High Endemicity with *Clonorchis sinensis* Metacercariae in Fish from Yongjeon-cheon (Stream) in Cheongsong-gun, Gyeongsangbuk-do, Korea

Woon-Mok Sohn1,*, Byoung-Kuk Na1, Shin-Hyeong Cho2, Hee Il Lee2, Myoung-Ro Lee2, Jung-Won Ju2, Gou Ok Kim3

1Department of Parasitology and Tropical Medicine, and Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju 52727, Korea; 2Division of Vectors and Parasitic Diseases, Korea Disease Control and Prevention Agency, Osong 28159, Korea; 3Infectious Disease Research Division, Gyeongsangbuk-do Government Public Institute of Health and Environment, Yeongcheon 38874, Korea

Abstract: The infection status with *Clonorchis sinensis* metacercariae (CsMc) was examined in freshwater fishes from Yongjeon-cheon (a branch of Nakdong-gang) located in Cheongsong-gun, Gyeongsangbuk-do, the Republic of Korea (Korea). A total of 750 fishes in 19 species were examined by the artificial digestion method for 2 years (2019 and 2020). CsMc were detected in 378 (51.4%) out of 735 fishes in 14 species (73.7%), and the infection intensity was 666 per fish infected. In 2019, CsMc were found in 172 (68.0%) out of 253 fishes in 10 species, and the infection intensity was 565 per fish infected. In 2020, CsMc were detected in 206 (62.2%) out of 331 fishes in 10 species, and the infection intensity was 751 per fish infected. The other zoonotic trematode, *Metagonimus* spp., *Centrocestus armatus*, *Echinostoma* spp. and *Clinostomum complanatum*, metacercariae were also detected in fishes from the survey streams, but their endemicities were relatively low. Conclusively, it was first confirmed that CsMc are highly endemic in fishes from Yongjeon-cheon in Cheongsong-gun, Gyeongsangbuk-do, Korea.

Key words: *Clonorchis sinensis*, Zoonotic trematode metacercaria, Cyprinidae fish host, Yongjeon-cheon, Cheongsong-gun, Korea

Nowadays, clonorchiasis, *Clonorchis sinensis* (Digenea: Opisthorchiidae) infection, is most important as an endemic parasitic disease in the Republic of Korea (Korea) [1]. The prevalence of clonorchiasis has maintained at relatively high levels in the residents of riverside areas in Korea. A team of Korea DCPA (Division of Vectors and Parasitic Diseases, Korea Disease Control and Prevention Agency) has performed the control programs to decrease the prevalence of clonorchiasis in the residents of major river basins in Korea [2-6]. On the other hand, co-working groups of Korea DCPA have epidemiologically surveyed the freshwater fishes, the infection sources, to estimate the endemicities of clonorchiasis [6-11]. Especially, Cho et al. [6] investigated the infection status of CsMc in freshwater fish from various regions of Korean peninsula. Sohn et al. [8] and Yoon et al. [9] investigated the infection status of CsMc in freshwater fishes from the water systems of Seomjin-gang and Tamjin-gang. Recently, Sohn et al. [10,11] also surveyed the infection status of CsMc in freshwater fish from 2 highly endemic areas, Wi-cheon (cheon means stream) and Yang-cheon (branch streams of Nakdong-gang), in Gunwi-gun (gun = county), Gyeongsangbuk-do and Sancheong-gun, Gyeongsangnam-do, Korea.

Yongjeon-cheon is one of the branch stream of Nakdong-gang, which rise from a mountinous area (Guam-san) (san means mountain) of Gunam-myeon (myeon = township), flows via Ju-wangsan-myeon and Cheongsong-eup (eup = town) unites with Banyeon-cheon in Pacheon-myeon, Cheongsong-gun, Gyeongsangbuk-do. This stream flows only in Cheongsong-gun areas as the most big stream in Cheongsong-gun [12]. A riverside area of Yongjeon-cheon was reported as a high endemic area of echinostomiasis [13]. However, the infection status with zoonotic trematode metacercariae (ZTM) including CsMc in fish from this area has not been widely and systematically examined yet. Therefore, we intended to investigate the infection status with CsMc in fishes from Yongjeon-cheon for 2 years, 2019 and 2020.

