Case Report

Para-articular extraskeletal chondroma mimicking first metatarsophalangeal synovitis

Dimosthenis Alaseirlis MD, PhD, Ioannis Tsifountoudis MD, PhD*, George Konstantinidis MD, PhD, Dimosthenis Miliaras MD, PhD, Nikos Malliaropoulos MD, Dipl (SEM), MSc (SEM), PhD, Panagiotis Givissis MD, PhD

a “Euromedica” General Clinic, Thessaloniki, Greece
b Department of Radiology, 424 General Military Hospital, Ring Road N. Efkarpias 56403, Thessaloniki, Greece
c Sports Medicine and Arthroscopy, Dalhousie University Medical School/QEII Health Sciences Center, Halifax Infirmary, Halifax, Canada
d Laboratory of Histology and Embryology, Faculty of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
e Istotipos Ltd., Histopathology Lab, Thessaloniki, Greece
f Sports and Exercise Medicine Clinic, Thessaloniki, Greece
g Centre for Sports & Exercise Medicine, Queen Mary, University of London, London, UK
h First Orthopaedic Department, Aristotle University of Thessaloniki, “G. Papanikolaou” Hospital, Thessaloniki, Greece

ARTICLE INFO

Article history:
Received 15 February 2017
Received in revised form
14 March 2017
Accepted 25 March 2017
Available online 29 April 2017

Keywords:
Extraskeletal chondroma
Metatarsophalangeal joint
Para-articular chondroma

ABSTRACT

Extraskeletal chondroma is a rare benign tumor with symptoms that could mimic other common musculoskeletal pathological entities. We present a rare case of an extraskeletal para-articular chondroma of the first metatarsophalangeal joint which was initially mis-interpreted as joint synovitis, based on magnetic resonance imaging findings. Histology revealed benign chondroma of the foot, which was finally treated with radical surgical excision. More than 2 years postoperatively, no recurrence of the tumor has been encountered.

© 2017 the Authors. Published by Elsevier Inc. under copyright license from the University of Washington. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Introduction

Only a few cases of chondromas with rare extraskeletal location have been reported in the literature, including synovial chondromatosis, para-articular and soft-tissue chondromas [1–3]. The extraskeletal chondromas (ESCs) predominantly occur in the hands and feet of middle-aged adults with equal sex predilection [4]. The principal histological characteristic is the multinodular proliferation of cartilaginous cells, but they may also vary significantly in terms of focal atypia and presence of binucleated chondrocytes [5]. Although recurrence after surgical removal can be observed,
ESCs never metastasize [5]. In this article, a rare case of a para-articular ESC at the first metatarsophalangeal joint (MTPJ) of the foot is depicted.

Case report

A 34-year-old male presented with persistent pain and mild effusion of the first MTPJ of his left foot gradually increasing in size during the previous 1 year. The patient did not seek any medical assistance until he has started having difficulties getting into shoes for the last 2 months. He denied a history of foot trauma, gout, or other inflammatory diseases. Clinically, a solid mobile palpable soft tissue mass around the first MTPJ was evident. No pathological findings were detected at his blood tests. X-rays of the foot were normal without bony erosions or calcifications. Clinically, a solid mobile palpable soft tissue mass around the first MTPJ was evident. No pathological findings were detected at his blood tests. X-rays of the foot were normal without bony erosions or calcifications. Based on the clinical findings, the diagnosis of joint synovitis and/or possible extensor hallucis longus tenosynovitis was considered. Nonsteroidal anti-inflammatory drugs medication was administered immediately and he was recommended to restrict any vigorous activities. Physiotherapy regimen was added after a week, as his symptoms persisted. There was a slight improvement in his pain, which lasted only 2 weeks. After this period, the pain reoccurred with the initial intensity. There was no difference regarding the joint effusion all this time. As a 3-month nonoperative treatment failed to achieve symptoms relief, a foot magnetic resonance imaging (MRI) was prescribed. MRI depicted a diffuse periarticular mass, measuring 4 cm in length, with a lobulated contour surrounding the first MTPJ and extending into the soft tissues of the dorsal and plantar aspect of the metatarsal head and neck. The lesion demonstrated homogeneous intermediate (similar to muscle) signal intensity on T1-weighted images (Fig. 1), intermediate signal intensity (higher than muscle) on T2-weighted scans (Fig. 2), and high signal intensity (lower than water) on short tau inversion recovery sequence (Fig. 3). Neither muscle edema nor osseous involvement was present. A small amount of joint effusion was detected (Fig. 3). Furthermore, there was absence of areas of decreased signal intensity (flow voids) in the lesion, on all pulse sequences, indicative of calcifications or ossifications. Finally, marked diffuse enhancement of the mass was evident after intravenous (iv) administration of gadolinium (Fig. 4). These findings were strongly suggestive for joint synovitis.

