Undenatured type II collagen mitigates inflammation and cartilage degeneration in healthy Labrador Retrievers during an exercise regimen¹,²

J.L. Varney, J.W. Fowler, C.N. Coon

Four Rivers Kennel, LLC, Walker, MO 64790 U.S.A.

Corresponding author: Jessica Varney, Email: FourRiversKennel@live.com
Abstract

The aim of this experiment was to evaluate the effect of undenatured type II collagen supplementation on inflammation and cartilage degeneration after exercise in healthy dogs. Forty healthy Labrador Retrievers (20 male/20 female; Range 5-12yrs; Avg 8yrs) were sorted into two groups: undenatured type II collagen group receiving 40mg UC-II (10mg Collagen Type II/Min. 3% Undenatured Type II Collagen; Lonza Consumer Health, Inc.) and placebo group receiving 40mg maltodextrin daily by capsule. After 2-weeks loading, all dogs began an 11-week endurance exercise regimen consisting of two weekly runs, starting at 5km and increasing incrementally to 8km, with one final 16km run. Blood samples were collected at baseline, pre and post first 5km run, and pre and post 16km run. Activity per kilometer was greater in male undenatured type II collagen vs male placebo over all runs (P=0.004), and average moving speed was greater in all undenatured type II collagen dogs compared with placebo over all runs (P<0.001). Hematology analysis indicated that during the first insult, undenatured type II collagen dogs had a greater lymphocyte count (P<0.001) and lymphocyte percentage (P=0.001) vs placebo dogs. Undenatured type II collagen dogs had a lesser neutrophil percentage (P=0.042) and neutrophil to lymphocyte ratios (P=0.001) compared to placebo dogs. For the final insult, undenatured type II collagen dogs had greater lymphocyte percentage (P=0.013) and lesser mean corpuscular hemoglobin concentration (P=0.043) compared with placebo dogs.
Both groups had significant changes between timepoints for several hematological parameters.

Biomarker IL-6 was lesser in undenatured type II collagen dogs compared with placebo at post 5km (P=0.037). Cartilage oligomeric matrix protein (COMP) was lesser in undenatured type II collagen dogs at post 16km (P=0.023), and only the placebo dogs had a significant increase in COMP from pre to post 16km (P=0.021). In summary, Labrador Retrievers supplemented with undenatured type II collagen had decreased inflammation and cartilage degeneration compared with non-supplemented dogs during exercise.

Keywords: biomarkers, dog, exercise, inflammation, Labrador retriever, undenatured type II collagen
Introduction

Undenatured type II collagen is a supplement derived from chicken sternum cartilage that has demonstrated promising results in the management of osteoarthritis and reduction of lameness in both human (Crowley et al., 2009; Lugo et al., 2013) and animal trials (D’Altilio et al., 2007) (Gencoglu et al., 2020). Current over-the-counter therapies for the treatment of lameness and osteoarthritis include nutraceuticals such as glucosamine hydrochloride, chondroitin sulfate, hyaluronic acid, and methylsulfonylmethane with varying degrees of efficacy (Vandeweerd et al., 2012; Scott et al., 2017). Veterinarian prescribed therapies include non-steroidal anti-inflammatory drugs (NSAIDs) and injections of polysulfated glycosaminoglycan which have the potential of causing deleterious side effects (Henrotin et al., 2005). Investigating alternative and multifaceted therapies for the management of lameness is necessary to improve quality of life in companion animals.

Previous experiments have evaluated the efficacy of undenatured type II collagen in known arthritic dogs (Deparle et al., 2005) and in dogs with temporary mobility impairment (Stabile et al., 2019). In order to evaluate the efficacy and safety of undenatured type II collagen in healthy Labrador Retrievers, this experiment used an endurance exercise model to induce inflammation and cartilage turnover. Inflammatory biomarkers (neutrophil: lymphocyte ratio and interleukin-6), muscle breakdown biomarkers (creatine phosphokinase), and cartilage degradation biomarkers (cartilage oligomeric matrix protein) were used to compare the effect of undenatured type II collagen supplemented dogs versus maltodextrin placebo supplemented dogs.
Materials and Methods

All animal care and procedures were reviewed and approved by the Institutional Care and Use Committee at Four Rivers Kennel, LLC under protocol FRK-22.

Animals and Housing

Forty Labrador Retrievers (20 male/20 female) were used in this experiment and averaged eight years of age (Range: 5-12yrs). All dogs were housed in individual kennels overnight and allowed free access to outside airing yards for six to eight hours daily, weather permitting. All dogs had ad libitum access to automatic waterers inside and outside. All dogs were fed once daily in the morning as per their treatment requirements. Prophylactic heartworm prevention containing ivermectin and pyrantel (Heartgard Plus; Boehringer Ingelheim Animal Health USA; Duluth, GA) was administered monthly.

