Title	Braving the Element: Pancreatic beta-Cell Dysfunction and Adaptation in Response to Arsenic Exposure
Author(s)	Carmean, Christopher M. / Seino, Susumu
Citation	Frontiers in Endocrinology,10:344
Issue date	2019-06-14
Resource Type	Journal Article / 学術雑誌論文
Resource Version	publisher
Rights	© 2019 Carmean and Seino. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
DOI	10.3389/fendo.2019.00344
URL	http://www.lib.kobe-u.ac.jp/handle_kernel/90006145
Braving the Element: Pancreatic β-Cell Dysfunction and Adaptation in Response to Arsenic Exposure

Christopher M. Carmean 1,2* and Susumu Seino 1*

1 Division of Molecular and Metabolic Medicine, Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine, Kobe, Japan, 2 Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Illinois at Chicago, Chicago, IL, United States

Type 2 diabetes mellitus (T2DM) is a serious global health problem, currently affecting an estimated 451 million people worldwide. T2DM is characterized by hyperglycemia and low insulin relative to the metabolic demand. The precise contributing factors for a given individual vary, but generally include a combination of insulin resistance and insufficient insulin secretion. Ultimately, the progression to diabetes occurs only after β-cells fail to meet the needs of the individual. The stresses placed upon β-cells in this context manifest as increased oxidative damage, local inflammation, and ER stress, often inciting a destructive spiral of β-cell death, increased metabolic stress due to further insufficiency, and additional β-cell death. Several pathways controlling insulin resistance and β-cell adaptation/survival are affected by a class of exogenous bioactive compounds deemed endocrine disrupting chemicals (EDCs). Epidemiological studies have shown that, in several regions throughout the world, exposure to the EDC inorganic arsenic (iAs) correlates significantly with T2DM. It has been proposed that a lifetime of exposure to iAs may exacerbate problems with both insulin sensitivity as well as β-cell function/survival, promoting the development of T2DM. This review focuses on the mechanisms of iAs action as they relate to known adaptive and maladaptive pathways in pancreatic β-cells.

Keywords: arsenic, diabetes, pancreas, β-cells, reactive oxygen species, glucose tolerance, endocrine disrupters, insulin secretion

INTRODUCTION

An estimated 451 million people worldwide have type 2 diabetes (T2DM), with as many as 693 million expected to be affected by the disease in 2045 (1). T2DM is characterized by insufficient insulin production relative to metabolic demand resulting in poor glycemic control. In normal glucose homeostasis, a postprandial increase in circulating glucose concentration initiates a spike in insulin secretion from pancreatic β-cells (2, 3). This circulating insulin then binds to its cognate receptor on muscle, liver, and adipose tissues (among others), inducing glucose uptake to lower the concentration of glucose in the bloodstream. In many cases of T2DM, muscle and liver cells (the major sites of glucose disposal in the body) become insulin resistant, which induces β-cells to compensate by secreting more insulin. As insulin resistance becomes more severe, greater stresses are placed on the β-cells to increase their insulin output. Years of this chronic stress on β-cells eventually causes β-cell dysfunction and/or death. With fewer functional β-cells secreting insulin in the context of severe insulin resistance, an inability to properly maintain glucose homeostasis ensues, manifesting as T2DM (4).

Though there are many factors that contribute to the progression of diabetes, it is important to recognize that ultimately a failure of β-cells to secrete sufficient amounts of insulin is what results
in hyperglycemia and the diagnosis of T2DM (5). While
tremendous stress may be placed on β-cells from a metabolic
standpoint, they also face other insults from environmental
factors such as endocrine-disrupting chemicals (EDCs). EDCs
may work alone or synergistically to derange the normal
compensatory mechanisms enabling β-cells to promote glucose
tolerance in insulin-resistant individuals (6). In this sense,
EDCs may act as drivers of diabetes risk, becoming more
deleterious as they compound with lifestyle factors and genetic
susceptibilities. It is therefore especially important to consider
that EDCs may impair the functionality of β-cells or increase
their susceptibility to the chronic metabolic stressors associated
with insulin resistance. The purpose of this review will be to
explore the β-cell-specific effects of one such EDC, arsenic, as it
poses a substantial and ongoing threat to public health.

Arsenic is widely recognized as a carcinogen and oxidizing
agent that damages neuronal, hepatic, cardiovascular,
teatment, and renal organ systems (7). Its health effects
vary depending on valence, mixture with other toxins, dosage,
route of exposure, and length of exposure. Capable of causing
death within 24 h, the acute lethal dose in humans is estimated
to be 0.6 mg/kg/day (8). Common routes of exposure include
the skin, lungs, and digestive tract. Though inhalation of iAs is
a concern during hazardous occupational work and traditional
food preparation, the greatest number of individuals are at risk of exposure to unsafe levels of iAs from contaminated groundwater (10–12). The most prevalent
species of arsenic found naturally in drinking water are inorganic
arsenic (iAs) in its trivalent (AsIII) or pentavalent (AsV) forms
(13). Organic arsenicals can be found in the food chain as
arsenobetaine, arsenocholine, and arsenolipids, and are generally
considered relatively non-toxic (14).

Inorganic arsenic is estimated to naturally contaminate the
shallow groundwater underneath 140 million people worldwide
(12). Among these people at risk, the number actually exposed to
iAs is believed to be lower, as not all contaminated groundwater
sources are utilized and excellent remediation methods are
available in developed countries (12). Despite this fact, the
problem of chronic iAs exposure through shallow groundwater
consumption persists on an immense scale. As of 2007, an
estimated 20 million people in Bangladesh alone were still served
by wells naturally contaminated with iAs at a concentration more
than 5x higher than the WHO safe limit of 10 µg/L (15). In
these areas, where exposure has been pervasive in communities
since the digging of shallow groundwater wells in the mid-
1990s, it has been estimated that ~21% of all-cause mortality
is attributable to iAs exposure (16). The lasting effects of this
contamination may represent one of the greatest failures of public
health management in recent history.

One observation from this unintended mass-poisoning and other
cases of natural exposure is a potential relationship between
iAs exposure and diabetes (11). In addition to its role in
increasing the risk of several cancers, peripheral neuropathy, and
keratosis, iAs exposure correlates with glucose intolerance or
diabetes prevalence in areas with relatively high exposure levels
(17–20). The epidemiological research regarding the relationship
between iAs exposure and diabetes have been reviewed in detail
elsewhere (11). For the purposes of this review, an examination
of the specific effects of iAs on β-cells will be undertaken,
including the evidence from pancreatic endpoints in animal
models and mechanistic insights gained from ex vivo and/or
interventional studies.

ACUTE vs. CHRONIC iAs EXPOSURE

The effects of iAs can be conceptualized on a sliding scale of
dosage and time. A single large dose of iAs can cause nausea,
vomiting, abdominal pain, diarrhea, and even death (8, 21).
Chronic ingestion of lower doses of iAs can occur without
any immediate sensory feedback, and yet the ensuing damage
over several years may span most organ systems, increasing an
individual’s risk of cancer, peripheral neuropathy, cardiovascular
disease, diabetes, and a multitude of skin problems (7).
Trying to better understand the relationship between iAs exposure
and diabetes, the effects of chronic, sub-toxic exposure are
of the greatest concern and should be delineated from acute
toxic effects.

