Synthesis of N-Mannich bases from 3, 4-dihydropyrimidin-2(1H)-ones by using nanostructured Cobalt Chloride Doped Polyaniline Composite as Catalyst (PANI-Co)

Deepak M. Nagrik¹, Umesh S. Shelke²

¹Department of Chemistry, G. S. Science, Arts and Commerce College, Khamgaon, Buldana (M.S.) India-444303

²Department of Chemistry, Arts, Science and Commerce College, Ramanandnagar, Burli, (M.S.) India-416308

Corresponding author e-mail : dmnagrik@gmail.com

Abstract: The Mannich reaction is the type proton assisted of carbon-carbon bond formation reaction that involves the addition of resonance-stabilized carbon nucleophiles to iminium salts and imines. The product of the Mannich reaction is β-amino carbonyl compounds of biological interest synthesized from the aldehyde, amine, and carbonyl compounds. This reaction is very limited to the only highly reactive aldehydes such as formaldehyde and acetaldehyde, a secondary amine. The direct Mannich-type reaction expanded with the development of the scope of Mannich reaction, and very much efficient method for highly stereo selective type Mannich reactions were extensively well studied and reported in the literature. This study aimed at investigating the synthesis of N-Mannich Bases from the 3, 4-Dihydropyrimidin-2(1H)-ones by using nanostructure Cobalt Chloride Doped Polyaniline composite as Catalyst (PANI-Co). The Synthesis of N-Mannich Bases from 3, 4-Dihydropyrimidin-2(1H)-ones by using nanostructure Cobalt Chloride Doped Polyaniline composite as Catalyst (PANI-Co) was carried out. The effective method for the synthesis of the Mannich bases of synthetically important compounds has been coined. We synthesized the different Mannich Bases from 3, 4-Dihydropyrimidin-2(1H)-ones which give up to 94 % yield.

1. Introduction
The end product of the Mannich reaction is beta amino compound [1-2]. The Mannich reaction is a type of nucleophilic addition reaction in the condensation of a compound with active hydrogen(s) with primary or secondary amine and formaldehyde [3]. The general schematic representation of Mannich reaction is given in fig. 1. The Mannich bases has found to be the great synthetic important and it acts as a biologically active compound and it is a potential agents for the synthesis of various medically valuable compounds which composes the amino alkyl chain in it. The amino alkyl chain containing mannich bases are clinically important for example, biperiden cocaine, ethacrynic acid, atropine, ranitidine, trihexyphenidyl, fluoxe- tine procyclidine, etc. [4–6]. The Mannich bases are reactive compound and can be converted in to the other compound easily for example active amino alcohols physiologically [7].

The Mannich bases also possesses the number of potent activities such as anti-HIV [8], antimalarial [9], antifungal [10, 11], anticonvulsant [12], antiviral [13], antifilarial [14], anticancer [15, 16], anthelmintic[17], antibacterial [18,19], antipsychotic [20], antitubercular [21, 22], analgesic [23], anti-inflammatory [24, 25], along with the biological activity the Mannich bases are found to their extensive use in the detergent synthesis and commonly used as a additive in it. Such as the polymers surface active reagents[26]. The Mannich bases and the derivatives of these bases are extensively used as the intermediates for the synthesis of the biologically active compounds [27,28]. Also the extensive use of this reaction is to prepare or synthesized the compound containing Nitrogens [29].
The Mannich bases have the great importance in antibacterial activity [30], and also found to have the extensive use in the field of the agrochemicals as growth regulators in the plants.

In this present research work we have synthesized the N-Mannich Bases from 3, 4-Dihydropyrimidin-2(1H)-ones by using nanostructure Cobalt Chloride Doped Polyaniline composite as Catalyst (PANI-Co). The 3, 4-Dihydropyrimidin-2(1H)-ones were synthesized by the well known reaction called as the Bijinelli reaction by using nanostructure Cobalt Chloride Doped Polyaniline composite as Catalyst (PANI-Co). The Bijinelli reaction is a multicomponent reactions (MCR) are defined as the reaction in which three or more different reactant molecules that react to form a product, where most, if not all of the atoms are incorporated in the final product. This reaction tool allows compounds to be synthesized in a few steps and usually in one-pot operation. The multicomponent reactions (MCRs) define the new horizons towards the development of organic synthesis. Obviously, due to this reason MCRs are underlined as important routes and protocols in organic synthesis and medicinal chemistry [31].

