NON HERMITIAN OPERATORS WITH REAL SPECTRUM IN QUANTUM MECHANICS

J. da Providência
Departamento de Física, Universidade de Coimbra, P-3004-516 Coimbra, Portugal

N. Bebiano
Departamento de Matemática, Universidade de Coimbra, P-3004-516 Coimbra, Portugal

J.P. da Providência
Departamento de Física, Universidade da Beira Interior, P-6201-001 Covilhã, Portugal

September 29, 2009

Abstract

Examples are given of non-Hermitian Hamiltonian operators which have a real spectrum. Some of the investigated operators are expressed in terms of the generators of the Weil-Heisenberg algebra. It is argued that the existence of an involutive operator J which renders the Hamiltonian J-Hermitian leads to the unambiguous definition of an associated positive definite norm allowing for the standard probabilistic interpretation of quantum mechanics. Non-Hermitian extensions of the Pöschl-Teller Hamiltonian are also considered. Hermitian counterparts obtained by similarity transformations are constructed.

1 Introduction

In non-relativistic quantum mechanics, the Hamiltonian operator is assumed to be Hermitian. It is well-known, however, that some relativistic extensions, such as the Klein-Gordon theory, lead to Hamiltonian operators H which are non-Hermitian, $H \neq H^\dagger$. In such theories an indefinite norm operator P occurs which renders the Hamiltonian P-Hermitian, that is, $PH = H^\dagger P$. Particularly, P may be the parity operator \mathcal{P} that performs spatial reflection and has the effect $p \to -p$ and $x \to -x$. The indefinite norm operator P does not allow for the usual probabilistic interpretation of quantum mechanics, because it is not positive definite. A positive definite operator Q which can play the role of P in the sense that $QH = H^\dagger Q$, is still needed for the conventional interpretation of quantum mechanics.

Non-Hermitian Hamiltonian operators with a real spectrum have been the object of intense research activity [1, 2, 3, 4]. For instance, the Hamiltonian $H = p^2 + x^2 + ix^3$, has been studied by Bender and others [2], who observed that its spectrum is real due to the \mathcal{PT}-symmetry being unbroken. That operator is not symmetric under \mathcal{P} or T separately, but is invariant under their combined operation and so it is said to possess space-time symmetry. Here, T denotes the anti-linear time-reversal operator, which has the effect
Following Bender’s work, many researchers, as, for instance, González Lopéz, investigated such non-Hermitian Hamiltonians with real spectra.

The construction of positive norm operators required by the quantum mechanical probabilistic interpretation of non-Hermitian Hamiltonians of this type is a topic of current interest. The problem of non-uniqueness of the metric was addressed by Scholtz et al who resolved it by considering an irreducible set of observables. Bender et al., in the context of \mathcal{PT}-invariant theories, defined a new operator \mathcal{C} and the \mathcal{CPT} scalar product, which is positive definite. However, to construct \mathcal{C} the eigenvalues and eigenvectors of the Hamiltonian have to be determined, which can be done explicitly for soluble models but in general situations only a perturbative expansion of \mathcal{C} is available. (For extensive bibliography, see the references cited in [4].)

Let the non-Hermitian Hamiltonian H acting on the Hilbert space \mathcal{H} have real eigenvalues λ_j and let the corresponding right and left eigenvectors, denoted by $|\phi_j\rangle$ and $\langle \psi_j|$ respectively, form two complete systems. We have

$$H|\phi_j\rangle = \lambda_j|\phi_j\rangle, \quad \langle \psi_j|H = \lambda_j\langle \psi.$$

The completeness of the eigenvectors $|\phi_i\rangle$ means that any $|\xi\rangle \in \mathcal{H}$ may be expanded as $|\xi\rangle = \sum_{i=1}^{n} |\phi_i\rangle c_i$, for certain $c_i \in \mathbb{C}$. Mostafazadeh has shown that there exists positive definite Hermitian operators Q such that QH is Hermitian, $QH = H^\dagger Q$, and under the similarity transformation

$$\tilde{H} = Q^{\frac{1}{2}}HQ^{-\frac{1}{2}},$$

a Hermitian operator \tilde{H} is obtained.

