Structural Basis of Cytochrome c Presentation by IE^k

Daved H. Fremont,1 Shaodong Dai,2 Herbert Chiang,1 Frances Crawford,2 Philippa Marrack,2,3,4 and John Kappler2,3,5

1Department of Pathology and Immunology and Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St Louis, MO 63110
2Howard Hughes Medical Institute, Integrated Department of Immunology, Zuckerman Family/Canyon Ranch Crystallography Laboratory, National Jewish Medical and Research Center, Denver, CO 80206
3Integrated Department of Immunology, 4Department of Biochemistry and Molecular Genetics, and 5Department of Pharmacology and Program in Biomolecular Structure, University of Colorado Health Science Center, Denver, CO 80262

Abstract

The COOH-terminal peptides of pigeon and moth cytochrome c, bound to mouse IE^k, are two of the most thoroughly studied T cell antigens. We have solved the crystal structures of the moth peptide and a weak agonist–antagonist variant of the pigeon peptide bound to IE^k. The moth peptide and all other peptides whose structures have been solved bound to IE^k, have a lysine filling the p9 pocket of IE^k. However, the pigeon peptide has an alanine at p9 shifting the lysine to p10. Rather than kinking to place the lysine in the anchor pocket, the pigeon peptide takes the extended course through the binding groove, which is characteristic of all other peptides bound to major histocompatibility complex (MHC) class II. Thus, unlike MHC class I, in which peptides often kink to place optimally anchoring side chains, MHC class II imposes an extended peptide conformation even at the cost of a highly conserved anchor residue. The substitution of Ser for Thr at p8 in the variant pigeon peptide induces no detectable surface change other than the loss of the side chain methyl group, despite the dramatic change in recognition by T cells. Finally, these structures can be used to interpret the many published mutational studies of these ligands and the T cell receptors that recognize them.

Key words: T cell receptor • X-ray crystallography • antigen presentation • peptide • cytochrome

Introduction

One of the most heavily studied antigenic peptides in mice comes from the COOH-terminal end of pigeon cytochrome c (PCC),* encompassing amino acids 89–103 (peptide derived from the COOH terminus of PCC [pPCC]). This peptide contains the dominant pigeon cytochrome c epitope for CD4⁺ T cells in many strains of mice (1). Over the years, many immunological principles have been defined and studied using this peptide and its homologues from the cytochrome c’s of other species, especially the equivalent peptide from moth cytochrome c (pMCC).

In H–2^b or H–2^a mice, the IE^k MHC class II molecule (MHCII) presents pPCC and pMCC to T cells. The phenomenology associated with the response to these peptides led to the discovery of two complementing “immune response” genes that later turned out to be the structural genes for the α and β chains of the IE^k molecule (2). Mutational studies have predicted which of the pPCC and pMCC amino acid side chains are important for the binding of the peptides to the IE^k molecule (3, 4). An important difference between pMCC and pPCC is the fact that pPCC has an Ala inserted at amino acid 103. This insertion causes pPCC to raise a “heteroclitic” response to the pMCC, which means that although pPCC and pMCC are virtually completely cross reactive, essentially all T cell clones raised by immunization with pPCC respond better to pMCC (5). The data have suggested that this phenomenon is linked to the interaction of the peptide with the MHC molecule rather than the αβTCR, but the structural basis of this difference has remained unknown (6).
The repertoire of αβ TCR expressed by T cells responding to pPCC and pMCC is dominated by receptors bearing AV11S1 and AV11S2 (Va11.1 and Va11.2, respectively) and BV351 (Vβ3) (7). Many Va11/Vβ3+ T cell clones/hybridomas specific for these peptides are in widespread use (8–10) and the genes for the αβTCRs of a number of these clones have been used to produce αβTCR-transgenic mice (11–14). These mice, as well as those transgenic for various versions of the IE3 molecule (15, 16), have been used over the years to study the principles of T cell activation as well as positive and negative selection in the thymus. The interaction of αβTCRs with IE3/pPCC or IE3/pMCC has been extensively studied both in vitro and in vivo. These studies have predicted which of the αβTCR, IE3, and peptide amino acids are important in the interaction (4, 6, 17–21).

pPCC and pMCC have also been used to study the phenomenon of antagonism. Amino acid variants of a number of antigenic peptides have been identified, which not only fail to stimulate particular T cell clones or hybridomas that had been raised to the wild-type peptide, but also render the T cell unresponsive to a subsequent or simultaneous challenge with the wild-type peptide (22). Although the mechanism of this phenomenon is not fully understood, it has been shown to involve some type of aberrant or incomplete receptor signaling that effectively desensitizes the receptor to subsequent ligation. In the case of pPCC and pMCC, several clones were antagonized by variant peptides bearing only slight differences from the wild-type peptides (23, 24).

In the current study, we have solved the crystal structure of the IE3 molecule in complex with either pMCC or pPCC bearing a single amino acid change (Thr to Ser at amino acid 102) that renders it either a poor agonist or an antagonist for many T cell clones. The structures reveal the basis for the differences between pMCC and pPCC in binding to IE3. They also show that the Thr to Ser change results in only a very minor surface difference between the two molecules. Finally, the structures support many of the predictions made in previous studies concerning contacts between the peptides and either the IE3 molecule or the T cell receptor.