We collected a total of 750 freshwater fishes in 19 species in 2 sites, midstream (Cheongwoon-ri in Cheongsong-eup: 36.
In the midstream, a total of 382 freshwater fish in 12 species were examined, and the fish species (No. of fish) examined were as follows: Pungtungia herzi (132), Zacco platypus (77), Zacco koreanus (54), Coreoperca herzi (40), Acheilognathus koreensis (34), Odontobutis platycephala (22), Carassius auratus (11), Coreoleuciscus splendidus (6), Opsariichthys uncirostris (2), Siniperca scherzeri (2), Squalidus gracilis majimae (1), Pseudogobio esocinus (1). Total 368 freshwater fish in 18 species from downstream were examined, and the fish species (No. of fish) examined were as follows: P. herzi (102), A. koreensis (60), Z. koreanus (44), Z. platypus (40), Acanthorhodeus macropterus (33), C. herzi (26), Acheilognathus lanceolatus (20), O. platycephala (19), C. auratus (6), Micropterus salmoides (6), P. esocinus (4), O. uncirostris (1), S. gracilis majimae (2), Acheilognathus majusculus (1), Hemibarbus longirostris (1), Hemibarbus labeo (1), Acheilognathus rhombeus (1), S. scherzeri (1).

All collected fishes were transferred to the laboratory of the Department of Parasitology and Tropical Medicine, Gyeongsang National University College of Medicine, Jinju, Korea. After the identification of fish species [14], they were individually examined by the artificial digestion method [15,16]. Collected CsMc were counted to get hold of prevalences (No. of fish with CsMc/No. of fish examined × 100) and infection intensities (No. of CsMc/a fish infected) by fish species.

The metacercariae of C. sinensis (CsMc) were detected in 378 (51.4%) out of 735 fishes in 14 species (73.7%), and the infection intensity was 666 per fish infected. The infection status by the fish species and fish group (subfamilies in Cyprinidae) was shown in Table 1. In 2019, CsMc were detected in 172 (68.0%) out of 253 fishes in 10 species, and the infection intensity was 565 per fish infected. The infection status by the fish species and survey site was detailedly revealed in Table 2. In 2020, CsMc were detected in 206 (62.2%) out of 331 fishes in 10 species, and the infection intensity was 751 per fish infected. The infection status by the fish species and survey site was designated in Table 3 in detail.

Metagonimus spp. metacercariae were found in 304 (42.9%) out of 708 fishes in 11 species (57.9%), and the infection intensity was 14.6 per fish infected. The metacercariae of Centrocestus armatus were detected in 167 (38.7%) out of 431 fishes in 7 species (36.8%), and the infection intensity was 615 per fish infected. Echinostoma spp. metacercariae were found in 310 (42.3%) out of 733 fishes in 13 species (68.4%), and the infection intensity was 29.6 per fish infected.

Species of fish	No. of fish examined	No. (%) of fish infected	No. of CsMc detected	Range	Average
Pungtungia herzi	234	226 (96.6)	1-21,510	1,098	
Squalidus gracilis majimae	3	2 (66.7)	31-1,340	686	
Subtotal	237	228 (96.2)	1-21,510	1,094	
Acheilognathus koreensis	94	70 (74.5)	1-154	11.1	
Acanthorhodeus macropterus	33	18 (54.5)	1-52	6.0	
Acheilognathus lanceolatus	20	7 (35.0)	1-357	125	
Acheilognathus majusculus	1	1 (100)	-	176	
Subtotal	148	96 (64.9)	1-357	20.1	
Zacco platypus	117	38 (32.5)	1-109	11.8	
Zacco koreanus	98	1 (1.0)	-	1.0	
Opsariichthys uncirostris	3	3 (100)	1-21	10.0	
Subtotal	218	42 (19.3)	1-109	11.4	
Coreoperca herzi	66	2 (3.0)	-	1.0	
Odontobutis platycephala	41	2 (4.9)	1-3	2.0	
Carassius auratus	17	1 (5.9)	-	1.0	
Pseudogobio esocinus	5	5 (100)	1-18	10.4	
Siniperca scherzeri	3	2 (66.7)	1-3	2.0	
Subtotal	132	12 (9.1)	1-18	5.3	
Total	735	378 (51.4)	1-21,510	666	
of *Clinostomum complanatum* were detected in 85 (15.1%) out of 564 fishes in 6 species (31.6%), and the infection intensity was 3.2 per fish infected (Table 4).

