Validity and reliability of speed tests used in soccer: A systematic review

Stefan Altmann1 *, Steffen Ringhof1,2, Rainer Neumann1, Alexander Woll3, Michael C. Rumpf4

1 Department for Performance Analysis, Institute of Sports and Sports Science, Karlsruhe Institute of Technology, Karlsruhe, Germany, 2 Department of Sport and Sport Science, University of Freiburg, Freiburg, Germany, 3 Department for Social and Health Sciences in Sport, Institute of Sports and Sports Science, Karlsruhe Institute of Technology, Karlsruhe, Germany, 4 Sport Performance Research Institute New Zealand, Auckland University of Technology, Auckland, New Zealand

* stefan.altmann@kit.edu

Abstract

Introduction

Speed is an important prerequisite in soccer. Therefore, a large number of tests have been developed aiming to investigate several speed skills relevant to soccer. This systematic review aimed to examine the validity and reliability of speed tests used in adult soccer players.

Methods

A systematic search was performed according to the PRISMA guidelines. Studies were included if they investigated speed tests in adult soccer players and reported validity (construct and criterion) or reliability (intraday and interday) data. The tests were categorized into linear-sprint, repeated-sprint, change-of-direction sprint, agility, and tests incorporating combinations of these skills.

Results

In total, 90 studies covering 167 tests were included. Linear-sprint (n = 67) and change-of-direction sprint (n = 60) were studied most often, followed by combinations of the aforementioned (n = 21) and repeated-sprint tests (n = 15). Agility tests were examined fewest (n = 4). Mainly based on construct validity studies, acceptable validity was reported for the majority of the tests in all categories, except for agility tests, where no validity study was identified. Regarding intraday and interday reliability, ICCs>0.75 and CVs<3.0% were evident for most of the tests in all categories. These results applied for total and average times. In contrast, measures representing fatigue such as percent decrement scores indicated inconsistent validity findings. Regarding reliability, ICCs were 0.11–0.49 and CVs were 16.8–51.0%.

Conclusion

Except for agility tests, several tests for all categories with acceptable levels of validity and high levels of reliability for adult soccer players are available. Caution should be given when
interpreting fatigue measures, e.g., percent decrement scores. Given the lack of accepted gold-standard tests for each category, researchers and practitioners may base their test selection on the broad database provided in this systematic review. Future research should pay attention to the criterion validity examining the relationship between test results and match parameters as well as to the development and evaluation of soccer-specific agility tests.

Introduction

The game structure of soccer has dramatically changed over the last decades towards a more and more dynamic and faster playing style [1]. Compared to years past, modern soccer is denoted by shorter ball contact times, increased passing rates, higher player density, and faster transitions [1]. The changes in game structure also place modified demands on the players. These alterations not only affect technical and tactical aspects but particularly the players’ speed requirements. From a physical perspective, the players have to perform several accelerations and sprints at maximal speed with and without changes of direction throughout a match [2–4]. Moreover, players are forced to possess rapid information processing and to make fast and accurate decisions in order to be successful [1]. This indicates that speed in soccer encompasses both physical and perceptual-cognitive components [5].

As indicated above, speed is widely accepted to play a crucial role in soccer [6,7]. Therefore, speed testing has become a standard component of performance assessments [2,8]. For this purpose, a multitude of running-based tests has been developed aiming to examine several speed skills and have been implemented in research and practice [2,9]. More specifically, these speed tests can be categorized into linear sprinting, change-of-direction sprinting, repeated sprinting, agility, and combinations of these categories. In this context, linear sprinting relates to straight-line sprinting over various distances, including acceleration and maximum speed phases [10]. Moreover, change-of-direction sprinting comprises preplanned whole-body changes of directions as well as rapid movements and direction changes of the limbs [11,12]. Repeated sprinting refers to short-duration sprints (< 10 s) interspersed with brief phases of recovery (< 60 s) [13]. Finally, agility is considered an open skill and has been defined as a „rapid whole-body movement with change of velocity or direction in response to a stimulus“ [11]. While linear sprinting, change-of-direction sprinting, and repeated sprinting mainly represent physically-driven speed skills, agility refers to both physical and perceptual-cognitive aspects of speed [5,13]. These skills share a relatively low common variance with limited training transfer between each other being evident. Hence, they can be considered as rather independent [12,14–22]. Therefore, a comprehensive examination of speed should address all test categories.

From a practical perspective, the feasibility, equipment needed, and economical aspects represent important factors whether or not to choose a test. From a scientific perspective, however, tests should possess appropriate levels of psychometric properties, including validity and reliability, in order to be used with confidence and to be able to draw meaningful conclusions from test results [23,24]. While recent reviews have been published focusing on tests of motor abilities such as endurance [25] and strength [26] with regards to soccer, no overview on the validity and reliability of tests addressing speed skills is available.

Therefore, the aim of this systematic review is to review the available literature on speed tests used in soccer with a focus on the tests’ validity and reliability. The results of this review could help both scientists and practitioners decide which test(s) to choose depending on the specific aspects of speed being of interest.
Methods
This systematic review was written according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines [27]. The protocol was not registered prior to the initiation of the project.

Literature search
A systematic review of the published literature was undertaken using the electronic databases PubMed and Web of Science during April and May 2018. An updated search regarding studies published after May 2018 was not conducted. The literature search was conducted by one researcher (SA). There was no restriction on publication date.

The following keywords were used to capture psychometric properties: psychometric, measurement.

The following keywords were used to capture validity: validity, logical, construct, convergent, discrimination, match performance, gold standard, level, standard.

The following keywords were used to capture reliability: reliability, repeatability, reproducibility, measurement error, consistency, smallest worthwhile change, minimal detectable change, typical error, usefulness.

The following keywords were used to capture speed testing and the different test categories: speed, quickness, sprint, acceleration, maximum speed, linear, change of direction, repeated sprint ability, agility, reactive agility, physical, unplanned, unanticipated, test, testing.

The following keywords were used to capture soccer: soccer, football.

Reference lists of retrieved full-text articles and recent reviews were examined to identify additional articles not identified by the initial search.

Eligibility criteria for study inclusion consisted of one of the following: (i) tests performed two or more times during one occasion (intraday reliability) or on two or more separate occasions (interday reliability); (ii) compared against other standards of play (construct validity); (iii) compared against match performance (criterion validity).

Except for reviews, all types of studies relating to at least one speed-test category (linear sprinting, repeated sprinting, change-of-direction sprinting, agility, and combinations) were taken into consideration. In addition, studies must have been published in English language in a peer-reviewed journal. As the present review focuses on adult players, only populations with a mean age of 17 years or older were considered. There was no restriction on gender (female and male) and playing level (e.g., recreational, amateur, semi-professional, professional). Complex tests incorporating passing or shooting were only considered when the part relating to speed was examined separately from the total test time. Studies investigating the factorial or convergent validity of speed tests were not included.

Literature selection
The literature selection consisted of two screening phases. In phase one, duplicates, titles, and abstracts were screened. In phase two, the full papers were screened using the eligibility (inclusion) criteria noted above.

Data extraction and analyses
Data were extracted independently by four researchers (SA, SR, RN, and MR) and documented using a Microsoft Excel 2016 spreadsheet (Microsoft Corporation, Redmond, Washington, USA). Extracted data from each study included publication details, number of participants, demographic information (including gender, age, playing level, and country), test
category, test name, short test description, type, outcome measures as well as results for validity or reliability, respectively, and the information required to assess the methodological quality of each study. If more than one group of players were investigated in a study, only the groups with a mean age of 17 years or older were considered.

For reliability (both intraday and interday), intraclass correlation coefficient (ICC), Pearson’s r, and coefficient of variation (CV) values were recorded. While ICC and Pearson’s r represent relative reliability, CV is a measure of absolute reliability. By reflecting the degree to which individuals in a specific sample maintain their position over the course of repeated trials (interindividual variability), measures of relative reliability are affected by group homogeneity. Conversely, measures of absolute reliability relate to the variation over repeated trials within individuals (intraindividual variability). Therefore, they do not depend on group homogeneity [28]. Considering the ICC, a range of different approaches exist on how to interpret these values [28]. Following the recommendations of a review with a similar objective [29], in the present review, "good" reliability was considered ICC \(\geq 0.75 \). This value was chosen as it appears to reflect a reasonable consensus as to what can be considered good reliability. The same value was applied for Pearson’s r. While a threshold of 10% for acceptable CV values has been suggested, this number seems rather arbitrary [28]. Therefore, CV values were interpreted in relation to each other.

Relating to construct validity, where possible, the percentage difference between playing levels and the respective effect sizes (ES) were calculated and rated according to Hopkins [30]. An ES less than 0.2 was considered a trivial effect; 0.2 \(\leq ES < 0.6 \) a small effect; 0.6 \(\leq ES < 1.2 \) a moderate effect; 1.2 \(\leq ES < 2.0 \) a large effect; 2.0 \(\leq ES < 4.0 \) a very large effect; and \(\geq 4.0 \) an extremely large effect. In terms of criterion validity, the magnitude of the correlation coefficient between speed-test results and match parameters was considered as small (0.1 \(\leq r < 0.3 \)), moderate (0.3 \(\leq r < 0.5 \)), large (0.5 \(\leq r < 0.7 \)), very large (0.7 \(\leq r < 0.9 \)), and nearly perfect (\(r \geq 0.9 \)) [30].

Data were checked and verified by SA and discrepancies were resolved through discussion. The synthesis of the results was carried out descriptively.

Assessment of methodological quality

The methodological quality of the studies included in the review was assessed through a modified version of the critical appraisal tool [31]. The modified checklist included nine items:

1. Subject characteristics were clearly described (validity and reliability studies)
2. Competence of the raters was clearly described (validity and reliability studies)
3. Reference (match data) was clearly described (criterion validity studies)
4. Raters were blinded to their own prior findings (reliability studies)
5. Time interval between the reference (match data) was suitable (criterion validity studies)
6. Time interval between repeated measures was suitable (reliability studies)
7. Test execution was described in sufficient detail to permit replication of the test (validity and reliability studies)
8. Methodological aspects (e.g., timing technology, starting position, surface) were described in sufficient detail to permit replication of the test (validity and reliability studies)
9. Statistical methods were appropriate for the purpose of the study (validity and reliability studies)
From the original checklist, the items 6 (Variation of order of examination), 9 (Independence of reference standard from index test), and 12 (Explanation of withdrawals) were not included as they were thought to be not appropriate for the purpose of this review. Conversely, item 8 (Methodological aspects) was added to the checklist because of the considerable influence of methodological aspects on results, validity, and reliability of speed tests [32]. Due to the large absolute errors associated with manual timing through stopwatches, tests using this timing technology were excluded [32].

The score for each item was determined as follows: 2 = clearly yes; 1 = to some extent; 0 = clearly no. Consequently, the maximal possible score was 14 (criterion) and 10 (construct) for validity studies, and 14 (intraday and interday) for reliability studies. In the case of more than one test being examined in a single study, the score was calculated for each test separately. According to Barrett et al. [33], the methodological quality was rated as high when > 60% of the maximal possible score was obtained (corresponding to a score of > 6 for construct validity studies and > 8.4 for criterion validity, intraday, and interday reliability studies).

Results

Search results

A flow diagram for the selection of the studies can be found in Fig 1. 10,656 records were retrieved through the initial search in the electronic databases. The removing of duplicates yielded 8,950 studies that were screened for the title. Subsequent abstract screening (1,270 records) led to the exclusion of further 1,131 studies. Consequently, the full-texts of 139 articles were assessed for eligibility, with 49 articles being excluded. The reasons for exclusion during full-text screening were

- no validity or reliability reported (16 studies),
- inappropriate timing technology (manual timing) used (12 studies),
- mean population age < 17 years (8 studies),
- reliability reported as a range over several tests (including strength and endurance tests) (5 studies),
- full-text not written in English language (3 studies),
- full-text not available (3 studies), and
- sports other than soccer included in calculations of validity or reliability (2 studies).

Ultimately, 90 studies were included in this review.

Overview on studies and tests included

From the 90 studies included, 20 referred to validity only, 60 to reliability only, and 10 to both validity and reliability. An overview on the number of the tests regarding validity and reliability in each category is presented in Table 1. Ball dribbling was included in change-of-direction sprint tests (4 validity, 3 reliability) and in combinations (1 validity). A total of 3,901 participants (mean ± standard deviation 56 ± 108, median 25, range 7–939) with an average age from 17 to 33 years (mean ± standard deviation 21 ± 3 years, median 21 years) were involved. Most studies examined male players (74), while female (13) and both male and female players (3) were studied less often. The playing level covered a wide range between recreational and national team players.
Fig 1. Flow diagram of the search and selection process for inclusion of articles.

https://doi.org/10.1371/journal.pone.0220982.g001
Assessment of methodological quality

Construct and criterion validity were reported for 41 and 6 tests, respectively. The mean score was 6.4/10 (range 4–10) and 9.8/14 (range 9–12) leading to a high rating of methodological quality.

Intraday and interday reliability were reported for 57 and 56 tests, respectively, with reliability type being not specified for 7 tests. The mean score was 7.9/14 (range 5–11) and 7.8/14 (range 5–11), which is below the threshold for a high rating of methodological quality (Tables 2–6, column ‘MQ’).

Subject characteristics and test execution were clearly depicted in most of the studies. In addition, the majority of studies used appropriate statistical methods at least to some extent. Conversely, only a small amount of studies stated the competence of the raters or described methodological aspects in sufficient detail, with blinding of the raters being stated in none of the studies.

Study characteristics and main findings

Linear-sprint tests. Linear-sprint tests were examined 67 times. The distances investigated ranged from 5 to 200 m. The most frequent studied distances were 10, 20, and 30 m. In terms of construct validity, the test results between the playing levels differed between -1.6 and 5% (ES = -0.33–1.3), whereas positive values indicate that the higher-level players performed better than the lower-level players. Negative values indicate the opposite. Regarding criterion validity, the highest correlation coefficient found between test results and match parameters was $r = -0.73$.

Intraday reliability ranged from 0.17 to 0.99 (ICC) and from 0.7 to 7.8% (CV), whereas interday reliability ranged from 0.77 to 0.98 (ICC) and from 0.5 to 10.9% (CV).

Study findings in relation to the validity and reliability of linear-sprint tests are illustrated in Tables 2–3.

Repeated-sprint tests. Repeated-sprint tests were examined 15 times. The investigated tests incorporated 3 to 15 repetitions over distances ranging from 15 to 40 m with active and passive recovery between approximately 15 s and 1 min. The most frequent utilized tests comprised of 6 x 20-m sprints with approximately 20–25 s of active recovery ($n = 3$) and 7 x 30-m sprints with approximately 20–30 s of active or passive recovery ($n = 3$).

