Identification of Trans-Sialidases as a Common Mediator of Endothelial Cell Activation by African Trypanosomes

Zeinab Ammar, Nicolas Plazolles, Théo Baltz, Virginie Coustou*

French National Centre for Scientific Research (CNRS), Université Bordeaux Segalen, Microbiologie fondamentale et Pathogénicité, UMR 5234, Bordeaux, France

Abstract

Understanding African Trypanosomiasis (AT) host-pathogen interaction is the key to an “anti-disease vaccine”, a novel strategy to control AT. Here we provide a better insight into this poorly described interaction by characterizing the activation of a panel of endothelial cells by bloodstream forms of four African trypanosome species, known to interact with host endothelium. T. congolense, T. vivax, and T. b. gambiense activated the endothelial NF-kB pathway, but interestingly, not T. b. brucei. The parasitic TS (trans-sialidases) mediated this NF-kB activation, remarkably via their lectin-like domain and induced production of pro-inflammatory molecules not only in vitro but also in vivo, suggesting a considerable impact on pathogenesis. For the first time, TS activity was identified in T. b. gambiense BSF which distinguishes it from the subspecies T. b. brucei. The corresponding TS were characterized and shown to activate endothelial cells, suggesting that TS represent a common mediator of endothelium activation among trypanosome species with divergent pathophysiology.

Introduction

Animal African trypanosomiasis (AAT) is a severe disease affecting livestock in sub-Saharan Africa throughout an area of approximately 10 million km², and causing annual economic losses of several billion dollars [1,2]. The disease is characterized by severe anaemia, weight loss and immunosuppression, leading to the death of the animal if not treated. It is caused by the parasites Trypanosoma congolense, Trypanosoma vivax and to a lesser extent, Trypanosoma brucei. Human African trypanosomiasis (HAT), also known as sleeping sickness, afflicts mostly poor populations living in rural areas of Africa with ~10 000 new cases reported per year according to World Health Organization reports. Patients suffer from progressive neurological dysfunction that culminates in death. Almost 90% of the reported HAT cases are caused by Trypanosoma brucei gambiense.

During the course of infection, African trypanosomes remain exclusively extracellular and are found intermittently in the blood of the mammalian host as bloodstream forms (BSF). Therefore, these parasites are necessarily in contact, either directly or indirectly, with the endothelial cells. At a certain stage of infection, T. b. gambiense and T. vivax invade internal organs, including the central nervous system, which requires direct contact with the endothelial cells of blood brain barrier (BBB) [3,4]. On the contrary, T. congolense remains exclusively intravascular, but binds to the walls of capillaries of infected cattle and to bovine aortic endothelial cells (BAE) in vitro [3,6].

The vascular endothelium is not only a permeability barrier but also a multifunctional “organ” that, among other functions, plays a critical role in regulating the immune response [7]. Endothelial cell activation is a central pathophysiological process allowing the endothelium to participate in an inflammatory response by triggering activation pathways of the cell leading to a rapid up-regulation of gene transcription. Furthermore, endothelial cells from different locations present a phenotypic variation and can generate different responses to the same stimulus.

NF-kB is an essential and well characterized family of transcription factors, conserved from human to Drosophila, and known to be a central mediator for numerous cell functions including the immune response [8,9,10]. Under normal conditions, NF-kB is bound to IkB (NF-kB inhibitor) and retained in the cytoplasm. In an infection context, a cascade of kinases is activated by the pathogen, leading to IkB phosphorylation and NF-kB translocation to the nucleus, where it induces the expression of NF-kB-responsive genes. Most products of these genes are crucial for the immune system and specifically for the establishment of an inflammatory response, such as pro-inflammatory cytokines, nitric oxide synthase and leukocyte adhesion molecules. The NF-kB pathway plays a prominent role in regulating the immune response to parasite infections [11]. NF-kB-dependent response of endothelial cells has been described for Trypanosoma cruzi, contributing to cell invasion and inflammation [12,13], which are important components in the development of congestive heart failure observed during Chagas’ disease [14]. Likewise, the host’s inflammatory response is a major pathophysiological factor in disease progression during African trypanosomiasis, hence the outcomes of this activation on the host pathogen relationship could be considerable. However, to our knowledge, no studies have yet examined the activation of endothelium by African trypanosomes, with the exception of one study on endothelial activation by T. b. gambiense.
Author Summary

African trypanosomiasis remains by far the most devastating parasitic disease in Africa affecting both humans and livestock. The current control strategies are not efficient because of the increasing resistance to trypanocidal drugs, and the antigenic variation that impedes vaccine development. An alternative strategy aiming to neutralize the pathological effects of the parasite rather than eliminate it was proposed. Therefore, it is essential to understand the development of pathogenesis and characterize the pathogenic factors. In this context, we wanted to elucidate the host-pathogen interaction between the African trypanosomes and the mammalian host endothelium. For the first time, we clearly demonstrated that animal African trypanosomes activate the endothelial cells via the NF-κB pathway and cause a pro-inflammatory response in vitro and in vivo via their TS. By comparing four different trypanosomases species, we showed that they displayed distinct capacities for activation. For the first time, we identified sialidase activity in the human parasite *T. brucei gambienses* and showed that sialidases are the mediators of this endothelial activation, in both human and animal trypanosomes. Interestingly, the lectin-like domain of this enzyme was responsible for the activation rather than the catalytic site. This study brings considerable insights into the host-pathogen relationship and designates the sialidases as a perfect target for an anti-disease strategy.

These African trypanosome species, known to cause different physiopathologies, had distinct activation capacities, interestingly in correlation with the presence of SA/TS activity. Specifically, *T. b. brucei* BSF did not activate the endothelial cells, whereas *T. vivax*, *T. conglolense* and *T. b. gambienses* BSF were capable of endothelial cell activation via the NF-κB pathway. The different endothelial cell models we used allowed identification of organ and species specificities while characterizing the endothelial cell activation process. Kinetic patterns of activation and clear quantification of activated cells were established for the first time regarding an African trypanosomes/endothelial cell interaction study. We clearly demonstrated the presence of enzymatic TS and SA activity in *T. b. gambiens* BSF and showed involvement of TS, most likely through their lectin-like domain, in endothelial cell activation, and subsequently in inflammation. Most importantly, our findings pointed towards the TS as a common mediator of activation among different species of African trypanosomes. These data reinforced the role of these enzymes as virulence factors involved, not only in anaemia, via their catalytic properties but also in inflammation development via their lectin domain. Moreover, these findings render TS a potential vaccine target, and given the established role of TS in the interaction of *T. cruzi* with its host [26,27], this vaccine could ideally serve against both American and African trypanosomes. Lastly, this study offered new insights into the host-pathogen interaction in African trypanosomiasis, which is essential for any attempt to control this disease.

Results

Endothelial cells are activated by *T. conglolense*, *T. vivax*, *T. b. gambienses* but not *T. b. brucei*

To determine whether African trypanosomes can activate endothelial cells, primary cultures of BAE were first cocultivated with four species of African trypanosomes: BSF of *T. conglolense* (two isolates IL3000 and STIB910), *T. vivax* (Y486), *T. b. gambienses* (1135 and LiTat) and *T. b. brucei* (AnTat 1.1 and 427). BAE were previously cultivated for 24 h in culture medium without serum to avoid the interference of serum components with activation of NF-κB. NF-κB translocation to the nucleus was studied by indirect immunofluorescence as an indicator of cell activation. For BAE in culture medium alone (control cells), NF-κB staining was mainly limited to the cytoplasm (data not shown). In the presence of *T. conglolense*, *T. vivax* and *T. b. gambienses*, the nucleus of the majority of BAE became stained (Fig. 1A). Interestingly, staining was limited to the cytoplasm in the presence of *T. b. brucei*.

