Dynamical spin response of electron doped Mott insulators on a triangular lattice

Bin Liu1* and Ying Liang2

1Department of Physics, Beijing Jiaotong University, Beijing 100044, China
2Department of Physics, Beijing Normal University, Beijing 100875, China

The spin dynamics of electron doped Mott insulators on a triangular lattice is studied based on the t-J model. It is found that the particularly universal behaviors of integrated dynamical spin structure factor seen in the doped Mott insulators on a square lattice, are absent in the doped Mott insulators on a triangular lattice, indicating the presence of the normal state gap. As a result, the spin-lattice relaxation rate $1/T_1$ divided by T reduces with decreasing temperatures in the temperature region above $0.2J\approx 50K$, then follows a Curie-Weiss-like behavior at the temperature less than 50K, in qualitative agreement with experimental observations.

PACS numbers: 71.70.Ej, 73.20.At, 74.20.-z

I. INTRODUCTION

In the past few years, the discovery of superconductivity in layered cobalt oxides $\text{Na}_x\text{CoO}_2\cdot y\text{H}_2\text{O}$ has attracted considerable attention among the condensed matter physics society. Although the superconducting transition temperature $(T_c\approx 4.5K)$ is very low, the layered electronic structure and the dome-shaped behavior of T_c suggest this hydrated compound may be another doped Mott insulator2,3. In contrast to the cuprate superconductors with a square lattice of CuO$_2$ planes, the parent compound Na_xCoO_2 is composed of two-dimensional (2D) CoO$_2$ layer with triangular geometry. This geometry frustration results in some novel electronic and magnetic phases, for instance, the Anderson’s resonating valence state4 and the strong topological frustration phases5,6. With the doping variation, Na_xCoO_2 displays rich and complicated phase diagram2,3. In particular, superconductivity appears around $x = 0.3$ when water molecules are intercalated between the CoO$_2$ layers4,5.

Although extensive researches on this compound have been done in both experimental and theoretical sides, the doping dependent magnetic properties still remain unclear. The local spin density approach6 predicted ferromagnetic coupling within 2D CoO$_2$ layer for nearly all electron doping $0.3 \leq x \leq 0.7$. In fact, up to now, only at large doping neutron scattering studies and time-of-flight experiments on $\text{Na}_{0.75}\text{CoO}_2$ and $\text{Na}_{0.82}\text{CoO}_2$7,8 respectively, present low-energy fluctuations characteristic of A-type antiferromagnetism: antiferromagnetically coupled ferromagnetic layers. However, with the decreasing of Na content, a series of nuclear magnetic resonance (NMR)9,10 and nuclear quadrupole resonance (NQR)11-13 as well as Knight shift measurement14 show the presence of strong 2D antiferromagnetic (AF) spin correlations and suggest the possibility of the spin-singlet superconductivity. That is to say the 2D AF spin correlations may be realized in the region of small x value for Na_xCoO_2. Starting from ab-inito band structure calculations, Korshunov and co-workers have estimated a certain critical concentration x_m, below which the magnetic susceptibility within the CoO$_2$ plane shows a tendency towards AF fluctuations14. The recent correlation effects on the doped Na_xCoO_2 via a cellular cluster approach has confirmed and explained such in-plane magnetic transition from FM tendencies towards to AF15.

Recently, the surface-sensitive angle resolved photo emission spectroscopy (ARPES) experiments16-19 observe a doping-dependent evolution of the fermi surface, which is found to be centered around the Γ point with a mostly a_{1g} character and no sign of six pockets resulting from the e_g band predicted by local density approximation calculations8 for a wide of Na concentrations. This indicates the importance of the electronic corrections in the doped Na_xCoO_2. Therefore, as discussed by many researchers5,6,20,21, an effective single band low-energy model suffices to capture the essential physics of electron-doped cobaltate Na_xCoO_2. With this consideration in mind, in this paper we also take a single band t-J model as our starting point to discuss its unusual dynamical spin response. Since the AF fluctuations within the CoO$_2$ planes may be realized in the low electron doping range, we are focusing on such region in our calculations below. We find that the particularly universal behaviors of integrated dynamical spin structure factor seen in the doped cuprates, are absent in the doped cobaltates, indicating the presence of the normal state gap. We also find that the spin-lattice relaxation rate $1/T_1$ divided by T reduces with decreasing temperatures in the temperature region above $0.2J\approx 50K$, then follows a Curie-Weiss-like behavior at the temperature less than 50K originating from the strong AF fluctuations, in qualitative agreement with experimental observations11,12. Our results also show that AF fluctuations within the CoO$_2$ plane gradually weaken with increasing electron doping.

