On a functional equation characterizing linear similarities

Paweł Wójcik

Abstract. The aim of this paper is to give an answer to a question posed by Alsina, Sikorska and Tomás. Namely, we show that, under suitable assumptions, a function \(f : X \to Y \) from a normed space \(X \) into a normed space \(Y \), satisfying the functional equation

\[
\frac{f\left(y - \frac{\rho'_\pm(x, y)}{\|x\|^2} x\right)}{\|f(x)\|^2} = \frac{f(y) - \frac{\rho'_\pm(f(x), f(y))}{\|f(x)\|^2} f(x)}{\|x\|^2}, \quad x, y \in X
\]

has to be a linear similarity (scalar multiple of a linear isometry).

Mathematics Subject Classification. Primary 39B52, 46C50; Secondary 46B20, 39B55.

Keywords. Functional equation, Normed spaces, Norm derivatives, Smoothness, Orthogonality in normed spaces, Height function.

1. Introduction

Let \((X, \|\cdot\|)\) be a real normed space. We define norm derivatives \(\rho'_\pm : X \times X \to \mathbb{R} \) by \(\rho'_\pm(x, y) := \|x\| \cdot \lim_{t \to 0^\pm} \frac{\|x + ty\| - \|x\|}{t} \). The convexity of the norm yields that \(\rho'_+ \) and \(\rho'_- \) are well-defined. Now we define \(\rho'_+ \)-orthogonality: \(x \perp \rho'_+ y \iff \rho'_+(x, y) = 0 \). The following properties can be found, e.g., in \([1,2]\).

\(\text{(nd1)}\) \(\forall x, y \in X \forall \alpha \in \mathbb{R} \) \(\rho'_\pm(x, \alpha x + y) = \alpha \|x\|^2 + \rho'_\pm(x, y) \);

\(\text{(nd2)}\) \(\forall x, y \in X \forall \alpha \geq 0 \) \(\rho'_\pm(\alpha x, y) = \alpha \rho'_\pm(x, y) = \rho'_\pm(x, \alpha y) \);

\(\text{(nd3)}\) \(\forall x, y \in X \forall \alpha < 0 \) \(\rho'_\pm(\alpha x, y) = \alpha \rho'_\pm(x, y) = \rho'_\pm(x, \alpha y) \);

\(\text{(nd4)}\) \(\forall x, y \in X \) \(|\rho'_\pm(x, y)| \leq \|x\| \cdot \|y\| \), \(\rho'_\pm(x, x) = \|x\|^2 \), \(\rho'_-(x, y) \leq \rho'_+(x, y) \);

\(\text{(nd5)}\) \(\forall x, y, z \in X \) \(\rho'_+(x, y + z) \leq \rho'_+(x, y) + \rho'_+(x, z) \).

A normed space \(X \) is said to be smooth if for every \(x \in X \setminus \{0\} \) there is a unique supporting functional at \(x \), i.e., a unique functional \(x^* \in X^* \) such that \(\|x^*\| = 1 \) and \(x^*(x) = \|x\| \). Moreover, we may state this definition in an equivalent form, namely: \(X \) is smooth \(\iff \rho'_+ = \rho'_- \iff \forall x \in X \rho'_+(x, \cdot) \) is linear. If \(X \) is smooth, then the following condition holds (see \([1]\)):
can compute the height vector from \(y \) linearly independent vectors \(x \) and \(y \), \(h = \lambda x - y \).

In a real inner product space \((X, \langle \cdot, \cdot \rangle)\), given the triangle determined by two linearly independent vectors \(x, y \) and the zero vector (i.e., \(\triangle \{x, y, 0\} \)), one can compute the height vector from \(y \) to the side \(x \) and orthogonal to \(x \) using the formula \(h(x, y) := y - \frac{x \langle y, x \rangle}{\|x\|^2} \). Then \(x \perp h(x, y) \). The same might be done for normed spaces using the function \(\rho'_+ \) as a generalization of an inner product.

In this case we consider the height function \(h(x, y) := y - \frac{\rho'(x, y)}{\|x\|^2} x \).

