Initial Clinical Experience with 68Ga-DOTA-NOC Prepared Using 68Ga from Nanoceria-polyacrylonitrile Composite Sorbent-based 68Ge/68Ga Generator and Freeze-dried DOTA-NOC Kits

Piyush Chandra, Bhakti Shetye, Rubel Chakravarty¹, Archana Mukherjee¹, Usha Pandey¹, Ashish Kumar Jha, Nilendu Purandare, Sneha Shah, Archi Agrawal, Ramu Ram¹, Ashutosh Dash¹, Venkatesh Rangarajan

Department of Nuclear Medicine and Molecular Imaging, Tata Memorial Hospital, Parel, ¹Isotope Production and Applications Division, Bhabha Atomic Research Centre, Trombay, Mumbai, Maharashtra, India

Abstract

Somatostatin receptor positron emission tomography–computed tomography (PET/CT) with 68Ga-1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) peptides have become an indispensable part of disease assessment in patients with neuroendocrine tumors and forms the basis of personalized therapy with peptide receptor-based radionuclide therapy. With growing utilization of PET/CT in developing countries, availability of the indigenous GMP-certified 68Ge/68Ga generators is expected to further promote cost-effective molecular imaging service to the cancer patients. We present our initial clinical experience in 32 patients injected with 68Ga-DOTA-NOC prepared using 68Ga eluted from Bhabha Atomic Research Centre nanoceria-polyacrylonitrile sorbent-based 68Ge/68Ga generator and freeze-dried DOTA-NOC cold kits.

Keywords: 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid NOC cold kits, 68Ge/68Ga generator, Bhabha Atomic Research Centre, nanoceria, positron emission tomography-computed tomography

Introduction

Widespread availability of positron emission tomography–computed tomography (PET/CT) along with the development of many radiolabeled 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) conjugates of peptide receptor-based radionuclide therapy. With growing utilization of PET/CT in developing countries, availability of the indigenous GMP-certified 68Ge/68Ga generators is expected to further promote cost-effective molecular imaging service to the increasing demands of many nuclear medicine centers in India. Bhabha Atomic Research Centre (BARC), Mumbai, has developed a nanoceria-polyacrylonitrile (CeO_2-PAN) composite sorbent-based 68Ge/68Ga Generator and single vial freeze-dried cold kits of DOTA-NOC for instantaneous labeling with 68Ga from the generator without the need for automated systems.[2,3] Significant progress in the rapidly evolving field of theranostics.[1] In a major step toward providing a cost-effective molecular imaging service to the increasing demands of many nuclear medicine centers in India, Bhabha Atomic Research Centre (BARC), Mumbai, has developed a nanoceria-polyacrylonitrile (CeO_2-PAN) composite sorbent-based 68Ge/68Ga Generator and single vial freeze-dried cold kits of DOTA-NOC for instantaneous labeling with 68Ga from the generator without the need for automated systems.[2,3]
Compared to the other available commercial generators, this novel generator is reported to have consistent ⁶⁸Ga yield, minimal metal impurities, and very low ⁶⁸Ge breakthrough when long-term elution profiles were studied.⁴ Another advantage is that it provides ⁶⁸Ga of requisite quality without the need for postelution processing. Hence, such cost-effective, GMP-compliant generator could be easily used in clinical settings in hospital radio-pharmacy like the ⁹⁰Mo–⁹⁹mTc generators.¹–³

We present our initial clinical experience in 32 patients injected with ⁶⁸Ga-DOTA-NOC prepared using ⁶⁸Ga eluted from BARC CeO₂-PAN sorbent-based ⁶⁸Ge/⁶⁸Ga generator and freeze-dried DOTA-NOC cold kits for various clinical indications.

Materials and Methods

Materials

DOTA-NOC was procured from ABX, Germany. Sodium acetate and Suprapure HCl were purchased from Fluka, USA, and MERCK, Darmstadt, Germany, respectively. All reagents were prepared using sterile high-performance liquid chromatography (HPLC) grade water (Merck, India). Sterility test kits were obtained from Himedia Laboratories, India, and Endosafe PTS equipment and cartridges were from Charles River Laboratories Pvt. Ltd., India. ITLC SG paper was from Agilent Technologies, USA, whereas Whatman 3 mm chromatography strips were from Whatman, UK.

