Mercury in female cattle livers and kidneys from Vojvodina, northern Serbia

V Tomovic1, M Jokanovic1, M Tomovic2, B Sojic1, M Lazovic3, I Vasiljevic3, S Skaljac1, A Martinovic4, D Vujadinovic5 and M Vukic5

1 University of Novi Sad, Faculty of Technology Novi Sad, Bulevar cara Lazara 1, Novi Sad, Republic of Serbia
2 Technical School Pavle Savic, Sajkaska 34, Novi Sad, Republic of Serbia
3 A BIO TECH LAB d.o.o., Vojvode Putnika 87, Sremska Kamenica, Republic of Serbia
4 University of Donja Gorica, Faculty for Food Technology, Food Safety and Ecology, Donja Gorica, Podgorica, Montenegro
5 University of East Sarajevo, Faculty of Technology Zvornik, Karakaj 34a, Zvornik, Bosnia and Herzegovina

E-mail: tomovic@uns.ac.rs

Abstract. Concentrations of mercury (Hg) were analysed in livers (n = 26) and kidneys (n = 26) of female cattle (412–2502 days old) from farms for milk production in the area of Vojvodina. Concentration of Hg was analysed by ICP-OES, after digestion by microwave. The Hg concentrations in the livers and kidneys ranged from below detection limits (LOD < 0.006 mg/kg) to 0.206 mg/kg wet weight and from below detection limits (LOD < 0.006 mg/kg) to 0.018 mg/kg wet weight, respectively.

1. Introduction

All types of cattle, whether their primary purpose is meat, milk, draft power or some combination of these, will be used ultimately in beef production [1]. In everyday diet, red meats are the best source of high biological value nutrients (vitamins: vitamin B12, niacin and vitamin B6, minerals: iron, zinc and phosphorus, proteins). Beside positive effects on diet and health, red meat could potentially be the source of some chemical substances with toxic effects [2-23].

In 2020, in the Republic of Serbia total cattle number was 886,127, and 259,527 of them were raised in the Autonomous Province of Vojvodina [24].

Variety meat, or edible offal, are also a kind of meat even though are not skeletal muscles. They are used as food, and mostly have higher contents of some micro-nutrients, especially vitamins and minerals, comparing to meat tissue [13,25-28]. According to Serbian legislation [29], the edible offal (organs and glands) that are separated in dressing butchered cattle include liver, kidney, spleen, heart, tongue, lungs, brain, thymus and testis. Liver is the most often used organ and is incorporate in recipes for number of different types of processed products of meat. These organs from older cattle animals are much more suited for processed meats, especially for liver paté and sausages, since they possess intensive aroma and are tough. On contrary, kidneys are not usually used in processed products of meat but are generally used as braised, grilled or sautéed either whole or sliced [30].

Mercury (Hg) is recognised as toxic pollutant at global level, which bioaccumulate and biomagnify within the food chain [31]. Hg toxic characteristics have a serious negative impact to both environment and living organisms [32]. This metal is present in soil, water and air, due to both anthropogenic and natural emission sources [33]. The living organisms can adopt mercury from contaminated soil, water and air. In this sources, mercury is transformed by microorganisms to more bioavailable organic forms [34], and is incorporated into next levels of the food chain [35-39]. For vertebrates, the diet is considered to be one of the main sources of exposure to contaminants from environmental [40]. Human population, being at the highest food chain level is exposed to Hg intake from different kinds of food, especially by consumption of fish [41-43], seafood and freshwater crustaceans [44-46], and food of animal origin [47].
The Regulation of European Union [48] only defined maximum levels for total Hg concentration for seafood and fish from 0.5 to 1.0 mg/kg wet weight. FAO/WHO Expert Committee on Food Additives (JECFA) established PTWI (provisional tolerable weekly intake) for methylmercury of 1.6 µg/kg body weight and of 4 µg/kg body weight for inorganic mercury. The PTWI for methylmercury of 1.6 µg/kg body weight/week corresponds to 0.112 mg/week for a person weighing 70 kg [49,50].

Studies aiming to determine concentration of Hg in animal tissues were conducted in number of countries and regions. The available literature indicate a large variability in the concentrations of Hg in muscle tissue and offal of cattle [51-61].

