The change of electronic state and crystal structure by post-annealing in superconducting SrFe$_2$(As$_{0.65}$P$_{0.35}$)$_2$

T. Kobayashi,1 S. Miyasaka,1 S. Tajima,1 T. Nakano,1 Y. Nozue,1
N. Chikumoto,2 H. Nakao,3 R. Kumai,3 and Y. Murakami3

1Department of Physics, Osaka University, Osaka 560-0043, Japan.
2Superconductivity Research Laboratory-ISTEC, Tokyo 135-0062, Japan
3Condensed Matter Research Center and Photon Factory, Institute of Materials Structure Science, High Energy Accelerator Research Organization, Tsukuba 305-0801, Japan

We investigated the annealing effects on the physical properties of SrFe$_2$(As$_{1-x}$P$_x$)$_2$ ($x = 0.35$). The superconducting transition temperature (T_c) increased from 26 K to 33 K by annealing. The X-ray diffraction measurement suggested that the annealed crystals have the shorter/larger a/c-axes and the larger pnictogen height h_{Pa}. This must be linked to the T_c-enhancement by annealing. Moreover, it was found that the post-annealing decreased the electronic specific heat coefficient at $T=0$ K, γ_r, and changed the magnetic field (H) dependence from sub-linear $\gamma_r \propto H^{0.7}$ to H-linear $\gamma_r \propto H$. This can be attributed the electronic change from dirty to clean superconductors with s_\pm gap.

In order to determine the pairing interaction in iron based superconductors (FeSC), it is important to clarify the superconducting gap structure. Intensive researches so far have revealed that most of the FeSC are full gap superconductors, while some materials, such as LaFePO, KFe$_2$As$_2$, and P-doped BaFe$_2$As$_2$ (P-Ba122), are nodal superconductors1,2. For example, in P-Ba122 the nodal gap behavior was observed by NMR8, penetration depth and thermal conductivity measurement9, while the topology and the location of the node is still under debates10,11.

Specific heat (C) measurement is sensitive to a low energy excitation, and thus a good probe for a superconducting gap structure. In a full gap superconductor, the residual part of electronic specific heat coefficient $\gamma_r(= C/T$ at zero temperature) under magnetic field H is proportional to H, while $\gamma_r \propto H^{0.5}$ was predicted in a nodal superconductor by Volovik12 and was confirmed in cuprate superconductors.13 However, in multiband systems, such as FeSC, the magnetic field dependence of $\gamma_r(H)$ also depends on the gap ratio. Moreover, in a nodal or s_\pm gap superconductor $\gamma_r(H)$ is sensitive to the cleanness of the system. Bang pointed out that both of $\gamma_r \propto H$ and $\gamma_r \propto H^{0.5}$ can be explained by the s_\pm full gap scheme with impurity12,13. Therefore, high quality crystals are required to clarify the intrinsic nature of superconducting gap. On the other hand, it was found that post-annealing of as-grown crystals sometimes gives a remarkable change in the electronic properties of FeSC. For example, the large anisotropy in low-T in-plane resistivity of BaFe$_2$As$_2$ disappeared after annealing.15 It suggests some intrinsic change in the electronic state with annealing treatment. Recently we found that T_c is substantially enhanced by post-annealing in SrFe$_2$(As, P)$_2$ (P-Sr122), while the annealing effects are not remarkable in P-Ba12214. Since the electronic properties including superconductivity are quite sensitive to a small structural change in FeSC, we need to study carefully the annealing effects on the electronic properties.

Here, we focus on P-Sr122 to clarify the annealing effect on the crystal and electronic structure, including the gap nature. In the previous study, we reported that the crystal structure of P-Sr122 is more three dimensional than that of P-Ba122, and resistivity showed T-linear behavior indicating two dimensional antiferromagnetic (2D-AFM) fluctuation14. The NMR measurement on as-grown crystals found that $1/T_1 T$ = const. below T_c, indicating a line node of the gap15. The penetration depth measurement showed $\Delta \lambda(T) \propto T^n$ ($n = 1.5 \sim 2$), whose exponent n is also consistent with a nodal gap16,17.

