Algorithmic bias in machine learning based delirium prediction

Sandhya Tripathi
SandhyaT@wustl.edu
Bradley A Fritz
BA Fritz@wustl.edu
Michael S Avidan
AvidanM@wustl.edu
Department of Anesthesiology, Washington University in St Louis, MO, USA

Yixin Chen
Ychen25@wustl.edu
Department of Computer Science and Engineering, Washington University in St Louis, St Louis, MO, USA

Christopher R King
CHRISTOPHERKING@wustl.edu
Department of Anesthesiology, Washington University in St Louis, MO, USA

Abstract
Although prediction models for delirium, a commonly occurring condition during general hospitalization or postsurgery, have not gained huge popularity, their algorithmic bias evaluation is crucial due to the existing association between social determinants of health and delirium risk. In this context, using MIMIC-III and another academic hospital dataset, we present some initial experimental evidence showing how sociodemographic features such as sex and race can impact the model performance across subgroups. With this work, our intent is to initiate a discussion about the intersectionality effects of old age, race and socioeconomic factors on the early-stage detection and prevention of delirium using ML.

Keywords: algorithmic bias, delirium risk

1. Introduction
Delirium, a commonly under-diagnosed and under-treated condition during hospitalization, is characterized by an acute change in awareness, attention, and cognition arising alongside serious illness (American Psychiatric Association et al., 2013). Delirium-associated risk factors, symptoms and implications in the elderly population have been widely studied (Inouye et al., 2014). The delirium prevalence rate can be more than 20% for high-risk post-surgical patients (Wilson et al., 2020) with up to 50% chances after hip replacement. In addition to the impact on patients, the estimated additional healthcare costs associated with delirium exceed $44,291 per patient per year (Gou et al., 2021).

Machine learning (ML) based delirium prediction can have several applications in clinical practice. First, patients at higher risk of delirium can be prioritized to receive preventative treatments and safety measures to mitigate harmful behaviors should delirium develop. Accurate targeting is necessary because the most effective treatments are labor-intensive and require high levels of nursing supervision, making them not easily scaled to all at-risk patients. There are also tradeoffs in patient quality of life with excessively aggressive delirium prevention. For example, some anti-anxiety medications (benzodiazepines) and sleep aides are thought to increase delirium risk, but unnecessarily removing these medications from lower-risk pa-
patients deprives them of their beneficial effects.

An important concern while using ML for clinical decision support is algorithmic bias, defined as an ML model’s capability to reinforce existing biases against certain population groups (such as certain categories of age, sex, and race commonly referred to as protected or sensitive attributes). With a long-standing discussion on the relation between social determinants of health (SDOH) and delirium risk (Khan et al., 2016; Dicks et al., 2021), there is a pressing need to evaluate delirium prediction models for algorithmic bias and make sure that the models do not increase the disparities in delirium prevention. This evaluation for algorithmic bias becomes more crucial because some of the currently available ML-based delirium prediction models use protected attributes such as race, insurance status, and language when these features could be the root cause of dissimilarities during delirium assessment. Also, as delirium prediction can also be used to enrich patient samples in research of novel biomarkers, prophylaxis, and treatment, models which are not accurate in sub-populations would then deprive patients of the opportunity to participate in such research and produce studies which do not include all relevant demographics. Presently, the research on the subject of bias in ML-based delirium prediction has been limited by sample size and algorithm complexity (Castro et al., 2021).

Contributions: With our study, we 1) present evidence that there could be algorithmic bias in delirium prediction, 2) recommend users to evaluate the prediction models for algorithmic bias and check if this bias can be reduced by simple methods such as removing the protected attribute or accounting for confounders via Propensity Score Matching.

2. Related work

There have been some disagreeing viewpoints among researchers when studying the effect of demographic factors and SDOH on delirium risk (Khan et al., 2016; Dicks et al., 2021). As suggested by authors in Arias et al. (2022), solutions such as the SDOH framework for delirium can capture the challenges and vulnerabilities unique to older adults. Two separate studies investigating delirium risk in medical ICU patients in a Dutch region (Wu et al., 2021), and surgical ICU patients in the US (Khan et al., 2016) found no significant effect of race or SDOH on delirium risk. In contrast, Dicks et al. (2021) report evidence of a substantial difference in delirium risk between non-Hispanic White and Black patients in the (71-80) age groups. Researchers studying dementia and long-term cognitive impairment (LTCI) discovered that delirium severity was higher in African American participants (Boltz et al., 2021). Further, the socioeconomic and clinical risk factors, such as race, education, hospital type, and delirium duration, were linked to worse LTCI (Haddad et al., 2020). Health disparities that accentuated during the COVID-19 pandemic require us to be more proactive in terms of screenings for delirium, a well-known complication of respiratory illness in older adults (O’Hanlon and Inouye, 2020).

