Global analysis of neutrino masses, mixings and phases:
entering the era of leptonic CP violation searches

G.L. Fogli,1,2 E. Lisi,2 A. Marrone,1,2 D. Montanino,3,4 A. Palazzo,5 and A.M. Rotunno1

1 Dipartimento Interateneo di Fisica “Michelangelo Merlin,” Via Amendola 173, 70126 Bari, Italy
2 Istituto Nazionale di Fisica Nucleare, Sezione di Bari, Via Orabona 4, 70126 Bari, Italy
3 Dipartimento di Matematica e Fisica “Ennio De Giorgi,” Via Arnesano, 73100 Lecce, Italy
4 Istituto Nazionale di Fisica Nucleare, Sezione di Lecce, Via Arnesano, 73100 Lecce, Italy
5 Cluster of Excellence, Origin and Structure of the Universe,
Technische Universität München, Boltzmannstraße 2, D-85748 Garching, Germany

We perform a global analysis of neutrino oscillation data, including high-precision measurements of
the neutrino mixing angle θ_{13} at reactor experiments, which have confirmed previous indications
in favor of $\theta_{13} > 0$. Recent data presented at the Neutrino 2012 Conference are also included. We
focus on the correlations between θ_{13} and the mixing angle θ_{23}, as well as between θ_{13} and the
neutrino CP-violation phase δ. We find interesting indications for $\theta_{23} < \pi/4$ and possible hints for
$\delta \sim \pi$, with no significant difference between normal and inverted mass hierarchy.

I. INTRODUCTION

Current neutrino oscillation experiments (except for a few anomalous results) can be interpreted in a simple
three-neutrino framework, where the three flavor states $\nu_i = (\nu_e, \nu_\mu, \nu_\tau)$ are quantum superpositions of three light mass
states $\nu_i = (\nu_1, \nu_2, \nu_3)$ via a unitary mixing matrix $U_{\alpha i}$, parametrized in terms of three mixing angles $(\theta_{12}, \theta_{13}, \theta_{23})$ and
one possible CP-violating phase δ in standard notation [1,2].

In neutrino oscillations, CP violation is a genuine 3ν effect which may be observed (provided that $\delta \neq 0, \pi$) only if
all the mixings θ_{ij} and the squared mass differences $m_i^2 - m_j^2$ are nonzero [3]. The latter condition is experimentally
established, and can be expressed in terms of the two independent parameters $\delta m^2 = m_2^2 - m_1^2 > 0$ [1] and $\Delta m^2 =
(m_3^2 - (m_1^2 + m_2^2)/2)$ [4], where $\Delta m^2 > 0$ (< 0) corresponds to normal (inverted) mass spectrum hierarchy.

Until very recently, the further condition $\theta_{13} \neq 0$ could be considered as established for θ_{12} and θ_{23} [4], and quite likely
(at $\sim 3 \sigma$ level) but not conclusively settled for θ_{13} [5]. This year, the short-baseline (SBL) reactor experiments Daya
Bay [6] and RENO [7] have definitely established that $\theta_{13} > 0$ at $\sim 5 \sigma$, by observing ν_e disappearance from near to far
detectors. In particular, Daya Bay and RENO have measured $\sin^2 2\theta_{13} \simeq 0.023 \pm 0.003$ [8] and $\sin^2 2\theta_{13} \simeq 0.029 \pm 0.006$
[9], respectively. Consistent indications were also found in the Double Chooz reactor experiment with far detector
$\sin^2 2\theta_{13} \simeq 0.028 \pm 0.010$ [10]. All these reactor data are in good agreement with the results of our latest
global analysis of oscillation data in [5], which provided $\sin^2 2\theta_{13} = 0.021-0.025$ at best fit, with a 1σ error of ± 0.007.

It should be remarked that we had previously obtained hints in favor of $\sin^2 2\theta_{13} \sim 0.02$ from a detailed analysis of
solar and long-baseline reactor data [12,13] (see also [14] for similar, independent hints), consistently with an earlier
(weak) preference for $\theta_{13} > 0$ from atmospheric neutrinos [4,13]. The hints became a $\sim 2\sigma$ indication for $\theta_{13} > 0$ in combination with early appearance data from the MINOS long-baseline accelerator experiment [13], and provided a
$> 3 \sigma$ evidence by including the remarkable low-background appearance data from the T2K experiment [5]. The Daya
Bay and RENO measurements have shown that our global 3ν analyses in [5,12,13]—the latest of a series started
two decades ago [16]—were on the right track in the hunt to θ_{13}. See also [17,19] for other recent analyses of θ_{13}
constraints prior to the Daya Bay and RENO results.

With $\sin^2 2\theta_{13}$ as large as $2 \cdot 3 \times 10^{-2}$, the door is open to CP violation searches in the neutrino sector, although the
road ahead appears to be long and difficult [20,21]. At present, it makes sense to squeeze, from the available data,
youry bit of the road ahead appears to be long and difficult [20,21]. At present, it makes sense to squeeze, from the available data,
youry bit of the road ahead appears to be long and difficult [20,21]. At present, it makes sense to squeeze, from the available data,
youry bit of the road ahead appears to be long and difficult [20,21]. At present, it makes sense to squeeze, from the available data,
youry bit of the road ahead appears to be long and difficult [20,21]. At present, it makes sense to squeeze, from the available data,
youry bit of the road ahead appears to be long and difficult [20,21]. At present, it makes sense to squeeze, from the available data,
II. METHODOLOGY: GROUPING AND ANALYZING DIFFERENT DATA SETS

No single oscillation experiment can sensitively probe, at present, the full parameter space spanned by \((\delta m^2, \pm \Delta m^2, \theta_{12}, \theta_{13}, \theta_{23}, \delta)\). Therefore, it is necessary to group in some way the experimental data, in order to study their impact on the oscillation parameters. For instance, in \([5]\) we showed that consistent indications in favor of nonzero \(\theta_{13}\) emerged from two different datasets, one mainly sensitive to \(\delta m^2\) (solar plus KamLAND experiments) and another mainly sensitive to \(\Delta m^2\) (CHOOZ plus atmospheric and LBL accelerator experiments). In this work we adopt an alternative grouping of datasets, which is more appropriate to discuss interesting features of the current data analysis, such as the covariance among the parameters \((\sin^2 \theta_{13}, \sin^2 \theta_{23}, \delta)\) in both mass hierarchies.

