Abstract. Given a surjective morphism $\pi: X \to Y$ between normal varieties satisfying some regularity hypotheses we prove how to recover a Cox ring of the generic fiber X_η of π from the Cox ring of X. We also prove that in some particular cases it is possible to recover the Cox ring of a very general fiber of π.

Introduction

Consider two normal varieties X and Y with finitely generated divisor class group and having only constant invertible global sections and let $\pi: X \to Y$ be a morphism. Under some regularity hypotheses on π it is possible to give relations between the Cox rings of X and Y. For instance, on one direction, in [12] it is proved that if π is surjective and the Cox ring of X is finitely generated (i.e. X is a Mori dream space), then the Cox ring of Y is finitely generated too. In the same vein, in [3] and [9], the case in which π is a good quotient is studied and the Cox ring of Y is described in terms of the one of X. On the other direction, if the Cox ring of Y is known, it is possible to say something about the Cox ring of X only in some particular cases: for instance in [1] the case of a cyclic cover is considered, while in [8] the case of a birational morphism.

In the present paper we consider the problem of determining the Cox ring of the generic fiber X_η of the morphism π from the Cox ring of X and from the vertical classes of π, i.e. classes of divisors whose image in Y is not dense. Observe that X_η is defined over the function field $k := \mathbb{C}(Y)$, which is not algebraically closed so that we follow [6] in order to define a Cox ring for X_η.

In order to describe our results let us denote by $\text{Cl}_\pi(X)$ the subgroup of $\text{Cl}(X)$ generated by classes of vertical divisors, or equivalently the kernel of the surjection $\text{Cl}(X) \to \text{Cl}(X_\eta)$ induced by the pull-back. Let $\mathcal{R}_\pi(X)$ be the localization of $\mathcal{R}(X)$ by the multiplicative subsystem generated by the non-zero homogeneous elements $f \in \mathcal{R}_\eta(X_\eta)$. Then the following holds.

Theorem 1. Let $\pi: X \to Y$ be a proper surjective morphism of normal complex varieties having only constant invertible global sections, such that $\text{Cl}(X)$ is finitely generated and $\text{Cl}(Y)$ is torsion free. Let us suppose that the very general fiber of π is irreducible and that π admits a rational section. Then there exists a Cox ring $\mathcal{R}(X_\eta)$ of the generic fiber X_η such that the canonical morphism $\iota: X_\eta \to X$ induces an isomorphism of $\text{Cl}(X_\eta)$-graded $\mathbb{C}(Y)$-algebras

$$\mathcal{R}_\pi(X)/(1 - u(w) : w \in \text{Cl}_\pi(X)) \cong \mathcal{R}(X_\eta),$$

2010 Mathematics Subject Classification. Primary 14C20, 14Q15; Secondary 14E05, 14N25.

The first author was partially supported by Proyecto FONDECYT Regular N. 1150732. The second author was partially supported by INdAM (GNSAGA). Both authors have been partially supported by project Anillo ACT 1415 PIA Conicyt.
where $u: \mathcal{C}l_\pi(X) \to \mathcal{R}_\pi(X)^*$ is any homomorphism satisfying $u(w) \in \mathcal{R}_\pi(X)^* - w$ for each w.

As a consequence we are able to recover a subring of the Cox ring of a very general fiber of π and in some cases the full Cox ring. More precisely, if we denote by $\bar{X}_\eta = X_\eta \times_k \bar{k}$ the base change of the generic fiber X_η over the algebraic closure \bar{k} of k, we have the following.

Corollary 2. Let $\pi: X \to Y$ satisfy the hypotheses of Theorem 1 and suppose in addition that the geometric divisor class group $\mathcal{C}l(\bar{X}_\eta)$ is isomorphic to $\mathcal{C}l(X_\eta)$. Then the Cox ring of a very general fiber of π is isomorphic to $\mathcal{R}(X_\eta) \otimes_k \bar{k}$ as a graded ring.

We remark that the isomorphism of the corollary above is not an isomorphism of graded algebras, since one of them is defined over \mathbb{C} while the other one over \bar{k}.

The paper is structured as follows. In Section 1 we recall some facts about varieties defined over a perfect field not necessarily closed and we construct a Cox sheaf for such varieties, following [6]. In Section 2 we collect some results about the generic fiber X_η of a proper surjective morphism $\pi: X \to Y$, whose very general fiber is irreducible. Section 3 deals with the relation between sheaves of divisorial algebras on X and X_η and with some lemmas that we are going to use in Section 4 in order to prove Theorem 1. Finally, in the last section we prove Corollary 2 and as an application we study the case of toric varieties.

Acknowledgements. We would like to thank Prof. Ulrich Derenthal for many useful comments.

1. **Preliminaries**

We begin by recalling some known facts about algebraic varieties defined over a perfect field k and by fixing some notation. Given an algebraic variety X defined over k we will denote by \bar{X}_k the base change of X over the algebraic closure \bar{k} of k. From now on we assume that any variety X has only constant invertible global sections, i.e.

\[(1.1) \quad \bar{k}[X]^* = \bar{k}^*,\]

where $\bar{k}[X]$ denotes the ring of global sections of the structure sheaf of X. Let us denote by $G = \text{Gal}(\bar{k}/k)$ the absolute Galois group of k and let

$$\text{WDiv}(X) := \{ D \in \text{WDiv}(X_\bar{k}) : \sigma(D) = D \text{ for any } \sigma \in G \}$$

be the group of G-invariant Weil divisors of $X_\bar{k}$. We will denote by $\text{PDiv}(X)$ the subgroup of $\text{WDiv}(X)$ consisting of principal divisors of the form $\text{div}(f)$ with $f \in k(X)$. By [10, Proposition A.2.2.10 (ii)] the equality $\text{PDiv}(X) = \text{WDiv}(X) \cap \text{PDiv}(X_\bar{k})$ holds (observe that the hypothesis in the proposition asks X to be projective but it actually only makes use of the weaker condition (1.1)). Thus, if we denote by $\text{Cl}(X)$ the quotient group $\text{WDiv}(X)/\text{PDiv}(X)$ we get inclusions

$$\text{Cl}(X) \subseteq \text{Cl}(X_\bar{k})^G \subseteq \text{Cl}(X_\bar{k}).$$

The first inclusion can be strict, for example if X is a conic without k-rational points. Given a divisor $D \in \text{WDiv}(X)$ and a Zariski open subset U of X, the space of sections $\mathcal{O}_{X_\bar{k}}(D)(U_\bar{k})$ is a \bar{k} vector space acted by G, since both U and X are defined over k, and thus it is a G-module. Observe that a G-invariant element...
$f \in \mathcal{O}_{X_k}(D)(U_k)^G$ is a rational function of X_k which is defined over k (see for instance [13, Exercise 1.12]). If we set

$$(1.2)\quad \mathcal{O}_X(D)(U) := \mathcal{O}_{X_k}(D)(U_k)^G,$$

by [10, Proposition A.2.2.10 (i)] we have that the \bar{k} vector space $\mathcal{O}_X(D)(U) \otimes_k \bar{k}$ is isomorphic to $\mathcal{O}_{X_k}(D)(U_k)$.

