Policy Forum

Lessons from Agriculture for the Sustainable Management of Malaria Vectors

Matthew B. Thomas¹, H. Charles J. Godfray², Andrew F. Read¹-³, Henk van den Berg⁴, Bruce E. Tabashnik⁵, Joop C. van Lenteren⁴, Jeff K. Waage⁶, Willem Takken⁴*¹

¹ Center for Infectious Disease Dynamics and Department of Entomology, Pennsylvania State University, University Park, Pennsylvania, United States of America, ²Ecology Research Group, Department of Zoology, Oxford University, Oxford, United Kingdom, ³Department of Biology, Pennsylvania State University, University Park, Pennsylvania, United States of America, ⁴Laboratory of Entomology, Wageningen University and Research Centre, Wageningen, The Netherlands, ⁵Department of Entomology, University of Arizona, Tucson, Arizona, United States of America, ⁶London International Development Centre, London, United Kingdom

Vector Control and the Emerging Insecticide Resistance Crisis

The 2011 World Malaria Report [1] showed welcome progress in the fight against the world’s most important vector-borne disease. In the last 10 years, the estimated incidence of malaria has fallen by 17% globally, with malaria-specific mortality rates reduced by 25%. Central to these gains, especially in Africa, has been the massive scale-up of chemical insecticide interventions against malaria mosquito vectors. Current malaria vector control relies almost exclusively on killing adult mosquitoes with chemical insecticides deployed as either insecticide-treated nets (ITNs) or indoor residual sprays (IRS). However, these technologies use a limited arsenal of insecticides originally developed for agriculture, and their efficacy is threatened by the spread of insecticide resistance [1–3]. In 2010, 27 countries in sub-Saharan Africa reported mosquitoes resistant to pyrethroids [1]. Such resistance is alarming by pyrethroids are the only class of insecticides approved for use on ITNs and account for two-thirds of the total product (by area) used in IRS for malaria control [4]. Evidence suggests that resistance is beginning to reduce control [5,6]. Implementation of alternative management strategies is needed to slow and reverse this trend.

Parallels with Agriculture

In the middle of the last century, the development of cheap and effective synthetic chemical insecticides revolutionized crop protection. Widespread use of broad-spectrum insecticides reduced pest damage substantially in many systems, prompting discussion of pest eradication, similar to some current discussions of eradication of malaria. However, rapid evolution of insecticide resistance, pest resurgence due to disruption of biological control, and harmful environmental side effects quickly revealed the limitations of “pesticide monotherapy” [7–9].

The search to find new chemical insecticides continued, stimulated by the transient resurgence due to disruption of biological control, and harmful environmental side effects quickly revealed the limitations of “pesticide monotherapy” [7–9].

The search to find new chemical insecticides continued, stimulated by the transient resurgence due to disruption of biological control, and harmful environmental side effects quickly revealed the limitations of “pesticide monotherapy” [7–9].

The search to find new chemical insecticides continued, stimulated by the transient resurgence due to disruption of biological control, and harmful environmental side effects quickly revealed the limitations of “pesticide monotherapy” [7–9].

The search to find new chemical insecticides continued, stimulated by the transient resurgence due to disruption of biological control, and harmful environmental side effects quickly revealed the limitations of “pesticide monotherapy” [7–9].

The search to find new chemical insecticides continued, stimulated by the transient resurgence due to disruption of biological control, and harmful environmental side effects quickly revealed the limitations of “pesticide monotherapy” [7–9].

The search to find new chemical insecticides continued, stimulated by the transient resurgence due to disruption of biological control, and harmful environmental side effects quickly revealed the limitations of “pesticide monotherapy” [7–9].
Summary Points

- The effectiveness of insecticide-treated bed nets and indoor insecticide sprays to control adult mosquito vectors is being threatened by the spread of insecticide resistance.
- We argue for expanding beyond “insecticide monotherapy” to more sustainable integrated vector management strategies that use optimal suites of control tactics.
- Experience in agriculture suggests that such integrated approaches can provide more effective and durable pest management.
- This shift will require increased investment in research and translational science.
- Failure to act risks a resurgence of malaria and erosion of community support and donor commitment.

