Abstract
This review is a comprehensive summary of treatment options for pregnant patients with less common bacterial, fungal, and viral infections. It offers guidance to clinicians based on the most recently published evidence-based research and expert recommendations. A search of MEDLINE (inception to March 2021) and the CDC website was performed. Liposomal amphotericin B is the preferred therapy for cryptococcosis, histoplasmosis, oesophageal candidiasis, and coccidioidomycosis, especially during the first trimester due to teratogenic concerns with azole antifungals. For oral candidiasis, clotrimazole troches or miconazole mucoadhesive buccal tablets are recommended. A β-lactam antimicrobial is preferred over doxycycline for various manifestations of Lyme disease and the drug of choice for Pneumocystis pneumonia is trimethoprim/sulfamethoxazole. Acyclovir is the preferred antiviral for varicella zoster virus. Fluoroquinolones, macrolides, and aminoglycosides should be avoided if possible and there are alternate agents available for an effective treatment regimen. There is a scarcity of clinical data in pregnant patients with less common bacterial, fungal and viral infections. This population lacks definitive recommendations in many clinical practice guidelines. The key to optimizing therapy is a comprehensive review of the available evidence and a careful balance of risks and benefits before final treatment decisions.

Keywords: antibiotics, antifungals, antivirals, bacterial infection, fungal infection, pregnancy, teratogenicity, viral infection.

Citation
Gould AP, Winders HR, Stover KR, Bookstaver PB, Griffin B, Bland CM, Eiland LS, Murray M. Less common bacterial, fungal and viral infections: review of management in the pregnant patient. Drugs Context. 2021;10:2021-4-3. https://doi.org/10.7573/dic.2021-4-3

Introduction
Pregnancy encompasses several physiological changes that may complicate the treatment of less common bacterial, fungal and viral infections. Immunological changes may lead to altered severity and susceptibility of disease. Additionally, fluctuating hormone levels modify the immune response of the immune system such as progesterone suppressing a normal immune response. Furthermore, there may be unintended sequelae to the fetus from untreated infections or the anti-infective agents used to treat infections. Management of infections in the pregnant patient should include careful consideration of efficacy and safety data weighed against clinical outcomes data. Pregnant patients are often excluded from clinical trials, which has resulted in scant data to make evidence-based decisions. This review is a compilation of the current evidence available on the management of less common bacterial (e.g. tuberculosis, Lyme disease), fungal (e.g. histoplasmosis), opportunistic (e.g. toxoplasmosis) and viral infections (e.g. varicella) in the pregnant patient. Antimicrobial safety data in pregnancy are reviewed in detail elsewhere and are only included as appropriate in this review. The management of common bacterial and viral infections during pregnancy has been previously published.

Methods

Data sources
A literature search of MEDLINE from 1950 to March 2021 was performed using the search terms “pregnancy” and each of...
Medications List that are used to treat the above infections are included on the WHO Essential Medications List for the treatment of less common bacterial, fungal, and viral infections in the pregnant patient.4

Disease state	Medications on the Essential List
Opportunistic infections	Amphotericin B (deoxycholate and liposomal), azithromycin, clindamycin, dapsone, fluclotaxine, fluconazole, pentamidine, primaquine, pyrimethamine, sulfadiazine, trimethoprim-sulfamethoxazole
Mycobacterial infections	Azithromycin, ethambutol, isoniazid, pyrazinamide, rifabutin, rifampicin
Selected fungal infections	Amphotericin B (deoxycholate and liposomal), fluconazole, itraconazole, nystatin
Tickborne infections	Azithromycin, amoxicillin, cefotaxime, ceftriaxone, chloramphenicol, clindamycin, doxycycline, rifampicin
Selected viral infections	Aciclovir

the following: “Pneumocystis pneumonia”, “toxoplasmosis”, “toxoplasmic encephalitis”, “cryptococcosis”, “tuberculosis”, “Mycobacterium avium complex”, “candidiasis”, “histoplasmosis”, “coccidioidomycosis”, “Lyme disease”, “ehrlichiosis”, “human granulocytic anaplasmosis”, “human monocytic ehrlichiosis”, “babesiosis”, “Rocky Mountain spotted fever”, “varicella zoster virus”, “herpes zoster”, and “cytomegalovirus”. National and international clinical practice guidelines (where appropriate) and the CDC website were reviewed for current evidence-based recommendations. A list of medications on the WHO Essential Medications List that are used to treat the above infections are listed in Table 1.4 Additional references were collected from bibliographies of noteworthy articles.

Opportunistic infections

Pneumocystis pneumonia

Cases of Pneumocystis pneumonia (PCP) during pregnancy are rare outside of people with HIV.5,6 During pregnancy, the preferred therapy for PCP is trimethoprim/sulfamethoxazole (TMP-SXT; Table 2).7 TMP-SXT is considered a first-line treatment due to its considerable benefit. However, there is a small risk of increased neural tube and other birth defects, particularly in the first trimester.7–10 Folic acid supplementation can be given to restore the depleted stores caused by the folic acid inhibition of TMP-SXT. Studies have shown that folic acid supplementation of 6 mg/day may decrease the risk of congenital anomalies. Folic acid supplementation has also been associated with an increased risk of therapeutic failure and death.8,11 Additionally, there are case reports of TMP-SXT prophylaxis failure with concomitant folic acid supplementation.12 Based on these studies, high-dose folic acid supplementation should be limited to the first trimester during the teratogenic window.7 Concerns related to neonatal death and kernicterus have previously been linked to TMP-SXT; however, currently, there are no data to support near-term exposure with these outcomes.13,14 Adjunctive systemic steroids for the treatment of moderate-to-severe PCP should be used in pregnant patients as indicated for non-pregnant patients.7 While alternatives typically recommended for nonpregnant patients may be used after carefully weighing the potential risks, the preferred alternative choice for mild-to-moderate disease is atovaquone based on lack of demonstrated toxicity.7,15 Primaquine and dapsone-containing regimens should be avoided, if possible, due to the risk of severe haemolysis in glucose-6-phosphate dehydrogenase-deficient individuals. The preferred therapy for primary and secondary PCP prophylaxis is TMP-SXT. Due to the potential risks of TMP-SXT in the first trimester, inhaled pentamidine and oral atovaquone can be considered during this period for prophylaxis.7

Toxoplasmosis

The treatment of Toxoplasma gondii during pregnancy should be based on confirmed or suspected symptomatic disease and the risk of transmission to the fetus.7 The estimated incidence of acute primary infection is 0.2 per 1000 pregnancies.16 Patients suspected of having acquired T. gondii should be evaluated and managed with appropriate specialists to monitor and prevent transmission to the fetus. Pyrimethamine has been associated with birth defects in animals, but similar results have not been seen with human data. It should be considered safe to administer after the first trimester, especially if a fetal infection is documented or highly likely.7,17 Sulfadiazine appears safe, although there is some concern with sulfa-containing agents, as discussed previously.13,14 Spiramycin is typically used if a fetal infection is unlikely, especially in the first trimester.7,17 Spiramycin should not be used to treat fetal toxoplasmosis because it does not cross the placenta well. It is primarily indicated for fetal prophylaxis and should be continued until delivery. Spiramycin is unavailable commercially in the United States but can be obtained through the Division of Anti-Infective Products of the US FDA (telephone 301-796-1400) after serologic confirmation of infection. In the case of fetal infection, pyrimethamine and sulfadiazine are recommended.18 For toxoplasmic encephalitis (TE), patients should be treated for at least 6 weeks and the preferred therapy is the same as in nonpregnant patients: pyrimethamine plus sulfadiazine plus leucovorin (Table 2).7 This regimen should also prevent
Table 2. Preferred and alternative therapy for less common bacterial, fungal, and viral infections in the pregnant patient.

