2, TNFRSF4, FoxP3, CD25 and IFN-γ) and the house keeping gene (GAPDH). A negative control sample was no template cDNA was used. Target gene expression was related to GAPDH.

Data were calculated using the Applied Biosystems Step One plus software. Relative gene expressions of all assessed genes were calculated using the comparative Ct method. All values were normalized to GAPDH housekeeping gene and expressed as fold changes relative to the background levels found in the control samples.

Statistical analysis

Statistical Package of Social Studies (SPSS) version 16.0.1 (SPSS Inc., Chicago, IL, United States) was utilized. Numerical data were presented as mean ± standard deviation. The null hypothesis was calculated for multiple groups by a single-factor ANOVA and for two groups by
unpaired t-test. Statistically significant was considered if P value was < 0.05.

RESULTS

This study included 120 subjects divided into four groups. There weren’t any difference between the four groups with statistical significance regarding age, sex distribution, albumin and T. bilirubin values (P-value > 0.05).

Findings of the present study exhibited that chronic HCV patients exhibited significant higher levels of both Teffs and Tregs markers as compared to healthy control group. Tregs markers (granzyme 2, CD69, FoxP3) were significantly decreased in Peg/Riba treated HCV patients in comparison to treatment naïve HCV group (Tables 2 and 3).

In HCV patients with autoantibodies, Tregs markers were significantly decreased in comparison to all the other studied groups (Tables 2 and 3, Figure 1).

Teffs specific genes (TNFRSF4 and IFN-γ) and CD4, CD25 showed significant elevation in treatment naïve HCV group in comparison to control group (Tables 2 and 4, Figure 2).

More significant elevation in Teffs genes was observed in both Peg/Riba treated HCV and HCV with autoantibodies groups as compared to treatment naïve HCV and control groups (Tables 2 and 4, Figure 2).

DISCUSSION

HCV is reported to suppress immune system to sustain chronic infection. Accumulation of Tregs and activation of inhibitory signaling pathways play essential roles in suppressing antiviral effector T cells (Teffs). The mechanisms by which HCV impairs Teffs include: Induction of Tregs, Th1 deficiency or Th2 dominance, blunted T cell activation, T cell apoptosis and T cell anergy.[12]

The objectives of the present study were to assess the extent of upregulation of Tregs in HCV patients whether or not associated with auto-antibodies. In the present study, we have evaluated certain markers of Tregs and Teffs in peripheral blood mononuclear cells.

FOXP3 (forkhead box P3) is a member of forkhead/winged-helix family of transcriptional regulators which are master regulators in the development and function of Tregs[13,14].

Our results exhibited significant upregulation of FOXP3 in all HCV patients groups as compared to healthy controls. Other studies also confirmed accumulation of FOXP3 in Tregs in most chronic viral infections with subsequent suppression of antiviral CD4+ and CD8+ T cell responses[15-18].

Moreover, findings of our study demonstrated more significant decrease in Tregs specific genes (CD69, FoxP3, and granzyme 2) in HCV patients group after Peg/Riba treatment.
Table 4 Multiple comparisons of gene expression of Teffs markers in the four studied groups

Group	naïve	Peg/Riba	ANA+	control
TNFRSF40X 40				
Group I naïve				P ≤ 0.05
Group II Peg/Riba	bP ≤ 0.01			P ≤ 0.01
Group III ANA+				P ≤ 0.05
Group IV control	bP ≤ 0.01			P ≤ 0.05
CD4				
Group I naïve				P ≤ 0.01
Group II Peg/Riba	bP ≤ 0.01			P ≤ 0.01
Group III ANA+				P ≤ 0.05
Group IV control	bP ≤ 0.01			P ≤ 0.05
CD25				
Group I naïve				P ≤ 0.01
Group II Peg/Riba	bP ≤ 0.01			P ≤ 0.01
Group III ANA+				P ≤ 0.05
Group IV control	bP ≤ 0.01			P ≤ 0.05

Interferon-γ

Group	naïve	Peg/Riba	ANA+	control
Group I naïve				P ≤ 0.001
Group II Peg/Riba	bP ≤ 0.001			P ≤ 0.001
Group III ANA+				P ≤ 0.05
Group IV control	bP ≤ 0.001			P ≤ 0.05

ANA: Antinuclear antibody; NS: Non significant.

