Rapid vesicle replenishment after the immediately releasable pool exocytosis is tightly linked to fast endocytosis, and depends on basal calcium and cortical actin in chromaffin cells

Mauricio Montenegro¹ | Lucas Bayonés¹ | José Moya-Díaz¹,4 | Cecilia Borassi²
Andrés Martín Toscani³,5 | Luciana I. Gallo¹ | Fernando D. Marengo¹

Abstract
The maintenance of the secretory response requires a continuous replenishment of releasable vesicles. It was proposed that the immediately releasable pool (IRP) is important in chromaffin cell secretion during action potentials applied at basal physiological frequencies, because of the proximity of IRP vesicles to voltage-dependent Ca²⁺ channels. However, previous reports showed that IRP replenishment after depletion is too slow to manage such a situation. In this work, we used patch-clamp measurements of membrane capacitance, confocal imaging of F-actin distribution, and cytosolic Ca²⁺ measurements with Fura-2 to re-analyze this problem in primary cultures of mouse chromaffin cells. We provide evidence that IRP replenishment has one slow (time constant between 5 and 10 s) and one rapid component (time constant between 0.5 and 1.5 s) linked to a dynamin-dependent fast endocytosis. Both, the fast endocytosis and the rapid replenishment component were eliminated when 500 nM Ca²⁺ was added to the internal solution during patch-clamp experiments, but they became dominant and accelerated when the cytosolic Ca²⁺ buffer capacity was increased. In addition, both rapid replenishment and fast endocytosis were retarded when cortical F-actin cytoskeleton was disrupted with cytochalasin D. Finally, in permeabilized chromaffin cells stained with rhodamine-phalloidin, the cortical F-actin density was reduced when the Ca²⁺ concentration was increased in a range of 10–1000 nM. We conclude that low cytosolic Ca²⁺ concentrations, which favor cortical F-actin stabilization, allow the activation of a fast endocytosis mechanism linked to a rapid replenishment component of IRP.

KEYWORDS
actin, calcium, dynamin, recycling, secretion, secretory vesicle

Abbreviations: Ca²⁺, calcium ion; Cm, cell capacitance; ETAP, exocytosis triggered by action potential; IRP, immediately releasable pool; VDCC, voltage dependent Ca²⁺ channels.
The immediately releasable pool (IRP) is a small group of ready releasable vesicles rapidly released by short depolarizations due to their proximity to voltage-dependent Ca\(^{2+}\) channels (VDCC) (Alvarez & Marengo, 2011; Horrigan & Bookman, 1994; Marengo, 2005; Voets et al., 1999). Due to this characteristic, IRP is believed to be particularly sensitive to sharp gradients of Ca\(^{2+}\) developed close to VDCC, and therefore it can be important in secretion during action potentials firing at low frequencies where residual Ca\(^{2+}\) buildup is supposed to be absent or small (Moya-Diaz et al., 2016; Oré & Artalejo, 2005).

The replenishment of secretory vesicle pools is essential to maintain chromaffin cell secretion as a function of time. It is classically known, since almost three decades ago, that after strong exocytosis the replenishment of the releasable pools is driven by the mobilization of vesicles from reserve pools (Heinemann et al., 1993; Voets et al., 1999). Previous studies indicated that replenishment after depletion of IRP is slow (Moser & Neher, 1997; Moya-Diaz et al., 2016; Voets et al., 1999), making difficult the sustained participation of this pool in secretion, even at the lowest physiological frequencies. However, it was described recently that application of a single depolarization, similar in amplitude and temporal course to a native action potential, induces exocytosis of a fraction of IRP (i.e. ETAP, for exocytosis triggered by action potential) which is rapidly replenished with a time constant of 0.7 s (Moya-Diaz et al., 2016). The rapid replenishment of ETAP relies on a dynamin-dependent fast plasma membrane retrieval process (referred to as fast endocytosis, with a time constant of approximately 0.5 s), and accounts for the maintenance of synchronous exocytosis during repetitive stimulation at action potential rates below 0.5 Hz. This is in the range of basal frequencies measured in mouse chromaffin cells (de Diego et al., 2008; Holman et al., 1994; Marcantoni et al., 2010; Moya-Diaz et al., 2016; Wallace et al., 2002). Both ETAP and dynamin-dependent fast endocytosis become negligible when action potential rate is increased above 2 Hz (Chan & Smith, 2001; Moya-Diaz et al., 2016, 2020). Therefore, it seems that the chromaffin cell invokes different replenishment mechanisms, depending on the stimulation intensity and/or the exocytotic demand.

In this study, we further analyzed the mechanisms involved in the whole IRP replenishment and their dependence upon endocytosis, cytosolic Ca\(^{2+}\), and cortical actin cytoskeleton. We found that the IRP replenishment exhibits two exponential components: a rapid one with similar kinetics than ETAP recovery; and a slow one, similar to the previously described for whole IRP replenishment. The increase in cytosolic Ca\(^{2+}\) abolishes fast endocytosis, and the rapid replenishment component is lost. In addition, the increase in cytosolic Ca\(^{2+}\) buffer capacity correlates with increments in amplitude and rate of endocytosis, together with acceleration of the rapid IRP replenishment. Our results suggest that the high density of cortical F-actin, predominant at low cytosolic Ca\(^{2+}\) concentration ([Ca\(^{2+}\)]), favors a mode of fast endocytosis linked to the rapid replenishment of an IRP fraction which can be released by individual action potentials.

2 MATERIALS AND METHODS

2.1 Mouse adrenal chromaffin cell preparation

All animal procedures were performed under protocols approved by the Consejo Nacional de Investigaciones Científicas y Técnicas (Argentina) and the Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, and in accordance with the National Institute of Health Guide for the Care and Use of Laboratory Animals (NIH publication 80-23/96), USA. This study was not pre-registered. One hundred fifty female/male 129/sv wild type mice (13–21 days old) were obtained from the Biotério Central (Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina). No other inclusion or exclusion criteria were pre-determined for the mice. Animals were housed (6–8 per cage) with ad libitum access to chow and water, under temperature-controlled conditions on a 12-hr light/dark cycle. Animals were sacrificed with intraperitoneal injection of an overdose (500 mg/kg) of tribromoethanol (avertin) to minimize suffering. The avertin solution (20 mg/ml) was prepared by mechanical agitation (4 hr) at room temperature (22-24°C), and kept at 4°C until use. This anesthesia provokes the total lack of animal reaction to stimuli in less than 3 min after application (0.5 ml/animal), without any sign of suffering or paradoxical side effects. Adrenal glands from two mice were used in each culture (Alvarez et al., 2008). In general the animals died because of the anesthesia, but to avoid any possible suffering we always performed cervical dislocation immediately after the end of surgery. Chromaffin cells were isolated and cultured following the procedures described by Perez Bay et al. (Perez Bay et al., 2012). Briefly, mechanically isolated adrenal medullas were digested for 25 min in Hanks solution with papain (0.5–1 mg/ml) at 37°C, and mechanically disrupted in Dulbecco’s modified Eagle's medium low glucose, supplemented with 5% fetal calf serum, 5 µl/ml penicillin/streptomycin, 1.3 µl/ml gentamycin, 1 mg/ml bovine serum albumin, and 10 µM cytosine-β-D-arabinofuranoside. The cell suspension was filtered through 200 and 50 µm pore meshes, and cultured on poly-glycine-lysine pre-treated coverslips at 37°C, 95% O\(_2\)-5% CO\(_2\). The cells were used for experiments between 24 and 48 hr after culture.

2.2 Whole cell recording and membrane capacitance measurements

The patch-clamp setup comprised an inverted microscope (Olympus IX71, Olympus, Japan), a patch-clamp amplifier (EPC10 double patch clamp amplifier USB, Heka Elektronik, Lambrecht, Germany), and a personal computer. Application of stimulation protocols and acquisition of data were controlled by the Patchmaster® software (Heka, Lambrecht, Germany, RRID:SCR_000034). Chromaffin cells were washed in a standard extracellular solution composed of (mM) 120 NaCl, 20 HEPES, 4 MgCl\(_2\), 5 CaCl\(_2\), 5 mg/ml d-glucose, and 1 µM tetrodotoxin (pH 7.3). In some experiments the external solution was modified as
indicated in the text. The cells were maintained in the external solution for at least 10 min before starting with the experiments. The patch-clamp electrodes (3–5 MΩ) were filled with an internal solution containing (mM) 95 Cs D-glutamate, 23 HEPES, 30 CsCl, 8 NaCl, 1 MgCl₂, 2 Mg-ATP, 0.3 Li-GTP, and 0.5 Cs- EGTA or 0.5–4 Cs-BAPTA (pH 7.2). These solutions were designed to selectively measure voltage-dependent Ca²⁺ currents (I_CaV) and to maximize exocytosis of vesicles tightly coupled to voltage-dependent Ca²⁺ channels, and were used frequently by us to study the exocytosis of IRP (Alvarez et al., 2008; Moya-Diaz et al., 2016). The micropipettes were coated with dental wax to minimize their stray capacitance and to achieve a better C-fast compensation. The holding potential of −80 mV was not corrected for junction potentials. We considered that the recorded cells were ‘leaky’ and discarded them, when the leak current measured at the holding potential was bigger than −20 pA. We also discarded cells with series resistance bigger than 12 MΩ. The cell capacitance (Cm) was measured continuously during the experiments by application of the sine + dc method (Gillis, 1995) implemented through the lock-in extension of Patchmaster, using a sinusoidal voltage (800 Hz, 60 mV peak to peak) added to the holding potential. Application of the sinusoidal voltage was suspended from 10 ms before to 10 ms after the depolarizations applied to stimulate the cells. The synchronous increase in Cm (ΔCmendo), associated with exocytosis, was defined as the difference between the averaged Cm measured in a 50 ms window starting 60 ms after the end of the stimulus, minus the average pre-stimulus Cm, also measured in a 50 ms window. In a similar way, the following decrease in capacitance (ΔCmendo), associated with endocytosis, was calculated as the difference between the averaged Cm measured in a 50 ms window starting 60 ms right after the end of the stimulus, minus the averaged Cm measured 5 s after, also in a 50 ms window (Supplementary Material, Figure S1a). The data were filtered at 3 kHz. The experiments were carried out at room temperature (22–24°C).