In terms of construct validity, the test results between the playing levels ranged from 0.3 to 2.7% (ES = 0.14–0.9) for the fastest time, between 0.4 and 2.6% (ES = 0.1–0.88) for the average time, and between 2.3 and 10.3% (ES = 0.83–5.5) for the total time. Results for the percent decrement ranged from -22.9 to 14.5% (ES = -0.4–0.39). Positive values indicate that the higher-

Test category	Validity (Construct/Criterion)	Reliability (Intrady/Interday)
Linear sprint	16 (14/2)	51 (26/22) *
Repeated sprint	6 (5/1)	9 (2/6) *
Change of direction	15 (14/1)	45 (27/16) *
Agility	0 (0/0)	4 (0/4)
Combinations	10 (8/2)	11 (2/8) *
Total	47 (41/6)	120 (57/57) *

* – Deviating sum due to reliability type being not specified for each test.

https://doi.org/10.1371/journal.pone.0220982.t001
Table 2. Linear-sprint tests (validity).

Study	Population	Short description	Type	Results
Silva et al.	13 male, age 25.7 ± 4.6	Portuguese championship (Portugal)	30-m sprint, split at 5 m; high-intensity running and sprinting during matches	Criterion: 5 m and high-intensity running during matches:
\[r = -0.40 \pm 0.67 \]				
5 m and sprinting during matches:				
\[r = -0.56 \pm 0.62 \]				
30 m and high-intensity running during matches:				
\[r = -0.35 \pm 0.63 \]				
30 m and sprinting during matches:				
\[r = -0.46 \pm 0.73 \]	10 (14)			
Djaoui et al.	48 male, ages 24.3 ± 2.6 and 20.9 ± 2.9	Professional, elite amateur (France)	40-m sprint, with GPS; maximal sprinting speed during matches	Criterion: Maximal sprinting speed during 40-m sprint and matches:
\[r = 0.52 \]	9 (10)			
Haugen et al.	939 male, age 22.1 ± 4.3	National team, 1st division, 2nd division, 3rd to 5th division, junior national team, juniors (Norway)	40-m sprint, splits at 10, 20, and 30 m	Construct:
20 m: National team faster than 2nd division (1.4%, ES (d) = 0.50), 3rd to 5th division (3.8%, ES (d) = 1.20), junior national team (1.8%, ES (d) = 0.60), and junior players (2.8%, ES (d) = 0.90)				
Fastest 10-m split: "similar results"	8 (10)			
Ferro et al.	42 male, age 21.2 ± 1.70	Competitive, non-competitive (not specified)	30-m sprint, 10-m sections, with laser system	Construct: Competitive always better than non-competitive:
10 m: 0.7%, ES = 0.23				
10–20 m: 1.4%, ES = 0.42				
20–30 m: 1.8%, ES = 0.42				
20 m: 1.1%, ES = 0.36				
30 m: 1.3%, ES = 0.39				
10–30 m: 1.6%, ES = 0.44	6 (10)			
Silvestre et al.	25 male, age 19.9 ± 1.3	Starters and non-starters of a division 1 team (USA)	36.5-m sprint, split at 9.1 m	Construct: Pre-Season 36.5 m: Starters better than non-starters (2%, ES (d) = 0.52)
Post-Season 9.1 m and 36.5 m: No differences between groups	5 (10)			
Silvestre et al.	27 male, age 19.9 ± 1.3	Starters and non-starters of a division 1 team (USA)	36.5-m sprint, split at 9.1 m	Construct: 36.5 m: Starters better than non-starters (3.9%, ES (d) = 1.04)
9.1 m: No differences between groups	5 (10)			
Cometti et al.	95 male, age 26.1 ± 4.3, 23.2 ± 5.6, 25.8 ± 3.9	1st division, 2nd division, amateurs of regional standard (France)	30-m sprint, split at 10 m, visual stimulus as a starting signal	Construct:
10 m: 1st division faster than 2nd division (0.8%, ES (d) = 0.24) and amateur (3.0%, ES (d) = 0.8)				
30 m: 1st division faster than 2nd division (0.6%, ES (d) = 0.16) and amateur (1.7%, ES (d) = 0.43)	6 (10)			
Risso et al.	22 female, age 20.4 ± 1.3	Starters and non-starters of professional team (USA)	30-m sprint, splits at 5 m and 10 m	Construct: Starters always better than non-starters:
5 m: 0.9%, ES (d) = 0.2				
10 m: 0.5%, ES (d) = 0.16				
30 m: 2.1%, ES (d) = 0.64	6 (10)			
Vescovi	140 female, age 23.9 ± 2.8	Drafted and non-drafted players of try-outs of a professional women’s soccer league (USA)	35-m sprint, splits at 5 m, 10 m, and 20 m	Construct: Drafted always better than non-drafted:
 5 m: 4.1%, ES (d) = 0.55
 10 m: 2.8%, ES (d) = 0.56
 20 m: 2.9%, ES (d) = 0.67
 35 m: 3%, ES (d) = 0.78 | 10 (10) |

(Continued)
level players performed better than the lower-level players. Negative values indicate the opposite. Regarding criterion validity, the highest correlation coefficient found between test results and match parameters was $r = -0.51$.

Intraday reliability was ICC = 0.75 and CV = 0.8% for the total time. Interday reliability was ICC = 0.88 and CV = 5.0% for the fastest time as well as ICC = 0.90 and CV = 5.0% for the average time. Moreover, ICCs and CVs ranged from 0.91 to 0.99 and from 0.8 to 5.0% for the total time and from 0.11 to 0.14 and from 16.8 to 46.0% for the percent decrement, respectively.

Study findings in relation to the validity and reliability of repeated-sprint tests are illustrated in Tables 4–5.

Change-of-direction sprint tests. Change-of-direction sprint tests were examined 60 times. The investigated distances ranged from 10 to 60 m including 1 to 9 directional changes of 45° to 270°. The most frequent studied tests were the T Test (n = 10), 505 test (n = 4), and zig-zag tests in various modifications (n = 5).
Table 3. Linear-sprint tests (reliability).

Study	Population	Short description	Type	Results	MQ
Gelen [49]	26 male	23.2 ± 3.2 Professionals from 3rd division (Turkey)	30-m sprint	Intraday ICC = 0.87–0.91 CV = 0.8%	7
Rouissi et al. [50]	31 male	17.42 ± 0.55 Professionals from 1st division (Tunisia)	10-m sprint	Interday ICC = 0.94; CV = 1.6%	9
Haugen et al. [51]	30 (m),	18.2 ± 1.0 Amateurs 25-m and 40-m sprint Flying start distances: 0.5, 1, 1.5, 2, 10, 15 m	Intraday	20-m sprint time with flying start: 0.5 m; ICC = 0.99; CV = 1.2% 1 m: ICC = 0.99; CV = 1.3% 1.5 m: ICC = 0.99; CV = 1.3% 2 m: ICC = 0.99; CV = 1.4% 5 m: ICC = 0.99; CV = 1.0% 10 m: ICC = 0.99; CV = 1.0% 15 m: ICC > 0.99; CV = 0.9% 10-m sprint time with flying start: Similar trend but with slightly higher CV values across all flying-start distances (1.4–1.8%)	10
Lo´pez-Segovia et al. [52]	21 male	18.4 ± 0.8 Professional from Spanish national league division (Spain)	30-m sprint	Interday ICC = 0.90; CV = 1.1%	8
Pareja-Blanco et al. [53]	21 male	24.3 ± 4.6 Professional Moroccan soccer club (Morocco)	30-m sprint	Intraday ICC = 0.98; CV = 0.8%	8
Sporis et al. [54]	270 male	28.3 ± 5.9 Professionals from 1st national league (Croatia)	20-m sprint, splits at 5 and 10 m	Intraday 5 m: ICC = 0.89 10 m: ICC = 0.80 20 m: ICC = 0.81	5
Zois et al. [55]	10 male	23.3 ± 2.5 Amateurs from Serie D (Italy)	20-m sprint	Interday CV = 0.8%	8
Emmonds et al. [56]	10 female	25.4 ± 7.0 Professional from highest division (WSL1) (England)	30-m sprint, splits at 10 and 20 m	Intraday 10 m: ICC = 0.95; CV = 1.4% 20 m: ICC = 0.92; CV = 1.3% 30 m: ICC = 0.90; CV = 1.5%	8
Mujika et al. [57]	20 male	18.3 ± 0.6 Professional juniors at national level (not specified)	15-m sprint	Intraday ICC = 0.94	9
Loturco et al. [58] & Loturco et al. [59]	27 male	18.4 ± 1.2 Professional U20, Sao Paulo state elite championship (Brazil)	30-m sprint	Intraday ICC = 0.97; CV = 2.3%	8
Boone et al. [60]	289 male	25.4 ± 4.9 Professionals from 1st division (Belgium)	10-m sprint, split at 5 m; auditory cue as a starting signal	Intraday 5 m: ICC = 0.88 10 m: ICC = 0.90	5
Manson et al. [61]	33 female	U19: 17.8 ± 0.71 Senior: 23.3 ± 4.89 Professionals from national team (New Zealand)	Linear sprint for > 6 s on a nonmotorized treadmill	Intraday Velocity: ICC = 0.79; CV = 2.0%	7
Meylan et al. [62]	20 female	18.2 ± 0.7 Professionals from national team (Top 10 in the world)	40-m sprint, with timing lights and GPS	Intraday Timing lights: ICC = 0.80–0.96; CV = 0.9–2.3% GPS: ICC = 0.86; CV = 2.1%	6
Sjökvist et al. [63]	14 female	20.3 ± 2.3 Collegiate players from NCAA division 1 (USA)	20-m sprint	Interday ICC > 0.93	8

(Continued)
Table 3. (Continued)

Study	Population	Short description	Type	Results	MQ				
N	Gender	Age	Playing level (Country)						
			15-m sprint	Interday					
Requena et al. [64]	14	male	20.0 ± 3.6	Professional (not specified)	ICC = 0.87–0.95	7 (14)			
	Ingebrigtsen et al. [65]	57	male	22 ± 5	Professionals from 3 best leagues (Norway)	35-m sprint, splits at 10 and 20 m	Interday	10 m: ICC = 0.94; CV = 0.7%; 20 m: ICC = 0.97; CV = 1.4%; 35 m: ICC = 0.96; CV = 1.9%	8 (14)
Yanci et al. [66]	39	male	22.9 ± 2.8	Professionals from 3rd division (Spain)	15-m sprint, splits at 5 and 10 m	Intraday	5 m: CV = 2.5%; 10 m: CV = 1.7%; 15 m: CV = 1.2%	9 (14)	
Comfort et al. [67]	34	male	17.2 ± 0.6	Well-trained players (England)	20-m sprint, split at 5 m	Intraday	5 m: ICC = 0.87; 20 m: ICC = 0.97	7 (14)	
López-Segovia et al. [68]	14	male	20.14 ± 0.4	Amateur (not specified)	30-m sprint, splits at 10 and 20 m	Intraday	10 30–40 m: CV < 3.0%	7 (14)	
Chelly et al. [69]	23	male	17.2 ± 0.7	Semi-professionals from national junior championship league (Tunisia)	10-m sprint, with camera at 25 frames per second	Intraday	Sprint velocities and accelerations: ICC = 0.87–0.96	8 (14)	
Spierer et al. [70]	15	male	22.1 ± 1.5	Professionals from Division 1 (USA)	20-m linear sprint with auditory stimulus as a starting signal	Intraday	ICC = 0.97	7 (14)	
Caldwell & Peters [71]	13	male	24 ± 4.4	Semi-professionals from nationwide conference north league (England)	15-m sprint	Interday	ICC = 0.80	7 (14)	
Ronnestad et al. [72]	21	male	IG1: 23 ± 2	Professionals from 2nd and 3rd division (Spain)	40-m sprint, splits at 10 and 30 m	Intraday	10 m and 30–40 m: CV < 3.0%	7 (14)	
Small et al. [73]	9	male	21.3 ± 2.9	Semi-professional (United Kingdom)	10-m sprint, test is part of a soccer match simulation	Intraday	ICC > 0.83	6 (14)	
Los Arcos et al. [21]	42	male	23.2 ± 2.4	Professionals from 2nd and 3rd division (Spain)	15-m sprint, splits at 5 and 10 m	Intraday	5 m: ICC = 0.87; 10 m: ICC = 0.93; 15 m: ICC = 0.96	9 (14)	
Gorostiaga et al. [74]	19	male	17.2; range: 16–18.5	Amateurs at regional level (Spain)	15-m sprint	Intraday	CV < 1.5%	9 (14)	
Gil et al. [75]	20	male	23.3 ± 4.8	Professional (Brazil)	25-m sprint	Interday	ICC = 0.92; CV = 1.3%	6 (14)	
Coelho et al. [76]	138	male	U17: 17.3 ± 5.33	Professionals from 1st division (Brazil)	30-m sprint, splits at 10 and 20 m	Interday	10 m: ICC = 0.98; 20 m: ICC = 0.96; 30 m: ICC = 0.96	9 (14)	
Boussettaa et al. [77]	11	male	21.82 ± 0.51	Healthy players (not specified)	10-m sprint	Interday	ICC = 0.88	7 (14)	
Shalfawi et al. [78]	20	female	19.4 ± 4.4	Well-trained players from 2nd division (Norway)	40-m sprint	Intraday	ICC = 0.83	8 (14)	
Sayers et al. [79]	20	female	19.35 ± 0.99	Professional from women’s professional soccer league (not specified)	30-m sprint, splits at 10 and 20 m	Interday	30 m: ICC > 0.99; 20–30 m: ICC = 0.99; 10 m: ICC = 0.99	9 (14)	
Thomas et al. [80]	12	male	17.3 ± 0.4	Semi-professionals from soccer academy (United Kingdom)	20-m sprint	Interday	5 m: ICC = 0.93; 10 m: ICC = 0.96; 15 m: ICC = 0.94; 20 m: ICC = 0.98	8 (14)	

(Continued)
Study	Population	Short description	Type	Results	MQ
Iaia et al. [81]	18 male	Professionals at national level (Denmark)	Interday	CV = 0.8%	8
Rey et al. [82]	18 male	Professional (Spain)	Interday	5 m: ICC = 0.96; 10 m: ICC = 0.94	7
McGawley & Andersson [83]	18 male	Semi- and fully-professional from 1st division (Sweden)	Interday	CV = 1.8%	7
Loturco et al. [84]	24 male	High-level U20 players (Brazil)	Interday	10 m: ICC = 0.97; 30 m: ICC = 0.97	7
Rebelo et al. [43]	180 male	1st division elite, regional division non-elite (Portugal)	Intraday	5 m: ICC = 0.97; 30 m: ICC = 0.97	6
Silva et al. [34]	13 male	Professional Portuguese championship team (Portugal)	Not specified	5 m and 10 m: ICC = 0.76–0.87	6
Kobal et al. [48]	45 male	Professional, U20 (Brazil)	Intraday	ICC = 0.88	7
Silva et al. [85]	18 male	Professionals from Portuguese elite championship (Portugal)	Not specified	ICC = 0.71–0.87	6
Bullock et al. [86]	18 male	High-level amateurs from local soccer clubs (not specified)	Interday	CV = 0.55; r = 0.60; CV = 2.9%	8
Cotte & Chatard [45]	14 male	International: 24.2 ± 6.1 National: 26.5 ± 5.9	Intraday	10 m: CV = 5.2%; 20 m: CV = 4.8%; 30 m: CV = 4.5%	9
Williams et al. [87]	15 male	Amateurs from local league (not specified)	Interday	12 m: CV = 1.8–3.2%; 20 m: CV = 0.9–3.3%	8
Mikrov et al. [88]	20 male	Professionals from 1st selection of a premier national league team (Serbia)	Interday	10 m: ICC = 0.81; CV = 3.2%; 10–30 m: ICC = 0.93; CV = 2.1%	9
Silva et al. [89]	7 male	Professionals from Portuguese soccer league (Portugal)	Intraday	CV = 3.5%	7
Kutlu et al. [90]	34 female	Amateurs from university soccer team (Turkey)	Interday	ICC = 0.94; CV = 4.0%	9
Harper et al. [91]	10 male	University-standard (England)	Interday	CV = 0.5–3.5%	7
Sonderegger et al. [92]	72 male	Highly-trained U18 top level teams (Switzerland)	Interday	0 km/h: CV = 6.7%; 6 km/h: CV = 5.4%; 10.8 km/h: CV = 6.1%; 15 km/h: CV = 10.9%	9
Ispiridis et al. [93]	24 male	Elite (Greece)	Not specified	CV = 3.5%	5
Yanci et al. [94]	12 male	Amateur (Spain)	Interday	Timing lights: ICC = 0.73; CV = 3.9% GPS: ICC = 0.17; CV = 7.8%	9

(Continued)
In terms of construct validity, the test results between the playing levels differed between -5.4 and 12.2% (ES = -1.89–1.64). Positive values indicate that the higher-level players performed better than the lower-level players. Negative values indicate the opposite. Regarding criterion validity, the highest correlation coefficient found between test results and match parameters was \(r = -0.56 \).

