Identify and measure the degree of over-prevention behaviors in the post-COVID-19 era in China

Rongyang Ma¹, Hong Wu¹* and Zhaohua Deng²

Abstract

Background: With the spread of vaccines, more and more countries have controlled the outbreak of the COVID-19. In this post-epidemic era, these countries began to revive their economy. However, pollution remains in the environment, and people’s physical and psychological health has been under threat due to some over-prevention behaviors. Instruments for governmental agencies to manage these behaviors are not yet available. This study aims to develop a measurement model to identify and measure the degree of over-prevention behaviors during the COVID-19 epidemic in China.

Methods: A survey online was conducted to collect cognition from 1528 Chinese people, including descriptions of various over-prevention behaviors defined by health authorities. Factor analyses were used to develop the measurement model and test its validity. Logistic regression analyses were conducted to explore demographic characteristics, indicating people who are inclined to exhibit over-prevention behaviors.

Results: Four main factors were extracted to develop the model (eigenvalue = 7.337, 3.157, 1.447, and 1.059, respectively). The overall reliability (Cronbach’s α = 0.900), the convergent (AVE > 0.5, CR > 0.8 for each factor) and discriminant validity is good. There is also a good internal consistency among these factors (Cronbach’s α = 0.906, 0.852, 0.882, and 0.763, respectively). In Factor 1, gender has a negative effect (Beta = −0.294, P < 0.05, OR = 0.745), whereas employment has a positive effect, with workers in institutions exhibit the greatest effect (Beta = 0.855, P < 0.001, OR = 2.352). In Factor 2, employment has a negative effect, education level has a positive effect (Beta = 0.430, P < 0.001, OR = 1.537). In Factor 3, age plays a negative role (Beta = −0.128, P < 0.05, OR = 0.880).

Conclusions: People show a discrepancy in the cognition toward various over-prevention behaviors. The findings may have implications for decision-makers to reduce the contradiction between the epidemic and economic revival via managing these behaviors.

Keywords: COVID-19, Over-prevention behaviors, Epidemic prevention, Measurement model, Demographic characteristics
Introduction
The vaccination was proved to be useful in controlling the COVID-19 [1]. With the spread of vaccines in many countries, the pandemic may be mitigated gradually. Although there are still some lingering impacts on the original business, we have entered into the post-COVID-19 era [2]. Nowadays, many countries have restarted their operation. For example, the Chinese government has been opening schools and workplaces to resume classes and various works since April, 2020 [3]. By doing so, the country tries to strike a balance between reviving human activities and lowering the risk of another wave [4]. China strives to prevent a huge resurgence that can cause further losses of health and economy, by not loosening the regular control drastically [5]. However, a contradiction exists between outbreak prevention and economic recovery. For example, Italian governments have closed all schools across the country in a short time. They also restricted the movement of people and closed various non-essential business [6]. They have been emphasizing the importance to control the social distance and behaviors. Especially for people with a high exposure risk, such as teachers, governments required them to wear surgical masks at their work time [7]. These prevention measures have played an essential role in handling the first wave of pandemic in Italy successfully [8]. However, when the first wave came to a halt, some regions relaxed their previous distance measures to revive the economy. As a result, the second wave in Italy and resurgences occurred in many regions, causing more deaths [9]. From Italy’s prevention lessons, to preclude the possibility of resurgence and transmission, the government may continue to implement various precautions, such as curbing population flow and disinfecting places that are accessible to people. However, such implementations may also result in some deficiencies. Last year, 150 wild animals in Chongqing, China had died from excessive use of disinfectant [10]. The United Nations Conference on Trade and Development also reported that plastic wastes from masks, gloves, bottles of disinfectants, and other plastic materials had polluted many beaches and oceans [11]. Aside from the current situation of the environment, the negative effects of social isolation on humans are not negligible. For instance, research finds that in this year, adults have consumed considerable alcoholic drinks and cannabis, underlying latent effects on health [12]. Scientists also revealed some negative psychological effects, such as stress symptoms, frustration, confusion, and anger [13].

Research questions development
The above cases show that people took excessive measures to control the pandemic quickly, which in turn hurt the environment and human health. In this study, we call these measures over-prevention behaviors. Some researchers defined these behaviors as the unnecessary measures, which can only bring psychological comforts to people [14]. In the description of prevalence elastic theory, Philipson claimed that individuals would adjust their prevention levels with the spread of a pandemic. If their perceived risk is lower than a standard level named threshold prevalence, they will make inadequate prevention behaviors [15]. On this basis, we define over-prevention behaviors as excessive precautions that individuals take when their perceived risk is higher than the threshold prevalence, causing obvious or latent damages to their health and the environment, like physical or psychological diseases and water pollution. Economically, we want to achieve optimal goals while invested exceedingly, which curbs prevention efficiency.

In this post-COVID-19 era, misinformation related to the crisis can induce the over-prevention behaviors [16]. And this can exist in many countries. More reports about long-term health harms would emerge in the future if people would still not take efficient measures to avoid these behaviors. Thus, knowing how to hold an appropriate level to reduce these unnecessary harms under the condition of ensuring efficient prevention work is indispensable. Previous studies have explored the correlation between demographic characteristics and people’s prevention behaviors. For example, in the H1N1 influenza pandemic, scientists identified that age, gender, and education can determine protective behaviors [17]. Meanwhile, for the influenza in the United States, Singh et al. found that different demographic groups of people have various degrees of self-protective behaviors of social distancing and vaccination uptake [18]. What’s more, in the COVID-19 pandemic, researchers found that people’s knowledge, perceived risk, health status, and other demographic characteristics may have a relationship with over-prevention behaviors [14, 19]. And Min et al. also explored the role of knowledge and negative moods in the correlation between public trust and protective measures [16]. However, little is known about an instrument to measure the degree of over-prevention behaviors in the COVID-19. We also have no idea about how to use the demographic characteristics to identify people who are inclined to perform these behaviors in this crisis in China. So in this study, we aim to explore the following two research questions:

RQ1: How to measure the degree of over-prevention behaviors in the post-pandemic era in China?
RQ2: How to use the demographic characteristics to identify people who tend to perform over-prevention behaviors?

