One-dimensional mathematical model of coal combustion in furnace and its simulation

WanJun Zhang¹, ², ³, ⁴, *, Feng Zhang¹, a, Jingxuan Zhang¹, b Jingyi Zhang⁵, c, Jingyan Zhang², d

¹Quanzhou Institute of Information Engineering, Fujian 362000, China
²Qingyang Xinyuan Engineering Company Limited, Gansu 745000, China
³Lanzhou Industry and Equipment Company Limited, Gansu 730050, China
⁴Xi'an Jiao tong University, 710049, Shaanxi, China

*Corresponding author e-mail: gszwj_40@163.com,
 a zhangwanjun40@163.com, b gszhangwj40@163.com, c tszhangwj40@163.com,
 d 116543048@qq.com

Abstract. In order to accurately calculate the combustion rate of coal powder in the furnace, starting from the study of the combustion mechanism of coal particles, the combustion process of coal powder in the most complex burner area in the furnace is studied, and the combustion process of volatile points and Coke in coal powder is reasonably simplified. A one-dimensional macroscopic model of pulverized coal combustion along the Gaodufangxiang is established. The model takes into account the change of oxygen content in the combustion process of pulverized coal and is based on an equal density model of combustion of individual pulverized coal particles. The combustion process of pulverized coal reflects the whole process of pulverized coal combustion, and the formula for calculating the combustion rate of pulverized coal in furnace is deduced, which satisfies the requirement of real-time simulation calculation. The simulation results agree with the measured data and the existing literature, and the results are analyzed.

1. Introduction

Usually chemical, metallurgical and other reaction processes have strong nonlinear characteristics. Lanzhou Industry and Equipment Co. Ltd, Lanzhou University of technology researchers [1-19] proposed an only approximate to the small range process operation. When using modern control theory and intelligent control to control, it is necessary to know the mathematical model of the system accurately.

The linear characteristic is only approximate to the small range process operation, and the description ability of the nonlinear process is very limited.

The coal powder undergoes a violent chemical reaction in the boiler furnace to produce a burning flame, converts chemical energy into heat energy, raises the temperature of the flue gas, and at the same time transmits a large part of the heat to the water-cooled wall through radiation heat transfer. In order to calculate the radiative heat transfer in the furnace, we must first understand the chemical reaction of coal powder in the furnace to release heat. This requires the establishment of a mathematical model of the coal powder combustion process, and accurately estimates the burnout rate of coal powder. At the same time, the burnout rate of coal powder is also an economic indicator that reflects the operation status
of the boiler. During operation, the combustion status of coal powder can be changed by changing the ratio of air fuel.

The momentum differential equation [20] for the movement of a single coal particle, the energy differential equation for heat transfer, and the cracking equation for coal and the combustion equation for Coke are given. This method starts from the microscopic mechanism of coal combustion and considers too many factors. It is often difficult to guarantee the real-time requirement in power station simulation calculation. It is also from the microscopic state of a single coal particle that [21] a model of the double volatilization reaction is given for the cracking of coal. During the combustion of coal particles, it is considered that the same density changes in diameter or the same diameter changes in density. The equation of motion of the particles is also given, the same as the literature [20] it is also difficult to meet the needs of real-time computing. Documentation The micro model of coal combustion process of industrial boiler [23] is studied. The coal combustion model is used to predict the unburned maximum of coal in boiler. Lanzhou University of technology, Lanzhou Industry and Equipment Co. Ltd ZhangWanjun .et, at researchers [24-37] have several methods of reliability of the hydraulic system. The combustion conditions of coal particles of different original sizes were used to reflect the combustion process of coal particles in the furnace. Based on the above literature, the combustion process of pulverized coal is simplified appropriately, and the change of oxygen content in the combustion process is considered.

A one-dimensional set parameter model for coal combustion in a certain area of the chamber is derived. This model can be combined with a heat transfer model to automatically calculate the coal burnout rate and combustion discharge heat according to the operating parameters of the boiler without artificial intervention. To meet the needs of real-time simulation, at the same time, it has a certain degree of calculation accuracy.

