Building Computer Network Attacks

Ariel Futoransky, Luciano Notarfrancesco, Gerardo Richarte and Carlos Sarraute

CORELABS, CORE SECURITY TECHNOLOGIES
March 31st, 2003

Abstract

In this work we start walking the path to a new perspective for viewing cyberwarfare scenarios, by introducing conceptual tools (a formal model) to evaluate the costs of an attack, to describe the theater of operations, targets, missions, actions, plans and assets involved in cyberwarfare attacks. We also describe two applications of this model: autonomous planning leading to automated penetration tests, and attack simulations, allowing a system administrator to evaluate the vulnerabilities of his network.

Keywords: Attack models, attack graphs, autonomous agents, autonomous planning, automated penetration test, attack simulation, network vulnerability evaluation.

1 Introduction

In this work we set the basis of a framework for modeling and building computer network attacks. The main purpose of this framework is to provide a tool for automating the risk assessment process, in particular penetration tests, providing a further step in the direction of a tool like Core Impact [Co02].

This work has also a theoretical value: “we understand what we can build.” Our framework, considered as a functional model of the attacking process, will provide the community with a deeper and more detailed model of the attacks and intrusions of computer networks.

Finally, it can be used by a system administrator to simulate attacks against his network, evaluate the vulnerabilities of the network and determine which countermeasures will make it safe.
After reviewing related work, we describe in the second section the components of our model - probabilistic assets, quantified goals, agents and actions - and their relations. In the third section we describe the principal applications of this model: automated planning of attacks and attack simulations.

Related work

Description of security incidents

In [HL98], Howard and Longstaff describe an incident taxonomy, which was the result of a project to establish a “common language” in the field of computer security. In [LJ97], Lindqvist and Jonsson also work on the classification of intrusions. We try to use the high-level terms proposed by Howard and Longstaff, in particular, the attributes: vulnerability, action, target, result and objective.

One common flaw of these classifications is that they exclusively adopt the point of view of the system owners or the intrusion detection sensors. But an attack is always composed of several steps, some of which may be invisible to the sensors. We will add to the attributes considered in [HL98] and [LJ97], some attributes which are relevant only to the attacker (or risk assessment team). Thus a first result of our framework will be a widening of the concepts used to describe security intrusions.

Attack models

In [Sc99] and [Sc00], Bruce Schneier proposes to describe attacks against a system using “attack trees”, where each node requires the execution of children nodes, and the root node represents the goal of the attack. There are two types of nodes: OR nodes and AND nodes.

In [TLK01] the authors propose an attack specification language, which extends the attack trees model. Each node has Preconditions (system environment properties which facilitate the execution of the attack node), sub-goals (these are the children nodes), and postconditions (changes in systems and environments). [MEL01] is also based on the attack trees model. The model is extended by attack patterns and attack profiles. These authors’ objective is to provide a means for documenting intrusions. Their models are purely descriptive and doesn’t allow us to construct or predict new attacks.

Attack graphs

In [SPG98] and [JSW02] the authors propose to use attack graphs to determine the security of networked systems. There are two main differences with
our model. Firstly, the system they propose is an analysis system, which requires as input a great amount of information: a database of common attacks broken in atomic steps, specific network configuration and topology information, and an attacker profile. Our model is a system for building attacks, starting with possibly zero information about the network, and gathering this information as the attack takes place. Secondly, the attack graph we construct for planning purposes differs from the attack graph of [SPG98] and [JSW02]. In particular, it has a smaller size, which allow us to effectively find a plan for real world instances of the problem. Additionally we introduce several new dimensions to the graph, like quantified goals, probabilistic assets and a complex cost function.

2 Model architecture

Our model of computer attacks is based on the concepts of assets, goals, agents and actions. The actions are conceptual units: they are the building blocks of the attacks. In our description, an attack involves a group of agents, executing sequences of actions, obtaining assets (which can be information about the network or actual modifications of the real network) in order to reach a set of goals. A functional prototype of this framework was written in Squeak Smalltalk, and we occasionally use the Smalltalk vocabulary by speaking of classes, instances, variables and methods.

