REPRESENTATION POWER OF GRAPH CONVOLUTIONS: NEURAL TANGENT KERNEL ANALYSIS

Mahalakshmi Sabanayagam, Pascal Esser & Debarghya Ghoshdastidar
Technical University of Munich
School of Computation, Information and Technology
{sabanaya, esser, ghoshdas}@cit.tum.de

ABSTRACT

The fundamental principle of Graph Neural Networks (GNNs) is to exploit the structural information of the data by aggregating the neighboring nodes using a ‘graph convolution’. Therefore, understanding its influence on the network performance is crucial. Convolutions based on graph Laplacian have emerged as the dominant choice with the symmetric normalization of the adjacency matrix A, defined as $D^{-\frac{1}{2}}AB^{-\frac{1}{2}}$, being the most widely adopted one, where D is the degree matrix. However, some empirical studies show that row normalization $D^{-1}A$ outperforms it in node classification. Despite the widespread use of GNNs, there is no rigorous theoretical study on the representation power of these convolution operators, that could explain this behavior. In this work, we analyze the influence of the graph convolutions theoretically using Graph Neural Tangent Kernel in a semi-supervised node classification setting. Under a Degree Corrected Stochastic Block Model, we prove that: (i) row normalization preserves the underlying class structure better than other convolutions; (ii) performance degrades with network depth due to over-smoothing, but the loss in class information is the slowest in row normalization; (iii) skip connections retain the class information even at infinite depth, thereby eliminating over-smoothing. We finally validate our theoretical findings on real datasets.

1 INTRODUCTION

With the advent of Graph Neural Networks (GNNs), there has been a tremendous progress in the development of computationally efficient state-of-the-art methods in various graph based tasks, including drug discovery, community detection and recommendation systems (Wieder et al., 2020; Fortunato & Hric, 2016; van den Berg et al., 2017). Many of these problems depend on the structural information of the entities along with the features for effective learning. Because GNNs exploit this topological information encoded in the graph, it can learn better representation of the nodes or the entire graph than traditional deep learning techniques, thereby achieving state-of-the-art performances. In order to accomplish this, GNNs apply aggregation function to each node in a graph that combines the features of the neighboring nodes, and its variants differ principally in the methods of aggregation. For instance, graph convolution networks use mean neighborhood aggregation through spectral approaches (Bruna et al., 2014; Defferrard et al., 2016; Kipf & Welling, 2017) or spatial approaches (Hamilton et al., 2017; Duvenaud et al., 2015; Xu et al., 2019); graph attention networks apply multi-head attention based aggregation (Veličković et al., 2018) and graph recurrent networks employ complex computational module (Scarselli et al., 2008; Li et al., 2016). Of all the aggregation policies, the spectral approach based on graph Laplacian is most widely used in practice, specifically the one proposed by Kipf & Welling (2017) owing to its simplicity and empirical success. In this work, we focus on such graph Laplacian based aggregations in Graph Convolution Networks (GCNs), which we refer to as graph convolutions or diffusion operators.

Kipf & Welling (2017) propose a GCN for node classification, a semi-supervised task, where the goal is to predict the label of a node using its feature and neighboring node information. This work suggests symmetric normalization $S_{sym} = D^{-\frac{1}{2}}AD^{-\frac{1}{2}}$ as the graph convolution. Ever since its introduction, S_{sym} remains the popular choice. However, subsequent works (Wang et al., 2018)
Wang & Leskovec (2020) and Ragesh et al. (2021) explore row normalization $S_{\text{row}} = D^{-1}A$ and Wang et al. (2018) observes empirically that S_{row} outperforms S_{sym} for two-layered GCN. Intrigued by this observation, and as both S_{sym} and S_{row} are simply degree normalized adjacency matrices, we study the behavior over depth and observe that S_{row} performs better than S_{sym} in this case as well, as illustrated in Figure 1 (Details of the experiment in Appendix B.1).

Furthermore, another striking observation from Figure 1 is that the performance of GCN without skip connections decreases considerably with depth for both S_{sym} and S_{row}. This contradicts the conventional wisdom about neural networks which exhibit improvement in the performance as depth increases. Several works (Kipf & Welling, 2017; Chen et al., 2018; Wu et al., 2019) observe this behavior empirically and attribute it to the over-smoothing effect from the repeated application of the diffusion operator, resulting in averaging out of the feature information to a degree where it becomes uninformative (Li et al., 2018; Oono & Suzuki, 2019; Esser et al., 2021). As a solution to this problem, Chen et al. (2020) and Kipf & Welling (2017) propose different forms of skip connections that overcome the smoothing effect and thus outperform the vanilla GCN. Extending it to the comparison of graph convolutions, our experiment shows S_{row} is preferable to S_{sym} over depth even in GCNs with skip connections (Figure 1). Naturally, the following question arises: what characteristics of S_{row} enable better representation learning than S_{sym} in GCNs?

Rigorous theoretical analysis is particularly challenging in GCNs compared to the standard neural networks because of the graph convolution. Adding skip connections further increase the complexity of the analysis. To overcome these difficulties, we consider GCN in infinite width limit wherein the Neural Tangent Kernel (NTK) captures the network characteristics very well (Jacot et al., 2018). Although the assumption on network width may appear restrictive at first, it is advantageous in our case as the role of graph convolutions remain unchanged with network width. Moreover, NTK enables the analysis to be parameter-free and hence eliminating additional complexity induced for example by optimization. Through the lens of NTK, we study the impact of different graph convolutions under a specific data distributional assumption — Degree Corrected Stochastic Block Model (DC-SBM) (Karrer & Newman, 2011), a sparse random graph model. The node degree heterogeneity induced in DC-SBM allows us to analyze the effect of different types of normalization of the adjacency matrix, thus revealing the characteristic difference between S_{sym} and S_{row}. In this paper, we present a formal approach to analyze GCNs and, specifically, the representation power of different graph convolutions, the influence of depth and the role of skip connections. This is a significant step toward understanding GCNs as it facilitates for more informed network design choices like the graph convolution and depth, as well as the development of more competitive methods based on grounded theoretical reasoning rather than heuristics.

Contributions. This paper provides rigorous theoretical analysis of the discussed empirical observations in GCN under DC-SBM distribution using graph NTK, leading to the following contributions.

(i) In Section 2, we derive the NTK for GCN in infinite width limit considering node classification setting. Using the derived NTK for linear GCN and under DC-SBM data distribution, we show in Section 3 that S_{row} preserves class information by computing the population NTK for different graph convolutions. We also present numerical validation of the result.

(ii) We prove the convolution operator specific over-smoothing effect in vanilla GCN by showing the degradation in class separability with depth in Section 3.1 and also illustrate it experimentally.

(iii) In Section 4, we leverage the power of NTK to analyze two different skip connections (Kipf & Welling, 2017; Chen et al., 2020). We derive the corresponding NTKs and show that skip connections retain class information even at infinite depth along with numerical validation.

(iv) We perform empirical analysis of the theoretical results on the most commonly used dataset Cora in Section 5 where we observe good agreement with the theory on graph convolutions, depth and skip connections. Empirical results on Citeseer is discussed in Appendix B.4.
We finally conclude in Section 6 with the discussion on the impact of the result and further possibilities, and provide all the proofs for the theorems with additional experiments in the appendix.

Related Work. While GNNs are extensively used in practice, their understanding is limited, and the analysis is mostly restricted to empirical approaches (Bojchevski et al., 2018; Zhang et al., 2018; Ying et al., 2018; Wu et al., 2020). Beyond empirical methods, rigorous theoretical analysis using learning theoretical bounds such as VC Dimension, Scarselli et al. (2018) or PAC-Bayes Liao et al. (2021) are propounded. Rademacher Complexity bounds (Garg et al., 2020; Esser et al., 2021) show that normalized graph convolution is beneficial, but those works do not provide insight on the different normalizations, and their influence on the GCN performance. Another possible tool is the NTK using which interesting theoretical insights in deep neural networks are derived (e.g. (Du et al., 2019a)). In the context of GNNs, Du et al., (2019b) derives the NTK in the supervised setting (each graph is a data instance to be classified) and empirically studies the NTK performance, however does not extend it to a theoretical analysis. In contrast, we derive the NTK in the semi-supervised setting for GCN with and without skip connections, and use it to further theoretically analyze the influence of different convolutions with respect to over-smoothing. Theoretical studies (Oono & Suzuki, 2019; Cai & Wang, 2020) show that over-smoothing causes the expressive power of GNNs to decrease exponentially with depth, while Keriven (2022) proves that in linear GNNs a finite number of convolutions improves learning before over-smoothing kicks in. While over-smoothing and role of skip connections in GNNs are theoretically analyzed in some works (Esser et al., 2021), the influence of different convolutions that causes over-smoothing and their interplay with skip connections is not studied. For a comprehensive theory survey see Jegelka (2022).

Notations. We represent matrix and vector by bold faced uppercase and lowercase letters, respectively, the matrix Hadamard (entry-wise) product by \odot and the scalar product by $\langle \cdot , \cdot \rangle$. We use $M^{\odot k}$ to denote Hadamard product of matrix M with itself repeated k times. Let $\mathcal{N}(\mu, \Sigma)$ be Gaussian distribution with mean μ and co-variance Σ. We use $\sigma(.)$ to represent derivative of function $\sigma(.)$, $I_{n \times n}$ for the $n \times n$ matrix of ones, I_n for identity matrix of size $n \times n$, $\mathbb{I} [\cdot]$ for indicator function, $\mathbb{E} [\cdot]$ for expectation, and $[d] = \{1, 2, \ldots , d\}$.

2 Neural Tangent Kernel for Graph Convolutional Network

Before going into a detailed analysis of graph convolutions we provide a brief background on Neural Tangent Kernel (NTK) and derive its formulation in the context of node level prediction using infinitely-wide GCNs. Jacot et al. (2018); Arora et al. (2019); Yang (2019) show that the behavior and generalization properties of randomly initialized wide neural networks trained by gradient descent with infinitesimally small learning rate is equivalent to a kernel machine. Furthermore, Jacot et al. (2018) also show that the change in the kernel during training decreases as the network width increases, and hence, asymptotically, one can represent an infinitely wide neural network by a deterministic NTK, which is defined by the gradient of the network with respect to its parameters as

$$\Theta(x, x') := \mathbb{E}_{W \sim \mathcal{N}(0, I)} \left[\frac{\partial F(W, x)}{\partial W}, \frac{\partial F(W, x')}{{\partial W}} \right].$$

(1)

Here $F(W, x)$ represents the output of the network at data point x parameterized by W and the expectation is with respect to W, where all the parameters of the network are randomly sampled from Gaussian distribution. Although the ‘infinite width’ assumption is too strong to model real (finite width) neural networks, and the absolute performance may not exactly match, the empirical trends of NTK match the corresponding network counterpart, allowing us to draw insightful conclusions. This trade-off is worth considering as this allows the analysis of over-parameterised neural networks without having to consider hyper-parameter tuning and training.

Formal GCN Setup and Graph NTK. We present the formal setup of GCN and derive the corresponding NTK, using which we analyze different graph convolutions. Given a graph with n nodes and a set of node features $\{x_i\}_{i=1}^n \subset \mathbb{R}^f$, we may assume without loss of generality that the set of observed labels $\{y_i\}_{i=1}^m$ correspond to first m nodes. We consider K classes, thus $y_i \in \{0, 1\}^K$ and the goal is to predict the $n - m$ unknown labels $\{y_i\}_{i=m+1}^n$. We represent the observed labels of m nodes as $Y \in \{0 , 1\}^{m \times K}$, and the node features as $X \in \mathbb{R}^{n \times f}$ with the assumption that entire X is available during training. We define $S \in \mathbb{R}^{n \times n}$ to be the graph convolution operator as an
expression of the adjacency matrix \(A \) and the degree matrix \(D \). The GCN of depth \(d \) is given by

\[
F_{\mathbf{W}}(\mathbf{X}, \mathbf{S}) := \sqrt{\frac{c_\sigma}{h_1}} \mathbf{S} \sigma \left(\ldots \left(\sqrt{\frac{c_\sigma}{h_1}} \mathbf{S} \sigma (\mathbf{S} \mathbf{X} \mathbf{W}_1) \mathbf{W}_2 \right) \ldots \right) \mathbf{W}_{d+1}
\]

(2)

where \(\mathbf{W} := \{ \mathbf{W}_i \in \mathbb{R}^{h_{i-1} \times h_i} \}_{i=1}^{d+1} \) is the set of learnable weight matrices with \(h_0 = f \) and \(h_{d+1} = K, h_1 \) is the size of layer \(i \in [d] \) and \(\sigma : \mathbb{R} \rightarrow \mathbb{R} \) is the point-wise activation function. We initialize all the weights to be i.i.d. \(N(0, 1) \) and optimize it using gradient descent. We derive the NTK for the GCN in infinite width setting, that is, \(h_1, \ldots, h_d \rightarrow \infty \). While this setup is similar to [Kipf \\& Welling (2017)], it is important to note that we consider linear output layer so that NTK for the GCN in infinite width setting, that is, \(h \rightarrow \infty \), initialize all the weights to be i.i.d \(N(0, 1) \) and add a normalization \(\sqrt{c_\sigma / h_i} \) for layer \(i \) to ensure that the input norm is approximately preserved and \(c_\sigma^{-1} = \mathbb{E}_{u \sim \mathcal{N}(0,1)} [(\sigma(u))^2] \)

(similar to [Du et al. (2019a)]). The following theorem states the NTK between every pair of nodes, as a \(n \times n \) matrix that can be computed at once, as shown below.

Theorem 1 (NTK for Vanilla GCN) For the vanilla GCN in (2), the NTK \(\Theta \) at depth \(d \) is given by

\[
\Theta^{(d)} = \sum_{k=1}^{d+1} \Sigma_k \odot (\mathbf{S} \mathbf{S}^T)^{(d+1-k)} \odot \left(\bigodot_{k'=k} \mathbf{E}_{k'} \right).
\]

(3)

Here \(\Sigma_k \in \mathbb{R}^{n \times n} \) is the co-variance between nodes of layer \(k \), and is given by \(\Sigma_1 = \mathbf{S} \mathbf{X} \mathbf{X}^T \mathbf{S}^T \), \(\Sigma_k = \mathbf{S} \mathbf{E}_{k-1} \mathbf{S}^T \) with \(\mathbf{E}_k = c_\sigma \mathbb{E}_{\mathbf{F} \sim \mathcal{N}(0, \Sigma_k)} [\sigma(\mathbf{F}) \sigma(\mathbf{F})^T] \) and \(\mathbf{E}_k = c_\sigma \mathbb{E}_{\mathbf{F} \sim \mathcal{N}(0, \Sigma_k)} [\dot{\sigma}(\mathbf{F}) \dot{\sigma}(\mathbf{F})^T] \).

