Continuous fixed-time nonsingular terminal sliding mode control of second-order nonlinear systems with matched and mismatched disturbances

Alireza Khanzadeh\textsuperscript{a}, Iman Mohammadzaman\textsuperscript{b,*}

\textbf{Abstract:}

This paper investigates fixed-time nonsingular terminal sliding mode control of second-order nonlinear systems in the presence of matched and mismatched disturbances. Using estimation of the mismatched disturbance estimated by a fixed-time disturbance observer, a novel nonlinear dynamic sliding surface is designed. The convergence time of the closed-loop system including disturbance observer and control system is guaranteed to be uniform with respect to initial conditions. Moreover, the proposed controller avoids chattering phenomenon by producing a continuous control signal.

\textbf{Keywords:} Fixed-time stability; Nonsingular terminal sliding mode; Matched; Mismatched disturbance.

\textsuperscript{*} Corresponding Author. mohammadzaman@mut.ac.ir (Iman Mohammadzaman)
1. **Introduction**

Classical Sliding Mode Control (SMC) is a renowned control method owing to its valued attributes such as order reduction, computational simplicity, and inherent robustness against matched disturbances [1]. Nonetheless, it suffers from several drawbacks such as asymptotical stability of the sliding motion and infinitely fast switching, better known as chattering [2]. Furthermore, it is a famous fact about classical SMC that it is not able to deal with mismatched disturbances [3, 4].

Man and Yu in [5] introduced another class of SMC named Terminal Sliding Mode (TSM) Control (TSMC) making use of nonlinear sliding surface to guarantee finite-time convergence of the sliding motion. However, the conventional TSMC causes the singularity problem. This means that, in some region of the state space, TSM controller may require to be infinitely large so as to maintain the ideal sliding motion [6]. This problem has been resolved using Nonsingular Terminal Sliding Mode Control (NTSMC) [6-10]. A chatter-free observer-based NTSMC [11] has also been proposed for systems with mismatched disturbances. Though TSMC and NTSMC assure finite-time stability of the sliding motion, its convergence time depends heavily upon initial conditions which may be unavailable or unknown. The first effort to address this problem of the finite-time stability [12] has been made by the authors of [13]. Thereafter, the notions of fixed-time stability and control [14-16] have been brought in the control community literature. The fixed-time stability is finite-time stability whose settling-time function is uniform with respect to the initial conditions.

The first Fixed-Time Nonsingular Terminal Sliding Mode (FTNTSM) Control (FTNTSMC) was designed by Zou in [17]. In this work, the singularity problem is avoided by benefiting from sinusoidal function. Various FTNTSM controllers have also been proposed in the context of multi-agent systems [18-21]. In the paper of Corradini and Cristofaro [22], a class of nonsingular terminal sliding surfaces has been formulated for designing FTNTSMC of nonlinear planar systems. Disturbance observer-based FTNTSMC of second-order uncertain systems has been investigated in
the work of Wu et al. in [23]. However, all the aforementioned works suffer from chattering. The chattering phenomenon, namely high-frequency oscillations, is the unavoidable result of the classical SMC. Additionally, they considered only matched disturbances whereas mismatched ones widely appear in practical applications [24-28] and can degrade system performance or even may cause instability. Many practical systems such as electro-magnetic suspension system, Markovian jump systems and flexible joint manipulators encounter the issue of the mismatched uncertainties and disturbances. Strictly speaking, controller design dealing with the mismatched uncertainties is technically much more challenging in contrary to the matched uncertainties. The mismatched disturbances attenuation has been achieved on the basis of the robust control theory but at the price of sacrificing the control system performance. As against robust control approach, handling the mismatched disturbances using disturbance-observer-based control technique not only eliminates their effect but also possesses the capability of retrieving the nominal system performance.

Nevertheless, contending with the mismatched disturbances proves to be theoretically much more demanding than matched ones [24] especially when fixed-time control of dynamical systems with mismatched disturbances is encountered. This difficulty is substantially increased and unprecedented challenges appears due to the intrinsic complexity of the fixed-time controller design. Therefore, during the recent years, only the following papers have been published in this regard. Ni and Liu [29] have firstly introduced a uniformly finite-time exact disturbance observer which is reconciliation between uniform finite-time high-order sliding mode differentiator of [30] and finite-time disturbance observer of [31]. Then, they have proposed a fixed-time observer-based state-feedback controller for stabilization of high-order nonlinear systems with mismatched and matched disturbances. An observer-based FTNTSM controller for reusable launch vehicles despite matched and mismatched disturbances [32] has also been designed in which the fixed-time nonsingular terminal sliding surface presented in [19] has been employed. In this work, only the mismatched disturbance can be estimated and the matched one is countered by the discontinuous
function $\text{sign}(\cdot)$, which leads to chattering. The chattering degrades the performance of a control system and can excite unmodeled high-frequency modes of a physical system, which may lead to instability. Therefore, dealing with the matched uncertainties without creating the chattering is of paramount importance in practice. This can be achieved by benefiting from the disturbance-observer-based control technique. Tian et al. in [33] studied an observer-based fixed-time state-feedback stabilizer of high-order integrators using bi-limit homogeneous technique.

Inspired from the above discussion, a complete solution for resolving all the aforementioned problems and making up for all the above-mentioned shortcomings is to reconcile NTSMC with fixed-time stability concept and disturbance observer-based control technique. This solution opens up this possibility that a system is stabilized by a NTSMC within fixed time and in the presence of the mismatched and matched disturbances without any concern about chattering. It should be noticed that achieving such a solution leads inevitably to a sophisticated control structure.

This paper is to investigate observer-based continuous FXNTSMC of second-order nonlinear systems subject to mismatched and matched disturbances. To this end, the uniformly finite-time exact disturbance observer introduced by Ni et al. in [29] is employed for estimation of both disturbances. This estimation is utilized in designing a completely novel nonlinear dynamics sliding surface whereby the fixed-time convergence of the sliding motion is guaranteed in spite of mismatched disturbance. Subsequently, a novel observer-based FXNTSMC is introduced in which the singularity problem is avoided using the sinusoidal function. Moreover, the controller is designed in such a way that a continuous control signal is obtained and, in turn, the chattering phenomenon does not occur. As be mentioned earlier, this chattering elimination is vital to practical considerations. It is also proven that the phenomenon of escape to infinity in finite time does not arise in the closed-loop system’s dynamics over estimation process during which the observer is trying to converge to the disturbances. Afterwards, the fixed-time stability of the reaching and sliding modes is mathematically shown on the basis of Lyapunov technique. An appealing feature

4
of the proposed controller setting this paper apart the other ones is that the upper bounds of the convergence time of the reaching and sliding modes explicitly exist as independent design parameters in the control law statement. This offers the possibility that the convergence time of the control system can be set at any desired value in advance. Finally, the proposed controller is applied to the Single Inverted Pendulum (SIP) system in order that the performance of the composite control scheme can be assessed.

2. Preliminaries and problem statement

2.1 Finite-time and fixed-time stability

Consider the following dynamical system:

$$\dot{X} = f(t, X), \quad X(t_0) = X_0$$

where $X \in \mathbb{R}^n$, $t_0$ is the initial time and $f : \mathbb{R}^+ \times \mathbb{R}^n \to \mathbb{R}^n$ is a continuous, nonlinear function. Assume that the origin is an equilibrium point of Eq. (1). Hereafter, without loss of generality it is assumed $t_0 = 0$.

