Stable determination of coefficients in the dynamical anisotropic Schrödinger equation from the Dirichlet-to-Neumann map

Mourad Bellassoued1 and David Dos Santos Ferreira2

1 Department of Mathematics, Faculty of Sciences of Bizerte, University of 7th November at Carthage, 7021 Jazouma Bizerte, Tunisia
2 Université Paris 13, CNRS, UMR 7539 LAGA, 99, avenue Jean-Baptiste Clément, F-93 430 Villetaneuse, France

E-mail: mourad.bellassoued@fsb.rnu.tn and ddsf@math.univ-paris13.fr

Received 30 May 2010, in final form 13 October 2010
Published 9 November 2010
Online at stacks.iop.org/IP/26/125010

Abstract
In this paper we are interested in establishing stability estimates in the inverse problem of determining on a compact Riemannian manifold the electric potential or the conformal factor in a Schrödinger equation with Dirichlet data from measured Neumann boundary observations. This information is enclosed in the dynamical Dirichlet-to-Neumann map associated with the Schrödinger equation. We prove in dimension $n \geq 2$ that the knowledge of the Dirichlet-to-Neumann map for the Schrödinger equation uniquely determines the electric potential and we establish Hölder-type stability estimates in determining the potential. We prove similar results for the determination of a conformal factor close to 1.

1. Introduction and main results

This paper is devoted to the study of the following inverse boundary value problem: given a Riemannian manifold with boundary determine the potential or the conformal factor of the metric in a dynamical Schrödinger equation from the observations made at the boundary. Let (\mathcal{M}, g) be a compact Riemannian manifold with boundary $\partial \mathcal{M}$. All manifolds will be assumed smooth (which means C^∞). We denote by Δ_g the Laplace–Beltrami operator associated with the metric g. In local coordinates, $g(x) = (g_{jk})$, Δ_g is given by

$$\Delta_g = \frac{1}{\sqrt{\det g}} \sum_{j,k=1}^{n} \frac{\partial}{\partial x_j} \left(\sqrt{\det g} g^{jk} \frac{\partial}{\partial x_k} \right).$$

(1.1)
Here \((g^{j k}) \) is the inverse of the metric \(g \) and \(\det g = \det(g_{j k}) \). Let us consider the following initial boundary value problem for the Schrödinger equation with bounded potential \(q \in L^\infty(M; \mathbb{C}) \):

\[
\begin{align*}
(i\partial_t + \Delta_g + q(x))u &= 0, \quad \text{in} \quad (0, T) \times M \\
u(0, \cdot) &= 0, \quad \text{in} \quad M \\
\partial_n u &= f, \quad \text{on} \quad (0, T) \times \partial M,
\end{align*}
\]

where \(f \in H^1((0, T) \times \partial M) \). Denote by \(\nu \) the outward normal vector field along the boundary \(\partial M \), so that \(\sum_{j=1}^n g_{jk} \nu^j \nu^k = 1 \) if \(\nu = \sum_{j=1}^n \nu^j \partial/\partial x_j \). Further, we may define the dynamical Dirichlet-to-Neumann map \(\Lambda_{g,q} \) associated with the Schrödinger equation by

\[
\Lambda_{g,q} f = \sum_{j,k=1}^n v_j g^{jk} \frac{\partial u}{\partial x_k} \bigg|_{(0,T)\times\partial M},
\]

where the \(v_j = \sum_{k=1}^n g_{jk} \nu^k \) are the coefficients of the outward conormal. Unique determination of the metric \(g = (g_{j k}) \) from the knowledge of the Dirichlet-to-Neumann map \(\Lambda_{g,q} \) is hopeless: as was noted in [33] in the case of the wave equation, the Dirichlet-to-Neumann map is invariant under a gauge transformation of the metric \(g \). Namely, if one pulls back the metric \(g \) by a diffeomorphism \(\Psi : \mathcal{M} \to \mathcal{M} \) which is the identity on the boundary \(\Psi|_{\partial M} = \text{Id} \) into a new metric \(\Psi^* g \), one has \(\Lambda_{\Psi^* g, q} = \Lambda_{g,q} \). The inverse problem has therefore to be formulated modulo the gauge invariance. However, we will restrict our inverse problem to a conformal class of metrics (for which there is no gauge invariance): Knowing \(\Lambda_{g,q} \), can one determine the conformal factor \(\varphi \) and the potential \(q \)?

In the case of the Schrödinger equation, Avdonin and Belishev gave an affirmative answer to this question for smooth metrics conformal to the Euclidean metric in [3]. Their approach is based on the boundary control (BC) method introduced by Belishev [5] and uses in an essential way a unique continuation property. Because of the use of this qualitative property, it seems unlikely that the BC method would provide accurate stability estimates. More precisely, when \(M \) is a bounded domain of \(\mathbb{R}^d \), and \(\varphi, q \in C^2(\overline{M}) \) are real functions, Avdonin and Belishev [3] show that for any fixed \(T > 0 \) the response operator (or the Neumann-to-Dirichlet map) of the Schrödinger equation \((i\partial_t + \Delta u - qu) = 0 \) uniquely determines the coefficients \(\varphi \) and \(q \). The problem is reduced to recovering \(\varphi, q \) from the boundary spectral data. The spectral data are extracted from the response operator by the use of a variational principle.

The importance of control theory for inverse problems was first understood by Belishev [5]. He used control theory to develop the first variant of the BC method. This method gives a constructive way to reconstruct an unknown Riemannian manifold via its response operator (dynamical Dirichlet-to-Neumann map) or spectral data (the spectrum of the Beltrami–Laplace operator and traces of normal derivatives of the eigenfunctions), whereas the coefficients on these manifolds are recovered automatically [5, 6]. From the perspective of uniqueness and reconstruction of a Riemannian manifold, the results are therefore extensive.

The uniqueness in the determination of a time-dependent electromagnetic potential, appearing in a Schrödinger equation in a domain with obstacles, from the Dirichlet-to-Neumann map was proved by Eskin [17]. The main ingredient in his proof is the construction of geometrical optics solutions. In [2], Avdonin et al used the so-called BC method to prove that the Dirichlet-to-Neumann map determines the time-independent potential in a one-dimensional Schrödinger equation.

The analogue problem for the wave equation has a long history. Unique determination of the metric goes back to Belishev and Kurylev [6] using the BC method and involves works of Katchlov et al [25], Kurylev and Lassas [27] and Anderson et al [11]. In fact, Katchlov et al
proved that the determination of the metric from the Dirichlet-to-Neumann map was equivalent for the wave and Schrödinger equations (as well as for other related inverse problems) in [26].

Identifiability of the potential was proved by Rakesh and Symes [30] in the Euclidian case \((g = e)\) using complex geometrical optics solutions concentrating near lines with any direction \(\omega \in S^{n-1}\) to prove that \(\Lambda_{e,q}\) determines \(q(x)\) uniquely in the wave equation. This result was generalized by Ramm and Sjöstrand [31] and Eskin [18, 19] to the case of \(q\) depending on space and time. Isakov [22] also considered the simultaneous determination of a potential and a damping coefficient.

As for the stability of the wave equation in the Euclidian case, we also refer to [35] and [23]; in those papers, the Dirichlet-to-Neumann map was considered on the whole boundary. Isakov and Sun [23] proved that the difference in some subdomain of two coefficients is estimated by an operator norm of the difference of the corresponding local Dirichlet-to-Neumann maps, and that the estimate is of Hölder type. Bellassoued et al [10] considered the inverse problem of recovering a time-independent potential in the hyperbolic equation from the partial Dirichlet-to-Neumann map. They proved a logarithm stability estimate. Moreover in [29] it is proved that if an unknown coefficient belongs to a given finite-dimensional vector space, then the uniqueness follows by a finite number of measurements on the whole boundary.

In the case of the anisotropic wave equation, the problem of establishing stability estimates in determining the metric was studied by Stefanov and Uhlmann in [33, 34] for metrics close to Euclidean and generic simple metrics. In a previous paper [11], the authors also proved stability estimates for the wave equation in determining a conformal factor close to 1 and time-independent potentials in simple geometries. We refer to this paper for a longer bibliography in the case of the wave equation.

The inverse problem for the (dynamical) Schrödinger equation seems to have been a little bit less studied. In the Euclidean case, there are extensive results by Bellassoued and Choulli [8] where a Lipschitz stability estimate was proven for time-independent magnetic potentials. The stability problem in determining a time-independent potential in a Schrödinger equation from a single boundary measurement was studied by Baudouin and Puel [4]. They established Lipschitz stability estimates by a method based essentially on an appropriate Carleman inequality. In the abovementioned papers, the main assumption is that the part of the boundary where the measurement is made must satisfy a geometrical condition (related to geometric optics condition insuring observality). Recently, Bellassoued and Choulli showed in [9] that this geometric condition can be relaxed provided that the potential is known near the boundary. The key idea was the following: the authors used an FBI transform to change the Schrödinger equation near the boundary into a heat equation for which one can use a useful Carleman inequality involving a boundary term and without any geometric condition.

The main goal of this paper is to study the stability of the inverse problem for the dynamical anisotropic Schrödinger equation. We follow the same strategy as in [11] inspired by the works of Dos Santos Ferreira et al [16], Stefanov and Uhlmann [33, 34] and Bellassoued and Choulli [8].

1.1. Weak solutions of the Schrödinger equation

First, we will consider the initial boundary value problem for the Schrödinger equation on a manifold with boundary (1.2). This initial boundary value problem corresponds to an elliptic
operator $-\Delta g$ given by (1.1). We will develop an invariant approach to prove existence and uniqueness of solutions and to study their regularity properties.

Before stating our first main result, we recall the following preliminaries. We refer to [24] for the differential calculus of tensor fields on a Riemannian manifold. Let (M, g) be an n-dimensional, $n \geq 2$, compact Riemannian manifold, with smooth boundary and smooth metric g. Fix a coordinate system $x = [x_1, \ldots, x_n]$ and let $\left[\frac{\partial}{\partial x_1}, \ldots, \frac{\partial}{\partial x_n} \right]$ be the corresponding tangent vector fields. For $x \in M$, the inner product and the norm on the tangent space $T_x M$ are given by

$$g(X, Y) = \langle X, Y \rangle_g = \sum_{j,k=1}^{n} g_{jk} \alpha^j \beta^k,$$

$$|X|_g = \langle X, X \rangle_g^{1/2}, \quad X = \sum_{i=1}^{n} \alpha^i \frac{\partial}{\partial x_i}, \quad Y = \sum_{i=1}^{n} \beta^i \frac{\partial}{\partial x_i}.$$

If f is a C^1 function on M, the gradient of f is the vector field $\nabla_g f$ such that

$$X(f) = \langle \nabla_g f, X \rangle_g$$

for all vector fields X on M. This reads in coordinates

$$\nabla_g f = \sum_{i,j=1}^{n} g^{ij} \frac{\partial f}{\partial x_j} \frac{\partial}{\partial x_i}. \quad (1.4)$$

The metric tensor g induces the Riemannian volume $dv^n = (\det g)^{1/2} \, dx_1 \wedge \cdots \wedge dx_n$. We denote by $L^2(M)$ the completion of $C^\infty(M)$ endowed with the usual inner product

$$\langle f_1, f_2 \rangle = \int_M f_1(x) f_2(x) \, dv^n, \quad f_1, f_2 \in C^\infty(M).$$

The Sobolev space $H^1(M)$ is the completion of $C^\infty(M)$ with respect to the norm $\| \cdot \|_{H^1(M)}$,

$$\| f \|_{H^1(M)}^2 = \| f \|_{L^2(M)}^2 + \| \nabla_g f \|_{L^2(M)}^2.$$

The normal derivative is

$$\partial_n u := \langle \nabla_g u, \nu \rangle_g = \sum_{j,k=1}^{n} g^{jk} \nu_j \frac{\partial u}{\partial x_k}, \quad (1.5)$$

where ν is the unit outward vector field to ∂M. Moreover, using covariant derivatives (see [20]), it is possible to define coordinate invariant norms in $H^k(M)$, $k \geq 0$.

Before stating our main results on the inverse problem, our interest will focus on the study of the initial boundary problem (1.2), when u is a weak solution in the class $C(0, T; H^1(M)) \cap C^1(0, T; H^{-1}(M))$. The following theorem gives conditions on f and g, which guarantee uniqueness and continuous dependence on the data of the solutions of the Schrödinger equation (1.2) with the non-homogeneous Dirichlet boundary condition.

Theorem 1. Let $T > 0$ be given. Suppose that $f \in H^1((0, T) \times \partial M)$ such that $f(0, \cdot) \equiv 0$ and $q \in W^{1,\infty}(M)$. Then the unique solution u of (1.2) satisfies

$$u \in C(0, T; H^1(M)) \cap C^1(0, T; H^{-1}(M)). \quad (1.6)$$

Furthermore we have $\partial_n u \in L^2((0, T) \times \partial M)$ and there is a constant $C = C(T, M) > 0$ such that

$$\| \partial_n u \|_{L^2((0, T) \times \partial M)} \leq C \| f \|_{H^1((0, T) \times \partial M) \times \partial M}. \quad (1.7)$$
The Dirichlet-to-Neumann map $\Lambda_{g,q}$ defined by \((1.3)\) is therefore continuous and we denote by $\|\Lambda_{g,q}\|$ its norm in $L(H^1((0,T)\times\partial M), L^2((0,T)\times\partial M))$.

Theorem 1 gives a rather comprehensive treatment of the regularity problem for \((1.2)\) with a stronger boundary condition f. Moreover, our treatment clearly shows that a regularity for $f \in H^1((0,T)\times\partial M)$ is sufficient to obtain the desired interior regularity of u on $(0,T) \times M$ while the full strength of the assumption $f \in H^1((0,T)\times\partial M)$ is used to obtain the desired boundary regularity for $\partial_t u$ and then the continuity of the Dirichlet-to-Neumann map $\Lambda_{g,q}$.

1.2. Stable determination

In this section we state the main stability results. Let us first introduce the admissible class of manifolds for which we can prove uniqueness and stability results in our inverse problem. For this we need the notion of simple manifolds \([34]\).

Let (M, g) be a Riemannian manifold with boundary ∂M; we denote by D the Levi-Civita connection on (M, g). For a point $x \in \partial M$, the second quadratic form of the boundary

$$\Pi(\theta, \theta) = (D_{\theta}v, \theta)_{g}, \quad \theta \in T_x(\partial M),$$

is defined on the space $T_x(\partial M)$. We say that the boundary is strictly convex if the form is positive-definite for all $x \in \partial M$ (see \([32]\)).

Definition 1. We say that the Riemannian manifold (M, g) (or that the metric g) is simple in M, if ∂M is strictly convex with respect to g, and for any $x \in M$, the exponential map $\exp_x : \exp_x^{-1}(M) \longrightarrow M$ is a diffeomorphism. The latter means that every two points $x, y \in M$ are joined by a unique geodesic smoothly depending on x and y.

Note that if (M, g) is simple, one can extend it to a simple manifold \overline{M} such that $\overline{M} \supset M$.

