Supplementary Material
Perceived threat and acute anxiety during the Covid-19 pandemic were associated with increased levels of everyday altruism

Additional questionnaire measures

Additional measures were included in the survey, namely assessing: attitudes towards ingroup and outgroup, political ideology, and preferred sources of information about the COVID-19 pandemic. These measures are outside the scope of the present paper, and not reported here, but are available on the OSF project page (https://osf.io/c8zhn/).

Supplementary analyses

1. Model testing and selection Before testing our model, we first standardised all continuous predictors, and the continuous dependent variable. Our dependent variable was Self-Reported Altruism, and the 4 predictors (fixed effects) were: COVID19 Perceived threat (risk perception, RP, in the code), Perceived Stress (PSS), Anxiety, and Depression.

Model 1 - Perceived COVID-19 threat, stress, anxiety and depression The full model contained the 4 main predictors of interest (fixed effects), plus a random intercept and random slope for each predictor nested by Week. Initially, we wanted to model random intercepts and random slopes by State as well, but because we had limited data nested per state, we decided the model did not have enough information per State to estimate these parameters. For instance, we would require 230 random effects estimates if we included State as a random effect in the model. Additionally, the random effects estimates for State can hardly model any additional random variance at all. As an example, the random effects coefficients for the 46 intercepts predicted for each state were all zero.

```r
ranef(lmer(SRA ~ RP + PSS + Anxiety + Depression + (1|State), data=CVA_full))
```

$State
(Intercept)
AK 0
AL 0
AR 0
AZ 0
CA 0
CO 0
CT 0
DC 0
DE 0
FL 0
GA 0
HI 0
IA 0
Conversely, the Week parameter only required 20 random effects estimates, and we had 150 measurements from each Week. Below is the random effects estimate for the intercept of each week:

```r
ranef(lmer(SRA ~ RP + PSS + Anxiety + Depression + (1|Week), data=CVA_full))
```

```
## $Week
##   (Intercept)
## Week 1  0.4768978
## Week 2 -1.0420765
## Week 3 -0.6234464
## Week 4  1.1886252
```

The estimated intercept for each week is non-zero. We therefore decided to remove State as a random effect and only included Week. It should be noted that none of the results of the model actually change if State is included. However, given the lack of variance the random effect of State contributed to the model, we believe its removal is justifiable.
We used the R package lme4 to model everyday altruism (Self-Report Altruism scale, SRA in the code) as a function of: Perceived COVID19 threat (risk perception, RP in the code), Stress (perceived stress scale, PSS in the code), Anxiety, and Depression. Additionally, we modelled random intercept and random slope estimates per Week for each of the 4 predictors.

```r
m1 <- lmer(SRAz ~ RPz + PSSz + Anxietyz + Depressionz + 
(1+RPz+PSSz+Anxietyz+Depressionz | Week), data=CVA_full)
```

Linear mixed model fit by REML. t-tests use Satterthwaite's method [
lmerModLmerTest]
Formula: SRAz ~ RPz + PSSz + Anxietyz + Depressionz + (1 + RPz + PSSz +
Anxietyz + Depressionz | Week)
Data: CVA_full
##
REML criterion at convergence: 1655.4
##
Scaled residuals:
Min 1Q Median 3Q Max
-2.8079 -0.6734 -0.0760 0.5869 3.4215
##
Random effects:
Groups Name Variance Std.Dev. Corr
Week (Intercept) 0.013550 0.11641
RPz 0.002894 0.05380 -0.91
PSSz 0.015730 0.12542 -0.21 0.60
Anxietyz 0.001844 0.04294 -0.46 0.04 -0.78
Depressionz 0.015674 0.12520 0.59 -0.87 -0.91 0.45
Residual 0.888206 0.94245
Number of obs: 600, groups: Week, 4
##
Fixed effects:
Estimate Std. Error df t value Pr(>|t|)
(Intercept) -0.006623 0.069856 3.08 0.93030
RPz 0.168702 0.049992 5.59 3.375 0.01666 *
PSSz -0.145569 0.084780 3.29 -1.717 0.17641
Anxietyz 0.305180 0.055250 9.93 5.524 0.00026 ***
Depressionz -0.171918 0.088434 3.58 -1.944 0.13207

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
Correlation of Fixed Effects:
(Intr) RPz PSSz Anxietyz
RPz -0.410
PSSz -0.129 0.127
Anxietyz -0.146 -0.118 -0.255
Depressionz 0.351 -0.330 -0.757 -0.169
optimizer (nloptwrap) convergence code: 0 (OK)
boundary (singular) fit: see ?isSingular
Perceived Covid19 threat and Anxiety were both statistically significant predictors of SRA. Note that this model (and the subsequent models below) gave us a warning stating we had a boundary (singular) fit. These warnings indicate that one or more variance estimates are very close to zero. While random effects could be removed to eliminate this warning, we felt the inclusion of all random effects was important. Because our models account for a large amount random variance (intercepts and slopes) associated with each week, our model also generalises better to other weeks and individuals (Yarkoni, 2019). While additional random effects can reduce power, they can also reduces the Type-I error rate. Given that with enough data every difference will be statistically significant (Meehl, 1967), and given our sample size, we felt this was a reasonable compromise.

Model 2 - adding gender, age, employment, socio-economic status We also wanted to see how additional fixed effects, not related to our main predictions, explained everyday altruism. To minimize convergence problems, we first selected additional predictors with potential associations with our dependent variable (everyday altruism) and selectively added them to the model (see below). We therefore ran a new model with 4 additional predictors: Age, Gender, Employment, and socioeconomic level. Our goal was to identify predictors associated with SRA at our pre-defined threshold (p < 0.05) so that we could add them to the final model.

```
#m2 <- lmer(SRAz ~ Age + Gender2 + Employment + financ +
#            (1+Age + Gender2 + Employment + financ|Week), data=CVA_full)
library(optimx)
#m2 <- lmer(SRAz ~ Age + Gender2 + Employment + financ + (1+Age + Gender2 + Employment + financ|Week), data=CVA_full, control = lmerControl(optimizer="optimx", optCtrl=list(method="L-BFGS-B")))
```

```
## Warning in optwrap(optimizer, devfun, getStart(start, rho$pp), lower =
## rho$lower, : convergence code 1 from optimx: none

## Warning in optimx.check(par, optcfg$sfun, optcfg$sgr, optcfg$uhess, lower, : Parameters or bounds appear to have different scalings.
## This can cause poor performance in optimization.
## It is important for derivative free methods like BOBYQA, UOBYQA, NEWUOA.

## Warning: Model failed to converge with 1 negative eigenvalue: -4.6e+00
```

```
## Linear mixed model fit by maximum likelihood . t-tests use Satterthwaite's
## method [lmerModLmerTest]
## Formula: SRAz ~ Age + Gender2 + Employment + financ + (1 + Age + Gender2 +
## Employment + financ | Week)
## Data: CVA_full
## Control: lmerControl(optimizer = "optimx", optCtrl = list(method = "L-BFGS-B"))
```

```
## AIC    BIC   logLik deviance df.resid
## 1709.9 1951.7 -799.9 1599.9      545
```
Scaled residuals:
Min 1Q Median 3Q Max
-2.7900 -0.6892 -0.0337 0.5940 3.7898