To induce exocytosis of IRP, we employed a single 50 ms square depolarization from the holding potential of −80 to +10 mV. Exocytosis of IRP is triggered by a short depolarization, which provokes specifically the fusion of vesicles located close to VDCC (Horrigan & Bookman, 1994), but do not affect other ready releasable vesicles located farther from VDCC. In our laboratory, we found that in our experimental conditions a square 50 ms depolarization pulse is the best compromise between releasing most of IRP and avoiding the release of extra RRP vesicles (Alvarez et al., 2013). We also stimulated the cells with action potential-like stimuli (APIs) composed of a 2.5 ms ascendant voltage ramp from −80 to +50 mV, followed by a 2.5 ms descendant ramp that returned to the holding potential. To study the replenishment of IRP or ETAP (exocytosis triggered by action potential), we applied a pair of identical stimuli (single 50 ms square depolarizations or APIs, respectively) separated by variable time intervals of 0.2, 0.4, 1, 2, 3, 5, 7, 10, 20, and 40 s, respectively (see Figure 1a(i)). The first stimulus depletes the vesicle pool, and the second stimulus of the pair allows us to evaluate the degree of recovery after a certain period. The order of stimuli pairs with the different intervals was organized at random in each experiment using a table of random numbers (Sokal & Rohlf, 2009). The different time intervals (in increasing order) were aligned with 10 consecutive numbers of a table column, and then the stimuli pairs with their respective intervals were reordered according the first two digits of the corresponding random numbers. This procedure was repeated in each experiment of every experimental series using different sections of the table. We expressed the degree of replenishment as the ratio between exocytosis evoked by the second stimulus (ΔCm2/ΔCm1) and exocytosis evoked by the first stimulus (ΔCm2). The ratio ΔCm2/ΔCm1 was then plotted against the period between the first and the second stimulus.

2.3 | Cytosolic Ca²⁺ measurements

The experimental setup comprised an upright Olympus microscope BX51WI equipped with a LUMPlanFl/IR 60X/0.90 W (OLYMPUS) objective, and an electron multiplying CCD camera (Andor iXon, Oxford Instruments), controlled by cell-M System Coordinator/ cell-Real Time Controller software. The external and internal solutions were similar to those used for electrophysiology, with the exception that the internal solution contained 0.1 mM Fura-2 in salt form. Illumination was achieved with a monochromator device (Polychrome V. Till Photonics) at 340/10 (Fₛ₁) and 380/10 nm (Fₛ₂). The emitted fluorescence was detected at 510/80 nm (epifluorescence filter block Chroma 79001 ET-Fura-2, Chroma Technology). Fluorescence images of the cells focused approximately at the equatorial plane, were obtained at both illumination wavelengths during 5 s at 5 Hz (15 ms exposition time). The off-line images were processed with ImageJ free software (https://imagej.nih.gov/ij/). The background fluorescence (average of three regions of 4.11 × 1.37 μm) was subtracted from the spatially averaged whole cell fluorescence at each excitation wavelength. Free intracellular Ca²⁺ concentrations were estimated by the formula [Ca²⁺] = KR ([R · Rmax] / [Rmax − R]) [(S/S0)]; where R = Fₛ₁/Fₛ₂, S₁ and S₀ are the emitted fluorescence of Ca²⁺-free dye and the emitted fluorescence of Ca²⁺-saturated dye at 380 nm, and a Kₛ = 224 nM for Fura-2/Ca²⁺ (Gryniewicz et al., 1985). Rmax was obtained at the end of each experiment by breaking the patch pipette to let the external Ca²⁺ diffusing into the cytosol and saturate the indicator. Rmin was measured in independent cells in the presence of internal and external free Ca²⁺ solutions, both with 10 mM BAPTA.

2.4 | Evaluation of F-actin cellular distribution

The cells were fixed by bath application of 4% paraformaldehyde (v/v) and 4% sucrose (w/v) in phosphate-buffered saline (PBS) for 10 min. After being washed with PBS, cells were incubated in PBS plus tris(hydroxymethyl)aminomethane (TRIS) for 10 min. Next, after another wash in PBS the cells were incubated 10 min
in rhodamine-phalloidin (1 μM) in PBS (for some preparations we also added DAPI (5 μg/ml)). Finally, the cells were washed 10 times with PBS and then mounted in Mowiol®. Images were obtained with a Zeiss LSM 510 Meta confocal microscope equipped with a Plan-Apochromat 63X/1.4 Oil DIC. Rhodamine-phalloidin was excited at 543 nm and the dye emission was recorded at 560–620 nm. The off-line images were processed with ImageJ free software (https://imagej.nih.gov/ij/). Before fixation, some cells were pretreated with 2 μM cytochalasin D added to the culture medium during 10 min at 37°C to induce the disruption of F-actin (see Figure 7).

To evaluate the effect of cytosolic Ca²⁺ concentration on F-actin distribution the cells were permeabilized during 6 min with 20 μM digitonin and exposed to a solution containing (mM) 139 Cs-glutamate, 33 HEPES (pH 7.2), 30 CsCl, 8 NaCl, 1 MgCl₂ 10 Cs-EGTA, 2 Mg-ATP, 0.3 Li-GTP and different free Ca²⁺ concentrations (0.01, 0.1, 1, and 10 μM). The Ca²⁺ concentrations were calculated with the free access software MAXCHELATOR (https://web.stanford.edu/~cpatton/maxc.html) applied for two chelators (ATP and EGTA) and two metals (Ca²⁺ and Mg²⁺), at 25°C and 0.173 N ionic force. The cells were fixed and labeled with rhodamine-phalloidin as explained previously.

2.5 Materials

Bovine serum albumin (CAT No. 05470-25G), poly-L-lysine (CAT No. P8920-100Ml), cytosine-1-beta-D-arabinofuranoside (CAT No. C6645-25MG), papain (CAT No. P4762-100MG), Mg ATP (CAT No. A9187-100MG), Li GTP (CAT No. G5884-25MG), EGTA (CAT No. E4378-10G), BAPTA (CAT No. A4926-1G), and cytochalasin D (CAT No. C8273) were obtained from Sigma (St Louis, MO, USA); Dulbecco’s modified Eagle’s medium (CAT No. 10567-014), gentamycin (CAT No. 15750078) and penicillin/streptomycin (CAT No. 15140122), from Gibco (Carlsbad, CA, USA); fetal calf serum from Natocor (Córdoba, Argentina, CAT No. SFB500 ml); tetrodotoxin citrate from Alomone Labs (Jerusalem, Israel, CAT No. T-550); Fura-2 from Invitrogen (Carlsbad, CA, USA, CAT No. F6799); rhodamine-phalloidin from Thermo Fisher (Waltham, MA, USA, CAT No. R415); and the monoclonal anti-dynamin antibody (BD Biosciences, San Jose, CA, EEUU, CAT No. 610,246, RRID:AB_397641).

2.6 Data analysis and statistics

To estimate the cortical actin density as represented in Figure S3b (ii) we measured the fluorescence associated with rhodamine-phalloidin at four rectangular areas (4.11 x 1.37 μm) equidistant each other in the cell border (Supplementary Material, Figure S1b), and averaged after background subtraction. Finally, for each culture, the individual cell values were divided by the averaged fluorescence intensity of control cells not treated with digitonin (4 cultures with 8–21 control cells each), and averaged.

FIGURE 1 Replenishment of IRP involves two kinetic components. (a) (i), Scheme of the stimulation protocol. In order to determine the kinetics of IRP replenishment, a pair of 50 ms depolarizations (SQR50, and SQR50₂) from −80 to +10 mV with a variable time interval between them was applied. (ii) I₉Ca2+ and (iii) Cm recordings obtained during a typical experiment when a 5 s interval between stimuli was applied. The white line in (iii) represents a single exponential fit \(\Delta Cm = Y₀ + Aₑ e^{-t/τₑ} \) applied to the decay in Cm, where \(Y₀ = 9.8 ± 0.1 fF \), \(Aₑ = 14 ± 0.2 fF \), and \(τₑ = 1.17 ± 0.03 s, R > 0.837 \). (b) The relative replenishment of IRP after depletion (expressed as averages of \(\Delta Cm₁/\Delta Cm₀ \) for every time interval) was plotted against the time interval between 50 ms depolarizations and fitted to a biexponential growing function of the form \(\frac{Σ \Delta Cm₁−Y₀}{Aₑ (1−e^{-t/τₑ)}} + Aᵦ (1−e^{-t/τᵦ}) \), where \(Y₀ = 0.30 ± 0.02, Aₑ = 0.32 ± 0.04, τₑ = 1.07 ± 0.27 s, Aᵦ = 0.37 ± 0.04, \) and \(τᵦ = 10.42 ± 2.55 s, R > 0.998 \). The points represented in the plot are averages of all the measurements obtained in individual cells (one measurement per cell), and the number of measurements included in each point is represented in the Table S2. The fitting was performed on average values.

