On K_5 and $K_{3,3}$-minors of graphs and regular matroids

João Paulo Costalonga
joaocostalonga@yahoo.com.br
Universidade Estadual de Maringá
Av. Colombo, 5790, Dpto. de Matemática, Bl. 67, sl. 221
Maringá-PR, 87020-900, Brazil
Tel. +55 44 3011 5356

Abstract

In this paper we prove two main results about obstruction to graph planarity. One is that, if G is a 3-connected graph with a K_5-minor and T is a triangle of G, then G has a K_5-minor H, such that $E(T) \subseteq E(H)$.

Other is that if G is a 3-connected simple non-planar graph not isomorphic to K_5 and $e, f \in E(G)$, then G has a minor H such that $e, f \in E(H)$ and, up to isomorphisms, H is one of the four non-isomorphic simple graphs obtained from $K_{3,3}$ by the addition of 0, 1 or 2 edges. We generalize this second result to the class of the regular matroids.

Keywords: graph minors, graph planarity, regular matroid, Kuratowski Theorem, Wagner Theorem

1. Introduction

We use the terminology set by Oxley [4]. Our graphs are allowed to have loops and multiple edges. When there is no ambiguity we denote by uv the edge linking the vertices u and v. We use the notation $si(G/e)$ for a simplification of G (a graph obtained from G by removing all loops, and all, but one, edges in each parallel class). Usually we choose the edge-set of $si(G)$ satisfying our purposes with no mentions. It is a consequence of Whitney’s 2-Isomorphism Theorem (Theorem 5.3.1 of [4]) that, for each 3-connected graphic matroid M, there is, up to isomorphisms, a unique graph whose M is the cycle matroid. We also use this result without mention, so as Kuratowski and Wagner Theorems about graph planarity. When talking about a triangle in a graph we may be referring both to the subgraph corresponding to the triangle as to its edge-set. We say that a set of vertices in a graph is stable if such set has no pair of vertices linked by an edge.

Preprint submitted to Elsevier May 11, 2014
Let U and V be different maximal stable sets of vertices in $K_{3,3}$. We define $K_{3,3}^{i,j}$ to be the simple graph obtained from $K_{3,3}$ by adding i edges linking pairs of vertices of U and j edges linking pairs of vertices of V. By default, we label the vertices of $K_{3,3}^{i,j}$ like in Figure 1.

A family \mathcal{F} of matroids (graphs, resp.) is said to be k-rounded in a minor-closed class of matroids (graphs, resp.) \mathcal{N} if each member of \mathcal{F} is $(k+1)$-connected and, for each $(k+1)$-connected matroid (graph, resp.) M of \mathcal{N} with an \mathcal{F}-minor and, for each k-subset $X \subseteq E(M)$, M has an \mathcal{F}-minor with X in its ground set (edge set, resp.). When \mathcal{N} is omitted we consider it as the class of all matroids (graphs, resp.). By Whitney’s 2-isomorphism Theorem, the concepts of k-roundedness for graphs and matroids agree, for $k \geq 2$. Such definition is a slight generalization of that one made by Seymour [7]. For more information about k-roundedness we refer the reader to Section 12.3 of [4].

The second main result stated in the abstract is Corollary 1.2, that follows from the next Theorem we establish here:

Theorem 1.1. The following families of graphs are 2-rounded:

(a) $\{K_{3,3}, K_{0,1}^{0,1}_{3,3}, K_{0,2}^{0,2}_{3,3}, K_{1,1}^{1,1}_{3,3}\}$ and
(b) $\{K_{3,3}, K_{0,1}^{1,1}_{3,3}, K_{0,2}^{2,2}_{3,3}, K_{1,1}^{3,3}, K_{5}\}$.

Moreover, the following families of matroids are 2-rounded in the class of the regular matroids.

(c) $\{M(K_{3,3}), M(K_{0,1}^{0,1}_{3,3}), M(K_{0,2}^{0,2}_{3,3}), M(K_{1,1}^{1,1}_{3,3})\}$ and
(d) $\{M(K_{3,3}), M(K_{0,1}^{1,1}_{3,3}), M(K_{0,2}^{2,2}_{3,3}), M(K_{1,1}^{3,3}), M(K_{5})\}$.