In this study, we compare magnetic susceptibility, electric resistivity, specific heat and X-ray diffraction analysis for as-grown and annealed SrFe$_2$(As$_{0.65}$P$_{0.35}$)$_2$ single crystals. We found that the annealing effect is very strong in P-Sr122 system. The T_c of the as-grown crystals is $T_c=26$ K, while the annealing treatment raises it up to 33 K that is higher than the optimal value for P-Ba122 ($T_c=31$ K)15. The $\gamma_r(H)$ of the as-grown crystal showed sub-linear H-dependence, while the annealed crystal showed H-linear dependence with a smaller residual term. In addition, the average crystal structure seems to change with post-annealing.

Single crystals of SrFe$_2$(As$_{1-x}$P$_x$)$_2$ ($x = 0.35$) were grown from a stoichiometric mixture of Sr, FeAs, FeP powder in an alumina crucible, sealed in a silica tube with Ar gas of 0.2 bar at room temperature. It was heated up to 1300 °C, kept for 12 hours, and then slowly cooled down to 1050 °C at a rate of 2 °C/h. To find an optimal annealing condition, the as-grown crystals were annealed at various temperatures (400~800 °C) for various times (1~14 days). We found that the annealing treatment at 500 °C gave the highest T_c among all our examinations, while the optimum annealing time depends on the crystal size. For the specific heat measurement the crystals with a size of $3 \times 3 \times 0.1$ mm3 were annealed in an evacuated silica tube for 2 weeks at 500 °C, while the crystals for the other measurements were $1 \times 1 \times 0.1$ mm3 in size and annealed for 1 week. It is noted that such an annealing temperature and time dependence was previously reported15.
The electric resistivity was measured by a standard four probe method and the magnetic susceptibility was measured by SQUID. Specific heat was measured down to 1.8 K in magnetic field up to 14 T using a Quantum Design Physical Properties Measurement System (PPMS). X-ray diffraction experiment for single crystals was carried out using the X-ray with 15 keV at BL-8A of the Photon Factory, KEK in Japan. We used the atomic positions of SrFe$_2$As$_2$ as starting parameters and refined them by the least squares method using Rigaku Crystal Structure.

Figures 1(a) and (b) present the temperature dependences of magnetic susceptibility and electric resistivity, respectively. We defined T_c at the middle of superconducting transition in susceptibility $\chi(T)$. In Figs. 1(a) and (b), the annealed sample shows a sharper transition at the higher T_c=33 K than that of the as-grown crystal with T_c=26 K. As shown in the inset of Fig. 1(b), both of the as-grown and annealed crystals show a T-linear resistivity in a wide temperature range, suggesting a strong 2D-AFM fluctuation. Such a 2D-AFM fluctuation was also observed by the NMR measurement. Residual resistivity ratio (RRR) slightly increased from 7.06 to 7.24 by annealing, which indicates a suppression of carrier scattering by disorders. The absolute value of resistivity at room temperature is 0.22 ± 0.03 (mΩ cm) and does not change by annealing within a measurement error.

In Fig. 2(a), we plotted the temperature dependence of C/T for the as-grown (black circles) and the annealed (red triangles) SrFe$_2$(As$_{0.65}$P$_{0.35}$)$_2$. (b) The temperature dependence of C_{el}/T for as-grown and annealed crystals.

\[C_{phonon} = 0.7 \times C_{phonon}(SrFe_2As_2) + 0.3 \times C_{phonon}(SrFe_2P_2), \]

while C_{phonon} was assumed to be equal to $C_{phonon}(SrFe_2As_2)$ for the as-grown crystal. Figure 2(b) shows only the extracted electronic component of C/T. Here, C_{el} for SrFe$_2$(As$_{0.65}$P$_{0.35}$)$_2$ is estimated by the formula of $C_{el} = C - C_{phonon}$. A jump due to superconducting transition was observed at 23 K for the as-grown crystal and a sharper jump at 33 K for the annealed crystal. The normal state Sommerfeld coefficient also changed from 47 mJ/mol K2 to 17 mJ/mol K2 by annealing. It seems that the post-annealing suppresses
the mass enhancement. However, such a large change in the normal state Sommerfeld coefficient by the annealing treatment was not observed in the previous study of annealed Co-doped BaFe$_2$As$_2$ (Co-Ba122)19. Therefore, we cannot rule out the possibility that the observed change in Sommerfeld coefficient is an artifact of the inappropriate subtraction of the phonon contribution. $\Delta C/T_c$ was 40 mJ/mol K2 and 50 mJ/mol K2 for the as-grown and the annealed crystals, respectively. Here, ΔC is the change of electronic specific heat due to superconducting transition. The present value of $\Delta C/T_c$ is still smaller than the general value of FeSC22, indicating that the further improvement of the sample quality may be possible.

