CanarDeep: a hybrid deep neural model with mixed fusion for rumour detection in social data streams

Deepak Kumar Jain¹ · Akshi Kumar² · Akshat Shrivastava³

Abstract

The unrelenting trend of doctored narratives, content spamming, fake news and rumour dissemination on social media can lead to grave consequences that range from online intimidating and trolling to lynching and riots in real-life. It has therefore become vital to use computational techniques that can detect rumours, do fact-checking and inhibit its amplification. In this paper, we put forward a model for rumour detection in streaming data on social platforms. The proposed CanarDeep model is a hybrid deep neural model that combines the predictions of a hierarchical attention network (HAN) and a multi-layer perceptron (MLP) learned using context-based (text + meta-features) and user-based features, respectively. The concatenated context feature vector is generated using feature-level fusion strategy to train HAN. Eventually, a decision-level late fusion strategy using logical OR combines the individual classifier prediction and outputs the final label as rumour or non-rumour. The results demonstrate improved performance to the existing state-of-the-art approach on the benchmark PHEME dataset with a 4.45% gain in $F1$-score. The model can facilitate well-time intervention and curtail the risk of widespread rumours in streaming social media by raising an alert to the moderators.

Keywords Rumour · Social data streams · Deep learning · Data fusion

1 Introduction

The blatant social media technology has an obvious, potentially enormous dark side. The tsunami of polluted information threatens the underpinning trust between users and their experience online. The amplification of the most abominable views in social data streams, the virality of incorrect information at a lightning speed and the anonymization of our public discourse divulge the vulnerabilities associated. Moreover, the information disorders (misinformation, disinformation and mal-information) [1] vary in impact and mechanization which is not limited to a single social media platform. The primary function of the misleading and fabricated content is to make sense in a wrapped version of reality with intentions ranging from hurtful or harmless to the harmful one. The economics of social media favors these ‘information statements’ that are instrumentally relevant and often consumed within our online echo chambers and filter bubbles. Undoubtedly, doctored narratives, fake news, rumours, polarized content, deceptive propaganda, content spamming and fabricated hoaxes define the taxonomy of online content within the periphery of social media abuse [2–4].

A rumour is any statement that is not yet confirmed at the time of posting, irrespective of whether it’s true or false [5]. It gets viral at great speed and is facilely believed, particularly during public crisis. As soon as users start engaging with the post by “liking”, “replying”, “commenting”, “forwarding” and “sharing”, technology proliferates diffusion at an unparalleled rate. The COVID-19 public health crisis made this vulnerability highly visible, with numerous rumours circulating through social media. To examine post legitimacy, many social media
Platforms have put in systematic efforts to moderate posts and improve online accountability. These include implementing the mandatory code of practice for content filtering using a combination of artificial intelligence and user feedback. But the guidelines are not transparent to the users, and the content moderators have to deal with information overload and exposure to harmful and undesirable content. Indeed the information credibility analysis on social media platforms is complex as it diversifies along three dimensions as post-level credibility, user-level credibility and topic-level credibility [6, 7]. Moreover, the problem with debunking rumours is that the exchange and distribution are at such an unprecedented rate that makes it difficult to scale up the combat operations to curb the viral spread. At the same time, the diffusion process of rumours often has an associated chronology. Often spread as breaking news with high virality and cascading effect, the rumours subside with time and eventually die out. It is reasonably practical to capture the changing characteristics of rumour spread as with time veracity and stance are comprehensible. But the damage done within the early hours of release is huge as it evokes high-arousal emotions. Thus, early detection of rumours (identifying if an online post is a rumour or non-rumour) and combating its viral spread is a pressing priority. A rumour detection system that identifies an online posting as a candidate rumour in its early stages can be effectively used for well-timed intervention by alerting the moderators to take corrective measures that impede the spreading of inappropriate content.