II. THE t-J MODEL AND FERMION-SPIN THEORY

It has been argued that the essential physics of the doped CoO$_2$ plane is contained in the t-J model on a
where the summation is over all sites i, and for each i, over its nearest-neighbor \hat{n}_i, $C_{i\sigma}^\dagger$ ($C_{i\sigma}$) is the electron creation (annihilation) operator, $S_i = C_{i\uparrow}^\dagger \sigma C_{i\downarrow}$ is the spin operator with $\sigma = (\sigma_x, \sigma_y, \sigma_z)$ as the Pauli matrices, μ is the chemical potential, and the projection operator P removes zero occupancy, i.e., $\sum_\sigma C_{i\sigma}^\dagger C_{i\sigma} \geq 1$. In the past fifteen years, some useful methods have been proposed to treat the no double occupancy local constraint in hole doped cuprates. In particular, a fermion-spin theory based on the partial charge-spin separation has been developed to study the physical properties of doped cuprates, where the no double occupancy local constraint can be treated properly in analytical calculations.

To apply this theory in the electron doped cuprates, the t-J model (1) can be rewritten in terms of a particle-hole transformation $C_{i\sigma} \rightarrow f_{i\downarrow \sigma}$ as,

$$\begin{align*}
H &= -t \sum_{i\bar{j}\sigma} f_{i\sigma}^\dagger f_{i\bar{j}\sigma} + \mu \sum_{i\sigma} f_{i\sigma}^\dagger f_{i\sigma} + J \sum_{i\bar{j}} S_i \cdot S_{i\bar{j}}, \\
&= \sum_{i\bar{j}\sigma} \left(H_{t}\right)_{i\bar{j}\sigma} + \sum_{i\sigma} \left(H_{\mu}\right)_{i\sigma} + J \sum_{i\bar{j}} S_i \cdot S_{i\bar{j}},
\end{align*}$$

supplemented by the local constraint $\sum_\sigma f_{i\sigma}^\dagger f_{i\sigma} \leq 1$ to remove double occupancy, where for convenience, we have set $t = -t_c < 0$, $f_{i\sigma}$ is the hole creation (annihilation) operator. Then the hole operators can be decoupled as, $f_{i\uparrow} = a_{i\uparrow}^\dagger S_i^+$ and $f_{i\downarrow} = a_{i\downarrow}^\dagger S_i^+$, in the charge-spin separation fermion-spin theory, the spinful fermion operator $a_{i\sigma} = e^{-i\phi_{i\sigma}} a_i$ describes the charge degree of freedom together with some effects of the spin configuration rearrangements due to the presence of the doped electron itself (charge carrier), while the spin operator S_i describes the spin degree of freedom (spin), then the single occupancy local constraint, $\sum_\sigma f_{i\sigma}^\dagger f_{i\sigma} = S_i^+ a_{i\uparrow} a_{i\downarrow}^\dagger S_i^- + S_i^- a_{i\downarrow} a_{i\uparrow}^\dagger S_i^+$, is $1 - a_{i\uparrow}^\dagger a_{i\downarrow}^\dagger \leq 1$, is satisfied in analytical calculations. In this charge-spin separation fermion-spin representation, the low-energy behavior of the t-J model (2) can be expressed as

$$\begin{align*}
H &= -t \sum_{i\bar{j}} \left(a_{i\sigma}^\dagger a_{i\sigma}^\dagger S_i^+ + a_{i\sigma} a_{i\sigma}^\dagger S_i^- \right) - \mu \sum_{i\sigma} a_{i\sigma}^\dagger a_{i\sigma} + J_{\text{eff}} \sum_{i\bar{j}} S_i \cdot S_{i\bar{j}},
\end{align*}$$

where $J_{\text{eff}} = (1 - x)^2 J$, and $x = \langle a_{i\sigma}^\dagger a_{i\sigma} \rangle = \langle a_{i\sigma}^\dagger a_{i\sigma}^\dagger \rangle$ is the electron doping concentration. In this case, the magnetic energy (J) term in the t-J model is only to form an adequate spin configuration, while the kinetic energy (t) term has been transferred to the charge carrier-spin interaction, which dominates the essential physics.

