Research Article

Product-Type Operators on the Space of Fractional Cauchy Transforms

Zeng Fan and Xin Guo

1School of Mathematics and Statistics, Xinyang Normal University, Xinyang 464000, China
2School of Mathematics and Statistics, Wuhan University, Wuhan 430072, China

Correspondence should be addressed to Xin Guo; xguo.math@whu.edu.cn

Received 9 December 2021; Accepted 31 January 2022; Published 9 March 2022

Abstract

The space of fractional Cauchy transforms plays a central role in classical complex analysis, harmonic analysis, and geometric measure theory. In this paper, we study the boundedness and compactness of product-type operators from the space of fractional Cauchy transforms to the Zygmund-type space in terms of the function theoretic characterization of Julia–Carathéodory type.

1. Introduction

Let $\mathcal{S}(D)$ be the class of all holomorphic self-maps of the unit disk D of the complex plane C, T be the boundary of D, N_0 be the set of all nonnegative integers, and N be the set of all positive integers. Denote by $H(D)$ the space of all holomorphic functions on D.

We first recall the spaces we work on. Let \mathcal{M} be the set of all nonnegative integers, and $S(D)$ be the class of all holomorphic self-maps of D. Let μ be a weight, that is, μ is a positive continuous function on D.

The fractional Cauchy transforms space \mathcal{F}_a is isometrically isomorphic to \mathcal{M}/H_0^{α}. Furthermore, \mathcal{M} admits a decomposition $\mathcal{M} = L^1(H_0^{1/2})$, where \mathcal{M} is the space of Borel measures, which are singular with respect to Lebesgue measure, and $H_0^{1/2} \subset L^1$. According to the Lebesgue decomposition theorem, each $\mu \in \mathcal{M}$ can be written as $\mu = \mu_a \oplus \mu_s$, where μ_a is absolutely continuous with respect to the Lebesgue measure and μ_s is singular with respect to the Lebesgue measure $\mu_s = \mu_s / \mu_s$. Consequently, \mathcal{F}_a is isometrically isomorphic to $L^1(H_0^{1/2}) \oplus \mathcal{M}_s$. Hence, \mathcal{F}_a can be written as $\mathcal{F}_a = \mathcal{F}_a \oplus \mathcal{F}_a^{\mathcal{M}_s}$, where $\mathcal{F}_a^{\mathcal{M}_s}$ is isomorphic to $L^1(H_0^{1/2})$, the closed subspace of \mathcal{M} of absolutely continuous measures, and \mathcal{F}_a is isomorphic to \mathcal{M}, the subspace of \mathcal{M} of singular measures. For further results about the space of fractional Cauchy transforms, we refer to [1–12] and references therein.

Let δ be a weight, that is, δ is a positive continuous function on D. A positive continuous function v on the interval $[0, 1)$ is said to be normal if there are $\delta \in [0, 1)$ and τ and η, $0 < \tau < \eta$ such that
\[\frac{v(r)}{(1-r)^2} \text{ is decreasing on } [\delta, 1) \text{ and } \lim_{r \to 1^-} \frac{v(r)}{(1-r)^2} = 0, \]
\[\frac{v(r)}{(1-r)^2} \text{ is increasing on } [\delta, 1) \text{ and } \lim_{r \to 1^-} \frac{v(r)}{(1-r)^2} = \infty. \] (3)

In this paper, we assume the normal weighted function \(\nu : D \to [0, \infty) \) is also radial, i.e., \(\nu(z) = \nu(|z|), z \in D \).

Now, the Zygmund-type space \(\mathcal{Z} \) consists of all \(f \in H(D) \) such that
\[b_\nu(f) = \sup_{z \in D} \nu(z) |f''(z)| < \infty. \] (4)

With the norm \(\|f\|_\nu = |f(0)| + |f'(0)| + b_\nu(f) \), the Zygmund-type space is a Banach space.

For \(\varphi \in \mathcal{S} \) and \(u \in H(D) \), the weighted composition operator, which plays an important role in the isometry theory of Banach spaces, induced by \(u \) and \(\varphi \) is given by
\[W_{u, \varphi} (f) := u \cdot f \circ \varphi, \quad f \in H(D). \] (5)

We can regard this operator as a generalization for a multiplication operator \(M_u \) induced by \(u \) and a composition operator \(C_\varphi \) induced by \(\varphi \), where \(M_u f = u \cdot f \) and \(C_\varphi f = f \circ \varphi \). An extensive study concerning the theory of (weighted) composition operators has been established during the past four decades on various settings. We refer to standard references [13–15] for various aspects about the theory of composition operators acting on holomorphic function spaces, especially the problems of relating operator-theoretic properties of \(C_\varphi \) to function theoretic properties of \(\varphi \). The differentiation operator, on \(H(D) \), is defined by
\[Df(z) = f'(z), \quad z \in D. \] (6)

Note that \(D \) is typically unbounded on many familiar spaces of holomorphic functions. The differential operator plays an important role in various fields such as dynamical system theory and operator theory.

The products of any two of \(C_\varphi \), \(M_u \), and \(D \) can be obtained in six ways, i.e., \(M_u C_\varphi, C_\varphi M_u, M_u D, D M_u, C_\varphi D, \) and \(D C_\varphi \). Similarly, the products of all of \(C_\varphi \), \(M_u \), and \(D \) can also be obtained in six ways, i.e., \(M_u C_\varphi D, C_\varphi M_u D, M_u D C_\varphi, C_\varphi D M_u, D M_u C_\varphi, \) and \(D C_\varphi M_u \). In order to treat above product-type operators in a unified manner, Stević et al. [16], for the first time, introduced the so-called Stević–Sharma operator:
\[T_{u_1, u_2, \varphi} f(z) = u_1(z) f(\varphi(z)) + u_2(z) f'(\varphi(z)), \quad f \in H(D), \] (7)
for \(\varphi \in \mathcal{S}, u_1, u_2 \in H(D) \). This operator is related to the various products of multiplication, composition, and differentiation operators. It is clear that all products of multiplication, composition, and differentiation operator in the following six ways can be obtained from the operator \(T_{u_1, u_2, \varphi} \) by choosing different \(u_1 \) and \(u_2 \). More specially, we have
\[M_u D C_\varphi = T_{0,u, \varphi}, \]
\[C_\varphi M_u D = T_{0,u, \varphi}, \]
\[M_u C_\varphi D = T_{0,u, \varphi}, \]
\[D M_u C_\varphi = T_{u', u, \varphi}, \]
\[C_\varphi D M_u = T_{u', u, \varphi}, \]
\[D C_\varphi M_u = T_{u', u, \varphi}. \] (8)