Seymour [6, (7.5)] proved that each 3-connected simple non-planar graph not isomorphic to K_5 has a $K_{3,3}$-minor. So, as consequence of Theorem 1.1 we have:

Corollary 1.2. If G is a 3-connected simple non-planar graph and $e, f \in E(G)$, then either $G \cong K_5$ or G has a minor H isomorphic to $K_{3,3}, K_{0,1}^{0,1}_{3,3}, K_{0,2}^{0,2}_{3,3}$ or $K_{1,1}^{1,1}_{3,3}$ such that $e, f \in E(H)$.

2
The next Corollary follows from Theorem 1.1 combined with Bixby’s Theorem about decomposition of connected matroids into 2-sums ([4, Theorem 8.3.1]). To derive the next corollary, instead of Theorem 1.1, we also may use a result of Seymour [7], which states that \(\{U_{2,4}, M(K_{3,3}), M(K_{0,1}^{0,1}), M(K_5)\}\) is 1-rounded.

Corollary 1.3. If \(G\) is a non-planar 2-connected graph and \(e \in E(G)\), then \(G\) has a minor \(H\) isomorphic to \(K_5, K_{3,3}\) or \(K_{0,1}^{0,1}\) such that \(e \in E(H)\).

The first result we state at the abstract is Corollary 1.5 that follows from the following theorem:

Theorem 1.4. If \(G\) is a 3-connected simple graph with a \(K_{3,3}^{1,1}\)-minor and \(T\) is a triangle of \(G\), then \(G\) has a \(K_{3,3}^{1,1}\)-minor with \(E(T)\) as edge-set of a triangle.

Corollary 1.5. If \(G\) is a 3-connected simple graph with a \(K_5\)-minor and \(T\) is a triangle of \(G\), then \(G\) has a \(K_5\)-minor with \(E(T)\) as edge-set of a triangle.

Other results about getting minors preserving a triangle were proved by Asano, Nishizeki and Seymour [1]. Truemper [8] proved that if \(G\) has a \(K_{3,3}\)-minor, and \(e, f\) and \(g\) are the edges of \(G\) adjacent to a degree-3 vertex, then \(G\) has a \(K_{3,3}\)-minor using \(e, f\) and \(g\).

We define a class \(\mathcal{F}\) of 3-connected matroids to be \((3, k, l)\)-rounded in \(\mathcal{N}\) provided the following property holds: if \(M\) is a 3-connected matroid in \(\mathcal{N}\) with an \(\mathcal{F}\)-minor, \(X \subseteq E(M), |X| = k\) and \(r(X) \leq l\), then \(M\) has an \(\mathcal{F}\)-minor \(N\) such that \(X \subseteq E(N)\) and \(N[X] = M[X]\).

Another formulation for Theorem 1.4 and Corollary 1.5 is that \(\{M(K_{3,3}^{1,1})\}\) and \(\{M(K_5)\}\) are \((3, 3, 2)\)-rounded in the class of graphic matroids. Costalona [3] (in the last comments of the introduction) proved:

Proposition 1.6. Let \(2 \leq l \leq k \leq 3\). Let \(\mathcal{F}\) be a finite family of matroids and \(\mathcal{N}\) a class of matroids closed under minors. Then, there is a \((3, k, l)\)-rounded family of matroids \(\mathcal{F}'\) such that each \(M \in \mathcal{F}'\) has an \(\mathcal{F}\)-minor \(N\) satisfying \(r(M) - r(N) \leq k + \lfloor \frac{k-1}{2}\rfloor\).

In [3] there are more results of such nature. Although a minimal \((3, 3, 3)\)-rounded family of graphs containing \(\{K_5, K_{3,3}\}\) exists and even has a size that allows a computer approach, it has shown to be complicated. Such family must at least include the graphs \(K_{3,3}^{i,j}\), for \(i + j \leq 3, K_5\) and the following two graphs in Figure 2, obtained, respectively, from \(K_{3,3}\) and \(K_5\) by the same kind of vertex expansion, which shall occur in such kind of families.
2. Proofs for the Theorems

The proof of Theorem 1.1 is based on the following theorem:

Theorem 2.1. (Seymour [7], see also [4, Theorem 12.3.9]) Let \(\mathcal{N} \) be a class of matroids closed under minors, and \(\mathcal{F} \) be a family of 3-connected matroids. If, for each matroid \(M \), for each \(e \in E(M) \) such that \(M/e \in \mathcal{F} \) or \(M\setminus e \in \mathcal{F} \) and for each \(f \in E(M) - e \) there is an \(\mathcal{F} \)-minor using \(e \) and \(f \), then \(\mathcal{F} \) is 2-rounded in \(\mathcal{N} \).

