Knock Down of LINC00504 Represses Proliferation and Invasion via Regulation of miR-140-5p in Breast Cancer

Tieying Hou
Shantou University Medical College

Long Ye
Shantou University Medical College

Qingsong Qin
Shantou University Medical College

Shulin Wu (✉ shulinwu66@126.com)

Research

Keywords: breast cancer, LINC00504, proliferation, invasion, miR-140-5p, VEGFA

Posted Date: July 2nd, 2020

DOI: https://doi.org/10.21203/rs.3.rs-39231/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Knock down of LINC00504 represses proliferation and invasion via regulation of miR-140-5p in Breast cancer

Tieying Hou¹², Long Ye², Qingsong Qin¹#, Shulin Wu¹#

¹Laboratory of Human Virology and Oncology, Shantou University Medical College, Shantou, Guangdong Province, 515041; ²Laboratory Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, P.R. China 510000.

Tieying Hou Email: houtieying@gdph.org.cn
Long Ye Email :yelong08@126.com
Correspondence to: Shulin Wu, Laboratory of Human Virology and Oncology, Shantou University Medical College, No.22 Xinling Road, Shantou 515041, China; Phone: Tel : 0754-88550917; E-mail: shulinwu66@126.com.
Correspondence also to: Qingsong Qin, Laboratory of Human Virology and Oncology, Shantou University Medical College, No.22 Xinling Road, Shantou 515041, China; Phone: Tel: 0754-88550917; E-mail: qsqin@stu.edu.cn.

Abstract

Background: Breast cancer is one of the most common cancer in the world. Emerging evidence has demonstrated the critical role of long noncoding RNAs (lncRNAs) in the development of breast cancer. In this study, we aimed to investigate the role of LINC00504 in breast cancer progression.

Methods: Quantification real-time PCR was used to analyzed the expression levels of LINC00504 and miR-140-5p in breast cancer tissues and cell lines. Cell proliferation, migration and invasion were assessed by Cell Counting Kit-8, transwell assay and Immunofluorescence. Dual-luciferase
reporter assay and RNA Immunoprecipitation assay were performed to verify the interaction between LINC00504 and miR-140-5p. The expression levels of VEGFA, CDH1 and VIM were demonstrated by western blot assays.

Result: Here, we found that LINC00504 is up regulated in breast cancer tissues and cell lines. Down regulation of LINC00504 mediated by shRNA suppressed the proliferation, migration, and invasion of breast cancer cells in vitro and in vivo. Furthermore, LINC00504 was found to competitively regulate miR-140-5p via targeting VEGFA. Inhibition of miR-140-5p attenuated the knockdown-LINC00504 induced inhibition of breast cancer cell proliferation and invasion.

Conclusion: Taken together, our results demonstrated the mechanism of the LINC00504–miR-140-5p–VEGFA axis in breast cancer cell proliferation and invasion and may lead to new lncRNA-based diagnostics or therapeutics for breast cancer.

Keywords: breast cancer, LINC00504, proliferation, invasion, miR-140-5p, VEGFA

1 Background

Breast cancer is the most common type of gynecological tumor in China [1]. Despite efforts by diagnostic techniques and patient management, there has been little progress in improving the overall survival of breast carcinoma patients. In addition, it has been reported that there is an apparent trend in incidence and mortality rates of breast cancer [2, 3]. Development of suitable therapy to increase patient survival rate has been limited because the pathophysiological mechanisms contributing to breast carcinoma are largely unknown [4]. Therefore, uncovering the molecular mechanisms for development and progression of breast carcinoma is necessary for developing effective therapies.

The long noncoding RNAs (lncRNAs) are a new category of noncoding RNAs with over 200
nucleotides and are deficient in protein coding ability [5-7]. More and more evidence has shown that LncRNAs play important role in various human cancers, including breast cancer [8], liver cancer [9], gastric cancer [10] and so on. LncRNAs have been linked to every stage of cell life, including cell proliferation, differentiation, apoptosis, and motility. For instance, Knockdown of Long Noncoding RNA GHET1 Inhibits Cell Proliferation and Invasion of Colorectal Cancer [11]. Therefore, identifying the mechanism of regulation of LncRNA is essential for tumor diagnosis and therapy. A long noncoding RNA, called LINC00504, is a newly identified LncRNA. Feng J et al firstly reported that A noncoding RNA LINC00504 interacts with c-Myc to regulate tumor metabolism in colon cancer [12]. However, the expression of LINC00504 in breast cancer and its biological effects has not been reported. In this study, we explored the expression of LINC00504 in breast cancer tissues and cells by using qRT-PCR, CCK-8 and other molecular biology experiments at the breast cancer tissue and cell level, we demonstrated that LINC00504 is upregulated in human breast cancer tissues and cell lines. Besides, we uncovered the oncogenic function of LINC00504 via regulating the miR-140-5p-VEGFR pathway during breast cancer development. These results might provide a new insight for the treatment of breast cancer.