Data are expressed as mean values ± standard error of measurements obtained in different cells (one measurement per cell, and one cell per petri dish). For every experimental condition, the data were always obtained from several cell cultures. The number of cell cultures used in every experimental condition and for each
measured variable is represented in Table S3. No blinding and no sample calculation were performed in this study. The sample sizes were adjusted according the variability in every experimental series. No test for outliers was performed. Statistical analysis was carried out using the statistical package of Sigma Plot 11.0 (Systat Software, RRID:SCR_003210). We used the Student’s ‘t’ test for comparisons between two groups of independent data samples. One-way ANOVA was used for multiple independent data samples, and Bonferroni test for comparisons between groups. If samples did not pass the normality test (Shapiro–Wilk), we used the Mann–Whitney rank sum test or Kruskal–Wallis one way analysis of variance on ranks, respectively. In the latter case, we used the Dunn’s test for comparison between groups. To fit endocytosis records, or replenishment curves of IRP or ETAP, we used the nonlinear curve-fitting option in Origin Pro 8 (Microcal Software, RRID:SCR_002815). The comparison between fittings with different number of exponential components was performed with a Fisher test which considers the residual sum of square errors and the degree of freedom of each model (Origin® statistical package).

3 | RESULTS

3.1 Fast endocytosis and vesicle replenishment after immediately releasable pool (IRP) exocytosis

To measure IRP exocytosis, we reproduced the standard conditions used in our previous publications (Alvarez et al., 2008; Moya-Diaz et al., 2016). To maximize exocytosis of vesicles tightly coupled to voltage-dependent Ca\(^{2+}\) channels, external and internal solutions contained 5 mM Ca\(^{2+}\) and 0.5 mM EGTA, respectively (Moya-Diaz et al., 2016) (see Materials and Methods). Exocytosis was induced by a 50 ms square depolarization pulse (from -80 to +10 mV) which completely releases IRP in our chromaffin cell preparation (Alvarez et al., 2013). To evaluate IRP replenishment after depletion, the experimental protocol involved application of several pairs of 50 ms square depolarizations separated by variable time periods and organized at random in each cell (see Figure 1a(i) and Materials and Methods). Figure 1a (i) and (iii) illustrate typical records of Ca\(^{2+}\) current (I\(_{\text{ca}}\)) and cell membrane capacitance (ΔCm) obtained in response to application of the paired protocol with 5 s interval between stimuli. There was no difference between the amplitude of I\(_{\text{ca}}\) and I\(_{\text{ca}}\) evoked by the first and second depolarization pulse of the pair (163 ± 19 and 157 ± 18 pA respectively; n = 28). To standardize the estimations of I\(_{\text{ca}}\) and exocytosis (ΔCm\(_{\text{exo}}\)) along the work we always computed the measurements obtained on the first depolarization of the first pair of pulses applied in each cell (see the example in Figure 1a). I\(_{\text{ca}}\) + ΔCm\(_{\text{exo}}\) induced by this stimulus averaged 163 ± 19 pA and 21 ± 2 fF, respectively (n = 28). This ΔCm\(_{\text{exo}}\) is similar to previous estimations of IRP obtained by us in the same conditions, and falls within the range of values reported by other authors in chromaffin cells (Alvarez et al., 2008; Alvarez & Marengo, 2011; Horrigan & Bookman, 1994; Voets et al., 1999). In 85% of the cells, exocytosis of IRP was followed by a fast decrease in Cm (Figure 1a(iii), which resembles to fast endocytosis described previously by us and other authors (Chan & Smith, 2001; Moya-Diaz et al., 2016; Wu & Wu, 2014). As explained before for I\(_{\text{ca}}\) and ΔCm\(_{\text{exo}}\) to standardize the estimations of endocytosis (ΔCm\(_{\text{endo}}\)), we always measured the decay in Cm after the first depolarization of the first pair of pulses applied in each cell. In addition, to ensure completion of this endocytotic process, we evaluated ΔCm\(_{\text{endo}}\) in cells for which the first pair of pulses was separated at least by 5 s (see Methods). After all these considerations, only three experiments showed a non-measurable decay in Cm and were included in the statistics with a value equal to zero, and ΔCm\(_{\text{endo}}\) averaged 8.5 ± 1.6 fF (n = 21). We used the ratio between endocytosis and exocytosis amplitudes (endo/exo) an index of endocytotic compensation efficiency. In our standard conditions we obtained endo/exo = 0.45 ± 0.06 (n = 21). Finally, the Cm decay associated with endocytosis was fitted in each experiment to a single exponential function (we excluded experiments with high basal noise and those with ΔCm\(_{\text{endo}}\) ≤ 3 fF), obtaining an average time constant (τ\(_{\text{endo}}\)) of 1.23 ± 0.18 s (n = 12; an example is shown in Figure 1a(iii), white line).

In a previous paper, we have concluded that IRP is replenished with a kinetics that follows a single exponential function with a time constant (τ\(_{\text{endo}}\)) of approximately 7 s (Moya-Diaz et al., 2016). However, in that work the shortest interval applied between stimuli was 2 s, so we could have potentially lost a faster component. Furthermore, in the same work we found that a small group of vesicles, released by a single action potential-like stimulus and named as ETAP (for exocytosis triggered by action potential), recovers ten times faster, with a τ\(_{\text{endo}}\) of 0.7 s. Therefore, it is possible that the kinetics of IRP replenishment presents actually two components, a rapid and a slow one. To reevaluate the kinetics of IRP replenishment, in this work we applied an extended protocol from our previous work by including short (0.2, 0.4, and 1 s) as well as long (2, 3, 5, 7, 10, 20, and 40 s) intervals between stimuli. Figure 1b shows the average results obtained for IRP replenishment from these experiments. The experimental points of Figure 1b were fitted initially to a single exponential growing function, obtaining a time constant τ\(_{\text{endo}}\) of 3.28 ± 0.68 s (R\(^2\) = 0.966, reduced Chi Square = 1.054; Supplementary Material, Figure S1c and Table S1). However, this fitting ignored the average experimental points obtained at 0.2, 20 and 40 s intervals. Furthermore, this time constant is approximately two times faster than the one obtained previously by us for IRP replenishment (Moya-Diaz et al., 2016), probably because of the inclusion of the shorter intervals. When the experimental curve was fitted to a double growing exponential function (Figure 1b), the quality of the fitting improved significantly (R\(^2\) = 0.996, reduced Chi Square = 0.122, p < .05 (Fisher test), Table S1) and the fitting line connected every point. The time constant of the slower component (τ\(_{R1}\) = 10.42 s) was close to the one previously obtained by us for IRP, and the rapid time constant (τ\(_{R2}\) = 1.6 fF) was very similar to the one previously described for the replenishment of ETAP (Moya-Diaz et al., 2016).
3.2 | Effects of cytosolic \([\text{Ca}^{2+}]\) on fast endocytosis and IRP replenishment

The results obtained in the previous section indicate that IRP replenishment is better represented by two growing exponential components. To study if these components might reflect two different processes, we analyzed IRP replenishment dependency with cytosolic \([\text{Ca}^{2+}]\). Our speculation was that different molecular processes probably have different \([\text{Ca}^{2+}]\) dependencies. Cytosolic \([\text{Ca}^{2+}]\) affects diverse processes associated with vesicle replenishment. For example, transport of vesicles through cytoskeleton, transference of vesicles to the ready releasable pool, priming, and endocytosis are affected by \([\text{Ca}^{2+}]\) (Rose et al., 2001; Sorensen, 2004; Voets et al., 1999; Wu & Wu, 2014).

First, we repeated the same experimental conditions of the previous section but adding 500 nM free \([\text{Ca}^{2+}]\) to the electrode internal solution. The free \([\text{Ca}^{2+}]\) was calculated with the free access software MAXCHELATOR (https://web.stanford.edu/~cpatton/maxc.html) applied for two chelators (ATP and EGTA) and two metals (\([\text{Ca}^{2+}]\) and \([\text{Mg}^{2+}]\)), at 25°C and 0.173 N ionic force. Figure 2a shows a typical record of cellular capacitance during application of a pair of 50 ms square depolarizations separated by 5 s in this high \([\text{Ca}^{2+}]\) condition. Table 1 summarizes the averaged values of these experiments in comparison with the control condition represented in Figure 1. Fast endocytosis, measured in absolute values as \(\Delta \text{Cm}_{\text{endo}}\), as well as in relative values with respect to the previous exocytosis (endo/exo), was basically abolished at high \([\text{Ca}^{2+}]\). Surprisingly \(\Delta \text{Cm}_{\text{exo}}\) was not modified by the increase in basal \([\text{Ca}^{2+}]\), although this behavior can be explained by the significant reduction in \(I_{\text{Ca}^{2+}}\) (Table 1).

