Ecotoxicological sensing of the arctic seas

M N Korsak* and S A Mosharov

1 Ecology and Industrial Safety Department, Bauman Moscow State Technical University, 5/1, 2ya Baumanskaya st., Moscow 105005, Russia
2 Hydrobiology Department, Shirshov Institute of Oceanology, Russian Academy of Sciences, 34, Nakhimovsky pr., Moscow 117997, Russia

*uko2304@mail.ru

Abstract. The results of ecotoxicological monitoring - studies of the resistance of marine phytoplankton communities of the Arctic seas to some pollutants are presented. The influence of pollutants on primary productivity was assessed as the most sensitive biological process. It is shown that the method of ecotoxicological sounding makes it possible to identify areas most susceptible to chronic pollution, leading to a decrease in biological productivity.

Phytoplankton is a key component of the aquatic ecosystem because the formation of organic matter in the process of photosynthesis is one of the basic ecological processes in aquatic ecosystems and determines the biological productivity and stability of ecosystems [1, 2]. Among the most important parameters characterizing the state of the phytoplankton community, such as the growth rate of the algal population, chlorophyll content, and changes in the composition of the community, the most sensitive to negative influences is the intensity of photosynthesis (primary production). Photosynthesis of algae is more sensitive than the population growth of algae to a low concentration of some toxicants [3, 4, 5]. The study of changes in production processes under the influence of negative factors (pollutants) gives the most adequate idea of the ecosystem's response to pollution [6, 7].

To assess the resistance of natural phytoplankton communities to negative toxic factors in recent years, a short-term ecotoxicological experiment is often used, based on a quantitative assessment of the response of the phytoplankton community to the introduction of various concentrations of the toxicant [8]. The process of primary production of organic matter was chosen as the target of exposure; toxic metal (copper) and organic toxicants (benzo (a) pyrene and PCBs) served as exposure factors [9]. Copper is an important trace element for phytoplankton, necessary for metabolic and physiological processes [10]. However, at an increased concentration, copper is a potential toxicant that adversely affects the growth, development and reproduction of algae [11].

The experiments were carried out in conditions close to natural ones during marine expeditionary research. For the first time, large-scale ecotoxicological studies of the stability of phytoplankton communities (ecotoxicological sounding) were carried out in the same season (summer succession) in all seas of the Russian Arctic and Subarctic - the Baltic, White, Barents, Kara, Laptev, East Siberian, Chukchi and Bering Seas. The LD50 (the concentration of the toxicant causing a 50% decrease in primary production) was chosen as a measure of resistance. The determination of primary production was carried out by the radiocarbon method [12, 13].

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
Published under licence by IOP Publishing Ltd
There were 40 ecotoxicological experiments with copper, 4 experiments with benzo (a) pyrene (BP) and 2 experiments with polychlorinated biphenyls (PCBs) in different Arctic seas. The change in the primary production of phytoplankton communities was estimated in the range of copper concentrations 5-100 μg Cu/L, BP 1-10 μg/L, and PCB 10-50 μg/L.

As a result of the analysis of the data obtained in ecotoxicological experiments carried out with copper, it was found that the average LD50 level for the Arctic seas is 49 ± 27 μg Cu/L (mean ± standard deviation), the range of variation of this parameter is from 5 to 125 μg Cu/l (Table 1).

The highest resistance of phytoplankton to the toxic factor (copper) was found in the Baltic, Kara, Laptev seas (average LD50 from 53 to 69 μg Cu/L). The Baltic Sea is surrounded by developed industrial countries, which is naturally accompanied by a high level of pollution of sea waters, including heavy metals. Under these conditions, phytoplankton adapts to high concentrations of toxicants in the environment and becomes more resistant to their effects, which has been shown in many studies [14, 15]. Similar effects were observed in the Kara and Laptev Seas, where the study areas were in the zone of influence of the powerful Siberian rivers runoff - the Yenisei and Ob in the first case and the Lena in the second.

Table 1. Average values and range of LD50 variation (μg Cu/L) for the primary production of phytoplankton in the Arctic seas

Sea	Average LD50	Minimum LD50	Maximum LD50
Baltic Sea	53	35	100
White Sea	38	30	45
Barents Sea	50	50	50
Kara Sea	69	40	125
Laptev Sea	60	50	70
East Siberian Sea	38	10	75
Chukchi Sea	41	5	120
Bering Sea	42	10	80

The lowest resistance of phytoplankton to copper was found in the White and East Siberian Seas (average LD50 <40 μg Cu/L). In the Chukchi Sea, the strongest variability in the toxic effect of copper on phytoplankton was found in different regions of the sea - from 5 to 125 μg / L. It is obvious that the environmental conditions in these areas were significantly different.

Similar experiments with benzo (a) pyrene and PCBs revealed a certain confinement of more resistant phytoplankton to polluted water areas. According to the literature data, in chronic experiments DDT and PCBs inhibit photosynthesis in the concentration range of 1–10 μg/L [16].

