Genetic diversity and phylogeographic structure of Bactrian camels shown by mitochondrial sequence variations

L. Ming*, L. Yi*, R. Sa*, Z. X. Wang*, Z. Wang† and R. Ji‡

*Key Laboratory of Dairy Biotechnology and Bioengineering, Ministry of Education, College of Food Science and Engineering, Inner Mongolia Agricultural University, 010018 Hohhot, Inner Mongolia, China. †Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Chinese Academy of Sciences, 200031 Shanghai, China. ‡Camel Research Institute of Inner Mongolia, 737300 Alashan, Inner Mongolia, China.

The Bactrian camel includes various domestic (Camelus bactrianus) and wild (Camelus ferus) breeds that are important for transportation and for their nutritional value. However, there is a lack of extensive information on their genetic diversity and phylogeographic structure. Here, we studied these parameters by examining an 809-bp mtDNA fragment from 113 individuals, representing 11 domestic breeds, one wild breed and two hybrid individuals. We found 15 different haplotypes, and the phylogenetic analysis suggests that domestic and wild Bactrian camels have two distinct lineages. The analysis of molecular variance placed most of the genetic variance (90.14%, \(P < 0.01\)) between wild and domestic camel lineages, suggesting that domestic and wild Bactrian camel do not have the same maternal origin. The analysis of domestic Bactrian camels from different geographical locations found there was no significant genetic divergence in China, Russia and Mongolia. This suggests a strong gene flow due to wide movement of domestic Bactrian camels.

Keywords Camelus bactrianus, Camelus ferus, mitochondrial DNA, phylogeography
genetic diversity and phylogeography of Bactrian camel populations.

Blood or ear samples from 92 domestic Bactrian camels (Camelus bactrianus) representing 11 domestic breeds were collected from China, Mongolia and Russia (Fig. 1, Table S1). Ear samples were collected from 19 wild Bactrian camels (Camelus ferus) and two hybrid Bactrian camel samples in the Gobi-Altai province of Mongolia (Fig. 1).

Total genomic DNA was extracted from ear samples using a standard phenol–chloroform extraction method and from blood samples using a QIAmp DNA kit (Qiagen). Detailed information on the breeds, geographic regions and sample sizes is given in Table 1. In all, 809 bp of mtDNA (nucleotides 15120–15928; accession no. NC_009628.2) from 113 individuals were sequenced in both directions with two overlapping primer pairs (Silbermayr et al. 2010) on a MegaBACE 1000 sequencing system. The amplicons were aligned to reference sequence NC_009628.2 using CODONCODE ALIGNER (version 3.0.2).

Sequences of the partial mtDNA were aligned using MEGA (version 6.0.6) (Kumar et al. 2001). To investigate the comparison research, 23 sequences of mtDNA fragment—six sequences from wild Bactrian camels (EF507800, EF507801, FJ792684, FJ792685, NC_009629 and EF212038) and 17 sequences from domestic Bactrian camels (EF507798, EF507799, EF212037, FJ792680–FJ792683, KF640722–KF640727, KF640729–KF640731 and NC_009628)—were also aligned using the MEGA program.

The parameters of the mitochondrial polymorphisms were computed using DNASP (version 5.1.0) (Librado & Rozas 2009), including nucleotide diversity (\(\pi \)), the number of haplotypes, haplotype diversity (Hd) and its standard error (SE). A median-joining network (Bandelt et al. 1999) was drawn using the program NETWORK (version 4.6.1) to investigate possible relationships among the haplotypes. Phylogenetic trees were constructed using the neighbour-joining method (Saitou & Nei 1987). The analysis of molecular variance (AMOVA) (ExcoYer et al. 1992) was computed using integrated software for population genetics data analysis (ARLEQUIN, version 3.5.2) (Excoffier et al. 2007).

The analysis of 809-bp mtDNA sequences in 113 Bactrian camels yielded 25 variable positions defining 15 different haplotypes (Table S2). These haplotypes included six previously described haplotypes (H1–H3, H6, H14 and H15; Silbermayr et al. 2010) and nine new ones (H4, H5, H7–H13; sequences deposited under accession nos. KX377598–KX377606). The largest haplotype group (H1) consisted of 41 individuals, and four haplotype groups (H1, H2, H3 and H14) included more than 10 individuals.

