Abstract. We develop a general approach to compute the symmetry-resolved Rényi and von Neumann entanglement entropies (SREE) of thermodynamic macrostates in interacting integrable systems. Our method is based on a combination of the thermodynamic Bethe ansatz and the Gärtner–Ellis theorem from large deviation theory. We derive an explicit simple formula for the von Neumann SREE, which we show to coincide with the thermodynamic Yang–Yang entropy of an effective macrostate determined by the charge sector. Focusing on the XXZ Heisenberg spin chain, we test our result against iTEBD calculations for thermal states, finding good agreement. As an application, we provide analytic predictions for the asymptotic value of the SREE following a quantum quench.

Keywords: entanglement in extended quantum systems, integrable spin chains and vertex models, quantum quenches, thermodynamic Bethe ansatz
1. Introduction

In the past two decades, the study of different measures of quantum entanglement, such as the von Neumann and Rényi entropies [1], has revolutionized our understanding of many-body systems, with ramifications ranging from high energy physics to the theory of critical and non-equilibrium phenomena [2–6]. Entanglement entropies play in particular a crucial role in the emergence of thermodynamics in isolated many-body systems out of equilibrium [7–10], as recently demonstrated by beautiful experiments in cold-atom settings [11–13]. For example, in the framework of quantum quenches [14], the generic growth and late-time saturation of entanglement measures correspond to the emergence of a local stationary mixed state [15–18].

The connections between entanglement and thermodynamics can be studied very explicitly in one-dimensional integrable systems [19], which are very useful toy models with an extensive number of local conservation laws. As a defining feature, their Hamiltonian can be diagonalized analytically, with the corresponding energy spectrum admitting an intuitive description in terms of stable quasiparticle excitations. It has been known for a long time that their macrostates are fully described by the corresponding distribution function of quasiparticle quasimomenta [20], in analogy to non-interacting quantum gases. For example, at thermal equilibrium the system entropy is given by the Yang–Yang entropy [21], a simple functional of such distribution functions [20]. As an important milestone, it has been recently realized that a similar description also holds out of equilibrium. In particular, in an appropriate scaling limit, the entanglement dynamics after a quench can be captured by a semiclassical formula featuring the

https://doi.org/10.1088/1742-5468/ac7a2d
Yang–Yang entropy corresponding to the post-quench stationary state \cite{10, 22–24} combined with the quasiparticle picture of entanglement spreading \cite{25}. While not yet proven in general, this formula has been numerically tested in a number of cases \cite{10, 24, 26–29}, and derived analytically in non-interacting systems \cite{22}, as well as in certain integrable quantum cellular automata \cite{30–32}.

More recently, the interplay between entanglement entropies and symmetries has attracted increasing theoretical \cite{33–36} and experimental \cite{37, 38} interest, with a lot of work being devoted to the study of symmetry-resolved entanglement entropies (SREE). Most of the existing literature has so far focused on ground-state physics in various theoretical contexts, such as conformal field theories \cite{34, 35, 39–49}, free \cite{50, 51} and interacting integrable quantum field theories \cite{52–54}, holographic settings \cite{55–58}, spin chains \cite{59–72}, disordered systems \cite{73–76} and non-trivial topological phases \cite{77–82}. On the other hand, only a few results have been derived for thermal states \cite{49} and out-of-equilibrium situations \cite{37, 83–86}.

In the context of quantum quenches, Parez et al \cite{83, 84} derived analytic results for the dynamics of the SREE following a quench in non-interacting fermionic systems, and showed how quantitative predictions could be obtained generalizing the quasiparticle picture developed for the standard entanglement dynamics \cite{22}. While extending the exact microscopic calculations to interacting integrable models appears to be out of reach, one could wonder whether it is possible to generalize the semiclassical formula beyond the non-interacting regime, thus obtaining a conjecture for the SREE analogous to that of \cite{10} for the standard entanglement entropy.

A first step in this direction is to compute the SREE for the post-quench stationary state. Assuming the validity of the generalized Gibbs ensemble (GGE) \cite{17, 18}, this amounts to understanding how the SREE of a generic macrostate can be related to the corresponding distribution function of quasiparticle quasimomenta. Indeed, in the case of the standard entanglement entropy, the identification of the latter with the Yang–Yang entropy played a crucial role for the heuristic derivation of the formula put forward in \cite{10}.

Motivated by these discussions, in this work we develop a general approach to compute the symmetry-resolved Rényi and von Neumann entanglement entropies of thermodynamic macrostates in interacting integrable systems. For concreteness, we will focus on the prototypical example of the \textit{XXZ} Heisenberg spin chain, although our method can be clearly extended to any Bethe ansatz integrable model. Our approach is based on a combination of the thermodynamic Bethe ansatz (TBA) \cite{20} and the Gärtner–Ellis theorem from large deviation theory \cite{87}. As our main result, we will show that the von Neumann SREE coincides with the Yang–Yang entropy of an effective macrostate determined by the charge sector.

The rest of this work is organized as follows. In section 2 we define the symmetry-resolved Rényi and von Neumann entanglement entropies. In section 3 we introduce the \textit{XXZ} Heisenberg spin chain and review its description in terms of the TBA. Next, in section 4 we discuss how the SREE can be obtained in terms of certain rate functions within large deviation theory and show that the TBA can be conveniently used to explicitly compute them. Finally, in section 5, we present two applications of this
formalism, presenting results for the SREE of thermal states and GGEs corresponding to a quench from tilted Néel states. Our conclusions are consigned to section 6.

