A Dual-emitting Two-dimensional Nickel-based Metal-organic Framework Nanosheets: Eu\(^{3+}\)/Ag\(^{+}\) Functionalization Synthesis and Ratiometric Sensing in Aqueous Solution

Yun Shu\(^1\) · Tao Dai\(^1\) · Qiuyu Ye\(^1\) · Dangqin Jin\(^2\) · Qin Xu\(^1\) · Xiaoya Hu\(^1\)

Received: 9 August 2021 / Accepted: 8 September 2021 / Published online: 21 September 2021
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021

Abstract
Using two-dimensional (2D) nickel-based metal organic framework (Ni-MOF) nanosheets as a matrix, Eu\(^{3+}\) and Ag\(^{+}\) were incorporated to synthesize Ag/Eu@Ni-MOF with double luminescence centers of Eu\(^{3+}\) ion (615 nm) and organic ligand (524 nm). And a ratiometric luminescence sensor is constructed based on Ag/Eu@Ni-MOF for sensitive detection of biothiols in aqueous solutions. The dual-emissive fluorescence properties can be tuned by changing the amounts of Ag\(^{+}\) ions doping. The results of temperature and pH effects on the fluorescence of Ag/Eu@Ni-MOF indicates that the Ag/Eu@Ni-MOF is a temperature-sensitive material and the fluorescence of Ag/Eu@Ni-MOF can keep stable over a wide pH range. Due to the binding of -SH in cysteine (Cys) and glutathione (GSH) with Ag\(^{+}\), the ligand luminescence was significantly inhibited by weakening the Ag\(^{+}\) influence on the energy transfer process in the MOFs. Therefore, ratiometric fluorescent sensing of biomolecular thiols was realized based on the dual-emission Ag/Eu@Ni-MOF. More importantly, the fluorescence color change can be observed with naked eyes to realize visual detection. The ratiometric fluorescent sensor exhibits high performance for Cys and GSH detection with a wide linear range of 5-250 \(\mu\)M and a relatively low detection limit of 0.20 \(\mu\)M and 0.17 \(\mu\)M, respectively. Furthermore, the biothiols content in human serum was determined with satisfactory results. It proves the Ni-MOF nanosheets can be used as a stable matrix for construction luminescent MOFs for the first time, and validate the great potential of Ag/Eu@Ni-MOF as a ratiometric fluorescent probe for point-of-care testing (POCT) in disease diagnosis.

Keywords Metal-Organic frameworks · Nanosheets · Ratiometric fluorescent sensing · Biothiols · Aqueous solution

Introduction

Biological thiols such as glutathione (GSH) and cysteine (Cys) are the essential components for efficient operation of life maintenance [1]. The content of thiols at abnormal physiological levels can lead to a decrease in immunity and results in diseases [2]. Cysteine is a precursor to the antioxidant glutathione, and its deficiencies can lead to edema, muscle relaxation, liver damage and skin lesions, etc [3]. Glutathione which possesses antioxidant effect can participate in biological transformation process that transforming harmful poisons in the body into harmless substances, and excrete them out of the body. Severe diseases such as kidney failure, liver cirrhosis, myocardial infarction and Alzheimer, which are related with the content of GSH in the body [3]. Therefore, the high-precision detection of biological thiols is very important for physical health assessment and disease prevention [4–6]. So far, several analytical methods for sensing biomolecular thiols have been established, such as capillary electrophoresis [7], high performance liquid chromatography (HPLC) [8], mass spectrometry [9], electrochemical sensing, [10, 11] and etc. Above methods have various disadvantages such as high experimentation costs, cumbersome sample preparation methods, and etc., making them difficult to be applied in actual sample testing. However, fluorescence-based methods have been widely applied due to their multiple advantages, including highly selectivity and sensitivity, simple experimental methods,
cost effectiveness, instant and fast data acquisition for real-time biological sample analysis. Many fluorescent probes have been successfully developed and used in fluorescence detection [12], such as fluorescent dyes [13], upconverting nanoparticles [14], and semiconductor nanocrystals (quantum dots) [15, 16], and etc. The preparation of fluorescent materials/probes with superior fluorescence performance is very important for fluorescence detection.