The percentage of activated cells (with stained nuclei) was determined by counting approximately 500 cells for each condition and at various time points, in order to establish the activation kinetics. Data was then normalized to the control by retrieving the percentage of cells activated in culture medium alone (control) representing the background activation (Fig. 1B). 78±2.96% of BAE were activated in the presence of LPS (positive control). Activation by both *T. conglolense* and *T. b. gambienses* started after 6 h of coculture, with 45±3.2% and 48.5±10.9% of cells activated respectively, whereas *T. vivax* activated BAE only after 16 h of coculture, with 35.9±3.5% of BAE activated. However, the number of parasites used in *T. vivax* activation assays was 10 times lower than for the other species, due to experimental limitations, which could explain the delay observed in activation kinetics. Finally, *T. b. brucei* did not activate BAE at all. Note that after 24 h of coculture, an increased rate of activation by serum components was observed in control cells and used to normalize the quantification, therefore results at this particular time point are probably underestimated.
Figure 1. Activation of BAE by African trypanosomes. (A) NF-κB immunofluorescent staining on BAE after 16 h of coculture with *T. congolense* IL3000, *T. vivax* Y486, *T. b. brucei* AnTat 1.1 and *T. b. gambiense* 1135 BSF. Scale bars = 20 μM. (B) Kinetics of BAE activation: percentage of activated BAE in presence of 1 μg/ml LPS and after 2, 6, 16 and 24 h of coculture with BSF of *T. congolense* IL3000, *T. vivax* Y486, *T. b. brucei* AnTat 1.1 and *T. b. gambiense* 1135. Results were similar with *T. congolense* STIB910 strain, *T. b. gambiense* LiTat strain, and *T. b. brucei* 427 strain. Each experiment was
Heterogeneity of endothelial cells reflects on NF-κB activation by African trypanosomes

Since heterogeneity of endothelial cells from different organs and species is well known [28,29,30], it was imperative to analyse a large panel of endothelial cells. Here, a primary culture of BAE was studied as a preferred model, since cattle are a natural host for animal African trypanosomes. In addition, we tested 13 different organ-specific endothelial cell lines, from either human (H) or murine (M) origins: they are microvascular endothelial cells, with the exception of HUVEC and H and M Peripheral Lymph Nodes (PLN). H and M PLN also represent the high endothelial cells (HEC) phenotype. These cells have conserved endothelial cells properties, more specifically morphological characteristics (microscope observation), endothelial cell markers [31], and a functional TNFα-induced NF-κB cell signaling pathway (Fig. S1A and B). Results showed that T. b. brucei did not activate the tested endothelial cells, regardless of their origin (Fig. S1C and D), whereas T. b. gambiense did (Fig. 2), thus confirming the results seen with the BAE. Interestingly, T. congolense activated murine but not human endothelial cells, with the exception of H PLN, which could be explained by its HEC phenotype (Fig. 2 and S2, Table S1). This suggests that activation by T. congolense is species-specific. Furthermore, T. congolense seemed to activate murine cells with preference for some tissues: M Brain, M Lung and M bone marrow (BM) were the most activated, 51%, 49.8%, and 40% of cells activated respectively, while M PLN, M Spleen and M Thymus were less activated, 25%, 29%, 24.6% of cells activated, respectively. Results with T. vivax also showed organ specificity: all endothelial

![Figure 2. Kinetics of activation of murine and human endothelial cells by T. congolense, T. b. gambiense and T. vivax BSF.](https://www.plospathogens.org/)

Murine (M) (A, B, and C) and human (H) (D, E, and F) endothelial cells from brain, lung, BM (bone marrow), spleen, PLN (peripheral lymph node), thymus, appendix, umbilical vein (HUVEC), intestine and skin were cultivated for 2, 6, 16 and 24 h with BSF T. congolense IL3000 (A and D), T. vivax Y486 (B and E) and T. b. gambiense 1135 (C and F). Results were similar with T. congolense STIB910 strain, T. b. gambiense LiTat strain, and T. b. brucei 427 strain. Percentage of activated endothelial cells at each time point is represented as mean value±SD of at least three independent experiments. See also Fig. S1 and S2, and Table S1. doi:10.1371/journal.ppat.1003710.g002
cell lines were activated but neither M Thymus nor H Skin cell lines.

The kinetics of activation showed an additional scale of variability between the 13 endothelial cell lines used (Fig. 2). For example, while 2 h of coculture were sufficient for T. congolense to activate M Brain, M Lung and M BM; M PLN and M Spleen required 24 h for activation. Not only did the minimum coculture time for activation vary between these endothelial cells, but also the peak of activation, which occurred at different time points depending on cell origin. For instance, M Lung were most activated after 24 h of coculture with T. congolense, while M BM were most activated after 16 h of coculture.

To summarize, our results showed that the African trypanosomes T. congolense, T. vivax and T. b. gambiense did activate endothelial cells and, interestingly, T. b. brucei did not. Activation of endothelial cells by African trypanosomes was not uniform: specificity for species and for organs was observed, and a proper activation profile for each endothelial cell line was defined according to the activation kinetics.

NF-kB activation induces a pro inflammatory response in endothelial cells

In order to determine the consequences of NF-kB activation on the endothelial cell, three different markers, potentially regulated by the NF-kB factor, were studied: i) production of pro-inflammatory cytokines IL-1β and IL-6; ii) modification of the expression pattern of adhesion molecules ICAM-1 and VCAM-1; iii) nitric oxide production by NO synthase. These assays were performed on M BM and Lung, the two cell lines most activated by T. congolense and for which commercial antibodies are extensively developed.

IL-1β and IL-6 produced in the coculture media were measured at different time points (Fig. 3A). As controls, endothelial cell lines were stimulated by 5 ng/ml of TNFα for 4 h (data not shown), or unstimulated to determine basal level of IL-1β and IL-6 (data not shown). In the presence of T. congolense, significant amounts of IL-1β were detected after 6 h whereas for IL-6, longer incubation periods were required: 24 h for M Lung and 48 h for M BM. This seemed to reflect the known autocrine effect of IL-1β on the production of IL-6. M Lung activated with T. congolense produced high amounts of IL-1β and IL-6 that reached 52.9±4.56 pg/ml after 6 h of coculture and 102±8.3 pg/ml after 24 h of coculture, respectively. M BM activated with T. congolense produced smaller amounts of cytokines: 18.7±6 pg/ml of IL-1β at 6 h and 56.9±26.3 of IL-6 at 48 h of coculture.

The expression of the adhesion molecules ICAM-1 and VCAM-1 on M Lung and M BM was examined by flow cytometry at 6 h, 16 h and 24 h of coculture with T. congolense (Fig. 3B). The modification in the expression pattern is evaluated by the ratio of median fluorescence intensity (MFI) of cells in the presence of T.
congolense, over MFI of unstimulated cells. Results showed that in presence of T. congolense ICAM-1 expression in M Lung increased 1.79±0.26 fold at 6 h, and reached 2.42±0.32 fold at 24 h (Fig. 3B). The down regulation of ICAM-1 observed at 16 h is in harmony with the NF-κB activation kinetics of M Lung and could be due to ICAM-1 shedding from membrane surface [32]. T. congolense had no influence on VCAM-1 expression in M Lung, which is consistent with previous results showing that VCAM-1 is not inducible in this endothelial cell type [29]. ICAM-1 and VCAM-1 expression in M BM increased 1.94±0.24 and 2±0.26 fold, respectively, after 24 h of coculture with T. congolense. Intracellular production of nitric oxide (NO) was measured by fluorometric assay (Fig. 3C). In the presence of T. congolense, fluorescence intensity increase reached 32.9±9.2%, 30.4±9% and 20.9±3.1% in M Lung, M BM and BAE, respectively. Addition of Nα-Nitro-L-arginine, a specific inhibitor of NO synthase reduced it to 4.5±1.8%, 5.4±4.3% and 4±3.4% respectively (Fig. 3C). This indicates that the observed increase of NO production was a direct result of L-arginine-dependent NO synthase activity.

