Thrombocytopenia Is Associated with Acute Respiratory Distress Syndrome Mortality: An International Study

The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters

Citation
Wang, T., Z. Liu, Z. Wang, M. Duan, G. Li, S. Wang, W. Li, et al. 2014. “Thrombocytopenia Is Associated with Acute Respiratory Distress Syndrome Mortality: An International Study.” PLoS ONE 9 (4): e94124. doi:10.1371/journal.pone.0094124. http://dx.doi.org/10.1371/journal.pone.0094124.

Published Version
doi:10.1371/journal.pone.0094124

Citable link
http://nrs.harvard.edu/urn-3:HUL.InstRepos:12152843

Terms of Use
This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
Introduction

Acute respiratory distress syndrome (ARDS), the most severe form of acute lung injury (ALI), is caused by several direct and indirect insults to the lung. Life-threatening and often lethal, ARDS usually requires mechanical ventilation and admission to an intensive care unit (ICU); ARDS is a major cause of ICU morbidity and mortality worldwide [1]. Emerging viral diseases such as severe acute respiratory syndrome (SARS) coronavirus, H5N1 avian-origin influenza virus, and H1N1 swine-origin influenza virus not only possess the potential for pandemic spread, but also cause ARDS [2–4]. These factors highlight the need for additional research to improve understanding of the pathogenesis of ARDS, with the ultimate goal of developing specific treatment [5].

ARDS is associated with several clinical disorders, including direct pulmonary injury from pneumonia and aspiration and extra-pulmonary injury from sepsis, trauma, and multiple transfusions [6]. Although low tidal volume ventilation, neuromuscular blockers and prone positioning ventilation have advanced treatments [7–9], there are currently no reliable predictive markers for early detection of ARDS in predisposed individuals. Nonetheless, many efforts have been mounted to identify biologic markers, or biomarkers, for ARDS in critically ill patients, including studies of pulmonary edema fluid, blood, and urine [10–12]. Recent advances on the pathophysiological mechanisms underlying ARDS have identified several clinical biomarkers to improve early detection of ARDS in patients with predisposing conditions.
assess disease severity and outcome, including specific cytokines and their receptors (IL-6, IL-8, soluble tumor factor receptors I and II), products of epithelial and endothelial injury [receptor for advanced glycation end-products (RAGE), surfactant protein D, ICAM-1, and von Willebrand factor antigen], and markers of altered coagulation (protein C and plasminogen activator inhibitor-1) [13]. However, no individual biomarker is strongly associated with outcomes and thus cannot provide sufficient discriminating power for either diagnosis or prognosis.

Biomarker discovery and validation requires patient samples and must be combined with comprehensive clinical data collected from properly designed trials in different populations. Given the acute onset and rapid clinical progression of ARDS, a prospectively enrolled cohort study in multicenter ICUs is suitable for more complete and unbiased ARDS/ALI research [14]. Using a protocol modified from a molecular epidemiology ARDS study established in Boston, MA (Boston cohort) in 2009, The overarching objectives of establishing this prospective cohort are to validate relevant biomarkers to ARDS, as well as genetic polymorphisms, discovered in previous USA studies in Chinese population, and discover new biomarkers of ARDS with a comprehensive sampling protocol. In this report, we present initial results on the clinical factors associated with ARDS development and mortality in individuals with or at risk for ARDS. Associated clinical factors were replicated in the Boston cohort.

Methods

This study was approved by the institutional review boards (IRBs) of the Peking university third hospital, Beijing Friendship Hospital, China-Japan Friendship Hospital, Beijing Chao-Yang Hospital, and Harvard School of Public Health and a written informed consent was obtained from each subject or an appropriate proxy of the patient.

Study population

Four medical and surgical ICUs within four tertiary hospitals participated in the study; hospitals covered the metropolitan area of Beijing, China and included Peking University Third Hospital in the northwest (16 beds), Beijing Friendship Hospital in the south (16 beds), Beijing Chao-Yang Hospital in the east (14 beds), and China-Japan Friendship Hospital in the northeast (10 beds).

As an international collaboration, we used a modified study protocol for recruitment as previously described [14]. Briefly, we screened each ICU admission for eligible subjects, which were defined as critically ill patients with at least one predisposing condition for ARDS: 1) sepsis; 2) septic shock; 3) trauma; 4) pneumonia; 5) aspiration; 6) massive transfusion of packed red blood cells; 7) massive transfusion of packed red blood cells; 8) septicemia; 9) severe pancreatitis. To avoid interference in biomarker research from certain clinical conditions, exclusion criteria included: 1) age <18 years; 2) history of chronic lung diseases, such as interstitial pulmonary fibrosis or bronchiolitis; 3) history of pneumonectomy; 4) treatment with immunomodulating therapy other than corticosteroids, such as granulocyte colony stimulating factor, cyclophosphamide, cyclosporine, interferon, or TNF-α antagonists; 5) presence of other immunodeficient conditions, such as HIV infection, leukemia, or neutropenia (absolute neutrophil count <1000/μl); 6) history of solid or bone marrow transplant other than autologous bone marrow transplant; and 7) history of respiratory support. Sepsis and septic shock were defined by the American College of Chest Physicians/Society of Critical Care Medicine (ACCP/SCCM) Consensus Conference [15].