Intraday reliability ranged from 0.37 to 0.99 (ICC) and from 0.8 to 4.0% (CV), whereas interday reliability was 0.70 (ICC) and ranged from 0.8 to 2.3% (CV).

Study findings in relation to the validity and reliability of change-of-direction sprint tests are illustrated in Tables 6–7.

Agility tests. Agility tests were examined 4 times. The investigated distances ranged from 8 to 40 m with 1 to 9 directional changes of 45˚ to 180˚. Flashing light, video, and human stimuli were applied to indicate the directional changes. Each test was investigated once.

There were no studies investigating the construct or criterion validity of agility tests. Intraday reliability ranged from 0.70 to 0.88 (ICC) and from 3.7 to 4.9% (CV), whereas interday reliability was 0.70 (ICC) and ranged from 0.8 to 2.3% (CV).

Study findings in relation to the reliability of agility tests are illustrated in Table 8.

Combinations. Combinations of the other test categories were examined 21 times. The investigated tests ranged from 3 to 10 repetitions over distances from 20 to 40 m with 1 to 5 directional changes of 45˚ to 180˚. Both active and passive recovery ranging from approximately 15 to 40 s were utilized. Light stimuli were applied in all tests. The most frequent studied tests were the Bangsbo sprint test and the repeated shuttle-sprint test.

In terms of construct validity, the test results between the playing levels differed between 0.6 and 2.4% (ES = 0.44–0.82) for the fastest time, between 0.4 and 15.4% (ES = 0.28–15.24) for the average time, and between 0.4 and 9.7% (ES = 0.16–0.60) for the total time. Results for the percent decrement ranged from -23.4 to 45.9% (ES = -0.74–1.60). Positive values indicate that the higher-level players performed better than the lower-level players. Negative values indicate the opposite. Regarding criterion validity, the highest correlation coefficient found between test results and match parameters was \(r = -0.74 \).

Intraday reliability was ICC = 0.89 for the fastest time. Interday reliability ranged from 0.15 to 0.79 (ICC) and from 1.1 to 9.0% (CV) for the fastest time as well as from 0.58 to 0.81 (ICC) and from 0.9 to 10.0% (CV) for the average time. Moreover, ICCs and CVs ranged from 0.89 to 0.99 (ICC) and from 0.8 to 4.0% (CV).
to 0.94 and from 0.8 to 10.0% for the total time, and from 0.17 to 0.49 and from 29.8 to 51.0% for the percent decrement, respectively.

Study findings in relation to the validity and reliability of combinations are illustrated in Tables 9–10.

Discussion

Overview

This review examined the validity and reliability of different speed tests used in soccer, categorized into linear-sprint tests, repeated-sprint tests, change-of-direction sprint tests, agility tests,
and combinations of these tests. In general, the high number of total studies and single tests included in this review highlights the importance of speed and speed testing in soccer. The majority of studies examined male players, which corresponds to the gender distribution of soccer players [123]. The tests were applied in a variety of performance levels, thereby allowing for both general and playing-level specific considerations.

Several different tests were identified in each category, while no accepted gold-standard tests seem to exist. The most studied tests were classified as linear-sprint tests and change-of-direction sprint tests, followed by combinations and repeated-sprint tests. Agility tests were the least studied. The amounts of tests in each category might be explained by differences relating to the complexity of the measurement set-up, test execution, and data analysis. For example, a 30-m linear sprint is relatively easy to conduct, while agility tests require the application of a stimulus which must be achieved through specific timing equipment incorporating flashing lights, life-size video clips or experienced humans [5,8].

Regardless of the test category, construct validity was investigated more frequently than criterion validity. This may be due to the additional match data needed for the same players in the latter case. Conversely, intraday and interday reliability were studied equally, although
Study	Population	Short description	Type	Results	MQ
Silva et al.	13 male 25.7 ± 4.6 Professional Portuguese championship team (Portugal)	T Test (36.6 m): Linear sprinting (9.1 m), COD of 90° to the left (4.6 m), COD of 180° (9.1 m), COD of 180° to the left (4.6 m), COD of 270° to the left (9.1 m)	Criterion T Test and high-intensity running during matches: r = -0.01 –-0.56 T Test and sprinting during matches: r = -0.15 –-0.34	10 (14)	
Mujika et al.	68 male, female: Female: 17 ± 1.6 (junior) 23.1 ± 2.9 (senior) Male: 18.4 ± 0.9 (junior), 24 ± 3.4 (senior) Senior females of Spanish Super Liga, junior females of Primera Nacional, senior males of La Liga, junior of Tercera Division (Spain)	15-m sprint: Linear sprinting (3 m), slalom section (3 m), clearing a hurdle (2 m), linear sprinting (7 m) to the finish	Construct Male: Senior better than junior (5.1%, ES (d) = 1.27) Female: Senior better than junior (7.8%, ES (d) = 1.47)	7 (10)	
Risso et al.	22 female Starters: 20.4 ± 1.3 Non-starters: 20.1 ± 1.2 Starters and non-starters of professional team (USA)	Pro agility shuttle: 4.57-m sprint, COD of 180°, 9.14-m sprint, COD of 180°, 4.57-m sprint to the finish	Construct Starters better than non-starters (1.0%, ES (d) = 0.29)	8 (10)	
Huigen et al.	113 male 17.1 ± 0.7 Selected and deselected players of talent development programmes of professional soccer clubs (Netherlands)	Slalom Sprint: 30-m slalom section with 12 cones placed in a zig-zag pattern (horizontal and lateral displacement: 2 m)	Construct Selected better than deselected (1.9%; ES (d) = 0.40)	7 (10)	
Rebelo et al.	180 male 18.2 ± 0.6 1st division elite, regional division non-elite (Portugal)	T Test (40 m): Linear sprinting (10 m), COD of 90° to the left (5 m), COD of 180° (10 m), COD of 180° to the left (5 m), COD of 90° to the left (10 m)	Construct Elite better than non-elite (3.2%; ES (d): 0.90)	7 (10)	
Kutlu et al.	70 male 21.2 ± 3.0 Professional, amateur (Turkey)	T Test: Several CODs, forward sprinting, left- and right-side shuffling, and back pedaling; no further information on test procedures given	Construct Professional faster than amateur (5.27%, ES (d) = 1.5)	5 (10)	

(Continued)
these approaches differ markedly in their organizational effort. However, in order to get a more holistic insight into the measurement properties of the tests, both types of validity and reliability should be assessed.

In the following paragraphs, the tests in each of the categories are discussed in relation to their validity and reliability. Based on this, recommendations for test selection in each category are given.

Study characteristics and main findings

Linear-sprint tests

In terms of construct validity, the majority of studies report faster sprint times in favor of the higher-level players compared to the lower-level players. Such results have been found for both the comparison within professional players, e.g., national team vs. 1st division players (trivial to small ES) [44,45], and the comparison between professional and amateur players (trivial to large ES) [36,37,40,43]. In addition, drafted players in try outs of a professional women’s soccer league demonstrated faster sprint times than non-drafted players (small to moderate ES) [42]. In line with this, starters outperformed non-starters of the same team (trivial to moderate ES), with a tendency to larger ES over longer distances [38,39,41].

However, tendencies for larger performance differences with increasing sprinting distance were not evident when all abovementioned studies were taken into consideration. Therefore, it might be concluded that all distances investigated (from 5 to 40 m) seem to be equally

Table 6. (Continued)

Study	Population	Short description	Type	Results	MQ			
	N	Gender	Age	Playing level (Country)				
Zig-Zag:	No information on test procedures given	Construct	Professional faster than amateur (9.11%; ES (d) = 1.64)	4 (10)				
Illinois test:	Accelerating, decelerating, several CODs of different angles; no further information on test procedures given	Construct	Professional faster than amateur (1.81%; ES (d) = 0.5)	5 (10)				
Russel et al. [107]	20	male	19 ± 4	Recreational university reserve team, Professional Championship team (England)	Slalom Dribbling (approx. 20 m): 7 cones, each cone 3 m apart, 1st cone 1 m from start, slalom dribbling around the cones, finish 1 m from 7th cone	Construct	Professional better than recreational (2.4%; ES (d) = 0.37)	7 (10)
Keiner et al. [108]	111	male	U19, U21, Senior (not specified)	U19 and U21 of elite club, professional players of 1st and 2nd German division (Germany)	Equilateral triangle, 5 m side length 10-m sprint, 2 CODs of 60° after 2.5 m and 7.5m, 2.5-m sprint to the finish, split at 5 m	Construct	5 m: U21 (STG) better than U21 (CG) (3.1–3.4%, ES (d) = 1.0–1.4), U19 (STG) (3.4–4.1%, ES (d) = 0.85–0.94), professional (3.5–5.4%, ES (d) = 1.16–1.89), and U19 (CG) (5.6–7.0%, ES (d) = 1.42–2.01) 10 m: U21 (STG) better than U21 (CG) (3.1–4.6%, ES (d) = 1.25–1.33), U19 (STG) (3.2–3.5%, ES (d) = 0.85–0.98), professional (3.8–4.3%, ES (d) = 1.34–1.50), and U19 (CG) (6.6–7.9%, ES (d) = 2.06–2.42)	5 (10)

MQ–Methodological quality, maximal possible score in parenthesis; ES–Effect size; COD–change of direction; STG–Strength training group; CG–Control group

https://doi.org/10.1371/journal.pone.0220982.t006
Study	Population	Playing level (Country)	Short description	Type	Results	MQ		
Gelen [49]	26	male	23.2 ± 3.2	Professionals from 3rd division (Turkey)	Slalom Dribble (10 m): 4 cones, each cone 2 m apart, slalom dribbling around the cones	Intraday	ICC = 0.87–0.91	7 (14)
Bendiksen et al. [109]	11	female	21.0 ± 4.5	Professionals from 2nd best league (Norway)	Shuttle Sprint (40 m): 40-sprint, COD of 180° after 20 m, test is part of a soccer match simulation	Interday	ICC = 0.87–0.91; CV = 2.3%	8 (14)
Currell et al. [110]	11	male	21.4 ± 1	Recreational (not specified)	Running through a series of markers as quickly as possible, test is part of a soccer match simulation; no further information on test procedures given	Interday	CV = 1.2%	7 (14)
Rouissi et al. [50]	31	male	17.4 ± 0.55	Professionals from 1st division (Tunisia)	Ball dribbling: Each participant had to negotiate a course of five cones set out directly behind one another as quickly as possible, test is part of a soccer match simulation	Interday	CV = 2.2%	7 (14)
Emmonds et al. [56]	10	female	25.4 ± 7.0	Professional from highest division (WSL1) (England)	505 test (20 m): COD of 180° after 15 m, time taken 10–20 m	Intraday	ICC = 0.99; CV = 2.2%	8 (14)
Mujika et al. [57]	20	male	18.3 ± 0.6	Professional juniors at national level (not specified)	15-m sprint: Linear sprinting (3 m), slalom section (3 m), clearing a hurdle (2 m), linear sprinting (7 m)	Intraday	ICC = 0.92	9 (14)
Loturco et al. [58] & Loturco et al. [59]	27	male	18.4 ± 1.2	Professional U20, São Paulo state elite championship (Brazil)	Zig-zag test: 20-m sprint, 3 CODs of 100° every 5 m	Intraday	ICC = 0.96; CV = 2.4%	8 (14)
Miller et al. [111]	16	male	19.6 ± 0.8	NCAA Division III national championship (USA)	T Test (36.6 m) with contact mat: 9.1 m linear sprinting, 4.6 m shuffling to the left, 9.1 m shuffling to the right, 4.6 m shuffling to the left, 9.1 m backpedaling	Intraday	ICC = 0.86	6 (14)
Boone et al. [60]	289	male	25.4 ± 4.9	Professionals from 1st division (Belgium)	Shuttle sprint (5 x 10 m): 50-m sprint, 5 CODs of 180° every 10 m	Intraday	ICC = 0.81	5 (14)
Castillo-Rodrı́guez et al. [112]	42	male	20.11 ± 3.68	Amateur (Spain)	10-m sprint, COD of 90° after 5 m	Intraday	ICC = 0.81–0.88	5 (14)
Caldwell & Peters [71]	13	male	24 ± 4.4	Semi-professionals from nationwide conference north league (England)	Illinois test: Start from a lying position; no further information on test procedures given	Intraday	ICC = 0.78	7 (14)
Thomas et al. [80]	12	male	17.3 ± 0.4	Semi-professionals from soccer academy (United Kingdom)	505 test	Interday	ICC = 0.99	7 (14)
Rey et al. [82]	18	male	26.6 ± 3.7	Professional (Spain)	T Test (36.6 m): 9.1 m linear sprinting, 4.6 m shuffling to the left, 9.1 m shuffling to the right, 4.6 m shuffling to the left, 9.1 backpedaling	Interday	ICC = 0.91	5 (14)

(Continued)
Table 7. (Continued)

