A Millennium Bug Still Bites Public Health
– An Illustration Using Cancer Mortality

Martina Fu 1, David Todem 2, Wenjiang J. Fu 2, Shuangge Ma 3

1 Stanford University, 2 Michigan State University, 3 Yale University

ABSTRACT

Accurate estimation of cancer mortality rates and the comparison across cancer sites, populations or time periods is crucial to public health, as identification of vulnerable groups who suffer the most from these diseases may lead to efficient cancer care and control with timely treatment. Because cancer mortality rate varies with age, comparisons require age–standardization using a reference population. The current method of using the Year 2000 Population Standard is standard practice, but serious concerns have been raised about its lack of justification. We have found that using the US Year 2000 Population Standard as reference overestimates prostate cancer mortality rates by 12–91% during the period 1970–2009 across all six sampled U.S. states, and also underestimates case fatality rates by 9–78% across six cancer sites, including female breast, cervix, prostate, lung, leukemia and colon-rectum. We develop a mean reference population method to minimize the bias using mathematical optimization theory and statistical modeling. The method corrects the bias to the largest extent in terms of squared loss and can be applied broadly to studies of many diseases.

Keywords: Age-standardization; Bias; Crude rate; Optimization

Introduction

Cancer is one of the leading causes of death in the United States and a major public health concern [1-5]. Cancer mortality rates are often reported in age-specific groups, making it difficult to extrapolate the overall mortality assessment or generate comparisons across populations [6]. Researchers often calculate a summary rate, such as the crude rate, which is an average of the age-specific mortality rates weighted to the proportions of age groups in the population. Such summary rates depend on the age-specific mortality rates and the population’s age structure, where the latter may vary largely and cause unfair comparison among populations, presenting numerical illusion of large differences in the summary rate even as the age-specific mortality rates remain the same [7]. This discrepancy motivated the direct age-standardization procedure for comparing mortality rates across populations [7-9] using a standard population as reference, such as the US Year 2000 Population Standard in current practice.

Corresponding authors: Wenjiang J. Fu, Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, Michigan 48824 Tel: (517) 353 - 8623 ext 113. Email: fuw@msu.edu; and Shuangge Ma, Department of Biostatistics, School of Public Health, Yale University, New Haven, Connecticut 06520 Tel: (203) 785-3119. Email: shuangge.ma@yale.edu.
The age-standardization method calculates an age-adjusted rate using the age structure of a standard population to compare disease rates across populations or time periods. This method has been extensively adopted by the United States and world health agencies [4-5,10-12] following a memorandum from the Secretary of the U.S. Department of Health and Human Services in 1998 [13] mandating the use of the US Year 2000 Population Standard to calculate age-adjusted mortality rate starting 1999 for more consistent reporting of mortality rate [14]. Accordingly, the US Year 2000 Population Standard or the Year 2000 World Standard Population has been used as reference in public health reports by many U.S. states [15-20] and worldwide agencies [12].

Although age-standardization provides a way to compare disease rate among populations and has acknowledged merits [6-7,10-12], the current approach of using standard reference population also has caveats. It has been noted that choosing different reference populations may change the age-adjusted mortality rates dramatically and may also alter the ranking [7, 21]. As a result, the selection of standard population is still in debate [7, 12]. On one hand, selecting the Year 2000 Population Standard keeps the mortality rate adjustment consistent with a contemporary reference population [13, 14], making the comparison procedure easy to follow with uniformity [21]. On the other hand, a study by the World Health Organization (WHO) pointed out “There is clearly no conceptual justification for choosing one standard over another, hence the choice is arbitrary” [12]. Further, a health disparities study attributed declining racial/ethnic and socioeconomic inequalities in health to the change of the reference population from Year 1940, 1970 to Year 2000, a “statistical illusion” due to the use of the Year 2000 Population Standard [23]. This illusive effect of the Y2K or millennium bug is not the result of a technical problem as in the computer programming case, but rather of a more difficult methodological one that requires theoretical research in quantitative science. The change of reference from US Year 1940 Population to US Year 2000 Population Standard may cause age-adjusted mortality rate to increase largely [14], sometimes even more than doubling in size [24]. The fact that the conclusion of mortality rate comparison depends on the choice of reference population creates confusions and misinterpretation [23]. Consequently, concerns about inadequate public health policymaking on healthcare, racial/ethnic and socioeconomic inequalities that result from improper comparisons need to be addressed urgently.

In this study, we investigated the issue of reference population selection using the Surveillance, Epidemiology and End Results (SEER) database [25]. We analyzed prostate cancer mortality rates in six U.S. states (California, Massachusetts, Michigan, Missouri, New Jersey and New York) from 1970 to 2009 and also examined the U.S. case fatality rates in 2008 of six sites: female breast, cervix, prostate, lung, leukemia, and colon-rectum. We found that the age-standardization procedure using the US Year 2000 Population Standard as reference overestimated prostate cancer mortality rates in all six states and underestimated case fatality rates of all six cancer sites. This finding clearly indicates that bias has been introduced by the age-standardization procedure. To minimize the bias, we developed a mean reference population method to compare different populations. This method possesses a number of advantageous properties. First, the mean reference population minimizes the overall squared bias among all convex linear combinations. Second, by construction the mean reference population resembles the age profiles of all populations in comparison and thus represents them accurately while a standard population may present a largely different profile. Third, the existence and uniqueness of such a mean reference population is guaranteed by the mathematical optimization theory and can be computed using a mathematical quadratic programming method or a statistical sampling method. Fourth, the mean reference population method does not depend on the specifics of cancer mortality and can thus be applied to studies of incidence and mortality rates of other diseases. We show that the mean reference population method reduced to a large extent the overall bias associated with the use of the US Year 2000 Population Standard in the age-standardization procedure and yielded cancer mortality rate close to the crude rate.
Figure 1: Comparison of age-adjusted mortality rates using the US Year 2000 Population Standard and the mean reference population to the crude rate of prostate cancer in the state of California during 1970-2009.

Results

By definition, the crude rate calculated with the total probability rule provides an unbiased estimate of the mortality rate [26]. To achieve fair comparison, however, a reference population is needed to remove artifacts due to varying age structure and bias is inevitably introduced by a reference population. See Material and Methods for more details and the definitions of various rates.

Compared to the crude rate, the age-adjusted rate using the US Year 2000 Population Standard as reference overestimated prostate cancer mortality rate by 12% to 91% in all eight periods studied during 1970–2009, consistently in all six states (Tables 1). The cumulative rate, which takes the sum of the age-specific mortality rates from age 40 to 79 of each population [6], yielded relative deviation of 1227% to 3145%, or 13 to 32 times that of the crude rate. In contrast, the mean reference population yielded age-adjusted rates much closer to the crude rates, with relative deviation between -25% and 27% and no systematic deviation towards either overestimation or underestimation. Fig. 1 illustrates the comparison in the State of California. Similar patterns were observed in the other five states (Fig. S1 in Supplementary Material). Due to its large scale, the cumulative rate is not shown.

Table 2 compares the observed number of deaths with the expected one in each population by the crude rate, the age-adjusted rates using the US Year 2000 Population Standard and using the mean reference population. The crude rate yielded exactly the same number of deaths as the observed, indicating unbiased estimation, whereas the age-adjusted rate using the US Year 2000 Population Standard yielded much larger number of deaths than the observed, indicating biased estimation by age-adjusted rate. Overall, the mean reference population yielded a more accurate estimation of the number of deaths than the US Year 2000 Population Standard. The expected number of deaths by the cumulative rate was not calculated because the cumulative rate is not a weighted average of the age-specific rates and thus is not a rate in a strict sense.

The age-adjusted rate using the US Year 2000 Population Standard as reference underestimated
Figure 2: Comparison of age-adjusted case fatality rates using the reference of US Year 2000 Population Standard and the mean reference population to the unbiased crude rate of six cancer sites in 2008 in the United States.

Figure 3: Comparison of age profile of the reference populations and the cancer patient populations of six sites. The profile of the mean reference population was similar to those of all cancer patient populations except for leukemia (which differed from others in early ages). In contrast, the decreasing trend of the US Year 2000 Population Standard differed largely from the increasing trend of the others, resulting in large bias in age-adjusted rate.
the case fatality rate of all six cancer sites, as shown in Table 3. The relative deviations were -78%, -52%, -42%, -39%, -32% and -9% for cancer of prostate, lung, cervix, leukemia, female breast, and colon–rectum, respectively, indicating underestimation consistently across cancer sites. This discrepancy altered the ranking between leukemia and colon–rectum cancer. The cumulative rate overestimated the case fatality rate by 284–755%. In contrast, the mean reference population yielded estimate much closer to the crude rate, with a mean deviation equal to 403.4, 90% less than that by the US Year 2000 Population Standard (4305.1) and 99% less than that by the cumulative rate (53351.3). Fig. 2 illustrates the comparison, again with the cumulative rate not shown because of its large scale.