Metal-organic frameworks (MOFs) are coordination polymers with a highly crystalline structure, composed of metal ions or metal clusters and organic ligands [17]. Luminescent MOFs (LMOFs) have the advantages of inherent crystallinity, adjustable pore size, clear structure, and high degree of functionalization [18]. Therefore, they have the advantages of versatility that inorganic luminescent materials and organic luminescent materials cannot match. In addition to metal ions and organic ligands, the luminescence center of LMOFs can also come from the introduction of different luminescent guests [19], such as lanthanide ions [20], quantum dots [21], dyes [22], and luminescent complexes [23], which provides MOFs materials with broader luminescence properties. At present, a large number of LMOFs have been synthesized and used for sensing applications [24]. Zhang et al. [25] successfully synthesized ZJU-108 containing fluorescence emission belonging to organic ligand. Based on the singlet energy transfer process from tryptophan to the ligand, ZJU-108 was used to construct a luminescent turn-up sensor for discriminating tryptophan from other natural amino acids in aqueous solution with a detection limit of 42.9 nM. Normally, the sensing function of LMOF sensor with a single emission window is often affected by environmental disturbances such as fluctuations of excitation, intensity of light source, uneven concentration, etc., resulting in quantitative errors [26]. However, the dual-emission ratiometric LMOF sensor could eliminate the influences of apparatus and detection environment with self-calibration function, thus avoiding false response and improving signal-to-noise ratio [27]. LMOF with dual emission centers can be mainly constructed in the following two ways: (1) luminescent guest-luminescent ligand, (2) double luminescent guests. Comparing to other luminescent guests, lanthanides [28] display a high coordination number, connectivity, and diverse coordination modes, and therefore exhibiting great potential in constructing a wide variety of LMOFs. Zhou and Yan [29] developed a dual-emitting ratiometric temperature sensor by imparting Eu$^{3+}$ to UiO-bpydc with inherent emission. The Eu$^{3+}$ emission is sensitized by the UiO-bpydc via energy transfer from the ligand to Eu$^{3+}$. Owing to the back energy transfer (BEnT) between organic linkers and Eu$^{3+}$, with the temperature increasing, the Eu$^{3+}$ emission declined and the ligand emission increased. Zhang et al. [30] prepared Tb$^{3+}$/Eu$^{3+}$-functionalized bio-MOF-1 containing double emissions belonging to Eu$^{3+}$ and Tb$^{3+}$ for visual colorimetric sensing of dipicolinic acid (DPA) for the first time. The addition of DPA leads to the enhancement of emission intensity of Tb$^{3+}$ (λ_{545}) through the energy transfer between ligand and metal. On the contrary, owing to the interruption of energy transfer from Tb$^{3+}$ to Eu$^{3+}$, the emission intensity of Eu$^{3+}$ (λ_{613}) decreased.

Herein, in this work, through the hydrothermal post-synthesis modification method, Eu$^{3+}$ and Ag$^{+}$ are incorporated into 2D Ni-MOF nanosheets respectively to synthesize Ag/Eu@Ni-MOF with double luminescence centers of Eu$^{3+}$ ion (615 nm) and organic ligand (524 nm) for the first time. And a ratiometric luminescence sensor is constructed based on Ag/Eu@Ni-MOF for sensitive detection of various thiol species in aqueous solutions (Scheme 1). The molar ratio of Ag$^{+}$ and Eu$^{3+}$ was changed to study its effect on the fluorescence emission of the nanomaterials, also the effects of temperature and pH on the fluorescence of Ag/Eu@Ni-MOF were investigated. After addition of the thiol species to the double emission luminescent Ag/Eu@Ni-MOF solution, due to the strong binding of Ag$^{+}$ with -SH, the emission of organic ligand (524 nm) was significantly inhibited by weakening the Ag$^{+}$ influence on the energy transfer process in the MOFs. A highly sensitive and selective ratiometric luminescence sensor was established for detection of biothiols. Furthermore, the thiol species content in human serum was determined. This method for the detection of Cys and GSH can be interpreted by naked eyes to realize visual detection, also the low cost of the reagents in the steps make it very suitable for application in point-of-care testing (POCT).

Experimental

Materials

Ni(NO$_3$)$_2$·6H$_2$O, terephthalic acid (BDC, 99%), NaOH, N,N-dimethylformamide (DMF, 99%), methanol, arginine (Arg), cysteine (Cys), glutathione (GSH), glutamic acid (Glu), glycine (Gly), histidine (His), phenylalanine (Phe), tryptophan (Trp), tyrosine (Tyr), NaCl, NaNO$_3$, and KNO$_3$ were purchased from Sinopharm Chemical Reagent Co., Ltd (Shanghai, China). Eu(NO$_3$)$_3$·6H$_2$O and AgNO$_3$ were purchased from Sinopharm Chemical Reagent Co., Ltd (Shanghai, China). Human serum samples were obtained from Subei People’s Hospital of Jiangsu province.

Preparation of Ni-MOF

To synthesize the nickel-based metal-organic framework, BDC (0.166 g) and Ni(NO$_3$)$_2$·6H$_2$O (0.096 g) were added to DMF (20 mL) and stirred at room temperature until the solid powder was completely dissolved [31, 32]. Then, NaOH aqueous solution (2 mL, 0.4 M) was gradually added.
dropwise to the above-mixed solution, and stirred at room temperature for 30 min. Subsequently, the mixture was transferred to a 50 mL Teflon-lined stainless steel autoclave and heated at 100 °C for 8 h. After cooling to room temperature, the products were centrifuged at 8500 rpm for 5 min, washed with DMF and ethanol for three times, and dried under vacuum for 6 h.

Preparation of Eu@Ni-MOF

The luminescent MOF is prepared by modifying Eu\(^{3+}\) into the above-mentioned synthesized Ni-MOF. Ni-MOF (50 mg) was added to a solution (10 mL) containing Eu(NO\(_3\))\(_3\)·6H\(_2\)O (5 mM, 50 mM, 100 mM), then transferred to a single-necked flask equipped with a reflux condenser, and reacted at 60°C for 24 h [33]. The white powder product was separated by centrifugation at 8500 rpm, washed with deionized water for several times, and vacuum dried at 30 °C for 6 h.

