Bilateral Self-unbiased Learning from Biased Implicit Feedback

Jae-woong Lee
Dept. of Electrical and Computer Engineering
Sungkyunkwan University, Republic of Korea
jwlee.icc@skku.edu

Seongmin Park
Dept. of Artificial Intelligence
Sungkyunkwan University, Republic of Korea
psm1206@skku.edu

Joonseok Lee
Dept. of Artificial Intelligence
Sungkyunkwan University, Republic of Korea
joonseok2010@gmail.com

Jongwuk Lee∗
Dept. of Artificial Intelligence
Sungkyunkwan University, Republic of Korea
jongwuklee@skku.edu

ABSTRACT
Implicit feedback has been widely used to build commercial recommender systems. Because observed feedback represents users’ click logs, there is a semantic gap between true relevance and observed feedback. More importantly, observed feedback is usually biased towards popular items, thereby overestimating the actual relevance of popular items. Although existing studies have developed unbiased learning methods using inverse propensity weighting (IPW) or causal reasoning, they solely focus on eliminating the popularity bias of items. In this paper, we propose a novel unbiased recommender learning model, namely Bilateral Self-unbiased Recommender (BISER), to eliminate the exposure bias of items caused by recommender models. Specifically, BISER consists of two key components: (i) self-inverse propensity weighting (SIPW) to gradually mitigate the bias of items without incurring high computational costs; and (ii) bilateral unbiased learning (BU) to bridge the gap between two complementary models in model predictions, i.e., user- and item-based autoencoders, alleviating the high variance of SIPW. Extensive experiments show that BISER consistently outperforms state-of-the-art unbiased recommender models over several datasets, including Coat, Yahoo! R3, MovieLens, and CiteULike.

CCS CONCEPTS
• Information systems → Recommender systems; Collaborative filtering.

KEYWORDS
Collaborative filtering; popularity bias; inverse propensity weighting; unbiased learning

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

ACM Reference Format:
Jae-woong Lee, Seongmin Park, Joonseok Lee, and Jongwuk Lee. 2022. Bilateral Self-unbiased Learning from Biased Implicit Feedback. In Proceedings of the 45th International ACM SIGIR Conference on Research and Development.

In Information Retrieval (SIGIR ’22), July 11–15, 2022, Madrid, Spain. ACM, New York, NY, USA, 11 pages. https://doi.org/10.1145/3477495.3531946

1 INTRODUCTION
Collaborative filtering (CF) [1, 7, 22, 36] is the most prevalent technique for building commercial recommender systems. CF typically utilizes two types of user feedback: explicit and implicit feedback. Implicit feedback provides richer information about user preferences than implicit feedback as users explicitly rate how much they like or dislike the items. However, it is difficult to collect explicit feedback from various real-world applications because only a few users provide feedback after experiencing the items. On the other hand, implicit feedback is easily collected by recording various users’ behaviors, e.g., clicking a link, purchasing a product, or browsing a web page.

There are several challenges in using implicit feedback in CF. (i) Existing studies [8, 14, 15, 17, 32, 42, 45, 55, 56, 60] regard the observed user interactions solely as positive feedback. However, some observed interactions, such as clicking an item or viewing a page, do not necessarily indicate whether the user likes the item; there is a semantic gap between the true relevance and the observed interactions. (ii) User feedback is observed at uniformly not random. For instance, users tend to interact more with popular items, so the more popular the items are, the more they are collected in the training dataset. Because of the inherent nature of implicit user-item interactions, recommender models are biased toward ranking popular items with high priority.

Existing studies have developed unbiased recommender learning methods [33, 38, 39, 63] to estimate true user preferences from implicit feedback under the missing-not-at-random (MNAR) assumption [29, 43, 62]. They formulated a new loss function to eliminate the bias of items by using inverse propensity weighting (IPW), which has been widely established in causal inference [2, 18, 20, 31, 38–40, 48–51, 51, 52, 63]. In addition, recent studies [54, 61] introduced a causal graph that represents a cause effect relationship for recommendations and removes the effect of item popularity.

Specifically, they are categorized in two directions. The first approach exploits a heuristic function to eliminate the popularity bias of items. Although item popularity is a critical factor in the bias of training datasets, there are other vital factors, such as exposure bias, in the recommended models. To overcome this issue, the second approach develops a learning-based method that accounts for various bias factors. Joint learning methods [37, 63] first suggested
utilizing a pseudo-label or propensity score inferred from an additional model. Zhu et al. [63] employed multiple models for different subsets of a training dataset to infer the propensity scores. Saito [37] adopted two pre-trained models with other parameter initializations and generated a pseudo-label as the difference between the two model predictions. They then made use of consistent predictions by training multiple models. However, as multiple models converge to a similar output, it leads to an estimation overlap issue. Recently, causal graph-based training methods [54, 61] were proposed to overcome the sensitivity of IPW strategies. Wei et al. [54] modeled a causal graph using item popularity and user conformity to predict true relevance. Zhang et al. [61] analyzed the negative effects of item popularity through a causal graph and removed bias through causal intervention. However, they did not address the exposure bias caused by recommender models.

To eliminate exposure bias, we propose a novel unbiased recommender learning model, namely the Bilateral Self-unbiased Recommender (BISER) with two key components: self-inverse propensity weighting (SIPW) and bilateral unbiased learning (BU). Motivated by self-distillation [30, 58], we first devise a self-inverse propensity weighting (SIPW) to iteratively mitigate the exposure bias of items. Specifically, we reuse the model prediction from the previous training iteration, enabling us to gradually eliminate the exposure bias of items as the training evolves. Notably, SIPW has two key advantages: (i) it effectively handles the exposure bias caused by recommender models and (ii) it does not require an additional model for propensity score estimation.

IPW usually suffers from the high variance problem, as reported in the literature [54, 61]. To resolve this issue, we first assume that the true user preference should be consistent with the predictions of different models. We then design bilateral unbiased learning (BU) using two recommender models. Specifically, we utilize user- and item-based autoencoders [41]. Because they capture different hidden patterns on the user and item sides, it does not require us to split the training and estimation subsets from an entire training set [63] or to utilize multiple models with different parameter initializations [37]. We exploit the predicted value of one model as a pseudo-label for another model. As a result, we resolve the high-variance issue in estimating the SIPW.

To summarize, the key contributions of this paper are as follows:

- We review existing studies on unbiased recommender learning and analyze their limitations to eliminate the exposure bias of items caused by recommender models (Section 2).
- We propose a novel unbiased recommender learning model, namely Bilateral SELF-unbiased Recommender (BISER), utilizing (i) a learning-based propensity score estimation method, i.e., self-inverse propensity weighting (SIPW), and (ii) bilateral unbiased learning (BU) using user- and item-based autoencoders with complementary relationships (Section 3).
- We demonstrate that the BISER outperforms state-of-the-art unbiased recommender models, including ReIMF [39], AT [37], CJMF [63], PD [61], and MACR [54], on both unbiased evaluation datasets (e.g., Coat and Yahoo! R3) and conventional datasets (e.g., MovieLens and CiteULike) (Sections 4–5).