Recently, product-type operators on some spaces of holomorphic functions on the unit disk have become a subject of increasing interest (see [17–19] and references therein). Hibscherweiser et al. [20] first characterized the boundedness and compactness of \(D C_\varphi \) between Bergman spaces and Hardy spaces. Liu and Yu [21] investigated the boundedness and compactness of the operator \(D C_\varphi \) from \(F^{\infty} \) and Bloch spaces to Zygmund spaces. Ohno [22] considered the boundedness and compactness of \(C_\varphi D \) on Hardy space \(H^2 \). Zhu [23] studied the boundedness and compactness of linear operators which are obtained by taking products of multiplication, composition, and differentiation operators from Bergman-type spaces to Bers-type spaces. Quite recently, Zhang and Liu [24] presented the boundedness and compactness of the operator \(T_{u, u, \varphi} \) from Hardy spaces to Zygmund-type spaces. Liu and Yu [25] gave the complete characterizations for the boundedness and compactness of the operator \(T_{u, u, \varphi} \) from Hardy spaces to the logarithmic Bloch spaces. Liu et al. [26] investigated the compactness of the operator \(T_{u, u, \varphi} \) on logarithmic Bloch spaces. Yu and Liu [27] characterized the boundedness and compactness of the operator \(T_{u, u, \varphi} \) from \(F^{\infty} \) space to the logarithmic Bloch spaces. Jiang [28] considered the boundedness and compactness of the operator \(T_{u, u, \varphi} \) from the Zygmund spaces to the Bloch–Orlicz spaces. Li and Guo [29] studied the boundedness and compactness of the operator \(T_{u, u, \varphi} \) from Zygmund-type spaces to Bloch–Orlicz spaces.

Inspired by the above results, the purpose of the paper is devoted to the boundedness and compactness of the operator \(T_{u_1, u_2, \varphi} \) from the fractional Cauchy transforms’ spaces to the Zygmund-type spaces over the unit disk in terms of the function theoretic characterization of Julia–Carathéodory type. As the applications of our main results, readers easily can obtain the boundedness and compactness characterizations of all six product-type operators:
\[M_u D C_\varphi, \]
\[C_\varphi M_u D, \]
\[M_u C_\varphi D, \]
\[D M_u C_\varphi, \]
\[C_\varphi D M_u, \]
\[D C_\varphi M_u. \] (9)
from the space of fractional Cauchy transforms to the Zygmund-type spaces.

2. Preliminaries

In this section, we recall some basic facts and preliminary results to be used in the sequel.

Suppose X and Y are two Banach spaces with norms ∥∥_X and ∥∥_Y, respectively. Recall that a linear operator T from X to Y is bounded if there is a positive constant C such that ∥T(f)∥_Y ≤ C∥f∥_X, for all f in X. The bounded operator T: X → Y is said to be compact if the image of every bounded set of X is relatively compact in Y. Equivalently, T: X → Y is compact if and only if the image of every bounded sequence in X has a subsequence that converges in Y.

The following lemma gives a convenient compactness criterion for the Stević–Sharma operator T_{u_1, u_2, φ} f(z) = u_1(z) f(φ(z)) + u_2(z) f′(φ(z)) in the space of fractional Cauchy transforms F_a to the Zygmund-type spaces L_v.

Lemma 1. Suppose u_1, u_2 ∈ H(D), φ ∈ Δ. Then, the operator T_{u_1, u_2, φ}: F_a → L_v is compact if and only if T_{u_1, u_2, φ} f_n → 0 in L_v, for any bounded sequence {f_n} in F_a, such that {f_n} → 0 uniformly on compact subsets of D.

A proof can be found in Proposition 3.11 of [13] for a single composition operator over the unit disk, and it can be easily modified for the operator T_{u_1, u_2, φ} on F_a.

The following lemma is taken from [30] which is vital to construct the test functions on the space of fractional Cauchy transforms.

Lemma 2. Let α, β > 0, f ∈ H(D)

(1) If f ∈ F_α, z ∈ D, then there exists a C > 0 such that |f(z)| ≤ C∥f∥_{F_α} / (1 − |z|^β)

(2) If f ∈ F_α, then f′ ∈ F_{α+1} and ∥f′∥_{F_{α+1}} ≤ α∥f∥_{F_α}

(3) If f′ ∈ F_{α+1}, then f ∈ F_α, and there exists a C > 0 such that ∥f∥_{F_α} ≤ C∥f(0)∥ + C∥f′∥_{F_{α+1}}

(4) If f ∈ F_α and g ∈ F_β, then fg ∈ F_{α+β} and ∥fg∥_{F_{α+β}} ≤ ∥f∥_{F_α}∥g∥_{F_β}

Based on Lemma 2, we can obtain the following lemma, see Lemma 2 of [31], for the detailed proof.

Lemma 3. Let α > 0, s ∈ N_0, and z ∈ D. Put

\[t_s^α(z) = \frac{(1 − |z|^2)}{(1 − 2|z|^s)^{\frac{α}{2}}}, \quad w ∈ D. \]

(10)

Then, t_s^α ∈ F_α and sup_{z ∈ D} ||t_s^α||_{F_α} < ∞.

Furthermore, we need the following lemma to prove our main results.

Lemma 4. Let α > 0. Suppose that f ∈ F_a and n ∈ N_0. Then, there is a positive constant C independent of f such that

\[|f^{(n)}(z)| ≤ C\frac{∥f∥_{F_a}}{(1 − |z|^2)^{\frac{n}{2}}} \]

(11)

Proof. For f ∈ F_α, there is a μ ∈ M such that (1) holds. Then, we have

\[f^{(n)}(z) = \prod_{j=0}^{n-1} (\alpha + j) \int \frac{ξ^\alpha dμ(ξ)}{1 − ξ^2} \]

(12)

Thus, we have

\[|f^{(n)}(z)| ≤ C\frac{dμ(ξ)}{|1 − ξ^2|^{\frac{n}{2}}} ≤ C\frac{dμ(ξ)}{(1 − |ξ|^2)^{\frac{n}{2}}} = C\frac{∥f∥_{F_a}}{(1 − |ξ|^2)^{\frac{n}{2}}} \]

(13)

Taking infimum over all measures, μ ∈ M, for which (1) holds; the proof is complete.

3. Main Results and Proofs

In this section, we devote to investigating the boundedness and compactness of the operator T_{u_1, u_2, φ} acting from the spaces of fractional Cauchy transforms to the Zygmund-type spaces in terms of the function theoretic characterization of Julia–Carathéodory type.

