Lower semi-continuity of universal functional in paramagnetic current-density functional theory

Simen Kvaal, Andre Laestadius, Erik Tellgren, and Trygve Helgaker
Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, University of Oslo, P.O. Box 1033 Blindern, N-0315 Oslo, Norway
(Dated: Friday 3 July 2020)

A cornerstone of current-density functional theory (CDFT) in its paramagnetic formulation is proven. After a brief outline of the mathematical structure of CDFT, the lower semi-continuity and expectation valuedness of the CDFT constrained-search functional is proven, meaning that there is always a minimizing density matrix in the CDFT constrained-search universal density functional. These results place the mathematical framework of CDFT on the same footing as that of standard DFT.

INTRODUCTION

Density-functional theory (DFT) is at present the most widely used tool for first-principles electronic-structure calculations in solid-state physics and quantum chemistry. DFT was put on a solid mathematical ground by Lieb in a landmark paper [1] from 1983, where he introduced the universal density functional $F(\rho)$ as the convex conjugate to the concave ground-state energy $E(\rho)$ for an electronic system in the external scalar potential v.

For electronic systems under the influence of a classical external magnetic field A, current-density functional theory (CDFT) was introduced by Vignale and Rasolt in 1987 [2]. In addition to the density ρ, the paramagnetic current density j becomes a basic variable. The mathematical foundation of CDFT was put in place by Tellgren et al. [3] and Laestadius [4,5] in the 2010s based on Lieb’s treatment of the field-free standard case. However, a central piece of the puzzle has been missing—namely, whether the CDFT constrained-search functional $F(\rho, j_p)$ is lower semi-continuous and expectation valued [6], i.e., that the infimum in its definition [see Eq. (3) below] is in fact attained.

In this letter, we provide proofs of these assertions. The CDFT constrained-search functional is indeed convex lower-semicontinuous, and can therefore be identified with the CDFT Lieb functional—that is, a Legendre–Fenchel transform of the energy. Without this fact, the ground-state energy functional $E(v, A)$ and the constrained-search functional $F(\rho, j_p)$ contain different information. If $F(\rho, j_p)$ were not expectation valued, one would lose the interpretation of the universal functional as intrinsic energy, which is very useful in standard DFT.

For an N-electron system in sufficiently regular external potentials v and A, the ground-state energy is given by the Rayleigh–Ritz variation principle as

$$E(v, A) = \inf_{\Gamma} \text{Tr}(\Gamma H(v, A)), \quad (1)$$

where $H(v, A) = T(A) + W + \sum_{i=1}^{N} v(\mathbf{r}_i)$ is the electronic Hamiltonian with kinetic-energy operator $T(A) = \frac{1}{2} \sum_{i=1}^{N} (-i \nabla_i + A(\mathbf{r}_i))^2$ and two-electron repulsion operator W. The minimization is over all N-electron density matrices Γ of finite kinetic energy, for which the one-electron density is $\rho \in X_L = L^1(\mathbb{R}^3) \cap L^2(\mathbb{R}^3)$, and $j_p \in X_p = L^1(\mathbb{R}^3) \cap L^3/2(\mathbb{R}^3)$ [7]. (The boldface notation indicates a space of vector fields.) The external potential energy $(v)\rho = \int_{\mathbb{R}^3} v(\mathbf{r}) \rho(\mathbf{r}) d\mathbf{r}$, the paramagnetic and diamagnetic terms $\frac{1}{2}(|A|^2)\rho$ and $(A)j_p = \int_{\mathbb{R}^3} A(\mathbf{r}) \cdot j_p(\mathbf{r}) d\mathbf{r}$, and thus the Hamiltonian $H(v, A)$, are well defined for any $v \in X_{L'} = L^{3/2}(\mathbb{R}^3) + L^\infty(\mathbb{R}^3)$ and $A \in X'_{p} = L^1(\mathbb{R}^3) + L^\infty(\mathbb{R}^3)$, where $X_{L'}$ and X'_{p} are the dual spaces of X_L and X_p, respectively. Examples of such potentials are the nuclear Coulomb potentials and uniform magnetic fields inside bounded domains. The symbol X_L for the space of densities is so chosen to indicate it is the density space of Lieb’s analysis, while X_p indicates “paramagnetic” current densities.

