This is a repository copy of *Solid-state nuclear magnetic resonance spectroscopy of cements*.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/146645/

Version: Published Version

Article:
Walkley, B. orcid.org/0000-0003-1069-1362 and Provis, J.L. orcid.org/0000-0003-3372-8922 (2019) Solid-state nuclear magnetic resonance spectroscopy of cements. Materials Today Advances, 1. 100007. ISSN 2590-0498

https://doi.org/10.1016/j.mtadv.2019.100007

Reuse
This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the authors for the original work. More information and the full terms of the licence here:
https://creativecommons.org/licenses/

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.
Solid-state nuclear magnetic resonance spectroscopy of cements

B. Walkley**, J.L. Provis*

Department of Materials Science and Engineering, The University of Sheffield, Sheffield S1 3JD, United Kingdom

1. Introduction

Modern society is heavily reliant on cementitious materials in constructing our built environment. Second only to water in terms of commodity use [1,2], the worldwide production of concrete exceeds 10 billion tonnes per annum. The most common cement used to produce concrete is Portland cement (PC) [3], a complex material made up of multiple calcium-rich mineral phases that react with water and harden to provide strength, impermeability and resistance to thermal, mechanical and chemical stresses over long timescales [4]. The excellent physical properties of PC have resulted in its incorporation into virtually all of the modern built environment.

However, PC production results in large associated CO₂ emissions, approximately 0.73–0.99 t CO₂/t PC, which is ~8% of current global anthropological CO₂ emissions when considering a PC production volume around 4 Gt per annum [5,6]. Consequently, low- CO₂ cementitious materials have emerged as attractive, more sustainable alternatives to PC [4]. Supplementary cementitious materials (SCMs) such as coal fly ash (FA), blast furnace slag, calcined clays, finely ground limestone and silica fume are widely used in concrete. By blending PC with SCMs, it is possible to enhance and control physical properties, e.g. strength, durability, phase formation and reaction kinetics, and also to improve sustainability by reducing associated CO₂ emissions and valorising industrial wastes [7]. PC-free binders such as calcium aluminate cements (CACs) and calcium sulfoaluminate (CSA) cements, magnesia-based cements, alkali-activated materials (AAMs) and geopolymers, among others, have also received significant attention from academia and industry due to the enhanced technical properties and/or sustainability that they can provide, when compared with PC [4].

The complex chemical nature of cement systems, which often involve crystallographically disordered phases and which continue to evolve as a function of time for many years after initial mixing, has caused significant difficulty in understanding their atomic structure. Nuclear magnetic resonance (NMR) spectroscopy has become a key tool which offers the opportunity to clarify many of these important structural details. NMR spectroscopy involves the detection of interactions between nuclei with intrinsic magnetic
moments (i.e., non-zero spin) and applied magnetic fields and enables determination of the local chemical environments of NMR-active nuclei, regardless of the level of crystallographic order or disorder, and this is essential in its application to the study of cements. In cements, nuclei of interest include 1H, 13C, 17O, 19F, 23Na, 25Mg, 27Al, 31P, 35S, 39K and 43Ca (Table 1). Solid-state (SS) NMR is ideally suited to study both anhydrous and hydrated solid phases in cementitious materials. Its application to cement samples of different ages is invaluable in resolving the reaction mechanisms, kinetics and structural evolution that dictate the properties and performance of cements (and thus also concretes made using these cements). NMR can also be applied as a powerful tool probing the dynamics of mobile ions and water within cementitious materials, in particular through the use of 1H NMR relaxometry which provides information about water mobility and pore size distribution [8,9]. These various applications and nuclei will be discussed in detail in the sections which follow.

2. Solid-state NMR spectroscopy

An NMR experiment involves holding a sample in a magnetic field (denoted B_{0}) and applying pulses of radiofrequency radiation to induce precession of the nuclear spin and measuring the electromagnetic response produced as the nuclei relax back to their equilibrium states. The electromagnetic signal is measured as a free induction decay, which is then converted to an NMR spectrum by applying a Fourier transform. The NMR spectrum contains resonances characteristic of near-neighbour atomic environments [10,11]. Terms representing the magnetic dipolar interaction, chemical shielding and quadrupolar interactions between the nucleus and its environment are of particular interest in the study of cements.

NMR spectra of solids are broadened (compared to those of liquids) due to dipolar interactions, anisotropy of the chemical shielding and quadrupolar interactions between the intrinsic nuclear electric quadrupolar moment and the surrounding electric field gradient [10]. This necessitates the application of sample spinning methods to reduce broadening.

Magic angle spinning (MAS) requires spinning a sample at an angle of $\cos^{2}(\theta_{\text{MAS}}) = 1/3$ ($\theta_{\text{MAS}} = 54.7^\circ$) with respect to the static magnetic field (B_{0}) so that dipolar interactions are suppressed, and both chemical shielding anisotropy and first-order quadrupolar interactions are removed [10,11], narrowing spectral lineshapes. This means that the local chemical environments of spin $S = \frac{1}{2}$ nuclei (which do not experience second-order quadrupolar interactions) can be represented in terms of the isotropic chemical shift (δ_{iso}) in MAS NMR spectra. Quadrupolar nuclei ($S > \frac{1}{2}$) experience additional second-order quadrupolar interactions, so the quadrupolar interaction term of the Hamiltonian is non-zero under MAS conditions. This limits spectral resolution due to anisotropic broadening of the signals. However, these second-order quadrupolar interactions are inversely proportional to the strength of B_{0} and can thus be reduced through the use of high magnetic fields [10,11]. Owing to the disordered structure of many cementitious phases, significant line broadening occurs at all practically achievable MAS rates, and so the spectra for relevant nuclei are often poorly resolved. This is exacerbated in quadrupolar nuclei such as 29Si ($S = 5/2$), 23Na ($S = 3/2$), 25Mg ($S = 5/2$), $^{23}^{2}$Al ($S = 5/2$), ^{33}S ($S = 3/2$), ^{39}K ($S = 3/2$) and ^{43}Ca ($S = 7/2$) [12].

The presence of paramagnetic species within cementitious materials can limit the applicability of SS NMR for their characterisation; these species influence the relaxation and chemical shift of nearby nuclear spins, which can severely dampen and shift the NMR signal of these nuclei [10]. This is particularly problematic in standard ‘grey’ PC and in ferrite-containing sulfoaluminate cements, which each contain tetracalcium aluminoferrite (4CaO-Al$_2$O$_3$-Fe$_2$O$_3$, C$_4$AF), as well as in binders containing coal FA (containing Fe$_2$O$_3$) [13]. The use of Fe$_2$O$_3$-free cement systems for spectroscopic analysis [14–16] can, therefore, be advantageous.

Recent advances in this understanding of the chemistry and materials science of cements, in which the application of SS NMR has played a pivotal role, are discussed in the following section.

3. Terminology used in defining the local structure of silicates and aluminates

Si sites are generally identified using notation of the type $Q^{m}(nAl)$ with $0 \leq m \leq n \leq 4$, where Si in tetrahedral coordination (represented by Q) is bonded to n other tetrahedral atoms (m of which are Al) via oxygen bridges. $Q^{m}(nAl)$ Si sites within cementitious materials typically resonate in the region from –60 ppm to –120 ppm relative to tetramethylsilane, with significant overlap between the broad resonances observable in disordered solid phases, but a more negative chemical shift induced by a higher connectivity (i.e. higher n) (Fig. 1) [11,16–18]. Each additional tetrahedral Al atom which replaces an Si neighbouring a $Q^{m}(nAl)$ silicon site also increases the chemical shift by approximately 5 ppm [11], and this provides an important point of differentiation between $Q^{m}(nAl)$ sites as a function of n and m, although the effects of the two parameters cannot always straightforwardly be discriminated without application of multinuclear NMR techniques.

Aluminous sites are generally differentiated by the coordination number, with tetrahedral Al species identified using q^{n} notation, where q represents Al in tetrahedral coordination linked to n tetrahedral silicon sites via oxygen bridges, and $0 \leq n \leq 4$. Bridges between two tetrahedral Al sites are disfavoured (a crystallographic and thermodynamic observation known as ‘Loewenstein’s principle’ [19]). Tetrahedral and octahedral Al sites typically resonate within the regions 80–50 ppm and 20–0 ppm, respectively, relative to Al(H$_2$O)$_3^{+}$(aq), while resonances assigned to five-coordinated Al and highly distorted tetrahedral Al environments have been observed in the region 50–20 ppm, Fig. 2 [11,17,20–22].

4. Characterisation of cementitious materials

4.1. MAS NMR of anhydrous cementitious materials

4.1.1. Portland cement

PC primarily comprises the ‘clinker’ phases tricalcium silicate (3CaO-SiO$_2$, C$_3$S, in numerous polymorphs), dicalcium silicate (2CaO-SiO$_2$, C$_2$S; the α and β polymorphs of this composition are preferred in cements due to their hydraulic nature, whereas γ-C$_2$S is unreactive), tricalcium aluminate (3CaO-Al$_2$O$_3$, C$_3$A) and tetracalcium aluminoferrite. This assemblage of clinker minerals is produced from limestone and silicate minerals in a rotary kiln, then rapidly cooled and interground with calcium sulphate to form PC [23]. Among these clinker minerals, tricalcium silicate (or a slightly impure form of this phase, containing Al and/or Mg among other substituents, which is commonly described as ‘alite’ in the cements literature [24]) is the predominant constituent of modern PC, defining its hydraulic nature and high early strength development upon cement hydration. The expected values of δ_{iso} of δ_{iso}, δ_{iso} and δ_{iso} for different nuclei in various phases in PC are shown in Table 2 and discussed in the following text.

4.1.1.1. Tricalcium silicate (alite, hartrurite). C$_3$S is known to exist in seven polymorphs: three triclinic, three monoclinic and one trigonal. The alite present in PC crystallises from the melt in a trigonal form and upon rapid cooling, transforms into metastable
Isotope	Natural abundance (%)	Nuclear spin (I)	Magnetogyric ratio (γ) (10^7 rad/T.s)	Quadrupole moment (10^26 Q/m^2)	Resonance frequency (MHz)	Relative sensitivity°	Absolute sensitivity°	Relevant anhydrous phases	Relevant hydrous phases	Relevant cements
^1H	99.98	1/2	26.7519	0	500	1	1	Gypsum	C-S-H, C-A-S-H, C-(N,K)-(A)-S-H, (N,K)-A-S-H, CAH10, CaO, MgO, Al, SiO, F, OH	PC, PC–SCM blends, SCMs, calcium aluminate cement (CAC), calcium sulfoaluminate (CSA) –containing cements, magnesia-based cement, alkali-activated materials (AAMs), geopolymers –PC–SCM blends, SCM, AAM Magnesia-based cements, AAM, geopolymers
^13C	1.108	1/2	6.7283	0	125.721	0.0159	0.000176	CaCO₃ gypsum	Afm, hydrogarnets	PC, PC–SCM blends, SCM, AAM
^17O	0.037	5/2	–3.6279	–28	67.784	0.037	0.0000108	C-S-H, C-A-S-H, C-(N,K)-(A)-S-H, (N,K)-A-S-H, CAH10, CaO, MgO, Al, SiO, F, OH	M-S-H, M-A-S-H, brucite, struvite-K, portlandite, Afm, Afm, third aluminate hydrate (TAH), hydrogarnet, hydrogarnets	
^19F	100	1/2	25.181	0	470.358	0.83	0.83	Cr, β-Cr, C, Cr₂O₃, MgO	–	–
^21Na	100	3/2	7.0801	0.1	132.256	0.0925	0.00925	Cr, β-Cr, C, Cr₂O₃	(N,K)-(A)-S-H, N-A-S-H	PC, PC–SCM blends, SCM, AAM
^29Si	4.7	1/2	–5.3188	0	99.325	0.00784	0.000369	Cr, β-Cr, C, Cr₂O₃, MgO	–	–
^31P	100	1/2	10.841	0	202.404	0.0663	0.0663	Cr, β-Cr, C, Cr₂O₃	–	–
^35Cl	0.76	3/2	2.055	–1.049	38.348	0.0676	0.0000172	Cr, β-Cr, C, Cr₂O₃	Etritinge, Afm	PC–gypsum, AAM
^39K	93.1	3/2	1.2498	0.049	23.333	0.000508	0.0000473	Cr, β-Cr, C, Cr₂O₃	–	–
^41Ca	1.145	7/2	–1.8025	0.2	33.641	0.0064	0.0000928	Cr, β-Cr, C, Cr₂O₃	–	–

Nuclei, associated key NMR parameters [437] and phases of interest in analysis of cement materials.

° At 11.744T (500 MHz for ^1H).

° Relative to ^1H – 1.00.

° In these columns and elsewhere in this article, cement chemistry abbreviations are used to represent oxide constituents: Si, SiO₂; A, Al₂O₃; C, CaO; F, Fe₂O₃; N, Na₂O; M, MgO; H, H₂O; C, CO₂; S, SO₃; AFT and AFM represent families of calcium aluminoferrite (AF) hydrates; AFM phases are the hydrocalumite-like ‘mono’ group and AFT phases are the ettringite-like ‘tri’ group. Hyphenation indicates a non-stoichiometric compound.
polymorphs, predominantly, the two monoclinic polymorphs M\(_I\) and M\(_{III}\) [25]. \(^{29}\)Si MAS NMR analysis of the M\(_I\) polymorph of alite has shown that Si exists within nine crystallographically distinct sites, approximately within the range from –69 to –75 ppm [26,27], while \(^{29}\)Si MAS NMR spectra of the M\(_{III}\) polymorph exhibit overlapping resonances between –66 and –78 ppm corresponding to eighteen distinct SiO\(_4\) tetrahedra (Fig. 3) [27,28].

The calcium silicate chains in alite can accommodate a number of guest ions which substitute for silicon (e.g. AlO\(_4^{3-}\) or PO\(_4^{3-}\) for SiO\(_4^{4-}\) [30–32]) or oxygen (e.g F\(^-\) for O\(^{2-}\) [31]). Substitution of AlO\(_4^{3-}\) for SiO\(_4^{4-}\) in C\(_3\)S chains has been identified crystallographically since the 1950s [24,33] and was first subjected to NMR analysis in 1994 by Skibsted et al. [34] using \(^{27}\)Al MAS NMR [30], then later confirmed unambiguously using \(^{27}\)Al multiple quantum (MQ) MAS NMR.

Reduction of the temperature at which alite forms, which is desirable for both economic and environmental reasons in cement production, is often achieved by adding ‘mineralising’ additives such as fluoride and phosphate, which substitute into the alite structure. Tran et al. [31] used \(^{29}\)Si and \(^{27}\)Al MAS, \(^{19}\)F–\(^{29}\)Si cross polarisation (CP) MAS and \(^{19}\)F–\(^{29}\)Si CP rotational-echo double-resonance (REDOR) MAS NMR techniques to show that F\(^-\) substitutes for O\(^{2-}\) ions in the alite phase alone, according to a coupled substitution mechanism SiO\(_4^{4-}\) + O\(^{2-}\) → AlO\(_4^{3-}\) + F\(^-\) [35], with a
strong preference for F^- substitution into interstitial oxygen sites not involved in covalent Si-O bonds. Poulsen et al. [32] showed via ^{31}P and inversion recovery ^{31}P MAS NMR that PO_4^{3-} ions substitute for SiO_4^{4-} tetrahedra in alite; a substitution level of 1.3 mol. % was identified in the sample studied. This substitution may be charge balanced by a coupled substitution mechanism where Ca$^{2+}$ is partially replaced by Fe$^{3+}$, via $SiO_4^{4-} + 2Ca^{2+} \rightarrow PO_4^{3-} + Fe^{3+} + Ca^{2+}$ (where \Box_{Ca} represents a Ca$^{2+}$ vacancy) [32]. Skibsted et al. [36] extended this work by applying 19Fe-27Al CP MAS and 19Fe-29Si CP MAS NMR spectroscopy to a series of CaF$_2$-modified PCs containing between 0.23 and 0.77 wt% fluorine, demonstrating that increased fluorine content drives increased fluorine substitution into alite via a double substitution mechanism and that F^- and Al$^{3+}$ ions in alite are likely to be clustered together.

Recently, 17O-29Si CP heteronuclear correlation (CP-HETCOR) MAS NMR was used to resolve oxide ion sites bonded to one Si$^{4+}$ from those bonded to Ca$^{2+}$ in synthetic tricalcium silicate for the first time [37]. Oxide ion sites bonded to Ca$^{2+}$ play an important role in the structure and reactivity of C-S but have proven difficult to resolve. 43Ca MAS NMR analysis of alite was first reported by Moudrakovski et al. [38], with the high-field (21.14 T) natural abundance 43Ca MAS NMR spectrum of the monoclinic polymorph showing a broad, asymmetric resonance consistent with overlapping 43Ca resonances from the 36 non-equivalent sites for Ca in this phase and deviations from a perfect lattice (Fig. 4) [28]. This contrasts with the 43Ca MAS NMR spectrum of the triclinic polymorph, which exhibited well-separated 43Ca resonances despite the 29 non-equivalent sites for Ca in this phase, which are also present in the monoclinic polymorph [39], suggesting that some of these non-equivalent sites are quite similar. This work demonstrates the power of SS 43Ca MAS NMR to resolve polymorphism, which is valuable in identification, characterisation and quantification of metastable polymorphs within cement systems, although the time and instrumentation required to collect high-resolution 43Ca spectra may prove to be a limitation in a practical sense. Differences in 43Ca MAS NMR spectra have also been exploited for spectroscopic analysis of the CaCO$_3$ polymorphs calcite, aragonite and vaterite [40,41], which are also present in many cement systems.

Table 2

Coordination states, δ_{obs}, δ_{iso}, and C_Q for different nuclei in the major constituents of Portland cement.

Phase	Nucleus	Site	Coordination	δ_{obs} (ppm)	δ_{iso} (ppm)	C_Q (MHz)	Magnetic field (T)	Reference
Tricalcium silicate (C$_3$S)	29Si	Q^2 (Si$_{1-3}$) in M$_8$	4	-69 to -75	-69 to -75	4.70, 7.5 and 8.45	[26,27]	
Dicalcium silicate (β-C$_2$S)	17O	Si-O-Ca (NBO)	2	116.2	116.2	11.7	[43]	
Dicalcium silicate (β-C$_2$S)	29Si	Si-(OCa)$_4$	4	-71.3	-71.3	7.5, 11.7	[27,42-44]	
Dicalcium silicate (β-C$_2$S)	43Ca	Ca_4	4	33.7	2.41	21.1	[38]	
Tetracalcium aluminoferrite (CaF)	27Al	Al$_{IV}$	4	53.8	2.98	21.1	[38]	
Gypsum (CaSO$_4$)	35S	S	6	0–20	0–20	9.4	[55]	
	43Ca	Ca	6	328	9.4	19.6	[59]	
exists within a single Q⁰ (isolated SiO₄ tetrahedron) environment which exhibits a single ²⁹Si resonance at −71.3 ppm, coordinated to calcium via four Si-O-Ca linkages. Some PCs also contain the α polymorphs of C₂S, but these do not appear to have been analysed specifically by high-resolution SS NMR in the available body of literature, so the focus here will be on the β form.

Despite the fact that there are four crystallographically distinct oxygen sites within β-C₂S, a single broad resonance is observed in the ¹⁷O MAS NMR spectrum, suggesting that there is some degree of disorder in this phase. As for the case of alite, substitution of Al³⁺ for Si⁴⁺ in C₂S has been identified crystallographically since the 1950s [45,46]. In 1994, ²⁷Al MAS NMR was used to provide the first detailed spectroscopic understanding of Al substitution for Si in C₂S in PC [30], which has significant consequences for the dissolution and hydration reactions of this phase, given the thermodynamic preference for dissolution of Al from calcium aluminosilicates [47]. Skibsted et al. [30] determined quadrupole coupling parameters and the isotropic chemical shift for this unique Al³⁺ guest ion in belite, which exhibited the most deshielded chemical shift (δiso = 96.1 ppm) yet reported for a tetra-coordinated Al environment bonded to four oxygen atoms, further highlighting its potential importance in defining belite reactivity.

As in alite, tetrahedral Si sites within β-C₂S can accommodate both aluminium and phosphate ions [32,48]. Poulsen et al. [32] utilised ³¹P and inversion recovery ³¹P MAS NMR to show that PO₄³⁻ ions can substitute for SiO₄⁴⁻ tetrahedra in belite (in 2.1% of the...
SiO$_2^-$ tetrahedra for the sample studied) in PCs containing between 0.08 and 0.45 wt % P$_2$O$_5$, with a similar coupled substitution charge balancing mechanism proposed as described previously for alite, where Ca$^{2+}$ is partially replaced by Fe$^{3+}$ via SiO$_2^-$ + 2Ca$^{2+}$ → PO$_4^{3-}$ + Fe$^{3+}$ + □Ca$^{-}$.