Radioactivity measurements were made using a NaI (TI) counter (ECIL, India). An HPLC system (JASCO, Japan) equipped with a C-18 reversed phase column coupled to an ultraviolet/visible detector and a NaI (TI) radioactivity detector (Raytest, Germany) was used for characterization of radiolabeled peptides. Alpha 1-2 LD plus freeze dryer was purchased from Martin Christ, GmBH while 0.22 µm membrane filters (33 mm) were from M/s. Millipore Corporation, Bedford, Massachusetts, USA. PET/CT studies were acquired on Philips Medical Systems, Ohio, USA GEMINI TOF 64.

Methods

Development of ⁶⁸Ge/⁶⁸Ga generator

The CeO₂-PAN sorbent was prepared by the decomposition of the cerium oxalate precursor to cerium oxide followed by incorporation in the PAN matrix, as reported earlier.² To fabricate a ⁶⁸Ge/⁶⁸Ga generator, a borosilicate glass column of dimension 7 cm × 0.8 cm (id) with a sintered disk (G₁) at the bottom was packed with 0.5 g of the sorbent, in a lead shield. The column matrix was conditioned at pH 3 by passing 100 mL of 0.001 M HCl solution, at a flow rate of ~2 mL/min. The loading solution (100 mL) containing 740 MBq (20 mCi) of ⁶⁸Ge maintained at pH ~3 was allowed to percolate into the column at a flow rate of 0.5–1 mL/min. The column was then washed with 200 mL of 0.1 M HCl (pH 1) solution.

Formulation of 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid-NOC kits and radiolabeling with ⁶⁸Ga

Single vial kits of DOTA-NOC were formulated in 0.5 M sodium acetate, freeze dried, vacuum sealed under sterile conditions and stored at −20°C, as reported elsewhere.²,³ Asceptically prepared 0.1 N HCl was provided with the kits for elution of ⁶⁸Ga from the generator. Quality control of the kits was carried out by evaluating their sterility and apyrogenicity, as per the guidelines of Indian Pharmacopeia. Radiochemical yield (RCY) and radiochemical purity of ⁶⁸Ga-DOTA-NOC were determined by paper chromatography (PC) as per the reported procedure.²,³ For preparation of patient dose of ⁶⁸Ga-labeled DOTA-NOC, ⁶⁸GaCl₃ from the nanoceria-PAN ⁶⁸Ge/⁶⁸Ga generator was eluted using 1 mL of sterile 0.1 N HCl directly into DOTA-NOC cold kit vial. Reaction was carried out at 90°C for 10 min. RCY of ⁶⁸Ga-DOTA-NOC was estimated by PC. ⁶⁸Ga-DOTA-NOC was then filtered through 0.22 µm sterile filter, diluted with sterile saline (2 mL), and injected into the patients.

Clinical studies

We retrospectively studied 32 patients from June to July 2013 (age 16–73, mean 52) wherein ⁶⁸Ga-DOTA-NOC PET/CT was done as part of their treatment management. After obtaining a scout image, breath hold CT was acquired followed by whole body CT and then PET acquisition. PET acquisition time was 2 min/per bed position. CT parameters for breath-hold CT includes slice thickness 3 mm, pitch 1.08, field of view - 356 mm, voltage - 120 kV with automated mA correction, image matrix - 512 L × 512. 80 mL of low osmolar nonionic intravenous contrast was administered in all eligible patients at a rate of 1.8 mL/s and scan delay was 50 s. Images were reconstructed iteratively using RAMLA algorithm. Images were viewed on display system having extended brilliance workspace software (EBW) version 4.5.3.40140 (Netherlands), Philips Healthcare. In addition to the PET/CT, all patients underwent ⁹⁹mTc-hydrazinonicotinyl-Tyr3-octreotide (⁹⁹mTc-HYNIC-TOC) whole body planar scan with single photon emission CT (SPECT) acquisition on Infinia, Hawkeye, GE Healthcare, as standard of care. Relative performances of PET and SPECT studies were analyzed. All studies were acquired with prior informed consent from patients.
Results

The generator was able to provide 68Ga activity (in the form of 68GaCl$_3$) in consistent yields and acceptable radionuclidic purity ($<10^{-4}$% of 68Ge breakthrough). Schematic of 68Ge/68Ga Generator is depicted in Figure 1. DOTA-NOC cold kits each consisting of 50 µg of the peptide conjugate in 0.5 M sodium acetate (13 mg) could be successfully formulated. The formulated kits were found to be of pharmaceutical grade as per sterility tests and BET tests. Greater than 95% radiolabeling yields could be obtained on radiolabeling with 68Ga, as ascertained by the chromatography techniques. Specifications of DOTA-NOC kit and 68Ga-DOTA-NOC are given in Table 1.

