Comparing radiolytic production of H$_2$O$_2$ and development of Zebrafish embryos after ultra high dose rate exposure with electron and transmission proton beams

Houda Kacem a, Serena Psoroulas b, Gael Boivin c, Michael Folkerts c, Veljko Gril d, Tony Lomax b,d, Adrien Martinotti a, David Meer b, Jonathan Ollivier a, Benoit Petit a, Sairo Safai b, Ricky A. Sharma c, Michele Togno b, Marta Vilalta c, Damien C. Weber b, Marie-Catherine Vozenin a,*

a Radiation Oncology Laboratory, Service of Radiation Oncology, Department of Oncology. Lausanne, University Hospital and University of Lausanne; b Paul Scherrer Institut-Centre for Proton Therapy, Villigen, Switzerland; c Varian, a Siemens Healthineers Company, 3120 Hansen Way, Palo Alto, CA 94304, United States; d Institute of Radiation Physics, University Hospital and University of Lausanne, Switzerland

ARTICLE INFO

Article history:
Received 25 April 2022
Received in revised form 30 June 2022
Accepted 13 July 2022
Available online 19 July 2022

Keywords:
Electron FLASH
Proton FLASH
Hydrogen peroxyde
Zebrafish embryos

ABSTRACT

The physico-chemical and biological response to conventional and UHDR electron and proton beams was investigated, along with conventional photons. The temporal structure and nature of the beam affected both, with electron beam at ≥1400 Gy/s and proton beam at 0.1 and 1260 Gy/s found to be isoefficient at sparing zebrafish embryos.

© 2022 The Authors. Published by Elsevier B.V. Radiotherapy and Oncology 175 (2022) 197–202 This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Material and methods

Full material and method can be found in the supplementary material.

Irradiation devices

Irradiations and dosimetry were performed as already described using [8–13]:

Abbreviations: UHDR, ultra-high dose rate; ZF, zebrafish; DMF, dose modifying factor.

Corresponding author.
E-mail address: marie-catherine.vozenin@chuv.ch (M.-C. Vozenin).

https://doi.org/10.1016/j.radonc.2022.07.011
0167-8140/© 2022 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
Chemical and biological impact of electron-FLASH vs proton-FLASH

1) Xrad 225CX/225 keV (Psi Precision X-ray), at 0.037 Gy/s.
2) eRT6/Oriatront 5.5 MeV electron beam (PMB-Alcen), at 0.1 Gy/s for conventional dose rate and 100 Gy/s, >1400 Gy/s for UHDR.
3) PSI Comet Cyclotron 235 MeV (Gantry 1) in transmission mode, at 0.1, and 0.9 Gy/s for conventional dose-rate, 90 Gy/s and 1260 Gy/s for UHDR.

Full beams parameters can be found in Table sup 1.

Water radiolysis experiments

Milli-Q water was equilibrated at 4% O2 and irradiated as indicated in Table sup 1. Water samples were probed immediately after irradiation with Amplex Red assay kit (Thermofisher). Fluorescence quantification was performed using Promega Glo-Max plate reader (Excitation: 520 nm Emission: 580–640 nm). G-value of hydrogen peroxide was calculated from the slope of plots of H2O2 concentrations as a function of the dose.

Zebrafish embryos experiments

AB Wild Type and transgenic Fli1a ZF embryos (to visualize the vascular tree) were irradiated 4 h to 4 h10 post-fertilization as indicated in Table sup 1. Survival and radiation-induced developmental alterations (n = 15 to 39 embryos) were investigated by measuring the body length 5 days post-fertilization as allowed by the Swiss ethics regulations. Temporal dynamics of radiation-induced cell death and proliferation were quantified on the whole body of ZF embryos (n = 5 embryos) using immunofluorescence and confocal microscopy analysis. Duplicate experiments were performed except for photon irradiation that was performed once.

