Prevalence of antibiotic resistance in multi-drug resistant coagulase-negative staphylococci isolated from invasive infection in very low birth weight neonates in two Polish NICUs

Monika Brzychczy-Wloch¹, Maria Borszewska-Kornacka², Ewa Gulczynska³, Jadwiga Wojkowska-Mach¹, Małgorzata Sulik⁴, Monika Grzebyk¹, Małgorzata Luchter¹, Piotr B Heczko¹ and Małgorzata Bulanda⁵

Abstract

Background: Multi-drug resistant coagulase-negative staphylococci (CNS) have become an increasing problem in nosocomial infections connected with the presence of medical devices. The paper aimed to analyze the prevalence of antibiotic resistance in CNS isolated from invasive infection in very low birth weight (VLBW) neonates.

Methods: Continuous prospective target surveillance of infections was conducted in 2009 at two Polish NICUs that participated in the Polish Neonatology Surveillance Network (PNSN). The study covered 386 neonates with VLBW (≤1500 g), among which 262 cases of invasive infection were detected with predominance of CNS (123; 47%). Altogether, 100 CNS strains were analyzed. The resistance phenotypes were determined according to EUCAST. Resistance genes: mecA, ermA, ermB, ermC, msrA, aac(6')/aph(2''), ant(4')-Ia and aph(3')-IIIa were detected using multiplex PCR.

Results: The most common species was S. epidermidis (63%), then S. haemolyticus (28%) and other CNS (9%). Among S. epidermidis, 98% of isolates were resistant to methicillin, 90% to erythromycin, 39% to clindamycin, 95% to gentamicin, 60% to amikacin, 36% to ofloxacin, 2% to tigecycline, 3% to linezolid and 13% to teicoplanin. Among S. haemolyticus isolates, 100% were resistant to methicillin, erythromycin and gentamicin, 18% to clindamycin, 50% to amikacin, 86% to ofloxacin, 14% to tigecycline and 4% to teicoplanin. No resistance to linezolid was detected for S. haemolyticus isolates. Moreover, all isolates of S. epidermidis and S. haemolyticus were susceptible to vancomycin. The mecA gene was detected in 98% of S. epidermidis isolates and all of S. haemolyticus ones. Among macrolide resistance isolates, the ermC was most common in S. epidermidis (60%) while msrA was prevalent in S. haemolyticus (93%). The ermC gene was indicated in all isolates with cMLSb, whereas msrA was found in isolates with MSb phenotype. Of the aminoglycoside resistance genes, aac(6')/aph(2'') were present alone in 83% of S. epidermidis, whereas aac(6')/aph(2'') with aph(3')-IIIa were predominant in 84% of S. haemolyticus.

Conclusions: Knowing the epidemiology and antibiotic resistance of CNS isolated from invasive infection in VLBW neonates is a key step in developing targeted prevention strategies and reducing antibiotic consumption.

Keywords: Multi-drug resistant coagulase-negative staphylococci, Resistance genes, Very-low-birth-weight neonates, Nosocomial infections

* Correspondence: mbrych@cm-uj.krakow.pl
¹Department of Bacteriology, Microbial Ecology and Parasitology, Chair of Microbiology, Jagiellonian University Medical College, Czysta Street 18, 31-121, Krakow, Poland
© 2013 Brzychczy-Wloch et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
Introduction
Coagulase-negative staphylococci (CNS) rank among opportunistic pathogens being a frequent etiologic agent of nosocomial infections connected with the presence of medical devices. The cause for this should be sought in the ability of CNS to create biofilm whereby they pose a particular threat for people with valve prostheses and the ones with implants or catheters [1]. A group which is particularly susceptible to hospital infections are very low birth weight (VLBW) neonates in which CNS are identified as 48 up to 80% of all etiologic agents causing late-onset diseases (LOD). The most frequently isolated species are *Staphylococcus epidermidis* (58% – 76%) and then *Staphylococcus haemolyticus* (14% – 32%) [2-4].

Medicating infections in neonates poses a big problem as there is the need to use a therapy quickly. In the event of infections caused by hospital pathogens, the empirical treatment is adjusted based on information on drug-resistance of the bacteria persisting in the ward. A high percentage of *S. epidermidis* and *S. haemolyticus* isolates coming from neonates are resistant to many antibiotics: methicillin (86% – 100%), gentamicin (80% – 100%), erythromycin (65% – 100%), oxacillin (92% – 100%), or clindamycin (80% – 100%) [5-7].