1.1. **Cox sheaf.** Let us now construct a sheaf \mathcal{R} of \mathcal{O}_X-algebras which turns out to be a *Cox sheaf of type λ* according to [6, Definition 2.2]. Let us suppose that $\text{Cl}(X)$ is finitely generated and let K be a finitely generated subgroup of $\text{WDiv}(X)$ whose image via the class map $\omega: K \to \text{Cl}(X)$ is $\text{Cl}(X)$. Let us consider the K-graded sheaf of \mathcal{O}_X-algebras

$$S = \bigoplus_{D \in K} \mathcal{O}_X(D).$$

Denote by $K^0 \subseteq K$ the kernel of the class map and let $\mathcal{X}: K^0 \to k(X)^*$ be a homomorphism of groups such that $\text{div} \circ \mathcal{X} = \text{id}$ (such a \mathcal{X} exists again by [10, Proposition A.2.2.10 (ii)]). Let \mathcal{I} be the ideal sheaf of S locally generated by sections of the form $1 - \mathcal{X}(D)$, where $D \in K^0$. Denote by \mathcal{R} the presheaf S/\mathcal{I} and by $\pi: S \to \mathcal{R}$ the quotient map.

Proposition 1.1. The presheaf \mathcal{R} defined above is a Cox sheaf of type λ, where $\lambda: K/K^0 \to \text{Cl}(X_k)$ is induced by the class map.

Proof. Consider the sheaf of divisorial algebras

$$\bar{S} = \bigoplus_{D \in K} \mathcal{O}_{X_k}(D)$$

together with the G-invariant character $\mathcal{X}: K^0 \to k(X)^* \subseteq \bar{k}(X)^*$, where $G = \text{Gal}(\bar{k}/k)$ as before and let \mathcal{I} be the ideal sheaf of \bar{S} defined by \mathcal{X}. Let us denote by $\phi: X_k \to X$ the base change map. According to the proof of [6, Proposition 3.13] the quotient sheaf $\mathcal{R} = \bar{S}/\mathcal{I}$ is a G-equivariant Cox sheaf of type λ and the push forward of the sheaf of invariants $\phi_* \mathcal{R}^G$ is a Cox sheaf of X of type λ. Given an open subset $U \subseteq X$ and a divisor $D \in K$ the following holds

$$(\phi_* \mathcal{R}^G_D)(U) = (\mathcal{R}^G_D(U_k))^G$$

$$= (\bar{S}/\mathcal{I})_{|D}(U_k))^G$$

$$\cong (\bar{S}_D(U_k)/\mathcal{I}_D(U_k))^G$$

$$\cong S_D(U)/\mathcal{I}_D(U),$$

where the first isomorphism is by [6, Construction 2.7], and the second one is by (1.2). The above shows that $\mathcal{R} = S/\mathcal{I}$ is a sheaf, being isomorphic to $\phi_* \mathcal{R}^G$.

Lemma 1.2. Let L/k be a Galois extension of fields with Galois group G. Let $V_1 \subseteq V_2$ be k vector spaces and let $\overline{V}_i = V_i \otimes_k L$. Then \overline{V}_1 is G-invariant and the homomorphism

$$j: V_2/V_1 \to (\overline{V}_2/\overline{V}_1)^G \quad v + V_1 \mapsto v + \overline{V}_1$$

is an isomorphism.
Write the generic point of about X general fiber is irreducible. In this section we are going to summarise some results of

By hypothesis there is a T-invariant vector spaces, where T is obtained by completing a basis of V_1 to a basis of V_2. Since $V_1 \cap V_2 = V_1^j = V_1$ the map j is injective. To prove the surjectivity of j let $v + V_1 \in (V_2/V_1)^G$, that is $gv + V_1 = v + V_1$ for any $g \in G$, or equivalently $gv - v \in V_1$.

Write $v = v_1 + t$ with $v_1 \in V_1$ and $t \in T$ and observe that $gv - v \in V_1$ implies $gt - t \in V_1 \cap T = 0$, so that t is G-invariant, that is $t \in V_2$. Thus $v + V_1 = t + V_1 = j(t + V_1)$.

\[\square\]

2. Divisors on the generic fiber

Let X and Y be normal algebraic varieties satisfying (1.1) and let denote by η the generic point of Y. Let $\pi: X \to Y$ be a proper surjective morphism whose very general fiber is irreducible. In this section we are going to summarise some results about X_η.

The morphism $i : X_\eta \to X$ induces a pullback isomorphism $i^*: \mathbb{C}(X) \to k(X_\eta)$, where $k = (i \circ \pi)^*(\mathbb{C}(Y)) \cong \mathbb{C}(Y)$. We remark that the complementary of the smooth locus X_{sm} has codimension at least two in X and the same holds for the generic fiber of the restriction $\pi|_{X_{\text{sm}}}$ in X_η. Therefore i^* induces a surjective homomorphism

\[\text{WDiv}(X) \to \text{WDiv}(X_\eta)\]

that by abuse of notation we denote by the same symbol i^*. Let $\text{WDiv}_\pi(X)$ the kernel of the above map.

