Direct evidence of a zigzag spin chain structure in the honeycomb lattice: A neutron and x-ray diffraction investigation on single crystal Na$_2$IrO$_3$

Feng Ye, Songxue Chi, Huibo Cao, Bryan C. Chakoumakos, Jaime A. Fernandez-Baca, Radu Custelcean, Tongfei Qi, O. B. Korneta, and G. Cao

1 Quantum Condensed Matter Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
2 Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37996, USA
3 Chemical Science Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
4 Center for Advanced Materials, Department of Physics and Astronomy, University of Kentucky, Lexington, Kentucky 40506, USA

(Dated: February 22, 2012)

We have combined single crystal neutron and x-ray diffractions to investigate the magnetic and crystal structures of the honeycomb lattice Na$_2$IrO$_3$. The system orders magnetically below 18.1(2) K with Ir$^{4+}$ ions forming zigzag spin chains within the layered honeycomb network with ordered moment of 0.22(1) μ_B/Ir site. Such a configuration sharply contrasts the Néel or stripe states proposed in the Kitaev-Heisenberg model. The structure refinement reveals that the Ir atoms form nearly ideal 2D honeycomb lattice while the IrO$_6$ octahedra experience a trigonal distortion that is critical to the ground state. The results of this study provide much-needed experimental insights into the magnetic and crystal structure crucial to the understanding of the exotic magnetic order and possible topological characteristics in the 5d-electron based honeycomb lattice.

PACS numbers: 61.05.cf,75.25.-j,71.70.Ej

The 5d-based iridates have recently become a fertile yet largely uncharted ground for studies of new physics driven by the spin-orbit coupling (SOC). It is now recognized that the SOC (0.4 - 1 eV), which is proportional to Z^4 (Z is the atomic number), plays a critical role in the iridates, and rigorously competes with other relevant energies, particularly the on-site Coulomb interaction U (0.4 - 2.5 eV), which is significantly reduced because of the extended nature of the 5d orbitals. A new balance between the competing energies is therefore established in the iridates and drives exotic states seldom or never seen in other materials. Recent experimental observations and theoretical proposals for the iridates has already captured the intriguing physics driven by SOC: $J_{\text{eff}} = 1/2$ Mott state 11, spin liquid in hyper-kagome structure 2, high-T_C superconductivity 3, Weyl semimetal with Fermi arcs 4, correlated topological insulator with large gaps 5-9, Kitaev mode 10, 3D spin liquid with Fermionic spinons 11, etc.

Of all iridates studied so far, Na$_2$IrO$_3$ 11-15 has inspired a great deal of experimental and theoretical efforts. In essence, the honeycomb lattice Na$_2$IrO$_3$ is predicted be a topological insulator or a layered quantum spin Hall insulator 10. However, conspicuous discrepancies among various theoretical proposals and experimental observations clearly point out a lack of the much-needed characterization of the magnetic and crystal structures of Na$_2$IrO$_3$, whose band topology could vary significantly with slight variations in the crystal structure. This situation chiefly originates from the fact that the heavy transition metals such as Ir strongly absorb neutrons, which makes a comprehensive neutron study on the single crystal a nontrivial challenge.

In this letter, we report a combined study of neutron scattering and x-ray diffraction on relatively large, thin single-crystal Na$_2$IrO$_3$. This study reveals that Ir$^{4+}$ ions order magnetically below 18.1(2) K, and that they form zigzag spin chains along the a axis of the honeycomb structure with an ordered moment of 0.22(1) μ_B/Ir. Moreover, the structural refinements illustrate that the Ir atoms feature a nearly perfect two-dimensional (2D) honeycomb lattice and a trigonal distortion characterized by the IrO$_6$ octahedra deviating from a high-symmetric cubic environment. These results are vastly different from those of the previously reported powder x-ray diffraction study, where the honeycomb was characterized by three distinct bond lengths 11.

Single crystals of Na$_2$IrO$_3$ were grown using a self-flux method from off-stoichiometric quantities of IrO$_2$ and Na$_2$CO$_3$. Technical details are described elsewhere 4-6. The crystals have circular basal area corresponding to the honeycomb plane with diameters of ~ 10 mm and thickness ~ 0.1 mm [see inset of Fig. 1]. Such geometry provides a unique advantage to significantly alleviate the technical difficulty due to the inherent neutron absorption of the iridates. Energy dispersive x-ray spectroscopy (EDX) using a Hitachi/Oxford SEM/EDX indicates a perfect stoichiometry of Na$_2$IrO$_3$ throughout the crystals studied.