The National Toxicology Program Workshop Review’s
assessment in 2012 suggested that cell-culture studies utilizing
iAs concentrations ≥ 1 mM can be considered acute stress-
response studies rather than functional studies of β-cells’ role
in iAs-associated diabetes, even in cases where physiologically-
relevant model systems or physiological endpoints were utilized
(11). Given that the highest circulating plasma concentration
of iAs ever recorded in a human population drinking iAs-
contaminated water was 0.6 µM, and clear evidence of reduced
cell growth or survival ex vivo has been reported for iAs exposures
≥5 µM (22, 23), 1 mM appears to be a generous and appropriate
cutoff (24, 25).

Although studies have repeatedly shown that exposure to ≤1 µM iAs significantly decreases glucose-induced insulin
secretion in clonal β-cells, it should be noted that the use of somewhat higher concentrations for short periods
has spurned fruitful follow-up at lower, more physiological
concentrations of iAs. For instance, Pi et al reported that
5 µM iAs significantly induced antioxidant gene expression (26),
eventually leading to deeper investigation of the role of nuclear
factor (erythroid-derived)-like 2 (Nrf2), a major antioxidan-
regulating transcription factor, in the adaptive response to iAs.
This launched a series of investigations that expanded our
understanding of iAs’s mechanism(s) of action (27, 28). Given
the fine line between the concentration of iAs capable of inhibiting
insulin secretion and cytotoxicity or the induction of apoptosis,
this course of studies might be taken as an excellent example
of how to successfully exploit shorter time courses and higher
dosages to generate novel, environmentally-relevant findings.

PANCREATIC iAs ACCUMULATION, SPECIATION, DISPOSAL

IAs undergoes several stages of metabolism once ingested (29).
IAs enters cells via ion transporters, including aquaporin proteins
3, 7, and 9 and glucose transporter 1 (30–33). Although a
reduction of these transporters protects cell lines against iAs toxicity (34), efficient cellular import of arsenicals is critical for normal in vivo iAs detoxification and urinary excretion (35). A single sub-lethai bolus of iAs (1 mg/kg) administered intraperitoneally to rats, mice, hamsters, and guinea pigs, can be cleared from the bloodstream in ∼24 h (36). Once inside the cell, iAs may be conjugated to glutathione or methylated multiple times (37, 38). Once modified, methylated or glutathione-conjugated arsenicals are exported from the cell by ABC transporters, including multidrug resistance-associated proteins 1a, 1b, and 2 (39, 40), enabling more efficient renal excretion and minimizing internal exposure. Arsenical efflux activity partially determines an organism’s sensitivity to iAs, as the activities and expression levels of these ABC transporters are critical for adaptation to iAs (31).

IAs is taken up by pancreatic tissue and β-cells dose-dependently (41). Of the in vivo rodent studies utilizing chronic iAs exposure considered here, several studies specifically measured iAs accumulation in the pancreas (Table 1). In all these cases except one, iAs accumulated significantly in the pancreas (41, 43, 44, 46, 57–60, 64, 74). In the one exception, with low levels of iAs used in a cocktail of other dilute toxins, no appreciable pancreatic iAs accumulation was observed (77). The concentration of iAs used in this study by Radike et al was lower than the World Health Organization’s safe limit of 10 µg/L.

Chronic administration of iAs in drinking water results in iAs accumulation as both iAs and methylated arsenicals in the pancreas, with the majority stored as monomethyl arsenous acid (MMA) or dimethylarsenic acid (DMA) (43, 44, 57, 60, 64). Isolated islet and β-cell line studies have demonstrated the ability of β-cells to methylate iAs intracellularly (78, 79). The physiological effects of these methylated arsenicals appear to be different from those of iAs. MMA can inhibit mitochondrial function and decrease glucose-induced insulin secretion, even at 5-fold lower concentrations than other arsenicals (80). Since MMA is necessarily created prior to repeated bouts of methylation resulting in dimethylation and trimethylation, it is noteworthy that this intermediate may be more toxic than its precursor or end-products.

The relationship between exposure and tissue-level accumulation as well as the propensity to induce DNA damage vary across organ systems. One study measured iAs accumulation and cytosine methylation in several tissues following 24 weeks of iAs administration (41). Relative to the lung, kidney, heart, and spleen, the pancreas accumulated less iAs as a function of exposure level and displayed a resistance to the iAs-induced 5-hydroxymethylation events observed in these other tissues. Despite this apparent resistance, the pancreas itself was smaller after adjusting for body weight in iAs-exposed mice, a phenomenon also observed by other groups (50, 52), raising the possibility that the organ may possess a unique resistance to iAs accumulation, but also a unique susceptibility to the effects of iAs exposure.

MODEL SYSTEM EVIDENCE FOR PANCREATIC β-CELL INVOLVEMENT

The data are mixed in animal models of iAs-induced metabolic dysfunction regarding the relative contributions of insulin-secretory vs. insulin-sensitivity factors in the development of glucose intolerance (Table 1). Impairments in pancreatic (41, 50–52, 54–56, 68, 69) and hepatic (48, 55, 59, 61–63, 66) function have been implicated. Insulin sensitivity, however, has been reported to increase (44), decrease (43, 47, 49, 53), or remain unchanged (44, 47, 50) in sex-specific or diet-specific manners, making the integration of this particular endpoint across studies more difficult. It is worth noting, however, that where insulin sensitivity was reported to increase, this was on a background of already-impaired diet-induced glucose intolerance in which Paul et al also reported both lower circulating insulin, lower adiposity, and lower HOMA-IR in the high-fat diet, iAs-treated group vs. high-fat diet controls. In this study as well as others, a reduction in circulating insulin was reported either following fasting or during a glucose tolerance test (44, 46, 50, 57–60, 64, 74, 77–80). In consideration of the studies examined here, it appears that a primary defect in β-cell function precedes the development of glucose intolerance, which may or may not include a component of insulin resistance. IAs may be protective against insulin resistance in diet-induced obesity while simultaneously impairing pancreatic β-cells, a model that deviates from the canonical type I, type II, or gestational forms of diabetes (81). Replication will be critical for reconciling the differences between insulin sensitivity outcomes in these recent animal models of iAs exposure.

In β-cell lines there is a consistently observed reduction in GIIS associated with chronic, sub-toxic iAs exposure (Table 2), although there is some disagreement in the literature about whether basal insulin secretion is altered by iAs exposure (23, 28, 42, 82, 83). Some of these differences may be related to the model systems employed. It is notable that, in cell line studies, the dosages and times used to study the effects of iAs exposure have varied dramatically. Timeframes utilized for studying the effects of GIIS have ranged from 1 to 144 h, with higher concentrations evaluated on shorter time courses, such as 5 mM iAs exposure for 60 min (22) or over 100 µM for 90 min (86, 87), and lower doses for longer time courses, such as 50 nM for 96 h (28). The lowest concentration thus far reported to significantly affect GIIS in cell culture studies is 0.1 µM (23).