2. Symmetry resolved entanglement entropies

Let us begin by reviewing the definitions of symmetry-resolved Rényi and von Neumann entanglement entropies. We consider a system with a $U(1)$-charge operator \hat{Q}, in a given state described by the density matrix ρ. Denoting by A, \bar{A} a spatial bipartition, we assume $\hat{Q} = \hat{Q}_A \oplus \hat{Q}_{\bar{A}}$. If $[\rho, \hat{Q}] = 0$, then $[\rho_A, \hat{Q}_A] = 0$, where $\rho_A = \text{tr}_\bar{A}[\rho]$ is the reduced density matrix of the subsystem A. Accordingly, ρ_A is block-diagonal, and we can write

$$\rho_A = \oplus_Q p_A(Q) \rho_A(Q),$$

(1)

where $p_A(Q) = \text{tr}[\Pi_Q \rho_A]$, and Π_Q is the projector onto the sector of charge Q in the subsystem A. Introducing the von Neumann entanglement entropy

$$S_1(\rho_A) = -\text{tr}[\rho_A \ln \rho_A],$$

(2)

a simple calculation shows

$$S_1(\rho_A) = \sum_Q p_A(Q) S_1(Q) - \sum_Q p_A(Q) \ln p_A(Q),$$

(3)

where we introduced the symmetry resolved entanglement entropy

$$S_1(Q) \equiv -\text{tr}[\rho_A(Q) \ln \rho_A(Q)].$$

(4)

Similarly, the symmetry resolved Rényi entropies can be defined as

$$S_\alpha(Q) \equiv \frac{1}{1-\alpha} \ln \text{tr}[\rho_A^\alpha(Q)].$$

(5)

If the reduced density matrix ρ_A is known exactly, a simple strategy to compute the SREE was put forward in [34, 35]. Namely, one first computes the charged moments

$$Z_\alpha(\theta) \equiv \text{tr}[\rho_A^\alpha e^{i\theta \hat{Q}_A}],$$

(6)

and their Fourier transform

$$Z_\alpha(Q) = \int_{-\pi}^{\pi} \frac{d\theta}{2\pi} e^{-iQ\theta} Z_\alpha(\theta) \equiv \text{tr}[\Pi_Q \rho_A^\alpha].$$

(7)
Thermodynamic symmetry resolved entanglement entropies in integrable systems

The symmetry-resolved Rényi and von Neumann entanglement entropies are then obtained as
\[S_\alpha(Q) = \frac{1}{1 - \alpha} \ln \left[\frac{Z_\alpha(Q)}{Z_1(Q)^\alpha} \right], \quad S_1(Q) = \lim_{\alpha \to 1} S_\alpha(Q) = -\partial_\alpha \left[\frac{Z_\alpha(Q)}{Z_1(Q)^\alpha} \right]_{\alpha=1}, \]
while
\[p_\lambda(Q) = Z_1(Q). \]

3. The model and the thermodynamic Bethe ansatz

As mentioned, we will focus on the XXZ Heisenberg spin chain
\[H = \frac{1}{4} \sum_{j=1}^{L} \left[\sigma_x^j \sigma_x^{j+1} + \sigma_y^j \sigma_y^{j+1} + \Delta \sigma_z^j \sigma_z^{j+1} \right], \]
where \(\sigma^\alpha \) are the Pauli matrices, while \(\Delta \) is the anisotropy parameter. For concreteness, we will restrict to the gapped regime of the model, \(\Delta > 1 \), and set \(\Delta = \cosh(\eta) \) with \(\eta \in \mathbb{R} \) (the generalization to the case \(\Delta < 1 \) is straightforward). For the Hamiltonian (10) the \(U(1) \)-symmetry charge is given by the magnetization
\[S^z = \frac{1}{2} \sum_{j=1}^{L} \sigma_z^j. \]

We will take \(L \) as even, so that the eigenvalues of \(S^z \) are integer numbers.

Due to its underlying integrability, the model features an infinite number of pairwise commuting local and quasilocal conserved operators (charges), see [88] for a comprehensive review. For \(\Delta > 1 \), they are all even under spin inversion, except for the magnetization (11). Following [88], we denote them by \(Q_s^{(j)} \), where \(s = 1/2, 1, 3/2, 2, \ldots \) and \(j = 1, 2, \ldots \). With this convention, \(Q_{1/2}^{(j)} \) are strictly local, and \(Q_{1/2}^{(2)} \propto H \) [88].