Materials and Methods

IE3–pMCC and IE3–pPCC(T102S). The expression, production, and purification of soluble IE3 with covalently attached peptides have been previously described (25–27). In this study two different peptides were used: pMCC, RDLIAYLQATK, corresponding to amino acids 92–103 of moth cytochrome c, and pPCC(T102S), RDLIAYLQASAK, corresponding to amino acids 92–104 of pigeon cytochrome c, with the exception that the Thr at amino acid 102 was changed to Ser. In discussing the structure of individual peptide amino acids when bound to IE3, we use the convention of designating the first peptide anchor amino acid as p1 and number the other amino acids accordingly, e.g., p9Lys or p9K. IE3 amino acids are designated by chain and number, e.g., β9Glu or α66Asp. Also, for simplicity, MHCII covalent peptide complexes are referred to with a (-) connecting the MHC and peptide name, e.g., IE3–pMCC, whereas noncovalent complexes use a (/), e.g., IE3/pMCC.

Cryocrystallization. Both IE3–pMCC and IE3–pPCC(T102S) crystallized by the hanging drop method. IE3–pMCC crystals were grown in 1-μl drops containing ~11 mg/ml of protein, 12% PEG–4000, 12% 2-propanol, and 60 mM of sodium acetate buffer at pH 5.5. IE3–pPCC(T102S) crystals were grown in 1-μl drops containing ~10 mg/ml of protein, 14% PEG–4000, 14% 2-propanol, 1.4% ethylene glycol, 70 mM of sodium acetate buffer at pH 5.0, and 320 mM of ammonium sulfate.

Data Collection. IE3–pMCC and IE3–pPCC(T102S) crystals were cryopreserved by briefly soaking in mother liquor with the addition of 20% ethylene glycol and 10% glycerol followed by rapid cooling in a gaseous stream of nitrogen at 100°K (Oxford Cryosystems). Diffraction data for a single IE3–pMCC crystal were collected in the X4A beamline at the National Synchrotron Light Source at Brookhaven National Laboratory using a wavelength of 0.9795 Å and PhosphorImager plates with 2° oscillations. Data were processed with Denzo and scaled/merged with SCALEPACK (HKL Research, Inc.; reference 28). Diffraction data for a single IE3–pPCC(T102S) crystal were collected in the crystallography facility at the Howard Hughes Medical Institute using a wavelength of 1.54 Å, a Rigaku rotating anode generator, Yale mirrors, and a RAXIS IV detector with 1° oscillations. Data were processed, scaled, and merged using the BIOTEX program (Molecular Structure Corp.). Both of the crystals were of space group C2 with similar dimensions and packing, and both had two molecules in the asymmetric unit. Details of the collection and processing statistics are in Table I.

Structure Determination. The structures of IE3–pMCC and IE3–pPCC(T102S) were solved by molecular replacement using the program AMoRe (29, 30). The search model was the IE3–pHB structure with the peptide and linker removed (31). The very low resolution data (>10 Å) from the IE3–pPCC(T102S) dataset were omitted due to problems with saturation. The initial models were improved with rigid body refinement using the program Xplor/CNS (32). Multiple rounds of refinement with Xplor/CNS and model building with oxygen (33) were used to improve the model when the peptides were added. The final model of IE3–pMCC had 792 amino acids and that of IE3–pPCC(T102S) had 794 amino acids. As in the case of the other IE3 structures that we have solved, relatively weak electron density was seen for most of the linker attaching the peptide to the β chain NH2 terminus, and for the loop connecting the first and second β strands of the β2 domain. In the later stages of refinement, the following N-acetyl glucosamines were added to some asparagines based on positive electron density in Fo–Fc maps: six to the IE3–pMCC structure and four to the IE3–pPCC(T102S) structure. In addition, the following water molecules were added: 215 to the IE3–pMCC structure and 317 to the IE3–pPCC(T102S) structure. Refinement and final model statistics are listed in Table I. For figures, average structures were calculated for both molecules from the two molecules in the asymmetric units using the programs MOLEMAN and AVEPDB (34, 35). Coordinates have been submitted to the Protein Data Bank (available at http://www.rcsb.org/pdb/ under accession numbers 1KT2 and 1KTD).

Results and Discussion

The Peptide Motif for Binding to IE3. In previous studies (31, 36), we reported that the structure of the IE3 molecule
bound to two different peptides: pHb, a highly immunogenic peptide derived from an allele of the β chain of mouse hemoglobin and pHSP, a peptide derived from HSP70, which is a major self-peptide that occupies natural IEk. These structures revealed four anchor residues in each peptide interacting with four pockets in the IEk peptide binding groove (Fig. 1 A). The very hydrophobic p1 pocket accepted amino acids with aliphatic side chains (Ile in pHb and Val in pHSP). The large, somewhat hydrophobic p4 pocket was filled with a Phe in both cases. The very hydrophilic p6 pocket contained a Glu in the case of pHb. The carboxylate of this amino acid participated in an extensive hydrogen bonding network that included two IEk acidic amino acids (α111Glu and α66Asp). In the case of pHSP, the Ala at this position only filled the very top of the pocket, with an extra water molecule now maintaining the hydrogen bonding network. Finally, the p9 pocket of IEk consisted of a long tunnel culminating in a negatively charged 9Glu that formed a salt bridge with the amino group of a p9Lys at that position in both peptides.

