MF-PROPERTY FOR COUNTABLE DISCRETE GROUPS

A. KORCHAGIN

Abstract. In this article we study MF-property for countable discrete groups, i.e. groups which admit embedding into unitary group of $\prod M_n/\oplus M_n$. We prove that Baumslag group $\langle a, b | a^a b = a^2 \rangle$ has MF-property and check some permanent facts about MF-groups.

1. Introduction

By definition MF-groups are countable groups which admit embedding into $U(\prod_{n=1}^{\infty} M_n/\oplus_{n=1}^{\infty} M_n)$ where M_n - algebra of n-by-n complex-valued matrices, $U(A)$ - group of unitary elements of C^*-algebra A. MF-groups were first considered in [7], where it was proved that for amenable groups MF-property equivalent to quasidiagonality of $C^*_r(G)$. In [7] it was also proved that LEF-groups have MF-property. The main motivation for considering and studying amenable MF-groups is famous conjecture that for amenable group G algebra $C^*_r(G)$ is quasidiagonal. Recently this conjecture was proved in [17], i.e. all countably amenable groups are MF. So it is very natural to examine what non-amenable groups have this property. The first reason is the connection with vector bundles. From [14] we know how to construct a vector bundle on BG from homomorphism $G \rightarrow U(\prod M_n/\oplus M_n)$ (such homomorphisms are usually called asymptotic homomorphisms or MF-representation). This vector bundle has some good properties which make it similar to vector bundle which is constructed from finitedimensional representation of group G. But on the other hand this construction often produce whole $K^0(BG)$, which is in some sense finitedimensional way to Novikov conjecture.

Our second motivation - is connection between MF-property and hyperlinearity. It is easy to see that MF-property for G is equivalent to possibility of embedding $G \hookrightarrow \prod U_n/\oplus U_n$, where U_n is usual n-unitary group and $\oplus U_n = \{u \in U_n : \|u-1\| \rightarrow 0\}$. Recall that countable group G is called hyperlinear if it admits embedding $G \hookrightarrow \prod U_n/\oplus_2 U_n$, where $\oplus_2 U_n = \{u \in U_n : \|u-1\|_2 \rightarrow 0\}$ and $\|a\|_2 = \sqrt{\tau(a^*a)}$ and τ - normalized trace on M_n (it seems to be interesting to consider more general approximation in GL_n instead of U_n. Apriori we get another classes of groups after replacing U_n by GL_n in definition of hyperlinear or MF-group. Concept of linear sofic groups is example of such generalizations, see [1] in this direction). Due to similarity of definitions we can check some facts about MF-groups just rewriting proof of similar facts about hyperlinear groups into MF-language, but not always we can do that. For example, it is known that amalgamated product of two hyperliner group over amenable group us hyperlinear; while we don’t even know is it true that amalgamated product of two MF-groups over finite group is MF-group. While we have $\|a\|_2 \leq \|a\|$ and so every MF-representation is hyperlinear representation, faithful MF-representation could be

The author acknowledges partial support by the RFBR grant No. 14-01-00007.
non-faithful hyperlinear representation and MF-property does not automatically imply hyperlinearity. Now nobody knows example of non hyperlinear group (existence of non MF-groups is also open question), but one of the main candidates for this role is Higman group \(\langle a,b,c,d|a^b = a^2, b^c = b^2, c^d = c^2, d^a = d^2 \rangle\). The famous property of this group is nonexistence of nontrivial finitedimensional representation and it is not clear, how we can construct nontrivial MF-representation or hyperlinear representation. There is homomorphisms \(\langle a,b,c,d|a^b = a^2, b^c = b^2, c^d = c^2, d^a = d^2 \rangle \rightarrow G = \langle x,y| x^{x^2} = x^2, [x,y]^4 = 1 \rangle\) defined via \(a \mapsto x, b \mapsto x^y, c \mapsto x^{y^2}, d \mapsto x^{y^4}\). So if we have nontrivial representation of group \(G\) - it is a great chance to construct a representation of Higman group, but group \(G\) is too complicated and for partial understanding its representations we consider less complicated Baumslag group \(\langle x,y| x^{x^2} = x^2 \rangle\).

2. PERMANENT FACTS

We will consider only countable groups, all maps between groups are assumed to be unital. We also use notation \(a^b = b^{-1}ab\).

Definition 1. Countable group \(G\) is called MF-group (or has MF-property) if there is injective homomorphism \(G \hookrightarrow \prod U_n/\oplus U_n\), where \(\oplus U_n = \{\{u_n\} \in \prod U_n : \|u_n - 1\| \rightarrow 0\}\).

Proposition 2. The following conditions are equivalent

1) \(G\) is MF-group.
2) There are maps \(\alpha_n : G \rightarrow U_n\) such that for every \(g,h \in G\) we have \(\|\alpha_n(gh) - \alpha_n(g)\alpha_n(h)\| \rightarrow 0\) and for every \(g \neq 1\) we have \(\|\alpha_n(g) - 1\| \rightarrow 0\).
3) For every finite set \(F \subset G\) there is \(\delta\) such that for every \(\varepsilon > 0\) there is \(n \in \mathbb{N}\) and map \(\alpha : G \rightarrow U_n\) such that for every \(g,h \in F\) we have \(\|\alpha(gh) - \alpha(g)\alpha(h)\| < \varepsilon\) and for every \(g \in F\) such that \(g \neq 1\) we have \(\|\alpha(g) - 1\| > \delta\).
4) For some subsequence \(\{n_k\}\) we have inclusion \(G \hookrightarrow \prod U_{n_k}/\oplus U_{n_k}\).
5) \(G \hookrightarrow U(\prod M_n/\oplus M_n)\).
6) \(G \hookrightarrow U(A)\) for some MF-algebra \(A\).

Proof. Easy exercise. \(\square\)

Definition 3. We will call homomorphism \(\alpha : G \rightarrow \prod U_n/\oplus U_n = U(\prod M_n/\oplus M_n)\) by asymptotic homomorphisms (or MF-representation). We will call maps \(\alpha_n\) (which appear from some lift \(G \rightarrow \prod U_n\) of \(\alpha\)) by almost representations.