Diet and Treatments

All Labrador Retrievers were fed a poultry and corn based kennel diet, MFA Gold N Pro (Protein 27%; Fat 15%; Fiber 3%; Moisture 10%; Energy Content 3.663 kcal/g) (Missouri Farmers Association, Inc; Columbia, MO) for the duration of the experiment. Feed amounts were determined based on historical data to maintain starting body weight. Feed consumption was determined daily by weighing feed provided and feed refusals.

Each dog was sorted to one of two equalized treatment groups based on age, sex, and bodyweight. Related dogs were sorted equally between the treatment groups. Undenatured type II collagen group received 40mg UC-II (10mg Collagen Type II/Min. 3% Undenatured Type II Collagen; Lonza Consumer Health, Inc; Morristown, NJ) daily and placebo group received 40mg maltodextrin daily. Both treatments were given in capsule form by mouth, once daily in the morning.
Running Exercise

After two weeks of supplement loading, all dogs began a twice-weekly running regimen. The regimen was as follows: Week 1-2, loading; Week 3-5, 2x 5km runs; Week 6-8, 2x 6.5km runs; Week 9-11, 2x 8km runs; Week 12, 2x 3km runs; Week 13, 1x 16km run. The first 5km run and the final 16km run were used as the interest points for the biggest exercise insult to the dogs. All dogs ran alongside an all-terrain vehicle in the bush where they were free to run, swim, play, etc but met the minimum prescribed distance. All dogs wore Actical® accelerometer collars (Starr Life Sciences Corp; Oakmont, PA) to quantify activity intensity and global positioning collars (GPS) (Garmin Intl; Olathe, KS) to determine actual distance ran and average moving speed. Accelerometer data were divided by distance run to obtain an activity per kilometer (APKm) value.

Sample Collection and Laboratory Analysis

Blood samples were taken from each dog via jugular venipuncture prior to loading (baseline), 1h prior to the first 5km run (Pre5km), 24h after the first 5km run (Post5km), 30min prior to the final 16km run (Pre16km), and 24h after the final 16km run (Post16km). For biomarker analysis, blood was collected into serum separator tubes (BD Lifesciences, San Jose, CA), allowed to clot for 60min at room temperature, centrifuged at 1500 x g for 15min, serum aliquoted, and frozen at -80°C. For hematologic purposes, whole blood was collected into EDTA vacutainers (BD Lifesciences, San Jose, CA) and analyzed immediately via an in-house automated analyzer (Abaxis HM5; Abaxis Global Diagnostics, Union City, CA). Commercial biomarker kits were used for the analysis of interleukin-6 (#AB193686; Abcam; Burlingame, CA) (IL-6), creatine kinase-MM (#AB197749; Abcam; Burlingame, CA) (CKM), and cartilage oligomeric matrix protein (#MBS2123988; MyBiosource; San Diego, CA) (COMP). All samples were analyzed in duplicate. Linear regression equations were
developed from standard curves on each plate and used to calculate concentrations in each sample.

Statistical Analysis

JMP 14.1.0 (SAS Institute Inc, Cary NC) was used to create a mixed model for biomarkers and hematological values to compare treatment groups by sex and timepoint. “Dog” was analyzed as the random effect. If the mixed model indicated significant difference, a post-hoc Tukey’s test was applied and used to determine significantly different means. Sex was analyzed as a fixed effect due potential differences in body composition and metabolism. Results were considered significant at p-value <0.05. Results are presented as mean ± standard error.

Results

Body Weights

Overall, body weights were not significantly different between groups (P=0.369) (Table 1). Undenatured type II collagen males had lower body weights compared with placebo males (P=0.023), but females had no significant differences (P=0.375). Body weights between treatments were not different at any specific week between treatments for overall, males, or females, which indicates that the male difference is not likely clinically relevant.

Feed Intake

Overall, both feed offered and feed intake was not significantly different between groups (P=0.572) (Table 2). Feed intake was not significantly different between weeks or by treatment and week. Feed intake was not significantly different between treatments for both males (P=0.134) and females (P=0.642).
Activity and Moving Speed

Actual distance ran was not different between treatments over all runs, with undenatured type II collagen dogs running an average distance of 6.7 ± 0.13 km for all runs and placebo dogs running an average distance of 6.68 ± 0.13 for all runs ($P=0.548$).

For all runs, APKm was not different between treatment overall ($P=0.459$). Undenatured type II collagen males had greater activity at 45576 APKm compared with placebo males at 43701 APKm ($P=0.004$) (Table 3). No difference in APKm was found between female groups ($P=0.196$).

Average moving speed was greater in the undenatured type II collagen group compared with the placebo group ($P<0.001$) (Table 3). This was primarily driven by the females ($P<0.001$).

Moving speed was significantly different between run distances for both treatment groups ($P<0.001$).

Hematology

For the first insult (Table 4), when compared with placebo, undenatured type II collagen dogs had a greater lymphocyte count ($P<0.001$) and lymphocyte percentage ($P=0.001$).

Undenatured type II collagen dogs had lesser neutrophil percentage ($P=0.042$) and neutrophil to lymphocyte ratios ($P=0.001$) compared to placebo dogs.

