Durability Study of Concrete Using Foundry Waste Sand

Gopinath . S\(^1\), Lavanya Devi . S\(^2\), Naveen . C\(^3\), Arun . M\(^4\)

\(^1\)Post Graduate Student, \(^2\)Post Graduate Student, \(^3\)Assistant Professor
\(^1,2,3\)Mahendra Engineering College, Namakkal, Tamil Nadu

Abstract
In view of normally extending measures of waste materials and present day results, solid waste organization is the prime concern on the planet. Lack of land-consuming space and because of its consistently extending cost, reusing and utilization of mechanical results and waste materials has become a charming proposal to expulsion. One such present day result is Waste Foundry Sand (WFS). WFS are critical result of metal anticipating industry and adequately used as a land filling material for quite a while. Regardless, use of waste foundry sand (WFS) for land filling is transforming into an issue in light of fast augmentation in evacuation cost. In India, around 1.71 million tons of waste foundries are conveyed yearly. This test assessment was performed to survey the quality and quality properties of M20 assessments of concrete mixes, in which customary sand was most of the way displaced with waste foundry sand (WFS). Typical sand was replaced with five rates (0%, 5%, 10%, 15% and 20%) of WFS by weight. An aggregate of ten strong mix degrees M - 1, M - 2, M-3 and M-4 for M20 assessment of concrete with and without WFS were made. Weight test, separating inflexibility test and modulus of adaptability were done to survey the quality properties of concrete at 7 years of age and 28 days.

Keywords
Compressive strength, Partial replacement, Recycling, Split tensile strength, Sustainable concrete, Waste foundry sand

I. Introduction
The industrial by-products which have been disposed earlier are now being considered for beneficial use. Beneficial use can reduce our nation's carbon production and consumption of virgin material and result in economic gains. It is an essential component of the nation’s definite waste management hierarchy that promotes source reduction and waste prevention followed by reuse, recycling, energy recovery, and disposal. Researches worldwide are focusing on ways of utilizing either industrial or agricultural wastes as a source of raw materials for the industry. This waste utilization would be economical and may also result in foreign exchange earnings and environmental pollution control. The industrial process’s utilization of industrial and agricultural waste has focused on waste reduction research for economic, technical, and ecological reasons. This is because over 300 million tons of industrial wastes are being produced annually by India’s agricultural and industrial processes. The problem arising from continuous technological and industrial development is the disposal of waste material. If some of the waste materials are found suitable in the concrete making, the cost of construction can be cut down, and safe disposal of waste material can be achieved. The cement of high strength concrete is generally high, which often leads to higher shrinkage and more significant evaluation of neat hydration than the increase in cost. Partial substitution of cement by industrial waste is economical and improves the properties of fresh and hardened concrete and enhances the durability characteristics besides the safe disposal of waste material, thereby protecting the environment from pollution. This paper deals with the partial replacement of fine aggregate with the industrial waste from China Clay industries. The compressive strength, split tensile strength and flexural strength of conventional concrete and fine aggregate replaced concrete are compared, and the results are tabulated.

Scope of Investigation
In this examination, the degree of adventure report will be based on fine all out using foundry sand. Before the extra discussion, it will be more astute to have data and a clear understanding of the foundry sand and its properties and shows. Foundry sand is one of the complete to be used in concrete, other than standard sand. Metal foundries use a great deal of sand as an element of the metal anticipating cycle. Foundries adequately reuse and reuse the sand, usually in a foundry. Right when the sand can never again be reused in the foundry, it is disposed of from the foundry and is named "foundry sand." Foundry sand creation is very nearly 6 to 10 million tons yearly. Similarly, as the opposite results, foundry sand has productive applications for various undertakings.
II. Methodology

Composing related to robust energy material has been accumulated to think about the past works and proposed to continue. Energy capable material to be used in this work has been picked. Material properties of life compelling solid, M sand and coarse all out are settled. The IS procedure arranged the mix. The process of work appears in the figure.

Experimental Program

Composing related to robust energy material has been accumulated to think about the past works and proposed to continue. Energy capable material to be used in this work has been picked. Material properties of life potent solid, M sand, and coarse absolute are settled. The IS technique arranged the mix. The strategy of work has appeared in the figure.