The growing importance of coagulase-negative staphylococci, including multidrug-resistant strains, among other etiologic agents of nosocomial infections, forcing researchers to look for the most effective ways to combat these pathogens. Therefore, the aim of the project was to analyze the prevalence of antibiotic resistance in invasive coagulase-negative staphylococci isolates derived from very low birth weight neonates hospitalized in two Polish Neonatal Intensive Care Units (NICUs).

Methods
Continuous prospective target surveillance of infections was conducted from 1.01.2009 to 31.12.2009 at two Polish NICUs that participated in the Polish Neonatology Surveillance Network (PNSN). The surveillance concerned infants hospitalized at cooperating units whose birth weight was ≤1500 grams (from birth to discharge, or until the weight of 1800 grams or death). All cases of infections were subject to registration, regardless of the time of occurrence of the first symptoms as early-onset infection (EOI) or late-onset infection (LOI). Case patients were defined according to Gastmeier et al. [8] with modifications as neonates with very low birth weight (VLBW) when they had clinical signs of septicemia or of pneumonia, as previously described [9]. The study covered 386 VLBW neonates, among which 262 cases of LOI infection were detected with predominance of CNS (123; 47%) including blood stream infections (54 cases, 43.9%), pneumonia (58 cases, 47.2%) and others.

(11 cases, 8.9%). Altogether, one hundred invasive coagulase-negative staphylococci isolates were collected and stored at the temperature of -80°C. Preliminary identification of species was performed using API Staph (bioMerieux) and than multiplex PCR method according to Pereira et al. [10].

Antibiotic susceptibility testing
To determine the drug-resistance phenotype, the Kirby-Bauer disk diffusion method was used in which Muller-Hinton 2 LAB-AGAR™ (Biocorp) and antibiotic disks (Oxoid) were utilized: cefoxitin 30 μg, clindamycin 2 μg, erythromycin 15 μg, tigecycline 15 μg, ofloxacin 5 μg, gentamicin 10 μg, amikacin 30 μg, linezolid 10 μg and the E-test method enabling determination of MIC (Minimal Inhibitory Concentration) for teicoplanin and vancomycin (bioMerieux). The results were interpreted according to EUCAST (The European Committee on Antimicrobial Susceptibility Testing) 2012 [10].

Polymerase chain reaction, PCR
To isolate DNA, the Genomic Mini Set (A&A Biotechnol-ogy) was used according to the manufacturer’s protocol. The presence of species-specific genes to *S. haemolyticus* or *S. epidermidis* and methicillin-resistance mecA gene was confirmed using multiplex PCR amplification according to Pereira et al. [11] with specific primers (Genomed). To detect genes coding the erythromycin-resistance, the multiplex PCR reaction was conducted on ermA, ermC, msrA genes and PCR on the ermB gene, according to the procedure described by Zmantar et al. [12]. The determination of *aac(6′)/aph(2″), aph(3′)-IIa and ant (4′)-Ia* genes coding the aminoglycoside-resistance was conducted according to the procedure by Choi et al. [13]. The final pictures from electrophoresis were processed using QuantityOne software, as well as GelDoc2000 device (Bio-Rad, USA).

Results
The species identification with the multiplex PCR indicated that 63% of the tested CNS isolates belonged to *S. epidermidis* species, while 28% to *S. haemolyticus* (Figure 1). The remaining 9% (n = 9) of isolates belonged to other CNS species, including 4% (n = 4) *S. warneri*, 2% (n = 2) *S. hominis*, 2% (n = 2) *S. xylosus* and 1% (n = 1) *S. capitis*.

A detailed analysis of drug resistance with the use of phenotypic and genotypic methods was carried out for isolates of the species *S. epidermidis* (n = 63) and *S. haemolyticus* (n = 28). Among the isolates tested, there was a very high percentage of multi-drug resistant strains. Among *S. epidermidis*, 98% (n = 62) of isolates were resistant to methicillin, 90% (n = 57) to erythromycin, 39% (n = 25) to clindamycin, 95% (n = 60) to gentamicin,
60% (n = 38) to amikacin, 36% (n = 23) to ofloxacin, 2% (n = 1) to tigecycline, 3% (n = 2) to linezolid and 13% (n = 8) to teicoplanin. Among S. haemolyticus isolates, 100% (n = 28) were resistant to methicillin, erythromycin and gentamicin, 18% (n = 5) to clindamycin, 50% (n = 14) to amikacin, 86% (n = 24) to ofloxacin, 14% (n = 4) to tigecycline and 4% (n = 1) to teicoplanin. No resistance to linezolid was detected for S. haemolyticus isolates. Moreover, all isolates of S. epidermidis and S. haemolyticus were susceptible to vancomycin (Figure 2).