The 42Ca MAS NMR spectrum of belite was first reported by Moudrakovski et al. [38], Fig. 4. The high-field (21.14 T) natural abundance 42Ca MAS spectrum exhibited two distinct resonances consistent with the crystal structure of this phase and calculations from density functional theory (DFT) (Table 2). Both sites exhibited extensive asymmetry in Ca-O bond lengths.

4.1.1.3. Tricalcium aluminate. The investigation of C$_3$A by 27Al MAS and MQMAS NMR at multiple fields has shown that it contains two inequivalent Al tetrahedral sites, which resonate at $\delta_{\text{iso}} = 79.5$ ppm and 78.25 ppm, respectively, arranged in six-membered rings of AlO$_4$ tetrahedra in the cubic (pure) polymorph of C$_3$A (Fig. 5) [34, 49]. δ_{iso} values within -6 ppm of those determined by Skibsted et al. [49] have also been reported for these AlIV sites within C$_3$A by other workers, although with some variability in reported resonance positions [50–52]. Four of the six crystallographically non-equivalent calcium sites in C$_3$A were resolved using high-field (21.11 T) single-pulse 13C MAS NMR by Moudrakovski et al. [38].

4.1.1.4. Tetracalcium aluminoferrite (brownmillerite). The analysis of C$_4$AF by NMR, and particularly by 27Al MAS NMR, is constrained by the nuclear-unpaired electron dipolar couplings between the 27Al nucleus and paramagnetic Fe$^{3+}$ ions [53–55], which severely broaden the 27Al MAS NMR spectra and dampen the signal [52, 55] as demonstrated in a study by 27Al MAS NMR (9.4T, 11.5 \leq ν_R \leq 17.5 kHz) [55], examining Ca$_2$Al$_{1-x}$Fe$_x$O$_4$ with $x = 0.93$, 1 and 1.33 (Fig. 6). Increasing Fe content dramatically dampened and broadened the observed resonances, but despite these difficulties, it was possible to observe that the central transitions showed a dominant resonance for AlIV species at 61 \leq δ_{obs} \leq 71 ppm, with increased shielding at higher Fe content, and AlIII species at 0 \leq δ_{obs} \leq 20 ppm.

As mentioned in section 2, the presence of C$_4$AF in PC also has significant implications for acquisition of 29Si MAS NMR data for C$_3$S and C$_2$S phases. A dramatic decrease in the longitudinal relaxation time, T_1, in grey PC has been attributed to the close proximity of these diamagnetic phases to paramagnetic C$_4$AF [56, 57]. However, Poulsen et al. [29] attributed this effect primarily to Fe$^{3+}$ ions incorporated as guest ions within C$_3$S and C$_2$S phases, rather than intermixing with ferrite phases. These effects need to be considered carefully when attempting to quantify C$_3$S and C$_2$S phases in PC via deconvolution of 29Si MAS NMR spectra as preferential incorporation of Fe$^{3+}$ ions within either of the silicate phases will result in a dampening of the 29Si MAS NMR signal for that phase and consequently lead to incorrect quantification [57]. Further discussion of methods to mitigate this issue is provided in section 4.3.

4.1.1.5. Gypsum. Gypsum (CaSO$_4$·2H$_2$O, CSH$_2$), and/or its partially dehydrated forms, is interground with PC clinker in small quantities to control the setting rate of the hydration cement. During PC hydration, C$_3$A reacts with gypsum to form ettringite (AFT) which is subsequently converted (in part or in full) to monosulfoaluminate (AFm), starting a few hours after initial hydration [23]. In the absence of gypsum, C$_3$A would hydrate rapidly and setting could occur within minutes (i.e. ‘flash setting’).

The first application of NMR to any of the cement phases discussed in this article was undertaken by Pake, who in 1948 applied 1H NMR to single crystals and powdered hydrates of gypsum, demonstrating that the splitting observed in the spectrum (the Pake doublet) reflects the dipolar coupling of two 1H nuclei and therefore the internuclear distance between H atoms within the water molecules of gypsum [58]. Natural abundance 43Ca MAS NMR (8.6 T, $\nu_R = 2$ kHz) has revealed a single Ca site in gypsum resonating at approximately $\delta_{\text{obs}} = -28$ ppm [40]. 31S MAS NMR studies of gypsum (both natural abundance and enriched with 33S) revealed a single S site in gypsum resonating at $\delta_{\text{obs}} = 328$ ppm (Fig. 7) [59]. However, it was noted that acquisition of natural abundance 33S MAS NMR spectra for PC samples is not practical due to extremely long acquisition times, and consequently, this technique does not appear useful for field samples or those without isotopic enrichment.

4.1.2. Innovation in cements to reduce CO$_2$ emissions

Commercially produced cements contain a worldwide average of -20%, but up to 99% in some cases, replacement of PC clinker by
SCMs, while maintaining similar performance to existing cements [61]. The SCMs used are primarily fine limestone, ground granulated blast-furnace slags (GGBFSs), coal FAs and silica fume, with recent developments also focusing on ternary blends, e.g. those containing both calcined clays and ground limestone [61]. The use of non-PC hydraulic clinkers such as CACs, CSA cements, belite-ye’elimite-ferrite clinkers and magnesia-based cements, as well as non-clinker-based cements such as AAMs, can also offer significant reductions in CO₂ emissions.

The materials used as SCMs are often crystallographically disordered, compositionally variable and multiphase in nature. SS NMR has consequently been instrumental in characterising the local structure of these materials, which are used both as SCMs in blends with PC and also as precursors for alternative cements. The

Fig. 6. 27Al MAS NMR spectra (9.4 T) for the synthetic ferrites (a) Ca₂Al₁₋₁₃Fe₀₋₁₆O₅, (b) Ca₂AlFeO₅ and (c) Ca₂Al₀₋₂₀Fe₁₋₁₀O₅, acquired using between 18,000 and 76,000 scans and spinning speeds of 11.6, 17.5 and 11.5 kHz, respectively. The spectra in (b) and (c) are shown on identical intensity scales, which correspond to a vertical expansion by a factor of two relative to the spectrum in (a). The asterisk and squares in (a) indicate the resonance from the central transition and spinning sidebands for the Al $^{3+}$ site. Adapted from Skibsted et al. [55].

Fig. 7. 33S MAS NMR spectra (19.6 T, $ν_R = 6–8$ kHz) of (a) synthetic, (b) mineral and (c) 33S-enriched gypsum (CaSO₄·2H₂O) and (d) a second-order quadrupolar model of the central transition adjusted to the experimental data using DMEFIT [60] and the NMR parameters reported in Ref. [59]. Adapted from d’Espinose de Lacaillerie et al. [59].
expected δ_{obs}, δ_{iso} and CQ for different nuclei in the main phases found in common SCMs are shown in Table 3 and discussed in the following text.

4.1.2.1. Supplementary cementitious materials

4.1.2.1.1. Limestone. Limestone used as an SCM comprises primarily the CaCO$_3$ polymorphs calcite and aragonite, as well as some dolomite (CaMg(CO$_3$)$_2$). Calcite and aragonite, as well as the additional CaCO$_3$ polymorph vaterite, are also generated within cement in service as the calcium–rich cement hydrate phases react with atmospheric CO$_2$ in a process known as carbonation [62]. 43Ca MAS NMR analysis of calcite, aragonite and vaterite [40,41] has revealed substantially different chemical shifts and quadrupolar coupling constants for each polymorph, $\delta_{\text{iso}} = 216, 12.6$ and -26 ppm and CQ = 1.39, 3.7 and 0.68 MHz for calcite, vaterite and aragonite, respectively. 13C MAS NMR spectra of crystallographically pure calcite and aragonite show single resonances in each phase at approximately $\delta_{\text{iso}} = 168$ ppm and 170 ppm, respectively [63,64], while crystallographically pure vaterite exhibits two 13C MAS NMR resonances at $\delta_{\text{iso}} = 170$ ppm and 169 ppm [65].

4.1.2.1.2. Blast furnace slag. GGBFS GGBFS is generated as a secondary product of pig iron production in a blast furnace; the liquid silicate slag is tapped from the furnace, rapidly cooled by granulation and then ground to a particle size similar to that of PC. It can be blended with PC at replacement ratios as high as 95% and is also a Q coupling constants for each polymorph, each phase at approximately dependent on the characteristics of the iron produced and ore used, silicate slag is tapped from the furnace, rapidly cooled by atmospheric CO$_2$ and reacted with the primary precursor for low-CO$_2$ glasses, as well as small amounts of low-crystallinity phases within the melt. The distribution of glasses, as well as small amounts of low-crystallinity phases within the melt. The distribution of glasses, as well as small amounts of low-crystallinity phases within the melt.

Phase	Nucleus	Site	Coordination	δ_{obs} (ppm)	δ_{iso} (ppm)	CQ (MHz)	Magnetic field (T) Reference
Limestone	13C	CaCO$_3$ (calcite)	4	168	168	8.45, 9.4	[63,64]
		CaCO$_3$ (aragonite)	4	170	170	8.45, 9.4	[63,64]
		CaCO$_3$ (vaterite) site 1	4	169	169	8.45, 9.4	[65]
	43Ca	CaCO$_3$ (vaterite) site 2	4	170	170	8.45, 9.4	[65]
		CaCO$_3$ (calcite)	6	21.6	1.39	8.45, 11.75, 21.1	[40,41]
		CaCO$_3$ (aragonite)	9	12.6	3.7	8.45, 14.1, 18.8	[40,41]
		CaCO$_3$ (vaterite)		-26	0.68	8.45, 11.75, 21.1	[40,41]
Blast furnace slag	31O	Mg-NBO	2	55	2.2	16.4	[75]
		(Mg,Ca)-NBO	2	66	2.4	16.4	[75]
		Si-O-Al	2	68	3.3	16.4	[75]
		(Ca,Mg,NBO)	2	81	2.8	16.4	[75]
		Ca-Mg-NBO	2	92	2.7	16.4	[75]
	25Mg	MgO$_2$	6	17	2.7	16.4	[75]
		(MgO$_2$)$_2$	6	10	4.6	16.4	[75]
	27Al	AlIV	6	55--68	4.3	9.4, 14.1, 16.4	[18,20,73,75,199,438]
		Q1	1	-73--91	-73--91	7.05, 9.4, 14.1, 16.4	[18,20,71--73,75,199,206,438]
	41Ca	Ca	25	-	-	16.4	[75]
Coal fly ash	27Al	AlIV	4	40--60	-	14.1	[20,88,101--105]
		AlIII	6	-10 to 10	-	14.1	[20,88,101--105]
Metakaolin	29Si	Q1(mAl), m = 0 - 4	4	56--60	-	7.05, 11.7	[107,110--113]
		AlV	5	30--40	-	7.05, 11.7	[107,110--113]
		AlIII	6	0--10	-	7.05, 11.7	[107,110--113]
Silica fume	29Si	Q3	4	103	-103	11.7	[110]

* The distribution of 27Al and 29Si MAS NMR resonances for slag typically spans between 60 and 80 ppm; for clarity, only the resonance in this distribution exhibiting the maximum intensity is provided.
the ‘pozzolanic’ reaction (Ca(OH)$_2$ + reactive silicates → calcium silicate hydrate) to produce desirable binding phases, while reducing the overall environmental impact of the cement and also valorising this ash which would otherwise be a problematic high-volume waste requiring landfilling.

Phase segregation upon cooling occurs over the majority of the relevant compositional range for aluminosilicate glasses, and so as the molten aluminosilicate materials are quenched rapidly as the flue gas cools, the various phases formed are finely interspersed within the FA particles. The result is a highly heterogeneous material, as different FA particles cool at different rates and are derived from different mineral matter entrained in the coal [93], resulting in both inter- and intra-particle variation in local phase composition [94]. As a result, FA reactivity when used as an SCM (i.e. blended with PC) or as a precursor for AAM varies significantly between ashes, and between phases within each particular ash [95–102].

The crystalline phases present in FA occur in small amounts; in the low-calcium ashes which are considered most desirable for blending with PC, these phases (predominantly quartz, mullite and ferrite spinels) are relatively unreactive when compared to the aluminosilicate glassy phase. Consequently, knowledge of the composition of the glassy phase is important for correct formulation when designing cements containing FA, and SS MAS NMR (used in conjunction with electron microscopy) is a key technique that can provide this information, as long as the ash is not too rich in iron.

29Si and 27Al MAS NMR studies of FA have shown that the vitreous aluminosilicate phase contains a distribution of Q4(mAl) Si species, with aluminium mainly present in poorly ordered tetrahedral coordination, and also revealed the presence of a small amount of Al in octahedral coordination in mullite-like crystallites and glasses (Fig. 9) [20,88,103–105]. The quantity of each Q4(mAl) Si species, as well as the distribution of AlIV and AlVI sites, is dependent on the local phase chemical composition. 17O MAS NMR studies have shown that alkali and alkali earth metals (mainly Na and K in FA) can act as network modifiers and form non-bridging oxygen sites if present in high enough concentrations in aluminosilicate glasses [106] which are analogous to the glassy phase in FA.

4.1.2.1.4. Metakaolin. Metakaolin is a layered aluminosilicate material which is used in cements as a pozzolanic additive and is produced by dehydroxylation of kaolinite clay at temperatures of 500–800 °C [107,108]. It is frequently used as an SCM in blends with PC [61,109]. 29Si and 27Al MAS NMR studies of metakaolin have shown that it consists of alternating buckled silicate and aluminate layers [68], with silicon in tetrahedral coordination (Fig. 10a) [110] and aluminium in a distribution of tetrahedral, pentahedral and octahedral coordination (Fig. 10b and c) [107,110–113], with each site exhibiting a significant degree of asymmetry in the local electric field gradient [113]. It has been suggested that metakaolin contains approximately equal amounts of tetrahedral (AlIV), octahedral (AlVI) and pentahedral Al (AlV) [111,114,115]; however others have found through crystallographic analysis that some of the Al is tricoordinated [116].
4.1.2.1.5. Silica fume. Silica fume is an amorphous form of SiO$_2$ with extremely small (tens of nm) particle size, produced as a byproduct of semiconductor Si manufacture [118]. It is commonly blended with PC at relatively low levels (up to 10 wt%) to promote strength development and durability. Published work examining silica fume via 29Si MAS NMR of PC-silica fume blends, which has shown that silica fume comprises a distribution of Si atoms in tetrahedral coordination (Q$_4$ units), connected by oxygen bridges [8,119,120]. Because silica fume is a pure silica source with a 29Si resonance that is clearly distinct from that of either PC or any of its hydration products, it is possible to accurately determine the extent of reaction of silica fume within a blended cement through 29Si MAS NMR; this is much more accurate for silica fume than for any other siliceous SCMs, as the other SCMs have resonances which at least partially overlap the signal due to the PC or its reaction products [121].

4.1.2.2. Non-PC hydraulic clinkers

4.1.2.2.1. Calcium aluminate cement. CACs consist primarily of monocalcium aluminate (CaAl$_2$O$_4$, CA), which typically accounts for 40–60% wt. % of commercial CACs, along with smaller quantities of C$_2$A$_2$ and CA$_2$ [23,122]. While considerably more expensive than PC, these cements are intended for use in applications where rapid hardening is useful and/or when resistance to thermal stresses, chemical (particularly acid) attack and impact or abrasion is desired [122], e.g. refractory concretes, cements and concretes for effluent treatment infrastructure, blended cements for marine applications and other demanding service environments. CACs are now restricted from bulk use in structural concrete due to a series of material failures in past decades [123], but this does not limit their use in specialist applications. The expected δ_{obs}, δ_{iso} and Q_4 for different nuclei in CAC are shown in Table 4 and discussed in the following text.

4.1.2.2.1.1. Monocalcium aluminate, CaAl$_2$O$_4$. Monocalcium aluminate, CA, is the principal reactive phase which controls the performance of CAC. The crystal structure of CA consists of AlO$_4$ tetrahedra forming six-membered rings in a tridymite-like structure [124]. 27Al MAS NMR isotropic chemical shifts and quadrupolar coupling parameters for each of the six non-equivalent AlO$_4$ tetrahedra in CA have been determined by 27Al MAS NMR at multiple fields (7.1, 9.4 and 11.7 T in Refs. [50,52] and 18.8 T in Ref. [84]), giving 81.9 ppm $\leq \delta_{iso} \leq$ 83.8 ppm and 456.6 kHz $\leq Q_4$ \leq 836 kHz.

Fig. 9. (a) 29Si and (b) 27Al MAS NMR spectra (14.1 T, $v_R = 10$ kHz) of fly ash. Adapted from Bernal et al. [20]. Note that the spectra are significantly broadened by the presence of iron (5.2 wt% represented as Fe$_2$O$_3$ by X-ray fluorescence analysis) in the ash.

Fig. 10. (a) 29Si MAS NMR (9.4 T, $v_R = 6$ kHz, adapted from Dai et al. [117]), where * indicates a resonance from a quartz impurity), (b) 27Al MAS NMR (11.7 T, $v_R = 15$ kHz, adapted from Duxson et al. [111]) and (c) 27Al triple quantum (3Q) MAS NMR (11.7 T, adapted from Kobera et al. [113]) spectra of metakaolin.
2.5 MHz ≤ C_Q ≤ 4.3 MHz by deconvolution of both the resonance from the central transition and the spinning sidebands. Variations in the geometry of the AlO_4 tetrahedra (primarily differences in Al-O bond lengths [124]) are primarily reflected in the ^27^Al MAS NMR quadrupolar parameters rather than in chemical shifts. This work contrasted earlier assertions that the resonance from the central transition could be simulated with a single set of quadrupolar parameters and two isotropic chemical shifts [51].

High-field (18.8 T) ^17^O MAS NMR of CA has resolved eight resonances due to O atoms in AlIV-O-AlIV linkages [84] with chemical shifts between 50 and 90 ppm and C_Q values less than 2 MHz, with the triclinic oxygen site exhibiting the largest C_Q (Fig. 11). This work demonstrated the benefits of utilising high fields which can narrow resonances sufficiently to resolve additional sites; eight of the twelve crystallographically distinct ^17^O sites in CA were able to be resolved at 18.8 T [84], while only five of these ^17^O sites could be resolved at 14.1 T [125].

4.1.2.2.1.2. Calcium dialuminate, CaAl_2O_4

Calcium dialuminate (CA_2) is found in relatively alumina-rich CAC clinkers that are used as refractory cements and is a slowly reacting cement constituent. Its structure comprises two tetrahedrally coordinated Al atoms; one AlO_4 tetrahedron contains two tricoordinated oxygen atoms and the other contains a single tricoordinated oxygen atom, with the remaining oxygens each connected to two Al atoms (Fig. 12) [126,127]. ^27^Al MAS NMR data collected at multiple fields (7.1 T, ν_R = 18.0 kHz; 9.4 T, ν_R = 18.0 kHz and 11.7 T, ν_R = 15.2 kHz) resolved single resonances for each tetrahedrally coordinated Al atom, with δ_iso = 75.5 ppm and 69.5 ppm [52], and significant C_Q values (6.25 MHz and 9.55 MHz, respectively) due to electric field gradient (EFG) asymmetry caused by the nearby tricoordinated oxygens. Earlier work by Müller et al. [51] determined similar δ_iso and C_Q values for the site neighbouring two tricoordinated oxygens compared to those obtained by Skibs- tend et al. [52], but those for the AlO_4 tetrahedra containing a single tricoordinated oxygen atom exhibited larger discrepancies, likely because of the insufficient resolution and notable distortion of the central transition caused by the much lower spinning speed utilised in those early experiments.

^17^O MAS NMR (18.8 T) resolved four distinct oxygen sites in CA, resonating between 40 and 72 ppm [84], including a triclinic oxygen atom with three AlIV neighbours (i.e. an O(AlIV) site) resonating at approximately 40.6 ppm and with quadrupolar parameters C_Q = 2.5 and η = 0.4.

4.1.2.2.1.3. Dodecacalcium hepta-aluminate (mayenite), C_{12}A_7

Mayenite, (Ca_{12}Al_{16}O_{33}, C_{12}A_7), is generally present as a minor phase in more calcium-rich CAC clinkers. It has also been discussed in the past as a potential constituent of PC clinkers but is now considered unlikely to form under realistic commercial PC production conditions [23]. ^27^Al MAS NMR at high spinning speed (17.8 kHz) resolved two distinct AlIV sites within C_{12}A_7 with δ_iso = 85.9 and 80.2 ppm, respectively, in close agreement with the known crystal structure [129] and other ^27^Al MAS NMR investigations of this phase [50,51]. Differences between the δ_iso and quadrupolar parameters (3.8 MHz and 9.7 MHz) of these two AlIV sites arise due to distortions in one of the tetrahedra [50], which result in oxygen mobility [130]. Consequently (although maybe...
incidently in the context of cement chemistry), mayenite has also received significant attention as a high-performance oxygen ion conductor [113].