A recent survey by Chua et al. (2021) presents the various ML models developed in different hospital settings. The penetration of ML in delirium prediction is still in the initial stages as the models are elementary. ML-based delirium prediction can be used for patients during post-operative stay (Racine et al., 2021; Bishara et al., 2022), ICU stay (Hur et al., 2021), general hospitalization (Ocagli et al., 2021), and in the emergency department (Lee et al., 2021). While these models achieve satisfactory prediction per-
performance, they overlook the possibly harmful inclusion of highly predictive attributes such as insurance status and language in model building as also noted by Chua et al. (2021).

A small multicenter study by Castro et al. (2021) does a surface-level evaluation of algorithmic bias in ML-based delirium prediction for COVID-19 patients at the time of admission using an l1-penalized regression algorithm. Their analyses shows that the model does not suffer from algorithmic bias. However, as acknowledged by the authors, their labels could be erroneous; their dataset is comparatively small, and mixes ICU and ward patients in very different contexts. In contrast, both of our datasets are large, ICU based, and contain expert-labelled delirium outcomes. Unlike Castro et al. (2021), our work is the first to show that there could be algorithmic bias in the predictions of a Random Forest model. Since we performed this analysis before deploying the above model, we have the option of modifying the model or making the user aware of these biases.

3. Evaluating algorithmic bias

An algorithm suffers from disparate mistreatment (Zafar et al., 2017) if the algorithm’s performance differs for otherwise similar people at different levels of a sensitive feature. We use evaluation metrics such as Positive Predictive Value (PPV), Sensitivity and AUROC to report disparate mistreatment.

We also evaluate the classifiers on a propensity score matched (PSM) sample so that the distribution of \(X \) is similar between “treated” \((Z_i = 1) \) and “untreated” \((Z_i = 0) \) subjects (Austin, 2011). Here \(Z \) and \(X \) denote sensitive and baseline covariates (features other than sensitive features). Hence, in order to compare only individuals with similar covariates, we calculate \(e_i = P(Z_i = 1|X_i) \) and 1-to-1 match individuals with \(z = 1 \) to individuals with similar \(e \) and \(z = 0 \). To estimate the propensity score, we use a logistic regression model with \(Z \) being regressed on observed baseline features \((X) \).

4. Experimental setup

In our experiments, we consider two datasets: ACTFAST-Epic dataset and MIMIC-III (Johnson et al., 2016). ACTFAST-Epic dataset is electronic health data recorded prior to surgical procedures between November 2018 and Feb 2021 at Barnes-Jewish Hospital (St Louis, MO, USA). Access to the data was approved by the Human Research Protection Office at Washington University in St Louis, USA with a waiver of informed consent (IRB number 201607122). We used CAM-ICU assessments (Ely et al., 2001) in ACTFAST-Epic dataset and ICD-9 codes in MIMIC-III to assign delirium labels; the patient demographics are available in Table 1. For MIMIC-III, we followed the pre-processing and model training steps as in Coombes et al. (2021). After preprocessing, there were a total of 12699 patients in ACTFAST-Epic and 48435 patients in the MIMIC-III dataset. For each subgroup of a protected attribute, we report the difference in metric from the mean metric value of the protected attribute and average it to perform bootstrapped t-test for comparing the metrics. We trained Random Forest classifiers on both ACTFAST-Epic and MIMIC-III datasets. Additional details on datasets and model training are available in Appendix A.

Our experiments are intended to investigate the following hypotheses: 0) there could be performance differences across subgroups measured using different metrics and these differences might (not) be eliminated by either 1) removing the protected variable or 2)
accounting for confounding variables (using PSM).

For compactness, we choose AUROC as the main performance metric. Table 3 presents the gap between the maximum difference from the average and the minimum difference from the average of the AUROC metric across the levels/subgroups of a protected attribute. The difference was taken post-averaging across 150 bootstraps of the dataset.

5. Results and Discussion

Table 2(a) reports the differences in subgroups and that propensity score matching (PSM) can reduce these differences. We also check the effect of removing the protected variable and observe that the performance doesn’t change (Table 5 in Appendix A).

