FRACTIONAL ORDER PREY-PREDATOR MODEL WITH INFECTED PREDATORS IN THE PRESENCE OF COMPETITION AND TOXICITY

M. R. LEMNAOUAR¹, M. KHALFAOUI¹, Y. LOUARTASSI¹,²,* AND I. TOLAIMATE¹

Abstract. In this paper, we propose a fractional-order prey-predator model with reserved area in the presence of the toxicity and competition. We prove different mathematical results like existence, uniqueness, non negativity and boundedness of the solution for our model. Further, we discuss the local and global stability of these equilibria. Finally, we perform numerical simulations to prove our results.

Mathematics Subject Classification. 26A33, 34A08, 34K37.

Received August 4, 2019. Accepted February 7, 2020.

1. Introduction

Each population within an ecosystem does not exist in isolation, and there must be some relationships between these different populations [3]. The relationship between them is divided into types: mutualism, parasitism, competition and predation. The dynamic relationship between predator and prey is long established and will remain among the crucial topics in ecology and mathematical ecology because of its universal existence and its importance [30].

In recent years, the fractional calculations have developed rapidly and have shown broad application prospects in many areas. Useful results can be obtained by extracting a dynamic behaviour of biological systems presented by a mathematical model of integer derivatives. However, most biological systems also have memory. In this case, the modelling in fractional order, unlike the classical mode. The existence of the memory is taken into account. The fractional derivative of a biological process at a point is affected by all the information and behaviour of the model at all previous times, while the classical derivative at a point is only affected by information from the local neighbourhood of that point. For this reason, many papers study the theory of differential fractional equations [19, 21, 23, 24, 26].

Recently, many applications have been developed in areas such as laser physics, chemical reactors, secure communication, biomedicine, epidemiology, signal processing, control theory, mechanics, etc. It has been found that various applications can be modelled using fractional derivatives.

Keywords and phrases: Prey–predator system, toxicity, equilibria, stability, competition, fractional order.

¹ Mohammed V University in Rabat, Superior School of Technology Salé, LASTIMI, Salé, Morocco.
² Mohammed V University in Rabat, Faculty of Science, Lab-Mia, Rabat, Morocco.

* Corresponding author: ylouartassi@gmail.com

© The authors. Published by EDP Sciences, 2020
Table 1. Variables and parameters descriptions.

Parameters and variables	Explanation
x	Biomass densities of the unreserved areas
y	Biomass densities of the reserved areas
S	Susceptible predator
I	Infected predator
E_1, E_2, E_3	The effort applied for harvesting in the unreserved area, the susceptible predator populations, the infected predator populations, respectively
r_1, r_2	The growth rates of fish population inside reserved and the unreserved areas
q_1, q_2	The catchability coefficient in the unreserved area and the predator species
σ_1, σ_2	Migration rate from unreserved area to reserved area and reserved area to unreserved area
n_1, n_2	The competition coefficients
γ	The strength of intra-specific between prey and infected predator
δ	The disease transmission coefficient
β	The search rate of the prey toward susceptible predator
μ	The death rate of susceptible predator
η	The death rate of infected predator
α'	Saturation constant while susceptible predators attack the prey
u, v	The coefficients of toxicity
$\beta xS/\alpha' + x$	The functional response of feeding prey by susceptible predator

Not long ago, many researchers began to study fractional biological models [1, 10, 20, 25]. In article [14], a dynamic system modelling a prey-predator with harvest area and reserve for prey in the presence of competition and toxicity. In article [25], let us introduce a fractional prey-predator model with two types of susceptible and infected predators. In our paper it has been supposed that the prey are divided into two areas reserved and free and reserved zone, as well as the predators are divided into two categories, susceptible and infected predators. Now the basic model based on [14, 25] is governed by the following fractional system (Fig. 1):

\[
\begin{align*}
D^\alpha x &= r_1 x \left(1 - \frac{x}{K}\right) - \sigma_1 x + \sigma_2 y - u x^2 - \frac{\beta x S}{\alpha' + x} - q_1 E_1 x - n_1 x y - \gamma x I, \\
D^\alpha y &= (r_2 - \sigma_2) y + \sigma_1 x - v y^2 - n_2 x y, \\
D^\alpha S &= \frac{\beta x S}{\alpha' + x} - \delta S I - \mu S - q_2 E_2 S, \\
D^\alpha I &= \delta S I + \sigma \gamma x I - q_3 E_3 I - \eta I
\end{align*}
\]

where D^α is in the sense of Caputo fractional derivative and $0 < \alpha \leq 1$ defined by [22]:

\[
D^\alpha f(t) = \frac{1}{\Gamma(1-\alpha)} \int_0^t \frac{f'(x)}{(t-x)^\alpha} dx.
\]

Where f is defined by : $f : \Omega \rightarrow \mathbb{R}^n$, $\Omega \subset \mathbb{R}^n$.

The detailed description of the model (1.1) is illustrated in the following schema: the explanation an Units of this parameters and variables given by the tables (Tabs. 1 and 2):

- From [7], if there is no migration of fish population from reserved area to unreserved area ($\sigma_2 = 0$) and $(r_1 - \sigma_1 - q_1 E_1 < 0)$, we find that $D^\alpha x < 0$. Similarly, if there is no migration of fish population from unreserved area to reserved area ($\sigma_1 = 0$) and $r_2 - \sigma_2 < 0$, then $D^\alpha y < 0$.

- If $\sigma \beta - \mu - q_2 E_2 < 0$, then $D^\alpha S < 0$.

So, finally we conclude that:

$$r_1 - \sigma_1 - q_1 E_1 > 0, \ r_2 - \sigma_2 > 0, \ \sigma\beta - \mu - q_2 E_2 > 0.$$ \hspace{1cm} (1.2)

Our paper is organized as follows. In the following section, we prove the existence and uniqueness solutions of the system (1.1), in Section 3, we show the boundedness and positivity of the solutions.
For any numerical simulations to study the stability of the equilibria. In Section 4, we study the existence and stability of all the equilibria of our model (1.1). Finally, we present the simulation studies to study the stability of the equilibria.

2. Basic properties and equilibria

Theorem 2.1. The sufficient condition for the existence and uniqueness of the solution of system (1.1) in the region \(\Omega \times [t_0, T] \) is:

\[
L = \max((r_1 - q_1 E_1 + M (n_1 + \gamma + \beta (1 + \sigma) + 2(\frac{\eta}{K} + u))), (r_2 + M (n_2 + 2v)),
\]

\[
(\beta (1 + \sigma) + \mu + q_2 E_2 + 2\delta M), (\sigma M + \eta + q_3 E_3)).
\]

Proof. Let \(X = (x, y, S, I)^T \) and \(X' = (x', y', S', I')^T \) the system (1.1) can be is written in this form:

\[
D^\alpha X = F(X),
\]

(2.1)

where

\[
F(X) = \begin{pmatrix}
 r_1 x (1 - \frac{K}{x}) - \sigma x - 2u - \frac{\beta x S}{\alpha + x^2} - q_1 E_1 x - n_1 xy - \gamma x I \\
 r_2 - \sigma_2 y + \sigma x - vy - n_2 xy \\
 \frac{\sigma_2 x S}{\alpha + x^2} - \delta SI - \mu S - q_2 E_2 S \\
 \delta SI + \sigma \gamma x I - q_3 E_3 I - \eta I
\end{pmatrix} = \begin{pmatrix}
 F_1(X) \\
 F_2(X) \\
 F_3(X) \\
 F_4(X)
\end{pmatrix}.
\]

To prove the global existence and uniqueness of system (1.1), consider the region \(\Omega \times [t_0, T] \), where \(\Omega = \{ (x, y, S, I) \in \mathbb{R}^4 : \max \{ |x|, |y|, |S|, |I| \} \leq M, M > 0 \} \).

