Evaluation of Various Types of Traumatic Knee Injuries by Magnetic Resonance Imaging (MRI)

Kaleem Ahmad1, Rishav Kumar Jain2, Ganesh Kumar3, Kshitij Sharma4, Ashok Yadav5

1Associate Professor, Department of Radiodiagnosis, 2Professor, Department of Radiodiagnosis, 3Professor, Department of Radiodiagnosis, 4Assistant Professor, Department of Radiodiagnosis, 5Associate Professor, Department of Orthopaedics, B.R.D, Medical College, Gorakhpur, UP, India

Corresponding author: Kaleem Ahmad, Associate Professor, Department of Radiodiagnosis and Imaging, BRD Medical College, Gorakhpur, India

DOI: http://dx.doi.org/10.21276/ijcmsr.2019.4.4.3

How to cite this article: Kaleem Ahmad, Rishav Kumar Jain, Ganesh Kumar, Kshitij Sharma, Ashok Yadav. Evaluation of various types of traumatic knee injuries by magnetic resonance imaging (MRI). International Journal of Contemporary Medicine Surgery and Radiology. 2019;4(4):D10-D13.

INTRODUCTION

The knee joint is a biggest joint of the human body with complex articulation characterized by the presence of ligamentous and meniscal structures that plays an important role in the stability and mobility. MRI has significant advantages over plain X-rays and CT scan due to its excellent soft tissue contrast resolution and multiplanar imaging capabilities which surpasses other imaging techniques in the evaluation of traumatic injuries of knee joint. Study aimed to study the role of MRI in the evaluation of traumatic injuries of knee joint.

MATERIAL AND METHODS: A total number of 200 patients referred with history of knee injury were imaged with 1.5 Tesla Siemens Magnetom Aera MRI machine in the department of radiodiagnosis over a period of one year.

RESULTS: Commonest injuries found in our study are anterior cruciate ligament tear, medial meniscus tear, bone contusions and joint effusions. Clinical presentation and plain radiographs were not of much use in diagnosis in most of the cases of acute knee injury, especially in multiple ligament injuries. MRI detected soft tissue injuries very well in addition to the bony injuries.

CONCLUSION: Magnetic resonance imaging is the excellent non-invasive diagnostic tool for knee injury due to excellent soft tissue contrast resolution and multiplanar imaging capabilities which provides excellent soft tissue details of the knee joint.

KEYWORDS: Meniscal Tear, Cruciate Ligament Tear, Traumatic Knee, Joint Injuries, MRI, The Knee Joint.
MRI were excluded from the study. Informed consent was taken from all the patients. The purpose of this study was to evaluate the various types of knee injuries in all the patients of traumatic knee, referred for MRI. MRI of the knee was performed on SIEMENS Magnetom Aera MR Machine with field of strength 1.5 T using an extremity coil.

IMAGING PROTOCOLS AND TECHNICAL FACTORS

The use of a dedicated knee coil is mandatory for adequate study as it improves the signal to noise ratio. The patient was placed in supine position, feet first with full extension and the knee externally rotated 15-20 degree to facilitate the proper visualization of anterior cruciate ligament (ACL) completely on sagittal images. The knee was imaged in three standard planes i.e. coronal, axial and sagittal planes using T1W, T2W, PD, PD FS, STIR (proton density, proton density fat saturation, short tau inversion recovery) sequences with 4 mm slice thickness. The various MRI findings were recorded and entered in the set proforma for further evaluation.

RESULTS

There were total two hundred patients, among them 165 (82.6%) were males and 35 (17.5%) were females (Table-1). So in this study male preponderance in distribution of knee injury was found. Out of two hundred patients of knee injury, 37 (18.5%) were of 0-20 years, 75 (37.5%) patients were of 21-30 years, 56 (28%) were of 31-40 years of age, 20 (10%) were of 41-50 years of age, 7 (3.5%) were of 51-60 years of age, 4 (2%) were of 61-70 years of age and 1 (0.5%) patients were of 71-80 years of age. Hence majority of the patients were young aged between 21-30 years and least affected group was 61-80 years. (table-2). The male preponderance indicates that females are less active than males, road traffic accidents and involvement in outdoor games also contributes to injuries in them. Males continued to show increased incidence of ACL

Sex	Number	Percentage (%)
Male	165	82.6%
Female	35	17.5%

Table-1: Distribution according to sex.

Age - group	Number	Percentage (%)
0-20	37	18.5%
21-30	75	37.5%
31-40	56	28%
41-50	20	10%
51-60	07	3.5%
61-70	04	2%
71-80	01	0.5%

Table-2: Distribution according to age group

Cases	Male	Female	Total
ACL tears	125	16	141
PCL tears	15	05	20
Medial meniscus tears	71	14	85
Lateral meniscus tears	25	08	33
LCL injuries	05	02	07
Joint effusion	120	20	140

Table-3: Distribution of different injuries according to gender

Figure-1: Sagittal PD-FS image showing altered signal intensity with fluid collection in the substance of ACL suggestive of complete ACL tear.

Figure-2: Sagittal PD-FS image showing altered signal intensity in the substance of PCL with ill-defined fibres and fluid collection suggestive of PCL tear.

