ON A THEOREM OF N. KATZ AND BASES IN IRREDUCIBLE REPRESENTATIONS

DAVID KAZHDAN

Dedicated to the memory of Leon Ehrenpreis

1.

Abstract. N. Katz has shown that any irreducible representation of the Galois group of $\mathbb{F}_q((t))$ has unique extension to a special representation of the Galois group of $k(t)$ unramified outside 0 and ∞ and tamelyramified at ∞. In this paper we analyze the number of not necessarily special such extensions and relate this question to a description of bases in irreducible representations of multiplicative groups of division algebras.

Let $k = \mathbb{F}_q$, $q = p^r$ be a finite field, \bar{k} the algebraic closure of k, $F := k((t))$ and \bar{F} be the algebraic closure of F. The restriction on $\bar{k} \subset \bar{F}$ defines a group homomorphism

$$\text{Gal}(\bar{F}/F) \to \text{Gal}(\bar{k}/k) = \hat{\mathbb{Z}}$$

and we define the Weil group of the field F as the preimage $G_0 \subset \text{Gal}(\bar{F}/F)$ of $\mathbb{Z} \subset \hat{\mathbb{Z}}$ under this homomorphism.

We denote by \mathbb{P}^1 the projective line over k, set $E := k(t)$ and denote by S the set of points of \mathbb{P}^1. For any $s \in S$ we denote by E_s the completion of E at s. Using the parameter t on \mathbb{P}^1 we identify the fields E_0 and E_∞ with F and therefore identify G_0 with the Weil groups of the fields E_0 and E_∞.

Let \bar{E} be the maximal extension of the field E unramified outside 0 and ∞ and tamely ramified at ∞. We denote by $G \subset \text{Gal}(\bar{E}/E)$ the Weil group corresponding to the extension \bar{E}/E. We have the natural imbeddings

$$G_0 \hookrightarrow G, G_\infty \hookrightarrow G$$

well defined up to conjugation. Therefore for any complex representation ρ of G the restrictions to G_0, G_∞ define representations ρ_0, ρ_∞ of the corresponding local groups. The group G has a unique maximal
quotient \mathcal{G} such that the Sylow p-subgroup of \mathcal{G} is normal. As shown by N.Katz ([5]) the composition $\mathcal{G}_0 \to \mathcal{G}$ is an isomorphism.

Remark A finite-dimensional irreducible representation ρ_0 of \mathcal{G} is called *special* if it factors through a representation of the group \mathcal{G}. One can restate the theorem of N.Katz by saying that for any irreducible representation ρ_0 of \mathcal{G}_0 there exists a unique special representation ρ_{sp} of the group \mathcal{G} whose restriction to \mathcal{G}_0 is equivariant to ρ_0.

Let D_0 be a skew-field with center F, $\dim_F D_0 = n^2$, $G_0 := D_0^*$ be the multiplicative group of D_F and ρ_0 be an n-dimensional indecomposable representation of the group \mathcal{G}_0.

Definition 1.1. a) We denote by $\tilde{\sigma}(\rho_0)$ the irreducible discrete series representation of the group $GL_n(F)$ which corresponds to ρ_0 under the local Langlands correspondence (see for example [3]) and by $\sigma(\rho_0)$ the irreducible representation of the group G_0 which corresponds to $\tilde{\sigma}(\rho_0)$ as in [1].

b) We denote by $r(\rho_0)$ the formal dimension of the representation $\tilde{\sigma}(\rho_0)$ where the formal dimension is normalized in such a way that the formal dimension of the Steinberg representation is equal to 1. Analogously for any indecomposable representation ρ_∞ of the group \mathcal{G}_∞ we define an integer $r(\rho_\infty)$.

c) We denote by $A(\rho_0)$ the set of equivalence classes of n-dimensional irreducible representations ρ of the group \mathcal{G} whose restriction to \mathcal{G}_0 is equivalent to ρ_0 and the restriction to \mathcal{G}_∞ is indecomposable.