The concentrations of toxic (heavy) elements in food must be permanently monitor and control in order to protect or/and reduce their negative effects on human health. Considering the fact that there is a lack of information about Hg content in cattle tissues from Vojvodina, the goals of this paper were (i) to measure Hg levels in livers and kidneys from adult dairy cattle in the Autonomous Province of Vojvodina and (ii) to determine possible trends in bioaccumulation of Hg in cattle tissues.

2. Materials and methods
Samples (liver and kidney) were collected from 26 cattle slaughtered at the slaughterhouse in Novi Sad (Vojvodina, northern Serbia), during 26 consecutive weeks (i.e. samples from one animal per week were collected). All animals were slaughtered for human consumption. Slaughtered heifers and cows (female cattle) came from 26 different farms for milk production (i.e. one animal per farm was sampled) in Vojvodina (northern Serbia), so it can be stated that samples of liver and kidney were collected from the whole region. Information about animals (date of birth, sex and type of the animal) were received from farms with copy of the passport. The investigated cattle aged from 412 to 2502 days.

Samples (liver and kidney) were collected from the same cattle and minced in a stainless steel cutter. After homogenization, approximately 250 g of samples were taken for analysis. Samples were vacuum packed in polyethylene bags and stored at constant temperature (-80°C) until determination of Hg. Hg content was determined using ICP-OES (inductively coupled plasma-optical emission spectrometry, iCAP 6000 Series, Thermo Scientific, Cambridge, UK) method, after digestion by microwave (MWS-3+, Berghof, Germany). Hg contents are showed as mg/kg wet weight. Standard reference material (ERM-CE278, mussel tissue IRMM, Institute for Reference Materials and Measurements, Geel, Belgium) was used for quality control of the analytical measurement. The results obtained for the analytical quality control programme are showed in Table 1.

Table 1. The results obtained for analytical quality control programme (n = 5)

Analyte	Matrix	Certified concentration	Found concentration	LOD	LOQ
Hg (mg/kg)	ERM – CE278, Mussel tissue, IRMM, Geel, Belgium	0.196	0.191	0.006	0.015

3. Results and discussion
Concentrations of Hg in the analysed samples are showed in Table 2.

Table 2. Individual Hg concentration (mg/kg wet weight) in the edible offal of female cattle raised in Vojvodina

No	Liver	Kidney
1	0.206	0.010
2	0.121	0.015
3 0.057 0.018
4 0.069 < 0.006
5 0.063 < 0.006
6 < 0.006 0.011
7 0.043 < 0.006
8 0.021 0.014
9 0.019 0.013
10 0.015 < 0.006
11 0.009 0.012
12 0.009 0.012
13 0.013 0.015
14 0.010 0.006
15 0.009 0.008
16 < 0.006 < 0.006
17 0.012 0.008
18 < 0.006 0.006
19 < 0.006 0.011
20 0.008 < 0.006
21 < 0.006 0.011
22 < 0.006 < 0.006
23 < 0.006 < 0.006
24 < 0.006 < 0.006
25 < 0.006 < 0.006
26 < 0.006 < 0.006

The Hg concentrations of the female cattle liver and kidney were in the range from below detection limits (LOD < 0.006 mg/kg) to 0.206 mg/kg wet weight and from below detection limits (LOD < 0.006 mg/kg) to 0.018 mg/kg wet weight, respectively.

Reported Hg concentrations in foods, that is, red meat and edible offal of cattle, vary widely (Table 3).

Table 3. Mean concentrations (mg/kg wet weight) of Hg in red meat and edible offal of cattle from different countries

Country	Source
Sweden	[51]
4. Conclusion
The literature indicates a large variability of Hg concentration in red meat and edible offal (liver and kidney). The available data showed that considerable regional differences exist for the Hg concentration of animal edible tissues. Thus, content of Hg in edible offal (liver and kidney) can be used as relevant indicator of environmental contamination by Hg. Generally, monitoring and control of Hg in living organisms, i.e. red meat and edible offal, is necessary.