2.1 Assets

An asset can represent anything that an attacker may need to obtain during the course of an attack. More precisely, it represents the knowledge that an agent has of a real object or property of the network. Examples of assets are:

- * AgentAsset (agent, capabilities, host)
- * BannerAsset (banner, host, port)
- * OperatingSystemAsset (os, host)
- * IPConnectivityAsset (source, target)
- * TCPConnectivityAsset (source, target, port)

An AgentAsset represents an agent with a collection of capabilities running on a host. A BannerAsset represents the banner that an agent obtains when trying to connect to a certain port on a host. An OperatingSystemAsset represents the knowledge that an agent has about the operating system of a host. A TCPConnectivityAsset represents the fact that an agent is able to establish a TCP connection between a source host and a certain port of a target host.
There is an implicit question associated with each asset. For example, an OperatingSystemAsset with os=nil and host=192.168.13.1 is associated with the question “What is the operating system of the machine whose IP is 192.168.13.1?”. This gives us a natural relation between assets of the same class: an asset a1 completes another asset a2 if a1 has some extra information which answers the question implicitly associated with a2. In our example, if two OperatingSystemAssets a1 and a2 have the same host=192.168.13.1, a2 has os=nil and a1 host os=linux, a1 completes a2.

The assets we consider are probabilistic. This allows us to represent properties which we guess are true with a certain probability or negative properties (which we know to be false). For example, an action which determines the os of a host using banners (OSDetectByBannerGrabber) may give as result an OperatingSystemAsset os=linux with probability=0.8 and a second one with os=openbsd and probability=0.2. Another example, an ApplicationAsset host=192.168.13.1 and application=#Apache with probability=0 means that our agent has determined that this host is not running Apache.

We associate to each asset a certain level of trust in the information it represents. When an action returns an asset, we may trust this information, but then trust diminishes with time. This decrease is not linear - how to calculate it is an interesting open question.

The environment knowledge

The environment knowledge is a collection of information about the computer network being attacked or hosting an agent. Naturally, this information is represented by assets. By abuse of language, we may speak of the environment instead of the environment knowledge. In the beginning, the environment contains only an AgentAsset: the localAgent which will initiate the attack.

The environment will play an important role during the planning phase and during the execution phase of an attack, since it continuously feedbacks the behavior of the agent. Note also that each agent has its own environment knowledge and that exchanging assets will be an important part of the communications between agents.

2.2 Goals

A goal represents a question or a request of the type: “complete this asset” (every goal has an associated asset). A goal is quantified (has an ordered collection of quantifiers). A goal also knows all the actions which may complete
his asset. This list is filled out during the attack graph construction phase.

Quantifiers

We consider three types of quantifiers: *Any*, *All* and *AllPossible*. An example will clarify their meaning: consider that PortAsset has attributes (*host*, *port*, *status*). The following goals will mean:

```
goal = PortAsset (host=192.168.13.1, status=#open), quantifiers = (Any #port from:1 to:1024):
```

find an open port in host 192.168.13.1 between ports 1 and 1024. To fulfill this goal, an action like PortScan will begin examining the ports of host 192.168.13.1 until it finds an open port (completes the PortAsset and returns a success signal) - or reaches port 1024 (and returns a failure signal).

```
goal = PortAsset (host=192.168.13.1, status=#open), quantifiers = (All #port from:21,22,23,80):
```

find whether all the ports #(21,22,23,80) are open in host 192.168.13.1. This time, PortScan will examine the four mentioned ports and return success only if the four of them are open (and in that case completes four PortAssets).

```
goal = AgentAsset (capabilities=#(TCP,UDP,FileSystem)), quantifiers = (AllPossible #host from:192.168.1.0/24):
```

install agents in all the hosts that you can in netblock 192.168.1.0/24. An action able to fulfill this goal will be a subclass of Exploit (for example ApacheChunkedEncodingExploit). To fulfill this goal, the Exploit action will try to exploit a vulnerability in all the machines it reaches in that netblock. It returns an AgentAsset for each compromised host, and returns success if at least one machine is compromised.

In general, the quantifiers are an ordered collection. Of course, the order is important: for example, a goal with goal = PortAsset (status=#open) and quantifiers (All #host from:192.168.1.0/24), (Any #port from:1 to:1024) will mean: for every host in this netblock, find an open port. Whereas with quantifiers (Any #port from:1 to:1024), All #host from:192.168.1.0/24) it will mean: find a port which is open in all the machines in this netblock.

