Abstract

Parkinson’s disease (PD) is a progressive neurodegenerative disorder, and its global incidence is on the rise. There is increasing interest in understanding the role of air pollution in the development of human disease. Although the precise mechanisms are not understood, several epidemiological studies have reported a positive association between air pollution and the risk of PD. However, the various pollutants studied, endpoints measured, and differences in study design yield conflicting results. This review summarizes recent evidence regarding the relationship between particulate matter, ozone, nitrogen dioxide, sulfur dioxide, and carbon monoxide and PD. Limitations and challenges are also discussed, with suggestions for future work to understand the true effects of air pollution on PD.

Keywords: Air pollutant, air pollution, environmental factor, Parkinson’s disease

INTRODUCTION

Parkinson’s disease (PD) is a common neurodegenerative disorder, and the precise pathomechanism is still unclear. Recent evidence has shown that genetic factors modulate the development of PD, but the majority of PD cases are sporadic, suggesting that environmental factors could be involved. Air pollution has been associated with multiple human health issues, especially of the respiratory system, which is the entry point of many pollutants into the body. In this article, we provide recent evidence of the association between air pollution and PD using a semi-systematic review approach.

METHODS AND RESULTS

Search strategy

Major air pollutants include coarse and fine particulate matter (PM) composed of organic and inorganic particles such as metals as well as gases such as ozone (O$_3$), nitrogen dioxide (NO$_2$), sulfur dioxide (SO$_2$), carbon monoxide (CO), and volatile organic compounds (VOCs). These air pollutants typically penetrate the lung and cardiovascular system via respiration, and their effects can lead to stroke, heart disease, lung cancer, and chronic obstructive pulmonary disease. Nine out of 10 individuals worldwide are estimated to breathe highly polluted air, and both ambient air pollution (outdoor) and household air pollution (indoor) cause approximately seven million deaths annually.[1] Although the association between exposure to air pollutants and PD is not well-understood, multiple studies have been conducted on the topic.

We performed an electronic search of PubMed for the literature published in the past 5 years, and the last search was conducted on December 12, 2021.[2] The following terms were used: “Parkinson disease,” “Parkinson’s disease,” “particulate matter,” “PM$_{2.5}$,” “PM$_{10}$,” “ozone,” “O$_3$,” “nitrogen dioxide,” “NO$_2$,” “sulfur dioxide,” “sulphur dioxide,” “SO$_2$,” “carbon monoxide,” “volatile organic compound,” “VOC,” and “air pollution.” These terms were used in combination as a two-term search of a disease name and a pollutant name or the term “air pollution” (e.g., “Parkinson disease” and “particulate matter”). After removing duplicate articles and reviews and reviewing the abstracts for eligibility, we selected 17 records and five meta-analyses for the semi-systematic review. Figure 1 depicts the flowchart of study selection, and Tables 1 and 2 summarize the literature selected.

PD

PD is the second most common neurodegenerative disorder after Alzheimer’s disease. Clinical characterizations of PD include motor symptoms such as bradykinesia, resting tremor, rigidity, and postural instability and non-motor symptoms such as hyposmia, constipation, hypotension, rapid eye movement sleep behavior disorder, and cognitive impairment. The non-motor symptoms in particular have been identified as adversely affecting patients’ quality of life.[3] The incidence and prevalence of PD have rapidly increased worldwide.[4]
incurring both personal and societal socioeconomic burdens, as many neurological disorders cause disability.[5] The primary target of PD is the substantia nigra, and the disease manifests as a gradual loss of dopaminergic neurons, although other motor and non-motor circuits are also involved. The neuropathological hallmark of PD is the presence of intracellular Lewy bodies of α-synuclein proteins. The motor symptoms are attributable to the loss of dopaminergic neurons, so dopamine replacement therapy is the main therapeutic option in PD. Current dopaminergic pharmacotherapy consists of levodopa, dopamine receptor agonists, and monoamine oxidase type B inhibitors, and initial therapy is tailored by age, extent of parkinsonism, and tolerance of these drugs. In the advanced stage, device-aided therapies such as deep brain stimulation and levodopa-carbidopa intestinal gel infusion can be added. In addition, a multi-disciplinary care team of rehabilitation staff (physical, occupational, and speech and language therapists), nurses, pharmacologists, dietitians, psychiatrists, psychologists, and social workers can support the patients and their families throughout the time course of the disease.[6]

