Analisa filter spekler single dan multitemporal data Sentinel 1-A

Novie Indriasari¹, Rahmat Arief¹, Kustiyo¹, Marenda Eko Budiono¹, Haris Suka Dyatmika¹, Mulia Inda Rahayu¹, Agnes Sondita Payani¹, Qonita Amriya¹, Rahmat Maulana¹, Shadiq Ali¹

¹Remote Sensing Technology and Data Center, Indonesia National Institute of Aeronautics and Space (LAPAN) Jalan Lapan No. 70, Pekayon, Pasar Rebo, 13710, Jakarta Timur, Indonesia
email: indriasari.novie8@gmail.com

Abstract. Speckle is noise found in SAR data that will affect the image interpretation process. To reduce the presence of speckle in SAR data, a speckle filtering process is needed. This study will evaluate the multi temporal speckle filtering for Sentinel-1 image, VH polarisation. The data used in this study are 30 SENTINEL-1 images recorded in different seasons in 2018. The methods applied for multi temporal speckle filters are Boxcar, Frost, Lee, Gamma Map and Lee Sigma with window sizes of 5x5 and 7x7. The quality test for speckle filter results will be done qualitatively (by looking at the visual appearance of the filter results) and quantitatively (Mean Square Error (MSE), Peak Signal to Noise Ratio (PSNR) and Normalized Mean (NM). The best qualitative and quantitative multitemporal speckle filter results are obtained from the Frost Filter 5x5 with a minimum of 3 scene data.

1. Introduction
Sentinel-1 is a satellite developed by the European Space Agency (ESA) since 2014. This satellite carries the C-band Shyntetic Aperture Radar instrument. The radar sensor on the satellite emits electromagnetic waves and the waves will be reflected back by objects on the surface of the earth to the sensors. Due to the different roughness of each object, when the object reflects back electromagnetic waves, it can cause elementary scattering mechanism (surface scattering, double-bounce scattering, volume scattering, helix scattering). Wave signals reflected from some elementary scatterers can experience coherent interference, this can cause the appearance of spots (speckle noise) on SAR image Lee and Pottier [1]. The presence of speckle noise causes a decrease in the radiometric quality of SAR images and will cause difficulties in visual interpretation [2-4]. Speckle noise can be minimized by doing the speckle filtering process or commonly called despeckling. The despeckling process is a key factor that aims to capture target characteristics such as edges, textures and shapes by smoothing the speckle noise pattern [2]. SNAP (Sentinel Application Platform) software is an open source software developed by Brockmann Consult Array Systems Computing and C-S. SNAP can be used to process and analyze SAR data. The speckle filter technique in SNAP is available in two option including speckle filter using single data and multitemporal data. The research on speckle filtering method using multitemporal data is still carry out infrequently by users, because of the single data filter method is more preferable [5-8]. The advantage of single speckle filtering is that it does not require a lot of data, whereas in multitemporal speckle filters require more than 1 scene data so that it requires a computer with memory and greater data storage capacity. Nevertheless, multitemporal speckle filtering have advantages in terms of the quality of the data produced. Multitemporal speckle filtering produced data with better spatial detail and significantly reduced speckle noise [9].

Sentinel-1 data can be used for SAR data study continuously and free of charge. Data acquisition that carried out once every 12 days at the same location, leading Sentinel-1 data easy to obtain, so the multi temporal speckle filter process can be easily carried out. If properly stacked SAR data are available, it is recommended for time series data stacks to be preprocessed with multitemporal speckle filter [10].
This paper aims to evaluate several multitemporal SAR speckle filter methods in SNAP software and the results will be evaluated qualitatively and quantitatively.

2. Method

The speckle filter method in the SNAP software consists of scalar (Median) and adaptive techniques (Boxcar, Frost, Gamma Map, Lee, Lee Sigma and Refined Lee). In this study speckle filtering evaluation will be conducted on adaptive filters including: Boxcar, Frost, Gamma Map, Lee and Lee Sigma. Quantitative speckle filter performance test results will be performed using the Mean Square Error (MSE), Peak Signal to Noise Ratio (PSNR) and Normalized Mean (NM) methods.

