TOPOLOGICAL REPRESENTATIONS OF POSETS

R. BRESLAV1, A. STAVROVA1, AND R. R. ZAPATRIN2

Abstract. In \cite{10} an arbitrary poset P was proved to be isomorphic to the collection of subsets of a space \mathcal{M} with two closures \mathcal{C}_1 and \mathcal{C}_2, which are closed in the first closure and open in other – $\mathcal{C}_1 \mathcal{O}_2(\mathcal{M}, \mathcal{C}_1, \mathcal{C}_2)$. As a space for this representation an algebraic dual space P^* was used. Here we extend the theory of algebraic duality for posets generalizing the notion of an ideal. This approach yields a sufficient condition for the collection of $\mathcal{C}_1 \mathcal{O}_2$-subsets of $A \subset P^*$ (with respect to induced closures) to be isomorphic to P. Applying this result to certain classes of posets we prove some representation theorems and get a topological characterization of orthocomplementations.

1. Introduction

Since Stone introduced the topological representation of Boolean algebras \cite{4} there was a lot of attempts to generalize this result: the Stone-like representations of orthopsets by Mayet and Tkadlec \cite{5, 8}, different topological representations of distributive \cite{6, 7} and arbitrary (by Hartonas, Dunn and Urquhart) \cite{3, 9} lattices. We follow the construction introduced in \cite{10} where algebraic dual space P^* is endowed with two closures \mathcal{C}_1 and \mathcal{C}_2 in such a way that the collection of all subsets of P^* which are closed in \mathcal{C}_1 and open in \mathcal{C}_2 ordered by set inclusion (we denote this collection by $\mathcal{C}_1 \mathcal{O}_2(P^*, \mathcal{C}_1, \mathcal{C}_2)$) is isomorphic to the initial poset P:

\begin{equation}
\mathcal{C}_1 \mathcal{O}_2(A, \mathcal{C}_1, \mathcal{C}_2) \approx P
\end{equation}

The representation \cite{10} of P works for arbitrary poset P. However, for particular classes of posets the ‘universal set’ P^* can be contracted to a smaller one $A \subseteq P^*$ with the closures \mathcal{C}_1, \mathcal{C}_2 induced from P^*. In this paper we show that the representations of specific classes of posets mentioned above all have the form

\begin{itemize}
\item 1The Centre of Mathematics, Nevsky pr., 39, 191011, St. Petersburg, Russia
\item 2Department of Mathematics, SPb UEF, Griboyedova 30–32, 191023, St. Petersburg, Russia
\end{itemize}
and differ only by the choice of \(A \subseteq P^* \).

1.1. **Spaces with two closures.** Mapping \(C : \exp(\mathcal{M}) \to \exp(\mathcal{M}) \) we call **closure** if

1. \(A \subset C(A) \);
2. \(C(C(A)) = C(A) \);
3. if \(A \subset B \) then \(C(A) \subset C(B) \).

A set \(A \subset \mathcal{M} \) is **closed** (or **C-closed**) if \(A = C(A) \), \(A \) is **open** if \(\overline{A} = \mathcal{M} \setminus A \) is closed and **clopen** if it is both closed and open. Note, that any intersection of closed sets is closed, and \(C(A) \) is the intersection of all closed sets which contain \(A \). \(\mathcal{K} \subset \exp(\mathcal{M}) \) is called the **base** of closure \(C \) (\(C = \text{clo} (\mathcal{K}) \)) if any closed set is an intersection of elements of \(\mathcal{K} \).

The closure \(C \) is **exact** if \(C(\emptyset) = \emptyset \), and **topological** if \(C(A \cup B) = C(A) \cup C(B) \). Note, that exact topological closure defines topology on \(\mathcal{M} \). For a closure \(C \) on \(\mathcal{M} \) define \(\text{CO}(\mathcal{M}, C) \) to be the collection of all clopen subsets of \(\mathcal{M} \). Obviously \(\text{CO}(\mathcal{M}, C) \) ordered by set inclusion is a bounded orthoposet. It was shown by Mayet and Tkadlec [5, 8], that for an arbitrary bounded orthoposet \(P \) there is a space \(\mathcal{M} \) with closure \(C \) such that \(P \approx \text{CO}(\mathcal{M}, C) \).

