ENTIRE SELF-EXPANDERS FOR POWER OF σ_k CURVATURE FLOW IN MINKOWSKI SPACE

ZHIZHANG WANG AND LING XIAO

ABSTRACT. In $[19]$, we prove that if an entire, spacelike, convex hypersurface M_{u_0} has bounded principal curvatures, then the $\sigma_1^{1/\alpha}$ (power of σ_k) curvature flow starting from M_{u_0} admits a smooth convex solution u for $t > 0$. Moreover, after rescaling, the flow converges to a convex self-expander $\tilde{M} = \{(x, \tilde{u}(x)) \mid x \in \mathbb{R}^n\}$ that satisfies $\sigma_k(\kappa[\tilde{M}]) = (-\langle X_0, \nu_0 \rangle)^\alpha$. Unfortunately, the existence of self-expander for power of σ_k curvature flow in Minkowski space has not been studied before. In this paper, we fill the gap.

1. INTRODUCTION

Let $\mathbb{R}^{n,1}$ be the Minkowski space with the Lorentzian metric

$$ds^2 = \sum_{i=1}^n dx_i^2 - dx_{n+1}^2.$$

In this paper, we will devote ourselves to the study of spacelike hypersurfaces M with prescribed σ_k curvature in Minkowski space $\mathbb{R}^{n,1}$. Here, σ_k is the k-th elementary symmetric polynomial, i.e.,

$$\sigma_k(\kappa) = \sum_{1 \leq i_1 < \cdots < i_k \leq n} \kappa_{i_1} \cdots \kappa_{i_k}.$$

Any such hypersurface M can be written locally as a graph of a function $x_{n+1} = u(x)$, $x \in \mathbb{R}^n$, satisfying the spacelike condition

$$|Du| < 1.$$

More specifically, we will study self-similar solutions of flow by powers of the σ_k curvature. Namely, we are interested in entire, spacelike, convex hypersurfaces which move under σ_k curvature flows by homothety.

Let $X(\cdot, t)$ be a spacelike, strictly convex solution of

$$\frac{\partial X}{\partial t}(p, t) = \sigma_k^2(p, t)\nu(p, t)$$

2010 Mathematics Subject Classification. Primary 53C42; Secondary 35J60, 49Q10, 53C50.

Research of the first author is sponsored by Natural Science Foundation of Shanghai, No.20JC1412400, 20ZR1406600 and supported by NSFC Grants No.11871161,12141105.
for some $\beta \in (0, \infty)$. If the hypersurfaces $M(t)$ given by $X(\cdot, t)$ move homothetically, then $X(\cdot, t) = \phi(t)X_0$ for some positive function ϕ. Since the normal vector field is unchanged by homotheties, by taking the inner product of (1.2) with $\nu_0 = \nu(\cdot, t)$ we obtain
$$\phi'(X_0, \nu_0) = -\sigma^\beta_k(\kappa[X_0])\phi^{-k\beta},$$
where $\kappa[X_0] = (\kappa_1, \ldots, \kappa_n)$ is the principal curvatures of M_0 at X_0. Therefore, we must have
$$\phi'(t)\phi^{k\beta}(t) = \lambda$$
and
$$\sigma^\beta_k = -\lambda \langle X_0, \nu_0 \rangle.$$

In this paper, we will consider the case when $\lambda > 0$, which we call expanding solutions. Through rescaling, we may also assume $\lambda = 1$.

Complete noncompact self similar solutions of curvature flows in Euclidean space have been studied intensively (for example [1, 6, 3, 9, 14, 15, 16]). However, in Minkowski space, there is no corresponding known result yet.

It is well-known that the hyperboloid is a self-expander. In [18], we have proved the rescaled convex curvature flows, including Gauss curvature flow, converge to the hyperboloid. Therefore, a natural question to ask is whether there exist self-expanders other than the hyperboloid? Moreover, if such self-expanders exist, can we construct some curvature flows such that their rescaled flows converge to these new self-expanders? In this paper and an upcoming paper [19], we give affirmative answers to both questions.

Now consider $M_{u_0} = \{(x, u_0(x)) \mid x \in \mathbb{R}^n\}$, an entire, spacelike, convex hypersurface satisfying $u_0(x) - |x| \to \varphi \left(\frac{x}{|x|} \right)$ as $|x| \to \infty$. By translating M_{u_0} vertically we may also assume $\varphi \left(\frac{x}{|x|} \right) > 0$. In an upcoming paper [19], we prove that, if in addition M_{u_0} also has bounded principal curvatures, then the equation
$$\begin{cases}
\frac{\partial X}{\partial t} = \sigma^{1/\alpha}_{k} \nu \\
X(x, 0) = M_{u_0},
\end{cases}$$
where $\alpha \in (0, 1]$, admits a smooth convex solution u for $t > 0$. Moreover, after rescaling the flow converges to a convex self-expander $\tilde{M} = \{(x, \tilde{u}(x)) \mid x \in \mathbb{R}^n\}$ that satisfies
$$\sigma_k(\kappa[\tilde{M}]) = (-\langle X, \nu \rangle)^\alpha$$
and
$$\tilde{u} - |x| \to \varphi \left(\frac{x}{|x|} \right) \text{ as } |x| \to \infty.$$

Unfortunately, the existence of solutions of equations (1.3) and (1.4) have not been studied before. In this paper, we fill the gap and prove the following theorems.
Theorem 1. Suppose φ is a positive C^2 function defined on \mathbb{S}^{n-1}, i.e., $\varphi \in C^2(\mathbb{S}^{n-1})$. Then there exists a unique, entire, strictly convex, spacelike hypersurface $\mathcal{M}_u = \{(x, u(x)) \mid x \in \mathbb{R}^n\}$ satisfying

$$\sigma_n(\kappa[\mathcal{M}_u]) = (-\langle X, \nu \rangle)^\alpha \text{ for any } \alpha \in (0, n],$$

and

$$u(x) - |x| \to \varphi \left(\frac{x}{|x|}\right) \text{ as } |x| \to \infty.$$

Remark 2. Note that, unlike previously known results on spacelike hypersurfaces with prescribed Gauss curvature (see [2, 8, 10, 13]), the right hand side of (1.3) is unbounded. Therefore, the proof of Theorem 1 is different from earlier works, and we need to develop new techniques to prove it.

Using the solution we obtained in Theorem 1 as a subsolution we can also prove

Theorem 3. Suppose φ is a positive C^2 function defined on \mathbb{S}^{n-1}, i.e., $\varphi \in C^2(\mathbb{S}^{n-1})$. Then there exists a unique, entire, strictly convex, spacelike hypersurface $\mathcal{M}_u = \{(x, u(x)) \mid x \in \mathbb{R}^n\}$ satisfying

$$\sigma_k(\kappa[\mathcal{M}_u]) = (-\langle X, \nu \rangle)^\alpha \text{ for any } \alpha \in (0, k],$$

and

$$u(x) - |x| \to \varphi \left(\frac{x}{|x|}\right) \text{ as } |x| \to \infty,$$

where $k \leq n - 1$.

The paper is organized as follows. In Section 2 we prove Theorem 1. In particular, we develop new techniques to prove the local estimates. In Section 3 combining the result we obtained in Section 2 with our ideas developed in [13] and [17], we prove Theorem 3. The arguments in this section are modifications of our arguments in [13] and [17].

2. GAUSS CURVATURE SELF-EXPANDER

In this section, we want to show there exists an entire, strictly spacelike, convex solution to the following equation

$$\sigma_n(\kappa[\mathcal{M}_u]) = (-\langle X, \nu \rangle)^\alpha, \ 0 < \alpha \leq n,$$

and

$$u(x) - |x| \to \varphi \left(\frac{x}{|x|}\right) \text{ as } |x| \to \infty.$$
where \(\varphi \) is a positive function defined on \(S^{n-1} \). Let \(u^* \) be the Legendre transform of \(u \). By Section 3 of [10] and Lemma 14 in [17], we know when \(u \) is a solution of (2.1) and (2.2), then \(u^* \) satisfies the following PDE,

\[
\begin{align*}
\sigma_n(D^2 u^*) &= \frac{w^* \alpha - n - 2}{(-u^*)^\alpha} \quad \text{in } B_1 \\
u^* &= \varphi^*(\xi) \quad \text{on } \partial B_1,
\end{align*}
\]

where \(\varphi^* = -\varphi < 0 \) on \(\partial B_1 \) and \(w^* = \sqrt{1 - |\xi|^2} \). Since (2.3) is a degenerate equation, we will study the following approximate problem instead

\[
\begin{align*}
\sigma_n(D^2 u^*) &= \frac{(1 - s|\xi|^2)^{(\alpha - n - 2)/2}}{(-u^*)^\alpha} \quad \text{in } B_1 \\
u^* &= \varphi^*(\xi) \quad \text{on } \partial B_1,
\end{align*}
\]

where \(0 < s < 1 \).

Remark 4. In this remark, we want to explain why \(\alpha \) needs to be less than or equal to \(n \). Note that here we want to construct an entire solution to equation (2.1). This requires \(|Du^*(\xi)| \to \infty \) as \(\xi \to \partial B_1 \). One can see that if \(u^* \) is a solution to (2.3) then we have

\[
\int_{B_1} \det D^2 u^* = \int_{Du^*(B_1)} 1 \sim \int_{B_1} (1 - |\xi|^2)^{\frac{\alpha - n - 2}{2}} \sim \int_{1/2}^1 r^{n-1}(1 - r^2)^{\frac{\alpha - n - 2}{2}}dr \sim \int_{1/2}^1 (1 - r^2)^{\frac{\alpha - n - 2}{2}}dr^2.
\]

Since \(Du^*(B_1) = \mathbb{R}^n \), we know \(\int_{1/2}^1 (1 - r^2)^{\frac{\alpha - n - 2}{2}}dr^2 \) blows up, which implies \(\alpha \leq n \).

2.1. Solvability of equation (2.4)

We will show there exists a solution \(u^{**} \) of (2.4) for \(0 < s < 1 \). For our convenience, in the following, when there is no confusion, we will drop the superscript \(s \) and denote \(u^{**} \) by \(u^* \).

