Design and Simulation of Reconfigurable Logic Circuits using CNTFETs

ABHINAV SHUKLA, U.N. TRIPATHI and MANISH MISHRA

Department of Electronics, D.D.U. Gorakhpur University, Gorakhpur (India)

Department of Computer Science, DDU Gorakhpur University, Gorakhpur (India)

Corresponding Author Email: manish.ddu1976@gmail.com
http://dx.doi.org/10.22147/jusps-A/300106

Acceptance Date 01st December, 2017, Online Publication Date 2nd January, 2018

Abstract

In the proposed paper the basic logical cells like inverter, NOR and NAND are realized using n-type and p-type CNTFET. These blocks are used to implement seven function reconfigurable logic blocks. The VHDL code, simulation and synthesized results are generated on Xilinx 9.2 platform. The designed circuit is FPGA programmed on Altera kit.

Keywords: CNTFET, Reconfigurable logic, Xilinx, FPGA, MOSFET.

I. Introduction

As with the conventional MOSFET, there also exist two types of CNTFETs, i.e. n-channel and p-channel CNTFETs, the circuit symbol of which is shown in figure 1.

Figure 1: Circuit Symbol of n-channel and p-channel CNTFET.
With the help of these CNTFETs, the logic gates like inverter, NAND and NOR can be realized. The circuit of these gates using CNTFET is shown in figure 2.

Figure 2: CNTFET Logic Circuits (a) Inverter, (b) two input NAND, (c) two input NOR

The voltage transfer characteristics of the CNT-FET inverter are similar to the voltage transfer characteristics of a typical CMOS inverter and show a sharp transition at the inverter logic threshold voltage. With the help of these logic building blocks we proceed to design the reconfigurable circuit of seven functions, the block diagram of which is shown in figure 3. The block contains two input pins, three mode selection pin and one output pin. On the input pins desired binary input is provided and on the select pins binary pattern is applied to select one out of seven modes of operation as AND, OR, NOT, NAND, NOR, XOR and XNOR gate. The VHDL code of this entity is generated and synthesized on Xilinx platform.

The function of select input pin is given in table I, which describes the mode of operation of circuit which is obtained by giving the proper signal on the select lines and output is obtained by applying input at A and B.

Figure 3: Reconfigurable Logic Block
Table I: Functions of Select Pins

Select Mode	Gate Function
S2 S1 S0	
0 0 0	AND
0 0 1	OR
0 1 0	NOT
0 1 1	NAND
1 0 0	NOR
1 0 1	XOR
1 1 0	XNOR
1 1 1	X (Don’t care)

II VHDL Coding

The logic equation and VHDL coding of the proposed reconfigurable logic circuit is given below. The dataflow style of circuit modeling is adopted for this design.

\[Y = \overline{A} S1 \overline{S2} + \overline{A} BS1 + S0 (A \oplus B) + AB (S1 \odot S2) \]

```vhdl
library ieee;
use ieee.std_logic_1164.all;
entity recon is
port( a,b,s2,s1,s0 : in std_logic;
y : out std_logic);
end recon;
architecture recon of recon is
signal x0,x1,x2,x3,x4,x5,x6,x7,x8,x9,x10 : std_logic;
beginn
x0 <= not(a);
x1 <= not(b);
x2 <= not(s2);
x3 <= not(s0);
x4 <= x0 and x2 and s1;
x5 <= x0 and x1 and s1;
x6 <= x0 and x1 and x3 and s2;
x7 <= a xor b;
x8 <= not(s1 xor s2);
x9 <= x7 and s0;
x10 <= x8 and a and b;
y <= x4 or x5 or x6 or x9 or x10;
end recon;
```

III Circuit Diagram

The proposed structure of the reconfigurable logic gate with the help of p-type and n-type CNTFETs on the basis of CMOS logic is given in the figure 5. In this circuit, the pull-up network is made up of p-type of CNTFETs and the pull-down network is made up of n-type CNTFETs. In the design of circuit with the help of CMOS logic, a total of 30 p-type and 30 n-type CNTFETs are needed; thus, a total of 60 CNTFETs are required to design the proposed reconfigurable block.
Figure 5: Design of Reconfigurable Logic made up of CNTFETs

Figure 6: Generation of desired signals in figure 5 with the help of CNTFETs
IV Circuit Synthesis on Altera FPGA

The synthesized output waveform on Altera FPGA is shown in figure 7. From the generated output it is observed that reconfigurable circuit works as described in table I.

V. Conclusion

As a circuit component the top gate planner CNTFET and co-axial CNTFET are more efficient to design VLSI circuits at nanometer scale than the conventional Si-MOSFET, therefore, the reconfigurable logic gate circuits designed with the help of CNTFET would also be more efficient in terms of switching speed, leakage current, on-current to off-current ratio, and power dissipation.

VI. References

1. H.-S. P. Wong and S. Salahuddin, “Memory Leads the Way to Better Computing,” Nature Nanotechnology, Vol. 10, pp. 191 – 194 (2015).
2. Z. Jiang, Y. Wu, S. Yu, L. Yang, K. Song, Z. Karim, H.-S. P. Wong, “A Compact Model for Metal–Oxide Resistive Random Access Memory With Experiment Verification,” IEEE Trans. Electron Devices, vol. 63, No. 5, pp. 1884 – 1892 (2016).
3. S. Lee, A. Tang, S. Aloni, H.-S. P. Wong, “Statistical Study on the Schottky Barrier Reduction of Tunneling
Contacts to CVD Synthesized MoS2,” Nano Lett., 16 (1), pp 276–281 (2016).

4. M.M. Sabry Aly, M. Gao, G. Hills, C.-S. Lee, G. Pitner, M.M. Shulaker, T.F. Wu, M. Asheghi, J. Bokor, F. Franchetti, K.E. Goodson, C. Kozyrakis, I. Markov, K. Olukotun, L. Pileggi, E. Pop, J. Rabaey, C. Re, H.-S. P. Wong, S. Mitra, “Energy-Efficient Abundant-Data Computing: The N3XT 1,000X,” IEEE Computer, pp. 24 – 33, December (2015).

5. C.S. Lee, E. Pop, A. Franklin, W. Haensch, H.-S. P. Wong, “A Compact Virtual-Source Model for Carbon Nanotube FETs in the Sub-10-nm Regime—Part II: Extrinsic Elements, Performance Assessment, and Design Optimization,” IEEE Trans. Electron Devices, vol. 62, no. 9, pp. 3070-3078 (2015).

6. M. M. Shulaker, G. Hills, M. Giachino, T.F. Wu, Z. Bao, H.-S. P. Wong, and S. Mitra, “Efficient Metallic Carbon Nanotube Removal for Highly-Scaled Technologies,” IEEE International Electron Devices Meeting (IEDM), paper 32.4, pp. 839 – 842, Washington, DC, December 7 – 9, (2015).

7. Rejaiba Omar, Ben Amar Mohamed, Matoussi Adel “Effects of series and parallel resistances on the C-V characteristics of silicon-based metal oxide semiconductor (MOS) devices”. The European Physical Journal Plus, April 2015, Vol 130, no 80, pp 1087-1094.

8. Giuseppe Luongo et. al. “I-V and C-V Characterization of a High-Responsivity Graphene/Silicon Photodiode with Embedded MOS Capacitor” Nanomaterials, 7(7), 158 (2017).

9. Pengkun Xia et.al. “ Impact and Origin of Interface States in MOS Capacitor with Monolayer MoS2 and HfO2High-k Dielectric” Scientific Reports, www.nature.com, Jan (2017).