Using E-test, the values for MIC_{50} and MIC_{90} were determined for teicoplanin and vancomycin. For S. epidermidis, MIC_{50} and MIC_{90} for teicoplanin was equal to 2 and 6, respectively, while for vancomycin, it was 2 and 3. For S. haemolyticus, MIC_{50} and MIC_{90} for teicoplanin was equal to 2 and 3, respectively, and for vancomycin, it was 2 and 3.

Among S. epidermidis isolates resistant to macrolides (n = 57), the cMLS\textsubscript{B} and MS\textsubscript{B} phenotypes were most common, and performed in 43% (n = 25) and 40% (n = 23) of isolates, respectively. While the iMLS\textsubscript{B} phenotype was present in 16% (n = 9) of S. epidermidis. The MS\textsubscript{B} phenotype was predominant among S. haemolyticus isolates (n = 28), and appeared in 82% of isolates (n = 23), whereas cMLS\textsubscript{B} phenotype was detected in 18% of the isolates (n = 5). In the case of S. haemolyticus, the MS\textsubscript{B} phenotype was not detected (Figure 3).

The presence of mecA gene was confirmed with the multiplex PCR method in 62 S. epidermidis (98%) isolates and in 28 isolates of the species S. haemolyticus (100%) (Figure 1).

The ermC gene was predominant in S. epidermidis isolates (n = 34; 60%), while in S. haemolyticus was present only in 2 isolates (7%). On the other hand, msrA gene was prevalent in S. haemolyticus isolates (n = 26; 93%), while in S. epidermidis it was much less frequent (n = 23; 40%). It is noteworthy to remark that one of the S. haemolyticus isolates possessed both msrA and ermC genes simultaneously. The presence of ermA oraz ermB genes was not demonstrated in the studied isolate pool (Figure 4).
S. epidermidis isolates resistant to macrolides, of cMLS\textsubscript{B} and iMLS\textsubscript{B} resistance phenotype, possessed \textit{ermC} gene (n = 34; 60%). While five \textit{S. haemolyticus} isolates of cMLSB resistance phenotype demonstrated the presence of various genes, including three with \textit{msrA} gene, in the second one \textit{ermC} and in the remaining one of \textit{ermC} and \textit{msrA} genes at the same time. In all \textit{S. epidermidis} isolates (n = 23; 100%) and \textit{S. haemolyticus} (n = 23; 100%) of MS\textsubscript{B} phenotype, gene \textit{msrA} was present.

Among the genes coding aminoglycoside resistance, \textit{aac(6\textquoteright)/aph(2\textquoteright)} gene was the most frequent, and the genes more rare were \textit{aph(3\textquoteright)-Ia} and \textit{aph(3\textquoteright)-IIIa}. In \textit{S. epidermidis}, isolates with the \textit{aac(6\textquoteright)/aph(2\textquoteright)} gene were prevalent (n = 49; 83%), while in \textit{S. haemolyticus}, the \textit{aac (6\textquoteright)/aph(2\textquoteright)} was the most frequent together with \textit{aph (3\textquoteright)-IIIa} (n = 22; 84%) (Figures 5 and 6).

Discussion

Infections caused by coagulase-negative staphylococci are among the most common causes of death among infants with very low birth weight [14]. This is due to the fact that staphylococcal biofilm can be formed on biomaterials, from which are made various types of devices used in patients chronically hospitalized. Bacteria growing in biofilm are characterized by an increased resistance to the host immune system and antibiotic use, making it more difficult and significantly extending the patient’s hospitalization [1,15].

The researched CNS isolates demonstrated multi-drug resistance. The studied \textit{S. epidermidis} isolates and \textit{S. haemolyticus} were resistant to methicillin, in 98% and 100%, respectively, as well as to the majority of the remaining antibiotics that were studied. These results are concurrent with the literature data where for CNS isolated from neonatal infections the percentage of methicillin-resistant strains (methicillin-resistant coagulase-negative staphylococci, MRCNS) was in the range of 86-100%, and, moreover, these bacteria was connected with multiple resistance to other antibiotics [6,7].