After enrollment, subjects were followed daily for the development of ARDS, as defined by the American-European Consensus Committee (AECC) as follows [16]: a) evidence of hypoxemia with Pao2/Fio2 ≤200 mm Hg; b) evidence of bilateral infiltrates on chest radiographs; and c) absence of left atrial hypertension with pulmonary arterial occlusion pressure ≤18 mm Hg or no congestive heart failure. Controls were identified as at-risk patients who did not meet criteria for ARDS during the ICU stay and had no prior history of ARDS. Infiltrates on chest radiographs were defined as opacities that could not be explained completely by pleural effusions, mass, body habitus, or collapse. Upper zone redistribution and pulmonary vascular congestion were not considered infiltrates. Two pulmonary and critical care physicians interpreted daily chest radiographs; any disagreement went to a third intensivist for arbitration. All physicians underwent a consensus training session on the radiologic criteria for ARDS. All were blinded to the clinical status of the patients.

Data and sample collection

We collected clinical data by chart review, including demographic information of age, gender, race, height, weight and medical history of ARDS, diabetes, tobacco and alcohol abuse, and liver disease. Baseline clinical information, worst vital signs, and laboratory testing results in the first 24 hours of ICU admission were collected for calculation of the Acute Physiological and Chronic Health Evaluation (APACHE II) score for severity of illness [17]. We also collected ventilatory parameters including the requirement and mode of mechanical ventilation, PaO2/FIO2 ratio, positive end-expiratory pressure, tidal volume, and peak and plateau pressures. All enrolled patients were followed until one of the following situations occurred: hospital discharge, death, or 60 days after study entry. Starting in late 2006, based on finding from ARDS network trials, Chinese ICUs universally adopted lower tidal volume for mechanical ventilation [18].

Statistical analysis

Baseline characteristics were compared between groups with Fisher’s exact test or chi-square test for dichotomous or categorical variables and with Student’s t test or Mann–Whitney test for continuous variables. For risk analysis of ARDS development, we initially used a logistic regression model with a backward stepwise elimination algorithm to select clinical risks or predictors from the univariate analyses with p<0.1; the final logistic regression models also included predictors from backward elimination. For mortality analysis, we used the log-rank test as a univariate measure of association and employed Cox proportional hazards models to investigate each clinical variable’s effect on clinical outcome. We used the time-dependent receiver operating characteristic (ROC) method to determine the best cut-off value of thrombocytopenia in the prediction of prognosis of critically ill patients by exploring the area-under-the-curve (AUC) values at 60-day mortality, and selected the maximal sum of sensitivity and specificity [19]. All analyses were performed with the SAS statistical software package (version 9.31, SAS Inc., Cary, NC), and p<0.05 was considered statistically significant.

Results

Between July 2010 and April 2012, we recruited 178 patients with at least one predisposing condition for ARDS from the participating hospitals in Beijing, China. The majority of patients were male (n = 125, 70%) and the mean age was 63 years (median:
ARDS development

During hospitalization, 75 (41%) patients developed ARDS; among identified cases, 31 (41%) and 70 (93%) of the 75 ARDS patients were diagnosed within the first 24 and 72 hours of ICU admission, respectively. There were no significant differences in age, gender, smoking status, and initial APACHE II score between ARDS patients and at-risk non-ARDS patients (Table 1). In addition, the major physiological variables during the first 24 hours of ICU admission were comparable, except that patients who developed ARDS had higher respiratory rates ($p = 0.025$). Although not significant, ARDS patients were in the ICU longer (ARDS median = 13 days; non-ARDS median = 9 days; $p = 0.21$) and on mechanical ventilation longer (ARDS median = 7 days; non-ARDS median = 5 days; $p = 0.53$) than non-ARDS patients. Low tidal volume (~7 ml/kg) was used in treating patients with mechanical ventilation. Although patient specific data was not available, protocolled low tidal volume ventilation was standardized in study ICUs.

Among predisposing conditions for ARDS in all enrolled patients, sepsis and/or septic shock ($n = 149$, 83%) were the most

Table 1. Baseline characteristics of the Beijing cohort.

