INTRODUCTION

Toxoplasma gondii, the direct pathogenic factor of toxoplasmosis, is an obligate intracellular protozoan parasite of the phylum Apicomplexa which can infect all warm-blooded vertebrates, including humans, livestock, and marine mammals [1]. Although most infections are clinically asymptomatic, the parasite can cause severe disease in immunocompromised populations and congenitally infected individuals [1,2]. In addition, infections in domestic animals may result in economic losses as well as bring enormous psychological troubles, since it can cause abortion, stillbirth, and neonatal loss [3].

Unlike many other Apicomplexa parasites which exhibit stronger host specificity, T. gondii faces vastly numerous hosts and can adapt to various environmental conditions during its complex life cycles, which can be contributed to many different T. gondii strains and genotypes [4]. It was popularly believed that T. gondii had a clonal population structure with 3 predominant lineages, namely types I, II, and III [5-7]. Besides these isoforms, it also exists in atypical and recombinant strains [8,9]. To better understand the population genetics and molecular epidemiology of this parasite, and to develop more strategies for vaccination, diagnosis, and treatment of toxoplasmosis, it is necessary to study the genetic diversities in T. gondii [10,11].

Superoxide dismutase (SOD), an important enzyme that widely exists in many organisms, including animals, plants, and microorganisms, can promote the conversion of superoxide (O₂⁻) into hydrogen peroxide and oxygen [12,13]. In view of SOD that can eliminate extra superoxide (O₂⁻) anion in the cells and protect cells from oxidative damages, it has potential applications in medicine, food industry, and agriculture [12,14,15]. In T. gondii, limited studies have shown that SOD is a typical FeSOD and its activity might be essential for the intracellular growth of both bradyzoite and tachyzoite forms [16]. To our knowledge, no report has described the sequence variation of SOD gene in different T. gondii strains. We hereby examined sequence variation of SOD gene among 10 T. gondii
isolates from different hosts and geographical regions (different countries), and assess SOD could be used as a new marker for genetic study or a potential vaccine candidate against *T. gondii*.

MATERIALS AND METHODS

T. gondii strains

A total of 10 genotyped *T. gondii* strains were utilized as shown in Table 1, and the genomic DNA was prepared as described previously [17].

PCR amplification

The SOD gene was amplified by PCR from genomic DNA of *T. gondii* with 1 pair of primers: 5’-ATGGATCTACATGCCC-CCGCT-3’ (forward prime) and 5’-TCAATTTAGGATCTCTCAAG-3’ (reverse primer). The design of primers was based on SOD gene of *T. gondii* RH isolate available in GenBank database (AF029915). The amplification reaction was performed in a volume of 20 μl containing 2 μl template DNA, 10 μl 2×1 Step buffer (0.5 U *Taq* polymerase), 1 μl of each primer, and 6 μl RNase-free dH2O. The target DNA was amplified under the following conditions: 94˚C for 30 sec, 63.6˚C for 1 min, and 72˚C for 1 min. The PCR amplification products were confirmed by electrophoresis in a 1.5% agarose gels and staining with ethidium bromide followed by visualization under UV.

The analysis of PCR-RFLP

The SOD PCR amplification products from representative *T. gondii* strains were digested with restriction enzymes *Xba*I and *EcoR*I, respectively, and incubated at 37˚C for 3 hr. The restriction fragments were separated by electrophoresis in 1.5% agarose gels.

Table 1. *Toxoplasma gondii* strains subjected to SOD gene sequence analysis

Strain	Host	Geographical origin	Genotype*
RH	Human	France	Reference, Type I, ToxoDB #10
GT1	Goat	United States	Reference, Type I, ToxoDB #10
PTG	Sheep	United States	Reference, Type II, ToxoDB #1
Prugniaud (PRU)	Human	France	Reference, Type II, ToxoDB #1
CTG	Cat	United States	Reference, Type III, ToxoDB #2
TgCgCa1	Cougar	Canada	Reference, ToxoDB #66
MAS	Human	Brazil	Reference, ToxoDB #19
TgCatBr5	Cat	Brazil	Reference, ToxoDB #111
TgCatBr64	Cat	Brazil	Reference, ToxoDB #66
TgToucan (TgRsCr1)	Toucan	Costa Rica	Reference, ToxoDB #52

*aBased on genotyping results of Su et al. [17].
rose gel and staining with ethidium bromide, followed by visualiza-
tion under UV.