We then explored possible explanations for the large contrast of the age-adjusted rates between the two references of the US Year 2000 Population Standard and the mean reference population. We first examined the age profile of the reference populations using the case fatality study data and compared them to those of the six cancer patient populations. As shown in Fig. 3, five out of six cancers (except for leukemia) had virtually no patients before age 20, followed by a sharp increase between age 20, a peak between age 50 and 70 and a decline thereafter (except for colon-rectum cancer, which increased through age 85+). Mortality rates for leukemia were positive in early age, decreased slowly between age 15 and 40, and then increased thereafter. Overall, the mean reference population had an increasing trend similar to those of the six cancers, suggesting that it represented the cancer patient populations accurately. In contrast, the US Year 2000 Population Standard had an overall decreasing trend, staying large before age 20, peaking around 40 and then decreasing sharply thereafter. This sharp contrast suggests that the US Year 2000 Population Standard did not represent cancer patient populations, which explains why it yielded large deviation from the crude rate in comparing case fatality rates.

We then examined the weights of the reference populations. The mean reference population had a positive weight for each cancer site by construction and accurately represented the six cancer patient populations on the average.

\[n_{\text{mean}} = 0.5756n_1 + 0.2172n_2 + 0.0261n_3 + 0.1757n_4 + 0.0105n_5 + 0.0048n_6 , \]

where \(n_1, \ldots, n_6 \) are the population proportions of female breast, cervix, prostate, lung, leukemia, and colon-rectum, respectively. We further decomposed the US Year 2000 Population Standard by the six cancer patient populations using a linear regression model with no intercept for comparison with the above \(n_{\text{mean}} \).

\[n_{\text{US2000}} = -1.1476n_1 + 0.6034n_2 + 0.3183n_3 - 0.4891n_4 + 1.6838n_5 - 0.0017n_6 . \]

The regression yielded three negative weights on breast, lung and colon-rectum cancers. In addition, the sum of the absolute values of all weights was 4.24, much greater than 1 as in the mean reference population. This result suggests that the US Year 2000 Population Standard was not “close” to a weighted average of the six cancer patient populations and thus was not a representative of them.

We also examined the population profile of the six states during the period 1970-2009 (Fig. S2-S7). Although the population in each state remained relatively stable, the effect of aging was observed by a shift of the peak from 1970 to 2009, indicating the change of population structure, the needs of age-standardization and the subsequent minimization of the overall bias as shown in Table 1 and Fig. 1 and S1.

Discussion

Accurate estimation of cancer mortality rate is a challenging task and has a major impact on cancer care and public health policymaking for cancer prevention, treatment and control [27-28].
The method of direct age-standardization has been studied for over a century [8]. Although concerns about the arbitrary selection of reference population are not new, they have become more urgent in recent years with the U.S. and world health agencies changing the reference population to reflect the contemporary, aging population structure. Such a change, though appealing in keeping mortality rate estimation consistent with a contemporary reference population, still lacks theoretical justification. As mentioned previously, the observed illusive effect on the declining racial/ethnic and socioeconomic inequalities raises more questions and demands renewed comparison in various aspects of disease incidence and mortality rates. The confusion caused by the selection of reference population is far from being clarified, and though a mandate of using a standard population as reference may help to streamline the age-standardization task, it may not help to adequately address the above concerns. Further theoretical research is urgently needed, more so than ever before.

We have demonstrated that age-standardization using the US Year 2000 Population Standard overestimated prostate cancer mortality rate by up to 91% and underestimated case fatality rate by up to 78%. Such large bias may result in confusion and misinterpretation of cancer mortality. For example, prostate cancer mortality may be misinterpreted as much higher than it actually was in all six states, and lung cancer case fatality rate may be misinterpreted as less than 10,000 per 100,000 person-year, while the actual rate was more than doubled (> 19,700 per 100,000 person-year). Our observation is consistent with the concerns raised in the literature [7, 21, 22].

Since the age-adjusted rate using the US Year 2000 Population Standard has been widely used in epidemiological studies and public health reports, it has been regarded as the standard approach to comparing disease rates across populations. Many public health reports use it to generate disease rate estimation while acknowledging that the crude rate yields poor comparison with potential bias. For the first time, our study points out that the crude rate is unbiased and age-adjusted rates are biased. The use of a standard population in the direct age-standardization introduces bias and results in confusion and misinterpretation, as shown in Tables 1 and 2. The merit of the age-standardization is that it provides an equal footing for comparing disease rates among populations with different age structure, eliminating artifacts introduced by different population structure. Furthermore, we show in this paper that as long as one uses a common age structure to calculate age-adjusted rates, such equal footing is guaranteed. However, equal footing does not necessarily yield fair comparison because an age-structure may be in favor of one population over others. Hence, an equal footing age-structure may not be used as the only criterion for the fairness of comparison. This issue motivated us to search for a population that minimized the overall bias among all possible reference populations and led us to construct the mean reference population based on the populations in comparison. Our mean reference population method not only provided a common population structure for comparison but also minimized the overall bias.

Although the effect of age-standardization differed in the two cancer mortality studies, overestimation of mortality rate and underestimation of case fatality rate, both showed a consistent lack of calibration by age-adjusted rate, indicating the need for improvement. Our mean reference population method minimizes the overall bias, and may also help to address the issue of arbitrary selection of reference population raised in the WHO report [12].

Although cancer case fatality rates may be inaccurate due to lead bias in cancer diagnosis, the principle of our analysis remains the same, and the underestimation of case fatality rates by the US Year 2000 Population Standard remains a valid conclusion. For example, take prostate cancer, a disease with a late onset at age 35 or older (Table S1). A major proportion (45%) of the US Year 2000 Population Standard is younger than age 35, a population in which prostate cancer rarely develops (assuming equal distribution by age between males and females, thus gender effect need not be considered). Hence, the age-standardization by the US Year 2000 Population Standard only accounts for 55% weight on death from prostate cancer, largely underestimating the case fatality
rate. Similar explanation holds for other cancers.

We appreciate that although the mean reference population provides a unique reference population and minimizes the overall bias of age-adjusted rate among given populations, it does not remain the same in different studies and has to be constructed for each comparison study. This leads to technical inconvenience in comparing disease rates. To resolve this issue, we plan to provide a computer software package to implement the procedure, for which computation of optimal weights and storage of population proportions of racial and sex groups in geographic locations is inexpensive.

We conclude that direct age-standardization using a standard population may lead to inaccurate estimation and incorrect interpretation, resulting in confusions and inappropriate decision and policy making. It is hoped that the mean reference population method may lead to improved cancer patient care and efficient healthcare management. Furthermore, since the method relies on no specification of cancer mortality rates, it applies broadly to studies comparing incidence or mortality rates of a wide range of diseases in varied countries and geographic regions.

Materials and Methods

Data

Prostate cancer mortality rates and population proportions of five year age groups and five year periods during the years 1970 - 2009 were generated for six US states (California, Massachusetts, Michigan, Missouri, New Jersey, and New York), from the Surveillance, Epidemiology and End Results (SEER) database [25] using the SEER*Stat software version 8.0.4 [29]. These six states were selected because they used the age-standardization method to generate state public health reports of cancer mortality [15-20]. The SEER database consists of cancer incidence and mortality data of U.S. cancer registries in a growing number (nine and more) of metropolitan areas since the 1970s. Hence research results based on the SEER database are often interpreted as the results for the United States.

The U.S. case fatality rates in 2008 were generated using the SEER database and the Cancer Prevalence database of the NCI/NIH [30]. We first generated the U.S. cancer mortality rates for each cancer site with the SEER*Stat software, and then calculated the case fatality rates using the prevalence of each cancer site estimated by the software CanQues Version 4.2 [30]. See Supplementary Material for details.

