Compressing nearly hard sphere fluids increases glass fragility

L. Berthier1(a) and T. A. Witten2

1 Laboratoire des Colloïdes, Verres et Nanomatériaux, UMR 5587, Université Montpellier II and CNRS 34095 Montpellier, France, EU
2 James Franck Institute and Department of Physics, The University of Chicago - 929 E. 57th Street, Chicago, IL 60637, USA

received on 23 February 2009; accepted by L. F. Cugliandolo on 11 March 2009
published online 8 April 2009

PACS 05.10.-a – Computational methods in statistical physics and nonlinear dynamics
PACS 05.20.Jj – Statistical mechanics of classical fluids
PACS 64.70.P – Glass transitions of specific systems

Abstract – We use molecular dynamics to investigate the glass transition occurring at large volume fraction, \(\varphi\), and low temperature, \(T\), in assemblies of soft repulsive particles. We find that equilibrium dynamics in the \((\varphi, T)\)-plane obey a form of dynamic scaling in the proximity of a critical point at \(T = 0\) and \(\varphi = \varphi_0\), which should correspond to the ideal glass transition of hard spheres. This glass point, “point \(G\)”, is distinct from athermal jamming thresholds. A remarkable consequence of scaling behaviour is that the dynamics at fixed \(\varphi\) pass smoothly from that of a strong glass to that of a very fragile glass as \(\varphi\) increases beyond \(\varphi_0\). Correlations between fragility and various physical properties are explored.

Introduction. – Structureless, hard, frictionless particles pass from a mobile to an immobile state with increasing density [1]. Interacting particles and molecules in a glass-forming material also pass from a mobile fluid state to an immobile glassy state as the temperature is reduced [2]. Much research in the last decade has been devoted to extracting a common geometric essence from these two classes of phenomena. One line of research approaches the threshold of immobilization or jamming via processes unrelated to thermal equilibrium [3–6]. Connections between these jamming transitions and those seen at positive temperature are suggested [7], but remain unclear. In particular, the threshold density for jamming and that for immobilization at non-zero temperature are considered identical by some researchers [8,9], distinct for others [10–12], ill-defined by some others [3,13]. Direct measurements are not conclusive, because the location of the glass transition relies upon fitting and extrapolation [8,10], while the jamming transition is not uniquely defined [3,4].

The notion that temperature and density should have analogous effects on the glass transition has a long history [14,15], although quantitative evidence supporting these analogies is limited. Recent work studying the effect of pressure on the glass transition showed that the dynamics of glass-formers is little affected by increasing the density, since a simple rescaling procedure collapses a broad range of dynamic data [16,17]. This finding directly implies that the (isochoric) fragility [18] of most glass-formers is independent of density, at least in the range currently explored by experiments. A second conclusion is that the glass transition of molecular systems is mostly controlled by temperature, suggesting that the density-driven glass transition of hard spheres might have a different nature.

In this paper, we study the relative influence of density and temperature on the glass transition using a model of soft repulsive particles [19]. In the zero-temperature limit, the model is equivalent to density-controlled hard spheres, while it resembles thermally driven dense fluids at large density and finite temperature. Another motivation to use compressible particles is to access densities beyond the hard sphere critical density for kinetic arrest which are unreachable with the hard sphere potential. This approach has proven useful in the context of athermal jamming [4–6], but it was not extended to thermal equilibrium before. At equilibrium, issues related to the possible protocol dependence of the results [20] do not arise.

Using computer simulations we have studied the equilibrium dynamics of a three-dimensional assembly of soft repulsive particles varying the volume fraction, \(\varphi\), and temperature, \(T\) (see fig. 1). We have discovered a simple

1(a)E-mail: ludovic.berthier@lcvn.univ-montp2.fr
connection between density and temperature effects, from which several interesting results are deduced. Equilibrium
dynamics obey critical scaling in the proximity of a glass
critical point, which we call “point G”, at $T = 0$ and
$\varphi = \varphi_0$, see fig. 1. By approaching point G along various
equilibrium routes, we can determine the functional form
of the dynamics and the location of the singularity with
much less uncertainty than is usually possible in glasses. In
particular, we confirm the non-trivial density dependence
of the relaxation time suggested by recent experiments on
colloidal hard spheres [10]. Scaling also implies that the
evolution of the dynamics with temperature at fixed φ
passes smoothly from that of a strong glass to that of a
very fragile glass as φ increases beyond φ_0. Compared to
previous numerical glass models with tunable fragility, the
present model does not require changing the composition
of the liquid [21], or the curvature of space [22], fragility
varies over a much broader range [23], and provides a new
conceptual way to tune fragility.