Alsina et al. \cite{Alsina} investigated functions \(f : X \to X \) that transform the height of the triangle with sides \(x, y, x - y \) into the corresponding height of the triangle determined by sides \(f(x), f(y), f(x) - f(y) \), i.e. \(f(\triangle \{x, y, 0\}) = \triangle \{f(x), f(y), 0\} \). Namely, they studied the condition \(f(h(x, y)) = h(f(x), f(y)) \), which leads to the functional equation \(f \left(y - \frac{\rho'(x, y)}{\|x\|^2} x \right) = f(y) - \frac{\rho'(f(x), f(y))}{\|f(x)\|^2} f(x) \).

In particular, Alsina et al. \cite{Alsina} obtained the following result.

Theorem 1. \cite[p. 102, Theorem 3.7.2]{Alsina} If \(X \) is a real normed linear space and \(f : X \to X \) is a continuous function, then \(f \) is a solution of

\[
f \left(y - \frac{\rho'(x, y)}{\|x\|^2} x \right) = f(y) - \frac{\rho'(f(x), f(y))}{\|f(x)\|^2} f(x), \quad x, y \in X
\]

and vanishes only at zero if and only if, \(f \) is a linear similarity.

At the end of their book \cite[p. 178, Open problem 6]{Alsina} Alsina, Sikorska and Tomás put the following problem.

Open problem Solve the functional equation

\[
f \left(y - \frac{\rho'(x, y)}{\|x\|^2} x \right) = f(y) - \frac{\rho'(f(x), f(y))}{\|f(x)\|^2} f(x), \quad x, y \in X, \quad (1)
\]

where \(f : X \to X \) is injective and \(f(x) \neq 0 \) whenever \(x \neq 0 \).

The aim of this paper is to present a partial solution of the above open problem. In particular, we will prove that the assumption of the continuity of \(f \) is redundant in some circumstances. Moreover, it is not necessary to assume that \(f \) is injective.

2. Results

Throughout this section we will work with real normed spaces of dimensions not less than 2. We will consider the norm derivatives in various spaces \((X, Y)\); however, we will use one common symbol \(\rho'_+ \) for them. We will prove that \(f : X \to Y \) is a solution of \((1)\) if and only if it is a linear similarity (scalar multiple of a linear isometry). This assertion, however, can be obtained under the assumption of the smoothness of \(X \). But, unlike Theorem 1, it will not be assumed that a function \(f \) is continuous.
Lemma 2. Let X, Y be normed spaces, let $f : X \to Y$ satisfy (1). Then $f(0) = 0$.

Proof. By (1) we get $f(0) = f \left(y - \frac{\rho_+(y,y)}{\|y\|^2} y \right) = f(y) - \frac{\rho_+(f(y),f(y))}{\|f(y)\|^2} f(y) = f(y) - f(y) = 0$. □

Now we prove the first main result of this paper.

Theorem 3. Let X, Y be normed spaces and let $f : X \to Y$ satisfy (1). Suppose that $z \neq 0 \Rightarrow f(z) \neq 0$. Then f is additive.

Proof. First we will prove that f preserves the linear independence of two vectors. Suppose that $f(y) = \alpha f(x)$ and $x \neq 0$. Then

$$f \left(y - \frac{\rho_+(x,y)}{\|x\|^2} x \right) \overset{(1)}{=} \alpha f(x) - \frac{\rho_+(f(x),\alpha f(x))}{\|f(x)\|^2} f(x) \overset{(nd1)}{=} \alpha f(x) - \frac{\rho_+(f(x),f(x))}{\|f(x)\|^2} f(x) \overset{(nd2)}{=} 0.$$

From the assumption (i.e. $f(z) = 0 \Rightarrow z = 0$) we have that $y - \frac{\rho_+(x,y)}{\|x\|^2} x = 0$, hence the vectors x, y are linearly dependent. So, we have proved that f preserves the linear independence of two vectors.