2. Combustion structure of coal powder in furnace
The particle size of the pulverized coal produced by the grinder is of different sizes. The combustion rate of different particle size components is different in this heterogeneous group of suspended particles. However, it is not possible to completely separate one particle component in the particle group, because the concentration of oxygen that can be provided to this group of coal powder depends on the degree of burnout of the entire particle group. For this reason, the combustion of the particle size components in the group of suspended particles must be considered simultaneously. A combustion model is established based on the example of pulverized coal particles of a particle size and diameter. The actual pulverized coal combustion process is very complex and some simplified assumptions must be made:

1) The rapid thermal decomposition of coal powder from the burner into the furnace, all volatilization points escape and instantaneous combustion, while the coke particles begin to burn, and the diameter of the particles does not change when volatilization escapes; 2) The heterogeneous reaction of coke adopts the overall effect of generating CO2, and its reaction speed is controlled by both dynamic combustion and diffusion combustion; 3) The density of coke particles remains unchanged during the movement and combustion process, Coke particles are taken as spheres, and the loss of coke mass is reflected in the reduction of the size of spherical particles, the so-called is density model. The device diagram of coal powder in boiler furnace, as is shown in Figure.1.
The output error is applied to the actual industry to test its practicability and to model the components of propylene distillation column in the fractionation unit of Yangzi Petrochemical Company. A simple diagram of the acrylate process is shown in Figure 2.

A nonlinear dynamic soft measuring observer based on parameter forward error preprocessing data is established.

Data of steady state operation under normal working conditions of acrylate are shown in Table 1.
Feed board 124; Tower pressure M_P: 1.90;
Reflux ratio 16; Feed quantity, $\times 10^3\, \text{kg/h}$, 5.50;
Total number of towers 190; Tower Top Production $\times 10^3\, \text{kg/h}$ 3.70;
Tower bottom production $\times 10^3\, \text{kg/h}$ 1.80; Acrylic content on tower top, $\% > 99.55$;
Acrylic content at bottom of Tower, $\% < 5.00$

3. Mathematical model
It can be seen from the hypothesis (1) that the coal combustion process mainly depends on the combustion of coke particles. From hypothesis (2), the burning speed of coke particles can be described by the following formula:
In the formula, K is the reaction speed of the outer surface of the coke particle; β is the ratio of coke consumption to oxygen consumption in the reaction. In the reaction that fully generates CO2, $\beta = 0.375$; C is the oxygen concentration; k_s is the power combustion speed; k_d is diffusion combustion speed; k_0 is the frequency factor; E is the activation energy of coke oxidation; R is the gas constant; T is the reaction temperature; D is the diffusion coefficient of oxygen; Nu is the Nusselt number, and it is considered that the relative speed of motion between Coke particles and air is small enough to be 2; δ is the diameter of a component of coke particles.

For a certain granular component of coke particles, assuming (3) that the density does not change during the combustion process, the diameter decreases continuously, there are:

$$\delta_j = \delta_{j,0} \cdot \sqrt[3]{1 - \eta_j}$$

In the formula, δ_j is the particle size of the coke particle in Group j; $\delta_{j,0}$ is the initial particle size of coke particles in Group j; η_j is the burnout rate of coke particles in Group j.

Assuming that the initial combustion mass of the coke particles in Group j is 1kg, the total reaction surface area A_j at a certain moment has:

$$A_j = \frac{6}{\delta_j} \cdot \frac{1 - \eta_j}{\rho_{ch}}$$

Where ρ_{ch} is the density of coke particles. The oxygen concentration C has a relationship:

$$C = C_0 \cdot \frac{T_0}{T} \cdot \frac{\alpha_{ch} - \eta}{\alpha_{ch}}$$

In the formula, C_0 is the initial oxygen concentration; T_0 is the initial air flow temperature of the combustion; T is the airflow temperature at that time; α_{ch} is the excess air coefficient of coke combustion at the beginning of combustion; η is the total depletion rate of each scale Coke particle from the initial moment to that moment.