Preparation of Ag/Eu@Ni-MOF

Similarly, the ratiometric luminescent MOF is prepared by co-modifying Ag\(^{+}\) and Eu\(^{3+}\) into the above-mentioned synthesized Ni-MOF. Ni-MOF (50 mg) was added to a solution (10 mL) containing Eu(NO\(_3\))\(_3\)·6H\(_2\)O (0.5 mmol) and different contents of AgNO\(_3\) (0.125, 0.25, 0.375, and 0.5 mmol), and then transferred to a single-necked flask equipped with a reflux condenser, react at 60°C for 24 h. The white powder product was separated by centrifugation at 8500 rpm, washed with deionized water for several times, and vacuum dried at 30 °C for 6 h. For convenience, we define the Ag/Eu@Ni-MOF materials synthesized with the molar ratio of Eu\(^{3+}\)/Ag\(^{+}\) at 1: 0.25, 1: 0.5, 1: 0.75, and 1:1 as P1, P2, P3, and P4, respectively. The synthesized P2 sample is used for after detection of biothiols.

Characterization of Materials

The fluorescence spectra were detected by the spectrofluorometer (FS-5, Edinburgh Instruments), the FTIR spectra of MOFs were obtained by Fourier transform infrared spectroscopy (FT-IR, Antaris II), the crystal structure analysis of MOFs was conducted by the X-ray powder diffraction (XRD, D8 Advance diffractometer with Cu K\(_\alpha\) radiation), the morphology and elemental analysis of MOFs were observed by the transmission electron microscopy (TEM, JEM-2100) and the high-resolution TEM (HRTEM) with elemental mapping analysis and energy-dispersive X-ray spectroscopy (EDS) (Tecnai G2 F30S-TWIN).

Detection of Cys and GSH

For selectivity test, P2 powder samples (0.5 mg) were added to solutions containing Arg, Cys, GSH, Glu, Gly, His, Phe, Trp, Tyr, NaCl, NaNO\(_3\), and KNO\(_3\), respectively, and the mixture was sonicated for 5 min to form a uniformly dispersed solution for luminescence test. For sensitivity test, Cys and GSH solutions with different concentrations (5, 10,
20, 50, 100, 150, 200, 250, 500, 1000 µM) were added to the P2 (0.25 mg/mL) solution. The fluorescence spectra at 450–750 nm were measured at 20 °C in 10 mM HEPES buffer solution (pH 8.0) with an excitation wavelength of 315 nm.

Detection of Biothiols in Serum Samples

The standard addition method was used to detect biothiols in diluted serum samples. To avoid autofluorescence interference of serum, serum samples were diluted 20 times with 10 mM HEPES buffer solution (pH 8.0) and then used for testing. A 100 µL serum sample was diluted with 2 mL ultrapure water, and then 0.5 mg of P2 was added and sonicated for 5 min for fluorescence detection. Then, different concentrations of GSH (20, 40, 60 µM) were added, and the fluorescence spectra were measured with an excitation wavelength of 315 nm.

Result and Discussion

Materials Synthesis and Characterization

In this work, a facile solvothermal method was used to synthesize Ni-MOF nanosheet, and then lanthanide Eu³⁺ ions were doped into the Ni-MOFs using a hydrothermal post-synthesis modification method. The fluorescent spectra of Eu@Ni-MOF reveal strong fluorescence emission at 615 nm upon 315 nm excitation (Fig. 1A). The sharp characteristic peaks of 590, 615, 651, and 700 nm correspond to the ⁵D₀⁻⁷F_j (j = 1–4) transitions [34]. This is caused by the “antenna effect” [35, 36] between the rare-earth metal and the organic ligand of Ni-MOFs. The organic ligand absorbs energy and transits into an excited state, and then transfers the energy to the rare-earth ion through a resonant coupling, resulting in the luminescence of the rare-earth ion. It is worth noting that there is no ligand-based emission in the 450–590 nm range, which indicates that there appears an effective energy transfer process from the organic ligand to the Eu³⁺. It is also found that the fluorescence emission intensity gradually increased with the increase of the Eu³⁺ amount, and reached the maximum when the amount of Eu³⁺ increased to 50 mM (Fig. S1). Subsequently, transition metal ion Ag⁺ was introduced onto Eu@Ni-MOF using a hydrothermal method. Figure 1B shows the physical fluorescence pictures of the Eu@Ni-MOF and Ag/Eu@Ni-MOF synthesized at different molar ration of Eu³⁺ and Ag⁺ under the UV lamp irradiation at 254 nm, and the fluorescence color gradually transited from red to green with the increase of Ag⁺ amount. As shown in Fig. 1C, the gradual increase of Ag⁺ doping amount caused the gradual weakening of luminescence intensity belonging to Eu³⁺. Meanwhile, the fluorescence emission peaks at ~487, ~524, and ~560 nm which are similar to that of those fluorescent coordination polymers reported previously appeared [37], and the fluorescence emission peaks appearing at 450–590 nm are due to vibrationally-resolved emission (VRE). VER is due to a transition.
from a unique excited state that is generated by ligand-to-metal charge transfer (LMCT) and/or ligand-to-metal-metal charge transfer (LMMCT). Numerous studies have shown that LMCT is one of the most plausible mechanisms for the luminescence of d10 metal complexes. Besides, shorter metal-to-metal (M-M) distances may induce the emission of LMMCT transitions [37]. The phenomenon suggests that the doping of silver reduces the energy transfer efficiency from organic ligands to Eu3+ that leads to the enhancement of the emission intensity belonging to the ligand [27]. As shown in Fig. 1D, the characteristic luminescence peak intensity of the ligand (I524) gradually increased with the increase of silver content, while that belonging to Eu3+ (I615) gradually weakened.

