Regulation of virulence gene expression

Mark S Thomas1,* and Sivaramesh Wigneshweraraj2

1Department of Infection and Immunity; Medical School; University of Sheffield; Sheffield, UK; 2Faculty of Medicine; MRC Centre for Molecular Bacteriology and Infection; Imperial College London; London, UK

Keywords: bacterial virulence, gene expression, regulation, environmental, adaptation

The bacterial pathogen finds itself, either by accident or design, within the human or animal host, senses and adapts to the prevailing conditions by modulating its gene expression on a global scale.1-3 A subset of these genes will be key players in the ability of the bacterium to cause disease. The products of such genes that facilitate the successful colonisation and survival of the bacterium in or cause damage to the host are considered as virulence or pathogenicity determinants. For an individual bacterial pathogen, the total number of genes that can be categorised as virulence genes (i.e. the ‘virulome’) ranges from the low hundreds to more than one thousand depending upon the system under investigation or the approach used to identify such genes.4-7 However, while the expression and the approach used to identify these regulators of virulence or pathogenicity are far from being fully elucidated systems as signal transduction mechanisms for regulating virulence gene expression is well established.8,9 In contrast, eukaryotic-like serine-threonine kinase/phosphatase-dependent systems are now beginning to be widely recognised as important components of bacterial signal transduction arsenal. However, the full extent to which eSTKs/eSTP systems modulate virulence gene expression has yet to be elucidated. The article by Wright and Ulijasz in this Special Focus issue provides a comprehensive mechanistic survey of these systems in Staphylococci and Mycobacterium tuberculosis which, serves as a useful primer for anyone interested in this important area of bacterial signal transduction.10

Global changes in virulence gene expression can also be implemented in response to fluctuations in a single environmental parameter and can involve a
single notable mechanism, the most notable example of which occurs with some quorum sensing regulon. However, it is becoming increasingly apparent that large scale alterations in the transcriptional profile of the bacterium that occur in response to other environmental signals can also include groups of virulence genes. In this Special Focus issue Green and colleagues discuss how bacteria sense and adapt to low oxygen environments, the presence of reactive oxygen species (ROS) and the presence of nitric oxide, each of which may be encountered by the pathogen upon infection of the host and can lead to global changes in gene expression. Adaptive responses that result in increased resistance to the action of ROS and nitric oxide are key to the survival of several pathogens in the host. Moreover, hypoxia or anoxia is used as a signal not only to trigger changes in expression of genes that allow adaptation to the lack of oxygen but also upregulate the activity of genes that result in obvious damaging consequences for the cell: they encode toxins.

Perhaps it would not be surprising to learn that bacterial pathogens use perturbations of their membrane(s) induced by certain offensive external stimuli not only as a signal to elicit appropriate responses to maintain the integrity of the cell envelope (‘envelope stress response’, ESR) but also to mobilise components of their pathogenic armoury, as such distress may be interpreted as a signal that they have encountered hostile elements of the host immune system. Moreover, perturbations of the bacterial cell envelope may be self-inflicted and can occur through the assembly and/or activity of protein secretion systems. In this situation, the pertinent system for sensing membrane disruption is playing an auxiliary offensive role, although one that is also essential to survival of the pathogen while engaged in subverting the host. Accordingly, in the article by Darwin and colleagues we see how perturbations or damage to the cell envelope of bacterial pathogens are sensed by different mechanisms, which in some cases modulate the expression of more overt virulence functions.

An often-overlooked molecule when considering possible modes of sensing and adaptation to the host niche is phosphate. In the article by Dozois and colleagues in this Special Focus issue, the pathways for uptake of this key nutrient and its regulation by the bacterial cell are discussed before the authors consider examples where virulence genes have effectively been plugged into the ancestral phosphate homeostatic control system in Gram-negative bacteria. The net result of this is that the extracellular phosphate concentration can exert quite profound effects on virulence gene expression.

In contrast, temperature and iron availability have long been recognised as triggers for modulating gene expression in bacterial pathogens. Induction of virulence gene expression as a result of a shift to 37°C or a depletion of extracellular iron is a common theme in bacterial pathogenicity. Many readers will be familiar with the temperature-dependent Bvg system of the Bordetellae and the yop genes of Yersinia spp that are activated upon entry into mammalian or human hosts, or the role of the Fur repressor in regulating iron acquisition systems. While some mechanisms for signal detection and response are highly conserved in bacteria (the use of Fur or Zur to orchestrate the responses to iron and zinc availability, respectively [see forthcoming article by Maddox and Andrews]), in some cases bacteria have evolved multiple distinct mechanisms to regulate genes in response to changes in a single environmental parameter. For example, the mechanisms by which bacteria regulate gene expression in response to changes in temperature can take many forms. This is illustrated in the article by Tang and colleagues, which highlights the recent advances in thermo-regulation of virulence gene expression.

Here, we see that bacteria have taken advantage of the base pairing property of RNA to evolve mechanisms for regulating virulence gene expression in response to temperature at the post-transcriptional level.

Although only scratching the surface, this series of review articles in this Special Focus issue highlights the sheer diversity of mechanisms employed by bacteria to regulate expression of their virulence genes in response to the environmental conditions that prevail in the host niche. While the evolution and spread of antibiotic resistance in bacterial pathogens continues to pose a serious threat, efforts to unravel the fundamental regulatory mechanisms that are responsible for expression of virulence factors that compromise the host or enable the bacterial pathogen to evade host defense strategies will continue to be of paramount importance.

