Grube, Martin and Gaya, Ester and Kauserud, Håvard and Smith, Adrian M. and Avery, Simon V. and Fernstad, Sara J. and Muggia, Lucia and Martin, Michael D. and Eivindsen, Tove and Kõljalg, Urmas and Bendiksby, Mika (2017) The next generation fungal diversity researcher. Fungal Biology Reviews, 31 (3). pp. 124-130. ISSN 1749-4613

Access from the University of Nottingham repository: http://eprints.nottingham.ac.uk/44983/1/Grube%20et%20al%20%282017%29%20FBR%20published%20pdf.pdf

Copyright and reuse:

The Nottingham ePrints service makes this work by researchers of the University of Nottingham available open access under the following conditions.

This article is made available under the University of Nottingham End User licence and may be reused according to the conditions of the licence. For more details see: http://eprints.nottingham.ac.uk/end_user_agreement.pdf

A note on versions:

The version presented here may differ from the published version or from the version of record. If you wish to cite this item you are advised to consult the publisher’s version. Please see the repository url above for details on accessing the published version and note that access may require a subscription.

For more information, please contact eprints@nottingham.ac.uk
Opinion Article

The next generation fungal diversity researcher

Martin GRUBEa,*, Ester GAYAb, Havard KAUSERUDc, Adrian M. SMITHd, Simon V. AVERYe, Sara J. FERNSTADf, Lucia MUGGIAg, Michael D. MARTINh, Tove EIVINDSENh, Urmas KØLJALGi, Mika BENDIKSBYh

aInstitute of Plant Sciences, University of Graz, Holteigasse 6, 8010, Graz, Austria
bJodrell Laboratory, Royal Botanic Gardens, Kew, TW9 3DS, UK
cSection for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, PO Box 1066 Blindern, NO-0316, Oslo, Norway
dUnilever R&D, Colworth Science Park, Sharnbrook, Bedfordshire, MK44 1LQ, UK
eSchool of Life Sciences, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
fDepartment of Computer and Information Sciences, Northumbria University, Newcastle upon Tyne, UK
gUniversity of Trieste, Department of Life Sciences, via Giorgieri 10, 34127, Trieste, Italy
hNTNU University Museum, Norwegian University of Science and Technology, NO-7491, Trondheim, Norway
iInstitute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia

ARTICLE INFO

Article history:
Received 28 November 2016
Received in revised form
22 February 2017
Accepted 25 February 2017

Keywords:
Big data
Biodiversity
Data science
Doctoral training
Fungi
High throughput sequencing
Postgenomics
Taxonomy
Visualisation

ABSTRACT

Fungi are more important to our lives than is assumed by the general public. They can comprise both devastating pathogens and plant-associated mutualists in nature, and several species have also become important workhorses of biotechnology. Fungal diversity research has in a short time transcended from a low-tech research area to a method-intensive high-tech discipline. With the advent of the new genomic and post-genomic methodologies, large quantities of new fungal data are currently becoming available each year. Whilst these new data and methodologies may help modern fungal diversity researchers to explore and discover the yet hidden diversity within a context of biological processes and organismal diversity, they need to be reconciled with the traditional approaches. Such a synthesis is actually difficult to accomplish given the current discouraging situation of fungal biology education, especially in the areas of biodiversity and taxonomic research. The number of fungal diversity researchers and taxonomists in academic institutions is decreasing, as are opportunities for mycological education in international curricula. How can we educate and stimulate students to pursue a career in fungal diversity research and taxonomy and avoid the situation whereby only those few institutions with strong financial support are able to conduct excellent research? Our short answer is that we need a combination of increased specialization and increased collaboration, i.e. that scientists with specialized expertise (e.g., in data generation, compilation, interpretation, and communication) consistently work together to generate and deliver
new fungal knowledge in a more integrative manner – closing the gap between both traditional and modern approaches and academic and non-academic environments. Here we discuss how this perspective could be implemented in the training of the ‘next generation fungal diversity researcher’.

© 2017 British Mycological Society. Published by Elsevier Ltd. All rights reserved.

