Quantum magnetometers as a base for atomic clock

E A Sagitov¹, S V Ermak¹, M V Petrenko² and V V Semenov¹

¹ Institute of Physics, Nanotechnology and Telecommunications, Peter the Great Saint Petersburg Polytechnic University, 29 Politekhnicheskaya str., St. Petersburg, 195251, Russia
² Ioffe Physical Technical Institute, 26 Politekhnicheskaya str., St. Petersburg, 194021, Russia

E-mail: serge_ermak@mail.ru

Abstract. The possibility of the atomic clock based on two quantum magnetometer system development is demonstrated. One of the magnetometers is self-oscillation type, another is Mz-type magnetometer based on end-state UHF resonance. The laser pumping of ⁸⁷Rb atoms placed into antirelaxation coated sell is provided. The magnetometers frequency difference fluctuations experimental results are represented and Allan deviation is determined. The role of the radio-optical resonance frequency light shift different components is denoted for the determination of the quantum magnetometers optimal operation mode. The effect of the light shift compensation is demonstrated.

1. Introduction

Atomic clocks implement the synchronization of telecommunication and precise time systems. They ensure correct operations of stationary and mobile systems, ensuring their reliability and accuracy. The basis for the atomic clock constructing is the optical pumping method, which have been developed since the beginning of the 50s of XX century [1]. The optical pumping leads to the redistribution of populations in the atom energy structure ground state, that creates the conditions to monitor the magneto-dipole transitions in the hyperfine structure (HFS), providing precise measurement of the resonance frequency, that determine the stability of an atomic clock [2]. The main measurement error source is the light frequency shift associated with the influence of non-resonant light components [3].

Theoretical and experimental researches have shown the ability to reduce the influence of the light frequency shift component compensation in the case of end-state magneto-dependent HFS transitions (end-state resonance), which is not possible in the case of magneto-independent 0-0 transition [4]. In the case of the atomic clock on end-state resonance, Zeeman transitions in self-oscillating magnetometer can be selected to compensate the magnetic fluctuations in an external magnetic field. Hereby, the compensation of the magneto-dependent HFS end-state resonance magnetic dependence and the additional frequency destabilizing factors of the atomic clock is provided [5].

Practically, this compensation is achieved by simultaneous signal registration of end-state HFS resonance using the technique of synchronous detection and self-oscillating quantum magnetometer. These oscillations are on the magneto-dipole transitions average frequency of the ⁸⁷Rb atoms ground state. The further processing of the received signals is provided.
Thus, the frequency light shifts compensation is very impotent for atomic clock long term stability achievement, and is learning in this article. The effect of the light shift component compensation is demonstrated. To achieve this objective it is necessary to solve following problems:

- the experimental research of the end-state HFS resonance frequency stability in laser pumped 87Rb atoms, determination of Allan variance and its subsequent analysis;
- the development of the compensation destabilizing factors methods using the signals of two magnetometers;
- the elaboration of the recommendations for optical pumping modes optimization in alkaline atoms placed into the absorption cell with wall anti-relaxation coating and allowing to reduce frequency errors of the atomic clock.

2. The method of optical pumping

The main task is the creation of non-equilibrium population of atoms in the energetic structure. This can be achieved by method of optical pumping, which is widely used in modern devices of quantum electronics and primarily includes exemplary frequency measurements and a whole range of precision quantum magnetometers used in various technical applications, and in a study of fine physical phenomena. The basic substance of such devices is alkali metal atoms.

The object of optical pumping in this energy structure is the ground state, where in thermodynamic equilibrium conditions all magnetic sublevels have equilibrium populations. Optical pumping, i.e. the resonant light effect on the atoms, leads to the inversion of the populations in the ground state, that creates conditions for monitoring magneto-dipole transitions in ultra-fine structure.

Until recently, the technique of optical pumping has used spectral lamps filled with the same matter as the pumping atoms. With the progress in laser sources development there is a great interest to use laser pumping with various alkali metals to produce wide range of quantum devices based on various physical effects. The first experiments with laser pumped caesium atoms allowed one to reach almost 100% polarization of alkali metal atoms in the magneto-dipole hyperfine transition of ground state [6]. An interesting continuation of such research was the precision measurement of the resonance frequency variation on 0-0 transition caused by the dynamic Stark effect offsets the energy sublevels of the atoms in the pumping radiation field [7, 8].

![Figure 1](image-url)

Figure 1. The scheme of optical orientation of 87Rb atoms in the ground state in terms of electro-dipole transitions by σ^+ polarized laser light of D_1 line. Solid arrows indicate direct transitions, dashed arrows indicate spontaneous transitions.
Another method of optical pumping is the optical orientation [1]. The energetic structure of ^{87}Rb atoms ground state ($^2S_{1/2}$), first excited state ($^2P_{1/2}$) and electro-dipole transitions by circularly polarized light (σ^+ or σ^- polarization) is presented in figure 1. Optical orientation by circularly polarized light, where, as a result, the implementation of the magnetic quantum state selection rules depletes the number of magnetic sublevels with extreme value projection of a full momentum. Non-equilibrium population is created on a magnetic quantum sublevels. This method is used in quantum magnetometers.