There is very important homomorphism \(U_n \rightarrow U_{n^2}\), \(u \mapsto \text{Ad}(u)\), where \(\text{Ad}(u)\) is unitary matrix of conjugate by \(u\) in the space \(\mathbb{C}^{n^2} = M_n(\mathbb{C})\) with inner product \(\langle A,B \rangle = \sum_{i,j} \bar{A}_{i,j} B_{i,j}\).

Proposition 4. For every \(\delta > 0\) there is \(k_\delta \in \mathbb{N}\) such that for every \(u \in U_n\) with \(\text{diam}(\sigma(u)) > \delta\) there is \(k < k_\delta\) such that \(\|\gamma^k(u) - 1\| \geq \sqrt{2}\).

Proof. Put \(k_\delta = \lceil \log_2(\frac{\delta}{\pi}) \rceil + 1\). We may assume that \(u = \text{diag}(e^{i\alpha_1}, \ldots, e^{i\alpha_n})\). We have \(\gamma(u) = \text{diag}(e^{i(\alpha_i - \alpha_j)})\) in the basis consisting of matrix units in \(M_n(\mathbb{C}) = \mathbb{C}^{n^2}\). Let \(x, y\) be arguments of eigenvalues of \(u\) such that \(|e^{ix} - e^{iy}| = \text{diam}(\sigma(u))\). So, we have \(e^{i(x-y)}\) and \(e^{i(y-x)}\) among eigenvalues of \(\gamma(u)\). By induction we have \(e^{i2k(x-y)}\) and \(e^{i2k(y-x)}\) among eigenvalues of \(\gamma^k(u)\). Consider minimal \(k\) such that \(2^k(x-y) \in \left[\frac{\pi}{2}, \pi\right)\). In this case we have \(|e^{i2k(x-y)} - 1| \geq \sqrt{2}\) and so \(\|\gamma^{k+1}(u) - 1\| \geq \sqrt{2}\). It is easy to see that \(k < k_{\text{diam}(\sigma(u))}\). \(\square\)
Later for operator we will use standard notation $x =_\varepsilon y$ when $\|x - y\| < \varepsilon$.

Proposition 5. Let $\alpha' : G \to \prod U_n / \oplus U_n$ - some MF-representation such that $\alpha'(g) \neq 1$ for some $g \in G$. Then there is MF-representation β such that $\|\beta(g) - 1\| \geq \sqrt{2}$.

Proof. For convenience we will consider representation α' as set $\{\alpha'_n\}$ of almost representation. Putting $\alpha_n = \alpha'_n \oplus 1$ we have for every $g \in G$ that $1 \in \sigma(\alpha_n(g))$. Since $\alpha(g) \neq 1$, there is $\delta > 0$ and n_0 such that for every $n > n_0$ we have $\|\alpha_n(g) - 1\| > \delta$ (if it is necessary we consider some subsequence). Since $1 \in \sigma(\alpha_n(g))$ we have $\text{diam}(\sigma(\alpha_n(g))) > \delta$. By Proposition 4 we can construct k_δ and numbers $k(n)$ with $k(n) < k_\delta$ such that for every $n > n_0$ we have $\|\beta_n(g) - 1\| \geq \sqrt{2}$ where $\beta_n = \gamma^{k(n)} \circ \alpha_n$. Moreover $\{\beta_n\}$ is asymptotic homomorphism. Indeed, for every $\varepsilon > 0$ and every finite set $K \subset G$ we can ensure that $\alpha_n(q)\alpha_n(h)\alpha_n^{-1}(qh) = _\varepsilon 1$ for every $q, h \in K$ and big enough. Since γ^k -homomorphism then $\beta_n(q)\beta_n(h)\beta_n^{-1}(qh) = \gamma^{k(n)}(\alpha_n(q)\alpha_n(h)\alpha_n^{-1}(qh))$. From the formula $\gamma(\text{diag}(\{e^{i\alpha_n}\})) = \text{diag}(\{e^{i(\alpha_n - \alpha_n)}\})$ it is easy follows that $\|\gamma(u) - 1\| \leq 2\|u - 1\|$, so $\beta_n(q)\beta_n(h)\beta_n^{-1}(qh) = _{2\varepsilon} 1$. It means that β - asymptotic representation. □

Proposition 6. Residually MF-group is MF-group.

Proof. Let G - residually MF-group. It means that for every $g \neq 1$ there is MF-homomorphisms α^g (here g is index) such that $\alpha^g(g) \neq 1$. By Proposition 5 we can find some another MF-homomorphism β^g such that $\|\beta^g(g) - 1\| \geq \sqrt{2}$. Consider $\varepsilon > 0$ and finite set $K \subset G$ and let $\beta^K = \oplus_{g \in K} \beta^g$. As finite direct sum of MF-representation β^K is also MF-representation, so for some big enough $N = N(K, \varepsilon)$ we have $\beta^K_N(g, h) = _\varepsilon \beta^K_N(g)\beta^K_N(h)$ for every $g, h \in K$ and $\|\beta^K_N(g) - 1\| \geq 1$ for every $g \in K$ such that $g \neq 1$.

Consider our group $G = \bigcup K_n$ as union os increasing sequence of finite sets. Then $\omega_n = \beta^K_{N(\frac{1}{n})}$ is faithful asymptotic representation. It is easy to see that $\|\omega(g) - 1\| \geq 1$ for every $g \neq 1$, and for every ε and every finite $K \subset G$ we can find n such that $\varepsilon > \frac{1}{n}$ and $K \subset K_n$. So $\|\omega_n(g)\omega_n(h) - \omega_n(gh)\| < \varepsilon$ for every $g, h \in K$. □

Proofs of Propositions 4-6 are almost the same as in the case of hyperlinear groups (see [8]).