Study	Population	Short description	Type	Results	MQ	
N	Gender	Age				
Rebelo et al. [43]	180 male	18.2 ± 0.6 1st division elite, regional division non-elite (Portugal)	T Test (40 m):	COD of 90˚ to the left (5 m), COD of 180˚ to	Intraday ICC = 0.95	6 (14)
			Linear sprinting (10 m), COD of 180˚ to the left (5 m), COD of 180˚ to the left (10 m)			
			Slalom Dribbling (approx. 32 m): 9 cones, each cone 2 m apart, slalom dribbling around the cones, COD of 180˚ and slalom dribbling back to the start	Intraday ICC = 0.99	6 (14)	
Russel et al. [107]	20 male	19 ± 4 Recreational university reserve team, Professional Championship team (England)	Slalom Dribbling (approx. 20 m): 7 cones, each cone 3 m apart, 1st cone 1 m from start, slalom dribbling around the cones, finish 1 m from 7th cone	Interday Mean ball speed during dribbling: ICC = 0.78; r = 0.78; CV = 2.4%	9 (14)	
Di Mascio et al. [113]	11 male	17 ± 1 Elite U18 EPL (England)	Arrowhead Agility Test: Cones in an arrowhead shape, cones to indicate the start and finish line; no further information on test procedures given	Interday CV = 0.8%	7 (14)	
Silva et al. [34]	8 male	25.7 ± 4.6 Portuguese championship (Portugal)	T Test (36.6 m): Linear sprinting (9.1 m), COD of 90˚ to the left (4.6 m), COD of 180˚ (9.1 m), COD of 180˚ to the left (4.6 m), COD of 270˚ to the left (9.1 m)	Not Specified ICC: 0.75–0.85	6 (14)	
Mirkov et al. [88]	20 male	20.4 ± 1.8 Professionals from 1st selection of a premier national league team (Serbia)	Shuttle sprint (10 x 5 m): 50-m sprint, 10 CODs of 180˚ every 5 m	Intraday ICC = 0.94; CV = 1.2%	9 (14)	
Meylan et al. [62]	20 female	18.2 ± 0.7 Professionals from national team (Top 10 in the world)	20-m sprint, COD of 90˚ after 10 m, with timing lights and GPS	Intraday Timing lights: ICC = 0.81–0.93; CV = 1.1–2.4%; GPS: ICC = 0.37–0.77; CV = 3.7–13.0%	6 (14)	
Yanci et al. [66]	39 male	22.9 ± 2.8 Professionals from 3rd division (Spain)	Modified T Test (20 m): 5 m linear sprinting, 2.5 m shuffling to the left, 5 m shuffling to the right, 2.5 m shuffling to the left, 5 m sprinting back to the start line	Intraday CV = 2.3%	9 (14)	
Shalfawi et al. [78]	20 female	19.4 ± 4.4 Well-trained players from 2nd division (Norway)	505 test (10 m): COD of 180˚ after 5 m, 5 m sprinting back to the start	Intraday CV = 3.3%	9 (14)	
Los Arcos et al. [21]	42 male	23.2 ± 2.4 Professionals from 2nd and 3rd division (Spain)	Modified T Test (20 m): 5 m linear sprinting, 2.5 m shuffling to the left, 5 m shuffling to the right, 2.5 m shuffling to the left, 5 m sprinting back to the start line	Intraday ICC = 0.80	9 (14)	
			505 test (10 m): COD of 180˚ after 5 m, 5 m sprinting back to the start	Intraday ICC = 0.87	9 (14)	

(Continued)
Table 7. (Continued)

Study	Population		
N	Gender	Age	Playing level (Country)
Pojskic et al. [114]	20 male	17.0 ± 0.9	Professionals at highest level of competition at their age (Sweden)
Kutlu et al. [90]	34 female	20.8 ± 1.9	Amateurs from university soccer team (Turkey)
Silva et al. [85]	18 male	25.7 ± 4.6	Professionals from Portuguese elite championship (Portugal)
Sporis et al. [115]	150 male	19.1 ± 0.6	Professionals from 1st junior league (Croatia)

Study	Population		
N	Gender	Age	Playing level (Country)
Pojskic et al. [114]	20 male	17.0 ± 0.9	Professionals at highest level of competition at their age (Sweden)
Kutlu et al. [90]	34 female	20.8 ± 1.9	Amateurs from university soccer team (Turkey)
Silva et al. [85]	18 male	25.7 ± 4.6	Professionals from Portuguese elite championship (Portugal)
Sporis et al. [115]	150 male	19.1 ± 0.6	Professionals from 1st junior league (Croatia)

MQ–Methodological quality, maximal possible score in parenthesis; ES–Effect size; COD–change of direction, ICC–Intraclass correlation coefficient; CV–Coefficient of variation; GPS–Global positioning system; EPL–English premier league

https://doi.org/10.1371/journal.pone.0220982.t007

important in soccer, even though short sprints and accelerations (e.g., 10 m) occur more frequently than longer sprints (e.g., 40 m) during matches [2,3,124].
Some investigations reported faster sprint times for the players assigned to the lower playing level compared to those of the higher playing levels [35,47,48]. Besides the only trivial to small ES, in two studies, this finding was only obtained for a 10-m distance [48] and for males [47] with contrary results being obtained for a 20-m distance and females, respectively. Furthermore, in the third study [35], the lower-level players consisted of young elite amateur players who were training every day. Thus, both groups of players were considered as "high-level" players by the authors of that study.

In terms of criterion validity, only two studies were identified. Djaoui et al. [35] found a large relationship between the results of a 40-m sprint test and the maximal sprinting speed during matches. In addition, moderate to large relationships were reported for 5-m and 30-m sprints on the one side and high-intensity and sprinting distances during several periods of matches on the other side [34].

Study	Population	Short description	Type	Results	MQ
Bullock et al. [86]	18 male 18 ± 3 High-level amateurs from local soccer clubs (not specified)	Reactive Agility Test (approx. 9.4 m): Reacting to a video of a life-size soccer player dribbling the ball towards the player by sprinting in the same direction as the video; test is a part of a complex test	Interday	ICC = 0.70; r = 0.71; CV = 2.3%	8 (14)
Zois et al. [55]	10 male 23.3 ± 2.5 Amateurs from Serie D (Italy)	Reactive Agility Test (approx. 8 m): Reacting to a tester displaying different movements by sprinting in the same direction as the tester	Interday	CV = 0.8%	8 (14)
Pojskic et al. [114]	20 male 17.0 ± 0.9 Professionals at highest level of competition at their age (Sweden)	Soccer-specific test of reactive agility (5 x 8 m): Reacting to one of 4 LEDs on a cone by sprinting to and rebounding a ball in front of the cone, and returning to the start, 5 sprints per trial	Intraday Protocol 1: ICC = 0.70; CV = 3.7% Protocol 2: ICC = 0.88; CV = 4.7% Protocol 3: ICC = 0.87; CV = 4.9%		10 (14)
McGawley & Andersson [83]	18 Male 23.0 ± 4.0 Semi- and fully-professional from 1st division (Sweden)	Modified T Test (40 m): Linear sprinting (10 m), random COD to the left or the right-example left side-COD of 90˚ to the left (5 m), COD of 180˚ (10 m), COD of 180˚ to the left (5 m), COD of 90˚ to the left (10 m)	Interday	CV = 0.8%	7 (14)

MQ–Methodological quality, maximal possible score in parenthesis; ES–Effect size
%Dec–Percent decrement; FT–Fastest time; AT–Average time; TT–Total time, ICC–Intraclass correlation coefficient, r–Pearson’s r; CV–Coefficient of variation

https://doi.org/10.1371/journal.pone.0220982.t008

Some investigations reported faster sprint times for the players assigned to the lower playing level compared to those of the higher playing levels [35,47,48]. Besides the only trivial to small ES, in two studies, this finding was only obtained for a 10-m distance [48] and for males [47] with contrary results being obtained for a 20-m distance and females, respectively. Furthermore, in the third study [35], the lower-level players consisted of young elite amateur players who were training every day. Thus, both groups of players were considered as “high-level” players by the authors of that study.

In terms of criterion validity, only two studies were identified. Djaoui et al. [35] found a large relationship between the results of a 40-m sprint test and the maximal sprinting speed during matches. In addition, moderate to large relationships were reported for 5-m and 30-m sprints on the one side and high-intensity and sprinting distances during several periods of matches on the other side [34].

Considering both intraday and interday reliability, 40 studies report ICCs > 0.75 and CVs < 3.0% [21, 34, 43, 48–84]. The studies obtaining lower reliability (ICC ≥ 0.55 and CV ≤ 10.9%) integrated linear-sprint testing into complex tests [86] or match-simulation protocols [73,87] or required the players to adopt a defined running velocity at the start line [92]. In addition, it seems that the reliability decreases when considering longer terms, such as 6–12 months between measurements, with Pearson’s r and CV being 0.77–0.90 and 1.8–3.3%, respectively [44].

While more consistent reliability indices were obtained whilst utilizing established timing technologies such as timing lights and radar guns, varying results have been obtained for global positioning systems (ICC = 0.17–0.86; CV = 2.1–7.8%) [62,94]. Although not consistent over
Table 9. Combinations (validity).

Study	Population	Short description	Type	Results	MQ
Rampinini et al. [116]	N Gender Age Playing level (Country)	Repeated Shuttle-Sprint Test: 6 x 40-m sprints, COD of 180° after 20 m, 20 s passive recovery	Criterion	Test: FT, AT, %Dec Match: sprinting distance, very high-speed running distance AT and sprinting distance: r = -0.65 AT and very high-speed running distance: r = -0.60 No further significant correlations between FT and %Dec, and match parameters†	9 (14)
Di Mascio et al. [113]	48 male Elite U18 EPL: 17 ± 1 Elite U18 EFL: 17 ± 1 Sub-elite U18: 17 ± 1	Soccer-specific reactive repeated-sprint test: 8 x 30-m sprints, 3 random CODs to the left or the right of 45°, 135°, and 180°, 2 curved sprints, 30 s active recovery	Criterion	Test: TT Match: High-speed running (most intense 5-min period, whole match), total distance High-speed running most intense 5-min period: r = -0.55 -- 0.74 High-speed running whole match: r = -0.55 -- 0.67 Total distance: r = -0.25 –- 0.66	12 (14)
Huijgen et al. [105]	113 male 17.1 ± 0.7 Selected and deselected players of talent development programmes of professional soccer clubs (Netherlands)	Repeated Shuttle Sprint: 3 x 30-m sprints, starting every 20 s, 3 CODs of 180° after 5 m, 10 m, and 20 m	Construct	Selected always better than deselected FT: 1.7%; ES (d) = 0.55 TT: 1.4%; ES (d) = 0.47	7 (10)
Dellal & Wong [96]	49 male Senior, U19 (not specified)	Second team of a professional club, U19 (France)	Construct	Selected better than deselected FT: 2.4%; ES (d) = 0.66 TT: 2.9%; ES (d) = 0.60	7 (10)
Rampinini et al. [117]	23 male	Professional from 3rd division, amateur from 6th division (not specified)	Construct	Professional always better than amateur FT: 1.6%; ES (d) = 0.82 AT: 3.2%; ES (d) = 1.72 %Dec: 25%; ES (d) = 0.83	7 (10)

(Continued)
all studies, both intraday and interday reliability have been reported to be higher with increasing sprinting distance [21,45,66,67,80,88].

Given the results of the abovementioned studies, linear-sprint tests over distances up to 40 m possess acceptable construct validity and high intraday and interday reliability to assess linear-sprinting skills in soccer players.

Repeated-sprint tests. The identified repeated-sprint tests differ in their number of repetitions (3 to 15), the distance per repetition (15 to 40 m), and the type (active and passive) and duration (approximately 15 s to 1 min) of recovery per repetition. Common parameters derived from such tests include the fastest time, average time, total time, and percent decrement. The initial sprint time was reported less frequently.

The construct validity of repeated-sprint tests has been investigated in few studies (n = 5). In the majority of the studies, the higher-level players outperformed the lower-level players for all abovementioned parameters when comparing professional vs. semi-professional, college, university or regional level players; however, with considerably varying ES (trivial to very large) [96–99]. Only one study [100] found the lower-level players outperforming the higher-level players. However, this was true for percent decrement only. This result might be related to the low reliability of this parameter, which will be discussed later. Except for percent decrement, no parameter was superior to another in its ability to distinguish between playing levels.
Study	Population	Number	Gender	Age (±SD)	Playing level (Country)	Short description	Type	Results	MQ
Kaplan [120]	85	male	20.95 ± 3.8	Different amateur clubs (Turkey)	Bangsbo sprint test: 7 x 34.2-m sprints, 3 CODs of 45° after 10 m, 90° after 17.1 m, and 45° after 24.2 m, 10-m sprint to the finish, 25 s active recovery	Not Specified	TT: ICC = 0.94	5 (14)	
Wong et al. (2012)[97]	34	male	23.3 ± 3.6	Professional, college (not specified)	Repeated Change-of-Direction Test: 6 x 20-m sprints, 4 CODs of 100° every 4 m, 25 s active recovery	Interday	FT: ICC = 0.79; AT: ICC = 0.80; CV = 10.0%	7 (14)	
Impellizzeri et al. [118]	22	male	22 ± 1	Professional (not specified)	Repeated shuttle-sprint test: 6 x 40-m sprints, COD of 180° after 20 m, 20 s passive recovery	Interday	FT: ICC = 0.15; AT: ICC = 0.81; CV = 10.0%	11 (14)	
Impellizzeri et al. [118]	30	male	25 ± 5	Professionals from national league (not specified)	see above	Interday	FT: ICC = 0.63; AT: ICC = 0.58; CV = 0.9%	10 (14)	
Wragg et al. [121]	7	male	23 ± 4	National level student players (United Kingdom)	Modified Bangsbo sprint test: 7 x 34.2-m sprints, 3 random CODs to the left or to the right of 45° after 10 m, 90° after 17.1 m, and 45° after 24.2 m, 10-m sprint to the finish, 25 s active recovery	Interday	CV = 1.8%	9 (14)	
Di Mascio et al. [113]	14	male	18 ± 1	Sub-Elite U19 (England)	Soccer-specific reactive repeated-sprint test: 8 x 30-m sprints, 3 random CODs to the left or the right of 45°, 135°, and 180°, 2 curved sprints, 30 s active recovery	Interday	TT: CV = 0.8% FT: CV = 1.1%	9 (14)	
Brahimi et al. [122]	27	male	17.6 ± 0.5	National team U19 (Norway)	Bangsbo sprint test: 7 x 34.2-m sprints, 3 CODs of 45° after 10 m, 90° after 17.1 m, and 45° after 24.2 m, 10-m sprint to the finish, 25 s active recovery	Interday	TT: ICC = 0.93	6 (14)	
Brahimi et al. [122]						12 x 20-m sprints, 3 CODs in a zig-zag pattern after 4.3 m, 12.5 m, and 15.7 m, 4.3-m sprint to the finish, 40 s active recovery	Interday	TT: ICC = 0.93	6 (14)
Ruscello et al. [104]	17	male	21.9 ± 3.6	Professionals from Italian lega pro (Italy)	Shuttle sprint (2 x 15 m); 7 x 30-m sprints, COD of 180° after 15 m, exercise to rest ratio 1:5, passive recovery	Intraday	TT: ICC = 0.89	6 (14)	
Ruscello et al. [104]						Zig-zag: 7 x 30-m sprints, 5 CODs of 120° every 5 m, exercise to rest ratio 1:5, passive recovery	Intraday	TT: ICC = 0.89	6 (14)

MQ–Methodological quality, maximal possible score in parenthesis; ES–Effect size; %Dec–Percent decrement; FT–Fastest time; AT–Average time; TT–Total time; COD–change of direction

https://doi.org/10.1371/journal.pone.0220982.t010
Interestingly, the largest ES between higher- and lower-level players were reported in a study with females [98]. This finding mirrors the observation that repeated-sprint bouts occur more frequent during matches of professional females in comparison with those of professional males [98,125,126].