Seymour proved Theorem 2.1 when \(\mathcal{N} \) is the class of all matroids. But the same proof holds for this more general version. By Whitney’s 2-isomorphism Theorem, the analogous for graphs of Theorem 2.1 holds.

Proof of Theorem 1.1: For items (a) and (b) we will consider \(\mathcal{N} \) as the class of graphic matroids and for items (c) and (d) we will consider \(\mathcal{N} \) as the class of regular matroids. In each item we will verify the criterion given by Theorem 2.1.

First we prove item (a). We begin looking at the 3-connected simple graphs \(G \) such that \(G/e \in \mathcal{F}_a := \{ K_{3,3}, K_{3,3}^{0,1}, K_{3,3}^{0,2}, K_{3,3}^{1,1} \} \). We may assume that \(G \notin \mathcal{F}_a \). So, up to isomorphisms, \(G = K_{3,3}^{0,3} \) or \(G = K_{3,3}^{1,k} \) for some \(k \in \{1, 2, 3\} \). Thus \(e \notin E(K_{3,3}) \).

Define \(H := G[E(K_{3,3}) \cup \{ e, f \}] \). If \(f \in E(K_{3,3}) \), then \(H \cong K_{3,3}^{0,1} \), otherwise \(H \cong K_{3,3}^{0,2} \) or \(H \cong K_{3,3}^{1,1} \). Thus \(H \) is an \(\mathcal{F}_a \)-minor of \(G \) and we may suppose that \(G/e \in \mathcal{F}_a \).

We have that \(G \) is 3-connected and simple, in particular, \(G \) has no degree-2 vertices, hence \(G \) must be obtained from \(G/e \) by the expansion of a vertex with degree at least 4. This implies that \(G \cong K_{3,3} \). Thus, we may assume that \(G/e \) is one of graphs \(K_{3,3}^{0,1}, K_{3,3}^{1,1} \) or \(K_{3,3}^{0,2} \). We denote \(e := w_1 w_2 \).

If \(G/e = K_{3,3}^{0,1} \), then \(G \) is obtained from \(G/e \) by the expansion of a degree-4 vertex. In this case we may assume without losing generality that \(G \) is the graph \(G_1 \), defined in Figure 3. Note that, in this case, \(G_1/u_3 w_2 \cong K_{3,3} \) and that \(G_1/u_3 v_1 \cong K_{3,3}^{0,1} \) (with \(\{ u_1, u_2, w_2 \} \) stable). So, one of \(G_1/u_3 w_2 \) or \(G_1/u_3 v_1 \) is an \(\mathcal{F}_a \)-minor we are looking for. So we may assume that \(G \neq K_{3,3}^{0,1} \).

If \(G \cong K_{3,3}^{1,1} \), then \(G \cong G_1 + u_2 u_3 \) and the result follows as in the preceding case. Hence we may assume that \(G/e \cong K_{3,3}^{0,2} \).
If \(G \) is obtained from \(G/e \) by the expansion of a degree-4 vertex, then \(G \cong G_2 \cong G_1 + v_1 w_1 \). In this case we may proceed as in the first case again.

Thus, if \(G/e = K_{3,3}^{0,2} \), we can assume that \(G \) is obtained from \(G/e \) by the expansion of the degree-5 vertex. If \(\{v_1 w_1, v_2 w_2\} \) or \(\{v_1 w_2, v_3 w_1\} \) is contained in \(E(G) \), then \(G \) is again isomorphic to \(G_2 \) and we are reduced to the first case again. Without loss of generality, say that \(v_1 w_2, v_2 w_2 \in E(G) \). Then \(G \) is one of the graphs \(G_3 \) or \(G_4 \) in Figure 3. If \(G = G_3 \), then one of \(G_3/v_1 w_2 \) or \(G_3/w_2 v_3 \), both isomorphic to \(K_{3,3}^{0,2} \) is the \(F_a \)-minor we are looking for. If \(G = G_4 \), then one of \(si(G_4/u_3 w_2) \) or \(si(G_4/u_2 v_1) \) (with \(\{u_1, u_2, w_2\} \) stable) is such an \(F_a \)-minor. This proves item (a).

Now we prove item (b). We just have to examine the 3-connected simple single-element extensions and coextensions of \(K_5 \), since other verifications were made in the proof of item (a). The unique graph \(G \) with an edge \(e \) such that \(G/e \cong K_5 \) or \(G/e \cong K_5 \) is \(K_{3,3}^{1,1} \) (up to isomorphisms). So, we have item (b).