This structural information, as well as other published data (1, 4, 37–45), were used to align and predict the anchor residues of pMCC and pPCC(T102S), as well as other peptides that are the dominant IEk epitopes in for-

Table I. Data Collection and Refinement Statistics
Data collection

Space group
Unit cell dimensions (Å)
Unit cell angles (°)
No. of molecules in AU
Resolution limits (Å)
Unique reflections
Completeness (%)
Average redundancy
Average I/σ
Rmerge (%)b

Refinement		
Resolution (Å)	20–2.8 (2.89–2.80)	10–2.4 (2.5–2.4)
Rejection criterion	F ≤ 0	F ≤ 0
Total reflections	22,378 (1,845)	35,963 (3,773)
Reflections used for Rfree	1,088 (85)	1,785 (191)
Rworking (%)	22.1 (32.2)	22.0 (31.3)
Rfree (%)	29.3 (42.2)	27.9 (36.4)
Average B factors (Å²)	47.9	48.8

Ramachandran data		
Percentage of residues in:		
Favored regions	85.7	88.0
Allowed regions	13.3	10.9
Generously allowed regions	0.8	0.9
Disallowed regions	0.3	0.1

Rmsd		
Bonds (Å)	0.0069	0.0064
Angles (°)	1.397	1.288
Bfactor main chain (1.5) (Å²)	1.95	1.31
Bfactor side chain (2.0) (Å²)	1.45	1.39
Cross-validated coord. error (Å)	0.47	0.41

Notes		
aAll data (outer shell).		
bRmerge = Σ(I –	I
cRworking/free = Σ	Fo	
dExcluding Gly and Pro.		
eTarget value.		
The page contains scientific text discussing the structures of cytochrome c peptides bound to IEκ. The text describes the alignment of these peptides and their interactions with the binding pockets of IEκ. It mentions the prediction of amino acids at specific positions based on hydrophobicity and hydrogen bonding properties. The text also discusses the results of crystal structures solved for these peptides bound to IEκ, showing that the peptide backbones are virtually identical to that of the IEκ–pHB structure. The figure shows the solvent-accessible surface of the peptide binding pockets and the electron density maps for the bound peptides.

Figure 1

Structure of pMCC and pPCC(T102S) bound to IEκ.

(A) Solvent-accessible surface (probe radius of 1.4 Å) representation of the four peptide amino acid binding pockets (p1, p4, p6, and p9) of IEκ with the side chains of four bound peptides are shown. IEκ surface colored by relative hydrophobicity (Gilliard scale). Gray, hydrophobic; white, neutral; green, hydrophilic. Peptide side chains are shown as wire frame. Yellow, carbon; blue, nitrogen; red, oxygen; cyan, water. The figure was made with Protein Explorer (http://proteomeexplorer.org).

(B) Peptide/water omit electron density map (Fo-Fc, 2.5σ) surrounding pMCC from p1 to p11. The figure was made with the Swiss PDBViewer.

(C) This shows the same as panel B for pPCC(T102S), and also shows the electron density for an extra water molecule (W) in the p9 pocket.

(D) Overlay of four peptides from IEκ structures. Cyan, pMCC; magenta, pPCC(T102S); green, pHSP; red, pHB. The structures were superimposed via the backbones of the αI and β1 domains using Swiss PDB Viewer. The figure was made with Swiss PDB Viewer.
The structure of pMCC bound to IE³ confirmed the MHCII binding motif prediction (Fig. 1, A, B, and D). Side chains from four amino acids, Ile at p1, Leu at p4, Gln at p6, and Lys at p9, filled the four IE³ pockets. Amino acids at positions p1, p6, and p9, but not at p4, were predicted by mutagenesis experiments to be important in the interaction of pMCC with IE³ (4). In these experiments virtually any amino acid could be substituted at the p4 position without penalty. These results suggest great flexibility in this large pocket in accepting amino acid side chains and relatively little contribution from the side chain to the overall energy of pMCC binding.

As expected, the pPCC(T102S) peptide bound to IE³ (Fig. 1, A, C, and D) also has the Ile at p1, Leu at p4, and Gln at p6, all in conformations very similar to those in pMCC. The structure also clearly shows the adjustment to the inserted Ala at the p9 position of the peptide. Although the side chain of the Lys at p9 of pMCC points down into the pocket, this position is occupied by the inserted Ala whose methyl side chain only fills the very top of the pocket, whereas the p10 Lys is shifted and rotated so that the side chain is now completely solvent-exposed. An extra water molecule is now found in the p9 pocket. This suggests that the loss of the buried Lys side chain is most likely a major reason for the weaker binding of pPCC compared with pMCC.

Details of the peptide interactions with IE³ in the region of the p6 and p9 pockets are shown in Fig. 3. The side chain of the p9Lys of pMCC extends through a hydrophobic tunnel to a salt bridge with β9Glu and interacts with a water molecule (W2). Other interactions at this end of the peptide include the highly conserved hydrogen bonds between β61Trp and α69Asn, the peptide backbone seen in nearly all MHCII structures, and an extensive hydrogen bond network that includes p6Gln, α66Glu, β30Tyr, and several water molecules. In the IE³–pPCC (T102S) structure, the interactions at p9 are lost and the pocket is partially filled with an extra water molecule (W4). However, the other details of the hydrogen bonding network are preserved.

The main chain of pPCC(T102S) has not kinked to maintain a Lys in the p9 pocket, but rather its path through the binding groove is identical to that of pMCC. Kinks in peptides bound to MHC class I (MHCI) are common (47, 48) and function to maintain the conserved binding of MHCI to the peptide NH₂ and COOH termini, and allow the insertion of favorable amino acid side chains in the MHCI binding pockets. However, in all solved structures of MHCII, including those presented here, the peptide takes a very similar, nearly linear course through the binding groove, held in place by hydrogen bonding between its backbone and the side chains of conserved amino acids on the MHC α helices (31, 49–53).

