Existence of a regular unimodular triangulation of the edge polytopes of finite graphs

GINJI HAMANO

Abstract

In this paper we give several criteria for the edge polytope of a fundamental FHM-graph to possess a regular unimodular triangulation in terms of some simple data of the graph. We further apply our criteria to several examples of graphs, including the complete graph K_6 with 6 vertices, and show that their edge polytopes possess a regular unimodular triangulation.

Introduction

Let G be a finite connected simple graph and P_G the edge polytope of G. The combinatorial structure of P_G, especially which type of triangulations P_G admits, is an interesting problem and many researches have been done on this topic (see [2, Chapter 5] and references there).

Let G be a fundamental FHM-graph. The third author has obtained a necessary and sufficient condition for P_G to possess a regular unimodular triangulation in [3]. However, this condition is not so easy to apply to a given graph only by looking at the graph.

In this paper, for a fundamental FHM-graph G, we will give several criteria for the existence of a regular unimodular triangulation of P_G in terms of some simple data of the graph. We also apply our criteria to some examples, including the complete graph K_6 with 6 vertices, and show that their edge polytopes possess a regular unimodular triangulation.

The contents of this paper are as follows. In Section 1, we review the definition and some basic results on the fundamental FHM-graphs after [3].
In Section 2, we give several slightly different criteria for P_G to possess a regular unimodular triangulation. In Section 3, we show some examples to which our criteria are applicable.

1 Preliminaries

Let $G = (V, E)$ be a finite connected simple graph where $V = \{1, 2, \ldots, d\}$ is the vertex set and $E = \{e_1, \ldots, e_n\}$ the set of edges. Here a graph is called simple if it has no loop and no multiple edge. For each edge $e = \{i, j\} \in E$, we set $\rho(e) := e_i + e_j \in \mathbb{Z}^d$, where e_i is the i-th unit coordinate vector in \mathbb{R}^d. We call the convex hull $P_G \subset \mathbb{R}^d$ of the finite set $\{\rho(e) | e \in E\}$ the edge polytope of G.

Let G be a finite connected simple graph and C an odd cycle contained in G. Let c be a chord of C. Then c divides C into two cycles where one is an odd cycle and the other an even cycle. We call the even cycle the even closed walk of the chord c in C. In the even closed walk E of the chord c in C, we require that c is an even-numbered edge of the cycle E.

Let (C_1, C_2) be a pair of disjoint odd cycles in G (namely the odd cycles C_1 and C_2 have no common vertex) and b a bridge of this pair. Here a bridge b of the pair (C_1, C_2) is an edge $b = \{i, j\}$ where i is a vertex of C_1 and j a vertex of C_2 or vice versa. Then the even closed walk of b in (C_1, C_2) is the closed walk $(C_1, b, C_2, -b)$. In this notation, $-b$ means the oppositely directed edge of b and the cycle C_1 starts from the vertex $C_1 \cap b$ and ends at the same vertex. The same holds for C_2. We note that in the even closed walk E of the bridge b in (C_1, C_2), b appears twice as an even-numbered edge of E.

An FHM-graph is a finite connected simple graph such that any pair of disjoint odd cycles has a bridge. A fundamental FHM-graph is an FHM-graph which has at least one pair of disjoint odd cycles. The following is a basic fact on the fundamental FHM-graphs ([4, Corollary 2.3] and [3, Proposition 3.4]).

Theorem 1.1 Let G be a finite connected simple graph.

(i) If the edge polytope P_G possesses a regular unimodular triangulation, then G is an FHM-graph.

(ii) If G possesses no pair of disjoint odd cycles, then P_G possesses a regular unimodular triangulation.
Thus we focus on the fundamental FHM-graphs from now on. We will review the necessary and sufficient condition for P_G to have a regular unimodular triangulation.

Let G be a fundamental FHM-graph. Suppose G possesses p pairs of disjoint odd cycles $\Pi_1 = (C_1, C'_1), \ldots, \Pi_p = (C_p, C'_p)$. For each $i \ (1 \leq i \leq p)$, let $\{b^i_j | 1 \leq j \leq q_i\}$ be the set of bridges of Π_i and the chords of C_i or C'_i. Let $E^i_j = (e_{i_1}, e_{i_2}, \ldots, e_{i_{2r}})$ be the even closed walk of b^i_j, where the bridge or chord is even-numbered.

Now, we define the open half-space $H_{b^i_j}$ by

$$H_{b^i_j} := \{(x_1, \ldots, x_n) | \sum_{k=1}^{r} x_{2k-1} > \sum_{k=1}^{r} x_{2k}\}. \quad (1)$$

Further we set $W := \bigcap_{i=1}^{p} \left(\bigcup_{j=1}^{q_i} H_{b^i_j} \right)$. The following result is our starting point.