	Non-ARDS (n = 103)	ARDS (n = 75)	p
Female, n (%)	34 (33.0)	19 (25.3)	0.27
Age, median (range)	70 (18–99)	67 (18–91)	0.32
Smoking history, n (%)	21 (20.4)	20 (26.7)	0.34
APACHE II, median (range)*	15 (4–39)	17 (6–35)	0.79
Systolic BP < 90 mmHg, n (%)	33 (32.0)	21 (28)	0.64
Heart rate > 100 beats/min, n (%)	82 (79.6)	57 (76)	0.84
Respiratory rate > 30 breaths/min, n (%)	27 (26.7)	31 (43.1)	0.03
Creatinine > 2.0 mg/L, n (%)	37 (35.9)	22 (29.3)	0.36
Bilirubin > 2.0 mg/dL, n (%)	35 (34.0)	21 (28)	0.23
Thrombocytopenia, ≤ 80 x 10^9 platelets/L, n (%)	26 (25.2)	28 (37.3)	0.07
Albumin > 25 g/dL, n (%)	25 (61)	16 (39)	0.57
Arterial pH < 7.33, n (%)	35 (35)	28 (37.3)	0.74
Arterial pH < 7.22, n (%)	4 (3.9)	7 (9.3)	0.14
Diabetes, n (%)	23 (22.3)	16 (21.3)	0.87
Sepsis syndrome	80 (77.7)	69 (92)	0.01
Septic shock	47 (45.6)	31 (41.3)	0.57
Pneumonia	35 (34)	29 (38.7)	0.52
Pneumonia	11 (10.7)	12 (16)	0.30
Trauma	3 (2.9)	3 (4)	0.70
Multiple transfusions	10 (9.7)	5 (6.7)	0.47
Aspiration	2 (1.9)	10 (13.3)	0.004
> 1 risk for ARDS	38 (36.9)	51 (68)	<0.0001
Direct pulmonary injury vs. external pulmonary injury	36 (35)	39 (52)	0.02
60-day mortality, n (%)	38 (36.9)	31 (41.3)	0.55
Days in ICU, median (IQR)	8 (5–14)	11 (7–27)	0.21
Days on mechanical ventilation, median (IQR)	5 (2–10)	7 (3–14)	0.53

ARDS = acute respiratory distress syndrome; APACHE = Acute Physiology and Chronic Health Evaluation; ICU = intensive care unit; IQR = interquartile range.

*APACHE II score was calculated with all components within 24 hours of ICU admission.
Pneumonia, aspiration, pulmonary contusions, or sepsis from a lower pulmonary source were categorized as direct pulmonary injury; sepsis from an extrapulmonary source, trauma without pulmonary contusions, and multiple transfusions were categorized as external pulmonary lung injury. Patients with both direct and external pulmonary injuries were considered to have direct lung injury.

doi:10.1371/journal.pone.0094124.t001
Table 2. Risk factors for 60-day mortality.

	ARDS Total	ARDS Death	ARDS 75% survival	p	Non-ARDS Total	Non-ARDS Death	Non-ARDS 75% survival	p	All Total	All Death	All 75% survival	p	All #: p
Gender													
Male	56	25 (45%)	29	0.362	69	25 (36%)	38	0.945	69	25 (36%)	38	0.461	
Female	19	6 (32%)	17		34	13 (38%)	14		34	13 (38%)	14		
Age	0.053				0.023		0.004						
Smoking status													
Non-smoker	55	23 (42%)	27	0.745	81	32 (40%)	25	0.24	81	32 (40%)	25	0.321	
Smoker	20	8 (40%)	17		21	5 (24%)	-		21	5 (24%)	-		
Diabetics													
Non-diabetic	59	22 (37%)	20	0.707	80	29 (36%)	17	0.988	80	29 (36%)	17	0.717	
Diabetic	16	9 (56%)	39		23	9 (39%)	28		23	9 (39%)	28		
Baseline severity of illness (1st 24 hours of ICU admission)													
APACHE II*	0.048				0.0002		<0.0001						
Systolic blood pressure	0.364				0.527		0.951						
≥ 90 mmHg	52	20 (38%)	29		70	27 (39%)	25						
< 90 mmHg	21	10 (48%)	11		33	11 (33%)	19						
Heart rate	0.278				0.093		0.55						
≤ 100 beats/min	15	8 (53%)	31		20	4 (20%)	57						
> 100 beats/min	57	22 (39%)	17		82	34 (41%)	17						
Respiratory rate	0.403				0.019		0.23						
≤ 30 breaths/min	41	18 (44%)	20		74	23 (31%)	45						
> 30 breaths/min	31	12 (39%)	29		27	15 (56%)	11						
Creatinine	0.997				0.004		0.028						
≤ 2.0 mg/L	53	22 (42%)	20		66	18 (27%)	60						
> 2.0 mg/L	22	9 (41%)	27		37	20 (54%)	12						
Bilirubin	0.895				0.296		0.45						
≤ 2.0 mg/dL	53	23 (43%)	24		59	20 (34%)	42						
> 2.0 mg/dL	21	8 (38%)	11		35	14 (10%)	11						
Thrombocytopenia	0.022				0.436		0.024						
Platelet > 80 × 10⁹/L	46	15 (33%)	34		77	27 (35%)	19						
Platelet ≤ 80 × 10⁹/L	28	16 (57%)	9		26	11 (42%)	21						
Albumin	0.59				0.071		0.297						
≥ 25 g/dL	59	22 (37%)	20		75	31 (41%)	18						
< 25 g/dL	16	9 (56%)	25		25	6 (24%)	-						
Arterial pH	0.208				0.149		0.051						
≥ 7.33	47	16 (34%)	31		67	21 (31%)	42						
< 7.33	28	15 (54%)	13		36	17 (47%)	12						
Predisposing conditions for ARDS													
Sepsis	0.959				0.831		0.959						
No sepsis	6	2 (33%)	19		23	7 (30%)	17						
Sepsis	69	29 (42%)	24		80	31 (39%)	22						
Septic shock	0.014				0.273		0.486						
No septic shock	44	13 (29%)	34		56	22 (39%)	17						
Septic shock	31	18 (58%)	10		47	16 (34%)	28						
Pneumonia	0.382				0.001		0.002						
No pneumonia	46	17 (37%)	19		68	19 (28%)	42						
common, followed by pneumonia (n = 64, 36%) and severe acute pancreatitis (n = 23, 13%). Table 1 also shows the proportions of patients who developed ARDS with each condition. Patients with sepsis (p = 0.01), aspiration (p = 0.004), or multiple predisposing conditions (p < 0.0001) had significantly higher ARDS risk. Patients with direct pulmonary injury were more likely to develop ARDS than patients with extra pulmonary injury (p = 0.02). From multivariate modeling, sepsis [odds ratio (OR) = 5.58; 95% confidence intervals (CI) = 1.70–18.26; p = 0.005), direct pulmonary injury (OR = 3.22; 95% CI = 1.60–6.47; p = 0.001), and thrombocytopenia (platelet count <80 × 10^3/μL) (OR = 2.67; 95% CI = 1.27–5.62; p = 0.005) [20] were associated with development of ARDS. Respiratory rate (>30 breaths/min), aspiration, and >1 risks for ARDS were also evaluated in model selection but were eliminated during model selection (not significant). APACHE II score (removing age and gender components), age, and gender were forced in as covariates but not significant in logistic regression analyses. Known factors related to ARDS, including septic shock, diabetes, and alcohol use were, also tested either by forcing as covariates, individually or combined into the model, and did not change the significant associations of sepsis, direct pulmonary injury, and thrombocytopenia with the development of ARDS (data not shown). Because drinking habits in China differ from those in the U.S., and it was difficult to develop a comparable criterion for alcohol abuse, we did not including alcohol abuse as risk factor in the analysis.

