ION CHANNELS, RECEPTORS AND TRANSPORTERS

The regulatory role of GABA_A receptor in Actinia equina nervous system and the possible effect of global ocean acidification

Sergii Snigirov¹ · Sergiy Sylantyev²

Received: 14 September 2021 / Revised: 24 September 2021 / Accepted: 27 September 2021 / Published online: 11 October 2021
© The Author(s) 2021

Abstract

Global warming and connected acidification of the world ocean attract a substantial amount of research efforts, in particular in a context of their impact on behaviour and metabolism of marine organisms, such as Cnidaria. Nevertheless, mechanisms underlying Cnidarians’ neural signalling and behaviour and their (possible) alterations due to the world ocean acidification remain poorly understood. Here we researched for the first time modulation of GABA_A receptors (GABA_ARs) in Actinia equina (Cnidaria: Anthozoa) by pH fluctuations within a range predicted by the world ocean acidification scenarios for the next 80–100 years and by selective pharmacological activation. We found that in line with earlier studies on vertebrates, both changes of pH and activation of GABA_ARs with a selective allosteric agonist (diazepam) modulate electrical charge transfer through GABA_AR and the whole-cell excitability. On top of that, diazepam modifies the animal behavioural reaction on startle response. However, despite behavioural reactions displayed by living animals are controlled by GABA_ARs, changes of pH do not alter them significantly. Possible mechanisms underlying the species resistance to acidification impact are discussed.

Keywords GABA_A receptor · pH-dependent receptor · Diazepam · Actinia equina · Global warming · Startle response

Abbreviations

Abbreviation	Definition
AP	Action potential
APV	D-2-amino-5-phosphonovalerate
ASAB	Association for study of animal behaviour
CGP-55845	(2S)-3-[(1S)-1-(3,4-Dichlorophenyl)ethyl]-amino-2-hydroxypropyl](phenylmethyl)phosphinic acid
DZP	Diazepam
GABA	γ-Aminobutyric acid
GABA_AR	GABA receptor of type A
GABA_BR	GABA receptor of type B
MSC	Muscimol
NBQX	2,3-Dioxo-6-nitro-1,2,3,4-tetrahydrobenzo[f]quinoxaline-7-sulfonamide
OA	Ocean acidification
PTX	Picrotoxin
RM-ANOVA	Repeated-measures analysis of variance

Introduction

The present rise of atmospheric CO₂ significantly increases the partial pressure of CO₂ in the world oceans and, consequently, leads to ocean acidification (OA). Different model scenarios predict a decline in pH values of oceanic waters by up to 0.45 units by the year 2100 [7, 39], with profound consequences to marine ecosystems [14]. In this context, the potential impact of OA on coral cnidarians (Cnidaria: Anthozoa, Scleractinia) attracts understandably significant research efforts given the global role of coral reefs and their sensitivity to water pH and connected fluctuations of carbonate–bicarbonate balance. However, how the OA-driven responses alter the behaviour of the soft-bodied forms of anthozoans and modify their long-term ecological perspectives is to a large extent unknown. During the last decade, several research groups have reported a negligible (or even positive) impact of OA on the metabolism of sea anemones of species supporting microalgal endosymbionts of Sybiodinium genus due to rapid changes in endosymbionts’ biochemistry and photosynthesis capacity [16, 20, 40]. Nevertheless, the impact of OA on non-symbiotic sea anemones has yet to be determined.

From the neurophysiological perspective, sea anemones such as Actinia equina (A. equina) (Cnidaria: Anthozoa,
Actiniaria) are “…for all intents and purposes, little more than guts with tentacles” [19]. This definition clearly reflects a limited set of reactions generated by a nervous system of the simplest morphology (nerve net) amongst metazoans [12]. Thus, the factors that could modulate the prominence and features of species’ behavioural profile within such a simple nervous system are of considerable interest. This area has a relatively recent and irregular research history, where the startle response of the non-symbiotic species A. equina is used as a quantifying gauge of anemones’ adaptability to climate change and the expression of their personality [5, 29].

