THE $\overline{\partial}$-CAUCHY PROBLEM ON WEAKLY q-CONVEX DOMAINS IN $\mathbb{C}P^n$

SAYED SABER1,2

ABSTRACT. Let D be a weakly q-convex domain in the complex projective space $\mathbb{C}P^n$. In this paper, the (weighted) $\overline{\partial}$-Cauchy problem with support conditions in D is studied. Specifically, the modified weight function method is used to study the L^2 existence theorem for the $\overline{\partial}$-Neumann problem on D. The solutions are used to study function theory on weakly q-convex domains via the $\overline{\partial}$-Cauchy problem.

1. INTRODUCTION AND MAIN RESULTS

The $\overline{\partial}$-problem is one of the important central problems of complex variables. A classical result due to Hörmander tells us that the $\overline{\partial}$-problem is solvable in pseudoconvex domains, and hence, pseudoconvex domains has been widely accepted as the standard domain which we can solve the $\overline{\partial}$-problem. In [16], Ho extend this problem to weakly q-convex domains. In fact, Ho is the first person to study the $\overline{\partial}$-problem in q-convex domains in \mathbb{C}^n. This paper is devoted to studying the $L^2\overline{\partial}$ Cauchy problem and the $\overline{\partial}$-closed extension problem for forms on a weakly q-convex domain D in the complex projective space $\mathbb{C}P^n$. These problems were first studied by Kohn and Rossi [20] (see also [12]). They proved the holomorphic extension of smooth CR functions and the $\overline{\partial}$-closed extension of smooth forms from the boundary bD of a strongly pseudoconvex domain to the whole domain D. The L^2 theory of these problems has been obtained for pseudoconvex domains in \mathbb{C}^n or, more generally, for domains in complex manifolds with strongly plurisubharmonic weight functions (see Chapter 9 in [6] and the references therein). The $L^2\overline{\partial}$ Cauchy problem was considered by Derridj [8,9]. In [30,31] Shaw has obtained a solution to this problem on a pseudoconvex domain with C^1 boundary in \mathbb{C}^n. Also, in the setting of strictly

$^{Key words and phrases.}$ $\overline{\partial}$, $\overline{\partial}$-Neumann operator, q-convex domains.

2010 Mathematics Subject Classification. Primary: 32F10. Secondary: 32W05.

DOI 10.46793/KgJMat2004.581S

Received: April 23, 2017.

Accepted: July 06, 2018.
q-convex (or q-concave) domains, this problem has been studied by Sambou in his thesis (see [29]). In [1], Abdelkader-Saber studied this problem on pseudoconvex manifolds satisfying property B. In [26,27], Saber studied this problem on a weakly q-convex domain with C^1-smooth boundary and on a q-pseudoconvex domain D in \mathbb{C}^n, $1 \leq q \leq n$, with Lipschitz boundary. Recently, Saber [28] studied this result to a q-pseudoconvex domain D in a Stein manifold. On a pseudoconvex domain in $\mathbb{C}P^n$, Cao-Shaw-Wang [4] (cf. also [5]) obtained the L^2 existence theorem for the $\overline{\partial}$-Neumann operator N and obtained the (weighted) $L^2 \overline{\partial}$ Cauchy-problem on such domains. The aim of this paper is to extend this result to the situation in which the boundaries are assumed weakly q-convex domain D in $\mathbb{C}P^n$. Moreover, the solutions are used to study function theory on such domains via the $\overline{\partial}$-Cauchy problem.

2. Notation and Preliminaries

Let (x_0, x_1, \ldots, x_n) be a (fixed) homogeneous coordinates of $\mathbb{C}P^n$. If U_0 is the open set in $\mathbb{C}P^n$ defined by $x_0 \neq 0$ and if (z_1, z_2, \ldots, z_n), where $z_i = x_i / x_0$, is the homogeneous coordinates of U_0, we assume that

$$
\omega = \frac{\sum_{i=1}^{n} |dz_i|^2}{1 + \sum_{i=1}^{n} |z_i|^2} - \frac{\sum_{i=1}^{n} z_i d\bar{z}_i|^2}{(1 + \sum_{i=1}^{n} |z_i|^2)^2} \text{ on } U_0.
$$

The Fubini-Study metric of $\mathbb{C}P^n$ determined by (x_0, x_1, \ldots, x_n). This is well-known standard Kähler metric of $\mathbb{C}P^n$.