A. LBL + solar + KamLAND data

We remind that LBL accelerator data (from the K2K, T2K, and MINOS experiments) in the \(\nu_\mu \rightarrow \nu_\mu\) disappearance channel probe dominantly the \(\Delta m^2\)-driven amplitude

\[
|U_{\mu 3}|^2 (1 - |U_{\mu 3}|^2) = \cos^2 \theta_{13} \sin^2 \theta_{23} (1 - \cos^2 \theta_{13} \sin^2 \theta_{23}) ,
\]

which is slightly octant-asymmetric in \(\theta_{23}\) for \(\theta_{13} \neq 0\). In the \(\nu_\mu \rightarrow \nu_e\) appearance channel, the dominant \(\Delta m^2\)-driven amplitude is

\[
|U_{\mu 3}|^2 |U_{e 3}|^2 = \cos^2 \theta_{13} \sin^2 \theta_{13} \sin^2 \theta_{23} ,
\]

which is definitely octant-asymmetric in \(\theta_{23}\) for \(\theta_{13} \neq 0\). In both the appearance and the disappearance channels, subdominant terms driven by \(\delta m^2\) and by matter effects can also contribute to lift the octant symmetry and to provide some weak sensitivity to \(\text{sign}(\Delta m^2)\) and to \(\delta\), see e.g. \([24]\) for a recent perturbative approach at “large” \(\theta_{13}\).

As already noted in \([5]\), the T2K and MINOS indications in favor of \(\nu_\mu \rightarrow \nu_e\) appearance induce an anti-correlation, via Eq. (2), between the preferred values of \(\sin^2 \theta_{23}\) and \(\sin^2 \theta_{13}\). This covariance is relevant in the analysis of the \(\theta_{23}\) octant degeneracy \([25]\) and has an indirect impact also on the preferred ranges of \(\delta\) via subdominant effects.

In order to make the best use of LBL accelerator data, it is thus useful to: (1) analyze both disappearance and appearance data at the same time and in a full 3\(\nu\) approach; (2) combine LBL with solar and KamLAND data, which provide independent constraints on \((\delta m^2, \theta_{12}, \theta_{13})\) and thus on the subdominant \(3\nu\) oscillation terms. As discussed below, once the (relatively well known) oscillation parameters \(\sin^2 \theta_{12}, \delta m^2\) and \(\Delta m^2\) are marginalized away, interesting correlations emerge among the remaining parameters \((\sin^2 \theta_{13}, \sin^2 \theta_{23}, \delta)\). Conversely, these interesting bits of information are partly lost if LBL disappearance data are analyzed in the 2\(\nu\) approximation and/or separately from appearance data, as it has often been the case in official analyses by experimental collaborations.

In this work, the previous LBL data used in \([5]\) are updated with the inclusion of the first T2K disappearance constraints \([26]\) and of the latest T2K appearance data \([27]\). We note that recent MINOS \(\nu_\mu\) disappearance data \([28]\) are no longer in disagreement with previous \(\nu_\mu\) results. Therefore, it makes sense to use both \(\nu\) and \(\bar{\nu}\) MINOS disappearance constraints, which we take from \([23]\), together with updated MINOS appearance data. For later purposes, we note that recent T2K and (especially) MINOS data are best fit for slightly nonmaximal mixing \((\sin^2 2\theta_{23} \approx 0.94–0.98\) \([26, 28, 29]\) roughly corresponding to the octant-symmetric values \(\sin^2 \theta_{23} \approx 0.4\) or \(0.6)\). A slight preference for nonmaximal mixing emerged also from our analysis of K2K LBL data in \([5]\).

B. Adding SBL reactor data

After grouping LBL accelerator plus solar plus KamLAND data (LBL + solar + KamLAND), it is important to add the independent and “clean” constraints on \(\theta_{13}\) coming from SBL reactor experiments in the \(\nu_e \rightarrow \nu_e\) disappearance channel, which probe dominantly the \(\Delta m^2\)-driven amplitude

\[
|U_{e 3}|^2 (1 - |U_{e 3}|^2) = \sin^2 \theta_{13} \cos^2 \theta_{13} .
\]

In the reactor dataset, subdominant terms are slightly sensitive to \((\delta m^2, \theta_{12})\) and, as noted in \([30]\) and discussed in \([31]\), probe also the neutrino mass hierarchy. We include far-detector data from CHOOZ \([32]\) and Double Chooz \([11]\) and near-to-far detector constraints from Daya Bay \([8]\) and RENO \([7, 9]\). We do not include data from pre-CHOOZ reactor experiments, which mainly affect normalization issues.

Indeed, the analysis of reactor experiments without near detectors depends, to some extent, on the absolute normalization of the neutrino fluxes, which we choose to be the “old” (or “low”) one, in the terminology of \([5]\). We shall also comment on the effect of adopting the “new” (or “high”) normalization recently proposed in \([33, 34]\). Constraints from Daya Bay and RENO are basically independent of such normalization, which is left free in the official analyses and is largely canceled by comparing near and far rates of events \([4, 5]\). At present, it is not possible to reproduce,
from published information, the official Daya Bay and RENO data analyses with the permill accuracy appropriate to deal with the small systematics affecting near/far ratios. We think that, for the purposes of this work, it is sufficient to take their measurements of \(\sin^2 2\theta_{13} \) at face value, as gaussian constraints on such parameter. Luckily, such constraints appear to depend very little on the \(\Delta m^2 \) parameter within its currently allowed range; see the \((\Delta m^2, \sin^2 2\theta_{13}) \) prospective sensitivity plots in [25] (Daya Bay) and [36] (RENO). Of course, a joint analysis of all SBL reactor data made by the current collaborations would be desirable, since a few systematics are correlated among the experiments.

