On some kinds of factorizable topological groups

Meng Baoa, Xiaoquan Xub,*

aCollege of Mathematics, Sichuan University, Chengdu 610064, China
bFujian Key Laboratory of Granular Computing and Applications, Minnan Normal University, Zhangzhou 363000, China

Abstract

Based on the concepts of R-factorizable topological groups and M-factorizable topological groups, we introduce four classes of factorizabilities on topological groups, named PM-factorizabilities, Pm-factorizabilities, SM-factorizabilities and PSM-factorizabilities, respectively. Some properties of the four classes of spaces are investigated.

Keywords: Topological groups, feathered, PM-factorizable, Pm-factorizable.

2000 MSC: 22A05; 54A25; 54H11.

1. Introduction

In the field of Topological Algebra, topological groups are standard researching objects and have been studied for many years, see [1]. A topological group is a group equipped with a topology such that the multiplication on the group is jointly continuous and the inverse mapping is also continuous. It is well-known that for every continuous real-valued function f on a compact topological group G, there exists a continuous homomorphism $p : G \to L$ onto a second-countable topological group L and a continuous real-valued function h on L such that $f = h \circ p$. Then, Tkachenko posed the concept of R-factorizable topological groups, see [4]. A topological group G is called R-factorizable if for every continuous real-valued function f on G, we can find a continuous homomorphism $\pi : G \to H$ onto a second-countable topological group H such that $f = g \circ \pi$, for some continuous real-valued function g on H. We know that R-factorizable topological groups are generalizations of compact groups and separable metrizable groups. For more interesting properties about R-factorizable topological groups, see [2, 6, 7]. However, since a metrizable topological group need not to be R-factorizable, it follows that H. Zhang, D. Peng and W. He in [10] posed the notion of M-factorizable topological group. A topological group G is called M-factorizable if for every continuous real-valued function f on G, there is a continuous homomorphism $\varphi : G \to H$ onto a metrizable topological group H such that $f = g \circ \varphi$, for some continuous real-valued function g on H. Since all first-countable topological groups are metrizable, it is trivial to see that all first-countable topological groups are M-factorizable. Moreover, it was proved in [10, Theorem 3.2] that a topological group is R-factorizable if and only if it is M-factorizable and ω-narrow.

By further researches of R-factorizable topological groups, L. Peng and Y. Liu introduced the concept of PR-factorizable topological groups, that is, a topological group G is called PR-factorizable if for every continuous real-valued function f on G, there exists a perfect homomorphism $\pi : G \to H$ onto a second-countable topological group H such that $f = g \circ \pi$, for some continuous real-valued function g on H. They gave the characterizations of PR-factorizable topological groups in [3, Theorem 2.6]. In particular,
a topological group is \(P \mathbb{R} \)-factorizable if and only if it is Lindel"of feathered. Moreover, since every \(\omega \)-narrow feathered topological group is Lindel"of (see \([1, 4.3.A]\)), it is easy to see that a topological group is \(P \mathbb{R} \)-factorizable if it is \(\omega \)-narrow and feathered. Then, we introduce the following notion.

Definition 1.1. A topological group \(G \) is called \(PM \)-factorizable if for every continuous real-valued function \(f \) on \(G \), there exists a perfect homomorphism \(\pi : G \to H \) onto a metrizable topological group \(H \) such that \(f = g \circ \pi \), for some continuous real-valued function \(g \) on \(H \).

Clearly, each \(P \mathbb{R} \)-factorizable topological group is \(PM \)-factorizable. L. Peng and Y. Liu introduced an example \([3, Example 3.13]\) which is an \(\mathbb{R} \)-factorizable topological group, but not \(P \mathbb{R} \)-factorizable. Indeed, the topological group \(G \) in \([3, Example 3.13]\) is not feathered. Since all \(\mathbb{R} \)-factorizable topological groups are \(M \)-factorizable, it is a \(M \)-factorizable topological group. However, by the definition of \(M \)-factorizability, it is easy to that every \(PM \)-factorizable topological group is feathered, hence the topological group \(G \) of \([3, Example 3.13]\) is not \(PM \)-factorizable.

In this paper, we give some characterizations of \(PM \)-factorizable topological groups, such as a topological group \(G \) is \(PM \)-factorizable if and only if \(G \) is feathered \(M \)-factorizable. We also shown that a topological group \(G \) is \(P \mathbb{R} \)-factorizable if and only if \(G \) is \(PM \)-factorizable and \(\omega \)-narrow. Then it is natural to deduce that a topological group \(G \) is \(P \mathbb{R} \)-factorizable if and only if \(G \) is feathered \(\mathbb{R} \)-factorizable. W. He et al. in \([3, Proposition 2.1]\) proved the following proposition.

Proposition 1.2. Let \(G = \prod_{i \in I} G_i \) be the product of an uncountable family of non-compact separable metrizable topological groups. Then the group \(G \) is \(\mathbb{R} \)-factorizable, but it fails to be feathered.

Therefore, the result also can present that the product group \(G \) is not \(P \mathbb{R} \)-factorizable. Of course, \(G \) is an \(M \)-factorizable topological group, but not \(PM \)-factorizable. Moreover, some interesting properties of \(M \)-factorizable topological groups in \([3, 10]\) are strengthened to \(PM \)-factorizable topological groups.

For example, the product \(G = \prod_{n \in \mathbb{N}} G_n \) of countably many \(PM \)-factorizable topological groups is \(PM \)-factorizable if and only if every factor \(G_n \) is metrizable or every \(G_n \) is \(P \mathbb{R} \)-factorizable, the product of a \(PM \)-factorizable topological group with a compact metrizable topological group is \(PM \)-factorizable.

Then, according to the concept of \(m \)-factorizable topological groups, that is, a topological group \(G \) is called \(m \)-factorizable if for every continuous mapping \(f : G \to M \) to a metrizable space \(M \), there exists a continuous homomorphism \(\pi : G \to K \) onto a second-countable group \(K \) such that \(f = g \circ \pi \), for some continuous homomorphism \(g \) from \(K \) onto \(M \), we introduce \(Pm \)-factorizable topological groups by strengthening the continuous homomorphism \(\pi \) to a perfect homomorphism. Then we show that a topological group \(G \) is \(Pm \)-factorizable if and only if \(G \) is \(P \mathbb{R} \)-factorizable and pseudo-\(K_1 \)-compact, which deduces that a topological group \(G \) is \(Pm \)-factorizable if and only if \(G \) is feathered \(m \)-factorizable. Furthermore, it is claimed that the product of a \(Pm \)-factorizable topological group with an arbitrary compact group is \(Pm \)-factorizable.