Let D be a bounded domain in $\mathbb{C}P^n$ and let $C_{p,q}^\infty(D)$ be the space of complex-valued differential forms of class C^∞ and of type (p, q) on D. Denote by $L^2(D)$ the space of square integrable functions on D with respect to the Lebesgue measure in $\mathbb{C}P^n$, $L^2_{p,q}(D)$ the space of (p, q)-forms with coefficients in $L^2(D)$ and $L^2_{p,q}(D, \phi)$ the space of (p, q)-forms with coefficients in $L^2(D)$ with respect to the weighted function $e^{-\phi}$. For $u, v \in L^2_{p,q}(D)$, the inner product $\langle u, v \rangle$ and the norm $\| u \|$ are denoted by:

$$
\langle u, v \rangle = \int_D u \wedge \star \overline{v} \quad \text{and} \quad \| u \|^2 = \langle u, u \rangle,
$$

where \star is the Hodge star operator. Let $\text{dist}(z, bD)$ be the Fubini distance from $z \in D$ to the boundary bD and let δ be a C^2 defining function for D normalized by $|d\delta| = 1$ on bD such that

$$
\delta = \delta(z) = \begin{cases}
- \text{dist}(z, bD), & \text{if } z \in D, \\
\text{dist}(z, bD), & \text{if } z \in \mathbb{C}P^n \setminus D.
\end{cases}
$$

Let $\phi_t = -t \log |\delta|$, $t \geq 0$, for $u, v \in L^2_{p,q}(D, \phi_t)$, the inner product $\langle u, v \rangle_{\phi_t}$ and the norm $\| u \|_{\phi_t}$ are denoted by:

$$
\langle u, v \rangle_{\phi_t} = \langle u, v \rangle_t = \int_D u \wedge \star(t) \overline{v},
$$

$$
\| u \|_{\phi_t}^2 = \| u \|^2_t = \langle u, u \rangle_t,
$$
where \(* \) = \(\delta^t * = \delta^t \delta^t \). Since \(\phi_t \) is bounded on \(\overline{D} \), the two norms \(\| \cdot \| \) and \(\| \cdot \|_t \) are equivalent. Let \(\overline{\partial} : \text{dom} \overline{\partial} \subset L^2_{p,q}(D, \phi_t) \to L^2_{p,q+1}(D, \phi_t) \) be the maximal closure of the Cauchy-Riemann operator and \(\overline{\partial}^* \) be its Hilbert space adjoint. Let \(\square_t = \overline{\partial}_t \overline{\partial}_t^* \overline{\partial}^* \overline{\partial}_t \) be the Laplace-Beltrami operator, where \(\overline{\partial}_t = \overline{\partial}^* \overline{\partial}_t^* \).

Denote by \(\nabla \) the Levi-Civita connection of \(\mathbb{C}P^n \) with the standard Fubini-Study metric \(\omega \). Let \(\{ e_i \} \) be an orthonormal basis of vector fields. For any two vector fields \(f, g \), the curvature operator of the connection \(\nabla \) is denoted by

\[
\mathcal{R}(f, g) = \nabla_f \nabla_g - \nabla_g \nabla_f - [f, g].
\]

By setting \(\mathcal{R}_{ijk} = \omega(\mathcal{R}(e_i, e_j)e_k, e_l) \), the Ricci tensor \(\mathcal{R}_{ij} \) is denoted by

\[
\mathcal{R}_{ij} = \sum_k \varepsilon_k \mathcal{R}_{ikkj},
\]

which turns out to be self-adjoint with respect to \(\omega \) and the scalar curvature

\[
(2.1) \quad \Theta = \sum_i \mathcal{R}_{ii} = \sum_{i,j} \varepsilon_i \varepsilon_j \mathcal{R}_{iijj}
\]
as the trace of the Ricci tensor.

Definition 2.1. Let \(D \) be an open set in an \(n \)-dimensional complex manifold \(X \), let \(k \) be an integer with \(1 \leq k \leq n - 1 \) and put \(E = X \setminus D \). The set \(D \) is said to be pseudoconvex of order \(k \) in \(X \) if, for every \(b \in E \) and for every coordinate neighborhood \((U, (z_1, \ldots, z_n)) \) which contains \(b \) as the origin, the set

\[
\left\{ (z_1, \ldots, z_n) \in U : z_i = 0, 1 \leq i \leq k, 0 < \sum_{i=k+1}^n |z_i|^2 < t \right\}
\]
contains no points of \(E \) for some \(t > 0 \), then there exists \(\ell > 0 \) such that for each \((z'_1, \ldots, z'_k) \) with \(|z'_i| < \ell, 1 \leq i \leq k \), the set

\[
\left\{ (z_1, \ldots, z_n) \in U : z_i = z'_i, 1 \leq i \leq k, \sum_{i=k+1}^n |z_i|^2 < t \right\}
\]
contains at least one point of \(E \).

Definition 2.2. Let \(D \) be an \(n \)-dimensional complex manifold and let \(q \) be an integer, \(1 \leq q \leq n \). By Fujita ([13], Proposition 8) a \(C^2 \) function \(\phi : D \to \mathbb{R} \) is pseudoconvex of order \(n - q \), if and only if its Levi form \(\partial \overline{\partial} \phi \) has at least \(n - q + 1 \) non negative eigenvalues at each point of \(D \).