Only one study examined the criterion validity of a repeated-sprint test (6 x 6-s sprints, 20 s passive recovery) in professional male players. A large correlation was found between percent decrement in the test and the frequency of high-intensity actions interspersed by recovery times ≤ 20 s during matches. In addition, a moderate correlation was reported between average velocity in the test and recovery time between high-intensity actions during matches [95]. Given the lack of further notable relationships between the test parameters and the frequency of repeated high-intensity bouts during matches, the authors question the criterion validity of this and similar tests. Indeed, more investigations using a similar study design are needed to confidentially draw conclusions with respect to criterion validity.

As a repeated-sprint test elicits considerable degrees of fatigue, multiple testing on one occasion (intraday reliability) appears to be rather inappropriate. Therefore, most of the studies reported interday reliability values (n = 6). Intraday reliability was examined less often (n = 2) and one study did not state the reliability type. ICCs for the average and total time exceeded 0.75 in all studies and were mostly higher than 0.90 while CVs were lower than 3.0% in 7 out of 9 studies [78, 81, 83, 97, 98, 101–103]. The reliability of the fastest time was 0.88 and 5.0% for ICC and CV, respectively [97]. Conversely, the percent decrement as a measure of fatigue was markedly less reliable (ICC ≥ 0.11, CV ≤ 46.0%) [81,98]. Pacing strategies of the players throughout the sprints was stated as a possible reason [127].

No differences between different recovery durations and modes were obvious regarding validity and reliability. However, the recovery duration should be short enough (e.g., < 30 s) to provoke the occurrence of fatigue [13]. Additionally, the recovery mode should be active in order to replicate the match demands [95].

The use of repeated-sprint tests has been criticized by some authors [2,128]. Their criticism is based on the very large correlations between the fastest time, average time and total time of such tests on the one side and results of single linear-sprint tests on the other side. Additionally, the low reliability of fatigue measures such as the percent decrement questions the additional benefits derived from repeated-sprint tests compared to linear-sprint tests. Nevertheless, based on the studies included in this review, repeated-sprint tests differing in the number of repetitions, the distance per repetition, and the recovery phases possess acceptable levels of construct validity and high levels of reliability for examining repeated-sprinting skills in adult soccer players regarding all parameters, except for percent decrement.

Change-of-direction sprint tests. A plethora of change-of-direction sprint tests has been developed and introduced into soccer. Some of these tests carry the word "agility" in their name (e.g., "Illinois agility run", "Agility T Test") but do not contain a response to a stimulus. Therefore, they were classified as change-of-direction sprint tests in this review. Change-of-direction sprint tests vary in their total distance (10–60 m) as well as number (1–9) and angles (45–270°) of directional changes. A frequently applied type of test involves shuttle sprints, where players sprint to a line, change the direction by 180°, and sprint back. Furthermore, test set-ups using zig-zag or slalom patterns are common. In addition, some popular tests were originally developed for sports other than soccer, such as the 505 test, Illinois test, and T Test.

The construct validity of change-of-direction sprint tests has been evaluated in a number of investigations (n = 14). As with linear-sprint tests and repeated-sprint tests, the higher-level players obtained faster times than the lower-level players in the vast majority of studies (n = 13). This applied to the comparison of starters vs. non-starters in a professional team (trivial to small ES) [41], professional vs. amateur players (small to large ES) [106], 1st division
vs. regional division players (moderate ES) [43], seniors vs. juniors of the same professional club (large ES) [47] and selected vs. deselected players in talent a program (small ES) [105]. Similar results were obtained when players were required to dribble a ball, commonly in a slalom or zig-zag manner (trivial to large ES) [43,47,105–107]. In contrast, the study of Keiner et al. [108] showed superior performance of U21-players of a professional soccer club compared to professional adult players. However, this was particularly evident for a group of U21-players who had performed a specific strength training program for the two proceeding years. In contrast, no detailed information was provided relating to the training contents of the professional adult players.

Only one study addressing the criterion validity of change-of-direction sprint tests met the inclusion criteria [34]. This study investigated the relationships between the results of the T Test and match parameters. Compared to 5-m and 30-m sprints, as depicted above, markedly lower relationships were evident. This finding particularly applied for the correlation between the T Test and sprinting distances during several periods of the match [34]. Therefore, it might be concluded that a high change-of-direction performance translates into sprinting behavior during matches only to a limited extent. Possibly, other match parameters that reflect change-of-direction behavior more directly might represent a more suitable alternative.

A considerable number of studies (n = 27, encompassing 45 tests) reported intraday or interday reliability of various change-of-direction sprint tests with ICCs usually exceeding 0.75 and CVs lower than 3.0% [34, 43, 49, 50, 56–60, 71, 80, 82, 106, 108, 109, 111]. Similar reliability was demonstrated in the four studies that included ball dribbling into the test [43,88,107, 110]. Conversely, some studies report high relative reliability (ICCs 0.92–0.99) and somewhat lower absolute reliability (CVs 2.9–5.9%) [114,115]. Lower reliability was reported for shuttle sprints over 18.2 m (ICC = 0.72) [21] and 30 m (ICC = 0.63) [14].

As with linear-sprint testing, a change-of-direction sprint test using a global positioning system was reported less reliable (ICCs 0.37–0.77; CVs 3.7–13.0%) [62], supporting the utilization of appropriate timing technologies during speed testing [32]. The high number of change-of-direction sprint tests and the large differences in test design highlight the lack of an accepted gold standard [129]. However, some popular tests have been evaluated in several studies, such as the 505 test or the T Test. Several modifications of these tests have been applied. For example, the linear-sprint phase prior to the directional change of 180˚ in the 505 test varies between 5 m and 15 m in the literature [21,56,66,80]. Regarding the T Test, as many as six different types of this test have been used, differing in the total distance (20–40 m), the type of locomotion (shuffling, backpedaling, and sprinting), and the inclusion or exclusion of ball dribbling [21,34,43,66,82,85,90,106,111,113]. One study even added a visual stimulus prior to changing direction, leading this modification to be classified as an agility test [83]. Despite these modifications, all types of the 505 test and the T Test have been shown to be valid (T Test: ES = 0.62–1.50 in favor of the higher-level players) and/or reliable (505 test: ICC = 0.87–0.99, CV = 2.2–3.3%; T Test: ICC = 0.70–0.95, CV = 0.8–4.0%).

While many tests, including the 505 test and the T Test, do not mimic the match demands [2], the confirmed validity and reliability of these two tests for assessing change-of-direction sprinting skills through a number of studies allow their application until more game-specific tests are thoroughly evaluated.

Agility tests. Since the introduction of a classic agility test for invasion sports by Sheppard et al. [130], this test has been evaluated and modified for the specific demands of different sports, such as Australian football, basketball, netball or rugby [5,131].

With respect to the inclusion criteria of this review, no study was identified that evaluated the validity of an agility test in soccer players. This is somewhat surprising as agility tests have
been shown to possess high levels of construct validity by discriminating between playing levels in Australian football and rugby league, while change-of-direction sprint tests did not [12]. This finding is mainly attributed to the superior anticipation and decision-making skills of higher-level players [5]. It should be noted that studies examining the construct validity of such tests in soccer exist. However, either the (sub-)sample investigated for this specific outcome was too young to be considered for this review [114] or the population also included sports other than soccer (e.g., futsal) [132]. Although more complex than capturing the number of sprints or maximum speed during matches, methods for analyzing decision-making during training and matches have already been applied to soccer and might serve as a foundation for evaluating the criterion validity of agility tests [133,134].

Conversely, the reliability of agility tests has been addressed in four studies, all of them relating to interday reliability [55,83,86,114]. Two of the tests used flashing lights as a stimulus (ICCs 0.70–0.87; CVs 0.8–4.9%) [83,114]. One study [55] adopted the classic agility test by Sheppard et al. [130], which requires the players to respond to different movements of a tester (human stimulus) by sprinting in the same direction as the tester (CV = 0.8%). The last study examined agility as a part of a complex test [86]. Here, players respond to a video of a life-size soccer player dribbling the ball towards the player by sprinting in the same direction as the video (ICC = 0.70; CV = 2.3%). The slightly lower reliability of agility tests compared to the other test categories might be attributed to the complexity of such tests, incorporating both physical and perceptual-cognitive aspects of speed. While several parameters can potentially be investigated during agility tests, such as the response time at the start, the decision-making time or the response accuracy [5], the abovementioned studies were limited to the total time to complete the test.

In terms of the applied stimuli, it has been shown in other sports (e.g., Australian rules football, field hockey) that humans or video sequences appear to be more appropriate than flashing lights when examining construct validity [5]. This seems reasonable as the latter does not allow higher-level players to utilize their anticipation and decision-making skills, but simply to react to a non-specific signal [135]. Given the small total number of investigations and the lack of studies using humans or video sequences as a stimulus, it can be concluded that the soccer-specific agility research is still in its infancy.

Combinations. This test category combines elements of two or more of the abovementioned test categories. Most of the studies examined pre-planned repeated change-of-direction sprint tests with or without ball dribbling (10 studies encompassing 12 tests), while two studies analyzed repeated change-of-direction sprint tests in response to a stimulus. Thereby, such tests comprise elements of repeated-sprint tests and change-of-direction sprint tests, and sometimes even those of agility tests. Similar to repeated-sprint tests, the fastest time, average time, total time, and percent decrement are commonly investigated during such tests. The most utilized tests were the (modified) Bangsbo sprint test [119–122] and the repeated shuttle-sprint test [116–118,122].

The construct validity of combination tests was supported in the vast majority of studies for most of the parameters in question. Specifically, the higher-level players performed better than their lower-level counterparts when comparing professional vs. semi-professional players (small to very large ES) [118,119], professional vs. amateur players (trivial to very large ES) [97,117,118], 2nd team vs. U19 players of a professional club (small to moderate ES) [96] or selected vs. deselected players of a talent development program (small to moderate ES) [105]. Similarly to the results of the repeated-sprint tests, the percent decrement was not always able to discriminate between playing levels, with the lower-level players obtaining better scores in some studies (trivial to moderate ES) [96,97]. All other parameters were able to distinguish between playing levels.
The criterion validity of combination tests has been evaluated in two studies [113,116]. In the study of Rampinini et al. [116], the average time of a repeated shuttle-sprint test was largely correlated to the sprinting distance and very high-intensity running distance during professional matches. However, no notable relationships were evident between the fastest time or percent decrement and match variables. The second study analyzed a reactive repeated-sprint test involving changes of direction in response to a light stimulus [113]. The authors found large to very large correlations between the total time of the test and match parameters related to high-speed running. Small to large associations were reported for the total distance covered during matches [113].

In terms of reliability, the interday reliability of combination tests was addressed in a number of studies (5 studies encompassing 7 tests), while the intraday reliability was examined less frequent (1 study encompassing 2 tests). Varying results were obtained for different parameters. ICCs and CVs for the average time and total time were > 0.75 and < 2.0%, respectively, in most studies [104,113,118,120–122]. However, high CVs of 10.0% have also been found for these parameters [97]. Moreover, one study reported low relative reliability for the fastest time (ICC = 0.15) [118], while high absolute reliability (CV = 1.1%) was evident for the same parameter in another study [113]. More consistently, percent decrement was found to not be reliable (ICC = 0.07, CV = 51.0%) [97,118]. In addition, the relative reliability in long-term (3 months between occasions) seems to be somewhat lower compared to short-terms (ICC for average time 0.58), while the absolute reliability remains high (CV for average time 0.9%) [118].

In sum, the total and average time possess the highest degree of validity and reliability. Specifically, this was confirmed for the Bangsbo sprint test and the repeated shuttle-sprint test in a number of studies. Moreover, it should be noted that although evaluated in a single study only, the validity and reliability was confirmed for the reactive repeated-sprint test, which has been designed on the basis of match analysis.

Limitations

The findings of this systematic review should be interpreted in light of its limitations. We did not conduct an updated search that included studies published after May 2018. In addition, only studies examining soccer players with an average age of 17 years or above were considered. This automatically excludes investigations in younger age groups [9], which could have broadened the database. However, the number of included articles (n = 90) was already high in this review and results from other sports, although related, or differing age groups may not always be transferable [136].

We excluded investigations applying manual timing due to large absolute errors and issues relating to inter-rater reliability with this timing technology [32]. While this approach further reduces the available database, it ensures that an appropriate timing technology has been used in the studies, thereby accounting for adequate methodological quality in this regard.

The methodological quality of the construct and criterion validity studies was rated as high, while the scores of the intraday and interday reliability studies were somewhat lower. The latter finding might be explained by the inclusion criteria, as there was no restriction on the type of studies. Therefore, studies in which the reliability assessment was not the main aim were also included. While being well-designed for their primary aim (e.g., the evaluation of a training intervention), the necessary information for the reliability assessment were not always given.

In addition, the assessment of methodological quality itself should be viewed critically. Unfortunately, no assessment tool was applicable without modifications for the purpose of this review. In this context, another frequently used tool for the evaluation of measurement properties, the COSMIN checklist [137], seems more appropriate in relation to questionnaire-based
studies [138] than for performance testing. Therefore, we made use of the critical appraisal tool by Brink & Louw [31] including some modifications, which promised a more suitable assessment of methodological quality of performance testing.

Another limitation might be position-specificity. We reported study results for all players of a team as a whole, thereby not accounting for position-specific demands which could lead to differing validity and reliability of speed tests and, therefore, specific test recommendations for each position [88,139].

Further considerations and future research

Although a test may have shown to be valid and reliable, it does not automatically guarantee that the derived results provide new and useful information to the coach and the individual players [140]. While this issue seems still to be discussed [141], methodological barriers to data collection and analysis are overcome by modern technologies. As a result, researchers can better identify crucial factors of (speed) performance in soccer and consequently to develop tests with direct impact on coaches and players [140]. One solution might be the implementation of test designs based on detailed analysis of match demands. In fact, few studies clearly stated such an approach (e.g., [98,113]). However, this seems promising for future studies. Based on this, more studies are needed examining the relationship between test results and match parameters (criterion validity) throughout all test categories.