1. Fungi and their importance

Fungi are ubiquitous and essential components of all ecosystems on earth. Saprotrophic fungi are among the major nutrient recyclers (Boddy et al., 2007). Mycorrhizal fungi have crucial impacts on terrestrial ecosystems through their symbiosis with higher plants, enhancing photosynthesis as well as the host plant’s water and nutrient uptake (Smith and Read, 2008). Endophytic fungi, growing symptomless inside plants, have diverse beneficial effects to their hosts (Rodriguez et al., 2009). In general, fungi directly and indirectly support human welfare through provision of diverse ecosystem services (Stajich et al., 2007). Mycorrhizal fungi have crucial impacts on the ecosystem. Whilst fungi provide a myriad of medicines and food products, they also comprise species responsible for spoilage of food and materials, and represent direct threats to human health (Meyer et al., 2016). Despite their importance to the environment and our lives (Fig. 1), the vast majority (>95 %) of fungal diversity remains undetected and much of the detected fraction lacks scientific names (Hibbett et al., 2016). This applies to different levels, including yet undiscovered deep lineages of fungi as well as cryptic diversity within species (Lücking et al., 2014) or even among genetically uniform individuals within a single strain (Hewitt et al., 2016).

Major gaps in our knowledge of fungal diversity place us in a difficult situation as we face growing environmental challenges. Climate change, for example, is expected to have an extensive impact in natural ecosystems with direct consequences in the poorly understood mycota and increased threats from fungal habitat loss (Ainsworth et al., 2015). While known and already named species can become subjects of red lists and conservation efforts, a vast diversity of unknown fungi could go extinct without notice. Other fungi may increase in abundance with unsolicited consequences, such as emerging fungal diseases of plants and animals (Garcia-Solache and Casadevall, 2010; Fisher et al., 2012; Lorch et al., 2016), or disruptions of food supply chains by fungal spoilage (Chakraborty and Newton, 2011). Health problems can escalate rapidly. Fungal pathogens are currently causing more deaths than drug-resistant tuberculosis and malaria (Barnes and Ratemaa-Richardson, 2014; Calderone et al., 2014; Denning and Broomley, 2015) and are prevalent in the chronic-wound microbiome (Kivlin et al., 2013; Treseder et al., 2016), and even lichen-dominated habitats (Ellis and Yahr, 2011).

Given the importance of fungi, it is surprising to see a decline in mycological education and general emphasis on fungal diversity research and taxonomy at academic institutions. Experts in “phenotype-based” fungal taxonomy and systematics (i.e. those few that can recognize fungal species without DNA sequencing) are becoming a threatened race (Buyck, 1999). Fortunately, this knowledge is maintained to some extent among amateurs. At most universities, fungal biology represents only a small component of the overall academic training. Bachelor degree courses in fungal biology are rare, and mycology is often only a part of botany or microbiology courses and degrees. Mycology started out as an obscure sub-discipline of botany and although we realised long ago that plants and fungi are distantly related, in many ways mycology has continued to live in the shadow of plant science. In this environment, fungal biology teachers are underexposed to society, except in a few institutions. Too often, fungal diversity researchers and taxonomists have a limited domain of action, reduced to the dimensions of the so-called academic ivory towers. In contrast with a clear regression in fungal biology education, the field of fungal research is thriving in many aspects, as exemplified below.

In this opinion paper, we provide a summary of historic and current challenges and prospects in fungal diversity research and taxonomy, and put forward some suggestions for how the next generation fungal diversity researcher should be trained and work most effectively to fulfil the future needs of society.

2. Challenges and prospects of working with fungi

A very basic reason for the large gaps in our knowledge of fungi is that most fungi spend the majority of their life cycle belowground or within other substrates in their microbial phase, invisible to the naked eye. Moreover, a large proportion of fungi, especially in the early diverging branches of the fungal tree of life, do not produce macroscopic fruit bodies or fruit bodies at all. In the pre-DNA era, most knowledge about fungal diversity and ecology was acquired by recording and examining reproductive structures using imaging techniques (e.g., light and electron microscopy). In the second half of the last century, chemical profiling and various culture-based techniques (including mating studies and vegetative incompatibility tests), became more important. These techniques continue to provide relevant phenotypic and physiological information about fungal diversity, however, their use remains limited to fungi with macroscopically and microscopically diagnosable features or those able to grow in vitro.