Disease state	Preferred therapy	Alternative therapy	Adverse effects/monitoring	Additional comments
*Pneumocystis Pneumonia*⁷	**Severe:** TMP-SXT 15–20 mg IV × 21 days (TMP/kg/day IV divided q6h or q8h); may transition to PO after clinical improvement	**Severe:** Pentamidine 4 mg/kg IV once daily infused over at least 60 minutes; may reduce the dose to 3 mg/kg IV once daily because of toxicities or Primaquine 30 mg (base) PO once daily + clindamycin (600 IV q6h or 900 mg q8h) or (450 mg PO q6h or 600 mg q8h) (last line)	TMP-SXT: Monitor CBC, potassium, renal function	If PaO₂ < 70 mmHg at room air or alveolar–arterial O₂ gradient ≥35 mmHg, use adjunctive corticosteroids
	Mild–moderate: TMP-SXT 15–20 mg PO × 21 days (TMP/kg/day divided q6h or q8h)	**Mild–moderate:** Atovaquone 750 mg PO BID with food ("preferred" alternative) or Dapsone 100 mg PO daily + TMP 15 mg/kg/day PO (3 divided doses) or Primaquine 30 mg (base) PO daily + clindamycin PO (450 mg q6h or 600 mg q8h) (last line)	Primaquine: Monitor for jaundice, haemolysis, and blood dyscrasias, LFTs, CBC, reticulocyte counts; check for G6PD deficiency	Prednisone doses: Day 1–4: 40 mg PO BID Day 6–10: 40 mg PO daily Day 11–21: 20 mg PO daily
*Toxoplastic encephalitis*⁷	**Pyrimethamine 200 mg PO once, followed by dose based on body weight:** Body weight ≤ 60 kg: Pyrimethamine 50 mg PO daily plus sulfadiazine 1000 mg PO q6h plus leucovorin 10–25 mg PO daily (can increase to 50 mg daily or BID)	**Pyrimethamine (leucovorin) plus clindamycin 600 mg IV or PO q6h (preferred alternative) or TMP-SXT (TMP 5 mg/kg) (IV or PO) BID or Atovaquone 1500 mg PO BID plus pyrimethamine plus leucovorin or Atovaquone 1500 mg PO BID plus sulfadiazine or Atovaquone 1500 mg PO BID or Pyrimethamine plus leucovorin plus azithromycin 900–1200 mg PO daily or Spiramycin (if fetal infection unlikely) 1 g (3 MU) PO TID	Pyrimethamine: Monitor CBC, LFTs, renal function Sulfadiazine: Monitor CBC and signs of severe blood disorders (e.g. dark urine, jaundice, purpura, etc.) TMP-SXT: Monitor CBC, potassium, renal function	Treat for ≥ 6 weeks; longer duration if the clinical or radiologic disease is extensive or response is incomplete at 6 weeks After completion of acute therapy listed, all patients should be continued on chronic maintenance therapy All pregnant patients living with HIV with toxoplastic encephalitis should be considered for immediate initiation of antiretroviral therapy

(Continued)
Table 2. (Continued)

Disease state	Preferred therapy	Alternative therapy	Adverse effects/monitoring	Additional comments
Toxoplasmic encephalitis⁷ (Cont)				Spiramycin unavailable commercially in the United States (obtained through the US FDA – Division of Anti-Infective Products; telephone 301-796-1400)
Cryptococcal meningitis^{2,21}	Induction (≥2–4 weeks): Liposomal amphotericin B 3–4 mg/kg IV daily	Amphotericin B deoxycholate 0.7–1 mg/kg IV daily or Amphotericin B lipid complex 5 mg/kg IV daily	Amphotericin: Infusion reactions; monitor renal function, potassium, magnesium	Expert consultation is recommended for the timing of initiation of antiretroviral therapy for pregnant patients living with HIV with cryptococcal infections
	Consolidation (≥8 weeks): Liposomal amphotericin B 3–4 mg/kg IV daily throughout first trimester; after first trimester, may consider a transition to fluconazole 400 PO mg daily	Amphotericin B deoxycholate 0.7–1 mg/kg IV daily or Amphotericin B lipid complex 5 mg/kg IV daily	Fluconazole: Monitor LFTs, renal function, potassium	
	Maintenance (to complete ≥1 year): Liposomal amphotericin B 3–4 mg/kg IV weekly throughout first trimester; after first trimester, may consider a transition to fluconazole 200 PO mg daily	Amphotericin B deoxycholate 0.7–1 mg/kg weekly or Amphotericin B lipid complex 5 mg/kg IV daily throughout first trimester; after first trimester, may consider a transition to fluconazole 200 PO mg daily	Fluconazole: Monitor LFTs	
Tuberculosis^{24,29}	WHO: Rifampicin 10 mg/kg (typically 600 mg) PO daily		Rifampin: Monitor LFTs	In patients with peripheral neuropathy present, pyridoxine dose should be increased to 100 mg daily

(Continued)
Disease state	Preferred therapy	Alternative therapy	Adverse effects/monitoring	Additional comments
Tuberculosis\(^{24,29}\)	Isoniazid 5 mg/kg (typically 300 mg) PO daily			Avoid the use of fluoroquinolones and streptomycin if possible
(Cont)	Pyrazinamide 25 mg/kg PO daily	Isoniazid: Peripheral neuropathy; monitor LFTs	Rifampin associated with multiple drug–drug interactions; may cause an orange–red discoloration of secretions	
	Ethambutol 15 mg/kg PO daily	Ethambutol: Monitor visual acuity		
	IDSA: Rifampin 10 mg/kg (typically 600 mg) PO daily	Pyrazinamide: Monitor LFTs		
	Isoniazid 5 mg/kg (typically 300 mg) PO daily			
	Ethambutol – 40–55 kg: 800 mg PO daily			
	56–75 kg: 1200 mg PO daily			
	76–90 kg: 1600 mg PO daily			
(Based on estimated lean body weight. Optimal doses for obese patients are not established.)				
Mycobacterium avium complex\(^{7}\)	Azithromycin 500–600 mg PO daily plus ethambutol 15 mg/kg PO daily	Option to add rifabutin 300 PO mg daily	Azithromycin: Nausea, vomiting, abdominal pain, abnormal taste, and elevations in liver transaminase levels; QTc prolongation; monitor LFTs	Avoid the use of fluoroquinolones if possible
			Rifabutin: Monitor LFTs	Rifabutin associated with multiple drug–drug interactions, may cause an orange–red discoloration of secretions
Oral and oesophageal candidiasis\(^{50}\)	Oral candidiasis			Minimal systemic absorption of all oral treatment options
	Clotrimazole troche 10 mg dissolved orally five times daily for 7–14 days or Miconazole buccal tablet 50 mg applied to upper gum once daily for 14 days	Oral candidiasis Nystatin oral suspension 400,000–600,000 units four times daily (swish and swallow)	Clotrimazole: Troche generally well tolerated	Miconazole buccal tablet should not be crushed
			Miconazole: Application site irritation	Premedication with acetaminophen and diphenhydramine before amphotericin B
			Nystatin: Diarrhoea, nausea, vomiting, stomach pain	
Table 2. (Continued)