Significant effects of iAs on insulin gene expression and transcription factor activities have also been reported. A decrease of MafA transcriptional activity regulated by miR-149 may contribute to the iAs-induced impairment of β-cell function (72). Such decreases in MafA, Pdx1, or Nkx6.1 are generally considered indications of β-cell failure or de-differentiation (91). Other model systems of iAs exposure, in which gene expression levels of these transcription factors were measured, did not report such a de-differentiation phenotype (23). One study even observed an increase in nuclear PDX1 following exposure to iAs, suggestive of increased insulin gene expression (88). DNA binding of the β-cell specific transcription factor UIF1, which promotes insulin
Animal model	As species	Dose (route)	Time	Pancreatic As Accumulation	Glucose tolerance effects	Insulin effects	Pancreatic endpoints	General findings	References	
Wistar rat (m)	As₂O₃	17.75–100 mg/L (dw)	8 wk	NR	OGTT glucose tolerance delayed	Fasting blood insulin ↑	NR	Oxidative stress induces mtDNA dysfunction	(42)	
Wistar rat (m)	As III	1.7 mg/kg (og)	2x daily 90 d	Yes	Fasting glucose ↑ HOMA-IR ↑	Fasting insulin ↑ Glucose-insulin ratio ↓ Glucagon staining ↓ Insulin IHC signal ↓	Insulin during first 15 min of OGTT in high-fat diet group As group was lower than HFD controls	Water intake ↓ HFD iAs adiposity was lower than HFD controls	(43)	
CS7BL/6 mouse (m)	As III	25–50 ppm (og)	20 wk	Yes	FBG in HFD + iAs group was lower than HFD controls. OGTT AUC for iAs exposed mice in high-fat diet group ↑ HOMA-IR in HFD + iAs group was lower than HFD controls	NR	(Continued)			
LM/Bc/Fnn mouse (gf)	Na₂HAsO₄	9.6 mg/kg (ip)	2 doses (G7.5 and G8.5)	NR	FPG ↑ Glucose tolerance ↓ (IPGTT) ↑ RPG ↑	Fasting insulin ↑ IPGTT insulin at 30 min ↑	NR	NAC, methionine, sodium selenite,	(45)	
C57BLKS/J db/db mouse (m)	As₂O₃	5 ppm (dw)	6 wk	Yes	FPG ↑ Glucose tolerance (ogtt) ↓	Fasting insulin ↓				
Sprague-Dawley rat (mf)	Mix As + Pb* 30 ppb As, 53 ppb Pb (dw)	3 mo	NR							
CS7BL/6J mouse (m)	As III	3 mg/L (dw)	16 wk	NR	HOMA-IR ↑ Normal mice glucose tolerance ↑ (OGTT) Db/db mice glucose tolerance ↓	FBI ↑	Normal mice HOMA-β ↑ As worsened inflammation		(46)	
Sprague-Dawley rat (gf, o)	As III	5–50 mg/L (dw)	8 wk + gestation from day 1	NR	Gestational BG ↓ IPGTT ↓ HOMA-IR ↑ Gestational FPG ↑					
Sprague-Dawley rat (mf)	As III	5–50 mg/L (o)	8 wk + gestation from day 1	NR	mFPG ↑ fBG IPGTT ↓ fHOMA-IR ↓ mHOMA-IR ↓ mBG IPGTT ↓	Mf insulin IPGTT ↓				
CS7BL/6J mouse (m)	As III	50 mg/L (dw)	8 wk	NR	Glucose tolerance (IPGTT) ↓ HOMA-IR ↓	IPGTT 1st phase Insulin vs. glucose ↓ Pancreas mass ↓	Water intake ↓ Circadian feeding pattern disrupted	(50)		
CS7BL/6J mouse (mf)	As II	1–4 mg/L (dw)	12 wk	NR	NR	Harvested islet GILS ↓ HFD + As FPI ↓ Pancreas mass ↓ HFD + As islet diameter ↓			(51)	
NMRI mouse (m)	As II	25–50 ppm (dw)	20 wk	NR	HFD-fed mice + As FPG ↓ HFD-fed mice + As HFD + As HOMA-IR ↓ Glucose tolerance in HFD + As group vs. HFD only (OGTT) ↓					
CS7BL/6J mouse (mf)	As II	100–1000 ppb (dw)	1 wk before and 1st wk of pregnancy	NR	Male prenatal As exposure adulthood FPG ↑ Male prenatal As exposure adulthood HOMA-IR ↑	FPI ↑				

(Continued)
Animal model	As species	Dose (route)	Time	Pancreatic As Accumulation	Glucose tolerance effects	Insulin effects	Pancreatic endpoints	General findings	References
Albino rat (m)	As$_{2}$O$_{3}$	3 mg/kg (og)	Daily, 30 days	NR	NR	NR	Islet size ↓	Folic acid intervention	(54)
Albino Wistar rat (m)	As$_{3}$	1.5 or 5 mg/kg (og)	5 wk	NR	≥ 1.5 mg/kg FBG ↑	NR	Antioxidant activities ↑	Zn and Cu ↓	(55)
Wistar rat (gf, o)	As$_{2}$O$_{3}$	2–8 mg/kg (og)	G6 to postnatal day 42	NR	NR	Islet size ↓	Taurine intervention	(56)	
CS7BL/6 mouse (m)	As$_{3}$	10, 25, 50 ppm (dw)	8 wk	Yes	FPG ↑	NR	No	NR	(57)
CS7BL/6 mouse (m)	As$_{3}$	2.5, 5 ppm (dw)	8 wk	Yes	FPG ↑	NR	No	NR	(57)
C57BL/6 mouse (m)	As$_{3}$	10 mg/kg (ip)	Bolus	NR	Fasting glucose ↓	NR	No	NR	(58)
Wistar rat (m)	Diphenylarsinic acid (DPAA)	3 mg/kg (og)	Bolus	Yes	NR	NR	Islet size ↓	(60)	
Swiss abino mouse (NR)	As$_{3}$	3 mg/kg (og)	Daily for 12 wk	Yes	FPG ↑	NR	Pancreas mass ↓	As accumulated in every organ examined	(41)
Sprague Dawley rat (m)	NaAsO$_{2}$	0.5–10 ppm (dw)	8 wk	Yes	NR	NR	Water consumption ↓	As3mt-KO mice + As water intake ↓	(60)
C57BL/6J mouse (m)	As$_{3}$	15–50 mg/L (dw)	4 wk	Yes	Single dose or 7d iAs, fasting blood glucose ↑	NR	No	NR	(61)
CD rat (m)	As$_{3}$	5–10 mg/kg (ip)	Bolus or daily for 7 d	Single dose or 7d iAs, OGTG blood glucose ↑	NR	No	Adrenalleyoma partially prevented glucose intolerance after iAs	(62)	
SD rat (m)	As$_{3}$	0.1–1 mg/kg (ip)	Bolus	NR	FPG ↑ (rats were hypoglycemic)	NR	Kidney PDH activity ↓	(36)	
B6C3F1 mouse (m)	As$_{3}$	0.1–1 mg/kg (ip)	Bolus	NR	FPG ↑	NR	Kidney PDH activity ↓	(36)	
Golden-Syrian hamster (m)	As$_{3}$	0.1–1 mg/kg (ip)	Bolus	NR	FPG ↑	NR	Kidney PDH activity ↓	(36)	
Hartley guinea pig (m)	As$_{3}$	1 mg/kg (ip)	Bolus	NR	FPG ↑	NR	Kidney PDH activity ↓	(36)	
Wistar rat (m)	As$_{3}$	5.55 mg/kg (ip)	Daily for 21 d	NR	FPG ↑ (rats were hypoglycemic)	NR	Liver glycogen ↓	Methionine intervention	(63)
Wistar rat (m)	As$_{3}$	5.55 mg/kg (ip)	Daily for 30 d	NR	FPG ↑ (rats were hypoglycemic)	NR	Oral NAC intervention	(64)	
CS7BL/6 mouse (m)	As$_{3}$	25–50 ppm (dw)	8 wk	Yes	FPG ↑	NR	Water consumption ↓	(65)	
Wistar rat (m)	As$_{3}$	5 mg/kg (og)	Daily for 30 d	NR	FPG ↑	NR	Curcumin intervention	(66)	
ICR mouse (f)	As$_{2}$O$_{3}$	0.05–0.5 mg/kg (dw)	2–6 wk	NR	As only group became glucose intolerant	0.05, 0.5 μM AS, 2, 4, 6 wk FPI ↓	Liver glycogen ↓	Estradiol intervention	(59)
gene expression, has also been observed to increase in response to iAs, suggesting a mechanism by which iAs may affect insulin content (89). Additional replication may therefore be warranted to identify which features of transcription factor activities are robust and translatable to human exposure.