2 Materials and methods

2.1 Tissue Specimen and Cell Culture

28 BC specimens and their matched adjacent normal tissues were collected after surgical resection at Shanghai Tenth People’s Hospital. All the patients underwent surgical resection and
were diagnosed with breast cancer by rapid pathology. And the tissues were immediately snap-frozen in liquid nitrogen after resection and stored at −80°C. The study protocol was approved by Shanghai Tenth People’s Hospital Institutional Review Board (The Certificate Number: SHSY-IEC-KY-4.0/17-23/01), and all patients signed informed consent. Human breast cancer cell lines BT549, T47D, MCF-7, SKBR3 and MDA-MB-231 were purchased from the Institute of Biochemistry and Cell Biology of the Chinese Academy of Sciences (Shanghai, China). Human normal breast cell line MCF-10A was purchased from American Type Culture Collection (ATCC) (Manassas, VA, USA). Cells were cultured in Dulbecco's modified Eagle's medium (DMEM; GIBCO, Grand Island, NY) supplemented with 10% of fetal bovine serum (FBS), 100U/ml penicillin and 100mg/ml streptomycin (Invitrogen, Carlsbad, CA, USA). The cells were maintained in a humidified incubator at 37°C and 5% CO2.

2.2 Transfection and lentivirus transduction

Oligonucleotide transfection was performed with Lipofectamine 2000 reagent (Invitrogen, Carlsbad, CA, USA). The modified miR-140-5p mimics, miRNA inhibitors (miR-140-5p in), shRNA targeting LINC00504 (sh-LINC00504), and corresponding negative controls were chemically enhanced oligonucleotides which designed and synthetized by Applied Biosystems (Foster city, CA, USA). LINC00504 overexpression plasmids also was chemically synthetized by Applied Biosystems. The empty lentiviral vector sh-control was used as a control. Recombinant lentivirus plasmids were used to infect cells with 5 mg/mL Polybrene (Sigma, St. Louis, MO, USA).

2.3 Cell cycle analysis
After transfection, cells were harvested and adjusted to the concentration of 1×10^6 cell/mL. Then pre-cold ethanol (75%) was used to dissolve the cells, followed by incubation at 4°C for 4h. After that, cells were washed with cold PBS again. Next, cells were stained with BD Pharmingen™ PI/RNase for 30 min at room temperature, followed by flow cytometer at different cell cycle phase (G1, S, and G2). 10000 cells were measured for each sample.

2.4 Real-Time Quantitative PCR (qPCR) Analysis

TRIzol reagent (Invitrogen, Carlsbad, CA, USA) was used to extract total RNA from the tissues and cell lines according to the manufacturer’s instructions. RNA was reverse-transcribed to cDNA by means of the PrimeScript RT Reagent Kit (TaKaRa, Dalian, China). SYBR Premix Ex Taq (TaKaRa) was used to detect LINC00504 and miR-140-5p expression. PCR was carried out at least in triplicate, and the results were analyzed on an ABI 7500 Fast Real-Time PCR System (Applied Biosystems, Foster City, CA). LINC00504 and miR-140-5p expression levels were quantified by the expression of GAPDH and U6, respectively. The relative expression was calculated using the 2^{−ΔΔCT} method.

2.5 Cell proliferation, Cell migration and invasion assays

Cell proliferation was detected by Cell Counting Kit-8 (CCK-8; Dojindo, Tokyo, Japan). Cells were seeded in 96-well plates with density 5×10^3 cells/well and incubated in 37°C with 5% CO2. Next, the CCK-8 assay solution (10μl) was added to each well at indicated time. The absorbance at 450nm was measured with an enzyme immunoassay analyzer (Thermo Fisher Scientific, Shanghai, China). A transwell chamber (8-μm pore size, Corning, Cambridge, MA, USA) was used to perform cell migration and invasion assays. Transfected cells (2 × 10^5 cells/mL) were resuspended in 200 μL of
the serum-free medium and seeded in the upper chamber. Next, the cells were placed on the top side of the membrane (without Matrigel for the migration assay) or placed on the top side of the membrane precoated with Matrigel (BD Biosciences) (for the invasion assay). After incubation at 37°C for 48 hours, the cells migrated or invaded to the lower side of the membrane were fixed in 20% methanol and stained with 0.1% crystal violet for 15 min. The cells were counted in five randomly selected visual fields under an inverted Phase-contrast Microscope (Olympus).