Methods
To invent an instrument to solve RQ1, We used an exploratory design and analysis method. Firstly we
developed an item pool based on a broad literature review and governmental guidelines. The guidelines were introduced by experts in the press conference of authoritative institutions, including WHO, CDC, and the National Health Commission of the People’s Republic of China, to show various items describing over-prevention behaviors. Second, based on a five-point Likert scale, we developed our scale using these items. The scale incorporated a total of 27 items, which have been revised and approved by all the co-authors. Meanwhile, we conducted a pilot test with 100 people aged 20 to 55, collecting their comments to revise the scale further and provide explicit descriptions. Most of behaviors described among these items were excessive in the high-risk and low-risk regions. We defined high-risk regions as districts with an above 50 accumulative confirmed cases and an outbreak in clusters in the past 14 days [20]. Accordingly, we classified the remaining regions as low risk. However, some descriptions could only apply to the low-risk regions. For instance, one behavior describes a situation wherein one wears a mask indoors, such as in an office, chamber, school, and other ventilated rooms, where people can still exercise social distancing from one another. This behavior is excessive in the low-risk regions but not in the high-risk ones [21]. People may show a contrary cognition at different risk levels. Thus, we investigated their degree of agreement on each description in one or two scenarios. For example, one sentence describes that staff settled a disinfection shed at the gate of a community, cleansing the people who entered it thoroughly, which is an over-prevention behavior [20, 22]. Then, we asked Sam how he agrees with the statement concerning a high-risk or a low-risk region. He chose between one to five points, varying from greatly disagree to greatly agree. In accordance with his answers, we averaged the points in each two-scenario item to present its final grade. X1 to X27 shows all items in Table 2.

Third, we conducted an online survey to validate these items based on the exploratory factor analysis (EFA) and confirmatory factor analysis (CFA). The recommended sample size of the EFA and CFA is at least 300 and 200 [30-31]. We divided China into seven areas based on a common view formed by Chinese geographical experts. Then, we used stratified random sampling to hand out our questionnaire [32]. The online survey was conducted via the Tencent Questionnaire Platform. It’s a platform wherein editing our questionnaire and making it publicly available is possible. It supports us to specify the characteristics of our participants, and helps to seek our target automatically in its sample database. Figure 1 shows the screenshot of the webpage. We determined some demographic characteristics, including gender, age, region, degree, and marriage. We paid for the service charge, then the platform began to filter to search for the target population. For matching people, it posted the questionnaire to them via SMS or WeChat, and waiting for their answers. When the collected answers reached our specified number, the platform stopped handing out. Then we can download the collected data. Finally, we received a total of 1528 answers from the platform. We tested the reliability of our scale and demonstrated its construct validity by using the Kaiser–Meyer–Olkin (KMO) measure and Bartlett’s test of sphericity (χ2). The Cronbach’s α value was 0.936, demonstrating a good internal consistency of the scale. The KMO value was 0.953, with a BTS result that was statistically significant (P < 0.001). Thus, the collected data was suitable for the EFA. We randomly used 1000 of the 1528 participants to construct the EFA model. We extracted factors on the basis of the principal component analysis (PCA). We followed three criteria to filter invalid items [33]. First, we would delete the one with factor loading less than 0.5. Second, if more than one factor loaded the same item, we would remove it. Third, we would exclude who loaded on unintended factors. Finally, we grouped the remainder and calculated their weight individually. What’s more, for the remaining 320 participants, we used the CFA to evaluate goodness-of-fit indices, including Root Mean Square Error of Approximation (RMSEA), Comparative Fit Index (CFI), Tucker Lewis Index (TLI), and Incremental Fit Index (IFI). We also applied the Average Variance Extracted (AVE) and Composite Reliability (CR) and calculated the correlation coefficient between every two factors to test the convergent and discriminant validity. Besides, we adjusted the model by using the modification indices (MI) reasonably.

To answer RQ2, we firstly collected participants’ basic information, including their gender, age, education degree, employment status, and provincial address. The average answering time was 8 min. We filtered our data by following three rules. First, we filtered 88 instances wherein the recorded time of answering the questionnaire was below 2 min [34]. Then, we set a question instructing the participants to choose number four [34]. Considering that some people may give a wrong choice accidentally or deliberately for fun, we deleted those who did not choose four and those who recorded an answering time of below 4 min, which was half of the average time. At this time, we removed at least 89 questionnaires. Although we considered that the participants must have chosen the same answer because they possess a consistent cognition, those who presented invariant responses were still questionable [35]. For example, John was extremely careful, and he thought that all of the behaviors described in the scale were not excessive. Certainly, he could disagree will all 27 statements. However, we excluded those who gave invariant...
responses continuously in more than 14 items (half of the total 27), with an answering time below 4 min. Accordingly, we removed 31 more. There are a total of 1320 remaining valid answers. Table 2 shows the sample distribution. Table 3 shows the characteristics of the remaining sample. Among them, 53.1% (701/1320) were males, and 46.9% (619/1320) were females. The distribution in age groups approximated a normality tendency, with people aged 30–39 years accounting for the largest proportion, i.e., 43.7% (577/1320). More than half of the

