Characterisations and Galois conjugacy of generalised
Paley maps

Gareth A. Jones
School of Mathematics
University of Southampton
Southampton SO17 1BJ, U.K.
G.A.Jones@maths.soton.ac.uk
Tel. +44 (0)23 80593654
Fax. +44 (0)23 80595147

Abstract

A generalised Paley map is a Cayley map for the additive group of a finite field
F, with a subgroup $S = -S$ of the multiplicative group as generating set, cyclically
ordered by powers of a generator of S. We characterise these as the orientably
regular maps with orientation-preserving automorphism group acting primitively and
faithfully on the vertices; allowing a non-faithful primitive action yields certain cyclic
coverings of these maps. We determine the fields of definition and the orbits of the
absolute Galois group $\text{Gal}\overline{\mathbb{Q}}$ on these maps, and we show that if $(q - 1)/(p - 1)$ divides
$|S|$, where $|F| = q = p^e$ with p prime, then these maps are the only orientably regular
embeddings of their underlying graphs; in particular this applies to the Paley graphs,
where $|S| = (q - 1)/2$ is even.

MSC classification: Primary 20B25, secondary 05C10, 05C25, 14H37, 14H55, 30F10.
Keywords: generalised Paley map, Paley graph, automorphism group, Galois group.
Running head: Generalised Paley maps
1 Introduction

A map \mathcal{M} on an oriented surface is orientably regular if its orientation-preserving automorphism group $\text{Aut}^+\mathcal{M}$ acts transitively on the arcs (directed edges) of \mathcal{M}. A standard problem in topological graph theory is that of classifying the orientably regular embeddings of a given class of arc-transitive graphs. This has been achieved for several classes, such as complete graphs K_n [12], complete bipartite graphs $K_{n,n}$ [14], cocktail party graphs $K_n \otimes K_2$ and dipoles D_n [22], merged Johnson graphs $J(n,m)$ [13], n-cubes Q_n for n odd [9], and, according to a recent announcement, also Q_n for n even. Here we extend this to a class of arc-transitive graphs which includes the Paley graphs [24].

A Paley graph P_q is the Cayley graph for the additive group of a field \mathbb{F}_q of order $q \equiv 1 \pmod{4}$, where the generating set S consists of the non-zero squares; choosing a generator s of the cyclic group S determines an orientably regular embedding of P_q called a Paley map, described by White in [26, §16.8]. In [20], Lim and Praeger have extended the definition of P_q to generalised Paley graphs $P_q^{(n)}$ by allowing the generating set to be any subgroup $S = -S \cong C_n$ of the multiplicative group of a field \mathbb{F}_q. In §2 we define analogous generalised Paley maps $\mathcal{M}_q(s)$, where s generates S, and after considering some examples in §3 we show in Theorem 4.1 that if n is divisible by $(q - 1)/(p - 1)$, where $q = p^e$ for a prime p, then these $\phi(n)/e$ maps are, up to isomorphism, the only orientably regular embeddings of $P_q^{(n)}$. Theorem 5.1 characterises the maps $\mathcal{M}_q(s)$ as the only orientably regular maps \mathcal{M} for which $\text{Aut}^+\mathcal{M}$ acts primitively and faithfully on the vertices; removing the faithfulness condition allows central cyclic coverings of these maps, together with orientably regular dipole maps, classified by Nedela and Škoviera in [22]. The proofs of these results use basic properties of finite permutation groups, especially Frobenius groups.

Grothendieck’s theory of dessins d’enfants [10, 16] shows that maps on compact oriented surfaces correspond to algebraic curves defined over the field $\overline{\mathbb{Q}}$ of algebraic numbers. In §6 some recent results of Streit, Wolfart and the author [18] are used to determine the fields of definition of these generalised Paley maps and their orbits under the action of the absolute Galois group $\text{Gal}\overline{\mathbb{Q}}$.

2 Generalised Paley maps

Let F be the finite field F_q of order $q = p^e$, where p is prime, and let n be a divisor of $q - 1$, with n even if $p > 2$. The multiplicative group $F^* = F \setminus \{0\}$ of F is cyclic of order $q - 1$, so it has a unique subgroup S of order n. Our conditions imply that $-1 \in S$, so $S = -S$; the relation $v \sim w$ on F given by $v - w \in S$ is therefore symmetric, so it defines an undirected graph $P = P_q^{(n)}$ of order q and valency n, with vertex set F and edges $v \sim w$. Following Lim and Praeger [20] we will call P a generalised Paley graph, since it generalises the Paley graph $[24]$ which arises when $q \equiv 1 \pmod{4}$ and $n = (q - 1)/2$, so that S is the group of squares in F^*. The following result is straightforward, so the proof is omitted (see [20, Theorem 2.2(1)]):

Lemma 2.1 The following are equivalent:
• the graph P is connected;
• S generates the additive group F;
• S acts irreducibly on F, regarded as a vector space over its prime field F_p;
• e is the multiplicative order of p mod (n), the least $i \geq 1$ such that $p^i \equiv 1 \pmod{n}$.

When these conditions are satisfied, with n even if $p > 2$, the connected graph P is the Cayley graph for the additive group F with respect to its generating set S. In these circumstances, which we assume from now on, we will call q our hypotheses imply that P is an odd prime p, and n an admissible pair.

If s generates the cyclic group S then the cyclic ordering $1, s, s^2, \ldots, s^{n-1}$ of S gives a rotation $v + 1, v + s, v + s^2, \ldots, v + s^{n-1}$ of the neighbours of each vertex v in P. This defines a map $\mathcal{M} = \mathcal{M}_q(s)$ which embeds P in an oriented surface, so that this rotation of neighbours is induced by the local orientation around v. Since the cyclic ordering of S is the restriction to S of an automorphism $v \mapsto sv$ of the additive group F, this map is orientably regular (see [26, Theorem 16-27], for example). We will call \mathcal{M} a generalised Paley map, since if $P = P_q$ it is one of the Paley maps defined by White in [26, §16.8].

The group $AGL_1(q)$ consists of the transformations

$$v \mapsto av^\gamma + b$$

of F where $a, b \in F$, $a \neq 0$, and γ is an element of the Galois group $\Gamma = \text{Gal } F \cong C_e$ of F, generated by the Frobenius automorphism $v \mapsto v^p$. The affine group $AGL_1(q)$ consists of those transformations (2.1) with $\gamma = 1$. Let $A = AGL_1^{(n)}(q)$ denote the subgroup of order nq in $AGL_1(q)$ consisting of the affine transformations (2.1) with $\gamma = 1$ and $a \in S$. This acts faithfully as a group of orientation-preserving automorphisms of \mathcal{M}, and it permutes the arcs transitively, so $\text{Aut}^+ \mathcal{M} = A$. This group is a semidirect product of a normal subgroup $T \cong F \cong (C_p)^e$ consisting of the translations $v \mapsto v + b$ ($b \in F$), by a complement $A_0 \cong S \cong C_n$ consisting of the automorphisms $v \mapsto av$ ($a \in S$) fixing 0.