Pertinent studies report an enormous use of machine learning techniques to combat online content fabrication but have limited success due to lack of context awareness. Recent research trends report the use of deep learning models such as convolutional neural networks (CNNs) [8] and recurrent neural networks (RNNs) [9] for various natural language understanding tasks on streaming data of online media [10]. A superior hierarchical attention-based document classification model, called hierarchical attention network (HAN) has been put forward by Yang et al. Commonly built from bidirectional RNNs [11], a HAN consists of gated recurrent units (GRUs) or Long-Short-term-memory model (LSTMs) with attention mechanisms. It is conceptual based on “hierarchies” where the output from lower levels in hierarchical structure becomes the input to upper level. The HAN architecture characterizes the hierarchically derived knowledge in a document with sentences and words as building blocks at the corresponding level of hierarchy. Falsehood on Twitter spreads like a wildfire and may be compiled as a single tweet, a tweet thread (multi-part tweet) or a conversational thread. Using HAN lets discrete contribution of compound fragments of a tweet (tweet-sentence-word) to its quintessence by implementing two attention mechanisms. The contextual connotation of these fragments is taken into account to construct the document representation. This research aims to cope with the language complexities by using HAN with deep contextualized language representations from pre-trained ELMo (Embeddings from Language Models) word embedding [12].

As an effectual technique to tweet-level analysis of rumours, an attention-based hybrid deep learning model for rumour detection from social data streams is put forward. The proposed CanarDeep model detects rumourous posts in real-time by using the learned features from both HAN and multi-layer perceptron (MLP). The model derives its nomenclature from the French word “Canard” which means ‘unfounded, groundless or false report or story’ and “Deep” from the ‘deep neural network’ built to detect rumours and combat its viral spread in online streams. A primary approach to decipher the truth value of a post is to look for some user-based and text-based evidence. Some meta-features such as re-post count and morpho-syntactic (exclamations) & typographic (capitalization, quotes) markers can also serve as non-trivial cues. Therefore, in the mixed-fusion hybrid deep neural model, rumour detection is done by the individual classification model, namely HAN and MLP using context-based features (textual + meta-features) and user-based features, respectively. The context-based features are initially fused to form a concatenated feature vector. At both word and sentence levels, HAN uses a bi-directional GRU with attention [13]. The attention mechanism enables to find the most important words and sentences in a document while taking the context into consideration. On the other hand, the MLP generates its output based on the user-based features using the back-propagation algorithm and adjusting the weights of the neurons accordingly. MLP is a simple yet highly sought-after model when it comes to binary classification using discrete numerical features [14]. Finally, a late fusion method (logical OR operation) is used to capture the results of the two classifier sub-networks and classify the output as a decision. The primary contributions of the work are:

- The hybrid of HAN and MLP is used to classify online streaming posts as rumours & non-rumours.
- HAN is trained using context-based features (the textual content & post-meta-data) and MLP is trained using the user-based features (discrete numeric features related to the user profile).
- Two types of data fusion techniques are used, that is, feature-level (early) fusion is done to concatenate context-based features whereas the output generated from individual classifiers is combined to produce a
final common decision using a logical OR for decision-level (late) fusion.

- Comparison with the state-of-the-art model [15] to validate the improvements and consistency in improvements across the events in the benchmark Twitter PHEME dataset [16].

The organization of the paper is as follows: related work within the area of rumour detection in social media is given in Sect. 2. Section 3 gives description of the mixed-fusion hybrid of HAN-MLP for rumour detection followed by the results in Sect. 4 and conclusion in Sect. 5.

2 Related work

Various primary [5, 15] and secondary [4, 17] literature studies have been reported on rumour detection in microblogs. The variety of techniques used to classify tweets as rumour are dominated by the use of machine learning and more recently deep learning. Diverse combinations of features which include content-based, post-based, user profile-based and rumour diffusion attributes have been used to train the learning models. A range of studies focuses on the use of text-only-based features from the tweet. Takahashi and Igata [18] used keywords and retweet ratio for rumour detection in Twitter data. Kumar et al. [19] compared machine learning and deep learning models trained using Tf-idf features and one-hot encoding, respectively, on the PHEME and reported Bi-LSTM as the best model. Bhattacharjee et al. [20] used the Glove word embedding to train a LSTM for rumour detection on the PHEME dataset. The use of RNN has also been reported with [21] and without [22] attention mechanism. Several studies have reported the combination of features. A hybrid of CNN and RNN was proposed by Nguyen et al. in 2017 [23] using text-based and temporal features. Guo et al. [24] suggested a word, post and sub-event level hierarchical network using attention-based Bi-LSTM encoder combined with social features. The results were evaluated on Sina Weibo and Twitter datasets. In 2020, Zubaiga et al. [16] used a conditional random field [CRF] model to detect rumours in the PHEME dataset. The authors used both content and context-based features to train the model. Vijeev et al. [25] used both user features and content features to train three supervised learning methods on PHEME. Our recently published research [26] describes an attention-based residual network (ARN) to detect rumour in the same Twitter benchmark dataset and reports an improvement in recall and F1 score in comparison to Zubaiga’s CRF model.

