Identification by Site-directed Mutagenesis of Three Arginines in Uncoupling Protein That Are Essential for Nucleotide Binding and Inhibition

(Received for publication, July 7, 1997, and in revised form, August 9, 1997)

Martin Modriansky‡§, Debra L. Murdza-Inglis¶, Hasmukh V. Patel¶, Karl B. Freeman¶, and Keith D. Garlid‡¶

From the ‡Department of Biochemistry and Molecular Biology, Oregon Graduate Institute of Science and Technology, Portland, Oregon 97291-1000 and the ¶Department of Biochemistry, McMaster University, Hamilton, Ontario L8N 3Z5, Canada

Primary regulation of uncoupling protein is mediated by purine nucleotides, which bind to the protein and allosterically inhibit fatty acid-induced proton transport. To gain increased understanding of nucleotide regulation, we evaluated the role of basic amino acid residues using site-directed mutagenesis. Mutant and wild-type proteins were expressed in yeast, purified, and reconstituted into liposomes. We studied nucleotide binding as well as inhibition of fatty acid-induced proton transport in wild-type and six mutant uncoupling proteins. None of the mutations interfered with proton transport. Two lysine mutants and a histidine mutant had no effect on nucleotide binding or inhibition. Arg83 and Arg182 mutants completely lost both the ability to bind nucleotides and nucleotide inhibition. Surprisingly, the Arg276 mutant exhibited normal nucleotide binding, but completely lost nucleotide inhibition. To account for this dissociation between binding and inhibition, we propose a three-stage binding-conformational change model of nucleotide regulation of uncoupling protein. We have now identified three nucleotides by site-directed mutagenesis that are essential for nucleotide interaction with uncoupling protein.

Uncoupling protein (UCP)1 from brown adipose tissue mitochondria mediates proton flux from cytosol back into the matrix, thereby producing heat (1, 2). UCP contains an anion transport pathway that permits the charged fatty acid anion head group, to which the membrane is normally impermeable, to flip-flop in the membrane. The cycle is completed by flip-flop of the protonated fatty acid head group in the bilayer, resulting in energy-dissipating back flux of protons into the matrix (3). The only known regulation of the uncoupling cycle is provided by purine nucleotides, which bind to UCP and allosterically inhibit transport (4).

UCP does not contain a consensus nucleotide binding sequence, and relatively little is known about the location of the nucleotide binding site. Klingenberg’s laboratory (5, 6) has shown by chemical labeling that the base and ribose moieties are positioned near the matrix loop connecting the fifth and sixth transmembrane domains. Lysine and arginine residues have long been suspected of participation in nucleotide regulation, and Katiyar and Shrago (7) showed that phenylglyoxal abolished GDP binding to UCP. However, none of the residues that interact with the phosphate groups have been identified.

The introduction of a high-level expression system for UCP in Saccharomyces cerevisiae (8) opened the door to a study of these interactions using site-directed mutagenesis. Thus, we were able to show that mutation of a single arginine residue (Arg276) abolished GDP inhibition without affecting UCP-mediated proton transport (9). We have now extended this study to Arg83, Arg182, Lys268 and His214, which are positioned within the membrane-spanning helices of UCP, and Lys72, which lies outside the transmembrane domain (10). The mutant proteins were overexpressed in yeast (8, 9), then purified and reconstituted into liposomes. Fatty acid-induced, UCP-mediated H+ transport, and its sensitivity to nucleotides, were assayed by fluorescence, and GDP binding was assayed using [3H]GDP.

Each of the three arginine mutations caused complete loss of GDP inhibition of transport without affecting transport itself. This finding implies an extensive nucleotide interaction domain, because the three arginines are located on three different transmembrane segments. A surprising finding was that the Arg276 mutant, despite complete loss of sensitivity to GDP inhibition (9), retained normal binding affinity for GDP. We propose a three-stage binding-conformational change model in which Arg276 interacts with nucleotide after it is tightly bound, causing a conformational change that prevents transport of the fatty acid anion head group.

EXPERIMENTAL PROCEDURES

Materials—Zymolyase 100T was purchased from Seikagaku America (Ijamsville, MD). [3H]GDP was purchased from NEN Life Science Products. Dowex 1-X8, 200–400 mesh anion exchanger (chloride form) was obtained from Sigma. All other materials for cloning, site-directed mutagenesis, yeast growth, yeast mitochondria isolation, UCP isolation, and reconstitution were from sources listed previously (9).