Disease state	Preferred therapy	Alternative therapy	Adverse effects/monitoring	Additional comments
Oral and oesophageal candidiasis⁵⁰ (Cont)	Oesophageal candidiasis Amphotericin B deoxycholate 0.3–0.7 mg/kg IV daily for 14–21 days	Amphotericin B deoxycholate 0.7–1.0 mg/kg IV daily for 4–6 weeks	Amphotericin B: Infusion reactions; monitor renal function, potassium, magnesium	Bolus IV fluids predose and postdose may reduce the risk of nephrotoxicity with amphotericin B
Histoplasmosis⁵¹	Liposomal amphotericin B IV 3–5 mg/kg IV daily for 4–6 weeks	Amphotericin B deoxycholate 0.7–1.0 mg/kg IV daily for 4–6 weeks	Amphotericin B: Infusion reactions; monitor renal function, potassium, magnesium	Premedication with acetaminophen and diphenhydramine before amphotericin B Bolus IV fluids predose and postdose may reduce the risk of nephrotoxicity with amphotericin B
Coccidioidomycosis^{54,57,58}	Nonmeningeal disease -First trimester: Liposomal amphotericin B IV 3–5 mg/kg daily -Second or third trimester: Fluconazole 400–800 mg PO daily or Itraconazole 200 mg PO BID	Nonmeningeal disease -First trimester: No therapy with close monitoring -Second or third trimester: Liposomal amphotericin B 3–5 mg/kg IV daily	Amphotericin B IV: Infusion reactions; monitor renal function, potassium, magnesium	Treatment duration varies based on clinical response and type of coccidioidal infection, though it is continued for a minimum of 3–6 months Therapeutic drug monitoring of itraconazole is recommended to ensure adequate absorption
	Coccidioidal meningitis -First trimester: Intrathecal amphotericin B 0.1 mg IV three times weekly (initial dose) -Second or third trimester: Fluconazole 800–1200 mg PO daily or Itraconazole 200 mg PO 2–4 times daily	Coccidioidal meningitis -First trimester: Fluconazole or itraconazole -Second or third trimester: Intrathecal amphotericin B	Fluconazole: Monitor LFTs, renal function, potassium Itraconazole: Monitor LFTs, renal function, serum trough concentrations, potassium	Intrathecal amphotericin B dose should be gradually titrated as tolerated, with dose tapering recommended over three phases
Disease state	Preferred therapy	Alternative therapy	Adverse effects/monitoring	Additional comments
-------------------------------	--	--	--	--
Lyme disease	Early Lyme disease	Amoxicillin 500 mg PO daily for 7–10 days	Amoxicillin/cefuroxime: Rash, itching, GI effects	Patients should be monitored closely for resolution of symptoms
	Erythema migrans	Azithromycin 500 mg PO daily for 7–10 days	Azithromycin: GI effects, additive QTc prolongation	In patients with severe allergies to both penicillin and cephalosporins, proper allergy reconciliation, and/or consideration of PAST is preferred as macrolide alternatives are associated with inferior outcomes
	Early Lyme disease	Ceftriaxone 2 g IV daily for 14 days (range 10–28 days)	Ceftriaxone: Rash, itching, uncommonly associated with biliary sludging and increased bilirubin	Lyme arthritis: if refractory or persistent symptoms repeat an oral course or parenteral antibiotic therapy recommended
	Lyme meningitis	Penicillin G 18-24 MU IV per day (CI or divided q4 hours)	Ceftriaxone 2 g IV q8 hours	
	Early Lyme disease	Penicillin G 18-24 MU IV per day (CI or divided q4 hours)	Ceftriaxone 2 g IV q8 hours	
	Lyme meningitis	Penicillin G 18-24 MU IV per day (CI or divided q4 hours)	Ceftriaxone 2 g IV q8 hours	
	Late Lyme Disease	Penicillin G 18-24 MU IV per day (CI or divided q4 hours)	Ceftriaxone 2 g IV q8 hours	
	Lyme arthritis	Penicillin G 18-24 MU IV per day (CI or divided q4 hours)	Ceftriaxone 2 g IV q8 hours	
	Amoxicillin 500 mg PO TID	Penicillin G 18-24 MU IV per day (CI or divided q4 hours)	Ceftriaxone 2 g IV q8 hours	
	or Cefuroxime axetil 500 mg PO BID for 14 days (range 14–21 days)	Penicillin G 18-24 MU IV per day (CI or divided q4 hours)	Ceftriaxone 2 g IV q8 hours	
	Late Lyme disease with neurologic involvement	Penicillin G 18-24 MU IV per day (CI or divided q4 hours)	Ceftriaxone 2 g IV q8 hours	
	Ceftriaxone 2 g IV daily for 2–4 weeks	Penicillin G 18-24 MU IV per day (CI or divided q4 hours)	Ceftriaxone 2 g IV q8 hours	
Human granulocytic	Rifampin 300 mg PO BID for 7–10 days	Rifampin: Monitor LFTs	Rifampin associated with multiple drug–drug interactions; may cause an orange–red discoloration of secretions	
anaplasmosis**				

(Continued)
Table 2. (Continued)

Disease state	Preferred therapy	Alternative therapy	Adverse effects/monitoring	Additional comments
Human granulocytic anaplasmosis*65,67 (Cont)				If coinfection with *B. burgdorferi* is suspected, amoxicillin or cefuroxime should also be initiated
Babesiosis*72	Clindamycin 300–600mg IV q6 hours plus quinine 650 mg PO q6–8 hours If clindamycin PO: Clindamycin 600 mg PO q8 hours is recommended			Azithromycin: Gl effects, additive QTc prolongation
				Azithromycin doses of 600–1000 mg daily have been used in immunocompromised hosts
Rocky Mountain spotted fever*63,77	Doxycycline 100 mg PO BID for 5–7 days or 3 days after fever resolution	Chloramphenicol IV/PO 500 mg QID		Oral formulations of chloramphenicol are not available in the United States
Varicella zoster virus*82	If exposed to varicella zoster virus: acyclovir 800 mg PO five times per day PLUS Varicella zoster immunoglobulin 125 units/10 kg intramuscularly x 1 dose (maximum dose: 625 units)			Acyclovir: Malaise, headache, nausea, vomiting, diarrhoea
				Begin therapy within 96 hours of exposure

BID, twice daily; CBC, complete blood count; CI, continuous infusion; ECG, electrocardiogram; G6PD, glucose-6-phosphate-dehydrogenase; GI, gastrointestinal; IDSA, Infectious Diseases Society of America; IV, intravenous; LFTs, liver function tests; MU, million units; PAST, penicillin allergy skin testing; PO, by mouth; QID, four times daily; TID, three times daily; TMP-SXT, trimethoprim/sulfamethoxazole.
transmission to the fetus and treat the fetus if infected. If failure or intolerability of the preferred therapy occurs, pyrimethamine plus clindamycin plus leucovorin can be used. Although there are limited safety data with its use in pregnancy, atovaquone-containing regimens may also be used if needed. Chronic maintenance therapy with pyrimethamine plus sulfadiazine plus leucovorin should be started after completing treatment for TE (Table 2). The risks of TMP-SXT in the first trimester and near term, as discussed previously, need to be balanced against the risks of TE. TMP-SXT is preferred for T. gondii primary prophylaxis.

Cryptococcosis

Cryptococcal disease is rare in pregnancy outside of people living with HIV, although there are case reports of pneumonia. Treatment should be initiated as soon as the diagnosis of cryptococcal infection is confirmed, beginning with induction followed by consolidation and/or maintenance therapy. Preferred treatment in pregnancy for cryptococcal meningitis, meningococcal meningitis, disseminated disease and severe pulmonary cryptococcosis is liposomal amphotericin B (Table 2). Flucytosine is teratogenic in animal studies and is not recommended during the first trimester of pregnancy. Flucytosine should only be used as a part of combination therapy for cryptococcal meningitis in the second and third trimesters if the benefits outweigh the risks. Liposomal amphotericin B should be used throughout the first trimester. Azole antifungal drugs should be avoided, especially in the first trimester, due to the risk of congenital malformations. Consolidation therapy and/or maintenance therapy with oral fluconazole, after at least 2 weeks of liposomal amphotericin B, can be considered if clinically appropriate after the first trimester.