Figure 2b represents the average IRP replenishment (expressed as \(\Delta \text{Cm}_{\text{exo}}/\Delta \text{Cm}_{\text{endo}}\)) curve obtained in presence of 500 nM cytosolic \([\text{Ca}^{2+}]\). The average experimental points were fitted to a single exponential growing function, obtaining a time constant \(\tau_R\) of 5.22 s (\(R^2 = 0.973\), reduced Chi Square = 0.587). The fitting line crosses close to every experimental point, and application of a double exponential function did not improve the fitting appreciably (\(R^2 = 0.975\), reduced Chi Square = 0.526, \(p > .328\) (Fisher test, Table S1)). We also fitted individual experiments (i.e. each replenishment curve for every individual cell) and obtained an almost identical time constant of replenishment (averaged \(\tau_R = 5.28 \pm 1.30\) s, \(n = 7\), for examples see Figure S1d (i) and (ii)). In conclusion, the increase of basal cytosolic \([\text{Ca}^{2+}]\) abolished fast endocytosis and reduced IRP replenishment to only one relatively slow component. The speed of this replenishment process is approximately the double of the slow component and five times slower than the rapid component measured in the control condition. Although we cannot assign this replenishment to any particular process, our results show that it is not directly related to fast endocytosis. Therefore, it is clearly different to the rapid replenishment process associated with exocytosis induced by a single action potential (Moya-Diaz et al., 2016).

The second experimental approach used to evaluate the effect of cytosolic \([\text{Ca}^{2+}]\) on IRP replenishment and fast endocytosis consisted in enhancing the cytosolic \([\text{Ca}^{2+}]\) buffering capacity by addition of increasing concentrations of BAPTA to the internal solution. Increasing BAPTA concentration from 0.5 to 4 mM did not provoke a significant change in the amplitude of exocytosis (Figure 3a and c). Even though \(\Delta \text{Cm}_{\text{exo}}\) showed some decreasing tendency, it did not reach statistical significance, which may be due to a compensatory effect caused by the significant enhancement of \(I_{\text{Ca}^{2+}}\) at high BAPTA concentrations (Figure 3b). Importantly, the augment of BAPTA concentration significantly increased endocytosis amplitude and endo/exo ratio (Figure 3a, d and e). In fact, at 4 mM BAPTA the parameter endo/exo approached 1, turning from a non-compensatory to a
fully compensatory endocytosis. Moreover endocytosis was markedly accelerated at high BAPTA concentrations, with significantly reduced τ_{endo} values (Figure 3f).

The results described above indicate that chromaffin cell fast endocytosis was increased and accelerated in the presence of a high Ca$^{2+}$ buffer capacity. However, this effect might be indirectly caused as a consequence of a local Ca$^{2+}$ increase produced by the increment of I$_{Ca}^+$ at high BAPTA concentrations. To evaluate this possibility, we measured the changes in membrane capacitance induced by 50 ms depolarizations in presence of 0.5 mM intracellular BAPTA but with 10 mM Ca$^{2+}$ in the extracellular solution, in an attempt to obtain a higher I$_{Ca}^+$, similar to the one measured with 4 mM intracellular BAPTA. This increase in extracellular [Ca$^{2+}$] provoked significant augments in I$_{Ca}^+$ and in exocytosis with respect to the experiments performed at 5 mM extracellular [Ca$^{2+}$] (Figures S2a-c). It is important to note that the I$_{Ca}^+$ obtained at 10 mM Ca$^{2+}$ was very similar to the one represented in Figure 3b for 4 mM BAPTA. Nevertheless, endocytosis was not augmented nor accelerated in response to the increase in extracellular [Ca$^{2+}$] with concomitant increase in I$_{Ca}^+$ (Figures S2d–f). On the contrary, high external [Ca$^{2+}$] seemed to be associated with decreases in size and speed of endocytosis, although these tendencies were not significant.

TABLE 1 Effects of cytolic [Ca$^{2+}$] on I$_{Ca}^+$, exocytosis and fast endocytosis

	Control	500 nM Ca$^{2+}$
I_{Ca}^+ (pA)	163 ± 19	101 ± 14 (24) MW
ΔC_m exo (fF)	21 ± 2 (28)	22 ± 3 (24)
ΔC_m endo (fF)	9 ± 2 (21)	$-0.27 \pm 2.16 (17)$ ST
endo/exo	0.45 ± 0.06 (21)	$-0.12 \pm 0.17 (17)$ MW

Note: Average values of Ca$^{2+}$ current (I_{Ca}^+), exocytosis (ΔC_m exo), endocytosis (ΔC_m endo), and endo/exo ratio for control conditions (5 mM Ca$^{2+}$ in the external solution and 0.5 mM EGTA in the internal solution) and for cells dialyzed with 500 nM free Ca$^{2+}$ in the internal solution. The number of cells measured in each condition is between parentheses. Data were analyzed by Student’s ‘t’ (ST) or Mann-Whitney (MW) test for comparisons between two groups of independent data samples.

*p < .05.

![Figure 3](image-url) Effect of the increase in Ca$^{2+}$ buffer capacity on fast endocytosis: (a) Typical Cm recordings obtained from two cells dialyzed with 0.5 and 4 mM cytosolic BAPTA in the internal solution, respectively. The white lines represent the single exponential fits ($\Delta C_m = Y_0 + A \cdot e^{-t/\tau}$) applied to the decay in Cm in both conditions ($R > 0.843$ and $R > 0.871$, respectively). (b–f), The plots represent average values, standard errors and individual measurements (1 measurement/cell) of I_{Ca}^+, exocytosis (ΔC_m exo), endocytosis (ΔC_m endo), ratio between endocytosis and exocytosis (endo/exo), and time constant of endocytosis (τ_{endo}) obtained at 0.5, 1, 2, and 4 mM BAPTA, respectively. The data were analyzed by one-way ANOVA (b, e and f), or Kruskal-Wallis one-way analysis of variance on ranks (c and d). The comparisons were always done against 0.5 BAPTA.

*p < .05. The number of cells averaged in each condition is represented between parentheses.
The results represented in Figure 3 and Figure S2 indicate that it is the increase in Ca\(^{2+}\) buffer capacity itself with concomitant reduction in cytosolic [Ca\(^{2+}\)], and not the increase in I\(_{\text{Ca}^{2+}}\), what provokes the magnification of endocytosis. Additionally, IRP replenishment was also accelerated with the increase in BAPTA concentration. Figure 4 shows average replenishment curves at 0.5, 1, 2, and 4 mM BAPTA. Every curve was fitted well by a single exponential function, and application of a double exponential did not significantly improve these fittings (see all fitting parameters and statistical values associated with the Fisher test in Table S1). The replenishment obtained in the experiments performed at 0.5 mM cytosolic BAPTA (Figure 4a) followed an exponential behavior with similar kinetics to the fast component fitted at 0.5 mM EGTA (please compare (Figure 4a) followed an exponential behavior with similar kinetics to the fast component fitted at 0.5 mM EGTA (please compare (Figure 4a with \(\tau_{R1}\) of Figure 1b).

More importantly, the time constant of replenishment \(\tau_{R}\) was reduced more than three times when BAPTA was increased from 0.5 to 4 mM (Figure 4a-d). We also fitted individual experiments. As an example, Figure 5a (i) and (ii) show replenishment curves obtained from 2 single cells dialyzed with 0.5 and 4 mM BAPTA, respectively. Figure 5b summarizes the averaged values of time constants \(\tau_{R}\) obtained from these individual fittings performed on every BAPTA concentration tested. This additional analysis confirms the significant reduction of the replenishment time constant \(\tau_{R}\) (i.e. the acceleration of the replenishment process) at high BAPTA concentrations.

Interestingly, the estimations of \(\tau_{\text{endo}}\) and \(\tau_{\text{R}}\) in 4 mM BAPTA condition were both very similar to the those previously determined by us for ETAP (Moya-Diaz et al., 2016). In this previous work, we found that fast endocytosis and rapid ETAP replenishment were significantly inhibited by dialysis of a monoclonal antibody against dynamin (antiDyn) through the patch micropipette. We and other authors reported previously the efficiency of this antibody to block the actions of dynamin (Gonzalez-Jamett et al., 2010; Moya-Diaz et al., 2016). Fast endocytosis and internalization of a transferrin-conjugate and an anti-dopamine-b hydroxylase antibody in mouse chromaffin cells were blocked by antiDyn (Moya-Diaz et al., 2016). Dynamin is a protein involved in the final steps of various modes of endocytosis (Artalejo et al., 2002; Watanabe et al., 2013; Wu et al., 2014). The interpretation of those results was that fast endocytosis was dynamin dependent, and it was a necessary process for the development of rapid replenishment (i.e. if fast endocytosis is inhibited or retarded we expect to see a similar effect on the rapid replenishment).

