On the different kinds of separability of the space of Borel functions

Abstract: In paper we prove that:

- a space of Borel functions \(B(X) \) on a set of reals \(X \), with pointwise topology, to be countably selective sequentially separable if and only if \(X \) has the property \(S(\Gamma, \Gamma) \);
- there exists a consistent example of sequentially separable selectively separable space which is not selective sequentially separable. This is an answer to the question of A. Bella, M. Bonanzinga and M. Matveev;
- there is a consistent example of a compact \(T_2 \) sequentially separable space which is not selective sequentially separable. This is an answer to the question of A. Bella and C. Costantini;
- \(\min\{b, q\} = \{\kappa : 2^\kappa \text{ is not selective sequentially separable}\} \). This is a partial answer to the question of A. Bella, M. Bonanzinga and M. Matveev.

Keywords: \(S(\mathcal{D}, \mathcal{D}) \), \(S(S, S) \), \(S_{\text{fin}}(S, S) \), Function spaces, Selection principles, Borel function, \(\sigma \)-set, \(S(\Omega, \Omega) \), \(S(\Gamma, \Gamma) \), \(S(\Omega, \Gamma) \), Sequentially separable, Selectively separable, Selective sequentially separable, Countably selective sequentially separable

MSC: 54C35, 54C05, 54C65, 54A20

1 Introduction

In [12], Osipov and Pytkeev gave necessary and sufficient conditions for the space \(B_1(X) \) of the Baire class 1 functions on a Tychonoff space \(X \), with pointwise topology, to be (strongly) sequentially separable. In this paper, we consider some properties of a space \(B(X) \) of Borel functions on a set of reals \(X \), with pointwise topology, that are stronger than (sequential) separability.

2 Main definitions and notation

Many topological properties are defined or characterized in terms of the following classical selection principles. Let \(\mathcal{A} \) and \(\mathcal{B} \) be sets consisting of families of subsets of an infinite set \(X \). Then:

- \(S(\mathcal{A}, \mathcal{B}) \) is the selection hypothesis: for each sequence \((A_n : n \in \mathbb{N}) \) of elements of \(\mathcal{A} \) there is a sequence \((b_n : n \in \mathbb{N}) \) such that for each \(n \), \(b_n \in A_n \), and \(\{b_n : n \in \mathbb{N}\} \) is an element of \(\mathcal{B} \).
- \(S_{\text{fin}}(\mathcal{A}, \mathcal{B}) \) is the selection hypothesis: for each sequence \((A_n : n \in \mathbb{N}) \) of elements of \(\mathcal{A} \) there is a sequence \((B_n : n \in \mathbb{N}) \) of finite sets such that for each \(n \), \(B_n \subseteq A_n \), and \(\bigcup_{n \in \mathbb{N}} B_n \in \mathcal{B} \).
$U_{fin}(A, B)$ is the selection hypothesis: whenever $U_1, U_2, \ldots \in A$ and none contains a finite subcover, there are finite sets $F_n \subseteq U_n, n \in \mathbb{N}$, such that $\{\bigcup F_n : n \in \mathbb{N}\} \in B$.

An open cover \mathcal{U} of a space X is:
- an ω-cover if X does not belong to \mathcal{U} and every finite subset of X is contained in a member of \mathcal{U};
- a γ-cover if it is infinite and each $x \in X$ belongs to all but finitely many elements of \mathcal{U}.

For a topological space X we denote:
- Ω — the family of all countable open ω-covers of X;
- Γ — the family of all countable open γ-covers of X;
- B_ω — the family of all countable Borel ω-covers of X;
- B_γ — the family of all countable Borel γ-covers of X;
- F_γ — the family of all countable closed γ-covers of X;
- D — the family of all countable dense subsets of X;
- S — the family of all countable sequentially dense subsets of X.

A γ-cover \mathcal{U} of co-zero sets of X is $\gamma_\mathcal{F}$-shrinkable if there exists a γ-cover $\{F(U) : U \in \mathcal{U}\}$ of zero-sets of X with $F(U) \subseteq U$ for every $U \in \mathcal{U}$.