Let us now introduce the admissible set of potentials q and the admissible set of conformal factors c. Let $M_0 > 0$, $k \geq 1$ and $\varepsilon > 0$ be given; set

$$\mathcal{C}(M_0) = \{ q \in W^{1,\infty}(M; \mathbb{C}), \| q \|_{W^{1,\infty}(M; \mathbb{C})} \leq M_0 \},$$

and

$$\mathcal{C}(M_0, k, \varepsilon) = \{ c \in C^\infty(M), c > 0 \text{ in } \overline{M}, \| 1 - c \|_{C^1(M)} \leq \varepsilon, \| c \|_{C^2(M)} \leq M_0 \}. \tag{1.8}$$

The main results of this paper are as follows.

Theorem 2. Let (M, g) be a simple compact Riemannian manifold with boundary of dimension $n \geq 2$ and let $T > 0$. There exists a constant $C > 0$ such that for any $q_1, q_2 \in \mathcal{C}(M_0)$, $q_1 = q_2$ on ∂M, we have

$$\| q_1 - q_2 \|_{L^2(M)} \leq C\| q_1 \|_{L^2(M)} \tag{1.10}$$

where C depends on M, T, M_0 and n.

By theorem 2, we can readily derive the following uniqueness result.

Corollary 1. Assume that $T > 0$. Let $q_1, q_2 \in \mathcal{C}(M_0)$, $q_1 = q_2$ on ∂M. Then $\Lambda_{g,q_1} = \Lambda_{g,q_2}$ implies $q_1 = q_2$ everywhere in M.

Theorem 3. Let (M, g) be a simple compact Riemannian manifold with boundary of dimension $n \geq 2$ and let $T > 0$. There exist $k \geq 1$, $\varepsilon > 0$ and $C > 0$ such that for any $c \in \mathcal{C}(M_0, k, \varepsilon)$ with $c = 1$ near the boundary ∂M, the following estimate holds true:

$$\| 1 - c \|_{L^2(M)} \leq C\| \Lambda_{g,0} - \Lambda_{c,g,0} \|^{\frac{1}{2}}, \tag{1.11}$$

where C depends on M, M_0, n and ε.\)
By theorem 3, we can readily derive the following uniqueness result.

Corollary 2. Let \((M, g)\) be a simple compact Riemannian manifold with boundary of dimension \(n \geq 2\) and let \(T > 0\). There exist \(k > 1\), \(\varepsilon > 0\), such that for any \(c \in \mathfrak{c}(M_0, k, \varepsilon)\) with \(c = 1\) near the boundary \(\partial M\), we have that \(\Lambda_{c,g,0} = \Lambda_{g,0}\) implies \(c = 1\) everywhere in \(M\).

Our proof is inspired by techniques used by Stefanov and Uhlmann [34], and Dos Santos Ferreira et al [16] which prove uniqueness theorems for an inverse problem related to an elliptic equation. Their idea in turn goes back to the pioneering work of Calderón [13]. We also refer to Bukhgeim and Uhlmann [12], Cheng and Yamamoto [15], Hech-Wang [21] and Uhlmann [36] as a survey.

The outline of the paper is as follows. In section 2 we collect some of the formulas needed in the paper. In section 3 we study the Cauchy problem for the Schrödinger equation and we prove theorem 1. In section 4 we construct special geometrical optics solutions to Schrödinger equations. In sections 5 and 6, we establish stability estimates for related integrals over geodesics crossing \(M\) and prove our main results. The metric being fixed up to section 6, we will omit the subscript \(g\) indicating the dependence with respect to the metric in the first section since no confusion can occur.

2. Geodesical ray transform on a simple manifold

In this section we first collect some formulas needed in the rest of this paper and introduce the geodesical ray transform. Denote by \(\text{div} X\) the divergence of a vector field \(X \in H^1(TM)\) on \(M\), i.e. in local coordinates (see page 42 of [25]):

\[
\text{div} X = \frac{1}{\sqrt{\det g}} \sum_{i=1}^{n} \partial_i (\sqrt{\det g} \alpha^i),
X = \sum_{i=1}^{n} \alpha^i \frac{\partial}{\partial x_i}.
\tag{2.1}
\]

If \(X \in H^1(TM)\), the divergence formula reads

\[
\int_M \text{div} X \, dv^n = \int_{\partial M} \langle X, v \rangle \, d\sigma^{n-1}
\tag{2.2}
\]

and for \(f \in H^1(M)\) the Green’s formula reads

\[
\int_M \text{div} X f \, dv^n = -\int_M \langle X, \nabla f \rangle \, dv^n + \int_{\partial M} \langle X, v \rangle f \, d\sigma^{n-1}.
\tag{2.3}
\]

Then if \(f \in H^1(M)\) and \(w \in H^2(M)\), the following identity holds:

\[
\int_M \Delta w f \, dv^n = -\int_M \langle \nabla w, \nabla f \rangle \, dv^n + \int_{\partial M} \partial_v w f \, d\sigma^{n-1}.
\tag{2.4}
\]

For \(x \in M\) and \(\theta \in T_x M\) we denote by \(\gamma_{x,\theta}\) the unique geodesic starting at the point \(x\) in the direction \(\theta\). We consider

\[
S M = \{(x, \theta) \in TM; |\theta| = 1\}, \quad S^* M = \{(x, p) \in T^* M; |p| = 1\}
\]

the sphere bundle and co-sphere bundle of \(M\). The exponential map \(\exp_x : T_x M \rightarrow M\) is given by

\[
\exp_x(v) = \gamma_{x,\theta}(|v|), \quad \theta = \frac{v}{|v|}.
\tag{2.5}
\]

A compact Riemannian manifold \((M, g)\) with boundary is called a convex non-trapping manifold, if it satisfies two conditions:
(a) the boundary \(\partial M \) is strictly convex, i.e. the second fundamental form of the boundary is positive definite at every boundary point;
(b) for every point \(x \in M \) and every vector \(\theta \in T_xM, \theta \neq 0 \), the maximal geodesic \(\gamma_{x,\theta}(t) \) satisfying the initial conditions \(\gamma_{x,\theta}(0) = x \) and \(\gamma_{x,\theta}(0) = \theta \) is defined on a finite segment \([\tau_-(x,\theta), \tau_+(x,\theta)]\). We recall that a geodesic \(\gamma : [a, b] \rightarrow M \) is maximal if it cannot be extended to a segment \([a - \epsilon_1, b + \epsilon_2]\), where \(\epsilon_1 \geq 0 \) and \(\epsilon_1 + \epsilon_2 > 0 \).

The second condition is equivalent to all geodesics having finite length in \(M \).

An important subclass of convex non-trapping manifolds are simple manifolds. We say that a compact Riemannian manifold \((M, g)\) is simple if it satisfies the following properties:

(a) the boundary is strictly convex;
(b) there are no conjugate points on any geodesic.

A simple \(n \)-dimensional Riemannian manifold is diffeomorphic to a closed ball in \(\mathbb{R}^n \), and any pair of points in the manifold are joined by a unique geodesic.

Now, we introduce the submanifolds of inner and outer vectors of \(SM \):
\[
\partial_\pm SM = \{(x, \theta) \in SM, x \in \partial M, \pm\langle \theta, v(x) \rangle < 0\},
\]
where \(v \) is the unit outer normal to the boundary. Note that \(\partial_+ SM \) and \(\partial_- SM \) are compact manifolds with the same boundary \(S(\partial M) \), and \(\partial SM = \partial_+ SM \cup \partial_- SM \). For \((x, \theta) \in \partial SM \), we denote by \(\gamma_{x,\theta} : [0, \tau_+(x, \theta)] \rightarrow M \) the maximal geodesic satisfying the initial conditions \(\gamma_{x,\theta}(0) = x \) and \(\gamma_{x,\theta}(0) = \theta \). Let \(C^\infty(\partial SM) \) be the space of smooth functions on the manifold \(\partial SM \). The ray transform (also called geodesic X-ray transform) on a convex non-trapping manifold \(M \) is the linear operator
\[
\mathcal{I} : C^\infty(M) \rightarrow C^\infty(\partial SM)
\]
defined by the equality
\[
\mathcal{I} f(x, \theta) = \int_0^{\tau_+(x, \theta)} f(\gamma_{x,\theta}(t)) \, dt.
\]

The right-hand side of (2.8) is a smooth function on \(\partial SM \) because the integration limit \(\tau_+(x, \theta) \) is a smooth function on \(\partial SM \), see lemma 4.1.1 of [32]. The ray transform on a convex non-trapping manifold \(M \) can be extended as a bounded operator
\[
\mathcal{I} : H^k(M) \rightarrow H^k(\partial SM)
\]
for every integer \(k \geq 1 \), see theorem 4.2.1 of [32].

The Riemannian scalar product on \(T_xM \) induces the volume form on \(S_xM \), denoted by \(d\omega_x(\theta) \) and given by
\[
d\omega_x(\theta) = \sqrt{\det g} \sum_{k=1}^n (-1)^k \theta^k \wedge \cdots \wedge \theta^k \wedge \cdots \wedge \theta^n.
\]
As usual, the notation \(\wedge \) means that the corresponding factor has been dropped. We introduce the volume form \(dv^{2n-1} \) on the manifold \(SM \) by
\[
dv^{2n-1}(x, \theta) = d\omega_x(\theta) \wedge dv^n,
\]
where \(dv^n \) is the Riemannian volume form on \(M \). By Liouville’s theorem, the form \(dv^{2n-1} \) is preserved by the geodesic flow. The corresponding volume form on the boundary \(\partial SM = \{(x, \theta) \in SM, x \in \partial M\} \) is given by
\[
d\sigma^{2n-2} = d\omega_x(\theta) \wedge d\sigma^{n-1},
\]
where \(d\sigma^{n-1} \) is the volume form of \(\partial M \).
Let \(L^2_\mu(\partial, SM) \) be the space of square integrable functions with respect to the measure \(\mu(x, \theta) \, d\sigma^{2n-2} \) with \(\mu(x, \theta) = |\langle \theta, \nu(x) \rangle| \). This Hilbert space is endowed with the scalar product
\[
\langle u, v \rangle_{L^2_\mu(\partial, SM)} = \int_{\partial, SM} u(x, \theta) \overline{v(x, \theta)} \mu(x, \theta) \, d\sigma^{2n-2}.
\]
(2.10)
The ray transform \(I \) is a bounded operator from \(L^2(M) \) into \(L^2_\mu(\partial, SM) \). The adjoint \(I^* : L^2_\mu(\partial, SM) \rightarrow L^2(M) \) is given by
\[
I^* \psi(x) = \int_{S, M} \psi^*(x, \theta) \, d\omega_x(\theta),
\]
(2.11)
where \(\psi^* \) is the extension of the function \(\psi \) from \(\partial, SM \) to \(SM \) constant on every orbit of the geodesic flow, i.e.
\[
\psi^*(x, \theta) = \psi(\gamma_{x, \theta}(\tau (x, \theta)), \dot{\gamma}_{x, \theta}(\tau (x, \theta))).
\]
Let \((M, g)\) be a simple metric; we assume that \(g \) extends smoothly as a simple metric on \(M_1 \sqcup M \). Then there exist \(C_1 > 0, C_2 > 0 \) such that
\[
C_1 \| f \|_{L^2(M)} \leq \| I^* I(f) \|_{H^1(M_1)} \leq C_2 \| f \|_{L^2(M)},
\]
(2.12)
for any \(f \in L^2(M) \). If \(V \) is an open set of the simple Riemannian manifold \((M_1, g)\), the normal operator \(I^* I \) is an elliptic pseudodifferential operator of order \(-1\) on \(V \) whose principal symbol is a multiple of \(|\xi|\) (see [34]). Therefore there exists a constant \(C_k > 0 \) such that for all \(f \in H^k(V) \) compactly supported in \(V \)
\[
\| I^* I(f) \|_{H^k+1(M_1)} \leq C_k \| f \|_{H^k(V)},
\]
(2.13)

3. The Cauchy problem for the Schrödinger equation

In this section we will establish existence, uniqueness and continuous dependence on the data of solutions to the Schrödinger equation (1.2) with the non-homogenous Dirichlet boundary condition \(f \in H^1((0, T) \times \partial M) \). We will use the method of transposition, or adjoint isomorphism of equations, and we shall solve the case of non-homogenous Dirichlet boundary conditions under stronger assumptions on the data than those in [4].

Let \(v \in C^1(M) \) and \(N \) be a smooth real vector field. The following identity holds true: (see [37])
\[
(\nabla v, \nabla \langle N, \nabla \psi \rangle) = DN(\nabla v, \nabla \psi) + \frac{1}{2} \text{div}(|\nabla v|^2 N) - \frac{1}{2} |\nabla v|^2 \text{div} N,
\]
(3.1)
where \(D \) is the Levi-Civita connection and \(DN \) is the bilinear form on \(T_x M \times T_x M \) given by
\[
DN(X, Y) = \langle DX \psi, Y \rangle,
\]
\(X, Y \in T_x M \).

Here \(DX \psi \) is the covariant derivative of the vector field \(N \) with respect to \(X \).

Let us first review the classical well-posedness results for the Schrödinger equation with homogenous boundary conditions. After applying the transposition method, we establish theorem 1.
3.1. Homogenous boundary condition

Let us consider the following initial and homogenous boundary value problem for the Schrödinger equation

\[
(\partial_t + \Delta + q(x)) v(t, x) = F(t, x) \quad \text{in} \quad (0, T) \times \mathcal{M},
\]

\[
v(0, x) = 0 \quad \text{in} \quad \mathcal{M},
\]

\[
v(t, x) = 0 \quad \text{on} \quad (0, T) \times \partial \mathcal{M}.
\]

Firstly, it is well known that if \(F \in L^1(0, T; L^2(\mathcal{M})) \), then (3.2) admits a unique weak solution

\[
v \in C(0, T; L^2(\mathcal{M})).
\]

Multiplying the first equation of (3.2) by \(\overline{\tau} \) and using the Green’s formula and Gronwall’s lemma, we obtain the following estimate:

\[
\|v(t, \cdot)\|_{L^2(\mathcal{M})} \leq C \|F\|_{L^1(0, T; L^2(\mathcal{M}))}, \quad \forall t \in (0, T).
\]

Now assume that \(q \in W^{1,\infty}(\mathcal{M}; \mathbb{C}) \) and \(F \in L^1(0, T; H^1_0(\mathcal{M})) \). Using the classical result of existence and uniqueness of weak solutions in Cazenave and Haraux [14] (set for abstract evolution equations), we obtain that the system (3.2) has a unique solution \(v \) such that

\[
v \in C(0, T; H^1_0(\mathcal{M})).
\]

Multiplying the first equation of (3.2) by \(\Delta \overline{\tau} \) and using the Green’s formula and Gronwall’s lemma, we get

\[
\|v(t, \cdot)\|_{H^1_0(\mathcal{M})} \leq C \|F\|_{L^1(0, T; L^2(\mathcal{M}))}, \quad \forall t \in (0, T).
\]

Lemma 3.1. Let \(T > 0 \) and \(q \in L^\infty(\mathcal{M}; \mathbb{C}) \). Suppose that \(F \in W^{1,1}(0, T; L^2(\mathcal{M})) \) is such that \(F(0, \cdot) \equiv 0 \). Then the unique solution \(v \) of (3.2) satisfies

\[
v \in C^1(0, T; L^2(\mathcal{M})) \cap C(0, T; H^2(\mathcal{M}) \cap H^1_0(\mathcal{M})).
\]

Furthermore there is a constant \(C > 0 \) such that for any \(0 < \eta \leq 1 \), we have

\[
\|v(t, \cdot)\|_{H^1_0(\mathcal{M})} \leq C(\eta \|\partial_t F\|_{L^1(0, T; L^2(\mathcal{M}))} + \eta^{-1} \|F\|_{L^1(0, T; L^2(\mathcal{M}))}).
\]

Proof. If we consider the equation satisfied by \(\partial_t v \), (3.3) provides the following regularity:

\[
v \in C^1(0, T; L^2(\mathcal{M})).
\]

Furthermore, since \(F(0, \cdot) = 0 \), by (3.4), there is a constant \(C > 0 \) such that the following estimate holds true:

\[
\|\partial_t v(t, \cdot)\|_{L^2(\mathcal{M})} \leq C \int_0^T \|\partial_t F(s, \cdot)\|_{L^2(\mathcal{M})} \, ds, \quad \forall t \in (0, T).
\]

Then, by (3.2), we see that \(\Delta v = -i\partial_t v - q v + F \in C(0, T; L^2(\mathcal{M})) \) and therefore \(v \in C(0, T; H^2(\mathcal{M})) \). This completes the proof of (3.7).