Example 2.1. Maps of small valency. The cases where $n \leq 2$ are slightly exceptional, so it is useful to deal with them briefly here. If $n = 1$ our hypotheses imply that $q = 2$ and $s = 1$, so we obtain a single generalised Paley map $\mathcal{M} = \mathcal{M}_2(1)$; this is the map $\{2,1\}$ in the notation of Coxeter and Moser [8], an embedding of the complete graph K_2 in the sphere, with $\text{Aut}^+ \mathcal{M} = AGL_1(2) \cong C_2$. If $n = 2$ then $e = 1$, q is an odd prime p, and $s = -1$; the map $\mathcal{M} = \mathcal{M}_p(-1)$ is the embedding $\{p,2\}$ of a cycle of length p in the sphere, with two p-gonal faces, and $\text{Aut}^+ \mathcal{M} = AGL_1(2)(p)$ is the dihedral group D_p of order $2p$.

Lemma 2.2 Let s and s' be generators of S. Then $\mathcal{M}_q(s) \cong \mathcal{M}_q(s')$ if and only if s and s' are equivalent under the Galois group Γ of F_q.

In order to prove this, and for further use later, we first summarise some basic general facts about orientably regular maps; for background, see [15], for instance.
For any group G, the orientably regular maps \mathcal{M} with $\text{Aut}^+\mathcal{M} \cong G$ correspond to the generating pairs x, y for G such that y has order 2. Here x is a rotation fixing a vertex v of \mathcal{M}, sending each incident edge to the next incident edge according to the local orientation around v, while y is a half-turn, reversing one of these incident edges, so that $z = (xy)^{-1}$ is a rotation preserving an incident face. We will call x, y the standard generators of G. Conversely, given generators x, y and z of a group G with $y^2 = xyz = 1$ one can construct a map \mathcal{M}, with arcs corresponding to the elements of G, and vertices, edges and faces corresponding to the cosets in G of the cyclic subgroups generated by x, y and z; this map has type $\{m, n\}$ where m and n are the orders of z and x. Two such maps are isomorphic if and only if the corresponding sets of generators are equivalent under $\text{Aut} G$.

Lemma 2.2 now follows immediately from the easily verified fact that if $n > 1$ then $\text{Aut} A$ can be identified with the group $A\Gamma L_1(q)$, acting by conjugation on its normal subgroup A.

Since there are $\phi(n)$ choices for a generator s of S, permuted fixed-point-freely by Γ, it follows from Lemma 2.2 that there are, up to isomorphism, $\phi(n)/e$ maps $\mathcal{M}_q(s)$ for a given admissible pair q and n. Generators s and s' of S are equivalent under Γ if and only if they have the same minimal polynomial over F_q; the $\phi(n)/e$ maps $\mathcal{M}_q(s)$ therefore correspond to the irreducible factors of the reduction mod (p) of the cyclotomic polynomial $\Phi_n(t) \in \mathbb{Z}[t]$ of the primitive n-th roots of 1, all of degree e.

Corollary 2.3 For a given admissible pair $q = p^e$ and n, the $\phi(n)/e$ generalised Paley maps $\mathcal{M}_q(s)$ are, up to isomorphism, the only orientably regular maps \mathcal{M} of valency n with $\text{Aut}^+\mathcal{M} \cong A\Gamma L_1(n)(q)$.

Proof. The case $n = 1$ is trivial, so we may assume that $n > 1$. Such maps \mathcal{M} correspond to the orbits of $\text{Aut} A = A\Gamma L_1(q)$ on generating pairs x, y for $A = A\Gamma L_1^{(n)}(q)$ of orders n and 2. There are $\phi(n)q$ elements of order n in A, namely the $\phi(n)$ generators of each of the q mutually disjoint vertex stabilisers $A_v \cong C_n$ in A. If $p = 2$ there are $q - 1$ elements y of order 2, namely the non-identity elements of the translation group T; since A_v acts irreducibly by conjugation on T, each of the $\phi(n)q(q - 1)$ pairs x, y generates G. If $p > 2$ there are q elements y of order 2, namely one in each vertex stabiliser A_v; in this case the maximality of A_v in A implies that x and y generate A provided they are not in the same vertex stabiliser, so again there are $\phi(n)q(q - 1)$ generating pairs x, y.

The automorphism group $A\Gamma L_1(q)$ of A has order $eq(q - 1)$ and it acts fixed-point-freely on these generating pairs, so it has $\phi(n)/e$ orbits on them. Thus there are $\phi(n)/e$ mutually non-isomorphic orientably regular maps \mathcal{M} of valency n with $\text{Aut}^+\mathcal{M} \cong A$. Since this is the number of generalised Paley maps $\mathcal{M}_q(s)$, all of which have this valency and automorphism group, the result is proved. □

If s and s' are generators for S then $s' = s^j$ for some j coprime to n; thus for any admissible pair q and n the maps $\mathcal{M}_q(s)$ are all equivalent under Wilson’s operations H_j, which raise local edge rotations to their j-th powers for j coprime to the valency 28. These operations form a group isomorphic to the group of units mod (n), and Lemma 2.2
shows that the stabiliser of any map $\mathcal{M}_q(s)$ (the exponent group introduced by Nedela and Škoviera [23]) is the subgroup of order e generated by H_p.

An orientably regular map \mathcal{M} is said to be reflexible if it has an orientation-reversing automorphism, so that it is isomorphic to its mirror image $H_{-1}(\mathcal{M})$, and thus $\text{Aut}^+ \mathcal{M}$ has index 2 in the full automorphism group $\text{Aut} \mathcal{M}$; otherwise, \mathcal{M} and $H_{-1}(\mathcal{M})$ form a chiral pair. Since $H_{-1}(\mathcal{M}_q(s)) = \mathcal{M}_q(s^{-1})$, we see that $\mathcal{M}_q(s)$ is reflexible if and only if $s^{p^i} = s^{-1}$, or equivalently $p^i \equiv -1 \mod (n)$, for some $i = 0, 1, \ldots, e - 1$. If this holds then $p^{2i} \equiv 1 \mod (n)$, so either $n = 2$ and $q = p > 2$ (see Example 2.1), or $n > 2$ and $e = 2i$ is even with $p^{e/2} \equiv -1 \mod (n)$ (see the examples in §3, for instance).