**Definition 1** [16]. The origin of Eq. (1) is said to be globally finite-time stable if it is globally asymptotically stable and any solution $X(t, X_0)$ of Eq. (1) reaches the equilibria at some finite moment, i.e. $X(t, X_0) = 0, \forall t \geq T(X_0)$ where $T : \mathbb{R}^n \to \mathbb{R}_+ \cup \{0\}$ is the settling-time function.

**Definition 2** [16]. The origin of Eq. (1) is said to be globally fixed-time stable if it is globally finite-time stable and the settling-time function $T(X_0)$ is bounded, i.e. $\exists T_{\text{max}} > 0 : T(X_0) \leq T_{\text{max}}$, $\forall X_0 \in \mathbb{R}^n$.

**Theorem 1** [16]. If there exists a continuous radially unbounded function $V : \mathbb{R}^n \to \mathbb{R}_+ \cup \{0\}$ such that (i) $V(X) = 0 \iff X = 0$; (ii) any solution of $X(t)$ satisfies the following inequality

$$V(X(t)) \leq -\left(\alpha V^n(X(t)) + \beta V^z(X(t))\right)^k$$

(2)
where $\alpha, \beta, \eta, \xi, k > 0$ such that $\eta k < 1$ and $\xi k > 1$, then the origin of Eq. (1) is globally fixed-time stable and the settling-time function satisfies the following inequality
\[
T(X_0) \leq \frac{1}{\alpha^k (1-\eta k)} + \frac{1}{\beta^k (\xi k - 1)}, \forall X_0 \in \mathbb{R}^n.
\] (3)

As can be seen from Eq. (3), the upper bound of the settling-time function is a nonlinear, complex function of another parameters. This causes the process of tuning the convergence time to be handicapped. However, a special selection of the parameters can make this process effortless as far as possible. Let the parameters be chosen as $k = \frac{3}{2}, \eta = \frac{2}{3} \left(1 - \frac{q}{p}\right), \xi = \frac{2}{3} \left(1 - \frac{q}{p}\right) + \frac{2q}{p}$ and $\alpha = \beta = \left(\frac{p}{qT}\right)^{\frac{2}{3}}$. Then
\[
V(X(t)) \leq -\left(\alpha V^q (X(t)) + \beta V^\xi (X(t))\right)^{\frac{3}{2}}
\]
\[
= -\left(\frac{p}{qT}\right)^{\frac{2}{3}} V^{\frac{2}{3} \left(1 - \frac{q}{p}\right)} (X(t)) + \left(\frac{p}{qT}\right)^{\frac{2}{3}} \left(V^p (X(t))\right)^{\frac{2}{3} \left(1 - \frac{q}{p}\right)} (X(t))
\]
\[
= -\frac{p}{qT} \left(1 + \left(V^p (X(t))\right)^{\frac{2}{3} \left(1 - \frac{q}{p}\right)} (X(t))\right)
\] (4)

where $p, q$ are positive, odd integers such that $0 < q/p < 1$ and $T > 0$. Khanzadeh and Pourgholi [18] have proved that the settling-time function of $\dot{V} \leq -\frac{p}{qT} \left(1 + \left(V^p\right)^{\frac{2}{3}} \left(1 - \frac{q}{p}\right) (X(t))\right)$ satisfies $T(X_0) \leq T, \forall X_0 \in \mathbb{R}^n$.

2.2 Problem Formulation

Consider the following dynamical system under mismatched and matched disturbances, described by

\[
T(X_0) \leq T, \forall X_0 \in \mathbb{R}^n.
\]
\[
\begin{align*}
\dot{x}_1 &= x_2 + d_1 \\
\dot{x}_2 &= f(X) + g(X)u + d_2 \\
y &= x_1
\end{align*}
\]

where \( X = [x_1, x_2]^T \in \mathbb{R}^2 \) is the state vector, \( u \in \mathbb{R} \) is the control input, \( y \in \mathbb{R} \) is the controlled output, \( f(X) \in \mathbb{R} \) and \( g(X) \in \mathbb{R} \) are smooth nonlinear functions such that \( g(X) \neq 0 \) for all \( X \in \mathbb{R}^2 \). \( d_1 \in \mathbb{R} \) and \( d_2 \in \mathbb{R} \) denote matched and mismatched disturbances, respectively. It is assumed that the mismatched disturbance \( d_1 \) is second order differentiable and \( d_1' \) has a certain Lipschitz constant.

The goal is to design a continuous FTNTSM controller whereby the output \( y \) converges to zero before a prescribed time despite the matched and mismatched disturbances. To this end, a uniformly finite-time exact disturbance observer [29] is firstly utilized in order to estimate the disturbances in the system (5) as follows

\[
\begin{align*}
\dot{z}_{0i} &= v_{0i} + h_i, \quad \dot{z}_{ji} = v_{ji}, \ldots, \dot{z}_{n_ji} = v_{n_ji} \\
v_{0i} &= -k_{0i} \theta |z_{0i} - x_i|^{\alpha_i} \text{sign}(z_{0i} - x_i) - k_{0i} (1 - \theta) |z_{0i} - x_i|^{\alpha_i} \text{sign}(z_{0i} - x_i) + z_{0i} \\
v_{ji} &= -k_{ji} \theta |z_{ji} - v_{(j-1)i}|^{\alpha_j} \text{sign}(z_{ji} - v_{(j-1)i}) - k_{ji} (1 - \theta) |z_{ji} - v_{(j-1)i}|^{\alpha_j} \text{sign}(z_{ji} - v_{(j-1)i}) + z_{ji} \\
v_{n_ji} &= -k_{n_ji} \theta \text{sign}(z_{n_ji} - v_{(n_j-1)i}) - k_{n_ji} (1 - \theta) |z_{n_ji} - x_i|^{\alpha_j} \text{sign}(z_{n_ji} - x_i)
\end{align*}
\]

where \( i = \{1, 2\} \), \( h_1 = x_2 \), \( h_2 = f(X) + g(X)u \), \( n_1 = 3 \) and \( j = 1, \ldots, n_i - 1 \), \( n_2 = 2 \), \( \alpha \) is a sufficiently small positive constant, and \( z_{0i}, z_{ji}, \ldots, z_{n_ji} \) are estimation for \( x_i \), \( d_1, \ldots, d_1^{(n_i-1)} \) respectively. The observer coefficients \( k_{ji} \) are selected according to the condition \( |d_1^{(n_i)}| < L_i \) and such that the following matrix is Hurwitz.
The function $\theta$ is defined as

$$\theta(t) = \begin{cases} 0 & \text{if } t \leq T_u \\ 1 & \text{if } t > T_u \end{cases}$$

where $T_u$ is a design parameter.

By defining the observer error variables as $e_i = z_{i+} - x_i$, $e_i = z_{i+} - d_i$, ..., $e_{n_i} = z_{n_i} - d_i$, the observer error dynamics is governed by

$$
\begin{align*}
\dot{e}_{i_1} &= -k_{i_0} \theta \left[ e_{i_0} \right]_{n_i} \left[ (\n_i^{(n_i+1)}) \right] \text{sign} \left( e_{i_0} \right) - k_{i_0} (1-\theta) \left[ e_{i_0} \right]_{n_i} \left[ (n_i^{(n_i+1)}) \right] \text{sign} \left( e_{i_0} \right) + e_{i_1} \\
\dot{e}_{i_2} &= -k_{i_1} \theta \left[ e_{i_1} - \dot{e}_{i_0} \right]_{n_i} \left[ (n_i-1) \right] \text{sign} \left( e_{i_1} - \dot{e}_{i_0} \right) - k_{i_1} (1-\theta) \left[ e_{i_1} \right]_{n_i} \left[ (n_i^{(n_i+2)}) \right] \text{sign} \left( e_{i_0} \right) + e_{i_2} \\
&\vdots \\
\dot{e}_{n_i} &= -k_{n_i} \theta \text{sign} \left( e_{n_i} - \dot{e}_{n_i-1} \right) - k_{n_i} (1-\theta) \left[ e_{n_i} \right]_{n_i} \left[ (n_i^{(n_i+1)}) \right] \text{sign} \left( e_{n_i} \right) + e_{n_i}
\end{align*}
$$

Ni et al. in [29] proved the observer error dynamics (9) is fixed-time stable. This implies that $e_i$ for all $i$ and $j$ is bounded.