Finally, we pose the concepts of \(SM \)-factorizable topological groups and \(PSM \)-factorizable topological groups. A topological group \(G \) is called \(strongly \ M \)-factorizable (\(SM \)-factorizable for short) if for every continuous mapping \(f : G \to M \) to a metrizable space \(M \), there exists a continuous homomorphism \(\pi : G \to H \) onto a metrizable group \(H \) and a continuous mapping \(g : H \to M \) such that \(f = g \circ \pi \). In particular, if the continuous homomorphism \(\pi : G \to H \) is perfect, we call \(G \) \(PSM \)-factorizable. Since a topological group \(G \) is \(PM \)-factorizable if and only if \(G \) is feathered \(M \)-factorizable, and a topological group \(G \) is \(Pm \)-factorizable if and only if \(G \) is feathered and \(m \)-factorizable, see Theorem \([3,5]\) and Corollary \([5,3]\), it is natural to consider whether it is equivalent between \(PSM \)-factorizability and feathered \(SM \)-factorizability. Then we show that it also holds in Theorem \([6,5]\). Furthermore, the four classes of factorizable properties are preserved by open continuous homomorphisms on topological groups, see Theorem \([3,11]\) Corollary \([5,6]\) Theorem \([6,7]\) and Corollary \([6,8]\).

2. Preliminary

Throughout this paper, all topological spaces are assumed to be Hausdorff, unless otherwise is explicitly stated. Let \(\mathbb{N} \) be the set of all positive integers and \(\omega \) the first infinite ordinal. The readers may consult
3. Some properties of \(P_M \)-factorizable topological groups

In this section, we give some characterizations of \(P_M \)-factorizable topological groups, such as a topological group \(G \) is \(P_M \)-factorizable if and only if \(G \) is feathered \(M \)-factorizable. We also showed that a topological group \(G \) is \(PR \)-factorizable if and only if \(G \) is \(P_M \)-factorizable and \(\omega \)-narrow. Then it is natural to deduce that a topological group \(G \) is \(PR \)-factorizable if and only if \(G \) is feathered \(R \)-factorizable.

Recall that paracompact \(p \)-spaces are the preimages of metrizable spaces under perfect mappings. By the definitions of \(P_M \)-factorizable topological groups, the following result is clear.

Proposition 3.1. Every \(P_M \)-factorizable topological group is a paracompact \(p \)-space.

It was proved in \([1\), Theorem 4.3.35] that a topological group is feathered if and only if it is \(p \)-space, and if it is a paracompact \(p \)-space.

Proposition 3.2. Every \(P_M \)-factorizable topological group is feathered.

Then according to the concept of \(PR \)-factorizable topological groups, every \(PR \)-factorizable topological group is \(P_M \)-factorizable. Therefore, every compact topological group is \(P_M \)-factorizable. Moreover, it is not difficult to see that a feathered \(M \)-factorizable topological group is \(P_M \)-factorizable.

Theorem 3.3. A topological group \(G \) is \(P_M \)-factorizable if and only if \(G \) is feathered \(M \)-factorizable.

Proof. The necessity is trivial.

The sufficiency of Theorem 3.3 can be shown as follows. If \(G \) is a feathered \(M \)-factorizable topological group, it follows from \([3\), Theorem 3.3] that either \(G \) is metrizable or \(G \) is \(R \)-factorizable. If \(G \) is metrizable, it is trivial. On the other hand, if \(G \) is an \(R \)-factorizable topological group, \(G \) is \(\omega \)-narrow by \([1\), Proposition 8.1.3]. Since a topological group is \(PR \)-factorizable if and only if it is \(\omega \)-narrow and feathered by \([3\), Theorem 2.6]. Therefore, \(G \) is a \(PR \)-factorizable topological group, and is also \(PM \)-factorizable, naturally.

Moreover, we show that each \(\omega \)-narrow \(PM \)-factorizable topological group is \(PR \)-factorizable.
Theorem 3.4. A topological group G is PR-factorizable if and only if G is PM-factorizable and ω-narrow.

Proof. Since every PR-factorizable topological group is ω-narrow, the necessity is trivial.

Let’s prove the sufficiency. Suppose that G is a PM-factorizable and ω-narrow topological group, $f : G \to \mathbb{R}$ is a continuous real-valued function. Then there exists a perfect homomorphism $\varphi : G \to K$ onto a metrizable topological group K such that $f = g \circ \varphi$, where $g : K \to \mathbb{R}$ is continuous. Since G is ω-narrow, so is K. Since every first-countable ω-narrow topological group is second-countable, we obtain that G is PR-factorizable.

By Theorems 3.3 and 3.4, we obtain the following result.

Corollary 3.5. A topological group G is PR-factorizable if and only if G is feathered \mathbb{R}-factorizable.

Indeed, it was proved in [8, Theorem 3.4] that for a feathered topological group G, G is ω-narrow if and only if it is \mathbb{R}-factorizable. Moreover, [3, Theorem 2.6] presented that a topological group G is PR-factorizable if and only if G is ω-narrow and feathered. As a topological group G is \mathbb{R}-factorizable if and only if it is \mathcal{M}-factorizable and ω-narrow by [10, Theorem 3.2], the Corollary 3.5 also can be obtained.

Proposition 3.6. A topological group G is PR-factorizable if and only if G is a feathered Lindelöf Σ-group.

Proof. The sufficiency is clear. Indeed, a feathered Lindelöf Σ-group G is Lindelöf feathered, so G is PR-factorizable, as a topological group is Lindelöf feathered if and only if it is PR-factorizable by [8, Theorem 2.5].

Then we show the necessity. Let G be a PR-factorizable topological group. It follows from [8, Theorem 2.6] that G is ω-narrow and feathered. Then, by [3, Theorem 3.4], for a feathered topological group G, G is ω-narrow if and only if G is a Lindelöf Σ-group.

Theorem 3.7. A topological group G is PM-factorizable if and only if one of the following holds:

1. G is metrizable;
2. G is PR-factorizable.

Proof. Since every PR-factorizable topological group is PM-factorizable and every metrizable topological group is also PR-factorizable, the sufficiency is clear.

Then suppose that a PM-factorizable topological group G is not metrizable. By Proposition 3.2, G is feathered. Since a non-metrizable PM-factorizable topological group is \mathbb{R}-factorizable by [8, Theorem 3.3], G is \mathbb{R}-factorizable and so G is a PR-factorizable topological group.

Then from [11, Theorem 4.8], a locally compact group G is \mathcal{M}-factorizable if and only if G is metrizable or G is σ-compact. Then, it is well-known that every locally compact topological group is feathered, so the characterization also holds for PM-factorizable topological groups by Theorem 3.3.

Proposition 3.8. A locally compact group G is PM-factorizable if and only if one of the following conditions holds:

1. G is metrizable;
2. G is σ-compact.

It is well-known that a subgroup of an \mathbb{R}-factorizable topological group may not be \mathbb{R}-factorizable. Indeed, by [1, Example 8.2.1], there is an Abelian P-group G and a dense subgroup H of G such that G is Lindelöf, hence R-factorizable, but H is not R-factorizable. In particular, H is ω-narrow. Therefore, H is not \mathcal{M}-factorizable. Since every ω-narrow topological group can be embedded into an \mathbb{R}-factorizable group as a closed invariant subgroup, see [1, Theorem 8.2.2], hence \mathbb{R}-factorizability is not closed-heredity for topological groups. However, W. He et al. showed that every subgroup of an \mathcal{M}-factorizable feathered group is \mathcal{M}-factorizable, it also means that every subgroup of a PM-factorizable is \mathcal{M}-factorizable. So it is easy to see that PM-factorizability is closed-heredity for topological groups.
Proposition 3.9. Every closed subgroup of a PM-factorizable topological group is PM-factorizable.