Comparison to [Du et al. (2019b)]. The derived NTK is similar to the graph NTK in [Du et al. (2019b)] with the primary difference being that the kernel in our case is computed for all pairs of nodes in a single input graph as we focus on semi-supervised node classification, whereas [Du et al. (2019b)] considers supervised graph classification where multiple graphs are inputs and so the kernel is evaluated for all pairs of the graphs.

3 Convolution Operator \(\mathbf{S}_{\text{row}} \) Preserves Class Information

We use the derived NTK in Theorem 1 to analyze different graph convolutions for \(\mathbf{S} \) defined in Definition 1 by making the following assumption on the network.

Assumption 1 (Linear GCN with orthonormal features) GCN in (2) is said to be linear with orthonormal features if activation function \(\sigma(x) = x \) and \(\mathbf{X} \mathbf{X}^T = \mathbf{I}_n \).

Remark on Assumption 1 The linear activation does not impact the performance of a GCN significantly as [Wu et al. (2019)] empirically demonstrates that the linearized GCN performance is at par with the non-linear models with much reduced complexity. Additional orthonormal features assumption eliminates the influence of the features and facilitates identification of the influence of different convolution operators. Besides, the evaluation of our theoretical results without this assumption on real datasets is presented in Section 5 and Appendix B.4 that substantiate our findings.

Therefore, the NTK for linear GCN with orthonormal features of depth \(d \) is,

\[
\Theta^{(d)} = \sum_{k=1}^{d+1} \Sigma_k \odot (\mathbf{S} \mathbf{S}^T)^{(d+1-k)} \quad \text{with } \Sigma_k = \mathbf{S}^k \mathbf{k}^T.
\]

(4)

Definition 1 Symmetric degree normalized \(\mathbf{S}_{\text{sym}} = \mathbf{D}^{-\frac{1}{2}} \mathbf{A} \mathbf{D}^{-\frac{1}{2}} \), column normalized \(\mathbf{S}_{\text{col}} = \mathbf{A} \mathbf{D}^{-1} \) and unnormalized \(\mathbf{S}_{\text{adj}} = \frac{1}{n} \mathbf{A} \) convolutions.

While the NTK in (4) gives a precise characterization of the infinitely wide GCN, we can not directly draw conclusions about the convolution operators without further assumptions on the input graph. Therefore, we consider a planted graph model as described below, that helps in establishing the exact representation power of each operator.
Random Graph Model. We consider that the underlying graph is from the Degree Corrected Stochastic Block Model (DC-SBM) (Karrer & Newman 2011) since it enables us to distinguish between S_{sym}, S_{row} and S_{col} by allowing non-uniform degree distribution on the nodes. The model is defined as follows: Consider a set of n nodes divided into K latent classes (or communities), $C_i \in [1, K]$. The DC-SBM model is characterized by the parameters $0 \leq q < p \leq 1$—governing the edge probabilities outside and inside classes—and the degree correction vector $\pi = (\pi_1, \ldots, \pi_n) \in [0, 1]^n$ with $\sum \pi_i = 1$. A random graph on n nodes, generated from DC-SBM, has mutually independent edges with edge probabilities specified by the population adjacency matrix $M = \mathbb{E} \{ A \} \in \mathbb{R}^{n \times n}$, where

$$M_{ij} = \begin{cases} p\pi_i \pi_j & \text{if } C_i = C_j \\ q\pi_i \pi_j & \text{if } C_i \neq C_j \end{cases}$$

It is evident that the NTK is a complex quantity and computing its expectation is challenging given the dependency of terms from the degree normalization in S, its powers S^t and SS^T. To simplify our analysis, we make the following assumption on DC-SBM,

Assumption 2 (Population DC-SBM) The graph has a weighted adjacency $A = M$, and π is chosen such that $\sum_{i=1}^{n} \pi_i 1[C_i = k] = \frac{1}{K}$ and $\sum_{i=1}^{n} \pi_i^2 1[C_i = k] = \gamma \forall k$, where γ is a constant.

Remark on Assumption 2 Assuming $A = M$ is equivalent to analyzing DC-SBM in expected setting and it further enables the computation of analytic expression for the population NTK instead of the expected NTK. Moreover, we observe empirically that this analysis hold for random DC-SBM setting as well. In addition, this consideration also implies addition of self loop with a probability. The other two assumptions on π are only to express the kernel in a simplified, easy to comprehend format. It is derived without the assumption on γ (Appendix A.2.2). Furthermore, the numerical validation of our result is without both the assumptions on π and γ (Section 3.2).

In the following theorem, we state the population NTK for different graph convolutions S for $K = 2$ with Assumption 1 and 2 but the result extends to $K > 2$ as discussed in the appendix.

Theorem 2 (Population NTKs $\tilde{\Theta}$ for the four graph convolutions S) Let Assumption 1 and 2 hold, and $K = 2$, $r = \frac{p-q}{p+q}$, $\delta_{ij} = (-1)^{1[C_i \neq C_j]}$, then $\forall i$ and j, population NTKs $\tilde{\Theta}_{sym}$, $\tilde{\Theta}_{row}$, $\tilde{\Theta}_{col}$ and $\tilde{\Theta}_{adj}$ of depth d for $S = S_{sym}$, S_{row}, S_{col} and S_{adj}, respectively, are,

$$\tilde{\Theta}_{sym}^{(d)}_{ij} = \sqrt{\pi_i \pi_j} \left[\frac{1}{1 - (\sqrt{\pi_i \pi_j} (1 + \delta_{ij} r^2))^{d+1}} + \delta_{ij} r^{2(d+1)} \frac{1 - (\sqrt{\pi_i \pi_j} (1 + \delta_{ij} r^2)^2)^{d+1}}{1 - (\sqrt{\pi_i \pi_j} (1 + \delta_{ij} r^2)^2)^2} \right],$$

$$\tilde{\Theta}_{row}^{(d)}_{ij} = 2\gamma \frac{1 - (2\gamma (1 + \delta_{ij} r^2))^{d+1}}{1 - 2\gamma(1 + \delta_{ij} r^2)^2} + \delta_{ij} r^{2(d+1)} \frac{1 - (2\gamma (1 + \delta_{ij} r^2)^2)^{d+1}}{1 - 2\gamma(1 + \delta_{ij} r^2)^4},$$

$$\tilde{\Theta}_{col}^{(d)}_{ij} = n\pi_i \pi_j \left[\frac{1}{1 - n\pi_i \pi_j (1 + \delta_{ij} r^2)^{d+1}} + \delta_{ij} r^{2(d+1)} \frac{1 - (n\pi_i \pi_j (1 + \delta_{ij} r^2)^2)^{d+1}}{1 - n\pi_i \pi_j (1 + \delta_{ij} r^2)^4} \right],$$

$$\tilde{\Theta}_{adj}^{(d)}_{ij} = \pi_i \pi_j \sum_{k=1}^{d+1} \gamma^{2k+d-k} \frac{1}{n^{2k}} \left[I[\delta_{ij} = 1] (p^2 + q^2) + I[\delta_{ij} = -1] (2pq)^{d+1-k} \times \sum_{l=0}^{2^{k-1}} I[\delta_{ij} = 1] \left(\frac{2k}{2l} \right) p^{2k-2l} q^{2l} + I[\delta_{ij} = -1] \left(\frac{2k}{2l+1} \right) p^{2k-2l-1} q^{2l+1} \right].$$

Comparison of graph convolutions. The population NTKs $\tilde{\Theta}^{(d)}$ of depth d in Theorem 2 describes the information that the kernel has after d convolutions with S. To classify the nodes perfectly, the kernel should ideally have a block structure that aligns with the DC-SBM, showing class separability, that is, gap between in-class and out-of-class blocks proportional to $p - q$. On this basis, only $\tilde{\Theta}_{row}$ exhibits a block structure unaffected by the degree correction π, and the gap is determined by r^2 and d, making S_{row} preferable over S_{sym}, S_{adj} and S_{col}. On the other hand, $\tilde{\Theta}_{sym}$, $\tilde{\Theta}_{col}$ and $\tilde{\Theta}_{adj}$ are influenced by the degree correction which obscures the class information especially with
depth. Although $\tilde{\Theta}_{sym}$ and $\tilde{\Theta}_{col}$ seem similar, $\tilde{\Theta}_{col}$ is additionally influenced by the number of nodes n, making it undesirable. As a result, the preference order is $\tilde{\Theta}_{row} > \tilde{\Theta}_{sym} > \tilde{\Theta}_{col} > \tilde{\Theta}_{adj}$.

3.1 Impact of Depth in Vanilla GCN

Given that $r = \frac{p-q}{p+q} < 1$, Theorem 2 shows that the difference between in-class and out-of-class blocks decreases with depth monotonically which in turn leads to decrease in performance with depth, therefore explaining the empirical observation in Figure 1. Moreover, the kernel converges to an almost constant kernel as $d \to \infty$ in all the four cases as shown in the following corollary.

Corollary 1 (Population NTK $\tilde{\Theta}^{(\infty)}$ as $d \to \infty$) From Theorem 2, $\tilde{\Theta}_{adj}^{(\infty)}_{ij} = 0$ and $\forall i, j$ for $\text{conv} \in \{\text{sym}, \text{row}, \text{col}\}$, $\tilde{\Theta}_{\text{conv}}^{(\infty)}_{ij} = \frac{\nu_{ij}}{1 - \nu_{ij}(1 + \delta_{ij}r^2)}$ where $\nu_{ij} = \sqrt{\pi_i \pi_j}$ for sym, $\nu_{ij} = 2\gamma$ for row and $\nu_{ij} = n\pi_i \pi_j$ for col.

From the corollary, we infer that the class separability at infinite depth is 0 for S_{adj}, and $O(r^2)$ for S_{sym}, S_{row} and S_{col} showing that the large depth GCN has very little to zero class information. To further understand the impact of depth, we plot the average in-class and out-of-class block difference using the theoretically derived population NTK $\tilde{\Theta}^{(d)}$ for depths $\{1, 10\}$ in a well separated underlying DC-SBM with $p = 0.8$ and $q = 0.1$. The line plot in column 1 of Figure 2 shows the result which demonstrates the rapid degradation of class separability with depth and the gap converges to 0 for large depths in all the four convolutions. Additionally, the gap in $\tilde{\Theta}_{row}^{(d)}$ is the highest showing that the class information is better preserved, illustrating the strong representation power of S_{row}. Consequently, large depth is undesirable for all analyzed graph convolutions in vanilla GCN and the theory suggests S_{row} as the best choice for shallow GCN.

3.2 Numerical Validation for Random Graphs

Theorem 2 and Corollary 1 show that S_{row} has better representation power under Assumption 1 (linear GCN with orthonormal features) and 2 (population DC-SBM). In Figure 2, the heatmaps show that the same holds for a random graph generated from DC-SBM with $p = 0.8$, $q = 0.1$ and $\pi_i \sim \text{Unif}(0, 1)$ using ReLU GCN. A graph of $n = 1000$ nodes is sampled from DC-SBM which is shown in the first plot of column 1 in Figure 2, such that first $\frac{n}{2}$ nodes belong to class 1 and the rest to class 2 for clear visualization. We make the following observations on the exact NTKs of S_{sym} and S_{row} shown in column 2 and 3, respectively, that validates the results derived from population NTK, (i) for depth=1, the class information for all nodes is well preserved in S_{row} as there is a clear block structure than S_{sym} in which each node is diffused unequally due to the degree correction, (ii) as depth increases to 8, S_{row} still has block structure although the gap between in-class and out-of-class blocks reduced compared to depth=1, whereas the influence of degree correction takes over the class information in S_{sym} and becomes uninformative of the classes. Appendix B.2 presents the results for S_{adj} and S_{col} where both are uninformative and behave as derived theoretically.

4 Skip Connections Retain Information Even at Infinite Depth

Skip connection is the most common way to overcome the performance degradation with depth in GCNs, but little is known about the effectiveness of different forms of available skip connections and their interplay with the convolutional operators. While there is a number of different formulations of skip connections, we consider the following two variants: Skip-PC (pre-convolution), where the skip connection is added to the features before applying convolution (Kipf & Welling 2017); and Skip-α, which gives importance to the features by adding it to each layer without convolving with S (Chen et al. 2020). To facilitate skip connections, we need to enforce constant layer size, that is, $h_i = h_{i-1}$. Therefore, we transform the input layer using a random matrix W to $H_0 = XW$ of size $n \times h$ where $W_{ij} \sim \mathcal{N}(0, 1)$ and h is the hidden layer size. Let H_i be the output of layer i.

Definition 2 (Skip-PC) In a Skip-PC (pre-convolution) network, the transformed input H_0 is added to the hidden layers before applying the graph convolution S, that is, $H_i := \sqrt{\frac{n}{h}} (H_{i-1} + \sigma_s(H_0)) W_i \forall i \in [d]$, where $\sigma_s(\cdot)$ can be linear or ReLU.
The above definition deviates from Kipf & Welling (2017) in the fact that we skip to the input layer instead of the previous layer. The following defines the skip connection similar to Chen et al. (2020).

Definition 3 (Skip-\(\alpha\)) Given an interpolation coefficient \(\alpha \in (0, 1)\), a Skip-\(\alpha\) network is defined such that the transformed input \(H_0\) and the hidden layer are interpolated linearly, that is, \(H_i := \sqrt{\frac{c}{\sigma}} \left((1 - \alpha) S H_{i-1} + \alpha \sigma_s(H_0) \right) W_i \forall i \in [d]\), where \(\sigma_s(.)\) can be linear or ReLU.

4.1 NTK for GCN with Skip Connections

We derive NTKs for the skip connections – Skip-PC and Skip-\(\alpha\) by considering the hidden layers width \(h \to \infty\). Both the NTKs maintain the form presented in Theorem 1 with the following changes to the co-variance matrices. Let \(\tilde{E}_0 = \mathbb{E}_{F \sim \mathcal{N}(0, \Sigma_0)} [\sigma_s(F)\sigma_s(F)^T]\).