2.3 Mathematical preliminaries

**Lemma 1** [11] If $\xi \in \mathbb{R}$ and $0 < \rho < 1$, it follows:

$$\left| \xi \right|^{\rho} \leq 1 + \left| \xi \right|$$

**Lemma 2** [19] If $x_i \in \mathbb{R}_+ \cup \{0\}$ for $i = 1, \ldots, n$ and $p > 1$, then:

$$n^{1-p} \left( \sum_{i=1}^{n} x_i \right)^{p} \leq \sum_{i=1}^{n} x_i^{p}$$
3. Main results

A novel dynamic nonlinear sliding surface is proposed by

\[
s = \left( x_2 + \hat{d}_1 \right)^{p-2q} + \left( \frac{p}{2T_s q} \right)^{p-2q} \left( 1 + \left( \frac{x_1^2}{p} \right)^2 \right)^{\frac{3}{2}} x_1
\]

(12)

where \( p, q \) are positive odd integers such that \( p > 8q \), \( T_s > 0 \) and \( \hat{d}_1 = z_{21} \). The derivative of the sliding surface (12) along the system dynamics (5) is

\[
\dot{s} = \frac{p}{p-2q} \left( x_2 + \hat{d}_1 \right)^{2q} + \left( \frac{p}{2T_s q} \right)^{p-2q} \left( 1 + \left( \frac{x_1^2}{p} \right)^2 \right)^{\frac{3}{2}} \left( x_2 + d_1 \right)
\]

(13)

\[
+ \frac{6q}{p-2q} \left( \frac{p}{2T_s q} \right)^{p-2q} \left( 1 + \left( \frac{x_1^2}{p} \right)^2 \right)^{\frac{3}{2}} \left( \frac{p+4q}{2(p-2q)} \right) \left( x_1^2 \right)^{\frac{2q}{p}} \left( x_2 + d_1 \right)
\]

Where \( \hat{d}_1 = z_{21} \). This paper also proposes the following continuous FXNTSMC law

\[
u = -\frac{1}{g(X)} \left[ f(X) + \hat{d}_2 + \hat{d}_1 + \frac{p-2q}{p} \left( \frac{p}{2T_s q} \right)^{p-2q} \left( x_2 + \hat{d}_1 \right)^{\frac{1}{2}} \right]
\]

\[
\times \left[ 1 + \left( \frac{x_1^2}{p} \right)^2 \right]^{\frac{3}{2}} + \frac{6q}{p-2q} \left[ 1 + \left( \frac{x_1^2}{p} \right)^2 \right]^{\frac{p+4q}{2(p-2q)}} \left( \frac{p}{2} \right)^{\frac{1}{2}} \left( x_1^2 \right)^{\frac{2}{p}} \left( x_2 + d_1 \right)
\]

\[
\times \mu_t \left( \left( x_2 + \hat{d}_1 \right)^{\frac{2q}{p-2q}} \left( x_2 + \hat{d}_1 \right)^{\frac{2q}{p-2q}} \left( 1 + \left( \frac{1}{2} s^2 \right)^{\frac{q}{p}} \right)^{\frac{1}{2}} \left( x_2 + \hat{d}_1 \right)^{\frac{2q}{p-2q}} \right)
\]

(14)

where \( P \) and \( Q \) are positive, odd integers such that \( P > 2 \left( \frac{p}{q} - 2 \right) Q \), \( T_s > 0 \), and \( \hat{d}_2 = z_{12} \). The function \( \mu_t(\cdot) \) [19] is defined for \( \tau > 0 \) as follows:
\[
\mu_\tau(x) = \begin{cases} 
\sin \left( \frac{\pi x^2}{2 \tau^2} \right), & |x| \leq \tau \\
1, & \text{otherwise.} 
\end{cases}
\] (15)

Since \( \mu_\tau(x)/x \to 0 \) as \( x \to 0 \), the control signal (14) is bounded even when \( x \to 0 \). This guarantees that the control signal is always well-defined. The function \( \Psi_\tau(\cdot) \) is also defined as

\[
\Psi_\tau(x) = \begin{cases} 
\psi \text{sign}(s), & |x| \leq \tau, s \neq 0 \\
0, & \text{otherwise.} 
\end{cases}
\] (16)

Where \( \psi > 0 \).

**Theorem 2.** Consider the second-order dynamical system (5). If the control law is established as Eq. (14), then the system output \( y = x_1 \) will converge to zero within fixed time and settling-time function \( T(X_0) \) satisfies

\[
T(X_0) \leq T_{\text{obs}} + T_s + T_r
\] (17)

Where \( T_{\text{obs}} \) is assumed to be the upper bound of convergence time of observer, \( T_r \) is that of the reaching mode, and \( T_s \) is that of the sliding mode.

**Proof.** Firstly, it is necessary to prove that, during the process of disturbances estimation by the system of Eqs. (6), the closed-loop system will not escape in finite time.

Substituting the control law (14) into the Eq. (13) yields
\[
\ddot{s} = \frac{-p}{p - 2q} e_1 \bar{x}_2^{2q} - \left( \frac{p}{2T_s q} \right)^{p-2q} \left( 1 + \left( \frac{f_1^2 (q)}{p} \right)^{2} \right)^{\frac{p}{2}} e_1
\]

\[
- \frac{6q}{p - 2q} \left( \frac{p}{2T_s q} \right)^{p-2q} \left( 1 + \left( \frac{f_1^2 (q)}{p} \right)^{2} \right)^{\frac{p+4q}{2}} \left( x_1^2 \right)^{2q} e_1
\]

\[
- \left( \frac{1}{2} \right)^{1-p} \frac{\sqrt{2p}}{qT_s} \mu_c \left( \bar{x}_2^{2q} \right)^{p-2q} \left( 1 + \left( \frac{1}{2} s^2 \right)^{\frac{3Q}{p}} \right) s^{\frac{Q}{p}} - \frac{p}{p - 2q} \bar{x}_2^{2q} \Psi_{\bar{x}} \left( \bar{x}_2^{2q} \right)
\]

\[
\frac{-p}{p - 2q} \left( x_2 + \hat{d}_1 \right)^{p-2q} \Psi_{s} \left( x_2 + \hat{d}_1 \right)^{2q}
\]