Table 1 Items collected and descriptions in the questionnaire

Item	Description
X1	Disinfecting the surrounding outdoors rarely touched by hands, such as the ground, plants, and walls, is an over-prevention behavior in the high- and low-risk regions [23].
X2	Disinfecting clothes and soles by using alcohol and other disinfectants after getting home even without close contact with confirmed cases of infection is an over-prevention behavior in the high- and low-risk regions [24, 25].
X3	Using alcohol and other disinfectants to clean the house every day, even without patients living, is an over-prevention behavior in the high- and low-risk regions [24, 25].
X4	Using ultraviolet rays at home, even without patients living, is an over-prevention behavior in the high- and low-risk regions [25].
X5	Using alcohol and other disinfectants to clean packages of carry-out, parcel, and shopping commodities is an over-prevention behavior in the high- and low-risk regions [25].
X6	Using disinfectants (75% alcohol excepted) to clean hands every day even without close contact with infected cases is an over-prevention behavior in the high- and low-risk regions [25].
X7	Using alcohol to clean used medical or N95 masks is an over-prevention behavior in the high- and low-risk regions [25].
X8	Using converted mist cannon trucks and drones to spray disinfectants to the air outdoors is an over-prevention behavior exhibited by staff in the high- and low-risk regions [21, 23].
X9	Disinfecting wheels and surfaces of ordinary cars that did not carry patients is an over-prevention behavior exhibited by staff in the high- and low-risk regions [23, 25].
X10	Building disinfection shed at the gate of a community to clean people thoroughly who entered it is an over-prevention behavior exhibited by staff in the high- and low-risk regions [21, 23].
X11	Using high-concentration or large amounts of disinfectants to clean corridors in a community in non-focus of infection is an over-prevention behavior exhibited by staff in the high- and low-risk regions [25].
X12	Using disinfectants to clean outdoors in a community in non-focus of infection is an over-prevention behavior exhibited by staff in the high- and low-risk regions [21, 25].
X13	Requiring people to disinfect their clothes and soles before entering public places is an over-prevention behavior in the high- and low-risk regions [21, 25].
X14	Disinfecting the air outdoors on rainy and snowy days is an over-prevention behavior exhibited by staff in the high- and low-risk regions [21].
X15	Casting disinfectants to lakes, reservoirs, and pools is an over-prevention behavior exhibited by staff in the high- and low-risk regions [21, 25].
X16	Wearing masks indoors, such as in an office, chamber, school, and other ventilated rooms, where people can remain one meter apart, is an over-prevention behavior in the low-risk regions [26].
X17	Wearing masks in private cars without patients is an over-prevention behavior in the high- and low-risk regions [26].
X18	Wearing masks outdoors where people can remain one meter apart is an over-prevention behavior in the high- and low-risk regions [26].
X19	Enforcing people to wear masks indoors, such as in an office, chamber, school, and other ventilated rooms, where they can remain one meter apart, is an over-prevention behavior in the low-risk regions [26].
X20	Inhibiting people to go outdoors without wearing masks is an over-prevention behavior in the high- and low-risk regions [26].
X21	Restricting human rights wrongly by implementing preventive measures, such as breaking into houses and hitting people, is an over-prevention behavior in the high- and low-risk regions [27].
X22	Setting pandemic checkpoints inappropriately, which harms human rights, such as the steel wire accidentally killing a passer-by reported in China, is an over-prevention behavior in the high- and low-risk regions [27].
X23	Collecting private information frequently or forcing privacy disclosure is an over-prevention behavior in the high- and low-risk regions [28].
X24	Wearing gloves in public areas without the need to nurse patients or clean infected areas is an over-prevention behavior in the high- and low-risk regions [22].
X25	Isolating received parcels in the corner of the house for several days is an over-prevention behavior in the high- and low-risk regions [25].
X26	Disinfecting the surrounding outdoors rarely touched by hands, such as the ground, plants, and walls, is an over-prevention behavior in the high- and low-risk regions [27].
X27	Delaying the operation of some enterprises in places qualified to allow the opening of workplaces is an over-prevention behavior in the low-risk regions [29].
participants had a university degree (66.4%, 876/1320), followed by those with a senior high school degree (17.8%, 235/1320). As for the employment status reported, the majority comprised staff in enterprises (30.1%, 397/1320). Those in governmental agency composed the smallest group, accounting for only 3.8% (50/1320). After developing the model, for all the 1320 participants, we calculated scores of each extracted factor on these items by applying factor score matrix. We integrated the items into cognition variables, representing these factors, respectively. Then, we explored the discrepancy of individual cognition and the relationship between it and demographic characteristics on the basis of the χ² test and Logistic regression. From the statistical results, we identified which group of people tend to behave excessively. We used IBM SPSS 25.0 and IBM AMOS 24.0 to perform all data analyses.