Mostafazadeh’s result is easily understood in the finite dimensional case. Let $\mathcal{H} = \mathbb{C}^n$ and denote by $\langle \psi|\phi\rangle$ the inner product of the vectors $|\phi\rangle, |\psi\rangle \in \mathbb{C}^n$. Dirac’s bra-ket notation is used throughout. Let A be an $n \times n$ non-Hermitian matrix, that is $A \neq A^\dagger$, where A^\dagger denotes the adjoint matrix. Let us also assume that the eigenvalues λ_j of A are real and that the right and left eigenvectors, denoted, respectively, by $|\phi_j\rangle$ and $\langle \psi_j|$, form two complete systems,

$$A|\phi_j\rangle = \lambda_j|\phi_j\rangle, \quad \langle \psi_j|A = \lambda_j\langle \psi.$$

Assuming for simplicity that the eigenvalues are distinct, it follows that $\langle \psi_j|\phi_k\rangle = 0$ if $j \neq k$. If the eigenvalues are conveniently normalized, we have moreover

$$\langle \psi_j|\phi_k\rangle = \delta_{jk}.$$

Let Q be the operator such that $|\psi_j\rangle = Q|\phi_j\rangle$. This operator is Hermitian and positive definite (notice that $\langle \psi_j|\phi_k\rangle = \langle \phi_j|\psi_k\rangle$) and has the property that QA is Hermitian, $QA = A^\dagger Q$. These assertions may be easily verified. Thus, under the similarity transformation

$$\tilde{A} = Q^{\frac{1}{2}}AQ^{-\frac{1}{2}},$$

a Hermitian operator is obtained, in agreement with Mostafazadeh’s result. The operator Q induces the inner product

$$\langle \psi|Q|\phi\rangle,$$
satisfying \(\langle \psi | Q | \psi \rangle > 0 \), for \(| \psi \rangle \neq 0 \). Given an arbitrary vector \(| \xi \rangle \in \mathbb{C}^n \) such that \(\langle \xi | Q | \xi \rangle = 1 \), according to the rules of quantum mechanics, the component \(c_j = \langle \phi_j | Q | \xi \rangle = \langle \psi_j | \xi \rangle \) of the vector \(| \xi \rangle = \sum c_j | \phi_j \rangle \) may be understood as the amplitude (square root) of the probability for the result of a measurement of the observable \(A \) to be \(\lambda_j \). However, \(Q \) must be fixed by some supplementary requirement. Physical theories involving non-Hermitian Hamiltonians with real eigenvalues also prescribe certain Hermitian involutive operators \(J \), \(J^2 = I \), such that \(JH \) is Hermitian, \(JH = H^\dagger J \), so that the eigenvectors \(| \phi_j \rangle \) of \(H \) may be normalized according to \(\langle \phi_i | J | \phi_j \rangle = \eta_i \delta_{ij}, \eta_i = \pm 1 \). Since \(\langle \phi_j | J \) is a left eigenvector, i.e., \(\langle \phi_j | JH = \lambda_j \langle \phi_j | J \), it is natural to choose \(| \psi_j \rangle = \eta_i \langle \phi_j | J \) as the desired left eigenvector satisfying \(\langle \psi_j | \phi_j \rangle = 1 \) and to define \(Q \) by the relation \(| \psi_j \rangle = \eta_j | \phi_j \rangle = Q | \phi_j \rangle \). By this prescription, \(Q \) is fixed unambiguously and the relation \(JQJ = Q^{-1} \) is satisfied, as the following argument shows. Indeed, let us consider the left eigenvectors of \(H \), \(\langle \psi_i | = \langle \phi_i | Q = \eta_i \langle \phi_i | J \). Since

