SUPPLEMENTARY MATERIAL

Studies on chemical constituents and anti-hepatoma effects of essential oil from *Annona squamosa* L. pericarps

Ya-yun Chen, Chen-xiao Peng, Yan Hu, Chen Bu, Shu-chen Guo, Xiang Li*, Yong Chen*, Jian-wei Chen

*Corresponding author:
Xiang Li, Tel: +8613913925677, Email: lixiang_8182@163.com.
Yong Chen, Tel: +8615251825386, Email: achenyongmail@163.com.

Abstract

Annona squamosa L. fruit played great anti neoplastic activities. Its pericarps were discarded as waste. In this study, essential oil extracted from *A. squamosa* L. pericarps (APEO) was obtained by hydrodistillation and analyzed by GC–MS. Furthermore, the anti hepatoma activities and the underlying mechanism of the oil were firstly described.

A total of 59 compounds were identified by GC-MS. The major compound in the oil was (-)-spathulenol (32.51%). The APEO demonstrated anti hepatoma activity against SMMC-7721 hepatoma cell line with IC₅₀ lower than 55 𝜇g/mL. At the same time, nucleus shrinkage or broken were found in cells incubated with APEO through fluorescent microscope. In addition, pro-apoptosis and cell cycle arrest effects were confirmed by flow cytometry analysis.

Keywords: *Annona squamosa* L.; essential oil; GC-MS; apoptosis; cell cycle
Supporting information

Table S1. Chemical compounds of the essential oil of *Annona squamosa* L. pericarps (APEO)

Figure S1. Total ion chromatogram (GC-MS TIC) from APEO

Figure S2. Inhibition of APEO on proliferation of SMMC-7721 cells. APEO inhibited the proliferation of 7721 cells in a concentration-dependent manner.

Figure S3. Apoptosis was investigated by flow cytometry. D was the control group. E was the low concentration group. F was the high concentration group.

Figure S4. Cell phase distribution was analyzed by flow cytometry. H was the control group. I was the low concentration group. J was the high concentration group. K was a cell phase distribution histogram of different groups.

Experimental section

1.1 Supplies and chemicals

Bovine calf serum was purchased from Zhejiang Tianhang Biotechnology (Hangzhou, China). Hoechst Staining Kit was purchased from Beyotime Biotechnology (Shanghai, China). Dimethylsulfoxide was purchased from Cell Signaling Technology (Beverly, MA, USA). DMEM medium, MTT, PI staining kit and AnnexinV-FITC/PI apoptosis detection kit were purchased from KeyGen Biotechnology (Nanjing, China).

1.2 Plant materials and APEO isolation

The fruit of *A. squamosa* L. was collected from lincang, Yunnan Province in October 2015 and identified by Prof. Jian-wei Chen (Nanjing University of Chinese Medicine, Jiangsu, China). The pericarps were dried in the shade of the nature A voucher specimen (No. 20151022zh) was deposited in the Pharmaceutical College.
Dried pericarps of *A. squamosa* L. were powdered and subjected to hydrodistillation for 4 h using a modified clevenger type apparatus (Liu et al., 2016). The oil was collected, dried over anhydrous sodium sulphate and stored at 4 °C in the dark until analysis.

1.3 Gas chromatography–mass spectrometry (GC–MS) analysis

Qualitative analyzes of APEO were carried out using an Agilent 6890-5975 GC-MS with an Agilent HP-5ms capillary column. Helium was the carrier gas at 1.0 mL/min flow rate. The oven temperature program was at 60 °C for 4 minutes, at a rate of 5 °C/min to 170 °C, at 170 °C for 4 min, then at 5 °C/min to 250 °C, and at 250 °C for 5 min. The volume injected was 1 μL with a 1:20 split ratio.

1.4 Cell culture

The human hepatoma cell line SMMC-7721 were purchased from KeyGen Biotechnology (Nanjing, China) and cultured in DMEM medium supplemented with 10 % bovine calf serum, 100 μg/mL streptomycin and 100 μg/mL penicillin at 37 °C in a wetish atmosphere of 5 % CO₂. Cells were passaged every 2-3 days.

1.5 Cell viability

To evaluate the viability of SMMC-7721 hepatoma cells, cells were seeded in 96-well flat-bottomed plates both at the density of 8×10³ cell per well and incubated with various concentrations (200 μL) of the APEO for 48 h. Then 20 μL MTT solution (5 mg/ml) was added to each well, and the cells were further incubated for 4 h. After removing the medium, 150 μL of dimethylsulfoxide was added to solubilize the MTT formazan salt. The absorbance of solution was measured on a microplate reader (Spectra MAX190, Molecular Devices) at 490 nm. According to the absorbances of control wells and medicated wells, the value of IC₅₀ was calculated by SPSS. Cell viability assay was repeated 3 times at least.

1.6 Apoptosis analysis

To investigate the mechanism of APEO involved in the anti-proliferative activity on SMMC-7721 cells, the above hepatoma cells was seeded onto 6-wells plate at a density of 2×10⁵ cells per well. 12h later, cells were treated with APEO at two different concentrations (20 and 40 μg/mL) for 24 h. Then the cells were gathered
respectively and washed with PBS.

