Stabilizing matter and gauge fields localized on walls

Masato Arai\(^1,2\), Filip Blaschke\(^2,\ast\), Minoru Eto\(^3\), and Norisuke Sakai\(^4\)

\(^1\)Fukushima National College of Technology, Iwaki, Fukushima 970-8034, Japan
\(^2\)Institute of Experimental and Applied Physics, Czech Technical University in Prague, Horská 22, 128 00 Prague 2, Czech Republic, and Institute of Physics, Silesian University in Opava, Bezručovo nám, 1150/13, 746 01 Opava, Czech Republic
\(^3\)Department of Physics, Yamagata University, Yamagata 990-8560, Japan
\(^4\)Research and Education Center for Natural Sciences, Keio University, Hiyoshi 4-1-1, Yokohama 223-8521, Japan

\ast\)E-mail: filip.blaschke@fpf.slu.cz

Received April 3, 2013; Revised May 31, 2013; Accepted July 6, 2013; Published September 1, 2013

Both non-Abelian gauge fields and minimally interacting massless matter fields are localized on a domain wall in the five-dimensional spacetime. Field-dependent gauge coupling naturally gives a position-dependent coupling to localize non-Abelian gauge fields on the domain wall. An economical field content allows us to eliminate the modulus for an instability, and to demonstrate the positivity of the position-dependent coupling in the entire moduli space. An effective Lagrangian similar to the chiral Lagrangian is found, with a new feature of different coupling strengths for adjoint and singlet matter that depend on the width of the domain wall.

1. Introduction

Localization of massless gauge fields on a domain wall with \((3 + 1)\)-dimensional world volume has been a long-standing problem in achieving dynamical compactification in the brane-world scenario \([1]\). If the gauge symmetry is unbroken only inside the domain wall and broken outside, the gauge field inevitably acquires a mass proportional to the inverse of the width of the wall \([2–4]\). Localization of the gauge fields can be achieved if the gauge theory is in the confining phase outside of the domain wall \([2,3]\). This requirement can be translated into a position-dependent gauge coupling \([5–8]\).

The supersymmetric gauge theories in \(4 + 1\) spacetime dimensions allow a cubic coupling \([9,10]\) between adjoint scalar fields \(\Sigma^a\) and gauge field strengths \(F_{MN}^\beta\),

\[
\mathcal{L} \sim C_{\alpha\beta\gamma} \Sigma^a F_{MN}^\beta F^{\gamma MN},
\]

with coupling constants \(C_{\alpha\beta\gamma}\). In Ref. \([11]\), a domain wall solution is chosen so that the scalar field \(\Sigma\) is positive inside and vanishes asymptotically outside of the domain wall. In this way, non-Abelian gauge fields have been localized on the domain wall. More recently, a method to localize non-Abelian gauge fields together with minimally interacting matter fields on domain walls has been introduced, and a particular model has been presented in five-dimensional spacetime \([12,13]\) by gauging the unbroken global symmetry associated with the degenerate scalar fields to form the domain wall.
Fig. 1. Position-dependent gauge coupling (right panel) is given as a difference $\sigma_1 - \sigma_2$ of two separated kinks (left panel).

[14–16]. This mechanism provides a step towards a realistic model of branes as soliton solutions of higher-dimensional field theories, and realizes one of the most important characteristics of D-branes: massless $U(N)$ gauge fields emerge when N walls are coincident, and become massive as walls separate.

In Ref. [11], two real scalar fields σ_1 and σ_2 were introduced to form the usual kink profile in the extra-dimensional coordinate y as shown in the left panel of Fig. 1, and the cubic coupling in Eq. (1.1) is chosen as

\[
\mathcal{L}_{\text{cubic}} \sim - (\sigma_1 - \sigma_2) \text{Tr} [\tilde{G}_{MN} \tilde{G}^{MN}],
\]

where \tilde{G}_{MN} is the non-Abelian gauge field strength to be localized on the domain wall. In this way, one achieves the desired profile of position-dependent coupling which is positive and vanishes asymptotically outside of the domain wall, as shown in the right panel of Fig. 1. More recently, matter fields have also been localized on the domain wall interacting minimally with the localized gauge fields [12]. Although the model realized the localization mechanism in a simple setup, the width of the position-dependent coupling is a modulus and can become negative, implying an instability of the gauge kinetic term.

Moduli of domain walls arise as remaining degrees of freedom of scalar fields constrained by gauge symmetry to form the domain wall. This observation prompts us to construct a model with a smaller number of scalar fields with different charge assignments in order to eliminate the unwanted modulus in the position-dependent coupling [11].

The purpose of this paper is to present models in $(4 + 1)$-dimensional spacetime with domain wall solutions which allow stable localized gauge fields interacting minimally with localized matter fields. For any values of the moduli parameters, we show that the position-dependent gauge coupling is positive everywhere in the extra-dimensional coordinate y. In particular, its width is no longer a modulus and is fixed by the parameters of the theory. We thus find that the gauge kinetic term is stable for all values of moduli, namely for all possible domain wall configurations. As localized matter fields, we obtain scalar fields in singlet and adjoint representations of the gauge group. They are associated with the broken part of the global symmetry, and interact minimally with the localized gauge fields. The effective Lagrangian on the domain wall is also worked out, using the method in Ref. [17]. It resembles the chiral Lagrangian associated with the chiral symmetry breaking of QCD. A new feature of the effective Lagrangian is that the coupling strength of the adjoint matter fields is larger than that of the singlet matter fields. We examine the generality of models with a stable kinetic
term for gauge fields to identify the class of models with desirable properties. We also discuss ways to build more realistic models for the phenomenology of the brane-world scenario.

The organization of the paper is as follows. Section 2 is devoted to constructing a model in 4 + 1 spacetime dimensions with domain wall solutions which localize matter and gauge fields. The position-dependent gauge coupling is shown to be positive. In Sect. 3, the low-energy effective Lagrangian is obtained. In Sect. 4, we examine the generality of models with a stable gauge coupling, whose positivity is demonstrated for any values of moduli parameters. A broken part of the global symmetry provides matter fields in singlet and adjoint representations of the localized gauge fields. As the third step, we consider the cubic coupling \[(1.1)\] to localize non-Abelian gauge fields: we use expectation values of a singlet scalar field to give the position-dependent gauge coupling, whose positivity is demonstrated for any values of moduli parameters. A broken part of the global symmetry provides matter fields in singlet and adjoint representations of the localized gauge fields \[(1.2)\].

2. A model with localized matter and gauge fields

In this section we first present a model allowing the domain wall solution with unbroken non-Abelian global symmetry \[(16)\]. As the second step, we introduce non-Abelian gauge fields for the unbroken symmetry. As the third step, we consider the cubic coupling \[(11)\] in Eq. \[(1.1)\] to localize non-Abelian gauge fields: we use expectation values of a singlet scalar field to give the position-dependent gauge coupling, whose positivity is demonstrated for any values of moduli parameters. A broken part of the global symmetry provides matter fields in singlet and adjoint representations of the localized gauge fields \[(12)\].

2.1. Lagrangian with global symmetry and domain wall solutions

Let us consider a five-dimensional \(SU(N)_c \times U(1)_1 \times U(1)_2\) gauge theory and \(N\) scalar fields \(H_1\) \((H_2)\) in the fundamental representation with the degenerate mass \(m\) \((-m)\), together with a singlet scalar field \(H_3\) whose charge assignments are summarized in Table 1. Therefore we obtain global symmetry \(SU(N)_L \times SU(N)_R \times U(1)_A\). In addition, we introduce adjoint and singlet scalars \(\Sigma\) and \(\sigma\) associated with the gauge group \(SU(N)_c \times U(1)_1\) and \(U(1)_2\), respectively. We assume the following Lagrangian with the signature \((+, -, - , - , -)\):

\[
\mathcal{L} = -\frac{1}{2g^2} \text{Tr}(G_{MN}G^{MN}) - \frac{1}{4e^2} F_{MN}F^{MN} + \frac{1}{g^2} \text{Tr}(D_M \Sigma)^2 + \frac{1}{2e^2}(\partial_M \sigma)^2 + \text{Tr}|D_M H_1|^2 + \text{Tr}|(D_M - iA_M)H_2|^2 + |(\partial_M + iA_M)H_3|^2 - V,
\]

\[
V = \text{Tr}|(\Sigma - m 1_N) H_1|^2 + \text{Tr}|(\Sigma - \sigma 1_N) H_2|^2 + |\sigma H_3|^2
+ \frac{1}{4g^2} \text{Tr}(c_1 1_N - H_1 H_1^\dagger - H_2 H_2^\dagger)^2 + \frac{1}{2} e^2 \left(c_2 + \text{Tr}(H_2 H_2^\dagger) - |H_3|^2 \right)^2.
\]

The \(U(N)_c = SU(N)_c \times U(1)_1\) gauge coupling and gauge fields are denoted by \(g\) and an \(N \times N\) matrix \(W_M\) with \(M = 0, 1, 2, 3, 4\). The \(U(1)_2\) gauge coupling and gauge field are denoted by

\(SU(N)_c\)	\(U(1)_1\)	\(U(1)_2\)	\(SU(N)_L\)	\(SU(N)_R\)	\(U(1)_A\)	mass	
\(H_1\)	□	1	0	□	1	1	\(m 1_N\)
\(H_2\)	□	1	-1	1	□	-1	0
\(H_3\)	1	0	1	1	1	0	0
\(\Sigma\)	adj \(\oplus 1\)	0	0	1	1	0	0
\(\sigma\)	1	0	0	1	1	0	0
e and A_M. Covariant derivatives and field strengths are defined by
\begin{equation}
D_M H_{1,2} = \partial_M H_{1,2} + i W_M H_{1,2}, \quad D_M \Sigma = \partial_M \Sigma + i [W_M, \Sigma].
\end{equation}
and $G_{MN} = \partial_M W_N - \partial_N W_M + i [W_M, W_N], F_{MN} = \partial_M A_N - \partial_N A_M$.