In order to discuss a superconducting gap structure, we examined the magnetic field dependence of C/T at 0 K, $\gamma_r (H)$. Although in principle the presence of gap node can be discussed from low T $C(T)$ without magnetic field, it is usually difficult to identify the T^2 term which is expected for the superconductor with line node because of the large phonon component23. Figure 3(a) shows the temperature dependence of C/T at different magnetic fields applied along the c-axis. In Fig. 3(b) is plotted the field dependences of residual C/T, the values at 1.8 K and the extrapolated values at 0 K with $C/T = \gamma_r + \beta T^2$. The phonon coefficient β also changed from 0.79 mJ/mol K4 to 0.36 mJ/mol K4 by annealing, while residual term γ_r decreased from 5.5 mJ/mol K2 to 3.6 mJ/mol K2 by annealing at $H=0$. This reduction in γ_r implies a decrease of residual density of states which originates from impurity or disorder. However, the γ_r of the annealed crystal is still larger than that of P-Ba122 ($\gamma_r=1.7$ mJ/mol K2)22, indicating a larger residual density of state below T_c.

As shown in Fig. 3(b), the field dependence of γ_r follows $\gamma_r \propto H^{0.7}$ for the as-grown case, while the post-annealing treatment results in a moderate field dependence, $\gamma_r \propto H$. The change from the sub-linear to the H-linear dependence of γ_r seems to indicate that the superconducting gap structure became a full gap after annealing. However, the theoretical calculation based on the two band model24, H-linear dependence of γ_r changes to a sub-linear H dependence when disorders are introduced in a full gap s_\pm superconducting state. Therefore, our observation can be understood within a full gap s_\pm regime. We note that the similar annealing effect on $\gamma_r (H)$ was observed in Co-Ba12225.

On the other hand, the penetration depth measurement gave a different result. The observed $\Delta \lambda(T)$ was T-linear in the annealed crystal, while $\Delta \lambda(T)$ followed T^n ($n < 2$) in the as-grown crystal. This change of exponent n can be understood within a framework of nodal superconductor by assuming that the as-grown crystals was in a dirty limit, while the annealed one was in a clean limit. Considering all these results, we speculate that the Fermi surface with a heavier carrier mass has a full gap and dominates the specific heat, while the others with a lighter carrier mass have a nodal gap which governs the penetration depth. Here we note that the H-linear dependence of γ_r was also observed in P-Ba122 where one Fermi surface has a full gap and the others have nodes22.

![FIG. 3: (Color online)](a) The low temperature specific heat of the as-grown and annealed SrFe$_2$(As$_{0.65}$P$_{0.35}$)$_2$ measured at different magnetic fields applied along c-axis. (circles, 0 T; triangles, 6 T; squares, 14 T; open and closed symbols represent the data of the as-grown and the annealed samples, respectively.) (b) The magnetic field dependence of the residual electronic specific heat coefficient, γ_r. Red triangles and blue circles are correspond to γ_r at 1.8 K and γ_r from $C/T = \gamma_r + \beta T^2$, respectively. The solid lines show $\gamma_r \propto H^{0.7}$ for the as-grown and $\gamma_r \propto H$ for the annealed crystal.