3 The proposed CanarDeep model

A comprehensive rumour classification system [3] consists of four core components, namely rumour detection, rumour tracking, stance classification and veracity classification as shown in Fig. 1. Automatic detection of rumours is typically a natural language processing (NLP) task to label online streaming posts as a rumour or a non-rumour. It intends to recognize potential rumours, especially the emerging ones.

The proposed CanarDeep model corresponds to the first component, i.e., the recognition of potential rumours. The publicly available PHEME dataset [15] for rumour detection which is compiled using event-based tweets for classifying tweets into rumourous or non-rumourous categories is used. It is a collection of 5802 tweets, out of which 1972 are labelled as rumours and the remaining 3830 as non-rumours. The data are initially pre-processed to transform it into a well-formed data for analytics. Preprocessing was done by converting the tokens to lowercase, removing the hyperlinks, unwanted characters, symbols, whitespace and stop-words from the text, performing spell check, lemmatization and stemming. StandardScaler from the sklearn library for Python to scale all the user profile-based features. Evaluation of a rumour strongly relies on its context which is formulated using the textual content and the post-meta-data. Characteristics of user profile also help in building trust in the content posted and therefore to train our model we use the context-based, the user-based features and the rumour/non-rumour label to train our model. A total of 11 context-based features and five user-based features are used as shown in Fig. 2.

The description of these features is as follows:

- **Context-Based Features**: These entail textual content of the post as well as the content-based cues called meta-features associated with the post.
 - **Word Vectors**: Word vectors map words or phrases from vocabulary to a corresponding vector of real numbers which are used to find word predictions, word similarities/semantics [27]. In CanarDeep, the word vector is built using the ELMo 5.5B word embedding.
 - **POS Tags**: These tags do the part-of-speech annotation. They tag each word in the tweet with the respective grammar tag such as nouns, adverbs, adjectives, etc.
 - **Capital Ratio**: Most of the time, the word which has been spelled in capital letters tends to have more impact than the word written in lower case.
 - **Word Count**: It depicts the count of words in a tweet.
• **Question Mark:** Question marks sometimes represent the uncertainty of a saying, disrespect, impatience or lack of tactfulness. Its presence or absence in a tweet is represented as a binary feature.

• **Exclamation Mark:** The exclamation marks in the tweets express surprise, astonishment or any strong emotion resulting in additional emphasis.

• **Period:** Punctuation might represent good writing and hence quality reporting. Its presence or absence in a tweet is represented as a binary feature.

• **Colon:** The use of a colon in tweets helps the user to add two independent clauses, thus allowing them to add two complete thoughts that stand alone as complete sentences. The presence of a colon may suggest careful reporting. Its presence or absence in a tweet is represented as a binary feature.

• **Comma:** The use of a comma in a tweet suggests quality reporting. Its presence or absence in a tweet is represented as a binary feature.

• **Favorite Count:** This depicts the number of users who have signaled a particular tweet as their favorite. The higher the count, the more are the chances of it not being a rumour because a higher favorite count shows that people believe in that tweet.

• **Retweet Count:** This depicts the number of users who have retweeted a particular tweet. Retweeting is defined as the sharing of a tweet by a user so that the user’s followers can also read the tweet. If the retweet count of a tweet is high, there is a good chance that the tweet is not a rumour because the users trusted it enough to share it.
• **User-based Features**: These comprise of user profile-based discrete numeric features as follows:

 • **Tweet Count**: The total number of tweets a user had posted on Twitter.
 • **Listed Count**: The count of lists a user is a part of, i.e., the number of times they were added to a list by other users.
 • **Follow Ratio**: The reputation of a user is assessed on the basis of the count of their followers. But, sometimes, the count of followers does not reflect the true prominence of a user. For example, some users follow many others in order to be followed back. Keeping this scenario in mind, we take the follow ratio as a feature, which is the number of followers someone has divided by the number of people following them. It is basically the follower to following ratio.
 • **Age**: The age of a Twitter user pertains to the years they have been using Twitter. It is the time from the setting up of the account to current tweet time.
 • **Verified**: The account verification status of the user. A verified user account has traceability and accountability making such accounts least probable to spread rumours in comparison to an unverified account.