Next, multiplying the first equation of (3.2) by \(\overline{\tau} \) and integrating by parts, we obtain

\[
\Re \left[\int_{\mathcal{M}} (i\partial_t v(t) \overline{\tau}(t) - |\nabla v(t)|^2 + q |v|^2) \, dv^\eta \right] = \Re \int_{\mathcal{M}} \left(\int_0^t \partial_t F(s, x) \, ds \right) \overline{\tau}(t, x) \, dv^\eta.
\]

(3.10)
Then there exists a constant $C > 0$ such that the following estimate holds true:

$$
\|\nabla v(t)\|_{L^2(M)}^2 \leq C \left(\|\partial_t v(t)\|_{L^2} \|v(t)\|_{L^2} + \int_0^T \int_M |v(t,x)\partial_t F(s,x)| \, dv \, ds \right).
$$

(3.11)

Using (3.9) and (3.4), we get

$$
\|\nabla v(t)\|_{L^2(M)}^2 \leq C \left(\|\partial_t F\|_{(0,T;L^2(M))} \|F\|_{L^2(0,T;L^2(M))} + \|F\|_{L^2(0,T;L^2(M))}^2 \right).
$$

(3.12)

Thus, we deduce (3.8), and this concludes the proof of Lemma 3.1.

\[\square \]

Lemma 3.2. Let $T > 0$, $q \in W^{1,\infty}(M; \mathbb{C})$ be given and let $\mathscr{K} = L^1(0, T; H^1_0(M))$ or $\mathscr{K} = H^1_0(0, T; L^2(M))$. Then the mapping $F \mapsto \partial_t v$ where v is the unique solution to (3.2) is linear and continuous from \mathscr{K} to $L^2((0, T) \times \partial M)$. Furthermore, there is a constant $C > 0$ such that

$$
\|\partial_t v\|_{L^2(0,T) \times \partial M} \leq C \|F\|_{\mathscr{K}}.
$$

(3.13)

Proof. Let N be a C^2 vector field on \overline{M} such that

$$
N(x) = v(x), \quad x \in \partial M; \quad |N(x)| \leq 1, \quad x \in M. \quad (3.14)
$$

Multiply both sides of the first equation in (3.2) by $\langle N, \nabla v \rangle$ and integrate over $(0, T) \times M$; this gives

$$
\int_0^T \int_M F(t,x) \langle N, \nabla v \rangle \, dv \, dt = \int_0^T \int_M i \partial_t v \langle N, \nabla v \rangle \, dv \, dt + \int_0^T \int_M \Delta v \langle N, \nabla v \rangle \, dv \, dt
$$

$$
+ \int_0^T \int_M q(x) \langle N, \nabla v \rangle \, dv \, dt = I_1 + I_2 + I_3. \quad (3.15)
$$

Consider the first term on the right-hand side of (3.15); integrating by parts with respect to t, we get

$$
I_1 = \left[\int_0^T \int_M v \langle N, \nabla v \rangle \, dv \, dt \right]_0^T - \int_0^T \int_M v \langle N, \nabla \partial_t v \rangle \, dv \, dt
$$

$$
= i \int_0^T \int_M v(T,x) \langle N, \nabla \nabla(T,x) \rangle \, dv \, dt - i \int_0^T \int_M \nabla(N \nabla \nabla(T,x)) \, dv \, dt - T_1. \quad (3.16)
$$

Then, by (2.3), we obtain

$$
2 \text{Re} I_1 = i \int_M v(T,x) \langle N, \nabla \nabla(T,x) \rangle \, dv + i \int_0^T \int_M \text{div} N \nabla \partial_t v \, dv \, dt
$$

$$
- i \left[\int_0^T \int_M \partial_t v \, dv \, dt \right] - i \int_0^T \int_M v \partial_t v \, dv \, dt
$$

$$
= i \int_M v(T,x) \langle N, \nabla \nabla(T,x) \rangle \, dv + \int_0^T \int_M (\nabla \nabla(Nv) \, dv \, dt
$$

$$
+ \int_0^T \int_M F \text{div} N \, dv \, dt - \int_0^T \int_M \nabla \text{div} |v|^2 \, dv \, dt
$$

$$
- \left[i \int_0^T \int_M v \partial_t v \, dv \, dt + \int_0^T \int_M \partial_t v \, dv \, dt \right].
$$

The last term vanishes; using (3.8) or (3.6), we conclude that

$$
|\text{Re} I_1| \leq C \|F\|_{\mathscr{K}}^2. \quad (3.17)
$$
On the other hand, by the Green’s theorem, we get

\[I_2 = - \int_0^T \int_{\partial M} (\nabla v, \nabla (N, \nabla v)) \, dv \, dt + \int_0^T \int_{\partial M} |\partial_v v|^2 \, d\sigma^{-1} \, dt. \]

Thus by (3.1), we deduce

\[I_2 = \int_0^T \int_{\partial M} |\partial_v v|^2 \, d\sigma^{-1} \, dt - \frac{1}{2} \int_0^T \int_{\partial M} |\nabla v|^2 \, d\sigma^{-1} \, dt \]

\[+ \int_0^T \int_{\partial M} D N(\nabla v, \nabla v) \, dv \, dt - \frac{1}{2} \int_0^T \int_{\partial M} |\nabla v|^2 \, div N \, dv \, dt. \]

Using the fact \(|\nabla v|^2 = |\partial_v v|^2 + |\partial_v v|^2, x \in \partial M, \) where \(\nabla\) is the tangential gradient on \(\partial M, \) we get

\[Re I_2 = \frac{1}{2} \int_0^T \int_{\partial M} |\partial_v v|^2 \, d\sigma^{-1} \, dt + \int_0^T \int_{\partial M} D N(\nabla v, \nabla v) \, dv \, dt \]

\[- \frac{1}{2} \int_0^T \int_{\partial M} |\nabla v|^2 \, div N \, dv \, dt. \] (3.18)

Finally by (3.6) and (3.8), we have

\[|Re I_3| \leq \| F \|^2_{\mathcal{H}}. \] (3.19)

Collecting (3.19), (3.18), (3.17) and (3.15), we obtain

\[\int_0^T \int_{\partial M} |\partial_v v|^2 \, d\sigma^{-1} \, dt \leq C \| F \|^2_{\mathcal{H}}. \] (3.20)

This completes the proof of (3.13).

\[\square \]

3.2. Non-homogenous boundary condition

We now turn to the non-homogenous Schrödinger problem (1.2).

Let \(\mathcal{H} = L^1(0, T; H^1_0(\mathcal{M})) \) or \(\mathcal{H} = H^1_0(0, T; L^2(\mathcal{M})). \) By \((\cdot, \cdot)_{\mathcal{H}} \cdots_{\mathcal{H}}, \) we denote the dual pairing between \(\mathcal{H} \) and \(\mathcal{H}.

Definition 2. Let \(T > 0, q \in W^{1,\infty}(\mathcal{M}; \mathbb{C}) \) and \(f \in L^2((0, T) \times \partial \mathcal{M}); \) we say that \(u \in \mathcal{H}' \) is a solution of (1.2) in the transposition sense if for any \(F \in \mathcal{H} \) we have

\[(u, F)_{\mathcal{H}'} \cdots_{\mathcal{H}} = \int_0^T \int_{\partial M} f(t, x) \partial_t v(t, x) \, d\sigma^{-1} \, dt, \] (3.21)

where \(v = v(t, x) \) is the solution of the homogenous boundary value problem

\[\begin{cases} (i\partial_t + \Delta + \overline{q}(x)) v(t, x) = F(t, x) & \text{in } (0, T) \times \mathcal{M}, \\ v(T, x) = 0 & \text{in } \mathcal{M}, \\ v(t, x) = 0 & \text{on } (0, T) \times \partial \mathcal{M}. \end{cases} \] (3.22)

One gets the following lemma.

Lemma 3.3. Let \(f \in L^2((0, T) \times \partial \mathcal{M}). \) There exists a unique solution \(u \in C(0, T; H^{-1}(\mathcal{M})) \cap H^{-1}(0, T; L^2(\mathcal{M})). \) (3.23)
defined by transposition of the problem
\[
\begin{cases}
(i \partial_t + \Delta + q(x))u(t, x) = 0 & \text{in } (0, T) \times \mathcal{M}, \\
u(0, x) = 0 & \text{in } \mathcal{M}, \\
u(t, x) = f(t, x) & \text{on } (0, T) \times \partial \mathcal{M}.
\end{cases}
\] (3.24)

Furthermore, there is a constant \(C > 0\) such that
\[
\|u\|_{C(0,T;H^{-1}(\mathcal{M}))} + \|u\|_{H^{-1}(0,T;L^2(\mathcal{M}))} \leq C \|f\|_{L^2((0,T) \times \partial \mathcal{M})}.
\] (3.25)

Proof. Let \(F \in \mathcal{H} = L^1(0, T; H^1_0(\mathcal{M}))\) or \(\mathcal{H} = H^1_0(0, T; L^2(\mathcal{M}))\). Let \(v \in C(0, T; H^1_0(\mathcal{M}))\) be the solution of the backward boundary value problem for the Schrödinger equation (3.22). By lemma 3.2 the mapping \(F \mapsto \partial_\nu v\) is linear and continuous from \(\mathcal{H}\) to \(L^2((0, T) \times \partial \mathcal{M})\) and there exists \(C > 0\) such that
\[
\|v\|_{C(0,T;H^1_0(\mathcal{M}))} \leq C \|F\|_{\mathcal{H}}
\] (3.26)
and
\[
\|\partial_\nu v\|_{L^2((0,T) \times \partial \mathcal{M})} \leq C \|F\|_{\mathcal{H}}.
\] (3.27)

We define a linear functional \(\ell\) on the linear space \(\mathcal{H}\) as follows:
\[
\ell(F) = \int_0^T \int_{\partial \mathcal{M}} f(t, x) \partial_\nu (t, x) \, d\sigma \, dt,
\]
where \(v\) solves (3.22). By (3.27), we obtain
\[
|\ell(F)| \leq C \|f\|_{L^2((0,T) \times \partial \mathcal{M})} \|F\|_{\mathcal{H}}.
\]

It is known that any linear bounded functional on the space \(\mathcal{H}\) can be written as
\[
\ell(F) = (u, F)_{\mathcal{H}', \mathcal{H}},
\]
where \(u\) is some element from the space \(\mathcal{H}'\). Thus the system (3.24) admits a solution \(u \in \mathcal{H}'\) in the transposition sense, which satisfies
\[
\|u\|_{\mathcal{H}'} \leq C \|f\|_{L^2((0,T) \times \partial \mathcal{M})}.
\]
This completes the proof of the lemma. \(\square\)

In what follows, we will need the following estimate for the non-homogenous elliptic boundary value problem.

Let \(\psi \in H^{-1}(\mathcal{M})\) and \(\phi \in H^1(\partial \mathcal{M})\). Let \(w \in H^1(\mathcal{M})\) be the unique solution of the following boundary value problem:
\[
\begin{cases}
\Delta w = \psi & \text{in } \mathcal{M}, \\
w = \phi & \text{on } \partial \mathcal{M};
\end{cases}
\] (3.28)
then, by the elliptic regularity (see [28]), the following estimate holds true:
\[
\|w\|_{H^1(\mathcal{M})} \leq C (\|\psi\|_{H^{-1}(\mathcal{M})} + \|\phi\|_{H^1(\partial \mathcal{M})}).
\] (3.29)
3.3. Proof of theorem 1

We proceed to prove theorem 1. Let \(f \in H^1((0, T) \times \partial M) \) such that \(f(0, \cdot) = 0 \) and \(u \) solve (1.2). Put \(u' = \partial_t u \); then

\[
\begin{cases}
(i\partial_t + \Delta + q(x))u'(t, x) = 0 & \text{in } (0, T) \times M, \\
u'(0, x) = 0 & \text{in } M, \\
u'(t, x) = f'(t, x) & \text{on } (0, T) \times \partial M.
\end{cases}
\tag{3.30}
\]

Since \(f' \in L^2((0, T) \times \partial M) \), by lemma 3.3, we get

\[
u' \in C(0, T; H^{-1}(M)) \cap H^{-1}(0, T; L^2(M)).
\tag{3.31}
\]

Furthermore there is a constant \(C > 0 \) such that

\[
\|u'\|_{C(0,T;H^{-1}(M))} + \|\Delta u\|_{C(0,T;H^{-1}(M))} \leq C \|f\|_{H^1((0,T)\times\partial M)}.
\tag{3.32}
\]

Thus (3.31) implies the following regularity for \(u' \):

\[
u \in C^1(0, T; H^{-1}(M)) \cap C(0, T; L^2(M));
\Delta u \in C(0, T; H^{-1}(M)) \cap H^{-1}(0, T; L^2(M)).
\]

Since \(f(t, \cdot) \in H^1(\partial M) \), by the elliptic regularity, we get

\[
u \in C(0, T; H^1(M)) \cap C^1(0, T; H^{-1}(M)).
\]

Moreover there exists \(C > 0 \) such that the following estimates hold true:

\[
\|u\|_{C^1(0,T;H^{-1}(M))} + \|\Delta u\|_{C(0,T;H^{-1}(M))} \leq C \|f\|_{H^1((0,T)\times\partial M)}.
\tag{3.33}
\]

