SUPPLEMENTARY INFORMATION

Full crystal structure, hydrogen bonding and spectroscopic, mechanical and thermodynamic properties of mineral uranopilite

Francisco Colmenero, a* Jakub Plášil, b Vicente Timón, a Jiří Čejka c

a Instituto de Estructura de la Materia (IEM), Consejo Superior de Investigaciones Científicas (CSIC), 28006 Madrid, Spain

b Institute of Physics ASCR, v.v.i., Na Slovance 2, 182 21, Praha 8, Czech Republic

c Mineralogicko-petrologické oddělení, Národní muzeum, Cirkusová 1740, 193 00 Praha 9, Czech Republic.

* E-mail: francisco.colmenero@iem.cfmac.csic.es
Appendix A Methods

A.1 Experimental

The diffuse reflectance infrared Fourier transform (DRIFT) spectrum of uranopilite was recorded from a natural crystal sample from Jáchymov (Czech Republic). The spectrum was collected using a Nicolet 6700 FTIR spectrometer coupled to an Olympus continuum microscope. The spectrum was collected in the wavenumber range from 4000 to 600 cm\(^{-1}\) with a resolution of 5 cm\(^{-1}\). All the manipulations of the infrared spectra were performed using the Omnic 9 software (Thermo Scientific).

Thermal analysis was conducted using the Setaram SetSys Evolution system (thermogravimetric and differential thermal analysis, TG-DTA) linked with a Thermo Scientific mass-spectrometer for the detection of the gases escaping during the thermal decomposition of the sample analyzed. The weight of the specimen was 7 mg. The sample was placed into a Pt crucible. The temperature range studied was 15–1190 °C and the velocity of increase in temperature was 10 °C/minute. A dynamical atmosphere with airflow of 20 ml/minute was employed.

A.2 First principles solid-state methods

A.2.1 Crystal structure

The crystal structure and properties of uranopilite were modeled with the Cambridge Serial Total Energy Program (CASTEP),\(^1\) a component of the Materials Studio program suite.\(^2\) The theoretical solid-state treatment employed in this work is based on Periodic Density Functional Theory using plane wave basis sets and pseudopotential functions to describe the internal atomic electrons.\(^3\) The computations were carried out using the Perdew-Burke-Ernzerhof (PBE) energy-density functional\(^4\) complemented with Grimme’s empirical dispersion correction\(^5\) (DFT-D2 approach). The specific pseudopotentials utilized were: (a) non-relativistic norm-conserving pseudopotentials\(^6\) from CASTEP package for the S, O and H atoms; (b) a scalar relativistic norm-conserving pseudopotential for U atom generated from first principles recently.\(^7-8\) This pseudopotential has been validated extensively for the investigation of the crystal structures, vibrational spectra and properties of uranyl containing materials.\(^7-18\)

The unit cell of uranopilite is triclinic, space group \(\overline{P}1\) (no. 2, \(Z = 2\)). The unit cell is extraordinarily complex and contains 158 atoms: 12 U, 2 S, 76 O and 68 H. Therefore, a very large number of valence electrons, 704, must be described explicitly in the calculations. The number of valence electrons per atom are 14, 6, 6 and 1 electrons for U, S, O and H, respectively, corresponding to the valence electron configurations: U[\(6s^26p^66d^15f^37s^2\)], S[\(3s^23p^4\)], O[\(2s^22p^4\)], and \(H[1s^1]\). The unit-cell parameters of uranopilite and the associated atomic positions were fully optimized by means of the Broyden–Fletcher–Goldfarb–Shanno (BFGS) technique.\(^19\) A plane wave kinetic energy cut-off parameter of \(\varepsilon = 1000\) eV and a \(k\)-mesh\(^20\) of \(2 \times 1 \times 1\) were utilized. These calculation parameters were chosen to attain a well converged crystal structure, energy and properties. The software REFLEX included in Materials Studio package of programs\(^2\) was used to generate the X-ray powder diffraction patterns of uranopilite from the experimental and computed crystal structures.\(^21\)

The impact of the inclusion of the Hubbard correction,\(^22\) which allows for a correct description of the strong Coulomb repulsion between electrons in \(f\) orbitals, was also evaluated. The introduction of this correction, improving drastically the description of materials containing uranium in which this element exists with IV oxidation state,\(^23-27\) is shown to be unnecessary for uranopilite in Section 2.1 of the main
part of the paper. In fact, for a large number of materials in which uranium exists with VI oxidation state, the standard DFT description provides a reliable description of their structures and properties.

A.2.2 Elastic tensor and equation of state

The stiffness tensor matrix elements required to calculate the mechanical properties of uranopilite and to study the mechanical stability of its crystal structure were determined using the finite deformation method (FDM). The energy based techniques and density functional perturbation theory appear to be less efficient for this purpose than FDM. It has been utilized successfully in previous works for the computation of the elastic response of many solid uranyl-containing materials. The unit cell volumes in the vicinity of the equilibrium structure were computed by optimizing the uranopilite crystal structure under sixteen different external pressures with values in the range ~1.0 to 9.0 GPa. The computed lattice volumes and associated pressures were then adjusted to a 4th order Birch-Murnaghan equation of state in order to extract the derivatives of the bulk modulus with respect to pressure. Angel’s EOSFIT 5.2 code was employed for fitting the pressure-volume data to the selected equation of state. The structural optimizations under pressure were also performed using the BFGS method. The 3D representations of the elastic properties of uranopilite as a function of the direction of the applied strain were obtained utilizing the EIAM software.

A.2.3 Infrared spectrum

The theoretical computation of the infrared spectrum of uranopilite was carried out by means of density functional perturbation theory. The harmonic approximation of the interatomic force field was used for the calculation of the infrared vibrational frequencies and the corresponding band intensities. No scaling procedures were applied. These scaling procedures are frequently used to improve the computed infrared frequencies by correcting them empirically for the anharmonicity and remaining approximations used. The unscaled vibrational spectra obtained using the DFPT method in previous works have provided consistently accurate descriptions of the experimental spectra of uranyl-containing materials. Therefore, we considered advisable to employ the DFTP method without applying any kind of scaling procedure to determine the infrared spectrum of uranopilite.

A.2.4 Thermodynamic properties

A.2.4.1 Fundamental thermodynamic properties.

Phonon calculations at the optimized crystal structure were performed to obtain the fundamental thermodynamic functions (ThF) of uranopilite. Density functional perturbation theory was employed to compute the phonon spectra at all the points of the Brillouin zone. From the computed phonon spectra, the phonon dispersion curves and density of states were evaluated. The fundamental ThFs (Gibbs free energies, enthalpies, entropies, and specific heats) were obtained in terms of these functions using the quasi-harmonic approximation. The thermodynamic functions of formation (ThFOF) and thermodynamic functions of reaction (ThFOR) were then evaluated in terms of the calculated fundamental ThFs using the methods described in the next subsections.