As shown in [27], LBL data in disappearance and appearance mode generally select [via Eqs. (1) and (2)], two degenerate \((\theta_{23}, \theta_{13})\) solutions, characterized by nearly octant-symmetric values of \(\theta_{23} \) and by slightly different values of \(\theta_{13} \). By selecting a narrow range of \(\theta_{13} \), precise reactor data can thus (partly) lift the \(\theta_{23} \) octant degeneracy [27] (see also [37]). Amusingly, the fit results in Sec. III resemble the hypothetical, qualitative 3\(\nu \) scenario studied in [27].

C. Atmospheric neutrino data

After combining the (LBL + solar + KamLAND) and (SBL reactor) datasets, we finally add the Super-Kamiokande atmospheric neutrino data (SK atm.), as reported for the joint SK phases I–IV in [38] (but with no statistical \(\nu/\bar{\nu} \) separation [38], which we cannot reproduce in detail). The SK data span several decades in neutrino and antineutrino energy and pathlengths, both in vacuum and in matter, in all appearance and disappearance channels involving \(\nu_\mu \) and \(\nu_e \), and thus they embed an extremely rich 3\(\nu \) oscillation physics.

In practice, it is difficult to infer—from atmospheric data—clean 3\(\nu \) information beyond the dominant parameters \((\Delta m^2, \theta_{23})\). Subdominant oscillation effects are often smeared out over wide energy-angle spectra of events, and can be partly mimicked by systematic effects. For this reason, “hints” coming from current atmospheric data should be taken with a grain of salt, and should be possibly supported by independent datasets. For instance, we have attributed some importance to a weak preference for \(\theta_{13} > 0 \) found from atmospheric SK data in [4], only after it was independently supported by solar+KamLAND data [13] and, later, by LBL accelerator data [5]. Similarly, we have typically found a preference of atmospheric SK data for \(\theta_{23} < \pi/4 \) [4, 5]; in the next Section, we shall argue that such preference now finds some extra support in other datasets, and thus starts to be an interesting frontier to be explored.

The situation is more vague for \(\delta \). We argued in [4] (and also found in [3]) that a slight electron excess in the atmospheric event spectra at sub-GeV energies could be better fit with \(\cos \delta = -1 \) as compared with \(\cos \delta = +1 \), via interference terms [4, 23] in the oscillation probability. Since the analyses in [4, 5] were limited to the two CP-conserving cases \(\cos \delta = \pm 1 \), we have now extended our atmospheric neutrino codes to generic values of \(\delta \) in the oscillation probability; details are given in the Appendix. We continue to find a preference for \(\cos \delta \sim -1 \), as described in the next Section. This possible hint for \(\delta \sim \pi \) is roughly consistent with the SK official (although preliminary) analyses in [38, 39], but is not clearly matched by a similar hint coming from other data. This is another reason for choosing to present atmospheric constraints only after the discussion of other datasets. In conclusion, we think that is methodologically useful to show, in sequence, the impact of data from (LBL + solar + KamLAND), plus (SBL reactors), plus (SK atm.) experiments on the neutrino oscillation parameters.

D. Limitations and challenges of global analyses

Our global analyses offer contributions to the discussion on the neutrino oscillation phenomenology, but should not be considered as a substitute for the official oscillation analyses performed by the experimental collaborations, which include unpublished or unreproducible information. Therefore, our estimated parameter ranges may be slightly offset with respect to those estimated by the collaborations in dedicated 3\(\nu \) data analyses (when available). Our educated guess is that possible offsets are < 1σ at present, and often much lower. Of course, even a fraction of one standard deviation may matter when discussing hints at or below the 2σ level, as done in the next Section. However, the success story of the indications of \(\theta_{13} > 0 \) [4, 13] shows that discussions of ~ 2σ effects may still have some interest.

Global 3\(\nu \) analyses will face several new challenges in the near future. As already remarked, a joint analysis of all reactor data with near and far detectors (Daya Bay, RENO, Double Chooz) will be useful to get the most stringent constraints on \(\theta_{13} \). The T2K and MINOS long-baseline accelerator experiments are urged to abandon any 2\(\nu \) approximation in the interpretation of their (disappearance) data, and focus on full-fledged 3\(\nu \) combinations of appearance plus disappearance data. Increasing attention should be paid to refined features of the LBL analysis, such as the impact of cross section assumptions on the oscillation parameter ranges [40]. Future solar and long-baseline reactor data might slightly reduce the uncertainties of the \((\theta_{12}, \Delta m^2)\) parameters, which drive subleading oscillation terms at higher energies. Concerning atmospheric \(\nu/\bar{\nu} \) and their associated systematics, we think that, while waiting for future large-volume detectors and data, the existing SK atmospheric data have not yet exhausted their physics potential; dedicated 3\(\nu \) analyses from the SK collaboration might reveal intriguing indications on \(\theta_{23} \) and on \(\delta \), especially if their Monte Carlo simulations were reprocessed by assuming full, unaveraged 3\(\nu \) oscillations from the very beginning (rather than re-weighting unoscillated simulations with factors embedding averaged oscillations [41]).
III. RESULTS: CORRELATIONS BETWEEN θ_{13}, θ_{23} AND δ

In this section we focus on two emerging features of our analysis: converging hints in favor of $\theta_{23} < \pi/4$, and a possible (weak) hint in favor of $\delta \sim \pi$. The correlations of θ_{23} and δ with θ_{13} are discussed in some detail. As in our previous works [4, 5], allowed regions are shown at $N\sigma$ confidence levels, where $N\sigma = \sqrt{\chi^2}$ [1]. It is understood that, in each figure, undisplayed oscillation parameters have been marginalized away.

Figure 1 shows the results of the analysis in the plane ($\sin^2 \theta_{13}$, $\sin^2 \theta_{23}$), for both normal hierarchy (NH, upper panels) and inverted hierarchy (IH, lower panels). From left to right, the panels refer to increasingly rich datasets: LBL accelerator + solar + KamLAND data (left), plus SBL reactor data (middle), plus SK atmospheric data (right).

