Abstract

Structural, elastic and thermal properties of lanthanide monoantimonides LnSb (Ln = La, Ce, Pr, Nd, Sm, Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu) compounds have been studied theoretically using full potential linearized augmented plane wave plus local orbitals (FP-LAPW + lo) method within the density functional theory. The structural properties are investigated by using GGA-PBEsol scheme. We calculated bulk modulus, shear modulus, Young's modulus, anisotropic ratio, Kleinman parameters, Poisson's ratio, Lamé's co-efficient, sound velocities for shear and longitudinal waves, and Debye temperature. We also predict the Cauchy pressure and B/G ratio in order to explore the ductile and brittle behaviors of these compounds. Our results are in good agreement with available experimental and other theoretical data and also provide predictions where no experimental or theoretical results are available.

Keywords: Monoantimonides, Cubic-Elastic Software, Elastic Constants, Mechanical Properties

Introduction

Lanthanide-based monopnictides LnX (Ln = La, Ce, Pr, Nd, Sm, Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu and X = P, As, Sb and Bi) attract great attention due to their interesting electronic and magnetic properties and a variety of practical applications in the field of non-linear optics, glass making, phosphors lasers, composites lasers, displays, metal based transistor and optical amplifiers. These compounds are simple cubic NaCl type crystal also exhibit many unusual physical properties such as large magnetic anisotropy, complex magnetic phase diagram, large Kerr angle, heavy-fermion, mixed-valence, Kondo insulator and very small crystal field splitting[1-4]. These phenomena are intimately connected with the strong correlations among the Ln-f and pnictide-p electrons and the proper theoretical description of the electronic structures of these compounds remains a challenge [4,5]. The electronic properties of the lanthanides based compounds are solely dependent on the degree of localization and itinerant nature of f electrons. The rare-earth elements exhibit different degrees of localization. The light lanthanides like Ce, Pr and Nd are weakly delocalized whereas the heavier lanthanides rare-earths are strongly localized [3]. Further, the bonding between the Ln and pnictogen atoms cannot simply be described as ionic or covalent, otherwise they would all be expected to be insulators (semiconductors) [6].

Among the lanthanide pnictides, the lanthanide antimonides (LnSb) have recently attracted particular interest as a proper reference material for understanding of various elastic, structural and magnetic effects [7]. Some of them show magnetic and crystallographic phase transitions at low temperatures. Monoantimonides (CeSb, SmSb and YbSb) with NaCl-type structure exhibit anomalies in various physical properties due to the p–f mixing, dense Kondo effect and heavy fermion state. Their carrier concentrations increase with decreasing temperature since the p–f mixing becomes stronger. On the other hand, other rare-earth monoantimonides behave as a nearly normal magnetic semi-metals and display almost temperature-independent carrier concentrations [7].

So far as the structural properties are concerned, several pnictides of lanthanide group are crystallized in NaCl (B1) type crystal structure and have been investigated by using high-pressure X-ray diffraction technique and reported to undergo either CsCl (B2) or body centered tetragonal (BCT) structure [8-10]. Various experimental studies have been done to investigate the electronic properties of these compounds [11-13]. The elastic constants of LaSb and Gd monopnictides were reported experimentally [14,15]. Rakshit, et al. investigated the lattice vibrational properties of LaSb, CeSb, PrSb and NdSb using Raman scattering technique (RST) [13]. The optical properties of SmSb and TmSb are studied by Giginishvili, et al. [16]. The magnetic properties of NdSb, GdSb, TbSb, DySb,
HoSb and ErSb have been studied by Missell, et al. [17].

Besides experiments, lanthanide monoantimonides are also extensively studied theoretically. Bhajanker, et al. investigated the thermal and mechanical properties of praseodymium monopnictides by two body interionic potential (TBIP) [18]. Electronic, structural, phonon, elastic and thermodynamical properties of SmX (X = P, Sb and Bi) TmSb and GdSb compounds are calculated using pseudo potential GGA approximation [19-21]. Svane, et al. studied the lattice parameters and bulk moduli of Samarium pnictides by means of self-interaction corrected local spin density approximation (SIC-LSDA) [22]. The structural, elastic and thermal properties of Ho, Er and Tm antimonides have been calculated by Soni, et al. by simple interionic potential. Pagare, et al. using two body interionic potential to investigate theoretically high pressure structural phase transition and cohesive properties of DySb and LuSb [23,24].