2.1. Speckle Noise Filter

The different speckle filter approaches that have been considered are following:

2.1.1. Boxcar Filter

Filter Boxcar [11] performs the sample mean over pixel neighbourhood within a sliding window of \((N_w \times N_w)\) pixels. Filtered intensity estimates described by (1) below.

\[
\hat{X}_{i,j} = \langle Y_{i,j} \rangle_{N_w} = \frac{1}{N_w^2} \sum_{p=-N_w/2}^{N_w/2} \sum_{q=-N_w/2}^{N_w/2} Y_{i+p,j+q}
\]

Where:

\(\hat{X}\) = Filtered intensity estimates
\(\langle Y \rangle\) = Sample mean of a speckle intensity
\(N_w\) = Number of sliding window pixels
\(i\) = Pixel row index
\(j\) = Column row index

This mean approach on Boxcar filtering present the best performance over homogeneous area. But in the heterogeneous area, this filter generally make sharp edges blur and point scatters are transform into spread targets.

2.1.2. Frost Filter

Frost filter [12] is made adaptive to smoothing radar images by using locally estimated parameter values that is perform Minimum Mean Square Error (MMSE) estimates inside homogeneous area while preserving the edge structure. This filter algorithm enhances the utility of radar images for target discrimination, geologic analysis, and agricultural assessment. Filter frost provides a better performance in homogeneous area because it can maintain the small spatial extent of the point targets.

2.1.3. Gamma Map Filter

The focus on the MAP filter [13] is to produces a constant pixel estimation value in homogeneous class such as agriculture area while it does not eliminate information on targets, edges, and target points in heterogeneous classes such as forests. Gamma MAP filter assumes that the original pixel value is between the pixel of interest value and the average of moving pixel kernel. In the vegetation area (homogeneous class), the gamma map filter performs better. This approach uses variation coefficient and contrast ratio. This filter is better than Frost Filter [14], but both filters will blur the edges [15].

2.1.4. Lee Filter

Lee filter [16] is developed for additive and multiplicative noise case based on their local mean and variance. The algorithm is a linear weighted sum of the local mean and the image. It applies the Minimum Mean-Square Estimator to obtain the noise filtering. The characteristic of this filter is it’s performed better in low local variances. Otherwise in high contrast area or in high local variance areas, such as it retains the edge information.
2.1.5. Lee Sigma Filter

Lee sigma [17] uses sigma probability of the Gaussian distribution so that it smooths the noise by observe the intensities within a fixed sigma range of the center pixel and then averaging only the neighbourhood pixels. Lee sigma uses two condition that described in (2):

\[
\hat{x}_{i,j} = \begin{cases}
two - \text{sigma average}, & \text{if } M > K
immediate \text{neighbor average}, & \text{if } M \leq K
\end{cases}
\]

Where:

\[x_{i,j} = \text{The intensity or grey level of pixel } i,j \]
\[M = \text{The number of pixels within the intensity range} \]
\[K = \text{The prespecified value} \]

By two condition, Lee Sigma has the characteristics of smoothing the area near the edge without making blur because only pixels on the one side are averaged. In addition, these filters also maintain linear features such as roads of 1 to 3 pixels in width because only the intensity around the edges is done by the average process.

2.2. Quality Assessment of the Filtered Images

In order to evaluate performance of speckle noise filtering method, there are some parameters that can be used as follow [18].

2.2.1. MSE (Mean Square Error)

MSE is the measure of the extent to which the output image differs from the input image. This method is using statistic parameter to detects the difference between the filtered \((I') \) and the original image \((I) \). The formula is written as below.

\[
MSE = \frac{1}{MN} \sum_{x=1}^{M} \sum_{y=1}^{N} (I(x,y) - I'(x,y))^2
\]

Where:

\[M \times N = \text{size of images} \]
\[x, y = \text{row and column location of pixel position in the image} \]

Indicator: If MSE parameter is having low value, it means the filter method is having good result in noise reduction.

2.2.2. PSNR (Peak Signal to Noise Ratio)

The ability of filters to improve image quality is generally assessed using parameters namely Peak Signal to Noise Ratio (PSNR). PSNR is defined from MSE. It measures image quality by using the following equation:

\[
PSNR = 10 \log_{10} \left(\frac{255^2}{MSE} \right)
\]

Where:

Value 255 is referring to gray level for 8 bit of the given image
MSE is referring to Mean Square Error

Indicator: If PSNR parameter is having high value, it means the filter is having better performance to improve image quality.