2.6 Mice experiments

For xenograft mouse experiments, SKBR3 or MDA-MB-231 (5 × 10^6 cells) under different treatments were subcutaneously injected into 8-week-old athymic nude mice (Bikai). Tumor size and weight was measured every 6 days, and the tumor volume was calculated as 0.5 × L × W^2, with L representing length and w representing width.

2.7 Immunofluorescence

SKBR3 and MDA-MB-231 were cultured on glass slides and fixed with 4% paraformaldehyde for 15 min. Then, the cells were washed three times with phosphate-buffered saline (PBS) for 5 min and incubated with blocking buffer (PBS solution containing 3% fetal bovine serum (FBS), 1% goat serum, and 0.1% Triton X-100) for 2 h at room temperature. Next, cells were incubated with the primary antibody (anti-VIM, anti-CDH1) diluted in PBS at 4°C overnight. The slides were then washed with PBS three times prior to being incubated with Alexa Fluor®-488/555 fluorescent conjugated secondary antibody for 1 h in the dark. Afterward, the slides were washed three times in PBS prior to being mounted with Pro-Long® Gold Antifade Reagent with 4′,6-diamidino-2-
phenylindole (DAPI: Molecular Probes, Eugene, OR, USA). The slides were observed using an
LSM 800 Confocal Microscope (Carl Zeiss AG, Oberkochen, Germany).

2.8 The luciferase reporter assay
MiR-140-5p was found to be directly regulated target by LINC00504 using miRcode bioinformatics
tools (http://www.mircode.org/). The theoretical binding sequence for miR-140-5p in the
LINC00504 gene and its mutant sequence were cloned into the psiCHECK-2 vector (Promega,
Madison, WI, USA) to construct a dual luciferase reporter plasmid. The wild-type (wt) 3′-UTR
fragment of LINC00504 and its mutant (mut) of the miR-140-5p binding site were cloned into a the
psiCHECK-2 vector to form the reporter vector, which named as Wt-LINC00504 and Mut-
LINC00504, respectively. SKBR3 and MDA-MB-231 cells were transfected with Wt (or Mut)
reporter plasmid and an NC mimic or miR-140-5p mimic for 48 hours. The luciferase activity was
detected using a Dual Luciferase Reporter Gene Assay Kit (Beyotime Institute of Biotechnology,
Shanghai, China) according to the manufacturer’s protocol. The relative luciferase activity was
normalized to Renilla luciferase activity.

2.9 RNA immunoprecipitation (RIP) assay
RIP was performed using a Magna RIP RNA-Binding Protein Immunoprecipitation kit (Millipore,
Bedford, MA) according to the manufacturer’s instructions. Briefly, cells were transfected with
miR-140-5p mimics, miR-140-5p NC mimics, and LINC00504, then were lysed in lysis buffer.
Subsequently, cell lysates were incubated with anti-Ago2 (Abcam) or anti-IgG (Abcam) and protein
A/G magnetic beads. The magnetic bead-bound complexes were purified by Dnase and Proteinase
Lastly, qRT-PCR assays were used to determine the relative enrichment of LINC00504 mRNA, with a LightCycler 480 Probes Master Kit on a LightCycler 480 instrument.

3.0 Statistical analysis

Statistical analyses were performed with SPSS 20.0 (SPSS Inc., Chicago, IL, USA). Data are presented as mean ± standard deviation (SD) of at least three independent experiments. Differences between two groups or more than two groups were evaluated, respectively, by Student's t test or one-way analysis of variance (ANOVA). Spearman rank-correlation was performed to calculate the correlation coefficient between LINC00504 and miR-140-5p expression levels.

3 Results

3.1 LINC00504 is up regulated in breast cancer tissues and cells

Bioinformatics analysis was used to identify the expression of LINC00504 in breast cancer patients and healthy people in The Cancer Genome Atlas (TCGA) database. We found a significant increase of the level of LINC00504 in the breast cancer patients compared to healthy control (Figure 1A). Furthermore, Real-time qPCR was used to investigate the expression of LINC00504 in breast cancer tissues and adjacent normal tissues. The results showed that LINC00504 was expressed at higher levels in tumor tissues compared with adjacent normal tissues, which also confirmed the results of bioinformatics (Figure 1B). We also measured the LINC00504 expression in five human breast cancer cell lines (BT549, T47D, MCF-7, SKBR3 and MDA-MB-231) and in MCF-10A, the normal breast cell line. Same as before results, LINC00504 expression was obviously higher in five breast
cancer cell lines compared with the normal breast cell (Figure 1C). These results demonstrated that LINC00504 was up regulated in breast cancer.

