OPTIMAL EMBEDDING THEOREM FOR FLEXIBLE VARIETIES

SHULIM KALIMAN

Abstract. Let \(Z \) be an affine algebraic variety and \(X \) be a smooth flexible variety. We show that if \(\dim X \geq \max(2 \dim Z + 1, \dim TZ) \), then \(Z \) admits a closed embedding into \(X \).

1. Introduction

All algebraic varieties which appear in this paper are considered over an algebraically closed field \(k \) of characteristic zero. If \(Z \) is an affine algebraic variety and \(TZ \) is its Zariski tangent bundle then we call \(ED(Z) = \max(2 \dim Z + 1, \dim TZ) \) the embedding dimension of \(Z \).

Holme’s theorem [Hol, Theorem 7.4] (later rediscovered in [Ka91] and [Sr]) states that \(Z \) admits a closed embedding into any affine space \(\mathbb{A}^n \) with \(n \geq ED(X) \). In the smooth case (when \(ED(Z) = 2 \dim Z + 1 \)) this fact was proven earlier by Swan [Swan, Theorem 2.1].

The latter result is sharp - examples of smooth irreducible \(d \)-dimensional affine algebraic varieties with \(d \geq \frac{n}{2} \) such that they do not admit closed embeddings in \(\mathbb{A}^n \) were constructed in [BMS]. Recently Feller and van Santen [FvS21] proved that if \(X \) is an affine variety isomorphic to a simple linear algebraic group and \(Z \) is smooth, then \(Z \) admits a closed embedding into \(X \), provided that \(\dim X > ED(Z) \). They also proved that for every \(n \)-dimensional algebraic group \(G \) (with \(n > 0 \)) there exist smooth irreducible \(d \)-dimensional affine algebraic varieties with \(d \geq \frac{n}{2} \) such that they do not admit closed embeddings in \(G \) [FvS21, Corollary 4.4]. In particular, their embedding result is optimal for even dimensions of \(X \). However, they did not know whether their result is sharp in the case of an odd dimension of \(X \) and a specific question posed in [FvS21] asks whether a smooth affine algebraic variety of dimension 7 can be embedded properly into \(SL_4(k) \). We consider a more general situation. Namely, starting from dimension 2 affine spaces and linear algebraic groups without nontrivial characters are examples of so-called flexible varieties (a normal quasi-affine variety \(X \) of dimension at least 2 is flexible if \(SAut(X) \) acts transitively on the smooth part \(X_{\text{reg}} \) of \(X \) where \(SAut(X) \) is the subgroup of the
group $\text{Aut}(X)$ of algebraic automorphisms of X generated by all one-parameter unipotent subgroups). The main result of this paper is the following.

Theorem 1.1. Let Z be an affine algebraic variety and X be a smooth flexible variety such that $\dim X \geq \text{ED}(Z)$. Then Z admits a closed embedding into X.

In particular, the question of Feller and van Santen has a positive answer. As we mentioned by [BMS] and [FvS21] this result is optimal for some classes of flexible varieties. It admits also the following generalization.

Corollary 1.2. Let Z be an affine algebraic variety, Y be a smooth flexible variety. Suppose that $\varphi : Y \to X$ is a finite morphism into a normal variety X and $\dim X \geq \text{ED}(Z)$. Let S be a closed subvariety of X such that it contains X_{sing} and $\dim Z < \text{codim}_X S$. Then Z admits a closed embedding into X with the image contained in $X \setminus S$.

The proof of Theorem 1.1 is heavily based on the theory of flexible varieties and the technique developed in [AFKKZ], [Ka20], [KaUd] and [Ka21] whose survey can be found in Section 2. As a part of this survey we describe injective immersions of affine algebraic varieties into smooth flexible varieties. In section 3 we develop a criterion of properness for such injective immersion which yields Theorem 1.1.

Acknowledgement. The author is grateful to L. Makar-Limanov for useful consultation and the referee of the original (much weaker) version of this paper who simplified some proofs and caught a mistake in that paper.