Theorem 1.2 ([3, Theorem 3.5]) *The edge polytope P_G possesses a regular unimodular triangulation if and only if $W \neq \emptyset$.*

2 Criteria for the existence of a regular unimodular triangulation

Let G be a fundamental FHM-graph. In this section, we will give four criteria for the edge polytope P_G to possess a regular unimodular triangulations in terms of the simple data of the graph G. Our criteria are based on the existence of special bridges in each pair of disjoint odd cycles. Let Π_1, \ldots, Π_p be all the pairs of disjoint odd cycles in G as before.

Theorem 2.1 A fundamental FHM-graph G possesses a regular unimodular triangulation if it has a set of bridges $\{b^1, \ldots, b^p\}$ (b^i is the bridge of Π_i) which satisfies the following condition: for each even closed walk E_i of b^i, the number of the other bridges b^j contained in E_i is at most 2, and further the number of E_i's which contain exactly 2 other bridges is at most 2.

Corollary 2.2 A fundamental FHM-graph G possesses a regular unimodular triangulation if it has a set of bridges $\{b^1, \ldots, b^p\}$ (b^i is the bridge of Π_i) which satisfies the following condition: each even closed walk of the bridge b^i contains at most one other bridge b^j.

3
Theorem 2.1 follows immediately from the more general Theorem 2.3 below.

Theorem 2.3 A fundamental FHM-graph G possesses a regular unimodular triangulation if it has a set of bridges \{b^1, \ldots, b^p\} (\(b^i\) is the bridge of \(\Pi_i\)) which satisfies the following condition: For each even closed walk \(E_i\) of \(b^i\), we give a weight to any edge of \(E_i\) as follows. The bridge \(b^i\) has weight 2, and the other bridge \(b^j\) contained in \(E_i\) has +1 (resp. −1) if \(b^j\) is even (resp. odd)-numbered edge of \(E_i\). The other edges have all weight 0. Let \(a_i\) be the total weight of \(E_i\). Then \(a_i \geq 0\) holds for any \(i\) and further, the number of \(E_i\)’s such that \(a_i = 0\) is at most 2.

Corollary 2.4 A fundamental FHM-graph G possesses a regular unimodular triangulations if it has a set of bridges \{b^1, \ldots, b^p\} (\(b^i\) is the bridge of \(\Pi_i\)) which satisfies the following condition. To each even closed walk \(E_i\) of \(b^i\), we give a total weight \(a_i\) as in Theorem 2.3. Then \(a_i > 0\) for any \(i\) holds.

We note that the narrowest condition is Corollary 2.2 whereas the broad- est is Theorem 2.3. But Corollary 2.2 is the easiest to check graphically. Corollaries 2.2 and 2.4 have the advantage that we can find a weight \(w \in W\) only by looking the graph. On the other hand, in the case of Theorem 2.1 and 2.3, we need to solve the inequalities to find a weight \(w \in W\).

We will prove Corollary 2.4 first.

Proof of Corollary 2.4. We first rewrite \(W\) in Theorem 1.2 by the distributive law as follows.

\[
W = \cap_{i=1}^p (\cup_{j_1=1}^{q_1} H_{b^i_{j_1}}) = \cup_{j_1, \ldots, j_p} (H_{b^i_{j_1}} \cap \cdots \cap H_{b^i_{j_p}})
\]

where \(j_k\) satisfies \(1 \leq j_k \leq q_k\). We set

\[
C = C_{\{b^i_{j_1}, \ldots, b^i_{j_p}\}} := H_{b^i_{j_1}} \cap \cdots \cap H_{b^i_{j_p}}
\]

and call \(C\) the open cone of \(b = \{b^i_{j_1}, \ldots, b^i_{j_p}\}\). Thus \(W \neq \phi\) is equivalent to that there is a set of bridges \(b = \{b^1, \ldots, b^p\}\) (\(b^i\) is a bridge of \(\Pi_i\)) such that \(C_b\) is non-empty.

Now suppose that \(b = \{b^1, \ldots, b^p\}\) satisfies the condition of Corollary 3.4 (namely \(a_i > 0\) for any \(i\)). For each \(i\), let \(E_i\) be the even closed walk of \(b^i\) and \(f_i > 0\) be the inequality (1) defined by \(b^i\). We denote by the same \(f_i\)
the n-dimension vector which consists of the coefficients of the LHS of the inequality $f_i > 0$. We note if the bridge b^i is equal to an edge e_j, the j-th component $f_i[j]$ of the vector f_i is -2 and if the other edge e_k is contained in E_i, $f_i[k] = +1$ (resp. -1) if e_k is odd (resp. even)-numbered edge of E_i. The other components of f_i are 0.

