A COMPARATIVE STUDY OF FATTY ACID EXTRACTION METHODS OF SESAME (Sesamum indicum L.) VARIETIES GROWN UNDER MEDITERRANEAN ENVIRONMENT

C. Kurt¹,*, H. Arioglu¹, T. Erdem², M.R. Akkaya³, A. El Sabagh⁴ and M.S. Islam⁵

¹Çukurova University Dept. of Field Crops in Adana, 01330 Balcali, Turkey
²Çukurova University Dept. of Agricultural Machinery in Adana, 01330 Balcali, Turkey
³Adana Science and Technology University, Turkey
⁴Department of Agronomy, Faculty of Agriculture, Kafrelsheikh University, Egypt
⁵Department of Agronomy, Hajee Mohammad Danesh Science and Technology University, Bangladesh

Received – September 05, 2016; Revision – September 29, 2016; Accepted – October 06, 2016
Available Online – October 07, 2016

DOI: http://dx.doi.org/10.18006/2016.4(5S).588.593

ABSTRACT

Present study was carried out to determine the effects of two oil extraction methods on the composition of oil fatty acid in sesame of some Turkish genotypes. Two oil extraction techniques viz. Cold pressing (CP) and Soxhlet extraction (SE), were compared for the fatty acid composition of 25 Turkish sesame genotype. Higher averaged sesame seed oil yield (54.7%) was obtained in the SE method than the CP method (31.1%). The oil compositions of sesame genotypes were compared and the presence of five main dominated sesame fatty acid components namely palmitic, stearic, arachidic, oleic and linoleic acid was reported. Among these five fatty acid, palmitic (9.38-10.56%) and stearic acids (4.73-5.12%) were reported predominant saturated fatty acids while arachidic acid was reported in minimum concentration in sesame oil ranging of 0.52 to 0.59 %. Oleic and linoleic acids are the major fatty acids of sesame oil and are reported in large amounts in the oils of all genotypes. The percentage of oleic acid ranged from 37.15 to 41.67, while this percentage was reported between 42.22 to 45.54 for linoleic acid. From the results of this study, it can be concluded that the fatty acid profile of the sesame oil was not significantly influenced by oil extraction method.

* Corresponding author
E-mail: cemalkurt71@yahoo.com (C. Kurt)

Peer review under responsibility of Journal of Experimental Biology and Agricultural Sciences.

All the article published by Journal of Experimental Biology and Agricultural Sciences is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License Based on a work at www.jebas.org.
1 Introduction

Sesame (*Sesamum indicum* L.), one of the oldest and very important oil seed crops known, is widely grown in tropical and subtropical areas of the World. Sesame is under cultivation for about 6000 years (Namiki, 1995). Sesame is an excellent source of oil (50%) and protein (20%) and is widely used as vegetable oil. In sesame, oleic and linoleic acids are the predominant fatty acids and constitutes more than 80% of the total oil. The high levels of monounsaturated and polyunsaturated fatty acids (MUPA & PUFA) increase the quality of the oil for human consumption. Moreover, high levels of linoleic acid, MUPA & PUFA reduce blood cholesterol and play an important role in preventing atherosclerosis (Ghafoorunissa, 1994). Oils with a high content of unsaturated fatty acids are generally more susceptible to oxidation, undergoing rapid degradation and polymerization by free radical mechanisms (Guillen & Goicoechea, 2008). But, sesame oil has a privilege characteristic such as the presence of the natural antioxidants sesamol, sesamolin, and gamma-tocopherol, which gives it high oxidative stability (Corso et al., 2010).

Martin & Leonard (1964) reported that sesame is mostly used for edible purposes such as oil and confectionery. It is also used for various other purposes i.e. manufacture of margarine, soap, paint, perfumes, cosmetics, pharmaceutical products, paints and insecticides and cookies (AlamSarkar et al., 2007). Further, Weiss (2000) suggested that sesame seed contains essential amino and fatty acids specially linoleic acid. It is a good source of vitamins such as vitamin E and minerals such as calcium and phosphorous and the seed cake is also an important nutritious livestock feed. Sesame seed also contain a group of compounds called lignans which have many health promoting effects (Pathak et al., 2014).

