Lifting up the proof theory to the countables:
Zermelo-Fraenkel set theory *

Toshiyasu Arai †
Graduate School of Science, Chiba University
1-33, Yayoi-cho, Inage-ku, Chiba, 263-8522, JAPAN
tosarai@faculty.chiba-u.jp

Abstract
We describe the countable ordinals in terms of iterations of Mostowski
collapsings. This gives a proof-theoretic bound on definable countable
ordinals in Zermelo-Fraenkel set theory $\mathsf{ZF}$.

1 Introduction
In these decades ordinal analyses (mainly of set theories) have progressed greatly,
cf. M. Rathjen’s contributions [10–13] and [2–4].

Current ordinal analyses are recursive. By recursive ordinal analyses we
mean that everything in the analyses is recursive (on $\omega$). Namely notation sys-
tems for ordinals to measure the proof-theoretic strengths of formal theories are
recursive, and operations on (codes of recursive) infinite derivations to eliminate
cut inferences are recursive, and so on. Moreover in the analyses we consider
only derivations of recursive statements on the least recursively regular ordinal
$\omega^{CK}_1$. We now ask: Can we lift up recursive ordinal analyses to countables
through a non-effective ordinal analysis? By an analysis on countables we aim
at bounding provability in formal theories for sets with respect to statements
on countable sets.

The proof technique in these ordinal analyses (cut-elimination with col-
lapsing functions) has been successful in describing the bounds on provability in
theories on recursive analogues of (small) large cardinals, which were intro-
duced by Richter and Aczel [14]. We can expect that the technique works also
for set theories of (true) large cardinals. In this paper we give a way to de-
scribe a bound on provability in Zermelo-Fraenkel set theory $\mathsf{ZF}$. We describe
the countable ordinal $\Psi_{\omega_1^{CK}}^{\omega_1}$, and show that the ordinal is a proof-theoretic
bound on definable countable ordinals provably existing in Zermelo-Fraenkel set
theory $\mathsf{ZF}$, Theorem 1.1.

*Dedicated to the occasion of the retirement of Prof. Wilfried Buchholz
†I’d like to thank an anonymous referee for very helpful technical comments.
Let us describe the content of this paper. In section 2 we give a characterization of the regularity of ordinals in terms of $\Sigma_1$-Skolem hulls. In section 3 we introduce a theory of sets which is equivalent to $\text{ZF} + (V = L)$, and in section 4 collapsing functions $\alpha \mapsto \Psi_{\kappa,n} \alpha < \kappa$ are introduced for each uncountable regular cardinal $\kappa \leq I$ and $n < \omega$, cf. Definition 4.1 where $I$ is intended to denote the least weakly inaccessible cardinal. Let $\omega_k(I + 1)$ denote the tower of $\omega$ with the next epsilon number $\varepsilon_{I+1} = \sup\{\omega_k(I + 1) : k < \omega\}$ above $I$. It is easy to see that the predicate $x = \Psi_{\kappa,n} \alpha$ is a $\Sigma_{n+1}$-predicate for $\alpha < \varepsilon_{I+1}$, and for each $n,k < \omega$ $\text{ZF} + (V = L)$ proves $\forall \alpha < \omega_k(I + 1) \forall \kappa \leq I \exists x < \kappa [x = \Psi_{\kappa,n} \alpha]$, cf. Lemma 4.6.

Conversely we show the following Theorem 1.1 in the fragment $I\Sigma^0_1$ of first-order arithmetic.

**Theorem 1.1** For a sentence $\exists x \in L_{\omega_1} \varphi(x)$ with a first-order formula $\varphi(x)$, if

$$\text{ZF} + (V = L) \vdash \exists x \in L_{\omega_1} \varphi(x)$$

then

$$\exists n < \omega [\text{ZF} + (V = L) \vdash \exists x \in L_{\Psi_{\omega_1,n}(I+1)} \varphi(x)].$$

**Remark.** From Theorem 1.1 together with Lemma 4.6 it follows that the countable ordinal

$$\Psi_{\omega_1, \varepsilon_{I+1}} := \sup\{\Psi_{\omega_1,n}(I + 1) : n < \omega\}$$

is the limit of $\text{ZF} + (V = L)$-provably countable ordinals in the following sense:

$$\Psi_{\omega_1, \varepsilon_{I+1}} = \sup\{\alpha < \omega_1 : \alpha \text{ is a } \text{ZF} + (V = L) \text{-provably countable ordinal}\}$$

where by saying that an ordinal $\alpha$ is a $\text{ZF} + (V = L)$-provably countable we mean

$$\text{ZF} + (V = L) \vdash \exists x < \omega_1 \varphi(x) \& L \models \varphi(\alpha) \text{ for some formula } \varphi.$$

From Theorem 1.1 we see that if $\text{ZF} + (V = L)$ proves the existence of a real $a \in \omega$ enjoying a first-order condition $\varphi(a)$, $\text{ZF} + (V = L) \vdash \exists a \in \omega \varphi(a)$, then such a real $a$ is already in level $L_{\Psi_{\omega_1, \varepsilon_{I+1}}}$ of constructible hierarchy.

This paper is based on a technique, *operator controlled derivations*, which was introduced by W. Buchholz [6], hereby he gave a convincing ordinal analysis for the theory $K\Pi_i$ of recursively inaccessible ordinals, which is a recursive analogue of $\text{ZF}$. In section 5 operator controlled derivations for $\text{ZF}$ are introduced, and in the final section 6 Theorem 1.1 is concluded. First let us explain the technique briefly.

In an operator controlled derivation, ordinals occurring in the derivation are controlled by an operator $H$ on ordinals. Through this we see that these ordinals are in a Skolem hull $H$. On the other side a recursive notation system is defined through an iteration of Skolem hullings. Suppose that a formal theory on sets
proves a sentence $\exists x < \omega^CK \theta$ for a bounded formula $\theta$. Then the technique tells us how many times do we iterate Skolem hullings to bound a recursive ordinal $x$, a witness for $\theta$.

To be specific, let us explain how a Skolem hull looks like. Let $F$ denote a set of functions.

**Definition 1.2** (Cf. [8].) For sets $X$, $Cl(X; F)$ denotes the Skolem hull of $X$ under the functions in $F$.

The set $Cl(X; F)$ is inductively generated as follows.

1. $X \subseteq Cl(X; F)$.
2. If $\bar{x} \in Cl(X; F)$, $f \in F$ and $\bar{x} \in \text{dom}(f)$, then $f(\bar{x}) \in Cl(X; F)$.

Now let us restrict the construction on the class of ordinals $Ord$. $\Omega = \omega_1$ denotes the least uncountable ordinal. Let $F$ be a countable set of ordinal functions $f : \text{Ord}^n \to \text{Ord}$, where the arity $n < \omega$ of the function $f$ is fixed for each $f$. Assume that 0-ary functions $0, \Omega$ belong to $F$.

**Proposition 1.3**

1. $\forall \alpha < \Omega \exists \beta < \Omega[Cl(\alpha; F) \cap \Omega \subseteq \beta]$.
2. $\forall \alpha < \Omega \exists \beta < \Omega[\beta > \alpha \& Cl(\beta; F) \cap \Omega \subseteq \beta]$. Namely $\{\beta < \Omega : Cl(\beta; F) \cap \Omega \subseteq \beta\}$ is unbounded in $\Omega$.
3. $\{\beta < \Omega : Cl(\beta; F) \cap \Omega \subseteq \beta\}$ is closed in $\Omega$.

**Proof.** If $\alpha < \Omega$, then the set $Cl(\alpha; F)$ is countable.

**L3.1** Given $\alpha < \Omega$, define $\{\beta_n\}_n$ inductively, $\beta_0 = \alpha + 1$, $\beta_{n+1} = \min\{\beta < \Omega : Cl(\beta_n; F) \cap \Omega \subseteq \beta\}$. Then $\beta = \sup_n \beta_n$ is a desired one. $\beta < \Omega$ since $\Omega$ is regular. \hfill $\square$

Let us enumerate the closed points. Define sets $Cl_\alpha(X; F)$ and ordinals $\psi(\alpha; F)$ by simultaneous recursion on ordinals $\alpha$ as follows.

Let

$$Cl_\alpha(X; F) := Cl(X; F \cup \{\psi(\cdot; F) \mid \alpha\})$$

where

$$\psi(\alpha; F) = \min\{\beta < \Omega : Cl_\alpha(\beta; F) \cap \Omega \subseteq \beta\}.$$ 

Then a transfinite induction on $\alpha$ shows with Proposition **L3.2**

$$\forall \alpha \exists \beta < \Omega[\psi(\alpha; F) = \beta].$$

For $F_0 = \{0, \Omega\} \cup \{\lambda xy, x + y, \lambda x.\omega^x\}$ (and the Veblen function $\lambda xy, \varphi xy$), $\psi(\varepsilon_{\Omega+1}; F_0)$ is the Howard ordinal, the proof-theoretic ordinal of the theory $ID_1$ for non-iterated positive elementary inductive definition on $\omega$, or equivalently of $KP\omega$, i.e., Kripke-Platek set theory with the axiom of infinity.

Observe that each function in $F_0$ is $\{\Omega\}$-recursive in $L_\sigma$ for any $\sigma > \Omega$. Here an $\{\Omega\}$-recursive function is $\Sigma$-definable from the 0-ary function $\Omega$, a parameter.

Now let us extend $F_0$ to the set $F_{all}$ of all $\{\Omega\}$-recursive functions on $L_\sigma$. Then it turns out that $Cl(\alpha; F_{all})$ is the $\Sigma_1$-Skolem hull $\text{Hull}_{\Sigma_1}^\omega(\alpha \cup \{\Omega\})$ of $\alpha \cup \{\Omega\}$ on $L_\sigma$, and this gives a characterization of the regularity of the ordinal $\Omega$, cf. Theorem **2.10** below.
2 $\Sigma_n$-Skolem hulls

For a model $(M; \in (M \times M))$ and $X \subset M$, $\Sigma_n^M(X)$ denotes the set of $\Sigma_n(X)$-definable subsets of $M$, where $\Sigma_n(X)$-formulae may have parameters from $X$. $\Sigma_n^M(M)$ is denoted $\Sigma_n(M)$.

An ordinal $\alpha > 1$ is said to be a multiplicative principal number iff $\alpha$ is closed under ordinal multiplication, i.e., $\exists \beta[\alpha = \omega^\beta]$. If $\alpha$ is a multiplicative principal number, then $\alpha$ is closed under Gödel’s pairing function $j$ and there exists a $\Delta_1$-bijection between $\alpha$ and $L_\alpha$ for the constructible hierarchy $L_\alpha$ up to $\alpha$. In this section $\sigma$ is assumed to be a multiplicative principal number $> \omega$.

**Definition 2.1**

1. $\text{Reg}$ denotes the class of uncountable regular ordinals.

2. $\text{cf}(\kappa) := \min\{\alpha \leq \kappa : \text{there is a cofinal map } f : \alpha \to \kappa\}$.

   $\kappa$ is uncountable regular $\iff$ $\kappa \in \text{Reg} \iff \kappa > \omega \& \text{cf}(\kappa) = \kappa$

   $\iff \kappa > \omega \& \forall \alpha < \kappa (\alpha < \text{cf}(\kappa))$

   $\text{card}(\alpha) < \text{card}(\kappa) \iff$ there is no surjective map $f : \alpha \to \kappa$.

3. $\rho(L_\sigma)$ denotes the $\Sigma_1$-projectum of $L_\sigma$: $\rho(L_\sigma)$ is the least ordinal $\rho$ such that $\mathcal{P}(\rho) \cap \Sigma_1(L_\sigma) \subseteq L_\sigma$.

4. Let $\alpha \leq \beta$ and $f : L_\alpha \to L_\beta$. Then the map $f$ is a $\Sigma_n$-elementary embedding, denoted $f : L_\alpha \prec_{\Sigma_n} L_\beta$ if for any $\Sigma_n(L_\alpha)$-sentence $\varphi[\bar{a}]$ ($\bar{a} \subset L_\alpha$), $L_\alpha \models \varphi[\bar{a}] \iff L_\beta \models \varphi[f(\bar{a})]$ where $f(\bar{a}) = f(a_1), \ldots, f(a_k)$ for $\bar{a} = a_1, \ldots, a_k$. An ordinal $\gamma$ such that $\forall \delta < \gamma [f(\delta) = \delta]$ & $f(\gamma) > \gamma$ is said to be the critical point of the $\Sigma_n$-elementary embedding $f$ if such an ordinal $\gamma$ exists.

5. For $X \subset L_\sigma$, $\text{Hull}_{\Sigma_n}^\sigma(X)$ denotes the set ($\Sigma_n$-Skolem hull of $X$ in $L_\sigma$) defined as follows. $<_L$ denotes a $\Delta_1$-well ordering of the constructible universe $L$. Let $\{\varphi_i : i \in \omega\}$ denote an enumeration of $\Sigma_n$-formulae in the language $\{\in\}$. Each is of the form $\varphi_i \equiv \exists y \theta_i(x; y; u)$ ($\theta \in \Pi^{n-1}_n$) with fixed variables $x, y, u$. Set for $b \in X$

   $r_{\Sigma_n}^\sigma(i, b) \simeq \text{the } <_L\text{-least } c \in L_\sigma \text{ such that } L_\sigma \models \theta_i((c)_0, (c)_1; b)$

   $h_{\Sigma_n}^\sigma(i, b) \simeq (r_{\Sigma_n}^\sigma(i, b))_0$

   $\text{Hull}_{\Sigma_n}^\sigma(X) = \bigcap_{b \in X} h_{\Sigma_n}^\sigma(i, b) \downarrow \& \exists y \theta_i(h_{\Sigma_n}^\sigma(i, b), y; b)$.

Then $L_\sigma \models \exists x \exists y \theta_i(x; y; b) \rightarrow h_{\Sigma_n}^\sigma(i, b) \downarrow \& \exists y \theta_i(h_{\Sigma_n}^\sigma(i, b), y; b)$.

The following Propositions [22] [23] and [24] are easy to see.

**Proposition 2.2** For $a, \kappa \in L_\sigma$, $\text{Hull}_{\Sigma_1}^{\kappa}(a \cup \{\kappa\}) = \text{Cl}(a; \mathcal{F}_\text{all})$, where in the RHS, Definition [23] $\Omega$ is replaced by $\kappa \in \mathcal{F}_\text{all}$, and $\mathcal{F}_\text{all}$ denotes the set of all $\{\kappa\}$-recursive (partial) functions on $L_\sigma$. Namely $f \in \mathcal{F}_\text{all}$ iff there exists an $i < \omega$ such that $f(b) \simeq \beta \iff h_{\Sigma_1}^\kappa(i, \{b, \kappa\}) \simeq \beta$ for $b < \sigma$, where $(b, c)$ denotes the pairing of $b$ and $c$. 

Proposition 2.3 Assume that $X$ is a set in $L_\sigma$. Then $r^\infty_n$ and $h^\infty_n$ are partial $\Delta_n(L_\sigma)$-maps such that the domain of $h^\infty_n$ is a $\Sigma_n(L_\sigma)$-subset of $\omega \times X$. Therefore its range $\text{Hull}^\infty_n(X)$ is a $\Sigma_n(L_\sigma)$-subset of $L_\sigma$.

Proposition 2.4 Let $Y = \text{Hull}^\infty_n(X)$. For any $\Sigma_n(Y)$-sentence $\varphi(\bar{a})$ with parameters $\bar{a}$ from $Y$ $L_\sigma \models \varphi(\bar{a})$ if and only if $Y \models \varphi(\bar{a})$. Namely $Y \prec_{\Sigma_n} L_\sigma$.

Definition 2.5 (Mostowski collapsing function $F$)

Let $n \geq 1$. By Proposition 2.4 and the Condensation Lemma, cf. [9], we have an isomorphism (Mostowski collapsing function)

$$F : \text{Hull}^\infty_n(X) \leftrightarrow L_\gamma$$

for an ordinal $\gamma \leq \sigma$ such that $F\upharpoonright Y = \text{id}\upharpoonright Y$ for any transitive $Y \subset \text{Hull}^\infty_n(X)$.

