Genetic diversity of the conserved motifs of six bacterial leaf blight resistance genes in a set of rice landraces

Basabdatta Das1, Samik Sengupta2, Manoj Prasad3 and Tapas Kumar Ghose1*

Abstract

Background: Bacterial leaf blight (BLB) caused by the vascular pathogen Xanthomonas oryzae pv. oryzae (Xoo) is one of the most serious diseases leading to crop failure in rice growing countries. A total of 37 resistance genes against Xoo has been identified in rice. Of these, ten BLB resistance genes have been mapped on rice chromosomes, while 6 have been cloned, sequenced and characterized. Diversity analysis at the resistance gene level of this disease is scanty, and the landraces from West Bengal and North Eastern states of India have received little attention so far. The objective of this study was to assess the genetic diversity at conserved domains of 6 BLB resistance genes in a set of 22 rice accessions including landraces and check genotypes collected from the states of Assam, Nagaland, Mizoram and West Bengal.

Results: In this study 34 pairs of primers were designed from conserved domains of 6 BLB resistance genes; Xa1, xa5, Xa21, Xa21(A1), Xa26 and Xa27. The designed primer pairs were used to generate PCR based polymorphic DNA profiles to detect and elucidate the genetic diversity of the six genes in the 22 diverse rice accessions of known disease phenotype. A total of 140 alleles were identified including 41 rare and 26 null alleles. The average polymorphism information content (PIC) value was 0.56/primer pair. The DNA profiles identified each of the rice landraces unequivocally. The amplified polymorphic DNA bands were used to calculate genetic similarity of the rice accessions in all possible pair combinations. The similarity among the rice accessions ranged from 18% to 89% and the dendrogram produced from the similarity values was divided into 2 major clusters. The conserved domains identified within the sequenced rare alleles include Leucine-Rich Repeat, BED-type zinc finger domain, sugar transferase domain and the domain of the carbohydrate esterase 4 superfamily.

Conclusions: This study revealed high genetic diversity at conserved domains of six BLB resistance genes in a set of 22 rice accessions. The inclusion of more genotypes from remote ecological niches and hotspots holds promise for identification of further genetic diversity at the BLB resistance genes.

Keywords: Genetic diversity, BLB resistance, DNA markers, Indian landraces, Rice

Background

In rice more than 70 diseases caused by fungi, bacteria, viruses and nematodes are prevalent (Oryza sativa). The most devastating of them are the ones caused by Magnaporthe grisea (rice blast), Xanthomonas oryzae pv. oryzae (bacterial leaf blight, BLB) and Rhizoctonia solani (sheath blight). Improved agricultural practices, nutritional supplements, application of fungicides, bactericides and resistant cultivars had been used for disease control but no durable solution was available due to the breakdown of the resistance by high pathogenic variability. Hence, the search for resistant rice genotypes, particularly among the landraces, is in progress. According to Harlan [1] the extensive diverse array of rice landraces available worldwide are probable storehouses for novel alleles for many qualitative and quantitative traits. Harlan’s study emphasized that each landrace has certain unique properties or characteristics; such as early maturity, adaptation to particular soil types, resistance or tolerance to biotic and abiotic stresses, and in the end usage of the

* Correspondence: tapasghoselab@gmail.com
1Division of Plant Biology, Bose Institute, Main Campus, 93/1 A.P.C. Road, 700009 Kolkata, West Bengal, India
Full list of author information is available at the end of the article

© 2014 Das et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
grains. India is home to many such unique landraces and the ones found in the ecological hotspots of the Indo-Burma region, and the Indian states of West Bengal, Assam, Nagaland, Mizoram and Manipur deserve special mention [2].

BLB caused by the vascular pathogen *Xanthomonas oryzae* pv. *oryzae* (Xoo) is one of the most serious diseases leading to crop failure in rice growing countries including Korea, Taiwan, Philippines, Indonesia, Thailand, India and China. *Xanthomonas* (from two Greek words; xanthos, meaning ‘yellow’, and monas, meaning ‘entity’) is a large genus of gram-negative and yellow-pigmented bacteria. Xoo enters rice leaf typically through the hydathodes at the leaf margin, multiplies in the intercellular spaces of the underlying epithelial tissue, and moves to the xylem vessels to cause systemic infection [3,4].

Genes conferring resistance to the major classes of plant pathogens have been isolated from a variety of plant species and are termed ‘R genes’ [5]. Comparison of the structural features and the sequences of the predicted proteins from the cloned ‘R genes’ from various plants have led to the identification of common domains which are conserved and show little variation. These conserved domains can be divided into five broad classes. They are the nucleotide-binding domain (NBD), the leucine rich repeat domain (LRR), the coiled coil domain (CC), the serine/threonine protein kinase domain and the detoxifying enzymes [5]. A total of 38 [6] BLB resistance genes (R genes) have been identified in rice, including Xa1, Xa2, Xa3/Xa26, Xa4, xa5, Xa6, Xa7, xa8, xa9, Xa10, Xa11, Xa12, xa13, Xa14, xa15, Xa16, Xa17, Xa18, xa19, xa20, Xa21, Xa22(t), Xa23, xa24(t), Xa25(Xa25(t), Xa25, xa26(t), Xa27, xa28(t), Xa29(t), Xa30(t), x31(t), Xa32(t), Xa33(t), Xa34(t), Xa35(t), Xa36(t). The recessive resistance genes include x35, x8, xa9, xa13, xa15, xa19, xa20, xa24, Xa25/Xa25(t), xa26(t), xa28(t), xa31(t), xa33(t), and xa34(t). Of the 37, 10 BLB resistance (R) genes have been mapped on rice chromosomes 4 (Xa1, Xa2, Xa12, Xa14 and Xa25), chromosome 5 (xa5), chromosome 6 (Xa7), chromosome 8 (xa13), and chromosome 11 (Xa3, Xa4, Xa10, Xa21, Xa22, and Xa23). The chromosomal locations for the rest of the BLB resistance genes still remain elusive. These R genes are known to act in a gene-for-gene manner and are the main sources for genetic improvement of rice for resistance to Xoo. Ten of the recessive R genes; xa5 [7], xa8 [8], xa13 [9], xa24 [10], xa26, xa28 [11] and xa32 [12] occur naturally and confer race-specific resistance. The other 3, xa15 [13], xa19 and xa20 [14], were created by mutagenesis and each confers a wide spectrum of resistance to Xoo [11,13,15].

Six BLB resistance genes, Xa1, xa5, Xa21, Xa21(A1), Xa26 and Xa27, have been cloned, sequenced and characterized. In 1967, Sakaguchi [16] identified Xa1 conferring a high level of specific resistance to race 1 strains of Xoo in Japan and mapped it on rice chromosome 4. The gene xa5 is a naturally occurring mutation that is most commonly found in the Aus-Boro group of rice varieties from the Bangladesh region of Asia [7,17]. The predicted protein product of Xa21 carries LRRs in the extracellular region and a serine/threonine kinase domain in the cytoplasm [18]. Xa21 is a member of a multigene family located on rice chromosome 11 [18,19]. Seven Xa21 gene family members, designated A1, A2, B, C, D, E, and F, were cloned and grouped into two classes based on DNA sequence similarity [18]. Xa26 is a dominant gene coding for a LRR receptor kinase protein. It is mapped to the long arm of chromosome 11 [11,20] and was found in cultivar Mingui 63 which showed resistance against a number of Xoo strains both at seedling and at adult stage suggesting that it was not developmentally regulated [14]. The Xa27 locus of rice conferred resistance to diverse strains of Xoo, including PXO99A, a strain isolated from rice variety IRBB27 by map-based cloning. Xa27 is an intron-less gene and encodes a protein of 113 amino acids.

Natural selection in the ecological niches of the world has generated landraces that are highly diverse for various quality, quantity and disease resistance traits controlling loci. It is important to identify and maintain this polymorphism to widen the genetic base of the commercially cultivated varieties and to reduce pathogen pressure. According to Glaszman et al. [21] study of local sequence variation reveals the multiple examples of mutation that have taken place due to adaptation towards specific drifts and selection pressure. This adaptive neo diversity superimposes on the ancestral diversity inherited from wild relatives and forms an important section in the passport data of various accessions. It is a tedious task to put the existing natural variation to commercial use. As a step towards that process Nordborg and Weigel [22] suggested the use of genome-wide association (GWA) mapping which associates the phenotype of interest to DNA sequence variation present in an individual’s genome determined by polymorphism at various loci. GWA mapping gives much higher resolution than linkage mapping because they involve studying associations in natural populations and reflect adaptive recombination events. This kind of mapping is very useful in self fertilized species like *A. thaliana* and rice [23]. Further, in view of the challenge of assessing the diversity in large germplasm collections, the core collection concept was developed wherein diversity analysis will first be concentrated on a representative manageable sample before extending the study to a broad range of accessions [24]. Such programs have been undertaken for rice and chickpea. In accordance with such postulates the objective of this study is to analyze a small set of phenotypically variable rice accessions from BLB disease hotspot for getting a
birds-eye view of the existing diversity in 6 BLB resistant gene loci of those accessions.