Finally to understand the origin of electronic change, we examine the crystal structure. Table 1 shows the annealing effect on the crystal structure. In the analysis, we adjusted the coordinate z of As/P simultaneously. The structure analysis clearly demonstrates that the annealed crystal has the shorter a-axis and longer c-axis than the as-grown crystal. In addition, the z position of As/P also increases, leading to a higher pnictogen height h_{Pn} and a smaller As-Fe-As bond angle. In FeSC, it has been pointed out that T_c is correlated with the pnictogen height and/or the As-Fe-As bond angle23,24. Considering that T_c sharply changes around $h_{Pn} \sim 1.33$ Å24, a tiny extension of h_{Pn} in SrFe$_2$(As$_{0.65}$P$_{0.35}$)$_2$ (~ 1.32 Å) can result in an enhancement of T_c. Another important effect of post-annealing is to decrease disorders within crystals. The related phenomena were that annealing decreased γ_r and slightly increased RRR. Considering that the phonon
One is the elongation of the Fe-As bond in the Fe plane, which increases the Fe-Fe distance. This elongation could be due to the reduction of disorders within crystals, which is clearly observed in the X-ray diffraction analysis. We found that T_c enhancement is up to 33 K that is higher than the value of optimal P-Ba122. The reduction of disorders made the system cleaner and modified the gap feature. The observed T_c enhancement is also partially caused by the reduction of carrier scattering.

In summary, we studied the annealing effect on P-Sr122 and performed magnetic susceptibility, electric resistivity, specific heat measurements and a precise X-ray diffraction analysis. We found that T_c is enhanced up to 33 K that is higher than the value of optimal P-Ba122. We found that there are two effects of post-annealing. One is the elongation of the c-axis and the pnictogen height in the average crystal structure. This causes the enhancement of T_c in the annealed crystals. The other effect is to reduce disorders within crystals, which is clearly observed in specific heat. This suggests that the system changes from a dirty to clean superconductor with the s_\pm full gap on the Fermi surface with a heavier carrier mass.

We thank Y. Wakabayashi for his technical support in the X-ray diffraction analysis. X-ray diffraction experiment has been carried out under approval of the Photon Factory Program Advisory Committee (personal Nos. 2009S-008 and 2012S-005). The present work was supported by Scientific Research S (21224008), by JSPS, FIRST program, and by JST, CREST, TRIP, IRON-SEA.

Table I: Refined lattice constants, atomic positions, and bond lengths and angles

Compound	as-grown	annealed
Space group	$I4/mmm$	$I4/mmm$
a (Å)	3.8938(14)	3.8963(6)
c (Å)	12.064(4)	12.092(2)
V ($Å^3$)	183.33(11)	183.57(5)
Sr	(0, 0, 0)	(0, 0, 0)
Fe	(1/2, 0, 1/4)	(1/2, 0, 1/4)
As/P	(0, 0, z)	(0, 0, z)
$z=$0.35931(6)	$z=$0.35956(5)	

Bond lengths and angles

Sr-As(Å)	3.2372(7)	3.2364(3)
Sr-Fe(Å)	3.5910(9)	3.5964(4)
Fe-As/P(Å)	2.3533(4)	2.3559(3)
Fe-Fe(Å)	2.7565(7)	2.7551(3)
As-Fe-As(deg.)	108.301(10)\times4	108.434(8)\times4
Number of reflections	211	219
($I>2.00\sigma(I)$)	111.84(2)\times2	111.566(17)\times2
Good of fitnessee	3.315	6.018

*$h_{pn}(Å)$ was calculated from $h_{pn} = (z - 0.25) \times c$. The reliability are $R_1 (I > 2.00\sigma(I)) = 6.61\%$, 5.16% and $wR_2 (I > 2.00\sigma(I)) = 10.17\%, 8.15$% for the as-grown and annealed crystal, respectively. Number of reflections is number of diffraction peaks used for analysis.