Therefore, we next evaluated the effect of antiDyn on these two processes when cells were measured in presence of 4 mM intracellular BAPTA. In agreement with our previous results, we found that antiDyn (dialyzed during 5 min after whole-cell establishment) provoked a significant deceleration of fast endocytosis (see individual examples represented in Figure 6a). Also, replenishment was decelerated by antiDyn. Figure 6b represents averaged replenishment curves and Figure 6c shows two independent examples of replenishment curves obtained in individual cells, in control and in antiDyn condition, respectively. The different parameters measured in these experiments are summarized in Table 2, where it is shown that AntiDyn significantly increased \(\tau_{\text{endo}}\) and \(\tau_{R}\). In other words, inhibition of dynamin decelerated both fast endocytosis and replenishment.

In summary, the results of this section illustrate that different experimental strategies that modify intracellular [Ca\(^{2+}\)] provoke changes in fast endocytosis and IRP replenishment: the increase in intracellular [Ca\(^{2+}\)] inhibits fast endocytosis and abolishes the rapid
component of replenishment, while increase in cytosolic Ca2+ buffer capacity (which implies a decrease in intracellular [Ca2+]) potentiates and accelerates endocytosis and also accelerates replenishment.

Finally, the results also show that both processes depend on dynamin.

3.3 Effect of cytosolic \([\text{Ca}^{2+}]\) on cortical F-actin

The previous section showed that cytosolic \([\text{Ca}^{2+}]\) modulates both fast endocytosis and replenishment associated with IRP exocytosis. \(\text{Ca}^{2+}\) can potentially modulate endocytosis and vesicle replenishment through different mechanisms (Chan et al., 2003; Elhamdani et al., 2006; Heinemann et al., 1993; Trifaro et al., 2008; Voets et al., 1999; Wu & Wu, 2014). In this section, we evaluated the effect of cytosolic \([\text{Ca}^{2+}]\) on cortical F-actin because: (i) actin cytoskeleton remodeling and severing is finely regulated by \(\text{Ca}^{2+}\) (Kumar et al., 2004; Lueck et al., 2000; Rodriguez Del Castillo et al., 1990); and (ii) there is accumulated evidence for the pivotal role of cortical F-actin in the regulation of exocytosis, endocytosis, and vesicle trafficking to plasma membrane in chromaffin and other cells (Boulant et al., 2011; Doreian et al., 2008; Rose et al., 2001; Shin et al., 2018; Watanabe et al., 2013).

As a first step, we estimated cytosolic \([\text{Ca}^{2+}]\) with Fura-2 (0.1 mM) in three different buffering conditions used in our previous experiments: 0.5 mM EGTA, 0.5 BAPTA, and 4 mM BAPTA added to the internal solution (see Materials and Methods for solution compositions). Figure S3a shows examples of experimental records obtained with 0.5 and 4 mM BAPTA. When averaged, the estimated \([\text{Ca}^{2+}]\) at 0.5 mM BAPTA and at 0.5 mM EGTA were very similar, 60 ± 14 nM (\(n = 18\)) and 69 ± 26 nM, (\(n = 12\), not shown) respectively; but 4 mM BAPTA reduced significantly the cytosolic \([\text{Ca}^{2+}]\) to 18 ± 7 nM (\(n = 13; p < .05\)).

To evaluate the effects of cytosolic \(\text{Ca}^{2+}\) on cellular F-actin we exposed digitonin-permeabilized cells to either 0.01, 0.1, 1, or 10 µM \(\text{Ca}^{2+}\) (see Materials and Methods), fixed the cells, and evaluated the cortical F-actin density using confocal microscopy and rhodamine-phalloidin as a fluorescent F-actin marker. Figure S3b (i) shows individual examples of cell images obtained under these four conditions. As expected, F-actin was mostly concentrated in the cortical region of the cell. More importantly, F-actin density decreased as \([\text{Ca}^{2+}]\) was augmented. The cortical F-actin density was evaluated in four regions of interest in each cell (Figure S1b), and the summary of these results is represented...
There was a highly significant decrease of cortical F-actin density with the increment of \([\text{Ca}^{2+}]\). Moreover, it is particularly remarkable that the different cytosolic \([\text{Ca}^{2+}]\) estimated or fixed in our previous experiments (see red arrows at 20, 60, and 500 nM \text{Ca}^{2+}) are localized in the steeper region of the curve.

3.4 Importance of cortical F-actin on fast endocytosis and rapid IRP replenishment

The experiments explained in the previous section indicate that low cytosolic \([\text{Ca}^{2+}]\) promotes a high F-actin density at the cell cortical region. Therefore, cortical F-actin density might be a potential factor contributing to the observed fast endocytosis and rapid IRP replenishment measured at 4 mM BAPTA. The rationale of this hypothesis is based on previous observations by others: particularly cortical F-actin dynamics promotes endocytosis (Boulant et al., 2011; Watanabe et al., 2013), vesicle transport (Li et al., 2018; Rose et al., 2001) and ‘kiss-and-run’ mode of vesicle fusion/fission which is supposedly associated with fast endocytosis and rapid recycling (Doreian et al., 2008; Elhamdani et al., 2006). Based on our hypothesis, we expect that a pharmacological induction of actin depolymerization should revert in part the acceleration of endocytosis and replenishment promoted by high BAPTA concentration. To depolymerize F-actin we pretreated cells with 2 µM BAPTA.
cytochalasin D (Cyto D) during 10 min at 37°C. Figure 7a shows examples of cells labeled with the F-actin fluorescent marker rhodamine-phalloidin. While in control conditions F-actin was mainly distributed as a continuous ring in the cortical region of the cells, Cyto D treatment provoked a totally different pattern with discontinued F-actin distribution in the cortex as well as in the inner cytoplasmic regions. We quantified the cortical F-actin reported by rhodamine-phalloidin fluorescence in a 1 μm wide ring area surrounding the border of the cell. We found that the relative fluorescence of the cell cortex, with respect to the whole cell fluorescence, was significantly reduced by Cyto D treatment (1.50 ± 0.04 (n = 11) versus 1.15 ± 0.04 (n = 9), p < .05).

We evaluated the effect of Cyto D treatment on endocytosis and replenishment in cells dialyzed with 4 mM BAPTA. Figure 7b shows two typical capacitance records obtained under control and Cyto D condition. This treatment reduced both exocytosis and endocytosis amplitudes, but endo/exo ratio was not modified and endocytosis completely compensated the previous exocytosis in both conditions (see Table 3 and Figure 7b). Importantly, the rate of endocytosis was significantly reduced by Cyto D treatment (see the increase in τ_{endo} values in Figure 7b and Table 3). In addition, average replenishment curves (Figure 7c (i) and (iii), as well as replenishment curves obtained for individual cells (see Figures S4a and b for examples, and Table 3 for averaged values), show that τ_B increased significantly after Cyto D treatment, implying that replenishment was also decelerated.

3.5 Importance of cortical F-actin on fast endocytosis and rapid ETAP replenishment

We have shown before (Moya-Díaz et al., 2016) that fast endocytosis and replenishment associated with ETAP are partially inhibited and retarded by application of dynamin blockers. These results were confirmed in this work by application of antiDyn and 80 μM dynasore (Figure S5a and b; τ_{endo} were 1.49 ± 0.12 s (n = 5) and 1.26 ± 0.39 s (n = 7) for antiDyn and dynasore, respectively, and τ_B for dynasore was 2.38 ± 0.68 s (n = 7)). We now wondered if F-actin might also contribute to fast endocytosis and rapid replenishment coupled to ETAP (Moya-Díaz et al., 2016). Figure 8a shows the depolarization template (i.e. APls, see Methods) used to stimulate cells (i), and examples of recordings of $I_{Ca_{2+}}$, exocytosis, endocytosis amplitude nor endo/exo ratio (see Table 3). Endocytosis nearly compensated previous exocytosis in both conditions (ratios endo/exo were close to 1). However, Cyto D treatment significantly decelerated endocytosis (see τ_{endo} for control and Cyto D for the examples of individual experiments in Figure 8a (iii) and replenishment (see τ_B for the average replenishment curves in Figure 8b (i) and (ii), and in the examples of individual experiments in the Figure S4c and d). Averages of τ_{endo} and τ_B obtained from individual experiments are represented in Table 3.

In conclusion, the results of the two last sections support the hypothesis that cortical F-actin contributes to the regulation of dynamin-dependent fast endocytosis and the associated rapid replenishment after IRP exocytosis.

4 Discussion

In this work, we found that IRP is replenished after depletion with two components: a slow one, in agreement with previous reports (Moser & Neher, 1997; Moya-Díaz et al., 2016); and a rapid one, as recently described by us for ETAP (Moya-Díaz et al., 2016). To the best of our knowledge, two components of replenishment were previously described for the ready releasable pool (Chan et al., 2005; Gomis et al., 1999; Voets et al., 1999), but not for IRP. This solves the apparent paradox that has arisen from our previous work, which described that ETAP is a fraction of IRP but recovers ten times faster than the whole IRP (Moya-Díaz et al., 2016). This rapid component is markedly potentiated at low cytosolic [Ca$^{2+}$], and this behavior can be explained, at least in part, by the presence of a highly dense cortical F-actin.

