Prospects of antibodies targeting CD47 or CD24 in the treatment of glioblastoma

Hao Wu1,2 | Jialin Liu2 | Zhifei Wang1 | Wen Yuan3 | Ling Chen2

Abstract
Glioma is a malignant tumor with the highest incidence among all brain tumors (about 46% of intracranial tumors) and is the most common primary intracranial tumor. Among them, glioblastoma (GBM) is highly malignant and is one of the three refractory tumors with the highest mortality rate in the world. The survival time from glioblastoma diagnosis to death is only 14–16 months for patients with standard treatment such as surgery plus radiotherapy and chemotherapy. Due to its high malignancy and poor prognosis, in-depth studies have been conducted to explore effective therapeutic strategies for glioblastoma. In addition to the conventional surgery, radiotherapy, and chemotherapy, the glioblastoma treatments also include targeted therapy, immunotherapy, and electric field treatment. However, current treatment methods provide limited benefits because of the heterogeneity of glioblastoma and the complexity of the immune microenvironment within a tumor. Therefore, seeking an effective treatment plan is imperative. In particular, developing an active immunotherapy for glioblastoma has become an essential objective in the field. This article reviews the feasibility of CD47/CD24 antibody treatment, either individually or in combination, to target the tumor stem cells and the antitumor immunity in glioblastoma. The potential mechanisms underlying the antitumor effects of CD47/CD24 antibodies are also discussed.

KEYWORDS
anti-CD47/CD24 antibody, cancer stem cells, glioblastoma, innate immunity, tumor-associated macrophages

1 | INTRODUCTION
Glioblastoma has a sophisticated immune microenvironment that is different from other solid tumors. The central nervous system was once considered an immune exemption organ because of the lack dedicated lymphatic channels and the limited presentation of antigens derived from the brain to the peripheral immune cells. In 2015, Louveau et al.1 defined a new lymphatic system. Most antigen-presenting cells that leave the brain may migrate into the deep cervical lymph nodes, where they activate T and B lymphocytes. Since then, immunotherapy for glioblastoma has attracted the interest of researchers. However, systemic immunity, especially the cellular immune function, is suppressed in patients with glioblastoma or in mouse models of glioblastoma.2 Therefore, enhancing the patient's adaptive immunity, or turning “cold tumor” into “hot tumor,” has become the primary goal for glioblastoma research.
There have been several potential treatments for glioblastoma, such as immune checkpoint inhibitors and CAR-T. However, the enthusiasm toward immunotherapy has been dampened because not all patients with glioblastoma benefit from these treatments. Studies on the microenvironment of glioblastoma indicate that the number of microglial cells and macrophages in the tumor exceeds the infiltrating T cells. The lack of T cells in the tumor microenvironment is different from other tumor types, such as melanoma or lung cancer. Therefore, myeloid-derived cells may be the key to glioblastoma, and controlling their differentiation and polarization may bear the same importance as activating adaptive immunity.

It is recently discovered that the tumor conveys the "don’t eat me" signal of innate immune surveillance through CD47-SIRPs and CD24-Siglec-10 action. In preclinical studies, antibodies targeting CD47/CD24 yield encouraging results in various types of tumors. A variety of anti-CD47 antibodies have entered clinical trials (Table 1). Further studies have found that CD47 can affect the polarization of tumor-associated macrophages, while CD24 has no relevant reports. The M2-type polarization of tumor-associated macrophages can promote tumor growth, invasion, blood vessel formation, etc. In addition, CD47/CD24 is expressed in tumor stem cells and cause the emergence of tumor resistance and promote tumor recurrence.

The primary target cells of anti-CD47/CD24 antibodies are microglia/macrophages. Thus, we believe that these antibodies may trigger an antitumor immune response by activating myeloid innate immune cells. When used together with immune checkpoint inhibitors that activate systemic immunity, this treatment could offer surprising effects.

2 | GLIOBLASTOMA

Glioblastoma (GBM) is a common malignant tumor that originates in the brain. According to CBTRUS (Central Brain Tumor Registry of the United States), glioblastoma accounts for 14.9% of all brain tumors in the United States. This tumor is characterized by its prominent invasiveness and poor prognosis. The 5-year survival rate for GBM is as low as 5.5%. At present, the standard treatment of GBM is mainly the extensive surgical resection, supplemented by radiotherapy and temozolomide chemotherapy. An array of new biomarkers for glioblastoma has been identified recently. The mechanisms underlying tumor cell growth and invasion have been elucidated. New treatment strategies for glioblastoma have been under active research, including the targeted therapy based on molecular biomarkers, alternating electric field therapy that acts on mitosis of tumor cells, and immunotherapy that targets different aspects of tumor immunity. Based on current research results, we need to pay attention to two key factors that affect the effectiveness of glioblastoma treatment: tumor stem cells (TSC) and tumor immune microenvironment.

2.1 | Glioma tumor stem cells

In 2016, the World Health Organization classified glioblastoma into four different subtypes based on gene mutations and high expression of specific biomarkers: anterior, neurological, classic, and interstitial glioblastoma. Glioblastoma is viewed as an aggressive tumor with substantial heterogeneities. Sottoriva et al. performed a complete genomic analysis on biopsies of various parts of the tumors from 11 glioblastoma patients. The results revealed extensive intratumoral heterogeneities. Among many different subtypes of glioblastoma cells, glioma tumor stem cells (TSC) may be the key to glioblastoma, and controlling their differentiation and polarization may bear the same importance as activating adaptive immunity.

Table 1

Regulatory factors of tumor immunity
Intrinsic Factors in Tumor Cells
Signaling via mitogen-activated protein kinases
Acquired mutations encoding the phosphatase PTEN
Activation of the WNT-β-catenin pathway
Alterations signaling via the cytokine IFN-γ
Loss of heterozygosity of loci containing genes encoding human leukocyte antigens
Downregulation of neoantigens
Since these heterogeneous tumor cells may have been differentiated from TSCs, a logical strategy for glioblastoma treatment would be targeting the TSCs. To do so, one must understand the mechanism by which TSCs escape from therapeutic targeting. An increasing body of evidence suggests that specific anti-apoptotic and pro-survival pathways are activated, and the drug effluxes increased in TSCs (Figure 1A,B), which all contribute to the development of glioblastoma resistance to antitumor therapies. Due to the functional differences between TSCs and their differentiated offspring cells at the transcriptome, epigenetics, and metabolic levels, no single treatment is currently effective for glioblastoma. Therefore, the development of new therapies targeting TSCs may be the key to “eradicating” the tumor.

2.2 | Immunosuppression of glioblastoma

After the body recognizes a tumor antigen, antigen-presenting cells present it to effector cells. The effector cells then carry out immune responses to specifically kill tumor cells. This process, which is defined as tumor immunity, is quite complex and is regulated by multiple pathways. See Table 1 for details.

To achieve effective immunotherapy for glioblastoma, one must overcome two significant obstacles: 1. immune-privileged; and 2. immunosuppression.

It is previously believed that the central nervous system is an immune-privileged organ lacking antigen-presenting cells. Microglia cells present in brain tissue under noninflammatory conditions and play a limited antigen-presenting role but are less effective than the peripheral macrophages. The expression of major histocompatibility complexes is reduced in microglia. In addition, a single-cell sequencing research reported that tumor-associated macrophages overexpressed genes encoding MHCII components (H2-Aa, H2-Ab1, ANDH2-Eb1), as well as CD52, a costimulatory signal, which mediates T-cell activation and proliferation. There indirectly suggested that tumor-associated macrophages may also be involved in antigen presentation during tumor immunity. Although activated microglia can present antigens to active lymphocytes, the presentation of tumor antigens and cross-activation of T lymphocytes are mainly performed by dendritic cells rather than microglia. Whether microglia can perform effective antigen presentation and activate cellular immunity in the central nervous system requires further research.