With the introduction of PCR and Sanger sequencing techniques in the early 1990s, genetic tools made it possible to study fungi beyond the classic methodologies. Approaching
2010, another revolution in fungal diversity research took place with the introduction of high throughput sequencing (HTS) methods. These rapidly evolving HTS techniques are currently enabling a far more comprehensive (yet often biased) overview of the overall fungal diversity in environmental samples (Lindahl et al., 2013). Facilitated by large and successful collaborative projects such as the 1000 Fungal Genome (1KFG) project (Grigoriev et al., 2014) and other synergistic initiatives (e.g. Galagan et al., 2003, 2005; Pel et al., 2007; Amselem et al., 2011), HTS is also providing full genome sequence data at an increasing pace. The new technologies have boosted the discovery of undescribed fungal diversity (e.g., Jones et al., 2011; Spribille et al., 2016), and we might be able to progress rapidly from the current figure of 135,000 described species (Hibbett et al., 2016) towards the most widely accepted estimate of 3 million (Hawksworth, 2012). In addition, combining HTS approaches with RNA sequencing enables us to not just monitor what fungi are present but also to investigate what they are doing. New single-cell techniques may bring the next transition (Gawad et al., 2016) and may circumvent several current challenges working with fungi. These techniques enable acquisition of both uncontaminated and less biased fungal DNA and RNA, including unculturable taxa. Single-cell analyses may also pave the way for multilocus or genomic environmental sequencing, making fungal community profiling far more accurate than the current single-locus, ITS-based approach, which can introduce significant bias (Tedersoo and Lindahl, 2016).

In parallel to the evolution of sequencing technologies, newly developed imaging methods can be combined with DNA-based techniques to more completely document fungal diversity, structure, and function. Advanced in situ imaging of fungal diversity is still in its infancy and needs to be adapted for a broader range of fungi. Application of specific probes combined with imaging approaches has so far been used only in a limited number of studies, which nevertheless has provided important baseline insights about the biology of the previously unseen fungi (Jones et al., 2011; Spribille et al., 2016). At the same time, life-history traits of fungi, which can be detected by a combination of such techniques, will help to understand the ecological contexts of the yet unexplored diversity in an integrated approach. This also applies to partitioning of genetically fixed variation from phenotypic (non-genotypic) diversity, i.e., adaptive responses or bet-hedging vs acclimatization (Hewitt et al., 2016).

With the advent of the new technologies described above, the emergence of mainly DNA-based insights about fungal diversity have led to additional challenges and heated debates, particularly with regard to the naming of species (Hibbett and Taylor, 2013; Money, 2013; Hibbett et al., 2016). A major

Fig. 1 – Important roles of fungi in environment and technology.
The next generation fungal diversity researcher

The summary above reminds us that, in a few years, fungal diversity research has transcended in many ways from a low-tech research area to a methods-intensive, high-tech discipline, whilst the training of fungal diversity researchers has simultaneously reduced. Until recently, an individual researcher would typically possess the competences required to carry out state-of-the-art analyses in fungal taxonomy and diversity research. Large, pan-national projects on genome sequencing of economically important fungal species have already been examples for multiauthored efforts (e.g., Galagan et al., 2003, 2005; Pel et al., 2007; Amelem et al., 2011). Recent influential studies show that major aspects of fungal diversity research are becoming highly multi-technological endeavours, as well. They integrate an array of advanced techniques and expertise such as imaging, genomics, transcriptomics, isotope analyses, modelling, and advanced statistics (Jones et al., 2011; Rosling et al., 2011; Clemmensen et al., 2013; Tedersoo et al., 2014; Spatafora et al., 2016; Spribille et al., 2016).

In this context, how can we educate the future fungal diversity researcher in a multi-technological era? How can we stimulate her/him to pursue a career in this field? And, how can we avoid a situation where only those few institutions with strong financial support are able to conduct world-class fungal diversity research? Our short answer to these questions is: through a combination of increased specialization and increased collaboration. Since most students, researchers and even research groups will clearly not have the capacity and resources to accumulate all the required skills, increased levels of national and international networking and collaboration will be essential, across both the academic and the non-academic sectors. As pointed out by Meyer et al. (2016), we live in an era where the largest portion of knowledge and capabilities related to fungal biology in general is held by industry more than academia, and we have a problem with transparency (open data) that needs to be addressed. Examples of successful collaborations between academic and industrial members can already be found in neighbouring fields, such as the multidisciplinary virtual center on fungal biotechnology – the EUROFUNG network (Meyer et al., 2016). Our approach suggested here, focused on fungal diversity and taxonomy, would represent a complementary initiative to the EUROFUNG network. Clearly, more areas of fungal research would gain from similar efforts as well.