Results

H2O2 yield is reduced at UHDR

We thought to use G-value of H2O2 in pure water as a surrogate for normal tissue sparing after UHDR irradiation. Therefore, the impact of dose and dose rate on H2O2 production and recombination when delivered with different type of beams was measured (Fig. 1). H2O2 yield increased linearly with the dose with all 3 beams. With 225 kV X-rays, the H2O2 yield was relatively higher, inversely proportional to the dose rate and did not vary linearly.

ZF embryos are sensitive to both the nature of the beam and dose rate

Dose and dose rate responses were investigated using a rapidly responding in vivo model with different beams. Dose responses were found for the 3 beams whereas dose rate responses were found for the electron but not for the proton beam. At isodose, two main patterns of response were found on ZF embryos: quas-icontinuous manner whereas the electron beam was more achievable with the proton beam was 1260 Gy/s delivered in a quasi-normal developmental features. A dose dependent acute apoptotic peak was measured at 24 h in all irradiated groups, which is opposite to our hypothesis (Figure sup 1 and 2).

Discussion

Our results are the first systematic comparison of the radiolytic production of H2O2 and development of Zebrafish embryos after conventional and UHDR exposure with electron and proton beams. The temporal structure of the beam had no impact on H2O2 production but the mean dose rate did. A production of H2O2 ≤ 2.33 molecule/100 eV also correlated with the preservation of ZF embryo development. Preserved developmental features also correlated with the onset of proliferation, presumably to compensate for apoptosis. Surprisingly, ZF embryos showed an exquisite sensitivity to the nature of the beam and dose rate. In our experiments, ZF embryos seemed resistant to proton irradiation, suggesting that this irradiation modality and/or beam configuration was intrinsically less toxic than low energy photon and electron beams in this specific model. These results point to the need for further systematic study; as such, an impact has not been reported in vitro or in vivo.

Understanding the physical parameters (i.e. mean dose rate vs instantaneous dose rate, time of exposure) able to trigger the FLASH effect is one important goal in the field of FLASH-RT research. Here, we took advantage of two beams (electron and proton) with intrinsic differences in temporal structure but able to operate at conventional and UHDR [10,12]. The maximal dose rate achievable with the proton beam was 1260 Gy/s delivered in a quasi-continuous manner whereas the electron beam was more flexible, able to deliver dose rates between 100 to 6.6×10^6 Gy/s. For the latter, this flexibility was achieved by varying the number of pulses (see Table sup 1). In both cases dose uncertainty was around 4%. We compared the impact of conventional vs UHDR and electron vs proton beam on H2O2 production. H2O2 radiolytic yield was linear with the dose and inversely proportional to the dose rate. G^2 value of H2O2 after proton, electron and γ-rays at conventional dose rates are available and found to be similar [14–18], whereas direct measurement of H2O2 yields comparing conventional and UHDR irradiation has not been well investigated so far. Only one of our previous studies suggested that a decreased...
production of H$_2$O$_2$ after exposure to UHDR electron (>100 Gy/s) could trigger normal tissue sparing in ZF embryos’ and mouse [1,19]. Here, we calculated G values of H$_2$O$_2$ produced by photon, electron and proton beams and could rank them from the highest production to the lowest: CONVphoton > CONVelectron > CONVproton > UHDRproton > UHDRelectron. We also found that 2.33 molecules of H$_2$O$_2$/100 eV or less correlated with the preservation of ZF embryo development. Whether this value can be considered as a threshold and/or a surrogate marker of normal tissue protection remains to be established.

Fig. 1. Dose and dose rate impact on water radiolysis in physiological O$_2$ conditions (4% O$_2$) after exposure to photon, electron and proton beam a) [H$_2$O$_2$] concentrations vs the irradiated dose obtained after water exposure to X-rays, electrons (CONV and UHDR) b) Similar plot obtained with proton beam (conventional and UHDR). Slopes were assessed by t-test and were significantly different as follow: photons vs electrons (CONV&UHDR): P < 0.0001; CONV electrons vs UHDR electrons: P < 0.001 and CONV protons vs UHDR protons: P = 0.0067 c) Summary table d) Radiolytic yield of H$_2$O$_2$ obtained from the previous figure by dividing [H$_2$O$_2$] over the dose. Uncertainties on the dose for electron and proton irradiations were 4% and 10% respectively from the prescribed dose. Results are from duplicate experiments for X-rays and protons irradiation and triplicate experiments for electrons irradiations.

