Overview of recent lattice QCD results: phase diagram, fluctuations and strangeness

Jana N. Guenther1,*
1Aix-Marseille Université

Abstract. In recent years there has been much progress on the investigation of the QCD phase diagram with lattice QCD. This work will focus on the developments in the last few years with physical parameters and low chemical potential which are obtained by extrapolations from zero or imaginary chemical potential.

1 Introduction

The investigation of the QCD phase diagram has been a very active topic for many years. Lattice QCD is a very effective, non perturbative tool to solve QCD. Therefore, it is an obvious choice to turn to when instigating the QCD phase diagram. Simulations at finite baryon chemical potential are, however, hindered by the sign problem. Therefore, other methods are necessary to gain insight at finite μ_B physics from lattice QCD. This work will review recent results obtained from lattice QCD simulations with physical parameters at low finite μ_B by extrapolations from zero or imaginary μ_B. A more detailed review, including more parameter spaces, can be found in Ref. [1].

Since at $\mu_B = 0$ the transition is a crossover (Ref. [2–7]), some observables can be described by an analytic function in the vicinity of zero. This fact can be exploited, by using results at imaginary or zero chemical potential. A very common technique for extrapolation is the so called Taylor method. The pressure is parametrized as

$$\frac{P}{T^4} = \sum_{j=0}^{\infty} \sum_{k=0}^{\infty} \frac{1}{j!k!} \chi_{jk}^{BS} \hat{\mu}_B j \hat{\mu}_B k$$

(1)

with $\hat{\mu} = \frac{\mu}{T}$. The χ_{jk}^{BS} can be measured on zero μ lattices. Another expansion from which results will be discussed in this work, is the so called fugacity expansion or sector method. Here the parametrization

$$\frac{P}{T^4} = \sum_{j=0}^{\infty} \sum_{k=0}^{\infty} P_{jk}^{BS} \cosh(j\hat{\mu}_B - k\hat{\mu}_S)$$

(2)

is used. Here the expansion coefficients P_{jk}^{BS} have to be determined either from the χ_{jk}^{BS} or from imaginary chemical potential. In general for simulations with imaginary chemical potential arbitrary fit functions are possible to describe the data at $\mu^2 < 0$. The choice of

*e-mail: jana.gunther@univ-amu.fr

© The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0 (http://creativecommons.org/licenses/by/4.0/).
fit function is usually guided by the fit quality, sometimes complemented by known physical features. An advantage of the fugacity expansion is its rapid convergence in the hadronic phase and the added information on the particle content from different sectors. On the other hand the Taylor expansion converges rapidly in the high temperature limit.

2 The phase diagram

The crossover nature of the transition and its temperature has been determined since 2006 with a variety of observables (Ref. [2–9]). More recently the transition temperature has been determined with increased precision in Ref. [10] and Ref. [11]. By now the error on the transition temperature at $\mu_B = 0$ is much smaller than the width σ of the crossover. Therefore it can be determined separately. A possible definition, that has been used in Ref. [11] is

$$\langle \bar{\psi}\psi \rangle (T_c \pm \sigma/2) = \langle \bar{\psi}\psi \rangle_c \pm \Delta \langle \bar{\psi}\psi \rangle/2.$$ \hspace{1cm} (3)

The result, extrapolated to the continuum from three lattice spacings, can be seen in figure 1 up to $\mu_B = 300$ MeV.

The behaviour of the transition temperature in the μ_B-T-plane can be parameterized by the Taylor expansion as

$$\frac{T_c(\mu_B)}{T_c(0)} = 1 - \kappa_2 \left(\frac{\mu_B}{T_c} \right)^2 - \kappa_4 \left(\frac{\mu_B}{T_c} \right)^4 + O(\mu_B^6).$$ \hspace{1cm} (4)

The odd powers of $\frac{\mu_B}{T}$ vanish due to the isospin symmetry. The coefficients κ_2 has been determined in several computations. The more recent ones from Refs. [10–14] are compared in the right side of figure 2. The green points were obtained from extrapolations with imaginary chemical potential while the blue points were obtained by the Taylor method. Both method yield agreeing results. In addition to κ_2 new results for κ_4 are available from Ref. [10, 11]. While it is clear that $\kappa_4 \ll \kappa_2$ the relative error of κ_4 is more than 100% and the sign therefore still undetermined.