Quantifying the Problem

One of the foundations of IPM and thus IVM is to quantify the “pest” or “vector” problem and define the targets for control. For malaria this might seem straightforward—“control mosquitoes and reduce disease as much as possible”. Yet, it is surprising how little is understood about how local vector ecology contributes to infection. A typical list of unknowns could include the temporal and spatial distribution of biting, rate of parasite development, vector control, local variation in vector competence, sites where mosquitoes rest, the causes and rate of adult mosquito mortality, the nature of density-dependent regulation, and sometimes even which vector species is most important [20,21]. Equally little is understood regarding the impact of insecticide resistance on vectorial capacity and malaria epidemiology [22,23]. These unknown factors influence the approaches and strategies required to reduce malaria transmission in a particular setting. For example, while a 30% reduction in infectious bites might substantially reduce disease prevalence in a low transmission environment, even a 90% reduction might not be sufficient in a high transmission environment [24]. Effective IVM requires a better understanding of local vector and transmission ecology with appropriate targets for control defined in ways analogous to economic thresholds of pest density used widely to guide pest control decisions in agriculture.

Conventional Chemicals

Highly lethal insecticides like pyrethroids knock down and kill mosquitoes rapidly after contact. This lethality can provide excellent disease control, yet it also selects intensely for resistance. Development of replacement insecticides is one recognized strategy to address this problem [25]. However, the insecticide target product profiles prescribed by the WHO Pesticide Evaluation Scheme (WHOPES) set a high bar with respect to rapid killing, high persistence, and low mammalian toxicity. This, together with protracted regulatory procedures, means new insecticides are still many years off [3]. Moreover, novel chemistry will not prevent evolution [26]. Resistance management strategies used in agriculture such as insecticide combinations and rotations require two or more insecticides with diverse modes of action to avoid cross-resistance [27], yet this diversity is not commonly available for vector control [28]. This problem is compounded when the same insecticide active ingredients are used in both agriculture and vector control [29,30]. In the one controlled trial of resistance management strategies for malaria mosquito vectors we know of, rotations or mosics did not delay pyrethroid resistance [26,31].

In addition, ITNs and IRS only target mosquitoes inside domestic dwellings, leaving potentially significant fractions of the vector community untouched. While outdoor biting tends to be less epidemiologically important than indoor biting, it still contributes to transmission [32,33]. Thus, even in the absence of resistance, it is unlikely that ITNs and IRS will be sufficiently effective to meet the goal of long-term malaria suppression in intense transmission settings.

Additional Tools

Current vector control relies on killing mosquitoes quickly with neurotoxins. However, more subtle approaches, such as slow-acting insecticides that shorten adult mosquito longevity, could also reduce transmission while imposing less intense selection for resistance [24,34]. Alternative modes of action that impair olfaction, flight, energy metabolism, or immunity could further contribute to reduced vectorial capacity (e.g., see [35]). Such “sub-lethal insecticides” would represent genuinely new additions to the mosquito control tool kit that extend beyond the current fast-acting insecticide paradigm [36].

In addition, chemical insecticides that act against the adult vectors are not the only available tools. Physical barriers such as house screens [37], habitat management to reduce vector breeding site quality [38], microbial larvicides [39], and manipulation of nectar sources [40] could contribute to reduced disease transmission. Other tools in development such as fungal biopesticides [41], odor-baited traps [42], manipulation or release of parasites [43], and genetically modified [44,45] or transinfected mosquitoes [46] could add to the list.

Individually, many of these technologies face today the same constraints that alternatives to insecticides faced in crop protection: marketing and regulatory systems for new products favored broad spectrum, fast-acting, lethal insecticides that provided stand alone, albeit unsustainable, solutions to pest problems. Against this model, subler alternative methods cannot compete, except in an IVM/IVM context, where the benefit comes from the sum of the parts. It is important that regulatory frameworks are amenable to IVM to encourage research and development (R&D) and prevent barriers to ultimate commercialization.

Integrated Strategies and Sustainable Implementation

Developing effective IVM will require better understanding of the impact of control tactics individually and in various combinations [39,47–49]. Again, there is surprisingly little relevant research. Yet, different combinations of tools could deliver the same end points with strategies optimized over time and space.

Development of IVM will also require substantial money and effort. It has been estimated that effective delivery of ITN or IRS measures will require 40%–61% of projected national malaria control program budgets [50]. This is in sharp contrast to the 4% of the global malaria R&D budget that is currently spent on vector control [51]. Given the historic and contemporary significance of vector control in reducing malaria [52], this level of funding is inadequate. Experience from agriculture suggests that with appropriate engagement and education, even complex knowledge-intensive practices can be successfully implemented. Extensive IVM programs in many developing countries indicate that such strategies are best developed and implemented via bottom-up approaches engaging end users from the outset in research and development.
Embracing this philosophy can bolster vector control and move it away from top-down prescriptions towards adaptive, surveillance-, and evidence-based strategies that vary in space and time depending on local conditions. As with IPM, IVM can be best advanced by engaging the end users and working in partnerships to generate shared knowledge and solutions relevant to the local context. This strategy is necessary not only to develop effective solutions, but also to avert the risks of donor and community fatigue. There is no “quick fix” for sustainable vector control, or for eradication of malaria.