Theorem 1. Let α > 0. Suppose u_1, u_2 ∈ H(D), φ ∈ Δ. Then, T_{u_1, u_2, φ}: F_a → L_v is bounded if and only if the following conditions are satisfied:

\[\sup_{z ∈ D} \frac{ν(z)|u_n^α(z)|}{1 − |φ(z)|} < ∞ \]

(14)

\[\sup_{z ∈ D} \frac{ν(z)|2u_1^α(z)φ′(z) + u_2^α(z)(φ''(z) + u_n^α(z))|}{(1 − |φ(z)|^2)^{\frac{n+1}{2}}} < ∞ \]

(15)

\[\sup_{z ∈ D} \frac{ν(z)|u_1(z)(φ′(z))^2 + 2u_2(z)φ′(z) + u_2(z)φ''(z)|}{(1 − |φ(z)|^2)^{\frac{n+2}{2}}} < ∞ \]

(16)

\[\sup_{z ∈ D} \frac{ν(z)|u_2^α(z)(φ′(z))^2|}{(1 − |φ(z)|^2)^{\frac{n+3}{2}}} < ∞ \]

(17)

Proof. Suppose that (14)–(17) hold. Let f ∈ F_a with ∥f∥_{F_a} ≤ 1. Using Lemma 4, we have
\[
\|T_{u_1,u_2,\varphi} f\|_\mathcal{F}_a = |u_1(0) f(\varphi(0)) + u_2(0) f'(\varphi(0))| \\
\leq C \left(\frac{|u_1(0)|}{(1 - |\varphi(0)|^2)^{\alpha}} + \frac{|u_2(0)|}{(1 - |\varphi(0)|^2)^{\alpha+1}} \right) \|f\|_{\mathcal{F}_a},
\]
\[
\|T_{u_1,u_2,\varphi} f'\|_\mathcal{F}_a = |u_1'(0) f(\varphi(0)) + (u_1(0)\varphi'(0) + u_2'(0)\varphi'(0)) f'(\varphi(0)) + u_2(0)\varphi'(0) f''(\varphi(0))| \\
\leq C \left(\frac{|u_1'(0)|}{(1 - |\varphi(0)|^2)^{\alpha}} + \frac{|u_1(0)|\varphi'(0) + u_2'(0)|}{(1 - |\varphi(0)|^2)^{\alpha+1}} + \frac{|u_2(0)|\varphi'(0)|}{(1 - |\varphi(0)|^2)^{\alpha+2}} \right) \|f\|_{\mathcal{F}_a},
\]
\[

\nu(z) \left(T_{u_1,u_2,\varphi} f''(z) \right) = \nu(z) \left((u_1(z)f(\varphi(z)) + u_2(z)f'(\varphi(z)))'' \right) \\
\leq \nu(z) |u_1''(z)f(\varphi(z)) + \nu(z)|2u_1'(z)f'(\varphi(z)) + u_1(z)\varphi''(z) + u_2'(z)f''(\varphi(z))| \\
+ \nu(z)|u_2(z)f'(\varphi(z)) + u_2'(z)f''(\varphi(z))| \|f''(\varphi(z))\| \\
+ \nu(z)|u_1(z)f''(\varphi(z)) + u_2(z)\varphi''(z) + u_2''(z)| \|f''(\varphi(z))\| \\
\leq C \nu(z) \left[u_1''(z)\|f(\varphi(z))\| + \nu(z)2u_1'(z)|f'(\varphi(z)) + u_1(z)\varphi''(z) + u_2'(z)|f''(\varphi(z))| \\
+ \nu(z)|u_2(z)|\varphi'(z)|^2 + 2u_2'(z)f''(\varphi(z)) + u_2(z)\varphi''(z) \|f''(\varphi(z))\| \\
+ \nu(z)|u_1(z)f''(\varphi(z)) + u_2(z)\varphi''(z) + u_2''(z)| \|f''(\varphi(z))\| \right],
\]

Then, put \(f(z) = z \), and we apply (20) to have
\[
\sup_{z \in \mathbb{D}} \nu(z)|2u_1'(z)f'(\varphi(z)) + u_1(z)\varphi''(z) + u_2'(z)| < \infty. \tag{21}
\]

Next, taking \(f(z) = (z^2)/2 \), (20) and (21) yield that
\[
\nu(z)|u_1(z)|\varphi'(z)|^2 + 2u_2'(z)f'(\varphi(z)) + u_2(z)\varphi''(z) \|f''(\varphi(z))\| \\
\leq \|T_{u_1,u_2,\varphi} f\|_{\mathcal{F}_a} < \infty.
\]

Furthermore, putting \(f(z) = (z^3)/6 \), we deduce that
\[
\sup_{z \in \mathbb{D}} \nu(z)|u_1''(z)f(\varphi(z)) + (2u_1'(z)f'(\varphi(z)) + u_1(z)\varphi''(z) + u_2'(z)f''(\varphi(z))| \\
\leq \|T_{u_1,u_2,\varphi} f\|_{\mathcal{F}_a} < \infty.
\]

Applying (14)--(17), it follows from the last above inequality that \(T_{u_1,u_2,\varphi} \mathcal{F}_a \rightarrow \mathcal{F}_a \) is bounded.

Conversely, assume that \(T_{u_1,u_2,\varphi} \mathcal{F}_a \rightarrow \mathcal{F}_a \) is bounded. Then, there exists a constant \(C \) such that
\[
\|T_{u_1,u_2,\varphi} f\|_{\mathcal{F}_a} \leq C \|f\|_{\mathcal{F}_a}, \tag{19}
\]
for all \(f \in \mathcal{F}_a \). It is elementary to deduce that \(z^n \in \mathcal{F}_a \), for \(n \in \mathbb{N}_0 \). First, take the function \(f(z) = 1 \), we obtain
\[
\sup_{z \in \mathbb{D}} \nu(z)|u_1''(z)| < \infty. \tag{20}
\]

\[
\sup_{z \in \mathbb{D}} \nu(z)|u_1''(z)f(\varphi(z)) + (2u_1'(z)f'(\varphi(z)) + u_1(z)\varphi''(z) + u_2'(z)f''(\varphi(z))| \\
+ (u_1(z)f'(\varphi(z))^2 + 2u_1'(z)f'(\varphi(z)) + u_2'(z)f''(\varphi(z)) + u_2(z)\varphi''(z))f''(\varphi(z))| \\
= \nu(z)|u_1''(z)f(\varphi(z)) + (2u_1'(z)f'(\varphi(z)) + u_1(z)\varphi''(z) + u_2'(z)f''(\varphi(z)) + u_2(z)\varphi''(z))| \\
+ (u_1(z)f'(\varphi(z))^2 + 2u_2'(z)f'(\varphi(z)) + u_2(z)\varphi''(z))\varphi(\varphi(z)) + u_2(z)(\varphi'(z))^2. \tag{23}
\]
Applying (20)–(22) gives that
\[\sup_{x \in \mathbf{D}} \nu(z)|u_z(z)(\varphi'(z))| < \infty. \]
(24)

