Respiratory symptoms and occupation: a cross-sectional study of the general population
Roel Vermeulen¹, Dick Heederik*¹, Hans Kromhout¹ and Henriëtte A Smit²

Address: ¹Environmental and Occupational Health Division, Institute for Risk Assessment Sciences, University Utrecht, Utrecht, PO Box 80176, 3503 TD Utrecht, The Netherlands and ²Centre of Chronic Disease and Environmental Epidemiology, National Institute Public Health and the Environment, PO Box 1, 3720 BA Bilthoven, The Netherlands

Email: Roel Vermeulen - vermeulr@mail.nih.gov; Dick Heederik* - D.Heederik@iras.uu.nl; Hans Kromhout - H.Kromhout@iras.uu.nl; Henriëtte A Smit - Jet.smit@rivm.nl

* Corresponding author

Abstract

Background: This study focused on respiratory symptoms due to occupational exposures in a contemporary general population cohort. Subjects were from the Dutch Monitoring Project on Risk Factors for Chronic Diseases (MORGEN). The composition of this population enabled estimation of respiratory risks due to occupation from the recent past for both men and women.

Methods: The study subjects (aged 20–59) were all inhabitants of Doetinchem, a small industrial town, and came from a survey of a random sample of 1104 persons conducted in 1993. A total of 274 cases with respiratory symptoms (subdivided in asthma and bronchitis symptoms) and 274 controls without symptoms were matched for age and sex. Relations between industry and occupation and respiratory symptoms were explored and adjusted for smoking habits and social economic status.

Results: Employment in the 'construction' (OR = 3.38; 95%CI 1.02 – 11.27), 'metal' (OR = 3.17; 95%CI 0.98 – 10.28), 'rubber, plastics and synthetics' (OR = 6.52; 95%CI 1.26 – 53.80), and 'printing' industry (OR = 3.96; 95%CI 0.85 – 18.48) were positively associated with chronic bronchitis symptoms. In addition, the 'metal' industry was found to be weakly associated with asthma symptoms (OR = 2.59; 95%CI 0.87 – 7.69). Duration of employment within these industries was also positively associated with respiratory symptoms.

Conclusion: Respiratory symptoms in the general population are traceable to employment in particular industries even in a contemporary cohort with relatively young individuals.

Introduction

Respiratory diseases such as asthma, bronchitis and emphysema form a major health problem in the general population in many western countries [1,2]. The evidence that these diseases are caused by exogenous factors other than tobacco smoke, and that occupational exposures are amongst these causes, is growing [3]. As the working population smokes less, the relative importance of occupational exposures causing respiratory diseases is likely to increase. The contribution of occupational exposure to respiratory diseases has been estimated at 11–19% for males and 4–5% for females [1,2,4,5].

The relationships between occupation and occupational exposures and respiratory symptoms in community-based studies have been studied since the late 1970s. In many of
these general population studies, an association with exposure to dust, gases and fumes has been found with odds ratios ranging from 1.3 to 2.5 for exposed versus non-exposed workers [4–14]. However, working conditions are continually changing, as are the characteristics of the workforce itself. Therefore, it is questionable whether the known results of the older population-based studies reflect the respiratory health risks in contemporary workforces. Hence, recent population based studies have shown that some not previously identified occupations and occupational exposures are possibly associated with asthma [2,5,15–17].

The aim of this study was to investigate relations between occupations and respiratory symptoms in a cross sectional study of the general population. The composition of the population, both male and female and its relatively young age could provide information on respiratory health risks due to occupational exposures from the present and recent past.

Material and methods

Data were collected as part of the Monitoring Project on Risk Factors for Chronic Diseases (MORGEN-Study). Its general purpose is to determine the prevalence of risk factors for chronic diseases as well as the prevalence of some specific chronic conditions in a general population sample.

Subjects

The present study is a nested case control study of the population of Doetinchem, one of the three cities included in the MORGEN study. Doetinchem is an old industrial town in the eastern part of the Netherlands with about 38,000 inhabitants.

A sample of 1104 subjects, aged 20–59 years were included. The study population originates from a random sample of the inhabitants of Doetinchem stratified by aged and sex drawn in 1987 who participated in an earlier survey (n = 1780). No inclusion or exclusion criteria were applied in the present study, but because a more extensive protocol had to be followed not everybody could be re-invited. Therefore a random sample of 1383 of this original study population was invited to participate in the present study. Of those, 1104 agreed to participate (response 80%). These subjects were asked to complete a self-administered shortened questionnaire on respiratory symptoms. The questionnaire contained also information on present smoking habits, socio-economic status (SES) and sectors of industry and occupation in which a respondent worked for more than one year. Asthma was defined as a positive answer to at least one of the following questions: ‘Have you ever had an attack of asthma?’. Bronchitis was defined as a positive answer to at least one of the following questions: ‘Do you cough daily for more than three months a year?’, ‘Do you bring up phlegm daily for more than three months a year?’, ‘Have you had episodes in the last three years in which you coughed and brought up phlegm which lasted for more than three weeks?’, and ‘Have you had attacks of shortness of breath while walking on a flat terrain at normal speed with other people?’.