The Hamiltonian (10) can be diagonalized exactly using the Bethe ansatz. Each eigenstate is associated with a set of quasiparticle quasimomenta, or rapidities, \{\(\lambda_j \}\}, satisfying a set of quantization conditions known as Bethe equations [19]. In the thermodynamic limit, the rapidities arrange themselves into patterns in the complex plane and their collective behavior can be described in terms of rapidity distribution functions [20]. In particular, in the regime \(\Delta > 1 \), a given state is characterized by the set \(p = \{\rho_n(\lambda)\}_{n=1}^\infty \), where \(\lambda \in [-\pi/2, \pi/2] \) while the index \(n \) labels different bound-states of quasiparticles. Together with \(\rho_n(\lambda) \), one also needs to introduce the distribution functions \(\rho_n^h(\lambda) \) for the unoccupied modes, or ‘holes’, satisfying [20]
\[\rho_m(\lambda) + \rho_m^h(\lambda) = a_m(\lambda) - \sum_{n=1}^{\infty} [a_{mn} * \rho_n](\lambda), \]

https://doi.org/10.1088/1742-5468/ac7a2d
where we defined the convolution
\[
(f \ast g)(\lambda) = \int_{-\pi/2}^{\pi/2} d\mu f(\lambda - \mu)g(\mu),
\]
and
\[
a_{mn}(\lambda) = (1 - \delta_{mn}) a_{|m-n|}(\lambda) + 2a_{|m-n|+2}(\lambda) + \cdots + 2a_{m+n-2}(\lambda) + a_{m+n}(\lambda),
\]
\[
a_n(\lambda) = \frac{1}{\pi} \sinh(n\eta) \left(\frac{1}{\cosh(n\eta) - \cos(2\lambda)} \right).
\]
From the knowledge of the densities \(\{\rho_n(\lambda)\}\), several thermodynamic quantities can be computed immediately. For instance, the correspondent magnetization and energy densities are
\[
S^z[\rho] = \frac{1}{2} - \sum_{n=1}^{\infty} n \int_{-\pi/2}^{\pi/2} d\lambda \rho_n(\lambda),
\]
\[
H[\rho] = \sum_{n=1}^{\infty} \int_{-\pi/2}^{\pi/2} d\lambda \rho_n(\lambda) \varepsilon_n(\lambda),
\]
where
\[
\varepsilon_n(\lambda) = -\pi \sinh(\eta) a_n(\lambda).
\]
Similarly, the density of any quasilocal charge can be written as
\[
Q^{(j)}_s[\rho] = \sum_{n=1}^{\infty} \int_{-\pi/2}^{\pi/2} d\lambda \rho_n(\lambda) q^{(j)}_{s,n}(\lambda),
\]
where \(q^{(j)}_{s,n}(\lambda)\) are known functions [88].

The solution to the set of equation (12) is not unique. This corresponds to the fact that the model admits infinitely many equilibrium stationary states, which can be represented in the grand canonical form
\[
\rho_{\text{GGE}} \equiv \frac{1}{Z_{\text{GGE}}} \exp \left(h S^z - \sum_{s,j} \beta_s^{(j)} Q^{(j)}_s \right),
\]
where
\[
Z_{\text{GGE}} \equiv \text{tr} \left[\exp \left(h S^z - \sum_{s,j} \beta_s^{(j)} Q^{(j)}_s \right) \right]
\]
is a normalization. The density matrices (20) describe the set of GGEs, which depend on the Lagrange multipliers \(h, \beta_s^{(j)}\). As explained in [89] (see also [27, 90]) the corresponding
Thermodynamic symmetry resolved entanglement entropies in integrable systems

rapidity distribution functions $\rho_n(\lambda)$ can be found following the standard prescriptions of the TBA \[20\]. In particular, the function $\rho_n(\lambda)$ is given by the saddle-point condition

$$\frac{\delta}{\delta \rho_n} F(h, \beta^{(j)}_s, \rho) = 0,$$

where we have introduced the generalized free energy density

$$F(h, \beta^{(j)}_s, \rho) = -E[h, \beta^{(j)}_s, \rho] + S_{YY}[\rho].$$

Here we defined

$$S_{YY}[\rho] = \sum_{n=1}^{\infty} \int d\lambda [\rho_{t,n}(\lambda) \ln \rho_{t,n}(\lambda) - \rho_n(\lambda) \ln \rho_n(\lambda) - \rho_{h,n}(\lambda) \ln \rho_{h,n}(\lambda)]$$

and after standard manipulations, the saddle-point condition can be rewritten as

$$\ln \eta_n(\lambda) = nh + g_n(\lambda) + \sum_{m=1}^{\infty} a_{nm} * \ln [1 + 1/\eta_m](\lambda),$$

with

$$g_n(\lambda) \equiv \sum_{s,j} \beta^{(j)}_s q_{s,n}^{(j)}(\lambda).$$

The set of equation (27) can be solved numerically by simple iterative methods. Once the functions $\eta_n(\lambda)$ are known, one can use $\rho^h_n(\lambda) = \eta_n(\lambda) \rho_n(\lambda)$ and solve (12) for the functions $\rho_n(\lambda)$, finally obtaining the rapidity distribution functions corresponding to the state (20).

4. SREE and large-deviation theory

In the rest of this work, we aim to compute the SREE assuming that the subsystem reduced density matrix has the form (20). Note that, in principle, one should take into account boundary effects, because the definition (20) implicitly assumes an infinite
system-size limit. However, we will only be interested in the leading extensive behavior of the SREE. Therefore, we will neglect any boundary effect, because they are expected to give sub-leading contributions.

In principle, the SREE could be computed using the strategy outlined in section 2, cf equations (6)–(9). However, for thermodynamic states, the charged moments are expected to be exponentially small in the subsystem size, making the computation of the Fourier transform in (7) challenging from the numerical point of view. Here we provide an alternative approach, which is tailored to capture the leading behavior of the SREE and which turns out to be particularly convenient to be implemented within the TBA formalism.

