A cardioprotective insight of the cystathionine γ-lyase/hydrogen sulfide pathway

Steve Huang a, Hua Li a, Junbo Ge a,c,⁎

a Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China
b Departments of Physiology and Medicine/CVRL, UCLA School of Medicine, Los Angeles, CA 90095, USA
c Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China

A R T I C L E I N F O

Article history:
Received 2 August 2014
Received in revised form 29 November 2014
Accepted 20 January 2015
Available online 7 February 2015

Keywords:
Cystathionine γ-lyase
Hydrogen sulfide
Atherosclerosis
Vasorelaxation
Angiogenesis
Ischemia–reperfusion injury

A B S T R A C T

Traditionally, hydrogen sulfide (H2S) was simply considered as a toxic and foul smelling gas, but recently H2S has been brought into the spotlight of cardiovascular research and development. Since the 1990s, H2S has been mounting evidence of physiological properties such as immune modification, vascular relaxation, attenuation of oxidative stress, inflammatory mitigation, and angiogenesis. H2S has since been recognized as the third physiological gaseous signaling molecule, along with CO and NO [65,66]. H2S is produced endogenously through several key enzymes, including cystathionine γ-lyase (CBE), cystathionine γ-lyase (CSE), and 3-mercaptoppyruvate sulfurtransferase (MST)/cysteine aminotransferase (CAT). These specific enzymes are expressed accordingly in various organ systems and CSE is the predominant H2S-producing enzyme in the cardiovascular system.

The cystathionine γ-lyase (CSE)/H2S pathway has demonstrated various cardioprotective effects, including anti-atherosclerotic, anti-hypertension, pro-angiogenesis, and attenuation of myocardial ischemia–reperfusion injury. CSE exhibits its anti-atherosclerotic effect through 3 mechanisms, namely reduction of chemotactic factor inter cellular adhesion molecule-1 (ICAM-1) and CX3CR1, inhibition of macrophage lipid uptake, and induction of smooth muscle cell apoptosis via MAPK pathway. The CSE/H2S pathway’s anti-hypertensive properties are demonstrated via aortic vasodilation through several mechanisms, including the direct stimulation of KATP channels of vascular smooth muscle cells (VSMCs), induction of MAPK pathway, and reduction of homocysteine buildup. Also, CSE/H2S pathway plays an important role in angiogenesis, particularly in increased endothelial cell growth and migration, and in increased vascular network length. In myocardial ischemia–reperfusion injuries, CSE/H2S pathway has shown a clear cardioprotective effect by preserving mitochondria function, increasing antioxidant function, and decreasing infarction injury size. However, CSE/H2S pathway’s role in inflammation mitigation is still clouded, due to both pro and anti-inflammatory results presented in the literature, depending on the concentration and form of H2S used in specific experiment models.

© 2015 The Authors. Published by Elsevier Ireland Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Hydrogen sulfide (H2S) has long been known for its toxic and foul smelling properties, but has recently gained significant attention for its physiological regulatory role in the human body. Since the late 1990s, H2S has continuously been proven to exhibit distinctive functions regarding vascular tone [10–27], inflammatory process [51–64], post-myocardial infarction remodeling [37–50], angiogenesis [29–64], cardiovascular remodeling [33], post-infarct remodeling [51–64], and various experiment models.

Abbreviations: Akt, protein kinase B; BCA, brachiocephalic artery; CAM, choioallantoic membrane; CBE, cystathionine γ-lyase; CCL2, chemokine (C-C motif) ligand 1; CSE, cystathionine γ-lyase; CLP, cecal ligation and puncture; CSE, cystathionine γ-lyase; CSE KO, CSE knock out; CTO, chronic total occlusion; CXCL1, chemokine (C-X-C motif) ligand 1; CX3CR1, CX3C chemokine receptor 1; EC, endothelial cell; ERK, extracellular signal-regulated kinase; GAPDH, glyceraldehyde 3-phosphate dehydrogenase; GSH-Px, glutathione peroxidase; GYY4137, morpholin-4-Ium-4-methoxyphenyl (morpholino) phosphinodithioate; H2S, hydrogen sulfide; HUVECs, human umbilical vein endothelial cells; ICAM-1, inter cellular adhesion molecule-1; IMT, intima-media complex thickness; LPS, lipopolysaccharide; s-NAME, N’-nitro-s-arginine methyl ester; MAPK, mitogen-activated protein kinase; MPO, myeloperoxidase; NF-κB, nuclear factor kappa-light-chain-enhancer of activated B cells; NF2, nuclear factor kappa-light-chain-enhancer of activated B cells; NOX2, NADPH oxidase 2; oxLDL, oxidized low density lipoprotein; PAG, DL-propagylglycine; PPAR-γ, peroxisome proliferator-activated receptor; PTEN, phosphatase and tensin homolog; PTP1B, protein tyrosine phosphatase, non-receptor type 1; ROS, reactive oxygen species; SAA, S-adenosylhomocysteine; SAM, S-adenosylmethionine; SMCs, smooth muscle cells; SOD, superoxide dismutase; S-diclofenac, 2-(2,6-dichlorophenyl) amino benzencarboxylic acid 4-(3H-1,2-dithiole-3-thione-5-Y)-phenyl ester; VEGF, vascular endothelial growth factor; VSMCs, vascular smooth muscle cells; MST, 3-mercaptoppyruvate sulfurtransferase.

