Loss of heterozygosity on chromosome 5q in ovarian cancer is frequently accompanied by TP53 mutation and identifies a tumour suppressor gene locus at 5q13.1–21

M Tavassoli1, H Steingrimsdottir2, E Pierce2, X Jiang3, M Alagoz3, F Farzaneh4 and IG Campbell5

1Oral Oncology Group, The Rayne Institute, King’s College School of Medicine and Dentistry, Denmark Hill, London SE5 8RX, UK; 2MRC Cell Mutation Unit, University of Sussex, Brighton BN1 9QG, UK; 3Obstetric and Gynaecology Department, University of Southampton, Princess Anne Hospital, Coxford Road, Southampton, Hants SO16 5YA, UK; 4Department of Molecular Medicine, The Rayne Institute, King’s College School of Medicine and Dentistry, Denmark Hill, London SE5 8RX, UK.

Summary

Forty-nine ovarian tumours were examined for loss of heterozygosity (LOH) on chromosome 5 using eight microsatellite markers spanning both arms, including one at the APC locus. LOH on 5q was a frequent event, detectable in 23 of 49 (47%) tumours, whereas 5p LOH was detected in only 1 of 22 tumours (5%). Six tumours showed partial LOH on 5q, enabling the candidate region to be localised to a 22 cM region proximal to APC, flanked by DSS5424 and DSS644. An association was found between 5q LOH and TP53 mutation, with 18 of 23 (78%) tumours with LOH on 5q also harbouring a TP53 mutation. LOH on 5q was observed in 6 of 18 (33%) stage I tumours, suggesting that it may be an early event in the molecular pathogenesis of certain ovarian carcinomas.

Keywords: ovarian cancer; chromosome 5; loss of heterozygosity; TP53 mutation; tumour suppressor gene

Tumorigenesis results from the accumulation of multiple alterations in proto-oncogenes and tumour-suppressor genes (TSGs). Loss of heterozygosity (LOH) at specific chromosomal segments is often associated with the loss of function of TSGs and is frequently observed in a variety of human malignancies (reviewed by Weinberg, 1992). In ovarian cancer, multiple chromosomal deletions on chromosomes 3, 6, 11, 17, 18 and 22 among others have been reported (Okamoto et al., 1991; Sato et al., 1991; Yang-Feng et al., 1993; Cliby et al., 1993; Foulkes et al., 1993a,b; Tavassoli et al., 1993; Englefield et al., 1994). However, apart from TP53 and BRCA1, the TSGs which are the target of these allelic losses have not been cloned and in many cases even their approximate locations have yet to be defined. In some cases, LOH analysis has identified regions containing TSGs with proven involvement in other tumours, thus prompting investigations of the role of the TSG in ovarian cancer (Englefield et al., 1994; Foulkes et al., 1994). In particular, allelic deletions on chromosome 5 have been observed in ovarian carcinoma with the common region consistent with inactivation of the APC gene (Cliby et al., 1993; Allan et al., 1994). However, in an extensive mutation analysis, Allan et al. (1994) found no evidence of APC mutation, arguing against its involvement in ovarian tumorigenesis. They were able to confirm that chromosome 5 LOH was common in ovarian cancer but were unable to refine the location of the putative TSG beyond an exclusion of distal 5p. In an attempt to refine the location of the candidate region we have analysed for LOH using seven polymorphic microsatellite markers on chromosome 5q and one on 5p in a panel of 49 ovarian tumours. The same panel of tumours was also analysed for mutations in the TP53 gene.

Materials and methods

Tumour specimens and DNA extraction

Tumour and blood samples were obtained from 49 patients undergoing surgery for primary ovarian cancer. The tumours were collected from hospitals in and around Southampton except for those suffixed ‘m’, which were obtained from King’s College Hospital, London, and the Royal Sussex County Hospital, Brighton. Where possible tumours were staged according to FIGO staging (Shepherd, 1989). DNA was isolated from tumours and blood as described by Foulkes et al. (1993a).

