Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Hands-On Training in a Digital World: A Novel Simulation-Based Virtual Training Program for Placement and Removal of the Subdermal Contraceptive Implant

Amanda Black, MD, MPH;1,2 Denise Black, MD;3 Rupinder Toor, MD;4 Richard Gersh, MD;5 Parambir Bhangu, PhD;6 Dustin Costescu, MD, MS7

1Department of Obstetrics and Gynecology, University of Ottawa, Ottawa, ON
2The Ottawa Hospital Research Institute, Ottawa, ON
3Department of Obstetrics and Gynecology, University of Manitoba, Winnipeg, MB
4The IUD Women’s Clinic, Calgary, AB
5Organon & Co., Inc., Jersey City, NJ
6Organon Canada, Kirkland, QC
7Department of Obstetrics and Gynecology, McMaster University, Hamilton, ON

ABSTRACT

Objective: The COVID-19 pandemic necessitated a shift from traditional in-person instruction for learning new technical skills to virtual delivery of medical education training. The objectives of this study were to develop and evaluate a virtual simulation-based training program for Canadian health care professionals (HCPs) on the insertion, localization, and removal of the etonogestrel subdermal contraceptive implant.

Methods: A scientific committee of Canadian family planning experts developed a 2-part virtual training program during the COVID-19 pandemic. Core educational content (part 1) was provided in an asynchronous, self-directed, online format. Part 2 consisted of synchronous, simulation-based training using web conferencing. The HCPs were provided with model arms and placebo applicators; the trainers demonstrated implant insertion and removal techniques, and trainees received individual feedback. All trainees were asked to complete an online evaluation upon completion of the program.

Results: Between September 22, 2020, and December 31, 2021, 83 trainers conducted 565 virtual training sessions. A total of 3162 HCPs completed part 1 of the training program, of whom 2740 had completed part 2 by December 31, 2021. Participants reported high levels of satisfaction with virtual simulation-based training; 96.5% of respondents (1570/1627) agreed that the virtual format was effective. Additional training prior to inserting the implant in clinical practice was requested by 4.5% of respondents (75/1671).

Conclusion: Virtual simulation-based learning provides effective education and technique training for etonogestrel implant insertion and removal. Online training for implant use can be scaled, as needed, to reach professionals in remote or underserved locations. This virtual training approach may be appropriate for other technical or minor surgical procedures.

RÉSUMÉ

Objectif : La pandémie de COVID-19 a imposé un virage dans l’enseignement de nouvelles compétences techniques en forçant la formation médicale en personne à passer en mode virtuel. Les objectifs de cette étude étaient d’élaborer et d’évaluer un programme de formation par simulation en mode virtuel destiné aux
Introduction

Simulation-based education is ideal for the acquisition of new procedural skills and has been proposed to be superior to more traditional teaching modalities. Medical educators and clinical experts have encouraged the use of simulation training for obstetrics and gynaecology. Obstacles to providing and obtaining adequate and effective training for new procedures or technologies include the logistical challenges of location, timing, and availability of qualified trainers/teachers. Traditionally, training on new procedures and technologies has been conducted in face-to-face training sessions. However, rapid developments in Internet technology and virtual conferencing capabilities have created novel opportunities for continuing medical education and training.

Methods

Training Program Development

The etonogestrel subdermal contraceptive implant clinical training program was initially designed as a single face-to-face session with didactic presentation and demonstration components. The onset of the COVID-19 pandemic necessitated the conversion of the initial in-person program to a 2-part online program. The program was developed by a scientific committee of family planning physicians. Members of the scientific committee also served as master trainers (i.e., trainers who trained additional trainers). Training was available in French and English.
Part 1 of the training program consisted of asynchronous viewing of an expert-led core content presentation on the Canadian contraception landscape, unmet contraceptive needs, contraceptive options, and a review of standardized implant insertion and removal procedure videos.

Part 2 of the training program consisted of a 2-hour small-group (<6 participants and a trainer) virtual “hands-on” training session via a teleconferencing platform. Internet access was required. The sessions were led by a trained trainer and participants took part virtually from their location of choice. In advance of the session, each participant received a training package with the requisite equipment for the simulated training, including a model arm, instruments, and placebo training applicators. To reinforce learning, a repetitive “learn, see, practise, prove, do” model, which has been proposed as an optimal framework for procedural skills training, was used. The trainer demonstrated implant insertion and removal with the model arm and placebo applicators and then the group of trainees performed these steps simultaneously along with the trainer. Finally, each trainee was spotlighted within the web conference and individually demonstrated these procedures on a model arm. The trainer provided individual guidance and feedback while other trainees observed. Multiple attempts were allowed and encouraged until both trainer and trainee were satisfied with the trainee’s technique. Trainees were required to attend the entire session to obtain a confirmation of attendance.