(18)

where \( e_1 = \hat{d}_1 - d_1 \), \( e_2 = \hat{d}_2 - d_2 \), and \( \bar{x}_2 = x_2 + d_1 \). Multiplying both side of Eq. (18) by \( s \) results in

\[
\dot{s} = \frac{-p}{p - 2q} se_2 \bar{x}_2^{2q} - \left( \frac{p}{2T_s q} \right)^{p-2q} \left( 1 + \left( \frac{f_1^2 (q)}{p} \right)^{2} \right)^{\frac{p}{2}} se_1
\]

\[
- \frac{6q}{p - 2q} \left( \frac{p}{2T_s q} \right)^{p-2q} \left( 1 + \left( \frac{f_1^2 (q)}{p} \right)^{2} \right)^{\frac{p+4q}{2}} \left( x_1^2 \right)^{2q} se_1
\]

\[
- \left( \frac{1}{2} \right)^{1-p} \frac{\sqrt{2p}}{qT_s} \mu_c \left( \bar{x}_2^{2q} \right)^{p-2q} \left( 1 + \left( \frac{1}{2} s^2 \right)^{\frac{3Q}{p}} \right) s^{\frac{Q}{p}} - \frac{p}{p - 2q} \bar{x}_2^{2q} \Psi_{\bar{x}} \left( \bar{x}_2^{2q} \right)
\]

\[
\leq \frac{-p}{p - 2q} |s|e_2 \bar{x}_2^{2q} + \left( \frac{p}{2T_s q} \right)^{p-2q} \left( 1 + \left( \frac{f_1^2 (q)}{p} \right)^{2} \right)^{\frac{p}{2}} |s|e_1
\]

\[
+ \frac{6q}{p - 2q} \left( \frac{p}{2T_s q} \right)^{p-2q} \left( 1 + \left( \frac{f_1^2 (q)}{p} \right)^{2} \right)^{\frac{p+4q}{2}} \left( x_1^2 \right)^{2q} |s|e_1
\]

(19)

From lemma 1 and since \( p > 8q \), it follows \( \bar{x}_2^{2q} < 1 + |\bar{x}_2| \),

\[
\left( 1 + \left( \frac{f_1^2 (q)}{p} \right)^{2} \right)^{\frac{p}{2}} < 1 + \frac{4q}{2} \left( \frac{3p}{2} \right) 2^{p-2q} < 1 + \frac{4q}{2} 2^{p-2q} = 1 + 2x_1^p + x_1^p < 4 + 3|x_1|
\]

(20)
and
\[
\left(1 + \left(\frac{x_i^2}{2}\right)^p\right)^{p+4q}
\left(\frac{x_i^2}{2}\right)^{2q} < \left(2 + x_i^p\right)^p x_i^p = 2x_i^p + x_i^p < 3(1 + |x_i|)
\] (21)

Thus
\[
n\leq \frac{p}{p-2q} |s||e_2|(1+|\bar{x}_2|) + \left(\frac{p}{2T_s,q}\right)^p (4 + 3|x_i|)|s||e_1| + \frac{18q}{p-2q} \left(\frac{p}{2T_s,q}\right)^{p-2q} (1 + |x_i|)|s||e_1|
\] (22)

Using the fact that $|a|b \leq a^2 + b^2$ yields
\[
n\leq \frac{p}{p-2q} \left(\frac{e_2^2 + s^2}{2} + |e_2|\frac{\bar{x}_2^2 + s^2}{2}\right) + \left(\frac{p}{2T_s,q}\right)^p \left(\frac{4e_i^2 + s^2}{2} + 3|e_1|\frac{x_i^2 + s^2}{2}\right)
\]
(23)

where
\[
\Gamma_1 = \frac{1}{2} \left(\frac{p}{p-2q} e_2^2 + \left(\frac{p}{2T_s,q}\right)^p \left(4 + \frac{18q}{p-2q}\right) e_i^2\right), \quad \Gamma_2 = \left(\frac{p}{2T_s,q}\right)^{p-2q} \left|e_1\right| \left(3 + \frac{18q}{p-2q}\right),
\]
\[
\Gamma_3 = \frac{p}{p-2q} |e_2|, \quad \text{and} \quad \Gamma_4 = \frac{p}{p-2q} \left(1 + |e_2|\right) + \left(\frac{p}{2T_s,q}\right)^{p-2q} \left(4 + 3|e_1|\right) + \frac{18q}{p-2q} \left(1 + |e_1|\right).
\]

The dynamics of $\bar{x}_2$ is given by
\[
\dot{\bar{x}}_2 = f(X) + g(X)u + d_2 + \hat{d}_1
\] (24)

Substituting the control law (14) into Eq. (24) yields
\[
\ddot{x}_2 = -e_2 - \frac{p - 2q}{p} \left( \frac{p}{2T_s q} \right)^{p-2q} \left( 1 + \left( \frac{x_1^2}{q} \right)^p \right)^{\frac{3}{2}} \left( \frac{p}{p-2q} \right) \dot{x}_2 \left( 1 - \frac{2q}{p-2q} \right)
\]

\[
-6q \left( \frac{p}{2T_s q} \right)^{p-2q} \left( 1 + \left( \frac{x_1^2}{q} \right)^p \right)^{\frac{3}{2}} \left( \frac{p + 4q}{2(p-2q)} \right) \left( \frac{x_1^2}{p} \dot{x}_2 \left( 1 - \frac{2q}{p-2q} \right) \right)
\]

\[
-\left( \frac{1}{2} \right)^{\frac{Q}{p}} \left( \frac{p - 2q}{p} \right) \sqrt{2P} \frac{QT_s}{\mu} \left( \frac{2q}{p-2q} \right) \left( \frac{x_1^2}{p} \dot{x}_2 \left( 1 - \frac{2q}{p-2q} \right) \right) \frac{3Q}{p} \left( \frac{1}{2} s^2 \right) \left( \frac{1 - 2q}{p} \right) - \Psi_{x} \left( \frac{2q}{p-2q} \right)
\]

Multiplying both sides of Eq. (25) by \( \ddot{x}_2 \) results in

\[
\ddot{x}_2 \ddot{x}_2 = -e_2 \ddot{x}_2 - \frac{p - 2q}{p} \left( \frac{p}{2T_s q} \right)^{p-2q} \left( 1 + \left( \frac{x_1^2}{q} \right)^p \right)^{\frac{3}{2}} \left( \frac{p}{p-2q} \right) \dot{x}_2 \left( 1 - \frac{2q}{p-2q} \right)
\]

\[
-6q \left( \frac{p}{2T_s q} \right)^{p-2q} \left( 1 + \left( \frac{x_1^2}{q} \right)^p \right)^{\frac{3}{2}} \left( \frac{p + 4q}{2(p-2q)} \right) \left( \frac{x_1^2}{p} \dot{x}_2 \left( 1 - \frac{2q}{p-2q} \right) \right)
\]

\[
-\left( \frac{1}{2} \right)^{\frac{Q}{p}} \left( \frac{p - 2q}{p} \right) \sqrt{2P} \frac{QT_s}{\mu} \left( \frac{2q}{p-2q} \right) \left( \frac{x_1^2}{p} \dot{x}_2 \left( 1 - \frac{2q}{p-2q} \right) \right) \frac{3Q}{p} \left( \frac{1}{2} s^2 \right) \left( \frac{1 - 2q}{p} \right) - \ddot{x}_2 \Psi_{x} \left( \frac{2q}{p-2q} \right)
\]

\[
\leq |e_2| |\ddot{x}_2| + \left( \frac{1}{2} \right)^{\frac{Q}{p}} \frac{p - 2q}{p} \sqrt{2P} \frac{QT_s}{\mu} \left( \frac{2q}{p-2q} \right) \frac{3Q}{p} \left( \frac{1}{2} s^2 \right) \left( \frac{1 - 2q}{p} \right) - |\ddot{x}_2| |\Psi_{x} \left( \frac{2q}{p-2q} \right)|
\]

\[
+ |\ddot{x}_2||\Psi_{x} \left( \frac{2q}{p-2q} \right)|
\]

(26)