If \mathcal{M} is an orientably regular map then all its faces are m-gons for some m, and all its vertices have valency n for some n; in the notation of [8] we say that \mathcal{M} has type $\{m,n\}$. A Petrie polygon in a map is a closed zig-zag path within the graph, turning alternately first left and first right at each successive vertex [8, §5.2]; in an orientably regular map these all have the same Petrie length.

Lemma 2.4 Let \mathcal{M} be a generalised Paley map $\mathcal{M}_q(s)$ with $n > 2$. If $n \equiv 0, 1 \text{ or } 3 \mod (4)$ then \mathcal{M} has type $\{n,n\}$ and genus $1 + \frac{1}{2}q(n-4)$, whereas if $n \equiv 2 \mod (4)$ then \mathcal{M} has type $\{n/2,n\}$ and genus $1 + \frac{1}{2}q(n-6)$. The Petrie length is $2p$, where $q = p^e$.

[The cases $n \leq 2$ are exceptional; they were dealt with in Example 2.1.]

Proof. All vertices of \mathcal{M} have valency $n = |S|$. Successive vertices around one particular face are $0, s, s - s^2, s - s^2 + s^3, \ldots$, so the face-valency m is the least $j > 0$ such that

$$s - s^2 + s^3 - \cdots - (-s)^j = 0.$$

Now

$$(s^{-1} + 1)(s - s^2 + s^3 - \cdots - (-s)^j) = 1 - (-s)^j,$$

with $s^{-1} + 1 \neq 0$ if $n > 2$, so m is the multiplicative order of $-s$. This is n unless $2 < n \equiv 2 \mod (4)$, in which case it is $n/2$. Since \mathcal{M} has q vertices, $nq/2$ edges and nq/m faces, it has Euler characteristic

$$\chi = q \left(1 - \frac{n}{2} + \frac{n}{m}\right),$$

which immediately gives the required genus $g = 1 - \frac{1}{2}\chi$. A typical Petrie polygon in \mathcal{M} passes through vertices $1, 0, s, s - 1, 2s - 1, 2s - 2, 3s - 2, 3s - 3, \ldots$ in that order, so the Petrie length is $2p$. □

3 Further examples

Example 3.1. Complete maps. If $n = q - 1$, so that $S = F^*$, then $P^{(n)}_q$ is the complete graph K_q, and the maps $\mathcal{M}_q(s)$ are the $\phi(n)/e$ orientably regular complete maps constructed by Biggs in [2], with $A = AGL_1(q)$. These have type $\{n/2,n\}$ if $q \equiv 3 \mod (4)$, and type $\{n,n\}$ otherwise. They are reflexible for $q \leq 4$, but for $q \geq 5$ they occur in chiral
pairs. For instance, if \(q = 4 \) there are two possible generators \(s \) of \(S = F_4^* \cong C_3 \), conjugate under the Galois group of \(F_4 \), giving rise to a single orientably regular embedding \(\mathcal{M} \) of \(K_4 \): this is the tetrahedral map \(\{3,3\} \), a reflexible map on the sphere with \(\text{Aut}^+ \mathcal{M} \cong A_4 \) and \(\text{Aut} \mathcal{M} \cong S_4 \). James and the author showed in [12] that these maps \(\mathcal{M}_q(s) \) are the only orientably regular embeddings of any complete graphs; further details of these maps are given there, and also by White in [26, §16-4].

Example 3.2. Paley maps. If \(q \equiv 1 \mod (4) \) and \(n = (q - 1)/2 \), so that \(S \) consists of the squares in \(F^* \), then \(P_q(n) \) is the Paley graph \(P_q \) introduced by Paley in [24], and the maps \(\mathcal{M}_q(s) \) are the \(\phi(n)/e \) orientably regular Paley maps described by Biggs and White in [3, §5.7], and by White in [26, §16-8]. Only the unique Paley maps \(\mathcal{M}_q(s) \) with \(q = 5 \) and \(q = 9 \) are reflexible.

If \(5 < q \equiv 5 \mod (8) \) then each Paley map \(\mathcal{M}_q(s) \) has type \(\{n/2, n\} \) and genus \((q^2 - 13q + 8)/8 \). For instance, if \(q = 13 \) there are two such maps, namely the chiral pair of torus maps \(\{3,6\}_{3,1} \) and \(\{3,6\}_{1,3} \) described in [8, §8.4], corresponding to \(s = 4 \) and \(-3 \) respectively. In the next case, with \(q = 29 \), we find three chiral pairs of maps of type \(\{7,14\} \) and genus 59; these are denoted by \(C59.4, C59.5 \) and \(C59.6 \) in Conder’s list of chiral maps [7].

If \(q = 5 \) there is one Paley map \(\mathcal{M}_5(-1) \), the embedding \(\{5,2\} \) of the 5-cycle \(P_5 \) on the sphere.

If \(q \equiv 1 \mod (8) \) then each Paley map \(\mathcal{M}_q(s) \) has type \(\{n, n\} \) and genus \((q-1)(q-8)/8 \). For instance, if \(q = 9 \) there is one such map: we can take \(F = \mathbb{Z}_3[i] \) with \(i^2 = -1 \), so \(s = i = (1 - i)^2 \) generates \(S \) (as does its Galois conjugate \(i^3 = -i \)); the resulting map \(\mathcal{M}_9(i) \cong \mathcal{M}_9(-i) \), illustrated in [8, §5.7], is the reflexible torus map \(\{4,4\}_{3,0} \) described in [8, §8.3]. In the next case, with \(q = 17 \), there are two chiral pairs of maps of type \(\{8,8\} \) and genus 18 (C18.1 and their duals in [7]), and when \(q = 25 \) there is one chiral pair of self-dual maps of type \(\{12,12\} \) and genus 51 (C51.16 in [7]).

All other examples of Paley maps have genus \(g > 101 \), so they do not appear in [7].