⁎ Corresponding author at: Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, #180 Fenglin Road, Shanghai 200032, China. Tel.: +86 21 64041990 2745; fax: +86 21 64223006.

E-mail address: ge.junbo@zs-hospital.sh.cn (J. Ge).

http://dx.doi.org/10.1016/j.ijcha.2015.01.010
2352-9067/© 2015 The Authors. Published by Elsevier Ireland Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
and other physiological processes. Hence, H$_2$S has since been included in a family of physiological gaseous signaling molecule along with CO and NO [65,66] as small molecules that can freely pass through cell membranes to directly exert biological function by interacting with cellular components.

H$_2$S is produced intrinsically through 3 major enzymes in our body, namely the CSE, CBS, and 3-MST/CAT pathways. This review provides an overview of the innate production of H$_2$S and several aspects of H$_2$S function with a cardiocytoprotective focus, particularly on the CSE/H$_2$S pathway. The CSE/H$_2$S pathway has recently become one of the heated focuses of cardiovascular disease pathophysiology research.

2. Hydrogen sulfide in nature

H$_2$S is a naturally occurring colorless, corrosive, and flammable gaseous compound with the characteristic foul odor of rotten eggs under room temperature at low concentrations up to 30 ppm. The detectable order threshold for H$_2$S is as low as 1 ppm. The H$_2$S gas is produced naturally by anaerobic breakdown of sulfur-containing organic matter and is often associated with petroleum and natural gas refinement, chemical manufacture, and waste disposal industries.

Biologically, H$_2$S is considered a broad-spectrum poison, acting on several systems in the body, particularly devastating in the nervous system. H$_2$S is classified as a chemical asphyxiant, which forms a complex bond to the ferric moiety, causing inhibition of mitochondrial cytochrome oxidase, and thereby arresting aerobic metabolism, similar to cyanide toxicity. H$_2$S toxicity is further enhanced by its high lipid solubility which allows it to penetrate easily through phospholipid membranes. At concentrations above 100 ppm, H$_2$S affects a person's perception of smell by causing a rapid temporary paralysis of the olfactory nerves. At concentrations greater than 700 ppm, H$_2$S may cause sudden death [65,66].

3. Physiological production of H$_2$S

H$_2$S can be detected in a wide range of tissues and organs including the brain, thoracic aorta, lungs, liver, kidney, ileum, pancreatic islets, uterus, placenta and umbilical cord, and several other organs, suggesting a pleotropic role for the gaseous transmitter [65,66]. Endogenous H$_2$S produced in the human body has been attributed to three key enzyme pathways, namely the cystathionine γ-lyase (CSE), cystathionine β-lyase (CBS), and 3-mercaptoppyruvate sulfurtransferase (MST)/cysteine aminotransferase (CAT) pathways. The CSE enzyme is expressed in the cardiovascular system, predominantly the myocardium and vascular smooth muscle cells (VMSCs). The CBS enzyme can be found mostly in the central nervous system. MST and CAT are primarily expressed in the brain and vascular endothelium [67-77].

Physiological H$_2$S is produced predominantly through the metabolic pathways of sulfur-containing amino acids. Beginning with methionine, methionine loses a methyl group through the SAM-lyase pathway to form homocysteine. CBS then converts homocysteine to cystathionine and CSE converts cystathionine to l-cysteine and α-ketobutyrate [67-77].

Both CSE and CBS are cytosolic pyridoxal-5′-phosphatdependent enzymes that use l-cysteine as their principal substrate to form H$_2$S. CBS hydrolyzes l-cysteine to form l-serine and H$_2$S. CSE reacts with dimerized l-cysteine to form thiocteine, pyruvate, and NH$_3$. Thiocysteine in turn may nonenzymatically break down to form pyruvate and H$_2$S. Alternatively, thiocysteine may engage in a CSE-mediated reaction with another thiol compound (R-SH) to form Cyr-S-R and H$_2$S [67-77].

On the other hand, MST and CAT are both cytosolic and mitochondrial enzymes, with a majority distribution in the mitochondria. CAT catalyzes l-cysteine and α-ketoglutarate to form 3-mercaptoppyruvate and l-glutamate. 3-mercaptoppyruvate may be desulfurized by MST to form pyruvate and H$_2$S. Alternatively, 3-mercaptoppyruvate can be converted by CAT to thiosulfate and pyruvate. Thiosulfate may then oxidize GSH to form GSSG, SO$_4^{2-}$, and H$_2$S [67-77] (Fig. 1).

Once H$_2$S is formed, it is quickly broken down through chemical and enzymatic pathways. Methemoglobin may react with H$_2$S to form sulfhemoglobin, which acts as a metabolic sink for H$_2$S. Thiols–methytransferase may methylate H$_2$S to form dimethylsulfide and methanethiol. Furthermore, H$_2$S may be rapidly oxidized to thiosulfate in the mitochondria and subsequently be converted to sulfate and sulfate.

