Immunologic Effect of Attenuated Salmonella enteric Serovar Choleraesuis C501 Expressing Recombinant Mycoplasma hyopneumoniae P97R1 Adhesin and NrdF Antigens in Mice

Hao-Yong Zou1,3, Xiao Fei Wang1,3, Feng-Ying Ma1,2, Pin Chen1,2, Wen-Tao Li1,2, Xin-Jun Liu1,3, Yang Wang1,2 and Qi-Gai He1,2*

1National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
2Laboratory of Animal Infectious Diseases, College of Animal Science & Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China
3Wuhan Institute of Biological Products Co., Ltd., Hubei 430070, China

Abstract

The immunogenicity of the P97 adhesin repeat region R1 (P97R1) and the ribonucleotide reductase R2 subunit (NrdF) antigens of Mycoplasma hyopneumoniae were evaluated as vaccines in mice. Mice were immunized orally or injected intramuscularly (IM) with attenuated Salmonella enterica serovar Choleraesuis strain C501 harboring a prokaryotic expression vector encoding P97R1 and NrdF (pYA97R1N). Local and systemic immune responses were analyzed in vaccinated mice. The results showed that P97R1N-specific serum IgG and IgA antibodies were detected in serum and lung samples. P97R1-specific serum IgG and IgA antibodies were also detected in serum, but in lung sample only P97R1-specific IgG response was induced. ELISA assays demonstrated that IFN-Î· and IL-4 production was induced in cultured supernatants from splenocytes stimulated with specific antigens in vitro. M. hyopneumoniae whole cell-specific antibody was induced in vaccinated mice and a good immunogenic effect by this vaccine was indicated. Importantly, animals vaccinated by IM had higher levels of P97R1N-specific IgG and IgA than those vaccinated by oral route. Furthermore, mice immunized with the C501 vaccine elicited significantly higher levels of P97R1N-specific IgA and IgG in lungs and serum (P<0.05), and IFN-Î· and IL-4, than those who received the live M. hyopneumoniae vaccine. Taken together, these results suggest that IM vaccination with the C501 vaccine might provide an effective method of inducing an immune response to M. hyopneumoniae.

Keywords: M. hyopneumoniae; Splenocytes; Serovar choleraesuis

Introduction

Mycoplasma hyopneumoniae is the causative agent of porcine enzootic pneumonia (PEP) that reduces growth rate [1]. Colonization also predisposes the host to more severe infections from secondary pathogens [2]. Vaccines of whole-cell and subunit M. hyopneumoniae have only a partial protective effect against primary or secondary infection [3-5]. Additionally, the cost of producing the vaccines is very high. Therefore development of an improved vaccine is desirable.

The ribonucleotide reductase R2 subunit (NrdF) gene fragment of M. hyopneumoniae has a protective effect on M. hyopneumoniae infection; it induces NrdF-specific lung IgA in mice [6], and significantly reduced lung lesion scores in pigs [7].

The adhesin P97 is a potential antigen of M. hyopneumoniae, enabling the bacteria to adhere to respiratory ciliated epithelial cells [8]. A repeat region of P97 (P97R1) has been shown to include both cilium- and antibody-binding sites [9,10] and is reported to function independently from other P97 regions [11].

P97R1 induces P97R1-specific serum IgG but not IgA in both pigs and mice [12,13]. Studies have demonstrated that a combined NrdF and P97 vaccine (pYA97R1N) can provide a partial protection in vaccinated animals [7,14,15].

Recent studies showed that attenuated Salmonella-derived vaccines induce both humoral and cell-mediated immunity responses [16-18]. Particularly, S. enterica serovar Choleraesuis strain C500 is highly immunogenic and safe, and has been widely used in China for over 40 years to prevent piglet paratyphoid [19,20]. In the present work, we combined two M. hyopneumoniae antigens, P97R1 and NrdF (P97R1N), into S. enterica serovar Choleraesuis C501 [21]. Therefore, a recombinant attenuated S. enterica vaccine was evaluated by oral and intramuscular (IM) routes in a mouse model. The immunogenicity of S. enterica strain C501 expressing P97R1N protein was also investigated.