2. Flexible varieties

Let us start with the main definitions for the theory of flexible varieties.

Definition 2.1. (1) Given an irreducible algebraic variety A and a map $\varphi : A \to \text{Aut}(X)$ we say that (A, φ) is an **algebraic family of automorphisms of** X if the induced map $A \times X \to X, (\alpha, x) \mapsto \varphi(\alpha).x$ is a morphism (see [Ra]).

(2) If we want to emphasize additionally that $\varphi(A)$ is contained in a subgroup G of $\text{Aut}(X)$, then we say that A is an **algebraic G-family of automorphisms of** X.

(3) In the case when A is a connected algebraic group and the induced map $A \times X \to X$ is not only a morphism but also an action of A on X we call this family a **connected algebraic subgroup of** $\text{Aut}(X)$.

(4) Following [AFKKZ, Definition 1.1] we call a subgroup G of $\text{Aut}(X)$ **algebraically generated** if it is generated as an abstract group by a family G of connected algebraic subgroups of $\text{Aut}(X)$.
Definition 2.2. (1) A nonzero derivation δ on the ring A of regular functions on an affine algebraic variety X is called \textit{locally nilpotent} if for every $a \in A$ there exists a natural n for which $\delta^n(a) = 0$. This derivation can be viewed as a vector field on X which we also call \textit{locally nilpotent}. The set of all locally nilpotent vector fields on X will be denoted by $\text{LND}(X)$. The flow of $\delta \in \text{LND}(X)$ is an algebraic \mathbb{G}_a-action on X, i.e., the action of the group $(\mathbb{k}, +)$ which can be viewed as a one-parameter unipotent group U in the group $\text{Aut}(X)$ of all algebraic automorphisms of X. In fact, every \mathbb{G}_a-action is a flow of a locally nilpotent vector field (e.g., see [Fr, Proposition 1.28]).

(2) If X is a quasi-affine variety, then an algebraic vector field δ on X is called \textit{locally nilpotent} if δ extends to a locally nilpotent vector field $\tilde{\delta}$ on some affine algebraic variety Y containing X such that $\tilde{\delta}$ vanishes on $Y \setminus X$ where $\text{codim}_Y(Y \setminus X) \geq 2$. Note that under this assumption δ generates a \mathbb{G}_a-action on X and we use again the notation $\text{LND}(X)$ for the set of all locally nilpotent vector fields on X.

Definition 2.3. (1) For every locally nilpotent vector fields δ and each function $f \in \text{Ker} \delta$ from its kernel the field $f\delta$ is called a \textit{replica} of δ. Recall that such a replica is automatically locally nilpotent.

(2) Let \mathcal{N} be a set of locally nilpotent vector fields on X and $G_{\mathcal{N}} \subset \text{Aut}(X)$ denotes the group generated by all flows of elements of \mathcal{N}. We say that $G_{\mathcal{N}}$ is \textit{generated by \mathcal{N}}.

(3) A collection of locally nilpotent vector fields \mathcal{N} is called \textit{saturated} if \mathcal{N} is closed under conjugation by elements in $G_{\mathcal{N}}$ and for every $\delta \in \mathcal{N}$ each replica of δ is also contained in \mathcal{N}.

Definition 2.4. Let X be a normal quasi-affine algebraic variety of dimension at least 2, \mathcal{N} be a saturated set of locally nilpotent vector fields on X and $G = G_{\mathcal{N}}$ be the group generated by \mathcal{N}. Then X is called G-flexible if for every point x in the smooth part X_{reg} of X the vector space T_xX is generated by the values of locally nilpotent vector fields from \mathcal{N} at x (which is equivalent to the fact that G acts transitively on X_{reg} [FKZ, Theorem 2.12]). In the case of $G = \text{SAut}(X)$ we call X flexible without referring to $\text{SAut}(X)$ (recall that $\text{SAut}(X)$ is the subgroup of $\text{Aut}(X)$ generated by all one-parameter unipotent subgroups).