PM
PM is a complex mixture of solid particles and liquid droplets suspended in the atmosphere that contains metals, dust,
Table 1: Studies included in this review; air pollutants and Parkinson’s disease (publication year and alphabetical order)

Authors	Years of publication	Exposure	Study period	Sample size	Location of study	PD-associating outcome
Fleury et al.	2021	PM_{2.5}, NO_{2}	2003-2012 for PD and 2010 for pollutant	1,115 PD and 12,614 controls	Switzerland	PD prevalence
Jo et al.	2021	PM_{2.5}, PM_{10}, O_{3}, NO_{2}, SO_{2}, CO	2007-2015	78,830 participants	Korea	Incident PD
Nunez et al.	2021	PM_{2.5}	2000-2014	197,545 PD first hospitalization	USA	PD first hospitalization (as PD aggravation)
Rhew et al.	2021	PM_{2.5}	2007-2014	Study group and control group with 1,165,073 and 357,574 person-years	USA	Disease-specific mortality and hospital admissions
van Wijngaarden et al.	2021	PM_{2.5}	2005-2016	63,287 hospital admissions	USA	Admission
Yitshak-Sade et al.	2021	PM_{2.5}	2000-2014	30,079,287 admissions	USA	Admission
Yu et al.	2021	PM_{2.5}, PM_{10}, NO_{2}	2015-2018	47,516 participants	China	Incidence of PD
Zhao et al.	2021	O_{3} (PM_{2.5}, NO_{2} for adjusted model)	2001-2016	3.5 million adults	Canada	Death from PD
Salimi et al.	2020	PM_{2.5}, NO_{2}	2006-2009	236,390 participants	Australia	Prevalence of PD
Shi et al.	2020	PM_{2.5}	2000-2016	63,038,019 individuals	USA	First hospital admission
Yuchi et al.	2020	PM_{2.5}, NO_{2}, NO, black carbon	Exposure 1994-98, follow-up 1999-2003	~ 678,000 residents	Canada	Incidence of PD
Toro et al.	2019	PM_{2.5}, PM_{10}, PM_{2.5}, NO_{2}, NOx	2010-2012	1,290 subjects	Netherlands	Development of PD
Wei et al.	2019	PM_{2.5}	2000-2012	95,277,169 admissions	USA	Admission
Shin et al.	2018	PM_{2.5}, O_{3}, NO_{2}	2001-2013	21,94,519 individuals	Canada	Incident PD
Chen et al.	2017	PM_{10}, O_{3}, NO_{2}, NO, NOx, SO_{2}, CO, etc	2000-2013	1,060 PD and 4,240 controls	Taiwan	Incidence of PD
Lee et al.	2017	PM_{2.5}, O_{3}, NO_{2}, SO_{2}, CO	2002-2013	14,774 admissions	Korea	Emergency hospital admission (as PD aggravation)
Palacios et al.	2017	PM_{2.5}, PM_{10}, PM_{2.5}, CO	1988-2010	50,352 men with 550 PD	USA	Incident PD

PD: Parkinson’s disease.
and chemical compounds. Particle size has been related to physiological effects, and smaller particles can penetrate the respiratory tract deeply.[7] Coarse particles have a diameter of 2.5–10 µm and are termed PM$_{10}$, fine particles have a diameter <2.5 µm and are termed PM$_{2.5}$, and ultra-fine particles are smaller than 100 nm and are termed PM$_{0.1}$. Multiple studies have investigated the relationship between PM$_{2.5}$ or PM$_{10}$ and PD, and therefore, these types are discussed in this review.

Studies on the relationship between PM and PD have reported inconsistent findings. PM has been reported recently to increase both the incidence of PD and hospital admissions for symptom exacerbation.[8‑19] One geospatial analysis showed that PD prevalence was higher in urban centers where mean annual PM$_{10}$ and NO$_2$ levels were high.[9] Conversely, several studies did not find an association between PM and the risk or aggravation of PD,[20‑23] and the concentrations of PM$_{2.5}$ were reported to exert little impact on the observed associations between long-term exposure to O$_3$ and mortality in PD patients.[24] Among meta-analyses published in the past 3 years, three concluded an association between PM$_{2.5}$ and the risk of PD,[25‑27] but two did not.[28,29]