Results
Measurement model developing
After performing five rounds of EFA, we filtered eight items, and the result was stable. Among the remaining 19 items, we extracted four factors with eigenvalues above 1. The cumulative variance contribution was 68.42%, showing an acceptable rate. Only one factor contained two items. Yet, we retained this factor, considering its practical significance. In the last round, KMO was 0.916, and the BTS result was statistically significant (P < 0.001). We used the varimax rotation to rotate the factor loading matrix. Table 4 shows the result. All communalities extracted in each item were above 0.4. This finding indicated that these factors could explain each item ideally (Communality > 0.4). Accordingly, we labeled these four factors as follows: Factor 1 as excessive disinfection behaviors that harm personal health directly (including X1 to X5 and X8 to X10), Factor 2 as wearing masks inappropriately (including X16 to X20), Factor 3 as unreasonable restraints of human activities (including X21 to X24), and Factor 4 as excessive disinfection behaviors that damage the environment directly (including X14 and X15). X1 seems to fit for Factor 4. However, when individuals use disinfectants outdoors, they rarely equip themselves with protection instruments. Thus, the
chemicals may be much more harmful to people using them than to the environment. Personal practice of disinfection also tends to consume so little that we could neglect its side-effect on the environment. On this basis, we classified this item into Factor 1, not Factor 4.

The eigenvalue of Factor 1 to Factor 4 was 7.337, 3.157, 1.447, and 1.059, respectively, with the variance devoting rates of 38.618, 16.613, 7.616, and 5.573%. On the basis of PCA and variance contribution, we calculated the weight of each item. From the perspective of public cognition, one item gaining five points means that Sam agreed that this description was excessive. We could infer that he had a strong awareness of it. Accordingly, he might tend to avoid this behavior in his daily life. By contrast, 1 point means people disagreed. They were not conscious of the excessiveness. In this case, they might tend to show this behavior. Therefore, items with higher grades were less important than those with lower grades. Consequently, we converted the weights to the reciprocals. Then, we normalized them to represent the final weights. Table 5 shows the result.

We tested the internal consistency in the four factors. The Cronbach’s α value of Factor 1 to Factor 4 was 0.906, 0.852, 0.882, and 0.763, respectively, mostly indicating a good internal consistency. The whole scale had a value of 0.900, denoting ideal reliability.

Validity testing of the model

The modification index (MI) between the residuals of X3 and X8 was up to 27.79. These two items had an affiliation with Factor 1. The Spearman correlation coefficient between them was 0.542 ($P < 0.001$). Thus, conducting the MI modification and building a new path between them were reasonable. The indices we tested showed a great fit to the data ($\chi^2[145] = 426.51$, RMSEA = 0.078, IFI = 0.922, TLI = 0.907, CFI = 0.921) [36].

Table 6 shows the standardized loadings of items and the AVE and CR of each factor. The model analyzed showed a good convergent validity, with AVE values of all the four factors above 0.5 and CR above 0.8. The loading of each item was higher than 0.6, indicating that we could explain these items to a large extent.

Table 7 shows the estimated correlation coefficients between every two factors. We listed AVE and calculated the square root. All of the coefficients were statistically significant ($P < 0.01$ or $P < 0.001$). Most of the values indicated a weak correlation among these factors. Although only one (0.759) between Factor 2 and Factor 1 was higher than the Sqrt (AVE) of Factor 2 (0.731), others are lower than their corresponding Sqrt (AVE)
values. Overall, the results denoted acceptable discrimination between every two factors while showing a correlation to some degree. Therefore, the model possessed reasonable discriminant validity. Figure 2 shows the modified structural equation modeling.

Demographic characteristics identification

Based on the factor score matrix gained by SPSS software, we converted these factors in PCA into four variables. The matrix is shown in Table 8. We named them as F1 to F4, representing Factor 1 to Factor 4. Then for each survey response, we calculated the integrated scores among F1 to F4. The conversion is shown in (1) as follows.

$$Fi = \sum_{j=1}^{24} \text{Score}_{ij} \cdot X_j \quad (1)$$

Integrated scores were continuous varying from negative to positive values. We re-coded them categorically. The original item with a high grade implied one agreed that the description was excessive. We also observed no zero in the data, so we coded the values above zero as 1. Then, we coded those below zero as 0. Now, these four variables were binary (0 = Disagree, 1 = Agree). We regarded them as dependent cognition variables. We re-coded the data concerning personal information to make independent variables. Gender (0 = Male and 1 = Female), Age (0 = 0–17 years, 1 = 18–29 years, 2 = 30–39 years, 3 = 40–49 years, 4 = 50–59 years, and 5 = 60 years and above), Area (0 = Northeast China, 1 = North China, 2 = East China, 3 = Central China, 4 = South China, 5 = Southwest China, and 6 = Northwest China), Employment (0 = Student, 1 = Staff in an enterprise, 2 = Staff in an institution, 3 = Staff in a governmental agency, 4 = Self-employed person, and 5 = Others), and Education Degree (0 = Primary school and lower, 1 = Junior high school, 2 = Senior high school, 3 = College degree, and 4 = Postgraduate degree and higher) were the five variables applied to test the relationship with four cognition variables.

Cognition discrepancy test

Table 9 shows the χ^2 test result. People of opposing genders showed a significant discrepancy in the cognition toward excessive behaviors in F1 ($P < 0.01$). The cognition of different ages of people had statistical significance in F1, F2 ($P < 0.001$), and F3 ($P < 0.05$). People with diverse employments exhibited disagreement on F1 and F2 ($P < 0.001$), with a significant difference. A discrepancy also exists in F2 for people with different educational backgrounds ($P < 0.001$).
Influences of demographic characteristics