Notation 2.5. Further in this paper X is always a smooth quasi-affine variety and G is group acting transitively on X such that G is algebraically generated by a collection \mathcal{G} of connected algebraic subgroups of G. Given a sequence $\mathcal{H} = (H_1, \ldots, H_s)$ of elements of \mathcal{G} we consider the map

\[(1) \quad \Phi_{\mathcal{H}} : H \times X \rightarrow X \times X, (h_s, \ldots, h_1, x) \mapsto ((h_s \cdot \ldots \cdot h_1).x, x)\]

where $H = H_s \times \ldots \times H_1$. By $\varphi_{\mathcal{H}} : H \rightarrow X$ we denote the restriction of $\Phi_{\mathcal{H}}$ to $H \times x_0$ where x_0 is a fixed point of X.
Proposition 2.6. Suppose that \(G \) is closed under conjugation by \(G \). Then \(H \) can be chosen so that for a dense open subset \(U \) of \(H \) the morphism \(\Phi_H \) is smooth on \(U \times X \) (in particular, \(\varphi_H \) is smooth on \(U \)). Furthermore, one can suppose that the codimension of \(H \setminus U \) in \(H \) is arbitrarily large.

Proof. The first statement follows from [AFKKZ, Proposition 1.16] and the second statement from [AFKKZ, p. 778, footnote]. □

We shall use the notion of a perfect (algebraic) \(G \)-family of automorphisms of \(X \) (see [Ka21, Definition 2.7]). Without stating the formal definition of such families we need to emphasize some of their properties.

Proposition 2.7. ([Ka21, Proposition 2.8]) Let \(A \) be a perfect \(G \)-family of automorphisms of a smooth \(G \)-flexible variety \(X \) and \(H_0 \in G \). Then \(H_0 \times A \) and \(A \times H_0 \) are also perfect \(G \)-families of automorphisms of \(X \). Furthermore, \(A \) satisfies the transversality theorem ([AFKKZ, Theorem 1.11], see also [Ka21, Theorem 2.2]), e.g., if \(Z \) and \(W \) are subvarieties of \(X \) with \(\text{dim} \ Z + \text{dim} \ W < \text{dim} \ X \), then one has \(\alpha(Z) \cap W = \emptyset \) for a general \(\alpha \in A \).

Theorem 2.8. Let \(X \) be a smooth quasi-affine \(G \)-flexible variety, \(A \) be a perfect \(G \)-family of automorphisms of \(X \), \(Q \) be a normal algebraic variety and \(\varrho : X \to Q \) be a dominant morphism. Suppose that \(Q_0 \) is a smooth open dense subset of \(Q \), \(X_0 \) is an open subset of \(X \) contained in \(\varrho^{-1}(Q_0) \) and

\[
(2) \quad X_0 \times_{Q_0} X_0 = 2 \text{dim} \ X - \text{dim} \ Q.
\]

Let \(Y \) be the closure of \(\bigcup_{x \in X_0} \ker \{ \varrho_* : T_x X_0 \to T_{\varrho(x)} Q_0 \} \) in \(TX \) and

\[
(3) \quad \text{dim} \ Y = 2 \text{dim} \ X - \text{dim} \ Q.
\]

Let \(Z \) be a locally closed reduced subvariety of \(X \) with \(\text{ED}(Z) \leq \text{dim} Q \) and \(\text{dim} Z < \text{codim}_{\varrho^{-1}(Q_0)}(\varrho^{-1}(Q_0) \setminus X_0) \). Then for a general element \(\alpha \in A \) the morphism \(\varrho|_{\alpha(Z) \cap X_0} : \alpha(Z) \cap X_0 \to Q_0 \) is an injective immersion.