A.2.4.2 Thermodynamic properties of formation.

The computed enthalpy and entropy functions, \((H_T - H_{298})^{calc}\) and \(S^{calc}_T\), were employed to calculate the enthalpies of formation (EnOF) and Gibbs free energies of formation (GiFEOF) in terms of the elements using the expressions:
\[\Delta_f H(T) = \Delta_f H^0 + (H_T - H_{298})^{\text{calc}} + \sum_{i}^{\text{elements}} n_i (H_T - H_{298})^{\text{exp}} \quad (A1) \]

\[\Delta_f G(T) = \Delta_f H(T) - T \left(S_T^{\text{calc}} - \sum_{i}^{\text{elements}} n_i (S_T)^{\text{exp}} \right) \quad (A2) \]

where \(\Delta_f H^0 \) is the enthalpy of formation at the standard state of the material being investigated (temperature of 295.15 K and pressure of 1 bar), and \((H_T - H_{298})^{\text{exp}}\) and \((S_T)^{\text{exp}}\) are the enthalpy and entropy functions of the elements forming part of this material with stoichiometric coefficients \(n_i \), respectively. The \(\Delta_f H^0 \) value of used in this work is given in the main part of the paper. The thermodynamic functions for S, O and H were taken from JANAF (Joint Army-Navy-Air Force) thermochemical tables. The functions for U were obtained from the Barin. The reaction constants of the formation reactions were evaluated in terms of the corresponding GiFEORs through the equation:

\[\Delta G(T) = -RT \ln K \quad (A3) \]

A.2.4.3 Thermodynamic properties of reaction.

The enthalpies of reaction (EnOR) and Gibbs free energies of reaction (GiFEOR) as a function of temperature were obtained from the calculated Gibbs free energy and entropy of formation functions, \(\Delta_f G(T)^{\text{calc}} \) and \(\Delta_f S(T)^{\text{calc}} \), by means of the equations:

\[\Delta_f G(T) = \sum_{i}^{\text{products}} n_i \Delta_f G^i(T) - \sum_{j}^{\text{reactants}} n_j \Delta_f G^j(T) \quad (A4) \]

\[\Delta_f H(T) = \Delta_f G(T) + T \cdot \Delta_f S(T) \quad (A5) \]

where,

\[\Delta_f S(T) = \sum_{i}^{\text{products}} n_i \Delta_f S^i(T) - \sum_{j}^{\text{reactants}} n_j \Delta_f S^j(T) \quad (A6) \]

In equations (A4) and (A6), \(\Delta_f G^i(T) \) and \(\Delta_f S^i(T) \) denote the Gibbs free energy and entropy of formation at temperature \(T \) of the compound \(i \) entering in the reaction with stoichiometric coefficient \(n_i \). The thermodynamic functions for \(SO_3(g) \), \(CO_2(g) \), \(O_2(g) \), \(H_2O(l) \), and \(SiO_2(cr) \) were taken from JANAF thermochemical tables and those of \(H_2O_2(l) \) from Barin. The reaction constants were obtained from the corresponding GiFEORs by using the equation (A3).
Appendix B Detailed description of the experimental and computed infrared spectra. Infrared band assignment

B.1 The 2200-3750 cm\(^{-1}\) region

Fig. 4.D shows the experimental and theoretical infrared spectra of from 2700 to 3700 cm\(^{-1}\). Going, as usual, from higher to lower wavenumbers, one first finds two small intensity bands, referred to as \(A\) and \(B\), located at 3689 and 3674 cm\(^{-1}\), respectively. Due to their small intensity, these bands are not seen in Fig. 4.D and are displayed in Fig. 5.D which provides a detailed view of the experimental infrared spectrum from 3660 to 3750 cm\(^{-1}\). These two bands do not appear in the theoretical spectrum and are identified as combination bands as detailed in Table S.4. As can be seen in Table S.3, the first of these bands was also encountered by Frost et al.\(^{47}\) at 3695 cm\(^{-1}\) in the infrared spectrum from the uranopilite sample from Midnite Mine (Washington, USA).

As can be observed in Fig. 4.D, the main part of the infrared spectrum of this region is very broad and may be resolved into eighteen different bands, \((a)\) to \((r)\). The vibrational frequencies of these bands are reproduced theoretically in a very satisfactory way (see Table S.4). All of these bands are assigned to \(OH\) bond stretching vibrations.

Finally, the last two bands in this region, \(s\) and \(t\), situated at 2367 and 2344 cm\(^{-1}\) (see Fig. 5.C) are not found in the computed spectrum and are recognized as combination bands. Band \(t\) was also found by Frost et al.\(^{47}\) in the experimental infrared spectrum of uranopilite sample from South Alligator River (Northern Territory, Australia) at 2348 cm\(^{-1}\).

B.2 The 1300-1750 cm\(^{-1}\) region

Fig. 4.B displays the experimental and theoretical infrared spectra from 1450 to 1750 cm\(^{-1}\). region. Three main bands \((u, v\) and \(x)\), attributed to \(HOH\) bending vibrations, are found at 1735, (1640, 1617) and (1540, 1524) cm\(^{-1}\). These bands are well reproduced theoretically at 1705, (1632, 1627) and (1597, 1575) cm\(^{-1}\). The bands \(y\) and \(z\), at 1438 and 1420 cm\(^{-1}\) (Fig. 5.B), absent in the theoretical spectrum, are identified as a combination band and as an overtone, respectively (see Table S.4). The band \(y\) was only found in the experimental infrared spectrum of Frost et al.\(^{47}\) from the uranopilite sample from Apex Mine (Nevada, USA) at 1442 cm\(^{-1}\). The overtone band \(z\) was found by Frost et al.\(^{47}\) in the experimental spectra of uranopilite from South River (Northern Territory, Australia), Ranger No. 1 deposit (Northern Territory, Australia) and Midnite Mine (Washington, USA) at 1421, 1421 and 1418 cm\(^{-1}\), respectively