GABA$_A$-receptors (GABA$_A$Rs) are the major inhibitory neurotransmitter receptors in the animal nervous system. These receptors and elements of the synthesis and degradation of their endogenous ligand γ-aminobutyric acid (GABA) have been repeatedly shown to be present in different actinian species [10, 17], whereas the functional signature of GABA$_A$Rs was demonstrated in Cnidaria of other classes [11, 24, 32]. The effects of GABA$_A$Rs in vertebrates’ neuronal cells were demonstrated to be pH-dependent due to protonation of the receptors’ extracellular domain. Fluctuations of pH by a few tenths of a unit make a significant impact on neural cell excitability and inter-neuronal signalling [8, 21, 43]. The level of sensitivity to pH fluctuations depends on the GABA$_A$R subunit composition [21]. In anthozoans GABA$_A$Rs are likely to be of a different subunit composition to that in vertebrates’ cells. Therefore, anthozoans are a prospective object for research of pH-related functionality of GABA$_A$Rs and of the impact of environmental pH fluctuations on signalling.

The GABA$_A$R is a traditional target for the treatment of neural disorders, where the effects of GABA$_A$R ligands of the benzodiazepine type (such as diazepam [DZP]) are commonly associated with corrections of individual behaviour and personality profile [24, 41, 42]. However, to the best of our knowledge, to date the functional effects of benzodiazepines in Anthozoa remain unknown.

Hence, in this study, we aimed to test the impact of pH fluctuations within the OA-related interval on the nervous system of A. equina at different levels: from a single GABA$_A$R to the generation of the startle response by living animals, connecting these points through the functional profile of a separate excitable cell. Additionally, we intended to clarify the DZP impact on anthozoan GABA$_A$R functions at different organizational levels (single receptor, single cell, and animal behaviour). Inasmuch sensitivity to environmental factors and bioactive compounds in invertebrates may differ between ecologically and geographically disengaged populations of the same species [26], we aimed to perform experiments on animals representing two populations separated both ecologically and geographically: A. equina from both the inter-tidal zone of the Scottish North Sea coast and from the Black Sea wherein tides are absent [2].

The inter-annual fluctuations of pH both in the North Sea and in the Black Sea are within a range of 7.5–8.5 [4, 35]. Therefore, to explore a potential impact of OA (acidification shift by ≤ 0.45 unit [7, 39]) on GABA$_A$R-mediated effects and to compare these effects to those observed at pH characteristic to present conditions, we set out to perform experiments at a pH range from 8.5 to 7.0.

Materials and methods

Ethical statement

A. equina is not protected under either UK Animals (Scientific Procedures) Act 1986 nor listed in the general provisions of the European Directive (2010) on the protection of animals used for scientific purposes. Nevertheless, the study was conducted in accord with the ASAB Guidelines for the treatment of animals in teaching and research [6]. All animals involved into behavioural tests were then released near the point of collection. Environmental parameters in research aquaria were consistently within normal tolerance ranges for corresponding population.

Behavioural tests

Sea anemones of the North Sea population were collected in a tidal zone of a rocky coast to the north of the town of Dunbar (56° 0′ 11″ N, 2° 31′ 48″ W). Sea anemones of the Black Sea population were collected at a depth of 2–5 m near the shore of Zmiinyi Island (45° 15′ 36″ N, 30° 1′ 12″ E) [37]. A distance of 2–3 m was left between the animals collected, to avoid collecting cloned individuals [11]. Animals were housed in experimental aquaria of 1 m3 volume, half-filled (0.5 m3) with sea water. Water temperature was held at a level similar to that observed at the time of collection: 12 ± 1 °C for the North Sea animals and 27 ± 1 °C for the Black Sea animals, bubbled with air compressors. Evaporating sea water volumes were replaced with distilled water. Animals were kept at a 12:12-h light/dark cycle and kept for 7 days to acclimatize before the start of the behavioural tests. Animals were fed once per 3 days with small pieces of fresh mussel meat. In behavioural tests, the startle response was induced by rapid ejection of a 10-ml syringe filled with aquarium water into actinia’s mouth opening from 1–3-cm distance. The length of a startle response was registered as a time interval between closure of actinia’s mouth with simultaneous tentacle retraction and subsequent mouth opening with tentacle straightening. In the experiments involving DZP, 100 µM solution of DZP in sea water was used. pH in both in vivo and in vitro experiments was adjusted with HCl and NaOH. Behavioural tests commenced in 1.5–2 h after pH adjustment since after a change of external pH,
intracellular pH in actinia cells comes to the normal values in 35–40 min [23].