In the domestic Bactrian camel populations, the number of haplotypes detected in each domestic breed varied from two to six, and the haplotype diversity values ranged from 0.9000 ± 0.1610 in the Zhungeer to 0.5110 ± 0.1640 in the Alashan (Table 1). The level of nucleotide diversity (\(\pi = 0.00106 \)) and haplotype diversity (Hd = 0.429 ± 0.089) of all the wild Bactrian camels were both lower than that of domestic Bactrian camels (\(\pi = 0.00207, \text{Hd} = 0.739 ± 0.035; \) Table S2). The nucleotide diversity (\(\pi = 0.0072 \)) and haplotype diversity (Hd = 0.808 ± 0.025) of all the Bactrian camels in this study were calculated.

A variation was found in mtDNA among camels from China, Russia and Mongolia. The level of nucleotide diversity and haplotype diversity within Mongolia (\(\pi = 0.0026, \text{Hd} = 0.796 ± 0.048 \)) were slightly higher than that of camels from China (\(\pi = 0.0019, \text{Hd} = 0.719 ± 0.048 \)) and Russia (\(\pi = 0.0017, \text{Hd} = 0.722 ± 0.159 \)).

Furthermore, we combined previously published sequences of Bactrian camel mtDNA fragment with 23 sequences in our data. The analysis showed 25 haplotypes in all 136 sequences, and the levels of nucleotide and haplotype diversity were 0.00897 and 0.972 ± 0.013, respectively.

A neighbour-joining phylogenetic tree was constructed to investigate the relationship between the 15 Bactrian camel mtDNA haplotypes (Fig. 2). The result clearly showed that all Bactrian camels were divided into two distinct lineages.
A and B. Lineage A included 13 haplotypes from all domestic individuals, and Lineage B included two haplotypes from all wild and hybrid individuals. Furthermore, we combined previously published sequences from six wild Bactrian camels and 17 domestic Bactrian camels with our data to construct a phylogenetic tree using the dromedary camel (\textit{Dromedary camelus}) as the outgroup (accession no. NC_009849.1) (Fig. S1). The result also supported the above statement and indicated that the wild and domestic Bactrian camel did not share a recent common ancestor and may have a long-term divergence in their maternal origins. This is in agreement with a previous study that showed that the extant wild and domestic Bactrian camel had different maternal origins (Ji et al. 2009).

The two distinct lineages were also identified using a median-joining network method with 25 haplotypes from 136 sequences (Fig. S2). The 23 haplotypes of domestic Bactrian camels showed that breeds from different geographic regions intermingled. Some haplotypes were shared by individuals of different breeds from different geographical regions. In domestic Bactrian camels, all of the three main haplotypes—H1, H2 and H3—were found to comprise Chinese, Russian and Mongolian Bactrian camels. Haplotypes specific to a geographic region were also found. However, these region-specific haplotypes accounted for only a small proportion of our samples (6.2%).

We performed several AMOVA to investigate geographical structuring. AMOVA analysis placed most of the genetic variance (90.14%, \(P < 0.01 \)) between the wild and domestic camel clusters and little variance within the clusters (9.86%, \(P < 0.01 \)). This result is similar to that from a previous study (95.64% and 4.36% respectively; Silbermayr et al. 2010).

In conclusion, the domestic Bactrian camel and wild Bactrian camel evolved as two distinct lineages, and it is suggested that they do not have the same maternal origins. The wild Bactrian camels displayed lower levels of nucleotide diversity and haplotype diversity, which may be due to the extremely small effective population size of the wild Bactrian camel. In addition, there was no significant geographical structuring among domestic Bactrian camels, and these results imply that gene flow and genetic admixture may exist between these domesticated Bactrian camels from different geographic regions.

Acknowledgements

This work was supported by grants from the International S & T Cooperation Program of China (2015DFR30680, ky201401002) and the National Natural Science Foundation of China (31360397). We would like to thank the native English speaking scientists of Elixigen Company (Huntington Beach, CA, USA) for editing our manuscript.

References

Bandelt H., Forster P. & Rohl A. (1999) Median joining networks for inferring intraspecific phylogenies. \textit{Molecular Biology and Evolution} 16, 37–48.