4. Physiological concentration of H$_2$S

The range of H$_2$S concentrations offered by the current literature has proven to be considerably inconsistent. H$_2$S concentration in the human blood and tissues shown in literature ranges from 2–160 μM [11,25,40,43,78–81]. Not only is this range so large that it encompasses a difference of several orders of magnitude, the entire detected range may itself be questioned for its validity. Free H$_2$S under the before mentioned concentrations is well above the detectable order threshold and yet our blood does not smell of the characteristic rotten egg smell of H$_2$S. The most widely used colorimetric detection method of methylene blue and sulfite-sensitive ion-selective electrodes are imperfect in its design. The detection assays are conducted in the presence of Fe$^{3+}$ in highly acidic environments, which may liberate multiple acid-labile sulfur species to generate exaggeratedly high values of detected H$_2$S. Other detection methods such as sulfide-sensitive fluorescent dye detection, gas chromatography, monobromobimane, and polarographic electrodes have made improvements in detection but differ greatly with detection limits and accuracy [67,95–98].

However, all the currently utilized detection methods all require the disruption of normal tissue physiology. Measuring H$_2$S from homogenates of tissue samples disregards the actual physiological compartmentalization of H$_2$S and cannot be used to reflect the localized concentration of H$_2$S in vivo. Recent developments in reaction-based fluorescent probe imaging have begun to detect H$_2$S in living cells and shedding light on the spatial distribution and localized concentration of H$_2$S [95–105].

5. Cystathionine γ-lyase (CSE)

The crucial enzyme for cardiovascular physiological production of H$_2$S is cystathionine γ-lyase (CSE), which is the predominantly expressed in the myocardium and vascular smooth muscle cells. The murine CSE gene can be traced to a 1.8 kb full-length cDNA containing an open reading frame of 1197 bp, which encodes a 436 kDa protein. The CSE gene is identified as a 35 kb mouse genomic fragment through λ genomic library screening. The CSE gene contains promoter regions, 12 exons, ranging in size from 53 to 579 bp and spanning over 30 kb, and exon/intron boundaries that are conserved with rat and human CSE [106] (Table 1).

The CSE protein (EC = 4.4.1.1) is a pyridoxal-phosphate-dependent enzyme that can be found in high concentrations particularly in the cytoplasm of heart cells and vascular smooth muscle cells. CSE has an optimal functional pH of 8.2 and pharmacokinetic parameters $K_m = 0.5$ mM for l-cystathionine, $K_m = 5.4$ mM for homocysteine, and $K_m = 3.5$ mM for cysteine. CSE is directly regulated by calmodulin and has broad substrate specificity.

CSE catalyzes the last step in the trans-sulfuration pathway, using homocysteine and cysteine as substrates to form lanthionine and hydrogen sulfide. Further, CSE also acts as cysteine-protein sulfhydrolase to regulate the functions of sulfur-containing protein such as those of GAPDH, PTP1N and NF-κB.

The CSE gene is also highly expressed in adult mouse liver and kidney. In newborn mouse liver and kidney, CSE expression steadily increases and peaks at approximately 3 weeks of age. From there on, CSE expression in the liver remains constant while CSE expression decreases dramatically in the kidney [106].
Through mouse CSE cDNA cloning and sequencing, GeneBank® accession number AY083352, the analysis has shown that the mouse CSE ORF is 92.5% identical with the rat sequence and is 81.6% identical with the human sequence[106].

6. Atherosclerosis

With respect to cardiovascular diseases, we now focus on the H2S forming enzyme CSE and cardiovascular pathophysiology. Atherosclerosis is a vascular pathology characterized by plaque formation in large and medium sized vessel. These plaques increase vessel rigidity, decrease vascular flow, and may lead to thrombosis in vital organs causing detrimental effects. Atherosclerosis is the result of a chronic inflammation process beginning with vascular remodeling, endothelial dysfunction, smooth muscle cell proliferation and migration, accumulation of cholesterol-rich lipoproteins. Atherosclerotic progression is then followed by recruitment of lipid-laden macrophages, also known as foam cells, to form a fibrous cap of collagen and smooth muscle cells, and a necrotic core rich in lipids[1]. Atherosclerotic lesion rupture may ensue as the result of mechanical damage, overwhelming plaque burden, or insufficiency of smooth muscle cell collagen formation to maintain plaque integrity. This lesion rupture releases matrix metalloproteins and necrotic lipid components causing an inflammatory and coagulative vascular response.

CSE is suggested to exhibit its anti-atherosclerotic effect through 3 mechanisms, namely the reduction of chemotactic factors inter cellular adhesion molecule-1 (ICAM-1) and CX3CR1, inhibition of macrophage lipid uptake, and induction of smooth muscle cell apoptosis via MAPK pathway[3-5] (Fig. 2).

