Lead (Pb) Exposure From Outdoor Air Pollution: A Potential Risk Factor For Cervical Intraepithelial Neoplasia Related To HPV Genotypes

Ji Zhang
Karolinska Institutet

Seyed Ali Nazeri
Reference Health Laboratory

Amir Sohrabi
Karolinska Institutet
https://orcid.org/0000-0001-5867-3636

Research Article

Keywords: Pb, HPV, Cervical Cancer, Air Pollution, Iran

Posted Date: August 24th, 2021

DOI: https://doi.org/10.21203/rs.3.rs-801950/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License

Version of Record: A version of this preprint was published at Environmental Science and Pollution Research on December 13th, 2021. See the published version at https://doi.org/10.1007/s11356-021-17608-x.
Abstract

Human papillomavirus genotypes (HPVs) have been confirmed to be the major cause for Cervical Intraepithelial Neoplasia (CIN) that remains to be one of the most common women cancer around the world. It seems other risk factors connect to the occurrence of cervical cancer include smoking, dietary pattern, sexual behaviour, ethnicity, epigenetics and environmental hazardous materials. Our study characterized the potential cancerous role of Lead (Pb) as a common toxic environmental pollutant agent on CIN outcomes.

The concentration of Pb was quantified using atomic absorption spectrometer in the liquid based cytology specimens of 40 CIN subjects, 50 HPV infected-non cancerous cases and 43 non-HPV infection/non-cancerous women.

The Pb concentration was 5.5 (4.7–6.4) µg/dL, 4.7 (4.2–8.7) µg/dL and 4.7 (4.5–5.4) µg/dL in CIN group, control group with HPV infection and non-HPV/non-cancerous group, respectively. The results showed higher Pb concentration is associated with higher risk for cervical malignancy in comparison with non-HPV/non-cancerous subjects, after controlling for age effect (aOR = 4.55, 95% CI: 1.55–15.07, P < 0.01).

Our finding suggested a direct significant association between Pb accumulation and CINs existence related to HPV infection. The consequence needs to be further validated by controlling the confounders to better understanding of Pb impact from outdoor air pollution on cervical cancer.

1. Introduction

Cervical cancer is the fourth most common diagnosed cancer among women and causes substantial deaths globally. Although cervical cancer incidence has been declining in recent years for the effective screening and vaccination programs. On the other hand, cervical cancer related to human papillomavirus (HPV) remains to be a severe public health concern in undeveloped countries for a lack of resources and organized monitoring programs. The incidence of cervical cancer varies in undeveloped and developed communities from 11.3 to 18.8 per 100, 000 women in 2020, respectively. However, the incidence of cervical cancer is being increasing in the past decade. It seems several potential risk factors including HPV infection, life style and self-awareness have been associated to cervical malignancies (Momenimovahed & Salehiniya, 2018; Sohrabi & Hajia, 2017; Sung et al., 2021; Vafaeinezhad et al., 2018). Persistent and colonization of high-risk HPV genotypes in the genital tract explains almost all cases in cervical dysplasia or cervical cancer (Hajia & Sohrabi, 2018; Stanley, 2010).

In addition to HPV infection, multiple environmental factors are also shown to be involved in the risk profile of cervical cancer. No surprisingly, factors associated with the acquisition or the pathogenic progress of HPV play an important role for precancerous abnormalities to cervical cancer. Those factors include early age of first intercourse, sexually transmitted infections (STIs), multiple sexual partners, multiple pregnancies, tobacco, smoking, lack of fruits and vegetables in diets (Cohen, Jhingran, Oaknin, & Denny, 2019; Sohrabi, Hajia, Jamali, & Kharazi, 2017). Besides, accumulating evidence is suggesting a
contributing risk effect of heavy metals as well. Heavy metal refers to the metallic elements with relative higher density of greater than 5 g/cm3. Some of them are essential for biological progress, while they can be deleterious and may cause cancer after exposure to high quantity or long-term exposure to even small quantity (Engwa, Ferdinand, Nwalo, & Unachukwu, 2019). Among a wide range of heavy metals in the environment, Lead (Pb) is a kind of widely distributed toxic environmental pollutant and Pb is classified as possible carcinogenic group 2B to human (Fasinu & Orisakwe, 2013; Humans, 2006).

