Interlaced spin grating for optical wave filtering

H. Linget1, T. Chaneilhè1, J.-L. Le Gouèt1, P. Berger2, L. Morvan2, and A. Louchet-Chauvet1

1Laboratoire Aimé Cotton, CNRS UPR3321, Univ. Paris Sud, Bât. 505, campus universitaire, 91405 Orsay, France

2Thales Research and Technology, 1 Avenue Augustin Fresnel, 91767 Palaiseau, France

(Dated: July 16, 2014)

Interlaced Spin Grating is a scheme for the preparation of spectro-spatial periodic absorption gratings in an inhomogeneously broadened absorption profile. It relies on the optical pumping of atoms in a nearby long-lived ground state sublevel. The scheme takes advantage of the sublevel proximity to build large contrast gratings with unlimited bandwidth and preserved average optical depth. It is particularly suited to Tm-doped crystals in the context of classical and quantum signal processing. In this paper, we study the optical pumping dynamics at play in an Interlaced Spin Grating and describe the corresponding absorption profile shape in an optically thick atomic ensemble. We show that, in Tm:YAG, the diffraction efficiency of such a grating can reach 18.3\% in the small angle, and 11.6\% in the large angle configuration when the excitation is made of simple pulse pairs, considerably outperforming conventional gratings.

I. INTRODUCTION

Thanks to their uncomonn spectroscopic properties, rare-earth ion-doped crystals (REIC) have been proposed for a large variety of signal processing applications, stretching from classical signal processing to quantum memories.

Most classical signal processing architectures using REIC are based on the creation of a grating imprinted in their absorption profile.[1] This grating can be either spectral or spectro-spatial. Angle of arrival estimation[2] and time reversal[3] are based on spectral gratings. Analog-to-digital conversion[4], detection of correlations[5–7], lidar range Doppler imaging[8], true-time delay[9, 10] or spectral analysis[11] use spectro-spatial gratings. Many of these architectures have been demonstrated in Tm:YAG, a REIC that provides multi-GHz bandwidth, sub-kHz resolution limit, and accessibility to diode lasers altogether. However, the diffraction efficiencies did not exceed 1\% in the experimental demonstrations.

The atomic frequency comb (AFC)[12], one of the many quantum memory protocols developed specifically for REIC, is also based on a spectral grating (or spectro-spatial grating in the case of the spectro-spatial atomic comb (S2AC)[13]). Surprisingly enough, diffraction efficiencies up to 17\%[14] in Tm:YAG and 35\% in Pr:YSO[15] have been observed with AFC. Reaching such efficiencies requires the use of long-lived ground state sublevels for storage instead of the metastable level used in the classical processing experiments. Yet the presence of closely sublevels within the inhomogeneous line leads to grating replicas at other frequencies, limiting the grating bandwidth to the smallest ground or excited state splitting (typically a few MHz in Tm:YAG or Pr:YSO).

Nevertheless, a spectral or spectro-spatial grating in a REIC with closely ground state sublevels can exist over a broad bandwidth, by transferring atoms between the ground state sublevels from bright fringes to dark fringes. The grating period must be adjusted so that the grating replicas add constructively with the original one. This way, the total grating bandwidth can considerably exceed the ground state splitting. The absorbing and transparent fringes are intrinsically and unavoidably linked together since they mutually feed each other. In order to emphasize this inseparability, we propose to name the scheme, we will name this scheme “Interlaced Spin Grating” (ISG). It has been used for example by Saglamyurek et al.[16] in a Ti:Tm:LiNbO\textsubscript{3} optical waveguide, where an AFC is created over a 5 GHz bandwidth, exceeding the ground state splitting by a factor of 70, or by Bonarota et al.[17] in Tm:YAG, where this factor reaches 370. In these two demonstrations however, the diffraction efficiency did not exceed 2\%.

In this paper, we will explore the mechanisms at play in an ISG and identify the fundamental limits to its efficiency. Section II is devoted to the comparison of different optical pumping mechanisms used to create absorption gratings. The limits to the engraving power will be highlighted. In section III we will describe the effect of propagation on the engraving beams, and its consequences on the engraved grating shape and contrast. Numerical simulations will be presented. We will derive the corresponding diffraction efficiencies in various configurations, from the pure spectral grating with co-propagating engraving beams, to the spectro-spatial grating. We conclude this paper by presenting an experimental verification of these results in section IV.

II. OPTICAL PUMPING

In this section we compare the optical pumping mechanisms in the conventional scheme where the atoms are stored in a level outside the operation bandwidth, and in
the ISG scheme where the atoms are stored in a nearby, long-lived sublevel. Finally, we discuss the use of ISG in Tm-doped crystals.