References:
1. D. C. Johnston, Adv. Phys. 59, 803 (2010).
2. G. R. Stewart, Rev. Mod. Phys. 83, 1589 (2011).
3. Y. Nakai, T. Iye, S. Kitagawa, K. Ishida, S. Kasahara, T. Shibauchi, Y. Matsuda, and T. Terashima, Phys. Rev. B 81, 020505(R) (2010).
4. K. Hashimoto, M. Yamashita, S. Kasahara, Y. Senshu, N. Nakata, S. Tonegawa, K. Ikeda, A. Serafin, A. Carrington, T. Terashima, H. Ikeda, T. Shibauchi, and Y. Matsuda, Phys. Rev. B 81, 220501(R) (2010).
5. M. Yamashita, Y. Senshu, T. Shibauchi, S. Kasahara, K. Hashimoto, D. Watanabe, H. Ikeda, T. Terashima, I. Vekhter, A.B. Vorontsov, and Y. Matsuda, Phys. Rev. B 84, 060507(R) (2011).
6. Y. Zhang, Z. R. Ye, Q. Q. Ge, F. Chen, Juan Jiang, M. Xu, B. P. Xie, and D. L. Feng, Nature Physics 8, 371-375 (2012).
7. G. E. Volovik, JETP Lett. 58, 469 (1993).
8. K. A. Moler, D. J. Baur, J. S. Urbach, Ruixing Liang, W. N. Hardy, and A. Kapitulnik, Phys. Rev. Lett. 73, 2744 (1994).
9. Y. Bang, Phys. Rev. Lett. 104, 217001 (2010).
10. S. Ishida, T. Liang, M. Nakajima, K. Kilhou, C. H. Lee, A. Iyo, H. Eisaki, T. Kakeshita, T. Kida, M. Hagiwara, Y. Tomioka, T. Ito, and S. Uchida, Phys. Rev. B 84, 184514 (2011).
11. T. Kobayashi, S. Miyasaka, S. Tajima (unpublished).
12. T. Kobayashi, S. Miyasaka, S. Tajima, J.Phys.Soc.Jpn. 81, SB045 (2012).
13. T. Dulguun, H. Mukuda, T. Kobayashi, F. Engetsu, H. Kinouchi, M. Yashima, Y. Kitaoka, S. Miyasaka, and S. Tajima, Phys. Rev. B 85, 144515 (2012).
14. J. Murphy, C. P. Strehlow, K. Cho, M. A. Tanatar, N. Salovich, R. W. Giannetta, T. Kobayashi, S. Miyasaka, S. Tajima, and R. Prozorov, Phys. Rev. B 87, 140505(R) (2013).
15. H. Takahashi, T. Okada, Y. Imai, K. Kitagawa, K. Matsumabayashi, Y. Uwatoko, and A. Maeda, Phys. Rev. B 86, 144525 (2012).
16. S. Kasahara, T. Shibauchi, K. Hashimoto, K. Ikada, S. Tonegawa, R. Okazaki, H. Shishido, H. Ikeda, H. Takeya, K. Hirata, T. Terashima, and Y. Matsuda, Phys. Rev. B 81, 184519 (2010).
17. J. S. Kim, B. D. Faeth, and G. R. Stewart, Phys. Rev. B 86, 054509 (2012).
S. R. Saha, K. Kirshenbaum, N. P. Butch, J. Paglione, and P. Y. Zavalij, J. Phys.: Conf. Ser. 273 012104 (2011).

K. Gofryk, A. B. Vorontsov, I. Vekhter, A. S. Sefat, T. Imai, E. D. Bauer, J. D. Thompson, and F. Ronning, Phys. Rev. B 83, 064513 (2011).

Sergey L. Bud’ko, Ni Ni, and Paul C. Canfield, Phys. Rev. B, 79, 220516(R) (2009).

Y. Wang, B. Revaz, A. Erb, and A. Junod, Phys. Rev. B 63, 094508 (2001).

J. S. Kim, P. J. Hirschfeld, G. R. Stewart, S. Kasahara, T. Shibauuchi, T. Terashima, and Y. Matsuda, Phys. Rev. B 81, 214507 (2010).

C.-H. Lee, A. Iyo, H. Eisaki, H. Kito, M. T. Fernandez-Diaz, T. Ito, K. Kihou, H. Matsuhata, M. Braden, and K. Yamada, J. Phys. Soc. Jpn. 77, 083704 (2008).

Y. Mizuguchi, Y. Hara, K. Deguchi, S. Tsuda, T. Yamaguchi, K. Takeda, H. Kotegawa, H. Tou, and Y. Takano, Supercond. Sci. Technol. 23 054013 (2010).