PSNR is more commonly used than the MSE, because people tend to associate the quality of an image with a certain range of PSNR. Below table is illustrate the relationship between PSNR value with quality image [19].
2.2.3. NM (Normalized Mean)
Normalized Mean is one of parameter to show that a used filter method is still successful in maintaining image information. Practically, this parameter is criterion to evaluate whether the filter give unbiased estimation or not. The formula is written as below:

\[
\frac{M_{\text{filtered}}}{M_{\text{original}}}
\]

Where: \(M_{\text{filtered}} \) and \(M_{\text{original}} \) denote the mean value of pre-filter and post-filter for the same image

Indicator: If the NM value approaches 1, it shows that the estimation is unbiased, which illuminates that the filtering method saves good original image information [20].

2.3. Data Processing
The steps of data processing used in this research is depicted in Figure 1 [21]:

![Figure 1. Data processing flowchart](image)

The multitemporal speckle filter will using the window size of 5x5 and 7x7.

3. Result and discussion
This research is focused on the mainland area with the southern Subang Regency study area. Its coordinates are 6°18'29" - 6°45'07" S and 107°35'42" - 108°0'54" E. The data used is Sentinel 1A, VV and VH polarization Ground Range Data (GRD), recording between January 3 and December 2, 2018 (30 scene data).

For a simple quantitative evaluation of the filters, standard deviations value is used. The results of the single speckle filter study showed that image quality was getting better when the standard deviation value is on the smallest possible value [6, 22, 23]. Standard deviation is used to see how close the pixel value is to the Mean value. If the standard deviation value is close to zero, it means that the image quality is getting better because the pixel value distribution is getting closer to the Mean value.

In this study it appears that the standard deviation value has decreased from when in state of raw data (subset of data 0) to the data that has been processed by the filter speckle (subset of data 1), while the increase in the standard deviation occurs in the subset 2 of data and will slowly decrease after adding data from a subset of 3 data up to a subset of 30 data (Figure 2). Although when using 3 data subsets up to using 30 data subsets the standard deviation value is decreasing, the decrement value was not too significant. In Figure 2, it can be seen that the standard deviation value has fallen monotonously to the 0.02 value.
The incremental standard deviation value turned out to have a visual effect on the multitemporal speckle filtering processed data in the form of appearing objects in sharper images (Figure 3). Raw data (Figure 3a) appears to contain noise, after a speckle filter is performed on a single image that produces blurred images (Figure 3b). After multitemporal speckle filtering 2 data, objects in the image will appear clear but still contain patches (Figure 3c). The appearance of the image becomes clearer and the effect of the speckle is reduced after a speckle filter process is carried out with a stack of more than 2 data (Figure 3d, e, f).

![Figure 2. Standard deviation raw and filter image](image)

The result of the quantitative test by calculating MSE, PSNR dan NM toward 30 Sentinel data with VV, VH polarization is depicted in the Table1 and Table2 below.

![Table 1 and Table2](image)
Table 1. Mean Square Error (MSE) VV Polarization

Filter Method & window size	Number of data											
	1	2	3	4	5	6	7	8	9	10	20	30
Boxcar 5x5	2.812	1.598	1.790	1.898	1.957	2.005	2.035	2.061	2.081	2.097	2.097	2.212
Frost 5x5	2.437	1.417	1.586	1.680	1.732	1.773	1.799	1.822	1.839	1.853	1.853	1.952
Gamma Map 5x5	2.757	1.585	1.775	1.882	1.942	1.989	2.020	2.046	2.066	2.082	2.082	2.195
Lee 5X5	2.774	1.584	1.775	1.882	1.941	1.989	2.019	2.045	2.064	2.080	2.080	2.194
Lee Sigma 5x5	2.530	1.492	1.670	1.768	1.823	1.866	1.894	1.917	1.935	1.950	1.950	2.052
Boxcar 7x7	4.107	2.185	2.458	2.613	2.698	2.768	2.811	2.850	2.880	2.904	2.904	3.079
Frost 7x7	3.299	1.844	2.069	2.195	2.265	2.321	2.357	2.387	2.411	2.430	2.430	2.568
Gamma Map 7x7	3.985	2.163	2.432	2.585	2.670	2.740	2.784	2.823	2.853	2.877	2.877	3.046
Lee 7x7	4.020	2.157	2.427	2.580	2.665	2.733	2.777	2.815	2.845	2.869	2.869	3.040
Lee Sigma 7x7	3.388	1.929	2.165	2.297	2.370	2.428	2.465	2.497	2.522	2.542	2.542	2.684