It can be accumulated and identified from soil waste, drinking water, smoke, air, fruits and vegetables due to air pollution by industrial factories and fuel vehicle (traffic congestion). Scientific literatures have shown a link between Pb and gastrointestinal, lung, bladder and head-neck cancers (Cobanoglu, Demir, Sayir, Duran, & Mergan, 2010; Khli & Hamza-Chaffai, 2010; Sadetzki, Bensal, Blumstein, Novikov, & Modan, 2000; Turkdogan, Kilicel, Kara, Tuncer, & Uygan, 2003; Yuan, Yang, & Li, 2016). However, findings about the association between Pb concentration and cervical cancer are limited. Current studies mainly focus on characterizations of Pb concentration from cervical scrapping specimens of women who live in Tehran, which is the most polluted cities in the world. Hence, we have appraised and assessed the association between Pb concentration in women suffered from CINs related to HPV genotypes and non-HPV/non-cancerous outcomes, using of liquid based cytology specimens.

2. Materials And Methods

2.1. Study Population and Data Collection

A total of 133 liquid based cytology specimens were obtained from Moharreri et al. and Sohrabi et al studies including 40 cases with cervical intraepithelial neoplasia (CIN), 50 HPV infected-non cancerous cases and 43 non-HPV infection/non-cancerous women. Subjects were confirmed by histopathology examinations and HPV genotyping was also identified using home-brew qPCR assay. In order to meet ethical considerations, the study was performed in accordance with the 1964 declaration of Helsinki and its later amendments. Each cancer subject was informed about the objectives of the study and signed a consent form before entering the study. The controls were residual of archival specimens from other studies and necessary clinical data was collected from medical documents. HPV genotyping consequences of the subjects were divided into different categorizes based on the HPV DNA genotypes such as high-risk HPVs 16 and 18, low-risk HPVs 6 and 11, single and multiple high-risk HPV genotypes (Moharreri & Sohrabi, 2021; Sohrabi et al., 2014; Sohrabi, Rahnamaye-Farzami, Mirab-Samiee, Mahdavi, & Babaei, 2016).

2.2. Lead (Pb) Measurement

Pb was measured using an Atomic Absorption Spectrometer (Agilent technologies/200 Series®, USA). The AA Spectrometer equipped with a GTA120 Graphite tube atomizer and auto sampler. Pyrolytic ally coated furnace tubes were employed and trace metal-free polycarbonate tubes were used for sample preparation. GFAAS conditions: 283.3 nm wavelength, 7A slit, D2 background correction, grooved furnace
tube. Dry: ambient to 125°C in 15-second ramp, 5 second hold. Ash: 125°C to 600°C in 45-second ramp, 20 second hold. Atomize: 600°C to 2400°C in fast ramp or step, 5 second hold.

We used the Milli-Q water purified by de-ionization with a Milli-Q system (Millipore) for washing all laboratory ware, solutions and standards preparations. In addition, all reagents were obtained from Merck Co. Working standards were prepared daily by serial dilution of a master standard with 0.1 % v/v nitric acid. A dilution range of Pb standards was made and vortexed by 0, 1, 5, 10, 25, 50 and 100 µg/dL for working standard solutions. Calibration was also be performed directly by using aqueous standards.

The 100 µl samples were diluted with 400µl of “Matrix modifier” (contains 0.1 % v/v nitric acid, 0.2 % m/v ammonium dihydrogen phosphate and 0.5 % m/v Triton X-100 was used throughout). The sample lead concentrations were calculated from the integrated absorbance measurements and the calibration graph. Analysis was performed with 20 µl loads with the following GFAAS conditions.

The method was evaluated and verified for accuracy and precision. The limit of detection, defined as 3 times the standard deviation (SD) of the blank signal that was 0.2 µg/dL, corresponding to a limit of quantification (10× SD) of 0.6 µg/dL. Precision was 6.7% at 10 µg/dL (n = 20) and 2.7 at 25 µg/dL (n = 20). The recovery of 25 µg/dL was 97.2%. Accuracy was checked by analyzing standard reference materials: Seronorm™ (Trace Elements Serum) an accuracy control for the analysis of trace elements and heavy metals(Md Noh, Ismail, & Surif, 1977; Taupeau, Poupon, Nome, & Lefevre, 2001; World Health & Inter-Organization Programme for the Sound Management of, 2011).