Besides intraday and interday reliability, it is of further interest to know if small performance changes can be identified using a specific test [142,143]. In particular, this becomes a matter at a professional level, where performance gains are usually small [144]. This test property, commonly referred to as usefulness, is determined through the ratio of the intra-individual variability and the so-called smallest worthwhile change (SWC) [143]. While the intra-individual variability is usually expressed as a CV, the SWC can either be calculated as 0.2 x standard deviation of a given population, representing a small effect, or a pre-defined threshold. Given the example of a 20-m linear-sprint test, Haugen et al. [2] stated that the SWC relates to approximately 0.02 s when expressed as a small effect. Considering a real-world scenario, a gap of 30 cm to 50 cm might be decisive in a sprint duel of two players. In this case, the SWC as a pre-defined threshold corresponds to 0.04–0.06 s over a 20-m distance. These approaches might not only be applied to linear-sprint testing, but also to the other test categories. However, being reported scarcely in the identified studies, the usefulness was not included in this review. Indeed, it has been highlighted that this test property is population-specific to great extends and, therefore, should be determined for each investigation or team separately [142].

Although demonstrating good validity and reliability, the value of repeated-sprint tests has been questioned, as mentioned above. As repeated accelerations have been found to occur much more frequently during matches [3], the concept of repeated-acceleration bouts has recently been introduced [125,145]. Therefore, the development and evaluation of repeated-acceleration tests should be subject of further investigations.

Lastly, agility tests are underrepresented compared to the other test categories. Based on the promising results from related sports evaluating such tests [5] and the increasing overall game speed [1], requiring the players to make fast decisions and perform an adequate motor response, more research with respect to agility tests is recommended. Particularly, tests using scenarios close to the game and specific stimuli seem appropriate.

Conclusion

Speed is considered a crucial factor for overall performance in soccer. As most of the test categories evaluated in this review share a relatively low common variance, they represent rather
independent skills. Therefore, no single test is appropriate to measure all aspects of speed con-
currently, thus, a comprehensive examination of speed should cover all test categories.

Linear-sprint tests over various distances (5 to 40 m) can be used to determine acceleration
and maximal speed. Thereby, such tests have been shown to be able to distinguish between
playing levels, to correlate with sprint-related parameters during matches, and to possess high
levels of reliability. Although criticized for not replicating the match demands, repeated-sprint
tests of different number of repetitions, distances per repetition as well as types and durations
of recovery have been reported to be valid in terms of discriminating playing levels and to be
highly reliable. However, this specifically applies to the total time and the average time of such
tests, while the use of percent decrement should be treated with caution. A high number of
studies identified addressed change-of-direction sprint tests. Such tests vary dramatically in
their total distance, number and angles of directional changes, and often do not mimic the
match demands. Nevertheless, a number of tests, including the 505 test and T Test, possess
high construct validity and reliability, thereby supporting their utilization in soccer. Con-
versely, agility tests have been investigated scarcely. While no information on the validity of
agility tests is currently available, acceptable but slightly lower reliability compared to the other
categories has been reported for tests applying flashing lights, video sequences, and humans as
a stimulus. Combinations include elements of two or more test categories, commonly those of
repeated-sprint and change-of-direction sprint tests and sometimes even agility tests. The total
and average time possess the highest degree of validity and reliability, most frequently reported
for the Bangsbo sprint test and the repeated shuttle-sprint test.

As currently stated, there is a lack of an accepted gold standard test in most of the catego-
tries. Researchers and practitioners might base their test selection on the comprehensive valid-
ity and reliability database provided in this review.

Supporting information
S1 Table. PRISMA checklist.
(DOC)
S1 Text. Full electronic search strategy for PubMed.
(DOCX)

Acknowledgments
Prof. Claudio Nigg for his support in preparing the manuscript.

Author Contributions
Conceptualization: Stefan Altmann, Steffen Ringhof, Rainer Neumann, Alexander Woll,
Michael C. Rumpf.
Data curation: Stefan Altmann, Steffen Ringhof, Michael C. Rumpf.
Formal analysis: Stefan Altmann, Rainer Neumann, Michael C. Rumpf.
Funding acquisition: Stefan Altmann, Alexander Woll.
Investigation: Stefan Altmann, Rainer Neumann.
Methodology: Stefan Altmann, Steffen Ringhof, Rainer Neumann, Alexander Woll, Michael
C. Rumpf.
Project administration: Stefan Altmann.
Resources: Stefan Altmann, Alexander Woll.
Software: Stefan Altmann.
Supervision: Stefan Altmann, Michael C. Rumpf.
Validation: Stefan Altmann, Steffen Ringhof, Rainer Neumann, Alexander Woll, Michael C. Rumpf.
Visualization: Stefan Altmann.
Writing – original draft: Stefan Altmann.
Writing – review & editing: Stefan Altmann, Steffen Ringhof, Rainer Neumann, Alexander Woll, Michael C. Rumpf.

References
1. Wallace JL, Norton KI. Evolution of World Cup soccer final games 1966–2010. Game structure, speed and play patterns. J Sci Med Sport. 2014; 17: 223–228. https://doi.org/10.1016/j.jsams.2013.03.016 PMID: 23643671
2. Haugen T, Tønnessen E, Hisdal J, Seiler S. The role and development of sprinting speed in soccer. Int J Sports Physiol Perform. 2014; 9: 432–441. https://doi.org/10.1123/ijspp.2013-0121 PMID: 23982902
3. Varley MC, Aughey RJ. Acceleration profiles in elite Australian soccer. Int J Sports Med. 2013; 34: 34–39. https://doi.org/10.1055/s-0032-1316315 PMID: 22895865
4. Dellal A, Chamari K, Wong DP, Ahmad S, Keller D, Barros R, et al. Comparison of physical and technical performance in European soccer match-play. FA Premier League and La Liga. Eur J Sport Sci. 2011; 11: 51–59. https://doi.org/10.1080/17461391.2010.491334
5. Paul DJ, Gabbett TJ, Nassis GP. Agility in Team Sports. Testing, Training and Factors Affecting Performance. Sports Med. 2016; 46: 421–442. https://doi.org/10.1007/s40279-015-0428-2 PMID: 26670456
6. Faude O, Koch T, Meyer T. Straight sprinting is the most frequent action in goal situations in professional football. J Sports Sci. 2012; 30: 625–631. https://doi.org/10.1080/02640414.2012.665940 PMID: 22394328
7. Jeffreys I, Huggins S, Davies N. Delivering a Gamespeed-Focused Speed and Agility Development Program in an English Premier League Soccer Academy. Strength and Conditioning Journal. 2018; 40: 23–32. https://doi.org/10.1519/SSC.0000000000000325
8. Turner A, Walker S, Stermbridge M, Coneywood P, Reed G, Birdsey L, et al. A Testing Battery for the Assessment of Fitness in Soccer Players. Strength and Conditioning Journal. 2011; 33: 29–39. https://doi.org/10.1519/SSC.0b013e31822f4a01
9. Paul DJ, Nassis GP. Physical Fitness Testing in Youth Soccer. Issues and Considerations Regarding Reliability, Validity, and Sensitivity. Pediatric Exercise Science. 2015; 27: 301–313. https://doi.org/10.1123/mc.2014-0085 PMID: 26331619
10. Rumpf MC, Lockie RG, Cronin JB, Jallivand F. Effect of Different Sprint Training Methods on Sprint Performance Over Various Distances. A Brief Review. Journal of Strength and Conditioning Research. 2016; 30: 1767–1785. https://doi.org/10.1519/JSC.0000000000001245 PMID: 26492101
11. Sheppard JM, Young WB. Agility literature review: classifications, training and testing. J Sports Sci. 2006; 24: 919–932. https://doi.org/10.1080/02640410500457105 PMID: 16882626
12. Young WB, Dawson B, Henry GJ. Agility and Change-of-Direction Speed are Independent Skills. Implications for Training for Agility in Invasion Sports. International Journal of Sports Science & Coaching. 2015; 10: 159–169. https://doi.org/10.1260/1747-9541.10.1.159
13. Girard O. Mendez-Villanueva A., Bishop D. Repeated-sprint ability— part I. Factors contributing to fatigue. Sports Med. 2011; 41: 673–694. https://doi.org/10.2165/11590550-000000000-00000 PMID: 21780851
14. Shalfawi SA, Young M, Tønnessen E, Haugen TA, Enoksen E. The effect of repeated agility training vs. repeated sprint training on elite female soccer players physical performance. Kinesiologia Slovenica. 2013; 19.
15. Buttifant D, Graham K, Cross K. 55 agility and speed in soccer players are two different performance parameters. 4th ed.: Science and football IV; 2001.
16. Little T, Williams AG. Specificity of acceleration, maximum speed, and agility in professional soccer players. Journal of Strength and Conditioning Research. 2005; 19: 76–80. https://doi.org/10.1519/14253.1 PMID: 15705049

17. Sassi RH, Dardouri W, Yahmed MH, Grmada N, Mahfoudhi ME, Gharbi Z. Relative and absolute reliability of a modified agility T-test and its relationship with vertical jump and straight sprint. Journal of Strength and Conditioning Research. 2009; 23: 1644–1651. https://doi.org/10.1519/JSC.0b013e3181425d2 PMID: 19675502

18. Šimonek J, Horňčka P, Hianik J. The differences in acceleration, maximal speed and agility between soccer, basketball, volleyball and handball players. Jhse. 2017; 12. https://doi.org/10.14198/jhse.2017.121.06

19. Vescovi JD, McGuigan MR. Relationships between sprinting, agility, and jump ability in female athletes. J Sports Sci. 2008; 26: 97–107. https://doi.org/10.1080/02640410701348644 PMID: 17852692

20. Koh M, Vodicar J, Žvan M, Šimenko J, Stodolka J, Rauter S, et al. Are Change-of-Direction Speed and Reactive Agility Independent Skills Even When Using the Same Movement Pattern. Journal of Strength and Conditioning Research. 2018; 32: 1929–1936. https://doi.org/10.1519/JSC.0b013e31842553 PMID: 29570572

21. Los Arcos A, Mendiguichia J, Yanci J. Specificity of jumping, acceleration and quick change of direction motor abilities in soccer players. Kinesiology: International journal of fundamental and applied kinesiology. 2017; 49: 22–29.

22. Pyne DB, Saunders PU, Montgomery PG, Hewitt AJ, Sheehan K. Relationships between repeated sprint testing, speed, and endurance. Journal of Strength and Conditioning Research. 2008; 22: 1633–1637. https://doi.org/10.1519/JSC.0b013e318181fe7a PMID: 18714221

23. Robertson S, Kremer P, Aisbett B, Tran J, Cerin E. Consensus on measurement properties and feasibility of performance tests for the exercise and sport sciences. A Delphi study. Sports Med Open. 2017; 3: 2. https://doi.org/10.1186/s40798-016-0071-y PMID: 28054257

24. Currell K, Jeukendrup AE. Validity, reliability and sensitivity of measures of sporting performance. Sports Med. 2008; 38: 297–316. https://doi.org/10.2165/00007256-200838040-00003 PMID: 18348590

25. Jemni M, Prince MS, Baker JS. Assessing Cardiorespiratory Fitness of Soccer Players: Is Test Specificity the Issue?-A Review. Sports Med Open. 2018; 4: 28. https://doi.org/10.1186/s40798-018-0134-3 PMID: 29923108

26. Paul DJ, Nassis GP. Testing strength and power in soccer players: the application of conventional and traditional methods of assessment. Journal of Strength and Conditioning Research. 2015; 29: 1748–1758. https://doi.org/10.1519/JSC.0000000000000807 PMID: 2594446

27. Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med. 2009; 6: e1000097. https://doi.org/10.1371/journal.pmed.1000097 PMID: 19621072

28. Atkinson G, Nevill AM. Statistical methods for assessing measurement error (reliability) in variables relevant to sports medicine. Sports Med. 1998; 26: 217–238. https://doi.org/10.2165/00007256-199826040-00002 PMID: 9820922

29. McCunn R, Fünten Kad, Fullagar HHK, McKeown I, Meyer T. Reliability and Association with Injury of Movement Screens: A Critical Review. Sports Med. 2016; 46: 763–781. https://doi.org/10.1007/s40279-015-0453-1 PMID: 26721517

30. Hopkins WG. A scale of magnitudes for effect statistics. A new view of statistics. 2002: Available at: http://www.sportsci.org/resource/stats/effectmag.html.

31. Brink Y, Louw QA. Clinical instruments: reliability and validity critical appraisal. J Eval Clin Pract. 2012; 18: 1126–1132. https://doi.org/10.1111/j.1365-2753.2011.01707.x PMID: 21689217

32. Haugen T, Buchheit M. Sprint Running Performance Monitoring. Methodological and Practical Considerations. Sports Med. 2016; 46: 641–656. https://doi.org/10.1007/s40279-015-0446-0 PMID: 26660758

33. Barrett E, McCrueh K, Lewis J. Reliability and validity of non-radiographic methods of thoracic kyphosis measurement: a systematic review. Man Ther. 2014; 19: 10–17. https://doi.org/10.1016/j.math.2013.09.003 PMID: 24249607

34. Silva JR, Magalhães J, Ascensão A, Seabra AF, Rebelo AN. Training status and match activity of professional soccer players throughout a season. Journal of Strength and Conditioning Research. 2013; 27: 20–30. https://doi.org/10.1519/JSC.0b013e31824e1946 PMID: 22344051

35. Djiaoui L, Chamari K, Owen AL, Dellal A. Maximal Sprinting Speed of Elite Soccer Players During Training and Matches. Journal of Strength and Conditioning Research. 2017; 31: 1509–1517. https://doi.org/10.1519/JSC.000000000001642 PMID: 28538299
36. Haugen TA, Tønnessen E, Seiler S. Anaerobic performance testing of professional soccer players 1995–2010. Int J Sports Physiol Perform. 2013; 8: 148–156. PMID: 22868347

37. Ferro A, Villacieros J, Flória P, Graupera JL. Analysis of speed performance in soccer by a playing position and a sports level using a laser system. J Hum Kinet. 2014; 44: 143–153. https://doi.org/10.2478/hukin-2014-0120 PMID: 25713675

38. Silvestre R, Kraemer WJ, West C, Judelson DA, Spiering BA, Vingren JL, et al. Body composition and physical performance during a National Collegiate Athletic Association Division I men’s soccer season. Journal of Strength and Conditioning Research. 2006; 20: 962–970. https://doi.org/10.1519/R-18165.1 PMID: 17149986

39. Silvestre R, West C, Maresh CM, Kraemer WJ. Body composition and physical performance in men’s soccer: a study of a National Collegiate Athletic Association Division I team. Journal of Strength and Conditioning Research. 2006; 20: 177–183. https://doi.org/10.1519/R-17715.1 PMID: 16508683

40. Cometti G, Maffiuletti NA, Pousson M, Chatard JC, Maffulli N. Isokinetic strength and anaerobic power of elite, subelite and amateur French soccer players. Int J Sports Med. 2001; 22: 45–51. https://doi.org/10.1055/s-0032-1323729 PMID: 13258641

41. Risso FG, Jalilvand F, Orjalo AJ, Moreno MR, Davis DL, Birmingham-Babauta SA, et al. Physiological Characteristics of Projected Starters and Non-Starters in the Field Positions from a Division I Women’s Soccer Team. Int J Exerc Sci. 2017; 10: 568–579. PMID: 28674601

42. Vescovi JD. Sprint speed characteristics of high-level American female soccer players: Female Athletes in Motion (FAIM) study. J Sci Med Sport. 2012; 15: 474–478. https://doi.org/10.1016/j.jsams.2012.03.006 PMID: 22516691

43. Rebelo A, Brito J, Maia J, Coelho-e-Silva MJ, Figueiredo AJ, Bangsbo J, et al. Anthropometric characteristics, physical fitness and technical performance of under-19 soccer players by competitive level and field position. Int J Sports Med. 2013; 34: 312–317. https://doi.org/10.1055/s-0034-1323729 PMID: 23059558

44. Haugen TA, Tønnessen E, Seiler S. Speed and countermovement-jump characteristics of elite female soccer players, 1995–2010. Int J Sports Physiol Perform. 2012; 7: 340–349. PMID: 22645175

45. Cotte T, Chatard JC. Isokinetic strength and sprint times in English premier league football players. Biol Sport. 2011; 28: 89–94.