A total of 274 subjects (24.8%) who reported one or more asthma or bronchitis related symptoms in the shortened questionnaire on respiratory symptoms were selected from the original sample (symptomatic). As controls, 274 subjects were selected among the 688 subjects, who reported no respiratory symptoms at all (asymptomatic) and were frequency matched for age (+/- 1 year) and sex at group level. The symptomatic sub sample was subsequently subdivided into two groups with symptoms of bronchitis (including chronic cough and chronic phlegm and shortness of breath) and asthma (including ever asthma, and wheezing), respectively.

Coding of industry and occupation

Information on type of industry (2-digits) and occupation (3-digits) was coded blindly by one of the authors (RV) based on the coding scheme by Hoar et al. [18]. When a specific company name was mentioned in the self-administered questionnaire additional information was gathered to confirm the classification of this industry from the local occupational health service, Chamber of Commerce and the local authorities.

Statistical analysis

The relation between occupation, based both on the complete occupational history and longest held occupation, and asthma and bronchitis symptoms was initially studied bivariately using the Cochran-Mantzel-Haenszel test. Associations between respiratory symptoms as outcome variables and risk factors such as ‘industry’, and ‘occupation’ were further investigated by means of multiple logistic regression analysis adjusting for SES and smoking. In the regression analyses the prevalence of respiratory symptoms of subjects who ever worked in a particular industry was contrasted to the prevalence of respiratory symptoms of subjects with exclusive employment in the category "occupations with few chemical exposures" (n = 97). This group comprises occupations such as business, law, communications, sales, etc. Smokers were categorised as never, ex and current smokers. SES was measured as a variable with three categories (high, intermediate and low) based on the status of the occupation of the subject. Analyses that involved only a part of the population and consequently departed from the matching criteria were also adjusted for age and sex.
Results
Table 1 gives an overview of the general characteristics of the study population for the symptomatic and asymptomatic group. Of the 548 cases and controls, 547 subjects reported a complete occupational history. One person refused to report his occupational history and was therefore excluded from the analyses. The population consisted of 47% men and 53% women. Of men and women, 38.5% and 28.6%, respectively, were current smokers and 38.5% and 33.1% were former smokers at the time of the survey. Of the 547 participants only 20 (3.7%) subjects never had a job. The mean number of jobs held by the subjects was 2.5 in 1.7 sectors of industry over an average working life of 20.8 (s.d. 12.0) years.

Table 2 shows the distribution of the population over the different sectors of industry for the complete job history and the longest held occupation. The distribution over the sectors of industry was very similar for the complete job history and the longest held job. Initial exploratory analyses were based on the longest held occupation (Table 3).

In the 'construction' (OR = 3.38; 95% CI 1.02 – 11.27), 'metal' (OR = 3.17; 95% CI 0.98 – 10.28), 'rubber, plastics and synthetics' (OR = 6.52; 95% CI 1.26 – 53.80), and 'printing' industry (OR = 3.96; 95% CI 0.85 – 18.48). The 'metal' industry was also weakly associated with asthma symptoms (OR = 2.95; 95% CI 0.77 – 11.23).

Table 1: General characteristics of the study population (n = 547)

	SYMPTOMATIC GROUP (n = 273)	ASYMPOTOMATIC GROUP (n = 274)		
Smoking	n	%	n	%
never	70	25.6	100	36.5
current	120	44.0	62	22.6
ex	83	30.4	112	40.9
SES	n	%	n	%
low	174	63.7	156	56.9
intermediate	57	20.8	54	19.7
high	42	15.4	64	23.1
Sex	n	%	n	%
male	128	46.9	129	47.1
female	145	53.1	145	52.9
Age	years (s.d.)	48.1 (10.4)	48.2 (10.5)	
Job duration	years (s.d.)	20.5 (12.1)	21 (12.0)	