A decision for surgical intervention was made and the patient consented for surgical removal of the mass. Under general anesthesia, a dorsal approach of the first MTPJ was performed through a longitudinal incision. A whitish solid mass emerged (Fig. 5), consisted of 4 particles surrounding the joint, with no infiltrations or adhesions to the capsule, the cartilage, or the bones. The dimensions of the 4 particles of the mass were measured to be 15 × 10 mm, 10 × 8 mm, 7 × 5 mm, and 5 × 3 mm (Fig. 6). The preoperative MRI suggestion of joint synovitis was not confirmed. No intra-articular tumor involvement was detected. All the mass particles were referred for histopathological examination. A short ankle foot orthosis brace was applied for 2 weeks. Partial weight bearing was allowed on the third week and full weight bearing on the fourth week.
The microscopic examination revealed that the tumor was composed of various sized lobules, separated by broad bands of a cellular, amorphous substance. The lobules contained rounded groups of chondrocytes with bland nuclear features, embedded in a more basophilic, thin textured ground substance. There was no nuclear atypia or any mitotic activity. Neither calcifications nor ossifications were detected. Finally, the lesion was not covered by any synovial cells. The histological features of the lesion, in total, were characteristic for a benign para-articular chondroma (Fig. 7).

The foot pain and swelling were completely resolved at the early postoperative period, within 1 month. Two years postoperatively, no recurrence of symptoms has been detected, while the patient still remains under follow-up.

Discussion

ESCs are rare [6] and are classified into synovial chondromatosis, para-articular and soft-tissue chondromas [7].

Fig. 2 – Consecutive axial T2-weighted MR views from the periphery to the center of the foot (A-D) demonstrate a diffuse para-articular mass with intermediate signal intensity (higher than muscle) surrounding the first MTPJ and extending into the soft tissues of the dorsal and plantar aspect of the metatarsal head and neck (arrows).

Fig. 3 – Axial (A, B), sagittal (C), and coronal (D) short tau inversion recovery (STIR) MR images of the foot, corresponding to Figure 1, show a diffuse, lobulated, para-articular mass with high signal intensity (lower than water), surrounding the first MTPJ and extending into the soft tissues of the dorsal and plantar aspect of the metatarsal head and neck (arrows). A small amount of joint effusion is depicted (arrowheads).
They are slow-growing, well-defined solitary multiple nodules of hyaline cartilage lesions, smaller than 3 cm in diameter [8,9], arising from the joint synovium, the periarticular tissues or the tenosynovium and not from the periosteum [8]. Kransdorf and Meis [10] in a study of 18,771 cases reported that the rate of ESCs was 1.5% of all benign soft-tissue tumors. They could form either due to migration of cartilaginous cells to the adjacent to the joints connective tissue, or they may be attributable to synovial cells metaplasia or even conversion of pre-cartilaginous tissue located at the bone attachment of the ligaments [11].

Fig. 4 – Consecutive coronal T1-weighted MR images of the foot with fat saturation (FS), after iv administration of gadolinium (A-D), demonstrate marked diffuse enhancement of the para-articular mass surrounding the first MTPJ (arrows).
In our case, the benign cartilaginous tumor was located periarticularly at the first MTPJ of the foot. Chung and Enzinger [12] in a study of 104 ESCs found that 64% of them were located at the small joints of the hand and 20% at the feet. More specifically, they found that 49% were located at the fingers, 15% at the hands, 11% at the toes, 10% at the feet, 4% at the forearms, and 11% at other sites. ESCs have also been described in the popliteal region [13], Hoffa’s infrapatellar fat [14,15], wrist [16], elbow joint [17], while some more rare locations can be the gluteal region [18], diaphragm [19], anterior abdominal wall [20], axilla [21], scalp [22], preauricular region [4], dura [23], larynx [24], pharynx [25], neck [26], oral cavity [27], skin [28], fallopian tube [29], and parotid gland [30].