Acknowledgements
This research was funded by the Ministry of Education, Science and Technological Development, Republic of Serbia, under Grant 451-03-9/2021-14/200134. Also, this research has been done in liaison with the activities defined by the grant for the establishment and implementation of the research-innovation-scientific program “Centre of Excellence (CoE) for digitalization of microbial food safety risk assessment and quality parameters for accurate food authenticity certification (FoodHub)”, financed by the Ministry of Science of Montenegro, under the Grant No. 01-3660/2.

References
1. Price M A 2004 Species of meat animals/Cattle Encyclopedia of Meat Sciences ed W K Jensen, C Devine and M Dikeman (Oxford: Elsevier) p 1277
2. Despotović A, Tomović V, Stanišić N, Jokanović M, Šojić B, Škaljac S, Kocić-Tanackov S, Tomašević I, Stajić S, Martinović A and Hromiš N 2018 Fleischwirtschaft 12 103
3. Despotović A, Tomović V, Šević R, Jokanović M, Stanišić N, Škaljac S, Šojić B, Hromiš N, Stajić S and Petrović J 2018 Ital. J. Anim. Sci. 17 859
4. Jokanović M R, Tomović V M, Šojić B V, Škaljac S B, Tasić T A, Ikonić P M and Kevrešan Ž S 2013 Food Addit. Contam. Part B Surv. 6 98
5. Tomović V M, Žlender B A, Jokanović M R, Tomović M S, Šojić B V, Škaljac S B, Tasić T A, Ikonić P M, Šošo M M and Hromiš N M 2014 Agr. Food Sci. 23 9
6. Tomović V M, Žlender B A, Jokanović M R, Tomović M M, Šojić B V, Škaljac S B, Kevrešan Ž S, Tasić T A, Ikonić P M and Šošo M M 2014 J. Anim. Plant Sci. 24 704
7. Tomović V, Žlender B, Jokanović M, Tomović M, Šojić B, Škaljac S, Kevrešan Ž, Tasić T, Ikonić P and Okanović Đ 2016 Acta Aliment. 45 190