For the final insult (Table 5), undenatured type II collagen dogs had greater lymphocyte percentage ($P=0.013$) and lesser mean corpuscular hemoglobin concentration ($P=0.043$) compared with placebo dogs.

Both groups had significant changes between timepoints for several hematological parameters.
Biomarkers

All biomarker data for both the first and final insult are presented in Table 6. For the first insult, undenatured type II collagen dogs had lower concentrations of IL-6 compared to placebo dogs overall (p=0.008). Undenatured type II collagen dogs had lesser IL-6 at baseline and pre 5km run compared with post 5km run, where placebo dogs had elevated IL-6 at pre and post 5km runs (p=0.001). During the final insult timepoints, IL-6 was lesser at pre 16km compared with post 16km for both undenatured type II collagen and placebo groups (P=0.001).

For the first insult, CKM was lower at baseline compared with pre 5km and post 5km in undenatured type II collagen dogs (P=0.003). In placebo dogs, baseline was lesser than post 5km only (P=0.021). Female undenatured type II collagen dogs had lesser CKM compared with placebo females at post 5km (P=0.039). No significant differences were found between groups or timepoints at the final insult for CKM.

When evaluating COMP, both groups followed similar patterns for the first insult. Baseline values were lesser than the pre 5km run values for both groups (P=0.001). Both undenatured type II collagen males and females had lesser COMP compared to placebo males and females at all three timepoints (P=0.003; P=0.01). For the final insult, undenatured type II collagen dogs had reduced concentrations of COMP at post 16km compared with placebo dogs (P=0.023). Placebo dogs also had a significant increase in COMP from pre 16km to post 16km (P=0.021), where the change in undenatured type II collagen dogs was not significant (P=0.163). Placebo males had elevated COMP at pre 5km compared with baseline (P=0.027). Undenatured type II collagen females had lesser COMP at baseline compared with pre 5km (P=0.027).
Discussion

Exercise can cause microtrauma in tissue and joints, resulting in a cycle of inflammation and discomfort even in healthy dogs. In a study using hunting dogs, serum concentrations of proinflammatory acute phase proteins serum amyloid A, haptoglobin, and C-reactive protein showed significant elevations both after moderate hunting exercise and in comparison to resting dogs (Casella et al., 2013). Increases in C-reactive proteins, leukocytes, and neutrophils in exercised Spanish Greyhounds after exercise also support the effect of transient subclinical inflammation after strenuous exercise (Lucas et al., 2015).

Endurance running exercise in Labrador Retrievers was used as the inflammatory model in this study, with all dogs participating in a twice weekly endurance running regimen after loading. The first 5km run and the final 16km run were used as points of interest for the evaluation of biomarkers. The first 5km run was considered an insult to unconditioned dogs, and the final 16km an insult and acute increase in distance to exercise conditioned dogs.

Biomarkers of interest for the current experiment included IL-6, CKM, and COMP, as well as a full hematology panel including NLR.

APKm and AMS were monitored during the runs to evaluate exercise performance (Michel & Brown, 2011; Varney et al., 2017). APKm was greater in un-denatured type II collagen males, but no significant differences were found in un-denatured type II collagen females. AMS, however, was greater overall in un-denatured type II collagen dogs compared with placebo. Higher APKm and higher average moving speed can be attributed to improvement in inflammation, pain, and discomfort (Brown et al., 2010; Lascelles et al., 2015), indicating that the un-denatured type II collagen supplement improved mobility during the runs.

Hematology was monitored during the experiment. Subsets of white blood cells, including eosinophil and basophil percent, were lesser in un-denatured type II collagen dogs compared with placebo dogs after the first 5km run. Lymphocytes were also greater in un-denatured type
II collagen dogs compared with placebo dogs at pre 5km, post 5km, and post 16km. However, the placebo groups had a lower lymphocyte count at baseline. Strenuous exercise is associated with increases in white blood cell subsets (Nieman, 1997), with the release of basophils in response to immune challenges and release of eosinophils in response to inflammation. Lower percentages of basophils and eosinophils after the first 5km run indicate lower inflammation and immune stress in undenatured type II collagen supplemented dogs. One measure of inflammation is the determination of NLR via hematology analysis (Chandrashekara et al., 2017; Joisten et al., 2019). In the present experiment, the undenatured type II collagen dogs had no significant changes from timepoint to timepoint. However, the placebo dogs had a significant increase in NLR from baseline to pre 5km, and the placebo dogs had greater NLR at pre 5km compared with undenatured type II collagen dogs. This may indicate overall lower inflammation in the undenatured type II collagen supplemented dogs.

