Introduction

Although eosinophils were one of the first types of leukocytes to be described, their physiologic and pathologic functions remain poorly understood. After development from hematopoietic progenitors, mature eosinophils circulate for less than a day before homing to the gastrointestinal tract, thymus, mammary glands, or uterus, where they are thought to function in antigen presentation, T cell polarization, thymocyte selection, mammary gland development, and reproduction [1]. Inflammation triggers increased production of eosinophils in the bone marrow and recruitment of these eosinophils to the site of inflammation, where they regulate T cell responses and directly interact with pathogens through the release of inflammatory granule proteins [1].

For many years, studies have suggested that eosinophils function in the clearance of helminth parasites; however, recent studies suggest that they may instead promote the survival of certain helminthes [2,3]. Accumulating evidence points to a role for eosinophils in the clearance of bacterial and viral pathogens; however, these functions can result in pathology in the lung [4].

In addition to these proposed functions in promoting immunity and maintaining homeostasis, eosinophils have been implicated in numerous pathological states, including allergy, asthma, and gastrointestinal disease. The mechanisms by which eosinophils mediate these diseases remain unclear; however, developing strategies to deplete or inhibit eosinophils is a subject of intense research.

Most current anti-eosinophil therapies function by decreasing eosinophil numbers at steady state. This is achieved by inhibiting eosinophil development (interferon-γ, anti-IL-5 monoclonal antibody therapy) or eosinophil survival (corticosteroids, anti-IL-5 monoclonal antibody therapy) [5]. Corticosteroids, which remain the most effective and most commonly used therapy in eosinophil-mediated diseases, act on many types of cells and thus have toxic effects [5]. Therapies that target IL-5 or IL-5R, such as mepolizumab, reslizumab, and benralizumab, are specific, but their efficacy appears to vary widely in different subgroups of patients [5]. Moreover, despite the decreases in circulating eosinophils that have been observed in clinical trials of these drugs, many patients display residual tissue eosinophilia [5].

Importantly, because these drugs act on both inflammatory eosinophils that have accumulated in peripheral tissues and eosinophils involved in homeostatic processes in the gut, thymus, and reproductive organs, the effects of these therapies on the beneficial functions of eosinophils must be considered.

Another class of eosinophil-targeted therapies functions by inhibiting eosinophil recruitment to peripheral tissues. These drugs, which target adhesion molecules, chemokines, and their receptors, have shown limited efficacy in clinical trials, and require phenotypic and genotypic screening to identify patients who are likely to respond [5].

Because the current therapies either work only in a subset of patients or deplete eosinophils not involved in inflammatory processes, a new approach is required. To effectively target pathogenic eosinophils without depleting eosinophils performing beneficial functions requires a better understanding of signals that regulate eosinophil survival under homeostatic and inflammatory conditions.

TNF-α, a pleiotropic cytokine that can mediate cell death or cell survival and proliferation depending on cell type and environ-
c-FLIP protects eosinophils from TNF-α-mediated death in vitro

To address the role of c-FLIP in eosinophil survival, we generated BMDEs from c-FLIP^f/f ER-Cre bone marrow, allowing us to delete c-FLIP in a highly pure eosinophil population in vitro (Figure 1A). Because these cells express the tamoxifen-inducible ER-Cre recombinase, treatment with 4-hydroxy-tamoxifen (4-OHT) results in deletion of the loxP-flanked c-FLIP alleles (Table 1). In the absence of stimulation, 4-OHT-treated eosinophils displayed no survival defect compared to vehicle-treated controls; however, TNF-α stimulation resulted in a ~2-fold increase in apoptosis in c-FLIP-deleted BMDEs (Fig. 2A, B).

To compare the roles of the two c-FLIP isoforms in protecting eosinophils from TNF-α-mediated cell death, we performed the same experiment in BMDEs generated from c-FLIP^f/f ER-Cre mice expressing an isoform-specific bacterial artificial chromosome (BAC) transgene (c-FLIP^f/f ER-Cre S Tg^s), which results in c-FLIPL-deficient cells, or c-FLIP^f/f ER-Cre L Tg^s, which results in c-FLIPS-deficient cells (Table 2). Interestingly, c-FLIPL-deficient eosinophils displayed increased apoptosis upon TNF-α stimulation, but c-FLIPS-deficient eosinophils died at similar rates to unstimulated controls (Fig. 2A, B). These data demonstrate that the c-FLIPL isoform is required to prevent TNF-α-mediated eosinophil death in vitro.

c-FLIP is required for eosinophil survival during inflammation in vivo

We next examined the role of c-FLIP in promoting eosinophil survival in vivo using the c-FLIP^f/f Lysm-Cre mouse model, which lacks the expression of both c-FLIPL and c-FLIPS in myeloid cells. c-FLIP^f/f Lysm-Cre mice display a complex phenotype characterized by a loss of multiple macrophage populations and secondary neutrophilia [12]; however, the eosinophil population has not previously been studied in these mice.