Lastly, and as expected, T. b. brucei that did not activate the endothelial NF-κB pathway was unable to stimulate a pro-inflammatory response by either M BM nor M Lung as shown by the lack of production of IL-1β and IL-6 and by a nearly absent up-regulation of ICAM-1/VCAM-1 on both endothelial cell types (Fig. S3A and B).

In conclusion, activation of NF-κB induced the production of pro-inflammatory molecules by the endothelial cells, marked by the production of the cytokines IL-1β and IL-6, nitric oxide and expression of adhesion molecules.

Endothelial cells are activated via the classical NF-κB pathway

To determine which NF-κB pathway (classical or alternative) is responsible for the observed activation and subsequent pro-inflammation, we i) performed all assays regarding the pro-inflammatory response using JSH-23, a specific inhibitor of p65 subunit of NF-κB, ii) examined the phosphorylation of IkB, the inhibitor of NF-κB.

In presence of JSH-23 the increase of NO, cytokine production, and ICAM-1/VCAM-1 up-regulation were inhibited, indicating that this observed response was a specific consequence of NF-κB activation, and most importantly, via the classical pathway. Briefly, in the presence of JSH-23, cytokine secretion by both M BM and M Lung cocultivated with T. congolense did not exceed 10 pg for IL-1β and 20 pg for IL-6 (Fig. 4A). T. congolense and VCAM-1 expression on M BM did not increase after 24 h of coculture with T. congolense (Fig. 4B), whereas on M Lung up-regulation of ICAM-1 decreased to 1.36±0.19 fold. In the NO assay, fluorescence intensity increase after 16 h of coculture with T. congolense was reduced to 4.4±3.8%, 0.5±0.4% and 0.5% for BAE, M BM and M Lung respectively (Fig. 4C).

To explore the molecules involved in upstream NF-κB translocation, we examined the presence of a phosphorylated form of IkB. In M Lung, IkB was not phosphorylated in the presence of T. b. brucei (Fig. S3C) whereas in the presence of T. congolense a phosphorylated form of IkB is detected after 2 h of coculture (Fig. 4D), in synergy with the NF-κB activation kinetics of M Lung.

Taken together, these data indicate that T. congolense activates the endothelial cells via the classical pathway precisely, and that the subsequent pro-inflammatory response is dependent on this specific NF-κB pathway.

Trypanosome TS are highly involved in endothelial cell activation

In order to determine if this activation was mediated by soluble factors released by the trypanosomes, we incubated BAE with i) T. congolense or T. b. gambiense culture supernatant, ii) T. congolense cultured in a transwell: this permeable support insert prevents the physical contact between the two cell types, yet allows the passage of the secreted soluble molecules through a permeable membrane. Results showed that trypanosomes culture supernatant was sufficient to activate BAE (data not shown), and that physical contact was not essential for activation since BAE separated from T. congolense by a transwell were still activated (data not shown), which suggests that soluble factors were involved in cell activation. TS are well-known pathogenicity factors in African trypanosomiasis [21,22,23] and are involved in endothelial activation by the American trypanosome T. cruzi [13]. We previously showed that TS were released from T. congolense and T. vivax and accumulated in the culture medium during exponential growth [21,22] but unlike T. cruzi [33], these enzymes were released as soluble forms and not into vesicles (data not shown). Consequently, trypanosomal TS could potentially act as soluble mediators of NF-κB activation. Therefore, BAE were incubated for 16 h, separately with three recombinant trypanosomal TS produced in the yeast Pichia pastoris as already described [21,22]: TcoTS-A1, TcoTS-D2 (from T. congolense) and TVTS2 (from T. vivax) (Fig. 5A). TcoTS-A1, TcoTS-D2 and TVTS2 activated the BAE in a dose dependent manner, while BAE incubated with the recombinant cathESP CB1 produced and purified according to the same protocol as the TS (control) [34] were not activated. Note that activation of the human and murine cell lines by these recombinant TS showed heterogeneity, similarly to the previous activation results by the African trypanosomes (Table S1).

Moreover, silencing or knock out of TS genes impaired activation capacity of T. congolense. Four previously obtained mutant cell lines of T. congolense BSF [21] were tested (Fig. 5B). These mutants were less virulent in mice and the induced anaemia is lower [21]. The ΔA1-C cell line contained RNAi constructs designed to be relatively specific to only one subfamily of TS. The ΔA2-C and ΔB2-C cell lines contained constructs with highly conserved sequences shared by all TcoTS genes intending to silence active SA and TS. Finally, the knock-out KOL2 cell line was specifically designed to silence TcoTS-Like2 encoding for an enzymatically inactive TS with a supposedly functional lectin domain. Although activity was not eliminated, an expected decrease in SA activity was observed in the mutant cell lines. The KOL2 cell line displayed 100% SA activity as expected since I2 is an inactive TS. Residual activity in mutant cell lines was expressed as a percentage of total SA activity displayed in the ΔGFP control cell line. Compared to ΔGFP, ΔA1-C, ΔA2-C and AB2-C mutant cell lines retained only 42.6±2.2%, 38±3.3% and 21.5±14.5% of their activation capacity respectively which is consistent with their residual SA activity: 45%, 35% and 25% respectively. Interestingly, the KOL2 cell line also displayed an impaired activation capacity (only 45.9±9.6% of activation capacity retained) (Fig. 5B). This result suggests that catalytic activity may not be required for the activation process.

Furthermore, since no SA nor TS activity was detected in BSF of T. b. brucei [21], we overexpressed heterologous TS of T. congolense (TcoTS-A1) or T. vivax (TVTS2) in T. b. brucei BSF to determine the effect of this expression on the activation by this species. Expression of the heterologous TS after induction by tetracycline was confirmed by measuring SA activity in the modified cell lines (Fig. S4). Tetracycline induced T. b. brucei TcoTS-A1 and T. b. brucei TVTS2 cell lines activated 56.8±13.9% and 79.2±11.9% of BAE respectively, compared with 1% of BAE activated by non-transfected T. b. brucei cell line (Fig. 5C).

Taken together, these results reflect the prominent role played by trypanosomal TS family in endothelial cell activation.
Trypanosomal TS induce inflammation in vivo

To assess the direct effect of TS on inflammation, we injected mice with recombinant TcoTS-A1 or TvTS2 and evaluated the inflammatory response by measuring levels of IL-1β, IL-6 and total NO (nitrate and nitrite) in the sera of mice at days 0 to 7 of the experiment (mice were injected four times on days 0, 1, 2, 4). Injection of TcoTS-A1 resulted in a strong increase of IL-1β, IL-6 and NO levels, most significantly at day 4 (Fig. 6). Compared to pre-injection, IL-1β, IL-6 and NO levels increased approximately 20 fold, 9 fold and 6 fold respectively. Results with TvTS2 were comparable.

When myricetin, a specific inhibitor of trypanosomal TS [22,35], was injected simultaneously with TS, the inflammation observed in mice was inhibited (Fig. 6). For example, at day 4 after injection, IL-1β levels were 116 ± 60 as opposed to 632 ± 60 pg/ml in the absence of myricetin. This inhibitory effect of myricetin on inflammation is consistent with previous results showing that myricetin impaired TS-induced haematocrit decrease in mice [22].