Lemma 5. (**C**\(^0\) estimate for \(u^* \)) Let \(u^* \) be the solution of (2.4), then

\[
|u^*| < C,
\]

where \(C = C(|\varphi^*|_{C^0}) \).

Proof. Let \(-C_0 = \max_{\xi \in \partial B_1} \varphi^* < 0 \), by the convexity of \(u^* \) we know \(-C_0 > u^* \) in \(B_1 \). On the other hand, [10] proves that there exists a solution \(\bar{u}^* \) satisfies

\[
\begin{align*}
\sigma_n(D^2 \bar{u}^*) &= \frac{1}{K} (1 - |\xi|^2)^{-\frac{n+2}{2}} \quad \text{in } B_1 \\
\bar{u}^* &= \varphi^*(\xi) \quad \text{on } \partial B_1,
\end{align*}
\]

for any \(K \in \mathbb{R}_+ \).
Now let \(K \leq C_0^0 \) we have \(\sigma_n(D^2u^*) > \sigma_n(D^2u)^* \) in \(B_1 \), and \(u^* = u \) on \(\partial B_1 \). By the maximum principle we obtain
\[
(2.7) \quad -C_0 > u^* > u^*.
\]

Following \[4\], we can obtain the \(C^1 \) and \(C^2 \) estimates for the solution of \((2.4)\). Applying the method of continuity, we get the solvability of \((2.4)\). Therefore, in the following, we will focus on establishing local estimates for \(u^* \).

2.2. \textbf{Local} \(C^1 \) \textit{estimates}. This subsection contains two parts. In the first part, we will prove \((1 - s|\xi|^2)|Du^*|^2 < C\), where \(C \) is independent of \(s \) and \(\xi \). This estimate will be useful for obtaining local \(C^2 \) estimates in the next subsection. In the second part, we will show \(|Du^*|^2(\xi) \to \infty \) as \(s, |\xi| \to 1 \). This is to illustrate that the Legendre transform of \(u^* \), denoted by \(u^s \), converges to an entire solution of \((1.3)\) as \(s \to 1 \).

2.2.1. \textit{Local} \(C^1 \) \textit{upper bound}. In this part we will show \((1 - s|\xi|^2)|Du^*|^2 < C\), where \(C \) is a constant independent of \(s \).

First, applying \[4\] we know that we can solve the following equation
\[
(2.8) \quad \left\{ \begin{array}{ll}
\sigma_n(D^2u^*) = \frac{1}{C_1} < \frac{1}{(-\min u^*)^2} & \text{in } B_1 \\
u^* = \phi^*(\xi) & \text{on } \partial B_1.
\end{array} \right.
\]

We will denote the solution to \((2.8)\) by \(u^* \). It’s clear that \(u^* > u^s > u^* \), where \(u^* \) is the solution to \((2.6)\).

Next, denote \(h^s := 1 - s|\xi|^2 \) and \(V^s = |Du^*| \), we prove

\textbf{Lemma 6}. For any \(s \in \left[\frac{1}{2}, 1\right) \), if \(M^s := \max_{\xi \in B_1} h^sV^se^{-u^2} \) is achieved in \(B_1 \), then \(M^s \leq C \), where \(C = C(|u^*|_{C^0}) \) is a constant independent of \(s \).

\textit{Proof}. For our convenience, in this proof, we drop the superscript \(s \) from \(u^s, h^s, \) and \(V^s \). Consider \(\phi = hV^se^{-u^2} \) and assume \(\phi \) achieves its maximum at an interior point \(\xi_0 \in B_1 \). We may rotate the coordinate such that at \(\xi_0 \), we have \(V = u^2_1 \). Differentiating \(\phi \) we get
\[
\frac{2s\xi_i}{h} = \frac{u^2_1u^*_{i1} - 2u^*u^*_i}{V}, \quad 1 \leq i \leq n.
\]

Therefore, when \(i = 1 \), we obtain
\[
\frac{2s\xi_1}{h} = u^*_{11} - 2u^*V.
\]

By the convexity of \(u^* \) we know that \(u^*_{11} > 0 \), which gives
\[
\frac{2s\xi_1}{h} \geq 2|u^*|V.
\]

This completes the proof of the Lemma. \[\square\]
Finally, we want to show $h^s V^s$ is bounded on ∂B_1.

Lemma 7. For any $s \in [\frac{1}{2}, 1)$, if $M^s := \max_{\xi \in \bar{B}_1} h^s V^s e^{-u^{s^*2}}$ is achieved in ∂B_1, then $M^s \leq C$, where $C > 0$ is a constant independent of s.

Proof. For our convenience, in this proof, we drop the superscript s from u^{s^*}, h^s, and V^s. Let $\psi = -kh^{1/2} + k(1 - s)^{1/2} + u_0^*$. For any $\xi \in B_1$, WLOG, we may assume $\xi = (r, 0, \cdots, 0)$. A direct calculation yields at ξ we have

$$
\psi_{11} = ksh^{-3/2} + (u_0^*)_{11},
$$
$$
\psi_{ii} = ksh^{-1/2} + (u_0^*)_{ii} \text{ for } i \geq 2,
$$

and

$$
\psi_{ij} = (u_0^*)_{ij} \text{ for all other cases}.
$$

Since u_0^* is strictly convex we get

$$
\sigma_n(D^2 u^*) > \sigma_n(D^2 (-kh^{1/2})) = (ks)^n h^{-n-2}.\]

Choosing $k = \frac{3}{\min(-\varphi^s)^{n/2}}$, we can see that ψ is a subsolution of (2.4). Thus, on ∂B_1 we have

$$
|Du^*| < |D\psi| < \frac{C}{\sqrt{1-s}},
$$

where $C > 0$ is a constant independent of s. It is easy to see that (2.9) implies the Lemma. □

Combining Lemma 6 and Lemma 7 we conclude

Lemma 8. Let u^{s^*} be the solution of (2.4) for $s \in \left[\frac{1}{2}, 1\right)$. Then there exists a constant $C > 0$, such that $|Du^{s^*}(\xi)| (1 - s|\xi|^2) \leq C$. Here, C is a constant independent of s.

2.2.2. **Local C^1 lower bound near ∂B_1.** In this part, we will show $|Du^{s^*}(\xi)| \to \infty$ as $s, |\xi| \to 1$.

In order to obtain local C^1 lower bounds, we will construct a supersolution \tilde{u}^{s^*} to

$$
\sigma_n(D^2 u^*) = \frac{(1-s|\xi|^2)^{(\alpha-n-2)/2}}{(-u^*)^\alpha} \text{ in } B_1
$$

for $\alpha \leq n$, which satisfies

$$
|D\tilde{u}^{s^*}(\xi)| \to \infty \text{ as } s \to 1 \text{ and } |\xi| \to 1.
$$

In the following, we will restrict ourselves to the case when $s \in [1/2, 1)$. Denote $h^s = 1 - s|\xi|^2$, then $h^s_i = -2s\xi_i$, and $h^s_{ij} = -2s\delta_{ij}$. Consider $g_1(h^s) = -h^s \log |\log h^s|$. By a straightforward calculation we get

$$
g'_1 = -\log |\log h^s| + \frac{1}{|\log h^s|},
$$
and

\[(2.13) \quad g''_1 = \left(1 + \frac{1}{|\log h^s|}\right) \frac{1}{h^s |\log h^s|}.\]

Therefore, at any point \(\xi \in B_1\) with \(|\xi| = r\) we have

\[(2.14) \quad \det(D^2 g_1) = s^n \left(2 \log |\log h^s| - \frac{2}{|\log h^s|}\right)^{n-1} \times \left[\left(2 \log |\log h^s| - \frac{2}{|\log h^s|}\right) + 4sr^2 \left(1 + \frac{1}{|\log h^s|}\right) \frac{1}{h^s |\log h^s|} \right].\]

When \(h^s < \delta_0\) for some fixed \(\delta_0 > 0\) small, we have \(\det(D^2 g_1) \leq \frac{C}{r}\) for some constant \(C > 0\).

Here, \(C = C(\delta_0)\) is independent of \(s\). On the other hand, when \(h^s \geq \delta_0\), it’s easy to see that

\[(2.15) \quad \begin{cases}
\det(D^2 g_2) = 1 & \text{in } B_\sqrt{\frac{1 - \delta_0}{s}}, \\
g_2 = -\delta_0 \log |\log \delta_0| & \text{on } \partial B_\sqrt{\frac{1 - \delta_0}{s}}.
\end{cases}
\]

Define

\[g = \begin{cases}
g_1 & \text{for } h^s < \delta_0, \\
g_2 & \text{for } \delta_0 \leq h^s \leq 1,
\end{cases}\]

then \(g\) is a continuous and convex function in \(B_1\). By standard smoothing procedure, we can find a convex, rotationally symmetric function \(\Phi \in C^2(B_1)\) such that

\[\Phi(g) = \begin{cases}
g_1 & \text{for } h^s < \frac{\delta_0}{2}, \\
g_2 & \text{for } 2\delta_0 \leq h^s \leq 1.
\end{cases}\]

We can see that for some suitable choice of \(\rho > 0\), \(\rho \Phi\) is a supersolution of \((2.10)\) that satisfies \((2.11)\). Here, \(\rho > 0\) only depends on \(|u^{*s}|_{C_0}\). Below we will denote this supersolution by \(\bar{u}^{*s}\).