4.1.2.2. CSA cements. CSA cements comprise calcium sulfoaluminate (ye’elimite, Ca₄[AlO₂]₃(SO₄)₂Ca₂Si₆) and other clinker phases such as belite, Ca₆Al₂, tennesite (Ca₂S₂δ) and/or calcium aluminates and are typically blended with calcium sulphate to regulate the rate of their setting [61,132]. 27Al MAS NMR investigations of commercially produced CSA and synthetic ye’elimite showed nearly identical spectra, consisting of a single peak (with maximum intensity at approximately 68 ppm) with two high-field shoulders at approximately 60 and 52 ppm [34,133–135]. Evidence enabling discrimination of two of the eight non-equivalent Al sites present in the crystal structure of ye’elimite (which is an aluminate analogue of the sodalite framework) [136] was identified in this broad peak [133]. Recent work by Skibsted et al. [137] reported that the 27Al MAS NMR spectral region for AlIV in ye’elimite (~80–50 ppm) is dominated by overlapping resonances from the eight different Al sites. Isotropic projections from 27Al MQMAS NMR spectra obtained by the same authors revealed four distinct resonances with very similar isotropic chemical shifts and quadrupole coupling parameters [34,138].

Ternesite, sometimes also called sulfoarapatite, is a common minor constituent in modern CSA cements that is now being understood to have some hydraulic activity but also forms within PC kilns as an undesirable deposit on the refractory that reduces kiln performance. Ternesite exhibits a single, well-defined 29Si MAS NMR resonance at ~73.0 ppm [139], consistent with its crystal structure [140] in which double layers of silicate tetrahedra alternate with single layers of sulphate tetrahedra, with calcium 7-coordinated to oxygen atoms.

The application of NMR spectroscopy to the belite and tetracalcium aluminate phases present in CSA cements has been discussed in detail in sections 4.1.1.2 and 4.1.1.4, respectively.

4.1.2.2.3. Magnesia-based cements. Magnesia silicate hydrate (M-S-H) cements are typically formed from a source of magnesium and a source of highly reactive silica, such as silica fume [141]. The magnesium source is typically light-burned MgO, and Mg(OH)$_2$ can also be used [142]. Although M-S-H was initially identified as a degradation product in PC exposed to chemically aggressive conditions [141,143], subsequent work has shown that M-S-H gels can also form a cementitious mass to generate high compressive strength [144–148]. These gels will be discussed in detail in section 4.2.6.

The 25Mg MAS NMR spectrum of polycrystalline MgO exhibits a single sharp resonance at $\delta_{\text{iso}} = 26$ ppm [149,150], while the 17O MAS NMR spectrum of this compound enriched with 17O contains a single sharp resonance at 47 ppm [150,151], consistent with octahedral MgOδ sites in the cubic crystal structure of this phase, and in good agreement with first-principles calculations using DFT [152]. The 25Mg MAS NMR spectrum of Mg(OH)$_2$ (brucite) exhibits a typical quadrupolar resonance with $\delta_{\text{iso}} = 14.1$ ppm and $\Theta = 3.15$ MHz [153]. Application of NMR spectroscopy to silica fume has been discussed in detail in section 4.1.2.1.5. Many other magnesia-based cements also exist, including those based on magnesium carbonates, phosphates and oxysalts (both chloride and sulphate) [141]; MgO is the primary Mg source used in the production of most of these cements.

4.2. MAS NMR of key cementitious binding phases

The vast majority of SS MAS NMR investigations of cementitious binding phases, which are often complex, disordered silicates [17,18,20,21,104,154,155], have probed 29Si and 27Al nuclei, yielding information about the coordination states of Al and the connectivity of Si (via oxygen bridges to Si or Al or to non-bridging oxygen sites). The low natural abundance of 29Si (4.7%) results the need for long data acquisition times for non-enriched samples, but the wealth of information obtainable from this technique has meant that it is nonetheless widely used [22].

4.2.1. Calcium silicate hydrate gels

Calcium silicate hydrate (C-S-H) is the main product of PC hydration. It displays low crystallinity and variable composition and comprises (in general terms) Q^2 Si chains of varying lengths with Q^1 Si sites at chain termination points, as shown by 29Si MAS NMR [17,54,156,157]. These silicate chains are flanked by an interlayer containing confined H$_2$O molecules, aqueous cationic species (Ca$^{2+}$ and H$^+$ in pure C-S-H, but with scope for substitution, particularly by alkali metals) and a calcium oxide sheet (Fig. 13) [158,159]. The silicate chains are arranged in a ‘dreierketten’ structure, based on a repeating chain unit of three tetrahedral sites, two ‘pairing’ and one ‘bridging’, where vacancies in the bridging sites lead to characteristic chain lengths of $(3n − 1)$ for integer values of n [160]. The two pairing π units (Q$^2(p)$) are linked with the calcium oxide sheet [159]. The expected δ_{iso}, Θ_{iso} and Θ_{Q} for different nuclei in C-S-H, aluminium-substituted C-S-H (C-(A)-S-H) and alkali-
aluminium-substituted C-S-H (C-(N,K)-A-S-H) are shown in Table 5 and discussed in the following text.

Numerous structural models for C-S-H have been proposed, including those based on jennite [161,162] and tobermorite [159,163], with recent SS NMR work probing both 29Si [164–167] and 17O [168] nuclei indicating strong structural similarity of C-S-H with a distorted tobermorite-like structure. 29Si MAS NMR spectroscopy in combination with other techniques has shown that C-S-H forms a structural series which shows both continuity and diversity, with phase-pure C-S-H exhibiting Ca/Si ratios at least between 0.55 and 2.0 [167,169,170]. Recent work combining dynamic nuclear polarisation—enhanced (29Si)29Si double quantum coherence (the Incredible Natural Abundance Double Quantum Transfer Experiment, INADEQUATE) and (1H)29Si HETCOR MAS NMR analysis approaches, with atomistic modelling, determined a series of atomic level structures for C-S-H based on defective tobermorite with Ca/Si ratios of 1.25–2.0 [170]. These models include a structurally important interlayer calcium site which bridges Q' silicate species and is associated with strong hydrogen bonding that stabilises the C-S-H, allowing high Ca/Si ratios to be reached in a phase-pure C-S-H.

Despite experimental and analytical difficulties arising from the low natural abundance and large quadrupole moment of 17O, MAS NMR spectroscopy probing this nucleus has revealed valuable information regarding the role of oxygen species in C-S-H gels. Cong et al. [43,168] used 17O MAS NMR to study C-S-H in both synthetic gels and hydrated β-C3S, identifying two non-bridging oxygen sites (linking a Si atom with two or three Ca2+ ions, Si-O-Ca2+) in a single bridging oxygen site (linking two Si atoms, Si-O-Si), oxygen atoms within surface hydroxyl groups linked with either Ca2+ (Ca-OH) or framework Si atoms (Si-OH) and a single site corresponding to oxygen within interlayer H2O molecules. The observations of these 17O MAS NMR resonances (and their relative intensities) support the Richardson and Groves [159] defect-tobermorite model for C-S-H. Both non-bridging and bridging oxygen sites were observed to become less shielded with increasing Ca/Si ratio and decreasing polymerisation, indicating a decrease in the average Si-O-Si bond angles, consistent with previous observations of a decrease in the b axis of the pseudo-unit cell of C-S-H [167] at a higher Ca/Si ratio.

As mentioned previously, natural abundance 43Ca MAS NMR experiments face inherent difficulties due to the low natural abundance (0.145%), high quadrupole moment and small magnetogyric ratio of this nucleus, Table 1. Consequently, very few studies probing 43Ca in C-S-H via MAS NMR have been performed. Moudakovski et al. [38] used 43Ca MAS NMR to study a series of C-S-H gels of differing Ca/Si ratios, as well as C-S-H produced by hydrating triclinic C3S, crystalline 11 Å tobermorite and portlandite (Fig. 4). The coordination state of Ca2+ in C-S-H is complex and not yet fully resolved, but the work of Richardson [171] indicates the expectation that the most probable coordination numbers in plausible C-S-H structures are 6 or 7 depending on the site type and occupancy.

Paired SiO4 chain sites (Q(p)) and bridging SiO4 chain sites (Q(A)) in C-S-H in hydrated PC exhibit overlapping 29Si MAS NMR resonances [16,172] and therefore cannot be resolved individually.

![Image](https://example.com/image.png)

Fig. 13. Schematic representation of the structural features of calcium-silicate hydrate (C-S-H) gels, adapted from Provis and Bernal [4]. Tetrahedral Si sites and CaO layers are shown by blue triangles and green rectangles, respectively. Circles denote various interlayer species (water or cations).

Table 5

Nucleus	Site	Coordination	δiso (ppm)	δexp (ppm)	C0 (MHz)	Magnetic field (T)	Reference
1H	Ca-OH	1	1.0	–	7.04, 9.4, 11.7	[164,180–182,310]	
17O	Si-O-Ca	2	–	104–112 2.4	11.74	[43,168]	
23Na	Interlayer Na+	–	–	3–3.7 1.0	14.10	[14,366]	
27Al	Q4 charge balanced by interlayer Ca2+, Na+ or H+ cations	4 66	9.17	190,193			
29Si	Q4 charge balanced by interlayer or surface Al4+ or Al1+ cations	4	74.6	175	[193]		
43Ca	Ca-O sheet	6	10–15	21.14	[38]		
43Ca	Interlayer Ca2+	–	35–85	21.14	[38]		

* Q2 resonances in these studies are not specified as bridging or pairing tetrahedra.
using this technique; however, these sites can often be resolved by their differing 29Si MAS NMR chemical shifts in synthetic C-S-H gels (Fig. 15) [173–177].

43Ca MAS NMR spectra of the synthetic C-S-H gels show broad resonances at approximately 27–31 ppm, very similar to the spectrum of 11 Å tobermorite [178]. An increased Ca/Si ratio leads to decreased shielding of 43Ca ions (i.e. resonances move to higher chemical shift), consistent with a decrease in the mean chain length (MCL) of the silicate, and also in good agreement with 29Si MAS NMR data [167].

The 43Ca MAS NMR spectrum of hydrated triclinic C$_3$S contains a broad resonance across a chemical shift range that includes that of the main resonances from C-S-H gels with 0.8 ≤ Ca/Si ≤ 1.5, indicating that C-S-H in hydrated cement systems may contain various locally different chemical compositions [38]. Combining these observations with analysis of 43Ca MAS NMR signal intensity vs. delay time, Moudrakovski et al. [38] proposed that Ca in the Ca-O sheets resonates at 10 ppm ≤ δ_{obs} ≤ 45 ppm and interlayer Ca$^{2+}$ ions resonate at 35 ppm ≤ δ_{obs} ≤ 85 ppm at a field B_0 of 21.1 T.

Bowers and Kirkpatrick [179] used natural abundance 43Ca MAS NMR to demonstrate that despite broad spectra, six-coordinate Ca (as present in jennite) and seven-coordinate Ca (as present in 11 Å tobermorite) may be resolved by differences in chemical shift ($\delta_{\text{obs}} = 24$ ppm vs. −9 ppm, at 21.1 T). By using this approach, it may be possible to resolve the various locally different chemical compositions (i.e. those with differing Ca/Si ratios) within C-S-H gels.
Despite severe line broadening in 1H MAS NMR spectra which results from 1H-1H dipolar couplings, the high sensitivity of 1H, and the development of multipulse decoupling sequences which reduce line broadening, have led to the application of this technique to study proton environments in C-S-H [157]. However, the information obtainable from 1H MAS NMR spectra of C-S-H is generally limited, due to the distribution of protons across many chemical sites and the small chemical shift range (approximately 20 ppm) over which 1H in solid phases can resonate [157]. 1H MAS and combined rotation and multiple pulse sequence (CRAMPS) NMR techniques have been used to monitor hydration of synthetic C$_2$S during the early stages of hydration and at longer intervals up to 28 days of curing [180–182]. It was demonstrated that it is possible to resolve a resonance from protons in Ca-OH at $\delta_{\text{obs}} = 5.2$ from the overlapping broad resonances of protons in Si-OH and mobile water molecules at $\delta_{\text{obs}} = 0.5–1$ ppm ($B_0 = 7.04$ and 9.44 T). Recently, quantitative 29Si MAS and 1H-29Si CPMAS NMR experiments have been used to monitor hydration of 29Si-enriched triclinic C$_5$S in-situ over the first 24 h of reaction [183]. These results were correlated with isothermal calorimetry measurements to identify the previously unobserved phenomenon of partial passivation of the surface of C$_2$S which drives deceleration of the reaction.

4.2.1.1. C-(A)-S-H gels. 29Si MAS NMR has revealed important information regarding incorporation of Al in C–S–H (i.e. forming C-(A)-S-H) in hydrated PC [16,17,167,172,184–186], PC–SCM blends [117,187,188] and 2000-year old Roman seawater harbour concrete [189]. Application of 29Si MAS NMR has allowed observation of resonances from Q^1, Q^2 and $Q^2(1A1)$ sites which make up the silicate chains in the C-(A)-S-H gel [16,172,172]. The MCL can be calculated from the intensities of $Q^0(mAl)$ resonances obtained from 29Si MAS NMR spectral deconvolutions by using equation (1), while the degree of Al-Si substitution in the tetrahedral chains can be obtained from the intensities of the Q^1, Q^2 and $Q^2(1A1)$ resonances (equation (2)), as demonstrated by Richardson et al. [184,185] and Andersen et al. [186].

$$\text{MCL}_{\text{aluminosilicate}} = \frac{\frac{2}{3}(Q^1 + Q^2 + \frac{3}{2}Q^2(1A1))}{Q^3} \quad (1)$$

$$\frac{\text{Al}^{IV}}{\text{Si}} = \frac{\frac{3}{2}Q^2(1A1)}{Q^1 + Q^2 + \frac{3}{2}Q^2(1A1)} \quad (2)$$

Using 29Si MAS NMR, Andersen et al. [186] showed that the AlIV/Si ratio in C-(A)-S-H in hydrated white PC is dependent on the availability of dissolved AlIII ions, but independent of hydration time. Richardson et al. [190] used 29Si MAS NMR to determine that Al preferentially substitutes into $Q^0(b)$ sites and that the MCL of aluminosilicate chains in C-(A)-S-H is dependent on both the availability of AlIII ions in solution and hydration time, findings that were subsequently confirmed by Andersen et al. [184,186]. It has also been suggested that Al may substitute for Si in small amounts in pairing sites [188,191,192], although this is thermodynamically disfavoured compared to the bridging sites [191].

Al readily substitutes for Si in the bridging position in aluminosilicate chains in C-(A)-S-H up to a ratio of Al/Si ≤ 0.1, while at higher Al/Si ratios, katoite and/or strätlingite are also formed [15]. Analysis by 29Si and 27Al MAS NMR has shown that the AlIV/Si ratio in C-(A)-S-H in hydrated PC can be increased significantly by the presence of alkali cations (Na$^+$ or K$^+$) [16] via a mechanism in which the charge deficit introduced by Al-Si substitution is balanced by adsorption or bonding of alkali cations in the interlayer region. The role of alkalis in these structures will be discussed further in section 4.2.1.2.

27Al MAS NMR experiments, particularly at high field ($B_0 \geq 14.1$ T), have proven particularly useful in gaining detailed structural information regarding the role of Al in C-(A)-S-H, in both synthetic gels and hydrated PC. 27Al MAS NMR experiments at multiple fields (e.g. Fig. 16) have shown in synthetic gels and hydrated PC that the AlIV bridging sites in C-(A)-S-H are charge balanced by interlayer Ca$^{2+}$, Na$^+$ or H$^+$ ions ($\delta_{\text{obs}} = 66$ ppm, $B_0 = 17.5$ T) [190,193] or by interlayer or surface AlIV or AlIII ions ($\delta_{\text{iso}} = 74.6$ ppm, $C_0 = 4.5$ MHz) [193]. AlIV sites in the C-(A)-S-H interlayer can potentially substitute for Ca$^{2+}$ ions ($\delta_{\text{iso}} = 39.9$ ppm, $C_0 = 5.1$ MHz) [192–194]. From these studies, and others, it was concluded that Al does not enter the Ca-O sheet, nor the pairing tetrahedral sites in the silicate chains of C-(A)-S-H [22,172,184,190,193,194].

4.2.1.2. C-(N,K)-A-S-H gels. Synthesis of C-(A)-S-H gels in an environment containing high alkali metal concentrations, such as in the production of AAMs from GGBFS [154,160], yields a C-(N,K)-A-S-H gel. This is structurally similar to C-S-H, but with Al substitution.

Fig. 16. 27Al MAS NMR spectra of the central transition for white PC hydrated for 12 weeks recorded at (a) 7.05 T ($\nu_e = 13.0$ kHz); (b) 14.09 T ($\nu_e = 13.0$ kHz) and (c) 21.15 T ($\nu_e = 9.5$ kHz), using 1H decoupling. Spinning sidebands are indicated by *. The resonances from the central transition of ettringite, monosulphate and the third aluminosilicate hydrate phase (described in section 4.2.8) are indicated by E, M and T, respectively. Adapted from Andersen et al. [172].
in bridging tetrahedral sites and in the interlayer as discussed in the preceding section, and with charge balancing by alkali cations (Na\(^+\) and K\(^+\)) in the gel interlayer, with additional alkalis able to sorb to the gel surfaces \([74,154,185,195–197]\). The structural characteristics of this complex gel have been elucidated largely by the application of SS NMR; representative spectra of alkali-activated GGBFS are shown in Fig. 17, while a schematic representation of the C-(N,K)-A-S-H gel structure is shown in Fig. 18. As with C-S-H, the C-(N,K)-A-S-H gel exhibits a disordered structure similar to that of crosslinked and/or non-crosslinked, structurally imperfect tobermorite \([17,74,195]\).

The structural characteristics of this complex gel have been elucidated largely by the application of SS NMR; representative spectra of alkali-activated GGBFS are shown in Fig. 17, while a schematic representation of the C-(N,K)-A-S-H gel structure is shown in Fig. 18. As with C-S-H, the C-(N,K)-A-S-H gel exhibits a disordered structure similar to that of crosslinked and/or non-crosslinked, structurally imperfect tobermorite \([17,74,195]\). As noted previously, there is a strong thermodynamic preference for Al substitution into bridging tetrahedra in the C-(N,K)-A-S-H gel \([198]\).

\[\text{MCL}_{\text{crosslinked}} = \frac{4\left[Q^1 + Q^2 + Q^2(1\text{Al}) + Q^3 + 2Q^3(1\text{Al})\right]}{Q^1}\]

\[\text{Al}^{IV}/\text{Si} = \frac{Q^3(1\text{Al})}{Q^1 + Q^2 + Q^2(1\text{Al}) + Q^3 + 2Q^3(1\text{Al})}\]

Crosslinking occurs predominantly in low-Ca C-(N,K)-A-S-H gels, and \(^{29}\)Si and \(^{27}\)Al MAS NMR results indicate that the extent of crosslinking is promoted by increased overall Al content up to a ratio of approximately 1 Al per 6 chain sites \([21,204]\). However, the extent of crosslinking has been observed to decrease over time as the reaction proceeds, attributed to the lower Al-binding capacity of crosslinked gel components \([21]\). Study of laboratory synthesised gels has shown that the amount of Al which is able to substitute into the C-(N,K)-A-S-H gel appears to be limited to approximately Al/Si < 0.2, with C-(N,K)-A-S-H gel compositions typically within the range 0.5 < Ca/(Al + Si) < 1 and 0 < Al/Si < 0.2 \([15,192,193,205]\).

\[\text{MCL}_{\text{crosslinked}} = \frac{4\left[Q^1 + Q^2 + Q^2(1\text{Al}) + Q^3 + 2Q^3(1\text{Al})\right]}{Q^1}\]

\[\text{Al}^{IV}/\text{Si} = \frac{Q^3(1\text{Al})}{Q^1 + Q^2 + Q^2(1\text{Al}) + Q^3 + 2Q^3(1\text{Al})}\]

Crosslinking occurs predominantly in low-Ca C-(N,K)-A-S-H gels, and \(^{29}\)Si and \(^{27}\)Al MAS NMR results indicate that the extent of crosslinking is promoted by increased overall Al content up to a ratio of approximately 1 Al per 6 chain sites \([21,204]\). However, the extent of crosslinking has been observed to decrease over time as the reaction proceeds, attributed to the lower Al-binding capacity of crosslinked gel components \([21]\). Study of laboratory synthesised gels has shown that the amount of Al which is able to substitute into the C-(N,K)-A-S-H gel appears to be limited to approximately Al/Si < 0.2, with C-(N,K)-A-S-H gel compositions typically within the range 0.5 < Ca/(Al + Si) < 1 and 0 < Al/Si < 0.2 \([15,192,193,205]\). The MCL of the aluminosilicate chains is often 7–10 tetrahedra for C-(N,K)-A-S-H gels produced by sodium silicate or potassium silicate activation of slag \([18,206]\); however, this depends on the Ca/(Al + Si) ratio.