Under steady-state conditions, few eosinophils can be detected in the blood of wild type mice, as the vast majority of these cells reside within the tissues. Indeed, in wild type (c-FLIP^f/f) mice, we detected a small but distinct eosinophil population, defined as CD11b^{hi}Gr1^{int}CCR3⁺, which results in c-FLIPL-deficient cells, or c-FLIP^f/f Lysm-Cre L Tg^s, which results in c-FLIPS-deficient cells (Table 2). Interestingly, c-FLIPL-deficient eosinophils displayed increased apoptosis upon TNF-α stimulation, but c-FLIPS-deficient eosinophils died at similar rates to unstimulated controls (Fig. 3A, B). Similar to our findings in unstimulated BMDEs, the loss of c-FLIP did not affect the number of circulating eosinophils in vivo (Fig. 3A, B).

To study the function of c-FLIP in eosinophils during inflammation, we employed the thioglycollate-elicited peritonitis model. At steady state, the peritoneum contains a small number of eosinophils from a pro-apoptotic signal to a pro-survival signal in eosinophils.

Indeed, we report for the first time that eosinophils express c-FLIP, and c-FLIP expression is upregulated upon TNF-α stimulation. Although the deletion of c-FLIP has no effect on eosinophil survival in the absence of inflammatory signals, c-FLIP is required for the survival of TNF-α-stimulated eosinophils in vitro and in vivo. Together, our data reveal a differential requirement for c-FLIP in unstimulated and inflamed eosinophils. Future research in human eosinophils will reveal whether c-FLIP is a relevant target for anti-eosinophil therapies.

Results
TNF-α upregulates c-FLIP in eosinophils

Previous studies showed that inhibiting NF-κB activity or protein synthesis converted TNF-α from a pro-survival signal to a pro-apoptotic signal in eosinophils [6,7]. Because NF-κB activation upregulates the expression of the anti-apoptotic protein c-FLIP in many cell types [8,9,10,11], we hypothesized that TNF-α stimulation may upregulate c-FLIP in eosinophils. Due to the paucity of circulating eosinophils in vivo, we examined the mRNA expression of c-FLIP in bone marrow-derived eosinophils (BMDEs) from wild type mice by qPCR (Fig. 1A, B). We detected the expression of c-FLIP mRNA in unstimulated BMDEs, and treatment with TNF-α resulted in a 50% increase in c-FLIP expression (Fig. 1B). Importantly, these data provide the first evidence that eosinophils express c-FLIP [13]. Moreover, the upregulation of c-FLIP in TNF-α-stimulated cells suggests that c-FLIP may function as the molecular switch that converts TNF-α from a pro-apoptotic signal to a pro-survival signal in eosinophils.

To compare the roles of the two c-FLIP isoforms in protecting eosinophils from TNF-α-mediated cell death, we performed the same experiment in BMDEs generated from c-FLIP^f/f ER-Cre mice expressing an isoform-specific bacterial artificial chromosome (BAC) transgene (c-FLIP^f/f ER-Cre S Tg^s), which results in c-FLIPL-deficient cells, or c-FLIP^f/f ER-Cre L Tg^s, which results in c-FLIPS-deficient cells (Table 2). Interestingly, c-FLIPL-deficient eosinophils displayed increased apoptosis upon TNF-α stimulation, but c-FLIPS-deficient eosinophils died at similar rates to unstimulated controls (Fig. 2A, B). These data demonstrate that the c-FLIPL isoform is required to prevent TNF-α-mediated eosinophil death in vitro.