There are two primary fusion strategies for multiple input types, namely the model-free fusion and model-level fusion (medial). Early fusion (feature-level) and late fusion (decision-level) are types of model-free fusion. Early fusion combines the input types to form a single input vector to train a classifier. It basically refers to the fusing (concatenation) of features from multiple data sources to create a new feature set. The new feature vector has higher discriminative power in comparison to the individual input feature vectors. Whereas, in late fusion, individual classifiers are modelled using discrete input types and the predictions of the individual classifiers are combined to decide the final output [28, 29]. Model-level fusion pools the benefits of both of these strategies by concatenating high-level feature representations from diverse classifiers. Figure 3 depicts these types of data fusion.

In this research, two types of data fusion strategies are used. The early fusion strategy is used to combine the textual content with the meta-features of the post to generate a context-based feature vector. That is, the meta-data features which are categorical in nature are concatenated to the word vector generated by the embedding layer as a feature-level fusion strategy. Late fusion is applied to combine the decisions of multiple classifiers, namely HAN and MLP, trained using context-based and user-based features, respectively, to produce a final prediction. There are various abstract methods to accomplish decision-level fusion, such as using logical operators, votes or weighted majority. The proposed hybrid of HAN and MLP is trained using the user-based and context-based features with a mix of fusion strategies. Figure 4 represents the architecture of the proposed CanarDeep model.

3.1 Hierarchical Attention Network (HAN)

To learn the context-based features, the architecture of the HAN classifier has an embedding layer, encoders and attention layers. In this research, the context-based ELMo 5.5B model [12] is used to generate the word embedding to seed the classifier. The bi-directional GRU with attention layer is then used to capture the essential meaning of the document. The model includes two levels of attention—word-level and sentence-level. The differential contribution of various parts of the document to its essential meaning and changing context is considered when constructing the representation of the document. The encoders extract relevant context and the attention layers compute the degree of relevance of the sequence of tokens with respect to the document. The bi-directional GRU with attention layer is firstly used at word-level and repeated at the sentence level as follows:

• **Word-level encoder and attention**

 An embedding matrix maps the discrete categorical variables into a vector of continuous numbers. For a given sentence with words \(w_{it} \), \(t \in [0, T] \), a word to the vector embedding matrix, \(W_e \), \(x_{it} = W_e w_{it} \) is built using ELMo. The vectorized tokens are the inputs for the next layer, the word encoding layer. In this research, a bidirectional GRU is applied to get annotations of the words by summarizing information. The forward GRU \(\tilde{f} \) reads the sentence \(s_i \) from \(w_{it} \) to \(w_{iT} \) as given in (1):

\[
\tilde{h}_{it} = \text{GRU}(x_{it}), t \in [1, T]
\]

The backward GRU \(\tilde{f} \) reads sentences from \(w_{iT} \) to \(W_{it} \), as given in (2):

\[
\tilde{h}_{it} = \text{GRU}(x_{it}), t \in [T, 1]
\]

The annotation of the word \(w_{it} \) is calculated by combining the forward and backward hidden states i.e.

\[
h_{it} = [\tilde{h}_{it}, \tilde{h}_{it}]
\]

The word-level attention layer extracts the words with major contributions to the essential meaning. These words form the sentence vector. That is, using a one-layer multi-layer perceptron (MLP) we calculate \(u_{it} \) to get the hidden representation of the \(h_{it} \) as given in (3):
\[u_{it} = \tanh(W_u h_{it} + b_u) \] (3)

The layer uses the \(\tanh \) function to ensure that the network does not falter. The \(\tanh \) function achieves this by correcting input values to be between -1 and 1 and also maps zeros to near-zero. Next, the normalized importance, \(a_{it} \), is generated using a sigmoid or a softmax function that calculates the impact of the word as a similarity of \(u_{it} \) with a word-level context vector \(u_w \) as given in (4):

\[
a_{it} = \frac{\exp(u_{it}^T u_w)}{\sum_i \exp(u_{it}^T u_w)}
\] (4)