Proof. Let \(G \) be a PM-factorizable topological group and \(H \) a closed subgroup of \(G \). By Theorem 3.3, \(G \) is \(M \)-factorizable and feathered. According to [8, Lemma 4.1], every subgroup of an \(M \)-factorizable feathered group is \(M \)-factorizable, so \(H \) is a \(M \)-factorizable topological group. Moreover, it is well-known that a closed subspace of a feathered space is feathered. Hence, \(H \) is \(M \)-factorizable and feathered. We have that \(H \) is PM-factorizable by Theorem 3.3.

From [1, Theorem 3.4.4], every subgroup of an \(\omega \)-narrow topological group is \(\omega \)-narrow, so the following is clear.

Corollary 3.10. Every closed subgroup of a P\(\mathbb{R} \)-factorizable topological group is P\(\mathbb{R} \)-factorizable.

Theorem 3.11. If \(f : G \to H \) is an open continuous homomorphism of a PM-factorizable topological group onto a topological group \(H \), then \(H \) is PM-factorizable.

Proof. Indeed, it was proved in [10, Corollary 3.8] that a quotient group of a \(M \)-factorizable topological group is also \(M \)-factorizable. Moreover, by [1, Corollary 4.3.24], if \(f : G \to H \) is an open continuous homomorphism of a feathered topological group onto a topological group \(H \), then \(H \) is also feathered. Therefore, if \(G \) is PM-factorizable, that is, feathered and \(M \)-factorizable by Theorem 3.3, then the topological group \(H \) is also PM-factorizable as an open continuous homomorphic image.

From [1, Proposition 3.4.2], if a topological group \(H \) is a continuous homomorphic image of an \(\omega \)-narrow topological group \(G \), then \(H \) is also \(\omega \)-narrow. The following corollary is follows from Theorem 3.3.

Corollary 3.12. If \(f : G \to H \) is an open continuous homomorphism of a P\(\mathbb{R} \)-factorizable topological group onto a topological group \(H \), then \(H \) is P\(\mathbb{R} \)-factorizable.

4. Products of PM-factorizable topological groups

In this section, we investigate some properties about products of PM-factorizable topological groups. In particular, some interesting properties of \(M \)-factorizable topological groups in [5, 11] are strengthened to PM-factorizable topological groups. For example, the product \(G = \prod_{n \in \mathbb{N}} G_n \) of countably many PM-factorizable topological groups is PM-factorizable if and only if every factor \(G_n \) is metrizable or every \(G_n \) is P\(\mathbb{R} \)-factorizable, the product of a PM-factorizable topological group with a compact metrizable topological group is PM-factorizable.

First, according to the result that a locally compact group \(G \) is \(M \)-factorizable if and only if \(G \) is metrizable or \(G \) is \(\sigma \)-compact, H. Zhang et al. gave an example to show that a product of two \(M \)-factorizable topological groups may fail to be \(M \)-factorizable. By further observation about the example, we find that a product of two PM-factorizable topological groups may not be \(M \)-factorizable, so naturally not be PM-factorizable.

Example 4.1. Assume that \(G \) is a metrizable locally compact group which is not \(\sigma \)-compact and \(H \) is a compact and non-metrizable group. Obviously, both \(G \) and \(H \) are \(M \)-factorizable. Moreover, each locally compact topological group is feathered, then \(G \) and \(H \) both are PM-factorizable. However, the product group \(G \times H \) is neither metrizable nor \(\sigma \)-compact. Therefore, the product group \(G \times H \) is not PM-factorizable by Proposition 3.8. Indeed, since \(G \times H \) is feathered but not \(M \)-factorizable, it can also be yielded that it is not PM-factorizable by Theorem 3.3.

Theorem 4.2. The product \(G = \prod_{n \in \mathbb{N}} G_n \) of countably many PM-factorizable topological groups is PM-factorizable if and only if every factor \(G_n \) is metrizable or every \(G_n \) is P\(\mathbb{R} \)-factorizable.
Proof. It follows from [1, Proposition 4.3.13] that the product space G is feathered. If G is PM-factorizable, by Theorem [3.7] G is either metrizable or PR-factorizable. If G is metrizable, each G_n is also metrizable. If G is PR-factorizable, so is every G_n by Corollary [3.12].

On the contrary, if every G_n is metrizable, it is clear that G is also metrizable. If every G_n is a PR-factorizable topological group, it is easy to see that G is R-factorizable. Moreover, G is feathered, we conclude that G is PR-factorizable by Corollary [3.9].

The product of countably many PR-factorizable topological groups is also PR-factorizable, see [3, Proposition 2.7], then it is clear to achieve the following by Theorems 3.7 and 4.2.

Proposition 4.3. If G is a PM-factorizable topological group, then so is G^ω.

Remark 4.4. Let G be a compact group with $w(G) > \omega$ and D an uncountable discrete group. Since G and D both are feathered, it is clear that $G \times D$ is feathered. However, G is not metrizable and D is not PR-factorizable, then $G \times D$ is not PM-factorizable, hence is also not M-factorizable by Theorem 5.3.

By Lemma 3.1 and Theorem 4.7 of [3], an M-factorizable topological group which contains a non-metrizable pseudocompact subspace is ω-narrow.

Theorem 4.5. Let G and H be topological groups, where G contains a non-metrizable pseudocompact subspace. If $G \times H$ is PM-factorizable, then $G \times H$ is PR-factorizable.

Proof. Since every PM-factorizable topological group is M-factorizable, it is clear that H is ω-narrow by [3, Theorem 5.7]. Since projection is an open continuous homomorphism, G and H both are PM-factorizable by Theorem 3.11. Then G is ω-narrow since G contains a non-metrizable pseudocompact subspace. We have that the PM-factorizable topological group $G \times H$ is also ω-narrow, hence is PR-factorizable by Theorem 3.4.

Theorem 4.6. Let G be a feathered group and K a pseudocompact feathered group. Then $G \times K$ is PM-factorizable if and only if either both G and K are metrizable or G is PR-factorizable.

Proof. Let the product group $G \times K$ be PM-factorizable. Then the factors G and K are PM-factorizable as the open continuous images by Theorem 3.11. If $G \times K$ is not metrizable, then either G or K is not metrizable. If G is not metrizable, it follows from Theorem 3.7 that G is PR-factorizable. On the other case, if K is not metrizable, K is a non-metrizable pseudocompact topological group, then G is ω-narrow. By [3, Theorem 2.6], a topological group is feathered and ω-narrow if and only if it is PR-factorizable, hence G is a PR-factorizable topological group.