Figure 1. TNF-α upregulates c-FLIP in BMDE. A: Representative cytopsin of BMDE. B: c-FLIP expression was measured by qPCR in WT BMDE before and after stimulation with 50 ng/ml TNF-α for 24 h. The data were obtained in four independent experiments. **, p<0.01 (Student’s t-test). doi:10.1371/journal.pone.0107724.g001

PLOS ONE | www.plosone.org 2 October 2014 | Volume 9 | Issue 10 | e107724
Figure 2. c-FLIP_L protects BMDE from TNF-α-induced apoptosis. A-B: BMDE from c-FLIP^{f/f} Lysm-Cre, c-FLIP^{f/f} Lysm-Cre S Tg⁺, or c-FLIP^{f/f} Lysm-Cre L Tg⁺ mice were cultured with 4-OHT or EtOH for 4 days and then stimulated or not with 50 ng/ml TNF-α for 24 h. Apoptosis rates were determined by measuring the percent of Annexin V⁺/7AAD⁺ cells within the CD11b⁺CCR3⁺ population by flow cytometry. Representative FACS plots are shown in A. Numbers indicate the frequency of Annexin V⁺/7AAD⁺ eosinophils in each sample. B: The effect of TNF-α on apoptosis was determined by dividing the percent Annexin V⁺/7AAD⁺ cells in each TNF-α-treated sample by that in the paired control sample. The data were obtained in three independent experiments. Error bars represent standard deviations. *, p<0.05; **, p<0.01 (Student’s t-test). C: Frequency of Annexin V⁺ BMDE with (right) or without (left) treatment with anti-Fas antibody. Filled red histograms represent 4-OHT-treated c-FLIP^{f/f} cells, and open blue histograms represent 4-OHT-treated c-FLIP^{f/f} ER-Cre cells.

doi:10.1371/journal.pone.0107724.g002

Table 1. Summary of mouse genetic models used for in vitro experiments.

Genotype	Endogenous c-FLIP status	Cre expression	BAC Transgenes	Before 4-OHT treatment	After 4-OHT
c-FLIP^{f/f}	Both endogenous c-FLIP alleles flanked by LoxP sites.	No Cre recombinase.	None.	Wild type.	Wild type.
c-FLIP^{f/f} ER-Cre	Tamoxifen (4OHT)-inducible Cre recombinase expressed in all cells				Completely lack c-FLIP.
c-FLIP^{f/f} ER-Cre c-FLIPL BAC Tg⁺	c-FLIPL isoform-specific BAC transgene expressed in all cells				Express only c-FLIPL.
c-FLIP^{f/f} ER-Cre c-FLIPS BAC Tg⁺	c-FLIPS isoform-specific BAC transgene expressed in all cells				Express only c-FLIPS.

doi:10.1371/journal.pone.0107724.t001
leukocytes, most of which are macrophages and B cells. Following intraperitoneal injection of thioglycollate, peritoneal inflammation results in an early influx of neutrophils that is followed by the death of the resident large peritoneal macrophage population, an increase in small peritoneal macrophages, clearance of the infiltrated neutrophils, and an influx of eosinophils by day 3 post-injection [14]. We thus assessed the absolute number of peritoneal eosinophils in c-FLIPf/f and c-FLIPf/f Lysm-Cre mice by flow cytometry on day 3 post-injection. In contrast to our observations in c-FLIPf/f Lysm-Cre mice, neutrophilia, decreased body weight, and splenomegaly, were secondary to the loss of macrophages observed in these mice [12]. We therefore considered the possibility that the loss of eosinophils in c-FLIPf/f Lysm-Cre mice was also a secondary effect of the lack of macrophages. To address this question, we used a mixed bone marrow chimera system in which lethally irradiated wild type mice received either c-FLIPf/f Lysm-Cre bone marrow or a 1:1 mixture of congenically differentated bone marrow [15], c-FLIP expression is required for eosinophils to survive in peripheral tissues.

We previously reported that the majority of the defects observed in c-FLIPf/f Lysm-Cre mice, including neutrophilia, decreased body weight, and splenomegaly, were secondary to the loss of macrophages observed in these mice [12]. We therefore considered the possibility that the loss of eosinophils in c-FLIPf/f Lysm-Cre mice was also a secondary effect of the loss of macrophages. To address this question, we used a mixed bone marrow chimera system in which lethally irradiated wild type mice received either c-FLIPf/f Lysm-Cre bone marrow or a 1:1 mixture of congenically differentated bone marrow [15], c-FLIP expression is required for eosinophils to survive in peripheral tissues.