We recognize a general workflow in modern fungal biodiversity projects (Fig. 2). This starts with data generation and subsequent compilation of data from different sources, followed by data interpretation and ultimately communication of results. For data to flow efficiently, we need better solutions to ensure that all methodological approaches remain coherent. We anticipate that next-generation fungal scientists will need to frame themselves along this conceptual pipeline, being specialized in one or a few required roles, and having a general understanding of the entire workflow. The workflow ends with science communication, a field with high potential for further development (see e.g., Nisbet and Scheufele, 2009) and that has been a commonly undervalued expertise in training programs. The next generation researchers need to communicate effectively with target groups, such as the scientific community (incl. students of biology), the public, industry and various stakeholders, to ensure knowledge exchange and to stimulate participation and engagement.
4. Conclusion

Certainly, the application of high-end technology and the downstream data integration requires outstandingly skilled researchers. Does the training of fungal diversity researchers, as of today, cope with the needs of our time? We are very doubtful. To improve scientific excellence in fungal research, we need to be more efficient in combining ‘traditional’ expertise with modern technologies. Currently, only a handful of centres specialize in fungi and are able to provide adequate doctoral education for the next generation fungal diversity researchers. We argue here that the training needed can be achieved by developing a network at the level of doctoral training programs. By joining efforts from diverse scientific backgrounds and skill strengths, these heavily needed training networks may extend modern fungal diversity education more widely. Only by creating such networks will reduce the current gap between academic and non-academic institutions. The timing is right, as network schemes for postgraduate training are now feasible with the advent of national, EU and other funding initiatives for multi-student training schools. This approach could create critical masses of enthusiastic and innovative young scientists able to harness their specialist skills for effective collaboration in modern fungal research. To achieve optimal relevance, future PhDs in fungal diversity research should receive training in the data-flow pipeline outlined above. This approach will have an added benefit for those who want to enter industrial research. These young scientists will be equipped with the required expertise to quickly progress in an R&D environment that often relies on both the leverage of specific expertise and the ability to effectively connect with other disciplines. With this concept in mind, a new generation of researchers will be able to bring much needed clarity to the complex picture of fungal life and diversity. Facing an era of rapid environmental changes, we need such clarity for the wider recognition of fungi as linchpins that can determine life and death, or proliferation and decay, in all ecosystems.

REFERENCES

Abarenkov, K., Tedersoo, L., Nilsson, R.H., Vellak, K., Saar, I., Veldre, V., Parmasto, E., Prous, M., Aan, A., Ots, M., Kurina, O., Ostonen, I., Jõgeva, J., Halapuu, S., Põldmaa, K., Toots, M., Truu, J., Larsson, K.-H., Kõljalg, U., 2010. PlutoF—a web based workbench for ecological and taxonomic research, with an online implementation for fungal ITS sequences. Evol. Bioinform. Online 6, 189–196.

Ainsworth, A.M., Farley, D., Gainey, P., Penna, P., Suz, L.M., 2015. Invasion of the Orange Ping-Pong Bats: the rapidly changing distribution of Favolaschia calceola. Field Mycol. 16, 113–120.

Aneleem, J., Cuomo, C.A., van Kan, J.A., Vlaid, M., Benito, E.P., Couloux, A., Coutinho, P.M., de Vries, R.P., Dyer, P.S., Fillinger, S., Fournier, E., Gout, L., Hahn, M., Kohn, L., Lapalu, N., Plummer, K.M., Pradier, J.M., Quévillon, E., Sharon, A., Simon, A., ten Have, A., Tudzynski, B., Tudzynski, P., Wincker, P., Andrew, M., Anthouard, V., Beever, R.E., Beffa, R., Benoit, I., Bourd, O., Brautl, B., Chen, Z., Choquer, M., Collémare, J., Cotton, P., Danchin, E.G., Da Silva, C., Gautier, A., Giraud, C., Giraud, T., Gonzalez, C., Grossetete, S., Guldener, U., Henriuss, B., Howlett, B.J., Kodira, C., Kretchmer, M., Lappartient, A., Leroch, M., Levis, C., Mauceli, E., Neveuglie, C., Oeser, B., Pearson, M., Pouin, J., Poussereau, N., Queneville, H., Rascle, C., Schumacher, J., Sègurens, B., Sexton, A., Silva, E., Siriuen, C., Soanes, D.M., Talbot, N.J., Templeton, M., Yandava, C., Yarden, O., Zeng Q., Rollins, J.A., Lebrun, M.H., Dickman, M., 2011. Genomic analysis of the necrotrophic fungal pathogens Sclerotinia sclerotiorum and Botrytis cinerea. PLoS Genet. 7, e1002230. http://dx.doi.org/10.1371/journal.pgen.1002230.

Barnes, R., Rautemaa-Richardson, R., 2014. Fungi — forgotten foes. Bull. R. Coll. Pathol. 167, 161–162.