< LOD-0.191	< LOD-0.0938	< LOD-0.0733	Spain	[52]	
0.011	0.012	0.015	Finland	[53]	
0.0012	0.0042	0.111	Poland	[54]	
0.02	0.02	0.006	Croatia	[56]	
(median)	(median)	(median)			
0.0003	0.004	0.008	Ireland	[57]	
(median)	(median)				
< LOD-0.100	< LOD-0.481		Serbia	[59]	
0.00391	0.00581	0.01014	Egypt	[60]	
0.0210	0.0243	0.0510	Czech Republic	[61]	
0.0011	0.0033	0.0183			
8. Tomović V M, Vujadinović D D, Gruijić R P, Jokanović M R, Kevrešan Ž S, Škaljac S B, Šoijić B V, Tasić T A, Ikonić P M and Hromiš N M 2015 *J. Food Process. Preserv.* **39** 1854
9. Tomović V, Vujadinović D, Gruijić R, Jokanović M, Kevrešan Ž, Škaljac S, Šoijić B, Vasilev D, Kocić-Tanackov S and Hromiš N 2016 *Fleischwirtschaft* **12** 101
10. Tomović V, Mastanjević K, Kovačević D, Jokanović M, Kevrešan Ž, Škaljac S, Šoijić B, Lukač D, Škrobot D and Despotović A 2016 *Agro Food Ind. Hi Tech* **27** 39
11. Tomović V, Petrović Lj S, Jokanović M R, Tomović M S, Tasić T A, Ikonić P M and Šumić Z M 2011 *Rom. Biotechnol. Lett.* **16** 6766
12. Tomović V, Petrović Lj, Jokanović M, Tomović M, Kevrešan Ž, Tasić T, Ikonić P, Šoijić B, Škaljac S and Šošo M 2013 *Acta Aliment.* **42** 198
13. Tomović V M, Petrović Lj S, Tomović M S, Kevrešan Ž S and Džinić N R 2011 *Food Chem.* **124** 342
14. Tomović V M, Petrović Lj S, Tomović M S, Kevrešan Ž S, Jokanović M R, Džinić N R and Despotović A R 2011 *Food Chem.* **129** 100
15. Tomović V M, Petrović Lj S, Tomović M S, Kevrešan Ž S, Jokanović M R, Džinić N R and Despotović A R 2011. *Food Addit. Contam. Part B Survieill.* **4** 180
16. Tomović V M, Jokanović M R, Pihler I I, Švarc-Gajić J V, Vasiljević I M, Škaljac S B, Šoijić B V, Živković D M, Lukić T B, Despotović A R and Tomašević I B 2016 *J. Appl. Anim. Res.* **45** 430
17. Tomović V M, Jokanović M R, Švarc-Gajić J V, Vasiljević I M, Šoijić B V, Škaljac S B, Pihler I I, Simin V B, Krajinović M M and Žujović M M 2016 *Small Rumin. Res.* **145** 44
18. Tomović V M, Jokanović M R, Tomović M S, Šoijić B V, Škaljac S B, Tasić T A and Ikonić P M 2013 *Cadmium Level in Red Meat and Edible Offal Cadmium: Characteristics, Sources of Exposure, Health and Environmental Effects* ed M Hasanuzzaman and M Fujita (New York: Nova Publishers) p 341
19. Tomović V, Jokanović M, Tomović M, Lazović M, Šoijić B, Škaljac S, Ivić M, Kocić-Tanackov S, Tomašević I and Martinović A 2017 *Food Addit. Contam. Part B Survieill.* **10** 39
20. Tomović V, Jokanović M, Tomović M, Lazović M, Šoijić B, Škaljac S, Ivić M, Kocić-Tanackov S, Tomašević I and Martinović A 2017 *Food Addit. Contam. Part B Survieill.* **10** 137
21. Tomović V, Tomović M, Šoijić B, Jokanović M and Škaljac S 2019 *Macro- and microminerals contents in raw and cooked pork meat and pig edible offal Food and Beverage Consumption and Health – Pork Consumption and Health* ed F L Moore (New York: Nova Science Publishers) p 1
22. Tomović V M, Stanišić N Z, Jokanović M R, Kevrešan Ž S, Šoijić B V, Škaljac S B, Tomašević I B, Martinović A B, Despotović A R and Šuput D Z 2016 *Hem. Ind.* **70** 557
23. Tomović V M, Šević R, Jokanović M, Šoijić B, Škaljac S, Tasić T, Ikonić P, Lušnic Polak M, Polak T and Demšar L 2016 *Arch. Anim. Breed.* **59** 401
24. Statistical Office of the Republic of Serbia 2020 Available from: https://publikacije.stat.gov.rs/G2021/Pdf/G20211030.pdf
25. Anderson B A 1988 Composition and nutritional value of edible meat by-products *Edible Meat By-products, Advances in Meat Research* ed A M Pearson and T R Dutson (London: Elsevier Science Publishers) p 15
26. Goldstrand R E 1988 Edible meat products: their production and importance to the meat industry *Edible Meat By-products, Advances in Meat Research* ed A M Pearson and T R Dutson (London: Elsevier Science Publishers) p 1
27. Lawrie R A and Ledward D A 2006 *Lawrie's Meat Science* 7th ed (Cambridge: Woodhead Publishing and CRC Press)