Discussion
Working in certain industries was positively associated with the occurrence of bronchitis and/or asthma symptoms. High-risk industries were the 'construction', 'rubber, plastics and synthetics products', 'metal', and 'printing' industry. The construction industry was found mainly to be associated with bronchitis-like symptoms. Other population-based studies have previously reported similar associations [9–11] with exposure to dust, silica, asbestos and (man-made) mineral fibres as well-known risk factors [20]. In the 'rubber, plastics and other synthetic products' industry, a significant elevated risk for asthma and bronchitis symptoms was found. The relation between working in the rubber industry and the occurrence of respiratory symptoms has been reported in several industry-specific studies [20–24] and in two population-based studies [2,5,15]. Interestingly, the majority of the study subjects were employed in one rubber bicycle tire...
factory. This factory was also involved in a large-scale exposure assessment study of the rubber manufacturing industry at the end of the 1980’s [25]. At that time, a mean inhalable dust concentration of 1.5 mg/m³ was measured in this particular factory. Moreover, exposure to inhalable dust within the inner tube department and among technical services personnel was excessive at mean concentrations of 17.3 mg/m³ and 4.2 mg/m³, respectively. These high dust exposures were mainly caused by intensive use of talcum in the production process to prevent tacking of uncured profiles.

Table 2: Distribution of the symptomatic and asymptomatic population by industry based on total and longest held occupation.

Industry	Complete occupational history	Longest held occupation				
	Symptomatic (n)	Asymptomatic (n)	Total (%)	Symptomatic (n)	Asymptomatic (n)	Total (%)
Agriculture, forestry, fishing	13	18	3.3	4	8	2.2
Construction	25	17	4.4	18	10	5.1
Paper and wood	19	27	4.9	9	12	3.8
Glass, clay and stone	7	2	1.0	3	0	0.5
Metal	35	22	6.0	19	8	4.9
Machinery	25	24	5.2	14	15	5.3
Shipbuilding, motor vehicles, aircraft and other transportation methods	22	24	4.9	7	9	2.9
Food and tobacco	45	40	9.0	18	16	6.2
Textiles	33	32	6.9	18	18	6.6
Chemicals, drugs and paints	9	11	2.1	3	7	1.8
Rubber, plastics and synthetics	16	9	2.6	7	3	1.8
Fuel	3	6	1.0	2	3	0.9
Leather	7	8	1.6	3	4	1.3
Medicine and science	42	59	10.7	36	40	13.9
Entertainment and recreation	10	11	2.2	7	6	2.4
Printing	22	11	3.5	10	4	2.6
Occupations with few chemical exposures	126	147	28.8	81	101	33.3
Never employed	10	10	2.1	10	10	3.7

1 calculated as proportion of the total number of jobs (n = 957); 2 calculated as proportion of the total number of longest held occupations (n = 547)

In industries with an elevated risk for respiratory symptoms, subjects occupationally exposed for a longer period or exposed a longer time ago, showed a higher risk for developing asthma and/or bronchitis symptoms. This was most clearly observed for the 'metal' and 'rubber, plastics and synthetics' industry. For the 'construction' industry this association was not detected, but additional analyses with cut-off points for the duration of employment of 5 and 10 years showed a more distinct difference between subjects longer employed with shorter employed subjects, although statistical significance was not reached (data not shown).

The prevalence of chronic respiratory symptoms (symptomatology) in this population was quite similar for males and females (128/512 = 0.25 and 145/592 = 0.24, respectively). However, the industries at high risk for asthma and bronchitis symptoms included only a small proportion of females. Stratified analyses by sex showed that the risks found for these industries could be attributed to males.
and not to females, probably caused by differences in actual jobs performed by males and females within these industries, production and administration, respectively. Another possible explanation lies in the fact that working in a particular industry was contrasted with ‘Occupations with few chemical exposures’. This control group includes housewives who were recently shown to have a higher risk for developing asthma [2,5,33]. This may have masked possible other relations.

Although individuals from this population smoked less often than was common in the 1960s and 1970s, smoking remains an important risk factor. Adjusting for smoking (both pack years and current, never, ex smokers), age, sex and SES in this study had in general a minimal effect on