A. Standard optical pumping

The simplest level scheme where optical pumping can be observed is given in Figure 1. It consists of three levels $|1\rangle$, $|2\rangle$ and $|m\rangle$, such that the intermediate, metastable level $|m\rangle$, lies outside the pumping spectrum. The atoms in the upper state $|2\rangle$ can decay back to the ground state $|1\rangle$ with rate γ_a or to state $|m\rangle$ with rate γ_b. $|m\rangle$ is considered as metastable because its decay rate γ_m to the ground state is much smaller than the total decay rate from the upper state $\gamma_a = \gamma_a + \gamma_b$.

![Figure 1](image1.png)

FIG. 1: (Color online) 3-level system for standard optical pumping.

We excite the transition $|1\rangle \rightarrow |2\rangle$ with pumping rate R. The stationary population difference along this transition is given by

$$\Delta n_{12} = n_1 - n_2 = \frac{1}{1 + \zeta r}$$

(1)

where n_1 (resp., n_2) is the proportion of atoms in state $|1\rangle$ (resp. $|2\rangle$) and $\zeta = (\gamma_b + 2\gamma_m)/\gamma_a$. The reduced pumping rate is defined as $r = R/\gamma_m$. The absorption coefficient is given by

$$\alpha = \alpha_0 \Delta n_{12}$$

(2)

where α_0 is the initial absorption.

Because the atomic absorption lines are spread over the inhomogeneous absorption profile, the population $\Delta n(\nu)$ is modified according to equations (1) and (2) where R is replaced with $R(\nu)$. If the transition is not saturated, then $R(\nu)$ is proportional to the engraving beams power spectral density. We also assume the homogeneous linewidth to be much smaller than the resolution of $R(\nu)$. Its convolution effect is then neglected.

While $\zeta r \ll 1$, the absorption profile imitates the pumping spectrum: $\alpha(\nu) \simeq \alpha_0(1 - \zeta r(\nu))$. As the pumping rate increases, the engraved structure contrast grows, until saturation makes the absorption pits broader and the peaks thinner. The average absorption eventually decreases since atoms accumulate in state $|m\rangle$, outside the grating bandwidth.

![Figure 2](image2.png)

FIG. 2: (Color online) Absorption grating in the standard optical pumping scheme, given a sinusoidal spectro-spatial pumping rate. Black line: spectral grating obtained with the strongest allowed average pumping rate in Tm:YAG: $\zeta r = 0.9$ (see text for details).

In the discussion above we have implicitly considered the excitation to be continuous, but a spectro-spatial grating is generally created with pulse pairs. Let us consider two short rectangular pulses with equal power and duration, separated by a delay τ and with respective wavevectors k_0 and k_1. The reduced pumping rate then depends on the frequency ν and position x in the crystal through the spectro-spatial phase ϕ:

$$r(\phi) = \bar{r}[1 + \cos(\phi)]$$

with $\phi = 2\pi \nu \tau + K \cdot x$ (3)

where $K = k_1 - k_0$ and \bar{r} is the average value of the reduced pumping rate r over the excitation spectrum. Figure 2 shows the shape of the absorption coefficient $\alpha(\phi)$ for different average pumping powers. It appears that the absorption profile can be sinusoidal only for low engraving power, hence with a low contrast. A larger pumping rate makes the contrast larger but the profile departs from the sinusoidal shape, getting closer to a comb-like shape.

Considering that during a time interval T we send only one pulse pair, the average pumping rate over T reads $R = A^2(1 + \cos \phi)/2T$ where A is the area of an individual pulse. In order to avoid distortion of the pulses envelope during their propagation, each pulse pair should have a rather small area so that only a small fraction of atoms is transferred to the excited state: $A \leq \pi/8$. Besides, each pulse pair should be followed by a waiting time long enough to let the atoms relax to lower states ($T \geq \frac{2}{\gamma_m}$).
This weak field condition therefore reads as:

$$R/\gamma_c \leq \frac{(\pi/8)^2}{2}$$ \hspace{1cm} (4)

In Tm-doped YAG, the decay rates are $\gamma_a = \frac{1}{2} \gamma_c$, $\gamma_b = \frac{1}{2} \gamma_c$, with $\gamma_c = 1/800 \mu s$ and $\gamma_m = 1/10 \mu s$. This translates into a maximum value for the pumping rate $R \leq 96 \text{ s}^{-1}$.

To understand how this condition limits the grating shape and contrast in Tm:YAG, we find the limit to the product $\zeta R \leq 0.9$, with $\zeta = 0.91$. The most contrasted grating allowed by this condition is plotted as a black line in Figure 2. Its contrast, defined as $c = (\alpha_{\text{max}} - \alpha_{\text{min}})/\alpha_0$, is equal to 0.63.