The x-ray diffraction measurements were performed using a Bruker SMART APEX CCD diffractometer with Mo K$_\alpha$ radiation. More than 40 crystals from four different growth runs were screened at 125 K and full data sets were collected on four crystals. The neutron diffraction measurements were carried out at the HB1A triple axis spectrometer and HB3A four circle diffractometer.
at the High Flux Isotope Reactor at the Oak Ridge National Laboratory with fixed incident neutron wavelength of $\lambda = 2.367$ Å and 1.536 Å, respectively. For the HB1A diffraction measurement, the crystal is aligned in the $(0, k, l)$ scattering plane to allow the probing of various magnetic reflections.

The systematic absences in the single crystal x-ray diffraction measurements unambiguously determine that the space group of Na$_2$IrO$_3$ is $C2/m$ and not $C2/c$ as initially reported [13]. The typical crystal diffraction pattern shows diffuse streaking, characteristic of stacking faults within the layer sequence. Stacking faults involving fractional translation and rotation of the fundamental $C2/m$ layer module have been modeled to some extent in the isostructural Li$_2$MnO$_3$ [16]. Polytypism analogous to that observed in the micas is also possible. We adopted a structural model that allowed for intermixing of the Na1 and Ir sites to artificially account for some amount of stacking disorder, yet retain the ideal stoichiometry. The overall structure exhibits a virtually regular honeycomb layer of edge-sharing IrO$_6$ octahedra, similar to that observed in other so-called trioctahedral sheets [e.g., gibbsite Al(OH)$_3$] in which the octahedra are slightly flattened perpendicular to layer stacking. In addition, the three O-Ir-O bond angles perpendicular to the basal plane are all greater than 90° whereas the bond angles across the shared edges are 84.1(3)° and 84.5(3)°, in contrast to the undistorted 90°, as shown in Fig. 2(a).

![Image](61x433 to 292x657)

FIG. 1. (Color online) (a) Crystal structure of Na$_2$IrO$_3$ with $C2/m$ symmetry. (b) The honeycomb lattice formed by Ir atoms within the basal plane with nearly equivalent distance between neighboring Ir atoms. The dashed line denotes the unit cell. (c) Specific heat $C(T)$ for Na$_2$IrO$_3$ at $H = 0$ and $H = 14$ T. Note that the application of a magnetic field of 14 Tesla suppresses the transition temperature by only 0.5 K, apparently not characteristic of a conventional Néel state. Inset shows the picture of single crystals used for diffraction experiments. (d) The temperature dependence of Bragg peak intensity (I) vs. T at $H = 0$ and $H = 14$ T.) [Fig. 1(c)]. Fitting I_H to the power law scaling function of $(1 - T/T_N)^{2\beta}$ yields a critical exponent $\beta = 0.29(2)$ that describes the magnetic system to be three dimensional. The determination of magnetic propagation wavevector and the correct description of the crystal structure put stringent constraints on the possible magnetic models. The magnetic reflection appearing at $(0,1,0.5)$ rules out the Néel configuration [characterized by antiferromagnetically-coupled nearest neighboring spins with $q_m = (0,0,0.5)$] but leaves the choice of either stripe or zigzag order in the basal plane as depicted in Figure 2(c)-2(d). Group theory analysis indicates that the magnetic representation

TABLE I. Structural parameters at $T=125$ K from single crystal x-ray diffraction measurements. The full data sets could be indexed using space group $C2/m$ with $a = 5.319(1)$ Å, $b = 9.215(2)$ Å, $c = 5.536(1)$ Å and $\beta = 108.67(1)^\circ$. The Ir-O bond distances are 2.069(8), 2.067(9), and 2.060(12) Å, and the Ir-O distances are 3.073(1) and 3.0705(8) Å. Refinements are made using SHELXL-97 [18], yielding an agreement factor $R1 = 0.0687$ for 334 reflections with $F_{\text{obs}} > 4\sigma(F_{\text{obs}})$.