Investigation of the \textit{mecA} gene in CNS using the PCR technique is nowadays regarded as the gold standard with a view to determining methicillin resistance [11]. In our study, meticillin-resistance phenotype for all the researched strains was confirmed by the detection of the \textit{mecA} gene. Similar results were described by other authors [11].

The group of isolates was characterized by high erythromycin resistance which was 84% for isolates of \textit{S. epidermidis} and 100% for \textit{S. haemolyticus}. The results obtained are similar to those of Bialkowska-Hobrzanska et al. where 100% of isolates \textit{S. epidermidis} and 92% of \textit{S. haemolyticus} isolated from neonates were erythromycin-resistant [16], as well as similar to the data obtained by Abd El Hafez et al. where the erythromycin resistance for isolates of \textit{S. epidermidis} coming from neonates was 86% [6].

Clindamycin resistance was demonstrated in 26% of isolates of \textit{S. epidermidis} and 28% of isolates of \textit{S. haemolyticus}. The determined percentage of clindamycin resistance was significantly lower than that described by Bialkowska-Hobrzanska et al. where for \textit{S. epidermidis} it was equal to 92%, and for \textit{S. haemolyticus} 85% [16]; similarly, Abd El Hafez et al. demonstrated 75.9% of isolates of \textit{S. epidermidis} as resistant [6], and higher than...
that proven by van den Hoogen et al. equal to 15% for CNS altogether [17].

Among the *S. epidermidis* strains that were macrolide-resistant, the cMLS\(_B\) phenotype constituted 43% and MS\(_B\) 40% whereas in *S. haemolyticus* the most frequently detected MS\(_B\) phenotype occurred in 82% of isolates. Similar results were described by Gheradi et al. who researched CNS coming from hospital infections where 38% of isolates of *S. epidermidis* and 80% of isolates of *S. haemolyticus* had the MS\(_B\) phenotype and 28.5% of isolates of *S. epidermidis* had the cMLS\(_B\) phenotype [18]. However, Gatermann et al. clearly described a lower percentage of isolates of *S. haemolyticus* with the phenotype MS\(_B\) equal to 30.2% [19]. For the isolates of *S. epidermidis* researched on with the cMLS\(_B\) and iMLS\(_B\) phenotypes, the occurrence of the *ermC* gene was demonstrated and with the MS\(_B\) phenotype, the *msrA* gene. However, 3 out of 5 *S. haemolyticus* isolates with the cMLS\(_B\) phenotype had the *msrA* gene, but did not have the *emrC* gene. Moreover, in the group of isolates of *S. haemolyticus* with the MS\(_B\) resistance phenotype, it was demonstrated that one isolate had no *msrA* gene. Probably, those isolates had other genes coding the erythromycin resistance. The recorded lack of *ermA* and *ermB* genes among the isolates researched on is in conformity with the results of other scientists researching CNS who indicated the presence of these genes only as high as 1.8% – 7.2% for *ermA* and below 1% for *ermB* [20].

The gentamicin resistance was 93% for *S. epidermidis*, 100% for *S. haemolyticus* and it was higher than quoted in the literature for *S. epidermidis* 69.2 – 89.5% [17,21] and for CNS altogether 85% except the results obtained by Bialkowska-Hobrzanska et al. where for both *S. epidermidis* and *S. haemolyticus* the resistance equaled 100% [16]. In the case of amikacin, the resistant strains of *S. epidermidis* constituted 51% of those studied, whereas 31% of *S. haemolyticus* isolates were amikacin-resistant.

From among the genes coding aminoglycoside resistance, the most frequently identified gene was *aac(6′)/aph(2″)* which both in *S. epidermidis* and *S. haemolyticus*...
occurred in 90% of cases. In the case of CNS isolates isolated from neonates researched by Klingenberg et al. 69.4% of subjects had the aac(6′)/aph(2′) gene [21]. Also, among isolates coming from various groups of patients with hospital infections, the main role in coding aminoglycoside resistance had the aac(6′)/aph(2′) gene occurring in 70 – 90% of CNS isolates [13]. Characteristic of S. haemolyticus was the presence, along with the aac(6′)/aph(2′) gene, of another gene coding aminoglycoside resistance, meaning aph(3′)-IIIa (78%). The comparison of resistance obtained by means of phenotypic methods and genotypic methods enabled observing certain discrepancies. Similarly, Choi et al. observed that only in ca. 50% of CNS isolates there existed a correlation between the phenotype of amikacin resistance and the genotype [13]. According to recommendations of EUCAST (2012) [10], the isolates demonstrating gentamicin resistance are to be treated as having a general aminoglycoside resistance. Similar results were obtained by Trueba et al. where 30.4% of isolates of S. epidermidis and 35.7% of S. haemolyticus turned out to be teicoplanin-resistant [24] and Kristyof et al. where 32% of S. haemolyticus demonstrated resistance [25].