2.3 Attackers and agents

We can think of the actions as being the verbs in a sequence of sentences describing the attack. The agents will then be the subject of those verbs. Of course, an attack is always initiated by human attackers, but during the course of the attack, actions will typically be executed by autonomous agents.
Human attackers

There are different types of attackers. They can be classified grosso modo as: script kiddies, who attack more or less randomly using standard tools downloaded from the Internet; hackers, who attack computers for challenge, status or research; security auditors (pen testers), who evaluate the security of a network; government agencies, who possess the highest skill level and resources to perform an attack.

The way we model these different types of attackers is through the attack parameters: stealthiness, non traceability, expected running time, expected success; and a skill level given by the collection of actions available to the attacker. A script kiddie will not worry about stealthiness or non traceability. His attacks will have low expected success and require low skill level. On the other hand, a government agency will use maximal stealthiness, non traceability and skill level, with a high expected success. A security auditor will not worry about non traceability but may require stealthiness to carry on the penetration test.

There is a number of actions who will require a human agent to execute them, for example social engineering. But it is important to include them in our model - for the sake of completeness, but also because they are necessary if we want to do simulations using our framework.

Software agents

In general the execution of an action will require the execution of machine code and therefore involves a software agent A executing this code. The command of executing this action might come from the agent itself, from another software agent or from a human attacker: we will not distinguish between these cases and say that the action was executed by the agent A. A software agent can take several forms: script, toolkit or other kinds of programs. Let us point out the autonomous agents who are able to take decisions and continue the attack without human intervention.

Communications between agents

This framework supports the interactions between agents, which collaborate to accomplish the objective. The agents establish communication channels between them to exchange knowledge, gained information and missions to

1Notice that social engineering could also be performed by an autonomous agent. An example of this would be a virus who relies on a suggestive title to be opened by the receiver.
be executed. For example, each agent has a collection of actions. Agents can learn new actions and exchange actions between them through the communication channels.

The communications between human attackers can take place through unlimited types of channels (direct interaction, telephone, email, chat, irc, written mail). We will not enter into details here. Examples of communication channels between software agents are POP3 and SMTP, HTTP/HTTPS, DNS, and covert channels like Loki.

Agent mission

We contemplate different types of organizations between the agents. One scenario is given by a “root agent” who plans the attack and then gives the other agents orders (of executing actions), eventually creating new agents if necessary, and asks the agents for feedback about action results in order to decide further steps.

Another scenario is when the root agent delegates responsibilities to the other agents, giving them higher level missions. To fulfill the mission, the agent will have to do his own planning and communicate with other agents. This scenario is likely to arise when stealthiness is a priority: communications are very expensive and it becomes necessary to rely on the agents to execute their missions without giving feedback (or the smallest amount of feedback, or delayed feedback because of intermittent communication channels).

2.4 Attack actions

These are the basic steps which form an attack. Examples of actions are: ApacheChunckedEncodingExploit, WuFTPglobbingExploit (subclasses of Exploit), BannerGrabber, OSDetectByBanner, OSFingerprint, NetworkDiscovery, IPConnect, TCPConnect. In this section we review the principal attributes of an action.

Action goal

An action has a goal (naturally an instance of the Goal class previously described) and when executed successfully the action completes the asset associated with its goal.

Usually an action is directed against a target, where the target is a computer or a network. But as we have seen in the Goals section, there are different types of goals like gathering information or establishing connectivity.

\[^{2}\text{For example see } \text{[TLK01]}\]
between two agents or hosts, where the notion of target is not so clear. Thus the concept of goal is more general and allow us to speak about intermediate steps of an attack.

It is also common to speak about the result of an action (for example to increase access, obtain information, corrupt information, gain use of resources, denial of service), focussing on non authorized results. Our concept of goal also includes this idea. Note that when an action completes the goal asset, we are taking into account only the expected result of the action. Undesired results and other side effects fall into the category of noise.

Also, thinking about goals opens the door to a whole new set of tools and ideas, giving a new dimension to the available actions for planning and developing attacks. An important example is the idea of Persons as targets. Currently the weakest link in the security of an organization, for different reasons, is the workstation [AL03]. When attacking servers, the adversary is the system administrator or even the security professional in charge of it, but when attacking workstations, the adversary is the end user, who probably doesn’t fully understand the implications of his actions, raising the possibilities of finding a vulnerability or configuration problem, and it’s most likely to stay undiscovered after the intrusion.

