Numerical Stochastic Perturbation Theory
and
The Gradient Flow

Mattia Dalla Brida*
Trinity College Dublin, Ireland

Dirk Hesse
Università degli Studi di Parma, Italia

31st International Symposium on Lattice Field Theory,
29th of July 2013, Mainz, Germany
Motivations

Goal: The running coupling of QCD

Finite-size scaling techniques provide a general solution to scale-dependent renormalization problems.

- The finite-volume scheme i.e. the fields’ boundary conditions
 \[\rightarrow\textit{Schrödinger functional}\]
 \[\text{(K. Symanzik '81; M. Lüscher et. al. '92)}\]

- The non-perturbative definition of the coupling
 \[\rightarrow\textit{gradient flow coupling}\]
 \[\text{(M. Lüscher '10)}\]

Start:

- We consider pure $SU(3)$ Yang-Mills theory
- From PT we can obtain important insights into this new tool
 \[\rightarrow\text{NSPT is a natural framework for the gradient flow!}\]
The gradient flow coupling

- The **gradient flow** evolves the gauge field as a function of the flow time parameter $t \geq 0$ according to,

\[
\partial_t B_\mu = D_\nu G_{\nu \mu} + \alpha_0 D_\mu \partial_\nu B_\nu, \quad B_\mu|_{t=0} = A_\mu,
\]

where

\[
G_{\mu \nu} = \partial_\mu B_\nu - \partial_\nu B_\mu + [B_\mu, B_\nu], \quad D_\mu = \partial_\mu + [B_\mu, \cdot].
\]

- Correlation functions of the field B are **automatically finite** for flow times $t > 0$, once the theory in 4d is renormalized in the usual way.

Energy density

\[
\langle E(t) \rangle = -1/2 \langle \text{Tr} \ G_{\mu \nu}(t) G_{\mu \nu}(t) \rangle.
\]

- From flow observables one can define a **renormalized coupling**, e.g.,

\[
\bar{g}^2(\mu) \equiv \mathcal{N}^{-1} \langle t^2 E(t) \rangle, \quad \mu = \sqrt{1/8t},
\]

where \mathcal{N} is such that $\bar{g}^2 = g_0^2 + O(g_0^4)$.

(M. Lüscher, P. Weisz '11)

(M. Lüscher '10)
The Schrödinger Functional and \bar{g}_{GF}

- We consider SF boundary conditions with zero boundary fields, which have to be maintained at all flow times t.
- To apply finite-volume scaling, one has to run the renormalization scale with the size of the finite volume box given by L,
 \[\mu = \frac{1}{L}, \]
 and rescale with L all dimensionful parameters, e.g.,
 \[c = \sqrt{8t/L}, \quad T = L. \]
 (Z. Fodor et. al. '12; P. Fritzsch, A. Ramos '13)
- A c-family of running couplings can be introduced as,
 \[\bar{g}^2_{GF}(L) \equiv \mathcal{N}^{-1} \langle t^2 E(t, T/2) \rangle \big|_{t=c^2L^2/8}, \]
 where \mathcal{N} depends on the specific scheme. (P. Fritzsch, A. Ramos '13)
The gradient flow on the lattice

- The **gradient flow** can be studied on the lattice as,
 \[
 \frac{\partial_t}{t} V_{x\mu}(t) = - \left\{ g_0^2 \nabla_{x\mu} S_G (V(t)) \right\} V_{x\mu}(t), \quad V_{x\mu} |_{t=0} = U_{x\mu},
 \]
 where \(\nabla \) is the Lie-derivative on the gauge group, and \(S_G \) is, e.g., the Wilson gauge action \(\Rightarrow \) **Wilson flow!** (M. Lüscher '10)

- The **SF boundary conditions** for zero boundary fields, are realized on the lattice as,
 \[
 V_{\mu}(x + \hat{k}L, t) = V_{\mu}(x, t), \quad V_k(x, t) |_{x_0=0, \tau = \Pi}, \quad \forall t \geq 0.
 \]

- We consider the regularized energy density,
 \[
 \left\langle \hat{E}(t, x_0) \right\rangle = -1/2 \left\langle \text{Tr} \hat{G}_{\mu\nu}(t, x_0) \hat{G}_{\mu\nu}(t, x_0) \right\rangle,
 \]
 where \(\hat{G} \) is the **clover** definition of the field strength tensor corresponding to the lattice flow \(V \).
Numerical Stochastic Perturbation Theory (D. Hesse's talk)