These results strongly reinforce a direct effect of TS on pathology, and precisely on development of inflammation.

Identification of TS in T. b. gambiense BSF designates these enzymes as a common activation mediator of African trypanosomes

Previous studies showed presence of SA activity in BSF of African trypanosomes T. vivax and T. congolense but not T. b. brucei [21,22]. Interestingly, activation results shown here are consistent with presence of SA activity. Although very close genetically (sequence identity averages 99.2% in coding regions) [36], T. b. gambiense and T. b. brucei displayed distinct activation profiles. Since no data was available on SA and TS in T. b. gambiense BSF, we tested this species for the presence of enzymatic activities. Fluorometric assays revealed both SA and TS activities: 7.82 ± 2.07 μU/10⁹ cells and 1281 ± 137 μU/10⁹ cells of the 1135 strain respectively, and 7.1 ± 1.04 μU/10⁹ cells and 940 ± 21 μU/10⁹ cells.
cells of the LiTat strain respectively, compared with almost undetectable activities in T. b. brucei BSF (Fig. 7A and B).

In order to identify which enzyme(s) was responsible for this activity in T. b. gambiense, and since SA/TS activity was predominantly in the insoluble fraction of T. congolense and T. vivax [21], mass spectrometry was performed on membrane preparations of T. b. gambiense (1135 and LiTat) in comparison with T. b. brucei (427 and AnTat 1.1). In both species, peptides belonging to SA genes were identified (Table S2). These genes are well conserved between these two species (Fig. S5). For T. b. gambiense, some corresponded to the ortholog of TbTS-like D1 encoded by Tbg972.2.3310, others to the ortholog of TbSA B2 encoded by Tbg.7.8790, and the rest corresponded commonly to the orthologs of TbSA B and TbSA B2. For T. b. brucei, the identified peptides were specific to TbTS-like D1, TbSA B and TbSA B2, encoded by Tb927.2.5280, Tb927.5.640 and Tb927.7.7480, respectively. Similarly to T. congolense, TS-like enzymes are degenerated and probably not functional. SA B and/or B2 could be active in T. b. gambiense BSF but not in T. b. brucei BSF, which is consistent with previous results [37] where no enzymatic activity was detected on purified SA B and B2 of T. b. brucei. To test this hypothesis, we overexpressed both identified heterologous SA of T. b. gambiense in T. b. brucei BSF. SA and TS activities of the induced mutant cell lines were verified by fluorometric assays (Fig. S6) and were lower than those of the T. b. gambiense BSF WT. As expected, tetracycline induced T. b. brucei TbgSA B and T. b. brucei TbgSA B2 cell lines activated 48.8±6 and

Figure 5. Involvement of trypanosomal TS in BAE activation. (A) Percentage of activated BAE after 16 h of incubation with recombinant TS of T. congolense (TcoTS-A1 and D2) and T. vivax (TvTS2) or cathepsin CB1 (control recombinant protein). (B) Effects of RNAi silencing and knock out of T. congolense TS on BAE activation. Percentage of BAE activated by T. congolense IL3000 mutant cell lines ΔA1-C, ΔA2-C, ΔB2-C and KOL2 [21] is normalized to control cell line ΔGFP. Results are represented as percentage of activation capacity. Remaining SA activity in each cell line is indicated as % of the total activity in control cell line. (C) Percentage of activated BAE by T. b. brucei 427 expressing heterologous TS of T. congolense (T. b. brucei TcoTS-A1) or of T. vivax (T. b. brucei TvTS2) compared to non-transfected cell line. Data are expressed as mean values±SD of three independent experiments. See also Fig. S4.

doi:10.1371/journal.ppat.1003710.g005

Figure 6. Inflammatory response to TS in vivo. Levels of IL-1β (A), IL-6 (B) or total NO (C) were measured at day 0, 2, 4 and 7 in sera of BALB/c mice injected with 100 μg TcoTS-A1 or TvTS2, alone or with myricetin (5 mg/kg). Experiment was repeated twice independently. Data was expressed as mean values±SD of 3 to 6 mice.

doi:10.1371/journal.ppat.1003710.g006
41.2±15.2% of BAE respectively, compared with 3.4±3 and 4.2±3% of BAE activated by the non-transfected and the transfection control T. b. brucei cell lines respectively (Fig. 7C). Note that attempts to express T. b. gambiense SA B and B2 were not successful in either E. coli (solubility problems) or Pichia pastoris (absence of expression).

Finally, addition of myricetin, a TS inhibitor, shown to impair TS enzymatic activity and also pathogenicity of T. vivax [22,35], reduced the activation capacity of T. b. gambiense 1135 in a dose-dependent manner: compared to 100% of activation capacity in absence of myricetin, only 40.6±1.6% of activation capacity remained in the presence of 1 mg/ml of myricetin (Fig. 7D). Myricetin-induced inhibition of BAE activation by the recombinant TS and by T. congolense was also verified (data not shown).

Taken together, these results showed a direct involvement of SA of T. b. gambiense in endothelial cell activation, thus making these enzymes a common activation mediator of African trypanosomes.

Activation is probably mediated by a lectin/sialic acid interaction

To further investigate involvement of the lectin domain of TS family members in NFκB activation, we produced a recombinant catalytically inactive mutant of TcoTS-A1 bearing a Tyr438: His438 substitution with an intact lectin domain, based on the construction of a mutant TS of T. cruzi, described previously [13,38]. Absence of SA and TS activities of the recombinant mutant TS was verified by fluorometric assay (data not shown). Inactivation of the catalytic site had minor effects on the activation capacity of TcoTS-A1, with 58.6±6.3% of BAE activated, compared with 68.6±4% by the active form TcoTS-A1 (Fig. 8A).

BAE cells were also incubated with different lectins. WGA, Mal, and SNA, which recognize sialic acid residues, were able to activate BAE, whereas ConA and succinylated WGA, which have no binding specificity for sialic acid, were not (Fig. 8B and C).

Additionally, desialylation of BAE cell surface by mild periodate treatment inhibited BAE activation by T. congolense IL3000 by 47.8±0.1% (data not shown).

Finally, addition of TcoTS-A1 reduced binding of Mal to its α-2,3 sialic acid ligands on BAE to 50% (Fig. 8D), while SNA binding to α-2,6 sialic acids, which is not a substrate for TcoTS-A1 (data not shown) was not affected. Pre-incubation with myricetin abrogated the effect of TcoTS-A1 as a competitor to Mal binding suggesting that myricetin could impair the lectin activity of TcoTS-A1. Myricetin alone had almost no effect on Mal or SNA binding, indicating that its inhibition of TcoTS-A1 lectin binding and subsequently activation of endothelial cells is indirect, possibly due to a steric hindrance after binding to the catalytic domain.

These results indicated that the process of endothelial cell activation involves the lectin domain of trypanosomal TS and most likely α-2,3 linked sialic acid on endothelial cell surface.

Discussion

Host-pathogen interaction in AAT and HAT is poorly understood. As parasite strains resistant to chemotherapy arise [17], the
needs for accurate knowledge of this interaction are increasing, mainly to move forward to an anti-disease strategy, a promising method of controlling trypanosomiasis. During infection by African trypanosomes, an intimate interaction with the host endothelium occurs, and exploring it can provide considerable insights on the host-pathogen interaction.

Using indirect immunofluorescence, we showed that *T. congolense*, *T. vivax* and *T. b. gambiense* were capable of activating endothelial cells through the NF-κB pathway, and more specifically the classical NF-κB pathway. In fact, immunofluorescent studies were conducted using anti-p65 antibodies, and inhibition assays using JSH-23 specific inhibitor of p65 subunit of NF-κB, a subunit implicated in the classical NF-κB activation pathway [9], and further implies an involvement of IKKβ, a kinase known to play a critical role in this specific phosphorylation.