The extrapolation of the transition temperature to finite μ_B for the choice of $n_S = 0$ and $n_Q = 0.4n_B$, to match the condition in heavy ion collisions from Refs. [10, 11] is shown in figure 3. As a comparison several results for the freeze-out temperature (Refs. [15–21] are shown. In a addition, on the right side, a result from Dyson-Schwinger-Equation calculations (Ref. [22]) is shown. The curvature agrees well with the lattice result, while the absolute value is set to previous lattice value, which was determined by a different observable and with a larger error. Therefore the difference does not imply a contradiction between the two calculations.
The odd powers of μ calculations.

Figure 2. (Ref. [11]) Overview of the different determinations of the κ_2 and κ_4 coefficients as defined in equation (4). The values are taken from Ref. [10–14]. Green points correspond to determinations from imaginary chemical potential, while results shown in blue were obtained by the Taylor method.

3 Fluctuations

Fluctuations are computed as the derivatives of the pressure with respect to various chemical potentials:

$$\chi_{i,j,k}^{B,Q,S} = \frac{\partial^{i+j+k}(p/T^4)}{(\partial \mu_B)^i(\partial \mu_Q)^j(\partial \mu_S)^k}, \hat{\mu}_i = \frac{\mu_i}{T}$$ (5)

While fluctuations to various order have previously published for example in Ref. [23–27], now new continuum extrapolated results are available in Ref. [28]. The precision of these results is high enough to allow a comparison to different models with detailed studies on inclusion or exclusion of various states for example in a Hadron Resonance Gas model.

The ratios of various fluctuations can be used to express the cumulants of the Baryon number distribution. This offers an observable for comparisons with heavy ion collision measurements of the proton number distribution. At the current precision level this can only be a rough comparison. If the precision is increased in the future, other effects should be taken into account, like the continuum limit on the lattice side, or volume fluctuations and on equilibrium effects on the experimental side.

Figure 4 shows the ratios $R_{31}^B(T, \mu_B) = \chi_3^B/\chi_1^B = S_B \sigma_B^3/MB$, $R_{32}^B(T, \mu_B) = \chi_4^B/\chi_2^B = \kappa_B \sigma_B^2$, $R_{51}^B(T, \mu_B) = \chi_5^B/\chi_1^B$ and $R_{62}^B(T, \mu_B) = \chi_6^B/\chi_2^B$ as a function of $R_{12}^B(T, \mu_B) = M_B/\sigma_B^2$ evaluated along the transition line. While the two lower order ratios are a continuum estimate from $N_t = 8$ and $N_t = 12$ lattices $R_{31}^B(T, \mu_B)$ and $R_{62}^B(T, \mu_B)$ are computed only on an $N_t = 8$ lattice.
A corresponding result from Ref. [31] is shown in figure 5. Here the results are a continuum estimate obtained with a different action on $N_t = 8, 10$ and 12 lattices. The analysis is based on a two dimensional fugacity expansion with imaginary μ_B and μ_S (see equation (2)).

To include strange particles like K or Λ in the comparison with lattice calculations, suitable observables have to be constructed. Ref. [32] used the Hadron Resonance Gas (HRG) model to compare different proxies (see left of figure 6). The proxy $\sigma^2_B/(\sigma^2_A + \sigma^2_K)$ for the fluctuation ratio $\frac{\chi_B^{\Lambda\Sigma}}{\chi_K}$ was further investigated both by comparing the HRG and the experimental (see middle of figure 6) results, as well as lattice calculations from both the Taylor and sector method (see right of figure 6).