Conclusions

Ensuring continued advance in malaria control requires rethinking how we manage vector populations. Current strategies rely heavily on repeated application of single neurotoxic insecticides that quickly kill adult mosquitoes. This narrow paradigm is beginning to fail, as it did in agriculture, as well as in previous malaria eradication campaigns of the ’50s and ’60s. We should not abandon ITNs and IRS; these can be useful in IVM just as insecticides are in IPM. But experience with IPM in agriculture suggests that integrated approaches have the potential to provide more effective and durable pest management. To achieve the equivalent for malaria control requires additional tools in the armory, a better understanding of the impact of individual tools and their interactions, appropriate training for end users, and design of novel integrated strategies that maximize impact and fit the local ecological and socioeconomic context. Given the current lack of any clear alternative to the current insecticide paradigm, researchers, policy makers, and funding agencies need to act now to support this more diverse and adaptive approach. It is unlikely that any single tactic or combination of tactics will provide a permanent solution. Vector control programs must proactively and continuously innovate to optimize and sustain impact.

Author Contributions

Wrote the first draft of the manuscript: MT WT. Contributed to the writing of the manuscript: MT WT AFR HvdB BET HCJG JvL JKW. ICMJE criteria for authorship read and met: MT WT AFR HvdB BET HCJG JvL JKW. Agree with manuscript results and conclusions: MT WT AFR HvdB BET HCJG JvL JKW.

Figure 1. Features of current vector control strategies compared with potential integrated vector management (IVM). The arrows indicate trends representative of the contrasting strategies. Progression towards IVM has the potential to increase the effectiveness and sustainability of control, but requires more diverse and knowledge-intensive approaches.

doi:10.1371/journal.pmed.1001262.g001
References

1. WHO (2011) World malaria report 2011. Geneva: World Health Organization.

2. Yveschale D, Wasse F, Steurbault W, Spanoghe P, Van Bertet W, et al. (2011) Multiple insecticide resistance: an impediment to insecticide-based malaria vector control program. PLoS ONE 6: e16066. doi:10.1371/journal.pone.0016066

3. Ranson H, Ngusseru R, Lines J, Moiroux N, Nkuni Z, et al. (2011) Pyrethroid resistance in African anopheles mosquitoes: what are the implications for malaria control? Trends Parasitol 27: 91–98.

4. Van den Berg H, Zaim M, Yadav RS, Soares A, Amenehesha B, et al. (2012) Global trends in the use of insecticides to control vector-borne diseases. Trop Med Int Health 17: 577–582.

5. Chandeh E, Hemingway J, Kleinsmith I, Rehm MA, Ramdenn V, et al. (2011) Insecticide resistance and the future of malaria control in Africa. PLoS ONE 6: e24336. doi:10.1371/journal.pone.0024336

6. Tranpe JF, Tall A, Diagne N, Ndiath O, Ly AB, et al. (2011) Malaria morbidity and pyrethroid resistance after the introduction of insecticide-treated bednets and artemisinin-based combination therapies: a longitudinal study. Lancet Infect Dis 11: 925–932.

7. Pimentel D, Andow DA (1984) Pest management: strategies and tactics for management. Washington (D.C.): National Academy Press.

8. Council NR (1986) Pesticide resistance: strategies and tactics for management. Washington (D.C.): National Academy Press.

9. Weddle PW, Welter SC, Thomson D (2009) Can fungal biopesticides contribute to substantial interruption of malaria transmission? Malar J 11: 24.

10. Van den Berg H, Kihumbu T, Khatib W, et al. (2011) Wolbachia infections are virulent and human malaria mosquito. Nature 473: 212–215.

11. Kivengere J, Kihumbu T, Khatib W, et al. (2011) Wolbachia infections in a domestic mosquito in Kenya: a controlled trial. Bull World Health Org 89: 406–411.

12. Jorgenson WC, Ballister L, Dufour A, et al. (2011) Development of environmental tools for malaria vector control. Parasit Vectors 4: 130.

13. Alonso PL, Brown G, Arevalo-Herrera M, Atkinson P, et al. (2011) The estimated global resources needed to attain international malaria control goals. Bull World Health Org 89: 623–630.

14. PATH (2011) Staying the Course? Malaria research and development in a time of economic uncertainty. Seattle: PATH (Program for Appropriate Technology in Health). 98 p.

15. Alonso PL, Brown G, Arroyo-Herrera M, Binka F, Chitnis C, et al. (2011) A research agenda to underpin malaria eradication. PLoS Med 8: e1000406. doi:10.1371/journal.pmed.1000406