Measure of fuzzy \((i, j)-s\)-compactness

P. Gomathi Sundari\(^1\) and R. Menaga\(^2\)*

Abstract
In this paper, the notion of fuzzy \((i, j)-s\)-compactness degrees is introduced in \(L\)-fuzzy topological spaces by means of the implication operation of \(L\). Characterizations of fuzzy \((i, j)-s\)-compactness degrees in \(L\)-fuzzy topological spaces are obtained, and some properties of fuzzy \((i, j)-s\)-compactness degrees are researched.

Keywords
\(L\)-bitopological spaces, fuzzy \((i, j)-s\)-compactness, Fuzzy \((i, j)-s\)-compactness degree.

AMS Subject Classification
54A40, 54D30, 03E72.

1 Introduction
It is known that compactness and its stronger and weaker forms play very important roles in topology. Based on fuzzy topological spaces introduced by Chang [4], various kinds of fuzzy compactness [4, 7] have been established. However, these concepts of fuzzy compactness rely on the structure of \(L\) and \(L\) is required to be completely distributive. In [10], for a complete De Morgan algebra \(L\), author introduced a new definition of fuzzy compactness in \(L\)-topological spaces using open \(L\)-sets and their inequality. This new definition does not depend on the structure of \(L\). In this paper, the notion of fuzzy \((i, j)-s\)-compactness degrees is introduced in \(L\)-fuzzy topological spaces by means of the implication operation of \(L\). Characterizations of fuzzy \((i, j)-s\)-compactness degrees in \(L\)-fuzzy topological spaces are obtained, and some properties of fuzzy \((i, j)-s\)-compactness degrees are researched.

2 preliminaries
Throughout this paper, \((L, \lor, \land, ^{'}\) is a complete De Morgan algebra, \(X\) a nonempty set and \(L^{X}\) the set of all \(L\)-fuzzy sets (or \(L\)-sets for short) on \(X\). The smallest element and the largest element in \(L\) are denoted by \(0\) and \(1\). The smallest element and the largest element in \(L^{X}\) are denoted by \(0\) and \(1\). An element \(a\) in \(L\) is called a prime element if \(b \land c \leq a\) implies that \(b \leq a\) or \(c \leq a\). An element \(a\) in \(L\) is called a co-prime element if \(a^{'}\) is a prime element [6]. The set of nonunit prime elements in \(L\) is denoted by \(P(L)\) and the set of nonzero co-prime elements in \(L\) by \(M(L)\). The binary relation \(<\) in \(L\) is defined as follows: for \(a, b \in L, a < b\) if and only if for every subset \(D \subseteq L\), the relation \(b \leq \sup D\) always implies the existence of \(d \in D\) with \(a \leq d\) [5]. In a completely distributive De Morgan algebra \(L\), each element \(b\) is a sup of \(\{a \in L|a < b\}\). The set \(s(b) = \{a \in L|a < b\}\) is called the greatest minimal family of \(b\) in the sense of [7, 13]. Now, for \(b \in L\), we define \(s^{'}(b) = s(b) \cap M(L), \alpha(b) = \{a \in L|a^{'} < b^{'}\}\) and \(\alpha^{'}(b) = \alpha(b) \cap P(L)\). In a complete De Morgan frame \(L\), there exists a binary operation \(\rightarrow\). Explicitly the implication is given by \(a \rightarrow b = \forall c \in L.a \land c \leq b\). We interpret \([a \leq b]\) as the degree to which \(a \leq b\), then \([a \leq b] = a \rightarrow b\).

Definition 2.1. [15] An \(L\)-topology on a set \(X\) is a mapping \(\tau: L^{\rightarrow}L\) which satisfies the following conditions:

1. \(\tau(1) = \tau(0) = 1\);
2. for any \(A, B, \tau(A \cap B) \geq \tau(A) \land \tau(B)\);
3. for any \(A_{\lambda} \in L^{X}, \lambda \in \Delta, \tau(\bigvee_{\lambda \in \Delta} A_{\lambda}) \geq \bigwedge_{\lambda \in \Delta} \tau(A_{\lambda})\).