Industry	Asthma symptoms OR (95% CI)	Bronchitis symptoms OR (95% CI)
Agriculture, forestry, fishing	0.24 (0.07 – 2.38)	0.58 (0.14 – 2.43)
Construction	1.27 (0.28 – 5.81)	3.38 (1.02 – 11.27)*
Paper and wood	1.01 (0.28 – 3.67)	0.78 (0.24 – 2.57)
Glass, clay and stone	NC	NC
Metal	2.95 (0.77 – 11.23)#	3.17 (0.98 – 10.28)#
Machinery	0.99 (0.25 – 3.94)	1.58 (0.52 – 4.86)
Shipbuilding, motor vehicles, aircraft and other transportation methods	0.45 (0.08 – 2.53)	0.70 (0.20 – 2.40)
Food and tobacco	0.79 (0.24 – 2.55)	1.08 (0.41 – 2.84)
Textiles	0.51 (0.14 – 1.78)	1.02 (0.40 – 2.60)
Chemicals, drugs and paints	0.41 (0.04 – 4.03)	0.57 (0.12 – 2.64)
Rubber, plastics and synthetics	4.44 (0.69 – 28.59)	6.52 (1.26 – 53.80)*
Fuel	1.01 (0.08 – 13.19)	1.11 (0.14 – 9.07)
Leather	1.08 (0.17 – 7.04)	0.51 (0.08 – 3.35)
Medicine and science	0.81 (0.31 – 2.08)	0.73 (0.35 – 1.52)
Entertainment and recreation	0.82 (0.16 – 4.25)	1.26 (0.32 – 4.96)
Printing	1.30 (0.15 – 11.32)	3.96 (0.85 – 18.48)#

** 0.05 < p 0.10; * 0.01 < p 0.05; 1 Compared to reference category "occupations with few chemical exposures" (n = 97) NC Not calculated due to limited number of subjects within this category
the risk estimates for industries and occupational exposures, suggesting that the observed effects could be related primarily to differences in industry or occupational exposures and that confounding by smoking was probably minimal.

The results of this epidemiological study indicate that, although the study population is relatively young, strong associations are present between certain occupations and asthma and bronchitis symptoms. It can be concluded that more detailed studies in the general population are needed and would be worthwhile to determine more precise attributable risks. These studies should include better exposure assessment strategies with an increased focus on developing respiratory complaints in women due to occupational exposures remain unclear. It is concluded that respiratory symptoms in the general population are traceable to employment in particular industries even in a contemporary cohort with relatively young individuals.

Competing interests
None declared.

Authors’ contributions
Roel Vermeulen performed the study, performed the statistical analyses and wrote the manuscript. Hans Kromhout and Dick Heederik participated in the study design and took part in the statistical analyses. Henriëtte Smit, principal investigator of the MORGEN study, took part in all phases of the study design and analyses. All authors contributed to and approved the final version of the manuscript.

Acknowledgements
We would like to thank Wim Braun for his computational assistance.

