On Parallel Sections of a Vector Bundle

Richard Atkins
richard.atkins@twu.ca
Department of Mathematics
Trinity Western University
7600 Glover Road
Langley, BC, V2Y 1Y1 Canada

Abstract

We consider when a smooth vector bundle endowed with a connection possesses non-trivial, local parallel sections. This is accomplished by means of a derived flag of subsets of the bundle. The procedure is algebraic and rests upon the Frobenius Theorem.
1 Introduction

A connection on a vector bundle is a type of differentiation that acts on vector fields. Its importance lies in the fact that given a piecewise continuous curve connecting two points on the underlying manifold, the connection defines a linear isomorphism between the respective fibres over these points. A renowned theorem of differential geometry states that when the Riemann curvature tensor of the connection vanishes, there exist local frames comprised of parallel sections. This paper presents a refinement of this result. That is, given a connection on a vector bundle we determine when there exist local parallel sections and we find the subbundle they generate. This is accomplished by means of an algebraic construction of a derived flag of subsets of the original vector bundle.

This question has been considered in the real analytic case by Trencevski (cf. [3]). Our solution, by contrast, follows from the Frobenius Theorem, which applies to smooth (C^∞) data. Furthermore, while Trencevski’s method relies upon power series expansions we take a more geometric approach to the problem.

By applying our methods to the vector bundle of symmetric two-tensors over a manifold we obtain a solution to the problem of determining when a connection is locally a metric connection. For the case of surfaces, this has also been dealt with in [1].
2 The Existence of Parallel Sections

Let \(\pi : W \to M \) be a smooth vector bundle and \(W' \) a subset of \(W \) with the following two properties:

P1: For each \(x \in M \), \(W_x \cap W' \) is a linear subspace of \(W_x := \pi^{-1}(x) \).

P2: For each \(w \in W' \) there exists an open neighbourhood \(U \) of \(\pi(w) \) in \(M \) and a smooth local section \(X : U \subseteq M \to W' \subseteq W \) such that \(w = X(\pi(w)) \).

Let

\[\nabla : \mathcal{A}^0(W) \to \mathcal{A}^1(W) \]

be a connection on \(W \), where \(\mathcal{A}^n(W) \) denotes the space of local sections \(U \subseteq M \to W \otimes \Lambda^n M \). Define a map

\[\tilde{\alpha} : \mathcal{A}^0(W) \to \mathcal{A}^1(W/W') \]

by

\[\tilde{\alpha} := \phi \circ \nabla, \]

where \(W/W' \) is the quotient of \(W \) and \(W' \) taken fibrewise and \(\phi : W \otimes T^*M \to (W/W') \otimes T^*M \) denotes the natural projection. For any local section \(X : U \subseteq M \to W' \subseteq W \) and differentiable function \(f : U \to \mathbb{R} \) we have \(\tilde{\alpha}(fX) = f\tilde{\alpha}(X) \). Thus, there corresponds to \(\tilde{\alpha} \) a map

\[\alpha_{W'} : W' \to (W/W') \otimes T^*M \]

acting linearly on each fibre of \(W' \). \(\alpha_{W'} \) is the second fundamental 1-form of \(W' \).

Let \(V \) be any subset of \(W \) satisfying P1. Define \(S(V) \) to be the subset of \(V \) consisting of all elements \(v \) for which there exists a smooth
local section $X : U \subseteq M \to V \subseteq W$ such that $v = X(\pi(v))$. Then $\mathcal{S}(V)$ satisfies both P1 and P2.

We seek to construct the maximal flat subset \tilde{W}, of W. \tilde{W} may be obtained as follows. Set

$$
V^{(0)} := \{ w \in W \mid R(\cdot)(w) = 0 \}
$$

$$
W^{(i)} := \mathcal{S}(V^{(i)})
$$

$$
V^{(i+1)} := \ker \alpha_{W^{(i)}}
$$

where $R : TM \otimes TM \otimes W \to W$ denotes the curvature tensor of ∇. This gives a sequence

$$
W \supseteq W^{(0)} \supseteq W^{(1)} \supseteq \cdots \supseteq W^{(k)} \supseteq \cdots
$$

of subsets of W. Note that $W^{(i)}$ is not necessarily a vector bundle over M since the dimension of the fibres may vary from point to point. For some $k \in \mathbb{N}$, $W^{(l)} = W^{(k)}$ for all $l \geq k$. Define $\tilde{W} = W^{(k)}$, with projection $\tilde{\pi} : \tilde{W} \to M$.

In order to extract information from \tilde{W} we need some concept of regularity. Accordingly, we say that the connection ∇ is regular at $x \in M$ if there exists a neighbourhood U of x such that $\tilde{\pi}^{-1}(U) \subseteq \tilde{W}$ is a vector bundle over U. ∇ is regular if \tilde{W} is a vector bundle over M. The dimension of the fibres of \tilde{W}, for regular ∇, shall be denoted $\text{rank}\, \tilde{W}$.

Theorem 1 Let ∇ be a connection on the smooth vector bundle $\pi : W \to M$.

(i) If $X : U \subseteq M \to W$ is a local parallel section then the image of X lies in \tilde{W}.
(ii) Suppose that ∇ is regular at $x \in M$. Then for every $w \in \tilde{W}_x$ there exists a local parallel section $X : U \subseteq M \rightarrow \tilde{W}$ with $X(x) = w$.

