ORIGINAL ARTICLE

Coding study for multi-strain tuberculosis (TB) model of variable-order fractional derivatives

Nasser H. Sweilam \(^a\), Seham M. AL-Mekhlafi \(^b\)

\(^a\) Department of Mathematics, Faculty of Science, Cairo University, Giza 12613, Egypt
\(^b\) Department of Mathematics, Faculty of Education, Sana’a University, Sana’a, Yemen

ABSTRACT

In this paper, we presented a novel multi-strain TB model of variable-order fractional derivatives, which incorporates three strains: drug-sensitive, emerging multi-drug resistant (MDR) and extensively drug-resistant (XDR), as an extension for multi-strain TB model of nonlinear ordinary differential equations which developed in 2014 by Arino and Soliman [1]. Numerical simulations for this variable-order fractional model are the main aim of this work, where the variable-order fractional derivative is defined in the sense of Grünwald–Letnikov definition. Two numerical methods are presented for this model, the standard finite difference method (SFDM) and nonstandard finite difference method (NSFDM). Numerical comparison between SFDM and NSFDM is presented. It is concluded that, NSFDM preserves the positivity of the solutions and numerically stable in large regions than SFDM.

Introduction

Variable-order fractional calculus (i.e., the fractional differentiation and integration of variable order) is the generalization of classical calculus and fractional calculus, which were invented by Newton and Leibnitz hundreds of years ago. Now the study on it becomes a hot pot in recent ten years [2–7]. It has turned out that many problems in physics, biology, engineering, and finance can be described excellently by models using mathematical tools from variable-order fractional calculus, such as mechanical applications [2], diffusion process [5], multifractional Gaussian noise [8], and FIR filters [9]. For more details, see [7,10] and references therein. Understanding the transmission characteristics of infectious diseases in communities, regions and countries can lead to better approaches to decrease the transmission of these diseases [11]. Variable-order fractional derivative is good at depicting the memory property which changes with time or spatial location [3,5].

TB is growing more resistant to treatment worldwide according to study released in August 2012 in the journal Lancet, a finding that suggests the potentially fatal disease is becoming more difficult and costly to treat [12]. In this article we focused our attention in Egypt.
We consider in this work a model developed by Arino and Soliman for TB [1]. The model incorporates three strains, drug-sensitive, MDR and XDR. Several papers considered modeling TB such as [13,14], but the model we consider here includes several factors of spreading TB such as the fast infection, the exogenous reinfection and secondary infection along with the resistance factor. The main aim of this paper was to study numerically the multi-strain TB model of variable-order fractional derivatives which incorporates three strains: drug-sensitive, MDR and XDR. We develop a special class of numerical method, known as NSFDPM for solving this model. This technique, developed by Mickens (1980) [15–23] has brought a creation of new numerical schemes preserving the physical properties, especially the stability properties of equilibria, of the approximated system. Numerical comparison between NSFDPM and SFDM is presented. When the secondary infection generated by an infected individual exceeds the unity, there are no analytical results proved for the model, such as the existence and stability of the endemic equilibrium (EE). In this case we use the developed NSFD numerical scheme to approximate the endemic solution numerically and investigate its stability. Furthermore, with the help of the NSFDPM, we answer the following question: Given the data provided by the World Health Organization (2012) on the current parameters corresponding to the propagation of the TB in Egypt, what would be the required rate of treatment to achieve in order to control the disease? The proposed method showed its superiority in preserving the positivity (compared to the numerical standard method considered in this work) of the state variables of the systems under study. This is an essential requirement when simulating systems especially those arising in biology. This paper is organized as follows: In Section ‘Mathematical model’, Mathematical model is presented. Preliminaries and notations on variable-order fractional differential equations are given, in Section ‘Preliminaries and notations’. Equilibrium points and their asymptotic stability are presented in Section ‘Variable-order fractional derivatives for multi-strain TB model’. Variable-order fractional derivatives for the multi-strain TB model are presented; moreover, the construction of the proposed nonstandard numerical scheme is carried out in Section ‘Equilibrium points and their asymptotic stability’. In Section ‘Numerical results and simulations’, Numerical results and simulation are discussed. Finally, in Section ‘Conclusions’ we presented the conclusions.

Mathematical model

The multistrain TB-model given in [1] can be formulated as follows:

\[
S' = b - dS - \beta_s SI_N - \beta_m SI_m - \beta_x SI_x, \tag{1}
\]

\[
L_{x}' = \lambda_x \beta_x SI_N + \sigma_x \lambda_x \beta_x RI_N + \gamma_x I_x - \sigma_x \beta_x L_{m}I_N - \sigma_m \beta_m L_{m}I_N, \tag{2}
\]

\[
L_{m}' = \lambda_m \beta_m SI_N + \sigma_m \lambda_m \beta_m RI_N + \gamma_m I_m - \sigma_m \beta_m L_{m}I_N, \tag{3}
\]

\[
L_{m}' = L_{m}' + (1 - P_1) t_1 L_{m} + (1 - P_2) t_2 L_{m} - \sigma_m \beta_m L_{m}I_N - (d + \epsilon_1) L_{m}, \tag{4}
\]

\[
I_{m}' = \alpha_m \beta_m L_{m}I_N + (1 - \lambda_m) \beta_m \left(\frac{SI_N}{N} + \sigma R_I_N + \sigma_m \beta_m \frac{L_{m}I_N}{N} \right) + \epsilon_1 L_{m} - (d + \delta_m + t_2 + \gamma_m) I_{m}, \tag{5}
\]