2 BACKGROUND

Notations. Formally, we denote U as a set of m users and I as a set of n items. We are given a user-item click matrix $Y \in \{0, 1\}^{m \times n}$,

$$ y_{ui} = \begin{cases} 1 & \text{if user } u \text{ interacted with item } i; \\ 0 & \text{otherwise.} \end{cases} $$

We model y_{ui} as a Bernoulli random variable, indicating the interaction of a user on an item. For implicit feedback data, the user interaction is a result of observation and preference. That is, a user may click on an item if (i) the item is exposed to the user and (ii) the user is actually interested in the item (relevance). Existing studies [6, 33, 38–40, 63] formulate this idea as follows:

$$ P(y_{ui} = 1) = P(o_{ui} = 1) \cdot P(r_{ui} = 1) = o_{ui} \cdot p_{ui}. $$

where o_{ui} is an element of the observation matrix $O \in \{0, 1\}^{m \times n}$ that represents whether the user has observed the item i ($o_{ui} = 1$) or not ($o_{ui} = 0$), and r_{ui} is an element of the relevance matrix $R \in \{0, 1\}^{m \times n}$, representing true relevance regardless of observance. If the user u likes the item i, $r_{ui} = 1$, and $r_{ui} = 0$ otherwise. For simplicity, we denote $P(o_{ui} = 1)$ and $P(r_{ui} = 1)$ with o_{ui} and p_{ui}, respectively. The interaction matrix Y with biased user behavior is decomposed into element-wise multiplication of the observation and relevance components.

Unbiased recommender learning. Our goal is to learn an unbiased ranking function from implicit feedback under the MNAR assumption. Although there are various loss functions for training recommender models, such as point-wise, pair-wise, and list-wise losses [34], we use the point-wise loss function in this paper. Given a set of user-item pairs $D = U \times I$, the loss function for biased interaction data is

$$ L_{\text{biased}}(R) = \frac{1}{|D|} \sum_{(u,i) \in D} \left(y_{ui} \delta_{ui}^+ + (1 - y_{ui}) \delta_{ui}^- \right), $$

where R is the prediction matrix for R, and δ_{ui}^+ and δ_{ui}^- are the loss of user u on item i for positive and negative preference, respectively. Under the point-wise loss setting, we adopt either the cross-entropy or the sum-of-squared loss. With the cross-entropy, for example, $\delta_{ui}^+ = -\log (r_{ui})$ and $\delta_{ui}^- = -\log (1 - r_{ui})$.

Similarly, the ideal loss function that relies purely on relevance is formulated as follows:

$$ L_{\text{ideal}}(R) = \frac{1}{|D|} \sum_{(u,i) \in D} \left(\rho_{ui} \delta_{ui}^+ + (1 - \rho_{ui}) \delta_{ui}^- \right), $$

where the biased observation y_{ui} is substituted with the pure relevance $\rho_{ui} = P(r_{ui} = 1)$.

Because user interaction data are typically sparse and collected under the MNAR assumption, it is necessary to bridge the gap between the loss functions for clicks and relevance. Saito et al. [39] proposed a loss function using inverse propensity weighting (IPW):

$$ L_{\text{unbiased}}(R) = \frac{1}{|D|} \sum_{(u,i) \in D} \left(\frac{y_{ui}}{\omega_{ui}} \delta_{ui}^+ + \left(1 - \frac{y_{ui}}{\omega_{ui}}\right) \delta_{ui}^- \right), $$

where ω_{ui} is the inverse propensity score that indicates the probability of observing the item i by the user u. As proved in [39], the
expectation of the unbiased loss function in Eq. (5) is equivalent to the ideal loss function in Eq. (4):

\[
E \left[\mathcal{L}_{\text{unbiased}}(\hat{R}) \right] = \frac{1}{|D|} \sum_{(u,i) \in D} \left(\frac{E[y_{ui}]}{\omega_{ui}} \delta^+_{ui} + \left(1 - \frac{E[y_{ui}]}{\omega_{ui}} \right) \delta^-_{ui} \right)
\]

\[
= \frac{1}{|D|} \sum_{(u,i) \in D} \left(\rho_{ui} \delta^+_{ui} + (1 - \rho_{ui}) \delta^-_{ui} \right).
\]

The critical issue is how to estimate the propensity score \(\omega_{ui} \) from observed feedback (e.g., clicks). Previous studies [23, 33, 38, 39, 63] have developed several solutions to estimate \(\omega_{ui} \). First, [23, 38, 39] introduced a heuristic function to estimate item popularity without using an additional model. Although intuitive, it focuses only on addressing item popularity and is thus, incapable of handling exposure bias caused by recommender models. Second, additional models were used to estimate the propensity score [33, 63]. However, this incurs high computational costs, as they mostly utilize three or more models.

3 BISER: PROPOSED MODEL

To motivate unbiased recommender modeling, we first investigate the bias from conventional recommendation models, i.e., matrix factorization (MF) and autoencoders (AE) [41] on the MovieLens-100K (ML-100K) dataset. Figures 2(a) and (c) depict a positive correlation between the average predicted scores for clicked items and the number of ratings in the training set, i.e., popularity. From this case study, we confirm that popular items tend to be recommended to more users with conventional models. Even worse, the biased recommendations can exacerbate the bias of the training dataset as user feedback is continually collected.

To address this problem, it is vital to eliminate the exposure bias caused by recommender models. Existing studies [38, 39] have mainly focused on modeling the popularity bias of items. Because user experiences are mostly biased towards the recommended items, we aim to eliminate exposure bias caused by recommender models. We estimate the propensity score of the items and eliminate exposure bias during model training. Figures 2(b) and (d) show the effectiveness of the proposed unbiased learning method. It is clearly observed that the correlation between the actual and predicted ratings in the proposed model is weaker than that in the traditional models. This pilot study indicates that our unbiased model effectively reduces exposure bias caused by recommender models.

3.1 Model Architecture

In this section, we present the novel unbiased recommender model, namely, the Bilateral Self-unbiased Recommender (BISER). Specifically, it consists of two parts: self-inverse propensity weighting (SIPW) and bilateral unbiased learning (BU), as shown in Figure 1. Motivated by self-distillation [30, 58], which extracts knowledge of model predictions during model training, we estimate inverse propensity weighting (IPW) in an iterative manner. Thus, the proposed model gradually eliminates the exposure bias of items during model training. It is efficient because it neither requires a predefined propensity scoring function nor an additional model for propensity estimation.