Numerous studies have confirmed that patients with glioblastoma experience both systemic and local immunosuppression. Systemic immunosuppression, characterized by impaired cell-mediated immune function, occurs in glioblastoma patients after radiation or astemizole chemotherapy. In these patients, bone marrow T cells fail to enter the circulation. Among glioblastoma patients treated with amide, 73% exhibit significant decreases in peripheral CD4+ T cells. Immune suppression also occurs locally in the tumor microenvironment. It is regulated by glioma cells, tumor-related macrophages, Treg cells, effector T cells, and cytokines such as IL-1, IL-10, TGF-β, and FGL2. (Figure 1C).

Compared with other malignant solid tumors, glioma tissue contains many tumor-associated macrophages (TAMs), while lacks effector T lymphocytes and dendritic cells. Such cell composition promotes tumor development and suppresses antitumor immunity. Microglia are differentiated tissue macrophages entering in the central nervous system during embryonic development. Some border-associated macrophages (BAM), such as choroid plexus meninges, or perivascular macrophages, are also important CNS myeloid cells and some of them can be partially supplemented by circulating monocytes. Like the traditional macrophages, all the above cells in the brain possess many functions, including scavenging, phagocytosis, antigen presentation, and migration. It is believed that although glioblastoma contains myeloid cells such as microglia and tumor-associated macrophages, it usually lacks antigen-presenting dendritic cells, and tumor-infiltrating lymphocytes. Chu et al. reported that due to the upregulation of endogenous TLR2 ligand in tumor tissues, the expression of MHC II in microglia is suppressed, which ultimately hinders the antigen presentation and promotes tumor escape.

Recently, it has been suggested that tumor-infiltrating microglia and macrophages, so-called tumor-associated microglia (TA-MG) and tumor-associated macrophages (TA-MAC), respectively, play essential roles in shaping the microenvironment that influences glioma growth. While the classically activated pro-inflammatory macrophages (M1) may orchestrate an antitumor immunity, the alternately activated anti-inflammatory macrophages (M2) promotes tumor growth. The transformation of TA-MG and TA-MAC to the M1 or M2 phenotype depends on the clues provided by the local microenvironment, for example, cytokines. Many inflammation-resolving cytokines such as TGFbeta, M-CSF, IL-13, IL-4, and IL-10 can polarize TA-MAC or TA-MG into the M2 phenotype, whereas cytokines including INFgamma, MCP-1, and TNFalpha promote the M1 phenotype. Therefore, from a future clinical translation perspective, strategies that mobilize M1 microglia and macrophage to boost antitumor immunity would have therapeutic potentials.

3 | CD47

CD47 is a transmembrane protein widely distributed on the surface of normal cells. It consists of a highly hydrophobic transmembrane region and a hydrophilic carboxyl-terminal cytoplasmic region. Signal-regulated protein alpha (SIRPa), thrombospondin 1 (TSP-1), and integrin are all CD47 ligands. Under physiological conditions, CD47 mediates cell proliferation, migration, phagocytosis, apoptosis, and activation of T cells through the action of corresponding ligands. SIRPa is a membrane protein of the immunoglobulin superfamily and is particularly abundant in myeloid hematopoietic cells such as macrophages and dendritic cells. CD47 binds to SIRPa expressed on macrophages, activates the Src homology 2 domain containing tyrosine phosphatase, inhibits the accumulation of myosin in the phagocytic
synapse, and finally produces “don't eat me” signal.75–77 Therefore, CD47 plays an important role in the normal body.

3.1 CD47 and tumor

CD47 is involved in regulating tumor invasion and metastasis, and the underlying mechanisms have been extensively studied.78,79 Studies have shown that CD47 is overexpressed in almost all types of tumors and tumor stem cells, including gliomas, acute myeloid leukemia, non-Hodgkin's lymphoma, and breast cancer. This over-expression is positively correlated with poor prognosis.5,15,80,81 Therefore, an anti-CD47 antibody therapy is warranted.

Numerous preclinical studies indicated that the monoclonal anti-CD47 antibody has an excellent antitumor effect. The underlying mechanism mainly includes the following: (1) CD47 antibody...
blocks the CD47-SIRPα axis, thereby promoting the phagocytosis of tumor cells by macrophages (Figure 2A). This mechanism has been validated in studies of various tumors such as glioma, lymphoma, and myeloid leukemia. (2) CD47 antibody can induce tumor cell apoptosis. CD47 antibody directly induces apoptosis in cultures of several types of hematopoietic cancer cells. CD47 antibody-induced apoptosis appears to be caspase-independent. Morphologically, this type of apoptosis manifests typical features of apoptosis, including cell contraction and decreased mitochondrial transmembrane potential, without chromatin condensation or DNA fragmentation. (3) CD47 antibody induces cell-mediated cytotoxicity through Fc receptors. (4) CD47 antibody promotes the antigen presenting by dendritic cells (DCs), thus improving the recruitment of T cells. In vivo studies have shown that blocking CD47 enhances the phagocytosis of macrophages and cytoplasmic sensation of tumor cell DNA, thereby activating the innate immunity through the STING signal and activating T cells through DCs. (5) Several studies showed that CD47 could facilitate the transformation of TA-MACs to the M1 phenotype and therefore inhibit tumor growth. In a similar mechanism, CD47 antibody can promote the phagocytosis of glioma cells in the central nervous system by activating TA-MG. Clinical trials testing the monoclonal anti-CD47 antibody have been carried out in a variety of solid cancers and hematopoietic cancers (see Table 2). The anti-CD47 antibody was used either alone or in combination with other antibodies (Rituximab, Cetuximab, Nivolumab) or adjuvant therapy. However, these combination treatment trials are primarily in phase I.

3.2 | CD47 and the treatment of glioblastoma

At present, the application of CD47 antibodies glioblastoma remains at the preclinical stage. The main reasons for the delayed testing of CD47 antibodies in clinical gliomas are related to the concerns about the antibody itself as described below and the possible resistance of gliomas to such therapy.

3.3 | CD47 antibody: concerns about safety and reliability

First, the off-target effect of the CD47 antibody includes the blockage of CD47 signaling in normal erythrocytes, thus increasing the expression of calreticulin, an "eating me" signal. Meanwhile, the Fc-mediated killing of target cells is activated, making natural killer cells (NK) attack red blood cells and cause anemia. Second, the binding of antibodies to T lymphocytes may cause T cell apoptosis and immunosuppression. Finally, the interaction between the antibody Fc fragment and the Fc receptor on macrophages plays a critical role in activating macrophages. Therefore, it is not enough to activate macrophages only by blocking CD47-SIRPα. Taking these facts into consideration, IgG1 should be selected to make the antibody function effectively (such as TTI-621, the effect of Ig G4 that has on activating macrophages is weaker than IgG1), which, however, would inevitably lead to attacking on RBCs and T lymphocytes by immune cells. In order to avoid cytotoxicity, IgG4 has been selected in most studies—that is, to obtain the safety at the expense of effectiveness (such as CC-90002, Hu5F9-G4, and IB188), consequently, the expected result can only be achieved when other antibody drugs with ADCC/ADCP activities are combined.

