Charge Transport in a Polar Metal

Jialu Wang1, Liangwei Yang1, Carl Willem Rischau2, Zhuokai Xu1, Zhi Ren1, Thomas Lorenz3, Joachim Hemberger3, Xiao Lin1* and Kamran Behnia3,4

1 School of Science, Westlake Institute for Advanced Study, Westlake University, 18 Shilongshan Road, 310024 Hangzhou, China
2 Department of Quantum Matter Physics, University of Geneva, 1205 Geneva, Switzerland
3 II. Physikalisches Institut, Universität zu Köln, Zülpicher Str. 77, 50937 Köln, Germany
4 Laboratoire Physique et Etude de Matériaux (CNRS-UPMC), ESPCI Paris, PSL Research University, 75005 Paris, France

(Dated: September 11, 2019)

The fate of electric dipoles inside a Fermi sea is an old issue, yet poorly-explored. \(\text{Sr}_{1-x}\text{Ca}_x\text{TiO}_3\) hosts a robust but dilute ferroelectricity in a narrow \((0.002 < x < 0.02)\) window of substitution. This insulator becomes metallic by removal of a tiny fraction of its oxygen atoms. Here, we present a detailed study of low-temperature charge transport in \(\text{Sr}_{1-x}\text{Ca}_x\text{TiO}_3-\delta\), documenting the evolution of resistivity with increasing carrier concentration \((n)\). Below a threshold carrier concentration, \(n^*(x)\), the polar structural phase transition has a clear signature in resistivity and Ca substitution significantly reduces the 2 K mobility at a given carrier density. For three different Ca concentrations, we find that the phase transition fades away when one mobile electron is introduced for about 7.9±0.6 dipoles. This threshold corresponds to the expected peak in anti-ferroelectric coupling mediated by a dipolar counterpart of Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction. Our results imply that the transition is driven by dipole-dipole interaction, even in presence of a dilute Fermi sea. At higher carrier concentrations, our data resolves slight upturns in low-temperature resistivity in both Ca-free and Ca-substituted samples, reminiscent of Kondo effect and most probably due to oxygen vacancies.

I. INTRODUCTION

The concept of a polar or 'ferroelectric' metal was first proposed by Anderson and Blount in 1960s \cite{Anderson1960}. They considered a continuous structural phase transition breaking the inversion symmetry and leading to the appearance of a polar axis in a metal. This appears counter-intuitive since one expects mobile electrons to strongly screen electric field. Recently, however, 'ferroelectric' metallicity was reported in \(\text{LiOsO}_3\) \cite{Ge2009}. It was found that this stoichiometric metal shows a structural phase transition to non-centrosymmetric rhombohedral phase \((R3c)\) below 140 K. The polar structural transition, which manifests itself as a kink in resistivity of this metal, is analogue to what occurs in its insulating ferroelectric cousins \(\text{LiNbO}_3\) and \(\text{LiTaO}_3\) \cite{Ge2009}.

Paraelectric solids close to a ferroelectric transition \cite{Ge2009} provide another platform for a meeting between metallicity and ferroelectricity. One example is \(\text{PbTe}\), a narrow-gap semiconductor close to a ferroelectric instability. The unavoidable presence of doping defects makes available \(\text{PbTe}\) samples dilute metals. Isovalent substitution of \(\text{Pb}\) by \(\text{Ge}\) leads to a structural phase transition from cubic to a non-centrosymmetric rhombohedral phase \cite{Ge2009}, which would have been ferroelectric in absence of mobile electrons. The ferroelectric-like transition was revealed by X-ray diffraction, inelastic neutron and Raman scattering \cite{Ge2009}. Charge transport in presence of local dipoles was studied several decades ago \cite{Li1990,Dresselhaus1990}.

\(\text{SrTiO}_3\) single crystals, in contrast to \(\text{PbTe}\), can be made stoichiometric enough to be insulating. Proximity to a ferroelectric quantum critical point \cite{Rischau2018,Fei2013} is manifested by a large electric permittivity of \(\text{SrTiO}_3\) \((\varepsilon_r > 20000)\) \cite{Kaminsky1977}. As a consequence, this insulator displays a number of intriguing properties \cite{Kaminsky1977}. A FE state emerges upon substitution of a tiny fraction of \(\text{Sr}\) ions with \(\text{Ca}\) \cite{Rischau2018}. Moreover, this quantum paraelectric can become a dilute metal (with a carrier concentration as small as \(\approx 10^{10} \text{ cm}^{-3}\)) upon oxygen reduction \cite{Rischau2018} \cite{Fei2013}. The dilute metal undergoes a superconducting transition below 0.3 K \cite{Rischau2018} \cite{Xin2019}.

