Time-dependent γ/ϕ_3 measurements by BaBar

Ada E. Rubin
On behalf of the BaBar Collaboration

Department of Physics and Astronomy
Iowa State University, Ames, Iowa, USA

Compilation and summary of time-dependent measurements of the CKM angle γ/ϕ_3 with events collected at the BaBar detector at the SLAC PEP-II asymmetric B factory.

PRESENTED AT

CKM 2010, the 6th International Workshop on CKM
University of Warwick, UK
August 6–10, 2010
Introduction

An important goal of flavor physics is to overconstrain the CKM elements. The CKM element γ/ϕ_3 is the least precisely measured of the Unitarity Triangle angles. Decays of B_d mesons that allow one to constrain the CKM angle $\sin(2\beta + \gamma)$ have either small CP asymmetry ($B \to D^{(*)}\pi/\rho$ and $B^0 \to D^{\mp}K^0_s\pi^\pm$) or small branching fractions ($B \to D^{(*)}K^{(*)}$). The CP violating effects in these modes, therefore, are difficult to measure.

The quantity $\sin(2\beta + \gamma)$ can be obtained from the study of the time evolution of $B^0/\bar{B}^0 \to D^{(*)}X_{u,d,s}$ decays where $X_{u,d,s}$ refers to light and/or strange mesons. In the Standard Model, these decays proceed via Cabibbo suppressed $\to u$ and favored $\to c$ transitions described by the amplitudes A_u and A_c, respectively. The magnitude of the ratio between the amplitudes A_u and A_c is r. The relative weak phase between these two amplitudes is γ; it is $2\beta + \gamma$ with $B^0\bar{B}^0$ mixing. Also, there exists the strong phase difference between these two amplitudes, δ. These hadronic parameters in the observables, r and δ, make extraction of the weak phase information difficult.

The time dependent (TD) distribution for B^0 decays to a final state can be written as

$$f^\pm = \frac{e^{-|\Delta t/\tau}}{4\tau} \times \left[1 \mp S_\eta^\pm \sin(\Delta m_d\Delta t) \mp \eta C \cos(\Delta m_d\Delta t) \right]$$ (1)

where τ is the B^0 lifetime, Δm_d is the $B^0\bar{B}^0$ mixing frequency and $\Delta t = t^{\text{rec}} - t^{\text{tag}}$ is the time of the reconstructed B (B^{rec}) decay relative to the decay of the other B (B^{tag}) from the $Y(4S) \to B\bar{B}$ decay. Δt is calculated from the measured separation along the beam collision axis (z) between the B^{rec} and B^{tag} decay vertices: $\Delta z = \beta\gamma c\Delta t$ where $\beta\gamma = 0.56$ is the Lorentz boost of $B\bar{B}$ pairs along the direction of the high-energy beam. In equation (1) the upper (lower) sign refers to the flavor of B^{tag} as B^0 (\bar{B}^0), while $\eta = +1$ (-1) denotes the final state $D^{(*)}$ ($D^{(*)}$). The specifics of the CP parameters, S_η^\pm and C, depend on the physics of the reconstructed B^0 decay mode.

CP asymmetry in $B^0 \to D^{(*)}\pi^\pm/\rho^\pm$ decays

The decay modes $B^0 \to D^{(*)}\pi^\pm$ have been proposed to measure $\sin(2\beta + \gamma)$ [1]. The decay rate distribution for $B \to D^{(*)}\pi^\pm$ is given by equation (1) which is parametrized to account for tag-side interference [2]. The CP parameter C is unity and S^\pm for each tagging category is given by $S_\eta^\pm = (a - \eta c)$ with $a = 2r \sin(2\beta + \gamma) \cos \delta$, $c = 2 \cos(2\beta + \gamma)(r \sin \delta)$. Since A_u is doubly CKM-suppressed with respect to A_c, one expects the ratio to be of order 2%. Due to the small value of r, large data samples are required for a statistically significant measurement of S_η^\pm.