Disclosure of Potential Conflicts of Interest
No potential conflicts of interest were disclosed.

References
1. Chauvaux S, Rosso ML, Frangeul L, Lacroux C, Labarre L, Schiavo A, Marceau M, Dillies MA, Foulon J, Cupper F, et al. Transcriptome analysis of Yersinia pestis in human plasma: an approach for discovering bacterial genes involved in septicaemic plague. Microbiol 2007; 153:3112-24.
2. Malachowa N, Whitney AR, Kobayashi SD, Sturdevant DE, Kennedy AD, Braughton KR, Shabb DW, Dias BA, Chambers HF, Otto M, DeLeo FR. Global changes in Staphylococcus aureus gene expression in human blood. PLoS ONE 2011; 6(4):e18617.
3. Mandlik A, Livny J, Robins WP, Ritchie JM, Mekalanos JJ, Waldor MK. RNA-seq-based monitoring of available genomics of Pseudomonas aeruginosa. Proc Natl Acad Sci USA 2002; 99:15711-16.
4. Porvin E, Lehoux DE, Kukavica-Ibrulj I, Richard KL, Sanchez J, Holmgren J. Cholera toxin structure, gene regulation and pathophysiological and immunological aspects. Cell Mol Life Sci 2008; 65:1347-60.
5. Sanchez J, Holmgren J. Cholera toxin structure, gene regulation and pathophysiological aspects. Cell Mol Life Sci 2008; 65:1347-60.

www.landesbioscience.com
Virulence 833
11. Rhodius VA, Suh WC, Nonaka G, West J, Gross CA. Conserved and variable functions of the σ5 stress response in related genomes. PLoS Biol 2006; 4:e2.
12. Boulanger A, Chen Q, Hinton DM, Stibitz S. In vivo phosphorylation dynamics of the Bordetella pertussis virulence-controlling response regulator BvgA. Mol Microbiol 2013; 88:156-72.
13. Dalebroux ZD, Miller SL. Salmonellae PhoPQ regulation of the outer membrane to resist innate immunity. Curr Opin Microbiol 2014; 17:106-13.
14. Wright DP, Ulijasz AT. Regulation of transcription by eukaryotic-like serine-threonine kinases and phosphatases in Gram-positive bacterial pathogens. Virulence 2014.
15. Antunes LC, Ferreira RB, Buckner MM, Finlay BB. Quorum sensing in bacterial virulence. Microbiol 2010; 156:2271-82.
16. Green J, Rolfe MD, Smith LJ. Transcriptional regulation of bacterial virulence gene expression by molecular oxygen and nitric oxide. Virulence 2014.
17. Pullan ST, Gidley MD, Jones RA, Barrett J, Stevanin TM, Read RC, Green J, Poole RK. Nitric sensing in bacterial virulence. Microbiol 2010; 156:2271-82.
18. Wang S, Deng K, Zaremba S, Deng X, Lin C, Wang Q, Tortorello ML, Zhang W. Transcriptionic response of Escherichia coli O157:H7 to oxidative stress. Appl Environ Microbiol 2009; 75:6110-23.
19. Sass AM, Schneek C, Agnoi K, Noorville PJ, Eberl L, Valvano MA, Malsenthalingam E. The unexpected discovery of a novel low-oxygen-activated locus for the anoxic persistence of Burkholderia cenocepacia. ISME J 2013; 7:1568-81.
20. Wei Q, Minh PNL, Diwick A, Hildebrand F, Panma nee W, Elfarash A, Schulz S, Plaisance S, Charlier D, Hassett D, Hausserland S, Cornelis P. Global regulation of gene expression by OxyR in an important human opportunistic pathogen. Nucleic Acids Res 2012; 40:4320-33.
21. Lau GW, Britigan BE, Hassett DJ. Pseudomonas aeruginosa OxyR is required for full virulence in rodent and insect models of infection and for resistance to human neutrophils. Infect Immun 2005; 73:2550-53.
22. Richardson AR, Dunman PM, Fang FC. The nitrosative stress response of Staphylococcus aureus is required for resistance to innate immunity. Mol Microbiol 2006; 61:927-39.
23. Lee H-i, Yoon SS. Activation of cholera toxin production by anaerobic respiration of trimethylamine N-oxide in Vibrio cholerae. J Biol Chem 2012; 287:39742-52.
24. Darwin AJ, Millar VL. The pps locus of Yersinia enterocolitica is required for virulence and for growth in vitro when the Ysc type III secretion system is produced. Mol Microbiol 2001; 39:429-44.
25. Flores-Kim J, Darwin AJ. Regulation of bacterial virulence gene expression by cell envelope stress responses. Virulence 2014.
26. Chekabab SM, Harel J, Dozzoris CM. Interplay between genetic regulation of phosphate homeostasis and bacterial virulence. Virulence 2014.
27. Straley SC, Perry RD. Environmental modulation of gene expression and pathogenesis in Yersinia. Trends Microbiol 1995; 3:510-17.
28. Scarlato V, Arico B, Pragulla, A, Rappuoli R. Sequential activation and environmental regulation of virulence genes in Bordetella pertussis. EMBO J 1991; 10:3971-75.
29. Escobar L, Perez-Martin J, de Lorenzo V. Opening the iron box: transcriptional metalloregulation by the Fur protein. J Bacteriol 1999; 181:6223-29.
30. Lam O, Wheeler J, Tang CM. Thermal control of virulence factors in bacteria: a hot topic. Virulence 2014.