The pair \((X, \tau)\) is called an \(L\)-fuzzy topological space. \(\tau(U)\) is called the degree of openness of \(U\), \(\tau^{'}(U) = \tau(U')\)
is called the degree of closedness of U, where U' is the L-complement of U. For any family $\mathcal{W} \subset L^X$, $\tau(\mathcal{W}) = \bigwedge_{A \in \mathcal{W}} \tau(A)$ is called the degree of openness of U.

For a subfamily $\Phi \subset L^X$, $2(\Phi)$ denotes the set of all finite subfamilies of Φ. For any $a \in L$, α denotes a constant value mapping from X to L, its value is a.

Definition 2.2. An L-bitopological space (or L-bts for short) is an ordered triple (X, τ_1, τ_2), where τ_1 and τ_2 are subfamilies of L^X which contains \emptyset, X and is closed for any suprema and finite infima.

Definition 2.3. [24] An L-fuzzy inclusion on X is a mapping $\tilde{\tau} : L^X \times L^X \rightarrow L$ defined by the equality $\tilde{\tau}(A, B) = \bigwedge_{x \in X} (A'(x) \vee B(x))$.

In this paper, we will write $[A \tilde{\tau} B]$ instead of $\tilde{\tau}(A, B)$.

Definition 2.4. [9] Let (X, τ) be an L-ts, $a \in L \setminus \{1\}$, and $A \in L^X$. A family $\mu \subseteq L^X$ is called

1. an a-shading of A if for any $x \in X$, $A'(x) \vee \bigwedge_{B \in \mu} B(x) \not\subseteq a$.

2. a strong a-shading of A if $\bigwedge_{x \in X} (A'(x) \vee \bigwedge_{B \in \mu} B(x)) \not\subseteq a$.

Definition 2.5. [9] Let (X, τ) be an L-ts, $a \in L \setminus \{0\}$ and $A \in L^X$. A family $\mu \subseteq L^X$ is called

1. an a-remote neighborhood family of A if for any $x \in X$, $(A(x) \wedge \bigwedge_{B \in \mu} B(x)) \not\supseteq a$.

2. a strong a-remote neighborhood family of A if $\bigwedge_{x \in X} (A(x) \wedge \bigwedge_{B \in \mu} B(x)) \not\supseteq a$.

3. a s_a-cover of A if for any $x \in X$, it follows that $a \in s(A'(x) \bigwedge_{B \in \mu} B(x))$.

4. a strong s_a-cover of A if for any $x \in X$, it follows that $a \in s\left(\bigwedge_{x \in X} (A'(x) \bigwedge_{B \in \mu} B(x))\right)$.

5. A Q_a-cover of A if for any $x \in X$, it follows that $\bigwedge_{B \in \mu} B(x) \not\subseteq a$.

Definition 2.6. [11] Let (X, τ_1, τ_2) be an L-bts, $A \in L^X$. Then A is called an (i, j)-semi-open set if $A \leq j \text{Cl}(i \text{Int}(A))$. The complement of an (i, j)-semi-open set is called an (i, j)-semi-closed set. Also, (i, j)-$SO(L^X)$ and (i, j)-$SC(L^X)$ will always denote the family of all (i, j)-semi-open sets and (i, j)-semi-closed sets respectively. Obviously, $A \in (i, j)$-$SO(L^X)$ if and only if $A' \in (i, j)$-$SC(L^X)$.