We conducted a binary logistic regression to explore the influence of these five variables on the four dependent variables. We made categorical variables, including Area and Employment, into dummy ones. The Age and Education Degree were ordinal, so we did not convert them. We used forward regression, and Table 10 shows the result. For Factor 1, which includes excessive disinfection behaviors that harm personal health directly, people of opposing genders and different employments showed a discrepancy in cognition. Gender had a negative effect on F1 (Beta = −0.294, P < 0.05, OR = 0.745). Females were apt to think these behaviors were less excessive than their male counterparts. Compared with the student group (Dummy coding = 00000), people who worked in institutions (Dummy coding = 00100) were the most likely to believe these were excessive (Beta = 0.855, P < 0.001, OR = 2.352). Students showed the least probability. For wearing masks inappropriately in Factor 2, we observed that the dummy variable of Employment mostly had negative effects, whereas Education Degree had a positive effect on cognition. Compared with the student group, staffs working in institutions were the most likely to consider these behaviors to be non-
Excessive (Beta = −0.963, *P* < 0.001, OR = 0.382). People with a higher education degree were likely to recognize these over-prevention behaviors better than those with a lower education degree (Beta = 0.438, *P* < 0.001, OR = 1.537). Age could only affect the cognition toward the behaviors in Factor 3. The elderly tended to consider these behaviors to be less excessive than the younger ones (Beta = −0.128, *P* < 0.05, OR = 0.88). While for the excessive prevention, we found they tend to recognize and avoid. It may because they have acquired knowledge about scientific precautions and can protect themselves easily and rationally. This is consistent with Zhao’s study which suggested that highly educated participants are more likely to perform proper prevention measures [38]. Therefore, crisis managers should concern people with less educational background, especially those who are ignorant in medical knowledge and those who work in institutions, when taking measures to intervene in their over-prevention behaviors in Factor 2.

Although restraints of human activities can effectively reduce the overall incidence of COVID-19 [40], the behaviors described in Factor 3 have been a trifle going against morals. Thus, regardless of their employment and educational backgrounds, people may have the ability to identify them. However, older people may be more cautious than youngsters, and thus they tend to consider these behaviors to be less excessive, holding an inappropriate cognition. This result is consistent with the findings of Perrotta’s study [41]. She has proved that higher threat can always be perceived by older people. On this basis, authorities should supervise the old people to intervene in the excessive behaviors in Factor 3. In Factor 4, we did not obtain any influential variables. However, we could not ignore the health education to other people. In Table 9, approximately half of the subjects thought that these described behaviors were not excessive, with some even reasonable. Therefore, promoting the popularization of knowledge about prevention and helping the public to improve their health literacy are urgent. They should know how to take measures to protect themselves appropriately and

Table 8 Scores of each factor on the 19 items

Factor scores	Factor 1	Factor 2	Factor 3	Factor 4
X1	0.255	−0.136	0.055	−0.127
X2	0.268	−0.088	0.024	−0.181
X3	0.224	−0.090	0.034	−0.065
X4	0.124	−0.067	0.064	0.053
X5	0.230	−0.048	−0.013	−0.131
X6	0.154	−0.061	−0.050	0.103
X7	0.134	−0.058	−0.044	0.138
X8	0.106	0.009	−0.056	0.104
X9	−0.062	−0.031	−0.071	0.503
X10	−0.100	−0.075	−0.063	0.591
X11	−0.147	0.363	−0.041	0.013
X12	−0.126	0.232	0.009	0.152
X13	−0.020	0.302	−0.011	−0.138
X14	−0.120	0.373	0.014	−0.081
X15	0.011	0.223	−0.007	−0.094
X16	−0.002	−0.034	0.280	−0.036
X17	0.032	−0.025	0.320	−0.133
X18	0.006	0.043	0.285	−0.130
X19	0.001	−0.038	0.295	−0.036

Discussion

Principal findings

As the results show, females tend to regard these over-prevention behaviors as correct measures. It may because they perceive a higher epidemic risk and greater vulnerability than males, as Boguszewski et al. suggested in their study [37]. Besides, we found that staffs working in institutions have the most proper cognition of excessive behaviors in Factor 1 that directly and greatly damage personal health. It may because they have a better command of expertise on using the chemicals appropriately than the public. But compared with them, we found students are easier to approve of these behaviors, indicating that they may tend to show them in the epidemic prevention. It is consistent with the previous study that students are less likely to take proper prevention measures than other employment groups [38]. Thus, when managing the over-prevention behaviors involving excessive use of disinfectants, decision-makers should pay attention to the female and student groups.

For behaviors in Factor 2, staff working in institutions tends to have a high prevention consciousness out of their professional instinct. Although they know how to prevent excessive usage of disinfectants, they don’t perceive the behaviors about wearing masks in Factor 2 are excessive. They think it’s reasonable and proper for protection, as shown by the results, indicating that they may be easier to perform these behaviors. However, inappropriate usage of masks can still cause huge damages. For example, several students had died from wearing them when going outdoors on hot days, as reported in China several months ago. Moreover, Ozdemir et al. has studied that people who are highly educated have higher adoption of preventive behaviors in the COVID-19 [39]. But for the excessive prevention, we found they tend to recognize and avoid. It may because they have acquired knowledge about scientific precautions and can protect themselves easily and rationally. This is consistent with Zhao’s study which suggested that highly educated participants are more likely to perform proper prevention measures [38]. Therefore, crisis managers should concern people with less educational background, especially those who are ignorant in medical knowledge and those who work in institutions, when taking measures to intervene in their over-prevention behaviors in Factor 2.**
avoid over-prevention that can severely harm them.

Implication and limitation

The results we obtained can help health authorities to manage prevention practices. They can know which group of people need their attention via demographic characteristics. This study can help them reduce the contradiction between pandemic and economic revival. It can also support the governments in adjusting their guidelines and policies on pandemic prevention to avoid the damage of excessive behaviors.