Materials and Methods

Bacterial strains

M. hyopneumoniae HNYY wild type strain isolated from tissues on primary porcine lung (Laboratory stock). Attenuated S. enterica serovar Choleraesuis strain C501 was constructed with the help of our colleagues [21]. Escherichia coli X7213 and JM105 were obtained from the Agricultural Microbiology Laboratory, Huazhong Agricultural University, China.

Growth conditions and isolation of genomic DNA of M. hyopneumoniae

M. hyopneumoniae was grown in Friis modified mycoplasma broth (FMMB) as described previously [22]. The culture was grown at 37°C at 5% CO2 until acidity was observed. Genomic DNA was extracted using a Quantum Prep AquaPure Genomic DNA Kit (Bio-Rad).

*Corresponding author: Qi-Gai He, State Key Laboratory of Agricultural Microbiology, Laboratory of Animal Infectious Diseases, College of Animal Science & Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, China. Tel: +86 27 87286974; Fax: +86 2787281795; E-mail: heqigai@yahoo.com

Received December 18, 2012; Accepted January 27, 2013; Published January 29, 2013

Citation: Zou HY, Wang XF, Ma FY, Chen P, Li WT, et al. (2013) Immunologic Effect of Attenuated Salmonella enteric Serovar Choleraesuis C501 Expressing Recombinant Mycoplasma hyopneumoniae P97R1 Adhesin and NrdF Antigens in Mice. J Vaccines Vaccin 4: 174. doi:10.4172/2157-7560.1000174

Copyright: © 2013 Zou HY, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Construction of recombinant plasmids

P97 and NrdF genes were based on the published sequences (GenBank accession no. NC_006360). To construct the pYAP97R1N plasmid, the p97R1 fragment was obtained by PCR from strain HNYY genomic DNA using the N-terminal primer 5'-AAAGATACTCCAGTGAAAGAGAAGA-3' and the C-terminal primer 5'-TAAGGATCTCTTGAATGAGAAAACC-3'. The N-terminal primer contains an EcoRI site (underlined), and the C-terminal primer contains a BamHI site (underlined). The 388-bp amplified fragment, digested with restriction enzymes EcoRI and BamHI, was then cloned into the EcoRI and BamHI sites of expression vector pYA3493 [23], resulting in pYAP97R1. Similarly, the 288-bp fragment specifying the NrdF of the Western blot result showed that the expressions of P97R1 and P97R1N in samples of serum and lung homogenate from individual mice. The antibodies against P97R1N protein were measured using a P97R1N-based ELISA we developed and the M. hyopneumoniae. Antibody Test Kit was obtained from R&D. Similarly, we constructed a P97R1-based ELISA method to assay P97R1-specific antibodies. Each sample well of polystyrene 96-well flat-bottomed microtiter plates (Kangjia) was coated with 20 µg/mL of purified P97R1N or P97R1 in 0.1 M carbonate buffer (pH 9.6). The coated plates were incubated at 37°C for 1 h, followed by an overnight incubation at 4°C. Free binding sites were blocked with a blocking buffer (PBS, 0.1% Tween 20, and 5% BSA). Samples of serum and lung homogenate were then added to each well and incubated at 37°C for 30 min. After four washes, plates were treated with biotinylated goat anti-mouse IgG (Southern Biotechnology) for sera and lung homogenates, at 37°C for 30 min, followed by six washes. The substrate solution containing 3,3',5,5'-tetramethylbenzidine (TMB) and H2O2 (50 µL) was then added to each well and incubated at room temperature in the dark for approximately 10 min; the catalytic reaction was stopped by adding 50 µL 1% SDS. The optical density was read at 630 nm using an ELISA reader.