Following [10] we can prove following Lemmas

\[\text{Lemma 9. Let } u^{*s} \text{ be the solution of } (2.4), \text{ then } |\partial u^{*s}| \text{ is bounded above by a constant } C_1 = C_1(|\varphi^*|_{C^1}).\]

\[\text{Proof. For our convenience, in this proof, we drop the superscript } s \text{ from } u^{*s}. \text{ We take the logarithms of both sides of } (2.4) \text{ and differentiate it with respect to } \xi_k, \text{ then find}
\]

\[u^{*ij}u^{*}_{ki} = \frac{\partial}{\partial \xi_k} \left[\log(1 - s|\xi|^2) \cdot \frac{\alpha - n - 2}{2} \right] - \alpha \frac{\partial \log(-u^*)}{\partial \xi_k}.
\]

This implies

\[(2.16) \quad \sum u^{*ij}(\partial u^*)_{ij} = -\alpha \frac{\partial (-u^*)}{-u^*} = \alpha \frac{\partial u^*}{-u^*}.
\]
If ∂u^* achieves interior positive maximum, we would have $0 \geq \alpha \frac{\partial u^*}{-u^*} > 0$. This leads to a contradiction. Similarly, if ∂u^* achieves interior negative minimum, we would have $0 \leq \alpha \frac{\partial u^*}{-u^*} < 0$. This also leads to a contradiction. Therefore we conclude

$$|\partial u^*| \leq \max_{\partial B_1} |\partial \varphi^*|.$$

$$\square$$

Lemma 10. Let u^{**} be the solution of (2.4), then $\partial^2 u^{**}$ is bounded above by a constant $C_2 = C_2(|\varphi^*|_{C^2})$.

Proof. For our convenience, in this proof, we drop the superscript s from u^{**}. We have shown

$$\sum u^{**}_{ij} (\partial u^*)_{ij} = -\alpha \frac{\partial (-u^*)}{-u^*} = \alpha \frac{\partial u^*}{-u^*}.$$

Differentiating this equation once again we obtain

$$\sum u^{**}_{ij} \partial((\partial u^*)_{ij}) + \partial(u^{**}_{ij})(\partial u^*)_{ij} = \frac{\alpha}{(-u^*)^2} (\partial u^*)^2 + \frac{\alpha}{(-u^*)} \partial^2 u^*.$$

Following the argument of Lemma 5.2 in [10], we get

$$\sum u^{**}_{ij} [(\partial^2 u^*)_{ij}] \geq \frac{\alpha}{(-u^*)} (\partial^2 u^*).$$

Therefore, $\partial^2 u^*$ does not achieve positive maximum at interior points and we conclude

$$\partial^2 u^* \leq \max_{\partial B_1} |\partial^2 \varphi^*|.$$

$$\square$$

Lemma 11. Let $s \in [1/2, 1)$, $\sqrt{\frac{2-s}{2s}} < r < 1$, and $S^{n-1} = \{ \xi \in \mathbb{R}^n \mid \sum \xi_i^2 = r^2 \}$. For any point $\hat{\xi} \in S^{n-1}(r)$ there exists a function

$$\tilde{u}_s = \tilde{u}^{**} + b_1 \xi_1 + \cdots + b_n \xi_n + d$$

such that $\tilde{u}_s(\hat{\xi}) = u^{**}(\hat{\xi})$ and $\tilde{u}_s(\xi) > u^{**}(\xi)$ for any $\xi \in S^{n-1} \setminus \{ \hat{\xi} \}$. Here, u^{**} is a solution of (2.4), \tilde{u}^{**} is the supersolution constructed before, b_1, \cdots, b_n are constants depending on $\hat{\xi}$, and d is a positive constant independent of ξ and r.

Proof. By rotating the coordinate we may assume $\hat{\xi} = (r, 0, \cdots, 0)$. We choose $b_k = \frac{\partial u^{**}}{\partial \xi_k}(r, 0, \cdots, 0)$, $k = 2, 3, \cdots, n$, and choose b_1 such that $u^{**}(r, 0, \cdots, 0) = \tilde{u}^{**}(r, 0, \cdots, 0) + b_1 r + d$. To choose d we consider an arbitrary great circle $c(t)$ on $S^{n-1}(r)$ passing through $\hat{\xi}$, for example the circle

$$\xi_1 = r \cos t, \xi_2 = r \sin t, -\pi < t < \pi, \xi_3 = \xi_4 = \cdots = \xi_n = 0.$$

Let

$$F(t) = (\tilde{u}_s - u^{**})|_{c(t)} = \tilde{u}^{**}|_{c(t)} + b_1 \xi_1 + \cdots + b_n \xi_n + d - u^{**}|_{c(t)}$$

$$= \tilde{u}^{**}|_{c(t)} + b_1 r \cos t + b_2 r \sin t + d - u^{**}|_{c(t)}.$$
Note that by our construction of \bar{u}^{ss}, when $\frac{2-\delta_0}{2s} < r < 1$ we have

$$\bar{u}^{ss}|_{\xi(t)} = -\rho h^s \log |\log h^s|_{\{|\xi|=r\}} = \bar{u}^{ss}(r).$$

Therefore, we get

$$F(t) = \bar{u}^{ss}(r) + [u^{ss}(r, 0, \ldots, 0) - \bar{u}^{ss}(r) - d] \cos t + b_2 r \sin t + d - u^{ss}(t).$$

It's clear that $F(0) = 0$ and $\frac{dF}{dt}(0) = 0$. We will look at the second derivative of F. Since

$$\frac{d^2F(t)}{dt^2} = [d + \bar{u}^{ss}(r) - u^{ss}(r, 0, \ldots, 0)] \cos t - b_2 r \sin t - \frac{d^2u^{ss}}{dt^2},$$

when $-\frac{\pi}{2} < t < \frac{\pi}{2}$ we choose $d > u^{ss}(r, 0, \ldots, 0) - \bar{u}^{ss}(r)$ then we get

$$\frac{d^2F(t)}{dt^2} \geq \frac{1}{\sqrt{2}}[d + \bar{u}^{ss}(r) - u^{ss}(r, 0, \ldots, 0)] - \left|\frac{d u^{ss}}{dt}(0)\right| - \frac{d^2u^{ss}}{dt^2}.$$

$$\geq \frac{1}{\sqrt{2}}[d + \bar{u}^{ss}(r) - u^{ss}(r, 0, \ldots, 0)] - C_3$$

for some $C_3 > 0$ determined by Lemma\[9\] and [10]. When $t \in [-\pi, -\frac{\pi}{2}] \cup [\frac{\pi}{2}, \pi]$ we have

$$F(t) = d(1 - \cos t) + [u^{ss}(r, 0, \ldots, 0) - \bar{u}^{ss}(r)] \cos t + b_2 r \sin t - u^{ss}(t) + \bar{u}^{ss}(r)$$

$$\geq d \left(1 - \frac{\sqrt{2}}{2}\right) - C_4$$

By choosing $d > 0$ sufficiently large we prove this lemma. \(\square\)

Finally, we can prove

Lemma 12. Let u^{ss} be the solution of (2.4) for $s \in (1/2, 1)$. Then there exists $C = C(|\varphi^s|_{C^2}) > 0$, such that when $\sqrt{\frac{2-\delta_0}{2s}} \leq \sqrt{\frac{2-\delta_1}{2s}} < |\xi| < 1$, we have

$$\frac{|Du^{ss}(\xi)|}{\log |\log h^s|} \geq C.$$

Here, $\delta_1 > 0$ is a small constant.

Proof. When $\sqrt{\frac{2-\delta_0}{2s}} \leq \sqrt{\frac{2-\delta_1}{2s}} < r < 1$, for any $\hat{\xi} \in S^{n-1}(r)$ we assume $\hat{\xi} = (r, 0, \ldots, 0)$. By Lemma\[11\] there exists a supersolution of (2.4) \bar{u}^{ss}_s, such that $\bar{u}^{ss}_s(\hat{\xi}) = u^{ss}(\hat{\xi})$ and $\bar{u}^{ss}_s(\xi) > u^{ss}(\xi)$ for any $\xi \in S^{n-1} \setminus \{\hat{\xi}\}$. By the maximum principle we get $\bar{u}^{ss}_s(\xi) > u^{ss}(\xi)$ in B_r. Hence at $\hat{\xi}$ we obtain

$$\frac{\partial u^{ss}}{\partial \xi_1} > \frac{\partial \bar{u}^{ss}_s}{\partial \xi_1} = \frac{\partial \bar{u}^{ss}}{\partial \xi_1} + b_1.$$

Therefore, when $\delta_1 > 0$ is chosen to be small we complete the proof of this Lemma. \(\square\)
2.3. **Local C^2 estimates.** Lemma 8 gives us local C^1 estimates for u^{s*}. In the following we will establish local C^2 estimates for the solution u^{s*} of equation (2.4). Comparing with usual local C^2 estimates, the complication here is as $s \to 1$ and $|\xi| \to 1$, by Lemma 12 we know that $|Du^{s*}(\xi)| \to \infty$. In other words, we don’t have uniform C^1 estimates. Therefore, we need to introduce some new techniques to overcome this difficulty.

Let u_0^{s*} be the solution of (2.8), denote $\eta^s := u_0^{s*} - u^{s*}$ and $f^s = (-u^{s*})^{-\alpha}(1 - s|\xi|^2)^{(\alpha - n - 2)/2}$, we prove

Lemma 13. Let u^{s*} be a solution of (2.4) for $s \in [1/2, 1)$. Then we have

\[(2.19)\]

$$\eta^s < C(h^s)^{m_{\alpha}},$$

where $m_{\alpha} := \frac{n - 2 + \alpha}{2n}$, $h^s = 1 - s|\xi|^2$, and $C = C(n, \alpha, |u^s|_{C^0}) > 0$ is a constant independent of s.