In this process, we adopt two recommender models with complementary characteristics, user- and item-based autoencoders that capture heterogeneous semantics and relational information from the users’ and items’ perspectives, respectively. This bypasses the estimation overlap issue that occurs when the outputs of multiple models with the same structure and trained on the same training
sets, converge similarly. Furthermore, we emphasize that our proposed approach is model-agnostic; two or more models may be used as long as they convey heterogeneous signals from the user-item interaction data.

Self-inverse propensity weighting (SIPW). Existing studies deal with eliminating the exposure bias in two ways: (i) by modeling only item popularity, which affects the clicking behavior of users, regardless of an additional estimator [38, 39], or (ii) by adopting an additional model to estimate the exposure bias by interleaving relevance and observation estimation [63]. Zhu et al. [63] split an entire dataset into multiple training and estimation subsets, incurring high computational costs.

In this paper, we formulate a new bias estimation method, namely *self-inverse propensity weighting (SIPW)*. First, we introduce an ideal unbiased recommender model using interaction data. Given a recommender list of items \(\pi_u \) to user \(u \), the probability of the user interacting with an item \(i \) is given by

\[
P^*(y_{ui} = 1 | \pi_u) = P^*(o_{ui} = 1 | \pi_u) \cdot P(r_{ui} = 1 | \pi_u),
\]

where \(P^*(o_{ui} = 1 | \pi_u) \) is the ideal probability of observing an item \(i \), *completely-at-random distribution*. Besides, we estimate the probability that the user \(u \) interacts with the item \(i \) by the biased recommender model as

\[
\hat{P}(y_{ui} = 1 | \pi_u) = \hat{P}(o_{ui} = 1 | \pi_u) \cdot \hat{P}(r_{ui} = 1 | \pi_u),
\]

where \(\hat{P}(o_{ui} = 1 | \pi_u) \) is the estimated probability of observing an item \(i \).

By combining them, we estimate the IPS as the ratio between the two probability distributions for interactions. Note that this formula is closely related to the unbiased learning-to-rank method [49],

\[
\frac{P^*(y_{ui} = 1 | \pi_u)}{\hat{P}(y_{ui} = 1 | \pi_u)} = \frac{P^*(o_{ui} = 1 | \pi_u) \cdot P(r_{ui} = 1 | \pi_u)}{\hat{P}(o_{ui} = 1 | \pi_u) \cdot \hat{P}(r_{ui} = 1 | \pi_u)}.
\]

Assuming \(P^*(o_{ui} = 1 | \pi_u) \) follows uniform distribution, the probability for every item in \(\pi_u \) is simply regarded as a constant. Therefore, we estimate a propensity score \(\hat{o}_{ui} \) as

\[
\hat{P}(y_{ui} = 1 | \pi_u) \propto \frac{1}{\hat{P}(o_{ui} = 1 | \pi_u)} = \frac{1}{\hat{o}_{ui}}.
\]

The remaining issue is how to estimate the probability \(\hat{o}_{ui} \) of observing item \(i \) by user \(u \). Inspired by self-distillation [30, 58] that utilizes the knowledge of model predictions during model training, we reuse the model prediction as \(\hat{o}_{ui} \). Despite its simplicity, self-propensity estimation has several benefits. (i) Our SIPW method stably estimates \(\hat{o}_{ui} \) by regularizing prior knowledge, gradually removing the bias. (ii) It does not require an additional inference process to estimate the propensity scores. (iii) Owing to the self-propensity score, our solution can be applied with various recommenders, e.g., MF [17] and AE [41].

Formally, we formulate an unbiased loss function using SIPW as

\[
L_{SIPW}(\hat{R}; \theta^{(k)}) = \frac{1}{|\mathcal{D}|} \sum_{(u,i) \in \mathcal{D}} \left(\frac{y_{ui}}{\hat{o}_{ui}(\theta^{(k)})} \hat{r}_{ui} - \frac{1 - y_{ui}}{\hat{o}_{ui}(\theta^{(k)})} \hat{r}_{ui} \right)^2.
\]

Bilateral unbiased learning (BU). Although IPW is theoretically principled, it often leads to suboptimal performance owing to the high variance problem in practice [11, 44, 51]. An existing study [37] trains multiple models where the prediction from one model is used as the pseudo-label for the other models. The pseudo-label is then used to regularize the original model. Although it helps mitigate the high-variance problem, multiple models can show a similar tendency as they are trained.

To resolve this issue, we utilize two recommender models with different characteristics. Unifying user- and item-based recommender models improves predictions in conventional recommender models [47, 57, 64]. As they tend to capture different aspects of user and item patterns, adopting heterogeneous models helps to relax the estimation overlap issue.

Specifically, we utilize user- and item-based autoencoders to discover unique and compensating patterns from complex user-item interactions. Inspired by label shift [3, 26], the two models should converge to the same value to correctly estimate the true relevance.

\[
P(r_{ui} = 1 | y_{ui} = 1, \theta_U) = P(r_{ui} = 1 | y_{ui} = 1, \theta_I),
\]

where \(\theta_U \) and \(\theta_I \) are the parameters of user- and item-based autoencoders, respectively [41]. Finally, we present a loss function for bilateral unbiased learning using the two model predictions.

\[
L_{BU} (\hat{R}; \theta_U^{(k)}, \theta_I^{(k)}) = \frac{1}{|\mathcal{D}|} \sum_{(u,i) \in \mathcal{D}} \left(\frac{\hat{r}_{ui}(\theta_U^{(k)}) - \hat{r}_{ui}(\theta_I^{(k)})}{\hat{r}_{ui}(\theta_U^{(k)})} \right)^2,
\]

where \(\hat{r}_{ui}(\theta_U^{(k)}) \) and \(\hat{r}_{ui}(\theta_I^{(k)}) \) are predictions from each model at the \(k \)-th iteration, respectively. \(\mathcal{D} \) is a set of observed user-item pairs.

3.2 Training and Inference

Given user- and item-based autoencoders, each model is trained from scratch using SIPW. At each iteration, we update the model parameters by minimizing the loss in Eq. (11). We then account for the loss function to minimize the difference between the two model predictions. Specifically, the user-based model with parameter \(\theta_U^{(k)} \) is trained with the predictions from the item-based model with parameter \(\theta_I^{(k)} \) as pseudo-labels, and vice versa. Therefore, we can reduce the high-variance issue of SIPW by using two model predictions.

Based on Eq. (11) and (13), we represent the final loss function to simultaneously train two models at the \(k \)-th iteration.

\[
L_{UAE}(\hat{R}; \theta_U^{(k)}) = L_{SIPW}(\hat{R}; \theta_U^{(k)}) + \lambda_U L_{BU}(\hat{R}; \theta_U^{(k)}, \theta_I^{(k)}),
\]

\[
L_{IAE}(\hat{R}; \theta_I^{(k)}) = L_{SIPW}(\hat{R}; \theta_I^{(k)}) + \lambda_I L_{BU}(\hat{R}; \theta_U^{(k)}, \theta_I^{(k)}),
\]

where \(\lambda_U \) and \(\lambda_I \) are the hyperparameters to control the importance of \(L_{BU} \).

