Aktuelle Fortschritte in der Diagnostik und chirurgischen Therapie der Halslymphknotenmetastasen bei Kopf-Hals-Karzinomen

Current Advances in Diagnosis and Surgical Treatment of Lymph Node Metastasis in Head and Neck Cancer

Autoren
A. Teymoortash, J. A. Werner

Inhaltsverzeichnis

Zahl	Kapitel
102	Zusammenfassung
1	Einleitung
2	Nomenklatur der Halslymphknoten und Klassifikation der Neck dissection Formen
3	Grundlagen der lymphogenen Metastasierung
4	Diagnostik der Halslymphknotenmetastasen
5	Richtung und Ausmaß der lymphogenen Metastasierung bei Plattenepithelkarzinomen der oberen Luft- und Speisewege
5.1	Nase und Nasennebenhöhlen
5.2	Lippen und Mundhöhle
5.3	Nasopharynx
5.4	Oropharynx
5.5	Larynx
5.6	Hypopharynx
6	Halslymphknotenmetastasen bei unbekanntem Primärtumor
7	Neck dissection bei klinischem N0-Hals
8	Exstirpation der Gl. submandibularis bei Neck dissection
9	Späte Halslymphknotenmetastasen
10	Neck dissection nach primärer Radiochemotherapie
11	Morbidität nach Neck dissection
12	Endoskopische Neck dissection
13	Prognostische Bedeutung von Neck dissection
14	Neck dissection bei Karzinomen der großen Kopf- und Halsdrüsen
14.1	Kopf- und Halsdrüsen
14.2	Neck dissection bei Malignomen der Kopf- und Halsdrüsen
15.1	Plattenepithelkarzinom
15.2	Merkelzellkarzinom
15.3	Melanom
16	Neck dissection bei Karzinomen der Schlund- und Pharynxdrüsen
17	Ausblick
18	Danksagung
18	Abstract
18	Literatur

Zusammenfassung

Der Status der Halslymphknoten ist auch heute noch der wichtigste prognostische Faktor bei Kopf-Hals-Karzinomen. So richtet sich das individuelle Behandlungskonzept der Lymphabflusswege nach der Behandlung des Primärtumors sowie dem Vorliegen oder Fehlen suspekter Lymphknoten in der bildgebenden Diagnostik. Die Neck dissection kann sowohl eine therapeutische als auch eine diagnostische Zielsetzung haben. Die selektive Neck dissection ist zur Zeit das Verfahren der Wahl bei Patienten mit fortgeschrittenen Kopf-Hals-Karzinomen und einem klinischen N0-Hals. Dieses Verfahren ist aus onkologischen Gründen bei akzeptablen funktionellen und ästhetischen Ergebnissen grundsätzlich zu empfehlen, vor allem unter dem Gesichtspunkt des vorerwähnten Staging-Verfahrens. In diesem Übersichtsartikel werden aktuelle Aspekte zum prä- und posttherapeutischen Staging der Halslymphknoten dargestellt und die Indikation und notwendige Ausdehnung der Neck dissection bei Kopf-Hals-Karzinomen diskutiert. Zusätzlich wird die kritische Frage behandelt, ob die Lymphknotenmetastase ein intrinsisches Risiko zur metastatischen Ausbreitung hat und damit deren Entfernung im frühesten Stadium von besonderer Bedeutung ist.

1 Einleitung

Die verschiedenen Fragen zur lymphogenen Metastasierung bei Kopf-Hals-Karzinomen wurden in einer vorangegangenen Übersichtsarbeit 1997 von Werner anlässlich der Jahresversammlung der Deutschen Gesellschaft für Hals-Nasen-Ohrenheilkunde, Kopf-Hals-Chirurgie in Nürnberg zusammengefasst [1]. Seitdem gibt es verschiedene aktuelle Entwicklungen auch auf diesem Gebiet, die den diesjährigen Präsidenten Prof. Dr. N. Stasche veranlassten, diese Thematik nochmals überarbeiten und demzufolge aktualisieren
zu lassen. Diesen vorausgehend werden in den nächsten Absätzen nochmals die Eckpunkte der Thematik definiert, bevor es dann in die perspektivische Betrachtung geht.

In Deutschland erkranken jährlich zwischen 10 000 und 15 000 Menschen an einem Karzinom der oberen Luft- und Speisewege. Zu den therapeutischen Optionen dieser Tumoren, bei denen es sich in über 90% um Plattenepithelkarzinome handelt, zählen neben chirurgischen Maßnahmen die Strahlen- sowie Chemotherapie und neuerdings auch die sog. Biotherapie. Hierdurch gelingt es bei der Mehrzahl der betroffenen Patienten, den Primärtumor zu behandeln. Dennoch zeichnen sich Karzinome der oben genannten Regionen oftmals durch eine schlechte Prognose mit einer 5-Jahres-Überlebensrate von etwa 50–60% aus. Die Diskrepanz zwischen erfolgreicher Behandlung des Primärtumors einerseits und der schlechten Langzeitprognose andererseits ergibt sich aus der oft frühzeitigen und ausgeprägten lymphogenen Metastasierung, den möglicherweise erst im späteren Krankheitsverlauf auftretenden Fernmetastasen sowie der Entwicklung von Zweitkarzinomen. Während die Karzinome in einem frühen Stadium (Stadium I und II) eine 5-Jahres-Überlebensrate von insgesamt ca. 80% aufweisen, beträgt die 5-Jahres-Überlebensrate bei Karzinomen im Stadium III, IVA und IVB (lokoregionale Metastasierung) insgesamt ca. 50% und bei Patienten im Stadium IVC (Fernmetastasierung) ca. 25% [2].

Die lymphogene Metastasierung stellt den wichtigsten unabängigen prognostischen Faktor bei Plattenepithelkarzinomen dar. Neben der Behandlung signifikant höheren lokoregionären Rezidivrate und mit Fernmetastasen verbunden. Damit kommt neben der Behandlung des Primärtumors der Einbeziehung der lokoregionären Lymphabflusswege und der histopathologischen Untersuchung der Halslymphknoten in das Therapiekonzept der Kopf-Hals-Karzinome eine besondere Bedeutung zu.

Die Neck dissection war in ihrer langen Geschichte seit dem ersten dokumentierten Fall im Jahre 1888 durch Jawdyński einem starkem Wandel unterworfen. Die radikale Neck dissection, die später von Crile 1905 beschrieben wurde [6], war viele Jahrzehnte lang die Standardtherapie der zervikalen Lymphknoten. Seit Mitte des letzten Jahrhunderts werden Konzepte zum Erhalt der nicht-lymphatischen Halsstrukturen diskutiert. Ein verbessertes Verständnis der Lymphabflusswege der Kopf-Hals-Region, technische Verbesserungen zur Diagnostik der Halslymphknotenmetastasen sowie technische Fortschritte in der Strahlentherapie erlauben individueller und schonender Formen der Neck dissection mit vergleichbarer lokaler Kontrollrate wie bei den radikalen Therapieformen.

2 Nomenklatur der Halslymphknoten und Klassifikation der Neck-dissection-Formen

Der Lymphabfluss der oberen Luft- und Speisewege erfolgt über insgesamt etwa 300 Lymphknoten, welche durch ein komplexes Lymphgefässsystem miteinander in Verbindung stehen. Es steht fest, dass, abgesehen von einigen Varianten, die Lymphgefäße relativ vorhersehbarer und konstanter Lymphbahnen in bestimmte Lymphknotengruppen drainiert wird. Dies bildet die Grundlage für die Einteilung der Lymphknoten im Kopf-Hals-Bereich. Es gilt weiterhin die Klassifikation der Halslymphknoten aus dem Jahr 2000 durch das Komitee zur Neck dissection Klassifikation der American Head and Neck Society [7]. Diese hatte vor allem zum Ziel, die Nomenklatur der selektiven Neck dissection zu vereinfachen sowie die Zuordnung zu den Lymphknotenregionen mittels bildgebender Verfahren zu verbessern (Tab. 1, Abb. 1).

Als Erstbeschreiber der heutzutage als radikaler Neck dissection bezeichneten Technik gilt George W. Crile, welcher im Jahre

Tab. 1 Tabellarische Darstellung der Topografie und Nomenklatur der Halslymphknoten nach [7] (LK = Lymphknoten).

Region	Bezeichnung	Begrenzung
I A	submentale LK	Zwischen den vorderen Bäuchen der Mm. digastrici und dem Zungenbein
I B	submandibuläre LK	Zwischen den vorderen und hinteren Bäuchen des M. digastricus, dem M. stylohyoideus und dem Unterkieferast
II A	kraniojuguläre LK	Zwischen Schädelbasis und Unterkante des Zungenbeins um die V. jugularis interna und den N. XI gelegene LK; Anteriore (mediale) Grenze: laterale Kante des M. sternohyoideus und M. stylohyoideus, posteriore (laterale) Grenze: M. sternocleidomastoideus
II B	Vor (medial) einer vertikalen Linie durch den N. XI gedachten Ebene	
III	medioujuguläre LK	Zwischen Unterkante des Zungenbeins und der Unterkante des Ringknorpels um das mittlere Drittel der V. jugularis interna gelegene LK; Anteriore (mediale) Grenze: laterale Kante des M. sternohyoideus; posteriore (laterale) Grenze: posteriore Grenze des M. sternocleidomastoideus
IV	kaudojuguläre LK	Zwischen Unterkante des Ringknorpels und Klavikula um das untere Drittel der V. jugularis interna gelegene LK; Anteriore (mediale) Grenze: laterale Kante des M. sternohyoideus; posteriore (laterale) Grenze: posterior Grenze des M. sternocleidomastoideus
V	LK des posterioren Dreiecks	Um die untere Hälfte des N. XI und die A. transversa coli gelegene LK, einschließlich supraclavikulärer LK Obere Grenze: Zusammentreffen von M. sternocleidomastoideus und M. trapezius; Untere Grenze: Klavikula, Anteriore (mediale) Grenze: posteriore Grenze des M. sternocleidomastoideus; posteriore (laterale) Grenze: Vorderkante des M. trapezius
VI	Oberhalb einer horizontalen Linie durch die Unterkante des Ringknorpels gedachten Linie	
VII	Unterhalb einer horizontalen Linie durch die Unterkante des Ringknorpels gedachten Linie	
VIII	Prä- und paratracheale LK, präkrikoidaler (Delphischer) LK, perithyreoidale LK, einschließlich supraclavikulärer LK Obere Grenze: Zungenbein, Untere Grenze: Sternumoberkante; laterale Grenzen: Aa. carotis communnes	

Teymoortash A, Werner JA. Aktuelle Fortschritte in der... Laryngo-Rhino-Otol 2012; 91: S102–S122
1905 seine Erfahrungen mit 105 operierten Patienten veröffentlicht [6]. Dieses Verfahren, welches die Ausräumung der ipsilateralen Level I-V und die gleichzeitige Resektion der V. jugularis interna, des M. sternocleidomastoideus sowie des N. accessorius vorsieht, wurde vor allem in der ersten Hälfte des 20. Jahrhunderts angewandt. Da diese Technik jedoch zum Teil mit einer erheblichen postoperativen Morbidität sowie lebensbedrohlichen Komplikationen für den Patienten verbunden war, setzten sich mit Beginn der 60er Jahre zunehmend funktionserhaltende Verfahren durch. Ziel dieser zunächst als funktionelle Neck dissection bezeichneten Technik war es, durch Schonung mindestens einer der extralymphatischen Strukturen, welche im Rahmen einer radikalen Neck dissection reseziert wurden, ein Maximum an Funktion zu erhalten, ohne dadurch die Prognose für den Patienten zu verschlechtern. Gegen der funktionellen Neck dissection führten an, dass dieses Verfahren bei einem metastasierten Tumorleiden nicht radikal genug sei, andererseits viele Patienten mit klinischem N0-Hals übertherapiert würden. Grundlage für die Durchführung einer heute als selektive Neck dissection bezeichneten Operation bildet hierbei die Identifikation besonders häufig von Metastasen betroffener Lymphknotenregionen in Abhängigkeit von der Primärtumorlokalisation. Mit der selektiven Ausräumung einzelner Lymphknotenregionen sollte die postoperative Morbidität der Patienten weiter verringerter und die funktionellen wie auch ästhetischen Ergebnisse im Vergleich zur modifizierten radikalen Neck dissection weiter verbessert werden. Die Befürworter dieser Technik führen zu dem an, dass durch den Erhalt nicht befallener, immunologisch intakter Lymphknoten eine weitere Tumorausbreitung verhindert werden könnte. Neben der Anwendung als Therapieverfahren dient die selektive Neck dissection vor allem dem Tumorsta-

104 Referat

Abb. 1 Topografie der Halslymphknotenregionen unter Darstellung der für die Einteilung relevanten Halsmuskulatur. Präaurikulär ist die Gl. parotis und im Level I die Gl. submandibularis dargestellt. N. accessorius markiert die Grenze zwischen Level IIA und B und ist in Level V zu erkennen.

ging und wird zumeist elektiv bei klinischem N0-Hals sowie im Anschluss an eine primäre Strahlentherapie durchgeführt. Seitdem Neck dissection durchgeführt wird, gibt es eine Vielzahl verschiedener Formen und Nomenklaturen derselben, was unter anderem auch auf die bisweilen uneinheitliche Nomenklatur der Halslymphknotenregionen zurückzuführen ist. Ein neuer Vorschlag zur Klassifikation der Neck dissection stammt von der Japan Neck dissection Study Group (JNSG). Ziel dieser Arbeitsgruppe war es, verschiedene Aspekte nicht radikal der Neck dissection zu standardisieren [8]. Hierzu zählen unter anderem das Ausmaß der Lymphknotenentfernung und die Resektion nicht lymphatischer Strukturen. Dieses System unterteilt die zervikalen Lymphknoten in 3 Regionen, welche wiederum verschiedene Unterregionen enthalten. Entsprechend dem Ausmaß der Lymphknotenausräumung wird zwischen einer totalen und einer selektiven Neck dissection unterschieden. Die Beschreibung der resezierten Strukturen erfolgt mittels einer speziellen Buchstabenkombination. Hierdurch soll eine präzise und einfache Beschreibung des erfolgten Eingriffes möglich sein. Nachteil dieses Klassifikationssystems ist jedoch, dass es auf einer Lymphknoteneinteilung basiert, welche sich von der bisher anerkannten Terminologie unterscheidet. Eine Modifikation dieses Klassifikationssystems wurde kürzlich vorgestellt [9]. Die Vorteile sowie die mögliche Etablierung dieses neuen Staging-System bleiben abzuwarten.

Die aktuell anerkannten und meist verwendete Klassifikation der unterschiedlichen Neck dissection Formen bezieht sich auf ein durch die Arbeitsgruppe um Robbins erstellte Klassifikationssystem, welches zuletzt 2008 überarbeitet wurde [10]. Hierbei wurde die Grenze zwischen dem Level IB und IIA, welche durch den M. stylohyoideus gebildet wird, für bessere radiologische Zuordnung als eine vertikale Fläche dorsal der Gl. submandibularis definiert. Ähnlich wird auch die Grenze zwischen Level III und IV zu Level VI, welche durch den M. sternohyoideus gebildet wird, in der axialen Ebene als mediale Seite der A. carotis communis angenommen. Diese Klassifikation stellt eine einfache und etablierte Einteilung der Halslymphknoten für Kopf-Halschirurgen, Onkologen und Radiologen dar und soll international einheitlich eingesetzt werden [11]. Zu vermuten ist jedoch, dass auch in Zukunft weitere Überarbeitungen und Abwandlungen dieser Nomenklatur erfolgen werden.