The global symmetry $U_L \in SU(N)_L, U_R \in SU(N)_R, e^{i\alpha} \in U(1)_A$ and the local gauge symmetry
$U_c \in U(N)_c, e^{i\beta} \in U(1)_c$ act on the fields as
\begin{equation}
H_1 \rightarrow e^{i\alpha} U_c H_1 U_L, \quad H_2 \rightarrow e^{-i(\alpha+\beta)} U_c H_2 U_R, \quad H_3 \rightarrow e^{i\beta} H_3.
\end{equation}
\begin{equation}
\Sigma \rightarrow U_c \Sigma U_c^*, \quad \sigma \rightarrow \sigma.
\end{equation}
Let us note that the Lagrangian (2.2) can be embedded into the five-dimensional $\mathcal{N} = 1$ supersymmetric gauge theory (with 8 supercharges). This fact allows us to obtain the so-called Bogomol’nyi–Prasad–Sommerfield (BPS) domain wall solution, as we will show in the next subsection. We stress, however, that this particular choice is merely to simplify calculations and is not required for our results to hold.

Without loss of generality, we can assume the mass parameter m to be positive. We also assume $c_1 > 0$ and $c_2 > 0$. Then there exist $N + 1$ discrete vacua with $r = 0, 1, \ldots, N$, where scalar fields develop vacuum expectation value (VEV)
\begin{equation}
H_1 = \sqrt{c_1} \left(\begin{array}{c} 1_{N-r} \\ 0_r \end{array} \right), \quad H_2 = \sqrt{c_1} \left(\begin{array}{c} 0_{N-r} \\ 1_r \end{array} \right), \quad H_3 = \sqrt{c_2 + rc_1},
\end{equation}
\begin{equation}
\Sigma = m \left(\begin{array}{c} 1_{N-r} \\ 0_r \end{array} \right), \quad \sigma = 0.
\end{equation}
Local gauge symmetry is completely broken and only a subgroup of global symmetry remains in these vacua. The breaking patterns in the $r = 0$ and $r = N$ vacua are
\begin{equation}
U(N)_c \times SU(N)_L \times SU(N)_R \times U(1)_2 \times U(1)_A
\end{equation}
\begin{equation}
\xrightarrow{0\text{th vacuum}} SU(N)_{L+c} \times SU(N)_R \times U(1)_{A+c},
\end{equation}
\begin{equation}
\xrightarrow{N\text{th vacuum}} SU(N)_{R+c} \times SU(N)_L \times U(1)_{A-c}.
\end{equation}
Let us consider domain wall solutions connecting the Nth (0th) vacuum at left (right) infinity $y = -\infty$ ($y = \infty$). Then the (coincident) domain wall solutions preserve the diagonal subgroup as the largest global\(^1\) symmetry $SU(N)_{L+R}$, providing the Nambu–Goldstone modes associated with the breaking of the global symmetry
\begin{equation}
\frac{SU(N)_L \times SU(N)_R \times U(1)_A}{SU(N)_{L+R} \times Z_N}.
\end{equation}
We assume that fields depend only on extra-dimensional coordinate y and that all gauge fields except W_y and A_y vanish.

\(^1\) Local gauge symmetry $SU(N)_c$ contains global symmetry as a constant gauge transformation, which is displayed in the above symmetry-breaking pattern of rth and Nth vacua. However, Nambu–Goldstone modes only come from the genuine global symmetry, which is not locally gauged. Hence, we do not count the $SU(N)_c$ transformations as preserving the color-flavor-locked vacua (2.6). The discrete symmetry in the denominator corresponds to a simultaneous rotation of $U(1)_A$ by an integer multiple of the angle $2\pi/N$ and the center Z_N of $SU(N)_{L-R}$. Physically, it represents the indistinguishability of the N domain walls.
Thanks to the special choice of the potential, we can rewrite the energy density as
\[
E = \frac{1}{g^2} \text{Tr} \left[D_\Sigma \Sigma - \frac{g^2}{2} \left(c_1 1_N - H_1 H_1^\dagger - H_2 H_2^\dagger \right) \right]^2 + \text{Tr} \left| D_\Sigma H_1 + (\Sigma - m 1_N) H_1 \right|^2 \\
+ \frac{1}{2g^2} \left(\partial_y \sigma - e^2 \left(c_2 + \text{Tr}(H_2 H_2^\dagger - |H_3|^2) \right) \right)^2 + \text{Tr} \left| D_\Sigma H_2 + (\Sigma - (\sigma + iA_y) 1_N) H_2 \right|^2 \\
+ |\partial_y H_3 + (\sigma + iA_y) H_3| + c_2 \partial_y \sigma \\
+ \partial_y \text{Tr} \left[c_1 \Sigma - H_1 H_1^\dagger (\Sigma - m 1_N) - H_2 H_2^\dagger (\Sigma - \sigma 1_N) \right].
\]
(2.9)

Thus, we obtain the Bogomol’nyi bound for the total energy (per unit world volume) \(E\),
\[
E = \int_{-\infty}^{\infty} dy \ E \geq T = \int_{-\infty}^{\infty} dy \left[c_1 \partial_y \text{Tr}(\Sigma) + c_2 \partial_y \sigma \right] = Nmc_1,
\]
(2.10)

where \(T\) is the tension of the domain wall. This bound is saturated when the following BPS equations are satisfied:
\[
\partial_y H_1 + (\Sigma + iW_y - m 1_N) H_1 = 0,
\]
(2.11)
\[
\partial_y H_2 + \left(\Sigma + iW_y - (\sigma + iA_y) 1_N \right) H_2 = 0,
\]
(2.12)
\[
\partial_y H_3 + (\sigma + iA_y) H_3 = 0,
\]
(2.13)
\[
D_\Sigma \Sigma = \frac{1}{2} g^2 \left(c_1 1_N - H_1 H_1^\dagger - H_2 H_2^\dagger \right),
\]
(2.14)
\[
\partial_y \sigma = e^2 \left(c_2 + \text{Tr}(H_2 H_2^\dagger) - |H_3|^2 \right).
\]
(2.15)

To use the moduli matrix formalism [18–20], we introduce \(S(y) \in GL(N, \mathbb{C})\) and \(\psi(y) \in \mathbb{C}\):
\[
\Sigma + iW_y = S^{-1} \partial_y S, \quad \sigma + iA_y = \frac{1}{2} \partial_y \psi.
\]
(2.16)

Then the matter part (2.11)–(2.13) can be solved by
\[
H_1 = e^{my} S^{-1} H_1^0,
\]
(2.17)
\[
H_2 = e^{\psi} S^{-1} H_2^0,
\]
(2.18)
\[
H_3 = e^{-\frac{1}{2} \psi} H_3^0,
\]
(2.19)

with complex constant \(N \times N\) moduli matrices \(H_1^0, H_2^0\) and a moduli constant \(H_3^0\), which describe moduli of the solution. The rest of the BPS equations (2.14) and (2.15) turn into the master equations for gauge-invariant Hermitian fields \(\Omega \equiv SS^\dagger\) and \(\eta = \text{Re}(\psi)\).
\[
\partial_y (\partial_y \Omega^{-1}) = \frac{1}{2} g^2 \left(c_1 1_N - (e^{2my} H_1^0 H_1^{0\dagger} + e^{\psi} H_2^0 H_2^{0\dagger}) \Omega^{-1} \right),
\]
(2.20)
\[
\frac{1}{2} \partial_y^2 \eta = e^2 \left(c_2 + e^{\psi} \text{Tr}(H_2^0 H_2^{0\dagger} \Omega^{-1}) - e^{-\eta} \left| H_3^0 \right|^2 \right).
\]
(2.21)

