Aedes (Stegomyia) albopictus (Skuse), a Potential New Dengue Vector in Southern Cameroon

Didier Fontenille*† and Jean Claude Toto*

*Organisation de Coordination pour la Lutte contre les Endémies en Afrique Centrale (OCEAC), Yaoundé, Cameroon; and †Institut de Recherche pour le Développement, Montpellier, France

Aedes albopictus, a mosquito vector of Dengue virus, has been recorded for the first time in Cameroon. Entomologic surveys in 2000 demonstrated that it is widespread in southern Cameroon, colonizing a wide variety of breeding sites and biting humans in every district surveyed. The presence of this vector increases the risk for emergence of dengue in Cameroon.

Materials and Methods

Study Sites

Surveys were conducted in the two main cities of Cameroon: Douala, pop. 1,400,000 (4°00'N, 9°45'E), commercial harbor and largest city in Cameroon, and Yaoundé, pop. 1,300,000 (3°4150'N, 11°30'E) the capital city, located at an altitude of 800 m. Entomologic studies were also conducted in Campo (2°30'N, 9°50'E; pop. 4,000), Edea (3°45N, 10°10'E; pop. 100,000), and Bafia (4°45'N, 11°15'E; pop. 50,000).

Larvae and Adult Mosquito Collections

Larval development sites of mosquitoes were investigated in four districts in Yaoundé (Gare, Cité Verte, Brasseries, and Biyemassi), four districts in Douala (Dibom, New Bell, Bonaberi, and Makepe), and three districts in Edea and Bafia. Approximately 20 potential breeding sites containing water were sampled in each district in Yaoundé and Douala; an average of seven breeding sites were sampled in each district in Edea and Bafia. A breeding site was recorded as positive when it contained mosquito larvae or pupae, whatever the species.

Biting behavior of mosquitoes was checked by five adult volunteers in the districts of Yaoundé, Douala, and Campo. These volunteers collected mosquitoes landing on their arms or legs from 5:00 to 6:30 p.m. All surveys were conducted in October and November 2000, at the end of the long rainy season.

Larvae and adults were identified by the morphologic identification keys and morphologic descriptions of African Aedes species (11-13). Male genitalia were dissected and examined under a microscope.

Results

Ae. albopictus was present in all five towns and in every district sampled. Species identification was confirmed on larvae and adult males and females. Of the positive larval development sites sampled, 75% of 36 in Yaoundé and 45% of 53 in Douala contained Ae. albopictus larvae. Ae. albopictus was found in five breeding sites in Edea and seven in Bafia (Table).

The volume of water in Ae. albopictus-positive breeding sites ranged from 50 mL to 100 L. Species found together in...
Ae. albopictus is a competent vector for DV. Because this disease is expanding in the world (17), data are needed on the actual distribution of Ae. albopictus throughout Cameroon and the potential risk for transmission of arbovirus. Surveillance of used tires, which seem to be its preferred breeding sites, can provide maximum information on species distribution at the lowest cost-effective rate. The presence of this vector, in association with Ae. aegypti, increases the risk for emergence of dengue in Cameroon.

Acknowledgments

We thank Sue Gartland for help with the English translation.

This work was funded by l’Institut de Recherche pour le Développement (IRD), France.

Dr. Fontenille is head of the medical entomology laboratory of OCEAC (Organisation de Coordination pour la lutte contre les Endémies en Afrique Centrale), Yaoundé, Cameroon. For 20 years, he has conducted research in Africa on arboviruses and malaria vectors.

Mr. Toto is a technician in the medical entomology laboratory of OCEAC.

References

1. Shroyer DA. Aedes albopictus and arboviruses: a concise review of the literature. J Am Mosq Control Assoc 1987;2:424-8.
2. Hawley WA. The biology of Aedes albopictus. J Am Mosq Control Assoc 1988;4:1-40.
3. Rodhain F. Problèmes posés par l’expansion d’Aedes albopictus. Bulletin de la Société de Pathologie Exotique 1996;89:137-41.
4. Hawley WA, Reiter P, Coperland RS, Pumpli CB, Craig GB Jr. Aedes albopictus in North America: probable introduction in used tires from Northern Asia. Science 1987;236:1114-6.
5. Dalla Pozza G, Maji G. First record of Aedes albopictus in South Africa. J Am Mosq Control Assoc 1992;8:318-20.
6. Schaffner F, Karch S. Première observation d’Aedes albopictus (Skuse, 1894) en France métropolitaine. Comptes Rendus de l’Académie des Sciences III 2000;323:375-375.
7. Cornel AJ, Hunt RH. Aedes albopictus in Africa? First records of live specimens in imported tires in Cape Town. J Am Mosq Control Assoc 1991;7:107-8.
8. Savage HM, Ezike VI, Nwankwo ACN, Spiegel R, Miller BR. First record of breeding populations of Aedes albopictus in continental Africa: implications for arboviral transmission. J Am Mosq Control Assoc 1992;8:101-3.
9. Rickenbach A, Button JP. Enquête sur les vecteurs potentiels domestiques de fièvre jaune au Cameroun. Cahiers ORSTOM, série Entomologie médicale et Parasitologie 1977;15:93-103.
10. Vicens R, Robert V, Pignon D, Zeller H, Digoutte JP. L’épidémie de fièvre jaune du Nord Cameroun en 1990; premier isolement du virus amaril au Cameroun. Bull World Health Organ 1993;71:173-6.
11. Edwards FW. Mosquitoes of the Ethiopian region III. Culicine adults and pupae. London: British Museum Natural History; 1941. p. 499.
12. Hopkins GHE. Mosquitoes of the Ethiopian region I. Larval bionomics of mosquitoes and taxonomy of Culicine larvae. 2nd ed. London: British Museum Natural History; 1952. p. 355.
13. Jupp PG. Mosquitoes of Southern Africa. Hartebeespoort (South Africa): Ekogilde Publishers; 1996. p. 156.
14. Chan KL, Chan YC, Ho BC. Aedes aegypti (L.) and Aedes albopictus (Skuse) in Singapore city. Competition between species. Bull World Health Organ 1971;44:643-9.
15. Hobbs JH, Hughes EA, Eichold BH II. Replacement of Ae. aegypti by Aedes albopictus in Mobile, Alabama. J Am Mosq Control Assoc 1991;7:488-99.
16. Barrera R. Competition and resistance to starvation in larvae of container-inhabiting Aedes mosquitos. Ecol Entomol 1996;21:117-27.
17. Gubler DJ. Dengue and dengue hemorrhagic fever. Clin Microbiol Rev 1998;11:480-96.