On the contrary, if G and K are metrizable topological groups, it is clear that $G \times K$ is PM-factorizable. If G is PR-factorizable, then $G \times K$ is R-factorizable as K is pseudocompact. Moreover, both G and K are feathered, then $G \times K$ is also feathered, which deduces that $G \times K$ is a PR-factorizable topological group by Corollary 5.5 hence is PM-factorizable.

Theorem 4.7. Let G and H be topological groups, where the Raikov completion \hat{G} of G contains a non-metrizable compact subspace. If $G \times H$ is PM-factorizable, then H is PR-factorizable.

Proof. Since every PM-factorizable topological group is M-factorizable, it follows from [3, Theorem 3.11] that H is pseudo-\(\omega\)-compact, hence H is ω-narrow by [1, Proposition 3.4.31]. Since the product $G \times H$ is PM-factorizable, so is H by Theorem 3.11. Therefore, we have that H is a PR-factorizable topological group by Theorem 3.4.

Proposition 4.8. If the product $G \times H$ of topological groups is PM-factorizable and the group G is precompact, then either G is second countable or H is PR-factorizable.

Proof. The first part that G is second countable follows just from [3, Proposition 3.12] and the second part is deduced by Theorem 4.7.
Theorem 4.9. Let G be a feathered group and H a precompact feathered group. Then $G \times H$ is PM-factorizable if and only if either both G and H are metrizable or G is Lindelöf Σ-group.

Proof. The necessity is claimed in [3, Theorem 3.13], where H just need to be precompact.

It suffices to prove the sufficiency. On the first case, if both G and H are metrizable, it is trivial that $G \times H$ is PM-factorizable. On the other case, let G be a feathered Lindelöf Σ-group and H a precompact feathered group. Then the Raikov completion gH of H is compact. $G \times H$ is R-factorizable as a subgroup of the Lindelöf Σ-group $G \times gH$. Moreover, since both G and H are feathered, $G \times H$ is also feathered, hence is PR-factorizable by Corollary 4.14. We obtain that $G \times H$ is a PM-factorizable topological group.

W. He et al. proved that the product of an M-factorizable topological group with a locally compact separable metrizable topological space is M-factorizable, see [3, Theorem 3.14].

Theorem 4.10. Let G be a PM-factorizable topological group and H a locally compact separable metrizable topological group. Then $G \times H$ is PM-factorizable.

Proof. Since the product of an M-factorizable topological group with a locally compact separable metrizable topological group is M-factorizable, $G \times H$ is M-factorizable. Moreover, both G and H are feathered as every locally compact group is feathered, so $G \times H$ is also feathered. Therefore, $G \times H$ is PM-factorizable by Theorem 4.10.

Remark 4.11. Indeed, by revising the proof to [3, Theorem 3.14], we can give a direct proof of Theorem 4.10.

Proof. Since H is a locally compact separable metrizable group, H is σ-compact. Then there is an increasing sequence $\{H_n : n \in \mathbb{N}\}$ of compact subsets of H such that $H = \bigcup_{n \in \mathbb{N}} H_n$ and H_n is contained in the interior of H_{n+1} for each $n \in \mathbb{N}$. Let f be a continuous real-valued function on $G \times H$. Denote by $C(H_n)$ the space of continuous real-valued functions on H_n with sup-norm, for each $n \in \mathbb{N}$. Then define a mapping $\Psi_n : G \to C(H_n)$ by $\Psi_n(x)(y) = f(x, y)$ for all $x \in G$ and $y \in H_n$. Since H_n is compact and second countable, Ψ_n is continuous and $C(H_n)$ is second countable. Put Ψ the diagonal product of $\{\Psi_n : n \in \mathbb{N}\}$. Since $\prod_{n \in \mathbb{N}} C(H_n)$ is second countable, it is clear that $\Psi(G)$ is also second countable.

By the hypothesis, G is PM-factorizable, we can find a perfect homomorphism π of G onto a metrizable group K and a continuous mapping ψ of K to $\Psi(G)$ such that $\Psi = \psi \circ \pi$. Take $y \in H$ and choose $n \in \mathbb{N}$ with $y \in H_n$. Let $x, x' \in G$. If $\pi(x) = \pi(x')$, then $\Psi(x) = \Psi(x')$. Then $\Psi_n(x) = \Psi_n(x')$, that is, $f(x, y) = f(x', y)$. Therefore, we can define a mapping $h : K \times H \to \mathbb{R}$ such that $f = h \circ (\pi \times id_H)$. It is not difficult to verify that h is continuous. Since both K and H are metrizable topological groups, $G \times H$ is also metrizable. Moreover, π is a perfect mapping, so is the mapping $\pi \times id_H$. Thus, we conclude that the product $G \times H$ is PM-factorizable.

Theorem 4.12. Let G be a PR-factorizable topological group and H a locally compact separable metrizable topological group. Then $G \times H$ is PR-factorizable.

Proof. First, $G \times H$ is PM-factorizable by Theorem 4.10. Moreover, since both G and H are ω-narrow, then $G \times H$ is ω-narrow and it is achieved that it is PR-factorizable by Theorem 3.4.

Corollary 4.13. Let G be a PM-factorizable topological group and H a compact metrizable topological group. Then $G \times H$ is PM-factorizable.

Corollary 4.14. Let G be a PR-factorizable topological group and H a compact metrizable topological group. Then $G \times H$ is PR-factorizable.

A topological space X is called *pseudo-\aleph_1-compact* if every discrete family of open subsets of X is countable. As we all know, every separable space is pseudo-\aleph_1-compact and every pseudo-\aleph_1-compact topological group is ω-narrow. Therefore, the following result follows from Theorem 3.4.

Corollary 4.15. A pseudo-\aleph_1-compact PM-factorizable topological group is PR-factorizable.
Corollary 4.16. A product of a pseudo-\aleph_1-compact PM-factorizable topological group and a compact group is $P\mathbb{R}$-factorizable.

Proof. Indeed, let G be a pseudo-\aleph_1-compact PM-factorizable topological group and H a compact group. It was proved in [10, Corollary 5.2] that a product of a pseudo-\aleph_1-compact M-factorizable topological group and a compact group is \mathbb{R}-factorizable. Then the product $G \times H$ is \mathbb{R}-factorizable. Moreover, G is feathered by Proposition 4.19 and H is also feathered, so $G \times H$ is a feathered group, which deduces that $G \times H$ is $P\mathbb{R}$-factorizable by Corollary 4.3.

It was proved in [11, Theorem 5.4] that if $G \times K$ is M-factorizable, where G is an M-factorizable group and K is compact group, then G is pseudo-\aleph_1-compact or K is metrizable. Then we have the following by Corollaries 4.13 and 4.16.