We further conducted a stratified analysis and found that thrombocytopenia was significantly associated with ARDS in both the Beijing cohort (univariate analysis, p = 0.01) and the Boston cohort (univariate analysis, p < 0.001) (Table S1), which has 851 ARDS and 1,027 non-ARDS patients recruited at Massachusetts General Hospital in Boston, USA [21], in the subgroup patients with septic shock, but not in non-septic shock subgroup (p = 0.95 and p = 0.15, respectively).

Some patients had already developed ARDS before ICU admission, and this subgroup cases was usually mixed with those patients who were diagnosed ARDS during the first 24 hours of ICU admission, together accounting for a total of 41% ARDS in the Beijing cohort and 40% in the Boston cohort (340 of 851 identified cases). Since the thrombocytopenia was defined by the lowest platelet counts during the first 24 hours of ICU admission in these cohorts, some patients developed thrombocytopenia before the onset of ARDS, who were difficult to be distinguished within this subgroup ARDS, and could interfere with the finding that thrombocytopenia was associated with development of ARDS. We then performed a nested analysis on a clean subgroup patients, by removing ARDS patients who were diagnosed during the first 24 hours of ICU admission in these cohorts, some patients developed thrombocytopenia before the onset of ARDS, who were difficult to be distinguished within this subgroup ARDS, and could interfere with the finding that thrombocytopenia was associated with development of ARDS. We then performed the sensitivity test in the Boston cohort in 411 ARDS cases and 1,027 non-ARDS patients after removing ARDS patients who were

| Table 2. Cont. | ARDS | | | | Non-ARDS | | | | All | |
|---|---|---|---|---|---|---|---|---|---|
| | Total | Death | 75% survival | p | Total | Death | 75% survival | p | p |
| | n | n (%) | Day | | n | n (%) | Day | |
| Pneumonia | 29 | 14 (48) | 24 | 0.01 | 35 | 19 (54) | 12 | 0.967 | 0.061 |
| Pancreatitis | 63 | 30 (48) | 17 | | 92 | 34 (37) | 25 | |
| No pancreatitis | 12 | 1 (8) | - | | 11 | 4 (36) | 8 | |
| Trauma | 72 | 31 (43) | 20 | 0.163 | 100 | 38 (38) | 19 | 0.241 | 0.071 |
| No trauma | 3 | 0 (0) | - | | 3 | 0 (0) | - | |
| Multiple transfusions | 70 | 29 (41) | 24 | 0.629 | 93 | 36 (39) | 19 | 0.365 | 0.311 |
| No multiple transfusions | 5 | 2 (40) | 46 | | 10 | 2 (20) | - | |
| Aspiration | 65 | 27 (42) | 24 | 0.92 | 101 | 38 (38) | 19 | 0.434 | 0.856 |
| No aspiration | 10 | 4 (40) | 7 | | 2 | 0 (0) | - | |
| Pulmonary injury¹ | 36 | 14 (39) | 17 | 0.812 | 67 | 19 (28) | 42 | 0.003 | 0.013 |
| Direct pulmonary injury | 39 | 17 (44) | 29 | | 36 | 19 (53) | 12 | |
| External pulmonary injury | | | | | | | | | |

ARDS = acute respiratory distress syndrome; APACHE = Acute Physiology and Chronic Health Evaluation; ICU = intensive care unit.