Polymerase chain reaction

Microsatellite markers for chromosome 5 were amplified by the polymerase chain reaction (PCR) using the primers listed in Table I. PCR reactions were performed in 15 μl aliquots containing 10 pmol of each primer, 200 μM each of dATP, dTTP and dGTP, 50 mM dCTP, standard PCR reaction buffer containing 1.5 mM magnesium chloride, 0.5 u Tag DNA polymerase (Promega, USA), 50 ng of DNA and 0.05 mM [α-32P]dCTP. PCR conditions consisted of 30 cycles of 1 min at 94°C, 1 min at 53–58°C and 1 min at 72°C. The PCR products were analysed on standard 6% (29:1 acrylamide-bis-acrylamide) denaturing and/or non-denaturing polyacrylamide gels.

SSCP and sequencing analysis of TP53

PCR amplification of exons 5–8 of TP53 were performed using the primers and conditions described by Milner et al. (1993). SSCP analysis of the samples was performed as described by Campbell et al. (1994). Tumour samples showing abnormal band shifts were repeated together with matching normal DNA to ensure that it was not due to a germline polymorphism. DNA sequencing was performed on some of the tumours with band shifts using a dideoxy termination protocol (Foulkes et al., 1995).

Statistical analyses

Statistical analysis was performed using Spearman’s rank correlation (Gardner and Altman, 1989).

Results

LOH on chromosome 5

Forty-nine ovarian tumours were analysed for chromosome 5 LOH with up to eight microsatellite markers. One was located at Spter (DSS417) and the other seven spanned the 5q
arm, including one at the APC gene locus (DSS346). The LOH data together with the tumour histology and stage are presented in Table II. LOH of any marker on 5q was detected in 23 of 49 (47%) tumours. In contrast, LOH of the 5pter marker (DSS417) was detected in only 1 of 22 (5%) informative tumours and no tumour was identified with LOH on 5p only. In 13 tumours, partial LOH was detected. Seven of these tumours (12m, 22, 27, 32, 36, 49 and 71) retained heterozygosity at DSS417, three (11m, 13m and 86) retained heterozygosity at DSS118 and a further two (47 and 95) retained heterozygosity at DSS424 (Figure I), thereby excluding 5p and proximal 5q from the candidate region. The 5q distal boundary of the candidate region is indicated by tumours 71, 86 and 151, which show proximal 5q LOH but retain heterozygosity for the distal markers DSS644 (tumour 151) and DSS346 (tumours 71 and 86), as shown in Figure 1. The smallest common region of deletion defined by these tumours is flanked by the markers DSS424 and DSS444 representing a genetic distance of approximately 22 cM (Gyapay et al., 1994). This region at 5q13.1–21 is proximal to the APC locus.

Analysis of TP53 mutation

SSCP analysis of TP53 exons 5–8 detected abnormal band shifts in 22 of the 49 (45%) tumours examined (Table II and Table IV) in agreement with the frequency observed in a number of other studies (Foulkes et al., 1995; Kohler et al., 1993a,b). No band shifts were detected in the matching normal DNA from these samples, indicating that these were somatic alterations and not germline polymorphisms. Twelve of these tumours were sequenced, and in all cases a somatic mutation was detected. There was a striking concordance of TP53 mutation with chromosome 5q deletions (P<0.001; Table III). Eighteen of the 23 (78%) tumours with 5q LOH also harboured a mutation in TP53 compared with only 4 of 26 tumours heterozygous for 5q markers.

Correlation of 5q LOH and TP53 mutation with tumour stage and histological subtype

The LOH on chromosomes 5q and TP53 mutation was compared with tumour stage (Table IV). Six of 18 (33%) stage I tumours showed LOH at 5q, four of which also harboured TP53 mutations suggestive of the involvement of these loci in early stages of the development of some ovarian cancers. There was an increase in the incidence of both 5q and TP53 mutation with advancing stage, although this increase was not statistically significant. With respect to the main histological subtypes, 5q LOH is perhaps of less relevance in mucinous tumours since LOH was detected in only 20% (1/5) of the mucinous adenocarcinomas compared with 61% (16/26) of serous and undifferentiated adenocarcinomas and 55% (5/9) of endometrioid carcinomas. Among the other histological subtypes and borderline and benign tumours only one of the two mixed Müllèrian tumours showed 5q LOH.

