Design of vacuum impregnation chamber for soaking of *Gulabjamun* in sugar syrup and optimization of wall thickness by Finite Element Analysis (FEA)

Maheshkumar G.¹, Menon Rekha Ravindra²

¹Asst Professor of Dairy Engineering, Dairy Science College, Hebbal, Bengaluru, India
²Senior Scientist, SRS-NDRI Bengaluru, India

Abstract— The application of vacuum impregnation technique for soaking of *Gulabjamoon* in sugar solution was conceptualized and the equipment was designed and developed. Vacuum impregnation unit (VIU) was operated under vacuum and hence the design of its wall thickness was of critical consideration. VIU facilitated rapid soaking of *Gulabjamun* in sugar syrup under full vacuum in cyclic process. VIU is cylindrical in geometry, designed to work at 65-80 °C at 5 kPa pressure (vacuum) on the inside and was exposed to atmospheric pressure on the outside. This leads to compressive forces acting on inside of the cylinder wall. The shell thickness will have direct bearing on stresses developed. There will be implosion (due to compressive forces) of VIU when Von Mises stress generated is more than yield stress of stainless steel (205 MPa). Wall thickness of cylinder of VIU was optimized by Finite Element Analysis (FEA) by modeling and simulation using Pro/ENGINEER. ANSYS-14 was used for analysis of Von Mises stress, deformation and factor of safety. The wall thickness of shell was analyzed by hyper tetrahedron meshing. To validate, design software developed by ASME was used for shell thickness determination. The model prediction was shown to be in good agreement with the analytical calculation. The FEA resulted in Von Mises Stress of 135.79 Mpa, deformation of 1.55 mm and factor of safety of 1.5. VIU was fabricated as per FDA C-GMP standards from AISI-316 SS. It is cylindrical in geometry designed to work at 65 °C to 80 °C and 5kPa pressure (vacuum).

I. INTRODUCTION

Vacuum impregnation is a new process to be adopted in dairy industry for faster impregnation of sugar syrup into *Gulabjamun* under pulsed full vacuum condition. VIU was to be fabricated as per FDA C-GMP standards from AISI-316 SS. It is cylindrical in geometry designed to work at 65 °C to 80 °C and 5kPa pressure (vacuum). VIU is exposed to atmospheric pressure on the outside which leads to compressive forces acting on the inside of the vessel that results in buckling when wall thickness is lower than the critical value (Fig 1). The mechanical strength of the VIU as determined by its thickness of the metal sheet (wall thickness) used in its fabrication is the critical design parameter. There will be implosion due to compressive forces when stress developed is more than yield stress of SS-316, the material used for fabrication of VIU. The following design steps elaborate the procedures adopted for FEA and optimization of shell thickness of VIU.

II. MATERIALS AND METHODS

VIU is a cylindrical vessel with hemispherical cover on bottom side and flat circular plate on top side. These covers are joined to the cylindrical chamber by welding. VIU was designed to work in full vacuum of 5kPa and the
outside operating pressure being 101kPa (NTP). Following design data (Hauviller1993), viz., composition of material, mechanical properties, dimensional drawing, boundary conditions required for FEA for stress analysis are shown in Table 1 & 2. Though AISI 316 was used for the VIU in this study, for comparison AISI 304 SS is also given in these Tables. The size of the unit was designed based on capacity of processing and the major dimensions are shown in Fig 2 which also describes the other constructional features of VIU.

Table 1: Composition of stainless steel

Element	Unit	AISI-304 SS	AISI-316 SS
Carbon	% max	0.08	0.08
Manganese	% max	2.00	2.00
Phosphorus	% max	0.045	0.045

Stainless Steel AISI 316 is the preferred metal for food processing equipment that comes in direct contact with the food providing an excellent corrosion resistance due to its alloying components of high nickel and molybdenum (Table 1). Important mechanical properties of AISI 316 are summarized in Table 2.