Random effects:
Groups Name Variance Std.Dev. Corr
Week (Intercept) 4.701e-02 0.21681
Age 6.866e-06 0.00262 -1.00
Gender2Male 3.293e-02 0.18146 0.43 0.43
Gender2Other 1.890e-01 0.43473 0.44 -0.44 0.18
EmploymentStudent 2.592e-02 0.16101 -0.80 0.80 0.30
EmploymentUnemployed 3.992e-02 0.19980 0.52 -0.52 -0.97
financJust meet basic expenses 1.040e-03 0.03225 0.34 -0.34 -0.63
financLive comfortably 3.898e-02 0.19743 -0.99 0.99 0.47
financMeet needs with some left 1.402e-02 0.11841 0.30 -0.30 -0.34
Residual 8.236e-01 0.90754

Fixed effects:
Estimate Std. Error df t value Pr(>|t|)
(Intercept) -0.548738 0.214625 6.714093 -2.557 0.03909
Age 0.029075 0.004145 4.568322 7.014 0.00131
Gender2Male 0.003109 0.118859 4.071964 0.026 0.98037
Gender2Other 0.170219 0.355779 4.680605 0.478 0.65384
EmploymentStudent -0.204300 0.135196 3.446626 -1.511 0.21633
EmploymentUnemployed -0.445272 0.137646 4.823576 -3.325 0.02430
financJust meet basic expenses -0.293573 0.141673 90.222409 -2.072 0.04110
financLive comfortably -0.064411 0.184295 5.406895 -0.349 0.73992
financMeet needs with some left -0.278842 0.153054 4.909843 -1.822 0.12917

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Correlation of Fixed Effects:

	(Intr)	Age	Gndr2M	Gndr2O	EmplyS	EmplyU	fnJmbe	fnncLc
Age	-0.696							
Gender2Male	-0.260	0.096	0.145					
Gender2Other	0.082	-0.044	0.154					
EmplymntStd	-0.532	0.451	0.123	-0.303				
EmplymntUnm	0.070	-0.216	-0.500	-0.025	-0.107			
fnncJstmtbe	-0.504	-0.046	-0.045	0.061	-0.023	0.175		
fnncLvcmfrt	-0.663	0.133	0.165	-0.199	0.267	-0.107	0.579	
fnncMtndws1	-0.431	-0.084	-0.111	0.180	-0.125	0.299	0.779	0.484

Optimizer (optimx) convergence code: 0 (OK)
Boundary (singular) fit: see ?isSingular
Parameters or bounds appear to have different scalings.
This can cause poor performance in optimization.
It is important for derivative free methods like BOBYQA, UOBYQA, NEWUOA.

This model, however, did not converge. Convergence issues can be caused by a number of factors, and we decided to explore ways to get this model working properly.

In an attempt to correct convergence issues, we centered age in the model (it was the only variable that could be centered). This can sometimes help when a model does not converge, and is a common strategy when first attempting to deal with non-convergence.

```r
m2.2 <- lmer(SRAz ~ agez + Gender2 + Employment + financ + (1 + agez + Gender2 + Employment + financ | Week), data=CVA_full, control = lmerControl(optimizer="bobyqa", optCtrl = list(maxfun = 1e+05))
```

Linear mixed model fit by REML. t-tests use Satterthwaite's method [lmerModLmerTest]
Formula: SRAz ~ agez + Gender2 + Employment + financ + (1 + agez + Gender2 + Employment + financ | Week)
Data: CVA_full
Control: lmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 1e+05))
REML criterion at convergence: 1622.6
Scaled residuals:
Min 1Q Median 3Q Max
-2.7888 -0.6911 -0.0317 0.5744 3.7503
Random effects:
Groups Name Variance Std.Dev. Corr
Week (Intercept) 0.013595 0.11660
agez 0.002447 0.04947 0.40
Gender2Male 0.048456 0.22013 -0.52 0.14
Gender2Other 0.305692 0.55289 0.07 -0.85 0.41
EmploymentStudent 0.037476 0.18359 -0.32 1.00 0.10
EmploymentUnemployed 0.055776 0.23617 0.07 -0.85 -0.91
financJust meet basic expenses 0.007528 0.08676 0.52 -0.99 -0.24
financLive comfortably 0.035106 0.18737 0.66 0.51
financMeet needs with some left 0.035167 0.18753 0.12 -0.94 -0.16
Residual 0.831632 0.91194
###
The model now converges, and we can see that age is the only clear significant predictor of SRA. However, employment appeared to be a potentially relevant predictor (marginally significant association with SRA), so we included it in the final model.

Model 3 - Adding Age and Employment to Model 1 We added age and employment to the initial model. However, the updated model no longer converged. Another common strategy to aid convergence is
to remove the most complex random effects (i.e. random slopes) iteratively from the model. Because the random effects of age accounted for the least amount of variance in the new model, we removed the random slope estimate of age and re-ran the model.

m3 <- lmer(SRAz ~ RPz + PSSz + Anxietyz + Depressionz + agez + Employment + (1 + RPz + PSSz + Anxietyz + Depressionz + Employment | Week), data=CVA_full)

Linear mixed model fit by REML. t-tests use Satterthwaite's method [lmerModLmerTest]
Formula: SRAz ~ RPz + PSSz + Anxietyz + Depressionz + agez + Employment +
(1 + RPz + PSSz + Anxietyz + Depressionz + Employment | Week)
Data: CVA_full
REML criterion at convergence: 1586.2
##
Scaled residuals:
Min 1Q Median 3Q Max
-2.6035 -0.6475 -0.0473 0.6177 3.4292
##
Random effects:
Groups Name Variance Std.Dev. Corr
Week (Intercept) 0.010039 0.10020
RPz 0.003969 0.06300 -1.00
PSSz 0.004415 0.06645 -0.25 0.29
Anxietyz 0.001894 0.04352 -0.48 0.44 -0.73
Depressionz 0.005381 0.07336 0.63 -0.66 -0.91 0.38
EmploymentStudent 0.012283 0.11083 -0.98 0.97 0.04 0.65 -0.45
EmploymentUnemployed 0.056835 0.23840 0.60 -0.56 0.63 -0.99 -0.25
Residual 0.779101 0.88267
##
Number of obs: 600, groups: Week, 4
##
Fixed effects:
Estimate Std. Error df t value Pr(>|t|)
(Intercept) 0.11875 0.06987 3.60042 1.700 0.172302
RPz 0.15612 0.05061 4.69036 3.085 0.029731 *
PSSz -0.08360 0.06326 5.32891 -1.321 0.240229
Anxietyz 0.29570 0.05246 9.24913 5.637 0.000289 ***
Depressionz -0.13257 0.06907 5.16353 -1.919 0.111196
agez 0.31386 0.04191 577.04770 7.489 2.61e-13 ***
EmploymentStudent -0.12018 0.11872 8.83264 -1.012 0.338332
EmploymentUnemployed -0.41598 0.14940 3.27288 -2.784 0.062258 .