Definition 2.7. [11] Let (L^X, τ_1, τ_2) be an L-bitopological space, $A, B \in L^X$. Let (i, j)-$\text{Int}(A) = \bigvee \{B \in L^X | B \leq A, B \in (i, j)$-$SO(L^X)\}$, (i, j)-$\text{Cl}(A) = \bigwedge \{B \in L^X | A \leq B, B \in (i, j)$-$SC(L^X)\}$. Then (i, j)-$\text{Int}(A)$ and (i, j)-$\text{Cl}(A)$ are called the (i, j)-semi-interior and (i, j)-semi-closure of A, respectively.

Definition 2.8. Let (X, τ_1, τ_2) be an L-fuzzy bitopological space on X. For any $A \in L^X$, define a mapping $\tau_{(i,j)} : L^X \rightarrow L$ by $\tau_{(i,j)}(A) = \bigwedge_{B \in A} (\tau_i(B)) \wedge \bigwedge_{x \in X} (\tau_j(D'))$. Then $\tau_{(i,j)}$ is called the L-fuzzy (i, j)-semi-open operator induced by τ_1 and τ_2, where $\tau_{(i,j)}(A)$ can be regarded as the degree to which A is (i, j)-semi-open and (i, j)-$\text{Int}(A) = \tau_{(i,j)}(A' \bigwedge \{B \in L^X \mid A \subseteq B, B \in (i, j)$-$SC(L^X)\})$ can be regarded as the degree to which B is (i, j)-semi-closed. For any family $\mathcal{W} \subset L^X$, $\tau_{(i,j)}(\mathcal{W}) = \bigwedge_{A \in \mathcal{W}} \tau_{(i,j)}(A)$ is called the degree of (i, j)-semi-openness of \mathcal{W}.

Definition 2.9. Let (X, τ_1, τ_2) be an L-fuzzy bitopological space on X and let $\tau_{(i,j)}$ be the L-fuzzy (i, j)-semi-open operator induced by τ_1 and τ_2. Then $\tau_{(i,j)}(A) \leq \tau_{(i,j)}(A)$ for any $A \in L^X$.

Definition 2.10. Let (X, τ_1, τ_2) be an L-fuzzy bitopological space. $G \in L^X$ is said to be L-fuzzy (i, j)-s-compact if for every family $\mathcal{W} \subset L^X$, it follows that $\bigwedge_{A \in \mathcal{W}} \tau_{(i,j)}(A) \wedge \bigwedge_{x \in X} (G'(x) \vee \bigwedge_{Y \in \mathcal{W}} A(x)) \leq \bigwedge_{Y \in \mathcal{W}} G'(x) \vee \bigwedge_{X \in \mathcal{W}} A(x)$.

3. Measures of fuzzy (i, j)-s-compactness

Let (X, τ_1, τ_2) be an L-bitopological space and $G \in L^X$. Then G is fuzzy (i, j)-s-compact if and only if for every family \mathcal{W} of (i, j)-semi-open L-sets, it follows that $\bigwedge_{A \in \mathcal{W}} (G'(x) \vee \bigwedge_{x \in X} A(x)) \leq \bigwedge_{Y \in \mathcal{W}} G'(x) \vee \bigwedge_{X \in \mathcal{W}} A(x)$.

So for every family \mathcal{W} of (i, j)-semi-open L-sets, $[G \tilde{\tau} \mathcal{W}] = \bigwedge_{Y \in \mathcal{W}} G'(x) \vee \bigwedge_{X \in \mathcal{W}} A(x) = 1$. We know that an L-topology τ can be looked as a special L-fuzzy topology. Therefore, $A \in L^X$ is an (i, j)-semi-open set if and only if $\tau_{(i,j)}(A) = 1$. Thus G is fuzzy (i, j)-s-compact if and only if for every family $\mathcal{W} \subset L^X$, it follows that $\tau_{(i,j)}(U) \leq [G \tilde{\tau} \mathcal{W}] \leq [G \tilde{\tau} \mathcal{W}] = 1$.