Proposition 2.1. The following hold:

(i) the diagram

\[
\begin{array}{ccc}
\mathbb{C}(X) & \xrightarrow{i^*} & k(X_\eta) \\
\text{div} & & \text{div} \\
\text{WDiv}(X) & \xrightarrow{i^*} & \text{WDiv}(X_\eta).
\end{array}
\]

is commutative;

(ii) if $D \in \text{WDiv}(X)$ is effective on an open subset U of X then $i^*(D)$ is effective on the corresponding open subset U_η of X_η;

(iii) the group $\text{WDiv}_\pi(X)$ is freely generated by the prime divisors D which do not dominate Y;

(iv) the map (2.1) induces a surjective homomorphism $\text{Cl}(X) \to \text{Cl}_k(X_\eta)$ whose kernel $\text{Cl}_\pi(X)$ is generated by the classes of divisors in $\text{WDiv}_\pi(X)$;

(v) for any $D \in \text{WDiv}(X)$ the pullback induces a map $i^*: \mathcal{O}_X(D) \to \iota_*\mathcal{O}_{X_\eta}(i^*D)$.

Proof: Recall that the generic fiber X_η is limit of the family of open subsets $\pi^{-1}(V) \subseteq X$, where V varies through the open subsets of Y. Let $V = \text{Spec}(B)$ and $U = \text{Spec}(A)$ be an affine open subset of $\pi^{-1}(V)$. The morphism $\pi|_U : U \to V$ is induced by an injective homomorphism $B \to A$ of \mathbb{C}-algebras. Identifying B with a subalgebra of A we have that the affine open subset $U_\eta \subseteq X_\eta$, obtained by
base change over U, is the spectrum of the localization S^{-1}_BU, whose multiplicative system is $S_B = B \setminus \{0\}$. The pullback

$$\iota^*: \mathcal{O}_U(U) \to \iota_*\mathcal{O}_{\pi_1}(U_\eta)$$

is thus defined on U by the injection $A \to S^{-1}_BA$. This shows that a prime divisor D defined by a prime ideal $\mathfrak{p} \subseteq A$ survives in the generic fiber if and only if $\mathfrak{p} \cap B = 0$, that is D has non-empty intersection with $\pi^{-1}(V)$. This proves (ii) and (iii). In order to prove (i) recall that the order of a rational function $f \in \mathbb{C}(X)$ at D is the length of the $\mathcal{O}_{X,\mathfrak{p}}$-module $\mathcal{O}_{X,\mathfrak{p}}/(f)$, but the local rings $\mathcal{O}_{X,\mathfrak{p}}$ and $\mathcal{O}_{X,\mathfrak{p}}$ are isomorphic if $\mathfrak{p} \cap B = 0$. In order to prove (iv) observe that the morphism

$$\text{Cl}(X) \to \text{Cl}(X_\eta), \quad [D] \mapsto [\iota^*(D)]$$

is well defined by (i). Let us fix a divisor $D \in \text{WDiv}(X)$ such that $[D]$ is in the kernel $\text{Cl}_\eta(X)$ of the above map. By definition this implies that $\iota^*(D)$ is principal on X_η, so that we can write $\iota^*(D) = \text{div}(g)$, with $g \in k(X_\eta)$. Since $\iota^*: \mathbb{C}(X) \to k(X_\eta)$ is an isomorphism we have $g = \iota^*(f)$, with $f \in \mathbb{C}(X)$. We conclude that

$$0 = \iota^*(D) - \text{div}(g) = \iota^*(D - \text{div}(f))$$

and in particular $D - \text{div}(f)$ is a divisor of $\text{WDiv}_\pi(X)$, linearly equivalent to D.

Finally, to prove (v) let $f \in \mathcal{O}_X(D)(U)$ so that the divisor $\text{div}(f) + D$ is effective on U. Then

$$\text{div}(\iota^*(f)) + \iota^*D = \iota^*(\text{div}(f) + D)$$

is effective on U_η by (ii). \qed

In what follows we will refer to the elements of $\text{WDiv}_\pi(X)$ as vertical divisors and similarly to the elements of $\text{Cl}_\pi(X)$ as vertical classes.

3. Pullback of divisorial algebras

We begin by recalling the definition of sheaf of divisorial algebras on a normal variety X. Let K be a finitely generated subgroup of the group of Weil divisors $\text{WDiv}(X)$ of X. The sheaf of divisorial algebras defined by K is

$$S_K := \bigoplus_{D \in K} \mathcal{O}_X(D).$$

Lemma 3.1. Let $\varphi: K_1 \to K_2$ be an isomorphism between two finitely generated subgroups of $\text{WDiv}(X)$ such that $\varphi(D) \sim D$ for any $D \in K_1$. Then there exists an isomorphism of graded algebras

$$\Gamma(X, S_{K_1}) \to \Gamma(X, S_{K_2}).$$

Proof. Let us fix a basis D_1, \ldots, D_s of K_1 and for any $i = 1, \ldots, s$ let us fix an element $f_i \in \mathbb{C}(X)^*$ such that $\text{div}(f_i) = D_i - \varphi(D_i)$. Given a divisor $D = a_1D_1 + \cdots + a_sD_s \in K_1$, multiplication by $f_1^{a_1} \cdots f_s^{a_s}$ induces an isomorphism between the degree-D part of the first algebra and the degree-$\varphi(D)$ part of the second one. We conclude since it is compatible with multiplication of sections. \qed

Lemma 3.2. Let $\pi: X \to Y$ be a proper surjective morphism of normal varieties whose very general fiber is irreducible and such that the pull-back is defined. Given a subgroup Λ of $\text{WDiv}(Y)$ we have an isomorphism of graded algebras

$$\Gamma(Y, S_{\Lambda}) \to \Gamma(X, S_{\pi^*\Lambda}), \quad f \mapsto f \circ \pi.$$
Proof. By applying the Stein factorization [7, §III, Cor. 11.5] to the proper morphism \(\pi: X \to Y \) we get \(\pi = \rho \circ \pi' \) where \(\pi': X \to Y' \) has connected fibers, \(\rho: Y' \to Y \) is finite and \(\pi'_* \mathcal{O}_X = \mathcal{O}_{Y'}. \) Since the very general fiber of \(\pi \) is irreducible and we are in characteristic zero, we deduce that \(\rho \) has degree one. Being \(Y \) normal we conclude that \(\rho \) is an isomorphism and in particular \(\pi_* \mathcal{O}_X = \mathcal{O}_Y. \) Thus, given a divisor \(D \in \text{WDiv}(Y) \), by the projection formula [7, §II, Ex. 5.1] and the fact that the pullback is defined, we get the isomorphism \(\mathcal{O}_Y(D) \simeq \pi_* \pi^* \mathcal{O}_Y(D) \) given by \(f \mapsto f \circ \pi. \) Since this map preserves the multiplication, we get the statement by taking global sections.