It is followed from lemma 1 that \( |\ddot{x}_2| \left( \frac{2q}{p-2q} \right) < 1 + |\ddot{x}_2| \) and \( \frac{3Q}{p} \leq 1 + |s| \). According to Eq. (16), it can be concluded that \( |\ddot{x}_2| \left( \frac{2q}{p-2q} \right) \leq \psi |\ddot{x}_2| < \psi (1 + \ddot{x}_2^2) \). In the case of \( \max \{|\ddot{x}_2|,|s|\} \leq 1 \), it is obvious that \( |\ddot{x}_2| \left( \frac{2q}{p-2q} \right) \leq 1 \). In the case of \( \min \{|\ddot{x}_2|,|s|\} > 1 \), it follows
\[ |\ddot{x}_2|^{1+\frac{2q}{p-2q}}|s|^{\frac{2q}{p-2q}} \leq (\ddot{x}_2^2 + s^2)^{1+\frac{2q}{p-2q}} \] if \( |\ddot{x}_2| \geq |s| \) and \( |\ddot{x}_2|^{1+\frac{2q}{p-2q}}|s|^{\frac{2q}{p-2q}} \leq \left(s^2 + \frac{\ddot{x}_2^2}{2}\right)^{1+\frac{2q}{p-2q}} \leq s^2 \) if \( |s| \geq |\ddot{x}_2| \). Combining both cases together and using \( |a||b| \leq \frac{a^2 + b^2}{2} \) yields

\[
\ddot{x}_2 \leq |e_2| |\ddot{x}_2| + \left(\frac{1}{2}\right)^{\frac{2q}{p-2q}} p - 2q \sqrt{2P \frac{Q}{Q}} \left(1 + |\ddot{x}_2| + |s| + |\ddot{x}_2||s| + \left(\frac{1}{2}\right)^{\frac{2q}{p-2q}} - \frac{\ddot{x}_2^2 + s^2}{2}\right) + \psi \left(1 + \ddot{x}_2^2\right) 
\]

\[
\leq \frac{e_2^2 + \ddot{x}_2^2}{2} + \left(\frac{1}{2}\right)^{\frac{2q}{p-2q}} p - 2q \sqrt{2P \frac{Q}{Q}} \left(1 + \frac{1 + \ddot{x}_2^2}{2} + \frac{1 + s^2}{2} + \frac{\ddot{x}_2^2 + s^2}{2} + \left(\frac{1}{2}\right)^{\frac{2q}{p-2q}} - \frac{\ddot{x}_2^2 + s^2}{2}\right) + \psi \left(1 + \ddot{x}_2^2\right) = \Gamma_5 + \Gamma_6 \frac{\ddot{x}_2^2 + s^2}{2} + \frac{\ddot{x}_2^2 + s^2}{2} 
\]

where \( \Gamma_5 = \frac{e_2^2}{2} + \psi + \left(\frac{1}{2}\right)^{\frac{2q}{p-2q}} p - 2q \sqrt{2P \frac{Q}{Q}} \left(2 + \left(\frac{1}{2}\right)^{\frac{2q}{p-2q}}\right) \),

\[ \Gamma_6 = 1 + 2\psi + \left(\frac{1}{2}\right)^{\frac{2q}{p-2q}} p - 2q \sqrt{2P \frac{Q}{Q}} \left(2 + \left(\frac{1}{2}\right)^{\frac{2q}{p-2q}}\right) \], and \( \Gamma_7 = \left(\frac{1}{2}\right)^{\frac{2q}{p-2q}} p - 2q \sqrt{2P \frac{Q}{Q}} \left(2 + \left(\frac{1}{2}\right)^{\frac{2q}{p-2q}}\right) \).

The dynamics of \( x_i \) can also be written as \( \dot{x}_i = x_2 + d_1 = x_2 + \dot{d}_1 + d_1 - \dot{d}_1 = \ddot{x}_2 - e_1 \). Accordingly, it follows

\[ x_i \dot{x}_i = x_i \ddot{x}_2 - x_i e_1 \leq |x_i| |\ddot{x}_2| + |x_i| |e_1| \leq |x_i| \left(\frac{\ddot{x}_2^2 + s^2}{2}\right) + \frac{x_i^2 + e_1^2}{2} = \Gamma_8 + \Gamma_9 \frac{x_i^2}{2} + \Gamma_{10} \frac{\ddot{x}_2^2}{2} \]

where \( \Gamma_8 = \frac{e_1^2}{2} \), \( \Gamma_9 = 2 \), and \( \Gamma_{10} = 1 \).

Based on the work of Li and Tian [34], let us define a finite time bounded function \( V_{cl} (x_1, x_2, s) = \frac{1}{2} \left(x_1^2 + \ddot{x}_2^2 + s^2\right) \) for the sliding surface dynamics (18) and the state dynamics (5). In accordance with the inequalities (23), (27) and (28), the derivative of \( V_{cl} \) along the state dynamics (5) satisfies

\[ \dot{V}_{cl} = x_i \dot{x}_i + \ddot{x}_2 \dddot{x}_2 + s \dddot{s} \leq (\Gamma_1 + \Gamma_5 + \Gamma_8) + (\Gamma_2 + \Gamma_9) \frac{x_i^2}{2} + (\Gamma_3 + \Gamma_6 + \Gamma_{10}) \frac{\ddot{x}_2^2}{2} + (\Gamma_4 + \Gamma_7) \frac{s^2}{2} \]
The coefficients $\Gamma_i$ for $i = 1, \ldots, 10$ are bounded due to the boundness of $e_1$ and $e_2$. By defining

$$\Gamma_{\text{cons}} = \Gamma_1 + \Gamma_5 + \Gamma_8, \quad \Gamma_{\text{max}} = \max \{ \Gamma_2 + \Gamma_9, \Gamma_3 + \Gamma_6 + \Gamma_{10}, \Gamma_4 + \Gamma_7 \},$$

the following result is obtained

$$\dot{V}_e \leq \Gamma_{\text{cons}} + \Gamma_{\text{max}} \dot{V}_e \tag{30}$$

It can be concluded from (30) that $V_e$ and so $x_1, \tilde{x}_2, s$ will not escape to infinity in finite time [34].

Since the disturbances estimation $e_1$ and $e_2$ in Eq. (9) will converge to zero within a finite time upper bounded by a constant $T_{obs}$, the sliding surface dynamics (18), for $t \geq T_{obs}$, will reduce to

$$\dot{s} = -\left(1 + \frac{1}{2} s^2 \right) \sqrt{\frac{2p}{QT_r}} \mu_r \left( s \tilde{x}_2^{p-2q} \right) \left( 1 + \left( \frac{3q}{P} \right) \right) s \frac{1}{P} - \frac{p}{p-2q} \tilde{x}_2^{p-2q} \Psi_t \left( \tilde{x}_2^{p-2q} \right) \tag{31}$$

Define $V_r = \frac{1}{2} s^2$. Taking derivative of $V_r$ and using Eq. (31) yields

$$\dot{V}_r = s \dot{s} = -\frac{\sqrt{2p}}{QT_r} \mu_r \left( s \tilde{x}_2^{p-2q} \right) \left( 1 + (V_r) \frac{3q}{P} \right) \left( V_r \right) \frac{1}{P} - \frac{p}{p-2q} s \tilde{x}_2^{p-2q} \Psi_t \left( \tilde{x}_2^{p-2q} \right) \tag{32}$$

As clear from the definition of $\Psi_t$, $-\frac{p}{p-2q} s \tilde{x}_2^{p-2q} \Psi_t \left( \tilde{x}_2^{p-2q} \right) = -\frac{p}{p-2q} s \tilde{x}_2^{p-2q}$ when

$$s \neq 0, \tilde{x}_2^{p-2q} \leq \tau \quad \text{and} \quad -\frac{p}{p-2q} s \tilde{x}_2^{p-2q} \Psi_t \left( \tilde{x}_2^{p-2q} \right) = 0 \quad \text{otherwise.}$$