Genotype	Endogenous c-FLIP status	Cre expression	BAC Transgenes	Other gene deletions	Myeloid cells	Non-myeloid cells
c-FLIPf/f	Both endogenous c-FLIP alleles flanked by LoxP sites.	No Cre recombinase.	None.	None.	Wild type.	Wild type.
Lysm-Cre	Cre recombinase expressed in myeloid cells; endogenous c-FLIP deleted in myeloid cells in vivo.	None.	None.	Wild type.	Wild type.	
c-FLIPf/f Lysm-Cre	c-FLIP, isofrom-specific BAC transgene expressed in all cells.	Express only c-FLIP.	Wild type.			
c-FLIPf/f Lysm-Cre c-FLIPf/f BAC Tg	c-FLIP, isofrom-specific BAC transgene expressed in all cells.	Express only c-FLIP.	Wild type.			
c-FLIPf/f Lysm-Cre c-FLIPf/f BAC Tg	c-FLIP, isofrom-specific BAC transgene expressed in all cells.	Express only c-FLIP.	Wild type.			
c-FLIPf/f Lysm-Cre TNF-α−/−	None.	TNF-α knocked out in all cells.	Wild type.	Wild type.		
c-FLIPf/f Lysm-Cre TNF-α−/−	None.	TNF-α knocked out in all cells.	Wild type.	Wild type.		

Together, our results demonstrate a novel role for c-FLIP in protecting eosinophils from apoptosis. TNF-α has previously been reported to mediate anti-apoptotic cell fates in eosinophils in the presence of NF-kB signaling and pro-apoptotic cell fates in its absence. c-FLIP-deficient eosinophils die through a TNF-α-mediated pathway in vivo

Together, these results demonstrate a novel role for c-FLIP in eosinophil survival both in vitro and in vivo. Moreover, our in vitro experiments suggested that c-FLIP may serve as the previously hypothesized “molecular switch” that defines a pro-apoptotic or anti-apoptotic fate downstream of TNFRI signaling in eosinophils. To determine whether the loss of eosinophils observed in c-FLIPf/f Lysm-Cre mice occurred through TNF-α-dependent cell death, we generated c-FLIPf/f Lysm-Cre TNF-α−/− deficient mice. In support of our hypothesis, c-FLIPf/f Lysm-Cre TNF-α−/− mice had normal numbers of thioglycollate-elicited peritoneal eosinophils, demonstrating that c-FLIP protects eosinophils from TNF-α-mediated death in vivo (Fig. 4A, B).

We next aimed to determine whether both c-FLIP isoforms were required for eosinophil survival. To address this question, we generated mice that expressed only c-FLIPf/f Lysm-Cre TNF-α−/− mice had normal numbers of thioglycollate-elicited peritoneal eosinophils, demonstrating that c-FLIP protects eosinophils from TNF-α-mediated death in vivo (Fig. 4A, B). Together with our finding that c-FLIPf/f served as the molecular switch that converts TNF-α from a pro-apoptotic signal to a pro-survival signal in eosinophils. Discussion

Together, our results demonstrate a novel role for c-FLIP in protecting eosinophils from apoptosis. TNF-α has previously been reported to mediate anti-apoptotic cell fates in eosinophils in the presence of NF-kB signaling and pro-apoptotic cell fates in its absence.
absence [6,7]; however, the pro-survival mediators downstream of NF-κB have not yet been identified. When considered in the context of these previous reports, our data suggest that upon signaling through TNFRI, NF-κB activation serves to transcriptionally upregulate c-FLIP, thereby protecting eosinophils from extrinsic apoptosis. When this pathway is blocked by inhibiting NF-κB activation or inhibiting protein synthesis, TNF-α-stimulated eosinophils cannot upregulate c-FLIP and undergo apoptosis (Fig. 5).

This model is supported by our finding that c-FLIPL promotes eosinophil survival more efficiently than does c-FLIPS, as p43FLIP, a caspase 8 cleavage product of c-FLIPL, can itself activate the NF-κB signaling pathway [17,18,19], thereby initiating a positive feedback loop in which c-FLIPL drives its own upregulation (Fig. 5).

Interestingly, c-FLIP-deficient eosinophils displayed enhanced apoptosis upon stimulation with other extrinsic apoptotic triggers, such as FasL (Fig. 2C). Unlike TNF-α, FasL does not mediate anti-apoptotic effects; accordingly, we found that Fas stimulation increased cell death in wild type cells, and Fas-mediated cell death was increased in c-FLIP-deficient cells. Together, these findings raise the possibility that TNFRI-mediated upregulation of c-FLIP may protect eosinophils from a variety of apoptotic stimuli and may thereby serve as the key regulator of eosinophil survival during inflammation. Future studies of the ability of TNF-α to tune the sensitivity of eosinophils to different types of apoptotic stimuli will shed further light on this observation.