Given a subgroup \(\Lambda \) of \(\text{WDiv}(Y) \) and a divisor \(D \in \Lambda \) we denote by \(\Gamma(Y, S_\Lambda)_D \) the degree \(D \) part of the ring of global sections. In what follows, whenever we need to keep trace of the degree of an element in \(\Gamma(Y, S_\Lambda)_D \), we will use the notation \(f_D^D \), where \(f \) is in the Riemann Roch space of \(D \). If we denote by \(\text{Frac}_0(\Gamma(Y, S_\Lambda)) \) the field of fractions of homogeneous sections having the same degree, we have a field homomorphism

\[
\mu_\Lambda : \text{Frac}_0(\Gamma(Y, S_\Lambda)) \to \mathbb{C}(Y), \quad f_D^D / g_D^D \mapsto f/g.
\]

Lemma 3.3. If the class map \(\Lambda \to \text{Cl}(Y) \) is surjective then \(\mu_\Lambda \) is an isomorphism.

Proof. Given \(h \in \mathbb{C}(Y) \) we can write \(\text{div}(h) = A - B \), with \(A \) and \(B \) effective divisors in \(\text{WDiv}(Y) \). Therefore there exists \(D \in \Lambda \) and \(g \in \Gamma(Y, S_\Lambda)_D \) such that \(\text{div}(g) + D = B \). The fraction \(h g D^D / g D^D \) is then an element in \(\text{Frac}_0(\Gamma(Y, S_\Lambda)) \) whose image via \(\mu_\Lambda \) is \(h \). This proves the surjectivity of \(\mu_\Lambda \) and since it is a homomorphism of fields the statement follows.

Let us suppose now that \(X \) and \(Y \) are normal varieties having only constant invertible global sections and let \(\pi: X \to Y \) be a proper surjective morphism whose very general fiber is irreducible and such that the pull-back is defined. Let \(K \) and \(\Lambda \) be a finitely generated subgroups of \(\text{WDiv}(X) \) and \(\text{WDiv}(Y) \) respectively, such that the class maps \(K \to \text{Cl}(X) \) and \(\Lambda \to \text{Cl}(Y) \) are surjective. Let us consider the localisation

\[
\Gamma_\pi(X, S_K) = S_{\pi}^{-1} \Gamma(X, S_K),
\]

where \(S_\pi \) is the multiplicative system consisting of the non-zero homogeneous elements whose degree \(D \in K \) is such that \([D] \in \text{Cl}_\pi(X)\).

Lemma 3.4. The \(\mathbb{C} \)-algebra \(\Gamma_\pi(X, S_K) \) has a structure of \(\mathbb{C}(Y) \)-algebra.

Proof. By Lemma 3.3, \(\mathbb{C}(Y) \) is isomorphic to \(\text{Frac}_0(\Gamma(Y, S_\Lambda)) \) and hence it is enough to give a homomorphism from the latter to \(\Gamma_\pi(X, S_K) \). Observe that by Lemma 3.2 we have that \(\Gamma(Y, S_\Lambda) \) is isomorphic to \(\Gamma(X, S_{\pi^* \Lambda}) \) and by Lemma 3.1 the latter is isomorphic to the ring of sections of the sheaf of divisorial algebras on \(X \), defined by a subgroup of \(K \) isomorphic to \(\pi^* \Lambda \). We conclude by observing that \(\pi^* \) induces a map from \(\text{Frac}_0(\Gamma(X, S_{\pi^* \Lambda})) \) to \(\Gamma_\pi(X, S_K) \), since the class of a pull-back divisor is in \(\text{Cl}_\pi(X) \).

Given the map \(\iota^* : \text{WDiv}(X) \to \text{WDiv}(X_\eta) \), we use the following notation

\[
(3.1) \quad K_\eta = \iota^*(K).
\]

By Proposition 2.1 (v) we have a morphism of sheaves of divisorial algebras \(\iota^* : S_K \to \iota_\eta^* S_{K_\eta} \) and passing to global sections we obtain a homomorphism of rings

\[
(3.2) \quad \iota^* : \Gamma(X, S_K) \to \Gamma(X_\eta, S_{K_\eta}).
\]
Remark 3.5. If the subgroup K does not contain vertical divisors, that is $K \cap \text{WDiv}_\pi(X) = 0$, then the restriction of i^* is an isomorphism between K and $K_\eta := i^*(K)$. In this case the map i^* defined in (3.2) is an injection since i^* induces also an isomorphism between the fields of rational functions.

Proposition 3.6. If the subgroup K does not contain vertical divisors, then the map i^* defined in (3.2) extends to an isomorphism of $\mathbb{C}(Y)$-algebras

$$i^* : \Gamma_\pi(X, S_K) \to \Gamma(X_\eta, S_{K_\eta}), \quad \frac{f}{g} \mapsto i^*(f)/i^*(g).$$

Proof. By Remark 3.5 we already know that the map (3.2) is injective and hence we are now going to prove that the image of an element in the multiplicative system S_π is invertible. Let us fix $g \in S_\pi$, i.e. $g \in \Gamma(X, S_K)_D$, and $[D] \in \text{Cl}_\pi(X)$. Then $i^*(g) \in \Gamma(X_\eta, S_{K_\eta}, \ast(D)$, where $i^*(D)$ is a principal divisor, being its class trivial. Thus

$$i^*(\text{div}(g) + D) = \text{div}(i^*(g)) + i^*(D) = 0,$$

where the first equality is by Lemma 2.1 and the second is due to the fact that the generic fiber X_η is complete, being π proper by hypothesis. In particular $i^*(g)$ is invertible with inverse $i^*(g^{-1}) \in \Gamma(X_\eta, S_{K_\eta}, \ast(-D))$. This shows that the map defined in the statement is an injective homomorphism of $\mathbb{C}(Y)$-algebras.