Moduli matrices related by the following \(V\)-transformations give identical physical fields,
\[
(S, \psi, H_1^0, H_2^0, H_3^0) \rightarrow (V S, \psi + v, V H_1^0, V H_2^0 e^{-\frac{1}{2} v}, H_3^0 e^{\frac{1}{2} v}),
\]
(2.22)
where $V \in GL(N, \mathbb{C})$ and $v \in \mathbb{C}$. The equivalence class quotiented by this V-transformation defines the moduli space of domain walls. We can use this freedom to choose the form of the moduli matrices

$$H^0_1 = \sqrt{c_1} 1_N, \quad H^0_3 = \sqrt{c_2}. \quad (2.23)$$

Let us also decompose H^0_2 as

$$H^0_2 = \sqrt{c_1} e^{\phi} U^\dagger, \quad (2.24)$$

where ϕ is a Hermitian $N \times N$ matrix and U is a unitary $N \times N$ matrix. With this choice, the master equations (2.20) and (2.21) become

$$\partial_y (\partial_y \Omega^{-1}) = \frac{c_1}{2} g^2 (1_N - \Omega_0 \Omega^{-1}), \quad (2.25)$$

$$\frac{1}{2} \partial^2_y \eta = e^2 (c_2 + c_1 e^{\eta} \text{Tr}(e^{2\phi} \Omega^{-1}) - e^{-\eta} c_2), \quad (2.26)$$

where $\Omega_0 = e^{2my} 1_N + e^{2\phi} e^{\eta}$. No analytic solution of this system of differential equations is known in general. However, one can study essential features of solutions if one takes the strong gauge coupling limit $g^2, e^2 \to \infty$. Equations (2.25) and (2.26) reduce to a system of algebraic equations in this limit:

$$\Omega = e^{2my} 1_N + e^{2\phi} e^{\eta}, \quad (2.27)$$

$$c_2 = e^{-\eta} c_2 - c_1 e^{\eta} \text{Tr}(e^{2\phi} \Omega^{-1}). \quad (2.28)$$

It turns out that the effective theory describing massless excitations localized on the background solution of the equations of this system precisely coincides (at least in the lowest order of approximation) with the one obtained from (2.25) and (2.26) (see the detailed discussion in Ref. [12]). It is therefore sufficient just to study solutions of (2.27) and (2.28).

The moduli ϕ can be diagonalized by a unitary matrix P

$$\phi = m P^{-1} \text{diag}(y_1, \ldots, y_N) P. \quad (2.29)$$

Then (2.28) reduces to a polynomial equation of order $N + 1$ for $x := e^{-\eta}$:

$$x = 1 + \frac{c_1}{c_2} \sum_{i=1}^{N} \frac{1}{1 + e_i x}, \quad e_i = e^{2m(y-y_i)}. \quad (2.30)$$

If this equation is solved, one can substitute its solution into Eq. (2.27) to obtain Ω.

In the simplest case, where all walls are coincident, $\phi = m y_0 1_N$, we can solve Eq. (2.30) explicitly $(e_0 := e^{2m(y-y_0)})$ to find

$$e^{-\eta} = \frac{1}{2 e_0} (e_0 - 1 + \sqrt{(1 - e_0)^2 + 4(1 + Nc_1/c_2)e_0}), \quad (2.31)$$

$$\Omega = (e^{2my} + e^{2my_0} e^{\eta}) 1_N. \quad (2.32)$$

Physical fields can be expressed in terms of Ω and σ as

$$H_1 = \sqrt{c_1} \frac{1_N}{\sqrt{1 + e^{-2m(y-y_0) + \eta}}}, \quad (2.33)$$

$$H_2 = \sqrt{c_1} \frac{U^\dagger}{\sqrt{1 + e^{2m(y-y_0) - \eta}}}, \quad (2.34)$$
Fig. 2. Profiles of $e^{-\eta}$ and σ in the coincident case. The parameters of the plot are given above the picture. Positions of all domain walls are centered at the origin.

Fig. 3. Profiles of $e^{-\eta}$ and σ in the non-coincident case. The parameters of the plot are given above the picture. Positions of domain walls are $y_1 = -10$, $y_2 = 4$, $y_3 = 8$, $y_4 = 12$, and $y_5 = 16$.

$$H_3 = \sqrt{c_2} e^{-\eta/2},$$
$$\Sigma = \frac{1}{2} \partial_y \ln \Omega,$$
$$\sigma = \partial_y \eta,$$
$$W_y = A_y = 0,$$

where we fixed the gauge such that $S = \Omega^{1/2}$ and $\text{Im}(\psi) = 0$.

This set of solutions is not invariant under the symmetry transformations (2.4) in general. For a choice of $U = 1_N$, however, the solutions (2.33)–(2.38) are invariant under the action of the diagonal global symmetry $SU(N)_{L+R+c}$. We show the y-dependence of $e^{-\eta}$ and of $\sigma = \partial_y \eta/2$ for the coincident case in Fig. 2.

For more general cases such as non-coincident walls, the dependence of $e^{-\eta}$ and σ on y is more complicated. Furthermore, Eq. (2.30) cannot be solved in a closed form in general, except for the first few values of N. Thus, one has to use numerical techniques. In Fig. 3 we present an example of five non-coincident walls.

2.2. Localization of non-Abelian gauge fields

In order to obtain massless gauge fields localized on the domain wall we need to introduce a new gauge symmetry which is not broken in the bulk. As we have seen in the previous subsections, the
Table 2. Quantum numbers of the gauged model.

SU(N)_{c}	U(1)_{1}	U(1)_{2}	SU(N)_{V}	U(1)_{A}	mass	
H_{1}	□	1	0	□	1	m1_{X}
H_{2}	□	1	-1	□	-1	0
H_{3}	1	0	1	1	0	0
Σ	adj ⊕ 1	0	0	1	0	0
σ	1	0	0	1	0	0

Coincident domain wall solutions (2.33)–(2.38) do not break a large part of the global symmetry. Let us then gauge SU(N)_{L+R} \equiv SU(N)_{V} and denote the new gauge fields as V_{M}. Then the fields H_{1} and H_{2} are in the bi-fundamental representation of SU(N)_{c} \times SU(N)_{V} and the covariant derivatives (2.3) are modified to

\tilde{D}_{M} H_{1,2} = \partial_{M} H_{1,2} + i W_{M} H_{1,2} - i H_{1,2} V_{M}.

(2.39)

The quantum numbers of the gauged model are summarized in Table 2.

We introduce field-dependent gauge coupling for V_{M} as

\frac{1}{2 \tilde{g}^{2}(σ)} = \lambda σ,

(2.40)

where we assume that λ is a positive constant,

λ > 0.

(2.41)

If we denote the field strength for the new gauge fields as \tilde{G}_{MN}, the Lagrangian for the gauged model is given by

\mathcal{L} = \tilde{\mathcal{L}} - \frac{1}{2 \tilde{g}^{2}(σ)} \text{Tr} [\tilde{G}_{MN} \tilde{G}^{MN}],

(2.42)

where \tilde{\mathcal{L}} is the same as in (2.1) except that the covariant derivatives (2.3) are replaced by (2.39). The choice of the field-dependent coupling (2.40) is inspired by supersymmetry. As discussed in Ref. [11], a term that is linear in adjoint scalars, appearing in front of the kinetic term for the gauge field, naturally arises in five-dimensional \mathcal{N} = 1 supersymmetric gauge theories [9,10]. In fact, our model can be embedded into \mathcal{N} = 1 supersymmetry.

It is not hard to see that the solution (2.33)–(2.38) in the ungauged model is equally valid in the gauged model. If we write down the equation of motion for the new gauge field V_{M}, we have

\partial_{M} \tilde{G}^{MN} = J^{N},

(2.43)

where J_{M} stands for the current of V_{M}. Since the solution preserves SU(N)_{V}, the current vanishes for the domain wall solution (2.33)–(2.38), and V_{M} = 0 is a valid solution to the equation of motion (2.43). Then the other equations of motion of the gauged model reduce to those of the ungauged model because of V_{M} = 0. Therefore, we see that (2.33)–(2.38) in addition to the condition V_{M} = 0 solves the whole set of equations of motion of the gauged model.

2.3. Positivity of position-dependent gauge coupling

We wish to show that the field-dependent gauge coupling (2.40) assures the positive definiteness of the position-dependent gauge coupling for any configurations of the domain wall. Since we do not need the effective theory in full, we reserve the derivation of the rest of the effective Lagrangian for the next section.
For the moment, it is sufficient to know that the field-dependent gauge coupling \(\frac{1}{g^2(\sigma)} \) is given by its value in the background solution,

\[
\left. \frac{1}{g^2(\sigma)} \right|_{\text{background}} = \frac{1}{g^2(y)} = \lambda \partial_\eta \eta = -\lambda \partial_\eta \ln x,
\]

(2.44)

where \(x = e^{-\eta} \geq 0 \) is a solution to (2.30). Differentiating (2.30), we find

\[
\frac{1}{x} \partial_x x = -\frac{c_1}{c_2} \sum_{i=1}^N \frac{e_i}{(1 + e_i x)^2} \left(2m + \frac{1}{x} \partial_x x \right) .
\]

(2.45)

This leads to the formula

\[
\frac{1}{2g^2(y)} = \frac{\lambda c_1}{c_2} \sum_{i=1}^N \frac{e_i}{(1 + e_i x)^2} \left/ \left(1 + \frac{c_1}{c_2} \sum_{i=1}^N \frac{e_i}{(1 + e_i x)^2} \right) \right.,
\]

(2.46)

which is indeed positive in the whole range of the \(y \)-coordinate.