Example 3.3. More maps of small valency. The cases \(n = 1 \) and \(n = 2 \) were dealt with in §2. If \(n = 3 \) then \(q = 4 \) and we obtain the tetrahedral map \(\{3,3\} \) mentioned in Example 3.1. If \(n = 4 \) then \(q = p = p^2 \) as \(p \equiv 1 \) or 3 mod (4), and we respectively obtain the chiral torus maps \(\{4,4\}_{a,b} \) with \(p = a^2 + b^2 \), or the reflexible torus maps \(\{4,4\}_{p,0} \). If \(n = 5 \) then \(q = 16 \) and we obtain the reflexible map of genus 5 and type \(\{5,5\} \) denoted by R5.9 in [7]. If \(n = 6 \) then \(q = p = p^2 \) as \(p \equiv 1 \) or 5 mod (6), and we respectively obtain the chiral torus maps \(\{3,6\}_{a,b} \) with \(p = a^2 + ab + b^2 \), or the reflexible torus maps \(\{3,6\}_{p,0} \). If \(n = 7 \) then \(q = 8 \) and we obtain the Edmonds maps, a chiral pair of embeddings of \(K_8 \) of genus 7 and type \(\{7,7\} \) denoted by C7.2 in [7]. If \(n = 8 \) then \(q = p = p^2 \) as \(p \equiv 1 \) mod (8) or \(p \equiv 3,5 \) or 7 mod (8), and we respectively obtain four or two maps of type \(\{8,8\} \) and genus \(1 + q \); for \(q = 17 \) we have the four Paley maps mentioned in Example 3.2, while for \(q = 25 \) we have the chiral pair C26.1 in [7]. If \(n = 9 \) then \(q = 64 \) and we obtain the reflexible map of type \(\{9,9\} \) and genus 81 denoted by R81.125 in [7].
4 Characterisation of generalised Paley maps

Let \(q \) and \(n \) be an admissible pair, so that \(P = P_{q}^{(n)} \) is connected, and suppose that \((q - 1)/(p - 1) \) divides \(n \). (This includes the case where \(q \equiv 1 \mod (4) \) and \(n = (q - 1)/2 \), so that \(P \) is the Paley graph \(P_{q} \), and also all cases where \(q = p \).) We aim to show that the only orientably regular embeddings of \(P \) are the generalised Paley maps \(\mathcal{M}_{q}(s) \) described in §2.

Lim and Praeger [20, Theorem 1.2(4)] have shown that if \((q - 1)/(p - 1) \) divides \(n \) then \(\text{Aut} \, P \) is the subgroup \(H = A\Gamma L_{1}^{(n)}(q) \) of index \((q - 1)/n \) in \(A\Gamma L_{1}(q) \) consisting of those transformations (2.1) with \(a \in S \). This group \(H \) is a semidirect product of an elementary abelian normal subgroup \(T \cong (C_{p})^{e} \), consisting of the translations \(v \mapsto v + b \ (b \in F) \), by the stabiliser \(H_{0} \) of the vertex 0, consisting of the transformations \(v \mapsto av^{\gamma} \) with \(a \in S \) and \(\gamma \in \Gamma \). Similarly \(H_{0} \) is a semidirect product of a normal subgroup \(D \cong S \cong C_{n} \), consisting of the transformations \(v \mapsto av \) with \(a \in S \), by a group \(C \cong \Gamma \cong C_{e} \) of transformations \(v \mapsto v^{\gamma} \ (\gamma \in \Gamma) \); it has a presentation

\[
H_{0} = \langle c, d \mid c^{d} = d^{n} = 1, d^{c} = d^{p} \rangle, \tag{4.1}
\]

where \(c : v \mapsto v^{p} \) generates \(C \) and \(d \) generates \(D \).

Theorem 4.1 Let \(q = p^{e} \) and \(n \) be an admissible pair, with \(n \) divisible by \((q - 1)/(p - 1) \). A map \(\mathcal{M} \) is an orientably regular embedding of the generalised Paley graph \(P_{q}^{(n)} \) if and only if \(\mathcal{M} \) is isomorphic to a generalised Paley map \(\mathcal{M}_{q}(s) \), where \(s \) generates the subgroup \(S \) of order \(n \) in \(F_{q}^{*} \).

Proof. If \(\mathcal{M} \) is any orientably regular embedding of a generalised Paley graph \(P = P_{q}^{(n)} \) then the orientation-preserving automorphism group \(G = \text{Aut}^{+} \mathcal{M} \) of \(\mathcal{M} \) is a subgroup of \(H = \text{Aut} \, P \) of order \(nq \), with \(G_{0} \cong C_{n} \) acting regularly on the set \(S \) of neighbours of 0. Since \(G_{0} \leq H_{0} \) we look for elements \(g \) of order \(n \) in \(H_{0} \) as possible generators \(x \) for \(G_{0} \).

Lemma 4.2 The only elements of order \(n \) in \(H_{0} \) are the generators of \(D \).

Proof. The presentation (4.1) shows that each element of \(H_{0} \) has the form \(g = d^{j}c^{i} \), with \(i = 0, 1, \ldots, n - 1 \) and \(j = 0, 1, \ldots, e - 1 \). Suppose that \(g \) has order \(n \). If \(g \in D \) then \(g \) is a generator of \(D \), as required, so suppose that \(g \notin D \), that is, \(j \neq 0 \). The image of \(g \) in \(H_{0}/D \cong C_{e} \) has order \(f = e/(j,e) = [j,e]/j \), which divides \(n \). Replacing \(g \) with a suitable primitive power, we may replace \(j \) with \((j,e)\), that is, we may assume that \(j \) divides \(e \), so \(fj = e \). Induction on \(k \) shows that

\[
g^{k} = c^{kj}d^{p^{(k+j)(-1)/2} + \ldots + p^{2j} + pj}
\]

for each \(k \geq 0 \). Since \(c^{fj} = 1 \) we have

\[
g^{f} = d^{p^{(j-1)/2} + \ldots + p^{2j} + pj}.
\]
Since \(g \) has order \(n \), which is divisible by \(f \), it follows that \(g^f \) has order \(n/f \). However, as a power of \(d \) its order is equal to \(n/(i(p^{fj} + p^{(f-1)j} + \cdots + p^{2j} + p^j), n) \), so

\[
(i(p^{fj} + p^{(f-1)j} + \cdots + p^{2j} + p^j), n) = f. \tag{4.2}
\]

Now \(p^{(f-1)j} + \cdots + p^j + 1 \) divides \(p^{fj} + p^{(f-1)j} + \cdots + p^{2j} + p^j \), and it also divides

\[
\frac{(p^j - 1)}{(p - 1)}(p^{(f-1)j} + \cdots + p^j + 1) = \frac{p^{fj} - 1}{p - 1} = \frac{p^e - 1}{p - 1} = \frac{q - 1}{p - 1},
\]

which by our hypothesis divides \(n \). Clearly \(p^{(f-1)j} + \cdots + p^j + 1 \neq f \), giving a contradiction to (4.2). Thus the only elements of order \(n \) in \(H_0 \) are the generators of \(D \). \(\square \)

Recall that \(A = AGL_1^{(n)}(q) \), the group of transformations (2.1) with \(\gamma = 1 \) and \(a \in S \).

Corollary 4.3 \(G = A \).

Proof. The case \(n = 1 \) is trivial (see Example 2.1), so we may assume that \(n > 1 \). Lemma 4.2 implies that \(G_0 = D \). Since \(M \) is orientably regular, \(G \) acts transitively on the vertices \(v \) of \(M \), so their stabilisers \(G_v \) in \(G \) are the conjugates of \(D \) in \(G \). Now \(AGL_1(q) \) is a normal subgroup of \(A\Gamma L_1(q) \), so \(A = H \cap AGL_1(q) \) is a normal subgroup of \(H \). We have seen that \(G_0 = D \leq A \), and we have \(G \leq H \), so \(G_v \leq A \) for every vertex \(v \).