¹ Pneumonia, aspiration, pulmonary contusions, or sepsis from lower pulmonary source were categorized as direct pulmonary injury; sepsis from an extrapulmonary source, trauma without pulmonary contusions, and multiple transfusions were categorized as external pulmonary lung injury. Patients with both direct and external pulmonary injuries were considered to have direct lung injury.

doi:10.1371/journal.pone.0094124.t002
Thrombocytopenia and ARDS Mortality

Table 3. Multivariable analysis of mortality predictors in Beijing and Boston cohorts.

Covariate	Beijing cohort	Boston cohort		
	AHR (95% CI)	p	AHR (95% CI)	p
ARDS				
N = 75			N = 851	
APACHE II	1.05 (1.00–1.10)	0.04	1.05 (1.03–1.08)	<0.0001
Thrombocytopenia	2.20 (1.09–4.46)	0.03	1.69 (1.23–2.32)	0.001
Age	NS		1.03 (1.02–1.04)	<0.0001
Bilirubin, >2.0 mg/dL	NS		1.45 (1.08–1.95)	0.01
Non-ARDS				
N = 103			N = 1027	
APACHE II	1.08 (1.04–1.12)	0.0002	1.07 (1.04–1.10)	<0.0001
Thrombocytopenia	1.29 (0.64–2.59)	0.48	1.63 (1.14–2.34)	0.008
Pneumonia	2.04 (1.02–4.09)	0.04	NS	
Age	NS		1.03 (1.02–1.04)	<0.0001
Aspiration	NS		1.79 (1.18–2.73)	0.006
All patients				
N = 178			N = 1878	
APACHE II	1.07 (1.03–1.10)	<0.0001	1.07 (1.05–1.08)	<0.0001
Thrombocytopenia	1.89 (1.16–3.08)	0.01	1.97 (1.56–2.48)	<0.0001
Pneumonia	2.01 (1.24–3.26)	0.005	NS	
Age	NS		1.02 (1.02–1.03)	<0.0001
Trauma	NS		0.09 (0.01–0.67)	0.02
Direct pulmonary injury	NS		1.36 (1.12–1.65)	0.002

ARDS = acute respiratory distress syndrome; APACHE = Acute Physiology and Chronic Health Evaluation; AHR = adjusted hazard ratio; CI = confidence intervals; NS = not selected in multivariate modeling.

doi:10.1371/journal.pone.0094124.t003

diagnosed during the first 24 hours of ICU admission. Thrombocytopenia were significantly associated with development of ARDS (OR = 1.85; 95% CI = 1.33–2.58; p = 0.0003), with the adjustment of APACHE II score (removing age and gender components), age, gender, sepsis, trauma, blood transfusion, direct pulmonary injury, and alcohol use, which was consistent with the results of entire sample set (OR = 1.71; 95% CI = 1.27–2.31; p = 0.0005).

Mortality

The 60-day mortality rate for all patients was 39%, and the development of ARDS did not increase mortality risk (Table 1). Among predisposing conditions for ARDS, septic shock was associated with increased mortality (p = 0.014), but pancreatitis was associated with decreased mortality (p = 0.01) in ARDS patients (Table 2). In contrast, pneumonia (p = 0.002) and external pulmonary injury (p = 0.013) had higher mortality rates in non-ARDS patients.

Univariate examination of demographic characteristics and physiologic variables in the first 24 hours of ICU admission revealed that higher APACHE II scores and older age were associated with increased mortality for both ARDS and non-ARDS patients (Table 2). Thrombocytopenia was significantly associated with mortality (AHR = 1.022) but not in non-ARDS patients (p = 0.436). In contrast, high serum creatinine levels (>2.0 mg/L) were associated with higher mortality in non-ARDS (p = 0.004) but not ARDS (p = 0.997) patients. There were no statistically significant differences between survivors and non-survivors for gender, history of diabetes, and tobacco or alcohol use.

In multivariate analysis, APACHE II score was consistently associated with increased mortality in ARDS, non-ARDS, and all patients (Table 3). Thrombocytopenia was a mortality covariate for ARDS and all patients, but not for non-ARDS patients (Table 3). When replaced with coagulation points of the Sequential Organ Failure Assessment score (SOFA), thrombocytopenia remained associated with higher mortality in ARDS (AHR = 1.38; 95% CI = 1.07–1.57; p = 0.04), and all patients (AHR = 1.30; 95% CI = 1.07–1.57; p = 0.008), but not in non-ARDS patients (AHR = 1.25; 95% CI = 0.96–1.62; p = 0.09). To replicate our findings, we analyzed data from the Boston cohort. Although univariate analyses identified more physiologic variables in the first 24 hours of ICU admission and ARDS-predisposing conditions significantly associated with mortality (Table S1 and S2), multivariate analyses identified APACHE II score and thrombocytopenia as major risk factors for mortality in ARDS, non-ARDS, and all patients (Table 3). We also found similar results when thrombocytopenia was replaced with coagulation points of the SOFA score (data not shown).

We further investigated the interaction between thrombocytopenia and ARDS on mortality of all patients by creating a combined covariate of the Boston and Beijing cohorts. In both univariate (Figure 1) and multivariate (Figure 2) analyses, the combination of thrombocytopenia and ARDS had consistently higher patient mortality.