Accordingly,

$$-\frac{p}{p-2q} s \tilde{x}_2^{p-2q} \Psi_t \left( \tilde{x}_2^{p-2q} \right) \leq 0 \text{ holds true } \forall \tilde{x}_2, s \in \mathbb{R}.$$ 

Hence, the following result is obtained by utilizing lemma 2.
\[
V_r \leq -\frac{\sqrt{2}P}{QT_r} \mu_r \left( \frac{2q}{\bar{x}_2^{p-2q}} \right) \left( 1 + \left( V_r \right)^{\frac{3Q}{p}} \right) \left( V_r \right)^{1 - \frac{Q}{p}}
\]

\[
= -\frac{\sqrt{2}P}{QT_r} \mu_r \left( \frac{2q}{\bar{x}_2^{p-2q}} \right) \left( \frac{2\left(1 - \frac{Q}{p}\right)}{V_r^{\frac{3Q}{p}}} + \left( V_r \right)^{\frac{2Q}{p}} V_r^{\frac{2\left(1 - \frac{Q}{p}\right)}{3Q}} \right)^{\frac{3}{2}}
\]

\[
\leq -\frac{P}{QT_r} \mu_r \left( \frac{2q}{\bar{x}_2^{p-2q}} \right) \left( 1 + \left( V_r \right)^{\frac{Q}{p}} \right)^{\frac{3}{2}} \left( V_r \right)^{1 - \frac{Q}{p}}
\]

\[
= -\frac{P}{QT_r} \mu_r \left( \frac{2q}{\bar{x}_2^{p-2q}} \right) \left( 1 + \left( V_r \right)^{\frac{Q}{p}} \right)^{\frac{3}{2}} \left( V_r \right)^{1 - \frac{Q}{p}}
\]

(33)

Let us divide the phase plane whose axes are defined by \( x_i \) and \( \bar{x}_2 \) into three regions

\[ R_1 = \left\{ (x_i, \bar{x}_2)^T \in \mathbb{R}^2 \left| \frac{2q}{\bar{x}_2^{p-2q}} > \tau, \tau \neq 0 \right. \right\}, \quad R_2 = \left\{ (x_i, \bar{x}_2)^T \in \mathbb{R}^2 \left| \frac{2q}{\bar{x}_2^{p-2q}} \leq \tau, \tau \neq 0 \right. \right\}, \quad \text{and} \]

\[ R_3 = \left\{ (x_i, \bar{x}_2)^T \in \mathbb{R}^2 | s = 0 \right\} \quad (\text{Fig. 1}) . \] In \( R_1 \), it is followed from \( \mu_r \left( \frac{2q}{\bar{x}_2^{p-2q}} \right) = 1 \) that

\[
\dot{V}_r \leq -\frac{P}{QT_r} \left( 1 + \left( V_r \right)^{\frac{Q}{p}} \right)^{\frac{3}{2}} \left( V_r \right)^{1 - \frac{Q}{p}} . \]

As a consequence, the state trajectory will either directly reach the sliding surface \( s \) or enters \( R_2 \). Assume \( \tau \) to be chosen sufficiently small. In \( R_2 \), it results from Eq. (25) that the dynamics of \( \bar{x}_2 \) is governed by

\[
\dot{\bar{x}}_2 = -\Psi_r \left( \frac{2q}{\bar{x}_2^{p-2q}} \right) = \nu \text{sign}(s) \quad \text{because}
\]

\[
\mu_r \left( \frac{2q}{\bar{x}_2^{p-2q}} \right) \rightarrow 0 \quad \text{as} \quad \bar{x}_2 \rightarrow 0 . \]

This means \( \dot{\bar{x}}_2 = \nu \) for \( s < 0 \) and \( \dot{\bar{x}}_2 = -\nu \) for \( s > 0 \). This dynamics guarantees that the state trajectory crosses \( R_2 \) within finite time \( \frac{2\tau^{(p-2q)/2q}}{\nu} \) and then is directed to the sliding surface by

\[
\dot{V}_r \leq -\frac{P}{QT_r} \left( 1 + \left( V_r \right)^{\frac{Q}{p}} \right)^{\frac{3}{2}} \left( V_r \right)^{1 - \frac{Q}{p}} . \]

Therefore, the state trajectory will
ultimately reach the sliding surface at most within the period $T_s + \frac{2\tau(p-2q)/2q}{\psi}$. If $\psi$ is chosen sufficiently large, the term $\frac{2\tau(p-2q)/2q}{\psi}$ can entirely be neglected. Accordingly, for $t \geq T_{obs} + T_s$, the sliding motion begins.

In $\mathcal{R}_3$, it follows

$$0 = \left(x_2 + \dot{d}_1\right)^{p-2q} + \left(p \frac{p}{2T_s q}\right)^{p-2q} \left(1 + \left(x_1^2\right)^{\frac{q}{p}}\right)^{\frac{3}{2}} \frac{p}{p-2q} x_1$$

(34)

Since $\dot{d}_1 = d_1$ for $t \geq T_{obs}$, so $x_2 + \dot{d}_1 = x_2 + d_1 = \dot{x}_1$. Thus, the sliding motion dynamics is governed by

$$\dot{x}_1 = -\frac{p}{2T_s q} \left(1 + \left(x_1^2\right)^{\frac{q}{p}}\right)^{\frac{3}{2}} \frac{p^{1-2q}}{p} x_1$$

(35)

Define $V_s = x_1^2$. Taking derivative of $V_s$ and using Eq. (35) yields

$$V_s = 2x_1 \dot{x}_1 = -\frac{p}{T_s q} \left(1 + \left(V_s^p\right)^{\frac{q}{p}}\right)^{\frac{3}{2}} \frac{p^{1-q}}{p} V_s$$

(36)

This guarantees that, in the sliding motion, $x_1$ converges to the origin at most within the period $T_s$.

As per what was gathered, the system output $y$ converges to the origin from any initial state in the state space and the settling-time function satisfies $T\left(X_0\right) \leq T_{obs} + T_s + T_r$, which completes the proof. □

**Remark 1.** Once the state trajectory comes into the region $\mathcal{R}_2$, the function $\Psi_\tau(\cdot)$ in the control law statement (14) drives it to cross $\mathcal{R}_2$ within finite time. Strictly speaking, this function ensures
that \( \tilde{x}_2 = 0 \) will not be attractor. It should also be noticed that the condition \( s \neq 0 \) of \( \Psi_r(\cdot) \) is necessary for continuity of the control signal because it does not allow chattering to occur in \( R_x = R_{t_2} \cap R_3 \), which is depicted in Fig. 2.

**Remark 2.** As was proven earlier, \( T_r \) and \( T_s \) are upper bounds of convergence time of the reaching and sliding modes, respectively. They explicitly exist as independent design parameters in the control law statement (14). This enables us to set them at any desired value in advance. These design parameters determine the convergence speed of the output. The smaller these parameters are chosen, the faster the output converges to the zero. The parameter \( \tau \) determines the thickness of the region \( R_2 \). This parameter must be chosen sufficiently small in order that the negligibility of the term \( \frac{2 \tau^{(p-2q)/2q}}{\psi} \) can be guaranteed. Choosing large values for the parameter \( \psi \) is also necessary for making the term \( \frac{2 \tau^{(p-2q)/2q}}{\psi} \) smaller.