Site-directed Mutagenesis—A M13mp19 plasmid containing the rat UCP cDNA fragment was used for preparing the site-directed mutants by the method of Kunkel (11). Oligonucleotides were designed to alter UCP codons for Arg83 (AGG) to Gln (CAG), Arg182 (AGA) to Thr (ACA), Lys72 (AAA) to Gln (CAA), Lys268 (AAA) to Gln (CAA), and His214 (CAT) to Gln (CAA). The SacI/SphI fragments from M13mp19 containing wild-type or mutated forms of UCP cDNA were subcloned into SacI/SphI-cut pCGS110 Escherichia coli/Lei, cerevisiae shuttle vector. The cDNAs are under transcriptional control of the inducible Gal1 promoter. The S. cerevisiae strain JBY16 (MATa, ura3, ade1, leu2, his3, gal1) was transformed with electroporation with the shuttle vector constructs and plated on uracil-lacking selective plates. The resulting yeast transformants were grown at 30 °C in selective medium, and overexpression of UCP was induced by addition of 0.2% galactose (8).

Purification and Reconstitution of Mutant UCPs—Yeast cells were...
FIG. 1. GDP inhibition of wild-type and Arg\textsuperscript{182} \rightarrow \text{Thr} mutant UCPs. Proton fluxes, as percent of control rate in the absence of external GDP, are plotted versus external [GDP]. The data shown were obtained with wild-type (○) and Arg\textsuperscript{182} \rightarrow \text{Thr} (△) mutant in the presence of 30 \text{μM} GDP. The K\textsubscript{g} for GDP inhibition of wild-type UCP was 11 \text{μM}. The difference between the maximum flux (100% flux) and the minimum flux (0% flux) corresponds to rates shown in Table I.

harvested after growth in galactose for 11 h, and yeast mitochondria were isolated using a protocol modified from Gasser (12). The final mitochondrial pellet was resuspended and stored at -20 °C in buffer consisting of 250 mM sucrose, 5 mM K-TEA, pH 6.7, and 1 mM K-EGTA. UCP was extracted, purified, and reconstituted into liposomes using the protocols described in detail by Garlid et al. (13).

Effects of Arg and Lys Mutations on GDP Binding—We used a modified anion-exchange method developed by Klingenberg et al. (16). A Pasteur pipette tip was sealed with packed glass wool and then filled with 30 mg of Dowex 1-X8, 200−400 mesh (chloride form). 75 μl of sample containing 6−9 μg of UCP was applied on top of the resin. Experimental medium contained [3H]GDP in concentrations from 1 to 15 μM, and otherwise was the same composition as internal medium, described above. The sample was immediately chased with 2 × 100 μl of distilled H\textsubscript{2}O through the column with a bulb. The entire eluate was collected and subjected to scintillation counting. For control, 100 μM nonradioactive GDP was included with each concentration of the radiolabeled nucleotide.

**RESULTS**

Effects of Arg and Lys Mutations on GDP Inhibition of Proton Transport—Fig. 1 contains a typical GDP concentration dependence for inhibition of wild-type UCP (solid circles) and Arg\textsuperscript{182} \rightarrow \text{Thr} mutant UCP (open circles). As shown in Table I, each of the arginine mutations completely abolished GDP inhibition, whereas the lysine and histidine mutants retained full GDP sensitivity. The K\textsubscript{g} for GDP inhibition of proton flux in wild-type and native UCP under these conditions is 11 μM (9) and was not affected in the mutants exhibiting GDP inhibition.

Upon reconstitution, UCP is distributed randomly in the bilayer (17). It transports anions in both directions, but 1 mM GDP is present in the liposomal interior, so that 50% of the wild-type UCP is always inhibited. Loss of GDP regulation should therefore free up both orientations of the protein and cause doubling of transport activity. This expectation was met in the Arg\textsuperscript{83} \rightarrow \text{Gln} mutant, but not in the other two Arg mutants.

Undecanesulfonate anion is transported by UCP and is a competitive inhibitor of laurate-induced proton flux (3). 300 μM undecanesulfonate inhibited proton flux in all mutants to the level of proton leak, consistent with normal behavior of the fatty acid anion transport pathway in the mutant UCPs.

Effects of Arg and Lys Mutations on GDP Binding—The concentration dependence of GDP binding yielded linear mass-action plots, from which K\textsubscript{g} and B\textsubscript{max} values were obtained. These parameters are contained in Table II. In comparing the data in Tables I and II, there is agreement between GDP binding and inhibition in each case except one. Thus, the Arg\textsuperscript{83} \rightarrow \text{Gln} and Arg\textsuperscript{182} \rightarrow \text{Thr} mutants lost both GDP inhibition and GDP binding, whereas the Lys\textsuperscript{72} \rightarrow \text{Gln} and Lys\textsuperscript{268} \rightarrow \text{Gln} mutants retained both functions. The Arg\textsuperscript{276} \rightarrow \text{Leu} mutant is unique in that it binds GDP normally but cannot be inhibited by GDP. Retention of normal GDP binding by the Arg\textsuperscript{276} \rightarrow \text{Leu} mutant has been confirmed in isolated yeast mitochondria (18). The protocol used to assay binding captures only the tightly bound state (19); thus, GDP is tightly bound in the Arg\textsuperscript{276} mutant.