Integrating \(\frac{1}{g^2(y)} \) over the extra-dimensional coordinate \(y \) we obtain the effective gauge coupling in the \((3 + 1)\)-dimensional world volume,

\[
\frac{1}{g^2} = \lambda \int_{-\infty}^{\infty} dy \, \partial_\eta \eta = \lambda [\eta(\infty) - \eta(-\infty)].
\]

(2.47)

The asymptotic values of \(\eta \) are found from (2.31) as

\[
\eta(\infty) = 0, \quad \eta(-\infty) = -\ln \left(1 + N \frac{c_1}{c_2} \right).
\]

(2.48)

The easiest way to see these asymptotic values is to note that in (2.32) we can take the limits of (2.30) to obtain

\[
x = 1 + \frac{c_1}{c_2} \sum_{i=1}^N \frac{1}{1 + e_i x} \longrightarrow \begin{cases}
1 & \text{if } y \rightarrow \infty, \\
1 + \frac{N c_1}{c_2} & \text{if } y \rightarrow -\infty,
\end{cases}
\]

(2.49)

since \(\eta \) is finite at both infinities.\(^2\)

Thus, the effective gauge coupling is given as

\[
\frac{1}{g^2} = \lambda \ln \left(1 + N \frac{c_1}{c_2} \right) .
\]

(2.50)

It is interesting to observe that the effective gauge coupling is proportional to the width of the domain wall \(\ln(1 + N c_1/c_2) \), which is not a modulus, but is fixed by parameters of the theory. This feature is in sharp contrast to that in Ref. [12], where the effective gauge coupling constant is proportional to the domain wall width, which is a modulus undetermined by the theory. We have now confirmed the stability of the gauge kinetic term (by choosing the parameters of the theory as \(\lambda, m, c_1, c_2 > 0 \)).

Equation (2.47) shows that the effective four-dimensional gauge coupling constant \(\tilde{g} \) is determined only by the boundary conditions at infinity. It can be interpreted as a kind of topological charge of the \(\eta \)-kink, whose profile is shown in Fig. 4.

Note that we have considered only the BPS solutions so far, and confirmed the stability of the model. The anti-BPS solutions are also stable, since they are obtained by the parity transformation \(x \rightarrow -x \).

\(^2\) We can just look at (2.19) with \(H_0^0 = \sqrt{c_2} \) and recall (2.6) to obtain the same result.
3. Effective Lagrangian

In this section we calculate the low-energy effective Lagrangian on the background domain wall solution in the moduli approximation [21,22], where the moduli are promoted to fields on the world-volume with coordinates x^μ and are assumed to depend only weakly on x^μ. As the background we consider the coincident walls $\phi_{bg} = m y_0 \mathbf{1}_N$. Our model has two moduli: a Hermitian $N \times N$ matrix ϕ and a unitary $N \times N$ matrix U. We proceed in two steps: taking only U as moduli fields, and then both ϕ as well as U.

3.1. Effective Lagrangian for chiral fields

Here, we ignore the moduli fields ϕ, and take only the U moduli fields that describe the Nambu–Goldstone modes associated with the symmetry breaking in Eq. (2.8). When $\phi = m y_0 \mathbf{1}_N$, the solution (2.17)–(2.19) with (2.23) and (2.24) becomes, in the strong gauge coupling limit $g \to \infty$ and $\epsilon \to \infty$,

$$H_1 = \sqrt{c_1} e^{m y_0} \Omega^{-1/2},$$

$$H_2 = \sqrt{c_1} e^{\eta/2} e^{m y_0(x)} \Omega^{-1/2} U^\dagger(x),$$

$$H_3 = \sqrt{c_2} e^{-\eta/2},$$

where Ω and η are defined in Eqs. (2.31) and (2.32) with the replacements $y_0 \to y_0(x^\mu)$ and $U \to U(x^\mu)$. We plug these into the Lagrangian (2.42), where the gauge fields W_μ and A_μ are no longer dynamical and should be eliminated as auxiliary fields. After integrating over the extra-dimensional coordinate and taking up to quadratic terms in the derivatives, we obtain the low-energy effective Lagrangian (the detailed calculation is given in Appendix A):

$$\mathcal{L}_{\text{eff}} = \frac{c_1}{2m} \left[(\alpha + 1) \text{Tr}[D_\mu U^\dagger D^\mu U] + \frac{\alpha}{N} \text{Tr}[UD_\mu U^\dagger] \text{Tr}[UD^\mu U^\dagger] \right] + \frac{Nmc_1}{2} \partial_\mu y_0 \partial^\mu y_0 - \frac{1}{2m} \ln \left(1 + \frac{Nc_1}{c_2} \right) \text{Tr}[\tilde{G}_{\mu\nu} \tilde{G}^{\mu\nu}],$$

where

$$D_\mu U = \partial_\mu U + i[V_\mu, U],$$

and

$$\alpha = \frac{1}{2} + \frac{c_2}{Nc_1} - \frac{c_2}{Nc_1} \left(1 + \frac{Nc_1}{c_2} \right) \ln \left(1 + \frac{Nc_1}{c_2} \right).$$

Fig. 4. The profile of the η-kink is shown in the left panel for the coincident case. In the right panel, plots of $\text{Tr}[\Sigma]$ (green dashed curve), $\text{Tr}[\Sigma] - \sigma$ (red solid curve), and σ (blue dotted curve) are shown.
Let us define the decay constants f_π for the adjoint field and f_η for the singlet field:

$$f_\pi = \sqrt{\frac{c_1(\alpha + 1)}{2m}}, \quad f_\eta = \sqrt{\frac{c_1}{Nm}}. \quad (3.7)$$

Then the canonically normalized adjoint and singlet fields can be defined as $\hat{\pi}$ and η respectively:

$$\frac{1}{f_\pi} D_\mu \hat{\pi} = i \left[U D_\mu U^\dagger - \frac{1}{N} \text{Tr}(U D_\mu U^\dagger) \right], \quad (3.8)$$

$$\frac{1}{f_\eta} \partial_\mu \eta := i \text{Tr}(U D_\mu U^\dagger). \quad (3.9)$$

The effective Lagrangian, Eq. (3.4), can be rewritten as

$$\mathcal{L}_{\text{eff}} = \text{Tr}(D_\mu \hat{\pi} D^\mu \hat{\pi}) + \frac{1}{2} \partial_\mu \eta \partial^\mu \eta + \frac{Nm}{2} \partial_\mu y_0 \partial^\mu y_0 - \frac{1}{2g^2} \text{Tr}[\tilde{G}_{\mu\nu} \tilde{G}^{\mu\nu}]. \quad (3.10)$$

A similar effective Lagrangian has been obtained in studying Skyrmions realized inside domain walls [15]. A new feature of (3.10) compared with our previous work [12] is that the coupling strength f_π of the adjoint field is larger than f_η of the singlet field by a factor $\sqrt{\alpha + 1}$.

3.2. Full effective Lagrangian

As the final step, we consider the general case of both U and ϕ as moduli fields. Then scalar fields are given in terms of moduli fields $U(x^\mu)$ and $\phi(x^\mu)$ as:

$$H_1 = \sqrt{c_1 e^{\eta_0} \Omega^{-1/2}}, \quad (3.11)$$

$$H_2 = \sqrt{c_1 e^{i/2} \Omega^{-1/2}} e^{\phi} U^\dagger, \quad (3.12)$$

$$H_3 = \sqrt{c_2 e^{-\eta/2}}, \quad (3.13)$$

$$\Omega^{-1} = \frac{e^{-\eta} e^{-2\phi}}{1_N + e^{2my} e^{-2\phi} e^{-\eta}}, \quad (3.14)$$

$$e^{-\eta} = 1 + \frac{c_1}{c_2} \text{Tr} \left(\frac{1_N}{1_N + e^{2my} e^{-2\phi} e^{-\eta}} \right). \quad (3.15)$$

To obtain the effective Lagrangian, we need to repeat the same procedure as in the previous subsection, where the covariant derivatives acting on functions of matrices require more care (see, e.g., Appendix B in Ref. [12]) and cause difficulty when deriving the closed form of the effective Lagrangian. However, we have a convenient parameter to expand the effective Lagrangian: the ratio c_1/c_2, whose logarithm has a physical meaning as the width of the domain wall (see Eq. (2.50)). As given in Appendix A, the effective Lagrangian up to the order of c_1/c_2 is given as

$$\mathcal{L}_{\text{eff}} = \mathcal{L}_{\text{eff}}^{(0)} + T_{\phi}^{(1)} + T_U^{(1)} + T_{\text{mix}}^{(1)} + T_\phi + T_U + c_1 O((c_1/c_2)^2), \quad (3.16)$$

3 The difference in factors of 2 and N is due to a convention of $SU(N)$ matrix normalization, $\text{Tr}(T_i T_j) = \delta_{ij}/2$.