Proof. For our convenience, in this proof, we will drop the superscript s on η^s, h^s, f^s, and u^{s*}. Let $\gamma = \frac{1}{m_{\alpha}}$, since $\alpha \in (0, n)$, it’s clear that $\gamma > 1$. Assume $\max_{\xi \in B_1} \gamma \eta h^{-1}$ is achieved at an interior point ξ_0. We may rotate the coordinate such that at this point $u_{ij}^{s*} = u_{ii}^{s*} \delta_{ij}$. Moreover, at ξ_0 we have

$$0 = \gamma \eta_i - \frac{h_i}{h},$$

and

$$0 \geq \gamma \sigma_n^{ii} \left(\frac{\eta_{ii}}{\eta} - \frac{\eta_i^2}{\eta^2} \right) - \frac{\sigma_n^{ii} h_{ii}}{h} + \frac{\sigma_n^{ii} h_i^2}{h^2} = \gamma \sigma_n^{ii} \frac{\eta_{ii}}{\eta} + (\gamma^2 - \gamma) \sigma_n^{ii} \frac{\eta_i^2}{\eta^2} + 2s \sum \sigma_n^{ii} \frac{h_i}{h}.$$

Since u_0^{s*} is convex, we get $\sigma_n^{ii}(u_0^{s*})_{ii} > 0$, the above inequality becomes

$$0 \geq -n \gamma \sigma_n \frac{\eta}{\eta} + 2s \sum \sigma_n^{ii} \frac{h_i}{h}.$$

Recall that $\sum \sigma_n^{ii} = \sigma_n - 1 \geq c(n) \sigma_n^{n-1}$ and $s \in [1/2, 1)$, we conclude

$$n \gamma \geq \frac{c(n) \eta}{h \sigma_n^{1/n}} \geq c_0 \frac{\eta}{h^{1 - \frac{n+2-\alpha}{2n}}} = c_0 \frac{\eta}{h^{m_{\alpha}}},$$

where $c(n) > 0$ is a constant depending on n and c_0 is a constant depending on $|u^s|_{C^0}$ and α. Therefore, we conclude that at ξ_0

$$\eta \gamma h^{-1} \leq C,$$

where $C = C(n, \alpha, |u^s|_{C^0})$ is independent of s. \hfill \Box

Lemma 14. Let u^{s*} be a solution of (2.4) for $s \in [1/2, 1)$. Then we have

$$\max_{\xi \in B_1, \xi \in S^n} \eta^\beta u_{\xi \xi}^{s*} \leq C.$$
Here, $\beta = \frac{8}{m_0}$ and C only depends on the C^0 estimates of u^s and the local C^1 estimates we obtained in Lemma 8.

Proof. In this proof, for our convenience, we will drop the superscript s. We denote $h = 1 - s|\xi|^2$, then $h_i = -2s\xi_i$ and $h_{ij} = -2s\delta_{ij}$. We also note, differentiating $f = (-u^s)^{-\alpha}h^\frac{\alpha - n - 2}{2}$ twice we get

$$f_i = f \left[\frac{\alpha u_i^s}{-u^s} + \frac{(\alpha - n - 2)}{2}h^{-1}h_i \right]$$

and

$$f_{ii} = f \left[\frac{\alpha u_i^s}{-u^s} + \frac{(\alpha - n - 2)}{2}h^{-1}h_i \right]^2 + f \left[\frac{\alpha u_{ii}^s}{-u^s} + \frac{\alpha u_{i}^2}{u^s} - \frac{(\alpha - n - 2)}{2}h^{-2}h_i^2 + \frac{(\alpha - n - 2)}{2}h^{-1}h_{ii} \right].$$

Moreover, applying Lemma 8 we may assume

$$h^2|Du^s|^2 < m_0 \text{ and } h^4|Du^s|^2 < m_0,$$

for some positive constant $m_0 > 1$. Let $g = h^4|Du^s|^2$ and differentiate g twice, we get

(2.20) $$g_i = 4h^3h_i|Du^s|^2 + 2h^4\sum_k u_k^i u_k^s,$$

and

$$g_{ii} = 12h^2h_i^2|Du^s|^2 + 4h^3|Du^s|^2h_{ii} + 16h^2\sum_k h_i u_k^i u_k^s$$

(2.21)

$$+ 2h^4\sum_k u_{ki}^s + 2h^4\sum_k u_k^i u_{ki}^s.$$

Now we consider $\phi = \frac{\eta^3 u_\zeta}{|1 - \eta^2|}$, where $\beta > 0$, $M > 2m_0$ are some constants to be determined, and $\zeta \in \mathbb{S}^n$ is some direction. Suppose

$$\hat{M} := \max_{\xi \in B_1, \zeta \in \mathbb{S}^n} \phi$$

is achieved at an interior point $\xi_0 \in B_1$ in the direction of $\zeta_0 \in \mathbb{S}^n$. We may choose a local orthonormal frame $\{e_1, \ldots, e_n\}$ at ξ_0, such that $u^s_{ij}(\xi_0)$ is diagonal and we also assume $\zeta_0 = e_1$.

Then at ξ_0 we have

$$\log \phi = \beta \log \eta - \log \left(1 - \frac{g}{M}\right) + \log u_{11}^s.$$

Differentiating $\log \phi$ twice we get

(2.22) $$0 = \frac{\phi_{ii}}{\phi} = \frac{\beta \eta_i}{\eta} + \frac{g_i}{M - g} + \frac{u_{11i}^s}{u_{11}^s}$$

and

(2.23) $$0 > \sigma_{ii}^n \left[\frac{\beta \eta_{ii}}{\eta^2} + \frac{g_{ii}}{M - g} + \frac{g_i^2}{(M - g)^2} + \frac{u_{11ii}^s}{u_{11}^s} - \left(\frac{u_{11i}^s}{u_{11}^s} \right)^2 \right].$$
By (2.22) we can see that when $i = 1$ we have

\[(2.24)\]
\[
\left(\frac{u_{11}^*}{u_{11}^*}\right)^2 = \left(\frac{\beta \eta_i}{\eta} + \frac{g_1}{M - g}\right)^2 \leq \frac{2\beta^2 \eta_i^2}{\eta^2} + \frac{2g_1^2}{(M - g)^2}.
\]

When $i \geq 2$

\[(2.25)\]
\[
\beta \left(\frac{\eta_i}{\eta}\right)^2 = \frac{1}{\beta} \left(\frac{g_i}{M - g} + \frac{u_{11i}^*}{u_{11}^*}\right)^2 \leq \frac{2g_i^2}{\beta(M - g)^2} + \frac{2}{\beta} \left(\frac{u_{11i}^*}{u_{11}^*}\right)^2.
\]

Note also that

\[
\sum_k \sigma_{n}^{ii} u_k^* u_{kii}^* = \sum_k u_k^* f_k = f \left(\frac{\alpha|Du^*|^2}{u^*} + \frac{(\alpha - n - 2)}{2} h^{-1} \sum_k h_k u_k^*\right).
\]

Therefore,

\[(2.26)\]
\[
\sigma_{n}^{ii} g_{ii} \geq 12h^2 |Du^*|^2 \sigma_{n}^{ii} \xi_i^2 - 8h m_0 \sum \sigma_{n}^{ii} - 32h^2 \sqrt{m_0} \sigma_n
\]
\[+ 2h^4 \sigma_n \sigma_1 + 2h^4 \sigma_n \left(\frac{\alpha|Du^*|^2}{u^*} + \frac{(\alpha - n - 2)}{2} h^{-1} \sum_k h_k u_k^*\right),
\]

and

\[(2.27)\]
\[
\sigma_{n}^{11} g_{ii} \leq \sigma_{n}^{11} \left(32h^6 h_2^2 |Du^*|^4 + 8h^8 u_{11}^* u_{11}^*\right) < 128 m_0 h^4 |Du^*|^2 \sigma_n \xi_1^2 + 8h^6 m_0 \sigma_n u_{11}^*.
\]

Combining (2.26) and (2.27) we obtain

\[(2.28)\]
\[
\frac{\sigma_{n}^{ii} g_{ii}}{M - g} - \frac{\sigma_{n}^{11} g_{11}}{(M - g)^2}
\]
\[\geq \frac{1}{(M - g)^2} \left\{ (M - g) |12h^2 |Du^*|^2 \sigma_{n}^{ii} \xi_i^2 - 36h^2 \sqrt{m_0} \sigma_n - 8h m_0 \sum \sigma_{n}^{ii} + 2h^4 \sigma_n \sigma_1
\]
\[\right. - 128 m_0 h^4 |Du^*|^2 \sigma_n \xi_1^2 - 8h^6 m_0 \sigma_n u_{11}^*\right\}
\]

Choose $M = 13m_0 + N$ such that $M - g \geq 12m_0 + N$ then

\[(2.29)\]
\[
\frac{\sigma_{n}^{ii} g_{ii}}{M - g} - \frac{\sigma_{n}^{11} g_{11}}{(M - g)^2}
\]
\[\geq \frac{1}{(M - g)^2} \left[-(M - g)36h^2 \sqrt{m_0} \sigma_n - 8(M - g) h m_0 \sum \sigma_{n}^{ii} + 2N h^4 \sigma_n \sigma_1\right],
\]

where we have used $\sigma_1 > u_{11}^*$. Differentiating $\sigma_n = f$ twice we get

\[
\sigma_{n}^{ii} u_{11i}^* + \sigma_{n}^{pq rs} u_{pq1}^* u_{rs1}^* = f_{11}.
\]

Thus,

\[(2.30)\]
\[
\sigma_{n}^{ii} u_{11i}^* = f_{11} + \sum_{p\neq q} \sigma_{n}^{pq} u_{pq1}^* u_{pq1}^* - \sum_{p\neq q} \sigma_{n}^{pq} u_{pq1}^* u_{pq1}^* f_{11}^2.
\]
Notice that
\[
\begin{align*}
 f_{11} - f^2_f &= f \left[\frac{\alpha u^*_1}{-u^*} + \frac{\alpha u^*_1^2}{-u^*} + \frac{(n + 2 - \alpha)h^{-2}h_1^2 + (n + 2 - \alpha)sh^{-1}}{2} \right] \\
 &\geq C_5u^*_1f,
\end{align*}
\]
we conclude
\begin{equation}
 (2.31)
 \frac{\sigma^{ii}u^{11ii}}{u^*_1} \geq C_5f + 2 \sum_{p=2}^n \frac{\sigma^{pp}_n}{u^*_1}u^{11p}_1.
\end{equation}

By a straightforward calculation we can see
\[
 \sigma^{ii}_n \eta^{ii} = \sigma^{ii}_n((u^*_0)_{ii} - u^*_1) \geq C_6 \sum \sigma^{ii}_n - n\sigma_n.
\]