In the case of our article, the patient complained about persistent pain and mild effusion of the first MTPJ gradually increasing in size during the previous year. To the best of our knowledge, this is the second reported implication of the first MTPJ [31]. Clinically, in most cases of ESCs, patients present with pain, edema and limitation of the range of movement, warmth or erythema of the adjacent joint [32]. Physical examination can be totally normal or a mobile mass can be palpated [32]. Symptoms are generally not specific and this makes the diagnosis more difficult.

Radiologically, ESCs may appear ring-like or curvilinear calcifications [33]. Ossifications within the matrix of the tumor and remodeling of adjacent bones are detected less frequently [10,12,34]. However, in our case, x-rays were normal without the presence of calcifications or bony erosions.

Computed tomography (CT) may reveal an iso- or hyper-dense soft-tissue mass without involvement of the underlying bone. Calcifications detected in radiographs may be better demonstrated with CT in 33%–70% cases [10]. In the present case, as no calcifications were detected in the preoperative radiographs, no CT examination was prescribed.

MRI is the most accurate examination for the delineation of the lesion. The MR appearance of the mass was most consistent with para-articular chondroma [10,35]. MRI, in most cases, depicts a well-demarcated lobulated mass with low- to intermediate signal intensity relative to muscle on T1-weighted images, high signal intensity on T2-weighted images, and various patterns of enhancement after iv administration of contrast medium [35]. Nevertheless, the MR characteristics of our patient are quite atypical and this may explain its misinterpretation as joint synovitis. First of all, the mass demonstrates uniform intermediate signal intensity, similar to muscle on T1-weighted images, intermediate signal intensity on T2-weighted scans, and high signal intensity on short tau inversion recovery sequence, which may be attributable to the high water concentration of the cartilage nodules [36,37]. Secondly, the lesion did not demonstrate regions of signal loss/blooming artifact corresponding with calcifications. Furthermore, contrast enhancement was uniform, which differs significantly from the peripheral or septal...
enhancement seen in most cases of ESCs [10,35,38]. Finally, the para-articular chondroma in our patient seems to extend into the MTPJ, which is a very unusual finding.

Diagnosis can be quite difficult in many cases. In our case, the patient was misdiagnosed at the beginning and he was treated as joint synovitis with possible tendinitis of extensor hallucis longus. To avoid para-articular chondroma misdiagnosis, Reith et al defined three diagnostic criteria which include: radiologic or clinical single lesion detection, bone and cartilaginous histologic composition, and presentation as an extrasynovial lesion [7]. Synovial bursitis, arthritis, giant cell tumors of the tendon sheath, calcifying aponeurotic fibroma, nodular chondrometaplasia, myxomas, and chondrosarcomas are considered in the differential diagnosis [9,12,34,39]. Especially for the first MTPJ region, a differential diagnosis from gout, which very commonly affects this joint, has to be made [40].

The microscopic features of an ESC comprise various sized lobules with sharp borders and mild to moderate hypercellularity, consisted of mature hyaline chondrocytes with different degree of calcification as well as metaplastic ossification [9,34,39]. However, no calcifications or ossifications were observed in the histological specimen of our case. Any cellular pleomorphism with binucleated chondrocytes and myxoid changes could indicate malignancy and extraskeletal myxoid chondrosarcomas [9,12]. Coverage of the pathologic specimen by synovial cells and an intra-articular location (loose body) are indicative of synovial chondromatosis. Histological characteristics of the specimen/lesions are insufficient to differentiate between articular, para-articular, and soft tissue ESCs [41].

The treatment of choice in all ESCs is surgical excision [9]. The recurrence rate is reported to be 15%-20% [9,12]. Recurrent tumors are re-excised [9,42]. In our case, the patient was totally relieved by his symptoms immediately after the tumor excision and no recurrence was detected 24 months postoperatively.

In conclusion, ESCs are rare pathologic entities that can be easily misdiagnosed because of their nonspecific clinical symptoms. The physicians should have a high degree of suspicion judging from the age of the patient and the location of the lesion. Differential diagnosis should be made from a wide variety of other pathologic conditions, with the role of MRI being fundamental in the diagnosis and surgical planning. However, in isolated cases, such as the one presented, the MR findings may be misleading. In these cases, the final diagnosis can only be established with histological criteria. Radical excision of the tumor is the treatment of choice with less possibility of recurrence.