Conclusions

The multi-drug resistance profiles obtained for isolates of coagulase-negative staphylococci isolated from infections of VLBW neonates hospitalized in NICUs indicate that there is a need to constantly monitor the resistance of these strains. At present, the drugs of choice are vancomycin and teicoplanin with the reservation that a quick selection of teicoplanin-resistant isolates of CNS is possible.

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

MBW designed the study, analyzed and interpreted the data, financially supported the study and wrote the manuscript; MBK and EG collected the data about VLBW neonates; MS collected the CNS isolates; MG and ML performed the molecular studies; JWM and PBH designed the Polish Neonatology Surveillance Network (PNSN); MB prepared the literature. All authors read and approved the final manuscript.

Acknowledgements

The study was approved by Jagiellonian University Bioethical Committee decision no. KBET/94/B/2009. This study was supported by a grant from the National Science Centre no. N N401 615 340.

Author details

1Department of Bacteriology, Microbial Ecology and Parasitology, Chair of Microbiology, Jagiellonian University Medical College, Crysta Street 18, 31-121, Krakow, Poland. 2Neonatal and Intensive Care Department Medical University of Warsaw, Warsaw, Poland. 3Polish Mother’s Memorial Hospital, Lodz, Poland. 4Duchess Anna Mazowiecka Teaching Hospital, Warsaw, Poland. 5Department of Epidemiology of Infection, Chair of Microbiology, Jagiellonian University Medical College, Krakow, Poland.

Received: 17 October 2013 Accepted: 15 December 2013 Published: 20 December 2013

Published: 20 December 2013

References

1. Otto M. Staphylococcus epidermidis – the ‘accidental’ pathogen. Nat Rev Microbiol 2009, 7:555–567.
2. Gheibi S, Fakoor Z, Karamyar M, Khahabi J, Bhanizadeh B, Farzin Asghari-Sana F, Mahmooodzadeh H, Majlesi A. Coagulase Negative Staphylococcus; the Most Common Cause of Neonatal Septicemia in Urmia, Iran. Iran J Pediatr 2008, 18:237–243.
3. Hira V, Sluijter M, Estevao S, Horst-Kreft D, Ott A, De Groot R, Hermans PW, Kornelisse RF. Clinical and molecular epidemiologic characteristics of coagulase-negative staphylococcal bloodstream infections in intensive care neonates. Pediatr Infect Dis J 2007, 26:607–612.
4. Dimitrouli G, Fousas S, Giormezi N, Giannakakiou P, Tzifas S, Foka A, Anastasiou DE, Spiliopoulou I, Mantagou S. Clinical and microbiological profile of persistent coagulase-negative staphylococcal bacteraemia in neonates. Clin Microbiol Infect 2011, 17:1684–1690.
5. Villari P, Sammarco C, Iacuzio L. Molecular Epidemiology of Staphylococcus epidermidis in a Neonatal Intensive Care Unit over a Three-Year Period. J Clin Microbiol 2000, 38:1740–1746.
6. Abd El Hafez M, Khalaf NG, El Ahmady M, Abd El Aziz A, Hashem Ael G. An outbreak of methicillin resistant Staphylococcus epidermidis among neonates in a hospital in Saudi Arabia. J Infect Dev Ctries 2011, 5:692–699.
7. Qu Y, Daley A, Istvan T, Garland S, Deighton M. Antibiotic susceptibility of coagulase-negative staphylococcal strains isolated from very low birth weight babies: comprehensive comparisons of bacteria at different stages of biofilm formation. Ann Clin Microbiol Antimicrob 2010, 9:16.
8. Gastmeier P, Geffers C, Schwab F, Fitzer M, Ollbracker M, Rüden H. Development of a surveillance system for nosocomial infections: the component for neonatal intensive care in Germany. J Hosp Infect 2004, 57:126–131.
9. Wojkowska-Mach J, Borzewksa-Kornacka M, Domanska J, Gadzimorowski J, Gulczynska E, Helwich E, Kornelis A, Pawlik D, Szczapa J, Klamka J, Heczko PB.

http://www.ann-clinmicrob.com/content/12/1/41
Early-onset infections of very-low-birth-weight infants in Polish neonatal intensive care units. *Pediatr Infect Dis J* 2012, 31:691–695.