Theorem 4.17. Let G be a PM-factorizable topological group and K a compact group. Then $G \times K$ is PM-factorizable if and only if one of the following conditions holds:

1. K is metrizable;
2. G is pseudo-\aleph_1-compact.

Recall that a mapping $f : X \to Y$ is d-open if for every open set U in X, the image $f(U)$ is contained in the interior of the closure of $f(U)$. The following results was proved in [8], see Proposition 6.3 and Theorem 6.5.

Proposition 4.18. An image of a feathered topological group under a continuous d-open homomorphism is feathered.

Proposition 4.19. Let p be a continuous d-open homomorphism from a topological group G onto a topological group H. If G is M-factorizable, so is H.

Since it is proved in Theorem 5.3 that a topological group G is PM-factorizable if and only if G is feathered M-factorizable, the following is deduced by two propositions above.

Corollary 4.20. If a topological group H is a continuous d-open homomorphic image of a PM-factorizable topological group G, then H is also PM-factorizable.

5. On Pm-factorizable topological groups

In this section, according to the concept of m-factorizable topological groups, that is, a topological group G is called m-factorizable if for every continuous mapping $f : G \to M$ to a metrizable space M, there exists a continuous homomorphism $\pi : G \to K$ onto a second-countable group K such that $f = g \circ \pi$, for some continuous homomorphism g from K onto M, we introduce Pm-factorizable topological groups as the following by strengthening the continuous homomorphism π to a perfect homomorphism.

Definition 5.1. [1] A topological group G is called m-factorizable if for every continuous mapping $f : G \to M$ to a metrizable space M, there exists a continuous homomorphism $\pi : G \to K$ onto a second-countable group K such that $f = g \circ \pi$, for some continuous homomorphism g from K onto M.

In particular, if the continuous homomorphism π is perfect, we call the topological group G Pm-factorizable. Clearly, every Pm-factorizable topological group is m-factorizable and every Pm-factorizable topological group is $P\mathbb{R}$-factorizable. Then we show that a topological group G is Pm-factorizable if and only if G is $P\mathbb{R}$-factorizable and pseudo-\aleph_1-compact and the product of a Pm-factorizable topological group with an arbitrary compact group is Pm-factorizable.

First, by [1, Proposition 8.5.1], we just need to revise the continuous homomorphism π to a perfect homomorphism π, we can obtain the following.
Proposition 5.2. A topological group G is Pm-factorizable if and only if for every continuous pseudometric d on G, there exist a perfect homomorphism $\pi : G \to K$ onto a second-countable topological group K and a continuous pseudometric g on K such that $d(x,y) = g(\pi(x),\pi(y))$, for all $x,y \in G$.

Lemma 5.3. \[x] Lemma 3.2] Suppose that $f : G \to X$ is a continuous mapping of a PR-factorizable topological group G to a Tychonoff space X with $w(X) \leq \tau$. Then one can find a perfect homomorphism $\pi : G \to K$ onto a topological group K with $w(K) \leq \tau$ such that $f = h \circ \pi$ for some continuous mapping $h : g(G) \to K$.

Theorem 5.4. A topological group G is Pm-factorizable if and only if G is PR-factorizable and pseudo-\aleph_1-compact.

Proof. Since every Pm-factorizable topological group is m-factorizable and every Pm-factorizable topological group is PR-factorizable, the necessity is clear since all m-factorizable topological groups are pseudo-\aleph_1-compact. It suffices to claim the sufficiency.

Assume that a topological group G is PR-factorizable and pseudo-\aleph_1-compact and $f : G \to M$ is a continuous mapping of G onto a metrizable space M. Since continuous mapping preserve pseudo-\aleph_1-compactness, M is also pseudo-\aleph_1-compact, then $w(M) \leq \omega$. Since G is PR-factorizable, it follows from Lemma 5.3 that we can find a perfect homomorphism $\pi : G \to K$ onto a second-countable topological group K such that $f = g \circ \pi$ for some continuous mapping $g : K \to M$ onto the metrizable space M. Therefore, we have that G is a Pm-factorizable topological group.

Since a topological group G is m-factorizable if and only if G is \mathbb{R}-factorizable and pseudo-\aleph_1-compact by \[x] Theorem 8.5.2, it is clear to deduce the following by Corollary 3.5.

Corollary 5.5. A topological group G is Pm-factorizable if and only if G is feathered and m-factorizable.

The following corollary is from Theorem 5.4 and Corollary 3.12.

Corollary 5.6. Let $\pi : G \to H$ be an open continuous homomorphism of a topological group G onto H. If G is Pm-factorizable, so is H.

By \[x] Theorem 8.5.8, if an \mathbb{R}-factorizable group G satisfies $w(G) \leq \tau \geq \aleph_0$, then $|C(G)| \leq \tau^\omega$, where $C(X)$ denotes the set of continuous real-valued functions on a space X. Indeed, if G is an \mathbb{R}-factorizable group with $w(G)^\omega < 2^{\aleph_1}$, then G is pseudo-\aleph_1-compact. Then the following result follows from Theorem 5.4.

Corollary 5.7. Every PR-factorizable group G with $w(G)^\omega < 2^{\aleph_1}$ is Pm-factorizable.

Corollary 5.8. Let G be a PR-factorizable group with $w(G)^\omega < 2^{\aleph_1}$. Then the product $G \times K$ is Pm-factorizable, for every compact group K.

Lemma 5.9. Let G be a topological group with the property that for every continuous function $f : G \to \mathbb{R}$, there exists a perfect homomorphism $\pi : G \to H$ onto a PR-factorizable group H such that $f = g \circ \pi$ for some continuous function $g : H \to \mathbb{R}$. Then the group G is PR-factorizable.

Proof. Let $f : G \to \mathbb{R}$ be a continuous function. By the hypothesis, there exists a perfect homomorphism $\pi : G \to H$ onto a PR-factorizable group H and a continuous function $g : H \to \mathbb{R}$ such that $f = g \circ \pi$. Since H is PR-factorizable, we can find a perfect homomorphism $p : H \to K$ onto a second-countable topological group K and a continuous real-valued function h on K such that $g = h \circ p$.

$$
\begin{array}{ccc}
G & \xrightarrow{f} & \mathbb{R} \\
\downarrow{\pi} & & \downarrow{g} \\
H & \xrightarrow{h} & K \\
\downarrow{p} & & \\
K & & \\
\end{array}
$$

Let $\varphi = p \circ \pi$. Since both p and π are perfect, φ is also perfect. Therefore, there is a perfect homomorphism φ of G onto K satisfying $f = h \circ \varphi$. We conclude that G is a PR-factorizable topological group.
Theorem 5.10. Let \(G \) be a \(Pm\)-factorizable topological group and \(K \) an arbitrary compact group, then the topological group \(G \times K \) is \(Pm\)-factorizable.

Proof. By Corollary 5.5, \(G \) is feathered and \(m\)-factorizable. Since the product group of every \(m\)-factorizable group with an arbitrary compact group is also \(m\)-factorizable, it is clear that \(G \times K \) is \(m\)-factorizable. Moreover, every \(Pm\)-factorizable topological group is feathered and every locally compact group is also feathered, so \(G \times K \) is feathered, which deduces that \(G \times K \) is \(Pm\)-factorizable. By Corollary 5.5.