For any orientably regular map, the vertex stabilisers \(G_v \) generate a subgroup of index at most 2 in \(G \), namely the normal closure of \(x \). If this index is 2 then the embedded graph is bipartite, since the map covers the 2-vertex map \(\{2,1\} \). This is not the case here since \(Aut P \) acts primitively on the vertices for \(n > 1 \). Thus \(G \) is generated by the stabilisers \(G_v \), so \(G \leq A \). Since \(|G| = nq = |A| \) it follows that \(G = A \). \(\square \)

The proof of Theorem 4.1 now follows immediately from Corollaries 2.3 and 4.3. \(\square \)

Corollary 4.4 The only orientably regular embeddings of the Paley graphs \(P_q \) are the
\(\phi(\frac{q}{2}(q-1))/e \) Paley maps \(M_q(s) \), where \(q = p^e \) with \(p \) prime, and \(s \) generates the group of squares in \(F_q^* \). \(\square \)

Remarks. 1. In order to show that \(Aut P = H \), this proof of Theorem 4.1 relies on Theorem 1.2(4) of [20], which in turn relies on the classification of finite simple groups. However there is a more direct proof of Corollary 4.4, instead using a result of Carlitz [6] (see also [21]) which gives an elementary proof that \(Aut P = H \) for the Paley graphs \(P = P_q \). Similarly in the cases \(q = p \) and \(p^2 \) of Theorem 4.1 one can use classical results of Burnside [1] (see also [5, §251]) and Wielandt [27, §16] on primitive permutation groups of these degrees.

2. As pointed out by Lim and Praeger in [20], \(Aut P \) can be much larger than \(A\Gamma L_1(q) \) if \(n \) is not divisible by \((q-1)/(p-1) \). For instance, if \(q = p^2 \) and \(n = 2(p-1) \) then \(P \) is a Hamming graph \(H(2,p) \), and \(Aut P \) is the wreath product \(S_p \wr S_2 \) of order \(2(p!)^2 \). In this particular case it is not hard to show that the only orientably regular embeddings are again the generalised Paley maps \(M_q(s) \), but the general problem of classifying orientably regular embeddings remains open, for Hamming graphs and for generalised Paley graphs.
5 Vertex-primitive maps

Here we consider the orientably regular maps \mathcal{M} for which $\text{Aut}^+\mathcal{M}$ acts primitively on the vertices; of course, this includes all cases where the number of vertices is prime. First we classify the maps for which the action on vertices is also faithful.

Theorem 5.1 Let \mathcal{M} be an orientably regular map on a compact surface. Then the orientation-preserving automorphism group $\text{Aut}^+\mathcal{M}$ acts primitively and faithfully on the vertices of \mathcal{M} if and only if \mathcal{M} is isomorphic to a generalised Paley map $\mathcal{M}_q(s)$.

Proof. Each map $\mathcal{M}_q(s)$ has these properties since its automorphism group $\text{AGL}_1^{(n)}(q)$ acts faithfully on F, with the stabiliser of 0 acting as an irreducible linear group.

Conversely, if the group $G = \text{Aut}^+\mathcal{M}$ acts primitively on the vertex set V of a map \mathcal{M}, then each vertex stabiliser G_v is a maximal subgroup of G. If $G_v = 1$ then G is cyclic of prime order, and since G contains an involution we must have $G \cong C_2$, so $\mathcal{M} \cong \mathcal{M}_2(1)$, the planar embedding $\{2, 1\}$ of K_2. We may therefore assume that $G_v \neq 1$. If v and w are distinct vertices, then $G_{vw} = 1$: for if $g \in G_{vw} = G_v \cap G_w$ then since the vertex stabilisers are abelian, distinct and maximal, the centraliser $C_G(g)$ of g contains $\langle G_v, G_w \rangle = G$, so g is in the centre of G; now g fixes at least one vertex, and the vertex stabilisers are all conjugate in G, so g must fix every vertex, giving $g = 1$.

This shows that G acts on V as a Frobenius group, so it has a Frobenius kernel K, a regular normal subgroup consisting of the fixed-point-free elements together with 1 (see [11] §V.8] for properties of Frobenius groups). We may identify V with K, acting by multiplication on it. The stabiliser of the identity vertex is a complement for K in G, and its action on V coincides with its action by conjugation on K. Since G acts primitively, no proper subgroup of K can be normal in G, so K is characteristically simple, that is, a direct product of isomorphic simple groups. By a theorem of Thompson [25], finite Frobenius kernels are nilpotent, so K is an elementary abelian p-group for some prime p.

We can therefore regard V as a vector space of some dimension e over the field F_p of order p. The subgroup G_v fixing the vertex 0 acts as a group of linear transformations of V, and the primitivity of G implies that V is an irreducible G_v-module. Since G_0 is cyclic we can therefore identify V with the field F_q of order $q = p^e$ so that G_0 acts by multiplication as a subgroup S of F_q^* (see [11] Satz II.3.10], for instance). All orbits of S on $V \setminus \{0\}$ have length $n = |S|$, and since \mathcal{M} is orientably regular the neighbours of 0 form such an orbit, so \mathcal{M} has valency n. Since $|G| = nq$ must be even, n is even if $p > 2$. The irreducibility of V implies that S is not contained in any proper subfield of F_q, so q and n form an admissible pair. Since $G = VG_0 = AGL_1^{(n)}(q)$ it follows from Corollary 2.3 that \mathcal{M} is isomorphic to a generalised Paley map $\mathcal{M}_q(s)$ for some s. □

The condition that the group $G = \text{Aut}^+\mathcal{M}$ should act faithfully on the q vertices of \mathcal{M} is not particularly restrictive. (Li and Širán discuss non-faithful actions on vertices, edges and faces for more general maps in [19].) If this action is primitive but not faithful, then the kernel of the action (the intersection of the vertex stabilisers) is a normal subgroup
$N \cong C_k$ of G where k is the number of edges joining each pair of adjacent vertices. By Theorem 5.1 the quotient map $\overline{M} = M/N$ is a generalised Paley map $M_q(s)$, with orientation-preserving automorphism group $\overline{G} = G/N \cong AGL_1(n)(q)$ for some admissible pair q and n, and M and G are k-fold cyclic coverings of \overline{M} and \overline{G}.