Theorem 1.2. For any n-dimensional irreducible $\overline{\mathbb{Q}}_l$-representation of the group \mathcal{G}_0 the sum $\sum_{\rho \in A(\rho_0)} r(\rho_\infty)$ is equal to $r(\rho_0)$.

Proof. Let $\mathbb{A} = \prod_{s \in S} E_s$ the ring of adeles of E and D be a skew-field with center E unramified outside $\{0, \infty\}$, $D_0 := D \otimes_E E_0$ and $D_\infty := D \otimes_E E_\infty$. Then D_0, D_∞ are local skew-fields. Let \mathcal{G} be the multiplicative group of D considered as an the algebraic E-group.

It follows from [6] that we can identify the set $A(\rho_0)$ with the set of automorphic representations $\tilde{\pi} = \prod_{s \in S} \tilde{\pi}_s$ of the group $GL_n(\mathbb{A})$ such that the representation π_0 is equivalent to $\tilde{\sigma}(\rho_0)$ and the representation $\tilde{\pi}_\infty$ is of discrete series. Then it follows from [1] that we can identify the set $A(\rho_0)$ with the set of automorphic representations $\pi = \prod_{s \in S} \pi_s$ of the group $\mathcal{G}(\mathbb{A})$ such that the representation π_0 is equivalent to $\sigma(\rho_0)$. We will use this identification for the proof of the Theorem 1.2.
ON A THEOREM OF N. KATZ AND BASES IN IRREDUCIBLE REPRESENTATIONS

We denote by $N : D_0 \to F$ the reduced norm and define
\[\mu := \nu \circ N : D_0^* \to \mathbb{Z}, K_0 := \mu^{-1}(0) \]
where $\nu : F^* \to \mathbb{Z}$ is the valuation. Then $K_0 \subset D_0^*$ is a maximal compact subgroup. We define the first congruence subgroup K_1^0 by
\[K_1^0 := \{ k \in K_0 | \mu(k - Id) > 0 \} \]
As is well known K_1^0 is a normal subgroup of D_0^* such that $K_0/K_1^0 = F_{q^n}^*$ and $D_0^*/K_1^0 = \mathbb{Z} \ltimes F_{q^n}^*$ where \mathbb{Z} acts on $F_{q^n}^*$ by $(n, x) \to x^{q^n}$.

For any $s \in S - \{0, \infty\}$ we identify the group G_{E_s} with $GL(n, E_s)$ and define $K_s := GL(n, \mathcal{O}_s)$. We write $G_A := D_0^* \times GL_n(A^0)$ where
\[GL_n(A^\infty) := D_0^* \times \prod_{s \in S - \{0, \infty\}} GL(n, E_s) \]
and define
\[K^0 := \prod_{s \in S - \{0, \infty\}} K_s \times K_{E^\infty}, K^1 := \prod_{s \in S - \{0, \infty\}} K_s \times K_{E^\infty} \]
where $K_{E^\infty}^1 \subset K_{E^\infty} \subset D_{E^\infty}^*$ is the first congruence subgroup of G_{E^∞}.

For any irreducible representation π of the group G_0 we denote by $\tilde{\pi}$ the discrete series representation of the group $GL_n(F)$ corresponding to π as in [1].

Lemma 1.3. a) For any irreducible complex representation $\kappa : D_0^*/K_1^0 \to Aut(W)$ and any character $\chi : K_0/K_1^0 \to \mathbb{C}^*$ we have
\[\dim(W^x) \leq 1 \]
where $W^x = \{ w \in W | \kappa(k)w = \chi(k)w, k \in K_0 \}$.

b) For any irreducible representation π of the group G_0 the formal dimension of $\tilde{\pi}$ is equal to the dimension of π.

Proof. Part a) follows from the isomorphism $D_0^*/K_1^0 = \mathbb{Z} \ltimes F_{q^n}^*.$.