At industrial level, oil extraction is mainly carried out by two methods, viz. cold pressing and solvent extraction (Soxhlet method). Soxhlet method involving the use of n-hexane or petroleum ether as extraction solvent, although gives higher oil yield but higher temperature employed in this method may cause some undesirable effects on the quality of oil (Nadeem et al., 2015). Although, cold pressing method of oil extraction gave lower oil yield but mild operational temperature conditions maintain the safety of product quality (Bavec et al., 2007). Cold pressed oils generally exceed refined oils in their nutritional value.

It maintain natural beneficial ingredients of sesame oil such as tocopherols, sterols, carotenoids, and phospholipids which are partially removed as a result of oil refining (Gogolewski et al., 2000; Koski et al., 2003). Considering of the growing concern and demand about the functional and nutritional properties of oils, the present work was therefore designed to evaluate and compare the fatty acid composition of oil extraction methods of some Turkish sesame genotypes.

2 Materials and Methods

The experiment was conducted at Adana province of Turkey (35°18’ E latitude, 37° 01’ N longitude, and 23 m above sea level) in 2012. Seeds of 25 sesame genotypes viz. 1) Cumhuriyet-99, 2) Tan-99, 3) Kepsut-99, 4) Baydar-2001, 5) Muganlı-57, 6) Orhangazi-99, 7) Gölmarmara, 8) Osmanlı-99, 9) Şanlıurfa-Siverek, 10) Diyarbakır-Merkez, 11) Kahramanmaraş, 12) Diyarbakır-Lice, 13) Adana-Kozan-2, 14) Manisa-Salihli, 15) Manisa- Al aşehir, 16) Adana-Ceyhan, 17) Antalya-Kumluca, 18) Adana-Yumurtalık, 19) Osmaniye-Kadirli, 20) Muğla-Fethiye, 21) Adana-Karataş, 22) Adana-Sarışın, 23) Balıkesir-Ayvalık, 24) Aydın-Merkez and 25) Adana-Merkez were sown in the second week of June, 2012. The accessions were grown in four row plots of 5 m row length with a row spacing of 70 cm and intra-row spacing of 15 cm. Thinning was carried out after 25 days of sowing to secure one plant at 15 cm. Sprinkler irrigation was established immediately after sowing and thereafter used when necessary based on soil and plant conditions. Nitrogen, phosphorus and potassium were applied at a rate of 60 kg per hectare at sowing as a complete fertilizer. Weedicings were carried out by hand weeding and no herbicides were applied during the growing seasons. All the plants were harvested in the last week of September, 2012.

2.1. Extraction of sesame seed oil

Sesame seeds were pressed by screw press with a nozzle diameter of 6.8 mm and a rotational speed of 47 rpm. Three replications were performed for each sample, and oil yield was calculated as percentage in weight basis. Sesame seeds were also extracted by soxhlet apparatus to assess the total oil yield. The data were calculated as a mean of three replications. Then the two methods were compared upon the oil yield and oil composition.

2.2. Gas chromatography (GC) Analyses

An oil sample of 500 mg was dissolved in 2 ml isooctane followed by 1.5 ml of 0.5 M methanolic NaOH. The tube was then vortexed and held in boiled water for 7 min and left to cool. Then 2 ml of BF3 (Boron trifluoride) was added, vortexed, and held in boiling water for 5 min and left to cool. After adding 5 ml NaCl the tube was vortexed. After centrifugation at 4,000 rpm for 10 min, the top layer was gathered for GC analyses (AOAC, 1984; Ozogul et al., 2011).

The fatty acid (FA) composition was analyzed by GC Clarus 500 with auto sampler (Perkin Elmer, USA) equipped with a flame ionization detector and a fused silica capillary SGE column (30 m • 0.32 mm, ID • 0.25 lm, BP20 0.25 UM, USA). The oven temperature was brought to 140°C for 5 minutes, then raised to 200°C at a rate of 4°C/min and to 220°C at a rate of 1°C/min, while the injector and the detector temperatures were set at 220°C and 280°C, respectively.
Table 1 Comparison of oil content (%) of Soxhlet extracted and Cold pressed in Turkish sesame genotypes