The circulating form of ICAM-1 has been evaluated as a predictor of cardiovascular risk and is a marker for vascular inflammation in atherosclerosis. ICAM-1 is minimally expressed on normal endothelium, but can be found in significant quantities in atherosclerotic plaques[7]. Proliferation of ICAM-1 is associated with chemotaxis of inflammatory cells. Mani et al.[1] demonstrated that CSE knock out (CSE KO) mice fed with atherogenic diet displayed a 30-fold increase in ICAM-1 expression and increased atherosclerotic plaque size compared to wild type control. In a separate experiment, overexpression of CSE yielded a significant reduction in CX3CR1 and CX3CL1 expression, as well as reduction in PPAR-α dependent CX3CR1-mediated chemotaxis in stimulated macrophages. In atherogenic-diet mouse model, the CSE inhibitor DL-propaglyglycine (PAG) treatment group displayed a significant aortic atherosclerosis, including a significant increase in brachiocephalic artery (BCA) plaque size, common carotid artery intima–media complex thickness (IMT), and aortic arch IMT assessed by ultrasound biomicroscopy compared to control group. Histology analysis also revealed an obvious rise in BCA plaque area and lipid core[2].

Table 1

Sample	Subject	H2S concentration (μM)
Serum	Mouse [55]	23
	Rat [40,55]	30–46
Blood	Mouse [53,78,88–94]	7–80
	Rat [34,82–88]	7–63
	Human [11,34,40,43,78–81]	2–110
Brain	Rat [11,34]	50–160
	Human [11,34]	50–160
and gene expression particularly associated with growth, stress response, and apoptosis [6, 10, 11, 35, 73]. Additively, CSE-KO mice has shown increased SMC proliferation rate in vitro and in vivo, reduced phosphorylation of ERK1/2 in mesenteric SMCs and mesenteric artery tissue, and increased susceptibility to apoptosis induced by exogenous H2S at physiologically relevant concentrations [10].

7. Vasorelaxation

Hypertension is a chronic medical condition where the arterial blood pressure is elevated above 140/90 mm Hg. In all hypertensive illnesses, 90–95% of cases are categorized as primary hypertension, with risk factors such as advanced age, high sodium intake, obesity, stagnant lifestyle, excessive alcohol intake, stress, caffeine consumption, vitamin D deficiency, and a slew of genetic and environmental factors. Hypertension, as the term implies, puts increased pressure, or stress on the heart, which could lead to coronary arterial diseases, hypertensive heart diseases, peripheral arterial diseases, chronic kidney diseases, stroke, aneurysms, among other diseases.

The CSE/H2S pathway has been shown to exhibit aortic vasodilation effect through several mechanisms, including the direct stimulation of KATP channels of VSMC, induction of MAPK pathway, and reduction of homocysteine buildup, ultimately leading to vasodilation and lowering of blood pressure.

The primary vasodilatory effect of H2S can be attributed to the direct stimulation of KATP channels with subsequent hyperpolarization of aortic vascular smooth muscle in the mesenteric artery, aorta, and portal vein in rat animal model [10-28]. According to Zhao et al., intravenous bolus H2S injection triggered roughly a 30 second transient decrease in mean arterial blood pressure of 12–30 mm Hg [13]. This blood pressure lowering effect can be mimicked by penicillamine, a KATP channel opener, and antagonized by glibenclamide, a KATP channel blocker. Kohn et al. [14] have shown that the rat aortic ring contraction has a positive dose response to serotonin at 1–10 μmol/L and that combined incubation with PAG at 10 mmol/L for 30 min produces a more intensive contraction. Further evidence provided by Zhong et al. [15] shows that hypertension can be introduced in Wistar rats by oral administration N\textsuperscript{\textcircled{N}}-nitro-L-arginine methyl ester (L-NAME), which significantly inhibited CSE expression and H2S synthesis in the thoracic aorta. Other supportive observations include PAG treatment significantly increasing blood pressure in Sprague-Dawley rats and mice [11, 21], and the down regulation of CSE/H2S pathway during the development of hypertension in spontaneously hypertensive rat (SHR) models.

In CSE KO mice, besides an evident 80% reduction in H2S level in the serum, heart, and aorta, there is observed prominent hypertension of approximately 18 mm Hg higher than age-matched control at 12 weeks of age and reduced endothelium-dependent vasorelaxation [11]. However, CSE KO mice conversely showed a heightened sensitivity to exogenous H2S-induced vasorelaxation and greater H2S-induced decrease in blood pressure [13].

Additively, CSE’s apoptotic effects on VSMC also contribute to the lowering of blood pressure. The apoptotic effect of CSE/H2S pathway has already been described in the previous section. With reduced total VSMC number, the reduction of VMSC contractile force results in an overall decreased blood pressure [10, 11].

CSE’s antihypertensive effect is also associated with the reduction of homocysteine buildup. Homocysteine is a metabolite of methionine that can be further metabolized to form H2S in the transsulfuration pathway [17, 18]. Hyperhomocysteinemia, or elevated serum homocysteine levels, is an independent and graded risk factor associated with cardiovascular diseases, including hypertension. In hyperhomocysteinemia rat model, both serum CSE activity and H2S levels in the myocardium are significantly decreased [18]. In a separate study, the 10-week-old male CSE KO mice group has shown elevated plasma homocysteine and l-cysteine levels about 18 and 0.8 times, respectively, compared to age-matched wild type control [17].