Analysis of IFN-Ψ and IL-4

The spleens of mice from each vaccine group were aseptically removed and pooled into 10 mL Dulbecco's Modified Eagle Medium (DMEM, Gibco) containing 100 U/mL penicillin-streptomycin on ice. Splenocytes were isolated using a cell constrictor (Becton Dickinson) and centrifuged at 800 g for 10 min at room temperature. The pellet was resuspended in 10 mL of 150 mmol NH4Cl for 10 min on ice. The cells were then washed with DMEM and centrifuged. The washed cell pellet was resuspended in 10 mL DMEM containing 100 U/mL penicillin-streptomycin and 10% fetal bovine serum, and then diluted to 4×10^6 cells mL^-1. Two milliliters were added to each well of a 12-well plate. Mouse splenocytes were stimulated in vitro with 4 µg/mL of purified P97R1N. The plate was then incubated in a 37°C incubator in the presence of 5% CO2 for 72 h. The splenocyte culture supernatants were collected and stored at -20°C, or -80°C long-term. Mouse cytokine ELISA kits (R&D) were used according to the manufacturer's instructions. IL-4 and IFN-Ψ productions were measured as key T-helper1 (Th1) and T-helper 2 (Th2) response, respectively.

Statistical analysis

Values for antibody titers and cytokine levels were compared by one-way analysis of variance (ANOVA) using the computing software Statistical Package for the Social Sciences (SPSS). Results were considered significant at probability (P) values of 0.05.

Results

Expression of P97R1N and P97R1 in E. coli

Western blot result showed that the expressions of P97R1 and P97R1N in E. coli JM105 were induced with or without IPTG in Luria-Bertani (LB) broth culture at mid-exponential phase. The P97R1 and P97R1N fusion protein were detected by anti-GST-HRP antibody by

Animal experiments

Groups of 6-week-old BALB/c mice (ten mice per group) were immunized IM or orally with the recombinant vaccine C501 (pYAP97R1N) (4×10^8 c.f.u. in 200 µL PBS) on day 0 and day 14, respectively. Mice were also treated with live M. hyopneumoniae vaccine 168 (1×10^9 c.f.u in 200 µL PBS) (Tianbang Bio-Industry, China) or 200 µL of PBS, for positive and negative controls, respectively. Blood samples were collected on days 14, 28 and 42 for serological tests. On day 42, lung samples and splenocytes were collected. The lung homogenate was prepared as previously described [21].
Expression of P97R1N in *S. enterica* serovar Choleraesuis C501

S. enterica serovar Choleraesuis C501 was constructed by a method described in our previous work [21]. The recombinant *S. enterica* serovar Choleraesuis C501 had a normal growth rate and expressed the P97R1N protein with an approximate molecular mass of 25 kDa, consistent with the calculated size of P97R1N (Figures 2a and 2b). To examine the stability of plasmids pYAP97R1N in C501 in *vitro*, C501 cells containing pYAP97R1N were cultured with a daily passage of 1:1000 dilutions for five consecutive days in LB broth. Cells obtained from the last-day culture expressed amounts of the 25 kDa P97R1N that were similar to those from the first day (Figure 2c), suggesting the stable expression of P97R1N without rearrangements.

Serum antibody titers to P97R1, P97R1N, and *M. hyopneumoniae* whole-cell

The kinetics of the responses of vaccinated mice were monitored for P97R1- and P97R1N-specific serum IgG and IgA, and the *M. hyopneumoniae* whole-cell specific antibody. These responses were compared with those of PBS- and live-*M. hyopneumoniae* 168 vaccine-treated mice. The kinetics of the responses of vaccinated mice to P97R1-specific serum IgG and IgA were analyzed. A low level of P97R1-specific IgA response was observed in all groups vaccinated with the C501 (pYA-P97R1N) or live 168 vaccine IM and orally (Figure 3a).