Endothelial cell activation by the African trypanosomes was species and tissue specific, and each endothelial cell line displayed a specific pattern of activation kinetics. These findings are consistent with the well-known phenotypic variation between endothelial cells from different species and, moreover, from different locations within the same species [7]. Interestingly, the tissue specificity observed with *T. congolense* activation is consistent with the tropism to lung, bone marrow and peripheral lymph nodes observed *in vivo* [5]. Nevertheless, the observed species-specific activation of endothelial cells by *T. congolense* remains to be elucidated. It may possibly be linked to a TS binding specificity given that endothelial glycocalyx presents vast differences among microvascular endothelial cells of different species [30].

![Figure 8. Involvement of TS lectin domain and α-2,3 linked sialic acids in BAE activation.](image)

(A) Effect of inactivation of catalytic site of TcoTS-A1 on BAE activation. 10 μg/ml of the active and inactive TcoTS-A1 were incubated for 16 h with BAE. (B) Ligand binding specificity of the lectins. (C) Activation of BAE by the lectins WGA, Mal, SNA, ConA and succinylated WGA after 16 h of incubation. Lectin concentration is indicated on the X-axis. (D) Competitive effect of TcoTS-A1 on MAL binding to BAE. Ratios of median fluorescence intensity (MFI) of BAE in the presence of TcoTS-A1, Myricitin or TcoTS-A1 pre-incubated with myricetin, over MFI of BAE with SNA-FITC or MAL-fluorescein alone. Data are expressed as mean values ±SD of three independent experiments.

doi:10.1371/journal.ppat.1003710.g008
lines were activated by the parasites but not the recombinant TS nor lectins. This can be explained by a default of enzyme’s accessibility to substrate, compared to a parasite that releases numerous molecules, such as proteases, which can expose specific substrates, making them more accessible.

Using species and organ specific endothelial cell lines seemed an effective strategy to avoid overlooking specific features of the trypanosome/endothelial cell interaction due to this phenotypic variation. This should be taken into consideration when selecting endothelial cell lines adapted for trypanosomiasis studies. Several arguments supported a potential role of TS in endothelial cell activation, in addition to their key role in infection and anaemia in ATG [21,22]. The fact that \(T. congolense \) and \(T. vivax \) BSF release these enzymes into the blood in vivo and into the culture media in vitro [23], makes TS potential soluble mediators of the interaction process. We consequently demonstrated this role by showing that recombinant trypanosomal TS activated the BAE, and that inhibition of expression of TS impaired the activation capacity of \(T. congolense \) mutant cell lines.

Significantly, trypanosome species that activated the endothelial cells possess SA activity in their BSF whereas \(T. b. brucei \), which is incapable of endothelial activation, do not. Furthermore, over-expression of heterologous TS of \(T. congolense \) and \(T. vivax \) enabled \(T. b. brucei \) BSF to activate BAE. The controversial finding that \(T. b. brucei \) did not activate any of the endothelial cell lines, even though the closely related subspecies \(T. b. gambiense \) did, could be explained by the fact that only \(T. b. gambiense \) BSF expressed active TS. Here we detected SA and TS activities in \(T. b. gambiense \) BSF and used mass spectrometry to identify peptides corresponding to orthologs of TbTS like-D1, TbSA B2 and TbSA B. However we cannot entirely exclude the possibility of presence of TbTS ortholog in \(T. b. gambiense \) even though no corresponding peptides were found. Note that this protein was detected by the same technique in the procyclic forms of the parasite, as expected. Surprisingly, peptides corresponding to these same three enzymes were identified in \(T. b. brucei \) BSF. Even though expressed in both species, these SA seem to be enzymatically active only in \(T. b. gambiense \). Only four amino acids differ between TbSA B2 and TbgsA B2 (Fig. S4), and three between TbTS-like D1 and its ortholog whereas there are significantly more differences between TbSA B and TbgsA B. These substitutions are mostly in the lectin domain which could, therefore, affect sugar binding, and subsequently impair the SA/TS enzymatic activity and the activation capacity of \(T. b. brucei \). This is consistent with previous studies describing punctual substitutions with major impact on TS activity [38,39]. This raises the question about the suitability of \(T. b. brucei \) as a model for the study of \(T. b. gambiense \)- caused HAT.

These results strongly confirm the involvement of TS in endothelial cell activation, but above all, they suggest that TS represent a common mediator of endothelial cell activation among trypanosome species that induce divergent physiopathologies.

More specifically, the lectin-like domain of the TS appeared to be predominantly responsible for the endothelial cell activation. Firstly, the knockout of \(TcoTS-Like2 \) impaired the activation of BAE by \(T. congolense \) and secondly the loss of TS enzymatic activity by inactivating the catalytic site had no effect on the BAE activation. Additionally, commercial lectins recognizing sialic acid residues on the endothelial cell surface activated the BAE, which not only reinforces our results on lectin domain involvement but also, and together with the finding that desialylation of BAE surface inhibits their activation, points towards an implication of sialic acid in this trypanosome/endothelial cell interaction. \(TcoTS-A1 \) selectively inhibited the binding of MAL on BAE indicating that \(\alpha-2,3 \) sialylated molecules act as potential receptors of TS on the endothelial cell surface.

In conclusion, the endothelial cell activation is apparently mediated by \(\alpha-2,3 \) sialylated receptors on the endothelial cell surface, and TS of the trypanosome, most likely through their lectin domain. This result is similar in \(T. cruzi \)-mediated endothelial cells activation [13] but as in \(T. cruzi \), molecules bearing such sialic acids residues have not been yet identified.

To our knowledge, this would be the first report showing a direct evidence of NFkB activation by lectins. NFkB activation by neuraminidase through sialidase activity is well known. It is mostly described for endogenous mammalian SA such as Neu1 desialylation of TLR4 [40]. It was also demonstrated with pathogen SA such as NanA of Streptococcus pneumoniae [41]. However activation by pathogen lectins is very poorly described. Only one study has suggested that streptococci stimulation of endothelial cells and subsequent release of cytokines involved lectin interactions [42]. Interestingly, our evidence correlates with the role of inactive TS of \(T. cruzi \) in endothelial cell activation [13], which could suggest lectin involvement, thus promoting a novel role of lectin binding domains of trypanosomal TS in host/pathogen interactions.

NF-kB activation is known to impact on host/pathogen relationship in parasitic infections, in particular by regulating immunity and inflammation [11]. Knowing that SA/TS silencing correlates with impairment of virulence in experimental infection with \(T. congolense \) [21], and that recombinant SA/TS directly contribute to anaemia by erythrocyte desialylation and subsequent erythropagocytosis, it was crucial to elucidate their role in inflammation. Here, we showed that NF-kB activation of endothelial cells induced a pro-inflammatory response in vitro shown by the production of nitric oxide via the NO synthase, of the pro-inflammatory cytokines IL-1B and IL-6, and the expression of the adhesion molecules ICAM-1 and VCAM-1, known to intervene in leukocyte recruitment during infections. Most importantly, our results demonstrate that TS alone can induce a pro-inflammatory response in mice.