Fully reconstructed $B^0 \to D^{(*)}\pi^\pm$ and $B^0 \to D^{\mp}\rho^\pm$ decays [3] using 232 million $B\bar{B}$ pairs are used to measure the parameters a and c. Results of this analysis from
the TD maximum likelihood fit are

\[
\begin{align*}
 a^{D\pi} &= -0.010 \pm 0.023 \pm 0.007, \\
 c^{D\pi}_{\text{lep}} &= -0.033 \pm 0.042 \pm 0.012, \\
 a^{D^*\pi} &= -0.040 \pm 0.023 \pm 0.010, \\
 c^{D^*\pi}_{\text{lep}} &= 0.049 \pm 0.042 \pm 0.015, \\
 a^{D\rho} &= -0.024 \pm 0.031 \pm 0.009, \\
 c^{D\rho}_{\text{lep}} &= -0.098 \pm 0.055 \pm 0.018.
\end{align*}
\]

where the first error is statistical and the second is systematic.

In partially reconstructing \(B^0 \rightarrow D^{*+}\pi^\pm\) candidates, only the hard (high-momentum) pions \(\pi_h\) from \(B\) decay and soft (low-momentum) pions \(\pi_s\) from \(D^{*-} \rightarrow \overline{D}^0\pi^-\) decays are employed. The “missing mass” of the non-reconstructed \(D\) is the kinematic variable used to extract signal events; it peaks at the nominal \(D^0\) mass. This method eliminates the efficiency loss associated with \(D^0\) meson reconstruction. The \(CP\) asymmetry measured with this technique [4] using 232 million \(B \overline{B}\) pairs is

\[
\begin{align*}
 a^{D^*\pi} &= -0.034 \pm 0.014 \pm 0.009, \\
 c^{D^*\pi}_{\text{lep}} &= -0.019 \pm 0.022 \pm 0.013.
\end{align*}
\]

To interpret these results in terms of constraints on \(|\sin(2\beta + \gamma)|\), findings from the fully reconstructed \(B^0 \rightarrow D^{(*)+}\pi^\pm\), \(B^0 \rightarrow D^{(*)}\rho^\pm\) analysis are combined with those of the partially reconstructed \(B^0 \rightarrow D^{*+}\pi^\pm\) study using a frequentist method described in Ref. [4]. This method sets the lower limits \(|\sin(2\beta + \gamma)| > 0.64\) (0.40) at 68% (90%) C.L. as seen in Figure [4].

Figure 1: The shaded region denotes the allowed range of \(|\sin(2\beta + \gamma)|\) for each confidence level. The horizontal lines show, from top to bottom, the 68% and 90% C.L.

Dalitz plot analysis of \(B^0 \rightarrow D^+K^0\pi^\pm\)

Measurement of \(\sin(2\beta + \gamma)\) from three body \(B\) decays, such as \(B^0 \rightarrow D^+K^0\pi^\pm\) have been suggested as a way to avoid the limitation of small \(r\), since \(r\) in these decays could be as large as 0.4 in some regions of the Dalitz plane [5]. The final state, \(D^+K^0\pi^\pm\), \(D^+ \rightarrow K^-\pi^+\pi^-\), is reached via the following intermediate states:

\(B^0 \rightarrow D^{*+}\pi^\pm\), with \(D^{*0} = \{D_0^{*0}(2400), \ D_2^{*0}(2460)\}\), \(B^0 \rightarrow D^-K^{*+}\) with \(K^* = \{K^*(892), \ K_0^*(1430), \ K_2^*(1430), \ K^*(1680)\}\), and a small expected contribution from \(B^0 \rightarrow D_2^{*+}(2573)\pi^-\). The TD Dalitz plot PDF is of the same form as equation [11], but multiplied by the factor \((A_e^2 + A_u^2)/2\) and with the coefficient of the sin term being

\[
S_\gamma = \frac{2\text{Im}(A_eA_u e^{i(2\beta + \gamma)} + \eta\delta)}{A_e^2 + A_u^2}.
\]
The amplitudes \((A_c, A_u)\) and strong phases \((\phi_c, \phi_u)\) are functions of their positions in the Dalitz plot. The coefficient of the \(\sin\) term is \(C = (A^2_c - A^2_u)/(A^2_c + A^2_u)\).