Cement

Physical Properties	BIS-1489:1991	Test Result
Soundness Le-chat expansion	10.0 Max	1.6
Setting time (mm)		
Initial	30 Min.	92
Final	600 Max	248
Compressive Strength (MPa)		
3 day	16	18
7 day	22	36
28 day	33	47.8
Specific gravity		3.15
Standard Consistency (%)		35%
Drying shrinkage (%)	0.15 Max	0.024
Fine Aggregates

Table 2 Physical Properties of Fine Aggregate

Sl.No.	Properties	Observed values
1.	Bulk Density (Loose), kg/m³	1690
2.	Bulk Density (Compacted), kg/m³	1890
3.	Specific Gravity	2.72
4.	Water Absorption (%)	1.2
5.	Moisture content (%)	0.16
6.	Material finer than 75µ (%)	0.5

Coarse Aggregates

Crushed stone with maximum 12.5mm graded aggregates (nominal size) were used. Locally available well graded granite aggregates of normal size greater than 4.75 mm and less than 16mm having fineness modulus of 2.72 was used as coarse aggregates. Physical properties results are given in Tables 2.3

Table 3 Physical Properties of Coarse Aggregates

Properties	Observed values
Maximum size (mm)	12.5
Bulk Density (kg/m³)	1650
Specific Gravity	2.7
Total Water Absorption (%)	1.14
Moisture content (%)	Nil

Foundry Sand

Type of Waste Foundry Sand

Classifications of foundry sand mainly depend primarily upon the type of binder and binder system used in metal casting. There are two types of foundry sand; Green sand (clay bonded) and chemically bonded

Physical Properties

Foundry sand is typically sub angular to rounded in shape. After being used in the foundry process, a significant number of sand agglomerations. Form (Figure 2.1). When these are broken down, the shape of the individual sand grains is apparent.

Figure 1 Unprocessed foundry sand
Table 4 Physical Properties of Foundry Sand

Sr. No.	Properties	Observed Values
1.	Color	Grey (Blackish)
2.	Bulk Density (Loose), kg/m³	1336
3.	Bulk Density (Compacted),	1638
4.	Specific Gravity	2.52
5.	Fineness Modulus	1.89
6.	Water absorption (%)	0.42
7.	Moisture Content (%)	0.11
8.	Material Finer than 75µ (%)	8

Casting of Specimens

All the examples were projected having blend extents. For these blend extents, the required amounts of materials were gauged. The blending method embraced was as follows: The concrete and foundry sand was dry blended in a plate for around 5 minutes. A uniform tone was acquired with no bunches of concrete, foundry sand. Weighed amounts of coarse totals and sand were then blended in the dry state. The blend of concrete and foundry sand was added to the mix of coarse aggregates and sand, and these were entirely combined until a homogeneous mixture was acquired. Water was then included.

Metal molds were coordinated oil was applied for basic Demoulding of model materials were checked by the mixed extent and were hand mixed in the solicitation for coarse aggregate, M Sand and cement. They were diverse in dry structure from the start, and after that, water was added to make it a wet mix. After mixing, the strong was moved to the cubical molds set fair and square surface and were hand compacted concrete was set in three layers, and each layer was compacted.

Compressive Strength

Table 4.1 Compressive Strength Test Results

Mix Proportion	Mix Designation	Average Compressive Strength (N/mm²)	
		7 Days	28 Days
Concrete mix with 100% CA+100% cement+0% WFS+100%FA	FS-0%	19.96	23.80
Concrete mix with 100% CA+100% cement+5% WFS+95%FA	FS-5%	22.4	20.6
Concrete mix with 100% CA+100% cement+10% WFS+90%FA	FS-10%	23.3	22.6
Concrete mix with 100% CA+100% cement+15% WFS+85%FA	FS-15%	25.3	26
Concrete mix with 100% CA+100% cement+20% WFS+80%FA	FS-20%	24.8	23.3
Split Tensile Strength

Table 4.2 Result of Split tensile Strength M20 at 7 and 28 days

Mix Type F.S	Split tensile Strength (N/mm²)	
	7days	28days
M-1 (0% F.S)	2.15	4.23
M-2 (5% F.S)	2.26	4.57
M-3 (10% F.S)	2.38	4.76
M-4 (15% F.S)	2.50	4.77
M-5 (20% F.S)	2.59	4.56

Effect of Age on Splitting Tensile Strength

Effect of age on splitting tensile strength of M20 Grade concrete mixes are shown in Fig. 4.2. Splitting tensile strength of all concrete mixes increased with age.
Modulus of Elasticity

Effect of WFS on modulus of elasticity of concrete at the age of 7 and 28 days are shown in Table 4.3.

