A CLASS OF COUNTER-EXAMPLES TO THE HYPERSECTION PROBLEM BASED ON FORCING EQUATIONS

HOLGER BRENNER

Abstract. We give a class of three-dimensional Stein spaces W together with a hypersurface H, such that the complement W − H is not Stein, but such that for every analytic surface S ⊂ W the complement S − S ∩ H is Stein. This class is constructed using forcing equations and gives new counter-examples to the hypersection problem.

Mathematical Subject Classification (1991): 14J26, 32C25, 32L05, 32E10

0. Introduction. Let W be a complex Stein space of dimension ≥ 3 and let H ⊂ W be an analytic hypersurface, U = W − H. Suppose that for every analytic hypersurface S ⊂ W the intersection U ∩ S is Stein, is then U itself Stein? This question is called the hypersection problem, see [2] for a general treatment and related problems. The first counter-example to this question was given by Coltoiu and Diederich in [1], using the affine cone over the complement of two sections on some ruled surface over an elliptic curve. In this way they get a normal three-dimensional isolated singularity.

In this paper we present another class of three-dimensional Stein spaces W together with a hypersurface H fulfilling the assumptions in the hypersection problem, but not its conclusion. The class is constructed in the following way: we start with a two-dimensional normal affine cone X over a smooth projective curve and the vertex point P ∈ X. Suppose that we have three homogeneous functions f_1, f_2 and f_0 on X. Then, under suitable conditions, W = V(f_1 t_1 + f_2 t_2 + f_0) ⊂ X × ℂ^2 and the hypersurface H = p^{-1}(P) have the desired properties, see Theorem 7. These conditions reduce to numerical conditions, which are easily to verify, see Corollary 8 and Example 9.

1. Forcing equations. Let X be an irreducible normal complex Stein space of dimension d together with a point P ∈ X. Let f_1, . . . , f_n be holomorphic functions on X such that the common zero set of these functions is exactly P. Let f_0 be another holomorphic function vanishing at P. Then we consider the complex space W ⊂ X × ℂ^n defined by the equation f_1 t_1 + . . . + f_n t_n + f_0 = 0,

W = \{(x, t_1, . . . , t_n) ∈ X × ℂ^n : f_1(x) t_1 + . . . + f_n(x) t_n + f_0(x) = 0\}.

The equation f_1 t_1 + . . . + f_n t_n + f_0 = 0 is called a forcing equation, since it forces f_0 to lie in the ideal generated by f_1, . . . , f_n. Forcing equations and the algebras defined by them play an important role in the theory of closure operations for ideals, e.g. tight closure and solid closure, see [3]. Let p : W → X be the projection. If d ≥ 2, then n ≥ 2 and W is an irreducible Stein space of dimension d + n − 1. Let U_i = {x ∈ X : f_i(x) = 0} and U = \bigcup_{i=1}^n U_i = X − P. Resolving t_i shows that p^{-1}(U_i) ∼= U_i × ℂ^{n−1}. The transition mappings however are only affine-linear, not
linear, hence $W|_U$ is not a vector bundle. $H := p^{-1}(P) \cong \mathbb{C}^n$ is a closed subset in W, which is a hypersurface in case $d = 2$. The existence of a section $X \to W$ is equivalent with $f_0 \in (f_1, \ldots, f_n)$ over X.

Lemma 1. Let X be a normal irreducible Stein space together with a point P and let $f_1, \ldots, f_n, f_0 \in \Gamma(X, \mathcal{O}_X)$ be holomorphic functions on X. Let X' be another irreducible Stein space of the same dimension and let $\psi : X' \to X$ be a holomorphic mapping such that $\psi^{-1}(P)$ contains isolated points. Suppose that $f_0 \circ \psi \in (f_1 \circ \psi, \ldots, f_n \circ \psi)$ in $\Gamma(X', \mathcal{O}_{X'})$. Then $f_0 \in (f_1, \ldots, f_n)$ in $\mathcal{O}_{X,P}$.