For any \(X, X' \in \Omega \):

\[
\left\| F(X) - F(X') \right\| = \frac{4}{i=1} |F_i(X) - F_i(X')|,
\]

\[
= |(r_1 - \sigma_1 - q_1 E_1)(x - x') - (u + \frac{\eta}{K})(x^2 - x'^2) + \sigma_2(y - y')
\]

\[
- \beta(\frac{\alpha'(xS - x'S') + x'(S - S')}{(\alpha' + x)(\alpha' + x')}) - n_1(xy - x'y') - \gamma(xI - x'I')|
\]

\[
+ |(r_2 - \sigma_2)(y - y') + \sigma(x - x') - (y^2 - y'^2) - n_2(xy - x'y')|
\]

\[
+ |\sigma(\frac{\alpha'(xS - x'S') + x'(S - S')}{(\alpha' + x)(\alpha' + x')}) - \delta(SI - S'I') - \mu q_2 E_2(S - S')|
\]

\[
+ |\gamma(xI - x'I') - (\eta + q_3 E_3)(I - I')|,
\]

\[
\leq L \| X - X' \|,
\]

where \(L = \max((r_1 - q_1 E_1 + M (n_1 + \gamma + \beta (1 + \sigma) + 2(\frac{\eta}{K} + u))), (r_2 + M (n_2 + 2v)),
\]

\[
(\beta (1 + \sigma) + \mu + q_2 E_2 + 2\delta M), (\sigma M + \eta + q_3 E_3)).
\]

Thus, \(F(X) \) satisfies the Lipschitz's condition [13] with respect to \(X \).

Now, we describe the uniform boundedness of the solutions of the system (1.1).
Lemma 2.2. The set \(\Omega' = \{ (x, y, S, I) \in \mathbb{R}^4_+ : x + y + \frac{S}{\sigma} + \frac{I}{\sigma} \leq \frac{H}{\eta q_3 E_3} \} \) is a region of attraction for all solutions initiating in the interior of the positive octant, where

\[
H = \frac{K(r_1 - q_1 E_1 + \eta + q_3 E_3)^2}{4(r_1 + Ku)} + \frac{(r_2 + \eta + q_3 E_3)^2}{4v}.
\]

Proof. We pose \(w = x + y + \frac{S}{\sigma} + \frac{I}{\sigma} \),

\[
D^\alpha w + (\eta + q_3 E_3)w = \left(r_1 - q_1 E_1 + \eta + q_3 E_3 \right) x - \left(\frac{r_1}{K} + u \right) x^2 - vy^2 + (r_2 + \eta + q_3 E_3) y - (n_1 + n_2) xy + \frac{\left((\eta + q_3 E_3 - \mu) q_2 E_2 \right) S}{\sigma},
\]

Taking \(\eta + q_3 E_3 < \mu + q_2 E_2 \) we get:

\[
D^\alpha w + (\eta + q_3 E_3)w \leq \frac{K(r_1 - q_1 E_1 + \eta + q_3 E_3)^2}{4(r_1 + Ku)} + \frac{(r_2 + \eta + q_3 E_3)^2}{4v} = H.
\]

Applying the theory of fractional inequality [22] we get:

\[
w(t) \leq w(0)E_{\alpha}\left(-\left(\eta + q_3 E_3 \right) t^\alpha \right) + \frac{H}{\eta + q_3 E_3} \left(1 - E_{\alpha}\left(-\left(\eta + q_3 E_3 \right) t^\alpha \right) \right),
\]

where \(E_{\alpha}(z) = \sum_{k=0}^{\infty} \frac{z^k}{\Gamma(\alpha k + 1)} \) is Mittag-Leffler function [22], \(\Gamma(z) = \int_0^\infty x^{z-1}e^{-x} \, dx \) is Euler’s Gamma function, and \(0 < E_{\alpha}\left(-\left(\eta + q_3 E_3 \right) t^\alpha \right) \leq 1 \), if \(t \to \infty \), we have \(0 < w(t) \leq w(0) + \frac{H}{\eta + q_3 E_3} \), proving this Lemma.

Now, we find the positive equilibria, then we study their local stability. We denote the function on the right hand side of the system (1.1) by \(F_i(x, y, S, I) \), for \(i = 1, \ldots, 4 \).

Equilibria of model (1.1) is obtained by solving \(F_i(x, y, S, I) = 0 \), for \(i = 1, \ldots, 4 \). Then, we find that our model (1.1) admits five positive equilibria:

1. \(P_0(0, 0, 0, 0) \) there is a trivial equilibrium.
2. \(P_1(x_1, y_1, 0, 0) \), where \((x_1, y_1) \) is the positive solution of the following equations:

\[
\begin{align*}
(r_1 - \sigma_1 - q_1 E_1)x - \left(\frac{r_1 + Ku}{K} \right) x^2 + \sigma_2 y - n_1 xy &= 0, \\
(r_2 - \sigma_2)y + \sigma_1 x - vy^2 - n_2 xy &= 0.
\end{align*}
\]

Using system (2.2), \(x \) is satisfied by the following equation,

\[
a_3 x^3 + a_2 x^2 + a_1 x + a_0 = 0,
\]

where:

\[
\begin{align*}
a_3 &= \left(u + \frac{r_1}{K} \right) \left(n_1 n_2 - v \left(u + \frac{r_1}{K} \right) \right), \\
a_2 &= 2v (r_1 + Ku) (r_1 - \sigma_1 - q_1 E_1) - n_2 \sigma_2 \left(\frac{r_2}{K} + u \right) - n_1 n_2 (r_1 - \sigma_1 - q_1 E_1) \\
&- n_1 (r_2 - \sigma_2) \left(u + \frac{r_2}{K} \right) + \sigma_1 n_1^2, \\
a_1 &= -v (r_1 - \sigma_1 - q_1 E_1)^2 + (r_1 - \sigma_1 - q_1 E_1) (n_2 \sigma_2 + n_1 (r_2 - \sigma_2)) \\
&- 2 \sigma_1 \sigma_2 n_1 + (r_2 - \sigma_2) \sigma_2 \left(u + \frac{r_2}{K} \right), \\
a_0 &= -\sigma_2 (r_2 - \sigma_2) (r_1 - \sigma_1 - q_1 E_1) + \sigma_1 \sigma_2^2.
\end{align*}
\]
Using criteria of Descartes [5], the above equation (2.3) had a unique positive solution if the following inequalities hold:

\[a_0 > 0 \quad \text{if} \quad (r_2 - \sigma_2)(r_1 - \sigma_1 - q_1E_1) < \sigma_1\sigma_2, \]
\[a_1 > 0 \quad \text{if} \quad (r_1 - \sigma_1 - q_1E_1)(n_2\sigma_2 + n_1(r_2 - \sigma_2)) + (r_2 - \sigma_2)\sigma_2(u + \frac{r_1}{K}) > 2\sigma_1\sigma_2n_1 + v(r_1 - \sigma_1 - q_1E_1)^2. \]