The rate of change of combustion rate of particle size pulverized coal in Group j is:
\[\frac{d \eta_j}{dt} = K \cdot A_j \] (7)

The total burnout rate of coal powder is:

\[\eta = \sum \eta_j \cdot m_j \] (8)

Among them, \(m_j \) is the mass percentage of particle size coal powder in Group j. Substituting formula (1)-(6) into type(7) is:

\[\frac{d \eta_j}{dt} = \frac{2.25 C_0 \cdot \frac{T_0}{T} \cdot \left(\alpha_{ch} - \eta \right) \cdot \left(1 - \eta_j\right)}{\left(\frac{\delta_{j,0}}{\sqrt{2D}} + \frac{1}{k_s} \cdot \delta_{j,0} \cdot \sqrt{1 - \eta_j} \cdot \rho_{ch}\right)} \] (9)

If you think that the change in \(\eta_j \) has a small impact on \(\eta \), you can integrate the above formula:

\[\eta_j = 1 - \left[\frac{2D}{\delta_{j,0}^2} \cdot \left(\frac{\delta_{j,0}^2}{k_s} + \frac{\delta_{j,0}^2}{2D}\right)^2 \cdot 0.7 \cdot \frac{\delta_{j,0}^2}{k_s} \cdot \frac{C_0}{T} \cdot \frac{T_0}{T} \cdot \frac{\alpha_{ch} - \eta}{\alpha_{ch}} \cdot \rho_{ch} \cdot D \cdot t - \frac{2D}{k_s \cdot \delta_{j,0}} \right]^3 \] (10)

The burning time of coke particles is:

\[t_{j,\text{max}} = \frac{\rho_{ch} \cdot \left(\frac{\delta_{j,0}}{k_s} + \frac{\delta_{j,0}^2}{8D}\right)}{0.375 C_0 \cdot \frac{T_0}{T} \cdot \frac{\alpha_{ch} - \eta}{\alpha_{ch}}} \] (11)

According to the literature [5], equation (2) can be replaced by the following formula:

\[k_s = k_0 \cdot \exp\left[\frac{-E}{RT_{ch}} \cdot \left(1 - \frac{T_{ch}}{T_0}\right)\right] \] (12)

Among them, \(T_{ch} \) is the surface temperature of coke particles; \(k_0 \) can be 100m/s; \(T_0 \) is 2600K. According to the literature[2] The diffusion coefficient of oxygen is approximately:

\[D = 2 \times 10^{-5} \cdot \left(\frac{T_g + T_{ch}}{2 \times 273.16}\right)^{1.75} \] (13)

In the formula, \(T_g \) is the airflow temperature. The particle size of the coal powder entering the boiler by the burner is considered to conform to the Rosin-Rammler relationship:
In the formula, $R(\delta)$ is the particle mass percentage of coal powder with a particle size greater than δ; δ_c is the characteristic particle size of coal powder; n is the uniformity index of coal powder, depending on the structure of the coal mill and separator, by the literature [6], $n=0.8$~1.3. Structure diagram of coal mill and separator, as is shown in Figure.3.

![Figure 3. Structure diagram of coal mill and separator.](image)

It should be emphasized that, as can be seen from formula (9), the burnout rate of coal powder is closely related to the temperature in the furnace, and the temperature must affect the burnout rate of coal powder. The heat released from combustion determined by the rate of pulverized coal also affects the temperature distribution in the furnace. Therefore, when the model is solved, the combustion model of coal powder needs to be established in conjunction with the heat transfer model in the furnace. After determining the temperature distribution in the furnace, the distribution of coal powder depletion rate can be accurately estimated. The heat transfer model can be found in another article of the author, "The mathematical model of radiation heat transfer in the furnace and its simulation."