28. Ockerman H W, Basu L 2004 Edible, for human consumption * Encyclopedia of Meat Sciences* ed W K Jensen, C Devine and M Dikeman (Oxford: Elsevier) p 104
29. Serbian Regulation 1974 *Official Gazette of the SFRY* No 34
30. Spooncer W F 1988 Organs and glands as human food Edible Meat By-products, Advances in Meat Research ed A M Pearson and T R Dutson (London: Elsevier Science Publishers) p 197
31. Driscoll C T, Mason R P, Chan H M, Jacob D J and Pirrone N 2013 Environ. Sci. Technol. 47 4967
32. Clarkson T W, Magos L 2006 Crit. Rev. Toxicol. 36 609
33. Sundseth K, Pacyna J M, Pacyna E G, Pirrone N and Thorne R J 2017 Int. J. Environ. Res. Publ. Health 14 105
34. Xu J, Buck M, Eklöf K, Ahmed O O, Schaefer J K, Bishop K, Skyllberg U, Björn E, Bertilsson S and Bravo A G 2019 Sci. Rep. 9 1
35. Berzas Nevada J J, Rodríguez-Martín-Doimeadios R C, Mateo R, Rodríguez Fariñas N, Rodríguez-Estival J and Patiño Ropero M J 2012 Environ. Res. 112 58
36. Gnamuš A, Byrne A R and Horvat M 2000 Environ. Sci. Technol. 34 3337
37. Kalisinska E, Lanocha-Arendarczyk N, Kosik-Bogacka D, Budis H, Pilarczyk B, Tomza-Marciniak A, Podlasinska J, Cieslik L, Popiolek M, Pirog A and Jedrzejewska E 2017 Ecotoxicol. Environ. Saf. 136 24
38. Kidd K, Clayden M and Jardine T 2012 Bioaccumulation and biomagnification of mercury through food webs Environmental Chemistry and Toxicology of Mercury G Liu, Y Cai and N O’Driscoll (Hoboken: John Wiley & Sons) p 453
39. Rodríguez-Estival J, Ortiz-Santaliestra M E, Mateo R 2020 Environ. Res. 181 108907
40. Smith P N, Cobb G P, Godard-Coding C, Hoff D, McMurry S T, Rainwater T R and Reynolds K D 2007 Environ. Pollut. 150 41
41. Bosch A C, O’Neill B, Sigge G O, Kerwath S E and Hoffman L C 2016 J. Sci. Food Agric. 96 32
42. Subotić S, Spasić S and Višnjić-Jefic Ž 2013 Ecotoxicol. Environ. Saf. 98 196
43. Zupo V, Graber G, Kameł S, Plichta V, Granitzer S, Gundacker C and Wittmann K J 2019 Environ. Pollut. 255 112975
44. Rodríguez-Estival J, Morales-Machuca C, Pareja-Carrera J, Ortiz-Santaliestra M E, Mateo R 2019 Ecotoxicol. Environ. Saf. 185 109682
45. Szkoda J, Durkalec M, Nawrocka A and Michalski M 2015 Bull. Vet. Inst. Pulawy 59 357
46. Yuan Y, Sun T, Wang H, Liu Y, Pan Y, Xie Y, Huang H and Fan Z 2020 Mar. Pollut. Bull. 150 110717
47. Durkalec M, Szkoda J, Kolacz R, Opalinski S, Nawrocka A and Zmudzki J 2015 Int. J. Environ. Res. 9 205
48. Commission Regulation No 1881/2006 of 19 December 2006 setting maximum levels for certain contaminants in foodstuffs
49. JECFA (Joint FAO/WHO Expert Committee on Food Additives) 2003 Summary and conclusions of the sixty-first meeting of the Joint FAO/WHO Expert Committee on Food Additives (JECFA), p 18
50. WHO 2004 Safety evaluation of certain food additives and contaminants WHO Food Additive Series No. 52. Methylmercury
51. Jorhem L, Solorach S, Sundström B and Ohlin B 1991 Food Addit. Contam. 8 201
52. López Alonso M, Benedito J L, Miranda M, Castillo C, Hernández J and Shore R F 2003 Sci. Total Environ. 302 93
53. Niemi A, Venäläinen E R, Hirvi T, Hirn J and Karppanen E 1991 Z. Lebensm. Unters. Forsch. 192 427
54. Falandysz J 1993 Sci. Total Environ. 136 177
55. Pennumarthi L, Ohme F W and Hayes R H 1980 Arch. Environ. Contam. Toxicol. 9 193
56. Bilandžić N, Đokić M and Sedak M 2010 Food Addit. Contam. Part B Surv. 3 172
57. Canty M J, Scanlon A, Collins D M, McGrath G, Clogg T A, Lane E, Sheridan M K and More S J 2014 Sci. Total Environ. 485-486 223
58. Yabe J, Nakayama S M M, Ikenaka Y, Muzandu K, Ishizuka M and Umemura T 2004 J. Vet. Med. Sci. 74 1345
59. Sašić S and Janković S 2004 Meat Technol. 45 33
[60] Khalafalla F A, Ali F H, Schwagele F and Abd-El-Wahab M A 2011 *Vet. Ital.* **47** 351
[61] Čelechovská O, Malota L and Zima S 2008 *Acta Vet. Brno* **77** 645