4.1 Rapid replenishment is linked to fast endocytosis

Exocytosis of IRP in our standard conditions is followed by a fast endocytosis that compensates about half of the previous membrane capacitance increase (Figure 1). Every experimental intervention that modifies fast endocytosis also changes the rapid replenishment of IRP in the same direction. First, inhibition of dynamin decelerates both fast endocytosis and rapid replenishment (Figure 6), in agreement with our previous results obtained...

Table 2 Effects of antiDyn on $I_{Ca_{2+}}$, exocytosis, fast endocytosis and replenishment

	Control	4 mM BAPTA + antiDyn
$I_{Ca_{2+}}$ (pA)	252 ± 37 (9)	247 ± 40 (10)
ΔC_m exo (FF)	13 ± 2 (9)	9 ± 1 (10)
ΔC_m endo (FF)	13 ± 2 (9)	9 ± 1 (10)
endo/exo	1.00 ± 0.05 (9)	0.98 ± 0.11 (10)
τ_{endo} (s)	0.79 ± 0.12 (9)	1.39 ± 0.17 (10)
τ_B (s)	0.69 ± 0.11 (9)	1.5 ± 0.19 (10)

Note: Average values of Ca$^{2+}$ current ($I_{Ca_{2+}}$), exocytosis (ΔC_m exo), endocytosis (ΔC_m endo), endo/exo ratio, time constant of endocytosis (τ_{endo}), and the time constant of replenishment (τ_B) for cells dialyzed with a monoclonal antibody against dynamin in the internal solution (4 mM BAPTA + antiDyn, right), and their respective control conditions (4 mM BAPTA in the internal solution, left). The number of cells measured in each condition is between parentheses. Data were analyzed by Student’s ‘t’ (ST) or Mann–Whitney (MW) test for comparisons between two groups of independent data samples. $^p < .05$.

MONTENEGRO ET AL.

Journal of Neuroscience

WILEY
for ETAP (Moya-Diaz et al., 2016). Second, 500 nM cytosolic Ca\(^{2+}\) abolished rapid replenishment and fast endocytosis; and inversely, these two processes were potentiated and accelerated as Ca\(^{2+}\) buffer capacity was augmented by increasing cytosolic BAPTA concentration (Figures 2–5). Third, rapid replenishment and fast endocytosis were decelerated by cortical F-actin disruption (Figures 7 and 8). Taken together, these results strongly suggest that rapid replenishment is linked to fast endocytosis. Notably, the time constant of rapid replenishment shows similar values to the time constant of endocytosis in every experimental condition performed in this work. This parallel behavior of rapid replenishment and fast endocytosis velocities adds additional support to the interdependence between both variables. These results are in agreement with our previous report showing that rapid ETAP replenishment is tightly linked to a dynamin-dependent fast endocytosis (Moya-Diaz et al., 2016), and support the presence of a novel fast recycling mechanism of IRP vesicles in chromaffin cells.

4.2 | Rapid replenishment and fast endocytosis are potentiated at low cytosolic Ca\(^{2+}\) concentrations

To study the effect of low cytosolic [Ca\(^{2+}\)] on fast endocytosis and IRP replenishment we applied BAPTA at different concentrations. The cells with BAPTA lacked the slow component of replenishment. Considering BAPTA fast Ca\(^{2+}\) binding kinetics, it seems that this phenomenon could be related to a process influenced by sharp Ca\(^{2+}\) gradients that developed close to VDCC during \(I_{\text{Ca}^{2+}}\) activation. One possibility is that the slow replenishment might be associated with vesicle trafficking towards the exocytotic site, influenced by local Ca\(^{2+}\) (Becherer et al., 2003). Another possibility is that the presence of BAPTA selects for fusion a subpopulation of vesicles that is even closer to VDCC than the rest of IRP vesicles, and that this subpopulation would be associated with rapid replenishment. This second hypothesis might be related to ETAP (Moya-Diaz et al., 2016), a subpopulation of IRP that recovers very rapidly. More importantly,
Effects of F-actin disruption on \(I_{\text{Ca}^{2+}} \), exocytosis, endocytosis and replenishment

	SQR50/BAPTA	APls/EGTA		
	4 mM	0.5 mM		
	CONTROL	Cyto D	CONTROL	Cyto D
\(I_{\text{Ca}^{2+}} \) (pA)	221 ± 25 (10)	227 ± 29 (12)	336 ± 32 (10)	363 ± 39 (12)
\(\Delta C_{\text{exo}} \) (FF)	14 ± 2 (10)	8 ± 1 (12) *MW	8 ± 1 (10)	7 ± 1 (12)
\(\Delta C_{\text{endo}} \) (FF)	14 ± 3 (10)	9 ± 1 (12) *MW	7 ± 1 (10)	6 ± 1 (12)
endo/exo	0.97 ± 0.07 (10)	1.11 ± 0.04 (12)	0.89 ± 0.05 (10)	0.93 ± 0.05 (12)
\(\tau_{\text{endo}} \) (s)	0.73 ± 0.09 (9)	1.09 ± 0.11 (12) *ST	0.82 ± 0.08 (10)	1.24 ± 0.08 (12) *ST
\(\tau_{\text{E}} \) (s)	0.63 ± 0.06 (10)	1.17 ± 0.15 (9) *ST	0.85 ± 0.10 (10)	1.64 ± 0.29 (9) *MW

Note: Average values of Ca\(^{2+}\) current (\(I_{\text{Ca}^{2+}} \)), exocytosis (\(\Delta C_{\text{exo}} \)), endocytosis (\(\Delta C_{\text{endo}} \)), endo/exo ratio, time constant of endocytosis (\(\tau_{\text{endo}} \)), and time constant of replenishment (\(\tau_{\text{E}} \)) for cells stimulated with a square 50 ms depolarization (SQR50, two columns on the left), or an action potential like stimulus (APls, two columns on the right), in their respective control conditions and after a pretreatment with cytochalasin D (Cyto D). The internal solutions of SQRT experiments were buffered with 4 mM BAPTA, and the internal solutions of APls experiments were buffered with 0.5 EGTA. The number of cells measured in each condition is between parentheses. Data were analyzed by Student’s ‘t’ (ST) or Mann–Whitney (MW) test for comparisons between two groups of independent data samples. The comparisons were made between each Cyto D group and their respective control group. *p < .05.

The results indicate that the rapid component of IRP replenishment is accelerated by the low cytosolic [Ca\(^{2+}\)] promoted at high BAPTA (Figures 4 and 5). Moreover the decrease in cytosolic Ca\(^{2+}\) also potentiates the speed and magnitude of fast endocytosis that precedes the replenishment (Figure 3). Additionally, our results show that application of intracellular 500 mM Ca\(^{2+}\) abolished fast endocytosis and reduced the replenishment of IRP to only one relatively slow component (Figure 2). In light of our present knowledge, the fact that fast endocytosis is facilitated at low cytosolic [Ca\(^{2+}\)] can be interpreted in two different ways. One possibility is that Ca\(^{2+}\) directly inhibits endocytosis, as previously reported for goldfish retinal bipolar neurons, calyx of Held, and bovine chromaffin cells (Chan et al., 2003; von Gersdorff & Matthews, 1994; Wu & Wu, 2014). Moreover, our results indicate that the facilitation of endocytosis by BAPTA is due to the decrease in basal [Ca\(^{2+}\)], and is not related to the increment in \(I_{\text{Ca}^{2+}} \) (Figure 3 and Figure S2). This is in agreement with the findings of Wu and Wu (2014), who concluded that prolonged, small, and global increases of cytosolic [Ca\(^{2+}\)] inhibit endocytosis. Another possibility is that low cytosolic [Ca\(^{2+}\)] favors a ‘kiss-and-run’ like exocytotic mechanism followed by fast endocytosis, while higher [Ca\(^{2+}\)] promotes full fusion (Chan et al., 2003; Chan & Smith, 2001; Elhamdani et al., 2006; Fulop et al., 2005). Since ‘kiss-and-run’ is associated with a short and fast recycling of vesicles (Alabi & Tsien, 2013), this second hypothesis can also explain why IRP is replenished rapidly. The cellular mechanisms of these processes are unknown, but they might be related with the effect of Ca\(^{2+}\) on cortical F-actin cytoskeleton (Figure S3b). The increase in BAPTA reduces cytosolic basal [Ca\(^{2+}\)], and this in turn increases F-actin density. It was demonstrated by several authors that the dynamics of the cell actin network is regulated by cytosolic Ca\(^{2+}\) (Doreian et al., 2008; Olivares et al., 2014; Rodriguez Del Castillo et al., 1990). In addition, cortical F-actin is a recognized assistant molecule for membrane retrieval (Boulant et al., 2011; Gormal et al., 2015; Watanabe et al., 2013), and also favors the ‘kiss-and-run’ mode of fusion (Doreian et al., 2008).