The products of MOFs after doping with Eu3+ and Ag+ were further characterized by XRD, HRTEM, TEM and EDS-mapping. XRD was used to verify the crystal structures changes of products after Ag+/Eu3+ modification, the XRD patterns of Ni-MOF, Eu@Ni-MOF, and Ag/Eu@Ni-MOF are shown in Fig. 2A. It shows that the XRD pattern of the synthesized Ni-MOF is in agreement with the previously reported [Ni3(OH)2(C8H4O4)2(H2O)4•2H2O (CCDC No.638,866) [32]. The diffraction peaks of the previously reported Eu-BDC (CCDC No.1,241,234) [38] and Ni-MOF were observed in the spectrum of Eu@Ni-MOF. By comparing the XRD spectra of P1, P2 and P4, some diffraction peaks which coincide with the [Ag(BDC)1/2]n (CCDC No.198,096) [39] and Ag2O (JCPDS No.42–0874) appeared and gradually became stronger with the increase of Ag content, where the 2θ of 13° and 31° are attributed to the (100) and (121) crystal planes of Ag-BDC [37], and the 2θ of 34° is attributed to the (003) crystal planes of Ag2O respectively. It indicates that Ag+ and Eu3+ are successfully incorporated into the MOF by replacing the nickel ions and hydrogen ions on the ligands. The morphology of the prepared MOFs was analyzed by TEM. It can be seen from Fig. 2B that both Ni-MOF and Eu@Ni-MOF are nanosheet materials. Figures S2 and 2D shows the TEM images of the Ag/Eu@Ni-MOF (P1, P2, P4), respectively. After the introduction of Ag+, numerous spherical nanoparticles with a diameter of ~25 nm attached around the lamellar layer. It is noteworthy that as Ag+/Eu3+ increases from 0.5: 1 to 1: 1, smaller spherical particles with diameter of ~5.1 nm are dispersed on the surface of MOF and eventually cover the lamellae completely. High-resolution TEM (HRTEM) images of the P2 in Fig. 2D reveals that the d-spacing of the two spherical particles around the lamellae was different. The d-spacing of 0.261 nm for the spherical particles with diameter of ~25 nm could be indexed as (003) plane of Ag2O. The d-spacing of 0.209 nm for the smaller spherical particles with diameter of ~5.1 nm could be indexed as (032) plane of Ag-BDC. Elementary mapping (Fig. 2E) of Ag/Eu@Ni-MOF demonstrates the presence of uniformly distributed C, Ni, Eu, O, and Ag elements in nanosheets and the bigger spherical particles with diameter of ~25 nm are Ag2O nanoparticles. Combing the above characterization results, with the doping of Ag+, the formation of Ag-BDC is accompanied by the presence of Ag2O nanoparticles. The successful modification of metal ions into Ni-MOF was also demonstrated by FT-IR analysis. In the FT-IR spectra (Fig. S3), the band at 3597 cm−1 was attributed to the stretching vibration of OH−, the absorption peaks of 3427, 3344, and 3070 cm−1 indicate that coordinated H2O molecules in Ni-MOF. Moreover, for Eu@Ni-MOF and Ag/Eu@Ni-MOF, the lack of bands at 1683 cm−1 corresponding to the -COOH group, indicates a portion of the guest metal ions is coordinated to the free carboxyl group. The strong bands of 1577, 1508 and 1380 cm−1 are attributed to the asymmetric and symmetric stretching modes of -COO− groups. The number of bands present in this spectral region suggests more than one coordination mode of carboxylate group. The characteristic peak of 752 cm−1 is due to the deformation vibration of C-H on the benzene ring in the organic ligand. By comparing the spectra of MOFs before and after guest metal cation doping, the band of the Ni-O at 819 cm−1 is weakened after doping with metal ion. We speculate that there appeared ions exchange in the organic ligand which coordinated with metal ions, leading to the loss of Ni2+ ions in the MOFs.