Sequence analysis and reconstruction of phylogenetic relationships

The SOD PCR products were purified with the DNA purifi-
cation kit (TransGen Biotech, Beijing, China) and ligated with the pEAY-T1 vector (TransGen Biotech) according to the manufacturer’s instructions, and then transformed into Esche-
richia coli DH5α competent cells. The transformed cells carry-
ing the insert were successively selected by blue-white screen-
ing, PCR, and restriction enzyme digestion. The positive colo-
nies were sequenced by Beijing Genomics Institute Company (Beijing, China). The obtained SOD gene sequences from dif-

Table 2. Nucleotide polymorphisms of the SOD gene coding region within *Toxoplasma gondii* strains

	RH	CTG	GT1	MAS	PRU	PTG	TgCatBr5	TgCatBr64	TgCgCa1	TgToucan
1403	A	*	*	*	*	*	C	*	*	*
1437	A	*	*	*	*	*	T	*	*	*
1480	G	*	*	*	*	*	C	*	*	*
1501	G	*	*	*	*	*	*	T	*	*
1503	G	*	*	*	*	T	*	*	*	*
1504	G	*	*	*	*	*	T	*	*	*
1518	A	*	*	*	*	T	*	*	*	*
1519	C	*	*	*	*	A	*	*	*	*
1520	T	*	*	*	*	C	*	*	*	*
1521	G	*	*	*	*	T	*	*	*	*
1532	C	*	*	*	*	T	*	*	*	*
1535	C	*	*	*	*	T	*	*	*	*
1545	A	*	*	*	*	*	*	G	*	*
1547	G	*	*	*	*	*	C	*	*	*
1549	A	*	*	*	*	*	*	G	*	*
1555	C	*	*	*	*	T	*	*	*	*
1556	A	*	*	*	*	T	*	*	*	*
1557	T	*	*	*	*	C	*	*	*	*
1558	C	*	*	*	*	T	*	*	*	*
1566	A	*	*	*	*	G	*	*	*	*
1567	A	*	*	*	*	*	*	T	*	*
1568	C	*	*	*	*	*	*	T	*	*
1574	G	*	*	*	*	A	*	*	*	*
1575	G	*	*	*	*	A	*	*	*	*
1584	T	*	*	*	*	C	*	*	*	*
1585	C	*	*	*	*	*	*	*	*	*
1586	G	*	*	*	*	*	*	*	*	*
1587	A	*	*	*	*	G	*	*	*	*
1590	G	*	*	*	*	A	A	*	*	*
1599	G	*	*	*	*	*	*	A	*	*
1601	C	*	*	*	*	*	*	*	*	*
1614	G	*	*	*	*	A	*	*	*	*
1616	T	*	*	*	*	G	*	*	*	*
1618	G	*	*	*	*	T	*	*	*	*
1620	G	*	*	*	*	*	*	*	*	*
1628	T	*	*	*	*	A	*	*	*	*
1635	G	*	*	*	*	A	*	*	*	*
1637	C	*	*	*	*	*	*	*	*	*
1668	A	*	*	*	*	*	*	*	*	*
1669	C	*	*	*	*	*	*	*	*	*
1679	G	*	*	*	*	*	*	*	*	*
1685	C	*	*	*	*	A	*	*	*	*
1793	C	*	*	*	*	*	*	*	*	*

Numbers in the left column indicate positions of variable nucleotides. Asterisks (*) indicate identical nucleotides related to the sequence of RH (first column). Dashes (-) indicate deletions.
Table 3. Amino acid changes of the SOD gene coding region among ten *Toxoplasma gondii* strains

Position	RH	CTG	GT1	MAS	PRU	PTG	TgCatBr5	TgCatBr64	TgCgCa1	TgToucan
66	N	*	*	*	*	Y	*	*	*	*
80	S	*	*	*	*	T	*	*	*	*
87	G	*	*	*	*	*	*	*	*	*
88	G	*	*	*	*	C	*	V	*	*
93	T	*	*	*	*	*	*	*	*	*
94	G	*	*	*	*	W	*	*	*	*
102	K	*	*	*	*	N	*	E	*	*
103	E	*	*	*	*	*	*	G	*	*
105	T	*	*	*	*	I	*	*	*	*
106	S	*	*	*	*	F	*	*	*	*
109	N	*	*	*	*	*	*	*	I	*
112	D	*	*	*	*	N	*	*	*	*
115	S	*	*	*	*	*	*	P	*	*
116	K	*	*	*	*	*	*	E	*	*
117	V	*	*	*	*	I	*	*	*	*
120	G	*	*	*	*	*	*	*	S	*
125	G	*	*	*	*	S	*	*	*	*
126	W	*	*	*	*	F	*	*	*	*
127	A	*	*	*	*	*	*	*	T	*
129	L	*	*	*	*	H	*	*	*	*
132	D	*	*	*	*	*	*	*	H	*
143	T	*	*	*	*	N	*	*	*	*
148	T	*	*	*	*	N	*	*	*	*
151	T	*	*	*	*	*	*	*	*	*