Mycobacterial infections

Tuberculosis

Treatment for *Mycobacterium tuberculosis* is indicated when the probability of disease is moderate to high when the risk of untreated tuberculosis to the patient and fetus. The incidence of tuberculosis in pregnant patients in 2011 was reported as 26.6/100,000 births in the United States and there were more than 200,000 cases of active tuberculosis globally. Disease presentation may be atypical in this patient population with patient complaints of nonspecific symptoms and, thus, diagnosis may be delayed. A descriptive study of the United Kingdom Obstetric Surveillance System reported that half of the cases diagnosed were extrapulmonary. Active treatment is completed in two phases, the intensive phase and the continuation phase. According to the American Thoracic Society/CDC/Infectious Diseases Society of America, the preferred treatment regimen includes rifampin, isoniazid and ethambutol. Pyridoxine supplementation (25–50 mg/day) should also be provided in any pregnant or nursing patient to prevent peripheral neuropathy development. The inclusion of pyrazinamide in the regimen is controversial in the United States due to a lack of well-controlled human studies and safety data. In contrast, the WHO recommends pyrazinamide as part of standard treatment with isoniazid, ethambutol and rifampin. Expert consultation is suggested to determine the duration of therapy based upon patient-specific factors and chosen regimen; the usual duration is 2 months of intensive treatment followed by 7 months of continuation treatment.

Treatment with second-line agents due to resistance should be offered and thoughtfully planned. A specific second-line regimen is not recommended over another at this time and treatment duration should be extended. Streptomycin should be avoided due to the risk of hearing loss in the fetus. Fluoroquinolones and aminoglycosides should be avoided when alternate agents are available for an effective regimen. Ethionamide, para-aminosalicylic acid and cycloserine have unfavourable side effects (e.g. hypothyroidism, psychosis) and mixed safety data in pregnant patients. A case report of two pregnant patients treated with second-line agents, including kanamycin, ethionamide, cycloserine and levofloxacin, resulted in one preterm labour and one full-term caesarean section; in both cases, the babies were healthy. Bedaquiline was independently associated with low birth weight (n=49 babies exposed in utero) and, in one case report, there were no fetal toxicities noted. Linezolid use has been reported; however, adverse events associated with long-term treatment (e.g. haematological effects) may limit usefulness. Pretomanid is approved in combination with linezolid and bedaquiline and warnings for these two agents apply to therapy. No clinical data or case reports in pregnant patients are available; however, animal reproduction studies revealed increased postimplantation loss during organogenesis at doses approximately four times the exposure at the recommended human dose. There were no adverse effects at doses up to approximately two times the exposure in humans. Safety data are limited for delamanid and, at this time, its use should be avoided. Treatment of latent disease may be deferred until 3 months after pregnancy unless the patient is immunocompromised, living with HIV or has had a recent exposure. Isoniazid supplemented with pyridoxine is the therapy of choice. There are limited data regarding the safety of once-weekly isoniazid plus rifapentine (12-dose regimen); therefore, it is not currently recommended for pregnant patients.

Mycobacterium avium complex

Most of the available literature for the treatment of *Mycobacterium avium* complex (MAC) is for people with HIV and MAC cases in immunocompetent pregnant patients are rare. Azithromycin plus ethambutol is the preferred treatment regimen. Clarithromycin should be avoided due to the risk of birth defects. A meta-analysis of 19 studies found that the following were associated with macrolide prescribing...
Histoplasmosis

Histoplasmosis (Histoplasma capsulatum) is the most common endemic fungal infection in the United States, with the Ohio and Mississippi River Valleys being the most highly endemic regions. Symptomatic histoplasmosis during pregnancy is relatively rare; however, histoplasmosis cases have been described in otherwise healthy pregnant patients. Another unique consideration in pregnancy is the potential transplacental transmission to the fetus in disseminated disease. Treatment is indicated in moderately severe or severe acute pulmonary disease, chronic pulmonary disease, or disseminated disease and any disease involving the central nervous system. In other less severe manifestations, therapy is not always indicated. Because imidazole antifungal agents are considered safe during pregnancy, liposomal amphotericin B is preferred in pregnant patients when treatment is necessary for a total of 4–6 weeks. A case of a pregnant outpatient treated with thrice-weekly liposomal amphotericin B step-down therapy for 6 weeks has been reported. Except for avoiding azoles, all recommendations for the treatment of histoplasmosis in pregnancy remain the same as for a nonpregnant patient.

Coccidioidomycosis

Pregnancy is one of the most common risk factors for developing severe and disseminated coccidioidomycosis caused by Coccidioides immitis or Coccidioides posadasii. Endemic areas of coccidioidomycosis include the southwestern United States, Mexico, Central America and South America. One in 1000 pregnancies in these endemic regions are reported to be impacted by coccidioidomycosis. The likelihood of severe disease increases as the pregnancy progresses. The greatest severity occurs during the early postpartum period. The risk for fetal transmission is also present. For non-meningal disease, liposomal amphotericin B is preferred therapy in the first trimester (Table 2); fluconazole or itraconazole may be considered after the first trimester. In general, although there are little data on the safety of fluconazole after the first trimester, published reports suggest that exposure later in pregnancy may be safe. Intrathecal amphotericin B should be considered in consultation with a specialist and administered by an experienced clinician to treat coccidioidal meningitis during the first trimester. After the first trimester, an azole may be considered. For patients with a history of coccidioidomycosis, close follow-up with serologic testing at the initial visit and every 6–12 weeks until delivery is recommended though the risk of reactivation is low.

Tickborne infections

Lyme disease

Transmitted by the ixodes tick species, Lyme disease is caused by the spirochete Borrelia burgdorferi. The incidence of Lyme disease is higher in endemic areas in North America and Europe, although there are rare reports of cases during pregnancy. Treatment of gestational Lyme disease is essential as data show reduced adverse outcomes in treated (11–16%) compared to untreated disease (50–60%). Doxycycline should not routinely be used in pregnancy for Lyme disease, especially with proven alternatives, due to transient suppression of bone growth and staining of developing teeth. Amoxicillin is preferred in the absence of neurological manifestations (e.g. Lyme meningitis) or atrophicventricular heart block. Ceftriaxone is typically reserved for patients with severe neurological or cardiac manifestations. One study noted a non-significant increase in adverse pregnancy outcomes, such as pregnancy loss, among orally treated (31.6%) compared to parenterally treated (12.1%) pregnant patients. Alternative oral therapy is cefuroxime axetil and parenteral therapies include penicillin G or cefotaxime. Late Lyme disease, often manifesting as Lyme
arthriti, may be managed with oral or parenteral β-lactams as described above, typically for up to 4 weeks of therapy.63

Ehrlichiosis

Ehrlichiosis is characterized by two similar diseases transmitted by the *Ixodes* ticks: human granulocytic anaplasmosis (HGA) caused by *Anaplasma phagocytophilum* and human monocytic ehrlichiosis caused by *Ehrlichia chaffensis*. Although severe cases in pregnancy have not been reported, case reports are available.65 If HGA or human monocytic ehrlichiosis infection is suspected, treatment should occur due to the likelihood of complications and potential for vertical transmission.65,66 Rifampin has exhibited *in vitro* activity against *Ehrlichia* species and has been used successfully in limited case reports of pregnant women with HGA.65,67 Successful use of doxycycline for ehrlichiosis treatment has also been documented.68,69 Due to a lack of data, these patients should be closely monitored for resolution.67,69 If coinfection with Lyme disease is suspected, the addition of amoxicillin or cefuroxime is suggested as rifampin does not have activity against *B. burgdorferi*.63

Babesiosis

Babesiosis is caused by the parasite *Babesia microti* and transmitted by the hard-shelled *Ixodes* tick. There are few documented babesiosis cases during pregnancy, although congenital infection is possible.70,71 All patients with suspected babesiosis should be treated due to potential complications, including possible vertical transmission.71 Combination therapy is preferred with clindamycin plus quinine.72 This combination may be associated with improved placental penetration as compared with atovaquone plus azithromycin.59,63 Resolution of parasitaemia should be used to determine if longer treatment courses are needed or if retreatment may be needed in cases with symptoms and/or parasitaemia persisting >3 months.73

Rocky Mountain spotted fever

Rocky Mountain spotted fever (RMSF) is caused by the gram-negative bacterium *Rickettsia rickettsii* and is commonly transmitted in the United States by the dog tick. Very few cases of gestational RMSF have been reported in the literature. Cases are associated with poor outcomes for the fetus, regardless of the treatment administered.74,75 Therefore, preventive methods are crucial for pregnant patients, and treatment should be provided within 3–5 days of exposure. Doxycycline is the preferred therapy for typically 5–7 days in duration or 3 days after fever resolution.63 Chloramphenicol is proposed as an alternative treatment; however, there is a concern with significant adverse effects, including myelosuppression, aplastic anaemia, and grey baby syndrome, specifically at or near birth.76,77 Additionally, chloramphenicol is associated with higher mortality in RMSF.78 Of note, chloramphenicol is not available as an oral formulation in the United States.