Discussion

Deletions on chromosome 5 which include the APC gene have been observed in a variety of malignancies other than just colorectal cancer and include oesophageal, gastric, pancreatic and lung carcinomas (Boynton et al., 1992; D’Aminco et al., 1992; Hori et al., 1992a,b; Hosoe et al., 1994). In ovarian cancers, chromosome 5q LOH has been reported by some groups to be an infrequent event (Ehlen and Dubau, 1990; Sato et al., 1991; Yang-Feng et al., 1993) while others have shown frequent deletions (Cliby et al., 1993; Allain et al., 1994). These discrepancies are most likely

Table I The sequence and location of chromosome 5 microsatellite markers

Locus/ marker	Position	Primers*
DSS417	5pter	TGGAAACTATGTATCTTGGAGG
AFM205		GCCGGCTTTAGGTTG
DSS118	Scen-tq11.2	CAATCTGTCAGCTTTCTCA
MFD63		CAAACACAAAAACACAGGC
DSS424	5q13.1–14	GGGTACAGGGGATCTATTAGG
DSS644	5q14–21	TCTCATGTCAGGCCAGGATA
DSS346	5q21–22	ACTAATCTGAGATCAATGTC
APC		TGGATTGCTAAGACTGTTG
IL9	Sq22.3–q31.3	CTATGCTAGTTAGGCG
DSS399	Sq22.3–q31.3	GTGTTGTAAGAGCTGATA
DSS209	Sq31.3–33.3	GAGGTGTACAGCAGGTCG
MFD116		GGCCTCACTTATAATCAA

*Primer sequences are indicated in the 5' to 3' direction.
due to differences in the number, location and type of polymorphic markers used in each study as well as the small size of the tumour collections. The most comprehensive of these studies used five markers on each chromosomal arm and detected LOH in 50% of the 27 tumours examined (Allan et al., 1994). The LOH was consistent with the loss of APC, but no mutations were detected by SSCP in any of the exons containing published mutations suggesting that another gene was the target of the deletions.

In the present study we analysed for chromosome 5 LOH using eight microsatellite markers to verify the high frequency of LOH reported by some and refine the location of the putative 5q TSG. Consistent with the frequencies reported by Ciby et al. (1993) and Allan et al. (1994) we detected LOH on 5q in 23 of 49 ovarian tumours. Thirteen of these tumours exhibited LOH on only part of 5q including two with interstitial deletions permitting the refinement of the candidate TSG locus to the 22cM region, flanked by D5S424 and D5S644 at 5q 13.1–21. This region is proximal