### 4. Simulation results

This section is to represent a numerical simulation. A benchmark simulation example is SIP system [17] whose intrinsic instability and fast dynamics can show how effective a control system acts. Hence, the proposed controller (14) is applied to SIP system when the controller’s parameters are selected as \( q = 1, p = 9, Q = 1, P = 15, \tau = 0.1, T_r = T_s = 5, \psi = 5 \) and the initial conditions are set as \( x_1(0) = 0.5, x_2(0) = 0.5 \). The disturbances are considered as \( d_1 = 0.5 \sin 2t + 0.5 \cos x_1(t), d_2 = 0.5 \cos 3t + 0.5 \sin x_2(t) \) and the observer’s parameters are chosen as

\[
\begin{align*}
\alpha &= 0.01 \\
\beta &= 1.01 \\
\gamma &= 1.01
\end{align*}
\]

Fig. 3 and Fig. 4 show that the observer’s state variables have converged to the disturbances \( d_1 \) and \( d_2 \) approximately at \( t = 2.s \). Response curve of the output \( y = x_1 \) is depicted in Fig. 5. This
figure indicates that the overall closed-loop system has been successful in stabilizing the output since \( x_1 \) has converged to zero before the time \( T_r + T_s = 10 \). Fig. 6 shows that the state variable \( x_2 \) has been converged to \((-d_i)\), which is equivalent to the convergence of the \( \bar{x}_2 \) to the zero (Fig. 7).

The behaviour of the sliding surface has been depicted in the Fig. 8. As can clearly be understood from this figure, the sliding surface is driven into the zero before the time \( T_r = 5 \). The control signal \( u \) is demonstrated in Fig. 9. This figure bears witness to the fact that the control signal is continuous.

To show the effectiveness of the proposed method, the controller is compared with the fixed-time sliding mode controller introduced by Jianguo and Shengjiang [35]. We have chosen the aforementioned paper because its idea is to some extent similar to our idea but these two papers essentially adopted different approaches to constructing a fixed-time sliding mode controller. Strictly speaking, Jianguo and Shengjiang’s controller has been designed on the basis of ordinary fixed-time control method while the proposed controller is derived from a completely novel and different approach.

Unlike the claim of the authors of the above-mentioned paper, their proposed fixed-time sliding mode controller is not fixed-time stable. This can easily be evidenced by the formula

\[
T_i = \frac{\ln \left( \frac{s(0)k_1}{(k_{21} - \delta d^*)} + 1 \right)}{k_1} \quad \text{(page 3)}
\]

(page 3) obtained for the convergence time of the reaching phase. This formula clearly shows that the convergence time of the reaching phase depends on the initial conditions \( s(0) \), which is completely contrary to the concepts of the fixed-time stability and control. Additionally, the aforementioned paper has only considered the mismatched uncertainties and used a linear observer and not a fixed-time one. Nonetheless, we have applied our controller
and the proposed controller of Jianguo and Shengjiang to the simulation example (SIP) without considering disturbances and the results of these simulations will be reported in the following.

That paper has proposed the following sliding surface and control law respectively:

\[
s = x_2 + \delta \frac{x_1}{|x_1| + \eta} + \gamma x_1^m
\]

and

\[
u = -g^{-1}(X) \left[ f(X) + \delta \eta x_2 \left( \frac{x_2}{|x_2| + \eta} \right)^2 + \frac{m+n}{m} \gamma x_1^m x_2 + k_1 s + \left( k_1 + \frac{m+n}{m} \gamma d^* |x_1|^n \right) \text{sign}(s) \right]
\]

Jianguo and Shengjian have chosen their parameters as follows: \( \delta = 0.5, \ \eta = 0.01, \ m = 3, \ n = 2, \ \gamma = 0.5, \ k_1 = 0.1 \) and \( k_2 = 0.5 \). Since the disturbances have not be considered, we set \( d^* = 0 \). Fig. 10 shows the behavior of the sliding surface \( s \). This figure indicates that the proposed controller drives the state trajectory into the sliding surface much faster than Jianguo and Shengjian’s controller. This results from the fact that Jianguo and Shengjian’s controller can only guarantee the finite-time stability of the reaching phase. As can clearly be understood from this figure, the sliding surface of Jianguo and Shengjian is linearly converged to the zero whereas our sliding surface is driven into zero as a high-degree polynomial. The response curves of the state variables \( x_1 \) and \( x_2 \) are also depicted in Fig. 11 and Fig. 12. The control signals of the two controllers are also illustrated in Fig. 13. As clear from this figure, the proposed control signal is significantly larger than that of Jianguo and Shengjian. This is completely reasonable due to the fact that the proposed controller stabilizes both reaching and sliding phases within fixed time whereas Jianguo and Shengjian’s controller only guarantees the fixed-time stability of the sliding phase. Another remarkable feature of the proposed controller is that it generates a continuous control signal but the Jianguo and Shengjian’s controller chatters even when there is not any kind of disturbances (Fig. 13).
5. Conclusion

This article presents a disturbance-observer-based NTSM controller for nonlinear planar system. Its notable features are fixed-time stability of the closed-loop system, continuity of the control signal, and countering with matched and mismatched disturbances. The first one guarantees the convergence time of the closed-loop system to be uniform with respect to initial conditions. The continuity of the control signal gives rise to chattering avoidance. And, the last one broadens the application area of the proposed controller.

6. Future Recommendation

Applying the idea of the observer-based continuous FTNTSMC to the sophisticated applications such as complex dynamical networks, multi-agent systems and so on will be definitely highly impressive and attract the attention of many researchers. Extending the proposed method to high-order planar systems can be considered as a challenging problem for further research. Restructuring the proposed method in the form of output-feedback control will be also of general interest.

References

1. Jiang, T., T. Song, and D. Lin, "Integral Sliding Mode based Control for Quadrotors with Disturbances: Simulations and Experiments", International Journal of Control, Automation and Systems: p. 1-12.
2. Utkin, V., J. Guldner, and J. Shi, "Sliding mode control in electro-mechanical systems", 2009, Boca Raton: CRC Press.
3. Draženović, B., "The invariance conditions in variable structure systems", Automatica, 1969. 5(3): p. 287-295.
4. Shi, S.-L., J.-X. Li, and Y.-M. Fang, "Fractional-disturbance-observer-based Sliding Mode Control for Fractional Order System with Matched and Mismatched Disturbances", International Journal of Control, Automation and Systems, 2019. 17(5): p. 1184-1190.
5. Man, Z. and X. Yu, "Terminal sliding mode control design of mimo linear systems", IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 1997. 44(11): p. 823-830.
6. Feng, Y., X. Yu, and F. Han, "On nonsingular terminal sliding-mode control of nonlinear systems", Automatica, 2013. 49(6): p. 1715-1722.
7. Feng, Y., X. Yu, and Z. Man, "Non-singular terminal sliding mode control of rigid manipulators", Automatica, 2002. 38: p. 2159-2167.
8. Yang, L. and J. Yang, "Nonsingular fast terminal sliding-mode control for nonlinear dynamical systems", International Journal of Robust and Nonlinear Control, 2011. 21(16): p. 1865-1879.
9. Sheng, Y.-Z., et al., "Nonsingular finite-time second order sliding mode attitude control for reentry vehicle", *International Journal of Control, Automation and Systems*, 2015. **13**(4): p. 853-866.

10. Pukdeboon, C. and P. Siricharuanun, "Nonsingular terminal sliding mode based finite-time control for spacecraft attitude tracking", *International Journal of Control, Automation and Systems*, 2014. **12**(3): p. 530-540.