Rischau et al. have recently found that a superconducting phase coexists with a FE-like instability in \(\text{n-doped Sr}_{1-x}\text{Ca}_x\text{TiO}_3-\delta\) and superconductivity and ferroelectricity \((\text{FE})\) may be intimately linked \cite{Rischau2019}. The FE transition of insulating \(\text{Sr}_{1-x}\text{Ca}_x\text{TiO}_3\) was found to survive in metallic \(\text{Sr}_{1-x}\text{Ca}_x\text{TiO}_3-\delta\). Being a metal, the latter does not show a bulk reversible electric polarization and cannot be a true ferroelectric. Nevertheless, it shows anomalies in various physical properties at the Curie temperature of the insulator. For example, Raman scattering found that the hardening of the FE soft mode in the dilute metal is indistinguishably similar to what is seen in the insulator \cite{Rischau2019}. The anomaly in resistivity was found to terminate at a threshold carrier density \((n^*)\), near which the superconducting transition temperature was enhanced \cite{Rischau2019} providing evidence for a link between superconducting pairing and ferroelectricity, a subject of present attention \cite{Kaminsky2019} \cite{Kaminsky2020}.

\(\text{Sr}_{1-x}\text{Ca}_x\text{TiO}_3-\delta\) is an attractive platform to study the interaction between electric dipoles and mobile electrons. Its metallicity and ferroelectricity are both di-
hute. Therefore, the distance between dipoles and mobile electrons can be separately tuned but kept much longer than the interatomic distance. In this paper, we present a study of low-temperature electrical resistivity in dozens of Sr$_{1-x}$Ca$_x$TiO$_{3-\delta}$ single-crystals with $x = 0$, 0.22%, 0.45%, 0.9%. We find that the magnitude of low-temperature mobility is significantly reduced below $n^*(x)$ and the mean-free-path gently peaks near $n^*(x)$, where the quadratic temperature dependence of resistivity is restored. Moreover, we find that n^* is proportional to x, implying the threshold density occurs at a fixed ratio between the inter-carrier and the inter-dipole distance. We will argue that these features are all consistent with the hypothesis of a dipolar RKKY interaction, which was theoretically proposed a quarter-century ago [33]. At much higher carrier densities ($n > 5 \times 10^{19}$ cm$^{-3}$), we observe a slight upturn in low-temperature resistivity of Ca-free and Ca-substituted samples and attribute it to a Kondo effect associated with oxygen vacancies.

II. RESULTS

The upper panel (a-I) of Fig. 1 plots the low temperature dependence of resistivity for Sr$_{1-x}$Ca$_x$TiO$_{3-\delta}$ at low n and $x = 0.22\%$, 0.45%, 0.9%. In Fig. 1a, 1e and 1i, resistivity shows an anomaly at lowest n for all three groups of samples. Increasing n-doping, the anomaly shifts to lower temperatures, evolves into a minimum and finally disappears at a threshold doping ($n^*(x)$), seen in Fig. 1b-1d, 1f-1h and 1j-1l. Rischau et al. found that in selected samples at $x = 0.22\%$ and 0.9%, this anomaly occurs close to where the structural phase transition was detected by Raman spectroscopy, sound velocity and thermal expansion measurements [21]. Most recently, thermal expansion measurements documented the evolution of the structural phase transition in Sr$_{1-x}$Ca$_x$TiO$_{3-\delta}$ ($x = 0.9\%$), starting from the insulating phase and extending deep into the metallic phase [34]. The study found that below n^*, the transition temperature and the magnitude of the transition-induced anomaly continuously decreased with increasing carrier concentration. Above n^*, a small residual anomaly with a concentration-independent temperature scale was observed to survive. No sign change in the thermal expansion coefficient (α) was observed at n^*. Thus, the corresponding Grüneisen ratio α/C_p (C_p is the specific heat) does not change sign. This implies either the absence of a quantum critical point at n^* or its insensitivity to uniaxial pressure [34].

Fig. 1m shows a 3D plot of the phase diagram of Sr$_{1-x}$Ca$_x$TiO$_{3-\delta}$ with two tunable parameters (n and x). In the $n = 0$ plane, Sr$_{1-x}$Ca$_x$TiO$_3$ becomes ferroelectric when $x_c > 0.18\%$. Above this critical concentration of Ca substituents, T_c scales with x following $T_c \sim |x - x_c|^{1/2}$ [15]. The anomaly in resistivity of n-doped samples is shown with green, blue and red symbols for $x = 0.22\%$, 0.45%, 0.9% respectively.

The anomaly caused by the structural phase transition (strictly speaking, only a true FE state at $n = 0$) shifts to lower temperatures with increasing n. At a threshold doping ($n^*(0.22\%) \approx 5 \times 10^{18}$ cm$^{-3}$, $n^*(0.45\%) \approx 1 \times 10^{19}$ cm$^{-3}$ and $n^*(0.9\%) \approx 2 \times 10^{19}$ cm$^{-3}$), resistivity becomes metallic down to lowest temperatures (see panels, 1d, 1h, 1l).

The low-temperature resistivity of strontium titanate follows a simple quadratic temperature dependence: $\rho = \rho_0 + AT^2$ [35, 36]. Elastic scattering is represented by residual resistivity, ρ_0, intimately linked to the asymptotic low-temperature mobility set by disorder. Inelastic scattering among electrons sets the temperature-dependent AT^2 term. Both these terms are affected differently below and above $n^*(x)$.