3 Grundlagen der lymphogenen Metastasierung

Lymphangiogenese stellt einen wesentlichen Schritt der lymphogenen Metastasierung bei Plattenepleithkarzinomen der oberen Luft- und Speisewege dar. Der genaue molekulare Mechanismus dieses mehrschrittigen Prozesses ist nicht in allen Details bekannt. Unterschiedliche lymphangiogenetische Zytokine des Plattenepleithkarzinoms insbesondere VEGF-C und -D, die vor allem im Bereich der Tumorinvasionsfront exprimiert werden, stimulieren die Entstehung von Lymphgefäßen auf unterschiedliche Weise [12]. Es konnte festgestellt werden, dass die erhöhte Expression der letztgenannten Zytokine mit hoher Lymphgefäbsdichte und lymphogener Metastasierung vergesellschaftet ist [13].

In Plattenepleithkarzinomen mit stattgefundener lymphogener Metastasierung konnte eine signifikant höhere Anzahl intra- und peritumoraler lymphatischer Gefäße nachgewiesen werden, wobei diese Gefäße zahlreicher und größlerumiger im peritumoralen Bereich als direkt innerhalb des Tumorgewebes lokal-
isiert waren [14]. Es konnte gezeigt werden, dass Lymphgefäße-Endothelien, die durch Zungenkarzinomzellen induziert wurden, eine hohe Proliferation zeigen und in der Lage sind, kapillardähnliche Strukturen zu bilden [15]. In einigen Untersuchungen konnte festgestellt werden, dass die Lymphgefäße dichte im Tumorbereich mit hoher Metastasierungsrate und schlechter Prognose assoziiert zu sein scheint [16, 17]. So wird die tumor-induzierte Lymphangiogenese als ein wichtiger Schritt der lymphogenen Metastasierung angenommen.

Lymphatisches Endothel stellt nicht nur den Grenzbereich der lymphatischen Gefäße dar, sondern ebenso eine interaktive Oberfläche für Tumorzellen. So zeigen auch die Lymphgefäße-Endothelien wie die Tumorzellen ein hohes Maß an phänotypischen Änderungen. Verschiedene Rezeptoren der Lymphgefäße-Endothelien wie CLEVER-1 (common lymphatic endothelial and vascular endothelial receptor-1), Mannose-Rezeptor, LYVE-1 (lymphatic vascular endothelial protein-1) spielen eine Rolle bei der Tumorzell-Adhäsion an lymphatisches Endothel und deren Migration in das Lymphgefäße System. Vor kurzem wurden bei Zungenkarzinomen in induzierte Lymphgefäße-Endothelien die Expression der Chemokine CXCL1, CXCL5, CXCL6, CCL2, CCL7, CCL17 und CCL20 festgestellt, die die Migration von Tumor zellen ermöglichen sollen [18]. Es konnte festgestellt werden, dass durch die Inhibition der lymphangiogenetischen Eigenschaften der Lymphgefäße-Endothelien die Metastasierungsrate signifikant reduziert werden kann. Die Interaktion der Tumor zellen mit tumor-induzierten Lymphgefäße-Endothelien, die unterschiedliche Chemokine sezernieren und Rezeptoren an ihrer Oberfläche bilden, ist der entscheidende Schritt der Migration der Tumor zellen in die Lymphgefäße Bahn [19].

In einem weiteren Schritt lösen sich die Tumor zellen, die während des ganzen Prozesses ihren Phänotyp ändern, von ihrem Verbund und folgen den chemotaktischen Gradienten im Gewebe in Richtung Lymphgefäße. Tumor zellen, die sich von ihrem Verbund lösen sezernieren proteolytische Enzyme wie MMP-9 (Metalloproteinease-9) für lokale Tumor Invasion und exprimieren spezifische Adhäsions moleküle [20]. Nach der Bindung der Tumor zellen mit Lymphgefäße-Endothelien und ihrem Eintritt in das Gefäßlumen werden sie durch einen afferenten Lymphgefäße in Sentinel-Lymphknoten drainiert.

Verschleppte disseminierte Tumor zellen in Lymphknoten metastasen können nur immunhistochemisch und molekular genetisch nachgewiesen werden. Die in die Lymphknoten drainierten Tu morzellen können proliferieren und kleine über 3 mm große Foki als Mikrometastase in der Regel im Randsinus bilden (Abb. 2). Mit der Vergrößerung der metastatischen Ab siedlung ändert sich die Binnen-Architektur und die Durchblutung des Lymphknotens durch Bildung neuer Blutgefäße um den metastatischen Bereich. Parallel dazu kommt es zu einer Vergrößerung des befallenen Lymphknotens. Diese Änderungen können teilweise mittels Ultraschall und Dopplersonografie verfolgt werden. Wenn der gesamte Lymphknoten von Tumor zellen befallen ist und Lymphknoten eine Größe bis zu 20 mm aufweist, kann in der Regel der Lymphknotenhilus nicht mehr identifiziert werden. Ab dieser Größe können auch nekrotische Areale mittels Ultraschall nachgewiesen werden [21] (Abb. 3). Zu diesem Zeitpunkt kann die LymphknotenkapSEL von Tumor zellen noch respektiert werden. Ein weiteres Wachstum zeigt jedoch Kapselinfiltration und den extrakapsulären Nachweis von Tumor zellen. Diese Veränderungen wurden schematisch in Abb. 4 dargestellt. Ein extrakapsuläres Wachstum kann bei ca. 70% der Lymphknoten über 3 cm vorkommen, während Lymphknoten kleiner als 3 cm in ca. 40% der Fälle ein extrakapsuläres Wachstum aufweisen können [22]. In einer prospektiven Untersuchung wurden 96 Neck dissection Präparate bei 63 Patienten mit klinischem N0-Hals, die eine selektive Neck dissection bekamen, histologisch analysiert [23]. 19 Patienten (30,2%) hatten okkulte Lymphknotenmetastasen. Unter diesen Patienten hatten 12 einen Nachweis von extrakapsulärem Wachstum. Das sind 19% der Patienten mit einem klinischen N0-Hals und 63,2% der Patienten mit okkulten Metastasen. Der genaue Mechanismus des extrakapsulären Wachstums insbesondere bei kleinen Lymphknoten ist bisher unklar.

4 Diagnostik der Halslymphknotenmetastasen ▼

Die sichere Diagnostik der Halslymphknotenmetastasen bei Kopf-Hals-Karzinomen stellt weiterhin ein klinisches Problem dar. Das liegt insbesondere an dem anatomischen Besonderheiten der Lymphknoten im Kopf-Hals-Bereich. Hierfür besonders charakteristisch sind zum einen das enge räumliche Nebeneinander von Primärtumor und drainierenden Lymphknotenregionen und zum anderen ein sehr dichtes Lymphgefäße system und
Abb. 4 Schematische Darstellung der mehrschrittigen Entwicklung einer Halslymphknotenmetastase.

(a) Tumorinduzierte Lymphangiogenese im intra- und peritumoralen Bereich und Eintritt der Tumorzellen in Lymphgefäße,
(b) Entwicklung einer Mikrometastase im Randsinusbereich,
(c) Vergrößerung der Lymphknotenmetastase und die damit verbundene Veränderung der Angioarchitektur des befallenen Lymphknotens durch kurvenförmige Verlagerung der metastasennahen Gefäße und Entstehung avaskulärer Zone im Metastasenbereich,
(d) Extrakapsuläres Wachstum mit Darstellung von aberranten und subkapsulären Gefäßen sowie nekrotischen Arealen im Bereich der Metastase.
die hohe Gesamtanzahl von zervikofazialen Lymphknoten. Hinzu kommt die Problematik der Mikrometastasen und die Tatsache, dass eine große Anzahl der zervikalen Metastasen eine Größe von weniger als einem Zentimeter besitzen.

Die Sensitivität der alleinigen Inspektion und Palpation zum Nachweis der Halslymphknotenmetastasen beträgt ca. 60–70 %, während die entsprechenden Werte für die MRT und CT in der Literatur zwischen 65–88 % variieren [24,25]. Als aussagekräftigstes Verfahren zum Nachweis einer Lymphknotenmetastasierung gilt derzeit die B-Bild-Sonografie, ergänzt durch die Doppler-Sonografie in Kombination mit einer sonografisch gesteuerten Aspirationszytologie. Diese verfügt nach den Ergebnissen einer vergleichende Meta-Analyse über eine Sensitivität von 80 % und eine Spezifität von 98 % und ist damit sowohl der CT als auch der MRT überlegen [26]. Diese Untersuchung ist eine weit verbreitet verfügbare und kostengünstige Methode, die ohne großen zeitlichen und organisatorischen Aufwand wiederholt werden kann. Hinzu kommt, dass die Sonografie eine detailliertere Untersuchung der intranodalen Architektur ermöglicht, während die Diagnose der Lymphknotenmetastasen mittels Schnittbilddiagnostik hauptsächlich auf Messungen der Knotengröße basiert. Eine wesentliche Einschränkung der Sonografie besteht darin, dass die Aussagekraft der jeweiligen bildgebenden Diagnostik ganz maßgeblich von der Erfahrung des Untersuchers abhängt.

Die Bedeutung von PET zur Diagnostik der Halslymphknotenmetastasen wird kontrovers diskutiert. Die bisherigen Untersuchungen unterstützen nicht den routinemäßigen klinischen Einsatz von PET zur prätherapeutischen Evaluation des Lymphknotenstatus bei Patienten mit Kopf-Hals-Karzinom, darunter auch Patienten mit klinischem N0-Hals [27]. Eine Meta-Analyse zeigte, dass PET-Untersuchungen insgesamt eine Sensitivität von bis zu 80 % und Spezifität von 86 % erreichen kann, jedoch nur die Hälfte der Patienten mit klinischem N0-Hals und histologisch nachgewiesener Metastasierung mittels PET identifiziert werden können [28].

Auch bei Patienten mit bestrahltem Hals ist der Lymphknotenstatus von Bedeutung. Die Indikation zur möglichen Planung von Neck dissection nach erfolgter Radiochemotherapie ist vom Nachweis intranodaler Tumoresidualgewebe abhängig. Es besteht weiterhin Unklarheit darüber, wie das Ansprechen von Lymphknotenmetastasen nach der erfolgten Bestrahlung mit Sicherheit verifiziert werden kann. Klinische und radiologische Untersuchungen sind nicht in der Lage, die pathologischen Veränderungen im Bereich der bestrahlten Lymphknoten mit Sicherheit zu bestimmen. Obwohl der Stellenwert der sonografisch-gesteuerten Feinnadel punktion zur Bestimmung der zervikalen Ansprechrate bisher noch nicht intensiv analysiert wurde, wird von einer Sensitivität von ca. 80 % berichtet [29].

Durch die Kombination von anatomischen und metabolischen Daten hat PET-CT eine höhere Sensitivität und Spezifität als CT und MRT zur Diagnostik von nodalem Residualgewebe nach Radiochemotherapy [30]. Aufgrund des vergleichsweise hohen negativen prädiktiven Wertes von PET-CT wird diese Untersuchung zunehmend zum Nachweis von Residualtumoren nach Radiochemotherapy empfohlen. Retrospektive Untersuchungen können eine Korrelation der PET-CT-Untersuchung mit den pathologischen Ergebnissen der Neck dissection-Präparate zeigen [31,32].

Prospektiv wurde der Stellenwert von PET-CT zur Bestimmung von nodalem Residualgewebe nach Radiochemotherapie bei 30 Patienten durch histologische Untersuchung der Nachsorgeuntersuchung analysiert [33]. Der positive prädiktive Wert betrug 100 % und der negative prädiktive Wert 50 %. In dieser Untersuchung war die mediane Nachsorgezeit 28 Monate und PET-CT wurde durchschnittlich 3,2 Monate nach Radiochemotherapy durchgeführt.

PET-CT wird trotz ihrer relativ schlechten Verfügbarkeit durchaus als kosteneffektiv zur posttherapeutischen Evaluation von Lymphknotenstatus eingeführt [34]. Zum Nachweis von Residualtumoren nach Radiochemotherapy mittels CT-Untersuchung wird eine vollständige Ansprechrate von 63 % bei N2-Hals und ca. 40 % bei N3-Hals festgestellt [35]. Nach Einsatz von PET-CT anstelle von CT kann die diagnostizierte Ansprechrate auf bis zu 30 % erhöht werden und so kann bei einer relevanten Anzahl von Patienten auf Neck dissection verzichtet und Kosten gespart werden.

Vorgenannte Ausführungen zusammenfassend ist festzustellen, dass als Goldstandard zur Diagnostik der Lymphknotenmetastasen unverändert die histologische Aufarbeitung des Neck dissection-Präparats gilt. Die histologische Untersuchung des Neck dissection-Präparates insbesondere zur Bestimmung der okkularen Lymphknotenmetastasen, der Anzahl, Lokalisation und Größe der Metastasen sowie Vorhandensein eines eventuell vorliegenden perinodalen Wachstums ist von größer klinischer Bedeutung. Als Standard gilt die Anfertigung eines histologischen Schnittpärpares pro Paraffinblock und die lichtmikroskopische Untersuchung des Schnittees nach Hämatoxylin-Eosinfärbung [36]. Es steht jedoch fest, dass die routinemäßig durchgeführte histologische Untersuchung der Halslymphknoten nicht in der Lage ist, sämtliche okkulanten Metastasen zu entdecken. Bei bis zu 10–15 % der Patienten mit pN0-Hals nach Neck dissection können zu dem späte Halslymphknotenmetastasen auftreten. Hierzu verweisen wir auf Kapitel 9. Des Weiteren können durch immunhistochemische Untersuchungen der Halslymphknoten für Zytokeratine in ca. 15 % der Fälle okkulte subpathologische Metastasen nachgewiesen werden, die in der Routine-Histologie nicht erkannt wurden [37]. Durch den Einsatz der molekulargenetischen Verfahren wie quantitative RT-PCR für Zytokeratine 5 oder 14 kann der Nachweis subpathologischer Metastasen weiter optimiert werden [38]. Ein Problem hierbei ist die Spezifität der positiven Ergebnisse ohne morphologisches Korrelat und natürlich die Praktikabilität dieses Verfahrens. Es soll abschließend erwähnt werden, dass die prognostische Relevanz der Mikrometastasen bei Kopf-Hals-Karzinomen weiterhin nicht geklärt ist, obwohl diesen in einigen wenigen Untersuchungen eine prognostische Bedeutung beigemessen wird [39].

5 Richtung und Ausmaß der lymphogenen Metastasierung bei Plattenepithelkarzinomen der oberen Luft- und Speisewege

Das unterschiedliche Dichte- und Verteilungsmuster der Lymphbahnen im Primärtumorareal und verschiedene Aspekte der lymphogenen Invasion von Tumorstellen bilden die morphologische Grundlage zur bevorzugten Metastasierungsrichtung eines
Plattenepithelkarzinoms im Kopf-Hals-Bereich in Abhängigkeit von der Primärtumorlokalisierung. Es soll nicht unerwähnt bleiben, dass die angegebenen Lymphabflussrichtungen eine große Variabilität aufweisen können und als bevorzugte Drainagerichtungen zu verstehen sind wird [40].

5.1 Nase und Nasennebenhöhlen
Die sinunasalen Plattenepithelkarzinome mit einem Anteil von ca. 60 % der Karzinome der genannten Region weisen eine Metastasierungsrate von ca. 10 % auf. Sie steigt mit Infiltration des Nasenbodens, Columella und Oberlippe. Lymphknoten der Level I, II und parotideale sowie retropharyngeale Lymphknoten sind bevorzugte Metastasierungsbereiche. Eine Infiltration des Kieferhöhlenbodens erhöht die Metastasierungsrate der Kieferhöhlenkarzinome aufgrund des ausgedehnten lymphatischen Netzwerkes im Bereich des Nasenbodens und des harten Gaumens im Vergleich zu den anderen Nasennebenhöhlen. So ist die Metastasierungsrate der T2-Kieferhöhlenkarzinome höher als T3- und T4-Karzinome [41].

5.2 Lippen und Mundhöhle
Die Lymphwege aus der Unterlippe fließen in Lymphknoten der Level I, während die Oberlippenkarzinome die bukkalen und parotidealen Lymphknoten befallen können. Die Unterlippenkarzinome, welche ca. 95 % der Lippenkarzinome ausmachen, zeigen eine relativ geringe Metastasierungsstendenz. Die Größe des Karzinoms korreliert mit der Metastasierungsrate. Für T1-T2-Karzinome wird sie mit Werten bis zu 30 % und für T3-T4-Karzinome mit Werten über 60 % angegeben.