INFLAMMATION AND REACTIVE-OXYGEN SPECIES (ROS)

ROS accumulation is a hallmark of iAs toxicity. There is strong evidence from both *in vivo* and *in vitro* studies suggesting that iAs damages pancreatic tissue, observed as elevated pro-inflammatory genes (48), pancreatic nitric oxide (54, 55) glutathione levels (43, 55), endoplasmic reticulum stress (51), and autophagy (51, 56). More severe phenotypes have been observed with increased apoptosis (46), decreased islet size (54), accumulation of pro-inflammatory cells (68), and detection of pancreatic adenomas (69). The generalized cellular responses to iAs-induced ROS have been reviewed in detail elsewhere (92). Markers of ROS have been observed at the lowest concentrations that also affect GIIS (28). Interestingly, arsenic trioxide (As$_3$O$_3$) appears to increase ROS production, apoptosis, and TUNEL staining while decreasing PPARy in the INS-1 cell line. Restoration of normal ROS production by taurine administration or

TABLE 1 | Continued

Animal model	As species	Dose (route)	Time	Pancreatic As Accumulation	Glucose tolerance effects	Insulin effects	Pancreatic endpoints	General findings	References		
Sprague- Dawley rat (m)	As$_3$O$_3$	8 mg/kg (ip)	1 dose	NR	IPGTT BG ↑	NR	NR	NAC improved glucose tolerance	(67)		
Sprague- Dawley rat (m)	As$_3$O$_3$	20–200 ppm (dw)	20 wk	NR	FBG φ	IPGTT BG φ	NR	NR	Humic acid also decreases FPI	(68)	
CD-1 ICR mouse (m)	As$_3$O$_3$	10–40 mg/L (dw)	3–12 wk	NR	5–12 wk FPI ↓	5 wk inflammatory cells ↑ and acinar cells ↓					
B6C3F1 mouse MMA (mf)	MMA	10–400 ppm (food)	2 yr	NR	FBG φ	NR	Adenoma/carcinoma ↑	Water consumption ↑	(69)		
Fischer 344 rat (mf)	MMA	50–1,300 ppm (food)	2 yr	NR	FBG φ	NR	Adenoma ↑	Water consumption ↑	(69)		
Wistar rat (mf)	As$_3$O$_3$	2–8 mg/kg (og)	Daily for 56 d	NR	NR	ROS ↑	Mitophagy ↓	Taurine restored mitophagy	(70)		
Wistar rat (mf)	As$_3$O$_3$	2–8 mg/kg (og) (gf)	Daily post-weaning for 14 d	NR	NR	Irregular structures ↑	Inflammasome ↑	Taurine restored structure and reduced inflammation	(71)		
CD1 mouse (m)	As$_3$O$_3$	20–40 ppm (dw)	52 wk	NR	OGTT glucose AUC ↑	Fasting insulin ↓	OGTT insulin fold-change ↓	Islet GIIS ↓	Islet insulin content ↓	(72)	
ICR mouse (m)	As$_3$O$_3$	10 ppb	G10–G18	NR	IPGTT φ	NR	NR	BPA + iAs IPGTT AUC ↓	(73)		
Balb/C mouse (m)	As$_3$O$_3$	5 μM	6 wk (dw)	Yes	FPG ↑	NR	Pancreas morphology ↑	Pancreas miR-2909 ↓		(74)	
C57BL/6J mouse	As$_3$O$_3$	100 ppb	6–37 wk	NR	FBG φ	Insulin tolerance φ	FPI φ	NR	Sex-specific enhanced iAs metabolism with folate sufficiency	Liver ROS ↑	(75)
NMRI mouse (m)	As$_3$O$_3$	50 ppm	20 wk	NR	HFD FBG ↓	HFD HOMA-IR ↓	NO and HFD FSI ↓	NO and HFD HOMA-β ↓	Liver lipid peroxidation ↑	(76)	

*Chemical identities of iAs were not described and samples were directly taken from a drinking water source.
TABLE 2 | Ex vivo models of iAs exposure.

Model	Tissue type	As species	Dosage	Time	Insulin content	Insulin secretion	General findings	References
Wistar rat (m) Islets	As$_{2}$O$_{3}$	NR	NR	Basal	O$_2$ consumption ↓	(42)		
rat	INS-1	As$_{III}$	0.05–0.5 µM	96 h	Insulin mRNA ↑	Basal ↑	H$_2$O$_2$ scavenging ↑	(28)
C57BL/6J mouse (m) Islets	As$_{III}$	0.1–2 µM	48 h	0.1–2 µM	2 µM GiLS ↓	2 µM KIIS ↓	iAs$_{III}$ accumulated in islets after 48 h exposure	(78)
rat	INS-1	MA$_{III}$	0.1–2 µM	2–24 h	Basal ↑	4+ h, 2 µM GiLS ↓	≥ 0.2 µM Mito respiration impaired	(80)
IT6 mouse MIN6-K8	As$_{III}$	0.1–2 µM	72 h	NR	Basal ↑	1, 5 µM GiLS ↓	O$_2$ consumption ↑	(23)
							Dependent on intact 5-HT metabolism	
							5-HT metabolite	
							ROS-scavenging genes and protein ↑	
							LD$_{50}$ = 2.5 µM	(68)
							5–20 µM 2, 4 h ROS ↑	
							Glucose-induced Ca$^{2+}$ ↓	(62)
							Glucose-induced SNAP-25 proteolysis ↓	
							Cell cycle arrested	(83)
							5 µM Insulin mRNA ↓	
							Calpain activity ↑	(46)
							ROS ↑	
							Supplementation with NAC decreased apoptosis	(79)
							iAs accumulates as iAs and MMA Antioxidant gene mRNA ↑	
							ROS-scavenging genes and protein ↑	(26)
							≥ 2.5 µM, 2, 8 or 24 h ATP ↓	
							LD$_{50}$ = 2.5 µM	
							5–20 µM 2, 4 h ROS ↑	
							Glucose-induced H$_2$O$_2$ ↓	(26)
							Basal H$_2$O$_2$ ↑	
							Glucose-stimulated H$_2$O$_2$ ↓	(80)
							2 µM OCR ↓	
							≥ 2 µM Viability ↓	(64)
							≥ 2 µM Autophagosomes ↑	
							≥ 1 µM LC3II protein ↑	
							NAC intervention	
							≤ 2 µM Mito respiration φ	(80)
Rat	INS-1	DmA$_{III}$	2–10 µM	2–24 h	Basal ↑	2 µ M GiLS ↓	≥ 2.5 µM AS is cytotoxic	(85)
Rat	INS-1	As$_{III}$	2.5 µM	12–72 h	Basal ↑	2 µ M GiLS ↓	L3/CytC apoptosis	(86)