If we define two closures on \(\mathcal{C}_1 \) and \(\mathcal{C}_2 \mathcal{M} \), then by \(C_1O_2(\mathcal{M}, \mathcal{C}_1, \mathcal{C}_2) \) we denote the collection of all subsets of \(\mathcal{M} \) which are both \(\mathcal{C}_1 \)-closed and \(\mathcal{C}_2 \)-open, ordered by set inclusion. We can say nothing about the structure of \(C_1O_2(\mathcal{M}, \mathcal{C}_1, \mathcal{C}_2) \) except it is a poset, moreover, as it was shown in [10] for an arbitrary poset \(P \) one can build a space with two closures such that \(P \approx C_1O_2(\mathcal{M}, \mathcal{C}_1, \mathcal{C}_2) \).

1.2. **Algebraic duality for posets.** For a poset \(P \) its **algebraic dual space** \(P^* \) is the set of all isotone mappings from \(P \) to poset \(2 = \{0, 1\} \) with \(0 < 1 \). Here we develop the techniques needed to build the representation.

Consider \(A \subset P^* \). A set \(I \) we call an **ideal** (with respect to \(A \) or \(A \)-ideal) if \(I \) is an intersection of kernels of some mappings \(x \in A \) (i.e. \(I = \bigcap x^{-1}(0) \)). Dually, the intersection of co-kernels \(F \) we call a **filter** \(F = \bigcap x^{-1}(1) \).

For \(B \subset P^* \) we define an ideal \(I(B) \) (filter \(F(B) \)) to be the intersection of kernels (co-kernels, respectively) of \(x \in B \).

For \(Q \subset P \) define an ideal \(\overline{Q}_A \) (resp., filter \(Q]_A \) – the intersection of ideals (resp., filters) containing \(Q \).
Note that ideals with respect to P^* coincide with order ideals (I is an order ideal if $q \in I$ and $p \leq q$ implies $p \in I$). In general A-ideals are always order ideals, but the converse is not always true.

We say that $A \subset P^*$ is full if for all $p \not\leq q$ there exists $x \in A$ such that $x(p) = 1$, $x(q) = 0$.

$A \subset P^*$ is called separating if for any disjoint ideal I and filter F there exists $x \in A$ such that $x|_I = 0$ and $x|_F = 1$.

In some cases discussed in section 3 $\mathbf{3}(\mathbf{p})_A$ and $(\mathbf{p})_A$ coincide with lower and upper cones of p respectively. Due to the following obvious lemma the separating set is full in this case.

Lemma 1. Let A be a separating subset of P^* and $[\mathbf{p}]_A \cap [\mathbf{q}]_A = \emptyset$ for all $q \not\leq p \in P$. Then A is full.

2. **Topological representation: the general case**

Define two closures on P^*: For $p \in P$ consider two subsets of P^*:

$$\mathcal{U}p(p) = \{x \mid x(p) = 1\} \quad \mathcal{L}o(p) = \{x \mid x(p) = 0\}.$$

Then define closures C_1, C_2 in the following way:

$$C_1 = \text{clos} \{\mathcal{U}p(p)\}_{p \in P} \quad \text{and} \quad C_2 = \text{clos} \{\mathcal{L}o(p)\}_{p \in P}.$$

Note, that since $\overline{\mathcal{U}p(p)} = \mathcal{L}o(p)$ all $\mathcal{U}p(p)$ are C_1O_2-sets.

On $A \subset P^*$ consider closures $C_{1,A}$, $C_{2,A}$ induced by C_1 and C_2 (i.e. $C_{1,A}(X) = C(X) \cap A$). Let $\mathcal{U}p_A(p) = \mathcal{U}p(p) \cap A$ and $\mathcal{L}o_A(p) = \mathcal{L}o(p) \cap A$, then

$$C_{1,A} = \text{clos} \{\mathcal{U}p_A(p)\}_{p \in P} \quad \text{and} \quad C_{2,A} = \text{clos} \{\mathcal{L}o_A(p)\}_{p \in P}.$$

We omit the index A in $C_{i,A}$, $\mathcal{U}p_A$ etc. when it is clear which subspace is meant.