B. ISG

Let us now consider a three-level Λ-type system where two sublevels $|1\rangle$ and $|3\rangle$ of a ground state are connected via optical transitions to one upper level $|2\rangle$ (see Figure 3). Such a level scheme differs from that shown in Figure 1 in that the frequency difference Δg between the two lower states is smaller than the inhomogeneous linewidth and than the excitation spectrum width. This way, the atoms are simultaneously excited along their two optical transitions with pumping rates R and R', where $R'\nu = R(\nu - \Delta g)$. The total decay rate from the upper state γ_c is assumed much larger than the ground state sublevel relaxation rate γ_Z. The steady-state solution to the rate equations yields the following population differences:

$$\Delta n_{12} = \frac{\frac{1}{2} + \xi r'}{1 + \xi (r + r')}, \hspace{1cm} (5)$$

$$\Delta n_{32} = \frac{\frac{1}{2} + \xi r}{1 + \xi (r + r')}, \hspace{1cm} (6)$$

where the reduced pumping rates are defined as $r = R/\gamma_c$ and $r' = R'/\gamma_c$, and $\xi = \gamma_c/(2\gamma_Z)$. The resulting absorption is obtained by combining the two quantities above:

$$\alpha(\nu) = \alpha_0[\Delta n_{12}(\nu) + \Delta n_{32}(\nu + \Delta_g)]$$ \hspace{1cm} (7)

where α_0 is the initial absorption coefficient.

We consider the excitation by a pair of pulses giving rise to a spectro-spatial grating. Again, the pumping rate $r(\phi) = \bar{r}[1 + \cos(\phi)]$ is a sinusoidal function of the spectro-spatial phase $\phi = 2\pi \nu R + K \cdot \mathbf{x}$. If the frequency-domain period of this function is $2\Delta_g$, (i.e $\tau = 1/2\Delta_g$), then $r'(\phi) = \bar{r}[1 - \cos(\phi)]$, in antiphase with $r(\phi)$. The absorption profile $\alpha(\phi)$ reads as:

$$\alpha(\phi) = \alpha_0 \left(1 - \frac{2\xi \bar{r}}{1 + 2\xi \bar{r}} \cos \phi\right)$$ \hspace{1cm} (8)

The absorption profile is therefore perfectly sinusoidal, with its average value being kept constant: the absorption is reduced in the bright excitation regions, and enhanced in the dark regions, approaching twice the initial absorption. As the engraving power is increased, the grating contrast grows asymptotically to 2, but no distortion occurs. Therefore, with ISG and a sinusoidal excitation spectrum, one can create a sinusoidal absorption profile with a contrast close to 2, which was impossible in the standard optical pumping scheme. This is illustrated in Figure 4.

FIG. 3: (Color online) 3-level system for the ISG scheme.

FIG. 4: (Color online) Shape of a spectro-spatial grating with the ISG scheme, with a sinusoidal engraving spectrum.

Black line: grating obtained with $\xi \bar{r} = 30$, corresponding to the maximum engraving power allowed in Tm:YAG (see section III C for details).

If the pumping rate period does not match an even multiple of Δ_g, this enhancement cannot occur. The grating can even be totally cancelled if Δ_g is a multiple of the grating period.

ISG is not limited to level systems strictly corresponding to Figure 3. Its implementation is rather complex though in systems where the ground state contains three levels or more, because there are more than two storage states. This is the case for Eu$^{3+}$- or Pr$^{3+}$-doped crystals. On the other hand, the ISG scheme can be applied in a straightforward way to REIC with only two ground states. This is true for instance for Kramers ions such as...
Er$^{3+}$ or Nd$^{3+}$ under magnetic field, where the Kramers doublets are split into two sublevels, or for Tm$^{3+}$ under magnetic field, where the nuclear Zeeman effect splits the electronic levels. Nevertheless, the Tm level scheme is slightly more complex, as we will see in the following.