Therefore, we can naturally generalize the notion of fuzzy (i, j)-s-compactness degrees to L-fuzzy bitopological spaces as follows:

Definition 3.1. Let (X, τ_1, τ_2) be an L-fuzzy bitopological space and $G \in L^X$. The fuzzy (i, j)-s-compactness degree $cd_{(i,j)}(G)$ of G is defined as $cd_{(i,j)}(G) = \bigwedge_{\mathcal{W} \subset L^X} (\tau_{(i,j)}(\mathcal{W}) \rightarrow (G \tilde{\tau} \mathcal{W}) \rightarrow G'(x) \vee A(x)) \rightarrow \bigwedge_{X \in \mathcal{W}} A(x)) $.

Theorem 3.2. Let (X, τ_1, τ_2) be an L-fuzzy bitopological space and $G \in L^X$. Then G is fuzzy (i, j)-s-compactness in (X, τ_1, τ_2) if and only if $cd_{(i,j)}(G) = 1$.

Proof. Straightforward.

Theorem 3.3. Let (X, τ_1, τ_2) be an L-fuzzy bitopological space and $G \in L^X$. Then G is fuzzy (i, j)-s-compactness in (X, τ_1, τ_2) if and only if $cd_{(i,j)}(G) = 1$.

1051
Lemma 3.5.\textit{ And only if } \forall(G) \ni \alpha \leq 1. By the definition of } cd(\chi_{\tau_{1}}), \text{ the conclusion is hold.}

Theorem 3.4.\textit{ Let } (X, \tau_{1}, \tau_{2}) \text{ be an } L\text{-fuzzy bitopological space and } G \subseteq L^{X}. \textit{G is } L\text{-fuzzy } (i, j)-s\text{-compactness in } (X, \tau_{1}, \tau_{2}) \text{ if and only if } \forall(G) \ni \alpha \leq 1. By the definition of } cd(\chi_{\tau_{1}}), \text{ the conclusion is hold.}

Lemma 3.5.\textit{ Let } (X, \tau_{1}, \tau_{2}) \text{ be an } L\text{-fuzzy bitopological space and } G \subseteq L^{X}. \textit{Then } cd(\chi_{\tau_{1}})(G) \ni \alpha \leq 1. \textit{By the property (6) of } \rightarrow, \textit{we obtain that } cd(\chi_{\tau_{1}})(G) \ni \alpha \leq 1. \textit{By the definition of } cd(\chi_{\tau_{1}}), \text{ the conclusion is hold.}

Theorem 3.6.\textit{ Let } (X, \tau_{1}, \tau_{2}) \text{ be an } L\text{-fuzzy bitopological space and } G \subseteq L^{X}. \textit{Then } cd(\chi_{\tau_{1}})(G) \ni \alpha \leq 1. \textit{By the property (6) of } \rightarrow, \textit{we obtain that } cd(\chi_{\tau_{1}})(G) \ni \alpha \leq 1. \textit{By the definition of } cd(\chi_{\tau_{1}}), \text{ the conclusion is hold.}

Theorem 3.7.\textit{ Let } (X, \tau_{1}, \tau_{2}) \text{ be an } L\text{-fuzzy bitopological space and } G \subseteq L^{X}. \textit{Then } cd(\chi_{\tau_{1}})(G) \ni \alpha \leq 1. \textit{By the property (6) of } \rightarrow, \textit{we obtain that } cd(\chi_{\tau_{1}})(G) \ni \alpha \leq 1. \textit{By the definition of } cd(\chi_{\tau_{1}}), \text{ the conclusion is hold.}

Theorem 3.8.\textit{ Let } (X, \tau_{1}, \tau_{2}) \text{ be an } L\text{-fuzzy bitopological space and } G \subseteq L^{X}, a \in L\{0\}. \textit{Then the following conditions are equivalent:}

1. \textit{cd}(\chi_{\tau_{1}})(G) \ni \alpha \ni a.