Proof:

(i) follows directly from the definition of \tilde{W}.

(ii) Suppose that ∇ is regular at $x \in M$ and let $w \in \tilde{W}_x$. By regularity, there exists a neighbourhood U_1 of x and a frame $(X_1, ..., X_n)$ of $\tilde{\pi}^{-1}(U_1) \subseteq \tilde{W}$. By choosing a possibly smaller neighbourhood $U_2 \subseteq U_1$ of x we can extend $(X_1, ..., X_n)$ to a frame $\mathcal{X} := (X_1, ..., X_n, ..., X_N)$ of $\pi^{-1}(U_2) \subseteq W$. Let $\omega = \omega^i_j$ denote the connection form of ∇ with respect to \mathcal{X}: $\nabla_XX_j = \sum_{i=1}^N X_i\omega^i_j(X)$. Since \tilde{W} has zero second fundamental 1-form,

$$\omega = \begin{pmatrix} \phi & \ast \\ 0 & \ast \end{pmatrix}$$

where ϕ is an $n \times n$ matrix of 1-forms. The curvature form $\Omega = \Omega^i_j$ of ∇ with respect to \mathcal{X} is

$$\Omega = d\omega + \omega \wedge \omega = \begin{pmatrix} d\phi + \phi \wedge \phi & \ast \\ \ast & \ast \end{pmatrix}$$

Since the curvature tensor R is identically zero, when restricted to $TM \otimes TM \otimes \tilde{W}$, it follows that

$$d\phi + \phi \wedge \phi = 0$$

Therefore, by the Frobenius Theorem, there exists an $n \times n$ matrix of functions $A = A^i_j$ defined in a neighbourhood $U \subseteq U_2$ of x such that $dA = -\phi \wedge A$ and $A(x) = I_{n \times n}$, the $n \times n$ identity matrix (cf. [4],
chp. 7, 2. Proposition 1., pg. 290). Let c^j, $1 \leq j \leq n$, be real scalars satisfyine $w = \sum_{j=1}^{n} X_j(x)c^j$. Define functions f^i on U by

$$f^i = \begin{cases}
\sum_{j=1}^{n} A^j_i c^j & 1 \leq i \leq n \\
0 & n+1 \leq i \leq N.
\end{cases}$$

Let $X : U \to \tilde{W}$ be the local section of \tilde{W} defined by $X := \sum_{i=1}^{N} X_i f^i$. Since $df + \omega \cdot f = 0$, X is parallel. Moreover, $X(x) = w$.

q.e.d.

Corollary 2 Let ∇ be a regular connection on the smooth vector bundle $\pi : W \to M$. Then (\tilde{W}, ∇) is a flat vector bundle over M.

Corollary 3 Let ∇ be a connection on the smooth vector bundle $\pi : W \to M$, regular at $x \in M$. Then there are $\dim \tilde{W}_x$ independent local parallel sections in a neighbourhood of $x \in M$.

Example Consider the symmetric connection ∇ on the 2-sphere, $M = S^2$, defined as follows: $\Gamma_{\phi\phi}^\theta = -\sin \theta \cos \theta$, $\Gamma_{\theta\phi}^\phi = \Gamma_{\phi\theta}^\phi = \cot \theta$ and all other Christoffel symbols are zero. Here θ and ϕ are the polar and azimuthal angles on S^2, respectively. Let

$$X_1 = d\theta \otimes d\theta$$
$$X_2 = d\phi \otimes d\phi$$
$$X_3 = d\theta \otimes d\phi + d\phi \otimes d\theta$$

be a basis of W, the symmetric elements of $T^*M \otimes T^*M$. The curvature terms $R_{\theta\phi} = \nabla_{\partial_\phi} \nabla_{\partial_\phi} - \nabla_{\partial_\theta} \nabla_{\partial_\theta}$ are

$$R_{\theta\phi}(X_1) = -(\sin^2 \theta)X_3$$
$$R_{\theta\phi}(X_2) = X_3$$
$$R_{\theta\phi}(X_3) = 2X_1 - 2(\sin^2 \theta)X_2$$
This gives $W^{(0)} = \text{span}(X_1 + (\sin^2 \theta)X_2)$. Non-zero local sections of $W^{(0)}$ are of the form $X = f(X_1 + (\sin^2 \theta)X_2)$ where f is a smooth non-vanishing function defined on an open subset of S^2. The covariant derivative of X is $\nabla X = X \otimes d\log |f|$ and so $W^{(1)} = W^{(0)}$. Thus $\tilde{W} = W^{(0)}$. Since \tilde{W} is a rank one vector bundle over S^2 it follows that ∇ is a locally metric connection; in fact, it is the Levi-Civita connection of the induced metric of the standard embedding of the two-sphere in three-dimensional Euclidean space.
References

[1] R. Atkins and Z. Ge, *An Inverse Problem in the Calculus of Variations and the Characteristic Curves of Connections on SO(3)-Bundles* Can. Math. Bull. (1995)

[2] S. Kobayashi and K. Nomizu, *Foundations of Differential Geometry I* (John Wiley & Sons, 1963)

[3] K. Trencevski, *On the Parallel Vector Fields in Vector Bundles* Tensor N.S. 60 (1998)

[4] M. Spivak, *Differential Geometry II* (Publish or Perish, 1970, 1979)