Numbers in the left column indicate positions of variable amino acids. Asterisks (*) indicate identical amino acid related to the sequence of RH (first column). Dashes (-) indicate deletions.
polies of all trees based on nucleotide sequences inferred by 2 different methods were similar, with only small differences of bootstrap values.

DISCUSSION

SOD widely exists in many organisms and plays a crucial role in eliminating the extra superoxide anion \(\text{O}_2^- \) in the cells to avoid oxidative damages [12-15]. In \textit{T. gondii}, SOD is an iron-containing type, which correlates with the protection of the parasite [16]. However, SOD enzymes from C and RH strain tachyzoites do not appear to be the basis for differences in virulence to mice [20]. In the present study, we cloned and sequenced the partial genome sequence of SOD gene among 10 \textit{T. gondii} isolates from different hosts and geographical regions and examined genetic diversity of SOD locus by the techniques of PCR-RFLP, sequence analysis, and phylogenetic reconstruction. The results revealed nucleotide polymorphisms at 43 positions and amino acid polymorphisms at 24 positions, suggesting low sequence variability among all the tested isolates.

PCR-RFLP has been widely used in analysis of specific genetic loci for \textit{T. gondii} genotyping. Multilocus PCR-RFLP marker is a high resolution for identification of parasites, although it requires a huge investment of time to test and optimize each marker [11]. By contrast, single PCR-RFLP marker is simply and more convenient. Then, studies on single marker loci (e.g. GRA5, GRA6, and ROP17) have shown signs of positive selection, and could be sufficient for genotyping of \textit{T. gondii} isolates. [21-23].

In our study, however, 3 clonal lineages (types I, II, and III) cannot be differentiated in 10 examined \textit{T. gondii} strains using a single PCR-RFLP marker SOD. One possible reason is that the sequence variation of SOD could not be located in restriction enzyme sites, to some degree, leading to loss of many polymorphisms in this situation [24].

The direct sequencing of genomic regions can detect small deletions and insertions (e.g., indels) and single nucleotide polymorphisms (SNPs) in the genomic regions, and hence it is capable of testing more genetic diversity compared with PCR-RFLP. Based on the partial sequences of the SOD locus, phylogenetic analysis revealed 2 major clusters with only a little difference of bootstrap values, and it cannot differentiate \textit{T. gondii} strains to their genotypes, implying a low genetic diversity. Our results were similar to some studies such as MIC13, elf4A [25,26] and different from other genetic markers including GRA5, GRA6, and ROP17 [21-23]. The low sequence variation (0-1.0%) in the partial SOD gene suggests that SOD gene could not be an ideal genetic marker for differentiation of the \textit{T. gondii} strains or intraspecific phylogenetic analyses.

ACKNOWLEDGMENTS

This study was financially supported by the National Natu-
ral Science Foundation of China (grant no. 81471974 and 81171604). Dr. Chunlei Su at Department of Microbiology, The University of Tennessee, Knoxville, USA is thanked for providing *T. gondii* reference strains.

CONFLICT OF INTEREST

We have no conflict of interest related to this work.