We define the standard weight vector $w \in \mathbb{R}^n$ of C_b as follows. If there exists i such that $f_i[k] = -2$, then we set $w[k] := -1$. The other components of w are 0. We note a_i is equal to (f_i, w) (inner product) for each i. Since $a_i > 0$ for any i by assumption, $w \in C_b \subset W$ and $W \neq \emptyset$. □

Proof of Theorem 2.3. By the assumption of Theorem 2.3, $a_i = (f_i, w) \geq 0$ for any i. Suppose $a_j = a_k = 0$ ($j \neq k$) and for any i ($i \neq j, i \neq k$), $a_i > 0$. Let H be the hyperplane in \mathbb{R}^n defined by $\sum_{j=1}^{n} w[j] x_j = 0$. Then, since $\{f_j, f_k\}$ are clearly linearly independent, we can move H slightly to get a new hyperplane H' such that f_i is in the positive side of H for any i. If H' is defined by $\sum_{j=1}^{n} w'[j] x_j = 0$, then $(f_i, w') > 0$ for any i and $w' \in W$. □

Theorem 2.1 is the absolute value version of Theorem 2.3 and Corollary 2.2 is clear from Theorem 2.1.

Remark 2.5 (i) In Theorem 2.3, if there exist more than two i's such that $a_i = 0$, the following result holds.

Suppose $a_i = 0$ for $i = i_1, \ldots, i_r$ ($r \geq 3$) and $a_i > 0$ for the other i's. Let $H \subset \mathbb{R}^n$ be the hyperplane defined by $\sum_{j=1}^{n} w[j] x_j = 0$. If the convex cone generated by f_{i_1}, \ldots, f_{i_r} in H is strongly convex, W is not empty.

The proof is the same as that of Theorem 2.3. Namely, thanks to this condition, we can vary w slightly to get a new weight w' such that $(f_i, w') > 0$ for any i. However, this condition is not clear at all only by looking at the graph.

(ii) More generally, let C be an open cone in \mathbb{R}^n defined by p linear homogeneous inequalities $f_i > 0$ ($1 \leq i \leq p$). Then $C \neq \emptyset$ holds if and only if the dual cone $C^\vee = \mathbb{R}_{\geq 0} f_1 + \cdots + \mathbb{R}_{\geq 0} f_p$ of C is strong-convex (f_i is the coefficient vector of the LHS of the inequality). It is difficult to determine if C^\vee is strong-convex or not only by looking at the graph.

We have implemented a program to the computer algebra system Magma [4] that determines if a given fundamental FHM-graph satisfies our criteria. We have tried many ad-hoc fundamental FHM-graphs by this program and
found that, in the case $W \neq \phi$, most of the graphs satisfy the condition of Theorem 2.3 or Corollary 2.4. Thus we believe Theorem 2.3 and Corollary 2.4 give fairly good criteria for P_G to possess a regular unimodular triangulation. The details on the algorithm and program will be discussed elsewhere.

3 Applications

We first apply our criteria to the complete graph $G = K_6$ with 6 vertices. It is known that P_{K_6} possesses a regular unimodular triangulation. Theorem 3.2 below gives a simple proof of this fact.

Lemma 3.1 K_6 has 10 pairs of disjoint odd cycles (triangles). Suppose we choose one bridge from each such pair. Then among the 10 bridges, there exist at least 3 bridges different from each other.

Proof. The first assertion is clear. Suppose the number of different bridges is 1 and let b be the unique bridge. Consider a triangle S that contains b and choose a triangle T disjoint from S. Then b is not a bridge of the pair (S,T), a contradiction.

Suppose there are exactly two different bridges b_1, b_2. In the case that b_1 and b_2 have a vertex in common, let S be the triangle that contains b_1, b_2 and take a triangle T disjoint from S. Then b_1, b_2 are not a bridge of (S,T), a contradiction. In the case that b_1 and b_2 do not have a common vertex, take a triangle S that contains b_1 and a triangle T that contains b_2 such that S and T are disjoint. Then b_1, b_2 are not a bridge of (S,T), a contradiction. □

On the other hand, it is possible to choose the bridges such that the number of different bridges is 3. For instance, we can choose $\{\{1,2\}, \{1,3\}, \{1,4\}\}$ or $\{\{1,2\}, \{3,4\}, \{5,6\}\}$ as such three bridges.