Genotypes	Soxhlet	Cold Press	Differences
Cumhuriyet-99	47.9	36.4	11.6
Tan-99	53.8	38.9	14.8
Kepsut-99	48.3	40.2	8.1
Baydar-2001	49	33.6	15.3
Muganlı-57	51.3	38.2	13.1
Orhangazi-99	53.3	39.3	14.0
Gölmarmara	53.4	40.3	13.2
Osmanlı-99	52.3	37.1	15.4
Şanlıurfa-Siverek	52.4	31.1	21.3
Diyarbakur-Merkez	53.1	37.5	15.6
Kahramanmaras	53	38.7	14.3
Diyarbakur-Lice	53.9	36.1	17.8
Adana-Kozan-2	52.9	42.8	10.2
Manisa-Salihli	52	34.9	17.0
Manisa-Alaşehir	52.4	39.6	12.9
Adana-Ceyhan	53.7	33.7	20.0
Antalya-Kumluca	52.8	38.4	14.3
Adana-Yumurtalı	50.9	36.5	14.4
Osmaniye-Kadırlı	52.4	40.7	11.8
Muğla-Fethiye	51.2	39.3	12.0
Adana-Karataş	52.7	41.7	11.0
Adana-Sarışan	53.6	40.6	13.0
Balikesir-Ayvalık	52.4	34.7	17.7
Aydın-Merkez	54.7	37.2	17.6
Adana- Merkez	51.4	37.5	14.0

The sample size was 2 µl, and the carrier gas was controlled at 16 psi. The split used was 1:100. FAs were identified by comparing the retention times of FAME with a standard 37 component FAME mixture (Supelco). Three replicate GC analyses were performed, and the results were expressed in GC area percentage as a mean value. Statistical analysis was performed using SPSS by One-Way ANOVA method.

3 Results and Discussion

The results about the oil components of studied sesame genotypes revealed its dependency on the oil extraction method (Table 1). The observed variability of the seed oil content, expectedly, the averaged oil content of sesame seeds from 25 sesame genotypes was higher (average 52.2%) with Soxhlet method compared with cold pressing (average 37.8%). Oil contents of sesame varieties ranged from 47.9-54.7% in Soxhlet method and from 31.1-42.8% in cold press method. In this manner, results of this study are similar to the findings of Uzun et al. (2008) who reported oil content of 103 Turkish sesame landraces ranged from 41.2-62.7%. Similar results were reported by Asghar & Majeed (2013) and Nzikou et al. (2009). It was also reported that oil content of different sesame cultivars ranged from 50 to 69.03%, with an average of 59.5% (Abdullahi et al., 1991).

In Soxhlet method, the highest and the lowest oil percentages (54.7%, 47.9%) were obtained from Aydn-Merkez and Cumhuriyet-99 genotypes, respectively. Baydar et al. (1999) observed higher average oil content (63.25%) in Turkish sesame cultivars. Variation in oil content can be attributed either to varietal factor, environmental factor, or interaction of both factors. It is reported that Moroccan sesame cultivars contained high oil percentages (over 50%) which is a desirable trait for breeding programs to improve sesame cultivars (EL Harfi et al., 2015). Water (Alpaslan et al., 2001) and temperature also influenced the oil content of sesame (Rondanini et al., 2003, EL Sabagh et al., 2015, EL Sabagh et al., 2016; Gulluoglu et al., 2016).

In the cold press extraction method, variety Adana-Kozan-2 was one with highest oil content among the studied genotypes. It was found that petroleum ether is a better extraction solvent (Lu et al., 2007), could be due to contributed increasing the solubilization of compounds with oxidant principles. The oxidative stability of the oil was high; it could be attributed to the presence of tocopherols, which inhibit lipid peroxidation, and of endogenous antioxidants such as sesamin and sesamolin, better known as lignans (Hemalatha, 2007).
In the study, the oil compositions of five main sesame varieties were compared, namely palmitic, stearic, arachidic, oleic, and linoleic acids (Table 2). The results showed significant variations in fatty acid compositions according to extraction methods (Table 3). Palmitic and oleic acids were higher in the extracted by cold press. Conversely, stearic, arachidic, and linoleic acids were higher in the extracted by soxhlet.