Electrophysiology

Electrophysiological recordings were performed on dissociated myoepithelial cells obtained with a protocol proposed by Holman and Anderson [15]. Briefly, after being relaxed and anesthetized in 350 mM MgCl₂, the animals were dissected. The upper quarter of the actinia stem which neighbours the oral disc was cut into small pieces, then loosened with papain (3.5 mg per ml of sea water) and triturated within a syringe with an 18-gauge needle. Whole-cell patch-clamp recordings were performed in a seawater-perfused chamber at room temperature (~ 22 °C). The intracellular solution for current-clamp recordings contained (in mM) 126 K-gluconate, 8 NaCl, 5 HEPES, 15 glucose, 1 MgSO₄·7H₂O, 2 BAPTA, and 3 Mg-ATP, while for voltage-clamp recordings 126 CsCl, 10 KOH-HEPES, 10 BAPTA, 8 NaCl, 5 QX-314, 2 Mg-ATP, and 0.3 GTP (pH 7.2, 295 mOsm). To isolate GABAAR response in outside-out patches, we added to perfusion solution 20 µM APV (to block NMDA receptors), 10 µM NBQX (to block AMPA receptors), 8 NaCl, 5 HEPES, 10 Na-gluconate, 1 MgSO4·7H2O, 2 BAPTA, and 3 Mg-ATP, while for voltage-clamp recordings 126 CsCl, 10 KOH-HEPES, 10 BAPTA, 8 NaCl, 5 QX-314, 2 Mg-ATP, and 0.3 GTP (pH 7.2, 295 mOsm). To isolate GABAAR response in outside-out patches, we added to perfusion solution 20 µM APV (to block NMDA receptors), 10 µM NBQX (to block AMPA receptors), 50 nM CGP-55845 (to block GABA_B receptors), and 1 µM strychnine (to block glycine receptors). Recordings were performed with a Multiclamp-700B amplifier and a Digidata 1500 digitizer, and the recorded traces were digitized at a 10 kHz rate and digitally filtered offline. To apply different perfusion solutions on the same membrane patch in experiments on outside-out patches, the rapid solution exchange system was used [38]. To avoid confusion due to (possible) response modification generated by uncontrolled factors, in different experiments, we used a different order of pH modifications: from lower to higher or from higher to lower values. The single receptor open-time fraction was calculated as t_o/t_t, where t_o is a time in an open state and t_t is a full time of recording. Automated detection of the single channel openings was performed with a threshold detection algorithm of Clampfit 11 software package, with a detection threshold set 2.5 pA more negative than a baseline conductance and a minimum event length of 2 ms.

Nonlinear fitting of concentration–response curves was performed with a Hill equation

$$E = \frac{[C]^n}{K_d^n + [C]^n}$$

via a Newton–Raphson iteration method, where E is an effect of GABA, C is concentration of GABA, K_d is an apparent dissociation constant, and n_H is a Hill coefficient (positive for an increasing function and negative for a decreasing function).

Repeated-measures two-way analysis of variance with Geisser-Greenhouse correction for sphericity and Tukey post-hoc test (RM-ANOVA, performed with GraphPad Prism 8.0 software), nonlinear curve fitting (performed with Wolfram Mathematica 11 package) and Student’s paired t-test (performed with MS Excel) were used as indicated. GABA, QX-314, NBQX, CGP-55845, and diazepam were purchased from Tocris Bioscience, while all other chemicals were purchased from Sigma-Aldrich.

Results

At the initial stage of this project, we tested whether GABAₐR functional profile in A. equina is pH-dependent and if DZP can modify GABAₐR activity. To do this, we recorded in voltage-clamp mode GABAₐR single-channel openings in outside-out membrane patches excised from myoepithelial cells (Fig. 1). Here and in further experiments, we did not observe a significant difference between North Sea and Black Sea actinias for any tested parameter. We thus provide combined data received from animals of both populations.