Once model training is terminated, the biases of the two models are eliminated from the users’ and items’ perspectives. By unifying user preferences from different perspectives, we can improve model predictions [47, 57, 64]. Finally, we use the average of the predictions of the two models for the final rating.

\[
\hat{y}_{ui} = \frac{\hat{r}_{ui}(\theta_U) + \hat{r}_{ui}(\theta_I)}{2}.
\]
Datasets and preprocessing. Table 1 summarizes the statistics of the datasets after preprocessing. Among these datasets, the Coat and Yahoo! R3 datasets are specially designed to evaluate an unbiased setting. Specifically, their training set collected user feedback without special treatment (so it is likely to be biased), but the test set was carefully designed to be unbiased by explicitly asking for feedback for a pre-selected random set of items from each user. These two datasets are ideal for evaluating unbiased recommender models in a controlled setting. We also used four benchmark datasets, i.e., MovieLens (ML)-100K, ML-1M, ML-10M, and CiteULike, where the training and test datasets are inherently collected with click bias.

To account for implicit feedback, five datasets with explicit feedback (i.e., Coat1, Yahoo! R32, MovieLens3 (ML)-100K, ML-1M, and ML-10M) are converted into implicit feedback. We treat the items with four or higher scores as positive feedback and the remaining ratings are regarded as missing feedback. Unlike the other five datasets, CiteULike46 provides implicit feedback.

We conduct the following experiments with different settings:

- **MNAR-MAR**: Using four traditional datasets, we train and evaluate the recommender models under the MNAR assumption. Before splitting the dataset, we removed users who rated 10 or fewer items and items rated by 5 or fewer users. For each user, we randomly hold 80% and 20% as the training and test sets, respectively, and further split 30% of the training set into the validation set. Then, we evaluate the top-N recommendation for all unrated items.

- **Competing models**: We compare BISER with three conventional recommender models, i.e., MF [17], UAE [41], and IAE [41], and five unbiased recommender models, i.e., RelMF [39], AT [37], CJMF [63], PD [61], and MACR [54]. Note that several methods [4, 5, 37, 39, 54, 61–63] have been proposed to remove the bias in implicit feedback, but some methods (e.g., [4, 5, 62]) require MAR training data; therefore, they are not included.

Matrix Factorization (MF) [17]: The most popular recommender model for using linear factor embeddings in which the user preference score is predicted by a product of user- and item-embedding matrices.

User-based AutoEncoder (UAE) [41]: This model learns non-linear item-item correlations for the users with a set of items using autoencoders.

Item-based AutoEncoder (IAE) [41]: By transposing the rating matrix, this model learns non-linear user-user correlations, using autoencoders.

Relevance Matrix Factorization (RelMF) [39]: This utilizes the MNAR scenario for model training, effectively removing the bias caused by item popularity. The IPW-based model estimates the propensity scores using a heuristic function for item popularity.

Asymmetric Tri-training (AT) [37]: It uses two pre-trained models to generate reliable pseudo-ratings and the other model is trained with pseudo-ratings to make final predictions. Note that RelMF [39] is used for the pre-trained models.

Combinational Joint Learning for Matrix Factorization (CJMF) [63]: As an IPW-based model, it introduces a joint training framework to estimate both unbiased relevance and unbiased propensity using multiple sub-models. For our datasets, we set the number of sub-models to eight. It is one of the most compelling competitors due to the performance advantage of unbiased recommender learning.

Popularity-bias Deconfounding (PD) [61]: This uses a causal graph to remove confounding popularity bias through causal intervention. It is implemented using BPRMF [35], as mentioned in [61].

Table 1: Statistics of the datasets after preprocessing.
Datasets
Coat
Yahoo! R3
ML-100K
ML-1M
ML-10M
CiteULike

1[https://www.cs.cornell.edu/~schnabts/mnar/]
2[http://webcope.sandbox.yahoo.com/]
3[http://grouplens.org/datasets/movielens/]

Algorithm 1: Bilateral self-unbiased recommender (BISER)

Input: Dataset \(\mathcal{D} = (\mathcal{D}_u, \mathcal{D}_i, \mathcal{D}_j) \), hyper-parameters \(\lambda_U, \lambda_I \), the number of iterations \(K \)

Output: Predicted matrix \(\hat{R} \)

1. Initialize \(\theta_U^{(0)} \) and \(\theta_I^{(0)} \) for user- and item-based AE.
2. for \(k = 1 \) to \(K \) do
 3. Update \(\theta_U^{(k)} \) for the user-based AE using Eq. (14).
 4. Update \(\theta_I^{(k)} \) for the item-based AE using Eq. (15).
3. Compute \(\hat{R} \) for user- and item-based AE using Eq. (16).
4. return \(\hat{R} \)
Table 2: Accuracy comparison of ours and baseline models on Coat and Yahoo! R3. The best is in bold font, * and ** indicate \(p < 0.005 \) and \(p < 0.001 \) for a one-tailed t-test, † indicates the best baseline model, i.e., CJMF for t-test and performance gain. Gain indicates an improvement ratio to CJMF. The results are averaged over 10 and 5 runs on Coat and Yahoo! R3, respectively.

Datasets	Models	NDCG@N	MAP@N	Recall@N						
		\(N = 1 \)	\(N = 3 \)	\(N = 5 \)	\(N = 1 \)	\(N = 3 \)	\(N = 5 \)	\(N = 1 \)	\(N = 3 \)	\(N = 5 \)
Coat	MF [17]	0.3748	0.3441	0.3714	0.1346	0.2100	0.2566	0.1346	0.2592	0.3705
	RelMF [39]	0.3959	0.3659	0.3922	0.1484	0.2821	0.2758	0.1484	0.2819	0.3926
	AT [37]	0.4017	0.3652	0.3912	0.1517	0.2286	0.2753	0.1517	0.2772	0.3908
	PD [61]	0.3997	0.3543	0.3737	0.1433	0.2182	0.2606	0.1433	0.2622	0.3627
	MACR [54]	0.4176	0.3798	0.3973	0.1559	0.2389	0.2834	0.1559	0.2875	0.3870
	CJMF [63]	0.4093	0.3856	0.4097	0.1500	0.2408	0.2900	0.1500	0.2984	0.4075
	BISER (ours)	0.4303	0.4109	0.4378	0.1725	0.2663	0.3192	0.1725	0.3185	0.4367
Yahoo! R3	MF [17]	0.1797	0.2081	0.2411	0.1071	0.1688	0.1970	0.1071	0.2225	0.3040
	RelMF [39]	0.1873	0.2122	0.2433	0.1102	0.1728	0.2014	0.1102	0.2266	0.3080
	AT [37]	0.1912	0.2179	0.2506	0.1149	0.1786	0.2071	0.1149	0.2310	0.3125
	PD [61]	0.1994	0.2308	0.2647	0.1211	0.1901	0.2207	0.1211	0.2459	0.3297
	MACR [54]	0.2044	0.2274	0.2571	0.1243	0.1882	0.2154	0.1243	0.2382	0.3135
	CJMF [63]	0.2151	0.2426	0.2715	0.1320	0.2018	0.2291	0.1320	0.2564	0.3297
	BISER (ours)	0.2323	0.2608	0.2894	0.1446	0.2193	0.2479	0.1446	0.2748	0.3477

- **Model-Agnostic Counterfactual Reasoning (MACR)** [54]:
 This utilizes a cause-effect view by considering the direct effect of item properties on rank scores to remove the popularity bias. We report MACR using LightGCN [13] because LightGCN is better than BPRMF [35].