4. Experiment simulation and analysis
A DG1025/18.3-II4 boiler was simulated and calculated by using this model. The boiler is a sub-critical natural circulation furnace, a single furnace, an intermediate reheat, balanced ventilation, suspended open-air arrangement, solid slag disposal, an intermediate stored-type powder production system, and hot air powder; The burner is arranged in DC four corners and double-cut circular reverse combustion. The diameter of the circle is case 500 and case 700. The burner is divided into two groups. The following group has a total of 7 layers of nozzles and the upper group has a total of 8 layers of nozzles. The main structural dimensions of the boiler are shown in Figure 4. We tested the experimental platform, as shown in Figure 5.
When calculating, the burner area is divided into 5 regions, and the area above the burner is divided into 6 divisions. Powder particles are divided into 16 groups according to the Rosin-Rammler relationship, with a minimum particle size of 10 μm, a maximum particle size of 160 μm, a coal powder uniformity index of 1.1, and a characteristic particle size of 50.284 μm. The activation energy of coke oxidation is taken as 90 kJ/mol, and the density of Coke is taken as 1500 kg/m³. Table 1 shows the amount of coal and air supply to the boiler at maximum load (BMCR), rated load (ECR) and 70% rated load (70% ECR). At 70% ECR, the burner in the combustion area. The burner in the fifth sub-area is turned off. Therefore, the coal flow and air flow in the sub-region are zero.

Table 1. Operating parameters of DG1025/18. 3-II boilers under different loads

Area Number	New fuel volume /(kg/s)	New air volume /(kg/s)					
	BMCR	ECR	70%ECR	BMCR	ECR	70%ECR	
Combustor area	1	8.20834	7.41222	6.48570	69.66661	62.90973	55.04601
	2	8.20834	7.41222	6.48570	69.66661	62.90973	55.04601
	3	8.20834	7.41222	6.48570	69.66661	62.90973	55.04601
	4	8.20834	7.41222	6.48570	69.66661	62.90973	55.04601
	5	8.20834	7.41222	0	69.66661	62.90973	0
The simulation results of combustion of coal powder along the furnace Gaodufangxiang are given. Average temperature of medium in furnace (REF.: Documentation), as is shown in Figure 6.

![Figure 6. Average temperature of medium in furnace (REF).](image)

It should be noted that the medium temperature in Figure 6 is the average temperature of the furnace cross section. This temperature is not the temperature of the center line of the furnace, but the aggregate temperature of the entire cross section. In Figure 6, the curve in the curve is the result of the calculation of the model and the heat transfer model. The curve REF is the literature[7] The measured temperature curve of the HG-670 / 140-6 boiler given can be seen that the measured curve is similar to the temperature curve at 70 % ECR, and the temperature of the medium in the furnace decreases with the reduction of the load.

Effect of load change on total burnout rate. He simulation results of combustion of coal powder along the furnace Gaodufangxiang are given, Effect of load change on total burnout rate, as is shown in Figure 7.

![Figure 7. Effect of load change on total burnout rate.](image)

Figure 7 gives the total burnout rate of the boiler under three types of loads. At the time of calculation, the excess air coefficient in the furnace is taken as 1.27, and the R90 (percentage of pulverized coal particles greater than 90 μm) is taken as 15 %. It can be seen that the total depletion rate under the BMCR and ECR does not change much. When the boiler is running at 70 ECR, due to the shutdown of the burner on the fifth floor, the center of the flame is moved downwards and the temperature of the entire medium in the furnace decreases. However, the length of stay of the medium in the furnace becomes longer and the combustion is more complete.

Effect of Excessive Air Coefficient in Furnace on Total Combustion Rate As is shown in Figure 8.
Figure 8. Effect of Excessive Air Coefficient in Furnace on Total Combustion Rate.

Figure 8 shows the effect of excess air coefficient on the total depletion rate under ECR load, and R90 is taken to 15%. It can be seen that the excess air coefficient increased from 1.1 to 1.4, and the total burnout rate at the top increased from 0.9865 to 0.99852. The increase in the total burnout rate was not significant because the increase in excess air coefficient although the oxygen concentration increased, However, the flow rate of smoke in the furnace has also increased, so the temperature of the medium in the furnace has dropped, and due to the increase in the flow rate of smoke, the stay time of coke particles in the furnace has also been shortened. Effect of particle size (R90) on total burnout rate, as is shown in Figure.9.