Proof. Let Q be an isolated point over P. Then there exist open neighborhoods $Q \subseteq U$ and $P \subseteq V$ such that $\psi : U \to V$ is finite, see [4], Ch. 3.2. Due to the finite mapping theorem, $\psi_*(\mathcal{O}_{X'})$ is a coherent analytic algebra on $P \in V \subseteq X$. Furthermore it is torsionfree due to the assumptions on the dimension. Since X is normal, we have the trace map $\text{tr} : \psi_*(\mathcal{O}_U) \to \mathcal{O}_V$, which gives the result. \hfill \square

Corollary 2. Let X be a normal irreducible Stein space of dimension d together with a point P and let $f_1, \ldots, f_n, f_0 \in \Gamma(X, \mathcal{O}_X)$ be holomorphic functions such that $f_0 \notin (f_1, \ldots, f_n)\mathcal{O}_P$. Let

$$W = V(f_1t_1 + \ldots + f_nt_n + f_0) \subseteq X \times \mathbb{C}^n \xrightarrow{p} X.$$

and $H = p^{-1}(P)$. Let T be an irreducible complex space of dimension d and let $\varphi : T \to W$ be a holomorphic map. Then $\varphi^{-1}(H) \subseteq T$ contains no isolated points and the codimension of $\varphi^{-1}(H)$ is $\leq d - 1$.

Proof. We look at the composed mapping $\psi = p \circ \varphi : T \xrightarrow{\varphi} W \xrightarrow{p} X$. Since it factors through W it follows that $f_0 \circ \psi \in (f_1 \circ \psi, \ldots, f_n \circ \psi)$ in $\Gamma(T, \mathcal{O}_T)$. Due to the Lemma $\psi^{-1}(P) = \varphi^{-1}(H)$ cannot contain isolated points. \hfill \square

With this result we can establish the hypothesis of the hypersection problem in a broad class of example where the base space X is two-dimensional, $n = 2$ and $H = p^{-1}(P) \cong \mathbb{C}^2$ is a hypersurface in three-dimensional W.

Proposition 3. Let X be a normal irreducible two-dimensional Stein space together with a point P. Let $f_1, f_2, f_0 \in \Gamma(X, \mathcal{O}_X)$ be holomorphic functions such that $P = \{ f_1 = f_2 = 0 \}$ and suppose that $f_0 \notin (f_1, f_2)\mathcal{O}_P$. Let

$$W = Z(f_1t_1 + f_2t_2 + f_0) \subseteq X \times \mathbb{C}^2 \xrightarrow{p} X.$$

and let $H = p^{-1}(P) \subset W$. Then for every analytic surface $S \subset W$ the complement of $S \cap H \subset S$ is Stein.

Proof. We may assume that S is irreducible, let \tilde{S} be its normalization and let $\varphi : \tilde{S} \to W$ be the corresponding mapping. Due to Cor. \hfill \square we know that $\varphi^{-1}(H) \subseteq \tilde{S}$ contains no isolated points. Hence $\varphi^{-1}(H)$ is a pure curve on a normal Stein surface and due to \hfill \square its complement is Stein. But then also $S - \tilde{S} \cap H$ itself is Stein. \hfill \square

2. The graded situation. We have to look for examples of the type described in Proposition \hfill \square where $W - H$ is not Stein. To this end we look at the graded situation. Let $Y \subseteq \mathbb{P}^N$ be a smooth projective variety with the very ample line bundle $H_Y \to Y$ (which is the restriction of $\mathcal{O}_{\mathbb{P}^N}(1)$ to Y) and let $X \subseteq \mathbb{C}^{N+1}$ be the corresponding affine cone. Let P be the vertex of the cone and assume that X is normal. Recall that we have an action of \mathbb{C}^* on X, which is free on $U = X - P$.

Proposition 5. Let Y be the quotient of this action and $U \to Y$ is a \mathbb{C}^*-principal bundle. A number $e \in \mathbb{Z}$ defines the action on $X \times \mathbb{C}$ by $\lambda(x, t) := (\lambda x, \lambda^e t)$, this action is free over U and the quotient is the line bundle $H_Y^e \to Y$.

Suppose that the holomorphic functions f_i are homogeneous of degree d_i, i.e. $f_i(\lambda x) = \lambda^{d_i} f(x)$, $x \in X$, $\lambda \in \mathbb{C}^*$. We may consider a homogeneous holomorphic function f of degree d as a section $Y \to H_Y^d$ and as a mapping of line bundles $H_Y^d \to Y \times \mathbb{C}$ or $H_Y^d \to H_Y^{d+d}$.

Proposition 4. Let X be a normal affine cone over a smooth projective variety Y and let P be the vertex point. Let f_1, \ldots, f_n be homogeneous functions such that $P = \{ f_1 = \ldots = f_n = 0 \}$, $U = X - P$. Let d_i be the degrees of f_i and let e_i numbers such that $m = d_i + e_i$ is constant. Then the following hold.