Evaluation metrics. For top-N recommendation evaluation, we use three popular metrics: Normalized Discounted Cumulative Gain (NDCG@N), Mean Average Precision (MAP@N), and Recall@N. We focus on measuring all metrics for the highest ranked items because predicting high-ranked items is critical. Considering the number of available ratings in the test set, we use \(N = \{1, 3, 5\} \) for Coat and Yahoo! R3 datasets, while \(N = \{10, 30, 50\} \) for ML-100K, ML-1M, ML-10M, and CiteULike datasets.

For MAR evaluation (Coat and Yahoo! R3), we adopt the Average-Over-All (AOA) evaluation, which is the conventional metric that evenly normalizes the scores for all items. For the MNAR evaluation (MovieLens and CiteULike), we use both AOA and unbiased evaluations. Yang et al. [59] recently suggested an unbiased evaluation scheme and applies bias normalization to test scores. We follow the unbiased evaluation [59] and use \(\gamma = 2 \) for the normalization parameter.

We employ AOA and unbiased evaluation metrics in [59]:

\[
\hat{R}_{AOA}(\hat{Z}) = \frac{1}{|U|} \sum_{u \in U} \frac{1}{|S_u|} \sum_{i \in S_u} c(\hat{Z}_{ui}),
\]

\[
\hat{R}_{unbiased}(\hat{Z}) = \frac{1}{|U|} \sum_{u \in U} \frac{1}{|S_u|} \sum_{i \in S_u} \frac{c(\hat{Z}_{ui})}{P_l},
\]

where \(S_u \) denotes a set of clicked item to user \(u \) in the test set and \(\hat{Z}_{ui} \) denotes the predicted ranking of item \(i \) to user \(u \). Also, the function \(c(\cdot) \) denotes any top-N scoring metrics (i.e., NDCG@N, MAP@N, and Recall@N), and the propensity \(P_l \) is calculated by the popularity of the item \(i \). Because MNAR-MNAR evaluation does not have the ground-truth for unbiased test sets, it is difficult to measure the unbiased evaluation in eliminating the exposure bias of items. As an alternative, we evaluate whether the popularity bias is effectively eliminated, as done in [59], which is a more favorable setting for existing studies [37, 39] that handle item popularity bias.

Reproducibility. For all models, trainable weights are initialized using Xavier’s method [12]. Except for PD [61] and MACR [54], we optimized using Adamgrad [10], and for PD [61] and MACR [54], we optimized using Adam [21]. For the MF-based models, the batch size is set to 1,024 (210) for Coat, Yahoo! R3, and MovieLens, and 16,384 (214) for CiteULike. Meanwhile, for the LightGCN-based model, the batch size is set to 2,048 and 8,192 for Coat and the remaining datasets, respectively. For the AE-based models, the batch size is set to one user/item by default. We performed a grid search to tune the latent dimension over \{50, 100, 200, 400\} for the AE-based models and \{32, 64, 128, 256\} for the MF- and LightGCN-based models. We also searched for the learning rate within \{2e-1, 1e-5\} and L2-regularization within the range of \{1e-4, 1e-14\} for each model. For the proposed BISER, we tuned two coefficients, \(\lambda_U \) and \(\lambda_I \), between \{0.1, 0.5, 0.9\}. Additionally, we set the maximum training epoch to 500. We also perform early stopping with five patience epochs for NDCG@3 and NDCG@30 in the MNAR-MAR and MNAR-MNAR settings, respectively. To implement RelMF [39],
we obtained several intriguing findings. First, BISER demonstrates
Table 3: Accuracy comparison for the effect of self-inverse
in eliminating the bias than existing unbiased models because the
of-the-art performance. This indicates that BISER is more effective
performance gains across all metrics by
6.56-14.99% on Coat and 5.47-9.58% on Yahoo! R3, achieving state-of-the-art performance. This indicates that BISER is more effective in eliminating the bias than existing unbiased models because the
performance among the existing models.

Datasets	Models	NDCG@1	NDCG@3	NDCG@5
Coat	MF	0.3748	0.3441	0.3714
	+ Rel-IPW	0.3959	0.3695	0.3922
	+ Pre-SIPW	0.4162	0.3867	0.4120
	+ SIPW	0.3993	0.3686	0.3963
	UAE	0.3610	0.3546	0.3815
	+ Rel-IPW	0.3876	0.3720	0.4031
	+ Pre-SIPW	0.3990	0.3766	0.3982
	+ SIPW	0.4262	0.3973	0.4259
	IAE	0.3655	0.3560	0.3812
	+ Rel-IPW	0.3990	0.3716	0.3951
	+ Pre-SIPW	0.4286	0.3939	0.4183
	+ SIPW	0.4334	0.3949	0.4172
	UAE	0.1881	0.2176	0.2496
	IAE	0.2137	0.2355	0.2653
	+ Rel-IPW	0.2466	0.2398	0.2708
	+ Pre-SIPW	0.2120	0.2360	0.2645
	+ SIPW	0.2190	0.2504	0.2802

CJMF [63], PD [61], and MACR [54], we used the codes provided by each author. Our code and detailed hyperparameter settings are available at https://github.com/Jaewoong-Lee/sigir_2022_BISER.

5 EXPERIMENTAL RESULTS

In this section, we report extensive experimental results for BISER in both the MNAR-MAR and MNAR-MNAR settings. We also analyze the performance of BISER by item group and the effectiveness of each component (i.e., SIPW and BU) in the MNAR-MAR setting. For the MNAR-MAR setting, we reasonably validate the effectiveness of BISER. For the MNAR-MNAR setting, we also evaluate whether BISER is still effective in general evaluation environments.