Let us denote, though $\sigma \notin \text{dom}(F) = \text{Hull}^\infty_n(X)$

$$F(\sigma) := \gamma.$$  

Also for the above Mostowski collapsing map $F$ let

$$F^{\Sigma_n}(x; \sigma, X) := F(x).$$

The inverse $G := F^{-1}$ of $F$ is a $\Sigma_n$-elementary embedding from $L_{F(\sigma)}$ to $L_\sigma$.

Definition 2.6 Let $\kappa$ be an ordinal such that $\omega < \kappa < \sigma$, and let

$$F^{\Sigma_n}_{\beta, \gamma}(x) := F^{\Sigma_n}(x; \sigma, \beta \cup \{\kappa\}).$$

Then put

$$C^\infty_{\Sigma_1}(\kappa) := \{x < \kappa : x \in C^{\infty}_{\Sigma_1}(\{\kappa\}) \& F^{\Sigma_1}_{\sigma, \gamma}(\sigma) < \kappa\}$$

$$x \in C^{\infty}_{\Sigma_1}(\{\kappa\}) :\iff \text{Hull}^\infty_{\Sigma_1}(x \cup \{\kappa\}) \cap \kappa \subset x$$

Proposition 2.7 Let $\alpha$ be a multiplicative principal number with $\omega \leq \alpha < \kappa < \sigma$. Assume that $\sigma$ is recursively regular and the $\Sigma_1$-projectum $\rho(L_\sigma) > \alpha$.

Then for the map $h^\infty_{\Sigma_1}$ with $X = \alpha \cup \{\kappa\}$ in (4) we have $\text{dom}(h^\infty_{\Sigma_1}) \subset L_\sigma$. Therefore $\text{Hull}^\infty_{\Sigma_1}(\alpha \cup \{\kappa\}) = \text{rng}(h^\infty_{\Sigma_1})$ is a set in $L_\sigma$, and the Mostowski collapsing function $F^{\Sigma_1}_{\alpha, \gamma}(\alpha \cup \{\kappa\}) \leftrightarrow L^{\Sigma_1}_{F^{\Sigma_1}_{\alpha, \gamma}(\sigma)}$ is a $\Delta_1(L_\sigma)$-map. Hence

$$L^{\Sigma_1}_{F^{\Sigma_1}_{\alpha, \gamma}(\sigma)}(\sigma) = \text{rng}(F^{\Sigma_1}_{\alpha, \gamma}(\kappa)) \subset L_\sigma,$$

i.e., $F^{\Sigma_1}_{\alpha, \gamma}(\kappa) < \sigma$.

Moreover if $\rho(L_\sigma) > \kappa$, then $C^{\infty}_{\Sigma_1}(\{\kappa\}) = \{x < \kappa : \text{Hull}^\infty_{\Sigma_1}(x \cup \{\kappa\}) \cap \kappa \subset x\}$ is a set in $L_\sigma$.

Proof. By the definition $\text{dom}(h^\infty_{\Sigma_1}) = \{(i, \beta) \in \omega \times \alpha : L_\sigma \models \exists \gamma \theta((c)_0, (c)_1; \beta, \kappa)\}$ is a $\Sigma_1(L_\sigma)$-subset of $\omega \times \alpha \leftrightarrow \alpha$.

By the supposition we have $\alpha < \rho(L_\sigma)$. Therefore any $\Sigma_1(L_\sigma)$-subset of $\alpha$ is a set in $L_\sigma$ by the definition of the $\Sigma_1$-projectum.

$C^{\infty}_{\Sigma_1}(\{\kappa\})$ is a $\Pi_1(L_\sigma)$-subset of $\kappa < \rho(L_\sigma)$, and hence is a set in $L_\sigma$. \qed
Lemma 2.8 Let $\alpha$ be a multiplicative principal number with $\omega \leq \alpha < \kappa < \sigma$. Assume that $\sigma$ is recursively regular and $L_\sigma \models \alpha < cf(\kappa)$.

1. $\alpha < \rho(L_\sigma)$.
2. $F_{\alpha \cup \{\kappa\}}^\Sigma_1(\sigma) < \kappa$.
3. Let $\beta$ denote the least ordinal $\beta \leq \kappa$ such that $\text{Hull}_{\Sigma_1}(\alpha \cup \{\kappa\}) \cap \kappa \subseteq \beta$. Then $\beta < \kappa$ and $L_\sigma \models \beta < cf(\kappa)$, and hence $\beta < \rho(L_\sigma)$.

Proof.

(2.8.1) (Cf. [3]). Let $\emptyset \neq B \in \Sigma_1(L_\sigma) \cap \mathcal{P}(\alpha)$. We show $B \in L_\sigma$. Let $g : \sigma \to B$ be a surjection, and $f$ be the map $f(\gamma) = g(\mu \delta(g(\delta) \notin \{f(\xi) : \xi < \gamma\}))$, i.e., $f(\gamma)$ is the $\gamma$th member of $B$. Both $g$ and $f$ are $\Delta_1(L_\sigma)$-maps. Suppose that $f$ is total. The $\Sigma_1(L_\sigma)$-injection $f$ from $\sigma$ to $\alpha$ yields an injection from $\kappa$ to $\alpha$ in $L_\sigma$, whose inverse would be a cofinal map from $\alpha$ to $\kappa$ in $L_\sigma$. Let $\gamma_0$ be the least $\gamma < \sigma$ such that $f(\gamma)$ is undefined. Then $B = \{f(\gamma) : \gamma < \gamma_0\}$, and hence $B \in L_\sigma$ by $\Sigma$-Replacement.

(2.8.2) We have $\alpha < \rho(L_\sigma)$ by Lemma 2.8.1. Then by Proposition 2.7 we have $F_{\alpha \cup \{\kappa\}}^\Sigma_1(\sigma) < \kappa$.

(2.8.3) By Proposition 2.7 there exists a surjective map in $L_\sigma$ from $\alpha$ to $\text{Hull}_{\Sigma_1}(\alpha \cup \{\kappa\})$. Therefore $\text{Hull}_{\Sigma_1}(\alpha \cup \{\kappa\}) \cap \kappa$ is bounded in $\kappa$. By the minimality of $\beta$, $\text{Hull}_{\Sigma_1}(\alpha \cup \{\kappa\}) \cap \kappa$ is cofinal in $\beta$. \hfill \Box

Proposition 2.9 Let $n \geq 1$ and $L_\sigma \models \text{KP} \omega + \Sigma_n$-Collection. Then for $\kappa \leq \sigma$, \{ $(x,y) : x < \kappa \land y = \min\{y < \kappa : \text{Hull}_{\Sigma_n}(x \cup \{\kappa\}) \cap \kappa \subseteq y\}$ \} is a $\text{Bool}(\Sigma_n(L_\sigma))$-predicate on $\kappa$, and hence a set in $L_\sigma$ if $\kappa < \sigma$ and $L_\sigma \models \Sigma_n$-Separation.

Proof. Let $\varphi(y,\kappa)$ be the $\Pi_n$-predicate $\varphi(y,\kappa) : \iff \forall z < \kappa[\exists z \in \text{Hull}_{\Sigma_n}(x \cup \{\kappa\}) \to z \in y]$. Then $y = \min\{y < \kappa : \text{Hull}_{\Sigma_n}(x \cup \{\kappa\}) \cap \kappa \subseteq y\}$ iff $y < \kappa \land \varphi(y,\kappa) \land \forall u < y \neg \varphi(u,\kappa)$, which is $\text{Bool}(\Sigma_n(L_\sigma))$ by $\Pi_{n-1}$-Collection. \hfill \Box

2.1 Regularity

$F_{\alpha \cup \{\kappa\}}^\Sigma_1(y)$ denotes the Mostowski collapse $F^{\Sigma_1}(y;\sigma,x \cup \{\kappa\})$. The following Theorems 2.10 and 2.12 should be folklore.

Theorem 2.10 (Cf. [1].) Let $\sigma$ be an ordinal such that $L_\sigma \models \text{KP} \omega + \Sigma_1$-Separation, and $\omega \leq \alpha < \kappa < \sigma$ with $\alpha$ a multiplicative principal number and $\kappa$ a limit ordinal. Then the following conditions are mutually equivalent:

1. $L_\sigma \models \alpha < \rho(L_\sigma)$.
2. $L_\sigma \models \alpha < cf(\kappa)$. 

(2.10)
3. There exists an ordinal $x$ such that $x \in C_{\alpha,\kappa}^\geq \cap (\alpha, \kappa)$, i.e.,

$$x \in C_{\alpha,\kappa}^\geq \cap (\alpha, \kappa) \& F_{\Sigma_1 x (\kappa)}^\Sigma_1 (\sigma) < \kappa$$

\(4\). For the Mostowski collapse $F_{\Sigma_1 x (\kappa)}^\Sigma_1 (y)$

$$\exists x \mid \alpha < x = F_{\Sigma_1 x (\kappa)}^\Sigma_1 (\kappa) < F_{\Sigma_1 x (\kappa)}^\Sigma_1 (\sigma) < \kappa \& \forall \Sigma_1 \varphi \forall a \in L_x (L_\sigma \models \varphi[\alpha] \rightarrow L_{F_{\Sigma_1 x (\kappa)}^\Sigma_1 (\sigma)} \models \varphi[\alpha,a])$$

\(5\) \text{Proof.} \text{ Obviously under the assumption that } \sigma \text{ is recursively regular, } (2) \text{ and } (4) \text{ are mutually equivalent, and } (4) \text{ implies } (5).

Assume $\sigma$ is recursively regular, $\kappa$ denotes a limit ordinal and $\alpha$ a multiplicative principal number with $\omega \leq \alpha < \kappa < \sigma$.

\(4) \Rightarrow (2)\). Suppose there exist an ordinal $x$ such that $\alpha < x = F_{\Sigma_1 x (\kappa)}^\Sigma_1 (\kappa) < F_{\Sigma_1 x (\kappa)}^\Sigma_1 (\sigma) < \kappa$ and for any $\Sigma_1 \varphi$ and any $a \in L_x$

$$L_\sigma \models \varphi[\alpha,a] \Rightarrow L_{F_{\Sigma_1 x (\kappa)}^\Sigma_1 (\sigma)} \models \varphi[\alpha,a]$$

Let us show

$$L_\sigma \models \alpha \kappa \subset L_\kappa.$$

Define a $\Delta_1(L_\sigma)$-partial map $S : \text{dom}(S) \rightarrow \alpha \kappa \cap L_\kappa (\text{dom}(S) \subset \kappa)$ by letting $S_\beta$ be the $<_L$ least $X \in \alpha \kappa \cap L_\kappa$ such that $\forall \gamma < \beta (X \neq S_\gamma)$.

It suffices to show that $L_\sigma \models \alpha \kappa \subset \{S_\beta \} \beta = \text{rng}(S)$. Suppose there exists an $f \in \alpha \kappa \cap L_\sigma$ so that $\forall \beta < \kappa (S_\beta \neq f)$ and let $f_0$ denote the $<_L$-least such function. Then $f_0$ is $\Sigma_1$ definable on $L_\sigma$ from $\{\alpha, \kappa\}$: for the $\Delta_1(L_\sigma)$-formula $\varphi(f, \alpha, \kappa) : \Leftrightarrow \theta(f, \alpha, \kappa) \& \forall g <_L f \neg \theta(g, \alpha, \kappa)$ with $\theta(f, \alpha, \kappa) : \Leftrightarrow f \in \alpha \kappa \& \forall \beta < \kappa (S_\beta \neq f)$ we have $L_\sigma \models \varphi(f_0, \alpha, \kappa) \& L_\sigma \models \exists f \varphi(f, \alpha, \kappa)$. By (3) we have $L_{F_{\Sigma_1 x (\kappa)}^\Sigma_1 (\sigma)} \models \exists f \varphi(f, \alpha, \kappa)$, i.e., there exists the $<_L$-least $f_1 \in \alpha \kappa \cap L_\kappa (F_{\Sigma_1 x (\kappa)}^\Sigma_1 (\sigma) \leq \kappa)$ such that $\forall \beta < x(\kappa)(S_\beta \neq f_1)$.

We show $L_\kappa \models f_1 = f_0$. This yields a contradiction. It suffices to see $f_1 \subset f_0$ for $f_1 : \alpha \rightarrow x$ and $f_0 : \alpha \rightarrow \kappa$. By (3) we have for $\beta < \alpha$, $\gamma < x$

$$f_1(\beta) = \gamma \Leftrightarrow L_{F_{\Sigma_1 x (\kappa)}^\Sigma_1 (\sigma)} \models \forall f \varphi(f, \alpha, \kappa) \rightarrow f(\beta) = \gamma \Rightarrow L_\sigma \models \forall f \varphi(f, \alpha, \kappa) \rightarrow \forall f \varphi(f, \alpha, \kappa) \rightarrow f(\beta) = \gamma \Leftrightarrow f_0(\beta) = \gamma$$

Note that in this proof it suffices to assume that $\sigma$ is recursively regular, and we see that the condition $F_{\Sigma_1 x (\kappa)}^\Sigma_1 (\sigma) < \kappa$ can be weakened to $F_{\Sigma_1 x (\kappa)}^\Sigma_1 (\sigma) \leq \kappa$ in (3) and (4).

(3) $\Rightarrow$ (4). Assume $L_\sigma \models \Sigma_1$-Separation, and $L_\sigma \models \alpha < cf(\kappa)$.

We show the existence of an ordinal $x < \kappa$ such that

$$x > \alpha \& \text{Hull}_{\Sigma_1}^\Sigma_1 (x \cup \{\alpha\}) \cap \kappa \subset x \& F_{\Sigma_1 x (\kappa)}^\Sigma_1 (\sigma) < \kappa.$$
Then $F_{\Sigma_1}^{\Sigma_1}(\kappa) = x$.

As in the proof of Proposition 1.3.2, define recursively ordinals $\{x_n\}_n$ as follows. $x_0 = \alpha + 1$, and $x_{n+1}$ is defined to be the least ordinal $x_{n+1} \leq \kappa$ such that $\text{Hull}_{\lambda}^{\Sigma_1}(x_n \cup \{\kappa\}) \cap \kappa \subset x_{n+1}$. We see inductively that $x_n < \kappa$ from Lemma 2.8.3. On the other hand we have $\alpha \in L_\kappa$ by (2). Moreover by Proposition 2.9, the map $n \mapsto x_n$ is a $\Delta_1$-set in $L_\sigma = \Sigma_1$-Separation.

Therefore $x = \sup_n x_n < \kappa$ enjoys $x > \alpha$, and $\text{Hull}_{\lambda}^{\Sigma_1}(x \cup \{\kappa\}) \cap \kappa \subset x$.

It remains to see $F_{\Sigma_1}^{\Sigma_1}(\kappa) < \kappa$. By Lemma 2.8.2 it suffices to see $x < \text{cf}(\kappa)$.

Since there exists a $\Delta_1(L_\sigma)$-surjective map $h_n : x_n \mapsto \text{Hull}_{\lambda}^{\Sigma_1}(x_n \cup \{\kappa\})$, pick an increasing cofinal map $f_n : x_n \rightarrow x_{n+1}$ in $L_\sigma$ using the minimality of $x_{n+1}$. Using the uniformity of $f_n$, we see the existence of an increasing cofinal map $f : \alpha \rightarrow x$ in $L_\sigma$. Therefore $L_\sigma \models x < \text{cf}(\kappa)$. □

**Remark.** In the proof of Theorem 2.10 the assumption that $L_\sigma = \Sigma_1$-Separation is used only in the part (3) ⇒ (4), and everything except the part holds when $\sigma$ is recursively regular.

**Corollary 2.11** Suppose $\kappa$ is uncountable regular in $L_\alpha = \mathbf{KP}_\omega + \Sigma_1$-Separation.

1. $\kappa$ is $\sigma$-stable, i.e., $L_\kappa \prec_{\Sigma_1} L_\sigma$.

2. $\{\lambda < \kappa : \lambda \in \text{Reg}\} = \{\lambda < \kappa : \lambda$ is uncountable regular in $L_\alpha\}$ is a $\Delta_0$-subset of $\kappa$. Therefore the map $\kappa > \alpha \mapsto \omega_\alpha$ is a $\Delta_1$-map on $L_\alpha$. On the other side the map $\sigma > \alpha \mapsto \omega_\alpha$ is a $\Delta_2$-map on $L_\sigma$.