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
Correlation of Fixed Effects:
	(Intr)	RPz	PSSz	Anxiety	Depression	age	EmplymntStd	EmplymntUnm
RPz		-0.448						
PSSz		-0.049	-0.033					
Anxiety		-0.157	-0.007	-0.203				
Depression		0.241	-0.217	-0.666	-0.258			
age		-0.064	-0.044	0.062	0.007	0.073		
EmplymntStd		-0.636	0.281	-0.025	0.160	-0.089	0.353	
EmplymntUnm		0.120	-0.281	0.201	-0.319	-0.120	-0.101	-0.176

optimizer (nloptwrap) convergence code: 0 (OK)
boundary (singular) fit: see ?isSingular
| | Estimate | Std. Error | df | t value | Pr(>|t|) | CI_lower | CI_upper |
|------------------|----------|------------|-----|---------|----------|----------|----------|
| (Intercept) | 0.119 | 0.070 | 3.600 | 1.700 | 0.172 | -0.018 | 0.256 |
| RPz | 0.156 | 0.051 | 4.690 | 3.085 | 0.030 | 0.057 | 0.255 |
| PSSz | -0.084 | 0.063 | 5.329 | -1.321 | 0.240 | -0.208 | 0.040 |
| Anxietyz | 0.296 | 0.052 | 9.249 | 5.637 | 0.000 | 0.193 | 0.399 |
| Depressionz | -0.133 | 0.069 | 5.164 | -1.919 | 0.111 | -0.268 | 0.003 |
| agez | 0.314 | 0.042 | 7.489 | 0.000 | 0.232 | 0.396 |
| EmploymentStudent| -0.120 | 0.119 | 8.833 | -1.012 | 0.338 | -0.353 | 0.113 |
| EmploymentUnemployed| -0.416 | 0.149 | 3.273 | -2.784 | 0.062 | -0.709 | -0.123 |

With the random slopes associated with age removed, the new model converged. We then assessed whether the full model (perceived covid-19 threat, anxiety, stress, depression, age and employment) was preferred to the original model (without age and employment) using a model comparison approach. Results suggested a better fit of the full model.

```
## Data: CVA_full
## Models:
## m1: SRAz ~ RPz + PSSz + Anxietyz + Depressionz + (1 + RPz + PSSz +
##    Anxietyz + Depressionz | Week)
## m3: SRAz ~ RPz + PSSz + Anxietyz + Depressionz + agez + Employment +
##    (1 + RPz + PSSz + Anxietyz + Depressionz + Employment | Week)
## npar  AIC  BIC logLik deviance  Chisq Df Pr(>Chisq)
## m1    21 1677.5 1769.8 -817.74 1635.5
## m3    37 1629.6 1792.3 -777.80 1555.6 79.895 16 1.738e-10 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

For the sake of transparency, we also present here the results of the model if all predictors had been added simultaneously.

```R
m_all <- lmer(SRAz ~ RPz + PSSz + Anxietyz + Depressionz + Age + Gender2 + Employment + financ + (1 + Age + Gender2 + Employment + financ + RPz + PSSz + Anxietyz + Depressionz | Week), data=CVA_full)
```

## Warning: Model failed to converge with 3 negative eigenvalues: -1.7e-01 -7.0e+00
## -1.1e+01