Fix \(w \in \mathbf{D} \) and \(a, b, c \in \mathbb{R} \). Consider the following test function:
\[f_w(z) = \frac{a(1 - |w|^2)^3}{(1 - \overline{w}z)^{a+1}} - \frac{(1 - |w|^2)^2}{(1 - \overline{w}z)^{a+2}} + \frac{b(1 - |w|^2)^3}{(1 - \overline{w}z)^{a+4}} + \frac{c(1 - |w|^2)^4}{(1 - \overline{w}z)^{a+6}} \]
(25)

Hence,
\[\frac{\nu(z)\left|u_z'(z)\right|}{\left(1 - |\varphi(z)|^2\right)^a} < \infty, \]
(29)

namely, (14) holds.

Fix \(w \in \mathbf{D} \) and \(d, e, h \in \mathbb{R} \). Put
\[g_w(z) = \frac{(1 - |w|^2)^2}{(1 - \overline{w}z)^{a+1}} + \frac{d(1 - |w|^2)^2}{(1 - \overline{w}z)^{a+2}} + \frac{e(1 - |w|^2)^3}{(1 - \overline{w}z)^{a+4}} + \frac{h(1 - |w|^2)^4}{(1 - \overline{w}z)^{a+6}} \]
(30)

It follows from Lemma 3 that \(g_w \in \mathcal{F}_a \) and \(\sup_{w \in \mathbf{D}} \|g_w\|_{\mathcal{F}_a} \leq C \). In addition,
\(g'_w(z) = -\frac{(\alpha + 1)w(1 - |w|^2)}{(1 - wz)^{\alpha+2}} + \frac{(\alpha + 2)d \bar{w}(1 - |w|^2)^2}{(1 - wz)^{\alpha+3}} + \frac{(\alpha + 3)\bar{w}(1 - |w|^2)^3}{(1 - wz)^{\alpha+4}} + \frac{(\alpha + 4)h \bar{w}(1 - |w|^2)^4}{(1 - wz)^{\alpha+5}} \)
\(g''_w(z) = -\frac{(\alpha + 1)(\alpha + 2)w^2(1 - |w|^2)}{(1 - wz)^{\alpha+3}} + \frac{(\alpha + 2)(\alpha + 3)d \bar{w}^2(1 - |w|^2)^2}{(1 - wz)^{\alpha+4}} + \frac{(\alpha + 3)(\alpha + 4)d \bar{w}^3(1 - |w|^2)^3}{(1 - wz)^{\alpha+5}} + \frac{(\alpha + 4)(\alpha + 5)d \bar{w}^4(1 - |w|^2)^4}{(1 - wz)^{\alpha+6}} \)
\(g'''_w(z) = -\frac{(\alpha + 1)(\alpha + 2)(\alpha + 3)w^3(1 - |w|^2)}{(1 - wz)^{\alpha+4}} + \frac{(\alpha + 2)(\alpha + 3)(\alpha + 4)d \bar{w}^3(1 - |w|^2)^2}{(1 - wz)^{\alpha+5}} + \frac{(\alpha + 3)(\alpha + 4)(\alpha + 5)d \bar{w}^4(1 - |w|^2)^3}{(1 - wz)^{\alpha+6}} + \frac{(\alpha + 4)(\alpha + 5)(\alpha + 6)d \bar{w}^5(1 - |w|^2)^4}{(1 - wz)^{\alpha+7}} \).

Thus, we have
\[g_w(w) = g'_w(w) = g''_w(w) = 0, \]
\[g''_w(w) = \frac{-(\alpha + 1) + d(\alpha + 2) + e(\alpha + 3) + h(\alpha + 4)}{(1 - |w|^2)^{\alpha+1}}. \]

Put \(d = ((3\alpha + 7)/(\alpha + 3), e = -((\alpha + 2)(3\alpha + 11))/(\alpha + 3) \) \((\alpha + 4)) \), and \(h = ((\alpha + 2)/\alpha + 4) \) in (30) such that
\[C \geq \left\| T_{u_1, u_2, \varphi} g_{\varphi(w)} \right\|_{T_w} \]
\[\geq \nu(w) \left| \left(T_{u_1, u_2, \varphi} g_{\varphi(w)} \right)'(w) \right| \]
\[= \nu(w) \left| (2u'_1(z)\varphi'(w) + u_1(w)\varphi''(w) + u_2''(w))g_{\varphi(w)}'(\varphi(w)) \right| \]
\[= -(\alpha + 1) + d(\alpha + 2) + e(\alpha + 3) + h(\alpha + 4) \cdot \frac{\nu(w)2u'_1(w)\varphi'(w) + u_1(w)\varphi''(w) + u_2''(w)\varphi(w)}{(1 - |\varphi(w)|^2)^{\alpha+1}}. \]
Hence,
\[\sup_{z \in B} \frac{\nu(z)[2u'_1(z)\varphi'(z) + u_1(z)\varphi''(z) + u_2''(z)]|\varphi(z)|}{(1 - |\varphi(z)|^2)^{\alpha+1}} < \infty, \]
which implies that
\[\sup_{|\varphi(z)|} \frac{\nu(z)[2u'_1(z)\varphi'(z) + u_1(z)\varphi''(z) + u_2''(z)]}{(1 - |\varphi(z)|^2)^{\alpha+1}} < \infty. \]
Applying (21) yields that

\[
\sup_{|\varphi(z)|} \frac{1}{2} \nu(z) \left| 2u'_1(z)\varphi'(z) + u_1(z)\varphi''(z) + u''_2(z) \right| \leq C \sup_{|\varphi(z)|} \frac{1}{2} \nu(z) \left| 2u'_1(z)\varphi'(z) + u_1(z)\varphi''(z) + u''_2(z) \right| < \infty. \tag{36}
\]

Combining (20) and (36), we can obtain

\[
\sup_{z \in \mathcal{D}} \nu(z) \left| 2u'_1(z)\varphi'(z) + u_1(z)\varphi''(z) + u''_2(z) \right| < \infty, \tag{37}
\]

which means that (15) holds.