In the framework of the charge-spin separation, the basic low-energy excitations are charge carriers and spins. It has been shown that the charge dynamics is mainly governed by the scattering from the charge carriers due to the spin fluctuation, while the spin fluctuations couple only to the spin and therefore no composition law is required in discussing the spin dynamics, but the effect of charge carriers is still considered through the charge carrier’s order parameter ϕ entering the spin propagator. In this case, the spin dynamics of the doped square antiferromagnet has been discussed by considering the spin fluctuation around the mean-field solution, where the spin part is treated by the loop expansion to the second order. Following their discussions, we can obtain the dynamical spin structure for the electron doped cuprates as

$$S(k, \omega) = \text{Re} \int_0^\infty dt e^{i\omega(t-t')} D(k, t-t').$$

respectively, where the full spin Green’s function, $D^{-1}(k, \omega) = D^{(0)}(k, \omega) - \Sigma_s(k, \omega)$, with the mean-field (MF) spin Green’s functions $D^{(0)}(k, \omega) = (\omega^2 - \omega^2) / B_k$, and the second-order spin self-energies from the charge carrier pair bubble,

$$\begin{align*}
\Sigma_s(k, \omega) &= \left(\frac{Z}{N} \right)^2 \sum_{p,p'} \left(\gamma^2_{p'+p} + \gamma^2_{p'k} \right) \frac{B_{k+p}}{2\omega_{k+p}} \\
&\times \left(\frac{F_1^s(k, p, p')}{\omega + \xi_{p+p'} - \xi_{p'} - \omega_{k+p}} - \frac{F_2^s(k, p, p')}{\omega + \xi_{p+p'} - \xi_{p'} + \omega_{k+p}} \right)
\end{align*}$$

where Z is the number of the nearest neighbor sites, $B_k = \lambda[2\chi^2(\epsilon_{gk} - 1) + \chi(\gamma_k - \epsilon)]$, $\lambda = 2ZJ_{\text{eff}}$, $\epsilon = 1 + 2t\phi / J_{\text{eff}}$, $\gamma_k = [\cos(k_x + 2\cos(k_z/2) \cos(\sqrt{3}k_y/2))] / 3$, the spin correlation function $\chi^2 = \langle S_i^+ S_i^+ \rangle$, $F_1^s(k, p, p') = n_F(\xi_{p'}) \left[1 - n_F(\xi_{p'}) \right] - n_F(\xi_{p'}) \left[1 - n_F(\xi_{p'}) \right]$, $F_2^s(k, p, p') = n_F(\xi_{p+p'}) \left[1 - n_F(\xi_{p'}) \right] + [1 + n_F(\xi_{p+p'}) - n_F(\xi_{p+p'} - n_F(\xi_{p'}))]$, and $n_F(\xi)$ are the boson and fermion distribution functions, respectively. The MF charge carrier and spin spectra are given by $\xi_k = Z\chi_k - \mu$, and $\omega^2 = A_1(\gamma_k)^2 + 2A_2\gamma_k + 3A_3$, respectively, with $A_1 = \alpha \lambda^2 (\epsilon^2 + \chi^2 / 2)$, $A_2 = -\epsilon \lambda^2 [\alpha (\epsilon^2 + \chi^2 / 2) + (\alpha C^2 + (1 - \alpha) / (4\chi^2) - \alpha \chi^2) / (2\chi^2)]$, $A_3 = \lambda^2 [\alpha C^2 + (1 - \alpha) / (4\chi^2) - \alpha \chi^2 / (2\chi^2)]$, and the spin correlation function $\chi^2 = \langle S_i^+ S_i^+ \rangle$, $C = (1/2Z^2) \sum_{q'q} \langle S_{i+q'}^+ S_{i+q'}^- \rangle$, and $C^2 = (1/2Z^2) \sum_{q'q} \langle S_{i+q'}^+ S_{i+q'}^- \rangle$. In order not to violate the sum rule of the correlation function $\langle S_i^+ S_i^+ \rangle = 1/2$ in the case without AF long-range order, the important decoupling parameter α has been introduced in the MF calculation, which can be regarded as a vertex correction. All the above MF order parameters, decoupling parameter α, and chemical potential μ are determined by the self-consistent calculation.
III. NUMERICAL RESULTS AND DISCUSSIONS

![Graph](image)

FIG. 1: The integrated dynamical spin structure factor at the doping (a) $x = 0.33$ and (b) $x = 0.30$ with the temperature $T = 0.3J$ (dashed-dotted line), $T = 0.4J$ (dotted line), and $T = 0.6J$ (solid line) for the parameter $t/J = -2.5$. Inset: the numerical simulation taken from Ref. [27].