The following equations show the relation between the closures introduced on A and A-ideals:

$$C_1(X) = \bigcap_{p \in \mathcal{F}(X)} \mathcal{U}p(p) \quad \text{and} \quad C_2(X) = \bigcap_{p \in \mathcal{I}(X)} \mathcal{L}o(p).$$

Theorem 2. Let $A \subset P^*$. Consider $\sigma : P \to C_1O_2(A, C_{1,A}, C_{2,A})$ which maps p to $\mathcal{U}p(p)$, then

1. σ is isotone;
2. if A is full then σ is injective;
3. if A is separating then σ is surjective.
Proof. (1) Since \(p \leq q\) implies \(x(p) \leq x(q)\) for all \(x \in P^*\) then \(p \leq q\) implies \(U_P(p) \subseteq U_P(q)\), so \(\sigma\) is isotone.

(2) For \(p \neq q\) either \(p \not\leq q\) or \(q \not\leq p\), so there exists \(x \in A : x(p) \neq x(q)\), then exactly one of \(U_P(p), U_P(q)\) contains \(x\) and \(U_P(p) \neq U_P(q)\).

(3) Let \(B \in C_1O_2(A, C_{1A}, C_{2A})\), then \(B = C_{1A}(B)\) and \(\overline{B} = C_{2A}(\overline{B})\).

Consider \(Q = I(\overline{B}) \cap F(B) = I \cap F\). If \(Q = \emptyset\) there exists \(x \in A : x|_I = 0\) and \(x|_F = 1\), so \(x \in U_P(p)\) for all \(p \in F\) and \(x \in LO(q)\) for all \(q \in I\). Thus \(x \in B\) and \(x \in \overline{B}\) simultaneously, so \(Q \neq \emptyset\). For \(p \in Q\) we have \(B \subset U_P(p), \overline{B} \subset LO(p) = \overline{U_P(p)}\) and \(B = U_P(p)\).

\(\square\)

Corollary 2.1. Let \(A\) be a full and separating subspace of \(P^*\), then \(P \approx C_{1O_2}(A, C_{1A}, C_{2A})\).

To get the topological representation of an arbitrary poset we prove

Lemma 3. \(P^*\) is full and separating.

Proof. For disjoint ideal \(I\) and filter \(F\), which are in this case order ideal and filter, consider \(x : x(p) = 0\) for \(p \in I\) and \(x(p) = 1\) otherwise. Obviously \(x \in P^*\) and separates \(I\) and \(F\). Applying lemma 1 we see that \(P^*\) is full.

\(\square\)

This leads us to the following theorem:

Theorem 4. Let \(P\) be an arbitrary poset, then \(P \approx C_{1O_2}(P^*, C_1, C_2)\).

Due to the following lemma in the case of bounded poset \(P\) subspaces \(A\) of \(P^*\) can be reduced:

Lemma 5. Let \(P\) be a bounded poset, \(A \subset P^*\) be full and separating, then \(A \setminus \{0, 1\}\), where \(0, 1 \in P^*\) are constant mappings, is also full and separating.

Proof. Note that the ideals (filters) with respect to \(A \setminus \{0, 1\}\) coincide with the proper \(A\)-ideals (\(A\)-filters) and for disjoint nonempty \(I\) and \(F\) the separating mapping \(x \in A\) is not constant.

\(\square\)

3. **Topological representations: special cases**

We apply the results of previous section to some special classes of posets.

3.1. **Orthoposets.** The bounded poset \(P\) is called an **orthoposet** if there exists an anti-isotone mapping \((\cdot)' : P \to P\) (orthocomplementation) such that \(p = (p)'\), \(p \lor p' = 1\) and \(p \land p' = 0\). For an orthoposet define its **orthodual** space \(P^{*\prime}\) to be the set of all \(x \in P^*\) such that \(x(p') = (x(p))'\).
Lemma 6. P^* is full and separating.