Before assigning a goal to an action, the action remains abstract (described by the methods of its class). Given a goal, we can instantiate the action, but because of the quantifiers this instantiation is only gradual. During the planning phase, actions are only partially instantiated and use the common information of the goal asset (for example if the goal is to find All-Possible open ports in a netblock, we only use the fact that we have to find open ports). The initializeRequirements method is called, which creates the list of requirements or subgoals of the action, needed to carry on the construction of the attack graph. During the execution phase, when quantifiers are recursively iterated, the action is fully instantiated and receives a concrete asset to fill out (for example, to determine if a specific port of a specific host is open). The setupRequirements method is called, which communicates this information to the subgoals of the action.

Action requirements

The requirements are instances of the Goal class, and will be the goals of other attack actions, which must have been successfully executed before the considered action can be run. The requirements are the equivalent of children nodes in [Sc00] and subgoals in [TLK01] and [MEL01]. An abstract action must know what kind of assets it may satisfy and which goals it requires before running. These relations will be used to construct the attack graph.
The *run* method or the action itself

During the execution phase, when the action goal is fully instantiated, the *run* method is called. This is of course the most important method of an action, which contains the concrete code executed by the agent. Before executing its own code, the action will call the *runAction* method of its requirements.

One interesting point to mention here, is that the action can be executed in a real network or in a simulated network (with simulated hosts and network topology). The difference between working in those two settings will be reflected only in the *run* method of the actions. This makes our framework easy to adapt for both real and simulated attacks.

Environment knowledge

The action makes use of the knowledge that his owner agent has of the environment. This environment knowledge is a collection of information about the computer network being attacked or hosting the agent. When the *run* method is called, the first thing that the action does is to examine the environment, looking for an asset which completes the goal asset. If this is the case, the information of the existing asset is used to fulfill the goal, and the action returns a success signal, resulting in zero cost (in terms of time, noise, success probability and stealthiness).

Note that two interesting graphs can be extracted from the environment knowledge: the network topology graph and the agent distribution graph, whose nodes are the agents involved in the attack and whose edges are the communication channels between agents.

Environment conditions

The environment conditions refer to system configuration or environment properties which may be necessary or may facilitate the execution of the action. We distinguish the environment conditions from the requirements, because the requirements express relations between actions (which must be taken into account when planning a sequence of actions) whereas the environment conditions refer to the “state of the world” (as far as the agent is aware of it) before the execution of the module, and do not imply previous actions. For example, an exploit of a buffer overflow that runs only on specific versions of an operating system, will have as requirement: “obtain information about operating system version” and as environment condition “OS=RedHat Linux; version between 6.1 and 6.9”. These conditions are not necessary, as the action can be run anyway, but will dramatically increase its
Noise produced and stealthiness

The execution of the action will produce noise. This noise can be network traffic, log lines in IDS, etc. Given a list as complete as possible of network sensors, we have to quantify the noise produced respect to each of this sensors. The knowledge of the network configuration and which sensors are likely to be active, will allow us to calculate a global estimate of the noise produced by the action. Refining this estimation is an interesting open question.

With respect to every network sensor, the noise produced can be classified into three categories: unremovable noise, noise that can be cleaned in case the action is successful (or another subsequent action is successful), noise that can be cleaned even in case of failure. So we can also estimate the noise remaining after cleanup. Of course, the stealthiness of an action will refer to the low level of noise produced.

Exploited vulnerability

The module, if aiming to obtain an unauthorized result, will exploit a vulnerability. The information about the exploited vulnerability is not needed by the attacking agent, but is useful for the classification and analysis of detected intrusions. This vulnerability can be:

* software vulnerability: a design flaw or an implementation flaw (buffer overflow, format string, race condition)
* network configuration vulnerability
* trust relationship: this refers to higher level, non autonomous attack modules: hacking a software provider, getting an insider in a software provider, inserting backdoors in an open-source project.

Running time and probability of success

The expected running time and probability of success depend on the nature of the action, but also on the environment conditions, so their values must be updated every time the agent receives new information about the environment. These values are necessary to take decisions and choose a path in the graph of possible actions. Because of the uncertainties on the execution environment, we consider three values for the running time: minimum,
average and maximum running time. Together with the stealthiness and zero-dayness, these values constitute the cost of the action and are used to evaluate sequences of actions.

2.5 Building an attack

An attack involves a group of agents, executing series of actions in order to fulfill a goal (or a set of goals). Notice that this goal can change during the course of the attack.