The Effect of pH, Temperature on the Fluorescence of Ag/Eu@Ni-MOF

Considering the fluorescence of Ag/Eu@Ni-MOF may be affected by the experimental environment such as pH, temperature and etc. pH and temperature were varied to investigate their effects on the dual-emission fluorescence of Ag/Eu@Ni-MOF. According to Fig. 3A, it can be seen that the Ag/Eu@Ni-MOF exhibits emission quenching at both 524 nm and 615 nm when the pH is about 3. It may be that the structure of the Ag/Eu@Ni-MOF has been disrupted, resulting in the quenching of dual emission. Figure 3B showed the I524/I615 remained almost unchanged when the pH of the solution was in the range of 4.0–7.0, and then gradually increased with the increase of pH. When the pH increases from 8.0 to 9.0, the emission of Eu3+ is weakened and the luminescent color becomes green when the pH reaches 9.0. The results indicate that the fluorescence of Ag/Eu@Ni-MOF keep stable with a pH in the range of 4.0–8.0. Later, we studied the effect of temperature on the fluorescence of the Ag/Eu@Ni-MOF. Upon increasing the temperature, the emission spectra of dual-emission luminous MOFs recording at different temperature revealed a gradual quenching of ligand emission (Fig. 3C). It is noteworthy that the emission intensity of the Eu3+ did not change. By linear fitting, it was found that I524/I615 showed a good linear relationship with temperature (Fig. 3C inset). I524/I615 = 0.162–1.72*10−3T.
Fig. 2 (A) XRD patterns of Ni-MOF, Eu@Ni-MOF and Ag/Eu@Ni-MOF synthesized at different Ag: Eu ratio. (B) TEM image of Ni-MOF. (C) TEM image of Eu@Ni-MOF. (D) TEM image of Ag/Eu@Ni-MOF (P2). Inset: HRTEM images of Ag-BDC and Ag₂O in P2. (E) EDS-mapping images of Ag/Eu@Ni-MOF (P2).
The CIE coordinates (Fig. 3D) display the luminescence color of Ag/Eu@Ni-MOF systematically changed from the yellow to red in the temperature range of 0–80°C. According to the literature, when the temperature increases, the vibrational mode of MOF also expands, which leads to an increase in the non-radiative complex. As previously reported for other fluorescent MOFs, the change in temperature affects the distance and coupling between the ligand and the metal cluster, which leads to the weakening of the ligand fluorescence [40].

The Ratiometric Luminescence Sensor Based on Ag/Eu@Ni-MOF for Cys and GSH Detection

In order to validate the potentials of ratiometric luminescence sensor in the field of analytical sensing, Ag/Eu@Ni-MOF probe was used for the detection of biothiols (GSH/Cys). As shown in Fig. 4A, C, it was found that the fluorescence of Ag/Eu@Ni-MOF changed from yellow to red in the biothiols solution. It also can be seen that the fluorescence emission intensities at 524 nm and 615 nm corresponding to ligand and Eu³⁺ decreased with the addition of biothiols. Especially, a substantial quenching of the emission intensity (I₅₂₄) belonging to ligand was observed, thus only displaying the red fluorescence of Eu³⁺ for Ag/Eu@Ni-MOF in presence of biothiols. It indicated dual-emission fluorescent probe of Ag/Eu@Ni-MOF can be used for ratiometric detection of GSH and Cys. Furthermore, the fluorescence color change also can be observed with naked eyes, which is very suitable for point-of-care testing (POCT).

The reaction conditions for RSH species detection were optimized to improve the analytical performance, the effects of Ag/Eu@Ni-MOF concentration, pH, reaction time, and reaction temperature on the ratiometric fluorescence sensing
Fig. 4 (A, C) The emission spectra of Ag/Eu@Ni-MOF after addition of different concentration of GSH and Cys. Inset: photos of Ag/Eu@Ni-MOF in corresponding solutions under 254 nm UV-light irradiation. (B, D) I_{524}/I_{615} of Ag/Eu@Ni-MOF in different concentrations of GSH and Cys. Inset: the linear fitted curve of I_{524}/I_{615} with GSH and Cys concentration. (E) The emission spectra of Ag/Eu@Ni-MOF in presence of GSH, Cys and other different amino acid solutions. Inset: photos of Ag/Eu@Ni-MOF in corresponding solutions under 254 nm UV-light irradiation. (F) Emission spectra of Ag/Eu@Ni-MOF (a), Ag/Eu@Ni-MOF in human serum (b) Ag/Eu@Ni-MOF with addition of different concentrations of GSH (c: 20 µM, d: 40 µM, e: 60 µM). Inset: photos of materials in corresponding solutions.
system were studied. As shown in Fig. S4A, GSH and Cys were added to the solutions containing different concentration of Ag/Eu@Ni-MOF respectively. The results showed that the fluorescence intensity \(I_{524}/I_{615} \) decreased the most at a concentration of 0.25 mg/mL for Ag/Eu@Ni-MOF. The reaction time was also optimized, it indicates the fluorescence intensity decreased with time increasing and then reached a platform at 5 min (Fig. S4B). Figure S4C showed that the optimal temperature was 20°C. Figure S4D displayed the ratiometric fluorescence intensity decreased the most when the reaction system was in the pH of 8.0. Herein, 0.25 mg/mL of Ag/Eu@Ni-MOF, 5 min, 20°C and pH 8.0 were the optimal reaction conditions for the ratiometric fluorescent sensing system, and subsequent experiments were performed under the above conditions. Under the above optimal conditions, the detection results of GSH and Cys based on the fluorescence emission spectra of Ag/Eu@Ni-MOF ratiometric fluorescent probe were shown in Fig. 4A, C. It can be seen that the fluorescence at 524 nm gradually decreased with the increase of GSH/Cys from 5 to 1000 µM. As displayed in Fig. 4B, D, the good linear regression curve could be obtained for GSH and Cys concentration in the range of 5-250 µM. The linear equations were \(I_{524}/I_{615} = 0.149 - 5.928 \times 10^{-4} \) [GSH] \((R^2 = 0.997) \) and \(I_{524}/I_{615} = 0.150 - 5.174 \times 10^{-4} \) [Cys] \((R^2 = 0.995) \), and the limit of detection (LOD) of 0.17 µM and 0.20 µM was obtained on the basis of the 3σ rule for GSH and Cys. The analytical performance of GSH and Cys detection using this ratiometric fluorescent sensor was compared with other MOF based fluorescent sensors (Tables S1 and S2), which indicated our fluorescent sensor was compared with other MOF based fluorescent sensors for the thiol species detection can ultimately be explained by the recombination of Ag\(^{+}\) with Cys/GSH. Therefore, the quenching mechanism of the fluorescent material for the thiol species detection can be due to the energy absorption caused by the combination of Ag\(^{+}\) with Cys/GSH.