For apoptosis analysis, some of the cells were observed by fluorescent microscope (Axio Imager A2, Carl Zeiss Jena, Germany), after dyed with Hoechst Staining Kit. Some were dyed with Annexin V/PI and analyzed using a flow cytometer (Accuri C6, Becton & Dickson, San Jose, CA, USA).

1.7 Cell cycle analysis

For analysis on the cell cycle distribution, the washed cells were fixed in cold 70% ethanol at -20 °C and attached with PI according to the manufacturer’s recommendation.

Table S1. Chemical compounds of the essential oil of *A. squamosa* L. pericarps(APEO)

Retention time	Compounds	Molecular formula	Molecular weight	Peak area %
9.993	4,4-dimethyl-Tetracyclo[5.2.1.0(2,6).0(3,5)]decane	C_{12}H_{18}	162	0.30
10.611	Nonanal	C_{9}H_{18}O	142	0.28
11.275	2,2,3-trimethyl-3-Cyclopentene-1-acetaldehyde	C_{10}H_{16}O	152	0.31
11.675	1S-(1α,3α,5α)-6,6-dimethyl-2-methylene-Bicyclo[3.1.1]heptan-3-ol	C_{10}H_{16}O	152	1.02
11.790	1S-1,7,7-trimethyl-Bicyclo[2.2.1]heptan-2-one	C_{10}H_{16}O	152	0.76
11.898	1S-(1α,2β,5α)-4,6,6-trimethyl-Bicyclo[3.1.1]hept-3-en-2-ol	C_{10}H_{16}O	152	0.69
12.007	3-Methylenecyclohexene	C_{7}H_{10}	94	0.44
12.373	6,6-dimethyl-2-methylene-Bicyclo[2.2.1]hexa-2,5-diene	C_{10}H_{14}O	150	0.73
MW	Name	Formula	MW	Density
-----	--	---------	-----	---------
12.505	(1S-endo)-1,7,7-trimethyl-Bicyclo[2.2.1]heptan-2-ol	C_{10}H_{16}O	154	3.17
12.837	(R)-4-methyl-1-(1-methylethyl)-3-Cyclohexyl-1-ol	C_{10}H_{16}O	154	0.44
13.363	6,6-dimethyl-Bicyclo[3.1.1]hept-2-ene-2-carboxaldehyde	C_{10}H_{16}O	150	1.11
13.787	4,6,6-trimethyl-Bicyclo[3.1.1]hept-3-en-2-one	C_{10}H_{16}O	150	0.56
15.858	1,7,7-trimethyl-bicyclo[2.2.1]hept-2-yl-ester	C_{12}H_{20}O_{2}	196	3.70
16.270	(-)-trans-Pinocarvyl acetate	C_{12}H_{16}O	194	0.24
17.541	α-Cubebene	C_{15}H_{24}	204	0.55
18.244	Copaene	C_{15}H_{24}	204	0.46
19.028	4,4,11,11-tetramethyl-7-Tetracyclo[6.2.1.0.0(3.8)(3.9)]undecanol	C_{15}H_{24}O	220	0.22
19.366	Caryophyllene	C_{15}H_{24}	204	0.23
19.864	[1aR-(1α,4aa,7α,7αβ,7βα...)]-decahydro-1,2,3,5,6,7,8,8a-octahydro][1S-(1α,7α,8αa)-1,2,3,5,6,7,8,8a-octahydroadene	C_{15}H_{24}O	220	0.32
20.241	Caryophyllene oxide	C_{15}H_{24}O	220	0.32
20.808	o-1,8a-dimethyl-7-(1-methylethenyl)-Naphthalene	C_{15}H_{24}	204	1.07
21.122	2-methyl-9-(prop-1-en-3-ol-2-yI)-Bicyclo[4.4.0]decene-4-ol	C_{15}H_{24}O_{2}	236	0.50
No.	Molecular Formula	Molecular Weight	Specific Rotation	
-----	------------------	------------------	------------------	
21.277	(S)-6-ethenyl-6-methyl-1-(1-methylethyl)-3-(1-methylethylidene)-Cyclohexene	C₁₃H₂₄	204	0.53
21.786	7-methyl-4-methylene-1-(1-methylethyl)-Naphthalene	C₁₃H₂₄	204	0.74
21.952	(1S-cis)-1,2,3,5,6,8a-hexahydro-4,7-dimethyl-1-(1-methylethyl)-Naphthalene	C₁₃H₂₄	204	1.55
22.450	5,8-dimethyl-Quinoline	C₁₁H₁₁N	157	0.69
22.736	trans-Longipinocarveol	C₁₅H₂₅O	220	1.73
22.999	Aromadendrene oxide-(2)	C₁₅H₂₄O	220	0.85
23.343	(-)-Spathulenol	C₁₅H₂₅O	220	32.51
23.646	Aristolen epoxide	C₁₂H₂₄O	220	1.68
23.880	Isoaromadendrene epoxide	C₁₅H₂₄O	220	0.54
24.086	2-methylene-6,8,8-trimethyl-Tricyclo[5.2.2.0₁^6]undecan-3-ol	C₁₆H₂₅O	220	2.22
