Viruses to fight other viruses: the influenza vaccine case

Bengoechea, J. A. (2020). Viruses to fight other viruses: the influenza vaccine case. *EMBO Molecular Medicine*, 12(5), [e12059]. https://doi.org/10.15252/emmm.202012059

Published in:
EMBO Molecular Medicine

Document Version:
Publisher's PDF, also known as Version of record

Queen's University Belfast - Research Portal:
Link to publication record in Queen's University Belfast Research Portal

Publisher rights
Copyright 2020 the authors. This is an open access article published under a Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium, provided the author and source are cited.

General rights
Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the Research Portal that you believe breaches copyright or violates any law, please contact openaccess@qub.ac.uk.

Download date:15. Jul. 2021
Viruses to fight other viruses: the influenza vaccine case

Jose A Bengoechea

Abstract

Undoubtedly, vaccination is one of the health interventions showing major impact on humankind. Vaccines remain one of the most effective and safest ways to tackle infections. The current coronavirus pandemic is not an exception, and we all hope that ongoing international efforts will succeed in developing a vaccine soon. In this scenario, the present work published in this edition of *EMBO Molecular Medicine* by Demminger and colleagues (Demminger *et al.*, 2020) is timeliness to exemplify the steps needed to develop effective vaccines.

One observation key for this work is the discovery of protective antibodies against the surface glycoprotein hemagglutinin (HA) acting via interference with viral replication or via Fc-receptor-mediated cellular cytotoxicity (DiLillo *et al.*, 2016; Wu & Wilson, 2017). Demminger and colleagues decided to exploit an adenovirus-associated virus (AAV) vector to express influenza antigens to elicit protective antibody responses. The selection of AAV as vector offers several advantages. AAV cannot replicate in humans, and data indicates they do not induce any pathophysiology. They are easy to produce under Good Manufacturing Practice standards and can be re-administered if needed. Of note, AAV has been already tested to express influenza antigens and showed to confer protection (Lin *et al.*, 2009; Sipo *et al.*, 2011; Xin *et al.*, 2001).

Demminger and colleagues developed AAV vectors expressing wild-type HA, the surface exposed neuraminidase (NA), or chimeric HA (cHA) containing head regions from influenza A virus subtypes, or HA headless constructs. Constructs were based on proteins encoded by the pandemic influenza virus A/California/7/2009 (H1N1) pdm (Cal/7/9). Control assays confirmed the robust expression of all antigens. Next, they assessed the immunogenicity in mice challenged intranasally testing side-by-side empty AAV vector (expressing GFP) and whole-inactivated virus (WIV) as controls. As expected, all AAV constructs expressing influenza antigens did elicit reactive antibodies that correlated with the total serum IgG titers. Interestingly, AAV vectors induced antibodies against a panel of different influenza viruses. Somewhat unexpectedly, WIV vaccination also elicited broadly reactive antibodies. Interestingly, neutralizing antibodies were found only in the sera of mice challenged with AAV containing HA, or cHA, and these antibodies were specific for the virus used for prime immunization. Of significant therapeutic relevance, authors demonstrated that AAV vector vaccination induced strong Fc-activating antibody response against Cal/7/9 but also against the mouse-adapted heterologous influenza virus PR8.

These positive results encouraged authors to test whether AAV vectors do protect mice from homologous (Cal/7/9) and heterologous (PR8) challenges. Although the mouse model has its limitations in terms of translational potential, it offers the opportunity to obtain first proof-of-concept information. As read-outs of infection, Demminger and co-workers used weight loss and survival of mice over a 14-day period. Mice vaccinated with the AAV construct were protected, and preliminary data suggest that three doses of the vaccine were better than two doses. Although these findings are sound, it is important to note that determination of viral titers in the tissues over time should be determined to solidify the read-outs based on animal behavior, clinical parameters, and/or survival. Some control experiments revealed a reduction in viral titers in vaccinated animals.