11. Yang, J., et al., "Continuous nonsingular terminal sliding mode control for systems with mismatched disturbances", *Automatica*, 2013. **49**: p. 2287-2291.

12. Bhat, S. and D. Bernstein, "Finite-time stability of continuous autonomous systems", *SIAM Journal on control and Optimization*, 2000. **38**(2): p. 751-766.

13. Andrieu, V., L. Praly, and A. Astolfi, "Homogeneous approximation, recursive observer design, and output feedback", *SIAM Journal on control and Optimization*, 2008. **47**(4): p. 1814-1850.

14. Polyakov, A. and L. Fridman, "Stability notions and Lyapunov functions for sliding mode control systems", *Journal of Franklin Institute*, 2014. **351**(4): p. 1831-1865.

15. Polyakov, A., D. Efimov, and W. Perruquetti, "Finite-time and fixed-time stabilization: Implicit Lyapunov function approach", *Automatica*, 2015. **51**: p. 332-340.

16. Polyakov, A., "Nonlinear feedback design for fixed-time stabilization of linear control systems", *IEEE transactions on Automatic Control*, 2012. **57**(8): p. 2106-2110.

17. Zou, Z., "Non-singular fixed-time terminal sliding mode control of non-linear systems", *IET Control Theory and Applications*, 2014. **9**(4): p. 545-552.

18. Khanzadeh, A. and M. Pourgholi, "Fixed-time leader-follower consensus tracking of second-order multi-agent systems with bounded input uncertainties using non-singular terminal sliding mode technique", *IET Control Theory and Applications*, 2017. **12**(5): p. 679-686.

19. Fu, J. and J. Wang, "Fixed-time coordinated tracking for second-order multi-agent systems with bounded input uncertainties", *Systems & Control Letters*, 2016. **93**: p. 1-12.

20. Zou, Z., "Nonsingular fixed-time consensus tracking for second-order multi-agent networks", *Automatica*, 2015. **54**: p. 305-309.

21. Sui, W.-S., et al., "Distributed Fixed-time Attitude Synchronization Control for Multiple Rigid Spacecraft", *International Journal of Control, Automation and Systems*, 2019. **17**(5): p. 1117-1130.

22. Corradini, M.L. and A. Cristofaro, "Nonsingular terminal sliding-mode control of nonlinear planar systems with global fixed-time stability guarantees", *Automatica*, 2018. **95**: p. 561-565.

23. Wu, R., et al., "Fixed-time disturbance observer based non-singular terminal sliding mode control for second-order uncertainties systems", *IET Control Theory and Applications*, 2018.

24. Chen, W.-H., et al., "Disturbance-observer-based control and related methods-An overview", *IEEE Transactions on Industrial Electronics*, 2016. **63**(2): p. 1083-1095.

25. Yang, J., et al., "Robust control of nonlinear MAGLEV suspension system with mismatched uncertainties via DOBC approach", *ISA Transactions*, 2011. **50**(3): p. 389-396.

26. Mohamed, Y.-A.-R.I., "Design and implementation of a robust current-control scheme for a PMSM vector drive with simple adaptive disturbance observer", *IEEE Transactions on Industrial Electronics*, 2007. **54**(4): p. 1981-1988.

27. Chang, J.-L., "Sliding mode control design for mismatched uncertain systems using output feedback", *International Journal of Control, Automation and Systems*, 2016. **14**(2): p. 579-586.

28. Chang, J.-L. and T.-C. Wu, "Disturbance observer based output feedback controller design for systems with mismatched disturbance", *International Journal of Control, Automation and Systems*, 2018. **16**(4): p. 1775-1782.
29. Ni, J., C. Liu, and H. Liu, "Continuous uniformly finite time exact disturbance observer based control for fixed-time stabilization of nonlinear systems with mismatched disturbances", *PLoS One*, 2017. 12(4): p. e0175645.
30. Angulo, M.T., J.A. Moreno, and L. Fridman, "Robust exact uniformly convergent arbitrary order differentiator", *Automatica*, 2013. 49(8): p. 2489-2495.
31. Shtessel, Y.B., I.A. Shkolnikov, and A. Levant, Smooth second-order sliding modes: Missile guidance applications", *Automatica*, 2007. 43(8): p. 1470-1476.
32. You, M., et al., "Comprehensive design of uniform robust exact disturbance observer and fixed-time controller for reusable launch vehicles", *IET Control Theory and Applications*, 2017. 12(5): p. 638-648.
33. Tian, B., et al., "Fixed-time stabilization of high-order integrator systems with mismatched disturbances", *Nonlinear Dynamics*, 2018. 94(4): p. 2889-2899.
34. Li, S. and Y.-P. Tian, "Finite-time stability of cascaded time-varying systems", *International Journal of Control*, 2007. 80(4): p. 646-657.
35. Jianguo, G. and Y. Shengjiang, "New fixed-time sliding mode control for a mismatched second-order system", *Transactions of the Institute of Measurement and Control*, 2020: p. 0142331220952305.

**Figures Captions:**

Fig. 1: Phase plane plot. ................................................................. 24
Fig. 2: The region $\mathcal{R}_c = \mathcal{R}_2 \cap \mathcal{R}_3$. ................................................................. 24
Fig. 3: Response curve of $d_1$ and $d_1$. ................................................................. 25
Fig. 4: Response curve of $d_2$ and $d_2$. ................................................................. 25
Fig. 5: Response curve of $y = x_1$. ................................................................. 26
Fig. 6: Response curve of $x_2$ and $-d_1$. ................................................................. 26
Fig. 7: Response curve of $x_2$. ................................................................. 27
Fig. 8: Response curve of the switching surface $s$. ................................................................. 27
**Fig. 9:** Control signal. ................................................................. 28
Fig. 10: Response curve of the switching surface $s$ for the proposed controller and Jianguo’s controller ................................................................. 28
Fig. 11: Response curve of $x_1$ for the proposed controller and Jianguo’s controller. ................................................................. 29
Fig. 12: Response curve of $x_2$ for the proposed controller and Jianguo’s controller. ................................................................. 29
Fig. 13: Response curve of the control signal $u$ for the proposed controller and Jianguo’s controller.

Figures:

Fig. 1: Phase plane plot.

Fig. 2: The region $R_c = R_2 \cup R_3$. 
Fig. 3: Response curve of $d_1$ and $\dot{d}_1$.

Fig. 4: Response curve of $d_2$ and $\dot{d}_2$. 
Fig. 5: Response curve of $y = x_1$.

Fig. 6: Response curve of $x_2$ and $(-d_1)$.
Fig. 7: Response curve of $\bar{x}_2$.

Fig. 8: Response curve of the switching surface $\delta$. 
Fig. 9: Control signal.

Fig. 10: Response curve of the switching surface $s$ for the proposed controller and Jianguo’s controller.
Fig. 11: Response curve of $x_1$ for the proposed controller and Jianguo’s controller

Fig. 12: Response curve of $x_2$ for the proposed controller and Jianguo’s controller
Fig. 13: Response curve of the control signal $u$ for the proposed controller and Jianguo’s controller

Biographies:

Alireza Khanzadeh was born in Tehran, Tehran, Iran in 1988. He received his MS from the Shahid Beheshti University in 2015, and is PhD candidate of control theory in Malek Ashtar University of Technology from 2017. His research interests include classical feedback control design with modern approaches, fixed-time stability of control systems, nonlinear control, sliding mode control, and guidance law design.

Iman Mohammadzaman has been an Assistant Professor with the Faculty of Electrical and Computer Engineering, Malek Ashtar University of Technology, Tehran, Iran. His research interests include robust control, nonlinear control, and LMI optimization.