As shown in Table 2(a), for ACTFAST-Epic dataset, the performance differences change modestly on the propensity-matched sample across all the metrics. This is due to differences in the procedures and comorbidities included in the propensity score. Notably, there are no other SDOHs included in the propensity score which could be acting as surrogates for the race variable. Differential missing data across subgroups could also contribute to the drop in apparent differential mistreatment when propensity matching, as matching conditional on data may exclude some patients with significant gaps in their records (and worse classifier performance). For ACTFAST-Epic, since removing the sensitive variable from the training dataset didn’t reduce the performance differences, the sensitive attributes could still affect the outcome via other confounding variables. As an example, height can be a strong confounder in the absence of sex. We also measured the False negative rate (FNR) and False positive rate (FPR) of the classifiers learnt on ACTFAST-Epic dataset. We noticed that there are higher discrepancies in the FNR values (negative value implies advantage as lower mistakes) meaning that the patients who were delirious and could have benefitted from the intervention were missed. Full details on FNR and FPR are presented in Table 7, Appendix A. We can also obtain confidence intervals on AUROC using the bootstraps as reported in Table 6 for the ACTFAST-Epic dataset.

Table 2(b) reports that adding the sensitive variable to the feature set (model M2) can change the results in terms of subgroups’ performance and hence answers to hypothesis 2. We only included AUROC in the main paper as the others showed a similar pattern of change in performance; other metrics are included in Table 8 and 9 in Appendix A.

Unlike some of the existing delirium prediction models, Coombes et al. (2021) do not include the protected variables in the model training on MIMIC-III dataset. The subgroup performance of a Random Forest model (M1) on such a feature set is presented in columns 4 and 5 of Table 2(b). To demonstrate the adverse effect of including the protected attributes, we also trained another model (M2) that used protected attributes in addition to the predictors of (M1) and report the corresponding AUROC in the last two columns of Table 2(b). Although the overall performance of the two models is the same, the differences between the subgroup and group average of (M2) are statistically significant.

As a summarizing result for the two hypotheses mentioned earlier, we are interested in two kinds of comparisons from Table 3. For a fixed model, we expect that the after-matching values are the same or smaller. Across models, we compare the before-matching/after-matching values to see if removing the protected attribute brings any improvement. Matching reduces the discrepancy in most cases. Removing the protected
variable could be helpful in some cases as seen in the case of MIMIC-III. We would like to caution that even though these summaries are easier, they lose information on which subgroup is affected. They could also be affected by the skewness in the subgroup sample size.

Our work is limited by the use of only the top two or three commonly occurring subgroups in protected features such as sex and race. To some extent, delirium assessment has a subjective part to it, so extending the protected attribute set to include language and insurance for evaluation of the models can provide insights helpful in understanding the intersectionality of various SDOH in the context of delirium prediction. Another necessary step is the evaluation of the delirium prediction models to reflect the interaction of two protected attributes.

From a broader societal perspective, these studies would benefit the areas where SDOHs affect data used in medical risk prediction models. Designing minimally biased EHR-based risk stratification for delirium prediction can guide personalized post-operative delirium prevention and reduction strategies without disadvantaging certain socioeconomic groups.

6. Conclusion

We present our initial investigations to explicitly evaluate ML-based delirium prediction models for algorithmic bias. Non-representative dataset samples and biases during manual assessment (Yang et al. (2008); Jones et al. (2006)) add layers of complexity to learning effectively. Therefore, we should be aware of the challenges before (evaluating subgroup performance), during (checking model applicability) and after (making the user aware of the model’s pros and cons in terms of bias and applicability) the deployment of prediction models.

Table 1: Protected attribute distribution in ACTFAST-Epic test dataset. Delirium labels were extracted using the CAM-ICU tool.

Patient groups	Total	Delirium pos	Delirium neg
Male	1460	662	798
Female	2352	1125	1227
Black	971	524	447
White	2747	1220	1527
Race NA	94	43	51
Age (14 - 52)	1247	546	701
Age [52 - 67]	1278	602	676
Age [67 - 102]	1287	639	648
Total	3812	1787	2025

References

DS American Psychiatric Association, American Psychiatric Association, et al. Diagnostic and statistical manual of mental disorders: DSM-5, volume 5. American psychiatric association Washington, DC, 2013.

Francesca Arias, Margarita Alegría, Amy J Kind, Richard N Jones, Thomas G Trac- ison, Edward R Marcantonio, Eva M Schmitt, Tamara G Fong, and Sharon K Inouye. A framework of social determinants of health for delirium tailored to older adults. Journal of the American Geriatrics Society, 70(1):235–242, 2022.

Peter C Austin. An introduction to propensity score methods for reducing the effects of confounding in observational studies. Multivariate behavioral research, 46 (3):399–424, 2011.