Reports of diversity analysis of the BLB resistance genes are available. Ullah et al., [24] identified the presence of the genes $Xa4$, $Xa5$, $Xa7$, and $xa13$ in 52 basmati landraces and five basmati cultivars using Polymerase Chain Reaction (PCR) based methods. They also found that the gene $Xa7$ was most prevalent among the cultivars and landraces while the genes $xa5$ and $xa13$ were confined to landraces only. Ten basmati landraces from their study had multiple resistance genes. Arif et al., [25] identified the BLB resistance gene $Xa4$ in 49 Pakistani rice lines. Lee et al., [11] identified three rice cultivars with resistance to various Phillipino Xoo strains. The cultivar Nep Bha Bong had a new recessive gene, designated as $xa26(t)$ for moderate resistance to races 1, 2, and 3 and resistance to race 5. The cultivar Arai Raj had a dominant gene designated as $Xa27(t)$ for resistance to race 2. The cultivar Lota Sail had a recessive gene designated as $xa28(t)$ for resistance to race 2. Bimolata [26] analyzed the sequence variation in the functionally important domains of $Xa27$ across the *Oryza* species and found synonymous and non-synonymous mutations in addition to a number of InDels in non-coding regions of the gene. To the best of our knowledge, there is no report available on diversity of BLB resistance loci of rice landraces from the Indian states of Assam, Arunachal Pradesh, Nagaland, Mizoram, Manipur, Tripura and West Bengal.

In this study 34 pairs of primers were designed from conserved domains of the six BLB resistance genes; $Xa1$, $Xa5$, $Xa21$, $Xa21(A1)$, $Xa26$ and $Xa27$. The designed primer pairs were used to generate PCR based polymorphic DNA profiles to detect and elucidate the genetic diversity of the six genes in the 22 rice accessions collected from West Bengal and the North Eastern States of India.

Methods

Plant materials

A total of 22 rice genotypes, including landraces and check genotypes, were collected from rice research stations in India. The names of the accessions, source, category and disease phenotype are given in Table 1.

Designing primers from conserved domains of 6 BLB resistance genes

Thirty four pairs of primers were designed from publicly available sequences (NCBI) of conserved domains of 6 BLB resistance genes using the software BatchPrimer3 (probes.pw.usda.gov/batchprimer3). The conserved domains are: P loop, kinase 2, trans-membrane domain and LRR domain of the $Xa1$ gene; TF IIA domain of the $xa5$ gene; receptor kinase domain of the $Xa26$ gene; the total DNA sequence of the $Xa27$ gene; signal, LRR, charged and kinase domain of the $Xa21$ gene; and LRR, SNAP O11 and kinase domain of the $Xa21(A1)$ gene. These primer pairs were named according to the initials of the first author and the corresponding author and were numbered from BDTG1 to BDTG34. The primer pairs were designed only from the exons such that the length of the amplified products was limited to 500 to 700 base pairs. Details of the primer names, respective resistance genes, representing protein domains, original genotypes from which the resistance genes were identified, number of exons and introns, chromosomal location in base pairs (bp) of each primer pairs and the expected length of the amplification product from the original genotype in base pairs (bp) are given in Table 2.

Table 1 Name of the landraces, their source, category, disease phenotype and number of accessions

Landrace name	Source	Category	Disease phenotype*
Bangalakshmi	ATC	WBNA	Susceptible
Bangladeshi Patnai	ATC	WBNA	Susceptible
Hhasamanik	ATC	WBNA	Susceptible
Chamromoni	RRS	WBNA TR	Susceptible
Dudherswar	SARF	WBNA TR	Susceptible
Gobindobhog	RRS	WBA	Susceptible
Katarihog	RRS	WBA	Susceptible
Pusa Basmati	ATC	EB	Susceptible
Raghusail	RRS	WBNA	Susceptible
Talmari	RRS	WBNA	Susceptible
Taror Basmati	ATC	TB	Susceptible
Aijung	AAU	NA ASM	Susceptible
Boro chhaiyamora	AAU	NA ASM	Susceptible
Bhu	NBPGR	NA MZ	Susceptible
Bhuromoluu	NBPGR	NA MZ	Susceptible
IC-524502	NBPGR	NA NG	Susceptible
IC-524526	NBPGR	NA NG	Susceptible
Kala Boro dhan	NBPGR	AR ASM	Susceptible
Lal Binni	AAU	AR ASM	Susceptible
Morionghou	NBPGR	NA MN	Susceptible
IR-72	RRS	HYV	Resistant
TN-1	RRS	ICV	Susceptible

AR ASM – Aromatic landraces from Assam, NA MN – Non aromatic landraces from Manipur, NA MZ – Non aromatic landraces from Mizoram, NA NG – Non aromatic landraces from Nagaland, ICV – International check variety, HYV – High yielding variety, WBN TR – West Bengal non aromatic Table Rice, EB – Evolved Basmati, TB – Traditional Basmati, AAU – Assam Agriculture University, ATC – Agricultural Training Centre, RB – Rice Research Station, NBPGR – National Bureau of Plant Genetic Resources, SARF – State Agricultural Research Farm, Disease Phenotype* – disease phenotype as deduced from traditional and farmer’s knowledge and as documented by Deb (2006).
Isolation of rice genomic DNA and PCR amplification

Total genomic DNA was isolated from ten 3 day-old rice seedlings using the method of Walbot [27] with modifications. The DNA was PCR amplified using a protocol standardized in our lab and used in our previous paper [28].

Polyacrylamide gel electrophoresis and allele scoring

The PCR products were resolved in 6% polyacrylamide gel using the procedure described by Sambrook et al. [29]. The gel staining, visualization and assignment of alleles were done according to protocols in our previous paper [28]. Null alleles were assigned when no amplifica-