Methods

Age-standardization for comparing mortality rate across populations Cancer mortality rate varies with age (Tables S3, S5, S7, S9, S11 and S13), and a summary rate (e.g. the crude rate) is often preferred to a sequence of age-specific rates in comparing the mortality [6-7,10-12]. The age-standardization yields an age-adjusted rate, a weighted average of the age-specific rates m_a with selected weights n_a,

$$ r_{adj} = \sum_{a=1}^{A} m_a n_a. \tag{1} $$

Age-adjusted rates Four rates were calculated to summarize the age-specific mortality rates for comparison, the crude rate, the cumulative rate, age-adjusted rates using the US Year 2000 Population Standard and using the mean reference population. They were calculated as follows for given age-specific mortality rate m_{ia}, population proportion n_{ia} of population i, and population
proportion of a standard population n_{0a}. The crude rate $r_{\text{crude},i}$ of prostate cancer mortality in population i in each state and each period during 1970–2009 was calculated using the total probability rule \[26\]

$$r_{\text{crude},i} = \sum_{a=1}^{A} m_{ia} n_{ia},$$

where the weights were its own population proportions n_{ia}. The US crude case fatality rate of each cancer site in 2008 was calculated similarly. The cumulative rate $r_{\text{cumul},i}$ of each population i was calculated to be the sum of the age-specific mortality rates from age 40-44 to age 75-79 for each state and each period \[6\], $r_{\text{cumul},i} = \sum_{a=40}^{75} m_{ia}$, where the weights $n_{ia} = 1$ for $a = 40, 45, \ldots, 75$, and 0 otherwise. Each age-adjusted rate was calculated following the direct age-standardization procedure in equation (1) see \[6\]. The US 2000 age-adjusted rate r_{US2000} was calculated using the US Year 2000 Population Standard proportions n_{US2000} as weights, and the mean reference rate r_{mean} was calculated using a mean reference population proportion n_{mean} as weights, where the mean reference population was constructed using a convex linear combination of the proportions n_{ia} of the populations in comparison. See Statistical Modeling below for details.

Unbiased estimation of overall mortality by crude rate Assume we have A age groups. The A age-specific mortality rates of each population form an A-vector $\mathbf{m} = (m_1, \ldots, m_A)^T$. Also assume the proportion of a given population with the disease is $\mathbf{n} = (n_1, \ldots, n_A)^T$ for A age groups, $\sum_{a=1}^{A} n_a = 1$. Assume that a study has p populations, and each population has a mortality rate vector \mathbf{m}_i and a corresponding population proportion vector \mathbf{n}_i, $i = 1, \ldots, p$. The mortality rate of each population in a given period of time is defined in \[6\] as

$$r = \frac{\text{Total number of deaths during given period}}{\text{Mid point population} \times \text{duration of period}}.$$

By the total probability rule \[26\], the crude mortality rate of each population is estimated with

$$\hat{r} = m^T n = m^T n,$$

an inner product of the two vectors \mathbf{m} and \mathbf{n}, i.e. the crude mortality rate is a weighted average of the age-specific rates. It is shown below that the crude mortality rate provides an unbiased estimate of the overall mortality rate over one year period for each population. This explains why the crude rate yielded the same number of deaths as the observed (Table 2).

$$\hat{r} = \sum_{a=1}^{A} m_a n_a = \sum_{a=1}^{A} \frac{\text{Number of deaths in } a-\text{th age group}}{\text{Population in } a-\text{th age group} \times 1 \text{ year}} \times \frac{\text{Population in } a-\text{th age group}}{\text{Total population}} = \sum_{a=1}^{A} \frac{\text{Number of deaths in } a-\text{th age group}}{\text{Total population} \times 1 \text{ year}} = \frac{\text{Total number of deaths}}{\text{Total population} \times 1 \text{ year}}. \tag{2}$$

Thus the unbiased estimates of the mortality rates of the p populations are

$$\hat{r}_1 = m_1^T n_1, \quad \cdots, \quad \hat{r}_p = m_p^T n_p.$$

Comparing multiple populations with age-adjusted mortality rates Equation (3) provides an unbiased estimate of the overall mortality rate for each population. However, the rates so generated cannot provide a fair comparison across populations as different populations may have different age structures. With a late-onset disease, it is very likely that an older population yields a higher mortality rate than a younger population, even if the two populations have the same age-specific mortality rates \[7, 10\]. For fairer comparison, a direct age-standardization procedure was studied \[7\], in which an age-adjusted rate was calculated based on age-specific rates \mathbf{m} of a population in comparison and age structure \mathbf{n} of a standard population, such as the US Year
The age-adjusted mortality rate was calculated as $R_i = m_i^T n$ for the i-th population. The expected number of deaths was thus calculated by multiplying the rate R_i by the total population N_i of population i, $R_i N_i$. The calculation of expected number of deaths allowed comparison of the rate among populations, and more importantly allowed comparison of the expected number of deaths of each population to the observed, assessing the bias of each rate.

Bias introduced by age-standardization We made four observations below.

1) The crude rate in equation (3) provides unbiased estimation for each population. 2) An age-adjusted rate using a reference population n may deviate from the crude rate and introduce bias. The deviation is calculated with $b_i = m_i^T n - m_i^T n_i = m_i^T (n - n_i)$. 3) The bias is often inevitable in comparison among multiple populations. $b_i \neq 0$ unless the difference vector $n - n_i$ between the reference population and the i-th population is perpendicular to the rate vector m_i. Since multiple populations are often compared in a given study, the chance that one single reference population n makes the deviation of all populations equal to 0 is extremely small because $n = (n_1, \ldots, n_A)^T$ needs to satisfy conditions $n_a \geq 0$ and $\sum_{a=1}^A n_a = 1$. 4) It is thus desirable to find a reference population n to minimize the overall bias for all p populations.

The difference between age-adjusted and crude rates represents an estimate of bias caused by using a reference population. We define a relative deviation to be the deviation of an age-adjusted rate (R_{adjust}) as a percentage of the crude rate (R_{crude}),

$$\text{Relative Deviation} = \frac{R_{\text{adjust}} - R_{\text{crude}}}{R_{\text{crude}}} \times 100\%.$$

A positive value indicates overestimation and a negative one indicates underestimation.

To calibrate the age-adjusted rate with a mean reference population, we took a weighted average of the proportions of all populations in comparison, i.e. the proportions of six US cancer patient populations (Table S1) or the population proportions in eight periods of each state (Tables S4, S6, S8, S10, S12 and S14). We selected the weights by minimizing the total deviation, which is defined as the sum of squares of the deviations across all populations in comparison. By definition, the mean reference population is optimal in calibrating the age-adjusted mortality rate.

We compared the age-adjusted rate with the crude rate, using the US Year 2000 Population Standard or the mean reference population as reference. We used the mean deviation (averaged over all populations in comparison) to assess each age-adjusted rate. See equation (8) below for the definition of mean deviation. We also compared age profile of the US Year 2000 Population Standard and the mean reference population with the populations in comparison, as shown in Fig. 3.

Criteria in searching for a reference population We searched for a reference population n by minimizing the total squared deviation of p populations

$$\min_n \left\{ \sum_{i=1}^p b_i^2 = \sum_{i=1}^p [m_i^T (n - n_i)]^2 \right\}. \quad (4)$$

Technically, a reference population n needs to satisfy $n_a \geq 0$ and $\sum_{a=1}^A n_a = 1$ for population proportion. However, these conditions may not be enough to ensure that the reference population is “close” to or representative of the given populations n_1, \ldots, n_p. In order to make the reference population represent the given populations, we further required that the search for the reference population be conducted among weighted averages of the given populations. Mathematically they are convex linear combinations of these populations $n = t_1 n_1 + \ldots + t_p n_p$ with $t_i \geq 0$ for $i = 1, \ldots, p$ and $\sum_{i=1}^p t_i = 1$. Such a convex linear combination ensured that the target reference population n
was representative and retained the characteristics of the p populations. Therefore, our objective was to search for a set of weights $t_i \geq 0$ for $i = 1, \ldots, p$ satisfying $\sum_{i=1}^{p} t_i = 1$ such that the linear combination n minimized the total deviation in equation (4). This approach formulated the objective into a mathematical optimization problem \cite{32,33}.

Optimization by quadratic programming Let $f(t) = \sum_{i=1}^{p} b_i^2$ be the total deviation to be minimized. Then

$$f(t) = \sum_{i=1}^{p} (m_i^T n - r_i)^2 = \| M^T n - R \|^2,$$

where $M = (m_1, \ldots, m_p)$ is an $A \times p$ matrix. The column vectors $R = (r_1, r_2, \ldots, r_p)^T$ and $t = (t_1, \ldots, t_p)^T$, $\| \cdot \|$ is the Euclidean norm. Since $n = t_1 n_1 + \ldots + t_p n_p$, $f(t)$ is a quadratic function of t_1, \ldots, t_p, and can be minimized in a compact domain. Since the constraints $t_i \geq 0$ for $i = 1, \ldots, p$ and $\sum_{i=1}^{p} t_i = 1$ form a simplex D in a p-dimensional space, which is compact, the function $f(t)$ can be minimized in D as stated in the following theorem.

