ON ANALYTICAL APPLICATIONS OF STABLE HOMOTOPY
(THE ARNOLD CONJECTURE, CRITICAL POINTS)

YULI B. RUDYAK

ABSTRACT. We prove the Arnold conjecture for closed symplectic manifolds with
$\pi_2(M) = 0$ and $\text{cat } M = \dim M$. Furthermore, we prove an analog of the Lusternik–
Schnirelmann theorem for functions with “generalized hyperbolicity” property.

Introduction

Here we show that the technique developed in [R98] can be applied to the Arnold
conjecture and to estimation of the number of critical points. For convenience of
the reader, this paper is written independently of [R98].

Given a smooth ($= C^\infty$) manifold M and a smooth function $f : M \to \mathbb{R}$, we
denote by $\text{crit } f$ the number of critical points of f and set $\text{Crit } M = \min \{ \text{crit } f \}$
where f runs over all smooth functions $M \to \mathbb{R}$.

The Arnold conjecture [Ar89, Appendix 9] is a well-known problem in Hamil-
tonian dynamics. We recall the formulation. Let (M, ω) be a closed symplectic
manifold, and let $\phi : M \to M$ be a Hamiltonian symplectomorphism (see [HZ94],
[MS95] for the definition). Furthermore, let $\text{Fix } \phi$ denote the number of fixed points
of ϕ. Finally, let

$$\text{Arn}(M, \omega) := \min_{\phi} \text{Fix } \phi$$

where ϕ runs over all Hamiltonian symplectomorphisms $M \to M$. The Arnold
conjecture claims that $\text{Arn}(M, \omega) \geq \text{Crit } M$.

It is well known and easy to see that $\text{Arn}(M, \omega) \leq \text{Crit } M$. Thus, in fact, the
Arnold conjecture claims the equality $\text{Arn}(M, \omega) = \text{Crit } M$.

Let $\text{cat } X$ denote the Lusternik–Schnirelmann category of a topological space X
(normalized, i.e., $\text{cat } X = 0$ for X contractible).

Given a symplectic manifold (M^{2n}, ω), we define the homomorphisms

$$I_\omega : \pi_2(M) \to \mathbb{Q}, \quad I_\omega(x) = \langle \omega, h(x) \rangle$$
$$I_c : \pi_2(M) \to \mathbb{Z}, \quad I_c(x) = \langle c, h(x) \rangle$$

where $h : \pi_2(M) \to H_2(M)$ is the Hurewicz homomorphism, $c = c_1(\tau M)$ is the first
Chern class of M and $\langle -, - \rangle$ is the Kronecker pairing.

1991 Mathematics Subject Classification. Primary 58F05, secondary 55M30, 55N20.

The author was partially supported by Deutsche Forschungsgemeinschaft, the Research Group
"Topologie und nichtkommutative Geometrie",

arXiv:dg-ga/9708008v3 26 Jan 1998
Theorem A (see 3.6). Let \((M^n, \omega), n = \dim M\) be a closed connected symplectic manifold such that \(I_\omega = 0 = I_c\) (e.g., \(\pi_2(M) = 0\)) and \(\text{cat} M = n\). Then \(\text{Arn}(M, \omega) \geq \text{Crit} M\), i.e., the Arnold conjecture holds for \(M\).

It is well known that \(\text{Crit} M \geq 1 + \text{cl} M\) for every closed manifold \(M\), where \(\text{cl}\) denotes the cup-length, i.e., the length of the longest non-trivial cup-product in \(\tilde{H}^*(M)\). So, one has the following weaker version of the Arnold conjecture:

\[
\text{Arn}(M, \omega) \geq 1 + \text{cl}(M),
\]

and most known results deal with this weak conjecture, see [CZ83], [S85], [H88], [F89-1], [F89-2], [LO96]. (Certainly, there are lucky cases when \(\text{Crit} M = 1 + \text{cl} M\), e.g., \(M = T^{2n}\), cf. [CZ83].) For example, Floer [F89-1], [F89-2] proved that \(\text{Arn}(M) \geq 1 + \text{cl} M\) provided \(I_\omega = 0 = I_c\), cf. also Hofer [H88]. So, my contribution is the elimination of the clearance between \(\text{Crit} M\) and \(1 + \text{cl} M\). (It is easy to see that there are manifolds \(M\) as in Theorem A with \(\text{Crit} M > 1 + \text{cl} M\), see 3.7 below.)

Actually, we prove that \(\text{Arn}(M, \omega) \geq 1 + \text{cat} M\) and use a result of Takens [T68] which implies that \(\text{Crit} M = 1 + \text{cat} M\) provided \(\text{cat} M = \dim M\).

After submission of the paper the author and John Oprea proved that \(\text{cat} M = \dim M\) for every closed symplectic manifold \((M, \omega)\) with \(I_\omega = 0\), see [RO97]. So, the condition \(\text{cat} M = n\) in Theorem A can be omitted.

Passing to critical points, we prove the following theorem.