Table 2 Details of the primers used

Primer name	Gene	Protein	Exon number	Start (bp)	End (bp)	Forward primer	Reverse primer	
BDTG 1	Xa1	P Loop	59.8	3113	3621	5’-ATAATCCTACACACGCAGG - 3’	5’TGACCAAGGCGACCTTGTC - 3’	
BDTG 2	Kinase 2 & 3	60	2	3602	4031	5’-GGGGTCTTGTTGAGCCAGG - 3’	5’-GGCCCTTGAGGTTGCTTGA - 3’	
BDTG 3	TRANS MEM	59.5	3	4681	5200	5’TTCATCTCTGCTTGTTGTCGC - 3’	5’TATATCTGCTTGTGCTTGA - 3’	
BDTG 4	P Loop	59.8	3	5167	5696	5’-TTGATGTTGACACCCCTGAGG - 3’	5’-ACCTCTGCTTGTTGCTTGA - 3’	
BDTG 5	P Loop	59.8	3	5710	6587	5’-CATCTGCTTGTTGCTTGA - 3’	5’-GGGCCTTGCTTGTTGCTTGA - 3’	
BDTG 6	LRR	60.2	3	6261	8399	5’-TTTGGACTTGCTTGTGCTTGA - 3’	5’-TGACCTTATCAGGAACTTTTC - 3’	
BDTG 7	LRR	60.2	3	8370	9840	5’-AGATGGAATGTTGATCCTTTCG - 3’	5’-GGAGGATACCTCCAATTTTC - 3’	
BDTG 8	LRR	59.5	4	25981	26700	5’-GATGCTGCTTGTCCTAGC - 3’	5’-GATGCTCAGGAACTTTTC - 3’	
BDTG 9	LRR	60.9	4	26662	27231	5’-CTCAAAATTGTCGCTGCTGCCC - 3’	5’TCCCGCCATGATGATGCTTGC - 3’	
BDTG 10	LRR	60	4	27182	27917	5’-CTGCCCTGCTTCACCTC - 3’	5’-ATGACTGGACCCATTTT - 3’	
BDTG 11	Xa5	TF II A	59.9	406048	406306	5’TCCGCTCTTGCTTTGACTTG - 3’	5’TGACCATCATTGTTGAGG - 3’	
BDTG 12	Xa12	RECP	60.2	411394	411535	5’TGTGCTTCTCAGGAGGAGC - 3’	5’AGATTGAATCAAGGACCC - 3’	
BDTG 13	Xa26	Kinase 2 & 3	59.5	1500	2094	5’TCCGCTCTTGCTTTGACTTG - 3’	5’TCCGCTCTTGCTTTGACTTG - 3’	
BDTG 14	LRR	60.1	1	2043	2695	5’-TCCGCTCTTGCTTTGACTTG - 3’	5’TCCGCTCTTGCTTTGACTTG - 3’	
BDTG 15	LRR	59.6	1	2716	3322	5’-ACCTCCTCGACCTCGGAGC - 3’	5’TCCGCTCTTGCTTTGACTTG - 3’	
BDTG 16	LRR	59.6	1	3320	3956	5’-ACCTCCTCGACCTCGGAGC - 3’	5’TCCGCTCTTGCTTTGACTTG - 3’	
BDTG 17	LRR	59.8	1	3968	4492	5’-ATGCTGACTGACGTTGTGAGC - 3’	5’AGATGCTGACTGACGTTGTGAGC - 3’	
BDTG 18	LRR	59.9	1	4574	5141	5’-AGATGCTGACTGACGTTGTGAGC - 3’	5’AGATGCTGACTGACGTTGTGAGC - 3’	
BDTG 19	Xa27	LRR	59.9	1518	1908	5’-ACCTCCTCGACCTCGGAGC - 3’	5’TCCGCTCTTGCTTTGACTTG - 3’	
BDTG 20	Xa21	Signal	59.7	8	208	208	5’-ACCTCCTCGACCTCGGAGC - 3’	5’TCCGCTCTTGCTTTGACTTG - 3’
BDTG 21	LRR	61.8	2	260	760	5’-ACCTCCTCGACCTCGGAGC - 3’	5’TCCGCTCTTGCTTTGACTTG - 3’	
BDTG 22	LRR	59.7	2	723	1314	5’-ACCTCCTCGACCTCGGAGC - 3’	5’TCCGCTCTTGCTTTGACTTG - 3’	
BDTG 23	LRR	59.6	2	1279	1880	5’-ACCTCCTCGACCTCGGAGC - 3’	5’TCCGCTCTTGCTTTGACTTG - 3’	
BDTG 24	LRR	59.8	3	1913	2620	5’-ACCTCCTCGACCTCGGAGC - 3’	5’TCCGCTCTTGCTTTGACTTG - 3’	
BDTG 25	LRR	60.1	4 & 5	2651	3919	5’-ACCTCCTCGACCTCGGAGC - 3’	5’TCCGCTCTTGCTTTGACTTG - 3’	
BDTG 26	Xa21(A1)	LRR	59.8	1	4802	5082	5’-ACCTCCTCGACCTCGGAGC - 3’	5’TCCGCTCTTGCTTTGACTTG - 3’
BDTG 27	LRR	59.6	1	5051	5459	5’-ACCTCCTCGACCTCGGAGC - 3’	5’TCCGCTCTTGCTTTGACTTG - 3’	
BDTG 28	LRR	59.6	1	5406	5803	5’-ACCTCCTCGACCTCGGAGC - 3’	5’TCCGCTCTTGCTTTGACTTG - 3’	
BDTG 29	LRR	59.9	1	5763	6173	5’-ACCTCCTCGACCTCGGAGC - 3’	5’TCCGCTCTTGCTTTGACTTG - 3’	
BDTG 30	LRR	60.2	1	6140	6531	5’-ACCTCCTCGACCTCGGAGC - 3’	5’TCCGCTCTTGCTTTGACTTG - 3’	
BDTG 31	LRR	59.9	1	6484	6889	5’-ACCTCCTCGACCTCGGAGC - 3’	5’TCCGCTCTTGCTTTGACTTG - 3’	
BDTG 32	LRR	59.9	1	6859	7422	5’-ACCTCCTCGACCTCGGAGC - 3’	5’TCCGCTCTTGCTTTGACTTG - 3’	
BDTG 33	LRR	60.2	2	7395	7610	5’-ACCTCCTCGACCTCGGAGC - 3’	5’TCCGCTCTTGCTTTGACTTG - 3’	
BDTG 34	Kinase	59.7	3	7718	8081	5’-ACCTCCTCGACCTCGGAGC - 3’	5’TCCGCTCTTGCTTTGACTTG - 3’	

Gene - Resistance genes from which the primers were designed; Protein - Protein coded by the DNA sequence amplified by the corresponding primer; Ann Temp - Annealing Temperature of the respective primer pair; Exon no. - Exon of the original gene from which primer pair was designed; Start - expected start point of the amplification product with respect to the original gene sequence, End - Expected end point of the amplification product with respect to the original gene sequence.
Calculation of polymorphism information content (PIC) value
The polymorphism information content (PIC) value for the primer pairs was calculated using the formula given by Anderson et al. [32] for self pollinated species

\[PIC_i = 1 - \sum_{j=1}^{n} P_{ij}^2, \]

where \(P_{ij} \) is the frequency of the \(j \)th allele for the \(i \)th marker.

Genetic diversity analysis using PCR amplification profiles
A genetic similarity matrix between all possible combinations of pairs of rice accessions was made using Jaccard’s co-efficient [33] and the NTSYS-pc software package, version 2.02e, [34]. This similarity matrix was used to make a phylogenetic tree using the Unweighted Pair-Group Method of Arithmetic average (UPGMA) and Neighbor-Joining (NJ) module of the NTSYS-pc. Support for clusters was evaluated by bootstrap analysis using WinBoot software [35] through generating 1,000 samples by re-sampling with replacement of characters within the combined 1/0 data matrix.

Sequencing and analysis of rare alleles
The DNA was eluted from the bands of rare alleles using QIAquick Gel Extraction Kit following manufacturer’s protocol. The eluted DNA was sequenced through outsourcing and the sequences were submitted to NCBI. For finding the homology and conserved domains, the sequences were BLAST [36] searched against the non-redundant database of NCBI using default parameters. Apart from NCBI BLAST, homology search for the obtained sequences were done using the “blastn” option of the Rice Annotation Database (rice.plantbiology.msu.edu).

Results
Analysis of PCR profiles
The summary of the data of the PCR profiles of the 22 accessions using the 34 pairs of primers is given in Table 3. All the 34 primer pairs produced polymorphic profiles and a total of 140 alleles were identified including 41 rare alleles. There were no unique alleles detected. The number of alleles ranged from 2 to 8 with an average of 4.06 alleles/primer pair. The primer pairs amplifying various regions of the LRR domain (Table 2) on an average produced 4.6 alleles/primer pair. Primer pairs amplifying the regions of kinase domain on an average produced 3.8 alleles/primer pair.

Marker name	Mol. wt. min.	Mol. wt. max.	PIC value	Number of alleles	R	N
BDTG1	295	310	0.17	2 1 2 1 0 0		
BDTG2	301	405	0.43	4 4 2 1 1 2		
BDTG3	495	511	0.43	2 2 2 1 0 0		
BDTG4	331	335	0.30	2 2 2 1 0 0		
BDTG5	395	405	0.32	4 2 3 1 0 0		
BDTG6	485	505	0.24	2 1 2 1 0 0		
BDTG7	495	505	0.40	2 2 2 1 0 0		
BDTG8	490	500	0.35	2 2 1 2 0 0		
BDTG9	400	410	0.62	4 4 3 1 0 0		
BDTG10	490	893	0.71	5 4 3 1 2 3		
BDTG11	158	285	0.61	4 4 2 1 1 1		
BDTG12	256	766	0.50	5 5 3 2 2 1		
BDTG13	495	968	0.43	4 4 2 1 1 0		
BDTG14	480	490	0.61	4 2 4 1 0 0		
BDTG15	490	500	0.58	2 2 2 2 0 0		
BDTG16	485	500	0.50	2 2 2 2 0 0		
BDTG17	485	500	0.50	2 2 2 2 0 0		
BDTG18	339	395	0.79	8 3 4 2 4 1		
BDTG19	230	240	0.70	6 4 5 3 2 3		
BDTG20	180	210	0.73	7 5 3 2 2 0		
BDTG21	441	530	0.76	7 5 5 2 2 1		
BDTG22	492	561	0.63	4 3 2 1 2 2		
BDTG23	490	578	0.78	7 7 5 2 0 0		
BDTG24	510	678	0.72	5 5 4 1 1 0		
BDTG25	170	185	0.72	4 3 3 1 1 0		
BDTG26	248	515	0.79	8 4 6 2 4 0		
BDTG27	335	451	0.73	4 4 4 1 2 2		
BDTG28	359	415	0.62	3 2 3 1 1 2		
BDTG29	345	387	0.79	8 3 6 1 5 1		
BDTG30	410	420	0.66	5 2 3 2 2 3		
BDTG31	282	384	0.48	2 1 2 1 2 0		
BDTG32	490	503	0.30	2 2 2 1 0 0		
BDTG33	210	267	0.58	4 4 2 1 1 0		
BDTG34	279	511	0.58	4 4 2 1 2 0		

Mol. wt. min – minimum molecular weight obtained from the alleles of the concerned primer; Mol. wt. max - maximum molecular weight obtained from the alleles of the concerned primer; WB – West Bengal; NE – North Eastern States; C – Check accessions.
The PIC value ranged from 0.16 for the least informative primer pair BDTG1 to 0.79 for the most informative primer pairs BDTG18, BDTG26 and BDTG29. The average PIC value was 0.56/primer pair.