Then,

\[E_1 > \frac{1}{q_1} \max \left(r_1 - \sigma_1 - \frac{\sigma_1\sigma_2}{r_2 - \sigma_2}, r_1 - \sigma_1 - \frac{\sqrt{\Delta_1 + n_2\sigma_2 + n_1(r_2 - \sigma_2)}}{2v} \right), \] (2.5)

where \(\Delta_1 = (n_2\sigma_2 + n_1(r_2 - \sigma_2))^2 + 4v(u + \frac{r_1}{K})(r_2 - \sigma_2)\sigma_2 \)

\[a_2 > 0 \quad \text{if} \quad v(r_1 - \sigma_1 - q_1E_1) > n_2\sigma_2 + n_1(r_2 - \sigma_2), \]
\[a_3 < 0 \quad \text{if} \quad n_1n_2 < v(u + \frac{r_1}{K}). \] (2.6)

Then

\[y_1 = \frac{x_1}{\sigma_2 - n_1x_1} \left(\left(\frac{r_1 + Ku}{K} \right)x_1 - (r_1 - \sigma_1 - q_1E_1) \right) > 0, \]

if

\[\frac{(r_1 - \sigma_1 - q_1E_1)K}{r_1 + Ku} < x_1 < \frac{\sigma_2}{n_1} \quad \text{or} \quad \frac{\sigma_2}{n_1} < x_1 < \frac{(r_1 - \sigma_1 - q_1E_1)K}{r_1 + Ku}. \] (2.7)

3. In the interior of the equilibrium \(P_2(x_2, y_2, 0, I_2) \), i.e. \(F_i(x_2, y_2, 0, I_2) = 0, i = 1, 2, 4 \), we get a positive solution:

\[x_2 = \frac{\eta + q_3E_3}{\sigma\gamma}, \]
\[y_2 = \frac{r_2 - \sigma_2 - n_2x_2 + \sqrt{(r_2 - \sigma_2 - n_2x_2)^2 + 4\sigma_1x_2v}}{2v}, \]
\[I_2 = \frac{1}{\gamma x_2} \left((r_1 - \sigma_1 - n_1y_2 - q_1E_1)x_2 - \left(\frac{r_1}{K} + u \right) x_2^2 + \sigma_2y_2 \right) > 0. \] (2.8)

if

\[0 < x_2 < \frac{r_1 - \sigma_1 - q_1E_1 - n_1y_2 + \sqrt{(r_1 - \sigma_1 - n_1y_2 - q_1E_1)^2 + 4\sigma_2(u + \frac{r_1}{K})y_2}}{2(\frac{r_1}{K} + u)}. \] (2.9)
4. In the interior of the equilibrium \(P_3(x_3, y_3, S_3, 0) \), i.e. \(F_i(x_3, y_3, S_3, 0) = 0 \), \(i = 1, 2, 3 \), we get a positive solution:

\[
x_3 = \frac{\alpha'(\mu + q_2 E_2)}{\sigma \beta - (\mu + q_2 E_2)} > 0, \quad \text{if} \quad \sigma \beta > \mu + q_2 E_2,
\]

\[
y_3 = \left(r_2 - \sigma_2 - n_2 x_3 \right) + \sqrt{\left(r_2 - \sigma_2 - n_2 x_3 \right)^2 + 4v \sigma_1 \sigma_3 x_3}
\]

\[
S_3 = \frac{\alpha' + \alpha}{\beta x_3} \left((r_1 - \sigma_1 - q_1 E_1 - n_1 y_3)x_3 + \sigma_2 y_3 - \left(u + \frac{r_1}{2} \right) x_3^2 \right).
\]

\[S_3 > 0 \quad \text{if} \quad 0 < x_3 < \frac{r_1 - \sigma_1 - q_1 E_1 - n_1 y_3 + \sqrt{(r_1 - \sigma_1 - n_1 y_3 - q_1 E_1)^2 + 4 \sigma_2 (u + \frac{r_1}{2}) y_3}}{2(\frac{1}{u} + v)}.
\]

5. Using \(F_i(x_4, y_4, S_4, I_4) = 0 \), \(i = 1, \ldots, 4 \), the equilibrium point \(P_4(x_4, y_4, S_4, I_4) \) is given by:

\[
y_4 = \frac{r_2 - \sigma_2 - n_2 x_4 + \sqrt{(r_2 - \sigma_2 - n_2 x_4)^2 + 4 \sigma_1 \sigma_4 x_4}}{2v},
\]

\[
S_4 = \frac{\eta + q_3 E_4 - \sigma \gamma x_4}{\sigma \gamma} > 0, \quad \text{if} \quad x_4 < \frac{\eta + q_3 E_4}{\sigma \gamma},
\]

\[
I_4 = \frac{1}{\delta} \left(\frac{\sigma' x_4}{\sigma' + x_4} - (\mu + q_2 E_2) \right) > 0, \quad \text{if} \quad x_4 > \frac{\alpha'(\mu + q_2 E_2)}{\sigma \beta - \alpha'(\mu + q_2 E_2)}.
\]

where \((x_4, y_4)\) is the positive solution of the following equations:

\[
\begin{align*}
(1 - \frac{\eta}{\sigma \gamma}) - \sigma_1 x + \sigma_2 y - \beta_{x} x - q_1 E_1 x - n_1 xy - \gamma x I &= 0, \\
(r_2 - \sigma_2)y + \sigma_1 x - vy^2 - n_2 xy &= 0.
\end{align*}
\]

After the calculations, \(x \) is satisfied by the following equation,

\[
b_5 x^5 + b_4 x^4 + b_3 x^3 + b_2 x^2 + b_1 x + b_0 &= 0,
\]

where

\[
\begin{align*}
b_5 &= bn_2 n_1 - b^2 v, \\
b_4 &= 2abv - an_2 n_1 - 2b^2 \alpha' v - bdn_1 + 2ba' n_2 n_1 - b \sigma_2 n_2 + \sigma_1 n_1^2, \\
b_3 &= -a^2 v + 4ab v + adn_1 - 2a \alpha' n_2 n_1 + a \sigma_2 n_2 - b^2 \alpha'^2 v - 2b \alpha' v - 2b \sigma_2 n_2 + b \sigma_2 n_2 + c \beta n_1 + 2 \sigma_1 n_1^2 - 2 \sigma_1 \sigma_2 n_1, \\
b_2 &= -2a^2 \alpha' v + 2ab \alpha' v + 2ac \alpha' v + 2a \alpha' n_1 - ad \sigma_2 - a \alpha'^2 n_2 n_1 + 2a \alpha' n_2 n_1 - 2b \sigma_2 n_2 - 2b \sigma_2 n_2 + c \beta n_1 + 2 \sigma_1 n_1^2 - 2 \sigma_1 \sigma_2 n_1, \\
b_1 &= -a^2 \alpha'^2 v + 2ac a' \sigma_2 + c \alpha' \sigma_2 n_1 - 2c \sigma_2 n_2 + 2b \alpha' \sigma_2 n_2 - c \alpha' \sigma_2 n_2 - c \alpha' \sigma_2 n_2 - 2a \alpha' \sigma_2 n_2 + 2a \alpha' \sigma_2 n_2 + 2a \alpha' \sigma_2 n_2 + 2a \alpha' \sigma_2 n_2, \\
b_0 &= -a \alpha' \sigma_2 + c \alpha' \sigma_2 + c \alpha' \sigma_2 + \alpha'^2 \sigma_2, \\
a &= r_1 - \sigma_1 - q_1 E_1 + \frac{2}{3}(\mu + q_2 E_2), \\
b &= \frac{r_1}{R} + u, \\
c &= \frac{n_3 + q_3 E_3}{\delta}, \\
d &= r_2 - \sigma_2.
\end{align*}
\]