It is difficult to predict the net changes in the IE³–pPCC (T102S) structure if the peptide were to be kinked and rotated to preserve a Lys in the p9 pocket. The van der Waals interactions with the Lys side chain as well as the salt bridge and the hydrogen bonds to its ε-amino group, would be gained. However, it is likely that the conserved peptide backbone interactions with β61Trp and α69Asn would be lost. Also, depending on the precise nature of the kink, the hydrogen bonding network involving the p6Gln might be disturbed. Apparently, the energy gained by the new interactions would not compensate for the loss of these other interactions.

Peptide Amino Acids Interacting with αβTCRs. The interaction of IE³/pMCC and IE³/pPCC with the αβTCRs of many different T cell clones has been extensively studied. Various mutagenesis experiments have shown that the amino acids at p2, p3, p5, p7, and p8 are involved in recog-
tion by various T cell clones (4, 6). These represent all of the surface-exposed amino acids in the center of the bound peptides (Fig. 4 A). Of these, the p5Lys has been shown to be the most important. For most T cell clones, raised by immunization with pMCC or pPCC, effective stimulation is critically dependent on a Lys at this position. This Lys is directly in the center of the binding pocket with its side chain pointing up and out of the groove into the solvent.

T cell recognition of these peptides is also usually very dependent on the p8Thr. Substitution of any other amino acid at this position, even the conserved Thr to Ser substitution shown here, often compromises T cell activation. For the Thr to Ser change, the peptide is converted to a weaker agonist in that equivalent T cell activation now requires more peptide (4, 24). For one T cell clone, partial blocking of the function of CD4 with a monoclonal antibody converted this mutant peptide to an antagonist, i.e., exposure of the clone to the p8Ser peptide under these conditions inhibited its response to the wild-type peptide (54). Another mutation at this position (Thr to Gly) has also been shown to produce an even more antagonistic peptide (24).

In the region of p8, the only detectable surface structure alteration induced by the Thr to Ser substitution was the loss of the Thr side chain methyl group (Fig. 3 and Fig. 4 A). The CB carbons and hydroxyl oxygens appear to be in identical positions in both structures. The backbone of the peptide and the position of the other amino acid side chains in this region did not change significantly. Therefore, either this methyl group is an essential contact point for the αβTCR, or, less likely, its loss confers some kinetic instability to this region of the molecule that is not revealed by this static structure. As previously described, the insertion of an Ala at p9 of pPCC(T102S) has forced the Lys at p10 out of its binding pocket and onto the molecule surface. This alteration does not seem to be detected by most T cell clones, which suggests that the αβTCR does not usually contact this area of the surface.

The requirements for some of the other solvent-exposed peptide amino acids are not quite as stringent for recognition by T cell clones. For example, several receptors accept an Ala to Gly substitution at p2 or p7, but for the most part larger amino acids are not tolerated, perhaps because of steric problems rather than essential receptor–Ala contacts. Phe, or sometimes Trp but not Leu or Met, is accepted in place of the p3Tyr, which suggests that an aromatic amino acid may be essential at this position. In both of our structures, the close proximity of the Tyr aromatic ring to the side chain of the p5Lys may indicate a role for this interaction in positioning this crucial Lys for αβTCR recognition. This interaction has been suggested by nuclear magnetic resonance studies (55).

IEα Amino Acids Interacting with αβTCRs. A mutational study of IEα revealed a number of amino acids on the α and β chain that are important for the recognition of the IEβ–pMCC complex by T cells (21). In these experiments, single mutations were introduced into the IEα molecule at six positions of the α chain (α53Ser to Asn, α57Gln to Arg, α61Ala to Val, α64Ala to Val, α68Ala to Val, and α75Glu to Lys) and seven positions of the β chain (β59Glu to Lys, β64Gln to Arg, β69Glu to Lys, β73Ala to Val, β77Thr to Gly, β81His to Tyr, and β84Glu to Lys). Although no IEβ structure was available at the time, the authors predicted that these amino acids would lie on the top of the α helices based on sequence homology to MHCI (56). The IEβ structures show that this prediction was indeed correct (Fig. 4 B).

Each mutated IEβ molecule was expressed at the cell surface and tested for binding and presentation of the pMCC to four different T cell hybridomas. In general, the α chain mutations had less effect than those on the β chain, although several of the α chain substitutions were quite con-
sensitive (Ala to Val). These amino acids are colored on the surface of the IE3 molecule (Fig. 4 B) according to the effect of these mutations. Several of the mutations (B64Gln to Arg, B69Glu to Lys, and B77Thr to Gln) severely reduced the response of at least three of the hybridomas (red). Others (α61Ala to Val, α68Ala to Val, and β73Ala to Val) compromised the response of only one of the four hybridomas (orange). Mutation of B81His to Tyr (green) had no effect on three of the hybridomas, but greatly enhanced the response of the fourth. Mutations at the other positions, which were mainly at the extremities of the α helices, had no effect on T cell recognition (yellow). In total, these data suggest that the main sites of αβTCR interaction with this MHCI peptide ligand are clustered on the upward face of the complex and focused on central peptide residues and the tops of the arched α helices.

