Conservation needs to integrate knowledge across scales

To the Editor — Wyborn and Evans’ argue that global priority maps for conservation have questionable utility and may crowd out local and more contextual research. While we agree with the authors’ central argument that effective and equitable conservation must be rooted at local scales, the assertion that “conservation needs to break free from global priority mapping” presents a false dichotomy. We should not think in terms of a binary choice of methods (local or global), but rather recognize that information across scales will have the most relevance and power in the future. Wyborn and Evans challenge the creators of global maps to identify their theory of change. Here, we outline six major areas of contribution relevant for priority setting and other conservation-related decisions.

(1) Broader context for local decisions. Making effective local policy relies on anticipating economic, political or environmental change operating at larger scales and understanding how it affects local social or biophysical conditions. Global maps reveal the importance of distant connections (also known as telecoupling) in driving change in nature and its contributions to people2. Similarly, species extinction risk is governed by how rare a species is, and a purely local focus cannot fully reveal the regional, continental and global landscape of extinction risks3. Analyses of linkages across scales from local to regional to global are essential for a full understanding of the impacts of policies or actions. Ignoring linkages across scales results in missed opportunities and unintended consequences.

(2) Rapid information for globalized decision-making. In an increasingly interconnected world, many actors, including corporations, non-governmental organisations, development banks and supranational organizations such as the Convention on Biological Diversity (CBD), make decisions at a global or regional scale; without information on nature, they will (and do) proceed without it. Several global-scale maps and analyses4–6 were cited by the CBD Subsidiary Body on Scientific, Technical and Technological Advice (CBD/SBSTTA/24/3/Add.2) that informed the content of the Global Biodiversity Framework. Although all global agreements need to be operationalized at national and sub-national scales, global maps provide the basis to set agendas, inform target setting, provide pressure or leverage for governments and others to act, and in some cases provide information on the magnitude of financing required for implementation.

(3) Understanding synergies and trade-offs across scales. Setting priorities only at local scales jeopardizes the protection of globally important species or ecosystems, and may lead to land or ocean use strategies that conflict with regional, national and international goals1. Spatial patterns and processes relevant at continental to global scales, such as global biogeographic patterns and areas of importance for multiple environmental goals4, must be understood at that level to inform countries that share the responsibility towards conserving species and ecosystems with wide and cross-border distributions. Cooperation across regional, national or global scales, supported by large-scale studies, can create synergies or efficiencies that have the potential to improve outcomes for people and nature in all local areas5.

(4) Setting boundaries, baselines or hypotheses. Global analyses provide boundary conditions and identify biodiversity or ecosystem thresholds at the global and regional scales that can serve as input to the local scale8. Alternatively, global analyses of local data can identify local and regional differences in patterns and trends9. Global studies also provide a baseline of results at large scales that can be further refined with better data and local context (for example, the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services Global Assessment10, the Ocean Health Index11 or mapping spatial conservation gaps for crop wild relatives12). Indeed, the gradual improvement of imperfect knowledge by challenging existing hypotheses is a fundamental element of the scientific process, which often produces more questions than it answers. While misapplication of priority maps beyond their envisioned scope is a valid concern, these maps can form the basis for future research, not just conservation plans.

(5) Identifying and supplementing gaps in knowledge. Global maps complement local information, which for many attributes of ecosystems is not readily available across much of the world. This is not an argument for supplanting local data with global data, but rather for filling gaps where needed or desired by local or other actors while local knowledge and data are still being acquired (as was done for the United Nations Convention to Combat Desertification framework for Land Degradation Neutrality13). Global maps can also identify knowledge gaps and redirect priorities towards obtaining that knowledge, and can facilitate the aggregation of local data to broader extents (from assembling local knowledge on climate change14 and biodiversity change15 to compiling local tracking data into a global atlas of ungulate migrations16).

(6) Education, communication and inspiration. Global maps serve as an education and communication tool beyond decision-makers by readily making the global personal. Climate change research has demonstrated how global studies and maps can be an important tool for communicating a global problem in local contexts17. Global maps of the origin of food crops have made their way into classrooms and the popular imagination, elucidating connections between countries18. Wyborn and Evans argue that global maps have proliferated beyond their usefulness, and that the current deluge has not found its way into decisions. We agree that uptake of scientific information has often been limited, but this is not unique to global efforts. Decisions are taken — and can impact people — at a variety of scales. Identifying the key leverage points for information to support intervention and the key actors involved is more likely to result in uptake than selecting any one scale over another.

Amplifying local voices and values is critical to producing just and sustainable outcomes for nature and people. But this does not preclude large-scale efforts or mean we should stop generating information at the global scale — or any scale. Successful conservation efforts will require integration across multiple scales and multiple types of knowledge. Rather than pitting one
approach against another, we must seek better ways of integrating a wide diversity of perspectives across scales to address the challenges ahead.