Model and methods. – We use molecular dynamics
simulations [24] to study a system composed of N particles
enclosed in a periodic cube of linear size L and interacting
through a pair-wise potential: $V(r_{ij}) = \epsilon(1 - r_{ij}/\sigma_{ij})^2$ for
$r_{ij} < \sigma_{ij}$, $V(r_{ij}) = 0$ otherwise. The interparticle distance
is $r_{ij} = |r_i - r_j|$ and $\sigma_{ij} = (\sigma_i + \sigma_j)/2$, where r_i and σ_i
are the position and diameter of particle i, respectively.
We use system sizes between 500 and 8000 particles,
and report results for $N = 1000$, for which no finite size effects are detected, within numerical accuracy. We
prevent crystallization by using a 50:50 binary mixture of spheres of diameter ratio 1.4 [4]. The volume fraction is $\varphi = \pi L^3 / (12 L^2 N) \approx 0.98\rho$, with L expressed in units
of the small particle diameter and $\rho = N/L$ the number
density. Up to volume fraction $\varphi = 0.846$ we detect no
sign of crystallization at all studied temperatures; above
$\varphi = 0.924$ there was evidence of incipient crystallization
at the lowest temperatures. However, these crystallization
effects occur well away from the region of interest around
$\varphi_0 = 0.635$. We use ϵ as the energy unit, and $\sqrt{\sigma_{\epsilon}^2/\epsilon}$ as
time unit, masses are set to unity. All dynamical results
are obtained at thermal equilibrium, which has been
carefully controlled. When temperature is low and density
is large, we are not able to thermalize. Crystallization and
equilibrium issues determine the boundaries of the region
investigated in the phase diagram of fig. 1.

Dynamic scaling at thermal equilibrium. – In
fig. 2(a), we report the evolution of the averaged relaxation
time, $\tau_\alpha(\varphi,T)$ for all investigated state points. We
quantify the microscopic dynamics through the self-part
of the intermediate scattering function

$$F_\alpha(q,t) = \frac{1}{N_b} \sum_{j=1}^{N_b} e^{i q \cdot (r_j(t) - r_j(0))},$$

where q is the scattering vector ($q = 6.1$, close to the first
diffraction peak) and angular brackets indicate a thermal
average. We define τ_α by $F_\alpha(q,\tau_\alpha) = e^{-1}$, and we arbitrarily
choose to restrict the average in (1) to the N_b big
particles. Data for τ_α are normalized by $1/\sqrt{T}$, which is
equivalent to renormalizing times by the “thermal” time $\tau_\alpha \tau_{\epsilon \cdot b}^{-1}$, where τ_{MB} is the first moment of the Maxwell-
Boltzmann distribution. Therefore, in the $T \rightarrow 0$ limit
where particle overlaps are energetically disfavoured, the
dynamics of the elastic spheres coincide with that of hard
spheres thermalized at $T = 1$. We have verified this equiv-
ance quantitatively by comparing our numerical results
to those of the hard sphere studies presented in ref. [10].

The temperature evolution of τ_α exhibits two qual-
itaively distinct regimes. For dilute systems, τ_α first
increases when T decreases, but saturates when $T \rightarrow 0$ at
a finite value corresponding to $\tau_\alpha^{th}(\varphi)$, the relaxation
time of the hard sphere fluid. For dense systems, τ_α seems
to increase with no saturation, and we cannot reach equilib-
rium when T becomes too small and the system becomes
an unequilibrated glass (see fig. 1). The frontier between
these two regimes must correspond to $\varphi = \varphi_0$, the density
at which $\tau_\alpha^{th}(\varphi)$ diverges. By analogy with the Jamming
transition occurring at point J along the φ-axis for othermal
systems of spheres [4], we call “point G” the location of the Glass transition at φ_0 along the φ-axis for thermal
systems.