The quadratic temperature dependence is drastically affected upon the introduction of Ca atoms. In Fig. 1, the anomaly is suppressed as the n^* term decreases. This shows the Ca atoms strongly stabilize the metallic state, and that restoring RTA in Sr$_{1-x}$Ca$_x$TiO$_{3-\delta}$ is equivalent to increasing the carrier density below n^*.
2, the resistivity of Sr$_{1-x}$Ca$_x$TiO$_{3-\delta}$ with $x = 0.22\%$, 0.45\% and 0.9\%, is plotted vs. T^2 and compared with Ca-free samples of similar n. As seen in the upper panel, which shows typical data for $n < n^*(x)$, the resistivity shows a minimum followed by an upturn, in presence of the structural phase transition. In contrast, in SrTiO$_{3-\delta}$ with similar n, T^2 dependence of resistivity persists down to lowest temperatures [34, 36]. The lower panel of Fig. 2 shows the behavior at $n \approx n^*(x)$. One can see that the T^2 resistivity of Ca-doped samples is restored. Moreover, the slope is similar in Ca-substituted and Ca-free samples. In other words, the prefactor of quadratic resistivity, which strongly depends on carrier concentration but not on residual resistivity, is similar in Ca-substituted and Ca-free samples at the same carrier density. Let us note that this strict Fermi-liquid behavior at $n^*(x)$, indicates that is not a ‘quantum critical point’ where a non-Fermi-liquid behavior is commonly sought and often found. This is in agreement with the absence of a sign change in thermal expansion [34]. The other implication of this observation is that below $n^*(x)$, electrons suffer additional inelastic scattering in presence of aligned dipoles. The destruction of the structural phase transition at $n^*(x)$ suppresses this additional mechanism and restores the T^2 resistivity associated with electron-electron scattering [35]. This implies that in the FE-like state, additional scattering generates a drastically non-Fermi-liquid behavior.

The presence of FE-like order affects the elastic scattering of the carriers too. The Hall mobility (μ) at 2K for Sr$_{1-x}$Ca$_x$TiO$_{3-\delta}$ with $x = 0, 0.22\%, 0.45\%, 0.9\%$ is presented in Fig. 3. The mobility μ is extracted from Hall resistivity ρ_{xy} and longitudinal resistivity ρ_{xx} using $\mu = \rho_{xy}/\rho_{xx}$. As seen in the figure, μ increases with the decreasing in the carrier density (n) following an approximate power law $\mu \sim n^{-\alpha}$ shown by the dashed lines. For SrTiO$_{3-\delta}$, the power law behaviour persists down to $n \sim 2 \times 10^{18} \text{cm}^{-3}$. Below this concentration, it begins to saturate and then drops at even lower carrier concentrations with the approach of the metal-insulator transition [16, 19].

In many doped semiconductors, the mobility decreases with increasing carrier concentration [37, 38]. This has been often discussed in the framework of ionized impurity scattering [39]. Several features distinguish the 2K mobility of metallic strontium titanate from ordinary doped semiconductors. First of all, the dependence of mobility with carrier concentration is very steep (i.e. α in $\mu \sim n^{-\alpha}$ is close to unity). Second, this mobility is strongly temperature dependent and passes from a room-temperature value of 5 cm2V$^{-1}$s$^{-1}$ to 20000 cm2V$^{-1}$s$^{-1}$ at liquid He temperature [40, 41]. This latter value implies that the low-temperature carrier mean-free-path becomes much longer than the interdopant distance ($l_{ee} = n^{-1/3}$) in contrast to the ionized-impurity-scattering scenario.

It has been argued [42] that these peculiar features of mobility in dilute metallic strontium titanate can be traced back to the long effective Bohr radius, a_B^*, of the parent insulator. The large electric permittivity [43] elongates the Bohr radius to 600 nm, which is to be compared to 1.5 nm in silicon. This in turn affects the Thomas-Fermi screening length of the metal, which depends on it:

$$r_{TF} = \sqrt{\frac{\pi a_B^*}{4k_F}}$$

The combination of a large a_B^* and a small k_F elongates the screening length and therefore short-distant irregularities in the dopant distribution are smoothed out. This simple approach yields this expression for mobility [42]:

$$\mu \propto a_B^{*1/2}n^{-5/6}$$

Fig. 3a confirms that this expression gives a surprisingly good account of the variation of 2 K mobility with n in SrTiO$_{3-\delta}$ [42]. As seen in Fig. 3b-d, Ca substitution leads to a slight decrease in the exponent of the power law exponent (α). More importantly, a clear deviation from the power-law behaviour occurs below $n^*(x)$ marked by vertical arrows. In other words, the carrier mobility is significantly reduced when the system orders. Fig. 3e shows the mean-free-path (ℓ), which presents a mild maximum marked by three arrows at $n^*(x)$. Well above this threshold density of $n^*(x)$, the mean-free-path of the Ca-doped and Ca-free samples gradually merges. Thus, we conclude that the presence of the FE-like order inside the metal has drastic consequences for elastic scattering of electrons too.