In the left panels, LBL appearance data anti-correlate $\sin^2 \theta_{13}$ and $\sin^2 \theta_{23}$ via Eq. (2). On the other hand, LBL disappearance data (via their current preference for $\sin^2 2\theta_{23} < 1$) disfavor maximal mixing at $\gtrsim 1\sigma$. As a consequence, two quasi-degenerate χ^2 minima emerge at complementary values of $\sin^2 \theta_{23}$ and at somewhat different values of θ_{13}. The degeneracy is slightly lifted by solar+KamLAND data, whose preference for $\sin^2 \theta_{13} \simeq 0.02$ [3] picks up the first octant solution in NH, and the second octant solution in IH. However, as far as LBL+reactor+KamLAND data are concerned, the statistical difference between the two θ_{23} solutions remains negligible ($\lesssim 0.3\sigma$) in both NH and IH.

In the middle panels, the addition of SBL reactor data (most notably from Daya Bay and RENO) fixes $\sin^2 \theta_{13}$ with high accuracy and at relatively “large” values, which are best matched at low θ_{23}—hence the overall preference for the first θ_{23} octant in both hierarchies. Such preference is more pronounced in NH (at the level of $\sim 1\sigma$). In IH, both T2K and MINOS appearance data can accommodate values of θ_{13} generally larger than in NH [27, 29, 42, 43] (as also evident from the left panels), so that the agreement with SBL reactor data can be easily reached in both octants, with only a small preference ($\sim 0.4\sigma$) for the first. The combination of LBL accelerator and SBL reactor data to lift the octant degeneracy was proposed in [23].

In the right panels, atmospheric ν data do not noticeably improve the constraints on θ_{13}, but corroborate the preference for the first octant (as already found in [4, 5]), in both NH (slightly below the 3$sigma$ level) and IH (slightly below the 2$sigma$ level). [We do not observe an octant flip with the hierarchy as in [38].] In conclusion, from Fig. 1 we derive that both atmospheric and non-atmospheric ν data seem to prefer, independently, the first octant of θ_{23} (especially in normal hierarchy), with a combined statistical significance $\lesssim 3\sigma$ in NH and $\lesssim 2\sigma$ in IH.

![Figure 1: Results of the analysis in the plane charted by ($\sin^2 \theta_{13}$, $\sin^2 \theta_{23}$), all other parameters being marginalized away. From left to right, the regions allowed at 1, 2 and 3σ refer to increasingly rich datasets: LBL+reactor+KamLAND data (left panels), plus SBL reactor data (middle panels), plus SK atmospheric data (right panels). Best fits are marked by dots. A preference emerges for θ_{23} in the first octant in both normal hierarchy (NH, upper panels) and inverted hierarchy (IH, lower panels).](image)
Figure 2 shows the results of the analysis in the plane $(\sin^2 \theta_{13}, \delta)$. The conventions used are the same as in Fig. 1. Since the boundary values $\delta/\pi = 0$ and 2 are physically equivalent, each panel could be ideally “curled” by smoothly joining the upper and lower boundaries.

In the left panels, constraints on $\sin^2 \theta_{13}$ are placed both by solar+KamLAND data (independently of δ) and by current LBL accelerator data (somewhat sensitive to δ). Once more, it can be noted that larger values of θ_{13} are allowed in IH. The best fit points are not statistically relevant, since all values of δ provide almost equally good fits at $\sim 1\sigma$ level. The “fuzziness” of the 1σ contours is a consequence of the statistical degeneracy of the two solutions allowed at 1σ in Fig. 1, and which involve complementary values of θ_{23} and somewhat different values of θ_{13}. At 1σ, the fit is “undecided” between the wavy bands at smaller and larger values of θ_{13}, and easily flips between them. At 2 or 3σ the two bands merge and such degeneracy effects are no longer apparent.

In the middle panels, SBL reactor data pick up a very narrow range of θ_{13} and suppress degeneracy effects. Some sensitivity to δ starts to emerge, since the “wiggles” of the bands in the left panel best match the δ/π level. The “fuzziness” of the 1σ bands starts to emerge, since the “wiggles” of the bands in the left panel best match the δ/π level. Such a preference is consistent with our previous analyses limited to $\cos \theta_{13}$ (mainly from SK atm. data), and no hint about the mass hierarchy.

Concerning the hierarchy, in the middle panels of Figs. 1 and 2 (all data but SK atm.) we find a slight preference for IH with respect to NH ($\Delta \chi^2 \approx -0.38$). The situation is reversed in the right panels (all data, including SK atm.), where NH is slightly favored ($\Delta \chi^2 \approx +0.35$). These fluctuations between NH and IH fits are statistically irrelevant. We conclude that, in our analysis of oscillation data, there are converging hints in favor of $\theta_{23} < \pi/4$ (especially in NH), a possible hint in favor of $\delta \sim \pi$ (mainly from SK atm. data), and no hint about the mass hierarchy.

In the right panels, atmospheric neutrino data induce a preference for $\delta \sim \pi$, although all values of δ are still allowed at $\sim 2\sigma$. Such a preference is consistent with our previous analyses limited to $\cos \theta_{13} = \pm 1$ [4, 5], where we found $\delta = \pi$ preferred over $\delta = 0$, in both normal and inverted hierarchy. As discussed in [4], for $\delta \sim \pi$ the interference term in the oscillation probability provide some extra electron appearance in the sub-GeV atmospheric neutrino data, which helps fitting the slight excess of electron-like events in this sample. In our opinion, atmospheric data can provide valuable indications about the phase δ, which may warrant dedicated analyses by the SK experimental collaboration, especially in combination with data from the T2K collaboration, which uses SK as far detector and thus shares some systematics related to final state reconstruction and analysis.

We conclude that, in our analysis of oscillation data, there are converging hints in favor of $\theta_{23} < \pi/4$ (especially in NH), a possible hint in favor of $\delta \sim \pi$ (mainly from SK atm. data), and no hint about the mass hierarchy.
In this section we summarize the previous results in terms of one-parameter constraints, all the others being marginalized away. We also show updated oscillation constraints on the main absolute mass observables [44, 45], namely, the effective electron neutrino mass m_β (probed in β decay), the effective Majorana mass (probed in $0\nu2\beta$ decay searches), and the sum of neutrino masses Σ, which can be probed by precision cosmology.