Previous studies of the role of extrinsic apoptosis in spontaneous and glucocorticoid-induced eosinophil apoptosis have produced conflicting results. Whether caspase 8 is activated during spontaneous apoptosis remains unclear, and although caspase 8 is required for Fas-mediated eosinophil apoptosis, inhibiting caspase 8 does not prevent spontaneous or glucocorticoid-mediated apoptosis [20,21,22,23,24,25]. Similarly, we found that c-FLIP was not required for the survival of BMDE in the absence of stimulation, and unperturbed c-FLIPK−/− Lysm-Cre mice...
displayed normal numbers of circulating eosinophils. Thus, the role of c-FLIP in protecting eosinophils from apoptosis appears to be restricted to stimulation-induced death.

Importantly, the finding that c-FLIP regulates eosinophil survival under inflammatory conditions presents a new potential therapeutic target in eosinophilic diseases. The therapies currently being pursued fall into two categories – drugs that impede eosinophil production or survival, and drugs that prevent recruitment of eosinophils to peripheral tissues. Thus far, few of these therapies have consistently achieved statistically significant results in clinical trials.

Systemic administration of glucocorticoids thus remains the most common treatment for many eosinophilic diseases. While their mechanisms of action are not fully understood, glucocorticoids induce apoptosis of lymphocytes and eosinophils but not of neutrophils [26,27,28]. Although glucocorticoid treatment is effective in many eosinophil-mediated diseases, the wide ranging effects of glucocorticoids raise the possibility of deleterious side effects; thus, understanding the mechanisms by which glucocorticoids induce eosinophil death but enhance neutrophil survival will allow for the development of eosinophil-specific targeted therapies.

Figure 4. c-FLIP is required to protect eosinophils from TNF-α-mediated apoptosis in vivo. A–B: Frequency of eosinophils in day 3 thioglycollate-elicited PEC from c-FLIPf/f, c-FLIPf/f Lysm-Cre, c-FLIPf/f Lysm-Cre S Tg⁺, c-FLIPf/f Lysm-Cre L Tg⁺, c-FLIPf/f Lysm-Cre TNF-α⁻/⁻ mice. Representative FACS plots are shown in A. Numbers indicate the frequency of CD11b⁺⁺⁺ CCR3⁺⁺⁺ eosinophils in each sample. Each data point in B represents an individual mouse (n = 7 for c-FLIPf/f, n = 12 for c-FLIPf/f Lysm-Cre, n = 5 for c-FLIPf/f Lysm-Cre S Tg⁺, n = 5 for c-FLIPf/f Lysm-Cre L Tg⁺, and n = 4 for c-FLIPf/f Lysm-Cre TNF-α⁻/⁻). Horizontal lines indicate geometric means, and error bars represent 95% CI. **, p < 0.01 vs. c-FLIPf/f Lysm-Cre (Mann-Whitney).

doi:10.1371/journal.pone.0107724.g004

Figure 5. A model for c-FLIP as a molecular switch between pro- and anti-apoptotic TNF-α-mediated signaling in eosinophils. A: Upon TNFRI signaling, c-FLIP inhibits caspase 8 cleavage. The c-FLIP cleavage product p43FLIP mediates TNFRI-mediated activation of NF-κB, which upregulates c-FLIP, creating a positive feedback loop that protects eosinophils from TNF-α-mediated apoptosis. B: In the absence of c-FLIP, TNFRI signaling results in caspase 8 cleavage and apoptosis. TNFRI-mediated activation of NF-κB fails to protect eosinophils from apoptosis because NF-κB cannot upregulate c-FLIP.

doi:10.1371/journal.pone.0107724.g005
Interestingly, glucocorticoids inhibit NF-κB activity in many cell types and reverse TNF-α-mediated eosinophil survival [28,29,30,31,32,33,34,35,36]. Our finding that c-FLIP_L is required for TNF-α-mediated eosinophil survival suggests that glucocorticoids may exert their pro-apoptotic effect on eosinophils by downregulating c-FLIP. Future studies of the effects of glucocorticoids on c-FLIP expression in eosinophils will shed light on the molecular mechanisms underlying glucocorticoid-mediated eosinophil death and could lead to the development of new targeted therapeutics.