Azithromycin has been considered but was less effective when compared to doxycycline in an animal model.79 Given the lack of safe and effective alternative treatments, doxycycline remains preferred for RMSF in pregnancy. Concerns of doxycycline-associated adverse outcomes in pregnancy continue to wain among some experts, especially with relatively short duration of therapy.80

Selected viral infections

Varicella zoster virus

Varicella zoster virus (VZV) is a DNA virus and a member of the herpes virus family.81 More than 90% of women are estimated to be seropositive for VZV and the incidence of chickenpox is reported to be 0.7–3 per 1000 pregnancies.82–84 The risk of vertical transmission is highest when the primary maternal infection occurs between 5 days predelivery and 2 days post-delivery. However, VZV can also rarely be transferred *in utero*. In utero acquisition, especially within the first 20 weeks, can lead to fetal death, neurological defects and other birth defects.81,84 Infection acquired at birth results in neonatal VZV.

Because VZV infections worsen with age and can become more complicated during pregnancy, routine screening and/or documentation of immunity are recommended as part of prenatal care.84 The VZV vaccine is a live, attenuated virus and vaccination is not recommended during pregnancy but may be given after delivery.81 Pregnant patients who are not immune should avoid close contact or exposure to VZV. If there is an exposure to an active case of VZV, nonimmune, pregnant patients should receive varicella zoster immunoglobulin (VZIG) within 96 hours of the exposure.84 In one study, the risk of developing VZV was significantly lower in those who received VZIG (42% versus 72% in those who did not receive VZIG; *p*=0.0263).85 Additionally, because patients who develop VZV during pregnancy are at increased risk of developing pneumonia and death, it is recommended that acyclovir be used in addition to VZIG.84,86 This recommendation is based on data from two studies demonstrating acyclovir treatment reduced fever duration and symptoms of infection in immunocompetent adults (acyclovir significantly reduced time to crusting by 1.8 days (*p*=0.001) and number of lesions by 46% (*p*=0.04)) and immunocompromised children (acyclovir significantly reduced time to full crusting by 1.4 days (*p*=0.01)) when given within 24 hours of rash onset.87,88

Herpes zoster virus

Herpes zoster during pregnancy is rare, and it is considered a benign disease with limited consequences.89 If treatment is required for severe disease, acyclovir is the preferred therapy; treatment should be initiated early to accelerate cutaneous lesion healing.82 One study reported a higher incidence in women with caesarean deliveries receiving general anaesthesia (0.46%) compared to those who received regional anaesthesia (0.35%).90
Cytomegalovirus

Cytomegalovirus (CMV) seropositivity rates are up to 60% among women of childbearing age. During primary infection, the risk of transmission is highest during the third trimester of pregnancy (40–70%), but complications can be worse if CMV is acquired in the first or second trimesters. Although 85–90% of infants will be asymptomatic initially, neonatal CMV acquisition can lead to symptoms or complications in up to 20% of neonates. CMV is the leading cause of congenital hearing loss and can lead to premature birth, the development of liver, lung and spleen problems, and neurological complications such as microcephaly, vision loss, weakness, lack of coordination and seizures.

Routine serological testing for CMV is only recommended for patients who develop symptoms during pregnancy or who have findings on sonography suggestive of CMV infection. Because these findings on sonography (often including growth restriction, microcephaly and other complications) are not specific to CMV, prenatal diagnosis of congenital CMV is confirmed by amniocentesis performed at least 6–7 weeks after the presumed acquisition of maternal infection and after 21 weeks of gestation.

No antiviral treatment is universally recommended in healthy adults with CMV, even during pregnancy, due to the lack of evidence that antiviral therapy prevents congenital CMV infection. There was no difference in infant CMV acquisition (66% versus 66%, respectively; p=1.0) or time to CMV detection in a study of pregnant women at 34 weeks’ gestation living in areas with high CMV prevalence rates. CMV exposure, including proper hand hygiene (especially in childcare workers) and avoidance of sexual exposure to partners with known CMV is important to prevent congenital CMV.

Ganciclovir and valganciclovir both have black-boxed warnings for birth defects and should not be used in pregnancy. However, there has been some evidence, albeit controversial, that intravenous administration of CMV-hyperimmune globulin (HIG) 200 U/kg may help reduce neonatal disease. In one study, women who received HIG were significantly less likely to have symptomatic infants compared to those who did not receive HIG (3% versus 50%, respectively; p<0.001). In a subsequent randomized, placebo-controlled trial, congenital infection rates were not statistically different between women who received HIG versus those who received placebo (30% versus 44%, respectively; p=0.13). The most important strategy to prevent congenital CMV is the avoidance of maternal CMV exposure, including proper hand hygiene (especially in childcare workers) and avoidance of sexual exposure to partners with known CMV.

Conclusion

Limited data of medication use in treating less common bacterial, fungal, opportunistic and viral infections during pregnancy pose a challenge to clinicians to provide evidence-based guidance and accurate assessment of risks and benefits. The risks of inadequately treating the infection should be weighed against the risk of the treatment. Original research and case reports are limited in scope and generalizability due to the nature of this patient population. Ultimately, treatment recommendations should consider a comprehensive review of the most recently published evidence-based research and expert guidance.
References

1. Kourtis AP, Read JS, Jamieson DJ. Pregnancy and infection. N Engl J Med. 2014;370(23):2211–2218. https://doi.org/10.1056/NEJMra1213566

2. Bookstaver PB, Bland CM, Griffin B, Stover KR, Eiland LS, McLaughlin M. A review of antibiotic use in pregnancy. Pharmacotherapy. 2015;35(11):1052–1062. https://doi.org/10.1002/phar.1649

3. Rac H, Gould AP, Eiland LS, et al. Common bacterial and viral infections: review of management in the pregnant patient. Ann Pharmacother. 2019;53(6):639–651. https://doi.org/10.1177/1060028018817935

4. World Health Organization. Model List of Essential Medications. https://list.essentialmeds.org/. Accessed August 15, 2021.

5. Ahmad H, Mehta NJ, Manikal VM, et al. Pneumocystis carinii pneumonia in pregnancy. Chest. 2001;120(2):666–671. https://doi.org/10.1378/chest.120.2.666

6. Fukutani Y, Chigusa Y, Kondoh E, Kawasaki K, Io S, Matsumura N. Pneumocystis pneumonia in non-HIV pregnant women receiving chemotherapy for malignant lymphoma: two case reports. Case Rep Obstet Gynecol. 2017;2017:1073146. https://doi.org/10.1155/2017/1073146

7. Panel on Guidelines for the Prevention and Treatment of Opportunistic Infections in Adults and Adolescents with HIV. Guidelines for the Prevention and Treatment of Opportunistic Infections in HIV-infected Adults and Adolescents: Recommendations from the Centers for Disease Control and Prevention, the National Institutes of Health, and the HIV Medicine Association of the Infectious Diseases Society of America. https://clinicalinfo.hiv.gov/sites/default/files/guidelines/documents/Adult_OI.pdf. Accessed March 4, 2021.