Corollary 2 (NTK for Skip-PC) The NTK for an infinitely wide Skip-PC network is as presented in Theorem 1 where \(E_k\) is defined as in the theorem, but \(\Sigma_k\) is defined as

\[
\Sigma_0 = XX^T, \quad \Sigma_1 = SE_0S^T \quad \text{and} \quad \Sigma_k = SE_{k-1}S^T + \Sigma_1.
\]

Corollary 3 (NTK for Skip-\(\alpha\)) The NTK for an infinitely wide Skip-\(\alpha\) network is as presented in Theorem 1 where \(E_k\) is defined as in the theorem, but \(\Sigma_k\) is defined with \(\Sigma_0 = XX^T\), \(\Sigma_1 = (1 - \alpha)^2 SE_0S^T + \alpha (1 - \alpha) (SE_0 + E_0S^T) + \alpha^2 E_0\) and \(\Sigma_k = (1 - \alpha)^2 SE_{k-1}S^T + \alpha^2 \tilde{E}_0\).

4.2 Impact of Depth in GCNs with Skip Connection

Similar to the previous section we use the NTK for Skip-PC and Skip-\(\alpha\) (Corollary 2 and 3) and analyze the graph convolutions \(S_{sym}\) and \(S_{adj}\) under the same considerations detailed in Section 3. Since, \(S_{adj}\) and \(S_{col}\) are theoretically worse and not popular in practice, we do not consider them for the skip connection analysis. The linear orthonormal feature NTK, \(\Theta^{(d)}\), for depth \(d\) is same as (4) with changes to \(\Sigma_k\) as follows,

\[
\text{Skip-PC: } \Sigma_k = S^kS^{k^T} + SS^T, \\
\text{Skip-\(\alpha\): } \Sigma_k = (1 - \alpha)^{2k} S^kS^{k^T} + \alpha (1 - \alpha)^{2k-1} S^{k-1} (S + S^T) S^{k-1^T} + \alpha^2 \sum_{l=0}^{k-1} (1 - \alpha)^{2l} S^lS^{l^T}. \quad (5)
\]

We derive the population NTK \(\tilde{\Theta}^{(d)}\) and, for convenience, only state the result as \(d \to \infty\) in the following theorems.
Figure 3: Left plot: average in-class and out-of-class block difference at \(\infty\) depth (plotted in log scale) from the theory for different values of true class separability of DC-SBM, \(r = \frac{p - q}{p + q}\). Right plot: exact NTK \(\tilde{\Theta}(\infty)\) for \(\mathbf{S}_{\text{sym}}\) and \(\mathbf{S}_{\text{row}}\) of Skip-PC for \(d = 1\) and \(8\).

Theorem 3 (Population NTK for Skip-PC \(\tilde{\Theta}(\infty)\)) Let Assumption 1 and 2 hold, and \(K = 2\), \(r\), \(\delta_{ij} = (-1)^{1[C_i \neq C_j]}\), then \(\forall i, j\),

\[
\left(\tilde{\Theta}(\infty)_{PC,\text{sym}}\right)_{ij} = \frac{\alpha^2 \sqrt{\pi_i \pi_j} (2 + \delta_{ij} r^2)}{1 - \sqrt{\pi_i \pi_j} (1 + \delta_{ij} r^2)} \left(\frac{1}{1 - (1 - \alpha)^2} + \frac{\delta_{ij}}{1 - (1 - \alpha)^2 r^2}\right), \quad \text{and} \quad \left(\tilde{\Theta}(\infty)_{PC,\text{row}}\right)_{ij} = \frac{2 \alpha^2}{1 - 2 \alpha (1 + \delta_{ij} r^2)} \left(\frac{1}{1 - (1 - \alpha)^2} + \frac{\delta_{ij}}{1 - (1 - \alpha)^2 r^2}\right). \quad (6)
\]

Theorem 4 (Population NTK for Skip-\(\alpha\) \(\tilde{\Theta}(\infty)\)) Let Assumptions 1 and 2 hold, and \(K = 2\), \(r\), \(\delta_{ij} = (-1)^{1[C_i \neq C_j]}\),

\[
\left(\tilde{\Theta}(\infty)_{\alpha,\text{sym}}\right)_{ij} = \frac{2 \alpha^2}{1 - 2 \alpha (1 + \delta_{ij} r^2)} \left(\frac{1}{1 - (1 - \alpha)^2} + \frac{\delta_{ij}}{1 - (1 - \alpha)^2 r^2}\right), \quad \text{and} \quad \left(\tilde{\Theta}(\infty)_{\alpha,\text{row}}\right)_{ij} = \frac{2 \alpha^2}{1 - 2 \alpha (1 + \delta_{ij} r^2)} \left(\frac{1}{1 - (1 - \alpha)^2} + \frac{\delta_{ij}}{1 - (1 - \alpha)^2 r^2}\right). \quad (7)
\]

Similar to Theorem 2, assumptions on \(\pi\) and \(\gamma\) in above theorems are to simplify the results and Appendix A.5 discusses it without the assumption on \(\gamma\), likewise the numerical validation in Section 4.3. To understand the role of skip connections, we plot the gap between in-class and out-of-class blocks at \(\infty\) depth for different values of true class separability \(r\), for vanilla GCN, Skip-PC and Skip-\(\alpha\) using Corollary 1, Theorems 3 and 4, respectively. The left plot of Figure 3 shows this and clearly illustrates that the gap is away from \(0\) for both the skip connections given a reasonable true separation, unlike vanilla GCN. This implies the prevalence of class information by skip connections even at infinite depth.

4.3 Numerical Validation for Random Graphs

We validate our theoretical result using the same setup detailed in Section 3.2 without the assumptions, and compute the exact NTK for Skip-PC and Skip-\(\alpha\) GCNs for both \(\mathbf{S}_{\text{sym}}\) and \(\mathbf{S}_{\text{row}}\). Right plot of Figure 3 illustrates the result for Skip-PC where we observe that the gap between in-class and out-of-class blocks decreases but does not vanish with depth, thus retaining the class information for large depths as well. Similar observation is made for Skip-\(\alpha\) despite considering \(XX^T = I\), and the model interpolates with the feature, and is discussed in Appendix B.2. Thus, the experiment numerically validates our theory even in the setting without the assumptions. While both \(\mathbf{S}_{\text{sym}}\) and \(\mathbf{S}_{\text{row}}\) retain the class information in larger depths, we observe experimentally that the degree correction plays a significant role in \(\mathbf{S}_{\text{sym}}\) compared to \(\mathbf{S}_{\text{row}}\) as elucidated in our theoretical analysis.
Figure 4: Evaluation on Cora dataset. First row: results of vanilla GCN and the line plots show the decrease in class separability with depth for \(S_{\text{sym}} \) and \(S_{\text{row}} \). Second row: NTKs of Skip-PC and Skip-\(\alpha \), where a min and max threshold of 30 and 70 percentile is set for better visualization.

5 Empirical Analysis on Real Data

In this section, we explore how well the theoretical results translate to real dataset Cora without Assumption 1 and 2. We also provide additional experiments on Citeseer in Appendix B.4. We consider multi-class node classification (\(K = 7 \) for Cora) using GCN with ReLU activations and relax the orthonormal feature condition, so \(XX^T \neq I_n \). The NTKs for vanilla GCN, GCN with Skip-PC and Skip-\(\alpha \) (\(\alpha = 0.1 \)) for depths \(d = \{1, 2, 4, 8, 16\} \) are computed and Figure 4 illustrates the results. We make the following observations from the experiments that validate the theory even in a much relaxed setting, (i) clear block structures show up in both GCN with and without skip connections for \(S_{\text{row}} \), thus illustrating that the class information is well retained by \(S_{\text{row}} \) than \(S_{\text{sym}} \); (ii) in the case of vanilla GCN, we observe from the line plot in Figure 4 that the average in-class and out-of-class block difference degrades with depth for each class in Cora, showing the negative impact of depth which aligns well with the theoretical result; (iii) while we cannot compare the skip connections, it is still evident that \(S_{\text{row}} \) is better than \(S_{\text{sym}} \) for both Skip-PC and Skip-\(\alpha \) as block structures emerge even in the case of large depth. Thus, although the theoretical result is based on DC-SBM with mild assumptions, the conclusions hold well in real settings on real datasets as well.

6 Conclusion

Graph convolution operators significantly influence the performance of GCNs, but existing learning theoretic bounds for GCNs do not provide insight into the representation power of the operators. We present a NTK based analysis that characterizes different convolutions, thereby proving the strong representation power of \(S_{\text{row}} \) and explaining why \(S_{\text{row}} \), and to some extent \(S_{\text{sym}} \), are preferred in practice (Theorem 2). In contrast to applying spectral analysis of the convolutions to explain over-smoothing, our explicit characterization of the network provides more exact quantification of the impact of over-smoothing in deep GCNs (Corollary 1, see Figure 2). In addition, the NTKs for GCNs with skip connections enable precise understanding of the role of skip connections in countering the over-smoothing effect (Theorems 3–4). While the assumption of DC-SBM may seem restrictive, experiments on Cora and Citeseer demonstrate that our theoretical findings hold beyond DC-SBM, although formally characterizing such behavior could be difficult without model assumptions. We note that our analysis could be extended by considering feature information \((XX^T \neq I_n) \) or random samples from DC-SBM, which would require more involved analysis but could provide further insights into GCNs, such as interplay between graph and feature information.

The present NTK based analysis lays the foundation for further rigorous understanding of GCNs, for instance, deriving the statistical consistency or information theoretic limits of GCNs. The general formulation of NTK for vanilla GCNs (Theorem 1) and with skip connections (Corollaries 2–3) can be further used for theoretical analysis of other graph learning problems, such as link prediction.
This work has been supported by projects from the German Research Foundation (Research Training Group GRK 2428 and Priority Program SPP 2298, project GH 257/2-1).

REFERENCES

Sanjeev Arora, Simon S Du, Wei Hu, Zhiyuan Li, Ruslan Salakhutdinov, and Ruosong Wang. On exact computation with an infinitely wide neural net. In Conference on Neural Information Processing Systems, 2019.

Aleksandar Bojchevski, Oleksandr Shchur, Daniel Zügner, and Stephan Günnemann. Netgan: Generating graphs via random walks. In International Conference on Machine Learning, 2018.

Joan Bruna, Wojciech Zaremba, Arthur Szlam, and Yann LeCun. Spectral networks and deep locally connected networks on graphs. In International Conference on Learning Representations, 2014.

Chen Cai and Yusu Wang. A note on over-smoothing for graph neural networks. arXiv preprint arXiv:2006.13318, 2020.

Ming Chen, Zhewei Wei, Zengfeng Huang, Bolin Ding, and Yaliang Li. Simple and deep graph convolutional networks. In International Conference on Machine Learning, pp. 1725–1735. PMLR, 2020.

Zhengdao Chen, Lisha Li, and Joan Bruna. Supervised community detection with line graph neural networks. In International Conference on Learning Representations, 2018.

Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. Convolutional neural networks on graphs with fast localized spectral filtering. In Conference on Neural Information Processing Systems, 2016.

Pedro Domingos. Every model learned by gradient descent is approximately a kernel machine. arXiv preprint arXiv:2012.00152, 2020.

Simon Du, Jason Lee, Haochuan Li, Liwei Wang, and Xiyu Zhai. Gradient descent finds global minima of deep neural networks. In International Conference on Machine Learning, pp. 1675–1685. PMLR, 2019a.

Simon S Du, Kangcheng Hou, Barnabás Póczos, Ruslan Salakhutdinov, Ruosong Wang, and Keyulu Xu. Graph neural tangent kernel: Fusing graph neural networks with graph kernels. In Conference on Neural Information Processing Systems, 2019b.

David K Duvenaud, Dougal Maclaurin, Jorge Ibarzagueirre, Rafael Bombarrell, Timothy Hirzel, Alán Aspuru-Guzik, and Ryan P Adams. Convolutional networks on graphs for learning molecular fingerprints. Neural Information Processing Systems, 28, 2015.

Pascal Mattia Esser, Leena C. Vankadara, and Debarghya Ghoshdastidar. Learning theory can (sometimes) explain generalisation in graph neural networks. In Proceedings of the 34th International Conference on Neural Information Processing Systems, 2021.

Santo Fortunato and Darko Hric. Community detection in networks: A user guide. Physics reports, 659:1–44, 2016.

Vikas Garg, Stefanie Jegelka, and Tommi Jaakkola. Generalization and representational limits of graph neural networks. In International Conference on Machine Learning, pp. 3419–3430. PMLR, 2020.

William L Hamilton, Rex Ying, and Jure Leskovec. Inductive representation learning on large graphs. In Conference on Neural Information Processing Systems, pp. 1025–1035, 2017.

Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel: convergence and generalization in neural networks. In Conference on Neural Information Processing Systems, pp. 8580–8589, 2018.
Stefanie Jegelka. Theory of graph neural networks: Representation and learning, 2022.

Brian Karrer and Mark EJ Newman. Stochastic blockmodels and community structure in networks. *Physical review E*, 83(1):016107, 2011.

Nicolas Keriven. Not too little, not too much: a theoretical analysis of graph (over) smoothing. *arXiv preprint arXiv:2205.12156*, 2022.

Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional networks. In *International Conference on Learning Representations (ICLR)*, 2017.

Jaehoon Lee, Yasaman Bahri, Roman Novak, Samuel S Schoenholz, Jeffrey Pennington, and Jascha Sohl-Dickstein. Deep neural networks as gaussian processes. In *International Conference on Learning Representations*, 2018.

Qimai Li, Zhichao Han, and Xiao-Ming Wu. Deeper insights into graph convolutional networks for semi-supervised learning. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 32, 2018.

Yujia Li, Daniel Tarlow, Marc Brockschmidt, and Richard Zemel. Gated graph sequence neural networks. In *International Conference on Learning Representations*, 2016.

Renjie Liao, Raquel Urtasun, and Richard Zemel. A pac-bayesian approach to generalization bounds for graph neural networks. In *International Conference on Learning Representations*, 2021.

Chaoyue Liu, Libin Zhu, and Misha Belkin. On the linearity of large non-linear models: when and why the tangent kernel is constant. In *Conference on Neural Information Processing Systems*, volume 33, pp. 15954–15964, 2020.

Kenta Oono and Taiji Suzuki. Graph neural networks exponentially lose expressive power for node classification. In *International Conference on Learning Representations*, 2019.

Rahul Ragesh, Sundararajan Sellamanickam, Arun Iyer, Ramakrishna Bairi, and Vijay Lingam. Hetegcn: Heterogeneous graph convolutional networks for text classification. In *Proceedings of the 14th ACM International Conference on Web Search and Data Mining*, pp. 860–868, 2021.

Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele Monfardini. The graph neural network model. *IEEE transactions on neural networks*, 20(1):61–80, 2008.

Franco Scarselli, Ah Chung Tsoi, and Markus Hagenbuchner. The vapnik–chervonenkis dimension of graph and recursive neural networks. *Neural Networks*, 108:248 – 259, 2018.

Rianne van den Berg, Thomas N Kipf, and Max Welling. Graph convolutional matrix completion. *arXiv preprint arXiv:1706.02263*, 2017.

Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua Bengio. Graph attention networks. *stat*, 1050:4, 2018.

Hongwei Wang and Jure Leskovec. Unifying graph convolutional neural networks and label propagation. *arXiv preprint arXiv:2002.06755*, 2020.

Xiaoyun Wang, Minhao Cheng, Joe Eaton, Cho-Jui Hsieh, and Felix Wu. Attack graph convolutional networks by adding fake nodes. In *Proceedings of Woodstock'18: ACM Symposium on Neural Gaze Detection*, Woodstock, NY, 2018.

Oliver Wieder, Stefan Kohlbacher, Mélanie Kuenemann, Arthur Garon, Pierre Ducrot, Thomas Seidel, and Thierry Langer. A compact review of molecular property prediction with graph neural networks. *Drug Discovery Today: Technologies*, 37:1–12, 2020.

Felix Wu, Amauri Souza, Tianyi Zhang, Christopher Fifty, Tao Yu, and Kilian Weinberger. Simplifying graph convolutional networks. In *International Conference on Machine Learning*, pp. 6861–6871. PMLR, 2019.
Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and Philip S Yu. A comprehensive survey on graph neural networks. In *IEEE transactions on neural networks and learning systems*, 2020.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural networks? In *International Conference on Learning Representations*, 2019.

Greg Yang. Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. *arXiv preprint arXiv:1902.04760*, 2019.

Rex Ying, Jiaxuan You, Christopher Morris, Xiang Ren, William L. Hamilton, and Jure Leskovec. Hierarchical graph representation learning with differentiable pooling. In *Advances in Neural Information Processing Systems*, 2018.

Muhan Zhang, Zhicheng Cui, Marion Neumann, and Yixin Chen. An end-to-end deep learning architecture for graph classification. In *AAAI Conference on Artificial Intelligence*, 2018.

Jie Zhou, Ganqu Cui, Shengding Hu, Zhengyan Zhang, Cheng Yang, Zhiyuan Liu, Lifeng Wang, Changcheng Li, and Maosong Sun. Graph neural networks: A review of methods and applications. *AI Open*, 1:57–81, 2020.
A MATHEMATICAL DERIVATIONS AND PROOFS

We first derive the NTK (Theorem 1) for GCN defined in (2) and prove Theorem 2 by considering linear GCN and computing the population NTK $\tilde{\Theta}^{(d)}$ for different graph convolutions. We use 1_n to denote a vector of n dimension with all 1s and $\hat{1}_n$ for a vector of n dimension with -1 as first $\frac{n}{2}$ entries and $+1$ as the remaining $\frac{n}{2}$ entries.

A.1 THEOREM 1: NTK FOR VANILLA GCN

We rewrite the GCN $F_W(X, S)$ defined in (2) using the following recursive definitions:

$$G_1 = SX, \quad G_i = \sqrt{\frac{c_\sigma}{h_{i-1}}} S\sigma(F_{i-1}) \forall i \in \{2, \ldots, d+1\}, \quad F_i = G_i W_i \forall i \in [d+1]. \quad (8)$$

Thus, $F_W(X, S) = F_{d+1}$ and using the definitions in (8), the gradient with respect to W_i is

$$\frac{\partial F_W(X, S)}{\partial W_i} = G_i^T B_i \quad \text{with} \quad B_{d+1} = 1_n, \quad B_i = \sqrt{\frac{c_\sigma}{h_i}} S^T B_{i+1} W_{i+1}^T \odot \hat{\sigma}(F_i). \quad (9)$$

We derive the NTK, as defined in (1), using the recursive definition of $F_W(X, S)$ in (8) and its derivative in (9).

Co-variance between Nodes. We will first derive the co-variance matrix of size $n \times n$ for each layer comprising of co-variance between any two nodes u and v. The co-variance between u and v in F_1 and F_i are derived below. We denote u-th row of matrix Z as Z_u throughout our proofs.

$$\mathbb{E}[(F_1)_{uk} (F_1)_{vk'}] = \mathbb{E}[(G_1 W_1)_{uk} (G_1 W_1)_{vk'}]$$

$$= \mathbb{E}\left[\sum_{r=1}^{h_0} (G_1)_{ur} (W_1)_{rk} \sum_{s=1}^{h_0} (G_1)_{vs} (W_1)_{sk'} \right] (W_1)_{xy} \sim \mathcal{N}(0, 1) = 0 \quad \text{if } r \neq s \text{ or } k \neq k'$$

$$\mathbb{E}[(F_i)_{uk} (F_i)_{vk}] \overset{r=s}{=} \mathbb{E}\left[\sum_{r=1}^{h_0} (G_i)_{ur} (G_i)_{vr} (W_i)_{rk}^2 \right] (W_1)_{xy} \sim \mathcal{N}(0, 1) \sum_{r=1}^{h_0} (G_1)_{ur} (G_1)_{vr} = \langle (G_1)_{u}, (G_1)_{v} \rangle \quad (10)$$

$$\mathbb{E}[(F_i)_{uk} (F_i)_{vk}] \overset{r=s}{=} \mathbb{E}\left[\sum_{r=1}^{h_i-1} (G_i)_{ur} (G_i)_{vr} (W_i)_{rk}^2 \right] (W_1)_{xy} \sim \mathcal{N}(0, 1) \sum_{r=1}^{h_i-1} (G_i)_{ur} (G_i)_{vr} = \langle (G_i)_{u}, (G_i)_{v} \rangle \quad (11)$$

Evaluating (10) and (11) in terms of the graph in the following,

(10): $\langle (G_1)_{u}, (G_1)_{v} \rangle = \langle (SX)_{u}, (SX)_{v} \rangle = S_u XX^T S_v = (\Sigma_1)_{uv}$

(11): $\langle (G_i)_{u}, (G_i)_{v} \rangle = \frac{c_\sigma}{h_{i-1}} \langle (S\sigma(F_{i-1}))_{u}, (S\sigma(F_{i-1}))_{v} \rangle$

$$= \frac{c_\sigma}{h_{i-1}} \sum_{k=1}^{h_{i-1}} \langle S\sigma(F_{i-1})_{uk}, S\sigma(F_{i-1})_{vk} \rangle \quad h_{i-1} \to \infty \quad \text{law of large numbers}$$

$$= c_\sigma \mathbb{E}\left[\sum_{r=1}^{n} S_{ur} \sigma(F_{i-1})_{rk} \left(\sum_{s=1}^{n} S_{vs} \sigma(F_{i-1})_{sk} \right) \right]$$

$$= c_\sigma \mathbb{E}\left[\sum_{r=1}^{n} \sum_{s=1}^{n} S_{ur} S_{vs} \sigma(F_{i-1})_{rk} \sigma(F_{i-1})_{sk} \right]$$
\[(a) \sum_{r=1}^{n} \sum_{s=1}^{n} S_{ur} (E_{i-1})_{rs} S_{sv}^{T} = S_{u} E_{i-1} S_{v}^{T} = (\Sigma_{i})_{uv} \quad (13) \]

(a): using \(E [(E_{i-1})_{rk} (E_{i-1})_{ek}] = (\Sigma_{i-1})_{rs} \) and the definition of \(E_{i-1} \) in Theorem I

NTK for Vanilla GCN. Let us first evaluate the tangent kernel component from \(W_{1} \) respective to nodes \(u \) and \(v \). The following two results are needed to derive it.

Result 1 (Inner Product of Matrices). Let \(a \) and \(b \) be vectors of size \(d_{1} \times 1 \) and \(d_{2} \times 1 \), then

\[\langle ab^{T}, ab^{T} \rangle = tr (ab^{T} (ab^{T})^{T}) = tr (ab^{T} ba^{T}) = (a^{T}a) \odot (b^{T}b) = \langle a, a \rangle \odot \langle b, b \rangle \quad (14) \]

Result 2 \((B_{r})_{u}, (B_{r})_{v} \). We evaluate \(\langle (B_{r})_{u}, (B_{r})_{v} \rangle = (B_{r} B_{r}^{T})_{uv} \) appearing in the gradient.

\[(B_{r} B_{r}^{T})_{uv} = \frac{c_{\sigma}}{h_{r}} \sum_{k=1}^{n} (S^{T} B_{r+1} W_{r+1}^{T})_{uk} \dot{\sigma}(F_{r})_{uk} (S^{T} B_{r+1} W_{r+1}^{T})_{vk} \dot{\sigma}(F_{r})_{vk} \]

\[= \frac{c_{\sigma}}{h_{r}} \sum_{k=1}^{n} \sum_{i,j} S_{iu} (B_{r+1})_{ik} (W_{r+1})_{kj} \dot{\sigma}(F_{r})_{uk} \dot{\sigma}(F_{r})_{vk} \sum_{i',j'} S_{i'v} (B_{r+1})_{i'k} (W_{r+1})_{j'j} \dot{\sigma}(F_{r})_{uk} \dot{\sigma}(F_{r})_{vk} \]

\[= \frac{c_{\sigma}}{h_{r}} \sum_{j,j'} \sum_{i,j} (S^{T} B_{r+1})_{uj} (S^{T} B_{r+1})_{uj} \dot{\sigma}(F_{r})_{uk} \dot{\sigma}(F_{r})_{vk} (W_{r+1})_{kj} \dot{\sigma}(F_{r})_{uk} \dot{\sigma}(F_{r})_{vk} \]

\[\dot{h}_{r} \rightarrow \infty \sum_{j,j'} \sum_{i,j} (S^{T} B_{r+1})_{uj} (S^{T} B_{r+1})_{uj} c_{\sigma} E \left[\dot{\sigma}(F_{r})_{uk} \dot{\sigma}(F_{r})_{vk} \right] ; \quad 0 \text{ for } j \neq j' \]

\[\langle (S^{T} B_{r+1})_{u}, (S^{T} B_{r+1})_{v} \rangle c_{\sigma} E \left[\dot{\sigma}(F_{r})_{uk} \dot{\sigma}(F_{r})_{vk} \right] \]

\[= \langle SS^{T} \rangle_{uv} (B_{r+1}, B_{r+1})_{uv} c_{\sigma} E \left[\dot{\sigma}(F_{r})_{uk} \dot{\sigma}(F_{r})_{vk} \right] \]

\[= \langle SS^{T} \rangle_{uv} (B_{r+1}, B_{r+1})_{uv} \dot{E}_{uv} \]

(b): \(W_{r+1} \}_{kj} \) is independent and \(E \left[W_{r+1}^{2} \right]_{kj} = 1 \).

Now, let’s derive \(\left\langle \left(\frac{\partial F}{\partial W_{u}} \right)_{u}, \left(\frac{\partial F}{\partial W_{v}} \right)_{v} \right\rangle \) and \(\left\langle \left(\frac{\partial F}{\partial W_{u}} \right)_{u}, \left(\frac{\partial F}{\partial W_{v}} \right)_{v} \right\rangle \) using the above results.

\[\left\langle \left(\frac{\partial F}{\partial W_{u}} \right)_{u}, \left(\frac{\partial F}{\partial W_{v}} \right)_{v} \right\rangle = \left\langle \left(G_{k} \right)_{u}, \left(B_{k} \right)_{u}, \left(G_{k} \right)_{v}, \left(B_{k} \right)_{v} \right\rangle \]

\[\left\langle \left(G_{k} \right)_{u}, \left(G_{k} \right)_{v} \right\rangle \odot \left\langle \left(B_{k} \right)_{u}, \left(B_{k} \right)_{v} \right\rangle \]

\[= \left\langle \left(\Sigma_{k} \right)_{uv}, (SS^{T})_{uv} (B_{r+1}, B_{r+1})_{uv} \dot{E}_{uv} \right\rangle \]

\[= \left\langle \left(\Sigma_{k} \right)_{uv}, \left(SS^{T} \right)_{uv} \right\rangle^{d+1-k} \prod_{k'=k}^{d+1-k} \left(\dot{E}_{k'} \right)_{uv} \left(B_{d+1}, B_{d+1} \right)_{uv} \]

\[\left\langle \left(\Sigma_{k} \right)_{uv}, \left(SS^{T} \right)_{uv} \right\rangle^{d+1-k} \prod_{k'=k}^{d+1-k} \left(\dot{E}_{k'} \right)_{uv} \]

(16)
(c): repeated application of (15).
(d): definition of \(B_{d+1} \).

Extending (16) to all \(n \) nodes which will result in \(n \times n \) matrix,

\[
\mathbb{E}_{\mathbf{W}_k} \left[\left\langle \frac{\partial \mathbf{F}}{\partial \mathbf{W}_k}, \frac{\partial \mathbf{F}}{\partial \mathbf{W}_k} \right\rangle \right] = \Sigma_k \odot (\mathbf{S}^T)^{\odot d+1-k} \odot \mathbf{E}_k \tag{17}
\]

Finally, NTK \(\Theta \) is,

\[
\Theta = \sum_{k=1}^{d+1} \mathbb{E}_{\mathbf{W}_k} \left[\left\langle \frac{\partial \mathbf{F}}{\partial \mathbf{W}_k}, \frac{\partial \mathbf{F}}{\partial \mathbf{W}_k} \right\rangle \right] = \sum_{k=1}^{d+1} \Sigma_k \odot (\mathbf{S}^T)^{\odot (d+1-k)} \odot \mathbf{E}_k \tag{18}
\]

with definition of \(\Sigma_k \) and \(\mathbf{E}_k \) mentioned in the theorem. \(\square \)

A.2 \textbf{Theorem 2 and Corollary 1 Population NTK} \(\tilde{\Theta} \) \textbf{for Different} \(\mathbf{S} \)

We consider Assumption 1 that is, linear GCN with orthonormal features and Assumption 2 without assumption on \(\gamma \). We first prove it for \(K = 2 \) and then extend it to \(K \) classes. We consider that all nodes are sorted per class for ease of analysis which implies \(\mathbf{A} \) is a \(n \times n \) matrix with \(p \pi_i \pi_j \) entries in \([1, \sqrt{\frac{n}{2}}], [1, \sqrt{\frac{n}{2}}] \) and \([\sqrt{\frac{n}{2}} + 1, n][\sqrt{\frac{n}{2}} + 1, n] \) blocks and \(q \pi_i \pi_j \) entries in \([1, \sqrt{\frac{n}{2}}][\sqrt{\frac{n}{2}} + 1, n] \) and \([\sqrt{\frac{n}{2}} + 1, n][1, \sqrt{\frac{n}{2}}] \) blocks. Therefore,

\[
\mathbf{A} = \pi \pi^T \odot \left(\frac{p+q}{2} \mathbf{1} \mathbf{1}^T + \frac{p-q}{2} \hat{\pi} \hat{\pi}^T\right)
= \frac{p+q}{2} \pi \pi^T + \frac{p-q}{2} \hat{\pi} \hat{\pi}^T \tag{19}
\]

where the entries of \(\hat{\pi} \) are \(-\pi_i \forall i \in [1, \sqrt{\frac{n}{2}}]\) and \(+\pi_i \forall i \in [\sqrt{\frac{n}{2}} + 1, n] \). \(\mathbf{D} \) be the degree matrix of \(\mathbf{A} \) and \(\mathbf{D} = \frac{p+q}{2} \text{diag}(\pi) \).