Now we prove item (c). By the proof of item (a), it is just left to examine the 3-connected extensions and coextensions of the matroids in \(F_c := \{M(K_{3,3}), M(K_{3,3}^{0,1}), M(K_{3,3}^{0,2}), M(K_{3,3}^{1,1})\} \) which are not graphic. By [4, Theorem 13.1.2 and Proposition 12.2.8], each 3-connected regular matroid is graphic, cographic, isomorphic to \(R_{10} \) or has a \(R_{12} \)-minor. But no cographic matroid has a minor in \(F_c \). Moreover, by cardinality, \(R_{10} \) also has no \(F_c \)-minor. So, the unique non-graphic matroids \(M \) such that \(M/e \) or \(M/e \) is possibly in \(F_c \) are those with \(R_{12} \)-minors. Specifically, by cardinality and rank the unique non-graphic matroid that possibly have a single element deletion or contraction in \(F_c \) is \(R_{12} \), up to isomorphisms. Usually \(R_{12} \) is defined as the matroid represented over \(GF(2) \) by

\[
F_c := \{M(K_{3,3}), M(K_{3,3}^{0,1}), M(K_{3,3}^{0,2}), M(K_{3,3}^{1,1})\}
\]
the following matrix:

\[
B := \begin{pmatrix}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\
1 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 1 & 1 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 1 & 1 \\
\end{pmatrix}
\]

Now, we build a representation of \(s_i(R_{12}/1) \) as follows. First, we eliminate the first row and column of \(B \) and eliminate column 9, that became equal column 5, after that, we add row \(z_5 \) to row \(z_6 \) and, finally, we add an extra row \(z_7 \) equal to the sum of the other rows. So we get the matrix \(A \), defined next:

\[
A := \begin{pmatrix}
2 & 3 & 4 & 5 & 6 & 7 & 8 & 10 & 11 & 12 \\
1 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 1 & 1 \\
0 & 0 & 1 & 1 & 0 & 0 & 1 & 0 & 0 & 0 \\
1 & 1 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
\end{pmatrix}
\]

Note that \(R_{12}/1 \sim s_i(R_{12}/1) \sim R_{12}/1 \sim R_{12}/1 \sim R_{12}/6 \sim s_i(R_{12}/7) \sim M(K_{3,3}^0) \) and the ground set of one of these matroids can be chosen containing \(\{e, f\} \). Therefore, for each pair of elements of \(R_{12} \), there is an \(\mathcal{F}_c \)-minor containing both. This proves item (c).

To prove item (d) we observe that if \(M/e = M(K_5) \) or \(M \cong (K_5) \), then \(|E(M)| = 11 \), so \(M \) is not isomorphic to \(R_{10} \) neither has an \(R_{12} \)-minor. Moreover \(M \) is not cographic in this case. So, all matroids we have to deal are graphic, and the proof of item (d) is reduced to item (b). \(\square \)

Lemma 2.2. Let \(G \) be a 3-connected simple graph not isomorphic to \(K_5 \). Then \(G \) has a \(K_5 \)-minor if and only if \(G \) has a \(K_{3,3}^{1,1} \)-minor.
If G has a $K_{3,3}^{1,1}$-minor, then G has a K_5-minor, because $K_5 \cong K_{3,3}^{1,1} / u_1 v_1$. In other hand, suppose that G has a K_5-minor. By the Splitter Theorem (Theorem 12.1.2 of [4]), G has a 3-connected simple minor H with an edge e such that $H\setminus e \cong K_5$ or $H\setminus e \cong K_3$. But no simple graph H has an edge e such that $H\setminus e \cong K_5$. So $H\setminus e \cong K_5$. Now, it is easy to verify that $H \cong K_{3,3}^{1,1}$ and conclude the lemma. □

The next result is Corollary 1.8 of [2].

Corollary 2.3. Let G be a simple 3-connected graph with a simple 3-connected minor H such that $|V(G)| - |V(H)| \geq 3$. Then there is a 3-subset $\{x, y, z\}$ of $E(G)$, which is not the edge-set of a triangle of G, such that $G\setminus x, G\setminus y, G\setminus z$ and $G\setminus x, y$ are all 3-connected graphs having H-minors.