The target is the logical or physical entity which is the blank of the attack. Usually, the target is a computer or a computer network or some information hosted in a computer. The target can also change during the course of the attack. It is also possible that an attack has no specific target at all (for example, a script kiddie running a specific exploit against all the computers he reaches, until it succeeds).

The complete graph of all combinations of actions determines which goals we (as attackers) can reach. Considering the complete graph of possible actions, to build an attack will consist in finding a path to reach the objective (this implies in particular to find a path through the physical networks to reach the target).

Attack parameters

In fact, we will try to find the best path to reach the objective, and to evaluate this we must take into account the attack parameters: non traceability, tolerated noise, expected success, execution time, zero-dayness. These parameters have initial values for the whole attack, but they can vary from agent to agent, for example an agent might create other agents with a different profile.

Non traceability refers to the ability to dissimulate the origin of the attack. We could also call it “deniability”. To achieve non traceability, special modules must be executed, who will insert intermediate agents (we call them “pivots” or stepping stones) between the originating agent and the agents executing the objective or partial objectives.

Tolerated noise is the level of noise that we allow our agents to make. It can vary from agent to agent, for example an agent executing a DNS spoofing module would benefit from other agents simultaneously executing a DNS flooding (and generating a high level of noise).

Expected success determines the priority which will be given to successfully executing the actions, over the other parameters. If set to the maximal
value, the agent will try to execute the projected action, even though the noise generated might be higher than the tolerated noise level.

Execution time: each agent will be given a limit of time to execute each action. This is necessary to plan the attack, as it usually consists of a series of dependent steps.

Zero-dayness: specifies whether the agent is allowed to use zero-day exploits (a valuable resource that should be used only for critical missions).

Evaluating paths

A path is a sequence of actions (in a specific order and without branchings). To be able to choose between different paths, we have to evaluate the paths in terms of the attack parameters: the probability of success, the noise probably produced, the running time and the traceability.

For the probability of success, we consider the success of each action as independent of the previous ones, and that all the actions in the paths are necessary, so the probability of success of the path is the product of the probabilities of success of each action.

For the running time of the path, we consider the three time estimations (minimum, average, maximum) that we have for each module and sum them to obtain the path’s minimal, average and maximal running time.

The stealthiness of the path, that we define as the probability of not being discovered, diminishes with each executed action. As with the probability of success, we consider them independent and compute the stealthiness of the path as the product of the stealthiness of the actions.

The traceability is harder to estimate. It depends basically in the number of hops (or pivots or stepping stones) introduced, and this is how we compute it, although each can contribute in a different amount to the global “non traceability” of the path of actions.

3 Applications

3.1 Planning

The complete graph of possible actions

Our first approach to the planning problem is to contemplate the complete graph of possible actions. In this graph, each node represents a “state of the world”, which is the combined knowledge that the agents have of the environment (network topology, operating systems, running services, agents distribution, etc). Each edge represents an action (the execution of a module
by an agent). This action will result in modifying the state of the world (which can be changes in the real world, or changes in the knowledge the agents have about the world).

This model allows us to express complex relationships between actions, and always takes into account the order in which they are executed. In this sense, it is close to reality. But autonomous planning is untractable: it is only possible for very small instances of the problem.

Probabilistic planning

Another approach is to describe the model as a STRIPS-like planning domain where the actions have probabilistic outcomes. This is the setting of Markov Decision Processes (MDP). To do this, we represent our modules as probabilistic operators and the results and noise produced by a module as add-effects and delete-effects of the operator. These effects depend on a probability distribution. The requirements and environment conditions of the module are translated as preconditions of the operator.

One difficulty is that the planning operators do not create or destroy objects, so we must begin planning when we already know the topology of the computer network being attacked. The description of the network will then be the initial conditions.

Having described the planning of the attack as a Markov Decision Process, we can use existing tools for solving such MDPs. For example, the probabilistic planner PGraphPlan presented in [BL98], based on the deterministic planner GraphPlan [BF95]. Although this planner is quite efficient, it only solves the planning problem when the plan requires a small amount of steps.

Our approach

We construct the attack graph by alternating layers of goals and layers of actions: we connect each goal in a layer to the actions which may satisfy it, and connect each action in a layer to the subgoals that it requires. Note that we don’t need to build explicitly this graph, in fact we prefer to leave it implicitly defined by the relations between actions and requirements.