Proof. In the case of \(X_0 = \varrho^{-1}(Q_0) \) the statement is the combination of [Ka21, Theorem 2.6] and [Ka21, Proposition 2.8(5)]. In the general case the proof goes without change if one observes that \(\alpha(Z) \) does not meet \(\varrho^{-1}(Q_0) \setminus X_0 \) for a general \(\alpha \in A \) by the transversality theorem. □

Proposition 2.9. Let the assumptions and conclusions of Proposition 2.6 hold. Suppose that \(H \) itself is an \(F \)-flexible variety. Let \(Z \) be a locally closed reduced subvariety of \(H \) with \(\text{ED}(Z) \leq \text{dim} X \) (and by the conclusions of Proposition 2.6 with \(\text{dim} Z < \text{codim}_H(H \setminus U) \)). Then for a general element \(\beta \in B \) in any perfect \(F \)-family \(B \) of automorphisms of \(H \) the morphism \(\varphi_H|_{\beta(Z)} : \beta(Z) \to X \) is an injective immersion.
Proof. Since $\varphi_H|_U : U \to X$ is a smooth morphism Formulas (2) and (3) hold with $\varphi : X \to Q, Q_0$ and X_0 replaced by $\varphi_H : H \to X, X$ and U, respectively. Hence, the desired conclusion follows form Theorem 2.8.

Corollary 2.10. Let the assumptions and conclusions of Proposition 2.6 hold and Z be an affine algebraic variety with $\text{ED}(Z) \leq \dim X$ (and by the conclusions of Proposition 2.6 with $\dim Z < \text{codim}_H(H \setminus U)$). Suppose that each element of \mathcal{G} is a unipotent group, i.e. $H \simeq \mathbb{A}^t$ where $t \geq \dim X$. Then Z can be treated as a closed subvariety of H and for a general element $\beta \in \mathcal{B}$ in any perfect F-family \mathcal{B} of automorphisms of H the morphism $\varphi_H|_{\beta(Z)} : \beta(Z) \to X$ is an injective immersion.

Proof. The first statement follows from Holme’s theorem and the second from Proposition 2.9. □

Since every smooth flexible variety X admits a morphism $\varphi_H : H \to X$ as in Corollary 2.10 we have the following.

Theorem 2.11. ([Ka21, Theorem 3.7]) Let Z be an affine algebraic variety and X be a smooth quasi-affine flexible variety of dimension at least $\text{ED}(Z)$. Then Z admits an injective immersion into X.

Remark 2.12. It is worth mentioning that if $\varphi : Z \to X$ is an injective immersion, then it may happen that Z is not isomorphic to $\varphi(Z)$. As an example one can consider the morphism $\mathbb{A}^1 \setminus \{1\} \to \mathbb{A}^2, t \mapsto (t^2 - 1, t(t^2 - 1))$. It maps $\mathbb{A}^1 \setminus \{1\}$ onto the polynomial curve given in \mathbb{A}^2 by the equation $y^2 = x^2(x + 1)$.

We have also in our disposal the following slightly improved version of ([Ka21, Theorem 3.2].

Theorem 2.13. Let $\psi : X \to Y$ be a finite morphism where X is a smooth flexible variety and Y is normal. Let Z be a quasi-affine algebraic variety which admits a closed embedding in X. Suppose also that S is a closed subvariety of Y such that it contains Y_{sing} and $\dim Z < \text{codim}_Y S$. Then Z admits a closed embedding in Y with the image contained in $Y \setminus S$.

Proof. One can treat Z as a closed subvariety of X. By [AFKKZ, Theorem 1.11] there exists an algebraic family \mathcal{A} of automorphisms of X such that for a general $\alpha \in \mathcal{A}$ the variety $\alpha(Z)$ does not meet $\psi^{-1}(S)$. By Proposition 2.7 enlarging \mathcal{A} we can suppose that it is a perfect family. Theorem 2.8 implies now that $\psi|_{\alpha(Z)} : \alpha(Z) \to Y_{\text{reg}} \subset Y$ is an injective immersion. Since ψ is finite $\psi|_{\alpha(Z)}$ is also proper. Hence, we are done. □