Though lanthanide monoantimonides are extensively studied both experimentally and theoretically but there is a lack of comprehensive theoretical study of this series of compounds. In the present work we report the structural and elastic properties of these versatile compounds using generalized gradient approximation (GGA-PBEsol). Attempt has been made to get rational theoretical foundations to the experimental measurements and provide detailed information of several unexposed mechanical and thermal properties.

Computational details

Calculations are performed using full-potential linearized augmented plane waves plus local orbital (FP-LAPW + lo) [25] method as implemented in the WIEN2k package [25,26]. For structural properties spin polarized calculations are carried out using generalized gradient approximation (GGA-PBE-sol) [27] as an exchange-correlation potential. In full potential scheme, the wave functions inside the non-overlapping spheres are expanded as spherical harmonics up to angular momentum \(l = 10 \). Plane wave expansion is used in the remaining space of the unit cell (interstitial region) fixing the parameter \(R_{MTK_{\text{max}}} = 7 \). RMTs are chosen in such a way that no charge leakage occurred from the core and total energy convergence is ensured. We have used 3000 k-points in the Brillouin zone (BZ) integration. The self-consistent calculations were considered to converge only when the calculated total energy of the crystal converges to less than \(10^{-4} \) Ry. The total energies were further used to obtain the ground state properties.

Elastic constants are the key parameters for the determination of the mechanical properties of a material. In the present work the elastic constants of LnSb (Ln = La, Ce, Pr, Nd, Sm, Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu) compounds are calculated using Cubic-elastic software implemented in WIEN2k code [28]. The details about Cubic-elastic software are available in Refs. [28,29]. In particular a cubic lattice has only three independent elastic constants \(C_{11} \), \(C_{12} \) and \(C_{44} \). These constants are calculated, and are further used to evaluate the mechanical properties of LnSb compounds such as the shear modulus \(G_{ij} \), Young’s modulus \(Y \), Cauchy pressure \(C \), Poisson’s ratio \(v \), Kleinman parameter \(\zeta \), and anisotropy constant \(A \) using standard relations.

Results and Discussions

Structural properties

The spin polarized calculations are carried out using GGA flavor GGA-PBE-sol for structural properties of LnSb (Ln = La, Ce, Pr, Nd, Sm, Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu) in NaCl crystal structure. The structural parameters like lattice constant and bulk modulus are obtained by minimizing the total energy versus volume for LnSb compounds. The Birch-Murnaghan’s Fit equation of states is used for optimization [30]. The calculated parameters of these compounds are compared with available experimental and theoretical results and listed in Table 1. The table show that our calculated results of the lattice constants are in agreement with experimental measured values. The calculated results of the lattice constant are also compared with the experimental values in Fig. 1. The figure indicates that lattice constant of LnSb compound shrinks with increasing the number of f electrons which can be attributed to the lanthanide contraction along the lanthanide series from La to Lu. This trend in lattice constant can be explained by increased of anion size and decreased of cation size with increased of atomic number [31].

![Figure 1: Comparison of Calculated and experimental lattice constants.](image)

The bulk modulus \(B_0 \) is another important parameter and is a measure of resistance to volume change by applied pressure or the resistance to fracture. High value of \(B_0 \) has greater resistance to fracture. The calculated values of \(B_0 \) are presented in Table 1. It is evident from the table that our calculated values of bulk modulus are in close agreement with reported experimental and other theoretical results. LaSb have high value of \(B_0 \) is 74.67GPa among rare-earth antimonides confirming greater resistance to fracture, while PrSb have small value of 48.56GPa in this series.
Table 1: Calculated lattice constant in Å and bulk modulus (GPa) of LnSb compounds in B1 structure