High selectivity is quite important for a sensor to identify the target object in complex samples with interferences. The interference of different biological molecules on the biothiols detection for this fluorescence ratiometric sensor was investigated. While in the presence of Glu, Tyr, Phe, Arg, His, Trp, Gly, the fluorescence color remained unchanged. It also can be seen that the fluorescence emission intensities at 524 nm corresponding to ligand decreased with the addition of the target RSH species (Figs. 4E and S8). In summary, this ratiometric fluorescent probe had high selectivity and strong anti-interference ability for biothiols (Fig. S9).

In order to evaluate the feasibility of ratiometric fluorescent sensor for biothiols detection in actual samples, Ag/Eu@Ni-MOF was added to the human serum sample and the fluorescence change was recorded. Furthermore, different concentrations of glutathione standard solution were added to the above solution (20, 40, and 60 µM), the fluorescence change was recorded for testing (Fig. 4F). Results indicated the biothiols content of three human samples was calculated to be 878 ± 28 µM (Table S3), which were slightly higher than the measured value reported by previous work [8]. It may be results from the presence of other mercapto compounds in serum. The values of recovered ratio for the assay of 20, 40, and 60 µM GSH added in the serum samples are between 92 and 105%. This shows that the ratio fluorescence sensor can be used for routine analysis of biothiols in actual serum samples with good accuracy and precision.

Conclusions

In summary, dual-emission Ag/Eu@Ni-MOF which exhibits the fluorescence of Eu\(^{3+}\) and ligand was synthesized by functionalization of 2D Ni-MOF nanosheets with Eu\(^{3+}\) and Ag\(^{+}\),
respectively. The doping of Ag⁺ reduces the energy transfer efficiency from organic ligands to Eu³⁺ that leads to the enhancement of the ligand’s emission intensity. The molar ratio of Ag⁺ and Eu³⁺ was found to study its effect on the fluorescence emission, it is found that the emission peak intensity at 615 nm for Eu³⁺ decreased, while that at 524 nm for ligand enhanced, and the fluorescence color transited from red to green with the increase of Ag⁺ amount. At the same time, we found that Ag/Eu@Ni-MOF is a temperature-sensitive material and the fluorescence intensity decreased with increasing temperature. Furthermore, the fluorescence of Ag/Eu@Ni-MOF can keep stable over a wide pH range from 4.0 to 8.0. Due to the binding of Ag⁺ with -SH in the thiol species, the ratiometric fluorescent probe can be used for detection of Cys and GSH by using the emission intensity ratio of ligand to Eu³⁺ as a detection signal. Also the fluorescence change can be observed with naked eyes. The sensor has the advantages of fast response, low detection limit, high selectivity, and the ability to detect biomolecular thiols from actual serum samples. This work proves that the 2D Ni-MOF nanosheets can be used as a stable scaffold for construction of luminescent MOFs and also shows the great potential of Ag/Eu@Ni-MOF as a ratiometric fluorescent probe for POC testing and biodetection in living cells or in vivo.

Supplementary Information The online version contains supplementary material available at https://doi.org/10.1007/s10895-021-02826-w.

Acknowledgements We gratefully acknowledge the financial support from the NSFC (Nos. 21705141, 22076161, 21675140, 21575124), the Green Yang Jinfeng Talent Project of Yangzhou.

Author Contributions Yun Shu: Conceptualization, Supervision, Methodology, Writing—review & editing, Project administration. Tao Dai: Conceptualization, Methodology, Writing—original draft, Formal analysis. Qiuyu Ye: Data curation, Investigation. Dangqin Jin: Investigation. Qin Xu: Visualization, Investigation. Xiaoya Hu: Supervision, Funding acquisition.

Funding No funding was received for conducting this study.

Data Availability All data generated or analyzed during this study are included in this published article.

Declarations

Ethics Approval Not applicable.

Consent to Participate Not applicable.

Consent for Publications Not applicable.

Conflict of Interest The authors declare no competing financial interest.