There are conflicting reports regarding the mechanism of alkali uptake and relationship with Al content of the C-(N,K)-A-S-H gel. \(^{23}\)Na MAS NMR analysis has indicated that alkali cations exist in two distinct environments within C-(N,K)-A-S-H gels \([164,207,208]\); the spectra show a sharp resonance at \(\delta_{\text{obs}} = -7.6\) ppm (7.05 T, \(\nu_R = 10\) kHz) \([164]\) attributed to either a

Fig. 17. (a) \(^{29}\)Si MAS NMR spectra (14.1 T, \(\nu_R = 10\) kHz) and (b) \(^{27}\)Al MAS NMR spectra (14.1 T, \(\nu_R = 10\) kHz) of an alkali-activated slag cured for 7 days. Adapted from Bernal et al., 2013 \([20]\).

Fig. 18. Schematic representation of the structural features of C-(N)-A-S-H gels, adapted from Myers et al. \([195]\). Paired and bridging Si tetrahedra are represented by blue and green triangles, respectively, and intralayer calcium, charge-balancing alkali cations and interlayer protons and/or calcium cations by the red diamonds, orange circles and purple squares, respectively. The yellow triangle indicates Al substituting for Si in a bridging tetrahedral site.
highly symmetric bound alkali site or mobile alkali ions. An additional broad resonance at approximately $\delta_{\text{obs}} = -3$ ppm (14.1 T, $\nu_R = 10$ kHz) [14] to $\delta_{\text{obs}} = -10$ ppm (7.05 T, $\nu_R = 10$ kHz) [164] attributed to low-mobility Na within a disordered phase, possibly sorbed to the surface of the nanostructured gel.

Some observations suggest a direct correlation between Al content and alkali uptake [16,209], supported by an intuitive rationale of increased Al content driving an increase in alkali uptake to charge balance the AlO$_4$ tetrahedra. However, other observations suggest an inverse proportionality between Al content and alkali uptake [210] or that Al content does not affect alkali uptake in the C-(N,K)-A-S-H gel [204,211,212]. Alkali uptake in C-A-S-H gels has been observed to be promoted by lower Ca/Si ratios and higher alkali concentration [213], presumably because lower levels of charge balancing Ca$^{2+}$ increase the requirement for charge balancing by alkali cations. It has been suggested that charge balancing alkali cations in the C-(N,K)-A-S-H gel interlayer induce additional structural disorder by reducing the periodicity of the interlayer and reducing the regularity of the stacking of the layers due to differences in ionic size, indicating that incorporation of alkalis into C-(N,K)-A-S-H has a significant effect on gel nanostructure [13,214]. However, when 29Si MAS NMR was used to investigate composition–solubility–structure relationships in synthetic C-(N,K)-A-S-H gels [204], it appeared that the C-(N,K)-A-S-H gel structure was actually becoming more (rather than less) crystalline in the presence of alkalis, with both Na and K incorporated into its interlayer space [213]. The additional structural disorder was observed in C-(N,K)-A-S-H gel systems with lower pH [13,214] than those in which greater ordering was observed (pH > 13.5 [204,213]); it is, therefore, likely to be the higher pH of the more alkali-rich systems which drives rearrangement to more crystalline structures, rather than the alkali cations themselves. Elevated temperature also drives increased polymerisation, ordering and phase purity of synthetic C-(A)-S-H gel structures [215].

4.2.1.3. Other guest ions in C-S-H gels (C-S-(X)-H). In addition to Al$^{3+}$ and Na$^+$, other ionic species may be incorporated into the C-S-H gel structure. Owing to the 100% natural abundance and high magnetogenic ratio of 31P and 31P, SS NMR experiments probing these nuclei have been very useful in elucidating the structural sites in which these atoms can exist within the C-S-H gel. 31P MAS NMR has shown that interlayer hydroxyl species may be substituted by F$^-$ [36,216]. Further analysis of F$^-$ speciation in C-S-H by 19F,29Si,31P forth and back (FB) CP MAS NMR (a modified double CP MAS NMR experiment which transfers polarisation forth and back between high- and low-γ spin nuclei [217]) confirmed the aforementioned observation of F$^-$ for OH$^-$ substitution in the interlayer, as well as revealing a second F site attributed to F$^-$ ions associated with CaO$_6$ layers of a jennite-like part of the C-S-H gel [216,217]. PO$_4^{3-}$ ions can also be incorporated in the interlayer of C-S-H gels. 31P MAS NMR analysis of interlayer PO$_4^{3-}$ ions exhibits a broad resonance which has the same chemical shift as the PO$_4^{3-}$ ions in alite, so must be selectively detected using 1H,31P CP MAS NMR to enable it to be distinguished from the signal of remnant clinker in an incompletely hydrated paste [32,34].

4.2.1.4. C-S-H – X interactions. SS NMR has also found applications investigating sorption of ions onto cement binding gels [173,218,219]. Static 35Cl NMR experiments and measurement of 35Cl spin–lattice relaxation time constants (T_1) and spin–spin relaxation time constants (T_2) were used to study chloride sorption onto jennite (used as a model C-S-H phase) suspended in lime-saturated NaCl solution [218]. This was intended to simulate hydrated PC in service in marine environments and showed that chloride undergoes rapid exchange between surface and bulk solution sites and exists predominantly in a hydrated, solution-like chemical environment.

High-resolution 29Si, 23Na and 133Cs MAS NMR was used to study the interaction of sodium and caesium chloride salts with synthetic C-S-H [173]; this work is of particular relevance to the nuclear industry as some caesium isotopes are important fission product radionuclides. This work showed that both Na$^+$ and Cs$^+$ cluster in hydrated C-S-H, while in dry C-S-H Na$^+$, formed outersphere complexes (adsorbed with their hydration sphere) and Cs$^+$ formed inner sphere complexes (bound directly to the surface with no intervening water molecules).

1H, 13C,27Al and 29Si MAS NMR has been used to investigate the structure of the CaCO$_3$ polymorphs calcite, aragonite and vaterite [65,220], as well as K$_2$CO$_3$ [220], and their formation in hydrated PC (i.e. through carbonation) and interaction with PC hydrate phases [221]. This work showed that carbonation of hydrated PC occurs in two stages: gradual decalcification of C-S-H by removal of calcium from the interlayer and defect sites until Ca/Si = 0.67 is reached (corresponding to infinite silicate chains in a tobermorite-like structure), followed by further decalcification by removal of calcium from the gel layers and formation of a layered or three-dimensional silicate gel. The amount of carbonates formed is directly proportional to the Ca/Si ratio of the gel. The application of 13C MAS and 1H,13C13CP MAS NMR also enabled carbonate anions in hydrous and anhydrous phases to be distinguished [65,220].

SS MAS NMR has been used to examine the interaction between a variety of organic additives and PC during hydration. Natural abundance 43Ca and 13C MAS NMR was used to examine the interaction between a poly(ethylene-vinyl acetate) (PEVAc) admixture, added to cement mortars to improve fracture toughness and impermeability, and hydrated white PC over the first 3 months of hydration. PEVAc hydrolysis occurs immediately as PC hydration commences, and induces minor structural changes to the hydrated PC, primarily formation of a small amount of amorphous, low-coordinated calcium sites [222]. This demonstrates that PEVAc admixtures do not induce significant structural changes to hydrated white PC and are therefore unlikely to be detrimental to the performance of these cements. Conversely, 1H,13C13CP MAS NMR showed that when mixed with 15 wt % poly (vinyl alcohol) and 10 wt % mineral antiblocking agents, PEVAc does not hydrolyse in the alkaline solution of hydrating PC and was adsorbed to the surface of the cement binder [223,224]. This is particularly important in the context of both chemical and physical durability as PEVAc and other similar latex dispersions are commonly used as waterproofing agents and sealants in cements.

4.2.2. Alkali aluminosilicate ([N,K]-A-S-H) gels

SS MAS NMR studies of hydrous alkali aluminosilicate in the context of cements are relatively recent compared to those examining C-S-H and related phases in hydrated PC, with the first application probing 29Si speciation in alkali hydroxide/silicate activated metakaolin cements in 1988 [115,225,226]. Since these first experiments, SS MAS NMR analysis probing 28Si and 27Al has played a pivotal role in determining the structure of alkali-activated aluminosilicate cements, including those known as ‘geopolymers’ [68,227]. The main reaction product of alkali activation of aluminosilicate precursors has been revealed to be a three-dimensional hydrous alkali aluminosilicate gel, consisting of highly crosslinked (predominantly $\theta(\Omega)^2$) AlO$_4$ and SiO$_4$ tetrahedra linked via bridging oxygen atoms, with a small number of terminal hydroxyl groups forming Q^2 sites. This structure is consistent across alkali aluminosilicate gels produced from reagent chemicals [228–231], calcined clays such as metakaolin [104,232–233], and aluminosilicate-rich waste materials such as coal FA.
This three-dimensional alkali aluminosilicate gel framework is often described as a highly crosslinked, disordered pseudo-zeolitic structure [13,239–243], and nanocrystalline zeolite phases have been observed as localised regions of ordering within the broadly less-ordered gel framework [239]. The short-range ordering has been observed by 29Si and 27Al MAS NMR spectroscopy [20,112,244,245] together with X-ray and neutron pair distribution function analysis [246–249] to extend to approximately 2–3 nearest neighbour shells. The expected δ_{obs}, δ_{iso} and C_0 for different nuclei in (N,K)-A-S-H gels are shown in Table 6 and discussed in the following text.

27Al and 29Si MAS NMR have shown that Al and Si are present in tetrahedral coordination, with Si existing in $Q^4(m\text{Al})$ environments where m is between 1 and 4 depending on the Al/Si ratio of the gel, and Al predominantly in $Q^4(4\text{Si})$ environments due to the energetic penalty associated with Al-O-Al bonding (Fig. 19) [236,237,250]. Reports of the observation of AlIV-Q-AlIV bonds within alkali-activated metakaolin have also been made for materials with Si/Al close to 1.0 using 2O triple quantum (3Q) MAS NMR [252], despite these bonds being significantly less thermodynamically favourable than AlIV-Q-SiIV bonds, as entropic effects cause some violation of strict Si-Al ordering [250]. The negative charge associated with Al substitution for Si is balanced by hydrated alkalai cations (Fig. 20) and is thought to be delocalised across all oxygen atoms, with the oxygen atom closest to the charge balancing alkali cation carrying the majority of this delocalised negative charge [114,252]. The (N,K)-A-S-H gel nanostructure is significantly influenced by kinetic limitations on silica and alumina release from solid precursors if these are used [253,254] and consequently evolves over time as the reaction process proceeds [237]. Schematic representations of the disordered N-A-S-H gel based on recent structural descriptions are shown in Fig. 20.

23Na MAS NMR analysis of metakaolin-derived (N,K)-A-S-H gels (Fig. 21a) [111,257] identified a single disordered Na environment within the gel attributed to Na$^+$ in a charge-balancing role, whose chemical shift ($\delta_{\text{obs}} = -3.5$ to -6 ppm, $B_0 = 11.7$ T) was independent of the Si/Al ratio. Aqueous Na$^+$ ($\delta_{\text{obs}} = 0$ ppm, $B_0 = 11.7$ T) was also observed within the pore solution, charge-balancing Al(OH)$_4$ species, in samples with Si/Al \leq 1:40. Charge balancing Na$^+$ sites resonating at a similar frequency ($\delta_{\text{obs}} = -4$ ppm, $B_0 = 14.1$ T) have also been observed in alkali aluminosilicate gels produced from synthetic precursors [228]. These sites resonate at similar frequencies to those of hydrated Na$^+$ ions in hydrothermally altered glass [258], providing opportunities to draw structural parallels to better understand the nature of the cementsitious gels. K$^+$ ions in alkali aluminosilicate gel charge deficiency from AlIII \Rightarrow SiIV substitution within the aluminosilicate framework and behave similarly to charge-balancing Na$^+$ ions [259,260] (Fig. 21b), and the incorporation of K$^+$ ions into the (N,K)-A-S-H gel is preferential compared to Na$^+$ ions when both are present.

Table 6: Coordination, expected δ_{obs}, δ_{iso} and C_0 for different nuclei in (N,K)-A-S-H.

Nucleus	Site	Coordination	δ_{obs} (ppm)	δ_{iso} (ppm)	C_0 (MHz)	Magnetic field (T)	Reference
17O	Si-O-Si	2	-	39.0	1.26	14.10	[252,255,371]
	Si-O-Al	2	-	33.0	1.00	14.10	[252,255,371]
	H$_2$O	2	-	-9.8	0.55	14.10	[252,255,371]
23Na	Charge balancing Na$^+$	6	-3 to -5	-1.26 to -2.60	0.70 to 1.41	11.7, 14.10	[112,255]
27Al	Q^4	4	58–60	61.0–66.3	1.4–1.9	14.10	[112,255,256]
	Q^4(1Al)	4	-110 ± 6 ppm	-110 ± 6 ppm	-	7.5, 9.4, 14.1	[112,236,237,250,251]
	Q^4(2Al)	4	-102 ± 5 ppm	-102 ± 5 ppm	-	7.5, 9.4, 14.1	[112,236,237,250,251]
	Q^4(3Al)	4	-95 ± 4 ppm	-95 ± 4 ppm	-	7.5, 9.4, 14.1	[112,236,237,250,251]
	Q^4(4Al)	4	-86 ± 4 ppm	-86 ± 4 ppm	-	7.5, 9.4, 14.1	[112,236,237,250,251]

Fig. 19. (a) 29Si MAS NMR spectra (7.05 T, $B_0 = 5$ kHz) and (b) 27Al MAS NMR spectra (11.7 T, $B_0 = 15$ kHz) of N-A-S-H gels produced by reacting metakaolin with a sodium silicate solution (with Si/Al ratios as marked) and curing for 14 days. Adapted from Duxson et al. [111,112].

Related to this selectivity for larger alkali cations, SS NMR has also been applied to study the interaction of caesium with alkali aluminosilicate gels, to investigate their applicability in nuclear waste immobilisation applications. 133Cs MAS NMR spectra of Cs-doped alkali aluminosilicate gels produced from metakaolin and sodium silicate exhibit a single broad asymmetric resonance at approximately $\delta_{\text{obs}} = 0$ ppm ($B_0 = 9.4$ T) [261] consistent with that of Cs$^+$ bound tightly to an aluminosilicate surface (such as that in kaolinite and illite [208,262]), strengthening the appeal of alkali aluminosilicate gels in nuclear waste immobilisation applications.
4.2.3. Multiphase C-(N,K)-A-S-H/(N,K)-A-S-H gels

Coexistence of C-(N,K)-A-S-H and (N,K)-A-S-H gel frameworks occurs in many cement systems, including AAMs based on blends of high-calcium and low-calcium reactive precursors [20,263–265] (Fig. 22), and the gels appear to be stable in coexistence [14,20,231,266–268], as long as there is sufficient alkali content [117,266,269–271]. SS NMR has proven particularly useful in determining the structure and composition of these coexisting gel frameworks which are otherwise very difficult to discriminate. Owing to the structural similarity between these two gels, many resonances in their SS NMR spectra overlap; however, these can be distinguished and attributed appropriately with sound chemical reasoning and spectral deconvolution (discussed in section 4.3).

Using 27Al and 29Si MAS NMR, the growth of an N-A-S-H gel within alkali silicate-PC-dehydroxylated halloysite blends was shown to preferentially consume available Si within the system through rapid reactions involving the initially dissolved silica [270]. 27Al and 29Si MAS NMR of AAMs based on GGBFS-metakaolin blends [266], combined with high-resolution X-ray diffractometry [272,273], has also shown significant phase coexistence in these binders, although the dissolution of Ca$^{2+}$ from the GGBFS, and subsequent reaction mechanisms, depends on both alkalinity and precursor chemistry.

Structural analysis via 29Si, 1H–29Si CP MAS, 27Al, 23Na and 1H MAS NMR of multiphase C-(N)-A-S-H and N-A-S-H gel frameworks within synthetic AAMs has also revealed strong dependence of reaction kinetics, gel composition and structure on precursor composition [14]. This work demonstrated that increased Ca content of the solid precursor (or blend of precursors) promotes the formation of low-Al, high-Ca C-(N)-A-S-H with lower MCL, whereas increased Al content promotes Al inclusion and reduced cross-linking within C-(N)-A-S-H, formation of an additional N-A-S-H gel and increased presence of secondary alumina-rich hydrate phases.

Fig. 20. (a) Schematic representation of a section of N-A-S-H gel adapted from Walkley et al. [255] showing charge-balancing sodium, charge-balancing extra-framework Al (Al$_{EF}$), bridging oxygen charge balanced by Na$^+$ and associated with three H$_2$O molecules, bridging oxygen charge balanced by Al$_{EF}$ and bridging oxygen charge balanced by Na$^+$ and associated with two H$_2$O molecules and (b) schematic representation of a section of N-A-S-H gel adapted from Rowles et al. [256].
4.2.4. Hydrated CACs

CACs comprising primarily CA (with smaller quantities of CA$_2$ and/or C$_{12}A_7$) hydrate to form mixtures of the microcrystalline metastable phases CAH$_{10}$ and C$_2$AH$_8$, followed by conversion to the stable phases C$_3$AH$_6$ and amorphous AH$_3$ [122,274]. The expected δ^{27}Al, δ^{29}Si and C_Q for 27Al in hydrated CACs are shown in Table 7 and discussed in the following text; information for other nuclei within these phases is not available in the open literature.

Skibsted et al. [52] used 27Al MAS NMR to identify overlapping resonances attributed to octahedral Al environments in the stable...
C₃AH₆ (δ₀_{obs} = 12.3 ppm, δ₀ = 0.705 MHz) and amorphous AH₃ (δ₀_{obs} = 8 ppm at B₀ = 9.4 T) phases in CAC hydrated for 28 days; the isotropic chemical shift for C₃AH₆ was determined via simulation of the spinning sidebands associated with this phase. Analysis of synthetic CAH₁₀ at multiple fields exhibited a broad resonance in the octahedral Al region of the 27Al MAS NMR spectrum and allowed determination of δ₀_{obs} = 10.2 ppm and δ₀ = 1.2 MHz for the octahedral Al site in the metastable C₃AH₆ phase and δ₀_{obs} = 11.5 ppm and δ₀ = 4.45 MHz for the amorphous AH₃ phase.

Because of the clear distinction between Al environments in hydrated (Al⁴⁺) and anhydrous (Al⁴⁺) CAC, the degree of hydration of this cement may be readily determined from 27Al MAS NMR [50,276] and MQMAS [276] NMR, enabling determination of δ₀_{obs} = 10.3 ppm and δ₀ = 1.2 MHz for the octahedral Al site in the metastable C₃AH₆ phase and δ₀_{obs} = 11.9 ppm and δ₀ = 4.3 MHz for the amorphous AH₃ phase.

Table 7

Nucleus	Site	Coordination	δ_{obs} (ppm)	δ₀ (ppm)	C₀ (MHz)	Magnetic field (T)	Reference
27Al	Al in CAH₁₀	6	10.2	2.4	7.1 9.4 11.7	9.4 T	[52]
	Al in C₃AH₆	6	10.3	1.2	7.1 9.4 11.7	9.4 T	[52]
	Al in C₃AH₅	6	12.36	0.71	7.1 9.4 11.7	9.4 T	[52]
	Al^{IV} in AH₃	6	10.4	1.97	7.1 9.4 11.7	9.4 T	[52]
	Al^{III} in AH₃	6	11.5	4.45	7.1 9.4 11.7	9.4 T	[52]

4.2.5. Hydrated CSA cements

Ye'elimite (C₄A₃S₄) hydrates in the presence of calcium sulphate (CS, added as gypsum or in dehydrated forms) to form ettringite (‘AFt,’ C₃A₆(SO₄)₃(OH))₂·2H₂O, see section 4.2.8.2), calcium monosulfoaluminate hydrate (‘monosulphate Afm,’ 3CaO·(Al₂O₃)·CaSO₄·nH₂O, see section 4.2.8.3) and microcrystalline aluminium hydroxide (Al(OH)₃), with the proportion of each phase dependent on the C₄A₃S₄/CS ratio [278]. The presence of belite along with these phases in a CSA cement, which is common because of the prohibitive cost of Si-free Al sources for cement manufacture, results in the formation of strätlingite (2CaO·SiO₂·Al₂O₃·8H₂O; a silica-substituted Afm phase, see section 4.2.8.3) and/or C-S-H as additional reaction products. As mentioned in section 4.1.2.2.2, CSA clinkers can also contain C₂S₂S₂ (ternsite), which hydrates along with alumina-bearing clinker constituents to form strätlingite [279,280]. Most commercial CSA cements also contain C₄AF (section 4.1.1.4) as the economically viable alumina sources used in cement manufacture also contain significant quantities of Fe; this will typically hydrate (in both CSA and PC cements) more slowly than the hydraulic aluminate phases and yields Fe-substituted forms of many of the same Afm and Af hydrate phases [281–283].