Part b) follows from [1]. □

We see that the following equality implies the validity of the Theorem 1.2.

Claim 1.4. For any n-dimensional irreducible \mathbb{Q}_l-representation of the group G_0 the sum $\sum_{\pi \in A(\rho_0)} \dim(\pi) = \dim(\sigma(\rho_0))$.

The proof of Claim is based on the following result.

Proposition 1.5. The product map $D_0^* \times K^1 \times G_E \to G_A$ is a bijection.
Proof of the Proposition. The surjectivity follows from Lemma 7.4 in [4]. To show the injectivity it is sufficient to check the equality
\[(D_0^* \times K^1) \cap G_E = \{e\}\]
which is obvious. □

We denote by \(\mathbb{C}(G_A/G_E)\) the space of locally constant functions on \(G_A/G_E\) with compact support, by \(\mathbb{C}(G_0)\) the space of locally constant functions on \(G_0\) with compact support and by \(L \subset \mathbb{C}(G_A/G_E)\) the subspace of \(K^1\)-invariant functions. The group \(G_0 \times D_\infty^*/K^1\) acts naturally on \(L\).

Let \(\rho_0\) be an indecomposable representation of the group \(G_0\). We denote by \((\sigma(\rho_0), V(\rho_0))\) the corresponding representation of the group \(G_0\) and identify the set \(A(\rho_0)\) with the set of automorphic representations \(\pi_a = \prod_{s \in S} \pi_s^a\) of the group \(G(A)\) such that the representation \(\pi_0^a\) is equivalent to \(\sigma(\rho_0)\) and the representation \(\pi_\infty^a\) is trivial on \(K^1\). Let
\[\mathcal{H} := \prod_{s \in S - \{0, \infty\}} \mathcal{H}_s\]
where \(\mathcal{H}_s\) is the spherical Hecke algebra for \(G(F_s) = GL(n, F_s)\). By construction, the commutative algebra \(\mathcal{H}\) acts on the \(D_0^* \times D_\infty^*/K^1\)-module \(L\). For any \(a \in A(\rho_0)\) we define
\[L_a := \text{Hom}_{G_0}(\pi_a^a, \mathbb{C}(G_A/G_E)) = \text{Hom}_{G_0 \times \mathcal{H}}(\sigma(\rho_0), L) \subset \text{Hom}_{G_0}(\sigma(\rho_0), L)\]

Lemma 1.6. a) The restriction \(r : L \to \mathbb{C}(G_0)\) is an isomorphism of \(G_0\)-modules where \(G_0\) acts on \(\mathbb{C}(D_0^*)\) by left translation.

b) \(\text{Hom}_{G_0}(\sigma(\rho_0), L) = V^\vee\) where \(V^\vee\) is the dual space to \(V(\rho_0)\).

c) \(V^\vee = \bigoplus L_a, a \in A(\rho_0)\) where the algebra \(\mathcal{H}\) acts on \(L_a, a \in A(\rho_0)\) by a character \(\chi_a : \mathcal{H} \to \bar{\mathbb{Q}}_l^*, \chi_a \neq \chi_a'\) for \(a \neq a'\) and the representations \(\pi_\infty^a\) of the group \(D_\infty^*/K^1\) on \(M_a\) are irreducible.

d) The representations \(\pi_\infty^a\) are associated with the restriction \(\rho(a)_\infty\) by the local Langlands correspondence.