Figure 3 shows the $N\sigma$ bounds on the 3ν oscillation parameters. Blue (solid) and red (dashed) curves refer to NH and IH, respectively. The curves are expected to be linear and symmetric around the best fit only for gaussian uncertainties. This is nearly the case for the squared mass differences δm^2 and Δm^2, and for the mixing parameters $\sin^2 \theta_{12}$ and $\sin^2 \theta_{13}$. The bounds on $\sin^2 \theta_{23}$ are rather skewed towards the first octant, which is preferred at $\lesssim 2\sigma$ in NH and $\lesssim 3\sigma$ in IH. Also the probability distribution of δ is highly nongaussian, with some preference for δ close to π, but no constraint above $\sim 2\sigma$. As expected, there are no visible differences between the NH and IH curves for the parameters δm^2 and $\sin^2 \theta_{12}$, and only minor variations for the the parameters Δm^2 and $\sin^2 \theta_{13}$. More pronounced (but $\lesssim 1\sigma$) differences between NH and IH curves can be seen for $\sin^2 \theta_{23}$ and, to some extent, for δ.

Synopsis of global 3ν oscillation analysis

FIG. 3: Results of the global analysis in terms of $N\sigma$ bounds on the six parameters governing 3ν oscillations. Blue (solid) and red (dashed) curves refer to NH and IH, respectively.
Table I reports the bounds shown in Fig. 3 in numerical form. Except for δ, the oscillation parameters are constrained with significant accuracy. If we define the average 1σ fractional accuracy as 1/6th of the ±3σ variations around the best fit, then the parameters are globally determined with the following relative precision (in percent): δm^2 (2.6%), Δm^2 (3.0%), $\sin^2 \theta_{12}$ (5.4%), $\sin^2 \theta_{13}$ (10%), and $\sin^2 \theta_{23}$ (14%).

Table I reports the bounds shown in Fig. 3 in numerical form. Except for δ, the oscillation parameters are constrained with significant accuracy. If we define the average 1σ fractional accuracy as 1/6th of the ±3σ variations around the best fit, then the parameters are globally determined with the following relative precision (in percent): δm^2 (2.6%), Δm^2 (3.0%), $\sin^2 \theta_{12}$ (5.4%), $\sin^2 \theta_{13}$ (10%), and $\sin^2 \theta_{23}$ (14%).

A final remark is in order. As noted in Sec. II B, two alternative choices were used in [5] for the absolute reactor flux normalization, named as “old” and “new,” the latter being motivated by revised flux calculations. Constraints were shown in [5] for both old and new normalization, resulting in somewhat different values of θ_{12} and θ_{13}. The precise near/far data ratio constraints from Daya Bay [6, 8] and RENO [7, 9] are largely independent of such normalization issues, which persists only for the reactor data without near detector (i.e., KamLAND, CHOOZ and Double Chooz data in this work), with very small effects on the global fit. For the sake of precision, we remark that the values in Table I refer to our fit using the “old” normalization for KamLAND, CHOOZ and Double Chooz. By using the “new” normalization, the only noticeable effects would be the following overall shifts, with respect to the numbers in Table I: $\Delta \sin^2 \theta_{12}/10^{-1} \simeq +0.05$ and $\Delta \sin^2 \theta_{13}/10^{-2} \simeq +0.08$ (i.e., at the level of $\sim 1/3$ of a standard deviation).

![Figure 4](image-url)
Let us now discuss the interplay of oscillation and nonoscillation data. The constraints in Table I induce strong covariances among the three main observables which are sensitive to the absolute masses, namely, \(m_\beta \), \(m_\beta \) and \(\Sigma \) (see \([44, 45]\) for notation). Figure 4 shows such covariances in terms of 2\(\sigma \) constraints (bands) in the planes charted by any couple of the absolute mass observables. As compared to previous results \([44, 45]\), the bands in the \((m_\beta, \Sigma)\) plane of Fig. 4 are narrower, due to the higher accuracy reached in the determination of all the oscillation parameters. Note that, in principle, precise measurements of \((m_\beta, \Sigma)\) in the sub-eV range (where the bands for NH and IH branch out) could determine the mass spectrum hierarchy. In the two lower panels of Fig. 4, there remains a large vertical spread in the allowed slanted bands, as a result of the unknown Majorana phases in the \(m_\beta \) components, which may interfere either constructively (upper part of each band) or destructively (lower part of each band). In principle, precise data in either the \((m_\beta, m_\beta)\) plane or the \((m_\beta, \Sigma)\) plane might thus provide constraints on the Majorana phases.

Progress in constraining the neutrino mass and mixing parameters will hopefully lead to a deeper understanding of their origin. Theoretical options range from “accidental” parameter values with no special significance or structure \([46]\) to “special” values pointing towards underlying symmetries \([47]\), just to name a few possibilities in the vast literature on models. Precision measurements of neutrinos masses, mixings and phases will provide valuable information to narrow this wide theoretical spectrum.

V. CONCLUSIONS

We have performed a global analysis of neutrino oscillation data, including recent, high-precision measurements of the neutrino mixing angle \(\theta_{13} \) at reactor experiments (which have confirmed previous indications in favor of \(\theta_{13} > 0 \) \([5, 13]\)) and updated data released at the Neutrino 2012 Conference \([2]\). We have explored the current correlations between the mixing parameters \(\sin^2 \theta_{13} \) and \(\sin^2 \theta_{23} \), as well as between \(\sin^2 \theta_{13} \) and the CP-violation phase \(\delta \). We have found some interesting indications in favor of \(\theta_{23} < \pi/4 \) (at \(\lesssim 3\sigma \) in NH and \(\lesssim 2\sigma \) in IH), as well as possible hints of \(\delta \sim \pi \), but no significant difference between normal and inverted mass hierarchy. We surmise that full-fledged 3\(\nu \) analyses of LBL and atmospheric neutrino data by the experimental collaborations would be very useful to better assess the statistical relevance of these possible hints.