Table 2: Mechanical Properties of AISI-316 SS

Properties	Stainless steel grade	
A	Mechanical properties	
	Ultimate tensile strength (UTS)	Mpa 515 515
	Yield stress	Mpa 205 205
	Young Modulus of elasticity	Mpa 1.93x10^5 1.93x10^5
	Density	Kg/m^3 8006 8006
	Poisson ratio	- 0.27-0.30 0.27-0.3
	Hardness	HRb 92 95
B	Thermal properties	
	Coefficient thermal expansion	10^-5/°C 19.8 19.8
	Specific heat	j/kg K 500 500
	Thermal conductivity	w/mK 16.2 16.2

The design boundary conditions required for stress analysis by FEA are given in the Table 3. The size of the VIU, diameter and height, were arrived at based on the desired processing capacity as given in the following Table 3. The normal physical conditions required during syrup impregnation are also shown in the Table 2. A wall thickness of 4.0 mm was considered based on the design equation of ASME, 2011. The operating vacuum inside the cylinder was assumed to be at 5000 Pa fand for the analysis. The inside temperature was assumed to be at 80°C and the Table 2 describes all other parameters.

Table 3: Design Data and boundary conditions

Description	Unit	Value
Material of construction	SS	AISI-316 SS
Inner diameter of chamber	mm	400
Length of vacuum changer	mm	750
Parameter	Unit	Value
---	------	--------
Wall thickness	mm	4
Operating pressure (inside)	kPa	5
Operating pressure (outside)	kPa	101.325
Operating Temperature inside	°C	80
Operating Temperature outside	°C	25-30
Fixed support		VIU was permanently mounted on SS frame.

Fig. 2: Dimensional drawing of Vacuum impregnation unit
(all dimension are in mm)
2.1 3-D Model Generations

The 3-D model of the VIU was developed using Pro/ENGINEER software (Tickoo & Maini, 2009). The stress (FEA) analysis using ANSYS-14 (ANSYS, 2007) The 3-D modeling procedure, cycle and steps are explained in Fig. 2 and 3.

![Figure 3: Stress analysis cycle](image)

2.2 Thermal stress analysis cycle (FEA)

In order to optimize the wall thickness of VIU, the stress analysis was performed using design software (Pro ENGINEER and ANSYS-14) by following the procedures as detailed by Kraan et al., 2004; Gajjar et al., 2011; Chand et al., 2012; Abdhul 2013. The stress analysis cycle is shown in Fig 3.

2.3 3-D modeling for Stress analysis (FEA)

The 3-D modeling of the VIU was performed using Pro/ENGINEER software. The assembly 3-D model of equipment was saved in IGES (Initial Graphics Exchange Specification) format to import to ANSYS-14 workbench for stress analysis. The operating parameters, material properties and boundary conditions were fed to Ansys-14 workbench for stress analysis. The stress (FEA) analysis procedure and steps are explained in Table 4.
Table 4: Modeling and Finite Element Analysis using Pro-E and ANSYS-14

i. 3-D Model Generation using Pro-E

The 3-D modeling of the Vacuum impregnation unit was done in Pro/ENGINEER software. The assembly 3-D model of equipment was saved in IGES-(Initial Graphics Exchange Specification) format to import to Ansys-14 workbench for stress analysis.

Property	Value
Moc	AISI-316 SS
Diameter	400 mm
Length	750 mm
Wall thickness	4 mm

ii. Dimensional Drawing of Equipment

Dimensions of VIU in mm

iii. Defining FEA Model

Model was defined by feeding:

- a. Mechanical properties of AISI-316 Stainless steel
- b. Wall thickness 4 mm

Material Property	Value
stainless steel > Constants	
Density	8.0e-006 kg mm^-3
Thermal Conductivity	1.62e-002 W mm^-1 C^-1

stainless steel > Isotropic Elasticity
Temperature (C)
Young's Modulus (MPa)
Poisson's Ratio
Bulk Modulus (MPa)
Shear Modulus (MPa)

stainless steel > Tensile Yield Strength
Tensile Yield Strength (MPa)
iv. Defining Boundary conditions

Inside temperature 80°C
Outside temperature 30°C

Inside operating pressure 5kpa

Outside – Pressure 101kPa (NTP)

Outside pressure NTP

Fixed support - by Pedestal to skid of equipment

Model was mounted SS Skid by bolting
v. Mesh Generation
Meshing was done using tetrahedron mesh. In this tetrahedron meshing method the component was divided into small triangles which give number of nodes and elements of the component to be analyzed. The meshing was done by varying mesh size from 20,18,16,14, and 12mm. Due to change in density of the meshing it resulted in variation of number of nodes and element of meshed component.