The general schematic representation of synthesis of 3, 4-Dihydropyrimidin-2(1H)-ones by using nanostructure Cobalt Chloride Doped Polyaniline composite as Catalyst (PANI-Co), is given in Fig.2. The synthesis of the N-Mannich Bases from 3, 4-Dihydropyrimidin-2(1H)-ones by using nanostructure Cobalt Chloride Doped Polyaniline composite as Catalyst (PANI-Co), was found to be the convenient method for the synthesis of the number of the Mannich bases which was characterized and found to have the extensive use in the synthetic chemistry. The general schematic representation of the synthesis of N-Mannich Bases from 3, 4-Dihydropyrimidin-2(1H)-ones by using nanostructure Cobalt Chloride Doped Polyaniline composite as Catalyst (PANI-Co) is given in the fig.3.

There are seven Mannich bases have been synthesized from the 3, 4-Dihydropyrimidin-2(1H)-ones by using nanostructure Cobalt Chloride Doped Polyaniline composite as Catalyst (PANI-Co) and they were found to have the excellent result with the good yield of the Mannich product.

Sr.	Product	Time	Isolate	Melting Point	Mannich Base
No.		Yield %	Obs.	Reported	
-----	---	---------	-------	------------	
1	25	70	251	255-257[32]	
2	30	88	203	206[33]	
3	30	71	229	259-260[34]	
4	30	85	217	209-212[34]	
5	30	92	211	213-214[34]	
6	20	94	229	230-231[34]	
Table. a. Reaction conditions: aldehyde = 20 mmol, urea/thiourea=25 mmol, β-keto-ester =15 mmol, catalyst = 25 wt. % with respect to aldehyde, solvent free, temp. = 35°C. All compounds are well characterized by spectroscopic techniques.

The 3, 4-Dihydropyrimidin-2(1H)-ones by Cobalt Chloride Doped Polyaniline nanostructure (PANI-Co) catalyst [35-39], green organic chemistry [40, 41]. Previously, we have reported Cobalt Chloride Doped Polyaniline (PANI-Co) composite as a heterogeneous Catalyst basic and synthesis of beta- amino carbonyl compounds [41]. From the above 3, 4-Dihydropyrimidin-2(1H)-ones we have synthesize the Mannich base and got the good result.

1.1 The Representative Data of Few Compounds

5- Ethoxycarbonyl-4-(2-methoxyphenly)-6-methyl-3,4-dihydropyrimidin-2(1H)-one (Table;a Entry 1)

Yellowish solid, obtained in 68 % yield, Mp: 257 °C. IR (KBr) νmax: 3240, 3174, 2960, 1693, 1643, 1514, 1462 cm⁻¹. ¹H NMR (DMSO-d₆): δ = 9.14 (s,1H,NH), 7.31(s,1H,NH),7.24 (m,1H,CH), 7.05(d,1H, J= 6.2 Hz,CH), 6.99 (d,1H,J=8.2 Hz,CH), 6.88(m,1H, CH), 5.49 (d,1H, 3=2.9 Hz, CH), 3.92 (q, 2H, J=7.1 HzOCH₂), 3.94 (s,3H,OCH₃), 2.28(s,3H,CH₃), 1.03 (t, 3H, J = 7.1Hz, CH₃). Mass (ES/MS): M/Z 290 (M-H).

5-Ethoxycarbonyl-4-phenyl-6-methyl-3,4-dihydropyrimidin-2(1H)-one (Table ;a, Entry 02)

Yellowish solid, obtained in 93 % yield, Mp: 205°C, IR (KBr) νmax : 3242, 3117, 2980, 1721, 1637, 1522, 1462, 1288, 1092, 770 cm⁻¹. ¹H NMR (DMSO-d₆): δ=9.18 (s, 1H, NH), 7.74 (s, 1H, NH), 7.22 (m, 5H arom), 5.14(d, 1H, J=3.6 Hz, H-4), 3.40 (q, 2H, J=6.9 Hz, OCH₂), 2.24 (s, 3H, CH₃), 1.09 (t, 3H, J=6.9 Hz, CH₃). Mass (ES/MS): m/z 259 (M-H).

2. Experimental Details
2.1 Material

All chemicals supplied by the Merck (Extra pure) Chemical Companies and used were without further purification. IR spectra were recorded on a Perkin-Elmer 1640 FT-IR instrument. The ¹H- and ¹³C-NMR spectra were recorded on a Bruker DPX-300 NMR machine. Unless otherwise specified,
CDCl$_3$ was used as solvent. Mass spectra were recorded with a Bruker Daltonic Data Analysis 2.0 spectrometer.