Table 9	χ^2 test between attitude and personal information variables ($n = 1320$)							
	F1 Agree	F1 Disagree	F2 Agree	F2 Disagree	F3 Agree	F3 Disagree	F4 Agree	F4 Disagree
Gender								
Male	384	317	373	328	361	340	334	367
Female	289	330	304	315	305	314	310	309
χ^2	8.611b	2.210	0.651	0.780				
Age								
0–17 years	11	8	10	9	6	13	204	218
18–29 years	178	244	253	169	241	181	281	296
30–39 years	306	271	279	298	275	302	311	319
40–49 years	140	95	110	125	112	127	111	119
50–59 years	32	27	21	38	30	29	31	28
60 years and above	6	2	4	4	2	6	5	3
χ^2	23.457c	22.394c	14.797	2.087				
Area of China								
Northeast	104	87	86	105	102	85	106	
North	103	101	100	104	91	113	102	102
East	113	102	122	93	17	98	115	100
Central	78	101	100	79	82	97	86	93
South	78	92	83	74	98	72	73	97
Southwest	92	84	88	88	93	83	94	82
Northwest	105	80	98	87	96	89	89	96
χ^2	9.437	8.222	10.895	7.329				
Employment								
Student	111	181	189	103	155	137	138	154
In an enterprise	214	183	209	188	197	200	197	200
In an institution	27	23	29	21	27	23	28	22
In a governmental agency	140	140	96	140	112	124	112	124
Self-employed	93	89	89	108	108	89	87	110
Others	94	71	65	83	67	81	82	66
χ^2	28.081c	39.095c	5.111	5.872				
Education Degree								
Primary and lower	2	3	1	4	3	2	3	2
Junior high school	63	59	42	80	62	60	60	62
Senior high school	129	106	106	129	117	118	124	111
College degree	432	444	467	409	447	429	414	462
Postgraduate degree and higher	47	35	61	21	37	45	43	39
χ^2	3.992	38.389c	1.278	3.003				

*P < 0.05, bP < 0.01, and cP < 0.001. These figures are the number of cases in groups with different characteristics, followed by the Pearson χ^2 test in the last row.
However, there are some limitations in this study. First, questionnaires can only be distributed to users who have registered on the platform. So the online survey may lead to selection bias, limiting the generalizability of our findings [42]. Second, there may be more factors that can affect the results, such as people’s social network, their participation in online health communities, and other social and environmental factors. These may influence their cognition toward various over-prevention behaviors. Thus, future studies should consider more external factors to extend this measurement model. Third, in this study, we use the Chinese sample to construct our model. Researchers should test the replicability of our results to other countries or use the sample of other races to adjust our model.

Conclusions
In this study, we developed a measurement model, proving ideal content, convergent, and discriminant validity. We tested our model to fit the investigated data well. We also helped to identify demographic characteristics that can indicate groups of people who should be the focus of decision-makers when promoting health literacy when managing a public crisis. Health literacy for the public is critical because holding appropriate prevention helps reduce the prevalence of infection and harms on human and nature [43].

Abbreviations
COVID-19: Coronavirus disease; WHO: World Health Organization; KMO: Kaiser-Meyer-Olkin; BTS: Bartlett’s test of sphericity; EFA: Exploratory factor analysis; CFA: Confirmatory factor analysis; PCA: Principal component analysis; RMSEA: Root Mean Square Error of Approximation; CFI: Comparative Fit Index; TLI: Tucker Lewis Index; IFI: Incremental Fit Index; AVE: Average Variance Extracted; CR: Composite Reliability; MI: Modification indices

Acknowledgements
Not applicable.

Authors’ contributions
RY M conceptualized, collected, analyzed and interpreted the data. He was the major contributor in writing the manuscript. HW and ZH D revised and edited the manuscript. HW and ZH D supervised the research procedure. All authors read and approved the final manuscript.

Funding
This study was supported by the National Natural Science Foundation of China [Grant ID: 72001087]; and the National Natural Science Foundation of China [Grant ID: 71971092]. The funding agencies had no role in design of

Table 10 Logistic regression results (n = 1320)

	F1 Beta	OR (95% CI)	F2 Beta	OR (95% CI)	F3 Beta	OR (95% CI)	F4 Beta	OR (95% CI)
Gender	−0.294a	0.745 (0.596, 0.931)					−0.128d	0.880 (0.778, 0.994)
Age								
Area of China								
Employment (0)								
Employment (1)	0.594c	(1.328, 2.472)	−0.467b	(0.459, 0.857)				
Employment (2)	0.585	(0.978, 3.296)	−0.360	0.698				
Employment (3)	0.853c	(1.654, 3.345)	−0.963c	0.382				
Employment (4)	0.580b	(1.237, 2.579)	−0.526b	0.367				
Employment (5)	0.591b	(1.209, 2.697)	−0.468b	0.625				
Education Degree								

aP < 0.05, bP < 0.01, and cP < 0.001. The variables followed by a number in a bracket are the dummy variables. Considering the student group, we coded Employment (0) to Employment (5) into 00000 to 00001, varying from student to others, respectively. We did not observe any significant result in Employment (2) in F1 and F2. The dummy variable of Staff in institutions showed a lesser significant result than the dummy variable of Student.
the study and collection, analysis, and interpretation of data and in writing the manuscript.

Availability of data and materials

The datasets used and/or analysed during the current study are available from the corresponding author on reasonable request.