Remark 5.11. The following is a direct proof of Theorem 5.10.

Proof. Let \(f : G \times K \to \mathbb{R} \) be a continuous function. \(C(K) \) denotes the space of all continuous real-valued functions on \(K \) with the sup-norm topology and consider the mapping \(\Psi : G \to C(K) \) defined by \(\Psi(x)(y) = f(x, y) \), for all \(x \in G \) and \(y \in K \). Since \(K \) is compact, \(\Psi \) is continuous. Since \(G \) is a \(Pm\)-factorizable topological group, it follows from Theorem 5.4 that \(G \) is \(P\mathbb{R}\)-factorizable and pseudo-\(K\)-compact, so the subspace \(\Psi(G) \) of the metric space \(C(K) \) is pseudo-\(K\)-compact and hence is second-countable. Since \(G \) is \(P\mathbb{R}\)-factorizable, we can find a perfect homomorphism \(\pi : G \to H \) onto a second-countable topological group \(H \) and a continuous mapping \(\psi : H \to C(K) \) such that \(\Psi = \psi \circ \pi \) by Lemma 5.3.

Then if \(x_1, x_2 \in G \) and \(\pi(x_1) = \pi(x_2) \), then \(f(x_1, y) = f(x_2, y) \) for each \(y \in K \). Suppose on the contrary, if \(f(x_1, y) \neq f(x_2, y) \) for some \(x_1, x_2 \in G \) and \(y \in K \), then \(\Psi(x_1)(y) = \Psi(x_2)(y) \). It is easy to see that \(\pi(x_1) \neq \pi(x_2) \). Therefore, we can define a mapping \(h : H \times K \to \mathbb{R} \) such that \(h \circ (\pi \times id_K) = f \), where \(id_K \) is the identity mapping of \(K \) onto itself.

\[
\begin{tikzcd}
G \times K \ar{r}{f} \ar{d}[swap]{\pi \times id_K} & \mathbb{R} \\
H \times K \ar{u}{h}
\end{tikzcd}
\]

Moreover, \(H \) is continuous. For an arbitrary point \((s, y) \in H \times K\) and a number \(\varepsilon > 0 \). Let \(x^* \in G \) be such that \(\pi(x^*) = s \). Since \(\psi \) is continuous, there exists an open neighborhood \(U \) of \(s \) in \(H \) such that \(||\Psi(t) - \Psi(s)|| < \varepsilon/2 \) for each \(t \in U \). We can find a neighborhood \(V \) of \(y \) in \(K \) such that \(|f(x^*, z) - f(x^*, y)| < \varepsilon/2 \) for each \(z \in V \). Let \((t, z) \in U \times V \) and \(x \in G \) such that \(\pi(x) = t \). Then

\[
|h(t, z) - h(s, y)| \leq |f(x, z) - f(x^*, z)| + |f(x^*, z) - f(x^*, y)| < \varepsilon/2 + \varepsilon/2 = \varepsilon.
\]

Therefore, \(h \) is continuous.

Since \(H \) is a second-countable topological group and \(K \) is a compact group, we know that \(H \times K \) is Lindelöf. Moreover, it is well-known that every metrizable topological group is feathered and every locally compact topological group is feathered, it follows that \(H \times K \) is feathered. As every Lindelöf topological group is \(\mathbb{R}\)-factorizable, we obtain that \(H \times K \) is \(P\mathbb{R}\)-factorizable by Corollary 5.5. Since \(f = h \circ (\pi \times id_K) \), it follows from Lemma 5.9 that \(G \times K \) is \(P\mathbb{R}\)-factorizable. Finally, as \(G \) is pseudo-\(K\)-compact and \(K \) is compact, the product \(G \times K \) is pseudo-\(K\)-compact and we conclude that \(G \times K \) is \(Pm\)-factorizable by Theorem 5.4.

In [1. Theorem 8.5.11], if the product \(G \times K \) of an \(\mathbb{R}\)-factorizable group \(G \) and a compact group \(K \) is \(\mathbb{R}\)-factorizable, then either \(G \) is pseudo-\(K\)-compact or \(K \) is metrizable. Therefore, by Theorem 5.10 and Corollary 4.14 we have the following result which is similar to Theorem 4.17.

Theorem 5.12. Let \(G \) be a \(P\mathbb{R}\)-factorizable topological group and \(K \) a compact group. Then \(G \times K \) is \(P\mathbb{R}\)-factorizable if and only if one of the following conditions holds:

1. \(K \) is metrizable;
2. \(G \) is pseudo-\(K\)-compact.

Proposition 5.13. A \(C\)-embedded closed subgroup of a \(P\mathbb{R}\)-factorizable topological group is \(P\mathbb{R}\)-factorizable.
Proof. Let H be a C-embedded closed subgroup of a PR-factorizable topological group G. Then every continuous function $f : H \to \mathbb{R}$ admits an extension to a continuous function $g : G \to \mathbb{R}$. Since G is PR-factorizable, there exists a perfect homomorphism $\pi : G \to K$ onto a second-countable group K such that $g = h \circ \pi$ for some continuous function h on K. Since H is a closed subgroup of G, the homomorphism $\pi|_H$ of H onto the subgroup $\pi(H)$ of K is also perfect and factorizes f.

The following follows from the fact that every retract of a space X is C-embedded in X.

Corollary 5.14. Let G be a PR-factorizable topological group and H a closed subgroup of G. If H is a retract of G, then H is also PR-factorizable.

Corollary 5.15. Let G be a topological group. If $G \times \mathbb{Z}(2)^{\omega_1}$ is PR-factorizable, then G is Pm-factorizable.

Proof. Let $K = \mathbb{Z}(2)^{\omega_1}$, where $\mathbb{Z}(2) = \{0, 1\}$ is the discrete group. Indeed, it was proved in [1] Theorem 8.5.5] that if $G \times \mathbb{Z}(2)^{\omega_1}$ is R-factorizable, G is pseudo-\aleph_1-compact. Then it suffices to show that G is PR-factorizable by Theorem 6.4.

Let e_K be the identity of the group K. It is clear that $G \cong G \times \{e_K\}$ is closed in $G \times K$ and is a retract of $G \times K$. By Corollary 5.14, G is PR-factorizable, which deduces that G is a Pm-factorizable topological group.

6. On SM-factorizable topological groups

In this section, we pose the concepts of SM-factorizable topological groups and PSM-factorizable topological groups. We show that a topological group G is PSM-factorizable if and only if G is feathered SM-factorizable, and the properties of SM-factorizabilities and PSM-factorizabilities are preserved by open continuous homomorphisms on topological groups. Indeed, by the definition of m-factorizable topological groups, it is natural to extend \mathbb{R} to a metrizable space, so we pose the following concept.