SS NMR studies of hydrated CSA (synthetic and commercial) and CSA/PC blends have shown narrow 27Al MAS NMR resonances for octahedral Al in ettringite and monosulphate at approximately δ₀_{obs} = 13 ppm and 10.2 ppm (B₀ = 14.1 T), respectively, as well as a broad low-intensity resonance at δ₀_{obs} = 9 ppm at the same field which is attributed to Al(OH)₃ [133–135,284,285], consistent with the resonances of pure phases in synthetic samples, section 4.2.4 [52,286,287]. As with CAC, the clear distinction between Al environments in hydrated (Al⁴⁺) and anhydrous (Al⁴⁺) CSA allows the degree of hydration of aluminium-containing phases to be readily determined from 27Al MAS NMR. This has shown that aluminium-containing phases generally react to form hydrates within 24 h [133–135,284]. Monitoring the degree of hydration in CSA/PC blends is significantly more difficult due to the presence of Al⁴⁺ sites in C₃A and C-(A)-S-H phases [133], as well as the presence of Fe which can severely dampen and shift the NMR signal of these nuclei [10]; however, it is made possible by spectral deconvolution using appropriate models and constraints (see section 4.3).

Fig. 23. 27Al MAS NMR spectrum (9.4 T, ν_{ex} = 13.1 kHz) of a calcium aluminate cement hydrated for 28 days. The degree of hydration, estimated by integration of the Al^{IV} and Al^{III} spectral regions, is 86 ± 1%. Adapted from Skibsted et al. [52].
4.2.6. Magnesium silicate hydrate (M-S-H) gels

Magnesium silicate hydrate (M-S-H) cements are commonly produced from MgO and silica fume via hydrothermal or ambient-temperature processes [288–292], and generally comprise a talc-like or serpentine-like phase [141,293], although there remains some debate around the most appropriate structural model for M-S-H. 29Si MAS NMR spectra of M-S-H cements exhibit as many as five distinct 29Si MAS NMR resonances, attributed to Q1, Q2, two Q3 and Q4 sites [142,146,292,294–296]. The major component of the 29Si MAS NMR spectra is a Q1 resonance at approximately $\delta_{\text{obs}} = -93$ ppm and the Q2 and Q4 resonances are typically broad [142,292], indicating the disordered nature of the gel. These environments have been attributed to Si sites within a disordered phase structurally similar to talc (Mg$_3$SiO$_5$(OH)$_2$) [296] and/or serpentine-group minerals (polymorphs of Mg$_3$Si$_2$O$_5$(OH)$_4$), such as chrysotile, lizardite and antigorite [142], with Mg/Si ratios ranging from 0.57 to 1.3 [291,293,298].

Alkaline earth aluminosilicate hydrate gel (magnesium aluminosilicate hydrate, M-A-S-H) has also been reported [299]. MAS NMR of these materials synthesised from sepiolite (Mg$_2$SiO$_3$(OH)$_2$) and chrysotile (Mg$_3$Si$_2$O$_5$(OH)$_4$) resolved similar Q1, Q4 MAS NMR resonances at ~90 ppm, and tetrahedral Mg sites from 25Mg MAS NMR.

4.2.7. Magnesium potassium phosphate cements (MKPC)

Magnesium potassium phosphate cement (MKPC) is a clinker-free acid-base cement which reacts to form struvite-K ($\text{MgKPO}_4 \cdot 6\text{H}_2\text{O}$) as a crystalline main strength-giving phase; this phase is structurally analogous to the natural mineral struvite, NH$_4$MgPO$_4 \cdot 6\text{H}_2\text{O}$, but without requiring the presence of ammonium cations for its synthesis [141,143,144,296]. Application of SS NMR to investigate structural and phase evolution in MKPC is relatively recent, with the most extensive analysis probing 25Mg, 27Al, 31P and 39K nuclei in MKPC blended with FA and with GGBFS [303]. Struvite-K exhibits a 31P resonance at $\delta_{\text{obs}} = 6.2$ ppm [303], which correlates well with the chemical shift of struvite, $\delta_{\text{obs}} = 6.1$ ppm [304]. A shoulder on this resonance at $\delta_{\text{obs}} = 4$ ppm was observed in MKPC/FA blends (but not MKPC/GGBFS blends) and was suggested to result from the presence of a disordered and/or partially substituted struvite-K phase. The predominant crystalline struvite-K phase exhibits 25Mg and 39K resonances at $\delta_{\text{obs}} = -1.0$ ppm ($C_0 = 3.8$ MHz) and $\delta_{\text{obs}} = -73.1$ ppm ($C_0 = 2.2$ MHz), consistent with previous observations for synthetic versions of this phase [305,306]. An amorphous orthophosphate environment was also identified, which has no intimate interaction with hydrogen and no measurable Al interactions [303].

4.2.8. Additional reaction products

Many additional reaction products are also formed along with the main silicate gels during hydration of the cements discussed previously and will be discussed in turn in this section. These additional reaction products are often intimately mixed with the dominant silicate gel frameworks [7,231] and can significantly influence the phase evolution and nanostructural development of these hydrate phases. The expected δ_{obs}, δ_{iso}, and C_0 for different nuclei in the additional reaction products observed in hydrated PC, CAC, CSA and magnesia-based cements, as well as cements based on alkali metal or alkali earth aluminosilicate chemistry, are shown in Table 8.

Table 8

Phase	Site	Coordination	Expected δ_{iso}	δ_{obs} (ppm)	C_0 (MHz)	Magnetic field (T)	Reference	
Portlandite	CaO	6	Ca^+	9.4	11.7	14.1	22.3	[139,142]
	Al^3+	6	Al^3+	9.4	11.7	14.1	22.3	[139,142]
	Si^4+	4	Si^4+	9.4	11.7	14.1	22.3	[139,142]
	OH^-	6	OH^-	9.4	11.7	14.1	22.3	[139,142]
Thalnaite	Ca^+	6	Ca^+	9.4	11.7	14.1	22.3	[139,142]
	Al^3+	6	Al^3+	9.4	11.7	14.1	22.3	[139,142]
	Si^4+	4	Si^4+	9.4	11.7	14.1	22.3	[139,142]
	OH^-	6	OH^-	9.4	11.7	14.1	22.3	[139,142]
	K^+	4	K^+	9.4	11.7	14.1	22.3	[139,142]
	OH^-	6	OH^-	9.4	11.7	14.1	22.3	[139,142]
	OH^-	6	OH^-	9.4	11.7	14.1	22.3	[139,142]
	OH^-	6	OH^-	9.4	11.7	14.1	22.3	[139,142]
	OH^-	6	OH^-	9.4	11.7	14.1	22.3	[139,142]

4.2.8.1. Portlandite

Portlandite (Ca(OH)$_2$), also called slaked lime, is a common reaction product in hydrated PC and is also present as a reaction product or remnant precursor in pozzolanic or slag-based binders activated with lime. In general, portlandite forms when the Ca/Si ratio is significantly higher than can be accommodated by C-
S-H or related phases [307]. It consists of layers of octahedrally coordinated Ca bound to oxygen atoms in tetrahedral coordination [23] with hydrogen occupying a single crystallographic site. It is a key participant in longer term phase evolution of C-(A)-S-H gels in blended PC cements via the pozzolanic reaction [308]. High-field natural abundance \(^{43}\)Ca MAS NMR of portlandite [179] and \(^{43}\)Ca MAS NMR of isotopically enriched portlandite at multiple fields [309] have shown a single quadrupolar resonance centred at approximately \(\delta_{\text{obs}} = 50-60 \text{ ppm} \pm 1.7 \text{ ppm} \) corresponding to a single Ca-S-H site where Ca is octahedrally coordinated by six hydroxyl groups. Correspondingly, \(^1\)H MAS NMR spectra of portlandite exhibit a single resonance at \(\delta_{\text{obs}} = 0.7 \text{ ppm} \) from the single Ca-O-H site [180,182,310]. Chloride sorption onto portlandite in portlandite suspensions has been studied using static \(^{27}\)Cl NMR experiments and measurement of \(^{27}\)Cl spin–lattice relaxation time constants \((T_1)\) and spin–spin relaxation time constants \((T_2)\) [218]. Chloride on portlandite exists predominantly in a hydrated, solution-like chemical environment and is rapidly exchanged between the surface and bulk solution. Portlandite quantification in hydrated cements by NMR is not usually attempted, as neither \(^{43}\)Ca nor \(^{17}\)O nuclei are particularly straightforward to use in such studies, and other techniques such as thermogravimetry and X-ray diffraction (XRD) can give reliable quantitative results for this phase much faster and less expensively.

4.2.8.2. ‘Aluminate ferrite trisulphate’—type phases. Ettringite is the archetypal ‘aluminate ferrite trisulphate’ (AFT) phase, with a columnar hydrous CSA structure and a very high water content (up to 32 water molecules per formula unit) [311]. Ettringite forms rapidly in the earliest stages of hydration of PC, as C3A reacts with gypsum, or equivalently through hydration of ye'elimite with excess gypsum in CSA cements. Early \(^{27}\)Al MAS NMR experiments (9.4 T) examining ettringite displayed a resonance at \(\delta_{\text{obs}} = 13 \text{ ppm} \) that appeared characteristic of a single octahedrally coordinated ALO\(_6\) site [312]. Recent work using ultra-high-field (22.3 T) \(^{27}\)Al MAS and MQMAS NMR (Fig. 24) has in fact been able to resolve two distinct octahedral ALO\(_6\) sites in synthetic ettringite [137], consistent with the now well-accepted crystal structure solved by Moore and Taylor [312]. The two ALO\(_6\) sites resonate at \(\delta_{\text{obs}} = 13.08 \pm 0.00 \text{ ppm} \) and are highly symmetric, displaying very small quadrupolar coupling parameters of \(C_Q = 0.391 \text{ MHz} \) and 0.337 MHz, respectively. The high symmetry and very similar isotropic chemical shifts of these resonances are due to very small variations in Al-O bond lengths between sites, consistent with high-resolution powder XRD [313], single-crystal XRD and DFT calculations [311]. As a consequence of the small distinction in isotropic chemical shift values, these resonances remained unresolved for more than two decades in \(^{27}\)Al MAS NMR spectra acquired at lower fields [22,52,57,117,135,186,187,314,315]. This demonstrates the importance of acquiring high-field spectra for quadrupolar nuclei in complex phases, even where crystallinity is high (as in the case of ettringite) and for relatively ‘accessible’ nuclei such as \(^{27}\)Al.

Natural abundance \(^{43}\)Ca MAS NMR analysis of ettringite also resolved only a single \(^{43}\)Ca resonance \(\delta_{\text{obs}} = 8 \text{ ppm} \) [40] despite the existence of two Ca sites in the crystal structure; this can be attributed to the structural similarity between the two Ca sites in ettringite and the poor signal-to-noise ratio of the spectrum resulting in poorly defined overlapping quadrupolar lineshapes for each site. High-field natural abundance \(^{35}\)Si MAS NMR [59] and single-enhanced wideband uniform rate smooth truncation (WURST) and hyperbolic secant (HS) MAS NMR spectroscopy probing \(^{29}\)Si [316] identified a single narrow resonance \(\delta_{\text{obs}} = 330 \text{ ppm}, C_Q = 0.7 \text{ MHz} \) attributed to the sulphur site in ettringite, which has a high degree of symmetry as it is within a disulphate anion.

Thaumasite (CaSi\(_2\)(OH)\(_4\)(CO\(_3\))(SO\(_4\))(12H\(_2\)O)) is a silicate- and carbonate-substituted AFT phase which can form by reaction of sulphate and carbonate ions with cement minerals (i.e. during sulphate attack of PC systems) [317]. This similarity has caused difficulty distinguishing thaumasite from ettringite using XRD, infrared spectroscopy or thermogravimetric techniques. However, thaumasite exhibits a \(^{29}\)Si MAS NMR resonance at \(\delta_{\text{obs}} = -179.6 \text{ ppm} \) [318–320], corresponding to Si in a very unusual sixfold coordination, meaning that it is readily identifiable by this technique. \(^{1}\)H,\(^{29}\)Si CP MAS NMR has been used to identify and quantify thaumasite in PC systems containing carbonate and sulphate additives and revealed that significant quantities of thaumasite can form in cements with negligible Al content [320]. WURST and HS MAS NMR spectroscopy probing \(^{33}\)S [316] in thaumasite identified a single narrow resonance \(\delta_{\text{obs}} = 330.9 \text{ ppm}, C_Q = 0.95 \text{ MHz} \), consistent with its crystal structure in which sulphur exists in a single SO\(_4^-\) crystallographic site [321], as in ettringite.

4.2.8.3. ‘Aluminate-ferrite-monosulphate’—type phases. Calcium monosulphaluminate and similar hydrocaluminate-like AFm phases are observed in many types of cements, including PC [117,322,323], CSA cements [133–135,284,285] and many alkali-activated slag cements [154,324–326]. AFm phases are layered double hydroxide (LDH)—type structures, with positively charged portlandite-like layers containing one-third of Al\(^{3+}\) or Fe\(^{3+}\) cations as substituents for Ca\(^{2+}\), balanced by anionic species (commonly SO\(_4^-\), CO\(_3^-\) and OH\(^-\)), and with significant interlayer H\(_2\)O [327–330] (Fig. 25). They can be represented by the general formula \([Ca\(_2\)(AlFe)(OH)\(_3\)]X \cdot nH\(_2\)O\), where X represents an exchangeable singly charged (e.g. OH\(^-\)) anion or half of a doubly charged anion (e.g. SO\(_4^-\), CO\(_3^-\)) [322]. With the exception of OH\(^-\)/SO\(_4^-\) substitution (up to 50 mol %) [322], these phases generally do not form extensive solid solutions but rather can coexist as separate phases with closely related structures but differing interlayer anions. Consequently, many hydrated cement systems contain mixtures of distinct AFm phases. AFm phases in

Fig. 24. \(^{27}\)Al MQMAS NMR spectrum (23.3 T, \(v_\text{R} = 15 \text{ kHz}\), \(-5 ^\circ \text{C}\) sample temperature) of ettringite showing two distinct Al\(^{3+}\) sites. Adapted from Skibsted et al. [137].
hydrated PC typically contain the anions SO$_4^{2-}$ (termed monosulphate), CO$_3^{2-}$ (monocarbonate) and/or OH$^-$ (hydroxaluminate, Ca$_4$AlH$_2$O$_6$) in the interlayer [52,117,322,323,331], while those in alkali-activated slags and metakaolin-rich PC blends commonly contain interlayer divalent aluminosilicate anions, [Al$_2$(OH)$_6$]$_2^{2-}$, forming an AFm structure, which is also given the mineral name strätlingite [154,324]. Substitution by multiple anions in ordered positions is also possible, for example, 1:1 hydroxide and carbonate to form hemicarbonate or 1:1 sulphate and carbonate to form Kuzel's salt [322]. Friedel's salt (3CaO·Al$_2$O$_3$·CaCl$_2$·10H$_2$O) is also observed in hydrated PC, which has been exposed to a source of chloride, e.g. when serving in marine environments or cold climates with road salting.

These phases each exhibit a single 27Al MAS NMR resonance at approximately $\delta_{\text{obs}} = 10–12$ ppm, depending on field strength [52,117,133], in accordance with their crystal structures containing AlIV [327,332]. Owing to similarities in structure, each of these AFm phases exhibits very similar 27Al MAS NMR resonances at standard field strengths, and so they are more often distinguished from each other via complementary techniques, e.g. XRD, where their different basal spacings can be observed. The monosulphate and monocarbonate 27Al MAS NMR resonances are severely overlapping ($\delta_{\text{obs}} = 12$ ppm), but evidence for more than one peak in this region has been observed by ultra–high-field 27Al MAS NMR (23.3 T) [137], suggesting that it may be possible to resolve these resonances, and those of Ca$_4$AlH$_2$O, at ultrahigh field. The sorption of chloride onto the monosulphate AFm phase Ca$_4$AlH$_2$O was investigated by static 35Cl MAS NMR experiments and measurement of 35Cl spin–lattice relaxation time constants (T_1) and spin–relaxation time constants (T_2) [218], showing that chloride is in rapid exchange between adsorbed surface sites and bulk solution sites in each phase and exists predominantly in a hydrated, solution–like chemical environment on the monosulphate surface. This behaviour is similar to chloride sorption onto portlandite and onto jennite, as discussed previously.

Strätlingite (Ca$_4$Al$_2$(OH)$_6$)[Al$_2$(OH)$_6$]$_2$·2H$_2$O is an AFm phase which forms as a hydration product of aluminium-rich cements including PC-metakaolin blends and some non-Portland binders. 27Al MAS NMR analysis of hydrated white PC-metakaolin blends [117] and hydrated CSA [137], as well as synthetic strätlingite [333], revealed two resonances at $\delta_{\text{obs}} = 61$ ppm and 11.3 ppm (14.1 T) attributed to AlIV and AlVI sites, respectively. These resonances are characteristic of the crystal structure of strätlingite [334], which contains AlIV in a double-tetrahedral environment as part of the aluminosilicate interlayer anion ($[(\text{T},\square)\text{Al}(\square)\text{O}_6\text{Si}(\square)\text{O}_4\text{Si}(\square)\text{O}_4\text{Al}(\square)\text{O}_4\text{Al}(\square)\text{O}_4\text{H}_2\text{O}]^-$, $T =$ Si or Al, $\square =$ vacancy), as well as the AlVI in the brucite-type layer ($\text{[Ca}_2\text{Al}(\square)\text{O}_6\cdot2\text{H}_2\text{O}]^+$) that defines the AFm structure. The AlIV site in strätlingite resonates at a similar frequency to AlIV sites in monosulphate, and consequently strätlingite is more conclusively identified from its AlIV resonance, unless working at extremely high fields. The 27Al MAS NMR spectrum of hydrated CSA collected at $B_0 = 22.3$ T appears to contain contributions from several individual overlapping AlIV resonances [137], suggesting that monosulphate, monocarbonate and strätlingite may be able to be resolved in 27Al MAS or MQMAS NMR spectra acquired at ultra-high magnetic field.

The 28Si MAS NMR spectrum of synthetic strätlingite exhibits a broad resonance at approximately $\delta_{\text{obs}} = 86.5$ ppm, containing contributions from resonances resulting from Q^3(3Al), Q^2(4Al) and Q^2(3Al) sites [333,335], consistent with the crystal structure [334] of strätlingite which contains double tetrahedral silicate ring structures. The presence of these resonances is often used to monitor hydration in PC-CSA blends [133].

As mentioned previously, Friedel's salt is an AFm phase with Cl$^-$ as its interlayer ion. Variable temperature static 35Cl NMR has shown that interlayer Cl$^-$ in Friedel's salt exhibits a resonance at $\delta_{\text{iso}} = 30$ ppm with a quadrupolar coupling constant $C_Q = 2.22–2.87$ MHz, indicating uniaxial symmetry above 0 °C resulting from dynamically averaged interlayer species [336]. Below 0 °C the Cl$^-$ in this site exhibits reduced (triaxial) symmetry resulting from a rigid crystal structure, as indicated by a resonance at $\delta_{\text{iso}} = 26$ ppm with a quadrupolar coupling constant $C_Q = 3.0$ MHz.