2.3. Statistical analysis

The Pb concentration was first investigated as numerical variable and presented in CIN group, HPV infection no cancerous cases and no-HPV/no-cancerous subjects. Because the Pb concentration was skewed distributed in the study population, it was summarized using median value and corresponding interquartile range in each group and compared using non-parametric methods. Specifically, we used Mann-Whitney U test to compare the difference of Pb concentration between case and control groups, and Kruskal-Wallis test to compare the difference between CIN grades. Then, we divided the age into greater than or equal to 35 and below 35 years and compared the Pb concentration between the two age groups in each population study. Furthermore, we used Spearman correlation analysis to estimate the correlation between Pb concentration and age of the subjects in each group.

We further divided the Pb exposure into low concentration and high concentration by its median value among all subjects and categorized it into low, middle and high level groups by its quartile concentrations. Then, we investigated the association between different levels of Pb exposure and CIN using logistic regression model, controlling for age effect and HPV genotypes. CIN cases were compared specially with HPV positive control and HPV negative controls, separately. Results were reported as odds ratios (ORs) and corresponding 95% confidence intervals (CIs).

In addition, we studied the Pb concentration in different HPV groups based on their genotypes. Findings were presented as box plot and summarized using median value and interquartile ranges. The difference
of Pb concentrations was compared between HPV infected and non HPV infected women by the Mann-Whitney U test, and the comparison of Pb concentration between multiple HPV genotypes was performed using Kruskal-Wallis test. The statistical analysis was conducted using R software (version 3.6.1), and a two-tailed P value ≤ 0.05 was regarded to be statistical significant.

3. Results

3.1. Pb Consequences

Pb concentration was measured on 133 subjects and the median concentration of Pb was higher in the cancer group comparing to the total control group ($P<0.01$). As a result, when control group was further divided into HPV infected and no- HPV infected, the Pb level in the case group was only statistically higher than the no- HPV infected women ($P<0.01$). The median Pb concentration was also different within CIN grades ($P=0.019$). The outcomes are presented in Table 1.
Table 1
Characteristics of Lead (Pb) Concentration in CIN Subjects and Controls (n = 133).

Research group	Pb Concentration (µg/dL)		
	Median	Interquartile Range	
CIN (N = 40)	5.5	4.7–6.4	
CIN I (N = 6)	6.6	6.4–7.0	
CIN II (N = 6)	5.0	4.7–5.8	
CIN III (N = 28)	5.4	4.7–6.2	
Control (N = 93)	4.7	4.3–5.8	
No-Cancerous- HPV Infection (N = 50)	4.7	4.2–8.7	
No-Cancerous- no HPV Infection (N = 43)	4.7	4.5–5.4	

Comparisons

P value
CIN versus Overall Controls
CIN versus HPV Infected Control
CIN versus no-HPV Infected Control
Comparison between CIN Grades

Abbreviations: CIN, Cervical Intraepithelial Neoplasia; HPV, Human papillomavirus; Pb, lead.

\(^a\) P value in the comparison between two indicated groups has been obtained by Mann-Whitney U test.

\(^b\) P value in the comparison between three groups has been obtained by Kruskal-Wallis test.

3.2. Pb Concentration and Age

The difference of Pb concentrations was also examined in two age groups and its potential linear correlation with age as a numerical variable, in each study group. Outcomes are shown in Table 2. In the total control group, Pb level was higher in age below 35, compared to age greater than 35, however without linear correlation (\(P_{\text{difference}} = 0.04\)). In the non-HPV infection/non-cancerous group, the Pb concentration was higher in the younger age group and was negative linearly correlated with age (\(P_{\text{difference}} = 0.01\); \(r = -0.29\), \(P_{\text{correlation}} < 0.01\)), while such pattern was not observed in the HPV infected-non cancerous cases.
Table 2
Pb Concentrations in Different Age Groups within Population Study and its Linear Correlation.