By a well-known reformulation of Eq. (I), we obtain the CDFT Hohenberg–Kohn variation principle

$$E(v, A) = \inf_{(\rho,j_p) \in X_L \times X_p} \left\{ F(\rho, j_p) \right. \right.$$
\[\left. + (v + \frac{1}{2}|A|^2)\rho + (A)j_p \right\}. \quad (2)

Here the Vignale–Rasolt constrained-search density functional $F: X_L \times X_p \to [0, +\infty]$ is defined by

$$F(\rho, j_p) = \inf_{\Gamma=(\rho,j_p)} \text{Tr}(\Gamma H_0), \quad (3)$$

For an N-electron system in sufficiently regular external potentials v and A, the ground-state energy is given by the Rayleigh–Ritz variation principle as

$$E(v, A) = \inf_{\Gamma} \text{Tr}(\Gamma H(v, A)), \quad (1)$$

where $H(v, A) = T(A) + W + \sum_{i=1}^{N} v(\mathbf{r}_i)$ is the electronic Hamiltonian with kinetic-energy operator $T(A) = \frac{1}{2} \sum_{i=1}^{N} (-i \nabla_i + A(\mathbf{r}_i))^2$ and two-electron repulsion operator W. The minimization is over all N-electron density matrices Γ of finite kinetic energy, for which the one-electron density is $\rho \in X_L = L^1(\mathbb{R}^3) \cap L^2(\mathbb{R}^3)$, and $j_p \in X_p = L^1(\mathbb{R}^3) \cap L^3/2(\mathbb{R}^3)$ [7]. (The boldface notation indicates a space of vector fields.) The external potential energy $(v)\rho = \int_{\mathbb{R}^3} v(\mathbf{r}) \rho(\mathbf{r}) d\mathbf{r}$, the paramagnetic and diamagnetic terms $\frac{1}{2}(|A|^2)\rho$ and $(A)j_p = \int_{\mathbb{R}^3} A(\mathbf{r}) \cdot j_p(\mathbf{r}) d\mathbf{r}$, and thus the Hamiltonian $H(v, A)$, are well defined for any $v \in X_{L'} = L^{3/2}(\mathbb{R}^3) + L^\infty(\mathbb{R}^3)$ and $A \in X'_{p} = L^1(\mathbb{R}^3) + L^\infty(\mathbb{R}^3)$, where $X_{L'}$ and X'_{p} are the dual spaces of X_L and X_p, respectively. Examples of such potentials are the nuclear Coulomb potentials and uniform magnetic fields inside bounded domains. The symbol X_L for the space of densities is so chosen to indicate it is the density space of Lieb’s analysis, while X_p indicates “paramagnetic” current densities.

By a well-known reformulation of Eq. (I), we obtain the CDFT Hohenberg–Kohn variation principle

$$E(v, A) = \inf_{(\rho,j_p) \in X_L \times X_p} \left\{ F(\rho, j_p) \right. \right.$$
\[\left. + (v + \frac{1}{2}|A|^2)\rho + (A)j_p \right\}. \quad (2)

Here the Vignale–Rasolt constrained-search density functional $F: X_L \times X_p \to [0, +\infty]$ is defined by

$$F(\rho, j_p) = \inf_{\Gamma=(\rho,j_p)} \text{Tr}(\Gamma H_0), \quad (3)$$
where \(H_0 = T(0) + W \) is the intrinsic electronic Hamiltonian, and \(\Gamma \mapsto (\rho, J_p) \) means that the infimum is taken over all \(N \)-electron density matrices \(\Gamma \) with density-current pair \((\rho, J_p) \in L^1(\mathbb{R}^3) \times L^1(\mathbb{R}^3) \). Thus, if \((\rho, J_p) \) is not \(N \)-representable, we have \(F(\rho, J_p) = +\infty \). The universal density functional \(F \) is the central quantity in any flavor of DFT, whose mathematical properties and approximation is of utmost importance to the field.

Although \(E \) in Eq. (2) is not concave, it is readily seen that the reparametrized energy

\[
\hat{E}(u, A) = E(u - \frac{1}{2}|A|^2, A)
\]

is concave. This reparametrization relies on a technical notion of compatibility of function spaces for the scalar and vector potentials \([7]\), satisfied for the potentials we consider here.