Compounds	E_{xc}	A	B_o
LaSb	Present GGA$^{\text{PBE-sol}}$	6.45	74.67
	LDAd	6.30	69.76
	WC-GGAc	6.46	59.20
CeSb	Present GGA$^{\text{PBE-sol}}$	6.38	72.3
	SIC-LSDFf	6.36	69.2
	IPTp	6.42	71.5
PrSb	Present GGA$^{\text{PBE-sol}}$	6.37	48.56
	SIC-LDAq	6.24	55
	IPTp	6.40	53.5
NdSb	Present GGA$^{\text{PBE-sol}}$	6.31	55
	6.328	58.70	
SmSb	Present GGA$^{\text{PBE-sol}}$	6.27	66.76
	GGAi	6.32	56.90
	SIC-LDAq	6.30	46.7
	-----	-----	-----
GdSb	Present GGA$^{\text{PBE-sol}}$	6.19	62.78
	GGAi	6.25	58.74
	LSDAn	6.13	65.29
	LSDA+Uo	6.39	-----
	6.22p	63.71p	
TbSb	Present GGA$^{\text{PBE-sol}}$	6.16	71.93
	-----	6.17	
DySb	Present GGA$^{\text{PBE-sol}}$	6.15	55.80
	MIPMt	6.16	53.42
HoSb	Present GGA$^{\text{PBE-sol}}$	6.12	63.37
	6.13		
ErSb	Present GGA$^{\text{PBE-sol}}$	6.10	69.68
	LDAr	6.08	68.18
	6.106	70.93	
TmSb	Present GGA$^{\text{PBE-sol}}$	6.09	71.27
	GGA-PBEc	6.1	60.71
	LSDA+Uo	6.06	57.41
	LDAr	6.03	71.04
	6.105c, 6.08q	71.73q	
YbSb	Present GGA$^{\text{PBE-sol}}$	6.06	57.23
	LSDA+Uo	6.09	59.30
	6.079c	52±2c	
LuSb	Present GGA$^{\text{PBE-sol}}$	6.00	57.8
	GGA+Us	6.09	60.69
	GGAi	6.11	58.04
	6.04	53±4	

a[12], b[9], c[32], d[33], e[4][35], f[36], g[37], h[38], i[19], j[22], k[21], l[39], m[40], n[15], o[7], p[41], q[20], r[42], s[43], t[44], u[45], v[6], w[24]
Elastic and mechanical properties
The elastic constants provide important information about the binding characteristics between the closest atomic planes, stiffness stability and anisotropic character of binding of the materials. They also provide a relationship between the dynamical and mechanical behaviors of materials and give important information related to the nature of forces acting in solids [46,47]. The elastic stiffness constant C_{11} represents elasticity in length, and C_{12} and C_{44} are shape related elastic constants. The calculated second order elastic constants (SOECs) C_{11}, C_{12} and C_{44} for LnSb (Ln = La, Ce, Pr, Nd, Sm, Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu) compounds, with available experimental and other theoretical results are listed in Table 2. It is clear from the table that our calculated results satisfy the conditions for mechanical stability, i.e., $C_{11} + 2C_{12} > 0$, $C_{11} - C_{12} > 0$, $C_{44} > 0$ and $C_{12} < B < C_{11}$ for cubic structures, hence these compounds are stable against elastic deformation [48,49]. Our calculated values of C_{44} for the compounds under investigation are in excellent agreement consistent with experimental results, as compared to other theoretical reported results presented in Table 2. The calculated difference between two elastic constants C_{11} and C_{12}, i.e., $C_{11} - C_{12}$ for LnSb compounds show slightly disagreement as compared to the available experimental measured value, but our results are better for these compounds as compared to the other theoretical results.

Table 2: Calculated second order elastic constants (SOECs) in GPa of LnSb compounds in B1 structure

Comp.	C_{11}	C_{12}	C_{44}	$C_{11} - C_{12}$
LaSb	94.77	12.72	19.96	82.05
Theory	159.5, 132, 140	19.9, 15, 20	5.0, 19.7, 21	139.6, 117, 120
Exp.	19.5, 74.0			
CeSb	108.53	14.81	18.34	93.72
Theory	146.42	24.44	21.33	105.02
PrSb	118.99	13.82	21.13	117.02
Exp.	117, 117.01	21, 21.75	21, 21.80	96.0f
NdSb	124.73	16.30	17.37	117.02
Theory	110.56	22.35	22.35	127
SmSb	132.83	19.62	19.89	125.2
Theory	82.11	4.42	5.61	37.82
Exp.	22.7, 127			
GdSb	135.2	12.55	24.04	122.61
Theory	123.38, 40.01, 83.64	29.34, 8.41, 6.29	29.34, 8.61, 5.96	94.04, 31.6, 37.35
TbSb	142.20	15.89	21.12	126.31
DySb	157.738	17.435	30.194	140.348
Theory	22.36	100.87	142.00	148.00
Exp.	26.00	148.00		
HoSb	148.87	14.72	25.78	134.15
Exp.	27.6, 138.00			
ErSb	112.69	15.89	24.68	128.58
Theory	113.65	16.98	19.57	96.67
Exp.	26.0, 135			
TmSb	151.55	19.02	27.06	132.53
Theory	151.898, 160.9	17.289, 24.5	25.42, 24.7	134.699, 136.4
Exp.	26.8, 135			
YbSb	134.33	18.71	24.62	115.62
LuSb	128.57	21.80	25.61	106.77