As we have already stated, we consider two different phases: during the attack graph construction, the quantifiers are not expanded, and the collection of elements referred by the quantifiers are treated as a single element (in this sense, we say that the elements are homogeneous). This use of quantifiers is a great help in avoiding the combinatorial explosion of states, a fundamental problem for the planning systems. This is also a way to take
into account the uncertainty that we have respect to the real world: a collection of elements (hosts, ports, applications) that we cannot distinguish because of lack of information, are in the beginning treated as the same element, thus facilitating the planning, and are distinguished only after enough information is gathered.

During the execution phase, when the run method is called, the action recursively iterates over the quantifiers, thus delaying the expansion until it is absolutely necessary.

Another thing that we delay is the computation of the costs of the actions. In effect, the cost is greatly influenced by the environment knowledge, and this knowledge is modified by every actions which gets executed. It is only when the runAction method of a goal is called, that the goal computes the costs of the actions which may satisfy it, and chooses the action with the lower cost. This way, the same attack graph will result in different executions if we run it several times without modifications: for example after running an ApacheChunkedEncodingExploit in a first execution, the exploit may add a negative asset (with probability zero) to the environment stating that the target host is not running Apache. In the following execution, the probability of success of this exploit will be almost zero and another exploit will be executed.

An interesting issue is raised by the fact that an agent may create another agent. For example given the goal of establishing a TCPConnectivity, a TCPConnect action requires to install an agent in an intermediate host in order to circumvent a firewall. To install this agent, an exploit requires a TCPConnectivity, which in turn requires to install an agent in an intermediate host, etc... we are faced with combinatorial explosion and infinite loops. To solve this issue we have used an idea which resulted to be a common technique in Hierarchical Task Network (HTN) planning. As stated in [SFJ00], virtually all planning systems that have been developed for practical applications make use of HTN planning techniques. As long as the actions do not require to create new agents, we use classical planning techniques. But when an action such as TCPConnectCreatingHops requires installation of new agents, we consider it as a high-level task. TCPConnectCreatingHops will find the best path between our agents and a target host, eventually winning new agents in intermediate machines. If we can compute the cost of the connectivity between two hosts and the cost of "winning an agent in host target from host source", we can use a standard algorithm like the algorithm of Dijkstra to find the best path in the network topology graph. To evaluate the cost of winning an agent, we construct a subplan using an environment containing only the source and target hosts. The cost of this subplan is computed by appending to this hypothetic environment the real environment.
together with an imaginary agent in host source (this is the way we can work out hypotheses). This subplan will also be used during the execution phase, each time that an agent must be won in the path found by the Dijkstra algorithm.

3.2 Simulations and analysis of network security

As we have mentioned in the Actions section, our framework can be used to build attacks against a simulated network. Of course, the quality of this simulation will depend on how accurately we simulate the machines. Using VMwares we obtain a slow and accurate simulation, for faster simulations a tradeoff must be made between accuracy and speed.

The system administrator can simulate different types of attackers by using different attack parameters and different collections of available actions, and evaluate the response of his network to these attackers. For example, he can start with an attacker with a minimal portfolio of actions, and add gradually actions to the arsenal of his simulated attacker until there is a successful attack which goes undetected by the IDS. This will give him an indication of which attack actions he should defend his network from.

Also consider that the system administrator has a set of measures which make certain attack actions less effective (in our framework, a measure may reduce the probability of success of an attack action, or increase the noise it produces, for example by adding a new IDS). He can then use the simulation to see if his system becomes safe after all the measures are deployed, or to find a minimal set of measures which make his system safe.

As opposed to VMwares, rudimentary simulations of machines allow us to simulate a huge amount of machines. This can be used to investigate the dissemination of worms (considered as autonomous agents with a minimalist set of actions) in large networks. Future work needs to be done in this direction.

4 Conclusions and future work

In this paper we start walking the path to a new perspective for viewing cyberwarfare scenarios, by introducing different conceptual tools (a formal model) to evaluate the costs of an attack, to describe the theater of operations, targets, missions, actions, plans and assets involved in cybernetic attacks.

Thinking about the way to express goals, led us to introduce three different quantifiers (Any, All, AllPossible) and expand the notion of target of an
action. The quantifiers give us a compact representation of extensive collections of assets, which greatly reduces the combinatorial growth of the attack graph during the planning phase.