Table 2. Mean Square Error (MSE) VH Polarization

Filter Method & window size	Number of data											
	1	2	3	4	5	6	7	8	9	10	20	30
Boxcar 5x5	2.560	1.563	1.748	1.832	1.888	1.932	1.960	1.985	2.001	2.015	2.079	2.109
Frost 5x5	2.291	1.412	1.580	1.656	1.707	1.746	1.772	1.794	1.808	1.820	1.878	1.904
Gamma Map 5x5	2.471	1.581	1.715	1.796	1.851	1.893	1.922	1.946	1.962	1.976	2.037	2.066
Lee 5X5	2.497	1.538	1.720	1.801	1.857	1.899	1.927	1.951	1.967	1.981	2.043	2.072
Lee Sigma 5x5	2.394	1.486	1.663	1.743	1.796	1.836	1.863	1.886	1.900	1.913	1.974	2.001
Boxcar 7x7	3.672	2.121	2.380	2.494	2.575	2.637	2.680	2.717	2.742	2.762	2.853	2.901
Frost 7x7	3.096	1.834	2.057	2.156	2.225	2.278	2.313	2.343	2.363	2.380	2.458	2.496
Gamma Map 7x7	3.490	2.070	2.320	2.430	2.508	2.568	2.609	2.645	2.669	2.689	2.777	2.822
Lee 7x7	3.537	2.073	2.324	2.435	2.512	2.573	2.614	2.650	2.674	2.694	2.782	2.827
Lee Sigma 7x7	3.194	1.923	2.154	2.258	2.328	2.382	2.418	2.449	2.470	2.488	2.568	2.608

From the MSE calculation, the VV and VH polarization gave the best results on the Frost Filter 5x5 (Table 1 and Table 2). Small MSE value shows that the filter is able to reducing the noise. Based on the MSE values it shows that the Frost 5x5 filter results are able to maintain objects in the image that has not been filtered. In the multitemporal speckle filter VV and VH polarization, the smallest MSE is when 2 data are stacked.

Likewise, the PSNR values of VV and VH polarization gave the best results on the Frost Filter 5x5 filter (Tables 3 and Table 4). High PSNR shows good filter capabilities in improving image quality. The highest PSNR values in the VV and VH polarizations are found in stack of 2 data.

Table 3. Peak Signal to Noise Ratio (PSNR) VV Polarization

Filter Method & Kernel size	Number of data											
	1	2	3	4	5	6	7	8	9	10	20	30
Boxcar 5x5	35.51	37.966	37.472	37.217	37.084	36.979	36.915	36.859	36.818	36.628	36.628	36.553
Frost 5x5	36.132	38.486	37.996	37.746	37.615	37.513	37.449	37.395	37.354	37.168	37.168	37.096
The best NM values are VV and VH. In addition to calculating the ability of the filter to reduce noise (MSE) and the ability of the filter to maintain image information using NM parameters, from the NM results, the best results on the VV and VH polarization were found in the Frost 5x5 filter (Table 5 and Table 6). The best NM values are VV polarization and VH is in stack of 2 data.

Filter Method & window size	Number of data	1	2	3	4	5	6	7	8	9	10	20	30
Boxcar 5x5	36.026	36.130	36.646	36.444	37.313	37.216	37.152	37.097	37.062	37.032	36.898	36.836	
Frost 5x5	36.208	36.279	37.792	37.588	37.457	37.361	37.298	37.246	37.211	37.182	37.048	36.988	
Gamma Map 5x5	34.351	36.735	36.235	36.030	35.893	35.788	35.719	35.659	35.620	35.588	35.447	35.375	
Lee Sigma 5x5	34.513	36.833	36.338	36.135	35.999	35.896	35.828	35.768	35.729	35.696	35.557	35.486	
Lee Sigma 7x7	34.956	36.161	36.667	36.463	36.330	36.230	36.165	36.109	36.073	36.042	35.903	35.838	