For a topological space X we denote $\Gamma_\mathcal{F}$, the family of all countable $\gamma_\mathcal{F}$-shrinkable γ-covers of X.

We will use the following notations.
- $C_p(X)$ is the set of all real-valued continuous functions $C(X)$ defined on a space X, with pointwise topology.
- $B_1(X)$ is the set of all first Baire class 1 functions $B_1(X)$ i.e., pointwise limits of continuous functions, defined on a space X, with pointwise topology.
- $B(X)$ is the set of all Borel functions, defined on a space X, with pointwise topology.

If X is a space and $A \subseteq X$, then the sequential closure of A, denoted by $[A]_{seq}$, is the set of all limits of sequences from A. A set $D \subseteq X$ is said to be sequentially dense if $X = [D]_{seq}$. If D is a countable, sequentially dense subset of X then X call sequentially separable space.

Call a space X strongly sequentially separable if X is separable and every countable dense subset of X is sequentially dense.

A space X is (countably) selectively separable (or M-separable, [3]) if for every sequence $(D_n : n \in \mathbb{N})$ of (countable) dense subsets of X one can pick finite $F_n \subseteq D_n, n \in \mathbb{N}$, so that $\bigcup \{F_n : n \in \mathbb{N}\}$ is dense in X.

In [3], the authors started to investigate a selective version of sequential separability.

A space X is (countably) selectively sequentially separable (or M-sequentially separable, [3]) if for every sequence $(D_n : n \in \mathbb{N})$ of (countable) sequentially dense subsets of X, one can pick finite $F_n \subseteq D_n, n \in \mathbb{N}$, so that $\bigcup \{F_n : n \in \mathbb{N}\}$ is sequentially dense in X.

In Scheeper’s terminology [16], countably selectively separability equivalently to the selection principle $S_{fin}(D, D)$, and countably selective sequentially separability equivalently to the $S_{fin}(S, S)$.

Recall that the cardinal p is the smallest cardinal so that there is a collection of p many subsets of the natural numbers with the strong finite intersection property but no infinite pseudo-intersection. Note that $\omega_1 \leq p \leq c$.

For $f, g \in \mathbb{N}^\omega$, let $f \preceq^* g$ if $f(n) \preceq g(n)$ for all but finitely many n. b is the minimal cardinality of a \preceq^*-unbounded subset of \mathbb{N}^ω. A set $B \subseteq [\mathbb{N}]^\omega$ is unbounded if the set of all increasing enumerations of elements of B is unbounded in \mathbb{N}^ω, with respect to \preceq^*. It follows that $|B| \geq b$. A subset S of the real line is called a Q-set if each one of its subsets is a G_δ. The cardinal q is the smallest cardinal so that for any $\kappa < q$ there is a Q-set of size κ. (See [7] for more on small cardinals including p).
3 Properties of a space of Borel functions

Theorem 3.1. For a set of reals X, the following statements are equivalent:

1. $B(X)$ satisfies $S_1(S, S)$ and $B(X)$ is sequentially separable;
2. X satisfies $S_1(B_r, B_r)$;
3. $B(X) \in S_{\text{fin}}(S, S)$ and $B(X)$ is sequentially separable;
4. X satisfies $S_{\text{fin}}(B_r, B_r)$;
5. $B_1(X)$ satisfies $S_1(S, S)$;
6. X satisfies $S_1(F_r, F_r)$;
7. $B_1(X)$ satisfies $S_{\text{fin}}(S, S)$.

Proof. It is obvious that $(1) \Rightarrow (3)$. [Proof continued with mathematical details and logical steps]
there exists an unbounded \(\beta \in \mathbb{N}^\mathbb{N} \) such that \(\{ f^{(k)}_k \} \) converges to \(f \) on \(Y \). It follows that \(\{ f^{(k)}_k \} : k \in \mathbb{N} \) converge to \(f \) on \(X \) and \([B]_{\text{seq}} = B(X)\).