Boddy, L., Frankland, J., Van West, P., 2007. Ecology of Saprotrophic Basidiomycetes, , third ed.vol. 28. Academic Press, London.

Buyck, B., 1999. Taxonomists are an endangered species in Europe. Nature 401, 321.

Calderone, R., Sun, N., Gay-Andrieu, F., Groutas, W.,Weerawarna, P., Prasad, S., Alex, D., Li, D., 2014. Antifungal drug discovery: the process and outcomes. Future Microbiol. 9, 791–805.

Clemmensen, K.E., Bahr, A., Ovaskainen, O., Dhalberg, A., Ekblad, A., Wallander, H., Stenlid, J., Finlay, R.D., Wardle, D.A., Lindahl, B.D., 2013. Roots and associated fungi drive long-term carbon sequestration in boreal forest. Science 339, 1615–1618.

Chakraborty, S., Newton, A.C., 2011. Climate change, plant diseases and food security: an overview. Plant Pathol. 60, 2–14.

de Beer, Z.W., Marinowitz, S., Duong, T.A., Kim, J.J., Rodrigues, A., Wingfield, M.J., 2016. Hawksworthiomycetes: an overview.oppingomatesales, O. (Ophiostomatales), illustrates the urgency for a decision on how to name novel taxa known only from environmental nucleic acid sequences (ENAS). Fungal Biol. 120, 1323–1340.

Denning, D.W., Bloomley, M.J., 2015. How to bolster the antifungal pipeline. Science 347, 1414–1416.

Ellis, C.J., Yahr, R., 2011. An interdisciplinary review of climate change trends and uncertainties: lichen biodiversity, arctic-alpine ecosystems and habitat loss. In: Hodkinson, T.R,
Garcia-Solache, M.A., Casadevall, A., 2010. Global warming will bridge, pp. 457–463.

Gawad, C., Koh, W., Quake, S.R., 2016. Single-cell genome sequencing: current state of the science. Nat. Rev. Genet. 17, 868-874.

Hawksworth, D.L., Hibbett, D., Abarenkov, K., Kjølgaard, U., Ram, A.F.J., Head, R.M., 2016. Current challenges and lingering distractions. Am. J. Bot. 93, 1778–1786.

Hawkins, D.L., 2012. Global species numbers of fungi: are more robust estimates at hand? Nat. Rev. Microbiol. 11, 129–133.

Hibbett, D.S., Taylor, J.W., 2013. Fungal systematics: is a new age of enlightenment at hand? Nat. Rev. Microbiol. 11, 129–133.

Hibbett, D.S., Abarenkov, K., Kjølgaard, U., Opik, M., Chai, B., Cole, J.R., Wang, Q., Crouse, P.W., Robert, V.A.R.G., Helgason, T., Herr, J., Kirk, P., Lueschow, S., O’Donnell, K., Nilsson, H., Oono, R., Schoch, C.L., Smith, C., Walker, D., Forras-Alfaro, A., Taylor, J.W., 2007. Sequence-based classification and identification of fungi. Mycologia. http://dx.doi.org/10.3852/16–130.

James, T.Y., Pelin, A., Bonen, L., Arshendt, S., Sain, D., Corradi, N., Stajich, J.E., 2013. Shared signatures of parasitism and phylogenomics unite Cryptomycota and microsporidia. Curr. Biol. 23, 1548–1553.

Jones, M.D., Forn, I., Gadelha, C., Egan, M.J., Bass, D., Massana, R., Richards, T.A., 2011. Discovery of novel intermediate forms redefines the fungal tree of life. Nature 474, 200–203.

Kalan, L., Loesche, M., Hodkinson, B.P., Heilmann, K., Ruthel, G., Gardner, S.E., Grice, E.A., 2016. Redefining the chronic-wound microbiome: fungal communities are prevalent, dynamic, and associated with delayed healing. mBio 7 e0058–16.

Kivlin, S.N., Emery, S.M., Rudgers, J.A., 2013. Fungal symbionts alter plant responses to global change. Am. J. Bot. 100, 1445–1457.

Kjølgaard, U., Larsson, K.H., Abarenkov, K., Nilsson, R.H., Alexander, I.J., Eberhardt, U., Erland, S., Høiland, K., Kjølgaard, U., Larsson, E., Pennanen, T., Sen, R., Taylor, A.F., Tedersoo, L., Vråslad, T., Ures, B.M., 2005. UNITE: a database providing web-based methods for the molecular identification of ectomycorrhizal fungi. New Phytol. 166, 1063–1068.