Using (3.29), we find

\[
\|u\|_{C^1(0,T;H^{-1}(M))} + \|u\|_{C(0,T;H^{-1}(M))} \leq C \|f\|_{H^1((0,T)\times\partial M)}.
\tag{3.34}
\]

The proof of (1.7) is as in lemma 3.2. If one multiplies (1.2) by \(\langle N, \nabla \bar{u} \rangle \), the arguments leading to (3.15) give now

\[
0 = \int_0^T \int_M i\partial_t u(N, \nabla \bar{u}) \, dv^N \, dt + \int_0^T \int_M \Delta u(N, \nabla \bar{u}) \, dv^N \, dt
+ \int_0^T \int_M q(x)u(N, \nabla \bar{u}) \, dv^N \, dt = I_1' + I_2' + I_3',
\tag{3.35}
\]

with

\[
|\text{Re } I_1'| \leq C_{\varepsilon} \Vert f \Vert_{H^1((0,T)\times\partial M)}^2 + \kappa \Vert \partial_t u \Vert_{L^1((0,T)\times\partial M)}^2,
\tag{3.36}
\]

where we have used (3.34) instead of (3.6)–(3.8). Furthermore, we derive from the Green’s formula

\[
\text{Re } I_2' = \frac{1}{2} \int_0^T \int_{\partial M} |\partial_t u|^2 \, d\sigma^{n-1} \, dt + \int_0^T \int_M DN(\nabla u, \nabla \bar{u}) \, dv^N \, dt
- \frac{1}{2} \int_0^T \int_{\partial M} |\nabla u|^2 \, dv^N \, dt = \frac{1}{2} \int_0^T \int_M |\nabla f|^2 \, d\sigma^{n-1} \, dt.
\tag{3.37}
\]

This together with

\[
|\text{Re } I_3'| \leq \|f\|_{H^1((0,T)\times\partial M)}^2
\tag{3.38}
\]

and (3.36)–(3.38) imply

\[
\|\partial_t u\|_{L^1((0,T)\times\partial M)} \leq C \|f\|_{H^1((0,T)\times\partial M)},
\tag{3.39}
\]

where we have used (3.34) again. The proof of theorem 1 is now complete.
4. Geometrical optics solutions of the Schrödinger equation

We now proceed to the construction of geometrical optics solutions to the Schrödinger equation. We extend the manifold (\mathcal{M}, g) into a simple manifold $\mathcal{M}_1 \supset \mathcal{M}$. The potentials q_1, q_2 may also be extended to \mathcal{M}_1 and their $H^1(\mathcal{M}_1)$ norms may be bounded by M_0. Since q_1 and q_2 coincide on the boundary, their extension outside \mathcal{M} can be taken the same so that $q_1 = q_2$ in $\mathcal{M}_1 \setminus \mathcal{M}$.

Our construction here is a modification of a similar result in [11], which is dealt with the situation of the wave equation.

We suppose, for a moment, that we are able to find a function $\psi \in C^2(\mathcal{M})$ which satisfies the eikonal equation

$$|\nabla \psi|^2 = \sum_{i,j=1}^{n} g^{ij} \frac{\partial \psi}{\partial x_i} \frac{\partial \psi}{\partial x_j} = 1, \quad \forall \, x \in \mathcal{M} \quad (4.1)$$

and assume that there exists a function $a \in H^1(\mathbb{R}, H^2(\mathcal{M}))$ which solves the transport equation

$$\frac{\partial a}{\partial t} + \sum_{j,k=1}^{n} g^{jk} \frac{\partial \psi}{\partial x_j} \frac{\partial a}{\partial x_k} + \frac{1}{2}(\Delta \psi) a = 0, \quad \forall \, t \in \mathbb{R}, \, x \in \mathcal{M} \quad (4.2)$$

which satisfies for some $T_0 > 0$:

$$a(t, x)|_{t \leq 0} = a(t, x)|_{t \geq T_0} = 0, \quad \forall \, x \in \mathcal{M}. \quad (4.3)$$

We also introduce the norm $\| \cdot \|_*$ given by

$$\|a\|_* = \|a\|_{H^1(0, T_0; H^2(\mathcal{M}))}. \quad (4.4)$$

Lemma 4.1. Let $q \in L^\infty(\mathcal{M})$. The Schrödinger equation

$$(i \partial_t + \Delta + q(x)) u = 0, \quad \text{in} \quad (0, T) \times \mathcal{M},$$

$$u(0, x) = 0,$$

has a solution of the form

$$u(t, x) = a(2\lambda t, x) e^{i \Omega(x) - \lambda t} + v_\lambda(t, x), \quad (4.5)$$

such that

$$u \in C^{1}(0, T; L^2(\mathcal{M})) \cap C(0, T; H^2(\mathcal{M})) \quad (4.6)$$

where $v_\lambda(t, x)$ satisfies

$$v_\lambda(t, x) = 0, \quad \forall \, (t, x) \in (0, T) \times \partial \mathcal{M},$$

$$v_\lambda(0, x) = 0, \quad \forall \, x \in \mathcal{M}. \quad (4.7)$$

Furthermore, there exists $C > 0$ such that, for all $\lambda \geq T_0/2T$ the following estimates hold true:

$$\|v_\lambda(t, \cdot)\|_{H^k(\mathcal{M})} \leq C \lambda^{k-1} \|a\|_* \quad (k = 0, 1). \quad (4.8)$$

The constant C depends only on T and \mathcal{M} (that is C does not depend on a and λ). The result remains true if the initial condition $u(0, x) = 0$ is replaced by the final condition $u(T, x) = 0$ provided $\lambda \geq T_0/2T$; in this case v_λ is such that $v_\lambda(T, x) = 0$.

Proof. Let us consider

$$k(t, x) = -(i \partial_t + \Delta + q(a(2\lambda t, x) e^{i \Omega(x) - \lambda t})). \quad (4.9)$$
Let v solve the following homogenous boundary value problem:

$$\begin{cases}
(i\partial_t + \Delta + q)v(t, x) = k(t, x) & \text{in } (0, T) \times \mathcal{M}, \\
v(0, x) = 0, & \text{in } \mathcal{M}, \\
v(t, x) = 0 & \text{on } (0, T) \times \partial\mathcal{M}.
\end{cases}\quad(4.9)$$

To prove our lemma it would be enough to show that v satisfies the estimates (4.7). The case where the condition $u(T, x) = 0$ is imposed rather than the initial condition may be handled in a similar fashion by imposing the corresponding condition $v(T, x) = 0$ on v since $a(2\lambda T, \cdot) = 0$ if $\lambda > T_0/2T$. By a simple computation, we have

$$-k(t, x) = e^{i\lambda(\psi(x) - \lambda t)}(\Delta + q(x)) (a(2\lambda t, x))$$

$$+ 2i\lambda e^{i\lambda(\psi(x) - \lambda t)} \left(\partial_t a + \sum_{j,k=1}^n g^{ik} \frac{\partial \psi}{\partial x_j} \frac{\partial a}{\partial x_k} + \frac{a}{2\lambda} \Delta \psi \right) (2\lambda t, x)$$

$$+ \lambda^2 a(2\lambda t, x) e^{i\lambda(\psi(x) - \lambda t)} \left(1 - \sum_{j,k=1}^n g^{ik} \frac{\partial \psi}{\partial x_j} \frac{\partial \psi}{\partial x_k} \right).\quad(4.10)$$

Taking into account (4.1) and (4.2), the right-hand side of (4.10) becomes

$$k(t, x) = -e^{i\lambda(\psi(x) - \lambda t)}(\Delta + q) (a(2\lambda t, x))$$

$$\equiv -e^{i\lambda(\psi(x) - \lambda t)}k_0(2\lambda t, x).\quad(4.11)$$

Since $k_0 \in H^1_0(0, T; L^2(\mathcal{M}))$ for $\lambda > T_0/2T$, by lemma 3.1, we find

$$v_\lambda \in C^1(0, T; L^2(\mathcal{M})) \cap C(0, T; H^2(\mathcal{M}) \cap H^1_0(\mathcal{M})).\quad(4.12)$$

Furthermore, there is a constant $C > 0$, such that

$$\|v_\lambda(t, \cdot)\|_{L^2(\mathcal{M})} \leq C \int_0^T \|k_0(2\lambda s, \cdot)\|_{L^2(\mathcal{M})} \, ds$$

$$\leq \frac{C}{\lambda} \int_\mathbb{R} \|k_0(s, \cdot)\|_{L^2(\mathcal{M})} \, ds$$

$$\leq \frac{C}{\lambda} \|a\|_{\ast}.\quad(4.13)$$

Moreover, we have

$$\|\nabla v_\lambda(t, \cdot)\|_{L^2(\mathcal{M})} \leq C \eta \int_0^T (\lambda^2 \|k_0(2\lambda s, \cdot)\|_{L^2(\mathcal{M})} + \lambda \|\partial_t k_0(2\lambda s, \cdot)\|_{L^2(\mathcal{M})}) \, ds$$

$$+ \eta^{-1} \int_0^T \|k_0(2\lambda s, \cdot)\|_{L^2(\mathcal{M})} \, ds.\quad(4.14)$$

Finally, choosing $\eta = \lambda^{-1}$, we obtain

$$\|\nabla v_\lambda(t, \cdot)\|_{L^2(\mathcal{M})} \leq C \left(\int_\mathbb{R} \|k_0(s, \cdot)\|_{L^2(\mathcal{M})} \, ds + \int_\mathbb{R} \|\partial_t k_0(s, \cdot)\|_{L^2(\mathcal{M})} \, ds \right)$$

$$\leq C \|a\|_{\ast}.\quad(4.15)$$

Combining (4.15) and (4.13), we immediately deduce estimate (4.7). \square

We will now construct the phase function ψ solution to the eikonal equation (4.1) and the amplitude a solution to the transport equation (4.2).
Let \(y \in \partial M_1 \). Denote points in \(M_1 \) by \((r, \theta) \) where \((r, \theta) \) are polar normal coordinates in \(M_1 \) with center \(y \). That is \(x = \exp_y(r\theta) \) where \(r > 0 \) and
\[
\theta \in S_y M_1 = \{ \xi \in T_y M_1, |\xi| = 1 \}.
\]
In these coordinates (which depend on the choice of \(y \)) the metric takes the form
\[
\tilde{g}(r, \theta) = dr^2 + g_0(r, \theta),
\]
where \(g_0(r, \theta) \) is a smooth positive definite metric. For any function \(u \) compactly supported in \(M \), we set for \(r > 0 \) and \(\theta \in S_y M_1 \)
\[
\tilde{u}(r, \theta) = u(\exp_y(r\theta)),
\]
where we have extended \(u \) by 0 outside \(M \). An explicit solution to the eikonal equation (4.1) is the geodesic distance function to \(y \in \partial M_1 \):
\[
\psi(x) = d_g(x, y).
\]
(4.16)
By the simplicity assumption, since \(y \in M_1 \), we have \(\psi \in C^\infty(M) \) and
\[
\tilde{\psi}(r, \theta) = r = d_g(x, y).
\]
(4.17)
The next step is to solve the transport equation (4.2). Recall that if \(f(r) \) is any function of the geodesic distance \(r \), then
\[
\Delta_{\tilde{g}} f(r) = f''(r) + \alpha^{-1} \frac{\partial \alpha}{\partial r} f'(r).
\]
(4.18)
Here \(\alpha = \alpha(r, \theta) \) denotes the square of the volume element in geodesic polar coordinates. The transport equation (4.2) becomes
\[
\frac{\partial \tilde{a}}{\partial t} + \frac{\partial \tilde{\psi}}{\partial r} \frac{\partial \tilde{a}}{\partial r} + \frac{1}{4} \tilde{a} \alpha^{-1} \frac{\partial \alpha}{\partial r} \tilde{\psi} = 0.
\]
(4.19)
Thus \(\tilde{a} \) satisfies
\[
\frac{\partial \tilde{a}}{\partial t} + \frac{\partial \tilde{a}}{\partial r} + \frac{1}{4} \tilde{a} \alpha^{-1} \frac{\partial \alpha}{\partial r} = 0.
\]
(4.20)
Let \(\phi \in C^\infty_0(\mathbb{R}) \) and \(b \in H^2(\partial_s S M) \). Let us write \(\tilde{a} \) in the form
\[
\tilde{a}(t, r, \theta) = \alpha^{-1/4} \phi(t - r) b(y, \theta).
\]
(4.21)
Direct computations yield
\[
\frac{\partial \tilde{a}}{\partial t}(t, r, \theta) = \alpha^{-1/4} \phi'(t - r) b(y, \theta)
\]
(4.22)
and
\[
\frac{\partial \tilde{a}}{\partial r}(t, r, \theta) = -\frac{1}{4} \alpha^{-5/4} \frac{\partial \alpha}{\partial r} \phi(t - r) b(y, \theta) - \alpha^{-1/4} \phi'(t - r) b(y, \theta).
\]
(4.23)
Finally, (4.23) and (4.22) yield
\[
\frac{\partial \tilde{a}}{\partial t}(t, r, \theta) + \frac{\partial \tilde{a}}{\partial r}(t, r, \theta) = -\frac{1}{4} \alpha^{-1} \tilde{a}(t, r, \theta) \frac{\partial \alpha}{\partial r}.
\]
(4.24)
Now if we assume that \(\text{supp} \phi \subset (0, 1) \), then for any \(x = \exp_y(r\theta) \in M \), it is easy to see that
\(\tilde{a}(t, r, \theta) = 0 \) if \(t \leq 0 \) and \(t \geq T_0 \) for some \(T_0 > 1 + \text{diam} M_1 \).

5. Stable determination of the electric potential

In this section, we complete the proof of theorem 2. We are going to use the geometrical optics solutions constructed in the previous section; this will provide information on the geodesic ray transform of the difference of electric potentials.
5.1. Preliminary estimates

The main purpose of this section is to present a preliminary estimate, which relates the difference of the potentials to the Dirichlet-to-Neumann map. As before, we let \(q_1, q_2 \in \mathcal{D}(M_0) \) such that \(q_1 = q_2 \) on the boundary \(\partial M \). We set \(q(x) = (q_1 - q_2)(x) \).

Recall that we have extended \(q_1, q_2 \) as \(H^1(M_1) \) in such a way that \(q = 0 \) on \(M_1 \setminus M \).

Lemma 5.1. Let \(T > 0 \). There exists \(C > 0 \) such that for any \(a_1, a_2 \in H^1(\mathbb{R}, H^2(M)) \) satisfying the transport equation (4.2) with (4.3), the following estimate holds true:

\[
\left| \int_0^T \int_M q(x)q_1(2\lambda t, x)\Delta_2(2\lambda t, x) \, dv \, dt \right| \leq C(\lambda^{-2} + \|\Lambda_{q_1} - \Lambda_{q_2}\|)\|a_1\|\|a_2\|.
\]

(5.1) for all \(\lambda \geq T_0/2T \).