(5) ⇒ (6). By Velichko’s Theorem ([18]), a space \(B_1(X) \) is sequentially separable for any separable metric space \(X \).

Let \(\{ F_i \} \subset F_\tau \) and \(S = \{ h_m \}_{m \in \mathbb{N}} \) be a countable sequentially dense subset of \(B_1(X) \).

Similarly implication (3) ⇒ (2) we get \(X \) satisfies \(U_{\text{fin}}(F_\tau, F_\tau) \), and, hence, by Lemma 13 in [17], \(X \) satisfies \(S_1(F_\tau, F_\tau) \).

(6) ⇒ (5). By Corollary 20 in [17], \(X \) satisfies \(S_1(B_\tau, B_\tau) \). Since \(X \) is a \(\sigma \)-set (see [17]), \(B_1(X) = B(X) \) and, by implication (2) ⇒ (1), we get \(B_1(X) \) satisfies \(S_1(S, S) \).

\(\square \)

In [16], (Theorem 13) M. Scheepers proved the following result.

Theorem 3.2 (Scheepers). For \(X \) a separable metric space, the following are equivalent:

1. \(C_p(X) \) satisfies \(S_1(\mathcal{D}, \mathcal{D}) \);
2. \(X \) satisfies \(S_1(\Omega, \Omega) \).

We claim the theorem for a space \(B(X) \) of Borel functions.

Theorem 3.3. For a set of reals \(X \), the following are equivalent:

1. \(B(X) \) satisfies \(S_1(\mathcal{D}, \mathcal{D}) \);
2. \(X \) satisfies \(S_1(B_\Omega, B_\Omega) \).

Proof. (1) ⇒ (2). Let \(X \) be a set of reals satisfying the hypotheses and \(\beta \) be a countable base of \(X \). Consider a sequence \(\{ B_i \}_{i \in \mathbb{N}} \) of countable Borel \(\omega \)-covers of \(X \) where \(B_i = \{ W_i^j \}_{j \in \mathbb{N}} \) for each \(i \in \mathbb{N} \).

Consider a topology \(\tau \) generated by the family \(\mathcal{P} = \{ W_i^j \cap A : i, j \in \mathbb{N} \text{ and } A \in \beta \} \cup \{ (X \setminus W_i^j) \cap A : i, j \in \mathbb{N} \text{ and } A \in \beta \} \).

Note that if \(\chi_{W_i^j} \) is a characteristic function of \(P \) for each \(P \in \mathcal{P} \), then a diagonal mapping \(\varphi = \Delta_{\mathcal{P} \times \mathcal{P}} \chi_{\mathcal{P}} : X \rightarrow 2^{\omega} \) is a Borel bijection. Let \(Z = \varphi(X) \).

Note that \(\{ B_i \} \) is countable open \(\omega \)-cover of \(Z \) for each \(i \in \mathbb{N} \). Since \(B(Z) \) is a dense subset of \(B(X) \), then \(B(Z) \) also has the property \(S_1(\mathcal{D}, \mathcal{D}) \). Since \(C_p(Z) \) is a dense subset of \(B(Z) \), \(C_p(Z) \) has the property \(S_1(\mathcal{D}, \mathcal{D}) \), too.

By Theorem 3.2, the space \(Z \) has the property \(S_1(\Omega, \Omega) \). It follows that there is a sequence \(\{ W_i^{(j)} \}_{i \in \mathbb{N}} \) such that \(W_i^{(j)} \in B_i \) and \(\{ W_i^{(j)} : i \in \mathbb{N} \} \) is an open \(\omega \)-cover of \(Z \). It follows that \(\{ W_i^{(j)} : i \in \mathbb{N} \} \) is Borel \(\omega \)-cover of \(X \).