From the concavity and upper semi-continuity of the modified ground-state energy \(\hat{E} \), one deduces the existence of an alternative universal density functional \(\hat{F} : X_1 \times X_p \to [0, +\infty] \) related to the ground-state energy by Legendre–Fenchel transformations in the manner

\[
\hat{E}(u, A) = \inf_{(\rho, J_p)} \left\{ \hat{F}(\rho, J_p) + (u|\rho) + (A|J_p) \right\}, \quad (5)
\]

\[
\hat{F}(\rho, J_p) = \sup_{(u, A)} \left\{ \hat{E}(u, A) - (u|\rho) - (A|J_p) \right\}, \quad (6)
\]

where the optimizations are over the space \(X_1 \times X_p \) and its dual \(X'_1 \times X'_p \), respectively. As a Legendre–Fenchel transform, the functional \(\hat{F} \) is convex and lower semi-continuous. In this formulation of CDFT, the ground-state energy \(\hat{E} \) and the universal density functional \(\hat{F} \) contain precisely the same information: each functional can be obtained from the other and therefore contains all information about ground-state electronic systems in external scalar and vector fields.

From a comparison of the Hohenberg–Kohn variation principles in Eqs. (2) and (5), it is tempting to conclude that \(\hat{F} = F \) are the same functional, producing the same ground-state energy for each \((v, A) \). However, there exist infinitely many functionals \(\hat{F} : X_1 \times X_p \to [0, +\infty] \) that give the correct ground-state energy \(E(v, A) \) (but not necessarily the same minimizing density, if any) for each \((v, A) \) in the Hohenberg–Kohn variation principle. Each such \(\hat{F} \) is said to be an admissible density functional \([8]\). Among these, the functional \(\hat{F} \) stands out as being the only lower semi-continuous and convex universal density functional and a lower bound to all other admissible density functionals, \(\hat{F} \leq \hat{F} \). The functional \(\hat{F} \), often called the closed convex hull of all admissible density functionals, is thus the most well-behaved admissible density functional. Indeed, we may view it as a regularization of all admissible density functionals, known as the \(\Gamma \)-regularization in convex analysis. (This name is unrelated to our notation of density matrices.)

A fundamental result of Lieb’s analysis of DFT is the identification of the transparent constrained-search density functional with the mathematically well-behaved closed convex hull \(\hat{F} \). The identification follows since \(\hat{F} \) is convex and lower semi-continuous. Whereas convexity follows easily for the CDFT Vignale–Rasolt functional \(F \), the proof of lower semi-continuity is nontrivial. For standard DFT it is given in Ref. [1] and for CDFT in the present letter.

We simplify our analysis by merely assuming that the density–current pairs are \((\rho, J_p) \in L^1(\mathbb{R}^3) \times L^1(\mathbb{R}^3) = [L^1(\mathbb{R}^3)]^4 \), which we denote as \(X \). With this topology, the potentials must be taken to be bounded functions, \((v, A) \in X' = L^\infty(\mathbb{R}^3) \times L^\infty(\mathbb{R}^3) = [L^\infty(\mathbb{R}^3)]^4 \). This simplification is irrelevant in this context: if \(F \) can be shown to be lower semi-continuous in the \([L^1(\mathbb{R}^3)]^4 \) topology, it will be lower semi-continuous in any stronger topology, as required if we enlarge the potential space to include more singular functions such as those in \(X_1' \times X_p' \). Indeed, the original proof of lower semi-continuity of the standard DFT Levy–Lieb functional \([3]\) was with respect to the \(L^1(\mathbb{R}^3) \) topology, from which the same property with respect to the \(X_1 \) topology immediately follows.

THEOREM AND PROOF

The intrinsic Hamiltonian \(H_0 = H(0, 0) \) is self-adjoint \((H_0 = H_0^\dagger) \) over \(L_N^2 \), the Hilbert space of square-integrable \(N \)-electron wavefunctions (with spin and permutational antisymmetry built in). The expectation values of \(H_0 \) and \(H(v, A) \) are well-defined on the Sobolev space \(H_N \), the subset of \(L_N^2 \) with finite kinetic energy.