4.2.8.4. Third aluminate hydrate. The ‘third aluminate hydrate’ (TAH) phase is an amorphous nanoscale aluminate hydrate phase which precipitates at the surface of the C-S-H–type gels formed during PC hydration [172,194,337] and which has also been noted in sodium silicate–activated GGBFS [18,20,155,324]. TAH is to date only identifiable by NMR, and consequently, the technique is key to the discovery of its existence. TAH is described as a poorly ordered Al(OH)$_3$ phase [194,337] which is intimately mixed with other hydrate phases. Stoichiometric arguments and thermodynamic modelling suggest that the presence of TAH is likely to be linked to high concentrations of available Ca and Al [154,338,339], as the opposing charges on C–S–H and AFm phases may produce strong mutual attractions and physically destroy the AFm crystals [22,340], which would then result in low-crystallinity aluminate (AFm-like) layers being dispersed throughout the C–S–H gel while being undetectable by XRD [22]. This hypothesis is supported by transmission electron microscopy observations [337]. TAH phases exhibit a 27Al MAS NMR resonance at $\delta_{\text{obs}} = 5$ ppm (14.1 T) in the spectra of C–S–H–type gels [172,194,337] and of sodium silicate–activated GGBFS [18,20,155,324]. Broadening of the 28Si MAS NMR resonance attributed to Q^3 Si species in sodium silicate–activated slags [155] is attributed to the presence of AlIV–O–Si linkages between TAH and C-S-H.

4.2.8.5. Hydrotalcite-group phases. Hydrotalcite (Mg$_6$Al$_2$CO$_3$(OH)$_{16}$[CO$_3$]·4H$_2$O). Fig. 26) is an Mg–Al LDH mineral with a primary layer of positively charged brucite-like sheets (see section 4.1.2.2.3), comprising octahedrally coordinated Mg bound to oxygen atoms in tetrahedral coordination, with partial replacement of MgII by trivalent octahedrally coordinated cations, which are Al in the case of true hydrotalcite [341]. The Al atoms are randomly distributed within these layers at low concentrations [342] but take on a significantly more ordered configuration at the higher concentrations which are more characteristic of hydrotalcite-group phases observed in cements [23]. A secondary layer contains H$_2$O molecules and anions, most commonly carbonate, CO$_3^{2-}$, and hydroxyl, OH$^-$, which are

Fig. 25. Illustration of the local environments in the crystal structure of the mono-
carbonate AFm phase [Ca$_4$Al$_2$(OH)$_6$]$_2$CO$_3$·5H$_2$O obtained from single-crystal diffraction data [329]. Ca atoms are represented by cyan spheres, Al atoms are represented by blue spheres, O atoms are represented by red spheres and H atoms are represented by light pink spheres. Prepared using the VESTA software package [126].
and degrees of substitution) and are collectively denoted hydrotalcite-supergroup phases.

Quintinite-group phases, which are a subset of the hydrotalcite-supergroup with Mg/Al = 2, have been observed on a submicrometre scale in hydrated PC-GGBFS blends [99,220,344] and in cements produced from metallurgical slags activated with sodium silicate or sodium hydroxide [71,72,154,190,324,325,345–348], typically occurring when slags with Mg content ≥ 5% are used, consistent with predictions from thermodynamic modelling [349]. These phases generally contain higher Al content (Mg/Al = 2) than true hydrotalcite (Mg/Al = 3) [341]. Previous work identified a phase that was denoted ‘MaAH13’ and proposed that it may be an analogue of the AFm-structured C₆H₁₅₃ (however, this phase has since been shown to be OH-quintinite (Mg₄Al₂(OH)₁₃·4H₂O)) [350,351].

²⁷Al MAS NMR spectra of sodium silicate–activated slags cements exhibit a resonance at δ₀obs = 9 ppm (9.4 T) attributed to a hydrotalcite-like phase containing Al⁴⁺ sites [325,353], consistent with ²⁷Al MAS NMR analysis of synthetic hydrotalcites [342,353]. Simulation of ²⁷Al MAS NMR spectra of synthetic hydrotalcite-group phases has determined the isotropic chemical shift of this site to be δ₀iso = 11.8 ppm, attributed to a single Al environment surrounded by Mg atoms in octahedral coordination [354], with broadening of this resonance indicating increased disorder as Al content is decreased. A broad shoulder on this resonance at δ₀obs = 3 ppm (8.45 T) is observed when the intercalated anion is CO₃²⁻ [354]. High-field (19.6 T) ²⁵Mg MQMAS NMR of these hydrotalcite-group phases resolved a single ²⁵Mg resonance at δ₀obs = 13.7 ppm assigned to Mg symmetrically surrounded by 3 Mg and 3 Al ions. Mg(OAl)₃(OH)₂ [354]. ¹H MAS NMR data acquired with high spinning speeds have also been used to resolve two distinct hydroxyl resonances in these phases at δ₀iso = 1.3 and 5.0 ppm, respectively, attributed to Mg₃OH and Mg₂AlOH which are observed at Mg/Al = 4 and 3, respectively [354]. Recently, ¹H MAS and MQMAS NMR resonances attributed to oxygen sites in these two hydroxyl groups were also observed in isostructurally enriched synthetic hydrotalcite-group phases [355]. ³H-¹³C CP MAS NMR of synthetic hydrotalcite revealed a single ¹³C resonance at δ₀iso = 170.9 ppm attributed to a single CO₃ site [220]. This work also utilised ¹³C MAS and ¹H-¹³C CP MAS NMR to resolve carbonate anions in anhydrous (e.g. CaCO₃) and hydrous or hydroxylated (e.g. hydrotalcite or monocalcium) phases in hydrated PC–limestone blends. The observation of a ¹H-¹³C CP MAS NMR resonance in a hydrated PC–limestone blend exhibiting a chemical shift consistent with that of pure hydrotalcite (δ₀iso = 170.9 ppm) measured on the same instrument showed explicitly that hydrotalcite formed in this hydrated cement contained carbonate anions [220].

4.2.8.6. Hydrogarnets. The hydrogarnet series (Ca₃[AlₓFe₁₋ₓ]₃(SiO₄)₂(AlOH)₄(3-y); 0 ≤ x ≤ 1 and 0 ≤ y ≤ 3) describes a group of garnet minerals where the SiO₄⁴⁻ tetrahedra are partially or completely replaced by hydroxyl ions. In PC hydrated at ambient temperatures, the formation of siliceous hydrogarnet is minimal [331,356]; however, formation of these phases has been observed in PC hydrated at higher temperatures [357–360] or in the presence of excess Fe species [357,361], and water-rich members of the grossular – katoite hydrogarnet series (Ca₃Al₂(SiO₄)₂(AlOH)₄(3-y); 0 ≤ y ≤ 3) are major hydration products in CACs [52].

Katoite (Ca₃Al₂(SiO₄)₂(AlOH)₄(3-y); 0 ≤ y ≤ 1.5, often denoted Ca₃Al₄OH₈) exhibits a ²⁷Al MAS NMR resonance with an isotropic chemical shift of δ₀iso = 12.4 ppm and a quadrupolar coupling constant C_Q = 0.6 MHz [52,362] due to octahedral Al surrounded by six hydroxyl groups in the hydrogarnet structure [51]. Increased substitution of silica into this structure results in a ²⁷Al MAS NMR resonance at approximately δ₀iso = 4–6 ppm, with this resonance

Fig. 26. Illustration of the local environments in the crystal structure of hydrotalcite (Mg₄Al₂C₂O₇(3H₂O)) obtained from single-crystal diffraction data [352]. Mg, Al, C, O and H atoms are represented by orange, blue, red and light pink spheres, respectively. Partial colouring of spheres indicates the average proportion of each respective atom occupying a specific site in the hydrotalcite crystal structure. Prepared using the VESTA software package [128].

intercalated and charge balance the net positive charges induced in the sheets by incorporation of trivalent cations to replace Mg₂⁺ [341,343]. More than 40 identified mineral species conform to this general description (but with different cation and anion substituents
shifting towards lower frequencies and exhibiting increased quadrupolar broadening with increasing silica content [50,362].

^{27}Al MAS NMR resonances attributed to katoite have been observed in CACs [50,52] and alkali-activated slags [20,155,197]. ^{29}Si MAS NMR analysis of hydrated CAC attributed a broad resonance at approximately $\delta_{\text{iso}} = -79.9$ ppm to Si sites in $\text{Si(OAl)}_{4-x}\text{Si}_x$ species (classified as Q^2 in the nomenclature of Fig. 1 as there are no bonds to tetrahedral species; all of the Al substituents are octahedral) and used spectral deconvolution to quantify this phase in the hydrated CAC [50].

4.3. Spectral deconvolution

4.3.1. Deconvolution strategies and pitfalls related to spectra of cementitious materials

Mathematical deconvolution of MAS NMR spectra allows resolution of individual resonances which contribute to the overall spectra and can enable quantification of the resonating species [60]. The simplest case in which deconvolution can be performed is for non-quadrupolar (spin $S = \frac{1}{2}$) nuclei, the spectra of which can be deconvoluted using a series of Gaussian, Lorentzian or mixed (Voigt or pseudo-Voigt) peaks to simulate individual resonances using a least squares fitting method [363]. This is performed routinely in the study of anhydrous and hydrated cements and related phases.

The most appropriate lineshape to simulate the individual resonances for spin $S = \frac{1}{2}$ nuclei depends on the ordering and dynamics of the material under investigation [364,365]; for ordered and rigid SS systems, a Gaussian (statistical) distribution best represents the resonance lineshape as interatomic distances are generally constant. For highly dynamic systems (e.g. solutions or gases), a Lorentzian distribution (based on collision theory) best represents the resonance lineshape as mobility is high [365]. Consequently, resonance lineshapes for spin $S = \frac{1}{2}$ nuclei in dynamic SS systems may be best represented by Voigt or pseudo-Voigt distributions weighted heavily towards a Gaussian profile. In reality, dynamics of solids in cementitious systems are extremely slow relative to those in solution, and a Gaussian distribution provides a suitable approximation for the resonance lineshapes.

Deconvolution of the spectra of quadrupolar nuclei ($S > \frac{1}{2}$) is also possible; however, quadrupolar interactions must be taken into account when simulating the spectra (Fig. 27). Quadrupolar parameters can be estimated [21]; however, owing to the large variation in NMR parameters across samples and instruments, this approach is prone to error must be appropriately justified. It is often more appropriate to determine the quadrupolar parameters directly.

Quadrupolar interactions can be determined by acquiring single-pulse MAS NMR spectra at multiple fields and simulating the NMR resonances observed for the central transition at each field with a consistent set of NMR parameters (δ_{iso}, C_Q and the asymmetry parameter η) [30,172]; this is often the most readily implementable approach if instruments at multiple fields are available as it does not require complex experiments or fitting approaches. Quadrupolar parameters can also be determined (along with δ_{iso} and η) at a single field by simulation of manifolds of spinning sidebands observed for satellite transitions in MAS NMR spectra [367–369], typically across spectral widths on the order of 2 MHz. This method can be computationally expensive relative to simulation of single-pulse MAS NMR spectra.

Two-dimensional experiments such as MQMAS NMR techniques [242,255,370] are also used to determine δ_{iso}, C_Q and η, and thus aid in deconvolution of NMR spectra for quadrupolar nuclei. MQMAS achieves high resolution by conversion of symmetric MQ dimension into a MQ dimension of this spectrum using readily available software (e.g. DMFit [60] or Quadfit [372]), information which can in turn be used to simulate the single-pulse MAS NMR spectrum. A suitable model which incorporates these interactions should be used, e.g. the Czjzek model [373].

When performing any spectral deconvolution, the minimum possible number of constituent subpeaks should be used to enable an accurate and meaningful interpretation of the spectra [363]. Subpeak widths should be set in a rational manner, considering the expected disorder within each site type, and their positions must be consistent with literature data for specific site types in pure

![Fig. 27](image-url)
materials. The relative deconvoluted subpeak intensities should be consistent with a mass balance for all elements, the structural constraints dictated by data from additional analytical techniques (e.g., quantitative XRD) and those described by relevant structural models, e.g. the ‘substituted general model’ for C-S-H gels [155], the ‘crosslinked substituted tobermorite model’ for C-(N)-A-S-H gels [195] and the thermodynamics of a statistical distribution of Si and Al sites within a Q² aluminosilicate network for N-A-S-H products [250].

To provide an accurate representation of binder chemistry, and considering that the conversion of solid cementitious phases to hydrate products is almost never fully complete in a practical cementing binder (even after decades or more), the contribution of the remnant unreacted precursor to the spectra must be taken into account [13]. This can be achieved either through selective isotopic labelling of the binder [371], by subtraction of a scaled component spectrum for the remnant unreacted precursor during deconvolution if congruent dissolution is assumed [18,20,345] (Fig. 28) or by using the spectrum of a leached residue (obtained via selective dissolution) to represent a residual precursor component if congruency is uncertain [315,345]. For quantitative analysis, the congruency and kinetics of dissolution and reaction processes involving cementitious precursor materials must be carefully considered and modelled appropriately [14,20] as the underlying assumptions can dramatically affect the final deconvolution. This can be achieved by a variety of methods, including those used to measure the degree of reaction of SCMs in PC–SCM blends [374]. Methods include selective dissolution [375], scanning electron microscopy [323,376], thermogravimetry [374] and XRD with iterative Rietveld refinement (e.g. the ‘partial or no known crystal structure’ PONKCS, method [377]) approaches. In a practical sense, GGBFS is a highly depolymerised glass that is likely to dissolve close to congruently [325], whereas FA is a much more complex mineral assemblage that dissolves incongruently [101,102].

Quantification of individual resonances can often be complex, even with seemingly simple spectra of non-quadrupolar nuclei such as ²⁸Si (see the following section). Quantification of ²⁷Al resonances can be particularly difficult due to the presence of Al species which exhibit resonances so broad that they are often undetectable. ‘NMR invisible’ Al species have been described, largely in older literature, in zeolites, minerals and gels; up to 30% of all Al species in some zeolites could not be observed at 9.4 T [378]. However, these resonances were detectable at high field (18.8 T) [378], highlighting the importance of acquiring SS NMR spectra at the highest field possible if quantification is desired.

4.3.2. Complexities in quantification of tricalcium and dicalcium silicate in PC

The ²⁸Si spin–lattice relaxation time constants (T¹) for belite are approximately 30 times those of alite at the same magnetic field [29], and consequently, it is crucial to ensure that sufficient recycle delays are used during NMR data acquisition to allow for complete relaxation of both alite and belite. This can be achieved via inversion-recovery ²⁸Si spin–lattice relaxation MAS NMR [27,29] (e.g. Fig. 29) or T¹-relaxation-time-filtered ²⁸Si MAS NMR [57]. Deconvolution of such data allows independent quantification, and hence validation, of the relative proportions of alite and belite within PC [27,29]. This work has shown that the determination of alite and belite content in PC using traditional Bogue calculations [379] strongly overestimates the belite content at the expense of alite, consistent with results from XRD and other techniques; the modified Taylor-Bogue calculation [380] provides a much better match to the alite/belite ratio determined by ²⁸Si MAS NMR spectral deconvolution [27].

4.4. DFT computation of NMR spectra and parameters

Isotropic chemical shifts, coupling constants and electric field gradients of molecules can also be predicted ab initio from calculations using DFT [381,382] and used to simulate NMR spectra. Computation of NMR parameters from DFT is widely used to determine the crystal structure and ordering in ceramics, zeolites and other crystalline materials; however, there has been little application of this approach to the phases in cementitious materials. Rejmak et al. [165,166] performed simulations of various C-S-H gel structures based on 14 Å tobermorite and jennite models and calculated the resultant isotropic ²⁸Si chemical shifts. Calculated chemical shifts for Q² sites were found to be largely independent of the structural model used, and Q¹ and Q² sites each showed a large dispersion of calculated chemical shifts. The calculated ²⁸Si MAS NMR chemical shifts were found to be in good agreement with those of 14 Å tobermorite. This work also showed that terminal silicate sites (Q¹), and paired silicate tetrahedra with an AlO₄ unit within the first coordination sphere (Q²(1Al)), which exhibit similar isotropic chemical shifts, may be distinguished easily by large differences between their chemical shift anisotropies [166].

Fig. 28. ²⁸Si MAS NMR spectra (14.1 T, ν₁ = 10 kHz) of (a) an anhydrous slag and (b) a sodium silicate–activated slag cement (shown in black) with associated deconvolutions (individual resonances are shown in blue and the simulated spectrum is shown in red). The shaded green resonance is a representation of the unreacted anhydrous slag component and is based on the ²⁸Si MAS NMR spectrum of the anhydrous slag, with the intensity of this resonance rescaled by a single factor on the assumption of congruent dissolution of slag. Adapted from Bernal et al. [28].

Ab initio prediction of NMR parameters from calculations using DFT is yet to be applied extensively to cementitious materials and represents an important opportunity for further advancement. In particular, combining DFT predictions with experimental data acquired at high field of synthetic model systems will reveal important new structural insights which may then be used to untangle many remaining questions in more complex, heterogeneous systems.

4.5. Application of advanced NMR experiments to cementitious materials

4.5.1. Spin-echo MAS NMR

MAS NMR spectra containing broad resonances, such as those of disordered cementitious systems, can experience artefacts and distortion introduced in the first few microseconds of instrumental dead time at the beginning of the free induction decay [10]. Spin-echo pulse sequences [383] can be used to overcome this by refocussing the spin system. The spin system is given an initial non-selective (90°) pulse, after which the spins are allowed to precess and dephase (due to the varying precession rates of individual nuclear moments within the system). Applying a 180° pulse after a time τ flips the spin system and restores phase coherence to the precession at a time 2τ after the first 90° pulse, refocussing the spin system [10,383]. A small number of authors have used spin-echo pulse sequences analysing cementitious materials to accurately quantify the sites present in these systems [8,260,299,384].

4.5.2. Cross polarisation MAS NMR

CP MAS NMR involves transfer of magnetisation from a nucleus with more abundant spins to a nucleus with less abundant spins, allowing acquisition of the NMR spectrum of the less abundant nucleus with a much higher signal-to-noise ratio than would be obtained by MAS NMR [10]. This is achieved by irradiation of the two nuclei at their correct Larmor frequencies in fulfilment of the Hartmann–Hahn condition [385]. The signal from the less abundant nucleus in closest proximity to the more abundant nucleus is preferentially enhanced, and so additional structural information can be gained by comparison of CP MAS and MAS spectra of the same sample. 1H is the most common high-abundance nucleus in cementitious materials, and consequently, this technique can be particularly advantageous for probing local environments in cementitious materials where the structural role of water is of interest.

4.5.2.1. 1H-X CP MAS. 1H-29Si CP MAS was used to examine hydration of β-C2S and show that the initial hydration products contain monomeric silicate hydrates, the amount of which determines the initial hydration rate [386], while 31P MAS and 31P-1H CP MAS NMR were used to demonstrate that the very small quantity of PO43− ions involved in the hydration of white PC are accommodated within the interlayer of C-S-H [32,34]. Interlayer PO43− ions exhibit a broad 31P resonance with the same chemical shift as that of PO42− guest ions in alite, so must be selectively detected using 31P-1H CP MAS techniques. 1H-29Si CP MAS NMR (Fig. 30) has also been used to identify Si species closely associated with water (i.e. Si-OH linkages) that are likely to exist as part of the C-S-H gel [43,167,386–392], C-(N)-A-S-H gel or AFm phases in alkali-activated slag [154,196], metakaolin [242] and synthetic C-(N)-A-S-H gels [14], while 1H-27Al CP MAS NMR has also been used to identify Al-OH linkages in synthetic analogues of PC hydration products [393].

13C MAS and 1H-13C CP MAS NMR have also been combined to study carbonation of synthetic C-S-H and C-A-S-H gels [221] and to determine the NMR parameters of inorganic carbonates relevant to cement chemistry [220]. During early studies of TAH, 1H-27Al CP MAS NMR revealed Al(OH)3 units closely associated with C-S-H, leading to the identification of the TAH as an amorphous aluminate hydroxide or calcium aluminate hydrate produced either as a separate phase or a nanostructured precipitate on the surface of the C-S-H gel [194]. 1H-28Si and 1H-27Al CP MAS NMR experiments are also particularly useful for constraining 29Si and 27Al MAS NMR spectral deconvolutions of the C-S-H model system tobermorite and C-A-S-H gels [14,393].

4.5.2.2. X-Y CP MAS. Studies using X-Y CP MAS NMR experiments (that is, those CP experiments which do not probe protons) to study cementitious materials are fewer; however, they have still revealed new insight into the interactions in these materials. 17O-27Al CP MAS NMR has been used to support a claim that Al atoms within GGBFS are connected only to bridging oxygen atoms and not non-bridging oxygen atoms [75]. 19F-29Si CP MAS and 19F-29Si CP REDOR
MAS NMR techniques have been used to show that F\(^-\) substitutes for O\(^2-\) ions in only the alite phase in white PC, as discussed previously in section 4.1.1.1, aligning with the proposed Si\(^{4+}\) + O\(^2-\) ∆→ Al\(^{3+}\) + F\(^-\) coupled substitution mechanism [35], with \(^{19}\)F-\(^{29}\)Si CP REDOR MAS NMR indicating a strong preference for F\(^-\) substitution into interstitial oxygen sites not involved in covalent Si-O bonds.