2.2 Preparation PANI-Co composite as a catalyst

The nanostructure Cobalt Chloride Doped Polyaniline (PANI-Co) composite as Catalyst was prepared by the chemical doping method. The polyaniline was synthesized by the chemical oxidization method at low temperature (0 to 5$^\circ$C). Ammonium Persulphate and Hydrochloric acid used as a oxidizing agent as received without further purification. 15 ml Aniline was first dissolve in 2 M 100 ml Hydrochloric Acid (HCl) (Merck). Then this solution is kept in the ice bath below 5$^\circ$C temperature. Ammonium Persulphate solution (Usually 10%) was added to the above solution with constant stirring. This polymerization process were completed within the three to four hours and the finally the green color polyaniline was formed. It is washed with the hot dilute HCl and dried it in the oven for 24 Hours.

An appropriate amount of the Cobalt Chloride 0.1 M was dissolve in polyaniline (PANI) solution. Doping of cobalt was done by the chemical doping method. For uniform distribution of cobalt to form the Cobalt Chloride Doped Polyaniline (PANI-Co) composite stirring was continued for 2 hours. PANI-Co composite was formed and confirmed by the instrumental technique and used as the effective catalyst.

2.3 General procedure of synthetic 3,4-dihydropyrimidin-2(1H)-one

A mixture of aromatic aldehyde (1 mmol), 1,3-dicarbonyl compounds (1 mmol), urea or thiourea (1.5 mmol) was prepared. After that we added nanostructured Cobalt Chloride Doped Polyaniline (PANI-Co) composite (3 mol %) as catalyst. The mixture was dissolved in 2mL of absolute ethanol. The mixture was refluxed for suitable time and the progress of the reaction was monitored by TLC. After completion of the reaction the catalyst was recovered by filtration, the filtrate was evaporated and the solid was then washed with cold water. Recrystalize the product with ethanol we got the pure 3,4-dihydropyrimidin-2(1H)-one.

2.4 General procedure of synthesis of the Mannich Base

The solution of the DHPMs (0.2 Mole) (I), Formaldehyde (0.4 Mole) (II) will be added under stirring. The reaction Mixture will be stir at room temperature for some time to complete the reaction of formaldehyde and to yield the methylol derivative of DHPM. To this solution the solution of Secondary amine (0.2 Mole) (III) will be added dropwise and reflux for half an hour. The workout the reaction by pouring the reaction mixture in the ice cold water. Then recrystalized the product by Chloroform to give the Mannich Base.

3. Results and Discussion

The synthesis of N-Mannich Bases from 3, 4-Dihydropyrimidin-2(1H)-ones by using nanostructure Cobalt Chloride Doped Polyaniline composite as Catalyst (PANI-Co), was carried out according to the reaction as shown in the Fig.3 and found to be the most effective method for the synthesis of the Mannich bases of synthetically important compounds.

4. Conclusion

In this above reported work we investigated the methodology for the synthesis of Synthesis of N-Mannich Bases from 3, 4-Dihydropyrimidin-2(1H)-ones by using nanostructure Cobalt Chloride Doped Polyaniline composite as Catalyst (PANI-Co). We synthesize the nine different Mannich Bases from 3, 4-Dihydropyrimidin-2(1H)-ones which give 94 % yield by using the these 3, 4-Dihydropyrimidin-2(1H)-ones by using nanostructure Cobalt Chloride Doped Polyaniline composite as Catalyst (PANI-Co).

5. Acknowledgement

The authors wish to Gratefully acknowledge support from the Research Centre department of chemistry Jijamata Mahavidyalaya Buldana Sant Gadage Baba Amravati University Amravati, Maharashtra, India.