$^{[12]}$, $^{[50]}$, $^{[51]}$, $^{[14]}$, $^{[8]}$, $^{[18]}$, $^{[36]}$, $^{[19]}$, $^{[15]}$, $^{[52]}$, $^{[21]}$, $^{[24]}$, $^{[20]}$, $^{[23]}$, $^{[6]}$
The elastic constants determine the response of the crystal to external forces, as characterized by Young’s modulus, shear modulus, anisotropic ratio, and Poisson’s ratio, and play an important role in determining the strength, stability, internal strain, thermo elastic stress, sound velocity, fracture, toughness of materials. The mechanical parameters such as shear modulus (\(G_h\)), Young’s modulus (\(Y\)), B/G ratio, Cauchy pressure (\(C''\)), Poisson’s ratio (\(\nu\)), Kleinman’s parameter (\(\zeta\)), anisotropy factor (\(A\)) and shear constant (\(C'\)) are listed in Table 3.

The shear modulus \(G = G_h\) describes the material’s response to shearing strain and to obtain \(G\) we used Voigt shear modulus \(G_v\) and Reuss shear modulus \(G_R\) using the relations [52-55]:

\[
G_v = \frac{1}{5} (3C_{4} + C_1 - C_2) \quad (1)
\]

\[
G_R = \frac{5(C_1 - C_2)C_4}{4C_4 + 3(C_1 - C_2)} \quad (2)
\]

Shear modulus is the arithmetic means of \(G_v\) and \(G_R\):

\[
G = \frac{G_v + G_R}{2} \quad (3)
\]

The greater value for shear modulus for DySb (42.64GPa) confirm that this compound show more resistance to plastic deformation while LaSb has less resistance to plastic deformation. The smaller values of shear modulus for all these compounds reveal that, these all material offer less resistance to plastic deformation.

The Young’s modulus gives useful information about the stiffness of materials and can be calculated using the following equation:

\[
Y = \frac{9BG_v}{2B + G_v} \quad (4)
\]

Larger the value of \(Y\), the stiffer is the material. It is clear from Table 3 that DySb is stiffer in all these LnSb compounds.

Another parameter which also described the brittle/ductile nature of a compound is Poisson’s ratio which can be calculated using the relation:

\[
\nu = \frac{3B - Y}{6B} = \frac{1}{2} - \frac{Y}{6B} \quad (5)
\]

The Poisson’s ratio lies in between -1.0 and 0.5, which are the lower and upper bounds. The lower bound is where the materials do not change its shape and the upper bound is where the volume remains unchanged. On the basis of Poisson’s ratio Frantsevich, et al. explained the brittle/ductile nature of compounds; the compounds are brittle if \(\nu\) less than 0.33, otherwise the compounds are ductile [32]. The calculated values of \(\nu\) for LnSb compounds for all compounds under study is less than 0.33, hence the brittle nature for LnSb are further confirm in term of Poisson’s ratio. If \(\nu\rightarrow0\) the material is more compressible [58]. Our calculated values of Poisson’s ratio are greater than zero (\(\zeta=1\rightarrow0.2\)), show that these materials are less compressible and stable against deforming force.

Kleinman’s parameter (\(\zeta\)), describes the relative positions of the cation and anion sublattices under volume conserving strain distortions for which positions are not fixed by symmetry [21]. A low value of \(\zeta=0\) implies a large resistance against bond bending or bond-angle distortion and upper limit \(\zeta=1\) leads to band stretching. [59-61]. The Kleinman’s parameter can be calculated from elastic constants by using the following relation:

\[
\zeta = \frac{C_4 + 8C_1}{7C_1 - 2C_2} \quad (6)
\]

The calculated values in Table 3 predicted the bond stretching is dominant in LnSb compounds (lower limit of \(\zeta\)).