8. Czeizel AE, Rockenbauer M, Sorensen HT, Olsen J. The teratogenic risk of trimethoprim-sulfonamides: a population based case-control study. Reprod Toxicol. 2001;15(6):637–646. https://doi.org/10.1016/s0890-6238(01)00178-2

9. Hernandez-Diaz S, Werler MM, Walker AM, Mitchell AA. Folic acid antagonists during pregnancy and the risk of birth defects. N Engl J Med. 2000;343(22):1608–1614. https://doi.org/10.1056/nejm200011303433204

10. Hernandez-Diaz S, Werler MM, Walker AM, Mitchell AA. Neural tube defects in relation to use of folic acid antagonists during pregnancy. Am J Epidemiol. 2001;153(10):961–968. https://doi.org/10.1093/aje/153.10.961

11. Safrin S, Lee BL, Sande MA. Adjunctive folinic acid with trimethoprim-sulfamethoxazole for Pneumocystis carinii pneumonia in AIDS patients is associated with an increased risk of therapeutic failure and death. J Infect Dis. 1994;170(4):912–917. https://doi.org/10.1093/infdis/170.4.912

12. Razavi B, Lund B, Allen BL, Schlesinger L. Failure of trimethoprim/sulfamethoxazole prophylaxis for Pneumocystis carinii pneumonia with concurrent leucovorin use. Infection. 2002;30(1):41–42. https://doi.org/10.1007/s15010-001-1172-0

13. Andersen DH, Blanc WA, Crozier DN, Silverman WA. A difference in mortality rate and incidence of kernicterus among premature infants allotted to two prophylactic antibacterial regimens. Pediatrics. 1956;18(4):614–625.

14. Baskin CG, Law S, Wenger NK. Sulfadiazine rheumatic fever prophylaxis during pregnancy: does it increase the risk of kernicterus in the newborn? Cardiology. 1980;65(4):222–225. https://doi.org/10.1159/000170816

15. Nosten F, McGready R, d’Alessandro U, et al. Antimalarial drugs in pregnancy: a review. Curr Drug Saf. 2006;1(1):1–15. https://doi.org/10.2174/157488606775252584

16. Maldonado YA, Read JS. Diagnosis, treatment, and prevention of congenital toxoplasmosis in the United States. Pediatrics. 2017;139(2):e2016386. https://doi.org/10.1542/peds.2016-3860

17. Wong SY, Remington JS. Toxoplasmosis in pregnancy. Clin Infect Dis. 1994;18(6):853–861; quiz 62. https://doi.org/10.1093/clinids/18.6.853

18. Kuhlmann FM, Fleckenstein JM. 157 – Antiparasitic Agents. In: Cohen J, Powderly WG, Opal SM, eds. Infectious Diseases. 4th ed. Amsterdam: Elsevier; 2017;1345–1372.e2.

19. Goldstein EJC, Montoya JG, Remington JS. Management of Toxoplasma gondii infection during pregnancy. Clin Infect Dis. 2008;47(4):554–566. https://doi.org/10.1086/590149

20. Ely EW, Peacock JE, Jr., Haponik EF, Washburn RG. Cryptococcal pneumonia complicating pregnancy. Medicine. 1998;77(3):153–167. https://doi.org/10.1097/00005792-199805000-00001

For all permissions, rights and reprints, contact David Hughes david.hughes@bioexcelpublishing.com

For all manuscript and submissions enquiries, contact the Editorial office editorial@drugsincontext.com

BioExcel Publishing Limited is registered in England Number 10038393. VAT GB 252 7720 07.
21. Pastick KA, Nalintya E, Tugume L, et al. Cryptococcosis in pregnancy and the postpartum period: case series and systematic review with recommendations for management. Med Mycol. 2020;58(3):282–292. https://doi.org/10.1093/mycol/xyz2084

22. Fluconosine [package insert]. Bridgewater, NJ: Valeant Pharmaceuticals International, Inc.; 2017. https://www.accessdata.fda.gov/drugsatfda_docs/label/2017/017001s032lbl.pdf. Accessed August 15, 2021.

23. Pursley TJ, Blomquist IK, Abraham J, Andersen HF, Bartley JA. Fluconazole-induced congenital anomalies in three infants. Clin Infect Dis. 1996;22(3):336–340. https://doi.org/10.1093/clinids/22.2.336

24. Nahid F, Dorman SE, Alipanah N, et al. Official American Thoracic Society/Centers for Disease Control and Prevention Infectious Diseases Society of America Clinical Practice Guidelines: treatment of drug-susceptible tuberculosis. Clin Infect Dis. 2016;63(7):e147–e195. https://doi.org/10.1093/cid/ciw376

25. El-Messidi A, Czujoj-Shulman N, Spence AR, Abenhaim HA. Medical and obstetric outcomes among pregnant women with tuberculosis: a population-based study of 7.8 million births. Am J Obstet Gynecol. 2016;215(6):797.e1–797.e6. https://doi.org/10.1016/j.ajog.2016.08.009

26. Sugarman J, Colvin C, Moran AC, Oxliade O. Tuberculosis in pregnancy: an estimate of the global burden of disease. Lancet Glob Health. 2014;2(12):e710–e716. https://doi.org/10.1016/s2214-109x(14)70330-4

27. Knight M, Kurinczuk JJ, Nelson-Piercy C, Spark P, Brocklehurst P. Tuberculosis in pregnancy in the UK. BJOG. 2009;116(4):584–588. https://doi.org/10.1111/j.1471-0528.2008.02097.x

28. Nguyen HT, Pandolfini C, Chiodini P, Bonati M. Tuberculosis care for pregnant women: a systematic review. BMC Infect Dis. 2014;14:617. https://doi.org/10.1186/1471-2334-14-617-x

29. Guidelines for Treatment of Tuberculosis, Fourth Edition. Geneva: World Health Organization; 2010. http://whqlibdoc.who.int/publications/2010/9789241547833_eng.pdf. Accessed March 4, 2021.

30. Palacios E, Dallman R, Munoz M, et al. Drug-resistant tuberculosis and pregnancy: treatment outcomes of 38 cases in Lima, Peru. Clin Infect Dis. 2009;48(10):1413–1419. https://doi.org/10.1086/598191

31. Esmail A, Sabur NF, Okpechi I, Dheda K. Management of drug-resistant tuberculosis in special sub-populations including those with HIV co-infection, pregnancy, diabetes, organ-specific dysfunction, and in the critically ill. J Thorac Dis. 2018;10(5):3102–3118. https://doi.org/10.21037/jtd.2018.05.11

32. Nahid P, Mase SR, Migliori GB, et al. Treatment of drug-resistant tuberculosis. An Official ATS/CDC/ERS/IDSA clinical practice guideline. Am J Respir Crit Care Med. 2019;200(10):e93–e142. https://doi.org/10.1164/rcrm.201909-1874ST

33. Bothamley G. Drug treatment for tuberculosis during pregnancy: safety considerations. Drug Saf. 2001;24(7):553–565. https://doi.org/10.2165/00002018-200124070-00006

34. Rohilla M, Joshi B, Jain V, Kalra J, Prasad GR. Multidrug-resistant tuberculosis during pregnancy: two case reports and review of the literature. Case Rep Obstet Gynecol. 2016;2016:1536281. https://doi.org/10.1155/2016/1536281

35. Jaspard M, Elefant-Amoura E, Melonio I, De Montgoffier I, Veziris N, Caumes E. Bedaquiline and linezolid for extensively drug-resistant tuberculosis in pregnant woman. Emerg Infect Dis. 2017;23:1731–1732. https://doi.org/10.3201/eid2310.161398

36. Loveday M, Hughes J, Sunkari B, et al. Maternal and infant outcomes among pregnant women treated for multidrug/rifampicin-resistant tuberculosis in South Africa. Clin Infect Dis. 2021;72:1158–1168. https://doi.org/10.1093/cid/ciaa189

37. Jaspard M, Elefant-Amoura E, Melonio I, De Montgoffier I, Veziris N, Caumes E. Bedaquiline and linezolid for extensively drug-resistant tuberculosis in pregnant woman. Emerg Infect Dis. 2017;23(10):1731–1732. https://doi.org/10.3201/eid2310.161398

38. Pretomanid [package insert]. Hyderabad, India: Mylan Laboratories Limited; 2019. https://www.accessdata.fda.gov/drugsatfda_docs/nda/2019/212862Orig1s000TOC.cfm. Accessed August 15, 2021.