Figure 9. Effect of particle size (R90) on total burnout rate.

Fig. 9 shows the effect of particle size of coal powder on the total burnout rate under ECR load. The R90 is a parameter that reflects the percentage of large particles of coal powder. Since the burning time of large coal particles is relatively long, when the R90 increases, the total burnout rate is small before the relative height reaches 0.85, but with the increase of the burning time, the large particles of coal powder are burned one after another. The total burnout rate at the top of the furnace is also not much different.

Table 2 gives the literature [10] the experimental values of the fuel depletion rate in this model are compared with those of Figure 2 (b), (c), (d) and the temperature field solved from Figure 6-9. The calculation results of this model have relatively good accuracy.

5. Summary
(1) This model starts from the macroscopic mechanism of pulverized coal particle combustion, avoids the tedious differential equations of particle motion, and gives the explicit equation of coal coal
combustion in the furnace through the proper simplification of the combustion process. It meets the requirement of real time calculation of power station simulation.

(2) The combustion speed of coal mainly depends on the medium temperature, oxygen concentration and initial particle size.

(3) The calculation program compiled by this model can be used for combustion calculation of coal boiler in various power stations. The combustion process of boiler under different operating loads can be simulated by changing the amount of fuel and air entering the furnace.

Acknowledgements
The authors thank the financial supports from National Natural Science Foundation of China (Grant no. 51165024) and Science and Technology Major Project of “High-grade NC Machine Tools and Basic Manufacturing Equipment” (2010ZX040001-181).

Author: Wanjun Zhang received the, M.S. and Ph.D. degrees from, Lanzhou University of technology, Xi'an Jiao tong University, in 2011 and 2018, respectively. I am currently an associate professor in the School of Mechanical Engineering, Xi'an Jiao tong University, and I am currently a Senior Engineer and senior economist in Lanzhou Industry and Equipment Co, Ltd. His research involved in artificial intelligence, NC, control of complex mechatronic system and failure diagnoses.

First author(communication author): Zhangwanjun, male, born in 1986, doctoral student in engineering(bachelor's degree in law and management), professorial senior engineer, senior economist(mechanical engineer, CNC senior craftsman), Senior member of China Society of Mechanical Engineering, Senior member of China Agricultural Machinery Society, Senior member of the China Agricultural Machinery Engineering Society, senior member of the China Instrument Society, member of the China Invention Society, director of the China Invention Society, director of the Gansu Invention Society, member of the Standing Committee of the Committee of Experts of the Modern Manufacturing Engineering(Chinese Core, Science and Technology Core), member, and review expert. Mainly engaged in numerical control technology equipment, new energy research and electromechanical transmission control work. We have authorized more than 250 patents for invention and utility models as the first applicant (patentee) and inventor, and nearly 200 patents for design as the first applicant (patentee) and inventor, and published more than 50 academic papers in core or above journals. SCI/El/ISTP has more than 30 searches papers, including more than EI 20 papers, SCI 5 papers. Email: Gszwj_40@163.com.

References
[1] R. H. Macmillan. Epicyclic gear efficiencies [J]. The Engineer, 1949, 23: 727 - 728.
[2] R.H.Macmillan. Power flow and loss in differential mechanisms [J]. Journal of Mechanical Engineering Sciences, 1961, 3: 37 - 41.
[3] E. I. Razimovsky. A simplified approach for determining power losses and efficiencies of planetary gear drive. Machine Design, 1956, 9: 101 - 110.
[4] Zhang Wan-Jun, Hu Chi-Bing, Zhang Feng ,et al. Honing machine motion control card three B spline curve method of interpolation arithmetic for CNC system [J]. Chinese Journal of Manufacturing Technology & Machine Tool, 8 (8), pp.40-43,August 2012.
[5] Zhang Wan-Jun, HU Chi-bing, WU Zai-xin, et.al. Research on modification algorithm of Three B Spline curve interpolation technology [J].Chinese Journal of Manufacturing Technology & Machine Tool, 2 pp.141-143, Feburary 2013.
[6] Zhang Wan-Jun, Zhang Feng, Zhang Guo-hua. Research on a algorithm of adaptive interpolation for NURBS curve [J]. Applied Mechanics and Materials, Vol. 687-691, pp.1600-1603, December 2014.
[7] Zhang Wanjun, Zhang, Gao Shanping,Zhang Sujia. Modification algorithm of NURBS curve interpolation [J]. Advances in Engineering Research, 2016, 12, Vol. 83. 507 - 512.
[8] Zhang Wanjun, Zhang, Gao Shanping,Zhang Sujia. Modification algorithm of Cubic B-spline curve interpolation [J]. Advances in Engineering Research, 2016, 12, Vol. 83. 513 - 518.
[9] Zhang Wanjun, Zhang, Gao Shanping, Zhang Sujia. Modification algorithm of NURBS curve interpolation [J]. 2016 4th International conference on Machinery, materials and Information Technology Applications, 2016, 12, Vol. 71. 507 - 512.