3.2 knock down of LINC00504 suppressed breast cancer cell proliferation, migration and invasion in vitro and in vivo

The physiological role of LINC00504 was explored using SKBR3 and MDA-MB-231 cells, which were transfected with sh-control and sh-LINC00504. The significantly decrease of LINC00504 expression in these sh-LINC00504 transfected cells was confirmed by qRT-PCR (Figure 2A). Then we performed CCK-8 assays to analyze the effect of LINC00504 knockdown on proliferation. We found the inhibition of the two cell lines proliferation when compared to their corresponding controls (Figure 2B, 2C). Similarly, LINC00504 knockdown dramatically decreased the colony formation by SKBR3 and MDA-MB-231 cells (Figure 2D). Cell cycle analysis was used to explore the cell distribution at different cell phases. The results showed that knockdown of LINC00504 increased the numbers of SKBR3 and MDA-MB-231 cells in G1 phase and decreased the numbers of MDA-MB-231 cells in both S and G2 phase, as for SKBR3, the numbers were reduced in G2 phase (Figure 2E). In xenograft mice models, we found that LINC00504 knockdown significantly inhibited tumor growth (Figure 3), which further supports our previous tests that LINC00504 boosts breast cancer cell proliferation.

Next, transwell assays was used to study whether LINC00504 can influence breast cancer cell migration and invasion. The results showed that LINC00504 knockdown suppressed breast cancer cell migration and invasion (Figure 4A, B). Immunofluorescence was used to detect the variety of VIM and CDH1, which were the characteristic proteins of the epithelial–mesenchymal transition (EMT) [13, 14]. The results demonstrated that knockdown of LINC00504 inhibited the expression
of VIM and enhanced the expression of CDH1 (Figure 4C, D), which also proved that LINC00504 boosts breast cancer cell migration and invasion. Collectively, LINC00504 knockdown impaired further progression of breast cancer cells.

3.3 MIR-140-5p was a target of LINC00504 in breast cancer

There has been reported that lncRNA could act as a ceRNA to exert its regulatory functions. To further reveal the underlying mechanism responsible for LINC00504 functions in breast cancer, we examined a set of miRNAs that were predicted to interact with LINC00504 using predication software miRcode and RNA22. MIR-140-5p was found to be a promising target of LINC00504 and the predicted bonding site of miR-140-5p in the LINC00504 sequence is showed in (Figure 5A). After transfection with sh-LINC00504, qRT-PCR detection revealed that miR-140-5p expression was significantly increased after knocking down of LINC00504 (Figure 5B). To further verify the interaction between miR-140-5p and LINC00504, luciferase reporter vectors were constructed which contained a wild-type (wt) or mutated (mut) miR-140-5p-binding site in LINC00504. The results of dual-luciferase reporter assays showed that miR-140-5p suppressed the luciferase activity of the LINC00504-wt reporter vector, whereas barely influenced that of the LINC00504-mut reporter vector, (Figure 5C). Furthermore, RIP assay was used to examine the potentially endogenous interaction between LINC00504 and miR-140-5p. The data presented that LINC00504 was substantially enriched by miR-140-5p overexpression with anti-Ago2 in MDA-MB-231 and SKBR3 cells (Figure 5D and 5E). using Spearman's correlation analysis, we found that the levels of LINC00504 were statistically correlated with that of miR-140-5p among breast cancer tissue samples (Figure 5F). These data indicated that miR-140-5p is a direct target of LINC00504 in breast
3.4 LINC00504 promoted the progression of breast cancer by the miR-140-5p-VEGFA axis

Next, we explored the effect of miR-140-5p in LINC00504-driven promotion of breast cancer progression. We knocked down LINC00504 and inhibited miR-140-5p in the same time in SKBR3 and MDA-MB-231 cells. CCK8, transwell migration and invasion assays showed that LINC00504 knockdown significantly inhibited cell proliferation, migration and invasion while miR-140-5p inhibition in the meantime abrogated these effects (Figure 6A,B,C), which demonstrated that miR-140-5p plays a key role in LINC00504-related oncogenic effects on breast cancer cells. It has been reported that MicroRNA-140-5p inhibits invasion and angiogenesis through targeting VEGFA in breast cancer [15]. Thus, we supposed that VEGFA is involved in the LINC00504/miR-140-5p-dependent malignant progression of breast cancer cell. We knocked down LINC00504 and inhibited miR-140-5p in the same time in SKBR3 and MDA-MB-231 cells. The expression of VEGFA, CDH1 and VIM was detected by Western blotting. The results showed that VEGFA and VIM was downregulated while the expression of cdh1 was increased when knockdown of LINC00504. However, the converse expression of the proteins was observed when knockdown of LINC00504 and inhibition of miR-140-5p existed simultaneously (Figure 6D). These results suggested that LINC00504 induced tumor development via inhibition of miR-140-5p and by targeting VEGFA.