A.2.1 \textbf{Symmetric Degree Normalized Adjacency} \(\mathbf{S}_{sym} \)

Now, let us compute \(\mathbf{S}_{sym} \) using \(\mathbf{A} \) (19) and its degree matrix \(\mathbf{D} \).

\[
\mathbf{S}_{sym} = \mathbf{D}^{-\frac{1}{2}} \mathbf{A} \mathbf{D}^{-\frac{1}{2}}
= \frac{2}{p+q} \text{diag}(\pi)^{-\frac{1}{2}} \left(\frac{p+q}{2} \pi \pi^T + \frac{p-q}{2} \hat{\pi} \hat{\pi}^T\right) \text{diag}(\pi)^{-\frac{1}{2}}
= \pi^{\frac{1}{2}} \pi^{\frac{1}{2}} \times \frac{p-q}{p+q} \hat{\pi} \hat{\pi}^T
= \frac{\sqrt{\pi_1}}{\sqrt{\pi_n}} \begin{bmatrix} 1 & 0 \\ 0 & r \end{bmatrix} \begin{bmatrix} \sqrt{\pi_1} & -\sqrt{\pi_1} \\ \vdots & \vdots \\ \sqrt{\pi_n} & +\sqrt{\pi_n} \end{bmatrix} \times \begin{bmatrix} \sqrt{\pi_1} & -\sqrt{\pi_1} \\ \vdots & \vdots \\ \sqrt{\pi_n} & +\sqrt{\pi_n} \end{bmatrix}^T
= \mathbf{U} \mathbf{A} \mathbf{U}^T \tag{20}
\]

Note that \(\pi^T \pi = \hat{\pi}^T \hat{\pi} = 1 \), \(\pi^T \pi = 0 \) and \(\mathbf{U}^T \mathbf{U} = \mathbf{I}_2 \), thus (20) is the singular value decomposition of \(\mathbf{S}_{sym} \).
To compute the population NTK $\tilde{\Theta}_s^{(d)}$ in (4), we need $S_{sym}^k S_{sym}^{kT}$. Using (20),

$$S_{sym}^k S_{sym}^{kT} \text{[20]} U A^{2k} U^T$$

$$= \begin{bmatrix} \sqrt{\pi_1} & -\sqrt{\pi_1} \\ \vdots & \vdots \\ \sqrt{\pi_n} & +\sqrt{\pi_n} \end{bmatrix}_{n \times 2} \begin{bmatrix} 1 & 0 \\ 0 & r^{2k} \end{bmatrix}_{2 \times 2} \begin{bmatrix} \sqrt{\pi_1} & -\sqrt{\pi_1} \\ \vdots & \vdots \\ \sqrt{\pi_n} & +\sqrt{\pi_n} \end{bmatrix}_{2 \times n}$$

$$(S_{sym}^k S_{sym}^{kT})_{ij} = (1 + \delta_{ij} r^{2k}) \sqrt{\pi_i \pi_j} : \delta_{ij} = (-1)^{[i, \neq j]}$$

$$S_{sym}^k S_{sym}^{kT} \text{ matrix notation} = \begin{bmatrix} (1 + r^{2k}) \sqrt{\pi_i \pi_j} & (1 - r^{2k}) \sqrt{\pi_i \pi_j} \\ (1 - r^{2k}) \sqrt{\pi_i \pi_j} & (1 + r^{2k}) \sqrt{\pi_i \pi_j} \end{bmatrix}_{n \times n}$$

(21)

Consequently, population NTK $\tilde{\Theta}_s^{(d)}$ for nodes i and j using (21) is as follows,

$$\left(\tilde{\Theta}_s^{(d)}\right)_{ij} = \sum_{k=1}^{d+1} \sqrt{\pi_i \pi_j} \left(1 + \delta_{ij} r^{2k}\right) \left(\sqrt{\pi_i \pi_j} \left(1 + \delta_{ij} r^2\right)\right)^{d+1-k}$$

$$= \sum_{k=1}^{d+1} \left(\sqrt{\pi_i \pi_j} \right)^{d+2-k} (1 + \delta_{ij} r^2)^{d+1-k} + \delta_{ij} \sum_{k=1}^{d+1} \left(\sqrt{\pi_i \pi_j} \right)^{d+2-k} r^{2k} (1 + \delta_{ij} r^2)^{d+1-k}$$

$$= \sqrt{\pi_i \pi_j} \frac{1 - \left(\sqrt{\pi_i \pi_j} \left(1 + \delta_{ij} r^2\right)\right)^{d+1}}{1 - \sqrt{\pi_i \pi_j} \left(1 + \delta_{ij} r^2\right)}$$

$$+ \delta_{ij} \sqrt{\pi_i \pi_j} r^{2(d+1)} \frac{1 - \left(\sqrt{\pi_i \pi_j} \left(1 + \delta_{ij} r^2\right) \right)^{d+1}}{1 - \sqrt{\pi_i \pi_j} \left(1 + \delta_{ij} r^2\right) r^{d+2}}$$

(22)

Since we consider $\sum_{i \in C_k} \pi_i = 1/K$, the maximum of $\sqrt{\pi_i \pi_j} < 1/4$ for $K = 2$. This implies $\sqrt{\pi_i \pi_j} (1 + r^2) < 1$. Therefore, NTK at $d \to \infty$ is

$$\left(\tilde{\Theta}_s^{(\infty)}\right)_{ij} = \sqrt{\pi_i \pi_j} \frac{1}{1 - \sqrt{\pi_i \pi_j} (1 + \delta_{ij} r^2)}$$

(23)

Equations (22) and (23) prove the population NTK $\tilde{\Theta}_s^{(d)}$ and $\tilde{\Theta}_s^{(\infty)}$ in Theorem 2 and Corollary 1, respectively.

A.2.2 Row Degree Normalized Adjacency S_{row}

The assumption on γ in Assumption 2 is only to simplify the expression of population NTK for S_{row}. We derive it without this assumption in the following. We first derive $S_{row}^k S_{row}^{kT}$.

$$S_{row} = D^{-\frac{1}{2}} A$$

$$= D^{-\frac{1}{2}} D^{-\frac{1}{2}} A D^{-\frac{1}{2}} D^{-\frac{1}{2}}$$

$$= D^{-\frac{1}{2}} U A U^T D^{-\frac{1}{2}}$$

$$S_{row}^k = D^{-\frac{1}{2}} U A^k U^T D^{-\frac{1}{2}}$$

$$S_{row}^k S_{row}^{kT} = D^{-\frac{1}{2}} U A^k U^T D^{-\frac{1}{2}} + D^{-\frac{1}{2}} U A^k U^T D^{-\frac{1}{2}} U A^k U^T D^{-\frac{1}{2}}$$

$$= \left(D^{-\frac{1}{2}} U A^k U^T D^{-\frac{1}{2}}\right) D^{+\frac{1}{2}} DD^{+\frac{1}{2}} \left(D^{-\frac{1}{2}} U A^k U^T D^{-\frac{1}{2}}\right)$$

$$= \left(\tilde{U} A^k \tilde{U}^T\right) D^2 \left(\tilde{U} A^k \tilde{U}^T\right) : \tilde{U} = D^{-\frac{1}{2}} U = \sqrt{\frac{2}{p + q}} \begin{bmatrix} 1_T^T \\ 1_n \end{bmatrix}_{n \times 2}$
Note that each block is a constant and independent of individual π_j. Using (24), NTK in (4) for i and j belonging to class 1 is,

$$
(\hat{\Theta}_n^{(d)})_{ij} = \sum_{k=1}^{d+1} \left((1 + r_k)^2 \lambda + (1 - r_k)^2 \mu \right) \left((1 + r)^2 \lambda + (1 - r)^2 \mu \right)^{d+1-k}
$$

$$
= \sum_{k=1}^{d+1} (\lambda + \mu) \left((1 + r)^2 \lambda + (1 - r)^2 \mu \right)^{d+1-k} + \sum_{k=1}^{d+1} 2(\lambda - \mu) r^k \left((1 + r)^2 \lambda + (1 - r)^2 \mu \right)^{d+1-k} + \sum_{k=1}^{d+1} (\lambda + \mu) r^{2k} \left((1 + r)^2 \lambda + (1 - r)^2 \mu \right)^{d+1-k}
$$

$$
= (\lambda + \mu) \frac{1 - \left((1 + r)^2 \lambda + (1 - r)^2 \mu \right)^{d+1}}{1 - \left((1 + r)^2 \lambda + (1 - r)^2 \mu \right)} + 2(\lambda - \mu) \frac{1 - \left((1 + r)^2 \lambda + (1 - r)^2 \mu \right)^{d+1}}{1 - \left((1 + r)^2 \lambda + (1 - r)^2 \mu \right)} \frac{r^{-d+1}}{r^{-2}}
$$

Similarly for i and j in class 2,

$$
(\hat{\Theta}_n^{(d)})_{ij} = \sum_{k=1}^{d+1} \left((1 - r_k)^2 \lambda + (1 + r_k)^2 \mu \right) \left((1 - r)^2 \lambda + (1 + r)^2 \mu \right)^{d+1-k}
$$

$$
= (\lambda + \mu) \frac{1 - \left((1 - r)^2 \lambda + (1 + r)^2 \mu \right)^{d+1}}{1 - \left((1 - r)^2 \lambda + (1 + r)^2 \mu \right)} + 2(-\lambda + \mu) \frac{1 - \left((1 - r)^2 \lambda + (1 + r)^2 \mu \right)^{d+1}}{1 - \left((1 - r)^2 \lambda + (1 + r)^2 \mu \right)} \frac{r^{-d+1}}{r^{-2}}
$$

$$
(\lambda + \mu) \frac{1 - \left((1 - r)^2 \lambda + (1 + r)^2 \mu \right)^{d+1}}{1 - \left((1 - r)^2 \lambda + (1 + r)^2 \mu \right)} \frac{r^{-2(d+1)}}{r^{-2}}
$$
When \(i\) and \(j\) are in different classes,
\[
\begin{align*}
\left(\tilde{\Theta}^{(d)}_{\text{row}} \right)_{ij} &= \sum_{k=1}^{d+1} (1 - r^{2k}) \left(\lambda + \mu \right) \left((1 - r^2) (\lambda + \mu) \right)^{d+1-k} \\
&= \sum_{k=1}^{d+1} (\lambda + \mu)^{d+2-k} (1 - r^2)^{d+1-k} - r^{2k} (\lambda + \mu)^{d+2-k} (1 - r^2)^{d+1-k} \\
&= (\lambda + \mu) \frac{1 - (\lambda + \mu)^{d+1} (1 - r^2)^{d+1}}{1 - (\lambda + \mu) (1 - r^2)} \\
&\quad - (\lambda + \mu) r^{2(d+1)} \frac{1 - (\lambda + \mu)^{d+1} (1 - r^2)^{d+1} r^{-2(d+1)}}{1 - (\lambda + \mu) (1 - r^2) r^{-2}} \\
&= \begin{cases} \\
\begin{aligned}
(\lambda + \mu) & & \text{if } i \text{ and } j \in \text{class 1} \\
\frac{1 - \left((1 + r)^2 \lambda + (1 - r)^2 \mu \right)}{1 - (\lambda + \mu) (1 - r^2)} & & \text{if } i \text{ and } j \text{ different class}
\end{aligned}
\end{cases}
\end{align*}
\]

As \(\lambda\) and \(\mu < \frac{1}{2}\), \((1 + r)^2 \lambda + (1 - r)^2 \mu < 2 \left(1 + r^2 \right) \frac{1}{2} < 1\), population NTK \(\tilde{\Theta}^{(d)}_{\text{row}}\) at \(d \to \infty\) is
\[
\begin{align*}
\left(\tilde{\Theta}^{(\infty)}_{\text{row}} \right)_{ij} &= \begin{cases} \\
\begin{aligned}
(\lambda + \mu) & & \text{if } i \text{ and } j \in \text{class 1} \\
\frac{1 - \left((1 + r)^2 \lambda + (1 - r)^2 \mu \right)}{1 - (\lambda + \mu) (1 - r^2)} & & \text{if } i \text{ and } j \text{ different class}
\end{aligned}
\end{cases}
\end{align*}
\]

When the assumption on \(\gamma\) is introduced, \(\exists \gamma\ s.t. \sum_{i=1}^{n} \pi_i^2 \mathbb{1}[\mathcal{C}_i = k] = \gamma \forall k, \lambda + \mu = 2\gamma\) and \(\lambda - \mu = 0\). Hence, equations (25), (26) and (27) of the population NTK \(\tilde{\Theta}^{(d)}_{\text{row}}\) and (28) of \(\tilde{\Theta}^{(\infty)}_{\text{row}}\) reduce to the expressions in Theorem 2 and Corollary 1 respectively.

