A note on the causality of singular linear discrete time systems

Christos Tsegkis

1 School of Engineering, The University of Edinburgh, UK

Abstract: In this article we study the causality of non-homogeneous linear singular discrete time systems whose coefficients are square constant matrices. By assuming that the input vector changes only at equally space sampling instants we provide properties for causality between state and inputs and causality between output and inputs.

Keywords: causality, singular, system.

1 Introduction

In this article we shall be concerned with the non-homogeneous singular discrete time system of the form

\[F Y_{k+1} = G Y_k + B V_k \]
\[X_k = C Y_k \] (1)

with known initial conditions

\[Y_{k_0} \] (2)

where \(F, G \in \mathcal{M}(n \times n; \mathbb{F}) \), \(Y_k \in \mathcal{M}(n \times 1; \mathbb{F}) \) (i.e., the algebra of square matrices with elements in the field \(\mathbb{F} \)), \(B \in \mathcal{M}(n \times l; \mathbb{F}) \) and \(C \in \mathcal{M}(m \times n; \mathbb{F}) \). For the sake of simplicity, we set \(\mathcal{M}_n = \mathcal{M}(n \times n; \mathbb{F}) \) and \(\mathcal{M}_{nm} = \mathcal{M}(n \times m; \mathbb{F}) \). We assume that the system (1) is singular, i.e. the matrix \(F \) is singular and that the input vector \(V_k \) changes only at equally space sampling instants. Many authors have studied discrete time systems, see and their applications, see [1-9, 12, 13, 16-18, 20-32]. In this article we study the causality of these systems. The results of this paper can be applied also in systems of fractional nabla difference equations, see [10, 11]. In addition they are very useful for applications in many mathematical models using systems of difference equations existing in the literature, see [14, 15, 29-32].

Definition 1.1. Given \(F, G \in \mathcal{M}_{nm} \) and an indeterminate \(s \in \mathbb{F} \), the matrix pencil \(sF - G \) is called regular when \(m = n \) and \(\det(sF - G) \neq 0 \). In any other case, the pencil will be called singular.

In this article, we consider the case that the pencil is regular. The class of the pencil \(sF - G \) is characterized by a uniquely defined element, known as a complex Weierstrass canonical form, \(sF_w - Q_w \), see [19, 24], specified by the complete set of invariants of \(sF - G \). This is the set of elementary divisors (e.d.). In the case of a regular matrix pencil, we have e.d. of the following type:
• e.d. of the type \((s - a_j)^{p_j}\), are called finite elementary divisors (f.e.d.), where \(a_j\) is a finite eigenvalue of algebraic multiplicity \(p_j\).

• e.d. of the type \(s^q\) are called infinite elementary divisors (i.e.d.), where \(q\) the algebraic multiplicity of the infinite eigenvalues.

We assume that \(\sum_{j=1}^{\nu} p_j = p\) and \(p + q = n\).

Let \(B_1, B_2, \ldots, B_n\) be elements of \(\mathcal{M}_n\). The direct sum of them denoted by \(B_1 \oplus B_2 \oplus \ldots \oplus B_n\) is the blockdiag\([B_1 \ B_2 \ \ldots \ B_n]\). From the regularity of \(sF - G\), there exist nonsingular matrices \(P, Q \in \mathcal{M}_n\) such that

\[
PFQ = F_w = I_p \oplus H_q
\]

and

\[
PGQ = G_w = J_p \oplus I_q
\]

Where \(sF_w - Q_w\) is the complex Weierstrass form of the regular pencil \(sF - G\) and is defined by \(sF_w - Q_w := sI_p - J_p \oplus sH_q - I_q\), where the first normal Jordan type element is uniquely defined by the set of the finite eigenvalues.

\[
(s - a_1)^{p_1}, \ldots, (s - a_{\nu})^{p_{\nu}}
\]

of \(sF - G\). The second block has the form

\[
sI_p - J_p := sI_{p_1} - J_{p_1}(a_1) \oplus \ldots \oplus sI_{p_{\nu}} - J_{p_{\nu}}(a_{\nu})
\]

And also the \(q\) blocks of the third uniquely defined block \(sH_q - I_q\) correspond to the infinite eigenvalues

\[
\hat{s}_q^1, \ldots, \hat{s}_q^\sigma, \quad \sum_{j=1}^{\sigma} q_j = q
\]

of \(sF - G\) and has the form

\[
sH_q - I_q := sH_{q_1} - I_{q_1} \oplus \ldots \oplus sH_{q_{\sigma}} - I_{q_{\sigma}}
\]