Table II	Tumour clinical, chromosome 5 LOH and TP53 mutation data											
Tumour number	Type	Stage	S417	S118	S424	S644	S346	IL9	S399	S209	TP53 mutation	Codon, nucleotide and amino acid change
11m Ac/UD Ia	Het	Het	LOH	LOH	LOH	LOH	exon 7	NS				
12m Spac Ia	Het	NI	LOH	LOH	LOH	NI	exon 5	NS				
13m Spac Ia	NI	Het	LOH	LOH	LOH	NI	exon 5	NS				
17m Ac/UD III	NI	LOH	LOH	LOH	exon 5	NS						
21m Spac na	NI	NI	LOH	LOH	NI	exon 7	NS					
22 Spac III	Het	LOH	LOH	LOH	NI	NI	exon 6	220, TAG>TGT, Tyr>Cys				
26 Spac III	NI	LOH	LOH	LOH	NI	LOH	exon 7	242, TGC>TGG, Cys>Trp				
27 Ac/UD I	Het	LOH	NI	LOH	LOH	NI	n					
36 EC I	NI	LOH	LOH	LOH	NI	n						
43 Ac/UD II	NI	LOH	LOH	LOH	LOH	NI	exon 5	157, GTC>GAC, Val>Asp				
45 Spac III	NI	LOH	LOH	LOH	NI	LOH	n					
47 Ac/UD II	Het	LOH	LOH	LOH	NI	LOH	exon 5	179, CGC>CAC, Arg>His				
50 MMT III	Het	LOH	LOH	LOH	NI	LOH	exon 5	276, GCC>GC, frame shift				
63 Ac/UD na	LOH	LOH	LOH	LOH	NI	LOH	exon 7	242, TGC>GGC, Cys>Gly				
71 Spac Ia	Het	LOH	LOH	Het	NI	Het	exon 5	151, CCC>CGC, Pro>Arg				
86 Spac IIIa	Het	LOH	LOH	Het	NI	Het	exon 5	151, CCC>CGC, Pro>Arg				
95 Ec I	Het	LOH	NI	n								
121 Mac III	NI	LOH	n									
131 Sac III	LOH	LOH	n									
146 Ec Ic	LOH	LOH	n									
151 Ec Ic	LOH	Het	NI	exon 7	NS							
2m Bsa Ic	Het	NI	Het	NI	Het	n						
4m Sa na	Het	NI	Het	NI	n							
10m Ec Ia	Het	Het	Het	Het	n							
14 Spac IIIb	Het	Het	Het	Het	n							
15m Spac IIb	Het	Het	Het	Het	n							
16m Ec III	Het	Het	Het	Het	n							
18m Spac III	Het	Het	Het	n								
19 Spac III	Het	Het	Het	Het	NI	NI	n					
20 Bsa IIIa	Het	Het	Het	Het	Het	n						
23 Spac I	Het	NI	Het	NI	Het	n						
40 Mac II	Het	NI	Het	NI	Het	n						
48 Spac III	NI	Het	Het	n								
50 Mac I	Het	NI	Het	NI	Het	n						
60 Gct Ia	Het	Het	n									
75 MA na	Het	Het	n									
80 Mac Ia	Het	NI	Het	n								
97 Mmt III	Het	Het	n									
119 Ec I	Het	NI	n									
122 Ac/UD III	Het	NI	n									
124 Gct I	Het	Het	n									
128 Ec Ic	Het	Het	n									
134 Spac III	Het	Het	n									
135 Spac Ic	Het	Het	n									
144 Mac Ic	Het	Het	n									

Table III	Comparison between LOH on chromosome 5q and TP53 mutation*	
TP53 mutation	TP53 normal	
5q LOH	18	5
5q Het	4	22

*Correlation 0.631; P-value <0.001; 90% confidence interval (CI) (0.462–0.756). The correlations and their P-values were calculated by Spearman's rank correlation.
Table IV Association between LOH on 5q and TP53 mutation with tumour stage

Tumour stage	TP53 mutation	5q LOH	TP53 mutations/5q LOH
I	4/18 (22%)	6/18 (33%)	3/6 (50%)
II	4/7 (57%)	5/7 (71%)	4/5 (80%)
III	12/20 (60%)	10/20 (50%)	9/10 (90%)
Unstaged	2/4 (50%)	2/4 (50%)	2/2 (100%)
Totals	22/49 (45%)	23/49 (47%)	18/23 (78%)

aNumbers of tumours with TP53 mutation over the number of tumours of the stage indicated; figures in brackets are percentages.
bNumbers of tumours with LOH anywhere on chromosome 5q divided by the total number of tumours of that stage with percentages in brackets. cNumber of tumours with TP53 mutation divided by the number of tumours with 5q LOH with percentages in brackets. dNumber of tumours of all stages with the indicated property.

to APC, thereby excluding it as the candidate TSG, consistent with the absence of APC mutations in ovarian cancer reported by Allan et al. (1994).

LOH on 5q occurred in six (33%) stage I tumours, suggesting that it may be an early event in the development of certain ovarian cancers. This finding is inconsistent with the study by Allan et al. (1994), who concluded 5q LOH was a late event in ovarian carcinogenesis. However, their conclusion was based on the absence of LOH in only three low-grade tumours, highlighting a difficulty encountered in studies of this type in ovarian cancer in which low-grade and early-stage tumours are relatively uncommon. Nevertheless, such studies are vital if the sequence of molecular genetic events in ovarian tumorigenesis is to be unravelled.