4.5.3. Multiple quantum MAS NMR

Recently, MQMAS spectroscopy [394,395], probing half integer quadrupolar nuclei including \(^{17}\)O, \(^{23}\)Na, and \(^{27}\)Al, has been used to obtain high-resolution NMR spectra of synthetic C-S-H [188], CAC [276], AAM [113,242,252,256,276,370,371,396], related reaction products [137,276,354,355,397] and precursors [34,36,75,138]. MQMAS achieves high resolution by conversion of symmetric MQ coherence (pQ) to the single quantum (1Q) detectable central transition, and plotting pQ and 1Q correlations in two dimensions [371]. Consequently, chemical species with similar local structures and coordination environments, which would otherwise result in overlapping resonances in one-dimensional MAS NMR spectra, may be resolved.

\(^{27}\)Al 3Q MAS NMR has been used to examine symmetry of Al sites within synthetic calcium aluminate hydrates and to obtain the isotropic chemical shift, quadrupolar coupling constant and asymmetry parameter of these sites [276]. \(^{27}\)Al 3QMAS NMR spectra of these materials resolved additional Al sites to those that could not be obtained by \(^{27}\)Al MAS NMR alone, including two Al sites within C\(^4\)AH\(_{13}\) [276]. \(^{27}\)Al 3Q MAS NMR has also been used to probe Al substitution in C-S-H gels [276,393], identifying two distinct tetrahedral Al sites that were attributed to Al substitution for Si into both bridging and non-bridging positions [276], although other studies (as discussed in section 4.2.1.1) have shown that bridging positions are a strongly preferred environment. \(^{27}\)Al 3QMAS NMR has provided additional insight into coordination and symmetry of Al environments within N-A-S-H—like gels (Fig. 31a and b), including determination of the isotropic chemical shift (\(\delta_{iso}\)), quadrupolar coupling constant (C\(_Q\)) and asymmetry (\(\eta\)) parameter of the electric field gradient tensor.

Fig. 30. (a) \(^1\)H-\(^{29}\)Si CP MAS and MAS NMR spectra of blast furnace slag activated with 4 M NaOH and cured for 1 day. Adapted from Wang et al. [154]. (b) Single-pulse \(^{29}\)Si (grey) and \(^1\)H-\(^{29}\)Si CP (black) MAS NMR spectra of a synthetic calcium aluminosilicate precursor and of a synthetic alkali-activated cement produced from it (containing C-(N)-A-S-H), cured for 3 days. All spectra are normalised to constant total intensity. Adapted from Walkley et al. [14]. (c) \(^1\)H-\(^{27}\)Al CP-MAS NMR of tobermorite. Adapted from Houston et al. [393].
and also Al environments in C-A-S-H/N-A-S-H gel blends [396]. Both 27Al 3QMAS NMR [276] and 25Mg 3QMAS NMR [354] have also been used to resolve individual Al and Mg sites within Mg-containing LDHs, while recent work used 27Al MQMAS NMR to resolve for the first time 8 distinct Al sites in ye’elimite [34, 138] and high-field 25Al MQMAS NMR to resolve for the first time two distinct octahedrally coordinated AlO$_6$ sites in synthetic ettringite [137] (see section 4.2.8.2 ‘Aluminate ferrite trisulphate’-type phases), MQMAS NMR, therefore, appears to offer significant scope for future advances in the understanding the atomic structure of cements.

Processing of MQMAS spectra using standard single-axial isotropic shearing (iso-shearing) in the indirect dimension removes the second-order quadrupolar term and leaves the projection of the spectra onto the indirect dimension axis as a pure function of isotropic variables such as the isotropic chemical shift (δ_{00}) and the quadrupolar-induced shift (δ_{0Q}), allowing chemically distinct sites to be resolved in the indirect (pQ) dimension [242, 371, 398, 399]. The more recently introduced method of biaxial Q-shearing [371] in both the indirect and direct dimensions allows orthogonal separation of δ_{00} from the quadrupolar parameters δ_{0Q} and the quadrupolar coupling constant (C_Q) and is particularly useful for disordered materials which typically give MQMAS spectra displaying a distribution of chemical shift and quadrupolar parameters, that can be difficult to interpret for identification of chemically distinct sites [113, 371].

4.5.4. Multiple resonance experiments

4.5.4.1. REDOR, TEDOR, TRAPDOR and REAPDOR.

REDOR [400–402] and transferred-echo double-resonance (TEDOR) [403–405] are multiple resonance MAS NMR experiments which exploit heteronuclear dipolar coupling in spin-${1/2}$ nuclei and provide both qualitative and quantitative information about the proximity of the two spins. Transfer of population in double-resonance (TRAPDOR) [406, 407] and rotational-echo adiabatic passage double-resonance (REAPDOR) [400, 408] experiments extend the principles of REDOR and TEDOR to quadrupolar nuclei. It should be noted that the $X[{^1H}]$ REDOR and 1H-X CP MAS NMR techniques (where $X = 27$Al or 29Si) provide complementary data; $X[{^1H}]$ REDOR MAS NMR experiments selectively suppress resonances of protonated species, while 1H-X CP MAS NMR experiments enhance the signals of species experiencing dipolar coupling with rigid proton species (i.e. terminal hydroxyl groups, strongly bound H$_2$O etc.) [242].

Brus et al. [242] applied 27Al$[{^1H}]$ REDOR 3Q MAS NMR (Fig. 32) to identify bridging hydroxyl groups connecting AlIV and SiIV tetrahedra in a series of alkali-activated metakaolin cements, supporting the identification (see section 4.2.2) of charge balancing extra-framework Al species in these systems. 29Si$[{^1H}]$ REDOR 3Q MAS NMR has also been applied to a series of aluminosilicate geopolymers [370] to show that these materials contain a heterogeneous distribution of charge-balancing Na ions and associated water molecules, with the Na ions and water molecules preferentially clustered around fully polymerised Q4(4Al) Si species.

Recently, Greiser et al. [409] used 28Si$^{[27]}$Al TRAPDOR NMR, 27Al $^{[29]}Si$ and 27Al$[{^1H}]$ REDOR NMR experiments to reveal new information regarding the phase assemblage and nanostructure of cementitious sodium aluminosilicate gels produced via the one-part alkali-activation route using variety of silica sources. This work showed the extent of formation of an amorphous sodium...
been used to demonstrate the existence of aluminium—phosphorus interactions within phosphate-modified CACs [277], where no other analytical technique was able to provide direct evidence about the existence (or otherwise) of these bonds within the disordered gel systems of interest. The universal REAPDOR curve [410] which is commonly used to fit REAPDOR NMR data and determine internuclear distances is, however, specifically designed for an isolated spin pair (i.e. monodentate structures) which limits its applicability (in a quantitative sense) to the polydentate structures which comprise most cements.

4.5.4.2. 2D homonuclear correlation MAS NMR spectroscopy. 2D homonuclear correlation MAS NMR spectroscopy (COSY) is a multiple resonance MAS NMR experiment involving transfer of magnetisation between two nuclei of the same isotope and is useful for determining connectivity between different sites when many resonances are present. Double quantum 29Si-29Si COSY experiments on synthetic C-S-H isopotypically enriched with 29Si has resolved both dimeric (Q^d-Q^d) and chain end group (Q^e-Q^d) Si sites as well as (Q^e-Q^e) and (Q^e-Q^d) bridging linkages [176], confirming the presence of these sites in C-S-H as discussed in section 4.2.1.

4.5.4.3. 2D heteronuclear correlation MAS NMR. 2D HETCOR MAS NMR is a multiple resonance MAS NMR experiment which involves transfer of magnetisation between two heteronuclei and is useful for determining connectivity between different nuclei when many resonances are present. This experiment is similar to the X-Y CP MAS NMR experiment; however, in the X-Y 2D HETCOR experiment, the magnetisation of nucleus Y is allowed to evolve for a (variable) time t_1 prior to being transferred to nucleus X, whose response is measured directly during the detection period t_2 [10]. Significant sensitivity enhancement can be gained by combining MQMAS with the HETCOR experiment (HMQC) [411]. Rawal et al. [57] used 1H-29Si and 1H-27Al HETCOR MAS NMR with different 1H spin-diffusion times to probe correlations between different molecular moieties in hydrated white PC: both short (10 µs, probing strongly coupled species with internuclear distance < 1 nm) and long (30 ms for 29Si and 20 ms for 27Al, probing more weakly coupled species over several nm), Fig. 33. 27Al-29Si HETCOR MAS NMR experiments were able to resolve chemically bonded -OH groups, adsorbed water and strongly hydrogen bonded -OH groups associated with Q^1, Q^2 and $Q^1(1A)$ Si sites, with chemically bonded -OH groups and adsorbed water primarily associated with Q^2 and $Q^1(1A)$ sites, as well as water strongly adsorbed to six-coordinate Si sites within a thaumasite-like phase that was claimed to be present in the hydrated PC [57], although the identification of this mineral in cements that have not been subjected to chemical damage is extremely uncommon.

Resonances from protons in H$_2$O, Ca-OH and Si-OH groups have also been identified by 1H-29Si HETCOR MAS NMR analysis of synthetic C-S-H [176], with both types of hydroxyl sites correlating with all Si sites in C-S-H and water molecules correlating with Q^1 and both bridging and pairing Q^2 sites. 1H-27Al HETCOR MAS NMR experiments resolved hydroxyl groups chemically bound to Al^{VI} sites within ettringite and TAH and an absence of correlation between 1H species and four-coordinate 27AlIV moieties. Enhanced resolution provided by the 1H-29Si and 1H-27Al HETCOR MAS NMR experiments allowed resolution of 29Si-OH and 27Al-OH bonds which were not resolved in single-pulse MAS NMR experiments.

4.5.4.4. Satellite transition spectroscopy. Accurate determination of δ_{iso}, C_Q and η is crucial for an accurate and unambiguous
interpretation of SS MAS NMR spectra. Determination of these parameters from single-pulse MAS NMR spectroscopy observing the central transition ($m_S = \pm \frac{1}{2}$) between nuclear spin states, however, is hindered due to the second-order quadrupolar shift. Satellite transition spectroscopy involves observing the satellite transitions in MAS NMR spectra of quadrupolar nuclei, where residual second-order quadrupolar effects under MAS (quadrupolar broadening and the second-order quadrupolar shift) are reduced relative to the central transition [367]. The dependence of the second-order quadrupolar shift for a particular spin S on the nuclear spin state transition (m) results in a different net isotropic chemical shift for each m; consequently, by simulating all observed transitions, it is possible to determine the isotropic chemical shift from a single spectrum [367–369]. Jakobsen et al. [412] and Skibsted et al. [368] demonstrated simulation of all transitions in MAS NMR spectra of crystalline powders to accurately determine C_Q and η for 17O, 23Na and 27Al in systems with large C_Q values ($C_Q > 2$ MHz), as well as applying this method to accurately determine the 27Al C_Q value of 1.9 MHz for 27Al in hydrated white PC [44]. Skibsted et al. [52] also applied this method to a series of calcium aluminate phases in CAC and in PC (Fig. 34), determining 27Al δ_{iso}, C_Q and η values and distributions. These were then used to describe linear relationships between C_Q and the mean deviation of bond angle from ideal tetrahedral symmetry, as well as between C_Q and a calculated estimate of the geometrical dependency of the EFG tensor. This method has also been used to identify the two crystallographically distinct octahedrally coordinated Al sites in kaolinite [413], as specified by its crystal structure [414].

4.5.5. 1H relaxation NMR

1H is the most sensitive nucleus in cementitious materials which may be probed using NMR; however, 1H–1H dipolar couplings cause severe line broadening which limits the resolution of 1H MAS NMR spectra, which is further compounded by the small chemical shift range (approximately 20 ppm) over which 1H nuclei in solid phases resonate. These limitations have impeded the widespread application of single-pulse MAS NMR experiments probing 1H in cementitious materials. However, 1H relaxation rates (spin–lattice, $1/T_1$, and spin–spin, $1/T_2$) are sensitive to proton mobility in hydration products and water in the vicinity of solid–liquid interfaces and can therefore provide extensive information regarding porosity, pore size distributions and tortuosity in these cementitious materials.

Early work used proton NMR relaxometry to monitor hydration of C3S and PC by measurement of T_1 and T_2 relaxation times [415–421], identifying an induction period (~3 h) [417] as well as water in various hydrate phases [416], mobile water in micropores and water with restricted mobility in a solid gel component [420,421].

Spin–spin relaxation rates are modulated by the motion of the species on which the spins reside and vary by several orders of magnitude for protons in rigid (e.g. solid hydrates) or mobile (e.g. molecular water) species. Rapid measurements of spin–spin relaxation rates are, therefore, particularly attractive to monitor reaction in-situ [22]. This approach has been used to monitor hydration of white PC, and synthetic C3S and C3A [422–424], and led to identification of five components with distinct T_2 values corresponding to capillary pore water, solid-like crystalline water and OH^- groups (i.e. in portlandite, gypsum, and ettringite), mobile water molecules incorporated in C–S–H, water molecules with restricted mobility in the C–S–H interlayer and secondary hydration water released by the decomposition of ettringite (Fig. 35).

Spin–spin relaxation times have also been used to observe the retardation of PC hydration in the presence of various organic additives [425]. 1H relaxation rates can also be exploited to link the structure and kinetics at the atomic level of cementitious materials to microscale and macroscale engineering properties such as porosity, pore size distributions and tortuosity in hydrated cement pastes, mortars and concretes. Measurement of spin–lattice relaxation rates has been used to develop relaxation models for the dependency of T_1 on the pore surface to the volume ratio and the presence of nearby paramagnetic ions [426–429], while T_1–T_2 [427,428] and T_2–T_2 [430,431] correlation NMR experiments have been used to identify discrete pores (e.g. large capillary pores or smaller gel pores, Fig. 36) in hydrated white PC and synthetic C3S–H and measure exchange of water between these locations, by exploitation of the fact that increased pore size results in increased relaxation times. Variable temperature proton NMR relaxometry experiments have also been used to monitor freeze–thaw phenomena in hydrated PC and C-S-H [432,433].

More recently, 1H NMR relaxometry has been used to quantify all the water present, as well as the size and volume of discrete population of pores containing this water, in hydrated white PC both with [8] and without [434,435] silica fume additions. This work showed that addition of silica fume alters the chemical composition of the C-S-H formed, but does not alter the density, and identified four discrete populations of liquid water: water in the C-S-H interlayer in pores approximately 1 nm in diameter, water in the C-S-H gel in pores approximately 3 nm in diameter and water in small (~10 nm in diameter) and large (~30 nm in diameter) capillary pores. Correlation of 1H NMR relaxometry with results from mercury intrusion porosimetry (MIP) has shown that MIP can accurately determine the porosity of cement pastes [436].

Fig. 34. 1H–29Si HETCOR MAS NMR (11.7 T, $\nu_2 = 6.5$ kHz) of white PC with 1H spin-diffusion times of (a) 10 ms and (b) 30 ms. Adapted from Rawal et al. [57].
5. Conclusions and perspectives

SS NMR spectroscopy has played a pivotal role understanding the complex composition–structure–property relationships in cements and related materials. In particular, SS NMR spectroscopy has afforded a level of insight into their atomic structure, reaction mechanisms, kinetics of formation and structural evolution which has been previously unattainable and has provided the basis for the current state of the art in understanding, modelling and predicting composition–structure–property relationships, reaction mechanism and kinetics in PC, CAC, CSA, magnesia-based, AAM and geopolymer-based cements.

Application of advanced MAS NMR experiments probing ^{1}H, ^{13}C, ^{17}O, ^{23}Na, ^{25}Mg, ^{27}Al, ^{29}Si, ^{31}P, ^{33}S, ^{35}Cl, ^{39}K and ^{43}Ca nuclei have been used to study the atomic structure, phase evolution, nanostructural development, reaction mechanisms and kinetics occurring in these cementitious systems, including multidimensional, multiresonance and in-situ experiments. Single-pulse MAS NMR experiments probing ^{27}Al and ^{29}Si nuclei are by far the most routinely applied NMR experiments used to study cements and have been instrumental in building our current understanding. However, owing to the extensive structural information these experiments have provided to date, their role in continued advancement of the understanding of composition–structure–property relationships in cementitious materials is limited.

Performing NMR experiments at high field ($B_0 \geq 20.0$ T), probing less commonly investigated nuclei such as ^{17}O and ^{43}Ca in isotopically enriched samples and application of less commonly used techniques including CP MAS, MQMAS and multiresonance experiments (e.g. SEDOR, REDOR, TEDOR, REAPDOR and TRAPDOR) presents the best opportunity for elucidation of information regarding the mechanisms which control the structure and physical properties of cementitious materials, that has been previously unattainable. The difficulty in conducting these experiments and interpretation of the spectra obtained, however, is likely to be the largest obstacle to their routine application. This presents a key challenge which must be overcome and will require a
concerted, collaborative effort from both the SS NMR spectroscopy and cement materials chemistry communities.

Conflict of interest

The authors declare no conflict of interest.

Acknowledgements

The authors thank and acknowledge Dr John Hanna, Dr Greg Rees, Dr Frédéric Blanc, Dr Marc-Antoine Sani, Dr Peter Duxson, Dr John Gehman, Dr Susan Bernal and Dr Rupert Myers for very helpful and insightful discussions over many years regarding the application of SS NMR to cementitious materials. The research leading to these results has received funding from the Engineering and Physical Sciences Research Council (EP/P013171/1) and from the European Research Council under the European Union’s Seventh Framework Programme (FP/2007–2013)/ERC Grant Agreement STG 335928 (GeopolyConc).

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.mtadv.2019.100007.