![Graphs](https://example.com/graph1.png)
The ZF embryo is a relatively new model in the field of radiation biology. It has several distinct advantages including the fact that it is a fully integrated in vivo model and a short-term model with a fast biological response (5 days). These embryos also have other interesting characteristics such as a very rapid shift in their radiation resistance profile according to developmental status (DL100 ranging from 15 to 50 Gy within the first 24 h of their development) [20]. To investigate the impact of clinically relevant doses...
(in the range of 10 Gy), we chose to work at 4–4.30 hpf. At this early stage of their development, ZF embryos can be considered to be stem cell-like, behaving like acute responding tissues. A lower magnitude of the FLASH sparing effect (about 10%) found here is similar to what has been reported in other early responding tissues such as the gut of mice [21,22]. Interestingly in this study, ZF embryos appear to be more sensitive to the nature of the beam and/or dose rate variation than mice for reasons that remain to be determined. Other nuances of the ZF model exist, where a past report showed no FLASH sparing effect with proton beams at 100 Gy/s [23]. Conversely, normal tissue sparing by proton FLASH beams (>70 Gy/s) has been consistently reported by many groups working with various murine models (gut, skin, brain) [3,5–7].

Our present results are consistent and extend Beyreuther’s previous results showing no FLASH effect between 0.1 Gy/s and 1260 Gy/s with proton beams. Interestingly, the apparent lack of the FLASH effect was not related to enhanced damage, but rather to a preservation of ZF development after proton irradiation at either dose rate. When compared with photon and electron beams at conventional dose rates, a DMF of 1.6 and 1.1 was found respectively, whereas at UHDR ZF embryo development was similar with proton and electron beam. Recently, Beyreuther’s group suggested that hypoxia was required in ZF embryos to trigger the FLASH sparing effect in response to UHDR with VHEE [24], a factor that was not required to be found in our previous experiments with 5.5 MeV. [19,25] The current investigation did not evaluate this, since we chose to work at physiologically relevant normoxic conditions. Here, the molecular pattern associated with the preservation of ZF embryo development was investigated and found to be beam and dose rate independent for protons but not for electrons. In fact, full recovery of the ZF embryo observed after UHDR electron and proton irradiation was associated with an early apoptotic peak followed by high levels of compensatory proliferation. This was not found however, after conventional dose rate photon and electron exposures, where sustained apoptosis was not compensated by proliferation.

Conclusions

In summary, our observations point to an unexpected but significant protective advantage of proton irradiation on ZF embryos that is coincident with a lower production of H₂O₂. The translation of these findings to higher mammals is unclear but suggests that investigations to systematically characterize the impact of dose rate modulation using protons, photons and electrons response is clearly needed. Our findings also suggest that H₂O₂ ≤ 2.33 molecule/100 eV might serve as marker of the FLASH sparing effect and identifies transient vs sustained apoptosis has a possible switch leading to normal vs abnormal development of ZF embryos.

Declaration of Competing Interest

The authors declare the following financial interests/personal relationships which may be considered as potential competing interests: [The proton studies were funded by a research grant from Varian, a Healthineers company (Palo Alto, CA, USA) to MCV, SP and TL.] Acknowledgements

HK and electron studies were funded by MAGIC-FNS CRS IIS, 186369 (to MCV) and proton studies were funded by a research grant from Varian, a Healthineers company (Palo Alto, CA, USA) to MCV, SP and TL). VG was funded by NIH program project grant PO1CA244091 (to MCV). We would like to thank Drs P Froidevaux and C Bailat for their critical contribution; Paula Barrera-Gomez and the PTZ from UNIL for ZF breeding and well as Dr A Benechet from IVIF/UNIL/CHUV and Dr F Mengenthaler for help in imaging procedures.