Theorem B (see 4.5). Let \(M\) be a closed orientable manifold, and let \(g : M \times \mathbb{R}^{p+q} \to \mathbb{R}\) be a \(C^2\)-function with the following properties:

1. There exist disks \(D_+ \subset \mathbb{R}^p\) and \(D_- \subset \mathbb{R}^q\) centered in origin such that \(\text{int}(M \times D_+ \times D_-)\) contains all critical points of \(g\);
2. \(\nabla g(x)\) points inward on \(M \times \partial D_+\) and outward on \(M \times \text{int} D_+ \times \partial D_-\).

Then \(\text{crit} g \geq 1 + r(M)\).

In particular, if \(M\) is aspherical then \(\text{crit} g \geq 1 + \text{cat} M\).

† Notice that functions \(g\) as in Theorem B are related to the Conley index theory, see [C76]. I remark that Cornea [Co98] have also estimated the number of critical points of functions as in Theorem B.

We reserve the term “map” for continuous functions of topological spaces, and we call a map inessential if it is homotopic to a constant map. The disjoint union of spaces \(X\) and \(Y\) is denoted by \(X \sqcup Y\). Furthermore, \(X^+\) denotes the disjoint union of \(X\) and a point, and \(X^+\) is usually considered as a pointed space where the base point is the added point.

We follow Switzer [Sw75] in the definition of \(CW\)-complexes. A \(CW\)-space is defined to be a space which is homeomorphic to a \(CW\)-complex.

Given a pointed \(CW\)-complex \(X\), we denote by \(\Sigma^\infty X\) the spectrum \(E = \{E_n\}\) where \(E_n = S^nX\) for every \(n \geq 0\) and \(E_n = \text{pt}\) for \(n < 0\); here \(S^nX\) is the \(n\)-fold
reduced suspension over X. Clearly, Σ^∞ is a functor from pointed CW-complexes to spectra.

Given any (bad) space X, the cohomology group $H^n(X; \pi)$ is always defined to be the group $[X, K(\pi, n)]$ where $[-, -]$ denotes the set of homotopy classes of maps.

"Smooth" always means "C^∞".
"Fibration" always means a Hurewicz fibration.
"Connected" always means path connected.
The sign "\simeq" denotes homotopy of maps (morphisms) or homotopy equivalence of spaces (spectra).

§1. Preliminaries on the Lusternik–Schnirelmann category

1.1. Definition. (a) Given a subspace A of a topological space X, we define $\text{cat}_X A$ to be the minimal number k such that $A = U_1 \cup \cdots \cup U_{k+1}$ where each U_i is open in A and contractible in X. We also define $\text{cat}_X A = -1$ if $A = \emptyset$.

(b) Given a map $f : X \to Y$, we define $\text{cat}_f A = -1$ if $A = \emptyset$.

(c) We define the Lusternik–Schnirelmann category $\text{cat} X$ of a space X by setting $\text{cat} X := \text{cat}_X X = \text{cat} 1_X$.

Clearly, $\text{cat} f \leq \min\{\text{cat} X, \text{cat} Y\}$.

The basic information concerning the Lusternik–Schnirelmann category can be found in [Fox41], [J78], [Sv66].

Let X be a connected space. Take a point $x_0 \in X$, set $PX = P(X, x_0) = \{\omega \in X^I \mid \omega(0) = x_0\}$ and consider the fibration $p : PX \to X$, $p(\omega) = \omega(1)$ with the fiber ΩX.

Given a natural number k, we use the short notation

$$p_k : P_k(X) \to X.$$ \hspace{1cm} (1.2)

for the map

$$\underbrace{p_X \ast_X \cdots \ast_X p_X}_{k \text{ times}} : \underbrace{PX \ast_X \cdots \ast_X PX}_{k \text{ times}} \longrightarrow X$$

where \ast_X denotes the fiberwise join over X, see e.g. [J78]. In particular, $P_1(X) = PX$.

1.3. Proposition. For every connected compact metric space X and every natural number k the following hold:

(i) $p_k : P_k(X) \to X$ is a fibration;

(ii) $\text{cat} P_k(X) < k$;

(iii) The homotopy fiber of the fibration $p_k : P_k(X) \to X$ is the k-fold join $(\Omega X)^*k$;

(iv) If $\text{cat} X = k$ and X is $(q-1)$-connected then $p_k : P_k(X) \to X$ is a $(kq - 2)$-equivalence.
(v) If X has the homotopy type of a CW-space then $P_k(X)$ does.

Proof. (i) This holds since a fiberwise join of fibrations is a fibration, see [CP86].

(ii) It is easy to see that $\text{cat}(E_1 * X E_2) \leq \text{cat} E_1 + \text{cat} E_2 + 1$ for every two maps $f_1 : E_2 \to X$ and $f_2 : E_2 \to X$. Now the result follows since $\text{cat} P_1(X) = 0$.

(iii) This holds since the homotopy fiber of p_1 is ΩX.

(iv) Recall that $A * B$ is $(a + b + 2)$-connected if A is a-connected and B is b-connected. Now, ΩX is $(q - 2)$-connected, and so the fiber $(\Omega X)^*$ of p_k is $(kq - 2)$-connected.