```R
Linear mixed model fit by REML. t-tests use Satterthwaite's method [
lmerModLmerTest]
Formula: SRAz ~ RPz + PSSz + Anxietyz + Depressionz + Age + Gender2 +
Employment + financ + (1 + Age + Gender2 + Employment + financ +
RPz + PSSz + Anxietyz + Depressionz | Week)
Data: CVA_full
#
REML criterion at convergence: 1577.1
#
Scaled residuals:
Min 1Q Median 3Q Max
-2.65502 -0.66308 -0.04874 0.59609 3.11533
```
Random effects:

| Groups | Name | Variance | Std.Dev. | Corr |
|------------|-----------------------------|----------|----------|------|
| Week | (Intercept) | 6.48e-02 | 0.254570 | -1.00|
| | Age | 3.15e-06 | 0.001775 | -1.00|
| | Gender2Male | 4.83e-02 | 0.219953 | -1.00|
| | Gender2Other | 2.77e-01 | 0.526492 | -1.00|
| | EmploymentStudent | 1.93e-02 | 0.139041 | -1.00|
| | EmploymentUnemployed | 3.85e-02 | 0.196299 | -1.00|
| | financJust meet basic expenses | 1.23e-02 | 0.111176 | -1.00|
| | financLive comfortably | 6.37e-02 | 0.252478 | -1.00|
| | financMeet needs with some left | 4.18e-02 | 0.204581 | -1.00|
| | RPz | 5.92e-03 | 0.076984 | -1.00|
| | PSSz | 2.38e-03 | 0.048817 | -1.00|
| | Anxietyz | 2.86e-03 | 0.053558 | -1.00|
| | Depressionz | 5.42e-03 | 0.073675 | -1.00|
| | Residual | 7.46e-01 | 0.863643 |\

Fixed effects:

| Estimate | Std. Error | df | t value | Pr(>|t|) |
|-----------|------------|-----|---------|---------|
| (Intercept) | -0.647356 | 0.223727 | 5.092804 | -2.894 | 0.03332 |
| RPz | 0.152723 | 0.054706 | 3.694701 | 2.792 | 0.05387 |
| PSSz | -0.091500 | 0.059584 | 7.483571 | 1.536 | 0.16576 |
| Anxietyz | 0.298247 | 0.053963 | 6.647110 | 5.527 | 0.00105 |
| Depressionz| -0.130219 | 0.069302 | 5.688304 | 1.879 | 0.11198 |
| Age | 0.028712 | 0.003927 | 24.697396 | 7.311 | 1.26e-07 |
| Gender2Male| 0.045237 | 0.133405 | 3.133222 | 0.339 | 0.75600 |
| Gender2Other| 0.274359 | 0.376707 | 3.534395 | 0.728 | 0.51172 |
| EmploymentStudent | -0.164586 | 0.124928 | 5.984934 | -1.317 | 0.23587 |
| EmploymentUnemployed | -0.433552 | 0.133754 | 3.547363 | -3.241 | 0.03762 |
| financJust meet basic expenses | -0.240331 | 0.147235 | 13.274486 | -1.632 | 0.12610 |
| financLive comfortably | 0.023325 | 0.199034 | 4.482359 | 0.117 | 0.91177 |
| financMeet needs with some left | -0.180514 | 0.172188 | 10.972503 | -1.048 | 0.31702 |

Number of obs: 600, groups: Week, 4
The full model failed to converge, but the results were in the same direction as with the other models.

Testing assumptions

1. Homoskedasticity: Residuals are randomly distributed around the regression line.
2. Normality: residuals are normally distributed as can be assessed using either a histogram or qq-plot.
3. Random effects residuals: The random effects estimates should also be normally distributed around zero.
Histogram of residuals(m3)

Theoretical Quantiles
Sample Quantiles

Normal Q–Q Plot

$Week

$Week
2. Modelling everyday altruism within each week We tested our model in each independent week to examine whether the observed associations between self-reported altruism, and perceived covid-19 risk and anxiety held over time (rather than accounting for that by modelling week as a random effect, as done in the previous analysis).

When modelling each week separately, the model used above had to be simplified to provide reliable estimates and avoid convergence issues, given the reduction in the number of observations (600 to 150 participants). Specifically, we removed all random effects of by all fixed effects, because we were no longer using Week as random effect (SRAz ~ RPz + Anxietyz + Depressionz+ PSSz + agez + Employment). Results (Table 3) show anxiety was consistently associated with increased everyday altruism within each week.

3. State variation in altruism and COVID-19 risk perception Our main analysis using accounted for variation introduced by variability between weeks of data collection. Presumably, there could be variability associated with each location we collected data from, even if this variability was not enough to influence the inclusion of state into our model. However, we understand state variation could be of interest to some readers. We thus include here some exploratory plots to help readers visualise our data in reference to the state.

The first plot presented illustrates the number of cases per State in the 4 weeks of data collection.
One question we can anticipate from readers is that, due to the great variability in severity of the pandemic in different states (e.g., NY versus Alaska), it may be that the key experimental effects could vary greatly between states. However, as explained above, most states in our sample had a reduced number of cases, making variation due to State a likely noisy effect. For descriptive purposes, here we selected states that we collected 20 or more observations from. Below, we plot results from those states for variables of interest in our study, namely Perceived Covid19 threat (RP), Self-Reported Altruism, and Total Confirmed COVID cases.
The plot above depicts how Perceived COVID-19 threat, self-reported altruism and Number of confirmed cases evolved over 4 weeks of data collection, for each of the states with N>20. As can be seen in the plot, NJ and NY were the States that had the largest and most obvious increase in number of cases. For Perceived COVID-19 threat and self-reported altruism, no week-related pattern seems to emerge across all the states included. We next plotted Perceived COVID-19 threat and Self-Reported Altruism from those 2 States below, to illustrate that even in States with a clear rise in cases, these measures do not seem to meaningfully change over the 4 weeks.

The ANOVAs below show no significant changes in Perceived COVID-19 threat in NY/NJ over the 4 weeks. For SRA, there is an apparent decrease from week 1 to week 2, but consistent pattern emerged. Note that this analysis is purely exploratory, as the sample size per week is very small (week 1: n=19, week 2: n = 12, week 3: n=10; week 4: n = 20).

```r
## # A tibble: 4 x 2
## # Row names: <chr>
## # Groups:   Week [4]
## # Week    n()
## <fct>  <int>
## 1 Week 1  19
## 2 Week 2  12
## 3 Week 3  10
```
Simulation-based power analysis for random effects model

Because our study was constrained by time and resources, we did not conduct a formal power analysis prior to data collection and analysis. Power analyses can still be useful after a study is completed as they can reveal how much power a study theoretically had to detect a range of effect sizes of interest.

We opted to model a simple power function at fixed (i.e. discrete steps) effect sizes for the 4 key predictors (Perceived Covid-19 Threat, RP; Anxiety; Stress, PSS; Depression) in our model by simulating a dataset. We first simulated standardised questionnaire data to match how it might reasonably be generated from individuals randomly sampled from the population. Thus, we simulated data with 600 observations for 4 parameter by drawing values randomly from a normal distribution with a mean of zero, standard deviation of 1, and a correlation between each observations parameter estimate of 0.4. Additionally, each observation was assigned a week, and a random variance component was included with each observation by drawing 4 values from a normal distribution with a mean of zero and a standard deviation of 1. We caculated an SRA score for each observation in the model by multiplying a fixed parameter estimate to each simulated questionnaire score and then adding together the linear combination of these values (along with weekly random variance and a randomly drawn error term). The data structure for the first 5 simulated observations (i.e. participants) can be seen below.

RPs	PSSs	Anxiety	Depressions	SRAs	Week	
1	-0.8072558	-1.3779339987	-0.25845530	-2.1452341	3.5373848	Week1
2	-0.5469162	0.8939096893	1.02162080	-0.3731908	3.6227388	Week1
3	-0.5543976	1.0565235744	-0.95888067	1.0032606	0.2742031	Week1
4	-0.7192858	-0.0003644981	-2.87045860	0.3082502	-0.1373379	Week1
5	0.8367482	0.7873318519	2.45475624	0.4479177	3.8014265	Week1
6	0.6320206	-0.2752098637	-0.03487023	-0.4420508	1.0225829	Week1

Fitting the model

The simulated data were fit to the same model used in the study. We fixed all slopes at 0.3 in the simulation, and thus, we expected their subsequent random effects model estimates to roughly match the fixed 0.3 terms. As can be seen below, these assumptions are roughly met in our model output.
Running the power simulations

To assess how much power our study had to detect different effect sizes of interest, we ran a power simulation. Here we asked how much power we would have to detect a wide range of effect sizes for each parameter in our model. We thus simulated “power” for 9 effect sizes (0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9) for each of the 4 parameters. Each simulation started by first simulating new SRA values based on the current fixed effect size, refitting the model to the new simulated SRA values, and running the statistical model again. This was repeated 1000 times for each effect size and each parameter for a total of 36000 simulation.

Power curve

Plotted below are approximated power curves, each showing the proportion of simulations that gave a significant result for each parameter at each fixed effect size. Because power is a continuous function, rather than a single value, the plot can be analysed to assess how much power the current study would have to detect each effect size, conditional on our random effects model. Each colored line in each plot represents the estimated power for 1 predictor at each fixed effect size, with grey lines showing the other power curves of the other predictors to allow quick comparisons. As an example of how to interpret the graph below, the...
power simulation indicates that the sampling procedure for the current study has between 88% and 94% power to detect a 0.3 effect size for each parameter. This logic can be extended to any other fixed effect sizes.

Revisions

Multicollinearity