REFERENCES

1. Montoya JG, Liesenfeld O. Toxoplasmosis. Lancet 2004; 363: 1965-1976.
2. Weiss LM, Dubey JP. Toxoplasmosis: a history of clinical observations. Int J Parasitol 2009; 39: 895-901.
3. Cenci-Goga BT, Rossitto PV, Sechi P, McCrindle CM, Cullor JS. *Toxoplasma* in animals, food, and humans: an old parasite of new concern. Foodborne Pathog 2011; 8: 751-762.
4. Sibley LD, Ajioka JW. Population structure of *Toxoplasma gondii*: clonal expansion driven by infrequent recombination and selective sweeps. Annu Rev Microbiol 2008; 62: 329-351.
5. Sibley LD, Boothroyd JC. Virulent strains of *Toxoplasma gondii* comprise a single clonal lineage. Nature 1992; 359: 82-85.
6. Howe DK, Sibley LD. *Toxoplasma gondii* comprises three clonal lineages: correlation of parasite genotype with human disease. J Infect Dis 1995; 172: 1561-1566.
7. Sibley LD, Mordue DG, Su CL, Robben PM. Howe DK. Genetic approaches to studying virulence and pathogenesis in *Toxoplasma gondii*. Philos Trans Roy Soc B 2002; 357: 81-88.
8. Dardé ML. *Toxoplasma gondii*, “new” genotypes and virulence. Parasite 2008; 15: 366-371.
9. Delhaes L, Ajzenberg D, Sicot B, Bourgeot P, Dardé ML, Dei-Cas E, Houfflin-Debarge V. Severe congenital toxoplasmosis due to a *Toxoplasma gondii* strain with an atypical genotype: case report and review. Prenat Diagn 2010; 30: 902-905.
10. Robert-Gangneux F, Dardé ML. Epidemiology of and diagnostic strategies for toxoplasmosis. Clin Microbiol Rev 2012; 25: 264-296.
11. Su C, Zhang X, Dubey JP. Genotyping of *Toxoplasma gondii* by multilocus PCR-RFLP markers: a high resolution and simple method for identification of parasites. Int J Parasitol 2006; 36: 841-848.
12. Miller AF. Superoxide dismutase: ancient enzymes and new insights. FEBS Lett 2012; 586: 585-595.
13. Fukai T, Ushio-Fukai M. Superoxide dismutase: role in redox signaling, vascular function, and diseases. Antioxid Redox Signal 2011; 15: 1583-606.
14. Miao L, St Clair DK. Regulation of superoxide dismutase genes: implications in disease. Free Radic Biol Med 2009; 47: 344-356.
15. Noor R, Mittal S, Iqbal J. Superoxide dismutase-applications and relevance to human diseases. Med Sci Monit 2002; 8: 210-215.
16. Odberg-Ferragut C1, Renault JP, Viscogliosi E, Tournel C, Briche I, Engels A, Lepage G, Morgenstern-Badarau I, Camus D, Tomavo S, Dive D. Molecular cloning, expression analysis and iron metal cofactor characterisation of a superoxide dismutase from *Toxoplasma gondii*. Mol Biochem Parasitol 2000; 106: 121-129.
17. Su C, Shwab EK, Zhou P, Zhu XQ, Dubey JP. Moving towards an integrated approach to molecular detection and identification of *Toxoplasma gondii*. Parasitology 2010; 137: 1-11.
18. Thompson JD, Gibson TJ, Plewniak E, Jeanmougin F, Higgins DG. The Clustal X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 1997; 24: 4876-4882.
19. Ronquist F, Huelsenbeck JP. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 2003; 19: 1572-1574.
20. Sibley LD, Lawson R, Weidner E. Superoxide dismutase and catalase in *Toxoplasma gondii*. Mol Biochem Parasitol 1986; 19: 83-87.
21. Chen J, Li ZY, Zhou DH, Liu GH, Zhu XQ. Genetic diversity among *Toxoplasma gondii* strains from different hosts and geographical regions revealed by sequence analysis of GRA5 gene. Parasit Vectors 2012; 5: 279.
22. Fazaeli A, Carter PE, Darde ML, Pennington TH. Molecular typing of *Toxoplasma gondii* strains by GRA6 gene sequence analysis. Int J Parasitol 2000; 30: 637-642.
23. Zhang NZ, Xu Y, Huang SY, Zhou DH, Wang RA, Zhu XQ. Sequence variation in *Toxoplasma gondii* rop17 gene among strains from different hosts and geographical locations. ScientificWorldJournal 2014; 2014: 349325.
24. Sibley LD, Khan A, Ajioka JW, Rosenthal BM. Genetic diversity of *Toxoplasma gondii* in animals and humans. Philos Trans Roy Soc Lond B Biol Sci 2009; 364: 2749-2761.
25. Ren D, Zhou DH, Xu MJ, Zhou Y. Sequence variation in *Toxoplasma gondii* MIC13 gene among isolates from different hosts and geographical locations. Afr J Microbiol Res 2012; 6: 1333-1337.
26. Chen J, Fang SE, Zhou DH, Li ZY, Liu GH, Zhu XQ. Sequence variation in the *Toxoplasma gondii* elF4A gene among strains from different hosts and geographical locations. Genet Mol Res 2014; 13: 3356-3361.