Fix \(w \in \mathcal{D} \) and \(p, q, i \in \mathbb{R} \). Consider the following test function:

\[
\begin{align*}
\hat{h}^1_w(z) &= \frac{(\alpha + 1)\rho \overline{w}(1-|w|^2)}{(1-\overline{w}z)^{a+2}} + \frac{(\alpha + 2)i \overline{w}(1-|w|^2)^2}{(1-\overline{w}z)^{a+3}} \\
&\quad - \frac{(\alpha + 3)\overline{w}(1-|w|^2)^3}{(1-\overline{w}z)^{a+4}} + \frac{(\alpha + 4)q \overline{w}(1-|w|^2)^4}{(1-\overline{w}z)^{a+5}}, \\
\hat{h}^2_w(z) &= \frac{(\alpha + 1)(\alpha + 2)\rho \overline{w}^2(1-|w|^2)}{(1-\overline{w}z)^{a+4}} + \frac{(\alpha + 2)(\alpha + 3)i \overline{w}^2(1-|w|^2)^2}{(1-\overline{w}z)^{a+5}} \\
&\quad - \frac{(\alpha + 3)(\alpha + 4)\overline{w}^2(1-|w|^2)^3}{(1-\overline{w}z)^{a+6}} + \frac{(\alpha + 4)(\alpha + 5)q \overline{w}^2(1-|w|^2)^4}{(1-\overline{w}z)^{a+7}}, \\
\hat{h}^3_w(z) &= \frac{(\alpha + 1)(\alpha + 2)(\alpha + 3)\rho \overline{w}^3(1-|w|^2)}{(1-\overline{w}z)^{a+4}} + \frac{(\alpha + 2)(\alpha + 3)(\alpha + 4)i \overline{w}^3(1-|w|^2)^2}{(1-\overline{w}z)^{a+5}} \\
&\quad - \frac{(\alpha + 3)(\alpha + 4)(\alpha + 5)\overline{w}^3(1-|w|^2)^3}{(1-\overline{w}z)^{a+6}} + \frac{(\alpha + 4)(\alpha + 5)(\alpha + 6)q \overline{w}^3(1-|w|^2)^4}{(1-\overline{w}z)^{a+7}}.
\end{align*}
\]

Put \(p = (-\alpha - 4)/(3\alpha + 10), q = (3\alpha + 11)/(3\alpha + 10) \), and \(q = (\alpha + 3)/(3\alpha + 10) \) in (38) such that

\[
\begin{align*}
h_w^1(w) &= h_w^2(w) = h_w^3(w) = 0, \\
h_w^*(w) &= (p(\alpha + 1)(\alpha + 2) + i(\alpha + 2)(\alpha + 3) + q(\alpha + 4)(\alpha + 5) - (\alpha + 3)(\alpha + 4)) \frac{(\overline{w})^2}{(1-|w|^2)^5}.
\end{align*}
\]

Lemma 3 yields that \(h_w \in \mathcal{F}_a \) and \(\sup_{z \in \mathcal{D}} \| h_w \|_{\mathcal{F}_a} \leq C \). Furthermore, we obtain that
Thus, we have

\[
C \geq \| T_{u_1, u_2} \varphi \|_{\mathcal{F}_a} \\
= \nu(u_1(u_1) (\varphi'(u)) + 2u_2(z)\varphi + u_2(z)\varphi''(u_1(\varphi(w)))\cdot |\varphi(w)|^2 \\
= (\alpha + 1)(\alpha + 2) + i(\alpha + 2)(\alpha + 3) + q(\alpha + 4)(\alpha + 5) - (\alpha + 3)(\alpha + 4)
\]

Together (43) with (44), we can obtain

\[
\sup_{z \in D} \frac{\nu(z)u_1(z)(\varphi'(z))^2 + 2u_2(z)\varphi'(z) + u_2(z)\varphi''(z)}{(1 - |\varphi(z)|^2)^{\alpha+2}} < \infty.
\]

Fix \(w \in \mathbb{D} \) and \(l, m, n \in \mathbb{R} \). Consider the following test function:

\[
J_w(z) = \frac{m(1 - |w|)^3}{(1 - |w|^2)^{\alpha+1}} + \frac{\nu(1 - |w|^2)^2}{(1 - |w|^2)^{\alpha+2}} \\
+ \frac{n(1 - |w|)^4}{(1 - |w|^2)^{\alpha+3}} - \frac{(1 - |w|^2)^4}{(1 - |w|^2)^{\alpha+4}}.
\]
\[J''_w(z) = \frac{(\alpha + 1) (\alpha + 2) n \bar{w} (1 - |w|^2)^3}{(1 - \bar{w}z)^{r+4}} + \frac{\alpha + 2) (\alpha + 3) \bar{w} (1 - |w|^2)^2}{(1 - \bar{w}z)^{r+5}} \]
\[+ \frac{(\alpha + 3) (\alpha + 4) n \bar{w} (1 - |w|^2)^3}{(1 - \bar{w}z)^{r+5}} - \frac{\alpha + 4) (\alpha + 5) \bar{w} (1 - |w|^2)^4}{(1 - \bar{w}z)^{r+6}}, \quad (47) \]

Thus, we have

\[C \geq \left\| T_{\alpha, \beta, \gamma} \varphi (w) \right\|_{F}, \]
\[\geq \gamma (w) \left| T_{\alpha, \beta, \gamma} \varphi (w) \right| n (w) \]
\[= (l (\alpha + 2) (\alpha + 3) (\alpha + 4) + m (\alpha + 3) (\alpha + 4) (\alpha + 5) + n (\alpha + 1) (\alpha + 2) (\alpha + 3) - (\alpha + 4) (\alpha + 5) (\alpha + 6)) \cdot \frac{\bar{w}^3}{(1 - |w|^2)^{r+3}}, \quad (49) \]

\[\sup_{z \in \mathcal{D}} \frac{\gamma (z) \left| u_2 (z) (\varphi' (z))^2 \right| |\varphi (z)|^3}{(1 - |\varphi (z)|^2)^{r+3}} < \infty, \quad (50) \]

which implies that

\[\sup_{|\varphi (z)|} \frac{\gamma (z) \left| u_2 (z) (\varphi' (z))^2 \right| |\varphi (z)|^3}{(1 - |\varphi (z)|^2)^{r+3}} \]
\[< \infty. \]
Applying (24) yields that
\[\sup_{|\varphi(z)| \leq 1/2} \frac{\nu(z)|u_2(z)(\varphi'(z))^2|}{(1 - |\varphi(z)|^2)^{\alpha+3}} \leq C \sup_{|\varphi(z)| \leq 1/2} \nu(z)|u_2(z)(\varphi'(z))^2| < \infty. \] (52)