Table 5. Normalized Mean (NM) VV Polarization

In addition to calculating the ability of the filter to reduce noise (MSE) and the ability of the filter to improve the quality of the PSNR image, it is necessary to calculate the ability of the filter to maintain image information using NM parameters. From the NM results, the best results on the VV and VH polarization were found in the Frost 5x5 filter (Table 5 and Table 6). The best NM values are VV polarization and VH is in stack of 2 data.
In this study, the best results of the quantitative test were obtained when 2 data are stacked, but if the result of stacking 2 data is visually viewed (Figure 3c) the image still looks blotchy. Whereas on the stack of 3 data (Figure 3d), the image looks softer, so the best results are obtained with a stack of at least 3 data.

To compare the results of multispectral speckle filtering visually, some samples of paddy fields were taken. From the processing results, the Frost 5x5 filter gives the best results, where it is able to display paddy fields (showed by blue arrow in Figure 5c) more clearly than other methods where the object appears blurry. Frost is the best filter method that produces high complexity and best performance (preserve high contrast edges and other objects) [22].

Table 6. Normalized Mean (NM) VH Polarization

Filter Method & window size	Number of data											
	1	2	3	4	5	6	7	8	9	10	20	30
Boxcar 5x5	1.02515	1.00973	1.01125	1.01217	1.01277	1.01321	1.01338	1.01352	1.01368	1.01374	1.01423	1.01442
Frost 5x5	1.02362	1.00892	1.01028	1.01110	1.01163	1.01203	1.01219	1.01251	1.01246	1.01251	1.01295	1.01311
Gamma Map 5x5	1.02387	1.00926	1.01073	1.01165	1.01227	1.01274	1.01294	1.01311	1.01329	1.01337	1.01383	1.01397
Lee 5x5	1.02454	1.00945	1.01094	1.01186	1.01246	1.01291	1.01309	1.01324	1.01340	1.01347	1.01394	1.01411
Lee Sigma 5x5	1.02439	1.00948	1.01087	1.01172	1.01226	1.01266	1.01283	1.01296	1.01311	1.01317	1.01362	1.01379
Boxcar 7x7	1.03102	1.01320	1.01531	1.01661	1.01745	1.01810	1.01837	1.01858	1.01882	1.01892	1.01964	1.01992
Frost 7x7	1.02820	1.01160	1.01337	1.01447	1.01519	1.01573	1.01597	1.01615	1.01643	1.01704	1.01726	
Gamma Map 7x7	1.02884	1.01243	1.01443	1.01572	1.01659	1.01725	1.01755	1.01781	1.01808	1.01820	1.01886	1.01908
Lee 7x7	1.03005	1.01272	1.01477	1.01605	1.01689	1.01754	1.01781	1.01803	1.01828	1.01838	1.01907	1.01933
Lee Sigma 7x7	1.02777	1.01236	1.01415	1.01526	1.01595	1.01647	1.01671	1.01690	1.01711	1.01720	1.01781	1.01805
Figure 4. Result of the multitemporal speckle filtering with 5x5 kernel: (a) Boxcar, (c) Frost, (e) Gamma Map, (g) Lee, (i) Lee Sigma; Kernel 7x7: (b) Boxcar, (d) Frost, (f) Gamma Map, (h) Lee, (j) Lee Sigma

4. Conclusion
Multitemporal speckle filtering is one of the methods used to improve image quality. From the results of qualitative and quantitative test, it is concluded that the Frost 5x5 filter with a stacking of at least 3 data, is the best multitemporal speckle filtering method.

Based on quantitative tests this method produces the smallest MSE value which shows that the filter results have a minimum difference with the image before filtering so that the filter is able to maintain the object. Frost 5x5 filter also has the highest PSNR value which means it can improve image quality. In addition, its NM values is close to 1, which means it can maintain information in the filtered images. Based on qualitative testing, the Frost 5x5 filter method is able to maintain high contrast edges. Increasing the amount of data to the multitemporal speckle process can improve data quality visually.