The dissociation constants, K\textsubscript{g}, of the mutant UCPs capable of binding GDP (Table II) are higher than published values pertaining to native rat UCP (20); however, the K\textsubscript{g} values are close to the observed K\textsubscript{g} for GDP inhibition of UCP-mediated transport, which is generally 11 μM (9). This agreement may reflect our use of identical conditions for H\textsuperscript{+} flux and binding measurements.

Lysine 268 is located within the third domain of the tripartite structure among residues 238−283, which have long been identified with nucleotide interactions (6), and Lys\textsuperscript{72} is located...
Arginines Essential for Regulation of Uncoupling Protein

The Role of His214 in pH Regulation of Nucleotide Inhibition—The pH dependence of nucleoside triphosphate binding to UCP has a pK of 7.2, which suggested involvement of a histidine residue (21). If His214 plays this role, the His214 → Gln mutation should exhibit an increased K for GTP inhibition at neutral pH. In fact, this mutation had no effect on the K for GTP inhibition at pH 7.2 or 7.6 when compared with the wild-type (three experiments, data not shown).

DISCUSSION

Because of their polyanionic character, nucleotides are expected to bind to positively charged amino acid residues in UCP. Arg276 was the first such residue to be identified (9), and we now show that Arg83 and Arg182 are also essential for normal nucleotide binding and inhibition. None of the mutations affected H+ transport, confirming that fatty acid anion transport and nucleotide inhibition are separate features of UCP and implying two distinct binding sites (4, 7).

Structural Implications for UCP and UCPH—The location of the three essential arginines implies an extensive interaction region involving at least three of the six transmembrane helices in UCP (Fig. 2). These helices very likely form the walls of a dead-end aqueous pocket for nucleotides, which are known to enter and exit from the cytosolic side and to interact with residues located on the matrix loop between helices 5 and 6 (6). Moreover, each of the three arginines is conserved in UCPH, whose primary amino acid sequence is 56% identical with that of UCP, suggesting that this protein is also regulated by nucleotides. UCPH, whose primary amino acid sequence is 56% identical with that of UCP, encodes a protein thought to be involved in prevention of obesity and diabetes (22, 23).

Proposed Three-stage Mechanism of Nucleotide Regulation—Klingenberg and co-workers (19, 21, 24, 25) have elaborated an elegant kinetic model of the interactions of nucleotide phosphates with UCP. Access to the phosphate binding region is controlled by protonation of Glu190 presumably by releasing a salt bridge that occludes the binding site. Huang and Klingenberg (19) proposed a two-stage mechanism in which nucleotides in the second domain. As shown in Tables I and II, neither residue affected GDP binding or GDP inhibition.

Tight Conformation—The switch to a tight binding conformation is mediated by occupation of the â-phosphate of diphosphates and the â-phosphate of triphosphates. A histidine residue is protonated on the â-phosphate of triphosphates (24). The tightly bound conformation prevents trypsin cleavage of the C terminus of UCP at Lys292 (19). This step is necessary, but not sufficient, for inhibition of transport.

Inhibited Conformation—The nucleotide is now bound stably and positioned so that the â-phosphate can bind to Arg276. This

FIG. 2. Membrane-spanning model of uncoupling protein. UCP contains six transmembrane domains, which are designated by the single digit numbers. Membrane topology follows Miroux et al. (29). Amino acids at the cytosolic and matrix ends of the â-helices are numbered based on models of Klingenberg (1) and Winkler et al. (25). Lys72 and Lys268 were mutated without effect (this study). The remaining designated residues have been shown to participate in nucleotide binding to UCP. Thr259, Thr264, and Cys253 interact with the sugar-base moiety of the nucleotide (25). Arg83, Arg182, and Arg276 are essential for nucleotide binding and/or inhibition (this study), as is Glu190 (25). Each of the four transmembrane residues, Arg83, Arg182, Arg276, and Glu190, is conserved in UCPH, as is Cys253. UCPH contains substitutions at position 259 (Gln instead of Thr) and 264 (Arg instead of Thr).