Population Study	Pb concentration	\(p^a \) difference	\(r \)	\(p^b \) correlation	
	Median	Interquartile range			
			\(p^a \)	\(r \)	\(p^b \)
CINs					
< 35 (N = 6)	5.1	4.7–6.4	0.58	0.00	0.972
\(\geq 35 \) (N = 34)	5.6	4.7–6.4			
Controls					
< 35 (N = 60)	5.0	4.5–6.3	0.04	-0.13	0.072
\(\geq 35 \) (N = 33)	4.6	4.3–4.8			
No-Cancerous- HPV Infection					
< 35 (N = 36)	4.8	4.2–10.1	0.69	-0.01	0.927
\(\geq 35 \) (N = 14)	4.6	4.3–4.9			
No-Cancerous- no HPV Infection					
< 35 (N = 24)	5.1	4.6–5.8	0.01	-0.29	< 0.01
\(\geq 35 \) (N = 19)	4.6	4.3–4.7			

Abbreviations: CIN, Cervical Intraepithelial Neoplasia; HPV, Human papillomavirus; Pb, lead.

\(^a\) Compare with the differences in the Pb concentration between two age groups, Mann-Whitney \(U \) test.

\(^b\) \(P \) value for the spearman correlation between Pb concentration and age.

3.3 Association between Pb level and CINs

The association between binary Pb level and CINs, in comparison with total control group, control group of HPV infected-non cancerous subjects and non-HPV infection/non-cancerous subjects, is shown in Table 3, separately.
Table 3
Risk Analysis for CIN in Association with Higher Level of Pb Concentration, which is Categorized by its Median Level in all Subjects, Comparing with Different Control Groups.

	N (Case/Control)	OR\(^a\) (95% CI)	\(P\)	aOR\(^b\) (95% CI)	\(P\)
Compare with overall controls					
Low (< 4.8)	11/50	1.00 (Ref.)	< 0.01	1.00 (Ref.)	< 0.01
High (≥ 4.8)	29/43	3.07 (1.40–7.09)	3.61 (1.43–9.87)		
Compare with no-Cancerous- HPV Infection					
Low (< 4.8)	11/26	1.00 (Ref.)	0.021	1.00 (Ref.)	0.104
High (≥ 4.8)	29/24	2.86 (1.20–7.14)	2.43 (0.85–7.36)		
Compare with no-Cancerous- no HPV Infection					
Low (< 4.8)	11/24	1.00 (Ref.)	0.010	1.00 (Ref.)	< 0.01
High (≥ 4.8)	29/19	3.33 (1.35–8.59)	4.55 (1.55–15.07)		

Abbreviations: CIN, Cervical Intraepithelial Neoplasia; HPV, Human papillomavirus; Pb, lead; OR, odds ratio; aOR, adjusted odds ratio; 95% CI, 95% confidence interval.

\(^a\) Unadjusted OR estimated by logistic regression model.

\(^b\) Adjusted OR estimated by logistic regression model, controlling for women’s age effect in the model.

The Pb exposure was categorized by the median concentration (4.8 µg/dL) in all the women included in the study. After controlling for age, higher Pb level was associated with a higher risk of CIN in comparison with total control group (aOR = 3.61, 95% CI: 1.43–9.87, \(P < 0.01\)), as well as in the comparison with control group without HPV infection (aOR = 4.55, 95% CI: 1.55–15.07, \(P < 0.01\)). No statistical significance was between Pb and CIN in comparison with control group infected of HPV.

The association between ternary Pb level and CIN (low: < 4.6, middle: 4.6–5.7, high: > 5.7 µg/dL) was conducted in comparison with different control groups. As shown in Table 4, after controlling for age effect in the regression model, higher level of Pb concentration was associated with a higher risk for CIN in the comparison with total control group (aOR = 5.72, 95% CI: 1.87–19.73, \(P < 0.01\)). Moreover, greater OR was observed when comparing to non-HPV infection/non-cancerous controls (aOR = 7.01, 95% CI: 1.89–29.91, \(P < 0.01\)).
Table 4
Risk Analysis for CIN in Association with Higher Level of Pb Concentration, which is Categorized by its Tertile Value in All Subjects, Comparing with Different Control Groups (n = 133).