Andrew Bishara, Catherine Chiu, Elizabeth L Whitlock, Vanja C Douglas, Sei Lee, Atul J Butte, Jacqueline M Leung, and Anne L Donovan. Postoperative delirium prediction using machine learning models and preoperative electronic health
Table 2: Performance difference from the group average for (a) the ACTFAST-Epic dataset and (b) MIMIC-III dataset using a Random Forest classifier on a bootstrapped (150 samples) test set. Multiple values imply results when matched to patients in each group in this category in the same order as in column ‘Patient group’. Subtable (b) compares AUROC for M1 (without protected attributes) and M2 (with protected attributes) models along with reporting the distribution of protected attributes conditional on the outcome value in the test set of MIMIC-III. Statistical significance at \(\alpha = 0.05 \) is symbolized by *.

(a)

Patient group	ACTFAST-Epic	M1	M2	M1 (PSM)	M2 (PSM)	
Male	-0.01*	0.02*	-0.02*	0.0	-0.01*	
Female	0.01*	0.02*	0.02*	0.01*	0.01*	
White	-0.04*	0.02*	-0.04*	0.0	0.01*	
Black	0.03*	0.02*	0.02*	-0.05*	0.01*	
Age [14 - 52]	-0.02*	-0.04*	0.05*	0.03*	0.02*	
Age [52 - 67]	0.0	[0.01*, -0.02*]	-0.01*	[-0.03*, 0.01*]	-0.01*	[-0.01*, 0.0]
Age [67 - 102]	0.02*	0.02*	-0.04*	-0.01*	-0.01*	
Overall Avg	0.76 (PPV)	-	0.77 (Sens)	-	0.85 (AUROC)	

(b)

Patient groups	Delirium M1	Delirium M2	Delirium M1 (PSM)	Delirium M2 (PSM)
Male	585	6066	0.01*	-0.01*
Female	413	4896	0.01*	-0.01*
Hispanic	27	338	0.0	[-0.0, 0.0]
White	845	9411	0.0	[-0.0, 0.0]
Black	106	1213	0.01*	[0.01*, -0.01*]
Age [18 - 57]	269	3709	-0.01*	0.0
Age [57 - 74]	296	3685	0.01*	[0.0, 0.0]
Age [74 - 90]	413	3568	0.01*	0.01*
Overall Avg	978	10962	0.87 (AUROC)	-

Table 3: Summarizing metric (on AUROC) between models trained on datasets with and without protected attributes with further comparison using propensity matching.
record data. *BMC anesthesiology*, 22(1): 1–12, 2022.

Marie Boltz, Rhonda BeLue, Barbara Resnick, Ashley Kuzmik, Elizabeth Galik, Joanne R Jones, Rachel Arendacs, Liron Sinvani, Jacqueline Mogle, and James E Galvin. Disparities in physical and psychological symptoms in hospitalized African American and white persons with dementia. *Journal of aging and health*, 33(5-6): 340–349, 2021.

Victor M Castro, Chana A Sacks, Roy H Perlis, and Thomas H McCoy. Development and external validation of a delirium prediction model for hospitalized patients with coronavirus disease 2019. *Journal of the Academy of Consultation-liaison Psychiatry*, 62(3): 298–308, 2021.

SJ Chua, Scott Wrigley, Casey Hair, and Ramesh Sahathevan. Prediction of delirium using data mining: A systematic review. *Journal of Clinical Neuroscience*, 91: 288–298, 2021.

Caitlin E Coombes, Kevin R Coombes, and Naleef Fareed. A novel model to label delirium in an intensive care unit from clinician actions. *BMC medical informatics and decision making*, 21(1): 1–12, 2021.

Robert Dicks, Jimmy Choi, Christine Waszynski, Kadesha Collins-Fletcher, Beth Taylor, Catherine Martinez, and David O’Sullivan. Health disparities in delirium. *Innovation in aging*, 5(Suppl 1): 147—147, January 2021. ISSN 2399-5300. URL https://europepmc.org/articles/PMC8682256.

E Wesley Ely, Richard Margolin, Joseph Francis, Lisa May, Brenda Truman, Robert Dittus, Theodore Speroff, Shiva Gautam, Gordon R Bernard, and Sharon K Inouye. Evaluation of delirium in critically ill patients: validation of the confusion assessment method for the intensive care unit (cam-icu). *Critical care medicine*, 29(7): 1370–1379, 2001.

Ray Yun Gou, Tammy T Hshieh, Edward R Marcantonio, Zara Cooper, Richard N Jones, Thomas G Travison, Tamara G Fong, Ayesha Abdeen, Jeffrey Lange, Brandon Earp, et al. One-year Medicare costs associated with delirium in older patients undergoing major elective surgery. *JAMA surgery*, 156(5): 430–442, 2021.