Figure 2: a): distribution of the values of \(2\beta + \gamma\) fitted on data for different hypotheses on the \(r\) value. b): variation of the logarithm of the likelihood with \(2\beta + \gamma\).

\[B^0 \rightarrow D^{(*)0} \bar{K}^0 \text{ decays} \]

The decay modes \(B^0 \rightarrow D^{(*)0} \bar{K}^0\) have been proposed for determination of \(\sin(2\beta + \gamma)\) from measurement of TD \(CP\) asymmetries \([8]\). Due to relatively large \(CP\) asymmetry \((r_B \equiv |A(B^0 \rightarrow D^{(*)0} \bar{K}^0)|/|B^0 \rightarrow D^{(*)0} \bar{K}^0| \approx 0.4)\) these decays appear ideal for such a measurement. The TD decay rate in this case can be parameterized such that \(C = (1-r_B^2)/(1+r_B^2)\) and \(S = r_B \sin(2\beta + \gamma + \delta)/(1+r_B^2)\). Since \(r_B\) can simply be measured by fitting the \(C\) coefficient in the decay distributions, the measured asymmetry can be interpreted in terms of \(\sin(2\beta + \gamma)\) without additional assumptions. However, the branching fractions of such decays are relatively small, \(\mathcal{O}(10^{-5})\). Therefore a large data sample is required.

The most recent measurement \([6]\) of these decays using a data sample of 226 million \(B\bar{B}\) pairs finds

\[
\begin{align*}
B(B^0 \rightarrow D^0 \bar{K}^0) &= (5.3 \pm 0.7 \pm 0.3) \times 10^{-5} \\
B(B^0 \rightarrow D^{(*)0} \bar{K}^0) &= (3.6 \pm 1.2 \pm 0.3) \times 10^{-5}
\end{align*}
\]

from signal yields to the maximum likelihood fits in Fig. 3. With just over 100 signal events, a TD decay rate analysis is not feasible.

Conclusion

Non-trivial, theoretically clean constraints on \(2\beta + \gamma\) come from measurements of time-dependent \(CP\) asymmetry in the \(B\) decays. Updated measurements to the full
Figure 3: Distribution of ΔE for a) $\bar{B}^0 \rightarrow D^0 K^0$, b) $\bar{B}^0 \rightarrow D^{*0} K^0$. The points are the data, the solid curve is the projection of the likelihood fit, and the dashed curve represents the background component.

$\bar{B}\Lambda\bar{B}$ dataset of 468 million $B\bar{B}$ pairs will only deepen our understanding of the CKM mechanism. We expect an improvement in the measurement of γ with $B \rightarrow D^{(*)\pm} \pi^\pm/\rho^\pm$ since r can be more precisely estimated by using the isospin relation $r = \sqrt{\frac{\tau_{D^{(*)}}}{{\tau_B}}} \frac{2\beta(B^0 \rightarrow D^{(*)}\pi^0)}{\beta(B^0 \rightarrow D^0\pi^0)} < 0.051$ (90% C.L.) as suggested by Ref. [9]. It is also possible that the full $\bar{B}\Lambda\bar{B}$ data sample is just large enough to detect CP asymmetry in the mode $\bar{B}^0 \rightarrow D^0 K^0$.

References

[1] I. Dunietz and R.G. Sachs, Phys. Rev. D 37, 3186 (1988); I. Dunietz, Phys. Lett. B 179 (1998); P.F. Harrison and H.R. Quinn, ed., The $\bar{B}\Lambda\bar{B}$ Physics Book, SLAC-R-504 (1998).

[2] O. Long, M. Baak, R.N. Cahn, and D. Kirkby, Phys. Rev. D 68, 034010 (2003).

[3] B. Aubert et al. (BABAR Collaboration), Phys.Rev.D 73, 111101 (2006).

[4] B. Aubert et al. (BABAR Collaboration), Phys.Rev.D 71, 112003 (2005).

[5] R. Aleksan, T. C. Peterson and A. Soffer, Phys. Rev. D 67, 09002 (2003).

[6] B. Aubert et al. (BABAR Collaboration), Phys.Rev.D 74, 031101 (2006).

[7] B. Aubert et al. (BABAR Collaboration), Phys.Rev.D 77, 071102 (2008).

[8] M. Gronau and D. London, Phys. Lett. B 253, 483 (1991); D. Atwood, I. Dunietz, and A. Soni, Phys. Rev. Lett. 78, 3257 (1997); B. Kayser and D. London, Phys. Rev. D 61, 116013 (2000).

[9] BELLE, Phys. Rev. Lett. 101, 041601 (2008).