3.4 | Treatment resistance: Immune privilege and immunosuppression

Compared with other organs, brain parenchyma is separated from blood circulation by the blood-brain barrier. The lack of professional antigen-presenting cells in the brain makes antigen recognition and presenting difficult. Although CD47 antibodies can promote the conversion of TA-MG and TA-MAC to the M1 phenotype and upregulate the expression of MHC-II, a marker of antigen-presenting function, the activated microglia, or macrophages may not be enough to boost the antitumor cellular immunity. A study on colon cancer and lymphoma pointed out that...
the therapeutic effect of CD47 blockade on immunocompetent mice relies on dendritic cells rather than the cross-initiation of macrophage responses to T cells.51

Immunosuppression is prevalent in patients with glioblastoma. The brain homing of T lymphocytes leads to a decrease in peripheral T lymphocytes.54 Glioblastoma cells secrete anti-inflammatory factors such as TGF\textsubscript{β}, PGE\textsubscript{2}, IL-1, IL-10, and FGL2, which suppress the effector cells. Myeloid suppressor cells in the local microenvironment recruit and differentiate Regulatory T cells (Treg), and restrict DC activation89,90 (Figure 1C). Since single immunotherapy cannot target many pathways, it is reasonable that the development of clinical immunotherapy for glioblastoma, including the use of CD47 antibodies, has progressed slowly.

Considering these reasons, it is necessary to combine CD47 antibody with other anti-GBM therapies to increase efficacy while reducing drug resistance. A recent report revealed that administration of RRx-001, an anti-CD47-SIRP\textsubscript{α} small molecule with vascular normalizing properties, prior to temozolomide or irinotecan results in increased drug uptake in orthotopic glioma tumors.91

In terms of combination of immunotherapy, the CD47 antibody that focuses on re-education of TA-MG and TA-MAC needs to be combined with other immunotherapy such as dendritic vaccines and adoptive T-cell therapy to treat gliomas. Future glioblastoma immunotherapy should aim to promote efficient innate immunity, improve antigen-presenting efficiency, enhance cellular immune activity, and relieve tumor immune tolerance and immunosuppression.

4 | CD24

CD24 is a protein anchored to the cell membrane by glycosylphosphatidylinositol (GPI). CD24 proteins from different tissues or cell types possess different molecular weights (ranging from 20 to 70 kD). Because the glycosylation of CD24 is highly variable and cell type-specific, it binds to different cell ligands to perform various functions. For example, in the brain, CD171, Tag-1, and contactin can bind to CD24 and induce nerve growth inhibition.96–98 In hematopoietic cells, CD24 binds to danger-associated molecular pattern (DAMP) molecules and sialic acid-binding immunoglobulin-like lectins to form a three-molecule complex, thereby blocking Toll-like receptor (TLR)-mediated inflammation and macrophage phagocytosis99 (Figure 2B). As a GPI anchor molecule, it also recruits Src family protein tyrosine kinase (Ptk) through membrane rafts to mediate signal transduction and participate in the development and apoptosis of B cells and T cells, cell binding, and granulocyte oxidative burst.100–107

4.1 | CD24 and tumor

CD24 is widely expressed on various hematopoietic cells108–110 and nonhematopoietic cells.111–113 A review by Fang et al. suggests that CD24 is expressed at higher levels in progenitor cells or metabolically active cells but lower levels in terminally differentiated cells.114 CD24 showed substantially high expression levels in various cancers.
TABLE 2 Clinical trial of tumor immunity associated with CD47 antibody

Start year	NCT ID	Cancer Types	Interventions	Individual & Combination	Format & IgG Characteristics	Characteristics
2014	NCT02216409	• Solid Tumor	Hu5F9-G4	• Monotherapy	McAb & IgG4	Phase 1
2015	NCT02678338	• Acute Myeloid Leukemia	Hu5F9-G4	• Monotherapy	McAb & IgG4	Phase 1
2015	NCT02367196	• Hematologic Neoplasms	CC-90002	• Monotherapy	McAb & IgG4	Phase 1
		• Solid Tumor		• Combine with Rituximab		
2016	NCT02953782	• Colorectal Neoplasms	Hu5F9-G4	• Monotherapy	McAb & IgG4	Phase 1 Phase 2
2016	NCT02663518	• Hematologic Malignancies	TTI-621	• Monotherapy	CD47 infusion protein & IgG1	Phase 1
		• Solid Tumor		• Combine with Cetuximab		
2016	NCT02641002	• Leukemia, Myeloid, Acute	CC-90002	• Monotherapy	McAb & IgG4	Phase 1
				• Combine with Cetuximab		
				• Combine with Nivolumab		
2016	NCT02953509	• Lymphoma, Non-Hodgkin	Hu5F9-G4	• Monotherapy	McAb & IgG4	Phase 1 Phase 2
		• Lymphoma, Large B Cell, Diffuse		• Combine with Rituximab		
		• Indolent Lymphoma				
		• Soft Tissue Sarcoma				
2016	NCT03530683	• Lymphoma	TTI-622	• Monotherapy	CD47 infusion protein & IgG1	Phase 1
		• Myeloma		• Combine with Rituximab		
		• Indolent Lymphoma		• Combine with Cetuximab		
				• Combine with Nivolumab		
		• Soft Tissue Sarcoma		• Combine with PD-1/PD-L1 Inhibitor		
				• Combine with PEGylated interferon-2a		
				• Combine with T-Vec		
				• Combine with radiation		
Start Year	NCT Number	Conditions	Interventions	Individual & Combination	Format & IgG Characteristics	Characteristics
2017	NCT03248479	• Acute Myeloid Leukemia	Hu5F9-G4	• Monotherapy	McAb & IgG4	Phase 1
				• Proteasome-inhibitor Regimen		
2018	NCT03717103	• Advanced Malignancies	IBI188	• Monotherapy	McAb & IgG4	Phase 1
				• Combine with Rituximab		
2018	NCT03512340	• Advanced Solid Cancers	SRF231	• Monotherapy	Anti-CD47 body & Unknown	Phase 1
		• Hematologic Cancers		• Combine with Rituximab		
				• Combine with Nivolumab		
				• Combine with PD-1 Inhibitor		
2018	NCT03527147	• Non-Hodgkin's Lymphoma	Hu5F9-G4	• Monotherapy	McAb & IgG4	Phase 1
		• Diffuse Large B Cell Lymphoma		• anti-PD-1/CD47 infusion protein		
2019	NCT03763349	• Advanced Malignancies	IBI188	• Monotherapy	McAb & IgG4	Phase 1
				• anti-PD-1/CD47 infusion protein		
2019	NCT04097769	• Advanced Solid Tumor	HX009	• Monotherapy	McAb & IgG4	Phase 1
				• anti-PD-1/CD47 infusion protein		

(Continues)
and cancer stem cells, such as breast cancer, pancreatic cancer, and glioma. CD24 overexpression is positively correlated with the pathological grade or prognosis of cancer. This information is of great significance for targeting cancer stem cells and formulating appropriate treatment plans for rapidly proliferating cancers.

Lipid rafts are cholesterol-rich environments in cell membranes and participate in cell signal transduction. CD24 is linked to various signaling pathways through GPI. Simultaneously, through highly variable glycosylation, CD24 also affects the growth of tumors (Table 3). Studies have shown that CD24 promotes cancer cell adhesion, growth, proliferation, invasion, and metastasis, while inhibits cancer cell apoptosis. In addition, CD24 has been proposed as a biomarker for the active proliferation of several types of cancer stem cells. Therefore, CD24 has attracted much attention as a potential molecule to target cancer cells/cancer stem cells.