Comparison of the presence of LOH on chromosome 5 with mutation in TP53 revealed a significant association between the two genetic events (P<0.001). A similar observation has been reported in colorectal cancers (Smith et al., 1995), but this is more likely to reflect an association with APC inactivation than with another Sq TSG. Although the association between 5q LOH and TP53 mutation in ovarian cancer is striking, caution must be exercised in attributing this to a functional link between TP53 and the putative 5q TSG as this might simply reflect generalised chromosomal instability in tumours with advancing stage. Only when the 5q TSG is cloned and it can be examined for specific inactivating mutations will it be possible to determine the true relationship between the two events.

Acknowledgements

We are grateful to Dr Ben Oostra for his help and advice on the LOH analysis, Mr David Hitchin for help with statistical analysis. This study was supported by grants from the Cancer Research Campaign, South Thames Regional Health Authorities and the Wessex Medical Trust.

References

ALLAN GJ, COTTRELL S, TROWSDALE J AND FOULKES WD. (1994). Loss of heterozygosity on chromosome 5 in sporadic ovarian carcinoma is a late event and is not associated with mutations in APC at 5q21–22. Hum. Mut., 3, 283–291.

BOYTON RF, BLOUTN PL, YIN J, BROWN VL, HUANG Y, TONG Y, MCDANIEL T, NEWKIRK C, RESAU JH, RASKIND WH, HAGGITT RC, REID B AND MELTZER SJ. (1992). Loss of heterozygosity involving the APC and MCC genetic loci occurs in the majority of human esophageal cancers. Proc. Natl Acad. Sci. USA, 89, 3385–3388.

CAMPBELL IG, NICOLAI HM, FOULKES WD, STAMP GW, ALLAN G, BOYER CM, SENGAR G, JONES K, BAST RC JR, SOLOMON E, TROWSDALE J AND BLACK DM. (1994). A novel gene encoding a B-box protein within the BRCA1 region at 17q21.1. Hum. Mol. Genet., 3, 591–594.

CLIBY W, RITLAND S, HARTMANN L, DODSON M, HALLING KC, KEENY G, PODRATZ KC AND JENKINS RB. (1993). Human epithelial ovarian cancer allelelopy. Cancer Res., 53, 2393–2398.

D’AMINCO D, CARBONE DP, JOHNSON BE, MELZER SJ AND MINNA J. (1992). Polymorphic sites within the MCC and APC loci reveal very frequent loss of heterozygosity in human small lung cancer. Cancer Res., 52, 1996–1999.

EILEN T AND DUBEAU L. (1990). Loss of heterozygosity on chromosome segments 3p, 6q and 11p in human ovarian carcinomas. Oncogene, 5, 219–223.

ENGLEFIELD P, FOULKES WD AND CAMPBELL IG. (1994). Loss of heterozygosity on chromosome 22 in ovarian carcinoma is distal to and is not accompanied by mutations in NF2 at 22q12. Br. J. Cancer, 70, 7486–7488.

FOULKES WD, RAGOUGISSIS J, STAMP GW, ALLAN GJ AND TROWSDALE J. (1993a). Frequent loss of heterozygosity on chromosome 6 in human ovarian carcinoma. Br. J. Cancer, 67, 551–559.

FOULKES WD, BLACK DM, STAMP GW, SOLOMON E AND TROWSDALE J. (1993b). Very frequent loss of heterozygosity throughout chromosome 17 in sporadic ovarian cancer. Int. J. Cancer, 54, 220–225.

FOULKES WD, ENGLEFIELD P AND CAMPBELL IG. (1994). Mutation analysis of RASK and the ‘FLR exon’ of NF1 in sporadic ovarian carcinoma. Eur. J. Cancer, 30A, 528–530.