N (Case/Control)	OR\(^a\) (95% CI)	\(P\)	aOR\(^b\) (95% CI)	\(P\)	
Compare with overall controls					
Low (< 4.6)	8/41	1.00 (Ref.)	1.00 (Ref.)		
Middle (4.6–5.7)	13/27	2.47 (0.92–7.00)	0.078	2.34 (0.72–8.07)	0.162
High (> 5.7)	19/25	3.90 (1.53–10.70)	< 0.01	5.72 (1.87–19.73)	< 0.01
Compare with no-Cancerous- HPV Infection					
Low (< 4.6)	8/22	1.00 (Ref.)	1.00 (Ref.)		
Middle (4.6–5.7)	13/12	2.98 (0.98–9.55)	0.058	2.26 (0.57–9.43)	0.250
High (> 5.7)	19/16	3.27 (1.12–9.70)	0.027	3.40 (0.99–12.94)	0.059
Compare with no-Cancerous- no HPV Infection					
Low (< 4.6)	8/19	1.00 (Ref.)	1.00 (Ref.)		
Middle (4.6–5.7)	13/15	2.06 (0.69–6.46)	0.203	2.01 (0.54–7.95)	0.305
High (> 5.7)	19/9	5.01 (1.65–16.58)	< 0.01	7.01 (1.89–29.91)	< 0.01

Abbreviations: CIN, Cervical Intraepithelial Neoplasia; HPV, Human papillomavirus; Pb, lead; OR, odds ratio; aOR, adjusted odds ratio; 95% CI, 95% confidence interval.

\(^a\) Unadjusted OR estimated by logistic regression model.

\(^b\) Adjusted OR estimated by logistic regression model, controlling for women's age effect.

Tables 5. Women Risk Analysis for CINs Compared with HPV Genotypes.

3.4. Pb Concentration and HPV Genotypes

Pb concentrations in different HPV genotypes groups are shown in Fig. 1. Moreover, the difference of Pb concentration was compared between women with and without HPV infection among all subjects or restricted in control group; and the difference of Pb concentration within groups with different HPV genotypes, but there was not any significant differences between groups (results are not shown). HPV genotype was also included as a confounding variable in the model comparing cases with controls infected with HPV to assess the association between Pb level and outcome, but the ORs were not substantially altered (Table 5).

Tables 5. Women Risk Analysis for CINs Compared with HPV Genotypes.
### N (Case/Control)	aOR (95% CI)	P
Pb Concentration Categorized by its Median Value
Low (< 4.8) | 11/26 | 1.00 (Ref.)
High (≥ 4.8) | 29/24 | 1.33 (0.35 5.03) | 0.673
Pb Concentration Categorized by its Tertile Values
Low (< 4.6) | 8/22 | 1.00 (Ref.)
Middle (4.6-5.7) | 13/12 | 2.04 (0.40 - 10.95) | 0.392
High (> 5.7) | 19/16 | 3.13 (0.61 - 18.38) | 0.180

Abbreviations: CIN, Cervical Intraepithelial Neoplasia; HPV, Human papillomavirus; Pb, lead; aOR, adjusted odds ratio; 95% CI, 95% confidence interval.

a Adjusted OR estimated by logistic regression model, controlling for age and HPV genotypes.

4. Discussion

Tehran, a metropolitan city with a population of more than 10 million, is one the most pollutant area throughout the world. Air pollution is a life-threatening factor caused by urbanization and industrialization, especially due to vehicle fuel. Therefore, it seems traffic congestion is a common source of Pb emission to the environment (Ali asghar, 2021; Kermani, Dowlati, Jonidi jafari, & Rezaei Kalantary, 2016; Khorrami et al., 2021).