However, only the IM immunization with the C501 group induced a significantly higher specific-P97R1 IgG antibody response than that of the live 168 vaccine group on days 42 (P<0.05; Figure 3b). When recombinant P97R1N protein was used in the ELISA assay, there was a low level of serum anti-P97R1N IgG and IgA antibody induced by primary immunization with C501 (pYA97R1N) or vaccine strain 168 given IM on day 14. However after booster immunization, serum samples showed a tremendous increase in the levels of P97R1N-specific IgG and IgA. A similar trend but only half the levels of IgA were observed in orally vaccinated mice on days 28 and 42. It was noted that IM immunization with the C501 induced a significantly higher level of serum IgA antibody than oral immunization (P<0.05), with titers of 133, 6826, and 1066 vs. 106, 3840, and 426 on days 14, 28, and 42, respectively (Figure 3c). Similarly, IM immunization with the C501 (pYAP97R1N) induced a significantly higher level (P<0.05) of serum IgG than oral immunization, with titers of 533, 1706, and 8533 vs. 66, 106, and 213, on days 14, 28, and 42, respectively (Figure 3d). The IM and oral immunization with the C501 (pYA97R1N) groups induced a significantly higher specific-P97R1N antibody response than with live 168 vaccine on days 14, 28, and 42 (P<0.05; Figures 3c and 3d). Sera from all the groups, apart from the PBS group, showed serum antibody responses against *M. hyopneumoniae* whole-cell lysate (Table 1). The IM and oral immunization with the C501 groups induced higher anti-*M. hyopneumoniae* antibody responses than with live 168 vaccine on days 14 and 42, and they were significantly higher than the control PBS group (P<0.05).

Antibody responses to P97R1N and P97R1 in lung homogenates

All immunized mice survived, and no signs of disease in the
immunized mice were observed during the entire experimental period. The P97R1N-specific IgA and IgG antibody responses of vaccine-inoculated mice were assessed 6 weeks following the initial immunization and compared with those of PBS- and live- \textit{M. hyopneumoniae} 168 vaccine mice (Figures 3a and 4b). Immunization with the C501 (pYAP97R1N) IM injection elicited higher IgA (titer, 8533) and IgG (titer, 1066) response, while oral immunization elicited less IgA (titer, 1066) and IgG (titer, 26) response in lungs. In contrast, immunization with live \textit{M. hyopneumoniae} 168 vaccine elicited minimal levels of IgA (66 and 133) and IgG (26 and 16) by IM and oral routes, respectively.

The C501 (pYAP97R1N) induced significantly higher titers of the P97R1N-specific IgG and IgA than live \textit{M. hyopneumoniae} 168 vaccine in local immunity ($P<0.05$). However, when measuring the P97R1-specific antibody responses, only minimal level of IgG was induced in both groups with IM route (Figure 5).

Measurement of cytokine production by ELISA

Splenocytes isolated from pooled spleens from each group of five mice were stimulated with the P97R1N fusion protein and cultured in duplicate \textit{in vitro} for 72 h. The culture supernatants were removed and used for determination of cytokine production using mouse cytokine ELISA. Both the C501 (pYAP97R1N) and vaccine strain 168 groups produced high levels of P97R1N-induced IFN-\textgamma and IL-4 (Table 2) when compared with the PBS control group. This demonstrated that both immunization C501 (pYAP97R1N) and live \textit{M. hyopneumoniae} 168 vaccine induced cell-mediated and humoral responses, although this result was not statistically significant for any of these groups.