39. Hill WC, Paruolo JB, Giovinco AC. Prophylaxis for tuberculosis during pregnancy: a population-based study of 7.8 million births. Am J Obstet Gynecol. 2019;62(4):846–856. https://doi.org/10.1097/GRF.0000000000000465

40. Moro RN, Scott NA, Vernon A, et al. Exposure to latent tuberculosis treatment during pregnancy. The PREVENT TB and the iAdhere Trials. Ann Am Thorac Soc. 2018;15(5):570–80. https://doi.org/10.1513/AnnalsATS.201704-326OC

41. Fan H, Li L, Wijlaars L, Gilbert RE. Associations between use of macrolide antibiotics during pregnancy and adverse child outcomes: a systematic review and meta-analysis. PLoS One. 2019;14(2):e0212212. https://doi.org/10.1371/journal.pone.0212212

42. Fan H, Gilbert R, O’Callaghan F, Li L. Associations between macrolide antibiotics prescribing during pregnancy and adverse child outcomes in the UK: population based cohort study. BMJ. 2020;368:m331. https://doi.org/10.1136/bmj.m331

43. Aguin TJ, Sobel JD. Vulvovaginal candidiasis in pregnancy. Curr Infect Dis Rep. 2015;17(6):462. https://doi.org/10.1007/s11908-015-0462-0

44. Bett JVS, Batistella EA, Melo G, et al. Prevalence of oral mucosal disorders during pregnancy: a systematic review and meta-analysis. J Oral Pathol Med. 2019;48(4):270–277. https://doi.org/10.1111/jop.12831

45. Berard A, Sheehy O, Zhao JP, et al. Associations between low- and high-dose oral fluconazole and pregnancy outcomes: 3 nested case-control studies. CMAJ. 2019;191(7):E179–E187. https://doi.org/10.1503/cmaj.180963

46. Molgaard-Nielsen D, Svanstrom H, Melbye M, Hviid A, Pasternak B. Association between use of oral fluconazole during pregnancy and risk of spontaneous abortion and stillbirth. JAMA. 2016;315(1):58–67. https://doi.org/10.1001/jama.2015.17844
47. Pilmis B, Jullien V, Sobel J, Lecuit M, Lortholary O, Charlier C. Antifungal drugs during pregnancy: an updated review. *J Antimicrob Chemother*. 2015;70(1):14–22. https://doi.org/10.1093/jac/dku355

48. Zhang Z, Zhang X, Zhou YY, Jiang CM, Jiang HY. The safety of oral fluconazole during the first trimester of pregnancy: a systematic review and meta-analysis. *BJOG*. 2019;126(13):1546–1552. https://doi.org/10.1111/1471-0528.15913

49. Briggs GG, Freeman RK, Towers CV, Forinash AB. Drugs in pregnancy and lactation: a reference guide to fetal and neonatal risk. Eleventh edition. Philadelphia, PA: Wolters Kluwer, 2017.

50. Pappas PG, Kauffman CA, Andes DR, et al. Clinical practice guideline for the management of candidiasis: 2016 update by the Infectious Diseases Society of America. *Clin Infect Dis*. 2016;62(4):e1–e50. https://doi.org/10.1093/cid/ciw933

51. Lewis PO, Khan I, Patel P. Successful stepdown treatment of pulmonary histoplasmosis with thrice-weekly liposomal amphotericin B in a hospital-associated, outpatient infusion centre: a case report. *J Clin Pharm Ther*. 2018;43(2):269–272. https://doi.org/10.1111/jcpt.12609

52. Whitt SP, Koch GA, Fender B, Ratnasamy N, Everett ED. Histoplasmosis in pregnancy: case series and report of transplacental transmission. *Arch Intern Med*. 2004;164(4):454–458. https://doi.org/10.1001/archinte.164.4.454

53. Lewis PO, Khan I, Patel P. Successful stepdown treatment of pulmonary histoplasmosis with thrice-weekly liposomal amphotericin B in a hospital-associated, outpatient infusion centre: a case report. *J Clin Pharm Ther*. 2018;43(2):269–272. https://doi.org/10.1111/jcpt.12609

54. Galgiani JN, Ampel NM, Blair JE, et al. 2016 Infectious Diseases Society of America (IDSA) clinical practice guideline for the treatment of coccidioidomycosis. *Clin Infect Dis*. 2016;63(6):e112–e146. https://doi.org/10.1093/cid/ciw360

55. Nickisch SA, Izquierdo L, Vill MA, Curet L, Wolf GC. Coccidioidal placentitis with normal umbilical artery velocimetry. *Infect Dis Obstet Gynecol*. 1993;1(3):144–148. https://doi.org/10.1155/S10647449930000328

56. Stockamp NW, Thompson GR, 3rd. Coccidioidomycosis. *Infect Dis Clin North Am*. 2016;30(1):229–246. https://doi.org/10.1016/j.idc.2015.10.008

57. Bercovitch RS, Catanzaro A, Schwartz BS, Pappagianis D, Watts DH, Ampel NM. Coccidioidomycosis during pregnancy: a review and recommendations for management. *Clin Infect Dis*. 2011;53(4):363–368. https://doi.org/10.1093/cid/cir410

58. Ho J, Fowler P, Heidari A, Johnson RH. Intrathecal amphotericin B: a 60-year experience in treating coccidioidal meningitis. *Clin Infect Dis*. 2017;64(4):519–524. https://doi.org/10.1093/cid/ciw794

59. Lambert JS. An overview of tickborne infections in pregnancy and outcomes in the newborn: the need for prospective studies. *Front Med (Lausanne)*. 2020;7:72. https://doi.org/10.3389/fmed.2020.00072

60. Whitt SP, Koch GA, Fender B, Ratnasamy N, Everett ED. Histoplasmosis in pregnancy: case series and report of transplacental transmission. *Arch Intern Med*. 2004;164(4):454–458. https://doi.org/10.1001/archinte.164.4.454

61. Waddell LA, Greig J, Lindsay LR, Hinckley AF, Ogden NH. A systematic review on the impact of gestational Lyme disease in thousand prenatal patients. *Clin Infect Dis*. 2011;61(12):375–378. https://doi.org/10.1093/cid/ciu933

62. Lakos A, Solymosi N. Maternal Lyme borreliosis and pregnancy outcome. *Int J Infect Dis*. 2010;14(6):e494–e498. https://doi.org/10.1016/j.ijid.2009.07.019

63. Wormser GP, Dattwyler RJ, Shapiro ED, et al. The clinical assessment, treatment, and prevention of Lyme disease, human granulocytic anaplasmosis, and babesiosis: clinical practice guidelines by the Infectious Diseases Society of America. *Clin Infect Dis*. 2006;43(9):1089–1134. https://doi.org/10.1086/508667

64. Maraspin V, Strle F. How do I manage tick bites and Lyme borreliosis in pregnant women? *Curr Probl Dermatol*. 2009;37:183–190. https://doi.org/10.1159/000213076

65. Dhand A, Nadelman RB, Aguero-Rosenfeld M, Haddad FA, Stokes DP, Horowitz HW. Human granulocytic anaplasmosis during pregnancy: case series and literature review. *Clin Infect Dis*. 2007;45(5):589–593. https://doi.org/10.1086/520659

66. Horowitz HW, Kilchevsky E, Haber S, et al. Perinatal transmission of the agent of human granulocytic ehrlichiosis. *N Engl J Med*. 1998;339(6):367–374. https://doi.org/10.1056/NEJM199808063390604