A.2.3 Column Normalized Adjacency \(S_{\text{col}}\)

In this section we derive the population NTK \(\tilde{\Theta}^{(d)}_{\text{col}}\).

\[
\begin{align*}
S_{\text{col}} &= AD^{-1} \\
&= D^{-\frac{1}{2}} \mathbf{U} \Lambda \mathbf{U}^T D^{-\frac{1}{2}} \\
S_{\text{col}}^k &= D^{-\frac{1}{2}} \mathbf{U} \Lambda^k \mathbf{U}^T D^{-\frac{1}{2}} \\
S_{\text{col}}^{kT} S_{\text{col}} &= D^{-\frac{1}{2}} \mathbf{U} \Lambda^k \mathbf{U}^T D^{-\frac{1}{2}} D^{-\frac{1}{2}} \mathbf{U} \Lambda^k \mathbf{U}^T D^{-\frac{1}{2}} \\
&= \left(\tilde{\mathbf{U}} \Lambda^k \tilde{\mathbf{U}}^T \right) D^{-\frac{1}{2}} \left(\tilde{\mathbf{U}} \Lambda^k \tilde{\mathbf{U}}^T \right) \\
&= n \pi_i \pi_j (1 + \delta_{ij} r^{2k}) \\
&\quad \text{entry not.} \\
&\begin{bmatrix}
\begin{bmatrix}
n \pi_i \pi_j (1 + r^{2k}) \\
n \pi_i \pi_j (1 - r^{2k})
\end{bmatrix} & \begin{bmatrix}
n \pi_i \pi_j (1 - r^{2k}) \\
n \pi_i \pi_j (1 + r^{2k})
\end{bmatrix}
\end{bmatrix}_{n \times n}
\end{align*}
\]

Therefore, \(\tilde{\Theta}^{(d)}_{\text{col}}\) is
\[
\begin{align*}
\left(\tilde{\Theta}^{(d)}_{\text{col}} \right)_{ij} &= \sum_{k=1}^{d+1} n \pi_i \pi_j (1 + \delta_{ij} r^{2k}) \left(n \pi_i \pi_j (1 + \delta_{ij} r^{2k}) \right)^{d+1-k} \\
&= \sum_{k=1}^{d+1} (n \pi_i \pi_j)^{d+2-k} (1 + \delta_{ij} r^{2k})^{d+1-k} + \delta_{ij} \sum_{k=1}^{d+1} (n \pi_i \pi_j)^{d+2-k} r^{2k} (1 + r^2)^{d+1-k} \\
&= n \pi_i \pi_j \left[\frac{1 - (n \pi_i \pi_j (1 + r^2))^{d+1}}{1 - n \pi_i \pi_j (1 + r^2)} + \delta_{ij} r^{2d+2} \frac{1 - (n \pi_i \pi_j (1 + r^2) r^{-2})^{d+1}}{1 - n \pi_i \pi_j (1 + r^2) r^{-2}} \right]
\end{align*}
\]
Since $\sum_i^n \pi_i = 1$, $\pi_i = O(\frac{1}{n})$. So, $n\pi_i \pi_j (1 + r^2) < 1$. Therefore, using (30),

$$
(\tilde{\Theta}_{col}^{(\infty)})_{ij} = \frac{n\pi_i \pi_j}{1 + n\pi_i \pi_j (1 + \delta_{ij} r^2)}.
$$

(31)

Hence, equations (30) and (31) prove the population NTK $\tilde{\Theta}_{col}^{(d)}$ and $\tilde{\Theta}_{col}^{(\infty)}$ in Theorem 2 and Corollary 1 respectively.

A.2.4 UNNORMALIZED ADJACENCY S_{adj}

We can rewrite A as follows,

$$
A = \pi \pi^T \odot \begin{bmatrix}
\frac{p}{q} & \frac{q}{p} \\
\frac{q}{p} & \frac{p}{q}
\end{bmatrix}
$$

$$
= \begin{bmatrix}
\pi_1 & \cdot & \pi_n \\
\cdot & \cdot & \cdot \\
\pi_n & \cdot & \pi_1
\end{bmatrix}
\begin{bmatrix}
\frac{p}{q} & \frac{p}{q} \\
\frac{q}{p} & \frac{q}{p}
\end{bmatrix}
\begin{bmatrix}
\pi_1 & \cdot & \pi_n \\
\cdot & \cdot & \cdot \\
\pi_n & \cdot & \pi_1
\end{bmatrix}
$$

(32)

We consider γ assumption for the analysis of unnormalised adjacency to simplify the computation. But the result holds without this assumption.

$$
A^2 = \begin{bmatrix}
\pi_1 & \cdot & \pi_n \\
\cdot & \cdot & \cdot \\
\pi_n & \cdot & \pi_1
\end{bmatrix}
\begin{bmatrix}
(p^2 + q^2) \gamma & 2pq \gamma \\
2pq \gamma & (p^2 + q^2) \gamma
\end{bmatrix}
\begin{bmatrix}
\pi_1 & \cdot & \pi_n \\
\cdot & \cdot & \cdot \\
\pi_n & \cdot & \pi_1
\end{bmatrix}
$$

$$
A^4 = \begin{bmatrix}
\pi_1 & \cdot & \pi_n \\
\cdot & \cdot & \cdot \\
\pi_n & \cdot & \pi_1
\end{bmatrix}
\begin{bmatrix}
(p^4 + q^4 + 6p^2q^2) \gamma^3 & (4p^3q + 4pq^3) \gamma^3 \\
4p^3q + 4pq^3 \gamma^3 & (p^4 + q^4 + 6p^2q^2) \gamma^3
\end{bmatrix}
\begin{bmatrix}
\pi_1 & \cdot & \pi_n \\
\cdot & \cdot & \cdot \\
\pi_n & \cdot & \pi_1
\end{bmatrix}
$$

Note that in the above shown A^{2k} it is the even powers of binomial expansion of $(p + q)^{2k}$ for i, j in same class whereas it is the odd powers for i, j not in the same class. We compute the filter S_{adj} using this fact.

$$
S_{adj} = \frac{1}{n} A
$$

$$
S_{adj}^k = \frac{1}{n^k} A^k
$$

$$
S_{adj}^k S_{adj}^{kT} = \frac{1}{n^{2k}} A^{2k}
$$

$$
= \begin{cases}
\pi_i \pi_j \sum_{l=0}^{2k-1} \binom{2k}{2l} p^{2l} - 2l q^{2l} & \text{if } i \text{ and } j \text{ in same class} \\
\pi_i \pi_j \sum_{l=0}^{2k-1-1} \binom{2k}{2l+1} p^{2l+1} - 2l + 1 q^{2l+1} & \text{if } i \text{ and } j \text{ in different class}
\end{cases}
$$

$$
\tilde{\Theta}_{adj}^{(d)} = \begin{cases}
\pi_i \pi_j \sum_{k=1}^{d+1} \frac{2^k}{n^{2k}} (p^2 + q^2)^{d+1-k} \sum_{l=0}^{2k-1} \binom{2k}{2l} p^{2l} - 2l q^{2l} & \text{if } i \text{ and } j \text{ in same class} \\
\pi_i \pi_j \sum_{k=1}^{d+1} \frac{2^k}{n^{2k}} (2pq)^{d+1-k} \sum_{l=0}^{2k-1-1} \binom{2k}{2l+1} p^{2l+1} - 2l + 1 q^{2l+1} & \text{if } i \text{ and } j \text{ in different class}
\end{cases}
$$
The above form is not simplified as it is not an interesting case where the gap between the two blocks disappears rapidly and \((\hat{G}_{\text{adj}}^{(\infty)})_{ij} = 0 \). There is no information in the kernel proving both Theorem \(\ref{thm:ntk2} \) and Corollary \(\ref{cor:ntk2} \).

A.2.5 Number of Classes \(K > 2 \)

From the above derivation for \(K = 2 \), it can be seen that once \(S_{\text{sym}}^k S_{\text{sym}}^{kT} \) is computed, the population NTK for all the graph convolutions can be derived using it. Therefore, we derive it for \(K > 2 \) and it suffices to show the conclusions of Theorem \(\ref{thm:ntk2} \) and Corollary \(\ref{cor:ntk2} \). We denote the vector \(\hat{\pi}_{1k} \) with \(-\pi_i \forall i \in \{1, \frac{n}{K}\}, +\pi_i \forall i \in \left[\frac{n(k-1)}{K}, \frac{nk}{K}\right]\) and 0 for the rest. With this definition, \(A \) is

\[
A = \frac{p + (K - 1)q}{K} \pi \pi^T + \frac{p - q}{K} \sum_{l=2}^{K} \hat{\pi}_{1l} \hat{\pi}_{1l}^T.
\]

\(D \) for \(K \) classes is \(\frac{p+(K-1)q}{K} \text{diag}(\pi) \) from \eqref{eq:ntk2}. We can compute \(S_{\text{sym}} \) using \(A \) and \(D \) as follows,

\[
S_{\text{sym}} = D^{-rac{1}{2}} A D^{-rac{1}{2}}
\]

\[
= \frac{K}{p + (K - 1)q} \text{diag}(\pi^{-rac{1}{2}}) \left(\frac{p + (K - 1)q}{K} \pi \pi^T + \frac{p - q}{K} \sum_{l=2}^{K} \hat{\pi}_{1l} \hat{\pi}_{1l}^T \right) \text{diag}(\pi^{-rac{1}{2}})
\]

\[
= \pi^T \pi \pi^T + \frac{p - q}{p + (K - 1)q} \sum_{l=2}^{K} \hat{\pi}_{1l} \hat{\pi}_{1l}^T
\]

\[
(S_{\text{sym}})_{ij} = \sqrt{\pi_i \pi_j} \left(1 + \delta_{ij} \left(\frac{p - q}{p + (K - 1)q} \sum_{l=2}^{K} \frac{K}{l + l^2} \right) \right)
\]

\[
(S^k_{\text{sym}})_{ij} = \sqrt{\pi_i \pi_j} \left(1 + \delta_{ij} \left(\frac{p - q}{p + (K - 1)q} \sum_{l=2}^{K} \frac{K}{l + l^2} \right) \right)
\]

\[
(S^k_{\text{sym}} S^{kT}_{\text{sym}})_{ij} = \sqrt{\pi_i \pi_j} \left(1 + \delta_{ij} \left(\frac{p - q}{p + (K - 1)q} \sum_{l=2}^{K} \frac{K}{l + l^2} \right) \right)^{2k}
\]

It is noted that the equation \eqref{eq:ntk2} is very much similar to \eqref{eq:ntk1} for \(K = 2 \). The further derivations of the population NTKs \(\Theta \) for all the convolutions are similar and the theoretical results extend without any issues.

A.3 NTK for GCN with Skip Connections (Corollary \(\ref{cor:ntk2} \) and \(\ref{cor:ntk3} \))

We observe that the definitions of \(G_i, \forall i \in \{1, d+1\} \) are different for GCN with skip connections from the vanilla GCN. Despite the difference, the definition of gradient with respect to \(W_i \) in \eqref{eq:ntk1} does not change as \(G_i \) in the gradient accounts for the change and moreover, there is no new learnable parameter since the input transformation \(H_0 = X W_0 \) where \((W_0)_{ij} \) is sampled from \(\mathcal{N}(0, 1) \) is not learnable in our setting. Given the fact that the gradient definition holds for GCN with skip connection, the NTK will retain the form from NTK for vanilla GCN as evident from the derivation of NTK for vanilla GCN in Section \(\ref{app:ntk} \). The change in \(G_i \) will only affect the co-variance between nodes. Hence, we will derive the co-variance matrix for Skip-PC and Skip-\(\alpha \) in the following.

Skip-PC: Co-variance between nodes. The co-variance between nodes \(u \) and \(v \) in \(F_1 \) and \(F_i \) are derived below.

\[
E[(F_{1_{uk}} (F_{1_{vk}}) = E[(G_{1_{u}} \cdot (G_{1_{v}})
\]

\[
= \frac{c_{\alpha}}{h} \sum_{k=1}^{h} \frac{E[(S_{\sigma_s} (H_0))_{uk} \cdot (S_{\sigma_s} (H_0))_{vk}]}{h}
\]

\[
= \frac{c_{\alpha}}{h} \sum_{k=1}^{h} \frac{E[(S_{\sigma_s} (H_0))_{uk} \cdot (S_{\sigma_s} (H_0))_{vk}]}{h}
\]

\[
= \frac{c_{\alpha}}{h} \sum_{k=1}^{h} \frac{E[(S_{\sigma_s} (H_0))_{uk} \cdot (S_{\sigma_s} (H_0))_{vk}]}{h}
\]
\[h \to \infty \quad c_\sigma E [(S\sigma_s(H_0))_{uk} (S\sigma_s(H_0))_{vk}] \quad : \text{law of large numbers} \]
\[= S_u \tilde{E}_0 S_v^T \quad : \tilde{E}_0 = c_\sigma E \quad F \sim N(0,XX^T) \quad [\sigma_s(F)\sigma_s(F)^T] \]
\[= (\Sigma_1)_{uv} \quad (35) \]

\[E [(F)_i_{uk} (F)_i_{vk}] = E [(G)_i_{uk}, (G)_i_{vk}] \]
\[= \frac{c_\sigma}{h} \quad ((S(\sigma(F_{i-1}) + \sigma_s(H_0)))_{i}, (S(\sigma(F_{i-1}) + \sigma_s(H_0)))_{i}) \]
\[= \frac{c_\sigma}{h} \sum_{k=1}^{h} (S(\sigma(F_{i-1}) + \sigma_s(H_0))_{uk} (S(\sigma(F_{i-1}) + \sigma_s(H_0))_{vk}) \]
\[h \to \infty \quad c_\sigma E [(S(\sigma(F_{i-1}) + \sigma_s(H_0))_{uk} (S(\sigma(F_{i-1}) + \sigma_s(H_0))_{vk}) : \text{law of large numbers} \]
\[= c_\sigma \left[E [(S(\sigma(F_{i-1}))_{uk} (S(\sigma(F_{i-1}))_{vk}) + E [(S(\sigma(F_{i-1}))_{uk} (S(\sigma_s(H_0))_{vk}) \]
\[+ E [(S(\sigma_s(H_0))_{uk} (S(\sigma(F_{i-1}))_{vk}) + E [(S(\sigma_s(H_0))_{uk} (S(\sigma_s(H_0))_{vk}) \]
\[= S_u E_{i-1} S_v^T + c_\sigma E [(S(\sigma(F_{i-1})))_{uk} (S(\sigma_s(H_0)))_{vk}] \]
\[+ c_\sigma E \left[\sum_{r=1}^{n} \sum_{s=1}^{n} S_{uy} S_{ys} (S\sigma_s(XW_0))_{rk} (S\sigma_s(XW_0))_{sk}\right] \]
\[= S_u E_{i-1} S_v^T + c_\sigma S_u \sum_{yk} [\sigma_s(XW_0)_{rk} \sigma_s(XW_0)_{sk}] S_v^T \]
\[= S_u E_{i-1} S_v^T + S_u E_0 S_v^T = S_u E_{i-1} S_v^T + (\Sigma_1)_{uv} = (\Sigma_1)_{uv} \quad (36) \]

(f): \[E [(S(\sigma(F_{i-1}))_{uk} (S(\sigma_s(XW_0)))_{vk})] \text{ and } E [(S(\sigma_s(XW_0))_{uk} (S(\sigma(F_{i-1}))_{vk})] \text{ evaluate to 0 by conditioning on } W_0 \text{ first and rewriting the expectation based on this conditioning.} \]
The terms within expectation are independent when conditioned on \(W_0\), and hence it is
\[\sum_{i=1}^{\infty} \frac{E [(S(\sigma_s(XW_0)))_{vk} W_0]}{\Sigma_{i-1} [W_0]} \]
by taking \(h\) in \(W_0\) going to infinity first. Here, \(\Sigma_{i-1} [W_0] \rightarrow 0.\)

We get the co-variance matrix for all pairs of nodes \(\Sigma_1 = S\tilde{E}_0 S^T\) and \(\Sigma_1 = S E_{i-1} S^T + \Sigma_1\) from (35) and (36).