B.3 The 1000-1200 cm\(^{-1}\) region

The experimental and computed infrared spectra of this spectral zone are compared in Fig. 4.B. The band \(a\), placed at 1162 cm\(^{-1}\) is reproduced theoretically at 1178 cm\(^{-1}\). It is ascribed to \(UOH\) bending vibrations. The band \(b\), at 1146 cm\(^{-1}\), is found at 1098 cm\(^{-1}\). Band \(\gamma\) has two components at 1119 and 1103 cm\(^{-1}\) which correspond to the calculated bands at 1075 and 1068 cm\(^{-1}\). Bands \(\beta\) and \(\gamma\) are attributed to \(UOH\) bending vibrations and water librations. Band \(\delta\), at 1089 cm\(^{-1}\), is linked to a pair of near theoretical bands located at 1051 and 1045 cm\(^{-1}\). The first of these bands is assigned to \(UOH\) bending vibrations and the second one to \(UOH\) bending vibrations and water librations. Similarly, the band \(\epsilon\), at 1078 cm\(^{-1}\), corresponds to two calculated bands at 1035 and 1023 cm\(^{-1}\). Both bands are attributed to \(UOH\) bending vibrations and water librations. Finally, the weak band \(\tilde{\epsilon}\), at 1010 cm\(^{-1}\) (Fig. 5.A) is not
found in the theoretical spectrum and is recognized to be a combination band. It must be noted that Frost et al.47 assigned all the bands in this region to sulfate asymmetric stretching vibrations, $\nu^a(SO_4^{2-})$, except the band at 1010 cm$^{-1}$ which was assigned to sulfate symmetric stretching vibrations, $\nu^s(SO_4^{2-})$. None of these assignments is supported by the present theoretical study. The vibrations localized at the sulfate units are not encountered in the vibrational atomic motions associated to the normal modes corresponding to these bands. For example, the sulfate symmetric stretching vibrations appear at the normal mode with wavenumber $\nu = 965$ cm$^{-1}$ (see Fig. S.5) but the corresponding intensity is very small (4.6 (D/Å)2/amu). Although the band ζ, found in the present work at 1010 cm$^{-1}$ is quite weak, it was detected by Frost et al.47 in the experimental infrared spectra from three uranopilite samples from Ranger No. 1 deposit (Northern Territory, Australia), Apex Mine (Nevada, USA) and Midnite Mine (Washington, USA) at 1006, 1009 and 1010 cm$^{-1}$, respectively.

2.4.4. The 600-1000 cm$^{-1}$ region

The two theoretical bands placed at 998 and 988 cm$^{-1}$ correspond to the experimental band η located at 978 cm$^{-1}$. Both bands are attributed to UO_4 bending vibrations and water librations. The bands λ and μ at 935 and 923 cm$^{-1}$ are calculated at 961 and 948 cm$^{-1}$, respectively and have the same assignment as band η. The band π situated at 909 cm$^{-1}$ is linked to three very near theoretical bands situated at 892, 889 and 887 cm$^{-1}$. These three sub-bands are ascribed to a mixture of uranyl antisymmetric stretching vibrations, $\nu^a(UO_2^{2+})$, UOH bending vibrations and water librations. Band θ, at 892 cm$^{-1}$, is reproduced in the theoretical spectrum at 878 cm$^{-1}$ and assigned to UOH bending vibrations and water librations. The band σ, at 873 cm$^{-1}$ is ascribed, as band π, to a juxtaposition of uranyl antisymmetric stretching vibrations, $\nu^a(UO_2^{2+})$, UOH bending vibrations and water librations. While band η was left without assignment by Frost et al.47 the bands λ, μ, π, θ and σ were assigned to uranyl antisymmetric stretching vibrations. Therefore, only bands π and σ were correctly assigned. However, even for these bands, the assignment is incomplete since the contribution of the UOH bending vibrations and water librations is not included.

The bands τ, ξ, χ, ρ, ϕ and ψ, placed at 823, 800, 775, 751, 708 and 675 cm$^{-1}$ are found in the theoretical spectrum at 842, 815, 785, 759, 709 and 690 cm$^{-1}$, respectively. The six bands are assigned to UOH bending vibrations and water librations. Frost et al.47 assigned band τ to uranyl symmetric stretching vibrations, $\nu^s(UO_2^{2+})$. This assignment is not supported. In fact, uranyl symmetric stretching vibrations are not found in any of these normal modes. Finally, the band ψ, at 647 cm$^{-1}$ is very well reproduced theoretically at 645 cm$^{-1}$ and assigned to water librations only.

2.4.5. The 400-600 cm$^{-1}$ region

This spectral region was studied only theoretically. The bands in this region were included in the analysis because when the experimental spectrum was assigned it was found that they play a role in the interpretation of some infrared bands from the other regions (bands A, B and ζ). Four main bands, denoted as Π, Σ, Φ, and Ψ, located at 552, 533, 475 and 406 cm$^{-1}$, respectively, were found in this region. Bands Π and Φ are attributed to water librations only and bands Σ and Ψ are assigned to equatorial UO bond stretching vibrations and water librations.
Appendix C Thermal decomposition curve

Fig. S.1. Thermal decomposition of uranopilite showing three-stage dehydration at elevated temperatures (first starting above 50 °C). The thermogravimetric (TG) curve and the differential thermal analysis (DTA) do not support the formation of a transition hydrated phase; only anhydrous phases are formed at elevated temperatures (above 600 °C).
Fig. S.2. Computed density of states of uranopilite.
Fig. S.3. Frontier band functions in uranopilite: (A) Highest occupied band function; (B) Lowest unoccupied band function. Color code: U-Blue, S-Yellow, O-Red, H-White.
Table S.1. Bond lengths in uranopilite (in Å).

Bond	Exp.	Calc.	Bond	Exp.	Calc.
U-O			U-O		
U1-O2	1.76(2)	1.789	U2-O4	1.81(2)	1.785
U1-O1	1.87(2)	1.807	U2-O3	1.83(2)	1.807
U1-O15	2.27(2)	2.233	U2-O16	2.27(2)	2.249
U1-OH22	2.39(2)	2.460	U2-OH19	2.39(2)	2.381
U1-O14	2.42(2)	2.428	U2-OH21	2.40(2)	2.425
U1-OH20	2.47(2)	2.320	U2-O18	2.42(2)	2.400
U1-OH19	2.52(2)	2.557	U2-OH22	2.49(2)	2.495
<U1-Oap>	1.81(2)	1.80	<U2-Oap>	1.82(2)	1.80
<U1-Oeq>	2.41(2)	2.40	<U2-Oeq>	2.39(2)	2.39
U3-O6	1.79(2)	1.786	U4-O7	1.79(2)	1.788
U3-O5	1.82(2)	1.820	U4-O8	1.80(2)	1.791
U3-O16	2.20(2)	2.198	U4-O15	2.18(2)	2.213
U3-OH23	2.42(2)	2.362	U4-OW26	2.39(2)	2.568
U3-O13	2.43(2)	2.391	U4-OH24	2.43(2)	2.433
U3-OW28	2.46(2)	2.557	U4-OH20	2.43(2)	2.362
U3-OH22	2.56(2)	2.489	U4-OW25	2.52(2)	2.599
<U3-Oap>	1.80(2)	1.80	<U4-Oap>	1.79(2)	1.79
<U3-Oeq>	2.41(2)	2.40	<U4-Oeq>	2.39(2)	2.44
U5-O9	1.72(2)	1.786	U6-O11	1.76(2)	1.812
U5-O10	1.81(2)	1.806	U6-O12	1.77(2)	1.793
U5-O15	2.22(2)	2.166	U6-O16	2.16(2)	2.195
U5-O17	2.37(2)	2.422	U6-OH23	2.42(2)	2.414
U5-OH24	2.38(2)	2.419	U6-OH21	2.44(2)	2.432
U5-OW29	2.48(2)	2.556	U6-OW27	2.48(2)	2.396
U5-OH19	2.51(2)	2.495	U6-OW30	2.54(2)	2.537
<U5-Oap>	1.76(2)	1.80	<U6-Oap>	1.76(2)	1.80
<U5-Oeq>	2.39(2)	2.41	<U6-Oeq>	2.41(2)	2.39
S-O			S-O		
S1-O18	1.45(2)	1.487	S1-O13	1.50(2)	1.497
S1-O14	1.49(2)	1.486	S1-O17	1.52(2)	1.486
Table S.2. Most intense reflections in the X-ray powder pattern of uranopilite: (a) Difractogram computed from the experimental structure67 (without the positions of the hydrogen atoms); (b) Difractogram calculated from the computed full crystal structure.