We denote by \(D_N \) the convex set of \(N \)-electron mixed states with finite kinetic energy. We have the mathematical characterization \([8]\)

\[
D_N = \left\{ \Gamma \in TC(L_N^2) \mid \Gamma^\dagger = \Gamma \geq 0, \text{Tr} \Gamma = 1, \nabla_1 \Gamma \nabla_1^\dagger \in TC(L_N^2) \right\},
\]

where \(TC(L_N^2) \) is the set of trace-class operators over \(L_N^2 \), the largest set of operators to which a basis-independent trace can be assigned. An operator \(A \) is trace class if and only if the positive
square root $|A| := \sqrt{AA^*}$ is trace class \mathbb{H}. A self-adjoint operator A is trace-class if and only if it has a spectral decomposition of the form $A = \sum_{k=1}^{\infty} \lambda_k |\phi_k\rangle \langle \phi_k|$, where $\{\phi_k\}$ forms an orthonormal basis and where $\sum_k \lambda_k$ is absolutely convergent. Now $A = F \in \mathcal{D}_N$ if and only if $\lambda_k \geq 0$, $\sum_k \lambda_k = 1$, $\{\phi_k\} \subset H_N$, and if the total kinetic energy is finite, $\sum_k \lambda_k \langle \phi_k | T | \phi_k \rangle < +\infty$.

For any $\psi \in H_N^*$, the density-current pair $(\rho, j_\rho) \in L^1(\mathbb{R}^3) \times L^1(\mathbb{R}^3)$ is defined by

$$\rho(r_1) := N \int |\psi(r_1; \tau_{-1})|^2 d\tau_{-1}, \quad (8)$$

$$j_\rho(r_1) := N \text{Im} \int \overline{\psi^*(r_1; \tau_{-1})} \nabla_1 \psi(r_1; \tau_{-1}) d\tau_{-1}, \quad (9)$$

where we integrate over all spin variables and over $N - 1$ spatial coordinates, $\tau_{-1} = (\sigma_1, x_2, \cdots, x_N)$. For $A \in \mathcal{D}_N$, we can, for instance, compute $\rho = Tr A$ from $\sum_k \lambda_k \rho_k$ with ρ_k obtained from Eq. (8) with $\psi = \phi_k$ (and similarly for j_ρ).

The theorem involves the weak topology on $X = L^1(\mathbb{R}^3) \times L^1(\mathbb{R}^3)$. Weak convergence of a sequence $\{x_n\} \subset X$, written $x_n \rightharpoonup x \in X$, means that, for any bounded linear functional $\omega \in X'$, we have $\omega(x_n) \rightarrow \omega(x)$ as a sequence of numbers—that is, weak convergence is the pointwise convergence of all bounded linear functionals. Recall that the dual space of $L^1(\mathbb{R}^3)$ is $L^\infty(\mathbb{R}^3)$, so that $\rho_n \rightharpoonup \rho \in L^1(\mathbb{R}^3)$ if and only if $(f|\rho_n) \rightarrow (f|\rho)$ for every $f \in L^\infty(\mathbb{R}^3)$. Likewise, $(\rho_n, j_{\rho_n}) \rightharpoonup (\rho, j_\rho) \in X$ if and only if $(f|\rho_n) \rightarrow (f|\rho)$ and $(a|j_{\rho_n}) \rightarrow (a|j_\rho)$ for every $(f, a) \in X'$.

The trace-class operators over a separable Hilbert space \mathcal{H} are examples of compact operators, an infinite dimensional generalization of finite-rank operators. Indeed, the set $K(\mathcal{H})$ of compact operators is the closure of the finite-rank operators in the norm topology and thus a Banach space. The dual space of $K(\mathcal{H})$ is in fact $\text{TC}(\mathcal{H})$. For $B \in K(\mathcal{H})$ and $A \in TC(\mathcal{H})$, the dual pairing is $\text{Tr}(BA)$. Similar to the weak topology for a Banach space, the dual of a Banach space can be equipped with the weak* topology. A sequence of trace-class operators $\{A_n\}$ converges weak*-to $A \in TC(\mathcal{H})$ if, for each $B \in K(\mathcal{H})$, $\text{Tr}(B_n A) \rightarrow \text{Tr}(BA)$.

We now state and prove our main result, from which lower semi-continuity follows in Corollary 4.4 in Ref. [1].

Theorem 1. Suppose $(\rho, j_\rho) \in X$ and $\{\rho_n, j_{\rho_n}\} \subset X$ are such that $F(\rho, j_\rho) < +\infty$ and $F(\rho_n, j_{\rho_n}) < +\infty$ for each $n \in \mathbb{N}$ and suppose further that $(\rho_n, j_{\rho_n}) \rightarrow (\rho, j_\rho)$. Then there exists $\Gamma \in D_N$ such that $\Gamma \rightarrow (\rho, j_\rho)$ and $\text{Tr}(H_0 \Gamma) \leq \lim inf_n F(\rho_n, j_{\rho_n})$.