Definition 2.3. Let \(D \) be an open subset of an \(n \)-dimensional complex manifold \(X \). \(D \) is said to have \(C^2 \) boundary in \(X \) if for all \(z \in bD \) there exist an open neighborhood \(U \) of \(z \) and a \(C^2 \) function \(\delta : U \to \mathbb{R} \), called a defining function of \(D \) at \(z \) such that \(d\delta(z) \neq 0 \) and \(D \cap U = \{ z \in U : \delta(z) < 0 \} \). Following Ho [16], \(D \) is said to be a
weakly \(q \)-convex \((q \geq 1)\) if at every point \(x_0 \in bD \) we have
\[
\sum |K| \sum_{j,k} \frac{\partial^2 \delta}{\partial z_j \partial \overline{z}_k} u_{jK} \overline{u}_{kK} \geq 0,
\]
for every \((0, q)\)-form, where
\[
u = \sum_{|J|=q} u_J d\overline{z}_J \text{ such that } \sum_{j=1}^n \frac{\partial \delta}{\partial z_j} u_{jK} = 0, \text{ for all } |K| = q - 1.
\]
Moreover, \(D \) is weakly \(q \)-convex if and only if for any \(z \in bD \) the sum of any \(q \) eigenvalues \(\delta_{i_1}, \ldots, \delta_{i_q} \), with distinct subscripts, of the Levi-form at \(z \) satisfies \(\sum_{j=1}^q \delta_{i_j} \geq 0 \) (cf. [15] and Lemma 4.7 in [34]).

Definition 2.4. Let \(D \) be a smooth domain in \(\mathbb{C}^n \), \(D \) is said to be a weakly \(q \)-concave if \(\overline{D}^c \) is weakly \(q \)-convex.

Lemma 2.1 ([16]). Let \(D \) be a smooth domain in \(\mathbb{C}^n \) and \(\rho \) be its defining function. The following two conditions are equivalent.

1. \(D \) is weakly \(q \)-convex.
2. For any \(z \in bD \) the sum of any \(q \) eigenvalues \(\rho_{i_1}, \ldots, \rho_{i_q} \), with distinct subscripts, of the Levi-form at \(z \) satisfies \(\sum_{j=1}^q \rho_{i_j} \geq 0 \).

It follows from Lemma 2.1 that \(D \) is weakly \(q \)-concave if and only if for any \(q \) eigenvalues \(\rho_{i_1}, \ldots, \rho_{i_q} \) of the Levi-form at \(z \in bD \) with distinct subscripts we have \(\sum_{j=1}^q \rho_{i_j} \leq 0 \).

Example 2.1. Let \(D \) be an open subset of an \(n \)-dimensional complex manifold \(X \) and suppose that the boundary \(bD \) is a real hypersurface of class \(C^2 \) in \(X \), that is, there exist, for each \(z \in bD \), a neighborhood \(U \) of \(z \) and a \(C^2 \) function \(\rho : U \to \mathbb{R} \) such that \(d\rho(z) \neq 0 \) and \(D \cap U = \{ z \in U : \rho(z) < 0 \} \). Then \(D \) is pseudoconvex of order \(n - q \) in \(X \), if and only if the Levi form \(\partial \overline{\partial} \rho \) has at least \(n - q \) non-negative eigenvalues on \(T_z'(bD) \) for each defining function \(\rho \) of \(D \) near \(z \), where \(T_z'(bD)(\subset T_z(bD)) \) is the holomorphic tangent space of the real hypersurface \(bD \) at \(z \) (cf. [10,35] called such a subset \(D \) a \((q - 1)\)-pseudoconvex open subset with \(C^2 \) boundary).

Theorem 2.1 ([23]). Let \(D \subset \mathbb{C}P^n \) be a pseudoconvex domain of order \(n - q \), \(1 \leq q \leq n \). Let \(d(z, bD) \) be the Fubini distance from \(z \in D \) to the boundary \(bD \). Then the function \(-\log d(z, bD) \) is \((q - 1)\)-plurisubharmonic in \(D \).

Lemma 2.2 ([17], Lemma 2.6). Let \(\phi \) be a real valued function of class \(C^2 \) defined in an \(n \)-dimensional complex manifold \(D \). Then \(\phi \) is \((q - 1)\)-plurisubharmonic, \(1 \leq q \leq n \), in \(D \) if and only if \(\phi \) is weakly \(q \)-convex in \(D \).

Remark 2.1. Pseudoconvex open sets in the original sense are pseudoconvex of order \(n - 1 \).

Remark 2.2. The pseudoconvexity of order \(n - q \) of an open subset \(D \) in \(X \) is a local property of the boundary \(bD \subset X \) of \(D \). More precisely, \(D \) is pseudoconvex of order
n – q in X if, for each p ∈ bD, there exists a neighborhood U ⊂ X of p such that $D \cap U$ is pseudoconvex of order $n – q$ in U.

Remark 2.3. If an open set D in an n-dimensional complex manifold X is weakly q-convex, $1 \leq q \leq n$, then D is pseudoconvex of order $n – q$ in X. However, the converse is not valid even if $X = \mathbb{C}^n$ (see [10] and [22]). By Fujita [13], an open subset D of \mathbb{C}^n is pseudoconvex of order $n – q$ in \mathbb{C}^n, if and only if D has an exhaustion function which is pseudoconvex of order $n – q$ on D. Thus, by the approximation theorem of Bungart [3], an open subset D of X is pseudoconvex of order $n – q$ in X, if and only if D is locally q-complete with corners in X in the sense of Peternell [24].