46. Nikolaidis PT, Knechtle B, Clemente F, Torres-Luque G. Reference values for the sprint performance in male football players aged from 9–35 years. Biomedical Human Kinetics. 2016; 8: 103–112. https://doi.org/10.1515/bhk-2016-0015

47. Mujika I, Santisteban J, Impellizzeri FM, Castagna C. Fitness determinants of success in men’s and women’s football. J Sports Sci. 2009; 27: 107–114. https://doi.org/10.1080/02640410802428071 PMID: 19058090

48. Kobal R, Loturco I, Gil S, Cal Abad CC, Cuniyochi R, Barroso R, et al. Comparison of physical performance among Brazilian elite soccer players of different age-categories. The Journal of sports medicine and physical fitness. 2016; 56: 376–382. PMID: 25503710

49. Gelen E. Acute effects of different warm-up methods on sprint, slalom dribbling, and penalty kick performance in soccer players. Journal of Strength and Conditioning Research. 2010; 24: 950–956. https://doi.org/10.1519/JSC.0b013e3181b3e141 PMID: 20300033

50. Rouissi M, Chtara M, Owen A, Burnett A, Chamari K. Change of direction ability in young elite soccer players: determining factors vary with angle variation. The Journal of sports medicine and physical fitness. 2017; 57: 960–968. https://doi.org/10.23736/S0022-4707.16.06576-2 PMID: 27391410

51. Haugen T, Tønnessen E, Seiler S. Correction Factors for Photocell Sprint Timing With Flying Start. Int J Sports Physiol Perform. 2015; 10: 1055–1057. https://doi.org/10.1123/ijsspp.2014-0415 PMID: 25803102

52. López-Segovia M, Pareja-Blanco F, Jiménez-Reyes P, González-Badillo JJ. Determinant factors of repeat sprint sequences in young soccer players. Int J Sports Med. 2015; 36: 130–136. https://doi.org/10.1055/s-0034-1385880 PMID: 25259593

53. Pareja-Blanco F, Suarez-Arrones L, Rodríguez-Rosell D, López-Segovia M, Jiménez-Reyes P, Bachero-Mena B, et al. Evolution of Determinant Factors of Repeated Sprint Ability. J Hum Kinet. 2016; 54: 115–126. https://doi.org/10.1515/hukin-2016-0040 PMID: 28031763

54. Sporis G, Jukic I, Ostojic SM, Milanovic D. Fitness profiling in soccer: physical and physiologic characteristics of elite players. Journal of Strength and Conditioning Research. 2009; 23: 1947–1953. https://doi.org/10.1519/JSC.0b013e3181b3e141 PMID: 19704378

55. Zois J, Bishop DJ, Ball K, Aughey RJ. High-intensity warm-ups elicit superior performance to a current soccer warm-up routine. J Sci Med Sport. 2011; 14: 522–528. https://doi.org/10.1016/j.jsams.2011.03.012 PMID: 21907619
66. Yanci J, Los Arcos A, Brughelli M. Relationships between sprint, agility, one- and two-leg vertical and horizontal jump in soccer players. *Kinesiology: International journal of fundamental and applied kinesiology*. 2014; 46: 194–201.

67. Comfort P, Stewart A, Bloom L, Clarkson B. Relationships between strength, sprint, and jump performance in well-trained youth soccer players. *Journal of Strength and Conditioning Research*. 2014; 28: 173–177. https://doi.org/10.1519/JSC.0b013e318291b8c7 PMID: 23542878

68. López-Segovia M, Marques MC, van den Tillaar R, González-Badillo JJ. Relationships between vertical jump and full squat power outputs with sprint times in u21 soccer players. *J Hum Kinet*. 2011; 30: 135–144. https://doi.org/10.2478/v10078-010-0081-2 PMID: 23487438

69. Cheply MS, Chérfi N, Amar MB, Hermassi S, Fathloun M, Bouchet E, et al. Relationships of peak leg power, 1 maximal repetition half squats and leg muscle volume to 5-m sprint performance of junior soccer players. *Journal of Strength and Conditioning Research*. 2010; 24: 266–271. https://doi.org/10.1519/JSC.0b013e318239f84f PMID: 19924009

70. Spierer DK, Petersen RA, Duffy K. Response time to stimuli in division I soccer players. *Journal of Strength and Conditioning Research*. 2011; 25: 1134–1141. https://doi.org/10.1519/JSC.0b013e3181d90e4c PMID: 20664362

71. Caldwell BP, Petersen DM. Seasonal variation in physiological fitness of a semiprofessional soccer team. *Journal of Strength and Conditioning Research*. 2009; 23: 1370–1377. https://doi.org/10.1519/JSC.0b013e3181a4e82f PMID: 19620929

72. Ronnestad BR, Kvarnme NH, Sunde A, Raastad T. Short-term effects of strength and plyometric training on sprint and jump performance in professional soccer players. *Journal of Strength and Conditioning Research*. 2008; 22: 773–780. https://doi.org/10.1519/JSC.0b013e3181ba5e6e PMID: 18438241

73. Small K, McNaughton LR, Greig M, Lohkamp M, Lovell R. Soccer fatigue, sprinting and hamstring injury risk. *Int J Sports Med*. 2009; 30: 573–578. https://doi.org/10.1055/s-0029-1202622 PMID: 19455478

74. Gorostiaga EM, Izquierdo M, Ruesta M, Iribarren J, González-Badillo JJ, Ibáñez J. Strength training effects on physical performance and serum hormones in young soccer players. *Eur J Appl Physiol*. 2004; 91: 698–707. https://doi.org/10.1007/s00421-003-1032-y PMID: 14704801

56. Emmonds S, Nicholson G, Beggs C, Jones B, Bissas A. Importance of physical qualities for speed and change of direction ability in elite female soccer players. *Journal of Strength and Conditioning Research*. 2017. https://doi.org/10.1519/JSC.0000000000002114 PMID: 28723816

57. Mujika I, Santisteban J, Castagna C. In-season effect of short-term sprint and power training programs on elite junior soccer players. *Journal of Strength and Conditioning Research*. 2009; 23: 2581–2587. https://doi.org/10.1519/JSC.0b013e3181bc1a0c PMID: 19910815

58. Loturco I, Kobal R, Maldonado T, Piazza AF, Bottino A, Kitamura K, et al. Jump Squat is More Related to Sprinting and Jumping Abilities than Olympic Push Press. *Int J Sports Med*. 2017; 38: 604–612. https://doi.org/10.1055/s-0035-1565201 PMID: 26667925

59. Loturco I, Pereira LA, Kobal R, Maldonado T, Piazza AF, Bottino A, et al. Improving Sprint Performance in Soccer: Effectiveness of Jump Squat and Olympic Push Press Exercises. *PLoS ONE*. 2016; 11: e0153958. https://doi.org/10.1371/journal.pone.0153958 PMID: 27100858

60. Boone J, Vaeyens R, Steyvaert A, Vanden Bossche L, Bourgois J. Physical fitness of elite Belgian soccer players by player position. *Journal of Strength and Conditioning Research*. 2012; 26: 2051–2057. https://doi.org/10.1519/JSC.0b013e318239f84f PMID: 21986697

61. Mansor SA, Brughelli M, Harris NK. Physiological characteristics of international female soccer players. *Journal of Strength and Conditioning Research*. 2014; 28: 308–318. https://doi.org/10.1519/JSC.0b013e3182935b6b PMID: 24476742

62. Meylan C, Trewin J, McKeen K. Quantifying Explosive Actions in International Women’s Soccer. *Int J Sports Physiol Perform*. 2017; 12: 310–315. https://doi.org/10.1123/ijspp.2015-0520 PMID: 27295719

63. Sjökvist J, Laurent MC, Richardson M, Curtner-Smith M, Holmberg H-C, Bishop PA. Recovery from high-intensity training sessions in female soccer players. *Journal of Strength and Conditioning Research*. 2011; 25: 1726–1735. https://doi.org/10.1519/JSC.0b013e3181e06de8 PMID: 21386721

64. Requena B, Sáez-Sáez de Villarreal E, Gapeyeva H, Ereline J, García I, Páaszke M. Relationship between postactivation potentiation of knee extensor muscles, sprinting and vertical jumping performance in professional soccer players. *Journal of Strength and Conditioning Research*. 2011; 25: 367–373. https://doi.org/10.1519/JSC.0b013e3181be31aa PMID: 20093962

65. Ingebrigtsen J, Brochmann M, Castagna C, Bradley PS, Ade J, Krstrup P, et al. Relationships between field performance tests in high-level soccer players. *Journal of Strength and Conditioning Research*. 2014; 28: 942–949. https://doi.org/10.1519/JSC.0b013e31821a861 PMID: 23838979

66. Yanci J, Los Arcos A, Brughelli M. Relationships between sprint, agility, one- and two-leg vertical and horizontal jump in soccer players. *Kinesiology: International journal of fundamental and applied kinesiology*. 2014; 46: 194–201.
75. Gil S, Loturco I, Tricoli V, Ugrinovitsch C, Kobal R, Abad CCC, et al. Tensiomography parameters and jumping and sprinting performance in Brazilian elite soccer players. Sports Biomech. 2015; 14: 340–350. https://doi.org/10.1080/14763141.2015.1062128 PMID: 26271313

76. Coelho DB, Pimenta E, Rosse IC, Veneroso C, Becker LK, Carvalho MR, et al. The alpha-actinin-3 r577x polymorphism and physical performance in soccer players. The Journal of sports medicine and physical fitness. 2016; 56: 241–248. PMID: 25650734

77. Bousseneta N, Abedmalek S, Aloui K, Souissi N. The effect of air pollution on diurnal variation of performance in anaerobic tests, cardiovascular and hematological parameters, and blood gases on soccer players following the Yo-Yo Intermittent Recovery Test Level-1. Chronobiol Int. 2017; 34: 903–920. https://doi.org/10.1080/07420528.2017.1325896 PMID: 28613960

78. Shalfawi SAI, Haugen T, Jakobsen TA, Enoksen E, Tønnessen E. The effect of combined resisted agility and repeated sprint training vs. strength training on female elite soccer players. Journal of Strength and Conditioning Research. 2013; 27: 2966–2972. https://doi.org/10.1519/JSC.0b013e31828cc289 PMID: 23442286

79. Sayers AL, Farley RS, Fuller DK, Jubenville CB, Caputo JL. The effect of static stretching on phases of sprint performance in elite soccer players. Journal of Strength and Conditioning Research. 2008; 22: 1416–1421. https://doi.org/10.1519/JSC.0b013e318181a450 PMID: 18714249

80. Thomas K, French D, Hayes PR. The effect of two plyometric training techniques on muscular power and agility in youth soccer players. Journal of Strength and Conditioning Research. 2009; 23: 332–335. https://doi.org/10.1519/JSC.0b013e318183a01a PMID: 19002073

81. Iaia FM, Fiorenza M, Perri E, Alberti G, Millet GP, Bangsbo J. The Effect of Two Speed Endurance Training Regimes on Performance of Soccer Players. PLoS ONE. 2015; 10: e0138096. https://doi.org/10.1371/journal.pone.0138096 PMID: 26394225

82. Rey E, Padron-Cabo A, Costa PB, Barcala-Furelos R. The Effects of Foam Rolling as a Recovery Tool in Professional Soccer Players. Journal of Strength and Conditioning Research. 2017. https://doi.org/10.1519/JSC.0000000000002277 PMID: 29016479

83. McGawley K, Andersson P-I. The order of concurrent training does not affect soccer-related performance adaptations. Int J Sports Med. 2013; 34: 983–990. https://doi.org/10.1055/s-0033-1334969 PMID: 23700329

84. Loturco I, Pereira LA, Kobal R, Zanetti V, Kitamura K, Abad CCC, et al. Transference effect of vertical and horizontal plyometrics on sprint performance of high-level U-20 soccer players. J Sports Sci. 2015; 33: 2182–2191. https://doi.org/10.1080/02640414.2015.1081934 PMID: 26390150

85. Silva JR, Magalhães JF, Ascensão AA, Oliveira EM, Seabra AF, Rebelo AN. Individual match playing time during the season affects fitness-related parameters of male professional soccer players. Journal of Strength and Conditioning Research. 2011; 25: 2729–2739. https://doi.org/10.1519/JSC.0b013e3181833889 PMID: 21912284

86. Bullock W, Panchuk D, Broatch J, Christian R, Stepto NK. An integrative test of agility, speed and skill in soccer: effects of exercise. J Sci Med Sport. 2012; 15: 431–436. https://doi.org/10.1016/j.jsams.2011.08.016 PMID: 21912284

87. Williams JD, Abt G, Kilding AE. Ball-Sport Endurance and Sprint Test (BEAST90): validity and reliability of a 90-minute soccer performance test. Journal of Strength and Conditioning Research. 2010; 24: 3209–3218. https://doi.org/10.1519/JSC.0b013e31818b4aaf PMID: 19966581

88. Mirkov D, Nedeljikovic A, Kukolj M, Ugarkovic D, Jarić S. Evaluation of the reliability of soccer-specific field tests. Journal of Strength and Conditioning Research. 2008; 22: 1046–1050. https://doi.org/10.1519/JSC.0b013e3181895358 PMID: 23442286

89. Silva JR, Ascensão AA, Marques F, Seabra A, Rebelo A, Magalhães J. Neuromuscular function, hormonal and redox status and muscle damage of professional soccer players after a high-level competitive match. Eur J Appl Physiol. 2013; 113: 2193–2201. https://doi.org/10.1007/s00421-013-2633-8 PMID: 23661147