- Stochastic Quantization introduces a “stochastic time” t_s, in which the fundamental fields evolve according to the **Langevin equation**,

$$\partial_{t_s} U_{x\mu}(t_s) = -\left\{ \nabla_{x\mu} S_G(U(t_s)) + \eta_{x\mu}(t_s) \right\} U_{x\mu}(t_s),$$

where η is a Gaussian distributed noise field. (G. Parisi, Y.S. Wu '81)

- Considering the formal **perturbative expansion**,

$$U(t_s) \to \mathcal{V} + \sum_{k>0} g_0^k U^{(k)}(t_s),$$

in the Langevin equation, one can obtain an approximate solution by solving the resulting hierarchy of equations order-by-order in g_0.

- **Stochastic Perturbation Theory (SPT)**

$$\lim_{t_s \to \infty} \langle \mathcal{O} \left[\sum_k g_0^k U^{(k)}(t_s) \right] \rangle_\eta = \sum_k g_0^k \mathcal{O}_k[U] = \langle \mathcal{O}[U] \rangle.$$

- **NSPT** considers a discrete approximation of the Langevin equation, and performs this program **numerically!** (F. Di Renzo et. al. '94)
NSPT and The Gradient Flow

- In the gradient flow, the noise field is not present and the initial distribution of the fundamental gauge field is taken into account,

\[
\partial_t V_{x\mu}(t) = -\{g_0^2 \nabla_{x\mu} S_G(V(t))\} V_{x\mu}(t), \quad V_{x\mu}|_{t=0} = U_{x\mu}(t_s).
\]

- Analogously to the Langevin equation, considering the formal perturbative expansion,

\[
V(t; t_s) \to V + \sum_{k>0} g_0^k V^{(k)}(t; t_s), \quad V^{(k)}|_{t=0} = U^{(k)}(t_s), \quad \forall k,
\]

one can obtain an approximate solution for the gradient flow!

- **SPT for The Gradient Flow**

\[
\lim_{t_s \to \infty} \left\langle O\left[\sum_{k} g_0^k V^{(k)}(t; t_s)\right] \right\rangle_\eta = \sum_{k} g_0^k O_k[V(t)] = \left\langle O[V(t)] \right\rangle.
\]

- Using the machinery of NSPT this program can be implemented numerically!

- **No gauge fixing step** is needed along the flow.
Determination of $\langle t^2 \hat{E}(t, T/2) \rangle = \mathcal{E}^{(0)} g_0^2 + \mathcal{E}^{(1)} g_0^4 + \mathcal{E}^{(2)} g_0^6 + \ldots$

(P. Fritzsch, A. Ramos ’13)
Determination of $\langle t^2 \hat{E}(t, T/2) \rangle = \hat{\xi}(0) g_0^2 + \hat{\xi}(1) g_0^4 + \hat{\xi}(2) g_0^6 + \ldots$

(P. Fritzsch, A. Ramos ’13)
Determination of $\langle t^2 \hat{E}(t, T/2) \rangle = \hat{\xi}(0) g_0^2 + \hat{\xi}(1) g_0^4 + \hat{\xi}(2) g_0^6 + \ldots$
Determination of $\langle t^2 \hat{E}(t, T/2) \rangle = \check{\xi}^{(0)} g_0^2 + \check{\xi}^{(1)} g_0^4 + \check{\xi}^{(2)} g_0^6 + \ldots$

\begin{tabular}{|c|c|c|c|c|c|}
\hline
c & 0.075 & 0.269 & 0.373 & 0.453 & 0.522 \\
\hline
\end{tabular}

\begin{align*}
\check{\xi}^{(2)}_{L/a = 12} & = 0.0000 \\
 & \quad \quad \quad 0.0005 \\
 & \quad \quad \quad 0.0010 \\
 & \quad \quad \quad 0.0015 \\
 & \quad \quad \quad 0.0020 \\
 & \quad \quad \quad 0.0025 \\
 & \quad \quad \quad 0.0030 \\
 & \quad \quad \quad 0.0035 \\
 & \quad \quad \quad 0.0040 \\
 & \quad \quad \quad 0.0045 \\
\end{align*}
Comparison with Monte Carlo data

\[E_s - g_0^2 E_s^{(0)} \times 10^5 \]