Site	x	y	z	Occupancy	U(Å2)
Ir1 4g	0	0.3332(1)	0	0.823(6)	0.006(1)
Na1 2a	0	0	0	0.646(9)	0.014(2)
Ir2 2a	0	0	0	0.354(9)	0.014(2)
Na2 4h	0	0.8363	1/2	1	0.003(2)
Na3 2d	0	1/2	1/2	1	0.004(2)
O1 8j	0.259(3)	0.3294(7)	0.792(3)	0.001(3)	
O2 4i	0.270(3)	0	0.792(3)	1	0.001(3)

The magnetic ground state is further characterized by the neutron diffraction on the single crystals. The magnetic propagation wave vector was determined to be $q_m = (0,1,0.5)$ in the $C2/m$ notation based on extensive survey in reciprocal space using the four-circle neutron diffractometer. Figure 1(d) shows that the magnetic Bragg peak intensity ($I_B \propto |M_s|^2$, M_s is the order parameter) disappears above $T_N = 18.1 \pm 0.2$ K, consistent with the anomaly observed in the specific heat data (it is remarkable that the anomaly of $C(T)$ downshifts only by 0.5 K at 14 T.) [Fig. 1(c)]. Fitting I_B to the power law scaling function of $(1 - T/T_N)^{2\beta}$ yields a critical exponent $\beta = 0.29(2)$ that describes the magnetic system to be three dimensional. The determination of magnetic propagation wavevector and the correct description of the crystal structure put stringent constraints on the possible magnetic models. The magnetic reflection appearing at $(0,1,0.5)$ rules out the Néel configuration [characterized by antiferromagnetically-coupled nearest neighboring spins with $q_m = (0,0,0.5)$] but leaves the choice of either stripe or zigzag order in the basal plane as depicted in Figure 2(c)-2(d). Group theory analysis indicates that the magnetic representation
gamma can be decomposed into irreducible representation (IR) \(\Gamma_{\text{mag}} = \Gamma_1 + \Gamma_2 + 2\Gamma_3 + 2\Gamma_4 \) with corresponding basis vectors (BV) listed in Table II. Since the moment direction has been characterized to be along the \(a \) axis by magnetic susceptibility measurement and polarized x-ray technique \[12\], this information is implemented to perform the model calculation and magnetic structural refinement. Figs. 3(a)-3(c) show the rocking scans of three characteristic magnetic Bragg reflections \(q_1 = (0, 1, 0, 5) \), \(q_2 = (0, 3, 1, 5) \) and \(q_3 = (0, 3, 0, 5) \) in the \((0, k, l) \) scattering plane. The strongest reflection occurs at \(q_1 \) and the intensity decrease sharply at \(q_3 \) that has a larger momentum transfer. In contrast, there is no sign of magnetic scattering at \(q_3 \) at base temperature. For single crystal magnetic scattering at wavevector transfer \(q \), the measured intensity follows:

\[
|F_{\perp}(q)|^2 = |F_m(q)|^2 - |\mathbf{e} \cdot F_m(q)|^2
\]

where \(\mathbf{e} \) is the unite vector along the \(q \), and \(F_m(q) \) is the magnetic structure factor that can be expressed as

\[
F_m(q) = p \sum_{j=1}^{n} f_j(q) S_{k,j} \exp(2\pi i (q \cdot r_j)).
\]

Here the sum is over all the magnetic atoms in the crystallographic cell, \(p = (r_c \gamma / 2) = 0.2695 \), \(S_{k,j} \) are the Fourier components proportional to the BVs listed in Table II, \(r \) is the vector position of atom \(j \), and \(f(q) \) is the magnetic form factor for the Ir\(^{4+} \) ions \[10\].

As summarized in Table III, both stripe and zigzag spin orders give the identical ratio \(|F_{\perp}(q_2)| / |F_{\perp}(q_1)| \).