**Proof.** Let $\varphi[a]$ be a $\Sigma_1$-formula with a parameter $a \in L_\kappa$. Pick an $\alpha_a \in C^\Sigma_1_\kappa \{\kappa\}$ such that $a \in L_{\alpha_a}$ by Theorem 2.10. Then $L_\sigma \models \varphi[a] \Rightarrow L_{F^{\Sigma_1}_{\alpha \cup \{\kappa\}}(\kappa)} \models \varphi[a] \Rightarrow L_\kappa \models \varphi[a]$ for $a = F^{\Sigma_1}_{\alpha \cup \{\kappa\}}(\kappa)$ and $F^{\Sigma_1}_{\alpha \cup \{\kappa\}}(\sigma) < \kappa$.

For $\lambda < \kappa$, we see from Corollary 2.11 that $L_\sigma \models \lambda \in \text{Reg} \iff L_\kappa \models \lambda \in \text{Reg}$. □

For the existence of power sets we have the following Theorem 2.12.

**Theorem 2.12** (Cf. 1.) Let $\sigma$ be recursively regular, and $\omega \leq \alpha < \kappa < \sigma$ with $\alpha$ a multiplicative principal number and $\kappa$ a limit ordinal. Then the following conditions are mutually equivalent:

1. $\alpha < \rho(L_\sigma) \wedge F^{\Sigma_1}_{\alpha \cup \{\kappa\}}(\sigma) = F^{\Sigma_1}(\sigma; \alpha \cup \{\alpha, \kappa\}) < \kappa$ \hspace{1cm} (6)

2. For the Mostowski collapse $F^{\Sigma_1}_{\alpha \cup \{\kappa\}} : \text{Hull}_{\lambda}^{\Sigma_1}(\alpha \cup \{\alpha, \kappa\}) \mapsto L_{F^{\Sigma_1}_{\alpha \cup \{\kappa\}}(\kappa)} \sigma$

$$\exists x \alpha < x \leq F^{\Sigma_1}_{\alpha \cup \{\kappa\}}(\kappa) < F^{\Sigma_1}_{\alpha \cup \{\alpha, \kappa\}}(\sigma) < \kappa \wedge \forall \Sigma_1 \varphi \forall a \in L_x$$

$$L_\sigma \models \varphi[\kappa, a] \rightarrow L_{F^{\Sigma_1}_{\alpha \cup \{\alpha, \kappa\}}(\kappa)} \models \varphi[F^{\Sigma_1}_{\alpha \cup \{\kappa\}}(\kappa), a]] \hspace{1cm} (7)$$
3. \( \mathcal{P}(\alpha) \cap L_\sigma \subset L_\kappa \) \hspace{1cm} (8)

4. \( L_\alpha \models \text{card}(\alpha) < \text{card}(\kappa) \) \hspace{1cm} (9)

**Proof.** In showing the direction \((6) \Rightarrow (7)\), pick the least ordinal \( x > \alpha \) not in \( \text{Hull}_{\Sigma_1}(\alpha \cup \{\alpha, \kappa\}) \). \( 8 \Rightarrow 9 \) and \( 9 \Rightarrow 8 \) are easily seen.

\((7) \Rightarrow (5). \) As in the proof of \( (5) \Rightarrow (2), \) define a \( \Delta_1 \)-partial map \( S : \text{dom}(S) \rightarrow \mathcal{P}(\alpha) \cap L_\sigma \) (\( \text{dom}(S) \subset \kappa \)) by letting \( S_\beta \) be the \( <_L \) least \( X \in \mathcal{P}(\alpha) \cap L_\kappa \) such that \( \forall \gamma < \beta(X \neq S_\gamma) \).

It suffices to show that \( \mathcal{P}(\alpha) \cap L_\sigma \subset \{S_\beta\}_\beta \subset \text{rng}(S) \). Suppose there exists an \( X \in \mathcal{P}(\alpha) \cap L_\sigma \) so that \( \forall \beta < \kappa(S_\beta \neq X) \) and let \( X_0 \) denote the \( <_L \) least such set. Then we see that \( X_0 \) is \( \Sigma_1 \)-definable in \( L_\sigma \) from \( \{\alpha, \kappa\} \): there exists a \( \Delta_1 \)-formula \( \varphi(X, \alpha, \kappa) \) such that \( L_\sigma \models \varphi(X_0, \alpha, \kappa) \) & \( L_\sigma \models \exists X \varphi(X, \alpha, \kappa) \). By \( (7) \) we have \( L_{F_{\alpha \cup \{\alpha, \kappa\}}(\alpha)}(\varphi(\alpha, \alpha, F_{\alpha \cup \{\alpha, \kappa\}}(\alpha))) \), i.e., there exists the \( <_L \) least \( X_1 \in \mathcal{P}(\alpha) \cap L_{F_{\alpha \cup \{\alpha, \kappa\}}(\alpha)} \subset \mathcal{P}(\alpha) \cap L_\kappa \) such that \( \forall \beta < F_{\alpha \cup \{\alpha, \kappa\}}(\alpha)(< \kappa)(S_\beta \neq X_1) \). This means that \( X_1 = S_{F_{\alpha \cup \{\alpha, \kappa\}}(\alpha)} \). We show \( X_1 = X_0 \). This yields a contradiction. Denote \( x \in a \) by \( x \in^+ a \) and \( x \not\in a \) by \( x \in^- a \). For any \( \gamma < \alpha \), again by \( (7) \) we have

\[
\gamma \in^\pm X_0 \Leftrightarrow L_\sigma \models \exists X(\gamma \in^\pm X \wedge \varphi(X, \alpha, \kappa)) \Rightarrow
L_{F_{\alpha \cup \{\alpha, \kappa\}}(\alpha)}(\varphi(\alpha, \alpha, F_{\alpha \cup \{\alpha, \kappa\}}(\alpha))) \Leftrightarrow \gamma \in^\pm X_1
\]

\( \square \)

### 3 A theory for weakly inaccessible ordinals

Referring Theorems \( \ref{thm:existence:weakly-inaccessible} \) and \( \ref{thm:existence:mostowski-collapse} \) let us interpret ZF to another theory. The base language here is \( \{\in\} \).

In the following Definition \( \ref{def:interpretation} \) \( I \) is intended to denote the least weakly inaccessible cardinal though we do not assume the existence of weakly inaccessible cardinals anywhere in this paper except in the **Remark** after Theorem \( \ref{thm:existence:weakly-inaccessible} \) \( \kappa, \lambda, \rho \) range over uncountable regular ordinals \( < I \). The predicate \( P \) is intended to denote the relation \( P(\lambda, x, y) \iff x = F_{\Sigma_1}(\lambda; I, x \cup \{\lambda\}) \) and \( y = F_{\Sigma_1}(I; I, x \cup \{\lambda\}), \) and the predicate \( P_{I,n}(x) \) is intended to denote the relation \( P_{I,n}(x) \iff x = F_{\Sigma_n}(I; I, x), \) where \( F_{\Sigma_n}(y) = F_{\Sigma_n}(y; I, \alpha) \) denotes the Mostowski collapsing \( F_{\Sigma_n} : \text{Hull}_{\Sigma_n}(\alpha) \leftrightarrow L_\gamma \) of the \( \Sigma_n \)-Skolem hull \( \text{Hull}_{\Sigma_n}(\alpha) \) of \( \alpha < I \) over \( L_\gamma \), and \( F_{\Sigma_n}(I) := \gamma \) for \( L_\gamma = \text{rng}(F_{\Sigma_n}) \).

**Definition 3.1** \( T(I, n) \) denotes the set theory defined as follows.

1. Its language is \( \{\in, P, P_{I,n}, \text{Reg}\} \) for a ternary predicate \( P \) and unary predicates \( P_{I,n} \) and \( \text{Reg} \).
2. Its axioms are obtained from those of KPω in the expanded language
the axiom of constructibility $V = L$ together with the axiom schema
saying that if $\text{Reg}(\kappa)$ then $\kappa$ is an uncountable regular ordinal, cf. (12)
and (11), and if $P(\kappa, x, y)$ then $x$ is a critical point of the $\Sigma_1$-elementary
embedding from $L_y \cong \text{Hull}_{\Sigma_1}(x \cup \{\kappa\})$ to the universe $L_1$, cf. (13), and
if $P_{I,n}(x)$ then $x$ is a critical point of the $\Sigma_n$-elementary embedding from
$L_x \cong \text{Hull}_{\Sigma_n}(x)$ to the universe $L_1$, cf. (14): for a formula $\varphi$ and an ordinal $\alpha$,
$\varphi^\alpha$ denotes the result of restricting every unbounded quantifier $\exists z, \forall z$
in $\varphi$ to $\exists z \in L_\alpha, \forall z \in L_\alpha$.

(a) $x \in \text{Ord}$ is a $\Delta_0$-formula saying that ‘$x$ is an ordinal’.

$$\text{(Reg(}\kappa) \rightarrow \omega < \kappa \in \text{Ord})$$

$$\wedge \quad (P(\kappa, x, y) \rightarrow \{x, y\} \subset \text{Ord} \wedge x < y \wedge \kappa \wedge \text{Reg}(\kappa)) \quad (10)$$

$$\wedge \quad (P_{I,n}(x) \rightarrow x \in \text{Ord})$$

(b) $P(\kappa, x, y) \rightarrow a \in L_x \rightarrow \varphi[\kappa, a] \rightarrow \varphi^y[x, a] \quad (11)$

for any $\Sigma_1$-formula $\varphi$ in the language $\{\in\}$.

(c) $\text{Reg}(\kappa) \rightarrow a \in \text{Ord} \cap \kappa \rightarrow \exists x, y \in \text{Ord} \cap \kappa[a < x \wedge P(\kappa, x, y)] \quad (12)$

(d) $\forall x \in \text{Ord} \exists y[y > x \wedge \text{Reg}(y)] \quad (13)$

(e) $P_{I,n}(x) \rightarrow a \in L_x \rightarrow \varphi[a] \rightarrow \varphi^y[a] \quad (14)$

for any $\Sigma_n$-formula $\varphi$ in the language $\{\in\}$.

(f) $a \in \text{Ord} \rightarrow \exists x \in \text{Ord}[a < x \wedge P_{I,n}(x)] \quad (15)$

Let $\text{ZF}_n$ denote the subtheory of $\text{ZF} + (V = L)$ obtained by restricting
Separation and Collection to $\Sigma_n$-Separation and $\Sigma_n$-Collection, resp.

Lemma 3.2 $T(I) := \bigcup_{n \in \omega} T(I, n)$ is a conservative extension of Zermelo-
Fraenkel set theory $\text{ZF} + (V = L)$ with the axiom of constructibility.
Moreover for each $n \geq 1$, $T(I, n)$ is a conservative extension of $\text{ZF}_n$.

\footnote{This means that the predicates $P, \text{Reg}$ do not occur in $\Delta_0$-formulae for $\Delta_0$-Separation
and $\Delta_0$-Collection. $P, P_{I,n}, \text{Reg}$ may occur in Foundation axiom schema.}
**Proof.** Let \( n \geq 1 \). First consider the axioms of \( \text{ZFL}_n \) in \( T(I, n) \). By (14), \( T(I, n) \) proves the reflection principle for \( \Sigma_n \varphi \)

\[
P_{I,n}(x) \to a \in L_x \to (\varphi[a] \leftrightarrow \varphi^\ell[a]) \quad (16)
\]

Let \( \varphi \) be a \( \Sigma_n \)-formula, and \( \alpha \) an ordinal such that \( \{b, c\} \subset L_\alpha \). Pick an \( x \) with \( \alpha < x \land P_{I,n}(x) \) by (15). Then by (16) \( \{a \in b : \varphi[a, c]\} = \{a \in b : \varphi^\ell[a, c]\} \).

This shows in \( T(I, n) \), \( \Sigma_n \)-Separation from \( \Delta_0 \)-Separation. Likewise we see that \( T(I, n) \) proves \( \Sigma_n \)-Collection.

Second consider the Power set axiom in \( T(I, n) \). We show that the power set \( P(b) = \{x : x \subset b\} \) exists as a set. Let \( b \in L_\alpha \) with a multiplicative principal number \( \alpha \geq \omega \). Pick a regular ordinal \( \kappa > \alpha \) by (13). From Theorem \( 2.10 \) we see that \( \alpha \kappa \subset L_\kappa \). Let \( G : \text{Ord} \to L \) be the Gödel’s surjective map, which is \( \Delta_1 \).

We have \( G^\ell = L_\alpha \) for the multiplicative principal number \( \alpha \). Pick an ordinal \( \beta < \alpha \) such that \( G(\beta) = b \). Then \( \delta_2 \subset \alpha \kappa \subset L_\kappa \), i.e., \( \delta_2 = \{x \in L_\kappa : x \in \delta_2\} \), and hence by \( \Delta_0 \)-Separation \( \delta_2 \) exists as a set. On the other hand we have \( c \in b = G(\beta) \rightarrow \exists \gamma < \beta (G(\gamma) = c) \) and \( \gamma < \beta \rightarrow G(\gamma) \in G(\beta) \). Let \( S : \beta_2 \to P(b) \) be the surjection defined by \( x \in S(f) \) iff \( \exists \gamma < \beta (G(\gamma) = x \land f(\gamma) = 1) \) for \( f \in \beta_2 \) and \( x \in b \). Pick a set \( c \) such that \( S^\ell(\beta_2) \subset c \) by \( \Delta_0 \)-Collection. Then \( \{x : x \subset b\} = \{S(f) \in c : f \in \beta_2\} \) is a set by \( \Delta_0 \)-Separation.

Hence we have shown that \( \text{ZFL}_n \) is contained in \( T(I, n) \).

Next we show that \( T(I, n) \) is interpretable in \( \text{ZFL}_1 \). \( \text{ZFL}_1 \) is a desired one.

From Theorem \( 2.10 \) that the interpreted (10), (11) and (12) are provable in \( \text{ZFL}_1 \). Moreover the unboundedness of the regular ordinals, (13) is provable in \( \text{ZFL}_1 \) using the Power set axiom and \( \Sigma_1 \)-Separation.

It remains to show the interpreted (13) and (15) in \( \text{ZFL}_n \). It suffices to show that given an ordinal \( \alpha \), there exists an ordinal \( x > \alpha \) such that \( \text{Hull}_n(\alpha) \cap \text{Ord} \subset x \). Pick a regular ordinal \( \kappa > \alpha \). Again as in the proof of Proposition 1.32 define recursively ordinals \( \{x_n\}_n \) as follows. \( x_0 = \alpha + 1 \), and \( x_{n+1} \) is defined to be the least ordinal \( x_{n+1} \) such that \( \text{Hull}_n(x_{n+1}) \cap \text{Ord} \subset x_{n+1} \). We show inductively that such an ordinal exists, and \( x_n < \kappa \). Then \( x = \sup_n x_n \leq \kappa \) is a desired one.