```r
# Kappa function.
kappa.mer <- function (fit, 
  scale = TRUE, center = FALSE, 
  add.intercept = TRUE, 
  exact = FALSE) {

  X <- fit@pp$X
  nam <- names(fixef(fit))

  ## exclude intercepts
  nrp <- sum(1 * (nam == "(Intercept)"))
  if (nrp > 0) {
    X <- X[, -(1:nrp), drop = FALSE]
    nam <- nam[-(1:nrp)]
  }

  if (add.intercept) {
    X <- cbind(rep(1), scale(X, scale = scale, center = center))
  }

  kappa(X, exact = exact)
```
First, we calculated kappa for the model with only the main predictors.

```r
kappa.mer(m1) # anything below 10 is reasonable multicollinearity
```

```r
## [1] 3.65742
```

Second, kappa for the full model (with demographic predictors) was calculated.

```r
kappa.mer(m3) # anything below 10 is reasonable multicollinearity
```

```r
## [1] 3.638031
```

Next, we investigated VIF for the model with only main predictors. All predictors have a low correlation.

```r
x1 <- check_collinearity(m1)
x1 #
```

```r
## # Check for Multicollinearity
## # Low Correlation
## #
## # Term VIF Increased SE Tolerance
## # RPz 1.37 1.17 0.73
## # PSSz 4.27 2.07 0.23
## # Anxietyz 1.87 1.37 0.54
## # Depressionz 4.66 2.16 0.21

plot(x1)
```
Finally, here is the VIF for the full model. Again, all predictors have a low correlation.

```r
x2 <- check_collinearity(m3)
x2
```

Check for Multicollinearity

Low Correlation

Term	VIF	Increased SE	Tolerance
RPz	1.51	1.23	0.66
PSSz	2.93	1.71	0.34
Anxietyz	1.94	1.39	0.52
Depressionz	3.42	1.85	0.29
agez	1.23	1.11	0.81
Employment	1.79	1.34	0.56

plot(x2)
Checking The Effect Of Depression On The Model.

Removing depression from the model with only main predictors did not change the significance of the anxiety or RP coefficients. Additionally, PSS is negatively associated with Altruism.

```r
m1_NoDepression <- lmer(SRAz ~ RPz + PSSz + Anxietyz + 
                       (1+RPz+PSSz+Anxietyz|Week), data=CVA_full)
```

Linear mixed model fit by REML. t-tests use Satterthwaite's method [
lmerModLmerTest]

Formula: SRAz ~ RPz + PSSz + Anxietyz +
(1 + RPz + PSSz + Anxietyz | Week)
Data: CVA_full

REML criterion at convergence: 1661.8

Scaled residuals:
Min 1Q Median 3Q Max
-2.6862 -0.6665 -0.0630 0.5605 3.4200

Random effects:
Groups Name Variance Std.Dev. Corr
Week (Intercept) 0.0116516 0.10794
RPz 0.0019813 0.04451 -1.00
PSSz 0.0016823 0.04102 0.36 -0.36
Anxietyz 0.0008114 0.02849 -0.13 0.13 -0.97
Residual 0.9061967 0.95194
Number of obs: 600, groups: Week, 4
##
Fixed effects:
Estimate Std. Error df t value Pr(>|t|)
(Intercept) -0.001808 0.066539 3.058176 -0.027 0.98000
RPz 0.170957 0.048029 6.997772 3.559 0.00923 **
PSSz -0.237668 0.050715 3.520814 -4.686 0.01274 *
Anxietyz 0.249142 0.047950 7.157779 5.196 0.00117 **
##
Correlation of Fixed Effects:
(Intr) RPz PSSz
RPz -0.378
PSSz 0.118 -0.259
Anxietyz -0.031 -0.134 -0.498
##
Optimizer (nloptwrap) convergence code: 0 (OK)
boundary (singular) fit: see ?isSingular

Table 3: Depression Included

| | Estimate | Std. Error | df | t value | Pr(>|t|) | CI_lower | CI_upper |
|--------------|----------|------------|-----|---------|----------|----------|----------|
| (Intercept) | -0.007 | 0.070 | 3.080| -0.095 | 0.930 | -0.144 | 0.130 |
| RPz | 0.169 | 0.050 | 5.591| 3.375 | 0.017 | 0.071 | 0.267 |
| PSSz | -0.146 | 0.085 | 3.288| -1.717 | 0.176 | -0.312 | 0.021 |
| Anxietyz | 0.305 | 0.055 | 9.925| 5.524 | 0.000 | 0.197 | 0.413 |
| Depressionz | -0.172 | 0.088 | 3.581| -1.944 | 0.132 | -0.345 | 0.001 |

Table 4: Depression Removed

| | Estimate | Std. Error | df | t value | Pr(>|t|) | CI_lower | CI_upper |
|--------------|----------|------------|-----|---------|----------|----------|----------|
| (Intercept) | -0.002 | 0.067 | 3.058| -0.027 | 0.980 | -0.132 | 0.129 |
| RPz | 0.171 | 0.048 | 6.998| 3.559 | 0.009 | 0.077 | 0.265 |
| PSSz | -0.238 | 0.051 | 3.521| -4.686 | 0.013 | -0.337 | -0.138 |
| Anxietyz | 0.249 | 0.048 | 7.158| 5.196 | 0.001 | 0.155 | 0.343 |

m3_NoDepression <- lmer(SRAz ~ RPz + PSSz + Anxietyz + agez + Employment + (1+RPz+PSSz+Anxietyz + Employment | Week), data=CVA_full)

Linear mixed model fit by REML. t-tests use Satterthwaite's method [lmerModLmerTest]
Formula: SRAz ~ RPz + PSSz + Anxietyz + agez + Employment + (1+RPz+PSSz+Anxietyz + Employment | Week)
Data: CVA_full
##
REML criterion at convergence: 1588.3
##
Scaled residuals:
Min 1Q Median 3Q Max
Removing depression from the full model also did not change the significance of the anxiety coefficient, and again made the PSS coefficient statistically significant in the negative direction. Note: Say something about how PSS and anxiety have opposing effects on altruism, and that it is important to keep Depression in the model because it and PSS are correlated.

Table 5: Depression Removed

| | Estimate | Std. Error | df | t value | Pr(>|t|) | CI_lower | CI_upper |
|----------------|----------|------------|------|---------|----------|----------|----------|
| (Intercept) | 0.123 | 0.066 | 3.796| 1.872 | 0.138 | -0.006 | 0.252 |
| RPz | 0.157 | 0.049 | 4.921| 3.188 | 0.025 | 0.061 | 0.254 |
| PSSz | -0.152 | 0.046 | 20.66| -3.326 | 0.003 | -0.241 | -0.062 |
| Anxietyz | 0.253 | 0.047 | 8.171| 3.561 | 0.001 | 0.160 | 0.345 |
| agez | 0.325 | 0.042 | 579.865| 7.746 | 0.000 | 0.243 | 0.407 |
| EmploymentStudent | -0.111 | 0.119 | 8.713| -0.931 | 0.377 | -0.345 | 0.123 |
| EmploymentUnemployed | -0.431 | 0.146 | 3.331| -2.940 | 0.053 | -0.718 | -0.144 |
Table 6: Depression Included

| Estimate | Std. Error | df | t value | Pr(>|t|) | CI_lower | CI_upper |
|-----------|------------|-----|---------|----------|----------|----------|
| (Intercept) | 0.119 | 0.070 | 3.600 | 1.700 | 0.172 | -0.018 | 0.256 |
| RPz | 0.156 | 0.051 | 4.690 | 3.085 | 0.030 | 0.057 | 0.255 |
| PSSz | -0.084 | 0.063 | 5.329 | -1.321 | 0.240 | -0.208 | 0.040 |
| Anxietyz | 0.296 | 0.052 | 9.249 | 5.637 | 0.000 | 0.193 | 0.399 |
| Depressionz | -0.133 | 0.069 | 5.164 | -1.919 | 0.111 | -0.268 | 0.003 |
| agez | 0.314 | 0.042 | 577.048 | 7.489 | 0.000 | 0.232 | 0.396 |
| EmploymentStudent | -0.120 | 0.119 | 8.833 | -1.012 | 0.338 | -0.353 | 0.113 |
| EmploymentUnemployed | -0.416 | 0.149 | 3.273 | -2.784 | 0.062 | -0.709 | -0.123 |

Using Stress instead of PSS

Using the model with only the main predictors, replacing PSS with Stress does not change the direction or significance of the Anxiety predictor.