\[
| \psi_i \rangle = \eta_i | \phi_i \rangle = \eta_i JQ^{-1} | \psi_i \rangle = Q | \phi_i \rangle = Q(\eta_i | \phi_i \rangle) = \eta_i Q | \phi_i \rangle,
\]

we have \(QJ | \psi_i \rangle = JQ^{-1} | \psi_i \rangle \). Since, moreover, the \(| \psi_i \rangle \) constitute a complete system of vectors, the result follows. This conclusion is in agreement with the criterium proposed by Bender and collaborators [6] for the complete specification of a suitable norm operator \(Q \), namely, \(J \log QJ = - \log Q \).

We investigate simple examples of non-Hermitian Hamiltonians which have real spectra and may be diagonalized with the help of algebraic methods. Moreover, these operators have complete systems of right and left eigenvectors.

2 The harmonic oscillator

For the sake of completeness, let us consider the harmonic oscillator Hamiltonian

\[
H = \frac{1}{2}(p^2 + x^2), \tag{1}
\]

which acts on the space \(L^2 \) of square integrable differentiable functions of the real variable \(x \) endowed with the usual inner product

\[
\langle \phi | \psi \rangle = \int dx \phi(x)^* \psi(x).
\]

As it is well-known, \(p : L^2 \to L^2 \) is the differential operator \(f(x) \to -i(df/dx) \) and \(x : L^2 \to L^2 \) is the multiplicative operator \(f(x) \to xf(x) \). These operators satisfy the quantum condition \([p, x] = -i \) and the harmonic oscillator Hamiltonian is Hermitian. Following the well known Dirac’s approach, its spectrum is determined with the help of the Weil-Heisenberg algebra generated by the creation and annihilation operators \(a^\dagger \) and \(a \), respectively, defined by the linear combinations

\[
a = \frac{1}{\sqrt{2}}(x + ip), \quad a^\dagger = \frac{1}{\sqrt{2}}(x - ip). \tag{2}
\]

As the notation conveys, \(a^\dagger \) is the adjoint of \(a \) and these operators satisfy the commutation relation \([a, a^\dagger] = 1 \). One easily finds

\[
H = a^\dagger a + \frac{1}{2}.
\]
Moreover, for the vector $|\phi_0\rangle$ such that $a|\phi_0\rangle = 0$ and $|\phi_n\rangle = a^\dagger n|\phi_0\rangle$, we have

$$H|\phi_n\rangle = \left(n + \frac{1}{2}\right)|\phi_n\rangle, \quad n = 0, 1, 2, \cdots.$$

The vector $|\phi_0\rangle$ stands, in Dirac’s notation, for nothing else than a solution $\phi_0(x)$ of the differential equation

$$(x + \frac{d}{dx})\phi_0(x) = 0, \quad \phi_0(x) = K_0 e^{-\frac{x^2}{2}}.$$

On the other hand $|\phi_n\rangle$ is identified with the function

$$\phi_n(x) = K_n \left(x - \frac{d}{dx}\right)^n e^{-\frac{x^2}{2}},$$

where K_n is a normalization constant.

3 Non-Hermitian operators with a real spectrum

We give simple examples of non-Hermitian operators with a real spectrum and a bi-orthogonal set of eigenvectors. In each case, we show that there exists an involutive operator J which renders the Hamiltonian J-Hermitian and allows for the unambiguous definition of a positive definite norm operator suitable for the conventional quantum mechanical interpretation.