After that, the weighted total of the word annotations is calculated using (5) thus generating the sentence vector \(s_i \):

\[
s_i = \sum_t a_{it} h_{it}
\] (5)

- Sentence-level encoder and attention

 Similar to the word level, now the entire network is re-run on sentence that is focusing on the sentence \(i \). There is no embedding layer as we already get sentence vectors \(s_i \) from word level as input. The bidirectional GRU sentence encoder is given in (6) & (7):

\[
\tilde{h}_i = \text{GRU}(s_i), i \in [1, L]
\] (6)

\[
\tilde{h}_{ti} = \text{GRU}(s_t), t \in [L, 1]
\] (7)

The annotation of sentence \(i \) is computed by concatenating the forward and backward hidden states i.e. \(h_i = [\tilde{h}_i, \tilde{h}_{ti}] \).

Similar to the word-level attention layer, the sentence-level attention layer extracts sentences that significantly convey the meaning of the document. Therefore, a one-layer MLP is used to calculate \(u_i \) and get the hidden representation of \(h_i \) as given in (8):

\[u_i = \tanh(W_i h_i + b_i) \] (8)

Likewise, the normalized importance, \(a_i \), is also generated using a sigmoid or a softmax function. The similitude of \(u_i \) with a sentence-level context vector \(u_s \), is calculated to characterize the significance of the sentence as a as given in (9):

\[
a_i = \frac{\exp(u_i^T u_s)}{\sum_i \exp(u_i^T u_s)}
\] (9)

The weighted total of the sentence annotations is then computed to generate the document vector. The document vector \(v_i \) summarizes all the data of the sentences present in the document as given in (10):

\[
v_i = \sum_i a_i h_i
\] (10)

Trainable weights and biases are again randomly initialized and jointly learned during the training process as shown in (11) and (12).

\[u_i = \tanh(W_i h_i + b_i) \] (11)

\[
a_i = \frac{\exp(u_i^T u_s)}{\sum_i \exp(u_i^T u_s)} \] (12)

The final output is a document vector \(v_i \) which can be used as features for document classification as depicted by (13)

\[
v_i = \sum_i a_i h_i
\] (13)

Finally, the document vector \(v \) is used to generate the final class. The final layer which uses a sigmoid activation takes as input \(v \) to output the classification result of the HAN sub-network as given in (14)

\[p = \text{sigmoid}(W_c v + b_c) \] (14)

The training loss is taken as the negative of the log-likelihood of the correct labels as shown in (15)
Fig. 4 The proposed CanarDeep model
\[L = - \sum_d \log pd_j \]

where \(j \) stands for the label of document \(d \).

3.2 Multi-Layer Perceptron (MLP)

The MLP forms the second classifier of our hybrid model, and it takes the user-based features as input. It does so by using the back-propagation algorithm and adjusting the weights of the neurons after every backward pass, thus minimizing the error as much as possible and finally attaining convergence [30]. The MLP architecture used in this research is as follows: the input layer consists of five neurons, the two hidden layers consist of four neurons each, and the output layer has a single neuron with a sigmoid activation function which generates the final output class, i.e. rumour (positive class) or non-rumour (negative class).

Next, we fuse the outputs from the two classifiers, i.e. HAN and MLP using the logical OR operation to generate the final class for a particular post.

3.3 Decision-level fusion for classification

In the CanarDeep model, the output decisions from both the classifiers, i.e. HAN and MLP, are fused using the logical OR operation. If the decision from either classifier is that the given input is a rumour, then the input is classified as a rumour. The given input is classified as a non-rumour if and only if both the classifiers decide that the input is a non-rumour. Table 1 illustrates the logical OR operation.

The OR operation helps to debunk a rumour with maximum possibility. If both the classifiers detect the post as rumour then it is irrefutably a rumour. Textual content and its meta-features provide valuable markers to indicate a rumour, and therefore, even if only the context-based classifier is indicative of rumour, the output is marked as rumour. This is because rumours are driven based on psychology and behaviour of users which may alter with change in beliefs, confusion and anxiety or due to uncertainty. Hence, even a non-suspicious account can spread rumours. Likewise, if a user profile is identified suspicious using the user-based classifier, it is also marked as rumour. The primary notion is that intelligent bots and masqueraded profiles tend to use professional services for believable content writing tactics which can often be missed by the context-based classifier. Thus, the ORring decides to discard a post only if both the classifiers classify it as a non-rumour.