Our method is based on an application of the Gärtner–Ellis theorem from large deviation theory [87] and it is valid beyond integrable models. We introduce the general idea in section 4.1, while in section 4.2 we discuss its implementation within the TBA formalism.

4.1. Extensive SREE from the Gärtner–Ellis theorem

Let \(\rho_Q \) be the reduced density matrix associated with a subsystem \(A \), containing \(\ell \) spins. Since \([\rho, \Pi_Q]=0\) and \(\Pi_Q^{\alpha}=\Pi_Q \) for any power \(\alpha \), we can write

\[
\text{tr}[\rho^\alpha(Q)] = \frac{\text{tr}[\Pi_Q \rho^\alpha]}{\text{tr}[\rho^\alpha]} = \frac{\text{tr}[\Pi_Q \rho^\alpha]}{\text{tr}[\rho^\alpha]} \cdot \frac{\text{tr}[\rho^\alpha]}{(p_1(Q))^\alpha} = p_{\alpha}(Q) \cdot \frac{\text{tr}[\rho^\alpha]}{(p_1(Q))^\alpha},
\]

where we have introduced

\[
p_{\alpha}(Q) = \frac{\text{tr}[\Pi_Q \rho^\alpha]}{\text{tr}[\rho^\alpha]}.
\]

Clearly, \(p_{\alpha}(Q) \geq 0 \) and, using standard considerations, it is easy to see that \(\sum_Q p_{\alpha}(Q) = 1 \), i.e. \(p_{\alpha}(Q) \) can be interpreted as a probability distribution. Setting \(q = Q/\ell \), we expect on physical grounds that \(p_{\alpha}(Q) \) should follow a large deviation principle in the large-\(\ell \) limit, that is,

\[
p_{\alpha}(Q) \sim e^{-I_{\alpha}(q)\ell},
\]

where \(I_{\alpha}(q) \) is referred to as the rate function. In this setting, it is well-known that \(I_{\alpha}(q) \) can be computed by means of the Gärtner–Ellis theorem [87]. To this end, we define the generating function

\[
G_{\alpha}(w) = \frac{\text{tr}[\rho^\alpha e^{wQ}]}{\text{tr}[\rho^\alpha]} \sim e^{\ell f_{\alpha}(w)}, \quad w \in \mathbb{R}.
\]

The Gärtner–Ellis theorem states that we can compute \(I_{\alpha}(q) \) as the Legendre–Fenchel transform of \(f_{\alpha}(w) \). In the case where the functions involved are concave and regular, the latter reduces to the Legendre transform, and we can write

\[
I_{\alpha}(q) = w_{\alpha,q} q - f_{\alpha}(w_{\alpha,q}),
\]
where $w_{\alpha, q}$ is determined by the condition
\[\frac{d}{dw}(f_\alpha(w) - wq) \bigg|_{w=w_{\alpha, q}} = 0. \] (34)

Now, defining the density of SREE entropy
\[s_\alpha(q) = \lim_{\ell \to \infty} \frac{S_\alpha(q\ell)}{\ell} = \frac{1}{1 - \alpha} \lim_{\ell \to \infty} \frac{\ln \text{tr}[\rho^\alpha(q\ell)]}{\ell} \] (35)
and using (29), we obtain
\[s_\alpha(q) = s_\alpha + \frac{1}{1 - \alpha} \left[-I_\alpha(q) + \alpha I_1(q) \right], \] (36)
where
\[s_\alpha = \lim_{\ell \to \infty} \frac{1}{1 - \alpha} \frac{\ln \text{tr}[\rho^\alpha]}{\ell} \] (37)
is the density of Rényi entropy. We may now take the limit $\alpha \to 1$ to recover the von Neumann SREE, yielding
\[s_1(q) = s_1 + I_1(q) + \frac{dI_\alpha(q)}{d\alpha} \bigg|_{\alpha=1}. \] (38)

4.2. Explicit computations via TBA

In this section we show how the program presented above can be followed within the TBA formalism, arriving at an explicit exact formula for the SREE. At the technical level, similar calculations appeared, albeit in a completely different context, in [91], where, following [92, 93], the Gärtner–Ellis theorem was applied to the study of the work statistics after a quench in the integrable Lieb–Liniger model.

We start by computing
\[f_\alpha(w) = \lim_{\ell \to \infty} \frac{1}{\ell} \ln \frac{\text{tr}(\rho^\alpha e^{wQ})}{\text{tr}[\rho^\alpha]}. \] (39)
Let us recall that ρ denotes in principle the reduced density matrix in a subsystem of size ℓ, within a system of total size L. However, since we are interested in the extensive part of the entanglement entropies, it can be argued that the calculations amount to first taking $\ell = L$, and then the limit $L \to \infty$. Hence, ρ can be taken to be of the same form as the full system’s density matrix (the same assumption has been used in [27, 90] for the computation of the post-quench Rényi entropies).