O$_3$

O$_3$ gas is a powerful oxidant in industrial, medical, and consumer use. Ground-level O$_3$ is inhalable and can lead to adverse health effects. Vulnerable populations include children, older adults, and individuals with certain lung conditions such as asthma and chronic obstructive pulmonary disease. In addition, working or exercising outdoors can increase exposure.[30] Ground-level O$_3$ is formed in the atmosphere by photochemical reactions between sunlight and pollutant precursors such as nitrogen oxides and VOCs emitted by vehicles, power plants, industrial boilers, refineries, chemical plants, and other sources.[31,32] Because this is a photochemical reaction, O$_3$ levels are likely to increase to harmful levels under warm conditions and peak in summer. Similar to other pollutants, O$_3$ can be transported by air currents over long distances.[32]

Recent evidence regarding the association between O$_3$ and PD is inconsistent, with some studies linking the pollutant to mortality and the incidence of PD,[17,24] and other studies reporting no association.[18‑20] Zhao and colleagues assessed long-term exposure to O$_3$ and PD-related deaths in Canada using Cox proportional hazard models and reported that the fully adjusted hazard ratio was 1.09 (95% confidence interval: 1.04–1.14).[24] In contrast, a study in Korea reported that exposure to O$_3$ was not associated with the risk of PD (hazard ratio: 0.83; 95% confidence interval: 0.51–1.35).[20] Three recent meta-analyses concluded that O$_3$ increases the risk of PD,[25,26,29] although one of these calculated only a marginally or borderline significant higher risk of PD (relative risk: 1.01; 95% confidence interval: 1.00–1.02).[25]

NO$_2$

NO$_2$ is a reddish-brown gas emitted from human activities that involve combustion of fossil fuels at high temperatures.[33] NO$_2$ is toxic to the respiratory system, promoting the development of asthma and potentially increasing susceptibility to respiratory infections, and vulnerable populations include patients with asthma, children, and older adults.[34] Because nitrogen oxides react with other chemicals in the atmosphere to form both PM and O$_3$,[34] the adverse effects of NO$_2$ should be considered in tandem with those of other pollutants.

The evidence regarding an association between NO$_2$ and PD is inconsistent. Three studies published in 2021 reported a link between NO$_2$ and the risk of PD,[9,20] and one calculated a hazard ratio for the highest versus lowest quartile of 1.41 (95% confidence interval: 1.02–1.95).[20] Other recent studies concurred,[14,17,18] and one reported that short-term exposure to NO$_2$ aggravated PD.[19] In contrast, three studies reported no association between long-term exposure to NO$_2$ and the risk of PD.[19,21,22]

Meta-analyses on the topic have also reported inconsistent conclusions. Han et al.[25] and Hu et al.[29] reported an association between NO$_2$ exposure and a higher risk of PD, whereas Kasdagli et al.[36] found an indication of an association between long-term exposure and the relative risk of PD, but the association did not reach the nominal level of significance. As with PM$_{2.5}$, the additional effect of NO$_2$ concentration as a variable on the association between long-term exposure to O$_3$ and PD-related mortality was negligible.[24]

SO$_2$

SO$_2$ is a colorless gas emitted from both the burning of fossil fuels by power plants and other industrial facilities[35] and natural sources such as volcanos.[36] SO$_2$ exhibits some
anti-oxidant and anti-microbial properties and is therefore used as a food additive. However, acute exposure to SO$_2$ can irritate the eye, mucous membrane, skin, and respiratory tract and result in the development of bronchospasm, pulmonary edema, pneumonitis, and acute airway obstruction.[37] Furthermore, long-term exposure to SO$_2$ may aggravate chronic pulmonary conditions such as asthma.[37]

A recent study reported that exposure to SO$_2$ was not associated with an increase in the risk of PD,[20] whereas other studies reported inconsistent results and varied in design. Lee et al.[18] reported that short-term exposure to SO$_2$ agitated PD, and Chen et al.[19] reported that long-term exposure to SO$_2$ did not affect the incidence of PD. Two meta-analyses published in 2019 concluded that SO$_2$ exposure does not affect the risk of PD.[26,29]

CO

CO is a colorless, tasteless, and odorless gas[38] emitted by vehicles and industrial processes that involve combustion of fossil fuels.[39] CO binds hemoglobin with a much greater affinity than oxygen and forms carboxyhemoglobin, which has reduced oxygen-carrying capacity, causing acute hypoxia that could be followed by delayed (2–40 days) neuropsychological sequelae such as levodopa-resistant parkinsonism with brain white-matter T2-weighted hyperintensities.[30,41]