(i) There is an exact sequence of vector bundles

\[0 \to V_m \to H_Y^{d_1} \times_Y \ldots \times_Y H_Y^{d_n} \to \sum_{i=1}^n f_i \to H_Y^m \to 0. \]

(ii) V_m is the quotient of $V(f_1 t_1 + \ldots + f_n t_n)|_U$ by the action of \mathbb{C}^* given by $\lambda(x, t_1, \ldots, t_n) = (\lambda x, \lambda^{e_1} t_1, \ldots, \lambda^{e_n} t_n)$.

(iii) We have $\text{Det} V_m \cong H_Y^{k - n}$, where $k = \sum_{i=1}^n e_i - m = -\sum_{i=1}^n d_i + (n-1)m$.

(iv) $V_m' = V_m \otimes H_Y^{m'}$. The projective bundle $\mathbb{P}(V_m)$ is independent of the chosen degree m.

Proof. (i). We consider the f_i as morphisms $H_Y^d \to H_Y^{d_i}$. The morphism of vector bundles $H_Y^{d_1} \times_Y \ldots \times_Y H_Y^{d_n} \to H_Y^m$ over Y is surjective, because the f_i do not have a common zero on Y. Hence the kernel is a vector bundle V_m on Y of rank $n-1$.

(ii). The pull back under $q : U \to Y$ of the exact sequence in (i) gives

\[0 \to q^* V_m \to U \times \mathbb{C}^n \to \sum_{i=1}^n f_i \to U \times \mathbb{C} \to 0 \]

together with the described action, and $q^* V_m = V(f_1 t_1 + \ldots + f_n t_n)|_U$. (iii) and (iv) follow.

Proposition 5. Let X be a normal affine cone over a smooth projective variety Y and let P be the vertex point, $U = X - P$. Let f_1, \ldots, f_n be homogeneous functions such that $P = \{ f_1 = \ldots = f_n = 0 \}$. Let f_0 be another homogeneous function, $d_i = \deg(f_i)$, and let e_i be numbers such that $m = d_i + e_i$ is constant for $i = 0, \ldots, n$. Let V_m (resp. V_m') be the vector bundle on Y defined in Proposition 4 with respect to f_1, \ldots, f_n (resp. f_0, f_1, \ldots, f_n). Then the following hold.

(i) There is an exact sequence of vector bundles on Y:

\[0 \to V_m \to V_m' \to H_Y^m \to 0. \]

(ii) The corresponding embedding $\mathbb{P}(V_m) \hookrightarrow \mathbb{P}(V_m')$ is independent of m, $\mathbb{P}(V_m)$ is a divisor on $\mathbb{P}(V_m')$.

(iii) Let $e_0 = 0$. The normal bundle for $\mathbb{P}(V) \to \mathbb{P}(V)'$ on $\mathbb{P}(V)$ is $H_{\mathbb{P}(V)}$, where $H_{\mathbb{P}(V)}$ denotes the relative very ample line bundle on $\mathbb{P}(V)$.

(iv) Let $e_0 = 0$. $W|_U \to \mathbb{P}(V)' - \mathbb{P}(V)$ is a quotient of the action on $W = V(f_1 t_1 + \ldots + f_n t_n + f_0)$ given by $\lambda(x, t_1, \ldots, t_n) \mapsto (\lambda x, \lambda^{e_1} t_1, \ldots, \lambda^{e_n} t_n)$.
Proof. (i). The mappings in the sequence follow from the defining sequences for V_m and V_m'. The exactness of the sequence follows from diagram chasing. (ii) is clear.

(iii). Since we assume $e_0 = 0, t_0$ is a global function on V' and it is a global section in the relative very ample line bundle $H_{\bar{P}(V')}$ on $\bar{P}(V')$, and $\bar{P}(V)$ is the corresponding divisor. Therefore the normal bundle of this embedding is $i^*H_{\bar{P}(V')} \cong H_{\bar{P}(V)}$.