In order to prove the surjectivity, it suffices to show that any homogeneous $s \in \Gamma(X_\eta, S_{K_\eta}, \ast(D)$, with $D \in K$, is in the image. At the level of rational functions we have $s = i^*(f)$, where $f \in \mathbb{C}(X)$, with

$$i^*(\text{div}(f) + D) = \text{div}(i^*(f)) + i^*(D) = E_\eta,$$

where E_η is effective too and $i^*(E) = E_\eta$. Then the above formula implies that $\text{div}(f) + D = E + V$, where $V \in \text{WDiv}_\pi(X)$. Write $V = A - B$, with A and B effective. Let $B' \in K$ linearly equivalent to B and let $h \in \Gamma(X, S_K)_{B'}$ be such that $\text{div}(h) + B' = B$. By the equality

$$\text{div}(fh) + D + B' = E + A$$

we deduce that $fh \in \Gamma(X, S_K)_{D+B'}$ and thus $\frac{fh}{h} \in \Gamma_\pi(X, S_K)$ is a preimage of g. □

4. Proof of the main theorem

From now on we suppose that the subgroup K of $\text{WDiv}(X)$ does not contain vertical divisors and that $\pi : X \to Y$ is a proper surjection whose very general fiber is irreducible and that admits a rational section $\sigma : Y \to X$. We also assume the divisor class group $\text{Cl}(Y)$ to be torsion-free. If we denote by $\text{PDiv}_\pi(X)$ the subgroup of $\text{WDiv}_\pi(X)$ consisting of the principal vertical divisors of X, we have the following.

Lemma 4.1. The subgroup $\text{PDiv}_\pi(X)$ equals $\pi^* \text{PDiv}(Y)$ and it is primitive in $\text{WDiv}_\pi(X)$.

Proof. We recall, by Section 2, that the field of rational functions of X_η is $k(X_\eta)$ where $k \simeq \mathbb{C}(Y)$ is the image of $\pi^* \mathbb{C}(Y)$ via the isomorphism $i^* : \mathbb{C}(X) \to k(X_\eta)$. The inclusion $\pi^* \text{PDiv}(Y) \subseteq \text{PDiv}_\pi(X)$ is obvious. In order to prove the opposite
inclusion let $D \in \text{PDiv}_\pi(X)$ be a principal vertical divisor and let $f \in \mathbb{C}(X)$ be a rational function such that $\text{div}(f) = D$. By Proposition 2.1 we have

$$\text{div}(\iota^*(f)) = \iota^*(D) = 0,$$

and thus $\iota^*(f)$ must be constant, being X_η complete by the properness hypothesis on π. In particular $\iota^*(f)$ is an element of $\bar{k} \cap k(X_\eta)$, where \bar{k} is the algebraic closure of k. By [11, Example 2.1.12] the following equality holds, so that $\iota^*(f) \in k$. In particular $f \in \pi^*(\mathbb{C}(Y))$ and thus $D = \text{div}(f)$ lies in $\pi^* \text{PDiv}(Y)$, which proves the first statement.

In order to prove the primitivity statement, let us take a divisor $V \in \text{WDiv}_\pi(X)$ such that nV belongs to $\text{PDiv}_\pi(X)$ for some integer $n > 1$. Since $\text{PDiv}_\pi(X) = \pi^* \text{PDiv}(Y)$ we can write $nV = \pi^*D$, with $D \in \text{PDiv}(Y)$ and hence

$$D = (\pi \circ \sigma)^*(D) = \sigma^*(\pi^*D) = \sigma^*(nV) = n\sigma^*(V).$$

In particular $n\sigma^*(V) \in \text{PDiv}(Y)$ and since we are assuming that $\text{Cl}(Y)$ is torsion free we conclude that $\sigma^*(V) \in \text{PDiv}(Y)$. By applying π^* to both sides of the equation above we deduce $nV = n\pi^*(\sigma^*(V))$ so that $V = \pi^*(\sigma^*(V))$ holds since $\text{WDiv}(X)$ is free abelian. In particular we conclude that $V \in \pi^* \text{PDiv}(Y) = \pi^* \text{PDiv}_\pi(X)$, which proves the statement.\[\square\]

Remark 4.2. In order to see why in Lemma 4.1 we need the existence of a section, let S be an Enriques surface. It is well known [4, Chapter VII, §16] that S admits an elliptic fibration $\pi: S \to \mathbb{P}^1$ having two double fibers, say $2F$ and $2F'$, so that π does not admit any rational section. The difference $F - F'$ is a vertical divisor for π which is not principal, while $2(F - F')$ is.

On the other hand, to see why $\text{Cl}(Y)$ must be torsion free, consider the trivial fibration $S \times \mathbb{P}^1 \to S$, where S is still an Enriques surface. In this case the class group $\text{Cl}(S)$ is not torsion free and $\text{PDiv}_\pi(S \times \mathbb{P}^1)$ is not primitive in $\text{WDiv}_\pi(S \times \mathbb{P}^1)$.

Lemma 4.3. Let K_η be as in (3.1) and let us denote by K_η^0 the kernel of the surjection $K_\eta \to \text{Cl}(X_\eta)$. Then the groups $\text{Cl}_\pi(X)$ and $K_\eta^0/\iota^*(K^0)$ are isomorphic and torsion free.
Proof. A diagram chasing in the following commutative diagram with exact rows and columns establishes the claimed isomorphism

\[
\begin{array}{ccccccc}
0 & \to & K^0 & \to & K & \to & \text{Cl}(X) & \to & 0 \\
\downarrow & & \downarrow & & \downarrow & & 0 \\
0 & \to & K^0_\eta & \to & K_\eta & \to & \text{Cl}(X_\eta) & \to & 0 \\
\downarrow & & \downarrow & & \downarrow & & 0 \\
K^0_\eta/\iota^*(K^0) & \to & 0 & \to & 0 & \to & 0 \\
\downarrow & & \downarrow & & \downarrow & & \downarrow \\
0 & \to & 0 & \to & 0 & \to & 0 \\
\end{array}
\]

where we denote by \(\iota^*_K\) the restriction of \(\iota^*\) to \(K\). Let us now prove that \(\iota^*(K_0)\) is primitive in \(K_\eta\). Let us fix \(D' \in K^0_\eta\) such that \(nD'\) is in \(\iota^*(K^0_\eta)\). Since \(\iota^*_K\) is an isomorphism, we can write \(D' = \iota^*_K(D)\). Moreover \(\iota^*_K(nD) = nD' \in \iota^*_K(K^0_\eta)\), so that by the injectivity of \(\iota^*_K\), \(nD\) is in \(K^0_\eta\) and in particular \(nD = \text{div}(f)\), where \(f\) is a rational function on \(X\). On the other hand we have that