Chen S.-Y., Su Y.H., Wu S.-F. & Zhang Y.P. (2005) Mitochondrial diversity and phylogeographic structure of Chinese domestic goats. \textit{Molecular Phylogenetics and Evolution} 37, 804–14.
Chuluunbat B., Charruau P., Silbermayr K., Khorlojav T. & Burger P. (2014) Genetic diversity and population structure of Mongolian domestic Bactrian camels (Camelus Bactrianus). Animal Genetics 45, 550–8.

Dorvchinderj G., Mijiddorj B. & Adiya Y. (2006) Population ecology of the wild camel in Mongolia. In: Proceedings of the International Workshop on Conservation and Management of the Wild Bactrian Camel (Ed. by Y. Adiya, B. Lhagvasuren & A. Bayasgalan), pp. 24–8. Ulaanbaatar, Mongolia.

Excoffier L., Laval G. & Schneider S. (2007) ARLEQUIN (version 3.0): An integrated software package for population genetics data analysis. Evolutionary Bioinformatics Online 23, 47–50.

ExcoYer L., Smouse P.E. & Quattiro J.M. (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131, 479–91.

Hare J. (1997) The wild Bactrian camel (Camelus Bactrianus ferus) in China: the need for urgent action. Oryx 31, 45–8.

Isani G.B. & Baloch M.N., Arab Centre for the Studies of Arid Zones and Dry Lands, Pakistan Ministry of Food, Agriculture and Livestock & and Camel Applied Research and Development Network. (2000) Camel Breeds of Pakistan (CARDN-Pakistan/ ACSIAD/P 94/2000). Arab Centre for the Studies of Arid Zones and Dry Lands, Damascus, Syria.

Ji R., Cui P., Ding F., Gao H., Zhang H., Ju J., Hu S. & Meng H. (2009) Monophyletic origin of domestic Bactrian camel (Camelus Bactrianus) and its evolutionary relationship with the extant wild camel (Camelus Bactrianus ferus). Animal Genetics 40, 377–82.

Ji R., GangLiang C. & Zhenyu Y. (2009) The Bactrian camel and Bactrian camel milk. Chinese Light Industry Press, China, 9–12 pp.

Kumar S., Tamura K., Jakobsen I.B. & Nei M. (2001) MEGA2: molecular evolutionary genetics analysis software. Bioinformatics 17, 1244–5.

Lai S.J., Liu Y.P., Liu Y.X., Li X.W. & Yao Y.G. (2006) Genetic diversity and origin of Chinese cattle revealed by mtDNA D-loop sequence variation. Molecular Phylogenetics and Evolution 38, 146–54.

Librado P. & Rozas J. (2009) DNASP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25, 1451–2.

Mirzaei F. (2012) Production and trade of camel products in some Middle East countries. Journal of Agricultural Economics and Development 1, 153–60.

Moqaddam E. & Namaz-Zadeh K.P. (1998) An introduction to various breeds of camel in Iran. Mazraeh (Farm): Analytical and Educational Magazine 11, 73–8.

Reading R.P., Blümmer E.S., Mix H. & Adiya Y. (2005) Wild Bactrian camel conservation. Erforschung Biologischer Ressourcen der Mongolei (Halle/Saale) 9, 91–100.

Saipolda T. (2004) Mongolian camels. In: Current Status of Genetic Resources. Recording and Production Systems in African, Asian and American Camelids, Proceedings of the ICAR/FAO Seminar Held in Sousse, Tunisia, 30 May 2004 (ICAR Technical series No. 11) (Ed. by R. Cardellino, A. Rosati & C. Mosconi), pp. 73–9. ICAR, Rome, Italy.

Supporting information

Additional supporting information may be found online in the supporting information tab for this article:

Figure S1 Neighbor-joining tree of wild and domestic Bactrian camel haplotypes based on 809 bp of the mtDNA. Haplotypes are grouped in two main lineages (lineage A and lineage B), each showing subgrouping.

Figure S2 Median-joining network of 25 mtDNA haplotypes of domestic and wild Bactrian camels. The area of each circle is proportional to haplotype frequency.

Table S1 Details of the Bactrian camels used for mitochondrial (mtDNA) haplotypes.

Table S2 Variable nucleotides from 809-bp mitochondrial DNA camel fragments of Bactrian haplotypes compared with reference sequences from GenBank accession no. NC_009628.2.