8. Angiogenesis

Angiogenesis is a complex biological process characterized by extracellular matrix remodeling and changes in endothelial cell (EC) behavior that lead to increased growth, migration, and assembly into capillary structures [30–33]. In vitro study evidence shows H2S’s proangiogenic effect. Cai et al. [29] demonstrated that RF/6A transformed EC displayed an up to 100% increase in cell proliferation and up to 30% increase in migration.
under H₂S 6–600 μM concentration. In a separate study, exposure of human umbilical vein endothelial cells (HUVECs) to H₂S at 60 μM promotes an observable EC growth with 2-fold increase in cell number and sustained increase in ERK1/2 phosphorylation [30]. Furthermore, H₂S at 60 μM enhances capillary-like structure formation of ECs cultured on reduced growth factor Matrigel by roughly 34%. EC also displayed an approximately 4 fold increased cell migration under 60 μM H₂S as compared to control.

Another supportive evidence regarding CSE proangiogenic effect is related to VEGF, a well-established stimulator of angiogenesis. CSE siRNA transfected EC cells display an average decrease of CSE protein by 59.8 ± 6.7% and also showing attenuated MAPK, ERK1/2, and p38 pathways. CSE siRNA transfected EC cells stimulated with VEGF displays a 60% decreased cell migration compared to controls under the same conditions. Further, aortic ring explants from CSE KO shows a roughly 80% decreased new microvessel formation compared to WT control under both vehicle and VEGF stimulation [31].

In vivo study demonstrates the angiogenic effect of H₂S in chick chorioallantoic membrane (CAM) model. Vascular network length is measured after 48 h of treatment with H₂S and PAG. Membranes treated with 240 pmol/egg H₂S show an average 40% increase in vessel length while administration of 300 pmol/egg PAG displayed a roughly 50% decrease in vessel branching points and 25% decrease in vessel length as compared to control [31]. It has long been suspected but only recently brought into light that H₂S and NO may in fact share common pathways regarding angiogenesis and vasorelaxation [26,27].

Lastly, angiogenesis can be arguably gauged through wound healing. In rat burn wound model, wound closure after 1 month shows 5% significant improvement in animal receiving daily topical H₂S compared to WT control. In CSE KO mice, wound area were consistently larger than WT control, suggesting a proangiogenic effect of CSE [30].

9. Myocardial ischemia and reperfusion injuries

Ischemia is a vascular insult characterized by interruption of arterial blood supply to tissues and organs, causing a shortage of oxygen, glucose, and other essential components required for cellular metabolism and well-being. Causes for ischemia include vasoconstriction, embolism, thrombosis, or trauma. Ischemia causes tissue damage through an excessive build-up of metabolic waste, mitochondrial damage, disruption of cellular membranes, and dispersion of autolyzing and proteolytic enzymes, which causes general dysfunction and ultimately death of the affected tissues and organs. If a vascular insult is met with immediate medical attention, there is a highly likely chance that blood supply may be restored to the ischemic tissues and organs to prevent total loss of function. However, the reperfusion of ischemic tissues and organs may cause another type of damage known as reperfusion injury. Reperfusion injury is mostly a type of compounded microvascular injury where the reintroduced blood oxygen causes increased production of free radicals and reactive oxygen species which damage cellular components and the inflammatory response to the damaged tissue causes swelling and obstruction which may lead to further ischemia.

In myocardial ischemia and reperfusion injuries, CSE/H₂S pathway has shown a clear cardioprotective effect in reduced ischemic infarction lesion and increased cell survival [36]. Johansen et al. showed that exogenous H₂S administration protects against ischemia–reperfusion injury in a dose-dependent manner observable through the reduction in rat myocardial infarction size [37]. Elrod et al. further demonstrated that direct administration of NaHS at 50 mg/kg during reperfusion injury in an in vivo mouse model preserves mitochondrial function which leads to a substantial reduction of infarct size [38].

H₂S exerts cardioprotective effects against ischemia–reperfusion injury through up regulating Bcl-2/Bax ratio to preserve mitochondrial function and by enhancing antioxidant enzymes superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) to scavenge reactive oxygen species (ROS), both ultimately result in increased cell survival [39]. Moreover, H₂S serves to activate the Akt–Nrf2 pathway to promote antioxidant and anti-apoptotic molecule expression and by inflammatory inhibition through NF-κB dependent path, both leading to tissue survival [39].

In support of CSE cardioprotective effects, Huang et al. showed that in an ischemia–reperfusion post-conditioning mouse model, administration of 2 mM PAG prior to global ischemia resulted in an infarct size of 35.9 ± 6.4% compared to infarct size without PAG treatment of 18.3 ± 5.7% [40]. Similarly, Zhu et al. proved that in myocardial ischemia rat model, infarct size was 52.9 ± 3.5% in vehicle-treated, 62.9 ± 7.6% in PAG-treated, and 43.4 ± 2.8% in NaHS-treated (P < 0.05 vs. vehicle) groups [41].