(v) It is a well-known result of Milnor [M59] that ΩX has the homotopy type of a CW-space. Hence, the space $(\Omega X)^*$ has it. Finally, the total space of any fibration has the homotopy type of a CW-space provided both the base and the fiber do, see e.g. [FP90, 5.4.2]. □

1.4. Theorem ([Sv66, Theorems 3 and 19]). Let $f : X \to Y$ be a map of connected compact metric spaces. Then $\text{cat} f < k$ iff there is a map $g : X \to P_k(Y)$ such that $p_k g = f$. □

§2. AN INVARIANT $r(X)$

Consider the Puppe sequence

$$P_m(X) \xrightarrow{p_m} X \xrightarrow{j_m} C_m(X) := C(p_m)$$

where $p_m : P_m(X) \to X$ is the fibration (1.2) and $C(p_m)$ is the cone of p_m.

2.1. Definition. Given a connected space X, we set

$$r(X) := \sup\{m | j_m \text{ is stably essential}\}.$$

(Recall that a map $A \to B$ is called stably essential if it is not stably homotopic to a constant map.)

2.2. Proposition. (i) $r(X) \leq \text{cat} X$ for every connected compact metric space X.

(ii) Let X be a connected CW-space, let E be a ring spectrum, and let $u_i \in \tilde{E}^*(X)$, $i = 1, \ldots, n$ be elements such that $u_1 \cdots u_n \neq 0$. Then $r(X) \geq n$. In other words, $r(X) \geq c_{E}(X)$ for every ring spectrum E.

It makes sense to remark that $r(X) = \text{cat} X$ iff X possesses a detecting element, as defined in [R96].

Proof. (i) This follows from 1.4.

(ii) Because of 1.3(v), without loss of generality we can and shall assume that $C_n(X)$ is a CW-space. We set $u = u_1 \cdots u_n \in \tilde{E}^d(X)$. Because of the cup-length estimation of the Lusternik–Schnirelmann category, and by 1.3(ii), we have $p_n^*(u) = 0$. Hence, there is a homotopy commutative diagram

$$\begin{array}{ccc}
\Sigma^\infty X & \xrightarrow{\Sigma^\infty j_n} & \Sigma^\infty C_n(X) \\
\downarrow u & & \downarrow \\
\Sigma^d E & \xrightarrow{} & \Sigma^d E.
\end{array}$$

Now, if $r(X) < n$ then $\Sigma^\infty j_n$ is inessential, and so $u = 0$. This is a contradiction. □
2.3. Lemma. Let $f : X \to Y$ be a map of compact metric spaces with Y connected, and let $j_m : Y \to C_m(Y)$ be as in 2.1. If the map $j_m f$ is essential then $\text{cat } f \geq m$. In particular, if $r(Y) = r$ and the map

$$f^\# : [Y, C_r(Y)] \to [X, C_r(Y)]$$

is injective then $\text{cat } f \geq r$.

Proof. Consider the diagram

$$
\begin{array}{ccc}
X & \xrightarrow{f} & P_m(Y) \\
\downarrow & & \downarrow p_m \\
Y & \xrightarrow{j_m} & C_m(Y).
\end{array}
$$

If $\text{cat } f < m$ then, by 1.4, there is a map $g : X \to P_m(Y)$ with $f = p_m g$, and hence $j_m f$ is inessential. This is a contradiction. \square

2.4. Theorem. Let M^n be a closed oriented connected n-dimensional PL manifold such that $\text{cat } M = \dim M \geq 4$. Then $r(M) = \text{cat } M$.

Proof. Let $\text{MSPL}_*(-)$ denote the oriented PL bordism theory. By the definition of $r(X)$, it suffices to prove that $(j_n)_* : \text{MSPL}_*(M) \to \text{MSPL}_*(C_n(M))$ is a non-zero homomorphism. Hence, it suffices to prove that $(p_n)_* : \text{MSPL}_n(P_n(M)) \to \text{MSPL}_n(M)$ is not an epimorphism. Clearly, this will be proved if we prove that $[1_M] \in \text{MSPL}_n(M)$ does not belong to $\text{Im}(p_n)_*$.

Suppose the contrary. Then there is a map $F : W \to M$ with the following properties:

1. W is a compact $(n+1)$-dimensional oriented PL manifold with $\partial W = M \sqcup V$;
2. $F|\partial W = 1_M$, $F|V : V \to M$ lifts to $P_n(M)$ with respect to the map $p_n : P_n(M) \to M$.

Without loss of generality we can assume that W is connected.

Suppose for a moment that $\pi_1(W)$ is a one-point set (i.e., the pair (W, M) is simply connected). Then (W, M) has the handle presentation without handles of indices ≤ 1, see [St68, 8.3.3, Theorem A]. By duality, the pair (W, V) has the handle presentation without handles of indices $\geq n$. In other words, $W \simeq V \cup e_1 \cup \cdots \cup e_s$ where e_1, \ldots, e_s are cells attached step by step and such that $\dim e_i \leq n - 1$ for every $i = 1, \ldots, s$. However, the fibration $p_n : P_n(M) \to M$ is $n - 2$ connected. Thus, $F : W \to M$ can be lifted to $P_n(M)$. In particular, p_n has a section. But this contradicts 1.4.