Fig. 3f shows n^* extracted from our data as a function of n_{Ca}. One can see that the two concentrations are
proportional to each other. In other words, the threshold inter-electron distance (l^*_{ee}) linearly scales with the average distance between Ca ions ($n_{Ca}^{-1/3}$), the slope of which indicates that the destruction of the FE-like order happens when there is one mobile electron per 7.9 ± 0.6 Ca ions.

III. DISCUSSION

Thus, we find that below a threshold concentration: i) an additional mechanism for inelastic scattering sets in; ii) the low-temperature mobility is significantly reduced. Moreover: iii) this threshold density for the destruction of the polar metal is proportional to Ca concentration and; iv) at this density carrier mean-free-path gently peaks. We are now going to argue that these observations support a picture in which off-center Ca sites generate electric dipoles interacting with each other inside a Fermi sea.

Let us begin with a fundamental question: what drives the FE transition in the insulating Sr$_{1-x}$Ca$_x$TiO$_3$ for $0.0018 < x < 0.02$? According to the scenario invoked by previous authors [15, 43], an off-site Ca atom generates an electric dipole, which couples to the soft transverse optical phonon of the host lattice. Theory [44] had predicted that cooperative phenomena between paraelectric defects in an easily polarizable crystal lead to polar clusters whose size is set by the polar correlation length of the host lattice (r_c). The latter depends on the velocity and the frequency of the soft mode of the host polarizable lattice ($r_c = v_s/\omega_0$) [45, 46]. With cooling r_c increases, the interaction between clusters becomes stronger and at a sufficiently low temperature, cluster percolation leads to a ferroelectric order. A transverse Ising model, treating dipoles as pseudospins, has been successful in describing the Sr$_{1-x}$Ca$_x$TiO$_3$ phase diagram [47, 48].

In an ordinary ionic crystal, there is no mean-field basis for favoring ferroelectricity. This is because the electric field generated by a dipole does favor opposite alignments for a neighboring dipole along perpendicular orientations (Fig. 4a). In an easily polarizable crystal, on the other hand, the interaction becomes ferroelectric over a polarization length (r_c), thanks to the presence of soft transverse optic phonon modes. Since r_c is significantly longer than the typical distance between dipolar impurities, sizable ferroelectric clusters [44, 46] (Fig. 4b) become energetically stable. This paves the way for the emergence of long-range order.

This approach provides a satisfactory explanation for
Sr coupling between dipoles destroys the ferroelectric order in SrTiO$_3$, according to our observations, anti-ferroelectric and anti-ferroelectric coupling between dipoles alters the order for $n<1$. In a highly-polarizable lattice, the interaction is ferroelectric one, impeding the emergence of long-range ferroelectricity. b) The central dipole (open arrow) can interact either ferroelectrically (in blue) or anti-ferroelectrically with dipoles (in red). a) In an ordinary ionic crystal, the interaction is ferroelectric along one orientation and anti-ferroelectric along the perpendicular one, impeding the emergence of long-range ferroelectricity. b) In a highly-polarizable lattice, the interaction is ferroelectric over a length scale, r_c, longer than the interdopant distance, ℓ_{dd}. This allows the formation of large ferroelectric cluster composed of many dipoles. The typical size of these clusters is set by r_c. c) In the presence of a Fermi sea, ferroelectric and anti-ferroelectric coupling between dipoles alternate radially. According to our observations, anti-ferroelectric coupling between dipoles destroys the ferroelectric order in Sr$_{1-x}$Ca$_x$TiO$_3$ at a carrier density of $n^*(x)$, which corresponds to $2k_F\ell_{dd} = \pi$.

A second question arises by the existence of $n^*(x)$. Why does the order eventually fade away and what does this threshold density correspond to?

The first question brings to mind a remark by Landauer [51] according to which, neither electric field nor carrier concentration can be strictly homogeneous in a metal containing defects. This is particularly true in our case, where the Thomas-Fermi screening length is very long by a combination of long Bohr radius and small Fermi-wave vector. When the carrier density is as low as 10^{18} cm$^{-3}$, Eq.1 yields $r_{TF} \approx 80$ nm, much longer than the distance between the dipoles or the r_c of the insulator. The Fermi sea is too dilute to impede dipolar interaction. The attenuation of mobility implies enhanced electric-field inhomogeneity brought by the alignment of dipoles, providing additional support for picturing persistent electric interaction in spite of a Fermi sea.