Proof. For disjoint ideal I and filter F consider $x : x(p) = 0$ for $p \in I \cup F'$, $x(p) = 1$ for $p \in I' \cup F$, otherwise $x(p) = y(p)$ for some $y \in P^*$. Obviously $x \in P^*$ and separates I and F, so P^* is separating. As $[p]_{P^*}$ is the lower cone of p for all $p \in P$ P^* is full according to lemma 1.

Since $UP_{P^*}(p') = LO_{P^*}(p)$, the bases of closures C_1 and C_2 coincide and $C_1 = C_2$. Denote

$$C = C_1 = C_2$$

Then C_1O_2-sets are C-clopen. Applying theorem 2 we have

Theorem 7. Let P be an orthoposet, then there exists a closure space (\mathcal{M}, C) such that $P \approx CO(\mathcal{M}, C)$.

The representation obtained in previous theorem coicides with that described by Mayet [5] and Tkadlec [8].

Now we use the notion of full separating subspace to characterize all orthocomplementations which can be introduced on a bounded poset P. Any orthocomplementation $(\cdot)'$ defines a full separating subspace of P^* on which the closures C_1 and C_2 coincide. Let S be the collection of full separating subspaces of P^* where $C_1 = C_2$. Consider $A \in S$ then the set complementation on $C_1O_2(A, C_1, C_2) \approx P$ is an orthocomplementation, so with every $A \in S$ we can associate an orthocomplementation $(\cdot)'_A$ on P.

Theorem 8. All orthocomplementations on P are in one-to-one correspondence with maximal (with respect to set inclusion) elements of S.

Proof. For $A \in S$ all $x \in A$ preserves $(\cdot)'_A$ because $x(p) = x(p') = 1$ implies $x \in UP(p)$ and $x \in UP(p'^A) = UP(p)$ (the similar contradiction holds for $x(p) = 0$). It means that $A \subseteq P'^A$, so all maximal elements of S are of the form P'^A. Thus any orthodual space P^* is a subspace of P'^A for some A. Obviously, orthocomplementation associated with P'^A is $(\cdot)'_A$ and the one associated with P^* is $(\cdot)'$. Since $P^* \subseteq P'^A$ and orthocomplementations are induced by set complementation we get that $(\cdot)' = (\cdot)'_A$ and $P^* = P'^A$, so all orthodual spaces, defined by different orthocomplementations on P, are maximal in S.
orthocomplemented distributive lattice one can expect distributive lattice to be represented as the collection of C_1O_2-sets of some space with two topological closures. We are going to construct such a representation which follows from theorem 2 and is different from Priestley [6] and Rieger [7].

For a lattice L let $L^{*\lor\land} \subset L^*$ be the set of all lattice morphisms (isotone mappings preserving lattice operations) from L to 2. Note that $L^{*\lor\land}$-ideal is always lattice ideal (an order ideal I is called lattice ideal if $a, b \in I$ implies $a \lor b \in I$).

Lemma 9. For any distributive lattice L the ideals (filters) with respect to $L^{*\lor\land}$ coincide with the lattice ideals (filters). Besides that, $L^{*\lor\land}$ is full and separating.

Proof. First we prove that for disjoint lattice ideal I and filter F there exists $x \in L^{*\lor\land}$ such that $x|_I = 0; x|_F = 1$ (it means that $L^{*\lor\land}$ separates lattice ideals). Suppose I_0 to be the maximal lattice ideal containing I which is disjoint with F. The set-complement of I_0 is a filter [2], thus the mapping x: $x|_{I_0} = 0, x|_{L \setminus I_0} = 1$ preserves \lor and \land. For an arbitrary $p \in L$ the upper cone of p is a lattice filter. Then we get every lattice ideal I to be the intersection of kernels of all x_p, which separates I and the upper cone of p, over all $p \not\in I$, so I is an ideal with respect to $L^{*\lor\land}$ (recall the definition of ideal in section 1.2). Hence, the separating property for $L^{*\lor\land}$ is equivalent to the fact that $L^{*\lor\land}$ separates lattice ideals, which was proved above. $L^{*\lor\land}$ is full by lemma 1. □

Theorem 10. For any distributive lattice L there exists a space with two topological closures (\mathcal{M}, C_1, C_2) such that $L \approx C_1O_2(\mathcal{M}, C_1, C_2)$.