Lee et al.[18] reported that short-term exposure to 0.1 ppm CO increased emergency hospital admissions in patients with existing PD, indicating exacerbations, and a later study concluded that CO was not associated with the risk of PD.[20] One recent meta-analysis reported that exposure to CO was associated with the risk of PD,[29] but two other meta-analyses did not find an association,[25,26] and one of these calculated a relative risk of 1.32 (95% confidence interval: 0.82–2.11), which was positive but not significant.[25]

VOCs

We did not find articles published over the past 5 years that assessed the association between VOCs and PD.

Discussion

An extensive body of evidence exists on the association between air pollution and human disease, especially in the respiratory system. The effects of air pollution on neurological disorders such as PD are in debate and vary by setting, cohort, endpoint, and design, suggesting difficulties in arriving at a conclusion. Several challenges should be considered. First, how do we define exposure? The concentrations of air pollutants vary by location, human activity, and airflow (such as the differences between indoor and outdoor air). In addition, many neurodegenerative disorders are related to age, and quantifying long-term exposure is difficult. PD is hypothesised to develop pathologically before the appearance of motor symptoms.[42] Among early non-motor symptoms, rapid eye movement sleep behavior disorder is considered a strong indicator of the future development of PD.[42] Interestingly, Zhang et al.[43] reported that suspected rapid eye movement sleep behavior disorder may be a consequence of CO poisoning. This suggests that exposure to air pollutants in the prodromal phase of PD should be considered in association studies. In addition, careful interpretation of association is required when evaluating the endpoints of prevalence and incidence. For example, it is possible that subjects already diagnosed with PD move to large cities close to advanced medical facilities, resulting in an apparently but artificially high prevalence or incidence in large cities that is not related to local exposure levels. Second, multiple studies and meta-analyses did not find an association between air pollution and PD, implying that stronger risk factors may overwhelm the true effect of air pollution. For example, mutations in the genes SNCA, LRRK2, PRKN, PINK1, and GBA have been associated with the risk of PD,[6] as have environmental or lifestyle factors such as cigarette smoking, coffee consumption, and intake of vitamin E.[44] Environmental toxicants such as pesticides, solvents, and heavy metals may modulate the risk of developing PD,[45] masking the true effect of air pollution. Ethnicity-specific genetic factors may also modify the association. Third, reflecting the difficulties in assessing the length and extent of exposure to air pollutants in population studies, variations in study design in the literature may have biased the results of the meta-analyses. Therefore, the high heterogeneity in most of these meta-analyses may affect the conclusions drawn. Finally, air pollutants occur in mixtures and react with each other, negating the utility of single-pollutant models in evaluating PD risk and requiring multi-pollutant effect models. Considering these critical limitations, the current literature is insufficient to identify the precise effects of air pollution on the risk of PD. To address these limitations and the underlying challenges, prospective studies that control these factors are warranted. In the most extreme case, we should also consider the possibility that there is no association between air pollution and PD.

In conclusion, this review summarized recent evidence regarding the effect of air pollution on PD as limited and controversial. Policies, however, to reduce air pollution may reduce the risk of PD worldwide nonetheless. Because air pollutants can transport across countries and regions, international joint research on this topic could clarify the public health impact of air pollution on the development of PD.

Acknowledgement

We thank Edanz (https://jp.edanz.com/ac) for editing a draft of this manuscript.

Financial support and sponsorship

Nil.

Conflicts of interest

There are no conflicts of interest.