Thus, \(H_q\) is a nilpotent element of \(\mathcal{M}_n\) with index \(\hat{q} = \max\{q_j : j = 1, 2, \ldots, \sigma\}\), where

\[
H_{\hat{q}} = 0_{q, q},
\]

and \(J_{p_j}(a_j), H_{q_j}\) are defined as

\[
J_{p_j}(a_j) = \begin{bmatrix}
a_j & 1 & \ldots & 0 & 0 \\
0 & a_j & \ldots & 0 & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \ldots & a_j & 1 \\
0 & 0 & \ldots & 0 & a_j
\end{bmatrix} \quad \in \mathcal{M}_{p_j}, \quad H_{q_j} = \begin{bmatrix}
0 & 1 & \ldots & 0 & 0 \\
0 & 0 & \ldots & 0 & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \ldots & 0 & 1 \\
0 & 0 & \ldots & 0 & 0
\end{bmatrix} \quad \in \mathcal{M}_{q_j}.
\]

For algorithms about the computations of the jordan matrices see [19, 24, 28].
2 The solution of a singular linear discrete time system

In this subsection we obtain formulas for the solutions of LMDEs with regular matrix pencil and we give necessary and sufficient conditions for existence and uniqueness of solutions.

Theorem 2.1. Consider the system (1), (2) and let the \(p \) linear independent (generalized) eigenvectors of the finite eigenvalues of the pencil \(sF-G \) be the columns of a matrix \(Q_p \). Then the solution is unique if and only if

\[
Y_{k_0} \in \text{colspan}Q_p + QD_{k_0}
\]

Moreover the analytic solution is given by

\[
Y_k = Q_p j_p^{k-k_0} Z_{k_0}^p + QD_k
\]

where \(D_k = \left[\sum_{i=0}^{k-1} j_p^{k-i-1} B_p V_i \right] \) and \(PB = \left[\begin{array}{c} B_p \\ B_q \end{array} \right] \), with \(B_p \in M_{pn}, B_q \in M_{qn} \).

Proof. Consider the transformation

\[
Y_k = QZ_k
\]

Substituting the previous expression into (1) we obtain

\[
FQZ_{k+1} = GQZ_k + BV_k.
\]

Whereby, multiplying by \(P \), we arrive at

\[
F_w Z_{k+1} = G_w Z_k + PBV_k.
\]

Moreover, we can write \(Z_k \) as \(Z_k = \left[\begin{array}{c} Z_p^k \\ Z_q^k \end{array} \right] \). Taking into account the above expressions, we arrive easily at two subsystems of (1). The subsystem

\[
Z_{k+1}^p = J_p Z_k^p + B_p V_k
\]

and the subsystem

\[
H_q Z_{k+1}^q = Z_k^q + B_q V_k
\]

The subsystem (5) has the unique solution

\[
Z_k^p = J_p^{k-k_0} Z_{k_0}^p + \sum_{i=0}^{k-1} J_p^{k-i-1} B_p V_i, k \geq k_0,
\]

see [1, 4, 11, 12]). By applying the Zeta transform we get the solution of subsystem (6)

\[
Z_k^q = - \sum_{i=0}^{q_*-1} H_q^i B_q V_{k+i}
\]
Let $Q = \begin{bmatrix} Q_p & Q_q \end{bmatrix}$, where $Q_p \in \mathcal{M}_{np}$, $Q_q \in \mathcal{M}_{nq}$ the matrices with columns the p, q generalized eigenvectors of the finite and infinite eigenvalues respectively. Then we obtain

$$Y_k = QZ_k = [Q_pQ_q] \begin{bmatrix} J^{k-k_0}_p Z^p_{k_0} + \sum_{i=0}^{k-1} J^{k-i-1}_p B_p V_i \\ - \sum_{i=0}^{q-1} H^i_q B_q V_{k+i} \end{bmatrix}$$

$$Y_k = Q_p J^{k-k_0}_p Z^p_{k_0} + Q_p \sum_{i=0}^{k-1} J^{k-i-1}_p B_p V_i - Q_q - \sum_{i=0}^{q-1} H^i_q B_q V_{k+i}.$$

The solution that exists if and only if

$$Y_{k_0} = Q_p Z^p_{k_0} + QD_{k_0}$$

or

$$Y_{k_0} \in \text{colspan} Q_p + QD_{k_0}$$

3 Causality

Generally for systems of type (1) we define the notion of causality, which is properly defined below.