4 Results and discussion

Two events in the PHEME dataset suffer from the class imbalance problem. These are Charlie Hebdo (CH) and Ferguson (FS), where the data are skewed towards the non-rumour category in comparison to the rumour category, while the other three i.e. Germanwings (GW), Ottawa Shooting (OS) and Sydney Siege (SS) do not. To resolve this, the performance of the CanarDeep model is examined with respect to each of the individual events to analyse how
well the model performs across the dataset. Data skewness or class imbalance sabotages a classification task and using accuracy as a performance metric may lead to incorrect interpretation & evaluation [31, 32]. A relative-to-each-class measure (like ROC-AUC) is thus preferred over the absolute measure (accuracy). F1-Score, Precision and Recall have been used to evaluate the classifier performance.

There are various parameters that have been used for both the sub-networks of our proposed model during the experiment. The values of these parameters are shown in Table 2.

A good understanding of how the proposed model performed on individual events can be obtained by taking a look at each event’s confusion matrix. The confusion matrices [29, 30] are calculated by counting four values for each event, namely, True Positives (TP), False Positives (FP), False Negatives (FN) and True Negatives (TN). The confusion matrices for each PHEME dataset event are shown in Fig. 5a through 5e, wherewith horizontal axis represents the actual class and the vertical axis represents the predicted class.

The AUC scores of the five events present in the PHEME dataset range from 0.64 to 0.74. Figure 6a through e displays the ROC curve for individual events. The proposed CanarDeep classifier performs better for two events, namely, the Germanwings and Sydney Siege in comparison to the other three.

Our model performs fairly uniformly for all the five individual events in the dataset, as shown in Table 3. Precision values generated by the CanarDeep model outperform the CRF classifier [15] for three events. Recall values achieved by the CanarDeep model are also higher across four out of the five events with CH being an exception. The proposed model manages to achieve a precision-recall equilibrium, transcending the state-of-the-art.

The SS event has the highest number of tweets among the events and does not suffer from the class imbalance problem too. The highest improvement in the F1 score is observed for this event with an improvement of 40.43%, as noted in Table 3. A significant improvement in the recall score is observed for four events accounting for CanarDeep’s overall superior performance over the CRF classifier. Moreover, the proposed model does not let the event datasets suffering from class imbalance hamper its performance, another qualitative improvement over the CRF classifier. As compared to CRF which has F1 score of 0.636 for CH and 0.465 for FS, CanarDeep achieves F1 of 0.715 for CH and 0.606 for FS, respectively. The proposed model follows a similar trend with datasets that are free from the class imbalance problem. Superior F1 scores are obtained for the GW, SS and OS events in comparison to
the CRF classifier. Our previous work using attention-based residual network (ARN) [26] which reported an improvement over the state-of-the-art CRF in terms of recall and F1 scores were also compared to CanarDeep.

The effectiveness of the CanarDeep model is assessed using the whole dataset, i.e. all the five events combined. Table 4 depicts the performance results on the complete data.

Thus, training the hybrid HAN and MLP using user-based and context-based features with a mix of fusion strategies outperforms the existing state-of-the-art model for all the three metrics.

5 Conclusion

Rumours thrive in adversarial situations due to their high manipulative power and the inability of naïve users to differentiate between legit and false content. It is thus imperative to determine the potential rumour candidate at its emergence. As a key to classify online rumours, a deep learning model was proposed which coalesced information from two classifiers to label tweets as rumours in benchmark PHEME dataset. Two different input types, namely context-based and user-based were learned separately using the classifiers (HAN for context-based and MLP for user-based). The output predictions of these were then combined
using a logical OR decision-level operation to finally classify the tweets. The benefit of using early-level fusion to concatenate textual and meta-features as context-based features are that it does not isolate interactions between correlated features whereas the advantage of using decision-level fusion for final output is that the model needs not synchronize between different types of features. The robustness of the technique is validated for both individual events and the whole dataset. The experimental evaluation reveals superior performance in comparison with the existing state-of-the-art with a 4.45% gain in F1-score.