Proinflammatory cytokine IL-6 is associated with joint inflammation in osteoarthritis (Maccoux et al., 2007; Foster et al., 2014). Circulating IL-6 has been shown to increase in sled dogs during a multiple day race (von Pfiel et al., 2015). In human athletes, immune response to heavy exertion was found to influence cytokines, especially IL-6 (Nieman, 1997). In the present study, both treatment groups had similar baseline measurements of IL-6 and significant increases in IL-6 at the post 5km timepoint. However, IL-6 was lesser in undenatured type II collagen dogs compared with placebo at post 5km. Both groups also had a significant increase in IL-6 from pre to post 16km, and no differences were found between groups. This can likely be attributed to undenatured type II collagen mediating inflammation during normal stressors, but not after a major stressor such as the 16km run.

Biomarker CKM is associated with skeletal muscle damage (Vlasakova et al, 2017). Both groups had similar patterns of CKM production during the first insult, both developing
elevated CKM at both pre and post 5km compared with baseline. Female undenatured type II collagen dogs had lesser CKM compared with placebo dogs at post 5km, which may indicate a sex effect. During the final insult, no significant differences between groups were noted. These results indicate the expected response to exercise, but a lack of interaction of undenatured type II collagen supplement on skeletal muscle injury.

Biomarker COMP is associated with cartilage metabolism and degeneration in joint injuries and stress (Saxne & Heinegard, 1992; Misumi et al., 2002). Undenatured type II collagen activates T regulatory cells and releases anti-inflammatory cytokines, reducing joint inflammation and promoting cartilage repair (Gencoglu et al., 2020). In the present study, both groups followed similar patterns, with an increase in COMP from baseline to the pre 5km timepoint. After the 16km run, the undenatured type II collagen dogs had lesser COMP compared with placebo dogs. In experiments examining the impact of exercise on COMP, a larger increase in COMP was found in human trials after high impact activities such as box drops compared with low impact activities such as walking. This may explain some of the differences seen after the 5km run compared with after the 16km run. Although the dogs were untrained for the first 5km run, the shorter distance may have prevented cartilage degeneration (Griffin et al., 2011). The longer distance and therefore higher impact of the final 16km run likely increased cartilage degeneration, allowing differences to be seen between treatment groups.
Limitations of this study include sample collection timing. Blood collection was performed at only one timepoint after exercise based on available literature for the chosen biomarkers, due to budgetary constraints and ethical concerns. Following the biomarkers at key timepoints after the stressor may provide additional insight on the mechanisms of undenatured type II collagen.

In conclusion, inflammation and cartilage degeneration were mitigated during an exercise regimen in undenatured type II collagen supplemented dogs compared with placebo dogs.
Literature Cited

Brown, D.C., R.C. Boston, and J.T. Farrar. 2010. Use of an activity monitor to detect response to treatment in dogs with osteoarthritis. J Am Vet Med Assoc. 237(1): 66-70. doi: 10.2460/javma.237.1.66

Casella, S., F. Fazio, C. Russo, E. Giudice, and G. Piccione. 2013. Acute phase proteins response in hunting dogs. J. Vet. Diagn. Invest. 25:577-580. doi: 10.1177/1040638713495851.

Chandrashekara S., M.M. Ahmad, P. Renuka, K.R. Anupama, and K. Renuka. 2017. Characterization of neutrophil to lymphocyte ratio as a measure of inflammation in rheumatoid arthritis. Int J Rheum Dis. 20: 1457-1467. doi: 10.1111/1756-185X.13157

Crowley D.C., F.C. Lau, P. Sharma, M. Evans, N. Guthrie, M. Bagchi, D. Bagchi, D.K. Dey, and S.P. Raychaudhun. 2009. Safety and efficacy of undenatured type II collagen in the treatment of osteoarthritis of the knee: a clinical trial. Int J Med Sci. 6(6): 312-321. doi: 10.7150/ijms.6.312

Deparle, L.A., R.C. Gupta, T.D. Canerdy, J.T. Goad, M. D’Altilio, M. Bagchi, and D. Bagchi. 2005. Efficacy and safety of glycosylated undenatured type II collagen (UC-II) in therapy of arthritic dogs. J. Vet. Pharmacol. Therap. 28: 385-390. doi: 10.1111/j.1365-2885.2005.00668.x

D’Altilio, M., A. Peal, M. Alvey, C. Simms, A. Curtsinger, R.C. Gupta, T.D. Canerdy, J.T. Goad, M. Bagchi, and D. Bagchi. 2007. Therapeutic efficacy and safety of undenatured type II collagen singly or in combination with glucosamine and chondroitin in arthritic dogs. Tox Mech Meth. 17:4, 189-196. doi: 10.1080/15376510600910469
Foster J.D., S. Sample, R. Kohler, K. Watson, P. Muir, and L.A. Trepanier. 2014. Serum biomarkers of clinical and cytologic response in dogs with idiopathic immune mediated polyarthritis. J Vet Int Med. 28(3): 905-911. doi: 10.1111/jvim.12351

Gencoglu, H., C. Orhan, E. Sahin, and K. Sahin. 2020. Undenatured Type II Collagen (UC-11) in Joint Health and Disease: A Review on the Current Knowledge of Companion Animals. Animals. 10, 697. doi: 10.3390/ani10040697