\[
\iota^*(D) = \text{div}(\iota^*(g)) = \iota^*(\text{div}(g)),
\]

where the first equality follows from the fact that \(\iota^*(D) \in K^0_\eta\) and \(\iota^*: \mathbb{C}(X) \to k(X_\eta)\) is an isomorphism, while the second equality is a consequence of Proposition 2.1. In particular the divisor \(V = D - \text{div}(g)\) is in the kernel of \(\iota^*\) and hence, again by Proposition 2.1, it is a vertical divisor (observe that \(\text{div}(g)\) does not necessarily lie in \(K\)). Therefore

\[
nV = nD - \text{div}(g^n) = \text{div}(f/g^n)
\]

is a principal vertical divisor, i.e. \(nV \in \text{PDiv}_{\pi}(X)\) and by Lemma 4.1 also \(V\) is in \(\text{PDiv}_{\pi}(X)\). This implies that \(D = \text{div}(g) + V\) is principal and hence \(D \in K^0\). The statement follows.

Lemma 4.4. Given a character \(\chi: K^0 \to \mathbb{C}(X)^*\) such that \(\text{div} \circ \chi = \text{id}\), there exists a character \(\chi_\eta: K^0_\eta \to k(X_\eta)^*\) such that \(\text{div} \circ \chi_\eta = \text{id}\) and the following diagram commutes

\[
\begin{array}{ccc}
K^0 & \xrightarrow{\chi} & \mathbb{C}(X)^* \\
\downarrow^{\iota^*_K} & & \downarrow^{\iota^*_\eta} \\
K^0_\eta & \xrightarrow{\chi_\eta} & k(X_\eta)^*
\end{array}
\]

In particular \(\iota^*: \mathcal{S}_K \to \mathcal{S}_K_\eta\) maps the ideal sheaf \(\mathcal{I}\) to \(\mathcal{I}_\eta\). Moreover the set of such characters \(\chi_\eta\) is in bijection with \(\text{Hom}(\text{Cl}_{\pi}(X), k^*)\).
Proof. Observe that since $i^{\ast}_{K_0}$ is an isomorphism on its image, there exists a unique homomorphism of groups $\varphi: i^{\ast}(K^0) \to k(X_\eta)^*$ which makes the following diagram commutative

\[
\begin{array}{ccc}
K^0 & \xrightarrow{i^\ast} & \mathcal{C}(X)^* \\
\downarrow{i^\ast} & & \downarrow{i^\ast} \\
i^{\ast}(K_0) & \xrightarrow{\varphi} & k(X_\eta)^*
\end{array}
\]

Therefore for any divisor $D \in K^0$ we have

\[
\operatorname{div}(\varphi(i^{\ast}(D))) = \operatorname{div}(i^{\ast}(\mathcal{X}(D))) = i^{\ast}(\operatorname{div}(\mathcal{X}(D))) = i^{\ast}(D),
\]

where the second equality follows from Proposition 2.1. Now by Lemma 4.3 the subgroup $i^{\ast}(K^0)$ is primitive in K_η^0 so that φ can be extended to a homomorphism $\mathcal{X}_\eta: K_\eta^0 \to k(X_\eta)^*$. Such an extension is uniquely determined by the values of \mathcal{X}_η on a basis of K_η^0 and thus can be chosen in such a way that the equality $\operatorname{div} \circ \mathcal{X}_\eta = \operatorname{id}$ holds. Given two such extensions $\mathcal{X}_\eta, \mathcal{X}_\eta'$ the map

\[
K_\eta^0 \to k(X_\eta)^* \quad D \mapsto \mathcal{X}_\eta(D)/\mathcal{X}_\eta'(D)
\]

is a homomorphism which is trivial on $i^{\ast}(K^0)$. Thus the above homomorphism descends to a homomorphism $\gamma: \operatorname{Cl}_\pi(X) \to k(X_\eta)^*$ by Lemma 4.3. Since

\[
\operatorname{div}(\mathcal{X}_\eta(D)/\mathcal{X}_\eta'(D)) = \operatorname{div}(\mathcal{X}_\eta(D)) - \operatorname{div}(\mathcal{X}_\eta'(D)) = D - D = 0
\]

and X_η is complete, we deduce that $\mathcal{X}_\eta(D)/\mathcal{X}_\eta'(D) \in \bar{k}^* \cap k(X_\eta)^* = k^*$, where the last equality is by [11, Example 2.1.12]. In particular $\gamma \in \operatorname{Hom}(\operatorname{Cl}_\pi(X), k^*)$. On the other hand given such a γ, the product $\gamma \mathcal{X}_\eta$ is a character satisfying as in the statement of the lemma.

\square

Proof of Theorem 1. By Proposition 3.6, Lemma 4.4, the characterization of Cox rings in [2, Lemma 1.4.3.5] and [6, Construction 2.7] we have a commutative diagram

\[
\begin{array}{ccccccc}
0 & \xrightarrow{} & \Gamma(X, \mathcal{I}) & \xrightarrow{} & \Gamma(X, \mathcal{S}_K) & \xrightarrow{} & \mathcal{R}(X) & \xrightarrow{} & 0 \\
0 & \xrightarrow{} & \Gamma_\pi(X, \mathcal{I}) & \xrightarrow{} & \Gamma_\pi(X, \mathcal{S}_K) & \xrightarrow{} & \mathcal{R}_\pi(X) & \xrightarrow{} & 0 \\
0 & \xrightarrow{} & \Gamma(X_\eta, \mathcal{I}_\eta) & \xrightarrow{} & \Gamma(X_\eta, \mathcal{S}_{K_\eta}) & \xrightarrow{} & \mathcal{R}(X_\eta) & \xrightarrow{} & 0
\end{array}
\]

with exact rows, where $\Gamma_\pi(X, \mathcal{I})$ is the localization of the ideal $\Gamma(X, \mathcal{I})$. In particular the morphism $i_\pi: \mathcal{R}_\pi(X) \to \mathcal{R}(X_\eta)$ is surjective. Define the homomorphism of groups

\[
u: \operatorname{Cl}_\pi(X) \to \mathcal{R}_\pi(X)^*, \quad [D] \to i^\ast-1(\mathcal{X}_\eta(D)) + \Gamma_\pi(X, \mathcal{I}),
\]
where $D \in K^0_\eta$. By Lemma 4.4 the map u is well defined since if $D' \in K^0_\eta$ is another representative of the same class, we have $D' - D = \iota^\ast(L)$ with $L \in K^0$ so that