Taking advantage of the size of the Boston cohort, we conducted a sensitivity analysis to determine the optimal platelet count for prognosis. With adjustments for age, gender, APACHE II score, and sepsis, a platelet count of 104 x 10^{12}/\mu L had the maximal ROC value (AUC = 0.661; sensitivity = 0.508; specificity = 0.739; p = 0.0007). A sensitivity analysis confirmed a platelet count of 100 x 10^{12}/\mu L by considering a series of stepped (10 x 10^{12}/\mu L cut-
off values from $50 \times 10^3/\mu L$ to $150 \times 10^3/\mu L$ (Table 4). The Beijing cohort replicated this value (platelet counts $<100 \times 10^3/\mu L$ & non-ARDS: AHR = 2.42; 95% CI = 1.25–4.68; $p = 0.009$; platelet counts $\geq 100 \times 10^3/\mu L$ & ARDS: AHR = 1.25; 95% CI = 0.61–2.56; $p = 0.551$; platelet counts $<100 \times 10^3/\mu L$ & ARDS: AHR = 3.03; 95% CI = 1.55–5.93; $p = 0.001$).

Discussion

This prospective multicenter cohort was established using a modified protocol originally implemented in the Boston cohort [14]. Among at-risk ICU patients, 41% developed ARDS during ICU admission, and a majority of those patients (93%) developed ARDS within the first 72 hours of admission. These observations are consistent with previous reports in the mostly-Caucasian Boston cohort [14]. Moreover, the profiles of baseline physiologic variables and the major clinical risk factors between ARDS and at-risk non-ARDS patients are similar to previous reports from Chinese [22,23] and American [14] ICUs. Furthermore, the observation of high baseline respiratory rate (>30 breaths/min) associated with ARDS cases was consistent with the findings from several previous studies [24–26].

In this cohort, in addition to sepsis and direct pulmonary injury, thrombocytopenia was associated with the development of ARDS. Enhanced platelet activation resulting in platelet deposition within the damaged pulmonary microvasculature has been supported by several clinical and preclinical studies of ALI [27,28], and thrombocytopenia has been reported as a key feature of SARS [29]. In the Boston cohort, thrombocytopenia (named hematologic failure) was also identified as a risk factor for ARDS in multivariate analysis [14]. In another cohort of ALI in Rochester, Minnesota (Mayo Clinic), however, researchers did not observe significant difference of platelet count between ALI and non-ALI patients with septic shock [18]. Since the Rochester cohort only focuses on a subgroup ICU patients with septic shock, our stratified analysis revealed that thrombocytopenia was...
significantly associated with ARDS in both the Beijing cohort and the Boston cohort in the subgroup patients with septic shock, but not in non-septic shock subgroup. The different results might be explained by that the Beijing cohort and the Boston cohort focused on ARDS, which is the most severe form of ALI.

A major finding of this study is the association of thrombocytopenia with increased ARDS mortality. Extensive evidence

Table 4. Sensitivity analysis of combined effects of thrombocytopenia and ARDS.

cutoff point for platelet count*	Platelet count <cutoff & Non-ARDS	Platelet count ≥cutoff & ARDS	Platelet count <cutoff & ARDS			
	AHR	p	AHR	p	AHR	p
50	1.39(0.81,2.36)	0.2286	1.79(1.47,2.18)	6.50E-09	3.62(2.45,5.34)	8.80E-11
60	1.36(0.84,2.19)	0.2107	1.74(1.42,2.13)	6.30E-08	3.91(2.78,5.51)	5.40E-15
70	1.37(0.90,2.07)	0.1407	1.76(1.43,2.15)	5.60E-08	3.43(2.47,4.76)	1.80E-13
80	1.51(1.04,2.19)	0.0308	1.75(1.42,2.16)	1.50E-07	3.40(2.51,4.60)	2.10E-15
90	1.44(1.01,2.05)	0.0459	1.68(1.36,2.08)	1.90E-06	3.66(2.74,4.87)	<1E-16
100	1.42(1.02,1.97)	0.0356	1.68(1.35,2.09)	3.00E-06	3.47(2.62,4.59)	<1E-16
110	1.35(0.99,1.85)	0.0587	1.68(1.34,2.09)	3.00E-06	3.19(2.42,4.19)	1.10E-16
120	1.39(0.93,1.88)	0.0316	1.69(1.35,2.12)	5.00E-06	3.12(2.38,4.09)	2.20E-16
130	1.33(0.99,1.77)	0.0543	1.70(1.35,2.15)	7.00E-06	2.84(1.83,3.69)	1.20E-14
140	1.25(0.94,1.65)	0.1213	1.73(1.36,2.19)	5.08E-06	2.58(1.99,3.36)	1.60E-12
150	1.27(0.97,1.67)	0.0856	1.73(1.36,2.21)	1.00E-05	2.58(1.99,3.34)	8.80E-13

ARDS = acute respiratory distress syndrome; AHR = adjusted hazard ratio.
*Each line represents a multivariate cox regression with adjustment of age, gender, APACHII score, and sepsis; Platelet count (×10^3/μL) was dichotomized by cutoff point;
\(^1\) AHR was estimated by comparison with non-thrombocytopenia/non-ARDS group.

doi:10.1371/journal.pone.0094124.t004
demonstrates that platelet count and function are independently associated with increased ICU morbidity and mortality [30]. Although thrombocytopenia is a well-established prognostic marker for mortality in patients with sepsis and septic shock [31], which are risk factors for developing ARDS, thrombocytopenia has been inconsistently associated with ARDS mortality in two previous studies with small patient series representing non-contemporary treatment eras [32,33]. Besides APACHE II score, thrombocytopenia was the only risk factor for ARDS mortality identified in the Beijing cohort. Further, this association was replicated within a larger population and different ethnicities in the Boston cohort. These results provide strong evidence that thrombocytopenia is a prognostic marker for ARDS mortality.