Using C^*-theory we can present shorter proof of Proposition 6. Let G -residually MF-groups, so there is MF-algebras A_n such that $G \hookrightarrow \prod A_n$ (where image lies in unitary group). Consider $B_n = A_1 \oplus \ldots \oplus A_n$, homomorphism $\alpha : \prod A_n \hookrightarrow \prod B_n$ defined via $\alpha(\{a_n\}) = \{a_1 \oplus \ldots \oplus a_n\}$. Consider composition map $\beta : G \hookrightarrow \prod A_n \hookrightarrow B_n \to \prod B_n / \oplus B_n$. It is easy to see that β - injective and $C^*(\beta(G))$ is separable subalgebra of $\prod B_n / \oplus B_n$. So $C^*(\beta(G))$ is MF-algebra by [5].

Proposition 7. Let G - group. Then G is MF-group iff for every $\varepsilon > 0$ and every finite $K \subset G$ there is map $\alpha : G \to U_n$ to some finitedimensional unitary group such that for every $g, h \in K$ inequality $\|\alpha(gh) - \alpha(g)\alpha(h)\| < \varepsilon$ holds and for every nontrivial $g \in G$ we have $\|\alpha(g) - 1\| \geq \sqrt{2}$.

Proof. $2 \Rightarrow 1$ is obvious. For $1 \Rightarrow 2$ we can consider $\alpha = \beta^K_{N(\frac{1}{n})}$ from the proof of Proposition 6. □

Proposition 7 means that for MF-groups there is injective MF-homomorphism α such that $\alpha(G)$ is discrete in the induced topology of $U(\prod M_n / \oplus M_n)$.
Proposition 11. Let $G = \langle a_1, \ldots, a_n | r_1, \ldots, r_m = 1 \rangle$ be finite presented group. Then G is MF-group iff for every $\varepsilon > 0$ and every finite set $K \subset G$ there is $N \in \mathbb{N}$ and matrices $A_1, \ldots, A_n \in U_N$ such that

1) For every nontrivial $k \in F$ there is some corresponding word $\omega_k \in \mathbb{F}_n = \langle a_1, \ldots, a_n \rangle$ in free group (i.e. for natural quotient homomorphism $\pi : \mathbb{F}_n \to G$ we have $\pi(\omega_k) = k$).

For convenience we also assume $\omega_{a_j} = a_j$ such that $\|\omega_k(A_1, \ldots, A_n) - 1\| \geq 1$.

2) $r_j(A_1, \ldots, A_n) = \varepsilon^{-1}$

Proof. Let us prove \Leftarrow. Let $\varepsilon > 0$ and $F \subset G$. Consider matrices $A_1, \ldots, A_n \in U_N$ corresponding to ε and finite set $K = F \cdot F = \{gh : g, h \in F\}$. Define our almost representation $\alpha : G \to U_N$ in such way: $\alpha(k) = \omega_k(A_1, \ldots, A_n)$ (for nontrivial $k \in K$) and arbitrary on $G \setminus K$. Let $C_{g,h}$ - minimal number of operations of type $r_j \leftrightarrow 1, a_j^{-1}a_j \leftrightarrow 1, a_ja_j^{-1} \leftrightarrow 1$ which is necessary to transform ω_{gh} into $\omega_g\omega_h$ (since $\pi(\omega_{gh}) = \pi(\omega_g\omega_h)$ this transformation is possible). Put $C = \max_{g,h \in F} C_{g,h}$. Then it is easy to see that $\|\alpha(gh) - \alpha(g)\alpha(h)\| < C\varepsilon$ for all $g, h \in F$. These almost representations α generate faithful asymptotic representation because $\|\omega_k(A_1, \ldots, A_n) - 1\| \geq 1$ for nontrivial k by assumption.

Let us prove \Rightarrow. Let G - MF-group and $\alpha_N : G \to U_N$ is faithful asymptotic representation. Using Proposition 7 we may assume that $\|\alpha_N(g) - 1\| \geq \sqrt{2}$ for all N and $g \neq 1$. Put $\omega_k \in \mathbb{F}_n$ arbitrary with property $\pi(\omega_k) = k$. As $\|\alpha_N(gh) - \alpha_N(g)\alpha_N(h)\| \to 0$ we have $\|\alpha_N(\omega_{g}(a_1, \ldots, a_n)) - \omega_{g}(\alpha_N(a_1), \ldots, \alpha_N(a_n))\| \to 0$ as $N \to \infty$. Since $\limsup_N \|\alpha_N(\omega_{g}(a_1, \ldots, a_n)) - 1\| \geq \sqrt{2}$ we have $\|\omega_{g}(\alpha_N(a_1), \ldots, \alpha_N(a_n)) - 1\| \geq 1$ for every nontrivial $g \in F$ and N big enough. Analogously using $\|\alpha_N(gh) - \alpha_N(g)\alpha_N(h)\| \to 0$ we deduce $\|r_j(\alpha_N(a_1), \ldots, \alpha_N(a_n)) - 1\| < \varepsilon$ for every j and N big enough. It means that there is some number N_0 such that matrices $A_i = \alpha_{N_0}(a_i)$ satisfy properties 1) and 2). \qed

As for amenable groups MF-property equivalent to quasidiagonality of $C^*(G)$ (see [7]) we have the following important version of main theorem from [17]:

Theorem 9. Amenable groups are MF-groups.

Using Proposition 6 we immediately deduce the following fact:

Corollary 10. Residually MF-groups are MF-groups.

This corollary covers very wide class of countable groups, for example Baumslag-Solitar groups $B(n, m) = \langle a, b | b^{-1}a^n b = a^m \rangle$ (from [12] we know that $B(n, m)^m = \mathbb{F}$. This imply that group $B(n, m)$ is residually solvable and so residually amenable because solvable groups are amenable (see [4, Example 2.6.5])). Another way for checking MF-property for Baumslag-Solitar groups $\langle a, b | b^{-1}a^n b = a^m \rangle$ is direct following the proof of the main theorem of [16] with using [13] for appearing amalgamated products. This works because all approximations in [16] are norm approximations.

The easiest example of non-residually solvable group is Baumslag group $\langle a, b | a^{ab} = a^2 \rangle$. This group is also MF-group and last paragraph is devoted to proof of this fact. We do not know is this group is residually amenable.

Proposition 11. Let G_1, G_2, \ldots - MF-groups. Then $\bigoplus G_j$ also MF-group.