Combining (2.24), (2.25) with (2.23) we obtain
\begin{equation}
 (2.32)
 0 \geq \frac{(C_6\sigma^{ii}_n - n\sigma_n)}{\eta^2} - \frac{(\beta + 2\beta^2)\sigma^{11}_n\eta^2}{\eta^2} + \frac{\sigma^{ii}_ng^1}{(M - g)^2} - \frac{\sigma^{11}_ng^2}{(M - g)^2} \\
 - \left(1 + \frac{2}{\beta}\right) \sum_{i \geq 2} \sigma^{ii}_n\left(\frac{u^{11}_1}{u^*_1}\right)^2 + \frac{\sigma^{ii}_nu^{11ii}_1}{u^*_1} + \left(1 - \frac{2}{\beta}\right) \sum_{i \geq 2} \frac{\sigma^{ii}_n g^2_i}{(M - g)^2}.
\end{equation}

When \(\beta \geq 2 \), applying (2.29) and (2.31) we get
\begin{equation}
 (2.33)
 0 \geq \frac{n\beta}{\eta^2}\sigma_n - \frac{(\beta + 2\beta^2)\sigma_n(C_6 + |Du^*|)^2}{\eta^2} - C_7\sigma_n + \frac{2Nh^4\sigma_n u^*_1}{M^2} + C_5\sigma_n.
\end{equation}

By Lemma \(\ref{lem:13} \) we know \(\eta^{1/\alpha} < Ch \), which gives \(h > C\eta^{1/\alpha} \). Thus, we have
\[
 \eta^{1/\alpha}|Du^*| < C\eta^\alpha.
\]

Now, let \(\beta = \frac{8}{m_\alpha} > 8 \) and multiplying (2.33) by \(\eta^{\beta} \), we obtain
\[
 0 \geq -n\beta \eta^{\beta - 1} - (\beta + 2\beta^2)(C_6 + |Du^*|)^2\eta^{\beta - 2} - C_7\eta^\beta + C_8N\eta^\beta u^*_1.
\]

Therefore, we conclude that \(\eta^\beta u^*_1 < C_9 \) at its interior maximum point, which implies \(\phi < 2C_9 \).
\[\square\]
Proof of Theorem 1} By subsection 2.1 we know there exists a solution \(u^* \) of (2.4) for any \(s \in (0, 1) \). Combining Lemma 5, 8, 14 with the classic regularity theorem, we know that there exists a subsequence of \(u^* \) denoted by \(\{ u^{n*} \}_{n=1}^{\infty} \), converging locally smoothly to a convex function \(u^* \), which satisfies (2.3). Here, \(s_j \to 1 \) as \(j \to \infty \).

Moreover, applying Lemma 12 and Lemma 14 of [17] we conclude, the Legendre transform of \(u^* \), denoted by \(u \), is the desired entire solution of (2.1) satisfying the asymptotic condition (2.2). This completes the proof of Theorem 1. \(\square \)

3. \(\sigma_k \) CURVATURE SELF-EXPANDER

In this section we will show that there exists an entire, strictly spacelike solution to the following equation

\[
\sigma_k(\kappa[\mathcal{M}_u]) = (-\langle X, \nu \rangle)^\alpha,
\]

and

\[
u(x) - |x| \to \varphi \left(\frac{x}{|x|} \right) \text{ as } |x| \to \infty,
\]

where \(0 < \alpha \leq k \) are constants. If \(u \) is a strictly convex solution satisfying (3.1) and (3.2), then subsection 2.3 and Lemma 14 of [17] imply its Legendre transform \(u^* \) satisfies

\[
\begin{align*}
\sigma_n(w^* \gamma^*_i u_k^* \gamma^*_l) &= \left(\frac{\sqrt{1 - |\xi|^2}^\alpha}{-u^*} \right) \text{ in } B_1, \\
u^* &= \varphi^* \text{ on } \partial B_1,
\end{align*}
\]

here \(\varphi^*(\xi) = -\varphi(\xi) \). By Section 2 we know there exists \(u \) such that

\[
\sigma_n(\kappa[\mathcal{M}_u]) = \frac{1}{(n_k) \pi} \left(-\langle X, \nu \rangle \right)^{\alpha n_k},
\]

and \(u(x) - |x| \to \varphi \left(\frac{x}{|x|} \right) \text{ as } |x| \to \infty \). Applying Maclaurin’s inequality we obtain

\[
\sigma_k(\kappa[\mathcal{M}_u]) \geq (-\langle X, \nu \rangle)^\alpha.
\]

We will denote the Legendre transform of \(u \) by \(u^* \), then \(u^* \) satisfies

\[
\begin{align*}
\sigma_n(w^* \gamma^*_i u_k^* \gamma^*_l) &\leq \left(\frac{\sqrt{1 - |\xi|^2}^\alpha}{-u^*} \right) \text{ in } B_1, \\
u^* &= \varphi^* \text{ on } \partial B_1.
\end{align*}
\]

We will study the following approximate equation

\[
\begin{align*}
\sigma_n(w^* \gamma^*_i u_k^* \gamma^*_l) &= \left(\frac{\sqrt{1 - |\xi|^2}^\alpha}{-u^*} \right) \text{ in } B_r, \\
u^* &= \varphi^* \text{ on } \partial B_r.
\end{align*}
\]
where $0 < r < 1$. In the following we denote $\Psi^* := \left(\frac{\sqrt{1-|\xi|^2}}{-u^*}\right)^\alpha$, and we can see that as long as $-u^* > 0$ we have

$$\frac{\partial \Psi^*}{\partial u^*} = \alpha \left(\sqrt{1-|\xi|^2}\right)^\alpha (-u^*)^{-\alpha-1} > 0.$$

This guarantees that the maximum principle holds for (3.5). Now assume $\max_{\xi \in \partial B_1} \varphi^*(\xi) = -C_0 < 0$, let \bar{u} be a constant σ_k curvature hypersurface satisfying $\sigma_k(\kappa[M_{\bar{u}}]) = C_0^n$, \bar{u} is strictly convex, and $\bar{u}(x) - |x| \to \varphi \left(\frac{x}{|x|}\right)$ as $|x| \to \infty$. We denote the Legendre transform of \bar{u} by \bar{u}^*, then \bar{u}^* satisfies

$$\sigma_n \left(\sigma_n - w^* \gamma^*_i u^*_k \gamma^*_l \right) = \frac{1}{C_0^n} \geq \left(\frac{\sqrt{1-|\xi|^2}}{-u^*}\right)^\alpha$$

in B_1

$$\bar{u}^* = \varphi^*$$

on ∂B_1.

By the maximal principle we know $\bar{u}^* < u^*$ in B_1. Moreover, for any solution u^* of (3.5), it is easy to see that

$$\bar{u}^* < u^* < u^*$$

in B_r.

Therefore, we conclude

Lemma 15. Let u^* be a solution of (3.5) and \bar{u}^*, \bar{u}^* are constructed above. Then we have

$$\bar{u}^* < u^* < u^*$$

in B_r.

3.1. Global a priori estimates.

In the subsection, we will prove a priori estimates that needed for the solvability of (3.5).

Lemma 16. Let u^* be a solution of (3.5), then there exists $C > 0$ such that

$$|Du^*| < C.$$

Proof. By Section 2 of [5], we know that for any $0 < r < 1$, we can construct a subsolution u^* such that

$$\frac{\sigma_n}{\sigma_n - w^* \gamma^*_i u^*_k \gamma^*_l} \geq \frac{1}{C_0^n}$$

in B_r

$$u^* = u^*$$

on ∂B_r.

Then by the convexity of u^* we have

$$|Du^*| \leq \max_{\partial B_r} |Du^*|.$$

□

Let $v = \langle X, \nu \rangle = \frac{x \cdot Du - u}{\sqrt{1-|Du|^2}} = \frac{u^*}{\sqrt{1-r^2}}$. We will consider the hyperbolic model of (3.5) (see [17] for detail).

$$F(v_{ij} - v \delta_{ij}) = (-v)^{-\alpha}$$

in U_r,

$$v = \frac{u^*}{\sqrt{1-r^2}}$$

on ∂U_r,

(3.7)
Proof. The proof of this Lemma is a modification of the proof of Lemma 18 in [17]. Set
\[v_0 = \mathbf{v} - \mathbf{v}_0 \]
where \(v_0 \) denotes the covariant derivative with respect to the hyperbolic metric, \(U_r = P^{-1}(B_r) \subset \mathbb{H}^n(-1) \), \(F(v_i - v_i) = \frac{\pi_n}{\pi_{n-k}}(\lambda[v_i - v_i]) \), and \(\lambda[v_i - v_i] = (\lambda_1, \cdots, \lambda_n) \) denotes the eigenvalues of \((v_i - v_i) \). Recall the following Lemma 27 from [12].

Lemma 17. There exist some uniformly positive constants \(B, \delta, \epsilon > 0 \) such that
\[
 h = (v - v) + B \left(\frac{1}{\sqrt{1 - r^2}} - x_{n+1} \right)
\]
satisfying \(\mathcal{L}h \leq -\alpha(1 + \sum_i F^{ii}) \) in \(U_{r\delta} \) and \(h \geq 0 \) on \(\partial U_{r\delta} \). Here \(\alpha > 0 \) is some positive constant, \(v = \frac{u^*}{\sqrt{1 - |\xi|^2}} \) is a subsolution, \(\mathcal{L}f := F^{ij}\nabla_{ij}f - f\sum_i F^{ii} \), and \(U_{r\delta} := \{ x \in U_r | \frac{1}{\sqrt{1 - r^2}} - x_{n+1} < \delta \} \).

Following the argument in [7], we obtain a \(C^2 \) boundary estimate for \(u^* \). So far, we have obtained the \(C^0, C^1 \), and \(C^2 \) boundary estimates for the solution of (3.5). To prove the solvability of (3.5), we only need to obtain the \(C^2 \) global estimates. We consider
\[
 \hat{F} = \left(\frac{\sigma_n}{\sigma_{n-k}} \right)^{\frac{1}{2}} (\Lambda_{ij}) = (-v)^{\frac{\alpha}{\beta}} := \tilde{\Psi},
\]
where \(\Lambda_{ij} = v_i - v_i \).