[10] Zhang Wanjun, Zhang, Gao Shanping, Zhang Sujia. Modification algorithm of Cubic B-spline curve interpolation [J]. 2016 4th International conference on Machinery, materials and Information Technology Applications, 2016, 12, Vol. 71. 513 - 518.

[11] Zhang Wanjun, Zhang, Gao Shanping, Zhang Sujia. A improved algorithm of three B-spline curve interpolation and simulation [J]. Advances in Materials, materials, Machinery, Electronics I, 2017, 2, Vol. 1820. 080004-1-080004-6.

[12] Zhang Wanjun, Zhang, Gao Shanping, Zhang Sujia. Innovation research on Taylor’s iteration algorithm of NURBS curve and simulation [J]. Advances in Materials, materials, Machinery, Electronics I, 2017, 2, Vol. 1820. 080014-1-080014-8.

[13] Zhang Wanjun, Zhang, Gao Shanping, Zhang Sujia. M NURBS curve method Taylor’s launch type of interpolation arithmetic [J]. Advances in Engineering Research, 2016, 12, Vol. 118. 43 - 52.

[14] Zhang Wanjun, Zhang, Gao Shanping, Zhang Sujia. A Novel of Improved algorithm adaptive of NURBS curve [J]. Advances in Engineering Research, 2016, 12, Vol. 118. 53 - 60.

[15] Rahalnan M, Seethaler R, YeUowley, et al. A new approach to contour error control in high speed machining [J]. International Journal of Machine Tools & Manufacture, 2015, 88: 42-50.

[16] Zhang Wanjun, Zhang, Gao Shanping, Zhang Sujia. A novel on high-grade CNC machines tools for B-Spline curve method of High-speed interpolation arithmetic [J]. 2016 International Conference on Automotive Engineering, Mechanical and Electrical Engineering, 2017, 3, Vol. 118. 53 - 60.

[17] Zhang Wanjun, Zhang, Gao Shanping, Zhang Sujia. Study on Embedded CNC system for NURBS curves method of interpolation arithmetic [J]. Advances in Engineering Research, 2017, 3, Vol. 118. 53 - 60.

[18] Zhang Wanjun, Zhang Feng, Zhang Guo-hua. Research on modification algorithm of Cubic B-spline curve interpolation technology [J]. Applied Mechanics and Materials, Vol. 687 - 691, pp.1596 - 1599, December 2014.

[19] Zhang Wanjun, Zhang Feng, Zhang Wan-Liang. Research on a NURBS curve of timing / interrupt interpolation algorithm for CNC system [J]. Chinese Journal of Manufacturing Technology & Machine Tool, 4 (4), pp.183-187, April 2015.

[20] FAN Jianren, QIAN Ligeng, MA Yiniang, et al. Computational modeling of pulverized coal combustion processes in tangentially fired furnaces [J]. Chemical Engineering Journal, 2001, 81: 261 - 269.

[21] Fiveland W. A., Jamaluddin A. S. An Efficient method for predicting unburned carbon in boilers [J]. Combustion Science and Technology, 1992, 81: 147 - 167.