Die Lymphwege aus dem vorderen Mundhöhlenbereich fließen vorwiegend zu den Lymphknoten des Level I, während die hinteren Anteile auch zu den Lymphknoten der Level II drainieren können. Im Gegensatz zu diesem bekannten Metastasierungsverhalten können Zungenkarzinome als häufigste Karzinome der Mundhöhle (25–40 %) in bis zu ca. 10 % der Fälle isoliert die Lymphknoten der Level IV befallen. In einer retrospektiven Untersuchung von 277 Zungenkarzinomen wurden in 15,8 % der Fälle Metastasen in Level III oder IV ohne Lymphknotenbefall der Level I und II festgestellt [42].

Ein Teil der Karzinome des vorderen Mundhöhlenbereiches können die sog. lingualen Lymphknoten des Mundbodens befallen, die oberhalb des M. mylohyoideus lokalisiert sind. Da diese Lymphknoten im Rahmen der Neck dissection nicht entfernt werden, können sie als Ursache der Lokalrezidive in Frage kommen. Der Stellenwert dieser Lymphknoten ist noch nicht genau bekannt, sollte jedoch im Rahmen der präoperativen Bildgebung ein Verdacht auf Befall der genannten Lymphknoten vorliegen, ist die Ausräumung dieser Knoten indiziert [43].

Zirka 50 % der Patienten mit einem Mundhöhlenkarzinom weisen Lymphknotenmetastasen auf, wobei Zungenkarzinome aufgrund der hohen Lymphgefäßdichte und muskulären Struktur der Zunge die höchste Metastasierungsrate zeigen. Die Inzidenz der okkulten Lymphknotenmetastasen bei T1- und T2-Karzinome der Mundhöhle beträgt ca. 30–40 %.

Die Metastasierungswahrscheinlichkeit der Mundhöhlenkarzinome steht in direkter Relation zu der Tumorgröße und insbesondere der Infiltrationstiefe. Eine Multivariatanalyse der klinischen und histopathologischen Tumoreigenschaften der Zungenkarzinome zeigte, dass nur die Tumorinfiltrationstiefe einen prädictiven Wert für zervikale Metastasierung aufweist [44]. Ein Cut-off-Wert von 4,0 mm für die Tumorinfiltrationstiefe wurde in einer Metaanalyse der metastasierten Mundhöhlenkarzinome als Prädiktor für die zervikale Metastasierung festgelegt [45]. Die präoperative MRT-Untersuchung ist in der Lage, die Tumorinfiltrationstiefe mit sehr hoher Korrelation mit den histologischen Messungen zu bestimmen, wobei die Werte durch MRT-Messungen um ca. 10 % größer als histologisch bestimmte Werte der Infiltrationstiefe sind [46, 47]. Diese Differenz wird auf eine Gewebeschüttelung im Rahmen der Gewebefixierung zurückgeführt.

5.3 Nasopharynx
Da die Radiotherapie die primäre Behandlung der Nasopharynxkarzinome darstellt, wird das Metastasierungsmuster der Nasopharynxkarzinome, welche früher durch Palpation des Halses evaizuelt wurden, durch Schnittbild-Untersuchung festgelegt. So konnte festgestellt werden, dass die retropharyngealen Lymphknoten die erste Metastasierungsstation der Nasopharynxkarzinome darstellen und bei 94 % der metastasierten Nasopharynxkarzinomen befallen sein können [48]. In einer Untersuchung von 786 Patienten mit einem metastasierten Nasopharynxkarzinom zeigten 13 % der Patienten mit Lymphknotenmetastasen in Level II keine retropharyngeale Beteiligung [49]. Da nur ein geringer Anteil der Patienten mit metastasierten Nasopharynxkarzinomen Lymphknotenmetastasen in anderen Halsregionen ohne Befall der Lymphknoten im retropharyngealen Bereich und Level II zeigen [50, 51], wird der Lymphabfluss des Nasenrachens vorwiegend in die retropharyngealen Lymphknoten und Lymphknoten der Level II angenommen.

Nasopharynxkarzinome zeigen eine höhere Metastasierungsrate im Vergleich zu anderen Kopf-Hals-Karzinomen und können bereits bei der Erstdiagnose eine Metastasierungsrate von bis zu 90 % aufweisen. In einer retrospektiven Untersuchung von 4768 Patienten mit einem Nasopharynxkarzinom wurden klinisch bei 75 % der Patienten vergrößerte zervikale Lymphknoten festgestellt, wobei dies bei 37 % das Erstsymptom war [52].

5.4 Oropharynx
Der Lymphabfluss der Oropharynxregion erfolgt vorwiegend zu den Lymphknoten der Level II, III und zu den retropharyngealen Lymphknoten. Die Karzinome im Bereich der Hinter- und Seitenwand metastasieren bevorzugt in retropharyngeale Lymphknoten und Lymphknoten des Level II.

Die Beteiligung der retropharyngealen Lymphknoten bei Oropharynxkarzinomen wird mit einer Häufigkeit von ca. 15–50 % angegeben. In einer Untersuchung von 77 Patienten mit einem Oropharynxkarzinom erfolgte neben Tumorresektion und Neck dissection die Ausräumung der retropharyngealen Lymphknoten. Es konnten histologisch bei 29 % (11/38) der Patienten mit einem Karzinom der Hinter- und Seitenwand retropharyngeale Metastasen nachgewiesen werden [53]. Histopathologisch konnten in einer weiteren Untersuchung bei 26 % der Oropharynxkarzinome retropharyngeale Lymphknotenmetastasen nachgewiesen werden [54]. Radiologisch wurden mittels PET-CT bei ca. 21 % der Oropharynxkarzinome retropharyngeale Lymphknotenmetastasen identifiziert [55]. Eine Kritik gegenüber der primär chirurgischen Therapie der Oropharynxkarzinome ist die nicht routinemäßige Resektion der retropharyngealen Lymphknoten im Rahmen der Neck dissection und die mit der Resektion der genannten Lymphknoten verbundene Morbidität. Während in einigen Untersuchungen gezeigt wurde, dass das Auftreten von retropharyngealen Metastasen per se keine prognostische Relevanz besitzt [53, 54], zeigte jedoch eine weitere retrospektive Untersuchung von 208 Patienten, dass die retro-
pharyngealen Lymphknotenmetastasen signifikant die lokoregionäre Rezidivrate bestimmen und die Prognose der betroffenen Patienten negativ beeinflussen können [56]. In den letzten Jahren konnte gezeigt werden, dass die Infektion mit HPV, insbesondere den Typen 16, bei der Entstehung einer Untergruppe der Oropharynxkarzinome eine wichtige Rolle spielt. Patienten mit HPV-positiven Oropharynxkarzinomen sind in der Regel jüngere Patienten mit reduziertem Tabak-Alkohol-Konsum, die eine bessere Prognose zu haben scheinen als Patienten mit HPV-negativen Oropharynxkarzinomen. Trotz insgesamt besserer Prognose weisen HPV-assoziierte Oropharynxkarzinome eine höhere Metastasierungsrate auf [57]. Es wurde eine signifikante Korrelation zwischen positivem HPV-Status und zervikaler Metastasierung bei Oropharynxkarzinomen festgestellt [58]. Eine mögliche Erklärung für die bessere Prognose der HPV-positiven Karzinome ist die vergleichweise geringere perineurale und perivaskuläre Infiltration dieser Karzinome [57] und insbesondere tumor-assoziierte immunologische Reaktionen der HPV-positiven Zellen [59].

5.6 Hypopharynx
Aus dem Hypopharynx fließt die Lymphfluss zu den Lymphknoten der Level II, III und seltener IV. Der Lymphabfluss der Hypopharynxhinterwand erfolgt in aller Regel zunächst in die retropharyngealen Lymphknoten, deren Lymphfluss über Kollektoren an die Lymphknoten der Level II und III weitergeleitet werden. Ein Befall der Lymphknoten in Level I oder Level V ist bei Hypopharynxkarzinom auch bei N+–Hals selten und es wird in der Regel von Lymphknotenmetastasen in den anderen Halsregionen begleitet [61, 62].

Die Inzidenz der Lymphknotenmetastasen bei Hypopharynxkarzinom beträgt ca. 65–80% und die der okkulten Lymphknotenmetastasen wird mit ca. 30–40% angegeben. Es gibt keine unmittelbare Beziehung zwischen der Tumogröße und der Häufigkeit von Lymphknotenmetastasen bei Karzinomen im Bereich des Hypopharynx. Die Inzidenz der lymphogenen Metastasierung wird vorwiegend durch die maximale Invasionstiefe des Karzinoms bestimmt. Des weiteren wird die Metastasierungsrate durch den Differenzierungsgrad des Primärtumors signifikant beeinflusst. Die gering oder undifferenzierten Karzinome zeigen häufiger eine lokoregionäre Metastasierung als besser differenzierte Karzinome.

Basierend auf histopathologischen und radiologischen Befunden wurden bei ca. 13 % der Patienten mit einem Hypopharynxkarzinom retropharyngeale Metastasen festgestellt [63]. Radiologisch wurde mittels PET-CT bei ca. 11% der Hypopharynxkarzinome retropharyngeale Lymphknotenmetastasen identifiziert [64]. Retropharyngeale Metastasen treten vor allem bei Karzinomen im retrocricoidalen Bereich und der Rachenhinterwand auf. Die Überlebensrate der Patienten mit Hypopharynxkarzinomen scheint unabhängig von retropharyngealen Metastasen zu sein [63, 65].

6 Halslymphknotenmetastasen bei unbekanntem Primärtumor

Bei ca. 2–5% der Kopf-Hals-Karzinome handelt es sich um die Halslymphknotenmetastase eines unbekannten Primärtumors (CUP-Syndrom). Diese Metastasen sind vorwiegend im Bereich der jugulodigastrischen und mediojugulären Lymphknoten lokalisiert. Bei kaudojugulären Metastasen handelt es sich in der Regel um Metastasen von Primärtumoren außerhalb des Kopf-Hals-Bereiches. Die überwiegende Mehrheit der Patienten mit einem CUP-Syndrom weisen unbekannte Plattenepithelkarzinome im Bereich der Tonsillen, des Zungengrundes und des Nasopharynx auf, sodass die Lokalisation des Primärtumors durch ipsilaterale Tonsillektomie und Blinde Probeentnahmen aus dem Zungengrund und Nasopharynx ausgeschlossen werden soll. Bei Patienten mit einem CUP-Syndrom soll weiterhin neben der HNO-ärztlichen Spiegeluntersuchung ein CT oder MRT des Kopf-Hals-Bereiches vor der geplanten Panendoskopie empfohlen werden.

Es konnte in einer kürzlich publizierten prospektiven Studie festgestellt werden, dass PET-CT die Detektionsrate von Primärtumoren bei CUP-Syndrom signifikant verbessern kann [66]. Eine aktuelle Metaanalyse von 11 Untersuchungen zum PET-CT zeigte eine Detektionsrate von 37% für Primärtumor mit einer Sensitivität und Spezifität von 84% [67]. Untersuchungen de Untersuchungskollektivs, nicht standardisierte Auswertung und relative hohe falsch-positive Ergebnisse im Oropharynxbereich limi-
tieren den routinemaßigen Einsatz dieses Verfahrens zur CUP-Diagnostik [68]. Das primäre Ziel der Therapie bei CUP-Syndrom ist die lokale Kontrolle des ipsilateralen metastatischen Halslymphknotenbefalls, der okkulten Metastasen der kontralateralen Halsseite und des unbekannten Primärtumors als Ursache der Metastasierung. Retrospektive Untersuchungen berichten über verschiedene Verfahren wie Neck dissection, Radiotherapie und Chemotherapie zur Behandlung des Halses, wobei der Chemotherapie nur bei ausgedehnter Metastasierung eine Bedeutung beigemessen wird. Der Stellenwert der Neck dissection bei CUP-Syndrom wird weiterhin kontrovers diskutiert. Bei Patienten mit einem pN1-Hals ohne extrakapsuläres Wachstum ist durch die alleinige Neck dissection oder Radiotherapie ähnliche Resultate nach Neck dissection und Radiotherapie erzielt werden. Diese Vorgehensweise verdeutlicht die Anhängigkeit der Therapieoptionen von der Genauigkeit der durchgeführten Diagnostik und festgestellten Ausdehnung der lymphogenen Metastasierung. Bei allen anderen Patienten außer pN1-Hals und bei Patienten mit einem extrakapsulärem Wachstum ist eine kombinierte Behandlungsmodalität erforderlich. Empfohlen wird Neck dissection in Kombination mit Radiotherapie. Es wird von einer besseren lokoregionären Kontrolle nach durchgeführter Neck dissection in Kombination mit Radiotherapie als nur alleinige Radiotherapie berichtet [70]. In Gegensatz dazu wird in einer anderen Arbeit der Stellenwert der Neck dissection vor der geplanten Radiotherapie bei CUP-Syndrom evaluiert [71]. Es konnte festgestellt werden, dass die Überlebensrate sowie die lokoregionäre Kontrollrate unabhängig von Neck dissection war. Die 8-Jahres-Überlebensrate zeigte keinen signifikanten Unterschied bei Patienten mit und ohne Neck dissection. Ein Vergleich der Daten aus der Literatur zeigt, dass Neck dissection in Kombination mit Radiotherapie der beiden anderen Verfahren wie Neck dissection oder Radiotherapie als nur alleinige Radiotherapie berichtet [70]. In Gegensatz dazu wird in einer anderen Arbeit der Stellenwert der Neck dissection vor der geplanten Radiotherapie bei CUP-Syndrom evaluiert [71]. Es konnte festgestellt werden, dass die Überlebensrate sowie die lokal-regionalen Kontrollrate unabhängig von Neck dissection war. Die 8-Jahres-Überlebensrate zeigte keinen signifikanten Unterschied bei Patienten mit und ohne Neck dissection.

Die Problematik des klinischen N0-Halses ergibt sich aus der Teil unzureichenden Sensitivität und Spezifität nicht-invasiver Untersuchungstechniken. Ergibt sich klinisch sowie nach Durchführung der bildgebenden Diagnostik kein Anhalt für das Vorliegen einer lymphogenen Metastasierung, so ist dennoch in Abhängigkeit von der Lokalisation des Primärtumors in 12–50% der Fälle mit dem Vorliegen okkuller Metastasen zu rechnen [76]. Bei einem konservativen Vorgehen im Sinne einer „wait and see policy“ besteht daher die Gefahr, diese subklinischen Metastasen zu übersehen.

Das diagnostisch sicherste Verfahren zur definitiven Beurteilung des Lymphknotenstatus stellt die operative Exploration des Halses im Sinne einer elektiven Neck dissection inklusive histologischer Gewebeuntersuchung dar. Das Dilemma ist nun, dass die erhöhte Sensitivität einer histologischen Sicherung der Dignität im Rahmen eines operativen Eingriffs mit möglichen Komplikationen sowie einer erhöhten postoperativen Morbidität für den Patienten einhergehen kann. Kritiker der elektiven Neck dissection verweisen in diesem Zusammenhang darauf, dass etwa 70% der Patienten mit klinischem N0-Hals und ohne Metastasen einem Übermaß an chirurgischer Behandlung mit all ihren damit verbundenen Risiken zugeführt werden.

In der klinischen Onkologie wird daher zunehmend die Sentinellymphonodektomie propagiert, Dieses minimal invasive Verfahren, welches in der Onkologie des Mammakarzinoms und des malignen Melanoms als eine zuverlässige und etablierte Methode zur Bestimmung des Lymphknotenstatus anzusehen ist, fand auch in Bezug auf die Therapie von malignen Kopf-Hals-Tumoren Aufmerksamkeit [77, 78]. Ziel der Sentinel-Lymphonodektomie soll es hierbei sein, intraoperativ eine okkullte Lymphknotenmetastasierung auszuschließen und somit die Anzahl der elektiven Neck dissection auf ein Minimum zu reduzieren. Befürworter der Sentinel-Lymphonodektomie führen dabei die angeblich geringere Morbidität, sowie bessere funktionelle und kosmetische Ergebnisse im Vergleich zur selektiven Neck dissection an [79].