So, it remains to prove that, for every membrane (W, F), we can always find a membrane (U, G) with $\pi_1(U, G) = *$ and $G|\partial U = F|\partial W$. Here $\partial U = \partial W = M \sqcup V$ and $G : U \to M$. We start with an arbitrary connected membrane (W, F). Consider a PL embedding $i : S^1 \to \text{int } W$. Then the normal bundle ν of this embedding is trivial. Indeed, $w_1(\nu) = 0$ because W is orientable.

Since M is a retract of W, there is a commutative diagram

$$
\begin{array}{cccc}
0 & \longrightarrow & \pi_1(M) & \longrightarrow & \pi_1(W) & \longrightarrow & \pi_1(W, M) & \longrightarrow & 0 \\
\| & & \| & & \| & & \| \\
(M) & \longrightarrow & (W) & \longrightarrow & (W, M) & \longrightarrow & 0
\end{array}
$$

However, the fibration $p_n : P_n(M) \to M$ is $n - 2$ connected. Thus, $F : W \to M$ can be lifted to $P_n(M)$. In particular, p_n has a section. But this contradicts 1.4.
where the top line is the homotopy exact sequence of the pair \((W, M)\). Clearly, if \(F_*\) is monic then \(\pi_1(W, M) = *\).

Let \(\pi_1(W)\) be generated by elements \(a_1, \ldots, a_k\). We set \(g_i := F_*(a_i)a_i^{-1} \in \pi_1(W)\) where we regard \(\pi_1(M)\) as the subgroup of \(\pi_1(W)\). Then \(\text{Ker} F_*\) is the smallest normal subgroup of \(\pi_1(W)\) contained \(g_1, \ldots, g_k\). Now we realize \(g_1, \ldots, g_k\) by PL embeddings \(S^1 \to \text{int} W\) and perform the surgeries of \((W, F)\) with respect to these embeddings, see [W70]. The result of the surgery establishes us a desired membrane. \(\Box\)

2.5. Corollary. Let \(M\) be as in 2.4, let \(X\) be a compact metric space, and let \(f : X \to M\) be a map such that \(f^* : H^n(M; \pi_n(C_n(M))) \to H^n(X; \pi_n(C_n(M)))\) is a monomorphism. Then \(\text{cat} f \geq \text{cat} M\).

Notice that, in fact, \(\text{cat} f = \text{cat} M\) since \(\text{cat} f \leq \text{cat} M\) for general reasons.

Proof. We set \(\pi = \pi_n(C_n(M))\). It is easy to see that \(C_n(M)\) is simply connected. Hence, by 1.3(iv) and the Hurewicz theorem, \(C_n(M)\) is \((n - 1)\)-connected. Thus, \([M, C_n(M)] = H^n(M; \pi)\). Let \(\iota : C_n(M) \to K(\pi, n)\) denote the fundamental class. Then \(f^*\) can be decomposed as

\[
f^* : H^n(M; \pi) = [M, C_n(M)] \xrightarrow{f^*} [X, C_n(M)] \xrightarrow{\iota_*} [X, K(\pi, n)] = H^n(X; \pi).
\]

Since \(f^*\) is a monomorphism, we conclude that \(f^*\) is. Thus, by 2.3 and 2.4,

\[
\text{cat} f \geq r(M) = \text{cat} M. \quad \Box
\]

§3. The invariant \(r(M)\) and the Arnold Conjecture

Recall (see the introduction) that the Arnold conjecture claims that \(\text{Arn}(M, \omega) \geq \text{Crit} M\) for every closed symplectic manifold \((M, \omega)\).

3.1. Recollection. A flow on a topological space \(X\) is a family \(\Phi = \{\varphi_t\}, t \in \mathbb{R}\) where each \(\varphi_t : X \to X\) is a self-homeomorphism and \(\varphi_s \varphi_t = \varphi_{s+t}\) for every \(s, t \in \mathbb{R}\) (notice that this implies \(\varphi_0 = 1_X\)).

A flow is called **continuous** if the function \(X \times \mathbb{R} \to X, (x, t) \mapsto \varphi_t(x)\) is continuous.

A point \(x \in X\) is called a **rest point** of \(\Phi\) if \(\varphi_t(x) = x\) for every \(t \in \mathbb{R}\). We denote by \(\text{Rest} \Phi\) the number of rest points of \(\Phi\).

A continuous flow \(\Phi = \{\varphi_t\}\) is called **gradient-like** if there exists a continuous (Lyapunov) function \(F : X \to \mathbb{R}\) with the following property: for every \(x \in X\) we have \(F(\varphi_t(x)) < F(\varphi_s(x))\) whenever \(t > s\) and \(x\) is not a rest point of \(\Phi\).