Definition 3.1. The non-homogeneous singular continuous system (1) is called causal, if its state Y_k, for any $k > k_0$ is determined completely by initial state Y_{k_0} and former inputs $V_{k_0}, V_{k_0+1}, ..., V_k$. Otherwise it is called noncausal.

Discrete time normal systems are characterized by the property of causality. Next we will study the causality in a singular system of the form (1).

Causality between state and inputs

Proposition 3.1. In system (1) causality between state and inputs exists if and only if $H^i_q B_q = 0_{q,l}$

Proof. From (8) it is clear that the state Z_k and obviously Y_k for any $k \geq k_0$ is to be determined by former inputs if and only if $H^i_q B_q = 0_{q,l}$ for every $i = 1, 2, ..., q^* - 1$, which is equivalent to the relation $H^i_q B_q = 0_{q,l}$.

Causality between output and inputs

Proposition 3.2. In system (1) causality between output and input exists if and only if

$$CQ_q H^i_q B_q = 0_{m,l}$$ (9)
for every \(i = 1, 2, ..., q^* - 1 \).

Proof. The solution of the state equation of the system (1) is given by Theorem 2.1.

\[
Y_k = Q_p J_p^{k-k_0} Z_{k_0}^p + Q_p \sum_{i=0}^{k-1} J_p^{k-i-1} B_p V_i - Q_q \sum_{i=0}^{q-1} H_q^i B_q V_{k+i}
\]

Setting the expression of \(Y_k \) in the state output relation \(X_k = CY_k \) we take

\[
X_k = CQ_p J_p^{k-k_0} Z_{k_0}^p + CQ_p \sum_{i=0}^{k-1} J_p^{k-i-1} B_p V_i - CQ_q \sum_{i=0}^{q-1} H_q^i B_q V_{k+i}
\] \(\text{(10)} \)

From the above expression it is clear that non causality is due to the existence of the term \(\sum_{i=0}^{q-1} CQ_q H_q^i B_q V_{k+i} \). So the causal relationship between \(X_k \) and \(V_k \) exists if and only if \(CQ_q H_q^i B_q = 0 \) for every \(i = 1, 2, ..., q^* - 1 \).

The relation (9) can be written equivalently as

\[
C \begin{bmatrix} Q_q H_q B_q & \ldots & Q_q H_q^{q^*-1} B_q \end{bmatrix} = 0_{m,q^*n_l}
\] \(\text{(11)} \)

So the following Proposition is obvious.

Proposition 3.3. The system (1) is causal if and only if every column of the matrix \(\begin{bmatrix} Q_q H_q B_q & \ldots & Q_q H_q^{q^*-1} B_q \end{bmatrix} \) lies in the right nullspace of the matrix \(C \).

Remark 3.1. If the system pencil \(sF - G \) has no infinite eigenvalues then the matrix \(Q_q = 0_{n,q} \). So the relation (11) is satisfied and we have causality between inputs and outputs of the system.

Conclusions

Having shown that the solution of the discrete time system of the form (1) exists if the initial conditions (2) belong to the set (3) and is given by the formula (4), we prove that in system (1) causality between state and inputs and causality between output and inputs exists under necessary and sufficient conditions.

Acknowledgments

I would like to express my sincere gratitude to Professor G.I. Kalogeropoulos and Dr. I.K. Dassios for their helpful and fruitful discussions that improved this article.

References

[1] S. L. Campbell; *Singular systems of differential equations*, Pitman, San Francisco, Vol. 1, 1980; Vol. 2, (1982).
[2] S. L. Campbell, C.D. Meyer and N.J. Rose; Applications of the Drazin inverse to linear systems of differential equations with singular constant coefficients, SIAM J. Appl. Math. 31(3) 411-425, (1976).

[3] S. L. Campbell; Comments on 2-D descriptor systems, Automatica (Journal of IFAC), v.27 n.1, p.189-192. (1991).

[4] L. Dai, Singular Control Systems, Lecture Notes in Control and information Sciences Edited by M.Thoma and A.Wyner (1988).

[5] I.K. Dassios, On non-homogeneous linear generalized linear discrete time systems, Circuits systems and signal processing, Volume 31, Number 5, 1699-1712 (2012).

[6] I.K. Dassios, G. Kalogeropoulos, On a non-homogeneous singular linear discrete time system with a singular matrix pencil, Circuits systems and signal processing (2013).

[7] I. Dassios, On solutions and algebraic duality of generalized linear discrete time systems, Discrete Mathematics and Applications, Volume 22, No. 5-6, 665–682 (2012).