This production of pro-inflammatory molecules could have significant consequences because it participates in the cascade of events leading to inflammation, a phenomenon that is closely related to AAT clinical symptoms and more specifically cachexia and anaemia, known as the major lethal features of AAT contributing to mortality. For instance, it has been demonstrated that NO can be implicated in host pathology by inhibiting hematopoiesis [43]. Anaemia can also be partially linked to inflammation via non-specific erythropagocytosis by macrophages hyperactivated by chronic inflammation [44], and also via the IL-6 induced production of hepcidin, an iron regulatory hormone [45]. Additionally, cachexia is mainly a consequence of excessive production of TNF\(\alpha \) [46] which is a major inflammatory cytokine. On the other hand, the late stages of HAT are characterized by parasites crossing the BBB and invasion of the CNS [3,4,47] by mechanisms that are still not fully understood. One proposed model is that parasites could use leukocytes alteration to disrupt the integrity of the endothelial barrier to penetrate the nervous system [48]. Here we show a NF-kB dependent induction of ICAM1 and VCAM1 expression. These are crucial adhesion molecules in the process of leukocyte transmigration, therefore, NFkB activation by \(T. b. gambiense \) may potentially play a role in crossing the BBB, by increasing leukocyte migration and subsequently, parasite penetration into the CNS. However, TS presence does not necessarily imply BBB crossing, which probably involves other factors.

In summary, this work reinforces the role of TS as virulence factors in AT, and upholds the hypothesis that TS-induced NF-kB activation may contribute to inflammation, an important component in the development of pathogenesis during AT. Eventually, the already established anti-disease effect of immunization by TS in mice [21] may be partially explained by its effect on the
endothelial activation and the consequent inflammatory response. Here, we proposed a dual role for trypanosomal SA/TS in both inflammation and anemia (Fig. 9). In fact, SA/TS are released very early in the infection course and cause erythrocyte desialylation, strongly contributing to the development of anemia at least in the acute phase of the infection; at the same time, SA/TS activate endothelial cells leading to a pro-inflammatory response with outcomes on the immune system, anemia development and potentially on BBB crossing [49]. SA/TS might also participate in immune system activation as described in *T. cruzi* [50]. Other virulence factors are well known to intervene in this host/pathogen interaction, such as cathepsins and PAMPs (Pathogen-Associated Molecular Patterns). Cathepsins cause host injuries, anemia and could participate in BBB crossing [51]. PAMPs, like CpG DNA, GPI-anchor of VSG, etc., interact with specific receptors, called PRR (Pattern Recognition Receptors) and trigger a host immune response leading to production of cytokines and other mediators that participate in inflammation, anemia and host injuries [52,53]. Finally, all these factors sustain a balance between parasite growth and its control, on which the host survival depends. Here we propose a model of the host/pathogen molecular cross talk showing the central role of SA/TS. In such a model, parasites use different strategies to trigger anemia and inflammation. This configuration is consistent with previous results showing that mice models respond differently to infections depending on the trypanosome species [54]. It also explains why in field infections, the severity of the disease and its physiopathological features are widely dependent on the trypanosome species and its specificities, such as the ability to invade tissues, the genetic variability between isolates (especially from distinct geographical regions) and above all the host range [55].

This study provides a considerable background to identify the cellular components responsible for the interaction of African trypanosomes with endothelial cells, which represents a central part of the understanding of the host/pathogen molecular cross talk. The functional importance of the endothelial cell activation needs to be further explored, mainly by in vivo studies in field infections comparing the inflammatory responses of mammalian hosts to African trypanosomes species with different capacities for endothelial cell activation in vitro.

Lastly, this work defines TS as a promising new target for an anti-disease strategy to control trypanosomiasis in Africa, especially as TS represent a common interaction molecule for both human and animal African trypanosomes.

Materials and Methods

Ethics statement

All animal procedures were carried out in strict accordance with the French legislation (Rural Code articles L 214-1 to L 214-122 and associated penal consequences) and European Economic Community guidelines (86-6091 EEC) for the care of laboratory animals and were approved by the Ethical Committee of Centre National de la Recherche Scientifique (CEEA50), Région Aquitaine and by the University of Bordeaux 2 animal care and use committee.

![Figure 9. Multifunctional role of trypanosomal SA/TS in host/pathogen molecular crosstalk.](http://www.plospathogens.org)
Recombinant TS injections in mice

Eight-week-old female BALB/c mice were injected intraperitoneally with 100 μg of recombinant trypanosomal TS, named TcoTS-A1 and TVTS2 and previously described [21,22], for 3 consecutive days (days 0, 1 and 2) and a fourth time on day 4, either alone or with myristin (Sigma, 5 mg kg⁻¹). Blood samples were collected on day 0, 2, 4, and 7 by tail bleed in 100 μl capillary tubes coated with Na-heparin and serum was prepared for further analyses.

Trypanosome culture

Bloodstream forms (BSF) of the T. congolense IL3000 or STIB910 strain (kindly provided by the International Livestock Research Institute, Nairobi, Kenya) and genetically modified derivatives were cultivated as previously described [56]. BSF of the T. vivax Y486 strain (isolated in Nigeria and kindly provided by the International Livestock Research Institute, Nairobi, Kenya) were collected from infected mice blood as described [22] and maintained in Tc BSF medium supplemented with 20% GS and 2 mM glutamine. BSF of the T. b. gambiense 1135 or LiTat strain [57] and of the T. b. brucei AnTat 1.1 or 427 strain were maintained in IMDM (Fisher) supplemented with 10% FCS and 150 mM L-cystein (Sigma).

Endothelial cell culture

Primary cultures of bovine aortic endothelial cells (BAE) (kindly provided by E. Genot, Bordeaux) were cultured in TC BSF specific medium [56] supplemented with 20% GS (goat serum, Invitrogen) and 2 mM glutamine (Sigma), and used between passages 5 and 15. Human endothelial cell lines from umbilical vein, brain, peripheral lymph nodes, lung, intestine, skin, appendix, and murine endothelial cell line from brain, lung, peripheral lymph nodes, spleen, thymus, and bone marrow were kindly provided by C. Kieda (Orléans, France) and were cultured in Opti MEM I medium (Invitrogen) supplemented with 2% FCS (fetal calf serum), 0.4% penicillin/streptomycin (Invitrogen), and 0.2% fungizone, in 24 well plates in a 5% CO₂ humidified atmosphere at 37°C. For coculture experiments, the seeded endothelial cells were washed in PBS (phosphate-buffered saline: 137 mM NaCl, 10 mM Phosphate, 2.7 mM KCl, pH 7.4), maintained in TC BSF without serum for 24 hours, then cocultured with T. congolense, T. b. brucei, T. b. gambiense (10⁶/ml) or T. vivax (10⁶/ml) in TC BSF medium supplemented with 10% GS. Culture with recombinant proteins or lectins was performed in DMEM supplemented with 1% Serum + (Invitrogen), 1 mM sodium pyruvate (Invitrogen), and 30 U/ml/50 μg/ml penicillin/streptomycin.

Construction of T. congolense and T. b. brucei mutant cell lines

T. congolense mutant cell lines ΔA1-C, ΔB2-C, ΔA2-C (knock down of TS by RNAi), ΔGFP (control cell line) and KOL2 (knock out of TcoTS-Like2 gene) were previously obtained in the laboratory [21]. Briefly, RNAi transfections were performed in IL3000 for constitutive expression of the transgene. Transfected cell lines containing the three constructs p2T7Δ1-A1-C, p2T7Δ1B2-C and pLev100-A2-C were named ΔA1-C, ΔB2-C and ΔA2-C respectively. As a control of transfection and experimental infection, the p2T7Δ1/GFP vector (kindly provided by J.E. Donelson) [58] was inserted into the IL3000 strain. For the knockout cell line, IL3000 was transfected with pGLuaco-TcoTS-Like2 and subsequently with pGLuaco-TcoTS-Like2 to obtain the double knockout cell line named KOL2.