(Continued)
TABLE 2 | Continued

Model	Tissue type	As species	Dosage	Time	Insulin content	Insulin secretion	General findings	References
Rat	INS-1	AsIII	4 µM	3–24 h	NR	NR	12, 24 h LC3-II protein ↑; 24 h p62 protein ↓; 6–24 h ER stress ↑	(51)
Rat	INS-1	AsIII	5 µM	6–15 h	NR	Basal ↑	Nr2 activation ↑; Antioxidant activity ↑; Antioxidant gene + protein expression ↑; H2O2 accumulation ↓	(26)
Swiss Albino mouse	1° β-cells	AsIII	10 µM	72 h	NR	NR	72 h, 10 µM ROS ↑; ≥ 50 µM viability ↑; ≥ 100 µM ROS ↑	(59)
NMRI mouse (m)	Islets	AsIII	20–200 µM	90 min	NR	≥ 100 µM GIIS ↓	Metformin pre-treatment protected GIIS	(67)
NMRI mouse (m)	Islets	AsIII	100 µM	90 min	NR	GIIS ↓		
Human	Islets	AsIII	1 mM	30 min	NR	NR	Nuclear PDX1 ↑	(88)
Human	Islets	AsIII	1 mM	15–30 min	NR	NR	UIF1 DNA binding ↑	(89)
IT6 mouse	MIN6	AsIII	1 mM	5–20 min	NR	NR	MAPKAP-K2 activity ↑	(89)
Ob/Ob mouse (m)	Islets	AsV	5 mM	60 min	NR	Basal ↑	Glucose-stimulated O2 consumption ↓	(22)
Rat	INS-1	As2O3	1–4 µM	24 h	NR	NR	Apoptosis ↑; PPARγ ↓; Taurine decreased apoptosis	(70)
Rat	INS-1	As2O3	1–64 µM	24 h	NR	4 µM As2O3 + LPS Basal ↓; As2O3 + LPS GIIS ↓; Taurine partially restored GIIS Inflammasome inhibitors partially restored GIIS ↓	(71)	
IT6 mouse	MIN6	AsIII	1–5 µM	6–48 h	≥2 µM ≥ 24 h insulin content ↓	2 µM ≥ 12 h GIIS ↓	2 µM 48 h mir-149 ↑; Mir-149 knockdown restored GIIS through mafA Mir-149 knockdown restored insulin content	(72)
IT6 mouse	MIN6	AsIII	2 µM	24 h	NR	2 µM 24 h Basal ↑	2 µM 24 h mir-2909 ↑; 2 µM 24 h MatA mRNA ↓; 2 µM 24 h MatA protein ↓; 2 µM 24 h PDX1, C-Jun, UCP2 protein ↑	(74)
Rat	INS-1 832/13	AsIII	1–2 µM	24 h	NR	≥1 µM 24 h GIIS ↓	≥1 µM 24 h XT2 viability ↓; 2 µM 24 h basal and glucose-stimulated OCR ↓ ≥1 µM 24 h maximal OCR ↓	(90)

NR, not reported; m, male; f, female; MMA, monomethylarsenous acid; DMA, dimethylarsenous acid; GIIS, glucose-induced insulin secretion; KIIS, potassium-induced insulin secretion; OCR, oxygen consumption rate.

rescue of PPARγ expression ameliorates the apoptotic and DNA-damaging effects of As2O3 exposure (70). This is in line with similar observations for liver cells lines by the same group (93).

The ROS produced as a result of iAs exposure induce a compensatory increase in gene expression levels for genes regulated by antioxidant response elements (26–28, 94). These genes, which include catalase, superoxide dismutase 1, and superoxide dismutase 2, are critical for reducing otherwise toxic accumulation of ROS, and are positively regulated at the level of transcription by Nrf2 (94, 95). In β-cells specifically, induction of the Nrf2-mediated antioxidant-response program has been shown to protect against iAs-induced toxicity (94). Deletion of the major transcription factor regulating this pathway, Nrf2, in β-cells has been shown to enhance susceptibility to iAs toxicity (79). In the context of β-cell function, this antioxidant activity may actually suppress the normal physiological changes in ROS that β-cells depend on to induce insulin secretion in response to a rise in extracellular glucose (26). In this way, a tradeoff may occur in which β-cells’ survival improves by adaptive upregulation of antioxidant activity, while at the same time glucose-induce insulin secretion is suppressed by the same mechanism (96). That several interventional studies focused on suppressing the antioxidant response successfully ameliorated some of the effects of iAs supports the hypothesis that ROS may be one of the salient, translatable, and addressable features of low-dose, chronic iAs exposure (Table 3) (45, 46, 53, 59, 63, 65, 67, 71, 75, 84, 97).
Although oxidative damage is a common observation following iAs exposure in many different tissues, the implications for ROS accumulation in β-cells may be unique. For instance, a recent meta-analysis of iAs-exposure studies in mice and rats indicated that iAs tends to decrease expression levels of key antioxidant genes (92). These include superoxide dismutase, catalase, and glutathione-peroxidase, among others. This is inverted compared to the response to iAs in β-cells, which manifests as increased expression of antioxidant genes, presumably to limit changes to the cellular redox state (27). This may be because glucose-induced insulin secretion in β-cells is partly mediated by relatively small changes in redox status (26). These cells are so sensitive to ROS that incubation with just 1 μM H₂O₂ affects basal insulin secretion (26), and just 100 μM H₂O₂ significantly decreases viability (98). In stark contrast, 250 μM H₂O₂ is used as a moderate positive control to quantify accumulation of ROS in liver cell lines (99). Thus, this unique sensitivity highlights the need to study the effects of iAs on β-cells directly, and not to rely too heavily on studies in other tissues.

CYTOTOXICITY, AUTOPHAGY, AND THE CELL CYCLE

Indications of cytotoxicity, disrupted autophagy, or apoptosis have been observed in β-cell lines using concentrations of iAs as low as 1 μM, although the minimum threshold for toxic effects vary with cell line and duration of exposure (46, 70,
Reduced viability as measured by reducing potential has been observed in the MIN6 cell line following 24 h exposure to ≥1 µM arsenite (although reducing potential may also be affected by changes to cellular energetics independent of toxicity), with a 50% reduction in viability at approximately 5 µM and activation of the antioxidant-response gene expression program (79). The INS-1 line exposed to iAs for just 24 h showed significantly decreased proliferation at ≥2.5 µM, with decreased mitochondrial membrane potential and increased cytoplasmic cytochrome c, indicative of autophagy (85). This cell line at 1–2 µM iAs exposure also exhibits reduced oxygen consumption capacity and viability (90). Pan et al estimated the IC50 for INS-1 cells to be about 30 µM (85). By comparison, isolated islets exposed to 20–50 µM iAs for 24 h exhibited >50% islet destruction, suggesting that islets, INS-1 cells, and MIN6 cells may be similarly sensitive to the cytotoxic effects of iAs (100).

There is substantial evidence that chronic in vivo iAs exposure disrupts autophagy in other tissues. In one such study, 20 weeks of exposure to 50 ppm iAs in drinking water during high-fat diet administration significantly induced hepatic expression of 17 out of 21 autophagy-related genes examined, with the remaining 4 genes trending toward an increase. This was also accompanied by a significant increase in hepatic lipid peroxidation and ROS accumulation (76). In β-cell lines as well, investigators have observed iAs-induced changes in autophagy (51, 56, 84), often noting enhanced levels of the autophagy marker LC3-II.