Skip-$$\alpha$$ Co-variance between nodes. Let \(u\) and \(v\) be two nodes and the co-variance between \(u\) and \(v\) in \(F_1\) and \(F_1\) are derived below.

\[E [(F)_i_{uk} (F)_i_{vk}] = (G)_i_{uk}, (G)_i_{vk} \]
\[= \frac{c_\sigma}{h} \sum_{k=1}^{h} ((1 - \alpha)S\sigma_s(H_0) + \alpha S\sigma_s(H_0))_{uk} ((1 - \alpha)S\sigma_s(H_0) + \alpha S\sigma_s(H_0))_{vk} \]
\[h \to \infty \quad c_\sigma E [(1 - \alpha)S\sigma_s(H_0) + \alpha S\sigma_s(H_0))_{uk} ((1 - \alpha)S\sigma_s(H_0) + \alpha S\sigma_s(H_0))_{vk} \]
\[= c_\sigma \left[(1 - \alpha)^2 E [(S\sigma_s(H_0))_{uk} (S\sigma_s(H_0))_{vk}] \]
\[+ (1 - \alpha) \alpha \left(E [(S\sigma_s(H_0))_{uk} (S\sigma_s(H_0))_{vk}] + E [(S\sigma_s(H_0))_{vk} (S\sigma_s(H_0))_{uk}] \right) \]
\[+ \alpha^2 E [(S\sigma_s(H_0))_{uk} (S\sigma_s(H_0))_{vk}] \]
\[= (1 - \alpha)^2 S_u \tilde{E}_0 S_v^T + (1 - \alpha) \alpha \left(S_u \tilde{E}_0 \right)_{uv} + \tilde{E}_0 \tilde{E}_0^T + \alpha^2 \tilde{E}_0^2 = (\Sigma_1)_{uv} \quad (37) \]
Similarly, computing $\mathbb{E}[(F_i)_{uk} (F_i)_{vk}] = \mathbb{E}[(G_i)_{uv}, (G_i)_{uv}]$

$$= \frac{c}{h} \sum_{k=1}^{h} ((1 - \alpha)S\sigma(F_{i-1}) + \alpha\sigma_s(H_0))_{uk} ((1 - \alpha)S\sigma(F_{i-1}) + \alpha\sigma_s(H_0))_{vk}$$

$$\xrightarrow{h \to \infty} \frac{c}{\pi} \mathbb{E}[((1 - \alpha)S\sigma(F_{i-1}) + \alpha\sigma_s(H_0))_{uk} ((1 - \alpha)S\sigma(F_{i-1}) + \alpha\sigma_s(H_0))_{vk}]$$

$$= \frac{c}{\pi} \left[(1 - \alpha)^2 \mathbb{E}[(S\sigma(F_{i-1}))_{uk} (S\sigma(F_{i-1}))_{vk}] + \alpha^2 \mathbb{E}[(\sigma_s(H_0))_{uk} (\sigma_s(H_0))_{vk}]
ight. + (1 - \alpha)\alpha \left. \left(\mathbb{E}[(S\sigma(F_{i-1}))_{uk} (\sigma_s(H_0))_{vk}] + \mathbb{E}[(\sigma_s(H_0))_{uk} (S\sigma(F_{i-1}))_{vk}] \right) \right]$$

$$\xrightarrow{g} (1 - \alpha)^2 S_{u} E_{i-1} S_{v}^T + \alpha^2 \left(\bar{E}_0 \right)_{uv} = \left(\Sigma_i \right)_{uv} \quad \text{(38)}$$

(g): same argument as (f) in derivation of Σ_i in Skip-PC.

We get the co-variance matrix for all pairs of nodes $\Sigma_1 = (1 - \alpha)^2 SE_0 S^T + \alpha(1 - \alpha) \left(SE_0 + \bar{E}_0 S^T \right) + \alpha^2 \bar{E}_0$ and $\Sigma_i = (1 - \alpha)^2 SE_{i-1} S^T + \alpha^2 \bar{E}_0$ from (37) and (38).

A.4 Theorem 3: Population NTK $\tilde{\Theta}$ for Skip-PC

NTK at depth d, $\Theta^{(d)}_{PC}$ for Skip-PC with linear activations is

$$\Theta^{(d)}_{PC} = \sum_{k=1}^{d+1} (S^k S^{kT} + SS^T) \odot (SS^T)^{\odot d+1-k}$$

$$= \sum_{k=1}^{d+1} S^k S^{kT} \odot (SS^T)^{\odot d+1-k} + (SS^T)^{\odot d+2-k} \quad \text{(39)}$$

In (39), I is NTK without skip connection and II is computed for S_{row} and S_{sym} as follows.

Computing II for population NTK $\tilde{\Theta}^{(d)}$ for S_{sym}: for nodes i and j,

$$\sum_{k=1}^{d+1} (S_{\text{sym}} S_{\text{sym}}^T)^{\odot d+2-k} \quad = \sum_{k=1}^{d+1} \left(\sqrt{\pi_i \pi_j} (1 + \delta_{ij} r^2) \right)^{d+2-k}$$

$$= \sqrt{\pi_i \pi_j} (1 + \delta_{ij} r^2) \frac{1 - \left(\sqrt{\pi_i \pi_j} (1 + \delta_{ij} r^2) \right)^{d+1}}{1 - \sqrt{\pi_i \pi_j} (1 + \delta_{ij} r^2)}$$

$$\xrightarrow{d \to \infty} \sqrt{\pi_i \pi_j} (1 + \delta_{ij} r^2) \frac{1}{1 - \sqrt{\pi_i \pi_j} (1 + \delta_{ij} r^2)} \quad \text{(40)}$$

It converges to (40) as $d \to \infty$ since $\sqrt{\pi_i \pi_j} (1 + \delta_{ij} r^2) < 1$ according to our setup. Therefore, using (40) and (23) we get the population NTK $\tilde{\Theta}^{(\infty)}_{PC, \text{sym}}$ for Skip-PC at $d \to \infty$,

$$\left(\tilde{\Theta}^{(\infty)}_{PC, \text{sym}} \right)_{ij} = \frac{\sqrt{\pi_i \pi_j} (2 + \delta_{ij} r^2)}{1 - \sqrt{\pi_i \pi_j} (1 + \delta_{ij} r^2)},$$

hence deriving Theorem 3.

Similarly, computing II for S_{row} without assumption on γ, i and j in class 1,

$$\sum_{k=1}^{d+1} (S_{\text{row}} S_{\text{row}}^T)^{\odot d+2-k} \quad = -\sum_{k=1}^{d+1} \left(1 + r \right)^2 \lambda + (1 - r)^2 \mu \right)^{d+2-k}$$

$$= \left((1 + r)^2 \lambda + (1 - r)^2 \mu \right) \frac{1 - \left((1 + r)^2 \lambda + (1 - r)^2 \mu \right)^{d+1}}{1 - \left((1 + r)^2 \lambda + (1 - r)^2 \mu \right)}$$

Finally, we have Theorem 3.
\[
\lim_{d \to \infty} \frac{(1 + r)^2 \lambda + (1 - r)^2 \mu}{1 - (1 + r)^2 \lambda + (1 - r)^2 \mu} = \frac{1}{(1 + r)^2 \lambda + (1 - r)^2 \mu}
\] (41)

For \(i \) and \(j \) in class 2,
\[
\sum_{k=1}^{d+1} (S_{row} S_{row}^T)_{ij}^\otimes d+2-k = \left((1 - r)^2 \lambda + (1 + r)^2 \mu \right) \frac{1 - \left((1 - r)^2 \lambda + (1 + r)^2 \mu \right)^{d+1}}{1 - \left((1 - r)^2 \lambda + (1 - r)^2 \mu \right)}
\]
\[
\lim_{d \to \infty} \frac{(1 - r)^2 \lambda + (1 + r)^2 \mu}{1 - (1 - r)^2 \lambda + (1 - r)^2 \mu} = \frac{1}{(1 - r)^2 \lambda + (1 + r)^2 \mu}
\] (42)

For \(i \) and \(j \) in different class,
\[
\sum_{k=1}^{d+1} (S_{row} S_{row}^T)_{ij}^\otimes d+2-k = \left((1 - r)^2 \lambda + (1 + r)^2 \mu \right) \frac{1 - \left((1 - r)^2 \lambda + (1 + r)^2 \mu \right)^{d+1}}{1 - (1 - r)^2 \lambda + (1 - r)^2 \mu}
\]
\[
\lim_{d \to \infty} \frac{(1 - r)^2 \lambda + (1 + r)^2 \mu}{1 - (1 - r)^2 \lambda + (1 - r)^2 \mu} = \frac{1}{(1 - r)^2 \lambda + (1 + r)^2 \mu}
\] (43)

Therefore, the population NTK \(\tilde{\Theta}_{\alpha, row}^{(\infty)} \) with \(\gamma \) assumption is obtained by substituting \(\lambda + \mu = 2\gamma \) and \(\lambda - \mu = 0 \) in (41), (42) and (43).
\[
\tilde{\Theta}_{\alpha, row}^{(\infty)} = \frac{2\gamma(2 + \delta_{ij} r^2)}{1 - 2\gamma(1 + \delta_{ij} r^2)}
\]

hence deriving Theorem 3.

\[\square \]

A.5 Theorem 4 \ Population NTK \(\tilde{\Theta} \) for Skip-\(\alpha \)

We expand \(\Sigma_1 \) and \(\Sigma_k \) of Skip-\(\alpha \) first to derive the population NTK.
\[
\Sigma_1 = (1 - \alpha)^2 SS^T + \alpha (1 - \alpha) (S + S^T) + \alpha^2 I_n
\]
\[
\Sigma_k = (1 - \alpha)^2 S\Sigma_{k-1} S^T + \alpha^2 I_n
\]
\[
= (1 - \alpha)^2S^kS^{kT} + \alpha (1 - \alpha)^{2k-1}S^{k-1}(S + S^T)S^{k-1T} + 2 \sum_{l=0}^{k-1} (1 - \alpha)^{2l}S^lS^{lT}
\] (44)

Exact NTK of depth \(d \) for Skip-\(\alpha \) is expanded using the above as follows.
\[
\Theta_\alpha^{(d)} = \sum_{k=1}^{d+1} \Sigma_k \otimes \left(SS^T \right)^{\otimes d+1-k}
\]
\[
= \sum_{k=1}^{d+1} (1 - \alpha)^{2k}S^kS^{kT} \otimes \left(SS^T \right)^{\otimes d+1-k} +
\]
\[
\sum_{k=1}^{d+1} \alpha (1 - \alpha)^{2k-1}(S + S^T)S^{k-1T} \otimes \left(SS^T \right)^{\otimes d+1-k} +
\]
\[
\sum_{k=1}^{d+1} \alpha^2 \sum_{l=0}^{k-1} (1 - \alpha)^{2l}S^lS^{lT} \otimes \left(SS^T \right)^{\otimes d+1-k}
\] (45)
We compute I, II and III of (45) for population NTK $\tilde{\Theta}_\alpha^{(\infty)}$ using S_{sym} focusing on $d \to \infty$.

$$I_{ij} = (1 - \alpha)^{2(d+1)} \sqrt{\pi_i \pi_j} \left[1 - \left(\frac{\sqrt{\pi_i \pi_j}}{(1 + \delta_{ij} r^2) (1 - \alpha)^{-2}} \right)^{d+1} + \right]$$

$$r^{2(d+1)} \frac{1 - \left(\frac{\sqrt{\pi_i \pi_j}}{(1 + \delta_{ij} r^2) r^{-2} (1 - \alpha)^{-2}} \right)^{d+1}}{1 - \left(\frac{\sqrt{\pi_i \pi_j}}{(1 + \delta_{ij} r^2) r^{-2} (1 - \alpha)^{-2}} \right)^{d+1}} \overset{d \to \infty}{=} 0 \quad (46)$$

$$II = \alpha \sum_{k=1}^{d+1} (1 - \alpha)^{2k-1} 2 S_{sym}^{2k-1} \odot (S_{sym} S_{sym}^T)^{\odot d+1-k} \quad ; S_{sym} = S_{sym}^T$$

$$II_{ij} = 2 \alpha \sum_{k=1}^{d+1} (1 - \alpha)^{2k-1} \left(\sqrt{\pi_i \pi_j} \right)^{d+k} (1 + \delta_{ij} r^2)^{d+1-k} +$$

$$\left(1 - \alpha \right)^{2k-1} \left(\sqrt{\pi_i \pi_j} \right)^{d+k} (1 + \delta_{ij} r^2)^{d+1-k} r^{-2} \delta_{ij} \right]$$

$$= 2 \alpha \left(\sqrt{\pi_i \pi_j} (1 - \alpha) \right)^{2d+1} \frac{1 + \left(\left(\sqrt{\pi_i \pi_j} \right)^{-1} (1 - \alpha)^{-2} (1 + \delta_{ij} r^2) \right)^{d+1}}{1 + \left(\left(\sqrt{\pi_i \pi_j} \right)^{-1} (1 - \alpha)^{-2} (1 + \delta_{ij} r^2) \right)^{d+1}} +$$

$$\delta_{ij} (r \sqrt{\pi_i \pi_j} (1 - \alpha))^{2d+1} \frac{1 + \left(\left(\sqrt{\pi_i \pi_j} \right)^{-1} (r (1 - \alpha))^{-2} (1 + \delta_{ij} r^2) \right)^{d+1}}{1 + \left(\left(\sqrt{\pi_i \pi_j} \right)^{-1} (r (1 - \alpha))^{-2} (1 + \delta_{ij} r^2) \right)^{d+1}} \overset{d \to \infty}{=} 0 \quad (47)$$