Proof. If α_j are (ε, F_j)-almost representations of group G_j then $\alpha_1 \oplus \cdots \oplus \alpha_m$ is $(\varepsilon, F_1 \oplus \cdots \oplus F_m)$-almost representation of group $G_1 \oplus \cdots \oplus G_m$. It is easy to see that every finite subset of $\bigoplus G_j$ is consisted in some finite direct subproduct. \qed
Proposition 12. Let G be MF-group, F - finite group. Then $G \times F$ is MF-group.

Remark that we can prove only this weak permanent fact about cross product. We do not know answer also in the case of $K = \mathbb{Z}$, while in the case of hyperlinear groups it is true that if G is hyperlinear and F is amenable then $G \times F$ is also hyperlinear.

Proof. Let $\alpha_n : G \to U_n$ be faithful asymptotic representation and $\gamma_k(g) = k^{-1}gk$ for $k \in F$, $g \in G$. Put $\beta_n(g) = \oplus_k \alpha_n(k^{-1}gk) \in U_{n|K|}$ for $g \in G$ and let $\beta_n(k) \in U_{n|F|}$ be shift such that $\beta_n(k^{-1})(\oplus y_h)\beta_n(k) = \oplus_k y_{kh}$ for every $y_h \in U_n$, i.e. shift $\beta_n(k)$ move "h-block" to "kh-block". Now define $\beta_n : G \times F \to U_{n|F|}$ on whole $G \times F$ by the formula $\beta_n^N(g) = \beta_n(g)\beta_n(k)$ for $k \in F$, $g \in G$.

Since α_n is asymptotic representation and $\beta_n(k_1k_2) = \beta_n(k_1)\beta_n(k_2)$ for every $k_1, k_2 \in F$ we have $\beta_n^N(g_1k_1g_2k_2) = \beta_n(g_1\gamma_k^{-1}(g_2)k_1k_2) = \beta_n(g_1\gamma_k^{-1}(g_2))\beta_n(k_1)\beta_n(k_2) = o(1)$.

Let us deduce faithfulness of β_n. Consider arbitrary nontrivial $\omega \in G \times F$. It has the following form $\omega = gk$ for some $g \in G$, $k \in F$. If $k = 1$ then $||\beta_n(\omega) - 1|| \geq ||\alpha_n(g) - 1|| \geq \sqrt{2}$. Consider case $k \neq 1$. As $\beta_n(k)$ is shift we get that unitary matrix $\beta_n(\omega)$ has only zeros on diagonal. It follows that $||\beta_n(\omega) - 1|| \geq 1$, i.e. β_n is faithful asymptotic representation and so $G \times F$ is MF-group.

Proposition 13. Let G_j be MF-groups. Then $G = \lim \implies G_j$ is also MF-group.

We have only C^*-algebraic proof.

Proof. We have embeddings $\beta_j : G_j \hookrightarrow U(A_j)$ for some MF-algebras A_j. Moreover by Proposition 7 we may assume $||\beta_j(g) - 1|| \geq 1$ for every nontrivial $g \in G_j$. Let homomorphisms $\alpha_j^k : G_j \to G_{j+k}$ determine our direct limit. Define $\gamma_j : G_j \to \coprod A_i/ \oplus A_i$ by formula

$$\gamma_j(g) = (*) \cdots (*) \beta_j, \beta_{j+1}(\alpha_j^1(g)), \beta_{j+2}^2(\alpha_j^2(g)), \ldots$$

where values of $*$ are not important. Since $\gamma_j+k \circ \alpha_j^k = \gamma_j$ we have that homomorphisms γ_j define homomorphism $\gamma : \lim \implies G_j \to \coprod A_i/ \oplus A_i$. Consider arbitrary nontrivial $g \in G$. For some j we have $g \in ImG_j$ where ImG_j - image of G_j under natural map $G_j \to G$. It is easy to see that $||\gamma(g) - 1|| = \lim sup_k ||\beta_j+k(\alpha_j^k(g)) - 1|| \geq 1$ since g is nontrivial. So γ is injective. Let A_G be C^*-algebra generating by $\gamma(G)$. It is separable and $A_G \hookrightarrow \coprod A_i/ \oplus A_i$ so it is MF-algebra (see [4]). So G is MF-group.

Proposition 14. Let G, H be MF-groups. Then $G \star H$ is also MF-group.

Proof. Consider injective homomorphisms $\alpha_G : g \hookrightarrow U(A_G)$ and $\alpha_H : H \hookrightarrow U(A_H)$ for some MF-algebras A_G and A_H. We have $G \star H \xrightarrow{\alpha_G \alpha_H} A_G \star_0 A_H \xrightarrow{\gamma} A_G \star A_H$ where $A \star B$ - unital free product of C^*-algebras A and B, $A \star_0 B$ - unital free algebraic product (i.e. product without completion) of C^*-algebras A and B, homomorphism $\alpha_G \star \alpha_H$ is defined via formulas $\alpha_G \star \alpha_H(g) = \alpha_G(g)$ for $g \in G$ and $\alpha_G \star \alpha_H(h) = \alpha_H(h)$ for $h \in H$. Injectivity of $\alpha_G \star \alpha_H$ is obvious, injectivity of γ follows from [2]. We know from [13] that unital free product of MF-algebras is MF-algebra, so $A_G \star A_H$ is MF-algebra and $G \star H$ is MF-group.
It is known that if G, H is hyperlinear groups and K is amenable then $G \star_K H$ is hyperlinear group. But we do not know it is true that $G \star_K H$ is MF-group when G, H is MF-groups and K is finite group.

Proposition 15. Let $\varphi_t : G \rightarrow U(B(\mathbb{H}))$ - pointwise continuous family of homomorphisms (i.e. for every $g \in G$ function $\varphi_t(g)$ is continuous) where $t \in [0, \infty)$ and $B(\mathbb{H})$ - algebra of bounded operators on some Hilbert space. Let $C \subset B(\mathbb{H})$ be some quasidiagonal algebra and $g \in G$ is hyperlinear group. But we do not know is it true that $G \star H$ is MF-group when G, H is MF-groups and K is finite group.