In both Beijing and Boston cohorts, the combination of thrombocytopenia and ARDS further increased risk of 60-day mortality among critically ill patients. Thrombocytopenia in ICU patients is caused by multiple factors [34] and is considered a marker of illness severity with Multiple Organ Dysfunction Scores (MODS), Simplified Acute Physiology Scores (SAPS), and APACHE scores. Sepsis alone can cause moderate thrombocytopenia, as maladaptive platelet-neutrophil interactions significantly increase platelet activation and aggregation, as well as tissue injury [35]. The lung epithelium is central to both the pathogenesis and resolution of ARDS, and intra-alveolar coagulation changes (e.g., platelet-fibrin deposition and pulmonary vascular thrombi) are hallmarks of pathologic changes in ARDS [36]. Thus, thrombocytopenia likely contributes to the development of ARDS; in return, the coexistence of ARDS may aggravate thrombocytopenia to increase mortality of critically ill patients.

We used the same platelet count criterion from the Boston cohort (<80 x 10^3/μL) to define thrombocytopenia [14]. Although platelet counts are routinely measured daily in the ICU, the epidemiology of thrombocytopenia in critically ill patients has not been well studied. Further, illness severity scoring systems inconsistently consider platelet count; for example, the SOFA score incorporates platelet count, whereas the APACHE score does not. Different platelet count thresholds have been used in epidemiological studies for the prevalence, incidence, risk factors, and consequences of thrombocytopenia among critically ill patients [37]. Currently, the RAND/UCLA Appropriateness Method recommends a platelet count threshold of <100 x 10^3/μL, or a >30% decrease in platelet counts, for epidemiological research of thrombocytopenia [20]. Taking advantage of a large patient population in the Boston cohort, we conducted a sensitivity analysis and determined that platelet count (<100 x 10^3/μL) was a significant prognostic marker for ARDS. We further replicated this cut-point value in the Beijing cohort.

There were some differences between the Beijing and Boston cohorts. When evaluated individually, there were different association profiles for thrombocytopenia and ARDS with mortality of all patients with at least one risk factor for ARDS. Thrombocytopenia was significantly associated with higher mortality in the Beijing cohort, but not the Boston cohort. Conversely, ARDS was associated with higher mortality in the Boston cohort, but not the Beijing cohort. It is unexpected that ARDS did not increase mortality in the Beijing cohort, and, it is counter-intuitive that in the univariate analysis thrombocytopenia would be associated with increased mortality in the ARDS group but not in the non-ARDS group given that thrombocytopenia is a marker of severity of illness in critical care populations generally. However, the raw numbers were in the direction of higher mortality with lower platelets in the non-ARDS group, these findings could be explained by the limitation of multiple subgroup analysis in a relatively small dataset. Moreover, for several known risk factors or comorbidities of ARDS [14,24–26], such as septic shock, pneumonia, pancreatitis, trauma, multiple transfusions, and diabetes, we did not observe significant different between ARDS and non-ARDS patients in the Beijing cohort. Due to the relative scarcity and high cost of medical resources to the general Chinese population, the participating hospital ICUs in the Beijing cohort may have admitted more severely ill patients, resulting in less difference in illness severity between ARDS and non-ARDS patients. Accordingly, although most physiologic variables of the first 24 hours of ICU admission, including APACHE score, were comparable between ARDS and non-ARDS Beijing cohort patients, thrombocytopenia (platelet counts <80 x 10^3/μL) was more common in the Beijing cohort than the Boston cohort (30.3% vs. 13.9%, respectively; p<0.0001). It is also possible that different ethnicities account for the observed differences between cohorts.

Based on the Boston cohort, our study protocol was modified by the inclusion of severe pancreatitis as a predisposing condition for ARDS. Severe pancreatitis is a well-established risk factor for the development of ARDS [38] and is frequently observed in critically ill patients in China. In the Beijing cohort, we identified 23 (12.9%) cases of severe pancreatitis, similar to a previous report of 15.6% in a large Chinese ICU survey [39]. About 52% of severe pancreatitis cases eventually developed ARDS during ICU admission. Severe pancreatitis was not associated with ARDS risk, but was associated with lower mortality. However, the Beijing study is limited by a small sample size. With the patients’ enrollment keeps, we will further evaluate severe pancreatitis as a clinically important factor in the development and outcome of ARDS.