At first, we tested pharmacological specificity of actinias’ GABAₐRs. To do this, we applied different perfusion solutions at the same membrane patch. We found that GABA (100 nM) and a specific GABAₐR agonist MSC (1 µM) evoke single-channel openings, whereas GABAₐR open channel blocker PTX (20 µM) shuts GABAₐR openings induced by MSC (Fig. 1A). Next, we tested the concentration–response effect of GABA on actinias’ GABAₐRs (Fig. 1B and D). The concentration–response dependence parameters were fitted as $K_d = 4.9 \mu M$ and $n_H = 0.66$. After that, to clarify the effect of DZP, we compared an open-time fraction of recorded trace under control conditions, with 100 nM GABA, 100 µM DZP, and GABA + DZP. Neither under control conditions nor with DZP alone did we register GABAₐR openings, whereas GABA + DZP. Neither under control conditions nor with DZP alone did we register GABAₐR openings (Fig. 1C). On the contrary, the application of GABA triggered GABAₐR openings and frequency increased significantly under GABA + DZP (Fig. 1C and E). This experiment was repeated with four pH values: from 7.0 to 8.5 with a 0.5 unit step. To quantify the experimental output, here and in further experiments, we used two-way RM-ANOVA with pharmacological interventions as factor 1 and pH values as factor 2.

RM-ANOVA on the open-time fraction generated the following results. Factor 1: $F_{(3, 22)} = 65.42, P < 0.0001$; factor 2: $F_{(3, 22)} = 5.81, P = 0.0044$; factor 1 × factor 2: $F_{(3, 22)} = 1.27, P = 0.308$. Tukey test on factor 2: $P = 0.0026$ for pH 7.5 vs. pH 8.5, $P > 0.05$ for all other comparisons.

We thus found that DZP alone has no detectable effect on GABAₐR in A. equina but significantly enhances the effect of GABA. Decreasing function).
of GABA, as well as that actinia’s GABAAR functioning is pH-dependent.

Next, we tested the impact of GABAAR on intercellular signalling. To do this, we performed a whole-cell current-clamp recording of action potential (AP) generation in myoepithelial cells. In this experiment, we delivered standard 500 ms depolarising current injections, monitoring the modulation of the AP generation frequency caused by GABAAR ligands (GABA, DZP, GABA + DZP) and pH (Fig. 2). We found that pharmacological interventions significantly decrease the number of APs generated upon depolarising current injection, and this effect changes quantitatively under different pH levels.

RM-ANOVA on a number of APs. Factor 1: $F_{(1.95, 66.28)} = 63.97, P < 0.0001$; factor 2: $F_{(3, 34)} = 3.1, P = 0.0395$; factor 1 x factor 2: $F_{(9,102)} = 3.11, P = 0.0024$. Tukey test on factor 1: $P < 0.0001$ for all comparisons; on factor 2: $P > 0.05$ for all comparisons. On top of that, to obtain more detailed characteristic of the GABA role in intercellular signalling, we next generated a concentration–response dependence for GABA’s modulatory impact on AP generation (Fig. 2). Here nonlinear fitting yielded $K_d = 7.2 \mu M$ and $n_H = -0.78$.

Therefore, we have shown that GABAARs in A. equina modulate cell excitability in a pH-dependent manner. Equipped with this knowledge, we began to research the impact of GABAARs on A. equina behaviour.

To do this, we monitored the time length of the startle response (strangulated mouth opening with retracted tentacles, see Fig. 3A) to water ejection into actinia’s mouth. Since DZP added to ejected water alone exerted a significant impact on the response length, we concluded that living animals maintain in tissues a sufficient concentration of GABA to manifest a GABAAR-related DZP effect. Here we found that DZP significantly reduces the response length under all pH levels. However, the change of pH itself did not exert a significant effect (Fig. 3B).