Pb is used widely in the industry and domestic settings, however, women could possibly more exposed to Pb via ambient environment, cooking and cosmetics. Lead (Pb) is studied to be toxic for multiple organs and may contribute to malignancies at even a low dose after a long-term exposure. Many studies have confirmed a link between Pb exposure and human cancerous alterations in liver, kidney and brain for their sensitivity to Pb toxicity. Specifically, Smoking women have a higher Pb concentration in the endocervical tissues than non-smoking women. However, there is not a significant association between Pb and cervical cancer and the Pb effect on women malignancies is unknown. Elevated blood Pb level is known to be detrimental on reproductive health, birth outcomes and hormonal functions. Pb potential carcinogenic mechanism is not fully understood yet. However, some evidences demonstrated an excess Pb replaces zinc in some regulatory proteins, thus it can be accumulated in blood cell and therefore be transported to other organs in animal model. Pb could cause direct DNA damage by inducing free radicals that causes oxidative stress damage for DNA and chromosomal. Notably, its tumorigenesis effect lies in its supportive ability to impair DNA synthesis and repair system. Therefore, the synergetic effect between Pb and other carcinogens, particularly Cadmium, for the origination of tumours in cervix, may be considered in further studies (Caffo et al., 2014; Fenga, Gangemi, Di Salvatore, Falzone, & Libra, 2021).
The microbial pathogens might also play a synergistic role in the progression of cervical cancer in the existence of carcinogenic heavy metals and trace elements. The scientific literatures suggested Pb is associated with change of miRNA expression in cervix through epigenetic regulations, immunotoxin effects by dysregulating cytokine productions, promoting inflammation, and altering the expression and activity of T helper cells (Fenga et al., 2017; Rzymski et al., 2016). Nevertheless, none of the proposed mechanism could fully explain the carcinogenic role of Pb or its differential expressions in multiple organs, further studies are still needed. In line with our results, a previous study also reported a higher Pb level in CIN endocervical tissues, compared to histological normal tissues. Notably, their study had 3 CIN cases, while our study focused on bigger sample size, ensuring a better statistical power(Rzymski et al., 2016; Sanders et al., 2015).

Our study adds up to the direct evidence that higher Pb level accumulated in the cervical tissue is associated with higher risk of cancerous changes. There are also significant drawbacks in our study. Firstly, our study could not exclude the effects of factors that may affect Pb exposure such as smoking habits, education, living conditions and working environment. Albeit, smoking habit in not common in Iranian women. We considered the education, smoking habits and environment variables in the questionnaire, but they have not been filled in that, so the insufficient factors excluded for biostatistical analysis. Secondly, for the cross-sectional setting of the study design, we could not elucidate the possible causal relationship between Pb exposure and cervical cancer. It could be Pb triggered cancerous changes in the organ, but it can also be the cancerous changes in the cells increased the affinity between Pb and cervical tissues.

5. Conclusion

Here, the study showed an association between increased cervical Pb concentration and cervical intraepithelial neoplasia changes in comparison with non-HPV/non-cancerous subjects, after controlling for age effect. However, the higher level of Pb concentration in cervical tissue is correlated with CIN grades 2 and 3 in comparison with no-HPV infection subjects. Therefore, further dedicated studies are needed to appraise the source of Pb exposures particularly from outdoor air pollution and its consequences on cervical cancer progression.

Declarations

Acknowledgments

We are indebted and grateful to Reference Health Laborartory, Moheb-Yes, Imam Khomeini, saeed and sepand pathobiology laboratory staff, Iran especially Ms. Fatemeh Eskandari, Ms. Faranak Kharazi, Ms. Monireh Babaei, Ms. Amiraei, Ms. Asadian, Ms. Moshtagh, Dr. Firouzeh jamali and Dr. Reys-Ghasem.
Authors Contributions: Ji Zhang contributed to the data analysis and prepare the manuscript draft. Seyed Ali Nazeri did the lab experiments. Dr. Amir Sohrabi contributed to conception, design, finalize, and confirm the manuscript.

Ethics Approval: The experimental protocol was ethical approved as a PhD Thesis by Molecular Medicine Department, School of Advanced Medical Technologies, TUMS and Reference Health Laboratory, MOHME, Iran by no. 29- 90/ل/150/2004 dated 14-02-2012.

Consent for Publication: Not applicable

Data Availability Statement: All data mentioned in the body of manuscript, tables and figure.