67. Qasba N, Shamshirsaz AA, Feder HM, Campbell WA, Egan JF, Shamshirsaz AA. A case report of human granulocytic anaplasmosis (ehrlichiosis) in pregnancy and a literature review of tick-borne diseases in the United States during pregnancy. *Obstet Gynecol Surv*. 2011;66(12):788–796. https://doi.org/10.1097/OGX.0b013e318213ed0c

68. Brouqui P, Raoult D. In vitro antibiotic susceptibility of the newly recognized agent of ehrlichiosis in humans, *Ehrlichia chaffeensis*. *Antimicrob Agents Chemother*. 1992;36(12):2799–2803. https://doi.org/10.1128/aac.36.12.2799

69. Smith Sehdev AE, Sehdev PS, Jacobs R, Dumler JS. Human monocytic ehrlichiosis presenting as acute appendicitis during pregnancy. *Clin Infect Dis*. 2002;35(9):e99–e102. https://doi.org/10.1086/342887

70. Abittan B, Nizam A, Oey M, Callan F, Simmonds L, Pachman SL. A case of babesiosis in a pregnant patient treated with red blood cell exchange transfusion. *Case Rep Obstet Gynecol*. 2019;2019:9869323. https://doi.org/10.1155/2019/9869323

71. Saetre K, Godhwani N, Maria M, et al. Congenital babesiosis after maternal infection with *Borrelia burgdorferi* and *Babesia microti*. *J Pediatric Infect Dis Soc*. 2018;7(1):e1–e5. https://doi.org/10.1093/jpids/pix074

72. Centers for Disease Control and Prevention. Babesiosis - Resources for Health Professionals. October 30, 2019. https://www.cdc.gov/parasites/babesiosis/health_professionals/index.html. Accessed March 5, 2021.
73. Sanchez E, Vannier E, Wormser GP, Hu LT. Diagnosis, treatment, and prevention of Lyme disease, human granulocytic anaplasmosis, and babesiosis: a review. JAMA. 2016;315(16):1767–1777. https://doi.org/10.1001/jama.2016.2884

74. Licona-Enriquez JD, Delgado-de la Mora J, Paddock CD, Ramirez-Rodriguez CA, Candia-Plata MDC, Hernandez GA. Rocky Mountain spotted fever and pregnancy: four cases from Sonora, Mexico. Am J Trop Med Hyg. 2017;97(3):795–798. https://doi.org/10.4269/ajtmh.16-0917

75. Stallings SP. Rocky Mountain spotted fever and pregnancy: a case report and review of the literature. Obstet Gynecol Surv. 2001;56(1):37–42. https://doi.org/10.1097/00006254-200101000-00023

76. Breitschwerdt EB, Davidson MG, Aucoin DP, et al. Efficacy of chloramphenicol, enrofloxacin, and tetracycline for treatment of experimental Rocky Mountain spotted fever in dogs. Antimicrob Agents Chemother. 1991;35(11):2375–2381. https://doi.org/10.1128/ AAC.35.11.2375

77. Herbert WN, Seeds JW, Koontz WL, Cefalo RC. Rocky Mountain spotted fever in pregnancy: differential diagnosis and treatment. South Med J. 1982;75(9):1063–1066. https://doi.org/10.1097/00007611-198209000-00008

78. Dalton MJ, Clarke MJ, Holman RC, et al. National surveillance for Rocky Mountain spotted fever, 1981–1992: epidemiologic summary and evaluation of risk factors for fatal outcome. Am J Trop Med Hyg. 1995;52(5):405–413. https://doi.org/10.4269/ajtmh.1995.52.405

79. Breitschwerdt EB, Papich MG, Hegarty BC, Gilberger, Hancock SI, Davidson MG. Efficacy of doxycycline, azithromycin, or trovafloxacin for treatment of experimental Rocky Mountain spotted fever in dogs. Antimicrob Agents Chemother. 1999;43(4):813–821. https://doi.org/10.1128/AAC.43.4.813

80. Cross R, Ling C, Day NP, McGready R, Paris DH. Revisiting doxycycline in pregnancy and early childhood—time to rebuild its reputation? Expert Opin Drug Saf. 2016;15(3):367–82. https://doi.org/10.1080/1471-0528.2016.1133584

81. Bialas KM, Swamy GK, Permar SR. Perinatal cytomegalovirus and varicella zoster virus infections: epidemiology, prevention, and toxoplasmosis in pregnancy. Obstet Gynecol Surv. 2015;70(9):475–490. https://doi.org/10.1097/ogx.0000000000000386

82. Rawlinson WD, Hamilton ST, van Zuylen WJ. Update on treatment of cytomegalovirus infection in pregnancy and of the newborn with congenital cytomegalovirus. Curr Opin Infect Dis. 2016;29(6):615–624. https://doi.org/10.1097/qco.0000000000000317

83. Rawlinson WD, Hamilton ST, van Zuylen WJ. Update on treatment of cytomegalovirus infection in pregnancy and of the newborn with congenital cytomegalovirus. Curr Opin Infect Dis. 2016;29(6):615–624. https://doi.org/10.1097/qco.0000000000000317

84. Roxy AC, Atkinson C, Asbjorsdottir K, et al. Maternal valacyclovir and infant cytomegalovirus acquisition: a randomized controlled trial among HIV-infected women. PLoS One. 2014;9(2):e87855. https://doi.org/10.1371/journal.pone.0087855

85. Roxy AC, Atkinson C, Asbjorsdottir K, et al. Maternal valacyclovir and infant cytomegalovirus acquisition: a randomized controlled trial among HIV-infected women. PLoS One. 2014;9(2):e87855. https://doi.org/10.1371/journal.pone.0087855

86. Rawlinson WD, Hamilton ST, van Zuylen WJ. Update on treatment of cytomegalovirus infection in pregnancy and of the newborn with congenital cytomegalovirus. Curr Opin Infect Dis. 2016;29(6):615–624. https://doi.org/10.1097/qco.0000000000000317

87. Roxy AC, Atkinson C, Asbjorsdottir K, et al. Maternal valacyclovir and infant cytomegalovirus acquisition: a randomized controlled trial among HIV-infected women. PLoS One. 2014;9(2):e87855. https://doi.org/10.1371/journal.pone.0087855

88. Roxy AC, Atkinson C, Asbjorsdottir K, et al. Maternal valacyclovir and infant cytomegalovirus acquisition: a randomized controlled trial among HIV-infected women. PLoS One. 2014;9(2):e87855. https://doi.org/10.1371/journal.pone.0087855

89. Roxy AC, Atkinson C, Asbjorsdottir K, et al. Maternal valacyclovir and infant cytomegalovirus acquisition: a randomized controlled trial among HIV-infected women. PLoS One. 2014;9(2):e87855. https://doi.org/10.1371/journal.pone.0087855
97. Revello MG, Lazzarotto T, Guerra B, et al. A randomized trial of hyperimmune globulin to prevent congenital cytomegalovirus. *N Engl J Med*. 2014;370(14):1316–1326. https://doi.org/10.1056/NEJMoa1310214

98. Buxmann H, Hamprecht K, Meyer-Wittkopf M, Friese K. Primary human cytomegalovirus (HCMV) infection in pregnancy. *Dtsch Arztebl Int*. 2017;114(4):45–52. https://doi.org/10.3238/arztebl.2017.0045

99. Loewen PS, Marra CA, Marra F. Systematic review of the treatment of early Lyme disease. *Drugs*. 1999;57(2):157–173. https://doi.org/10.2165/00003495-199957020-00003

100. Macy E. Penicillin skin testing in pregnant women with a history of penicillin allergy and group B streptococcus colonization. *Ann Allergy Asthma Immunol*. 2006;97(2):164–168. https://doi.org/10.1016/S1081-1206(10)60007-5