Theorem 3.2 Take $\{\{1,2\}, \{3,4\}, \{5,6\}\}$ as the bridges of 10 pairs. Then the condition of Corollary 2.4 is satisfied.

Proof. From the symmetry of K_6, it is enough to consider the pairs of disjoint triangles that have the bridge $\{1,2\}$. Since the odd-numbered edge of the even closed walk of the bridge $\{1,2\}$ must contain the vertex 1 or 2, the bridges $\{3,4\}$ and $\{5,6\}$ cannot be the odd-numbered edge of this closed walk. Therefore, in the notation of Corollary 2.4, $a_i \geq 2$ for any $1 \leq i \leq 10$. □
Theorem 3.3 K_6 does not satisfy the condition of Theorem 2.1.

Proof. Suppose K_6 satisfies the condition of Theorem 2.1. By Lemma 3.1, there exist at least three different bridges b_1, b_2, b_3. Suppose b_1, b_2, b_3 do not have common vertices. Choose 2 bridges b_i, b_j ($i < j$) and consider the triangle S that contains b_i and the triangle T that contains b_j such that S and T are disjoint. Take any bridge of (S, T). Then the even closed walk of (S, T) contains 2 other bridges. Thus we have at least 3 pairs whose even closed walk contains at least 2 other bridges, a contradiction.

So we may assume that b_1 and b_2 have a vertex in common. Let S be the triangle that contains b_1, b_2 and take a triangle T disjoint from S. Take a bridge c of the pair (S, T). Then the three bridges $\{b_1, b_2, c\}$ form a star-shaped graph or a path. In the case that $\{b_1, b_2, c\}$ are a star-shaped graph, choose two from this and consider the triangle U which contain them. Take a triangle U' disjoint from U and take any bridge of (U, U'). Then the even closed walk of (U, U') contains at least other 2 bridges. Thus we have at least three pairs whose even closed walk contains at least 2 other bridges, a contradiction. In the case that $\{b_1, b_2, c\}$ is a path, the same reasoning gives a contradiction. □

Thus we have shown that K_6 satisfies (resp. does not satisfy) the condition of Theorem 2.3 and Corollary 2.4 (resp. Theorem 2.1 and Corollary 2.2).

We finally show several other examples which satisfy our criteria.

Example 3.4 The following 5 kinds of graphs satisfy the condition of Corollary 2.2. More precisely, in the graphs $A_{m,n}, B_{m,n}$ and C_{m_1,m_2,n_1,n_2}, all the pairs of disjoint odd cycles (triangles) have a bridge b in common, and thus there are no other bridges contained in the even closed walk of b.

D_{m_1,m_2,m_3,m_4} has a set of bridges $\{b_1, b_2\}$ where any disjoint pair has a bridge in this set, and the even closed walk of b_i ($i = 1, 2$) contains (exactly) one other bridge. E_{m_1,m_2,m_3} has a set of 3 bridges $\{b_1, b_2, b_3\}$ where any disjoint pair has a bridge in this set, and there are no other bridges contained in the even closed walk of b_i ($i = 1, 2, 3$).
Example 3.5 The following 2 kinds of graphs satisfy the condition of Corollary 2.4, but do not satisfy the condition of Theorem 2.1. F_{m_1,m_2,m_3,m_4} has a minimal set of 6 bridges $\{b_i \mid 1 \leq i \leq 6\}$ where any disjoint pair has a bridge in this set, and G_{m_1,m_2,m_3,m_4,m_5} has a minimal set of 10 bridges $\{b_i \mid 1 \leq i \leq 10\}$.

References

[1] W. Bosma, J. J. Cannon, C. Fieker, and A. Steel (eds.), Handbook of Magma functions, http://magma.maths.usyd.edu.au/magma/ accessed 10 April 2013.

[2] T. Hibi (ed.), Gröbner Bases: Statistics and Software Systems, Springer, 2013.

[3] H. Ohsugi, Unimodular Regular Triangulations of (0,1)-polytopes Associated with Finite Graphs, Algebraic Engineering (C.L. Nehaniv and M. Ito, Eds.), World Scientific, Singapore, 1999, pp.159-171.

[4] H. Ohsugi and T. Hibi, Normal Polytopes Arising from Finite Graphs, *J. Algebra* 207 (1998), 409-426.
(Ginji Hamano) Science, Graduate School of Science and Engineering, Tokyo Denki University, Hatoyama-machi, Hiki-gun, Saitama, 350-0394 Japan

e-mail address: 13rmu10@ms.dendai.ac.jp