(2) ⇒ (1). Assume that \(X \) has the property \(S_1(B_\Omega, B_\Omega) \). Let \(\{ D_k \}_{k \in \mathbb{N}} \) be a sequence countable dense subsets of \(B(X) \) and \(D_k = \{ f_k^i \} : i \in \mathbb{N} \) for each \(k \in \mathbb{N} \). We claim that for any \(f \in B(X) \) there is a sequence \(\{ f_k \} \subset B(X) \) such that \(f_k \in D_k \) for each \(k \in \mathbb{N} \) and \(f \in \bigcap \{ f_k : k \in \mathbb{N} \} \).

Without loss of generality we can assume \(f = 0 \). For each \(f_k^i \in D_k \) let \(W_k^i = \{ x \in X : -1/k < f_k^i(x) < 1/k \} \).

If for each \(j \in \mathbb{N} \) there is \(k(j) \) such that \(W_k^{(j)} = X \), then a sequence \(f_k^{(j)} = f_k^{N(k)} \) uniformly converges to \(f \) and, hence, \(f \in \bigcap \{ f_k^{(j)} : j \in \mathbb{N} \} \).

We can assume that \(W_k^i \neq X \) for any \(k, i \).

(a). \(\{ W_k^i \}_{i \in \mathbb{N}} \) a sequence of Borel sets of \(X \).

(b). For each \(k \in \mathbb{N} \), \(\{ W_k^i : i \in \mathbb{N} \} \) is a \(\omega \)-cover of \(X \).

By (2), \(X \) has the property \(S_1(B_\Omega, B_\Omega) \), hence, there is a sequence \(\{ W_k^{(j)} \}_{j \in \mathbb{N}} \) such that \(W_k^{(j)} \in \{ W_i^{(j)} \}_{i \in \mathbb{N}} \) for each \(k \in \mathbb{N} \) and \(\{ W_k^{(j)} \}_{j \in \mathbb{N}} \) is a \(\omega \)-cover of \(X \).

Consider \(\{ f_k^{(j)} \}_{j \in \mathbb{N}} \). We claim that \(f \in \bigcap \{ f_k^{(j)} : k \in \mathbb{N} \} \). Let \(K \) be a finite subset of \(X \), \(\epsilon > 0 \) and \(U = \{ f \in K, \epsilon \} \) be a base neighborhood of \(f \), then there is \(k_0 \in \mathbb{N} \) such that \(\frac{1}{k_0} \epsilon < \epsilon \) and \(K \subset W_k^{(j)} \). It follows that \(f_k^{(j)} \subset U \).

Let \(\mathcal{D} = \{ d_n : n \in \mathbb{N} \} \) be a dense subspace of \(B(X) \). Given a sequence \(\{ D_i \}_{i \in \mathbb{N}} \) of dense subspace of \(B(X) \), enumerate it as \(\{ D_n : n \in \mathbb{N} \} \). For each \(n \in \mathbb{N} \), pick \(d_{n,m} \in D_{n,m} \) so that \(d_n \in \bigcap \{ d_{n,m} : m \in \mathbb{N} \} \). Then \(\{ d_{n,m} : n, m \in \mathbb{N} \} \) is dense in \(B(X) \).

\(\square \)

In [16], (Theorem 35) and [4] (Corollary 2.10) proved the following result.
Theorem 3.4 (Scheepers). For a X a separable metric space, the following are equivalent:
1. $C_p(X)$ satisfies $S_{fin}(D, D)$;
2. X satisfies $S_{fin}(\Omega, \Omega)$.

Then for the space $B(X)$ we have an analogous result.

Theorem 3.5. For a set of reals X, the following are equivalent:
1. $B(X)$ satisfies $S_{fin}(D, D)$;
2. X satisfies $S_{fin}(B_{\Omega}, B_{\Omega})$.

Proof. It is proved similarly to the proof of Theorem 3.3. \qed

4 Question of A. Bella, M. Bonanzinga and M. Matveev

In [3], Question 4.3, it is asked to find a sequentially separable selectively separable space which is not selective sequentially separable.

The following theorem answers this question.

Theorem 4.1 (CH). There is a consistent example of a space Z, such that Z is sequentially separable, selectively separable, not selective sequentially separable.