Theorem 1. The quadratic function $f(t)$ in equation (5) has a minimum in the domain D, which can be attained at some finite point $t_0 \in D$.

Theorem 1 can be proved based on the continuity of function $f(t)$ in the compact domain D. This minimization problem is equivalent to a quadratic programming problem using the following Lagrange multiplier for convex programming \cite{32}, page 13, for which the existence of the solution is guaranteed by the Khun-Tucker Theorem.

$$\min_{(t,\lambda,\mu)} \left[f(t) - (\lambda_1 t_1 + \ldots + \lambda_p t_p) + \mu \{(t_1 + \ldots + t_p) - 1\} \right],$$

where $\lambda = (\lambda_1, \ldots, \lambda_p)^T$ with $\lambda_1, \ldots, \lambda_p \geq 0$ and μ is a real number. We also provide the uniqueness of the solution.

Theorem 2. The quadratic function $f(t)$ in equation (5) has a unique minimum in the domain D.

We prove Theorem 2 by contradiction. Assuming that there exist two distinct minima $t_1 \neq t_2$ (including local minimum) and further $f(t_1) \leq f(t_2)$ without loss of generality, by Jensen's inequality \cite{33} one has $f(st_1 + (1 - s)t_2) \leq sf(t_1) + (1 - s)f(t_2)$ for any real number $0 \leq s \leq 1$ with convex function $f(t)$, which implies that t_2 is not a local or global minimum, unless $f(t_1) = f(st_1 + (1 - s)t_2) = f(t_2)$, which is impossible for a quadratic function. This contradiction completes the proof.

Algorithm for computing the optimal weights and reference population To solve the optimization problem, the following two approaches can be employed.

I. Quadratic programming approach The optimization problem in equation (6) leads to an equation system (7) below using the Lagrange multiplier approach by minimizing the objective function, see \cite{32} for details.

$$g(t, \lambda, \mu) = f(t) - t^T \lambda + \mu t^T 1$$

$$= (M^T N t - R)^T (M^T N t - R) - t^T \lambda + \mu (t^T 1 - 1)$$

with parameters t, λ and μ, where $N = (n_1, \ldots, n_p)$ is a matrix with p column vectors n_1, \ldots, n_p, and 1 is a p-vector of components 1.

$$\begin{cases}
N^T M M^T N t &= N^T M R + \lambda - \mu 1 \\
\lambda_i t_i &= 0, \ i = 1, \ldots, p \\
\sum_{i=1}^{p} t_i &= 1.
\end{cases}$$

II. Statistical sampling approach A statistical sampling method can also find the optimal vector $t_0 \in D$ that minimizes the total deviation $f(t)$.
Step (a). Set an initial threshold $\delta = \sum_{i=1}^{p} b_i^2(t^*)$, i.e. the total deviation with initial value $t^* = (1/p, \ldots, 1/p)$.

Step (b). Take a random sample (t_1, \ldots, t_{p-1}) from uniform distribution $\text{Unif}[0,1]$ and take the sum.

Step (c). If $(t_1 + \ldots + t_{p-1}) \leq 1$ set $t_p = 1 - (t_1 + \ldots + t_{p-1})$ and go to Step (d). Otherwise, discard the sample and repeat Steps (b) and (c) until the condition $(t_1 + \ldots + t_{p-1}) \leq 1$ is satisfied.

Step (d). Check the total deviation $f(t)$ in equation (5). If $f(t) < \delta$, update the threshold by setting $\delta = f(t)$. If not, repeat the above steps with a new sample.

Step (e). Repeat the above steps (b-d) to achieve a reasonably small total deviation δ.

Step (f). Repeat Step (e) to fine-tune the search by shrinking the sampling domain from $[0,1]$ to a small one $[t_i - \delta_{i1}, t_i + \delta_{i2}]$ for $t_i (i = 1, \ldots, p-1)$ with $\delta_{i2} - \delta_{i1} \to 0$ and $t_i - \delta_{i1} \geq 0, t_i + \delta_{i1} \leq 1$. This fine-tuning leads to the convergence of t by the existence and uniqueness in Theorems 1 and 2.

Comparison of cancer mortality rates by age - standardization methods

The crude rate was set as the reference for comparison, the cumulative rate and the age-adjusted rates using the US Year 2000 Population Standard and the mean reference population were compared to the crude rate. The relative deviation was calculated and reported as a percentage for each population i, and the mean deviation of an age adjusted rate was calculated with equation (8) below as an average over all p populations and used to assess an age adjustment method.

\[
\sqrt{\frac{\sum_{i=1}^{p}(m_i^T n - m_i^T m_i)^2}{p}}
\]

(8)

A large mean deviation indicates inaccurate estimation while a small one indicates accurate estimation.

Software

SEER*Stat Version 7.1.0 [29] was used to generate the total US population-based cancer mortality rates. CanQues Version 4.2 [30] was used to calculate disease prevalence. R version 2.13.0 [34] was used for modeling, data analysis, and producing the figures.

Acknowledgments

The authors are grateful to Norman Breslow, Robert Rosenberg and Bent Nielsen for their valuable comments and suggestions. We also thank Marla Broadfoot for her editorial assistance. This work is partly supported by NIH grant (5K01CA131259, CA142774 and CA165923). All authors declare no conflict of interest.

References

[1] American Cancer Society (2012) Cancer Facts and Figures 2012. (American Cancer Society Publication 2012). [http://www.cancer.org/acs/groups/content/@epidemiology-surveillance/documents/document/acspc-031941.pdf]

[2] McGinnis JM, Foege WH (1993) Actual causes of death in the United States. J Amer Med Assoc 270:2207-2212. doi:10.1001/jama.1993.03510180077038.

[3] Mokdad AH, Marks JS, Stroup DF, Gerberding JL (2000) Actual causes of death in the United States. J Amer Med Assoc 291:1238-1245. doi:10.1001/jama.291.10.1238 4.
[4] Howlader N et al. (2012) SEER Cancer Statistics Review, 1975-2009 (Vintage 2009 Populations) National Cancer Institute. Bethesda, MD [http://seer.cancer.gov/csr/1975_2009_pops]

[5] Eheman C et al. (2012) Annual Report to the Nation on the status of cancer, 1975-2008, featuring cancers associated with excess weight and lack of sufficient physical activity. *Cancer* 118:2338-2366. doi: 10.1002/cncr.27514.

[6] Breslow NE, Day NE (1987) Statistical Methods in Cancer Research Volume II - The Design and Analysis of Cohort Studies (International Agency for Research on Cancer, Lyon).

[7] Doll R, Cook P (1976) Summarizing indices for comparison of cancer incidence data. *Int J Canc* 2:269-279.

[8] Ogle MW (1892) Proposal for the establishment and international use of a standard population. Bulletin de l'Institut International de Statistique, Rome, ed. 6, Vol 1:83-85.

[9] Wolfenden HH (1923) On the methods of comparing the mortalities of two or more communities and the standardization of death rates. *J Roy Statist Soc* 86:399-411.

[10] National Center for Health Statistics (1998) Report of the workshop on age adjustment. *Vit Heal Statist* 4:30.

[11] US Cancer Statistics Working Group (2012) United States Cancer Statistics: 1999 - 2008 Incidence and Mortality Web-based Report. (U.S. Department of Health and Human Services, Centers for Disease Control and Prevention and National Cancer Institute, Atlanta. Available at: www.cdc.gov/uscs).

[12] Ahmad OB et al (2001) Age Standardization of Rates: a new WHO standard. (GPE Discussion Paper Series: No. 31 EIP/GPE/EBD World Health Organization).

[13] Shalala DE (1998) HHS policy for changing the population standard for age adjusting death rates. Memorandum from the Secretary. August 26, 1998. Available at http://aspe.hhs.gov/datacncl/ageadj.htm Accessed October 1, 2013.

[14] Anderson R, Rosenberg HM (1998) Age standardization of death rates: Implementation of the Year 2000 Standard, *Nat Vit Statist Rep* 47:3.

[15] California Department of Public Health http://www.cdph.ca.gov/data/statistics/Documents/VSC-2005-0501.pdf

[16] State of Massachusetts the Executive Office of Health and Human Services http://www.mass.gov/ehhs/docs/dph/research-epi/death-report-09.pdf

[17] Michigan Department of Community Health [http://www mdch.state.mi.us/pha/osr/CHI/Cancer/frame.asp](http://www.mdch.state.mi.us/pha/osr/CHI/Cancer/frame.asp)

[18] Missouri Department of Health and Senior Services http://health.mo.gov/data/mica/CDP_MICA/AARate.html

[19] State of New Jersey Department of Health http://www4.state.nj.us/dhss-shad/home/AARate.html

[20] State of New York, Department of Health http://www.health.ny.gov/diseases/chronic/ageadj.htm
[21] Robson B, Purdie G, Cram F, Simmonds S. (2007) Age standardization – an indigenous standard? *BMC Emerg Theme Epi* 4:3.