4 The center of mass position of walls $y_0(x^\mu)$ is a free field as in Eq. (3.10), and is suppressed here.
where

\[
L_{\text{eff}}^{(0)} = \frac{c_1}{2m} \text{Tr} \left[D_{\mu} \phi \frac{\cosh(L_{\phi}) - 1}{\cosh^2(L_{\phi})} \ln \left(\frac{1 + \tanh(L_{\phi})}{1 - \tanh(L_{\phi})} \right)(D^\mu \phi) \right. \\
+ U^{\dagger} D_{\mu} U \cosh(L_{\phi}) - \frac{1}{L_{\phi}} \ln \left(\frac{1 + \tanh(L_{\phi})}{1 - \tanh(L_{\phi})} \right)(D^\mu \phi) \\
\left. + \frac{1}{2} D_{\mu} U^{\dagger} U \frac{1}{\tanh(L_{\phi})} \ln \left(\frac{1 + \tanh(L_{\phi})}{1 - \tanh(L_{\phi})} \right)(U^{\dagger} D^\mu U) \right],
\] (3.17)

with a Lie derivative with respect to \(A \), \(L_A(B) = [A, B] \). Interestingly, this is the same effective Lagrangian we obtained previously [12]. The rest of the terms are of order of \(c_1/c_2 \), given by

\[
T_U^{(1)} = \frac{c_1}{16c_2m} \text{Tr} \left[D_{\mu} U^{\dagger} U F_U(\partial_x, L_{\phi})(U^{\dagger} D^\mu U)e^{x \phi} \right] \text{Tr}[e^{-x \phi}]|_{x=0},
\] (3.18)

\[
T_{mix}^{(1)} = \frac{c_1}{8c_2m} \text{Tr} \left[U^{\dagger} D_{\mu} U F_{mix}(\partial_x, L_{\phi})(D^\mu \phi)e^{x \phi} \right] \text{Tr}[e^{-x \phi}]|_{x=0},
\] (3.19)

\[
T_{\phi}^{(1)} = \frac{c_2}{8c_2m} \text{Tr} \left[D_{\mu} \phi F_{\phi}(\partial_x, L_{\phi})(D^\mu \phi)e^{x \phi} \right] \text{Tr}[e^{-x \phi}]|_{x=0},
\] (3.20)

\[
T_\phi' = -\frac{c_1}{16c_2m} F(\partial_x) \text{Tr}[e^{x \phi} D_{\mu} \phi] \text{Tr}[e^{-x \phi} D^\mu \phi]|_{x=0},
\] (3.21)

\[
T_U' = -\frac{c_1}{16c_2m} F(\partial_x) \text{Tr}[e^{x \phi} D_{\mu} U^{\dagger} U] \text{Tr}[e^{-x \phi} D^\mu U^{\dagger} U]|_{x=0},
\] (3.22)

and

\[
F_U(x, L_{\phi}) = \int_{-\infty}^{\infty} dy \frac{\cosh(L_{\phi})}{\cosh^2(y - x) \cosh(y - L_{\phi})},
\] (3.23)

\[
F_{mix}(x, L_{\phi}) = \int_{-\infty}^{\infty} dy \frac{\cosh(y) \cosh(y - L_{\phi}) - \sinh(y) \sinh(y - L_{\phi}) - 1}{L_{\phi} \cosh(y) \cosh(y - L_{\phi}) \cosh^2(y - x)},
\] (3.24)

\[
F_{\phi}(x, L_{\phi}) = \int_{-\infty}^{\infty} dy \frac{\cosh(y) \cosh(y + L_{\phi}) - \sinh(y) \sinh(y + L_{\phi}) - 1}{L_{\phi}^2 \cosh(y) \cosh(y + L_{\phi}) \cosh^2(y - x)},
\] (3.25)

\[
F(x) = \int_{-\infty}^{\infty} dy \frac{1}{\cosh^2(y) \cosh^2(y - x)}.
\] (3.26)

All the above integrals can be obtained in closed forms.

4. More general models of stable position-dependent coupling

In this section, we wish to show that there are more models with the stable position-dependent coupling. We will illustrate the point by extending the model to include more fields and more gauge symmetry.

The position-dependent gauge coupling comes from the cubic coupling between a singlet scalar field and field strengths of non-Abelian gauge fields in 4 + 1 dimensions,

\[
L_{\text{cubic}} = C(\sigma_i) \text{Tr}[G_{MN}G^{MN}],
\] (4.1)
Table 3. Quantum numbers of the $U(1)_1 \times U(1)_2 \times U(1)_3$ four-flavor model.

	$U(1)_1$	$U(1)_2$	$U(1)_3$	mass
H_1	1	0	0	m_1
H_2	1	-1	0	m_2
H_3	0	1	1	m_3
H_4	0	0	1	m_4
σ_1	0	0	0	0
σ_2	0	0	0	0
σ_3	0	0	0	0

where the function $C(\sigma_i)$ of singlet scalar fields σ_i should be linear if it is to be embeddable into a supersymmetric gauge theory in $4 + 1$ dimensions:

$$C(\sigma_i) = \sum_i \gamma_i \sigma_i, \quad \gamma_i \in \mathbb{R},$$ \hspace{1cm} (4.2)

where γ_i are constant coefficients.

Usually, each domain wall has one complex moduli: a position and a phase. For example, both the massive $\mathbb{C}P^2$ model and the massive $\mathbb{C}P^1 \times \mathbb{C}P^1$ model have two free domain walls, corresponding to the two complex moduli. Although two free domain walls can produce the desired profile of position-dependent gauge coupling by an appropriate choice of parameters in Eq. (4.2), they provide the undesired modulus for the width of the profile. To avoid this problem, we are led to consider models with a single complex moduli. The simplest of such models is the three-flavor model in Ref. [11], where three scalar fields are constrained by the two Abelian gauge symmetry $U(1) \times U(1)$. The geometry of this three-flavor model is examined in Appendix B. Our model in this paper is an extension of this model to the non-Abelian gauge group: $U(1) \times U(1) \rightarrow U(N) \times U(1)$. The next-simplest possibility is to consider four scalars constrained by three Abelian gauge symmetry $U(1) \times U(1) \times U(1)$, which we call four-flavor models. We give the quantum numbers of fields of a typical four-flavor model in Table 3. In the limit of strong gauge couplings, the gauge theory becomes a nonlinear sigma model whose target space is given by an intersection of three conditions as

$$(\mathbb{C}^2 \times \mathbb{C}P^1) \cap (\mathbb{H}^2 \times \mathbb{C}P^1) \cap (\mathbb{C}^2 \times \mathbb{C}P^1) \simeq \mathbb{C}P^1.$$ \hspace{1cm} (4.3)

The vacuum condition is given by

$$|H_1|^2 + |H_2|^2 = c_1, \quad -|H_2|^2 + |H_3|^2 = c_2, \quad |H_3|^2 + |H_4|^2 = c_3,$$

$$H_1(\sigma_1 - m_1) = 0, \quad H_2(\sigma_1 - \sigma_2 - m_2) = 0,$$

$$H_3(\sigma_2 + \sigma_3 - m_3) = 0, \quad H_4(\sigma_3 - m_4) = 0,$$ \hspace{1cm} (4.4)

where c_i is the Fayet–Iliopoulos parameter of $U(1)_i$ and m_a is the mass for H_i. All possible solutions to these equations are shown in Table 4. There are four solutions, but only two of them are valid solutions for any choice of real parameters of c_i. When we choose $c_1 > 0, c_2 > 0$, and $c_3 > c_1 + c_2$, we are left with the vacua (1) and (2) in Table 4.

The moduli matrix formalism [20,23] is powerful enough to give generic solutions of the BPS equations of this nonlinear sigma model. In particular, we are interested in the kink profiles of σ_1, σ_2, and σ_3. The BPS equations are solved numerically, and the kink profiles are obtained by minimizing the action subject to the vacuum condition and the mass shell condition. The kink profiles are found to be close to the analytic solutions obtained from the moduli matrix formalism.
Table 4. VEVs of candidate vacua: We use abbreviations like $c_{3-1-2} \equiv c_1 - c_2$.

| $|H_1|$ | $|H_2|$ | $|H_3|$ | $|H_4|$ | σ_1 | σ_2 | σ_3 |
|-------|-------|-------|-------|-------|-------|-------|
| 0 | $\sqrt{c_1}$ | $\sqrt{c_{1+2}}$ | $\sqrt{c_{1-2}}$ | $m_2 + m_3 - m_4$ | $m_3 - m_4$ | m_4 |
| $\sqrt{c_1}$ | 0 | $\sqrt{c_2}$ | $\sqrt{c_{2-2}}$ | m_1 | $m_3 - m_4$ | m_4 |
| $\sqrt{c_{1+2}}$ | $\sqrt{-c_2}$ | 0 | $\sqrt{c_3}$ | m_1 | $m_1 - m_2$ | m_4 |
| $\sqrt{c_{1+2-3}}$ | $\sqrt{c_{3-2}}$ | $\sqrt{c_3}$ | 0 | m_1 | $m_1 - m_2$ | $-m_1 + m_2 + m_3$ |

![Graph](image_url)

Fig. 5. The kink profiles of σ_1 (red solid line), σ_2 (green dashed line), and σ_3 (blue dotted line) for two different sets of model parameters.