Predicted αβTCR Interactions with pMCC and pPCC. Several studies have investigated αβTCR amino acids important in IE3–pMCC and IE3–pPCC recognition. For example, experiments have been performed using pMCC and variants at position p5 and p8 to immunize mice bearing a transgene encoding either the α or β chain of an αβTCR from an IE3/pMCC–reactive T cell (20). Thus, the responding T cells had one of the αβTCR chains fixed by the transgene, whereas the other was allowed to vary. From the sequences of the CDR3s of the varying αβTCR chains, the authors argued convincingly that the p5Lys interacted with a conserved Glu at position 94 of VαCDR3, whereas the p8Thr interacted with a conserved Asn at position 97 of VβCDR3.

These two alleles of Vβ3 have been identified in mice: Vβ3a and Vβ3b (BV3S1A1 and BV3S1A2, respectively). These differ only at amino acid 31 in what is predicted to be the Vβ3 CDR1. This amino acid is Val in Vβ3a and Phe in Vβ3b. Vβ3 dominates the response to pPCC or pMCC in mouse strains that carry Vβ3a, but not in those with Vβ3b (57). Furthermore, direct mutation of amino acid 31 from Val to Phe in the receptor of a Vβ3a bearing IE3/pMCC–reactive T cell hybridoma eliminated IE3/pMCC recognition (10). These findings suggest a critical interaction between the Vβ3 CDR1 loop and the IE3–pMCC and IE3–pPCC ligand, which is disrupted by the Val to Phe substitution.

There are no crystal structures of αβTCRs bound to IE3 peptide. However, it is reasonable to hypothesize that the orientation of an αβTCR bound to IE3 will be similar to those seen in crystal structures of other αβTCR complexes with MHCI and MHCI peptide ligands (58–63). In these structures, the αβTCR sits diagonally on the top of the MHC molecule, wedged between the arches of the MHC α helices with the Vα, and Vβ CDR3s are centered over the middle of the peptide. So far, in all cases the orientation of the αβTCR has been similar with Va on the peptide NH2-terminal side and the Vβ on the peptide COOH-terminal side. Within these constraints, however, the various αβTCRs swivel by up to 35°.

Therefore, in order to interpret some of these findings we superimposed IE3–pMCC on the MHCI portion of two solved αβTCR–MHCI peptide complexes (61, 62) to predict how the CDRs of an anti–IE3/pMCC αβTCR might sit on the ligand (Fig. 5 A and B). These models strongly support the results of the mutational studies. The Vα and Vβ CDR3 loops (cyan) are predicted to lie directly over the center of the pMCC peptide. The side chain of p5Lys is in close proximity to the predicted positions of the Va94, and the side chain of p8Thr is in close proximity to the predicted positions of the Vb97. It is easy to see how mutations in either one of these peptide amino acids might alter the αβTCR binding kinetics and affinity. The predicted position of Vβ31 in Vβ CDR1 is such that a substitution of Phe for Val at this position would probably interfere with the interaction of VβCDR1 with the α helix of the IE3 α chain. The seven amino acids of IE3 that affect αβTCR interaction when mutated all lie in positions close to the αβTCR CDR loops. Overall, this model agrees remarkably with the published biochemical and mutational studies.

Figure 5. Predicted T cell receptor interactions with IE3/pMCC. (A) Top view of the solvent-accessible surface of the α1 and β1 domains of IE3–pMCC are colored white except for α61, α68, β64, β69, β73, β77, and β81, which are colored as in Fig. 4 B. A van der Waals CPK representation of the peptide is shown from p1 to p10 and is colored as in Fig. 4 A. Two αβTCRs, one from HA1.7 (specific for DR1 plus a peptide from influenza hemagglutinin) (64) and the second from D10 (specific for IAa plus a peptide from conalbumin) (65), whose structures were solved bound to their MHCI peptide ligands (61, 62), were aligned on the IE3–pMCC structure by superimposing the backbones of the MHC molecule α1 and β1 domains. Ribbons, the Vα and Vβ CDR loops (α1, α2, α3, β1, β2, and β3) of the two αβTCRs; dark green, HA1.7 αβTCR; Vα/Vβ CDR1; blue, Va/Vb CDR3; light green, D10 αβTCR; magenta, Va/Vb CDR2; cyan, Va/Vb CDR3. The positions of three αβTCR amino acids, Va94, Vb31, and Vb97, are labeled and colored red. (B) Side view of the peptide and CDR3 portions of Fig. 4 A with other parts of the molecules removed. The figures were made with WebLab ViewerPro.
We wish to thank J. Clements for technical assistance. Coordinates have been submitted to the Protein Data Bank (available at http://www.rcsb.org/pdb/ under accession numbers 1KT2 and 1KTD).

This work was supported in part by USPHS grants AI-17134, AI-18785, and AI-22295. D.H. Fremont was partially supported by Burroughs-Wellcome Fund and the Kilo Foundation during the course of this work.