3.1 The extended harmonic oscillator

We begin by considering the operator

$$H_\beta = \frac{\beta}{2}(p^2 + x^2) + i\sqrt{2}p = \beta a^\dagger a + (a - a^\dagger) + \frac{\beta}{2}, \quad \beta > 0.$$

Although H_β is non-Hermitian, and it is even not PT-symmetric, it is nevertheless P-Hermitian, i.e., $PH_\beta = H_\beta^\dagger P$. In order to determine the spectrum of H_β, we write

$$H_\beta = \beta \left(a^\dagger + \frac{1}{\beta}\right)\left(a - \frac{1}{\beta}\right) + \frac{1}{\beta} + \frac{\beta}{2}.$$

The spectrum and the eigenvectors of H_β are easily determined by the usual technique due to Dirac. Although the operators $(a^\dagger + 1/\beta)$ and $(a - 1/\beta)$ are not the adjoint of each other, they generate a Weil-Heisenberg algebra, so we still have

$$\left[(a^\dagger + \frac{1}{\beta})(a - \frac{1}{\beta}), (a^\dagger + \frac{1}{\beta})^n\right] = n \left(a^\dagger + \frac{1}{\beta}\right)^n,$$

$$\left[(a^\dagger + \frac{1}{\beta})(a - \frac{1}{\beta}), (a - \frac{1}{\beta})^n\right] = -n \left(a - \frac{1}{\beta}\right)^n.$$

It follows that
\[H_\beta |R_n\rangle = \left(\frac{1}{\beta} + \beta \left(n + \frac{1}{2} \right) \right) |R_n\rangle, \]
where
\[\left(a - \frac{1}{\beta} \right) |R_0\rangle = 0, \quad |R_n\rangle = \left(a^* + \frac{1}{\beta} \right)^n |R_0\rangle, \]
which fixes the right eigenvectors. The left eigenvectors are given by
\[\langle L_n | H_\beta = \left(\frac{1}{\beta} + \beta \left(n + \frac{1}{2} \right) \right) \langle L_n |, \]
where
\[\langle L_n | \left(a^* + \frac{1}{\beta} \right) = 0, \quad \langle L_n | = \langle L_0 | \left(a - \frac{1}{\beta} \right)^n. \]
The spectrum of \(H_\beta \) is given by
\[\sigma(H_\beta) = \frac{1}{\beta} + \beta \left\{ \frac{1}{2}, \frac{3}{2}, \frac{5}{2}, \cdots \right\}. \]
We have assumed \(\beta \neq 0 \), so the spectrum is obviously real. The right eigenvectors and the left eigenvectors are represented, respectively, by the functions
\[R_n(x) = K_n \left(x + \frac{\sqrt{2}}{\beta} - \frac{d}{dx} \right)^n \exp \left(-\frac{1}{2} \left(x - \frac{\sqrt{2}}{\beta} \right)^2 \right) \]
and
\[L_n(x) = K_n \left(x - \frac{\sqrt{2}}{\beta} - \frac{d}{dx} \right)^n \exp \left(-\frac{1}{2} \left(x + \frac{\sqrt{2}}{\beta} \right)^2 \right), \]
where \(K_n \) denotes a normalization constant. Obviously, \(L_n(x) = (-1)^n R_n(-x) \), that is, the left eigenvectors are essentially the involution of the right eigenvectors generated by \(P \). For
\[K_n^2 = \frac{\sqrt{\pi}}{2^n} \exp(-\beta^{-2}) \]
the eigenfunctions are orthonormal, \(\langle L_n | R_m \rangle = \delta_{nm} \).

It is clear that the operators \((a^* + 1)/\beta, (a - 1)/\beta \) are related to the operators \(a^*, a \) by a similarity transformation,
\[a^* + \frac{1}{\beta} = e^{(a^* + a)/\beta} a^* e^{-(a^* + a)/\beta}, \quad a - \frac{1}{\beta} = e^{(a^* + a)/\beta} a e^{-(a^* + a)/\beta}. \]
Thus, the operator
\[\tilde{H}_\beta = e^{-(a^* + a)/\beta} H_\beta e^{(a^* + a)/\beta} \]
is Hermitian. Moreover, \(|L_n\rangle = e^{-2(a^* + a)/\beta} |R_n\rangle \) and \(\langle R_n | e^{-2(a^* + a)/\beta} |R_m\rangle = \delta_{nm} \).