Table 2 Comparison of fatty acid composition (g/100g) of soxhlet extracted and cold pressed in sesame genotypes

Genotypes	Palmitic Acid	Stearic Acid	Arachidic Acid	Oleic Acid	Linoleic Acid
	Soxhlet CP	Soxhlet CP	Soxhlet CP	Soxhlet CP	Soxhlet CP
Cumhuriyet-99	9.816	10.152	4.948	4.885	0.577
Tan-99	9.633	10.076	4.945	4.847	0.584
Kepsut-99	9.399	9.603	5.128	5.073	0.591
Baydar-2001	9.660	10.160	4.816	4.692	0.523
Muğla-57	9.722	10.087	4.882	4.805	0.555
Orhangazi-99	9.554	9.746	4.755	4.703	0.551
Gölmarmara	9.493	9.849	5.044	4.949	0.586
Osmanlı-99	9.554	9.746	4.755	4.703	0.551
Sanlıurfa-Siverek	9.504	9.894	5.120	5.042	0.606
Diyarbakar-Merkez	9.379	9.726	4.978	4.843	0.584
Kahramanmaraş	9.589	9.917	4.864	4.791	0.570
Diyarbakar-Lice	9.622	9.200	4.873	4.751	0.564
Adana-Kozan-2	9.847	9.980	4.990	4.957	0.573
Manisa-Sahili	9.529	9.109	4.745	4.613	0.580
Manisa-Alasehir	9.697	10.097	4.728	4.679	0.580
Adana-Ceyhan	9.669	10.088	4.926	4.753	0.578
Antalya-Kumluca	9.713	10.096	4.839	4.876	0.560
Adana-Yumurtalik	9.548	9.964	4.822	4.754	0.531
Osmaniye-Kadıri	9.910	10.053	4.889	4.088	0.589
Muğla-Fethiye	9.670	10.258	4.976	4.858	0.597
Adana-Karataş	9.467	9.699	5.078	5.018	0.551
Adana-Sarçam	9.763	10.010	4.834	4.859	0.601
Balıkesir-Ayvalık	9.848	10.189	5.119	4.870	0.590
Aydın-Merkez	9.950	10.559	4.806	4.699	0.564
Adana-Merkez	9.648	10.021	4.800	4.696	0.567

The oil compositions of five main sesame varieties were compared in five main dominated sesame fatty acid components namely palmitic, stearic, arachidic, oleic and linoleic acid (Table 2). The content of major fatty acids showed significant variation according to extraction methods (Table 3). Indeed, palmitic and oleic acids were higher in the extracted by cold press. Conversely, stearic, arachidic and linoleic acids were higher in the extracted by soxhlet.

Table 3 Statical analysis of effect of extraction methods on fatty acid composition sesame genotypes

Characters	ANOVA					
	Sum of Squares	df	Mean Square	F	Sig	
Palmitic acid	Between Groups	6.453	24	.269	6.496	.000
	Within Groups	5.174	125	.041		
	Total	11.627	149			
Stearic acid	Between Groups	2.840	24	.118	10.986	.000
	Within Groups	1.347	125	.011		
	Total	4.187	149			
Arachidic acid	Between Groups	.043	24	.002	9.935	.000
	Within Groups	.023	125	.000		
	Total	.066	149			
Oleic acid	Between Groups	172.385	24	7.183	49.570	.000
	Within Groups	18.113	125	.145		
	Total	190.497	149			
Linoleic acid	Between Groups	125.207	24	5.217	97.467	.000
	Within Groups	6.691	125	.054		
	Total	131.898	149			
Among various reported saturated fatty acids, palmitic and stearic acids were the predominant saturated fatty acids of sesame oil with a range of 9.38-10.56 and 4.73-5.12%, respectively (Table 2).