Proof. First, if \(a_2 \) satisfies (4.2), (4.3) and \(\lambda \geq T_0/2T \), lemma 4.1 guarantees the existence of a geometrical optics solution \(u_2 \):

\[
u_2(t, x) := a_2(2\lambda t, x) e^{i\lambda(x-\lambda t)} + v_{2, \lambda}(t, x),
\]

(5.2)
to the Schrödinger equation corresponding to the potential \(q_2 \):

\[i\partial_t + \Delta + q_2(x)u(0, T) = 0 \quad \text{in} \quad (0, T) \times M, \quad u(0, \cdot) = 0 \quad \text{in} \quad M,\]

where \(v_{2, \lambda} \) satisfies

\[
\begin{align*}
\lambda \|v_{2, \lambda}(t, \cdot)\|_{L^2(M)} + \|\nabla v_{2, \lambda}(t, \cdot)\|_{L^2(M)} & \leq C\|a_2\|. \\
v_{2, \lambda}(t, \cdot) & = 0, \quad \forall (t, \cdot) \in (0, T) \times \partial M.
\end{align*}
\]

(5.3)

Moreover

\(u_2 \in C^1(0, T; L^2(M)) \cap C(0, T; H^2(M)) \).

Let us denote by \(f(t, x) \) the function

\(f_\lambda(t, x) = a_2(2\lambda t, x) e^{i\lambda(x-\lambda t)} \), \quad t \in (0, T), \quad x \in \partial M. \)

Let us consider \(v \) the solution of the following non-homogenous boundary value problem:

\[
\begin{align*}
(i\partial_t + \Delta + q_1) & v = 0, \quad (t, x) \in (0, T) \times M, \\
v & = 0, \quad x \in M, \\
v(t, x) & = u_2(t, x) := f_\lambda(t, x), \quad (t, x) \in (0, T) \times \partial M.
\end{align*}
\]

(5.4)

Denote \(w = v - u_2 \). Therefore, \(w \) solves the following homogenous boundary value problem for the Schrödinger equation:

\[
\begin{align*}
(i\partial_t + \Delta + q_1(x)) & w(t, x) = q(x)u_2(t, x) \quad (t, x) \in (0, T) \times M, \\
w & = 0, \quad x \in M, \\
w(t, x) & = 0, \quad (t, x) \in (0, T) \times \partial M.
\end{align*}
\]

Using the fact that \(q(x)u_2 \in W^{1, 1}(0, T; L^2(M)) \) with \(u_2(0, \cdot) \equiv 0 \), by lemma 3.1, we deduce that

\(w \in C^1(0, T; L^2(M)) \cap C(0, T; H^2(M) \cap H^1_0(M)). \)

Therefore, we have constructed a special solution

\(u_1 \in C^1(0, T; L^2(M)) \cap C(0, T; H^2(M)) \).
to the backward Schrödinger equation
\[
(i \partial_t + \Delta + q_1(x)) u_1(t, x) = 0, \quad (t, x) \in (0, T) \times \mathcal{M},
\]
\[
u_1(T, x) = 0, \quad x \in \mathcal{M},
\]
having the special form
\[
u_1(t, x) = a_1(2\lambda t, x) e^{i(\phi(x) - \lambda t)} + v_{1, \lambda}(t, x),
\]
which corresponds to the potential \(q_1 \), where \(v_{1, \lambda} \) satisfies for \(\lambda > T_0/2T \)
\[
\lambda \|v_{1, \lambda}(t, \cdot)\|_{L^2(\mathcal{M})} + \|\nabla v_{1, \lambda}(t, \cdot)\|_{L^2(\mathcal{M})} \leq C \|a_1\|_*.
\]
Integrating by parts and using the Green’s formula (2.4), we find
\[
\int_0^T \int_\mathcal{M} (i \partial_t + \Delta + q_1) w u_1(\lambda t) \, dv^\alpha \, dt = \int_0^T \int_\mathcal{M} a_2 \overline{u}_1(\lambda t) \, dv^\alpha \, dt
\]
\[
= - \int_0^T \int_{\partial\mathcal{M}} \partial_n w \overline{u}_1(\lambda t) \, d\sigma^{n-1} \, dt.
\]
Taking (5.7), (5.4) into account, we deduce
\[
\int_0^T \int_\mathcal{M} q(x) u_2(t, x) \overline{u}_1(t, x) \, dv^\alpha \, dt = - \int_0^T \int_{\partial\mathcal{M}} (\Lambda_{\delta, q_1} - \Lambda_{\delta, q_2}) f_\delta(t, x) \overline{g}_\delta(t, x) \, d\sigma^{n-1} \, dt,
\]
where \(g_\delta \) is given by
\[
g_\delta(t, x) = a_1(2\lambda t, x) e^{i(\phi(x) - \lambda t)}, \quad (t, x) \in (0, T) \times \partial\mathcal{M}.
\]
It follows from (5.8), (5.5) and (5.2) that
\[
\int_0^T \int_\mathcal{M} q(x) (a_2 \overline{u}_1)(2\lambda t, x) \, dv^\alpha \, dt = - \int_0^T \int_{\partial\mathcal{M}} \overline{g}_\delta (\Lambda_{\delta, q_1} - \Lambda_{\delta, q_2}) f_\delta \, d\sigma^{n-1} \, dt
\]
\[
- \int_0^T \int_\mathcal{M} q e^{i(\phi - \lambda t)} a_2(2\lambda t, x) \overline{u}_1 \, dv^\alpha \, dt
\]
\[
- \int_0^T \int_\mathcal{M} q v_{2, \lambda} e^{-i(\phi - \lambda t)} \overline{u}_1(2\lambda t, x) \, dv^\alpha \, dt
\]
\[
- \int_0^T \int_\mathcal{M} q v_{2, \lambda} \overline{u}_1 \, dv^\alpha \, dt.
\]
In view of (5.6) and (5.3), we have
\[
\left| \int_0^T \int_\mathcal{M} q e^{i(\phi - \lambda t)} a_2(2\lambda t, x) \overline{u}_1 \, dv^\alpha \, dt \right| \leq C \int_0^T \|a_2(2\lambda t, \cdot)\|_{L^2(\mathcal{M})} \|v_{1, \lambda}(t, \cdot)\|_{L^2(\mathcal{M})} \, dt
\]
\[
\leq C \lambda^{-2} \|a_1\|_* \|a_2\|_*.
\]
Similarly, we deduce
\[
\left| \int_0^T \int_\mathcal{M} q e^{-i(\phi - \lambda t)} \overline{a}_1(2\lambda t, x) v_{2, \lambda}(t, x) \, dv^\alpha \, dt \right| \leq C \lambda^{-2} \|a_1\|_* \|a_2\|_*.
\]
Moreover we have
\[
\left| \int_0^T \int_\mathcal{M} q(x) v_{2, \lambda}(t, x) \overline{u}_1 \, dv^\alpha \, dt \right| \leq C \lambda^{-2} \|a_1\|_* \|a_2\|_*.
\]
On the other hand, by the trace theorem, we find
\[\left| \int_{\partial M} \left(\Lambda_{\hat{g}, q_1} - \Lambda_{\hat{g}, q_2} \right)(f, g) \, d\sigma - a^n \, dt \right| \leq \| \Lambda_{\hat{g}, q_1} - \Lambda_{\hat{g}, q_2} \|_{L^1((0,T) \times \partial M)} \| g \|_{L^1((0,T) \times \partial M)} \]
\[\leq C \frac{\lambda^{1/2}}{\lambda^{1/2}} \| a_1 \|_{L^\infty} \| a_2 \|_{L^\infty} \| \Lambda_{\hat{g}, q_1} - \Lambda_{\hat{g}, q_2} \|. \]
(5.13)

Estimate (5.1) follows easily from (5.9)–(5.13). This completes the proof of the lemma. \(\Box \)

Lemma 5.2. Let \(M_0 > 0 \). There exists \(C > 0 \) such that for any \(b \in H^2(\partial S, M_1) \), the following estimate
\[\left| \int_{S, M_1} \int_0^T \tilde{q}(s, \theta) b(y, \theta) \mu(y, \theta) \, ds \, d\omega_y(\theta) \right| \leq C \left\| \Lambda_{\hat{g}, q_1} - \Lambda_{\hat{g}, q_2} \right\|_{H^1(S, M_1)}^{1/2} \| b(y, \cdot) \|_{H^1(S, M_1)} \]
holds for any \(y \in \partial M_1 \).

We use the notation \(S^*_y M_1 = \{ \theta \in S, M_1 : \langle v, \theta \rangle < 0 \} \).

Proof. Following (4.21), we pick \(T_0 > 1 + \text{diam} \, M_1 \) and take two solutions to (4.2) and (4.3) of the form
\[\tilde{a}_1(t, r, \theta) = \alpha^{-1/4} \phi(t - r) b(y, \theta), \]
\[\tilde{a}_2(t, r, \theta) = \alpha^{-1/4} \phi(t - r) \mu(y, \theta). \]

We recall that \(\mu(y, \theta) = |\langle v(y), \theta \rangle| \) is the density of the \(L^2 \) space where the image of the geodesic ray transform lies. Now we change variable in (5.1), \(x = \exp_y(r\theta), r > 0 \) and \(\theta \in S, M_1 \); we have
\[\int_0^T \int_{S, M_1} q \tilde{a}_1(2\lambda t, x) \tilde{a}_2(2\lambda t, x) \, dv^\theta \, dr \]
\[= \int_0^T \int_{S, M_1} \int_0^{T_0} \tilde{q}(r, \theta) \tilde{a}_1(2\lambda t, r, \theta) \tilde{a}_2(2\lambda t, r, \theta) \alpha^{1/2} \, dr \, d\omega_y(\theta) \, dr \]
\[= \int_0^T \int_{S, M_1} \int_0^{T_0} \tilde{q}(r, \theta) \phi^2(2\lambda t - r) b(y, \theta) \mu(y, \theta) \mu(y, \theta) \, dr \, d\omega_y(\theta) \, dr \]
\[= \frac{1}{2\lambda} \int_0^{2\lambda T} \int_{S, M_1} \int_0^{T_0} \tilde{q}(r, \theta) \phi^2(r - t) b(y, \theta) \mu(y, \theta) \, dr \, d\omega_y(\theta) \, dr. \]

By virtue of lemma 5.1, we conclude that
\[\left| \int_0^\infty \int_{S, M_1} \int_0^{T_0} \tilde{q}(r, \theta) \phi^2(r - t) b(y, \theta) \mu(y, \theta) \, dr \, d\omega_y(\theta) \, dr \right| \leq C \left(\lambda^{-1} + \lambda \| \Lambda_{\hat{g}, q_1} - \Lambda_{\hat{g}, q_2} \right\|_{L^1((0,T) \times \partial M)} \| \phi \|_{H^1(R)} \| b(y, \cdot) \|_{L^1(S, M_1)} \). \]
(5.15)

By the support properties of the function \(\phi \), we get that the left-hand side term in the previous inequality reads
\[\int_0^\infty \int_{S, M_1} \int_0^{T_0} \tilde{q}(r, \theta) \phi^2(t - r) b(y, \theta) \mu(y, \theta) \, dr \, d\omega_y(\theta) \, dr \]
\[= \left(\int_{-\infty}^{\infty} \phi^2(t) \, dt \right) \int_0^\infty \int_{S, M_1} \int_0^{T_0} \tilde{q}(r, \theta) b(y, \theta) \mu(y, \theta) \, dr \, d\omega_y(\theta). \]
Finally, minimizing in λ on the right-hand side of (5.15) we obtain
\[
\left| \int_{\mathcal{S}, \mathcal{M}_1} \tau_{c}(y, \theta) b(y, \theta) \mu(y, \theta) \, dx \, d\omega_{y}(\theta) \right| \leq C \left\| \Lambda_{g, \mathcal{Q}_1} - \Lambda_{g, \mathcal{Q}_2} \right\|_{H^{2}(S_{y}, \mathcal{M}_1)}^{1/2} \| b(y, \cdot) \|_{H^{2}(S_{y}, \mathcal{M}_1)}.
\]
This completes the proof of the lemma. \qed

5.2. End of the proof of the stability estimate

Let us now complete the proof of the stability estimate in theorem 2. Using lemma 5.2, for any $y \in \partial \mathcal{M}_1$ and $b \in H^{2}(\partial \mathcal{M}_1)$ we have
\[
\left| \int_{\mathcal{S}, \mathcal{M}_1} I(q)(y, \theta) b(y, \theta) \mu(y, \theta) \, d\omega_{y}(\theta) \right| \leq C \left\| \Lambda_{g, \mathcal{Q}_1} - \Lambda_{g, \mathcal{Q}_2} \right\|_{H^{2}(S_{y}, \mathcal{M}_1)}^{1/2} \| b(y, \cdot) \|_{H^{2}(S_{y}, \mathcal{M}_1)}.
\]
Integrating with respect to $y \in \partial \mathcal{M}_1$ we obtain
\[
\left| \int_{\partial \mathcal{M}_1} I(q)(y, \theta) b(y, \theta) \mu(y, \theta) \, d\omega_{y}(\theta) \right| \leq C \left\| \Lambda_{g, \mathcal{Q}_1} - \Lambda_{g, \mathcal{Q}_2} \right\|_{H^{2}(\partial \mathcal{M}_1)}^{1/2} \| b \|_{H^{2}(\partial \mathcal{M}_1)}.
\]
\[(5.16) \]
Now we choose
\[
b(y, \theta) = I(I^{*}I(q))(y, \theta).
\]
Taking into account (2.13) and (2.9), we obtain
\[
\| I^{*}I(q) \|^2_{L^{2}(\mathcal{M}_1)} \leq C \left\| \Lambda_{g, \mathcal{Q}_1} - \Lambda_{g, \mathcal{Q}_2} \right\|_{1/2} \| q \|_{H^{1}(\mathcal{M})}.
\]
By interpolation, it follows that
\[
\| I^{*}I(q) \|^2_{H^{1}(\mathcal{M})} \leq C \| I^{*}I(q) \|^2_{L^{2}(\mathcal{M}_1)} \left\| I^{*}I(q) \right\|_{H^{1}(\mathcal{M})} \leq C \| I^{*}I(q) \|^2_{L^{2}(\mathcal{M}_1)} \| q \|_{H^{1}(\mathcal{M})} \leq C \left\| \Lambda_{g, \mathcal{Q}_1} - \Lambda_{g, \mathcal{Q}_2} \right\|_{1/4}.
\]
\[(5.17) \]
Using (2.12), we deduce that
\[
\| q \|^2_{L^{2}(\mathcal{M})} \leq C \left\| \Lambda_{g, \mathcal{Q}_1} - \Lambda_{g, \mathcal{Q}_2} \right\|_{1/4}.
\]
This completes the proof of theorem 2.