It suffices to show that for any \( \alpha < \kappa \) there exists a \( \beta < \kappa \) such that \( \text{Hull}_n(\alpha) \cap \text{Ord} \subset \beta \). By Proposition 1.33 let \( h^\ell_{\Sigma_n} \) be the \( \Delta_n \)-surjection from the \( \Sigma_n \)-subset \( \text{dom}(h^\ell_{\Sigma_n}) \) of \( \omega \times \alpha \) to \( \text{Hull}_n(\alpha) \), which is a \( \Sigma_n \)-class. From \( \Sigma_n \)-Separation we see that \( \text{dom}(h^\ell_{\Sigma_n}) \) is a set. Hence by \( \Sigma_n \)-Collection, \( \text{Hull}_n(\alpha) = \text{rng}(h^\ell_{\Sigma_n}) \) is a set. Therefore the ordinal \( \sup(\text{Hull}_n(\alpha) \cap \text{Ord}) \) exists in the universe. On the other hand we have for the subset \( \text{dom}(h^\ell_{\Sigma_n}) \) of \( \omega \times \alpha \), \( \text{dom}(h^\ell_{\Sigma_n}) \subset L_\kappa \) by Theorem 2.12. Hence \( \kappa \leq \sup(\text{Hull}_n(\alpha) \cap \text{Ord}) \) would yield a cofinal map from \( \alpha \) to \( \kappa \), which is a subset of the set \( h^\ell_{\Sigma_n} \) in the universe.
This contradicts the regularity of $\kappa$. Therefore $\sup(\text{Hull}_{\Sigma_n}^{I}(\alpha) \cap \text{Ord}) < \kappa$. □

4 Ordinals for inaccessibles

Let $\text{Ord}^{\mathcal{R}}$ and $<^{\widetilde{\mathcal{R}}}$ be $\Delta$-predicates such that for any wellfounded model $M$ of $\text{KP}_{\omega, \mathcal{R}}$, $<^{\widetilde{\mathcal{R}}}$ is a well ordering of type $\varepsilon_{\omega_{1}+1}$ on $\text{Ord}^{\mathcal{R}}$ for the order type $I$ of the class $\text{Ord}$ in $M$. $[\omega_{n}(I+1)] \in \text{Ord}^{\mathcal{R}}$ denotes the code of the ‘ordinal’ $\omega_{n}(I+1)$, which is assumed to be a closed ‘term’ built from the code $[I]$ and $n$, e.g., $[\alpha] = \langle 0, \alpha \rangle$ for $\alpha \in \text{Ord}$, $[I] = \langle 1, 0 \rangle$ and $[\omega_{n}(I+1)] = \langle 2, \langle 2, \ldots \langle 2, [I], \langle 0, 1 \rangle \rangle \ldots \rangle \rangle$.

For simplicity let us identify the code $[\alpha] \in \text{Ord}^{\mathcal{R}}$ with the ‘ordinal’ $\alpha < \varepsilon_{\omega_{1}+1}$, and $<^{\mathcal{R}}$ is denoted by $< \text{ when no confusion likely occurs.}$

$<$, i.e., $<^{\widetilde{\mathcal{R}}}$ is assumed to be a canonical ordering such that $\text{KP}_{\omega, \mathcal{R}}$ proves the fact that $< \text{ is a linear ordering, and for any formula } \varphi \text{ and each } n < \omega$,

$$\text{KP}_{\omega} \vdash \forall x (\forall y (x < \varphi(y) \rightarrow \varphi(x))) \rightarrow \forall x < \omega_{n}(I+1) \varphi(x) \quad (17)$$

In what follows of this section $n \geq 1$ denotes a fixed positive integer, and we work in $\text{ZF} + (V = L)$.

As before, $I$ (or its code $[I] = \langle 1, 0 \rangle$) is intended to denote the least weakly inaccessible ordinal. $\mathcal{R}$ denotes the set of uncountable regular ordinals $< I$, while $R^{+} := R \cup \{I\}$. $\kappa, \lambda, \rho$ denote elements of $\mathcal{R}$.

Define simultaneously by recursion on ordinals $\alpha < \omega_{n+1}(I+1)$, the classes $\mathcal{H}_{\alpha, \kappa}(X) \subset L_{\omega_{n+1}(I+1)}(X \subset L_{\omega_{n+1}(I+1)})$ and the ordinals $\Psi_{\kappa, n, \alpha}(\kappa \in R)$ and $\Psi_{I, n, \alpha}$ as follows.

**Definition 4.1** $\mathcal{H}_{\alpha, n}(X)$ is the Skolem hull of $\{0, I\} \cup X$ under the functions $+, \alpha \mapsto \omega^{\alpha} < \omega_{n+1}(I+1)$, $\Psi_{I, n} | \alpha$, $\Psi_{\kappa, n, \alpha} | \alpha (\kappa \in R)$, the $\Sigma_{n}$-definability, and the Mostowski collapsing functions $(x, \kappa, d) \mapsto F_{x, \kappa, n, \alpha}^{\Sigma_{1}}(d) (\kappa \in R, \text{Hull}_{I}^{\omega}(X \cup \{\kappa\}) \cap \alpha) \text{ and } (x, d) \mapsto F_{x, \kappa, n, \alpha}^{\Sigma_{1}}(\text{Hull}_{I}^{\omega}(x) \cap I \subset x)$.

For a later reference let us define stages $\mathcal{H}_{\alpha, n}(X) (m \in \omega)$ of the inductive definition.

1. $\mathcal{H}_{\alpha, n}^{0}(X) = \{0, I\} \cup X$.
2. $x, y \in \mathcal{H}_{\alpha, n}^{m}(X) \cap \omega_{n+1}(I+1) \Rightarrow x + y \in \mathcal{H}_{\alpha, n}^{m+1}(X)$.
   $x \in \mathcal{H}_{\alpha, n}^{m}(X) \cap \omega_{n}(I+1) \Rightarrow \omega^{x} \in \mathcal{H}_{\alpha, n}^{m+1}(X)$.
3. $\gamma \in \mathcal{H}_{\alpha, n}^{m}(X) \cap \alpha \Rightarrow \Psi_{I, n, \gamma} \in \mathcal{H}_{\alpha, n}^{m+1}(X)$.
4. $\kappa \in \mathcal{H}_{\alpha, n}^{m}(X) \cap R \& \gamma \in \mathcal{H}_{\alpha, n}^{m}(X) \cap \alpha \Rightarrow \Psi_{\kappa, n, \gamma} \in \mathcal{H}_{\alpha, n}^{m+1}(X)$.
5. $\text{Hull}_{I}^{\omega_{n}}(\mathcal{H}_{\alpha, n}(X) \cap L_{I}) \subset \mathcal{H}_{\alpha, n}(X)$.

Namely for any $\Sigma_{n}$-formula $\varphi[x, \vec{a}]$ in the language $\{\in\}$ and parameters $\vec{a} \subset \mathcal{H}_{\alpha, n}^{m}(X) \cap L_{I}$, if $b \in L_{I}$, $L_{I} \models \varphi[b, \vec{a}]$ and $L_{I} \models \exists x \varphi[x, \vec{a}]$, then $b \in \mathcal{H}_{\alpha, n}^{m+1}(X)$.
6. If $\kappa \in H_{\alpha,n}(X) \cap R$, $x \in H_{\alpha,n}(X) \cap \kappa$ with $\text{Hull}_{\Sigma_1}(x \cup \{\kappa\}) \cap \kappa \subset x$ and $(\kappa = \omega_{\kappa+1} \Rightarrow \omega_c < x)$, and $d \in (\text{Hull}_{\Sigma_1}(x \cup \{\kappa\}) \cup \{I\}) \cap H_{\alpha,n}^{m}(X)$, then $F_{x\cup\{\kappa\}}(\kappa)(d) \in H_{\alpha,n}^{m+1}(X)$.

7. If $x \in H_{\alpha,n}^{m}(X) \cap I$ with $\text{Hull}_{\Sigma_1}(x \cup \{\kappa\}) \cap I \subset x$, and $d \in (\text{Hull}_{\Sigma_1}(x \cup \{\kappa\}) \cup \{I\}) \cap H_{\alpha,n}(X)$, then $F_{x\cup\{\kappa\}}(\kappa)(d) \in H_{\alpha,n}^{m+1}(X)$.

8. $H_{\alpha,n}(X) := \bigcup\{H_{\alpha,n}^{m}(X) : m \in \omega\}$.

For $\kappa \in R^+$

$$\Psi_{\kappa,n}\alpha := \min\{\beta \leq \kappa : \kappa \in H_{\alpha,n}(\beta) \& H_{\alpha,n}(\beta) \cap \kappa \subset \beta\}.$$  

The ordinal $\Psi_{\kappa,n}\alpha$ is well defined and $\Psi_{\kappa,n}\alpha \leq \kappa$ for any uncountable regular $\kappa \leq I$ since $\kappa \in H_{\alpha,n}(\kappa)$ by Proposition 4.3 below.

**Proposition 4.2**

1. $H_{\alpha,n}(X)$ is closed under $\Sigma_1$-definability: $a \subset H_{\alpha,n}(X) \cap L_I \Rightarrow \text{Hull}_{\Sigma_1}(a) \cap L_I \subset H_{\alpha,n}(X)$.

2. For $\kappa \in R$, $\text{Hull}_{\Sigma_1}(\Psi_{\kappa,n}\alpha \cup \{\kappa\}) \cap \kappa = \Psi_{\kappa,n}\alpha$. Namely $\Psi_{\kappa,n}\alpha \in C^{\Sigma_1}_\kappa(\{\kappa\})$.

3. $H_{\alpha,n}(X)$ is closed under the Veblen function $\varphi$ on $I$, $x, y \in H_{\alpha,n}(X) \cap I \Rightarrow \varphi xy \in H_{\alpha,n}(X)$.

4. If $\kappa \in H_{\alpha,n}(X) \cap R$, $x \in H_{\alpha,n}(X) \cap \kappa$, $\text{Hull}_{\Sigma_1}(x \cup \{\kappa\}) \cap \kappa \subset x$, $(\kappa = \omega_{\kappa+1} \Rightarrow \omega_c < x)$ and $\delta \in (\text{Hull}_{\Sigma_1}(x \cup \{\kappa\}) \cup \{I\}) \cap H_{\alpha,n}(X)$, then $F_{x\cup\{\kappa\}}(\kappa)(\delta) \in H_{\alpha,n}(X)$.

5. If $x \in H_{\alpha,n}(X) \cap I$, $\text{Hull}_{\Sigma_1}(x \cap I \subset x$ and $\delta \in (\text{Hull}_{\Sigma_1}(x \cup \{\kappa\}) \cup \{I\}) \cap H_{\alpha,n}(X)$, then $F_{x\cup\{\kappa\}}(\kappa)(\delta) \in H_{\alpha,n}(X)$.

6. Assume $n \geq 2$. $\gamma \in H_{\alpha,n}(X) \cap I \Rightarrow \omega_{\gamma} \in H_{\alpha,n}(X) \cap I$ for $\omega_{\alpha} = \aleph_0$.

Moreover $\gamma \in H_{\alpha,n}(X) \cap I \Rightarrow \gamma^+ = \min\{\lambda \in R : \gamma < \lambda\} \in H_{\alpha,n}(X) \cap I$.

**Proof.**

By the definition of $H_{\alpha,n}(X)$, we have

$$\text{Hull}_{\Sigma_1}(\Psi_{\kappa,n}\alpha \cup \{\kappa\}) \cap \kappa \subset H_{\alpha,n}(\Psi_{\kappa,n}\alpha) \cap \kappa \subset \Psi_{\kappa,n}\alpha \subset \text{Hull}_{\Sigma_1}(\Psi_{\kappa,n}\alpha \cup \{\kappa\}) \cap \kappa.$$  

This is seen from the $\Sigma_1$-definability of the Veblen function $\varphi$.

From Corollary 4.3.2 the map $I > \alpha \mapsto \omega_\alpha$ and its inverse are $\Delta_2$-definable. Moreover the next regular ordinal $\gamma^+$ is $\Delta_2$-definable. □

In the following Proposition 4.3 for $\kappa \in R^+$ and $x$, $(\text{Hull}(x, \kappa), F_{x,\kappa})$ denotes $(\text{Hull}_{\Sigma_1}(x \cup \{\kappa\}, F_{x\cup\{\kappa\}})$ when $\kappa < I$, and $(\text{Hull}_{\Sigma_1}(x), F_{x\cup\{\kappa\}})$ when $\kappa = I$.

**Proposition 4.3**

Suppose $n \geq 2$, $\kappa, \lambda \in R^+$, $\text{Hull}(x, \kappa) \cap \kappa \subset x$, and $\omega_c < x$ if $\kappa = \omega_{\kappa+1}$. Then $x < \Psi_{\lambda,n}b \Rightarrow F_{x,\kappa}(I) < \Psi_{\lambda,n}b$, and $a \in H_{b,n}(\Psi_{\kappa,n}b) \cap b \Rightarrow \Psi_{\kappa,n}a < \Psi_{\kappa,n}b$. 

13
Proof. Suppose $x < \Psi_{\lambda,n}b$. We show $\kappa \in \mathcal{H}_{b,n}(\Psi_{\lambda,n}b)$. If $\kappa = I$, there is nothing to show. If $\kappa = \omega_{c+1}$, we have $c \leq \omega_c < x < \Psi_{\lambda,n}b$ and $c \in \mathcal{H}_{b,n}(\Psi_{\lambda,n}b)$. By Proposition 4.4, we have $\kappa = \omega_{c+1} \in \mathcal{H}_{b,n}(\Psi_{\lambda,n}b)$. Thus $F_{x,\kappa}(I) \in \mathcal{H}_{b,n}(\Psi_{\lambda,n}b)$.

It remains to see $y := F_{x,\kappa}(I) < \lambda$. We have a definable bijection from $x$ to $L_y$. Since $x < \lambda$, we conclude $F_{x,\kappa}(I) = y < \lambda$.

We see the following Proposition 4.4 as in [6].

**Proposition 4.4** Let $n \geq 2$.

1. For any $\kappa \in R^+$, $\kappa \in \mathcal{H}_{\alpha,n}(\kappa)$, $\kappa \in \mathcal{H}_{\alpha,n}(\Psi_{\kappa,n}\alpha)$ and $\Psi_{\kappa,n}\alpha < \kappa$.
2. $\Psi_{\kappa,n}\alpha \notin \{\omega_\beta : \beta < \omega_\beta\}$.
3. $\omega_\alpha < \Psi_{\alpha+1,n}\alpha < \omega_{\alpha+1}$.
4. $\omega_{\Psi_{1,n}} = \Psi_{1,\kappa}\alpha$.
5. $\Psi_{1,n}\alpha < I$.

The following Proposition 4.5 is easy to see.

**Proposition 4.5** Both of $x = \mathcal{H}_{\alpha,n}(\beta)(\alpha < \omega_{n+1}(I + 1), \beta < I)$ and $y = \Psi_{\kappa,n}\alpha (\kappa \in R^+)$ are $\Sigma_{n+1}$-predicates as fixed points in ZF.

**Lemma 4.6** $\forall \alpha < \omega_{n+1}(I + 1) \forall \kappa \in R^+ \exists x < \kappa[x = \Psi_{\kappa,n}\alpha]$.

**Proof.** By Proposition 4.4 both $x = \mathcal{H}_{\alpha,n}(\beta)(\alpha < \omega_{n+1}(I + 1), \beta < I)$ and $y = \Psi_{\kappa,n}\alpha (\kappa \in R^+)$ are $\Sigma_{n+1}$-predicates. We show that $A(\alpha) \iff \forall \beta < I \exists x[x = \mathcal{H}_{\alpha,n}(\beta)] \land \forall \kappa \in R^+ \exists \beta < \kappa[\Psi_{\kappa,n}\alpha = \beta]$ is progressive along $\prec$. Then $\forall \alpha < \omega_{n+1}(I + 1) \forall \kappa \in R^+ \exists x < \kappa[x = \Psi_{\kappa,n}\alpha]$ will follow from transfinite induction up to $\omega_{n+1}(I + 1)$, cf. (17).

Assume $\gamma < \alpha A(\gamma)$ as our IH. We have $\exists x[\exists h = \text{Hull}_{\Psi_{\gamma,n}}(x)]$. We see from this, IH and Separation that $\forall X \exists! Y D_{\alpha,n}(X,Y)$, where $D_{\alpha,n}(X,Y)$ is a $\Sigma_{n+1}$-predicate such that if $D_{\alpha,n}(\mathcal{H}_{\alpha,n}(\beta),Y)$ then $Y = \mathcal{H}_{\alpha,n}(\beta)$ for any $Y$. Therefore $\forall \beta < I \exists x = \mathcal{H}_{\alpha,n}(\beta) = \bigcup_{\gamma} \mathcal{H}_{\alpha,n}(\beta)$.

Next as in the Proof of Theorem 2.4.7, define recursively ordinals $\{\beta_m\}_m$ for $\kappa \in R^+$ as follows. $\beta_0 = 0$ if $\kappa = I$ and $\beta_0 = a + 1$ if $\kappa = \omega_{a+1}$, and $\beta_m+1$ is defined to be the least ordinal $\beta_m < \kappa$ such that $\mathcal{H}_{\alpha,n}(\beta_m) \cap \kappa < \beta_m+1$.