σ_2, and σ_3. They can be expressed as derivatives of real functions η_i,

$$\sigma_i = \frac{1}{2} \partial_y \eta_i, \quad (i = 1, 2, 3), \quad (4.7)$$

with a real constant a. The parameter a is (the real part of) the unique modulus of the solution, corresponding to the position of the domain wall. As we expected, we find only a single modulus. The width of the domain wall is not a modulus, but fixed by the theory.

Since we want a configuration such that $\sigma_i \to 0$ at both spacial infinities, we can choose $m_3 = m_4 = 0$. Then $\sigma_2 = \sigma_3 \to 0$ at $y = \pm \infty$. Several numerical solutions are displayed in Fig. 5. From Fig. 5, we clearly see that $\sigma_2 \geq 0$ and $\sigma_3 \leq 0$ for all values of y. As a position-dependent gauge coupling, we can choose a two-parameter family of desirable models

$$\mathcal{L}_{\text{cubic}} = - (\gamma_2 \sigma_2 - \gamma_3 \sigma_3) \text{ Tr} \left[\tilde{G}_{MN} \tilde{G}^{MN} \right], \quad (4.11)$$

where $\gamma_{2,3}$ can be any non-negative real numbers. This class of models can be easily made to localize non-Abelian gauge fields and minimally interacting matter fields by extending two of the $U(1)$ factor groups to (possibly different) $U(N)$ gauge groups with N scalar fields in the fundamental representations, similar to our model in previous sections. A new interesting feature of the four-flavor model (and its non-Abelian extensions) is that two possible profiles of singlet fields σ_1, σ_2 can provide a different profile for different non-Abelian gauge groups such as $SU(3)$, $SU(2)$, and $U(1)$ with their associated matter fields.
5. Conclusion and discussion

We have successfully stabilized gauge fields and matter fields that are localized on domain walls. The low-energy effective Lagrangian on the domain wall has been worked out, where the adjoint matter fields are found to couple more strongly than singlet matter fields. We also explored the possible generalization of our stabilization mechanism by including more fields and more gauge symmetries, and found a class of more generic models with added flexibility for model building with different localization profiles for different gauge groups.

To build realistic models of the brane-world with our scenario of localized gauge fields and matter fields, we should address several questions. Perhaps the most important question is to obtain (massless) matter fields in representations like the fundamental rather than the adjoint of localized gauge fields. One immediate possibility is to use the localization mechanism of fermions in a kink background. It has been found that the zero modes of such fermions are localized in such a way as to automatically give chiral fermions [24]. We will pursue this direction and associated anomaly questions further.

Secondly, we should devise a way to give small masses to our matter fields in order to do phenomenology. Since some of our matter fields are the Nambu–Goldstone modes of a broken global symmetry, we need to consider an explicit breaking of such a global symmetry.

Thirdly, another question is to study the possibility of a supersymmetric model of gauge field localization. We need to settle the issues of possible new moduli in that case. Moreover, we should examine the mechanism of supersymmetry breaking.

Another interesting possibility for model building is to localize gauge fields of different gauge groups with different profiles. This situation is often proposed in recent brane-world phenomenology, for instance in Ref. [25].

Finally, let us examine the similarities and differences of our domain walls when compared with D-branes. The most interesting similarity of our domain wall with D-branes is the realization of a geometrical Higgs mechanism, where massless gauge fields in the coincident wall become massive as walls separate. Detailed analysis of this phenomenon is worth doing. On the other hand, there are differences as well. D-branes in string theory are defined by the Dirichlet condition for the fundamental string attached to them, but no such condition is visible in our domain walls. Domain walls similar to ours have been constructed in Ref. [26], where a probe magnetic charge is placed in the bulk Higgs phase. The magnetic flux from the probe magnetic monopole is carried by a vortex which can end on the domain wall. It was observed that this wall–string junction configuration resembles an open string ending on D-branes in string theory. However, this phenomenon is in theories with one dimension less, namely the world volume of domain walls has only 1 + 2 dimensions (fundamental theory is in 1 + 3 dimensions). In our model based on a theory in 1 + 4 dimensions, the monopole (codimension three) is a string-like soliton, and might possibly be a candidate for something similar to the fundamental string. It is worth pursuing the possibility of composite solitons consisting of domain walls and other solitons such as monopoles, in order to clarify more similarities of solitons with D-branes.

Another interesting issue of the effective action on D-branes is the non-Abelian generalization of the Dirac–Born–Infeld (DBI) action. There have been studies to obtain the first few corrections to Yang–Mills action in string theories. Since we are at present interested in up to quadratic terms in derivatives, we have found the ordinary quadratic action of Yang–Mills fields together with the action of moduli fields interacting minimally with the Yang–Mills fields, in addition to the nonlinear interactions among them. Our result is trivially consistent with the quadratic approximation of DBI action,
but does not give us information on non-Abelian generalization of DBI action. In order to shed light on that issue, we need to compute higher derivative corrections to our effective Lagrangian, which is an interesting future problem.

Acknowledgements

This work is supported in part by the Japan Society for the Promotion of Science (JSPS) and the Academy of Sciences of the Czech Republic (ASCR) under the Japan–Czech Republic Research Cooperative Program, and by Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology, Japan No.21540279 (N.S.), No.21244036 (N.S.), and No.23740226 (M.E.). The work of M.A. and F.B. is supported in part by Research Program MSM6840770029 and by the International Cooperation ATLAS-Technology, Japan No.21540279 (N.S.), No.21244036 (N.S.), and No.23740226 (M.E.). The work of M.A. and F.B. is supported in part by Research Program MSM6840770029 and by the International Cooperation ATLASTECHNOLOGY, Japan No.21540279 (N.S.), No.21244036 (N.S.), and No.23740226 (M.E.). The work of M.A. and F.B. is supported in part by Research Program MSM6840770029 and by the International Cooperation ATLASTECHNOLOGY, Japan No.21540279 (N.S.), No.21244036 (N.S.), and No.23740226 (M.E.).

Appendix A. Derivation of the effective Lagrangian

In this appendix, we derive the effective Lagrangians (3.4) and (3.16) in the strong coupling limit. Since we are interested in the low-energy effective Lagrangian, we focus on up to the quadratic terms in derivatives, which we call $\mathcal{L}^{(2)}$.

A.1. Eliminating gauge fields

Here, we eliminate gauge fields W_μ, A_μ to obtain a nonlinear sigma model. Starting with $\tilde{\mathcal{L}}$ in (2.42) in the strong gauge coupling limit $g \to \infty$ and $\epsilon \to \infty$, $\mathcal{L}^{(2)}$ is given as

$$\mathcal{L}^{(2)} = \text{Tr} \left[D_\mu H_1 \right]^2 + \text{Tr} \left[(D_\mu - i A_\mu) H_2 \right]^2 + \left| (\partial_\mu + i A_\mu) H_3 \right|^2,$$

(A1)

where the covariant derivatives are given as:

$$D_\mu H_{1,2} = \tilde{D}_\mu H_{1,2} + i W_\mu H_{1,2} = \partial_\mu H_{1,2} - i H_{1,2} V_\mu + i W_\mu H_{1,2}. \quad \text{(A2)}$$

Here we have singled out covariant derivatives \tilde{D}_μ containing V_μ fields associated with the gauged part of the flavor symmetry $SU(N)_{L+R}$. Notice that W_μ and A_μ are no longer dynamical; they are merely auxiliary fields to be eliminated. Moreover, the constraints are satisfied by the scalar fields (2.33)–(2.35), which depend on the moduli fields $\phi(x^\mu)$ and $U(x^\mu)$:

$$H_1 H_1^\dagger + H_2 H_2^\dagger = c_1 \mathbf{1}_N, \quad \text{|H_3|^2 - Tr}(H_2 H_2^\dagger) = c_2. \quad \text{(A3)}$$