The second question leads us to an additional interaction mechanism offered to electric dipoles in presence of a Fermi sea (see Fig. 4c). This was proposed first by Glincuk and Kondakova in 1992 [33]. The opposite charges of an electric dipole are expected each to generate Friedel oscillations inside a Fermi sea, which is a distinct source of dipolar interaction. Indeed, it is established that localized magnetic spins inside a Fermi sea generate similar oscillations and interact through what is known as the Ruderman-Kittel-Kasuya-Yosida (RKKY) mechanism [34]. Glincuk and Kondakova proposed a dipolar analogue of RKKY interaction. This dipole-dipole interaction ($V_{dd,RT}$) depends on the magnitude of the electric dipole moment and has an alternating sign as a function of the inter-dipole distance (ℓ_{dd}) and Fermi wave vector (k_F) [33]:

$$V_{dd,RT} \propto \frac{\cos(2k_F\ell_{dd})}{\ell_{dd}^3}$$

(3)

This expression for interaction between two dipoles is to be compared with what is expected in vacuum:

$$V_{dd,V} \propto \frac{1}{\ell_{dd}^4}$$

(4)

or in a highly-polarizable insulator with a polarization correlation radius of r_c: [45]:

$$V_{dd,C} \propto \frac{\exp(-\ell_{dd}/r_c)}{r_c\ell_{dd}^3}$$

(5)

According to Eq.3, the parallel alignment of nearest dipoles becomes energetically unfavorable when $\cos(2k_F\ell_{dd}) = -1$ or $2k_F\ell_{dd} = \pi$. Assuming an isotropic Fermi surface ($k_F = (3\pi^2n)^{1/3}$), one finds that this will happen when $\frac{\pi}{2} = \frac{2\pi}{7}$. In other words, the destructive interaction is expected to occur when the there is $\frac{2\pi}{7} \approx 7.6$ dipoles per mobile electron. This is very close to what we observe experimentally. We note the presence of a higher order term is not expected to change the outcome significantly.

Thus, invoking RKKY-like interaction between electric dipoles inside a polar metal provides a straightforward

FIG. 4. Dipole-dipole interaction in three contexts. The central dipole (open arrow) can interact either ferroelectrically (in blue) or anti-ferroelectrically with dipoles (in red). a) In an ordinary ionic crystal, the interaction is ferroelectric along one orientation and anti-ferroelectric along the perpendicular one, impeding the emergence of long-range ferroelectricity. b) In a highly-polarizable lattice, the interaction is ferroelectric over a length scale, r_c, longer than the interdopant distance, ℓ_{dd}. This allows the formation of large ferroelectric cluster composed of many dipoles. The typical size of these clusters is set by r_c. c) In the presence of a Fermi sea, ferroelectric and anti-ferroelectric coupling between dipoles alternate radially. According to our observations, anti-ferroelectric coupling between dipoles destroys the ferroelectric order in Sr$_{1-x}$Ca$_x$TiO$_3$ at a carrier density of $n^*(x)$, which corresponds to $2k_F\ell_{dd} = \pi$.
explanation to the experimentally-observed magnitude of n^* for three different Ca contents. The fact that $n^*(x)$ is proportional to x becomes a simple consequence of the presence of $k_F l_{dd}$ in Eq.3. In this picture, while the dipolar interaction which generates the ferroelectric order in the insulator is governed by $V_{dd,C}$ in Eq.5, as argued previously [45], the one destroying it in the metal is expressed by $V_{dd,R}$ in Eq.3. Note that: the relative weight of the two interactions (ferroelectric coupling driven by strong polarization and aniferroelectric coupling mediated by the Fermi sea) remains an open issue.

One may be tempted by an alternative picture in which the FE-like transition is destroyed because the screening length shrinks with increasing carrier concentration. However, since this evolution is very slow ($r_{TF} \propto n^{-1/6}$), it would be very hard to explain the linear proportionality between n^* and x.

What happens to the electric dipoles when the carrier density exceeds $n^*(x)$? According to the thermal expansion measurements [54], a smeared anomaly continues to survive. One may speculate that a non-percolative dipole glass [55] persists at higher densities. In our study of resistivity, we cannot see any significant difference between Ca-free and Ca-substituted strontium titanate when $n > n^*(x)$. On the other hand, we do see small upturns in resistivity, reminiscent of the Kondo effect, which constitutes yet another source of information.

Low-temperature resistivity of Sr$_{1-x}$Ca$_x$TiO$_{3-\delta}$ (with $x = 0.9\%$) above $n^*(x)$ is shown in Fig. 5a-5d. One can see that a less pronounced upturn re-appears above $n^*(x = 0.9\%)$. Similar data for Ca-free samples are shown in Fig. 5e-5f for comparison. No clear upturn can be seen in Fig. 5e and 5f with n below 5.2×10^{19} cm$^{-3}$. With further increase of carrier concentration, a small upturn appears. No clear difference between Cdoped and Ca-free samples can be detected. We note however, that these upturns in resistivity correspond to a relative change of several 10^{-3}. This is orders of magnitudes smaller than what can be seen in Fig. 2 for $n < n^*$. Their small magnitude as well as their presence in Ca-free samples point to an origin which is not the one discussed above in the presence of the phase transition.

As seen in Fig. 5c and 5g, the temperature dependence of these upturns is roughly logarithmic. The logarithmic temperature dependence of resistivity is reminiscent of the Kondo effect, which arises when a localized spin couples to a Fermi sea [54]. It is now known that the Kondo effect can arise when any Two-Level-System (TLS) is embedded in a Fermi sea [54] and experiments [56-58] have documented a variety of non-magnetic counterparts of the original Kondo effect. Our upturns in resistivity, both by their magnitude and temperature dependence are reminiscent of what Matsushita et al. observed in Ti-doped PbTe and attributed to charge Kondo effect. The valence degeneracy of Ti dopants was identified as the driver of the Kondo effect [58].