5. References
[1] Lee, J.-S. and E. Pottier, Polarimetric radar imaging: from basics to applications. 2009: CRC press.
[2] Lee, J.-S., et al., Speckle filtering of synthetic aperture radar images: A review. Remote sensing reviews, 1994. 8(4): p. 313-340.
[3] K, H.P.A.a.H.R., Analysis of Speckle Noise Reduction in Synthetic Aperture Radar Images. International Journal of Engineering Research & Technology, 2015. 4(01 Januari 2015): p. 508-512.
[4] Mahdavi, S., et al. A new method for speckle reduction in Synthetic Aperture Radar (SAR) images using optimal window size. in IOP Conference Series: Earth and Environmental Science. 2016. IOP Publishing.
[5] Gagnon, L. and A. Jouan. Speckle filtering of SAR images: a comparative study between complex-wavelet-based and standard filters. in Wavelet Applications in Signal and Image Processing V. 1997. International Society for Optics and Photonics.
[6] Mansourpour, M., M. Rajabi, and J. Blais. Effects and performance of speckle noise reduction filters on active radar and SAR images. in Proc. ISPRS. 2006.
[7] Sameen, M.I., et al., A refined classification approach by integrating Landsat Operational Land Imager (OLI) and RADARSAT-2 imagery for land-use and land-cover mapping in a tropical area. International Journal of Remote Sensing, 2016. 37(10): p. 2358-2375.
[8] Medasani, S. and G.U. Reddy. *Analysis and Evaluation of Speckle Filters by Using Polarimetric Synthetic Aperture Radar Data Through Local Statistics*. in 2018 Second International Conference on Electronics, Communication and Aerospace Technology (ICECA). 2018. IEEE.

[9] Yu, J.J. and S. Quegan. *Multi-channel filtering of SAR images*. in Proceedings of the International Geoscience and Remote Sensing Symposium, IGARSS 2000. 2000.

[10] Flores-Anderson, A.L., et al., *The SAR Handbook: Comprehensive Methodologies for Forest Monitoring and Biomass Estimation*. 2019.

[11] Online, E.E., *Speckle Filtering*. 2015.

[12] Frost, V.S., et al., *A model for radar images and its application to adaptive digital filtering of multiplicative noise*. IEEE Transactions on pattern analysis and machine intelligence, 1982(2): p. 157-166.

[13] Lopes, A., R. Touzi, and E. Nezry, *Adaptive speckle filters and scene heterogeneity*. IEEE transactions on Geoscience and Remote Sensing, 1990. 28(6): p. 992-1000.

[14] Shaikh M A, K.P.W., and Sayyad S B, *A Model for Radar Images and Its Application to Adaptive Digital Filtering of Multiplicative Noise*. IEEE Transaction on Pattern Analysis and Machine Intelligence 1982. 28: p. 992-1000.

[15] Qiu, F., et al. *Speckle noise reduction in SAR imagery using a local adaptive median filter, “GIScience and Remote*. in Sensing. 2004. Citeseer.

[16] Lee, J.-S., *Digital image enhancement and noise filtering by use of local statistics*. IEEE Transactions on Pattern Analysis & Machine Intelligence, 1980(2): p. 165-168.

[17] Lee, J.-S., *Digital image smoothing and the sigma filter*. Computer vision, graphics, and image processing, 1983. 24(2): p. 255-269.

[18] Riyadi, S., *Uji Efektivitas Filter Quasi-Gaussian DCT untuk Memperbaiki Kualitas Citra Ekokardiografi*. 2014.

[19] Ali, E.M.A., et al., *A comparative study of noise removal from High Resolution Remote Sensing Images*. International Journal in IT & Engineering, 2015. 3(6): p. 78-91.

[20] Huang, S.-q., et al., *A novel method for speckle noise reduction and ship target detection in SAR images*. Pattern Recognition, 2009. 42(7): p. 1533-1542.

[21] Foumelis, M., *ESA SNAP Sentinel-1 Toolbox – Multi-temporal Analysis of Sentinel-1 SAR Backscattered Intensity*. 2017, French Geological Survey (BRGM).

[22] N, S.a.R., Neha, *A Review on Speckle Noise Techniques for SAR Images International Journal of Advanced Research in Computer Science and Electronics Engineering (IJARCSEE)*, 2013. 2(2, February 2013): p. 243-247.