The elastic anisotropic factor \(A\) gives a measure of the anisotropy of the materials and closely related to the microcracks in a material. Anisotropic ratio can be calculated by using the following equation:

\[
A = \frac{2C_4}{C_1 - C_2} \quad (7)
\]

For isotopic material, \(A\) is unity. From Table 3, we can see that the calculated anisotropically ratio of LnSb compounds deviate from unity, means that these compound show anisotropic character and their properties vary in different directions.

Another mechanical parameters are Lame’s constants (\(\lambda, \mu\)), which measure hardness of the materials. Using Young modulus and Poisson’s ratio, Lame’s constants \(\lambda\) and \(\mu\) can be obtain by the following equations:

\[
\lambda = \frac{Y\nu}{(1 + \nu)(1 - 2\nu)} \quad (8)
\]

\[
\mu = \frac{Y}{2(1 + \nu)} \quad (9)
\]
The first Lamé’s constant \((\lambda) \) is a measure of the compressibility of a material, the second Lamé’s constant \((\mu) \), reflects shear stiffness [62]. The values of Lamé's constants for LnSb compound are given in Table 3. From the Table 3, it is clear that our calculated value of Lamé’s second modulus is equal to Voigt’s shear modulus (i.e., \(\mu=G_v \)). For isotropic materials \(\lambda = \mu = C' \) and \(\mu = C' \). As LnSb compounds are strongly anisotropic, hence does not satisfied the condition of isotropy, i.e., \(\lambda = C12 \) and \(\mu = C' \).

Shear constant \((\nu) \), also known as tetragonal shear modulus, it is one of the criterions of mechanical stability and shows the stability of the tetragonal distortion. For dynamical stability the shear constant \(>0 \) and has been calculated by using the following relation:

\[
C' = \frac{C_{11} - C_{12}}{2}
\] (10)

It is clear from Table 3 that our calculated value for is positive for all compounds which indicate that these compounds are mechanically stable.

Table 3: The calculated value of Voigt’s shear modulus \(G_v \), Reuss’s shear modulus \(G_r \), Hill’s shear modulus \(G_h \), B/G ratio, Cauchy Pressure\((C') \), Poison’s ratio \((\nu) \), Kleinman Parameter \((\zeta) \), Anisotropy constant \((A) \) Lames Coefficient \((\lambda \text{ and } \mu) \), and and Shear Constant \((C') \).

Comp	LaSb	CeSb	PrSb	NdSb	SmSb	GdSb	TbSb	DySb	HoSb	ErSb	TmSb	YbSb	LuSb
\(G_v \)	28.39	29.75	33.71	34.51	36.38	38.95	37.93	46.18	42.30	34.17	42.74	37.90	36.72
\(G_h \)	25.12	24.24	27.78	28.20	30.05	31.77	28.78	39.10	34.20	30.70	35.45	31.96	32.34
\(G_r \)	26.75	26.99	30.74	31.36	33.21	35.36	33.36	42.64	38.25	32.43	39.19	34.93	34.53
\(Y \)	68.89	73.43	82.23	84.90	90.08	94.02	93.43	111.74	102.56	82.90	104.64	93.14	90.80
\(B/G \)	1.50	1.71	1.59	1.67	1.73	1.51	1.74	1.51	1.55	1.48	1.62	1.64	1.66
\(v'' \)	-7.24	-3.53	-7.31	-5.07	-3.27	-11.49	-5.23	-12.76	-11.06	-8.79	-8.04	-5.91	-3.81
\(\nu \)	0.21	0.23	0.22	0.23	0.24	0.21	0.23	0.21	0.21	0.22	0.23	0.24	0.24
\(\zeta \)	0.31	0.31	0.29	0.30	0.33	0.26	0.28	0.28	0.26	0.32	0.30	0.31	0.35
\(A \)	0.49	0.39	0.40	0.39	0.39	0.39	0.33	0.43	0.38	0.51	0.41	0.43	0.48
\(\lambda \)	21.15	26.22	26.40	32.94	35.78	27.46	32.70	33.42	31.24	25.38	34.70	31.99	32.91
\(\mu \)	28.39	29.75	33.71	34.08	36.06	38.95	37.93	46.18	42.30	34.17	42.74	37.90	36.72
\(C' \)	41.03	46.86	52.59	54.22	56.61	61.33	63.16	70.16	67.08	48.40	66.27	57.81	53.39