\[
R_{m}' = \alpha_m \beta_m L_{m}I_N + (1 - \lambda_m) \beta_m \left(\frac{SI_N}{N} + \sigma R_I_N + \sigma_m \beta_m \frac{L_{m}I_N}{N} \right) + \epsilon_1 L_{m} - (d + \delta_m + t_2 + \gamma_m) I_{m}, \tag{6}
\]

\[
R_{m}' = \alpha_m \beta_m L_{m}I_N + (1 - \lambda_m) \beta_m \left(\frac{SI_N}{N} + \sigma R_I_N + \sigma_m \beta_m \frac{L_{m}I_N}{N} \right) + \epsilon_1 L_{m} - (d + \delta_m + t_2 + \gamma_m) I_{m}, \tag{7}
\]

\[
R' = P_1 t_1 L_{a} + P_2 t_2 L_{a} + P_3 t_3 m + t_2 I_{a} - \sigma_a \beta_a \left(\frac{SI_N}{N} + \sigma R_I_N + \sigma_m \beta_m \frac{L_{m}I_N}{N} \right) - \sigma_m \beta_m \left(\frac{SI_N}{N} + \sigma R_I_N + \sigma_m \beta_m \frac{L_{m}I_N}{N} \right) - d R. \tag{8}
\]

All variables in above system and their definition are in Table 1. Also, all parameters and their interpretation are in Table 2.

The basic reproduction number \(R_0 \)

The basic reproduction number \(R_0 \) for system (1)–(8) is given by [1]

\[
R_0 = \max (R_{0b}, R_{0m}, R_{0a}), \tag{9}
\]

where

\[
R_{0b} = \frac{\beta_s (\epsilon_1 + (1 - \lambda_s)(d + t_1))}{(\epsilon_1 + d + t_1)(t_2 + \delta_1 + d) + \gamma_1 (t_1 + d)},
\]

| Table 1 All variables of the system (1)–(8) and their interpretation. |
|--------------------|---|
| \(S(t) \) | The susceptible population individuals who have never encountered TB |
| \(L_{s}(t) \) | The individuals infected with the drug-sensitive TB strain but who are in a latent stage, i.e., who are neither showing symptoms nor infecting others |
| \(L_{m}(t) \) | Individuals latently infected with MDR-TB |
| \(L_{x}(t) \) | Individuals latently infected with XDR-TB |
| \(I_{s}(t) \) | Individuals infected with the drug-sensitive TB strain who are infectious to others (and most likely, showing symptoms as well) |
| \(I_{m}(t) \) | Those individuals who are infectious with the MDR-TB strain |
| \(I_{x}(t) \) | Individuals who infectious with the XDR-TB strain |
| \(R(t) \) | Those individuals for whom treatment was successful |
| \(N(t) \) | The total population |

\[
N = S + L_{s} + L_{m} + L_{x} + I_{s} + I_{m} + I_{x} + R
\]
Table 2 All parameters of the system (1)–(8) and their interpretation.

Parameter	Interpretation
b	Birth/recruitment rate
d	Per capita natural death rate
β_r	Transmission coefficient for strain r
λ_r	Proportion of newly infected individuals developing LTBI with strain r
$1 - \lambda_r$	Proportion of newly infected individuals progressing to active TB with strain r due to fast infection
ϵ_r	Per capita rate of endogenous reactivation of L_r
$\gamma_{1,2}$	Proportion of exogenous reinfection of $L_{1,2}$ due to contact with $I_{1,2}$
γ_r	Per capita rate of natural recovery to the latent stage L_r
δ_r	Per capita rate of death due to TB of strain r
t_1	Treatment related
t_2	Per capita rate of treatment for L_r. Note that t_2 is the rate of successful treatment of $I_r, r \in \{x, m, s\}$
$1 - \sigma_r$	Efficiency of treatment in preventing infection with strain r
P_1	Probability of treatment success for L_r
$1 - P_1$	Proportion of treated L_r moved to I_{m} due to incomplete treatment or lack of strict compliance in the use of drugs
P_2	Probability of treatment success for I_r
$1 - P_2$	Proportion of treated I_r moved to I_{m} due to incomplete treatment or lack of strict compliance in the use of drugs
P_3	Probability of treatment success for I_{m}
$1 - P_3$	Proportion of treated I_{m} moved to L_r due to incomplete treatment or lack of strict compliance in the use of drugs

To apply Miken’s scheme, we have chosen this Grünwald–Letnikov approximation variable-order fractional derivative as follows [15]:

$$D_t^{\alpha(t)}y(t) = \lim_{h \to 0} \frac{\omega^{\alpha(t)}_{\alpha(t) - 1}(t)}{h} y(t - jh),$$ \hspace{1cm} (16)

where $\lfloor t \rfloor$ denotes the integer part of t and h is the step size; therefore, Eq. (16) is discretized as

$$\sum_{j=0}^{\lfloor t \rfloor} \omega_j^{(\alpha(t))} y(t_j) = f(t_j, y(t_j)) \hspace{1cm} n = 1, 2, 3, \ldots, $$ \hspace{1cm} (17)

where $t_j = nh$, and $\omega_j^{(\alpha(t))}$ are the Grünwald–Letnikov coefficients defined as

$$\omega_j^{(\alpha(t))} = \left(1 - \frac{1 + \alpha(t)}{j}\right) \omega_j^{(\alpha(t) - 1)}$$ and $\omega_0^{(\alpha(t))} = h^{-\alpha(t)}, \hspace{0.5cm} j = 1, 2, 3, \ldots$