2θ (°)	d (Å)	I (%)	[hkl]	2θ (°)	d (Å)	I (%)	Δ(2θ)
12.60	7.02	100	002	12.65	6.99	100	-0.05
9.65	9.16	46.25	011	9.51	9.29	36.44	0.13
12.91	6.85	33.03	101	12.98	6.81	28.95	-0.08
20.92	4.24	24.92	013	20.80	4.27	24.19	0.12
30.59	2.92	21.32	-301	30.59	2.92	18.79	0.00
22.24	3.99	19.70	-202	22.18	4.00	17.74	0.05
11.07	7.99	16.25	-101	11.04	8.01	16.52	0.03
16.23	5.46	15.66	-121	15.79	5.61	11.63	0.45
24.66	3.61	14.84	-1-32	25.04	3.55	18.37	-0.38
20.55	4.32	13.92	200	20.59	4.31	13.95	-0.04
29.85	2.99	12.29	140	29.94	2.98	5.31	-0.09
20.86	4.26	11.58	1-31	20.71	4.29	5.16	0.15
23.34	3.81	11.53	1-31	23.59	3.77	5.41	-0.26
22.68	3.92	10.90	1-13	22.91	3.88	7.61	-0.23
27.46	3.25	10.06	1-33	27.94	3.19	5.48	-0.48
16.14	5.49	10.03	-112	15.84	5.59	10.09	0.30
30.79	2.90	9.86	-241	30.00	2.98	5.27	0.78
25.54	3.48	9.64	-230	25.06	3.55	5.94	0.48
26.50	3.36	9.26	2-31	26.24	3.39	12.43	0.27
Fig. S.4. Resolution of some composite bands in the experimental infrared spectrum of uranopilite mineral into single band contributions: (A) Region 750-970 cm\(^{-1}\); (B) Region 1000-1200 cm\(^{-1}\); (C) Region 1450-1750 cm\(^{-1}\); (D) Region 2700-3700 cm\(^{-1}\).
Fig. S.5. The atomic motions associated to some infrared active vibrational normal modes of uranopilite. Color code: U-Blue, S-Yellow; O-Red, H-White.

- Mode $\nu = 3358 \, \text{cm}^{-1}$ – $\nu(OH) - OH$ bond stretching.

- Mode $\nu = 2898 \, \text{cm}^{-1}$ – $\nu(OH) - OH$ bond stretching.

- Mode $\nu = 1632 \, \text{cm}^{-1}$ – $\delta(HOH) - HOH$ bending.
- Mode $\nu = 1178 \text{ cm}^{-1} - \delta(\text{UOH}) - \text{UOH bending}$.

- Mode $\nu = 1068 \text{ cm}^{-1} - \delta(\text{UOH}) + l(\text{H}_2\text{O}) - \text{UOH bending and water librations}$.

- Mode $\nu = 965 \text{ cm}^{-1} - \nu^s(\text{SO}^{2-}_4) + \delta(\text{UOH}) + l(\text{H}_2\text{O}) - \text{Symmetric sulfate stretching, UOH bending and water librations}$.
• Mode $\nu = 961 \text{ cm}^{-1} - \delta(UOH) + l(H_2O) - UOH$ bending and water librations.

• Mode $\nu = 892 \text{ cm}^{-1} - \nu^a(UO^{2+}) + \delta(UOH) + l(H_2O) -$ Antisymmetric uranyl stretching, UOH bending and water librations.

• Mode $\nu = 860 \text{ cm}^{-1} - \nu^a(UO^{2+}) + \delta(UOH) + l(H_2O) -$ Antisymmetric uranyl stretching, UOH bending and water librations.
- Mode $\nu = 785 \text{ cm}^{-1} \delta(U\text{OH}) + l(H_2\text{O})$ – $U\text{OH}$ bending and water librations.

- Mode $\nu = 645 \text{ cm}^{-1} l(H_2\text{O})$ – Water librations.

- Mode $\nu = 552 \text{ cm}^{-1} l(H_2\text{O})$ – Water librations.
- Mode $\nu = 533 \text{ cm}^{-1} - \nu(UO_{eq}) + l(H_2O)$ – Equatorial UO_{eq} bond stretching vibrations and water librations.

- Mode $\nu = 475 \text{ cm}^{-1} - l(H_2O)$ – Water librations.

- Mode $\nu = 406 \text{ cm}^{-1} - \nu(UO_{eq}) + l(H_2O)$ – Equatorial UO_{eq} bond stretching vibrations and water librations.
Table S.3. Comparison between the present experimental infrared band wavenumbers of uranopilite and those reported by Frost et al.48