Figure 1 Relative gene expression of Tregs specific genes. *Significant difference vs control group; †Significant difference vs treatment naïve HCV group; ‡Significant difference vs HCV group after treatment. HCV: Hepatitis C virus; IFN: Interferon.

Figure 2 Relative gene expression of Teffs specific genes and CD4, CD25 in the studied groups. *Significant difference vs control group; †Significant difference vs treatment naïve HCV group. HCV: Hepatitis C virus.

Riba therapy. Similar findings were reported by Langhans et al[29] who stated that ribavirin can inhibit functions of HCV-specific Tregs beside its immuno-stimulatory effects on TH1 cells. Ribavirin can subsequently inhibit Treg-mediated suppression of Teffs in chronic HCV infections pushing the disease towards autoimmune responses.

Golding et al[11] stated that IFN-α, promotes proliferation of FoxP3^{LonNog}IFN-γ^{−/−} activated Tregs while simultaneously suppresses the development of FoxP3^{LowNog}IFN-γ^{−/−} activated Tregs. These data coincided with our findings in group II in relation to the other groups.

CD4 gene product is a membrane glycoprotein of T lymphocytes that mediates initiation and augments early phase of T-cell activation[20–22]. Findings of the present study demonstrated significant elevation of CD4 gene in all HCV groups in comparison to control group suggesting increase in activated T cells function. More significant elevation of CD4 was observed in HCV after treatment and in HCV with auto-antibodies groups.

CD25 is a type I transmembrane protein present on activated T cells, activated B cells and in memory CD8 T cells[23–27]. Our results demonstrated significant elevation of CD25 in all HCV studied groups with more significant elevation after Peg/Riba therapy. Similar findings were reported by Caetano et al[30] in chronic HCV patients during Peg/Riba treatment who presented an amplified CD8 T-cell responses specific to HCV and more increase Teffs.
Moorman et al.\(^2^3\) showed that many inhibitory signaling pathways were up-regulated during chronic HCV infection, resulting in expansion of Tregs and contraction of Teffs. Thus, this inhibitory pathway may not only regulate proliferation and differentiation of naïve T cells, but also control responses of Teffs, memory cells, and expansion of Tregs\(^2^9\).

These facts coincided with our results that showed significant elevation of Tregs specific genes (CD69, FoxP3, and granzyme 2) and significant elevation of Teffs specific genes (TNFRSF4, INF-γ) and CD4, CD25 genes in both groups of HCV whether naïve or after treatment in comparison to healthy controls.

Granzyme B encodes a protein that is essential in induction of cell-mediated immune response for the faster initiation of target cell apoptosis by cytolytic T lymphocytes\(^4^0\). Tregs possess granzyme B, enabling them to induce apoptosis in effector T-cells\(^3^1,3^2\). Our results demonstrated that granzyme B was found to be significantly elevated in naïve HCV patients with significant decrease after Peg/Riba therapy. More significant decrease in its levels was observed in HCV patients with autoantibodies favoring autoimmune response in those patients.

CD69 expression was studied by Colbeck et al.\(^3^3\) and they stated that Tregs expressing CD69(+) are more proliferative and more suppressive than their CD69(-) counterparts. This finding explains our results that showed significant lower CD69 expression in HCV patients with autoantibodies suggesting inhibition of Tregs activity favoring autoimmune environment.

IFN-γ is a member of the type II class of interferons\(^3^4\). Longhi et al.\(^3^1\) stated that CD8\(^+\) T cells when cultured on their own secrete much higher levels of IFN-γ in patients with autoimmune hepatitis when compared to normal subjects and have a high proliferation rate. This finding coincided with our results that demonstrated significant higher levels of IFN-γ in patients with autoantibodies than healthy controls.

The protein encoded by the TNFRSF4 gene belongs to tumor necrosis factor receptor superfamily that has essential roles in CD4\(^+\) T cell response\(^3^5,3^6\).

Our findings showed that, in HCV patients with ANA +ve, TNFRSF4 and IFN-γ (T effector gene) were significantly higher as compared to HCV naïve and healthy control groups. This means that T effector cells dominate over T regulatory cells favoring autoimmunity and initiating pathological immune response with production of autoantibodies. Similar findings were reported by González-Amaro et al.\(^3^7\).