Variable-order fractional derivatives for multi-strain TB model

In the following, we introduce the multi-strain TB model of variable-order fractional derivatives which is the integer order given in system (1)–(8), and the new system is described by variable-order fractional differential equations as follows:

$$D_t^{\alpha(t)}S = b - dS - \beta_r \frac{SI_r}{N} - \beta_m \frac{SI_m}{N} - \beta_s \frac{SI_s}{N},$$ \hspace{1cm} (18)

where $x(t) > 0$, and $D_t^{\alpha(t)}$ denotes the variable fractional order derivative, defined by

$$D_t^{\alpha(t)}y(t) = J^{-\alpha(t)} \frac{d^\alpha}{dt^\alpha} y(t),$$ \hspace{1cm} (14)

where $n - 1 < \alpha(t) \leq n$, $n \in N$ and J^α is the nth-order Riemann–Liouville integral operator defined as

$$J^\alpha y(t) = \frac{1}{\Gamma(\alpha)} \int_0^t (t - \tau)^{\alpha - 1} y(\tau) d\tau,$$ \hspace{1cm} (15)

where $\Gamma(\cdot)$ is the gamma function.
\[D^\alpha_t L_x = \lambda_0 \beta_x \frac{S(t)}{N} + \lambda_1 \beta_x \frac{R(t)}{N} + \lambda_2 \beta_x \frac{I_x}{N}, \]
\[\lambda_3 \beta_x \frac{L_x}{N} + (1 - P_3) I_x - \lambda_4 \beta_x \frac{L_x}{N}, \]
\[- (d + \epsilon_1) L_x. \] (21)

\[D^\alpha_t I_x = \lambda_5 \beta_x \frac{L_x}{N} + (1 - \lambda_6 \beta_x \frac{S(t)}{N} + \lambda_7 \beta_x \frac{R(t)}{N} + \lambda_8 \beta_x \frac{I_x}{N}, \]
\[- (d + \epsilon_1 + \alpha_2) I_x, \] (22)

\[D^\alpha_t L_m = \lambda_9 \beta_m \frac{L_m}{N} + (1 - \lambda_{10} \beta_m \frac{S(t)}{N} + \lambda_{11} \beta_m \frac{R(t)}{N} + \lambda_{12} \beta_m \frac{L_m}{N}], \]
\[- (d + \epsilon_2 + \alpha_2) I_x, \] (23)

\[D^\alpha_t I_m = \lambda_{13} \beta_m \frac{L_m}{N} + (1 - \lambda_{14} \beta_m \frac{S(t)}{N} + \lambda_{15} \beta_m \frac{R(t)}{N} + \lambda_{16} \beta_m \frac{L_m}{N}], \]
\[- (d + \epsilon_2 + \alpha_2) I_x, \] (24)

\[D^\alpha_t R = P_1 I_x + P_2 I_x + P_3 I_m + P_4 I_m + (d + \epsilon_2 + \alpha_2) R, \]
\[- \sigma_m \beta_m \frac{R_m}{N} - \sigma_m \beta_m \frac{R_i}{N} - dR, \] (25)

where \(D^\alpha_t \) is the Caputo variable fractional order derivative. Because model (18)–(25) monitors the dynamics of human populations, all the parameters are assumed to be nonnegative.

Equilibrium points and their asymptotic stability

Let \(\alpha(t) \in (0, 1] \) and consider the system (18)–(25)

\[D^\alpha_t S(t) = f_1(S, L_x, L_m, I_x, I_m, L_x, I_x, R), \]
\[D^\alpha_t L_x(t) = f_2(S, L_x, L_m, I_x, I_m, L_x, I_x, R), \]
\[D^\alpha_t L_m(t) = f_3(L_x, L_m, I_x, I_m, L_x, I_x, L_x, R), \]
\[D^\alpha_t I_x(t) = f_4(S, L_x, L_m, I_x, I_m, L_x, I_x, R), \]
\[D^\alpha_t I_m(t) = f_5(S, L_x, L_m, I_x, I_m, L_x, I_x, I_m, R), \]
\[D^\alpha_t R(t) = f_6(S, L_x, L_m, I_x, I_m, L_x, I_x, I_m, R). \]

With the initial values \((S(0), L_x(0), L_m(0), I_x(0), I_m(0), L_x(0), R(0))\).

To evaluate the asymptotic stability let

\[S(t) = S^\alpha + \epsilon_1(t), \]
\[L_x(t) = L_x^\alpha + \epsilon_2(t), \]
\[L_m(t) = L_m^\alpha + \epsilon_3(t), \]
\[I_x(t) = I_x^\alpha + \epsilon_4(t), \]
\[I_m(t) = I_m^\alpha + \epsilon_5(t), \]
\[R(t) = R^\alpha + \epsilon_6(t). \]

So the equilibrium point \((S^\alpha, L_x^\alpha, L_m^\alpha, I_x^\alpha, I_m^\alpha, R^\alpha)\) is locally asymptotically stable if all eigenvalues of Jacobian evaluated at the equilibrium point satisfy [16]

\[|\arg \lambda_i| > \frac{\pi}{2}, \forall \alpha(t) \in (0, 1], t \geq 0 \] where \(i = 1, 2, \ldots, 8. \) (26)