Discussion

Vaccination of attenuated, live recombinant vaccine with a bacterial expression system is a promising method for antigen delivery. \textit{S. enterica} serovar Choleræausis strain C500 is an avirulent vaccine strain and has been used widely to prevent piglet paratyphoid in China for over 40 years [19,20]. Recently, strain C500 was used as a delivery system for foreign antigens and for the development of a safe and protective live bacterial vaccine vector [21]. In this study, we investigated the immunogenicity of the recombinant C501 (pYAP97R1N) vaccine
expressing P97R1 and NrdF genes of *M. hyopneumoniae*. All mice immunized with live *M. hyopneumoniae* 168 or C501 vaccine survived during the entire experimental period. Immunization with the C501 (pYA97R1N) elicited higher IgA and IgG responses in lungs by i.m. rather than oral route and the C501 induced significantly higher titers of the P97R1N-specific IgG and IgA than live *M. hyopneumoniae* 168 vaccine. Our results were similar to Zhao's group that live avirulent *Salmonella choleraesuis* C501 (pYA-F1P2) induced a better-specific IgA and IgG by subcutaneous (s.c.) rather than oral vaccination [21]. Although the vector pYA3493 could lead to secretion of the recombinant P97R1N protein into the periplasm of *M. hyopneumoniae* whole-cell-specific antibody as compared with the C501 or live 168 vaccines generated a significant level of P97R1-specific serum and lung IgG, but not P97R1-specific IgA. However, both P97R1N-specific IgG and IgA were significantly induced in the sera or lungs of mice vaccinated with both this C501. Previous studies used *S. typhimurium* aroA to express single Adh [13] and NrdF [7,27,32] antigens. Mice immunized orally with *S. typhimurium* aroA strain SL3261 expressing the *M. hyopneumoniae* NrdF fragment induced a significant NrdF-specific IgA in the lungs [27]. IgA blocks *M. hyopneumoniae* attachment to the mucosal surface, and therefore NrdF is believed to play a key role in protection [33,34]. However, orally immunized mice with *aroA*-attenuated *S. typhimurium* strain expressing NrdF, P97R1, or nrdF-adh genes failed to elicit an IgA serologic immune response [31,32,35] developed a system in which the C-terminal region of the P97 adhesin of *M. hyopneumoniae* (regions R1 and R2) is expressed and exposed on the surface of an attenuated strain of *Erysipelothrix rhusiopathiae* YS-1. However, this vaccine did not produce significant levels of anti-R1 IgA in the respiratory tract [36] constructed the R1 region of the P97 adhesin of *M. hyopneumoniae* (R1) fused to the B subunit of the heat-labile enterotoxin of *Escherichia coli* (LTB), and it was able to induce specific P97R1-IgA antibody. The attenuated *S. enterica* Serovar typhimurium aroA SL3261 expressed a recombinant *M. hyopneumoniae* NrdF fragment fused to ß-galactosidase and was able to elicit significant NrdF-specific IgA antibody in lung [27]. However, this NrdF vaccine cannot induce P97R1-specific IgA. Both immunization with the C501 and live *M. hyopneumoniae* 168 vaccine elicited *M. hyopneumoniae* whole-cell-antigen-specific responses, and the C501 groups (IM and oral) elicited higher P97R1N-specific IgA and IgG responses than the live 168 vaccine groups (P<0.05). When routes of vaccination were compared, the IM injection with C501 induced higher than oral inoculation for serum IgG anti-P97R1 antibody, and lungs IgA antibody. Similarly, it induced significant higher serum IgG anti-P97R1 antibody than oral inoculation. This observation is supported indirectly by a previous study [21] in which mice vaccinated subcutaneously with *S. enterica* serovar *Choleraesuis* strain C500 induced higher levels IgA in lungs than oral vaccination.

A significant level of IFN-ß was induced in splenocytes from immunized mice stimulated with the purified P97R1N protein. This was in agreement with IFN-ß production from splenocytes induced by NrdF or P97R1 [32]. Splenocytes from immunizing mice with C501 or live 168 vaccines produced higher levels of IFN-ß and IL-4 than control PBS groups when stimulated with P97R1N, indicating that both vaccines induced humoral immune and cell-mediated immunities. Furthermore, the immunized mice with C501 (pYA97R1N) elicited higher levels of IFN-ß and IL-4 than live *M. hyopneumoniae* 168 vaccination by IM.

Studies have shown the importance of cellular and humoral immune responses induced by vaccination [37-39] or experimental infection [40]. Antibodies induced locally in various animal species with *M. pneumoniae* provide a protection against these diseases [41-43]. Cellular and humoral immune responses can reduce the lesion of pigs inoculated with *M. hyopneumoniae* vaccine [1,39].

Table 2: Cytokine induction by 3 P97R1N proteins in the splenocyte culture.