Diversity in the six loci in this set of rice accession

The diversity generated by the 34 primer pairs in this set of rice accession is given in Additional file 1: Table S1. Briefly the highest variation was found in the locus Xa21 (A1) between 4802 bp to 5082 bp (exon1, LRR domain, BDTG26) and between 5763 bp to 6173 bp (exon 1, LRR domain, BDTG29); and in the Xa26 locus between 4574 bp to 5141 bp (exon1, BDTG18), producing 8 alleles each. Three regions in the locus Xa21, from 8 bp to 208 bp (exon 1, A1), from 206 bp to 760 bp (exon 2, the LRR domain, BDTG21) and from 1279 bp to 1880 bp (exon 2, the LRR domain, BDTG23) produced 7 alleles each. Although the Xa27 locus was small, 392 bp long (1518 bp to 1909 bp), the primer pairs BDTG19 generated 6 alleles including 3 rare 2 null alleles. The next most variable region was in the Xa21 locus between 27182 bp to 27917 bp (exon 4, LRR domain, BDTG10), which produced 5 alleles. The region of TFIIA domain from 406048 bp to 406306 bp of locus xas5 (exon1, BDTG 11) produced 4 alleles including one rare allele and one null allele. The other most variable regions identified within the different loci are given in Additional file 1: Table S1.

Genetic diversity within the different categories of landraces

The West Bengal accessions produced a total of 107 alleles with an average of 3.15 alleles/primer pair. In this group, the highest number of alleles was generated by the primer pair BDTG23, while only one allele each was produced by BDTG6 and BDTG31. The North Eastern accessions produced a total of 100 alleles with an average of 2.94 alleles/primer pair. While the highest number of 6 alleles was generated by BDTG29, only 1 allele each was produced by BDTG8 and BDTG26. The check varieties comprised one resistant and one susceptible accession. Out of the 41 rare alleles, 8 were produced by the resistant West Bengal landrace Bhansamik and 7 each were produced by the resistant landraces Raghusail and Bangaldehi Patnai. Four rare alleles were identified in the Assamese aromatic landrace Lal binni and 2 rare alleles each were identified in the landraces Aijong, IC524526, IC524502 and Gobindobhog.

Dendrogram from the genetic similarity values

In the dendrogram the similarity between the rice accessions ranged from 18% to 89% and on this basis they were divided into 2 major clusters A and B (Figure 1). Cluster A separated out at 18% level of similarity and consisted of Raghusail and Bhansamik, both of which were resistant accessions from West Bengal. Cluster B was subdivided into 4 different sub clusters. Cluster 1

![Dendrogram showing genetic relationship among 22 rice accessions based on Jaccard's genetic similarity matrix derived from 140 alleles at 6 BLB resistance gene loci.](image)
segregated out at 53% level of similarity and included the North Eastern accessions Aijong, Boro Chhaiyamora, IC524502, IC524526 and Lal Binni along with the West Bengal accession Gobindobhog. All the accessions in cluster 1 were BLB susceptible. Cluster 2 segregated at 28.8% level of similarity and included the West Bengal accessions Dudherswar, Bangladesh Patnai, Talmar, Bangalaxmi and Taraori Basmati, all of which were susceptible. Cluster 3 separated out at 28% level of similarity and consisted of Morianghou, Kala boro dhan, Buhritmiut and Bhu from the North Eastern States along with Chamormoni – an accession from West Bengal. Cluster 4 consisted of the accessions Pusa Basmati 1, BLB resistant genes of from the North East were homologous to sequences of the accession from West Bengal and IR72 - a resistant check. Cluster 4 consisted of the accessions Pusa Basmati 1, the susceptible check TN1, Kataribhog - a resistant accession from West Bengal. Cluster 4 consisted of the accessions Pusa Basmati 1, the susceptible check TN1, Kataribhog - a resistant accession from West Bengal.

Identification of conserved domains and retrotransposons from the DNA sequences of rare alleles using NCBI and rice genome annotation project database

A total of 23 conserved domains were identified from the 40 rare alleles. The details of homology search and the conserved domain corresponding to the sequence of each rare allele is given in Table 4. Fifteen of the domains were homologous to LRRs. These domains included receptor like kinases (found in 9 sequences), LRR N-terminal domains (found in 4 sequences) and Leucine-Rich Repeats ribonuclease inhibitor (RI)-like subfamily (found in 2 sequences).

The sequences with accession numbers HR575926 and HR575924 (both derived from landrace Raghusail) and HR806763 (derived from landrace IC524526) were homologous to the NB-ARC domain-containing protein having a Pfam hit with BED zinc finger domain (zf-BED). According to Arvind [37] BED-type zinc-finger domain [named after BAEF (boundary element-associated factor)] [38] and DREF (DNA replication-related element-binding factor), [39] is found in the Oryza Xa1 gene. HR614233 and HR575927 were significantly homologous to transcription initiation factor IIA gamma chain, having a Pfam hit with TFIIA gamma_N. Another sequence HR614234 was homologous to aspartic protease nepenthesin-1 precursor having a Pfam hit with Asp or Aspartic protease family. Sequence JM426580 was significantly homologous to mRNA sequence of the gene Xa27 of Oryza sativa indica. The sequences HR806767 and HR806746 were found to have conserved domains homologous to sugar transferase, and NodB domain of the carbohydrate esterase 4 superfamily.

Conserved domain searches using the Rice Annotation Database revealed the presence of mobile DNA elements within the sequence of 4 of the rare alleles. HQ832768, the sequence of a rare allele from the West landrace Bhasamanik was homologous to an unclassified retrotransposon protein having a Pfam hit of Plant_tran or plant transposases. The sequence HR806765 from the Mizoram landrace Buhritmiut showed homology with a putative transposon protein, CACTA, En/Spm sub-class of Oryza sativa subsp. japonica. According to UniProt database this transposon protein has a molecular function of helicase and hydrolase. JM426578 from the Assam landrace Aijong was significantly homologous to a putative retrotransposon protein of the Ty3-gypsy type. HR806755 from the Assam landrace Lal Binni was significantly homologous to a putative unclassified retrotransposon protein.