[22] Luis IDiez, Cristóbal Cortés, Javier Pallarés. Numerical investigation of NOx emissions from a tangentially-fired utility boiler under conventional and over fireair operation [J]. Fuel, 2008 (87): 1259 - 1269.

[23] H.Y.Park, M.Faulkner, M.D. Turrell, et al. Coupled fluid dynamics and whole plant simulation of coal combustion in a tangentially- fired boiler [J]. Fuel, 2010 (8): 2001 - 2010.

[24] Xu M, Azevedo J L T, Carvalho M G. Modelling of the combustion process and NOx emission in a utility boiler [J]. Fuel, 2000, 79 (13): 1611 - 1619.

[25] Zhang Wanjun, Zhang Feng, Zhang Jingxuan, et al. Parameter optimization and model identification of identification model control based on improved generalized predictive control [C]// Proceedings of the IEEE International Conference on Computers, Signals and systems. Dalian, 2018: 125 - 129.

[26] ZhangWanjun, ZhangFeng, ZhangJingxuan, et al. Study on System Recognition Method for Newton-Raphson Iterations [C]// Proceedings of the IEEE International Conference on Computers, Signals and systems. Dalian, 2018: 130 - 135.

[27] ZhangWanjun, ZhangFeng, ZhangJingxuan, et al. Research on a Kind of Adaptive Fuzzy Control
Method and Its Application in Feeding System of CNC Honing Machine [J]. Materials Science and Engineering, 2018, 8, Vol. 452. 042076: 1 - 8.

[28] ZhangWanjun, ZhangFeng, ZhangJingxuan, et, al. Application of PLC in Pneumatic Measurement Control System [J]. Materials Science and Engineering, 2018, 8, Vol. 042074: 1 - 11.

[29] ZhangWanjun, ZhangFeng, ZhangJingxuan, et, al. Research and Analysis on the Identification Model of Multivariate Economic System [J]. Materials Science and Engineering, 2018, 8, Vol. 0452. 022061: 1 - 11.

[30] ZhangWanjun, ZhangFeng, ZhangJingxuan, et, al. Identification and Analysis of Economic Model Based on Longnan Southeast [J]. Materials Science and Engineering, 2018, 8, Vol. 452. 022058: 1 - 8.

[31] ZhangWanjun, ZhangFeng, ZhangJingxuan, et, al. Based on Brushless DC Motor of Fuzzy and PID Control System [J]. Materials Science and Engineering, 2018, 8, Vol. 452. 042075: 1 - 10.

[32] ZhangWanjun, ZhangFeng, ZhangJingxuan, et, al. Modeling and identification of system model parameters based on information granularity method. [C]/ Proceedings of the IEEE International Conference on Computers, Signals and systems. Dalian, 2018: 114 − 118.

[33] ZhangWanjun, ZhangFeng, ZhangJingxuan, et, al. Optimization of identification structure parameters based on recursive maximum likelihood iteration [C]/ Proceedings of the IEEE International Conference on Computers, Signals and systems. Dalian, 2018: 119 − 124.

[34] ZhangWanjun, ZhangFeng, ZhangJingxuan, et, al. Cross coupled contour error compensation technology [J]. Materials Science and Engineering, 2018, 8, Vol. 394. 032031: 1 - 5.

[35] ZhangWanjun, ZhangFeng, ZhangJingxuan, et, al. Research on the vector control system based on the difference frequency of wind turbine generator [J]. Materials Science and Engineering, 2018, 8, Vol. 394. 042020: 1 - 9.

[36] ZhangWanjun, ZhangFeng, ZhangJingxuan, et, al. Curved Measurement Theory of Honing Pneumatic Measurement System and Optimization of Measurement Parameters [J]. Journal of Physics, 2018, 8, Vol. 1064. 012028: 1 - 14.

[37] ZhangWanjun, ZhangFeng, ZhangJingxuan, et, al. Flow field analysis and parameter optimization of main and measured nozzles of differential pressure type gas momentum instrument based on CFD [J]. Journal of Physics, 2018, 8, Vol. 1064. 012028: 1 - 12.