Figure-3: Sagittal PD-FS image showing linear increased signal intensity in the posterior horn of medial meniscus suggestive of grade 11 tear.
which was consistent with the study of Lakhkar et al.8 Out of 141 cases of ACL tear, mid substance tear 99 (70.21%) was most common, followed by femoral 34 (24.11) and tibial attachments 15 (10.63) which is consistent with the study of Bergquist et al in which most common tear was mid substance of ACL.9 Hyperintensity in the substance of ACL (Figure 1) in our study was most common 88 (62.41%) followed by discontinuity 40 (28.36%) and by non – visualization 14 (9.92%), which is consistent with the study of Gentili et al.10 PCL tear (Figure 2) was found to be 20 (10%). Discontinuity 12 (60%) followed by buckling 4(20%) was found which is comparable with the study done by Sonin et al.11 Out of 200 patients 128 (64%) were with meniscal tears, out of which 95 (74.21%) were medial meniscus (Figure 3) and 33 (25.78%) with lateral meniscus tear which corresponds with the study done by La Prade et al in which medial meniscus tear was more common than lateral meniscus tear.12 Grade III meniscal tear (tear communicating with the articular surface) was found in majority of patients (Figure 4) of meniscal tear in 70 cases (54.68%), grade II (linear increased signal intensity with no extension to the articular surface) was found in 15 (11.71%) and grade I tear (focal / globular signal intensity with no extension to the articular surface) was in 36 (28.12%) which is consistent with the study done by Crues et al.13 Bucket handle tear (Figure 5) was found in 12 cases in our study, 10 were found in medial meniscus tears which is consistent with the study done by Singson et al who reported that medial meniscus bucket handle tear were more common than lateral meniscus.14 Out of 200 patients with knee injury, bone contusions/ bruise were noted in 45 patients (22.50%) which corresponds to the study done by Anil Madurwar et al.15 In our study of 200 patients joint effusion was seen in 140 (70%) patients. Collateral ligament injury was seen in 10 (5%) patients, out of which 3(1.5%) were medial collateral ligament and 7 (3.5%) were lateral collateral ligament. Subchondral fractures of tibia, fibula and fracture of patella was seen in 15 (7.5%) patients.

CONCLUSION

MRI is outstanding, non -invasive diagnostic imaging tool and has excellent capability to access the soft tissue of the injuries of the knee joint. Due to its high soft tissue contrast resolution and multiplanar capabilities it surpasses the other imaging modalities like CT scan, plan x-ray and is modality of choice in the clinically suspected cases of soft tissue injury where plain radiographs are normal. Clinical findings may suggest soft tissue injuries, but MRI is significant for further evaluation. It has unique ability to evaluate ligaments, menisci, bone marrow etc. It should be considered in soft tissue injury of the knee joint to prevent unwanted arthroscopies. Commonest injuries in our study are anterior cruciate ligament tear, medial meniscus tear, bony injury and joint effusion.

REFERENCES

1. Reicher MA, Bassett LW, Gold RH. High resolution MRI of the knee joint. Pathologic correlations. AJR.
1985;145(1): 903-9.
2. Reicher MA, HartzmanS, Duckwiler GR, et al. Meniscal injuries, Detection using MR imaging. Radiology.1986;159(5):753-7.
3. Hartzman S, Reicher MA, Bassett LW, et al. MR imaging of the knee. Chronic disorder. Radiology.1987;162(6):553-7. 2.
4. McIlwraith CW, Wight I, Nixon AJ. Diagnostic and Surgical Arthroscopy in the Horse-E-Book. Elsevier Health Sciences; 2014 Jun 27.
5. Kelly BT, Williams RJ, Philippon MJ. Hip arthroscopy: current indications, treatment options, and management issues. The American journal of sports medicine. 2003;31(6):1020-37.
6. Singh JP, Garg L, Shrimali R, Setia V, Gupta V. MR Imaging of knee with arthroscopic correlation in twisting injuries. Indian journal of radiology and imaging 2014;14(1):33.
7. Shetty, Lakkhar B, Krishna G. Magnetic resonance imaging in pathologic 138 conditions of knee. Indian J Radiol Imaging 2002;12(3):375.
8. Lakkhar B.N, Rajgopal K.V, Rai P. Ind J Radiol Imaging: 2004;14(4):1:33-40.
9. Berquist TH, Magnetic resonance technique in musculoskeletal diseases. Rhuem Clin North Am 1991;17(3):599–615.
10. Gentili A, Seeger LL, Yao L, Do HM. ACL tear: indirect sign at MRI Radiology 1994;193(3):835–840.
11. Sonin AH, Fitzgerald SW, Friedman H, Hoff FL, Hendrix RW, Rogers LF,PCL injury:MR imaging diagnosis and pattern of injury.Radiology 1994:190(3):455–458.
12. La prade RF, Burntt QM, Veensra MA, Hodgman CG. The prevalence of abnormal MRI finding in asymptomatic knees. Am J Sports Med 1994;171(6):761-766.
13. CruesJBV,Mink JH, LevyT, Lotysch M, Stroller DW. Meniscal tears of knee. Accuracy of MR imaging. Radiology 1987;164(3):445–448.
14. Singson RD, Feldman F, Staron R, Kiernam H. MR imaging of the displaced bucket handle tear of the medial meniscus. AJR1991;156(2):121-126.
15. Madurwar U Anil, Ramya M, Kumar Sravan, Bhawani. Evaluation of role of MRI in knee joint injuries in correlation with arthroscopy. International Journal of Research and Review 2017;4(7): 0–46.

Source of Support: Nil; Conflict of Interest: None
Submitted: 19-08-2019; Accepted: 15-09-2019; Published online: 20-10-2019