C. ISG in Tm-doped crystals

The thulium level system consists of 5 levels: 2 sublevels of the ground and excited states split by the nuclear Zeeman effect, and a metastable state (see Figure 5). Optical transitions occur along $|1\rangle \rightarrow |2\rangle$ and $|3\rangle \rightarrow |4\rangle$ with equal oscillator strength. Their frequency offset Δ_{ye} is orders of magnitude smaller than the inhomogeneous broadening of the optical transition. The other transitions $(|1\rangle \rightarrow |3\rangle$ and $|2\rangle \rightarrow |4\rangle$) can be weakly allowed in Tm:YAG, but only for very specific magnetic field orientations \[19\]. In the following we will consider these weak transitions as forbidden. This system can be seen as two independent two-level systems, with a shared decay channel via the an intermediate metastable state $|m\rangle$. Excessive engraving power may lead to a significant fraction of atoms accumulating in $|m\rangle$, resulting in a lower average absorption, and in a non-stationary state when the engraving beams are stopped, due to the population decay from $|m\rangle$. We derive the condition on R ensuring that all atoms are in the two ground states:

$$R/\gamma_c \ll \gamma_m/\gamma_b$$

$$r' = \frac{R'}{\gamma_c}, \xi = \frac{\Delta_{ye}/2\gamma_m}{\gamma_m}$$ and $\gamma_c = \gamma_a + \gamma_b + \gamma_c$. In the case of a periodic engraving spectrum with period $2\Delta_{ye}$, we can derive equation \[8\] just like in the simple 3-level system.

In Tm:YAG, the decay rates γ_a, γ_b, γ_c and γ_m have been given in Section II A and we take $\gamma_c = 0$ and $\gamma_Z = 1/5s$. If the pumping rate obeys equation \[9\] ensuring that no atoms remain in the metastable state, then the weak field condition (Eq. \[8\]) is immediately satisfied as well, since the ratio γ_m/γ_b is much smaller than 1. More specifically, these two conditions are satisfied when $\xi \tilde{r} \leq 30$. The grating with a maximum contrast allowed by these two conditions ($\xi \tilde{r} = 30$) is plotted as a black line in Figure 4. Its contrast is equal to 1.97.

Therefore a broadband, perfectly sinusoidal grating with a contrast of almost 2 can be created with only two incident pulses in Tm-doped crystals.

III. ENGRAVING A GRATING IN AN OPTICALLY THICK MEDIUM

In the previous section, we have overlooked the propagation of the engraving beams in the atomic medium. In fact, the absorption profile presented above is only valid at the front of the medium. Since we consider a steady-state accumulation regime, the engraving pulses propagate through the absorption grating they are creating, and undergo diffraction: higher order fields are emitted. The pumping rate evolves as the engraving fields penetrate in the optically thick medium and as a consequence, so does the absorption.

In a spectro-spatial grating, diffraction occurs both in the time domain as a delay, and in the space domain as an angular deviation. We define the n-th order of diffraction as the pulse emitted with a delay $\tau_n = n\tau$ along wavevector $k_n = k_0 + nK$. The n-th order of diffraction can be radiated only if the dipoles that generate it are in phase over the whole medium length L. The corresponding phase matching condition reads as $|\langle k_n| - |k_0\rangle/L \ll \pi$, which translates as:

$$n(n-1)\frac{|K|^2}{|k_0|^2}L \ll \pi$$

In the following, we focus on the two extreme cases: the configuration where the angle θ between k_0 and k_1 is so small ($\theta \ll \frac{\pi}{2L}$) that the phase-matching condition is satisfied for all significant diffraction orders, and the configuration where the angle θ is so large ($\theta \gg \frac{\pi}{2L}$) that only $n = 0$ and $n = 1$ can exist. The small angle situation includes the collinear situation where the grating is purely spectral ($K = 0$). A detailed description of the propagation of the engraving beams is given in the appendix.
A. Spectro-spatial grating with a small angle

We assume that the angle θ between the two engraving beams satisfies the condition $\theta < \frac{\sqrt{2} \pi}{2}$, so that all diffraction orders may exist. The buildup of higher orders of diffraction along the propagation of the two engraving fields makes the excitation shape $r(\phi, z)$ evolve as the fields penetrate deeper into the atomic medium. As shown in Figure 6, the resulting absorption $\alpha(\phi, z)$ becomes progressively closer to a square wave.

This occurs for both the simple optical pumping scheme and the ISG scheme, with opposite consequences. In the former, because of the very restrictive weak field condition, the minimum absorption is always significant, and the engraving fields undergo absorption. Therefore the grating contrast decays as one gets deeper in the medium (from 0.63 at the entrance to 0.41 at the $\alpha_0 L = 2$ output if $\xi_f = 0.9$). In the latter, the propagation of the engraving beams through the spectro-spatial grating makes the grating evolve from a pure sinusoidal function with a contrast close to 2, towards a square grating with the same average absorption and identical contrast. A square grating is known to give rise to the largest efficiency at a given average optical depth. One can therefore expect a low diffraction efficiency in the standard optical pumping scheme, and a high efficiency in the ISG scheme, larger than with a sinusoidal grating, but lower than with a square grating.