(iv). First we may identify the closed subset $\{Q \in V' : t_0(Q) = 1\}$ with $\mathbb{P}(V') - \mathbb{P}(V)$. The described action on W respects the forcing equation, for $f_1(\lambda x)\lambda^{s_1}t_1 + \ldots + f_n(\lambda x)\lambda^{s_n}t_n + f_0(\lambda x) = \lambda^{d_1}f_1(x)t_1 + \ldots + \lambda^{d_n}f_n(x)t_n + \lambda^{d_0}f_0(x) = \lambda^m(f_1(x)t_1 + \ldots + f_n(x)t_n + f_0(x)) = 0$. This action on $W|_U = W - p^{-1}(P)$ is the same action as the action on the vector bundle $V(f_1t_1 + \ldots + f_0t_0)|_U$ restricted to $t_0 = 1$ described in Proposition \textcolor{blue}{3}(iii). Its quotient is $\{Q \in V' : t_0(Q) = 1\}. \quad \Box$

Now we specialize to the two-dimensional situation.

Corollary 6. Let X be a normal affine two-dimensional cone over a smooth projective curve Y and let P be the vertex point. Let f_1, f_2 be homogeneous functions such that $P = \{f_1 = f_2 = 0\}$. Let f_0 be another homogeneous function, $d_i = \deg(f_i)$, and let e_i numbers such that $m = d_i + e_i$ is constant for $i = 0, 1, 2$. Let V_m (V_m') be the corresponding vector bundles on Y. Then the following hold.

(i) $\mathbb{P}(V')$ is a ruled surface and $\mathbb{P}(V) \subset \mathbb{P}(V')$ is a section (independent of m).

(ii) We have $V_m \cong H^{e_0+d_0-d_1-d_2}_{Y'}$ and the exact sequence

$$0 \rightarrow H^{e_0+d_0-d_1-d_2}_{Y'} \rightarrow V' \rightarrow H^{e_0}_{Y'} \rightarrow 0.$$

(iii) Let $e_0 = 0$. The normal bundle of the embedding $Y \cong \mathbb{P}(V) \subset \mathbb{P}(V')$ is $H^{d_1+d_2-d_0}_{Y'}$.

(iv) The self intersection number of $Y \cong \mathbb{P}(V) \hookrightarrow \mathbb{P}(V')$ is $(d_1 + d_2 - d_0) \deg H_Y$.

Proof. (i) is clear due to Proposition \textcolor{blue}{3}.

(ii) From the defining sequence in Proposition \textcolor{blue}{3} it follows that we have $V_m \cong H^{e_1}_{Y'} \otimes H^{e_2}_{Y'} \otimes H^{e_0}_{Y} = H^{e_1+e_2-m}_{Y'} = H^{e_0+d_0-d_1-d_2}_{Y'}$.

(iii). The normal bundle on $\mathbb{P}(V)$ is $H_{\bar{P}(V)}$ due to Proposition \textcolor{blue}{3}. But for a line bundle this is just the negative tautological bundle $-V$, therefore $N = -V = H^{d_1+d_2-d_0}_{Y'}$.

(iv). The self intersection number is $\mathbb{P}(V)^2 = \deg_Y N = \deg_Y H^{d_1+d_2-d_0}_{Y'} = (d_1 + d_2 - d_0) \deg H_Y. \quad \Box$

3. A class of examples.

Theorem 7. Let X be a normal affine two-dimensional cone with vertex point P over a smooth projective curve Y, let f_1, f_2 and f_0 be homogeneous holomorphic functions on X with degrees d_1, d_2, d_0 such that

1. $V(f_1, f_2) = P$ 2. $f_0 \not\in (f_1, f_2)\mathcal{O}_{X,P}$ and 3. $d_1 + d_2 - d_0 < 0$.

Let $W = V(f_1t_1 + f_2t_2 + f_0) \subset X \times \mathbb{C}^2$ and $H = p^{-1}(P) \subset W$. Then $W - H \subset W$ is not Stein, but for every analytic surface $S \subset W$ the intersection $(W - H) \cap S$ is Stein.

Proof. We have to show that $W - H$ is not Stein. Since $W - H = W|_U, U = X - P$, the quotient of this open subset under the action of \mathbb{C}^* is $\mathbb{P}(V') - \mathbb{P}(V)$. Due to \textcolor{blue}{3} it is enough to show that this complement of the section in the ruled surface $\mathbb{P}(V')$
We have to show that
\[f \] is due to \cite{3} contractible and the complement cannot be Stein.