Proof. Let Q be countable dense subset of $[0, \infty)$ and A be separable C^*-algebra generated by $\{\varphi_q(g)\}_{q \in Q, g \in G}$. Since φ_t is pointwise continuous then $\varphi_t(g) \in A$ for every $t \in [0, \infty)$. Consider C^*-algebra $\Omega = \{f \in C_b([0, \infty), A) : f(\infty) \in C\}$ of continuous bounded A-valued function which tend to some element of C at infinity. Remark that $C \subset A$. Define homomorphism $\varphi : G \rightarrow U(\Omega)$ via formula $\varphi(g)(t) = \varphi_t(g)$. This homomorphism is injective since φ_0 is injective. It is easy to see that Ω is homotopic to C, the construction of homotopy equivalence is following: $\alpha : C \rightarrow \Omega$ via $\alpha(c)(t) = c$ and $\beta : \Omega \rightarrow C$ via $\beta(f) = f(\infty)$. Obviously $\alpha \circ \beta \simeq \text{id}_A$ and $\beta \circ \alpha \simeq \text{id}_C$. Since quasidiagonality is homotopy invariant (see [6], Theorem 7.3.6), algebra Ω is quasidiagonal, so algebra which is generated by $\varphi(G)$ is also quasidiagonal as subalgebra of quasidiagonal Ω. Since separable quasidiagonal algebras are MF-algebras, we deduce that G is MF-group.

\[\square \]

3. **Baumslag group**

In this section we prove that Baumslag group is MF-group. Its hyperlinearity follows from [10] (see also [4],[15]), where it is also proved that soficity is closed under extension by amenable groups (it is well known that sofic groups are hyperlinear).

We will use following notation:

- $x^y = y^{-1} xy = \text{Ad}_y x$
- $B = \langle a, b | a^b = a^2 \rangle$ - Baumslag group
- $H = \langle a, b | a^b = a^2 \rangle$
- $H_j = \langle a_{-j}, ..., a_j | a_{i+1}^i = a_i^2, i = -j, ..., j - 1 \rangle \cong \mathbb{Z} \star ... \star \mathbb{Z}$ where multiplication factors of amalgamated product are numbered from $-j$ to $j - 1$, i-th factor generated by a_i and a_{i+1} and the generator of common subgroup \mathbb{Z} of i-th and $(i + 1)$-th factors is a_{i+1}.
- $H_\infty = \langle ...a_{-j}, ..., a_j, ... | a_i^{a_i+a} = a_i^2 \rangle = \lim H_j$
- $D_n = \text{diag}\{1, e^{2\pi i n}, ..., e^{2\pi i (n-1)}\}$
- T_n - standard shift matrix in $M_n(\mathbb{C})$ i.e. $T_n = e_{1,2} + e_{2,3} + ... + e_{(n-1),n} + e_{n,1}$ where $e_{i,j}$ - standard matrix units.
- $U_n = U(M_n(\mathbb{C}))$
- $\max(K)$ for finite subset $K \subset H_\infty$ is minimal j such that $K \subset H_j$. It easy to see that $\max(K)$ also equals to maximal absolute values of such j for which letter a_j nonreducible appears in words in K.
- $x \sim y$ if x and y are unitary conjugate.
- $x =_\varepsilon y$ if $\|x - y\| < \varepsilon$.

\[\]
We will write $x \sim_\varepsilon y$ for unitary $x, y \in U_n$ if there is unitary $y' \in U_n$ such that $\|y - y'\| < \varepsilon$ and $x \sim y'$. It means that after small perturbation y become unitary conjugate to x.

Proposition 16. There is isomorphism $B \cong H_\infty \rtimes \mathbb{Z}$ where action of generator of \mathbb{Z} on H_∞ is defined via formula $a_i \mapsto a_{i+1}$.

Proof. The proof is easy exercise. □

Lemma 17. Consider automorphism φ of group G, homomorphism $\alpha : G \rtimes \mathbb{Z} \rightarrow F$ where F - some group (possibly non-countable). Let for every nonzero $k \in \mathbb{Z}$ automorphism φ^k be non-inner. We have that if $\alpha|_G$ is faithful then α is also faithful.

Proof. Assume that α is not faithful. So we can find $g \in G$ and $z \in \mathbb{Z}$ for which $\alpha(gz) = 1$. If $z = 0$ than this contradict with faithfulness of $\alpha|_G$ (by 0 we denote neutral element of \mathbb{Z}). So $z \neq 0$ and $\alpha(z) = \alpha(g^{-1})$. It means that for every $h \in G$ we have $\alpha(\varphi^z(h)) = \alpha(\varphi \circ \ldots \circ \varphi(h)) = \alpha(z^{-1}hz) = \alpha(ghg^{-1})$. Since $\alpha|_G$ is faithful then $\varphi^z(h) = ghg^{-1}$, i.e. automorphism φ^z is inner which is contradiction. □

Proposition 18. All powers of automorphism $\varphi : H_\infty \rightarrow H_\infty$, $\varphi(a_j) = a_{j+1}$ are non-inner.

Proof. Assume that for some nonzero $k \in \mathbb{Z}$ and $\omega \in H_\infty$ we have $\varphi^k(h) = \omega^{-1}h\omega$ for every $h \in H_\infty$. Put $N = \max(\{\omega\})$. So $a_{N+k} = \varphi^k(a_N) = \omega^{-1}a_N\omega \in H_N$ since $\omega \in H_N$. But $a_{N+k} \notin H_N$. Contradiction. □

We need the following theorem from [3]:

Theorem 19. Let A, B be residually solvable groups, D be solvable. Consider common subgroup $C \subset A, B$. If there is homomorphism $\beta : A \rtimes B \rightarrow D$ such that $\beta|_C$ is faithful. Then $A \rtimes_B C$ is residually solvable.

As easy corollary we can deduce the following proposition:

Proposition 20. For every j group H_j is residually solvable (so it is MF-group).

Proof. Let us use induction to prove this fact.

Base case: H is solvable and so residually solvable.