[8] I. Dassios, On stability and state feedback stabilization of singular linear matrix difference equations, Advances in difference equations, 2012:75 (2012).

[9] I. Dassios, On robust stability of autonomous singular linear matrix difference equations, Applied Mathematics and Computation, Volume 218, Issue 12, 6912–6920 (2012).

[10] I.K. Dassios, D. Baleanu, On a singular system of fractional nabla difference equations with boundary conditions, Boundary Value Problems, 2013:148 (2013).

[11] I. Dassios, D. Baleanu, G. Kalogeropoulos, On non-homogeneous singular systems of fractional nabla difference equations, Applied Mathematics and Computation, Volume 227, 112–131 (2014).

[12] I. Dassios, G. Kalogeropoulos, On the relation between consistent and non consistent initial conditions of singular discrete time systems, Dynamics of continuous, discrete and impulsive systems Series A: Mathematical Analysis, Volume 20, Number 4a, pp. 447–458 (2013).

[13] I. Dassios, G. Kalogeropoulos, Stability of equilibrium for a reformulated foreign trade model between three countries. Journal of Industrial Engineering International, Springer, Accepted (2014).

[14] I. Dassios, C. Kontzalis, G. Kalogeropoulos, A stability result on a reformulated Samuelson economical model. Proceedings of the 32nd IASTED International Conference, pp. 248-252 (2013).

[15] I. Dassios, G. Kalogeropoulos, On the stability of equilibrium for a reformulated foreign trade model of three countries. Journal of Industrial Engineering International, Springer, (2014) 10:71 DOI 10.1007/s40092-014-0071-9.

[16] I. Dassios, On a boundary value problem of a class of generalized linear discrete time systems, Advances in Difference Equations, Springer, 2011:51 (2011).
[17] I.K. Dassios, Solutions of higher-order homogeneous linear matrix differential equations for consistent and non-consistent initial conditions: regular case, ISRN Mathematical Analysis 2011 (2011) 183795 (14pp.).

[18] I.K. Dassios, Homogeneous linear matrix difference equations of higher order: regular case, Bull. Greek Math. Soc. 56, 57-64 (2009).

[19] R. F. Gantmacher; The theory of matrices I, II, Chelsea, New York, (1959).

[20] E. Grispos, S. Giotopoulos, G. Kalogeropoulos; On generalised linear discrete-time regular delay systems., J. Inst. Math. Comput. Sci., Math. Ser. 13, No.2, 179-187, (2000).

[21] E. Grispos, G. Kalogeropoulos, M. Mitrouli, On generalised linear discrete-time singular delay systems., Lipitakis, Elias A. (ed.), HERCMA 2001. Proceedings of the 5th Hellenic-European conference on computer mathematics and its applications, Athens, Greece, September 20-22, 2001. 2 volumes. Athens: LEA. 484-486 (2002).

[22] E. Grispos, G. Kalogeropoulos, I. Stratis, On generalised linear discrete-time singular delay systems., J. Math. Anal. Appl. 245, No.2, 430-446 (2000).

[23] E. Grispos, Singular generalised autonomous linear differential systems., Bull. Greek Math. Soc. 34, 25-43 (1992).

[24] G. I. Kalogeropoulos; Matrix pencils and linear systems, Ph.D Thesis, City University, London, (1985).

[25] G. Kalogeropoulos, I.G. Stratis; On generalized linear regular delay systems., J. Math. Anal. Appl. 237, No.2, 505-514, (1999).

[26] G. Kalogeropoulos, S. Giotopoulos, E. Grispos, D. Kytagias; A necessary and sufficient condition for complete controllability for symmetric quadratic dynamical systems., J. Inst. Math. Comput. Sci. Math. Ser. 14, no. 3, 271278, (2001).

[27] C. Kontzalis, G. Kalogeropoulos. Controllability and reachability of singular linear discrete time systems. arXiv preprint arXiv:1406.1489 (2014).

[28] M. Mitrouli, G. Kalogeropoulos; A compound matrix algorithm for the computation of the Smith form of a polynomial matrix., Numer. Algorithms 7, no. 2-4, 145–159, (1994).

[29] Ogata, K: Discrete Time Control Systems. Prentice Hall, (1987).

[30] W.J. Rugh; Linear system theory, Prentice Hall International (Uk), London (1996).

[31] J.T. Sandefur; Discrete Dynamical Systems, Academic Press, (1990).

[32] G.W. Steward and J.G. Sun; Matrix Perturbation Theory, Oxford University Press, (1990).