Together, our findings reveal a novel pro-survival pathway in eosinophils. Targeting c-FLIP could result in a new class of anti-eosinophil therapies that cause the death of eosinophils upon recruitment to inflamed tissues. Future studies in human eosinophils will examine the potential therapeutic implications of these findings in conditions including asthma, atopy, and gastrointestinal disease.

Materials and Methods

Genetic models

The genetic models used in this study are described in Tables 1 and 2. c-FLIPf/f Lysm-Cre mice and c-FLIPf/f ER-Cre mice were generated as previously described [12]. c-FLIPf/f Lysm-Cre mice were bred with mice expressing bacterial artificial chromosome (BAC) transgenes for c-FLIP_L or c-FLIP_L [16] to generate c-FLIPf/f Lysm-Cre L Tg or c-FLIPf/f Lysm-Cre L Tg mice, respectively. All mice were used at 6–8 weeks of age, except as indicated in the text.

Isolation of primary cells

Blood samples were collected by tail bleed or by submandibular bleed into tubes containing 10 μl of 1000 U/ml heparin sodium salt in PBS.

Bone marrow was harvested by flushing femurs and tibiae with RPMI using a 10-ml syringe and 27-gauge needle. Bone marrow cells were centrifuged, and red blood cells were lysed with ACK buffer. After red blood cell lysis, the cells were resuspended in 5 ml RPMI containing 5% FBS, filtered through 90-μm nylon mesh, and counted.

Peritoneal eosinophils were elicited by injecting mice i.p. with 1 ml 3% thioglycollate. The mice were sacrificed 3 days post-injection, and PEC were harvested by peritoneal lavage with 10 ml of PBS or RPMI containing 5% FBS using a 10-ml syringe and 21-gauge needle. After red blood cell lysis, the cells were resuspended in 5 ml RPMI containing 5% FBS, filtered through 90-μm nylon mesh, and counted.

Generation of bone marrow-derived eosinophils

To generate bone marrow-derived eosinophils (BMDE), bone marrow cells were isolated from c-FLIPf/f or c-FLIPf/f ER-Cre mice on day 0. After red blood cell lysis, the cells were resuspended in 10 ml RPMI containing 10% FBS and filtered through 90-μm nylon mesh. The filtered cells were counted and resuspended at a concentration of 10^6 cells/ml in BMDE medium (RPMI containing 20% FBS, 2 mM L-glutamine, 25 mM HEPES, 1x non-essential amino acids, 1 mM sodium pyruvate, and 50 μM 2-ME) containing 100 ng/ml SCF and 100 ng/ml FLT3L (Peprotech, Rocky Hill, NJ).

The cells were cultured at 37°C in the presence of 5% CO2. On day 4, the cells were removed from the flasks by pipetting, centrifuged, and resuspended in an equivalent volume of fresh BMDE medium containing 10 ng/ml IL-5 (Peprotech). The cells were then transferred to new flasks and cultured at 37°C in the presence of 5% CO2. On day 8, the cells were again removed from the flasks by pipetting, centrifuged, and resuspended in an equivalent volume of fresh BMDE medium containing 10 ng/ml IL-5 (Peprotech). The cells were then transferred to new flasks and cultured at 37°C in the presence of 5% CO2. On days 10, 12, 14, and 16, the cells were removed from the flasks by pipetting, centrifuged, counted, adjusted to a concentration of 10^5 cells/ml and cultured in fresh BMDE medium containing 10 ng/ml IL-5, and cultured at 37°C in the presence of 5% CO2. On day 18, mature eosinophils were removed from the flasks by pipetting, centrifuged, and counted.

The purity of eosinophils was assessed by cytospin. The cells were suspended at a concentration of 10^6/ml in PBS, and 100-μl samples of suspended cells were subjected to cytospin. The slides were allowed to dry and stained using a Hema 3 Stat Pack (Fisher Scientific, Kalamazoo, MI). Images were obtained using a Zeiss Axioscope 200 microscope.

Quantitative real-time PCR

1×10^5 wild type BMDE were either stimulated with 50 ng/ml TNF-α (Peprotech, Inc., Rocky Hill, NJ) or left unstimulated in culture for the indicated time. 1×10^5 cells were used for RNA extraction using RNAlater-Micro Total RNA Isolation Kit (Invitrogen, AM1931). cDNA was generated using SuperScriptIII Reverse Transcriptase (Invitrogen) with Oligo-dT(12-18) as primers. Real-time PCR was performed using Taqman mRNA assay (probe ID: Mm01255578 for cFlar; cFlip: Mm00607939 for β-actin).