Diane N Haddad, Matthew F Mart, Li Wang, Christopher J Lindsell, Rameela Raman, Mina F Nordness, Kenneth W Sharp, Pratik P Pandharipande, Timothy D Girard, E Wesley Ely, et al. Socioeconomic factors and intensive care unit-related cognitive impairment. *Annals of surgery*, 272 (4): 596, 2020.

Sujeong Hur, Ryoung-Eun Ko, Junsang Yoo, Juhyung Ha, Won Chul Cha, Chi Ryang Chung, et al. A machine learning-based algorithm for the prediction of intensive care unit delirium (pride): Retrospective study. *JMIR medical informatics*, 9(7): e23401, 2021.

Sharon K Inouye, Rudi GJ Westendorp, and Jane S Saczynski. Delirium in elderly people. *The Lancet*, 383(9920): 911–922, 2014.

Alistair EW Johnson, Tom J Pollard, Lu Shen, Li-wei H Lehman, Mengling Feng, Mohammad Ghassemi, Benjamin Moody, Peter Szolovits, Leo A Celi, and Roger G Mark. Mimic-III, a freely accessible critical care database. *Scientific data*, 3(1): 1–9, 2016.

Richard N Jones, Frances M Yang, Ying Zhang, Dan K Kiely, Edward R Marcantonio, and Sharon K Inouye. Does educational attainment contribute to risk for
delirium? a potential role for cognitive reserve. *The Journals of Gerontology Series A: Biological Sciences and Medical Sciences*, 61(12):1307–1311, 2006.

Babar A Khan, Anthony Perkins, Siu L Hui, Sujuan Gao, Noll L Campbell, Mark O Farber, and Malaz A Boustanli. Relationship between african-american race and delirium in the intensive care unit. *Critical care medicine*, 44(9):1727, 2016.

Sangil Lee, Brianna Mueller, W Nick Street, and Ryan Carnahan. Machine learning algorithm to predict delirium from emergency department data. *medRxiv*, 2021.

Honoria Ocagli, Daniele Bottigliengo, Giulia Lorenzo, Danila Azzolina, Ashlan S Acar, Silvia Sorgato, Lucia Stivanello, Mario Degan, and Dario Gregori. A machine learning approach for investigating delirium as a multifactorial syndrome. *International Journal of Environmental Research and Public Health*, 18(13):7105, 2021.

Shane O’Hanlon and Sharon K Inouye. Delirium: a missing piece in the covid-19 pandemic puzzle. *Age and ageing*, 2020.

Annie M Racine, Douglas Tommet, Madeleine L D’Aquila, Tamara G Fong, Yun Gou, Patricia A Tabloki, Eran D Metzger, Tammy T Hshieh, Eva M Schmitt, Sarinapha M Vasunilashorn, et al. Machine learning to develop and internally validate a predictive model for post-operative delirium in a prospective, observational clinical cohort study of older surgical patients. *Journal of general internal medicine*, 36(2):265–273, 2021.

Jo Ellen Wilson, Matthew F Mart, Colm Cunningham, Yahya Shehabi, Timothy D Girard, Alasdair MJ MacLullich, Arjen JC Sloooter, and E Ely. Delirium. *Nature Reviews Disease Primers*, 6(1):1–26, 2020.

Ting-Ting Wu, Marieke Zegers, Rens Kookien, John L Griffith, Beth E Molnar, John W Devlin, and Mark van den Boogaard. Social determinants of health and delirium occurrence and duration in critically ill adults. *Critical Care Explorations*, 3(9), 2021.

Frances M Yang, Sharon K Inouye, Michael A Fearing, Dan K Kiely, Edward R Marcantonio, and Richard N Jones. Participation in activity and risk for incident delirium. *Journal of the American Geriatrics Society*, 56(8):1479–1484, 2008.

William J Youden. Index for rating diagnostic tests. *Cancer*, 3(1):32–35, 1950.

Muhammad Bilal Zafar, Isabel Valera, Manuel Gomez Rodriguez, and Krishna P Gummadi. Fairness beyond disparate treatment & disparate impact: Learning classification without disparate mistreatment. In *Proceedings of the 26th international conference on world wide web*, pages 1171–1180, 2017.

Appendix A. Additional experimental details

We consider two datasets: 1) Electronic health data (ACTFAST-Epic dataset) recorded prior to surgical procedures between November 2018 and Feb 2021 Barnes-Jewish Hospital (St Louis, MO, USA). Access to the data was approved by the Human Research Protection Office at Washington University in St Louis, USA with a waiver of informed consent (IRB number 201607122) 2) MIMIC-III dataset (Johnson et al., 2016). For the ACTFAST-Epic dataset, CAM-ICU assessments (Ely et al., 2001) were used to assign delirium labels and data recorded during preop assessment was used as features.
A complete list of ACTFAST-Epic features used to train the model included a bag of word representations of preop notes (500 dimensional) and preop records (185 dimensional) as presented in Table 4. For MIMIC-III, delirium labels were extracted using the ICD-9 codes and all the pre-processing and model training steps were performed as by Coombes et al. (2021). After preprocessing, there were a total of 12699 patients in ACTFAST-Epic and 48435 patients in the MIMIC-III dataset.