As rumours can harm and do irreparable damage, it is equally important to achieve high performance with interpretability and verifiability of decisions. We intend to use explainable artificial intelligence (XAI) to realize the action traceability and build robust, trustworthy and unbiased learning models to detect rumours in social data streams. Further future work also includes using characteristics of breaking news and long-standing rumours for training learning models. Also, the current research only uses the rumour and non-rumour categories to label the post but future studies need to develop models that identify fine-grain rumour categories such as dread rumours, wish rumours, wedge-driving rumours and reputation rumours.

Authors’ contributions All the authors have equally contributed in the manuscript preparation.

Funding No Funding has been received.

Availability of data and materials Publicly accessible data have been used by the authors.

Code availability Can be made available on request.

Declarations

Conflict of interest The authors certify that there is no conflict of interest in the subject matter discussed in this manuscript.

Ethics approval The work conducted is not plagiarized. No one has been harmed in this work.

Consent to participate All the authors have given consent to submit the manuscript.

Consent for publication Authors provide their consent for the publication.

References

1. Bounegru L, Gray J, Venturini T, Mauri M (2018) A Field Guide to ‘Fake News’ and Other Information Disorders. A Field Guide to “Fake News” and other information disorders: a collection of recipes for those who love to cook with digital methods. Public Data Lab, Amsterdam.
2. Li G, Dong M, Yang F, Zeng J, Yuan J, Jin C, Zheng B (2020) Misinformation-oriented expert finding in social networks. World Wide Web 23(2):693–714
3. Zubiaga A, Aker A, Bontcheva K, Liakata M, Procter R (2018) Detection and resolution of rumours in social media: a survey. ACM Comput Surveys (CSUR) 51(2):1–36
4. Chen C, Wen S, Zhang J, Xiang Y, Oliver J, Alelaiwi A, Hassan MM (2017) Investigating the deceptive information in Twitter spam. Futur Gener Comput Syst 72:319–326
5. Kumar A, Sangwan SR (2019) Rumor detection using machine learning techniques on social media. In: International conference on innovative computing and communications. Springer, Singapore, pp 213–221.
6. Alrubaian M, Al-Qurishi M, Alamri A, Al-Rahbami M, Hassan MM, Fortino G (2018) Credibility in online social networks: a survey. IEEE Access 7:2828–2855
7. Kumar A, Sharma H (2020) PROD: A potential rumour origin detection model using supervised machine learning. In: International Conference on Intelligent Computing and Smart Communications 2019. Springer, Singapore, pp 1269–1276.
8. Gu J, Wang Z, Kuen J, Ma L, Shahroudy A, Shuai B, Liu T, Wang X, Wang G, Cai J, Chen T (2018) Recent advances in convolutional neural networks. Pattern Recogn 77:354–377

Table 3 Classifier performance for individual events

Event	Metric	CRF [15]	CanarDeep
GW	P	0.743	0.753
	R	0.668	0.755
	F1	0.704	0.754
CH	P	0.545	0.732
	R	0.762	0.698
	F1	0.636	0.715
OS	P	0.841	0.695
	R	0.585	0.696
	F1	0.690	0.695
SS	P	0.764	0.721
	R	0.385	0.717
	F1	0.512	0.719
FS	P	0.566	0.613
	R	0.394	0.599
	F1	0.465	0.606

GW Germanwings, CH Charlie Hebdo, OS Ottawa Shooting, SS Sydney Siege, FS Ferguson, P Precision, R Recall, F1 F1 score