```r
CVA_full$Stressz <- scale(CVA_full$Stress, center = TRUE, scale = TRUE)

m1_Stress <- lmer(SRAz ~ RPz + Stressz + Anxietyz + Depressionz + (1+RPz+Stressz+Anxietyz+Depressionz|Week), data=CVA_full)
```

```r
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [ lmerModLmerTest ]
## Formula: SRAz ~ RPz + Stressz + Anxietyz + Depressionz + (1 + RPz + Stressz + Anxietyz + Depressionz | Week)
## Data: CVA_full
##
## REML criterion at convergence: 1662.5
##
## Scaled residuals:
##    Min  1Q Median  3Q Max
## -2.8480 -0.6678 -0.0695 0.5979 3.3855
##
## Random effects:
##    Groups   Name  Variance  Std.Dev. Corr
##    Week (Intercept) 0.012776 0.11303
##    RPz 0.002401 0.04900 -1.00
##    Stressz 0.021220 0.14567 -0.26 0.26
##    Anxietyz 0.007949 0.08916 0.09 -0.09 -0.98
##    Depressionz 0.008632 0.09291 0.70 -0.70 -0.87 0.77
##    Residual 0.899831 0.94859
##
## Number of obs: 600, groups: Week, 4
##
## Fixed effects:
##    Estimate  Std. Error   df  t value   Pr(>|t|) 
##  (Intercept) -0.004449 0.068558 3.055038 -0.065 0.9523
##  RPz 0.152730 0.048717 6.143817 3.135 0.0196 *
##  Stressz 0.007949 0.097207 3.145439 0.082 0.9398
##  Anxietyz 0.292267 0.097207 3.145439 3.075 0.0155 *
##  Depressionz -0.265704 0.097207 3.145439 -2.784 0.0621 *
##  ---
```
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Correlation of Fixed Effects:

	(Intr)	RPz	Stressz	Anxietyz	Depressionz
RPz	-0.419				
Stressz	0.162	0.013			
Anxietyz	0.043	-0.086	-0.700		
Depressionz	0.366	-0.256	-0.646	0.144	

optimizer (nloptwrap) convergence code: 0 (OK)
boundary (singular) fit: see ?isSingular

Table 7: PSS

| Estimate | Std. Error | df | t value | Pr(>|t|) | CI_lower | CI_upper |
|----------|------------|----|---------|----------|----------|----------|
| (Intercept) | -0.007 | 0.070 | 3.080 | -0.095 | 0.930 | -0.144 | 0.130 |
| RPz | 0.169 | 0.050 | 5.591 | 3.375 | 0.017 | 0.071 | 0.267 |
| PSSz | -0.146 | 0.085 | 3.288 | -1.717 | 0.176 | -0.312 | 0.021 |
| Anxietyz | 0.305 | 0.055 | 9.925 | 5.524 | 0.000 | 0.197 | 0.413 |
| Depressionz | -0.172 | 0.088 | 3.581 | -1.944 | 0.132 | -0.345 | 0.001 |

Table 8: Stress

| Estimate | Std. Error | df | t value | Pr(>|t|) | CI_lower | CI_upper |
|----------|------------|----|---------|----------|----------|----------|
| (Intercept) | -0.004 | 0.069 | 3.055 | -0.065 | 0.952 | -0.139 | 0.130 |
| RPz | 0.153 | 0.049 | 6.144 | 3.135 | 0.020 | 0.057 | 0.248 |
| Stressz | 0.008 | 0.097 | 3.145 | 0.082 | 0.940 | -0.183 | 0.198 |
| Anxietyz | 0.292 | 0.074 | 4.127 | 3.975 | 0.015 | 0.148 | 0.436 |
| Depressionz | -0.266 | 0.074 | 4.411 | -3.609 | 0.019 | -0.410 | -0.121 |

Finally, with respect to the full model, using the Stress scale in place of the PSS did not change the direction of significance of the anxiety coefficient.

m3_Stress <- lmer(SRAz ~ RPz + Stressz + Anxietyz + Depressionz + agez + Employment + (1 + RPz + Stressz + Anxietyz + Depressionz + Employment | Week), data=CVA_full)

Linear mixed model fit by REML. t-tests use Satterthwaite's method [
lmerModLmerTest]
Formula: SRAz ~ RPz + Stressz + Anxietyz + Depressionz + agez + Employment +
(1 + RPz + Stressz + Anxietyz + Depressionz + Employment | Week)
Data: CVA_full
REML criterion at convergence: 1587.3
Scaled residuals:
Min 1Q Median 3Q Max
-2.6655 -0.6361 -0.0576 0.6352 3.4551
Random effects:
Groups Name Variance Std. Dev. Corr
Week (Intercept) 0.010846 0.10414
26
RPz 0.004172 0.06459 -1.00
Stressz 0.014720 0.12133 -0.63 0.63
Anxietyz 0.008335 0.09129 0.31 -0.31 -0.93
Depressionz 0.006311 0.07944 0.78 -0.78 -0.98 0.83
EmploymentStudent 0.016798 0.12961 -1.00 1.00 0.63 -0.31 -0.79
EmploymentUnemployed 0.067790 0.26037 0.42 -0.42 0.44 -0.74 -0.24
Residual 0.779489 0.88289
##
-0.41
##
Number of obs: 600, groups: Week, 4
##
Fixed effects:
(Intercept) 0.12323 0.07125 3.42268 1.729 0.1707
RPz 0.14904 0.05089 4.56992 2.929 0.0364 *
Stressz 0.01283 0.08550 3.48549 0.150 0.8890
Anxietyz 0.28068 0.07114 4.00637 3.946 0.0168 *
Depressionz -0.18743 0.06685 4.79362 -2.804 0.0397 *
agez 0.32119 0.04188 584.16281 7.669 7.28e-14 ***
EmploymentStudent -0.12047 0.12374 7.24510 -0.974 0.3617
EmploymentUnemployed -0.43433 0.15796 3.21762 -2.750 0.0654 .