6. Stable determination of the conformal factor

This section is devoted to the proof of the stability estimate for the conformal factor. We use the following notations; let $c \in \mathcal{E}(M_0, k, \varepsilon)$; we denote
\[
\varrho_{0}(x) = 1 - c(x), \quad \varrho_{1}(x) = e^{\alpha/2}(x) - 1, \quad \varrho_{2}(x) = e^{\alpha/2-1}(x) - 1, \quad \varrho(x) = \varrho_{2}(x) - \varrho_{1}(x) = e^{\alpha/2-1}(x)(1 - c(x)).
\]
\[(6.1) \]
Then the following holds:
\[
\| \varrho_{j} \|_{C^{j}(\mathcal{M})} \leq C \| \varrho_{0} \|_{C^{j}(\mathcal{M})}, \quad j = 1, 2
\]
\[
C^{-1} \| \varrho_{0} \|_{L^{2}(\mathcal{M})} \leq \| \varrho \|_{L^{2}(\mathcal{M})} \leq C \| \varrho_{0} \|_{L^{2}(\mathcal{M})}.
\]
\[(6.2) \]
As in the case of potentials, we extend the manifold (\mathcal{M}, g) into a simple manifold $\mathcal{M}_1 \cong \mathcal{M}$. We extend the conformal factor c by 1 outside the manifold \mathcal{M}; its $C^{2}(\mathcal{M}_1)$ norms may also be bounded by M_0. The first step in our analysis is the following lemma.
Lemma 6.1. Let $c \in C^\infty(M)$ such that $c = 1$ on the boundary ∂M. Let u_1, u_2 solve the following boundary problems in $(0, T) \times M$ with some $T > 0$:

\[
\begin{align*}
(i\partial_t + \Delta) u_1 &= 0, \quad \text{in} \quad (0, T) \times M, \\
u_1(0, \cdot) &= 0, \quad \text{in} \quad M, \\
u_1 &= f_1, \quad \text{on} \quad (0, T) \times \partial M; \\
(i\partial_t + \Delta) u_2 &= 0, \quad \text{in} \quad (0, T) \times M, \\
u_2(T, \cdot) &= 0, \quad \text{in} \quad M, \\
u_2 &= f_2, \quad \text{on} \quad (0, T) \times \partial M.
\end{align*}
\]

Then the following identity

\[
\int_0^T \int_{\partial M} (\Lambda_g - \Lambda_{eg}) f_1 \overline{f}_2 \, d\sigma_{eg} \, dt = i \int_0^T \int_M \varrho_1(x) u_1 \overline{\partial_t u_2} \, dv^g \, dt \\
+ \int_0^T \int_M \varrho_2(x) (\nabla_g u_1(t, x), \nabla_g \overline{u}_2(t, x))_g \, dv^g \, dt
\]

holds true for any $f_j \in H^1((0, T) \times \partial M)$, $j = 1, 2$.

Proof. We multiply both hand sides of the first equation (6.3) by \overline{u}_2; integrate by parts in time and use the Green’s formula (2.4) to get:

\[
0 = \int_0^T \int_M (i\partial_t u_1 + \Delta u_1) \overline{u}_2 \, dv^g \, dt \\
= -i \int_0^T \int_M u_1 \overline{\partial_t u_2} \, dv^g \, dt + i \int_0^T \int_M \varrho_1(x) u_1 \overline{\partial_t u_2} \, dv^g \, dt \\
+ \int_0^T \int_{\partial M} \partial_t u_1 \overline{\overline{f}_2} \, d\sigma_{eg} \, dt - \int_0^T \int_M \sum_{j,k=1}^n (cg)^{jk} \left(\frac{\partial u_1}{\partial x_j} \frac{\partial \overline{u}_2}{\partial x_k} \right) \, dv^g \, dt \\
+ \int_0^T \int_M \varrho_2 \left(\sum_{j,k=1}^n g^{jk} \frac{\partial u_1}{\partial x_j} \frac{\partial \overline{u}_2}{\partial x_k} \right) \, dv^g \, dt
\]

and after using a second time Green’s formula, we end up with:

\[
0 = i \int_0^T \int_M \varrho_1(x) u_1 \overline{\partial_t u_2} \, dv^g \, dt + \int_0^T \int_M \varrho_2 \left(\sum_{j,k=1}^n g^{jk} \frac{\partial u_1}{\partial x_j} \frac{\partial \overline{u}_2}{\partial x_k} \right) \, dv^g \, dt \\
+ \int_0^T \int_M u_1(-i\partial_t \overline{u}_2 + \Delta_{eg} \overline{u}_2) \, dv^g \, dt - \int_0^T \int_{\partial M} \partial_t \overline{u}_2 \, d\sigma_{eg} \, dt \\
+ \int_0^T \int_{\partial M} \partial_t u_2 \, d\sigma_{eg} \, dt.
\]

Taking into account the fact that $c = 1$ on ∂M, the fact that $(-i\partial_t \overline{u}_2 + \Delta_{eg} \overline{u}_2) = 0$ in $(0, T) \times M$, and the fact that $\partial_t u_2 = \Lambda_{eg} f_2$, it follows that:

\[
\int_0^T \int_{\partial M} (\Lambda_g - \Lambda_{eg}) f_1 \overline{f}_2 \, d\sigma_{eg} \, dt = i \int_0^T \int_M \varrho_1(x) u_1 \overline{\partial_t u_2} \, dv^g \, dt \\
+ \int_0^T \int_M \varrho_2(x) \left(\sum_{j,k=1}^n g^{jk} \frac{\partial u_1}{\partial x_j} \frac{\partial \overline{u}_2}{\partial x_k} \right) \, dv^g \, dt.
\]

This completes the proof of the lemma. □
6.1. Modified geometrical optics solutions

Let ψ_1, ψ_2 be two phase functions solving the eikonal equation with respect to the metrics g and cg:

\[
|\nabla_g \psi_1|^2_g = \sum_{j,k=1}^n g^{ij} \frac{\partial \psi_1}{\partial x_j} \frac{\partial \psi_1}{\partial x_k} = 1, \tag{6.7}
\]

\[
|\nabla_{cg} \psi_2|^2_{cg} = \sum_{j,k=1}^n (cg)^{ij} \frac{\partial \psi_2}{\partial x_j} \frac{\partial \psi_2}{\partial x_k} = 1, \quad \text{on } \mathcal{M}.
\]

Let a_2 solve the transport equation in $\mathbb{R} \times \mathcal{M}$ with respect to the metric g (as given in section 4):

\[
\frac{\partial a_2}{\partial t} + \sum_{j,k=1}^n (cg)^{ij} \frac{\partial \psi_2}{\partial x_j} \frac{\partial a_2}{\partial x_k} + \frac{a_2}{2} \Delta_g \psi_1 = 0. \tag{6.8}
\]

Let a_3 solve the following transport equation in $\mathbb{R} \times \mathcal{M}$ with respect to the metric cg:

\[
\frac{\partial a_3}{\partial t} + \sum_{j,k=1}^n (cg)^{ij} \frac{\partial \psi_2}{\partial x_j} \frac{\partial a_3}{\partial x_k} + \frac{a_3}{2} \Delta_{cg} \psi_2 = - \frac{1}{2i} a_2(t, x)(1 - e^{-i}) e^{i(\psi_1 - \psi_2)}
\]

\[
\equiv a_2(t, x) \varphi_0(x, \lambda) \tag{6.9}
\]

which satisfies the bound

\[
\|a_3\|_* \leq C g \|\varphi_0\|_{C^1(\mathcal{M})} \|a_2\|_* \tag{6.10}
\]

Let us now explain how to construct a solution a_3 satisfying (6.9) and (6.10). To solve the transport equation (6.9) and (6.10) it is enough to take, in the geodesic polar coordinates (r, θ) (with respect to the metric cg),

\[
\tilde{a}_3(t, r, \theta; \lambda) = a_{cg}^{-1/4}(r, \theta) \int_0^{a_{cg}^{1/4}(s, \theta)} \tilde{a}_2(s - r + t, s, \theta) \varphi_0(s, \theta, \lambda) \, ds, \tag{6.11}
\]

where $a_{cg}(r, \theta)$ denotes the square of the volume element in geodesic polar coordinates with respect to the metric cg. Using that $\|\varphi_0(\cdot, \lambda)\|_{C^1(\mathcal{M})} \leq C \|\varphi_0\|_{C^1(\mathcal{M})}$ and (6.11) we obtain (6.10).

Lemma 6.2. Let $c \in \mathcal{E}(M_0, k, \varepsilon)$ be such that $c = 1$ near the boundary $\partial \mathcal{M}$. Then the equation

\[
(i \partial_t + \Delta_{cg}) u = 0, \quad \text{in } (0, T) \times \mathcal{M}, \quad u(0, x) = 0 \tag{6.12}
\]

has a solution of the form

\[
u_2(t, x) = \frac{1}{\lambda} a_2(2\lambda t, x) e^{i(\psi_1(x) - \psi_2)} + a_3(2\lambda t, x; \lambda) e^{i(\psi_1(x) - \psi_2)} + v_{2,\lambda}(t, x) \tag{6.13}
\]

which satisfies for $\lambda > T_0/2T$

\[
\lambda \|v_{2,\lambda}(t, \cdot)\|_{L^2(\mathcal{M})} + \|\nabla v_{2,\lambda}(t, \cdot)\|_{L^2(\mathcal{M})} + \lambda^{-1} \|\partial_t v_{2,\lambda}(t, \cdot)\|_{L^2(\mathcal{M})} \leq C (\lambda^2 \|\varphi_0\|_{C^1(\mathcal{M})} + \lambda^{-1}) \|a_2\|_*, \tag{6.14}
\]

where the constant C depends only on T, T_0 and \mathcal{M} (that is C does not depend on a, λ and ε).

Proof. We set

\[
k(t, x) = - \left(i \partial_t + \Delta_{cg} \right) \left(\frac{1}{\lambda} a_2(2\lambda t, x) e^{i(\psi_1(x) - \psi_2)} + a_3(2\lambda t, x; \lambda) e^{i(\psi_1 - \psi_2)} \right).
\]
To prove our lemma it is enough to show that if \(v \) solves
\[
(i\partial_t + \Delta_{eg}) v = k
\]
(6.15)
with initial and boundary conditions
\[
v(0, x) = 0, \quad \text{in } M, \quad \text{and } v(t, x) = 0 \quad \text{on } (0, T) \times \partial M,
\]
(6.16)
then estimate (6.14) holds. But we have
\[
-k(t, x) = \frac{1}{\lambda} e^{i\frac{\lambda}{(\psi_1 - \lambda t)}} \Delta_{eg} a_2(2\lambda t, x)
+ 2 i e^{i\frac{\lambda}{(\psi_1 - \lambda t)}} \left(\partial_2 + \sum_{j,k=1}^n (c g)^j k \frac{\partial \psi_1}{\partial x_j} \frac{\partial a_2}{\partial x_k} + \frac{a_2}{2} \Delta_{eg} \psi_1 \right)(2\lambda t, x)
\]
\[
+ \lambda e^{i\frac{\lambda}{(\psi_1 - \lambda t)}} a_2(2\lambda t, x) \left(1 - e^{-1} \sum_{j,k=1}^n (c g)^j k \frac{\partial \psi_1}{\partial x_j} \frac{\partial a_2}{\partial x_k} \right)
\]
\[
+ 2 i \lambda e^{i\frac{\lambda}{(\psi_2 - \lambda t)}} \left(\partial_3 - \sum_{j,k=1}^n (c g)^j k \frac{\partial \psi_2}{\partial x_j} \frac{\partial a_3}{\partial x_k} + \frac{a_3}{2} \Delta_{eg} \psi_2 \right)(2\lambda t, x)
\]
\[
+ \lambda^2 e^{i\frac{\lambda}{(\psi_2 - \lambda t)}} a_3(2\lambda t, x) \left(1 - \sum_{j,k=1}^n (c g)^j k \frac{\partial \psi_2}{\partial x_j} \frac{\partial a_3}{\partial x_k} \right) \). (6.17)

Taking into account (6.7) and (6.8), the right-hand side of (6.17) becomes
\[
-k(t, x) = \frac{1}{\lambda} e^{i\frac{\lambda}{(\psi_1 - \lambda t)}} \Delta_{eg} a_2(2\lambda t, x) + 2 i e^{i\frac{\lambda}{(\psi_1 - \lambda t)}} \left((c^{-1} - 1)(\nabla g \psi_1, \nabla g a_2(2\lambda t, x))_g
\right.
\]
\[
\left. + \frac{1}{2} a_2(2\lambda t, x) \left(\Delta_{eg} \psi_1 - \Delta_{g} \psi_1 \right) \right) + 2 i \lambda e^{i\frac{\lambda}{(\psi_2 - \lambda t)}}
\]
\[
\times \left(\partial_3 + \sum_{j,k=1}^n (c g)^j k \frac{\partial \psi_2}{\partial x_j} \frac{\partial a_3}{\partial x_k} + \frac{a_3}{2} \Delta_{eg} \psi_2 + \frac{a_2}{21} e^{i\frac{\lambda}{(\psi_2 - \lambda t)}} (1 - c^{-1}) \right)(2\lambda t, x)
\]
\[
+ e^{i\frac{\lambda}{(\psi_2 - \lambda t)}} \Delta_{eg} a_3(2\lambda t, x). \quad (6.18)
\]

By (6.9) we get
\[
-k(t, x) = \frac{1}{\lambda} e^{i\frac{\lambda}{(\psi_1 - \lambda t)}} \Delta_{eg} a_2(2\lambda t, x)
\]
\[
+ 2 i e^{i\frac{\lambda}{(\psi_1 - \lambda t)}} \left((c^{-1} - 1)(\nabla g \psi_1, \nabla g a_2(2\lambda t, x))_g
\right.
\]
\[
\left. + \frac{1}{2} a_2(2\lambda t, x) \left(\Delta_{eg} \psi_1 - \Delta_{g} \psi_1 \right) \right) + e^{i\frac{\lambda}{(\psi_2 - \lambda t)}} \Delta_{eg} a_3(2\lambda t, x)
\]
\[
\equiv \frac{1}{\lambda} e^{i\frac{\lambda}{(\psi_1 - \lambda t)}} k_0(2\lambda t, x) + e^{i\frac{\lambda}{(\psi_1 - \lambda t)}} k_1(2\lambda t, x) + e^{i\frac{\lambda}{(\psi_2 - \lambda t)}} k_2(2\lambda t, x).
\]

Since \(k_j \in H^1_0(0, T; L^2(M)) \) for any \(\lambda > T_0/2T \), by lemma 3.1, we deduce that
\[
v \in C^1(0, T; L^2(M)) \cap C(0, T; H^2(M) \cap H^1_0(M))
\]
(6.19)
and
Lemma 6.3. There exists $C > 0$ such that for any $a_1, a_2 \in H^1(\mathbb{R}, H^2(\mathcal{M}))$ satisfying the transport equation (6.9) with (4.3), the following estimate holds true:

$$
\lambda \left| \int_0^T \int_{\mathcal{M}} \varrho(x)(a_1 \partial_t a_2)(2\lambda t, x) \, dv_x \, dt \right|
\leq C \left\{ \| \varrho_0 \|_{C^1(\mathcal{M})} \left(\lambda^{-1} + \lambda^2 \| \varrho_0 \|_{C^1(\mathcal{M})} \right) + \lambda \| A - A_0 \| \right\} \| a_1 \|_* \| a_2 \|_*.
$$

for all $\lambda \geq T_0/2T$.