Inductive step: Group H_j has $2j + 1$ amalgamated multiplication factors. Put $L_N = \langle a_{-j}, \ldots, a_N | a_i^{a_{i+1}} = a_i^2 \rangle$. Trivially we have $L_{j+1} = H$ and $L_j = H_j$. To prove proposition it is enough to show that if L_N is residually solvable then $L_{N+1} = L_N \rtimes H$ is also residually solvable. By Theorem 19 it is enough to construct homomorphism $\beta : L_{N+1} \rightarrow H$ which is injective on common subgroup Z of L_N and H. Define β on generators in such way: $\beta(a_i) = 1$ for $i < N$, $\beta(a_N) = a$, $\beta(a_{N+1}) = b$. It is easy that this map extends to homomorphism, which satisfy necessary conditions. □

Remark, that neither B nor H_∞ can be residually solvable because residual solvability is closed under taking extensions by solvable groups (see [11]).

Let $f(N) = 2^{p_N} - 1$ where p_N is N-th prime number.

Proposition 21. There exists matrix T such that $T^{-1}D_{f(N)}T = D^2_{f(N)}$ and $T \sim 1 \oplus D_{p_N} \oplus \ldots \oplus D_{p_N}$. In other words spectrum of T is set of all p_N-th roots of unity with the same multiplicity and additional 1 with multiplicity 1.
Proof. We have \(D_{f(N)} = \text{diag}(e^0, e^{1c}, e^{2c}, \ldots, e^{(f(N) - 1)c}) \), \(D_{f(N)}^2 = \text{diag}(e^0, e^{2c}, e^{4c}, \ldots, e^{2(f(N) - 1)c}) \), where \(c = \frac{2\pi i}{f(N)} \). Since \(f(N) \) is odd number then there exists bijection \(\sigma \) between \((0, 1, 2, \ldots, f(N) - 1)\) and \((0, 2, 4, \ldots, 2(f(N) - 1))\) modulo \(f(N) \). Consider matrix \(T \) of permutation of basis vectors \(e_j \) corresponding to permutation \(\sigma \). It is easy to see that every disjoint \(n \)-cycle of \(\sigma \) corresponds to set \(\sqrt{n}I \) in spectrum of \(T \) (because \(T|_L \) is usual shift where \(L = \text{span}\{T^k e_j\}_k \) for some \(j \in (0, 1, 2, \ldots, f(N) - 1) \) which belongs to our disjoint cycle). To show that spectrum of \(T \) has desired properties let us examine structure of disjoint cycles of \(\sigma \). We have \(0 \mapsto 0 \) - this trivial orbit corresponds to 1 with multiplicity 1 in spectrum. Let us prove that every nonzero \(x \) has orbit of length \(p_N \). As permutation \(\sigma \) is defined via formula \(x \mapsto 2x \,(\text{mod } f(N)) \) and since \((2^p - 1)x = f(N)x = 0 \,(\text{mod } f(N))\) we have that length of orbit divides \(p_N \). But since \(p_N \) is prime number and orbit is nontrivial we have that length of every nontrivial orbit is \(p_N \).

\[\square \]

Proposition 22. For every \(\varepsilon > 0 \), every finite set \(K \subset H_\infty \) and every \(j > \max(K) \) there exists natural number \(n \) and map \(\varphi : H_\infty \to U_n \) such that:

1) \(\|\varphi(kh) - \varphi(k)\varphi(h)\| < \varepsilon \) for every \(k, h \in K \).

2) \(\|\varphi(k) - 1\| \geq 1 \) for every nontrivial \(k \in K \).

3) \(\|\text{Ad}_{\varphi(a_{i+1})} \varphi(a_i) - \varphi(a_i)^2\| \leq \varepsilon \) where \(|i| \leq j \).

4) \(\varphi(a_i) \sim \varepsilon \varphi(a_i) \) for every \(i, l \) with \(i, l \leq j + 1 \).

Proof. As \(K \subset H_j \) and there is no occurrence of elements of \(H_\infty \setminus H_{j+1} \) in conditions 1)-4) then we can define \(\varphi \) on \(H_\infty \setminus H_{j+1} \) arbitrary. Since \(H_{j+1} \) is MF-group then we can construct \(\psi : H_{j+1} \to U_m \) which satisfy conditions 1)-3).

Idea is following: we construct asymptotic representation \(\pi_N \) of \(H_j \) such that spectrum of \(\pi_N(a_i) \) would be uniform. Then \(\varphi = \psi \oplus \pi_N \oplus \ldots \oplus \pi_N \) has desired properties, because \(\psi \)-summand secures faithfulness conditions 2) and a lot of \(\pi_N \)-summands make spectrum of \(\varphi(a_j) \) to be almost uniform, so guarantees condition 4).

Put \(\pi_N(a_{j-1}) = D_{f(N)} \). On other generators generators of \(H_{j+1} \) define \(\pi_N \) by induction. Let us have already construct \(\pi_N(a_i) \) such that \(\pi_N(a_i) \sim D_{f(N)} \). By Proposition 21 we can find matrix \(V \) such that \(V^{-1}\pi_N(a_i)V = \pi_N(a_i)^2 \) and spectrum of \(V \) consists of 1 with multiplicity 1 and \(p_N \)-th root of unity with multiplicity \(\frac{2p_N - 2}{p_N} \) (the reason of using \(f(N) \) instead of usual \(N \) is that spectrum of \(V \) is very simple. We do not know for odd \(N \) good characterization of spectrum of matrix \(R \) such that \(R^{-1}DNR = D_R^2 \)). It is easy to see that \(D_{f(N)} \sim \frac{2\pi i}{p_N} V \) (because we can eigenvalue \(e^{\frac{2\pi i}{p_N}} \) with multiplicity \(\frac{2p_N - 2}{p_N} \) uniformly spread on interval \((e^{\frac{2\pi i}{p_N}}, e^{\frac{2\pi i(k+1)}{p_N}}) \subset S^1 \). Then we should shift all eigenvalues to clear "space" for eigenvalue 1 with multiplicity 1). So we can make matrix \(S \) with properties \(S = \frac{2\pi i}{p_N} V \) and \(S \sim D_{f(N)} \sim \pi_N(a_i) \sim \ldots \sim \pi_N(a_{j-1}) \). Put \(\pi_N(a_{i+1}) = S \). It is clear that \(\text{Ad}_{\pi_N(a_{i+1})} \pi_N(a_i) = O(1) \pi_N(a_i)^2 \) so \(\pi_N \) is asymptotic representation and we can find \(N \) large enough that almost representation \(\pi_N \) satisfy conditions 1)-3).