4 Discussion

Breast cancer is the most common and mortality-related malignant tumor in female around the world [16]. The incidence of breast cancer is increasing rapidly during recent years [17]. Early breast
cancer often does not have typical symptoms and signs, and it is not easy to attract attention. It is often in the middle and late stages when found [18]. However, the underlying mechanism that regulates breast cancer development remains largely unknown. It is crucial to develop novel molecular biomarkers for the diagnosis and prognosis of breast cancer. Here, we found that LINC00504 was significantly upregulated in breast cancer. And LINC00504 was critical for the proliferation, migration and invasion of breast cancer cells, which indicated that LINC00504 may be a new biomarker for breast cancer.

Emerging evidence showed that dysregulation of lncRNAs has been demonstrated to be involved in tumorigenesis and progression of breast cancer [19-21], suggesting the possibility of lncRNAs to serve as novel target for breast cancer diagnosis and therapy. LINC00504 is a newly found lncRNA, which was highly expressed in colon cancer. Feng J et al firstly reported that LINC00504 interacts with c-Myc to regulate tumor metabolism in colon cancer. However, the detail function and underlying mechanism of LINC00504 on breast cancer still remain unclear. In this study, we showed that LINC00504 was highly expressed in breast cancer tissues and cell lines. By in vitro and in vivo assays, we showed that knockdown of LINC00504 remarkably inhibited cell proliferation. Similarly, a clear weakening trend of cell migration and invasion was observed with LINC00504 depletion in breast cancer. Moreover, we firstly manifested that LINC00504 knockdown resulted in decreased EMT in breast cancer cells. All these results hinted that LINC00504 might contribute to the metastasis of breast cancer.

Previous evidence showed that lncRNAs can serve as competitive endogenous RNA (ceRNA) to sponge miRNAs [22-24]. To further explore the underlying molecular mechanism by which LINC00504 regulates breast cancer, we made a predication and found that miR-140-5p was a
promising candidate. The gene encoding miRNA-140-5p is located in chromosome 16, which has
been proven to function in several cancer cells [25-27]. For instance, Yunfeng et al. demonstrated
that miR-140-5p could suppress tumor growth and metastasis of non-small cell lung cancer by
targeting IGF1R [28]. In hypopharyngeal squamous cell carcinoma, miRNA-140-5p suppresses
tumor cell migration and invasion by targeting ADAM10-mediated Notch1 signaling pathway [29].
And miRNA-140-5p inhibits invasion and angiogenesis through targeting VEGF-A in breast cancer
[30]. Above studies indicate that miRNA-140-5p may be a tumor suppressor. To further investigate
the correlation between LINC00504 and miRNA-140-5p in breast cancer tumorigenesis, we
performed luciferase reporter assays. Results showed that LINC00504 directly combined to
miRNA-140-5p in breast cancer cells. We also found that LINC00504 significantly inhibited
miRNA-140-5p expression, enhanced VEGFA and VIM expression and reduced CDH1 level. Taken
together, our results indicated that the oncogene LINC00504 promoted breast cancer progression by
negatively regulating miRNA-140-5p, a tumor suppressor via targeting VEGFA. The
LINC00504/miRNA-140-5p may act as a novel therapeutic target for the treatment of breast cancer.

5 Conclusion

Taken together, our results demonstrated the mechanism of the LINC00504–miR-140-5p–VEGFA
axis in breast cancer cell proliferation and invasion and may lead to new IncRNA-based diagnostics
or therapeutics for breast cancer.

Abbreviations

IncRNAs: long noncoding RNAs

ATCC: American Type Culture Collection

DMEM: Dulbecco's modified Eagle's medium
RT-qPCR: Real-Time Quantitative PCR

RIP: RNA immunoprecipitation

IF: Immunofluorescence

TCGA: The Cancer Genome Atlas

EMT: epithelial–mesenchymal transition

ceRNA: competitive endogenous RNA

Declarations

Ethics approval and consent to participate

The study protocol was approved by Shanghai Tenth People’s Hospital Institutional Review Board (The Certificate Number: SHSY-IEC-KY-4.0/17-23/01), and all patients signed informed consent.