To evaluate the equilibrium points, let

\[D^\alpha_t S = D^\alpha_t L_x = D^\alpha_t L_m = D^\alpha_t I_x = D^\alpha_t I_m = D^\alpha_t R = 0 \]
\[\Rightarrow f_1(S^\alpha, L_x^\alpha, L_m^\alpha, I_x^\alpha, I_m^\alpha, L_x^\alpha, I_x^\alpha, R^\alpha) = 0, \]
\[i = 1, 2, 3, \ldots, 8. \]

Now, if \(I_1 = I_2 = I_3 = 0 \Rightarrow L_x = L_m = L_x = 0, R = 0 \) and
\[S = \frac{1}{2}. \]

Then the disease free equilibrium (DFE) is \(E_0 = \left\{ \frac{g}{2}, 0, 0, 0, 0, 0, 0, 0 \right\}. \)

We calculate the Jacobian matrix of the system (18)–(25) at the disease free equilibrium point as follows:

\[J(E_0) = \begin{pmatrix} a & 0 & 0 & 0 & b & c & d & 0 \\ 0 & e & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & f & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & g & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & h & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & i & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & j & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & k & 0 \end{pmatrix} \]

where \(a = -d, b = -\beta_x, c = -\beta_m, d = -\beta_x, e = -(d + \epsilon_1 + \epsilon_2), f = \epsilon_1 \lambda_1 \beta_x, g = -(d + \epsilon_2 + \epsilon_3), h = -(d + \epsilon_4), p = (1 - P_3) I_x, q = \gamma_m + \lambda_2 \beta_m, r = -(d + \epsilon_2), s = (1 - P_3) I_m, t = \gamma_x + \lambda_3 \beta_x, u = \epsilon_2, x = -(d + \epsilon_1 + \epsilon_2 + \epsilon_3), w = \epsilon_3. \)

\[y = \epsilon_1, z = -(d + \epsilon_3 + \epsilon_2 + \gamma_x), m = P_1 I_x, n = P_2 I_x, j = P_3 I_m, k = \epsilon_3. \]

The characteristic equation associated with above matrix is

\[|J(E_0) - \lambda I| = 0 \Rightarrow (a - \lambda)^2 (\lambda^2 - (r + z) \lambda - yr + zr) (-\lambda^2 + (h + x) \lambda - xh + wz) (-\lambda^2 + (e + v) \lambda - ef - vw) = 0. \]

Then the eigenvalues of Jacobian matrix are \(\lambda_{1,2} = d, \lambda_{3,4} = \frac{\epsilon_1 \lambda_1 \beta_x}{2 \epsilon_2 + \epsilon_3 + \epsilon_4}, \lambda_{5,6} = \frac{\epsilon_2 \lambda_2 \beta_m}{2 \epsilon_1 + \epsilon_3 + \epsilon_4}, \lambda_{7,8} = \frac{\epsilon_3 \lambda_3 \beta_x}{2 \epsilon_1 + \epsilon_2 + \epsilon_4} \)

by using Theorem (Routh Hurwitz criteria) [17], these roots are negative or have negative real parts and DFE is locally asymptotically stable if all eigenvalues of the Jacobian matrix satisfies \[|\arg \lambda_i| > \frac{\pi}{2}, \forall \alpha(t) \in (0, 1], t \geq 0. \] For
simplicity, we will determine the stability of the DFE numerically by using Table 3 and put \(\beta_1 = \beta_\mu = \beta_s = 0.1 \). Then eigenvalues are \(\lambda_1 = -0.3800, \lambda_2 = -0.3800, \lambda_3 = -0.3675, \lambda_4 = -0.3675, \lambda_5 = -1.2215, \lambda_6 = -1.2215, \lambda_7 = -2.0882, \lambda_8 = -1.2268 \). So, if \(R_0 < 1 \), the DFE is locally asymptotically stable since \(\arg (\lambda) = | - \pi | > \frac{2k\pi}{N(t)} \), \(x(t) \in (0, 1) \), \(t \geq 0 \).

If at least one of the infected variables is non-zero, then the solutions for model (18)–(25) are endemic equilibrium [1].

This system is highly nonlinear in \(I_s, I_m \), and hence explicit solutions are not obtainable. So we solved the system (18)–(25) numerically to obtain endemic fixed point using NSFDM.

SFD discretization

The nonstandard finite difference schemes were introduced by Mickens in the 1980s as a powerful numerical method that preserves significant properties of exact solutions of the involved differential equation [19]. The concept of the nonstandard finite difference method is discussed in [20].

Definition 1. A numerical scheme is called NSFDM discretization if at least one of the following conditions is satisfied [18]:

1. Nonlocal approximation is used.
2. The discretization of derivative is not traditional and uses a nonnegative function [19,20].

To describe the main aspects of NSFDM schemes, we consider an ODE in the form

\[
\frac{dy}{dt} = f(t, y, \lambda),
\]

(27)

where \(\lambda \) is a possibly vector, parameter. Given a mesh-grid \(t_n = n + h \) that just for simplicity we assume to be equispaced with step-size \(h > 0 \), NSFDM schemes are constructed by the following two main steps: 1- the derivative at the left-hand side of (27) is replaced by a discrete representation in the form

\[
\frac{dy}{dt} = \frac{y_{n+1} - y_n}{\varphi(\lambda, h)},
\]

where \(y_{n+1} \) is an approximation of \(y(t_n) \), 2- the nonlinear term in (27) is replaced by a nonlocal discrete representation \(F(t, y_{n+1}, y_{n+2}, \ldots, \lambda) \) depending on some of the previous approximations.