There is some debate about whether autophagy induced by iAs in β-cells is mediated by ROS. Some investigators have found that iAs induces autophagy in an ROS-dependent fashion (84). Other groups using non-β-cell lines have shown that autophagy can be activated in the absence of excessive ROS generation, and have therefore concluded that iAs-induced autophagy is ROS-independent (99). That autophagy induction occurs at comparable doses of iAs in other tissues without significant ROS accumulation suggests that perhaps β-cells, while susceptible to ROS, may also be affected by parallel, ROS-independent iAs-induced autophagy. This may be considered an unresolved topic in the field and additional mechanistic investigations at environmentally-relevant concentrations of iAs are warranted.

SEROTONIN METABOLISM

In mouse β-cells and islets, and to a lesser extent in human islets, serotonin regulates glucose-induced insulin secretion and proliferation (101, 102). Several parameters determine the concentration and effects of serotonin in β-cells, including serotonin production, serotonin disposal, and the specific distribution of serotonin receptors (103, 104). IAs exposure was recently observed to enhance serotonin disposal in the MIN6-K8 line by upregulation of the serotonin disposal gene Ugt1a6a. The upregulation phenomenon in response to iAs exposure was replicated in mouse islets, and the same pattern was observed for the human homolog of this gene, UGT1A6, in human islets upon chronic exposure to iAs (23). It is not clear what pathways are responsible for induction of Ugt1a6a, however Ugt1a6a expression is known in other tissues to be regulated by Nrf2 and the aryl hydrocarbon receptor. As Ugt1a6a was previously unappreciated as a regulator of β-cell function, this study highlights how EDCs such as iAs can be utilized to identify novel regulators of glucose-induced insulin secretion. Further study is warranted to evaluate the translatability of this work to animal models and cases of human exposure.

CONSIDERATIONS AND FUTURE DIRECTIONS

Importantly, these studies intersect two major public health crises: chronic arsenic exposure and diabetes. In the past 20 years, substantial supporting evidence for the involvement of disrupted autophagy and oxidative damage as the major mediators of iAs-induced pancreatic β-cell dysfunction, manifesting as altered cell survival and impaired insulin secretion, has been reported both in vivo and in vitro (Figure 1). In more recent years, the concentrations used to study the phenomenon have decreased dramatically, and the lengths of exposure time have increased. These are positive trends for the field and are largely possible as a result of more sensitive analytical methods that are now more widespread. The use of these techniques has enabled the relatively recent discovery that MMA and DMA have different activities ongoing in developing or impoverished nations, it is less likely
that synthetic therapeutic interventions targeting β-cells (without broader applicability to arsenic-independent β-cell function) may find traction at the levels of commercial development and clinical use. Appropriately, interventional studies aimed at improving β-cell resistance to arsenic exposure appear designed in consideration of this fact, mostly utilizing relatively inexpensive nutritional supplementation that may also have more systemic benefits to arsenic-exposed individuals (Table 3). Thus, the model system research presented here provide evidence that optimal nutrition rich in natural antioxidants may improve β-cells’ resistance to chronic arsenic exposure in vivo.

The problem of arsenic exposure through contaminated drinking water is ultimately addressable at the level of public policy. Though diabetes itself may feel less immediate than acutely-life-threatening afflictions associated with arsenic exposure (such as cancer, cardiovascular disease, and nephropathy), highlighting the diabetes link provides yet another mechanism by which the scientific community can provide lawmakers and policy officials with justification to prioritize access to clean and safe water. That population-level arsenic exposure has been a known problem for more than 30 years in Bangladesh alone, with other pockets of exposure around the globe, reveals a global failure of institutions to address the needs of the impoverished and exposed. As water treatment technology and infrastructure are developed to address the pressing dangers of arsenic exposure, they will undoubtedly reduce economic and inertial barriers to the further improvement of water quality. Future studies and research communications might emphasize the preventability of chronic arsenic exposure as a point of discussion in the hopes that the issue can be continually brought to the forefront of public concern.

AUTHOR CONTRIBUTIONS

CC and SS conceived, authored, revised, and approved the manuscript and take responsibility for its publication.

FUNDING

CC received financial support from the Japan Society for the Promotion of Science Standard Term Postdoctoral Fellowship for Overseas Researchers. SS received financial support from the Japan Society for the Promotion of Science Grant-in-Aid for Scientific Research (S) 24229007 and MSD K.K. Japan.

ACKNOWLEDGMENTS

The authors would like to thank Robert M. Sargis and Daniel Ruiz for their productive feedback and insights.

REFERENCES

1. Cho NH, Shaw JE, Karuranga S, Huang Y, da Rocha Fernandes JD, Ohlrogge AW, et al. IDF diabetes atlas: global estimates of diabetes prevalence for 2017 and projections for 2045. Diabetes Res Clin Pract. (2018) 138:271–81. doi: 10.1016/j.diabres.2018.02.023

2. Seino S, Shibasaki T, Minami K. Pancreatic beta-cell signaling: toward better understanding of diabetes and its treatment. Prog Clin Biol Res. (2010) 86:563–77. doi: 10.2183/pjab.86.563

3. Henquin JC. Regulation of insulin secretion: a matter of phase control and amplitude modulation. Diabetologia. (2009) 52:739–51. doi: 10.1007/s00125-009-1314-y

4. Halban PA, Polonsky KS, Bowden DW, Hawkins MA, Ling C, Mather KJ, et al. β-cell failure in type 2 diabetes: postulated mechanisms and prospects for prevention and treatment. Diabetes Care. (2014) 37:1751–8. doi: 10.2337/dc14-0396

5. Seino S, Shibasaki T, Minami K. Dynamics of insulin secretion and the clinical implications for obesity and diabetes. J Clin Invest. (2011) 121:2118–25. doi: 10.1172/JCI45680

6. Bonini MG, Sargis RM. Environmental toxicant exposures and β-cells (without

7. Singh AP, Goel RK, Kaur T. Mechanisms pertaining to arsenic toxicity. Toxicol Int. (2011) 18:87–93. doi: 10.4103/0971-6580.84258

8. Ratanaike RN. Acute and chronic arsenic toxicity. Postgrad Med J. (2003) 79:391–6. doi: 10.1136/pgmj.79.933.391

9. Finkelman RB, Belkin HE, Zheng B. Health impacts of domestic coal use in China. Proc Natl Acad Sci USA. (1999) 96:3427–31. doi: 10.1073/pnas.96.7.3427

10. Naujokas MF, Anderson B, Ahsan H, Aposhian HV, Graziano JH, Thompson C, et al. The broad scope of health effects from chronic arsenic exposure: update on a worldwide public health problem. Environ Health Perspect. (2013) 121:295–302. doi: 10.1289/ehp.1205875

11. Mauil EA, Ahsan H, Edwards J, Longnecker MP, Navas-Acien A, Pi J, et al. Evaluation of the association between arsenic and diabetes: a National

Toxicology Program workshop review. Environ Health Perspect. (2012) 120:1658–70. doi: 10.1289/ehp.1104579

12. Ravenscroft P, Brammer H, Richards K. Arsenic Pollution: A Global Synthesis. Wiley-Blackwell (2009).

13. Frumkin H. Toxicological Profile for Arsenic. Agency for Toxic Substances and Disease Registry, Agency for Toxic Substances and Disease Registry (2007).