We see inductively that $\beta_m < \kappa$ using the regularity of $\kappa$ and the facts that $\forall \beta < I \exists x[x = \mathcal{H}_{\alpha,n}(\beta)]$ and $\forall \beta < \kappa \exists x[x = \mathcal{H}_{\alpha,n}(\beta) \land \text{card}(x) < \kappa]$ for $\kappa = \omega_{a+1}$. For the case $\kappa = I$, $\text{card}(x) < I$ can be replaced by $\text{card}(x) < \omega_1$. The latter follows from the fact that $\forall X \exists Y[D_{\alpha,n}(X,Y) \land \{\text{card}(X) < \kappa \rightarrow \text{card}(Y) < \kappa\}]$.

Moreover $m \rightarrow \beta_m$ is a definable map. Therefore $\beta = \sup \beta_m < \kappa$ enjoys $\mathcal{H}_{\alpha,n}(\beta) \cap \kappa < \beta$. Also $a \in \mathcal{H}_{\alpha,n}(\beta)$ for $\kappa = \omega_{a+1}$. \qed
5 Operator controlled derivations for weakly in-accessibles

This section relies on Buchholz’ techniques in [6].
In what follows of this section \( n \geq 2 \) denotes a fixed positive integer, and we work in \( \text{ZF} + (V = L) \). We consider only the ordinals \( < \omega_{n+1}(I + 1) \).

\( L = L_I \cup \bigcup_{\alpha < I} L_\alpha \) denotes the universe. Both \( L_I \models A \) and ‘\( A \) is true’ are synonymous with \( A \).

5.1 Classes of formulae

The language \( L_c \) is obtained from \( \{ \in, P, P_{I,n}, \text{Reg} \} \) by adding names (individual constants) \( c_a \) of each set \( a \in L \). \( c_a \) is identified with \( a \). A term in \( L_c \) is either a variable or a constant in \( L \).

Formulae in this language are defined in the next definition. Formulae are assumed to be in negation normal form.

**Definition 5.1**

1. Let \( t_1, \ldots, t_m \) be terms. For each \( m \)-ary predicate constant \( R \in \{ \in, P, P_{I,n}, \text{Reg} \} \) \( R(t_1, \ldots, t_m) \) and \( \neg R(t_1, \ldots, t_m) \) are formulae, where \( m = 1, 2, 3 \). These are called *literals*.

2. If \( A \) and \( B \) are formulae, then so are \( A \land B \) and \( A \lor B \).

3. Let \( t \) be a term. If \( A \) is a formula and the variable \( x \) does not occur in \( t \), then \( \exists x \in t A \) and \( \forall x \in t A \) are *bounded* formulae.

4. If \( A \) is a formula and \( x \) a variable, then \( \exists x A \) and \( \forall x A \) are *unbounded* formulae. Unbounded quantifiers \( \exists x \) and \( \forall x \) are denoted by \( \exists x \in L_I, \forall x \in L_I \), resp.

For formulae \( A \) in \( L_c \), \( qk(A) \) denotes the finite set of sets \( a \) which are bounds of ‘bounded’ quantifiers \( \exists x \in a, \forall x \in a \) occurring in \( A \). Moreover \( k(A) \) denotes the set of sets occurring in \( A \). \( k(A) \) is defined to include bounds of ‘bounded’ quantifiers. By definition we set \( 0 \in qk(A) \). Thus \( 0 \in qk(A) \subset k(A) \subset L_I \cup \{ L_I \} \).

**Definition 5.2**

1. \( k(\neg A) = k(A) \) and similarly for \( qk \).

2. \( qk(M) = \{ 0 \} \) for any literal \( M \).

3. \( k(Q(t_1, \ldots, t_m)) = (\{ t_1, \ldots, t_m \} \cap L_I) \cup \{ 0 \} \) for literals \( Q(t_1, \ldots, t_m) \) with predicates \( Q \) in the set \( \{ \in, P, P_{I,n}, \text{Reg} \} \).

4. \( k(A_0 \lor A_1) = k(A_0) \cup k(A_1) \) and similarly for \( qk \).

5. For \( a \in L_I \cup \{ L_I \} \), \( k(\exists x \in a A(x)) = \{ a \} \cup k(A(x)) \) and similarly for \( qk \).

6. For variables \( y \), \( k(\exists x \in y A(x)) = k(A(x)) \) and similarly for \( qk \).

7. For sets \( \Gamma \) of formulae \( k(\Gamma) := \bigcup \{ k(A) : A \in \Gamma \} \).
For example \( qk(\exists x \in a \, A(x)) = \{a\} \cup qk(A(x)) \).

**Definition 5.3** For \( a \in L_I \cup \{L_I\} \), \( \text{rk}_L(a) \) denotes the \( L \)-rank of \( a \).

\[
\text{rk}_L(a) := \begin{cases} 
\min\{\alpha \in \text{Ord} : a \in L_{\alpha+1}\} & a \in L_I = L \\
I & a = L_I
\end{cases}
\]

**Definition 5.4**

1. \( A \in \Delta_0 \) iff there exists a \( \Delta_0 \)-formula \( \theta[\bar{t}] \) in the language \( \{\in\} \) and terms \( \bar{t} \) in \( L_c \) such that \( A \equiv \theta[\bar{t}] \). This means that \( A \) is bounded, and the predicates \( P, P_{I,n}, \text{Reg} \) do not occur in \( A \).

2. Putting \( \Sigma_0 := \Pi_0 := \Delta_0 \), the classes \( \Sigma_m \) and \( \Pi_m \) of formulae in the language \( L_c \) are defined as usual, where by definition \( \Sigma_m \cup \Pi_m \subset \Sigma_{m+1} \cap \Pi_{m+1} \).

   Each formula in \( \Sigma_m \cup \Pi_m \) is in prenex normal form with alternating unbounded quantifiers and \( \Delta_0 \)-matrix.

3. The set \( \Sigma^{\Sigma_{n+1}}(\lambda) \) of sentences is defined recursively as follows. Let \( \{a, b, c\} \subset L_I \) and \( d \in L_I \cup \{L_I\} \).

   (a) Each \( \Sigma_{n+1} \)-sentence is in \( \Sigma^{\Sigma_{n+1}}(\lambda) \).

   (b) Each literal including \( \text{Reg}(a), P(a, b, c), P_{I,n}(a) \) and its negation is in \( \Sigma^{\Sigma_{n+1}}(\lambda) \).

   (c) \( \Sigma^{\Sigma_{n+1}}(\lambda) \) is closed under propositional connectives \( \lor, \land \).

   (d) Suppose \( \forall x \in d \, A(x) \not\in \Delta_0 \). Then \( \forall x \in d \, A(x) \in \Sigma^{\Sigma_{n+1}}(\lambda) \) iff \( A(\emptyset) \in \Sigma^{\Sigma_{n+1}}(\lambda) \) and \( \text{rk}_L(d) < \lambda \).

   (e) Suppose \( \exists x \in d \, A(x) \not\in \Delta_0 \). Then \( \exists x \in d \, A(x) \in \Sigma^{\Sigma_{n+1}}(\lambda) \) iff \( A(\emptyset) \in \Sigma^{\Sigma_{n+1}}(\lambda) \) and \( \text{rk}_L(d) < \lambda \).

Note that the predicates \( P, P_{I,n}, \text{Reg} \) do not occur in \( \Sigma_m \)-formulae.

**Definition 5.5** Let us extend the domain \( \text{dom}(F_{x \cup \{\kappa\}}^{\Sigma_1}) = \text{Hull}_L^I(x \cup \{\kappa\}) \) of the Mostowski collapse to formulae.

\[
\text{dom}(F_{x \cup \{\kappa\}}^{\Sigma_1}) = \{ A \in \Sigma_1 \cup \Pi_1 : k(A) \subset \text{Hull}_L^I(x \cup \{\kappa\}) \cup \{I\}\}.
\]

For \( A \in \text{dom}(F_{x \cup \{\kappa\}}^{\Sigma_1}) \), \( F_{x \cup \{\kappa\}}^{\Sigma_1} " A \) denotes the result of replacing each constant \( c \in L_I \) by \( F_{x \cup \{\kappa\}}^{\Sigma_1}(c) \), each unbounded existential quantifier \( \exists z \in L_I \) by \( \exists z \in L_{F_{x \cup \{\kappa\}}^{\Sigma_1}(I)} \), and each unbounded universal quantifier \( \forall z \in L_I \) by \( \forall z \in L_{F_{x \cup \{\kappa\}}^{\Sigma_1}(I)} \).

For sequent, i.e., finite set of sentences \( \Gamma \subset \text{dom}(F_{x \cup \{\kappa\}}^{\Sigma_1}) \), put \( F_{x \cup \{\kappa\}}^{\Sigma_1} " \Gamma = \{ F_{x \cup \{\kappa\}}^{\Sigma_1} " A : A \in \Gamma \} \).

Likewise the domain \( \text{dom}(F_x^{\Sigma_n}) = \text{Hull}_L^I(x) \) is extended to

\[
\text{dom}(F_x^{\Sigma_n}) = \{ A \in \Sigma_n \cup \Pi_n : k(A) \subset \text{Hull}_L^I(x) \cup \{I\}\}
\]

and for formula \( A \in \text{dom}(F_x^{\Sigma_n}) \), \( F_x^{\Sigma_n} " A \), and sequent \( \Gamma \subset \text{dom}(F_x^{\Sigma_n}) \), \( F_x^{\Sigma_n} " \Gamma \) are defined similarly.
Proposition 5.6 For $F = F^\Sigma_{\Xi_1}, F^\Sigma_x$ and $A \in \text{dom}(F)$, $A \leftrightarrow F^n A$.

The assignment of disjunctions and conjunctions to sentences is defined as in [6] except for $\Sigma_n \cup \Pi_n$-formulae.

Definition 5.7 1. If $M$ is one of the literals $a \in b$, $a \not\in b$, then for $J := 0$

$$M := \begin{cases} \bigvee (A_i)_{i \in J} & \text{if } M \text{ is false (in } L) \\ \bigwedge (A_i)_{i \in J} & \text{if } M \text{ is true} \end{cases}$$

2. $(A_0 \lor A_1) := \bigvee (A_i)_{i \in J}$ and $(A_0 \land A_1) := \bigwedge (A_i)_{i \in J}$ for $J := 2$.

3. $\text{Reg}(a) := \bigvee (a \not\in a)_{i \in J}$ and $\neg \text{Reg}(a) := \bigwedge (a \in a)_{i \in J}$ with $J := \begin{cases} 1 & \text{if } a \in R \\ 0 & \text{otherwise} \end{cases}$

4. $P(a, b, c) := \bigvee (a \not\in a)_{i \in J}$ and $\neg P(a, b, c) := \bigwedge (a \in a)_{i \in J}$ with

$$J := \begin{cases} 1 & \text{if } a \in R \& \exists \alpha < \omega_{n+1}(I+1)[b = \Psi_{a,n} \& a \in \mathcal{H}_{a,n}(b) \& c = F_{\Sigma_{\Xi_1}}(J)] \\ 0 & \text{otherwise} \end{cases}$$

5. $P_{t,n}(a) := \bigvee (a \not\in a)_{i \in J}$ and $\neg P_{t,n}(a) := \bigwedge (a \in a)_{i \in J}$ with

$$J := \begin{cases} 1 & \text{if } \exists \alpha < \omega_{n+1}(I+1)[a = \Psi_{t,n} \& a \in \mathcal{H}_{a,n}(a)] \\ 0 & \text{otherwise} \end{cases}$$

6. Let $\exists z \in b \theta[z] \in \Sigma_n$ for $b \in L_I \cup \{L_I\}$. Then for the set

$$d := \mu z \in b \theta[z] := \min\{d \in b \theta[d] \mid (\exists z \in b \theta[z] \land d = 0)\} \quad (18)$$

with a canonical well ordering $<L$ on $L$, and $J = \{d\}$

$$\exists z \in b \theta[z] := \bigvee (d \in b \land \theta[d])_{d \in J}$$

$$\forall z \in b \land \neg \theta[z] := \bigwedge (d \in b \rightarrow \neg \theta[d])_{d \in J}$$

(19)

where $d \in b$ denotes a true literal, e.g., $d \not\in d$ when $b = L_I$.

7. Otherwise set for $a \in L_I \cup \{L_I\}$ and $J := \{b : b \in a\}$

$$\exists x \in a A(x) := \bigvee (A(b))_{b \in J} \text{ and } \forall x \in a A(x) := \bigwedge (A(b))_{b \in J}.$$

The rank $\text{rk}(A)$ of sentences $A$ is defined by recursion on the number of symbols occurring in $A$.

Definition 5.8 1. $\text{rk}(\neg A) := \text{rk}(A)$.

2. $\text{rk}(a \in b) := 0$.

3. $\text{rk}(\text{Reg}(a)) := \text{rk}(P(a, b, c)) := \text{rk}(P_{t,n}(a)) := 1$. 

17
4. \( \text{rk}(A_0 \lor A_1) := \max\{\text{rk}(A_0), \text{rk}(A_1)\} + 1. \)

5. \( \text{rk}(\exists x \in a \ A(x)) := \max\{\omega a, \text{rk}(A(\emptyset)) + 2\} \) for \( a = \text{rk}_L(a). \)

**Proposition 5.9** Let \( A \simeq \bigvee_{i \in J} A_i \) or \( A \simeq \bigwedge_{i \in J} A_i \).

1. \( \forall \iota \in J(k(A_\iota) \subset k(A) \cup \{ \iota \}). \)

2. \( A \in \Sigma^{\Sigma + 1}(\lambda) \Rightarrow \forall \iota \in J(A_\iota \in \Sigma^{\Sigma + 1}(\lambda)). \)

3. For an ordinal \( \lambda \leq I \) with \( \omega \lambda = \lambda, \text{rk}(A) < \lambda \Rightarrow A \in \Sigma^{\Sigma + 1}(\lambda). \)

4. \( \text{rk}(A) < I + \omega. \)

5. \( \text{rk}(A) \in \{\omega \text{rk}_L(a) + i : a \in qk(A), i \in \omega\} \subset \text{Hull}_I^{\Sigma+1}(k(A)). \)

6. \( \forall \iota \in J(\text{rk}(A_\iota) < \text{rk}(A)). \)

**Proof.** [5.9.6] This is seen from the fact that \( a \in b \in L_I \cup \{L_I\} \Rightarrow \text{rk}_L(a) < \text{rk}_L(b). \)

5.2 Operator controlled derivations

Let \( \mathcal{H} \) be an operator \( \mathcal{H} : \mathcal{P}(L_{\omega_n+1}(I+1)) \rightarrow \mathcal{P}(L_{\omega_n+1}(I+1)) \) on \( L_{\omega_n+1}(I+1) \). For \( \Theta \in \mathcal{P}(L_{\omega_n+1}(I+1)), \mathcal{H}[\Theta] \) denotes the operator defined by \( \mathcal{H}[\Theta](X) := \mathcal{H}(\Theta \cup X) \) for \( X \in \mathcal{P}(L_{\omega_n+1}(I+1)) \). The map \( X \mapsto \mathcal{H}_{a,n}(X) \) defined in Definition 4.1 is an example of an operator on \( L_{\omega_n+1}(I+1) \).

Let \( \mathcal{H} \) be an operator \( \mathcal{H} \) on \( L_{\omega_n+1}(I+1), \kappa \in R^+, \Gamma \) a sequent, \( a < \omega_n+1(I+1) \) and \( b < I + \omega. \) By recursion on ordinals \( a \) we define a relation \((\mathcal{H}, \kappa, n) \vdash^a_b \Gamma\), which is read 'there exists an infinitary derivation of \( \Gamma \) which is \((\kappa, n)\)-controlled by \( \mathcal{H} \), and whose height is at most \( a \) and its cut rank is less than \( b\).

Sequents are finite sets of sentences, and inference rules are formulated in one-sided sequent calculus.