Type: Hexahedron mesh
Element size -12 mm
No. of nodes - 81157
No. of Elements -30513

vi. Run Finite Element Analysis to determine

| a. Von Mises stress – Kpa |
| b. Deformation- mm |
| c. Factor of safety |

vii. Review Results
Compare with yield stress of Stainless steel (205MPa)

viii. Rerun stress analysis, if yield stress of material is less then Von-Mises steel
Changes the wall thickness and meshing

2.4. Validation of Shell thickness
To validate wall thickness determined by ANSYS-14, shell thickness of VIU was calculated by ASME design equation 1 (ASME 2011). ASME approved design software performed the design procedures and calculations. The shell thickness calculation was to determine the wall thickness of the cylinder under vacuum without holes, nozzles etc. This calculation does not take into account the extra stress around holes for nozzles and is therefore a basic strength calculation. Calculation codes are as per ASME (ASME 2010) norms.

Wall thickness is calculated by using

\[t = \frac{P+R}{2SE-0.6P} \]

where,

\(t \) is the cylinder wall thickness in corroded condition (m),
\(P \) is the design pressure (MPa),
\(R \) is the cylinder inside radius in corroded conditioning (m),
\(S \) is the maximum allowable stress at design temperature (MPa) and
\(E \) is the joint efficiency in fraction.

3.4.1 Procedure to run software programme for calculation of shell thickness (ASME 2011)
The calculation also requires the user to enter dimensions of model, pressure, operating temperature, yield stress value and density of stainless steel etc. using data (Table 1-3 and Fig 2).
Table 5: Data input for thickness calculation

Parameter	Value
Type of shell	Cylinder
Design pressure P	0.2 N/mm²
Design temp.	80 °C
Material description	AISI-316
Yield stress, design temp.	205 N/mm²
Specific gravity ρ	8006 kg/m³
Outside diameter D₀	408 mm
Length tangent to tangent L	750 mm
Nominal wall thickness t	4 mm
Corrosion allowance Ca	1 mm
Tolerance t₀l	1.03 mm
Joint efficiency E	0.25
Semi angle at apex cone α	0 degree
Design Code	ASME

III. RESULTS AND DISCUSSION

Results of the FEA analysis for the optimization of wall thickness of VIU are shown in Fig 4. The results of the stress analysis are presented in terms of Von Mises (equivalent) stress and, deformation and factor of safety below (Figs. 4-6).

3.1 Stress analysis of the Vacuum impregnation unit

The general view of the stress analysis is given in Fig. 4. It depicts a magnified picture of the highest and lowest peak stress regions. The red circle and two yellow color circles at the bottom show the regions where the highest (peak) compressive stresses are generated which are much less than yield stress of SS-316 (Fig 4 & 5). The peak stresses were seen only at bottom of the chamber (red & yellow color).
3.2 Deformations from the stress analysis
To complete the analysis, deformation generated from the stress analysis is presented in Fig. 5. The maximum total displacement was found to be 1.55 mm, noticed at the bottom of VIU.

3.3 Factor of Safety
It is evident from the result of stress analysis (Fig 6) the minimum factor of safety obtained was 1.51 which is indicated in yellow color at the bottom of chamber. The highest factor of safety value (15) is shown in blue color. The vessel had experienced maximum stress at its bottom only.
Further, to validate the FEA results, wall thickness of VIU was determined by using ASME approved design software program as described below.

3.4 Determination of shell wall thickness by using ASME approved design equation software.

Calculations were performed to support the design and structural analysis by FEA. To validate wall thickness of the shell, design data were fed to ASME design equation based software. The results of thickness analysis results shown Table 5. The wall thickness obtained from the ASME calculation was 2.82 mm.