We numerically simulate the propagation of a weak pulse propagating along k_0 in the non-uniform spectro-spatial grating described above. The first-order diffracted pulse is emitted along wavevector k_1 with a delay τ. The diffraction efficiency η is defined as the power ratio between the diffracted beam and the incoming beam (see appendix for details). The results are presented in Figure 7. In the case of standard optical pumping in Tm:YAG, as expected, the diffraction efficiency is weak (below 1.75%), because of the low grating contrast imposed by the weak field condition. In the case of ISG, the weak field condition is much less restrictive and the grating shape is close to optimum: the efficiency reaches $\eta = 18.3\%$ for an initial optical depth $\alpha_0 L = 2$.

We also show in Figure 7 the diffraction efficiencies calculated with two ideal spectro-spatial gratings with a contrast equal to 2: a sinusoidal grating and a square grating, uniform over the whole atomic medium depth.

\[
\alpha_{\text{sin}}(\phi, z) = \alpha_0 (1 + \sin \phi) \quad (11)
\]

\[
\alpha_{\text{sq}}(\phi, z) = \alpha_0 (1 + \text{sign}(\sin \phi)) \quad (12)
\]

The sinusoidal grating leads to a 13.5% maximum efficiency, whereas the square grating leads to 22.9%, for $\alpha_0 L = 2$. We verify that the efficiency with the ISG scheme in the small angle configuration lies between the sinusoidal and the square grating efficiencies.

B. Spectro-spatial grating with a large angle

When the angle θ is larger than $\sqrt{\frac{1}{2\pi}}$, the phase matching condition (equation 11) is violated for orders $n > 2$. Only the two lowest orders (i.e., the two incoming engraving pulses) can propagate and the excitation spectrum remains sinusoidal. As shown in Figure 8, in the two schemes, the grating contrast decays as the fields penetrate in the crystal, but its shape is not altered. With standard optical pumping, the low initial grating contrast leads to the absorption of the engraving beams and a decay of the contrast, from 0.63 to 0.35 after $\alpha_0 L = 2$. In

FIG. 6: (Color online) Numerical simulation of the evolution of a spectro-spatial grating in the absorption profile as the engraving fields propagate through the crystal in the case of a small angle between the beams. The optical pumping follows the standard scheme (top) or the ISG scheme (bottom). In the example shown here, $\xi_f = 0.9$ and $\xi_f = 30$, respectively, corresponding to the maximum engraving power allowed in Tm:YAG crystals.

FIG. 7: (Color online) Maximum efficiencies in Tm:YAG calculated for different optical pumping schemes and beam configurations. The efficiencies calculated for uniform sinusoidal or square grating shapes are also given.
the ISG scheme however, the decay is a little slower (from 1.97 to 1.57) since the minimum absorption is closer to zero. We still expect a good efficiency, although lower than the ideal sinusoidal grating efficiency.

The corresponding calculated diffraction efficiencies are plotted in Figure 6. Their behaviour is similar to the small angle configuration, only with lower values due to the less optimal grating shape. In the standard optical pumping scheme, the maximum available efficiency is only 1.5%. In the ISG configuration, the maximum efficiency occurs for \(\alpha_0 L = 1.8 \) and reaches 11.6%.

IV. EXPERIMENTAL DEMONSTRATION

A. Experimental demonstration

In our 2.5-mm long, 0.5% at. Tm-doped YAG crystal, we measure an initial optical depth \(\alpha_0 L = 2 \) at the center of the inhomogeneous line. A weak (18 G) magnetic field is applied along the [001] crystalline axis with copper Helmholtz coils, to get \(\Delta_{ge} = 500 \text{ kHz} \) in relevant, polarization-selected substitution sites. The magnetic field splits the electronic levels into two nuclear sublevels due to thulium’s \(J = 1/2 \) nuclear spin. We consider that the level system dynamics behaves as depicted in Figure 5. The crystal is immersed in liquid helium at 2.2 K. The homogeneous width along the optical transition is typically 10 kHz in these conditions.

The optical setup is shown in Figure 9 and the pulse sequence is shown in Figure 10. The grating is prepared by applying a sequence of rectangular pulse pairs, with duration 200 ns, delay \(\tau = 1 \mu s \), area 0.013\(\pi \) and respective wavevectors \(\mathbf{k}_0 \) and \(\mathbf{k}_1 \), forming an angle \(\theta \). The delay corresponds to a 1 MHz grating period. The pairs are repeated every 120 \(\mu s \). Although the waiting time between two consecutive pulse pairs is small, the total equivalent pulse area over a time \(2/\gamma_e \) is 0.05\(\pi \), smaller than \(\pi/8 \). This way, the average pumping rate \(\bar{R} \) obeys the weak field condition given by equation 4.