[22] Pamuk ER (2001) Cautiously adjusting to the new millennium: changing to the 2000 population standard. *Am Publ Heal* 91,8:1174-1176.

[23] Krieger N, Williams DR (2001) Changing to the 2000 standard million: are declining racial/ethnic and socioeconomic inequalities in health real progress or statistical illusion? *Am Publ Heal* 91,8:1209-1213.

[24] Sorlie PD et al (1999) Age-adjusted death rates: consequences of the year 2000 standard. *Ann Epi* 9:93-100.

[25] National Cancer Institute, SEER program http://seer.cancer.gov/statistics/

[26] Rosner B (2011) Fundamentals of Biostatistics. (Brooks/Cole, New York, ed.7), pp.50.

[27] Hébert JR et al. (2009) Mapping cancer mortality-to-incidence ratios to illustrate racial and sex disparities in a high-risk population. *Cancer* 115:2539-2552.

[28] Jemal A, Ward E, Thun M (2012) Declining death rates reflect progress against cancer. *PLoS One* 5:e9584. doi:10.1371/journal.pone.0009584

[29] SEER*Stat Software. http://seer.cancer.gov/seerstat/

[30] CanQues Cancer Query Systems. http://seer.cancer.gov/canques/

[31] National Cancer Institute. Incidence-based mortality sample analysis. http://surveillance.cancer.gov/documents/statistics/ibm/prostate.ibm.demo.pdf.

[32] Lee GM, Tam NN, Yen NG (2005) Quadratic Programming and Affine Variational Inequalities. (Springer, New York) pp. 13-4.

[33] Needham T (1993) A Visual Explanation of Jensen’s Inequality. *Amer Math Month* 100:768-771.

[34] The R Project for Statistical Computing. R version 2.13.0. http://www.r-project.org/
State	Method	Year	1970-74	1975-79	1980-84	1985-89	1990-94	1995-99	2000-04	2005-09
CA	Crude	15.54	17.50	18.98	20.05	21.51	19.44	17.56	17.03	
US2000	29.66	31.84	33.47	34.72	36.76	30.84	26.33	23.33		
% Dev	91	82	76	73	71	59	50	37		
MeanRef	17.91	19.11	20.11	20.84	21.82	18.12	15.25	13.56		
% Dev	15	9	6	4	1	-7	-13	-20		
Cumul	482.92	499.10	511.47	539.32	551.92	440.27	352.83	308.69		
% Dev	300	275	249	222	209	188	163	139		
MA	Crude	19.21	21.25	23.64	25.13	28.80	26.69	23.59	20.78	
US2000	31.31	32.68	34.57	36.01	38.87	34.01	28.66	23.17		
% Dev	63	54	46	43	35	28	22	12		
MeanRef	23.11	24.18	25.38	26.27	28.32	24.43	20.33	16.42		
% Dev	20	14	7	5	-2	-8	-14	-21		
Cumul	499.05	527.05	529.31	528.14	567.52	473.18	359.01	275.71		
% Dev	2498	2381	2139	2002	1871	1673	1422	1227		
MI	Crude	16.63	18.51	20.82	23.84	27.26	25.14	21.44	18.85	
US2000	31.68	33.91	34.99	37.33	40.91	36.09	28.71	22.45		
% Dev	90	83	68	57	50	44	34	19		
MeanRef	21.06	22.27	22.90	24.38	26.15	22.64	17.88	14.04		
% Dev	27	20	10	2	-4	-10	-17	-25		
Cumul	539.70	549.20	569.68	585.61	616.35	501.73	384.85	289.05		
% Dev	3145	2868	2637	2357	2161	1896	1695	1434		
MO	Crude	20.93	22.87	23.38	26.21	28.96	26.11	21.01	19.99	
US2000	29.37	31.78	31.18	33.84	36.61	32.94	26.10	23.09		
% Dev	40	39	33	29	26	26	24	15		
MeanRef	23.30	24.85	24.30	26.39	28.38	25.05	19.51	17.49		
% Dev	11	9	4	1	-2	-4	-7	-13		
Cumul	495.14	502.12	481.57	524.52	540.68	459.26	325.60	280.95		
% Dev	2265	2095	1959	1901	1767	1659	1449	1445		
NJ	Crude	17.53	20.38	23.09	25.70	29.68	26.98	22.43	19.08	
US2000	31.36	33.42	35.48	36.95	40.80	35.19	28.13	22.30		
% Dev	79	64	54	44	37	30	25	17		
MeanRef	22.28	23.75	24.91	26.11	28.46	24.37	19.19	15.28		
% Dev	27	17	8	2	-4	-10	-14	-20		
Cumul	524.23	542.64	546.12	574.13	604.50	510.12	373.19	302.53		
% Dev	2891	2563	2265	2134	1937	1791	1563	1485		
NY	Crude	18.15	20.57	22.94	24.58	27.23	24.83	22.12	19.30	
US2000	28.61	31.12	33.13	34.42	37.80	33.27	28.02	22.49		
% Dev	58	51	44	40	39	34	27	16		
MeanRef	21.22	22.74	24.02	25.16	27.13	23.66	19.71	15.83		
% Dev	17	11	5	2	0	-5	-11	-18		
Cumul	486.59	504.17	529.21	548.42	572.84	489.36	386.83	310.59		
% Dev	2581	2351	2207	2131	2003	1871	1649	1509		

* Unit of mortality rate is per 10^5 person-year.
1 Percentage of deviation from the crude rate.
Table 2: Expected Number of Deaths by Summary Rates Compared to Observed Number of Deaths

State	Method	1970-74	1975-79	1980-84	1985-89	1990-94	1995-99	2000-04	2005-09
CA	Obs	7760	9503	11457	13657	15530	16276	15000	15169
	Crude	7760	9503	11457	13657	15530	16276	15000	15169
	US2000	14807	17290	20203	23649	27809	24639	22492	20772
	% Dev\(^2\)	91	82	76	73	71	59	50	37
	MeanRef	8940	10380	12136	14192	16509	14474	13030	12075
	% Dev	15	9	6	4	1	-7	-13	-20
MA	Obs	2600	2872	3215	3521	4119	3945	3597	3199
	Crude	2600	2872	3215	3521	4119	3945	3597	3199
	US2000	4238	4417	4701	5046	5561	5028	4370	3567
	% Dev	63	54	46	43	35	28	22	12
	MeanRef	3129	3268	3452	3682	4050	3611	3100	2528
	% Dev	20	14	7	5	-2	-9	-14	-21
MI	Obs	3610	4078	4553	5223	6180	5938	5194	4561
	Crude	3610	4078	4553	5223	6180	5938	5194	4561
	US2000	6876	7473	7654	8181	9274	8525	6956	5433
	% Dev	90	83	68	57	50	44	34	19
	MeanRef	4570	4908	5009	5341	5927	5347	4332	3398
	% Dev	27	20	10	2	-4	-10	-17	-25
MO	Obs	2357	2627	2732	3135	3595	3418	2865	2835
	Crude	2357	2627	2732	3135	3595	3418	2865	2835
	US2000	3307	3650	3643	4047	4544	4311	3558	3273
	% Dev	40	39	33	29	26	26	24	15
	MeanRef	2623	2854	2839	3156	3523	3280	2661	2481
	% Dev	11	9	4	1	-2	-4	-7	-13
NJ	Obs	3042	3553	4068	4674	5570	5298	4589	3983
	Crude	3042	3553	4068	4674	5570	5298	4589	3983
	US2000	5442	5826	6251	6721	7657	6912	5754	4655
	% Dev	79	64	54	44	37	30	25	17
	MeanRef	3867	4141	4388	4750	5342	4786	3926	3190
	% Dev	27	17	8	2	-4	-10	-14	-20
NY	Obs	7791	8616	9476	10343	11739	11016	10061	8832
	Crude	7791	8616	9476	10343	11739	11016	10061	8832
	US2000	12282	13036	13688	14482	16296	14761	12746	10288
	% Dev	58	51	44	40	39	34	27	16
	MeanRef	9111	9526	9922	10584	11694	10497	8963	7243
	% Dev	17	11	5	2	0	-5	-11	-18

\(^2\) Percentage of deviation from the observed number.
Table 3: Comparison of Age-adjusted Case Fatality Rate to Crude Rate in US in 2008

Mean Ref	Cancer Site	Deviation^b	Breast	Cervix	Prostate	Lung	Leukemia	Colon-Rect	
Crude			0	1380.6	1170.5	1088.3	19771.7	3705.3	3201.5
US2000			4305.1	941.7	683.9	243.4	9384.5	2265.3	2900.3
% Dev^a			-31.79	-41.57	-77.63	-52.54	-38.86	-9.41	
MeanRef			403.4	1394.1	1295.7	845.2	19344.1	4538.4	3358.1
% Dev^a			0.98	10.70	-22.34	-2.16	22.48	4.89	
Cumul			53351.3	10867.8	9789.3	4175.9	145146.2	28241.8	27358.2
% Dev			687.19	736.36	283.71	634.11	662.19	754.55	

^a Unit of case fatality rate is per 10⁵ person-year.