Declarations

Ethics approval and consent to participate

This study was approved by the Institutional Review Board of Huazhong University of Science and Technology. All the methods in the study were conducted according to the criteria set by the ethics committee of Huazhong University of Science and Technology. Each subject signed an informed consent before participating to the study. Especially for participants less than 16 years who are involved in the study, we obtained their informed consent, as well as the consent from their legal guardians or parents.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Author details

1 School of Medicine and Health Management, Huazhong University of Science and Technology, No. 13 Hangkong Road, Qiaokou District, Wuhan 430030, China. 2 School of Management, Huazhong University of Science and Technology, Wuhan, China.

Received: 26 April 2021 Accepted: 16 September 2021

Published online: 25 September 2021

References

1. Abo SMC, Smith SR. Is a COVID-19 vaccine likely to make things worse? Vaccines. 2020;8(4):761. https://doi.org/10.3390/vaccines8040761.
2. Lee SM, Lee D. Opportunities and challenges for contact-trace-medicine services in the post-COVID-19 era. Telemed J E Health. 2020;26(7):120712. https://doi.org/10.1016/j.tjhe.2020.12.012.
3. Lancet. Sustaining containment of COVID-19 in China. Lancet. 2020; 395(10232):1230. https://doi.org/10.1016/S0140-6736(20)30868-3.
4. Normile D. Can China return to normalcy while keeping the coronavirus in check? Science. 2020. https://doi.org/10.1126/science.abc9884.
5. Leung K, Wu JT, Liu D, Leung GM. First estimates of COVID-19 transmissibility and severity in China outside Hubei after control measures, and second-wave scenario planning: a modelling study with contact-trace-medicine assessment. Lancet. 2020;395(10233):1383–93. https://doi.org/10.1016/S0140-6736(20)30746-7.
6. Magnavita N, Sacco A. China’s COVID-19 pandemic in Italy: pros and cons. Zdrowie Publiczne. 2020;16(1):32–40. https://doi.org/10.4467/20842627ZP.20.02.122656.
7. Chirico F. The role of travel surveillance for the SARS-CoV-2 risk assessment in the second wave. J Occup Med Toxicol. 2021;6(4):255–6. https://doi.org/10.1186/s13099-020-00470-7.
8. Chirico F, Saccà A, Nucera G, Magnavita N. Coronavirus disease 2019: the second wave is more severe and deadly, but only in Lombardy region. J Inf Secur. 2021;7(10):1203–14. https://doi.org/10.1016/j.infsec.2021.05.014.
9. Chirico F, Nucera G, Szarpak L. Y COVID-19 mortality in Italy: the first wave was more severe and deadly, but only in Lombardy region. J Inf Secur. 2021;7(10):1203–14. https://doi.org/10.1016/j.infsec.2021.05.014.
10. Xinhua News. There were some wild animals being found dead abnormally in Chongqing. How excessive disinfection will impact the environment? 2020. http://www.xinhuanet.com/local/2020-02/21/c_1125606588.htm. Accessed 29 March 2021.
11. United Nations Conference on Trade and Development. Growing plastic pollution in wake of COVID-19: how trade policy can help. 2020. https://unctad.org/en/pages/newsdetails.aspx?OriginalVersionID=2440. Accessed 29 March 2021.
12. Price B, Comrey AL, Lee HS. A first course in factor analysis. Technometrics. 1993;35(4):453. https://doi.org/10.1080/00401706.2021.1706953.
13. Brooks SK, Webster RK, Smith LE, Woodland L, Wessely S, Greenberg N, Rubin GJ. The psychological impact of quarantine and how to reduce it: rapid review of the evidence. Lancet. 2020; 395(10227):912–20. DOI: https://doi.org/10.1016/S0140-6736(20)30646-8.
14. Ye YS, Wang RX, Feng D, Wu RJ, Li ZF, Long CX, et al. The recommended and excessive preventive behaviors during the COVID-19 pandemic: a community-based online survey in China. Int J Environ Res Public Health. 2020;17(19):6953. https://doi.org/10.3390/ijerph17196953.
15. Phillipson T. Economic epidemiology and infectious diseases. In: Culyer AJ, Newhouse JP, editors. Handbook of health economics. Amsterdam: Elsevier B.V; 2000. p. 1761–99.
16. Min C, Shen F, Yu WT, Chu YJ. The relationship between government-led and preventive behaviors during the COVID-19 pandemic in China: exploring the roles of knowledge and negative emotion. Int J Environ Res Public Health. 2020;17(19):6953. https://doi.org/10.3390/ijerph17196953.
17. Bish A, Michie S. Demographic and attitudinal determinants of protective behaviours during a pandemic: a review. Br J Health Psychol. 2010(15): 797–824. https://doi.org/10.1348/135910710X485826.
18. Singh M, Sarkhel P, Kang J,大纲 J, Maggi L, Murray-Tuite P, et al. Impact of demographic disparities in social distancing and vaccination on influenza epidemics in urban and rural regions of the United States. BMC Infect Dis. 2019;19(1):221. https://doi.org/10.1186/s12879-019-3703-2.
19. Yang XZY, Peng X, Yang T, Rockett IRH. Changing trends of excess self-protective behaviors in comparison with belief in prevention myths during the COVID-19 epidemic in China: a panel study. medRxiv. 2020; https://doi.org/10.1101/2020.05.12.2009243.
20. Yang M. Impacts of fighting COVID-19 on China’s population flows: an empirical study based on Baidu migration big data. Popul Res. 2020;44(04):74–81 (in Chinese).