Clinical studies

68Ga-DOTA-NOC PET/CT was positive in 22/32 patients (12 - initial characterization/staging/diagnosis, 10 - restaging) [Figures 2 and 3]. PET/CT was negative in 10/32 patients (4 - medullary Ca thyroid, 1 - suspected Insulinoma, 3 metastatic NET with MiB index, 1 - Ectopic Cushing’s syndrome, 1 - thymoma) [Tables 2a and b]. Number of lesions identified on 68Ga-DOTA-NOC PET/CT was 142 and on the whole body 99mTc-HYNIC-TOC scintigraphy was 85 [Table 3].

Discussion

Molecular imaging with 68Ga radiopharmaceuticals is rapidly evolving. Somatostatin receptor (SSTR) targeting 68Ga-DOTA peptides have been successfully investigated in multiple clinical indications such as neuro-endocrine tumors, para-gangliomas, neuroblastomas, meningiomas,

Table 1: Generator and cold kit performance parameters

| DOTANOC kit | DOTANOC kit provides a pre-dispensed sterile formulation in freeze dried form (Vial 1) suitable for preparation of ready-to-use 68Ga-DOTANOC Each kit contains three vials Vial-1: ~50 µg DOTANOC and ~14 mg Sodium acetate in freeze dried form Vial-2: 1 mL of sterile HPLC grade water Vial-3: 1 mL of sterile 0.1 N HCl | Expiry 8 months from the date of manufacturing Storage -20°C Appearance Clear solution pH ~5.0 (after appropriate dilution with sterile saline) Radionuclidic purity 68Ge levels less than 10^{-4}% Radiochemical purity of 68Ga-DOTANOC >95% Average elution to dose preparation time (Including quality control) 35 min Expiry 1 hour from the time of formulation Storage At room temperature with adequate lead shielding |
and oncogenic osteomalacia.\[6\] Beyond SSTR imaging, promising clinical studies have emerged using \(^{68}\)Ga with biomolecules such as PSMA, bombesin, and macroaggregated albumin.\[7-9\]

The first and foremost important clinical indication for \(^{68}\)Ga-DOTA peptides have been NETs. NET represents a subset of tumors originating from enterochromaffin cells of the foregut, midgut, or hindgut. Survivor, Epidemiology and End results database has shown rise in the incidence of NET for the past few decades, probably related to the increased detection rate.\[10\] Prognosis of this disease is highly dependent on stage with 5-year survival in localized disease above 905 and 5-year survival about <30% in patients with distant metastasis.\[11\] Knowing the tumor biology, its location and extent through imaging has been to improve patient’s treatment outcomes.\[12\] SSTR PET/CT is proven to be diagnostically superior to conventional scinitigraphy and CT and used extensively for staging, restaging and assessing response to treatment in patients with NET.\[13\] \(^{68}\)Ga-DOTA-NOC PET/CT impacts management of NET patients by modifying treatment in over 50% of referred patients.\[14\] \(^{68}\)Ga-SSTR-PET/CT forms the basis of selecting patients for PRRT, a new and promising treatment for NET patients. PRRT has shown response rates of 25–30% with comparable progression-free survival and overall survival with other available medical treatments.\[15\]

The increasing need of \(^{68}\)Ga-labeled molecules for the above-mentioned oncological and nononcological indications has propelled the development of many GMP-certified \(^{68}\)Ga-Generators. Despite excellent advances of present-day \(^{68}\)Ga-radiopharmacy, it is pertinent to point out that majority of the commercially available \(^{68}\)Ga/\(^{68}\)Ga generators have several shortcomings and are not directly amenable for use in clinical context.\[16-17\] To circumvent these limitations, “state-of-the-art” automated modules have been developed over the last few years for postelution processing of \(^{68}\)Ga and subsequent radiopharmaceutical preparation.\[18-19\] However, these automated modules are highly expensive and beyond the reach of most nuclear medicine departments, especially in developing countries. Therefore, we have indigenously developed a \(^{68}\)Ge/\(^{68}\)Ga generator using \(\text{CeO}_2\)-PAN sorbent which could directly be used for the preparation of radiopharmaceuticals. Recently, Isotope Technologies Garching GmbH has launched a new GMP-certified \(^{68}\)Ge/\(^{68}\)Ga generator in the clinical market that utilizes pyrogallol-derivatized \(\text{SiO}_2\) as an adsorbent and is directly amenable for clinical use. A detailed performance evaluation of both these generators was recently carried out by our group, and the performances of these two generators were found to be comparable.\[20\] Thus, we could ensure that our indigenously developed generator is suitable for clinical use.