2. \textit{For any } b \in P(L), b \ni a, \textit{each strong } b\text{-shading } \forall(G) \ni \alpha \leq 1. \textit{By the property (6) of } \rightarrow, \textit{we obtain that } cd(\chi_{\tau_{1}})(G) \ni \alpha \leq 1. \textit{By the definition of } cd(\chi_{\tau_{1}}), \text{ the conclusion is hold.}

3. \textit{For any } b \in P(L), b \ni a, \textit{each strong } b\text{-shading } \forall(G) \ni \alpha \leq 1. \textit{By the property (6) of } \rightarrow, \textit{we obtain that } cd(\chi_{\tau_{1}})(G) \ni \alpha \leq 1. \textit{By the definition of } cd(\chi_{\tau_{1}}), \text{ the conclusion is hold.}

4. \textit{For any } b \in P(L), b \ni a, \textit{each strong } b\text{-shading } \forall(G) \ni \alpha \leq 1. \textit{By the property (6) of } \rightarrow, \textit{we obtain that } cd(\chi_{\tau_{1}})(G) \ni \alpha \leq 1. \textit{By the definition of } cd(\chi_{\tau_{1}}), \text{ the conclusion is hold.}
6. For any \(b \in M(L), b \not\leq a \), each strong \(b \)-remote family \(\mathcal{P} \) of \(G \) with \(\tau^s_{(i,j)b}(\mathcal{P}) \not\leq b' \), there exists a finite subfamily \(\mathcal{H} \) of \(\mathcal{P} \) and \(r \in s^*(b) \) such that \(\mathcal{H} \) is an \(r \)-remote family of \(G \).

7. For any \(b \in M(L), b \not\leq a, \) each strong \(b \)-remote family \(\mathcal{P} \) of \(G \) with \(\tau^s_{(i,j)b}(\mathcal{P}) \not\leq b' \), there exists a finite subfamily \(\mathcal{H} \) of \(\mathcal{P} \) and \(r \in s^*(b) \) such that \(\mathcal{H} \) is a strong \(r \)-remote family of \(G \).

8. For any \(b \leq a, r \in s(b), b, r \neq 0 \), each \(Q_b \)-cover \(\mathcal{U} \subset (\tau^s_{(i,j)b})_b \) of \(G \) has a finite subfamily \(\mathcal{V} \) which is a \(Q_r \)-cover of \(G \).

9. For any \(b \leq a, r \in s(b), b, r \neq 0 \), each \(Q_b \)-cover \(\mathcal{U} \subset (\tau^s_{(i,j)b})_b \) of \(G \) has a finite subfamily \(\mathcal{V} \) which is a strong \(s_r \)-cover of \(G \).

10. For any \(b \leq a, r \in s(b), b, r \neq 0 \), each \(Q_b \)-cover \(\mathcal{U} \subset (\tau^s_{(i,j)b})_b \) of \(G \) has a finite subfamily \(\mathcal{V} \) which is a \(s_r \)-cover of \(G \).

11. For any \(b \leq a, r \in s(b), b, r \neq 0 \), each strong \(s_b \)-cover \(\mathcal{U} \subset (\tau^s_{(i,j)b})_b \) of \(G \) has a finite subfamily \(\mathcal{V} \) which is a \(Q_r \)-cover of \(G \).

12. For any \(b \leq a, r \in s(b), b, r \neq 0 \), each strong \(s_b \)-cover \(\mathcal{U} \subset (\tau^s_{(i,j)b})_b \) of \(G \) has a finite subfamily \(\mathcal{V} \) which is a strong \(s_r \)-cover of \(G \).

13. For any \(b \leq a, r \in s(b), b, r \neq 0 \), each strong \(s_b \)-cover \(\mathcal{U} \subset (\tau^s_{(i,j)b})_b \) of \(G \) has a finite subfamily \(\mathcal{V} \) which is a \(s_r \)-cover of \(G \).