Submitted: 26 November 2001
Revised: 28 February 2002
Accepted: 11 March 2002

References

1. Heber-Katz, E., R.H. Schwartz, L.A. Matis, C. Hannum, T. Fairwell, E. Appella, and D. Hansburg. 1982. Contribution of antigen-presenting cell major histocompatibility complex peptide products to the specificity of antigen-induced T cell activation. J. Exp. Med. 155:1086–1099.
2. Schwartz, R.H., A.M. Solinger, M. Ultee, and E. Margolish. 1978. Genetic control of the T-lymphocyte proliferative response to cytochrome c. Adv. Exp. Med. Biol. 98:371–386.
3. Fox, B.S., C. Chen, E. Fraga, C.A. French, B. Singh, and R.H. Schwartz. 1987. Functionally distinct agreptopic and epitopic sites. Analysis of the dominant T cell determinant of moth and pigeon cytochrome c with the use of synthetic peptide antigens. J. Immunol. 139:1578–1588.
4. Reay, P.A., R.M. Kantor, and M.M. Davis. 1994. Use of global amino acid replacements to define the requirements for MHC binding and T cell recognition of moth cytochrome c (93–103). J. Immunol. 152:3946–3957.
5. Solinger, A.M., M.E. Ultee, E. Margolish, and R.H. Schwartz. 1979. T lymphocyte response to cytochrome c. I. Demonstration of a T cell heteroclitic proliferative response and identification of a topographic antigenic determinant on pigeon cytochrome c whose immune recognition requires two complementing major histocompatibility complex-linked immune response genes. J. Exp. Med. 150:830–848.
6. Hansburg, D., T. Fairwell, R.H. Schwartz, and E. Appella. 1983. The T lymphocyte response to cytochrome c. IV. Distinguishable sites on a peptide antigen which affect antigenic strength and memory. J. Immunol. 131:319–324.
7. Sorgor, S.B., L.A. Matis, I. Engel, D.L. McElligott, P.J. Fink, and S.M. Hedrick. 1988. The influence of MHC gene products on the generation of an antigen-specific T-cell repertoire. Ann. N. Y. Acad. Sci. 532:18–32.
8. Hedrick, S.M., L.A. Matis, T.T. Hecht, L.E. Samelson, D.L. Longo, E. Heber-Katz, and R.H. Schwartz. 1982. The fine specificity of antigen and Ia determinant recognition by T cell hybridoma clones specific for pigeon cytochrome c. Cell. 30:141–152.
9. Samelson, L.E., and R.H. Schwartz. 1983. T cell clone-specific alloantisera that inhibit or stimulate antigen-induced T cell activation. J. Immunol. 131:2645–2650.
10. White, J., A. Pullen, K. Choi, P. Marrack, and J.W. Kappler. 1993. Antigen recognition properties of mutant Vβ3+ T cell receptors are consistent with an immunoglobulin-like structure for the receptor. J. Exp. Med. 177:119–125.
11. Berg, L.J., B. Fazekas de St. Groth, F. Ivars, C.C. Goodnow, S. Gilfillan, H.J. Garchon, and M.M. Davis. 1988. Expression of T-cell receptor alpha-chain genes in transgenic mice. Mol. Cell. Biol. 8:5459–5469.
12. Berg, L.J., A.M. Pullen, B. Fazekas de St. Groth, D. Mathis, C. Benoist, and M.M. Davis. 1989. Antigen/MHC-specific T cells are preferentially exported from the thymus in the presence of their MHC ligand. Cell. 58:1035–1046.
13. Kaye, J., M.L. Hsu, M.E. Sauron, S.C. Jameson, N.R. Gascoigne, and S.M. Hedrick. 1989. Selective development of CD4+ T cells in transgenic mice expressing a class II MHC-restricted antigen receptor. Nature. 341:746–749.
14. Vasquez, N.J., J. Kaye, and S.M. Hedrick. 1992. In vivo and in vitro clonal deletion of double-positive thymocytes. J. Exp. Med. 175:1307–1316.
15. van Ewijk, W., Y. Ron, J. Monaco, J. Kappler, P. Marrack, M. Le Meur, P. Gerlinger, B. Durand, C. Benoist, and D. Mathis. 1988. Compartmentalization of MHC class II gene expression in transgenic mice. Cell. 53:357–370.
16. Bill, J., and E. Palmer. 1989. Positive selection of CD4+ T cells mediated by MHC class II-bearing stromal cell in the thymic cortex. Nature. 341:649–651.
17. Fink, P.J., L.A. Matis, D.L. McElligott, M. Bookman, and S.M. Hedrick. 1986. Correlations between T-cell specificity and the structure of the antigen receptor. Nature. 321:219–226.
18. Fink, P.J., L.A. Matis, S.B. Sorger, and S.M. Hedrick. 1988. The structure of the T cell receptor for antigen is correlated with T cell specificity. Year Immunol. 3:62–79.
19. Kaye, J., N.J. Vasquez, and S.M. Hedrick. 1992. Involvement of the same region of the T cell antigen receptor in thymic selection and foreign peptide recognition. J. Immunol. 148:3342–3353.
20. Jorgensen, J.L., U. Esser, B. Fazekas de St. Groth, P.A. Reay, and M.M. Davis. 1992. Mapping T-cell receptor-peptide contacts by variant peptide immunization of single-chain transgensics. Nature. 355:224–230.
21. Ehrich, E.W., B. Devaux, E.P. Rock, J.L. Jorgensen, M.M. Davis, and Y.H. Chien. 1993. T cell receptor interaction with peptide/major histocompatibility complex (MHC) and superantigen/MHC ligands is dominated by antigen. J. Exp. Med. 178:713–722.
22. Lamont, A.G., A. Sette, and H.M. Grey. 1990. Inhibition of antigen presentation in vitro and in vivo by MHC antagonist peptides. Int. Rev. Immunol. 6:49–59.
23. Spain, L.M., J.L. Jorgensen, M.M. Davis, and L.J. Berg. 1994. A peptide antigen antagonist prevents the differentiation of T cell receptor transgenic thymocytes. J. Immunol. 152:1709–1717.
24. Lyons, D.S., S.A. Lieberman, J. Hampf, J.J. Boniface, Y. Chien, L.J. Berg, and M.M. Davis. 1996. A TCR binds to antagonist ligands with lower affinities and faster dissociation rates than to agonists. Immunity. 5:53–61.
25. Kozono, H., J. White, J. Clements, P. Marrack, and J. Kappler. 1994. Production of soluble MHC class II proteins with covalently bound single peptides. Nature. 369:151–154.
26. Kozono, H., D. Parker, J. White, P. Marrack, and J. Kappler. 1995. Multiple binding sites for bacterial superantigens on soluble class II MHC molecules. Immunity. 3:187–196.
27. Liu, C.P., D. Parker, J. Kappler, and P. Marrack. 1997. Selection of antigen-specific T cells by a single IEk peptide combination. J. Exp. Med. 186:1441–1450.
28. Otwinowski, Z., and W. Minor. 1997. Processing of X-ray diffraction data collected in oscillation mode. In Macromolecular Crystallography Part A. C.W.J. Carter, and R.M. Sweet, editors. Academic Press Inc., Orlando, FL. 307–326.
29. CCP4. 1994. The CCP4 suite: programs for protein crystal-
lography. *Acta Crystallogr. D. Biol. Crystallogr.* 50:760–763.