Die Problematik des Sentinel-Node-Verfahrens im Kopf-Hals-Bereich ergibt sich jedoch aus der hohen Lymphknotendichte von ca. 300 Lymphknoten und der engen nachbarschaftlichen Beziehung zwischen Primärtumor und den ersten drainierenden Lymphknotenstationen in diesem Gebiet. So kann durch Überlagerungseffekte des radioaktiv markierten Tracers die exakte Bestimmung des Sentinel-Lymphknotens mittels Gamma-Sonde erschwert werden. Weiterhin ist die exakte Lokalisation des gesuchten Lymphknotens unter Umständen erst nach Drehung des Neck dissection Präparates aus dem Operationsitus möglich. Auch die Injektion des Tracers im Kopf-Hals-Gebiet stellt hohe Anforderungen an den Untersucher. Aufgrund des engen räumlichen Nebeneinanders verschiedener Lymphabflusgebiete besteht hierbei die Gefahr, in ein dem Hauptabflussgebiet benachbartes Drainagegebiet zu injizieren. Schließlich kann die Applikation eines zu großen Volumens zu einer inadäquaten interstitiellen Druckerhöhung des umgebenden Gewebes

7 Neck dissection bei klinischem N0-Hals

Das individuelle Behandlungsziel der Lymphabflusswege richtet sich nach der Behandlung des Primärtumors sowie dem Vorliegen oder Fehlen suspekter Lymphknoten in der bildgebenden Diagnostik. Während im Rahmen einer chirurgischen Inter-

Teymoortash A, Werner JA. Aktuelle Fortschritte in der ... Laryngo-Rhino-Otol 2012; 91: S102–S122

S110 Referat
führen, was eine Anreicherung in Nebendrainagegebieten sowie in multiplen, nicht mehr repräsentativen Lymphknoten zur Folge haben kann [80, 81]. Zusätzlich ist es aufgrund der komplexen Lymphgefäβ-Architektur eines Karzinoms je nach Lokalisation und Tumorstadium primär möglich, gleichzeitig in verschiedene Lymphknoten zu drainieren. Dies könnte zum Vorliegen mehrerer Sentinel-Lymphknoten führen. Einige Autoren sind daher der Auffassung, dass die Erfassung eines Lymphknotens nicht aussagekräftig ist und empfehlen die Identifikation von 2 bis maximal 3 Lymphknoten (SN1, SN2, SN3) zum Ausschluss falsch negativer Ergebnisse [82]. Als weitere Nachteile der Sentinel-Lymphonodektomie im Kopf-Hals-Bereich führen deren Kritiker die häufig schlechte operative Darstellung einzelner Lymphknoten in schlecht zugänglichen Bereichen an. Hierbei wird insbesondere der nur kleine operative Zugang mit einem ungenügenden Überblick des Operationsvitus als Risikofaktor für die intraoperative Schädigung nichtlymphatischer Strukturen angesehen.

In einer Untersuchung der Marburger Universitäts-HNO-Klinik konnte gezeigt werden, dass die Entfernung nur eines Lymphknotens im Sinne eines Sentinel-Node-Verfahrens mit einer falsch negativen Fehlerquote von fast 40% behaftet ist [83]. Ebenso wurde in der zuletzt genannten Arbeit ersichtlich, dass mindestens 2 bis 3 Lymphknoten entfernt werden müssen, um das Vorliegen okkulter Metastasen mit annähernd großer Sicherheit ausschließen zu können. Die genannten Ergebnisse scheinen daher die intensiven Bemühungen um die Durchführung eines Sentinel-Node-Verfahrens im Kopf-Hals-Bereich nicht zu unterstützen und lassen die selektive Neck dissection bei Patienten mit N0-Hals als onkologisch sichere Vorgehensweise erscheinen. Hinzu kommen noch die akzeptablen funktionellen Ergebnisse nach selektiver Neck dissection (siehe Kapitel 11). So soll aufgrund der onkologischen Sicherheit und der akzeptablen funktionellen und ästhetischen Ergebnisse eine selektive Neck dissection bei Patienten mit Karzinomen der oberen Luft- und Speiseweg unabhängig von der klinischen Evidenz der lokoregionären Metastasierung empfohlen werden. Wird der Primärtumor unabhängig von der Lokalisation initial chirurgisch behandelt, gehört zu der Festlegung des Behandlungskonzeptes grundsätzlich die Diskussion um eine mögliche Neck dissection.

Das Ausmaß der selektiven Neck dissection richtet sich unmittelbar nach der Lokalisation und Ausdehnung des Tumors. Bei einem T1-Karzinom der Mundhöhle, des Oropharynx oder der Supraglottis können abhängig von Complaince des Patienten und sonografischen Erfahrung des Arztes in der Nachsorge eine sonografische Kontrolle des Halses oder eine selektive Neck dissection erfolgen. Die wesentliche Gefahr der abwartenden Haltung besteht darin, dass die zunächst okkluten Metastasen durch einen gelegentlich zu beobachtenden raschen Wachstumsschub in einen schließlich inoperablen Zustand geraten. Verspätet der behandelnde Arzt diesbezüglich Bedenken, ist die berechtigte Frage nach einem nicht besser von Beginn an operativ einzuschlagenden Behandlungskonzept zu stellen, das zu mindestens als Stagingverfahren Anwendung finden kann. Der damit verbundenen möglichen Identifikation okkulter Lymphknotenmetastasen kommt eine wesentliche Bedeutung bei der Entscheidung um weitere Behandlungsmaßnahmen, vor allem der Strahlentherapie, zu.

Bei Karzinomen im Bereich der Oberlippe, Unterlippe und Mundhöhle sollte eine selektive Neck dissection der Level I-III erfolgen. Bei Ober- und Unterlippenkarzinomen sind die parotiden Lymphknoten zu beachten. Bei Karzinomen des Zungenkörpers sollte Level IV mitherausgeräumt werden (siehe Kapitel 5.2). Die lymphogene Metastasierungsrate bei einem T1-Unterlippenkarzinom wird mit Werten um 4–15% angegeben. Vor dem Hintergrund der damit verbundenen geringen Wahrscheinlichkeit einer okkulten Metastasierung beim vermuteten N0-Hals kann eine abwartende Strategie nach Primärtumorentfernung befürwortet werden. Bei einem T2-Unterlippenkarzinom steigt die Metastasierungsrate auf Werte um 16–35%, was für eine selektive Neck dissection spricht. Die Ausräumung des Level III ist dabei sicherlich kontrovers zu diskutieren. Als erforderlich gilt hingegen die Ausräumung der Level I und II. Bei Karzinomen im Bereich des Oropharynx ist eine selektive Neck dissection der Level II und III zu empfehlen.

Bei Karzinomen des Larynx sind die Level II-IV, die selektiv ausgeräumt werden sollten. In einer prospektiven randomisierten Untersuchung der T2-T4NO supraglottischen und transglottischen Karzinomen konnte kein signifikanter Unterschied in der Prognose, lokoregionären Rezidivrate und Komplicationen zwischen modifiziert radikaler Neck dissection und selektiver Neck dissection der Level II-IV festgestellt werden [84]. In neueren prospektiven Untersuchungen wird aufgrund der selten befallenen Lymphknoten in den Levels IIB und IV bei glottischen und supraglottischen Karzinomen lediglich eine selektive Neck dissection von Level IIA und III bei klinischem N0-Hals empfohlen, ohne das onkologische Ergebnis negativ zu beeinflussen [85]. Prospektive Untersuchungen von Larynxkarzinomen zeigen einen seltenen Befall der Lymphknoten im Level IIB (kleiner 1%) bei klinischem N0-Hals [86–89]. Ähnlich verhält es sich mit der Metastasierung in Level IV. In einer Untersuchung von 58 Patienten mit supraglottischem Karzinom wurden nach elektiver Neck dissection keine isolierten Metastasen in Level IV festgestellt [90]. Ferlito stellte die Daten von insgesamt 175 Patienten mit Larynxkarzinom und klinischem N0-Hals aus 3 prospektiven Studien zusammen [91]. Es konnten lediglich bei 6 Patienten (3,4%) um histologisch und zum Teil molekulargenetisch Metastasen in Level IV festgestellt werden. Ähnlich wird ebenfalls von einer Ausräumung des Sublevels IIB bei Hypopharynxkarzinomen Abstand genommen, um hier eine Dysfunktion des N. accessorius zu vermeiden [92–94]. Bei Karzinomen im Bereich des Hypopharynx ist eine selektive Neck dissection der Level IIA-IV zu empfehlen. Eine Zusammenfassung der empfohlenen Ausdehnung der selektiven Neck dissection bei klinischem N0-Hals wurde in Abb. 5 dargestellt. Abschließend soll nochmal erwähnt werden, dass die Planung einer selektiven Neck dissection unterschiedlicher Ausdehnung nur bei adäquaten Möglichkeiten zur Nachsorgeuntersuchung in Kombination mit Ultraschall-Untersuchung eine sinnvolle Therapie darstellt.

8 Exstirpation der Gl. submandibularis bei Neck dissection ▼

Die Exstirpation der Gl. submandibularis bei Neck dissection ist aus zweierlei Hinsicht von klinischer Relevanz. Die Gl. submandibularis mit Sekretion von ca. 70% des basalen Speichelvolumens ist die Hauptquelle des vorwiegend mukösen Speichels. Eine prospektive Untersuchung der Speicheldrüsen mittels Szintigrafie nach Exstirpation der Gl. submandibularis im Rahmen von Neck dissection zeigte, dass die Exstirpation der Drüse eine deutliche Reduktion des Ruhespeichelvolumens bewirkt ohne Möglichkeit einer Kompensation durch andere Speicheldrüsen.
Ein weiterer Punkt ist die Häufigkeit der okkulten Lymphknotenmetastasen bei Mundhöhlenkarzinomen im frühen Stadium, welche mit einer Rate von ca. 20–45% jedoch häufig ohne Differenzierung zwischen Level IA und IB angegeben wird [96]. Von Bedeutung sind insbesondere Lymphknoten zwischen der Drüse und M. mylohyoideus, die ohne Exstirpation der Drüse schwer zugänglich sein können. Im Gegensatz zu Gl. parotis beinhaltet die Gl. submandibularis aus entwicklungs geschichtlichen Gründen keine intraglandulären Lymphknoten, sodass in der Gl. submandibularis keine lymphatischen Metastasen zu erwarten sind. Zudem ist die Gl. submandibularis durch eine fibröse Kapsel umhüllt, welche häufig eine Barriere gegen Tumorinfiltration darstellt. Die Exstirpation der Gl. submandibularis ist bei der Ausräumung von Level I zur Einhaltung der onkologischen Sicherheit indiziert, wenn eine Infiltration des Level I durch das Mundbodenkarzinom besteht oder eine Lymphknotenmetastase in Level I vorliegt. Die Frage ist nun, ob die Exstirpation der Gl. submandibularis zur sicheren Ausräumung der okkulten Lymph knotenmetastasen in Level IB insbesondere bei T1/2N0 Mundhöhlenkarzinomen indiziert ist. In einigen retrospektiven Untersuchungen wurde der Erhalt der Gl. submandibularis bei diesen Karzinomen als zulässig erachtet [97,98]. In einer prospektiven Untersuchung der Robbins-Arbeitsgruppe von 33 Neck dissection-Präparaten wurde bei Mundbodenkarzinomen unterschiedlicher Stadien die Ausräumung von Level IB in 3 aufeinanderfolgenden Schritten durchgeführt [99]. Zunächst erfolgte die Ausräumung des periglandulären Weich-}

9 Späte Halslymphknotenmetastasen

Nach selektiver oder modifizierter radikaler Neck dissection können einige Patienten mit oder ohne Radiochemotherapy insbesondere in den ersten 2 Jahren nach primärer Therapie des Halses lokoregionäre Metastasen entwickeln. In der Literatur wird insgesamt wenig auf das Problem der späten Halslymphknoten metastasen eingegangen. Bis heute ist die genaue Inzidenz der späten Halslymphknotenmetastasen unklar, da die bisherigen Studien in der Regel relativ inhomogene Patientengruppen mit und ohne Radiotherapie, Halslymphknotenmetastasen (pN+) und lokalen Tumorrezidiven untersuchten. Außerdem variierte häufig das Ausmaß der durchgeführten Neck dissection. Im Falle multipler Lymphknotenmetastasen oder Vorliegen eines extrakapsulären Wachstums ist insbesondere ohne adjuvan te Radiochemotherapy mit lokoregionärer Metastasierung zu rechnen. Die Inzidenz später Metastasenbildung scheint von der Lokalisierung und der Ausdehnung des Primärtumors abzuhängen.
festgestellt werden, dass späte Metastasen signifikant der aryepiglottischen Falte (21,9 %). In dieser Studie konnte die höchste Inzidenz für späte lokoregionale Metastasen bei Patienten mit Mundhöhlenkarzinomen konnten späte Lymphknotenmetastasen bei 4% der Patienten ohne Tumorrezidiv und initialen pN0-Hals beobachtet werden, während 12% der Patienten mit einer späten Metastasierung initial als N+Hals eingestuft waren [101]. In dieser Untersuchung wurde eine relativ inhomogene Gruppe von Patienten mit lokalem Residiv und adjuvanter Radiotherapie eingeschlossen. In einer Untersuchung aus dem M. D. Anderson Cancer Center von Patienten mit einem Kopf-Hals-Karzinom, die einer selektiven Neck dissection unterzogen wurden, konnte eine späte Metastasierung bei 1,9% bei Patienten mit pN0-Hals ohne stattgefundene Radiotherapie festgestellt werden [102].

Eine retrospektive Analyse der Patienten der Marburger HNO-Klinik, die eine späte Lymphknotenmetastasenentwicklung, wird hier vorgestellt. Es wurden die klinischen Daten von 61 Patienten mit Kopf-Hals-Karzinomen, die einer elektiven Neck dissection bei pN0-Hals unterzogen worden waren, analysiert. Nur Patienten ohne Lokalrezidiv, Zweitkarzinom oder stattgefundene Radiotherapie wurden berücksichtigt. Späte Lymphknotenmetastasen konnten insgesamt für alle Primärtumorlokalisationen in 4 (6,5%) Fällen nachgewiesen werden, die an den Rändern oder außerhalb der initial entfernten Lymphknotenlevel lokalisiert waren. Bei diesen Patienten befand sich der Primärtumor im Bereich der Mundhöhle (n=3) oder des Oropharynx (n=1) und wurde in allen Fällen als T1 oder T2 eingestuft. Lymphknotenmetastasen konnten in Level I (n=2), II (n=1) und IV (n=1) nachgewiesen werden. Späte Lymphknotenmetastasen wurden identifiziert bei 4 von 29 Patienten (13,8%) mit Mundhöhlen- und Oropharynxkarzinomen nach elektiver Neck dissection. Keiner der Patienten in der vorliegenden Studie mit Hypopharynx- oder Larynxkarzinomen entwickelte späte Lymphknotenmetastasen [103].

Zum besseren Verständnis der späten Lymphknotenmetastasen soll beachtet werden, dass eine negative histopathologische Untersuchung der Halslymphknoten nicht das ganz sichere Ausschließen von okkulten Metastasen bedeutet, sodass das Vorliegen von subpathologischen Metastasen hierbei berücksichtigt werden soll (siehe Kapitel 4). Es ist weiterhin klar, dass die Grenzen zwischen den jeweiligen Hals-Leveln nicht streng zu betrachten sind und es Überlappungen zwischen diesen Leveln gibt. So können späte Lymphknoten in Leveln liegen, die im Rahmen der selektiven Neck dissection nicht ausgeräumt wurden. Die geringe Inzidenz dieser kleinen Gruppe von Patienten mit späten Lymphknotenmetastasen nach selektiver Neck dissection rechtfertigt jedoch nicht die Durchführung einer ausgedehnten Form der Halschirurgie bei Patienten mit klinischem N0-Hals.