3.2. Definition (cf. [H88], [MS95]). Let \(X\) be a topological space. We define an **index function** on \(X\) to be any function \(\nu : 2^X \to \mathbb{N} \cup \{0\}\) with the following properties:

1. (monotonicity) If \(A \subset B \subset X\) then \(\nu(A) \leq \nu(B)\);
2. (continuity) For every \(A \subset X\) there exists an open neighbourhood \(U\) of \(A\) such that \(\nu(A) = \nu(U)\);
3. (subadditivity) \(\nu(A \cup B) \leq \nu(A) + \nu(B)\);
4. (invariance) If \(\{\varphi_t\}, t \in \mathbb{R}\) is a continuous flow on \(X\) then \(\nu(\varphi_t(A)) = \nu(A)\) for every \(A \subset X\) and \(t \in \mathbb{R}\);
5. (normalization) \(\nu(\emptyset) = 0\). Furthermore, if \(A \neq \emptyset\) is a finite set which is contained in a connected component of \(X\) then \(\nu(A) = 1\).
3.3. Theorem. Let Φ be a gradient-like flow on a compact metric space X. Then
\[
\text{Rest } \Phi \geq \nu(X)
\]
for every index function ν on X.

Proof. The proof follows the ideas of Lusternik–Schnirelmann. For X connected see [H88], [MS95, p.346 ff]. Furthermore, if $X = \sqcup X_i$ with X_i connected then
\[
\text{Rest } \Phi = \sum \text{Rest}(\Phi|X_i) \geq \sum \nu(X_i) \geq \nu(X). \quad \Box
\]

3.4. Corollary. Let Φ be a gradient-like flow on a compact metric space X, let Y be a Hausdorff space which admits a covering $\{U_\alpha\}$ such that each U_α is open and contractible in Y, and let $f : X \to Y$ be an arbitrary map. Then
\[
\text{Rest } \Phi \geq 1 + \text{cat } f.
\]

Proof. Given a subspace A of X, we define $\nu(A)$ to be the minimal number m such that $A \subset U_1 \cup \cdots \cup U_m$ where each U_i is open in X and $f|U_i$ is inessential. It is easy to see that ν is an index function on X (normalization follows from the properties of Y). But $\nu(X) = 1 + \text{cat } f$, and so, by 3.3, we conclude that $\text{Rest } \Phi \geq 1 + \text{cat } f. \quad \Box$

3.5. Theorem. Let (M, ω) be a closed connected symplectic manifold with $I_\omega = 0 = I_c$, and let $\phi : M \to M$ be a Hamiltonian symplectomorphism. Then there exists a map $f : X \to M$ with the following properties:

(i) X is a compact metric space;
(ii) X possesses a gradient-like flow Φ such that $\text{Rest } \Phi = \text{Fix } \phi$;
(iii) The homomorphism $f^* : H^n(M; G) \to H^n(X; G)$ is a monomorphism for every coefficient group G.

Proof. This can be proved following [F89-2, Theorem 7]. (Note that the formulation of this theorem contains a misprint: there is typed $z^*P = 0$, while it must be typed $z^*[P] \neq 0$. Furthermore, the reference [CE] in the proof must be replaced by [F7].) In fact, Floer denoted by $z : \mathcal{S} \to P$ what we denote by $f : X \to M$, and he showed that the homomorphism $z^* : Z = H^n(P) \to H^n(\mathcal{S})$ is monic. He did it for \mathbb{Z}-coefficients, but the proof for arbitrary G is similar.

Also, cf. [H88] and [HZ94, Ch. 6].

In fact, Floer considered Alexander–Spanier cohomology, but for compact metric spaces it coincides with $H^*(-)$. In greater detail, you can find in [Sp66] an isomorphism between Alexander–Spanier and Čech cohomology and in [Hu61] an isomorphism between Čech cohomology and $H^*(-). \quad \Box$

Recall that every smooth manifold turns out to be a PL manifold in a canonical way, see e.g [Mu66].

3.6. Theorem. Let (M, ω) be a closed connected symplectic manifold with $I_\omega = 0 = I_c$ and such that $\text{cat } M = \dim M$. Then $\text{Arn}(M, \omega) \geq \text{Crit } M$.

Proof. The case $\dim M = 2$ is well known, see [F89-1], [H88], so we assume that $\dim M \geq 4$. Consider any Hamiltonian symplectomorphism $\phi : M \to M$ and the corresponding data Φ and $f : X \to M$ as in 3.5. Then, by 3.5, $\text{Fix } \phi = \text{Rest } \Phi$.
and hence, by 3.4 and 2.5, $\text{Fix} \, \phi \geq 1 + \text{cat} \, M$, and thus $\text{Arn}(M, \omega) \geq 1 + \text{cat} \, M$. Furthermore, by a theorem of Takens [T68], $\text{Crit} \, M \leq 1 + \dim \, M$. Now,

$$1 + \text{cat} \, M \leq \text{Crit} \, M \leq 1 + \dim \, M = 1 + \text{cat} \, M,$$

and thus $\text{Arn}(M, \omega) \geq \text{Crit} \, M$. □

3.7. Example (cat $M > \text{cl} \, M$). Let M be a four-dimensional aspherical symplectic manifold described in [MS95, Example 3.8]. It is easy to see that $H^1(M) = \mathbb{Z}^3$. Furthermore, $H^*(M)$ is torsion free, and so $a^2 = 0$ for every $a \in H^1(X)$. Hence, $\text{cl} \, M = 3$. However, cat $M = 4$ because $\text{cat} \, V = \dim \, V$ for every closed aspherical manifold V, see [EG57]. Moreover, for every closed symplectic manifold N we have $\text{cl}(M \times N) < \text{cat}(M \times N)$ because $\text{cat}(M \times N) = \dim \, N + 4$ according to [RO97].