Table 4.3 Result of Modulus of Elasticity M20 at 7 and 28 days

Mix Type F.S	Modulus of elasticity (N/mm²)	
	7 days	28 days
M-1(0% F.S)	20.5	23.0
M-2(5% F.S)	21.1	24.1
M-3(10% F.S)	21.3	24.5
M-4(15% F.S)	21.9	25.2
M-5(20% F.S)	21.5	24.1

Effect of age on modulus of elasticity

III. Conclusion

Considering the above assessment, the going with closes are made concerning the properties and direct of concrete on inadequate replacement of fine complete by using waste foundry sand: Waste foundry sand can be sufficiently used as adequate all out rather than regularly stream sand in concrete. Compressive quality additions on the increase in waste foundry sand as a difference with ordinary concrete. In this assessment, more compressive quality is procured at a 15% replacement of fine all out by waste foundry sand. Split inflexibility increases with an increase in some degree of waste foundry sand and there after it reduces. Use of waste foundry sand in solid abatements makes waste through metal endeavors; for instance, it's an eco-obliging structure material. The issues of discarding and upkeep cost of landfilling is restricted. Application of this examination manual for make being developed division and inventive structure material. The result for 15% replacement of waste foundry sand shows that the firm produces is a proficient, conservative, and excellent concrete.

IV. References

1. American Foundry men’s Society. Alternative utilization of foundry waste sand. Final Report (Phase I) prepared by American Foundry men's Society Inc. for Illinois Department of Commerce and Community Affairs, Des Plaines, Illinois, 1991.
2. Sudharan, N. & Saravanaganesh, S. (2019). Feasibility studies on waste glass powder. International Journal of Innovative Technology and Exploring Engineering, 8(8), 1644–1647.
3. Vidhya, K., & Kandasamy, S. (2013). Study on properties of bricks manufactured using fly ash and pond ash. Pollution Research, 32(2), 405–409.
4. Sudharsan, N., & Grant, B. C. J. (2018). Comparison of static response of laced reinforced concrete beams with conventional reinforced concrete beams by numerical investigations. International Journal of Civil Engineering and Technology, 9(8), 700–704.
5. Abichou T., Benson CH., EdilTB., Freber BW. Use of waste foundry sand in hydraulic barrier ASCE American Society of Civil Engineers, Geotechnical Special publication 1998; 79:86–99.
6. Vidhya, K., & Kandasamy, S. (2016). Experimental Investigations on the Properties of Coal-Ash Brick Units as Green Building Materials. International Journal of Coal Preparation and Utilization, 36(6), 318–325.
7. Aggarwal P, Aggarwal Y, Gupta S M. Effect of bottom ash as replacement of fine aggregate in concrete. Asian Journal of Civil Engineering 2007; 8(1):49-62.
8. Agarwal SK. Utilization of industrial waste and unprocessed micro-fillers for making cost effective mortars. Construction and Building Materials 2006; 20:999-1004.
9. ASTM 1202 C-97. Standard test method for electrical induction of concrete’s ability to resist chloride ion penetration, American Society for Testing and Materials International.
10. ASTM C 597-93. Standard test method for pulse velocity through concrete. American Society for Testing and Materials International, West Conshohocken.
11. Sudharsan, N., Palanisamy, S. C. Yaragal, (2018), Environmental sustainability of waste glass as a valuable construction material - A critical review. Ecology, Environment and Conservation, 24 pp. S331–S338.
12. ASTM C 672/C 672M-98. Standard test method for scaling resistance of concrete surface exposed to deicing chemical, American Society for Testing and Materials International, West Conshohocken.
13. Sudharsan, N., & Palanisamy, T. (2018). A comprehensive study on potential use of waste materials in brick for sustainable development. Ecology, Environment and Conservation, 24, S339–S343.
14. ASTM C 3301. Standard specification of concrete aggregate American Society for Testing and Materials International, West Conshohocken.
15. Basheer P.A.M. Permeability tests for assessing the durability of concrete, Ph.D. Thesis, The Queen’s University of Belfast 1991; 438.
16. Basar HM, Aksoy ND. The effect of waste foundry sand (wfs) as partial replacement of sand on the mechanical, leaching and micro-structural characteristics of ready-mixed concrete. Construction and Building Materials 2012; 35:508-515.
17. Vidhya, K., & Kandasamy, S. (2014). Study on the flexural strength of coal ash brick masonry wall elements. Journal of Structural Engineering (India), 41(4), 410–419.
18. Sudharsan, N, & Sivalingam, K. (2019). Potential utilization of waste material for sustainable development in construction industry. International Journal of Recent Technology and Engineering, 8(3), 3435–3438.
19. Braham A. The use of blended recycled foundry sand in hot mix asphalt. Interim Report, University of Wisconsin – Madison, Asphalt Research Group 2002.