Also, our results agreed with similar findings reported by Longhi et al.\(^3^1\) who stated that regulatory T cells are decreased numerically and impaired functionally in autoimmune hepatitis. Similar to our results, several studies reported that HCV infection induces a dramatic increase in Tregs, which contributes to the immune response failure during HCV infection\(^3^8\).

In conclusion, chronic HCV patients exhibited significant higher levels of both Teffs and Tregs in comparison to healthy controls. Moreover, elevated levels of Treg cells in patients with chronic HCV dampen both the CD4\(^+\) and CD8\(^+\) autologous T cell immune response. IFN-α and ribavirin therapy suppress proliferation of Treg and do not restore the Teffs/Tregs imbalance. More significant suppression of Tregs was observed in HCV patients with autoantibodies favoring pathological autoimmune response.

COMMENTS

Background

Hepatitis C virus (HCV) is accompanied with different autoimmune manifestations, and could be a stimulator for the autoimmune reactions causing production of autoantibodies. More recently, Acay et al. stated that the auto-antibodies in chronic HCV infection are highly incident. The authors stated that high percentages of patients with chronic hepatitis C had anti-mitochondrial antibodies (AMA), anti-smooth muscle antibodies (ASMA), anti-nuclear antibodies (ANA), thyroid antibody and anti-liver kidney microsomal antibodies (anti-LKM-1). The old HCV therapeutic protocol was pegylated interferon (IFN) and ribavirin. IFN-α leads to down regulation of CD4\(^+\) FoxP3\(^+\) T regulatory cells (Tregs) while at the same time induces induction of CD4\(^+\) FoxP3\(^-\) T-activated cells (Teffs). Together, these observations support the fact that sustained elevation of IFN-α reverses Tregs/Teffs balance towards Teffs activation, generation of auto antibody and development of autoimmunity. The objective of the present study is to evaluate the extent of Teffs/Tregs imbalance in chronic HCV and its association with old standard of care as well as the presence of ANA.

Research frontiers

IFN-α/ribavirin old therapeutic protocol enhances CD4 effector (Teffs) functions by inhibiting Tregs activation. The old protocol reverses Tregs/Teffs balance towards Teffs activation, generation of auto antibody and development of autoimmunity.

Innovations and breakthroughs

New direct acting antiviral drugs do not induce Tregs/Teffs imbalance, whereas the old standard of care IFN-α and ribavirin induce Tregs/Teffs imbalance. Replacing the old therapeutic protocol by the new direct acting antiviral drugs is mandatory because beside its efficacy, the new direct acting antiviral drugs do not induce autoimmunity.

Applications

Chronic HCV patients exhibited significant higher levels of both Teffs and Tregs in comparison to healthy controls. Moreover, elevated levels of Treg cells in patients with chronic HCV dampen both the CD4\(^+\) and CD8\(^+\) autologous T cell immune response. IFN-α and ribavirin therapy suppress proliferation of Treg and do not restore the Teffs/Tregs imbalance. More significant suppression of Tregs was observed in HCV patients with autoantibodies favoring pathological autoimmune response. Replacing the old therapeutic protocol by the new direct acting antiviral drugs is mandatory and is also essential avoid Tregs/Teffs imbalance.

Terminology

Tregs also known as suppressor T cells, are a subpopulation of T cells that down-regulates or suppress induction, proliferation and activation of effector T cells. Tregs also maintain tolerance to self-antigens and prevent autoimmunity. Tregs includes various T cell types that actively respond to antigenic stimuli, such as co-stimulation. This includes helper T cells, cytotoxic or killer T cells, and potentially other T cell types as memory cells. HCV-induced autoantibodies involves: AMA, ASMA, ANA, thyroid antibody and anti-LKM-1. Forkhead box P3 is a member of forkhead/winged-helix transcriptional regulators which master the development and function of Tregs. CD4 gene product is a membrane glycoprotein of T lymphocytes that mediates initiation and augments early phase of T-cell activation. Granzyme B is a protein that enables Tregs to induce apoptosis in effector T-cells. TNFRSF4 gene belongs to tumor necrosis factor
Peer-review

The manuscript presents the gene expression of immune molecules in peripheral blood mononuclear cell by reverse transcription polymerase chain reaction. And to investigate the immune changes induced by HCV, as well as after PR therapy. This paper may be interest to the readers of the journal and provide some knowledge for clinicians and researchers.