We now formulate the hypothesis that dynamics in the
proximity of point G obey scaling behaviour. We surmise
that elastic spheres at $T = 0$ behave, in a statistical sense,
similarly to hard spheres with a reduced diameter [14].
Physically, we assume that at low T, overlaps between
particles are very small, and so are the corrections to hard sphere behaviour. Below, we justify why an accurate
relation between density and temperature is

$$\varphi_{eff}(\varphi,T) \approx \varphi - a T^{\nu/2},$$

10001-p2
where \(\delta \approx 2\) and \(\varphi_0 \approx 0.637\) [10]. Although the exponential divergence of \(\tau_{\alpha}^{hs}\) is unambiguous from hard sphere studies [10], the values of \(\delta\) and \(\varphi_0\) remain subject to large uncertainty because the divergence must be extrapolated along a single path (increasing \(\varphi\) at \(T = 0\), relatively far away from \(\varphi_0\)).

We analyze the results of fig. 2(a) and approach point \(G\) from multiple paths in the \((\varphi, T)\)-plane to establish the robustness of eq. (3). Combining (2) and (3) we suggest

\[
\tau_{\alpha}(\varphi, T) \sim \exp \left[\frac{A}{|\varphi_0 - \varphi|^\delta} F_{\pm} \left(\frac{|\varphi_0 - \varphi|^{2/\mu}}{T} \right) \right],
\]

where the scaling functions \(F_{\pm}(x)\) apply to densities above/below \(\varphi_0\). We expect therefore that \(F_{-}(x \to \infty) \to 1\) to recover the hard sphere fluid limit, eq. (3), when \(T \to 0\) and \(\varphi < \varphi_0\). Similarly, \(F_{+}(x \to \infty) \to \infty\). Moreover, continuity of \(\tau_{\alpha}\) at finite \(T\) and \(\varphi = \varphi_0\) implies \(F_{-}(x \to 0) \sim F_{+}(x \to 0) \sim x^{\mu/2}\). Dynamic scaling was recently observed for athermal jamming transitions [5,6], but the nature of the critical density and hard sphere divergence (algebraic instead of exponential) were different from eq. (4), while no physical interpretation of scaling in terms of an effective hard sphere behaviour was offered.

The proposed scaling behaviour is confirmed in fig. 2(b) for data in the range \(\varphi \in [0.567, 0.736]\). To obtain the scaling plot, we fix \(\mu = 1.3\) (see below), and use \(\varphi_0\) and \(\delta\) as free parameters to collapse \(|\varphi_0 - \varphi|^\delta \log \tau_{\alpha}\) against \(|\varphi_0 - \varphi|^{2/\mu}/T\). The best collapse is shown, but good results are obtained for a range of values of \(\varphi_0\) and \(\delta\), yielding error bars

\[
\varphi_0 = 0.635 \pm 0.005, \quad \delta = 2.2 \pm 0.2.
\]

Outside this range, the collapse quickly deteriorates. Note that \(\delta = 1\), often used to describe hard sphere data [8], is inconsistent with our results. Our scaling analysis thus lends crucial support to the conclusions of [10]. Of course, we cannot exclude that a different dynamic regime can be entered when relaxation timescales beyond the reach of our numerical capabilities are added to the analysis.