\textbf{Corollary 8.} Let \(h \) be an irreducible homogeneous polynomial of degree \(r \) in the three variables \(x, y, z \) and suppose that \(x, y \) are homogeneous parameters (i.e. that \(h = cz^r + \) other terms, \(c \neq 0 \)) and let \(X = V(h) \subset \mathbb{C}^3 \). Suppose that \(X \) is normal (hence \(Y \) is smooth). Let \(d_1, d_2 \geq 1 \) and \(d_0 \) be degrees such that \(d_1 + d_2 < d_0 < r \). Then \(f_1 = x^{d_1}, f_2 = y^{d_2} \) and \(f_0 = z^{d_0} \) fulfill the conditions of the theorem.

\textbf{Proof.} We have to show that \(z^{d_0} \notin (x^{d_1}, y^{d_2}) \mathcal{O}_P \). For this we look at the completion of the local ring, \(\hat{\mathcal{O}_P}/(x^{d_1}, y^{d_2}) = \mathbb{C}[x, y, z]/(h, x^{d_1}, y^{d_2}) \). Since \(d_0 < r = \deg(h) \) we see that \(z^{d_0} \neq 0 \) in this residue class ring. On the other hand, the self intersection number is \((d_1 + d_2 - d_0) \deg H_Y < 0 \).

\textbf{Example 9.} Let \(X = V(x^r + y^r + z^r) \subset \mathbb{C}^3, r \geq 4 \) be a Fermat type hypersurface, let
\[W = V(x^r + y^r + z^r, xt_1 + yt_2 + z^4) \subset \mathbb{C}^5, 3 \leq s < r \text{ and } H = V(x, y). \]

Then the conditions in the corollary are fulfilled.

The easiest example of this type is the Fermat quartic \(x^4 + y^4 + z^4 \) together with \(f_1 = x, f_2 = y \) and \(f_0 = z^3 \). Therefore
\[W = V(x^4 + y^4 + z^4, xt_1 + yt_2 + z^3) \text{ and } H = V(x, y) \]
gives an counter-example to the hypersection problem.

\textbf{Remarks 10.} The hypersurface \(H \) in our example is the singular locus of \(W \). Since the normalization does not change the complement of \(H \) and since its preimage is still a hypersurface due to Corollary \cite{3}, we also may get normal examples.

The condition \(f_0 \notin (f_1, f_2) \mathcal{O}_P \) in Corollary \cite{3} ensures that the divisor \(\mathbb{P}(V) \subset \mathbb{P}(V') \) intersects every curve \(C \subset \mathbb{P}(V') \) positively. For a disjoined curve would yield a closed punctured surface (its cone) inside \(W - H \). If additionally \(d_1 + d_2 - d_0 > 0 \), then \(\mathbb{P}(V) \) is an ample divisor and its complement is affine, hence Stein. What happens if \(d_1 + d_2 - d_0 = 0 \)? Then the complement is not affine, but it may be Stein. For \(h = x^r + y^r + z^r = 0, f_1 = x, f_2 = y \) and \(f_0 = z^2 \) we get an instance of the classical construction of Serre of a Stein, but non-affine variety, see \cite{3}.

\textbf{References}

[1] Coltoiu, M., Diederich, K.: Open sets with Stein hypersurface sections in Stein spaces. Ann. Math. 145 (1997), 175-182.

[2] Diederich, K.: Some Aspects of the Levi Problem: Recent Developments. In Geometric Complex Analysis (edited by Junjirou Noguchi et. al.) (1996), 163-181.

[3] Grauert, H.: Über Modifikationen und exzeptionelle analytische Mengen. Math. Ann. 146 (1962), 331-368.

[4] Grauert, H., Remmert, R.: Coherent Analytic Sheaves. Springer 1984.

[5] Hochster, M.: Solid closure. Contemp. Math. 159 (1994), 103-172.

[6] Matsushima, Y., Morimoto, A.: Sur certain espaces fibrés holomorphes sur une variété de Stein. Bull. Soc. Math. France 88 (1960), 127-155.

[7] Simha, R.R.: On the complement of a curve on a Stein space of dimension two. Math. Z. 82 (1963), 63-66.

[8] Umemura, H.: La dimension cohomologique des surfaces algébriques. Nagoya Math. J. 47 (1972), 155-160.
HOLGER BRENNER

Mathematische Fakultät, Ruhr-Universität, Universitätsstr. 150, 44780 Bochum, Germany

E-mail address: brenner@cobra.ruhr-uni-bochum.de