90. Kutlu M, Yapıcı H, Yılmaz A. Reliability and Validity of a New Test of Agility and Skill for Female Amateur Soccer Players. J Hum Kinet. 2017; 56: 219–227. https://doi.org/10.1515/hukin-2017-0039 PMID: 28469760

91. Harper LD, Hunter R, Parker P, Goodall S, Thomas K, Howatson G, et al. Test-Retest Reliability of Physiological and Performance Responses to 120 Minutes of Simulated Soccer Match Play. Journal of Strength and Conditioning Research. 2016; 30: 3178–3186. https://doi.org/10.1519/JSC.0000000000001400 PMID: 26950356

92. Sonderegger K, Tschopp M, Taube W. The Challenge of Evaluating the Intensity of Short Actions in Soccer: A New Methodological Approach Using Percentage Acceleration. PLoS ONE. 2016; 11: e0166534. https://doi.org/10.1371/journal.pone.0166534 PMID: 27846308
93. Ispiridis I, Fatouros IG, Jamurtas AZ, Nikolaidis MG, Michaelidis I, Douroudos I, et al. Time-course of changes in inflammatory and performance responses following a soccer game. Clin J Sport Med. 2008; 18: 423–431. https://doi.org/10.1097/JSM.0b013e31818118e0b PMID: 18806550

94. Yanci J, Calleja-Gonzalez J, Cámara J, Mejuto G, San Román J, Los Arcos A. Validity and reliability of a global positioning system to assess 20 m sprint performance in soccer players. Proceedings of the IMechE. 2017; 231: 68–71. https://doi.org/10.1177/1754337115624818

95. Carling C, Le Gall F, Duport G. Analysis of repeated high-intensity running performance in professional soccer. J Sports Sci. 2012; 30: 325–336. https://doi.org/10.1080/02640414.2011.652655 PMID: 22248291

96. Dellal A, Wong DP. Repeated sprint and change-of-direction abilities in soccer players: effects of age group. Journal of Strength and Conditioning Research. 2013; 27: 2504–2508. https://doi.org/10.1519/JSC.0b013e31827f540c PMID: 23238090

97. Wong DP, Chan GS, Smith AW. Repeated-sprint and change-of-direction abilities in physically active individuals and soccer players: training and testing implications. Journal of Strength and Conditioning Research. 2012; 26: 2324–2330. https://doi.org/10.1519/JSC.0b013e31823deaab PMID: 22067248

98. Gabbett TJ. The development of a test of repeated-sprint ability for elite women’s soccer players. Journal of Strength and Conditioning Research. 2010; 24: 1191–1194. https://doi.org/10.1519/JSC.0b013e3181d1568c PMID: 20386127

99. Aziz AR, Mukherjee S, Chia MYH, Teh KC. Validity of the running repeated sprint ability test among playing positions and level of competitiveness in trained soccer players. Int J Sports Med. 2008; 29: 833–838. https://doi.org/10.1055/s-2008-1038410 PMID: 18401804

100. Ingebrigtsen J, Bendiksen M, Randers MB, Castagna C, Krustrup P, Holtermann A. Yo-Yo IR2 testing of elite and sub-elite soccer players: performance, heart rate response and correlations to other interval tests. J Sports Sci. 2012; 30: 1337–1345. https://doi.org/10.1080/02640414.2012.711484 PMID: 22867048

101. Chaouachi A, Manzi V, Wong DP, Chaalali A, Laurencelle L. Intermittent endurance and repeated sprint ability in soccer players. Journal of Strength and Conditioning Research. 2010; 24: 2663–2669. https://doi.org/10.1519/JSC.0b013e3181e347f4 PMID: 22047706

102. Haugen T, Tonnessen E, Leirstein S, Hem E, Seiler S. Not quite so fast: effect of training at 90% sprint speed on maximal and repeated-sprint ability in soccer players. J Sports Sci. 2014; 32: 1979–1986. https://doi.org/10.1080/02640414.2014.976248 PMID: 25385308

103. López-Segovia M, Dellal A, Chamari K, González-Badillo JJ. Importance of muscle power variables in repeated and single sprint performance in soccer players. J Hum Kinet. 2014; 40: 201–211. https://doi.org/10.2478/hukin-2014-0022 PMID: 25031688

104. Russell B, Tozzo N, Briotti G, Padua E, Ponzetti F, D’Ottavio S. Influence of the number of trials and the exercise to rest ratio in repeated sprint ability, with changes of direction and orientation. Journal of Strength and Conditioning Research. 2013; 27: 1904–1910. https://doi.org/10.1519/JSC.0b013e318273766a PMID: 23007490

105. Huijgen BCH, Elferink-Gemser MT, Lemmink K. A. P. M., Vischer C. Multidimensional performance characteristics in selected and deselected talented soccer players. Eur J Sport Sci. 2014; 14: 2–10. https://doi.org/10.1080/17461391.2012.725102 PMID: 24533489

106. Kutlu M, Yapıcı H., Yoncalık O, Celik S. Comparison of a new test for agility and skill in soccer with other agility tests. J Hum Kinet. 2012; 33: 143–150. https://doi.org/10.2478/v10078-012-0053-1 PMID: 23486732

107. Russell M, Benton D, Kingsley M. Reliability and construct validity of soccer skills tests that measure passing, shooting, and dribbling. J Sports Sci. 2010; 28: 1399–1408. https://doi.org/10.1080/02640414.2010.511247 PMID: 20967673

108. Keiner M, Sander A, Wirth K, Schmidtbuecher D. Long-term strength training effects on change-of-direction sprint performance. Journal of Strength and Conditioning Research. 2014; 28: 223–231. https://doi.org/10.1519/JSC.0b013e318295644b PMID: 23588486

109. Delliksen M, Petersen SA, Ingebrigtsen J, Randers MB, Brito J, Mohr M, et al. Application of the Copenhagen Soccer Test in high-level women players—locomotor activities, physiological response and sprint performance. Hum Mov Sci. 2013; 32: 1430–1442. https://doi.org/10.1016/j.humov.2013.07.011 PMID: 24016711

110. Currell K, St. Conway, Jeukendrup AE. Carbohydrate ingestion improves performance of a new reliable test of soccer performance. Int J Sport Nutr Exerc Metab. 2006; 19: 34–46. PMID: 19403952

111. Miller DK, Kiefer HS, Kemp HE, Torres SE. Off-season physiological profiles of elite National Collegiate Athletic Association Division III male soccer players. Journal of Strength and Conditioning Research. 2011; 25: 1508–1513. https://doi.org/10.1519/JSC.0b013e3181fda3cf PMID: 21368427
112. Castillo-Rodríguez A, Fernández-García JC, Chinchilla-Minguet JL, Carnier EÁ. Relationship between muscular strength and sprints with changes of direction. Journal of Strength and Conditioning Research. 2012; 26: 725–732. https://doi.org/10.1519/JSC.0b013e31822620db PMID: 22289697

113. Di Mascio M, Ade J, Bradley PS. The reliability, validity and sensitivity of a novel soccer-specific reactive repeated-sprint test (RRST). Eur J Appl Physiol. 2015; 115: 2531–2542. https://doi.org/10.1007/s00421-015-3247-0 PMID: 26335624

114. Sporis G, Jukić I, Milanovic L, Vucetic V. Reliability and factorial validity of agility tests for soccer players. Journal of Strength and Conditioning Research. 2010; 24: 679–686. https://doi.org/10.1519/JSC.0b013e3181c4d324 PMID: 20145571

115. Rampinini E, Bishop D, Marcora SM, Ferrari Bravo D, Sassi R, Impellizzeri FM. Validity of simple field tests as indicators of match-related physical performance in top-level professional soccer players. 0172–4622. 2007; 28: 228–235. https://doi.org/10.1055/s-2006-924340 PMID: 17024621

116. Rampinini E, Sassi A, Morelli A, Mazzoni S, Fanchini M, Coutts AJ. Repeated-sprint ability in professional and amateur soccer players. Appl Physiol Nutr Metab. 2009; 34: 1048–1054. https://doi.org/10.1139/H09-111 PMID: 20029513

117. Impellizzeri FM, Rampinini E, Castagna C, Bishop D, Bravo DF, Tibaudi A, et al. Validity of a repeated-sprint test for football. Int J Sports Med. 2008; 29: 899–905. https://doi.org/10.1055/s-2008-1038491 PMID: 18415931

118. Abramets C, Mačšas V, Sampaio J. Variation in football players’ sprint test performance across different ages and levels of competition. Journal of Sports Science and Medicine. 2004; 3: 44–49.

119. Kaplan T. Examination of repeated sprinting ability and fatigue index of soccer players according to their positions. Journal of Strength and Conditioning Research. 2010; 24: 1495–1501. https://doi.org/10.1519/JSC.0b013e3181d8e8ed PMID: 20508450

120. Wragg CB, Maxwell NS, Doust JH. Evaluation of the reliability and validity of a soccer-specific field test of repeated sprint ability. Eur J Appl Physiol. 2000; 83: 77–83. https://doi.org/10.1007/s004210000246 PMID: 11072777

121. Brahim MB, Mohamed A, Shalfawi SA. The evaluation of soccer players’ performance on different repeated sprint testes: Training and testing implications. Kinesiologia Slovenica. 2016; 22: 49–63.

122. FIFA. International Federation of Association Football (FIFA). FIFA Marketing Research. Retrieved from https://www.fifa.com/about-fifa/news/y=2010/m=12/news=fifa-marketing-research-1354721.html. Updated April 24, 2015.; 2015.

123. Di Salvo V, Baron R, González-Haro C, Gormasz C, Pigozzi F, Bachl N. Sprinting analysis of elite soccer players during European Champions League and UEFA Cup matches. J Sports Sci. 2010; 28: 1489–1494. https://doi.org/10.1080/02640414.2010.521166 PMID: 20149314

124. Taylor JM, Macpherson TW, Spears IR, Weston M. Repeated Sprints: An Independent Not Dependent Variable. Int J Sports Physiol Perform. 2016; 11: 693–696. https://doi.org/10.1123/ijssp.2016-0081 PMID: 27197118

125. Schimpchen J, Skorski S, St. Nopp, Meyer T. Are “classical” tests of repeated-sprint ability in football externally valid? A new approach to determine in-game sprinting behaviour in elite football players. J Sports Sci. 2016; 34: 519–526. https://doi.org/10.1080/02640414.2015.1112023 PMID: 26580089

126. Dawson B. Repeated-Sprint Ability: Where Are We. Int J Sports Physiol Perform. 2012; 7: 285–289. https://doi.org/10.1123/ijssp.7.3.285 PMID: 22930690

127. Haugen T, Seiler S. Physical and physiological testing of soccer players: why, what and how should we measure. Sportsmedicine. 2015; 10–26.

128. Chauvachi A, Manzi V, Chaalaal A, Wong DP, Chamari K, Castagna C. Determinants analysis of change-of-direction ability in elite soccer players. Journal of Strength and Conditioning Research. 2012; 26: 2667–2676. https://doi.org/10.1519/JSC.0b013e318242f97a PMID: 22124358

129. Sheppard JM, Young WB, Doyle TLA, Sheppard TA, Newton RU. An evaluation of a new test of reactive agility and its relationship to sprint speed and change of direction speed. J Sci Med Sport. 2006; 9: 342–349. https://doi.org/10.1016/j.jsams.2006.05.019 PMID: 16844413

130. Nimphius S, Callaghan SJ, Bezodis NE, Lockie RG. Change of Direction and Agility Tests. Challenging Our Current Measures of Performance. Strength and Conditioning Journal. 2018; 40: 26–38. https://doi.org/10.1519/SSC.000000000000309

131. Benvenuti C, Minganti C, Condello G, Capranica L, Tessitore A. Agility assessment in female futsal and soccer players. Medicina (Kaunas). 2010; 46: 415–420.
133. Gabbett TJ, Carius J, Mulvey M. Does improved decision-making ability reduce the physiological demands of game-based activities in field sport athletes. The Journal of Strength & Conditioning Research. 2008; 22: 2027–2035.

134. González-Villora S, Serra-Olives J, Pastor-Vicedo JC, Da Costa IT. Review of the tactical evaluation tools for youth players, assessing the tactics in team sports: football. Springerplus. 2015; 4: 663. https://doi.org/10.1186/s40064-015-1462-0 PMID: 26558166

135. Young W, Farrow D. The Importance of a Sport-Specific Stimulus for Training Agility. Strength and Conditioning Journal. 2013; 35: 39–43. https://doi.org/10.1519/SSC.0b013e31828b6654

136. Pyne DB, Spencer M, Mujika I. Improving the value of fitness testing for football. Int J Sports Physiol Perform. 2014; 9: 511–514. https://doi.org/10.1123/ijsspp.2013-0453 PMID: 24231433

137. Terwee CB, Mokkink LB, Knol DL, Ostelo RW, Bouter LM, Vet HC de. Rating the methodological quality in systematic reviews of studies on measurement properties: a scoring system for the COSMIN checklist. Qual Life Res. 2011; 21: 651–657. https://doi.org/10.1007/s11136-011-9960-1 PMID: 21732199

138. Chiwaridzo M, Oorschot S, Dambi JM, Ferguson GD, Bonney E, Mudawarima T, et al. A systematic review investigating measurement properties of physiological tests in rugby. BMC Sports Sci Med Rehabil. 2017; 9: 24. https://doi.org/10.1186/s13102-017-0081-1 PMID: 29299317

139. Slimani M, Nikolaidis PT. Anthropometric and physiological characteristics of male Soccer players according to their competitive level, playing position and age group: a systematic review. The Journal of sports medicine and physical fitness. 2017. https://doi.org/10.23736/S0022-4707.17.07950-6

140. Mendez-Villanueva A, Buchheit M. Football-specific fitness testing: adding value or confirming the evidence. J Sports Sci. 2013; 31: 1503–1508. https://doi.org/10.1080/02640414.2013.823231 PMID: 23978073

141. Simperingham KD, Cronin JB, Ross A. Advances in Sprint Acceleration Profiling for Field-Based Team-Sport Athletes: Utility, Reliability, Validity and Limitations. Sports Medicine. 2016; 46: 1619–1645. https://doi.org/10.1007/s40279-016-0508-y PMID: 26914267

142. Darrall-Jones JD, Jones B, Roe G, Till K. Reliability and Usefulness of Linear Sprint Testing in Adolescent Rugby Union and League Players. Journal of Strength and Conditioning Research. 2016; 30: 1359–1364. https://doi.org/10.1519/JSC.0000000000001233 PMID: 26466131

143. Hopkins WG. How to interpret changes in an athletic performance test. Sport sci. 2004: 1–7.

144. Haugen TA. Sprint conditioning of elite soccer players: Worth the effort or let's just buy faster players. Sport Performance & Science Reports. 2017; 1: 1–2.

145. Barbero-Álvarez JC, Boullosa D, Nakamura FY, Andrín G, Weston M. Repeated Acceleration Ability (RAA). A New Concept with Reference to Top-Level Field and Assistant Soccer Referees. Asian J Sports Med. 2013; 5: 63–66. PMID: 24868433