Proof of Theorem 1. The initial setup follows Ref. [1], which we here restate. Without loss of generality, we may replace $H_0 = T + W$ by $h^2 = T + W + 1$, which is self-adjoint and positive definite. The operator h is taken to be the unique positive self-adjoint square root of $T + W + 1$.

Consider the sequence $\{g_n\}$ with elements $g_n := F(\rho_n, j_{\rho_n})$. If $g_n \rightarrow +\infty$, then the statement of the theorem is trivially true. Assume therefore that $\{g_n\}$ is bounded. Then there exists a subsequence such that $g := \lim_n g_n$ exists. Furthermore, for each n, there exists $\Gamma_n \in D_N$ such that $\Gamma_n \rightarrow (\rho_n, j_{\rho_n})$ and $\text{Tr}(h^2 \Gamma_n) \leq g + 1/n$. To see this, select for each n a density matrix $\Gamma_n \rightarrow (\rho_n, j_{\rho_n})$ that satisfies $\text{Tr}(h^2 \Gamma_n) < g_n + 1/2n$ and choose m such that $|g - g_n| < 1/2n$ for each $n > m$ (by taking a subsequence if necessary); for each $n > m$, we then have

$$0 \leq \text{Tr}(h^2 \Gamma_n) - g = |\text{Tr}(h^2 \Gamma_n) - g| \leq |\text{Tr}(h^2 \Gamma_n) - g_n| + |g_n - g| \leq 1/n.$$

(10)

Using the sequence $\{h^2 \Gamma_n\}$, we next establish a candidate limit density operator $\Gamma \in D_N$.

The dual-space sequence of (positive semi-definite) operators $y_n := h^2 \Gamma_n \in TC(L^2_N)$ is uniformly bounded in the trace norm: $\|y_n\|_{TC} \leq g + 1$. By the Banach–Alaoglu theorem, a norm-closed ball of finite radius in the dual space is compact in the weak*-topology. Thus, there exists $y \in TC(L^2_N)$ such that, for a subsequence, $\text{Tr}(B y_n) \rightarrow \text{Tr}(B y)$ for each $B \in K(L^2_N)$, meaning that y is the (possibly nonunique) weak*-limit of a subsequence of $\{y_n\}$. The limit is positive definite, since the orthogonal projector P_{Φ} onto $\Phi \in L^2_N$ is a compact operator, which gives

$$\langle \Phi | y | \Phi \rangle = \text{Tr}(y P_{\Phi}) = \lim_n \text{Tr}(y_n P_{\Phi}) = \lim_n \langle \Phi | y_n | \Phi \rangle \geq 0.$$

(11)

We now define $\Gamma = h^{-1} y h^{-1}$, which fulfills all the criteria for being an element of D_N, except possibly $\text{Tr} \Gamma = 1$, although $\text{Tr} \Gamma \leq 1$ is already implied by the weak convergence. (Note that Γ has finite kinetic energy since $\text{Tr}(h^2 \Gamma) < +\infty$.) If we can show that $\Gamma \rightarrow (\rho, j_\rho)$, then we are done with the complete proof, since $\Gamma \in D_N$ follows from $\text{Tr} \Gamma = N^{-1} \int_{\mathbb{R}^3} \rho(r) dr = 1$ and since

$$\text{Tr}(h^2 \Gamma) = \text{Tr} y \leq \lim inf_n \text{Tr} y_n$$

$$= \lim inf_n \text{Tr}(h^2 \Gamma_n)$$

$$\leq \lim inf_n \{F(\rho_n, j_{\rho_n}) + 1/2n\}$$

$$= \lim inf F(\rho_n, j_{\rho_n}).$$

(12)
Let \((\rho', j'_p) \leftarrow \Gamma\) be the density associated with \(\Gamma\). To demonstrate that \((\rho', j'_p) = (\rho, j_p)\), we recall that \((\rho_n, j_{pn}) \rightarrow (\rho, j_p)\) by assumption. Since weak limits are unique, our proof is complete if we can show that \((\rho_n, j_{pn}) \rightarrow (\rho, j_p)\) in \(L^1(\mathbb{R}^3) \times L^1(\mathbb{R}^3)\). The proof of \(\rho_n \rightarrow \rho\) is given in Ref. [2] and omitted here. We here demonstrate that \(j_p \rightarrow j'_p\) by showing that \(j_{pn} \rightarrow j'_p\) for each \(n \in \mathbb{L}^\infty(\mathbb{R}^3)\).