Discussion

The Eastern and North Eastern regions of India are one of the richest reserves of bio-diversity in the country [40]. The inherent variation in the ecotypes of rice,
Primer name	Gene	Sequenced rare allele	GenBank Acc No.	L	Sequence producing the most significant alignment	E-value	Name of conserved domain present	Domain ID	E-value
BDTG2	Xa1	Raghusail	HR575926	301	Oryza sativa Japonica Group cDNA	2e-135	BED zinc finger	c102703	2.74e-16
BDTG10	Xa1	Raghusail	HR575924	893	Oryza sativa indica mRNA for XA1	3e-124	-	-	-
ICS24526			HR806763	701	Oryza sativa indica mRNA for XA1	0.0	-	-	-
BDTG11	Xa5	Raghusail	HR614233	158	Oryza sativa Indica Group cultivar IRGC 27045 xA5 gene	4e-56	-	-	-
BDTG12	Xa5	Raghusail	HR575927	631	Oryza sativa Indica Group cultivar IRGC 27045 xA5 gene	2e-135	-	-	-
Bangladesh Patnai			HR614234	766	Oryza sativa Indica Group cultivar IRGC 27045 xA5 gene	2e-135	-	-	-
BDTG13	Xa26	Bhasamanik	HQ832768	968	Oryza sativa isolate BDTG13- Bhsa receptor kinase (Xa26) gene,	0.0	-	-	-
BDTG18	Xa26	Lal Binni	HR806757	539	Oryza sativa (japonica cultivar-group) bacterial blight resistance protein XA26 (Xa26) gene, complete cds	0.0	-	-	-
Buhrimtui			HR806765	536	-	-	-	-	-
Desi dhan			HR806766	532	Oryza sativa (japonica cultivar-group) bacterial blight resistance protein XA26 (Xa26) gene, complete cds	0.0	-	-	-
Raghusail			HR575921	490	Oryza rufipogon receptor kinase-like protein, partial cds	0.0	Leucine-rich repeat receptor-like protein kinase	PLN00113	1.23e-05
BDTG 19	Xa27	Aijong	JM426578	638	-	-	-	-	-
Morianghou			JM426580	367	Oryza officinalis ecotype Ic203740 bacterial blight resistance protein Xa27 (Xa27) gene, complete cds	0.0	-	-	-
BDTG20	Xa21	Aijong	HR806747	542	Oryza sativa japonica Group Os11g0559200 mRNA	5e-65	Leucine-rich repeat N-terminal domain	cl08472	1.90e-07
Bangladesh Patnai			HR806741	188	Oryza sativa Indica Group Xa21 gene for receptor kinase-like protein, complete cds, cultivar II you 8220	9e-68	Leucine-rich repeat N-terminal domain	cl08472	1.77e-06
BDTG21	Xa21	ICS24526	HR806762	530	Oryza rufipogon Xa21F pseudogene, strain:W149	0.0	Leucine-rich repeat receptor-like protein kinase	PLN00113	2.08e-17
Bhasamanik			HR806751	451	Oryza rufipogon Xa21F pseudogene, strain:W149	0.0	Leucine-rich repeat receptor-like protein kinase	PLN00113	7.76e-17
BDTG22	Xa21	Bangladesh Patnai	HR806742	561	Oryza rufipogon Xa21F pseudogene, strain:W1236	0.0	Leucine-rich repeat receptor-like protein kinase	PLN00113	1.35e-21
BDTG24	Xa21	Bhasamanik	HR806749	678	Oryza rufipogon Xa21F pseudogene, strain:W149	0.0	Protein Kinases, catalytic domain	cl09925	6.18e-05
BDTG25	Xa21	Bangladesh Patnai	HR806743	1 kb	Oryza rufipogon Xa21F pseudogene, strain:W593	0.0	-	-	-
BDTG26	Xa21(A1)	ICS24502	HR806759	248	Oryza longistaminata receptor kinase-like protein gene, family member A1	7e-110	Leucine-rich repeat N-terminal domain	cl08472	1.56e-09
Table 4 Details of the sequenced rare alleles obtained from this study and homology searches with NCBI (Continued)

GenBank Acc No.	Oryza longistaminata receptor kinase-like protein gene, family	BLAST E-value	Leucine-rich repeat receptor-like protein kinase GenBank Acc No.	BLAST E-value
HR575925	*Oryza longistaminata* receptor kinase-like protein gene, family	2e-144	PLN00013	1.15e-09
HR806748	*Oryza sativa* Japonica Group Os11g0559200 mRNA	3e-72	-	-
HR806755	*Oryza sativa* Indica Group DNA, chromosome 8, BAC clone: K0110D12	5e-70	-	-
HQ832770	*Oryza longistaminata* receptor kinase-like protein gene, familymember A1	6e-116	-	-
HR806744	*Oryza longistaminata* receptor kinase-like protein gene, familymember A1	2e-78	-	-
HR575922	*Oryza longistaminata* receptor kinase-like protein gene, family	4e-104	PLN000013	1.15e-09
HR806752	*Oryza longistaminata* receptor kinase-like protein gene, familymember A2	1e-139	PLN000013	1.15e-09
HR806750	*Oryza sativa* receptor kinase-like protein gene family member E	2e-146	PLN000013	2.67e-27
HR806761	*Oryza longistaminata* receptor kinase-like protein, complete cds and family member C	9e-141	-	-
HR806745	*Oryza sativa* Japonica Group Os11g0559200 mRNA	9e-141	cl12243	8.45e-05
HR806761	*Oryza longistaminata* receptor kinase-like protein, complete cds and family member C	9e-141	cl15309	1.15e-09
HR806760	*Oryza sativa* Japonica Group Os11g0559200 mRNA	1e-134	PLN000013	1.79e-07
HR806764	*Oryza sativa* Japonica Group Os11g0559200 (Os11g0559200) mRNA	2e-137	PLN003150	3.69e-11
HR806746	*Oryza sativa* Japonica Group Os11g0559200 mRNA	1e-134	PLN000013	8.21e-12
HR806753	*Oryza sativa* Japonica Group Os11g0559200 mRNA	0.0	-	-
HR806758	*Oryza sativa* Japonica Group Os11g0559200 mRNA	1e-173	-	-
HR806754	*Oryza longistaminata* receptor kinase-like protein gene, familymember A1	9e-30	-	-
HR575923	*Oryza longistaminata* receptor kinase-like protein gene, familymember A1	2e-110	-	-
HR806767	*Oryza longistaminata* receptor kinase-like protein gene, familymember A1	5e-153	Sugar transferase, PEP-CTERM/EpsH1 system associated;	8.96e-04