- \(c = 0.2958 \)
- \(c = 0.5000 \)
- \(c = 0.4031 \)
- \(c = 0.1936 \)
Comparison with Monte Carlo data

c	$\langle t^2 \hat{E}_s \rangle$	$\langle t^2 \hat{E}_m \rangle$		
	$O(g_0^4)$	$O(g_0^6)$		
	MC	NSPT	MC	NSPT
0.1936	0.004780(86)	0.004631(22)	0.0034(11)	0.0031669(96)
0.2958	0.00552(15)	0.005464(49)	0.0054(19)	0.004095(29)
0.4031	0.00483(18)	0.004776(64)	0.0050(21)	0.003744(44)
0.5000	0.00355(14)	0.003489(64)	0.0037(17)	0.002785(44)

MC data obtained with a customized MILC code, results are for $L/a = 8$.
Noise to signal ratio vs c

\[\sqrt{N_{\text{meas}}} \frac{\sigma(E_s^{(0)})}{(E_s^{(0)})}, \epsilon = 0.0125 \]

- $L/a = 6$
- $L/a = 8$
- $L/a = 10$
- $L/a = 12$
- $L/a = 14$
Autocorrelation time vs c

$\tau_{\text{int}} = \frac{\hat{\xi}_m}{\tau_{\text{meas}}}$, $\epsilon = 0.05$, $L/a = 8$

$O(g_0^2)$
$O(g_0^4)$
$O(g_0^6)$
Conclusions

- Mild extrapolations, and good statistical behavior for the flow observables we have considered.
- NPST provides a natural setup for a (numerical) perturbative solution of the gradient flow.
- The setup is flexible: different action regularizations, boundary conditions, and observables can be implemented easily.

Outlook

- Continuum limit extrapolations
 - Cut-off effects in the step-scaling function
 - Λ_{GF} and PT relation to other schemes
 - \rightarrow require bigger lattices (n.b. cost $\propto (L/a)^6$)
- Inclusion of fermions and QCD
Numerical precision

The most expensive simulations were performed at $L/a = 12$. The results of the extrapolations are,

c	$\tilde{\xi}_s^{(0)}$	$\delta \tilde{\xi}_s^{(0)}/\tilde{\xi}_s^{(0)}$	$\tilde{\xi}_s^{(1)}$	$\delta \tilde{\xi}_s^{(1)}/\tilde{\xi}_s^{(1)}$
0.2	0.008656(38)	0.5%	0.005827(37)	0.6%
0.3	0.008231(66)	0.8%	0.005958(45)	0.8%
0.4	0.006413(78)	1.2%	0.005004(85)	1.7%
0.5	0.004026(62)	1.5%	0.00345(11)	3.2%

Autocorrelation $\tau_{\text{int}} (\tau_{\text{int}}/10 \text{ LDU})$ and $N_{\text{eff}} = N_{\text{meas}}/(2 \tau_{\text{int}})$,

c	$\tilde{\xi}_s^{(0)}$	$\delta \tilde{\xi}_s^{(0)}/\tilde{\xi}_s^{(0)}$	$\tilde{\xi}_s^{(1)}$	$\delta \tilde{\xi}_s^{(1)}/\tilde{\xi}_s^{(1)}$	
0.2	$\tau_{\text{int}}	c=0.22$	4.43(94)	4.10(87)	2.07(24)
	$\tau_{\text{int}}	c=0.50$	8.2(22)	5.1(12)	2.66(33)
0.3	$N_{\text{eff}}	c=0.22$	109(24)	112(24)	550(63)
	$N_{\text{eff}}	c=0.50$	61(16)	89(21)	429(53)
0.4	$\tau_{\text{int}}	c=0.22$	5.8(14)	3.54(70)	2.54(32)
	$\tau_{\text{int}}	c=0.50$	9.9(28)	21.3(75)	4.85(78)
0.5	$N_{\text{eff}}	c=0.22$	87(20)	130(26)	448(56)
	$N_{\text{eff}}	c=0.50$	51(14)	21.6(76)	235(38)
Numerical effort