Griffin, T.M., J.L. Heubner, V.B. Karus, Z. Yan, and F. Guilak. 2011. Induction of osteoarthritis and metabolic inflammation by a very high-fat diet in mice: Effects of short-term exercise. Arthritis and Rheumatism. 64: 443-453. doi: 10.1002/art.3332

Henrotin Y., C. Sanchez, and M. Balligand. 2005. Pharmaceutical and nutraceutical management of canine osteoarthritis: present and future perspectives. Vet J. 170(1): 113-123. doi: 10.1016/j.tvjl.2004.08.014

Joisten N., D. Walzik, A. Schenk, W. Bloch, P. Zimmer, and P. Wahl. 2019. Aqua cycling for immunological recovery after intensive, eccentric exercise. Eur J Appl Physiol. 119, 1369-1375. doi: 10.1007/s00421-019-04127-4

Lascelles B.D.X, D. Knazovicky, B. Case, M. Freire, J.F. Innes, A.C. Drew, and D.P. Gearing. 2015. A canine-specific anti-nerve growth factor antibody alleviates pain and improves mobility and function in dogs with degenerative joint disease-associated pain. BMC Vet Res. 11, 101. doi: 10.1186/s12917-015-0413-x

Lucas, V. R. Barrera, F.J. Duque, P. Ruiz, and C. Zaragoza. 2015. Effect of exercise on serum markers of muscle inflammation in Spanish Greyhounds. Am. J. Vet. Res. 76:637-643. doi: 10.2460/ajvr.76.7.637.

Lugo, J.P., Z.M. Saiyed, F.C. Lau, J.P.L. Molina, M.N. Pakdaman, A.N. Shamie, and J.K Udani. 2013. Undenatured type II collagen (UC-II®) for joint support: a randomized, double-
blind, placebo-controlled study in healthy volunteers. J Int Soc Sports Nutr. 10, 48. doi: 10.1186/1550-2783-10-48

Maccoux L.J., F. Salway, P.J.R. Day, and Clements D.N. 2007. Expression profiling of select cytokines in canine osteoarthritis tissues. Vet Immunol Immunopathol. 118(1-2): 59-67. doi: 10.1016/j.vetimm.2007.04.006

Michel K.E. and D.C. Brown. 2011. Determination and application of cut points for accelerometer-based activity counts of activities with differing intensity in pet dogs. Am J Vet Res. 72(7): 866-870. doi: 10.2460/ajvr.72.7.866.

Misumi, K., V. Vilim, S. D. Carter, K. Ichihashi, T. Oka, and H. Sakamoto. 2002. Concentrations of cartilage oligomeric matrix protein in dogs with naturally developing and experimentally induced arthropathy. Am. J. Vet. Res. 63:598-603. doi: 10.2460/ajvr.2002.63.598

Nieman, D.C. 1997. Immune response to heavy exertion. J Appl Physiol. 82(5): 1385-1394. doi: 10.1152/jappl.1997.82.5.1385

Saxne T. and D. Heinegard. 1992. Cartilage oligomeric matrix protein: a novel marker of cartilage turnover detectable in synovial fluid and blood. Rheumatology. 31: 583-591. doi: 10.1093/rheumatology/31.9.583

Scott, R.M, R. Evans, and M.G. Conzemius. 2017. Efficacy of an oral nutraceutical for the treatment of canine osteoarthritis. Vet Comp Orthop Traumatol. 30: 318-323. doi: 10.3415/VCOT-17-02-0020

Stabile M., R. Samarelli, P. Trerotoli, L. Fracassi, L. Lacitignola, A. Crovace, and F. Staffieri. 2019. Evaluation of the effects of undenatured type II collagen (UC-II) as compared to robenacoxib on the mobility impairment induced by osteoarthritis in dogs. Vet. Sci. 6(72): 1-11. doi: 10.3390/vetsci6030072
Vandeweerd J.M., C. Coisnon, P. Clegg, C. Cambier, A. Pierson, F. Hontoir, C. Saegerman, P. Gustin, and S. Buczinski. 2012. Systematic Review of Efficacy of Nutraceuticals to Alleviate Clinical Signs of Osteoarthritis. J Vet Int Med. 26(3): 448–456. doi: 10.1111/j.1939-1676.2012.00901.x

Varney, J.L, J.W. Fowler, W.C. Gilbert, and C.N. Coon. 2017. Utilization of supplemented L-carnitine for fuel efficiency, as an antioxidant, and for muscle recovery in working Labrador Retrievers. J Nutr Sci. 6, e8. doi: 10.1017/jns.2017.4

Vlasakova K., P. Lane, L. Michna, N. Muniappa, F.D. Sistare, and W.E. Glaab. 2017. Response of novel skeletal muscle biomarkers in dogs to drug-induced skeletal muscle injury or sustained endurance exercise. Tox Sci. 156(2): 422–427. doi: 10.1093/toxsci/kfw262

von Pfiel D.J.F., B.P. Cummings, J.P. Loftus, C.B. Levine, S. Mann, R.L. Downey, C. Griffitts, and J.L. Wakshlag. 2015. Evaluation of plasma inflammatory cytokine concentrations in racing sled dogs. 56(12): 1252–1256.
Table 1. Body weight (kg) comparison between undenatured type II collagen (UC-II) dogs and placebo dogs, both overall and between beginning and end weeks.