We trained Logistic Regression, Decision Tree, Random Forest, Gradient Boosted Trees, and DNN models to learn the classifiers on both ACTFAST-Epic and MIMIC-III. We chose Random Forest for reporting as it performed the best in the group of algorithms. The same analysis can be conducted for other algorithms too. Each dataset was split into the train (70%) and test (30%) subsets while maintaining the same delirium outcome rate in the splits. We performed the computation on 150 bootstrapped samples of the test split in each dataset. For each subgroup (PSM subgroup), we report the difference from the average metric under consideration. While computing PPV and Sensitivity, we used Youden’s index (Youden, 1950) to identify the classifier’s decision boundary. The outcome distribution in the two datasets is different as ACTFAST-Epic is balanced while MIMIC-III is not. Hence, for the MIMIC-III dataset, we only report AUROC in the main paper. The calibration plots for the models on which the classifiers were trained are presented in Figure 1.

We filtered the subgroups for Race/Ethnicity in the datasets based on the data availability in each subgroup and hence reported the subgroup performance for Black, White, and Hispanic (in MIMIC-III) and “not available/unknown” (ACTFAST-Epic) groups. We required that at least 100 samples be available after propensity score matching, to compute the final metric.

Code availability We provide the python code that was used to obtain the results for both datasets at https://github.com/sandhyat/AlgorithmicBias_Delirium_ML4H22022. ACTFAST-Epic dataset is not publicly available. For MIMIC-III, we also provide psql queries used to extract the initial dataset following Coombes et al. (2021).
Table 4: Predictors used to train the Random forest model in ACTFAST-Epic dataset.

Demographics	Comorbidities	Comorbidities	Preop Lab Test	Preop Lab Test	
Sex	Anemia	pastTransplant	POIKilocytosis	TRPONIN T	
emergency	Asthma	LVFP	HEC, URINE, FOC	HEMOGLOBIN A1C	
SurgService_Name	CAD	CancerCurrent	CLARITY, URINE	HEMATOCRIT	
ETHNICITY	CHF	PacemakerICD	COLOR, URINE	PCO2, ARTERIAL	
RACE	CKD	Stroke	LEUKOCYTE ESTERASE, URINE	LIPASE	
age	COPD	PNA	RED BLOOD CELLS, URINE	MEAN PLATELET VOLUME	
smoke	CancerHx	delirium_history	ANEMOCYTOSIS	FCO2, VENOUS	
TOBACCO_USE	Chronic_Pain	MentalHistory_adhd	HYALINE CAST	IRON BINDING CAPACITY, TOTAL	
HEIGHT_IN_INCHES	Currhosis	MentalHistory_other	COVID-19	CORONAVIRUS RNA	
WEIGHT_IN_KG	DVT_PE	DVT	URINE NITRITE	N-TERMINAL PRO B-TYPE NATURERIC PEPTIDE	
Clinician Assessment	Diabetes	cancerStatus	WHITE BLOOD CELLS, URINE	MAGNESIUM	
	Dialysis	CHF Class	BACTERIA, URINE	BASOPHIL ABSOLUTE	
	wheezing	GERD	EPITHELIAL CELLS, SQUAMOUS, URINE	WHITE BLOOD CELL COUNT	
	Pulse	HTN	HEPATITIS C AB	RED CELL DISTRIBUTION WIDTH SD	
	Resp	LiverDisease	PROTEIN, URINE	PHOSPHOROUS, PLASMA	
	Short_Blessed	MI	BILIRUBIN, DIRECT	VANCOMYCIN TROUGH	
	Total_Score	MR			
	History_of_Falling	MentalHistory	DiastolicFunction	DMMATURE GRANULOCYTE ABSOLUTE	
	Pain_Score	MentalHistory	DyspneaFreq	FEV1Percent	
	poorDe arresting	MentalHistory	depression	BILIRUBIN, TOTAL	
	ASA	MentalHistory	Depressive		
	Dementia_Mild	CognitiveImpairment	PE	GLUCOSE, URINE, QUALITATIVE	
	in-hospital attributes			ASPARATE AMINOTRANSFERASE	
	CancerStatus	Alzheimer's Disease			
	MS	MS	DEMENTIA, URINE	N-TERMINAL PRO	
	UROBILINOGEN	Preop ICU	BILIRUBIN, TOTAL		
	OtherRhythm	PO2, VENOUS			
	Barthel_index_score	PlannedAnesthesia	NEUTROPHIL ABSOLUTE		
	PAD	PlannedUsurp			
	StopBANG	PlannedAnesthesia	NEUTROPHIL ABSOLUTE		
	Mental_Status	PTN	ALBUMIN	URINE BLOOD	
	Pre_op_status	pre_op_status	ALBUMIN	URINE BLOOD	
	Functional_Capacity	Pacemaker	PLANNEDESISOL	CHOLESTEROL, TOTAL	
	Pacemaker	plannedDispo	CHOLESTEROL, TOTAL	SUZ [MEAS] ARTERIAL	
	Replaced Valve	preopDispo	URENEKINES	ur	
	SpO2	ROW NA	EOSINOPHIL ABSOLUTE	PROTEIN, TOTAL, PLASMA	
	Seizures	Seizures	EOSINOPHIL ABSOLUTE	PROTEIN, TOTAL, PLASMA	
	Thyroid_disease	SO2ROS	blood urea nitrogen	PH, VENOUS	
	DBP	activeInfection	blood urea nitrogen	PH, VENOUS	
	AMBULATORY Aids	IRON, TOTAL	IRON, TOTAL	CHOLESTEROL, HDL	
	Secondary_Diagnosis	on2	PLATELET	ALANINE AMINOTRANSFERASE	
	Preop Lab Test	PastDiagnosis	BILIRUBIN, TOTAL		
		BILIRUBIN, TOTAL	BILIRUBIN, TOTAL		
		BILIRUBIN, TOTAL	BILIRUBIN, TOTAL		