By the present study, it was confirmed for the first time that CsMc are highly endemic in fishes from Yongjeon-cheon, in Cheongsong-gun, Gyeongsangbuk-do, Korea. The infection

Table 2. Infection status of Clonorchis sinensis metacercariae in fishes from Yongjeon-cheon in Cheongsong-gun, Gyeongsangbuk-do (2019)

Locality and fish sp. examined	No. of fish examined	No. (%) of fish infected	No. of CsMc detected	Range	Average
Midstream					
Pungtungia herzi	62	55 (88.7)	1-11,580	787	
Zacco platypus	42	19 (45.2)	1-109	14.6	
Coreoperca herzi	24	2 (8.3)	-	1.0	
Carassius auratus	9	1 (11.1)	-	1.0	
Acheilognathus koreensis	8	3 (37.5)	1-13	5.0	
Opsarriichthys uncirostris	2	2 (100)	8-21	14.5	
Subtotal	147	82 (55.8)	1-11,580	532	
Downstream					
Pungtungia herzi	39	39 (100)	14-6,950	1,301	
Acheilognathus koreensis	20	19 (95.0)	1-154	13.1	
Acanthorhodeus macropterus	20	11 (55.0)	1-11	2.6	
Zacco platypus	19	13 (68.4)	1-86	12.3	
Acheilognathus lanceolatus	5	5 (100)	13-357	174	
Squalidus gracilis majimae	1	1 (100)	-	1,340	
Acheilognathus majusculus	1	1 (100)	-	176	
Opsarriichthys uncirostris	1	1 (100)	-	1.0	
Subtotal	106	90 (84.9)	1-6,950	595	
Total	253	172 (68.0)	1-11,580	565	

Table 3. Infection status of Clonorchis sinensis metacercariae in fishes from Yongjeon-cheon in Cheongsong-gun, Gyeongsangbuk-do (2020)

Locality and fish sp. examined	No. of fish examined	No. (%) of fish infected	No. of CsMc detected	Range	Average
Midstream					
Pungtungia herzi	70	70 (100)	3-21,510	1,759	
Zacco platypus	35	4 (11.4)	1-8	2.8	
Acheilognathus koreensis	26	12 (46.2)	1-103	23.6	
Zacco koreanus	26	1 (3.9)	-	1.0	
Siniperca scherzi	2	1 (50.0)	-	1.0	
Pseudogobio esocinus	1	1 (100)	-	5.0	
Subtotal	160	89 (55.6)	1-21,510	1,387	
Downstream					
Pungtungia herzi	63	62 (98.4)	2-5,250	498	
Acheilognathus koreensis	40	36 (90.0)	1-26	6.3	
Zacco platypus	21	2 (9.5)	-	1.0	
Acheilognathus lanceolatus	15	2 (13.3)	-	1.0	
Odontobutis platycephala	13	2 (15.4)	1-3	2.0	
Acanthorhodeus macropterus	13	7 (53.9)	1-52	11.3	
Pseudogobio esocinus	4	4 (100)	5-18	11.8	
Squalidus gracilis majimae	1	1 (100)	-	31.0	
Siniperca scherzi	1	1 (100)	-	3.0	
Subtotal	171	117 (68.4)	1-5,250	267	
Total	331	206 (62.2)	1-21,510	751	
status was revealed with a certain tendency by the subfamily
groups, i.e., Gobioninae, Acheilognathinae and Rasboriniae, in
the cyprinid fish (family Cyprinidae) hosts of C. sinensis like in
Sohn et al. [10,11]. The prevalences of CsMc were 96.2%,
64.9% and 19.3%, and infection intensities with CsMc were
1,094, 20 and 11 per fish infected in 3 fish groups respectively.
In this study, prevalences and infection intensities are some-
what lower than those in fish from Wi-cheon [10], but much
higher than those in fish from Yang-cheon [11]. And then, we
can also know that the endemicity of CsMc is closely related
with the subfamily groups, i.e., Gobioninae, Acheilognathinae
and Rasboriniae, in the cyprinid fish hosts from a highly en-
demic area, Yongjeon-cheon, in Cheongsong-gun, Gyeong-
sangbuk-do, Korea.