The active vibration isolation achieved by the optical table supports is not sufficient to maintain a constant relative phase between the two engraving pulses over the grating lifetime, i.e. 5 s. In order to dynamically adjust the path length difference, we generate quasi-continuous "lock pulses" between consecutive pulse pairs on both optical paths. These lock pulses are detuned from the engraving and probe pulses by 70 MHz, recombined in the same spatial mode and sent to a PDA36A Thorlabs photodetector. The lock pulses detuning is chosen such that the lock pulses lie outside our grating bandwidth, while still being accessible with standard, double-pass acousto-optical modulators.

After up to 2000 pulse pairs, the engraving is stopped for 60 ms to let atoms decay to the ground state sublevels.

A gaussian-shaped probe pulse is then sent along wavevector \(\mathbf{k}_0 \). The probe pulse is significantly longer (FWHM of 350 ns) than the engraving pulses in order to probe the center of the engraved spectrum where the envelope of the grating can be regarded as constant. The echo is emitted along \(\mathbf{k}_0 + K = \mathbf{k}_1 \), with a delay \(\tau \) from the probe pulse. After the echo, the entire sequence starts over, with a 300 ms cycle time.

All laser beams are generated with an extended cavity diode laser stabilized on a high finesse Fabry-Perot cavity with the Pound-Drever-Hall technique, ensuring the grating spectral stability. Two acousto-optic modulators in double pass setup modulate the intensity and frequency in the two beams, according to Figure 10 with the help of a dual-channel arbitrary waveform generator.

FIG. 9 (Color online) Schematic setup. ECDL: frequency-stabilized extended cavity diode laser; AWG: arbitrary waveform generator; AOM: acousto-optic modulator; PZT: piezoelectric transducer, PI: proportional-integral controller.
Up to 2000 engraving pulse pairs ~ 240 ms

Waiting time 60 ms

FIG. 10: (Color online) Experimental pulse sequence along wavevectors k_0 and k_1 used to generate an accumulated spectro-spatial grating. Frequency-detuned lock pulses are needed to ensure interferometric stability of the setup over several seconds.

Tektronix AWG520.

B. Efficiency measured for small and large angles

The $L = 2.5$ mm crystal length, and optical wavelength $\lambda = 793$ nm lead to the small angle condition for the two engraving pulses: $\theta \ll 12.6$ mrad. We measure the diffraction efficiency for three different angles: $\theta = 0$, $\theta = 7.5$ mrad and $\theta = 17.5$ mrad, which correspond to respectively to a spectral grating, a spectro-spatial grating with a small angle, and a spectro-spatial grating with a large angle. The experimental data are presented in Figure 11 together with the calculated diffraction efficiency with $\alpha_0 L = 2$. The average engraving power $\bar{\xi}$ is varied between 0.005 and 11.3 by spanning the number of pulse pairs per cycle from 1 to 2000.

We observe identical results in the zero and small angle configuration, which agrees with the discussion in Section III. As in the simulation, the experimental efficiency grows with engraving power. The maximum efficiency in that case is 11 $\%$, instead of 16.5 $\%$ expected from the numerical simulation. When the angle is larger, the efficiency is reduced, and the maximum efficiency drops to 6.3 $\%$ instead of 10.3 $\%$. For much larger angles, the efficiency should remain the same, provided the engraving beams perfectly overlap.

The experimental data qualitatively agree with the simulations. The quantitative discrepancy could come from an inefficient engraving process, or from an inefficient diffraction process. To determine which one is responsible for this discrepancy, we directly measure the shape of the absorption grating, in the case of a spectral grating.

C. Direct measurement of the absorption profile

After having built a purely spectral grating with collinear engraving beams, we measure the transmission of a weak probe whose frequency is linearly swept over 3 MHz in 200 μs. With this measurement we can derive the grating profile for different average engraving powers (see Figure 12).

The absorption profile is expected to be non-uniform throughout the sample. With this experiment, we are only able to measure the absorption averaged over the crystal depth. We compare with the calculated average absorption profile for $\bar{\xi}$ = 6 corresponding to the curve with largest engraving power. Although the calculated and experimental profiles have a similar shape, the experimental contrast ($c_{exp} = 1.60$) is lower than expected ($c_{calc} = 1.82$). In our simulation, we disregarded the ho-
mogogeneous linewidth that should give rise to a smoother absorption profile. What’s more, our model assumes that the weak transitions (|1⟩ → |3⟩ and |2⟩ → |4⟩) are forbidden, although in our setup, their oscillator strength is only 7 times weaker than that of the strong transitions. These two simplifications probably explain the contrast discrepancy between the simulation and the experiment.