10
Algorithmic bias in delirium prediction

Figure 1: Calibration plot for RF models reported in the main paper.
Table 5: Performance difference from the group average for the ACTFAST-Epic dataset using a Random Forest classifier on a bootstrapped (150 samples) test set when the sensitive features (age, sex, and race) were not included in the training dataset. 'Multiple values imply results when matched to patients in each group in this category in the same order as in column ‘Patient group’.

Patient group	ACTFAST-Epic	Grp - Avg PPV	Grp - Avg PPV (PSM)	Grp-Avg Sens	Grp - Avg Sens (PSM)	Grp - Avg AUROC	Grp - Avg AUROC (PSM)
Male	-0.01*	-0.03*	-0.01*	0.02*	-0.01*	-0.01*	-0.01*
Female	0.01*	0.03*	0.01*	-0.02*	0.01*	0.01*	0.01*
White	-0.04*	[-0.02*]	0.01*	0.03*	0.01*	0.01*	[-0.01*]
Black	0.02*	[0.02*]	0.02*	[-0.03*]	[-0.03*]	0.01*	[-0.01*]
Age [14 - 52]	-0.02*	-0.03*	0.06*	0.03*	0.02*	0.0	0.0
Age [52 - 67]	0.0	[0.03*, -0.03*]	0.0	[-0.03*, 0.04*]	0.01*	0.0	0.0, 0.0*
Age [67 - 102]	0.02*	0.03*	0.06*	-0.04*	0.02*	-0.02*	-0.0*
Overall Avg	0.76 (PPV)	-	0.77 (Sensitivity)	-	0.85 (AUROC)	-	-

Table 6: ACTFAST-Epic: AUROC with standard deviations on 150 bootstrapped samples.

Patient group	Model with protected attribute	Model without protected attributes		
	Grp - Avg AUROC	Grp - Avg AUROC (PSM)	Grp - Avg AUROC	Grp - Avg AUROC (PSM)
Male	-0.01*+-0.0106	-0.01*+-0.003	-0.01*+-0.0101	-0.01*+-0.003
Female	0.01*+-0.0106	0.01*+-0.003	0.01*+-0.0101	0.01*+-0.003
White	-0.01*+-0.0309	[0.02*+, -0.03*]	-0.01*+-0.0306	[0.01*+, -0.03*]
Black	0.01*+-0.0171	[-0.02*+, -0.003]	0.01*+-0.0169	[-0.01*+, -0.003]
Age [14 - 52]	0.02*+-0.0148	0.01*+-0.003	0.02*+-0.0148	0.01*+-0.003
Age [52 - 67]	-0.01*+-0.0134	[-0.01*+, 0.003*]	-0.01*+-0.0136	[0.01*+, 0.003*]
Age [67 - 102]	-0.01*+-0.0142	-0.00+-0.003	-0.02*+-0.0143	-0.00+-0.003
Overall Avg	0.85 (AUROC)	-	0.85 (AUROC)	-

Table 7: ACTFAST-Epic: Comparison of FNR, FPR results when the protected attributes were included and not included in the training dataset.