Band Name	Exp. Freq. (cm\(^{-1}\)) \[This work\]	Exp. Freq. (cm\(^{-1}\)) \[(South Alligator)48\]	Exp. Freq. (cm\(^{-1}\)) \[(Ranger)48\]	Exp. Freq. (cm\(^{-1}\)) \[(Apex)48\]	Exp. Freq. (cm\(^{-1}\)) \[(Midnite)48\]
\(\text{OH}\) stretching region					
\(A\)	3689	-	-	-	3695
\(B\)	3674	-	-	-	-
\(a\)	3619	-	-	-	3622
\(b\)	3597	-	-	-	3600
\(c\)	3573	-	3570	3570	3578
\(d\)	3550	3555	-	-	3550
\(e\)	3524	-	3517	3517	3538
\(f\)	3489	3471	3490	3490	3470
\(g\)	3453	-	-	-	-
\(h\)	3405	3418	3397	-	-
\(i\)	3351	-	-	-	3392
\(j\)	3282	3268	3253	3274	-
\(k\)	3221	-	-	-	3230
\(l\)	3151	3136	-	-	-
\(m\)	3082	3064	3074	-	-
\(n\)	3026	-	3028	3028	3049
\(o\)	2957	-	2985	-	-
\(p\)	2923	-	-	-	-
\(q\)	2852	2877	2851	-	-
\(r\)	2727	-	-	-	2698
\(s\)	2367	-	-	-	-
\(t\)	2344	2348	-	-	-
\(\text{HOH}\) bending region					
\(u\)	1735	-	-	-	-
\(v\)	1640	1664	-	-	-
\(w\)	1617	1625	1625	1623,1618	1627,1619
\(x\)	1540	1575,1559,1540	-	-	-
\(y\)	1524	1526,1511	1534	1534	1547
\(z\)	1438	-	-	1442	-
\(\text{1000-1200 cm}^{-1}\) region					
\(\alpha\)	1162	-	1159	1170	-
\(\beta\)	1146	1138	1141	1138	1141
\(\gamma\)	1119	1118	1118	1113	1116
\(\delta\)	1103	1100	1099	1097	1102
\(\epsilon\)	1089	-	-	-	1096
\(\zeta\)	1078	1072	1072	1070	-
\(\eta\)	-	1031	-	1037	1032
\(\xi\)	1010	-	1006	1009	1010
\(\text{600-1000 cm}^{-1}\) region					
\(\eta\)	978	982	-	-	999
\(\lambda\)	935	932	941	-	941
\(\mu\)	923	-	929	925	929
\(\nu\)	909	912	910	911	901
\(\phi\)	892	888	884	892	-
\(\sigma\)	873	863	-	-	866
\(\tau\)	823	838	838	830,821	841,828
\(\xi\)	800	-	807	-	-
\(\chi\)	775	788	-	798	792
\(\delta\)	751	740	-	746	759,747
\(\phi\)	708	703	-	-	-
\(\psi\)	675	-	674	687	-
\(\chi\)	647	-	-	-	662,652
Table S.4. Vibrational frequencies of the bands from the observed and calculated infrared spectra of uranopilite. The calculated band intensities and assignments are also given.

Band Name	Exp. Freq. (cm⁻¹)	Calc. Freq. (cm⁻¹)	Int. (D/ℏ²/amu)	Assignment
2200-3750 cm⁻¹ region				
A	3689	-	-	
	3674	-	-	
a	3619	3628	6.02	v(OH)
b	3597	3601	8.77	
c	3573	3589	10.39	
d	3550	3562	14.09	
e	3524	3510	22.63	
f	3489	3489	11.57	
g	3453	3433	63.34	
h	3405	3410	50.34	
i	3351	3358	94.74	
j	3345	-	72.82	
k	3283	3304	18.54	
l	3211	3208	34.22	
m	3082	3109	203.24	
n	3091	3091	251.64	
o	3026	3053	162.85	
p	3082	3093	193.31	
q	2957	3003	364.62	
r	2923	2898	169.66	
s	2727	2760	129.57	
t	2367	-	1416	
u	1735	1705	2.59	δ(HOH)
v	1640	1632	20.70	
x	1540	1527	18.84	
y	1514	1575	8.78	
z	1438	-	5.37	
1000-1200 cm⁻¹ region				
a	1162	1179	7.79	δ(UOH)
b	1146	1098	36.48	δ(UOH) + i(UH,O)
γ	1119	1075	45.38	
δ	1089	1051	20.27	δ(UOH)
e	1045	1035	24.10	δ(UOH) + i(UH,O)
ζ	1010	-	15.12	
600-1000 cm⁻¹ region				
η	978	998	18.35	δ(UOH) + i(UH,O)
ι	935	961	11.61	
κ	923	948	9.54	
π	909	892	43.47	v(δ(UO₂⁺) + δ(UOH) + i(UH,O)
θ	892	878	25.93	δ(UOH) + i(UH,O)
ρ	873	860	32.16	v(δ(UO₂⁺) + δ(UOH) + i(UH,O)
σ	823	842	58.85	
τ	800	815	28.23	
χ	775	785	12.04	
ρ	751	759	8.56	
φ	708	709	4.91	
ψ	675	690	5.75	
Π	-	552	29.26	i(UH,O)
Σ	-	533	33.13	v(δ(UO₂⁺) + i(UH,O)
Table S.5. Computed elastic constants of uranopilite. The Voigt convention is employed for the indices of the matrix elements of the elasticity tensor (a pair of cartesian indices are contracted into a single integer: $1 \leq i \leq 6$: $xx \rightarrow 1, yy \rightarrow 2, zz \rightarrow 3, yz \rightarrow 4, xz \rightarrow 5, xy \rightarrow 6$). All the values are given in GPa.

ij	C_{ij}
11	50.35
22	41.51
33	22.94
44	8.28
55	6.15
66	15.12
12	14.32
13	11.49
14	-2.26
15	-4.53
16	0.53
23	13.60
24	-6.06
25	-1.45
26	-0.19
34	0.02
35	5.74
36	-2.14
45	0.02
46	-0.61
56	2.02
Fig. S.6. Calculated unit cell volume and lattice parameters of uranopilite as a function of the applied isotropic external pressure.
Table S.6. Calculated compressibility \(k_V = -1/V \cdot (\partial V/\partial P)_P \) of uranopilite under isotropic pressures from -0.5 to 4.0 GPa.

P (GPa)	\(k_V (TPa^{-1}) \)
-0.50	63.44
0.00	47.69
0.50	40.70
1.00	36.94
1.50	33.68
2.00	30.35
2.50	27.70
3.00	26.77
3.50	27.76
4.00	28.83
Fig. S.7. Calculated compressibility ($k_V = -\frac{1}{V} \cdot \left(\frac{\partial V}{\partial P} \right)_p$) of uranopilite under isotropic pressures from -0.5 to 4.0 GPa.
Table S.7. Calculated unit cell volumes and lattice parameters of uranopilite as a function of the external pressure applied along the direction of minimum compressibility.

P (GPa)	Vol. (Å^3)	a (Å)	b (Å)	c (Å)	α (deg)	β (deg)	γ (deg)
-0.0593	1738.6614	8.9821	14.0792	14.3089	94.68	99.12	101.51
-0.0324	1735.7281	8.9613	14.1163	14.2848	94.59	99.19	101.59
-0.0191	1734.4859	8.9527	14.1325	14.2742	94.56	99.21	101.62
-0.0068	1734.1442	8.9500	14.1369	14.2715	94.54	99.22	101.63
0.0029	1733.4378	8.9460	14.1417	14.2678	94.55	99.22	101.64
0.0073	1732.7031	8.9423	14.1468	14.2629	94.55	99.22	101.64
0.0131	1733.3383	8.9393	14.1513	14.2690	94.52	99.23	101.66
0.0208	1732.8179	8.9365	14.1556	14.2650	94.53	99.23	101.66
0.0239	1732.1363	8.9336	14.1605	14.2596	94.53	99.24	101.66
0.0267	1731.6503	8.9324	14.1606	14.2586	94.53	99.25	101.67
0.0329	1731.1806	8.9308	14.1549	14.2645	94.55	99.25	101.69
0.0473	1730.8036	8.9304	14.1623	14.2524	94.53	99.24	101.67
0.0613	1728.7138	8.9127	14.1900	14.2376	94.48	99.27	101.70
Table S.8. Calculated compressibilities ($k_V = -1/V \cdot (∂V/∂P)_P$) of uranopilite for external pressures applied along the direction of minimum compressibility between 0.005 and 0.025 GPa.