Let \(\Omega \subset \mathbb{R}^3\) be a bounded domain with characteristic function \(\chi\), equal to 1 on \(\Omega\) and 0 elsewhere. Since \(\rho, \rho' \in L^1(\mathbb{R}^3)\), we may, for a given \(\varepsilon > 0\), choose \(\Omega\) sufficiently large so that \(\int (1 - \chi) \rho \, d\tau < \varepsilon\) and \(\int (1 - \chi) \rho' \, d\tau < \varepsilon\). Since \(\rho_n \rightarrow \rho\), we also have \(\int (1 - \chi) (\rho_n - \rho) \, d\tau + \varepsilon\) for sufficiently large \(n\). From the triangle inequality, we obtain \(\int (1 - \chi) \rho_n \, d\tau \leq \int (1 - \chi) (\rho_n - \rho) \, d\tau + \int (1 - \chi) \rho' \, d\tau\), implying that \(\int (1 - \chi) \rho_n \, d\tau < 2\varepsilon\) for sufficiently larger \(n\).

In the notation \(\tau = (r_1, \tau_{-1}) = (x_1, x_2, \ldots, x_N)\) and \(\tau_{-1} = (\tau_{-1, x_1}, \ldots, \tau_{-1, x_N})\), let \(U_n = N \text{Im} \text{diag} \partial_{\alpha} \Gamma = N \text{Im} \sum_{\mu} \lambda_{\mu} \psi_{\mu}(\tau) \partial_{\alpha} \psi_{\mu}(r_1, \tau_{-1})\), where \(\alpha\) denotes a Cartesian component and where we have introduced the spectral decomposition \(\sum_{\mu} \lambda_{\mu} \psi_{\mu} \in D_N^{\mathbb{R}}\) with \(\psi_{\mu} \in \mathcal{H}_N^{\mathbb{R}}\). We note that, if \(\Gamma \rightarrow (\rho, j_p)\), then integration of \(U_n\) over \(\tau_{-1}\) gives \(j_{pn} = \int U_n (r, \tau_{-1}) \, d\tau_{-1}\).

Let now \(S = \prod_{i=1}^N \chi(r_i)\) be the characteristic function of \(\mathbb{L}^N \subset \mathbb{R}^{3N}\). By the definition of \(U_n\), we then have

\[
I(U_n) := \left| \int (1 - S) U_n \, d\tau \right| \leq N \int (1 - S) \sum_{\mu} \lambda_{\mu} \psi_{\mu} \, |\partial_{\alpha} \psi_{\mu}| \, d\tau.
\]

Applying the Cauchy–Schwarz inequality twice, we obtain

\[
I(U_n) \leq N \int (1 - S) \left(\sum_{\mu} |\lambda_{\mu} \psi_{\mu}|^2 \right)^{1/2} \left(\sum_{\mu} \lambda_{\mu} \partial_{\alpha} \psi_{\mu} \right)^{1/2} \, d\tau.
\]

Noting that \(1 - S \leq \sum_{i=1}^N (1 - \chi(r_i))\) and using the symmetry of \(|\psi_{\mu}|^2\), we obtain for the two factors

\[
\int (1 - S) \sum_{\mu} \lambda_{\mu} \psi_{\mu} \, d\tau \leq \int (1 - \chi) \rho' \, d\tau < \varepsilon,
\]

\[
\frac{N}{2} \int \sum_{\mu} \lambda_{\mu} \partial_{\alpha} \psi_{\mu} \, d\tau = \text{Tr}(TT) \leq 4|g|.
\]

We conclude that \(I(U_n)^2 \leq 2Ng\varepsilon\). Introducing \(U_{n,\alpha} = N \text{Im} \text{diag} \partial_{\alpha} \Gamma\) and proceeding in the same manner, we arrive at the bound \(I(U_{n,\alpha})^2 \leq 2Ng\varepsilon\), assuming that \(n\) has been chosen so large that \(\int (1 - \chi) \rho_n \, d\tau < 2\varepsilon\) holds.