Assuming that ρ is of the form (20), the density matrix ρ^α is of the same form, but with Lagrange multipliers αh, $\alpha \beta^{(j)}$. Following the standard prescription [20, 89], we can
therefore cast the trace into a functional integral over rapidity distribution functions, obtaining

\[f_a(w) = \mathcal{F}(w + \alpha h, \alpha \beta_s^{(j)}, \rho[w + \alpha h, \alpha \beta_s^{(j)}]) - \mathcal{F}(\alpha h, \alpha \beta_s^{(j)}, \rho[\alpha h, \alpha \beta_s^{(j)}]), \]

(40)

where \(\mathcal{F}(h, \beta_s^{(j)}, \rho) \) is defined in (23), while we denoted by \(\rho[h, \beta_s^{(j)}] \) the set of saddle-point rapidity distribution functions associated with the GGE (20) with Lagrange multipliers \(h, \beta_s^{(j)} \). Next, by using the definition of \(\rho[w + \alpha h, \alpha \beta_s^{(j)}] \) in terms of a saddle-point condition (22), it is straightforward to see that (34) can be rewritten as

\[S^*[\rho[w_{\alpha q} + \alpha h, \alpha \beta_s^{(j)}]] = q, \]

(41)

where \(S^*[\rho] \) was defined in (16). Finally, using (33) and (36), we arrive at

\[
s_a(q) = \frac{1}{1 - \alpha} \left(-\mathcal{E}[\alpha h, \alpha \beta_s^{(j)}, \rho[w_{\alpha q} + \alpha h, \alpha \beta_s^{(j)}]] + S_{YY}[\rho[w_{\alpha q} + \alpha h, \alpha \beta_s^{(j)}]]
+ \alpha \mathcal{E}[h, \beta_s^{(j)}, \rho[w_{1q} + h, \beta_s^{(j)}]] - \alpha S_{YY}[\rho[w_{1q} + h, \beta_s^{(j)}]] \right).
\]

(42)

This formula gives us the density of the Rényi SREE. Note that \(w_{\alpha q} \), defined by (41), can be interpreted as an additional Lagrange multiplier in the GGE, introduced in order to make the magnetization equal to \(q \).

Let us evaluate (42) in the limit \(\alpha \to 1 \). We expand

\[-\mathcal{E}[\alpha h, \alpha \beta_s^{(j)}, \rho[w_{\alpha q} + \alpha h, \alpha \beta_s^{(j)}]] + S_{YY}[\rho[w_{\alpha q} + \alpha h, \alpha \beta_s^{(j)}]] = t_1 + (\alpha - 1)t_2 + o(1 - \alpha).
\]

(43)

Clearly

\[t_1 = -\mathcal{E}[h, \beta_s^{(j)}, \rho[w_{1q} + h, \beta_s^{(j)}]] + S_{YY}[\rho[w_{1q} + h, \beta_s^{(j)}]]. \]

(44)

Next, writing

\[-\mathcal{E}[\alpha h, \alpha \beta_s^{(j)}, \rho[w_{\alpha q} + \alpha h, \alpha \beta_s^{(j)}]] = w_{\alpha q}q - \mathcal{E}[w_{\alpha q} + \alpha h, \alpha \beta_s^{(j)}, \rho[w_{\alpha q} + \alpha h, \alpha \beta_s^{(j)}]]. \]

(45)

recalling the definition of \(\rho[w_{1q} + h, \beta_s^{(j)}] \) in terms the saddle-point condition, and using

\[
\frac{d}{d\alpha} = \frac{\partial}{\partial \alpha} + \frac{\delta}{\delta \rho} \frac{\partial \rho}{\partial \alpha},
\]

(46)

we get

\[t_2 = -\mathcal{E}[h, \beta_s^{(j)}, \rho[w_{1q} + h, \beta_s^{(j)}]]. \]

(47)
Putting everything together, we finally obtain

\[s_1(q) = S_{YY}[\rho[w_{1,q} + h, \beta_s^{(j)}]]. \] (48)

Equation (48) is the main result of this section. It states that the value of the density of the von Neumann SREE can be obtained as the Yang–Yang entropy density associated with the macrostate \(\rho[w_{1,q} + h, \beta_s^{(j)}] \), whose magnetization must be equal to \(q \) (because of the condition (41) defining \(w_{1,q} \)). Note that, in order to evaluate numerically equations (42) and (48), one needs to find the value of \(w_{\alpha,q} \) for which (41) is satisfied, which can be achieved by standard numerical procedures.

5. Applications

In this section we apply the formalism developed in the previous sections and provide results for the SREE in thermal states and in the GGE following a quantum quench from tilted Neél states.

5.1. Thermal states

Let us first consider the case in which the reduced density matrix is described by a thermal state

\[\varrho = \frac{e^{-\beta H}}{Z}. \] (49)

The rapidity distribution functions are determined by the system of equation (27) where now [20]

\[g_\alpha(\lambda) = -\beta \pi \sinh \eta \alpha_\alpha(\lambda). \] (50)

We have solved numerically the TBA equations and evaluated equations (42) and (48). Examples of our data are reported in figure 1. We observe a generic non-monotonic behavior for both the Rényi and von Neumann SREE, which is more pronounced for smaller values of the temperature (i.e. larger values of \(\beta \)) and larger Rényi index.

Obtaining an independent numerical confirmation of our results appears to be challenging. This is because computations based on exact-diagonalization techniques are restricted to relatively small system sizes, which are plagued by large finite-size effects. To make things worse, the dimension of a given charge sector is smaller than that of the whole Hilbert space. In order to get around this issue, we have performed numerical computations based on the iTEBD algorithm [104], which allow us to reach large sub-system sizes. More precisely, we have computed numerically the reduced density matrix over \(\ell \) sites, starting from an infinite system prepared in a thermal state at a given temperature \(\beta^{-1} \), and extracted the SREE using the strategy outlined in section 2, cf equations (6)–(9).