Another important contribution concerns the costs of the actions. We show that the cost is given by a tuple a values: not only the probability of success, but also the stealthiness (which depends on the noise produced), time consumed, non traceability and zero-dayness. The noise produced is particularly relevant, and we haven’t seen it in other models. These dimensions, considered as attack parameters, also allow us to model different types of attackers.

The most important application of our model is automated planning. Integrated in a tool like Core Impact, it leads the way to automated penetration testing. Used against simulated networks, it is a tool for evaluating the vulnerabilities of a network.

In our approach to the planning issue, we chose not to rely entirely in one classical representation (like STRIPS or MDP representations, or formal models used in model checking) and then use standard tools for this representation, because these only work for small instances of the problem. By combining classical planning techniques with HTN techniques, and making effective use of the quantifiers, we were able to handle bigger instances of the problem in our Squeak implementation (not particularly optimized!)

Finally working on this model has opened a lot of questions and directions for future work: how to estimate the probability of success and noise produced by an action, how to modify these values after an execution, how to combine the different dimensions of the cost in order to obtain a total order between costs, how to choose the agents who will execute the actions, when to create a new agent on a specific host, how to decide the profiles (or personalities) of the agents, the use of planning techniques, and the applications of the simulation scenario. It also led us to review current penetration testing practices and opened new dimensions for planning attacks and creating new tools.

References

[AL03] Ivan Arce, Elias Levy, “The ‘weakest link’ revisited”, IEEE Computer Security Journal, March 2003.

[BDM01] John Bresina, Richard Dearden, Nicolas Meuleau et al, “Planning Under Continuous Time and Resource Uncertainty: A Challenge
for AI”, Conference on Uncertainty in Artificial Intelligence, August 1-4 2002.

[BF95] Avrim L. Blum and Merrick L. Furst, “Fast planning through planning graph analysis”, Proc. IJCAI-95, Montreal, Canada, 1995.

[BL98] Avrim L. Blum and John C. Langford, “Probabilistic planning in the GraphPlan Framework”, AIPS98 Workshop on Planning as Combinatorial Search, pages 8-12, June 1998.

[Ca02] Max Cáceres, “Syscall Proxying - Simulating remote execution”, Black Hat USA 2002 Briefings and Training, July 29 to August 1, 2002.

[Co02] Core Security Technologies, Core Impact, http://www.corest.com/products/coreimpact/index.php

[EHN94] Kutluhan Erol, James Hendler, Dana S. Nau, “HTN Planning: Complexity and Expressivity”.

[JSS99] John James, Brian Sayrs, V. S. Subrahmanian, John Benton, “Uncertainty Management: Keeping Battlespace Visualization Honest”, ATIRP Conference, February 1999.

[JSW02] Somesh Jha, Oleg Sheyner, Jeannette Wing, “Minimization and Reliability Analyses of Attack Graphs”, February 2002.

[HL98] John D. Howard, Thomas A. Longstaff, “A Common Language for Computer Security Incidents”, Sandia Report, October 1998.

[LJ97] Ulf Lindqvist, Erland Jonsson, “How to Systematically Classify Computer Security Intrusions”, Proceedings of the 1997 IEEE Symposium on Security and Privacy, May 1997.

[MEL01] Andrew P. Moore, Robert J. Ellison, Richard C. Linger, “Attack Modeling for Information Security and Survivability”, Software Engineering Institute Technical Report, 2001.

[MG00] P. Marrow, R. Ghanea-Hercock, “Mobile software agents – insect-inspired computing”, BT Technol, Vol 18 No 4, October 2000.

[Sc99] Bruce Schneier, “Attack Trees: Modeling Security Threats”, Dr. Dobb’s Journal, December 1999.

17
[Sc00] Bruce Schneier, “Secrets and Lies: Digital Security in a Networked World”, Chap. 21 Attack Trees, Wiley Computer Publishing, 2000.

[SFJ00] David Smith, Jeremy Frank, Ari Jonsson, “Bridging the Gap Between Planning and Scheduling”, Knowledge Engineering Review, 15(1), 2000.

[SPG98] Laura P. Swiler, Cynthia Phillips, Timothy Gaylor, “A Graph-Based Network-Vulnerability Analysis System”, Sandia Report, January 1998.

[TLK01] T. Tidwell, R. Larson, K. Fitch, J. Hale, “Modeling Internet Attacks”, Proceedings of the 2001 IEEE Workshop of Information Assurance and Security, June 2001.