GenBank Acc No. – accession number of the sequences given by GenBank, L – length of sequence in bp.
Primer name	Gene	Sequenced rare allele	GenBank Acc no.	L	Significant match with locus	Description of matched locus	E-value	Pfam name	Accession	E-value
BDTG2	Xa1	Raghushail	HR575926	301	LOC_Os04g53120	NB-ARC domain containing protein, expressed	6.9e-56	zf-BED	PF02892.8	1.8e-12
BDTG10	Xa1	Raghushail	HR575924	893	LOC_Os04g53160	NBS-LRR disease resistance protein, putative, expressed	2.4e-66	zf-BED	PF02892.8	4.4e-07
			HR806763	701	ABO022666	NBS-LRR disease resistance protein, putative, expressed	6.2e-82	zf-BED	PF02892.8	4.4e-07
BDTG11	Xa5	Raghushail	HR614233	158	LOC_Os05g01710	Transcription initiation factor IIA gamma chain, putative, expressed	5.0e-24	TFIIA_gamma_N	PF02268.9	5.2e-24
BDTG12	Xa5	Raghushail	HR575927	631	LOC_Os05g01710	Transcription initiation factor IIA gamma chain, putative, expressed	1.8e-11	TFIIA_gamma_N	PF02268.9	5.3e-24
			HR614234	766	LOC_Os01g08330	Aspartic proteinase nepenthesin-1 precursor, putative, expressed	6.7e-05	Asp	PF00026.16	8.6e-25
BDTG13	Xa26	Bhasamanik	HQ832768	968	LOC_Os09g07440	Retrotransposon protein, putative, unclassified, expressed	3.4e-05	Plant_tran	PF04827.7	7.5e-10
BDTG18	Xa26	Lal Birni	HR806757	539	LOC_Os11g47000	Receptor-like protein kinase precursor, putative, expressed	1.0e-101	LRR_1	PF00560.26	0.47
			HR806765	536	LOC_Os05g26090	Transposon protein, putative, CACTA, En/Spm sub-class	0.00042	-	-	-
			HR806766	532	LOC_Os11g47000	Receptor-like protein kinase precursor, putative, expressed	2.6e-101	LRR_1	PF00560.26	0.47
			HR575921	490	LOC_Os11g36180	Receptor kinase, putative, expressed	1.8e-86	LRR_1	PF00560.26	0.26
BDTG19	Xa27	Aijong	JM426578	638	LOC_Os08g37540	Retrotransposon protein, putative, Ty3-gypsy subclass, expressed	0.019	Transposase_28	PF04195.5	2.6e-101
			JM426580	367	AY986493	Oryza sativa (indica cultivar-group) Xa27 (Xa27) mRNA, Xa27-IRBB27 allele, complete cds	2.3e-72	-	-	-
BDTG20	Xa21	Aijong	HR806747	542	LOC_Os11g35500	Receptor-like protein kinase S precursor, putative, expressed	3.7e-27	LRRNT_2	PF08263.5	5.9e-11
			HR806741	188	LOC_Os11g35500	Receptor-like protein kinase S precursor, putative, expressed	8.6e-23	LRRNT_2	PF08263.5	5.9e-11
BDTG21	Xa21	IC524526	HR806762	530	LOC_Os11g36180	Receptor kinase, putative, expressed	4.9e-52	LRRNT_2	PF08263.5	2.3e-10
			HR806751	451	LOC_Os11g36180	Receptor kinase, putative, expressed	4.9e-52	LRRNT_2	PF08263.5	2.3e-10
BDTG22	Xa21 Bangladeshi Patnai	HR806742	561 LOC_Os11g36180	Receptor kinase, putative, expressed	7.9e-115 LRRNT_2	PF08263.5 2.3e-10				
-------	-------------------------	----------	---------------------	--------------------------------------	------------------	------------------				
BDTG24	Xa21 Bhasamanik	HR806749	678 LOC_Os11g36180	Receptor kinase, putative, expressed	3.8e-135 LRRNT_2	PF08263.5 2.3e-10				
BDTG25	Xa21 Bangladeshi Patnai	HR806743	1 kb LOC_Os11g36180	Receptor kinase, putative, expressed	6.2e-119 LRRNT_2	PF08263.5 2.3e-10				
BDTG26	Xa21(A1) IC524502	HR806759	248 LOC_Os11g35500	Receptor-like protein kinase 5 precursor, putative, expressed	3.4e-43 LRRNT_2	PF08263.5 2.3e-10				
	Raghusail	HR575925	268 LOC_Os11g35500	Receptor-like protein kinase 5 precursor, putative, expressed	3.7e-18 LRRNT_2	PF08263.5 5.9e-11				
	Aijong	HR806748	494 LOC_Os11g35500	Receptor-like protein kinase 5 precursor, putative, expressed	4.1e-29 LRRNT_2	PF08263.5 5.9e-11				
	Lal Binni	HR806755	515 LOC_Os04g17940	Retrotransposon protein, putative, unclassified, expressed	6.5e-28 RVT_1	PF00078.20 4.6e-26				
	Bhasamanik HQ832770	457 LOC_Os11g35500	Receptor-like protein kinase 5 precursor, putative, expressed	1.2e-44 LRRNT_2	PF08263.5 5.9e-11					
	BDTG27 Xa21(A1) Bangladeshi Patnai HR806744	366 LOC_Os11g35500	Receptor-like protein kinase 5 precursor, putative, expressed	1.0e-39 LRRNT_2	PF08263.5 5.9e-11					
		Raghusail HR575922	325 LOC_Os11g35500	Receptor-like protein kinase 5 precursor, putative, expressed	2.4e-48 LRRNT_2	PF08263.5 5.9e-11				
	BDTG28 Xa21(A1) Bhasamanik HR806752	359 LOC_Os11g35500	Receptor-like protein kinase 5 precursor, putative, expressed	LRRNT_2	PF08263.5 5.9e-11					
	BDTG29 Xa21(A1) Bhasamanik HR806750	377 LOC_Os11g35500	Receptor-like protein kinase 5 precursor, putative, expressed	1.6e-64 LRRNT_2	PF08263.5 2.6e-10					
		ICS24526	379 LOC_Os11g35500	Receptor-like protein kinase 5 precursor, putative, expressed	2.1e-63 LRRNT_2	PF08263.5 5.9e-11				
		Bangladeshi Patnai HR806745	382 LOC_Os11g35500	Receptor-like protein kinase 5 precursor, putative, expressed	1.4e-62 LRRNT_2	PF08263.5 5.9e-11				
		Lal Binni HR806756	387 LOC_Os11g35500	Receptor-like protein kinase 5 precursor, putative, expressed	1.1e-74 LRRNT_2	PF08263.5 5.9e-11				
		ICS24502	345 LOC_Os11g35500	Receptor-like protein kinase 5 precursor, putative, expressed	1.0e-37 LRRNT_2	PF08263.5 2.6e-10				
	BDTG30 Xa21(A1) Gobindobhog HR806764	323 LOC_Os11g35500	Receptor-like protein kinase 5 precursor, putative, expressed	1.1e-59 LRRNT_2	PF08263.5 5.9e-11					
		Bangladeshi Patnai HR806746	328 LOC_Os11g35500	Receptor-like protein kinase 5 precursor, putative, expressed	1.9e-57 LRRNT_2	PF08263.5 5.9e-11				
	BDTG31 Xa21(A1) Bhasamanik HR806753	376 LOC_Os11g35500	Receptor-like protein kinase 5 precursor, putative, expressed	3.5e-74 LRRNT_2	PF08263.5 5.9e-11					
		Lal Binni HR806758	384 LOC_Os11g35500	Receptor-like protein kinase 5 precursor, putative, expressed	4.8e-72 LRRNT_2	PF08263.5 5.9e-11				
spontaneously evolved in the Eastern State of West Bengal was high enough for scientists to group them as *Oryza sativa* var. benghalensis, at one time [41]. DNA-based markers like SSR and RAPD have been used extensively for the study of such inherent genetic diversity in rice. The results of these studies were also used for unambiguous identification of germplasm and their protection under the trade related intellectual property rights (TRIPS) of the World Trade Organization (WTO). The accessions used in this study were selected from a larger collection to include as much variability as possible based on the agro-morphological data and SSR polymorphism analysis done previously in our laboratory [28,42]. As a follow up of those studies, we aim to extend the search for genetic variability specific to various quality traits and disease resistance abilities. Information on the diversity of disease resistance loci is important to the plant breeders for the identification of diverse donors with major genes and partial resistance. In this preliminary assessment we have tried to find the genetic diversity within six cloned BLB resistance genes in a set of 22 diverse rice accessions using PCR based methods. Even though the sample size is small (22 accessions) it includes accessions of rice varieties from 5 Indian states both aromatic and non-aromatic along with traditional and evolved basmatis and checks. The PCR profiles of all the 34 primer pairs were clear and consistent. Stutter bands, which were minor products amplified in PCR that has lower intensity than the main allele and normally lacks or has extra repeat units were also present in the profiles of most of the primer pairs [43]. The null alleles were probably due to mutations in the binding region of one or both of the primers, thereby inhibiting primer annealing [30]. The presence of 140 alleles in the 22 accessions indicates high genetic diversity within the 6 BLB resistance gene loci. Analyzing the phenotype-genotype association after actual disease inoculation is requisite for confirming whether the identified rare alleles have any impact on BLB resistance or they are new alleles for BLB resistance. Moreover, the sample size being 22 accessions only, an identified rare allele might no longer be rare after the inclusion of more accessions.

It can be seen from the dendrogram that there was no state-wise or geographical segregation of the accessions based on the obtained polymorphism data. However cluster 1 and 3 consists mostly of the accessions from the North Eastern States. There was some degree of segregation based on whether the accessions were resistant or susceptible. The two resistant landraces from West Bengal, Raghhusail and Bhasamanik segregated into a separate major cluster (major cluster A). These two landraces were about 39% similar amongst themselves. The dendrogram also shows instances where susceptible and resistant cultivars have been grouped together. The resistant accessions Kataribhog and IR72 have 89% similarity amongst themselves and they are grouped into cluster 4 along with two susceptible accessions TN1 and Pusa Basmati 1. Another resistant cultivar Bangladeshi patnai is 42% similar to a susceptible, but very popular table rice variety, Dudherswar. Future similar studies incorporating more accessions will confirm whether the alleles generated by the designed primers used here are actually able to segregate accessions on the basis of disease phenotype. Future efforts should concentrate on DNA sequencing, Multiple Sequence alignment and association mapping of all the involved alleles to identify possible linkages between the DNA sequence and the disease phenotype. For improving disease resistance of the aromatic accessions parents may be chosen from major cluster A and B.

According to Zhao et al. [44] most of the knowledge about the genetic architecture of complex traits in rice is based on traditional quantitative trait locus (QTL) linkage mapping using bi-parental populations, which though informative but are not suitable to investigate the genomic potential and tremendous phenotypic variation of the more than 120,000 accessions available in public germplasm repositories. This can only be achieved by documentation of genomic variation at specific loci controlling complex traits using specific genomic region based primers rather than random primers. This variation then has to be coupled with association mapping, a method popularly known as GWA. The information regarding the diversity of domains of the 6 BLB resistant loci

Table 5 Details of the sequenced rare alleles obtained from this study and homology searches with Rice annotation database (Continued)

Accession	Allele	LOC	GenBank Accession	E-value	Forward E-value	Reverse E-value
BDTG33	Xa21(A1) Bhasamanik	HR806754	267 LOC_Os11g35500	1.1e-13	2.5e-45	LRRNT_2
BDTG34	Xa21(A1) Raghhusail	HR575923	279 LOC_Os11g35500	2.5e-45	3.2e-63	LRRNT_2
Gobindobhog	HR806767	347 LOC_Os11g35500	5.9e-11			