Therefore the magnetic scattering at these two reflections alone can not distinguish the difference between the two spin configurations. However, the magnetic scattering at \(q_3 \) is expected to be strong for the stripe spin configuration but absent for the zigzag spin chains; the absence of the magnetic scattering at \(q_3 \) illustrated in Fig. 3(c) clearly indicates a presence of the zigzag spin order. To determine the magnitude of the magnetic moment/\(\text{Ir} \), a large set of nuclear reflections under the same experimental configuration were collected to get the scale factor for normalization, yielding a magnetic moment of 0.22(1) \(\mu_B / \text{Ir} \); this is considerably smaller than that (1 \(\mu_B / \text{Ir} \)) for a \(S = 1/2 \) system, consistent with early observations for systems such as \(\text{Sr}_3 \text{IrO}_4 \) and \(\text{BaIrO}_3 \) where the ordered moment is no more than 15% of 1 \(\mu_B / \text{Ir} \) \[4–6, 20\]. The significantly reduced moment might be ascribed to the strong hybridization of the Ir \(5d \) orbital with the ligand oxygen \(2p \) orbital and the moments are largely canceled out in the antiferromagnetic state. Moreover, the wavevector scans presented in Figs. 3(d)-3(e) show resolution limited Gaussian profile and Lorentzian type lineshape for in-plane and out-of-plane magnetic correlation, respectively. The data reinforce that the spins form a long-range ordered structure in the honeycomb basal plane while a short range order might still remain to some extent (with correlation length \(\xi \approx 139 \pm 21 \) Å) between layers due to the inherent imperfection in crystal structure as suggested in x-ray diffraction presented above.

TABLE II. Basis vectors (BVs) \(\psi_i \) of an IR of the space group C2/m and \(k = (0, 1, 0.5) \). BVs are defined relative to the crystalline axes. Magnetic moments for \(m \) in \(\Gamma^1 \) cell is given by \(\mathbf{m}_{i,j} = \sum \mathbf{S}_{k,j} \exp(-2\pi i k \cdot \mathbf{R}_1) \) and \(\mathbf{S}_{k,j} = \sum C_i \psi_i \), where \(C_i \) is the mixing coefficient. Only \(\Gamma_3 \) and \(\Gamma_4 \) are relevant since they describe the correct spin direction along the \(a \)-axis.
\(\psi_1(\Gamma_3) \)
\(\text{Ir} \) (0, 0.333, 0) (0, 1, 0) (0, 1, 0) (1, 0, 0) (0, 0, 1) (1, 0, 0) (0, 0, 1) (1, 0, 0) (0, 0, 1)
\(\text{Ir} \) (0, 0.667, 0) (0, 1, 0) (0, -1, 0) (1, 0, 0) (0, 0, 1) (1, 0, 0) (0, 0, 1)
\(\Gamma_3 \) (stripe)
\(\Gamma_4 \) (zigzag)
measurement

TABLE III. Calculated magnetic scattering \(|F_{\perp}(q_i)|^2 \) at \(q_1 \) (normalized to 100), \(q_2 \) and \(q_3 \) for stripe and zigzag spin orders and their comparison to the measurement. Errorbar is statistical and refers to one standard deviation.

TABLE III. Calculated magnetic scattering |\(F_{\perp}(q_i) \)|\(^2\) at |\(q_1 \)| (normalized to 100), \(q_2 \) and \(q_3 \) for stripe and zigzag spin orders and their comparison to the measurement. Errorbar is statistical and refers to one standard deviation.

\[q_1 = (0, 1, 0.5) \quad q_2 = (0, 1, 1.5) \quad q_3 = (0, 3, 0.5) \]
anisotropic Kitaev term through strong spin-lattice coupling gives rise to a rich variety of the low energy magnetic ground states. This includes the topologically non-trivial quantum spin Hall system in the weak interaction limit and evolution from the conventional Néel order to the spin liquid state sandwiched by a stripe phase depending on the microscopic parameters in the strong spin-orbit coupling limit. The geometric frustration due to the longer range exchange paths and the dynamic frustration caused by the Kitaev term leave the physical properties of Na$_2$IrO$_3$ highly tunable by small perturbations such as magnetic field, vacancies and structural distortions. Only recently has the magnetic ground state been experimentally examined and proposed to be a possible zigzag spin state using resonant magnetic x-ray scattering. The unexpected spin state inconsistent with the original Kitaev-Heisenberg model underscores the novelty of the ground magnetic state, prompting theoretical suggestions that the zigzag magnetic order could be explained only when the long-range magnetic Heisenberg interactions or a trigonal distortion of the IrO$_6$ octahedra in the [1, 1, 1] direction (local basis of the octahedron) is taken into account. Indeed, a new quantum phase transition from normal to topological insulator was recently predicted in Na$_2$IrO$_3$ if both the long-range hopping and trigonal crystal field terms are included. On the other hand, noticeable inconsistencies still exist in the band topology predictions that are likely due to the structural parameters used for the first-principles calculation. With the presence of the trigonal crystal field, it is suggested that the $J_{\text{eff}} = 1/2$ doublet is no longer as critical in Na$_2$IrO$_3$ as in Sr$_2$IrO$_4$ and other iridates; instead, the trigonal crystal field (0.6 eV) and long-range hoping dictate the topological character, which is extremely sensitive to slight structural changes.