Thermal Properties

Debye temperature \((\theta_\text{D}) \) is a temperature at which the wave length \(\lambda \) of vibrating atom is equal to the length of the unit cell in a crystal. It is an important parameter which closely related to elastic constants, melting temperature and specific heat. We calculated Debye temperature by using the relation [63, 64].

\[
\theta_\text{D} = \left(\frac{h}{k_B} \right) \left[\frac{3n}{4\pi} \left(\frac{\rho N_A}{M} \right) \right]^{\frac{1}{2}} \nu_n
\] (11)

Where \(K_n \) is Boltzmann’s constant, \(h \) is plank constant, \(\rho \) is density of a compound, \(n \) is number of atom in a unit cell, \(N_A \) is Avogadro number, \(M \) is the molecular mass of a compound and \(\nu_n \) is average speed of sound, which is calculated as [65]:

\[
\nu_n = \left[\frac{1}{3} \left(\frac{2}{v_x} + \frac{1}{v_y} \right) \right]^{-\frac{1}{3}}
\] (12)

Where \(v_x \) and \(v_y \) are the transverse and longitudinal wave velocities respectively which is obtained from the equations [66]:

\[
v_x = \left[\frac{\rho}{G} \right]^{\frac{1}{2}}
\] (13)

It is clear from above equations that the sounds velocities are directly related to the shear modulus \(G \) and bulk modulus \(B \). greater the value of \(G \) and \(B \) greater will be the value of sounds velocities.

Our calculated value of density, longitudinal \(v_x \), transverse \(v_y \), average sound velocities \(v_m \) and the Debye temperature \((\theta_\text{D}) \) for LnSb (Ln = La, Ce, Pr, Nd, Sm, Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu) compounds are listed in Table 4. We compared our calculated results to available experimental as well as others theoretical results. Our calculated values for Debye temperature \((\theta_\text{D}) \) are overestimated than the available experimental results, but are comparable to the experimental results than other theoretical reported results. Our calculated value for Debye temperature \((\theta_\text{D}) \) for these compounds at 0K is higher than experimental data of Mullen et al., \((T = 200 K) \) listed in table 4, due to fact that at constant pressure the Debye temperature decreases as temperature increases [21]. For high value of \(\theta_\text{D} \), the compound will be stiffer and exhibit high thermal conductivity. It is clear from the Table 4 that \(\theta_\text{D} \) for DySb (\(\theta_\text{D} = 309.71 K \)) is stiffer than the other compound in LnSb series due to higher value of Young modulus and elastic constants.
Table 4: The calculated values of density \(p \) (g/cm\(^3\)), sound velocity of transverse wave \(v_t \) (m/s), sound velocity of longitudinal waves \(v_l \) (m/s), average velocity \(v_m \) (m/s) and Debye temperature \(\theta_D \) (K) of compounds.

Comp.	\(p \)	\(v_t \)	\(v_l \)	\(v_m \)	\(\theta_D \)
LaSb	6.45	3426.20	2036.26	2254.66	262.25
CeSb	6.70	3499.51	2007.36	2229.81	262.27
NdSb	7.03	3660.92	2111.59	2344.46	278.75
SmSb	7.33	3722.62	2127.98	2364.50	282.92
GdSb	7.82	3587.46	2127.09	2355.76	285.63
TbSb	7.98	3584.27	2045.05	2272.71	276.88
DySb	8.12	3861.95	2292.03	2358.20	309.71
HoSb	8.31	3646.16	2145.83	2378.17	291.60
ErSb	8.46	3287.09	1958.08	2167.09	266.59
TmSb	8.55	3672.68	2138.39	2372.24	292.29
YbSb	8.80	3434.88	1992.30	2210.88	273.75
LuSb	9.12	3367.08	1945.49	2159.72	270.04

Acknowledgement

We acknowledge the financial support from the Higher Education Commission, Pakistan (HEC), under Start-up Research Grant Program (SRGP), Project no. 1274.