30. Navaraza, J. 1994. AMoRe: an automated package for molecular replacement. *Acta Crystallogr. A. Biol. Crystallogr.* 50:157–163.

31. Fremont, D.H., W.A. Hendrickson, P. Marrack, and J. Kappler. 1996. Structures of an MHC class II molecule with covalently bound single peptides. *Science.* 272:1001–1004.

32. Brunger, A.T., P.D. Adams, G.M. Clore, W.L. DeLano, P. Gros, R.W. Grosse-Kunstleve, J.S. Jiang, J. Kuszewski, M. Nilges, N.S. Pannu, et al. 1998. Crystallography and NMR system: a new software suite for macromolecular structure determination. *Acta Crystallogr. D Biol. Crystallogr.* 54:905–921.

33. Jones, T.A., and M. Kjeldgaard. 1997. Electron-density map interpretation. *Methods Enzymol.* 277:173–207.

34. Kleywegt, G.J., and T.A. Jones. 1996. xdlMAPMAN and xdlDATAMAN - programs for reformatting, analysis and manipulation of biomacromolecular electron-density maps and reflection data sets. *Acta Crystallogr. D.* 52:826–828.

35. Kleywegt, G.J., J.Y. Zou, M. Kjeldgaard, and T.A. Jones. 2001. Around O. *In International Tables for Crystallography, Volume F.* Crystallography of Biological Macromolecules. M.G. Rossmann and E. Arnold, editors. Dordrecht: Kluwer Academic Publishers, The Netherlands. 353–367.

36. Kersh, G.J., M.J. Milly, C.A. Nelson, A. Grakoui, S. Horvath, D.L. Donemeyer, J. Kappler, P.M. Allen, and D.H. Fremont. 2001. Structural and functional consequences of altering a peptide MHC anchor residue. *J. Immunol.* 166:3345–3354.

37. Evavold, B.D., and P.M. Allen. 1992. Dissection of the Hb(64–76) determinant reveals that the T cell receptor may have the capacity to differentially signal. *Adv. Exp. Med. Biol.* 323:17–21.

38. Marrack, P., I. Ignatowicz, J.W. Kappler, J. Boymel, and J.H. Freed. 1993. Comparison of peptides bound to spleen and thymus class II. *J. Exp. Med.* 178:2173–2183.

39. Buus, S., A. Sette, S.M. Colom, C. Miles, and H.M. Grey. 1987. The relation between major histocompatibility complex (MHC) restriction and the capacity of Ia to bind immunogenic peptides. *Science.* 235:1353–1358.

40. Livingstone, A.M., and C.G. Fathman. 1987. The structure of T-cell epitopes. *Annu. Rev. Immunol.* 5:477–501.

41. Finnegan, A., M.A. Smith, J.A. Smith, J. Berzofsky, D.H. Sachs, and R.J. Hodes. 1986. The T cell repertoire for recognition of a phylogenetically distant protein antigen. Peptide specificity and MHC restriction of staphylococcal nuclease-specific T cell clones. *J. Exp. Med.* 164:897–910.

42. Safley, S.A., P.E. Jensen, P.A. Reay, and H.K. Ziegler. 1995. Mechanisms of T cell epitope immunodominance analyzed in murine listeriosis. *J. Immunol.* 155:4355–4366.

43. Smith, C.A., C.M. Graham, and D.B. Thomas. 1994. Productive re-arrangement at both alleles of the T-cell receptor beta-chain locus in CD4 T-cell clones specific for influenza haemagglutinin. *Immunology.* 81:502–506.

44. Cease, K.B., H. Margalit, J.L. Corneight, S.D. Putney, W.G. Robey, C. Ouyang, H.Z. Streicher, P.J. Fischinger, R.C. Gallo, C. DeLisi, et al. 1987. Helper T-cell antigenic site identification in the acquired immunodeficiency syndrome virus gp120 envelope protein and induction of immunity in mice to the native protein using a 16-residue synthetic peptide. *Proc. Natl. Acad. Sci. USA.* 84:4249–4253.

45. Schild, H., U. Grunenberg, G. Pougals, H.J. Wallny, W. Keilholz, S. Stevanovic, and H.G. Rammensee. 1995. Natural ligand motifs of H-2E molecules are allele specific and illustrate homology to HLA-DR molecules. *Int. Immunol.* 7:1957–1965.