Weeks	Treatment	UC-II	Placebo	P-value	Treatment	Week	Treatment*Week
Overall	All	28.77 ± 0.22	29.12 ± 0.22	0.369	0.395	0.999	
Overall	Male	31.16 ± 0.33	32.23 ± 0.33	0.023	0.651	0.999	
Overall	Female	26.39 ± 0.30	26.01 ± 0.30	0.375	0.605	0.999	
Table 2. Feed offered and feed consumption comparison between undenatured type II collagen (UC-II) dogs and placebo dogs.

Parameter	Treatment	UCII	Placebo	Treatment	Week	Treatment*Week
Feed Offered (g)	Overall	565 ± 16	575 ± 16	0.655	0.999	0.999
	Male	610 ± 23	655 ± 23	0.176	0.999	0.999
	Female	520 ± 21	495 ± 21	0.408	0.999	0.999
Feed Consumption	Overall	562 ± 20	578 ± 20	0.572	0.996	0.999
(g)	Male	605 ± 21	652 ± 21	0.164	0.767	0.958
	Female	520 ± 22	505 ± 22	0.642	0.999	0.999
Table 3. Comparison of activity per kilometer and average moving speeds over all runs for undenatured type II collagen (UC-II) dogs and placebo dogs.

Parameter	Sex	UC-II	Placebo	P-value
		Treatment	Run	Treatment*Run
Activity per Kilometer	Overall	44019 ± 370	43633 ± 372	0.459
	Male	45576 ± 470	43701 ± 471	0.004
	Female	42656 ± 578	43715 ± 579	0.196
Average Moving Speed (kph)	Overall	10.73 ± 0.05	10.43 ± 0.05	<0.001
	Male	10.94 ± 0.06	10.85 ± 0.06	0.268
	Female	10.52 ± 0.08	10.02 ± 0.08	<0.001
Table 4. Hematology results between undenatured type II collagen (UC-II) and placebo treatments during the first insult at timepoints (TP) baseline, pre first 5km run (Pre5km), and post first 5km run (Post5km).

Variable	UC-II	Placebo	P-value					
	Baseline 8 km	Post5 km 8 km	Baseline 8 km	Post5 km 8 km	SE	Trx	TP	Trx*
White blood cells, 10^9/l	M 9.43b 10.8 11.61	11.20 8 9.25b	9.54 6 9.01	0.0 1.46	0.2 0.5 0.0	0.38		
Lymphocytes, 10^9/l	M 9.00b 10.8 11.63	12.00 8 9.85b	11.86 6 10.4	8 9.86	0.2 0.0 0.0	0.40		
Neutrophils, 10^9/l	M 9.87	10.8 11.59 8.63	10.4 8 9.86	0.2 0.0 0.0	0.40			
Monocytes, 10^9/l	M 1.64 1.73 1.69 1.49	1.43 1.41 1.4	0.0 0.0 0.9	0.62				
Eosinophils, 10^9/l	M 1.58 1.68 1.68	1.73 1.55 1.43	0.0 0.3 0.6	0.16				
Neutrophils, 10^9/l	M 1.71 1.79 1.70 1.25	1.31 1.39 1.3	0.0 0.0 0.7	0.77				
Basophils, 10^9/l	M 0.45 0.52 0.53 0.41b	0.58 0.5b 0.54b	0.0 0.8 0.0	0.57				
Eosinophils, 10^9/l	M 0.40 0.48 0.56 0.36	0.60 0.55 0.5	0.0 0.5 0.0	0.34				
Basophils, 10^9/l	M 0.09 0.19 0.10 0.22	0.26 0.22 0.2	0.0 0.0 0.2	0.1				
Lymphocytes, %	M 17.84 16.1 14.85 16.02	12.9 13.28 13.28	0.3 0.0 0.1	0.57				
Monocytes, %	M 4.35 4.44 4.73 3.57	4.92 4.72 4.72	0.2 0.8 0.3	0.51				
Neutrophils, %	M 76.46 77.3 79.06 69.54	78.8 2 80.21 80.2	0.5 0.6 0.0	0.64				
Eosinophils, %	M 1.31b 1.54 0.78b 1.82	1.56 1.46 1.46	0.1 0.0 0.1	0.46				
	F	M						
----------	-----	-----	-------	-------	-------	-------	-------	-------
Mean corpuscular hemoglobin, pg	16.25	17.1	0.1	0.2	0.1	0.2	0.0	0.0
Mean corpuscular volume, fl	71.0	70.4	0.3	0.4	0.5	0.6	0.7	0.8
Mean corpuscular hemoglobin concentration, g/dl	29.0	28.8	0.1	0.2	0.3	0.4	0.5	0.6
Red blood cell distribution width, g/L	16.2	16.0	0.0	0.1	0.2	0.3	0.4	0.5
Platelets, 10^9/l	320.0	319.0	0.1	0.2	0.3	0.4	0.5	0.6
Mean platelet volume, fl	9.68	9.51	0.0	0.1	0.2	0.3	0.4	0.5
Plateletcrit, %	0.34	0.35	0.0	0.1	0.2	0.3	0.4	0.5
	Platelet distribution width, %	Neutrophil to Lymphocyte Ratio						
-------	--------------------------------	--------------------------------						
M	F							
	36.71	4.56						
	36.5	4.99						
	36.27	5.68						
	36.51	5.02b						
	36.2	6.58						
	36.0	5.68						
	35.6	5.68						
	35.79	5.68						
M	36.84	4.54						
	36.8	5.26						
	36.32	5.67						
	37.02	4.32b						
	36.8	5.67						
	36.1	6.55a						
	36.8	5.67						
F	4.37	5.67						
	4.36	5.68						
	4.35	5.71						
	4.34	6.95						
	4.33	6.15						
	4.32	6.15						
	4.31	6.15						