$\tilde{E}^{(0)}$	ϵ	0.0125	0.025	0.05
$\tau_{\text{int}}	c=0.22$	1.117(28)	0.677(19)	0.541(14)
$\tau_{\text{int}}	c=0.50$	1.567(48)	0.837(25)	0.567(14)
$N_{\text{eff}}	c=0.22$	17880(45)	24980	24980
$N_{\text{eff}}	c=0.50$	12750(38)	24980	24980

$\tilde{E}^{(1)}$	ϵ	0.0125	0.025	0.05
$\tau_{\text{int}}	c=0.22$	1.717(54)	0.921(28)	0.636(16)
$\tau_{\text{int}}	c=0.50$	4.00(17)	2.030(83)	1.144(37)

| $N_{\text{eff}}|c=0.22$ | 11630(36) | 24980 | 24980 |
| $N_{\text{eff}}|c=0.50$ | 5000(22) | 6150(25) | 10910(35) |

$N_{\text{eff}} = \frac{N_{\text{meas}}}{2 \tau_{\text{int}}}$
Determination of $\langle t^2 \hat{E}(t, T/2) \rangle = \tilde{\mathcal{E}}^{(0)} g_0^2 + \tilde{\mathcal{E}}^{(1)} g_0^4 + \tilde{\mathcal{E}}^{(2)} g_0^6 + \ldots$

(P. Fritzsch, A. Ramos ’13)

L	c	0.1581	0.3162	0.4183	0.5000	0.5701
$L = 4$	$\delta \tilde{\mathcal{E}}^{(0)}_s$	$0.0001(23)$	$0.0004(26)$	$0.0002(31)$	$0.0000(30)$	$0.0002(28)$
	$\delta \tilde{\mathcal{E}}^{(0)}_m$	$0.0001(23)$	$0.0006(25)$	$0.0006(30)$	$0.0005(28)$	$0.0005(26)$
$L/a = 6$	c	0.1054	0.2981	0.4082	0.4944	0.5676
	$\delta \tilde{\mathcal{E}}^{(0)}_s$	$0.0003(22)$	$0.0007(18)$	$0.0018(14)$	$0.0025(17)$	$0.0029(20)$
	$\delta \tilde{\mathcal{E}}^{(0)}_m$	$0.0002(19)$	$0.0010(24)$	$0.0012(22)$	$0.0014(22)$	$0.0015(23)$
$L/a = 8$	c	0.1118	0.2958	0.4031	0.4873	0.5590
	$\delta \tilde{\mathcal{E}}^{(0)}_s$	$0.00056(63)$	$0.0016(27)$	$0.0023(36)$	$0.0028(43)$	$0.0031(48)$
	$\delta \tilde{\mathcal{E}}^{(0)}_m$	$0.00003(59)$	$0.0032(23)$	$0.0051(45)$	$0.0057(57)$	$0.0057(64)$
$L/a = 12$	c	0.0745	0.2687	0.3727	0.4534	0.5217
	$\delta \tilde{\mathcal{E}}^{(0)}_s$	$0.00021(68)$	$0.0083(68)$	$0.011(11)$	$0.014(14)$	$0.015(16)$
	$\delta \tilde{\mathcal{E}}^{(0)}_m$	$0.00045(80)$	$0.0062(87)$	$0.007(14)$	$0.009(18)$	$0.011(21)$

$$
\delta \tilde{\mathcal{E}}^{(0)}_{s,m} = \frac{\tilde{\mathcal{E}}^{(0)}_{s,m}}{\hat{\mathcal{N}}_{s,m}} - 1
$$
Autocorrelation time vs c

$\tau_{\text{int}} \left[E(0) \right] / \tau_{\text{meas}}, \epsilon = 0.05$

$L/a = 8$
$L/a = 12$
$L/a = 4$
$L/a = 6$
Autocorrelation time vs L

The graph shows the autocorrelation time τ_{int} normalized by the measured time τ_{meas} for different values of c and ϵ. The data points are represented for $c = 0.3$, $c = 0.4$, and $c = 0.5$, each with error bars indicating the variability.

The equation used is $(a/L)^2 \tau_{int} / \tau_{meas}$, where $\epsilon = 0.05$. The x-axis represents L/a, while the y-axis shows the normalized autocorrelation time.