§4. The invariant $r(M)$ and critical points

Let X be a CW-space and let A, B be two CW-subspaces of X. Then for every spectrum E we have the cap-product

$$\cap : E_i(X, A \cup B) \otimes \Pi^j(X, A) \to E_{i-j}(X, B),$$

see [Ad74], [Sw75]. Here $\Pi^*(-)$ denotes stable cohomotopy, i.e., $\Pi^*(-)$ is the cohomology theory represented by the sphere spectrum S.

In particular, if $D = D^k$ is the k-dimensional disk then for every CW-pair (X, A) we have the cup-product

$$\cap : E_i(X \times D, X \times \partial D \cup A \times D) \otimes \Pi^k(X \times D, X \times \partial D) \to E_{i-k}(X \times D, A \times D).$$

Let $a \in \Pi^k(D, \partial D) = \mathbb{Z}$ be a generator. We set $t = p^* a \in \Pi^k(X \times D, X \times \partial D)$ where $p : (X \times D, X \times \partial D) \to (D, \partial D)$ is the projection.

4.1. Lemma. For every CW-pair (X, A) the homomorphism

$$\cap t : E_i(X \times D, X \times \partial D \cup A \times D) \to E_{i-k}(X \times D, A \times D)$$

is an isomorphism.

In fact, it is a relative Thom–Dold isomorphism.

Proof. If $A = \emptyset$ then $\cap t$ is the standard Thom–Dold isomorphism for the trivial D^k-bundle (or the suspension isomorphism, if you want), see e.g. [Sw75]. In other words, for $A = \emptyset$ the homomorphism in question has the form $\cap t : E_i(T \alpha) \to E_{i-k}(X \times D)$ where $T \alpha$ is the Thom space of the trivial D^k-bundle α. Furthermore, the homomorphism in question has the form

$$E_i(T \alpha, T(\alpha | A)) \to E_{i-k}(X \times D, A \times D).$$

Considering the commutative diagram

$$\cdots \to E_i(T(\alpha | A)) \longrightarrow E_i(T \alpha) \longrightarrow E_i(T \alpha, T(\alpha | A)) \to \cdots$$

$$\downarrow \cap (t | A) \quad \downarrow \cap t \quad \downarrow \cap t$$

$$E_i(A \times D) \quad E_i(X \times D) \quad E_i(X \times D, A \times D)$$
with the exact rows, and using the Five Lemma, we conclude that the homomorphism in question is an isomorphism. □

4.2. Definition ([CZ83], [MO93]). Given a connected closed smooth manifold M, we define $\mathcal{G}H_{p,q}(M)$ to be the set of all C^2-functions $g : M \times \mathbb{R}^{p+q} \to \mathbb{R}$ with the following properties:

1. There exist disks $D_+ \subset \mathbb{R}^p$ and $D_- \subset \mathbb{R}^q$ centered in origin such that $\text{int}(M \times D_+ \times D_-)$ contains all critical points of g;
2. $\nabla g(x)$ points inward on $M \times \partial D_+ \times \text{int} D_-$ and outward on $M \times \text{int} D_+ \times \partial D_-$.

4.3. Definition ([CZ83], [MO93]). Given $g \in \mathcal{G}H_{p,q}(M)$, consider the gradient flow $\dot{x} = \nabla g(x)$. Let $x \cdot \mathbb{R}$ denote the solution of the flow through x. We choose D_+ and D_- as in 4.2, set $B := M \times D_+ \times D_-$. and define $S_g = S_{g,B} := \{ x \in B | x \cdot \mathbb{R} \subset B \}$.

4.4. Theorem (cf [MO93, 4.1]). For every function $g \in \mathcal{G}H_{p,q}(M)$, there is a subpolyhedron K of int B such that $S_g \subset K$ and $\text{crit } g \geq 1 + \text{cat}_B K$.

Proof. We set $S = S_g$. Because of 4.2, S is a compact subset of int B. Furthermore, S is an invariant set of the gradient flow $\dot{x} = \nabla g(x)$, and S contains all critical points of g. Given $A \subset S$, we define $\nu(A) = 1 + \text{cat}_B A$. Clearly, ν is an index function on S. Thus, by 3.3, $\nu(S) \leq \text{crit } g$. Now, let $V_1, \ldots, V_{\nu(S)}$ be a covering of S such that every V_i is open and contractible in B. Choose any simplicial triangulation of B. Then, by the Lebesgue Lemma, there exists a simplicial subdivision of B with the following property: every simplex e with $e \cap S \neq \emptyset$ is contained in some V_i. Now, we set K to be the union of all simplices e with $e \cap S \neq \emptyset$. Clearly, $1 + \text{cat}_B K \leq \nu(S)$, and thus $\text{crit } g \geq 1 + \text{cat}_B K$. Finally, we can find $K \subset \text{int } B$ because of the collar theorem. □

Let $r(M)$ be the invariant defined in 2.1.