Proof of Concept for Virtual Simulation-Based Training

Prior to implementing the program nationally, the teleconferencing platform training experience was pilot tested to demonstrate the feasibility of the virtual training format. The initial pilot test identified essential physical/technical parameters for the virtual training sessions (Table 1). In particular, dual camera usage (1 camera directed at the presenter and 1 camera directed at the model arm, *Figure 1*) was necessary to provide a good user experience. A third-party “producer” was instrumental in managing camera choice and speaker features.

After the pilot test, a full simulation for the synchronous virtual training was conducted and the recommended setup for trainers was determined (*Figure 1*). The proof-of-concept step verified the importance of having an optimized process, equipment, and technological setup to make the virtual training format as analogous to an in-person format as possible and to provide consistency across training sessions and trainers. An implementation guide was developed. For HCP trainees, the camera/computer and training equipment setup was optimized by sending them a “placemat” in advance of the session, which provided visual and written guidance on the training item placement.

Participants were required to register online for the training program. Participants were required to complete part 1 prior to registration for part 2.

Program Evaluation

Upon completion of part 2, participants were asked to complete an anonymous evaluation of the training program using a three-point Likert scale (agree, neutral, or disagree). Trainees were also asked if they would like additional training (yes/no); if so, they were given the opportunity to provide contact information for follow-up. The link to this survey was sent the next business day after session completion by the program sponsor. Descriptive analyses of these data were performed.

As this study was a quality assurance and program evaluation activity, research ethics board review was not required.

Table 1. Physical and technical requirements for virtual simulated training of contraceptive implant insertion and removal

Item	Description
Adequate desk/table space	Depth and width need to be sufficient to accommodate all required equipment.
2 cameras for the trainer	• 1 (laptop) focused on the trainer (with flexibility to move this camera to the model arm in a single motion)
• 1 (smartphone on tripod) focused on the model arm and technique demonstration	
1 camera for the trainee	This allowed the trainer to visualize the simulated procedures on the model arm.
Third-party “producer”	This person managed the camera choice and speaker features on the video teleconference platform and toggled between trainer and trainee views, thereby allowing the participants to focus on the training, not the technology.
RESULTS

Training Program Enrollment and Evaluations

Between September 14, 2020 and June 2, 2021, six sessions were conducted to train 83 HCPs, including 5 scientific committee members, to be trainers for the part 2 virtual “hands-on” simulation training. The trainers were chosen based on considerations including geographic location and expertise. The trainers conducted 565 simulation training sessions between September 22, 2020 and December 31, 2021.

Between September 2, 2020 and December 31, 2021, 5540 HCPs registered for the training program; 3162 (57.1%) completed the part 1 asynchronous self-directed content viewing. Of the HCPs who completed part 1, 2740 (86.7%) had completed the part 2 synchronous simulated training session as of December 31, 2021.

Of the 2740 participants who completed the simulated training sessions, 60.1% (1646) were family physicians, 24.7% (677) were nurse practitioners (including a small number of registered nurses for whom this area was in their scope of practice), 12.7% (348) were obstetrician/gynaecologists, and 2.5% (69) listed other specialties, including postgraduate trainees (Table 2). There were participants from all Canadian provinces and territories. Ontario had the highest number of HCPs who completed part 1 (n = 913), followed by Québec (n = 588), British Columbia (n = 458), and Alberta (n = 440) (Table 2).

Of the 2740 HCPs who completed part 2, 1730 (63.1%) submitted a post-training evaluation (Table 3). Some respondents did not answer all questions. Most respondents (1570/1627 [96.5%]) reported that the virtual format of the “hands-on” training was effective. When asked “Would you like to request additional training on insertion and removal techniques?,” 4.5% (75/1671) of respondents answered “yes.”

DISCUSSION

Canada was the first country to initially use a completely remote virtual training program for the contraceptive implant. Converting from face-to-face to virtual training environments required careful development to ensure Canadian training met previously established global standards. Best practices for teaching procedural skills and to improve patient safety were used, including demonstrating and organizing procedures into steps and the repetitive framework of “learn, see, practise, prove, do, maintain.”

The program incorporated principles of simulation-based mastery learning that emphasize tailoring education to the learner’s pace and the use of feedback to enhance skill acquisition. Simulation-based mastery learning initiatives have been found to result in substantial retention of knowledge and may improve patient care practices and outcomes. The majority of our survey respondents found that the program was clinically relevant, useful, and effective for their training needs.