**Definition 5.10** By recursion on ordinals \( a \) define a relation \((\mathcal{H}, \kappa, n) \vdash^a_b \Gamma\) as follows.

\[(\mathcal{H}, \kappa, n) \vdash^a_b \Gamma \text{ holds if} \]

\[\{a\} \cup k(\Gamma) \subset \mathcal{H} := \mathcal{H}(\emptyset) \quad (20)\]

and one of the following cases holds:

(\( \forall \)) \( A \simeq \bigvee\{A_\iota : \iota \in J\}, A \in \Gamma \) and there exist \( \iota \in J \) and \( a(\iota) < a \) such that

\[\text{rk}_L(\iota) < \kappa \Rightarrow \text{rk}_L(\iota) < a \quad (21)\]

and \((\mathcal{H}, \kappa, n) \vdash^{a(\iota)}_b \Gamma, A_\iota. \)

(\( \forall \)) \( A \simeq \bigwedge\{A_\iota : \iota \in J\}, A \in \Gamma \) and for every \( \iota \in J \) there exists an \( a(\iota) < a \) such that \((\mathcal{H}[\{\iota\}], \kappa, n) \vdash^{a(\iota)}_b \Gamma, A_\iota. \)
(cut) There exist \(a_0 < a\) and \(C\) such that \(\text{rk}(C) < b\) and \((\mathcal{H}, \kappa, n) \vdash_{b} ^{a_0} \Gamma, \neg C\) and \((\mathcal{H}, \kappa, n) \vdash_{b} ^{a_0} C, \Gamma\).

\((\text{P}_\lambda)\) \(\lambda \in R\) and there exists \(\alpha < \lambda\) such that \((\exists x, y < \lambda | \alpha < x \land P(\lambda, x, y)) \in \Gamma\).

\((\text{F}^\Sigma_{x\cup \{\lambda\}})\) \(\lambda \in \mathcal{H} \cap R, x = \Psi_{\lambda, n} \beta \in \mathcal{H}\) for a \(\beta\) and there exist \(a_0 < a, \Gamma_0 \subseteq \Sigma_1\) and \(\Lambda\) such that \(k(\Gamma_0) \subseteq \text{Hull}_{\Sigma_1}^I((\mathcal{H} \cap x) \cup \{\lambda\}) \cup \{I\}, \Gamma = \Lambda \cup (F^\Sigma_{x\cup \{\lambda\}})^- \Gamma_0\) and \((\mathcal{H}, \kappa, n) \vdash_{b} ^{a_0} \Lambda, \Gamma_0\), where \(F^\Sigma_{x\cup \{\lambda\}}\) denotes the Mostowski collapse \(F^\Sigma_{x\cup \{\lambda\}} : \text{Hull}_{\Sigma_1}^I(x) \leftrightarrow L_{F^\Sigma_{x\cup \{\lambda\}}} (I)\).

\((\text{P}_{I,n})\) There exists \(\alpha < I\) such that \((\exists x < I | \alpha < x \land P_{I,n}(x)) \in \Gamma\).

\((\text{F}^\Sigma_n)\) \(x = \Psi_{I,n} \beta \in \mathcal{H}\) for a \(\beta\) and there exist \(a_0 < a, \Gamma_0 \subseteq \Sigma_n\) and \(\Lambda\) such that \(k(\Gamma_0) \subseteq \text{Hull}_{\Sigma_n}^I((\mathcal{H} \cap x) \cup \{I\}), \Gamma = \Lambda \cup (F^\Sigma_n)^- \Gamma_0\) and \((\mathcal{H}, \kappa, n) \vdash_{b} ^{a_0} \Lambda, \Gamma_0\), where \(F^\Sigma_n\) denotes the Mostowski collapse \(F^\Sigma_n : \text{Hull}_{\Sigma_n}^I(x) \leftrightarrow L_{F^\Sigma_n (I)}\).

**Proposition 5.11** \((\mathcal{H}, \kappa, n) \vdash_{b} ^{a} \Gamma \land \lambda \leq \kappa \Rightarrow (\mathcal{H}, \lambda, n) \vdash_{b} ^{a} \Gamma\).

The inferences rules \((\lor), (\land)\) and \((\text{cut})\) are standard except \(\Sigma_n \cup \Pi_n\)-formulae are derived from specific minor formulae, \([13]\). \((\text{P}_\lambda)\) is an axiom for deducing the axioms \([12]\), \(\text{Reg}(\lambda) \Rightarrow \forall z < \lambda | \exists x, y < \lambda | z < x \land P(\lambda, x, y))\), and \((\text{F}^\Sigma_{x\cup \{\lambda\}})\) for proving the axioms \([11]\), \(P(\lambda, x, y) \land z < x \Rightarrow \varphi[\lambda, z] \Rightarrow \varphi^\theta[x, z]\) for \(\Sigma_1 \varphi\). Likewise \((\text{P}_I)\) and \((\text{F}^\Sigma_n)\) for the axioms \([15]\) and \([14]\).

Let us explain the purpose of the unusual, though correct inference rules \((\lor), (\land)\) for deriving \(\Sigma_n \cup \Pi_n\)-formulae. For simplicity set \(\lambda = \omega_1\) and \(F_x = F^\Sigma_{x\cup \{\omega_1\}}\), and consider the language of ordinals. Consider the standard inference rules for introducing existential quantifiers in which any correct witness can be a witness:

\[
(\mathcal{H}, \kappa, n) \vdash \exists z < \beta \theta[z, \alpha], \Gamma
\]

where \(\alpha < \beta\). Then its dual should be

\[
(\mathcal{H}, \kappa, n) \vdash \forall z < \beta \neg \theta[z, \alpha], \Gamma
\]

But then, we have to examine all possible witnesses \(\alpha < \beta\) in deriving the axiom \(\forall z < I \rightarrow \exists z < F_x(I) \theta[z, F_x(\omega_1), a]\) for \(a < x = F_x(\omega_1)\): Assume \(a, x, y \in \mathcal{H}\).

\[
(\mathcal{H} | \{\alpha\}, \kappa, n) \vdash \exists z < F_x(I) \theta[z, F_x(\omega_1), a]\]

For \(\alpha \in \text{dom}(F_x)\) we can deduce it by \((\text{F}_x)\)

\[
(\mathcal{H} | \{\alpha\}, \kappa, n) \vdash \exists z < F_x(I) \theta[z, F_x(\omega_1), a]
\]

\[
(\mathcal{H} | \{\alpha\}, \kappa, n) \vdash \exists z < F_x(I) \theta[z, F_x(\omega_1), a]
\]

\[
(\mathcal{H} | \{\alpha\}, \kappa, n) \vdash \exists z < F_x(I) \theta[z, F_x(\omega_1), a]
\]
But there are ordinals $\alpha < I$ such that $\alpha \notin \text{dom}(F_x)$ since $\text{dom}(F_x) = \text{Hull}_L(x \cup \{\omega_1\})$ is countable, and $I > \omega_1$ is uncountable.

Moreover the same trouble occurs, when an inference rule for quantifiers followed by an $(F_x)$:

$$
\frac{\Gamma, \theta[\gamma, \alpha]}{\Gamma, \exists z < \beta \theta[\gamma, z]} (F_x)
$$

Even if $\alpha < \beta$, it may be the case $\alpha \notin \text{dom}(F_x)$.

Contrary to this, in the inference rule for $\delta = \mu z < \beta \theta[\gamma, z]$, $\delta$ is $\Sigma_1$-definable from $\{\beta\} \cup \gamma$ if $\beta < I$. Therefore if $\{\beta\} \cup \gamma \subset \text{dom}(F_x)$, then so is $\delta$.

We will state some lemmata for the operator controlled derivations with sketches of their proofs since these can be shown as in [6].

In what follows by an operator we mean an $\mathcal{H}_{\gamma, n}[\Theta]$ for a finite set $\Theta$ of sets.

**Lemma 5.12** (Tautology) If $k(\Gamma \cup \{A\}) \subset \mathcal{H}$, then $(\mathcal{H}, I, n) \vdash^{2 \text{rk}(A)} (\Gamma, \neg A, A)$.

**Lemma 5.13** ($\Sigma_n \cup \Pi_n$-completeness)

For any sentence $A \in \Sigma_n \cup \Pi_n$, ($A$ is true) $\Rightarrow (\mathcal{H}, I, n) \vdash^{2 \text{rk}(A)} A$.

**Proof.** This is seen by induction on the number of symbols occurring in $\Sigma_n \cup \Pi_n$-sentences $A$.

**Lemma 5.14** (Elimination of false $\Sigma_n$-sentences)

For any sentence $A \in \Sigma_n$, ($A$ is false) $\& (\mathcal{H}, I, n) \vdash^{a} (\Gamma, A) \Rightarrow (\mathcal{H}, I, n) \vdash^{a} (\Gamma, A)$.

**Proof.** This is seen by induction on $a$ using Proposition 5.6.

**Lemma 5.15** Let $\varphi[x, z] \in \Sigma_m$ for $m \geq 1$, and $\Theta_c = \{\neg \forall y(\forall x \in y \varphi[x, c] \rightarrow \varphi[y, c])\}$. Then for any operator $\mathcal{H}$, and any $a, c$, $(\mathcal{H}[\{c, a\}], I, n) \vdash^{I + 2m + 4 + 2 \text{rk}_L(a)}_{I + m + 2} \Theta_c, \forall x \in a \varphi[x, c]$.

**Proof.** by induction on $\text{rk}_L(a)$. Let $f(a) = I + 2m + 4 + 2 \text{rk}_L(a)$. By IH we have for any $b \in a$, $(\mathcal{H}[\{c, b\}], I, n) \vdash^{f(b)}_{I + m + 2} \Theta_c, \forall x \in b \varphi[x, c]$. On the other hand by Lemma 5.12 with $\text{rk}(\varphi) \leq I + m - 1$ and $\text{rk}(\forall x \in b \varphi[x, c]) \leq I + m + 1$, we have $(\mathcal{H}[\{c, b\}], I, n) \vdash^{f(b) + 1}_{I + 2m + 4} \Theta_c, \neg \forall x \in b \varphi[x, c], \varphi[b, c]$. By a (cut) with $I + 2m + 4 \leq f(b)$ we obtain $(\mathcal{H}[\{c, b\}], I, n) \vdash^{f(b) + 1}_{I + m + 2} \Theta_c, \varphi[b, c]$. ($\Lambda$) yields $(\mathcal{H}[\{c, a\}], I, n) \vdash^{f(a)}_{I + m + 2} \Theta_c, \forall x \in a \varphi[x, c]$. \qed
Definition 5.16 \((H, I, n) \vdash_\omega^\alpha \Gamma \iff \exists \beta < \alpha [(H, I, n) \vdash_\omega^\beta \Gamma].\)

Lemma 5.17 Let \(A\) be an axiom in \(T(I, n)\) except Foundation axiom schema. Then \((H, I, n) \vdash_0^{1+\omega} A\) for any operator \(H\).\)

Proof. By Lemma 6.13 there remains nothing to show for \(\Pi_2\)-axioms in \(KP\omega\) + \((V = L)\).

So in any case, \((H[I], \omega, a), I, n) \vdash_0^{1+\omega} \neg P(\lambda, \nu, a) \iff \neg(a \in L_i).\) Hence \((H[I], \nu, a), I, n) \vdash_0^{1+\omega} \neg P(\lambda, \nu, a).\)

By \((\forall)\) we obtain \((H[I], \nu, a), I, n) \vdash_0^{1+\omega} \forall P(a, x, y) \rightarrow \neg P(a, x, y).\) Note that \(P(a, x, y) \rightarrow \neg P(a, x, y)\) is not a \(\Sigma_n\)-formula since the predicate \(P\) occurs in it.

Likewise the axiom \((\exists)\) is derived by \((F^\omega_\omega)\), and \((H[I], \nu, a), I, n) \vdash_0^{1+\omega} \exists P(\lambda, \nu, a).\)

Finally consider the axiom \((\exists)\). If \(a\) is not an ordinal, then \((H[I], \nu, a), I, n) \vdash_0^{1+\omega} \exists P(a, x, y) \rightarrow a \in Ord \rightarrow \exists y[y > a \land Reg(y)].\) Assume \(a\) is an ordinal. By Proposition 4.20 and \(n \geq 2\) we have \(a^+ \in H[I]\) and \((H[I], \nu, a), I, n) \vdash_0^{1+\omega} a^+ > a \land Reg(a^+),\) and \((H[I], \nu, a), I, n) \vdash_0^{1+\omega} a \in Ord \rightarrow \exists y[y > a \land Reg(y)].\) Therefore by \((\forall)\) we obtain \((H[I], \nu, a), I, n) \vdash_0^{1+\omega} \forall x \in Ord \exists y[y > x \land Reg(y)].\)

Lemma 5.18 (Embedding)
If \(T(I, n) \vdash \Gamma[z]\), there are \(m, k < \omega\) such that for any \(\bar{a} \subset L_I, (H[I], \bar{a}, I, n) \vdash_\omega^{2+k} \Gamma[\bar{a}]\) for any operator \(H = H_{\gamma,n}.\)

Proof. By Lemma 5.15 we have \((H[I], \bar{a}, I, n) \vdash_\omega^{2+k} \forall u, z(\forall x \in y \varphi[x, z] \rightarrow \varphi[y, z]) \rightarrow \varphi[u, z])\) for \(\varphi[x, z] \in \Sigma_m.\) By Lemmata 5.12 and 5.17 it suffices to consider inference rules of logical connectives.

21
Proof. Consider the case when \( \theta \in \Delta_0 \) and \( (\exists z \in b \theta[c,z]) \equiv (\exists z \in F_{\Sigma_1}^{\Sigma_1}(b_0) \theta[F_{\Sigma_1}^{\Sigma_1}(c_0), z]) \) is a main formula of an \( (F_{\Sigma_1}^{\Sigma_1}(\lambda)) \) for an \( \iota = \Psi_{\lambda,n}\alpha \).

We have \( \{b_0\}_0 \cap \{c_0\} \subseteq \text{dom}(F_{\Sigma_1}^{\Sigma_1}(\lambda)) \). Then \( d = \mu z \in F_{\Sigma_1}^{\Sigma_1}(b_0) \theta[F_{\Sigma_1}^{\Sigma_1}(c_0), z] = F_{\Sigma_1}^{\Sigma_1}(d_0) \) for \( d_0 = \mu z \in b_0 \theta[c_0, z] \in \text{dom}(F_{\Sigma_1}^{\Sigma_1}(\lambda)) \). Thus \( d_0 \in b_0 \wedge \theta[c_0, d_0] \) is a minor formula with its main \( d \in b \wedge \theta[c,d] \) of the \( (F_{\Sigma_1}^{\Sigma_1}(\lambda)) \).

In the following Lemma 5.21 note that \( \text{rk}(\exists x < \lambda \exists y < \lambda \} < x \land P(\lambda, x, y)) = \lambda + 1 \) for \( \alpha < \lambda \in R \), and \( \text{rk}(\exists x < I[\alpha < x \wedge P_I(x)]) = I \).
Lemma 5.21 (Reduction)

Let $C \simeq \bigvee (C_i)_{i \in J}$.

1. Suppose $C \not\equiv \{ \exists x < \lambda \exists y < \lambda (\alpha < x \wedge P(\lambda, x, y)) : \alpha < \lambda \in R \} \cup \{ \exists x < I[\alpha < x \wedge P_{I.n}(x)] : \alpha < I \}$. Then
   
   $(\mathcal{H}, \kappa, n) \vdash^a \Delta, \neg C \land (\mathcal{H}, \kappa, n) \vdash^b C, \Gamma \land \text{rk}(C) \leq c \Rightarrow (\mathcal{H}, \kappa, n) \vdash^a +^b \Delta, \Gamma$

2. Assume $C \equiv (\exists x < \lambda \exists y < \lambda (\alpha < x \wedge P(\lambda, x, y)))$ for an $\alpha < \lambda \in R$ and $\beta \in \mathcal{H}_\beta, n$. Then
   
   $(\mathcal{H}_\beta, n, \kappa, n) \vdash^a \Gamma, \neg C \Rightarrow (\mathcal{H}_{\beta + 1, n}, \kappa, n) \vdash^a \Gamma$

3. Assume $C \equiv (\exists x < I[\alpha < x \wedge P_{I.n}(x)])$ for an $\alpha < I$ and $\beta \in \mathcal{H}_\beta, n$. Then
   
   $(\mathcal{H}_\beta, n, \kappa, n) \vdash^a \Gamma, \neg C \Rightarrow (\mathcal{H}_{\beta + 1, n}, \kappa, n) \vdash^a \Gamma$

Proof.