Let $\overline{M} = M_q(s)$ have type $\{m, n\}$, and let x, y and z be the standard generators of G. Then $N = \langle x^n \rangle \cong C_k$ and $z^m \in N$, so $z^n = x^{in}$ for some i. The covering $M \to \overline{M}$ is branched over the vertices of \overline{M}, and also over the faces if $i \not\equiv 0 \mod (k)$. There are q vertices and $knq/2$ edges in M, and since z has order $km/(i, k)$ there are $(i, k)q/m$ faces. Thus M has type $\{km/(i, k), kn\}$ and genus

$$g = 1 + \frac{q}{4m}(kmn - 2m - 2(i, k)n).$$

Example 5.1. If an integer u satisfies $u^2 \equiv 1 \mod (k)$ then the group

$$G = \langle x, y \mid x^k = y^2 = 1, x^u = x^u \rangle$$

of order $2k$ has the form $\text{Aut}^+ M$ where M is the reflexible dipole map $D_k(u)$, with two vertices of valency k. (Nedela and ˇSkoviera showed in [22] that these are the only orientably regular embeddings of dipole graphs.) There is a normal subgroup $N = \langle x \rangle \cong C_k$ in G with $\overline{G} = G/N \cong AGL_1(2) \cong C_2$, so M is a k-sheeted cyclic covering of the spherical embedding $\overline{M} = M/N = M_2(1) = \{2, 1\}$ of K_2. If $k > 1$ there is a non-faithful action of G on the two vertices of \overline{M}, with kernel N. The number of possible values $u \in \mathbb{Z}_k$, and hence of maps M, is $2^{u+\nu}$, where ν is the number of distinct odd primes dividing k, and $\mu = 2, 1$ or 0 as $k \equiv 0, 4$ or otherwise mod (8). We have $z^2 = (xy)^{-2} = x^{-u-1}$, so $i \equiv -u - 1 \mod (k)$. The covering $M \to \overline{M}$ is branched over the two vertices of \overline{M}, and also over its single face if $u \not\equiv -1 \mod (k)$; M has type $\{m, k\}$ where $m = 2k/(u+1, k)$ is the order of z, and its genus is $(k - (u+1, k))/2$. For instance, if $k = 8$ then $u \equiv 1, 3, 5$ or 7 mod (8), and M is respectively $R3.11, R2.3, R3.10$ in [7], or the spherical map $\{2, 8\}$.

Proposition 5.2 If $G = \text{Aut}^+ M$ acts primitively on the vertices of M, and the kernel N is not contained in the centre of G, then $M \cong D_k(u)$ for some $u \not\equiv 1 \mod (k)$.

Proof. Let x, y and z be the standard generators of G. Since N is contained in all the vertex stabilisers, and these are the conjugates of $\langle x \rangle$, its centraliser $C = C_G(N)$ contains the normal closure of x in G, so C has index at most 2 in G. By our hypothesis $C \neq G$, so the index is 2 and hence the underlying graph of M is bipartite, as in the proof of Corollary 4.3. Since the vertices are permuted primitively there must be just two of them, so the graph is a dipole and hence $M \cong D_k(u)$ for some u with $u^2 \equiv 1 \mod (k)$ by [22]. Since G is nonabelian we have $u \not\equiv 1 \mod (k)$. □

This result directs attention towards the cases such as $D_k(1)$ where N is in the centre of G. The monodromy permutation of the sheets of the covering is then x^n at each vertex,
and \(z^m = x^m \) at each face. A closed path in \(\overline{\mathcal{M}} \) going once round each of these branch-points is homologically trivial, so the product of these monodromy permutations must be the identity. There are \(q \) vertices and \(f = nq/m \) faces in \(\overline{\mathcal{M}} \), so this implies that

\[
q + fi \equiv 0 \mod (k). \tag{5.1}
\]

This has \((f, k) \) solutions \(i \in \mathbb{Z}_k \) if \((f, k) \) divides \(q \), and none otherwise, giving an upper bound on the number of \(k \)-sheeted central coverings \(\mathcal{M} \) for a given pair \(\mathcal{M}_q(s) \) and \(k \).

The following construction gives at least one example of such a map \(\mathcal{M} \) for each pair \(\mathcal{M}_q(s) \) and \(k \), provided \(k \) is odd when \(p > 2 \). We can regard \(\overline{G} \) as a semidirect product of the normal translation group \(T \cong F \) by \(\overline{G}_0 \cong C_n \), with the standard generator of the complement \(\overline{G}_0 \) acting by conjugation on \(T \) as a specific automorphism of order \(n \). We form a semidirect product \(G \) of \(T \) by \(G_0 \cong C_{nk} \), with a generator \(x \) of \(G_0 \) inducing the same automorphism of \(T \), so that \(x^n \) generates a central subgroup \(N \cong C_k \) in \(G \) with \(G/N \cong \overline{G} \). For \(G \) to be associated with an orientably regular map \(\mathcal{M} \) that covers \(\overline{\mathcal{M}} \) we need an involution \(y \in G \) which projects onto the corresponding standard generator of \(\overline{G} \).

If \(p = 2 \) then we can use the same element \(y \in T \) for \(G \) as for \(\overline{G} \), but if \(p > 2 \) (so that \(n \) is even) then we need \(y = x^{kn/2}t \) for some \(j \in \mathbb{Z}_k \) and non-identity \(t \in T \). We have

\[
y^2 = x^{(2j+1)n}x^{-n/2t}x^{n/2t} = x^{(2j+1)n}
\]

since \(x^{n/2} \) inverts \(T \), so we need \(2j \equiv -1 \mod (k) \). Thus if \(p > 2 \) then \(k \) must be odd and \(j \equiv (k - 1)/2 \mod (k) \), giving \(y = x^{kn/2}t \). In either case, \(G = \langle x, y \rangle \) since \(G_0 \) is maximal.

Example 5.2. Let \(\overline{\mathcal{M}} = \mathcal{M}_7(s) \) with \(s = 3 \) or \(5 \), one of a chiral pair of torus embeddings of \(K_7 \), of type \(\{3, 6\} \). Here

\[
\overline{G} = \langle x, t \ | \ x^6 = t^7 = 1, \ t^x = t^s \rangle,
\]

a semidirect product of \(T = \langle t \rangle \cong C_7 \) by \(\overline{G}_0 = \langle x \rangle \cong C_6 \), with \(y = x^3t \). We can define

\[
G = \langle x, t \ | \ x^{6k} = t^7 = 1, \ t^x = t^s \rangle,
\]

a semidirect product of \(T \cong C_7 \) by \(\langle x \rangle \cong C_{6k} \). This has centre \(N = \langle x^6 \rangle \cong C_k \), with \(G/N \cong \overline{G} \). By the preceding argument we can take \(y = x^{3k}t \) with \(k \) odd. Then \(xy = x^{3k+1}t \) giving \(z^3 = x^{-3(k+1)} \), so \(z \) has order \(m = 3k \). Thus for each odd \(k \) there is a chiral pair of orientably regular maps \(\mathcal{M} \) of type \(\{3k, 6k\} \) and genus \((21k - 19)/2 \) with \(\text{Aut}^+ \mathcal{M} = G \) and \(\mathcal{M}/N \cong \overline{\mathcal{M}} \); each has seven vertices, permuted primitively by \(G \), with kernel \(N \). For \(k = 3, 5, 7 \) and \(9 \) these are the chiral pairs \(C22.6, C43.10, C64.20 \) and \(C85.14 \) in [7]. There are no such central coverings when \(k \) is even, since (5.1) gives \(7 + 14i \equiv 0 \mod (k) \).