The equation of motion for W_μ gives

$$W_\mu = -\frac{i}{2 c_1} \left[H_a \tilde{D}_\mu H_a^\dagger - \tilde{D}_\mu H_a H_a^\dagger \right] + \frac{1}{c_1} A_\mu H_2 H_2^\dagger = \tilde{W}_\mu + \frac{1}{c_1} A_\mu H_2 H_2^\dagger, \quad \text{(A5)}$$

where the sum over the index $a = 1, 2$ is implied (Einstein summation convention). Plugging this back into (A1) we obtain

$$\mathcal{L}^{(2)} = \text{Tr}(\tilde{D}_\mu H_a \tilde{D}_\mu H_a^\dagger) - c_1 \text{Tr}(\tilde{W}_\mu \tilde{W}^\mu) + i A_\mu \left(H_3 \partial_\mu H_3^\dagger - \partial_\mu H_3 H_3^\dagger \right)$$

$$- \text{Tr}(H_2 \tilde{D}_\mu H_2^\dagger + \tilde{D}_\mu H_2 H_2^\dagger)) - 2 A_\mu \text{Tr}(\tilde{W}_\mu H_2 H_2^\dagger) + A_\mu A_\mu \left(|H_3|^2 + \text{Tr}(H_2 H_2^\dagger) - \frac{1}{c_1} \text{Tr}[H_2 H_2^\dagger] \right) + \partial_\mu H_3^\dagger \partial_\mu H_3. \quad \text{(A6)}$$
The next step is to eliminate the auxiliary fields A_μ. By using the following identities derived from the constraint (A3),

\[
\begin{align*}
\text{Tr}[(H_2 H_2^\dagger)^2] &= c_1 \text{Tr}(H_2 H_2^\dagger) - \text{Tr}(H_2 H_2^\dagger H_1 H_1^\dagger), \\
-2\text{Tr}(\dot{H}_2 H_2^\dagger) &= \text{Tr}(H_2 \dot{H}_2^\dagger - \dot{H}_2 H_2^\dagger)
\end{align*}
\]

(A7)

and by solving equations of motion for A_μ, we obtain

\[
A_\mu = -\frac{i}{2} \frac{H_3 \delta_{\mu H_3^\dagger} - \delta_{\mu H_3 H_3^\dagger} + \frac{1}{c_1} \epsilon_{ab} \text{Tr}[(H_\alpha \dot{D}_\alpha H_\alpha^\dagger - \dot{D}_\alpha H_\alpha H_\alpha^\dagger) H_b H_b^\dagger]}{|H_3|^2 + \frac{1}{c_1} \text{Tr}(H_2 H_2^\dagger H_1 H_1^\dagger)}.
\]

(A9)

By using the following identities

\[
\begin{align*}
\text{Tr}[\dot{D}_\mu H_\alpha \dot{D}_\mu H_\alpha^\dagger - c_1 \dot{W}_\mu \dot{W}_\mu^\dagger] &= \frac{1}{2c_1} \text{Tr}[D_\mu H_{ab} D_\mu H_{ab}^\dagger],
\end{align*}
\]

(A10)

where $H_{ab} := H_3 H_b$ and $D_\mu H_{ab} = \delta_{\mu H_3^\dagger} + i[V_\mu, H_{ab}]$, and

\[
\epsilon_{ab} \text{Tr}[(H_\alpha \dot{D}_\alpha H_\alpha^\dagger - \dot{D}_\alpha H_\alpha H_\alpha^\dagger) H_b H_b^\dagger] = \text{Tr}[H_{12}^\dagger D_\mu H_{12} - D_\mu (H_{12}^\dagger) H_{12}]
\]

we obtain a simpler expression for A_μ:

\[
A_\mu = -\frac{i}{2} \frac{H_3 \delta_{\mu H_3^\dagger} - \delta_{\mu H_3 H_3^\dagger} + \frac{1}{c_1} \text{Tr}[H_{12}^\dagger D_\mu H_{12} - D_\mu (H_{12}^\dagger) H_{12}]}{|H_3|^2 + \frac{1}{c_1} \text{Tr}[H_{12}^\dagger H_{12}]}.
\]

(A12)

Using (A12), we can rewrite the effective Lagrangian as an integral of a nonlinear sigma model over y:

\[
\mathcal{L}_{\text{eff}} = \int_{-\infty}^{\infty} dy \left[\frac{1}{2c_1} \text{Tr}[D_\mu H_{ab} D_\mu H_{ab}^\dagger] + \delta_{\mu H_3 \partial^\mu H_3^\dagger} - A_\mu A_\mu^\dagger (|H_3|^2 + \frac{1}{c_1} \text{Tr}(H_{12}^\dagger H_{12})) \right].
\]

(A13)

A.2. Effective Lagrangian for U and y_0

Let us now calculate the effective Lagrangian including only fluctuations U and y_0 around the coincident domain wall solutions (3.1)–(3.3) with (2.31) and (2.32). The composite fields H_{ab} are given as ($e_0 \equiv e^{m(y-y_0)}$):

\[
\begin{align*}
H_{11} &= c_1 \frac{e_0^\sigma e^{-\eta}}{1 + e_0^\sigma e^{-\eta}} 1_N, \\
H_{12} &= c_1 \frac{e_0^{1/2} e^{-\eta/2}}{1 + e_0^\sigma e^{-\eta}} U^\dagger, \\
H_{22} &= c_1 \frac{1}{1 + e_0^\sigma e^{-\eta}} 1_N.
\end{align*}
\]

(A14) \(\quad \) (A15) \(\quad \) (A16)

After some algebra, covariant derivatives of these can be rewritten as

\[
\begin{align*}
\mathcal{D}_\mu H_{11} &= -\frac{2c_2}{N} e^{-\eta} \sigma \partial_\mu y_0 1_N, \\
\mathcal{D}_\mu H_{12} &= \frac{2c_2}{N} e^{-\eta} \sigma \sinh(m(y-y_0) - \eta/2) \partial_\mu y_0 U^\dagger + \frac{c_1}{2} \frac{\mathcal{D}_\mu U^\dagger}{\cosh(m(y-y_0) - \eta/2)}, \\
\mathcal{D}_\mu H_{22} &= \frac{2c_2}{N} e^{-\eta} \sigma \partial_\mu y_0 1_N.
\end{align*}
\]

(A17) \(\quad \) (A18) \(\quad \) (A19)
where
\[
\frac{\sigma}{m} = \left(1 + \frac{c_2}{Nc_1}(1 + e_0 e^{-\eta})^2/e_0\right)^{-1}.
\] (A20)

Putting this into Eq. (A12), we obtain:
\[
A_\mu = -\frac{i\sigma}{2Nm} \text{Tr}[U D_\mu U^\dagger - U^\dagger D_\mu U].
\] (A21)

Substituting this result into (A13), we obtain
\[
\mathcal{L}_{\text{eff}} = \frac{c_2}{Nm} \int_{-\infty}^{\infty} dy \frac{\sigma}{1 - \sigma/m} e^{-\eta} \text{Tr}[D_\mu U^\dagger D^\mu U] + mc_2 \int_{-\infty}^{\infty} dy e^{-\eta} \sigma \partial_\mu y_0 \partial^\mu y_0
\]
\[
+ \frac{c_2}{N^2 m^2} \int_{-\infty}^{\infty} dy \frac{\sigma^2}{1 - \sigma/m} e^{-\eta} \text{Tr}[U D_\mu U^\dagger] \text{Tr}[U D^\mu U^\dagger].
\] (A22)

Finally, integration over \(y \) is most easily done by substituting \(x = e^{-\eta} \) and using the identity
\[
\frac{\sigma}{m} = \frac{(x - 1)\left(1 - \frac{c_2}{Nc_1}(x - 1)\right)}{x + (x - 1)\left(1 - \frac{c_2}{Nc_1}(x - 1)\right)},
\] (A23)

leading to Eq.(3.4) (including the kinetic term for the gauge fields).

A.3. Effective Lagrangian for all terms: \(\phi, U, \) and \(y_0 \)

Next, we derive the effective Lagrangian including all fluctuations. Plugging the solution (3.11)–(3.13) into the Lagrangian (A13), we obtain
\[
\mathcal{L}_{\text{eff}} = \int_{-\infty}^{\infty} dy \left[T_U + T_{\text{mix}} + T_\phi\right]
\]
\[
+ \frac{c_2}{16c_2} \int_{-\infty}^{\infty} dy e^{\eta} \left(1 - \frac{\sigma}{m}\right) \text{Tr}\left[\frac{1}{\cosh^2(y)} D_\mu U^\dagger U \right] \text{Tr}\left[\frac{1}{\cosh^2(y)} D^\mu U^\dagger U \right]
\]
\[
- \frac{c_2}{16c_2} \int_{-\infty}^{\infty} dy e^{\eta} \left(1 - \frac{\sigma}{m}\right) \text{Tr}\left[\frac{1}{\cosh^2(y)} D_\mu \phi \right] \text{Tr}\left[\frac{1}{\cosh^2(y)} D^\mu \phi \right],
\] (A24)

where
\[
T_U = \frac{c_1}{4} \text{Tr}\left\{D_\mu U^\dagger D^\mu U \frac{1}{\cosh^2(y)} + D_\mu U^\dagger U \sum_{n=1}^{\infty} \frac{(-1)^n}{n!} L_\phi^n(U^\dagger D^\mu U) \left(\frac{e^{\hat{y}}}{\cosh(y)}\right)^{(n)} + \frac{e^{-\hat{y}}}{\cosh(y)}\right\},
\] (A25)

\[
T_{\text{mix}} = -\frac{c_2}{2} \sum_{n=2}^{\infty} \frac{(-1)^n}{n!} \text{Tr}\left\{U^\dagger D_\mu U L_\phi^{n-1}(D^\mu \phi) \left(\frac{1}{\cosh(y)}\right)^{(n)} \frac{1}{\cosh(y)} + \left(\tanh(y)\right)^{(n)} \tanh(y)\right\},
\] (A26)

\[
T_\phi = \frac{c_2 \sigma/m - 2}{4} e^{-\eta} \partial_\mu \eta \partial^\mu \eta + \frac{c_1}{4} \text{Tr}\left[\frac{1}{\cosh^2(y)} D_\mu \phi D^\mu \phi\right]
\]
\[
- \frac{c_1}{2} \sum_{n=3}^{\infty} \frac{1}{n!} \text{Tr}\left[L_\phi^{n-2}(D^\mu \phi) D^\mu \phi \left(\frac{1}{\cosh(y)}\right)^{(n)} \frac{1}{\cosh(y)} + \left(\tanh(y)\right)^{(n)} \tanh(y)\right]\right\},
\] (A27)
and

\[\hat{y} = (m y - \eta/2)1_N - \phi. \]