4 The equation of state

Another quantity that has been investigated for long time is the equation of state. In the following some progress on the baryon number n_B will be discussed. When extrapolated to finite μ_B with a Taylor expansion up to μ_B^2 shows a surprising behaviour around the transition temperature (see left and middle of figure 7). This behaviour has been observed by different groups and on different data sets (Refs. [25?]). Ref. [34] could link it to the general convergence of the Taylor series in this region. A possible expansion for the difficulties of the convergence might be that the extrapolation has to cover both the hadronic and the quark gluon plasma phase. Therefore a new extrapolation scheme from imaginary μ_B was proposed that shows a smooth behaviour as can be seen on the right side of figure 7.
the convergence might be that the extrapolation has to cover both the hadronic and the quark

The extrapolation to finite baryon number n_B done by the Taylor method (see equation (1)): Left: $\mu_Q = \mu_S = 0$, Middle: $n_S = 0$ and $n_Q/n_B = 0.4$, Right: (Ref. [34]) The pressure and the baryon number from the resummed extrapolation. The lighter bars show the increased error by the inclusion of a higher order term.

Acknowledgments

The project leading to this publication has received funding from Excellence Initiative of Aix-Marseille University - A*MIDEX, a French “Investissements d’Avenir” programme, AMX-18-ACE-005.