Definition 6.1. A topological group G is called strongly M-factorizable (SM-factorizable for short) if for every continuous mapping $f : G \to M$ to a metrizable space M, there exists a continuous homomorphism $\pi : G \to H$ onto a metrizable group H and a continuous mapping $g : H \to M$ such that $f = g \circ \pi$. In particular, if the continuous homomorphism $\pi : G \to H$ is perfect, we call G PSM-factorizable.

\[
\begin{array}{ccc}
G & \xrightarrow{f} & M \\
\pi & \downarrow & \\
H & \xleftarrow{g} & \\
\end{array}
\]

Clearly, every SM-factorizable topological group is M-factorizable and every m-factorizable topological group is SM-factorizable.

Theorem 6.2. A topological group G is m-factorizable if and only if G is SM-factorizable and ω-narrow.

Proof. Since every m-factorizable topological group is R-factorizable, hence is ω-narrow, the necessity is trivial.

Let’s prove the sufficiency. Suppose that G is an SM-factorizable and ω-narrow topological group, $f : G \to M$ is a continuous mapping to a metrizable space M. Then there exists a continuous homomorphism $\varphi : G \to K$ onto a metrizable topological group K such that $f = g \circ \varphi$, where $g : K \to M$ is a continuous mapping. Since G is ω-narrow, so is K. Since every first-countable ω-narrow topological group is second-countable, we obtain that G is m-factorizable.

Similarly, the following result also holds.
Proposition 6.3. A topological group G is P_m-factorizable if and only if G is PSM-factorizable and ω-narrow.

Proposition 6.4. A topological group G is SM-factorizable if and only if for every continuous pseudometric d on G, one can find a continuous homomorphism $\pi : G \to K$ onto a metrizable topological group K and a continuous pseudometric g on K such that $d(x, y) = g(\pi(x), \pi(y))$ for all $x, y \in G$.

Proof. Let G be an SM-factorizable topological group and d a continuous pseudometric on G. Consider the metric space $M = G/d$ with the associated metric d^*, obtained from G by identifying points at zero distance with respect to d. Let $p: G \to G/d$ be the projection assigning to a point $x \in G$ the equivalence class $[x]$ consisting of all $z \in G$ with $d(x, z) = 0$. Then $d(x, y) = d^*(p(x), p(y))$, for all $x, y \in G$. By the hypothesis, G is SM-factorizable, there exists a continuous homomorphism $\pi : G \to K$ onto a metrizable topological group K and a continuous pseudometric g on K such that $p = h \circ \pi$. Define a continuous pseudometric ρ on G by $\rho(s, t) = d^*(h(s), h(t))$ for all $s, t \in K$. Then for all $x, y \in G$,

$$d(x, y) = d^*(p(x), p(y)) = d^*(h(\pi(x)), h(\pi(y))) = \rho(\pi(x), \pi(y)).$$

On the other hand, let $f : G \to M$ be a continuous mapping to a metric space M with a metric κ. Define a continuous pseudometric d on G by $d(x, y) = \kappa(f(x), f(y))$ for all $x, y \in G$. By the hypothesis, there exists a continuous homomorphism $\pi : G \to K$ onto a metrizable topological group K and a continuous pseudometric ρ on K such that $\rho(\pi(x), \pi(y)) = \kappa(f(x), f(y))$, for all $x, y \in G$. Therefore, $\rho(\pi(x), \pi(y)) = \kappa(f(x), f(y))$, for all $x, y \in G$. Then $\pi(x) = \pi(y)$ always implies $f(x) = f(y)$. We can find a continuous mapping $h : K \to M$ such that $f = h \circ \pi$. Thus, we conclude that G is SM-factorizable.

By Proposition 6.3, it is not difficult to see that if we change the continuous homomorphism π onto a perfect homomorphism, it also holds for PSM-factorizable topological groups. Then we show that every feathered SM-factorizable is PSM-factorizable.

Theorem 6.5. A topological group G is PSM-factorizable if and only if G is feathered SM-factorizable.

Proof. The necessity is trivial, it suffices to claim the sufficiency.

Let G be a feathered SM-factorizable topological group and $f : G \to H$ a continuous mapping to a metrizable space E. Then we can find a continuous homomorphism $\pi : G \to H$ onto a metrizable topological group H and a continuous mapping $g : H \to E$ such that $f = g \circ \pi$. Since every M-factorizable group is ω-balanced by [10, Theorem 3.1] and G is feathered, there exists a perfect homomorphism $p : G \to K$ onto a metrizable topological group K. Let φ be the diagonal product of the homomorphisms π and p and $M = \varphi(G) \subseteq H \times K$. Since p is perfect, the homomorphism φ is also perfect by [2, Theorem 3.7.11]. By the definition of φ, we can find continuous homomorphisms $q_H : M \to H$ and $q_K : M \to K$ satisfying $\pi = q_H \circ \varphi$ and $p = q_K \circ \varphi$. Then from [1, Proposition 3.7.5], it follows that q_K is perfect.

Then the subgroup M of $H \times K$ is metrizable. Indeed, since H and K are both first-countable and the property of first-countability is hereditary, it is clear that the subgroup M of $H \times K$ is first-countable, hence M is metrizable.

```
                  E
                   ↗
                    f
                     ↗
                     g
                    ↗
                   G
                  ↗   ↗
                 z   ϕ
                 ↗   ↗
                H   q_H
                  ↗         ↗
                 p   ↘   ↘
                ↗   ↗           ↗
               K   ϕ   q_K
                ↗   ↗
               q_K
```

We define a continuous mapping $h : M \to E$ by $h = q \circ q_H$. Then, for each continuous mapping $f : G \to E$ to a metrizable space E, we can find a perfect homomorphism $\varphi : G \to M$ onto a metrizable topological group M and a continuous mapping $h : M \to E$ such that $f = h \circ \varphi$. Therefore, we conclude that G is PSM-factorizable.
Lemma 6.6. Let \(\{U_n : n \in \mathbb{N}\} \) be a family of neighborhoods of the identity \(e \) in an \(\omega \)-balanced group \(G \). Then there exists a continuous homomorphism \(p : G \to H \) onto a metrizable topological group \(H \) and a family \(\{V_n : n \in \mathbb{N}\} \) of open neighborhoods of the identity \(e_H \) in \(H \) such that \(p^{-1}(V_n) \subseteq U_n \), for each \(n \in \mathbb{N} \).

Proof. It is well-known that if \(G \) is an \(\omega \)-balanced topological group, for each open neighborhood \(U \) of the identity element \(e \) in \(G \), there exists a continuous homomorphism \(\pi \) of \(G \) onto a metrizable group \(H \) such that \(\pi^{-1}(V) \subseteq U \), for some open neighborhood \(V \) of the identity element \(e_H \) of \(H \), see [2, Theorem 4.3.18]. Then for every \(n \in \mathbb{N} \), we can find a continuous homomorphism \(\pi_n \) of \(G \) onto a metrizable topological group \(H_n \) and an open neighborhood \(W_n \) of the identity element in \(H_n \) such that \(\pi_n^{-1}(W_n) \subseteq U_n \). Let \(\pi \) be the diagonal product of the family \(\{\pi_n : n \in \mathbb{N}\} \). Then \(\pi = \pi(G) \) is a subgroup of the product \(P = \prod_{n \in \mathbb{N}} H_n \), so the group \(H \) is also metrizable. Denote by \(p_n \) the projection of \(P \) onto the factor \(H_n \). Then \(\pi_n = p_n \circ \pi \) for each \(n \in \mathbb{N} \). The open neighborhoods \(V_n = H \cap \pi_n^{-1}(W_n) \) of the identity in \(H \) is such that \(\pi^{-1}(V_n) = \pi_n^{-1}(W_n) \subseteq U_n \).