Within rows and treatment, means without a common superscript are significantly different (P<0.05).
Table 5. Hematology results between undenatured type II collagen (UC-II) and placebo treatment (Trx) groups during the final insult at timepoints (TP) pre 16km run and post 16km run.

Variable	SE x	UC-II Pre16km	Placebo Pre16km	SE M	P-value Trx	TP	Trx* TP
White blood cells, 10^9/l	M	10.23	10.62	0.25	0.50	0	0.894
	F	10.41	12.01	0.35	0.95	7	0.817
		10.02	9.23	0.32	0.21	6	0.986
Lymphocytes, 10^9/l	M	1.55	1.43	0.05	0.12	5	0.776
	F	1.69	1.54	0.07	0.42	9	0.734
		1.39	1.32	0.07	0.16	1	0.366
Monocytes, 10^9/l	M	0.40	0.43	0.02	0.57	8	0.935
	F	0.37	0.46	0.03	0.31	4	0.725
		0.44	0.39	0.03	0.84	4	0.618
Neutrophils, 10^9/l	M	8.04	8.48	0.21	0.36	8	0.884
	F	8.06	9.65	0.31	0.02	6	0.723
		8.02	7.31	0.26	0.23	8	0.873
Eosinophils, 10^9/l	M	0.17	0.17	0.01	0.80	5	0.790
	F	0.21	0.21	0.02	0.97	3	0.852
		0.06	0.06	0.02	0.63	4	0.916
Basophils, 10^9/l	M	0.06	0.08	0.01	0.24	4	0.988
	F	0.07	0.09	0.01	0.24	1	0.901
		0.06	0.06	0.01	0.61	8	0.917
Lymphocytes, %	M	15.34	13.55	0.38	0.01	3	0.936
	F	16.76	12.78	0.55	0.00	2	0.526
		13.77	14.31	0.53	0.77	1	0.416
Monocytes, %	M	3.93	4.15	0.19	0.73	3	0.815
	F	3.40	3.86	0.27	0.80	2	0.525
		4.51	4.43	0.27	0.82	8	0.718
Neutrophils, %	M	78.44	79.43	0.44	0.32	6	0.893
	F	77.07	79.69	0.69	0.19	4	0.578
		79.96	79.16	0.54	0.87	6	0.564
Eosinophils, %	M	1.68	1.57	0.13	0.83	0	0.806
	M	F					
------------------	------	------	-----	-----	-----	-----	-----
Basophils, %							
M	0.63	0.68	0.63	0.63	0.16	0.05	0.05
M	0.57	0.68	0.72	0.63	0.07	0.05	0.05
Red blood cells, 10¹²/l							
M	8.45	8.65	8.35	8.79	0.07	0.07	0.07
M	8.23	8.65	8.25	8.03	0.09	0.09	0.09
Hemoglobin, g/dl							
M	17.75	18.08	17.68	16.71	0.14	0.07	0.07
M	17.38	17.24	17.54	17.12	0.18	0.07	0.07
Hematocrit, %							
M	59.91	61.40	58.63	55.01	0.48	0.07	0.07
M	58.25	61.00	57.83	56.19	0.61	0.16	0.16
Mean corpuscular volume, fl							
M	70.89	71.00	70.25	69.60	0.31	0.06	0.06
M	71.00	70.40	70.30	69.30	0.36	0.10	0.10
Mean corpuscular hemoglobin, pg							
M	21.07	20.91	21.17	21.19	0.09	0.09	0.09
M	21.24	21.34	21.29	21.35	0.15	0.15	0.15
Mean corpuscular hemoglobin concentration, g/dl							
M	29.71	29.43	30.14	30.42	0.10	0.10	0.10
M	29.43	29.96	29.95	30.31	0.14	0.14	0.14
Red blood cell distribution width, %							
M	15.8	15.77	16.03	15.79	0.09	0.09	0.09
M	15.83	15.68	16.37	15.79	0.16	0.16	0.16
Platelets, 10⁹/l							
M	362.44	351.00	348.89	342.7	10.7	15.0	15.0
M	351.00	336.30	326.90	333.60	15.0	15.0	15.0
Mean platelet volume, fl							
M	9.45	9.59	9.66	9.79	0.17	0.17	0.17
M	9.30	10.11	9.30	9.72	0.15	0.15	0.15
Plateletcrit, %							
M	0.34	0.34	0.37	0.34	0.01	0.01	0.01
	Platelet distribution width, %	Neutrophil to Lymphocyte Ratio					
----------	--------------------------------	--------------------------------					
M	F	M					
0.33	0.36	5.50					
0.35	0.33	5.09					
36.43	37.55	6.16					
36.48	37.73	36.21					
36.38	37.34	35.65					
5.08	5.41	6.51					
5.97	4.74	5.82					