RM-ANOVA on the startle response length. Factor 1: $F_{(1, 15)} = 15.94, P = 0.0012$; factor 2: $F_{(2.8, 41.95)} = 1.89, P = 0.15$; factor 1 x factor 2: $F_{(2.42, 36.48)} = 0.045, P = 0.97$. Tukey test on factor 2: $P > 0.05$ for all comparisons.
Discussion

In this research, we demonstrated for the first time the effect of a specific agonist of a GABA$_A$R in Anthozoa at a single-receptor level and then studied the projection of such an effect to modulation of the whole cell excitatory signalling and further to the level of behaviour control. Our data confirm GABA$_A$R to be an important factor shaping *A. equina* behaviour via control over AP generation machinery. The absence of DZP effect when the compound is added without GABA in vitro (Figs. 1 and 2) and presence of its effect in vivo (Fig. 3) suggest the continuous secretion of GABA by actinia’s living tissue in a concentration sufficient for activation of GABA$_A$Rs.

Despite the principal role of GABA$_A$Rs in the delivery of inhibitory signalling being well-established in vertebrates and in a number of invertebrate species, their functional profile in Cnidaria remains unclear. Earlier studies have reported the presence of GABA in different cnidarians [10, 27, 28] and its role as a signalling molecule in feeding behaviour, orientation, tentacle movement, and so on [17, 18, 34]. Pharmacological data suggest the presence of GABA$_A$Rs in Cnidaria [33]: an observation that was later supported by genetic evidence [1]. However, the structure of the GABA$_A$R derived from the genome of the sea anemone *Nematostella vectensis* [1] differs substantially from that suggested by the pharmacological profile of *Hydra vulgaris* receptors [9, 33], with the latter being similar to vertebrate orthologues. Our data demonstrate the inhibitory effect of DZP, given that it is a specific allosteric agonist of vertebrate GABA$_A$Rs. However, despite DZP being shown to upregulate the GABA-independent activation of vertebrate GABA$_A$Rs previously...
[3], in our work, we did not observe any significant effect of DZP in the absence of GABA (Fig. 1C). Apart from that and on the contrary to common observations in vertebrates [3], in our recordings from outside-out patches, we failed to register spontaneous GABAAR openings (Fig. 1A and C, top traces). Our observations thus give indirect support to the hypothesis of significant structural difference between GABAARs in vertebrates and in Anthozoa [1].

An important issue arising from the data collected in our work is indeed why fluctuations of pH exert a significant effect on the functional profile of a single GABAAR (Fig. 1) and on GABAAR-mediated control over AP-generating mechanisms in a single cell (Fig. 2) but not on GABAAR-mediated behavioural reactions of living animals (Fig. 3). The low sensitivity of the startle response to GABAAR effects is an unlikely reason for this since the startle response experienced a highly significant impact from GABAAR-mediated effect of DZP. A plausible explanation is a loss of the GABAAR response sensitivity to pH at saturative concentrations of GABA [8, 36] since the protonation of GABAAR extracellular domain modulates GABA binding kinetics [30]. To the best of our knowledge, the steady-state concentration of GABA in A. equina tissue, as well as the binding constant(s) of GABAARs subspecies expressed in actinia, has not yet been determined. Therefore, at present we have insufficient data to make a meaningful conclusion as to how close to a saturative level the native GABA concentration maintained in actinia tissues is. However, in vertebrates’ neural tissue, the native concentration of GABA was reported to be of micromolar range [22, 25, 31], which is more than an order of magnitude higher than 100-nM concentration used in our in vitro experiments, where the effect of pH was statistically significant. Additionally, to the best of our knowledge, there are no data on the share of actinia’s GABAARs localized in synapses vs. at extrasynaptic cell membranes. Taking into account that the concentration of GABA released into synaptic cleft is commonly 3–5 orders of magnitude higher than in extracellular space and far exceeds the level of saturation of GABAARs [13], a high “synaptic/extrasynaptic” ratio of GABAARs’ distribution in actinia’s excitable cells may support resistance to pH fluctuations.
By exploring the pH interval from 7.0 to 8.5 in our experiments, we have covered the full range of inter-annual pH fluctuations observed in the North Sea and Black Sea at present (which is 7.5–8.5) [4, 35] plus maximum predicted acidification (pH value decrease by 0.45 unit) [7, 39]). Hence, our data from behavioural tests (Fig. 3) suggest A. equina to be well-prepared for any OA scenario: actinia’s nervous system stability and behavioural patterns should not be affected by the predicted pH shift.