Fix two linearly independent vectors $a, b \in X$. Then we have

$$f(b) - \frac{\rho_+(f(a),f(b))}{\|f(a)\|^2} f(a) \overset{(1)}{=} f \left(b - \frac{\rho_+(a,b)}{\|a\|^2} a \right) \overset{(nd1)}{=} f \left(a + b - \frac{\rho_+(a,a+b)}{\|a\|^2} a \right) \overset{(1)}{=} f(a+b) - \frac{\rho_+(f(a),f(a+b))}{\|f(a)\|^2} f(a).$$

It follows from the above equalities that

$$f(a + b) = f(b) + \left(\frac{\rho_+(f(a),f(a+b))}{\|f(a)\|^2} - \frac{\rho_+(f(a),f(b))}{\|f(a)\|^2} \right) f(a). \quad (2)$$

Putting b, a in place of a, b, respectively, in the above equality we get

$$f(a + b) = f(a) + \left(\frac{\rho_+(f(b),f(b+a))}{\|f(b)\|^2} - \frac{\rho_+(f(b),f(a))}{\|f(b)\|^2} \right) f(b). \quad (3)$$

We know that $f(a), f(b)$ are linearly independent. Thus, combining (2) and (3), we immediately get $\frac{\rho_+(f(a),f(a+b))}{\|f(a)\|^2} - \frac{\rho_+(f(a),f(b))}{\|f(a)\|^2} = 1$. Now equality (2) becomes $f(a + b) = f(b) + 1 \cdot f(a)$. To sum up, it has been shown that

$$a, b \text{ are linearly independent } \Rightarrow f(a + b) = f(a) + f(b). \quad (4)$$

Now let x and y be linearly dependent. We may assume that $x \neq 0 \neq y$. We consider two cases. Assume first that $y = \gamma x$ for some $\gamma \in \mathbb{R} \setminus \{-1\}$. There are linearly independent vectors $a, b \in X$ such that $a + b = x$. Then
\[f(x+y) = f(x+\gamma x) = f(a+b+\gamma x) \quad (4) \]
\[f(a)+f(b)+f(\gamma x) \quad (4) \]
\[f(a)+f(b)+f(\gamma x) \quad (4) \]
\[f(a+b)+f(\gamma x) = f(x)+f(\gamma x). \]

To sum up, it has been shown that
\[x \in X \setminus \{0\}, \gamma \in \mathbb{R} \setminus \{-1\} \Rightarrow f(x+\gamma x) = f(x)+f(\gamma x). \quad (5) \]

Now assume \(y = -x \). We have
\[f(x) = f(2x + (-\frac{1}{2}) 2x) \quad (5) \]
\[f(2x) + f(-x) = f(x) + f(-x). \]

It follows from the above equalities that \(0 = f(x) + f(-x). \)

By Lemma 2 we already know that \(f(0) = 0. \)

Therefore \(f(x+y) = f(x+(-x)) = f(0) = 0 = f(x)+f(-x) = f(x)+f(y). \) So, we have the additivity of \(f \) on the whole space \(X \).

\[\square \]

Lemma 4. Let \(X,Y \) be normed spaces and let \(f: X \to Y \) satisfy (1). Then \(f \) preserves \(\rho_+ \)-orthogonality.

Proof. Assume that \(x \perp_{\rho_+} y, \) i.e., \(\rho'_+(x,y) = 0. \) We assume that \(f(x) \neq 0 \) (if \(f(x) = 0, \) then \(f(x) \perp_{\rho_+} f(y) \)). Notice that \(f(y) = f \left(y - \frac{\rho'_+(x,y)}{\|x\|^2} x \right) \quad (1) \]
\[f(y) = f \left(y - \frac{\rho'_+(f(x),f(y))}{\|f(x)\|^2} f(x) \right), \]

hence \(\rho'_+(f(x),f(y)) = 0. \) This gives \(\rho'_+(f(x),f(y)) = 0. \)

Hence \(f(x) \perp_{\rho_+} f(y). \) Thus, in fact, \(f \) preserves \(\rho_+ \)-orthogonality.

Now we prove the second main result of this paper.

Theorem 5. Let \(X,Y,f \) be as in Theorem 3. Suppose that \(X \) is smooth. Then \(f \) is homogeneous.