Lindahl, B.D., Nilsson, R.H., Tedersoo, L., Abarenkov, K., Carlsten, T., Kjølgaard, U., Pennanen, T., Rosendahl, S., Stenlid, J., Kauserud, H., 2013. Fungal community analysis by high-throughput sequencing of amplified markers—a user’s guide. New Phytologist 199, 288–299. http://dx.doi.org/10.1111/nph.12243.
Vondervoort, P.J., Wedler, H., Wöstien, H.A., Zeng, A.P., van Ooyen, A.J., Visser, J., Stam, H., 2007. Genome sequencing and analysis of the versatile cell factory Aspergillus niger CBS 513.88. Nat. Biotechnol. 25, 221–231.

Rodriguez, R.J., White Jr., J.F., Arnold, A.E., Redman, R.S., 2009. Fungal endophytes: diversity and functional roles. New Phytol. 182, 314–330.

Rosling, A., Cox, F., Cruz-Martinez, K., Ihrmark, K., Grelet, G.-A., Lindahl, B.D., Menkis, A., James, T.Y., 2011. Archaeorhizomycetes: unearthing an ancient class of ubiquitous soil fungi. Science 333, 876–879.

Smith, S.A.A., Read, D., 2008. Mycorrhizal Symbiosis, third ed. Academic Press.

Spatafora, J.W., Chang, Y., Benny, G.L., Berbee, M.L., Bonito, G., Corradi, N., Grigoriev, I., Gryganskyi, A., James, T.Y., O’Donnell, K., Taylor, T.N., Uehling, J., Vilgalys, R., White, M.M., Stajich, J.E., 2016. A phylum-level phylogenetic classification of zygomycete fungi based on genome-scale data. Mycologia 108, 1028–1046.

Spribille, T., Tuovinen, V., Resl, P., Vanderpool, D., Wolinski, H., Aime, M.C., Mayrhofer, H., Johanneson, H., McCutcheon, J., 2016. Basidiomycete yeasts in the cortex of ascomycete macrolichens. Science 353, 488–492.

Stajich, J.E., Berbee, M.L., Blackwell, M., Hibbett, D.S., James, T.Y., Spatafora, J.W., Taylor, J.W., 2009. The fungi.Curr. Biol. 19, R840–R845.

Tedersoo, L., Bahram, M., Põlme, S., Kõljalg, U., Yorou, N.S., Wijesundera, R., Ruiz, L.V., Vasco-Palacios, A.M., Thu, P.Q., Suja, A., Smith, M.E., Sharp, C., Saluveer, E., Saitta, A., Rosas, M., Riit, T., Ratkowsky, D., Pritsch, K., Poldmaa, K., Piepenbring, M., Phosri, C., Peterson, M., Parts, K., Partel, K., Otsing, E., Nouhra, E., Njouonkou, A.L., Nilsson, R.H., Morgado, L.N., Mayor, J., May, T.W., Maujuakim, L., Lodge, D.J., Lee, S.S., Larsson, K.-H., Kohout, P., Hosaka, K., Hiiiesalu, I., Henkel, T.W., Harend, H., Guo, L.-d., Greslebin, A., Grelet, C., Gemi, J., Gates, C., Dunstan, W., Dunk, C., Drenkhan, R., Dearnaley, J., De Kesel, A., Dang, T., Chen, X., Buegger, F., Brerley, F.Q., Bonito, G., Anslan, S., Abell, S., Abarenkov, K., 2014. Global diversity and geography of soil fungi. Science 346, 1256688.

Tedersoo, L., Ramirez, K.S., Nilsson, R.H., Kaljuvee, A., Kõljalg, U., Abarenkov, K., 2015. Standardizing metadata and taxonomic identification in metabarcoding studies. GigaScience 4, 1.

Tedersoo, L., Lindahl, B., 2016. Fungal identification biases in microbiome projects. Environ. Microbiol. Rep. 8, 772–779. http://dx.doi.org/10.1111/1758-2229.12438.

Treseder, K.K., Marusenko, Y., Romero-Olivares, A.L., Maltz, M.R., 2016. Experimental warming alters potential function of the fungal community in boreal forest. Glob. Chang. Biol. 22, 3395–3404.

Yahr, R., Schoch, C.L., Dentinger, B.T., 2016. Scaling up discovery of hidden diversity in fungi: impacts of barcoding approaches. Philos. Trans. R. Soc. B Biol. Sci. 371, 20150336.