3. The system of two quantum magnetometers
The basis of the experimental research was the magnetic induction meter scheme based on the system of two quantum magnetometers with optical pumping (SQMOP), one of which was self-oscillating low frequency (LF) magnetometer, another – passive Z-magnetometer based on the UHF radio-optical resonance, which resonance frequency corresponds to magneto-dependent transitions between HFS sublevels with extreme value of a magnetic quantum number. The simplified functional scheme of such device is presented in figure 2.

![Functional scheme of a two-channel system of quantum magnetometers with optical pumping.](image)

Figure 2. Functional scheme of a two-channel system of quantum magnetometers with optical pumping.

![Self-oscillating magnetometer, LF channel.](image)

Figure 3. Self-oscillating magnetometer, LF channel.

![Z-magnetometer, UHF channel.](image)

Figure 4. Z-magnetometer, UHF channel.
Figure 5. The compensation of magnetic fluctuations in the system of two quantum magnetometers (A – LF channel, B – UHF channel, C – difference between the magnetic variations registered by LF and UHF channels).

The functional schemes of LF self-oscillating and UHF Z-type magnetometers are presented in figure 3 and figure 4. The original result of this research is the use one cell with anti-relaxation coating, containing alkali atoms for two magnetometers, that provides additional possibilities in the light shift reduction.

Experimental verification of the light shift compensation effect was carried out in the context of the 87Rb atoms with laser optical pumping of ground state $F=2$ by light component $S_{1/2} \rightarrow P_{3/2}$ of D_2 line in SQMOP. The functional scheme of SQMOP contains well known elements used in gas-cell atomic clock. The scheme is operated on the UHF radio-optical resonance signals and on the weighted average resonance frequency of the Zeeman structure. This scheme provides simultaneous measurement of magnetic field fluctuations by registration of the UHF measuring channel error signal and by measurement of the LF measuring channel signal frequency, which react to changing of an external magnetic field and laser pumping parameters. Then, the signals from two channels are detected by the registration scheme where they are mutually subtracted (see figure 5). This method provides compensation of the magnetic fluctuations and light shift components [4]. Further, Allan variance for the differential signal of the two quantum magnetometers was calculated.

Figure 6 presented Allan variance for two directions of circular polarization of pumping light (σ^+ and σ^-) with light power of ~ 100 µW, that corresponds to the quality factor maximum mode (QFM) of LF and UHF radio optical resonance signals. The represented experiments are provided under other identical conditions. Thus, there is a principal possibility of scalar and vector light shift mutual compensation by choosing a suitable sign of circular polarization of pumping light, that allows realizing the reduced resonance frequency light shift of the atomic clock based on the two quantum magnetometers system.

The greatest interest in applications represents the area of averaging time 10^2–10^3 s. It was the cause to carry out a number of experiments for the quantum magnetometers operating mode optimization in time of averaging exceeding a time barrier in hundreds of seconds [9].
It was found experimentally, that this variance limit corresponds to a certain intensity of the pumping light (see figure 7). The intensity in this case was ~ 25 µW under σ^+ polarization of optical pumping. These conditions correspond to the mode of maximal long-term stability (MLTS).

In figure 7 similar dependences for SQMOP are given in QFM mode (dependence 1) and for atomic clock on 0-0 transition (dependence 3). Short-term stability of SQMOP in the MLTS mode (see figure 7) significantly concedes to similar parameter during the operation of the device in the MQF mode that is explained by decrease in a quality factor of observed signals because there is discrepancy in intensity of pumping to its optimum level within a flicker floor. However, at long operation of the device in MLTS mode is justified by more flat dependence of Allan variance with time growth that in the conditions of the light shift component compensation allows improving the SQMOP precision properties. In the MQF mode a flicker floor of SQMOP and atomic clock on 0-0 transition within several tens of seconds of supervision practically coincide, however, the advance in area of long-term stability in figure 7 shows undoubted advantage of the studied scheme in comparison with atomic clock on 0-0 transition.

Thus, the correct choice of the laser pumping light polarization allows light shift various component mutual compensation of the atomic clock resonant frequency and therefore, increases its long-term stability.

4. Summary
It is shown, experimentally, that the effect of the light shift components compensation allows reducing the frequency Allan variance of the atomic clock based on the system of two quantum magnetometers in comparison with the atomic clock on 0-0 transition.
References
[1] Happer W 1972 Rev. Mod. Phys. 44 170
[2] Riehle F 2004 Frequency Standards: Basics and Applications (Weinheim: WILEY-VCH Verlag GmbH & Co. KGaA)
[3] Happer W and Mathur B S 1967 Phys. Rev. 163 12
[4] Baranov A A, Ermak S V, Sagitov E A, Smolin R V and Semenov V V 2015 J. Exp. Theor. Phys. 121 393
[5] Jau Y Y, Post A B, Kuzma N N, Braun A M, Romalis M V and Happer W 2004 Phys. Rev. Lett. 92 110801
[6] Siahatgor S and Hochuli V E 1969 Quantum Electron. 5 295
[7] Arditi M and Picque J L 1975 Optics Comm. 15 317
[8] Arditi M and Picque J L 1975 J. Phys. B: Atom. Phys. 88 331
[9] Aleksandrov E B and Vershovskii A K 2009 Phys. Uspekhi 52 573