Note added. After this work was basically completed, we noted the results of another analysis including recent reactor data \([48]\). Some differences with our results emerge in the favored ranges for \(\theta_{23} \) and \(\delta \): they might be due, in part, to a different approach to atmospheric neutrino oscillations (which, in our case, do include \(\delta m^2 \) and \(\delta \) effects). We also noted the preliminary results of the full 3\(\nu \) global analysis in \([49]\), where \(\theta_{23} < \pi/4 \) is also preferred.

Acknowledgments

The authors acknowledge support by the Italian MIUR and INFN through the “Astroparticle Physics” research project. The work of A.P. is supported by the DFG Cluster of Excellence on the “Origin and Structure of the Universe.” Preliminary results of this work were presented by G.L.F. at the Workshop “NuTurn 2012” held at INFN Laboratori Nazionali del Gran Sasso (Italy), at the Meeting “European Strategy for Neutrino Oscillation Physics - II” held at CERN, at the Meeting “Rencontres de Blois 2012” held in Blois (France), and at the Conference “Neutrino 2012” held in Kyoto (Japan).

Appendix: Atmospheric neutrino flavor evolution for generic \(\delta \)

Atmospheric neutrinos traverse the atmosphere and several Earth shells before being detected. We adopt a five-shell approximation of the electron density \(N \) in the Earth, in which each \(j \)-th cell has sharp edge discontinuities and a mild dependence \(N_j(r) \) in terms of the normalized radial distance \(r \) from the Earth center \([50]\), that can be well approximated by a quartic polynomial \([51]\)

\[N_j(r) = \alpha_j + \beta_j r^2 + \gamma_j r^4 , \]

(A.1)

where the coefficients \(\alpha_j \), \(\beta_j \) and \(\gamma_j \) are given in Table I of \([51]\).

The evolution operator for atmospheric neutrinos can be written as the product of the evolution operator in each shell chord

\[\mathcal{T}_{\text{Earth}} = \mathcal{T} (P_0P_1) \cdot \mathcal{T} (P_1P_2) \cdot \ldots \cdot \mathcal{T} (P_{M-1}P_M) \cdot \mathcal{T}_V (P_MP_A) , \]

(A.2)
where \(P_0 \) is the detection point, \(M \) the number of shells crossed by neutrinos and \(P_A \) the production point in atmosphere. The last operator embeds the propagation in atmosphere, governed by the “vacuum” Hamiltonian \(\mathcal{H}_v \). Notice that for a real Hamiltonian the calculation of \(\mathcal{T}_{\text{Earth}} \) can be further simplified using the symmetry properties of the electron density along the neutrino path inside the Earth (see appendix B of [51]). This property is no longer valid when the neutrino mixing matrix is not real, i.e., \(\delta_{CP} \neq 0, \pi \).

A first-order approximation for the evolution operator inside the \(k \)-th shell is to consider the electron density constant, and equal to the average along the shell chord

\[
\mathcal{T} (P_{k-1} P_k) = \exp \left[-i (\mathcal{H}_v + \mathcal{V}_k) \cdot D_k \right],
\]

where \(\mathcal{V}_k = \text{diag}\{\sqrt{2} G_F N_k, 0, 0\} \) is the matter potential, \(D_k \) the distance travelled by the neutrino inside the shell, and

\[
\mathcal{N}_k = \frac{1}{D_k} \int_{x_{k-1}}^{x_k} dx N_k \left(\sqrt{x^2 + \sin^2 \eta} \right),
\]

where

\[
r^2 = x^2 + \sin^2 \eta,
\]

\(\eta \) being the nadir angle of the neutrino direction. Handy subroutines for calculating exponentials of real or complex matrices can be found in the Expokit package [52]. With the parameterization of Eq. (A.1), the integral in Eq. (A.4) is elementary.

A more accurate flavor evolution (beyond the constant-density approximation) can be obtained by applying the Magnus expansion [53], where the evolution operator is written as the exponential of an operator series, namely

\[
\mathcal{T}(t) = \exp \left[\sum_{s=1}^{\infty} \Omega_s(t) \right],
\]

with

\[
\Omega_1(t) = -i \int_0^t dt_1 \mathcal{H}_1,
\]

\[
\Omega_2(t) = -\frac{1}{2} \int_0^t dt_1 \int_0^{t_1} dt_2 [\mathcal{H}_1, \mathcal{H}_2],
\]

\[
\Omega_3(t) = \frac{i}{6} \int_0^t dt_1 \int_0^{t_1} dt_2 \int_0^{t_2} dt_3 ([\mathcal{H}_1, [\mathcal{H}_2, \mathcal{H}_3]] + [\mathcal{H}_3, [\mathcal{H}_2, \mathcal{H}_1]]),
\]

and so on, where we have used the shorthand \(\mathcal{H}_i = \mathcal{H}(t_i) \). At first order, the Magnus expansion returns Eq. (A.3). At second order, it is \([\mathcal{H}_1, \mathcal{H}_2] = [\mathcal{H}_V, V(x_2) - V(x_1)]\]. Integrating by part, one obtains

\[
\mathcal{T} (P_{k-1} P_k) = \exp \left[-i \mathcal{H}_{k} \cdot D_k \right],
\]

with

\[
\mathcal{H}_{k} = \mathcal{H}_V + \mathcal{V}_k + i [\mathcal{H}_V, \mathcal{M}_k],
\]

where

\[
\mathcal{M}_k = \frac{1}{D_k} \int_{x_{k-1}}^{x_k} dx V(x) \left(x - \frac{x_{k-1} + x_k}{2} \right)
\]

is the “first moment” of the matter potential around the trajectory midpoint inside the \(k \)-th shell. By using Eq. (A.5) and the parameterization in Eq. (A.1), the integral in Eq. (A.10) is elementary.