Other operators share with \(Q \) the property of rendering \(H_\beta \) Hermitian. With respect to the orthonormal basis constituted by the eigenvectors \(|\phi_n\rangle \) of the harmonic oscillator (3),
the operator H_β is represented by the tridiagonal matrix

$$M_\beta = \begin{pmatrix}
\beta/2 & \sqrt{1} & 0 & 0 & \cdots \\
-\sqrt{1} & 3\beta/2 & \sqrt{2} & 0 & \cdots \\
0 & -\sqrt{2} & 5\beta/2 & \sqrt{3} & \cdots \\
0 & 0 & -\sqrt{3} & 7\beta/2 & \cdots \\
\vdots & \vdots & \vdots & \vdots & \ddots
\end{pmatrix}.$$

The matrix M_β is J-Hermitian for $J = \text{diag}(1,-1,1,-1,\cdots)$. Let J denote the operator which is represented by the matrix J with respect to the basis constituted by the eigenvectors $|\phi_n\rangle$. In the present case, J is precisely the parity operator \mathcal{P}. If $|R_n\rangle$ is a right eigenvector of H_β, then $\langle R_n|J |R_j\rangle = (-1)^j\delta_{ij}$, the quantity $|\langle R_i|J |\Xi\rangle|^2$ has the meaning of a probability.

We observe that $\hat{J}(\log Q)\mathcal{J} = -\log Q$, as may be easily checked, keeping in mind that $\log Q = -2(a^\dagger + a)/\beta$. This is in agreement with Bender’s [6] criterion for the complete specification of the norm operator Q.

3.2 The Swanson Hamiltonian

Next, we consider an operator of a class which has been proposed by Swanson [7, 8, 9], namely the non-Hermitian Hamiltonian with a real spectrum

$$H_\theta = \frac{1}{2}(p^2 + x^2) - \frac{i}{2} \tan 2\theta (p^2 - x^2),$$

(5)

where θ is a real parameter, $-\pi/4 < \theta < \pi/4$. For the operators a^\dagger, a of eq. (2) we also have

$$H_\theta = a^\dagger a + i \frac{\tan 2\theta}{2}(a'^2 + a^2) + \frac{1}{2}.$$

In terms of the differential operators

$$c = \cos \theta a + i \sin \theta a^\dagger, \quad c^\dagger = \cos \theta a^\dagger + i \sin \theta a$$

(6)
a diagonal, oscillator-like form, is obtained,

$$H_\theta = \omega \left(c^\dagger c + \frac{1}{2}\right), \quad \omega = \frac{1}{\cos 2\theta}.$$

The operators c, c^\dagger satisfy $[c, c^\dagger] = 1$. Although $c^\dagger \neq c^\dagger$, these operators realize a certain representation of the Weil-Heisenberg algebra. It follows that the spectrum is

$$\sigma(H_\theta) = \omega \left\{\frac{1}{2}, \frac{3}{2}, \frac{5}{2}, \cdots\right\}.$$

Keeping in mind the explicit expressions of the differential operators (6)

$$c = \frac{e^{i\theta}}{\sqrt{2}} x + \frac{e^{-i\theta}}{\sqrt{2}} \frac{d}{dx}, \quad c^\dagger = \frac{e^{i\theta}}{\sqrt{2}} x - \frac{e^{-i\theta}}{\sqrt{2}} \frac{d}{dx},$$
the left and right eigenvectors are easily obtained. The right eigenvectors satisfy

\[H_\theta |R_n\rangle = \left(\frac{1}{2} + n \right) \omega |R_n\rangle \]

and are given by

\[c|R_0\rangle = 0, \quad |R_n\rangle = K_n (c^\dagger)^n |R_0\rangle, \]

where \(K_n \) is a real normalization constant. The left eigenvectors satisfy

\[\langle L_n|H_\theta = \left(\frac{1}{2} + n \right) \omega \langle L_n| \]

and are given by

\[\langle L_0|c^\dagger = 0, \quad \langle L_n| = K_n \langle L_0|c^\dagger. \]