Groups	IL-4 (pg/ml)	IFN-ß (pg/ml)
PBS	56.1 ± 4.8	60.6 ± 0.8
C501 (pYA97R1N) i.m.	161.2 ± 6.8	147.0 ± 11.6
C501 (pYA97R1N) orally	172.4 ± 0.5	94.1 ± 8.3
168 strain i.m.	119.9 ± 2.4	126.1 ± 2.0
168 strain orally	67.8 ± 4.1	123.5 ± 5.0

Figure 5: P97R1-specific immune response in lungs of vaccinated mice. Lung homogenates were tested by ELISA for IgG antibodies against P97R1. Data with different letters (a, b) indicate significant differences between groups (p < 0.05).
recombinant attenuated S. enterica vaccine strain C501 is more suitable than oral immunization for eliciting immune responses. The C501 expressing P97R1 antigen induced P97R1-specific IgA and Th1 and Th2 responses by IM route. Therefore, the C501 delivery system may be an attractive approach for prevention of infectious diseases such as PEP, in which Th1 and Th2 responses play important roles in disease protection [44-48].

Acknowledgements

We thank Roy Curtiss III (Department of Biology, Washington University, St. Louis, MO) for the generous donation of strains and plasmids. This study was supported by grants from the National Swine Industry Technology System of China (No. ncyxy-009).