Wall thickness calculation of Cylinder	according ASME
Allowable stress S = 205 = 205.00 N/mm²	
Corroded thickness t_c = t - Ca - tol = 4 - 1 - 1.03 = 1.97 mm	

Cylinder:

| Corroded inside radius R = D_c - t_c = 408 / 2 = 204.00 mm |
| Required wall thickness t_l = P * R / S * E - 0.6 * P = 0.2 * 202.03 = 0.79 mm |
| Nominal required thickness t_m = t_l + Ca + tol = 0.790 + 1 + 1.03 = 2.82 mm |
| Max. Allowable Working Press. MAWP = S * E * t_c = 205 * 0.25 * 1.97 = 0.50 N/mm² |
| Thickness analysis, t > t_m ? t = 4 mm is OK |

Weight: 30.48 kg
Enclosed volume: 0.094 m³
Satisfactory production of safety tests and it successfully passed out all of them. Fabrication was carried out adopting the prescribed ASME design procedures. The working drawings of VIU were developed and actual fabrication was carried out adopting the prescribed ASME design procedures. The results of this analysis and simulation confirmed the correctness of the procedures and also in confirmation with ASME design procedures. The working drawings of VIU were developed and actual fabrication was carried out adopting the prescribed sanitary standards. The unit was subjected to various safety tests and it successfully passed out all of them. Satisfactory production of Galabjamoon was carried out in the newly designed and developed equipment resulting in a product of excellent quality confirming validity of the successful design.

IV. SUMMARY AND CONCLUSION

- Designed and fabricated a VIU from 4 mm thick AISI-316 to operate at 80°C under 5kPa Vacuum based on FEA, simulation and ASME procedures.
- The VIU unit was safe from implosion as the generated stress (135MPa) was lesser than yield stress of AISI-316 SS (205MPa).
- The shell wall thickness of 4 mm assured a safe design considering Von Mises criterion.
- Maximum Von Mises stress was concentrated only at the bottom of the VIU.
- Von Mises stresses developed at the critical section of the VIU could be reduced by providing a reinforcement in the form of a stiffener made of SS flat at the bottom of the vessel by staggered welding. It is suggested a stiffener made of 25x6 mm flat would suffice to enhance the strength of the unit and explore an opportunity to use a 3 mm thick material instead of 4.0 mm thick which would greatly reduce material cost.

REFERENCES

1. Abdul Shaikh, and P.T.Nitnaware (2013). Finite Element Analysis & Thickness Optimization of Vacuum Chamber for Electron Microscopy Applications. International Journal of Modern Engineering Research (IJMER). 3 (3), 666-1671
2. ANSYS (2007) Release 11.0 documentation for ANSYS, Swanson Analysis System Inc., User’s Manual, 2007
3. ASME (2011). An International Code - 2010 ASME Boiler & Pressure Vessel Code Section VIII Rules for Construction of Pressure Vessels - Division 2.
4. Chand Gopi , A. A.V.N.L. Sharma, G. Vijay Kumar and A. Srividya (2012). Thermal analysis of shell and tube heat exchanger using mat lab and flooif software, international Journal of Research in Engineering and Technology, 1(3), 276-281.
5. Gajjar, V.Y., Jaiveshkumar , Gandhi D. (2011) Design analysis of an Automotive Vacuum suspended power brake using pro/MECHANICA , International journal of Tech and Engineering systems, 2(3): 301-3050
6. Hauviller, C. (1993). Design of vacuum chambers for experimental regions of colliding beam machines, IEEE 1993 Particle Accelerator Conference.
7. Kraan, M.J., J. Buskop, M. Doets and C. Snippe (2004). Structural analysis of the vacuum vessel for the lhcb vertex locator (velo) ,National Institute for Nuclear Physics and High Energy Physics,Kruislaan 409 1098 SJ Amsterdam The Netherlands NIKHEF Reference no.: MT-VELO 04-1 EDMS no: 432626; 1-24.
8. Maheshkumar G (2016) Design and development of microcontroller based sub-baric thermal processor for manufacture of fried and soaked dairy products . Ph D thesis submitted to NDRI Karnal, India
9. Tickoo sham,. maini Depak (2009). Pro/ENGINEER , Wildfire Instructor 4.0 for designers ISBN1-932709-19CADCIm Technologies USA
10. http://www.ansys.com/Products/Structures/ANSYS-Mechanical
11. www.sail.co.in