Using the criteria of Descartes [5] it is necessary to impose that:
Proof. From (2.15) evaluated at equilibrium point

The equilibrium point

Therefore, the first and second eigenvalues are:

Proof. The characteristic equation of

Theorem 2.3.
The equilibrium

by: \(J(x, y, S, I) = \begin{pmatrix} J_{11} & J_{12} & J_{13} & J_{14} \\ J_{21} & J_{22} & 0 & 0 \\ J_{31} & 0 & J_{33} & J_{34} \\ J_{41} & 0 & J_{43} & J_{44} \end{pmatrix} \),

where:

\begin{align*}
J_{11} &= r_1 - \sigma_1 - q_1 E_1 - 2(\frac{r_1}{K} + u)x - n_1 y - \gamma I - \frac{\beta s \sigma}{(\alpha' + x)^\gamma}, \\
J_{12} &= \sigma_2 - n_1 x, \\
J_{13} &= -\frac{\beta x}{\alpha' + x}, \\
J_{14} &= -\gamma x, \\
J_{21} &= \sigma_1 - n_2 y, \\
J_{22} &= r_2 - \sigma_2 - 2\gamma y - n_2 x, \\
J_{31} &= \frac{\sigma_3 x}{(\alpha' + x)^\gamma} - \delta I - \mu - q_2 E_2, \\
J_{32} &= -\delta S, \\
J_{33} &= \sigma_3 I, \\
J_{34} &= \delta I, \\
J_{41} &= \delta S + \sigma \gamma x - q_3 E_3 - \eta.
\end{align*}

(2.15)

Theorem 2.3. The equilibrium \(P_0(0, 0, 0, 0) \) of the system (1.1) is unstable.

Proof. The characteristic equation of \(P_0(0, 0, 0, 0) \) is

\[
[\lambda^2 - (r_1 - \sigma_1 + r_2 - \sigma_2 - q_1 E_1)\lambda + (r_2 - \sigma_2)(r_1 - \sigma_1 - q_1 E_1) - \sigma_2 \sigma_1] \\
\times (\lambda + \mu + q_2 E_2)(\lambda + \eta + q_3 E_3) = 0.
\]

Then, the eigenvalues of matrix (2.15) to the equilibrium point \(P_0 \):

\[\lambda_1 = -(\eta + q_3 E_3) < 0, \lambda_2 = -(\mu + q_2 E_2) < 0, \text{ and } \lambda_3 + \lambda_4 = r_1 - \sigma_1 - q_1 E_1 + r_2 - \sigma_2 > 0.\]

Therefore one of the eigenvalues \(\lambda_3 \) and \(\lambda_4 \) not satisfy Matignon’s condition [17]. Hence, \(P_0(0, 0, 0, 0) \) is unstable. \(\square \)

Theorem 2.4. The equilibrium point \(P_1(x_1, y_1, 0, 0) \) of the system (1.1) is locally asymptotically stable if

\[x_1 < \min \left(\frac{\eta + q_1 E_3}{\sigma_1}, \frac{\alpha' \mu + q_2 E_2}{\sigma_2} \right) \text{ and (2.16) satisfied.} \]

(2.16)

Proof. From (2.15) evaluated at equilibrium point \(P_1 \), the characteristic equation is:

\((\lambda^2 + s\lambda + p)(\lambda - \sigma \gamma x_1 + \eta + q_3 E_3)(\lambda - \frac{\sigma \beta x_1}{\alpha' + x_1} + \mu + q_2 E_2) = 0.\)

Where

\[s = \left(\sigma_2 \frac{y_1}{x_1} + (u + \frac{r_1}{K})x_1 + \sigma_1 \frac{y_1}{y_1} + vy_1 \right), \]

\[p = \left(\sigma_2 \frac{y_1}{x_1} + (u + \frac{r_1}{K})x_1 \right) \left(\sigma_1 \frac{y_1}{y_1} + vy_1 \right) - (\sigma_2 - n_1 x_1)(\sigma_1 - n_2 y_1). \]

Therefore, the first and second eigenvalues are:

\[\lambda_1 = \sigma \gamma x_1 - (\eta + q_3 E_3) < 0, \text{ if } x_1 < \frac{\eta + q_3 E_3}{\sigma_1}, \text{ then } |\arg(\lambda_1)| = \pi > \frac{\alpha \pi}{2}.\]

\[\lambda_2 = \frac{\sigma \beta x_1}{\alpha' + x_1} - (\mu + q_2 E_2) < 0, \text{ if } x_1 < \frac{\alpha' \mu + q_2 E_2}{\sigma_2 + (\mu + q_2 E_2)}, \text{ then } |\arg(\lambda_1)| = \pi > \frac{\alpha \pi}{2}.\]
We pose $\Delta = s^2 - 4p$. If $\Delta > 0$, λ_3 and λ_4 are purely real and negative.
If $\Delta < 0$, λ_3 and λ_4 are complex number and if $|\arg(\lambda_{3,4})| = \tan^{-1}\left(\frac{\sqrt{-\Delta}}{s}\right) > \frac{\alpha\pi}{2}$.
Hence, P_1 is locally asymptotically stable.

Theorem 2.5. The equilibrium point $P_2(x_2, y_2, 0, I_2)$ is locally asymptotically stable if $x_2 < \frac{\alpha'(\delta I_2 + \mu + q_2 E_2)}{\sigma\beta - \alpha'(\delta I_2 + \mu + q_2 E_2)}$ and (2.17) satisfied.

Proof. From the Jacobian matrix $J(x_2, y_2, 0, I_2)$, the characteristic equation at P_2:

$$
\left(\lambda - (\alpha' + \frac{\sigma\beta}{\alpha'}) - (\delta I_2 + \mu + q_2 E_2))\right) (\lambda^3 + c_2\lambda^2 + c_1\lambda + c_0) = 0,
$$

where:

$$
c_2 = -(A_1 + B_1),
$$

$$
c_1 = A_1B_1 - (\sigma_1 - n_2 y_2)(\sigma_2 - n_1 x_2) + \sigma\gamma^2 I_2 x_2,
$$

$$
c_0 = -B_1\sigma\gamma^2 I_2 x_2,
$$

$$
A_1 = r_1 - \sigma_1 - q_1 E_1 - 2\left(\frac{1 + Ku}{K}\right) x_2 - n_1 y_2 - \gamma I_2,
$$

$$
B_1 = r_2 - \sigma_2 - 2v y_2 - n_2 x_2.
$$

$$
\lambda_1 = \frac{\alpha'\sigma^2}{\alpha' + x_2} - \delta I_2 + \mu + q_2 E_2 < 0 \quad \text{if} \quad x_2 < \frac{\alpha'(\delta I_2 + \mu + q_2 E_2)}{\sigma\beta - \alpha'(\delta I_2 + \mu + q_2 E_2)},
$$

then $|\arg(\lambda_1)| = \pi > \frac{\alpha\pi}{2}$.