For example, if there are nonlinear terms such as \(s(t) \) in the differential equation, these are replaced by \(\frac{x(t+\Delta t) - x(t)}{\Delta t} \) or \(\frac{x(t+\Delta t) - x(t)}{N(t)} \).

Let us denote by \(S^a, L_s^a, L_m^a, \Gamma_s, \Gamma_m \) and \(R^a \) the values of the approximations of \(S(nh), L_s(nh), L_m(nh), I_s(nh), I_m(nh), R(nh) \) respectively, for \(n = 0, 1, 2, \ldots \) and \(h \) is the timestep of the scheme. The sequences \(S^a, L_s^a, L_m^a, \Gamma_s, \Gamma_m, \) and \(R^a \) should be nonnegative in order to be consistent with the biological nature of the model [21].

NSFDM has many advantages than SFDM, for more details see [20–24]. Generally speaking, we can say that NSFDM is more efficient and accurate than SFDM [15,25].

NSF for variable-order fractional derivatives system

The system (18)–(25) can be discretized as follows:

\[
\sum_{j=0}^{n+1} \alpha_j^t S^{n+1-j} = b - dS^{n+1} - \beta_s S^n F^n - \beta_m S^n F^n - \beta_s S^n F^n,
\]

(28)

\[
\sum_{j=0}^{n+1} \alpha_j^t L_s^{n+1-j} = \lambda_s \beta_s S^n F^n + \sigma_s \lambda_s \beta_s R^{n+1} F^n + \bar{\gamma}_s - \sigma_s \lambda_s \beta_s L_s^n F^n - \alpha_s L_s^n F^n - (d + \bar{\epsilon}_s) L_s^n - \alpha_m \lambda_m \beta_m L_m^n F_m^n - \sigma_m \lambda_m \beta_m L_m^n F_m^n,
\]

(29)

\[
\sum_{j=0}^{n+1} \alpha_j^t L_m^{n+1-j} = \lambda_m \beta_m S^n F^n + \sigma_m \lambda_m \beta_m R^{n+1} F^n + \bar{\gamma}_m - \sigma_m \lambda_m \beta_m L_m^n F_m^n - \alpha_m \lambda_m \beta_m L_m^n F_m^n - \sigma_m \lambda_m \beta_m L_m^n F_m^n - (d + \bar{\epsilon}_m) L_m^n - \alpha_m \lambda_m \beta_m L_m^n F_m^n - \sigma_m \lambda_m \beta_m L_m^n F_m^n,
\]

(30)

\[
\sum_{j=0}^{n+1} \alpha_j^t L_s^{n+1-j} = \lambda_s \beta_s S^n F^n + \sigma_s \lambda_s \beta_s R^{n+1} F^n + \bar{\gamma}_s L_s^n F^n + \bar{\epsilon}_s L_s^{n+1} - \alpha_s L_s^n F^n - (d + \bar{\epsilon}_s) L_s^n - \alpha_m \lambda_m \beta_m L_m^n F_m^n - \sigma_m \lambda_m \beta_m L_m^n F_m^n,
\]

(31)

\[
\sum_{j=0}^{n+1} \alpha_j^t L_m^{n+1-j} = \lambda_m \beta_m S^n F^n + \sigma_m \lambda_m \beta_m R^{n+1} F^n + \bar{\gamma}_m L_m^n F_m^n + \bar{\epsilon}_m L_m^{n+1} - \alpha_m L_m^n F_m^n - (d + \bar{\epsilon}_m) L_m^n - \alpha_m \lambda_m \beta_m L_m^n F_m^n - \sigma_m \lambda_m \beta_m L_m^n F_m^n,
\]

(32)
\[
\sum_{j=0}^{n+1} a_j x^{n+1-j} = x_s \beta_s \frac{L^{n+1} P}{N^0} + (1 - \lambda_s) \beta_m \times \left(\frac{S^{n+1} P}{N^0} + \sigma_s \frac{R^{n+1} P}{N^0} + \lambda_m \frac{L^{n+1} P}{N^0} \right) + e_s L_s^{n+1} - (d + \delta_s) t_{n+1} = (\gamma_s + t_2) P_s.
\]
\[
\sum_{j=0}^{n+1} a_j x^{n+1-j} = P_s t_1 L_s^{n+1} + P_s t_2 L_s^{n+1} + P_s t_2 m P_m^{n+1} + t_2 t_s P_s - d R^{n+1} - \sigma_s \beta_s \frac{P^{n+1} P}{N^0} - \sigma_m \beta_m \frac{R^{n+1} P}{N^0} - \sigma_s \beta_s \frac{R^{n+1} P}{N^0}. \tag{34}
\]
where the discretization for \(N(t) \) is given as
\[
N^n = S^n + L_s^n + L_m^n + P_s^n + P_m^n + P^n + R^n.
\]