Although CD24 has been extensively studied for its role in tumor growth, there are few reports identify CD24 as a therapeutic target. Klapdor et al. designed the third-generation chimeric antigen receptor (CAR) for CD24, which demonstrates a high degree of cytotoxic effect on ovarian cancer cells. CD24 monoclonal antibodies have been reported to inhibit tumor growth and prolong the overall survival in the mouse models of metastatic cancers. The most important discovery is by Amira and colleagues, who revealed that CD24 is functionally complementary to CD47 and programmed cell death ligand 1 (PD-L1). As an important "don't eat me" signaling molecule, CD24 binds to Siglec-G (mice) or Siglec-10 (humans) in cancer cells, triggering the immune escape reactions. Thus, blockage of the CD24 effect by its monoclonal antibodies effectively enhances the ability of TA-MACs to attack various types of cancer cells. Finally, the combined blockage of both CD24 and CD47 confers an additive phagocytosis-mediated cancer-killing effect.

Thus far, anticancer therapy using the anti-CD24 antibodies has not been tested in clinical trials, and its potential adverse effects are largely unknown. Although the mouse erythrocytes express CD24a, it does not appear that the anti-CD24 monoclonal antibodies interact with or kill human erythrocytes.

4.2 CD24 and the treatment of glioblastoma

The expression of CD24 is up-regulated in glioblastoma stem cells and functionally involved in the migration, infiltration, and metastasis of glioblastoma cells. An overexpression of CD24 by more than two fold has been associated with poor overall survival in GBM, the poor survival may be related to increased "stemness" of tumor cells, which provides a potential therapeutic target for glioblastoma. From the translation perspective, the combined application of CD24 antibody with the CD47 antibody offers an additive effect against glioblastoma compared to either treatment alone. Further clinical evaluation on this combined treatment on glioblastoma is warranted.

The mechanism by which the anti-CD24 antibody promotes M1 polarization of TA-MAC and TA-MG should be further investigated. Through M1 conversion, the anti-CD24 antibody may fundamentally alter the microenvironment that otherwise supports...
1113

WU et al.

In addition, CD24 serves as an innate immune checkpoint. It is still unknown whether CD24 blockade in vivo can effectively bridge innate immunity and adaptive immunity, thereby enhancing the immune clearance of cancer cells. Protein complex formation involving DAMPs and Siglec-10 (human) or Siglec-G (mouse) helps avoid excessive immune responses, thus maintaining an immune homeostasis by binding to CD24. Another question is whether CD24 blockage with the anti-CD24 antibody leads to the over-activation of TLR-mediated pro-inflammatory reactions, which in turn triggers a cytokine storm, attacks normal cells, and results in autoimmune diseases. The latter is a particularly relevant concern for glioma therapy, as CD24 is widely expressed in brain parenchyma cells. The immunotherapy resistance of glioblastoma to CD24 antibody treatment needs to be further investigated (Figure 2B).

4.3 | Perspectives

Immunotherapy has been developed as a novel treatment for glioblastoma. Such treatment needs the participation of the systemic immune system that orchestrates a strong and persistent cytotoxic response to brain glioma. However, due to the unique immune microenvironment within the central nervous system and in the glioblastoma, the development of clinical feasible immunotherapy for glioblastoma has been relatively slow.

With the increased understanding of the mechanisms underlying cancer immunology in the glioblastoma, especially the role of the “don’t eat me” CD47-SIRPα signaling and CD24-Siglec10 signaling, we propose here that the combined blockage of these two pathways may effectively activate the innate immune responses toward glioblastoma. CD47 and CD24 are highly expressed in cancer stem cells. The combination of anti-CD47 and anti-CD24 antibodies could offer robust cancer cell-killing effects and block the vicious cycle for tumor recurrence from cancer stem cells. Previous studies have demonstrated that the anti-CD47/anti-CD24 dual-antibody approach could effectively activate the myeloid immunity in the brain. We further propose that the local application of the anti-CD47/anti-CD24 antibodies, combined with CAR-T, tumor vaccines, immune checkpoint inhibitors, or other systemic immunotherapies will likely improve the overall efficacy for clinical treatment of glioblastoma (Figure 3). This may represent an emerging new strategy to treat glioblastoma.
Some recent studies have suggested that the levels of CD47 and CD24 expression are positively correlated with increased angiogenesis in solid tumors, respectively. Hence, blockade of CD47 signaling could potentiate the therapeutic effects of anti-angiogenic therapy in certain cancer. Whether CD47 or CD24 is directly involved in angiogenesis within glioblastoma is unknown, this should be investigated in future studies. Nevertheless, given the importance of microenvironment, especially angiogenesis, in the prognosis of glioblastoma treatment, future immunotherapy against CD47 or CD24 should include the quantitative evaluations of hemodynamic changes within and surrounding the glioblastoma. Several imaging modalities have been developed, which can be applied to future studies as both an outcome endpoint and a potential biomarker for prognosis of immunotherapy against glioblastoma.

ACKNOWLEDGEMENTS
This project has been supported by National Natural Science Foundation of China (NO. 81672824).

CONFLICTS OF INTEREST
The authors declare no conflict of interest.

AUTHOR CONTRIBUTIONS
Hao Wu, Jialin Liu, Wen Yuan, and Zhifei Wang were responsible for literature review and investigation; Hao Wu and Jialin Liu were responsible for draft preparation; Wen Yuan was responsible for drawing; Ling Chen was responsible for manuscript review and editing. All authors have read and agreed to the published version of manuscript.

DATA AVAILABILITY STATEMENT
Data sharing is not applicable to this article as no new data were created or analyzed in this study.