Proposition 2.1 (Bochner-Hörmander-Kohn-Morrey formula). Let D be a compact domain with C^2-smooth boundary bD and $\delta(x) = -d(x, bD)$. Suppose that Θ is the curvature term defined in (2.1) with respect to the Fubini-Study metric ω. Then, for any $u \in C^\infty_p(D) \cap \text{dom}\overline{\partial}^*$ with $1 \leq q \leq n - 1$, and $\phi \in C^2(D)$, we have

$$
\overline{\partial}\|u\|_\phi^2 + \|\overline{\partial}^*u\|_\phi^2 = (\Theta u, \overline{u})_\phi + \|\frac{\partial u_{IJ}}{\partial z^k}\|_\phi^2 + \langle (i\overline{\partial}\partial\delta)u, \overline{u}\rangle_\phi + \int_{bD} ((i\overline{\partial}\partial\delta)u, \overline{u}) e^{-\phi} ds.
$$

This formula is known (cf. [2, 7, 15, 18, 19, 32, 36]) for some special cases, although it has not been stated in the literature in the form (2.2). If u has compact support in the interior of D, the (2.2) was proved in [2], Chapter 8 of [7] and (2.12) of [36]. The boundary term had been computed in [14], Chapter 3 by combining the Morrey-Kohn technique on the boundary with non-trivial weight function. If one combines the results of [15] and [37] with the interior formulae discussed above, one can prove that (2.2) holds for the general case with a weight function $e^{-\phi}$ and the curvature term. Specially, for $\phi = 0$, (2.2) was proved in [32].

Proposition 2.2. For any (p, q)-form u of $D \subseteq \mathbb{C}P^n$ with $q \geq 1$,

$$
(\Theta u, \overline{u}) = q(2n + 1)|u|^2,
$$

when u is a $(0, q)$-form,

$$
(\Theta u, \overline{u}) = 0,
$$

for any (n, q)-form u, and u is a (p, q)-form.

The statement for $(0, q)$-forms and (n, q)-forms was computed in [32] and [36]. Also, following Lemma 3.3 of Henkin-Iordan [14] and its proof showed that the curvature operator Θ acting on $L^2_{p,q}(D)$ is a non-negative operator.

3. The $\overline{\partial}$-Cauchy Problem on Weakly q-Convex Domains

This section is devoted to showing the existence of the $\overline{\partial}$-Neumann operator on a weakly q-convex domain D in $\mathbb{C}P^n$, $1 \leq q \leq n$, and by applying these existence to solve the $\overline{\partial}$ problem with support conditions on D. The boundary integral in (2.2) is
non-negative for \(q \geq 1 \) by the assumption on \(D \). Also, by taking \(\phi \equiv 0 \) in (2.2) and using Proposition 2.2, we find the fundamental estimate
\[
\|u\|^2 \leq c \left(\|\bar{\partial}u\|^2 + \|\bar{\partial}^* u\|^2 \right).
\]
This means that \(\bar{\partial} \) has closed range and \(\ker \bar{\partial} = \{0\} \). Thus, one can establish the \(L^2 \)-existence theorem of the \(\bar{\partial} \)-Neumann operator \(N \).

Theorem 3.1. Let \(D \subseteq \mathbb{C}^n \) be a weakly \(q \)-convex domain with \(C^2 \) smooth boundary. Then, for each \(0 \leq p \leq 1 \), \(1 \leq q \leq n \), there exists a bounded linear operator \(N : L^2_{p,q}(D) \rightarrow L^2_{p,q}(D) \) with the following properties:

1. Range \(N \subseteq \text{dom} \, \bar{\partial}, \, \text{dom} \bar{\partial} = \text{Id} \) on \(\text{dom} \bar{\partial} \);
2. for \(f \in L^2_{p,q}(D) \),
 \[
 f = \bar{\partial} \bar{\partial}^* Nf + \bar{\partial}^* \bar{\partial}Nf;
 \]
3.\(N \bar{\partial} = \bar{\partial} N \) on \(\text{dom} \bar{\partial}^* \), \(1 \leq q \leq n - 1 \);
4. \(\bar{\partial}^* N = N \bar{\partial}^* \) on \(\text{dom} \bar{\partial}^* \), \(2 \leq q \leq n \);
5. \(N, \bar{\partial}N \) and \(\bar{\partial}^* N \) are bounded linear operators on \(L^2_{p,q}(D) \).

Using the duality relations pertaining to the \(\bar{\partial} \)-Neumann problem, one solve the \(L^2 \) \(\bar{\partial} \) Cauchy problem on weakly \(q \)-convex domains in \(\mathbb{C}^n \), \(1 \leq q \leq n \). This method was first used by Kohn-Rossi [20] for smooth forms on strongly pseudoconvex domains. More precisely, we prove the following \(L^2 \) Cauchy problem for \(\bar{\partial} \) in \(\mathbb{C}^n \):

Theorem 3.2. Let \(D \subseteq \mathbb{C}^n \) be a weakly \(q \)-convex domain, \(1 \leq q \leq n \) with \(C^2 \) smooth boundary. Then, for \(f \in L^2_{p,q}(\mathbb{C}^n) \), \(\text{supp} f \subset \partial D \), \(1 \leq q \leq n - 1 \), satisfying \(\bar{\partial} f = 0 \) in the distribution sense in \(\mathbb{C}^n \), there exists \(u \in L^2_{p,q-1}(\mathbb{C}^n) \), \(\text{supp} u \subset \partial D \) such that \(\bar{\partial} u = f \) in the distribution sense in \(\mathbb{C}^n \).