10. EUCAST - European Committee on Antimicrobial Susceptibility Testing: Version 2.0, valid from 2012-01-01, 2012. http://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/Disk_test_documents/EUCAST_breakpoints_v_2.0_120101.pdf.

11. Pereira EM, Schuenck RP, Malvar XL, Iorio NL, Matos PD, Olendzki AN, Oellemann WM, Dos Santos KR: *Staphylococcus aureus, Staphylococcus epidermidis* and *Staphylococcus haemolyticus*: methicillin-resistant isolates are detected directly in blood cultures by multiplex PCR. *Microbiol Res* 2010, 165:243–249.

12. Zmantar T, Chaieb K, Ben Abdallah F, Ben Kahla-Nakbi A, Ben Hassen A, Mahdiouani K, Bakhrouf A: Multiplex PCR detection of the antibiotic resistance genes in *Staphylococcus aureus* strains isolated from auricular infections. *Folia Microbiol* 2008, 53:35–362.

13. Choi SM, Kim SH, Kim HJ, Lee DG, Choi JH, Yoo JH, Kang JH, Shin WS, Kang MW: Multiplex PCR for the detection of genes encoding aminoglycoside modifying enzymes and methicillin resistance among *Staphylococcus* species. *J Korean Med Sci* 2003, 18:631–636.

14. Stoll BJ, Hansen N, Fanaroff AA, Wright LL, Carlo WA, Ehrenkranz RA, Lemons JA, Donovan EF, Stark AR, Tyson JE, Oh W, Bauer CR, Korones SB, Shankaran S, Luptak AR, Stevenson DK, Papile LA, Poole WK: Late-onset sepsis in very low birth weight neonates: the experience of the NICHD Neonatal Research Network. *Pediatrics* 2002, 110:285–291.

15. Crossley K, Jefferson K, Archer G, Fowler V: *Staphylococci in Human Disease*. Oxford: Wiley- Blackwell; 2009.

16. Bialkowska-Hobrzanska H, Jaskot D, Hammerberg J: Molecular characterization of the coagulase-negative staphylococcal surface flora of premature neonates. *J Gen Microbiol* 1993, 139:2939–2944.

17. van den Hoogen A, Gerards L, Verboon-Maciolek M, Fleer A, Krediet T: Antibiotic resistance and molecular characterization of clinical isolates of methicillin-resistant coagulase-negative staphylococci isolated from bacteremic patients in oncohematology. *Folia Microbiol* 2011, 56:122–130.

18. Klingenberg C, Sundsfjord A, Rønnestad A, Mikalsen J, Gaustad P, Flaegstad T: Phenotypic and genotypic aminoglycoside resistance in blood culture isolates of coagulase-negative staphylococci from a single neonatal intensive care unit, 1989–2000. *J Antimicrob Chemother* 2004, 54:889–896.

19. Liakopoulos A, Foka A, Vourli S, Zerva L, Tsiapara F, Protonotariou E, Dailiana Z, Economou M, Papoutsidou E, Koutsia-Carouzou C, Anastassiou ED, Diza E, Zintzaras E, Spiliopoulou I, Petinaki E: Aminoglycoside-resistant *Staphylococcus* species. *FEMS Immunol Med Microbiol* 2009, 55:62–67.

20. Bouchami O, Achour W, Mekni MA, Rolo J, Ben HA: Antibiotic resistance and molecular characterization of clinical isolates of methicillin-resistant coagulase-negative staphylococci isolated from bacteremic patients in oncohematology. *Folia Microbiol* 2011, 56:122–130.

21. Klingenberg C, Sundsfjord A, Rønnestad A, Mikalsen J, Gaustad P, Flaegstad T: Phenotypic and genotypic aminoglycoside resistance in blood culture isolates of coagulase-negative staphylococci from a single neonatal intensive care unit, 1989–2000. *J Antimicrob Chemother* 2004, 54:889–896.

22. Liakopoulos A, Foka A, Vourli S, Zerva L, Tsiapara F, Protonotariou E, Dailiana Z, Economou M, Papoutsidou E, Koutsia-Carouzou C, Anastassiou ED, Diza E, Zintzaras E, Spiliopoulou I, Petinaki E: Aminoglycoside-resistant *Staphylococcus* species. *FEMS Immunol Med Microbiol* 2009, 55:62–67.