In vitro deletion of c-FLIP and stimulation of BMDE

c-FLIPf/f or c-FLIPf/f ER-Cre BMDE were treated with 200 nM 4-hydroxytamoxifen (4-OHT, Sigma-Aldrich, St. Louis, MO) or an equal volume of ethanol vehicle. Four days after c-FLIP deletion, the cells were stimulated with 50 ng/ml TNF-α for 24 h or with 5 μg/ml anti-Fas antibody for 24 h.

Flow cytometry

The following antibodies were used to stain cell surface antigens: CCR3, CD11b, B220, Gr1, Ly6G, F4/80; conjugated to FITC, PE, PE/Cy5, APC, APC/Cy7, PE/Cy7, or Pacific Blue. Antibodies were purchased from Biologend (San Diego, CA), BioLegend (San Diego, CA), Abcam (Cambridge, MA), or R&D Systems (Minneapolis, MN). Samples were blocked for 10 min with 2.4G2 supernatant, stained for 20 min on ice, and washed with FACS buffer. Staining with Pacific Blue-conjugated Annexin V and 7AAD was performed as described by the manufacturer (Biologend). After staining, peripheral blood samples were lysed of RBCs using FACS Lysing Buffer (BD Biosciences, San Jose, CA). Data were acquired using a FACStarPLUS or FACSCanto II flow cytometer (BD Biosciences) and analyzed using FlowJo software (Tree Star Inc., Ashland, OR).

Mixed bone marrow chimeras

c-FLIPf/f or c-FLIPf/f mice were lethally irradiated 4 hours prior to BM reconstitution by i.v. injection. Each mouse received either CD45.2+ c-FLIPf/f Lysm-Cre BM or a 1:1 mixture of CD45.2+ c-FLIPf/f Lysm-Cre BM and CD45.2+CD45.1+ c-FLIPf/f+ BM. Thioglycollate-elicited PEC were examined 12 weeks post-transfer.

Statistical analysis

All statistical analyses were performed using GraphPad Prism software (GraphPad, San Diego, CA). The results of in vitro
experiments were analyzed using Student’s *t*-tests and are presented as means. The results of *in vitro* experiments were analyzed using the Mann-Whitney test and are presented as geometric means. *, *p*<0.05; **, *p*<0.01; ***, *p*<0.001. Error bars represent standard deviations (*in vitro* experiments) or 95% confidence intervals (*in vivo* experiments).

Ethics Statement

This study was approved by the Duke University Institutional Animal Care and Use Committee (Protocol # A140-12-05). Euthanasia was performed by carbon dioxide inhalation followed by cervical dislocation.