Glass fragility. The scaling in eq. (4) predicts the temperature dependence of \(\tau_{\alpha}\) at \(\varphi_0\):

\[
\tau_{\alpha}(\varphi_0, T) \sim \exp (A/T^{\mu\delta/2}).
\]

Since \(\mu\delta/2 \approx 1.43\), this divergence is slightly stronger than, but not very different from, the simple Arrhenius behaviour observed for “strong” glass-formers [18]. The divergence of the scaling function \(F_{\pm}(x)\) for large argument moreover implies that the temperature dependence of \(\tau_{\alpha}\) for \(\varphi > \varphi_0\) becomes steeper, making the materials increasingly “fragile” [18]. This is vividly demonstrated in fig. 2(c), where we conventionally rescale \(T\) by \(T_g\) defined as the temperature where \(\tau_{\alpha}\) reaches an arbitrary value [18], \(\log_{10} \tau_{\alpha}(\varphi, T_g) = X_g\). Such a large change of fragility was not reported in a particle model before [21–23]. Here, it directly results from the interplay between \(\varphi\) and \(T\). We quantify fragility
by the steepness index [18]

\[
m = \frac{\partial \log_{10} \tau_0}{\partial (T_g/T)} \bigg|_{T_g},
\]

which increases steadily when \(\varphi \) increases beyond \(\varphi_0 \), see fig. 3(a). The linear variation can be rationalized realizing that an approximate expression for \(F_\alpha(x) \) in eq. (4) can be obtained by pushing further our correspondence between elastic and hard spheres, and assuming: \(\tau_\alpha(\varphi, T) \approx \tau_0^{\alpha\varphi}[\varphi_{\text{eff}}(\varphi, T)] \). This gives \(F_\alpha(x) \approx (ax^{-\mu/2} - 1)^{-\beta} \), from which we get

\[
m(\varphi_0 + \Delta \varphi) \approx m_0(1 + \alpha \Delta \varphi),
\]

where \(m_0 = \mu \delta X_g/2 \) and \(\alpha = a(X_g/A)^{1/3} \). Figure 3(a) shows that this predicted linear behaviour is accurately obeyed over a seven-fold range of fragility \(m \). A broader range of \(m \) would be obtained for \(X_g \) corresponding to the laboratory \(T_g \). Multiplying, for instance, \(X_g \) by a factor 3 (from \(X_g = 5 \) to \(15 \)) in eq. (7) yields \(m \in [18, 150] \), quite close to the experimental spectrum for the fragility of glass-formers [18].

Additionally, the explicit, but approximate, expression for \(F_\alpha(x) \) predicts the location of a glass line, \(T_0(\varphi) = [(\varphi - \varphi_0)/\alpha]^{2/\mu} \), shown in fig. 1, in the spirit of [15]. Unfortunately, our numerical data alone do not allow us to determine whether \(F_\alpha(x) \) indeed diverges for a finite value of its argument. Therefore, while the location of point \(G \) is very much constrained by our data, the existence of a finite temperature singularity for \(\varphi > \varphi_0 \) remains open.

Different glasses possess different fragilities, but this variability is not satisfactorily understood. Instead, experimentalists often correlate the properties of a glass to its fragility [18]. Having a model with tunable fragility allows theoretical exploration of the part of these correlations that is not due to the variety of structures (e.g., networks and polymer chains) observed in real glass-formers. We have studied two popular correlations: the stretching of time correlation functions and the specific heat jump at \(T_g \).

We fit the alpha-relaxation in \(F_\alpha(q, t) \) for both species with a stretched exponential form: \(F_\alpha \sim e^{-(t/\tau_0)^{\beta}} \). We find that \(\beta \) is very weakly \(T \)-dependent, and report its value for different \(\varphi \) in fig. 3(b). For \(\varphi \) within the scaling regime of fig. 2(b), the observed \(\beta \)'s for small and big particles are independent of compression, and hence of fragility, but are consistent with those of hard spheres observed previously [10]. While some degree of correlation is often reported in experiments [2], it is not very strong when data for polymers are discarded from the analysis [25], which is in agreement with our findings.

We measure the potential energy, \(V_{\text{pot}}(\varphi, T) = (\sum_{i<j} V(r_{ij}))/N \), and the specific heat, \(c_V = \text{d}V_{\text{pot}}/\text{d}T \). Mimicking experiments, we obtain the jump in \(c_V \) at the glass transition by slowly cooling the system, at constant \(\varphi \), down to \(T = 0 \) before re-heating at the same rate. For all \(\varphi \), we use very slow rates, \(\frac{1}{T_g} \text{d}T = 3 \cdot 10^{-7} \). The typical behaviour of \(c_V(T) \) upon heating is shown in fig. 3(c). As in experiments, a peak is observed when equilibrium is recovered. We estimate \(\Delta c_V \) as the difference between the peak height and the glass specific heat, although different estimates yield qualitatively similar results. The \(\varphi \)-dependence of \(\Delta c_V \) is shown in fig. 3(d), together with a linear fit. As suggested by experiments [2,18], we find a linear relation between fragility and specific heat.