ORCID
Jialin Liu https://orcid.org/0000-0001-6625-3076

REFERENCES
1. Louveau A, Smirnov I, Keyes TJ, et al. Structural and functional features of central nervous system lymphatic vessels. Nature. 2015;523(7560):337-341.
2. Roszman T, Elliott L, Brooks W. Modulation of T-cell function by gliomas. Immunol Today. 1991;12(10):370-374.
3. Parney IF, Waldron JS, Parsa AT. Flow cytometry and in vitro analysis of human glioma-associated macrophages. Laboratory investigation. J Neurosurg. 2009;110(3):572-582.
4. Dunn GP, Dunn IF, Curry WT. Focus on TILs: prognostic significance of tumor infiltrating lymphocytes in human glioma. Cancer Immunol. 2007;7:12.
5. Willingham SB, Volkmer JP, Gentles AJ, et al. The CD47-signal regulatory protein alpha (SIRPa) interaction is a therapeutic target for human solid tumors. Proc Natl Acad Sci USA. 2012;109(17):6662-6667.
6. Barkal AA, Brewer RE, Markovic M, et al. CD24 signalling through macrophage Siglec-10 is a target for cancer immunotherapy. Nature. 2019;572(7769):392-396.
7. Cioffi M, Trabulo S, Hidalgo M, et al. Inhibition of CD47 effectively targets pancreatic cancer stem cells via dual mechanisms. Clin Cancer Res. 2015;21(10):2325-2337.
8. Li F, Lv B, Liu Y, et al. Blocking the CD47-SIRPα axis by delivery of anti-CD47 antibody induces antitumor effects in glioma and glioma stem cells. Oncoimmunology. 2018;7(2):e1391973.
9. Jaiswal S, Jamieson CH, Pang WW, et al. CD47 is upregulated on circulating hematopoietic stem cells and leukemia cells to avoid phagocytosis. Cell. 2009;138(2):271-285.
10. Overdevest JB, Thomas S, Kristiansen G, Hansel DE, Smith SC, Theodorescu D. CD47 offers a therapeutic target for control of bladder cancer metastasis based on a requirement for lung colonization. Can Res. 2011;71(11):3802-3811.
11. Chan SH, Tsai KW, Chiu SY, et al. Identification of the novel role of CD47 as an oncogenesis regulator and therapeutic target for triple-negative breast cancer. Mol Cancer Ther. 2019;18(1):147-161.
12. Zhang M, Hutter G, Kahn SA, et al. Anti-CD47 treatment stimulates phagocytosis of glioblastoma by M1 and M2 polarized macrophages and promotes M1 polarized macrophages in vivo. PLoS One. 2016;11(4):e0153550.
13. Zhai H, Heppner FL, Tsirka SE. Microglia/macrophages promote glioma progression. Gli. 2011;59(3):472-485.
14. Hanisch UK, Kettenmann H. Microglia: active sensor and versatile effector cells in the normal and pathologic brain. Nat Neurosci. 2007;10(11):1387-1394.
15. Tan W, Tang H, Jiang X, et al. Metformin mediates induction of miR-708 to inhibit self-renewal and chemoresistance of breast cancer stem cells through targeting CD47. J Cell Mol Med. 2019;23(9):5994-6004.
16. Soni P, Qayoom S, Husain N, et al. CD42 and Nanog expression in stem cells in glioblastoma: correlation with response to chemotherapy and overall survival. Asian Pac J Cancer Prevent. 2017;18(8):2215-2219.
17. Ostrom QT, Gittleman H, Liao P, et al. CBTRUS Statistical report: primary brain and other central nervous system tumors diagnosed in the United States in 2010–2014. Neuro Oncol. 2017;19(suppl_5):v1-v88.
18. Wang J, Zuo J, Wahafu A, Wang MD, Li RC, Xie WF. Combined elevation of TRIB2 and MAP3K1 indicates poor prognosis and chemoresistance to temozolomide in glioblastoma. CNS Neurosci Ther. 2020;26(3):297-308.
19. Alafate W, Li X, Zuo J, et al. Elevation of CXCL1 indicates poor prognosis and radioresistance by inducing mesenchymal transition in glioblastoma. CNS Neurosci Ther. 2020;26(4):475-485.
20. Cai JJ, Qi ZX, Hua W, et al. Increased expression of Capn4 is associated with the malignancy of human glioma. CNS Neurosci Ther. 2014;20(6):521-527.
21. Guo Q, Guan GF, Cheng W, et al. Integrated profiling identifies caveolae-associated protein 1 as a prognostic biomarker of malignancy in glioblastoma patients. CNS Neurosci Ther. 2019;25(3):343-354.
22. Ito H, Nakashima H, Chiocca EA. Molecular responses to immune checkpoint blockade in glioblastoma. CNS Neurosci Ther. 2019;25(3):359-361.
23. Chang E, Patel CB, Pohling C, et al. Tumor treating fields increases membrane permeability in glioblastoma cells. Discov Cell. 2018;4:113.
24. Zhou Y, Wu W, Bi H, Yang D, Zhang C. Glioblastoma precision therapy: from the bench to the clinic. Cancer Lett. 2020;475:79-91.
25. Leng TD, Li MH, Shen JF, et al. Suppression of TRPM7 inhibits proliferation, migration, and invasion of malignant human glioma cells. CNS Neurosci Ther. 2015;21(3):252-261.
26. Shi ZD, Qian XM, Zhang JX, et al. BASI, a potent small molecular inhibitor, inhibits glioblastoma progression by targeting microRNA-mediated β-catenin signaling. CNS Neurosci Ther. 2014;20(9):830-839.
27. Stupp R, Wong ET, Kanner AA, et al. NovelTTF-100A versus physician’s choice chemotherapy in recurrent glioblastoma: a
randomised phase III trial of a novel treatment modality. *Eur J Cancer*. 2012;48(14):2192-2202.

28. Mittal S, Klingler NV, Michelauh SK, Barger GR, Pannullo SC, Juhász C. Alternating electric tumor treating fields for treatment of glioblastoma: rationale, preclinical, and clinical studies. *J Neurosurg*. 2018;128(2):414-421.

29. Mount CW, Majzner RG, Sundaresh S, et al. Potent antitumor efficacy of anti-GD2 CAR T cells in H3–K27M(+) diffuse midline gliomas. *Nat Med*. 2018;24(5):572-579.

30. Desjardins A, Gromeier M, Herndon JE 2nd, et al. Recurrent glioblastoma treated with recombinant poliovirus. *N Engl J Med*. 2018;379(2):150-161.

31. Halil N, Kutruff-Coqui S, Frenkel Z, et al. Actively personalized vaccination trial for newly diagnosed glioblastoma. *Nature*. 2019;565(7738):240-245.

32. Cloughesy TF, Mochizuki AY, Orpilla JR, et al. Neoadjuvant anti-PD-1 immunotherapy promotes a survival benefit with intratumoral and systemic immune responses in recurrent glioblastoma. *Nat Med*. 2019;25(3):477-486.

33. Takenaka MC, Gabriely G, Rothhammer V, et al. Control of tumor-associated macrophages and T cells in glioblastoma via AHR and CD39. *Nat Neurosci*. 2019;22(5):729-740.

34. Qazi MA, Vora P, Venugopal C, et al. Intratumoral heterogeneity: pathways to treatment resistance and relapse in human glioblastoma. *Ann Oncol*. 2017;28(7):1448-1456.

35. Comprehensive genomic characterization defines human glioblastomagenes and core pathways. *Nature*. 2008;455(7216):1061-1068.

36. Xiong Z, Yang Q, Li X. Effect of intra- and inter-tumoral heterogeneity on molecular characteristics of primary IDH-wild type glioblastoma revealed by single-cell analysis. *CNS Neurosci Ther*. 2020;26(9):981-989.

37. Sottoriva A, Spiteri I, Piccirillo SG, et al. Intratumor heterogeneity in human glioblastoma reflects cancer evolutionary dynamics. *Proc Natl Acad Sci USA*. 2013;110(10):4009-4014.

38. Jeong HY, Park SY, Kim HJ, et al. B3GNT5 is a novel marker correlated with stem-like phenotype and poor clinical outcome in human gliomas. *CNS Neurosci Ther*. 2020;26(11):1147-1154.

39. Jackson M, Hassiotou F, Nowak A. Glioblastoma stem-like cells: at the root of tumor recurrence and a therapeutic target. *Carcinogenesis*. 2014;36(2):177-185.

40. Prasetyanti PR, Medema JP. Intra-tumor heterogeneity from a cancer stem cell perspective. *Mol Cancer*. 2017;16(1):41.

41. Clevers H. The cancer stem cell: premises, promises and challenges. *Nat Med*. 2011;17(3):313-319.

42. Zhao J. Cancer stem cells and chemoresistance: the smartest survives the raid. *Pharmacol Ther*. 2016;160:145-158.

43. Gimple RC, Bhargava S, Dixit D, Rich JN. Glioblastoma stem cells: lessons from the tumor hierarchy in a lethal cancer. *Genes Dev*. 2019;33(11-12):591-609.