As a general numerical limitation of this approach, the charged moments are exponentially small in \(\ell \) and it is therefore difficult to obtain data with good relative precision for large values of \(\alpha \) in (6). This results in significant numerical inaccuracies for the
5.2. Quantum quenches from tilted Néel states

In this section we finally consider the GGE reached at late times after a quantum quench. We focus in particular on the tilted Néel initial state

$$|\vartheta; \nwarrow \nearrow \rangle = \left(-\sin \left(\frac{\vartheta}{2} \right) |\uparrow \rangle + \cos \left(\frac{\vartheta}{2} \right) |\downarrow \rangle \right) \otimes \left[\cos \left(\frac{\vartheta}{2} \right) |\uparrow \rangle + \sin \left(\frac{\vartheta}{2} \right) |\downarrow \rangle \right] \otimes L/2,$$

(51)

where we denoted by $|\uparrow\rangle$, $|\downarrow\rangle$ the two basis states for the local Hilbert space. We are interested in the reduced density matrix reached at large times after the system is initialized in the state (51). Note that our method straightforwardly applies to other quantum quenches from more general integrable initial states [94, 95]. More general classes of states can be considered for free models [96–98].

Importantly, although the tilted Néel state breaks the $U(1)$ symmetry of the Hamiltonian, the latter is restored at late times during the dynamics, and the GGE density matrix commutes with the magnetization operator. The rapidity distribution function of the GGE associated with the Néel ($\vartheta = 0$) and tilted Néel states were first derived in [99–102], respectively, see also [103]. Building upon these references, the explicit form of the GGE was extracted from such rapidity distributions in [27, 90]. As a result of these analyses, it was found that, for the tilted Néel GGE, the functions (28) read $g_n(\lambda) = g_{N,n}(\lambda) + g_{\zeta,n}(\lambda)$, where
We have solved the corresponding TBA equations and evaluated equation (48) to compute the von Neumann SREE. An example of our data is shown in figure 2, where we also report our results for the rate function $I_1(q)$ defined in (33). Similarly to the thermal case, we observe a generic non-monotonic behavior for the SREE. In addition, we see that the latter exhibits very weak dependence on the tilting angle ϑ. We have verified that, as the tilting angle ϑ approaches zero, the rate function grows to infinity, signaling the fact that the GGE density matrix associated with the Néel state only has non-trivial support on the sector of vanishing magnetization. Conversely, we found that the von Neumann SREE approaches a non-trivial finite value as $\vartheta \to 0$.

In this case, we were not able to test our results against independent numerical calculations based on the iTEBD algorithm. While sufficiently large subsystem sizes ℓ are needed in order to be able to neglect finite-size effects, the relaxation times are expected to grow at least linearly with ℓ. On the other hand, the iTEBD algorithm is limited to relatively short times, and does not allow us to explore the late-time regime beyond intervals of a few sites.

6. Conclusions

In this work, we have developed a general approach to compute the SREE of thermodynamic macrostates in interacting integrable systems, which is based on a combination of the TBA and the Gärtner–Ellis theorem from large deviation theory. As our main result, we have shown that the von Neumann SREE coincides with the Yang–Yang entropy.
of an effective macrostate which is determined by the charge sector, see equation (48). Although our results apply to any Bethe ansatz integrable model, for concreteness we have presented explicit results only in the case of the XXZ Heisenberg spin chain, focusing on equilibrium thermal states and GGEs following a quench from tilted Néel initial states (the former have also been tested against numerical simulations). Besides their interest per se, our findings represent a first step towards the derivation of a semiclassical formula for the dynamics of the SREE in interacting integrable systems, thus generalizing the recent results obtained for free fermions in [83, 84]. Furthermore, we expect them to also be the starting point for the entanglement resolution in non-homogeneous settings in the context of generalized hydrodynamics [105, 106], thus extending known results for the total entropies [107–110].

Acknowledgments

Pasquale Calabrese acknowledges support from ERC under Consolidator Grant No. 771536 (NEMO).