Appendix A. Supplementary material

Supplementary data to this article can be found online at https://doi.org/10.1016/j.radonc.2022.07.011.

References

[1] Kacem H, Almeida A, Cherbuin N, Vozenin M-C. Understanding the FLASH effect to unravel the potential of ultra-high dose rate irradiation. Int J Radiat Biol 2022;99:506–16. https://doi.org/10.1080/09553002.2021.2004375.
[2] Diffenderfer ES, Sörensen BS, Mazal A, Carlson DJ. The current status of preclinical proton FLASH radiation and future directions. Med Phys 2022;49:2039–54. https://doi.org/10.1002/mp.15276.
[3] Diffenderfer ES, Verginadis II, Kim MM, Shonnyozov K, Velapolousou A, Goia D, et al. Design, Implementation, and in Vivo Validation of a Novel Proton FLASH Radiation Therapy System. Int J Radiat Oncol Biol Phys 2020;106:440–8. https://doi.org/10.1016/j.ijrobp.2019.10.049.
[4] Yuan T, Cooley J, Wagner M, Yu T, Zwart T. Demonstration of the FLASH Effect Within the Spread-out Bragg Peak After Abdominal Irradiation of Mice. Int J Particle Therapy 2022;8:68–75. https://doi.org/10.14334/JPT-20-00095.
[5] Singers Sörensen B, Krzyzsztol Sikarz M, Ankaßgaard C, Johannsen J, Andersen CE, Kanouza E, et al. In vivo validation and tissue sparing factor for acute damage of pencil beam scanning proton FLASH. Radiatither Oncol 2022;167:109–15. https://doi.org/10.1016/j.radonc.2021.12.022.
[6] Cunningham S, McCaulley S, Vairamani K, Serph J, Girdhani S, Abel E, et al. FLASH Proton Pencil Beam Scanning Irradiation Minimizes Radiation-Induced Leg Contracture and Skin Toxicity in Mice. Cancers 2021;13:1012. https://doi.org/10.3390/cancers13051012.
[7] Kim MM, Irmern P, Shonnyozov K, Verginadis II, Cengel KA, Koumenis C, et al. Design and commissioning of an image-guided small animal radiation platform and quality assurance protocol for integrated proton and x-ray radiobiology research. Phys Med Biol 2019;64:135013. https://doi.org/10.1088/1361-6560/ab13e4.
[8] Jaccard M, Durán MT, Peterson K, Germond J-F, Liger P, Vozenin M-C, et al. High dose–per-pulse electron beam dosimetry: Commissioning of the Orieltron eRT6 prototype linear accelerator for preclinical use. Med Phys 2018;45:863–74. https://doi.org/10.1002/mp.12717.
[9] Gonçalves Jorge F, Grili V, Bourjias J, Vozenin M-C, Germond J-F, Bocchi F, et al. Technical note: Validation of an ultrahigh dose rate pulsed electron beam monitoring system using a current transformer for FLASH preclinical studies. Med Phys 2022;49:1831–8. https://doi.org/10.1002/mp.16473.
[10] Jorge PC, Jaccard M, Peterson K, Gondré M, Durán MT, Desorger L, et al. Dosimetric and preparation procedures for irradiating biological models with pulsed electron beam at ultra-high dose-rate. Radiatother Oncol 2019;139:34–9. https://doi.org/10.1016/j.radonc.2019.05.004.
[11] Christensen JB, Togno M, Nesteruk RP, Psoroulas S, Meer D, Weber DC, et al. Al 2 o 3: C optically stimulated luminescence dosimeters (OSLDs) for ultra-high dose proton dose dosimetry. Phys Med Biol 2021;66:085003. https://doi.org/10.1088/1361-6560/abe554.
[12] Nesteruk RP, Togno M, Grossmann M, Loman AJ, Weber DC, Schippers JM, et al. Commissioning of a clinical pencil beam scanning proton therapy unit for ultra-high dose rates (FLASH). Med Phys 2021;48:4017–26. https://doi.org/10.1002/mp.14593.
[13] Togno M, Meer D, Nesteruk K, Schafer R, Psoroulas S. Ultra-high dose-rate dosimetry for pre-clinical experiments with mm-small proton fields. Submitted to Phys Medica. n.d.
[14] Oricic D. Studies on the Formation of Primary Yields of Hydrogen Peroxide and Molecular Hydrogen (H₂O₂ and H₂). In Radiolysis of Neutral Aqueous Solutions. n.d.:8.
[15] Pastina B, LaVerne JA. Hydrogen peroxide production in the radiolysis of water with heavy ions. J Phys Chem A 1999;103:1592–7. https://doi.org/10.1021/jp984433o.
[16] Hiroki A, Pimbllot SM, LaVerne JA. Hydrogen peroxide production in the radiolysis of water with high radical scavenger concentrations. J Phys Chem A 2002;106:3932–8. https://doi.org/10.1021/jp026078a.
[17] Wasselin-Trupin V, Baldacchino G, Bourillard S, Hickel B. Hydrogen peroxide yields in water radiolysis by high-energy ion beams at constant LET. Radiat Phys Chem 2002;65:53–61. https://doi.org/10.1016/S0969-806X(01)00083-5.
[18] Baldacchino G, Brun E, Denden I, Bourillard S, Roux R, Khodja H, et al. Importance of radiolytic reactions during high-LET irradiation modalities: LET effect, role of O₂ and radiosensitization by nanoparticles. Cancer Nano 2019;10. https://doi.org/10.1016/j.nano.2019.08.007.
[19] Monteay-Gried P, Acharya MM, Petersson K, Alklinani L, Yakkala C, Allen BD, et al. Long-term neurocognitive benefits of FLASH radiotherapy driven by reduced reactive oxygen species. PNAS 2019;116:10943–51. https://doi.org/10.1073/pnas.1901772116.
Chemical and biological impact of electron-FLASH vs proton-FLASH