Proof. The only thing we need to prove is that the closures C_1, C_2 induced on $L^{*\lor\land}$ are topological. Since elements of $L^{*\lor\land}$ preserve both \lor and \land we have $\mathcal{U}\mathcal{P}(p \lor q) = \mathcal{U}\mathcal{P}(p) \cup \mathcal{U}\mathcal{P}(q)$ and $\mathcal{L}\mathcal{O}(p \land q) = \mathcal{L}\mathcal{O}(p) \cup \mathcal{L}\mathcal{O}(q)$, so the bases of C_1 and C_2 are closed under finite set union, therefore the closures themselves are topological. □

Corollary 10.1. A lattice L is distributive iff $L^{*\lor\land}$ is a full separating subspace of L^*.

Proof. This follows from lemma 2, the fact that for any lattice L the closures induced on $L^{*\lor\land}$ are topological, and that for any space \mathcal{M} with two topological closures $C_1O_2(\mathcal{M}, C_1, C_2)$ is a distributive lattice. □
3.3. Boolean algebras. Here we present a proof of the Stone representation theorem:

Theorem 11 (Stone). *Any Boolean algebra B is isomorphic to the collection of all clopen subsets of a topological space.*

Proof. Since B is a bounded distributive lattice, $B^{\ast \vee \wedge} \setminus \{0, 1\}$ is full and separating. Every lattice morphism of Boolean algebras preserves orthocomplementation and, as in the case of orthoposets, the topological closures C_1 and C_2 do coincide.

Associating with every element of $B^{\ast \vee \wedge} \setminus \{0, 1\}$ its kernel (that is a maximal lattice ideal) one get the Stone space of Boolean algebra originally described in [4].

Corollary 11.1. Let L be a distributive lattice, then L is a Boolean algebra iff closures C_1 and C_2 coincide on $L^{\ast \vee \wedge} \setminus \{0, 1\}$.

References

[1] G. Birkhoff, *Lattice theory*, American Mathematical Society, Providence, Rhode Island, 3rd ed., 1967.

[2] G. Grätzer, *General lattice theory*, Academic Press, 1977.

[3] J.M. Dunn, C. Hartonas, Stone Duality for Lattices, *Algebra Universalis* **37** (1997) 391.

[4] M.H. Stone, The Representation of Boolean Algebras, *Bull. Amer. Math. Soc.* **44** (1938) 807.

[5] R. Mayet, Une dualité pour les ensembles ordonnés complémentés, *Comptes Rendus de l’Academie des Sciences de Paris, sér. I Math.* **294** (1982) 63.

[6] H.A. Priestley, Representation of Distributive Lattices by means of Ordered Stone Spaces, *Bull. London Math. Soc.* **2** (1970) 186.

[7] L. Rieger, A Note on Topological Representation of Distributive Lattices, *Časopis pro Pěstování Matematiky a Fysiky* **74** (1949) 55.

[8] J. Tkadlec, Partially additive measures and set representation of orthoposets, *Journal of Pure and Applied Algebra* **86** (1993) 79.

[9] A. Urquhart, A topological representation theory for lattices, *Algebra Universalis* **8** (1978) 45.

[10] R.R. Zapatrin, Algebraic duality in the theory of partially ordered sets, *Pure Mathematics and Applications* **9**, 3/4 (1998) 485.

[11] R.R. Zapatrine, *Les espaces duals pour les ensembles ordonnés arbitraires*, e-print http://xxx.lanl.gov/abs/math.GN/0001080