To achieve the goal of making \(^{68}\)Ga as the “work-horse” of PET, just as \(^{99m}\)Tc is for SPECT, it is prudent to develop cold kits containing precursors in freeze-dried form for extemporaneous preparation of \(^{68}\)Ga radiopharmaceuticals. Our group has demonstrated feasibly of preparation of \(^{68}\)Ga radiopharmaceuticals.

Table 2a: Indications and results of \(^{68}\)Ga-1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid-NOC positron emission tomography–computed tomography for initial characterization

Indication	No.	Purpose	Positive	Negative
Metastatic NET with unknown primary	4	Localization	3	1
Tumor induced osteomalacia	1	Localization	1	0
Glomus Jugulare	2	Diagnosis	2	0
NET Thymus	2	Diagnosis	1	1
Meningioma	2	Diagnosis	2	0
Insulinoma	2	Localization	1	1
Metastatic NET lung	1	Staging	0	1
NET stomach	1	Staging	1	0
NET Pancreas	1	Staging	1	0
Medullary Ca thyroid	1	Diagnosis	0	1
Ectopic Cushing’s	1	Localization	1	0
Total	18		13	5

Table 2b: Indications and results of \(^{68}\)Ga-1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid-NOC positron emission tomography–computed tomography for follow-up evaluation

Indication	No.	Purpose	Positive	Negative
Metastatic NET pancreas	3	Restaging	3	0
Metastatic NET unknown primary	2	Restaging	2	0
NET duodenum	2	Follow up	1	1
Medullary Ca thyroid	3	Follow up	0	3
Metastatic NET gall bladder	1	Restaging	1	0
NET lung	1	Restaging	1	0
Periampullary NET	1	Restaging	0	1
NET ascending colon	1	Restaging	1	0
Total	14		9	5

Table 3: Comparison of relative performance of \(^{99m}\)Tc-hydrazinonicotinyl-Tyr3-octreotide TOC single photon emission computed tomography and \(^{68}\)Ga-1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid-NOC positron emission tomography–computed tomography for lesions detection

Site of lesions	PET/CT	SPECT
Liver	80	46
Lymph nodes	39	20
Skeleton	7	4
Pancreas	3	2
GI tract	4	4
Cranium	6	6
Neck/chest	3	3
Total	142	85
utilizing cold kits of peptide conjugates.[3,5] Herein, we report our first clinical experience with 68Ga-DOTA-NOC prepared using 68Ga from the indigenous generator and freeze-dried cold kits of DOTA-NOC. 68Ga-DOTA-NOC in consistently high yields could be prepared in 10 min and within 35 min, radiolabeled DOTA-NOC was ready for injection into the patients after quality control analysis. Moreover, availability of cold kits independent of 68Ga generator provides more control over the reaction parameters compared to automated modules for 68Ga radiopharmaceutical preparation.

We analyzed the application of 68Ga-DOTA-NOC imaging for a wide variety of indications, which included pulmonary/gastro-enteropancreatic NETs, paragangliomas, ectopic ACTH syndrome, suspected meningioma, and tumor-induced osteomalacia. PET/CT showed intense uptake in two patients with paraganglioma and two patients with suspected meningioma, supporting the increasing use of PET/CT for these indications. PET/CT was successful in localizing the primary tumor in four patients (1 - tumor induced osteomalacia, 3 - metastatic NET of unknown primary). PET/CT was negative in 10 patients (4 - medullary Ca thyroid, 1 - suspected insulinoma, 3 metastatic NET with high proliferation index, 1 - ectopic Cushing’s syndrome, 1 - thymoma). Compared to the standard imaging for NET, 99mTc-HYNIC TOC, significantly more number of lesions was identified on 68Ga-DOTA-NOC PET-CT. However a change of management was noted in only one patient, which could be explained by small number of patients and heterogeneous clinical indications in our study.

Conclusion

The first clinical experience with BARC’s CeO2-PAN sorbent-based 68Ge/68Ga Generator and freeze-dried DOTA-NOC kits was found to be satisfactory in various clinical indications. Larger studies can be considered, to promote its widespread use as a cost-effective molecular imaging agent for the assessment of NETs.

Financial support and sponsorship
Nil.

Conflicts of interest
There are no conflicts of interest.