Put \(\varphi = \psi \oplus \pi_N \oplus \ldots \oplus \pi_N \) where in direct sum there are \(m \) direct \(\pi_N \)-summands, \(N \) as in the previous paragraph, \(m \) is dimension of \(\psi \). Obviously \(\phi \) satisfy conditions 1)-3). It is easy to see that \(e^{\lambda} \oplus D_\lambda \sim \frac{1}{\lambda} D_{n+1} \) for every \(\lambda \). Consider arbitrary generators \(a_i \) and \(a_{i+1} \) of \(H_{j+1} \). Every normal matrix can be diagonalized so \(\psi(a_i) \sim e^{i\lambda_i} + \ldots + e^{i\lambda_m} \) and \(\phi(a_i) \sim e^{i\lambda_1} + \ldots + e^{i\lambda_m} \pi_N(a_i) + \ldots + \pi_N(a_i) \sim (e^{i\lambda_1} + \pi_N(a_i)) \oplus \ldots \oplus \pi_N(a_i) \).
\[\cdots (e^{i\lambda_m} \oplus \pi_N(a_i)) \sim (e^{i\lambda_1} \oplus D_{f(N)}) \oplus \cdots (e^{i\lambda_m} \oplus D_{f(N)}) \sim \frac{1}{f(N)} \cdot D_{f(N)+1} \oplus \cdots \oplus D_{f(N)+1}. \]

Similarly we can deduce \(\phi(a_i) \sim \frac{1}{f(N)} \cdot D_{f(N)+1} \oplus \cdots \oplus D_{f(N)+1} \) and so \(\phi(a_i) \sim \epsilon \phi(a_i). \)

Proposition 23. Let \(u \in U_n \) and \(\epsilon > 0 \). Then there exist matrices \(u_{-k}, u_{-k+1}, \ldots, u_k \in U_n \) where \(k = \left[\frac{1}{\epsilon} \right] \) with properties:

1) \(u_0 = 1 \).
2) \(u_i = 4\epsilon u_{i+1} \) for every \(i \).
3) \(u = u_{-k}u_n^{-1} \).

Proof. Put \(u_i = 1 \) for \(i \leq 0 \) Minimal length of path between 1 and \(u^{-1} \) in the unitary group is not greater than 4 (because all unitary matrices can be diagonalized and so geodesic distance between 1 and \(u^{-1} \) is not greater than geodesic diameter of unit circle which is equal to \(\pi \)). So we can find matrices \(u_0, u_1, \ldots, u_k \) with \(u_0 = 1, u_k = u^{-1} \) and \(u_i = 4\epsilon u_{i+1} \). \(\square \)

Theorem 24. Group \(B = \langle a, b | a^ab^b = a^2 \rangle \) is MF-group.

Proof. By Lemma 17 it is enough to construct asymptotic representation of \(B \) which is faithful on \(H_\infty \subset B \). Due to Proposition 8 it is enough to find for every \(\epsilon > 0 \) and every finite \(K \subset H_\infty \) matrices \(A \) and \(B \) with properties:

1) \(\| \omega(\{B^{-i}AB^i\}) - 1 \| \geq 1 \) for every nontrivial \(\omega \in K \)
2) \(\text{Ad}_{B^{-1}AB} A = \text{O}(\epsilon) A^2 \)

Put \(k_0 = \max(K), N = \left[\frac{1}{\epsilon} \right] \). Let \(j \) be natural number such that \(2j+1 = (2k_0+1)(2N+1) \). Consider almost representation \(\varphi : H_\infty \to U_n \) from the Proposition 22. Due to condition 4) of Proposition 22 there exists unitary \(u \in U_n \) such that \(\text{Ad}_u \varphi(a_{-j}) = \varphi(a_{j+1}) \).

Applying Proposition 23 to \(u \) we get matrices \(u_{-N}, u_{-N+1}, \ldots, u_N \). Let us construct matrices \(u_{-j}, u_{-j+1}, \ldots, u_j \) in the following way: \(u_{-j} = u_{-j+1} = \cdots = u_{j+j+2k_0} = u_{-N}, u_{j+j+2k_0+1} = \cdots = u_{j+j+4k_0+1} = u_{-N+1}, \ldots, u_{j-j-2k_0} = \cdots = u_j = u_N \). More precisely \(u_i = u \frac{1}{N_{k_{i+1}-1}} \). Let us put

\[
A = \text{Ad}_{u_{-j}} \varphi(a_{-j}) \oplus \cdots \oplus \text{Ad}_{u_j} \varphi(a_j)
\]

\[
B = \text{id} \otimes T_{2j+1}^a
\]

where \(A, B \in U(M_n \otimes M_{2j+1}) = U(M_n(2j+1)) \), \(B \) is shift matrix which permute blocks in block structure of matrix \(A \), i.e.

\[
B^{-1}AB = \text{Ad}_{u_{-j+1}} \varphi(a_{-j+1}) \oplus \cdots \oplus \text{Ad}_{u_j} \varphi(a_j) \oplus \text{Ad}_{u_{-j}} \varphi(a_{-j})
\]

Let \(P_i \) be projections corresponding to block structure of \(A \) i.e. for which \(P_i P_j = 0 \oplus \cdots \oplus 0 \oplus \text{Ad}_{u_i} \varphi(a_i) \oplus 0 \oplus \cdots \oplus 0 \). For notation convenience we may think that \(P_i CP_i \in M_n \) for every matrix \(C \in M_{n(2j+1)} \) and in these terms \(P_i P_j = \text{Ad}_{u_i} \varphi(a_i) \).