10 Neck dissection nach primärer Radiochemotherapie

Bei der Behandlung der fortgeschrittenen Karzinome der oberen Luft- und Speisewege insbesondere Oro-, Hypopharynx und Larynx mit lymphogener Metastasierung findet die primäre Radiochemotherapy zunehmend Verbreitung. Trotz des Teil guter Ansprechraten im Bereich des Primärumors zeigen die zervikalen Lymphknoten vergleichsweise geringere Ansprechraten nach primärer Radiochemotherapy. In einer Untersuchung konnte die Tumorfreiheit im Primärtumorbereich bei 86% der Patienten erreicht werden, während die zervikalen Lymphknoten bei 69% der Patienten eine vollständige Ansprechrate zeigten, wobei die Ansprechrate der zervikalen Lymphknoten von deren Größe (N-Stadium) abhängig war [103]. Die Patienten mit vollständiger Ansprechrate der zervikalen Lymphknoten nach primärer Radiochemotherapy weisen eine zervikale Rezidivrate von weniger als 5% in der Nachbeobachtungsphase auf [104], sodass eine Neck dissection bei dieser Gruppe der Patienten nicht notwendig erscheint. Hinzu kommt, dass bei Patienten ohne Anhalt für zervikale Tumorresiduen nach erfolgter Salvage Neck dissection ähnliche zervikale Kontrollraten berichtet werden [105]. Bei dieser Patientengruppe sollte eine engmaschige sonografische Nachuntersuchung erfolgen. Bei Patienten mit einem initialen N3-Hals und ohne Anhalt für ein Tumorresiduum kann keine klare Empfehlung ausgesprochen werden, da die Anzahl der Patienten in dieser Subgruppe in den meisten Untersuchungen relativ gering ist.

Hingegen ist bei Hinweis auf Residualtumor im Halsbereich eine salvage Neck dissection erforderlich. Es konnte festgestellt werden, dass die Lymphknoten in den Leveln I und V (mit Ausnahme der Mundhöhlenkarzinome) bei der Staginguntersuchung nur selten Tumorresiduen aufweisen, während die metastatischen Tumorresiduen fast ausschließlich im Lymphknoten der Level II-IV vorkommen. Vor diesem Hintergrund und der Tatsache, dass die (modifiziert) radikale Neck dissection bei Zustand nach Radiochemotherapy relativ höhere Morbidität zeigen kann, wird eine selektive Neck dissection der Level II-IV bei Verdacht auf zervikale Tumorresiduen als angemessen empfohlen [106, 107]. Die Wahl einer selektiven Neck dissection nach Radiochemotherapy wird noch dadurch unterstrichen, dass keine Korrelation zwischen der selektiven und modifiziert radikalen Neck dissection und dem Nachweis von Residualtumor, lokoregionäre Tumorkontrollrate und Überlebensrate dieser Patienten festgestellt wurde [108].

Der Schlüsselpunkt für die mögliche Planung einer Neck dissection nach primärer Radiochemotherapy ist der Nachweis von zervikalem Residualgewebe. Hierzu verweisen wir auf Kapitel 4. PET-CT mit hohem negativem prädiktivem Wert scheint eine wertvolle Untersuchung zur Bestimmung des Residualumors im Halsbereich zu sein. Der Zeitpunkt für PET-CT Staging zur eventuellen Planung von Neck dissection ist mit 8–12 Wochen nach Radiotherapie anzugeben. Die vollständige zervikale Ansprechrate sinkt von ca. 80% bei N1-Hals auf ca. 40% bei N3-Hals ab [109]. So hängt die Ansprechrate der Lymphknotenmetastasen mit denen der Tumoren zusammen. Hierzu der Hinweis, dass Patienten mit ausgedehnten zervikalen Metastasen insbesondere bei N3-Hals eine hohe Rate an Fernmetastasen nach primärer Radiochemotherapy aufweisen können [110]. Diese Metastasen sind im Durchschnitt 6 Monate nach Radiochemotherapy insbesondere im Bereich der Lunge anzutreffen. Vor diesem Hintergrund ist eine Ganzkörper-
PET-CT neben der Identifizierung zervikaler Metastasen auch zur Verifizierung einer evtl. Fernmetastasierung insbesondere bei fortgeschrittener zervikaler Metastasierung zu empfehlen.

11 Morbidität nach Neck dissection

Wie bei jeder Art von invasiver Therapie besteht auch nach Neck dissection das Risiko, postoperative Komplikationen zu entwickeln. Mortalität und Morbidität hängen vom Ausmaß der chirurgischen Intervention ab sowie von den spezifischen Umständen des Patienten wie seinen relevanten Vorerkrankungen wie Herz- und Lungenerkrankungen, Immunsuppression oder präoperativer Radiotherapie.

Radikale Neck dissection führt zu einer signifikanten funktionalen und kosmetischen Morbidität der betroffenen Patienten. Es konnte festgestellt werden, dass eine Modifikation der radikalen Neck dissection und postoperative Rehabilitationsmaßnahmen postoperativ die Lebensqualität der Patienten verbessern [111,112].

Die Zuverlässigkeit und Sicherheit der Neck dissection kann nur sichergestellt werden, wenn die HNO-Arzte über potentielle Komplikationen unterrichtet werden und die topografische Anatomie des Halses beherrschen sowie eine Minimierung solche Morbiditäten anstreben [113]. Auf einige wichtige Komplikationen nach Neck dissection wird hier eingegangen.

Abgesehen von der intraoperativen Öffnung der Vena jugularis interna stellt die postoperative Thrombose eine mögliche Komplikation nach Neck dissection dar. Änderungen des Flusses in der direkten postoperativen Phase konnten durch Ultraschalluntersuchungen und Kontrastmittel-CT dargestellt werden, jedoch muss der langfristige Verschluss der V. jugularis interna nach Neck dissection als äußerst seltene Ereignis mit vernachlässigbarer Morbidität betrachtet werden [114]. Verschiedene Untersuchungen zeigen, dass eine Wundheilungsstörung zu einem erhöhten Risiko für Thrombose führen kann. Gleichzeitig sind eine Hyperkoagulabilität, verursacht durch den Tumor, sowie der reduzierte Blutfluss während der Intubationsnarkose eine mögliche Ursache für die Entwicklung vaskulärer Thrombosen. Es gibt eine Reihe weiterer Faktoren, unabhängig von Neck dissection, die das Ausmaß des Risikos eines Verschlusses der V. jugularis interna beeinflussen können. Darunter zählen der Einsatz der Lappenplastiken zur Defektdeckung sowie prä- und postoperative Radiotherapie. Abgesehen von einer kürzeren Operationszeit hat die selektive Neck dissection den Vorteil der vergleichsweise geringen Exposition der Blutgefäße. Auf diese Weise werden vaskuläre Dehydrierung und Trauma verringert. Aufgrund der großen Variabilität in der Anatomie des Ductus thoracicus in der Halsregion kann die Dissektion des Level IV besonders mit einer iatrogenen Läsion dieser Strukturen verbunden sein. Das Risiko, eine Chylusfistel nach radikaler Neck dissection zu entwickeln, liegt durchschnittlich bei 1-2,5% mit einer Mehrheit (75-90%) auf der linken Seite [115]. Dieser Aspekt betreffend, kann eine präoperative Radiotherapie die Inzidenz von postoperativen Chylusfisteln erheblich erhöhen. Bei ca. 1% der Patienten kann nach Neck dissection eine Beeinträchtigung der Funktion des N. facialis festgestellt werden [116]. Es konnte gezeigt werden, dass die Inzidenz einer Funktionsstörung des marginalen N. facialis im Fall von Neck dissection vergleichbar ist mit der Häufigkeit nach Exstirpation der Gl. submandibularis im Zusammenhang mit benignen Erkrankungen.

Mit Bezug auf die funktionellen Ergebnisse nach Neck dissection kann eine Funktionsstörung des N. accessorius zu komplexen klinischen Symptomen führen, dem sog. Schulter-Arm-Syndrom. Diese werden beschrieben als Schmerzen, Schwäche und Atrophie des Schultergürtels. Dies führt zu einer Restriktion der Armabduktion und der Frontalflexion. Auch die Skapula wird während der Schulterbewegungen nicht unzulänglich stabilisiert, was zu einer mechanischen Überbeanspruchung der verschiedenen Schulterstrukturen führen kann. Dies wird zu den möglichen Gründen für die Entwicklung chronischer Schmerzsymptome gezählt. Klinische Untersuchungen zeigten, dass Patienten, die einer selektiven Neck dissection unterzogen wurden, die we nigsten Funktionsstörungen des N. accessorius und weniger Schulterdysfunktionen hatten im Vergleich zu anderen Formen der Neck dissection [117]. Im Widerspruch zu diesen Ergebnissen fanden andere Autoren keine signifikante Korrelation zwischen der Art der Neck dissection und dem Grad des Verlustes der Schulterfunktion [118]. Elektrophysiologische Untersuchungen zeigten, dass eine chirurgische Manipulation des N. accessorius im Rahmen einer selektiven Neck dissection eine Beeinträchtigung der Reizweiterleitung nach sich ziehen kann, insbesondere wenn die Dissektion entlang des posterioren Dreiheks des Halses erfolgt (Level V). Subklinische oder nahezu asymptomatische Nervendysfunktionen konnten beobachtet werden, wenn Level IIb ausgeräumt wird [119].

Das chirurgische Ausmaß der verschiedenen Arten der selektiven Neck dissection scheint im Vergleich zu Sentinel Node Biopsie in engem Zusammenhang mit einer höheren postoperativen Morbidität zu stehen, obwohl keine signifikanten Unterschiede in der gesundheitsbezogenen Lebensqualität beider Verfahren festgestellt werden konnte [120]. In einer retrospektiven Untersuchung von 52 Patienten wurden die funktionellen und ästhetischen Ergebnisse nach einer selektiven Neck dissection unterschichtlicher Ausdehnung und Regionen analysiert [121]. Der postoperative Langzeitverlauf betrug mindestens 6 Monate. Die Auswertungen funktioneller Ergebnisse zeigten, dass sich bei 82% der Patienten kein Seitenunterschied der Arm-Abduktion bestand. Ein Seitenunterschied in der Armbeweglichkeit von bis zu 20 Grad konnte bei den restlichen Patienten festgestellt werden. Bezüglich der Kopfdrehung konnte in 84% kein Seitenunterschied festgestellt werden. Eine Einschränkung der Kopfdrehung von bis zu 30 Grad zur nicht operierten Halsseite wurde in 13% der Fälle beobachtet. Hierbei ist zu berücksichtigen, dass 80% dieser Patienten zuvor bestrahlt wurden. Bezüglich der Seitneigung des Kopfes lag in 79% keine Seitendifferenz vor. Die Patienten, welche eine Einschränkung zur nicht operierten Seite zeigten, waren in 75% der Fälle vorbestrahlt. Die Befragung zum subjektiven Empfinden der Patienten ergab in 96% der Patienten subjektiv keine Einschränkung der Kopf-Hals-Beweglichkeit. Hinsichtlich der Schulter-Armbeweglichkeit berichteten 86% der Patienten keine Einschränkungen erfahren zu haben. Die Auswertung der ästhetischen Ergebnisse zeigte, dass 98% der Patienten mit dem ästhetischen Ergebnis zufrieden waren, wobei 85% des Behandlungsresultat als gut oder sehr gut bezeichneten. In einer vergleichenden Untersuchung der Lebensqualität der Patienten nach alleiniger Radiochemotherapy und Neck dissection nach Radiochemotherapy konnte gezeigt werden, dass Patienten mit zusätzlich durchgeführter Neck dissection keinen wesentlichen Unterschied der Lebensqualität aufweisen [122]. Lediglich im Bereich der Schmerz-Domäne wurden signifikante Unterschiede festgestellt.
12 Endoskopische Neck dissection

In der Viszeralchirurgie und Orthopädie werden endoskopische Verfahren zunehmend mit Erfolg eingesetzt. Durch den minimal-invasiven Zugang und Einsatz von Endoskopen in einem be- stehenden Hohlraum können Patienten schonender behandelt und nach kürzerer Aufenthaltsdauer entlassen werden. Die Idee der endoskopischen Neck dissection stammt aus der Zeit, in der die klinische Relevanz der Sentinel-Lymphonodektomie bei Plattenpithelkarzinomen der oberen Luft- und Speise- wege noch diskutiert wurde. Es gibt zunehmend Arbeiten über endoskopische Verfahren insbesondere zur Therapie der Schilddrüsenerkrankungen. Die bisherigen Arbeiten zur endoskopischen Neck dissection bei Plattenpithelkarzinomen der oberen Luft- und Speisewege beschränken sich oft auf Präparationen am Kadaver oder Tiermodell [123, 124]. So hat das Verfahren zurzeit eine experimentelle Bedeutung und keine klinische Relevanz [125]. Erste Berichte zur endoskopischen Lymphadenektomie und mögliche Erweiterung des Eingriffes zu einer selektiven Neck dissection liegen jedoch vor [126]. Es konnte gezeigt werden, dass durch eine ca. 2 Zentimeter große Hautinzision mithilfe eines speziellen Speziinstrumentes alle relevanten Strukturen in Level II und III sicher exponiert werden können [127]. Im Halsbereich ist kein präformierter Hohlraum vorhanden und Lymphknoten befinden sich in anatomisch komplexen Arealen in enger Nachbarschaft zu den klinisch relevanten Strukturen, sodass eine sichere endoskopische Entfernung mehrerer Halsregionen sich technisch nur bedingt realisieren lässt. Hinzu kommt, dass die onkologische und chirurgische Sicherheit mit den heute zur Verfügungstehenden Techniken nicht gewährleistet werden kann. Das bessere kosmetische Ergebnis durch multiple kleine Hautinzisionen besitzt bei dieser Operation keine besondere klinische Relevanz. Im Rahmen einer selektiven Neck dissection durchgeführte Hautinzisionen im Bereich der Spannungslinien der Haut führen zu kosmetisches befriedigenden Ergebnissen, sodass diese Narben am Hals in der Regel keine relevante Beeinträchtigung für die betroffenen Tumorpatienten darstellen. Die definitive klinische Bedeutung einer endoskopischen Neck dissection kann zurzeit nicht geantwortet werden. Hier sind weitere technische Entwicklungen dieses Verfahrens abzuwarten. Von einigen Autoren wird jedoch der Sinn solcher Engri...
Die Tumorgröße korreliert mit der Häufigkeit von Lymphknotenmetastasen. Entsprechend einer multivariaten Analyse von Risiken für okkulte Lymphknotenmetastasen beträgt dies bei Tumoren über 4 cm², verglichen mit 4 % bei kleineren Tumoren [139]. Fazialisparese stehen außerdem mit einem hohen Risiko in Zusammenhang, lymphogene Metastasen bei Parotiskarzinomen hervorzurufen. Lymphknotenmetastasen können bei ca. 65–75 % der Patienten mit Fazialisparese auftreten [140,141]. Schließlich gibt es Literaturstellen zu einer Häufung von Lymphknotenmetastasen, die mit verschiedenen molekularen Parametern in Zusammenhang gebracht werden. Die Analyse der p53-Expression bei Parotistumoren zeigt eine signifikant höhere Metastasierung bei Tumoren mit einer hohen Expression dieses Onko-Proteins [142].