4.5. Theorem. For every function $g \in \mathcal{G}H_{p,q}(M)$, the number of critical points of g is at least $1 + r(M)$. In particular, $\text{crit } g \geq 1 + \text{cat } M$ if M is aspherical.

Proof. Here we follow McCord–Oprea [MO93]. However, unlike them, here we use certain extraordinary (co)homology instead of classical (co)homology.

Let $r := r(M)$. We choose K as in 4.4 and prove that $\text{cat}_B K \geq r$. Consider the Puppe sequence

$$P_r(M) \xrightarrow{p_r} M \xrightarrow{j_r} C_r(M).$$

Let $e : M^+ \to C_r(M)$ be a map such that $e|M = j_r$ and e maps the added point to the base point of $C_r(M)$. Let $h : C_r(M) \to C$ be a pointed homotopy equivalence such that C is a CW-complex. We set $E = \Sigma^\infty C$ and let $u_r \in E^0(M)$ be the stable homotopy class of the map $he : M^+ \to C$. Then $u_r \neq 0$ since j_r is stably essential.

We define

$$f : K \subset B = M \times \mathbb{R}^{p+q} \xrightarrow{\text{projection}} M.$$

4.6. Lemma. If $f^* u_r \neq 0$ then $\text{cat}_B K \geq r$.

Proof. Since (p_r, j_r) is a Puppe sequence, $p_r^* u_r = 0$. Hence, the map f can’t be lifted to $P_r(M)$, and therefore the inclusion $K \subset B$ can’t be lifted to $P_r(B)$. So, cat$_B K \geq r$. The lemma is proved.
We continue the proof of the theorem. Let \(j : K \subset B \) be the inclusion. By 4.6, it suffices to prove that \(j^* : E^*(B) \to E^*(K) \) is a monomorphism. Notice that if \(Y \) is a CW-subspace of \(\mathbb{R}^N \) then there is a duality isomorphism

\[
E^0(Y) \cong E_{-N}(\mathbb{R}^N, \mathbb{R}^N \setminus Y) := E_{-N}(\mathbb{R}^N \cup C(\mathbb{R}^N \setminus Y))
\]

see e.g. [DP84]. So, it suffices to prove that the dual homomorphism

\[
D(j^*) : E_*(\mathbb{R}^N, \mathbb{R}^N \setminus B) \to E_*(\mathbb{R}^N, \mathbb{R}^N \setminus K)
\]

is monic for a certain (good) embedding \(B \to \mathbb{R}^N \).

We have the following commutative diagram:

\[
\begin{array}{ccc}
E_*(\mathbb{R}^N, \mathbb{R}^N \setminus B) & \xrightarrow{h} & E_*(\mathbb{R}^N, \mathbb{R}^N \setminus B) \\
\downarrow \cong & & \downarrow D(j^*) \\
E_*(\mathbb{R}^N, \mathbb{R}^N \setminus \text{int } B) & \to & E_*(\mathbb{R}^N, \mathbb{R}^N \setminus K) \\
\uparrow \cong & & \uparrow e' \cong \\
E_*(B, \partial B) & \xrightarrow{a^*} & E_*(B, B \setminus K)
\end{array}
\]

where all the homomorphisms except \(D(j^*) \) are induced by the inclusions. Here \(h \) is an isomorphism since the inclusion \(\text{int } B \to B \) is a homotopy equivalence (the space \(B \setminus \{\text{collar}\} \) is a deformation retract of \(\text{int } B \)). Furthermore, \(e \) is an isomorphism since \((B, \partial B) \) and \((\mathbb{R}^N, \mathbb{R}^N \setminus \text{int } B) \) are cofibered pairs, while \(e' \) is an isomorphism by Lemma 3.4 from [DP84]. So, \(D(j^*) \) is monic if \(a_* \) is. Since \(B \setminus K \subset B \setminus S \), it suffices to prove that \(E_*(B, \partial B) \to E_*(B, B \setminus S) \) is a monomorphism.

Let \(B_+ = M \times \partial D_+ \times D_- \), and let \(B_- = M \times D_+ \times \partial D_- \). Furthermore, let \(A_+ := \{ x \in B \mid x \cdot \mathbb{R}_- \in B \} \) and let \(A_- := \{ x \in B \mid x \cdot \mathbb{R}_+ \in B \} \). Then \(B_+ \cap A_- = \emptyset = B_- \cap A_+ \), and so there are the inclusions \(i_+ : (B, B_+) \to (B, B \setminus A_-) \) and \(i_- : (B, B_-) \to (B, B \setminus A_+) \). It turns out to be that both \(i_+ \) and \(i_- \) are homotopy equivalences, [CZ83, Lemma 3].

Let \(t \in \Pi^m(B, B_-) \) be the class as in 4.1, and let \(t' := (i_-)^{-1}(t) \). Since \(S = A_+ \cap A_- \), we have the commutative diagram

\[
\begin{array}{ccc}
E_{i}(B, \partial B) & \longrightarrow & E_{i}(B, B \setminus S) \\
\cong \downarrow \cap t & & \downarrow \cap t' \\
E_{i-q}(B, B_+) & \xrightarrow{\cong} & E_{i-q}(B, B \setminus A_-)
\end{array}
\]

where the left map is an isomorphism by 4.1 and the bottom map is the isomorphism \((i_+)_* \). (Generally, \((B, B \setminus S) \) is not a CW-pair, but nevertheless in our case the map \(\cap t' \) is defined, see [DP84, 3.5].) Thus, the top homomorphism is injective.