References

1. Pittini R, Schones J, Vogt O, Wachter P (1996) Discovery of 90 degree Magneto-optical Polar Kerr Rotation in CaSb. Phys Rev Lett 77: 944-947.
2. Pittini R, Schones J, Wachter P (1997) Giant magneto-optical Kerr rotation observed in CeS single crystals. Phys Rev B 55: 7524-7532.
3. De M, De SK (1999) Electronic structure and optical properties of neodymium monopnictides. J Phys Chem Solids 60: 337-346.
4. Sane A, Szotek Z, Temmerman WM, Lægsgaard J, Winter H (1998) J Electronic structure of cerium monopnictides under pressure. J Phys Condens Matter 10: 5309-5325.
5. Yakovkin IN, Komesu T, Dowben PA (2002) Band structure of strained Gd(0001) films. Phys Rev B 66: 035406.
6. Gupta DC, Bhat IH (2013) Electronic, ductile, phase transition and mechanical properties of Lu-monopnictides under high pressures. J Mol Model 19: 5343-5354.
7. Bhardwaj P, Singh S (2011) High pressure phase transition and elastic properties of covalent heavy rare-earth Antimonides. J Mol Model 17: 3057-3062.
8. Pagare G, Srivastava V, Sanyal SP (2005) Pressure induced...
phase transition in rare earth mono-antimonides. J Phys Chem Solids 66: 1177-1182.

9. Leger JM, Ravot D, Mignod JR (1984) Volume behaviour of CeSb and LaSb up to 25 GPa. J Phys C: Solid State Phys 17: 4935-4943.

10. Adachi T, Shiratori H, Hayashi J, Shimomura O (1998) Phase transitions of lanthanide monophosphides with NaCl-type structure at high pressures. Phys Lett A 250:389-393.

11. Shiratori H, Hayashi J, Yamanashi K, Ishimatsu N, Shimomura O, et al. (2001) Pressure-induced phase transitions in lanthanide monoantimonides with a NaCl-type structure. Phys Rev B 64: 132101.

12. Mullen ME, Lüthi B, Wang PS, Bucher E, Longinotti LD, et al. (1974) Magnetic-ion-lattice interaction: Rare-earth antimonides. Phys Rev B 10: 186-199.

13. Rakshit B, Srivastava V, Sanyal SP, Dilawar N, Varandani D, et al. (2008) Lattice vibrational properties of some rare-earth antimonides: Raman scattering measurements and model theory. Optoelectron Adv Mat 2: 37-41.

14. McWhan DB, Vettier C, Longinotti LD, Shrinane G (1978) Lattice dynamics of LaSb and PrSb. Phys Rev B 18: 4540.

15. Pagare G, Soni P, Srivastava V, Sanyal SP (2009) High-pressure behaviour and elastic properties of heavy rare-earth Gd monopnictides. J Phys Chem Solid 70: 650-654.

16. Gigneishvili AV, Glurijdze LN, Jabua ZU (2011) Optical properties of SmSb and TmSb. Nano Studies 3: 19-24.

17. Missell FP, Guertil RP, Foner S (1997) Magnetic properties of NdSb, GdSb, TbSb, DySb, HoSb and ErSb under hydrostatic pressure. Solid State Commun 123: 369-372.

18. Bhajanker S, Srivastava V, Pagare G, Sanyal SP (2012) Mechanical and thermal properties of praseodymium monochalcogenides and monopnictides under pressure. J Phys Conf Ser 377: 012080.

19. Čoban C, Colakoglu K, Deligöz E, Çiftçi YÖ (2010) The structural, electronic, elastic, phonon, and thermodynamical properties of the Sm₉ₓ(X = P, Sb, Bi) compounds. Comput Mater Sci 47:758-768.

20. Čoban C, Colakoglu K, Deligöz E, Çiftçi O (2011) The first principles study on the TmSb. Compound Solid State Sci 13: 1291-1298.

21. Korožnuk N, Colakoglu K, Deligoz E, Surucu G (2010) First-principles study of structural, elastic, lattice dynamical and thermodynamical properties of Gdₓ(X = Bi, Sb). Philos Mag 90: 1833-1852.