Funding: Not applicable

Conflict of Interest: The authors declare no conflict of interest.

References

1. Ali asghar P (2021) Spatial-geographical analysis of urbanization in Iran. Humanities and Social Sciences Communications 8(1): 63.

2. Caffo M, Caruso G, Fata GL, Barresi V, Visalli M, Venza M, Venza I (2014) Heavy metals and epigenetic alterations in brain tumors. Curr Genomics 15(6): 457–463.

3. Cobanoglu U, Demir H, Sayir F, Duran M, Mergan D (2010) Some mineral, trace element and heavy metal concentrations in lung cancer. Asian Pac J Cancer Prev 11(5): 1383–1388.

4. Cohen PA, Jhingran A, Oaknin A, Denny L (2019) Cervical cancer. Lancet 393(10167): 169–182.

5. Engwa GA, Ferdinand PU, Nwalo FN, Unachukwu MN (2019) Mechanism and Health Effects of Heavy Metal Toxicity in Humans. In Poisoning in the Modern World-New Tricks for an Old Dog? : IntechOpen.

6. Fasinu P, Orisakwe OE (2013) Heavy metal pollution in sub-Saharan Africa and possible implications in cancer epidemiology. Asian Pac J Cancer Prev 14(6): 3393–3402.

7. Fenga C, Gangemi S, Di Salvatore V, Falzone L, Libra M (2017) Immunological effects of occupational exposure to lead (Review). Mol Med Rep 15(5): 3355–3360.

8. Hajia M, Sohrabi A (2018) Possible Synergistic Interactions Among Multiple HPV Genotypes in Women Suffering from Genital Neoplasia. Asian Pac J Cancer Prev 19(3): 785–789.

9. IARC Monogr Eval Carcinog Risks Hum (2006) Inorganic and organic lead compounds. IARC monographs on the evaluation of carcinogenic risks to humans, 87: 1-471.

10. Kermani M, Dowlati M, Jonidi AJ, Rezaei Kalantary R (2016) A Study on the Comparative Investigation of Air Quality Health Index (AQHI) and its application in Tehran as a Megacity since 2007 to 2014. J Resin Environmental Health 1: 275–284.
11. Khlifi R, Hamza-Chaffai A (2010) Head and neck cancer due to heavy metal exposure via tobacco smoking and professional exposure: a review. Toxicol Appl Pharmacol 248(2): 71–88.

12. Khorrami Z, Pourkhsoravani M, Rezapour M, Etemad K, Taghavi-Shahri SM, Kunzli N, Khanjani N (2021) Multiple air pollutant exposure and lung cancer in Tehran, Iran. Sci Rep 11(1): 9239.

13. Kumar S (2018) Occupational and Environmental Exposure to Lead and Reproductive Health Impairment: An Overview. Indian J Occup Environ Med 22(3): 128–137.

14. Marouf BH (2018) Association between serum heavy metals level and cancer incidence in darbandikhan and Kalar Area, Kurdistan Region, Iraq. Niger J Clin Pract 21(6): 766–771.

15. Matovic V, Buha A, Ethukic-Cosic D, Bulat Z (2015) Insight into the oxidative stress induced by lead and/or cadmium in blood, liver and kidneys. Food Chem Toxicol 78: 130–140.

16. Md Noh M, Ismail Z, Surif A (1977) A Rapid Measurement of Lead in Whole Blood by Graphite Furnace Atomic Absorption Spectrometer. Malaysian J Biochem Mol Biol 2: 14–17.

17. Moharreri M, Sohrabi A (2021) Characteristics of HSV-2, M. genitalium and C. trachomatis in HPV Genotypes Associated with Cervical Intraepithelial Neoplasia and Genital Infections. Infect Disord Drug Targets 21(1): 112–118.

18. Momenimovahed Z, Salehiniya H (2018) Cervical cancer in Iran: integrative insights of epidemiological analysis. Biomedicine (Taipei) 8(3): 18.

19. Rzymski P, Niedzielski P, Rzymski P, Tomczyk K, Kozak L, Poniedzialek B (2016) Metal accumulation in the human uterus varies by pathology and smoking status. Fertil Steril 105(6): 1511–1518 e1513.