Moreover, we have

$$
\| \nabla a_1(t, \cdot) \|_{L^2(\mathcal{M})} \leq C \eta \left\{ \int_0^T \left(\lambda \| k_0(2\lambda s, \cdot) \|_{L^2(\mathcal{M})} + \| \partial_t k_0(2\lambda s, \cdot) \|_{L^2(\mathcal{M})} \right) \, ds
+ \int_0^T \left(\lambda^2 \| k_1(2\lambda s, \cdot) \|_{L^2(\mathcal{M})} + \lambda \| \partial_t k_1(2\lambda s, \cdot) \|_{L^2(\mathcal{M})} \right) \, ds
+ \int_0^T \left(\lambda^2 \| k_2(2\lambda s, \cdot) \|_{L^2(\mathcal{M})} + \| \partial_t k_2(2\lambda s, \cdot) \|_{L^2(\mathcal{M})} \right) \, ds \right\}
+ \frac{C}{\lambda^2} \int_0^T \left(\frac{1}{\lambda} \| k_0(2\lambda s, \cdot) \|_{L^2(\mathcal{M})} + \| k_1(2\lambda s, \cdot) \|_{L^2(\mathcal{M})} + \| k_2(2\lambda s, \cdot) \|_{L^2(\mathcal{M})} \right) \, ds.
$$

Hence, we obtain the following estimate:

$$
\| \nabla a_1(t, \cdot) \|_{L^2(\mathcal{M})} \leq C \eta \left\{ \int_R \left(\lambda \| k_0(s, \cdot) \|_{L^2(\mathcal{M})} + \| \partial_t k_0(s, \cdot) \|_{L^2(\mathcal{M})} \right) \, dr
+ \int_R \left(\lambda \| k_1(s, \cdot) \|_{L^2(\mathcal{M})} + \| \partial_t k_1(s, \cdot) \|_{L^2(\mathcal{M})} \right) \, dr
+ \int_R \left(\lambda \| k_2(s, \cdot) \|_{L^2(\mathcal{M})} + \| \partial_t k_2(s, \cdot) \|_{L^2(\mathcal{M})} \right) \, dr \right\}
+ \frac{C}{\lambda^2} \int_0^T \left(\frac{1}{\lambda} \| k_0(s, \cdot) \|_{L^2(\mathcal{M})} + \| k_1(s, \cdot) \|_{L^2(\mathcal{M})} + \| k_2(s, \cdot) \|_{L^2(\mathcal{M})} \right) \, dr
\leq C \eta (1 + \lambda^3 \| \varrho_0 \|_{C^1(\mathcal{M})}) \| a_2 \|_* + C \left(\frac{1}{\lambda^2} + \lambda \| \varrho_0 \|_{C^1(\mathcal{M})} \right) \| a_2 \|_*.
$$

(6.20)

Now choosing $\eta = \lambda^{-1}$, we obtain

$$
\| \nabla a_1(t, \cdot) \|_{L^2(\mathcal{M})} \leq C \left(\frac{1}{\lambda} + \lambda^2 \| \varrho_0 \|_{C^1(\mathcal{M})} \right) \| a_2 \|_.
$$

(6.21)

Finally, if we study the equation satisfied by $\partial_t v$, we also find

$$
\| \partial_t v(t, \cdot) \|_{L^2(\mathcal{M})} \leq C (1 + \lambda^3 \| \varrho_0 \|_{C^1(\mathcal{M})}) \| a_2 \|_*.
$$

(6.22)

This ends the proof of lemma 6.2. \square

Lemma 6.3. There exists $C > 0$ such that for any $a_1, a_2 \in H^1(\mathbb{R}, H^2(\mathcal{M}))$ satisfying the transport equation (6.9) with (4.3), the following estimate holds true:
Inverse Problems

Proof. Following lemma 6.2 let \(u_2 \) be a solution to the problem \((i\partial_t + \Delta_{\gamma})u = 0\) of the form

\[
\overline{u}_2(t, x) = \frac{1}{\lambda} \overline{a}_2(2\lambda t, x) e^{-i\lambda(\psi_1 - \lambda t)} + \overline{a}_3(2\lambda t, x; \lambda) e^{-i\lambda(\psi_2 - \lambda t)} + \overline{\nu}_{2,\lambda}(t, x)
\]

where \(v_{2,\lambda} \) satisfies (6.14) and \(a_3 \) satisfies (6.10). Thanks to lemma 4.1 let \(u_1 \) be a solution of \((i\partial_t + \Delta_{\gamma})u = 0\) of the form

\[
u_1(t, x) = a_1(2\lambda t, x) e^{i\lambda(\psi_1 - \lambda t)} + v_{1,\lambda}(t, x),
\]

where \(v_{1,\lambda} \) satisfies \(v_1(T, \cdot) = 0 \) and (4.7). Then we have

\[
\partial_t \overline{u}_2(t, x) = 2i\lambda \overline{a}_2(2\lambda t, x) e^{-i\lambda(\psi_1 - \lambda t)} + i\lambda \overline{a}_2(2\lambda t, x) e^{-i\lambda(\psi_1 - \lambda t)}
\]

\[
+ 2\lambda \partial_t \overline{a}_3(2\lambda t, x; \lambda) e^{-i\lambda(\psi_2 - \lambda t)} + i\lambda \overline{a}_3(2\lambda t, x, \lambda) e^{-i\lambda(\psi_2 - \lambda t)} + \partial_t \overline{\nu}_{2,\lambda}(t, x).
\]

(6.24)

Let us compute the first term on the right-hand side of (6.5). We have

\[
\int_0^T \int_M \varrho_1 \overline{u}_1 \partial_t \overline{a}_2 \, d\nu_\theta \, dt = i\lambda \int_0^T \int_M \varrho_1 \overline{u}_1 \partial_t \overline{a}_2(2\lambda t, x) \, d\nu_\theta \, dt + J_1(\lambda) + J_2(\lambda)
\]

with

\[
J_1(\lambda) = 2 \int_0^T \int_M \varrho_1 (a_1 \partial_t \overline{a}_2)(2\lambda t, x) \, d\nu_\theta \, dt
\]

\[
+ 2 \int_0^T \int_M \varrho_1 v_{1,\lambda} \partial_t \overline{a}_2(2\lambda t, x) e^{-i\lambda(\psi_1 - \lambda t)} \, d\nu_\theta \, dt
\]

\[
i\lambda \int_0^T \int_M \varrho_1 v_{1,\lambda} \partial_t \overline{a}_2(2\lambda t, x) e^{-i\lambda(\psi_1 - \lambda t)} \, d\nu_\theta \, dt
\]

and with

\[
J_2(\lambda) = +2\lambda \int_0^T \int_M \varrho_1 (a_1 \partial_t \overline{a}_3)(2\lambda t, x) e^{i\lambda(\psi_1 - \psi_2)} \, d\nu_\theta \, dt
\]

\[
+ i\lambda^2 \int_0^T \int_M \varrho_1 (a_1 \overline{a}_3)(2\lambda t, x) e^{i\lambda(\psi_1 - \psi_2)} \, d\nu_\theta \, dt
\]

\[
+ \int_0^T \int_M \varrho_1 v_{1,\lambda} \partial_t \overline{a}_3(2\lambda t, x) \, d\nu_\theta \, dt
\]

\[
+ 2\lambda \int_0^T \int_M \varrho_1 v_{1,\lambda} \partial_t \overline{a}_3(2\lambda t, x) e^{-i\lambda(\psi_2 - \lambda t)} \, d\nu_\theta \, dt
\]

\[
+ i\lambda^2 \int_0^T \int_M \varrho_1 v_{1,\lambda} \partial_t \overline{a}_3(2\lambda t, x) e^{-i\lambda(\psi_2 - \lambda t)} \, d\nu_\theta \, dt
\]

\[
+ \int_0^T \int_M \varrho_1 v_{1,\lambda} \partial_t \overline{\nu}_{2,\lambda}(t, x) \, d\nu_\theta \, dt.
\]

From (6.10), (6.14) and (4.4) we have the estimates

\[
|J_1(\lambda)| \leq C \|\varrho_0\|_{C_{1,\lambda}(t)} \lambda^{-1} \|a_2\|_{a_1} \|a_1\|_a
\]

\[
|J_2(\lambda)| \leq C \|\varrho_0\|_{C_{1,\lambda}(t)} (\lambda^{-1} + \lambda^2) \|\varrho_0\|_{C_{1,\lambda}(t)} \|a_2\|_{a_1} \|a_1\|_a.
\]

(6.26)

On the other hand, we have

\[
\nabla_\theta u_1 = (\nabla_\theta a_1)(2\lambda t, x) e^{i\lambda(\psi_1 - \lambda t)} + i\lambda (\nabla_\theta \psi_1) a_1(2\lambda t, x) e^{i\lambda(\psi_1 - \lambda t)} + \nabla_\theta v_{1,\lambda}
\]

\[
\nabla_\theta \overline{u}_2 = \frac{1}{\lambda} (\nabla_\theta \overline{a}_2)(2\lambda t, x) e^{-i\lambda(\psi_1 - \lambda t)} - \overline{a}_2(2\lambda t, x) \nabla_\theta \psi_1 e^{-i\lambda(\psi_1 - \lambda t)}
\]

\[
- i\lambda \overline{a}_3(2\lambda t, x) \nabla_\theta \psi_2 e^{-i\lambda(\psi_2 - \lambda t)} + \nabla_\theta \overline{a}_3(2\lambda t, x) e^{-i\lambda(\psi_2 - \lambda t)} + \nabla_\theta \overline{\nu}_{2,\lambda}.
\]
and the second term on the right-hand side of (6.5) becomes
\[
\int_0^T \int_M \varrho_2(x) \left(\nabla g a_1(t, x), \nabla g \bar{\varrho}_2(t, x) \right)_g \, dv^a_g \, dt
\]
\[
= \lambda \int_0^T \int_M \varrho_2(x) (a_1 \bar{\varrho}_2) (2\lambda t, x) \, dv^a_g \, dt + J_3(\lambda) + J_4(\lambda)
\] (6.27)

with
\[
J_3(\lambda) = \frac{1}{\lambda} \int_0^T \int_M \varrho_2(x) \left(\nabla g a_1(2\lambda t, x), \nabla g \bar{\varrho}_2(2\lambda t, x) \right)_g \, dv^a_g \, dt
\]
\[- i \int_0^T \int_M \varrho_2(x) \bar{\varrho}_2(2\lambda t, x) \left(\nabla g a_1(2\lambda t, x), \nabla g \psi_1(x) \right)_g \, dv^a_g \, dt
\]
\[+ i \int_0^T \int_M \varrho_2(x) a_1(2\lambda t, x) \left(\nabla g \bar{\varrho}_2(2\lambda t, x), \nabla g \psi_1(x) \right)_g \, dv^a_g \, dt
\]
\[+ \frac{1}{\lambda} \int_0^T \int_M \varrho_2(x) e^{-i\varphi_1 - \lambda t} \left(\nabla g \bar{\varrho}_2(2\lambda t, x), \nabla g v_{1,\lambda}(t, x) \right)_g \, dv^a_g \, dt
\]
\[- i \int_0^T \int_M \varrho_2(x) \bar{\varrho}_2(2\lambda t, x) e^{-i\varphi_1 - \lambda t} \left(\nabla g v_{1,\lambda}(t, x), \nabla g \psi_1(x) \right)_g \, dv^a_g \, dt
\]

and with
\[
J_4(\lambda) = -i\lambda \int_0^T \int_M \varrho_2(x) \bar{\varrho}_3(2\lambda t, x) e^{i\varphi_1 - \varphi_2} \left(\nabla g a_1(2\lambda t, x), \nabla g \psi_2(x) \right)_g \, dv^a_g \, dt
\]
\[+ \int_0^T \int_M \varrho_2(x) e^{i\varphi_1 - \varphi_2} \left(\nabla g a_1(2\lambda t, x), \nabla g \bar{\varrho}_3(2\lambda t, x) \right)_g \, dv^a_g \, dt
\]
\[+ \int_0^T \int_M \varrho_2(x) e^{i\varphi_1 - \varphi_2} \left(\nabla g a_1(2\lambda t, x), \nabla g \bar{\varrho}_2(t, x) \right)_g \, dv^a_g \, dt
\]
\[+ \lambda^2 \int_0^T \int_M \varrho_2(x) (a_1 \bar{\varrho}_3)(2\lambda t, x) e^{i\varphi_1 - \varphi_2} \left(\nabla g \psi_1(x), \nabla g \psi_2(x) \right)_g \, dv^a_g \, dt
\]
\[+ i\lambda \int_0^T \int_M \varrho_2(x) a_1(2\lambda t, x) e^{i\varphi_1 - \varphi_2} \left(\nabla g \psi_1(x), \nabla g \bar{\varrho}_3(2\lambda t, x) \right)_g \, dv^a_g \, dt
\]
\[+ i\lambda \int_0^T \int_M \varrho_2(x) a_1(2\lambda t, x) e^{i\varphi_1 - \varphi_2} \left(\nabla g \psi_1(x), \nabla g \bar{\varrho}_2(t, x) \right)_g \, dv^a_g \, dt
\]
\[- i \int_0^T \int_M \varrho_2 \bar{\varrho}_3(2\lambda t, x) e^{-i\varphi_1 - \lambda t} \left(\nabla g v_{1,\lambda}(t, x), \nabla g \psi_1(x) \right)_g \, dv^a_g \, dt
\]
\[- i\lambda \int_0^T \int_M \varrho_2 \bar{\varrho}_3(2\lambda t, x) e^{-i\varphi_1 - \lambda t} \left(\nabla g v_{1,\lambda}(t, x), \nabla g \psi_2(x) \right)_g \, dv^a_g \, dt
\]
\[+ \int_0^T \int_M \varrho_2 e^{-i\varphi_1 - \lambda t} \left(\nabla g v_{1,\lambda}, \nabla g \bar{\varrho}_3(2\lambda t, x) \right)_g \, dv^a_g \, dt
\]
\[+ \int_0^T \int_M \varrho_2 \left(\nabla g v_{1,\lambda}, \nabla g \bar{\varrho}_2(t, x) \right)_g \, dv^a_g \, dt.
\]

From (6.10), (6.14) and (4.4), we have
\[
|J_3(\lambda)| \leq \|e_0\|_{C^1(M)} \lambda^{-1} \|a_2\|_* \|a_1\|_*
\]
\[
|J_4(\lambda)| \leq \|e_0\|_{C^1(M)} (\lambda^{-1} + \lambda^2 \|e_0\|_{C^1(M)}) \|a_2\|_* \|a_1\|_*.
\] (6.28)
Taking into account (6.5), (6.25) and (6.27), we deduce that
\[
\int_{0}^{T} \int_{\partial \mathcal{M}} (\Lambda_g - \Lambda_{\text{eg}}) f_1 \beta_1 \, d\sigma_{\partial \mathcal{M}}^{n-1} \, dt = \lambda \int_{0}^{T} \int_{\mathcal{M}} \phi(x)(2\lambda t, x) \, dv_g \, dt \\
+ \mathcal{J}_1(\lambda) + \mathcal{J}_2(\lambda) + \mathcal{J}_3(\lambda) + \mathcal{J}_4(\lambda).
\]
(6.29)

In view of (6.26) and (6.28), we obtain
\[
\lambda \int_{0}^{T} \int_{\mathcal{M}} \phi(x)(2\lambda t, x) \, dv_g \, dt \leq C \|\phi_0\|_{C^1(M)}(\lambda^{-1} + \lambda^2 \|\phi_0\|_{C^1(M)} + \lambda \|\Lambda_g - \Lambda_{\text{eg}}\|) \|a_1\|_* \|a_2\|_*.
\]
This completes the proof. \(\square\)

6.2. Stability estimate for the geodesic ray transform

Lemma 6.4. There exists \(C > 0\) such that for any \(b \in H^2(\partial_s \mathcal{M}_1)\) the following estimate
\[
\left| \int_{\partial_s \mathcal{M}_1} T(\varphi)(y, \theta) b(y, \theta) \mu(y, \theta) \, dv_{\partial \mathcal{M}}^{2n-2}(y, \theta) \right| \\
\leq C((\lambda^{-1} + \lambda^2 \|\phi_0\|_{C^1(M)} + \lambda \|\Lambda_g - \Lambda_{\text{eg}}\|) \|b\|_{H^1(\partial_s \mathcal{M}_1)}
\]
holds for any \(y \in \partial \mathcal{M}_1\) and any \(\lambda > T_0/2T_1\).