In Theorem 3.8 (8)-(13), if we replace \(b, r \neq 0 \) and \(r \in s(b) \) with \(b \in M(L) \) and \(r \in s^*(b) \), then the conclusions are still right.

Theorem 3.9. Let \((X, \tau_1, \tau_2)\) be an \(L \)-fuzzy bitopological space and \(G \in L^X, a \in L \setminus \{0\} \). If for any \(c, d \in L, s(c \land d) = s(c) \land s(d) \). Then the following conditions are equivalent:

1. \(\text{cd}_{(i,j)a}(G) \geq a \).

2. For any \(b \in s(a), b \neq 0 \), each strong \(s_b \)-cover \(\mathcal{U} \) of \(G \) with \(b \in s(\tau^s_{(i,j)b}(\mathcal{U})) \) has a finite subfamily \(\mathcal{V} \) which is a \(Q_b \)-cover of \(G \).

3. For any \(b \in s(a), b \neq 0 \), each strong \(s_b \)-cover \(\mathcal{U} \) of \(G \) with \(b \in s(\tau^s_{(i,j)b}(\mathcal{U})) \) has a finite subfamily \(\mathcal{V} \) which is a \(s_b \)-cover of \(G \).

4. For any \(b \in s(a), b \neq 0 \), each strong \(s_b \)-cover \(\mathcal{U} \) of \(G \) with \(b \in s(\tau^s_{(i,j)b}(\mathcal{U})) \) has a finite subfamily \(\mathcal{V} \) which is a strong \(s_b \)-cover of \(G \).

Theorem 3.10. Let \((X, \tau_1, \tau_2)\) be an \(L \)-fuzzy bitopological space and \(G, H \in L^X \). Then \(\text{cd}_{(i,j)a}(G \land H) = \text{cd}_{(i,j)a}(G) \land \text{cd}_{(i,j)a}(H) \).

Proof. By Theorem 3.7, we have \(\text{cd}_{(i,j)a}(G \land H) = \bigvee \{ a \in L : \tau_{(i,j)a}(\mathcal{U}) \land [(G \land H) \land \mathcal{U}] \leq a \leq \bigwedge \{ (G \land H) \land \mathcal{U} \} \} \).

Theorem 3.11. Let \((X, \tau_1, \tau_2)\) be an \(L \)-fuzzy bitopological space and \(G, H \in L^X \). Then \(\text{cd}_{(i,j)a}(G \land H) = \text{cd}_{(i,j)a}(G) \land \text{cd}_{(i,j)a}(H) \).

Proof. By Theorem 3.7, \(\text{cd}_{(i,j)a}(G \land H) = \bigvee \{ a \in L : \tau_{(i,j)a}(\mathcal{U}) \land [(G \land H) \land \mathcal{U}] \leq a \leq \bigwedge \{ (G \land H) \land \mathcal{U} \} \} \).

Corollary 3.12. Let \((X, \tau_1, \tau_2)\) be an \(L \)-fuzzy bitopological space and \(G \in L^X \). Then \(\text{cd}_{(i,j)a}(G) = \text{cd}_{(i,j)a}(\mathbb{1}) \land \text{cd}_{(i,j)a}(H) \).

References

[1] H. Aygun and S. E. Abbas, On characterization of some covering properties in \(L \)-fuzzy topological spaces in Sostak sense, *Information Sciences*, 165 (2004), 221–241.

[2] H. Aygun and S. E. Abbas, Some good extensions of compactness in Sostak’s \(L \)-fuzzy topology, *Hacett. J. Math. Stat.*, 36(2)(2007), 115–125.

[3] C. L. Chang, Fuzzy topological spaces, *J. Math. Anal. Appl.*, 24(1968), 39–90.

[4] P. Dwinger, Characterizations of the complete homomorphic images of a completely distributive complete lattice I, *Indagationes Mathematicae (Proceedings)*, 85(1982), 403–414.