14. Navas-Acien A, Francesconi KA, Silbergeld EK, Guallar E. Seafood intake and urine concentrations of total arsenic, dimethylarsinate and arsenobetaine in the US population. Environ Res. (2011) 111:110–8. doi: 10.1016/j.envres.2010.10.009

15. Johnston RB, Sarker MH. Arsenic mitigation in Bangladesh: national screening data and case studies in three upazilas. J Environ Sci Health A Tox Hazard Subst Environ Eng. (2007) 42:1889–96. doi: 10.1080/10934520701567155

16. Karagas MR. Arsenic-related mortality in Bangladesh. Lancet. (2010) 376:213–4. doi: 10.1016/S0140-6736(10)60102-1

17. Tseng CH, Tai TY, Chong CK, Tseng CP, Lai MS, Lin BJ, et al. Long-term arsenic exposure and incidence of non-insulin-dependent diabetes mellitus: a cohort study in arseniasis-hyperendemic villages in Taiwan. Environ Health Perspect. (2000) 108:847–51. doi: 10.1289/ehp.00108847

18. Lai M-S, Hsieh Y-M, Chen C-I, Shyu M-P, Chen S-Y, Kuo T-L, et al. Ingested inorganic arsenic and prevalence of diabetes mellitus. Am J Epidemiol. (1994) 139:484–92. doi: 10.1093/aje/kwt195

19. Pan WC, Seow WJ, Kile ML, Hoffmann EB, Quamruzzaman Q, Rahman M, et al. Association of low to moderate levels of arsenic exposure with risk of type 2 diabetes in Bangladesh. Am J Epidemiol. (2013) 178:1563–70. doi: 10.1093/aje/kws195

20. Wang SL, Chiu JM, Chen CJ, Tseng CH, Chou WL, Wang CC, et al. Prevalence of non-insulin-dependent diabetes mellitus and related vascular diseases in southwestern arseniasis-endemic and nonendemic areas in Taiwan. Environ Health Perspect. (2003) 111:155–9. doi: 10.1289/ehp.0300773

21. Boquist L, Boquist S, Ericsson L. Structural beta-cell changes and transient hyperglycemia in mice treated with compounds inducing inhibited citric acid cycle enzyme activity. Diabetes. (1988) 37:89–98. doi: 10.2337/diabetes.37.1.89

Frontiers in Endocrinology | www.frontiersin.org 11 June 2019 | Volume 10 | Article 344
22. Ortsächer H, Liss P, Ackerman KE, Bergsten P. Contribution of glycolytic and mitochondrial pathways in glucose-induced changes in islet respiration and insulin secretion. Pflugers Arch. (2002) 444:506–12. doi: 10.1007/s00424-002-0841-9

23. Carmean CM, Yokoi N, Takahashi H, Oduori OS, Kang C, Kanagawa A, et al. Arsenic modulates serotonin metabolism through glucuronidation in pancreatic β-cells. Am J Physiol Endocrinol Metab. (2019) 316:E464–74. doi: 10.1152/ajpendo.00302.2018

24. C-Tseang H. The potential biological mechanisms of arsenic-induced diabetes mellitus. Toxicol Appl Pharmacol. (2004) 197:67–83. doi: 10.1016/j.taap.2004.02.009

25. Wu MM, Chiou HY, Ho IC, Chen CJ, Lee TC. Gene expression of inflammatory molecules in circulating lymphocytes from arsenic-exposed human subjects. Environ Health Perspect. (2003) 111:129–38. doi: 10.1289/ehp.6396

26. P J, Bai Y, Zhang Q, Wu Y, Floereng LM, Daniel K, et al. Reactive oxygen species as a signal in glucose-stimulated insulin secretion. Diabetes. (2007) 56:1783–91. doi: 10.2337/db06-1601

27. Fi J, Zhang Q, Fu J, Woods CG, Hou Y, Corkey BE, et al. ROS signaling, oxidative stress and Nrf2 in pancreatic β-cell function. Toxicol Appl Pharmacol. (2010) 244:77–83. doi: 10.1016/j.taap.2009.05.025

28. Fi J, Woods CG, Yehuda-Shnaidman E, Zhang Q, Wong V, Collins S, et al. Low-level arsenic impairs glucose-stimulated insulin secretion in pancreatic β cells: involvement of cellular adaptive response to oxidative stress. Environ Health Perspect. (2010) 118:364–70. doi: 10.1289/ehp.0901688

29. Thomas DJ. Molecular processes in cellular arsenic metabolism. Toxicol Appl Pharmacol. (2007) 222:365–73. doi: 10.1016/j.taap.2007.02.007

30. Liu Z, Shen J, Carbery JM, Mukhopadhyay R, Agre P, Rosen BP. Arsenite transport by mammalian aquaglyceroporins AQP7 and AQP9. Proc Natl Acad Sci USA. (2002) 99:6053–8. doi: 10.1073/pnas.092131899

31. Lee TC, Ho IC, Chen CJ, Lee TC. Gene expression of inflammatory molecules in circulating lymphocytes from arsenic-exposed human subjects. Environ Health Perspect. (2003) 111:129–38. doi: 10.1289/ehp.6396

32. Fu J, Woods CG, Yehuda-Shnaidman E, Zhang Q, Wong V, Collins S, et al. Low-level arsenic impairs glucose-stimulated insulin secretion in pancreatic β cells: involvement of cellular adaptive response to oxidative stress. Environ Health Perspect. (2010) 118:364–70. doi: 10.1289/ehp.0901688

33. Drobna Z, Styblo M, Thomas DJ. An overview of arsenic metabolism and diabetic effects in four animal species. J Environ Biol. (2013) 34:231–6. doi: 10.1016/j.jenb.2013.01.002

34. Paul DS, Walton FS, Saunders RJ, Stýblo M. Characterization of the impaired glucose homeostasis produced in C57BL/6 mice by chronic exposure to arsenic and high-fat diet. Environ Health Perspect. (2011) 119:1104–9. doi: 10.1289/ehp.1003324

35. Hill DS, Włodarczyk BJ, Mitchell LE, Fennell RH. Arsenate-induced native glucagon concentration and neural tube defects in a mouse model. Toxicol Appl Pharmacol. (2009) 239:29–36. doi: 10.1016/j.taap.2009.05.009

36. Lu TH, Su CC, Chen YW, Yang CY, Wu CC, Hung DZ, et al. Arsenic induces pancreatic β-cell apoptosis via the oxidative stress-regulated mitochondria-dependent and endoplasmic reticulum stress-triggered signaling pathways. Toxicol Lett. (2011) 201:15–26. doi: 10.1016/j.toxlet.2010.11.019

37. Drobna Z, Styblo M, Thomas DJ. An overview of arsenic metabolism and diabetic effects in four animal species. J Environ Biol. (2013) 34:231–6. doi: 10.1016/j.jenb.2013.01.002

38. Watanabe T, Hirano S. Metabolism of arsenic and its toxicological relevance. Toxicol Environ Health Perspect. (2014) 171:102–10. doi: 10.1289/ehp.1307278
state) methyltransferase-knockout mice. *J Environ Sci.* (2016) 49:104–12. doi: 10.1016/j.jes.2016.06.018

61. Ghalghazi T, Ridlington JW, Fowler RA. The effects of acute and subacute sodium arsenite administration on carbohydrate metabolism. *Toxicol Appl Pharmacol.* (1980) 55:126–30. doi: 10.1016/0041-008X(80)90228-8

62. Pal S, Chatterjee AK. Protective effect of methionine supplementation on arsenic-induced alteration of glucose homeostasis. *Food Chem Toxicol.* (2004) 42:737–42. doi: 10.1016/j.fct.2003.12.009