References
1. Heederik D and Pal TM Contribution of occupational exposures to the occurrence of chronic non-specific lung disease. In: Prevention of Respiratory Diseases. (Edited by: Hirsch A, Goldberg M, Martin JP, Masse R) 1993, 133-148
2. Kogevinas M, Antó JM, Soriano JB, Tobias A and Burney P The risk of asthma attributable to occupational exposures: A population based study. Am J Respir Care Med 1996, 154:137-143
3. Burge PS Occupation and chronic obstructive pulmonary disease (COPD). Eur Respir J 1994, 7:1032-1034
4. Babke P, Ede GE, Hanau R and Gutvik A Occupational dust or gas exposure and prevalences of respiratory symptoms and asthma in a general population. Eur Respir J 1991, 4:273-278
5. Kogevinas M, Antó JM, Sunyer J, Tobias A, Kromhout H, Burney P and the European Community Respiratory Health Survey Study Group Occupational asthma in Europe and other industrialised areas: a population-based study. The Lancet 1999, 353:1750-1754
6. Lebowski MD Occupational exposures in relation to symptomatology and lung function in a community population. Environ Res 1977, 14:59-67
7. Kauffmann F, Drouet D, Lelouch J and Brille D Twelve years spirometric changes among Paris area workers. Int J Epidemiol 1979, 8:201-212
8. Korn RJ, Dockery DW, Speizer FE, Ware JH and Ferris BG Occupational exposures and chronic respiratory symptoms. A population-based study. Am Rev Respir Dis 1987, 135:600-604
9. Krzyzanowski M, Jedrychowski W and Wysocki M Factors associated with the change in ventilatory function and the development of chronic obstructive pulmonary disease in a 13 year follow-up in the Cracow study. Risk of chronic obstructive pulmonary disease. Am Rev Respir Dis 1986, 134:1011-1019
10. Krzyzanowski M, Jedrychowski W and Wysocki M Occupational exposures and changes in pulmonary function over 13 years among residents in Cracow. Br J Ind Med 1988, 45:747-754
11. Heederik D, Pouwels H, Kromhout H and Kromhout D Chronic non-specific lung disease and occupational exposures estimated by means of a job exposure matrix: the Zutphen Study. Int J Epidemiol 1989, 18:382-389
12. Viegi G, Prediletto R, Paolietti P, Carozzi L, Di Pede F and Vellutini M Respiratory effects of occupational exposures in a general population sample in North Italy. Am Rev Respir Dis 1991, 143:510-515
13. Kauffman F and Brochard P Lung function tests and occupational exposures assessed by a job exposure matrix. The PAARC survey. Eur Respir J 1991, 4(Suppl)
14. Xu X, Christiani DC, Dockery DW and Wang L Exposure response relationships between occupational exposures and chronic respiratory illness: a community based study. Am Rev Respir Dis 1992, 146:413-418
15. Fishwick D, Pearce N, D’Souza W, Lewis S, Town I and Armstrong R Occupational asthma in New Zealanders; A population based study. Occup Environ Med 1997, 54:301-306
16. Sunyer J, Kogevinas M, Kromhout H, Antó JM, Roca J and Tobias A Pulmonary ventilatory defects and occupational exposures in a population-based study in Spain. Spanish Group of the European Community Respiratory Health Survey. Am J Respir Care Med 1998, 157:512-517
17. Zock JP, Sunyer J, Kogevinas M, Kromhout H, Burney P and Antó JM Occupation, chronic bronchitis and chronic airflow limitation in young adults: an international study. Am J Respir Care Med 2001, 163:1572-1577
18. Hoar S, Morisson A, Cole P and Silverman D An occupational and exposure linkage system for the study of occupational carcinogenesis. J Occup Med 1980, 22:722-726
19. WHO Occupational health aspects of construction work. EURO Reports and studies 86. Geneva 1983.
20. Hassan A, Osman , Wahdan M and Noweir M Health problems resulting from prolonged exposure to the chemical agents in rubber industry. J Egyptian Publ Health 1972, 5:290-311
21. Fine LJ and Peters JM Respiratory morbidity in rubber workers: II Pulmonary function in curing workers. Arch Environ Health 1976, 31:10-14
22. Sparks PJ, Smith TJ, Fine LJ, Treitman RD and Spiegelman DL Respiratory morbidity among processing and mill workers. A cross-sectional survey in three tire-manufacturing plants. J Occup Med 1982, 24:690-695
23. Alexandersson R, Gustafsson P, Hedenstierna G and Rosen G Exposure to naphtalene-diisocyanate in a rubber plant: Symptoms and lung function. Arch Env Health 1986, 41:85-89
24. Meijer E, Heederik D and Kromhout H Pulmonary effects of inhaled dust and fumes. Exposure-response study in rubber workers. Am J Ind Med 1998, 33:16-23
25. Kromhout H, Swuste P and Boelei JS Empirical modelling of chemical exposure in the rubber-manufacturing industry. Ann Occup Hyg 1994, 38:327-335
26. Kubaska Y, Yokoyama K, Sera Y, Yamamoto S, Sone S and Kyono H Respiratory diseases in hard metal workers: an occupational hygiene study in a factory. Br J Ind Med 1986, 43:474-485
27. Coates EO, Sawyer HJ, Rebuck JW, Kvale PA and Sweat LW Hypersensitivity bronchitis in tungsten carbide workers. Chest 1973, 64:390
28. Davison AG, Haslam PL, Corrin B, Coutts II, Dewar A and Riding WD Interstitial lung disease and asthma in hard metal workers: bronchoalveolar lavage, ultrastructural, and analytical findings and results of bronchial provocation tests. Thorax 1983, 38:119-128
29. Zammit-Tabona M, Sherkin M, Kijek K, Chan H and Chan-Yeung M Asthma caused by Diphenylmethane Diisocyanate in foundry workers. Am Rev Respir Dis 1983, 128:226-230
30. Liss GM, Bernstein DI, Moller DR, Gallagher JS, Stephenson RL and Bernstein IL. Pulmonary and immunologic evaluation of foun-
dry workers exposed to methylene diphenyl diisocyanate (MDI). J Allergy Clin Immunol 1988, 82:55-61
31. Bælum J, Andersen I and Mølhave L. Acute and sub-acute symp-
toms among workers in the printing industry. Br J Ind Med 1982, 39:70-75
32. Sunyer J, Antó JM, Sabria J, Rodrigo MJ, Roca J and Morell F. Risk fac-
tors of soybean epidemic asthma. The role of smoking and atopy. Am Rev Respir Dis 1992, 145:1098-1102
33. Zock JP, Kogevinas M, Sunyer J, Almar E, Munizozguren N and Payo F. Asthma risk, cleaning activities and use of specific cleaning products among Spanish indoor cleaners. Scand J Work Environ Health 2001, 27:76-81

Pre-publication history
The pre-publication history for this paper can be accessed here:
http://www.biomedcentral.com/content/backmatter/1476-069X-1-5-b1.pdf