22. Sane A, Kanchana V, Vaiitheeswaran G, Santi G, Temmerman WM, et al. (2005) Electronic structure of samarium monopnictides and monochalcogenides. Phys Rev B 71: 045119.

23. Soni P, Pagare G, Sanyal SP (2010) A theoretical study of structural, elastic and thermal properties of heavy lanthanide monoantimonides. J Phys Chem Solids 71: 1491-1498.

24. Pagare G, Sen D, Srivastava V, Sanyal SP (2010) Study of electronic and structural properties of half metallic rare earth mononitrurides. Phys Conf Ser 215: 012114.

25. Andersen OK (1975) Linear methods in band theory. Phys Rev B 12: 3060-3083.

26. Blaha P, Schwarz K, Madsen GKH, Kuasnicka D, Luitz J (2001) WIEN2k, An Augmented Plane Wave + Local Orbitals Program for Calculating Crystal Properties. K. Schwarz Technical University, Wien, Austria, ISBN 3-9501031-1-2.

27. Perdew JP, Ruzsinszky A, Csonka GJ, Vydrov OA, Scuseria GE, et al. (2008) Restoring the Density-Gradient Expansion for Exchange in Solids and Surfaces. Phys Rev Lett 100:136406.
47. Kaurav N, Kuo YK, Joshi G, Choudhary KK, Varshney D (2008) High-pressure structural phase transition and elastic properties of yttrium pnictides. High Pressure Research 28: 651-663.
48. Wallace DC (1972) Thermodynamics of Crystals. John Wiley Sons, New York.
49. Born M, Huang K (1954) Dynamical Theory of Crystal Lattices. Clarendon, Oxford.
50. Varshney D, Shriya S, Varshney M (2012) Study of pressure induced structural phase transition and elastic properties of lanthanum pnictides. Eur Phys J B 85: 241.
51. Tutuncu HM, Bagel S, Srivastava GP (2007) Electronic, elastic and phonon properties of the rock-salt LaSb and YSb. J Phys Condens Matter 19: 156207.
52. Yadav R, Singh D (2001) Behaviour of ultrasonic attenuation in intermetallics. Intermetallics, 9: 189-194.
53. Hill R (1952) The Elastic Behaviour of a Crystalline Aggregate. Proc Phys Soc Lond A 65: 349-354.
54. Voigt W (1889) Uber die Beziehung zwischen den beiden Elastizitätsconstanten isotroper Körper. Ann Phys 38: 573-587.
55. Reuss A, Angew Z (1929) Berechnung der Fließgrenze von Mischkristallen auf Grund der Plastizitätsbedingung für Einkristalle. Math Phys 9: 49-58.
56. Pugh SF (1954) XCII. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals. Philos Mag 45: 823-843.
57. Pettifor DG (1992) Theoretical predictions of structure and related properties of intermetallics. Mater Sci Technol 8: 345-349.
58. Greaves GN, Greer AL, Lakes RS, Rouxel T (2011) Poisson's ratio and modern materials. Nat Mater 10: 823-837.
59. Kim K, Lambrecht WRL, Segal B (1994) Electronic structure of GaN with strain and phonon distortions. Phys Rev B 50: 1502-1505.
60. Kleinman L (1962) Deformation Potentials in Silicon. I. Uniaxial Strain. Phys Rev 128: 2614-2621.
61. Harrison WA (1989) Electronic Structure and Properties of Solids. Dover New York.
62. Mayer B, Anton H, Bott E, Methfessel M, Sticht J, et al. (2003) Ab-initio calculation of the elastic constants and thermal expansion coefficients of Laves phases. Intermetallics 11: 23-32.
63. Johnston I, Keeler G, Rollins R, Spicklemire S (1996) Solid State Physics Simulations, The Consortium for Upper-Level Physics Software. Wiley, New York.
64. Shafiq M, Ahmad I, Asadabadi SJ (2014) Theoretical studies of strongly correlated rare-earth intermetallics RIn3 and RSn3 (R = Sm, Eu, and Gd). J Appl Phys 116: 103905.
65. Anderson OL (1963) A simplified method for calculating the Debye temperature from elastic constants. J. Phys. Chem. Solids 24: 909-917.
66. Schreiber E, Anderson OL, Soga N (1973) Elastic Constants and Their Measurements. McGraw-Hill New York.