Acknowledgements This study was supported with Wellcome-ISSF award via the University of Aberdeen and the University of Aberdeen Pump-Priming award SF10237-52 for S. Sylantyev and with Improving Environmental Monitoring in the Black Sea – Phase II (EMBLAS-II) ENPI/2013/313-169 grant for S. Snigirov.

Declarations

Conflict of interests The authors declare no competing interests.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Anctil M (2009) Chemical transmission in the sea anemone Nematostella vectensis: a genomic perspective. Comp Biochem Physiol Part D Genomics Proteomics 4:268–289. https://doi.org/10.1016/j.cbd.2009.07.001
2. Avsar NB, Jin S, Kutoglu H, Gurbuz G (2016) Sea level change along the Black Sea coast from satellite altimetry, tide gauge and GPS observations. Geodesy and Geodynamics 7:50–55. https://doi.org/10.1016/j.geog.2016.03.005
3. Birnir B, Eghbali M, Everitt AB, Gage PW (2000) Bicuculline, pentobarbital and diazepam modulate spontaneous GABA_A channels in rat hippocampal neurons. Br J Pharmacol 131:695–704. https://doi.org/10.1038/sj.bjp.0703621
4. Blackford JC, Gilbert FJ (2007) pH variability and CO2 induced acidification in the North Sea. J Mar Syst 64:229–241. https://doi.org/10.1016/j.marsy.2006.03.016
5. Briffa M, Greenaway J (2011) High in situ repeatability of behaviour indicates animal personality in the beadlet anemone Actinia equina (Cnidaria). PLoS ONE 6:e21963. https://doi.org/10.1371/journal.pone.0021963
6. Buchanan K, Burt de Perera T, Carere C, Carter T, Hailey A, Hubrecht R, Jennings D, Metcalfe N, Pitcher T, Peron F (2012) Guidelines for the treatment of animals in behavioural research and teaching. Anim Behav 83:301–309
7. Caldeira K, Wickett ME (2005) Ocean model predictions of chemistry changes from carbon dioxide emissions to the atmosphere and ocean. J Geophys Res Oceans 110. https://doi.org/10.1029/2004JC002671
8. Chen ZL, Huang RQ (2014) Extracellular pH modulates GABAergic neurotransmission in rat hypothalamus. Neuroscience 271:64–76. https://doi.org/10.1016/j.neuroscience.2014.04.028
9. Concas A, Pierobon P, Mostallino MC, Marino G, Minei R, Biggio G (1998) Modulation of γ-aminobutyric acid (GABA) receptors and the feeding response by neurosteroids in Hydra vulgaris. Neuroscience 85:979–988. https://doi.org/10.1016/S0306-4522(97)00515-0
10. Delgado LM, Couve E, Schmachtenberg O (2010) GABA and glutamate immunoreactivity in tentacles of the sea anemone Phymactis papillosa (LESSON 1830). J Morphol 271:845–852. https://doi.org/10.1002/jmor.10838
11. Foster NL, Briffa M (2014) Familial strife on the seashore: aggression increases with relatedness in the sea anemone Actinia equina. Behav Proc 103:243–245. https://doi.org/10.1016/j.beproc.2014.01.009