P (GPa)	$k_V(TPa^{-1})$	P (GPa)	$k_V(TPa^{-1})$	P (GPa)	$k_V(TPa^{-1})$
0.005	95.25	0.013	-56.32	0.021	123.20
0.007	-5.93	0.015	-11.01	0.023	128.31
0.009	-63.57	0.017	43.42	0.025	106.74
0.011	-77.90	0.019	92.30	-	-
Table S.9. Calculated unit cell volumes and lattice parameters of uranopilite as a function of the external pressure applied along the direction of minimum Poisson’s ratio.

P (GPa)	Vol. (\AA^3)	a (Å)	b (Å)	c (Å)	α (deg)	β (deg)	γ (deg)
-0.0853	1735.1615	8.9586	14.1928	14.2011	94.44	99.08	101.64
-0.0415	1734.3024	8.9514	14.1614	14.2422	94.50	99.16	101.63
-0.0309	1733.6391	8.9487	14.1507	14.2542	94.53	99.19	101.63
0.0029	1733.4378	8.9460	14.1417	14.2678	94.55	99.22	101.64
0.0087	1732.8137	8.9448	14.1333	14.2738	94.58	99.23	101.62
0.0122	1732.6281	8.9449	14.1342	14.2708	94.58	99.22	101.63
0.0196	1732.7835	8.9439	14.1322	14.2769	94.57	99.24	101.64
0.0251	1732.9622	8.9427	14.1321	14.2807	94.56	99.25	101.64
0.0298	1732.4874	8.9416	14.1196	14.2907	94.61	99.25	101.61
0.0327	1732.1062	8.9406	14.1153	14.2941	94.62	99.26	101.60
0.0422	1731.8172	8.9398	14.1105	14.2983	94.65	99.26	101.59
0.0983	1730.6244	8.9298	14.0597	14.3653	94.78	99.40	101.57
Fig. S.8. Unit cell volumes and compressibilities (k_V) of uranopilite calculated as a function of the external pressure applied along the minimum Poisson’s ratio direction.
Table S.10. Calculated compressibilities $(k_v = -\frac{1}{V} \cdot (\partial V/\partial P)_P)$ of uranopilite for external pressures applied along the direction of minimum Poisson’s ratio between 0.003 and 0.009 GPa.

P (GPa)	k_v (TPa$^{-1}$)	P (GPa)	k_v (TPa$^{-1}$)	P (GPa)	k_v (TPa$^{-1}$)
0.003	108.84	0.013	12.79	0.023	-16.43
0.005	64.51	0.015	-5.81	0.025	14.24
0.007	47.09	0.017	-23.38	0.027	52.45
0.009	38.23	0.019	-34.17	0.029	84.02
0.011	27.94	0.021	-32.87	-	-
Fig. S.9. Computed fundamental thermodynamic functions of uranopilite: (A) Heat capacity; (B) Entropy; (C) Enthalpy; (D) Free energy.
Table S.11. Calculated isobaric heat capacity function, C_P, of uranopilite. Temperature and heat capacity values are given in K and J·K$^{-1}$·mol$^{-1}$ units, respectively.

T	C_P	T	C_P	T	C_P
10	2.73791	350	194.30785	690	247.97954
20	9.79348	360	196.84737	700	248.95673
30	18.59893	370	199.29728	710	249.91556
40	28.37687	380	201.66132	720	250.85677
50	38.53585	390	203.94312	730	251.78101
60	48.64947	400	206.14622	740	252.68891
70	58.42798	410	208.27408	750	253.58107
80	67.69908	420	210.33004	760	254.45803
90	76.38579	430	212.31736	770	255.32033
100	84.47787	440	214.23918	780	256.16843
110	92.00532	450	216.09853	790	257.00281
120	99.01844	460	217.89833	800	257.82389
130	105.57461	470	219.64138	810	258.63208
140	111.73036	480	221.33040	820	259.42776
150	117.53707	490	222.96665	830	260.21128
160	123.03913	500	224.55654	840	260.98299
170	128.27357	510	226.09849	850	261.74319
180	133.27051	520	227.59608	860	262.49220
190	138.05410	530	229.05146	870	263.23030
200	142.64344	540	230.46665	880	263.95774
210	147.05367	550	231.84362	890	264.67479
220	151.29685	560	233.18421	900	265.38168
230	155.38267	570	234.49015	910	266.07864
240	159.31912	580	235.76310	920	266.76589
250	163.11296	590	237.00464	930	267.44364
260	166.77006	600	238.21624	940	268.11206
270	170.29569	610	239.39930	950	268.77136
280	173.69470	620	240.55514	960	269.42172
290	176.97165	630	241.68500	970	270.06329
300	180.13094	640	242.79005	980	270.69624
310	183.17680	650	243.87139	990	271.32073
320	186.11338	660	244.93006	1000	271.93690
330	188.94476	670	245.96705	-	-
340	191.67494	680	246.98325	-	-
Table S.12. Calculated entropy function, S, of uranopilite. Temperature and entropy values are given in K and J·K$^{-1}$·mol$^{-1}$ units, respectively.

T	S	T	S	T	S
10	1.31059	350	238.96016	690	389.97832
20	5.23433	360	244.46993	700	393.55355
30	10.82512	370	249.89700	710	397.09172
40	17.50003	380	255.24348	720	400.59358
50	24.92055	390	260.51142	730	404.06018
60	32.84387	400	265.70271	740	407.49199
70	41.08322	410	270.81922	750	410.88985
80	49.49697	420	275.86304	760	414.25437
90	57.97786	430	280.83551	770	417.58631
100	66.45025	440	285.73875	780	420.88633
110	74.85873	450	290.57433	790	424.15490
120	83.16834	460	295.34369	800	427.39292
130	91.35614	470	300.04868	810	430.60073
140	99.40746	480	304.69062	820	433.77902
150	107.31581	490	309.27125	830	436.92839
160	115.07886	500	313.79184	840	440.04939
170	122.69623	510	318.25402	850	443.14246
180	130.17077	520	322.65885	860	446.20819
190	137.50556	530	327.00805	870	449.24706
200	144.70428	540	331.30278	880	452.25963
210	151.77142	550	335.54425	890	455.24633
220	158.71069	560	339.73389	900	458.20758
230	165.52688	570	343.87273	910	461.14386
240	172.22363	580	347.96200	920	464.05555
250	178.80468	590	352.00288	930	466.94326
260	185.27379	600	355.99643	940	469.80717
270	191.63416	610	359.94380	950	472.64786
280	197.88940	620	363.84592	960	475.46563
290	204.04207	630	367.70393	970	478.26095
300	210.09520	640	371.51877	980	481.03409
310	216.05166	650	375.29144	990	483.78548
320	221.91400	660	379.02288	1000	486.51546
330	227.68442	670	382.71386	-	-
340	233.36585	680	386.36545	-	-
Table S.13. Calculated enthalpy function, $\Delta H (\Delta H = H_T - H_{298})$, of uranopilite. Temperature and enthalpy values are given in K and J·K$^{-1}$·mol$^{-1}$ units, respectively.