[20] Traver D, Winzeler A, Stern HM, Mayhall EA, Langenau DM, Kutok JL, et al. Effects of lethal irradiation in zebrafish and rescue by hematopoietic cell transplantation. Blood 2004;104:1298–305. https://doi.org/10.1182/blood-2004-01-0100.

[21] Ruan J-L, Lee C, Wouters S, Tullis IDC, Verslegers M, Mysara M, et al. Irradiation at ultra-high (FLASH) dose rates reduces acute normal tissue toxicity in the mouse gastrointestinal system. Int J Radiat Oncol*Biol*Phys 2021;111:1250–61. https://doi.org/10.1016/j.ijrobp.2021.08.004.

[22] Velalopoulou A, Karagounis IV, Cramer GM, Kim MM, Skoufos G, Goia D, et al. FLASH proton radiotherapy spares normal epithelial and mesenchymal tissues while preserving sarcoma response. Cancer Res 2021;81:4808–21. https://doi.org/10.1158/0008-5472.CAN-21-1508.

[23] Beyreuther E, Brand M, Hans S, Hideghéty K, Karsch L, Leßmann E, et al. Feasibility of proton FLASH effect tested by zebrafish embryo irradiation. Radiother Oncol 2019;139:46–50. https://doi.org/10.1016/j.radonc.2019.06.024.

[24] Pawelke J, Brand M, Hans S, Hideghéty K, Karsch L, Lessmann E, et al. Electron dose rate and oxygen depletion protect zebrafish embryos from radiation damage. Radiother Oncol 2021;158:7–12. https://doi.org/10.1016/j.radonc.2021.02.003.

[25] Vozenin M-C, Hendry JH, Limoli CL. Biological Benefits of Ultra-high Dose Rate FLASH Radiotherapy: Sleeping Beauty Awoken. Clinical Oncol 2019;31:407–15. https://doi.org/10.1016/j.clon.2019.04.001.