Together (51) with (52), we can obtain
\[\sup_{z \in D} \frac{\nu(z)|u_2(z)(\varphi'(z))^2|}{(1 - |\varphi(z)|^2)^{\alpha+3}} < \infty, \] (53)

which means that (17) holds. The proof is complete. \(\Box \)

Theorem 2. Let \(\alpha > 0 \). Suppose \(u_1, u_2 \in H(D), \varphi \in \mathcal{K} \). Then, \(T_{u_1, u_2, \varphi} : \mathcal{F} \rightarrow \mathcal{L}_v \) is compact if and only if \(T_{u_1, u_2, \varphi} : \mathcal{F} \rightarrow \mathcal{L}_v \) is bounded, and the following conditions are satisfied:

Proof. Assume that \(T_{u_1, u_2, \varphi} : \mathcal{F} \rightarrow \mathcal{L}_v \) is bounded and (54)–(57) hold. Due to Lemma 1, in order to prove that \(T_{u_1, u_2, \varphi} : \mathcal{F} \rightarrow \mathcal{L}_v \) is compact, it suffices to show that, for any bounded sequence \(\{f_k\} \) in \(\mathcal{F} \) with \(f_k \rightarrow 0 \) uniformly on compact subsets of \(D \), \(\|T_{u_1, u_2, \varphi} f_k\|_{\mathcal{F}} \rightarrow 0 \) as \(k \rightarrow \infty \).

We may assume that \(\|f_k\|_{\mathcal{F}} \leq 1 \), for all \(k \in \mathbb{N} \). By (54)–(57), we have that, for any \(\epsilon > 0 \), there exists \(r \in (0, 1) \) such that

\[\frac{\nu(z)|u_1''(z)|}{(1 - |\varphi(z)|^2)^{\alpha}} < \epsilon, \] (58)

\[\frac{\nu(z)|2u_1'(z)\varphi'(z) + u_1(z)\varphi''(z) + u_1'(z)|}{(1 - |\varphi(z)|^2)^{\alpha+1}} < \epsilon, \] (59)

\[\frac{\nu(z)|u_1(z)(\varphi'(z))^2 + 2u_1'(z)\varphi'(z) + u_2(z)\varphi''(z)|}{(1 - |\varphi(z)|^2)^{\alpha+2}} < \epsilon, \] (60)

\[\frac{\nu(z)|u_2(z)(\varphi'(z))^2|}{(1 - |\varphi(z)|^2)^{\alpha+3}} < \epsilon, \] (61)

for \(r < |\varphi(z)| < 1 \). From the boundedness of the operator \(T_{u_1, u_2, \varphi} : \mathcal{F} \rightarrow \mathcal{L}_v \) and the proof of Theorem 1, we obtain that (20)–(24) hold. Since \(f_k \rightarrow 0 \) uniformly on compact subsets of \(D \), Cauchy estimates show that \(f_k^{(n)} \) converges to 0 uniformly on compact subsets of \(D \). Then, there exists \(K_0 \in \mathbb{N} \), for \(k > K_0 \), such that
From (58)–(61) and Lemma 4, we have

\[
\sup_{|\varphi(z)| \leq r} \nu(z) \left| \left(T_{u_1,u_2,\varphi} f_k \right)'(z) \right| \leq \sup_{|\varphi(z)| \leq r} \nu(z) \left| u''(z) \right| \left| f_k(\varphi(z)) \right| \\
+ \sup_{|\varphi(z)| \leq r} \nu(z) \left| 2u'_1(z)\varphi'(z) + u_1(z)\varphi''(z) + u'_2(z) \right| \left| f'_k(\varphi(z)) \right| \\
+ \sup_{|\varphi(z)| \leq r} \nu(z) \left| u_1(z) \varphi'(z)^2 + 2u'_2(z)\varphi'(z) + u_2(z)\varphi''(z) \right| \left| f''_k(\varphi(z)) \right| \\
+ \sup_{|\varphi(z)| \leq r} \nu(z) \left| u_1(z) \varphi'(z)^2 \right| \left| f^{(3)}_k(\varphi(z)) \right| \\
\leq \epsilon \sup_{|\varphi(z)| \leq r} \nu(z) \left| u''(z) \right| \\
+ \epsilon \sup_{|\varphi(z)| \leq r} \nu(z) \left| 2u'_1(z)\varphi'(z) + u_1(z)\varphi''(z) + u'_2(z) \right| \\
+ \epsilon \sup_{|\varphi(z)| \leq r} \nu(z) \left| u_1(z) \varphi'(z)^2 + 2u'_2(z)\varphi'(z) + u_2(z)\varphi''(z) \right| \\
+ \epsilon \sup_{|\varphi(z)| \leq r} \nu(z) \left| u_1(z) \varphi'(z)^2 \right| \leq C\epsilon.
\]

\[
\| T_{u_1,u_2,\varphi} f_k \|_{F_r} = \left| T_{u_1,u_2,\varphi} f_k(0) \right| \\
+ \left| \left(T_{u_1,u_2,\varphi} f_k \right)'(0) \right| \\
+ \sup_{\varphi(z) \in D} \nu(z) \left| \left(T_{u_1,u_2,\varphi} f_k \right)''(z) \right| \leq \nu(0) \left| u_1(0) f_k(\varphi(0)) + u_2(0) f'_k(\varphi(0)) \right| \\
+ \nu(0) \left| u'_1(0) f_k(\varphi(0)) + (u_1(0)\varphi'(0) + u'_2(0)\varphi'(0)) f'_k(\varphi(0)) + u_2(0)\varphi'(0) f''_k(\varphi(0)) \right| \\
+ \sup_{\varphi(z) \in D} \nu(z) \left| u''(z) \right| \left| f_k(\varphi(z)) \right| \\
+ \sup_{\varphi(z) \in D} \nu(z) \left| 2u'_1(z)\varphi'(z) + u_1(z)\varphi''(z) + u'_2(z) \right| \left| f'_k(\varphi(z)) \right| \\
+ \sup_{\varphi(z) \in D} \nu(z) \left| u_1(z) \varphi'(z)^2 + 2u'_2(z)\varphi'(z) + u_2(z)\varphi''(z) \right| \left| f''_k(\varphi(z)) \right| \\
+ \sup_{\varphi(z) \in D} \nu(z) \left| u_1(z) \varphi'(z)^2 \right| \left| f^{(3)}_k(\varphi(z)) \right| \\
\leq C\epsilon + \sup_{\epsilon < 1} \nu(z) \left| u''(z) \right| \left| f_k(\varphi(z)) \right| \\
+ \sup_{\epsilon < 1} \nu(z) \left| 2u'_1(z)\varphi'(z) + u_1(z)\varphi''(z) + u'_2(z) \right| \left| f'_k(\varphi(z)) \right| \\
+ \sup_{\epsilon < 1} \nu(z) \left| u_1(z) \varphi'(z)^2 + 2u'_2(z)\varphi'(z) + u_2(z)\varphi''(z) \right| \left| f''_k(\varphi(z)) \right| \\
+ \sup_{\epsilon < 1} \nu(z) \left| u_1(z) \varphi'(z)^2 \right| \left| f^{(3)}_k(\varphi(z)) \right|
\]