Let us check property \(\text{Ad}_{B^{-1}AB} A = \text{O}(\epsilon) A^2 \). Put \(R = \text{Ad}_{B^{-1}AB} A - A^2 \). If \(i \neq j \) then since \(u_i = 4\epsilon u_{i+1} \) and \(\text{Ad}_{\varphi(a_{i+1})} \varphi(a_i) = \varphi(a_i) \) we have inequality \(\| P_i RP_i \| = 1 \). If \(i = j \) then since \(\text{Ad}_{\varphi(a_{i+1})} \varphi(a_j) = \varphi(a_j) \) we have \(\| P_i RP_i \| = \| \text{Ad}_{u_i^{-1}} \varphi(a_{-j}) \| \leq 3\epsilon \).

Since \(R \) has the same block structure as \(A \) it is easy to see that \(R = \oplus P_i R P_i \) and \(\text{Ad}_{B^{-1}AB} A = \text{O}(\epsilon) A^2 \).

Let us check property \(\| \omega(\{B^{-i}AB^i\}) - 1 \| \geq 1 \) for all nontrivial \(\omega \in K \subset H_{k_0} \subset H_\infty \). Arbitrary \(\omega \) has the following form \(\omega(\{B^{-i}AB^i\}) = B^{-i_1}AB^{i_1}B^{-i_2}AB^{i_2} \cdots B^{-i_n}AB^{i_n} \) with
$|i_0| \leq k_0$. But since $B^{-i}AB^i$ has the same block structure as A, $P_0(B^{-i}AB^i)P_0 = \varphi(a_i)$ and $v_{-k_0} = \ldots = v_k = u_0 = 1$ we have that
\[
\|\omega(\{B^{-i}AB^i\}) - 1\| \geq \|P_0\omega(\{B^{-i}AB^i\})P_0 - P_0\| = \|\omega(\{\varphi(a_i)\}) - 1\| \geq 1
\]
This finishes the proof. □

Remark 25. We think that it would be interesting to examine MF-properties for groups of the form $\langle a, b | \omega(a, a^b) = 1 \rangle$ where group $\langle a, b | \omega(a, b) = 1 \rangle$ is not very difficult. If we trying to follow similarly way we see the main difficulties in construction asymptotic representation of $\langle a, b | \omega(a, b) = 1 \rangle$ for which spectrums of generators are almost uniform and checking MF-property for groups of the form $\langle a, b | \omega(a, b) = 1 \rangle \ast \ast \langle a, b | \omega(a, b) = 1 \rangle$.

In our case of Baumslag group the second problem was not consider able due to theorem of Azarov and Tieudjo and nilpotence of group $\langle a, b | b^{-1}ab = a^2 \rangle$.

Remark 26. We use in proof exotic matrix size $2^n - 1$ because of simplicity of spectrum of corresponding shift matrix. But we think it is very interesting to examine uniform properties for unitary matrix T for which $T^{-1}D_2T = D_2$. For example we think that it is important to compute $\lim_{n \to \infty} \# \{z \in \sigma(T) | z \in (a, b) \}$ for segment of circle $(a, b) \subset S^1$.

Acknowledgement. The author is grateful to V.M. Manuilov for fruitful discussions and advices.

References

[1] G.N. Arzhantseva, L. Paunescu Linear sofic groups and algebras, Trans. Amer. Math. Soc., 369, 2285-2310 (2017).
[2] D.Avitzour Free products of C^*-algebras, Trans. Amer. Math. Soc., Vol. 271, No 2, 423-435, (1982).
[3] D.N.Azarov, D.Tieudjo On Root-Class Residuality of Amalgamated Free Products, Nauch. Trudy Ivanovsk. Gos. Univ. Matem., No. 5, 610 (2002) [in Russian].
[4] J. Bannon A non-residually solvable hyperlinear one-relator group, Proc. Amer. Math. Soc., 139(4), 1409-1410, (2011).
[5] B.Blackadar, E.Kirchberg Generalized inductive limits of finite-dimensional C^*-algebras, Math. Ann., Vol. 307, Issue 3, 343-380, (1997).
[6] N.P.Brown, N.Ozawa C^*-algebras and Finite Dimensional Approximations, Graduate Studies in Mathematics, Vol. 88, 2006.
[7] J.Carrion, M.Dadarlat, C.Eckhardt On groups with quasidiagonal C^*-algebras, J. Funct. Anal., Vol. 265, No 1, 135-152, (2013).
[8] V.Capraro, M.Lupini Introduction to Sofic and Hyperlinear groups and Connes’ Embedding Conjecture, Lectures Notes in Mathematics, 2015.
[9] M.Dadarlat Group quasi-representations and almost flat bundles, J. Noncommut. Geom., Vol. 8, No 1, 163-178, (2014).
[10] G.Elek, E.Szabo On sofic groups, J. Group. Theory, Vol. 9, No 2, 161-171, (2006).
[11] K.W.Gruenberg Residual properties of infinite soluble groups, Proc. London Math. Soc., Third series volume 7, 29-62, (1957).
[12] P.H.Kropholler Baumslag-Solitar groups and some other groups of cohomological dimension two, Comment. Math. Helvetici, Vol. 65, 547-558, (1990).
[13] Q.Li, J.Shen Unital Full Amalgamated Free products of MF Algebras, Illinois J. Math., Vol. 56, No 2, 647-659, (2012).
[14] V.M.Manuilov, A.S.Mishchenko Almost, Asymptotic and Fredholm Representations of Discrete Groups, Acta Applicandae Mathematicae, Vol. 68, No 1, 159-210, (2001).
[15] V.G.Pestov Hyperlinear and sofic groups: a brief guide, Bull. Symbolic Logic, Vol. 14, Issue 4, 449-480, (2008).
[16] F. Radulescu. *The von Neumann algebra of the non-residually finite Baumslag group \langle a, b|ab^3a^{-1} = b^2 \rangle embeds into \mathbb{R}^\omega*. Hot topics in operator theory, No 9, 173-185, (2008).

[17] A. Tikuisis, S. White, W. Winter *Quasidiagonality of nuclear C*-algebras*, preprint, arXiv:1509.0831

Moscow State University, Leninskie Gory, Moscow, 119991, Russia
E-mail address: mogilevmedved@yandex.ru