We are now ready to consider the weak convergence \(j_{pn} \rightarrow j'_p\) in \(L^1(\mathbb{R}^3)\). For each \(a \in \mathbb{L}^\infty(\mathbb{R}^3)\) and for sufficiently larger \(n\), we obtain, using the Cauchy–Schwarz inequality and the H"older inequality in combination with the bounds \(I(U_n)^2 \leq 2Ng\varepsilon\) and \(I(U_{n,\alpha})^2 \leq 4Ng\varepsilon\), the inequality

\[
\left| \int (j_{pn} - j'_p) \cdot a \, d\tau \right| \leq \sum_{\alpha} \left| \int (j_{pn\alpha} - j'_{p\alpha}) a_{\alpha} \, d\tau \right| = \sum_{\alpha} \left| \int (U_{n\alpha} - U_{\alpha}) a_{\alpha}(r_1) \, d\tau \right|
\]

\[
\leq \sum_{\alpha} \left| \int (1 - S)(U_{n\alpha} - U_{\alpha}) a_{\alpha}(r_1) \, d\tau \right| + \sum_{\alpha} \left| \int S(U_{n\alpha} - U_{\alpha}) a_{\alpha}(r_1) \, d\tau \right|
\]

\[
\leq \sum_{\alpha} \left\| a_{\alpha} \right\|_\infty (6Ng\varepsilon)^{1/2} + \sum_{\alpha} \left| \int (U_{n\alpha} - U_{\alpha}) a_{\alpha}(r_1) S \, d\tau \right|.
\]

Since \(\varepsilon > 0\) is arbitrary, it only remains to show \(\int (U_{n\alpha} - U_{\alpha}) a_{\alpha}(r_1) S \, d\tau \rightarrow 0\) as \(n \rightarrow \infty\).

Let \(M\) be the compact multiplication operator associated with \(a_{\alpha}(r_1) S(\tau)\), a bounded function with compact support over \(\mathbb{R}^{3N}\). Let \(\Omega_n = \{1, \downarrow\}\) be the set consisting of the two spin states of the electrons. We note that

\[
\int U_{n\alpha} a_{\alpha}(r_1) S \, d\tau = \int_{\Omega_n \times 1} U_{n\alpha} a_{\alpha}(r_1) \, d\tau
\]

\[
= N \text{Im} \text{Tr}(\partial_{\alpha} \Gamma_n M)
\]

\[
= N \text{Im} \text{Tr}(h^{-1} M \partial_{\alpha} H^{-1} y_n),
\]

viewing \(\Gamma_n\) as an operator over \(L^2(\Omega \times \Omega_n)^N\) by domain restriction of the spectral decomposition.
elements—that is, \(\psi_\alpha \in H^1((\Omega \times \Omega_\sigma)^N) \), meaning that the \(2^N \) spin components of \(\psi_\alpha \) are in \(H^1(\Omega^N) \). The spaces used here are not antisymmetrized, for simplicity.

Our next task is to demonstrate that \(B = h^{-1}M\partial_{\alpha}h^{-1} \) is compact over \(L^2((\Omega \times \Omega_\sigma)^N) \). We first show that \(h^{-1} \) is compact with range \(H^1((\Omega \times \Omega_\sigma)^N) \). We have \(h = \sqrt{T + W + 1} \) with domain \(H^1_N((\Omega \times \Omega_\sigma)^N) \). Now \(h^{-1} \) exists and is bounded since \(-1 \) is not in the spectrum of \(T + W \)—that is, \(h^{-1} : L^2((\Omega \times \Omega_\sigma)^N) \to H^1((\Omega \times \Omega_\sigma)^N) \) is bounded. By the Rellich–Kondrachov theorem, \(H^1((\Omega \times \Omega_\sigma)^N) \) (the standard Sobolev space without spin) is a compact subset of \(L^2(\Omega^N) \). It follows that \(H^1((\Omega \times \Omega_\sigma)^N) \) is a compact subset of \(L^2((\Omega \times \Omega_\sigma)^N) \), since the tensor product of compact sets is compact. Hence, \(h^{-1} \) is compact.

Next, the operator \(\partial_{\alpha} \) is, by the definition of the Sobolev space \(H^1(\Omega^N) \), bounded from \(H^1((\Omega \times \Omega_\sigma)^N) \) to \(L^2((\Omega \times \Omega_\sigma)^N) \). Thus \(\partial_{\alpha}h^{-1} \) is bounded over \(L^2((\Omega \times \Omega_\sigma)^N) \). It follows that \(B \in K(L^2((\Omega \times \Omega_\sigma)^N)) \) because it is a product of a compact operator \(h^{-1} \) with a bounded operator \(M\partial_{\alpha}h^{-1} \).