References

1. Zhang S, Ong CN, Shen HM (2004) Critical roles of intracellular thiols and calcium in parthenolide-induced apoptosis in human colorectal cancer cells. Cancer Lett 208:143–153. https://doi.org/10.1016/j.canlet.2003.11.028
2. Lugrin J, Rosenblatt-Velin N, Parapanov R et al (2014) The role of oxidative stress during inflammatory processes. Biol Chem 395:203–230. https://doi.org/10.1515/hbz-2013-0241
3. Kleinman WA, Richie JP (2000) Status of glutathione and other thiols and disulfides in human plasma. Biochem Pharmacol 60:19–29. https://doi.org/10.1016/s0006-2952(00)00293-8
4. Su D, Teoh CL, Sahu S et al (2014) Live cells imaging using a turn-on FRET-based BODIPY probe for biothiols. Biomaterials 35:6078–6085. https://doi.org/10.1016/j.biomaterials.2014.04.035
5. Xu J, Yu H, Hu Y et al (2016) A gold nanoparticle-based fluorescence sensor for high sensitive and selective detection of thiols in living cells. Biosens Bioelectron 75:1–7. https://doi.org/10.1016/j.bios.2015.08.007
6. Zhang S, Wu D, Jiang X et al (2019) A novel fluorescent probe with one-excitation and dual-emission for selective and simultaneous detection of Glutathione and Arginine in NIR and blue regions. Sens Actuators B 290:691–697. https://doi.org/10.1016/j.snb.2019.04.028
7. Ivanov AV, Bulgakova PO, Virus ED et al (2017) Capillary electrophoresis coupled with chloroform-acetonitrile extraction for rapid and highly selective determination of cysteine and homocysteine levels in human blood plasma and urine. Electrophoresis 38:2646–2653. https://doi.org/10.1002/elps.201700133
8. Miehef T, Gueguen R, Leroy P et al (1995) Blood and plasma glutathione measured in healthy subjects by HPLC: Relation to sex, aging, biological variables, and life habits. Clin Chem 41:1509–1517
9. Xiao HM, Wang X, Liao QL et al (2019) Sensitive analysis of multiple low-molecular-weight thiols in a single human cervical cancer cell by chemical derivatization-liquid chromatography-mass spectrometry. Analyst 144:6578–6585. https://doi.org/10.1039/c9an01566c
10. Mu S, Yang Y (2016) Recognition of glutathione based on its electrocatalytic oxidation on the bare fluorine doped tin oxide electrode. J Electroanal Chem 780:12–18. https://doi.org/10.1016/j.jelechem.2016.08.038
11. Mu S, Shi Q (2016) Photoelectrochemical properties of bare fluorine doped tin oxide and its electrocatalysis and photoelectrocatalysis toward cysteine oxidation. Electrochim Acta 195:59–67. https://doi.org/10.1016/j.electacta.2016.02.139
12. Jung HS, Chen X, Kim JS et al (2013) Recent progress in luminescent and colorimetric chemosensors for detection of thiols. Chem Soc Rev 42:6019–6031. https://doi.org/10.1039/c3cs60024f
13. Sun Y, Zuo T, Gao F et al (2017) Perylene dye-functionalized silver nanoparticles serving as pH-dependent metal sensor systems. RSC Adv 7:24215–24220. https://doi.org/10.1039/c7ra03264a
14. Li Y, Feng J, Huang Y et al (2020) Upconverting ion-selective nanoparticles for the imaging of intracellular calcium ions. Analyst 145:4768–4771. https://doi.org/10.1039/d0an00454e
15. Xu Q, Wei HP, Hu XY (2013) Glutathione detection based on ZnS quantum-dot-based OFF-ON fluorescent probe. Chin J Anal Chem 41:1102–1106. https://doi.org/10.3724/sp.J.1069.2013.21154
16. Shu Y, Gao JL, Chen JY et al (2021) A near-infrared fluorescent sensor based on the architecture of low-toxic Ag₂S quantum dot and MnO₂ nanosheet for sensing glutathione in human serum sample. Talanta 221:7. https://doi.org/10.1016/j.talanta.2020.121475
17. Furukawa H, Cordova KE, O’keeffe M et al (2013) The chemistry and applications of metal-organic frameworks. Science 341:1230444. https://doi.org/10.1126/science.1230444
18. Cui YJ, Yue YF, Qian GD et al (2012) Luminescent functional metal-organic frameworks. Chem Rev 112:1126–1162. https://doi.org/10.1021/cr200101d
19. Shu Y, Ye Q, Dai T et al (2021) Encapsulation of luminescent guests to construct luminescent metal-organic frameworks for chemical sensing. ACS Sens 6:641–658. https://doi.org/10.1021/acssensors.0c02562
20. Yan B (2017) Lanthanide-Functionalized metal-organic framework hybrid systems to create multiple luminescent centers for chemical sensing. Acc Chem Res 50:2789–2798. https://doi.org/10.1021/acs.accounts.7b00387
21. Talapin DV, Rogach AL, Kornowski A et al (2001) Highly luminescent monodisperse CdSe and CdSe/ZnS nanocrystals synthesized in a hexadecylamine – trioctylphosphine oxide – trioctylphosphine mixture. Nano Lett 1:207–211. https://doi.org/10.1021/nl0155126