63. Rezaei M, Khodayar MJ, Seydi E, Soheila A, Parsi IK. Acute, but not chronic, sodium arsenite administration on carbohydrate metabolism. *Environ Health Perspect.* (2013) 121:282–8. doi: 10.1289/ehp.1104691

64. Pal S, Chatterjee AK. Protective effect of N-acetylcysteine against arsenic-induced depletion in vivo of carbohydrate. *Drug Chem Toxicol.* (2004) 27:179–89. doi: 10.1080/120103904100015920

65. Paul DS, Hernández-Zavala A, Walton FS, Adair BM, Dedina J, Matousek T, et al. Examination of the effects of arsenic on glucose homeostasis in cell culture and animal studies: development of a mouse model for arsenic-induced diabetes. *Toxicol Appl Pharmacol.* (2007) 220:303–15. doi: 10.1016/j.taap.2007.01.010

66. Yousef MI, El-Demerdash FM, Radwan FM. Sodium arsenite induces biochemical perturbations in rats ameliorating effect of curcumin. *Food Chem Toxicol.* (2008) 46:3506–11. doi: 10.1016/j.fct.2008.08.031

67. Arnold LL, Eldan M, van Gemert M, Capen CC, Cohen SM. Chronic studies evaluating the carcinogenicity of monomethylarsenic acid in rats and mice. *Toxicology.* (2003) 190:197–219. doi: 10.1016/S0300-483X(03)00165-3

68. Zhang Q, Bai J, Yao X, Jiang L, Wu W, Yang L, et al. Taurine rescues the arsenic-induced injury in the pancreas of rat offsprings and in the INS-1 cells. *Biomed Pharmacother.* (2019) 109:815–22. doi: 10.1016/j.biopha.2018.10.015

69. Sun Q, Yang Q, Xu H, Xue J, Chen C, Yang X, et al. miR-149 negative regulatory effect of arsenic and obesity on pancreatic β-cells. *Toxicol Appl Pharmacol.* (2013) 267:11–5. doi: 10.1016/j.taap.2012.12.007

70. Cui Q, Fu J, Hu Y, Li Y, Yang B, Li L, et al. Deficiency of long isoforms of Nrf2 sensitizes MIN6 pancreatic β-cells to arsenite-induced cytotoxicity. *Toxicol Appl Pharmacol.* (2017) 329:87–74. doi: 10.1016/j.taap.2017.05.013

71. Zhang Q, Bai J, Yao X, Jiang L, Wu W, Yang L, et al. Arsenic and methylation inhibit mitochondrial metabolism and glucose-stimulated insulin secretion in INS-1 832/13 β-cells. *Arch Toxicol.* (2018) 92:693–704. doi: 10.1007/s00204-017-2074-y

72. DeFronzo RA, Ferrannini E, Groop L, Henry RR, Herman WH, Holst JJ, et al. Type 2 diabetes mellitus. *Nat Rev Dis Primers.* (2015) 1:15019. doi: 10.1038/nrdp.2015.19

73. Diaz-Villaseñor A, Burns AL, Salazar AM, Sordo M, Hiriart M, Cebrían ME, et al. Arsenite reduces insulin secretion in rat pancreatic beta-cells by decreasing the calcium-dependent calpain-10 proteolysis of SNAP-25. *Toxicol Appl Pharmacol.* (2008) 231:291–9. doi: 10.1016/j.taap.2008.05.018

74. Diaz-Villaseñor A, Sánchez-Soto MC, Cebrían ME, Ostrosky-Wegman P, Hiriart M. Sodium arsenite impairs insulin secretion and transcription in pancreatic β-cells. *Toxicol Appl Pharmacol.* (2006) 214:30–4. doi: 10.1016/j.taap.2005.11.015

75. Xu M, Niu Q, Feng G, et al. Sodium arsenite induces ROS-dependent autophagic cell death in pancreatic β-cells. *Food Chem Toxicol.* (2014) 70:144–50. doi: 10.1016/j.fct.2014.05.006

76. Han M, Wang R, Jiang L, Zhang C, Beck R, Huang MC, et al. Selective and sequential loss of transcriptional factors: a hallmark of cell failure in type 2 diabetes? *J Diabetes Invest.* (2014) 5:359–61. doi: 10.1111/jdi.12212

77. Shirakawa J, Terauchi Y. Selective and sequential loss of transcriptional factors: a hallmark of β-cell failure in type 2 diabetes? *J Diabetes Invest.* (2014) 5:359–61. doi: 10.1111/jdi.12212

78. Xu M, Rui D, Yan Y, Xu S, Niu Q, Feng G, et al. Oxidative damage induced by arsenic in mice or rats: a systematic review and meta-analysis. *Drug Chem Toxicol.* (2016) 299:137–44. doi: 10.1080/0268233X.2016.1235252

79. Díaz-Villaseñor A, Burns AL, Salazar AM, Sordo M, Hiriart M, Cebrían ME, et al. Arsenite reduces insulin secretion in rat pancreatic beta-cells by decreasing the calcium-dependent calpain-10 proteolysis of SNAP-25. *Toxicol Appl Pharmacol.* (2008) 231:291–9. doi: 10.1016/j.taap.2008.05.018

80. Pal S, Chatterjee AK. Possible beneficial effects of melatonin supplementation on arsenic-induced oxidative stress in Wistar rats. *Drug Chem Toxicol.* (2006) 29:423–33. doi: 10.1080/01480540.600837993
Carmean and Seino

98. Meares GP, Fontanilla D, Broniowska KA, Andreone T, Lancaster JR, Corbett JA. Differential responses of pancreatic β-cells to ROS and RNS. Am J Physiol Endocrinol Metab. (2013) 304:E614–22. doi: 10.1152/ajpendo.00424.2012

99. Dodson M, de la Vega MR, Harder B, Castro-Portuguez R, Rodrigues SD, Wong PK, et al. Low-level arsenic causes proteotoxic stress and not oxidative stress. Toxicol Appl Pharmacol. (2018) 341:106–13. doi: 10.1016/j.taap.2018.01.014

100. Yang B, Fu J, Zheng H, Xue P, Yarborough K, Woods CG, et al. Deficiency in the nuclear factor E2-related factor 2 renders pancreatic β-cells vulnerable to arsenic-induced cell damage. Toxicol Appl Pharmacol. (2012) 264:315–23. doi: 10.1016/j.taap.2012.09.012

101. Ohta Y, Kosaka Y, Kishimoto N, Wang J, Smith SB, Honig G, et al. Convergence of the insulin and serotonin programs in the pancreatic β-cell. Diabetes. (2011) 60:3208–16. doi: 10.2337/db10-1192

102. Ohara-Imaizumi M, Kim H, Yoshida M, Fujiwara T, Aoyagi K, Toyofuku Y, et al. Serotonin regulates glucose-stimulated insulin secretion from pancreatic β cells during pregnancy. Proc Natl Acad Sci USA. (2013) 110:19420–5. doi: 10.1073/pnas.1310953110

103. Almaça J, Molina J, Menegaz D, Pronin AN, Tamayo A, Slepak V, et al. Human beta cells produce and release serotonin to inhibit glucagon secretion from alpha cells. Cell Rep. (2016) 17:3281–91. doi: 10.1016/j.celrep.2016.11.072

104. Kim H, Toyofuku Y, Lynn FC, Chak E, Uchida T, Mizukami H, et al. Serotonin regulates pancreatic beta cell mass during pregnancy. Nat Med. (2010) 16:804–8. doi: 10.1038/nm.2173

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2019 Carmean and Seino. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.