46. Guex, N., and M.C. Peitsch. 1997. SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modeling. *Electrophoresis.* 18:2714–2723.

47. Fremont, D.H., M. Matsumura, E.A. Stura, P.A. Peterson, and I.A. Wilson. 1992. Crystal structures of two viral peptides in complex with murine MHC class I H-2Kb. *Science.* 257:919–927.

48. Madden, D.R., D.N. Garboczi, and D.C. Wiley. 1993. The antigenic identity of peptide-MHC complexes: a comparison of the conformations of five viral peptides presented by HLA-A2. *Cell.* 75:693–708.

49. Stern, L.J., J.H. Brown, T.S. Jardetzky, J.C. Gorga, R.G. Urban, J.L. Strominger, and D.C. Wiley. 1994. Crystal structure of the human class II MHC protein HLA-DR1 complexed with an influenza virus peptide. *Nature.* 368:215–221.

50. Scott, C.A., P.A. Peterson, L. Teyton, and I.A. Wilson. 1998. Crystal structures of two I-Ad-peptide complexes reveal that high affinity can be achieved without large anchor residues. *Immunity.* 8:319–329.

51. Fremont, D.H., D. Monnaie, C.A. Nelson, W.A. Hendrickson, and E.R. Unanue. 1998. Crystal structure of I-Ak in complex with a dominant epitope of lysozyme. *Immunity.* 8:365–371.

52. Latek, R.R., A. Suri, S.J. Petzold, C.A. Nelson, O. Kana-gawa, E.R. Unanue, and D.H. Fremont. 2000. Structural basis of peptide binding and presentation by the type I diabetes-associated MHC class II molecule of NOD mice. *Immunity.* 12:699–710.

53. Lee, K.H., K.W. Wucherpfennig, and D.C. Wiley. 2001. Structure of a human insulin peptide-HLA-DQ8 complex and susceptibility to type 1 diabetes. *Nat. Immunol.* 2:501–507.

54. Rabinowitz, J.D., C. Beeson, C. Wulffing, K. Tate, P.M. Allen, M.M. Davis, and H.M. McConnell. 1996. Altered T cell receptor ligands trigger a subset of early T cell signals. *Immunity.* 5:125–135.

55. Driscoll, P.C., J.D. Altman, J.J. Boniface, K. Sakaguchi, P.A. Reay, J.G. Omichinski, E. Appella, and M.M. Davis. 1993. Two-dimensional nuclear magnetic resonance analysis of a labeled peptide bound to a class II major histocompatibility complex molecule. *J. Mol. Biol.* 232:342–350.

56. Brown, J.H., T. Jardetzky, M.A. Saper, B. Samraoui, P.J. Bjorkman, and D.C. Wiley. 1988. A hypothetical model of the foreign antigen binding site of class II histocompatibility molecules. *Nature.* 323:845–850.

57. Gahm, S.J., B.J. Fowlkes, S.C. Jameson, N.R. Gascoigne, M.M. Cotterman, O. Kanagawa, R.H. Schwartz, and L.A. Matis. 1991. Profound alteration in an alpha beta T-cell antigen receptor repertoire due to polymorphism in the first complementarity-determining region of the beta chain. *Proc. Natl. Acad. Sci. USA.* 88:10267–10271.

58. Garcia, K.C., M. Degano, A. Brumack, M.R. Jackson, P.A. Peterson, L. Teyton, and I.A. Wilson. 1996. An alphabeta T cell receptor structure at 2.5 A and its orientation in the TCR–MHC complex. *Science.* 274:209–219.

59. Garboczi, D.N., P. Ghosh, U. Utz, Q.R. Fan, W.E. Biddis-son, and D.C. Wiley. 1996. Structure of the complex between human T-cell receptor, viral peptide and HLA-A2. *Nature.* 384:134–141.
60. Wilson, I.A., and K.C. Garcia. 1997. T-cell receptor structure and TCR complexes. *Curr. Opin. Struct. Biol.* 7:839–848.

61. Reinherz, E.L., K. Tan, L. Tang, P. Kern, J. Liu, Y. Xiong, R.E. Hussey, A. Smolyar, B. Hare, R. Zhang, et al. 1999. The crystal structure of a T cell receptor in complex with peptide and MHC class II. *Science.* 286:1913–1921.

62. Hennecke, J., A. Carfi, and D.C. Wiley. 2000. Structure of a covalently stabilized complex of a human alphabeta T-cell receptor, influenza HA peptide and MHC class II molecule, HLA-DR1. *EMBO J.* 19:5611–5624.

63. Reiser, J.B., C. Darnault, A. Guimezanas, C. Gregoire, T. Mosser, A.M. Schmitt-Verhulst, J.C. Fontecilla-Camps, B. Malissen, D. Houset, and G. Mazza. 2000. Crystal structure of a T cell receptor bound to an allogeneic MHC molecule. *Nat. Immunol.* 1:291–297.

64. Lamb, J.R., D.D. Eckels, P. Lake, J.N. Woody, and N. Green. 1982. Human T-cell clones recognize chemically synthesized peptides of influenza haemagglutinin. *Nature.* 300:66–69.

65. Kaye, J., S. Porcelli, J. Tite, B. Jones, and C.A. Janeway, Jr. 1983. Both a monoclonal antibody and antisera specific for determinants unique to individual cloned helper T cell lines can substitute for antigen and antigen-presenting cells in the activation of T cells. *J. Exp. Med.* 158:836–856.