4.3 Rapid replenishment and fast endocytosis depend on cortical F-actin

Several actin depolymerizing and severing enzymes, as for example cofilin, gelsolin, scinderin, and villin, are modulated by Ca\(^{2+}\) (Kumar et al., 2004; Lueck et al., 2000; Rodriguez Del Castillo et al., 1990; Wang et al., 2005). Our results indicate that increase in cytosolic Ca\(^{2+}\), in the range 0.01–1 μM, provokes disruption of cortical F-actin (Figure S3b), reduction and deceleration of fast endocytosis and also deceleration of rapid replenishment (Figures 2–5). At 4 mM BAPTA (approximately 0.02 μM Ca\(^{2+}\)) we obtained both the fastest and largest endocytosis, and the fastest replenishment. Under this condition we found that disruption of cortical F-actin with Cyto D treatment slowed down endocytosis and replenishment, reverting in part the effect of high BAPTA (Figure 7). Therefore, it seems that the polymerized cortical F-actin is important for the development of fast endocytosis and rapid replenishment. This conclusion is also supported by the
Several endocytic mechanisms depend on cortical F-actin cytoskeleton. Particularly bulk endocytosis, classical clathrin-mediated endocytosis, and ultrafast endocytosis need or at least are partially supported by F-actin (Boulant et al., 2011; Gormal et al., 2015; Watanabe et al., 2013). Bulk endocytosis is a massive membrane internalization induced by strong stimulation (Gormal et al., 2015; Perez Bay et al., 2007, 2012), which is totally different to our experimental conditions. Clathrin-mediated endocytosis is triggered by more moderate stimuli than bulk endocytosis, although stronger than those applied in this work, and presents slower kinetics (Artalejo et al., 2002; Chan & Smith, 2003; Hosoi et al., 2009). Ultrafast endocytosis is completed in few hundreds of milliseconds in hippocampal synapses and is dependent on dynamin and F-actin, which is compatible with our results (Watanabe et al., 2013). However, ultrafast endocytosis has not been demonstrated in chromaffin cells and it is activated at 37°C (Watanabe et al., 2014), but not at room temperature (the condition (22-24°C) of the present work). An alternative possibility is that the disruption of F-actin by Cyto D inhibits the ‘kiss-and-run’ mode of vesicle fusion and promotes full collapse (Doreian et al., 2008). This is a plausible hypothesis that can describe our data, since the retrieval of vesicles after ‘kiss-and-run’ is kinetically manifested as fast endocytosis (Elhamdani et al., 2006; Wu et al., 2014).

Classically, three vesicle recycling pathways were proposed in synaptic terminals. Two fast pathways in which vesicles either remain at the active zone for refilling (‘kiss-and-stay’) or are recycled locally (‘kiss-and-run’), and a slower pathway that involves clathrin-mediated endocytosis (Sudhof, 2004). Application of short depolarizations at low frequencies induces a kiss-and-run mode of fusion (Cardenas & Marengo, 2016; Ceccarelli et al., 1973; Fulop et al., 2005) and fast endocytosis (Chan & Smith, 2001, 2003; Sun et al., 2002). A simple way to interpret our results is to consider that organized cortical F-actin promotes ‘kiss-and-run’, and consequently fast endocytosis and a rapid local recycling of vesicles (Doreian et al., 2008; Moya-Diaz et al., 2016). Therefore, we can expect that disruption of F-actin by Cyto D will affect the whole process. Alternatively, Hosoi and collaborators (2009), working with the calyx of Held, proposed that after exocytosis a fast endocytotic mechanism may facilitate rapid vesicle replenishment by clearance of exocytotic materials from active zones, restoring the structure of the release sites. This concept was also proposed by Wu and collaborators to explain deceleration of endocytosis and RRP replenishment by the knocking out of β-actin in the calyx of Held (Wu et al., 2016). In accordance with this hypothesis, if endocytosis is...
impaired by F-actin disruption (or by inhibition of dynamin) vesicle replenishment will be affected as well. Finally, we have to consider the possible contribution to vesicle replenishment of cortical actomyosin relaxation promoted by cell stimulation, as was proposed by Papadopulos and coworkers (2015). Relaxation of cortical actomyosin translocates attached secretory vesicles towards docking sites in the plasma membrane. Treatment with Cyto D releases part of the tension existing at rest, partially inhibiting vesicle translocation induced by the stimulus.

At rest, chromaffin cells fire action potentials at low frequencies, Ca2+ does not accumulate between stimuli and exocytosis would be limited to vesicles closely coupled to VDCC (Alvarez & Marengo, 2011; Voets et al., 1999). It is likely that the physiological importance of IRP resides in its highly efficient stimulus-exocytosis coupling, which allows secretion during action potentials at low rate (Cardenas & Marengo, 2016; Oré & Artalejo, 2005). IRP is a small pool of vesicles, and is almost 50% depleted by a single action potential (Moya-Díaz et al., 2016). Sustained participation of IRP in chromaffin cell exocytosis during repetitive stimulation depends on the refilling rate of this pool. Therefore, IRP would need a rapid replenishment mechanism compatible with physiological basal action potential frequencies. The rapid component of IRP replenishment described in this work might be part of the solution.

ACKNOWLEDGMENTS
This work was supported by the grants PICT 0351-2012, PICT 0524-2014, and PICT 2764-2016 from the Agencia Nacional de Promoción Científica y Tecnológica, and UBACyT 2014-2017 from the Universidad de Buenos Aires. The authors thank Dr Carlota González-Inchauspe and Dr Osvaldo D. Uchitel for their help with the Fura-2 experiments.

All experiments were conducted in compliance with the ARRIVE guidelines.

CONFLICT OF INTEREST
The authors have no conflicts of interest to declare.

REFERENCES
Alabi, A. A., & Tsien, R. W. (2013). Perspectives on kiss-and-run: Role in exocytosis, endocytosis, and neurotransmission. Annual Review of Physiology, 75, 393–422. https://doi.org/10.1146/annurev-physiol-020911-153305
Alvarez, Y. D., Belingheri, V. A., Perez Bay, A. E., Javis, S. E., Tedford, H. W., Zamponi, G. W., & Marengo, F. D. (2013). The immediately releasable pool of mouse chromaffin cell vesicles is coupled to P/Q-Type calcium channels via the synaptic protein interaction site. PLoS ONE, 8, e54846. https://doi.org/10.1371/journal.pone.0054846
Alvarez, Y. D., Ibáñez, L. I., Uchitel, O. D., & Marengo, F. D. (2008). P/Q Ca2+ channels are functionally coupled to exocytosis of the immediately releasable pool in mouse chromaffin cells. Cell Calcium, 43, 155–164. https://doi.org/10.1016/j.ceca.2007.04.014
Alvarez, Y. D., & Marengo, F. D. (2011). The immediately releasable vesicle pool: Highly coupled secretion in chromaffin and other neuroendocrine cells. Journal of Neurochemistry, 116, 155–163. https://doi.org/10.1111/j.1471-4159.2010.07108.x
Artalejo, C. R., Elhamdani, A., & Palfrey, H. C. (2002). Sustained stimulation shifts the mechanism of endocytosis from dynamin-1-dependent rapid endocytosis to clathrin- and dynamin-2-mediated slow endocytosis in chromaffin cells. Proceedings of the National Academy of Sciences of the United States of America, 99, 6358–6363. https://doi.org/10.1073/pnas.082658499
Becherer, U., Moser, T., Stuhmer, W., & Oheim, M. (2003). Calcium regulates exocytosis at the level of single vesicles. Nature Neuroscience, 6, 846–853.
Boulatn, S., Kural, C., Zeeh, J. C., Ubelmann, F., & Kirchhausen, T. (2011). Actin dynamics counteract membrane tension during clathrin-mediated endocytosis. Nature Cell Biology, 13, 1124–1131.
Cardenas, A. M., & Marengo, F. (2016). How the stimulus defines the dynamics of vesicle pool recruitment, fusion mode and vesicle recycling in neuroendocrine cells. Journal of Neurochemistry, 137, 867–879. https://doi.org/10.1111/jnc.13565
Ceccarelli, B., Hurlbut, W. P., & Mauro, A. (1973). Turnover of transmitter and synaptic vesicles at the frog neuromuscular junction. Journal of Cell Biology, 57, 499–524.
Chan, S. A., Chow, R., & Smith, C. (2003). Calcium dependence of action potential-induced endocytosis in chromaffin cells. Pfugers Archiv. European Journal of Physiology, 445, 540–546. https://doi.org/10.1007/s00424-002-0966-y
Chan, S. A., Polo-Parada, L., Landmesser, L. T., & Smith, C. (2005). Adrenal chromaffin cells exhibit impaired granule trafficking in NCAM knock-out mice. Journal of Neurophphysiology, 94, 1037–1047. https://doi.org/10.1152/jn.01213.2004
Chan, S. A., & Smith, C. (2001). Physiological stimuli evoke two forms of endocytosis in bovine chromaffin cells. Journal of Physiology, 537, 871–885. https://doi.org/10.1113/jphysiol.2001.012838
Chan, S. A., & Smith, C. (2003). Low frequency stimulation of mouse adrenal slices reveals a clathrin-independent, protein kinase C-mediated endocytic mechanism. Journal of Physiology, 553, 707–717. https://doi.org/10.1113/jphysiol.2003.053918
de Diego, A. M., Gandía, L., & García, A. G. (2008). A physiological view of the central and peripheral mechanisms that regulate the release of catecholamines at the adrenal medulla. Acta Psychologica, 192, 287–301.
Doreian, B. W., Fulop, T. G., & Smith, C. B. (2008). Myosin II activation and actin reorganization regulate the mode of quantal exocytosis in mouse adrenal chromaffin cells. Journal of Neuroscience, 28, 4470–4478. https://doi.org/10.1523/JNEUROSCI.0008-08.2008
Elhamdani, A., Azizi, F., & Artalejo, C. R. (2006). Double patch clamp reveals that transient fusion (kiss-and-run) is a major mechanism of secretion in calf adrenal chromaffin cells: High calcium shifts the mechanism from kiss-and-run to complete fusion. Journal of Neuroscience, 26, 3030–3036. https://doi.org/10.1523/JNEUROSCI.5275-05.2006
Fulop, T., Radabaugh, S., & Smith, C. (2005). Activity-dependent differential transmitter release in mouse adrenal chromaffin cells. Journal of Neuroscience, 25, 7324–7332. https://doi.org/10.1523/JNEUROSCI.2042-05.2005
Gillis, K. D. (1995) Techniques for membrane capacitance measurements. Single-channel Recording, Ed 2 (B. Sakmann & E. Neher, eds), pp. 155–198. Plenum, New York.
Gonis, A., Burrone, J., & Lagnado, L. (1999). Two actions of calcium regulate the supply of releasable vesicles at the ribbon synapse of retinal bipolar cells. Journal of Neuroscience, 19, 6309–6317. https://doi.org/10.1523/JNEUROSCI.19-15-06309.1999
González-Jamett, A. M., Baez-Matus, X., Hevia, M. A., Guerra, M. J., Olivares, M. J., Martínez, A. D., Neely, A., & Cardenas, A. M. (2010).
The association of dynamin with synaptophysin regulates quantal size and duration of exocytotic events in chromaffin cells. *Journal of Neuroscience, 30*, 10683–10691. https://doi.org/10.1523/JNEUROSCI.5210-09.2010