The ecological conditions for fish was not so good in Yongjeon-
cheon. Total 750 freshwater fishes in 19 species were examined in 2
survey sites of Yongjeon-cheon in this study. Among them, striped shinner (P. herzi: 31.2%), was the most dominant fish
species like in Tamjin-gang [9] and Wi-cheon [10] and in Yang-
cheon [11], and followed by pale chub (C. herzi: 13.5%),
Korean aucha perch (C. auratus: 8.8%), Korean dark
sleeper (O. platycephala: 5.5%), deep body bitterling (A. mac-
ropterus: 4.4%), slender bitterling (A. lanceolatus: 2.7%) and
crusian carp (C. carpio: 2.3%). The number of fish examined
was 720 (96.0%) in major 9 species and 30 (4.0%) in remain
10 species. The disproportion of fish number and a small num-
ber of fish species examined is suggested that the ecological
condition for fish was relatively not so good.

Edible fish species in raw, i.e., Korean aucha perch (C. herzi),
Korean dark sleeper (O. platycephala), crusian carp (C. auratus)
and Mandarin fish (S. scherzeri), practically act as the infection
sources of clonorchiasis in Korea. Fortunately, these fish spe-
cies are less prevalent with CsMc like in such a highly endemic
area, Wicheon [10]. In this study, 2 (3.0%) out of 66 C. herzi
were infected with 2 CsMc, 2 (4.9%) of 41 O. platycephala were
infected with total 4 CsMc, only 1 (5.9%) out of 17 C. auratus
were retained with 1 CsMc and 2 (66.7%) S. scherzeri were in-
fected with a total of 4 CsMc. CsMc were not detected at all in 4
fish species, i.e., C. herzi (n = 57), C. auratus (42), S. scherzeri
(11) and C. carpio (2), from the water systems of Seomjin-gang
[8]. Only one CsMc were found in only 1 (1.1%) out of 93 C. herzi and no CsMc were detected from 73 C. auratus, 36 O. pla-
tycephala and 1 S. scherzeri from Yang-cheon in Sancheong-
gun, Gyeongsangnam-do, Korea [11].

ACKNOWLEDGMENTS

This study was supported by an anti-communicable diseases
control program, 2019 and 2020 (Investigation and analysis on the infections of zoonotic trematode metacercariae in fish intermediate hosts in the Republic of Korea) of Division of Vectors and Parasitic Diseases, Korea Centers for Disease Control and Prevention (KCDCP). This work was partly supported by the Gyeongsang National University Fund for Professors on Sabbatical Leave, 2020. We thank Jung-A Kim, Hee-Joo Kim and You-Jin Ryu (Department of Parasitology and Tropical Medicine, Gyeongsang National University College of Medicine, Jinju, Korea), for their help in the examination of fish.

CONFLICT OF INTEREST

The authors have no conflicts of interest concerning the work reported in this paper.

REFERENCES

1. Korea Centers for Disease Control and Prevention, Korea National Institute of Health. National Survey of the Prevalence of Intestinal Parasitic Infections in Korea, 2012. The 8th Report. Osong, Korea. Korea Centers for Disease Control and Prevention. 2013.