Conclusion

This study describes the successful establishment of a prospective, multicenter cohort study of critically ill patients at-risk for ARDS in Beijing, China. Initial characterization of the clinical factors associated with ARDS risk and mortality revealed an association between thrombocytopenia and ARDS mortality. We replicated these findings in the larger and more diverse Boston cohort, suggesting that the Beijing cohort can provide comprehensive data and samples to identify biomarkers for the early diagnosis, prognosis, and treatment of ARDS.

Supporting Information

Table S1 Risk factors for 60-day mortality in Boston cohort.
(DOCX)

Table S2 Risk factors for ARDS in Boston cohort.
(DOCX)

Acknowledgments

The authors would like to thank Michelle Gong, Ednan K. Bajwa, and Taylor Thompson from the Molecular Epidemiology of ARDS project for help in study design and preparation of study protocols.

Author Contributions

Conceived and designed the experiments: ZW DCC MD AL XZ. Performed the experiments: TW ZL GL SW WL. Analyzed the data: ZW YW ZZ XZ AL TW ZL DCC. Contributed reagents/materials/analysis tools: ZZ XZ AL. Wrote the paper: ZW ZZ XZ AL YW TW ZL DCC.
References

1. Frutos-Vivar F, Nin N, Esteban A (2004) Epidemiology of acute lung injury and acute respiratory distress syndrome. Curr Opin Crit Care 10: 1–6.
2. Brandeis GF (2006) Interactions between influenza and bacterial respiratory pathogens: implications for pandemic preparedness. Lancet Infect Dis 6: 303–312.
3. Chen CY, Lee CH, Liu CY, Wang JH, Wang LM, et al. (2005) Clinical features and outcomes of severe acute respiratory syndrome and predictive factors for acute respiratory distress syndrome. J Chin Med Assoc 68: 4–10.
4. Looney MR (2006) Newly recognized causes of acute lung injury: transfusion of blood products, severe acute respiratory syndrome, and avian influenza. Clin Chest Med 27: 591–600; abstract viii.
5. Matthay MA, Zimmerman GA, Emon C, Bhattacharya J, Collier B, et al. (2003) Future research directions in acute lung injury: summary of a National Heart, Lung, and Blood Institute working group. Am J Respir Crit Care Med 167: 1027–1035.
6. Ware LB, Matthay MA (2000) The acute respiratory distress syndrome. N Engl J Med 342: 1334–1349.
7. Brower RG, Lanken PN, MacIntyre N, Matthay MA, Morris A, et al. (2004) Higher versus lower positive end-expiratory pressures in patients with the acute respiratory distress syndrome. N Engl J Med 351: 337–341.
8. Guerin C, Reignier J, Richard JC, Beuret P, Gacouin A, et al. (2013) Prone positioning in severe acute respiratory distress syndrome. N Engl J Med 368: 2159–2168.
9. Papazian L, Forel J-M, Gacouin A, Penot-Ragon C, Perrin G, et al. (2010) Neumonocascular blockers in early acute respiratory distress syndrome. N Engl J Med 363: 1107–1116.
10. Matthay MA, Ware LB (2004) Plasma protein C levels in patients with acute lung injury: prognostic significance. Crit Care Med 32: S29–S32.
11. Parsons PE, Matthay MA, Ware LB, Eiser MD (2005) Elevated plasma levels of soluble TNF receptors are associated with morbidity and mortality in patients with acute lung injury. Am J Physiol Lung Cell Mol Physiol 288: L426–431.
12. McClintock DE, Ware LB, Eisner MD, Wickersham N, Thompson BT, et al. (2007) Higher urine nitric oxide is associated with improved outcomes in patients with acute lung injury. Am J Respir Crit Care Med 175: 256–262.
13. Levitt JG, Gould MK, Ware LB, Matthay MA (2009) The pathogenetic and prognostic value of biologic markers in acute lung injury. J Intensive Care Med 24: 151–167.
14. Gong MN, Thompson BT, Williams P, Pothier I, Boyce PD, et al. (2005) Clinical predictors of and mortality in acute respiratory distress syndrome: potential role of red cell transfusion. Crit Care Med 33: 1191–1198.
15. Levy MM, Pronovost PJ, Dellinger RP, Townsend S, Resar RK, et al. (2004) Sevin change bundles: converting guidelines into meaningful change in behavior and clinical outcomes. Crit Care Med 32: S95–S97.
16. Bernard GR, Artigas A, Brigham KL, Carlet J, Falke K, et al. (1994) The American-European Consensus Conference on ARDS. Definitions, mechanisms, relevant outcomes, and clinical trial coordination. Am J Respir Crit Care Med 149: 810–824.
17. Le Gall JR, Loirat P, Alperovitch A (1986) APACHE II—a severity of disease classification system. Crit Care Med 14: 754–755.
18. Oba Y, Salzman GA (2000) Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury. N Engl J Med 343: 813; author reply 813–814.
19. Heagerty PJ, Lumley T, Pepe MS (2000) Time-dependent ROC curves for censored survival data and a diagnostic marker. Biometrics 56: 337–344.
20. Van der Linden T, Sousseine B, Dupuy L, Soufr L, Meyer P (2012) Management of thrombocytopenia in the ICU (pregnancy excluded). Ann Intensive Care 2: 42.