To qualitatively explain this observation we discuss the behaviour of \(V_{\text{pot}} \). For a very dilute system, \(V_{\text{pot}} \) decreases rapidly as \(T \) decreases. A collision-based analysis shows that \(V_{\text{pot}} \sim T^{3/2} \); the energy decreases faster than linearly and vanishes at \(T = 0 \). Correspondingly, the “excess” energy above the hard sphere ground state (\(V_{\text{pot}} = 0 \)) is small, explaining the smallness of \(\Delta c_V \) at small volume fraction. For very dense systems, the energy decreases linearly at low \(T \), and increases with \(\varphi \) since particles overlap more upon compression. Therefore the larger \(\varphi \), the larger \(c_V \) in the fluid phase, and the larger is \(\Delta c_V \), as observed in fig. 3(d). These considerations suggest that further analysis of the potential energy landscape properties of the present system and comparison with model landscapes [26,27] could be very valuable.
In a broad density range encompassing \(\varphi_0 \), simulations suggest \(V_{pot} \sim T^\mu \), with \(\mu \approx 1.3 \), a value intermediate between the dilute and dense limits. Due to the harmonic nature of the potential, \(\sqrt{V_{pot}} \) represents the average overlap between interacting particles, and suggests a way to quantitatively estimate \(\varphi_{eff} \) in eq. (2), and to justify the form of the scaling variable in eq. (4). These energetic considerations are a suggestive physical interpretation, rather than a rigorous derivation, of the success of eq. (2) at collapsing data in fig. 2(c).

Non-equilibrium jamming at \(T = 0 \). Finally, the low-\(T \), non-equilibrium behaviour of the energy density during slow annealing is also informative. For \(\varphi < \varphi^* \approx 0.662 \), \(V_{pot}(\varphi, T \rightarrow 0) = 0 \), while \(V_{pot} \) remains finite above \(\varphi^* \). Therefore, the nature of the \(T = 0 \) glasses produced by slow annealing at volume fractions above point \(G \) changes at \(\varphi^* \) where a “jamming” transition similar to the one described in [4] occurs. Note that \(\varphi^* \) is larger than \(\varphi_J \approx 0.648 \), the critical density for jamming determined in [4] for the same system, because our glasses have been annealed, with no trace of demixing or crystallization [3,13]. We emphasize that these jamming transitions occur at different densities when different protocols are used [13], while the equilibrium glass transition at \(\varphi_0 \) analyzed in this work is uniquely defined by the behaviour of the equilibrium relaxation time, so that both transitions should be considered as distinct phenomena [12].

Discussion and conclusion. The dynamic scaling behaviour in eq. (4) describing the interplay between density and temperature for soft repulsive particles is in stark contrast with the results obtained for soft spheres interacting with a pure inverse power law potential [16,17], because the interaction potential of elastic spheres has a finite cutoff (the particle diameter). Therefore, elastic spheres reduce to hard spheres in the small-\(T \) limit, which is crucial to obtain a change in fragility. We believe our results would generically carry out for repulsive potentials with a finite range.

A second interesting feature of this study is that the location of a divergence for the equilibrium relaxation time is extrapolated from a demanding scaling procedure where a large set of independent data is used to locate a critical density. To the best of our knowledge, such an analysis using two control parameters has no counterpart in the glass transition literature. In particular, we believe it yields a rather accurate determination of the critical density \(\varphi_0 \) where the equilibrium relaxation time of the hard sphere fluid extrapolates to \(\infty \), but leaves open the existence of a finite temperature singularity above \(\varphi_0 \). Our determination of the existence of a genuine divergence of \(\tau_\alpha \) for hard spheres at \(\varphi_0 \) is based on the analysis of the metastable fluid, demixing and crystallization being avoided due to polydispersity. Whether this ideal glass transition is itself avoided [13] due to crystallization or demixing at much larger density is another important issue that our data leave open.