^b Negative deviation indicates underestimation.

Mean deviation is calculated as the square-root of the average of the squared deviation over all six cancer sites, see equation (8) in Methods.
SUPPLEMENTARY MATERIALS

Data

Generating Cancer Mortality and Case Fatality Rates

We generate prostate cancer mortality rate of each state with the US SEER 9 registration data using the Mortality All COD - Aggregated with State, Total US (1969-2009) <Katrina/Rita Population Adjustment> with the state specified to be one of the six states and gender specified to be “Male” and Site and Morphology Cause of Death Record to be “Prostate”. Eight 5 year periods (1970–74, . . ., 2005–09) were specified to generate the age-specific cancer mortality rate for the eight periods. By default, the numbers of cases less than 10 were set to 0 with a corresponding mortality rate 0. The newborn group age 0 was excluded for data analysis and the remaining 18 age groups (1–4, 5–9, . . ., 80-84, and 85+) were used for data analysis.

We generate the cancer mortality rate with the US SEER 9 registry data using the incidence-based mortality (IBM) database (31), the Incidence-Based Mortality - SEER 9 Regs Research Data, Nov 2011 Sub Vintage 2009 Pops (1973-2009) <Katrina/Rita Population Adjustment>. Following the IBM instruction (31), we specify the maximum number of months of the “Survival time recode” in the database to ensure that all cancer records in the database are included in calculating the age-specific mortality rate for the year 2008. Also generated by the SEER*Stat software are the numbers of deaths reported in 2008 by age group and the numbers of people in the general public (including healthy people). Similar to the above, we exclude the age 0 group and thus have the mortality rates, the numbers of deaths, and the population exposures in 18 age groups (age 1-4, 5-9, . . ., 80 and 85+). Note that although SEER*Stat is used to estimate mortality rate based on the total population in the database, it does not provide patient exposure-based case fatality rate (25). We further generate the prevalence of each cancer as of January 1, 2009 by the same 18 age groups using CanQues, and calculate the case fatality rate as follows.

Let \(m_p \) denote the mortality rate based on the general population (including the healthy people), \(m_c \) the case fatality rate based on the cancer patient exposure to death from the disease, \(D \) the number of deaths from the disease, \(E \) the cancer patient exposure, \(\text{Pop} \) the total population, and \(\text{Prev} \) the prevalence of the disease in the general population. It can be seen that

\[
 m_c = \frac{D}{E} = \frac{D}{\text{Pop} \times \text{Prev}} = \frac{m_p}{\text{Prev}},
\]

i.e., each age-specific case fatality rate \(m_c \) can be calculated with the age-specific mortality rate \(m_p \) divided by the age-specific prevalence of the disease \(\text{Prev} \). Note that the following two rules apply in calculating the mortality rates:

1) If the age-specific prevalence \(\text{Prev} = 0 \), the mortality rate \(m_c \) is set to be 0.
2) To ensure the stability of mortality rate based on a small number of cases, the age-specific case fatality rate \(m_c \) is set to be 0 if the age-specific number of deaths is small (\(D < 5 \)).

Table S1 displays the person-year exposure in 2008 by cancer site and age group and the US Year 2000 Population Standard by age group. Table S2 displays the case fatality rates in 2008 by age group of six cancer sites: female breast, cervix, prostate, lung, leukemia, and colon-rectum. Tables S3–S14 in the Supplementary Materials display the mortality rate and population exposure during 1970–2009 of the six states. The newborn group of age 0 is excluded from all tables as they are not considered for cancer mortality in this study.
Age (year)	Female	Breast	Cervix	Prostate	Lung	Leukemia	Colon-Rectum	US 2000 (×1000)
1-4	0.0	0.0	0.0	0.0	288.4	0.0	15191.6	
5-9	0.0	0.0	0.0	0.0	798.1	0.0	19919.8	
10-14	2.0	2.9	0.0	2.1	963.7	0.0	20056.8	
15-19	6.0	3.0	0.0	9.3	1169.0	0.0	19819.5	
20-24	30.3	37.9	0.0	23.5	1016.5	51.0	18257.2	
25-29	209.5	147.2	0.0	54.5	1015.0	167.8	17722.0	
30-34	825.1	457.9	0.0	78.0	898.8	335.3	19511.4	
35-39	2665.1	1110.3	18.6	152.1	893.8	696.6	22180.0	
40-44	6535.6	1681.6	279.9	345.9	802.9	1574.9	22479.2	
45-49	13663.2	2315.5	1534.3	916.9	1071.2	2900.7	19805.8	
50-54	21312.3	2683.2	5756.7	1926.7	1332.3	5505.3	17224.4	
55-59	27213.8	2763.8	13937.6	2840.2	1699.5	7808.3	13307.2	
60-64	31922.1	2274.7	25540.1	4160.4	2044.7	9616.8	10654.2	
65-69	30378.7	1690.6	33205.4	5175.3	2079.9	10896.1	9409.9	
70-74	26981.9	1256.4	36867.2	5293.5	2028.9	12527.7	8725.6	
75-79	25525.1	961.1	38201.6	5244.7	2009.4	14127.7	7414.6	
80-84	23685.1	617.2	33037.0	4189.4	1815.1	14773.0	4900.2	
85+	25249.0	536.8	26454.0	2766.4	1687.5	18098.4	4259.2	

1 Fraction person-year exposure is due to the conversion from total population by disease prevalence.
Table S2. US Age-specific Case Fatality Rate (10^{-5} person-year) of six Cancer Sites in 2008

Age (year)	Female	Breast	Cervix	Prostate	Lung	Leukemia	Colon-Rectum
1-4	0.0	0.0	0.0	0.0	2424.6	0.0	
5-9	0.0	0.0	0.0	0.0	876.5	0.0	
10-14	0.0	0.0	0.0	0.0	623.0	0.0	
15-19	0.0	0.0	0.0	0.0	599.3	0.0	
20-24	0.0	0.0	0.0	0.0	1474.9	0.0	
25-29	0.0	0.0	0.0	0.0	1380.2	7750.0	
30-34	1575.9	1092.6	0.0	10250.0	1780.9	4470.9	
35-39	2363.8	1260.8	0.0	10527.0	1119.5	6174.0	
40-44	1713.7	832.8	0.0	11857.1	2615.4	4508.5	
45-49	1690.6	906.8	456.5	18213.3	2148.1	4171.5	
50-54	1398.2	1304.4	330.1	18322.3	2552.3	3306.0	
55-59	1355.9	1085.5	466.4	19470.5	3294.6	3393.8	
60-64	1181.0	967.3	536.4	19132.5	3618.8	3098.7	
65-69	1168.6	1656.3	605.3	17796.1	3269.5	3184.6	
70-74	1145.2	955.0	783.9	19552.3	5766.6	2785.8	
75-79	1214.5	2081.2	997.3	20802.1	4976.5	2909.2	
80-84	1397.5	1458.2	1440.8	21292.0	7823.0	2931.0	
85+	1952.6	1303.7	2884.2	24833.7	9362.8	3447.8	
Table S3. Prostate Cancer Mortality Rate (10^{-5}) during 1970 – 2009 in California