The last equation is equivalent to

\[(c^\dagger)^\dagger |L_0\rangle = 0, \quad |L_n\rangle = K_n (c^\dagger)^n |L_0\rangle. \]

As an example, we present the explicit expressions of the lowest right and left eigenvectors,

\[R_0(x) = K_0 \exp \left(-\frac{x^2}{2} e^{2i\theta}\right), \quad L_0(x) = K_0 \exp \left(-\frac{x^2}{2} e^{-2i\theta}\right). \]

For an appropriate value of the normalization constant \(K_n \), the eigenfunctions are orthonormal,

\[\langle L_n|R_m\rangle = \delta_{nm}. \]

It is clear that the operators \(c^\dagger, c \) are related to the operators \(a^\dagger, a \) by a similarity transformation,

\[c^\dagger = e^{i\frac{\theta}{2}(a^2-a^\dagger)} a^\dagger e^{-i\frac{\theta}{2}(a^2-a^\dagger)}, \quad c = e^{i\frac{\theta}{2}(a^2-a^\dagger)} a e^{-i\frac{\theta}{2}(a^2-a^\dagger)}. \]

Thus, the Hermitian operator

\[\bar{H}_\theta = e^{-i\frac{\theta}{2}(a^2-a^\dagger)} H_\theta e^{i\frac{\theta}{2}(a^2-a^\dagger)} = \omega \left(\frac{1}{2} + a^\dagger a \right) \]

is the harmonic oscillator operator with frequency \(\omega \), as observed by Jones [8]. Moreover,

\[|L_n\rangle = e^{-i\theta(a^2-a^\dagger)} |R_n\rangle \]

and

\[\langle R_n|e^{-i\theta(a^2-a^\dagger)} |R_m\rangle = \delta_{nm}. \]

For a vector \(|\Xi\rangle \) normalized according to \(\langle \Xi|Q|\Xi\rangle = 1 \), where

\[Q = e^{-i\theta(a^2-a^\dagger)}, \]

the quantity \(\langle R_i|Q|\Xi\rangle \) has the meaning of a probability. We observe that the knowledge of the relative probability does not require the determination of the full set of left- and right-eigenfunctions, but only of the eigenfunctions related to the relevant transitions. Our conclusions are similar to those of Ref. [8]. However, our approach is different, since it is based on the explicit determination of the left- and right-eigenfunctions.
Next we will show that there exists a Hermitian involutive operator J (such that $J^2 = 1d$) which also renders H_θ Hermitian, that is, $JH_\theta = H_\theta J$. With respect to the orthonormal basis constituted by the eigenvectors $|\phi_n\rangle$ of the harmonic oscillator (3), H_θ is represented by the matrix

$$M_\theta = \begin{pmatrix}
1/2 & 0 & i\beta\sqrt{1.2} & 0 & 0 & \cdots \\
0 & 3/2 & 0 & i\beta\sqrt{2.3} & 0 & \cdots \\
i\beta\sqrt{1.2} & 0 & 5/2 & 0 & i\beta\sqrt{3.4} & \cdots \\
i\beta\sqrt{2.3} & 0 & 7/2 & 0 & \cdots \\
0 & 0 & i\beta\sqrt{3.4} & 0 & 9/2 & \cdots \\
\vdots & \vdots & \vdots & \vdots & \ddots & \ddots
\end{pmatrix}, \quad \beta = \frac{\tan 2\theta}{2}.$$

It is clear that $JM_\theta = M_\theta J$ for $J = I_2 \oplus -I_2 \oplus I_2 \oplus -I_2 \oplus \cdots$. Let J denote the operator which is represented by the matrix J with respect to the system of the eigenvectors $|\phi_n\rangle$ (3). It follows that $JH_\theta = H_\theta J$.