21. The National Health Commission of the People’s Republic of China. Notice on standardizing and strengthening disinfection work during the outbreak of COVID-19. The National Health Commission of the People’s Republic of China; 2020. http://www.nhc.gov.cn/jkj/s3577/202002/d1ae51c799d4f8aa63a2e67ebbd2e5.shtml. Accessed 1 August 2020.
22. WHO. Coronavirus disease (COVID-19) advice for the public: WHO; 2020. https://www.who.int/emergencies/diseases/novel-coronavirus-2019-advice-for-public. Accessed 1 August 2020.
23. Pang XH. Press conference on the prevention and control of COVID-19 in Beijing on February 15, 2020: Beijing Center for Disease Prevention and Control; 2020. http://finance.ifeng.com/c/7uTke0P7FB. Accessed 30 March 2021.
24. Chinese Center for Disease Control and Prevention. Knowledge and Instructions on preventing COVID-19. Chinese Center for Disease Control and Prevention; 2020. http://www.chinacdc.cn/kjzt/cdthxzl/dbkb/11803/jkzl/227575.0/download/202003234903971314485.pdf. Accessed 1 August 2020.
25. Beijing Center for Disease Prevention and Control: Understand the purpose, master the principle, and avoid excessive disinfection: Beijing Center for Disease Prevention and Control; 2020. http://www.beijing.gov.cn/fuwu/bmfw/gsggs/202002/20200226_1845530.html. Accessed 1 August 2020.
26. The National Health Commission of the People’s Republic of China. Instructions on wearing masks: The National Health Commission of the People’s Republic of China; 2020. http://www.nhc.gov.cn/jkj/s3577/202003/0a47c20ce0e74414483db47ae64e6f6e76d.shtml. Accessed 1 August 2020.
27. WHO. Managing ethical issues in infectious disease outbreaks. Spain: World Health Organization; 2016.
28. Nay O. Can a virus undermine human rights? Lancet Public Health. 2020; 5(5):E238–40. https://doi.org/10.1016/S2468-2667(20)30092-X.
29. Philipson T. Economic epidemiology and infectious diseases. In: Culyer AJ, Newhouse JP, editors. Handbook of health economics. Amsterdam: Elsevier B.V; 2000. p. 1761–99.
30. Ministry of Housing and Urban-Rural Development of the People’s Republic of China. Notice on heightening quality and safety of municipal engineering resumption during the prevention and control of COVID-19: Ministry of Housing and Urban-Rural Development of the People’s Republic of China; 2020. http://www.mohurd.gov.cn/webfiles/gfww//gsggs/202003/20200305_2449298.html. Accessed 1 August 2020.
31. Price B, Comrey AL, Lee HS. A first course in factor analysis. Technometrics. 1993;35(4):453. https://doi.org/10.1080/00401706.2021.1706953.
32. Jin YJ, Du ZF, Jiang Y. Sampling Technique: China Renmin University Press; 2015.
33. Huang WH, Shih SF, Lin CL, Liu CH. Pregnant women’s attitudes and decision-making regarding prenatal Down syndrome screening and diagnosis: scale development and validation. BMC Pregnancy Childbirth. 2020;20(1):407. https://doi.org/10.1186/s12884-020-03093-6.
34. Huang JL, Currans PG, Keeney J, Poposki EM, DeShon RP. Detecting and deterring insufficient effort responding to surveys. J Bus Psychol. 2012;27(1):99–114. https://doi.org/10.1007/s10869-011-9231-8.
35. Currans PG. Methods for the detection of carelessly invalid responses in survey data. J Exp Soc Psychol. 2016;66:64–19. https://doi.org/10.1016/j.jesp.2015.07.006.
36. Atanasova S, Petric G. Collective empowerment in online health communities: scale development and empirical validation. J Med Internet Res. 2019;21(11):e14392. https://doi.org/10.2196/14392.
37. Boguszewski R, Makowska M, Podkowinska M. A typology of Poles' attitudes toward COVID-19 during the first wave of the pandemic. Int J Environ Res Public Health. 2021;18(4):2002. https://doi.org/10.3390/ijerph18042002.
38. Zhao YS, Xu SY, Wang L, Huang Y, Xu Y, Xu Y, et al. Concerns about information regarding COVID-19 on the internet: cross-sectional study. J Med Internet Res. 2020;22(11):e20487. https://doi.org/10.2196/20487.
39. Ozdemir S, Ng S, Chaudhry I, Finkelstein EA. Adoption of preventive behaviour strategies and public perceptions about COVID-19 in Singapore. Int J Health Policy Manag. 2020. https://doi.org/10.34172/ijhpm.2020.199.
40. Islam N, Sharp SJ, Chowell G, Shabnam S, Kawachi I, Lacey B, et al. Physical distancing interventions and incidence of coronavirus disease 2019: natural experiment in 149 countries. BMJ. 2020;370:m2743. https://doi.org/10.1136/bmj.m2743.
41. Perrotta D, Grow A, Rampazzo F, Cimentada J, Del Fava E, Gil-Clavel S, et al. Behaviours and attitudes in response to the COVID-19 pandemic: insights from a cross-national Facebook survey. EPJ Data Sci. 2021;10(1):17. https://doi.org/10.1140/epjds/s13688-021-00270-1.
42. Shah R, Ali FM, Nixon SJ, Ingram JR, Salek SM, Finlay AY. Measuring the impact of COVID-19 on the quality of life of the survivors, partners and family members: a cross-sectional international online survey. BMJ Open. 2021;11(5):e047680. https://doi.org/10.1136/bmjopen-2020-047680.
43. Pan A, Liu L, Wang CL, Guo H, Hao XJ, Wang Q, et al. Association of Public Health Interventions with the epidemiology of the COVID-19 outbreak in Wuhan, China. JAMA. 2020;323(19):1915–23. https://doi.org/10.1001/jama.2020.6130.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.