Expression of recombinant TS in Pichia pastoris and protein purification

Mutant inactive recombinant TcoTS-A1 of T. congolense was constructed by site-directed mutagenesis (using QuickChange II; Stratagene) using specific mutant primers bearing a Tyr¹⁴³0:His¹⁴³⁰ substitution and expressed in the EasySelect Pichia system (Invitrogen) according to the manufacturer’s instructions. Expression in the Pichia pastoris strain X-33 and subsequent purification using ion-exchange chromatography were performed as described previously [21]. The recombinant proteins TcoTS-A1, TcoTS-D2, TVTS2 and CB1 were previously obtained in the laboratory [21,22,34].

Indirect immunofluorescence

Endothelial cells were grown on glass slides into 24 wells plate and incubated with BSF of the wild type and mutant cell lines of T. congolense IL3000 and STIB910 strains, T. b. brucei AnTat 1.1 and 427 strains, T. b. gambiense 1135 and LiTat strains, T. vivax Y486 strain, and different amounts of the recombinant sialidases or the commercial lectins SNA, Mal II, WGA, ConA (GaLab) and succinylated WGA (Vector Laboratories). At different time points, cells were washed in PBS, fixed with 360 μl paraformaldehyde (1% in PBS) for 10 min, permeabilized with 40 μl Triton X-100 (1% in PBS) for 5 min, and PFA was neutralized by adding 40 μl glycine (1 M in PBS) for 5 min. Cells were then washed twice in PBS and slides were incubated with rabbit polyclonal anti-NF-kB (Cell Signaling) (1:100 in PBS 0.1% triton X-100 0.1% BSA) for 40 min, washed, then incubated for 20 min with Alexa Fluor 488 mouse anti-rabbit IgG antibody (Molecular Probes) (1:100 in PBS 0.1% Triton X-100 0.1% BSA). DNA was stained by adding 1 μg/ml 4’,6’-diamidino-2-phenylindole (DAPI) for 5 min, and slides were mounted in Vectashield (Vector Laboratories). Cells were observed with a Zeiss UV microscope and images were captured using a MicroMax-1300V/HS camera (Princeton Instruments) and Metamorph software (Universal Imaging Corporation).

Cytokine measurement

Interleukins IL-1β and IL-6 were measured in 100 μl of mice sera for in vivo assays, or 100 μl of supernatant from a 2 h, 6 h, 16 h, 24 h and 48 h in vitro coculture of M Lung or M Bone Marrow endothelial cell lines with T. congolense IL3000 strain or T. b. brucei AnTat 1:1 strain. Assays were performed using the ELISA Ready-SET-Go kits (eBioscience) according to the manufacturer’s instructions.

NO assay

For in vitro assays, M Lung and M Bone Marrow cell lines, or BAE were incubated for 6 h, 16 h and 24 h with T. congolense IL3000 strain and washed in PBS. Generation of intracellular nitrite was determined by adding 5 μM of 5,6-diaminofluorescein (DAF-2 DA) to the cells followed by an incubation of 15-30 min and assayed by measuring the excitation/emission maximum wavelengths of 490/515 nm.
Diagnostics, GmbH). 20 protease inhibitor cocktail (complete Mini, EDTA-free; Roche A1, 0.5 PBS 1% BSA) or fluorescein conjugated MAL (Vector Laboratories). Myricetin (10 mM) or anti-I

incubated with mouse monoclonal anti-phospho-I

direct binding assay, BAE were incubated with 10

acids, as previously described [60,61]. BAE were incubated with

Desialylation of BAE by mild periodate treatment

To desialylate BAE, cells were treated with mild periodate, which specifically destroys the glycerol side chain (C7–C9) of sialic acids, as previously described [60,61]. BAE were incubated with 2 mM NaIO₄ solution for 30 min at 37°C. BAE viability was not affected by this treatment.

Mass spectrometry on membrane preparations

Membrane preparations of T. b. gambiense 1135 or LiTat BSF or T. b. brucei 427 BSF, SDS-PAGE and mass spectrometry analysis were performed as described previously [21]. Details are provided in Text S1.

Supporting Information

Figure S1 Related to Figure 2. Activation of murine and human endothelial cells by TNFα or T. b. brucei AnTat 1.1 BSF. Percentage of activated (A and C) murine (M) and (B and D) human (H) endothelial cells is determined after 4 h of incubation with 5 ng/ml of TNFα (A and B) and after 2, 6, 16 and 24 h of coculture with T. b. brucei AnTat 1.1 (C and D). Results were similar with T. b. brucei 427 strain. Data are expressed as mean values ± SD of three independent experiments (C and D). (TIF)

Figure S2 Related to Figure 2. NF-κB immunofluorescent staining in murine and human endothelial cell lines after 24 h of coculture with T. congolense IL3000. Results were similar with T. congolense STIB910 strain. (TIF)

Figure S3 Related to Figure 3. Absence of IkBα phosphorylation and pro-inflammatory response of endothelial cells cocultured with T. b. brucei AnTat 1.1. (A) Secretion of IL-1β and IL-6 by M Bone Marrow (BM) (left) and M Lung (right) microvascular endothelial cells in the supernatant after 6 and 24 h of coculture with BSF of T. b. brucei AnTat 1.1. (B) Expression of VCAM-1 and ICAM-1 adhesion molecules on the surface of M Lung and M BM microvascular endothelial cells after 24 h of coculture with T. b. brucei AnTat 1.1. Ratios of MFIs (obtained by flow cytometry analysis) were calculated as detailed in Materials and methods. (C) Absence of phosphorylated IkBα by immunoblotting. M Lung were cultivated with T. b. brucei AnTat 1.1 for 0, 1, 2, 4 or 8 h and total protein extracts were subjected to western blotting with anti-IkBα (upper panel), anti-phospho-IkBα (median panel) or anti-tubuline (lower panel) antibodies. (TIF)

Figure S4 Related to Figure 5. Overexpression of heterologous TcoTS-A1 and TvTS2 in T. b. brucei BSF. SA activity was measured on crude extracts of T. b. brucei TcoTS-A1 and T. b. brucei TvTS2 cell lines and compared to the non-transfected strain T. b. brucei 427 BSF. Data are expressed as mean of 3 values measured on two independent experiments. (TIF)

Figure S5 Related to Figure 7. SA and TS genes in T. b. brucei and T. b. gambiense genomes. (A) List of the T. b. brucei SA and TS genes was established from genome database (http://tritrypdb.org/tritrypdb/) and from two previous studies on these genes [37,39]. T. b. gambiense orthologs were found in genome database (http://tritrypdb.org/tritrypdb/). (B) Sequence alignment of SA B and SA R2 of T. b. gambiense and T. b. brucei. (TIF)

Figure S6 Related to Figure 7. SA and TS genes in T. b. brucei BSF. SA and TS activities were measured in crude extracts of T. b. brucei TbgSA B and TbgSA B2 cell lines and compared to the non-transfected cell line T. b. brucei 427 BSF. (TIF)
Table S1 Related to Figure 2. Heterogeneity of endothelial cell activation by African trypanosomes and recombinant TS.

Mung	BM	spleen	brain	thymus
HUVEC	lung	H	skin	intestine

Acknowledgments

We are grateful to C. Kieda (Orléans, France) for providing endothelial cells. We are grateful to S. Claverod, AM. Lomenech and JW. Dupuy from the Genomic Platform at Bordeaux 2 University for their technical support in mass spectrometry analyses. We are grateful to N. Biteau and J. Liotte (UMR3234, Bordeaux2) for technical help and to D. Pillaey and L. Rivi`ere for their critical reading of the manuscript.