References

1. Thacker EL, Thacker BJ, Kuhn M, Hawkins PA, Waters WR (2000) Evaluation of local and systemic immune responses induced by intramuscular injection of a Mycoplasma hyopneumoniae bacterin to pigs. Am J Vet Res 61: 1384-1389.
2. Marcie C, Gottschalk M, Morvan H, Fabel C, Macdc F, et al. (2009) Experimental infection of SPF pigs with Actinobacillus pleuropneumoniae serotype 9 alone or in association with Mycoplasma hyopneumoniae. Vet Microbiol 135: 283-291.
3. Budde JR, O'Hara AJ (2005) Enzootic pneumonia of pigs--a diagnostic dilemma. Aust Vet J 83: 134-139.
4. Haesebroeck F, Pasmans F, Chiers K, Maes D, Ducattelle R, et al. (2004) Efficacy of vaccines against bacterial diseases in swine: what can we expect? Vet Microbiol 100: 255-268.
5. Murphy D, Van Alstine WG, Clark KL, Abregts S, Knox K (1993) Aerosol vaccination of pigs against Mycoplasma hyopneumoniae infection. Am J Vet Res 54: 1874-1880.
6. Fagan PK, Djordjevic SP, Eamens GJ, Chin J, Walker MJ (1996) Molecular characterization of a ribonucleotide reductase (nrdF) gene fragment of Mycoplasma hyopneumoniae and assessment of the recombinant product as an experimental vaccine for enzootic pneumonia. Infect Immun 64: 1060-1064.
7. Fagan PK, Walker MJ, Chin J, Eamens GJ, Djordjevic SP (2001) Oral immunization of swine with attenuated Salmonella typhimurium arOA SL326 expressing a recombinant antigen of Mycoplasma hyopneumoniae primes the immune system for a NrdF specific secretory IgA response in the lungs. Microb Pathog 30: 101-110.
8. Zhang Q, Yong TF, Ross RF (1995) Identification and characterization of a Mycoplasma hyopneumoniae adhesin. Infect Immun 63: 1013-1019.
9. Hsu T, Minion FC (1998) Identification of the cillum binding epitope of the Mycoplasma Hyopneumoniae P97 adhesin. Infect Immun 66: 4762-4766.
10. Hsu T, Artlishkin S, Minion FC (1997) Cloning and functional analysis of the P97 swine cillum adhesin gene of Mycoplasma hyopneumoniae. J Bacteriol 179: 1317-1323.
11. Minion FC, Adams C, Hsu T (2000) R1 region of P97 mediates adherence of Mycoplasma hyopneumoniae to swine cilia. Infect Immun 68: 3056-3060.
12. Chen JR, Liao CW, Mao SJ, Weng CN (2001) A recombinant chimeric composed of repeat region R1R1 of Mycoplasma hyopneumoniae adhesin with Pseudomonas exotoxin A in vivo evaluation of specific IgG response in mice and pigs. Vet Microbiol 80: 347-357.
13. Chen AJF, FV FR, Forbes-Faulkner J, Daggard GE, Mukkur TK (2006) Evaluation of the immunogenicity of the P97 R1R1 adhesin of Mycoplasma hyopneumoniae as a mucosal vaccine in mice. J Med Microbiol 55: 923-929.
14. Shimoji Y, Oishi E, Muneta Y, Nosaka H, Morii Y (2003) Vaccine efficacy of the attenuated Erysipelothrix rhusiopathiae VS-19 expressing a recombinant protein of Mycoplasma hyopneumoniae P97 adhesin against mycoplasmal pneumonia of swine. Vaccine 21: 532-537.
15. Ogawa Y, Oishi E, Muneta Y, Sano A, Hikono H, et al. (2009) Oral vaccination against mycoplasmal pneumonia of swine using a live Erysipelothrix rhusiopathiae vaccine strain as a vector. Vaccine 27: 4543-4550.
16. Gahan ME, Webster DE, Wesselingh SL, Strugnell RA (2007) Impact of plasmid stability on oral DNA delivery by Salmonella enterica serovar Typhimurium. Vaccine 25: 1476-1483.
17. Garmory HS, Leary SE, Griffin KF, Williamson ED, Brown KA, et al. (2003) The use of live attenuated bacteria as a delivery system for heterologous antigens. J Drug Target 11: 471-479.
18. Xu F, Ulmer JB (2003) Attenuated salmonella and Shigella as carriers for DNA vaccines. J Drug Target 11: 481-488.
19. Fang XW, Li YL, Huang CB, Zheng M, Feng WD, et al. (1981) Live vaccine against swine paratyphoid from the attenuated smooth strain C500 of Salmonella choleraesuis. Chin J Anim Vet Sci 12: 99-106.
20. Huang C, Feng W, Xue M (1981) Oral administration of the live vaccine against swine paratyphoid. Scientia Agricultura Sinica 6
21. Zhao Z, Xue Y, Wu B, Tang X, Hu R, et al. (2008) Subcutaneous vaccination with attenuated Salmonella enterica serovar Choleraesuis C505 expressing recombinant filamentous hemagglutinin and pertactin antigens protects mice against fatal infections with both S. enterica serovar Choleraesuis and Bordetella bronchiseptica. Infect Immun 76: 2157-2163.
22. Friis NF (1975) Mycoplasmas of the swine--a review. Nord Vet Med 27: 329-336.
23. Kang HY, Srinivasan J, Curtis R (2002) DNA Immune responses to recombinant pneumococcal PspA antigen delivered by live attenuated Salmonella enterica serovar typhimurium vaccine. Infect Immun 70: 1739-1749.
24. Guan KL, Dixon JE (1991) Eukaryotic proteins expressed in Escherichia coli: an improved thrombin cleavage and purification procedure of fusion proteins with glutathione S-transferase. Anal Biochem 192: 262-267.
25. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular Cloning: a Laboratory Manual, (2nd edn), Cold Spring Harbor, NY.
26. Huang H, Zhou R, Fan H, Dan H, Chen M, et al. (2006) Generation of monoclonal antibodies and epitope mapping of ApoV/A of Actinobacillus pleuropneumoniae. Mol Immunol 43: 2130-2134.
27. Fagan PK, Djordjevic SP, Chin J, Eamens GJ, Walker MJ (1997) Oral immunization of mice with attenuated Salmonella typhimurium arOA expressing a recombinant Mycoplasma hyopneumoniae antigen (NrdF). Infect Immun 65: 2502-2507.
28. Fachado A, Rodriguez A, Angel SO, Pinto DC, Vila I, et al. (2003) Protective effect of a naked DNA vaccine cocktail against lethal toxoplasmosis in mice. Vaccine 21: 1327-1335.
29. Hooper JW, Custer DM, Thompson E (2003) Four-genecombination DNA vaccine protects mice against a lethal vaccinia virus challenge and elicits appropriate antibody responses in nonhuman primates. Virology 306: 181-195.
30. McGrurk P, Mills KH (2000) A regulatory role for interleukin 4 in differential inflammatory responses in the lung following infection of mice primed with Th1- or Th2-inducing pertussis vaccines. Infect Immun 68: 1383-1390.
31. Matic JN, Teny TD, Van Bockel D, Maddocks T, Timworth D, et al. (2009) Development of non-antibiotic-resistant, chromosomally based, constitutive and inducible expression systems for araA attenuated Salmonella enterica Serovar Typhimurium. Infect Immun 77: 1817-1826.
32. Chen AJF, FV SR, Forbes-Faulkner J, Daggard GE, Mukkur TK (2006) Comparative immunogenicity of M. hyopneumoniae NrdF encoded in different expression systems delivered orally via attenuated S. typhimurium araO in mice. Vet Microbiol 114: 262-269.
33. Williams RC, Gibbons RJ (1972) Inhibition of bacterial adherence by secretory immunoglobulin A: a mechanism of antigen disposal. Science 177: 697-699.
34. Roth JA (1993) Characterization of protective antigens and the protective immune response. Vet Microbiol 37: 193-199.
35. Shimoji Y, Oishi E, Kitajima T, Muneta Y, Shimizu S, et al. (2002) Erysipelothrix rhusiopathiaeYS-1 as a live vaccine vehicle for heterologous protein expression and intranasal immunization of pigs. Infect Immun 70: 226-232.
36. Conceição FR, Moreira AN, Dellagostin OA (2006) A recombinant chimeric composed of R1 repeat region of Mycoplasma hyopneumoniae P97 adhesin with Escherichia coli heat-labile enterotoxin B subunit elicits immune response in mice. Vaccine 24: 5734-5743.
37. Kristensen B, Paroz P, Nicollet J, Wanner M, de Weck AL (1981) Cell-mediated and humoral immune response in swine after vaccination and natural infection with Mycoplasma hyopneumoniae. Am J Vet Res 42: 784-788.
38. Kishima M, Ross RF, Kuniyasu C (1985) Cell-mediated and humoral immune
response to Mycoplasma hyopneumoniae in pigs enhanced by dextran sulfate. Am J Vet Res 46: 456-462.