REFERENCES

1. Jiménez-Sousa MA, Fernández-Rodríguez A, Guzmán-Fulgencio M, García-Alvarez M, Resino S. Meta-analysis: implications of interleukin-28B polymorphisms in spontaneous and treatment-related clearance for patients with hepatitis C. BMC Med 2013; 11: 6 [PMID: 23298311 DOI: 10.1186/1741-7015-11-6]

2. AASLD/IDSA HCV Guidance Panel. Hepatitis C guidance: AASLD-IDSA recommendations for testing, managing, and treating adults infected with hepatitis C virus. Hepatology 2015; 62: 932-954 [PMID: 26111063 DOI: 10.1002/hep.27950]

3. Mohamoud YA, Muntaz GR, Rieome S, Miller D, Abu-Raddad LJ. The epidemiology of hepatitis C virus in Egypt: a systematic review and data synthesis. BMC Infect Dis 2013; 13: 288 [PMID: 23799878 DOI: 10.1186/1471-2334-13-288]

4. McClosry S, Hughes T, Freund AG, Briercheck EL, Martin C, Trimbuli AJ, Yu J, Zhang X, Leone G, Nuovo G, Caligiuri MA. Evidence for a stepwise program of extrathymic T cell development and for a role of co-regulatory molecules in the development of negative selection. J Immunol 2012; 189: 1293-1302 [PMID: 22348415 DOI: 10.1038/jir3384]

5. Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P. Molecular Biology of the Cell. 4th ed. New York: Garland Science, 2002: 1367. Lymphocytes and the Cellular Basis of Adaptive Immunity. Available from: URL: http://www.ncbi.nlm.nih.gov/books/NBK26921/}

6. Vantourout P, Caetano J, Lu Z, Madden DL, Madej T, Maglott DR, Marcher-Bauer A, Miller V, Mizrachi I, Ostell J, Panchenko A, Pruitt KD, Schuler GD, Sequeira E, Sherry ST, Shumway M, Sirotkin K, Senger G, Tatusova TA, Wagner L, Wang Y, Wilson W, Washko E, Ye J. Databases resources of the National Center for Biotechnology Information. Nucleic Acids Res 2010; 38: D16 [DOI: 10.1093/nar/gkq956]

7. earthquakes EW, Barrett T, Benson DA, Bolton E, Bryant SH, Canese K, Chetverin V, Church DM, Diuccio M, Federhen S, Feolo M, Geer LY, Helmberg W, Kapustin Y, Lusmansk D, Lipman DJ, Lu Z, Madden TL, Madej T, Maglott DR, Marcher-Bauer A, Miller V, Mizrachi I, Ostell J, Panchenko A, Pruitt KD, Schuler GD, Sequeira E, Sherry ST, Shumway M, Sirotkin K, Senger G, Tatusova TA, Wagner L, Wang Y, Wilson W, Washko E, Ye J. Databases resources of the National Center for Biotechnology Information. Nucleic Acids Res 2010; 38: D16 [DOI: 10.1093/nar/gkq956]

8. National Institutes of Health. National Institutes of Health Consensus Development Conference Statement: management of hepatitis C. 2002--June 10-12, 2002. Hepatology 2002; 36: S3-S20 [PMID: 12407572 DOI: 10.1001/jhep.2002.57117]

9. Golding A, Rosen A, Petri M, Akhter E, Andrade F. Interferon-alpha regulates the dynamic balance between human activated and regulatory CD4(+CD25(-)CD127(low/-))T cells: implications for antiviral and autoimmune responses. Immunology 2010; 131: 107-117 [PMID: 20465564 DOI: 10.1111/j.1365-2664.2010.03280.x]

10. Moorman JP, Wang JM, Zhang Y, Ji XJ, Ma CJ, Wu XY, Jia ZS, Wang KS, Yao QZ. Tim-3 pathway controls regulatory and effector T cell balance during hepatitis C virus infection. J Immunol 2012; 189: 755-766 [PMID: 22706088 DOI: 10.4049/jimmunol.1200162]