10. Inflammation

A debatable representation of the CSE/H₂S pathway is on its effects regarding inflammation. There are separate studies citing both pro and anti-inflammatory effects of CSE/H₂S pathway. Regarding the pro-inflammatory effect of CSE/H₂S pathway, several researchers have demonstrated that in mouse models of hind paw edema [51], lipopolysaccharide (LPS) induced endotoxemia [52], and cecal ligation and puncture (CLP) induced sepsis [53,54], administration of H₂S donor drug leads to an increased Myeloperoxidase (MPO) expression, a marker for tissue neutrophil infiltration activity, and upregulation of NF-κB, which results in a histologically evident increase in tissue inflammation area. Whereas the administration or pretreatment of with PAG resulted in reduced MPO activity and less tissue inflammation. The same pattern can be seen in caerulein-induced pancreatitis mouse model [55]. Further, in CSE KO mouse caerulein-induced pancreatitis model, the CSE KO mice showed reduced acute pancreatitis inflammation and diminished associated lung injury compared to wild type mouse [56].

However, other researchers have demonstrated anti-inflammatory effect of H₂S/CSE pathway. Research with slow releasing H₂S donors such as GYY4137 [6,57] and S-diclofenac [58] demonstrated an anti-inflammatory effect with reduced NF-κB, TNF-α, and MPO expression in LPS-induced inflammation models. Another research showed that pretreatment or administration of PAG in LPS-treated rats aggregate liver damage, displaying increased serum AST, liver MPO, and decreased liver GSH [60]. The existing contradicting observations portray the yet understood physiological nature of CSE/H₂S pathway, and more research is needed to shed light on this complex pathway. Several researchers have postulated that there may be a biphasic effect of H₂S in relation to either the stage of inflammation or the time-concentration of H₂S.

11. Summary

H₂S is received as the third gaseous physiological transmitter behind CO and NO and plays an important role in several organ systems in the body. The CSE/H₂S pathway demonstrates cardiovascular antiatherogenic effect, vessel dilatory effect, angiogenic effect, inflammatory mediator effect, cardioprotective effect against ischemia–reperfusion injury, and regulates cellular function and humeral response among others. Although portions of the underlying molecular mechanism of the CSE/H₂S pathway are yet to be clarified, there is continual mounting evidence and research to provide further insight. To date, researchers seem to offer a bell-shaped dose–response curve to CSE/H₂S effect: at physiological concentrations, H₂S seems to exhibit cytoprotective effects whereas at higher concentrations, H₂S demonstrates detrimental or cytotoxic effect. Furthermore, recent studies performed with slow releasing H₂S donors in GYY4137 and S-diclofenac seem to emulate physiological conditions more closely and may provide further insight into the CSE/H₂S pathway. There is much effort devoted to clinical disease model research in correlation with the CSE/H₂S pathway, such as in coronary artery disease, ischemic cardiomyopathy, and chronic total
occlusion (CTO) of the coronary artery among other life threatening cardiovascular diseases. In one recent study, new insight into H_{2}S cardioprotective effects includes the attenuation of CD11b^{+}Gr-1^{+} myeloid migration to reduce post infarct inflammation.[107]. Furthermore, observational data from our group shows that in CTO reperfusion injury model, H_{2}S production after recanalization decreases by approximately 25% in the first 24 hour period, followed by a slow increase to approximately 50% compared to CTO controls. Unsurprisingly, though the decrease in H_{2}S and vascular pathology, such as ischemia–reperfusion injury, hypertension, and atherosclerosis, is observed, we have yet to grasp the full scope of the CSE/H_{2}S pathway. A clearer understanding of the CSE/H_{2}S is key to understanding vascular microenvironment changes and foundation for building future therapeutic strategies against cardiovascular diseases.

Source of funding

This work was supported by State Key Development Program for Basic Research of China (No. 2011CB503905), National Key Technology Support Program (No. 2011BA11B10), and Major Program of National Natural Science Foundation of China (No.81230007).

Disclosures

None.