3. Main Theorem

Recall the definition of weighted degree functions on polynomial rings.
Definition 3.1. Let $k[x_1, \ldots, x_n]$ be a polynomial ring and r_1, \ldots, r_n be real numbers. For every monomial $\mu = c \prod_{i=1}^m x_i^{m_i}$ (where $c \in k$ is nonzero) we let $d(\mu) = \sum m_i r_i$. We also let $d(0) = -\infty$. If $p \in k[x_1, \ldots, x_m]$ is the sum $\sum_{\mu \in M(p)} \mu$ of a collection $M(p)$ of monomials, then we put $d(p) = \max\{d(\mu) | \mu \in M(p)\}$. Such function d is called a weighted degree function on $k[x_1, \ldots, x_n]$ (with weights r_1, \ldots, r_n).

Remark 3.2. Suppose that $q_1, \ldots, q_k \in k[x_1, \ldots, x_n]$ are homogeneous polynomials of degrees m_1, \ldots, m_k, $P \in k[y_1, \ldots, y_k]$, $R(x_1, \ldots, x_n) = P(q_1(x_1, \ldots, x_n), \ldots, q_k(x_1, \ldots, x_n))$ and d is the weighted degree function on $k[y_1, \ldots, y_k]$ with weights m_1, \ldots, m_k. We want to emphasize that if P is a d-homogeneous polynomial, then R is a homogeneous polynomial such that $\deg R = d(P)$. In particular, if P is a not necessarily homogeneous and Q is the leading d-homogeneous part of P, then $R(x_1, \ldots, x_n) = Q(q_1(x_1, \ldots, x_n), \ldots, q_k(x_1, \ldots, x_n))$.

Proposition 3.3. Let the assumptions and conclusions of Corollary 2.10 be satisfied (in particular, Z is affine, $\varphi_H : H \simeq A^t \rightarrow X$ is dominant and $\text{ED}(Z) \leq \dim X$). Suppose that X is a subvariety of \mathbb{A}^m where \mathbb{A}^m is equipped with a coordinate system such that the origin $o \in \mathbb{A}^m$ is contained in X and $\varphi_H^{-1}(o)$ is a general fiber of φ_H (one can always make this assumption since X is quasi-affine). Let $I \subset \mathbb{A}^t$ be the defining ideal of $\varphi_H^{-1}(o)$ and and V be the zero locus of the ideal $\tilde{I} = \{\tilde{a} | a \in I\}$. Let the codimension of V in H be at least $\dim Z$. Then Z admits a closed embedding into X.

Proof. Let \mathcal{A} be a perfect $\text{SAut}(H)$-family of automorphisms of $H \simeq A^t$. Consider the natural embedding $A^t \to \mathbb{P}^t$, $D = \mathbb{P}^t \setminus A^t \simeq \mathbb{P}^{t-1}$ and $K = \text{SL}_t(k)$. Then we have the natural K-action on \mathbb{P}^t such that D is invariant under it and the restriction of the action to D is transitive. By Proposition 2.7 $K \times A$ is still a perfect $\text{SAut}(H)$-family of automorphisms of H. That is, for a general β in K and a general α in A the morphism $\varphi_H|_{\beta \circ \alpha(Z)} : \beta \circ \alpha(Z) \to X$ is still an injective immersion by Corollary 2.10.