$$\iota^\ast \left(\mathcal{X}_\eta(D + \iota^\ast(L)) \right) = \iota^\ast \left(\mathcal{X}_\eta(D) \cdot \mathcal{X}_\eta(\iota^\ast(L)) \right)$$

$$= \iota^\ast \left(\mathcal{X}_\eta(D) \right) \cdot \iota^\ast \left(\mathcal{X}(L) \right)$$

$$\equiv \iota^\ast \left(\mathcal{X}_\eta(D) \right) \mod \Gamma_\pi(X, I).$$

Observe that the homomorphism u satisfies the condition $u(w) \in \mathcal{R}_\pi(X)^{\ast-w}$ for each w. Moreover given any two such homomorphisms u, u', reasoning as in the proof of Lemma 4.4 we see that $u'/u \in \text{Hom}(\mathcal{Cl}_\pi(X), k^\ast)$. Thus u' is defined by a character \mathcal{X}_η' by the same Lemma 4.4. We conclude by describing the kernel of ι_R:

$$\ker(\iota_R) = \{ s + \Gamma_\pi(X, I) : \iota^\ast(s) \in \Gamma(X_\eta, I_\eta) \}$$

$$= \{ \iota^\ast \left(s_\eta \right) + \Gamma_\pi(X, I) : s_\eta \in \Gamma(X_\eta, I_\eta) \}$$

$$= \langle 1 - \iota^\ast \left(\mathcal{X}_\eta(D) \right) + \Gamma_\pi(X, I) : D \in K^0_\eta \rangle$$

$$= \langle 1 - \iota((D)) : [D] \in \mathcal{Cl}(X) \rangle. \qedhere$$

5. Applications

In this section we give two applications of our main theorem to the Cox ring of a very general fiber and to toric fibrations, respectively.

5.1. Very general fibers. Let $\pi: X \to Y$ be a proper surjective morphism of normal varieties whose very general fiber is irreducible. Assume moreover that π admits a rational section, that $\mathcal{Cl}(X)$ is finitely generated, so that the same holds for $\mathcal{Cl}(Y)$, and $\mathcal{Cl}(Y)$ is torsion-free.

Lemma 5.1. Let X_i, with $i \in \{1, 2\}$ be a normal variety defined over algebraically closed field k_i of characteristic 0. Assume that each $\mathcal{Cl}(X_i)$ is finitely generated and that $k_i[X_i]^\ast = k_i^\ast$ holds for any i. If there is an isomorphism of fields $\varphi: k_2 \to k_1$ and an isomorphism of schemes $f: X_1 \to X_2$ such that the following diagram commutes

$\begin{array}{ccc}
X_1 & \xrightarrow{f} & X_2 \\
\downarrow & & \downarrow \\
\text{Spec}(k_1) & \xrightarrow{\varphi^*} & \text{Spec}(k_2)
\end{array}$

then f induces an isomorphism of graded rings $f^*: \mathcal{R}(X_2) \to \mathcal{R}(X_1)$ such that $f^*|_{k_2} = \varphi$.

Proof. Observe that f induces the pullback isomorphism on the fields of rational functions $k_2(X_2) \to k_1(X_1)$. Given a prime divisor D of X_2 the restriction $D \cap X_2^0$ to the smooth locus X_2^0 of X_2 is a Cartier non-trivial divisor, because $X_2 \setminus X_2^0$ has codimension at least two by the normality of X_2. Since f is an isomorphism the pullback $f^*(D \cap X_2^0)$ is contained in the smooth locus X_1^0 of X_1 and it has a unique closure by the normality of X_1. By linearity the pullback map extends to an isomorphism $f^*: \mathcal{WDiv}(X_2) \to \mathcal{WDiv}(X_1)$ of the groups of Weil divisors, which maps principal divisors to principal divisors and thus gives also an isomorphism of divisor class groups $\mathcal{Cl}(X_2) \to \mathcal{Cl}(X_1)$. By the above discussion, given a Weil
divisor D of X_2 and an open subset $U \subseteq X_2$, the pullback induces an isomorphism of Riemann-Roch spaces $\Gamma(U, \mathcal{O}_{X_2}(D)) \rightarrow \Gamma(f^{-1}(U), \mathcal{O}_{X_1}(f^*D))$. Thus, given a finitely generated subgroup $K \subseteq \text{WDiv}(X_2)$ which surjects onto $\text{Cl}(X_2)$, the pullback gives an isomorphism of sheaves of divisorial algebras $\mathcal{S}_K \rightarrow f_*\mathcal{S}_{f^*K}$, which induces an isomorphism of Cox sheaves. By taking global sections we get an isomorphism of sheaves of divisorial algebras.

Proof of Corollary 2. By [14, Lemma 2.1] there exists a subset $W \subseteq Y$ which is a countable intersection of non empty Zariski open subsets such that for each $b \in W$ there is an isomorphism of rings $\mathbb{C} \rightarrow \bar{k}$ which induces an isomorphism of schemes $X_b \rightarrow \bar{X}_b$. Therefore by Lemma 5.1 and Theorem 1 we obtain that the Cox ring of the very general fiber X_b is isomorphic to the Cox ring of the geometric generic fiber \bar{X}_b. The isomorphism between $\text{Cl}(\bar{X}_b)$ and $\text{Cl}(X_b)$ implies that the former can be generated by classes of divisors in $\text{WDiv}(\bar{X}_b)$. We get the statement since by Section 1 the Cox ring $\mathcal{R}(\bar{X}_b)$ is obtained from $\mathcal{R}(X_b)$ by a base change.

5.2. Toric varieties. Let $X = X(\Sigma)$ and $Y = Y(\Sigma')$ be smooth complete toric varieties defined by fans $\Sigma \subseteq N_\mathbb{Q}$ and $\Sigma' \subseteq N'_\mathbb{Q}$ respectively, with lattices of one parameter subgroups N and N' and character groups $M = \text{Hom}(N, \mathbb{Z})$ and $M' = \text{Hom}(N', \mathbb{Z})$. Assume there is a toric proper surjective morphism $\pi: X \rightarrow Y$ with connected fibers, induced by a \mathbb{Z}-linear map $\alpha: N \rightarrow N'$.