Learnings From the Virtual Simulation Training Program

The virtual adaptation of part 1, a prerecorded session reviewing core content, required technology (voice over slides) and infrastructure (web platforms capable of hosting prerecorded slide presentations) that were available prepandemic. Ongoing engagement with the training program was high between part 1 and part 2. At the time of this analysis, not all participants who completed part 1 had registered for or completed part 2. Others may have been interested in learning about a new contraceptive option for patient counselling purposes but did not plan to do implant insertions or removals themselves.
The virtual synchronous simulated training sessions in part 2 required adaptations and use of web-based conferencing platforms to optimize the trainer/trainee experience. Essential features for success of the virtual simulation-based training were identified. These included clearly outlined procedures for both the trainer and the trainee, as well as a list of requirements for trainee setup (e.g., proper equipment, Internet connection, training models, placebo applicators, lighting). This allowed training to be standardized and replicated across different trainers and sessions (Figures 1 and 2A) and ensured all trainees had the same optimized view of the model arm (Figure 2B). This may have been an improvement over live training, where trainees often have partially blocked views or different angles. A technology dry run with the trainer (dual camera, audio, etc.) prior to initiating the training sessions was critical for trainer confidence with the technology and to troubleshoot in advance.

Unexpected issues can arise during any training program, but virtual learning is particularly sensitive to technology or equipment failures. Technical requirements should be confirmed in advance, so trainees have the fidelity needed for participation. Important logistical considerations included coordination of shipping for materials in advance of scheduled simulation sessions and time zone considerations. Solutions included early shipment (as much in advance of the synchronous training session date as feasible) and confirmation of receipt of materials by the HCP. Conducting synchronous training sessions across different time zones resulted in some HCPs not attending their session at the scheduled time and/or inadvertently having clinical obligations during scheduled training sessions. Highlighting time zones in messages and including calendar options during registration to ensure meeting times were automatically switched to the trainee’s time zone helped address these issues.

A major tenet of adult learning principles is active involvement in the learning process. Simulation-based medical education has advantages over traditional clinical skill training, including opportunities to offer support and guidance in a less stressful environment. Providing each trainee with a model arm and placebo training applicators was essential so they could view the procedure being performed remotely by an expert and then practise it and receive real-time expert feedback on technique. Gynaecology has many potential applications for simulation-based training. A recent Danish survey identified >30 procedures suitable for simulation-based education and OB/GYN training program curricula, including the insertion of contraceptive devices. The need for this form of “hands-on” training took on greater urgency during the COVID-19 pandemic. Although the impetus for our virtual training program was the pandemic, the lessons learned would extend beyond this unique period. Virtual simulation-based training programs may allow widespread access to knowledge and skill acquisition for other medical procedures. This type of medical training satisfies important needs by providing (1) an active HCP user experience to improve performance in medical procedures, (2) remote education that removes geographic- and resource-based constraints for attending the training, and (3) the opportunity to network/interact with other HCPs across geographies. A lack of HCP training has been identified as a key barrier to the use of long-acting contraceptive methods. Remote education is a challenge that can be addressed by programs like the one we have described. Web-based programs can reach anywhere with Internet access or cellular networks, including remote geographic locations and regions that may not have sufficient experts to guide training.

Limitations

Because no in-person training program existed for Canadian HCPs during the pandemic, it was not possible to do a direct comparison to in-person learning opportunities or

Professional status	No. of participants (%)
Family physician	1646 (60.1)
Nurse practitioner/RN	677 (24.7)
Obstetrician/gynaecologist	349 (12.7)
Other specialty	69 (2.5)

Geographic location	No. of participants (%)
Yukon	2 (0.1)
Prince Edward Island	9 (0.3)
Nunavut	20 (0.7)
Northwest Territories	25 (0.9)
New Brunswick	32 (1.2)
Newfoundland	40 (1.5)
Manitoba	66 (2.4)
Saskatchewan	66 (2.4)
Nova Scotia	81 (3.0)
Alberta	440 (16.1)
British Columbia	458 (16.7)
Quebec	588 (21.5)
Ontario	913 (33.3)

RN: registered nurse.
to conduct a cost-effectiveness comparison, which is an important consideration in the provision of access to training across the country. We aimed to provide training for the contraceptive implant in Canada similar to what had been successfully used in other countries, thus we did not explore additional options for simulation-based medical education, including virtual reality or screen-based simulators. These alternatives may be helpful in further expanding outreach and enhancing the training experience.