Example 5.3. Let \(\overline{\mathcal{M}} \) be the reflexible spherical map \(\mathcal{M}_p(-1) = \{p, 2\} \), with \(\overline{G} = AGL_1^{(2)}(p) \cong D_p \). Thus \(m = q = p > 2 \) and \(n = 2 \). Since \(f = 2 \), (5.1) gives \(p + 2i \equiv 0 \mod (k) \). If \(k \) is odd there is a unique solution \(i \equiv (k - p)/2 \mod (k) \), giving a map \(\mathcal{M} \) with

\[
G = \langle x, t \ | \ x^{2k} = t^p = 1, \ t^x = t^{-1} \rangle \cong D_p \times C_k
\]

11
where \(y = x^k t \) and \(z = (x^{k+1} t)^{-1} \), and \(N = \langle x^2 \rangle \); this map has type \(\{ k, 2k \} \) or \(\{ kp, 2k \} \) as \(p \) divides \(k \) or not, and its genus is \(1 + \frac{1}{2}(k - 3)p \) or \(\frac{1}{2}(k - 1)p \) respectively. If \(k \) is even there is no solution of (5.1), and hence no map. For instance, let \(k = 3 \): for \(p = 3 \) we have the torus map \(\{ 3, 6 \}_{1,1} \) with six triangular faces, and for \(p > 3 \) a map of type \(\{ 3p, 6 \} \) and genus \(p \); for \(p = 5 \) and 7 these are the duals of R5.11 and R7.8 in [7].

These examples have \(p > 2 \), so the construction fails for even \(k \), and (5.1) shows that no such coverings can exist. The next example, with \(p = 2 \), yields a covering for every \(k \):

Example 5.4. Let \(\overline{\mathcal{M}} = \mathcal{M}_2(1) \), the reflexible spherical embedding \(\{ 2, 1 \} \) of \(K_2 \), with \(G = AGL_1(2) \cong C_2 \). Here \(q = m = 2 \), \(n = 1 \) and \(f = 1 \), so (5.1) gives \(2 + i \equiv 0 \mod (k) \); this has a unique solution \(i \equiv -2 \mod (k) \) for each \(k \geq 1 \), corresponding to a unique map \(\mathcal{M} \) with \(G = \langle x, y \mid x^k = y^2 = [x, y] = 1 \rangle \cong C_2 \times C_k \). This is the reflexible dipole map \(D_k(1) \) in Example 5.1. If \(k \) is even it has type \(\{ k, k \} \) and genus \((k - 2)/2 \); if \(k \) is odd it has type \(\{ 2k, k \} \) and genus \((k - 1)/2 \). For \(k = 2 \) we have the spherical map \(\{ 2, 2 \} \) of two digons. For \(k = 3 \) we have the torus map \(\{ 6, 3 \}_{1,1} \) with a single hexagonal face. For \(k = 4 \) we have the torus map \(\{ 4, 4 \}_{1,1} \) with two square faces. For \(k = 5 \) and 6 we have the maps \(\{ 10, 5 \}_2 \) and \(\{ 6, 6 \}_2 \) of genus 2 in [8, Table 9]; in [7], the first is the dual of the map R2.4, and the second is R2.5. For \(k = 7 \) we have the dual of R3.9, and for \(k = 8 \) we have R3.11.

The last three examples may give the impression that a given pair \(\overline{\mathcal{M}} \) and \(k \) yields at most one central covering \(\mathcal{M} \). The following example shows that this is not always true:

Example 5.5. Let \(\overline{\mathcal{M}} = \mathcal{M}_4(s) \), the spherical embedding \(\{ 3, 3 \} \) of a tetrahedron, with \(G = AGL_1(4) \cong A_4 \). Here \(q = f = 4 \), so (5.1) gives \(4(1 + i) \equiv 0 \mod (k) \), with \((4, k) \) solutions \(i \in \mathbb{Z}_k \). For instance, if \(k = 4 \) there are four maps \(\mathcal{M} \), namely R3.3 of type \(\{ 3, 12 \} \) and genus 3, R7.7 of type \(\{ 6, 12 \} \) and genus 7, and R9.26 and R9.27 of type \(\{ 12, 12 \} \) and genus 9; if \(k = 8 \) there are four maps R21.32 – R21.35, all of type \(\{ 24, 24 \} \) and genus 21.

6 Galois actions

According to Grothendieck’s theory of *dessins d’enfants* [10][16], a map \(\mathcal{M} \) on a compact oriented surface corresponds naturally to a *Belyi pair* \((X, \beta)\), where \(X \) is a nonsingular projective algebraic curve over \(\mathbb{C} \), and \(\beta \) is a rational function from \(X \) to the complex projective line (or Riemann sphere) \(\mathbb{P}^1(\mathbb{C}) = \mathbb{C} \cup \{ \infty \} \), unramified outside \(\{ 0, 1, \infty \} \). One can regard \(X \) as a Riemann surface underlying \(\mathcal{M} \), with the inverse image under \(\beta \) of the unit interval providing the embedded graph. For instance, the dual of the map \(\mathcal{M} \) in Example 5.3, with \(k = p \), is the standard embedding of the complete bipartite graph \(K_{p,p} \) described by Biggs and White in [3] §5.6.7; here \(X \) is the Fermat curve \(x^p + y^p = z^p \), with \(\beta([x, y, z]) = (x/z)^p \), \(\beta^{-1}(0) \) and \(\beta^{-1}(1) \) giving the black and white vertices, and \(\beta^{-1}([0, 1]) \) the edges [14][16]. Belyi’s Theorem [1] asserts that \(X \) and \(\beta \) are defined (by polynomials and rational functions) over the field \(\overline{\mathbb{Q}} \) of algebraic numbers, and as Grothendieck observed, the action of the *absolute Galois group* \(\Gamma = \text{Gal}(\overline{\mathbb{Q}}) \) on their coefficients induces a faithful action of this group on the associated maps \(\mathcal{M} \). Finding explicit fields of definition and
Galois orbits is an important but usually difficult problem. The following result generalises some examples given by Streit, Wolfart and the author in [18]:

Theorem 6.1 For any admissible pair \(q = p^e \) and \(n \), the \(\varphi(n)/e \) generalised Paley maps \(M_q(s) \) form an orbit under \(\Gamma \), and the corresponding Belyĭ pairs are defined over the splitting field of \(p \) in the cyclotomic field \(\mathbb{Q}(\zeta_n) \), where \(\zeta_n = \exp(2\pi i/n) \).