Theorem 6.7. Let \(\pi : G \to H \) be an open continuous homomorphism of a topological group \(G \) onto \(H \). If \(G \) is SM-factorizable, so is \(H \).

Proof. Let \(f : H \to M \) be a continuous mapping to a metrizable space \(M \). Then \(f \circ \pi : G \to M \) is a continuous mapping. Since \(G \) is SM-factorizable, there exists a continuous homomorphism \(\varphi : G \to K \) onto a metrizable topological group \(K \) and a continuous mapping \(g : K \to M \) such that \(f \circ \pi = g \circ \varphi \). Since \(K \) is a first-countable topological group, we can find a countable local base \(\{U_n : n \in \mathbb{N}\} \) at the identity \(e_K \) of \(K \) and put \(V_n = \pi(\varphi^{-1}(U_n)) \), for each \(n \in \mathbb{N} \), \(V_n \) is an open neighborhood of the identity \(e_H \) in \(H \), for each \(n \in \mathbb{N} \).

In the metrizable space \(M \), the metric which generates the original topology is denoted by \(d \). For each \(m \in M \) and arbitrary \(\varepsilon > 0 \), let \(O_\varepsilon(m) = \{t \in M : d(m, t) < \varepsilon\} \). For each \(h \in H \) and \(\varepsilon > 0 \), choose \(g \in G \) with \(\pi(g) = h \) and put \(x = \varphi(g) \). Then \(f(h) = f(\pi(g)) = g(\varphi(g)) = g(x) \). Since \(g \) is continuous, there exists \(n \in \mathbb{N} \) such that \(g(xU_n) \subseteq O_\varepsilon(f(h)) \). Since \(V_n = \pi(\varphi^{-1}(U_n)) \), for each \(n \in \mathbb{N} \), it is easy to see that \(f(hV_n) \subseteq O_\varepsilon(f(h)) \) for some \(n \in \mathbb{N} \).

Since \(\pi : G \to H \) is an open continuous homomorphism of an \(\omega \)-balanced topological group \(G \) onto topological group \(H \), \(H \) is also \(\omega \)-balanced. Then there exists a continuous homomorphism \(p : H \to L \) onto a metrizable topological group \(L \) with a local base \(\{W_n : n \in \mathbb{N}\} \) at the identity such that \(p^{-1}(W_n) \subseteq V_n \) for each \(n \in \mathbb{N} \) by Lemma 6.6. Put \(N \) the kernel of \(p \). Then \(N \subseteq \bigcap_{n \in \mathbb{N}} V_n \). Therefore, \(f \) is constant on every coset \(hN \) in \(H \). Then we can define a mapping \(h : L \to M \) such that \(h \circ p = f \). It is not difficult to see that for every \(g \in L \) and arbitrary \(\varepsilon \), there exists \(n \in \mathbb{N} \) such that \(h(gW_n) \subseteq O_\varepsilon(h(y)) \), which means that \(h \) is continuous. We conclude that \(H \) is also SM-factorizable.

If \(f : G \to H \) is an open continuous homomorphism of a feathered group \(G \) onto a group \(H \), \(H \) is also feathered, see [1, Corollary 4.3.24], the following corollary is clear by Theorems 6.5 and 6.7.

Corollary 6.8. Suppose that \(\pi : G \to H \) is an open continuous homomorphism of a PSM-factorizable topological group \(G \) onto \(H \), then \(H \) is also PSM-factorizable.

It was proved in [10, Proposition 5.1] that a pseudo-\(N_1 \)-compact and \(M \)-factorizable topological group is \(R \)-factorizable. Moreover, it is well-known that a topological group is \(m \)-factorizable if and only if it is \(R \)-factorizable and pseudo-\(N_1 \)-compact.

Proposition 6.9. Every pseudo-\(N_1 \)-compact \(M \)-factorizable topological group is SM-factorizable.
During the following figure, for convenience, \mathbb{R} denotes \mathbb{R}-factorizable topological groups, \mathcal{M} denotes \mathcal{M}-factorizable topological groups, and so on. Moreover, the two arrows represent stronger properties, such as every $P\mathbb{R}$-factorizable topological group is \mathbb{R}-factorizable, etc. The notions $+nar$, $+fea$ and $+pse$ represent adding the properties of ω-narrow, feathered and pseudo-\aleph_1-compact, respectively, and then the single arrow will hold, that is, two spaces at both ends of the arrow will be equivalent.

However, the property of pseudo-\aleph_1-compact is too strong in Proposition 6.9, so it is natural to consider what properties can be added to an \mathcal{M}-factorizable topological group to imply it is \mathcal{SM}-factorizable and every \mathcal{SM}-factorizable topological group obtains the properties at the same time.

Finally, the following question is posed naturally.

Question 6.10. Is there an \mathcal{SM}-factorizable topological group but not m-factorizable?

References

[1] A.V. Arhangel’skii, M. Tkachenko, *Topological Groups and Related Structures*, Atlantis Press and World Sci., 2008.
[2] R. Engelking, *General Topology (revised and completed edition)*, Heldermann Verlag, Berlin, 1989.
[3] L. Peng, Y. Liu, *On Lindelöf feathered topological groups*, Topol. Appl., 285 (2020) 107405.
[4] M. G. Tkachenko, *Factorization theorems for topological groups and its applications*, Topol. Appl., 38 (1991) 21–37.
[5] M. G. Tkachenko, *Homomorphic images of \mathbb{R}-factorizable groups*, Comment. Math. Univ. Carol., 47 (3) (2006) 525–537.
[6] M. G. Tkachenko, *Hereditarily \mathbb{R}-factorizable paratopological groups*, Topol. Appl., 157 (2010) 1548–1557.
[7] M. G. Tkachenko, *Products of \mathbb{R}-factorizable groups*, Topol. Proc., 39 (2012) 167–184.
[8] W. He, D. Peng, M. Tkachenko, H. Zhang, *\mathcal{M}-factorizable feathered topological groups*, Topol. Appl., 289 (2021) 107481.
[9] W. He, D. Peng, M. Tkachenko, H. Zhang, *\mathcal{M}-factorizability of products and τ-fine topological groups*, Topol. Appl., 296 (2021) 107674.
[10] H. Zhang, D. Peng, W. He, *On \mathcal{M}-factorizable topological groups*, Topol. Appl., 274 (2020) 107126.