And \(a_j (x^n) = (\varphi_i (x))^{-a(x)} \), \(i = 1, 2, \ldots, 8 \) where the nonlocal approximations are used for the nonlinear terms and the following denominator functions are used:
\[
\varphi_1 (x) = \frac{e^{dh} - 1}{d}, \quad \varphi_2 (x) = \frac{e^{(d+\alpha_s)h} - 1}{(d + e_s + t_1)},
\]
\[
\varphi_3 (x) = \frac{1 - e^{-(d+\alpha_s)h}}{(\gamma_s + t_2)}, \quad \varphi_4 (x) = \frac{1 - e^{-(d+\alpha_m)h}}{(\gamma_m + t_2)},
\]
\[
\varphi_5 (x) = \frac{1 - e^{-(d+\alpha_x)h}}{(\gamma_x + t_2)}, \quad \varphi_6 (x) = \frac{e^{dh} - 1}{d}.
\]

We obtain,
Fig. 2 Profiles obtained by using NSFDM for solving variable-order fraction model with different \(\alpha(t) \), \(h = 0.2, \beta_s = \beta_m = \beta_i = 14 \), and \(R_0 > 1 \).

\[
S^{n+1} = \frac{b - \sum_{j=1}^{n} \theta_j S^{n+1-j}}{(\phi_s(h))^{-\theta_j}} + \frac{d + \frac{\beta_m}{C_0} R_s + \frac{\beta_s}{C_0} I}{(\phi_s(h))^{-\theta_j}}.
\]

\[
L_s^{n+1} = \frac{\beta_m}{C_0} S^{n+1} + \frac{\gamma_i}{C_0} L_s^{n+1} + \frac{1}{C_0} \left(\sum_{j=1}^{n} \theta_j L_s^{n+1-j} \right) + \frac{1}{C_0} \left(\sum_{j=1}^{n} \theta_j L_m^{n+1-j} + \sum_{j=1}^{n} \theta_j L_i^{n+1-j} \right).
\]

\[
L_i^{n+1} = \frac{\beta_s}{C_0} S^{n+1} + \frac{\gamma_i}{C_0} L_i^{n+1} + \frac{1}{C_0} \left(\sum_{j=1}^{n} \theta_j L_i^{n+1-j} \right) + \frac{t_2}{C_0} \left(1 - P_2 \right) - \frac{t_2}{C_0} \left(\sum_{j=1}^{n} \theta_j L_m^{n+1-j} + \sum_{j=1}^{n} \theta_j L_i^{n+1-j} \right).
\]
Fig. 3 Profiles obtained by using different methods with $\alpha(t) = 1$, $\beta = 0.02$, $\beta_m = \beta_x = 14$, and $R_0 > 1$.

h	SFDM	NSFDM
0.01	Convergent	Convergent
0.1	Convergent	Convergent
1	Convergent	Convergent
20	Divergent	Convergent
100	Divergent	Convergent

Table 4 Result obtained by SFDM and NSFDM for $B_s = B_m = B_x = 0.1$, $R_0 < 1$, $\alpha(t) = 0.98 - 0.01/100t$, $t \in [0, 100]$ and initial conditions as $(5000, 50, 50, 50, 30, 30, 30, 60)$ with different time step size.

h	SFDM	NSFDM
0.01	Convergent	Convergent
0.1	Convergent	Convergent
1	Divergent	Convergent
20	Divergent	Convergent
100	Divergent	Convergent

Table 5 Result obtained by SFDM and NSFDM for $B_s = B_m = B_x = 14$, $R_0 > 1$, $\alpha(t) = 0.98 - 0.01/100t$, $t \in [0, 100]$ and initial conditions as $(5000, 50, 50, 50, 30, 30, 30, 60)$ with different time step size.

h	SFDM	NSFDM
0.01	Convergent	Convergent
0.1	Convergent	Convergent
1	Divergent	Convergent
20	Divergent	Convergent
100	Divergent	Convergent
Fig. 4 Illustrate propagation of multi-strain TB along the time $x(t) = 0.98 - 0.03/100t$, $h = 3$, $\beta_s = \beta_m = \beta_x = 14$, and $R_0 > 1$, by using NSFDM.

Fig. 5 Profiles obtained by using NSFDM and SFDM with $x(t) = 0.98 - 0.01/100t$, $h = 0.2$, $\beta_s = \beta_m = \beta_x = 14$, and $R_0 > 1$.

\[P_m^{i+1} = \frac{\beta_m \frac{dP_m}{dt}}{\beta_m} (\lambda_m P_m^{i+1} + \lambda_n (S^{i+1} + \alpha_m R^{i+1} + \alpha_n L_n^{i+1})) \\
+ (\gamma_m - (t_m^i)) P_m^i + \dot{e}_m L_m^{i+1} - \sum_{j=1}^{n-1} e_j \frac{dP_m^{i-j}}{dt} \frac{d}{dt} L_m^{i+1-j}, \]

\[(\phi_k(h))^{-\alpha_i} + (d + \delta_m), \]

\[\frac{R_m^{i+1}}{\beta_m} = \frac{\beta_m \frac{dR_m}{dt}}{\beta_m} (\lambda_m R_m^{i+1} + \lambda_n (S^{i+1} + \alpha_m R^{i+1} + \alpha_n L_n^{i+1})) \\
+ (\gamma_m - (t_m^i)) P_m^i + \dot{e}_m L_m^{i+1} - \sum_{j=1}^{n-1} e_j \frac{dP_m^{i-j}}{dt} \frac{d}{dt} L_m^{i+1-j}, \]

\[(\phi_k(h))^{-\alpha_i} + (d + \delta_m), \]

\[R_m^{i+1} = \frac{t_1 P_1 L_1^{i+1} + P_2 L_2^{i+1} + t_3 P_3 L_3^{i+1} + t_4 P_4 + \sum_{j=1}^{n-1} e_j \frac{d}{dt} L_m^{i+1-j}}{(\phi_k(h))^{-\alpha_i} + (d + \delta_m)}, \]

\[\frac{S(t)}{t} = \frac{P(t)}{t} = \frac{L(t)}{t} = \frac{R(t)}{t}. \]