(A28)

The only work which remains to be done is to perform the integration. This, however, turns out to be difficult. The main source of difficulty lies in the fact that we cannot solve (3.15) explicitly. We therefore use some approximation technique, such as the Taylor expansion. We find it convenient to use as an expansion parameter \(c_1/c_2 \), which determines the width of the coincident wall. In the lowest order of approximation we see that Eq. (3.15) reduces to \(e^{-\eta} = 1 \) and we obtain the effective Lagrangian in Eq. (3.16).

A.4. Complexity of the effective Lagrangian

The formula (3.16) illustrates the complexity of the interactions between moduli fields \(\phi \) and \(U \) in the general case. Let us offer some explanation for this complexity. The structure, which is new in (3.16) compared to (3.17) is of the general form

\[
F(\partial_x)\text{Tr}[e^{x\phi}M(y)]\text{Tr}[e^{-x\phi}N(y)] \bigg|_{x=0},
\]

where \(M(y) \) and \(N(y) \) are some matrix-valued functions containing either derivatives of \(\phi \) or derivatives of \(U \). If we assume that \(\phi = mP^{-1}\text{diag}(y_1, \ldots, y_N)P \) is diagonalizable, we can rewrite the above as

\[
\sum_{i,j=1}^{N} F(m(y_i - y_j))(PM(y)P^{-1})_{ii}(PN(y)P^{-1})_{jj}.
\]

This form suggests that interaction (here represented by function \(F \)) depends on the relative size of fluctuation of each pair of walls. Indeed, notice that if two walls have the same position \(y_i = y_j, \ i \neq j \) (meaning that the expectation values of the fluctuations is the same), the above form reduces to

\[
F(0)\text{Tr}(M)\text{Tr}(N),
\]

which is in a sense trivial, since we already encountered this kind of term in (3.4). Thus, the new kind of complexity in our result (3.16) can be understood as a manifestation of the fact that the interaction does not depend only on various moments of the fluctuation as in (3.17) but also on their relative size.

Appendix B. Geometry of the three-flavor model

The quantum numbers of the three-flavor model are shown in Table B1. Since we are interested in the domain wall solutions, it is enough to consider the strong gauge coupling limit, where gauge theories become nonlinear sigma models (NLSM) whose target space is defined as an intersection of two spaces:

\[
(\mathbb{C} \times \mathbb{C}P^1) \cap (\mathbb{C} \times \mathbb{H}^2) \simeq \mathbb{C}P^1.
\]

(B1)

Here, \(\mathbb{H}^2 \) stands for the two-dimensional hyperbolic plane. In the above expression, \(\mathbb{C}P^1 \) and \(\mathbb{H}^2 \) are defined by

\[
\mathbb{C}P^1 = \{(H_1, H_2) \mid |H_1|^2 + |H_2|^2 = c_1, \ H_{1,2} \in \mathbb{C}\}/U(1)_1,
\]

(B2)

\[
\mathbb{H}^2 = \{(H_2, H_3) \mid |H_2|^2 - |H_3|^2 = -c_2, \ H_{2,3} \in \mathbb{C}\}/U(1)_2.
\]

(B3)

This space is isomorphic to \(\mathbb{C}P^1 \) but is a squashed sphere. The metric can be read from the Kähler potential,

\[
K = e^{-V_1}|H_1|^2 + e^{-V_1-V_2}|H_2|^2 + e^{V_2}|H_3|^2 + c_1V_1 - c_2V_2.
\]

(B4)
One can eliminate the real superfields V_1 and V_2, and find the following expression of the Kähler potential with respect to the gauge-invariant inhomogeneous coordinate $φ$ as

$$K = c_1 \left[f + \log \left(|φ|^2 + f^{-1} \right) - \lambda \log f \right], \quad (B5)$$

$$f = \frac{1}{2} \left(\lambda - |φ|^2 + \sqrt{4|φ|^2(1+\lambda) + (\lambda - |φ|^2)^2} \right), \quad (B6)$$

$$φ = \frac{H_2 H_3}{c_1 H_1}, \quad \lambda \equiv \frac{c_2}{c_1}. \quad (B7)$$

Note that this manifold is singular at $φ = 0$ when $c_2 = 0$. This can be understood in two different ways. The first is to realize the fact that $U(1)_2$ gauge symmetry is restored at that point. This is because $|H_2| = |H_3| = 0$ holds there. Namely, the additional massless degrees of freedom should be taken into account. The second way is more straightforward. Let us calculate the scalar curvature in the vicinity of $φ = 0$. To this end, first we change the coordinate by $φ = e^{i\varphi} \tan \frac{\Theta}{2} \left(0 \leq \Theta \leq \pi, \ 0 \leq \varphi \leq 2\pi \right)$, then we obtain

$$R = \frac{8(8 + 9\lambda)}{9} \frac{1}{c_2} + O(\varphi^2). \quad (B8)$$

From this it is clear that the scalar curvature at $φ = 0$ becomes infinity when $c_2 = 0$.

References

[1] S. L. Dubovsky and V. A. Rubakov, Int. J. Mod. Phys. A 16, 4331 (2001).
[2] G. R. Dvali and M. A. Shifman, Phys. Lett. B 396, 64 (1997); 407, 452 (1997) [erratum].
[3] I. Antoniadis, N. Arkani-Hamed, S. Dimopoulos, and G. R. Dvali, Phys. Lett. B 436, 257 (1998).
[4] N. Maru and N. Sakai, Prog. Theor. Phys. 111, 907 (2004).
[5] J. B. Kogut and L. Susskind, Phys. Rev. D 9, 3501 (1974).
[6] R. Fukuda, Phys. Lett. B 73, 305 (1978); 74, 433 (1978) [erratum].
[7] R. Fukuda, Mod. Phys. Lett. A 24, 251 (2009).
[8] H. Kawai and T. Kuroki, Phys. Lett. B 518, 294 (2001).
[9] N. Seiberg, Phys. Lett. B 388, 753 (1996).
[10] D. R. Morrison and N. Seiberg, Nucl. Phys. B 483, 229 (1997).
[11] K. Ohta and N. Sakai, Prog. Theor. Phys. 124, 71 (2010); 127, 1133 (2012) [erratum].
[12] M. Arai, F. Blaschke, M. Eto, and N. Sakai, Prog. Theor. Exp. Phys. 2013, 013B05 (2013).
[13] M. Arai, F. Blaschke, M. Eto, and N. Sakai, J. Phys.: Conf. Ser. 411, 012001 (2013).
[14] M. Shifman and A. Yung, Phys. Rev. D 70, 025013 (2004).
[15] M. Eto, M. Nitta, K. Ohashi, and D. Tong, Phys. Rev. Lett. 95, 252003 (2005).
[16] M. Eto, T. Fujimori, M. Nitta, K. Ohashi, and N. Sakai, Phys. Rev. D 77, 125008 (2008).
[17] M. Eto, Y. Isozumi, M. Nitta, K. Ohashi, and N. Sakai, Phys. Rev. D 73, 125008 (2006).
[18] Y. Isozumi, M. Nitta, K. Ohashi, and N. Sakai, Phys. Rev. Lett. 93, 161601 (2004).
[19] Y. Isozumi, M. Nitta, K. Ohashi, and N. Sakai, Phys. Rev. D 70, 125014 (2004).
[20] M. Eto, Y. Isozumi, M. Nitta, K. Ohashi, and N. Sakai, J. Phys. A 39, R315 (2006).
[21] N. S. Manton, Phys. Lett. B 110, 54 (1982).
[22] N. S. Manton and P. Sutcliffe, \textit{Topological Solitons} (Cambridge University Press, Cambridge, UK, 2004).
[23] M. Eto, Y. Isozumi, M. Nitta, K. Ohashi, K. Ohta, N. Sakai, and Y. Tachikawa, Phys. Rev. D 71, 105009 (2005).
[24] V. A. Rubakov and M. E. Shaposhnikov, Phys. Lett. B 125, 136 (1983).
[25] Y. Hosotani and Y. Kobayashi, Phys. Lett. B 674, 192 (2009).
[26] M. Shifman and A. Yung, Phys. Rev. D 67, 125007 (2003).