One of the unique aspects of this work is that both neutron scattering and x-ray diffraction data were collected from single crystals of Na$_2$IrO$_3$. The results of this work therefore provide the much-needed, well-defined characteristic of the magnetic and crystal structures of the honeycomb lattice, thus significantly improve our understanding of this intriguing system. We expect this study will clarify the topological character of the ground state in Na$_2$IrO$_3$, a fertile ground yet to be fully explored.

We thank S. Okamoto and C. de la Cruz for invaluable discussions. Research at the Oak Ridge National Laboratory was sponsored in part by the Division of Chemical Sciences, Geosciences, and Biosciences, and the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy. The work at University of Kentucky was supported by NSF through grants DMR-0856234 and EPS-0814194.

Note added: after finishing our work, we become aware of recent inelastic neutron scattering work on the powder samples of Na$_2$IrO$_3$ and single crystal x-ray diffraction studies that reveal a similar structural information.

\[\text{References}\]

[1] B. J. Kim et al., Phys. Rev. Lett. 101, 076402 (2008).
[2] S. J. Moon et al., Phys. Rev. Lett. 101, 226402 (2008).
[3] B. J. Kim et al., Science 323, 1329 (2009).
[4] M. Ge et al., Phys. Rev. B 84, 100402(R) (2011).
[5] S. Chikara et al., Phys. Rev. B 80, 140407(R) (2009).
[6] C. H. Kim, H. S. Kim, H. Jeong, H. Jin, and J. Yu, Nat. Phys. 6, 376 (2010).
[7] Y. Okamoto, M. Nohara, H. Aruga-Katori, and H. Takagi, Phys. Rev. Lett. 99, 137207 (2007).
[8] F. Wang and T. Senthil, Phys. Rev. Lett. 106, 136402 (2011).
[9] X. Wan, A. M. Turner, A. Vishwanath, and S. Y. Savrasov, Phys. Rev. B 83, 205101 (2011).
[10] A. Shitade et al., Phys. Rev. Lett. 102, 256403 (2009).
[11] D. A. Pesin and L. Balents, Nat. Phys. 6, 376 (2010).
[12] G. Jackeli and G. Khaliullin, Phys. Rev. Lett. 102, 017205 (2009).
[13] Y. Zhou, Phys. Rev. Lett. 101, 197201 (2008).
[14] Y. Singh and P. Gegenwart, Phys. Rev. B 82, 064412 (2010).
[15] X. Liu et al., Phys. Rev. B 83, 220403(R) (2011).
[16] J. Bréger et al., Journal of Solid Chemistry 178, 2575 (2008).
[17] C. H. Kim, H. S. Kim, H. Jeong, H. Jin, and J. Yu,
[18] G. M. Sheldrick, Acta Cryst. A64, 112 (2008).
[19] K. Kobayashi, T. Nagao, and M. Ito, Acta Cryst A 67, 473 (2011).
[20] G. Cao, J. Bolivar, S. McCall, J. E. Crow, and R. P. Guertin, Phys. Rev. B 57, R11039 (1998).
[21] A. Kitaev, Ann. Phys. 321, 2 (2006).
[22] J. Chaloupka, G. Jackeli, and G. Khaliullin, Phys. Rev. Lett. 105, 027204 (2010).
[23] I. Kimchi and Y. Z. You, Phys. Rev. B 84, 180407(R) (2011).
[24] H. C. Jiang, Z. C. Gu, X. L. Qi, and S. Trebst, Phys. Rev. B 83, 245104 (2011).
[25] F. Trousselet, G. Khaliullin, and P. Horsch, Phys. Rev. B 84, 054409 (2011).
[26] Y. Z. You, I. Kimchi, and A. Vishwanath, arXiv:1109.4155 (2011).
[27] S. Bhattacharjee, S. Lee, and Y. B. Kim, arXiv:1108.1806 (2011).
[28] B. J. Yang and Y. B. Kim, Phys. Rev. B 82, 085111 (2010).
[29] H. Jin, H. Kim, H. Jeong, C. H. Kim, and J. Yu, arXiv:0907.0743 (2009).
[30] S. Choi et al., arXiv:1202.1268 (to appear in PRL).