References

[1] P.-C. Aticin, Cements of yesterday and today: concrete of tomorrow, Cement Concr. Res. 30 (2000) 1349–1359.
[2] World Business Council for Sustainable Development, Cement Industry Energy and CO2 Performance: ‘Getting the Numbers Right’, 2009.
[3] P. Hewlett, Leo’s Chemistry of Cement and Concrete, Elsevier Science, 1998.
[4] J.L. Poulsen, S.L. Poulsen, V. Kocaba, G. Le Saoût, H.J. Jakobsen, K.L. Scrivener, J. Skibsted, T. Tran, D. Herfort, H.J. Jakobsen, J. Skibsted, H.J. Jakobsen, C. Hall, Characterization of cement minerals, cements and their reaction products at the atomic and nano scale, Cement Concr. Res. 38 (2008) 205–225.
[5] H.F.W. Taylor, Cement Chemistry, Thomas Telford, London, 1997.
[6] J.W. Jeffery, The tricalcium silicate phase, in: Proceedings of the Third International Symposium on the Chemistry of Cement, Cement and Concrete Association, London, 1952.
[7] T. Stanek, P. Sulekova, The influence of the alite polymorphism on the strength of the Portland cement, Cement Concr. Res. 32 (2002) 1169–1175.
[8] M. Magi, E. Lippmaa, A. Samoson, G. Engelhardt, A.R. Gimmer, Solid-state high-resolution silicon-29 chemical shifts in silicates, J. Phys. Chem. B 88 (1984) 1518–1522.
[9] J. Skibsted, H.J. Jakobsen, C. Hall, Quantification of calcium silicate phases in Portland cements by 29Si NMR spectroscopy, J. Chem. Soc. Faraday Trans. 91 (1995) 4423–4430.
[10] F. Nishi, Y. Takeuchi, I. Maki, Tricalcium silicate C3O(SiO3)2: the monoclinic superstructure, Z. für Kristallogr. Cryst. Mater. 172 (1985) 297–314.
[11] S.L. Poulsen, V. Kocaba, G. Le Saoût, H.J. Jakobsen, K.L. Scrivener, J. Skibsted, Improved quantification of alite and belite in anhydrous Portland cements by 29Si NMR: effects of paramagnetic ions, Solid State Nucl. Magn. Reson. 36 (2009) 32–44.
[12] J. Skibsted, H.J. Jakobsen, C. Hall, Direct observation of aluminium guest ions in the silicate phases of cement minerals by 27Al NMR microscopy, J. Chem. Soc. Faraday Trans. 90 (1994) 2095–2098.
[13] T.T. Tran, D. Herfort, H.J. Jakobsen, J. Skibsted, Site preferences of fluoride guest ions in the calcium silicate phases of Portland cement from 29Si(31P) CP-REDOR NMR spectroscopy, J. Am. Chem. Soc. 131 (2009) 14170–14171.
[14] S.L. Poulsen, H.J. Jakobsen, J. Skibsted, Incorporation of phosphorus guest ions in the calcium silicate phases of Portland cement from 31P NMR spectroscopy, Inorg. Chem. 49 (2010) 5522–5529.
[15] J. Jeffery, The crystal structure of tricalcium silicate, Acta Crystallogr. 5 (1952) 25–36.
[16] J. Skibsted, T.F. Sevested, S.L. Poulsen, T.T. Tran, Studies on guest-ion incorporation in Portland cement – part 2, ZKG Int. (2013) 46–52.
[17] G.K. Moir, H.F.W. Taylor, F. Massazza, J.E. Bailey, S. Chanda, P. Perchat, et al., Improvements in the early strength properties of Portland cement [and discussion], Philos. Trans. Roy. Soc. Lond. A Math. Phys. Sci. 310 (1983) 127–138.
[18] J. Skibsted, T.F. Sevested, S.L. Poulsen, T.T. Tran, Studies on guest-ion incorporation in Portland cement—Part 1, ZKG Int. (2013) 66–72.
[19] J. Jung, Z. Gan, P.L. Gorkov, D.C. Kaseman, S. Sen, M. LaComb, et al., Detection of “free” oxide ions in low-silica Ca/Mg silicate glasses: results from 17O−2− and 29Si NMR, J. Am. Chem. Soc. 124 (2002) 1985–1988.
[20] L. Moudrakovski, R. Alizadeh, J.J. Beauclair, Natural abundance high field 29Si NMR of CaO−77Si solid state NMR in cement science, Phys. Chem. Chem. Phys. 12 (2010) 6961–6969.
[21] N.J. Golovostikov, R.G. Matveeva, N.V. Belov, Crystal structure of tricalcium silicate, Kristallografiya 20 (1975) 721–729.
[22] R. Dupree, A.P. Howes, S.C. Kohn, Natural abundance solid state 47Ca NMR, Chem. Phys. Lett. 276 (1997) 399–404.
[23] D.L. Bryce, Calcium binding environments probed by 47Ca NMR spectroscopy, Dalton Trans. 39 (2010) 8593–8602.
[24] K.H. Jost, B. Zierner, R. Seydel, Redetermination of the structure of β-dicalcium silicate, Acta Crystallogr. B 33 (1977) 1696–1700.
[25] X. Cong, R.J. Kirkpatrick, 27Si and 29Si NMR study of β−Ca3Si and the structure of calcium–silicate hydrates, Cement Concr. Res. 23 (1993) 1065–1077.
[26] J. Hjorth, J. Skibsted, H.J. Jakobsen, 29Si NMR studies of Portland cement components and effects of microsilica on the hydration reaction, Cement Concr. Res. 18 (1988) 789–798.
[27] K.T. Greene, Dicalcium silicate solid solutions, J. Res. Natl. Bur. Stand. 32 (1944) 1–10.
[28] R.W. Nurse, The dicalcium silicate phase, in: Proceedings of the Third International Symposium on the Chemistry of Cement, Cement and Concrete Association, London, 1952.
[29] E.H. Oelkers, S.R. Gislason, The mechanism, rates and consequences of basaltic glass dissolution: I. An experimental study of the dissolution rates of basaltic glass as a function of aqueous Al, Si and oxalic acid concentration at 25°C and pH = 3 and 11, Geochim. Cosmochim. Acta 65 (2001) 3671–3681.
[30] R.J. McCarty, J.F. Stobbs, Constraints on aluminum and scandium substitution mechanisms in forsterite, periclase, and lamite: high-resolution NMR, Am. Mineral. 102 (2017) 1244–1253.
[31] J. Skibsted, H. Bildsoe, H.J. Jakobsen, High-speed spinning versus high magnetic field in MAS NMR of quadrupolar nuclei, 27Al MAS NMR of 3CaOAl2O3, J. Magn. Reson. 92 (1991) 669–676.
[32] P. Pena, J.M. Rivas Mercury, A.H. de Aza, X. Turilliàs, I. Sobrados, J. Sanz, Solid-state 27Al and 29Si NMR characterization of hydrates formed in...
Hardened Concrete Containing Supplementary Cementitious Materials: State-of-the-Art Report of the RILEM Technical Committee 238-SCM, Working Group 4. Springer International, Cham, 2018, pp. 153–179.

D. Koloue, J. Brus, M. Urbanova, J. Andertova, V. Huilinsky, J. Vorel, Preparation, structure and hydrothermal stability of alternative (sodium silicate-free) geopolymers, J. Mater. Sci. 42 (2007) 9267–9275.

P. Duxson, G.C. Lukey, F. Separovic, J.S.J. van Deventer, Effect of alkali cations on aluminum incorporation in geopolymeric gels, Ind. Eng. Chem. Res. 44 (2005) 832–839.

P. Duxson, J.L. Provis, G.C. Lukey, F. Separovic, J.S.J. van Deventer, 29Si NMR study of structural ordering in aluminosilicate geopolymer gels, Langmuir 21 (2005) 3028–3036.

K. Lobera, J. Brus, P. Klein, J. Dedecek, M. Urbanova, Biaxial Q-shearing of 29Al 3QMAS NMR spectra: insight into the structural disorder of framework aluminosilicates, J. Non-Cryst. Solids 357–358 (2014) 29–38.

P. Duxson, A. Fernandez-Jimenez, J.L. Provis, G.C. Lukey, A. Palomo, J.S.J. van Deventer, Geopolymer technology: the current state of the art, J. Mater. Sci. 42 (2007) 2917–2953.

J. Davidson, Geopolymers – inorganic polymeric new materials, J. Therm. Anal. Chem. 37 (1991) 1633–1656.

C.E. White, J.L. Provis, T. Proffen, D.P. Riley, J.S.J. van Deventer, Combining density functional theory (DFT) and pair distribution function (PDF) analysis to solve the structure of metastable materials: the case of metakaolin, Phys. Chem. Chem. Phys. 12 (2010) 3239–3245.

Z. Dai, T.T. Tran, J. Skibsted, Aluminum incorporation in the C–S–H phase of white Portland cement–metakaolin blends studied by 29Al and 27Al NMR spectroscopy, J. Non-Cryst. Solids 197 (1996) 202–267.

R.C. Lewis, Silica fume, in: N. De Belie, M. Soutsos, E. Gruyaert (Eds.), Properties of Fresh and Hardened Concrete Containing Supplementary Cementitious Materials: a State-of-the-Art Report of the RILEM Technical Committee 238-SCM, Working Group 4, Springer International, Cham, 2018, pp. 99–121.

H. Hilbig, F.H. Kohler, P. Schiel, Quantitative 29Si NMR spectroscopy of cement and silica fume containing paramagnetic impurities, Cement Concr. Res. 36 (2006) 326–329.

J-X. Wang, X.Y. Wang, H.F. Zhu, C. Qian, 29Si NMR characterization of silica tetraboron in the silica fume simulated hydration, Key Eng. Mater. 539 (2013) 1–4.

K.L. Scrivener, B. Lothenbach, N. De Belie, E. Gruyaert, R. Snellings, et al., TC 238-SCM: hydration and microstructure of concrete with SCMs, Cement Concr. Res. 66 (2014) 293–304.

A. Neville, History of high-alumina cement. Part 1: problems and the stone, Proc. Instit. Civil Eng. Eng. Hist. Herit. 162 (2009) 81–93.

B. Walkley, J.L. Provis / Materials Today Advances 1 (2019) 100007

[126]

[119]

[133]

[131]

[139]

[117]

[130]

[131]

[136]

[139]

[115]

[117]

[112]

[114]

[139]

[112]

[114]

[139]

[112]

[114]

[139]

[112]

[114]

[139]

[112]

[114]

[139]

[112]

[114]

[139]

[112]

[114]

[139]

[112]

[114]

[139]

[112]

[114]

[139]

[112]

[114]

[139]

[112]

[114]

[139]

[112]

[114]

[139]

[112]

[114]

[139]

[112]

[114]

[139]

[112]

[114]

[139]

[112]

[114]

[139]

[112]

[114]

[139]

[112]

[114]

[139]

[112]

[114]

[139]

[112]

[114]

[139]

[112]

[114]

[139]

[112]

[114]

[139]

[112]

[114]

[139]

[112]

[114]

[139]

[112]

[114]

[139]

[112]

[114]

[139]

[112]

[114]

[139]

[112]

[114]

[139]

[112]

[114]

[139]

[112]

[114]

[139]

[112]

[114]
M.A. Chavda, S.A. Bernal, D.C. Apperley, H. Kinoshita, J.L. Provis, Identification of the hydrate gel phases present in phosphate-modified calcium aluminates binders. Cem. Concr. Res. 70 (2015) 27–34.

F. Winnefeld, B. Lothenbach, Phase equilibria in the system CaAl2O4(SiO2-CaSiO3-CaSO3-H2O) referring to the hydration of calcium sulfoaluminate cements, RILEM Tech. Lett. 1 (2016) 10–16.

J. Bolleranh, M. Ben Haha, CA solidification design: effect on clinker formation and reactivity, Mater. Struct. 48 (2015) 3895–3911.

T. Hanein, I. Galan, A. Elhoweris, M.S. Imbabi, et al., Stability of ternesite and the production at scale of ternesite-based cements. Cem. Concr. Res. 68 (2017) 91–100.

B.Z. Dilnasa, B. Lothenbach, G. Renaudin, A. Wichter, E. Wieland, Stability of monosulfate in the presence of iron. J. Am. Ceram. Soc. 95 (2012) 3305–3316.

B.Z. Dilnasa, E. Wieland, B. Lothenbach, R. Dahn, K.L. Scrivener, Fe-containing phases in hydrated cements, Cem. Concr. Res. 38 (2014) 45–55.

A. Cuesta, A.G. De la Torre, I. Santacruz, P. Trittik, J.C. da Silva, A. Diaz, et al., Chemistry and mass density of aluminium hydroxide gel in eco-cements by ptychographic X-ray computed tomography. J. Phys. Chem. C 121 (2017) 10444–10454.

G. Paul, E. Boccaleri, L. Buzzi, F. Canonico, D. Gastaldi, Friedel's salt formation during cement hydration. Cem. Concr. Res. 67 (2015) 93–103.

T. Hanein, I. Galan, J.-B. d'Espinose de la Caillerie, A. Elhoweris, M.S. Imbabi, et al., Stability of FeMnS ternesite in ternesite-based cements. Cem. Concr. Res. 68 (2017) 111–123.

B.Z. Dilnasa, B. Lothenbach, G. Renaudin, et al., Hydration products of alkali-activated slag cement, Cem. Concr. Res. 36 (2006) 209–226.

S.-Y. Hong, F.P. Glasser, Alkali binding in cement pastes: part I. The C-S-H gel. J. Phys. Chem. 94 (1990) 827–831.

F. Medicin, B. Bresson, N. Lequeux, M.-N. de Noirfontaine, H. Zanni, Calcium silicate hydrates investigated by solid-state high resolution 1H and 27Al nuclear magnetic resonance spectroscopy of deuterated Portland cement in cement and concrete, Magn. Reson. Imag. 14 (1996) 827–831.

E. Scholtzova, L. Kuckov, K. Jozišek, D. Tunega, Structural and spectroscopic characterization of ettringite combined-DFT and experimental study, J. Mol. Struct. 1100 (2015) 215–224.

A. Moore, H. Taylor, Crystal structure of ettringite. Acta Crystallogr. B 26 (1970) 386–393.

F. Goetz-Neunhoeffer, J. Neubauer, Structural and spectroscopic study of synthetic species of ettringite and hydro-aluminate phases in sulfoaluminate cements: a combined XRD and Si NMR observation. Cem. Concr. Res. 40 (2010) 877–881.

T. Zhang, L.J. Vandeperre, C.R. Cheeseman, Formation of magnesium silicate hydrate (M-S-H) cement pastes using sodium hexametaphosphate. Cem. Concr. Res. 65 (2014) 8–14.

T. Zhang, L.J. Vandeperre, C.R. Cheeseman, Magnesium-silicate-hydrate cements for encapsulating problematic aluminium containing wastes, J. Sustain. Cem. Based Mater. 1 (2012) 34–45.

T. Zhang, C.R. Cheeseman, L.J. Vandeperre, Development of low pH cement systems forming magnesium silicate hydrate (M-S-H), Cem. Concr. Res. 41 (2011) 439–442.

C. Roosz, S. Grangeon, P. Blanc, V. Montouillout, B. Lothenbach, P. Hencq, et al., Crystal structure of magnesium silicate hydrates (M-S-H): the relation with 2:1 Mg–Si phyllosilicates, Cem. Concr. Res. 73 (2015) 228–237.

D.R.M. Brew, F.P. Glasser, Synthesis and characterisation of magnesium silicate hydrate gels, Cem. Concr. Res. 35 (2005) 85–94.

E. Bernard, B. Lothenbach, D. Rentsch, I. Pochard, J.L. Provis, et al., Crystal structure of magnesium silicate hydrates (M-S-H): the interpretation of energy-dispersive X-ray microanalyses from scanning electron microscopy, with some observations on CSH, AFm and AFT phase compositions, Cem. Concr. Res. 33 (2003) 1389–1398.

S.D. Wang, K.L. Scrivener, Hydration products of alkali-activated slag cement. Cem. Concr. Res. 37 (2007) 118–130.

X. Ke, S.A. Bernal, J.L. Provis, Contriving the reaction kinetics of sodium carbonate-activated slag cements using calcined layered double hydroxides, Cem. Concr. Res. 81 (2016) 24–37.

S.A. Bernal, J.L. Provis, R. Myers, S. San Nicolas, J.S.J. van Deventer, Role of carbonates in the chemical evolution of sodium carbonate-activated slag binders, Mater. Struct. 48 (2015) 517–529.

R. Allmann, Refinement of the hybrid layer structure [CaAl2(OH)6]5+·[SiO4H4]–·[SiO4H4]–, Neues Jbahr. Mineral. Monatsh. 1977 (1977) 136–143.

G. Renaudin, M. Francois, O. Evrard, Order and disorder in the lamellar hydrated tetracalcium monocarboaluminate compound, Cem. Concr. Res. 25 (1995) 63–69.

M. François, G. Renaudin, O. Evrard, A cementsitious compound with composition 3CaO·Al2O3·CaCO3·11H2O, Acta Crystallogr. Sect. C. Cryst. Struct. Commun. 54 (1998) 1214–1217.

F. Buttler, L. Dent-Glasser, H. Taylor, Studies on 4CaO·Al2O3·13H2O and the related natural mineral hydroaluminate, J. Am. Ceram. Soc. 42 (1959) 121–126.

B. Lothenbach, G. Le Saulot, E. Gallucci, K. Scrivener, Influence of limestone on the hydration of Portland cements, Cem. Concr. Res. 38 (2008) 848–860.

S. Ahmed, H. Taylor, Crystal structures of the lamellar calcium aluminates, Nature 215 (1967) 622–623.

S. Kwon, J. LaRossa, M. Kojima, H. Zanni, 27Al MAS NMR strätlingite, J. Am. Ceram. Soc. 78 (1995) 1921–1926.

R. Rinaldi, M. Sacerdoti, E. Passaglia, Structural and spectroscopic study of strätlingite: crystal structure, chemistry, and a reexamination of its polytype vertuminate, Eur. J. Mineral. (1990) 849–851.

W. Geßner, D. Müller, Festkörper-NMR-untersuchungen am gehärteten 2CaO·Al2O3·SiO2·H2O, Z. Chem. 29 (1989) 344–345.
[399] I. Hung, J. Trebosc, G.L. Hoatson, R.L. Vold, J.-P. Amoureux, Z. Gan, Q-shear transformation for MQMAS and STMAS NMR spectra, J. Magn. Reson. 201 (2009) 81–86.

[400] T. Guillou, Measurement of dipolar interactions between spin-1/2 and quadrupolar nuclei by rotational-echo, adiabatic-passage, double-resonance NMR, Chem. Phys. Lett. 246 (1995) 325–330.

[401] T. Guillou, J. Schaefer, Rotational-echo double-resonance NMR, J. Magn. Reson. (1969) 81 (1989) 196–200.

[402] E.R.H. van Eck, W.S. Veeman, Spin density description of rotational-echo double-resonance, transferred-echo double-resonance and two-dimensional transferred-echo double-resonance solid state nuclear magnetic resonance, Solid State Nucl. Magn. Reson. 2 (1993) 307–315.

[403] E.R.H. van Eck, W.S. Veeman, The determination of the average 27Al/27Al distance in alumino-phosphate molecular sieves with SEDOR NMR, Solid State Nucl. Magn. Reson. 1 (1992) 1–4.

[404] A.W. Hing, S. Vega, J. Schaefer, Transferred-echo double-resonance NMR, J. Magn. Reson. 96 (1992) 205–209.

[405] A.W. Hing, S. Vega, J. Schaefer, Measurement of heteronuclear dipolar coupling by transferred-echo double-resonance NMR, J. Magn. Reson. A 103 (1993) 151–162.

[406] C.P. Grey, W.S. Veeman, The detection of weak heteronuclear coupling between spin 1 and spin 1/2 nuclei in MAS NMR, 13C/1H/1H triple resonance experiments, Chem. Phys. Lett. 192 (1992) 379–385.

[407] C.P. Grey, W.S. Veeman, A.J. Vega, Rotational echo 14N/13C/1H triple resonance solid-state nuclear magnetic resonance: a probe of C–O–C internuclear distances, J. Chem. Phys. 98 (1993) 7711–7724.

[408] T. Guillou, Detecting 13C–13C–1H dipolar interactions by rotational-echo, adiabatic-passage, double-resonance NMR, J. Magn. Reson. A 117 (1995) 326–329.

[409] S. Greiser, G.J.C. Gluth, P. Sturm, C. Jäger, 29Si[27Al], 27Al[29Si] and 27Al[1H] double-resonance NMR spectroscopy study of cementitious sodium aluminosilicate gels (geopolymer) and gel–zeolite composites, RSC Adv. 8 (2018) 40164–40171.

[410] A. Goldbourt, S. Vega, T. Guillou, A.J. Vega, Interatomic distance measurement in solid-state NMR between a spin-1/2 and a spin-5/2 using a universal REAPDOR curve, J. Am. Chem. Soc. 125 (2003) 11194–11195.

[411] A. Bax, S. Subramanian, Sensitivity-enhanced two-dimensional heteronuclear shift correlation NMR spectroscopy, J. Magn. Reson. 67 (1986) 565–569.

[412] H.J. Jakobsen, J. Skibsted, H. Bilde, N.C. Nielsen, Magic-angle spinning NMR spectra of satellite transitions for quadrupolar nuclei in solids, J. Magn. Reson. 85 (1989) 173–180.

[413] J. Rocha, J.D. Pedrosa, D.E. Jesus, 27Al satellite transition MAS-NMR spectroscopy of kaolinite, Clay Miner. 29 (1994) 287–291.

[414] D. Bish, R. Von Dreele, Revetfeld refinement of non-hydrogen atomic positions in kaolinite, Clayes Clay Miner. 37 (1989) 289–296.

[415] R. Blaine, Proton magnetic resonance (NMR) to measure the density, composition and desorption isotherm of pores with two characteristic sizes or Fe+ concentrations? Cement Concr. Res. 40 (2010) 1375–1377.

[416] J.V. Jehling, D. Sprague, W. Halperin, Pore structure of hydrating cement paste by magnetic resonance analysis and freezing, Mag. Reson. Imag. 14 (1996) 785–791.

[417] R. Valkenborg, L. Pel, K. Kopinga, Combined NMR cryoporometry and relaxometry, J. Phys. D Appl. Phys. 35 (2002) 249.

[418] A.C.A. Muller, K.L. Scrivener, A.M. Gajewicz, P.J. McDonald, Densification of C–S–H measured by 1H NMR relaxometry, J. Phys. Chem. C 117 (2013) 403–412.

[419] A.C.A. Muller, K.L. Scrivener, A.M. Gajewicz, P.J. McDonald, Use of bench-top NMR to measure the density, composition and desorption isotherm of C–S–H in cement paste, Microporous Mesoporous Mater. 178 (2013) 99–103.

[420] A.C.A. Muller, K.L. Scrivener, A reassessment of mercury intrusion porosimetry by comparison with 1H NMR relaxometry, Cement Concr. Res. 100 (2017) 350–360.

[421] G.H. Fuller, Nuclear spins and moments, J. Phys. Chem. Ref. Data 5 (1976) 835–1092.

[422] B. Walkley, A. Kashani, M.A. Sani, T.D. Ngo, P. Mendis, Examination of alkali-activated material nanostructure during thermal treatment, J. Mater. Sci. 53 (2018) 9486–9503.