Concerning the flavor evolution of atmospheric neutrinos, we have adopted the second-order Magnus expansion for generic (real or complex) Hamiltonian, and we have checked that this approximation retains all the advantages of a fast analytical solution, without introducing significant differences with respect to the more accurate (but slower) numerical integration along the Earth density profile. We have also checked that our codes reproduce well the oscillograms discussed in [54] (not shown).
[1] K. Nakamura and S.T. Petcov, “Neutrino mass, mixing, and oscillations,” in J. Beringer et al. (Particle Data Group), Phys. Rev. D 86, 010001 (2012).

[2] The status of neutrino oscillations has been recently reviewed in several presentations at *Neutrino 2012*, the XXV International Conference on Neutrino Physics and Astrophysics (Kyoto, Japan, 2012), available at the website: neu2012.kek.jp.

[3] N. Cabibbo, “Time Reversal Violation in Neutrino Oscillation,” Phys. Lett. B 72, 333 (1978).

[4] G. L. Fogli, E. Lisi, A. Marrone and A. Palazzo, “Global analysis of three-flavor neutrino masses and mixings,” Prog. Part. Nucl. Phys. 57, 742 (2006) [arXiv:hep-ph/0506083].

[5] G. L. Fogli, E. Lisi, A. Marrone, A. Palazzo and A.M. Rotunno, “Evidence of $\theta_{13} > 0$ from global neutrino data analysis,” Phys. Rev. D 84, 053007 (2011) [arXiv:1106.6028 [hep-ph]].

[6] F. P. An et al. [Daya-Bay Collaboration], “Observation of electron-antineutrino disappearance at Daya Bay,” Phys. Rev. Lett. 108, 171803 (2012) [arXiv:1203.1609 [hep-ex]].

[7] J. K. Ahn et al. [RENO Collaboration], “Observation of Reactor Electron Antineutrino Disappearance in the RENO Experiment,” Phys. Rev. Lett. 108, 191802 (2012) [arXiv:1204.0626 [hep-ex]].

[8] D. Dwyer [for the Daya-Bay Collaboration], talk at *Neutrino 2012* [2].

[9] S.-B. Kim [for the RENO Collaboration], talk at *Neutrino 2012* [2].

[10] Y. Abe et al. [Double Chooz Collaboration], “Observation of electron neutrino disappearance in the Double Chooz experiment,” Phys. Rev. Lett. 108, 131801 (2012) [arXiv:1112.6353 [hep-ex]].

[11] M. Ishitsuka [for the Daya Bay Collaboration], talk at *Neutrino 2012* [2].

[12] G.L. Fogli, E. Lisi, A. Marrone, A. Palazzo, and A.M. Rotunno, “What we (would like to) know about the neutrino mass,” in *J. Beringer* (Particle Data Group), *Phys. Rev. D* 85, 075007 (2007) [arXiv:0804.3345 [hep-ph]].

[13] G. L. Fogli, E. Lisi, A. Marrone, and M. M. Rotunno, “Hints of $\theta_{13} > 0$ from global neutrino data analysis,” Phys. Rev. Lett. 101, 141801 (2008) [arXiv:0806.2649 [hep-ph]].

[14] A. B. Balantekin and D. Yilmaz, “Contrasting solar and reactor neutrinos with a non-zero value of θ_{13},” J. Phys. G 35, 075007 (2008) [arXiv:0804.3345 [hep-ph]].

[15] G. L. Fogli, E. Lisi, A. Marrone, A. Palazzo and A. M. Rotunno, “SNO, KamLAND and neutrino oscillations: θ_{13},” in *Neutel 2008*, IV International Workshop on “Neutrino Oscillations in Venice” (Venice, Italy, April 15-18, 2008), edited by M. Baldo Ceolin (University of Padova, Papergraf Editions, Padova, Italy, 2008), p. 21; also available at: neutrino.pd.infn.it/NO-VE2008 [arXiv:0809.2936 [hep-ph]].

[16] G. L. Fogli, E. Lisi and D. Montanino, “A comprehensive analysis of solar, atmospheric, accelerator and reactor neutrino experiments in a hierarchical three generation scheme,” Phys. Rev. D 49, 3626 (1994).

[17] M. C. Gonzalez-Garcia, M. Maltoni and J. Salvado, “Updated global fit to three neutrino mixing: status of the hints of θ_{13},” JHEP 1004, 056 (2010) [arXiv:1001.4524 [hep-ph]].

[18] T. Schwetz, M. Tortola and J. W. F. Valle, “Where we are on θ_{13}: addendum to ‘Global neutrino data and recent reactor fluxes: status of three-flavour oscillation parameters’,” New J. Phys. 13, 109401 (2011) [arXiv:1108.1376 [hep-ph]].

[19] M. Maltoni, “Status of three-neutrino oscillations,” Proceedings of *EPS-HEP 2011*, Europhysics Conference on High Energy Physics, (Grenoble, France, 2011), published in PoS (EPS-HEP2011) 030, 2011.

[20] P. Huber, M. Lindner, T. Schwetz and W. Winter, “First hint for CP violation in neutrino oscillations from upcoming superbeam and reactor experiments,” JHEP 0911, 044 (2009) [arXiv:0907.1896 [hep-ph]].

[21] P. Coloma, A. Donini, E. Fernandez-Martinez and P. Hernandez, “Precision on leptonic mixing parameters at future neutrino oscillation experiments,” JHEP 1203, 055 (2012) [arXiv:1203.5651 [hep-ph]].

[22] P. A. N. Machado, H. Minakata, H. Nunokawa and R. Z. Funchal, “Combining Accelerator and Reactor Measurements of θ_{13}: The First Result,” JHEP 1205, 023 (2012) [arXiv:1211.3330 [hep-ph]]. See also the earlier paper by H. Minakata and H. Sugiyama, “Exploring leptonic CP violation by reactor and neutrino superbeam experiments,” Phys. Lett. B 580, 216 (2004) [hep-ph/0309323].

[23] O. L. G. Peres and A. Yu. Smirnov, “Atmospheric neutrinos: LMA oscillations, U_{e3} induced interference and CP violation,” Nucl. Phys. B 680, 479 (2004) [hep-ph/0309312].