References

[1] Murphey MD, Vidal JA, Fanburg-Smith JC, Gajewski DA. Imaging of synovial chondromatosis with radiologic-pathologic correlation. Radiographics 2007;27(5):1465–88.
[2] Walker EA, Murphey MD, Fetsch JF. Imaging characteristics of tenosynovial and bursal chondromatosis. Skeletal Radiol 2011;40(9):317–25.
[3] Fetch JF, Vinh TN, Remotti F, Walker EA, Murphey MD, Sweet DE. Tenosynovial (extraarticular) chondromatosis: an analysis of 37 cases of an underrecognized clinicopathologic entity with a strong predilection for the hands and feet and a high local recurrence rate. Am J Surg Pathol 2003;27(9):1260–8.
[4] Watanabe F, Saiki T, Ochochi Y. Extraskeletal chondroma of the preauricular region: a case report and literature review. Case Rep Med 2012;2012:121743.
[5] Rajalakshmi V, Jayaraman, Anand V, Ramprasad N. Extraskeletal chondroma of the foot-a case report. J Clin Diagn Res 2014;8(3):134–5.
[6] Sanga S, Goswami G, Negi RS. Intra-articular osteochondroma: a case report. NHLJ Med Sci 2013;2(1):77–8.
[7] Reith JD, Bauer TW, Joyce MJ. Para-articular osteochondroma of the knee: report of two cases and review of literature. Clin Orthop Relat Res 1997;334:225–32.
[8] Nayler S, Heim S. Soft tissue chondroma. In: Pathology and genetics of tumours of soft tissue and bone (World Health Organization Classification of Tumours). Lyon: IARCPress; 2002. p. 180–1.
[9] Weiss SW, Goldblum JR. Enzinger and Weiss's soft tissue tumors. 5th ed. St. Louis (MO): Mosby; 2008.
[10] Kranzdorf MJ, Meis JM. From the archives of the AFIP. Extraskeletal osseous and cartilaginous tumors of the extremities. Radiographics 1993;13(4):853–84.
[11] Kwon H, Kim HY, Jung SN, Sohn WI, Yoo G. Extraskeletal chondroma in the auricle. J Craniofac Surg 2010;21(6):1990–1.
[12] Chung EB, Enzinger FM. Chondroma of soft parts. Cancer 1978;41(4):1414–24.
[13] Mao BY. Extraskeletal chondroma in the popliteal region: a case report. Chin Med Sci J 2015;30(4):270–2.
[14] Mozella Ade P, da Silveira Moller JV, de Araújo Barros LF, Costa SR. Tumor formation in Hoffa's infrapatellar fat: case report. Rev Bras Ortop 2015;50(1):117–21.
[15] Ingbire MI, Deprez FC, Bodart A, Puttemans T. Soft tissue chondroma of Hoffa's fat pad. JBR-BTR 2012;95(1):15–7.
[16] Khandeparkar SG, Joshi A, Khande T, Kesari M. A rare case of giant soft tissue chondroma of the wrist: a cytopathological study with review of the literature. J Cytol 2014;31(1):40–3.
[17] Narula R, Arya A, Verma L, Singh S. Soft tissue osteochondroma in elbow joint: a case report. Malays Orthop J 2012;6(1):53–6.
[18] Farhah A, Khan NP, Agrawal V. Extraskeletal chondroma of the gluteal region along with sporadic neurofibroma - an unusual presentation. J Clin Diagn Res 2015;9(5):E007–8.
[19] Ashahi Y, Kamiyama T, Nakanishi K, Yokoo H, Tahara M, Usui A, et al. Chondroma of the diaphragm mimicking a giant liver tumor with calcification: report of a case. Surg Today 2014;44(12):12361–5.
[20] Goyal P, Sehgal S, Ghosh S, Mittal D, Singh S. Extraskeletal chondroma of anterior abdominal wall in a child. APSP J Case Rep 2013;4(3):54.
[21] Adaletli I, Laor T, Yin H, Podberesky DJ. Extraskeletal chondroma: another diagnostic possibility for a soft tissue mass in the scalp: an atypical location. Indian J Dermatol Venereol Leprol 2013;79(3):435–6.
[22] Bergmann M, Pinz W, Blasius S, Lentschig M, Ostertag H, Neubauer U. Chondroid tumors arising from the meninges - report of 2 cases and review of the literature. Clin Neuropathol 2004;23(4):149–53.
[23] Lewis JE, Olsen KD, Inwards CY. Cartilaginous tumors of the larynx: clinicopathologic review of 47 cases. Ann Otol Rhinol Laryngol 1997;106(2):94–100.
[24] Wang DH, Guan XL, Xiao LF, Zhang XP, Chen MG, Sun KM. Soft tissue chondroma of the parapharyngeal space: a case report. J Laryngol Otol 1998;112(3):294–5.
[26] Temsamani H, Mouhsine A, Benchafai I, Benariba F. Bilateral extraskeletal chondroma of the neck. Eur Ann Otorhinolaryngol Head Neck Dis 2016;133(4):295–6.