Note that every $a \in I$ can be extended to a rational function on \mathbb{P}^t. The intersection R of the indeterminacy sets of these extensions is given by the common zeros of the homogeneous polynomials \hat{a}, $a \in I$ in D. In particular, R has codimension at least $\dim Z$ in D. Furthermore,
since \(\hat{I} \) is finitely generated the embedding \(X \hookrightarrow \mathbb{A}^m \) can be chosen so that \(\hat{I} \) is generated by \(\hat{f}_1, \ldots, \hat{f}_m \) where \(f_1, \ldots, f_m \) are the coordinate functions of \(\varphi_{H} : \mathbb{A}^l \to X \subset \mathbb{A}^m \). In particular, \(R \) is the set of common zeros of the homogeneous polynomials \(\hat{f}_1, \ldots, \hat{f}_m \) in \(D \). As before we treat \(Z \) as a closed subvariety of \(\mathbb{A}^l \). Let \(P \) be the intersection of \(D \) with the closure of \(\beta \circ \alpha(Z) \) in \(\mathbb{P}^d \), i.e., \(\dim P \leq \dim Z - 1 \). Since the restriction of the \(K \)-action to \(D \) is transitive, \(P \) does not meet \(R \) for general \(\beta \in K \) and \(\alpha \in A \) by [AFKKZ, Theorem 1.15]. Hence, \(\varphi_{H} \mid_{\beta \circ \alpha(Z)} : \beta \circ \alpha(Z) \to X \) is a proper morphism by [Ka20, Corollary 5.4]. Consequently, it is a closed embedding which concludes the proof. \(\square \)

Proposition 3.4. Under the assumptions of Proposition 3.3 the codimension of \(V \) is least \(\dim X \).

Proof. Let \(\pi : \mathbb{A}^{[l]} \to A = \mathbb{A}^{[l]}/I \) and \(\hat{\pi} : \mathbb{A}^{[l]} \to \hat{A} = \mathbb{A}^{[l]}/\hat{I} \) be the natural homomorphisms. The standard degree function \(\deg \) on \(\mathbb{A}^{[l]} \) generates the grading \(\hat{I} = \bigoplus_{j=0}^{\infty} \hat{I}_j \). Hence, \(\hat{A} \) is the graded ring \(\hat{A} = \bigoplus_{j=0}^{\infty} \hat{A}_j \) where \(\hat{A}_j \) is the image of the subspace of homogeneous polynomials of degree \(j \) under \(\hat{\pi} \). Suppose that for some \(k > 0 \) there exist \(k \) algebraically independent elements \(a_1, \ldots, a_k \) in \(\hat{A} \). Since \(\hat{A} \) is a graded ring one can assume that each \(a_i \) is a homogeneous element, i.e., \(a_i \in \hat{A}_{r_i} \) and \(a_i = \hat{\pi}(p_i) \) where \(p_i \in \mathbb{A}^{[l]} \) is a homogeneous polynomial such that \(\deg p_i = r_i \). Let \(Q(x_1, \ldots, x_k) \in \mathbb{A}^{[k]} \) be a nonzero \(d \)-homogeneous polynomial where \(d \) is the weighted degree function with weights \(r_1, \ldots, r_k \). The fact that \(a_1, \ldots, a_k \) is algebraically independent is equivalent to the fact that for every \(Q \) as above \(Q(p_1, \ldots, p_k) \) does not belong to \(\hat{I} \). Since by Remark 3.2 \(Q(p_1, \ldots, p_k) \) is a homogeneous polynomial this implies that it does not belong to \(I \). Let \(P(x_1, \ldots, x_k) \in \mathbb{A}^{[k]} \) be nonzero, \(Q \) be the leading \(d \)-homogeneous part of \(P \) and \(f := P(p_1, \ldots, p_k) \). By Remark 3.2 \(\hat{f} = Q(p_1, \ldots, p_k) \). Hence, \(f \notin I \) and, in particular, \(P(\pi(p_1), \ldots, \pi(p_k)) \neq 0 \). Thus, we have \(k \) algebraically independent elements of \(A \) which implies that the transcendence degree of \(A \) is no less than the transcendence degree of \(\hat{A} \).

Note that \(\hat{A} \) is the ring of regular functions on \(V \) and \(A \) is the ring of regular functions of the fiber \(\varphi_{H}^{-1}(o) \). Hence, \(\dim V \leq \dim \varphi_{H}^{-1}(o) \). Since \(\varphi_{H}^{-1}(o) \) is a general fiber of \(\varphi_{H} \) one has \(\dim \varphi_{H}^{-1}(o) = \dim H - \dim X \) which yields the desired conclusion. \(\square \)

Now we can prove our main result.