![Graph](image)

FIG. 2: The integrated dynamical spin structure factor at the doping (a) $x = 0.33$ and (b) $x = 0.30$ with the temperature $T = 0.7J$ (dashed-dotted line), $T = 0.8J$ (dotted line), and $T = 0.9J$ (solid line) for the parameter $t/J = -2.5$.

For understanding the dynamic spin response of the electron doped cobaltates, we have calculated the integrated dynamical spin structure factor, which can be expressed as

$$
\bar{S}(\omega, T) = S_L(\omega) + S_L(-\omega) = (1 + e^{-\beta \omega})S_L(\omega)
$$

The numerical results of the integrated dynamical spin structure factor at doping (a) $x = 0.33$ and (b) $x = 0.30$ with the temperature $T = 0.3J$ (dashed-dotted line), $T = 0.4J$ (dotted line), and $T = 0.6J$ (solid line) for the parameter $t/J = -2.5$ are plotted in Fig. 1. It is shown that the integrated dynamical spin structure factor decreases with increasing energies for $\omega < 0.3t$, and almost constant for $\omega \geq 0.3t$, which is similar to the case of doped cuprates. It has been discussed that the universal behavior of the integrated dynamical spin structure factor in the doped cuprates is due to the absence of the normal state gap in the electron density of states. However, in the doped cobaltates, the normal state gap opens, which is mainly induced by the frustrated spin. Since in the charge-spin separation framework the spin dynamics is dominated by the scattering of spins, which are strongly renormalized because of the strong interactions with fluctuations of surrounding charge carrier excitations. The frustrated spin moves in the background of the charge carriers, and the cloud of distorted charge carriers background is to follow the frustrated spins, which leads to the anomalous spin dynamics in the doped cobaltates. In other words, the origin of the absence of the particularly universal behavior of the integrated dynamical spin structure factor in the doped cobaltates at low energy originates from the normal-state gap due to the magnetic frustration. In order to show this normal state gap clearly, we calculate the $\bar{S}(\omega, T)$ at higher temperature as shown in Fig. 2, where the parameters are the same with the Fig. 1 except for the temperature $T = 0.7J$ (dashed-dotted line), $T = 0.8J$ (dotted line), and $T = 0.9J$ (solid line). In Fig. 2, the temperature dependent integrated dynamical spin structure factor nearly degenerates and doesn’t show a deviation at low energy seen in Fig. 1. This universal behavior of the integrated dynamical spin structure factor exists for the whole temperature range is similar to the case of doped cuprates. From Fig. 1 and Fig. 2, we estimate the normal state gap opens at temperature $T_{gap} \approx 0.7J$. According to our estimation $J \approx 250K$, we get the $T_{gap} \approx 160K$, very close to the experiments.

Now we turn our attention to discuss the spin-lattice relaxation rate $1/T_1$. Theoretically, the spin contributions to the spin-lattice relaxation rate $1/T_1$ divided by T may be written using the imaginary part of the Co
dynamical electron spin-susceptibility $\chi''(k, \omega)$ as

$$\frac{1}{T_1 T} = \frac{2\gamma_i^2 k_B}{g^2 \mu_B^2} \lim_{\omega \to 0} \sum_k |A(k)|^2 \frac{\chi''(k, \omega)}{\omega}, \quad (7)$$

where $\chi''(k, \omega) = [1 + n_B(\omega)]^{-1} S(k, \omega)$, g is the g factor, μ_B is the Bohr magneton, and $A(k) = \sum_i A_i e^{ikr_i}$, where A_i is the hyperfine coupling between the electron spin and the nuclear spin having gyromagnetic ratio γ_i^{20} and is to be approximated to a constant in our calculation. The relaxation rate $1/T_1 T$ follows a Curie-Weiss-like behavior due to the existence of strong AF fluctuations. However, at the doping $x=0.40$ (dotted line), although the normal state gap still exits at high temperature, Curie-Weiss-like behavior at low temperature disappears, indicating that AF-fluctuations have become weak with the increasing doping. These results are in good agreement with the recent experiments. At the high doping $x > 0.4$, the neutron scattering studies and time-of-flight experiments on Na$_{0.75}$CoO$_2$ and Na$_{0.82}$CoO$_2$ respectively, have observed the ferromagnetic correlation in the 2D CoO$_2$ plane. Therefore, the magnetic fluctuation in the 2D CoO$_2$ plane has been affected by the electron doping, i.e., the magnetic fluctuation is doping dependent. The later ab-initio band structure calculations for Na$_x$CoO$_2$ have given a certain critical value $x_m = 0.56 \sim 0.68$. The magnetic susceptibility in the CoO$_2$ plane shows a tendency towards the AF state below x_m.