Proof. By Theorem 40 and Corollary 41 in [15], there is a c-Lusin set X which has the property $S_1(B_{\Omega}, B_{\Omega})$, but X does not have the property $U_{fin}(\Gamma, \Gamma)$.

Consider a space $Z = C_p(X)$. By Velichko's Theorem ([18]), a space $C_p(X)$ is sequentially separable for any separable metric space X.

(a). Z is sequentially separable. Since X is Lindelöf and X satisfies $S_1(B_{\Omega}, B_{\Omega})$, X has the property $S_1(\Omega, \Omega)$.

By Theorem 3.2, $C_p(X)$ satisfies $S_1(D, D)$, and, hence, $C_p(X)$ satisfies $S_{fin}(D, D)$.

(b). Z is selectively separable. By Theorem 4.1 in [11], $U_{fin}(\Gamma, \Gamma) = U_{fin}(\Gamma_\Gamma, \Gamma)$ for Lindelöf spaces.

Since X does not have the property $U_{fin}(\Gamma, \Gamma)$, X does not have the property $S_{fin}(\Gamma_\Gamma, \Gamma)$. By Theorem 8.11 in [9], $C_p(X)$ does not have the property $S_{fin}(S, S)$.

(c). Z is not selective sequentially separable. \qed

Theorem 4.2 (CH). There is a consistent example of a space Z, such that Z is sequentially separable, countably selectively separable, countably selectively separable, not countably selective sequentially separable.

Proof. Consider the c-Lusin set X (see Theorem 40 and Corollary 41 in [15]), then X has the property $S_1(B_{\Omega}, B_{\Omega})$, but X does not have the property $U_{fin}(\Gamma, \Gamma)$ and, hence, X does not have the property $S_{fin}(B_{\Gamma}, B_{\Gamma})$.

Consider a space $Z = B_1(X)$. By Velichko's Theorem in [18], a space $B_1(X)$ is sequentially separable for any separable metric space X.

(a). Z is sequentially separable. By Theorem 3.3, $B(X)$ satisfies $S_1(D, D)$. Since Z is dense subset of $B(X)$ we have that Z satisfies $S_1(D, D)$ and, hence, Z satisfies $S_{fin}(D, D)$.

(b). Z is countably selectively separable. Since X does not have the property $S_{fin}(B_{\Gamma}, B_{\Gamma})$, by Theorem 3.1, $B_1(X)$ does not have the property $S_{fin}(S, S)$.

(c). Z is not countably selective sequentially separable. \qed
5 Question of A. Bella and C. Costantini

In [5], Question 2.7, it is asked to find a compact T2 sequentially separable space which is not selective sequentially separable.

The following theorem answers this question.

Theorem 5.1. (b < q) There is a consistent example of a compact T2 sequentially separable space which is not selective sequentially separable.

Proof. Let D be a discrete space of size b. Since b < q, a space 2^b is sequentially separable (see Proposition 3 in [13]).

We claim that 2^b is not selective sequentially separable.

On the contrary, suppose that 2^b is sequentially separable. Since non(Sfin(BΓ, BΓ)) = b (see Theorem 5.1), there is a set of reals X such that |X| = b and X does not have the property Sfin(BΓ, BΓ). Hence there exists sequence (An : n ∈ N) of elements of BΓ that for any sequence (Bn : n ∈ N) of finite sets such that for each n, Bn ⊆ An, we have that \(\cup_{n \in \mathbb{N}} B_n \notin BΓ \).

Consider an identity mapping \(id : D \rightarrow X \) from the space D onto the space X. Denote \(C_n = id^{-1}(A_n) \) for each \(A_n \in A_n \) and \(n, i \in \mathbb{N} \). Let \(C_n = \{ C_n \}_{i \in N} \) (i.e. \(C_n = id^{-1}(A_n) \)) and let \(S = \{ h_i \}_{i \in N} \) be a countable sequentially dense subset of \(B(D, \{0, 1\}) = 2^b \).