6. References
1. Smith M B 2019 *Advanced Organic Chemistry: Reactions, Mechanisms, and Structure*, John Wiley and Sons, (New York NY USA 8th edition) p 2144
2. Belinelo V J, Reis G T, Stefani G M, Ferreira-Alves D L and D. Pilo- Veloso, 2002 *Journal of the Brazilian Chemical Society*, “Synthesis of 6,7-dihydroxyvouacapan- 17-oic acid derivatives. Part IV: mannich base derivatives and its activities on the electrically stimulated guinea-pig ileum preparation” 13 (6) 830–837
3. Joshi S, Khosla N and Tiwari P, 2004 *Bioorganic & Medicinal Chemistry* “In vitro study of some medic-inally important Mannich bases derived from anti-tubercular agent” 12 (3) 571–576
4. Racane L, Kulenovic V T, L F, Jakic D W Boykin and Zamola G K 2001 *Heterocycles* “Synthesis of bis-substituted amidino-benzothiazoles as potential anti-HIV agents” 55 2085–2098
5. Kashiya, E, Hutchinsino I N and Chua et al M S, 1999 *Journal of Medicinal Chemistry* “Antitumor ben-zothiazoles. 8.1 Synthesis, metabolic formation, and biological properties of the C- and N- oxidation products of antitumor 2- (4-aminophenyl)-benzothiazoles” 42 (20) pp. 4172–4184
6. Bhusare S R, Pawar R P and Vibhute Y B 2001 *Indian Journal of Heterocyclic Chemistry* 11 (1) “Synthesis and antibacterial activity of some new 2-(substituted phenyl sulfonamido)-6-substituted benzothiazoles pp.79–80
7. Raman N, Esthar S and Thangaraja C 2004 *Journal of Chemical Sciences* 116 (4) “A new Mannich base and its transition metal (II) complexes-synthesis, structural characterization and electrochemical study” pp. 209–213
8. Sriram D, Banerjee D, and Yogeeswari P 2009 Journal of Enzyme Inhibition and Medicinal Chemistry 24 (1) “Efavirenz Mannich bases: synthesis, anti-HIV and antitubercular activities” pp. 1–5
9. Barlin G B and Jirivanya C 1990 *Australian Journal of Chemistry* 43 (7) “Potential antimalarials . X. Di- Mannich Bases of 4-(7-Trifluoromethyl-1,5-naphthyridin-4-ylamino)pheno and N-(4-Diethylamino-1-methylbutyl)- 7-trifluoromethyl-1,5-naphthyridin-4-amine” pp 1175–1181
10. Pandeya S N, Sriram D, Nath G and Clerc E De 2007 *European Journal of Medicinal Chemistry* 35 (2) “Synthesis, antibacterial, antifungal and anti-HIV activities of norfloxacin Mannich bases” pp. 249–255
11. Singh B N, Shukla S K and Singh M 2000 *Asian Journal of Chemistry* 19 (7) “Synthesis and biological activity of sulphadiazine Schiff ‘s bases of isatin and their N-mannich bases” pp. 5013-5018
12. Vashishtha S C, Zello G A and Nienaber et al K H 2004 *European Journal of Medicinal Chemistry* 39 (1) “Cytotoxic and anti convulsant aryloxyaryl Mannich bases and related compounds” pp. 27–35
13. Edwards L, Ritter H W, Stemerc D M and Stewart K T 1983 *Journal of Medicinal Chemistry* 26 (3) “Mannich bases of 4-phenyl-3-buten-2-one: a new class of antiharpega agent” pp. 431-436
14. Kalluraya B, Chimbalkar R M, and Hegde J C 2005 *Indian Journal of Heterocyclic Chemistry* 15(1) “Anti-convulsant activity of nicotinyl/isonicotinyl substituted 1,2,4- triazol-5-thione Mannich bases,” pp. 15–18
15. Ivanova Y, Momekov G, Petrov O, Karaianova M and Kalcheva V 2007 *European Journal of Medicinal Chemistry* 42 (11-12) “Cytotoxic Mannich bases of 6-(3-aryly-2-propenoyl)- 2(3H)-benzoxazolones” pp. 1382–1387
16. Gul H I, Vepsalainen J, Gul M, Erciyas E and Hanninen O 2000 *Pharmaceut- tica Acta Helvetiae* 74 (4) “Cytotoxic activities of mono and bis Mannich bases derived from acetophenone against Renca and Jurkat cells” pp. 393-398
17. Bennet-Jenkins E and Bryant C 1996 *International Journal for Parasitology* 26 (8-9) “Novel sources of anthel- mintics” pp. 937-947
18. Ashok M , Holla B S, and Poojary B 2007 *European Journal of Medicinal Chemistry* 42 (8) “Convenient one pot synthesis and antimicrobial evaluation of some new Mannich bases carrying 4-methylthiobenzyl moiety” pp. 1095-1101
19. Pandeya S N, Sriram D, Nath G and De Clercq E 2000 *European Journal of Medicinal Chemistry* 35 (2) “Synthesis, antibacterial, antifungal and anti-HIV activities of norfloxacin Mannich bases” pp. 249–255