Lemma 18. Let \(v \) be the solution of (3.5) in a bounded domain \(U \subset \mathbb{H}^n \). Denote the eigenvalues of \((v_i - v_i) \) by \(\lambda[v_i - v_i] = (\lambda_1, \cdots, \lambda_n) \). Then
\[
 \lambda_{\text{max}} \leq \max\{ C, \lambda_i \partial U \},
\]
and \(C \) is a positive constant only depending on \(U \) and \(\tilde{\Psi} \).

Proof. The proof of this Lemma is a modification of the proof of Lemma 18 in [17]. Set \(M = \max_{p \in U} \max_{|\xi| = 1, \xi \in T_p^0} \left(\log \Lambda_{\xi\xi} \right) + N x_{n+1} \), where \(x_{n+1} \) is the coordinate function. Without loss of generality, we may assume \(M \) is achieved at an interior point \(p_0 \in U \) for some direction \(\xi_0 \). Choose an orthonormal frame \(\{ e_1, \cdots, e_n \} \) around \(p_0 \) such that \(e_1(p_0) = \xi_0 \) and \(\Lambda_{ij}(p_0) = \lambda_i \delta_{ij} \). Now, let consider the test function
\[
 \phi = \log \Lambda_{11} + N x_{n+1}.
\]
At its maximum point \(p_0 \), we have
\[
 0 = \phi_i = \frac{\Lambda_{11i}}{\Lambda_{11}} + N(x_{n+1})_i,
\]
and
\[
 0 \geq \hat{F}^{ii} \phi_{ii} = \hat{F}^{ii} \frac{\Lambda_{11i}}{\Lambda_{11}} - \hat{F}^{ii} \left(\frac{\Lambda_{11i}}{\Lambda_{11}} \right)^2 + N(x_{n+1}) \sum_i \hat{F}^{ii}
\]
Since \(\Lambda_{11i} = \Lambda_{ii1} + \Lambda_{ij} - \Lambda_{i1} \) and
\[
 \hat{F}_{ii} = \hat{F}^{ii} \Lambda_{ii1} + \hat{F}^{pq,rs} \Lambda_{pq1} \Lambda_{rs1} = \tilde{\Psi}_{ii},
\]
we get

\[
\hat{F}^{ii} \Lambda_{11ii} = \hat{F}^{ii} \Lambda_{ii11} + \bar{\Psi} - \Lambda_{11} \sum_i \hat{F}^{ii}
\]

(3.11)

\[
= \bar{\Psi}_{11} - \hat{F}^{pp,qq} \Lambda_{pp1} \Lambda_{qq1} - \sum_{p \neq q} \frac{\hat{F}^{pp} - \hat{F}^{qq}}{\lambda_p - \lambda_q} \Lambda_{pq1}^2 + \bar{\Psi} - \Lambda_{11} \sum_i \hat{F}^{ii}.
\]

Since \(\hat{F} \) is concave, combining (3.11) and (3.10) we have

\[
0 \geq \frac{1}{\Lambda_{11}} \left\{ \bar{\Psi}_{11} + 2 \sum_{i \geq 2} \frac{\hat{F}^{ii} - \hat{F}^{11}}{\lambda_1 - \lambda_i} \Lambda_{11ii}^2 + \bar{\Psi} - \Lambda_{11} \sum_i \hat{F}^{ii} \right\}
\]

(3.12)

\[-\frac{\hat{F}^{ii} \Lambda_{11ii}^2}{\Lambda_{11}^2} + \lambda_{n+1} \sum_i \hat{F}^{ii}.\]

We need an explicit expression of \(\hat{F}^{ii} \). A straightforward calculation gives

\[
k \hat{F}^{k-1} \hat{F}^{ii} = \frac{\sigma_n}{\sigma_{n-k}} - \frac{\sigma_{n-1}}{\sigma_{n-k}^2} \sigma_{n-k-1}(\lambda|i).
\]

Since

\[
\sigma_{n-1}(\lambda|i)\sigma_{n-k} - \sigma_n \sigma_{n-k-1}(\lambda|i)
\]

\[
= \sigma_{n-1}(\lambda|i) \left[\lambda_i \sigma_{n-k-1}(\lambda|i) + \sigma_{n-k}(\lambda|i) \right] - \sigma_n \sigma_{n-k-1}(\lambda|i)
\]

\[
= \sigma_{n-1}(\lambda|i) \sigma_{n-k}(\lambda|i),
\]

we get

\[
k \hat{F}^{k-1} \hat{F}^{ii} = \frac{\sigma_n}{\sigma_{n-k}^2} \sigma_{n-k}(\lambda|i).
\]

Therefore, we have

\[
k \hat{F}^{k-1} (\hat{F}^{ii} - \hat{F}^{11})
\]

\[
= \frac{1}{\sigma_{n-k}^2} \left[\sigma_{n-2}(\lambda|i) \sigma_{n-k}(\lambda|i) - \sigma_{n-1}(\lambda|1) \sigma_{n-k}(\lambda|1) \right]
\]

\[
= \frac{1}{\sigma_{n-k}^2} \left[\sigma_{n-2}(\lambda|1) \lambda_1 \sigma_{n-k}(\lambda|i) - \sigma_{n-2}(\lambda|1) \lambda_i \sigma_{n-k}(\lambda|i) \right]
\]

\[
= \frac{\sigma_{n-2}(\lambda|1)}{\sigma_{n-k}^2} \left[\lambda_1 \sigma_{n-k}(\lambda|i) - \lambda_i \sigma_{n-k}(\lambda|1) \right]
\]

\[
= \frac{\sigma_{n-2}(\lambda|1) \lambda_1 - \lambda_i}{\sigma_{n-k}^2} \left[(\lambda_1 + \lambda_i) \sigma_{n-k-1}(\lambda|1i) + \sigma_{n-k}(\lambda|1i) \right]
\]
When $i \geq 2$ we can see that
\[
\hat{F}^{k-1} \left(\frac{\hat{F}^{ii} - \hat{F}^{11}}{\lambda_1 - \lambda_i} - \frac{\hat{F}^{ii}}{\lambda_1} \right)
= \frac{\sigma_{n-2}(\lambda|1)}{\sigma_{n-k}^2} \left[(\lambda_1 + \lambda_i)\sigma_{n-k-1}(\lambda|1i) + \sigma_{n-k}(\lambda|1i) - \sigma_{n-k}(\lambda|i) \right]
= \frac{\sigma_{n-1}(\lambda|1)}{\sigma_{n-k}^2} \sigma_{n-k-1}(\lambda|1i) > 0
\]

Thus, (3.12) can be reduced to

\[
0 \geq \frac{1}{\Lambda_{11}} \hat{\Psi}_{11} + (Nx_{n+1} - 1) \sum_i \hat{F}^{ii} - \frac{\hat{F}^{11} \Lambda_{11}^2}{\Lambda_{11}^2}
= \frac{\hat{\Psi}_{11}}{\Lambda_{11}} + (Nx_{n+1} - 1) \sum_i \hat{F}^{ii} - \hat{F}^{11} N^2 (x_{n+1})^2.
\]

Since $\hat{\Psi} = (-v)^{-\frac{\alpha}{k}}$ and $-v = \frac{|u^*|}{\sqrt{1 - |\xi|^2}} > \min_{\xi \in B_r} |u^*| > \max_{\xi \in \partial B_1} \varphi^* > 0$, a direct calculation yields
\[
\hat{\Psi}_{11} = \alpha \left(\frac{\alpha}{k} + 1 \right) (-v)^{-\frac{k-2}{k}v^2} + \frac{\alpha}{k} (-v)^{-\frac{k-1}{k}v_1}
\geq C_1 (\lambda_1 + \lambda)
\geq \frac{\alpha}{k} (-v)^{-\frac{k-1}{k}v_1}
\geq C_1 (\lambda_1 - C_2).
\]

Here, C_1 depends on U, since $-v \leq \frac{C}{\sqrt{1 - |\xi|^2}}$. Plugging the above inequality into (3.13) we obtain
\[
0 \geq C_1 - \frac{C_2}{\lambda_1} + (Nx_{n+1} - 1) \sum_i \hat{F}^{ii} - N^2 (x_{n+1})^2 \frac{C_3}{\lambda_1}.
\]

Here we have used
\[
k \hat{F}^{k-1} \hat{F}^{11} = \frac{\sigma_n \sigma_{n-k}(\lambda|1)}{\lambda_1 \sigma_{n-k}^2} \frac{1}{\lambda_1} \hat{F}^{-k} \leq \frac{C_3}{\lambda_1},
\]

where C_3 depends on U. Let $N = 2$ we can see that when λ_1 is large, we get an contradiction. This completes the proof of Lemma 18.\square

Therefore, we conclude that the approximate problem (3.5) is solvable.

3.2. **Local a priori estimates.** Let u^{rs} be the solution of (3.5), u_r be the Legendre transform of u^{rs}. In this section, we will study interior estimates of u_r, which will enable us to show there exists a subsequence of $\{u_r\}$ that converges to the desired entire solution u of (3.1).

Lemma 19. (Lemma 5.1 of [2]) Let $\Omega \subset \mathbb{R}^n$ be a bounded open set. Let $u, \bar{u}, \Psi : \Omega \to \mathbb{R}^n$ be strictly spacelike. Assume that u is strictly convex and $u < \bar{u}$ in Ω. Also assume that near $\partial \Omega$, we
have $\Psi > \bar{u}$. Consider the set where $u > \Psi$. For every x in this set, we have the following gradient estimate for u:

$$\frac{1}{\sqrt{1 - |Du|^2}} \leq \frac{1}{u(x) - \Psi(x)} \sup_{\{u > \Psi\}} \frac{\bar{u} - \Psi}{\sqrt{1 - |D\Psi|^2}}.$$

3.2.1. Construction of Ψ. In order to obtain the local C^1 estimate, we introduce a new subsolution u_1 of (3.1), where u_1 satisfies

$$\sigma_n(\kappa[\mathcal{M}_{u_1}]) = 100 \left(- \langle X, \nu \rangle \right) \frac{\alpha_n}{k},$$

and

$$u_1(x) - |x| \to \varphi \left(\frac{x}{|x|} \right) \text{ as } |x| \to \infty.$$

Lemma 20. Let u be a solution of

$$\sigma_n(\kappa[\mathcal{M}_u]) = \frac{1}{\binom{n}{k}} \left(- \langle X, \nu \rangle \right) \frac{\alpha_n}{k},$$

satisfying $u(x) - |x| \to \varphi \left(\frac{x}{|x|} \right) \text{ as } |x| \to \infty$, then $u_1 < u$.