From compactness of \(B \), it follows that
\[
\int U_{\alpha\alpha}a_\alpha S \, d\tau = N \text{Im} \text{Tr}(B y_n) \\
\quad \to N \text{Im} \text{Tr}(B y) = \int U_{\alpha\alpha}a_\alpha S \, d\tau, \tag{15}
\]

by the weak-* convergence of \(y_n \) to \(y \). We conclude that \(J_{pn} \to J_p \) and hence that \((\rho_n, J_{pn}) \to (\rho, J_p) \), completing the proof.

Corollary 1. \(F : L^1(\mathbb{R}^3) \times L^1(\mathbb{R}^3) \to [0, +\infty) \) is lower semi-continuous and also weakly lower semi-continuous.

Proof. Let \((\rho_n, J_{pn}) \to (\rho, J_p) \) in \(L^1(\mathbb{R}^3) \times L^1(\mathbb{R}^3) \). From Theorem 1 we then obtain
\[
F(\rho, J_p) \leq \text{Tr}(H_0 \Gamma) \leq \liminf_n F(\rho_n, J_{pn}), \tag{16}
\]

where \(\Gamma \to (\rho, J_p) \). Hence, \(F \) is weakly lower semi-continuous. By Mazur’s Lemma [10], weak lower semi-continuity of a convex function implies strong lower semi-continuity.

Corollary 2. If \(F(\rho, J_p) < +\infty \), then the infimum in the CDFT constrained-search functional is a minimum:
\[
F(\rho, J_p) = \min_{\Gamma \to (\rho, J_p)} \text{Tr}(H_0 \Gamma). \tag{17}
\]

Proof. Simply take \((\rho_n, J_{pn}) = (\rho, J_p) \) for all \(n \), and apply Theorem 1.

CONCLUSION

We have extended Theorem 4.4 of Ref.[3] to CDFT. As immediate corollaries, the constrained-search functional \(F(\rho, J_p) \) is lower semi-continuous and expectation valued, that is, if \(F(\rho, J_p) < +\infty \), then there exists a \(\Gamma \to (\rho, J_p) \) such that \(F(\rho, J_p) = \text{Tr}(H_0 \Gamma) \). These mathematical results are the final pieces in the puzzle of placing CDFT on a solid mathematical ground in a similar manner as done by Lieb for standard DFT.

ACKNOWLEDGMENTS

This work has received funding from the Research Council of Norway (RCN) under CoE Grant Nos. 287906 and 262695 (Hylleraas Centre for Quantum Molecular Sciences) and from ERC-STG-2014 under grant agreement no 639508.

simen.kvaal@kjemi.uio.no

[1] E.H. Lieb. Density Functionals for Coulomb Systems. *Int. J. Quant. Chem.*, 24(3):243–277, 1983.
[2] G. Vignale and M. Rasolt. Density-Functional Theory in Strong Magnetic Fields. *Phys. Rev. Lett.*, 59(20):2360–2363, 1987.
[3] E.I. Tellgren, S. Kvaal, E. Sagvolden, U. Ekström, A.M. Teale, and T. Helgaker. Choice of basic variables in current-density-functional theory. *Phys. Rev. A*, 86(6), 2012.
[4] A. Laestadius and M. Benedicks. Hohenberg–Kohn theorems in the presence of magnetic field. *Int. J. of Quant. Chem.*, 114(12):782–795, 2014.
[5] A. Laestadius. Density functionals in the presence of magnetic field. *Int. J. Quantum Chem.*, 114(21):1445–1456, 2014.
[6] S. Kvaal and T. Helgaker. Ground-state densities from the Rayleigh–Ritz variation principle and from density-functional theory. *J. Chem. Phys.*, 143(18):184106, 2015.
[7] A. Laestadius, E.I. Tellgren, M. Penz, M. Ruggenthaler, S. Kvaal, and T. Helgaker. Kohn–Sham Theory with Paramagnetic Currents: Compatibility and Functional Differentiability. *J. Chem. Theor. Comp.*, 15(7):4003–4020, 2019.
[8] E.I. Telgaren, S. Kvaal, and T. Helgaker. Fermion N-representability for prescribed density and paramagnetic current density. *Phys. Rev. A*, 89(1), 2014.
[9] M. Reed and B. Simon. *Methods of modern mathematical physics I: functional analysis*. Academic Press, San Diego, New York, Berkeley, Boston, London, Sydney, Tokyo, Toronto, 1980.
[10] I. Ekeland and B. Témam. *Convex Analysis and Variational Problems*. Society for Industrial and Applied Mathematics, Philadelphia, 1999.