M: Male; F: Female
Table 6. Biomarker results between undenatured type II collagen (UC-II) and placebo treatment groups (Trx) during the first insult, at timepoints (TP) baseline, pre first 5km run, and post first 5km run and during the final insult at timepoints pre 16km and post 16km.

Biomarkers evaluated were interleukin-6 (IL-6), creatine kinase-MM (CKM), and cartilage oligomeric matrix protein (COMP).

Variable	Sex	Baseline	Pre5km	Post5km	Baseline	Pre5km	Post5km	SE	M	P-value	Trx	TP	Trx*T	P		
IL-6, ng/ml	M	0.15^b	0.14^b	0.18^a	0.15^b	0.17^{ab}	0.25^a	0.01	0	0.00	0.00	0.198	8	1	0.00	0.198
	F	0.16^{ab}	0.14^b	0.18^a	0.19	0.22	0.29	0.02	0.01	0.13	0.528	3	9	0.12	0.00	0.079
	M	0.14^{ab}	0.13^b	0.17^a	0.13^b	0.13^b	0.21^a	0.01	0.12	0.00	0.00	1	0.97	0.41	0.00	0.801
	F	1.69^b	3.44^a	3.49^a	2.09^b	3.35^{ab}	3.91^a	0.25	0.12	0.00	0.00	1	0.80	0.66	0.00	0.265
	M	1.58^b	2.85^{ab}	4.47^a	2.21	2.88	3.20	0.34	0.66	0.00	0.00	1	0.80	0.66	0.00	0.265
	F	1.80^b	4.03^a	2.40^b	1.98^b	3.82^{ab}	4.61^a	0.34	0.12	0.00	0.00	1	0.80	0.66	0.00	0.265
CK, ng/ml	M	43.36^b	56.50^a	48.11^{ab}	47.49^b	61.33^a	54.30^{ab}	1.69	0.03	0.00	0.00	1	0.80	0.66	0.00	0.265
	F	41.50	51.10	42.42	45.97	62.28	49.67	3.20	0.12	0.00	0.00	1	0.80	0.66	0.00	0.265
	M	45.42^b	61.89^a	53.80^{ab}	49.21	60.48	58.46	2.99	0.51	0.01	0.00	1	0.80	0.66	0.00	0.265
	F	45.42^b	61.89^a	53.80^{ab}	49.21	60.48	58.46	2.99	0.51	0.01	0.00	1	0.80	0.66	0.00	0.265
COMP, ng/ml	M	0.25	0.38	0.26	0.43	0.02	0.21	0.00	0.446	0.14	0.00	2.79	1	1	0.09	0.279
	F	0.24	0.39	0.27	0.52	0.03	0.33	0.00	0.489	0.25	0.04	0.839	1	1	0.20	0.849
	M	0.25	0.37	0.25	0.35	0.01	0.30	0.11	0.640	0.48	0.22	0.721	1	1	0.48	0.640
	F	3.04	4.89	2.17	3.69	0.57	0.38	0.11	0.640	0.48	0.22	0.721	1	1	0.48	0.640
	M	2.93	5.85	2.15	3.76	1.00	0.51	0.01	0.745	0.51	0.01	0.745	1	1	0.48	0.640
	F	3.14	3.93	2.20	3.62	0.63	0.51	0.01	0.745	0.51	0.01	0.745	1	1	0.48	0.640
	M	64.01	72.14	71.81	95.36	4.00	0.09	0.00	0.179	0.09	0.00	0.179	1	1	0.09	0.179
	F	54.12	66.63	62.17	78.94	3.69	0.05	0.00	0.685	0.05	0.00	0.685	1	1	0.05	0.685
	M	75.00	79.02	81.45	111.79	6.45	0.03	0.06	0.159	0.03	0.06	0.159	1	1	0.03	0.159

abc Within rows and treatment, means without a common superscript are significantly different (P<0.05).