44. Carson MJ, Doose JM, Melchior B, Schmid CD, Ploix CC. CNS immune privilege: hiding in plain sight. *Immunol Rev*. 2006;213:48-65.

45. Hugh Perry V. A revised view of the central nervous system microenvironment and major histocompatibility complex class II antigen presentation. *J Neuroimmunol*. 1998;90(2):113-121.

46. Ochocka N, Segit P, Walentynowicz KA, et al. Single-cell RNA sequencing reveals functional heterogeneity of glioma-associated brain macrophages. *Nat Commun*. 2021;12(1):1151.

47. Tang Y, Le W. Differential roles of M1 and M2 microglia in neurodegenerative diseases. *Mol Neurobiol*. 2016;53(2):1181-1194.

48. Liu X, Pu Y, Cron K, et al. CD47 blockade triggers T cell-mediated destruction of immunogenic tumors. *Nat Med*. 2015;21(10):1209-1215.

49. Mahaley MS Jr, Brooks WH, Roszman TL, Bigner DD, Dudka L, Richardson S. Immunobiology of primary intracranial tumors. Part 1: studies of the cellular and humoral general immune competence of brain-tumor patients. *J Neurosurg*. 1977;46(4):467-476.

50. Brooks WH, Netsky MG, Normansell DE, Horwitz DA. Depressed cell-mediated immunity in patients with primary intracranial tumors. Characterization of a humoral immunosuppressive factor. *J Exp Med*. 1972;136(6):1631-1647.

51. Chongsathidkit P, Jackson C, Koyama S, et al. Sequestration of T cells in bone marrow in the setting of glioblastoma and other intracranial tumors. *Nat Med*. 2018;24(9):1459-1468.

52. Grossman SA, Ye X, Lesser G, et al. Immunosuppression in patients with high-grade gliomas treated with radiation and temozolomide. *Clin Cancer Res*. 2011;17(16):5473-5480.

53. Desai K, Hubben A, Ahluwalia M. The role of checkpoint inhibitors in glioblastoma. *Target Oncol*. 2019;14(4):375-394.

54. Nduom EK, Weller M, Heimberger AB. Immunosuppressive mechanisms in glioblastoma. *Neuro Oncol*. 2015;17(Suppl 7):vii9-vii14.

55. Szułzewsky F, Pelz A, Feng X, et al. Glioma-associated microglia/macrophages display an expression profile different from M1 and M2 polarization and highly express Gpnmb and Spp1. *PloS One*. 2015;10(2):e0116644.

56. Derecki NC, Katsmarnski N, Kipnis J, Meyer-Luehmann M. Microglia as a critical player in both developmental and late-life CNS pathologies. *Acta Neuropathol*. 2014;128(3):333-345.

57. Prinz M, Tay TL, Wolf Y, Jung S. Microglia: unique and common features with other tissue macrophages. *Acta Neuropathol*. 2014;128(3):319-331.

58. Kettenmann H, Hanisch UK, Noda M, Verkhratsky A. Physiology of microglia. *Physiol Rev*. 2011;91(2):461-553.

59. Johnson TS, Munn DH, Maria BL. Modulation of tumor tolerance in primary central nervous system malignancies. *Clin Dev Immunol*. 2012;2012:937253.

60. Audoy-Remus J, Richard JF, Soulet D, Zhou H, Kubes P, Vallieres L. Rod-Shaped monocytes patrol the brain vasculature and give rise to perivascular macrophages under the influence of proinflammatory cytokines and angiotropin-2. *J Neurosci*. 2008;28(41):10187-10199.

61. Italiani P, Boraschi D. From monocytes to M1/M2 macrophages: phenotypical vs functional differentiation. *Front Immunol*. 2014;5:514.

62. Hussain SF, Yang D, Suki D, Aldape K, Grimm E, Heimberger AB. The role of human glioma-infiltrating microglia/macrophages in mediating antitumor immune responses. *Neuro Oncol*. 2006;8(3):261-279.

63. Strik HM, Stoll M, Meyermann R. Immune cell infiltration of intrinsic and metastatic intracranial tumours. *Anticancer Res*. 2004;24(1):37-42.

64. Qian J, Luo F, Yang J, et al. TLR2 promotes glioma immune evasion by downregulating M2 polarization and highly express Gpnmb and Spp1. *Front Immunol*. 2018;9:1115.
71. Miyashita M, Ohnishi H, Okazawa H, et al. Promotion of neurite and filopodium formation by CD47: roles of integrins, Rac, and Cdc42. Mol Biol Cell. 2004;15(8):3950-3963.

72. Reinhold MI, Lindberg FP, Kersh GJ, Allen PM, Brown EJ. Costimulation of T cell activation by integrin-associated protein (CD47) is an adhesion-dependent, CD28-independent signaling pathway. J Exp Med. 1997;185(1):11.

73. Okazawa H, Motegi S, Ohyama N, et al. Negative regulation of phagocytosis in macrophages by the CD47-SHPS-1 system. J Immunol. 2005;174(4):2004-2011.

74. van Beek EM, Cochrane F, Barclay AN, van den Berg TK. Signal regulatory proteins in the immune system. J Immunol. 2005;175(12):7781-7787. https://doi.org/10.4049/jimmunol.175.12.7781.

75. van den Berg TK, van der Schoot CE. Innate immune 'self' recognition: a role for CD47-SIRPα interactions in hematopoietic stem cell transplantation. Trends Immunol. 2008;29(5):203-206.

76. Barclay AN, Van den Berg TK. The interaction between signal regulatory protein alpha (SIRPα) and CD47: structure, function, and therapeutic target. Annu Rev Immunol. 2014;32:25-50.

77. Tsai RK, Discher DE. Inhibition of "self" engulfment through deactivation of myosin-II at the phagocytic synapse between human cells. J Cell Biol. 2008;180(5):989-1003.

78. Kukreja A, Radfar S, Sun BH, Insogna K, Dhodapkar MV. Dominant role of CD47-thrombospondin-1 interactions in myeloma-induced fusion of human dendritic cells: implications for bone disease. Blood. 2009;114(16):3413-3421.

79. Uluckan O, Becker SN, Deng H, et al. CD47 regulates bone mass and alpha2,3-sialyl glycans and their receptors TAG-1, Contactin, and L1 mediate CD24-dependent neurite outgrowth. J Neurosci. 2009;29(20):6677-6690.

80. Chen GY, Tang J, Zheng P, Liu Y. CD24 and Siglec-10 selectively repress tissue damage-induced immune responses. Science. 2009;323(5922):1722-1725.

81. Sammar M, Gekara NO, Weiss S. Lipid rafts clustering and signalling by listeria infection of phagocytosis in macrophages. J Biol Chem. 1996;271(19):1071-1076.

82. Toledano N, Gur-Wahnon D, Ben-Yehuda A, Rachmilewitz J. Novel CD47: SIRPα-dependent mechanism for the activation of STAT3 in antigen-presenting cells. PLoS One. 2013;8(9):e75595.

83. Chao MP, Alizadeh AA, Tang C, et al. Anti-CD47 antibody synergizes with rituximab to promote phagocytosis and eradicate non-Hodgkin lymphoma. Cell. 2010;142(5):699-713.

84. Majeti R, Chao MP, Alizadeh AA, et al. CD47 is an adverse prognostic factor and therapeutic antibody target on human acute myeloid leukemia stem cells. Cell. 2009;138(2):286-289.