22. Dong MJ, Zhao M, Ou S et al (2014) A luminescent dye@MOF platform: emission fingerprint relationships of volatile organic molecules. Angew Chem Int Edit 53:1575–1579. https://doi.org/10.1002/anie.201307331
23. Chen R, Zhang J, Chelora J et al (2017) Ruthenium(II) complex incorporated UiO-67 metal-organic framework nanoparticles for enhanced two-photon fluorescence imaging and photodynamic cancer therapy. ACS Appl Mater Interfaces 9:5699–5708. https://doi.org/10.1021/acsami.6b12469
24. Lustig WP, Mukherjee S, Rudd ND et al (2017) Metal-organic frameworks: functional luminescent and photonic materials for sensing applications. Chem Soc Rev 46:3242–3285. https://doi.org/10.1039/c6cs00930a
25. Zhang J, Huang Y, Yue D et al (2018) A luminescent turn-up metal-organic framework sensor for tryptophan based on single-singlet Forster energy transfer. J Mater Chem B 6:5174–5180. https://doi.org/10.1039/c8tb01592a
26. Yan B (2021) Luminescence response mode and chemical sensing mechanism for lanthanide-functionalized metal-organic framework hybrids. Inorg Chem Front 8:201–233. https://doi.org/10.1039/d0qf01153c
27. Hao JN, Yan B (2016) A dual-emitting 4d-4f nanocrystalline metal-organic framework as a self-calibrating luminescent sensor for indoor formaldehyde pollution. Nanoscale 8:12047–12053. https://doi.org/10.1039/c6nr07185b
28. Buzilic JC, Piguet C (2005) Taking advantage of luminescent lanthanide ions. Chem Soc Rev 34:1048–1077. https://doi.org/10.1039/b406082m
29. Zhou Y, Yan B (2015) Ratiometric detection of temperature using responsive dual-emissive MOF hybrids. J Mater Chem C 3:9353–9358. https://doi.org/10.1039/c5tc02004b
30. Zhang Y, Li B, Ma H et al (2016) Rapid and facile ratiometric detection of an anthrax biomarker by regulating energy transfer process in bio-metal-organic framework. Biosens Bioelectron 85:287–293. https://doi.org/10.1016/j.bios.2016.05.020
31. Yang J, Xiong P, Zheng C et al (2014) Metal–organic frameworks: a new promising class of materials for a high performance supercapacitor electrode. J Mater Chem A 2:16640–16644. https://doi.org/10.1039/c4ta04140b
32. Yang J, Zheng C, Xiong P et al (2014) Zn-doped Ni-MOF material with a high supercapacitive performance. J Mater Chem A 2:19005–19010. https://doi.org/10.1039/c4ta4343d
33. Zhang X, Fang L, Jiang K et al (2019) Nanoscale fluorescent metal-organic framework composites as a logic platform for potential diagnosis of asthma. Biosens Bioelectron 130:65–72. https://doi.org/10.1016/j.bios.2019.01.011
34. Decadt R, Van Hecke K, Depla D et al (2012) Synthesis, crystal structures, and luminescence properties of carboxylate based rare-earth coordination polymers. Inorg Chem 51:11623–11634. https://doi.org/10.1021/ic301544q
35. Rocha J, Carlos LD, Paz FA et al (2011) Luminescent multifunctional lanthanides-based metal-organic frameworks. Chem Soc Rev 40:926–940. https://doi.org/10.1039/c00360d
36. Sergeeva NN, Donnier-Marechal M, Vaz G et al (2011) Synthesis and evaluation of the europium(III) and zinc(II) complexes as luminescent bioprobes in high content cell-imaging analysis. J Inorg Biochem 105:1589–1595 https://doi.org/10.1016/j.inorgbio.2011.08.023
37. Gutiérrez M, Martín C, Souza BE et al (2020) Highly luminescent silver-based MOFs: Scalable eco-friendly synthesis paving the way for photonics sensors and electro luminescence devices. Appl Mater Today 21. https://doi.org/10.1016/j.apmt.2020.100817
38. Reineke TM, Eddaoudi M, Fehr M et al (1999) From condensed lanthanide coordination solids to microporous frameworks having accessible metal sites. J Am Chem Soc 121:1651–1657. https://doi.org/10.1021/ja983577d
39. Sun D, Cao R, Bi W et al (2004) Syntheses and characterizations of a series of silver-carboxylate polymers. Inorg Chem Acta 357:991–1001. https://doi.org/10.1016/j.ica.2003.10.010
40. Dong XY, Huang HL, Wang JY et al (2018) A flexible fluorescent SCC-MOF for switchable molecule identification and temperature display. Chem Mat 30:2160–2167. https://doi.org/10.1021/acs.chemmat.8b00611
41. Ma X, Guo Q, Xie Y et al (2016) Green chemistry for the preparation of L-cysteine functionalized silver nanoflowers. Chem Phys Lett 652:148–151. https://doi.org/10.1016/j.cplett.2016.04.004
42. Darroudi M, Ahmad MB, Shameli K et al (2009) Synthesis and characterization of UV-irradiated silver/montmorillonite nanocomposites. Solid State Sci 11:1621–1624. https://doi.org/10.1016/j.solidstate.2009.06.016

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.