We define the discriminant of polynomial $P(\lambda) = \lambda^3 + c_2\lambda^2 + c_1\lambda + c_0$ in this form [2]:

$$
D(P) = 18c_1c_2c_0 + (c_2c_1)^2 - 4c_1^3 - 4c_2^3c_0 - 27c_0^2.
$$

(1) If $D(P) > 0$, P_2 is asymptotically stable if $c_0, c_1, c_2 > 0$ and $c_2c_1 - c_0 > 0$ for all $\alpha \in [0, 1]$.

(2) If $D(P) < 0$ and $c_0, c_1, c_2 > 0$, P_2 is asymptotically stable if $\alpha < \frac{2}{3}$ and $c_2c_1 - c_0 > 0$.

(3) If $D(P) < 0$, $c_0, c_1, c_2 > 0$ and $c_2c_1 = c_0$, P_2 is asymptotically stable for all $\alpha \in [0, 1]$.

Theorem 2.6. The equilibrium point $P_3(x_3, y_3, S_3, 0)$ is locally asymptotically stable if $\delta S_3 + \sigma\gamma x_3 < \eta + q_3 E_3$ and (2.18) are satisfied.

Proof. The characteristic equation of matrix $J(x_3, y_3, S_3, 0)$:

$$
(\lambda - (\delta S_3 + \sigma\gamma x_3 - \eta - q_3 E_3)) (\lambda^3 + d_2\lambda^2 + d_1\lambda + d_0) = 0,
$$

where:

$$
d_2 = -(A_2 + B_2),
$$

$$
d_1 = A_2B_2 - (\sigma_1 - n_2 y_2)(\sigma_2 - n_1 x_2) + \frac{\sigma\beta^2 \alpha' x_3 S_3}{(\alpha' + x_3)^2},
$$

$$
d_0 = -B_2\frac{\sigma\beta^2 \alpha' x_3 S_3}{(\alpha' + x_3)^2},
$$

$$
A_2 = r_1 - \sigma_1 - q_1 E_1 - 2\left(\frac{1 + Ku}{K}\right) x_3 - n_1 y_3 - \frac{\sigma\beta^2 \alpha' S_3}{(\alpha' + x_3)^2},
$$

$$
B_2 = r_2 - \sigma_2 - 2v y_3 - n_2 x_3.
$$

The first eigenvalues $\lambda_1 = \delta S_3 + \sigma\gamma x_3 - \eta - q_3 E_3 < 0$ if $\delta S_3 + \sigma\gamma x_3 < \eta + q_3 E_3$,
then $|\arg(\lambda_1)| = \pi > \frac{\alpha\pi}{2}$.

We define the discriminant of polynomial $Q(\lambda) = \lambda^3 + d_2\lambda^2 + d_1\lambda + d_0$ in this form [2]:

$$
D(Q) = 18d_1d_2d_0 + (d_2d_1)^2 - 4d_1^3 - 4d_2^3d_0 - 27d_0^2.
$$

(1) If $D(Q) > 0$, P_3 is asymptotically stable if $d_0, d_1, d_2 > 0$ for all $\alpha \in [0, 1]$.

(2) If $D(Q) < 0$, $d_0, d_1, d_2 > 0$, P_3 is asymptotically stable if $\alpha < \frac{2}{3}$ and $c_2c_1 - c_0 > 0$.

(3) If $D(Q) < 0$, $d_0, d_1, d_2 > 0$ and $d_2d_1 = d_0$, P_3 is asymptotically stable for all $\alpha \in [0, 1]$.

\[\Box\]
Theorem 2.7. The equilibrium point \(P_4(x_4, y_4, S_4, I_4) \) is locally asymptotically stable if \(\phi_0, \phi_1, \phi_2, \phi_3 > 0 \), and \(\phi_2 \phi_3 - \phi_1 > \frac{\phi_0^2}{\phi_1^2} \).

Proof. From the Jacobian \(J(x_4, y_4, S_4, I_4) \) matrix, the characteristic equation of \(P_4 \) is:

\[
R(\lambda) = \lambda^4 + \phi_3 \lambda^3 + \phi_2 \lambda^2 + \phi_1 \lambda + \phi_0,
\]

where:

\[
\begin{align*}
\phi_3 &= -(a_6 + f_6), \\
\phi_2 &= a_6 f_6 - b_6 e_6 - c_6 g_6 - d_6 i_6 - h_6 j_6, \\
\phi_1 &= a_6 h_6 j_6 + c_6 f_6 g_6 + d_6 f_6 i_6 + f_6 h_6 j_6 - i_6 c_6 h_6 - d_6 g_6 j_6, \\
\phi_0 &= j_6 b_6 e_6 h_6 + i_6 c_6 f_6 h_6 + d_6 f_6 g_6 j_6 - j_6 a_6 f_6 h_6, \\
a_6 &= r_1 - \sigma_1 - q_1 E_1 - 2(\frac{r_2}{K} + u)x_4 - n_1 y_4 - \gamma I_4 - \frac{\beta_0 \alpha S_4}{(\alpha^r + x_4)^2} - \gamma I_4, \\
b_6 &= \sigma_2 - n_1 x_4, \\
c_6 &= \frac{-\beta_0 x_4}{\alpha^r + x_4}, \\
d_6 &= -\gamma x_4, \\
e_6 &= \sigma_1 - n_2 y_4, \\
f_6 &= r_2 - \sigma_2 - 2v y_4 - n_2 x_4, \\
g_6 &= \frac{\sigma_3 \alpha S_4}{(\alpha^r + x_4)^2}, \\
h_6 &= -\delta S_4, \\
i_6 &= \sigma \gamma I_4, \\
j_6 &= \delta I_4.
\end{align*}
\]

We pose the discriminant \(D(R) \) in following form:

\[
D(R) = 256\phi_0^3 - 192\phi_3\phi_1\phi_0^2 - 128\phi_2^2\phi_0 - 144\phi_2\phi_1^2\phi_0 - 27\phi_1^4 + 144\phi_3^2\phi_2^2\phi_0^2 - 60\phi_2^2\phi_1^2\phi_0 - 80\phi_3^2\phi_2^2\phi_1\phi_0 + 18\phi_3\phi_2\phi_1^2\phi_0 + 16\phi_3^2\phi_0^2 - 4\phi_2^2\phi_0^2 - 27\phi_3^4\phi_0^2 + 18\phi_3^2\phi_2\phi_1\phi_0 - 4\phi_3^3\phi_1 - 4\phi_2^2\phi_3^2\phi_0 + (\phi_3\phi_2\phi_1)^2.
\]