Proof. Following (4.21), we choose \(T_0 > 1 + \text{diam} \mathcal{M}_1\) and take two solutions of the form
\[
\tilde{a}_1(t, r, \theta) = \alpha^{-1/4} \phi(t - r) b(y, \theta), \\
\tilde{a}_2(t, r, \theta) = \alpha^{-1/4} \phi(t - r) \mu(y, \theta).
\]
Now we change variable in (6.23), \(x = \exp_y(r\theta), r > 0\) and \(\theta \in S_y \mathcal{M}_1\). Then
\[
\int_{0}^{T} \int_{\mathcal{M}} \phi a_1(2\lambda t, x) a_2(2\lambda t, x) \, dv_g \, dt \\
= \int_{0}^{T} \int_{S_y \mathcal{M}_1} \int_{0}^{\tau_{s,y}^{(y,\theta)}} \tilde{\varphi}(r, \theta) \tilde{a}_1(2\lambda t, r, \theta) \tilde{a}_2(2\lambda t, r, \theta) \alpha^{1/2} \, dr \, d\omega_y(\theta) \, dt \\
= \int_{0}^{T} \int_{S_y \mathcal{M}_1} \int_{0}^{\tau_{s,y}^{(y,\theta)}} \tilde{\varphi}(r, \theta) \phi^2(2\lambda t - r) b(y, \theta) \mu(y, \theta) \, dr \, d\omega_y(\theta) \, dt \\
= \frac{1}{2\lambda} \int_{0}^{T} \int_{S_y \mathcal{M}_1} \int_{0}^{\tau_{s,y}^{(y,\theta)}} \tilde{\varphi}(r, \theta) \phi^2(t - r) b(y, \theta) \mu(y, \theta) \, dr \, d\omega_y(\theta) \, dt.
\]
We conclude that
\[
\left| \int_{0}^{T} \int_{S_y \mathcal{M}_1} \int_{0}^{\tau_{s,y}^{(y,\theta)}} \tilde{\varphi}(r, \theta) \phi^2(t - r) b(y, \theta) \mu(y, \theta) \, dr \, d\omega_y(\theta) \, dt \right| \\
\leq C((\lambda^{-1} + \lambda^2 \|\phi_0\|_{C^1(M)} + \lambda \|\Lambda_g - \Lambda_{\text{eg}}\|) \|b(y, \cdot)\|_{H^1(S_y \mathcal{M}_1)}),
\]
(6.31)
where \(S_y \mathcal{M}_1 = \{\theta \in S_y \mathcal{M}_1 : \theta, \nu(y)\}_{\partial \mathcal{M}} < 0\). Given the support properties of the function \(\phi\), the left-hand side of the inequality reads in fact
\[
\int_{-\infty}^{\infty} \int_{S_y \mathcal{M}_1} \int_{0}^{\tau_{s,y}^{(y,\theta)}} \tilde{\varphi}(r, \theta) \phi^2(t - r) b(y, \theta) \mu(y, \theta) \, dr \, d\omega_y(\theta) \, dt \\
= \left(\int_{-\infty}^{\infty} \phi^2(t) \, dt \right) \times \int_{S_y \mathcal{M}_1} \int_{0}^{\tau_{s,y}^{(y,\theta)}} \tilde{\varphi}(r, \theta) b(y, \theta) \mu(y, \theta) \, dr \, d\omega_y(\theta).
\]
Integrating with respect to \(y \in \partial M_1 \) in (6.31) we obtain
\[
\int_{\partial_y, M_1} \mathcal{I}(q)(y, \theta) b(y, \theta) \mu(y, \theta) \, d\sigma^{2n-2}(y, \theta) \\
\leq (\lambda^{-1} + \lambda^2 \|b\|_{C^1(M)} + \lambda \|\Lambda_g - \Lambda_{cg}\|) \|b\|_{H^2(\partial_y, M_1)}.
\]
This completes the proof of the lemma. \(\square \)

6.3. End of the proof of theorem 3

Let us now prove theorem 3. We choose \(b(y, \theta) = \mathcal{I}(\mathcal{I}^*(q))(y, \theta) \) and obtain using lemma 6.4 and (2.9)
\[
\|\mathcal{I}^* \mathcal{I}(q)\|_{H^1(M_1)}^2 \leq C (\lambda^{-1} + \lambda^2 \|b\|_{C^1(M)} + \lambda \|\Lambda_g - \Lambda_{cg}\|) \|\mathcal{I}^* \mathcal{I}(q)\|_{H^1(M_1)}.
\]
By interpolation we have
\[
\|\mathcal{I}^* \mathcal{I}(q)\|_{H^1(M_1)}^2 \leq C \|\mathcal{I}^* \mathcal{I}(q)\|_{L^2(M_1)} \|\mathcal{I}^* \mathcal{I}(q)\|_{H^1(M_1)}
\leq C (\lambda^{-1} + \lambda^2 \|b\|_{C^1(M)} + \lambda \|\Lambda_g - \Lambda_{cg}\|)^{1/2} \|\mathcal{I}^* \mathcal{I}(q)\|_{L^2(M_1)}^{3/2}.
\]
We use (2.12) and (2.13) to deduce
\[
\|b\|_{C^1(M)}^2 \leq C ((\lambda^{-1} + \lambda^2 \|b\|_{C^1(M)} + \lambda \|\Lambda_g - \Lambda_{cg}\|)^{1/2} \|b\|_{H^1(M_1)}^2
\leq C \|b\|_{L^2(M)}^{13/6} + C \|b\|_{C^1(M)} \|\Lambda_g - \Lambda_{cg}\|^{1/2}
\]
Minimizing \(\lambda^{-1} + \lambda^2 \|b\|_{C^1(M)} \) in \(\lambda \), we get
\[
\|b\|_{L^2(M)}^2 \leq C \|b\|_{L^2(M)}^{13/6} + C \|b\|_{C^1(M)} \|\Lambda_g - \Lambda_{cg}\|^{1/2}
\]
Since
\[
\|b\|_{C^1(M)} \leq C \|b\|_{H^1(\partial\Omega)}
\leq C \|b\|_{L^2(M)}^{24/25} \|b\|_{H^1(\partial\Omega)}^{1/25} \leq C \|b\|_{L^2(M)}^{24/25}
\]
we therefore obtain
\[
\|b\|_{L^2(M)}^2 \leq C \|b\|_{L^2(M)}^{13/12} + \|\Lambda_g - \Lambda_{cg}\|^{1/2}.
\]
Taking \(\varepsilon > 0 \) small enough we conclude and obtain (1.11).

Acknowledgments

The authors thank the referees for their comments which helped improving this manuscript. Part of this work was done while DDSF was visiting the Faculté des Sciences de Bizerte. He gratefully acknowledges the hospitality of the Faculté des Sciences. He was also partially supported by ANR grant Equa-disp. MB was partly supported by UR Mathematics and Applications FSB.

References

[1] Anderson M, Katuda A, Kurylev Y, Lassas M and Taylor M 2004 Boundary regularity for the Ricci equation, geometric convergence, and Gel’fand’s inverse boundary problem Inventiones Math. 158 261–321
[2] Avdonin S A, Lenhart S and Protopopescu V 2005 Determining the potential in the Schrodinger equation from the Dirichlet to Neumann map by the boundary control method J. Inverse Ill-Posed Problems 13 517–30
[3] Avdonin S A and Belishev M 2005 Dynamical inverse problem for the Schrödinger equation (BC-method) ed N N Uraltseva Proc. St. Petersburg Mathematical Society vol 10 (Transl. from the Russian by Tamara Rozhkovskaya) (Providence, RI: American Mathematical Society) (Translations. Series 2. American Mathematical Society 214, 1–14 (2005); translation from Tr. St-Peterbg. Mat. Obsch. 10, 3–17 (2004))

[4] Baudouin L and Puel J-P 2002 Uniqueness and stability in an inverse problem for the Schrödinger equation *Inverse Problems* 18 1537–54

[5] Belishev M 1997 Boundary control in reconstruction of manifolds and metrics (BC method) *Inverse Problems* 13 R1–45

[6] Belishev M and Kurylëv Y 1992 To the reconstruction of a Riemannian manifold via its spectral data (BC-method) Proc. St. Petersburg Mathematical Society vol 10 (Transl. from the Russian by Tamara Rozhkovskaya) (Providence, RI: American Mathematical Society) (Translations. Series 2. American Mathematical Society 214, 1–14 (2005); translation from Tr. St-Peterbg. Mat. Obsch. 10, 3–17 (2004))

[7] Bellassoued M and Benjoud H 2008 Stability estimate for an inverse problem for the wave equation in a magnetic field Appl. Anal. 87 277–92

[8] Bellassoued M and Choulli M 2010 Stability estimate for an inverse problem for the magnetic Schrödinger equation from the Dirichlet-to-Neumann map J. Funct. Anal. 258 161–95

[9] Bellassoued M and Choulli M 2009 Logarithmic stability in the dynamical inverse problem for the Schrödinger equation by an arbitrary boundary observation J. Math. Pures Appl. 91 233–55

[10] Bellassoued M, Jellali D and Yamamoto M 2008 Stability estimate for the hyperbolic inverse boundary value problem by local Dirichlet-to-Neumann map J. Math. Anal. Appl. 333 1036–46

[11] Bellassoued M and Ferreira D Dos Santos 2010 Stability estimates for the anisotropic wave equation from the Dirichlet-to-Neumann map arXiv:1005.0318v1 [math. AP]

[12] Bukhgeim A L and Uhlmann G 2002 Recovering a potential from Cauchy data Commun. Partial Differ. Eqns 27 653–68

[13] Calderón A P 1988 On an inverse boundary value problem Seminar on Numerical Analysis and Its Applications to Continuum Physics (Rio de Janeiro) pp 65–73

[14] Cazenave T and Haraux A 1990 Introduction aux Problèmes d’Évolution Semi-linéaires (Paris: Ellipses)

[15] Cheng J and Yamamoto M 2000 The global uniqueness for determining two convection coefficients from Dirichlet to Neumann map in two dimensions Inverse Problems 16 L31–8

[16] Ferreira D Dos Santos, Kenig C E, Salo M and Uhlmann G 2009 Limiting Carleman weights and anisotropic inverse problems Inventiones Math. 178 119–71

[17] Eskin G 2008 Inverse problems for the Schrödinger equations with time-dependent electromagnetic potentials and the Aharonov–Bohm effect J. Math. Phys. 49 022105 18 pp

[18] Eskin G 2006 A new approach to hyperbolic inverse problems Inverse Problems 22 815–31

[19] Eskin G 2007 Inverse hyperbolic problems with time-dependent coefficients Commun. Partial Differ. Eqns 32 1737–58

[20] Hech H and Wang J-N 2006 Stability estimates for the inverse boundary value problem by partial Cauchy data Inverse Problems 22 1787–96

[21] Hech H and Wang J-N 2006 Stability estimates for the inverse boundary value problem by partial Cauchy data

[22] Isakov V 1991 An inverse hyperbolic problem with many boundary measurements Commun. Partial Differ. Eqns 16 1183–95

[23] Isakov V and Sun Z 1992 Stability estimates for hyperbolic inverse problems with local boundary data Inverse Problems 8 193–206

[24] Jost J 1995 Riemannian Geometry and Geometric Analysis (Universitext) (New York: Springer)

[25] Katchalov A, Kurylëv Y and Lassas M 2001 Inverse Boundary Spectral Problems (Boca Raton, FL: Chapman and Hall/CRC)

[26] Katchalov A, Kurylëv Y, Lassas M and Mandache N 2004 Equivalence of time-domain inverse problems and boundary spectral problems Inverse Problems 20 419–36

[27] Kurylëv Y and Lassas M 2000 Hyperbolic inverse problem with data on a part of the boundary Differential Equations and Mathematical Physics (AMS/IP Stud. Adv. Math. vol 16) (Providence, RI: American Mathematical Society) pp 259–72

[28] Lions J L and Magenes E 1972 Non-Homogeneous Boundary Value Problems and Applications (Berlin: Springer)

[29] Rakesh 1990 Reconstruction for an inverse problem for the wave equation with constant velocity Inverse Problems 6 91–8

[30] Rakesh and Symes W 1988 Uniqueness for an inverse problems for the wave equation Commun. Partial Differ. Eqns 13 87–96

[31] Ramm A and Sjöstrand J 1991 An inverse problem of the wave equation Math. Z. 206 119–30

[32] Sharafutdinov V 1994 Integral Geometry of Tensor Fields (Utrecht, The Netherlands: VSP)
[33] Stefanov P and Uhlmann G 1998 Stability estimates for the hyperbolic Dirichlet to Neumann map in anisotropic media \textit{J. Functional Anal.} \textbf{154} 330–58

[34] Stefanov P and Uhlmann G 2005 Stable determination of generic simple metrics from the hyperbolic Dirichlet-to-Neumann map \textit{Int. Math. Res. Notices} \textbf{17} 1047–61

[35] Sun Z 1990 On continuous dependence for an inverse initial boundary value problem for the wave equation \textit{J. Math. Anal. Appl.} \textbf{150} 188–204

[36] Uhlmann G 1992 Inverse boundary value problems and applications \textit{Astérisque} \textbf{207} 153–221

[37] Yao P F 1999 On the observability inequality for exact controllability of wave equations with variable coefficients \textit{SIAM J. Control Optim.} \textbf{37} 1568–99