The animal study protocol was approved by Guangdong Provincial People’s Hospital Research Ethics Community (The Certificate Number: No. GDREC2018218A).

Consent for publication

Not applicable

Availability of data and materials

The datasets used and/or analysed during the current study are available from the corresponding author on reasonable request.

Competing interests

The authors declare that they have no competing interests

Funding

This study was supported by the Guangzhou science and technology program (grant No.
201803010094), and the Natural Science Foundation of Guangdong (grant No. 2020A151501158).

Authors' contributions

TYH contributed to the acquisition, analysis and interpretation of the data. TYH, SLW and QSQ designed and drafted the manuscript. All authors read and approved the final manuscript.

Acknowledgements

Not applicable

Authors' information

Laboratory of Human Virology and Oncology, Shantou University Medical College, No.22 Xinling Road, Shantou 515041, China

Tieying Hou, Shulin Wu, Qingsong Qin

Laboratory Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, P.R. China

Long Ye

References

1. Li T, Mello-Thoms C, Brennan PC. Descriptive epidemiology of breast cancer in China: incidence, mortality, survival and prevalence. Breast Cancer Res Treat. 2016;159,3:395-406.

2. Libson S, Lippman M: A review of clinical aspects of breast cancer. Int Rev Psychiatry 2014, 26:4-15.

3. Zuo TT, Zheng RS, Zeng HM, Zhang SW, Chen WQ: Female breast cancer incidence and mortality in China, 2013. Thorac Cancer 2017, 8:214-218.

4. Cadoo KA, Traina TA, King TA: Advances in molecular and clinical subtyping of breast cancer and their implications for therapy. Surg Oncol Clin N Am 2013, 22:823-840.
5. Jarroux J, Morillon A, Pinskaya M: History, Discovery, and Classification of lncRNAs. *Adv Exp Med Biol* 2017, **1008**:1-46.

6. Ulitsky I, Bartel DP: lincRNAs: genomics, evolution, and mechanisms. *Cell* 2013, **154**:26-46.

7. Bhan A, Soleimani M, Mandal SS: Long Noncoding RNA and Cancer: A New Paradigm. *Cancer Res* 2017, **77**:3965-3981.

8. Wang Q, Gao S, Li H, Lv M, Lu C: Long noncoding RNAs (lncRNAs) in triple negative breast cancer. *J Cell Physiol* 2017, **232**:3226-3233.

9. Birgani MT, Hajjari M, Shahrisa A, Khoshnevisan A, Shoja Z, Motahari P, Farhangi B: Long Non-Coding RNA SNHG6 as a Potential Biomarker for Hepatocellular Carcinoma. *Pathol Oncol Res* 2018, **24**:329-337.

10. Li T, Mo X, Fu L, Xiao B, Guo J: Molecular mechanisms of long noncoding RNAs on gastric cancer. *Oncotarget* 2016, **7**:8601-8612.

11. Zhou J, Li X, Wu M, Lin C, Guo Y, Tian B: Knockdown of Long Noncoding RNA GHET1 Inhibits Cell Proliferation and Invasion of Colorectal Cancer. *Oncol Res* 2016, **23**:303-309.

12. Feng J, Ma J, Liu S, Wang J, Chen Y: A noncoding RNA LINC00504 interacts with c-Myc to regulate tumor metabolism in colon cancer. *J Cell Biochem* 2019, **120**:14725-14734.

13. Wu S, Du Y, Beckford J, Alachkar H: Upregulation of the EMT marker vimentin is associated with poor clinical outcome in acute myeloid leukemia. *J Transl Med* 2018, **16**:170.

14. Ma F, Li W, Liu C, Li W, Yu H, Lei B, Ren Y, Li Z, Pang D, Qian C: MiR-23a promotes TGF-β1-induced EMT and tumor metastasis in breast cancer cells by directly targeting CDH1 and activating Wnt/β-catenin signaling. *Oncotarget* 2017, **8**:69538-69550.
15. Lu Y, Qin T, Li J, Wang L, Zhang Q, Jiang Z, Mao J: MicroRNA-140-5p inhibits invasion and angiogenesis through targeting VEGF-A in breast cancer. *Cancer Gene Ther* 2017, 24:386-392.

16. Merino Bonilla JA, Torres Tabanera M, Ros Mendoza LH: Breast cancer in the 21st century: from early detection to new therapies. *Radiologia* 2017, 59:368-379.