Using the results of [2],

\begin{enumerate}
\item If \(D(R) > 0 \), \(\phi_0, \phi_1, \phi_2, \phi_3 > 0 \) and \(\phi_2 \phi_3 - \phi_1 > \frac{\phi_0^2}{\phi_1^2} \), \(P_4 \) is locally asymptotically stable for all \(\alpha \in [0, 1] \).
\item If \(D(R) < 0 \), \(\phi_0, \phi_1, \phi_2, \phi_3 > 0 \) and \(\alpha < \frac{1}{3} \), \(P_4 \) is locally asymptotically stable.
\item If \(D(R) < 0 \), \(\phi_0, \phi_1, \phi_2, \phi_3 > 0 \) and \(\phi_2 = \frac{\phi_3 \phi_0}{\phi_1} + \frac{\phi_1}{\phi_3} \), \(P_4 \) is locally asymptotically stable for all \(\alpha \in [0, 1] \).
\end{enumerate}

\[\square \]

3. **Global stability of equilibria**

In this section, we prove the global stability of each equilibrium point of system (1.1) using Lyapunov functions.
Theorem 3.1. The equilibrium $P_1(x_1, y_1, 0, 0)$ is globally asymptotically stable if (2.5), (2.6), (2.7) and $n_1 + \frac{\sigma_n}{\sigma_1} < 2 \min \left(\frac{\sigma_n}{\sigma_1}, \frac{r_1}{K} + u \right)$ are realized.

Proof. Consider the following positive definite Lyapunov function about $P_1(x_1, y_1, 0, 0)$:

$$V_1(x, y) = \left(x - x_1 - x_1 \ln \left(\frac{x}{x_1} \right) \right) + \frac{\sigma_n}{\sigma_1} \left(y - y_1 - y_1 \ln \left(\frac{y}{y_1} \right) \right).$$

Using [28], we get:

$$D^\alpha V_1 \leq \frac{x-x_1}{x} D^\alpha x + \frac{\sigma_n}{\sigma_1} \left(\frac{y-y_1}{y} \right) D^\alpha y,$$

$$\leq (x - x_1) \left(-\left(\frac{r_1 + Ku}{K} \right) (x - x_1) + \sigma_2 \left(\frac{u}{\sigma} - \frac{u}{\sigma_2} - n_1 (y - y_1) \right) \right)$$

$$+ \frac{\sigma_n}{\sigma_1} (y - y_1) \left(-v (y - y_1) + \sigma_1 (\frac{x}{y} - \frac{x_1}{y_1}) - n_2 (x - x_1) \right).$$

Using $-(x - x_1)(y - y_1) < \frac{1}{2} ((x - x_1)^2 + (y - y_1)^2)$ we find,

$$D^\alpha V_1 \leq -\left(\frac{r_1 + Ku}{K} \right) (x - x_1)^2 - \frac{\sigma_n}{\sigma_1} (y - y_1)^2 - \frac{\sigma_n}{\sigma_1} (x - x_1)(y - y_1),$$

$$\leq \left(\frac{1}{2} (n_1 + \frac{\sigma_n}{\sigma_1}) - \frac{r_1 + Ku}{K} \right) (x - x_1)^2 + \left(\frac{1}{2} (n_1 + \frac{\sigma_n}{\sigma_1}) - \frac{\sigma_n}{\sigma_1} \right) (y - y_1)^2$$

$$\leq -\frac{\sigma_n}{\sigma_1} (y - y_1)^2.$$

Therefore, $D^\alpha V_1 < 0$ if $n_1 + \frac{\sigma_n}{\sigma_1} < 2 \min \left(\frac{\sigma_n}{\sigma_1}, \frac{r_1}{K} + u \right).$

Theorem 3.2. The equilibrium $P_2(x_2, y_2, 0, I_2)$ is globally asymptotically stable if (2.9) and $n_1 + \frac{\sigma_n}{\sigma_1} < 2 \min \left(\frac{\sigma_n}{\sigma_1}, \frac{r_1}{K} + u \right)$ are realized.

Proof. Consider the following positive definite Lyapunov function about $P_2(x_2, y_2, 0, I_2)$:

$$V_2(x, y, I) = \left(x - x_2 - x_2 \ln \left(\frac{x}{x_2} \right) \right) + \frac{\sigma_n}{\sigma_1} \left(y - y_2 - y_2 \ln \left(\frac{y}{y_2} \right) \right) + \frac{1}{2} \left(I - I_2 - I_2 \ln \left(\frac{I}{I_2} \right) \right).$$

Using [28] we get:

$$D^\alpha V_2 \leq (x - x_2) \left(-\left(\frac{r_1 + Ku}{K} \right) (x - x_2) + \sigma_2 \left(\frac{u}{\sigma} - \frac{u}{\sigma_2} - n_1 (y - y_2) - \gamma (I - I_2) \right) \right)$$

$$+ \frac{\sigma_n}{\sigma_1} (y - y_2) \left(-v (y - y_2) + \sigma_1 (\frac{x}{y} - \frac{x_2}{y_2}) - n_2 (x - x_2) \right) + \left(I - I_2 \right) \gamma (x - x_2),$$

$$\leq -\frac{\sigma_n}{\sigma_1} (y - y_2)^2 - \frac{\sigma_n}{\sigma_1} (x - x_2)(y - y_2)^2 - \frac{n_1}{\sigma_1} (x - x_2)(y - y_2),$$

$$\leq \left(\frac{1}{2} (n_1 + \frac{\sigma_n}{\sigma_1}) - \frac{r_1 + Ku}{K} \right) (x - x_2)^2 - \left(\frac{1}{2} (n_1 + \frac{\sigma_n}{\sigma_1}) - \frac{\sigma_n}{\sigma_1} \right) (y - y_2)^2$$

$$\leq -\frac{\sigma_n}{\sigma_1} (y - y_2)^2.$$

Therefore, $D^\alpha V_2 < 0$ if $n_1 + \frac{\sigma_n}{\sigma_1} < 2 \min \left(\frac{\sigma_n}{\sigma_1}, \frac{r_1}{K} + u \right).$

Theorem 3.3. The equilibrium $P_3(x_3, y_3, S_3, 0)$ is globally asymptotically stable if (2.10) and $n_1 + \frac{\sigma_n}{\sigma_1} < 2 \min \left(\frac{\sigma_n}{\sigma_1}, \frac{r_1}{K} + u - \frac{\beta S_3}{\alpha (\alpha + x_3)} \right)$ are realized.