References

[1] Mani S, Li H, Untereiner A, et al. Decreased endogenous production of hydrogen sulfide accelerates atherosclerosis. Circulation 2013;127:2533–34.
[2] Zhang H, Guo C, Wu D, et al. Hydrogen sulfide inhibits the development of athero-sclerosis with suppressing CXCR1 and CX3CL1 expression. PLoS One 2012;7(7): e41147. http://dx.doi.org/10.1371/journal.pone.0041147.
[3] Xu S, Liu Z, Liu P. Targeting hydrogen sulfide as a promising therapeutic strategy for atherosclerosis. Int J Cardiol 2014;172(2):313–7. http://dx.doi.org/10.1016/j.ijcard.2014.01.088.
[4] Baur J, Rønje J, Porter K, Peers C. Modulation of Ca^{2+} signaling in human vascular endothelial cells by hydrogen sulfide. Atherosclerosis 2010;209:374–80.
[5] Wang X, Wang F, You SJ, et al. Disregulation of cystathionine γ -lyase/CSE/hydrogen sulfide pathway contributes to ox-LDL-induced inflammation in macrophages. Cell Signal 2013;25:2255–62.
[6] Liu Z, Gu H, Li L, et al. The hydrogen sulfide donor, GYY4137, exhibits anti-atherosclerotic activity in high fat fed apolipoprotein E^{−/−} mice. Br J Pharmacol 2013;169:1795–809.
[7] Wang Y, Zhao X, Jin H, et al. Role of hydrogen sulfide in the development of athero-sclerotic lesions in apolipoprotein E knockout mice. Arterioscler Thromb Vasc Biol 2009;29:173–9.
[8] Zhao ZZ, Wang Z, Li GH, et al. Hydrogen sulfide inhibits macrophage-derived foam cell formation. Exp Biol Med 2011;236:169–76.
[9] Zhang Y, Tang ZH, Ren Z, et al. Hydrogen sulfide, the next potent preventive and therapeutic agent in aging and age-associated diseases. Mol Cell Biol 2013;33(6):1104–13.
[10] Wang XB, Jin HF, Tang CS, et al. Significance of endogenous sulfur-containing gases in the cardiovascular system. Clin Exp Pharmacol Physiol 2010;37:745–52.
[11] Yang G, Wu L, Bryan S, Kraper N, Mani S, Wang R. Cystathionine γ -lyase deficiency and overproliferation of smooth muscle cells. Cardiovasc Res 2010;86:487–95.
[12] Wagner C. Hydrogen sulfide: a new gaseous signal molecule and blood pressure regulator. J Hypertens 2009;27:223–36.
[13] Zhao WM, Zhang J, Wu R. The vasorelaxant effect of H_{2}S as a novel endog-enous gaseous KATP channel opener. EMBO J 2000;20(21):6008–16.
[14] Kohn C, Schleifenbaum J, Szijarto IA, et al. Differential effects of cystathionine γ -lyase inhibition on cardiovascular function. J Hypertens 2009;27:1093–104.
[15] Zhao WM, Zhang J, Wu R. The vasorelaxant effect of endogenous H_{2}S on human aorta cellular glutathione status. Biochem J 2014;460(3):425–35.
[16] Calvert J, Elston M, Nicholson CK, et al. Genetic and pharmacologic hydrogen sulfide- induced inflammation in macrophages. Br J Pharmacol 2011;164:853–63.
[17] Yang D, Wu L, Jiang B, et al. Emerging role of hydrogen sulfide in hypertension and related cardiovascular diseases. Br J Pharmacol Sept 10 2014. http://dx.doi.org/10.1111/bph.12900 [epub ahead of print].
[18] Yang G, Yang W, Wu L, Wang R. Human NOS3 and H_{2}S regulates NO production in response to shear stimulus. J Hypertens 2013;31:1489–96.
Li L, Rossoni G, Sparatore A, Lee LC, Del Soldato P, Moore PK. Anti-inflammation in acute pancreatitis: in vitro studies using isolated mouse pancreatic acinar cells. J Cell Mol Med 2007;11:315–26.

Ang AD, Rivers-Auty J, Hegde A, Iishi I, Bhatia M. The effect of CSE gene deletion in caerulein-induced acute pancreatitis in the mouse. Am J Physiol Gastrointest Liver Physiol 2013;305(10):T712–21.

Li L, Salto-Tellez M, Tan CH, Whiteman M, Moore PK. GYY4137, a novel hydrogen sulfide-releasing molecule, protects against endotox shock in rats. Free Radic Biol Med 2009;47:101–13.

Li L, Rossoni G, Saprato A, Lee LC, Del Soldato P, Moore PK. Anti-inflammatory and gastrointestinal effects of a novel dickelone derivative. Free Radic Biol Med 2007;42(5):700–19.

Bekpinar S, Unluceyici Y, Uysal M, Gurdol F. Propargylglycine aggravates liver damage in LPS-treated rats: possible relation of nitrosative stress with the inhibition of H2S formation. Pharmacol Rep 2014;66:897–901.

Bhatia M. Role of hydrogen sulfide in the pathology of inflammation. Scientifica 2012;2012:159680. http://dx.doi.org/10.6007/2012/159680.

Badiei A, Muniraj N, Chambers S, Bhatia M. Inhibition of hydrogen sulfide γ-glutamylcySTEine lyase contributes to maternal hypertension and placental abnormalities in preeclampsia. Circulation 2013;127(23):2514–22. http://dx.doi.org/10.1161/CIRCULATIONAHA.113.010631 [Epub 2013 May 23].

Chen YH, Yao WZ, Geng B, et al. Endogenous hydrogen sulfide in patients with COPD. Chest 2005;128:820S–11.

Chen YH, Yao WZ, Gao JZ, Geng B, Wang PP, Tan CS. Serum hydrogen sulfide as a novel marker predicting bacterial involvement in patients with community-acquired lower respiratory tract infection. Respirology 2009;14:746–52.

Gaspar T, Mars T, Podbregar M. Total plasma sulfide as a marker of shock severity in nonsurgical adult patients. Shock 2011;36:350–5.

Xiu Z, Prathapasinghe G, Wu N, Hwang SY, Siow YL, Karmin O. Ischemia-reperfusion reduces cystathionine-γ-synthase-mediated hydrogen sulfide generation in the kidney. Am J Physiol Renal Physiol 2009;297:F27–35.

Chai W, Wang Y, Lin JY, et al. Exogenous hydrogen sulfide protects against traumatic-hemorrhagic shock via attenuation of oxidative stress. J Surg Res 2012;176:210–9.