Gormal, R. S., Nguyen, T. H., Martin, S., Papadopulos, A., & Meunier, F. A. (2015). An acto-myosin II constricting ring initiates the fission of activity-dependent bulk endosomes in neurosecretory cells. *Journal of Neuroscience, 35*, 1380–1389. https://doi.org/10.1523/JNEUROSCI.3228-14.2015

Gryniewicz, G., Poenie, M., & Tsien, R. Y. (1985). A new generation of Ca2+ indicators with greatly improved fluorescence properties. *Journal of Biological Chemistry, 260*, 3440–3450.

Heinemann, C., von Ruden, L., Chow, R. H., & Neher, E. (1993). A two-step model of secretion control in neuroendocrine cells. *Pflugers Archiv, 424*, 105–112. https://doi.org/10.1007/BF00374600

Holman, M. E., Coleman, H. A., Tonta, M. A., & Parkinson, H. C. (1994). Synaptic transmission from splanchic nerves to the adrenal medulla of guinea-pigs. *Journal of Physiology, 478*(Pt 1), 115–124. https://doi.org/10.1113/jphysiol.1994.sp020235

Horrigan, F. T., & Bookman, R. J. (1994). Releasable pools and the kinetics of exocytosis in adrenal chromaffin cells. *Neuron, 13*, 1119–1129. https://doi.org/10.1016/0896-6273(94)90050-7

Hosi, N., Holt, M., & Sakaba, T. (2009). Calcium dependence of exo- and endocytotic coupling at a glutamatergic synapse. *Neuron, 63*, 216–229. https://doi.org/10.1016/j.neuron.2009.06.010

Kumar, N., Tomar, A., Parrill, A. L., & Khurana, S. (2004). Functional Li, P., Bademosi, A. T., Luo, J., & Meunier, F. A. (2018). Actin remodeling in pacemaking mouse adrenal chromaffin cells. *Acta Psychologica, 204*, 403–418. https://doi.org/10.1111/1748-1716.2011.02340.x

Perez Bay, A. E., Ibanez, L. I., & Marengo, F. D. (2007). Rapid recovery of releasable vesicles and formation of nonreleasable endosomes follow intense exocytosis in chromaffin cells. *American Journal of Physiology. Cell Physiology, 293*, C1509–1522.

Rodriguez Del Castillo, A., Lemaire, S., Tchalarov, L., Jeyapragasan, M., Doucet, J. P., Vitale, M. L., & Trifaro, J. M. (1990). Chromaffin cell scinderin, a novel calcium-dependent actin filament-severing protein. *The EMBO Journal, 9*, 43–52. https://doi.org/10.1002/j.1460-2075.1990.tb08078.x

Rose, S. D., Lejen, T., Zhang, L., & Trifaro, J. M. (2001). Chromaffin cell F-actin disassembly and potentiation of catecholamine release in response to protein kinase C activation by phorbol esters is mediated by myristoylated alanine-rich C kinase substrate phosphorylation. *Journal of Biological Chemistry, 276*, 36757–36763.

Shin, W., Ge, L., Arpino, G., Villarreal, S. A., Hamid, E., Liu, H., Zhao, W.-D., Wen, P. J., Chiang, H.-C., & Wu, L.-G. (2018). Visualization of membrane pore in live cells reveals a dynamic-pore theory governing fusion and endocytosis. *Cell, 173*(934–945), e912. https://doi.org/10.1016/j.cell.2018.02.062

Sokal, R., & Rohlf, F. (2009). Statistical Tables. *Introduction to Biostatistics* (pp. 321). Dover Publications.

Sorensen, J. B. (2004). Formation, stabilisation and fusion of the readily releasable pool of secretory vesicles. *Pflugers Archiv, 448*, 347–362. https://doi.org/10.1007/s00424-004-1247-8

Sudhof, T. C. (2004). The synaptic vesicle cycle. *Annual Review of Neuroscience, 27*, 509–547.

Sun, J. Y., Wu, X. S., & Wu, L. G. (2002). Single and multiple vesicle fusion induce different rates of endocytosis at a central synapse. *Nature, 417*, 555–559. https://doi.org/10.1038/417555a

Trifaro, J. M., Gasman, S., & Gutierrez, L. M. (2008). Cytoskeletal control of vesicle transport and exocytosis in chromaffin cells. *Acta Psychologica, 192*, 165–172. https://doi.org/10.1111/j.1748-1716.2007.01808.x

Voets, T., Neher, E., & Moser, T. (1999). Mechanisms underlying phasic and sustained secretion in chromaffin cells from mouse adrenergic slices. *Neuron, 23*, 607–615. https://doi.org/10.1016/S0896-6273(00)80812-0

von Gersdorff, H., & Matthews, G. (1994). Inhibition of endocytosis by elevated internal calcium in a synaptic terminal. *Nature, 370*, 652–655. https://doi.org/10.1038/370652a0

Wallace, D. J., Chen, C., & Marley, P. D. (2002). Histamine promotes excitability in bovine adrenal chromaffin cells by inhibiting an M-current. *Journal of Physiology, 540*, 921–939. https://doi.org/10.1113/jphysiol.2001.013370

Wang, Y., Shibasaki, F., & Mizuno, K. (2005). Calcium signal-induced coflin dephosphorylation is mediated by Slingshot via calcineurin. *Journal of Biological Chemistry, 280*, 12683–12689.

Watanabe, S., Rost, B. R., Camacho-Perez, M., Davis, M. W., Sohl-Kielczynski, B., Rosenmund, C., & Jorgensen, E. M. (2013). Ultrafast endocytosis at mouse hippocampal synapses. *Nature, 504*, 242–247. https://doi.org/10.1038/nature12809

Watanabe, S., Trimbuch, T., Camacho-Pérez, M., Rost, B. R., Brokowski, B., Söhl-Kielczynski, B., Felles, A., Davis, M. W., Rosenmund, C., & Jorgensen, E. M. (2014). Clathrin regenerates synaptic vesicles from endosomes. *Nature, 515*, 228–233. https://doi.org/10.1038/nature13846

Wu, L. G., Hamid, E., Shin, W., & Chiang, H. C. (2014). Exocytosis and endocytosis: Modes, functions, and coupling mechanisms. *Annual Review of Physiology, 76*, 301–331. https://doi.org/10.1146/annurev-physiol-021113-170305

Wu, X.-S., Lee, S. H., Sheng, J., Zhang, Z., Zhao, W.-D., Wang, D., Jin, Y., Charnay, P., Ervasti, J. M., & Wu, L.-G. (2016). Actin is crucial for all cortical actomyosin II network synchronization Munc18-1-dependent neurosecretory vesicle docking. *Nature Communications, 6*, 6297.
kinetically distinguishable forms of endocytosis at synapses. Neuron, 92, 1020–1035. https://doi.org/10.1016/j.neuron.2016.10.014

Wu, X. S., & Wu, L. G. (2014). The yin and yang of calcium effects on synaptic vesicle endocytosis. Journal of Neuroscience, 34, 2652–2659. https://doi.org/10.1523/JNEUROSCI.3582-13.2014

SUPPORTING INFORMATION
Additional supporting information may be found online in the Supporting Information section.

How to cite this article: Montenegro M, Bayonés L, Moya-Díaz J, et al. Rapid vesicle replenishment after the immediately releasable pool exocytosis is tightly linked to fast endocytosis, and depends on basal calcium and cortical actin in chromaffin cells. J Neurochem. 2021;157:1069–1085. https://doi.org/10.1111/jnc.15276