5.1 MNAR-MAR Evaluation

Performance comparison. Table 2 reports the comparison results between BISER and the other competing models. From these results, we obtained several intriguing findings. First, BISER demonstrates significant and consistent performance gains across all metrics by 6.56-14.99% on Coat and 5.47-9.58% on Yahoo! R3, achieving state-of-the-art performance. This indicates that BISER is more effective in eliminating the bias than existing unbiased models because the

Figure 3: ItemPrecision@1 in different item groups on Coat and Yahoo! R3. All items are sorted by item popularity and divided into three groups with equal number of interactions. For Coat, tail, mid and head are the sets of items with 1-7, 7-12, and 12+ interactions, respectively. For each group, the number of items is 203, 66, and 31, respectively. For Yahoo! R3, tail, mid and head are the sets of items with 3-140, 140-700, and 700+ interactions, respectively, and the number of items for each group is 800, 168, and 32, respectively.

high performance on MAR test sets indicates that the bias is successfully removed, or at least, our proposed model is more robust to bias than the competing models. Second, the unbiased models (RelMF, AT, PD, MACR, CJMF, and BISER) generally outperform the traditional models (UAE, IAE, and MF). This potentially implies that eliminating bias in the click data can improve the user experience. Finally, among the existing unbiased models, CJMF achieves better accuracy than other MF-based models due to an ensemble effect from eight sub-models and MACR [54] also shows competitive performance among the existing models.

Performance analysis. To analyze where the performance improvement of BISER comes from, we investigate the performance of each item group according to item popularity. Specifically, we sort all items based on their popularity and split them into three groups (i.e., tail, mid, and head) with an equal number of interactions. Figure 3 shows the average of ItemPrecision@1 for each item group. ItemPrecision@N refers to the ratio of the items that appear in the relevance set to the top-N items for all users.

\[
\text{ItemPrecision}(i)@N = \frac{\sum_{u \in U} \mathbb{1}\{Z_{ui} \leq N \cap r_{ui} = 1\}}{\sum_{u \in U} \mathbb{1}\{r_{ui} \leq N\}}. \tag{19}
\]

As depicted in Figure 3, each model shows a different performance trend in the item groups. BISER shows a significantly higher performance than the baselines in the tail group. This means that BISER correctly predicts at user’s preference for unpopular items. RelMF [39] and AT [37] show similar performance over the three groups, whereas PD [61] and MACR [54] show relatively high performance in the mid and head groups. This indicates that the performance gains of PD [61] and MACR [54] mainly come from the popular item group. That is, BISER removes bias more effectively than other competing models, including the causal graph-based method. In addition, the higher the popularity (i.e., tail → mid →
Effect of self-inverse propensity weighting (SIPW). To validate the effectiveness of SIPW, we compare four different groups of models: (i) naïve models (i.e., MF, UAE, and IAE); (ii) models adopting the IPW module from Saito et al. [39] (i.e., MF, UAE, and IAE + Rel-IPW); (iii) models with the pre-defined propensity as a prediction of the pre-trained model with biased click data (i.e., MF, UAE, and IAE + Pre-SIPW); and (iv) models with SIPW (i.e., MF, UAE, and IAE + SIPW). Because of its model-agnostic properties, our proposed SIPW method can be applied to both MF- and AE-based models.

Table 3 shows that the SIPW outperforms Rel-IPW by up to 9.96% in Coat and up to 4.44% in Yahoo! R3 over NDCG@1, 3, and 5. This suggests that SIPW helps eliminate the bias regardless of the backbone models. Additionally, the proposed method shows similar performance compared to pre-SIPW. This means that our approach of gradually removing bias without pre-training is efficient and effective in removing bias. In particular, the AE-based models have higher performance improvements than MF-based models. Because the AE-based models represent non-linearity by their modeling power, we can further enjoy high-performance gains.

Effect of bilateral unbiased learning (BU). We design four different baselines: (i) AE-based naïve models (UAE and IAE); (ii) models with BU (UAE and IAE + BU); (iii) models with SIPW (UAE and IAE + SIPW); and (iv) models with both SIPW and BU (UAE and IAE + SIPW + BU). Figure 4 indicates that adopting BU in all models, except for IAE on Yahoo! R3, improves performance. Specifically, IAE + SIPW + BU is improved by 4.11% over IAE + SIPW on Coat and UAE + SIPW + BU over UAE + SIPW by 3.48% on Yahoo! R3 in terms of NDCG@3. Although IAE slightly outperforms IAE + BU in Figure 4(b), IAE + SIPW + BU outperforms IAE + SIPW on Yahoo! R3 by 2.61% in terms of NDCG@3. Because BU is adopted in the naïve models without removing bias, the bias of IAE + BU could be intensified, which might worsen the performance.

Effect of coefficients λ_U and λ_I. Figure 5 shows the result of the grid search on Coat and Yahoo! R3 datasets with two coefficients λ_U and λ_I in the range $\{0.1, 0.5, 0.9\}$. Specifically, the NDCG@5 scores of BISER are between 0.4331–0.4378 in the Coat and 0.2890–0.2911 in the Yahoo! R3. For Coat, the proposed model tends to show high performances when λ_U and λ_I are relatively small values. For Yahoo! R3, our model tends to have high performance when λ_U and λ_I are large and small, respectively. Based on the performance trends, we set $\lambda_U = 0.1, \lambda_I = 0.5$ in Coat, and $\lambda_U = 0.9, \lambda_I = 0.1$ in Yahoo! R3. These results support the notion that the effects of SIPW and BU can vary depending on datasets.

5.2 MNAR-MNAR Evaluation

Performance comparison with unbiased evaluation. In the MNAR-MNAR setting, the test set is biased. We use the unbiased evaluation proposed by Yang et al. [59] to measure the debiasing effect on the biased test set.

Figure 6 compares the performance of BISER with the baselines. We observe that BISER clearly and consistently outperforms the existing models. Specifically, BISER improved by 2.29, 19.32, 7.67, and 1.98% over the second-best models (i.e., CJMF, PD, PD, and MACR) in ML-100K, ML-1M, ML-10M, and CiteULike, respectively, in terms of NDCG@50. This means that BISER effectively removes item bias regardless of data size and data type. Among the baselines, PD [61] and MACR [54], using causal graphs, generally exhibit higher performance than IPW-based methods (i.e., RelMF [39] and CJMF [63]). This indicates that PD [61] and MACR [54] eliminate popularity bias.

Performance comparison with AOA evaluation. In the MNAR-MNAR setting, AOA evaluation is the conventional evaluation protocol. As depicted in Figure 7, even in biased validation settings,

\[\text{NDCG@5} \]

\[
\begin{array}{cccc}
\lambda_U & \lambda_I & 0.9 & 0.437 \\
0.1 & 0.9 & 0.435 & 0.290 \\
0.5 & 0.9 & 0.431 & 0.289 \\
\end{array}
\]

\[\text{NDCG@5} \]

\[
\begin{array}{cccc}
\lambda_U & \lambda_I & 0.9 & 0.291 \\
0.1 & 0.9 & 0.290 & 0.289 \\
0.5 & 0.9 & 0.289 & 0.289 \\
\end{array}
\]

(a) Coat

(b) Yahoo! R3

Figure 5: Heatmap of hyperparameters λ_U and λ_I on Coat and Yahoo! R3. They are the coefficients in the proposed loss functions in Eqs. (14) and (15). The results are averaged over 10 and 5 runs on Coat and Yahoo! R3, respectively.