Mok YY, Atan MS, Yoke Ping C, et al. Role of hydrogen sulfide in haemorrhagic shock in the rat: protective effect of inhibitors of hydrogen sulfide biosynthesis. Br J Pharmacol 2004;142:891–5.

Li L, Whiteman M, Moore PK. Dexamethasone inhibits lipopolysaccharide-induced hydrogen sulfide biosynthesis in intact cells and in an animal model of endotoxic shock. J Cell Mol Med 2009;13:2684–92.

Aminzadeh MA, Vaziri ND. Down regulation of the renal and hepatic hydrogen sulfide-producing enzymes and capacity in chronic kidney disease. Nephrol Dial Transplant 2012;27:498–504.

Chen YH, Wang PP, Wang XM, et al. Involvement of endogenous hydrogen sulfide in airway responsiveness and inflammation of cat lung. Cytokines 2011;53:334–41.

Geng A, Chang L, Pan C, et al. Endogenous hydrogen sulfide regulation of myocardial injury induced by isoproterenol. Biochem Biophys Res Commun 2004;38:756–63.

Tripatara P, Patel NS, Brancalone V, et al. Characterisation of cystathionine γ-lyase/hydrogen sulfide pathway in ischemia/reperfusion injury of the mouse kidney: an in vivo study. Eur J Pharmacol 2009;606:205–9.

Florian B, Vintilescu R, Baliseanu AT, et al. Long-term hypothermia reduces infarct volume in aged rats after focal ischemia. Neurosci Lett 2008;432:180–5.

Sidhasapwila JN, Hegde A, Ang AD, Zhu YZ, Bhatia M. Effects of S-propargylcysteine in caerulein-induced acute pancreatitis in mice. PLoS One 2012;7(3):e32574. http://dx.doi.org/10.1371/journal.pone.0032574.

Zhang H, Zhitl, Mochochila SM, Moore PK, Bhatia M. Endogenous hydrogen sulfide regulates leucocyte trafficking in caecal ligation and puncture-induced sepsis. J Leukoc Biol 2007;81:453–60.

Zhang H, Sio SW, Mochochila SM, Bhatia M. Role of hydrogen sulfide in severe burn injury-induced inflammation in mice. Mol Med 2010;16:417–24.

Ang SF, Mochochila SM, Bhatia M. Hydrogen sulfide promotes transient receptor potential vanilloid 1-mediated neurogenic inflammation in polymicrobial sepsis. Crit Care Med 2010;38:619–28.

Stein A, Bailey SM. Redox biology of hydrogen sulfide: implications for physiology, pathophysiology, and pharmacology. Redox Biol 2013:1:32–9.

Olsson KR, DeLeon ER, Liu F. Controversies and conundrums in hydrogen sulfide biology. Nitric Oxide 2014 Sep 15;41:11–26. http://dx.doi.org/10.1016/j.niox.2014.05.012 Epub 2014 Jun 11.

Kolluru GK, Shen X, Bir SC, KeVil CG. Hydrogen sulfide chemical biology: pathological roles and detection. Nitric Oxide 2013;35C:5–20.

McCooK O, Radermacher P, Volani C, et al. H2S during circulatory shock: some unresolved questions. Nitric Oxide 2014;41:48–61.

Lippert AR, New EJ, Chang CJ. Reaction-based fluorescent probes for selective imaging of hydrogen sulfide in living cells. J Am Chem Soc 2011;133:10078–80.

Lin VS, Chang CJ. Fluorescent probes for sensing and imaging biological hydrogen sulfide.Curr Opin Chem Biol 2012;16:595–601.

Wei C, Wei L, Xi Z, Long YL. A RET-based fluorescent probe for imaging H2S in living cells. Tetrahedron Lett 2013;54:6937–9.

Zeng Y, Zhao M, Qiao Q, Liu H, Lang H, Xu Z. A near-infrared fluorescent probe for hydrogen sulfide in living cells. Dyes Pigments 2013;98:367–71.

Wang K, Peng H, Wang B. Recent advances in thiol and sulfide reactive probes. J Cell Biochem 2014;115(6):1007–22. http://dx.doi.org/10.1002/jcb.24762.

Lippert AR. Designing reaction-based fluorescent probes for selective hydrogen sulfide detection. J Inorg Biochem 2014;133:136–42.

Lin VS, Lippert AR, Chang CJ. Cell-trappable fluorescent probes for endogenous hydrogen sulfide imaging and H2S-dependent H2S production. Proc Natl Acad Sci U S A 2011;108(18):7313–5.

Ishi I, Akhoshu N, Yu XX, et al. Murine cystathionine γ-lyase: complete cDNA and genomic sequences, promoter activity, tissue distribution and developmental expression. Biochem J 2004;381:113–23.

Zhang Y, Li H, Zhao G, et al. Hydrogen sulfide attenuates the recruitment of CD11b+ “Gr−” myeloid cells and regulates Bax/Dr-2 signaling in myocardial ischemia injury. Sci Rep 2014;4:4774. http://dx.doi.org/10.1038/srep04774.