References

[1] J.N. Guenther, Eur. Phys. J. A 57, 136 (2021), 2010.15503
[2] Y. Aoki, G. Endrodi, Z. Fodor, S.D. Katz, K.K. Szabo, Nature 443, 675 (2006), hep-lat/0611014
[3] Y. Aoki, Z. Fodor, S. Katz, K. Szabo, Phys. Lett. B 643, 46 (2006), hep-lat/0609068
[4] Y. Aoki, S. Borsanyi, S. Durr, Z. Fodor, S.D. Katz, S. Krieg, K.K. Szabo, JHEP 06, 088 (2009), 0903.4155
[5] S. Borsanyi, Z. Fodor, C. Hoelbling, S.D. Katz, S. Krieg, C. Ratti, K.K. Szabo (Wuppertal-Budapest), JHEP 09, 073 (2010), 1005.3508
[6] T. Bhattacharya et al., Phys. Rev. Lett. 113, 082001 (2014), 1402.5175
[7] A. Bazavov et al., Phys. Rev. D85, 054503 (2012), 1111.1710
[8] M. Cheng et al., Phys. Rev. D 74, 054507 (2006), hep-lat/0608013
Reference	Journal/Conference	Volume/Issue	Year	Page	DOI/ arXiv ID
[9] A. Bazavov et al.	Phys. Rev. D	80	2009	014504	10.1103/physrevd.80.014504
[10] A. Bazavov et al. (HotQCD)	Phys. Lett. B	795	2019	15	10.1016/j.physletb.2019.08.023
[11] S. Borsanyi, Z. Fodor, J.N. Guenther, R. Kara, S.D. Katz, P. Parotto, A. Pasztor, C. Ratti, K.K. Szabo (2020)	Phys. Rev. D	98	2018	054510	10.1103/physrevd.98.054510
[12] C. Bonati, M. D’Elia, F. Negro, F. Sanfilippo, K. Zambello	Phys. Rev. D	98	2018	014504	10.1103/physrevd.98.014504
[13] R. Bellwied, S. Borsanyi, Z. Fodor, J. Guenther, S.D. Katz, C. Ratti, K.K. Szabo	Phys. Lett. B	751	2015	559	10.1016/j.physletb.2015.07.010
[14] C. Bonati, M. D’Elia, M. Mariti, M. Mesiti, F. Negro, F. Sanfilippo	Phys. Rev. D	92	2015	054503	10.1103/physrevd.92.054503
[15] A. Andronic, P. Braun-Munzinger, J. Stachel	Nucl. Phys. A	772	2006	167	10.1016/j.nuclphysa.2006.05.071
[16] F. Becattini, M. Bleicher, T. Kollegger, T. Schuster, J. Steinheimer, R. Stock	Phys. Rev. Lett.	111	2013	082302	10.1103/physrevlett.111.082302
[17] P. Alba, W. Alberico, R. Bellwied, M. Bluhm, V. Mantovani Sarti, M. Nahrgang, C. Ratti	Phys. Lett. B	B738	2014	305	10.1016/j.physletb.2014.04.093
[18] V. Vovchenko, V.V. Begun, M.I. Gorenstein	Phys. Rev. C	93	2016	064906	10.1103/physrevc.93.064906
[19] L. Adamczyk et al. (STAR)	Phys. Rev. C	96	2017	044904	10.1103/physrevc.96.044904
[20] A. Andronic, P. Braun-Munzinger, K. Redlich, J. Stachel	Nature	561	2018	321	10.1038/s41586-018-0625
[21] L. Adamczyk et al. (STAR)	Phys. Rev. C	96	2017	044904	10.1103/physrevc.96.044904
[22] P. Isserstedt, M. Buballa, C.S. Fischer, P.J. Gunkel	Phys. Rev. D	100	2019	074011	10.1103/physrevd.100.074011
[23] C. Schmidt (BNL-Bielefeld)	Nucl. Phys. A	A904-905	2013	865c	10.1016/j.nuclphysa.2013.02.039
[24] M. D’Elia, G. Gagliardi, F. Sanfilippo	Phys. Rev. D	95	2017	094503	10.1103/physrevd.95.094503
[25] A. Bazavov et al.,	Phys. Rev. D	95	2017	094503	10.1103/physrevd.95.094503
[26] S. Borsanyi, Z. Fodor, J.N. Guenther, S.K. Katz, K.K. Szabo, A. Pasztor, I. Portillo, C. Ratti (2018)	Phys. Rev. D	101	2020	074502	10.1103/physrevd.101.074502
[27] A. Bazavov et al.,	Phys. Rev. D	101	2020	074502	10.1103/physrevd.101.074502
[28] D. Bollweg, J. Goswami, O. Kaczmarek, F. Karsch, S. Mukherjee, P. Petreczky, C. Schmidt, P. Scior (2021)	Phys. Rev. D	100	2019	074011	10.1103/physrevd.100.074011
[29] J. Adam et al. (STAR) (2020)	Phys. Rev. D	101	2020	074502	10.1103/physrevd.101.074502
[30] T. Nonaka (STAR)	Measurement of the Sixth-Order Cumulant of Net-Proton Distributions in Au+Au Collisions from the STAR Experiment, in 28th International Conference on Ultrarelativistic Nucleus-Nucleus Collisions (2020)	2020			10.1103/physrevd.101.074502
[31] R. Bellwied, S. Borsanyi, Z. Fodor, J.N. Guenther, S.D. Katz, P. Parotto, A. Pasztor, D. Pesznyak, C. Ratti, K.K. Szabo (2021)	Phys. Rev. D	101	2020	034506	10.1103/physrevd.101.034506
[32] R. Bellwied, S. Borsanyi, Z. Fodor, J.N. Guenther, J. Noronha-Hostler, P. Parotto, A. Pasztor, C. Ratti, J.M. Stafford	Phys. Rev. D	101	2020	034506	10.1103/physrevd.101.034506
[33] L. Adamczyk et al. (STAR)	Phys. Lett. B	785	2018	551	10.1016/j.physletb.2018.07.073
[34] S. Borsányi, Z. Fodor, J.N. Guenther, R. Kara, S.D. Katz, P. Parotto, A. Pásztor, C. Ratti, K.K. Szabó,	Phys. Rev. D	126	2021	232001	10.1103/physrevd.126.232001