Numerical results and simulations

Since most of the variable-order fractional differential equations do not have exact analytic solutions, so approximation and numerical techniques must be used. Several analytical and numerical methods have been proposed to solve variable-order fractional differential equations. For numerical solutions of the system (18)-(25) one can use NSFDM, the approximate solution \(S(t), L_n(t), L_m(t), L_1(t), L_2(t), L_3(t), R(t) \) is displayed in Fig. 1, when \(R_0 < 1 \) and in Fig. 2, when \(R_0 > 1 \), in each figures, and three different values of \(x(t) = 1, x(t) = 0.95 - 0.01/100t, x(t) = 0.85 - 0.01/100t \) are considered. The approximate solutions are displayed in Fig. 2 that, the equilibrium point \((S, 0, 0, L_n, 0, 0, L_m, R)\) of NSFDM is locally asymptotically stable when \(x(t) = 0.95 - 0.01/100t, t \in [0, 20] \), where the eigenvalues are given as \(\lambda_1 = -9.8100, \lambda_2 = -0.4098, \lambda_3 = -0.3688, \lambda_4 = -2.7660, \lambda_5 = -2.4591, \lambda_6 = -1.2392, \lambda_7 = -1.6005, \)

Fig. 6 Profiles obtained by using NSFDM and SFD with \(x(t) = 0.98 - 0.01/100t, h = 1, \beta_1 = \beta_2 = \beta_3 = 14, \) and \(R_0 > 1. \)
By applying the relationship (26) we obtained that, $|\arg \hat{z}_k| = |\pi| > \frac{\pi}{100} \pi(x(t) \in (0, 1]$. When $x(t) = 1$, system (18)–(25) is the classical integer-order system. Moreover, we observed that, the integer order derivative can be used to characterize the short memory of systems, and the variable-order fractional derivative can be employed to depict the variable memory of systems. In Fig. 3, we presented the result obtained by NSFDM and SFDM and ode45 schemes with step size $h = 0.02$ and $x(t) = 1$, and we observed that, all numerical methods converge almost to the equilibrium point when $R_0 > 1$. In Table 4, we reported the convergence behavior of numerical methods to the disease free equilibrium, and in Table 5, we reported the convergence behavior of numerical methods to the equilibrium point $(S, 0, 0, L_x, 0, 0, I_x, R)$.

From Table 4, we can conclude that NSFDM unconditionally converges to the correct disease free equilibria for large h, while the SFDM converges only when h is small.

From Table 5, we can conclude that NSFD scheme unconditionally converges to the equilibrium point $(S, 0, 0, L_x, 0, 0, I_x, R)$ for large h, while the SFD scheme converges only when h is small. Moreover, the system (28)–(35) is unconditionally locally asymptotically stable.

Previous Fig. 4(a)–(d), illustrates propagation of TB along the time when $x(t) = 0.98 - 0.03/100t$ as follows:

In Fig. 4(a), the relationship between $R(t)$ and $I(t)$ illustrates that, there are individuals succeeded treatment with them and may exposed to infection again by contagious members $I(t)$ of the first strain. At the beginning of the period of the time the number of $I(t)$ members increases and the number of $R(t)$ members decreases, then after time steps the curves intersect again, $I(t)$ will be responsible to treatment and their numbers will be decreased.

In Fig. 4(b), the relationship between $S(t)$ and $I(t)$, describes the spread of infection from the members of the third strain to healthy people, then the number of infectious people increases and the number of healthy people decreases with proper time.

In Fig. 4(c), the relationship between $S(t)$ and $I(t)$, describes the spread of contagious from the members $I(t)$ of the second strain to healthy people, then the number of
infectious people increases and the number of healthy people decreases with proper time.

In Fig. 4(d), the relationship between \(L_1(t) \) and \(I_1(t) \), describes the spread of contagious from the members \(I_1(t) \) of the first strain to individuals who carry the disease latent of the first strain \(L_1(t) \), after time steps the curves intersect again then \(I_1(t) \) will be responsible to treatment and the number of them decreases.

In Fig. 5, we presented the result obtained by NSFD and SFDM schemes with step size \(h = 0.1 \) and \(\alpha(t) = 0.98 – 0.01/100t, \ t \in [0, 100] \). We can clearly see, all schemes converge to correct equilibrium point when \(R_0 > 1 \).

In Fig. 6, we presented the results obtained by NSFD and SFDM schemes with step size \(h = 1 \) and \(\alpha(t) = 0.98 – 0.01/100t \). As we can clearly see, the SFD scheme is unstable and the solutions are divergent, so we cannot use this scheme to solve the system when step size is large.