References

1. Fani M, Maecke HR, Okarvi SM. Radiolabeled peptides: Valuable tools for the detection and treatment of cancer. Theranostics 2012;2:481-501.
2. Chakravarty R, Shukla R, Ram R, Venkatesh M, Dash A, Tyagi AK. Nanoceria-PAN composite-based advanced sorbent material: A major step forward in the field of clinical-grade 68Ge/68Ga generator. ACS Appl Mater Interfaces 2010;2:2069-75.
3. Mukherjee A, Pandey U, Chakravarty R, Sarma HD, Dash A. Development of single vial kits for preparation of (68)Ga-labeled peptides for PET imaging of neuroendocrine tumours. Mol Imaging Biol 2014;16:550-7.
4. Chakravarty R, Chakraborty S, Ram R, Dash A, Pillai MR. Long-term evaluation of ‘BARC 68Ge/68Ga generator’ based on the nanoceria-polyacrylonitrile composite sorbent. Cancer Biother Radiopharm 2015;28:631-7.
5. Mukherjee A, Pandey U, Chakravarty R, Sarma HD, Samuel G, Dash A. Single vial kit formulation for preparation of PET radiopharmaceutical: 68Ga-DOTATOC. J Radioanal Nucl Chem 2014;302:1253-8.
6. Hofman MS, Lau WF, Hicks RJ. Somatostatin receptor imaging with 68Ga DOTA/TATE PET/CT. Clinical utility, normal patterns, pearls, and pitfalls in interpretation. Radiographics 2015;35:500-16.
7. Avanesov M, Karul M, Derlin T. (68)Ga-PSMA as a new tracer for evaluation of prostate cancer: Comparison between PET-CT and PET-MRI in biochemical recurrence. Radiol 2015;55:89-91.
8. Dimitrakopoulou-Straus S, Hohenberger P, Haberkorn U, Mucke HR, Eisenhut M, Strauss LG. 68Ga-labeled bombesin studies in patients with gastrointestinal stromal tumors: Comparison with 18F-FDG. J Nucl Med 2007;48:1245-50.
9. Siva S, Devereux TP, Ball DL, MacManus MP, Hardcastle N, Kron T, et al. Ga-68 MAA perfusion 4D-PET/CT scanning allows for functional lung avoidance using conformal radiation therapy planning. Technol Cancer Res Treat 2016;15:114-21.
10. Yao JC, Hassan M, Phan A, Doghony C, Leary C, Mares JE, et al. One hundred years after "carcinoid": Epidemiology of and prognostic factors for neuroendocrine tumors in 35,825 cases in the United States. J Clin Oncol 2008;26:3063-72.
11. Taal BG, Visser O. Epidemiology of neuroendocrine tumours. Neuroendocrinology 2004;80 Suppl 1:3-7.
12. Modlin IM, Oberg K, Chung DC, Jensen RT, de Herder WW, Thakker RV, et al. Gastroenteropancreatic neuroendocrine tumours. Lancet 2008;361:61-72.
13. Gabriel M, Decristoforo C, Kendler D, Dobrozevsky G, Heute U, Upriny C, et al. 68Ga-DOTA-Tyr3-octreotide PET in neuroendocrine tumors: Comparison with somatostatin receptor scintigraphy and CT. J Nucl Med 2007;48:508-18.
14. Ambrustino V, Campa D, Bodei L, Nanni C, Castellucci P, Allegri V, et al. 68Ga-DOTANOC PET/CT clinical impact in patients with neuroendocrine tumors. J Nucl Med 2010;51:669-73.
15. van der Zwan WA, Bodei L, Mueller-Brand J, de Herder WW, Kvols LK, Kwekkeboom DJ. GEPNETs update: Radionuclide therapy in neuroendocrine tumors. Eur J Endocrinol 2015;172:R1-8.
16. Roess F, Riss PJ. The renaissance of the 68Ge/68Ga radionuclide generator initiates new developments in 68Ga radiopharmaceutical chemistry. Curr Top Med Chem 2010;10:1633-68.
17. Roess F. (68)Ge/(68)Ga generators: Past, present, and future. Recent Results Cancer Res 2013;194:3-16.
18. Velikyan I. Prospective of 68Ga-radiopharmaceutical development. Theranostics 2013;3:47-80.
19. Bosch S, Malizia C, Lodi F. Overview and perspectives on automation strategies in (68)Ga radiopharmaceutical preparations. Recent Results Cancer Res 2013;194:17-31.
20. Chakravarty R, Chakraborty S, Ram R, Vatsa R, Bhusari P, Shukla J, et al. Detailed evaluation of different (68)Ge/(68)Ga generators: An attempt toward achieving efficient (68)Ga radiopharmacy. J Labelled Comp Radiopharm 2016;59:87-94.