Proof. The Lemma follows immediately from the Proposition and the strong multiplicity one theorem ([7] and [1]). □

This Lemma implies the validity of Claim and therefore of Theorem 1.2. Indeed we have
\[\dim(V) = \dim(V^\vee) = \sum_{a \in A(\rho_0)} \dim(L_a) = \sum_{a \in A(\rho_0)} \dim(\pi_\infty^a) = \sum_{a \in A(\rho_0)} r(\rho(a)_\infty)\] □
One can ask whether one can extend Theorem 1.2 to the case of other groups. More precisely, let G be a split reductive group with a connected center and $^L G$ be the Langlands dual group. Consider a homomorphism $\rho_0 : \mathcal{G}_0 \to ^L G$ such that the connected component of the centralizer $Z_\rho := Z_{^L G} (\text{Im} (\rho))$ is unipotent. Let $[Z_\rho]$ be the group of connected components of the centralizer Z_ρ. Conjecturally, one can associate with ρ_0 an $^L G$-packet of irreducible representations $\pi_\rho (\tau)$ of the group $G_0 := G(F)$ parameterized by irreducible representations τ of $[Z_\rho]$ and there exists an integer $r(\rho_0)$ such that the formal dimension of $\pi_\rho (\tau)$ is equal to $r(\rho) dim(\tau)$.

We denote by $A^G(\rho_0)$ the set of conjugacy classes of homomorphisms $\rho : \mathcal{G} \to ^L G$ whose restriction on \mathcal{G}_0 is conjugate to ρ_0 and such that the connected component of the centralizer of the restriction on \mathcal{G}_∞ is unipotent.

Question. Is it true that $r(\rho_0) = \sum_{a \in A(\rho_0)} r(\rho_\infty)$ where $r(\rho_\infty)$ is defined in the same way as $r(\rho_0)$?

2.

Let G be a reductive group over a local field. As is well known one can realize the spherical Hecke algebra \mathcal{H} of G geometrically, that is as the Grothendick group of the monoidal category of perverse sheaves on the affine Grassmanian. Analogously in the case when G be a reductive group over a global field of positive characteristic the unramified geometric Langlands conjecture predicts the existence of a geometric realization of the corresponding space of automorphic functions.

Let \mathcal{C} be a smooth absolutely irreducible \mathbb{F}_q-curve, $q = p^m$, S be the set of geometric points of \mathcal{C}, $\Gamma := \pi_1(\mathcal{C})$. For any $s \in S$ we denote by $F_{r,s} \subset \Gamma$ the conjugacy class of the Frobenius at s.

Let E be the field of rational functions on \mathcal{C}. For any $s \in S$ we denote by E_s the completion of E at s and we denote by \mathbb{A} be the ring of adeles of E. Fix a prime number $l \neq p$.

Let \mathcal{G} be a split reductive group, and $\mathcal{K} := \prod_{s \in S} G(\mathcal{O}_s) \subset G(\mathbb{A})$ be the standard maximal compact subgroup. An irreducible representation $(\pi, V) = \otimes_{s \in S} (\pi_s, V_s)$ of $G(\mathbb{A})$ is unramified if $V^\mathcal{K} \neq \{0\}$. In this case $\text{dim}(V^{\mathcal{K}}) = 1$. So for any unramified representation (π, V) of the group $G(\mathbb{A})$ there is a special spherical vector $v_{sp} \in V$ defined up to a multiplication by a scalar.
Let L_G be the Langlands dual group and ρ a homomorphism from Γ to $L_G(\overline{Q}_l)$ such that for any $s \in S$ the conjugacy class $\gamma_s := \rho(Fr_s) \subset L_G(\overline{Q}_l)$ is semisimple. In such a case we can define unramified representations (π_{γ_s}, V_s) of local groups $G(E_s)$ and the representation $(\pi(\rho), V_\rho) = \otimes_s (\pi_{\gamma_s}, V_s)$ of the adelic group $G(\mathbb{A})$. According to the unramified geometric Langlands conjecture the homomorphism ρ defines [at least in the case when ρ is tempered] an imbedding $i_\rho : V_\rho \to \overline{Q}_l(K\backslash G(\mathbb{A})/G(E))$ and a function $f_\rho := i_\rho(v_{sp})$ which is defined up to a multiplication by a scalar.