T	H$_T$-H$_{298}$	T	H$_T$-H$_{298}$	T	H$_T$-H$_{298}$
10	-314.36773	350	27.72695	690	125.17629
20	-1569.15170	360	32.38968	700	126.93763
30	-1041.40548	370	36.86779	710	128.66298
40	-775.19559	380	41.17354	720	130.35360
50	-613.46754	390	45.31803	730	132.01068
60	-503.95454	400	49.31136	740	133.63535
70	-424.30740	410	53.16270	750	135.22869
80	-363.38019	420	56.88044	760	136.79175
90	-314.99435	430	60.47227	770	138.32549
100	-275.44686	440	64.72227	780	139.83088
110	-242.38017	450	67.30589	790	141.30880
120	-214.21913	460	70.56018	800	142.76012
130	-189.86903	470	73.71368	810	144.18566
140	-168.54384	480	76.77152	820	145.58621
150	-149.66353	490	79.73850	830	146.96253
160	-132.79007	500	82.61905	840	148.31534
170	-117.58611	510	85.41733	850	149.64532
180	-103.78739	520	88.13721	860	150.95315
190	-91.18389	530	90.78230	870	152.23946
200	-79.60648	540	93.35601	880	153.50486
210	-68.91746	550	95.86150	890	154.74994
220	-59.00354	560	98.30177	900	155.97527
230	-49.77067	570	100.67964	910	157.18137
240	-41.14010	580	102.99774	920	158.36878
250	-33.04539	590	105.25856	930	159.53799
260	-25.43008	600	107.46446	940	160.68949
270	-18.24587	610	109.61767	950	161.82373
280	-11.45118	620	111.72028	960	162.94116
290	-5.00999	630	113.77428	970	164.04221
300	1.10904	640	115.78155	980	165.12730
310	6.93336	650	117.74387	990	166.19681
320	12.48713	660	119.66294	1000	167.25114
330	17.79169	670	121.54037	-	-
340	22.86600	680	123.37767	-	-
Table S.14. Calculated free-energy function, function, ΔG ($\Delta G = G_T - H_{298}$), of uranopilite. Temperature and free-energy values are given in K and J·K$^{-1}$·mol$^{-1}$ units, respectively.

T (K)	G_T (J·mol$^{-1}$)	T (K)	G_T (J·mol$^{-1}$)	T (K)	G_T (J·mol$^{-1}$)
10	-3145.67848	20	-1574.38608	30	-1052.23141
310	-209.11826	320	-209.42677	330	-209.89283
340	-210.49988				

S.34
Table S.15. Calculated enthalpies ($\Delta_r H$) and free-energies ($\Delta_r G$) of reaction and associated reaction constants (Log K) of reactions (A)-(F). The values of $\Delta_r H$ and $\Delta_r G$ are in units of $kJ\cdot mol^{-1}$.

T(K)	$\Delta_r H$	$\Delta_r G$	Log K	$\Delta_r H$	$\Delta_r G$	Log K
	Reaction (A)			Reaction (B)		
298.15	-64.11	-26.86	4.70	-39.22	-13.22	2.32
300	-63.89	-26.18	4.56	-39.06	-12.75	2.22
320	-61.85	-19.20	3.13	-37.51	-7.91	1.29
340	-60.34	-12.68	1.95	-36.37	-13.22	0.53
360	-59.02	-6.29	0.91	-35.39	-0.93	-0.13
380	-58.68	-0.79	0.11	-35.07	4.69	-0.64
400	-58.43	4.69	-0.61	-34.83	8.42	-1.10
420	-58.52	9.91	-1.23	-34.82	11.97	-1.49
440	-58.93	14.91	-1.77	-35.04	15.36	-1.82
460	-59.66	19.69	-2.44	-35.48	18.61	-2.11
480	-60.69	24.30	-3.00	-36.13	21.72	-2.36
500	-62.03	28.74	-3.70	-37.00	24.72	-2.58
	Reaction (C)			Reaction (D)		
298.15	22.68	11.15	-1.95	-6.46	23.14	-4.09
300	22.74	11.35	-1.98	-6.43	23.51	-4.09
320	23.12	13.42	-2.19	-6.25	27.36	-4.47
340	23.18	15.26	-2.34	-6.26	31.05	-4.77
360	23.25	17.18	-2.49	-6.26	34.81	-5.05
380	22.51	18.37	-2.53	-6.77	38.11	-5.24
400	21.81	19.71	-2.57	-7.24	41.50	-5.42
420	20.90	20.93	-2.60	-7.83	44.82	-5.57
440	19.77	22.04	-2.62	-8.55	48.08	-5.71
460	18.42	23.05	-2.62	-9.39	51.28	-5.82
480	16.84	23.97	-2.61	-10.36	54.43	-5.92
500	15.03	24.83	-2.59	-11.47	57.53	-6.01
	Reaction (E)			Reaction (F)		
298.15	49.61	42.15	-7.38	-27.83	-14.46	2.53
300	49.52	41.97	-7.31	-27.76	-14.21	2.47
320	48.73	40.21	-6.56	-27.08	-11.56	1.89
340	48.10	38.60	-5.93	-26.52	-9.02	1.39
360	47.56	37.08	-5.38	-26.10	-6.60	0.96
380	47.20	35.73	-4.91	-25.81	-4.30	0.59
400	46.91	34.44	-4.50	-25.66	-2.13	0.28
420	46.72	33.25	-4.13	-25.62	-0.08	0.01
440	46.61	32.13	-3.81	-25.70	1.88	-0.22
460	46.60	31.09	-3.53	-25.87	3.74	-0.43
480	46.67	30.12	-3.28	-26.13	5.53	-0.60
500	46.82	29.21	-3.05	-26.50	7.26	-0.76
References