Proof. Consider the following positive definite Lyapunov function about $P_3(x_3, y_3, S_3, 0)$:

$$V_3(x, y, S) = \left(x - x_3 - x_3 \ln \left(\frac{x}{x_3} \right) \right) + \frac{\sigma_n}{\sigma_1} \left(y - y_3 - y_3 \ln \left(\frac{y}{y_3} \right) \right)$$

$$+ \frac{\alpha}{\alpha + x_3} \left(S - S_3 - S_3 \ln \left(\frac{S}{S_3} \right) \right).$$

Using [28], we obtain:
\[D^n V_4 \leq (x-x_d) \left(-\left(\frac{r_1+Ku}{K} \right) (x-x_d) + \sigma \left(\frac{y-y_d}{x} \right) - n_1(y-y_d) - \beta \left(\frac{S}{\alpha+\gamma} - \frac{S_4}{\alpha+\gamma} \right) \right) + \sigma \left(\frac{y-y_d}{x} \right) + \frac{n_1 \sigma}{\alpha+\gamma} \left(\frac{y-y_d}{x} \right) - n_2(x-x_d) \]

\[\leq - \left(\frac{r_1+Ku}{K} \right) (x-x_d)^2 - \frac{\sigma \beta}{\alpha+\gamma} (y-y_d)^2 - \frac{\beta S_4}{\alpha+\gamma} (x-x_d)^2 \]

\[\leq \left(\frac{1}{2} \right) (n_1 + \sigma \frac{n_2}{\sigma_1 x_4}) - \frac{r_1+Ku}{K} + \frac{\beta S_4}{\alpha+\gamma} \left(\frac{y-y_d}{x} \right)^2 - \frac{\beta S_4}{\alpha+\gamma} (x-x_d)^2 \]

Therefore, \(D^n V_4 < 0 \) if \(n_1 + \sigma \frac{n_2}{\sigma_1 x_4} < 2 \min \left(\sigma \frac{n_2}{\sigma_1 x_4}, \frac{r_1}{K} + u + \frac{\beta (x-x_d)^2}{2(\alpha+\gamma)} \right) \).

Theorem 3.4. The equilibrium \(P_4(x_4, y_4, S_4, I_4) \) is globally asymptotically stable if (2.11) and \(n_1 + \sigma \frac{n_2}{\sigma_1 x_4} < 2 \min \left(\sigma \frac{n_2}{\sigma_1 x_4}, \frac{r_1}{K} + u + \frac{\beta (x-x_d)^2}{2(\alpha+\gamma)} \right) \) are realized.

Proof. Consider the following positive definite Lyapunov function about \(P_4(x_4, y_4, S_4, I_4) \):

\[V_4(x, y, S, I) = \left(x-x_d, x_4 \right) + \sigma \frac{n_2}{\sigma_1 x_4} \left(y-y_d, y_4 \right) + \frac{1}{\sigma} \left(S-S_4, S_4 \right) + \frac{1}{\sigma} \left(I-I_4, I_4 \right) \]

Using [28], we obtain:

\[D^n V_4 \leq (x-x_d) \left(-\left(\frac{r_1+Ku}{K} \right) (x-x_d) + \sigma \left(\frac{y-y_d}{x} \right) - n_1(y-y_d) - \beta \left(\frac{S}{\alpha+\gamma} - \frac{S_4}{\alpha+\gamma} \right) \right) + \sigma \left(\frac{y-y_d}{x} \right) + \frac{n_1 \sigma}{\alpha+\gamma} \left(\frac{y-y_d}{x} \right) - n_2(x-x_d) \]

\[\leq - \left(\frac{r_1+Ku}{K} \right) (x-x_d)^2 - \frac{\sigma \beta}{\alpha+\gamma} (y-y_d)^2 - \frac{\beta S_4}{\alpha+\gamma} (x-x_d)^2 \]

\[\leq \left(\frac{1}{2} \right) (n_1 + \sigma \frac{n_2}{\sigma_1 x_4}) - \frac{r_1+Ku}{K} + \frac{\beta S_4}{\alpha+\gamma} \left(\frac{y-y_d}{x} \right)^2 - \frac{\beta S_4}{\alpha+\gamma} (x-x_d)^2 \]

Therefore, \(D^n V_4 < 0 \) if \(n_1 + \sigma \frac{n_2}{\sigma_1 x_4} < 2 \min \left(\sigma \frac{n_2}{\sigma_1 x_4}, \frac{r_1}{K} + u + \frac{\beta (x-x_d)^2}{2(\alpha+\gamma)} \right) \).

4. **NUMERICAL SIMULATIONS**

To show the influence of the parameter \(\alpha \) on our fractional order model, we take the different values of \(\alpha \) in numerical simulations of the curves \(x(t), y(t), S(t) \) and \(I(t) \) that are shown in Figures 2–5. These figures show that the system (1.1) reaches the equilibrium state for the different values of \(\alpha \). These results show the effectiveness of Theorems 2.4–2.7. As we can see, numerical solutions are permanently dependent on the fractional order derivative \(\alpha \) and the model reaches the equilibrium point more rapidly by reducing \(\alpha \). In other words, the model approaches the steady state more quickly when the memory factor effect is increased.

To demonstrate the theoretical results obtained in this paper, we give some numerical simulations. We consider the parameters values as given by [14]:

\[r_1 = 5, r_2 = 1, n_1 = 0.5, n_2 = 0.3, \sigma_1 = 1, \sigma_2 = 0.9, q_1 = 0.1, q_2 = 0.2, q_3 = 0.4, E_1 = 5, E_2 = 5.2; E_3 = 4.8; \]

\[u = 0.0001, v = 0.333, K = 4, \alpha = 0.7, \beta = 0.94, \sigma = 0.998, \delta = 10, \mu = 1, \gamma = 5.5, \eta = 60, \text{with initial conditions} \]

\(x(0), y(0), S(0), I(0) = (1, 1, 1, 1) \), so \(P_1 \) is locally asymptotically stable.

As it’s shown in this example the parameter values are chosen as:

\[r_1 = 6, r_2 = 8, n_1 = 0.5, n_2 = 0.3, \sigma_1 = 2, \sigma_2 = 2, q_1 = 0.1, q_2 = 0.2, u = 0.4, v = 0.4, K = 5, \alpha = 0.45, \beta = 1, \]
Figure 2. Solution curves corresponding to the set values parameters of the system (1.1) of equilibrium P_1 with different values of α.

Figure 3. Solution curves corresponding to the set values parameters of the system (1.1) of equilibrium P_2 with different values of α.
Figure 4. Solution curves corresponding to the set values parameters of the system (1.1) of equilibrium P_3 with different values of α.

Figure 5. Solution curves corresponding to the set values parameters of the system (1.1) of equilibrium P_4 with different values of α.

\(\sigma = 4, \delta = 10, \mu = 1, \gamma = 5.5, \eta = 60. \) The system (1.1) with initial conditions \((x(0), y(0), S(0), I(0)) = (1, 1, 0.1, 1)\), so \(P_2\) is locally asymptotically stable.