The origin of the Kondo effect in our system is yet to be pinned down. Oxygen vacancies are the principal suspects. By distorting the TiO$_6$ octahedra, they can generate degeneracies in different degrees of freedom. Moreover, they are suspected to host d^0 magnetism [59]. One cannot forget, however, the unavoidable presence of magnetic impurities at the ppm level in SrTiO$_3$ [60, 61].

The absence of this upturn below 5×10^{19} cm$^{-3}$ and its gradual appearance at higher densities begs explanation. The evolution of the T-square resistivity prefactor may provide one. In presence of a large temperature-dependent resistivity, a small sub-percent upturn may be undetectable. However, this hypothesis fails to explain the gradual fading of the effect at even higher carrier concentrations. Why the upturn is most prominent at lower x? A possible clue is provided by the well-established fact that in general, the Kondo physics of magnetic impurities above a threshold concentration is replaced by a spin-glass state. In the case of iron impurities in silver [62] this threshold is about a percent. The same may happen to the Kondo effect of oxygen vacancies. Note that this is yet another argument against extrinsic magnetic impurities as the source of the Kondo effect.

In summary, we found that the existence of the FE order in insulating Sr$_{1-x}$Ca$_x$TiO$_3$ deeply affects charge transport in dilute metallic Sr$_{1-x}$Ca$_x$TiO$_{3-\delta}$. Below a threshold of carrier concentration $n^*(x)$, inelastic and elastic scattering of carriers are both amplified. This threshold density scales with Ca content. Both these features can be explained by invoking the survival of electric dipole interaction inside the Fermi sea via the dipolar counterpart of RKKY interaction. At higher carrier con-
centrations, deep inside the metallic state, clear but tiny upturns of resistivity are detectable, which are reminiscent of the Kondo effect and most probably associated with oxygen vacancies.

IV. METHODS

SrTiO$_3$ and Sr$_{1-x}$Ca$_x$TiO$_3$ single-crystals with $x = 0.22\%$, 0.45\%, 0.9\% were commercially obtained. Mobile electrons were introduced by generating oxygen vacancies. In order to remove oxygen atoms, samples were sealed with high-purity Ti powder (99.99\%) in an evacuated quartz tube and annealed in an oven. Samples with various electron carrier concentrations (from 1010 to 1021 cm$^{-3}$) were obtained by varying the annealing temperature between 700 and 900 °C. Resistivity was measured through the four-terminal method down to 1.8K in Quantum Design PPMS. Hall effect is measured concomitantly under magnetic field to determine the carrier density (n).

V. DATA AVAILABILITY

All data supporting the findings of this study are available within the paper.

ACKNOWLEDGMENTS

We thank Jonathan Ruhman for stimulating discussions. This research is supported by National Natural Science Foundation of China via Project 11904294 and Zhejiang Provincial Natural Science Foundation of China under Grant No. LQ19A040005. We acknowledge support by the DFG (German Research Foundation) via Project No. 277146847 within CRC 1238 (sub-projects A02, B01, B02, and B03). This work is part of a DFG-ANR project funded by Agence Nationale de la Recherche (ANR-18-CE92-0020-01) and by the DFG through projects LO 818/6-1 and HE 3219/6-1.