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
Correlation of Fixed Effects:
(Intr) RPz Stressz Anxietyz Depressionz agez EmploymentStudent EmploymentUnemployed
RPz -0.457
Stressz -0.350 0.205
Anxietyz 0.150 -0.182 -0.685
Depressionz 0.379 -0.327 -0.666 0.171
agez -0.068 -0.038 0.035 -0.011 0.093
EmploymentStudent -0.674 0.319 0.295 -0.115 -0.272 0.346
EmploymentUnemployed 0.046 -0.229 0.264 -0.389 -0.168 -0.090 -0.086
optimizer (nloptwrap) convergence code: 0 (OK)
boundary (singular) fit: see ?isSingular

Table 9: PSS

| | Estimate | Std. Error | df | t value | Pr(>|t|) | CI_lower | CI_upper |
|----------------|----------|------------|-----|---------|----------|----------|----------|
| (Intercept) | 0.119 | 0.070 | 3.600 | 1.700 | 0.172 | -0.018 | 0.256 |
| RPz | 0.156 | 0.051 | 4.690 | 3.085 | 0.030 | 0.057 | 0.255 |
| PSSz | -0.084 | 0.063 | 5.329 | -1.321 | 0.240 | -0.208 | 0.040 |
| Anxietyz | 0.296 | 0.052 | 9.249 | 5.637 | 0.000 | 0.193 | 0.399 |
| Depressionz | -0.133 | 0.069 | 5.164 | -1.919 | 0.111 | -0.268 | 0.003 |
| agez | 0.314 | 0.042 | 577.048 | 7.489 | 0.000 | 0.232 | 0.396 |
| EmploymentStudent | -0.120 | 0.119 | 8.833 | -1.012 | 0.338 | -0.353 | 0.113 |
Table 10: Stress

| | Estimate | Std. Error | df | t value | Pr(>|t|) | CI_lower | CI_upper |
|----------------------|----------|------------|-------------|----------|----------|----------|----------|
| (Intercept) | 0.123 | 0.071 | 3.423 | 1.729 | 0.171 | -0.016 | 0.263 |
| RPz | 0.149 | 0.051 | 4.570 | 2.929 | 0.036 | 0.049 | 0.249 |
| Stressz | 0.013 | 0.086 | 3.485 | 0.150 | 0.889 | -0.155 | 0.180 |
| Anxietyz | 0.281 | 0.071 | 4.006 | 3.946 | 0.017 | 0.141 | 0.420 |
| Depressionz | -0.187 | 0.067 | 4.794 | -2.804 | 0.040 | -0.318 | -0.056 |
| agez | 0.321 | 0.042 | 584.163 | 7.669 | 0.000 | 0.239 | 0.403 |
| EmploymentStudent | -0.120 | 0.124 | 7.245 | -0.974 | 0.362 | -0.363 | 0.122 |
| EmploymentUnemployed | -0.434 | 0.158 | 3.218 | -2.750 | 0.065 | -0.744 | -0.125 |

Donations with and without depression

Table 11: Depression

| | Estimate | Std. Error | df | t value | Pr(>|t|) | CI_lower | CI_upper |
|----------------------|----------|------------|-------------|----------|----------|----------|----------|
| (Intercept) | 0.109 | 0.074 | 3.184 | 1.464 | 0.234 | -0.037 | 0.254 |
| RPz | 0.130 | 0.050 | 4.783 | 2.586 | 0.051 | 0.032 | 0.229 |
| Anxietyz | 0.213 | 0.059 | 5.442 | 3.621 | 0.013 | 0.098 | 0.328 |
| Depressionz | -0.153 | 0.065 | 12.811 | -2.377 | 0.034 | -0.280 | -0.027 |
| PSSz | -0.029 | 0.067 | 5.300 | -0.433 | 0.682 | -0.161 | 0.103 |
| agez | 0.283 | 0.053 | 3.951 | 5.337 | 0.006 | 0.179 | 0.387 |
| EmploymentStudent | -0.036 | 0.126 | 6.673 | -0.289 | 0.781 | -0.283 | 0.210 |
| EmploymentUnemployed | -0.445 | 0.150 | 3.271 | -2.959 | 0.053 | -0.739 | -0.150 |

Table 12: No Depression

| | Estimate | Std. Error | df | t value | Pr(>|t|) | CI_lower | CI_upper |
|----------------------|----------|------------|-------------|----------|----------|----------|----------|
| (Intercept) | 0.110 | 0.076 | 3.263 | 1.444 | 0.237 | -0.039 | 0.259 |
| RPz | 0.131 | 0.052 | 4.792 | 2.530 | 0.055 | 0.029 | 0.232 |
| Anxietyz | 0.157 | 0.056 | 4.671 | 2.811 | 0.040 | 0.048 | 0.267 |
| PSSz | -0.110 | 0.054 | 6.094 | -2.042 | 0.086 | -0.216 | -0.004 |
| agez | 0.294 | 0.059 | 3.456 | 4.998 | 0.011 | 0.178 | 0.409 |
| EmploymentStudent | -0.025 | 0.130 | 5.829 | -0.190 | 0.856 | -0.280 | 0.231 |
| EmploymentUnemployed | -0.451 | 0.149 | 3.384 | -3.026 | 0.048 | -0.742 | -0.159 |

Addressing model singularity (revisions August 2022)

To address the singular fit in our main models, we sequentially removed random effects until the model was no longer singular. The `isSingular` command in lmer explains that there is no consensus on how best to deal with singularity, but provides a number of empirically justified ways to deal with it. We opted for Barr...
et al.’s (2013) “keep it maximal” approach. We considered the model in its current singular state to be our maximal model (random slopes for all coefficients and a random intercept) and began taking random effects out until it was no longer singular. This resulted in a model with only random intercept per week.