If $|R_n\rangle$ is a right eigenvector of H_θ, then $\langle R_n|J$ is a left eigenvector, so that J is the required involutive operator. For a vector $|\Xi\rangle$ normalized according to $\langle \Xi|Q|\Xi\rangle = 1$, and for eigenvectors of H_θ normalized according to $\langle R_i|J|R_j\rangle = \eta_i\delta_{ij}$, where $\eta_i = 1$ for $i = 4n, (4n + 1), n = 0, 1, 2, \cdots$ and $\eta_i = -1$ for $i = (4n - 2), (4n - 1), n = 1, 2, \cdots$, the quantity $|\langle R_i|J|\Xi\rangle|^2$ has the meaning of a probability. We observe that $J(\log Q)J = -\log Q$, for $\log Q = -i\theta(a^2 - a^2)$, as may be easily checked. This is in agreement with Bender’s [6] criterium for the complete specification of the norm operator Q.

3.3 Non-Hermitian extensions of the Poeschl-Teller Hamiltonian

Let us now consider the Poeschl-Teller Hamiltonian (10)

$$H = p^2 - \frac{\gamma(\gamma - 1)}{\cosh^2 x}, \quad \gamma > 1. \tag{7}$$

In terms of the operators

$$A^\dagger = -ip + (\gamma - 1) \tanh x, \quad A = ip + (\gamma - 1) \tanh x,$$

we obtain

$$H = A^\dagger A - (\gamma - 1)^2.$$

For a detailed algebraic treatment of the Poeschl-Teller Hamiltonian, see [11]. The discrete spectrum of this Hamiltonian is easily determined. It is the the set of eigenvalues:

$$E_n = -\gamma(\gamma - 1 - n)^2, \quad n = 0, 1, \cdots \leq \gamma - 1.$$

Next we investigate non-Hermitian extensions of the Poeschl-Teller Hamiltonian [12]. To start with, we consider the \mathcal{PT}-symmetric extension, obtained from (7) through the replacement $x \rightarrow x - i\alpha$,

$$H_\alpha = p^2 - \frac{\gamma(\gamma - 1)}{\cosh^2(x - i\alpha)},$$

$$= p^2 - \frac{2\gamma(\gamma - 1)(1 + \cosh 2x \cos 2\alpha + i \sinh 2x \sin 2\alpha)}{(\cosh 2x - \cos 2\alpha)^2}, \quad \gamma > 1, \tag{8}$$
where α denotes a real parameter. The Hamiltonian (8) is $\cal P$-Hermitian: $\cal P H_\alpha = H_\alpha^\dagger \cal P$. In terms of the operators

$$A_\alpha^\dagger = -ip + (\gamma - 1) \tanh(x - i\alpha), \quad A_\alpha = ip + (\gamma - 1) \tanh(x - i\alpha),$$

we obtain

$$H_\alpha = A_\alpha^\dagger A_\alpha - (\gamma - 1)^2.$$

The spectrum of this Hamiltonian is real, and coincides with the spectrum of the Hamiltonian (7), as may be easily seen following the technique described in [11]. This is not surprising, because H_α is similar to H,

$$H_\alpha = e^{-\alpha p} H e^{\alpha p}.$$

Moreover, H_α is Q-Hermitian, for $Q = e^{2\alpha p}$, i.e., $Q H_\alpha = H_\alpha^\dagger Q$. The norm defined with the help of the positive definite operator Q is appropriate for the usual statistical interpretation of quantum-mechanics.

Finally we consider the non-$\cal PT$-symmetric extension of the Poeschl-Teller Hamiltonian, obtained from (7) through the replacement $p \to p e^{i\theta}$, $x \to x e^{-i\theta}$.

$$H_\theta = (\eta + i\zeta)^2 p^2 - \frac{\gamma(\gamma - 1)}{\cosh^2((\eta - i\zeta)x)},$$

$$= (\eta^2 - \zeta^2 + 2i\eta\zeta) p^2 - \frac{2\gamma(\gamma - 1)(1 + \cosh(2\eta x) \cos(2\zeta x) + i \sinh(2\eta x) \sin(2\zeta x))}{(\cosh(2\eta x) - \cos(2\zeta x))^2} ,$$

$$\gamma > 1, \; \eta = \cos \theta, \; \zeta = \sin \theta, \; -\frac{\pi}{4} < \theta < \frac{\pi}{4} . \quad (9)$$