85. Mateo V, Lagneaux L, Bron D, et al. CD47 ligation induces caspase-independent cell death in chronic lymphocytic leukemia. Nat Med. 1999;5(11):1277-1284.

86. Toledano N, Gur-Wahnon D, Ben-Yehuda A, Rachmilewitz J. Novel CD47: SIRPα-dependent mechanism for the activation of STAT3 in antigen-presenting cells. PLoS One. 2013;8(9):e75595.

87. Soto-Pantoja DR, Terabe M, Ghosh A, et al. CD47 in the tumor microenvironment limits cooperation between antitumor T-cell immunity and radiotherapy. Can Res. 2014;74(23):6771-6783.

88. WU et al. 2019;116(3):997-1006.

89. Shewan D, Calaora V, Nielsen P, Cohen J, Rougon G, Moreau H. The role of CD47-αvβ3 integrin interaction in the modulation of cell adhesion. J Leukoc Biol. 2014;96(2):384-391.

90. Krauss K, Altevogt P. Integrin leukocyte function-associated antigen-1-mediated cell binding can be activated by clustering of membrane rafts. J Biol Chem. 1999;274(52):36921-36927.

91. Suzuki T, Kiyokawa N, Taguchi T, Sekino T, Katagiri YU, Fujimoto K. Antibodies recognizing CD24 LAP epitope on human CD47: SIRPα interactions in hematopoietic system. J Biol Chem. 2009;284(19):12997-13006.

92. Kay R, Rosten PM, Humphries RK. CD24, a signal transducer modulating B cell activation responses, is a very short peptide with a glycosyl phosphatidylinositol membrane anchor. J Immunol. 1991;147(4):1412-1416.

93. Wenger RH, Ayane M, Bose R, Köhler G, Nielsen PJ. The genes encoding the heat-stable antigen of mouse hematopoietic differentiation marker called the heat-stable antigen. J Immunol. 1991;147(4):1039-1046.

94. Rougon G, Alterman LA, Dennis K, Guo XJ, Kinnon C. The murine heat-stable antigen: a differentiation antigen expressed in both the hematolymphoid and neural cell lineages. Eur J Immunol. 1991;21(6):1397-1402.

95. Alterman LA, Crispe IN, Kinnon C. Characterization of the murine heat-stable antigen: an hematopoietic differentiation antigen defined by the J11d, M1/69 and B2A2 antibodies. Eur J Immunol. 1990;20(7):1597-1602.

96. Fischer GF, Majdic O, Gadd S, Knapp W. Signal transduction in lymphocytes and monocytes: CD24 is a marker for the myeloid lineage. J Cell Biol. 1990;147(2):1412-1416.

97. Kukreja A, Radfar S, Sun BH, Insogna K, Dhodapkar MV. Dominant role of CD47-thrombospondin-1 interactions in myeloma-induced fusion of human dendritic cells: implications for bone disease. Blood. 2009;114(16):3413-3421.

98. Lieberoth A, Splittstoesser F, Katagihallimath N, et al. Lewis(x) antigen-1-mediated cell binding can be activated by clustering of membrane rafts. J Biol Chem. 1999;274(52):36921-36927.

99. Wu A, Wei J, Kong LY, et al. Glioma cancer stem cells induce immunosuppressive macrophages/microglia. Neuro Oncol. 2010;12(11):1113-1125.

100. Oronsky B, Reid T, Cabrales P. Vascular priming with RRx-001 to inhibit the uptake and accumulation of temozolomide and irinotecan in orthotopically implanted gliomas. J Drug Target. 2021;31-6. https://doi.org/10.1080/1061186X.2021.1904248.

101. Kay R, Rosten PM, Humphries RK. CD24, a signal transducer modulating B cell activation responses, is a very short peptide with a glycosyl phosphatidylinositol membrane anchor. J Immunol. 1991;147(4):1412-1416.

102. Wenger RH, Ayane M, Bose R, Köhler G, Nielsen PJ. The genes encoding the heat-stable antigen of mouse hematopoietic differentiation marker called the heat-stable antigen. J Immunol. 1991;147(4):1039-1046.

103. Rougon G, Alterman LA, Dennis K, Guo XJ, Kinnon C. The murine heat-stable antigen: a differentiation antigen expressed in both the hematolymphoid and neural cell lineages. Eur J Immunol. 1991;21(6):1397-1402.

104. Alterman LA, Crispe IN, Kinnon C. Characterization of the murine heat-stable antigen: an hematopoietic differentiation antigen defined by the J11d, M1/69 and B2A2 antibodies. Eur J Immunol. 1990;20(7):1597-1602.

105. Sammar M, Gekara NO, Weiss S. Lipid rafts clustering and signalling by listeria infection of phagocytosis in macrophages. J Biol Chem. 1996;271(19):1071-1076.

106. Toledano N, Gur-Wahnon D, Ben-Yehuda A, Rachmilewitz J. Novel CD47: SIRPα-dependent mechanism for the activation of STAT3 in antigen-presenting cells. PLoS One. 2013;8(9):e75595.

107. Soto-Pantoja DR, Terabe M, Ghosh A, et al. CD47 in the tumor microenvironment limits cooperation between antitumor T-cell immunity and radiotherapy. Can Res. 2014;74(23):6771-6783.

108. WU et al. 2019;116(3):997-1006.

109. Shewan D, Calaora V, Nielsen P, Cohen J, Rougon G, Moreau H. The role of CD47-αvβ3 integrin interaction in the modulation of cell adhesion. J Leukoc Biol. 2014;96(2):384-391.

110. Krauss K, Altevogt P. Integrin leukocyte function-associated antigen-1-mediated cell binding can be activated by clustering of membrane rafts. J Biol Chem. 1999;274(52):36921-36927.