IV. SUMMARY

In summary, we have studied the dynamical spin response in the electron doped cobaltates within the t-J model. We have shown that due to the presence of normal state gap, the particularly universal behaviors of integrated dynamical spin structure factor seen in the doped cuprates at the low energy, are absent in the doped Mott insulators on a triangular lattice. We have also shown that the spin-lattice relaxation rate $1/T_1$ divided by T reduces with decreasing temperature in the temperature region above 0.2J≈50K, then follows a Curie-Weiss-like behavior at the temperature less than 50K originating from the strong antiferromagnetic fluctuations, in qualitative agreement with experiments. Our results also indicate that the electron doping plays an important role in altering the magnetic properties of the CoO$_2$ plane.

V. ACKNOWLEDGMENTS

This work was supported by the National Natural Science Foundation of China (NSFC) under Grants No. 11104011, Fundamental Research Funds for the Central Universities in China under Grant No. 2011JBM126, Research Funds of Beijing Jiaotong University under Grant No. 2011RC027, and National Basic Research Program of China under Grant No. 2011CB900102. We thank helpful discussions with Shiping Feng, I. Eremin, M.M. Korshunov, and Guo-qing Zheng.

*liubin@bjtu.edu.cn

* K. Takada, H. Sakurai, E. Takayama-Muromachi, F. Izumi, R.A. Dilanian, and T. Sasaki, Nature 422, 53 (2003).
R.E. Schaak, T. Klimczuk, M.L. Foo, and R.J. Cava, Nature 424, 527 (2003).

P.W. Anderson, Mater. Res. Bull. 8, 153 (1973); P.W. Anderson, Science 235, 1196 (1987).

G. Baskaran, Phys. Rev. Lett. 91, 097003 (2003).

Bin Liu, Ying Liang, Shiping Feng, and Wei Ye Chen, Commun. Theor. Phys 43, 1127 (2005); Bin Liu, Ying Liang, and Shiping Feng, Int. J. Mod. Phys. B 19, 73 (2005).

M.L. Foo, YaYu Wang, Satoshi Watauchi, H.W. Zandbergen, Tao He, R.J. Cava, and N.P. Ong, Phys. Rev. Lett. 92, 247001 (2004).

D.J. Singh, Phys. Rev. B. 68, 020503 (2003).

A. T. Boothroyd, R. Coldea, D. A. Tennant et al., Phys. Rev. Lett. 92, 197201 (2004).

S. P. Bayrakci, I. Mirebeau, P. Bourges et al., Phys. Rev. Lett. 94, 157205 (2005).

M. Yokoi, T. Motoyoshi, Y. Kobayashi, M. Soda, Y. Yasui, and M. Sato, J. Phys. Soc. Jpn. 74, 3046 (2005).

T. Fujimoto, Guo-qing Zheng, Y. Kitaoka, R. L. Meng, J. Cmaidalka, and C. W. Chu, Phys. Rev. Lett. 92, 047004 (2004); Guo-qing Zheng, K. Matano, R. L. Meng, J. Cmaidalka, and C. W. Chu, J. Phys. Condens. Matter 18, 63 (2006).

Guo-qing Zheng, K. Matano, D.P. Chen, and C.T. Lin, Phys. Rev. B. 73, 180503(R) (2006).

M.M. Korshunov, I. Eremin, A. Shorikov, V.I. Anisimov, M. Renner, and W. Brenig, Phys. Rev. B 75, 094511 (2007).

Frank Lechermann, Phys. Rev. Lett. 102, 046403 (2009).

M. Z. Hasan, Y. D. Chuang, D. Qian et al., Phys. Rev. Lett. 92, 246402 (2004); H. B. Yang, S. C. Wang, A. K. P. Sekharan et al., Phys. Rev. Lett. 92, 246403 (2004).

H.-B. Yang, S.-C. Wang, A. K. P. Sekharan, H. Matsui, S. Souma, T. Sato, T. Takahashi, T. Takeuchi, J. C. Cam-