Proof. Let \(f \in L^2_{p,q}(\mathbb{C}^n) \), \(\text{supp} f \subset \partial D \), then \(f \in L^2_{p,q}(D) \). From Theorem 3.1, \(N_{n-p,n-q} \) exists for \(n-q \geq 1 \). Since \(N_{n-p,n-q} = \square^{-1}_{n-p,n-q} \) on \(\text{Range} \square_{n-p,n-q} \), then \(N_{n-p,n-q} \) exists for \(n-q \geq 1 \). Thus, we can define \(u \in L^2_{p,q-1}(D) \) by
\[
u = -\star \bar{\partial} N_{n-p,n-q} \star f.
\]
Thus \(\text{supp} u \subset \partial D \) and \(u \) vanishes on \(bD \). Now, we extend \(u \) to \(\mathbb{C}^n \) by defining \(u = 0 \) in \(\mathbb{C}^n \setminus D \). It follows from the same arguments of Theorem 9.1.2 in [6] and Theorem 2.2 in [1] that the form \(u \) satisfies the equation \(\bar{\partial} u = f \) in the distribution sense in \(\mathbb{C}^n \). Thus the proof follows.

4. The Weighted \(\bar{\partial} \)-Cauchy Problem

In this section, we assume that \(D \) is a weakly \(q \)-convex domain, \(1 \leq q \leq n \), with \(C^2 \) smooth boundary in \(\mathbb{C}^n \). Also, we will choose \(\phi_t = -t \log |\delta|, \, \delta > 0 \) in (2.2), and using Remark 2.3 and by using Proposition 2.2, the inequality (2.2) implies the
weighted L^2-existence for the $\overline{\partial}$. Also, for $u \in \text{Dom}(\Box_t)$ of degree $q \geq 1$ and for $t > 0$, we have

$$t\|u\|_{t}^{2} \leq (\|\Box_t u\|_{t}^{2} + \|\Box_t^* u\|_{t}^{2})$$

$$= \langle \Box_t u, u \rangle_t$$

$$\leq \|\Box_t f\|_t \|u\|_t,$$

i.e.,

$$t\|u\|_t \leq \|\Box_t u\|_t.$$

Since \Box_t is a linear closed densely defined operator, then, from [15, Theorem 1.1.1], $\text{Range}(\Box_t)$ is closed. Thus, from (1.1.1) in [15] and the fact that \Box_t is self adjoint, we have the Hodge decomposition

$$L^2_{p,q}(D, \phi_t) = \overline{\partial} \partial^* \text{dom}(\Box_t) \oplus \partial^* \overline{\partial} \text{dom}(\Box_t).$$

Since \Box_t is one to one on $\text{dom}(\Box_t)$ from (1.5.3) in [15], then there exists a unique bounded inverse operator

$$N_t : \text{Ran}(\Box_t) \to \text{dom}(\Box_t) \cap (\ker(\Box_t))^\perp$$

such that $N_t \Box_t f = f$ on $\text{dom}(\Box_t)$. Therefore, we can establish the existence theorem of the inverse of \Box_t the so called weighted $\overline{\partial}$-Neumann operator N_t.

Theorem 4.1. For any $1 \leq q \leq n$ and $t > 0$, there exists a bounded linear operator $N_t : L^2_{p,q}(D, \phi_t) \to L^2_{p,q}(D, \phi_t)$ satisfies the following properties:

(i) $\text{Range}(N_t) \subset \text{dom}(\Box_t)$, $N_t \Box_t = I$ on $\text{dom}(\Box_t)$;

(ii) for $f \in L^2_{p,q}(D, \phi_t)$, we have $u = \overline{\partial} \partial^* N_t f + \partial^* \overline{\partial} N_t f$;

(iii) $\overline{\partial} N_t = N_t \overline{\partial}$, $1 \leq q \leq n - 1$;

(iv) $\Box_t N_t = N_t \Box_t$, $2 \leq q \leq n$;

(v) for all $f \in L^2_{p,q}(D, \phi_t)$, we have the estimates

$$t\|N_t f\|_t \leq \|f\|_t,$$

$$\sqrt{t}\|\overline{\partial} N_t f\|_t + \sqrt{t}\|\partial^* N_t f\|_t \leq \|f\|_t;$$

(vi) if $\overline{\partial} f = 0$, then $u_t = \partial^* N_t f$ solves the equation $\overline{\partial} u_t = f$.

Theorem 4.2. For $f \in L^2_{p,q}(D, \phi_t)$, $1 \leq q \leq n - 1$, supp $f \subset D$, satisfying $\overline{\partial} f = 0$ in the distribution sense in $\mathbb{C}P^n$, there exists $u \in L^2_{p,q-1}(D, \phi_t)$, supp $u \subset D$ such that $\overline{\partial} u = f$ in the distribution sense in $\mathbb{C}P^n$.