Figure 4: Effect of self-inverse propensity weighting (SIPW) and bilateral unbiased learning (BU) on Coat and Yahoo! R3. The suffix ‘+ SIPW’ indicates adopting SIPW; the suffix ‘+ BU’ indicates adopting BU; and the suffix ‘+ SIPW + BU’ indicates adopting both SIPW and BU. The results are averaged over 10 and 5 runs on Coat and Yahoo! R3, respectively. We also observe similar trends with other metrics, NDCG@1 and NDCG@5.

head), the higher is the overall performance of all the baselines. This shows that all the models more easily predict users’ preferences for popular items than for unpopular items because popular items tend to be biased in training recommender models.
BISER achieved a competitive performance over the other methods. Specifically, BISER performs best on the ML-100K and ML-1M datasets. In the ML-10M and CiteULike datasets, BISER shows the second-best model with a marginal difference from the best model. We conjecture that the success of BISER in MNAR-MNAR settings is possible by leveraging heterogeneous semantics using user- and item-based autoencoders via ensemble effects.

6 RELATED WORK

Unbiased learning has been widely proposed for causal inference [2, 4, 18–20, 24, 31, 33, 37–40, 48–52, 54, 61–63] and missing data analyses [16, 25, 27–29, 43, 53]. It has since been adopted to bridge the gap between interaction and relevance data in the information retrieval (IR) community, that is, unbiased learning-to-rank (LTR). Unbiased recommender learning, inspired by unbiased LTR, has been actively studied to eliminate bias from explicit and implicit feedback.

Unbiased learning with explicit feedback. Although explicit feedback provides both positive and negative samples, it is based on the MNAR assumption. To address this problem, existing studies are categorized into three types: imputation-based, IPW-based, and meta-learning-based methods. First, imputation-based methods [16, 27–29, 43, 53] estimate missing ratings to reduce the biased statistics of user ratings. Steck [43] imputed a predefined constant value to all missing ratings. Some studies utilized various recommender models to impute different ratings: Hernández-Lobato et al. [16] and Wang et al. [53] used an MF model; Marlin et al. [29] used a multinomial mixture model, and Marlin and Zemel [28] used a conditional Bernoulli model. Ma and Chen [27] adopted nuclear-norm-constrained matrix completion algorithm [9] for rating imputation. Second, IPW-based methods [40, 51, 52] estimate propensity scores for user-item ratings. Schnabel et al. [40] first adopted the IPW method and predicted the propensity score using Naive Bayes or logistic regression. Wang et al. [52] trained a propensity estimator with few unbiased ratings. In addition, Wang et al. [51] combined IPW and imputation methods to eliminate bias and take advantage of both methods. Recently, a meta-learning-based method [37] was adopted to overcome the high-variance problem of IPW. Saito [37] trained a model using the output of one of multiple models as unbiased pseudo-labels.

Unbiased learning with implicit feedback. Unlike explicit feedback, implicit feedback provides only observed feedback. It is crucial to design an exposure bias for these items. Specifically, exposure bias can be considered for both user- and model-oriented reasons. Because users tend to recognize popular items, user clicks are biased towards popular items, i.e., popularity bias. To eliminate the popularity bias, Liang et al. [25] determined the weight based on the prior probability of exposure. In addition, [23, 33, 38, 39, 63] used an IPW-based method to remove bias. While [38, 39] simply utilized the number of ratings per item (i.e., item popularity) as the propensity score, Zhu et al. [63] used an additional model to estimate the propensity score. Qin et al. [33] also introduced a propensity estimator that utilized additional attributes related to the recommender model (e.g., user interface of the application and type of recommender model). Lee et al. [23] introduced a propensity score to both unclicked and clicked user feedback. Chen et al. [5] used small unbiased feedback to eliminate bias. Additionally, causal embedding- and graph-based training methods [4, 54, 61, 62] have been introduced to overcome the sensitivity of IPW strategies.
Bonner and Vasile [4] introduced causal embedding using small uniformly collected feedback. Zheng et al. [62] introduced causal embedding and causal graph to disentangle user interests and conformity with small unbiased feedback. Wei et al. [54] designed a causal graph with the item and user priors and Zhang et al. [61] used causal intervention using a causal graph to eliminate bias. In contrast, our proposed method eliminates exposure bias caused by recommender models without additional assumptions for causality and model training.

7 CONCLUSION
This paper proposes a novel unbiased recommender model, namely Bilateral SELF-unbiased Recommender learning (BISER). To the best of our knowledge, this is the first paper to introduce self-inverse propensity weighting to eliminate exposure bias of items during model training. Then, we employed bilateral learning that takes advantage of user- and item-based autoencoders with heterogeneous information, capturing different hidden correlations across users/items. This process helped alleviate high variance in the estimated inverse propensity scores. Extensive experiments demonstrated that the BISER consistently outperformed existing unbiased recommender models in two evaluation protocols: MNAR-MAR and MNAR-MNAR settings.

ACKNOWLEDGMENTS
This work was supported by the National Research Foundation of Korea (NRF) (2018R1A5A1060384) and by this work was supported by the Institute of Information & communications Technology Planning & evaluation (IITP) funded by the Korea government (MSIT) (No. 2019-0-00421, AI Graduate School Support Program). Joonseok Lee was supported by New Faculty Startup Fund from Seoul National University and research grants from the NRF [2021H1D3A2A03038607, 2022R1C1C101019627].