References

[1] Nielsen M and Chuang I 2010 Quantum Computation and Quantum Information (Cambridge: Cambridge University Press)
[2] Amico L, Fazio R, Osterloh A and Vedral V 2008 Entanglement in many-body systems Rev. Mod. Phys. 80 517
[3] Calabrese P, Cardy J and Doyon B 2009 Entanglement entropy in extended quantum systems J. Phys. A: Math. Theor. 42 500301
[4] Eisert J, Cramer M and Plenio M B 2010 Colloquium: area laws for the entanglement entropy Rev. Mod. Phys. 82 277
[5] Laflorencie N 2016 Quantum entanglement in condensed matter systems Phys. Rep. 646 1
[6] Headrick M 2019 Lectures on entanglement entropy in field theory and holography (arXiv:1907.08126)
[7] Santos L F, Polkovnikov A and Rigol M 2011 Entropy of isolated quantum systems after a quench Phys. Rev. Lett. 107 040601
[8] Collura M, Kormos M and Calabrese P 2014 Stationary entanglement entropies following an interaction quench in 1D Bose gas J. Stat. Mech. P01009
[9] Deutsch J M, Li H and Sharma A 2013 Microscopic origin of thermodynamic entropy in isolated systems Phys. Rev. E 87 042135
[10] Alba V and Calabrese P 2017 Entanglement and thermodynamics after a quantum quench in integrable systems Proc. Natl Acad. Sci. USA 114 7947
[11] Kaufman A M, Tai M E, Lukin A, Rispoli M, Schittko R, Preiss P M and Greiner M 2016 Quantum thermalization through entanglement in an isolated many-body system Science 353 794
[12] Brydges T, Elben A, Juncevic P, Vermersch B, Maier C, Lanyon B P, Zoller P, Blatt R and Roos C F 2019 Probing Rényi entanglement entropy via randomized measurements Science 364 260
[13] Elben A et al 2020 Mixed-state entanglement from local randomized measurements Phys. Rev. Lett. 125 200501
[14] Calabrese P and Cardy J 2006 Time dependence of correlation functions following a quantum quench Phys. Rev. Lett. 96 130601
[15] Rigol M, Dunjko V and Oshlack M 2008 Thermalization and its mechanism for generic isolated quantum systems Nature 452 854
[16] Calabrese P and Cardy J 2016 Quantum quenches in 1 + 1 dimensional conformal field theories J. Stat. Mech. 064003
[17] Essler F H L and Fagotti M 2016 Quench dynamics and relaxation in isolated integrable quantum spin chains J. Stat. Mech. 064002
[18] Vidmar L and Rigol M 2016 Generalized Gibbs ensemble in integrable lattice models J. Stat. Mech. 064007

https://doi.org/10.1088/1742-5468/ac7a2d
Thermodynamic symmetry resolved entanglement entropies in integrable systems

[19] Korepin V E, Bogoliubov N M, Petersburg S and Izergin A G 1993 Quantum Inverse Scattering Method and Correlation Functions (Cambridge: Cambridge University Press)
[20] Takahashi M 1999 Thermodynamics of One-Dimensional Solvable Models (Cambridge: Cambridge University Press)
[21] Yang C N and Yang C P 1969 Thermodynamics of a one-dimensional system of bosons with repulsive delta-function interaction J. Math. Phys. 10 1115
[22] Fagotti M and Calabrese P 2008 Evolution of entanglement entropy following a quantum quench: analytic results for the XY chain in a transverse magnetic field Phys. Rev. A 78 010306
[23] Calabrese P 2020 Entanglement spreading in non-equilibrium integrable systems SciPost Phys. Lect. Notes 20
[24] Alba V and Calabrese P 2018 Entanglement dynamics after quantum quenches in generic integrable systems SciPost Phys. 4 017
[25] Calabrese P and Cardy J 2005 Evolution of entanglement entropy in one-dimensional systems J. Stat. Mech. P04010
[26] Alba V and Calabrese P 2017 Rényi entropies after releasing the Néel state in the XXZ spin-chain J. Stat. Mech. 113105
[27] Mestyán M, Alba V and Calabrese P 2018 Rényi entropies of generic thermodynamic macrostates in integrable systems J. Stat. Mech. 083104
[28] Modak R, Piroli L and Calabrese P 2019 Correlation and entanglement spreading in nested spin chains J. Stat. Mech. 093106
[29] Laflorencie N and Rachel S 2014 Spin-resolved entanglement spectroscopy of critical spin chains and Luttinger liquids J. Stat. Mech. 1107
[30] Goldstein M and Sela E 2018 Symmetry-resolved entanglement in many-body systems Phys. Rev. Lett. 120 200602
[31] Xavier J C, Alcaraz F C and Sierra G 2018 Equipartition of the entanglement entropy Phys. Rev. B 98 041106
[32] Neven A et al 2021 Symmetry-resolved entanglement detection using partial transpose moments npj Quantum Inf. 7 1
[33] Lukin A, Rispoli M, Schittko R, Tai M E, Kaufman A M, Choi S, Khemani V, Léonard J and Greiner M 2019 Probing entanglement in a many-body-localized system Science 364 256
[34] Pitale V et al 2022 Symmetry-resolved dynamical purification in synthetic quantum matter (arXiv:2101.07814)
[35] Cornfeld E, Goldstein M and Sela E 2018 Imbalance entanglement: symmetry decomposition of negativity Phys. Rev. A 98 032302
[36] Murciano S, Bonsignori R and Calabrese P 2021 Symmetry decomposition of negativity of massless free fermions SciPost Phys. 10 111
[37] Cornfeld E, Goldstein M and Sela E 2018 Spin-resolved entanglement spectroscopy of critical spin chains and Luttinger liquids J. Stat. Mech. 1107
[38] Capizzi L and Calabrese P 2021 Symmetry resolved relative entropies and distances in conformal field theory J. High Energy Phys. JHEP10(2021)067
[39] Capizzi L and Calabrese P 2021 Symmetry resolved relative entropies and distances in conformal field theory J. High Energy Phys. JHEP10(2021)067
[40] Capizzi L and Calabrese P 2021 Symmetry resolved relative entropies and distances in conformal field theory J. High Energy Phys. JHEP10(2021)067
[41] Capizzi L and Calabrese P 2021 Symmetry resolved relative entropies and distances in conformal field theory J. High Energy Phys. JHEP10(2021)067
[42] Capizzi L and Calabrese P 2021 Symmetry resolved relative entropies and distances in conformal field theory J. High Energy Phys. JHEP10(2021)067
[43] Capizzi L and Calabrese P 2021 Symmetry resolved relative entropies and distances in conformal field theory J. High Energy Phys. JHEP10(2021)067
[44] Hung L Y and Wong G 2021 Entanglement branes and factorization in conformal field theory Phys. Rev. D 104 026012
[45] Calabrese P, Dubail J and Murciano S 2021 Symmetry-resolved entanglement entropy in Wess–Zumino–Witten models J. High Energy Phys. JHEP10(2021)067
[46] Capizzi L, Ruggiero P and Calabrese P 2020 Symmetry resolved entanglement entropy of excited states in a CFT J. Stat. Mech. 073101
[47] Bonsignori R and Calabrese P 2020 Boundary effects on symmetry resolved entanglement J. Phys. A: Math. Theor. 54 015005
[48] Estienne B, Ikhlef Y and Morin-Duchesne A 2021 Finite-size corrections in critical symmetry-resolved entanglement SciPost Phys. 10 054
[49] Ghasemi M 2022 Universal thermal corrections to symmetry-resolved entanglement entropy and full counting statistics (arXiv:2203.06708)