By induction on $b < \omega_{n+1}(I + 1)$. Consider the case when both $C$ and $\neg C$ are main formulae. First consider the case when $C \equiv (F_{\alpha / I, \lambda})$ is a main formula of an $(\mathcal{F}_{\alpha / I, \lambda})$ with a $\varphi \in \Sigma_1$, and $\neg C$ is a main formula of a $(\Lambda)$. Let $\neg C \equiv -F_{\alpha / I, \lambda} \varphi \equiv \forall z \in F_{\alpha / I, \lambda}(e) - \theta[F_{\beta / I, \lambda}(e), z]$ with $e \subseteq \text{Hull}_{\alpha}(\mathcal{H} \cap \iota) \cup \{ \lambda \}$, $e \in \text{Hull}_{\beta}(\mathcal{H} \cap \iota) \cup \{ \lambda \}$ and $\iota = \text{dom}(F_{\alpha / I, \lambda})$, and $F_{\alpha / I, \lambda}(d_0) = d$. Moreover by $\{ e \} \cup e \subseteq \mathcal{H}$ we have $d_0 = \mathcal{H}$.

By Lemma 5.20, inversion on the main formula $\forall z \in F_{\alpha / I, \lambda}(e) - \theta[F_{\beta / I, \lambda}(e), z]$ of the $(\Lambda)$, we get $(\mathcal{H}, \kappa, n) \vdash^a \Delta, \neg \theta[F_{\alpha / I, \lambda}(e), F_{\beta / I, \lambda}(d_0)]$, and inversion on the minor formula $\exists z \in e \theta[e, z]$ of $(F_{\alpha / I, \lambda})$ we get $(\mathcal{H}, \kappa, n) \vdash^b \theta[e, d_0]$ for the $d_0 \in e$, and then by $(F_{\alpha / I, \lambda})$ go back to $\neg \theta[F_{\beta / I, \lambda}(e), F_{\beta / I, \lambda}(d_0)]$.

Transfer

\[
\begin{array}{c}
\Delta, \forall z \in F_{\alpha / I, \lambda}(e) - \theta[F_{\alpha / I, \lambda}(e), z] \\
\exists z \in F_{\alpha / I, \lambda}(e) - \theta[F_{\alpha / I, \lambda}(e), z], F_{\beta / I, \lambda} \neg \Gamma, \Lambda
\end{array}
\]

\[
\begin{array}{c}
\Delta, F_{\beta / I, \lambda}, \neg \Gamma, \Lambda
\end{array}
\]

\[
\text{(cut)}
\]

Next consider the case $(F_i)$ vs. $(F_{\iota / I})$ with $\iota > \iota$, where $F_i = F_{i, \lambda}$ for some $\lambda \in R$ or $F_i = F_{i, n}$ with $\lambda = I$, and similarly for $F_{\iota / I}$.

23
Let $F_i^\prime \varphi$ be a main formula of $(F_i)$, and $\neg F_i^\prime \varphi \equiv \neg F_i^\prime \theta$ a main formula of $(F_i)$. Then by $\iota_1 > \iota$ and Proposition 4.3 we have $F_i(I) < \iota_1$, and hence $F_i^\prime \varphi \equiv F_i^\prime \theta$, i.e., $\theta \equiv F_i^\prime \varphi$.

\[
\begin{array}{c}
\frac{\Lambda, \Gamma, \varphi}{\Lambda, F_i^\prime \Gamma, F_i^\prime \varphi} \quad (\text{cut})
\end{array}
\]

**Lemma 5.22** (Predicative Cut-elimination)

1. $(\mathcal{H}, \kappa, n) \vdash_{\omega + \alpha + \beta} \Gamma \land [c, c + \omega^{\alpha} \varphi] \subseteq \{\lambda + 1 : \lambda \in R \} \cup \{I\}) = \emptyset \land a \in H \Rightarrow (\mathcal{H}, \kappa, n) \vdash_{c^{\varphi ab}} \Gamma$.

2. For $\lambda \in R$, if $\omega^b < \omega^{n+1}(I + 1)$, $(\mathcal{H}_{\gamma,n}, \kappa, n) \vdash_{\lambda+2} \Gamma \land \gamma \in \mathcal{H}_{\gamma,n} \Rightarrow (\mathcal{H}_{\gamma+b,n}, \kappa, n) \vdash_{\lambda+1} \Gamma$.

3. If $\omega^b < \omega^{n+1}(I + 1)$, $(\mathcal{H}_{\gamma,n}, \kappa, n) \vdash_{\lambda+1} \Gamma \land \gamma \in \mathcal{H}_{\gamma,n} \Rightarrow (\mathcal{H}_{\gamma+b,n}, \kappa, n) \vdash_{\lambda} \Gamma$.

4. $(\mathcal{H}_{\gamma,n}, \kappa, n) \vdash_{c^{\omega^{\alpha} + \omega^{\gamma}}} \Gamma \land [c, c + \omega^{\alpha} \varphi] \subseteq \{\lambda + 1 : \lambda \in R \} \cup \{I\}) = \emptyset \land a \in H \Rightarrow (\mathcal{H}_{\gamma+b,n}, \kappa, n) \vdash_{c^{\varphi ab}} \Gamma$.

**Proof.** 5.22.1 This follows from Lemmata 5.22.1, 5.22.2 and 5.22.3 using the facts $\varphi ab \geq b$, and $a > 0 \Rightarrow \varphi(\varphi ab) = \varphi ab$. $\square$

**Definition 5.23** For a formula $\exists x \in dA(x)$ and ordinals $\lambda = \text{rk}_L(d) \in R^+$, $\alpha, (\exists x \in dA)(\exists \lambda \alpha) \equiv (\exists x \in dA \exists \lambda \alpha)$ denotes the result of restricting the outermost existential quantifier $\exists x \in d$ to $\exists x \in L_\alpha$, $(\exists x \in dA)(\exists \lambda \alpha) \equiv (\exists x \in L_\alpha A)$.

In what follows $F_{x,\lambda}$ denotes $F_{x,\lambda}^\Sigma_1$ when $\lambda \in R$, and $F_{x,\lambda}^\Sigma_n$ when $\lambda = I$.

**Lemma 5.24** (Boundedness) Let $\lambda \in R^+$, $C \equiv (\exists x \in dA)$ and $C \not\equiv (\exists x < \lambda \exists y < \lambda[c < x \land P(\lambda, x, y)] : \alpha < \lambda \in R \} \cup \{\exists x < I[\alpha < x \land P_{\lambda,n}(x)] : \alpha < I\}$. Assume that $\text{rk}(C) = \lambda = \text{rk}_L(d)$.

1. $(\mathcal{H}, \lambda, n) \vdash_{c} \Lambda, \Gamma \land a \leq b \in H \Rightarrow (\mathcal{H}, \lambda, n) \vdash_{c} \Lambda, \Gamma \land \alpha \leq b \in H \Rightarrow (\mathcal{H}, \lambda, n) \vdash_{c} \Lambda, \Gamma$.

2. $(\mathcal{H}, \lambda, n) \vdash_{c} \Lambda, -C \land b \in H \land \alpha \Rightarrow (\mathcal{H}, \lambda, n) \vdash_{c} \Lambda, -C$. $\square$

24
Proof by induction on \( a < \omega_{n+1}(I+1) \).

Note that if a main formula \( F_{i,\sigma} \varphi \) of an \( (F_{i,\sigma}) \) is in \( \Sigma_{\omega_{n+1}}(\lambda) \), then either \( \sigma \leq \lambda \) and there occurs no bounded quantifier \( Qx < \lambda \) in \( F_{i,\sigma} \varphi \), or \( \sigma > i > \lambda \) and \( (F_{i,\sigma} \varphi)^{3_{\lambda}} \equiv (F_{i,\sigma} \varphi) \).

Let \( C \simeq \bigvee(C_{i})_{i \in J} \) for \( C_{i} \equiv A(i) \), and \((H,\lambda,n) \models_{c} \Gamma \) with an \( a(i) < a \) for an \( i \in J = d \). Otherwise \( C^{3_{\lambda}} \equiv C \) by the definition. Then \( C^{3_{\lambda}} \simeq \bigvee(C_{i})_{i \in J} \) where \( J' = L_{b} \). By the condition \([21] \) we have \( r_{k}(i) < \lambda \Rightarrow r_{k}(i) < a \leq b \), and hence \( i \in L_{b} = J' \). By IH we have Lemmata \([5.24]\) and \([5.24] \) \( \square \)

Lemma 5.25 (Collapsing)

Let \( \lambda \in R^{+} \) and \( \sigma \in R^{+} \cup \{\omega_{n} : \text{limit } \alpha < I\} \).

Suppose \( \{\lambda,\sigma\} \subset H_{\gamma,n}(\Theta) \) with \( \forall \rho \geq \lambda(\Theta \subset H_{\gamma,n}(\Psi_{\rho,n}\gamma)) \), and \( \Gamma \subset \Sigma_{\omega_{n+1}}(\lambda) \). Let \( \mu = \sigma + 1 \) if \( \sigma \in R^{+} \). Otherwise \( \mu = \sigma \) if \( \sigma = \omega_{\alpha} \) for a limit \( \alpha < I \). Then for \( a = \gamma + \omega^{\sigma+a} \) and \( \kappa = \max\{\sigma,\lambda\} \), if \( a < \omega_{n+1}(I+1) \),

\[
(H_{\gamma,n}(\Theta),\kappa,n) \vdash_{\mu} \Gamma \Rightarrow (H_{\gamma+1,n}(\Theta),\lambda,n) \vdash_{\Psi_{\lambda,n}a} \Gamma.
\]

Proof by main induction on \( \mu \) with subsidiary induction on \( a \).

First note that \( \Psi_{\lambda,n}a \in H_{\gamma+1,n}(\Theta) = H_{\gamma+1,n}(\Theta) \) since \( a = \gamma + \omega^{\sigma+a} \in H_{\gamma,n}(\Theta) \subset H_{\gamma+1,n}(\Theta) \) by the assumption, \( \{\gamma,\lambda,\sigma,a\} \subset H_{\gamma,n}(\Theta) \).

Assume \((H_{\gamma,n}(\Theta),\kappa,n) \vdash_{\mu} \Gamma_{0} \) with \( \forall \rho \geq \lambda(\Theta \subset H_{\gamma,n}(\Psi_{\rho,n}\gamma)) \). Then by \( \gamma < a \), we have for any \( \rho \geq \lambda, \theta_{0} \in H_{\gamma,n}(\Theta)[\lambda] \subset H_{\gamma,n}(\Psi_{\rho,n}\gamma) \subset H_{\theta_{0},n}(\Psi_{\rho,n}\lambda) \).

This yields that

\[
a_{0} < a \Rightarrow \forall \rho \geq \lambda(\Psi_{\rho,n}a_{0} < \Psi_{\rho,n}a)
\]

Second observe that \( k(\Gamma) \subset H_{\gamma,n}(\Theta) \subset H_{\gamma+1,n}(\Theta) \) by \( \gamma < a + 1 \).

Third we have

\[
\forall \rho \geq \lambda(k(\Gamma) \subset H_{\gamma,n}(\Psi_{\rho,n}\gamma))
\]

Case 1. First consider the case: \( \Gamma \ni A \equiv \bigwedge\{A_{i} : i \in J\} \)

\[
\frac{(H_{\gamma,n}(\Theta),\kappa,n) \vdash_{\mu} \Gamma, A_{i} : i \in J \}
\]

\[
(H_{\gamma,n}(\Theta),\kappa,n) \vdash_{\mu} \Gamma \quad (\wedge)
\]

where \( a(i) < a \) for any \( i \in J \). We claim that

\[
\forall i \in J \forall \rho \geq \lambda(i \in H_{\gamma,n}(\Psi_{\rho,n}\gamma))
\]

Consider the case when \( A = \forall x \in b A' \). There are two cases to consider. First consider the case when \( J = \{d\} \) for the set \( d = \mu x \in b A' \). Then \( i \equiv d = \{\mu x \in b A' \} \in H_{\gamma,n}(\Psi_{\rho,n}\gamma) \) by \([24]\).

Otherwise \( r_{k}(b) < \lambda \), i.e., \( b \in L_{\lambda} \). Let \( \rho \geq \lambda \). We have \( b \in k(A) \subset H_{\gamma,n}(\Psi_{\rho,n}\gamma) \). Hence \( b \in H_{\gamma,n}(\Psi_{\rho,n}\gamma) \cap L_{\rho} \). Since \( H_{\gamma,n}(\Psi_{\rho,n}\gamma) \cap \rho \subset \Psi_{\rho,n}\gamma \) and \( \Psi_{\rho,n}\gamma \) is a multiplicative number, we have \( H_{\gamma,n}(L_{\Psi_{\rho,n}\gamma}) \cap L_{\rho} = H_{\gamma,n}(\Psi_{\rho,n}\gamma) \cap L_{\rho} = L_{\Psi_{\rho,n}\gamma} \). Therefore \( i \in b \in L_{\Psi_{\rho,n}\gamma} \subset H_{\gamma,n}(\Psi_{\rho,n}\gamma) \) as desired.

Hence \([25]\) was shown.
Case 3. Third consider the case for an $\Sigma$.

Case 3.1

Consider the case when $A = \exists x \in bA'$. There are two cases to consider. First consider the case when $J = \{d\}$ for the set $d = \mu x \in bA'$. Then $\iota = d = (\mu x \in bA') \in \text{Hull}_\gamma,\omega_n(k\{A\})$, and $\text{rk}_L(i) = \text{Hull}_\gamma,\omega_n(k\{A\}) \subset \mathcal{H}_{\gamma,\omega_n}(\Sigma_{\varphi,\omega_n})$ by (24).

Otherwise we have $J = b \in k\{A\} \in \mathcal{H}_{\gamma,\omega_n}(\Sigma_{\varphi,\omega_n})$, and we can assume that $i = b \in k\{A\} \in \mathcal{H}_{\gamma,\omega_n}(\Sigma_{\varphi,\omega_n})$. Otherwise set $i = 0$. We have $\text{rk}_L(i) = \text{rk}_L(b) \leq \lambda$, and $\text{rk}_L(i) = \text{Hull}_\gamma,\omega_n(\Sigma_{\varphi,\omega_n}) \cap \lambda \subset \Sigma_{\varphi,\omega_n}$.

SIH yields for $\iota = \gamma + \omega^{\sigma+a(i)}$

\[
\frac{\left(\mathcal{H}_{\gamma,\omega_n}(\Sigma_{\varphi,\omega_n}), \lambda, n\right) \vdash a(i), A_i}{\left(\mathcal{H}_{\gamma,\omega_n}(\Sigma_{\varphi,\omega_n}), \lambda, n\right) \vdash \alpha_{\lambda,n} \Gamma} \tag{V}
\]

Case 3. Second consider the case for an $\Sigma$.

Case 3.2. $\lambda \leq \text{rk}(C) < \mu$ and $\text{rk}(C) \not\in R^+$.