```
m1.1 <- lmer(SRAz ~ RPz + PSSz + Anxietyz + Depressionz + (1|Week), data=CVA_full)
```

Linear mixed model fit by REML. t-tests use Satterthwaite's method [## lmerModLmerTest] ## Formula: SRAz ~ RPz + PSSz + Anxietyz + Depressionz + (1 | Week) ## Data: CVA_full ## ## REML criterion at convergence: 1659.1 ## ## Scaled residuals: ## Min 1Q Median 3Q Max ## -2.8194 -0.6605 -0.0785 0.5682 3.3990 ## ## Random effects: ## Groups Name Variance Std.Dev. ## Week (Intercept) 0.01195 0.1093 ## Residual 0.89918 0.9483 ## Number of obs: 600, groups: Week, 4 ## ## Fixed effects: ## Estimate Std. Error df t value Pr(>|t|) ## (Intercept) -3.249e-04 6.698e-02 2.996 -0.005 0.9964 ## RPz 1.681e-01 4.230e-02 5.950 3.975 7.91e-05 *** ## PSSz -1.461e-01 5.698e-02 5.944 -2.563 0.0106 * ## Anxietyz 3.117e-01 5.109e-02 5.931 6.101 1.90e-09 *** ## Depressionz -1.688e-01 6.250e-02 5.943 -2.702 0.0071 ** ## ## --- ## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 ## ## Correlation of Fixed Effects: ## (Intr) RPz PSSz Anxietyz ## RPz 0.000 ## PSSz 0.000 -0.200 ## Anxietyz 0.000 -0.165 -0.054 ## Depressionz 0.000 0.012 -0.585 -0.451

Table 13: Table m1.1

| | Estimate | Std. Error | df | t value | Pr(>|t|) | CI_lower | CI_upper |
|------------|----------|------------|----|---------|----------|----------|----------|
| (Intercept)| 0.000 | 0.067 | 2.996 | -0.005 | 0.996 | -0.132 | 0.131 |
| RPz | 0.168 | 0.042 | 594.973 | 3.975 | 0.000 | 0.085 | 0.251 |
| PSSz | -0.146 | 0.057 | 594.443 | -2.563 | 0.011 | -0.258 | -0.034 |
| Anxietyz | 0.312 | 0.051 | 593.092 | 6.101 | 0.000 | 0.212 | 0.412 |
| Depressionz| -0.169 | 0.062 | 594.289 | -2.702 | 0.007 | -0.291 | -0.046 |
m3.1 <- lmer(SRAz ~ RPz + PSSz + Anxietyz + Depressionz + agez + Employment + (1 | Week), data=CVA_full)

Linear mixed model fit by REML. t-tests use Satterthwaite's method [
lmerModLmerTest]
Formula: SRAz ~ RPz + PSSz + Anxietyz + Depressionz + agez + Employment +
(1 | Week)
Data: CVA_full
##
REML criterion at convergence: 1596
##
Scaled residuals:
Min 1Q Median 3Q Max
-2.6911 -0.6226 -0.0251 0.5821 3.4251
##
Random effects:
Groups Name Variance Std.Dev.
Week (Intercept) 0.01501 0.1225
Residual 0.79764 0.8931
Number of obs: 600, groups: Week, 4
##
Fixed effects:
Estimate Std. Error df t value Pr(>|t|) CI_lower CI_upper
(Intercept) 0.12476 0.07858 4.41271 1.588 0.180900 -0.029 0.279
RPz 0.14759 0.03995 591.59589 3.694 0.000241 0.069 0.226
PSSz -0.08806 0.05422 590.86101 -1.624 0.104898 -0.194 0.018
Anxietyz 0.30646 0.04817 589.86119 6.362 0.000000 0.212 0.401
Depressionz -0.12883 0.05911 590.78564 -2.179 0.029697 -0.245 -0.013
agez 0.30814 0.04215 591.24845 7.310 8.73e-13 0.212 0.401
EmploymentStudent -0.12682 0.10612 589.03532 -1.195 0.232536 -0.337 0.087
EmploymentUnemployed -0.40699 0.09062 590.82055 -4.491 8.52e-06 -0.606 -0.207
##
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
##
Correlation of Fixed Effects:
(Intr) RPz PSSz Anxietyz Depressionz agez EmploymentStudent EmploymentUnemployed
RPz -0.001
PSSz 0.047 -0.203
Anxietyz -0.015 -0.164 -0.056
Depressionz 0.000 0.006 -0.569 -0.447
agez -0.056 -0.060 0.069 0.012 0.087
EmploymentStudent -0.313 -0.001 -0.050 0.044 0.033 0.397
EmploymentUnemployed -0.337 0.005 -0.120 0.013 -0.031 -0.162 0.198

Table 14: Table m3.1

| | Estimate | Std. Error | df | t value | Pr(>|t|) | CI_lower | CI_upper |
|----------------|----------|------------|-----|---------|----------|----------|----------|
| (Intercept) | 0.125 | 0.079 | 4.413| 1.588 | 0.181 | -0.029 | 0.279 |
| RPz | 0.148 | 0.040 | 591.596 | 3.694 | 0.000 | 0.069 | 0.226 |
| PSSz | -0.088 | 0.054 | 590.861 | -1.624 | 0.015 | -0.245 | -0.013 |
| Anxietyz | 0.306 | 0.048 | 589.861 | 6.362 | 0.000 | 0.212 | 0.401 |
| Depressionz | -0.129 | 0.059 | 590.786 | -2.179 | 0.030 | -0.245 | -0.013 |
| | Estimate | Std. Error | df | t value | Pr(>|t|) | CI_lower | CI_upper |
|--------|----------|------------|-------|---------|----------|----------|----------|
| agez | 0.308 | 0.042 | 591.248 | 7.310 | 0.000 | 0.226 | 0.391 |
| EmploymentStudent | -0.127 | 0.106 | 589.035 | -1.195 | 0.233 | -0.335 | 0.081 |
| EmploymentUnemployed | -0.407 | 0.091 | 590.821 | -4.491 | 0.000 | -0.585 | -0.229 |