References

1. World Health Organization. Air pollution. Available from: https://www.who.int/westernpacific/health-topics/air-pollution. [Last accessed on 2021 Dec 12].
2. PubMed Central (PMC). Available from: https://www.ncbi.nlm.nih.gov/pubmed. [Last accessed on 2021 Dec 12].
3. Santos Garcia D, de Deu Fontcuberta T, Suarez Castro E, Boruc C, Mata M, Solano Vila B, et al. Non-motor symptoms burden, mood, and gait problems are the most significant factors contributing to a poor quality of life in non-demented Parkinson’s disease patients: Results from the COPPADIS Study Cohort. Parkinsonism Relat Disord 2019;66:151-7.
4. Dorsey ER, Bloem BR. The Parkinson pandemic—a call to action. JAMA Neurol 2018;75:9-10.
5. GBD 2016 Neurology Collaborators. Global, regional, and national burden of neurological disorders, 1990-2016: A systematic analysis for the Global Burden of disease study 2016. Lancet Neurol 2019;18:459-80.
6. Bloem BR, Okun MS, Klein C. Parkinson’s disease. Lancet 2021;397:2284-303.
7. Brown JS, Gordon T, Price O, Asgharian B. Thoracic and respirable particle definitions for human health risk assessment. Part Fibre Toxicol 2013;10:12. doi: 10.1186/1743-8977-10-12.
8. Yu Z, Wei F, Zhang X, Wu M, Lin H, Shui L, et al. Air pollution, surrounding green, road proximity and Parkinson’s disease: A prospective cohort study. Environ Res 2021;197:111170. doi: 10.1016/j.envres.2021.111170.
9. Fleury V, Himsrl R, Joost S, Nicastru N, Bereau M, Guessous I, et al. Geospatial analysis of individual-based Parkinson’s disease data supports a link with air pollution: A case-control study. Parkinsonism Relat Disord 2021;83:41-8.
10. Yitshak-Sade M, Nethery R, Schwartz JD, Mealli F, Dominici F, Di Q, et al. PM2.5 and hospital admissions among Medicare enrollees with chronic debilitating brain disorders. Sci Total Environ 2021;755:142524. doi: 10.1016/j.scitotenv.2020.142524.
11. Nunez Y, Boeing AK, Li M, Goldsmith J, Weisskopf MG, Re DB, et al. Parkinson’s disease aggravation in association with fine particle components in New York state. Environ Res 2021;201:111554. doi: 10.1016/j.envres.2021.111554.
12. van Wijngaarden E, Rich DQ, Zhang W, Thurston SW, Lin S, Croft DP, et al. Neurodegenerative hospital admissions and long-term exposure to ambient fine particle air pollution. Ann Epidemiol 2021;54:79-86.e4.
13. Rhew SH, Kravchenko J, Lyerly HK. Exposure to low-dose ambient fine particulate matter and hospital admission risks and sequelae in carbon monoxide poisoning. JAMA Neurol 2018;75:436-43.
14. Wei Y, Wang Y, Di Q, Choirot C, Wang Y, Koutrakis P, et al. Short term exposure to fine particulate matter and hospital admission risks and costs in the Medicare population: Time stratified, case crossover study. BMJ 2019;367:l6258. doi: 10.1136/bmj.l6258.
15. Shin S, Burnett RT, Kwong JC, Hystad P, van Donkelaar A, Brook JR, et al. Effects of ambient air pollution on incident Parkinson’s disease in Ontario, 2001 to 2013: A population-based cohort study. Int J Epidemiol 2018;47:2038-48.
16. Lee H, Myung W, Kim DK, Kim SE, Kim CT, Kim H. Short-term air pollution exposure aggravates Parkinson’s disease in a population-based cohort. Sci Rep 2017;7:44741. doi: 10.1038/srep44741.
17. Chen CY, Hung HL, Chang KH, Hsu CY, Muo CH, Tsai CH, et al. Long-term exposure to air pollution and the incidence of Parkinson’s disease: A nested case-control study. PLoS One 2017;12:e0182834. doi: 10.1371/journal.pone.0182834.
18. Jo S, Kim YJ, Park KW, Hwang YS, Lee SH, Kim BJ, et al. Association of NO2 and other air pollution exposures with the risk of Parkinson disease. JAMA Neurol 2021;78:800-8.
19. Salimi F, Hanigan I, Jalaludin B, Guo Y, Rolfe M, Heyworth JS, et al. Associations between long-term exposure to ambient air pollution and Parkinson’s disease prevalence: A cross-sectional study. Neurochem Int 2020;133:104615. doi: 10.1016/j.neuint.2019.104615.