12. Gojobori T, Ikeo K, Hwang JS (2009) The evolutionary origin and process of the central nervous system: comparative genomics approach. Scientific Insights into the Evolution of the Universe and of Life. Pontifical Academy of Sciences
13. Grabauskas G (2004) Time course of GABA in the synaptic clefts of inhibitory synapses in the rostral nucleus of the solitary tract. Neurosci Lett 373:10–15. https://doi.org/10.1016/j.neulet.2004.09.051
14. Hoegh-Guldberg O, Bruno JF (2010) The impact of climate change on the world’s marine ecosystems. Science 328:1523–1528. https://doi.org/10.1126/science.1189930
15. Holman MA, Anderson PAV (1991) Voltage-activated ionic currents in myoepithelial cells isolated from the sea anemone Calliactis tricolor. J Exp Biol 161:333–346
16. Jarrold MD, Calosi P, Verberk WCEP, Rastrick SPS, Atfield A, Spicer JJ (2013) Physiological plasticity preserves the metabolic relationship of the intertidal non-calciﬁying anthozoan-Symbiodinium symbiosis under ocean acidification. J Exp Mar Biol Ecol 449:200–206. https://doi.org/10.1016/j.jembe.2013.09.013
17. Kass-Simon G, Pannaccione A, Pierobon P (2003) GABA and glutamate receptors are involved in modulating pacemaker activity in hydra. Comp Biochem Physiol A Mol Integr Physiol 136:329–342. https://doi.org/10.1016/S1095-6433(03)00168-5
18. Kass-Simon G, Scappaticci AA (2004) Glutamatergic and GABAergic control in the tentacle effector systems of Hydra vulgaris. Hydrobiologia 530:63–71. https://doi.org/10.1007/s10750-004-2647-7
19. Kass-Simon G, Scappaticci AA (2002) The behavioral and developmental physiology of nematocysts. Can J Zool 80:1772–1794
20. Klein SG, Pitt KA, Nitschke MR, Goyen S, Welsh DT, Suggett DJ, Carroll AR (2017) Symbiodinium mitigate the combined effects of hypoxia and acidification on a noncalcifying cnidian. Glob Change Biol 23:3690–3703. https://doi.org/10.1111/gcb.13718
21. Krishek BJ, Amato A, Connolly CN, Moss SJ, Smart TG (1996) Proton sensitivity of the GABA(A) receptor is associated with the receptor subunit composition. J Physiol 492(Pt 2):431–443. https://doi.org/10.1111/j.1469-772X.1996.9021319
22. Kunz A, Clement HW, Lehnert W, van Calder D, Hennighausen K, Gerlach M, Schulz E (2004) Effects of secretin on extracellular amino acid concentrations in rat hippocampus. J Neurotransm (Vienna) 111:931–939. https://doi.org/10.1007/s00702-003-0082-y
23. Laurent J, Venn A, Tambutté É, Ganot P, Allemand D, Tambutté S (2014) Regulation of intracellular pH in cnidarians: response to acidosis in Anemonia viridis. Febs J 281:683–695. https://doi.org/10.1111/febs.12614
24. Le Bon O, Basiaux P, Streel E, Tecco J, Hanak C, Hansenne M, Ansseau M, Pelc I, Verbanck P, Dupont S (2004) Personality
profile and drug of choice; a multivariate analysis using Cloninger’s TCI on heroin addicts, alcoholics, and a random population group. Drug Alcohol Depend 73:175–182. https://doi.org/10.1016/j.drugalcdep.2003.10.006