[27] Tosios K, Laskaris G, Eveson J, Scully C. Benign cartilaginous tumor of the gingiva. A case report. Int J Oral Maxillofac Surg 1993;22(4):231–3.

[28] Ando K, Goto Y, Hirabayashi N, Matsumoto Y, Ohashi M. Cutaneous cartilaginous tumor. Dermatol Surg 1995;21(4):339–41.

[29] Han JY, Han HS, Kim YB, Kim JM, Chu YC. Extraskeletal chondroma of the fallopian tube. J Korean Med Sci 2002;17(2):276–8.

[30] Kostopoulos IS, Daniilidis I, Velegrakis G, Papadimitriou CS. Chondroma of the parotid gland. Clinical–histologic–immunohistochemical findings of a rare case. Laryngorhinootologie 1993;72(5):261–3.

[31] Anthouli-Anagnostopoulou FA, Papachristou G. Extraskeletal chondroma, a rare soft tissue tumor. Case report. Acta Orthop Belg 2000;66(4):402–4.

[32] Lewis MM, Marshall JL, Mirra JM. Synovial chondromatosis of the thumb. A case report and review of the literature. J Bone Joint Surg Am 1974;56(1):180–8.

[33] Woertler K. Soft tissue masses in the foot and ankle: characteristics on MR Imaging. Semin Musculoskelet Radiol 2005;9(3):227–42.

[34] Zlatkin MB, Lander PH, Begin LR, Hadjiyapouli A. Soft-tissue chondromas. AJR Am J Roentgenol 1985;144(6):1263–7.

[35] Woertler K, Blasius S, Brinkschmidt C, Hillmann A, Link TM, Heindel W. Periosteal chondroma: MR characteristics. J Comput Assist Tomogr 2001;25(3):425–30.

[36] Kramer J, Recht M, Deely DM, Schweitzer MN, Gentili A, et al. MR appearance of idiopathic synovial osteochondromatosis. J Comput Assist Tomogr 1993;17(5):772–6.

[37] Hondar Wu HT, Chen W, Lee O, Chang CY. Imaging and pathological correlation of soft-tissue chondroma: a serial five-case study and literature review. Clin Imaging 2006;30(1):32–6.

[38] Horcajadas AB, Lafuente JL, de la Cruz Burgos R, Muniz SH, Roca SA, Ortega SG, et al. Ultrasound and MR findings in tumor and tumor-like lesions of the fingers. Eur Radiol 2003;13(4):672–85.

[39] Bansal M, Goldman AB, DiCarlo EF, McCormack R. Soft tissue chondromas: diagnosis and differential diagnosis. Skeletal Radiol 1993;22(5):309–15.

[40] Stewart S, Dalbeth N, Vandal AC, Rome K. The first metatarsophalangeal joint in gout: a systematic review and meta-analysis. BMC Musculoskeletal Disord 2016;17:69.

[41] Marcial-Seoane RA, Marcial-Seoane MA, Ramos E, Marcial-Rojas RA. Extraskeletal chondromas. Bol Asoc Med P R 1990;82(9):394–402.

[42] Papagelopoulosp P, Savvidou OD, Mavrogenis AF, Chlors GD, Paparaskeva KT, Soucacos PN. Extraskeletal chondroma of the foot. Joint Bone Spine 2007;74(3):285–8.