Age	1970-74	1975-79	1980-84	1985-89	1990-94	1995-99	2000-04	2005-09
1-4	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
5-9	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
10-14	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
15-19	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
20-24	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
25-29	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
30-34	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
35-39	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
40-44	0.00	0.00	0.00	0.22	0.20	0.00	0.30	0.18
45-49	0.67	0.79	0.78	0.89	0.71	0.80	0.75	0.54
50-54	3.61	3.73	4.48	3.99	3.57	3.10	2.95	2.69
55-59	11.07	12.39	13.31	12.60	13.12	10.99	8.11	8.68
60-64	30.86	31.37	35.91	36.06	35.76	28.59	23.70	21.08
65-69	64.99	69.14	74.57	76.33	77.50	62.18	46.59	43.93
70-74	134.76	142.94	138.91	151.10	150.68	123.16	91.81	79.66
75-79	236.94	238.73	243.51	258.12	270.40	211.45	178.62	151.92
80-84	362.30	388.02	413.94	425.28	444.56	355.77	315.44	280.77
85+	507.62	580.92	625.84	639.94	726.02	672.19	607.72	541.34
Age	1970-74	1975-79	1980-84	1985-89	1990-94	1995-99	2000-04	2005-09
-----	---------	---------	---------	---------	---------	---------	---------	---------
1-4	0.066	0.058	0.063	0.066	0.073	0.069	0.060	0.058
5-9	0.092	0.079	0.071	0.075	0.079	0.085	0.078	0.070
10-14	0.101	0.089	0.077	0.068	0.073	0.077	0.081	0.077
15-19	0.099	0.099	0.087	0.079	0.070	0.073	0.077	0.081
20-24	0.096	0.103	0.105	0.097	0.085	0.072	0.078	0.078
25-29	0.082	0.095	0.105	0.106	0.096	0.085	0.076	0.077
30-34	0.067	0.080	0.093	0.099	0.099	0.090	0.081	0.072
35-39	0.058	0.062	0.073	0.084	0.088	0.089	0.082	0.075
40-44	0.059	0.055	0.057	0.066	0.074	0.078	0.081	0.076
45-49	0.060	0.054	0.049	0.051	0.058	0.066	0.072	0.075
50-54	0.056	0.054	0.047	0.043	0.045	0.053	0.061	0.067
55-59	0.047	0.049	0.047	0.040	0.037	0.039	0.047	0.056
60-64	0.038	0.040	0.041	0.038	0.033	0.032	0.035	0.042
65-69	0.030	0.032	0.033	0.033	0.031	0.029	0.028	0.030
70-74	0.021	0.023	0.024	0.024	0.025	0.025	0.024	0.023
75-79	0.014	0.015	0.016	0.016	0.017	0.019	0.019	0.019
80-84	0.008	0.008	0.009	0.009	0.010	0.011	0.013	0.013
85+	0.005	0.005	0.006	0.006	0.006	0.007	0.008	0.010
Table S5. Prostate Cancer Mortality Rate (10^{-5}) during 1970 – 2009 in Massachusetts

Age	1970-74	1975-79	1980-84	1985-89	1990-94	1995-99	2000-04	2005-09
1-4	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
5-9	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
10-14	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
15-19	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
20-24	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
25-29	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
30-34	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
35-39	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
40-44	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
45-49	0.00	0.00	1.68	0.00	0.00	0.00	0.00	1.20
50-54	4.31	4.72	3.46	3.64	4.12	3.69	3.17	3.34
55-59	9.80	9.48	12.45	11.42	13.51	11.57	8.68	6.38
60-64	26.45	27.16	33.75	35.30	37.39	22.79	22.52	16.54
65-69	68.11	74.38	73.67	70.23	76.88	57.33	48.72	39.35
70-74	135.62	144.99	142.55	154.44	164.39	131.34	91.42	72.20
75-79	254.76	266.32	261.75	253.10	271.25	246.46	184.51	136.69
80-84	419.33	437.60	405.24	433.59	444.32	432.50	333.59	289.91
85+	522.41	532.91	676.40	740.08	829.64	732.48	726.27	586.71
Age	1970-74	1975-79	1980-84	1985-89	1990-94	1995-99	2000-04	2005-09
------	---------	---------	---------	---------	---------	---------	---------	---------
1-4	0.067	0.054	0.052	0.057	0.061	0.057	0.052	0.049
5-9	0.095	0.080	0.065	0.065	0.071	0.076	0.069	0.064
10-14	0.106	0.096	0.081	0.065	0.065	0.070	0.074	0.069
15-19	0.100	0.104	0.095	0.082	0.065	0.066	0.072	0.077
20-24	0.087	0.096	0.103	0.096	0.085	0.066	0.068	0.073
25-29	0.074	0.086	0.095	0.102	0.093	0.082	0.068	0.068
30-34	0.059	0.073	0.084	0.091	0.094	0.087	0.076	0.064
35-39	0.053	0.057	0.069	0.081	0.086	0.089	0.083	0.072
40-44	0.057	0.051	0.054	0.067	0.076	0.081	0.085	0.079
45-49	0.059	0.054	0.048	0.052	0.062	0.072	0.077	0.081
50-54	0.058	0.056	0.051	0.045	0.048	0.059	0.068	0.074
55-59	0.051	0.053	0.052	0.046	0.041	0.044	0.054	0.064
60-64	0.043	0.045	0.047	0.045	0.041	0.037	0.040	0.049
65-60	0.033	0.036	0.038	0.039	0.038	0.035	0.032	0.035
70-74	0.025	0.026	0.028	0.029	0.031	0.031	0.029	0.027
75-79	0.017	0.017	0.018	0.020	0.022	0.024	0.024	0.023
80-84	0.010	0.011	0.011	0.011	0.013	0.015	0.016	0.017
85+	0.006	0.007	0.008	0.008	0.008	0.009	0.011	0.013
Table S7. Prostate Cancer Mortality Rate (10^{-5}) during 1970 – 2009 in Michigan

Age	1970-74	1975-79	1980-84	1985-89	1990-94	1995-99	2000-04	2005-09
1-4	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
5-9	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
10-14	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
15-19	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
20-24	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
25-29	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
30-34	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
35-39	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
40-44	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
45-49	1.26	1.11	1.34	1.04	0.00	1.11	1.00	0.73
50-54	3.74	2.73	3.55	4.47	3.82	2.76	3.13	3.46
55-59	14.04	14.17	13.14	15.85	12.43	11.77	9.82	8.56
60-64	31.78	34.80	36.82	38.11	38.41	29.30	21.38	20.18
65-69	79.88	81.33	81.75	82.80	84.97	66.60	50.59	40.86
70-74	155.20	158.34	158.39	165.75	168.89	135.68	102.56	81.66
75-79	253.81	256.72	274.69	277.57	307.82	254.50	196.35	133.60
80-84	398.95	425.01	419.97	474.40	498.26	432.96	338.74	252.75
85+	474.85	569.07	605.01	654.68	808.06	802.12	670.45	551.83
Table S8. Population Proportions during 1970 – 2009 in Michigan

Age	1970-74	1975-79	1980-84	1985-89	1990-94	1995-99	2000-04	2005-09
1-4	0.074	0.064	0.063	0.063	0.065	0.060	0.056	0.053
5-9	0.102	0.090	0.079	0.080	0.079	0.081	0.075	0.070
10-14	0.114	0.101	0.090	0.077	0.078	0.078	0.081	0.076
15-19	0.106	0.107	0.096	0.086	0.076	0.077	0.077	0.080
20-24	0.084	0.095	0.097	0.086	0.077	0.068	0.071	0.071
25-29	0.074	0.086	0.092	0.091	0.079	0.072	0.063	0.063
30-34	0.060	0.072	0.082	0.088	0.088	0.079	0.072	0.061
35-39	0.053	0.057	0.067	0.079	0.086	0.086	0.076	0.069
40-44	0.057	0.051	0.054	0.065	0.077	0.082	0.082	0.074
45-49	0.058	0.053	0.048	0.053	0.062	0.072	0.078	0.079
50-54	0.055	0.055	0.050	0.046	0.050	0.058	0.068	0.075
55-59	0.048	0.049	0.050	0.046	0.042	0.045	0.054	0.065
60-64	0.039	0.040	0.043	0.044	0.041	0.037	0.041	0.050
65-69	0.029	0.030	0.034	0.037	0.037	0.034	0.032	0.037
70-74	0.021	0.022	0.024	0.027	0.028	0.029	0.028	0.027
75-79	0.014	0.014	0.016	0.018	0.020	0.021	0.023	0.022
80-84	0.008	0.008	0.009	0.010	0.011	0.012	0.014	0.016
85+	0.004	0.005	0.006	0.006	0.007	0.008	0.009	0.011
Table S9. Prostate Cancer Mortality Rate (10^{-5}) during 1970 – 2009 in Missouri