Arachidic acid was a minor constituent of sesame oil with a range of 0.52-0.59%. Oleic and linoleic acids are the major fatty acids of sesame oil (Arslan et al., 2007; Uzun et al., 2008), and they are found to be present in large proportion in the oils of all genotypes. Oleic acid content of sesame oil ranged from 37.15 to 41.67%. While, the highest oleic acid content was determined in the oil of Manisa-Salihli genotype, the lowest content was determined in the oil of genotype Manisa-Alaşehir. Linoleic acid varied between 41.9 to 45.54% (Muğla-Fethiye, Adana-Merkez, respectively). Thus, linoleic acid content of sesame oil was found to be higher than that of oleic acid. The oleic and linoleic acids were the main fatty acids. The high amount of unsaturated fatty acid with a value of 80% of total fatty acids increases the quality of sesame oil (Chung et al., 1995). In present study all the varieties have an amount of oleic and linoleic acid with the value of over 80%. Bozan & Temelli (2002), the conventional extraction method using organic solvents giving a higher extraction yield.

Conclusions

Based on the results of this study, the fatty acid composition of sesame oil varied among Turkish sesame genotypes and there were significant differences observed among the Turkish sesame genotypes for fatty acid composition of oil obtained by two extraction methods.

Conflict of interest

Authors would hereby like to declare that there is no conflict of interests that could possibly arise.

References

Abdullahi Y, Adeniyi MO, Ihekwemere CA (1991) Countdowm to senior secondary certificate exams in Agriculture Science.Evans Brothers, Nigeria.p.150.

AOAC (1984) Official Methods of Analysis, 14th Ed., Assoc. of Official Analytical Chemists, Washington,DC.

AlamSarkar MN, Salim M, Islam N, Rahman MM (2007) Effect of sowing date and time characters of sesame (Sesamum indicum L.) seed. International Journal Sustainable Crop Production 2: 31-35.

Alpaslan M, Boydak E, Demircim M (2001) Protein and oil composition of soybean and sesame seed grown in the Harran (GAP) area of Turkey. Session 88B, Food Chemistry: Food Composition and Analysis.IFT Annual Meeting-New Orleans.

Arslan Ç, Uzun B, Ülger S, Çagirgan MI (2007) Determination of oil content and fatty acid compositions of sesame mutants suited for intensive management conditions. Journal of the American Oil Chemists’ Society 84: 917-920.http://dx.doi:10.1007/s11746-007-1125-6.

Asghar A, Majeed MN (2013) Chemical characterization and fatty acid profile of different sesame verities in Pakistan. American Journal Science and Industrial Research 4: 540-545.http://dx.doi:10.5251/ajirjs.2013.4.6.540.545.

Bavec F, Mlakar SG, Rozman C, Bavec M (2007) Issues in New Crops and New Uses. In: Janick J, Whipkey A (Eds.), ASHS Press. Alexandria,VA. pp.185-189.

Baydar H, Turgut I, Turgut K (1999) Variation of certain characters and line selection for yield, oleic and linoleic acid in the Turkish sesame (Sesamum indicum L.) populations. Tropical Journal of Agriculture and Forestry 23: 431-441.

Bozan B, Temelli F (2002) Supercritical CO2 extraction of flaxseed. Journal of the American Oil Chemists Society 79 : 231.

Chung CH, Yee YJ, Kim DH, Kim HK, Chung DS (1995) Changes of lipid, protein, RNA, and fatty acid composition in developing sesame (Sesamum indicum L.) seeds. Plant Science 109: 237-243. http://dx.doi:10.1016/0168-9452(95)04160-V.

Corso MP, Klen MF, Silva EA, Filho LC, Santos JN, Freitas LS, Dariva C (2010) Extraction of sesame seed (Sesamum indicum L.) oil using compressed propane and supercritical carbon dioxide. The Journal of Supercritical Fluids 52: 56. http://dx.doi.org/10.1016/j.supflu.2009.11.012.

EL-Harfi M, Nabloussi A, Rizki H, Latrache H, Ennahli S, Hanine H (2015) Biochemical Assessment of Moroccan Sesame (Sesamum indicum) Genotypes. Journal of Multidisciplinary Engineerneering Science and Technology 2: 1105-1115.

El Sabagh A, Omar A , Barutçular C , Saneoka H (2016) Role of integrated use of nitrogen fertilizer sources in improving seed quality of canola (Brassica napus L.). Turkish Journal of Agriculture - Food Science and Technology 4 : PP. 73-78.