Zur Erfassung des Metastasierungsverhaltens von Parotiskarzinomen ist das Wissen um die Inzidenz regionaler okkuler Metastasen wie bei anderen Karzinomen der Kopf-Hals-Region unerlässlich. Sogenannte high-grade Karzinome weisen eine Häufigkeit bis zu 50 % für okkulte Lymphknotenmetastasen auf, im Vergleich zu maximal 10 % bei Low-grade-Karzinomen. Die Häufigkeit okkuler Lymphknotenmetastasen bei Parotiskarzinomen nach elektiver Neck dissection beim klinischen N0-Hals beträgt nach einer Literaturübersicht 1,1–15,9 % [143]. Basierend auf der hohen Frequenz von Lymphknotenmetastasen bei high-grade Karzinomen wird eine elektive Neck dissection bei dieser Patientengruppe empfohlen. Was das Ausmaß der Neck dissection anbetrifft, gibt es verschiedene Ansichten [144]. Die Entscheidung zur Neck dissection sollte individuell getroffen werden, abhängig von den Eigenschaften des Primärtumors. Wir halten es für gerechtfertigt, eine selektive Neck dissection bei High-grade-Karzinomen zu indizieren. In Anbetracht zusätzlicher Parameter (>T2, Lymphangiosis carcinomatosa) ist eine Neck dissection auch bei low-grade Karzinomen angemessen. Eine elektive Neck dissection sollte die Level I, II, III und VA mit einschließen, was ohne weitere relevante Morbidität parallel zur Parotidektomie durchgeführt werden kann [143].

Die bisherigen Ausführungen betraten die häufiger vorkommende Karzinome der Gl. parotis, während die Karzinome der Gl. submandibularis nur ca. 5–10 % der Speicheldrüsenkarzinome darstellen. Insgesamt sind ungefähr die Hälfte aller Tumoren der Kopfhaut berichtet, während die Ohrmuskelerkrankungen die potenzielle Region der Hautareale der ipsilateralen Stirn, Schläfe, Augenlider, Wange und Ohrmuschel und stellen somit die potenzielle Region für Metastasen bei Patienten mit Platteneplithelkarzinomen darstellen. Insgesamt sind ungefähr die Hälfte aller Tumoren der Kopfhaut berichtet, während die Ohrmuskelerkrankungen die potenzielle Region für Metastasen bei Patienten mit Platteneplithelkarzinomen darstellen. Insgesamt sind ungefähr die Hälfte aller Tumoren der Kopfhaut berichtet, während die Ohrmuskelerkrankungen die potenzielle Region für Metastasen bei Patienten mit Platteneplithelkarzinomen darstellen. Insgesamt sind ungefähr die Hälfte aller Tumoren der Kopfhaut berichtet, während die Ohrmuskelerkrankungen die potenzielle Region für Metastasen bei Patienten mit Platteneplithelkarzinomen der Haut aus den genannten Kopfbereichen dar. Zirka 40 % aller Metastasen im Bereich der Gl. parotis sind durch Platteneplithelkarzinome der Haut bedingt. In Langzeitstudien wird über eine Metastasierungsrate von bis zu 5 % bei Platteneplithelkarzinomen der Kopfhaut berichtet, während die Ohrmuskelerkrankungen eine höhere Metastasierungsrate bis zu 10 % aufweisen können.

Tab. 2 Häufigkeit der lokoregionären Metastasierung bei unterschiedlichen Karzinomen der Gl. parotis.

Tumorhistologie	Häufigkeit der lymphogenen Metastasierung
low-risk Karzinom	<10 %
low-grade Mukoepidermoidkarzinom	10 %
Adenoidzystisches Karzinom	<10 %
high-risk Karzinom	50 %
high-grade Mukoepidermoidkarzinom	50–60 %
Platteneplithelkarzinom	50–60 %
Undifferenziertes Karzinom	50–60 %
Adenokarzinom	50 %
Karzinom im pleomorphen Adenom	50 %

14 Neck dissection bei Karzinomen der großen Kopfspeicheldrüsen

Während die meisten Kopf-Hals-Karzinome in Platteneplithelzellen entstehen, zeichnen sich Speicheldrüsentumoren durch eine sehr große Heterogenität in der histomorphologischen Erscheinung aus. Dies ist der Hauptgrund für das oft nicht vorherzusagbare klinische Verhalten und die Kontroversen im Behandlungskonzept von unterschiedlichen Speicheldrüsentumoren. Halslymphknotenmetastasen treten bei Patienten mit Speicheldrüsenkarzinomen mit einer Häufigkeit von ca. 15–25 % bei der Erstdiagnose auf. Regionale Metastasen können die Prognose dieser Patienten entscheidend beeinflussen. Die 5-Jahre-Überlebensrate bei Parotiskarzinomen mit Halslymphknotenmetastasen zum Zeitpunkt der Erstdiagnose beträgt 9 %. Die Überlebensrate steigt auf 17 %, wenn die lymphknotenmetastasen erst im Anschluss an die Erstbehandlung auftreten und beträgt 74 % nach 5 Jahren bei Patienten ohne Beteiligung der regionären Lymphknoten [135].

Die Behandlung eines klinisch positiven Halses besteht häufig in einer modifizierten radikalen Neck dissection ergänzt durch postoperative Radiotherapie im Falle multipler Metastasen oder extranodalem Wachstum. Es gibt jedoch kontrovers Ansichten in den wenigen veröffentlichten Publikationen, was die chirurgische Behandlung der ipsilateralen Halslymphknoten sowie der Ausmaß bei Patienten mit potentiellen okkluten Lymphknotenmetastasen angeht. Während einige Autoren eher zurückhaltend bei der Neck dissection im Behandlungskonzept des N0-Halses sind, empfehlen andere eine Neck dissection bei bestimmten Tumorentitäten oder nach histologischer Diagnose positiver Lymphknoten [136].

Die unterschiedlichen Häufigkeiten von Lymphknotenmetastasen bei bestimmten Tumorentitäten sind in Tab. 2 dargestellt. Ein besonders hohes Risiko für Halslymphknotenmetastasen wird beschrieben für Adenokarzinome, undifferenzierte Karzinome, High-grade-Mukoepidermoidkarzinome, Platteneplithelkarzinome und Speicheldrüsentumor. Bei adenozytischen Karzinomen treten Lymphknotenmetastasen häufiger bei wenig differenzierten Karzinomen mit solider Wachstumsform auf. Ein weiterer histomorphologischer Risikofaktor ist die extraparotidale Ausdehnung und eine Lymphangiosis carcinomatosa, insbesondere bei Patienten über 54 Jahre. Solche Patienten haben eine 95 %-ige Wahrscheinlichkeit für okkulte Lymphknotenmetastasen, im Vergleich zu 1 % bei Patienten ohne die genannten Risikofaktoren [138].

15 Neck dissection bei Malignomen der Kopfhaut

15.1 Platteneplithelkarzinom

Lymphknoten im Bereich der Gl. parotis drainieren hauptsächlich die Hautareale der ipsilateralen Stirn, Schläfe, Augenlidern, Wange und Ohrmuschel und stellen somit die potenzielle Region für Metastasen bei Patienten mit Platteneplithelkarzinomen dar. In Langzeitstudien wird über eine Metastasierungsrate von bis zu 5 % bei Platteneplithelkarzinomen der Kopfhaut berichtet, während die Ohrmuskelerkrankungen eine höhere Metastasierungsrate bis zu 10 % aufweisen können.
Die angegebenen Metastasierungsraten gelten vor allem für immunkompative Patienten mit zuvor unbehandelten Karzinomen, welche bei der Erstdiagnose in der Regel kleiner als 1,5 Zentimeter im Durchmesser sind. Dieser relativ geringen Inzidenz für lokoregionale Metastasen steht die deutlich höhere Metastasierungsrate der sog. high-risk Karzinome gegenüber. Insbesondere über 70-jährige und immunsupprimierte Patienten mit einem über 1,5 cm durchmessenden Plattenepithelkarzinom der Kopfhaut stellen die Hauptsrisikogruppe zur Entwicklung der parotidalen Metastasen dar. Die Inzidenz der Metastasen bei dieser kleineren Gruppe der Patienten mit Hautkarzinomen wird deutlich unterschätzt [147].

Die parotidale Metastasen stehen in enger Nachbarschaft zu den zervikalen Lymphknoten und gehen häufig wie die primären high-grade Karzinome der Gl. parotis mit zervikalen Lymphknotenmetastasen einher. So soll bei vorliegenden Parotismetastasen mit einer zervikalen Metastasierung von über 50% der Fälle gerechnet werden. Die Metastasen im Bereich der parotidalen Lymphknoten und deren eng lymphogene Kontakt stehenden zervikalen Lymphknoten haben eine hohe prognostische Bedeutung für Patienten mit Plattenepithelkarzinomen der Kopfhaut. Die 5-Jahres-Überlebensrate der Patienten mit lokoregionär metastasierten Plattenepithelkarzinomen der Haut beträgt nach Literaturangaben ca. 50%. Diese Patienten sind primär kurabel, allerdings mit einem hohen Risiko von ca. 20–25% zur Entwicklung von Lokalrezidiven trotz aggressiver multimodaler Therapie. Diese Lokalrezidive sind in der Regel inkurabel und gehen mit einem hohen Risiko für Fernmetastasierung insbesondere im Bereich der Lunge einher [148].

Die lokale Tumorkontrollrate sowie Überlebensrate der Patienten mit einer parotidalen Metastase eines Plattenepithelkarzinoms der Haut hängen maßgeblich von der Größe der parotidalen Metastase, der Infiltration des N. facialis und der Schädelbasis ab. Von besonderer prognostischer Bedeutung ist auch das Ausmaß der zervikalen Metastasierung bei bestehender parotidaler Metastase. O’Brien et al. [149] zeigten, dass Patienten mit parotidalen Metastasen ohne zervikale Metastasen oder mit einer isolierten bis zu 3 Zentimeter großen zervikalen Metastase eine 5-Jahres-Überlebensrate von 65–70% aufweisen können, während die 5-Jahres-Überlebensrate von 65% bei Patienten mit multiplen zervikalen Metastasen oder Metastasen größer als 3 Zentimeter 30% beträgt. Diese und andere Studien bestätigen, dass das Ausmaß der parotidalen und zervikalen Metastasierung die Überlebensrate der betroffenen Patienten signifikant beeinflussen kann.

Die überwiegende Mehrheit der parotidalen Metastasen entsteht innerhalb der ersten 2 Jahre nach der Diagnose des Hautkarzinoms. So ist eine engmaschige sonografische Untersuchung der parotidalen und zervikalen Lymphknoten bei Patienten mit sog. high-risk Karzinome insbesondere in den ersten 2 Jahren nach Diagnose des Hautkarzinoms zur rechtzeitigen Diagnose der lokoregionären Metastasen erforderlich. Es liegen zurzeit keine solide Daten zur elektiven Parotidektomie bei sog. high-risk Karzinome vor.

Die Therapie dieser Metastasen beinhaltet eine partielle oder totale Parotidektomie in Kombination mit Neck dissection mit anschließender Radiotherapie. Bei suspekten zervikalen Lymphknoten sollte eine modifizierte radikale Neck dissection zur Behandlung des Halses durchgeführt werden. Im Falle eines klinischen NO-Halses ist beim Vorliegen parotidaler Metastasen eine selektive Neck dissection der Level I, II, III und VA angezeigt (siehe auch Kapitel 14) [143].

15.2 Merkelzellkarzinom

Das Merkelzellkarzinom ist ein seltener und sehr aggressives kutanes neuroendokrines Karzinom mit einer hohen Rate an Lokalrezidiven, regionalen Lymphknotenmetastasen und im weiteren Krankheitsverlauf auftretenden Fernmetastasen. Mehr als ein Drittel der Patienten weisen bereits bei der Erstdiagnose regionale Lymphknotenmetastasen auf und entwickeln in bis zu 75% Lymphknotenmetastasen. Die 5-Jahres-Überlebensrate beträgt ohne und mit lokoregionäre Metastasierung jeweils ca. 75% und 60%. Das beste Ergebnis zur lokalen und regionalen Beherrschung der Erkrankung wird erzielt durch chirurgische Exzision des Primärtumors mit postoperativer Radiotherapie [150].

Obwohl bei klinischem Verdacht auf Lymphknotenmetastasen eine modifiziert radikale Neck dissection ggf. ergänzt durch Parotidektomie indiziert ist, gibt es unterschiedliche Meinungen über die elektive Therapie der lokoregionären Lymphknoten bei Merkelzellkarzinomen. Die hohe Inzidenz der Lymphknotenmetastasen und Mikrometastasen als wichtigster prognostischer Faktor rechtfertigen die Empfehlung einer elektiven Neck dissection und ggf. Parotidektomie bei klinisch negativen regionalen Lymphknoten bei Merkelzellkarzinomen der Kopfhaut [151]. Die Bedeutung der Sentinel Node Biopsie beim Merkelzellkarzinom im Kopf-Hals-Bereich ist nach wie vor unklar.

15.3 Melanom

Kutane maligne Melanome machen nun ca. 5% der Hautkrebsfälle aus, sind jedoch für mehr als 65% der durch Hautkrebs bedingten Todesfälle verantwortlich. In 20% der Fälle sind kutane maligne Melanome im Kopf-Hals-Bereich lokalisiert. Melanome metastasieren sowohl über die lymphatischen als auch hämatogenen Strukturen. Ungefähr 2 Drittel der Metastasen finden sich zuerst im Abflussgebiet der regionalen Lymphknoten. Eine regionale Metastase kann als Mikrometastase identifiziert werden. Patienten mit mikrometastasiertem Melanom sind somit behandlungsfähig. Die 10-Jahres-Überlebensrate beträgt 30–70% bei Patienten mit Metastasen des Großkreuzes, 50–60% bei Patienten mit Metastasen der Kopfhaut oder bei Patienten mit klinisch vorhandenen Lymphknotenmetastasen [152].

Wenn Lokoregionale Lymphknotenmetastasen klinisch oder mittels bildgebender Diagnostik nachgewiesen sind, wird eine Neck dissection ggf. ergänzt durch Parotidektomie als Standardtherapie empfohlen. Bei klinisch negativem Lymphknotenbefund gilt die Sentinel Lymphonodektomie als adäquates Verfahren.

Adjuvante Therapieverfahren werden bei Patienten angewandt, bei denen keine Metastasen nachgewiesen werden können, jedoch ein hohes Risiko für weitere Tumorausbreitung besteht. Die betrifft vor allem Patienten mit Tumoren mit einer Dicke von mehr als 1,5 mm, gemäß des AJCC Staging jedoch entspricht dies Melanomen im Stadium II oder III. Der Einsatz der adjuvanten Strahlentherapie bei der Behandlung zervikaler Lymphknotenmetastasen kutaner Melanome des Kopf-Hals-Bereiches ist nach wie vor Gegenstand kontroverser Diskussionen. Daten aus randomisierten Studien, die den Nutzen einer adjuvanten Radiotherapie bei Patienten mit Lymphknotenbefall mit hohem Rezidivrisiko (extranodale Ausbreitung des Melanoms, mehr als 2 positive Lymphknoten, erhebliche Lymphknotenvergrößerung oder Rezidiv bei zuvor exstirpiertem Lymphknotenmetastasen) belegen, liegen nicht vor. Bis heute haben Chemotherapie, Immunstimulanzien oder Impfungen nur minimalen Erfolg gebracht. Interferon (IFN) zeigte in verschiedenen klinischen Studien einen Ef-
fekt auf das rezidivfreie Überleben, jedoch ohne klinisch signifikanten Effekt auf das Gesamtüberleben [153].

16 Neck dissection bei Karzinomen der Schilddrüse ▼

Im Gegensatz zu der Einteilung der zervikalen Lymphknoten in 6 Level, werden die Halsregionen für Schilddrüsenkarzinome in Kompartimente eingeteilt. Das zentrale Kompartiment umfasst die Lymphknotengruppen beidseits medial der A. carotis von Zungenbein bis zur A. brachiocephalica [154]. Die häufigsten Lymphknotengruppen, die von Schilddrüsenkarzinomen befallen werden, sind die präularygealen (Delphi), prätrachealen und paratrachealen Lymphknoten, wobei der überwiegende Anteil der Metastasen kaudal des Larynx lokalisiert ist. Der Bereich kaudal des zentralen Kompartiments wird als mediastinales Kompartiment bezeichnet. Das zentrolaterale Kompartiment umfasst beidseits den Bereich lateral der Gefäßnervenscheide bis zum Vorderand der M. trapezius.