https://doi.org/10.1088/1742-5468/ac7a2d
Thermodynamic symmetry resolved entanglement entropies in integrable systems

[50] Murciano S, Di Giulio G and Calabrese P 2020 Entanglement and symmetry resolution in two dimensional free quantum field theories J. High Energy Phys. JHEP08(2020)073

[51] Horváth D X, Capizzi L and Calabrese P 2021 U(1) symmetry resolved entanglement in free 1 + 1 dimensional field theories via form factor bootstrap J. High Energy Phys. JHEP05(2021)197

[52] Horváth D X and Calabrese P 2020 Symmetry resolved entanglement in integrable field theories via form factor bootstrap J. High Energ. Phys. JHEP11(2020)131

[53] Capizzi L, Horváth D X, Calabrese P and Castro-Alvaredo O A 2021 Entanglement of the 3-state Potts model via form factor bootstrap: total and symmetry resolved entropies (arXiv:2108.10935)

[54] Horváth D X, Calabrese P and Castro-Alvaredo O A 2022 Branch point twist field form factors in the sine-Gordon model II: composite twist fields and symmetry resolved entanglement SciPost Phys. 12 088

[55] Belin A, Hung L-Y, Maloney A, Matsuura S, Myers R C and Sierens T 2013 Holographic charged Rényi entropies J. High Energy Phys. JHEP12(2013)059

[56] Caputa P, Nozaki M and Numasawa T 2016 Charged entanglement entropy of local operators Phys. Rev. D 93 105032

[57] Zhao S, Northe C and Meyer R 2021 Symmetry-resolved entanglement in AdS3/CFT2 coupled to U(1) Chern–Simons theory J. High Energ. Phys. JHEP12(2021)104

[58] Bonsignori R, Ruggiero P and Calabrese P 2019 Symmetry resolved entanglement in free fermionic systems J. Phys. A: Math. Theor. 52 475302

[59] Ares F, Murciano S and Goldstein M 2020 Symmetry resolved entanglement in a long-range free-fermion chain (arXiv:2002.05874)

[60] Wiseman H M and Vaccaro J A 2003 Entanglement of indistinguishable particles shared between two parties Phys. Rev. Lett. 91 097902

[61] Barghathi H, Herdman C M and Del Maestro A 2018 Rényi generalization of the accessible entanglement entropy Phys. Rev. Lett. 121 150501

[62] Horn, J. (2022). Symmetry-resolved entanglement entropy in a two-dimensional Fermi gas from multidimensional bosonization Phys. Rev. Lett. 128 020406

[63] Tan M T and Ryu S 2020 Particle number fluctuations, Rényi entropy, and symmetry-resolved entanglement entropy in a two-dimensional Fermi gas from multidimensional bosonization Phys. Rev. A 99 022324

[64] Turfeshi X, Ruggiero P and Calabrese P 2020 Entanglement equipartition in critical random spin chains Phys. Rev. B 102 035145

[65] Kiefer-Emmanouilidis M, Unanyan R, Sirker J and Fleischhauer M 2020 Slow delocalization of particles in many-body localized phases Phys. Rev. B 103 024203

[66] Jones N G 2022 Symmetry-resolved entanglement entropy in critical free-fermion chains (arXiv:2202.11728)

[67] Monkman K and Sirker J 2020 Operational entanglement of symmetry-protected topological edge states Phys. Rev. Res. 2 043191

https://doi.org/10.1088/1742-5468/ac7a2d
Thermodynamic symmetry resolved entanglement entropies in integrable systems

[108] Bertini B, Fagotti M, Piroli L and Calabrese P 2018 Entanglement evolution and generalised hydrodynamics: noninteracting systems J. Phys. A: Math. Theor. 51 39LT01

[109] Alba V, Bertini B and Fagotti M 2019 Entanglement spreading and generalized hydrodynamics SciPost Phys. 7 005

[110] Alba V, Bertini B, Fagotti M, Piroli L and Ruggiero P 2021 Generalized-hydrodynamic approach to inhomogeneous quenches: correlations, entanglement and quantum effects J. Stat. Mech. 114004

https://doi.org/10.1088/1742-5468/ac7a2d