References

1. Rothenberg ME, Hogan SP (2006) The eosinophil. Annual review of immunology 24: 147–174.
2. Fabre V, Beiting DP, Bliss SK, Geberselassie NG, Gagliardo LF, et al. (2009) Eosinophil deficiency compromises parasite survival in chronic nematode infection. Journal of immunology 182: 1577–1583.
3. Geberselassie NG, Moorhead AK, Fabre V, Gagliardo LF, Lee NA, et al. (2012) Eosinophils preserve parasitic nematode larvae by regulating local immunity. Journal of immunology 188: 417–425.
4. Rosenberg HF, Dyer KD, Foster PS (2013) Eosinophils: changing perspectives in health and disease. Nature reviews Immunology 13: 9–22.
5. Falkerson PC, Rothenberg ME (2013) Targeting eosinophils in allergy, inflammation and beyond. Nature reviews Drug discovery 12: 117–129.
6. Fujihara S, Ward C, Dransfield I, Hay RT, Uings IJ, et al. (2002) Inhibition of nuclear factor-kappaB activation un-masks the ability of TNF-alpha to induce eosinophilic apoptosis. European journal of immunology 32: 457–466.
7. Kankaanranta H, Imler P, Zhang X, Adcock IM, Lahti A, et al. (2014) Tumour necrosis factor-alpha regulates human eosinophil apoptosis via ligation of TNF-receptor 1 and balance between NF-kappaB and AP-1. PloS one 9: e89286.
8. Micheau O, Lems S, Gaide O, Alevizopoulos K, Tschopp J (2001) NF-kappaB signals induce the expression of c-FLIP. Molecular and cellular biology 21: 5299–5305.
9. Kreuz S, Siegmund D, Scheurich P, Wajant H (2001) NF-kappaB inducers upregulate c-FLIP, a cycloheximide-sensitive inhibitor of death receptor signaling. Molecular and cellular biology 21: 3964–3973.
10. Benayoun B, Baghdiguian S, Lajmanovich A, Bartoli M, Daniele N, et al. (2008) NF-kappaB-dependent expression of the antipapoptotic factor c-FLIP is regulated by calpain 3, the protein involved in limb-girdle muscular dystrophy type 2A. FASEB journal: official publication of the Federation of American Societies for Experimental Biology 22: 1521–1529.
11. Kanetaka Y, Hayashida M, Hoshika A, Yanase N, Mizuguchi J (2008) NF-kappaB-dependent expression of the antipapoptotic factor c-FLIP is regulated by calpain 3, the protein involved in limb-girdle muscular dystrophy type 2A. FASEB journal: official publication of the Federation of American Societies for Experimental Biology 22: 1521–1529.
12. Gordy C, Pua H, Sempowski GD, He YW (2011) Regulation of steady-state neutrophil homeostasis by macrophages. Blood 117: 618–629.
13. Glowacki J, Couin JM, Seckl JR, Hafted C (1996) Opposing effects of glucocorticoids on the rate of apoptosis in neutrophilic and eosinophilic granulocytes. Journal of immunology 156: 4422–4429.
14. Nittoh T, Fujimori H, Kozumi Y, Ishihara K, Mue S, et al. (1998) Effects of glucocorticoids on apoptosis of infiltrated eosinophils and neutrophils in rats. European journal of pharmacology 354: 73–81.
15. Zhang X, Moilanen E, Adcock IM, Lindsay MA, Kankaanranta H (2002) Divergent effect of mometason on human eosinophil and neutrophil apoptosis. Life sciences 71: 1523–1534.
16. Wilson SJ, Wallin A, Della-Cioppa G, Sandstrom T, Holgate ST (2001) Effects of budesonide and formoterol on NF-kappaB, adhesion molecules, and cytokines in asthma. American journal of respiratory and critical care medicine 164: 1047–1052.
17. Ardile E, Panes J, Miranda M, Salas A, Elizalde JL, et al. (1996) Effects of steroid treatment on activation of nuclear factor kappa-B in patients with inflammatory bowel disease. British journal of pharmacology 124: 431–433.
18. Naka K, Morita M, Ishikawa Y, Rice N, Okamoto S, et al. (1994) NF-kappaB is a target for glucocorticoid-mediated interleukin-8 gene repression. The Journal of biological chemistry 269: 13289–13295.
19. Ray A, Prefontaine KE (1994) Physical association and functional antagonism between the p65 subunit of transcription factor NF-kappaB and the glucocorticoid receptor. Proceedings of the National Academy of Sciences of the United States of America 91: 752–756.
20. van de Stolpe A, Caldenhoven E, Stadig BG, Koenderman L, Raaijmakers JA, et al. (1994) 12-O-tetradecanoylphorbol-13-acetate- and tumor necrosis factor alpha-mediated induction of intercellular adhesion molecule-1 is inhibited by dexamethasone. Functional analysis of the human intercellular adhesion molecule-1 promoter. The Journal of biological chemistry 269: 6183–6192.
21. Caldenhoven E, Liden J, Wissink S, Van de Stolpe A, Raaijmakers J, et al. (1995) Negative cross-talk between RelA and the glucocorticoid receptor: a possible mechanism for the anti-inflammatory action of glucocorticoids. Molecular endocrinology 9: 401–412.
22. Scheinman RI, Cogswell PC, Loquiat AK, Baldwin AS Jr (1994) Role of nuclear factor-kappaB signaling pathway, Molecular and cellular biology 24: 2627–2636.
23. Scheinman RI, Gualberto A, Jewell CM, Cillikowsky JA, Baldwin AS Jr (1995) Characterization of mechanisms involved in transrepression of NF-kappaB by activated glucocorticoid receptors. Molecular and cellular biology 15: 943–953.

Acknowledgments

We thank Lynn Martinek and Nancy Martin for performing FACS sorting and Rebecca Teich-McGoldrick for assisting with experiments.

Author Contributions

Conceived and designed the experiments: CG HP YWH. Performed the experiments: CG JL HP. Analyzed the data: CG JL HP. Wrote the paper: CG JL HP YWH.