We calculate the diffraction efficiency that one would expect from such a grating, assuming it is uniform throughout the sample depth. We plot these results on Figure 11 together with the efficiencies measured by comparing the intensities of the probe and first diffraction order fields. The two methods give exactly the same efficiencies, proving that our model describes well the diffraction process.

In this demonstration, the grating bandwidth is rather low (3 MHz) but already exceeds the Zeeman splitting in the ground state: Δq = 600 kHz. It can be increased with no fundamental limitation.

V. CONCLUSION

Interlaced Spin Grating is a scheme for the preparation of spectro-spatial gratings in an inhomogeneously broadened absorption profile. It relies on the storage of atoms in a long-lived ground state sublevel, leading to low power requirements. Its bandwidth is not limited by the ground state splitting. In depth investigation of the optical pumping dynamics specific to ISG and beam propagation has enabled us to identify the best conditions to get large efficiency, via an enhancement of the grating contrast, together with quasi-optimal grating shape and preservation of the optical depth. We have shown that the efficiency could reach 18.3% in the small angle configuration and 11.6% with a large angle, which is about 10 times larger than observed in the first experimental demonstrations of broadband ISG 16, 17. We were able to demonstrate 11% experimental diffraction efficiency with a zero or small angle, and 6.3% with a large angle.

The ISG scheme is only suitable when dealing with periodic gratings, and not for gratings with variable spacing (such as the dispersive line used for time reversal or the pulse sequencing architecture 20). It can prove particularly useful in spectro-spatial holography architectures such as the rainbow analyzer 11.

Appendix A: Propagation of two fields in an absorbing medium

1. Propagation of the engraving fields

Let us consider two light pulses with a time delay τ with wavevectors k0 and k1, illuminating an inhomogeneously broadened medium. At the front of the sample (z = 0), the two combined engraving fields are described by the following spectral amplitude:

$$E(z = 0, \phi) = |E_0|e^{-ik_0m \cdot x}(1 + e^{-i\phi})$$ (A1)

where φ = 2πντ + K · x is the spectro-spatial phase, and K = k1 − k0. The pumping rate R(z, φ) is proportional to the field power spectral intensity |E(z, φ)|².

The propagation of the engraving field E is described by the wave equation

$$\Delta E + k^2 \epsilon_r E = 0$$ (A2)

where k = |k0| = |k1|, the electric relative permittivity εr is related to the absorption coefficient α via the Kramers-Kronig relation: εr = 1 − 1/4(1 + iH)α, and H is the Hilbert transform. Assuming the absorption coefficient is a 2π-periodic function of φ, we write it as its Fourier expansion:

$$\alpha^{(p)}(z) = \frac{1}{2\pi} \int_{<2\pi>} \alpha(z, \phi)e^{ip\phi} d\phi$$ (A3)

Similarly, the field E can be written into multiple spectro-spatial modes as:

$$E^{(p)}(z) = \frac{1}{2\pi} \int_{<2\pi>} E(z, \phi)e^{ip\phi} d\phi$$ (A4)

E(0) and E(1) are the two incoming engraving fields. From equation A2 we derive the coupled wave equations for mode p:

$$\frac{\partial E^{(p)}}{\partial z} + \frac{\alpha}{2} E^{(p)} - i\frac{p(p - 1)K^2}{2k} E^{(p)} = -\sum_{q>0} \alpha_q E^{(p-q)}$$ (A5)

These equations show that higher orders E(p) with p ≥ 2 are created from lower orders as the fields propagate through the medium.

The third term in equation A5 accounts for the phase shift that builds up between the spectro-spatial mode...
$E^{(p)}$ and the periodic structure that generates it. For $p = 0$ and $p = 1$, corresponding to the incoming engraving fields, this phase shift is zero. Higher-order modes only exist under the condition of a small angle θ between k_0 and k_1, that satisfies $\theta \ll \sqrt{\frac{\alpha }{\nu z}}$, where L is the medium length along the z direction.

- In the case of a small angle between the two engraving beams, all orders of diffraction exist. Eq. (A5) reduces to:

$$\frac{\partial |E(z, \phi)|^2}{\partial z} + \alpha(z, \phi) |E(z, \phi)|^2 = 0 \quad (A6)$$

- In the case of a large angle between the two engraving beams, only orders 0 and 1 may propagate:

$$\frac{\partial E^{(0)}(z)}{\partial z} + \frac{\alpha^{(0)}}{2} E^{(0)}(z) = 0 \quad (A7)$$

$$\frac{dE^{(1)}(z)}{dz} + \frac{\alpha^{(0)}}{2} E^{(1)}(z) = -\alpha^{(1)} E^{(0)}(z) \quad (A8)$$