In this example, the parameter values are:
\[
\begin{align*}
 r_1 &= 10, r_2 = 8, n_1 = 0.5, n_2 = 0.3, \sigma_1 = 2, \sigma_2 = 7.5, q_1 = 0.1, q_2 = 0.2, q_3 = 0.5, E_1 = 3, E_2 = 3.2, \\
 E_3 &= 4, u = 0.01, v = 0.4, K = 5, \alpha' = 5, \beta = 50, \sigma = 1.5, \delta = 10, \mu = 18, \gamma = 5.33, \eta = 60; \text{ with initial conditions } (x(0), y(0), S(0), I(0)) = (1, 1, 1, 1), \text{ so } P_3 \text{ is locally asymptotically stable.}
\end{align*}
\]

In this example, the parameter values are:
\[
\begin{align*}
 r_1 &= 2.34, r_2 = 3, n_1 = 0.5, n_2 = 0.3, \sigma_1 = 2, \sigma_2 = 7.5, q_1 = 0.1, q_2 = 0.2, q_3 = 0.3, E_1 = 3, E_2 = 2.6, E_3 = 2.2, \\
 u &= 0.01, v = 0.4, K = 0.7, \alpha' = 0.7, \beta = 0.94, \sigma = 0.998, \delta = 1.34, \mu = 2.41, \gamma = 8, \eta = 2.68, \text{ with initial conditions } (x(0), y(0), S(0), I(0)) = (1, 1, 1, 1), \text{ so } P_4 \text{ is locally asymptotically stable.}
\end{align*}
\]

We observe from simulations, the effect of reducing the order of the time derivative can be observed. As the fractional order \(\alpha\) decreases, the system (with Caputo derivative) stabilizes more quickly. It is the largest “memory” of the system of past states, the greater the damping of the oscillations in the dynamics of the system. The simulations show that, with fairly moderate reductions in \(\alpha\), the amplitude of the population density oscillations is greatly delayed.

5. Conclusion

In this paper, we investigated a Dynamics of the fractional order prey–predator model in the presence of competition and toxicity using the Caputo fractional derivative. We have established the existence and boundedness of the solutions. After calculating the equilibrium of our model under certain conditions, we have analyzed the local stability using Matignon’s conditions [17]. Global stability has been studied using Lyapunov functions. From our numerical results, we can observe that the different values of \(\alpha\) have no effect on the stability of equilibria but have an effect on the time necessary to achieve equilibrium states. These variations are verified in the numerical simulations illustrated in the Figures 2–5, as the curves \(x, y, S\) and \(I\) that converge towards the equilibrium points. Finally, we can conclude that the memory effect of the fractional order derivative affects the dynamics of our proposed system.

References

[1] E. Ahmed and A. Elgazzar, On fractional order differential equations model for nonlinear epidemics. Physica A 379 (2007) 607–614.
[2] E. Ahmed, E.-S. Ama, El-Saka and A.A. Hala, On some Routh-Hurwitz conditions for fractional order differential equations and their applications in Lorenz, R"assler, Chua and Chen systems. Phys. Lett. A 358 (2006) 1–4.
[3] A.A. Berryman, The origins and evolutions of predator-prey theory. Ecology 73 (1992) 1530–1535.
[4] K. Chakraborty and K. Das, Modeling and analysis of a two-zooplankton one-phytoplankton system in the presence of toxicity. Appl. Math. Model. 39 (2015) 1241–1265.
[5] D.R. Curtis, Recent extentions of descartes rule of signs. Ann. Math. (1918) 251–278.
[6] T. Das, R.N. Mukherjee and K.S. Chaudhuri, Harvesting of a prey–predator fishery in the presence of toxicity. Appl. Math. Model. 33 (2009) 2282–2292.
[7] B. Dubey, A prey–predator model with a reserved area. Nonlinear Anal. Model. Control. 12 (2007) 479–494.
[8] B. Dubey, P. Chandra and P. Sinha, A model for fishery resource with reserve area. Nonlinear Anal. Real World Appl. 4 (2003) 625–637.
[9] M. Edelman, Fractional maps as maps with power-law memory. Nonlinear dynamics and complexity. Springer, Cham (2014) 79-120.
[10] A. Elsadany and A. Matouk, Dynamical behaviors of fractional-order Lotka-Volterra predator-prey model and its discretization. J. Appl. Math. Comput. 49 (2015) 269–283.
[11] S. Jana, A. Ghora, S. Guria and T.K. Kar, Global dynamics of a predator weaker prey and stronger prey system. Appl. Math. Comput. 250 (2015) 235–248.
[12] T.K. Kar, A model for fishery resource with reserve area and facing prey predator interactions. Can. Appl. Math. Quart. 14 (2006) 385–399.
[13] Y. Li, Y. Chen and I. Podlubny, Stability of fractional-order nonlinear dynamic systems: Lyapunov direct method and generalized Mittag-Leffler stability. Comp. Math. Appl. 59 (2010) 1810–1821.
[14] Y. Louartassi, A. Alla, K. Hattaf and A. Nabil, Dynamics of a predator–prey model with harvesting and reserve area for prey in the presence of competition and toxicity. J. Appl. Math. Comput. 1 (2018) 305–321.
[15] Y. Louartassi, E. El Mazoudi and N. Elalami, A new generalization of lemma Gronwall-Bellman. *Appl. Math. Sci.* 6 (2012) 621–628.

[16] R.L. Magin, Fractional calculus in bioengineering. *CRC Crit. Rev. Biomed. Eng.* 32 (2004) 1–377.

[17] D. Matignon, Stability results for fractional differential equations with applications to control processing. *Proc. Comput. Eng. Syst. Appl. Multiconf.* 2 (1996) 963–968.

[18] R.M. May, Stability and complexity in model ecosystems. Princeton University Press, Princeton, New Jersey (1973).

[19] T.M. Michelitsch, G.A. Maugin, F.C.G.A. Nicolleau, A.F. Nowakowski and S. Derogar, Dispersion relations and wave operators in self-similar quasicontinuous linear chains. *Phys. Rev. E* 80 (2009) 011135.

[20] A. Mououine, A. Boukhouima, K. Hattaf and N. Yousfi, A fractional order SIR epidemic model with nonlinear incidence rate. *Adv. Differ. Equ.* 2018 (2018) 160.

[21] K. Oldham and J. Spanier, Vol. 111 of *The fractional calculus theory and applications of differentiation and integration to arbitrary order*. Elsevier, Amsterdam (1974).

[22] I. Podlubny, Vol. 198 of *Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to methods of their Solution and Some of their applications*. Elsevier, Amsterdam (1998).

[23] M. Riesz, L’intégrale de Riemann-Liouville et le problème de Cauchy. *Acta Math.* 81 (1949) 1–222.

[24] B. Ross, S.G. Samko and E. Russel Love, Functions that have no First Order Derivative might have fractional derivatives of all orders less than one. *Real Anal. Exchange* 20 (1994) 140–157.

[25] M. Sambath, P. Ramesh and K. Balachandran, Asymptotic behavior of the fractional order three species prey–predator model. *Int. J. Nonlinear Sci. Numer. Simul.* 19 (2018) 721–733.

[26] S. Samko, A. Kilbas and O. Marichev, Fractional Integrals and Derivatives: Theory and Applications (1993).

[27] J.B. Shukla, A.K. Agrawal, B. Dubey and P. Sinha, Existence and survival of two competing species in a polluted environment: a mathematical model. *J. Biol. Syst.* 9 (2001) 89–103.

[28] C. Vargas De-León, Volterra-type Lyapunov functions for fractional-order epidemic systems. *Commun. Nonlinear Sci. Numer. Simul.* 24 (2015) 75–85.

[29] H. Yang and J. Jia, Harvesting of a predator–prey model with reserve area for prey and in the presence of toxicity. *J. Appl. Math. Comput.* 53 (2017) 693–708.

[30] X.Q. Zhao. Dynamical Systems in Population Biology. Springer New York (2000).