[24] K. Asano and H. Minakata, “Large-θ_{13} Perturbation Theory of Neutrino Oscillation for Long-Baseline Experiments,” JHEP 1106, 022 (2011) [arXiv:1103.4387 [hep-ph]].

[25] G. L. Fogli and E. Lisi, “Tests of three flavor mixing in long baseline neutrino oscillation experiments,” Phys. Rev. D 54, 3667 (1996) [hep-ph/9604415].

[26] K. Abe et al. [T2K Collaboration], “First Muon-Neutrino Disappearance Study with an Off-Axis Beam,” Phys. Rev. D 85, 031103 (2012) [arXiv:1201.1356 [hep-ex]].

[27] T. Nakaya [for the T2K Collaboration], talk at *Neutrino 2012* [2].

[28] F. Adamson et al. [MINOS Collaboration], “An improved measurement of muon antineutrino disappearance in MINOS,” arXiv:1202.2712 [hep-ex].

[29] R. Nichol [for the MINOS Collaboration], talk at *Neutrino 2012* [2].

[30] G. L. Fogli, E. Lisi and A. Palazzo, “Quasi energy independent solar neutrino transitions,” Phys. Rev. D 65, 073019 (2002) [hep-ph/0105086].

[31] S. T. Petcov and M. Piai, “The LMA MSW solution of the solar neutrino problem, inverted neutrino mass hierarchy and reactor neutrino experiments,” Phys. Lett. B 533, 94 (2002) [hep-ph/0112074].
[32] M. Apollonio et al. [CHOOZ Collaboration], “Search for neutrino oscillations on a long base-line at the CHOOZ nuclear power station,” Eur. Phys. J. C 27, 331 (2003) [arXiv:hep-ex/0301017].

[33] T. A. Mueller et al., “Improved Predictions of Reactor Antineutrino Spectra,” Phys. Rev. C 83, 054615 (2011) [arXiv:1101.2663 [hep-ex]].

[34] P. Huber, “On the determination of anti-neutrino spectra from nuclear reactors,” Phys. Rev. C 85, 029901 (2012) [Erratum-ibid. C 85, 029901 (2012)] [arXiv:1106.0687 [hep-ph]].

[35] X. Guo et al. [Daya-Bay Collaboration], “A Precision measurement of the neutrino mixing angle theta(13) using reactor antineutrinos at Daya-Bay,” hep-ex/0701029.

[36] J. K. Ahn et al. [RENO Collaboration], “RENO: An Experiment for Neutrino Oscillation Parameter \(\theta_{13} \) Using Reactor Neutrinos at Yonggwang,” arXiv:1003.1391 [hep-ex].

[37] K. Hiraide, H. Minakata, T. Nakaya, H. Nunokawa, H. Sugiyama, W. J. C. Teves and R. Z. Funchal, “Resolving \(\theta_{23} \) degeneracy by accelerator and reactor neutrino oscillation experiments,” Phys. Rev. D 73, 093008 (2006) [hep-ph/0601258].

[38] Y. Itow, talk at \[2\].

[39] Y. Takeuchi [Super-Kamiokande Collaboration], “Results from Super-Kamiokande,” in the Proceedings of Neutrino 2010, XXIV International Conference on Neutrino Physics and Astrophysics (Athens, Greece, 2010), to appear. Website: http://www.neutrino2010.gr

[40] D. Meloni and M. Martini, “Revisiting the T2K data using different models for the neutrino-nucleus cross sections,” arXiv:1203.3355 [hep-ph].

[41] R. A. Wendell, “Three flavor oscillation analysis of atmospheric neutrinos in Super-Kamiokande,” PhD Thesis, Duke University, 2008; available at www-sk.icrr.u-tokyo.ac.jp/sk/pub/

[42] K. Abe et al. [T2K Collaboration], “Indication of Electron Neutrino Appearance from an Accelerator-produced Off-axis Muon Neutrino Beam,” Phys. Rev. Lett. 107, 041801 (2011) [arXiv:1106.2822 [hep-ex]].

[43] G. L. Fogli, E. Lisi, A. Marrone, A. Melchiorri, A. Palazzo, P. Serra, J. Silk and A. Slosar, “Observables sensitive to absolute neutrino masses: A Reappraisal after WMAP-3y and first MINOS results,” Phys. Rev. D 75, 053001 (2007) [hep-ph/0608060].

[44] G. L. Fogli, E. Lisi, A. Marrone, A. Melchiorri, A. Palazzo, A. M. Rotunno, P. Serra and J. Silk et al., “Observables sensitive to absolute neutrino masses. II.,” Phys. Rev. D 78, 033010 (2008) [arXiv:0805.2517 [hep-ph]].

[45] See, e.g., G. Altarelli and F. Feruglio, “Discrete Flavor Symmetries and Models of Neutrino Mixing,” Rev. Mod. Phys. 82, 2701 (2010) [arXiv:1002.0211 [hep-ph]].

[46] D. V. Forero, M. Tortola and J. W. F. Valle, “Global status of neutrino oscillation parameters after recent reactor measurements,” arXiv:1205.4018 [hep-ph].

[47] T. Schwetz, talk at \[2\]. \[2\].

[48] A. M. Dziewonski and D. L. Anderson, “Preliminary Earth Model (PREM)” Phys. Earth Planet. Inter. 25, 297 (1981).

[49] E. Lisi and D. Montanino, “Earth regeneration effect in solar neutrino oscillations: An Analytic approach,” Phys. Rev. D 56, 1792 (1997) [hep-ph/9702343].

[50] R. B. Sidje, “Expokit: A Software Package for Computing Matrix Exponentials,” ACM Trans. Math. Softw. 24, 130 (1998). Software package available at www.maths.uq.edu.au/expokit/

[51] W. Magnus, “On the exponential solution of differential equations for a linear operator,” Commun. Pure Appl. Math. 7, 649 (1954).

[52] E. Kh. Akhmedov, M. Maltoni and A. Yu. Smirnov, “Neutrino oscillograms of the Earth: Effects of 1-2 mixing and CP-violation,” JHEP 0806, 072 (2008) [arXiv:0804.1466 [hep-ph]].