Proof. We look at the Legendre transform of u_1, denoted by u_1^*. Then u_1^* satisfies

$$\sigma_n(w^* \gamma_{ik}(u_1^*)_{kl} \gamma_{lj}) = \frac{1}{100} \left(\frac{\sqrt{1 - |\xi|^2}}{w^* - u_1^*} \right)^{\frac{\alpha_n}{k}};$$

while u^* satisfies

$$\sigma_n(w^* \gamma_{ik}(u^*)_{kl} \gamma_{lj}) = \frac{n}{k} \left(\frac{\sqrt{1 - |\xi|^2}}{w^* - u^*} \right)^{\frac{\alpha_n}{k}}.$$

Moreover, $u_1^* = u^* = \varphi^*(\xi)$ on ∂B_1. Applying the maximal principle we conclude $u_1^* > u^*$ in B_1. Following the proof of Lemma 13 of [17] we get $u_1 < u$ in \mathbb{R}^n. \hfill \square

Now, for any compact domain $K \subset \mathbb{R}^n$, let $2\delta = \min\{u - u_1\}$. We define $\Psi = u_1 + \delta$. Denote $K' = \{x \in \mathbb{R}^n \mid \Psi \leq \bar{u}\}$, notice that as $|x| \to \infty$, we have $u_1 - \bar{u} \to 0$, this implies K' is compact. Applying Lemma [19] for any (Ω_r, u^*), if $K' \subset \Omega_r$, we have

$$\sup_{K'} \frac{1}{\sqrt{1 - |Du^*|^2}} \leq \frac{1}{\delta} \sup_{K'} \frac{\bar{u} - \Psi}{\sqrt{1 - |D\Psi|^2}}.$$

3.2.2. Local C^2 estimates. We will follow the proof of Lemma 24 in [17].

Lemma 21. Let u^* be the solution of (3.5), u_r be the Legendre transform of u^*, and $\Omega_r = Du^*(B_r)$. For any giving $s > 1$, let $r_s > 0$ be a positive number such that when $r > r_s$, $u_r\mid_{\partial\Omega_r} > s$. Let $\kappa_{\max}(x)$ be the largest principal curvature of \mathcal{M}_{u_r} at x, where $\mathcal{M}_{u_r} = \{(x, u_r(x)) \mid x \in \Omega_r\}$. Then, for $r > r_s$ we have

$$\max_{\{x \in \Omega_r \mid u_r(x) \leq s\}} (s - u_r) \kappa_{\max} \leq C.$$
Here, C only depends on the C^0 and local C^1 estimates of u_r.

Proof. Consider the test function

$$
\phi = m \log(s-u) + \log P_m - m N \langle \nu, E \rangle,
$$

where $P_m = \sum_j \kappa_j^m$, $E = (0, \cdots, 0, 1)$, and $N, m > 0$ are some undetermined constants. Assume that ϕ achieves its maximum value on M at some point x_0. We may choose a local orthonormal frame $\{\tau_1, \cdots, \tau_n\}$ such that at x_0, $h_{ij} = \kappa_i \delta_{ij}$ and $\kappa_1 \geq \kappa_2 \geq \cdots \geq \kappa_n$. Differentiating ϕ twice at x_0 we have

$$
\sum_j \kappa_j^{m-1}h_{jjj} - N h_{ii} \langle \tau_i, E \rangle + \frac{\langle \tau_i, E \rangle}{s-u} = 0,
$$

and

$$
0 \geq \frac{1}{P_m} \left[\sum_j \kappa_j^{m-1}h_{jjj} + (m-1) \sum_j \kappa_j^{m-2}h_{jjj}^2 + \sum_{p \neq q} \kappa_p^{m-1} - \kappa_q^{m-1} \frac{h_{pqi}^2}{\kappa_p - \kappa_q} \right]
$$

$$
- \frac{m}{P_m^2} \left(\sum_j \kappa_j^{m-1}h_{jjj} \right)^2 - N h_{ii} \langle \tau_i, E \rangle - N h_{ii}^2 \langle \nu, E \rangle + \frac{h_{ii} \langle \nu, E \rangle}{s-u} - \frac{u_i^2}{(s-u)^2}.
$$

Denote $\hat{v} = -\langle X, \nu \rangle$ then

$$
\hat{v}_j = -h_{jk} \langle X, \tau_k \rangle = -h_{jj} \langle X, \tau_j \rangle,
$$

and

$$
\hat{v}_{jj} = -h_{jjk} \langle X, \tau_k \rangle - h_{jk} \langle \tau_j, \tau_k \rangle - h_{jj}^2 \langle X, \nu \rangle
$$

$$
= -h_{jjk} \langle X, \tau_k \rangle - h_{jj} - h_{jj}^2 \langle X, \nu \rangle.
$$

Since $\sigma_k = \hat{v}^\alpha := G$, we can see that $\sigma_k^{ii}h_{iij} = G_j$ and $\sigma_k^{ii}h_{iijj} + \sigma_k^{pq,s} h_{pqj} h_{rsj} = G_{jj}$. Recall also that in Minkowski space we have

$$
h_{jjj} = h_{iij} + h_{ii}^2 h_{jj} - h_{ii} h_{jj}^2,
$$

thus (3.16) becomes

$$
0 \geq \frac{1}{P_m} \left[\sum_j \kappa_j^{m-1} \sigma_k^{ii}(h_{iij} + h_{ii}^2 h_{jj} - h_{ii} h_{jj}^2) \right]
$$

$$
+ (m-1) \sigma_k^{ii} \sum_j \kappa_j^{m-2}h_{jjj}^2 + \sum_{p \neq q} \kappa_p^{m-1} - \kappa_q^{m-1} \frac{\sigma_k^{ii} h_{pqi}^2}{\kappa_p - \kappa_q} \right]
$$

$$
- \frac{m}{P_m^2} \sigma_k^{ii} \left(\sum_j \kappa_j^{m-1}h_{jjj} \right)^2 - N \langle \nabla G, E \rangle - N \sigma_k^{ii} \kappa_i^2 \langle \nu, E \rangle + \frac{kG \langle \nu, E \rangle}{s-u} - \frac{\sigma_k^{ii} u_i^2}{(s-u)^2}.
$$
This gives

\[
0 \geq \frac{1}{P_m} \left\{ \sum_j \kappa_j^{m-1} [G_{jj} - \sigma_k^{pq,rs} h_{pq} h_{rs} - kG h_{jj}^2] + (m-1)\sigma_k^{ii} \sum_j \kappa_j^{m-2} h_{ji}^2 + \sum_{p \neq q} \frac{\kappa_p^{m-1} - \kappa_q^{m-1}}{\kappa_p - \kappa_q} \sigma_k^{ii} h_{pq}^2 \right\}
\]

\[
(3.18)
\]

\[- \frac{m}{P_m} \sigma_k^{ii} \left(\sum_j \kappa_j^{m-1} h_{ji}^2 \right)^2 - N \langle \nabla G, E \rangle - N \sigma_k^{ii} \kappa_i^2 \langle \nu, E \rangle + \frac{kG \langle \nu, E \rangle}{s-u} - \frac{\sigma_k^{ii} u_i^2}{(s-u)^2}.
\]

We denote \(A_i = \frac{m-1}{P_m} \left[K(\sigma_k)^2_i - \sum_{p \neq q} \sigma_k^{pp,qq} h_{pp} h_{qq} \right] \), \(B_i = 2 \frac{m-1}{P_m} \sum_j \sigma_k^{jj,ii} h_{ji}^2 \), \(C_i = \frac{m-1}{P_m} \sigma_k^{ii} \sum_j \kappa_j^{m-2} h_{ji}^2 \), \(D_i = \frac{2m}{P_m} \sum_j \frac{\kappa_j^{m-1} - \kappa_j^{m-1}}{\kappa_j - \kappa_i} h_{ji}^2 \), and \(E_i = \frac{m}{P_m} \sigma_k^{ii} \left(\sum_j \kappa_j^{m-1} h_{ji}^2 \right)^2 \).

Then (3.18) can be reduced to

\[
0 \geq \sum_i \left(A_i + B_i + C_i + D_i - E_i \right) - \sum_i \frac{K \kappa_i^{m-1} (G_i)^2}{P_m}
\]

\[
+ \frac{\sum_j \kappa_j^{m-1} G_{jj}}{P_m} - N \langle \nabla G, E \rangle - N \sigma_k^{ii} \kappa_i^2 \langle \nu, E \rangle
\]

\[
- \frac{\sum_j \kappa_j^{m+1}}{P_m} kG + \frac{kG \langle \nu, E \rangle}{s-u} - \frac{\sigma_k^{ii} u_i^2}{(s-u)^2}.
\]