20. Sadetzki S, Bensal D, Blumstein T, Novikov I, Modan B (2000) Selected risk factors for transitional cell bladder cancer. Med Oncol 17(3): 179–182.

21. Sanders AP, Burris HH, Just AC, Motta V, Amarasiriwardena C, Svensson K, Wright RO (2015) Altered miRNA expression in the cervix during pregnancy associated with lead and mercury exposure. Epigenomics 7(6): 885–896.

22. Silbergeld EK (2003) Facilitative mechanisms of lead as a carcinogen. Mutat Res: 533(1–2): 121–133.

23. Silbergeld EK, Waalkes M, Rice JM (2000) Lead as a carcinogen: experimental evidence and mechanisms of action. Am J Ind Med 38(3): 316–323.

24. Sohrabi A, Hajia M (2017) Cervical Cancer and Genital Infections: Assessment of Performance and Validation in Human Papillomavirus Genotyping Assays in Iran, its Neighbouring Countries and Persian Gulf Area. Iran J Pathol 12(1): 35–44.

25. Sohrabi A, Hajia M, Jamali F, Kharazi F (2017) Is incidence of multiple HPV genotypes rising in genital infections? J Infect Public Health 10(6): 730–733.

26. Sohrabi A, Mirab-Samiee S, Modarresi MH, Izadimood N, Azadmanesh K, Rahnamaye-Farzami M (2014) Development of in-house multiplex real time PCR for human papillomavirus genotyping in Iranian women with cervical cancer and cervical intraepithelial neoplasia. Asian Pac J Cancer Prev 15(15): 6257–6261.
27. Sohrabi A, Rahnamaye-Farzami M, Mirab-Samiee S, Mahdavi S, Babaei M (2016) Comparison of In-House Multiplex Real Time PCR, Diagcor GenoFlow HPV Array Test and INNO-LiPA HPV Genotyping Extra Assays with LCD-Array Kit for Human Papillomavirus Genotyping in Cervical Liquid Based Cytology Specimens and Genital Lesions in Tehran, Iran. Clin Lab 62(4): 615–619.

28. Stanley M (2010) Pathology and epidemiology of HPV infection in females. Gynecol Oncol 117(2 Suppl): S5-10.

29. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F (2021) Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin 71(3): 209–249.

30. Taupeau C, Poupon J, Nome F, Lefevre B (2001) Lead accumulation in the mouse ovary after treatment-induced follicular atresia. Reprod Toxicol 15(4): 385–391.

31. Turkdogan MK, Kilicel F, Kara K, Tuncer I, Uygan I (2003) Heavy metals in soil, vegetables and fruits in the endemic upper gastrointestinal cancer region of Turkey. Environ Toxicol Pharmacol 13(3): 175–179.

32. Vafaeinezhad Z, Kazemi Z, Mirmoeini M, Piroti H, Sadeghian E, Vajari, MA, Jafari M (2018) Trends in Cervical Cancer Incidence in Iran According to National Cancer Registry. J Mazandaran Univ Med Sci 28(161):108–114.

33. Wilk A, Kalisinska E, Kosik-Bogacka DI, Romanowski M, Rozanski J, Ciechanowski K, Lanocha-Arendarczyk N (2017) Cadmium, lead and mercury concentrations in pathologically altered human kidneys. Environ Geochem Health 39(4): 889–899.

34. WHO (2011) Brief guide to analytical methods for measuring lead in blood. Geneva: World Health Organization.

35. Yuan W, Yang N, Li X (2016) Advances in Understanding How Heavy Metal Pollution Triggers Gastric Cancer. Biomed Res Int 2016: 7825432.

Figures
Boxplots of Pb concentration in each group based on HPV genotypes. In the boxplot of each group, the median concentration is the vertical bold line inside the box, and the 25th and 75th percentiles are the left and right vertical bounds of the box, respectively. The horizontal line represented the range between 1.5 times interquartile below 25th percentile and 1.5 times interquartile above 75% percentile. In addition, the points were measurements below or above 1.5 time's interquartile range.