Theorem 3.5. Let \(Z \) be an affine algebraic variety and \(X \) be a smooth flexible variety such that \(\dim X \geq ED(Z) \). Then \(Z \) admits a closed embedding into \(X \).

\(^1\)One can easily show that these transcendence degrees coincide as a consequence of the Chevalley semi-continuity theorem (e.g., see [KaML, Lemma 6.2]).
Proof. Since every smooth flexible variety X admits a morphism $\varphi_H : H \to X$ as in Corollary 2.10 the conclusions of Proposition 3.3 are valid. By Proposition 3.4 $\text{codim}_HV \geq \dim X > \dim Z$. Thus, Proposition 3.3 yields the desired conclusion. □

Theorem 2.13 implies the following.

Corollary 3.6. Let Z be an affine algebraic variety, Y be a smooth flexible variety. Suppose that $\varphi : Y \to X$ is a finite morphism into a normal variety X and $\dim X \geq \text{ED}(Z)$. Let S be a closed subvariety of X such that it contains X_{sing} and $\dim Z < \text{codim}_XS$. Then Z admits a closed embedding into X with the image contained in $X \setminus S$.

REFERENCES

[AFKKZ] I. V. Arzhantsev, H. Flenner, S. Kaliman, F. Kutzschebauch, M. Zaidenberg, *Flexible varieties and automorphism groups*. Duke Math. J. **162** (2013), no. 4, 767–823.

[BMS] S. Bloch, M. Pavaman Murthy, L. Szpiro, *Zero cycles and the number of generators of an ideal*, **38**, 1989, Colloque en l’honneur de Pierre Samuel (Orsay, 1987), pp. 51-74.

[FvS21] P. Feller, I. van Santen, *Existence of embedding of smooth varieties into linear algebraic groups*, J. of Alg. Geom. (to appear), arXiv:2007.16164.

[FKZ] H. Flenner, S. Kaliman, and M. Zaidenberg, *A Gromov-Winkelmann type theorem for flexible varieties*, J. Eur. Math. Soc. (JEMS) **18** (2016), no. 11, 2483-2510.

[Fr] G. Freudenburg, *Algebraic Theory of Locally Nilpotent Derivations*, Encyclopaedia of Mathematical Sciences, Springer, Berlin-Heidelberg-New York, 2006.

[Hol] A. Holme, *Embedding-obstruction for singular algebraic varieties in \mathbb{P}^N*, Acta Math. **135** (1975), no. 3-4, 155-185.

[Ka91] S. Kaliman, *Extensions of isomorphisms between affine algebraic subvarieties of k^n to automorphisms of k^n*, Proc. Amer. Math. Soc. **113** (1991), no. 2, 325-334.

[Ka20] S. Kaliman, *Extensions of isomorphisms of subvarieties in flexible varieties*, Transform. Groups **25** (2020), no. 2, 517-575.

[Ka21] S. Kaliman, *Lines in affine toric varieties*, Israel J. of Mathematics (to appear).

[KaML] S. Kaliman, L. Makar-Limanov, *AK-invariant of affine domains*, Affine algebraic geometry, 231-255, Osaka Univ. Press, Osaka, 2007.

[KaUd] S. Kaliman, D. Udomian, *On automorphisms of flexible varieties*, Adv. Math. (2021) https://doi.org/10.1016/j.aim.2021.108112, arXiv:2008.02221.

[Ra] C. P. Ramanujam, *A note on automorphism groups of algebraic varieties*, Math. Ann. 156 (1964), 25–33.

[Sr] V. Srinivas, *On the embedding dimension of an affine variety*, Math. Ann., **289** (1991), no.1, 25-132.

[Swan] R. G. Swan, *A cancellation theorem for projective modules in the metastable range*, Invent. Math. **27** (1974), 23-43.

University of Miami, Department of Mathematics, Coral Gables, FL 33124, USA

Email address: kaliman@math.miami.edu