Proof. Following Theorem 4.1, N_t exists for forms in $L^2_{n-p,n-\bar{q}}(D, \phi_t)$. Thus, one can defines $u_t \in L^2_{p,q-1}(D, \phi_t)$ by

$$u_{(t)} = - \star_{(t)} \overline{\partial} N_{n-p,n-q} \star_{(-t)} f.$$

Thus supp $u_t \subset D$ and u_t vanishes on bD. Now, we extend u_t to $\mathbb{C}P^n$ by defining $u_t = 0$ in $\mathbb{C}P^n \setminus D$. We want to prove that the extended form u_t satisfies the equation.
$\overline{\partial} u_t = f$ in the distribution sense in $\mathbb{C}P^n$. For $\eta \in L^2_{n-p,n-q-1}(D, -\phi_t) \cap \text{dom} \overline{\partial}$, we have

$$
\langle \overline{\partial} \eta, \ast(t) f \rangle_D = \int_D \overline{\partial} \eta \wedge \ast(-t) (\ast(t) f) \\
= \int_D \overline{\partial} \eta \wedge \ast(-t) \ast(t) f \\
= (-1)^{p+q} \int_D \overline{\partial} \eta \wedge f \\
= (-1)^{p+q} \langle f, \ast(-t) \overline{\partial} \eta \rangle_D \\
= (-1)^{p+q} \langle f, \ast(-t) \overline{\partial} \eta \rangle_{\mathbb{C}P^n},
$$

because $\text{supp} f \subset \overline{\partial}$. Since $\vartheta|_D = \partial^\ast|_D$, when ϑ acts in the distribution sense (see [15]), then we obtain

$$
\langle \overline{\partial} \eta, \ast(t) f \rangle_D = \langle f, \partial \ast(-t) \eta \rangle_{\mathbb{C}P^n} \\
= \langle \overline{\partial} f, \ast(-t) \eta \rangle_{\mathbb{C}P^n} \\
= 0.
$$

It follows that $\overline{\partial}'(\ast(t) f) = 0$ on D. Using Theorem 4.1 (iv), we have

$$
(4.2) \quad \overline{\partial}' N_t(\ast(t) f) = N_t \overline{\partial}'(\ast(t) f) = 0.
$$

Thus, from (4.1) and (4.2), one obtains

$$
\overline{\partial} u_t = - \partial \ast_t \overline{\partial} N_{n-p,n-q} \ast_t \overline{f} \\
= (-1)^{p+q+1} \ast \partial \ast \overline{\partial} N_{n-p,n-q} \ast \overline{f} \\
= (-1)^{p+q} \overline{\partial} \overline{\partial} N_{n-p,n-q} \ast \overline{f} \\
= (-1)^{p+q} (\overline{\partial} \overline{\partial} + \overline{\partial} \overline{\partial}^\ast) N_{n-p,n-q} \ast \overline{f} \\
= (-1)^{p+q} \ast \overline{f} \\
= f,
$$

in the distribution sense in D. Since $u = 0$ in $\mathbb{C}P^n \setminus D$, then for $u \in L^2_{p,q}(\mathbb{C}P^n) \cap \text{dom} \overline{\partial}^\ast$, one obtains

$$
< u, \overline{\partial}^\ast u >_{\mathbb{C}P^n} = < u, \overline{\partial}^\ast u >_D \\
= < \ast \overline{\partial}^\ast u, \ast(-t) u >_D \\
= (-1)^{p+q} < \overline{\partial} \ast u, \ast(-t) u >_D \\
= (-1)^{p+q} < \ast u, \overline{\partial} \ast(-t) u >_D \\
= < \ast u, \ast(-t) \overline{\partial} u >_D \\
= < f, u >_D \\
= < f, u >_{\mathbb{C}P^n},
$$

where the third equality holds since $\ast u = (-1)^{q+1} \overline{\partial} N_{n-p,n-q} \ast f \in \text{dom} \overline{\partial}^\ast$. Thus $\overline{\partial} u_t = f$ in the distribution sense in $\mathbb{C}P^n$. □
As in [5], we prove the following results.

Proposition 4.1. Let D be the same as in Theorem 3.1. Put $\Omega = \mathbb{C}P^n \setminus \overline{D}$. Then, for any $f \in W^{1+\varepsilon}_{p,q}(\Omega)$, $\overline{\partial}f = 0$, $0 \leq \varepsilon < \frac{1}{2}$, there exists $F \in W^{\varepsilon}_{p,q}(\mathbb{C}P^n)$ such that $F|_{\Omega} = f$ and $\overline{\partial}F = 0$ in $\mathbb{C}P^n$.

Proof. Since D has C^2 smooth boundary, there exists a bounded extension operator from $W^s_{p,q}(\Omega)$ to $W^s_{p,q}(\mathbb{C}P^n)$ for all $s \geq 0$ (cf. e.g. [33]). Let $f \in W^{1+\varepsilon}_{p,q}(\mathbb{C}P^n)$ be the extension of f so that $\tilde{f}|_{\Omega} = f$ with

$$\|\tilde{f}\|_{W^{1+\varepsilon}_{p,q}(\mathbb{C}P^n)} \leq C\|f\|_{W^{1+\varepsilon}_{p,q}(\Omega)}.$$

Furthermore, we can choose an extension such that $\overline{\partial}\tilde{f} \in W^\varepsilon(D) \cap L^2(D,\phi_{2\varepsilon})$.