A straightforward calculation shows

\[
\sum_j \frac{\kappa_j^{m-1} G_{jj}}{P_m} = \sum_j \frac{\kappa_j^{m-1} \left[\alpha (\alpha - 1) \dot{\nu}^{\alpha-2} \dot{\nu}_j^2 + \alpha \dot{\nu}^{\alpha-1} \dot{\nu}_j \right]}{P_m}
\]

\[
= \alpha (\alpha - 1) \dot{\nu}^{\alpha-2} \sum_j \frac{\kappa_j^{m-1} \dot{\nu}_j^2}{P_m} + \alpha \dot{\nu}^{\alpha-1} \sum_j \frac{\kappa_j^{m-1} \left(h_{jj} \langle -X, \tau \rangle - \kappa_j + \kappa_j^2 \dot{\nu} \right)}{P_m}
\]

\[
(3.20)
\]

\[- \alpha \dot{\nu}^{\alpha-1} + \alpha \dot{\nu} \sum_j \frac{\kappa_j^{m+1}}{P_m}.
\]
Moreover, we have

\[
\frac{\alpha \hat{v}^{\alpha - 1} \sum \kappa_j^{m-1} h_{jji} \langle -X, \tau_i \rangle}{P_m} - N \langle \nabla G, E \rangle
\]

\[
= \frac{\alpha \hat{v}^{\alpha - 1} \sum \kappa_j^{m-1} h_{jji} \langle -X, \tau_i \rangle}{P_m} - N \alpha \hat{v}^{\alpha - 1} \hat{v}_l \langle \tau_l, E \rangle
\]

\[
= \alpha \hat{v}^{\alpha - 1} \left(\sum \frac{\kappa_j^{m-1} h_{jji} \langle -X, \tau_i \rangle}{P_m} - N \kappa_l \langle X, \tau_i \rangle u_l \right)
\]

\[
= \alpha \hat{v}^{\alpha - 1} \sum \langle X, \tau_i \rangle \left(N \kappa_l u_l - \frac{u_l}{s - u} \right)
\]

\[
= - \alpha \hat{v}^{\alpha - 1} \sum \langle X, \tau_i \rangle u_l
\]

where we have used (3.15). Combining (3.20), (3.21) with (3.19) we obtain

\[
0 \geq \sum_i (A_i + B_i + C_i + D_i - E_i) - \sum_i \frac{K \kappa_i^{m-1} (G_i)^2}{P_m}
\]

\[
+ \frac{\alpha \hat{v}^{\alpha - 2} \sum j \kappa_j^{m-1} \hat{v}_j^2}{P_m} - \alpha \hat{v}^{\alpha - 1} + \alpha \hat{v}^\alpha \sum j \kappa_j^{m+1}
\]

\[
- \frac{\alpha \hat{v}^{\alpha - 1} \sum \langle X, \tau_i \rangle u_l}{s - u} - N \sigma_k \kappa_i^2 \langle \nu, E \rangle
\]

\[
- kG \frac{\sum j \kappa_j^{m+1}}{P_m} + \frac{kG \langle \nu, E \rangle}{s - u} - \frac{\sigma_k^2 u_i^2}{(s - u)^2}
\]

Recall that

\[
\langle X, X \rangle + \langle \nu, X \rangle^2 = \sum_i \langle X, \tau_i \rangle^2,
\]

we know \(|\langle X, \tau_i \rangle|\) can be controlled by some constants depending on \(s\) and local \(C^1\) estimates. Therefore, applying Lemma 8 and 9 of [11] we may assume

\[
0 \geq -C \kappa_1 \sum_{i=2}^n \frac{\sigma_k^2}{P_m} \left(\sum_j \kappa_j^{m-1} h_{jji} \right)^2 - \frac{C}{s - u}
\]

\[
- \frac{N \sigma_k \kappa_i^2 \langle \nu, E \rangle}{s - u} + \frac{kG \langle \nu, E \rangle}{s - u} - \frac{\sigma_k^2 u_i^2}{(s - u)^2}.
\]
Now, for any fixed \(i \geq 2 \) by (3.15) we have

\[
\frac{\sigma^i_k u_i^2}{(s - u)^2} = \sigma^i_k \left[\frac{\sum \kappa_j^{m-1} h_{ijji}}{P_m} + N \kappa_i u_i \right]^2
\]

\[
= \sigma^i_k \left(\frac{\sum \kappa_j^{m-1} h_{ijji}}{P_m} \right)^2 + 2N \sigma^i_k \kappa_i u_i \left(-N \kappa_i u_i + \frac{u_i}{s - u} \right) + N^2 \sigma^i_k \kappa_i^2 u_i^2
\]

(3.24)

\[
= \sigma^i_k \left(\frac{\sum \kappa_j^{m-1} h_{ijji}}{P_m} \right)^2 - N^2 \sigma^i_k \kappa_i^2 u_i^2 + 2N \sigma^i_k \kappa_i u_i^2 \frac{u_i}{s - u}
\]

Plugging (3.24) into (3.23) we get,

\[
0 \geq -C \kappa_1 - \frac{C}{s - u} - N \frac{\sigma^i_1 u_i^2}{(s - u)} + \frac{kG \langle \nu, E \rangle}{s - u} - \frac{\sigma^i_k u_i^2}{(s - u)^2} + \sum_{i=2}^{n} N^2 \sigma^i_k \kappa_i^2 u_i^2 - 2N \sum_{i=2}^{n} \frac{\sigma^i_k \kappa_i u_i^2}{s - u}
\]

Since there is some constant \(c_0 \) such that \(\sigma^i_1 \kappa_1 \geq c_0 > 0 \), we have

\[
0 \geq \left(-\frac{c_0 N \langle \nu, E \rangle}{2} - C \right) \kappa_1 - \frac{N}{2} \sigma^i_1 \kappa_1^2 \langle \nu, E \rangle - \sum_{i=2}^{n} 2N \sigma^i_k u_i^2 \frac{s - u}{s - u} + \frac{kG \langle \nu, E \rangle - C}{s - u} - \frac{\sigma^i_k u_i^2}{(s - u)^2},
\]

where we have used for any \(1 \leq i \leq n \) (no summation), \(\sigma_k = \sigma^i_k \kappa_i + \sigma_k(\kappa|i) \geq \sigma^i_k \kappa_i \). Moreover, it’s clear that

\[
\sum_{i=2}^{n} u_i^2 = \sum_{i=2}^{n} \langle \tau_i, E \rangle^2 < \frac{1}{1 - |Du|^2} = \langle \nu, E \rangle^2.
\]

We conclude

\[
\left(\frac{2NC}{s - u} + \frac{\sigma^i_1 u_i^2}{(s - u)} \right) \langle \nu, E \rangle^2 \geq \frac{Nc_0 \kappa_1}{4} \langle -\nu, E \rangle + \frac{N}{2} \sigma^i_1 \kappa_1^2 \langle -\nu, E \rangle.
\]

This implies \((s - u) \kappa_1 \leq C \), where \(C \) depends on \(s \) and local \(C^1 \) estimates. Therefore, we obtain the desired Pogorelov type \(C^2 \) local estimates.

Following the argument in subsection 6.4 of [17], we prove Theorem 3.

REFERENCES

[1] Altschuler, Steven J.; Wu, Lang F. Translating surfaces of the non-parametric mean curvature flow with prescribed contact angle. Calc. Var. Partial Differential Equations 2 (1994), no. 1, 101-111.

[2] Bayard, Pierre; Schnürer, Oliver C. Entire spacelike hypersurfaces of constant Gau curvature in Minkowski space. J. Reine Angew. Math. 627 (2009), 1-29.

[3] Choi, Kyeongsu; Daskalopoulos, Panagiota; Lee, Ki-Ahm Translating solutions to the Gauss curvature flow with flat sides. Anal. PDE 14 (2021), no. 2, 595-616.
[4] Caffarelli, L.; Nirenberg, L.; Spruck, J. The Dirichlet problem for nonlinear second-order elliptic equations. I. Monge-Ampère equation. Comm. Pure Appl. Math. 37 (1984), no. 3, 369-402.

[5] Caffarelli, L.; Nirenberg, L.; Spruck, J. The Dirichlet problem for nonlinear second-order elliptic equations. III. Functions of the eigenvalues of the Hessian. Acta Math. 155 (1985), no. 3-4, 261-301.

[6] Clutterbuck, Julie; Schnäcer, Oliver C.; Schulze, Felix Stability of translating solutions to mean curvature flow. Calc. Var. Partial Differential Equations 29 (2007), no. 3, 281-293.

[7] Guan, Bo The Dirichlet problem for Hessian equations on Riemannian manifolds. Calc. Var. Partial Differential Equations 8 (1999), no. 1, 45-69.

[8] Guan, Bo; Jian, Huai-Yu; Schoen, Richard M. Entire spacelike hypersurfaces of prescribed Gauss curvature in Minkowski space. J. Reine Angew. Math. 595 (2006), 167-188.

[9] Hoffman, D.; Ilmanen, T.; Martin, F.; White, B. Graphical translators for mean curvature flow. Calc. Var. Partial Differential Equations 58 (2019), no. 4, Paper No. 117, 29 pp.

[10] Li, An Min Spacelike hypersurfaces with constant Gauss-Kronecker curvature in the Minkowski space. Arch. Math. (Basel) 64 (1995), no. 6, 534-551.

[11] Li, Ming; Ren, Changyu; Wang, Zhizhang An interior estimate for convex solutions and a rigidity theorem. J. Funct. Anal. 270 (2016), no. 7, 2691-2714.

[12] Ren, Changyu; Wang, Zhizhang; Xiao, Ling Entire spacelike hypersurfaces with constant $σ_{n-1}$ curvature in Minkowski space. eprint [arXiv:2005.06109]

[13] Ren, Changyu; Wang, Zhizhang; Xiao, Ling The prescribed curvature problem for entire hypersurfaces in Minkowski space. eprint [arXiv:2007.04493]

[14] Sheng, WeiMin; Wu, Chao Rotationally symmetric translating soliton of H_k-flow. Sci. China Math. 53 (2010), no. 4, 1011-1016.

[15] Spruck, Joel; Xiao, Ling Complete translating solitons to the mean curvature flow in \mathbb{R}^3 with nonnegative mean curvature. Amer. J. Math. 142 (2020), no. 3, 993-1015.

[16] Urbas, John Complete noncompact self-similar solutions of Gauss curvature flows. I. Positive powers. Math. Ann. 311 (1998), no. 2, 251-274.

[17] Wang, Zhizhang; Xiao, Ling; Entire spacelike hypersurfaces with constant $σ_k$ curvature in Minkowski space. Math. Ann. 382 (2022), no. 3-4, 1279-1322.

[18] Wang, Zhizhang; Xiao, Ling Entire convex curvature flow in Minkowski space. Preprint.

[19] Wang, Zhizhang; Xiao, Ling Entire $σ_k$ curvature flow in Minkowski space. Preprint.

School of Mathematical Science, Fudan University, Shanghai, China
Email address: zzwang@fudan.edu.cn

Department of Mathematics, University of Connecticut, Storrs, Connecticut 06269
Email address: ling.2.xiao@uconn.edu