The isomorphism between $\text{Cl}(\bar{X}_b)$ and $\text{Cl}(X_b)$ implies that the former can be generated by classes of divisors in $\text{WDiv}(\bar{X}_b)$. We get the statement since by Section 1 the Cox ring $\mathcal{R}(\bar{X}_b)$ is obtained from $\mathcal{R}(X_b)$ by a base change.

Proof. If we denote by T_{N_0} the big torus acting on Y, by [5, §3.3] we have that $\pi^{-1}(T_Y) \cong T_Y \times X_0$, where $X_0 = X(\Sigma_0)$ is the toric variety associated to the fan $\Sigma_0 \subseteq (N_0)_\mathbb{Q}$. In particular each fiber over T_Y has the same defining fan Σ_0, which coincides with that of the generic fiber X_η.

As a consequence of Corollary 2 the very general fiber X_t of π has Cox ring isomorphic to the Cox ring of the generic fiber (as rings but not as \mathbb{C}-algebras). Since X_t is isomorphic to X_0 for any $t \in T_N$, we deduce the isomorphism

$$\mathcal{R}(X_\eta) \cong \mathcal{R}(X_0) \otimes_{\mathbb{C}} \mathbb{C}(Y).$$

Proposition 5.2 provides a description of the fan of X_η and thus also of the Gale dual of its degree matrix. Another way to get the same combinatorial data is to compute the degree matrix of the toric variety X_η and then compute its Gale dual. Let Q be the degree matrix of X and let $r^*: \text{Cl}(X) \rightarrow \text{Cl}(X_0)$ be the quotient map.
Write $Q = (Q'_0 \mid Q_π)$, where $Q_π$ consists of all the columns of Q mapped to zero by $ι^*$ and Q'_0 are the remaining ones. Define the matrix

$$Q_0 := (ι^*(w) : w \text{ is a column of } Q'_0).$$

The matrix Q_0 so defined is the degree matrix of X_0 by Theorem 1 and thus it is also the degree matrix of X_0 by our previous observation. The Gale dual of Q_0 can be determined as follows: compute the Gale P dual of Q and write it as $P = (P'_0 \mid P_π)$, where the column indices of P correspond to those of Q. Then P_0 is the unique solution of the linear equation

$$j \cdot P_0 = P'_0,$$

by Proposition 5.2.

Example 5.3. Let $n \geq 3$ and let $X = \mathbb{F}(a_1, \ldots, a_n)$ be the scroll over $Y = \mathbb{P}^1$ defined by the vector (a_1, \ldots, a_n). The Cox ring of X is $\mathbb{C}[T_1, \ldots, T_{n+2}]$, with grading matrix and Gale dual that can be written in the following way

$$Q = \begin{bmatrix} -a_1 & \cdots & -a_n & 1 & 1 \\ 1 & \cdots & 1 & 0 & 0 \end{bmatrix}, \quad P = \begin{bmatrix} 0 & \cdots & 0 & 1 & -1 \\ 1 & \cdots & 0 & -1 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & \cdots & 1 & -1 & 0 \end{bmatrix},$$

so that $Q_0 = [1 \ 1 \ \ldots \ 1]$ while P_0 is obtained from P'_0 by removing the first row since here $j: \mathbb{Z}^{n-1} \to \mathbb{Z}^n$ is defined by $v \mapsto (0, v)$.

References

[1] Michela Artebani, Jürgen Hausen, and Antonio Laface, *On Cox rings of K3 surfaces*, Compos. Math. 146 (2010), no. 4, 964–998. †

[2] Ivan Arzhantsev, Ulrich Derenthal, Jürgen Hausen, and Antonio Laface, *Cox rings*, Cambridge Studies in Advanced Mathematics, vol. 144, Cambridge University Press, Cambridge, 2015. †10

[3] Hendrik Bäker, *Good quotients of Mori dream spaces*, Proc. Amer. Math. Soc. 139 (2011), no. 9, 3135–3139. †

[4] Wolf P. Barth, Klaus Hulek, Chris A. M. Peters, and Antonius Van de Ven, *Compact complex surfaces*, Second, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics, vol. 4, Springer-Verlag, Berlin, 2004. †8

[5] David A. Cox, John B. Little, and Henry K. Schenck, *Toric varieties*, Graduate Studies in Mathematics, vol. 124, American Mathematical Society, Providence, RI, 2011. †22

[6] Ulrich Derenthal and Marta Pieropan, *Cox rings over nonclosed fields* (2016), available at http://arxiv.org/pdf/1609.0388.pdf. †1, 2, 3, 10

[7] Robin Hartshorne, *Algebraic geometry*, Springer-Verlag, New York, 1977. Graduate Texts in Mathematics, No. 52. †6

[8] Jürgen Hausen, Simon Keicher, and Antonio Laface, *Computing Cox rings*, Math. Comp. 85 (2016), no. 297, 467–502. †1

[9] Jürgen Hausen and Hendrik Süß, *The Cox ring of an algebraic variety with torus action*, Adv. Math. 225 (2010), no. 2, 977–1012. †1

[10] Marc Hindry and Joseph H. Silverman, *Diophantine geometry*, Graduate Texts in Mathematics, vol. 201, Springer-Verlag, New York, 2000. An introduction. †2, 3

[11] Robert Lazarsfeld, *Positivity in algebraic geometry. I*, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series]. A Series of Modern Surveys in Mathematics, vol. 48, Springer-Verlag, Berlin, 2004. Classical setting: line bundles and linear series. †8, 10

[12] Shin-Osuke Okawa, *On images of Mori dream spaces*, Math. Ann. 364 (2016), no. 3-4, 1315–1342. †1
[13] Joseph H. Silverman, *The arithmetic of elliptic curves*, Second, Graduate Texts in Mathematics, vol. 106, Springer, Dordrecht, 2009. ↑3

[14] Charles Vial, *Algebraic cycles and fibrations*, Doc. Math. 18 (2013), 1521–1553. ↑12

Departamento de Matemática, Universidad de Concepción, Casilla 160-C, Concepción, Chile

E-mail address: alaface@udec.cl

Dipartimento di Matematica e Informatica, Università degli studi di Palermo, Via Archirafi 34, 90123 Palermo, Italy

E-mail address: luca.ugaglia@unipa.it