20. Toro R, Downward GS, van der Mark M, Brouwer M, Huss A, Peters S, et al. Parkinson’s disease and long-term exposure to outdoor air pollution: A matched case-control study in the Netherlands. Environ Int 2019;129:28-34.
21. Palacios N, Fitzgerald KC, Hart JE, Weisskopf M, Schwarzschild MA, Ascherio A, et al. Air pollution and risk of Parkinson’s disease in a large prospective study of men. Environ Health Perspect 2017;125:087011. doi: 10.1289/EHP259.
22. Zhao N, Pinault L, Toyib O, Vanos J, Tjepkema M, Cakmak M. Long-term ozone exposure and mortality from neurological diseases in Canada. Environ Int 2021;157:106817. doi: 10.1016/j.envint.2021.106817.
23. Han C, Lu Y, Cheng H, Wang C, Chan P. The impact of long-term exposure to ambient air pollution and second-hand smoke on the onset of Parkinson disease: A review and meta-analysis. Public Health 2020;179:100-10.
24. Kasdagli MI, Katsouyannni K, Dimakopoulou K, Samoli E. Air pollution and Parkinson’s disease: A systematic review and meta-analysis up to 2018. Int J Hyg Environ Health 2019;222:402-9.
25. Fu P, Guo X, Cheung FMH, Yung KK. The association between PM2.5 exposure and neurological disorders: A systematic review and meta-analysis. Sci Total Environ 2019;655:1240-8.
26. Wang Y, Liu Y, Yan H. Effect of long-term particulate matter exposure on Parkinson’s risk. Environ Geochem Health 2020;42:2265-75.
27. Hu CY, Fang Y, Li FL, Dong B, Hua XG, Jiang W, et al. Association between ambient air pollution and Parkinson’s disease: Systematic review and meta-analysis. Environ Res 2019;168:448-59.
28. American Lung Association. Ozone. Available from: https://www.lung.org/clean-air/outdoors/what-makes-air-unhealthy/ozone. [Last accessed on 2021 Dec 16].
29. Guarnieri M, Balmes JR. Outdoor air pollution and asthma. Lancet 2014;383:1581-92.
30. United States Environmental Protection Agency. Ground-level Ozone Pollution. Available from: https://www.epa.gov/ground-level-ozone-pollution. [Last accessed on 2021 Dec 16].
31. PubChem. Nitrogen dioxide. Available from: https://pubchem.ncbi.nlm.nih.gov/compound/Nitrogen-dioxide. [Last accessed on 2021 Dec 19].
32. United States Environmental Protection Agency. Nitrogen Dioxide (NO2) Pollution. Available from: https://www.epa.gov/no2-pollution. [Last accessed on 2021 Dec 20].
33. United States Environmental Protection Agency. Sulfur Dioxide (SO2) Pollution. Available from: https://www.epa.gov/so2-pollution. [Last accessed on 2021 Dec 20].
34. The Agency for Toxic Substances and Disease Registry. Sulfur Dioxide. Available from: https://www.cdc.gov/TSP/substances/ToxSubstance.aspx?toxid=46. [Last accessed on 2021 Dec 21].
35. PubChem. Carbon monoxide. Available from: https://pubchem.ncbi.nlm.nih.gov/compound/Carbon-monoxide. [Last accessed on 2021 Dec 21].
36. United States Environmental Protection Agency. Carbon Monoxide (CO) Pollution in Outdoor Air. Available from: https://www.epa.gov/co-pollution. [Last accessed on 2021 Dec 21].
37. Jeon SB, Sohn CH, Seo DW, Oh BJ, Lim KS, Kang DW, et al. Acute brain lesions on magnetic resonance imaging and delayed neurological sequelae in carbon monoxide poisoning. JAMA Neurol 2018;75:436-43.
38. Weaver HK. Clinical practice. Carbon monoxide poisoning. N Engl J Med 2009;360:1217-25.
39. Berg D, Postuma RB, Adler CH, Bloem BR, Chan P, Dubois B, et al. MDS research criteria for prodromal Parkinson’s disease. Mov Disord 2015;30:1600-11.
40. Zhang H, Gu Z, Yao C, Cai Y, Li Y, Mao W, et al. Risk factors for possible REM sleep behavior disorders: A community-based study in Beijing. Neurology 2020;95:e2214-24.
41. Belvisi D, Pelliccieri R, Fabbri G, Tinaazzi M, Berardelli A, Defazio F. Modifiable risk and protective factors in disease development, progression and clinical subtypes of Parkinson’s disease: What do prospective studies suggest? Neurobiol Dis 2020;134:104671. doi: 10.1016/j.nbd.2019.104671.
42. Goldman SM. Environmental toxins and Parkinson’s disease. Annu Rev Pharmacol Toxicol 2014;54:141-64.