GenBank Acc No. – accession number of the sequences given by GenBank, L – length of sequence in bp.
obtained in this study is the first step towards such mapping programs. Rather than sequencing all the alleles obtained, only the rare alleles were sequenced in this study. Hence we could not establish any association between the DNA sequence and the resistant and susceptible accessions. For this sequencing of all the alleles and its correlation with disease phenotype are required and these are areas open for future investigation. If such associations can be found, then those will be the forerunner of GWA mapping for BLB resistance loci. In addition to the usual domains like LRR, TFIIA and BED-type zinc-finger, homologies to other conserved domains were also found in this study. The sequence HR806767 was homologous to a sugar transferase domain. Members of sugar transferase family are similar to the pfam00534 Glycosyl transferases group 1 domain. Glycosyltransferases can transfer single or multiple activated sugars to a range of plant molecules, resulting in the glycosylation of plant compounds and plays a key role in the regulation of plant growth, development and in defense responses to stress environments [45]. Sequence HR806746 is homologous to a Catalytic NodB homology domain of the carbohydrate esterase 4 superfamily. This family catalyzes the N- or O-deacetylation of substrates such as acetylated chitin, peptidoglycan, and acetylated xylan, respectively [46]. The sequence HR614234 is homologous to aspartic proteinase nepenthesin-1 precursor. The *Oryza sativa* constitutive disease resistance 1 (OsCDR1) gene product is an aspartic proteinase that has been implicated in disease resistance signaling. This apoplastic enzyme is a member of the group of ‘atypical’ plant aspartic proteinases [47]. These unusual conserved domains within the rare alleles can be the result of local adaptation. Evaluation of the exact role of these unusual motifs in BLB resistance could be done with the help of disease inoculation and assessment of the disease phenotype. However that was beyond the scope of this study and has been left for future studies.

Transposable elements (TEs) were detected in the DNA sequence of 4 rare alleles. Transposable elements (TEs) are fundamental role players in the variation and adaptive evolution of plant genomes [48-50]. Grass genomes are reported to have active retrotransposons [51]. LTR retrotransposons constitute a major portion of the rice genome [52]. Retrotransposons are activated during stress, wounding and pathogen attack [53,54]. For example transcription of the tobacco retrotransposon Tnt1 could be induced by pathogens and microbial elicitors, as well as by abiotic factors, [55-57]. Moreover Tnt1 insertion could change host gene splicing [58]. A group of LTR retrotransposons was found near the genes encoding the NPR1 disease resistance-activating factor and a heat-shock-factor-(HSF-) like protein in sugarbeet hybrid US H20 [59]. The TEs in this study were found mostly in landraces from the North East or from West Bengal BLB resistant landrace. The probable role of these identified transposable elements in this study are yet to be investigated.

Conclusion

As the name implies, conserved domains of genes are thought to possess little variation. However, this study finds that there is high genetic variability even within the conserved domains of BLB resistance genes in a small set of 22 rice accessions. Environmental stresses including high rainfall, humidity, varied topography and altitude, heavy natural selection pressures of diseases and pests, together with introductions over time and space from adjoining countries like Bhutan, China, Myanmar and Bangladesh; introgression from the wild and weedy relatives, tribal preferences and rituals have been instrumental in the development of this diversity [60]. The inclusion of more genotypes from remote ecological niches and hotspots holds more promise for further allele mining. Future studies should concentrate on DNA sequencing of all the alleles obtained in this study to bring out possible differences between susceptible and resistance accessions. Association mapping after disease inoculation will help to bring out the linkage between the alleles and disease phenotype. Such kind of mapping will be the stepping stone towards genome wide association mapping for BLB resistant loci. Search for transposable elements in the BLB resistance gene loci of the North eastern and resistant rice accessions, and elucidation of their function should form another area of interest.

Additional file

Additional file 1: Table S1. Genetic diversity of the six BLB resistant loci in the set of 22 rice accessions.

Competing interests

The authors declare that they do not have any competing interests.

Authors' contributions

BD did all the experiments pertaining to DNA extraction, PCR, PAGE, collected data and was involved in data analysis and drafting of the manuscript. SS procured the rice accessions from various repositories of the North Eastern States, did some of the experimentation pertaining to PCR and PAGE and helped with data collection and analysis and revision of the manuscript. MP did the bootstrap analysis and helped in drafting of the manuscript. TKG was involved with the conception of the work and gave the final approval to the version of the manuscript that is being sent for consideration for publication. All authors read and approved the final manuscript.

Acknowledgements

The authors wish to thank Assam Agriculture University, Agricultural Training Centre, Fulia, Rice Research Station, Chinsurah, National Bureau of Plant Genetic Resources and State Agricultural Research Farm, Kashipur for contributing the rice accessions. They also wish to thank the Department of Science and Technology for providing the research funding through Bose Institute and for providing the fellowship to Basabdatta Das. Thanks are also due to the University of Calcutta for providing fellowship to Samik Sengupta.
Authors kindly acknowledge Muthumalarasan M of NIPGR, New Delhi for critically reading the manuscript.

References

1. Harlan JR: Crops and Man. Madison, Wisconsin: American Society of Agronomy and Crop Science Society of America; 1975.

2. Hore DK: Rice diversity collection, conservation and management in northeastern India. Genet Resour Crop Ecol 2005, 52:1129–1140.

3. Noda T, Kaku H: Growth of Xanthomonas oryzae pv. oryzae in planta and in guttation fluid of rice. Ann Phytopathol Soc jap 1999, 659–64.

4. Ou SH: Rice diseases, kew, surrey: commonwealth agricultural bureau: family of type III effectors are major virulence determinants in bacterial blight disease of rice. Mol Plant-Microbe Interact 1985, 171:1200–1202.

5. Hammond-Kosack KE, Jones JDG: Plant disease resistance genes, Annu Rev Plant Physiol Plant Mol Biol 1997, 48:575–607.

6. Khan MA, Naeem M, Iqbal M: Breeding approaches for bacterial leaf disease resistance genes. Plant Dis 2003, 87:554–560.

7. Khan MA, Naeem M, Iqbal M: Breeding approaches for bacterial leaf blight resistance in rice (Oryza sativa L.). current status and future directions. Eur J Plant Pathol 2014, 139:27–37.

8. Petiptv V, Khush GS, Kaufman HE: Inheritance to bacterial blight in rice. Crop Sci 1977, 17:551–554.

9. Singh K, Vikal Y, Singh S, Leung H, Dhaliwal HS, Khush GS: Monitoring race distribution and identification of genes for resistance to bacterial leaf blight. In: Linkage studies on the resistance to bacterial leaf blight, L. H. C. Richards RI, Muller JC, Sutherland GR: Identification and mapping of new microsatellite markers. Theor Appl Genet 2004, 109:965–977.

10. Das B, Sengupta S, Parida SK, Roy B, Ghosh M, Prasad M, Ghose TK: Genetic diversity and population structure of rice landraces from Eastern and North Eastern States of India. BMC Genet 2013, 14:71.

11. Jaccard P: Nouvelles recherches sur la distribution florale. Bulletin de la Socie´te´ Vaudoise des Sciences Naturelles 1908, 44:223–270.

12. Rohlf FJ: NTSYSpc: Numerical taxonomy and multivariate analysis system version 2.02c. New York, USA: Exeter Software; 1997. http://www.extersoftware.com/cat/ntsyspc/ntsyspc.html.

13. Atchul SF, Maddon TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ: Gapped BLAST and PS-BLAST: a new generation of protein database search programs. Nucleic Acids Res 1997, 25:3389–3402.

14. Matsukage A, Hirose F, Yoo MA, Yamaguchi M, Eizenga GC, Wright MH, Ali ML, Price AH, Norton GJ, Walsh PS, Fildes NJ, Reynolds R: Evidence for an antagonistic relationship between the boundary element-associated factor BEAF and the transcription factor DREF. Chromosoma 1999, 108:375–383.

15. Akhter M, Kousar S, Arif A, Zafar Y: Identification of bacterial blight resistance genes Xa4 in Pakistani rice germplasm using PCR. Afr J Biotechnol 2008, 7:541–545.

16. Sambrook J, Fritsch EF, Maniatis T: Nucleic Acids Res 1997, 151:206–218.

17. Garris AJ, McCouch SR, Kresovich S: Population structure and its effect on haplotype diversity and linkage disequilibrium surrounding the xa5 locus of rice (Oryza sativa L.), Genetics 2003, 165:759–769.

18. Song WY, Wang GL, Chen LL, Kim HS, Park KY, Holsten T, Gardner J, Wang B, Zhou WX, Zhu LH, Fauret C, Ronald P: A receptor kinase-like protein encoded by the rice disease resistance gene, Xa21. Science 1995, 270:1804–1806.