[20] Scott M K, Martin G E, DiStefano et al D L 1992 Journal of Medicinal Chemistry 35 (3) “Pyrrrole mannich bases as potential antipsychotic agents” pp. 552–558
[21] Sriram D, Banerjee D and Yogeeswari P. 2009 Journal of Enzyme Inhibition and Medicinal Chemistry 24 (1) “Efavirenz Mannich bases: synthesis, anti-HIV and antitubercular activities” pp.1-5
[22] Mulla J S, Khan A Y, Panchamukhi S I, Khazi M Kalashetti A B and Khazi I M 2011 Indian Journal of Novel Drug Delivery 3 (4) “Synthesis and antitubercular activity of Mannich bases of imidazo [2,1-b] [1,3,4] thiadiazoles” pp. 289-295
[23] Malinka W, Swiatek P, Filipek, Sapa B J, Jezierska A, and Koll A 2005 Farmaco 60 (11-12) “Synthesis, analgesic activity and computational study of new isothiazolopyridines of Mannich base type” pp. 961-968
[24] Kalluraya B, Chimbalkar R M, and Hegde J C 2005 Indian Journal of Heterocyclic Chemistry 15 (1) “Anti-convulsant activity of nicotinyl/isonicotinyl substituted 1,2,4-triazol-5-thione Mannich bases” pp. 15–18
[25] Koksal M, Gokhan N, Kupeli E, Yesilada E and Erdogan H 2007 Archives of Pharmacal Research 30 (4) “Analgesic and antiinflammatory activities of some new Mannich bases of 5-nitro-2-benzoazolinoines” pp. 419-424
[26] Otto F P, 1972 US Patent, US 3 649 229
[27] Qiu J.-X, Ji, L.-Q, Wing Yip C and Chan A S C 2003 The Journal of Organic Chemistry 68 (4) “A convenient, one-step synthesis of optically active tertiary aminonaphthol and its applications in the highly enantioselective alkenylation of aldehydes” pp. 1589-1590
[28] Huang P J J, Youssef D, Cameron T S and Jha A, “2008 Arkivoc 2008 (16) Micro- wave-assisted synthesis of novel 2-naphthol bis-Mannich Bases” pp. 165–177
[29] Holla B S, Shivananda M K, Shenoy M S and Antony G 1998 Farmaco 53 (8-9) “Studies on arylfuran derivatives. Part VII. Synthesis and char- acterization of some Mannich bases carrying halophenylfuryl moieties as promising antibacterial agents” pp. 531–535
[30] Shivananda M K and Prakash Shet P 2011Journal of Chemical and Pharmaceutical Research 3 (2) “Antifungal activity studies of some mannich bases carrying nitrofuran moieties” pp. 303–307
[31] Domling A 2002 Curr. Opin. Chem 6 “Biol Recent advances in isocyanide-based multicomponent chemistry” 306-313
[32] Debache A, Animour, M Belfaitah, A, Rhouati S and Carboni B A 2008 Tetrahedron Lett 49 “one-pot Biginelli synthesis of 3,4-dihydropyrimidin-2-(1H)- ones/thiones catalyzed by triphenylphosphine as Lewis base 6119-6121
[33] Salehi P, Dabiri M, Zolfigol M A and Fard M A B 2003 Tetrahedron Lett 44 “Silica sulfuric acid: an efficient and reusable catalyst for the one-pot synthesis of 3,4-dihydropyrimidin-2(1H)-ones” 2889-2891
[34] Kotharkar S A, Nagwade R R and Shinde D B, 2006 Ukrai.Bio.Acta 2 “Chlorosulfonic acid catalyzed highly efficient solvent-free synthesis of 3,4-dihydropyrimidin- 2(1H)-ones and thiones” 17-21
[35] Gawande M B, Polshettiwar V,Varma R S and Jayaram, R. V 2007 Tetrahedron Lett 48 “An efficient and chemoselective Cbz-protection of amines using silica– sulfuric acid at room temperature” 8170- 8173
[36] Starcevich J T, Laughlin T J and Mohan R S 2013 Tetrahedron Lett 54 “Iron(III) tosylate catalyzed synthesis of 3,4-dihydropyrimidin- 2(1H)-ones/thiones via the Biginelli reaction” 983–985
[37] Gawande, M. B.; Jayaram, R.V. 2007 Synthesis, analgesic activity and computational study of new isothiazolopyridines of Mannich base type” pp. 961-968
[38] Pandya D N, Young K J, Kwak W, Park J C and Gawande M B 2010 Med. Mol. Imaging 44 “A new synthesis of TE2A—a potential bifunctional chelator for 64Cu Nucl” 185-192

7
[41] Gawande M B and Branco P S 2011 *Green Chem* DOI: 10 “An efficient and expeditious Fmoc protection of amines and amino acids in aqueous media” 1039/clgc15868f

[42] Nagrik D M, Ambhore D M and Gawande M B 2010 *Int. J. chem* 2 (2) “One-pot preparation of beta–amino carbonyl compounds by Mannich reaction using MgO/ZrO2 as effective and reusable catalyst” 98-101