[This field is the unique subfield of \(\mathbb{Q}(\zeta_n) \) of degree \(\varphi(n)/e \) over \(\mathbb{Q} \).]

Proof. As shown by Streit and the author in [17], the automorphism group \(\text{Aut}^+\mathcal{M} \) of a map \(\mathcal{M} \) and various parameters such as its vertex-valencies are invariant under the action of \(\Gamma \). Corollary 2.3 shows that the set of generalised Paley maps \(\mathcal{M}_q(s) \) for a given admissible pair \(q, n \) is characterised by their common automorphism group and valency, so this set is \(\Gamma \)-invariant. As noted in §2, these maps are all equivalent under Wilson’s operations \(H_j \). It therefore follows immediately from Theorem 2 of [18] that they form an orbit under \(\Gamma \), and that the corresponding Belyĭ pairs are defined over the splitting field of \(p \) in \(\mathbb{Q}(\zeta_n) \). \(\square \)

Example 6.1. If we take \(q = 29 \) and \(n = 14 \) then the resulting \(\varphi(14)/1 = 6 \) Paley maps \(M_{29}(s) \) of genus 59 form an orbit under \(\Gamma \), and the corresponding Belyĭ pairs are defined over \(\mathbb{Q}(\zeta_{14}) = \mathbb{Q}(\zeta_7) \), with \(\Gamma \) permuting them as the Galois group \(C_6 \) of this field.

References

[1] G. V. Belyĭ, On Galois extensions of a maximal cyclotomic field, *Math. USSR Izvestija* 14 (1980), 247–256.

[2] N. L. Biggs, Automorphisms of imbedded graphs, *J. Combin. Theory Ser. B* 11 (1971), 132–138.

[3] N. L. Biggs and A. T. White, *Permutation Groups and Combinatorial Structures*, London Math. Soc. Lecture Note Ser. 33, Cambridge Univ. Press, Cambridge, 1979.

[4] W. Burnside, On some properties of groups of odd order, *Proc. London Math. Soc.* 33 (1901), 162–185.

[5] W. Burnside, *Theory of Groups of Finite Order*, 2nd ed., Cambridge University Press, Cambridge, 1911; reprinted Dover, New York, 1955.

[6] L. Carlitz, A theorem on permutations in a finite field, *Proc. Amer. Math. Soc.* 11 (1960), 456–459.

[7] M. D. E. Conder, Regular maps and hypermaps of Euler characteristic -1 to -200, *J. Combin. Theory Ser. B* 99 (2009), 455-459. Associated lists of computational data available at http://www.math.auckland.ac.nz/~conder/hypermaps.html.

[8] H. S. M. Coxeter and W. O. J. Moser, *Generators and Relations for Discrete Groups*, 3rd ed., Springer-Verlag, Berlin-Heidelberg-New York, 1972.
[9] S-F. Du, J. H. Kwak and R. Nedela, Classification of regular embeddings of hypercubes of odd dimension, *Discrete Math.* 307 (2007), 119–124.

[10] A. Grothendieck, Esquisse d’un Programme, pp. 5–84 in *Geometric Galois Actions 1. Around Grothendieck’s Esquisse d’un Programme*, ed. P. Lochak and L. Schneps, London Math. Soc. Lecture Note Ser. 242, Cambridge University Press, 1997.

[11] B. Huppert, *Endliche Gruppen I*, Springer-Verlag, Berlin-Heidelberg-New York, 1979.

[12] L. D. James and G. A. Jones, Regular orientable imbeddings of complete graphs, *J. Combin. Theory Ser. B* 39 (1985), 353–367.

[13] G. A. Jones, Automorphisms and regular embeddings of merged Johnson graphs, *European J. Combin.* 26 (2005), 417–435.

[14] G. A. Jones, Regular embeddings of complete bipartite graphs: classification and enumeration, submitted.

[15] G. A. Jones and D. Singerman, Theory of maps on orientable surfaces, *Proc. London Math. Soc.* (3) 37 (1978), 273–307.

[16] G. A. Jones and D. Singerman, Belyi functions, hypermaps and Galois groups, *Bull. London Math. Soc.* 28 (1996), 561–590.

[17] G. A. Jones and M. Streit, Galois groups, monodromy groups and cartographic groups, pp. 25–65 in *Geometric Galois Actions 2. The Inverse Galois Problem, Moduli Spaces and Mapping Class Groups*, ed. P. Lochak, L. Schneps, London Math. Soc. Lecture Note Ser. 243, Cambridge University Press, 1997.

[18] G. A. Jones, M. Streit and J. Wolfart, Wilson’s map operations on regular dessins and cyclotomic fields of definition, submitted.

[19] C. H. Li and J. Širáň, Regular maps whose groups do not act faithfully on vertices, edges, or faces, *European J. Combin.* 26 (2005), 521-54.

[20] T. K. Lim and C. E. Praeger, On generalised Paley graphs and their automorphisms, *Michigan Math. J.*, to appear. arXiv:math/0605252.

[21] M. E. Muzychuk, Automorphism group of a Paley graph, *Vopr. Teor. Grupp Gomologicheskoi Algebry* 7 (1987), 64–69 (Russian).

[22] R. Nedela and M. Škoviera, Regular embeddings of canonical double coverings of graphs, *J. Combin. Theory Ser. B* 67 (1996), 249–277.

[23] R. Nedela and M. Škoviera, Exponents of orientable maps, *Proc. London Math. Soc.* (3) 75 (1997), 1–31.
[24] R. E. A. C. Paley, On orthogonal matrices, *J. Math. Phys. Mass. Inst. Tech.* 12 (1933), 311-320.

[25] J. G. Thompson, Finite groups with fixed-point-free automorphisms of prime order, *Proc. Nat. Acad. Sci. U.S.A.* 45 (1959), 578–581.

[26] A. T. White, *Graphs of Groups on Surfaces*, North-Holland Math. Studies 188, Elsevier, Amsterdam, 2001.

[27] H. Wielandt, *Permutation Groups Through Invariant Relations and Invariant Functions*, Lecture Notes, Ohio State University, 1969.

[28] S. E. Wilson, Operators over regular maps, *Pacific J. Math.* 81 (1979), 559–568.