EL Sabagh A ,Sorour S, Omar A, IslamMS, Ueda A, Saneoka H, Barutçular C (2015) Soybean (Glycine max L.) Growth Enhancement under Water Stress Conditions. International Conference on Chemical, Agricultural and Biological Sciences, (CABS-2015) September, 4-5, 2015 Istanbul (Turkey), pp. 148-152.

Ghafoorunissa (1994) Dietary fats/oils and heart diseases. In: Prasad, M.V.R. (ed). Sustainability in oil seeds. Indian Society of Oil Seeds Research, Hyderabad, India. pp. 486-490.

Gogolewski M, Nogala-Kalucka M, Szeliga M (2000) Changes of tocopherol and fatty acid contents in rapeseed oil during refining. European Journal of Lipid Science and Technology
Gulluoglu L, Bakal H, Onat B, El Sabagh A, Arioglu H (2016) Characterization of peanut (Arachis hypogaea L.) seed oil and fatty acids composition under different growing season under mediterranean environment. Journal of Experimental Biology and Agricultural Sciences 5 (Suppl.) (In Press).

Guillen MD, Goicoechea E (2008) Formation of oxygenated α,β-unsaturated aldehydes and other toxic compounds in sunflower oil oxidation at room temperature in closed receptacles. Food Chemistry 111: 157. http://dx.doi.org/10.1016/j.foodchem.2008.03.052.

Hemalatha GS (2007) Sesame lignans enhance the thermal stability of edible vegetable oils. Food Chemistry 105: 1076.

Koski A, Pekkarinen S, Hopia A, Wahala K (2003) Processing of rapeseed oil: effects on sinapic acid derivative content and antioxidative stability. European Food Research Technology 217: 110-114. http://dx.doi.org/10.1007/s00217-003-0721-4.

Lu B, Zhang Y, Xiaoqin W, Jiayi S (2007) Separation and determination of diversiform phytosterols in food materials using supercritical carbon dioxide extraction and ultraperformance liquid chromatography-atmospheric pressure chemical ionization-mass spectrometry. Analytica Chimica Acta: 588: 50.

Martin JH, Leonard WH (1964) Principles of Field Crop Production. MacMillan Co. New York, USA. pp. 1039-1040.

Nadeem R, Iqbal A, Zia MA, Anwar F, Shahid SA, Mahmood Z, Shafeeq A, Akhtar N (2015) Effect of Cold-Pressing and Soxhlet Extraction on the Physico-Chemical Attributes of Sunflower (Helianthus annuus L.) Seed Oil. International Journal of Clinical & Biological Sciences 7: 41-46.

Namiki M (1995) The chemistry and physiological functions of sesame. Food Reviews International 1: 281-329.

Nzikou JM, Matos L, Bouanga-Kalou G, Ndanguib, Pambou-Tobi NPG, Kompongouila A, Silou Th, Linder M, Desobry S (2009) Chemical composition on the seeds and oil of sesame (Sesamum indicum L.) Grown in Congo Brazzaville. Advance Journal of Food Science and Technology 1: 6-11.

Ozogul Y, Polat A, Ucak I, Ozogul F (2011) Seasonal fat and fatty acids variations of seven marine fish species from the Mediterranean Sea. European Journal of Lipid Science and Technology 113: 1491-1498. http://dx.doi: 10.1002/ejlt.201000554.

Pathak N, Rai AK, Kumari R, Bhat KV (2014) Valueaddition in sesame: A perspective on bioactive components for enhancing utility and profitability. Pharmacogn Review 8: 147-155. doi:10.4103/0973-7847.134249.

Rondanini D, Savin R, Hall AJ (2003) Dynamics of fruit growth and oil quality of sunflower (Helianthus annuus L.) exposed to brief intervals of high temperature during grain filling. Field Crops Research 83: 79-90. http://dx.doi:10.1016/S0378-4290(03)00064-9.

Uzun B, Arslan C, Furat S (2008) Variation in fatty acid compositions, oil content and oil yield in a germplasm collection of sesame (Sesamum indicum L.). Journal of the American Oil Chemists’ Society 85: 1135-1142. http://dx.doi: 10.1007/s11746-008-1304-0.

Weiss EA (2000) Oilseed Crops. 2nd ed., Blackwell Science, Oxford, pp. 131-164.