Für den lymphogenen Metastasierungsprozess von Schilddrüsenkarzinomen ist von Bedeutung, dass die Lymphabflusswege der beiden Schilddrüsenlappen nicht streng seitengetrennt sind. Vielmehr besteht ein verzweigtes Netz lymphatischer Querverbindungen, über die die präularygealen und prätrachealen Lymphknoten kommunizieren. Des Weiteren sind Verbindungen zu retropharyngealen und im Bereich des oberen Mediastinums lokalisierten Lymphknoten bekannt. Die Schilddrüsenkarzinome weisen in Abhängigkeit von der jeweiligen Tumorlokalisation unterschiedliches Metastasierungsverhalten auf.

Das häufigste Schilddrüsenkarzinom mit einer Häufigkeit von ca. 60–80% ist das papilläre Karzinom. Papilläre Karzinome metastasieren bevorzugt lymphogen, wobei eine Metastasierungsrate von ca. 50% angegeben wird. Lymphknotenmetastasen auf mikroskopische Ebene scheinen bei diesen Karzinomen keine signifikante prognostische Relevanz zu besitzen [155], wobei prospektive randomisierte Studien zum Stellenwert von zentraler Neck dissection fehlen. Die follikulären Karzinome zeigen dagegen eine hámatógene Metastasierungsverbreitung, mit einer geringeren lymphogenen Metastasierungsrate von ca. 5–15%. Bei medullären Karzinomen sind die Lymphknotenmetastasen von entscheidender prognostischer Relevanz und kommen in ca. 50–80% vor. Die anaplastischen Karzinome zeigen ein schnell fortschreitendes und aggressives Wachstum begleitet von hämatogenen Metastasen. Diese Karzinome können in ca. 30% der Fälle Lymphknotenmetastasen aufweisen.

Die Therapie dieser Karzinome beinhaltet in der Regel eine totale Thyreoidektomie mit zentraler Neck dissection in Kombination mit Radiojodtherapie. Eine darüber hinausgehende Lymphknotenentfernung der lateralen oder mediastinalen Kompartimente ist häufig bei Nachweis von Metastasen notwendig. Ziel der Radiojodtherapie ist neben der Ablation von eventuell noch vorhandenem Schilddrüsegewebe der Nachweis oder Ausschluss von speichernden Lymphknoten- und Fernmetastasen. Eine Indikation zur Radiojodtherapie besteht nicht beim papillären Mikrokarzinom (pT1) und beim medullären und anaplastischen Karzinom.

17 Ausblick ▼

Die sichere Diagnostik der Halslymphknotenmetastasen ist ein wesentlicher Schritt zur Optimierung der Therapie und Prognose der Patienten mit Kopf-Hals-Karzinomen. Klinische, radiologische und routinemäßig eingesetzte histopathologische Untersuchungen sind zurzeit nicht in Lage, mit letzter Sicherheit eine lokoregionale Metastasierung bei Kopf-Hals-Karzinomen festzustellen. Molekulare Verfahren können einerseits zum Nachweis okkulte subpathologischer Metastasen beitragen und andererseits basierend auf Eigenschaften des Primärtumors das Risiko für lymphogene Metastasierung definieren. Aktuelle Untersuchungen zur Angiogenese und mikrovaskuläre Dichte-Messungen bei Kopf-Hals-Karzinomen und Analyse von Expression von extrazellularmatrix-abbauende Moleküle wie MMP-1,-2 und Integrin-3 stellen Bemühungen zur Etablierung eines Markers der Vorhersage der Lymphknotenmetastasierung dar. Weitere Untersuchungen zeigen, dass DNA Microarray Genexpressionsprofile für die Vorhersage der Präsenz oder Entwicklung von Halslymphknotenmetastasen bei Kopf-Hals-Karzinomen von Nutzen sein können. Es sind Untersuchungen in der Zukunft insbesondere zu den prognostischen Biomarkern erforderlich, die ein individuelles Risikoprofil definieren und die Indikation zur Neck dissection beim N0-Hals maßgeblich beeinflussen können.

Danksagung ▼

Die Autoren bedanken sich bei Herrn Dr. S. Hoch aus der Marburger Klinik für Hals-Nasen-Ohrenheilkunde für seine Hilfe bei der Erstellung der Abbildungen.

Abstract

Current Advances in Diagnosis and Surgical Treatment of Lymph Node Metastasis in Head and Neck Cancer ▼

Still today, the status of the cervical lymph nodes is the most important prognostic factor for head and neck cancer. So the individual treatment concept of the lymphatic drainage depends on the treatment of the primary tumor as well as on the presence or absence of suspect lymph nodes in the imaging diagnosis. Neck dissection may have either a therapeutic objective or a diagnostic one. The selective neck dissection is currently the method of choice for the treatment of patients with advanced head and neck cancers and clinical NO neck. For oncologic reasons, this procedure is generally recommended with acceptable functional and aesthetic results, especially under the aspect of the mentioned staging procedure. In this review article, current aspects on pre- and posttherapeutic staging of the cervical lymph nodes are described and the indication and the necessary extent of neck dissection for head and neck cancer is discussed. Additionally the critical question is discussed if the lymph node metastasis bears an intrinsic risk of metastatic development and thus its removal in a most possible early stage plays an important role.

Literatur

1 Werner JA. Aktueller Stand der Versorgung des Lymphabflusses maligner Kopf-Hals-tumoren. Eur Arch Otorhinolaryngol 1997; Suppl 1: 47–85
2 Gold KA, Lee HY, Kim ES. Targeted therapies in squamous cell carcinoma of the head and neck. Cancer 2009; 115: 922–935
3 Richard JM, Sancho-Garnier H, Micheau C, Saravane D, Cechn Y. Prognostic factors in cervical lymph node metastasis in upper respiratory and digestive tract carcinomas: study of 1,713 cases during a 15-year period. Laryngoscope 1987; 97: 97–101
4 Jones AS, Roland NJ, Field JK, Phillips DE. The level of cervical lymph node metastases: their prognostic relevance and relationship with head and neck squamous carcinoma primary sites. Clin Otolaryngol Allied Sci 1994; 19: 63–69

5 Puri SK, Fan CY, Hannu E. Significance of extracapsular lymph node metastases in patients with head and neck squamous cell carcinoma. Curr Opin Otolaryngol Head Neck Surg 2003; 11: 119–123

6 Crile GW. On the surgical treatment of cancer of the head and neck. With a summary of one hundred and twenty-one operations performed upon one hundred and five patients. Trans South Surg Gynecol Assoc 1905; 18: 108–127

7 Robbins KT, Denys D. Committee for Neck dissection Classification, American Head and Neck society. The american head and neck Robbins American Head and Neck society. Consensus statement on the classification and terminology of neck dissection. Arch Otolaryngol Head Neck Surg 2008; 134: 536–538

8 Ferlito A, Robbins KT, Shah J, Medina JE, Silver CE, Al-Tamimi S, Fagan JJ, Paleri V, Takes RP, Bradford CR, Devaney KO, Stoeckli SJ, Weber RS, Bradley PJ, Sudrez C, Leemans CR, Coskun HHH, Pitman KT, Shah J, de Bree R, Hurst DM, Haugen M Jr, Rodrigo JP, Hamoir JF, Kowal M, Eide A, Klang J, van der Putten H, van den Putte JF, Yang Z, Zhuang X, Miyahara J, Shintani Y, Ising M, Hamakawa T, Taguchi R, Nakamori Y, Sano H, Inoue K, Kikuchi K, Tsuchiya T, Matsuki T, Nozaki H, Panagiotakis P, de Bree R, Slater N, Soyer HP, Nakamura M, Wernersson R, Aisi M, Stempel M, Hasegawa S, de Bree R, de Bree R, van der Putten J, van de Putten J, van den Broek GW, de Bree R, van den Broek GW, Balm AJ, Hoenders FJ, Doornaert P, Leemans CR, Rusch CR. Effectiveness of salvage selective and modified radical neck dissection for regional pathologic lymphadenopathy after chemoradiation. Head Neck 2009; 31: 593–603

9 Kim SY, Kim JS, Lee JH, Choi SH, Nam SY, Cho JF, Lee SW, Kim SB, Roh JH. Evaluation of 18F-FDG PET/CT and CT/MRI with histopathologic correlation in patients with head and neck squamous cell carcinoma. Ann Surg Oncol 2011 (in press)

10 Ong SC, Schoder H, Lee NY, Patel SG, Carlson D, Furry M, Pfiester DG, Shah JP, Larson SM, Kraus DH. Clinical utility of 18F-FDG PET/CT in assessing the neck after concurrent chemoradiotherapy for locoregional advanced head and neck cancer. J Nucl Med 2009; 50: 532–540

11 Connell CA, Cory J, Miller MD, Akeroves P, Hicks R, Rischin D, Peters LJ. Clinical impact of and improvements undertaken for head and neck squamous cell carcinoma. Ann Oncol 2010; 21: 1072–1077

12 Byers JL, Sherratt GC, Xu KK, Yarbrough WG. Molecular assay to detect metastatic head and neck squamous cell carcinoma. Arch Otolaryngol Head Neck Surg 2004; 130: 21–27

13 Yamazaki Y, Chiha I, Hirai A, Satoh C, Sakakibara N, Notani K, Iizuka T, Totsuka Y. Clinical value of genetically diagnosed lymph node micrometastases in patients with squamous cell carcinoma of the head and neck. Arch Otolaryngol Relat Spec 2004; 66: 38–41

14 Franchi A, Galiani E, Soggia SE, Marcone A, Santucci M. Tumor lymphangiogenesis in head and neck squamous cell carcinoma: a morphometric study with clinical correlations. Cancer 2004; 101: 973–978

15 Zhuang Z, Jian P, Longjiang L, Bo H, Hongwei Z. Identification of oral cancer cell-induced changes in gene expression profile of lymphatic endothelial cell. Cancer Invest 2008; 26: 1002–1007

16 McCartney MD, Suomalainen P, Sugihara K, Itoh S. Tumor lymphangiogenesis correlates with lymph node metastasis and clinicopathological parameters in oral squamous cell carcinoma. Cancer 2007; 110: 1287–1294

17 Garcia-Carracedo D, Rodrigo JP, Astudillo A, Nieto CS, Gonzalez MV. Prognostic significance of lymphangiogenesis in pharyngolaryngeal carcinoma patients. BMC Cancer 2010; 10: 416

18 Bilmor D, Iwata S, Tierney LWB, Thompson GB, Verheugt WC. Molecular and clinical validation of a novel method for detection of metastatic head and neck squamous cell carcinoma. J Cancer 2010; 1: 19–26

19 Cortes SM, Joblonski AC, Winslow EB, Myers KA, Campbell TR, Rettig MB, Wood WC, Leitman M, Rusch CW. Tumor lymphangiogenesis is an independent predictor of survival in patients with head and neck squamous cell carcinoma. Cancer 2005; 103: 1615–1620

20 Hirokawa N, Hirokawa K, Li Z, Kennedy RM, Levy RM, Silver BD, Kubo H, Bette A, Grande S, Santucci M, Tanaka N, O’Regan T, Hogg E, Drugan JA, MacDonald G, Yichtig R, Rudra S. Development of a new lymphatic imaging technique: 18F-FDG PET/CT and head and neck micrometastatic lymph node surveillance. Head Neck 2009; 31: 593–603

21 Stroobants S, Borgelaer E, Declercq W, Beets-Tan RG. Detection of lymph node metastases in head and neck cancer patients: a meta-analysis comparing US, USFgNAC, CT and MR imaging. Eur J Radiol 2007; 64: 266–272

22 Mahmia C, Carlson ER, Duncan LD, Blodgett TM, Kennedy J, Long MJ, Carr C, Hubner KN, Townsend DW. Positron emission tomography/computerized tomography (PET/CT) scanning for preoperative staging of patients with oral/head and neck cancer. J Oral Maxillofac Surg 2007; 65: 2524–2535

23 Kyuzas PA, Evangelou E, Denaxa-Ryza D, Ioannidis JP. 18F-Fluorodeoxyglucose positron emission tomography to evaluate cervical node metastases in patients with head and neck squamous cell carcinoma: a meta-analysis. J Natl Cancer Inst 2008; 100: 712–720

24 van der Putten L, van den Broek GW, de Bree R, van den Broek GW, Balm AJ, Hoenders FJ, Doornaert P, Leemans CR, Rusch CR. Effectiveness of salvage selective and modified radical neck dissection for head and neck squamous cell carcinoma. J Natl Cancer Inst 2000; 92: 1001–1010

25 van den Brink ML, Castelijns JA, Sel HV, Golding RP, Meyer CJ, Snow GB. Modern imaging techniques and ultrasound guided aspiration cytology for the assessment of the neck node metastases: a prospective comparative study. Eur Arch Otorhinolaryngol 1993; 250: 11–17

26 de Bondt RB, Neelamans PJ, Hofman PA, Casselman JW, Kremer B, van Engelshoven JM, Beets-Tan RG. Computed tomography (PET/CT) scanning for preoperative staging of patients with oral/head and neck cancer. J Oral Maxillofac Surg 2003; 61: 119–123

27 Knepper RM, Weiss TW, Davis SC, Young JR, Croce CM. Prognostic significance of cervical lymph node micrometastasis in patients with oral cavity squamous cell carcinoma. J Natl Cancer Inst 2001; 93: 1025–1031

28 Franchi A, Galiani E, Soggia SE, Marcone A, Santucci M. Tumor lymphangiogenesis in head and neck squamous cell carcinoma: a morphometric study with clinical correlations. Cancer 2004; 101: 973–978

29 Zhuang Z, Jian P, Longjiang L, Bo H, Hongwei Z. Identification of oral cancer cell-induced changes in gene expression profile of lymphatic endothelial cell. Cancer Invest 2008; 26: 1002–1007

30 McCartney MD, Suomalainen P, Sugihara K, Itoh S. Tumor lymphangiogenesis correlates with lymph node metastasis and clinicopathological parameters in oral squamous cell carcinoma. Cancer 2007; 110: 1287–1294

31 Garcia-Carracedo D, Rodrigo JP, Astudillo A, Nieto CS, Gonzalez MV. Prognostic significance of lymphangiogenesis in pharyngolaryngeal carcinoma patients. BMC Cancer 2010; 10: 416

32 Bilmor D, Iwata S, Tierney LWB, Thompson GB, Verheugt WC. Molecular and clinical validation of a novel method for detection of metastatic head and neck squamous cell carcinoma. J Cancer 2010; 1: 19–26

33 Cortes SM, Joblonski AC, Winslow EB, Myers KA, Campbell TR, Rettig MB, Wood WC, Leitman M, Rusch CW. Tumor lymphangiogenesis is an independent predictor of survival in patients with head and neck squamous cell carcinoma. Cancer 2005; 103: 1615–1620

34 Werner JA, Dunn AE, Myers JF. Functional anatomy of the lymphatic drainage system of the upper aerodigestive tract and its role in metastasis of squamous cell carcinoma. Head Neck 2003; 25: 322–332

35 Cantu G, Bimbi G, Miceli R, Mariani L, Colombo S, Riccio S, Squadrilli M, Battisti A, Pompilio M, Rossi M. Lymph node metastases in malignant tumors of the paranasal sinuses: prognostic value and treatment. Int J Otolaryngol Head Neck Surg 2006; 15: 33–38

36 Byers RM, Weber RS, Andrews T, McGill D, Kare R, Wolf P. Frequency and therapeutic implications of “skip metastases” in the neck from squamous carcinoma of the oral tongue. Head Neck 1997; 19: 14–19

37 Zhang T, Ord RA, Wei WI, Zhao J. Sublingual lymph node metastasis of early tongue cancer: report of two cases and review of the literature. J Oral Maxillofac Surg 2009; 67: 597–608