[5] R. Erturk and M. Demirci, On the compactness in fuzzy topological spaces in Sostak’s sense, *Mat. Vesnik*, 50(1998), 75–81.

[6] A. Es and D. Coker, On several types of degree of fuzzy compactness, *Fuzzy Sets and Systems*, 87 (1997), 349–359.

[7] J. M. Fang, Categories isomorphic to \(L \)-FTOP, *Fuzzy Sets and Systems*, 157(2006), 820–831.

[8] J. M. Fang and Y. L. Yue, Base and subbase in \(L \)-fuzzy topological spaces, *J. Math. Res. Exposition*, 26(2006), 89–95.

[9] T. E. Gantner, R. C. Steinlage and R. H. Warren, Compactness in fuzzy topological spaces, *J. Math. Anal. Appl.*, 62 (1978), 547–562.
Measure of fuzzy \((i, j)\)-\(s\)-compactness

1054/1054

[10] G. Gierz, K. H. Hofmann, K. Keimel, J. D. Lawson, M. W. Mislove and D. S. Scott, A Compendium of Continuous Lattices, Springer Verlag, Berlin, 1980.

[11] P. Gomathi sundari and R. Menaga, On Fuzzy \((i, j)\)-semi-open sets in \(L\)-fuzzy bitopological spaces (submitted).

[12] P. Gomathi sundari and R. Menaga, Generalization of \(L\)-fuzzy bitopological compact spaces (submitted).

[13] U. Hohle, Upper semicontinuous fuzzy sets and applications, J. Math. Anal. Appl., 78 (1980), 659–673.

[14] U. Hohle and S. E. Rodabaugh, Mathematics of Fuzzy Sets: Logic, Topology, and Measure Theory, The Handbooks of Fuzzy Sets Series, Kluwer Academic Publishers, Boston/Dordrecht/London, 3, 1999.

[15] T. Kubiak, On Fuzzy Topologies, Ph.D. Thesis, Adam Mickiewicz, Poznan, Poland, 1985.

[16] H. Y. Li and F. G. Shi, Measures of fuzzy compactness in \(L\)-fuzzy topological spaces, Comput. Math. Appl., 59 (2010), 941–947.

[17] Y. M. Liu, Compactness and Tychono theorem in fuzzy topological spaces, Acta Math. Sinica, 24 (1981), 260–268.

[18] Y. M. Liu and M. K. Luo, Fuzzy Topology, World Scientific Publishing, Singapore, 1997.

[19] R. Lowen, Fuzzy topological spaces and fuzzy compactness, J. Math. Anal. Appl., 56(1976), 621–633.

[20] R. Lowen, A comparison of different compactness notions in fuzzy topological spaces, J.Math. Anal. Appl., 64 (1978), 446–454.

[21] A. A. Ramadan and S. E. Abbas, On \(L\)-smooth compactness, J. Fuzzy Math., 9(1)(2001), 59–73.

[22] F. G. Shi, Measures of compactness in \(L\)-topological spaces, Annals of Fuzzy Mathematics and Informatics, 2(2011), 183–192.

[23] A. P. Sostak, On a fuzzy topological structure, Rend. Circ. Mat. Palermo, 11(2) (1985), 89–103.

[24] A. P. Sostak, Two decades of fuzzy topology: Basic ideas, notions and results, Russian Math. Surveys, 44 (1989), 125–186.

[25] G. J. Wang, Theory of \(L\)-Fuzzy Topological Spaces, Shaanxi Normal University Press, Xi’an, in Chinese, 1988.

[26] M. S. Ying, A new approach to fuzzy topology I, Fuzzy Sets and Systems, 39(3)(1991), 303–321.

[27] Y. L. Yue and J. M. Fang, Generated I-fuzzy topological spaces, Fuzzy Sets and Systems, 154(2005), 103–117.

ISSN(P):2319 – 3786
Malaya Journal of Matematik
ISSN(O):2321 – 5666