[1] Anderson, P. W. & Blount, E. I. Symmetry Considerations on Martensitic Transformations: “Ferroelectric” Metals? Phys. Rev. Lett. 14, 217 (1965).
[2] Shi, Y. G. et al. A ferroelectric-like structural transition in a metal. Nat. Mat. 12, 1024 (2013).
[3] Kvyatkovskii, O. E. Quantum effects in incipient and low-temperature ferroelectrics (a review). Phys. Solid State 43, 1401 (2001).
[4] Hohnke, D. K., Holloway, H. & Kaiser, S. Phase relations and transformations in the system PbTe-GeTe. J. Phys. Soc. Jpn. 53, 1259 (1984).
[5] Alperin, H. A., Pickart, S. J., Rhyne, J. J. & Minkiewicz, V. J. Softening of the transverse-optic mode in PbTe. Phys. Lett. 40A, 295 (1972).
[6] Sugai, S., Murase, K., Tsuchihira, T. & Kamamura, H. Interaction of the TO-phonon with the acoustic phonons near the phase transition temperature in Pb$_{1-x}$Ge$_x$Te. J. Phys. Soc. Jpn. 47, 539 (1979).
[7] Katayama, S. I., Maekawa, S. & Fukuyama, H. Kondo-like effect of atomic motion on resistivity in Pb$_{1-x}$Ge$_x$Te. J. Phys. Soc. Jpn. 56, 697 (1987).
[8] Takaoka, S. & Murase, K. Anomalous resistivity near the ferroelectric phase transition in (Pb, Ge, Sn) Te alloy semiconductors. Phys. Rev. B 20, 2823 (1979).
[9] Takano, S., Kumashiro, Y. & Tsuchi, K. Resistivity Anomalies in Pb$_{1-x}$Ge$_x$Te at Low Temperatures. J. Phys. Soc. Jpn. 53, 4309 (1984).
[10] Yaraneri, H., Grassie, A. D. C., Yusheng, H. & Loram, J. W. A quasi-Kondo effect in Pb$_{1-x}$Ge$_x$Te alloys. Phys. C (Solid State Phys.) 14, L411 (1981).
[11] Narayan, A., Cano, A., Balatsky, A. V. & Spaldin, N. A. Multiferroic quantum criticality. Nat. Mat. 18, 223-228 (2019).
[12] Chandra, P., Lonzarich, G. G., Rowley S. E. & Scott, J. F. Prospects and applications near ferroelectric quantum phase transitions: a key issues review. Reports on Progress in Physics 80, 112502 (2017).
[13] Müller, K. A. & Burkard, H. SrTiO$_3$: An intrinsic quantum paraelectric below 4 K. Phys. Rev. B 19, 3593 (1979).
[14] Martelli, V., Larrea Jiménez, J., Continentino, M., Baggio-Saitovitch, E. & Behnia, K. Thermal Transport and Phonon Hydrodynamics in Strontium Titanate. Phys. Rev. Lett. 120, 125901 (2018).
[15] Bednorz, J. G. & Müller, K. A. Sr$_{1-x}$Ca$_x$TiO$_3$: An XY Quantum Ferroelectric with Transition to Randomness. Phys. Rev. Lett. 52, 2289 (1984).
[16] Spinelli, A., Torija, M. A., Liu, C., Jan, C. & Leighton, C. Electronic transport in doped SrTiO$_3$: Conduction mechanisms and potential applications. Phys. Rev. B 81, 155110 (2010).
[17] Bhattacharyya, A., Skinner, B., Khalsa, G. & Suslov, A. V. Spatially inhomogeneous electron state deep in the extreme quantum limit of strontium titanate. Nat. Comm. 7, 12974 (2016).
[18] Koonce, C. S., Cohen, M. L., Schooley, J. F., Hosler, W. R. & Pfeiffer, E. R. Superconducting Transition Temperatures of Semiconducting SrTiO$_3$. Phys. Rev. 163, 380 (1967).
[19] Lin, X., Zhu, Z., Fauqué, B. & Behnia, K. Fermi Surface of the Most Dilute Superconductor. Phys. Rev. X 3, 021002 (2013).
[20] Collignon, C., Lin, X., Rischau, C. W., Fauqué, B. & Behnia, K. Metallicity and superconductivity in doped strontium titanate. Ann. Rev. Cond. Mat. Phys. 10, 25 (2019).
[21] Rischau, C. W. et al. A ferroelectric quantum phase transition inside the superconducting dome of Sr$_{1-x}$Ca$_x$TiO$_3$-δ. Nat. Phys. 13, 643 (2017).
[22] Stucky, A. et al. Isotope effect in superconducting n-doped SrTiO$_3$. Sci. Rep. 6, 37582 (2016).
[23] Rowley, S. E. et al. Superconductivity in the vicinity of a ferroelectric quantum phase transition. Preprint at arXiv:1801.08121 (2018).
[24] Herrera, C., Cerbin, J., Dunnett, K., Balatsky, A. V., & Sochnikov, I. Strain-engineered interaction of quantum polar and superconducting phases. Preprint at arXiv:1808.03739 (2018).
[25] Tomioka, Y., Shirakawa, N., Shibuya, K. & Inoue, I. H. Enhanced superconductivity close to a non-magnetic quantum critical point in electron-doped strontium titanate. Nat. Commun. 10, 738 (2019).
[26] Ahadi, K. et al. Enhancing superconductivity in SrTiO$_3$ films with strain. Sci. Adv. 5, 0120 (2019).
[27] Kedem, Y., Zhu, J. X. & Balatsky, A. V. Unusual superconducting isotope effect in the presence of a quantum criticality. Phys. Rev. B 93, 184507 (2016).
[28] Wölfle, P. & Balatsky, A. V. Superconductivity at low density near a ferroelectric quantum critical point: Doped SrTiO$_3$. Phys. Rev. B 98, 104505 (2018).
[29] Edge, J. M., Kedem, Y., Aschauer, U., Spaldin, N. A. & Balatsky, A. V. Quantum Critical Origin of the Superconducting Dome in SrTiO$_3$. Phys. Rev. Lett. 15, 247002 (2015).