Rebecca Chaplin-Kramer, Kate A. Brauman, Jeannine Cavender-Bares, Sandra Díaz, Gabriela Teixeira Duarte, Brian K. Enquist, Lucas A. Garibaldi, Jonas Goldmann, Benjamin S. Halpern, Thomas W. Hertel, Colin K. Khoury, Joana Madeira Krieger, Jason M. Tylianakis, de Córdoba, Córdoba, Argentina. 5International Multidisciplinario de Biología Vegetal (IMBIV), University of Minnesota, Saint Paul, MN, USA. 4Instituto de Investigaciones en Recursos Naturales, Agroecología y Desarrollo Rural, Río Negro, Argentina. 6Instituto de Investigaciones en Recursos Naturales, Agroecología y Desarrollo Rural, Río Negro, Argentina. 16Center for Macroecology, Evolution and Climate, Globe Institute, University of Copenhagen, Copenhagen, Denmark. 11National Center for Ecological Analysis and Synthesis, University of California, Santa Barbara, CA, USA. 15Bren School of Environmental Science and Management, University of California, Santa Barbara, CA, USA. 17Agricultural Economics, Purdue University, West Lafayette, IN, USA. 23San Diego Botanic Garden, Encinitas, CA, USA. 16International Center for Tropical Agriculture (CIAT), Cali, Colombia. 1Laboratoire d’Ecologie Alpine, Université Grenoble Alpes - CNRS - Université Savoie-Mt Blanc, Grenoble, France. 18Senckenberg Biodiversity and Climate Research Centre, Senckenberg Gesellschaft fuer Naturforschung, Frankfurt (Main), Germany. 2Department of Biological Sciences, Goethe University Frankfurt, Frankfurt (Main), Germany. 4Department of Natural Resources and the Environment, Cornell University, Ithaca, NY, USA. 19Department of Applied Economics, University of Minnesota, Saint Paul, MN, USA. 20Department of Life Sciences, Natural History Museum, London, UK. 22Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain. 23Institut de Ciència i Tecnologia Ambientals, Universitat Autònoma de Barcelona (ICATA-UB), Cardanyola del Vallès, Barcelona, Spain. 24Moore Center for Science, Conservation International, Arlington, VA, USA. 25Department of Biological Sciences, University of Cape Town, Cape Town, South Africa. 26Global Science, World Wide Fund for Nature (WWF), San Francisco, CA, USA. 27Rio Conservation and Sustainability Science Centre, Department of Geography and the Environment, Rio de Janeiro, Brazil. 28Bioprotection Aotearoa, School of Biological Sciences, University of Canterbury, Christchurch, New Zealand. 29Institute for Environmental Studies, VU University Amsterdam, Amsterdam, Netherlands. 30IIASA - International Institute for Applied Systems Analysis, Laxenburg, Austria. 31Basque Centre for Climate Change b3c, Scientific Campus of the University of the Basque Country, Biscay, Spain.

e-mail: bchaplin@stanford.edu

Published online: 25 November 2021
https://doi.org/10.1038/s41559-021-01605-x

References

1. Wyborn, C. & Evans, M. C. Nat. Ecol. Evol. 5, 1322–1324 (2021).
2. Liu, J. et al. Ecol. Soc. 18, 26 (2013).
3. Enquist, B. J. et al. Sci. Adv. 5, eaaz0414 (2019).
4. Strassburg, B. B. N. et al. Nature 586, 724–729 (2020).
5. Garibaldi, L. A. et al. Conserv. Lett. 13, e12773 (2020). 6. Chaplin-Kramer, R. et al. Science 328, 255–258 (2019).
7. Wolff, S., Meijer, J., Schulp, C. J. E. & Verburg, P. H. Reg. Environ. Change 20, 115 (2020).
8. Jung, M. et al. Nat. Ecol. Evol. 5, 1499–1509 (2021).
9. King, E., Cavender-Bares, J., Balvanera, P., Mwampamba, T. H. & Polasky, S. Ecol. Evol. 20, 25 (2015).
10. Heck, V., Hoff, H., Wrennious, S., Meyer, C. & Kreft, H. Glob. Environ. Chang 49, 73–84 (2018).
11. Beckmann, M. et al. Glob. Chang. Biol. 25, 1941–1956 (2019).
12. Brauman, K. A. et al. Proc. Natl Acad. Sci. USA 117, 32799–32805 (2020).
13. Halpern, B. S. et al. Nature 488, 615–620 (2012).
14. Castañeda-Álvarez, N. P. et al. Nat. Plants 2, 16022 (2016).
15. Cowie, A. L. et al. Environ. Sci. Policy 79, 25–35 (2018).
16. Reyes-Garcia, V. et al. Curr. Opin. Environ. Sustain. 39, 1–8 (2019).
17. Diaz, R. et al. Summary for Policymakers of the Global Assessment Report on Biodiversity and Ecosystem Services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES, 2019).
18. Kaufman, M. J. et al. Science 372, 566–569 (2019).
19. Fitzpatrick, M. C. & Dunn, R. R. Nat. Commun. 10, 614 (2019).
20. Khoury, C. K. et al. Proc. R. Soc. B 283, 20160792 (2016).

Competing interests

The authors declare no competing interests.