17. Paluch-Shimon S, Warner E: Breast cancer in young women: challenges, progress, and barriers. *Curr Opin Support Palliat Care* 2015, 9:268-270.

18. Jin L, Han B, Siegel E, Cui Y, Giuliano A, Cui X: Breast cancer lung metastasis: Molecular biology and therapeutic implications. *Cancer Biol Ther* 2018, 19:858-868.

19. Cai C, Huo Q, Wang X, Chen B, Yang Q: SNHG16 contributes to breast cancer cell migration by competitively binding miR-98 with E2F5. *Biochem Biophys Res Commun* 2017, 485:272-278.

20. Wang Y, Zhou J, Wang Z, Wang P, Li S: Upregulation of SOX2 activated LncRNA PVT1 expression promotes breast cancer cell growth and invasion. *Biochem Biophys Res Commun* 2017, 493:429-436.

21. Tracy KM, Tye CE, Ghule PN, Malaby HLH, Stumpff J, Stein JL, Stein GS, Lian JB: Mitotically-Associated IncRNA (MANCR) Affects Genomic Stability and Cell Division in Aggressive Breast Cancer. *Mol Cancer Res* 2018, 16:587-598.

22. Lv M, Zhong Z, Huang M, Tian Q, Jiang R, Chen J: IncRNA H19 regulates epithelial-mesenchymal transition and metastasis of bladder cancer by miR-29b-3p as competing endogenous RNA. *Biochim Biophys Acta Mol Cell Res* 2017, 1864:1887-1899.

23. Ransohoff JD, Wei Y, Khavari PA: The functions and unique features of long intergenic non-
24. Alvarez-Dominguez JR, Lodish HF: Emerging mechanisms of long noncoding RNA function during normal and malignant hematopoiesis. *Blood* 2017, 130:1965-1975.

25. Liu Z, He F, OuYang S, Li Y, Ma F, Chang H, Cao D, Wu J: miR-140-5p could suppress tumor proliferation and progression by targeting TGBFRI/SMAD2/3 and IGF-1R/AKT signaling pathways in Wilms' tumor. *BMC Cancer* 2019, 19:405.

26. Flamini V, Dudley E, Jiang WG, Cui Y: Distinct mechanisms by which two forms of miR-140 suppress the malignant properties of lung cancer cells. *Oncotarget* 2018, 9:36474-36491.

27. Wolfson B, Eades G, Zhou Q: Roles of microRNA-140 in stem cell-associated early stage breast cancer. *World J Stem Cells* 2014, 6:591-597.

28. Yuan Y, Shen Y, Xue L, Fan H: miR-140 suppresses tumor growth and metastasis of non-small cell lung cancer by targeting insulin-like growth factor 1 receptor. *PLoS One* 2013, 8:e73604.

29. Jing P, Sa N, Liu X, Liu X, Xu W: MicroR-140-5p suppresses tumor cell migration and invasion by targeting ADAM10-mediated Notch1 signaling pathway in hypopharyngeal squamous cell carcinoma. *Exp Mol Pathol* 2016, 100:132-138.

30. Varghese E, Liskova A, Kubatka P, Mathews Samuel S, Büsselberg D: Anti-Angiogenic Effects of Phytochemicals on miRNA Regulating Breast Cancer Progression. *Biomolecules* 2020, 10.

Figure legends

Figure 1. LINC00504 was up regulated in breast cancer tissues and cells. The expression of LINC00504 in breast cancer patients and healthy people was assessed in The Cancer Genome Atlas.
qRT-PCR assay was used to assess the expression of LINC00504 in 28 pairs
breast cancer tissues and adjacent noncancerous tissues, breast cancer cell lines (BT549, T47D, MCF-7, SKBR3 and MDA-MB-231) and normal breast cell line MCF-10A(C). **P<0.01 vs normal tissues or MCF-10A.

Figure 2. The effect of LINC00504 knockdown on the proliferation, cell cycle distribution of breast cancer cells in vitro. SKBR3 and MDA-MB-231 cells were transfected with sh-control or sh-LINC00504. LINC00504 expression was detected by qRT-PCR when transfected in the two cells(A). Transfected cells proliferation was detected by CCK-8 and colony formation assays(B-D). Flow cytometer was used to analyze the transfected cells at different cell cycle phase (G1, S, and G2)(E). **P<0.01 vs sh-control.

Figure 3. The effect of LINC00504 knockdown on the proliferation in vivo. Transfected cells were planted in mice, and tumor growth was measured. **P<0.01 vs sh-control.