Age	1970-74	1975-79	1980-84	1985-89	1990-94	1995-99	2000-04	2005-09
1-4	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
5-9	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
10-14	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
15-19	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
20-24	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
25-29	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
30-34	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
35-39	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
40-44	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
45-49	0.00	0.00	0.00	0.00	1.48	1.33	1.07	0.99
50-54	4.06	4.34	3.75	4.77	4.01	5.21	3.78	2.64
55-59	11.85	10.95	10.40	13.59	15.16	10.65	6.96	8.59
60-64	30.92	29.08	34.20	36.73	34.97	26.99	21.38	22.32
65-69	73.89	74.38	68.84	73.84	74.84	62.27	46.60	41.98
70-74	133.31	131.75	130.50	135.31	151.68	130.53	87.08	83.02
75-79	241.11	251.63	233.88	260.29	258.53	222.28	158.73	149.41
80-84	341.65	393.60	373.19	402.01	463.89	382.68	316.66	272.11
85+	487.69	571.25	593.84	642.35	709.94	734.11	642.25	534.02
Age	1970-74	1975-79	1980-84	1985-89	1990-94	1995-99	2000-04	2005-09
-----	---------	---------	---------	---------	---------	---------	---------	---------
1-4	0.067	0.061	0.064	0.064	0.062	0.058	0.056	0.055
5-9	0.094	0.082	0.075	0.079	0.078	0.078	0.072	0.069
10-14	0.107	0.094	0.082	0.075	0.079	0.079	0.078	0.073
15-19	0.101	0.104	0.092	0.080	0.074	0.078	0.078	0.077
20-24	0.082	0.091	0.095	0.083	0.073	0.068	0.072	0.073
25-29	0.070	0.081	0.088	0.090	0.078	0.070	0.064	0.068
30-34	0.059	0.068	0.078	0.085	0.088	0.077	0.069	0.063
35-39	0.053	0.056	0.064	0.075	0.082	0.085	0.075	0.067
40-44	0.055	0.052	0.055	0.063	0.073	0.079	0.082	0.072
45-49	0.057	0.053	0.050	0.053	0.060	0.069	0.075	0.078
50-54	0.055	0.054	0.050	0.047	0.050	0.057	0.066	0.072
55-59	0.050	0.050	0.050	0.047	0.044	0.047	0.054	0.062
60-64	0.046	0.045	0.045	0.046	0.043	0.040	0.043	0.050
65-69	0.039	0.039	0.039	0.039	0.040	0.037	0.035	0.038
70-74	0.028	0.030	0.031	0.031	0.031	0.032	0.030	0.030
75-79	0.019	0.020	0.022	0.023	0.023	0.023	0.024	0.023
80-84	0.012	0.012	0.012	0.013	0.014	0.014	0.015	0.016
85+	0.007	0.007	0.008	0.009	0.009	0.010	0.010	0.011
Table S11. Prostate Cancer Mortality Rate (10^{-5}) during 1970 – 2009 in New Jersey

Age	1970-74	1975-79	1980-84	1985-89	1990-94	1995-99	2000-04	2005-09
1-4	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
5-9	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
10-14	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
15-19	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
20-24	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
25-29	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
30-34	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
35-39	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
40-44	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
45-49	1.24	0.00	1.72	0.00	1.07	0.71	1.01	1.39
50-54	4.12	4.74	4.74	4.99	3.38	4.22	2.99	2.49
55-59	11.51	10.19	12.28	15.85	14.74	11.77	8.64	8.08
60-64	34.03	33.37	35.28	37.12	39.01	33.92	23.68	22.07
65-69	66.53	81.69	75.08	83.62	86.97	71.40	54.16	41.72
70-74	143.24	146.82	145.70	164.11	166.76	139.84	101.66	80.57
75-79	263.56	265.84	271.33	268.44	292.58	248.27	181.05	146.20
80-84	363.80	431.40	427.61	447.25	502.60	402.65	334.34	238.08
85+	532.54	550.08	673.93	684.08	810.78	756.29	658.09	535.58
Age	1970-74	1975-79	1980-84	1985-89	1990-94	1995-99	2000-04	2005-09
------	---------	---------	---------	---------	---------	---------	---------	---------
1-4	0.067	0.056	0.054	0.057	0.063	0.060	0.056	0.054
5-9	0.096	0.082	0.069	0.068	0.071	0.077	0.074	0.069
10-14	0.106	0.097	0.083	0.069	0.068	0.071	0.077	0.074
15-19	0.095	0.100	0.094	0.080	0.068	0.067	0.069	0.074
20-24	0.075	0.083	0.088	0.086	0.072	0.062	0.062	0.064
25-29	0.069	0.078	0.084	0.089	0.084	0.071	0.065	0.065
30-34	0.060	0.071	0.080	0.088	0.094	0.087	0.075	0.066
35-39	0.057	0.060	0.072	0.081	0.087	0.092	0.084	0.074
40-44	0.062	0.056	0.060	0.070	0.077	0.082	0.087	0.081
45-49	0.065	0.059	0.053	0.057	0.065	0.072	0.078	0.083
50-54	0.063	0.062	0.056	0.050	0.052	0.060	0.067	0.073
55-59	0.055	0.057	0.056	0.051	0.044	0.046	0.054	0.062
60-64	0.045	0.047	0.050	0.049	0.044	0.039	0.041	0.048
65-69	0.033	0.036	0.039	0.041	0.039	0.036	0.032	0.035
70-74	0.023	0.025	0.028	0.030	0.032	0.031	0.029	0.027
75-79	0.015	0.016	0.018	0.020	0.022	0.023	0.023	0.022
80-84	0.009	0.009	0.010	0.011	0.012	0.014	0.015	0.016
85+	0.005	0.006	0.006	0.007	0.007	0.009	0.010	0.012
Table S13. Prostate Cancer Mortality Rate (10^{-5}) during 1970 – 2009 in New York

Age	1970-74	1975-79	1980-84	1985-89	1990-94	1995-99	2000-04	2005-09
1-4	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
5-9	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
10-14	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
15-19	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
20-24	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
25-29	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
30-34	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
35-39	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
40-44	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
45-49	1.56	0.85	1.18	1.54	1.06	1.10	0.77	0.81
50-54	3.51	4.07	4.54	4.95	3.99	4.43	2.95	2.95
55-59	12.12	11.66	12.80	14.12	12.36	12.18	10.38	8.57
60-64	30.82	31.84	33.03	36.15	36.27	29.65	24.04	19.73
65-69	72.25	72.44	73.20	81.53	85.45	68.30	54.74	44.04
70-74	136.83	137.86	142.83	154.51	158.62	137.89	105.21	83.94
75-79	229.50	245.46	261.62	255.64	275.09	235.81	188.74	150.54
80-84	362.86	394.83	389.17	417.67	443.38	370.03	323.14	253.43
85+	425.94	518.47	602.90	604.83	750.84	710.66	637.20	515.18
Table S14. Population Proportions during 1970 – 2009 in New York

Age	1970-74	1975-79	1980-84	1985-89	1990-94	1995-99	2000-04	2005-09
1-4	0.067	0.057	0.057	0.059	0.064	0.061	0.054	0.052
5-9	0.093	0.081	0.070	0.071	0.072	0.078	0.072	0.065
10-14	0.102	0.094	0.082	0.070	0.070	0.073	0.077	0.071
15-19	0.095	0.099	0.093	0.082	0.070	0.072	0.074	0.077
20-24	0.080	0.087	0.092	0.089	0.080	0.069	0.071	0.074
25-29	0.073	0.082	0.087	0.092	0.087	0.077	0.069	0.072
30-34	0.062	0.072	0.082	0.088	0.092	0.085	0.076	0.067
35-39	0.056	0.059	0.069	0.080	0.084	0.087	0.081	0.072
40-44	0.060	0.055	0.058	0.067	0.075	0.079	0.082	0.077
45-49	0.061	0.056	0.051	0.054	0.061	0.070	0.074	0.078
50-54	0.059	0.059	0.054	0.048	0.051	0.058	0.066	0.071
55-59	0.053	0.054	0.054	0.049	0.044	0.045	0.053	0.062
60-64	0.046	0.046	0.048	0.046	0.043	0.039	0.041	0.048
65-69	0.036	0.037	0.038	0.039	0.037	0.035	0.033	0.035
70-74	0.026	0.027	0.028	0.028	0.029	0.030	0.029	0.027
75-79	0.017	0.018	0.019	0.020	0.021	0.022	0.023	0.022
80-84	0.010	0.011	0.011	0.011	0.012	0.013	0.015	0.016
85+	0.005	0.006	0.007	0.008	0.008	0.009	0.010	0.012
Figure S1. Comparison of age-adjusted mortality rates using the US Year 2000 Population Standard and the mean reference population to the crude rate of prostate cancer in six states during 1970-2009.
Figure S2. Age profile of population in California during 1970–2009.
Figure S3. Age profile of population in Massachusetts during 1970–2009.
Figure S4. Age profile of population in Michigan during 1970–2009.
Figure S5. Age profile of population in Missouri during 1970–2009.
Figure S6. Age profile of population in New Jersey during 1970–2009.
Figure S7. Age profile of population in New York during 1970–2009.