In terms of the operators

$$A_\theta^\dagger = -ipe^{i\theta} + (\gamma - 1) \tanh(x e^{-i\theta}), \quad A_\theta = ipe^{i\theta} + (\gamma - 1) \tanh(x e^{-i\theta}),$$

we obtain

$$H_\theta = A_\theta^\dagger A_\theta - (\gamma - 1)^2.$$

The spectrum of the Hamiltonian (9) is real, and coincides with the spectrum of the Poeschl-Teller Hamiltonian, as may be easily seen following the technique described in [11]. This is not surprising, because H_θ is similar to H,

$$H_\theta = e^{-\frac{\theta}{2}(px + xp)} H e^{\frac{\theta}{2}(px + xp)}.$$

Moreover, H_θ is Q-Hermitian, for $Q = e^{\theta(px + xp)}$, i.e., $Q H_\theta = H_\theta^\dagger Q$, so that the norm defined with the help of the positive definite operator Q is appropriate for the conventional quantum-mechanical interpretation.

4 Conclusions

We have presented simple examples of non-Hermitian models in quantum mechanics for which the Hamiltonian H has a real spectrum. An involutive $\cal J$ operator such that $H^\dagger =$
$\mathcal{H}\mathcal{J}$ is identified and explicitly constructed in each case. The operator \mathcal{J} allows for the definition of an indefinite norm, which, obviously is not suitable for the standard quantum mechanical interpretation. We discuss the important role played by this operator in allowing for the unambiguous definition of a positive definite norm operator \mathcal{Q}, suitable for the usual quantum mechanical interpretation. In indefinite inner product spaces, \mathcal{J}-Hermitian operators are known to have a spectrum which is symmetric relatively to the real axis or a real spectrum.

References

[1] F.G. Scholtz, H.B. Geyer and F.J.W. Hahne, Ann. Phys. NY 213 (1992) 74.
[2] C.M. Bender and S. Boettcher, Phys. Rev. Lett., 80 (1998) 5234-5246, C.M. Bender, D.C. Brody and H.F. Jones, Phys. Rev. Lett, 89 (2002) 27041.
[3] A. Gonzaléz Lopéz and T. Tanaka, J. Phys. A: Math. Gen. 39 (2006) 3715-23; T. Tanaka, Preprint quant-ph/0603075; T. Tanaka, J. Phys. A. Math. Gen. 39 (2006) L369-L376.
[4] M. Znojil, J. Nonlin. Math. Phys., 9 (2002) 122-123.
[5] A Mostafazadeh, J. Phys. A: Math. Gen. 36 (2003) 7081; J. Math. Phys. 46 (2005) 102108; J. Phys. A: Math. Gen. 39 (2006) 10171; J. Math. Phys. 44 (2003) 974; arXiv:quant-ph/060173v2.
[6] C.M. Bender, D.C. Brody and H.F. Jones, Phys. Rev. D 70 (2007) 025001.
[7] M. S. Swanson, J. Math. Phys. 45 (2004) 585.
[8] H. F. Jones, J. Phys. A: Math. Gen. 38 (2005) 1741-1746.
[9] D.P. Musumbu, H.B. Geyer and W.D. Weiss, J. Phys. A: Math. Theor. 40 (2007) F75.
[10] S. Flügge, Practical Quantum Mechanics, Springer-Verlag, Berlin, Heidelberg, 1999; F. Iachello, Lie algebras and applications, Springer-Verlag, New York, 2009.
[11] F. Correa, V. Jakubsky, M.S. Plyushchay. Annals Phys.324(2009)1078-1094.
[12] Z. Ahmed, Phys. Lett. A 294 (2002) 287.