Figure 4. The influence of LINC00504 knockdown on invasion, and EMT of breast cancer cells. Transfected cells migration and invasion capacities were assessed by transwell assays(A-B). Immunofluorescence was used to detect the variety of VIM and CDH1 in Transfected cells. **P<0.01 vs sh-control.

Figure 5. LINC00504 directly binded to miR-140-5p in SKBR3 and MDA-MB-231 cells. The potential binding sites between LINC00504 and miR-140-5p, and the mutant in the seed region(A). The expression of miR-140-5p was detected in sh-control or sh-LINC00504 transfected cells(B). Dual-luciferase reporter assays were performed by transfecting with LINC00504-WT or LINC00504-Mut constructs into SKBR3 and MDA-MB-231 cells with miR-NC mimics or miR-140-5p(C). SKBR3 and MDA-MB-231 cells were transfected with miR-NC mimics or miR-140-5p mimics, followed by the measurement of LINC00504 mRNA enrichment with anti-Ago2 by qRT-PCR, and anti IgG served as control(D,E). Relationship between levels of LINC00504 and miR-140-5p in breast cancer tissues(F). **P<0.01 vs sh-control or miR-NC.
Figure 6. LINC00504 promoted the migration, invasion, and EMT of breast cancer cells, and it was regulated by miR-140-5p-VEGFA axis. SKBR3 and MDA-MB-231 cells were transfected with sh-control, sh-LINC00504 or sh-LINC00504+miR-140-5p inhibitor, followed by the trial of colony formation for cell proliferation(A), transwell assays for cell migration(B) and cell invasion(C), western blot analysis for VEGFA, CDH1, VIM levels(D). **P<0.01 vs corresponding control.
LINC00504 was up regulated in breast cancer tissues and cells. The expression of LINC00504 in breast cancer patients and healthy people was assessed in The Cancer Genome Atlas (TCGA) database(A). qRT-PCR assay was used to assess the expression of LINC00504 in 28 pairs breast cancer tissues and adjacent noncancerous tissues(B), breast cancer cell lines (BT549, T47D, MCF-7, SKBR3 and MDA-MB-231) and normal breast cell line MCF-10A(C). **P<0.01 vs normal tissues or MCF-10A.
Figure 2

The effect of LINC00504 knockdown on the proliferation, cell cycle distribution of breast cancer cells in vitro. SKBR3 and MDA-MB-231 cells were transfected with sh-control or sh-LINC00504. LINC00504 expression was detected by qRT-PCR when transfected in the two cells (A). Transfected cells proliferation was detected by CCK-8 and colony formation assays (B-D). Flow cytometer was used to analyze the transfected cells at different cell cycle phase (G1, S, and G2) (E). **P<0.01 vs sh-control.

Figure 3

The effect of LINC00504 knockdown on the proliferation in vivo. Transfected cells were planted in mice, and tumor growth was measured. **P<0.01 vs sh-control.
Figure 4

The influence of LINC00504 knockdown on invasion, and EMT of breast cancer cells. Transfected cells migration and invasion capacities were assessed by transwell assays (A-B). Immunofluorescence was used to detect the variety of VIM and CDH1 in Transfected cells. **P<0.01 vs sh-control.
LINC00504 directly binded to miR-140-5p in SKBR3 and MDA-MB-231 cells. The potential binding sites between LINC00504 and miR-140-5p, and the mutant in the seed region(A). The expression of miR-140-5p was detected in sh-control or sh-LINC00504 transfected cells(B). Dual-luciferase reporter assays were performed by transfecting with LINC00504-WT or LINC00504-Mut constructs into SKBR3 and MDA-MB-231 cells with miR-NC mimics or miR-140-5p(C). SKBR3 and MDA-MB-231 cells were transfected with
miR-NC mimics or miR-140-5p mimics, followed by the measurement of LINC00504 mRNA enrichment with anti-Ago2 by qRT PCR, and anti IgG served as control(D,E). Relationship between levels of LINC00504 and miR-140-5p in breast cancer tissues(F). **P<0.01 vs sh-control or miR-NC.

Figure 6

LINC00504 promoted the migration, invasion, and EMT of 428 breast cancer cells, and it was regulated by miR-140-5p-VEGFA axis. SKBR3 and MDA-MB-231 cells were transfected with sh-control, sh-LINC00504 or sh-LINC00504+miR-140-5p inhibitor, followed by the trial of colony formation for cell proliferation(A), transwell assays for cell migration(B) and cell invasion(C), western blot analysis for VEGFA, CDH1, VIM levels(D). **P<0.01 vs corresponding control.