Let $\pi := \min\{\pi \in R^+ : \pi > \text{rk}(C)\}$. We have $\pi \in R$ and $\pi \in \mathcal{H}_{\gamma,\omega_n}(\Sigma_{\varphi,\omega_n})$ by Proposition 5.9.6.
Then \( \lambda \leq \text{rk}(C) < \pi < \mu \), and hence \( \{ -C, C \} \subset \Sigma^{\Sigma_n+1}(\pi) \) by Proposition 5.24.3. SIH with \( \max\{ \pi, \sigma \} = \sigma = \kappa \) yields for \( \alpha_0 = \gamma + \omega^\sigma+\alpha_0 \) and \( \beta = \Psi_{\pi, \alpha_0} \),
\[
(H_{\alpha_0+1,n}[\Theta], \pi, n) \vdash^\beta \beta_{\pi, \alpha_0} \Gamma, \neg C \quad \text{and} \quad (H_{\alpha_0+1,n}[\Theta], \pi, n) \vdash^\delta C, \Gamma.
\]
Let \( \mu' = \omega_\alpha + 1 < \beta \) for \( \pi = \alpha_0 + 1 \). Then \( \beta = \mu' + \omega^\beta \) and \( [\mu', \mu' + \omega^\beta \cap R^+ = \emptyset] \). Moreover \( \text{rk}(C) < \beta \). By a (cut)
\[
(H_{\alpha_0+1,n}[\Theta], \pi, n) \vdash^\beta \mu' + \omega^\beta \Gamma \quad \text{and} \quad (H_{\alpha_0+1,n}[\Theta], \pi, n) \vdash^\beta \pi, \sigma, \nu \in H_{\alpha_0+1,n}[\Theta] \quad \text{and} \quad IH \quad \text{yields the lemma.}
\]
Predicative Cut-elimination 5.22 yields

\[
(H_{\alpha_0+\phi(\beta+1), n}[\Theta], \pi, n) \vdash_{\mu'}^\phi \phi(\beta+1) \Gamma
\]

We have \( \mu' < \mu \). MIH with \( \max\{ \lambda, \mu' \} < \pi \) and Proposition 5.11 yields

\[
(H_{\alpha_0+1,n}[\Theta], \pi, n) \vdash^\phi_{\lambda, \alpha_0} \Gamma
\]

for \( \alpha_1 = \alpha_0 + \phi(\beta+1) + \omega_\alpha \omega + \omega^\alpha + \omega^\beta = \hat{\alpha} \) by \( a_0 < a, \omega_\alpha < \sigma \) and \( \beta < \sigma \) with a strongly critical \( \sigma \). Thus \( \Psi_{\lambda, \alpha_0} \hat{\alpha}_1 < \Psi_{\lambda, \alpha_0} \hat{\alpha} \) and \( (H_{\hat{\alpha}_1, n}[\Theta], \lambda, n) \vdash^\phi_{\lambda, \alpha_0} \hat{\alpha} \). 

**Case 3.3.** \( \lambda < \text{rk}(C) < \mu \) and \( \pi := \text{rk}(C) \in R^+ \).

Then \( C \in \Sigma^{\Sigma_n+1}(\pi) \) and \( \pi < \sigma \). Also \( \pi \in H_{\alpha_0+1,n}[\Theta] \). \( C \) is either a sentence \( \exists x < I[\alpha < x \land P_{I, n}(x)] \) with \( \pi = I \), or a sentence \( \exists x \in d A(x) \) with \( \text{rk}(A) < \pi = \text{rk}_L(d) \leq I \).

In the first case we have \( \kappa = \sigma = I \), and \( (H_{\gamma+1,n}[\Theta], I, n) \vdash a_0 + 1 \Gamma \) by Reduction 5.24.1 and IH yields the lemma.

Consider the second case. From the right uppersequent, SIH with \( \max\{ \pi, \sigma \} = \sigma = \kappa \) yields for \( \alpha_0 = \gamma + \omega^\sigma+\alpha_0 \) and \( \beta_0 = \Psi_{\pi, \alpha_0} \hat{\alpha}_0 \in H_{\alpha_0+1,n}[\Theta] \)

\[
(H_{\alpha_0+1,n}[\Theta], \pi, n) \vdash^\beta_{\beta_0} C, \Gamma
\]

Then by Boundedness 5.24.1 and \( \beta_0 \in H_{\alpha_0+1,n}[\Theta] \), we have

\[
(H_{\alpha_0+1,n}[\Theta], \pi, n) \vdash^\beta_{\beta_0} C(\exists^2 \pi, \alpha_0), \Gamma
\]

On the other hand we have by Boundedness 5.24.2 from the left uppersequent

\[
(H_{\alpha_0+1,n}[\Theta], \pi, n) \vdash a_0 \mu \Gamma, \neg C(\exists^2 \pi, \alpha_0)
\]

Moreover we have \( \neg C(\exists^2 \pi, \alpha_0) \in \Sigma^{\Sigma_n+1}(\pi) \). SIH yields for \( \alpha_0 < \hat{\alpha}_1 = \hat{\alpha}_0 + 1 + \omega^\sigma+\alpha_0 = \gamma + \omega^\sigma+\alpha_0 + 1 + \omega^\sigma+\alpha_0 < \gamma + \omega^\beta = \hat{\alpha} \) and \( \beta_1 = \Psi_{\pi, \alpha_0} \hat{\alpha}_1 \)

\[
(H_{\hat{\alpha}_1+1,n}[\Theta], \pi, n) \vdash^\beta_{\beta_1} C, \Gamma, \neg C(\exists^2 \pi, \alpha_0)
\]

Now we have \( \hat{\alpha}_i \in H_{\alpha_i, n}(\Psi_{\pi, \alpha_0}) \) and \( \hat{\alpha}_i < \hat{\alpha} \) for \( i < 2 \), and hence \( \beta_0 = \Psi_{\pi, \alpha_0} \hat{\alpha}_0 < \beta_1 = \Psi_{\pi, \alpha_0} \hat{\alpha}_1 < \Psi_{\pi, \alpha_0} \hat{\alpha} \). Therefore \( \text{rk}(C(\exists^2 \pi, \alpha_0)) < \beta_1 < \Psi_{\pi, \alpha_0} \hat{\alpha} \).
Consequently

\[
\frac{(\mathcal{H}_{\mathcal{a} + 1, n}[\Theta], \pi, n) \vdash \beta_1, \Gamma, \neg C^{(3 \pi \beta_0)} (\mathcal{H}_{\mathcal{a} + 1, n}[\Theta], \pi, n) \vdash \beta_0, C^{(3 \pi \beta_0)}, \Gamma}{(\mathcal{H}_{\mathcal{a} + 1, n}[\Theta], \pi, n) \vdash \beta_1 + 1, \Gamma} \quad \text{(cut)}
\]

Let \((\alpha, \mu', \beta_2) = (\alpha, \omega + 1, \beta_1)\) if \(\pi = \omega_{\alpha + 1}\), and \((\alpha, \mu', \beta_2) = (\beta_1, \beta_1, 0)\) if \(\pi = I\). Then \(\beta_1 \leq \mu' + \omega^{\beta_2}\) and \([\mu', \mu' + \omega^{\beta_2}] \cap R^+ = \emptyset\).

Predicative Cut-elimination \[5.22\] yields

\[
(\mathcal{H}_{\mathcal{a} + 1} + \varphi \beta_2(\beta_1 + 1), [\Theta], \pi, n) \vdash \psi \beta_2(\beta_1 + 1), \Gamma
\]

We have \(\mu' < \mu\). MIH with \(\max(\lambda, \mu') \leq \pi\) yields

\[
(\mathcal{H}_{\mathcal{a} + 1} + \varphi \beta_2(\beta_1 + 1), [\Theta], \lambda, n) \vdash \psi \lambda, n \tilde{a} \Gamma
\]

for \(\tilde{a}_2 = \tilde{a}_1 + \varphi \beta_2(\beta_1 + 1) + \omega^{\omega_0 + \varphi \beta_2(\beta_1 + 1)} = \gamma + \omega^{\alpha + 0} + \omega^{\sigma + 0} + \omega^{\omega_0 + \varphi \beta_2(\beta_1 + 1)} < \gamma + \omega^\sigma = \tilde{a}\) by \(a_0 < a\), \(\omega_0 < \sigma\) and \(\beta_1 < \sigma\) with a strongly critical \(\sigma\). Thus \(\Psi \lambda, n \tilde{a}_2 \prec \Psi \lambda, n \tilde{a}\) and \(\mathcal{H}_{\mathcal{a} + 1} + \lambda, n) \vdash \psi \lambda, n \tilde{a} \Gamma\).

**Case 4.** Fourth consider the case for an \(a_0 < a\)

\[
(\mathcal{H}_n + \Psi \lambda, n \tilde{a} \Gamma, \lambda, n) \vdash \mu, \lambda, \Gamma_0
\]

where \(\Gamma = \Lambda \cup F^\kappa \Gamma_0\) and either \(F = F^\Sigma_{\omega_m} + (\mu)\), \(\Lambda \subset \Sigma_1\) for some \(x\) and \(\mu\), or \(F = F^\Sigma_{\omega_m} + (\mu)\), \(\Lambda \subset \Sigma_1\) for some \(x\). Then \(\Lambda \cup \Gamma_0 \subset \Sigma^\omega_1 + (\lambda)\). SIH yields the lemma.

\[\square\]

**Corollary 5.26** Suppose \(\Gamma \subset \Sigma^\omega_1 + (\omega_1)\). Assume \((\mathcal{H}_0, n, I, n) \vdash I^{2 + k}_{+m} \Gamma\) for some \(m, k < \omega\) such that \(b = \omega_m(I + 3 + k) < \omega_{n + 1}(I + 1)\). Let \(\beta = \Psi_1, n(b)\) and \(\sigma = \varphi \beta\). Then \((\mathcal{H}_{h + 1, n}, \omega_1, n) \vdash \mu, \Gamma\).

**Proof.** Let \((\mathcal{H}_0, n, I, n) \vdash I^{2 + k}_{+m} \Gamma\). By Predicative Cut-elimination \[5.22\] we have \((\mathcal{H}_0, n, I, n) \vdash I^{2 + k}_{+m} \Gamma\). Collapsing \[5.22\] yields \((\mathcal{H}_{h + 1, n}, \omega_1, n) \vdash \mu, \Gamma\).

By Predicative Cut-elimination \[5.22\] we obtain \((\mathcal{H}_{h + 1, n}, \omega_1, n) \vdash \mu, \Gamma\). \[\square\]

**Proposition 5.27** For each sentence \(A\) in the language \((\{\epsilon\} \cup L_I)\) the following holds.

1. \(A \simeq \bigvee_{A_i \in I} \Rightarrow \forall \in J(A_i) \text{ is an } \{\epsilon\} \cup L_I\text{-sentence, and similarly for the case } A \simeq \bigwedge_{A_i \in I} \).
2. \(A \simeq \bigvee_{A_i \in I} \Leftrightarrow (L_I \models A \Leftrightarrow \exists i \in J(L_I \models A_i))\).
3. \(A \simeq \bigwedge_{A_i \in I} \Leftrightarrow (L_I \models A \Leftrightarrow \forall i \in J(L_I \models A_i))\).
4. \((\mathcal{H}, \omega, I, n) \vdash_\kappa \; \Gamma \land \alpha < \omega_{n + 1}(I + 1) \Rightarrow L_I \models \bigvee \Gamma\).

**Proof.** Propositions \[5.27\] are straightforward.

Proposition 5.27 is proved by induction on \(\alpha < \omega_{n + 1}(I + 1)\) using Propositions \[5.21, 5.22, 5.24\] and the fact that \((F^{\Sigma_1}_{\omega, I})\) and \((F^{\Sigma_1}_{\omega, I})\) are truth-preserving, that is to say if the upper sequent of these inferences is true, then so is the lower sequent, cf. Proposition 5.6. \[\square\]
6 Proof of Theorem 1.1

For a sentence \( \exists x \in L_{\omega_1} \varphi \) in the language \( \{ \in, \omega_1 \} \), assume \( \text{ZF} + (V = L) \vdash \exists x \in L_{\omega_1} \varphi \). Let \( n_0 \geq 2 \) be the number such that in the given \( \text{ZF} + (V = L) \)-proof instances of axiom schemata of Separation and Collection are \( \Sigma_{n_0} \)-Separation and \( \Sigma_{n_0} \)-Collection, and let \( n_1 \) the number such that in the given \( \text{ZF} + (V = L) \)-proof instances of Foundation axiom schema are applied to \( \Sigma_{n_1} \)-formulae. Let \( m = \max\{n_0 + 7, n_1 + 10\} \), and let \( n = m + 1 \). Then by Lemma 5.22 and Corollary 6.19 we see that the fact \( (H_{0,n}, I, n) \vdash_{I+1} \exists x \in L_{\omega_1} \varphi \) is provable in \( \text{ZF} + (V = L) \). We have \( b = \omega_m(I \cdot 3 + \omega) < \omega_n(I + 1) \). In what follows work in \( \text{ZF} + (V = L) \). Corollary 5.26 yields \( (H_{b+1,n}, \omega_1, n) \vdash_0 \exists x \in L_{\omega_1} \varphi \) for \( \beta = \Psi_{\omega_1,n}(b) \) and \( c = \varphi \beta \). Boundedness 5.24 yields \( (H_{b+1,n}, \omega_1, n) \vdash_0 \exists x \in L_c \varphi \). Then by Proposition 5.27 with \( c < \Psi_{\omega_1,n}(I + 1) \) we obtain

\[
\exists x \in L_{\Psi_{\omega_1,n}(I+1)} \varphi.
\]

The whole proof is formalizable in \( \text{ZF} + (V = L) \), we conclude \( \text{ZF} + (V = L) \vdash \exists x \in L_{\Psi_{\omega_1,n}(I+1)} \varphi \). This completes a proof of Theorem 1.1.

Remark. Using notation systems of infinitary derivations as in [7], it is reasonable to expect the following:

Over a weak base theory \( T \), \( \text{ZF} + (V = L) \) is a conservative extension of \( T + (V = L) + \{ \exists x < \omega | x = \Psi_{\omega_1,n}(I + 1) : n < \omega \} \) with respect to a class of formulæ depending on \( T \).

Since any cut-free derivation of a first-order sentence is finite in depth, we actually have the following Corollary 6.1.

**Corollary 6.1** Assume \( \text{ZF} + (V = L) \vdash \exists x < \omega \varphi \). Then there exist \( n, h < \omega \) such that

\[
(H_{\omega_n(I+1)+1,n}, \omega_1, n) \vdash_h \exists x < \omega \varphi.
\]

Problem. Let \( g \) be the Gödel number of a \( T(I) \)-proof of \( \exists x < \omega \varphi \), and \( h = H(g) \) a bound of depth of cut-free derivation. Note here that a number \( n < \omega \) such that \( (H_{\omega_n(I+1)+1,n}, \omega_1, n) \vdash_h \exists x < \omega \varphi \) is calculable from \( g \). Then the map \( H \) on \( \omega \) seems not to be provably total in \( \text{ZF} + (V = L) \), i.e., \( \text{ZF} + (V = L) \not\vdash \forall g \in \omega \exists h \in \omega [h = H(g)] \), and \( H \not\in L_{\Psi_{\omega_1,\varepsilon_1+1}} \).

The problem is to find a reasonable hierarchy of reals \( \varepsilon \omega \) indexed by countable ordinals, and to show that \( H \) is too rapidly growing to be provably total in \( \text{ZF} + (V = L) \).

References

[1] T. Arai, A sneak preview of proof theory of ordinals, an invited talk at Kobe seminar on Logic and Computer Science, 5-6 Dec. 1997, appeared in Annals of the Japan Association for Philosophy of Science vol. 20(2012), 29-47.
[2] T. Arai, Proof theory for theories of ordinals I: recursively Mahlo ordinals, Ann. Pure Appl. Logic 122 (2003) 1-85.

[3] T. Arai, Proof theory for theories of ordinals II: \(\Pi_3\)-Reflection, Ann. Pure Appl. Logic vol. 129 (2004), 39-92.

[4] T. Arai, Proof theory for theories of ordinals III: \(\Pi_N\)-reflection, submitted.

[5] J. Barwise, Admissible Sets and Structures, 1975, Springer.

[6] W. Buchholz, A simplified version of local predicativity, P. H. G. Aczel, H. Simmons and S. S. Wainer (eds.), Proof Theory, Cambridge UP, 1992, pp. 115-147.

[7] W. Buchholz, Finitary treatment of operator controlled derivations, Math. Logic Quart. 47 (2001), 363-396.

[8] W. Buchholz, Relating ordinals to proofs in a perspicuous way, W. Sieg, R. Sommer and C. Talcott (eds.), Reflections on the foundations of mathematics, ASL, 2002, pp. 37-59.

[9] K.J. Devlin, Constructibility, Springer, 1984.

[10] M. Rathjen, Proof-theoretic analysis of KPM, Arch. Math. Logic 30 (1991) 377-403.

[11] M. Rathjen, Proof theory of reflection, Ann. Pure Appl. Logic 68 (1994), 181-224.

[12] M. Rathjen, An ordinal analysis of stability, Arch. Math. Logic 44(2005), 1-62.

[13] M. Rathjen, An ordinal analysis of parameter free \(\pi_2^1\)-comprehension, Arch. Math. Logic 44(2005), 263-362.

[14] W.H. Richter and P. Aczel, Inductive definitions and reflecting properties of admissible ordinals, Generalized Recursion Theory, Studies in Logic, vol.79, North-Holland, 1974, pp. 301-381.