One defines $T\tilde{f}$ by $T\tilde{f} = -\star_{2\varepsilon} \overline{\partial}N_{2\varepsilon}(\star_{-2\varepsilon}\overline{\partial}\tilde{f})$ in Ω. As in Theorem 4.2, $T\tilde{f} \in L^2(D,\phi_{2\varepsilon})$. But for a C^2-smooth domain, we have that $T\tilde{f} \in L^2(D,\phi_{2\varepsilon})$ is comparable to $W^\varepsilon(\Omega)$ for $0 \leq \varepsilon < \frac{1}{2}$. This gives that $T\tilde{f} \in W^\varepsilon_p(\Omega)$ and Tf satisfies $\overline{\partial}Tf = \overline{\partial}f$ in $\mathbb{C}P^n$ in the distribution sense if we extend $T\tilde{f}$ to be zero outside Ω.

Since $0 \leq \varepsilon < \frac{1}{2}$, the extension by 0 outside Ω is a continuous operator from $W^\varepsilon(\Omega)$ to $W^\varepsilon(\mathbb{C}P^n)$ (cf. e.g. [21]). Thus we have $T\tilde{f} \in W^\varepsilon(\mathbb{C}P^n)$.

Define

$$F = \begin{cases} f, & \text{if } z \in \overline{D}, \\ \tilde{f} - T\tilde{f}, & \text{if } z \in \Omega. \end{cases}$$

Then $F \in W^\varepsilon_{p,q}(\mathbb{C}P^n)$ and F is $\overline{\partial}$-closed extension of f to $\mathbb{C}P^n$.

Corollary 4.1. Let $D \subseteq \mathbb{C}P^n$ be a weakly q-concave domain, $n \geq 2$ with C^2 smooth boundary. Then $W^{1+\varepsilon}_{p,0}(D) \cap \ker \overline{\partial} = \{0\}$, $1 \leq p \leq n$ and $W^{1+\varepsilon}_{0,0}(D) \cap \ker \overline{\partial} = \mathbb{C}$.

Proof. Using Proposition 4.1 for $q = 0$, we have that any holomorphic $(p,0)$-form on D extends to be a holomorphic $(p,0)$ in $\mathbb{C}P^n$, which are zero (when $p > 0$) or constants (when $p = 0$).

Corollary 4.2. Let $D \subseteq \mathbb{C}P^n$ be a weakly q-concave domain, $n \geq 2$ with C^2 smooth boundary. Then, for any $f \in W^{1+\varepsilon}_{p,q}(D)$, where $0 \leq p \leq n$, $1 \leq q \leq n-2$, $p \neq q$, and $0 \leq \varepsilon < \frac{1}{2}$, such that $\overline{\partial}f = 0$ in D, there exists $u \in W^{1+\varepsilon}_{p,q-1}(D)$ such that $\overline{\partial}u = f$ in D.

Proof. If $p \neq q$, we have that $F = \overline{\partial}u$ for some $U \in W^1_{p,q-1}(\mathbb{C}P^n)$. Let $u = U$ on D, we have $u \in W^1_{p,q-1}(D)$ satisfying $\overline{\partial}u = f$ in D.

Acknowledgements. The author is grateful to the referee for several helpful remarks and comments.

References

[1] O. Abdelkader and S. Saber, Solution to $\overline{\partial}$-equations with exact support on pseudoconvex manifolds, Int. J. Geom. Methods Mod. Phys. 4 (2007), 339–348.

[2] A. Andreotti and E. Vesentini, Carleman estimates for the Laplace-Beltrami equation on complex manifolds, Publ. Math. Inst. Hautes Etudes Sci. (1965), 81–150.
[3] L. Bungart, *Piecewise smooth approximations to q-plurisubharmonic functions*, Pacific J. Math. 142 (1990), 227–244.

[4] J. Cao, M. C.-Shaw and L. Wang, *Estimates for the $\overline{\partial}$-Neumann problem and nonexistence of C^2 Levi-flat hypersurfaces in X*, Math. Z. 248 (2004), 183–221.

[5] J. Cao and M.-C. Shaw, *The $\overline{\partial}$-Cauchy problem and nonexistence of Lipschitz Levi-flat hypersurfaces in $\mathbb{C}P^n$ with $n \geq 3$*, Math. Z. 256 (2007), 175–192.

[6] S.-C. Chen and M.-C. Shaw, *Partial Differential Equations in Several Complex Variables*, AMS/IP Stud. Adv. Math. 19, AMS, Providence, Rhode Island, 2001.

[7] J.-P. Demailly, *Complex analytic and differential geometry*, American Math. Society (to appear).

[8] M. Derridj, *Regularité pour $\overline{\partial}$ dans quelques domaines faiblement pseudo-convexes*, J. Differential Geom. 13 (1978), 559–576.