In a remarkable tour de force, authors went on to assess the protective efficacy of the AAV vectors in ferrets. This animal model reproduces very closely the course of human influenza. In these experiments, authors also introduce a group immunized with a commercial quadrivalent influenza vaccine of season 2017/18. Animals were vaccinated intranasally three times in 4-week interval whereas the control group immunized with the commercial vaccine...
were given two doses by the intramuscular route. It can be argued that the different experimental regime of the groups is not suitable for a comparison between the different vaccine formulations. However, the aim of this work was to demonstrate whether the AAV vectors do confer protection and not whether they are better than the commercial vaccine. In a 3-day infection protocol, ferrets vaccinated with the AAV vectors showed clear signs of recovery as assessed by the absence of nasal exudate, congestion, frequent sneezing, wheezing, and depression. Notably, only in those ferrets vaccinated with the AAV-HA construct and the commercial vaccine was there a reduction in the load of virus although no sterile immunity was induced. Virus clearance was associated with a significant reduction in pathophysiology and induction of neutralizing antibodies.

This elegant study follows a comprehensive design from in vitro characterization of the AAV vectors to animal pre-clinical studies probing two different research models, one of them of significant translational potential (Fig 1). The use of research models approximating human disease, ferrets in this case, should be a golden standard approach in any work focusing on vaccine development. The value of the mouse model cannot be disregarded but, certainly, the time is ripe to probe models with increasing translational value. This work also reinforces the utility of AAV vectors as platform to develop vaccines. AAV vectors are already approved by the EMA and FDA for its use in humans and have been tested in pre-clinical immunization studies against infectious diseases. Demminger and colleagues demonstrate that they should be considered as a valid platform for a broadly protective influenza vaccine. I anticipate that this comprehensive work will lead to significant advances in our quest to develop effective influenza vaccines and may result in similar research to tackle other infections.

I will encourage the vaccinology field to consider and set clear parameters that should be determined in any research like the one presented in this issue of *EMBO Molecular Medicine* (Demminger et al., 2020). From clear guidelines on power calculation for the in vivo work to the biological read-outs that should be analyzed. Among others, I will urge colleagues to consider essential a comprehensive immune profiling at the relevant mucosae coupled with the quantification of cytokines and chemokines. Technology such as mass cytometry could improve significantly the breadth of data obtained while, perhaps, uncovering new biology in terms of immune populations relevant for vaccine development.

References

Demminger DE, Walz L, Dietert K, Hoffmann H, Planz O, Gruber AD, von Messling V, Wolff T (2020) Adeno-associated virus-vectored influenza vaccine elicits neutralizing and Fcgamma receptor-activating antibodies. *EMBO Mol Med* 12: e10938

DiLillo DJ, Palese P, Wilson PC, Ravetch JV (2016) Broadly neutralizing anti-influenza antibodies require Fc receptor engagement for in vivo protection. *J Clin Invest* 126: 605–610

Lin J, Calcedo R, Vandenberge LH, Bell P, Somanathan S, Wilson JM (2009) A new genetic vaccine platform based on an adeno-associated virus isolated from a rhesus macaque. *J Virol* 83: 12738–12750

Sipo I, Knauf M, Fechner H, Poller W, Planz O, Kurth R, Norley S (2011) Vaccine protection against lethal homologous and heterologous challenge using recombinant AAV vectors expressing codon-optimized genes from pandemic swine origin influenza virus (SOIV). *Vaccine* 29: 1690–1699

Wu NC, Wilson IA (2017) A perspective on the structural and functional constraints for immune evasion: insights from influenza virus. *J Mol Biol* 429: 2694–2709

Xin QJ, Urabe M, Yang J, Nomiyama K, Mizukami H, Hamajima K, Nomiyama H, Saito T, Imai M, Monahan J et al (2001) A novel recombinant adeno-associated virus vaccine induces a long-term humoral immune response to human immunodeficiency virus. *Hum Gene Ther* 12: 1047–1061

License: This is an open access article under the terms of the Creative Commons Attribution 4.0 License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.