11. Zhang L, Zhao Y. The regulation of Foxp3 expression in regulatory CD4(+CD25(+))T cells: multiple pathways on the road. J Cell Physiol 2007; 211: 590-597 [PMID: 17132892 DOI: 10.1002/jcp.20101]

12. Marson A, Kretschmer K, Frampton GM, Jacobsen ES, Polansky JK, Macluska KD, Levine SS, Franken E, von Boehmer H, Young RA. Foxp3 occupancy and regulation of key target genes during T-cell stimulation. Nature 2007; 445: 931-935 [PMID: 17237765 DOI: 10.1038/nature05478]
Fouad H et al. Role of regulatory T cells in autoimmunity in chronic HCV

M, Rosen HR. A crucial role for Kupffer cell-derived galectin-9 in regulation of T cell immunity in hepatitis C infection. PLoS One 2010; 5: e9504 [PMID: 20209097 DOI: 10.1371/journal.pone.0009504]

Dahl CA, Bach FH, Chan W, Huebner K, Russo G, Croce CM, Herfurth T, Cairns JS. Isolation of a cDNA clone encoding a novel form of granzyme B from human NK cells and mapping to chromosome 14. Hum Genet 1990; 84: 465-470 [PMID: 2323780]

Longhi MS, Hussain MJ, Mitry RR, Arora SK, Mieli-Vergani G, Vergani D, Ma Y. Functional study of CD4+CD25+ regulatory T cells in health and autoimmune hepatitis. J Immunol 2006; 176: 4484-4491 [PMID: 16547287 DOI: 10.4049/jimmunol.176.7.4484]

Azzi J, Skartsis N, Moulayar M, Magee CN, Batal I, Ting C, Moore R, Riella LV, Ohori S, Abdoli R, Smith B, Fiorina P, Heathcote D, Bakhos T, Ashton-Rickardt PG, Abdi R. Serine protease inhibitor 6 plays a critical role in protecting murine granzyme B-producing regulatory T cells. J Immunol 2013; 191: 2319-2327 [PMID: 23913965 DOI: 10.4049/jimmunol.1300851]

Colbeck EJ, Hindley JP, Smart K, Jones E, Bloom A, Bridgeman H, McPherson RC, Turner DG, Ladell K, Price DA, O’Connor RA, Anderton SM, Godkin AJ, Gallimore AM. Eliminating roles for T-bet and IL-2 but revealing superior activation and proliferation as mechanisms underpinning dominance of regulatory T cells in tumors. Oncotarget 2015; 6: 24649-24659 [PMID: 26433463 DOI: 10.18632/oncotarget.5584]

Gray PW, Goeddel DV. Structure of the human immune interferon gene. Nature 1982; 298: 859-863 [PMID: 6180322 DOI: 10.1038/298859a0]

Latza U, Dürkop H, Schnittger S, Ringeling J, Eitelbach F, Hummel M, Fonatsch C, Stein H. The human OX40 homolog: cDNA structure, expression and chromosome assignment of the ACT35 antigen. Eur J Immunol 1994; 24: 677-683 [PMID: 7510240 DOI: 10.1002/eji.1830240329]

Keoshkerian E, Helbig K, Beard M, Zaunders J, Seddiki N, Kelleher A, Hantpartzoumian T, Zekry A, Lloyd AR. A novel assay for detection of hepatitis C virus-specific effector CD4(+) T cells via co-expression of CD25 and CD134. J Immunol Methods 2012; 375: 148-158 [PMID: 22019644 DOI: 10.1016/j.jim.2011.10.004]

González-Amaro R, Cortés JR, Sánchez-Madrid F, Martín P. Is CD69 an effective brake to control inflammatory diseases? Trends Mol Med 2013; 19: 625-632 [PMID: 23954168 DOI: 10.1016/J.MOLMED.2013.07.006]

Hashempoor T, Bamdad T, Merat S, Janzamin E, Nemati L, Jabbari H, Sharifi AH, Zamini H. Expansion of CD4+ CD25+ FoxP3+ regulatory T cells in chronic hepatitis C virus infection. Iran J Immunol 2010; 7: 177-185 [PMID: 20876988]

P- Reviewer: Baddour N, Banifi F, Ji FP S- Editor: Gong XM L- Editor: A E- Editor: Li D