Proof of Theorem [14] Suppose that G and T is a counter-example to the theorem minimizing $|V(G)|$. If $|V(G)| \geq 8$, by Corollary 2.3 applied to G and K_5, G has an edge e such that, $e \notin cl_{(G)}(T)$ and $G\setminus e$ is 3-connected and have a K_5-minor. Thus $si(G\setminus e)$ is a 3-connected simple graph having T as triangle. By Lemma 2.2, $si(G\setminus e)$ has a $K_{3,3}^{1,1}$-minor, contradicting the minimality of G. Thus $|V(G)| \leq 7$. If $|V(G)| = 6$, then $G \cong K_{3,3}^{1,1}$ for some $1 \leq i \leq j \leq 3$. In this case, the Theorem can be verified directly. Thus $|V(G)| = 7$.

So, there is $e \in E(G)$ and $X \subseteq E(G)$ such that $G\setminus X/e \cong K_{3,3}^{1,1}$. If $e \notin T$, $si(G\setminus e)$ contradicts the minimality of T, so $e \in T$. We split the proof into two cases now.

The first case is when e is adjacent to a degree-2 vertex v of $G\setminus X$. Let f be the other edge adjacent to v in $G\setminus X$. So $e, f \in T$, otherwise, $si(G/f)$ would contradict the minimality of G.

Up to isomorphisms, $G\setminus X$ can be obtained from $K_{3,3}^{1,1} \cong G\setminus X/e$ by adding the vertex v in the middle of some edge e'. By symmetry, we may assume that $e' = [u_1 v_2, v_2 v_3, u_1 v_1]$. So, there are, up to isomorphisms, three possibilities for $G\setminus (X - T)$, those in Figure 5. Since G is simple, G has a third edge g adjacent to v. For any of the graphs in Figure 5, it verifies that $si(G\setminus (X - T)/g)$ contradicts the minimality of G. So the proof is done in the first case.

In the second case, e is an edge of $G\setminus X$ whose adjacent vertices has degree at least 3. We may suppose that the end-vertices w_1 and w_2 of e collapses into v_2 when contracting e in $G\setminus X$. Let S be the set of edges incident to v_2 in $G\setminus X/e$. We also may assume that w_2 is adjacent to v_3 in $G\setminus X$. With this assumptions
$G \setminus (X \cup S)$ is the graph G_4 of Figure 6. Note also that $G \setminus X$ is obtained from G_4 adding 3 edges, each incident to a different vertex in $\{u_1, u_2, u_3\}$, two of then incident to w_1 and one incident to w_2. Since switching u_2 and u_3 in G_4 induces an automorphism, we may suppose that $u_2 w_1 \in E(G \setminus X)$. Then, without losing generality, $G \setminus X$ is one of the graphs G_5 or G_6 in Figure 6.

In the case that $G = G_5$, in Figure 7, in the first row, for each possibility for T we draw $G \setminus (X - T)$. The bold edges are those of T. In each graph of the first row, the double edge g has the property that the graph $s_i(G \setminus (X - T)/g)$, draw in the second row in the respective column, contradicts the minimality of G. The vertex obtained in the contraction is labelled by z. In the third and fourth rows of Figure 7, we have the same for the case in which $G = G_6$. This proves the theorem.

Proof of Theorem 1.5 Suppose that G is a 3-connected simple graph with a K_5-minor and T is a triangle of G. We may suppose that $G \not\cong K_5$. By Lemma 2.2 G has a 3-connected simple minor $H \cong K_{3,3}^1$. By Theorem 1.4 we choose H having the edges of T in a triangle. Let $e \in H$ be the edge such that $H/e \cong K_5$. Note that e is in no triangle of H. So H/e is the K_5-minor we are looking for.

References

[1] T. Asano, T. Nishizeki and P.D. Seymour, A note on non-graphic matroids, J. Combin. Theory Ser. B 37 (1980), 290-293.

[2] J. P. Costalonga, On 3-connected minors of 3-connected matroids an graphs, European J. Combin., 33 (2012), 72-81.

[3] J.P. Costalonga., Vertically N-contractible elements in 3-connected ma-
troids, arXiv:1210.0023 (2012).

[4] J.G. Oxley, Matroid Theory, Second Edition, Oxford University Press, New York, 2011.
Figure 7:

[5] P.D. Seymour, *Adjacency in Binary Matroids*, European J. Combin., 7 (1986), 171-176.

[6] P.D. Seymour, *Decomposition of regular matroids*, J. Combin. Theory Ser. B 28 (1980), 305-359.

[7] P.D. Seymour, *Minors of 3-connected matroids*, European J. Combin. 6 (1985), 375-382.

[8] K. Truemper, *A decomposition theory for matroids III. Decomposition conditions*, J. Combin. Theory Ser. B 41 (1986), 275-305.