39. Messier S, Ross RF, Paul PS (1990) Humoral and cellular immune responses of pigs inoculated with Mycoplasma hyopneumoniae. Am J Vet Res 51: 52-58.

40. Adegboye DS (1978) Attempts to demonstrate cell-mediated immune response during Mycoplasma suis pneumoniae infection of pigs. Res Vet Sci 25: 323-330.

41. Brunner H, Greenberg HB, James WD, Horswood RL, Couch RB, et al. (1973) Antibody to Mycoplasma pneumoniae in nasal secretions and sputa of experimentally infected human volunteers. Infect Immun 8: 612-620.

42. Howard CJ, Gourlay RN, Taylor G (1980) Immunity to Mycoplasma bovis infections of the respiratory tract of calves. Res Vet Sci 28: 242-249.

43. Taylor G, Howard CJ (1980) Class-specific antibody responses to Mycoplasma pulmonis in sera and lungs of infected and vaccinated mice. Infect Immun 29: 1160-1168.

44. Galan JE, Nakayama K, Curtiss R 3rd (1990) Cloning and characterization of the asd gene of Salmonella typhimurium: use in stable maintenance of recombinant plasmids in Salmonella vaccine strains. Gene 94: 29-.

45. Maes D, Verdonck M, Deluyker H, de Kruijf A (1996) Enzootic pneumonia in pigs. Vet Q 18: 104-109.

46. Maes D, Segales J, Meyns T, Sibila M, Pieters M, et al. (2008) Control of Mycoplasma hyopneumoniae infections in pigs. Vet Microbiol 126, 297-309.

47. Maes D, Deluyker H, Verdonck M, Castryck F, Milly C, et al. (1999) Effect of vaccination against Mycoplasma hyopneumoniae in pig herds with an all-in/all-out production system. Vaccine 17: 1024-1034.

48. Nakayama K, Kelly SM, Curtiss III R (1988) Construction of an ASD+ expression-cloning vector: stable maintenance and high level expression of cloned genes in a Salmonella vaccine strain. Nature Biotechnology 6: 693-697.