In conclusion, our preliminary studies of repulsive elastic particles at thermal equilibrium suggest that soft repulsive particles are a promising new tool to gain deeper understanding of glass transition phenomena in colloidal and molecular systems. Experimentally, this could be directly realized using soft colloidal particles.

REFERENCES

[1] **Jaeger H. M., Nagel S. R.** and **Behringer R. P.**, *Rev. Mod. Phys.*, 68 (1996) 1259.

[2] **Debenedetti P. G.** and **Stillinger F. H.**, *Nature*, 410 (2001) 259.

[3] **Torquato S.**, **Truskett T. M.** and **Debenedetti P. G.**, *Phys. Rev. Lett.*, 84 (2000) 2064.

[4] **O’Her N. C.**, **Langer S. A.**, **Liu A. J.** and **Nagel S. R.**, *Phys. Rev. Lett.*, 86 (2002) 075507.

[5] **Olsson P.** and **Teitel S.**, *Phys. Rev. Lett.*, 99 (2007) 178001.

[6] **Hatano T.**, *J. Phys. Soc. Jpn.*, 77 (2008) 123002.

[7] **Liu A. J.** and **Nagel S. R.**, *Nature*, 396 (1998) 21.

[8] **Cheng Z.**, **Zhu J.**, **Chaikin P. M.**, **Phan S.** and **Russell W. B.**, *Phys. Rev. E*, 65 (2002) 041405.

[9] **Schweizer K. S.**, *J. Chem. Phys.*, 127 (2007) 164506.

[10] **Brambilla G.**, **El Masri D.**, **Pierno M.**, **Petekidis G.**, **Schofield A. B.**, **Berthier L.** and **Cipelletti L.**, *Phys. Rev. Lett.*, 102 (2009) 085703.

[11] **Parisi G.** and **Zamponi F.**, *J. Chem. Phys.*, 123 (2005) 144501.

[12] **Krzakala F.** and **Kurchan J.**, *Phys. Rev. E*, 76 (2007) 021122.

[13] **Donev A.**, **Stillinger F. H.** and **Torquato S.**, *J. Chem. Phys.*, 127 (2007) 124509.

[14] **Cohen M. H.** and **Turnbull D.**, *J. Chem. Phys.*, 31 (1959) 1164.

[15] **Hudson S.** and **Andersen H. C.**, *J. Chem. Phys.*, 69 (1978) 2323.

[16] **Roland C. M.**, **Hensel-Bielowska S.**, **Paluch M.** and **Casalini R.**, *Rep. Prog. Phys.*, 68 (2005) 1405.

[17] **Tajrjus G.**, **Kivelson D.**, **Moss S.** and **Albano Simionesco C.**, *J. Chem. Phys.*, 120 (2004) 6135.

[18] **Angel C. A.**, *Science*, 267 (1995) 1924.

[19] **Durian D. J.**, *Phys. Rev. Lett.*, 75 (1995) 4780.

[20] **Donev A.**, **Torquato S.**, **Stillinger F. H.** and **Connelly R.**, *Phys. Rev. E*, 70 (2004) 043301.

[21] **Coslovich D.** and **Pastore G.**, *J. Chem. Phys.*, 127 (2007) 124504.

[22] **Sausset F.**, **Tajrjus G.** and **Viot P.**, *Phys. Rev. Lett.*, 101 (2008) 155701.
[23] Sastry S., Nature, 409 (2000) 164.
[24] Allen M. and Tildesley D., Computer Simulation of Liquids (Oxford University Press, Oxford) 1987.
[25] Heuer A., J. Phys.: Condens. Matter, 20 (2008) 375101.
[26] Heuer A. and Saksaengwiit A., Phys. Rev. E, 77 (2008) 061507.
[27] Moreno A. J., Saika-Voivod I., Zaccarelli E., La Nave E., Buldyrev S. V., Tartaglia P. and Sciortino F., J. Chem. Phys., 124 (2006) 204509.