Patient group	Model with protected attributes	Model without protected attributes						
	Grp- Avg FNR	Grp - Avg FNR (PSM)	Grp- Avg FPR	Grp - Avg FPR (PSM)	Grp- Avg FNR	Grp - Avg FNR (PSM)	Grp- Avg FPR	Grp - Avg FPR (PSM)
Male	0.02*	-0.0	0.01*	-0.01*	0.01*	-0.02*	0.0	0.02*
Female	0.01*	0.0	0.02*	[0.01*]	0.02*	0.02*	0.0	0.02*
White	0.04*	[0.03*, -0.04*]	0.01*	[0.01*]	0.04*	[-0.03*]	0.0	[0.02*, -0.02*]
Black	-0.02*	0.0	[0.01*]	[-0.01*]	-0.02*	[0.01*]	0.0	[-0.02*]
Age [14 - 52]	0.01*	[0.03*, -0.04*]	0.0	[-0.03*, 0.04*]	0.01*	[-0.01*]	0.0	[-0.01*, 0.02*]
Age [52 - 67]	0.04*	0.01*	-0.01*	-0.0	0.06*	0.04*	0.0	-0.02*
Age [67 - 102]	0.04*	0.01*	-0.01*	-0.0	0.06*	0.04*	0.0	-0.02*
Overall Avg	0.23 (FNR)	0.22 (FPR)	-	-0.23 (FNR)	0.22 (FPR)	-	-	-0.22 (FPR)
Table 8: Performance difference from the group average for the MIMIC-III dataset using a Random Forest classifier on a bootstrapped (150 samples) test set when the sensitive features (age, sex, and race) were not included in the training dataset.

Patient group	Grp - Avg PPV	Grp - Avg PPV (PSM)	Grp - Avg Sens	Grp - Avg Sens (PSM)	Grp - Avg AUROC	Grp - Avg AUROC (PSM)
Male	0.02*	0.02*	0.03*	0.03*	0.01*	0.01*
Female	-0.02*	-0.02*	-0.03*	-0.03*	-0.01*	-0.01*
Hispanic	0.0	[0.01*, -0.02*]	-0.01	[-0.04*, -0.0]	0.0	[0.01*, -0.0]
White	0.0	[0.0, -0.02*]	-0.02*	[-0.01*, 0.0]	0.0	[-0.0*, 0.0]
Black	0.0	[0.03*, -0.02*]	0.03*	[0.01*, 0.04*]	0.01*	[0.0*, -0.01*]
Age [18 - 57]	-0.04*	-0.03*	-0.01*	-0.01*	-0.01*	0.0
Age [57 - 74]	0.0	[0.03*, -0.02*]	-0.02*	[0.01*, 0.0]	0.01*	[0.0*, 0.0]
Age [74 - 90]	0.05*	0.02*	0.03*	0.0	0.01*	0.0
Overall Avg	0.26 (PPV)	-	0.70 (Sensitivity)	-	0.87 (AUROC)	-

Table 9: Performance difference from the group average for the MIMIC-III dataset using a Random Forest classifier on a bootstrapped (150 samples) test set when the sensitive features (age, sex, and race) were included in the training dataset.

Patient group	Grp - Avg PPV	Grp - Avg PPV (PSM)	Grp - Avg Sens	Grp - Avg Sens (PSM)	Grp - Avg AUROC	Grp - Avg AUROC (PSM)
Male	0.02*	0.02*	0.02*	0.02*	0.01*	0.02*
Female	-0.02*	-0.02*	-0.02*	-0.02*	-0.01*	-0.02*
Hispanic	-0.02*	[0.0, -0.04*]	0.0	[0.04*, -0.02*]	0.02*	[0.03*, 0.01*]
White	0.02*	[0.01*, 0.04*]	-0.04*	[-0.04*, 0.02*]	-0.01*	[-0.01*, -0.01*]
Black	0.0	[0.01*, -0.0]	0.04*	[0.04*, -0.04*]	-0.01*	[0.01*, -0.03*]
Age [18 - 57]	-0.04*	-0.02*	0.01*	0.03*	-0.01*	0.01*
Age [57 - 74]	-0.01*	[0.02*, -0.03*]	-0.03*	[-0.03*, -0.02*]	0.0	[-0.01*, -0.01*]
Age [74 - 90]	0.04*	0.03*	0.02*	0.02*	0.01*	0.01*
Overall Avg	0.26 (PPV)	-	0.8 (Sensitivity)	-	0.87 (AUROC)	-