For each \(n \in \mathbb{N} \) we consider a countable sequentially dense subset \(S_n \) of \(B(D, \{0, 1\}) \) where

\[
S_n = \{ f_n^a \} = \{ f_n^b \in B(D, 2) : f_n^a \upharpoonright C_n = h_i, \text{ and } f_n^a \upharpoonright (X \setminus C_n) = 1 \text{ for } i \in \mathbb{N} \}.
\]

Since \(C_n = \{ C_n \}_{i \in N} \) is a Borel \(\gamma \)-cover of D and \(S_n \) is a countable sequentially dense subset of \(B(D, \{0, 1\}) \), we have that \(S_n \) is a countable sequentially dense subset of \(B(D, \{0, 1\}) \) for each \(n \in \mathbb{N} \).

Indeed, let \(h \in B(D, \{0, 1\}) \), there is a sequence \(\{ h_\lambda \}_{\lambda \in \mathbb{N}} \subset S \) such that \(\{ h_\lambda \}_{\lambda \in \mathbb{N}} \) converges to \(h \). We claim that \(\{ f_n^a \}_{\lambda \in \mathbb{N}} \) converges to \(h \).

Let \(K = \{ x_1, \ldots, x_k \} \) be a finite subset of \(D, \varepsilon = \{ \varepsilon_1, \ldots, \varepsilon_k \} \) where \(\varepsilon_j \in \{0, 1\} \) for \(j = 1, \ldots, k \), and \(W = \{ h, K, \varepsilon \} : = \{ g \in B(D, \{0, 1\}) : |g(x_j) - h(x_j)| < \varepsilon_j \text{ for } j = 1, \ldots, k \} \) be a base neighborhood of \(h \), then there is a number \(m_0 \) such that \(K \subset C_n \) for \(i > m_0 \) and \(h_n \in W \) for \(s > m_0 \). Since \(f_n^a \upharpoonright K = h_n \upharpoonright K \) for each \(s > m_0, f_n^a \in W \) for each \(s > m_0 \). It follows that a sequence \(\{ f_n^a \}_{\lambda \in \mathbb{N}} \) converges to \(h \).

Since \(B(D, \{0, 1\}) \) is sequentially separable, there is a sequence \(\{ F_n = \{ f_n^{1, \lambda}, \ldots, f_n^{i, \lambda} \} : n \in \mathbb{N} \} \) such that for each \(n, F_n \subset S_n \) and \(\cup_{n \in \mathbb{N}} F_n \) is a countable sequentially dense subset of \(B(D, \{0, 1\}) \).

For \(0 \in B(D, \{0, 1\}) \) there is a sequence \(\{ f_n^{i, \lambda} \}_{\lambda \in \mathbb{N}} \subset \cup_{n \in \mathbb{N}} F_n \) such that \(\{ f_n^{i, \lambda} \}_{\lambda \in \mathbb{N}} \) converges to \(0 \). Consider a sequence \(\{ C_n^{i, \lambda} : j \in \mathbb{N} \} \). Then

1. \(C_n^{i, \lambda} \in C_n \);
2. \(\{ C_n^{i, \lambda} : j \in \mathbb{N} \} \) is a \(\gamma \)-cover of D.

Indeed, let \(K \) be a finite subset of \(D \) and \(U = \{ 0, K, \{0\} \} \) be a base neighborhood of \(0 \), then there is a number \(j_0 \) such that \(f_n^{i, \lambda} \in U \) for every \(j > j_0 \). It follows that \(K \subset C_n^{i, \lambda} \) for every \(j > j_0 \). Hence, \(\{ A_n^{i, \lambda} = id(C_n^{i, \lambda}) : j \in \mathbb{N} \} \in BΓ \) in the space X, a contradiction. \(\square \)

Let \(\mu = \min \{ \kappa : 2^\kappa \notin \text{selective sequentially separable} \} \). It is well-known that \(p \leq \mu \leq q \) (see [3]).

Theorem 5.2. \(\mu = \min \{ b, q \} \).