Proof. Fix \(y \) in \(X \setminus \{0\}. \) We know that \(\dim \text{span}\{y\} = 1, \) so, it is best to think of \(f|_{\text{span}\{y\}} : \text{span}\{y\} \to Y \) as a function \(f : \mathbb{R} \to Y. \)

Now we can prove that \(f|_{\text{span}\{y\}} \) is homogeneous. Since we already know that \(f \) is additive, it suffices to show that \(\|f|_{\text{span}\{y\}}(\cdot)\| \) is bounded below on the segment \(\{\gamma y : \gamma \in [1,2]\}. \) Let \(\beta \in (0,1]. \) Applying (nd6), there exists a \(w \in X \setminus \{0\} \) such that \(y \perp_{\rho_+} w \) and \(y+w \perp_{\rho_+} \beta y - w. \) It follows from Lemma 4 that \(f(y) \perp_{\rho_+} f(w). \)

Therefore,
\[
\|f(y)\|^2 = \rho'_+(f(y),f(y)) + 0 = \rho'_+(f(y),f(y)) + \rho'_+(f(y),f(w)) \quad (nd1) = \rho'_+(f(y),f(y) + f(w)) \quad (nd4) \leq \|f(y)\| \cdot \|f(y) + f(w)\|, \]
\[
\text{and dividing by } \|f(y)\|, \text{ we obtain } \|f(y)\| \leq \|f(y) + f(w)\|. \]

But since also \(y+w \perp_{\rho_+} \beta y - w, \) we conclude that \(f(y+w) \perp_{\rho_+} f(\beta y - w), \) and by the additivity of \(f \) we have \(f(y) + f(w) \perp_{\rho_+} f(\beta y) - f(w). \) In the same manner we can prove
\[
\|f(y) + f(w)\| \leq \|f(y) + f(w) + f(\beta y) - f(w)\|. \]

Therefore \(\|f(y) + f(w)\| \leq \|f(y) + f(\beta y\|). \) From this we deduce that
\[
\|f(y)\| \leq \|f(y) + f(w)\| \leq \|f(y) + f(\beta y)\| = \|f(y + \beta y)\|. \]

Thus we have proved:
\[
\beta \in (0,1] \Rightarrow \|f(y)\| \leq \|f((1+\beta)y)\|.
\]
Observe that the above condition implies that \(\|f|_{\text{span}\{y\}}(\cdot)\| \) is bounded below on the segment \(\{\gamma y : \gamma \in [1, 2]\} \). The proof of Theorem 5 is complete.

We can combine the results of Theorems 3 and 5 and Lemma 4 to obtain the third main result. Finally, we can solve (1) completely.

Theorem 6. Let \(X, Y \) be real normed spaces. Suppose that \(X \) is smooth. Assume that \(f: X \to Y \) is nonzero, suppose that \(z \neq 0 \Rightarrow f(z) \neq 0 \). Then, the following conditions are equivalent:

1. \(f \) satisfies (1),
2. \(f \) is linear and \(\exists \gamma > 0 \forall x \in X \|f(x)\| = \gamma \|x\| \).

Proof. We prove (a) \(\Rightarrow \) (b). It follows from Theorems 3, 5 that \(f \) is linear. According to Lemma 4, \(f \) preserves \(\rho \)-orthogonality. The class of linear mappings preserving \(\rho \)-orthogonality coincides with the class of linear similarities (cf. [3, Theorem 5]). The proof of this implication is complete. The converse implication has a trivial verification.

Open Access. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

References

[1] Alsina, C., Sikorska, J., Tomás, M.S.: Norm Derivatives and Characterizations of Inner Product Spaces. World Scientific, Hackensack (2010)

[2] Amir, D.: Characterization of Inner Product Spaces. Birkhäuser Verlag, Basel (1986)

[3] Chmieliński, J., Wójcik, P.: On a \(\rho \)-orthogonality. Aequ. Math. 80, 45–55 (2010)

Paweł Wójcik
Institute of Mathematics
Pedagogical University of Cracow
Podchorąży 2
30-084 Kraków
Poland
e-mail: pawel.wojcik@up.krakow.pl

Received: March 8, 2018
Revised: July 19, 2018