19. Ronald PC, Albano B, Tabien R, Abenes L, Wu K: Genetic and physical analysis of the rice bacterial blight disease resistance locus, Xa21. Mol Gen Genet 1992, 236:113–120.

20. Yang Z, Sun X, Wang S, Zhang Q: Genetic and physical mapping of a new gene for bacterial blight resistance in rice. Theor Appl Genet 2003, 106:1467–1472.

21. Gazzmann JC, Kilian B, Upadhyaya HD, Vanshney RK: Accessing genetic diversity for crop improvement. Curr Opin Plant Biol 2010, 13:1–7.

22. Nordborg M, Weigel D: Next-generation genetics in plants. Nature 2008, 456:11.

23. Frankel OH: Genetic perspective of germplasm conservation. In Genetic Manipulations: Impact on Man and Society. Edited by Abber A, Limmeree K, Peacock Wil, Straling P: Cambridge: Cambridge University Press; 1984:161–170.

24. Yang Z, Sun X, Wang S, Zhang Q: Association mapping of bacterial leaf blight resistance genes in basmati rice landraces. Mol Res 2012, 11(3):1960–1966.

25. Arif M, Jaffir M, Babar M, Muni A, Sheikh MA, Kousar S, Arif A, Zafar Y: Identification of bacterial blight resistance genes Xa4 in Pakistani rice germplasm using PCR. Acta Agricult Boreali-occidentalis Sin 2008, 15:1113–1116.

26. Zhai WX, Zhu LH, Fauquet C, Ronald P: Genetic diversity and population structure of rice landraces from Eastern and North Eastern States of India. BMC Genet 2013, 14:71.

27. Callen DF, Thompson AD, Shen Y, Phillips HA, Richards RI, Muller JC, Sutherland GR: Inheritance and origin of "null" alleles in the (A)n microsatellite markers. Am J Hum Genet 1993, 52:922–927.

28. Das B, Sengupta S, Parida SK, Roy B, Ghosh M, Prasad M, Ghose TK: Identification and mapping of a new microsatellite markers. Theor Appl Genet 2004, 109:965–977.

29. Anderson PA, Lawrence GJ, Morrish BC, Aylliffe MA, Finnegan EJ, Ellis JG: Evidence for an antagonistic relationship between the boundary element-associated factor BEAF and the transcription factor DREF. Chromosoma 1999, 108:375–383.

30. Matsukage A, Hirose F, Yoo MA, Yamaguchi M, Eizenga GC, Wright MH, Ali ML, Price AH, Norton GJ, Walsh PS, Fildes NJ, Reynolds R: Evidence for an antagonistic relationship between the boundary element-associated factor BEAF and the transcription factor DREF. Chromosoma 1999, 108:375–383.

31. Jaccard P: Nouvelles recherches sur la distribution florale. Bulletin de la Societé Vaudoise des Sciences Naturelles 1908, 44:223–270.

32. Sambrook J, Fritsch EF, Maniatis T: Nucleic Acids Res 1997, 151:206–218.

33. Hart CM, Cavier O, Laenmii UK: Evidence for an antagonistic relationship between the boundary element-associated factor BEAF and the transcription factor DREF. Chromosoma 1999, 108:375–383.

34. Matsukage A, Hirose F, Yoo MA, Yamaguchi M, The DRE/DREF transcriptional regulatory system: a master key for cell proliferation. Biochim Biophys Acta 2008, 1779:81–89.

35. Hore DK, Sharma BD: Wild Rice genetic resources of North-east India. Indian J Pl. Genet. Resour 1993b, 6:27–32.

36. Atchul SF, Maddon TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ: Gapped BLAST and PS-BLAST: a new generation of protein database search programs. Nucleic Acids Res 1997, 25:3389–3402.

37. Matsukage A, Hirose F, Yoo MA, Yamaguchi M: The DRE/DREF transcriptional regulatory system: a master key for cell proliferation. Biochim Biophys Acta 2008, 1779:81–89.

38. Hore DK, Sharma BD: Wild Rice genetic resources of North-east India. Indian J Pl. Genet. Resour 1993b, 6:27–32.

39. Matsukage A, Hirose F, Yoo MA, Yamaguchi M, The DRE/DREF transcriptional regulatory system: a master key for cell proliferation. Biochim Biophys Acta 2008, 1779:81–89.

40. Walsh PS, Fildes NJ, Reynolds R: Sequence analysis and characterization of stouter products at the tetranucleotide repeat locus vWA. Nucleic Acids Res 1996, 24:2807–2812.

41. Zhao K, Tung CW, Eizenga GC, Wright MH, Ali ML, Price AH, Norton GJ, Islam MR, Reynolds A, Mezey J, McClum AM, Bastamante CD, McCouch SR: Genome-wide association mapping reveals a rich genetic architecture of complex traits in Oryza sativa. Nat Genet 2011, 2:467:1–10.
45. Wang J, Hou BK: Glycosyltransferases: key players involved in the modification of plant secondary metabolites. Front Biol China 2009, 4:39–46.

46. Millward-Sadler SJ, Davidson K, Hazlewood GP, Black GW, Gilbert HJ, Clark JH: Novel cellulose-binding domains, NodB homologues and conserved modular architecture in xylanases from the aerobic soil bacteria Pseudomonas fluorescens subsp. cellulosa and Cellvibrio mixtus. Biochem J 1995, 312:39–48.

47. Prasad BD, Creissen G, Lamb C, Chattoo BB: Heterologous expression and characterization of recombinant OsCDR1, a rice aspartic proteinase involved in disease resistance. Protein Expr Purif 2010, 72:169–174.

48. McClintock B: The significance of responses of the genome to challenge. Science 1984, 226:792–801.

49. McDonald JF: Transposable elements:-possible catalysts of organismic evolution. Trends Ecol Evol 1995, 10:123–126.

50. Kidwell MG, Lisch D: Transposable elements as sources of variation in animals and plants. Proc Natl Acad Sci U S A 1997, 94:7704–7711.

51. Vicient CM, Jääskeläinen MJ, Kalendar R, Schulman AH: Active retrotransposons are a common feature of grass genomes. Plant Physiol March 2001, 125(3):1283–1292.

52. Matsumoto T, Wu J, Kanamori H, Katayose Y, Fujisawa M, Namiki N, Mizuno H, Yamamoto K, Antonio BA, Baba T, Sakata K, Nagamura Y, Aoki H, Arikawa K, Arta K, Bito T, Choden Y, Fujitsuka N, Fukunaka R, Hamada M, Harada C, Hayashi A, Hijishita S, Honda M, Hosokawa S, Ichikawa Y, Idonuma A, Iijima M, Ikeda M, Ikoro M, et al: The map-based sequence of rice genome. Nature 2005, 436:793–800.

53. Wessler SR: Turned on by stress: plant retrotransposons. Curr Biol 1996, 6:959–961.

54. Grandbastien MA: Activation of retrotransposons under stress conditions. Trends Plant Sci 1998, 3:181–187.

55. Pouteau S, Boccara M, Grandbastien MA: Microbial elicitors of plant defense responses activate transcription of a retrotransposon. Plant J 1994, 5:535–542.

56. Mhiri C, Morel JB, Vernhettes S, Casacuberta JM, Lucas H, Grandbastien MA: The promoter of the tobacco Tnt1 retrotransposon is induced by wounding and by abiotic stress. Plant Mol Biol 1997, 33:257–266.

57. Vernhettes S, Grandbastien MA, Casacuberta JM: In vivo characterization of transcriptional regulatory sequences involved in the defence-associated expression of the tobacco retrotransposon Tnt1. Plant Mol Biol 1997, 35:673–679.

58. Leprinc AS, Grandbastien MA, Christian M: Retrotransposons of the Tnt1B family are mobile in Nicotiana plumbaginifolia and can induce alternative splicing of the host gene upon insertion. Plant Mol Biol 2001, 42:531–541.

59. Kuykendall D, Shao J, Trimmer K: A nest of LTR Retrotransposons adjacent the disease resistance-priming gene NPR1 in Beta vulgaris L. U.S. Hybrid H20. Int J Plant Genomics 2009, 576742.

60. Yang GP, Maroof MAS, Xu CG, Zang Q, Baiyashev RM: Comparative analysis of microsatellite DNA polymorphism in landraces and cultivars of rice. Mol Gen Genet 1994, 245:187–194.

doi:10.1186/1471-2156-15-82
Cite this article as: Das et al.: Genetic diversity of the conserved motifs of six bacterial leaf blight resistance genes in a set of rice landraces. BMC Genetics 2014 15:82.