FOULKES WD, STAMP GW, AFZAL S, LALANI N, MCFARLANE CP, TROWSDALE J AND CAMPBELL IG. (1995). MDM2 over-expression is rare in ovarian carcinoma irrespective of TP53 mutation status. Br. J. Cancer, 72, 883–888.

GARDNER MJ AND ALTMAN DG. (1989). Statistics with Confidence. BMJ, London.

GYAPAY G, MORISSETTE J, VIGNAL A, DIB C, FIZAMES C, MILLASSEAU P, MARC S, BERNARDI G, LATHROP M AND WEISSENBACH J. (1994). The 1993–94 Genethon human genetic linkage map. Nature Genet., 7, 246–249.

HORI A, NAKATSURU S, MIYOSHI Y, ICHI S, NAGASE H, KATO Y, YANAGISAWA A AND NAKAMURA Y. (1992a). The APC gene, responsible for familial adenomatous polyposis, is mutated in human gastric cancer. Cancer Res., 52, 3231–3233.

HORI A, NAKATSURU S, MIYOSHI Y, ICHI S, NAGASE H, ANDO H, YANAGISAWA A, TSUCHIYA E, KATO Y AND NAKAMURA Y. (1992b). Frequent somatic mutations of APC gene in human pancreatic cancer. Cancer Res., 52, 6696–6698.

HOSOE S, UENO K, SHIGEDO Y, TACHIBANA I, OSAKI T, KUMAGAI T, TANO Y, KAWASE I, NAKAMURA Y AND KISHIMOTO T. (1994). A frequent deletion of chromosome 5q21 in advanced small cell and non-small cell carcinoma of the lung. Cancer Res., 54, 1787–1790.

KOHLER MF, KERNS B-M, HUMPHREY PA, MARKS JR, BAST RC AND BERCHUCK A. (1993a). Mutation and overexpression of p53 in early-stage epithelial ovarian cancer. Obstet. Gynecol., 81, 643–650.

KOHLER MF, MARKS JR, WISEMAN RW, JACOBS IJ, DAVIDOFF AM, CLARKE-PEARSON DL, SOPER JT, BAST RC AND BERCHUCK A. (1993b). Spectrum of mutation and frequency of allelic deletion of the p53 gene in ovarian cancer. J. Natl Cancer Inst., 85, 1513–1519.

MILNER B, ALLAN LA, ECCLES DM, KITCHENER HC, LEONARD RC, KELLY KF, PARKIN E AND HAITES NE. (1993). p53 is a common genetic event in ovarian carcinoma. Cancer Res., 53, 2128–2132.

OKAMOTO A, SAMESHIMA Y, YOKOYAMA S, TERASHIMA Y, SUGIMURA T AND TERADA M. (1991). Frequent allelic losses and mutations of the p53 gene in human ovarian cancer. Cancer Res., 51, 5171–5176.
SATO T, SAITO H, MORITA R, KOI S AND NAKAMURA Y. (1991). Allelotype of human ovarian cancer. Cancer Res., 51, 5118–5122.
SHEPHERD JH. (1989). Revised FIGO staging for gynaecological cancer. Br. J. Obst. Gynaecol., 96, 889–892.
SMITH DR, KHINE K, CHAN CS AND GOH HS. (1995). Tumour suppressor genes in colorectal carcinomas: p53 inactivation is highly associated with allelic loss of chromosome 5q. Int. J. Oncol., 5, 539–546.
TAVASSOLI M, RUHRBERG C, BEAUMONT V, REYNOLDS K, KIRKHAM N, COLLINS WP AND FARZANEH F. (1993). Whole chromosome 17 loss in ovarian cancer. Genes, Chrom. Cancer, 8, 195 – 198.

WEINBERG R. (1992). Tumour suppressor genes. Science, 254, 1138–1145.
YANG-FENG TL, HAN H, CHEN KC, LI SB, CLAUS EB, CARCAUGIN ML, CHAMBERS SK, CHAMBERS JT AND SCHWARTZ PE. (1993). Allelic loss in ovarian cancer. Int. J. Cancer, 54, 546 – 551.