25. Lerma J, Herranz AS, Herreras O, Abraira V, Martín del Río R (1986) In vivo determination of extracellular concentration of amino acids in the rat hippocampus. A method based on brain dialysis and computerized analysis. Brain Res 384:145–155. https://doi.org/10.1016/0006-8993(86)91230-8

26. Maltby L (1999) Studying stress: the importance of organism-level responses. Ecol Appl 9:431–440. https://doi.org/10.1890/1051-0761(1999)009[0431:SISTIO]2.0.CO;2

27. Marlow HQ, Srivastava M, Matus DQ, Rokhsar D, Martindale MQ (2009) Anatomy and development of the nervous system of Nematostella vectensis, an anthozoan cnidarian. Dev Neurobiol 69:235–254. https://doi.org/10.1002/dneu.20698

28. Martin VJ (2004) Photoreceptors of cubozoan jellyfish. Hydrobiologa 530:135–144. https://doi.org/10.1007/s10750-004-2674-4

29. Maskrey DK, Sneddon LU, Arnold KE, Wolfenden DCC, Thomson JS (2020) The impact of personality, morphotype and shore height on temperature-mediated behavioural responses in the beadlet anemone Actinia equina. J Anim Ecol. https://doi.org/10.1111/1365-2656.13301

30. Mozrzymas JW, Zarnowska ED, Pytel M, Mercik K (2003) Modulation of GABA_A receptors by hydrogen ions reveals synaptic GABA transient and a crucial role of the desensitization process. J Neurosci 23:7981–7992. https://doi.org/10.1523/jneurosci.23-22-07981.2003

31. Nyitray G, Kékesi KA, Juhász G (2006) Extracellular level of GABA and Glu: in vivo microdialysis-HPLC measurements. Curr Top Med Chem 6:935–940. https://doi.org/10.2174/156802606777323674

32. Pierobon P (2012) Coordinated modulation of cellular signaling through ligand-gated ion channels in Hydra vulgaris (Cnidaria, Hydrozoa). Int J Dev Biol 56:551–565. https://doi.org/10.1387/ijdb.113464pp

33. Pierobon P, Concas A, Santoro G, Marino G, Minei R, Pannoncione A, Mostallino MC, Biggio G (1995) Biochemical and functional identification of GABA receptors in Hydra vulgaris. Life Sci 56:1485–1497. https://doi.org/10.1016/0024-3205(95)00111-4

34. Pierobon P, Tino A, Minei R, Marino G (2004) Different roles of GABA and glycine in the modulation of chemosensory responses in Hydra vulgaris (Cnidaria, Hydrozoa). Hydrobiologia 530:59–66. https://doi.org/10.1007/s10750-004-2690-4

35. Polonsky A (2012) Had been observing the acidification of the Black Sea upper layer in XX century? Turk J Fish Aquat Sci 12:391–396

36. Robello M, Baldelli P, Cupello A (1994) Modulation by extracellular pH of the activity of GABAA receptors on rat cerebellum granule cells. Neuroscience 61:833–837. https://doi.org/10.1016/0306-4522(94)90406-5

37. Snigirov S, Chernyavskiy A, Naum E, Galinka A, Medinets V, Gazyetov YI, Konoreva O, Snigirov P (2019) Zmiinyi Island Coastal Zone Macrozoobenthos State in 2016–2017 (in Russian). Visnyk of V N Karazin Kharkiv National University Series “Ecology” 81-98. https://doi.org/10.26565/1992-4259-2019-21-07

38. Sylantyev S, Rusakov DA (2013) Sub-millisecond ligand probing of cell receptors with multiple solution exchange. Nat Protoc 8:1299–1306. https://doi.org/10.1038/nprot.2013.075

39. Turley C, Eby M, Ridgwell AJ, Schmidt DN, Findlay HS, Brownlee C, Riebesell U, Fabry VJ, Feely RA, Gattuso JP (2010) The societal challenge of ocean acidification. Mar Pollut Bull 60:787–792. https://doi.org/10.1016/j.marpolbul.2010.05.006

40. Urbarova I, Forêt S, Dahl M, Emblem Å, Milazzo M, Hall-Spencer JM, Johansen SD (2019) Ocean acidification at a coastal CO2 vent induces expression of stress-related transcripts and transposable elements in the sea anemone Anemonia viridis. PloS one 14:e0210358

41. Vine R (1994) Benzodiazepine use by women prisoners: association with personality disorder and behavioural dyscontrol. Psychiatry Psychol Law 1:53–58. https://doi.org/10.1080/132171940952428

42. Voshaar RCO, Gorgels WIMJ, Mol AJI, Van Balkom AJLM, Van De Lisdonk EH, Breeteler MMH, Van Den Hoogen JM, Zitman FG (2003) Tapering off long-term benzodiazepine use with or without group cognitive-behavioural therapy: three-condition, randomised controlled trial. Br J Psychiatry 182:498–504. https://doi.org/10.1192/bjp.182.6.498

43. Zhou C, Xiao C, Deng C, Hong Ye J (2007) Extracellular proton modulates GABAergic synaptic transmission in rat hippocampal CA3 neurons. Brain Res 1145:213–220. https://doi.org/10.1016/j.brainres.2007.01.121

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.