\[
\leq C\epsilon + \sup_{\epsilon < 1} \nu(z) \left| u''(z) \right| \left| f_k(\varphi(z)) \right| \\
+ \frac{\nu(z) \left| u''(z) \right| \left| f'_k(\varphi(z)) \right|}{\left(1 - |\varphi(z)|^2 \right)^{2/3}} + \frac{\nu(z) \left| 2u'_1(z)\varphi'(z) + u_1(z)\varphi''(z) + u'_2(z) \right| \left| f'_k(\varphi(z)) \right|}{\left(1 - |\varphi(z)|^2 \right)^{2/3}} \\
+ \frac{\nu(z) \left| u_1(z) \varphi'(z)^2 + 2u'_2(z)\varphi'(z) + u_2(z)\varphi''(z) \right| \left| f''_k(\varphi(z)) \right|}{\left(1 - |\varphi(z)|^2 \right)^{3/3}} + \frac{\nu(z) \left| u_1(z) \varphi'(z)^2 \right| \left| f^{(3)}_k(\varphi(z)) \right|}{\left(1 - |\varphi(z)|^2 \right)^{3/3}} \leq C\epsilon,
\]
which implies that \(T_{u_{1},u_{2},q}: \mathcal{F}_{a} \rightarrow \mathcal{L}_{y} \) is compact.

Conversely, it is clear that the compactness of \(T_{u_{1},u_{2},q}: \mathcal{F}_{a} \rightarrow \mathcal{L}_{y} \) implies that the boundedness of \(T_{u_{1},u_{2},q}: \mathcal{F}_{a} \rightarrow \mathcal{L}_{y} \). If \(\|p\|_{\infty} < 1 \), it is clear that (54)–(57) is vacuous and obviously hold. Hence, assume that \(\|p\|_{\infty} = 1 \). Let \(\{z_{k}\} \) be a sequence in \(D \) such that \(|\phi(z_{k})| \rightarrow 1 \) as \(k \rightarrow \infty \). Take the test functions

\[
f_{k}(z) = f_{\phi}(z_{k})(z),
\]

where \(f_{w} \) is defined in (25). From the proof of Theorem 1, we have that \(\sup_{k \in \mathbb{N}}\|f_{k}\|_{\mathcal{F}_{a}} \leq C \) and

\[
f_{k}(\phi(z_{k})) = \frac{a + b + c - 1}{(1 - |\phi(z_{k})|^{2})^{\beta}},
\]

(65)

\[
f_{k}(\phi(z_{k})) = f_{k}(\phi(z_{k})) = f_{k}^{(1)}(\phi(z_{k})) = 0.
\]

It is obvious that \(f_{k} \) converges to 0 uniformly on compact subsets of \(D \). From Lemma 1 and the compactness of \(T_{u_{1},u_{2},q}: \mathcal{F}_{a} \rightarrow \mathcal{L}_{y} \), we have

\[
(a + b + c - 1)v(z_{k})|u''(z_{k})|\leq\|T_{u_{1},u_{2},q}f_{k}\|_{\mathcal{L}_{y}} \rightarrow 0,
\]

(66)

as \(k \rightarrow \infty \), which implies that (54) holds.

Take the test functions:

\[
g_{k}(z) = g_{\phi}(z_{k})(z),
\]

(67)

where \(g_{w} \) is defined in (30). From the proof of Theorem 1, we have that \(\sup_{k \in \mathbb{N}}\|g_{k}\|_{\mathcal{F}_{a}} \leq C \) and

\[
g_{k}(\phi(z_{k})) = g_{k}^{(1)}(\phi(z_{k})) = g_{k}^{(2)}(\phi(z_{k})) = 0,
\]

\[
g_{k}^{(1)}(\phi(z_{k})) = \frac{(a + b + c + 1) + d(a + 2) + c(a + 3) + h(a + 4)|\phi(z_{k})|}{(1 - |\phi(z_{k})|^{2})^{\alpha+1}}.
\]

(68)

It is obvious that \(g_{k} \) converges to 0 uniformly on compact subsets of \(D \). From Lemma 1 and the compactness of \(T_{u_{1},u_{2},q}: \mathcal{F}_{a} \rightarrow \mathcal{L}_{y} \), we have

\[
-(a + 1) + d(a + 2) + e(a + 3) + h(a + 4)
\]

\[
\frac{|v(z_{k})|2u'(z_{k})\phi'(z_{k}) + u_{1}(z_{k})\phi''(z_{k}) + u_{2}(z_{k})\phi(z_{k})|}{(1 - |\phi(z_{k})|^{2})^{\alpha+1}}
\]

\[
\leq\|T_{u_{1},u_{2},q}g_{k}\|_{\mathcal{L}_{y}} \rightarrow 0,
\]

(69)

as \(k \rightarrow \infty \). Thus, for \(|\phi(z_{k})| \rightarrow 1 \), we have

\[
\lim_{k \rightarrow \infty} \frac{|v(z_{k})|2u'(z_{k})\phi'(z_{k}) + u_{1}(z_{k})\phi''(z_{k}) + u_{2}(z_{k})\phi(z_{k})|}{(1 - |\phi(z_{k})|^{2})^{\alpha+1}} = 0,
\]

(70)

which implies (55) holds.

Analogously, choosing the test functions \(h_{k}(z) = h_{\phi}(z_{k})(z) \) and \(f_{k}(z) = f_{\phi}(z_{k})(z) \) which is defined in (38) and (46), same to the above approach, we can deduce (56) and (57). Consequently, the proof is complete.

Remark 1. Due to Theorems 1 and 2, we may easily obtain the characterizations for the boundedness and compactness of all six product-type operators:

\[
M_{u}DC_{\phi},
C_{\phi}M_{u}D,
M_{u}C_{\phi}D,
DM_{u}C_{\phi},
C_{\phi}DM_{u},
DC_{\phi}M_{u},
\]

(71)

from the space of fractional Cauchy transforms to the Zygmund-type spaces. We leave the details to the readers interested in this research area.