38 Asakage T, Yokose T, Murak K, Tsugane S, Tsuiono Y, Asai M, Ebihara S. Tumor thickness predicts cervical metastasis in patients with stage I/II carcinoma of the tongue. Cancer 1998; 82: 1443–1448
65 Buckley Head Neck 1990 ; 12 : 197 – 203

66 Rinaldo J U Z 1999 ; 39 : 632 – 637

67 Kwee TC, Kwee RM. Combined FDG–PET/CT for the detection of un- known primary tumors: systematic review and meta-analysis. Eur Radiol 2009; 19: 731–744

68 Graham MM, Badawi KD, Wahl RL. Variations in PET/CT methodology for oncologic imaging at U.S. academic medical centers: an imaging response assessment team survey. J Nucl Med 2011; 52: 311–317

69 Strigari P, Fertola A, Larrondo J, Rehfeldt HA, Jaccard T, Jönsson U. FDG PET and impact of sentinel neck dissection: a prospective analysis. Head Neck 2011; (im Druck)

70 Reddy SP, Marks JE. Metastatic carcinoma in the cervical lymph nodes from an unknown primary site: results of bilateral neck plus mucosal irradiation vs. ipsilateral neck irradiation. Int J Radiat Oncol Biol Phys 1997; 37: 797–802

71 Aslani M, Sultunnem K, Young T, Her M, Niazi T, Shennouda G. Meta- static carcinoma to the cervical nodes from an unknown head and neck primary site: Is there a need for neck dissection? Head Neck. 2007; 29: 585–590

72 Nieder C, Gregoire V, Ang KK. Cervical lymph node metastases from occult squamous cell carcinoma: cut down a tree to get an apple? Int J Radiat Oncol Biol Phys 2001; 50: 727–733

73 Precreuz-Fossa BA, Jassouka MM, Derechija R. Cervical lymph node metas- toses of squamous cell carcinoma from an unknown primary. Cancer Treat Rev 2004; 30: 153–164

74 Villeneuve H, Després P, Fortin B, Filion E, Donath D, Soulières D, Guer- tin L, Ayad T, Christopoulos A, Nguyen-Tan PF. Cervical Lymph Node Metastases From Unknown Primary Cancer: A Single-Institution Experience With Intensity-Modulated Radiotherapy. Int J Radiat Oncol Biol Phys 2011 (im Druck)

75 Shoushtari A, Saylor D, Kerr KL, Sheng K, Thomas C, Jameson M, Reibel J, Shonka D, Levine P. Outcomes of Patients With Head-And-Neck Cancer of Unknown Primary Origin Treated with Intensity-Mo- dulated Radiotherapy. Int J Radiat Oncol Biol Phys 2011 (im Druck)

76 van den Brekel MW, van der Waal I, Meijer J, Freeman JL, Casteljins JA, Stigt GM. The incidence of micrometastases in neck dissection speci- mens obtained from elective neck dissections. Laryngoscope 1996; 106: 987–991

77 Werner JA, Dänne AA, Rasamsawmy A, Folt BJ, Lippert BM, Rolf B. Sentinel node detection in NO cancer of the pharynx and larynx. Br J Cancer 2002; 87: 711–715

78 Werner JA. Selective sentinel lymphadenectomy for head and neck squamous cell carcinoma. Cancer Treat Res 2005; 127: 187–206

79 Santanolaña F, Sanchez JM, Ereno C, Sanchez A, Martinez A. Compar- ative study of patients with and without sentinel lymph node biopsy (SLNB) in oral and oropharyngeal carcinoma: is SLNB an accurate and useful procedure? Acta Otolarlgy 2009; 129: 199–204

80 Werner JA, Dänne AA, Rasmussen K, Rolf B. Value of sentinel lymph- node biopsy in head and neck cancers – or maybe not? J Surg Oncol 2010; 102: 354–358

81 Camela FC, Kothari K, Shah JP. Patterns of cervical node metastas- ses from squamous carcinoma of the oropharynx and hypopharynx. Head Neck 1999; 21: 197–203

82 Buckley JC, Macleanman K. Cervical node metastasis in laryngeal and hypopharyngeal cancer: a prospective analysis of prevalence and dis- tribution. Head Neck 2000; 22: 380–385

83 Kamyama R, Saiakawa M, Kishimoto S. Significance of retropertioneal lymph node dissection in hypopharyngeal cancer. Jpn J Clin Oncol 2009; 39: 612–637

84 Chan SC, Lin CY, Ng SH, Chang JT, Wang HM, Liao CT, Lo CW, Yen TC. 18F-FDG PET for retropertioneal lymph node metastasis in or- opharyngeal and hypopharyngeal cancers: impact on diagnosis and prediction analysis. Nucl Med Commun 2010; 31: 260–265

85 Amatsu M, Mohri M, Kinoshita M. Significance of retropertioneal node dissection at radical surgery for carcinoma of the hypopharynx and cervical esophagus. Laryngoscope 2001; 111: 1099–1103

86 Rudnik L, Lau HY, Matthews TW, Bosch JD, Klobber R, Molnar CP, Dort JC. Clinical utilization of PET/CT in the evaluation of head and neck squamous cell carcinoma with an unknown primary: A prospective clinical trial. Head Neck 2011; 33: 935–940

Teymourtash A, Werner JA. Aktuelle Fortschritte in der ... Laryngo-Rhino-Otol 2012; 91: S102–S122
101
105
106
97
95
90
6
rynx and hypopharynx. Laryngoscope 2001; 111: 1079 – 1087
cond primary malignancies in squamous cell carcinomas of the la-
review of the literature. Head Neck 2008; 30: 194–200
C. Takescers: feasibility of submandibular gland preservation. Head Neck 2009; 31: 1496 – 1501
w and depth of invasion in nodal involvement and prognosis of
ative neck dissection following adjuvant therapy for advanced head
Eddins, and depth of invasion in nodal involvement and prognosis of
quality of life after neck dissection. Arch Otolaryngol Head Neck Surg 2006; 132: 562–666
N. Kubilay, E. Kubilay, M. Kawabata, K. Onitsuka, T. Fujii, T. Ka-
quality of life after neck dissection: a multicenter longitudinal study by the Japanese Clinical Study Group on Standardization of Treat-
ment for Lymph Node Metastasis of Head and Neck Cancer. Int J Clin Oncol 2010; 15: 33–38
Kerawala Q, Heliotos M. Prevention of complications in neck dissec-
tion. Head Neck Oncol 2000; 1: 35
Cappiello J, Piazza C, Berlucci M, Peretti G, De Zinis LO, Maroldi R, Nicolai P. Internal jugular vein patency after lateral neck dissection. Eur Arch Otorhinolaryngol 2002; 259: 409–412
d of Gier HH, Balm AJ, Bruning PF, Gregor RT, Hijgers FJ. Systematic approach to the treatment of chylous leakage after neck dissection. Head Neck 1996; 18: 347–351
Prim MP, De Diego JJ, Verdaguer JM, Sastre N, Rabanal I. Neurological complications following functional neck dissection. Eur Arch Oto-
irhino-laryngology 2006; 263: 473–476
Cheng PF, Hao SP, Lin YH, Yeh AR. Objective comparison of shoulder dysfunction after three neck dissection techniques. Ann Otol Rhinol Laryngol 2006; 115: 761–766
Koybasoglu A, Tokcaker AB, Uslu S, Ileri F, Beder L, Ozbilzen S. Accessory nerve function after modified radical and lateral neck dissection. Laryngoscope 2000; 110: 73–77
Cappiello J, Piazza C, Giudice M, De Maria G, Nicolai P. Shoulder disability after different selective neck dissections (level II-V versus levels II-IV), a comparative study. Laryngoscope 2005; 115: 259–263
Schiefke F, Aldemir M, Weber A, Aldemir D, Singer S, Fricke B. Func-
tion, postoperative morbidity, and quality of life after cervical sen-
tinal node biopsy after neck dissection. Head Neck 2009; 31: 503–512
Teymoorthy A, Hoch S, Eiviuzi B, Werner JA. Postoperative morbidity after different types of selective neck dissection. Laryngoscope 2010; 120: 924–929
Donatelli-Lussig AA, Duffuy SA, Fowler KE, Ronis DL, Chepeba DB, Terrell JE. The effect of neck dissection on quality of life after chemotherapeutic irradiation. Otolaryngol Head Neck Surg 2008; 139: 511–518
Dulguerov P, Leuchter I, Szulay-Quinodoz I, Allas AS, Marchal F, Leh-
mann W, Fasel JH. Endoscopic neck dissection in human cadavers. Laryngoscope 2011; 111: 2135–2139
Terry DJ, Monfared A, Thomas A, Kambham N, Säzý. Endoscopic selective neck dissection in a porcine model. Arch Otolaryngol Head Neck Surg 2003; 129: 613–617
Hartl DM, Fertitta A, Silver CE, Takes RP, Stoelckl SJ, Suárez C, Rodrigo JP, Sestherhen AM, Snyderman EJ, Herrt DJ, Genden EM, Rinaldo A. Minimally invasive techniques for head and neck mali-
gancies: current indications, outcomes and future directions. Eur Arch Otorhinolaryngol 2011; 268: 1249–1257
Werner JA, Supandzic NR, Teymoorthy A, Dünne AA, Behr T, Folz BJ. Endoscopic sentinel lymphadenectomy as a new diagnostic approach in the N0 neck. Eur Arch Otorhinolaryngol 2004; 261: 463–468
Sestherhen AM, Folz BJ, Werner JA. Surgical technique of endoscopic sentinel lymphadenectomy in the N0 neck. Oper Tech Otolaryngol Head Neck Surg 2008; 19: 26–32
Richtmeijer WJ. Dissecting the "endoscopic neck". Arch Otolaryngol Head Neck Surg 2003; 129: 612
Nguyen DX, Bos PD, Massagué J. Metastasis: from dissemination to organ-specific colonization. Nat Rev Cancer 2009; 9: 274–284
Schmidt-Kittler O, Ragg T, Daskalakis A, Granzow M, Ahr A, Blankenstein TJ, Kaufmann M, Diebold J, Arnholdt H, Muller P, Bischoff J, Harich D, Schlimok G, Riethmüller G, Ellis R, Klein CA. From latent disseminated cells to overt metastasis: genetic analysis of systemic breast cancer progression. Proc Natl Acad Sci USA 2003; 100: 7737–7742
Hölzel D, Engel J, Löhnis U. Endoscopische Lymphonodiendissektionen in der Karzinomchirurgie noch zeitgemäss? Zentralbl Chir 2008; 133: 582–589
Referat

132 Gervasoni JE Jr, Shavi S, Cady B. Role of lymphadenectomy in surgical treatment of solid tumors: an update on the clinical data. Ann Surg Oncol 2007; 14: 2443–2462

133 Myers JN, Greenberg JS, Mo V, Roberts D. Extracapsular spread. A significant predictor of treatment failure in patients with squamous cell carcinoma of the tongue. Cancer 2001; 92: 3030–3036

134 Haddadin RJ, Soutar DS, Oliver RJ, Webster MH, Robertson AG, MacDonald DG. Improved survival for patients with clinically T1/T2, N0 tongue tumors undergoing a prophylactic neck dissection. Head Neck 1999; 21: 517–525

135 Spiro RH, Huvos AG, Strong EW. Cancer of the parotid gland. A clinicopathologic study of 288 primary cases. Am J Surg 1975; 130: 452–459

136 Medina JE. Neck dissection in the treatment of cancer of major salivary glands. Otolaryngol Clin North Am 1998; 31: 815–822

137 Regis De Brito Santos I, Kowalski LP, Cavalcante De Araujo V, Flavia Logullo A, Magrin J. Multivariate analysis of risk factors for neck metastases in surgically treated parotid carcinomas. Arch Otolaryngol Head Neck Surg 2001; 127: 56–60

138 Frankenthaler RA, Byers RM, Luna MA, Callender DL, Wolf P, Goepfert H. Predicting occult lymph node metastasis in parotid cancer. Otolaryngol Head Neck Surg 1993; 119: 517–520

139 Armstrong JC, Harrison LB, Thaler HT, Friedlander-Klar H, Fass DE, Zehedyk MJ, Shah JP, Strong EW, Spiro RH. The indications for elective treatment of the neck in cancer of the major salivary glands. Cancer 1992; 69: 615–619

140 Eneroth CM. Facial nerve paralysis. A criterion of malignancy in parotid tumors. Arch Otolaryngol 1972; 95: 300–304

141 Conley J, Hamaker RC. Prognosis of malignant tumors of the parotid gland with facial paralysis. Arch Otolaryngol 1975; 101: 39–41

142 Gallo O, Franchi A, Bianchi S, Boddi V, Giannelli E, Alajmo E. p53 oncoprotein expression in parotid gland carcinoma is associated with clinical outcome. Cancer 1995; 75: 2037–2044

143 Teymoortash A, Werner JA. Value of neck dissection in patients with cancer of the parotid gland and a clinical N0 neck. Otolaryngol Head Neck Surg 2002; 25: 122–126

144 Ferlito A, Shaha AR, Rinaldo A, Mondin V. Management of clinically negative cervical lymph nodes in patients with malignant neoplasms of the parotid gland. Otolaryngol Head Neck Surg 2002; 1203–126

145 Bhattacharyya N. Survival and prognosis for cancer of the submandibular gland. J Oral Maxillofac Surg 2004; 62: 427–430

146 Pohar S, Venkatesan V, Stitt LW, Hall SF, Hammond JA, Read N, Yoo J, Fung K, Pavamani S. Results in the management of malignant submandibular tumours and guidelines for elective neck treatment. J Otolaryngol Head Neck Surg 2011; 40: 191–195

147 Teymoortash A. Glundula parotis als Hauptmetastasierungsort der Plattenepithelkarzinome der Kopfhaut. Laryngorhinootol 2007; 86: 699–704

148 Teymoortash A, Schultz ES, Werner JA. Klinische Bedeutung parotidealer Metastasen von Plattenepithelkarzinomen der Kopfhaut. Hautarzt 2007; 58: 323–327

149 O’Brien C, McNeil EB, McMahon JD. Significance of clinical stage, extent of surgery, and pathologic findings in metastatic cutaneous squamous carcinoma of the parotid gland. Head Neck 2002; 24: 417–422

150 Pellitteri PK, Takes RP, Lewis JS Jr, Devaney KO, Harlor EJ, Strojan P, Rodrigo JP, Suárez C, Rinaldo A, Medina JE, Woolgar JA, Ferlito A. Merkel cell carcinoma of the head and neck. Head Neck 2011 (im Druck)

151 Kokoska ER, Kokoska MS, Collins BJ, Stapleton DR, Wade JP. Early aggressive treatment for Merkel cell carcinoma improves outcome. Am J Surg 1997; 174: 688–693

152 Balch CM, Soong SJ, Gershenwald JE, Thompson JF, Reintgen DS, Cascinelli N, Urist M, McMasters KM, Ross MI, Kirkwood JM, Atkins MB, Thompson JA, Coit DG, Byrd D, Desmond R, Zhang Y, Liu PY, Lyman GH, Morabito A. Prognostic factors analysis of 17600 melanoma patients: validation of the American Joint Committee on Cancer melanoma staging system. J Clin Oncol 2001; 19: 3622–3634

153 Guadagnolo BA, Zagars GK. Adjuvant radiation therapy for high-risk nodal metastases from cutaneous melanoma. Lancet Oncol 2009; 10: 409–416

154 Carney SE, Cooper DS, Doherty GM, Duh QJ, Kloos RT, Mandel SJ, Rudolph GW, Stack BC Jr, Steward DL, Terris DJ, Thompson GB, Tufano PP, Tuttle RM, Udelsman R. American Thyroid Association Surgery Working Group; American Association of Otolaryngology-Head and Neck Surgery; American Head and Neck Society, Consensus statement on the terminology and classification of central neck dissection for thyroid cancer. Thyroid 2009; 19: 1153–1158

155 Shaha AR. Prophylactic central compartment dissection in thyroid cancer: a new avenue of debate. Surgery 2009; 146: 1224–1227