2. Cho SH, Lee KY, Lee BC, Cho PY, Cheun HI, Hong ST, Sohn WM, Kim TS. Prevalence of clonorchiasis in southern endemic areas of Korea in 2006. Korean J Parasitol 2008; 46: 133-137. https://doi.org/10.3347/kjp.2008.46.3.133

3. Kim HK, Cheun HI, Chung BS, Lee KY, Kim TS, Lee SE, Lee WJ, Cho SH. Prevalence of *Clonorchis sinensis* infections along the five major rivers in Republic of Korea, 2007. Osong Public Health Res Perspect 2010; 1: 43-49. https://doi.org/10.1016/j.phrp.2010.12.010

4. June KJ, Cho SH, Lee WJ, Kim C, Park KS. Prevalence and risk factors of clonorchiasis among the populations served by primary healthcare posts along five major rivers in South Korea. Osong Public Health Res Perspect 2013; 4: 21-26. https://doi.org/10.1016/j.phrp.2012.12.002

5. Jeong YI, Shin HE, Lee SE, Cheun HI, Ju JW, Kim JY, Park MY, Cho SH. Prevalence of *Clonorchis sinensis* infection among residents along 5 major rivers in the Republic of Korea. Korean J Parasitol 2016; 54: 215-219. https://doi.org/10.3347/kjp.2016.54.2.215

6. Cho SH, Sohn WM, Na BK, Kim TS, Kong Y, Eom K, Seok WS, Lee T. Prevalence of *Clonorchis sinensis* metacercariae in freshwater fish from three latitudinal regions of the Korean Peninsula. Korean J Parasitol 2011; 49: 385-398. https://doi.org/10.3347/kjp.2011.49.4.385

7. Cho SH, Lee WJ, Kim TS, Seok WS, Lee TJ, Jeong KJ, Na BK, Sohn WM. Prevalence of zoonotic trematode metacercariae in freshwater fish from Gangwon-do, Korea. Korean J Parasitol 2014; 52: 399-412. https://doi.org/10.3347/kjp.2014.52.4.399

8. Sohn WM, Na BK, Cho SH, Park MY, Kim CH, Hwang MA, No KB, Yoon KB, Lim HC. Prevalence of *Clonorchis sinensis* metacercariae in fish from water systems of Seomjin-gang (River). Korean J Parasitol 2017; 55: 305-312. https://doi.org/10.3347/kjp.2017.55.3.305

9. Yoon KB, Lim HC, Jeon DY, Park S, Cho SH, Ju JW, Shin SS, Na BK, Sohn WM. Infection status with *Clonorchis sinensis* metacercariae in fish from Tamjin-gang (River) in Jeollanam-do, Republic of Korea. Korean J Parasitol 2018; 56: 183-188. https://doi.org/10.3347/kjp.2018.56.2.183

10. Sohn WM, Na BK, Cho SH, Ju JW, Son DC. Prevalence and intensity of *Clonorchis sinensis* metacercariae in freshwater fish from Wi-cheon stream in Gunwi-gun, Gyeongsangbuk-do, Korea. Korean J Parasitol 2018; 56: 41-48. https://doi.org/10.3347/kjp.2018.56.1.41

11. Sohn WM, Na BK, Cho SH, Ju JW. Infection status with *Clonorchis sinensis* metacercariae in fish from Yang-cheon (Stream) in Sancheo-gun, Gyeongsangnam-do, Korea. Korean J Parasitol 2019; 57: 145-152. https://doi.org/10.3347/kjp.2019.57.2.145

12. Yongjeon-cheon in Cheongsong-gun, Gyeongsangbuk-do (South Korea) in Wikipedia-The free encyclopedia; http://ko.wikipedia.org.

13. Lee SK, Chung NS, Ko IH, Sohn WM, Hong ST, Chai JY, Lee SH. An epidemiological survey of *Echinostoma hortense* infection in Chongsong-gun, Kyongbuk province. Korean J Parasitol 1988; 26: 199-206 (in Korean). https://doi.org/10.3347/kjp.1988.26.3.199

14. Kim IS, Kang EJ, Coloured fishes of Korea. Seoul, Korea. Academy Publishing Company. 1993, pp 1-477 (in Korean).

15. Sohn WM. Fish-borne zoonotic trematode metacercariae in the Republic of Korea. Korean J Parasitol 2009; 47 (suppl): 103-113. https://doi.org/10.3347/kjp.2009.47.S.S103

16. Sohn WM. Invertebrate Founa of Korea Vol. 6, No. 1. Trematodes. Incheon, Korea. The National Institute of Biological Resources. 2013, pp 1-125.