From these numerical results obtained in this work we can control the disease and turn the endemic point to the disease free point as follows:

Let us consider:

\[
R_{bi} < 1 \Rightarrow -\frac{t_1}{t_2 + 5.3950t_2 + 8.6060}{t_2 + 1.6050t_2 + 1.050} < 0, \text{ where } t_{1s} = t_{2s}.
\]

(44)

\[
R_{bi} < 1 \Rightarrow \frac{9.1720 – 0.8800t_{2m}}{0.8800t_{2m} + 0.4880} < 0,
\]

(45)

\[
R_{bi} < 1 \Rightarrow \frac{9.1720 – 0.8800t_{2s}}{0.8800t_{2s} + 0.4880} < 0,
\]

(46)

Then,

\[
t_{1s} = t_{2s} \geq 6.6828, t_{2m} \geq 10.4227, t_{2s} \geq 10.4227.
\]

(47)

\[
T = \max\{ t_{2s}, t_{2m}, t_{1s} \} \Rightarrow T = t_{2m} = t_{2s} \geq 10.4227.
\]

(48)

So, we derive the rate of treatment required for achieving control of the disease.

For example, if we choose the following elements which belong to such as \(t_{2a} = t_{2b} = t_{2s} = 17, b_s = B = B_m = B_{1a} = 14, \ h = 1 \) and \(\alpha(t) = 0.85 - 0.02/100t \), we obtained the disease free point (see Fig. 7).

Conclusions

In this article, a novel multi-strain TB model of variable-order fractional derivatives which incorporates three strains: drug-sensitive, MDR and XDR, is studied. It can be concluded from the numerical results presented in this paper, that the variable-order fractional TB model given here is a general model than the integer and fractional order models. Furthermore, the integer order model can be used to characterize the short memory of systems, and the variable-order fractional model can be employed to depict the variable memory of systems. Moreover, we can conclude that NSFD is more efficient for solving variable-order fractional mathematical model for multi-strain TB, than the SFDM, because it preserves the positivity of the solution and the stability regions using it are bigger than the SFDM stability regions. All results in this paper are obtained using MATLAB (R2013a), on a computer machine with intel (R) core i3-3110M @ 2.40 GHz and 4 GB RAM.

Conflict of Interest

The authors have declared no conflict of interest.

Compliance with Ethics Requirements

This article does not contain any studies with human or animal subjects.

References

[1] Arino J, Soliman IA. A model for the spread of tuberculosis with drug-sensitive and emerging multidrug-resistant and extensively drug resistant strains. In: Mathematical and computational modelling. Wiley; 2014.

[2] Coimbra CFM. Mechanics with variable-order differential operators. Ann Phys 2003;12(11–12):692–703.

[3] Lorenzo CF, Hartley TT. Variable-order and distributed order fractional operators. Nonlinear Dyn 2002;29(1–4):57–98.

[4] Samko SG. Fractional integration and differentiation of variable-order. Anal Math 1995;21(3):213–36.

[5] Sun HG, Chen W, Chen YQ. Variable-order fractional differential operators in anomalous diffusion modeling. Physica A 2009;388(21):4586–92.

[6] Umarov S, Steinberg S. Variable-order differential equations and diffusion processes with changing modes [submitted for publication]. <http://www.arxiv.org/pdf/0903.2524.pdf>.

[7] Valerio D, Costa JS. Variable-order fractional derivatives and their numerical approximations. Signal Process 2011;91(3):470–83.

[8] Sheng H, Sun HG, Chen YQ, Qiu TS. Synthesis of multifractional Gaussian noises based on variable-order fractional operators. Signal Process 2011;91(7):1645–50.

[9] Tseng CC. Design of variable and adaptive fractional order FIR differentiators. Signal Process 2006;86(10):2534–66.

[10] Sheng H, Sun HG, Coopmans C, Chen YQ, Bohannan GW. A physical experimental study of variable-order fractional integrator and differentiator. Eur Phys J 2011;193(1):93–104.

[11] Jordan DW, Smith P. Nonlinear ordinary differential equations. 3rd ed. Oxford University Press; 1999.

[12] http://www.thelanet.com,

[13] Aparicio JP, Castillo-c’havez C. Mathematical modelling of tuberculosis epidemics. Math Biosci Eng 2009;6(2):209–37.

[14] Castillo-c’havez C, Feng Z. To treat or not to treat: the case of tuberculosis. J Math Biol 1997;35(6):629–56.

[15] Sweilam NH, Assiri TA. Nonstandard Crank–Nicolson method by nonlocal approximation. Math Comput Simul 2003;61(3–6):465–75.

[16] Mickens RE. Nonstandard finite difference models of differential equations. Singapore: World Scientific; 1994.
[21] Mickens RE. Calculation of denominator functions for nonstandard finite difference schemes for differential equations satisfying a positivity condition. Wiley InterSci 2006;23(3): 672–91.

[22] Kulenovic MRS, Ladas G. Dynamics of second order rational difference equations with open problems and conjectures. Boca Raton: Chapman and Hall/CRC; 2002.

[23] Mickens RE. Nonstandard finite difference models of differential equations. Singapore: World Scientific; 2005.

[24] Mickens RE. Calculation of denominator functions for nonstandard finite difference schemes for differential equations satisfying a positivity condition. Numer Methods Partial Diff Equat 2007;23:672–91.

[25] Liu P, Elaydi S. Discrete competitive and cooperative methods of Lotka–Volterra type. Comput Appl Anal 2001;3:53–73.

[26] Organization WH. Multidrug and extensively drug-resistant TB (M/XDR-TB): 2012 global report on surveillance and response. World Health Organization; 2012.