Finally, if \(M \) is aspherical then \(\text{cat } M = \dim M \), [EG57], and so \(r(M) = \text{cat } M \) by 2.4. \(\square \)

References

[Ad74] J.F. Adams; *Stable Homotopy and Generalised Cohomology*. The Univ. of Chicago Press, Chicago 1974.
[Ar89] V.I. Arnold: Mathematical Methods in Classical Mechanics. Springer, Berlin Heidelberg New York 1989

[CP86] M. Clapp, D. Puppe: Invariants of Lusternik–Schnirelmann type and the topology of critical sets. Trans. Amer. Math. Soc. 298, 2 (1986), 603–620

[C76] C. Conley: Isolated invariant sets and the Morse index. CBMS Regional Conf. Ser. in Math. 38, Amer. Math. Soc., Providence, R. I., 1976

[CZ83] C. Conley, E. Zehnder: The Birkhoff–Lewis Fixed Point Theorem and a Conjecture of V.I. Arnold, Invent. Math. 73 (1983), 33-49

[Co98] O. Cornea: Some properties of the relative Lusternik–Schnirelmann category. Proc. of the homotopy year of the Fields Institute, to appear

[DP84] A. Dold, D. Puppe: Duality, trace and transfer. Proceedings of the Steklov Inst. of Math. 4 (1984), 85–103

[EG57] S. Eilenberg and T. Ganea: On the Lusternik–Schnirelmann category of abstract groups, Ann. of Math. 65 (1957), 517–518

[F89-1] A. Floer: Cuplength estimates on Lagrangian intersections, Ann. of Math. 120 (1989), 575–611

[F89-2] A. Floer: Symplectic fixed points and holomorphic spheres, Commun. Math. Phys. 120 (1989), 575–611

[Fox41] R. Fox: On the Lusternik–Schnirelmann category, Ann. of Math. 42 (1941), 333–370

[FP90] R. Fritsch, R.A. Piccinini: Cellular structures in topology. Cambridge Univ. Press, Cambridge, 1990

[H88] H. Hofer: Lusternik–Schnirelmann theory for Lagrangian intersections. Annales de l’inst. Henri Poincaré–analyse nonlineaire, 5 (1988), 465–499

[HZ] H. Hofer, E. Zehnder: Symplectic Invariants and Hamiltonian Dynamics, Birkhäuser, Basel, 1994

[Hu61] P. Huber: Homotopical cohomology and Čech cohomology. Math. Annalen 144 (1961), 73–76

[J78] I.M. James: On category, in the sense of Lusternik–Schnirelmann. Topology, 17 (1978), 331–349

[LO96] H.V Le, K. Ono: Cup-length estimate for symplectic fixed points. in: (Contact and Symplectic Geometry (ed. by C. Thomas), London Math. Soc. Lecture Notes. Ser., Cambridge Univ. Press, 1996

[MO93] C. McCord, J. Oprea: Rational Lusternik–Schnirelmann category and the Arnol’d conjecture for nilmanifolds. Topology, 32, 4 (1993), 701–717

[MS95] D. McDuff, D. Salamon: Introduction to Symplectic Topology, Clarendon Press, Oxford 1995

[M59] J. Milnor: On spaces having the homotopy type of a CW-complex. Trans. Amer. Math. Soc. 90 (1959), 272–280

[Mu66] J. Munkres Elementary Differential Topology, Ann. of Math. Studies 54, Princeton Univ. Press, Princeton, New Jersey 1966

[R98] Yu. B. Rudyak: On category weight and its applications, to appear in Topology, (1998)
Yu. B. Rudyak, J. Oprea: *On the Lusternik–Schnirelmann Category of Symplectic Manifolds and the Arnold Conjecture*, Preprint, available as dg-ga/9708007.

J.-C. Sikorav: *Points fixes d’une application symplectique*. Jour. Diff. Geom., 25 (1985), 49–79.

E.H. Spanier: *Algebraic Topology*. McGraw-Hill, New York 1966.

J. Stallings: *Lectures on Polyhedral Topology*. Tata Institute of Fundamental Research, Bombay 1968.

A. Svarc: *The genus of a fiber space*. Amer. Math. Soc. Translations 55 (1966), 49–140.

R.W. Switzer: *Algebraic Topology – Homotopy and Homology*. Springer, Berlin Heidelberg New York 1975.

F. Takens: *The minimal number of critical points of a function on a compact manifold and the Lusternik–Schnirelmann category*, Invent. Math. 6 (1968), 197–244.

C.T.C. Wall: *Surgery on compact manifolds*. Academic Press, New York & London 1970.

Mathematisches Institut, Universität Heidelberg, Im Neuenheimer Feld 288, D-69120 Heidelberg 1, Germany

E-mail address: july@mathi.uni-heidelberg.de