Proof. Let \(\kappa < \min \{ b, q \} \). Then, by Proposition 3 in [13], \(2^\kappa \) is a sequentially separable space.

Let X be a set of reals such that \(|X| = \kappa \) and X be a Q-set.

Analogous to the proof of implication (2) \(\Rightarrow (1) \) in Theorem 3.1, we can claim that \(B(X, \{0, 1\}) = 2^X = 2^\kappa \) is sequentially separable.

It follows that \(\mu \geq \min \{ b, q \} \).

Since \(\mu \leq q \), we suppose that \(\mu > b \) and \(b < q \). Then, by Theorem 5.1, \(2^b \) is not sequentially separable. It follows that \(\mu = \min \{ b, q \} \). \(\square \)

In [3], Question 4.12: is it the case \(\mu \in \{ p, q \} \)?
A partial positive answer to this question is the existence of the following models of set theory (Theorem 8 in [1]):
1. $\mu = p = b < q$;
2. $p < \mu = b = q$;
and
3. $\mu = p = q < b$.

The author does not know whether, in general, the answer can be negative. In this regard, the following question is of interest.

Question. Is there a model of set theory in which $p < b < q$?

References

[1] Banakh T., Machura M., Zdomskyy L., *On critical cardinalities related to Q-sets*, Mathematical Bulletin of the Shevchenko Scientific Society, 11 (2014), 21–32.
[2] Bella A., Bonanzinga M., Matveev M., *Variations of selective separability*, Topology and its Applications, 156, (2009), 1241–1252.
[3] Bella A., Bonanzinga M., Matveev M., *Sequential+separable vs sequentially separable and another variation on selective separability*, Cent. Eur. J. Math. 11-3 (2013), 530–538.
[4] Bella A., Bonanzinga M., Matveev M. and Tkachuk V.V., *Selective separability: general facts and behavior in countable spaces*, Topology Proceedings, 32, (2008), 15–30.
[5] Bella A., Costantini C., *Sequential Separability vs Selective Sequential Separability*, Filomat 29:1, (2015), 121–124.
[6] Bukovský L., Šupina J., *Sequence selection principles for quasi-normal convergence*, Topology and its Applications, 159, (2012), p.283–289.
[7] van Douwen E.K., *The integers and topology*, in: Handbook of Set-Theoretic Topology, North-Holland, Amsterdam, (1984).
[8] Osipov A.V., *Application of selection principles in the study of the properties of function spaces*, Acta Math. Hungar., 154(2), (2018), 362–377.
[9] Osipov A.V., *Classification of selectors for sequences of dense sets of $C_p(X)$*, Topology and its Applications, 242, (2018), 20–32.
[10] Osipov A.V., *The functional characterizations of the Rothberger and Menger properties*, Topology and its Applications, 243, (2018), 146–152.
[11] Osipov A.V., *A functional characterization of the Hurewicz property*, to appear., https://arxiv.org/abs/1805.11960.
[12] Osipov A.V., Pytkeev E.G., *On sequential separability of functional spaces*, Topology and its Applications, 221, (2017), p. 270–274.
[13] Gartside P., Lo J.T.H., Marsh A., *Sequential density*, Topology and its Applications, 130, (2003), p.75–86.
[14] Just W., Miller A.W., Scheepers M., Szeptycki P.J., *The combinatorics of open covers, II*, Topology and its Applications, 73, (1996), 241–266.
[15] Scheepers M., Tsaban B., *The combinatorics of Borel covers*, Topology and its Applications, 121, (2002), p.357–382.
[16] Scheepers M., *Combinatorics of open covers VI: Selectors for sequences of dense sets*, Quaestiones Mathematicae, 22, (1999), p. 109–130.
[17] Tsaban B., Zdomskyy L., *Hereditarily Hurewicz spaces and Arhangel’skiĭ sheaf amalgamations*, Journal of the European Mathematical Society, 12, (2012), 353–372.
[18] Velichko N.V., *On sequential separability*, Mathematical Notes, Vol.78, Issue 5, 2005, p. 610–614.