FIG. 3. Model of the phosphate binding pocket in UCP. A, loose conformation. The nucleotide sugar-base moiety binds loosely to the loop between transmembrane helices 5 and 6, and the terminal phosphate binds to Arg182 on helix 4. B, tight conformation/inhibited conformation. Protonation of Glu190 opens the phosphate binding cleft between helices 2 and 4 and frees Arg276 to bind to the terminal phosphate of nucleoside diphosphates, resulting in a tightly bound state. Tight binding pulls the bound nucleotide, together with its sugar-base attachments at the N terminus of helix 6, into a new position, causing a demonstrable conformational change at the C terminus of helix 6 (19). Tight binding is not sufficient to inhibit transport. This occurs when Arg276 binds to the â-phosphate, causing a further conformational change that occludes the intramembrane binding site for the anionic head group of fatty acids.
final interaction induces a conformational change that occludes or removes the internal fatty acid binding site (3, 28), causing inhibition of transport. This extension of Huang and Klingenberg’s model (19) is consistent with our finding that mutation of Arg276 to Leu did not affect the $K_d$ for binding but completely prevented nucleotide inhibition of transport.

REFERENCES
1. Klingenberg, M. (1990) Trends Biochem. Sci. 15, 108–112
2. Nicholls, D. G. (1979) Biochim. Biophys. Acta 549, 1–22
3. Garlid, K. D., Oroz, D. E., Modriansky, M., Vassanelli, S., and Jezek, P. (1996) J. Biol. Chem. 271, 2615–2620
4. Jezek, P., Oroz, D. E., Modriansky, M., and Garlid, K. D. (1994) J. Biol. Chem. 269, 26184–26190
5. Winkler, E., and Klingenberg, M. (1992) Eur. J. Biochem. 203, 295–304
6. Mayinger, P., and Klingenberg, M. (1992) Biochemistry 31, 10536–10543
7. Katiyar, S. S., and Shrago, E. (1989) Proc. Natl. Acad. Sci. U.S.A. 86, 2559–2562
8. Murdza-Inglis, D. L., Patel, H. V., Freeman, K. B., Jezek, P., Oroz, D. E., and Garlid, K. D. (1994) J. Biol. Chem. 266, 11871–11875
9. Murdza-Inglis, D. L., Modriansky, M., Patel, H. V., Woldegiorgis, G., Freeman, K. B., and Garlid, K. D. (1994) J. Biol. Chem. 269, 7435–7438
10. Aquila, H., Link, T. A., and Klingenberg, M. (1985) EMBO J. 4, 2369–2376
11. Kunkel, T. A. (1985) Proc. Natl. Acad. Sci. U.S.A. 82, 488–492
12. Gasser, S. M. (1983) Methods Enzymol. 97, 329–336
13. Garlid, K. D., Sun, X., Paucek, P., and Woldegiorgis, G. (1995) Methods Enzymol. 269, 331–348
14. Oroz, D. E., and Garlid, K. D. (1993) Anal. Biochem. 210, 7–15
15. Kaplan, R. S., and Pedersen, P. L. (1985) Anal. Biochem. 150, 97–104
16. Klingenberg, M., Herlt, M., and Winkler, E. (1986) Methods Enzymol. 126, 498–504
17. Jezek, P., Oroz, D. E., and Garlid, K. D. (1990) J. Biol. Chem. 265, 19296–19302
18. Murdza-Inglis, D. L. (1995) Structure/Function Studies of Rat Uncoupling Protein in Yeast Mitochondria (Energy Metabolism). Ph.D. thesis, McMaster University, Hamilton, Canada
19. Huang, S.-G., and Klingenberg, M. (1996) Biochemistry 35, 7846–7854
20. Rafael, J., Pampel, I., and Wang, X. (1994) Eur. J. Biochem. 223, 971–980
21. Huang, S.-G., and Klingenberg, M. (1995) Biochemistry 34, 349–360
22. Fleury, C., Neverova, M., Collins, S., Rainbault, S., Champigny, O., Le Meur, C., Bouillaud, F., Seldin, M. F., Surwit, R. S., Ricquier, D., and Warden, C. H. (1997) Nat. Genet. 15, 269–273
23. Gimeno, R. E., Dembuski, M., Weng, X., Deng, N., Shyjan, A. W., Gimeno, C. J., Iris, F., Ellis, S. J., Woolf, E. A., and Tartaglia, L. A. (1997) Diabetes 46, 900–906
24. Klingenberg, M. (1988) Biochemistry 27, 781–791
25. Winkler, E., Wachtler, E., and Klingenberg, M. (1997) Biochemistry 36, 148–155
26. Lin, C., and Klingenberg, M. (1982) Biochemistry 21, 2950–2956
27. Nicholls, D. G., Cannon, B., Grav, H. J., and Lindberg, O. (1974) in Dynamics of Energy-transducing Membranes (Ernster, L., ed) pp. 529–537, Elsevier Science Publishers B.V., Amsterdam
28. Garlid, K. D. (1990) Biochim. Biophys. Acta 1018, 151–154
29. Miroux, B., Frossard, V., Rainbault, S., Ricquier, D., and Bouillaud, F. (1993) EMBO J. 12, 3749–3754