Table 4 Performance on complete dataset

Model	P	R	F1
CRF [15]	0.667	0.556	0.607
ARN [26]	0.662	0.570	0.612
CanarDeep	0.685	0.592	0.634
9. Otter DW, Medina JR, Kalita JK (2020) A survey of the usages of deep learning for natural language processing. IEEE Trans Neural Netw Learning Syst 32(2):604–624
10. Young T, Hazarika D, Poria S, Cambria E (2018) Recent trends in deep learning based natural language processing. IEEE Comput Intell Mag 13(3):55–75
11. Yang Z, Yang D, Dyer C, He X, Smola A, Hovy E (2016) Hierarchical attention networks for document classification. In: Proceedings of the 2016 conference of the North American chapter of the association for computational linguistics: human language technologies, pp 1480–1489.
12. Peters ME, Neumann M, Iyyer M, Gardner M, Clark C, Lee K, Zettlemoyer L (2018) Deep contextualized word representations. arXiv preprint arXiv:1802.05365.
13. Kumar A (2021) Contextual semantics using hierarchical attention network for sentiment classification in social internet-of-things. Multimedia Tools Appl. https://doi.org/10.1007/s11042-021-11262-8
14. Ting FF, Sim KS (2017) Self-regulated multilayer perceptron neural network for breast cancer classification. In: 2017 International Conference on Robotics, Automation and Sciences (ICORAS). IEEE, New York, pp 1–5.
15. Zubiaga A, Liakata M, Procter R (2017) Exploiting context for rumour detection in social media. In: International Conference on Social Informatics. Springer, Cham, pp 109–123.
16. Zubiaga A, Wong Sak Hoi G, Liakata M, Procter R (2016) PHEME dataset of rumours and non-rumours [Internet]. figshare; 2016 [cited 2020 May 24]. Available from: https://figshare.com/articles/PHEME_dataset_of_rumours_and_non-rumours/4010619/
17. Cao J, Guo J, Li X, Jin Z, Guo H, Li J (2018) Automatic rumor detection on microblogs: A survey. arXiv preprint arXiv:1807.03505.
18. Takahashi T, Igata N (2012) Rumor detection on twitter. In: The 6th International Conference on Soft Computing and Intelligent Systems, and The 13th International Symposium on Advanced Intelligence Systems. IEEE, New York, pp 452–457.
19. Kumar A, Singh V, Ali T, Pal S, Singh J (2020) Empirical evaluation of shallow and deep classifiers for rumor detection. In: Advances in computing and intelligent systems. Springer, Singapore, pp 239–252.
20. Bhattacharjee U, Srijith PK, Desarkar MS (2019) Term specific tf-idf boosting for detection of rumours in social networks. In: 2019 11th international conference on communication systems & networks (COMSNETS). IEEE, New York, pp 726–731.
21. Chen T, Li X, Yin H, Zhang J (2018) Call attention to rumors: Deep attention based recurrent neural networks for early rumor detection. In: Pacific-Asia conference on knowledge discovery and data mining. Springer, Cham, pp 40–52.
22. Ma J, Gao W, Mitra P, Kwon S, Jansen BJ, Wong KF, Cha M (2016). Detecting rumors from microblogs with recurrent neural networks. In: Proceedings of IJCAI. 1, 3, 5, 6
23. Nguyen TN, Li C, Niederée C (2017) On early-stage debunking rumors on twitter: Leveraging the wisdom of weak learners. In: International conference on social informatics. Springer, Cham, pp. 141–158.
24. Guo H, Cao J, Zhang Y, Guo J, Li J (2018) Rumor detection with hierarchical social attention network. In: Proceedings of the 27th ACM international conference on information and knowledge management, pp 943–951.
25. Vijee A, Mahapatra A, Shyamkrishna A, Murthy S (2018) A hybrid approach to rumour detection in microblogging platforms. In: 2018 International conference on advances in computing, communications and informatics (ICACCI). IEEE, New York , pp 337–342.
26. Kumar A, Shrivastava A (2020) Rumour detection in benchmark dataset using attention-based residual networks. Int J Adv Sci Technol 29(3):14682. Retrieved from http://serc.org/journals/index.php/IJAST/article/view/31956
27. Kumar A (2021) Rumour stance classification using A hybrid of capsule network and multi-layer perceptron. Turkish J Comput Math Educ (TURCOMAT) 12(13):4110–4120
28. Kumar A, Sachdeva N (2021) Multimodal cyberbullying detection using capsule network with dynamic routing and deep convolutional neural network. Multimedia Syst. https://doi.org/10.1007/s00530-020-00747-5
29. Saito T, Rehmsmeier M (2015) The precision-recall plot is more informative than the ROC plot when evaluating binary classifiers on imbalanced datasets. PloS one 10(3):e0118432.
30. Hand DJ (2012) Assessing the performance of classification methods. Int Stat Rev 80(3):400–414
31. Sangwan SR, Bhatia MPS (2020) D-BullyRumbler: a safety rumble strip to resolve online denigration bullying using a hybrid filter-wrapper approach. Multimedia Syst, pp 1–17.
32. Kumar A, Dikshit S, Albuquerque VHC (2021) Explainable Artificial Intelligence for Sarcasm Detection in Dialogues. Wireless Commun Mobile Comput***.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.