$$III = \alpha^2 \sum_{k=1}^{d+1} \sum_{l=0}^{k-1} (1 - \alpha)^{2l} S_{sym}^{2l} \odot (S_{sym} S_{sym}^T)^{\odot d+1-k}$$

$$III_{ij} = \alpha^2 \sum_{k=1}^{d+1} \sum_{l=0}^{k-1} (1 - \alpha)^{2l} \left(\sqrt{\pi_i \pi_j} \right)^{d+1-k}$$

$$= \alpha^2 \sum_{k=1}^{d+1} \sum_{l=0}^{k-1} \left(\left(\sqrt{\pi_i \pi_j} \right)^{-1} \frac{1}{(1 - \alpha)^2} + \frac{\delta_{ij}}{1 - (1 - \alpha)^2} \right) \left((1 + \delta_{ij} r^2) \sqrt{\pi_i \pi_j} \right)^{d+1-k} +$$

$$\left(- \left(\frac{1 - \alpha)^{2k}}{1 - (1 - \alpha)^2} - \delta_{ij} \frac{(1 - \alpha)^{2k}}{1 - (1 - \alpha)^2} \right) \left((1 + \delta_{ij} r^2) \sqrt{\pi_i \pi_j} \right)^{d+1-k}$$

$$= \alpha^2 \sqrt{\pi_i \pi_j} \sum_{k=1}^{d+1} \left(\left(\frac{1}{1 - (1 - \alpha)^2} \frac{\delta_{ij}}{1 - (1 - \alpha)^2} \right) - \frac{(1 - \alpha)^{2(d+1)}}{1 - (1 - \alpha)^2} \frac{1}{\left(\frac{1}{1 - (1 - \alpha)^2} \right)^{d+1}} \right.$$}

$$\left. - \frac{(1 - \alpha)^{2(d+1)}}{1 - (1 - \alpha)^2} \right) \frac{1}{\left(\frac{1}{1 - (1 - \alpha)^2} \right)^{d+1}} \frac{\delta_{ij}}{1 - (1 - \alpha)^2} \frac{1}{\left(\frac{1}{1 - (1 - \alpha)^2} \right)^{d+1}} \right)$$

$$\overset{d \to \infty}{=}$$

$$\frac{\alpha^2 \sqrt{\pi_i \pi_j}}{1 - \sqrt{\pi_i \pi_j} (1 + \delta_{ij} r^2)} \left(\frac{1}{1 - (1 - \alpha)^2} + \frac{\delta_{ij}}{1 - (1 - \alpha)^2} \right) \right) \right) \right) \right)$$

$$\left(\frac{1}{1 - (1 - \alpha)^2} + \frac{\delta_{ij}}{1 - (1 - \alpha)^2} \right) \right) \right) \right) \right)$$

Therefore the population NTK as $d \to \infty$ is obtained by combining (46), (47) and (48).

$$\left(\tilde{\Theta}_\alpha^{(\infty)} \right)_ij = \frac{\alpha^2 \sqrt{\pi_i \pi_j}}{1 - \sqrt{\pi_i \pi_j} (1 + \delta_{ij} r^2)} \left(\frac{1}{1 - (1 - \alpha)^2} + \frac{\delta_{ij}}{1 - (1 - \alpha)^2} \right)$$

, 24
proving Theorem 4. □

We now compute I, II and III for population NTK $\tilde{\Theta}_n^{(\infty)}$ using S_{\row}. For nodes i and j in class 1:

$$I_{ij} = (\lambda + \mu)(1 - \alpha)^{2(d+1)} \frac{1 - \left((1 + r)^2 \lambda + (1 - r)^2 \mu\right)^{d+1}}{1 - \left((1 + r)^2 \lambda + (1 - r)^2 \mu\right)(1 - \alpha)^{-2}} +$$

$$2(\mu - \alpha)(1 - \alpha)^{2(d+1)} r^{d+1} \frac{1 - \left((1 + r)^2 \lambda + (1 - r)^2 \mu\right)^{d+1}}{1 - \left((1 + r)^2 \lambda + (1 - r)^2 \mu\right)r^{-1}(1 - \alpha)^{-2}} +$$

$$(\mu + \alpha)(1 - \alpha)^{2(d+1)} r^{2(d+1)} \frac{1 - \left((1 + r)^2 \lambda + (1 - r)^2 \mu\right)^{d+1}}{1 - \left((1 + r)^2 \lambda + (1 - r)^2 \mu\right)r^{-2}(1 - \alpha)^{-2}}$$

As $d \to \infty$, this simplifies to:

$$d \to \infty 0$$

Similarly for nodes i and j in class 2 and different classes $I_{ij} = 0$ as $d \to \infty$. Likewise, $II_{ij} = 0$ as $d \to \infty$ for any i and j. This is similar to S_{\sym}.

For i and j in class 1,

$$III = \alpha^2 \sum_{k=1}^{d+1} \left(\sum_{l=0}^{k-1} (1 - \alpha)^{2l} S_{\row}^l S_{\row}^{T} \right) \odot (S_{\row} S_{\row}^T)^{\odot d+1-k}$$

$$III_{ij} = \alpha^2 \sum_{k=1}^{d+1} \left(\sum_{l=0}^{k-1} (1 - \alpha)^{2l} \left((\lambda + \mu) (1 + r^{2l}) + (\lambda - \mu) 2r^l \right) \right) \left((1 + r)^2 \lambda + (1 - r)^2 \mu \right)^{d+1-k}$$

$$= \alpha^2 \sum_{k=1}^{d+1} \left((\lambda + \mu) \left(\frac{1 - (1 - \alpha)^{2k}}{1 - (1 - \alpha)^2} + \frac{1 - (1 - \alpha)^{2k} r^{2k}}{1 - (1 - \alpha)^2 r^2} \right) \right) \left(\frac{(1 + r)^2 \lambda + (1 - r)^2 \mu}{1 - (1 - \alpha)^2 r} \right)$$

$$= \alpha^2 \left(\frac{\lambda + \mu}{1 - (1 - \alpha)^2} + \frac{\lambda + \mu}{1 - (1 - \alpha)^2 r^2} + \frac{\lambda - \mu}{1 - (1 - \alpha)^2} \right) \sum_{k=1}^{d+1} \left((1 + r)^2 \lambda + (1 - r)^2 \mu \right)^{d+1-k} -$$

$$\alpha^2 \left(\frac{\lambda + \mu}{1 - (1 - \alpha)^2} \right) \sum_{k=1}^{d+1} (1 - \alpha)^{2k} \left((1 + r)^2 \lambda + (1 - r)^2 \mu \right)^{d+1-k} -$$

$$\alpha^2 \left(\frac{\lambda + \mu}{1 - (1 - \alpha)^2 r^2} \right) \sum_{k=1}^{d+1} (1 - \alpha)^{2k} r^{2k} \left((1 + r)^2 \lambda + (1 - r)^2 \mu \right)^{d+1-k} -$$

$$\alpha^2 \left(\frac{\lambda - \mu}{1 - (1 - \alpha)^2} \right) \sum_{k=1}^{d+1} (1 - \alpha)^{2k} \left((1 + r)^2 \lambda + (1 - r)^2 \mu \right)^{d+1-k}$$

As $d \to \infty$, this simplifies to:

$$d \to \infty 0$$

25
\[
\alpha^2 \left(\frac{\lambda - \mu}{1 - (1 - \alpha)^2 r} \right) \left(1 - (1 - \alpha)^2 r\right)^{(d+1)}
\frac{1 - \left((1 + r)^2 \lambda + (1 - r)^2 \mu \right)^{d+1} \left((1 - \alpha)^2 r \right)^{- (d+1)}}{1 - \left((1 + r)^2 \lambda + (1 - r)^2 \mu \right) \left((1 - \alpha)^2 r \right)^{-1}}
\]

\[d \to \infty \alpha^2 \left(\frac{\lambda + \mu}{1 - (1 - \alpha)^2} + \frac{\lambda + \mu}{1 - (1 - \alpha)^2 r^2} \right) \left(\frac{1}{1 - (1 + r) (\lambda + \mu)} \right) \left(1 - (1 - \alpha)^2 r^2 \right) \left(1 - (1 - \alpha)^2 r \right)^{-1}
\]

Similarly for \(i\) and \(j\) in class 2,

\[III_{ij} \overset{d \to \infty}{=} \alpha^2 \left(\frac{\lambda + \mu}{1 - (1 - \alpha)^2} + \frac{\lambda + \mu}{1 - (1 - \alpha)^2 r^2} - \frac{\lambda - \mu}{1 - (1 - \alpha)^2 r} \right) \left(\frac{1}{1 - (1 - \alpha)^2 r^2} \right) \left(1 - (1 - \alpha)^2 r \right)^{-1}
\]

For \(i\) and \(j\) in different classes,

\[III_{ij} \overset{d \to \infty}{=} \alpha^2 \left(\frac{\lambda + \mu}{1 - (1 - \alpha)^2} - \frac{\lambda - \mu}{1 - (1 - \alpha)^2 r} \right) \left(\frac{1}{1 - (1 - \alpha)^2 r^2} \right) \left(1 - (1 - \alpha)^2 r \right)^{-1}
\]

Thus, applying \(\gamma\) assumption to (50), (51) and (52) the population NTK \(\bar{\Theta}_{\alpha, row}^{(\infty)}\) as \(d \to \infty\) is,

\[
\left(\bar{\Theta}_{\alpha, row}^{(\infty)} \right)_{ij} = \frac{2 \gamma \alpha^2}{1 - 2 \gamma (1 + \delta_{ij} r^2)} \left(\frac{1}{1 - (1 - \alpha)^2} + \frac{\delta_{ij}}{1 - (1 - \alpha)^2 r^2} \right)
\]

hence proving Theorem 4.

\[\Box\]

B Empirical Analysis

B.1 Experimental Details of Figure 1

We use the code for GCN without skip connections from [github](https://github.com/KipfWelling/GCN) and skip connection from [github](https://github.com/ChenEtAl/GCNII). The following hyperparameters are used for GCN without skip connections: learning rate is 0.01, weight decay is \(5 \times 10^{-4}\), hidden layer width is 64 and epochs is 500, 1500, 2000 for depths 2, 4, 8 respectively. For the skip connections, we used GCNII model, same parameters as vanilla GCN with \(\alpha = 0.1\). The performance is averaged over 5 runs.

B.2 Numerical Validation for DC-SBM for Vanilla GCN and Skip-\(\alpha\)

We extend the experiments on numerical validation for random graphs using vanilla GCN described in Section 3.2 to column normalized adjacency \(S_{col}\) and unnormalized adjacency \(S_{adj}\) here. We use the same setup described in Section 3.2 and Figure 5 illustrates the results. We observe that even for depth 1 both the convolutions are influenced by the degree correction and there is no class information in the kernels for higher depth. Thus, this validates the theoretical result in Theorem 2.

![Figure 5: Numerical validation of DC-SBM for Vanilla GCN. The first two heatmaps show the exact NTK \(\Theta^{(d)}\) for column normalized adjacency convolution \(S_{col}\) and the other two for unnormalized adjacency \(S_{adj}\) for depths \(d = 1\) and 8.](image)
In the case of Skip-α, we present the complementary result to Section 4.3 here. We use the same setting as described in Section 4.3 and use $\alpha = 0.1$ to obtain the result illustrated in Figure 6. Similar conclusions are derived from the experiment. We observe that the gap between in-class and out-of-class blocks decreases for both S_{row} and S_{sym} with depth, but the class information is still retained for larger depth and the gap doesn’t vanish. Between S_{row} and S_{sym}, the heatmaps show that S_{row} retains the block structure better than S_{sym} and is devoid of the influence of the degree corrections. Although we consider $XX^T = I_n$ for Skip-α which fundamentally relies on the feature information to interpolate, the results are still meaningful and demonstrate the theoretical findings.

![Figure 6: Numerical validation of DC-SBM for Skip-α showing S_{sym} and S_{row} for depths 1 and 8.](image)

B.3 Experiments on Real Dataset: Cora

In this section, we present additional experiments on Cora. Since our theory assumed orthonormal features $XX^T = I_n$, we validate it experimentally in similar setup described in Section 5. Figure 7 shows the result for S_{sym} and S_{row} for depth 1 and 8. The conclusions derived from real setting hold here as well and shows S_{row} preserves the class information better than S_{sym}.

![Figure 7: Evaluation on Cora with $XX^T = I_n$ for S_{sym} and S_{row} for depths 1 and 8.](image)

Another experimental study is to understand how easy it is to learn the classes that showed good in-class and out-of-class gap preservation from the experiment in Section 5. The line plot in Figure 4 shows class $C2$ and $C5$ are well represented by both S_{sym} and S_{row}. To study how well this holds in the trained GCN, we considered depth 4 vanilla GCN with ReLU activations and used the same hyperparameters mentioned in Section B.1. The results are shown in Figure 8 where we observe that $C2$ and $C5$ are well learnt. On the other hand, other classes that showed small gap are also well learnt by the trained GCN. This needs further investigation as it has to do with the data split and some classes are more represented in the training data and some for instance $C6$ is poorly represented. Thus, we leave it for further analysis.

![Figure 8: Class wise performance of trained GCN of depth 4.](image)

We present the result for linear GCN with the same setup as described in Section 5 to check the goodness of our theory. The results are illustrated in Figure 9 where we observe that the theory holds very well for linear GCN than ReLU GCN. The class information is better preserved in S_{row}.

27
than S_{sym} especially for higher depth in the case of both GCN with and without skip connections. All the conclusions derived in the main section hold here as well.

Figure 9: Evaluation on Cora using linear GCN. First row shows the results for vanilla GCN for depths 1 and 8. Second row shows the result for Skip-PC and Skip-α for depth 8.

B.4 Experiments on Real Dataset: CiteSeer

In this section, we validate our theoretical findings on CiteSeer without much of the assumptions. We consider multi-class node classification ($K = 6$) using GCN with linear activations and relax the orthonormal feature condition, so $XX^T \neq I_n$. The NTKs for vanilla GCN, GCN with Skip-PC and Skip-α for depths $d = 1, 2, 4, 8, 16$ are computed and Figure 10 illustrates the results. All the observations made in Section 5 hold here as well and clear blocks emerge for S_{row} making it the preferable choice as suggested in the theory.

Figure 10: Evaluation on CiteSeer dataset using linear GCN. First row shows the results for vanilla GCN for depths 1 and 8. Second row shows the result for Skip-PC and Skip-α for depth 8.