[9] M. Derridj, *Inégalités de Carleman et extension locale des fonctions holomorphes*, Ann. Sc. Norm. Super. Pisa Cl. Sci. 15 (1981), 645–669.

[10] K. Diederich and J. E. Fornaess, *Smoothing q-convex functions and vanishing theorems*, Invent. Math. 82 (1985), 291–305.

[11] M. G. Eastwood and G. V. Suria, *Cohomologically complete and pseudoconvex domains*, Comment. Math. Helv. 55 (1980), 413–426.

[12] G. B. Folland and J. J. Kohn, *The Neumann problem for the Cauchy-Riemann complex*, Princeton Math. Ser. 75 (1972).

[13] O. Fujita, *Domaines pseudoconvexes d’ordre général et fonctions pseudoconvexes d’ordre général*, Kyoto J. Math. 30 (1990), 637–649.

[14] G. M. Henkin and A. Iordan, *Regularity of $\overline{\partial}$ on pseudococave compacts and applications*, Asian J. Math. 4 (2000), 855–884.

[15] L. Hörmander, *L^2-estimates and existence theorems for the $\overline{\partial}$-operator*, Acta Math. 113 (1965), 89–152.

[16] L. Ho, *$\overline{\partial}$-problem on weakly q-convex domains*, Math. Ann. 290 (1991), 3–18.

[17] L. R. Hunt and J. J. Murray, *q-plurisubharmonic functions and a generalized Dirichlet problem*, Michigan Math. J. 25 (1978), 299–316.

[18] J. J. Kohn, *Harmonic integrals on strongly pseudoconvex manifolds I*, Ann. of Math. 78 (1963), 112–148.

[19] J. J. Kohn, *Harmonic integrals on strongly pseudoconvex manifolds II*, Ann. of Math. 79 (1964), 450–472.

[20] J. J. Kohn and H. Rossi, *On the extension of holomorphic functions from the boundary of a complex manifold*, Ann. of Math. 81 (1965), 451–472.

[21] J.-L. Lions and E. Magenes, *Non-Homogeneous Boundary Value Problems and Applications*, Springer-Verlag, Berlin Heidelberg, New York, 1972.

[22] K. Matsumoto, *Pseudoconvex domains of general order in Stein manifolds*, Memoirs of the Faculty of Science, Kyushu University, Series A, Mathematics 43(2) (1989), 67–76.

[23] K. Matsumoto, *Pseudoconvex domains of general order and q-convex domains in the complex projective space*, Kyoto J. Math. 33 (1993), 685–695.

[24] M. Peternell, *Continuous q-convex exhaustion functions*, Invent. Math. 85 (1986), 249–262.

[25] R. M. Range, *Holomorphic Functions and Integral Representations in Several Complex Variables*, Springer, Berlin, Heidelberg, New York, 1986.

[26] S. Saber, *Solution to $\overline{\partial}$ problem with exact support and regularity for the $\overline{\partial}$-Neumann operator on weakly q-convex domains*, Int. J. Geom. Methods Mod. Phys. 7(1) (2010), 135–142.

[27] S. Saber, *The $\overline{\partial}$ problem on q-pseudoconvex domains with applications*, Math. Slovaca 63(3) (2013), 521–530.

[28] S. Saber, *The L^2 $\overline{\partial}$-Cauchy problem on weakly q-pseudoconvex domains in Stein manifolds*, Czechoslovak Math. J. 65(3) (2015), 739–745.
[29] S. Sambou, Réolution du $\bar{\partial}$ pour les courants prolongeables définis dans un anneau, Annales de la Faculté des sciences de Toulouse: Mathématiques 11(1) (2002), 105–129.

[30] M. C. Shaw, Local existence theorems with estimates for $\bar{\partial}_b$ on weakly pseudo-convex boundaries, Math. Ann. 294 (1992), 677–700.

[31] M. C. Shaw, The closed range property for $\bar{\partial}$ on domains with pseudoconcave boundary, Complex Analysis Trends in Mathematics (2010), 307–320.

[32] Y. T. Siu, Complex-analyticity of harmonic maps, vanishing and Lefschetz theorems, J. Differential Geom. 17 (1982), 55–138.

[33] E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Math. Series 30, Princeton University Press, Princeton, New Jersey, 1970.

[34] E. J. Straube, Lectures on the L^2-Sobolev Theory of the $\bar{\partial}$-Neumann Problem, ESI Lectures in Mathematics and Physics, Freiburg, Germany, 2010.

[35] G. V. Suria, q-pseudoconvex and q-complete domains, Compos. Math. 53 (1984), 105–111.

[36] H. H. Wu, The Bochner Technique in Differential Geometry, Harwood Academic, New York, 1988.

[37] G. Zampier, Complex Analysis and CR Geometry, AMS 43, Providence, Rhode Island, 2008.

1Department of Mathematical Sciences, Faculty of Applied Sciences, Umm Al-Qura University, Saudi Arabia

2Department of Mathematics and Computer Science, Faculty of Science, Beni-Suef University, Beni Suef, Egypt

Email address: sayedkay@yahoo.com