[1] S. J. Clark, M. D. Segall, C. J. Pickard, P. J. Hasnip, M. I. J. Probert, K. Refson, M. C. Payne, Z. Kristallogr., 2020, 220, 567–570.
[2] MaterialsStudio http://3dsbiovia.com/products/collaborative-science/biovia-materials-studio/, accessed 15 April, 2020.
[3] M. C. Payne, M. P. Teter, D. C. Ailan, A. Arias, J. D. Joannopoulos, Rev. Mod. Phys., 1992, 64, 1045–1097.
[4] J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett., 1996, 77, 3865–3868.
[5] S. Grimme, J. Comput. Chem., 2006, 27, 1787–1799.
[6] N. Troullier, J. L. Martins, Phys. Rev. B, 1991, 43, 1993–2006.
[7] L. J. Bonales, F. Colmenero, J. Cobos, V. Timón, Phys. Chem. Chem. Phys., 2006, 18, 16575–16584.
[8] F. Colmenero, Characterization of Secondary Phases of Spent Nuclear Fuel under Final Geological Disposal Conditions: Experimental and Theoretical Studies, PhD Thesis, Universidad Autónoma de Madrid, Madrid, 2017; https://doi.org/10.13140/RG.2.2.10526.43843.
[9] F. Colmenero, L. J. Bonales, J. Cobos, V. Timón, J. Phys. Chem. C, 2017, 121, 14507–14516.
[10] F. Colmenero, A. M. Fernández, J. Cobos, V. Timón, J. Phys. Chem. C, 2018, 122, 5254–5267.
[11] F. Colmenero, A. M. Fernández, J. Cobos, V. Timón, J. Phys. Chem. C, 2018, 122, 5268–5279.
[12] F. Colmenero, J. Cobos, V. Timón, Inorg. Chem., 2018, 57, 4470–4481.
[13] F. Colmenero, in Minerals, ed. K. S. Essa, InTechOpen, London, 2018, ch. 4; pp. 65–94.
[14] F. Colmenero, in Density Functional Theory, ed. D. Glossman-Mitnik, InTechOpen, London, 2018, ch. 5; pp. 91–122.
[15] F. Colmenero, A. M. Fernández, V. Timón, J. Cobos, RSC Adv., 2018, 8, 24599–24616.
[16] F. Colmenero, J. Plášil, J. Cobos, J. Sejkora, V. Timón, J. Čejka, L. J. Bonales, RSC Adv., 2019, 9, 15323–15334.
[17] F. Colmenero, J. Plášil, J. Cobos, J. Sejkora, V. Timón, J. Čejka, A. M. Fernández, V. Petřiček, RSC Adv., 2019, 9, 40708–40726.
[18] F. Colmenero, J. Plášil, J. Sejkora, Dalton Trans., 2019, 48, 16722–16736.
[19] B. G. Pfrommer, M. Cote, S. G. Louie, M. L. Cohen, J. Comput. Phys., 1997, 131, 233–240.
[20] H. J. Monkhorst, J. D. Pack, Phys. Rev. B, 1976, 13, 5188–5192.
[21] R. T. Downs, K. L. Bartelmehs, G. V. Gibbs, M. B. Boisen, Am. Mineral., 1993, 78, 1104–1107.
[22] M. Cococcioni, in Correlated Electrons: From Models to Materials Modeling and Simulation, Vol. 2, ed. Pavarini et al., Forschungszentrum Jülich, Berlin, 2012, ch. 4.
[23] S. L. Dudarev, D. Nguyen-Manh, A. P. Sutton, Phil. Mag. B, 1997, 75, 613–628.
[24] J. P. Crocombette, F. Jollet, L. T. Nga, T. Petit, Phys. Rev. B, 2001, 64, 104107.
[25] P. F. Weck, E. Kim, C. F. Jové-Colón, D. C. Sassani, Dalton Trans., 2013, 42, 4570–4578.
[26] D. A. Andersson, G. Baldinozzi, L. Desgranges, D. R. Conradson, S. R. Conradson, Inorg. Chem., 2013, 52, 2769–2778.
[27] G. Beridze, P. M. Kowalski, J. Phys. Chem. A, 2014, 118, 11797–11810.
[28] P. F. Weck, E. Kim, Dalton Trans., 2004, 43, 17191–17199.
[29] P. F. Weck, E. Kim, E. C. Buck, RSC Adv., 2015, 5, 79090 –79097.
[30] P. F. Weck, E. Kim, J. Phys. Chem. C, 2016, 120, 16553–16560.
[31] T. M. Alam, Z. Liao, M. Nyman, J. Yates, J. Phys. Chem. C, 2016, 120, 10675–10685.
[32] N. Kalashnyk, D. L. Perry, F. Massuyeau, E. Faulques, J. Phys. Chem. C, 2018, 122, 7410–7420.
[33] S. Ostanin, P. Zeller, J. Phys.: Condens. Matter., 2007, 19, 246108.
[34] S. Ostanin, P. Zeller, Phys. Rev. B, 2007, 75, 073101.
[35] J. F. Nye, *Physical Properties of Crystals*, Clarendon, Oxford, 1976.
[36] R. Yu, J. Zhu, H. Q. Ye, *Comput. Phys. Commun.*, 2010, **181**, 671–675.
[37] F. Birch, *Phys. Rev.*, 1947, **71**, 809–824.
[38] R. J. Angel, *Rev. Mineral. Geochem.*, 2000, **41**, 35–60.
[39] EOSFIT 5.2 software, http://programming.ccp14.ac.uk/ccp/web-mirrors/ross-angel/crystal/software.html, accessed 15 April, 2020.
[40] A. S. H. Marmier, Z. A. D. Lethbridge, R. I. Walton, C. W. Smith, S. C. Parker, K. E. Evans, *Comput. Phys. Commun.*, 2010, **81**, 2102–2115.
[41] S. Baroni, S. de Gironcoli, A. Dal Corso, P. Giannozzi, *Rev. Mod. Phys.*, 2001, **73**, 515–562.
[42] K. Refson, P. R. Tulip, S. J. Clark, *Phys. Rev. B*, 2006, **73**, 155114.
[43] W. J. Hehre, L. Radom, P. V. R. Schleyer, J. A. People, *Ab Initio Molecular Orbital Theory*, Wiley, New York, 1986.
[44] C. Lee, X. Gonze, *Phys. Rev. B*, 1995, **51**, 8610–8613.
[45] M. W. Chase, C. A. Davies, J. R. Downey, D. J. Frurip, R. A. McDonald, A. N. Syverud, *J. Phys. Chem. Ref. Data*, 1985, **14** [Suppl 1], 1–1856.
[46] I. Barin, *Thermochemical Data of Pure Substances. Third edition*, VCH, Weinheim, 1995.
[47] R. L. Frost, J. Čejka, M. L. Weier, W. Martens, G. A. Ayoko, *J. Raman Spectrosc.*, 2007, **38**, 398–409.
[48] P. C. Burns, *Can. Mineral.*, 2001, **39**, 1139–1146.