2. Propagation of probing field; efficiency

To calculate the diffraction efficiency of the grating, we consider the propagation of the probe field $E^{(0)}$. The engraved absorption profile is a function of depth z, position in the crystal x and frequency ν. The diffraction efficiency after a distance L in the crystal is given by:

$$\eta = \frac{\left| \frac{E^{(1)}(L)}{E^{(0)}(0)} \right|^2}{(A9)}$$

The diffracted field $E^{(1)}$ is solution of

$$\frac{dE^{(0)}(z)}{dz} + \frac{\alpha^{(0)}}{2} E^{(0)}(z) = 0 \quad (A10)$$

$$\frac{dE^{(1)}(z)}{dz} + \frac{\alpha^{(0)}}{2} E^{(1)}(z) = -\alpha^{(1)} E^{(0)}(z) \quad (A11)$$

with the initial condition: $E^{(1)}(z = 0) = 0$.

Note that for a uniformly engraved absorption profile, $\alpha^{(0)}$ and $\alpha^{(1)}$ are independent of the medium depth. The diffraction efficiency is given by:

$$\eta = \left(\alpha^{(1)} L \right)^2 e^{-\alpha^{(0)} L} \quad (A12)$$

Acknowledgements

This work is supported by the french national grant RAMACO no. ANR-12-BS08-0015-02. The research leading to these results has received funding from the People Programme (Marie Curie Actions) of the European Union’s Seventh Framework Programme FP7/2007-2013/ under REA grant agreement no. 287252.

[1] W. R. Babbitt, in *SPIE’s International Symposium on Optical Science, Engineering, and Instrumentation* (International Society for Optics and Photonics, 1998), pp. 304–311.
[2] Z. Barber, C. Harrington, C. Thiel, W. R. Babbitt, and R. Krishna Mohan, J. Lumin. 130, 1614 (2010).
[3] H. Linget, L. Morvan, J.-L. Le Gouët, and A. Louchet-Chauvet, Opt. Lett. 38, 643 (2013).
[4] W. R. Babbitt, M. A. Neifeld, and K. D. Merkel, J. Lumin. 127, 152 (2007).
[5] K. Merkel, Z. Cole, and W. Babbitt, J. Lumin. 86, 375 (2000).
[6] T. Harris, Y. Sun, W. Babbitt, R. Cone, J. Ritchey, and R. Equall, Opt. Lett. 25, 85 (2000).
[7] F. Schlottau and K. H. Wagner, J. Lumin. 107, 90 (2004).
[8] Y. Li, A. Hoskins, F. Schlottau, K. H. Wagner, C. Embry, and W. R. Babbitt, Appl. Opt. 45, 6409 (2006).
[9] M. Tian, R. Reibel, and W. R. Babbitt, Opt. Lett. 26, 1143 (2001).
[10] R. Reibel, Z. Barber, J. Fischer, M. Tian, and W. Babbitt, J. Lumin. 107, 103 (2004).
[11] V. Lavielle, I. Lorrêrè, J.-L. Le Gouët, S. Tonda, and D. Dolfi, Opt. Lett. 28, 384 (2003).
[12] M. Afzelius, C. Simon, H. de Riedmatten, and N. Gisin, Physical Review A 79, 052329 (2009).
[13] M. Tian, D. Vega, and J. Dilles, Physical Review A 87, 042338 (2013).
[14] M. Bonarota, J. Ruggiero, J.-L. Le Gouët, and T. Chanelière, Physical Review A 81, 052305 (2010).
[15] A. Amari, A. Walther, M. Sabooni, M. Huang, S. Kröll, M. Afzelius, I. Usmani, B. Lauritzen, N. Sangouard, H. De Riedmatten, et al., J. Lumin. 130, 1579 (2010).
[16] E. Saglamyurek, N. Sinclair, J. Jin, J. A. Slater, D. Oblak, F. Bussières, M. George, R. Ricken, W. Sohler, and W. Tittel, Nature 469, 512 (2011).
[17] M. Bonarota, J.-L. Le Gouët, and T. Chanelière, New Journal of Physics 13, 013013 (2011).
[18] F. De Seze, F. Dahes, V. Crozatier, I. Lorgeré, F. Bretenaker, and J.-L. Le Gouët, Eur. Phys. J. D 33, 343 (2005).
[19] F. De Seze, A. Louchet, V. Crozatier, I. Lorgeré, F. Bretenaker, J.-L. Le Gouët, O. Guillot-Noël, and P. Goldner, Physical Review B 73, 085112 (2006).
[20] E. Saglamyurek, N. Sinclair, J. A. Slater, D. Oblak, et al., arXiv preprint arXiv:1402.0481 (2014).