Data Availability

No data were used to support the findings of the study.

Conflicts of Interest

The authors declare that there are no conflicts of interest regarding the publication of this paper.

Acknowledgments

The research was supported by China Postdoctoral Science Foundation (no. 2020M672399).

References

[1] J. Cima and T. MacGregor, *Cauchy Transforms of Measures and Univalent Functions*, Springer, Berlin, Germany, 1987, pp. 78–88, Lecture Notes in Mathematics.

[2] J. Cima and A. Matheson, “Cauchy transforms and composition operators,” *Illinois Journal of Mathematics*, vol. 4, pp. 58–69, 1998.

[3] J. Cima, A. Matheson, and W. Ross, “The Cauchy transform,” *Mathematical Surveys and Monographs*, American Mathematical Society, Providence, RI, USA, 2006.

[4] X. Guo and M. Wang, “Difference of weighted composition operators on the space of Cauchy integral transforms,” *Taiwanese Journal of Mathematics*, vol. 22, pp. 1435–1450, 2018.

[5] R. Hibschweiler, “Weighted composition operators between the fractional Cauchy spaces and the bloch-type spaces,” *Journal of Complex Analysis*, vol. 2017, Article ID 9486907, 5 pages, 2017.

[6] R. Hibschweiler and T. MacGregor, “Closure properties of families of Cauchy-Stieltjes transforms,” *Proceedings of the American Mathematical Society*, vol. 105, pp. 615–621, 1989.

[7] R. Hibschweiler and T. MacGregor, “Multipliers of families of Cauchy-Stieltjes transforms,” *Transactions of the American Mathematical Society*, vol. 331, pp. 377–394, 1992.
[8] R. Hibschweiler and T. MacGregor, *Fractional Cauchy Transforms*, Chapman and Hall/CRC, Boca Raton, FL, USA, 2006.

[9] A. Sharma and R. Krishan, “Difference of composition operators from the space of Cauchy integral transforms to the Dirichlet space,” *Complex Analysis and Operator Theory*, vol. 10, pp. 141–152, 2016.

[10] A. Sharma, R. Krishan, and E. Subhadarsini, "Difference of composition operators from the space of Cauchy integral transforms to Bloch-type spaces," *Integral Transforms and Special Functions*, vol. 28, pp. 145–155, 2017.

[11] A. K. Sharma and A. Sharma, “Integration operators from Cauchy integral transforms to weighted Dirichlet spaces,” *New Zealand Journal of Mathematics*, vol. 44, pp. 93–101, 2014.

[12] M. Wang and X. Guo, “Difference of differentiation composition operators on the fractional Cauchy transforms spaces,” *Numerical Functional Analysis and Optimization*, vol. 39, pp. 1291–1315, 2018.

[13] C. Cowen and B. MacCluer, *Composition Operators on Spaces of Analytic Functions (Studies in Advanced Mathematics)*, CRC Press, Boca Raton, FL, USA, 1995.

[14] J. Shapiro, *Composition Operators and Classical Function Theory*, Springer, Berlin, Germany, 1993.

[15] K. Zhu, *Operator Theory in Function Spaces*, American Mathematical Society, Providence, RI, USA, 2nd edition, 2007.

[16] S. Stević, A. K. Sharma, and A. Bhat, “Products of multiplication composition and differentiation operators on weighted Bergman spaces,” *Applied Mathematics and Computation*, vol. 217, pp. 8115–8125, 2011.

[17] S. Li and S. Stević, “Generalized composition operators on Zygmund spaces and Bloch type spaces,” *Journal of Mathematical Analysis and Applications*, vol. 338, pp. 1282–1295, 2008.

[18] S. Li and S. Stević, “Products of integral-type operators and composition operators between block-type spaces,” *Journal of Mathematical Analysis and Applications*, vol. 349, pp. 596–610, 2009.

[19] S. Wang, M. Wang, and X. Guo, "Products of composition, multiplication and iterated differentiation operators between Banach spaces of holomorphic functions," *Taiwanese Journal of Mathematics*, vol. 24, pp. 355–376, 2020.

[20] R. Hibschweiler and N. Portnoy, "Composition followed by differentiation between Bergman and Hardy spaces," *Rocky Mountain Journal of Mathematics*, vol. 35, pp. 843–855, 2005.

[21] Y. Liu and Y. Yu, "Composition followed by differentiation between H^α and Zygmund spaces," *Complex Analysis and Operator Theory*, vol. 6, pp. 121–137, 2012.

[22] S. Ohno, "Products of composition and differentiation between Hardy spaces," *Bulletin of the Australian Mathematical Society*, vol. 73, pp. 235–243, 2006.

[23] X. Zhu, "Products of differentiation, composition and multiplication from Bergman type spaces to Bers type spaces," *Integral Transforms and Special Functions*, vol. 18, pp. 223–231, 2007.

[24] F. Zhang and Y. Liu, "On a Stević-Sharma operator from Hardy spaces to Zygmund-type spaces on the unit disk," *Complex Analysis and Operator Theory*, vol. 12, pp. 81–100, 2018.

[25] Y. Liu and Y. Yu, "On a Stević-Sharma operator from Hardy spaces to the logarithmic Bloch spaces," *Journal of Inequalities and Applications*, vol. 22, p. 19, 2015.

[26] F. Zhang and Y. Liu, "On the compactness of the Stević-Sharma operator on the logarithmic Bloch spaces," *Mathematical Inequalities & Applications*, vol. 19, pp. 625–642, 2016.

[27] Y. Yu and Y. liu, "On Stević type operator from H^α space to the logarithmic Bloch spaces," *Complex Analysis and Operator Theory*, vol. 9, pp. 1759–1780, 2015.

[28] Z. Jiang, "On Stević-Sharma operator from the Zygmund space to the Bloch-Orlicz space," *Advances in Difference Equations*, vol. 228, p. 12, 2015.

[29] H. Li and Z. Guo, "On a product-type operator from Zygmund-type spaces to Bloch-Orlicz spaces," *Journal of Inequalities and Applications*, vol. 132, p. 18, 2015.

[30] R. Hibschweiler, "Composition operators on spaces of fractional Cauchy transforms," *Complex Analysis and Operator Theory*, vol. 6, pp. 897–911, 2012.

[31] X. Guo and M. Wang, "Linear combination of composition operators on Cauchy transform type spaces," *Science China Mathematics*, vol. 50, pp. 1733–1744, 2020.