24.424	1,2,3,4,4a,7-hexahydro-1,6-dimethyl-4-(1-methylethyl)-Naphthalene	C₁₃H₂₄	204	0.67
24.733	2-isopropyl-5-methyl-9-methylene-Bicyclo[4.4.0]dec-1-ene	C₁₃H₂₄	204	1.45
25.110	(6,8-Bis-hydroxymethyl-4-isopropyl-7-methylenepoly(3.2.1)oct-1-y)-methanol	C₁₅H₂₆O₃	254	3.20
25.568	Murolan-3,9(11)-diene-10-peroxy	C₁₅H₂₆O₂	236	2.67
25.774	1,3,4,6,7,8a-hexahydro-1,1,5,5-tetramethyl-1,2H-2,4a-Methanonapthalen-8(5H)-one,	C₁₅H₂₆O	220	1.28
26.141	(1,2,3,4,5,6,7,8-octahydro-3,8,8-trimethylnaphth-2-yl)methyl ester	C₁₆H₃₆O₂	250	0.44
Number	Name	Formula	MW	LogP
--------	--	---------	-----	-------
27.583	2-[4-methyl-6-(2,6,6-trimethylcyclohex-1-enyl)hexa-1,3,5-trienyl]cyclohex-1-en-1-carboxaldehyde	C_{23}H_{35}O	324	0.61
27.783	1-(2,4-dichlorophenyl)-Ethanone	C_{8}H_{6}Cl_{2}O	189	0.27
28.687	Aromadendrene oxide-(1)	C_{15}H_{22}O	220	0.36
29.402	9-Octadecyne	C_{19}H_{34}	250	1.86
30.878	3,7,11,15-Tetramethyl-2-hexadecen-1-ol	C_{20}H_{30}O	296	1.04
31.725	(5α)-Pregn-3-one	C_{19}H_{34}O	302	0.44
33.402	6-Chrysenamine	C_{19}H_{36}N	243	0.65
33.768	Androst-2,16-diene	C_{19}H_{28}	256	0.66
33.888	13,13-dimethyl-8β-Podocarpan-7α-ol	C_{19}H_{32}O	278	0.68
34.357	n-Hexadecanoic acid	C_{16}H_{32}O_{2}	256	9.41
	[3R-(3α,4αβ,6αα,10αβ,10βα)]-3-ethenylido decahydro-3,4α,7,7,10α-pentamethyl-1H-Naphtho[2,1-b]pyran	C_{20}H_{34}O	290	0.62
35.416	Kaur-16-ene	C_{20}H_{32}	272	0.35
36.566	7-methoxy-6-(3-methyl-2-butenyl)-2H-1-Benzopyran-2-one	C_{15}H_{16}O_{3}	244	0.69
37.567	14-Oxatricyclo[9,2,1,0(1,10)]tetradecane, 2,6,6,10,11-pentamethyl	C_{18}H_{36}O	262	1.03
38.019	(3β,5α,11β)-Androstane-3,11-diol	C_{19}H_{32}O_{2}	292	1.18
38.683	Oxymetazoline	C_{16}H_{24}N_{2}O	260	1.71
39.099	Androst-5-ene-3β-ol	C_{19}H_{28}O	274	1.21
39.576	(+/-)-7,7-dimethyl-2-oxo-Bicyclo[2.2.1]heptane-1-methanesulfonic acid	C_{10}H_{16}O_{4}S	232	0.92
40.594	2,4-Dichloro-5-nitrobenzotrifluoride	C_{7}H_{3}Cl_{2}F_{3}NO_{2}	260	2.31
40.995 7-Tetradecyne $\text{C}_{14}\text{H}_{26}$ 194 1.02

(1α,4α/5α,8αα)-decahydro-5-(hydroxymethyl)-5,8αα-dimethyl-ć,2-bis(methylene)-1-

Naphthalenepentanol

43.713 $\text{C}_{20}\text{H}_{34}\text{O}_{2}$ 306 2.90

Peak area %: relative percentage (peak area relative to the total peak area)

Figure S1. Total ion chromatogram (GC-MS TIC) from APEO

Figure S2. Inhibition of APEO on proliferation of SMMC-7721 cells. APEO
inhibited the proliferation of 7721 cells in a concentration-dependent manner.

Figure S3. Apoptosis was investigated by flow cytometry. D was the control group. E was the low concentration group. F was the high concentration group.

Figure S4. Cell phase distribution was analyzed by flow cytometry. H was the control group. I was the low concentration group. J was the high concentration group. K was a cell phase distribution histogram of different groups.
References
Liu, T. T., Chao, L. K., Peng, C. W., Yang, T. S., 2016. Effects of processing methods on composition and functionality of volatile components isolated from immature fruits of atemoya. FOOD CHEM 202, 176-183.