REFERENCES
[1] Gediminas Adomavicius and Alexander Tuzhilin. 2005. Toward the Next Generation of Recommender Systems: A Survey of the State-of-the-Art and Possible Extensions. IEEE Trans. Knowl. Data Eng. 17, 6 (2005), 734–749.
[2] Qingyao Ai, Keping Bi, Cheng Liu, Jiafeng Guo, and W. Bruce Croft. 2018. Unbiased Learning to Rank with Unbiased Propensity Estimation. In SIGIR. 385–394.
[3] Kamyar Azizzadenesheli, Angi Liu, Fanny Yang, and Animashree Anandkumar. 2019. Regularized Learning for Domain Adaptation under Label Shifts. In ICLR (Poster). OpenReview.net.
[4] Stephen Bonner and Florian Vlassis. 2018. Causal embeddings for recommendation. In RecSys. ACM, 104–112.
[5] Jiawei Chen, Hande Dong, Yang Qiu, Xiangnan He, Xin Xin, Liang Chen, Guli Lin, and Keping Yang. 2021. AutoDebias: Learning to Debias for Recommendation. In SIGIR. 21–30.
[6] Jiawei Chen, Hande Dong, Xiang Wang, Fuli Feng, Meng Wang, and Xiangnan He. 2020. Bias and Debias in Recommender System: A Survey and Future Directions. CoRR abs/2010.03240 (2020).
[7] Minjin Choi, Yoonki Jeong, Joonseok Lee, and Jongwuk Lee. 2021. Local Collaborative Autoencoders. In WSDM. 734–742.
[8] Minjin Choi, Jinhong Kim, Joonseok Lee, Hyenjung Shim, and Jongwuk Lee. 2022. S-Walk: Accurate and Scalable Session-based Recommendations with Random Walks. In WSDM.
[9] Mark A. Davenport, Yaniv Plan, Elad Hazan, and Yoram Singer. 2010. Adaptive Subgradient Methods for Online Learning and Stochastic Optimization. In COLT. 257–269.
[10] Alexandre Gibotte, Clément Calauzènes, Thomas Nedelec, Alexandre Abraham, and Simon Dollé. 2018. Offline A/B Testing for Recommender Systems. In WSDM. 198–206.
[11] Xavier Glorot and Yoshua Bengio. 2010. Understanding the difficulty of training deep feedforward neural networks. In AISTATS, Vol. 9. 249–256.
[12] Xiaoguang He, Kuan Deng, Xiang Wang, Yan Li, Yong-Dong Zhang, and Meng Wang. 2020. LightGCN: Simplifying and Powering Graph Convolution Network for Recommendation. In SIGIR. 639–648.
[13] Xiaoguang He, Xiaoyu Du, Xiang Wang, Feng Tian, Jinhuai Tang, and Tat-Seng Chua. 2018. Out-Of-Product-based Neural Collaborative Filtering. In IJCAI. 2227–2233.
[14] Xiaoguang He, Lizi Liao, Hanwang Zhang, Liqiang Nie, Xia Hu, and Tat-Seng Chua. 2017. Neural Collaborative Filtering. In WWW 173–182.
[15] J.M. Hernández-Lobato, Neil Houlsby, and Z. Ghahramani. 2014. Probabilistic Matrix Factorization with Non-Random Missing Data. In ICML. II–1512–II–1520.
[16] Yifan Hu, Yehuda Koren, and Chris Volinsky. 2008. Collaborative Filtering for Implicit Feedback Datasets. In ICDM. 263–272.
[17] Ziniu Hu, Yang Wang, Q. Feng, and Hang Li. 2019. Unsupervised LambdaMART: An Unsupervised Pairwise Learning-to-Rank Algorithm. In WWC. 2830–2836.
[18] Myeongho Jeon, Daeyoung Kim, Woohyun Lee, Myungjoo Kang, and Joonseok Lee. 2022. A Conservative Approach for Unbiased Learning on Unknown Biases. In CVPR.
[19] Thorsten Joachims, Adith Swaminathan, and Tobias Schnabel. 2017. Unbiased Learning-to-Rank with Biased Feedback. In WSDM. 781–789.
[20] Diederik P. Kingma and Jimmy Ba. 2015. Adam: A Method for Stochastic Optimization. In ICLR.
[21] Joonseok Lee, Seungyeon Kim, Guy Lebanon, and Yoram Singer. 2013. Local low-rank matrix approximation. In ICDM. 82–90.
[22] Jae-woong Lee, Seongmin Park, and Jongwuk Lee. 2021. Dual Unbiased Recommender Learning for Implicit Feedback. In SIGIR. 1647–1651.
[23] Jae-won Lee, Young-In Song, Deokmin Haam, Sanghoon Lee, Woo-Sik Choi, and Jongwuk Lee. 2020. Bridging the Gap between Click and Relevance for Learning-to-Rank with Minimal Supervision. In CIKM ACM. 2109–2112.
[24] Dawen Liang, Laurent Charlin, James McInerney, and David M. Blei. 2016. Modeling User Exposure in Recommendation. In WWW 951–961.
[25] Zachary C. Lipton, Yu-Xiang Wang, and Alexander J. Smola. 2018. Detecting and Correcting for Label Shift with Black Box Predictors. In ICML (Proceedings of Machine Learning Research), Vol. 80. PMLR. 3328–3336.
[26] Wei Ma and George H. Chen. 2019. Missing Not at Random in Matrix Completion: The Effectiveness of Estimating Missingness Probabilities Under a Low Nuclear Norm Assumption. In NeurIPS. 14871–14880.
[27] Benjamin M. Marlin and Richard S. Zemel. 2009. Collaborative prediction and ranking with non-random missing data. In RecSys. 5–12.
[28] Benjamin M. Marlin, Richard S. Zemel, Sam T. Roweis, and Malcolm Slaney. 2007. Collaborative Filtering and the Missing at Random Assumption. In UAI. 267–275.
[29] Huossein Mobahi, Mehrdad Farajtabar, and Peter L. Bartlett. 2020. Self-Distillation Amplifies Regularization in Hilbert Space. In NeurIPS.
[30] Zohreh Ovaisi, Ragib Ahsan, Yifan Zhang, Kathryn Vasilakli, and Elena Zheleva. 2020. Correcting for Selection Bias in Learning-to-rank Systems. In WWW. 1863–1873.
[31] Frans Prathama, Wenny Franciska Senjaya, Bernardo Nagroho Yahya, and Jie-Zheng Wu. 2021. Personalized recommendation by matrix co-factorization with multiple implicit feedback on pairwise comparison. Comput. Ind. Eng. 152 (2021), 107933.
[32] Zhen Qin, Suming J. Chen, Donald Metzler, Yongwoo Noh, Jingzheng Qin, and Xuanhui Wang. 2020. Attention-Based Propensity for Unbiased Learning in Recommender Systems: Algorithm and Case Studies. In KDD. 2579–2587.
[33] Zhen Qin, Suming J. Chen, Donald Metzler, Yongwoo Noh, Jingzheng Qin, and Xuanhui Wang. 2020. Correcting for Selection Bias in Learning-to-rank Systems. In WWW. 1863–1873.

Frans Prathama, Wenny Franciska Senjaya, Bernardo Nagroho Yahya, and Jie-Zheng Wu. 2021. Personalized recommendation by matrix co-factorization with multiple implicit feedback on pairwise comparison. Comput. Ind. Eng. 152 (2021), 107933.

Zhen Qin, Suming J. Chen, Donald Metzler, Yongwoo Noh, Jingzheng Qin, and Xuanhui Wang. 2020. Attention-Based Propensity for Unbiased Learning in Recommender Systems: Algorithm and Case Studies. In KDD. 2579–2587.

Zhen Qin, Suming J. Chen, Donald Metzler, Yongwoo Noh, Jingzheng Qin, and Xuanhui Wang. 2020. Correcting for Selection Bias in Learning-to-rank Systems. In WWW. 1863–1873.