[30] Kamo, S. & Yanase, Y. Multiorbital Ferroelectric Superconductivity in doped SrTiO$_3$. Preprint at arXiv:1904.11113 (2019).
[31] van der Marel, D., Barantani, F. & Rischau, C. W. Possible mechanism for superconductivity in doped SrTiO$_3$. Phys. Rev. Research 1, 013003 (2019).
[32] Kozii, V., Bi, Z. & Ruhman, J. Superconductivity near a ferroelectric quantum critical point in ultra low-density Dirac materials. Preprint at arXiv:1901.11064 (2019).
[33] Glinchuk, M. D. & Kondakova, I. V. Ruderman–Kittel–like interaction of electric dipoles in systems with carriers. Phys. Stat. Sol. (b) 174, 193 (1992).
[34] Engelmayer, J. et al. Ferroelectric order versus metallicity in Sr$_{1-x}$Ca$_x$TiO$_3$-δ($x = 0.009$). Preprint at arXiv:1907.10011 (2019).
[35] Lin, X., Fauqué, B. & Behnia, K. Scalable T2 resistivity in a small single-component Fermi surface. Science 349, 945 (2015).
[36] Van Der Marel, D., van Mechelen, J. L. M. & Mazin, I. I. Common Fermi-liquid origin of T2 resistivity and superconductivity in n-type SrTiO$_3$ Phys. Rev. B 84, 205111 (2011).
[37] Ellner, K. Resistivity of polycrystalline zinc oxide films: current status and physical limit. J. Phys. D: Appl. Phys. 34, 3097 (2001).
[38] Bel Hadj Tahar, R., Ban, T., Ohya, Y. & Takahashi, Y. Tin doped indium oxide thin films: Electrical properties. Journal of Applied Physics 83, 2631 (1998).
[39] Conwell, E. & Weisskopf, V. F. Theory of impurity scattering in semiconductors. Phys. Rev. 77, 388 (1950).
[40] Tufte, O. N. & Chapman, P. W. Electron Mobility in Semiconducting Strontium Titanate. Phys. Rev. 155, 796 (1967).
[41] Lin, X. et al. Metallicity without quasi-particles in room-temperature strontium titanate. npj Quant. Mat. 2, 41 (2017).
[42] Behnia, K. On mobility of electrons in a shallow Fermi sea over a rough seafloor. J. Phys.: Condens. Matter 27, 375501 (2015).
[43] Kleemann, W., Dec, J., Wang, Y. G., Lehnen, P. & Prosandeev, S. A. Phase transitions and relaxor properties of doped quantum paraelectrics. J. Phys. Chem. Sol. 61, 167 (2000).
[44] Vugmeister, B. E. & Glinchuk, M. D. Some features of the cooperative behavior of paraelectric defects in strongly polarizable crystals. JETP 52, 482 (1980).
[45] Vugmeister, B. E. & Glinchuk, M. D. Dipole glass and ferroelectricity in random-site electric dipole systems. Rev. Mod. Phys. 62, 993 (1990).
[46] Samara, G. A. The relaxational properties of compositionally disordered ABO$_3$ perovskites. J. Phys.: Condens. Matter 15 R571 (2003).
[47] Hemberger, J. et al. Quantum paraelectric and induced ferroelectric states in SrTiO$_3$. J. Phys.: Condens. Matter 8, 4673 (1996).
[48] Wang, Y. G., Kleemann, W., Zhong, W. L. & Zhang, L. Impurity-induced phase transition in quantum paraelectrics. Phys. Rev. B 57, 13343 (1998).
[49] Schremmer H., Kleemann W. & Rytz D., Phys. Rev. Lett. 62, 1896 (1989).
[50] Zhang, L., Kleemann, W. & Zhong, W. L. Relation between phase transition and impurity-polarized clusters in Sr$_{1-\delta}$Ca$_\delta$TiO$_3$. Phys. Rev. B 66, 104105 (2002).
[51] Landauer, R. Spatial carrier density modulation effects in metallic conductivity. Phys. Rev. B 14, 1474 (1976).
[52] Friedel, J. Metallic alloys. Nuovo Cimento 7, 287 (1958).
[53] Ruderman, M. A. & Kittel, C. Indirect exchange coupling of nuclear magnetic moments by conduction electrons. Phys. Rev. 96, 99 (1954).
[54] Kondo, J. Resistance minimum in dilute magnetic alloys. Prog. Theor. Phys. 32, 37 (1964).
[55] Glazman, L. I. & Raikh, M. E. Resonant Kondo transparency of a barrier with quasilocal impurity states. JETP Lett. 47, 452 (1988).
[56] Fernández-Torrente, I., Franke, K. J. & Pascual, J. I. Vibrational Kondo effect in pure organic charge-transfer assemblies. Phys. Rev. Lett. 101, 217203 (2008).
[57] Jarillo-Herrero, P. et al. Orbital Kondo effect in carbon nanotubes. Nature 434, 484 (2005).
[58] Matsushita, Y., Bluhm, H., Geballe, T. H. & Fisher, I. R. Evidence for charge Kondo effect in superconducting Ti-doped PbTe. Phys. Rev. Lett. 94, 157002 (2005).
[59] Coey, J. M. D. Magnetism in d0 oxides. Nat. Mat. 18, 652 (2019).
[60] Blachly, M. A. & Giordano, N. Kondo effect in one-dimensional Au (Fe). Phys. Rev. B 46, 2951 (1992).
[61] Coey, J. M. D., Venkatesan, M. & Stamenov, P. Surface magnetism of strontium titanate. J. Phys.: Condens. Matter 28, 485001 (2016).
[62] Herrera, W. T. et al. Kondo effect and spin-glass behavior of dilute iron clusters in silver films. Phys. Rev. B 84, 014430 (2011).