111. Shewan D, Calaora V, Nielsen P, Cohen J, Rougon G, Moreau H. The role of CD47-αvβ3 integrin interaction in the modulation of cell adhesion. J Leukoc Biol. 2014;96(2):384-391.
112. Lawson DA, Xin L, Lukacs RU, Cheng D, Witte ON. Isolation and functional characterization of murine prostate stem cells. Proc Natl Acad Sci USA. 2007;104(1):181-186.
113. Shackleton M, Vaillant F, Simpson KJ, et al. Generation of a functional mammary gland from a single stem cell. Nature. 2006;439(7072):84-88.
114. Fang X, Zheng P, Tang J, Liu Y. CD24: from A to Z. Cell Mol Immunol. 2010;7(2):100-103.
115. Kristiansen G, Winzer KJ, Mayordomo E, et al. CD24 expression is a new prognostic marker in breast cancer. Clin Cancer Res. 2003;9(13):4906-4913.
116. Rostoker R, Abelson S, Genkin I, et al. CD24(+) cells fuel rapid tumor growth and display high metastatic capacity. Breast Cancer Res. 2015;17(1):78.
117. Zhao J, Chen AX, Gartrell RD, et al. Immune and genomic correlates of response to anti-PD-1 immunotherapy in glioblastoma. Nat Med. 2019;25(3):462-469.
118. Koopman T, Verburg N, Pouwels PJ, et al. Quantitative parametric maps of O-(2-[[18F]fluoroethyl]-L-tyrosine kinases in diffuse glioma. J Cereb Blood Flow Metab. 2020;40(4):895-903.
119. Kadmon G, Eckert M, Sammar M, Schachner M, Altevogt P. Nectadrin, the heat-stable antigen, is a cell adhesion molecule. Biomed Biotechnol. 2012;2012:51712.
120. Deng J, Gao G, Wang L, Wang T, Yu J, Zhao Z. CD24 expression as a marker for predicting clinical outcome in human gliomas. J Biomed Biotechnol. 2012;2012:51712.
121. Breit N, Noske A, Keller S, et al. CD24 promotes tumor cell invasion by suppressing tissue factor pathway inhibitor-2 (TFPI-2) in a c-Src-dependent fashion. Clin Exp Metas. 2012;29(1):27-38.
122. Pei Z, Zhu G, Hua X, et al. CD24 promotes the proliferation and inhibits the apoptosis of cervical cancer cells in vitro. Oncol Rep. 2016;35(3):1593-1601.
123. Klapdor R, Wang S, Morgan M, et al. Characterization of a novel third-generation anti-CD24-CAR against ovarian cancer. Int J Mol Sci. 2019;20(3):660.
124. Barash U, Spryrou A, Liu P, et al. Heparanase promotes glioma progression via enhancing CD24 expression. Int J Cancer. 2019;145(6):1596-1608.
125. Golubovskaya V, Berahovich R, Zhou H, et al. CD47-CAR-T cells effectively kill target cancer cells and block pancreatic tumor growth. Cancers. 2017;9(10):139.
126. Wang X, Zhang Y, Zhao Y, et al. CD24 promoted cancer cell angiogenesis via Hsp90-mediated STAT3/VEGFl signaling pathway in colorectal cancer. Oncotarget. 2016;7(34):55663-55676.
127. Zhang X, Wang Y, Fan J, et al. Blocking CD47 efficiently potentiates therapeutic effects of anti-angiogenic therapy in non-small cell lung cancer. J Immunother Cancer. 2019;7(1):346.
128. Orukai IE, Siegel JS, Warrington NM, et al. Altered hemodynamics contribute to local but not remote functional connectivity disruption due to glioma growth. J Cereb Blood Flow Metab. 2020;40(1):100-115.
129. Koopman T, Verburg N, Pouwels PJ, et al. Quantitative parametric maps of O-(2-[[18F]fluoroethyl]-L-tyrosine kinases in diffuse glioma. J Cereb Blood Flow Metab. 2020;40(4):895-903.
130. Stadlbauer A, Oberndorfer S, Zimmermann M, et al. Physiologic MR Imaging of the tumor microenvironment revealed switching of metabolic phenotype upon recurrence of glioblastoma in humans. J Cereb Blood Flow Metab. 2020;40(3):528-538.
131. Zhao J, Chen AX, Gartrell RD, et al. Immune and genomic correlates of response to anti-PD-1 immunotherapy in glioblastoma. Nat Med. 2019;25(3):462-469.
132. Veglia F, Perego M, Gabrilovich D. Myeloid-derived suppressor cells coming of age. Nat Immunol. 2018;19(2):108-119.
133. Jackson CM, Choi J, Lim M. Mechanisms of immunotherapy resistance: lessons from glioblastoma. Nat Immunol. 2019;20(9):1100-1109.
134. Jiang H, Hegde S, Knolhoff BL, et al. Targeting focal adhesion kinase renders pancreatic cancers responsive to checkpoint immunotherapy. Nat Med. 2016;22(8):851-860.
135. Sharma P, Hu-Lieskovan S, Wargo JA, Ribas A. Primary, adaptive, and acquired resistance to cancer immunotherapy. Cell. 2017;168(4):707-723.
136. clinicaltrials.gov. https://clinicaltrials.gov/ct2/show/NCT0216409?term=02216409&draw=2&rank=1
137. clinicaltrials.gov. https://clinicaltrials.gov/ct2/show/NCT0267833?8?term=NCT0267833&draw=2&rank=1
138. clinicaltrials.gov. https://clinicaltrials.gov/ct2/show/NCT0236719?6?term=NCT0236719&draw=2&rank=1
139. clinicaltrials.gov. https://clinicaltrials.gov/ct2/show/NCT0295378?2?term=NCT0295378&draw=2&rank=1
140. clinicaltrials.gov. https://clinicaltrials.gov/ct2/show/NCT0266351?0?term=NCT0266351&draw=1&rank=1
141. clinicaltrials.gov. https://clinicaltrials.gov/ct2/show/NCT0264100?2?term=NCT0264100&draw=2&rank=1
142. clinicaltrials.gov. https://clinicaltrials.gov/ct2/show/NCT0289036?8?term=NCT0289036&draw=2&rank=1
143. clinicaltrials.gov. https://clinicaltrials.gov/ct2/show/NCT0295350?9?term=NCT0295350&draw=2&rank=1
144. clinicaltrials.gov. https://clinicaltrials.gov/ct2/show/NCT0353068?3?term=NCT0353068&draw=2&rank=1
145. clinicaltrials.gov. https://clinicaltrials.gov/ct2/show/NCT0324847?9?term=NCT0324847&draw=2&rank=1
146. clinicaltrials.gov. https://clinicaltrials.gov/ct2/show/NCT0371710?3?term=NCT0371710&draw=2&rank=1
147. clinicaltrials.gov. https://clinicaltrials.gov/ct2/show/NCT0351234?0?term=NCT0351234&draw=2&rank=1
148. clinicaltrials.gov. https://clinicaltrials.gov/ct2/show/NCT0352714?7?term=NCT0352714&draw=2&rank=1
149. clinicaltrials.gov. https://clinicaltrials.gov/ct2/show/NCT0376314?9?term=NCT0376314&draw=2&rank=1
150. clinicaltrials.gov. https://clinicaltrials.gov/ct2/show/NCT0409776?9?term=NCT0409776&draw=2&rank=1
151. clinicaltrials.gov. https://clinicaltrials.gov/ct2/show/NCT0395709?6?term=NCT0395709&draw=2&rank=1
152. clinicaltrials.gov. https://clinicaltrials.gov/ct2/show/NCT0425761?7?term=NCT0425761&draw=2&rank=1
153. Aigner S, Ramos CL, Hafezi-Moghadam A, et al. CD24 mediates rolling of breast carcinoma cells on P-selectin. J Biol Chem. 2014;289(45):31534-31549.
154. Guo H, Nagy T, Pierce M. Post-translational glycoprotein modifications regulate colon cancer stem cells and colon adenoma progression in Apc(min/+) mice through altered Wnt receptor signaling. J Biol Chem. 2014;289(45):31534-31549.
155. Myung JH, Gajjar KA, Pearson RM, Launiere CA, Eddington DT, Hong S. Direct measurements on CD24-mediated rolling of human breast cancer MCF-7 cells on E-selectin. Anal Chem. 2011;83(3):1078-1083.
156. Kadmon G, Imhof BA, Altevogt P, Schachner M. Adhesive hierarchy involving the cell adhesion molecules L1, CD24, and alpha 6 integrin in murine neuroblastoma N2A cells. Biochem Biophys Res Comm. 1995;214(1):94-101.
157. Zhang P, Lu X, Tao K, et al. Siglec-10 is associated with survival and natural killer cell dysfunction in hepatocellular carcinoma. J Surg Res. 2015;194(1):107-113.

How to cite this article: Wu H, Liu J, Wang Z, Yuan W, Chen L. Prospects of antibodies targeting CD47 or CD24 in the treatment of glioblastoma. CNS Neurosci Ther. 2021;27:1105–1117. https://doi.org/10.1111/cns.13714