Lastly, the program evaluations were completed by 1730 participants who completed the program (response rate 63.1%), leading to a potential response bias.

Virtual web-based training offers many advantages, but it is important to acknowledge potential drawbacks. Virtual training programs have the potential to be highly cost-effective, but programs that require individual training materials will need additional resources for shipping and logistical support. Most conventional live training programs offer on-site support from experts (e.g., “staying behind for questions”) and although additional 1:1 time (both at the end and at a later time) was available in our program to support learners as needed, not all who would have wanted to may have taken advantage of this. Adequate wireless (wi-fi) or cellular data networks are required, and these may not be available in more remote locations. However, it is possible that some aspects of the training could be conducted with lower resolution, which may help expand virtual training outreach.

CONCLUSION

The creation of a virtual simulation training program that can be delivered remotely takes initial time and effort to develop consistent training across different trainers and sessions and to ensure an optimal training experience. Once achieved, this program can be continually replicated and allow for greater access to training opportunities, particularly in more remote geographic locations. Virtual, simulation-based training on web-based platforms may be a valuable continuing medical education modality that provides greater flexibility for learners. Although our program was specific for the contraceptive implant, it may provide a template or procedures in other areas of medicine in the future.
Acknowledgements
The authors would like to thank Dr. Marie-Soleil Wagner (Montréal, QC) for her guidance as a member of the scientific steering committee and the Organon Canada team (Kirkland, QC) for their support in conducting training sessions.

REFERENCES
1. Akaike M, Fukutomi M, Nagamune M, et al. Simulation-based medical education in clinical skills laboratory. J Med Invest 2012;59:28–35.
2. Kiely DJ. Obstetric simulation in Canada: the need for commitment and leadership. J Obstet Gynaecol Can 2018;40:476–7.
3. McGaghie WC, Harris IB. Learning theory foundations of simulation-based mastery learning. Simul Healthc 2018;13:S15–20.
4. Soetikno R, Asokkumar R, McGill SK, et al. Simulation-based mastery learning for practicing gastroenterologists—renewed importance in the era of COVID-19. Am J Gastroenterol 2020;115:1380–3.
5. Soetikno R, Cahal-Prodigalidad PA, Kaltenbach T, et al. Simulation-based mastery learning with virtual coaching: experience in training standardized upper endoscopy to novice endoscopists. Gastroenterology 2020;159:1632–6.
6. Griswold-Theodorson S, Ponnuru S, Dong C, et al. Beyond the simulation laboratory: a realist synthesis review of clinical outcomes of simulation-based mastery learning. Acad Med 2015;90:1553–60.
7. Sawyer T, White M, Zaveri P, et al. Learn see, practice, prove, do, maintain: an evidence-based pedagogical framework for procedural skill training in medicine. Acad Med 2015;90:1025–33.
8. Burgess A, van Diggele C, Roberts C, et al. Tips for teaching procedural skills. BMC Med Educ 2020;20:458.
9. Moazed F, Cohen ER, Furiasse N, et al. Retention of critical care skills after simulation-based mastery learning. J Grad Med Educ 2013;5:458–63.
10. Bryan RL, Kreuter MW, Brownson RC. Integrating adult learning principles into training for public health practice. Health Promot Pract 2009;10:557–63.
11. So HY, Chen PP, Wong GKC, et al. Simulation in medical education. J R Coll Physicians Edinb 2019;49:52–7.
12. Nayahangan IJ, Konge L, Møller-Skuldbøl IM, et al. A nationwide needs assessment to identify and prioritize technical procedures for simulation in obstetrics and gynaecology: a Delphi study. J Obstet Gynaecol Can 2020;42:409–19.
13. Kiely DJ, Posner GD, Sansregret A. Health care team training and simulation-based education in obstetrics during the COVID-19 pandemic. J Obstet Gynaecol Can 2020;42:1017–20.
14. Cottenbader E, Cartwright AE, McDowell M, et al. Factors associated with delayed contraceptive implant removal in Ethiopia. Glob Health Sci Pract 2020;8:0.
15. Hopkins B. Barriers to health care providers’ provision of long-acting reversible contraception to adolescent and nulliparous young women. Nurs Womens Health 2017;21:122–8.
16. Phillips J, Sandhu P. Barriers to implementation of long-acting reversible contraception: a systematic review. J Am Assoc Nurse Pract 2018;30:236–43.
17. Sørensen JL, Østergaard D, LeBlanc V, et al. Design of simulation-based medical education and advantages and disadvantages of in situ simulation versus off-site simulation. BMC Med Educ 2017;17:20.