We can identify the set $K\backslash G(\mathbb{A})/G(E)$ with the set of \mathbb{F}_q-points of the stack \mathcal{B}_G of principal G-bundles on \mathcal{C} and the unramified geometric Langlands correspondence predicts the existence of a perverse Weil sheaf $F(\rho)$ on \mathcal{B}_G such that the function f_ρ is given by the trace of the Frobenius automorphisms on stalks of $F(\rho)$. (See [2])

If one considers ramified automorphic representations $(\pi, V) = \otimes_{s \in S} (\pi_s, V_s)$ of $G(\mathbb{A})$ then there is no natural way to choose a special vector in V. So on the "geometric" side one expects not an object $F(\rho)$ but an abelian category $\mathcal{C}(\rho)$ which is a product of local categories $\mathcal{C}(\rho_s)$ such that the Grothendick K-group of the category $[\mathcal{C}(\rho_s)]$ coincides with the subspace V_{s0} of the minimal K-type vectors of the space V_s of the local representation. Such geometric realization of the space V_{s0} would define a special basis of vector spaces V_{s0} which would be a non-archimedian analog of Lusztig’s canonical basis. Here we consider only the case of an anisotropic group when the minimal K-type subspace V_{s0} coincides with the space V_s of the representation of G. Moreover we will only discuss a slightly weaker data of a projective basis where a projective basis in a finite-dimensional vector space T is a decomposition of the space T in a direct sum of one-dimensional subspaces. So one could look for a special basis of vector spaces V_s which would be a non-archimedian analog of the Lusztig’s canonical basis.

Let as before $F := k((t)), D_0$ be a skew-field with center $F, dim_0 D_0 = n^2, G_0$ be the multiplicative group of D_0 and $\sigma : G_0 \to Aut(V)$ a complex irreducible continuous representation of the group G_0.

Theorem 2.1. For any irreducible representation $\tau : D_F^* \to Aut(T)$ of the group D_F^* there exists a "natural" projective basis $= \oplus_a T_a$ of T.

Remark 2.2. The construction is global. In particular I don’t know how to define a projective basis in the case when F is a local field of
characteristic zero. It would be very interesting to find a local construction of a projective basis.

The construction. As follows from Lemma 1.6 c) we have a decomposition $V^\vee = \sum_{a \in A(\rho_0)} M_a$ where the group D_{∞}/K_1^1 acts irreducibly on M_a. Therefore the group $\mathbb{F}_{q^n}^* = K_{\infty}/K_3^1$ acts on M_a and we have a decomposition of M_a into the sum of eigenspaces for the action of the group $\mathbb{F}_{q^n}^*$. As follows from Lemma 3 a) these eigenspaces are one-dimensional.

References

[1] Deligne, P.; Kazhdan, D.; Vignéras, M.-F. Représentations des algèbres centrales simples p-adiques. Representations of reductive groups over a local field, 33–117, Travaux en Cours, Hermann, Paris, 1984

[2] Gaitsgory, D. Informal introduction to geometric Langlands. An introduction to Langlands program. 269-281 Burhauser Boston, Boston MA 2003

[3] Henniart, G., Une preuve simple des conjectures de Langlands pour GL(n) sur un corps p-adique, Invent. Math., (2000).

[4] Hrushovski, E.; Kazhdan D.; Motivic Poisson summation. Moscow Math. J. 9(2009) no. 3 569-623

[5] Katz, N.Local-to-global extensions of representations of fundamental groups. (French summary) Ann. Inst. Fourier (Grenoble) 36 (1986), no. 4, 69106.

[6] Lafforgue, L. Chtoucas de Drinfeld et correspondance de Langlands. Invent. Math. 147 (2002), no. 1, 1241.

[7] Piatetskii-Shapiro I. Multiplicity one theorems, Proc. Sympos. Pure Math., vol. 33, Part I, Providence, R. I., 1979, pp. 209-212.

Institute of Mathematics, The Hebrew University, Jerusalem, Israel

E-mail address: kazhdan@math.huji.ac.il