Author Contributions

Conceived and designed the experiments: VC ZA. Performed the experiments: ZA VC. Analyzed the data: ZA VC. Contributed reagents/materials/analysis tools: ZA VC. Wrote the paper: ZA VC. TB.

References

1. Van den Bossche P (2001) Some general aspects of the distribution and epidemiology of bovine trypanosomosis in southern Africa. Int J Parasitol 31: 592–598.
2. Malvy D, Chappuis F (2011) Sleeping sickness. Clin Microbiol Infect 17: 986–995.
3. Masocha W, Rottenberg ME, Kristenson K (2007) Migration of African trypanosomes across the blood-brain barrier. Physiol Rev 92: 110–114.
4. Grab DJ, Nikolskia O, Kim YY, Lounsdale-Ecules JD, Ito S, et al. (2004) African trypanosome interactions with an in vitro model of the human blood-brain barrier. J Parasitol 90: 970–979.
5. Banks KL (1978) Binding of Trypanosoma congoense to the walls of small blood vessels. J Protozool 25: 241–245.
6. Hemphill A, Frame I, Ross CA (1994) The interaction of Trypanosoma congoense congoense with endothelial cells. Parasitology 109 (Pt 5): 631–641.
7. Sumpio BE, Riley JT, Davick A (2002) Cells in focus: endothelial cell. Int J Biochem Cell Biol 34: 1508–1512.
8. Caamano J, Hunter CA (2002) NF-kappaB family of transcription factors: central regulators of innate and adaptive immune functions. Clin Microbiol Rev 15: 441–449.
9. Liang Y, Zhou Y, Shen P (2004) NF-kappaB and its regulation on the immune system. Cell Mol Immunol 1: 343–350.
10. Sumpio BE, Riley JT, Davick A (2002) Cells in focus: endothelial cell. Int J Biochem Cell Biol 34: 1508–1512.
11. Mason NJ, Artis D, Hunter CA (2004) New lessons from old pathogens: what targetting the disease rather than the parasite. Int J Parasitol 31: 1429–1433.
12. Mason NJ, Artis D, Hunter CA (2004) New lessons from old pathogens: what targetting the disease rather than the parasite. Int J Parasitol 31: 1429–1433.
13. Masocha W, Rottenberg ME, Kristenson K (2007) Migration of African trypanosomes across the blood-brain barrier. Physiol Rev 92: 110–114.
14. Rossi MA (1990) Myocardial damage in Trypanosoma cruzi myocarditis: a role for myocardial cell activation by African trypanosomes and recombinant TS.
15. Mehl C, Pace E, Serna L, Spanadora M, Tipa A, et al. (2003) Biologically active intercellular adhesion molecule-1 is shed as dimers by a regulated mechanism in the inhaled pleural space. Am J Respir Crit Care Med 167: 1131–1138.
16. Bermejo DA, Jackson SW, Gorosito-Serran M, Acosta-Rodriguez EV, Anquez-Velesy MC, et al. (2013) Trypanosoma cruzi trans-sialidase initiates a program independent of the transcription factors RORgamma and Ahr that leads to IL-17 production by activated B cells. Nat Immunol 14: 514–522.
17. Fontanella GH, De Vusser K, Laneo L, Nocito AL, et al. (2008) Immunization with an engineered mutant trans-sialidase highly protects mice from experimental Trypanosoma cruzi infection: a vaccine candidate. Vaccine 26: 2322–2334.
18. Machado AV, Cardoso JF, Claser C, Rodrigues MM, Gazzinelli RT, et al. (2006) Long-term protective immunity induced against Trypanosoma cruzi infection after vaccination with recombinant adenosine1gustano43sialidase protein trans-sialidase and trans-sialidase. Hum Gene Ther 17: 988–989.
19. Sanchez DO, Frasch AC, Campetella O (1995) A single tyrosine acceptor sequence is required for trans-sialidase function. J Exp Med 177: 465–474.
20. Janczyk P, Hansen S, Brahamsoltani M, Pidiri J (2010) The glycoalyx of human, bovine and murine microvascular endothelial cells cultured in vitro. J Electron Microsc (Tokyo) 59: 291–298.
21. Kieda C, Paprocka M, Krawczenko A, Zalecki P, Dupuis P, et al. (2002) New human microvascular endothelial cell lines with specific adhesion molecules and phenotypes. Endothelium 9: 247–261.
22. Cremona ML, Sanchez DO, Frasch AC, Campetella O (1995) A single tyrosine acceptor sequence is required for trans-sialidase function. J Exp Med 177: 465–474.
23. Bayer-Santos E, Aguilar-Bonavides C, Rodrigues SP, Cordero EM, Marques AF, et al. (2013) Proteinomic analysis of Trypanosoma cruzi secretome: characterization of two populations of extracellular vesicles and soluble proteins. J Proteome Res 12: 893–901.
24. Mendoza-Palomeares C, Biteau N, Giroud C, Coutou V, Coetzer T, et al. (2008) Molecular and biochemical characterization of a cathepsin B-like protease family unique to Trypanosoma congoense. Enkaryot Cell 7: 684–697.
25. Barata LB, Nek AJ, Ibrahim S, Umar IA, Eisevo KA (2006) Characterization of sialidase from bloodstream forms of Trypanosoma vivax. Cell Biochem Funct 24: 71–77.
26. Amith SR, Jayanth P, Franchuk S, Finlay T, Seyrantepe V, et al. (2010) Neu1 (N lactose-α2,3-linked beta-galactosylo43sialidase residues of TOLL-like receptor 4 is essential for receptor activation and cellular signaling. Cell Signal 22: 314–324.
27. Chung YC, Uchiyama S, Varli K, Niest V (2012) Leukocyte inflammatory responses provoked by pneumococcal sialidase. MBio 3: pii: e00220-11.
28. Vernier A, Diab M, Soell M, Haan-Archipoff G, Beretz A, et al. (1996) Cytokine responses provoked by pneumococcal sialidase. MBio 3: pii: e00220-11.
43. Mabbott N, Sternberg J (1995) Bone marrow nitric oxide production and development of anemia in Trypanosoma brucei-infected mice. Infect Immun 63: 1563–1566.

44. Taylor KA (1998) Immune responses of cattle to African trypanosomes: protective or pathogenic? Int J Parasitol 28: 219–240.

45. Andrews NG (2004) Anemia of inflammation: the cytokine-hepcidin link. J Clin Invest 113: 1231–1235.

46. Lucas R, Magez S, Songa B, Darji A, Hamers R, et al. (1993) A role for TNF during African trypanosomiasis: involvement in parasite control, immunosuppression and pathology. Res Immunol 144: 370–376.

47. Barret MP, Burchmore RJ, Stech A, Lazzari JO, Frasch AC, et al. (2003) The trypanosomiasis. Lancet 362: 1469–1480.

48. Masocha W, Robertson B, Rottenberg ME, Serrophus J, Sorokin L, et al. (2004) Cerebral vessel laminins and IFN-gamma define Trypanosoma brucei penetration of the blood-brain barrier. J Clin Invest 114: 689–694.

49. Masocha W, Kristensson K (2012) Passage of parasites across the blood-brain barrier. Virulence 3: 202–212.

50. Todeschini AR, Nunes MP, Pires RS, Lopes MF, Prevato JO, et al. (2002) Costimulation of host T lymphocytes by a trypanosomal trans-sialidase: involvement of CD43 signaling. J Immunol 169: 5192–5198.

51. Ahmeda N, O’Brien T, Mackey ZB, Sajid M, Grab DJ, et al. (2008) RNA interference of Trypanosoma brucei cathepsin B and L affects disease progression in a mouse model. PLoS Negl Trop Dis 2: e298.