The phytoplankton community in the northern shallow part of the Chukchi Sea was found to be least sensitive to the presence of BP (station 106). At the maximum experimental BP concentration of 10 μg/L, the intensity of photosynthesis decreased only to the level of 53% of the control. At the same time, in the Bering Sea (in the Anadyr Bay - stations 115, 131), the minimum experimental concentration of the toxicant of 1 μg/L led to a significant suppression of photosynthesis (Fig. 1). For phytoplankton of the East Siberian Sea, a pronounced toxic effect manifested itself at a BP content of 10 μg/L. Phytoplankton showed the maximum resistance in areas with an increased BP content in natural water.
Figure 1. Influence of various concentrations of BP on primary production (PP, % of control) in the seas of the Eastern Arctic

The results of experiments with PCBs indicate that the nature of the response of phytoplankton from different habitats is similar to the response to BP. In the coastal areas, phytoplankton proved to be resistant to the presence of the maximum experimental concentrations of PCBs (10 µg/L), while in the open sea this concentration had an inhibitory effect (figure 2).

Figure 2. Influence of different concentrations of PCBs on primary production (PP, % of control) in the Chukchi Sea

The ecosystems of the coastal regions of the Chukchi Sea and the shallow water zone in the northern part of the sea turned out to be the most resistant to the impact of the studied pollutants in the eastern Arctic. It should be noted that the phytoplankton communities of the Anadyr Bay of the Bering Sea are highly sensitive to toxicants. A higher resistance of the plankton communities of the Chukchi Sea in comparison with the Bering Sea organisms in the course of ecotoxicological experiments was established earlier [17].

The use of the methodology of ecotoxicological sounding of phytoplankton communities in the pelagic zone of the seas makes it possible to assess the relative tolerance of the studied ecosystems to anthropogenic impact, to carry out zoning and to identify areas with the highest phytoplankton sensitivity to the action of pollutants [18].
References

[1] Mosharov S A, Sazhin A F, Druzhkova E I and Khlebopashev P V 2018 Structure and Productivity of the Phytocenosis in the Southwestern Kara Sea in Early Spring Oceanology 58 396-404

[2] Mosharov S A, Sergeeva V M, Kremenetskiy V V, Sazhin A F and Stepanova S V 2019 Assessment of phytoplankton photosynthetic efficiency based on measurement of fluorescence parameters and radiocarbon uptake in the Kara Sea Estuarine, Coastal and Shelf Science 218 59-69

[3] Gidding J M, Stewart A J, O’Neil R V and Gardner R H 1983 An efficient algal bioassay based on short-term photosynthetic response Aquatic Toxicology and Hazard Assessment: Sixth Symposium 445-59

[4] Blokhin S A and Sol’yashinova O A 2019 Some environmental and economic aspects of the use of deicing agents Economic development in the XXI century: trends, challenges, prospects. 13-5

[5] Fazullina A A, Fridland S V, Shar’yazdanova D R, Morozov N V and Shaikhyiev I G. 2018 Inhibition of biofouling of treatment facilities with diethyl ether 1dimethylhydrazine toluene-3-oxa-4-benzyl-7-dimethylhydrazine phosphonic acid Actual problems of environmental protection 180-4

[6] Stepanova L P, Pisareva A V and Tsukanavishute V E 2020 Toxicological assessment of the impact of metallurgical industry waste on the environmental properties of light gray forest soils Ecology and Industry of Russia 24 54-9

[7] Krokchina J A, Vinogradova T E, Grishnova E Y, Popova O V and Kutlin N G 2018 Environmental risk management system projecting of industrial enterprises Ekoloji 27 735-44

[8] Domnin S G, Korsak M N and Mosharov S A 2005 On the problem of assessing the stability of the plankton community to negative impacts Ecology 4 294-9

[9] Sredzhaddinova I Z, Solyashinova O A 2019 Assessment of the environmental risk of emissions of pollutants into the atmosphere in oil-producing and refining cities of Tatarstan Economic development in the XXI century: trends, challenges, prospects 369-73

[10] Linder M C Biochemistry of Copper. Plenum Press, New York 1991 525 p.

[11] Fernandes J C and Henriques F S 1991 Biochemical, physiological and structural effects of excess copper in plants Bot. Rev 57 246-73

[12] Romanenko V I and Kuznetsov S I 1974 Ecology of microorganisms in fresh water bodies 194 p.

[13] Demidov A B, Mosharov S A., Gagarin V L, Gladyshev S V., Dukhova L A, Romanova N D and Mosharova I V Spatial 2019 Variability of Phyttoplankton Primary Production Characteristics in the North Atlantic in Summer 2013 Oceanology 59 223–34

[14] Lombardi A T and Vieira A A H 1998 Copper and lead complexation by high molecular weight compounds produced by Sinura (Chrysophyceae) Phycologia 37 34-9

[15] Fathi A A and El-Shahed A M 2000 Response of tolerant and wild of Scenedesmus biguja to copper Biologia Plantarum 43 99-103

[16] Patin S A 1979 Impact of pollution on biological resources and productivity of the World Ocean 304 p

[17] Korsak M N, Whittle T E, Kudryavtsev V M and Mamaeva N V 1992 Study of the negative consequences of the impact of critical concentrations of some pollutants on the plankton community Research of ecosystems of the Bering and Chukchi seas 3 598-612

[18] Savelyev S N, Savelyeva A V, Zagitova A F, Fridland S V and Dmitrieva E A 2017 Investigation of the effect of ultra-low concentrations of n, n' -diphenylguanidinium salt of di (hydroxymethyl) phosphinic acid on the oxidation rate of hydrocarbons contained in alkaline sulphide waste water Bulletin of Kazan Technological University 20 3-29