Ubiquitin-specific protease 22 promotes lipogenesis contributing to Hepatocellular Carcinoma pathogenesis

ARTICLE INFO

Keywords
Acetyl-CoA carboxylase
Hepatocellular carcinoma
Lipidome
Lipogenesis
Liver cancer
Metabolic-associated fatty liver disease
Peroxisome proliferator-activated receptor gamma
Ubiquitin-specific protease 22
USP22

Hepatocellular carcinoma (HCC), accounting for nearly 90% of liver malignancy, is the third most lethal human cancer worldwide with more than 830,000 deaths in 2020 [1]. Due to the complexity and heterogeneity of HCC, most patients are diagnosed at an advanced stage. While several phase III trials have been carried out for HCC therapy, limited clinical benefits were obtained because of quickly acquired drug resistance or considerable toxicity [2]. It remains an urgent need to explore effective novel strategies to combat HCC.

Dysregulation of cellular metabolism is a hallmark of cancers, especially HCC. Of note, the rapid increase of HCC cases is partly due to the epidemic of obesity, and the subsequent development and progression of metabolic-associated fatty liver disease (MAFLD), which made metabolic disorders a major risk factor for HCC [3–15]. Elevated de novo lipogenesis is a significant factor for the development of MAFLD and HCC [16]. Unfortunately, there is no substantial progress in therapeutic agents targeting lipid synthesis due to toxicity or complications [17]. It is of utmost importance to find more effective targets for fatty acid synthesis.

In the recent study published in Nature Communications, Ning et al. analyzed and observed that a variety of lipids including fatty acids, phospholipids and sphingomyelin were significantly enriched in HCC tissues compared with adjacent normal tissues using non-targeted metabolomics [18]. They found that the deubiquitinase ubiquitin-specific protease 22 (USP22), rather than the other USP members highly correlated with the abnormal upregulation of lipid synthesis [18]. Ning et al. performed Immunoprecipitation pulldown-Mass spectrometry (IP-MS) assay to reveal the regulatory mechanism and identified Peroxisome proliferator-activated receptor gamma (PPARγ) as a reliable candidate substrate of USP22, which was further confirmed by endogenous immunoprecipitation assay. PPARγ is a key transcription factor that regulates lipid synthesis through the transcriptional activation of lipid synthesis enzymes such as acetyl-CoA carboxylase (ACC) and ATP citrate lyase (ACLY). PPARγ is highly expressed in adipocytes, being implicated in lipid uptake, synthesis, and storage [19]. Ning et al. found that PPARγ contributes to USP22-mediated ACC and ACLY upregulation and discovered a previously undescribed PPAR binding motif in the ACACA (the gene encoding ACC) promoter in HCC cells [18].

In addition, Ning et al. showed that USP22 deubiquitinated and stabilized PPARγ by removing K48-linked ubiquitin chain which was catalyzed by E3 ligases CRL4B\(^{AhR}\) and pVHL [18]. Genetic and pharmacological inhibition of PPARγ abolished the regulatory effect on ACC and ACLY transcription, and significantly decreased lipogenesis and tumorigenesis caused by USP22 expression both in HCC cells and xenograft tissues. Furthermore, an in silico analysis revealed that HCC patients with upregulated USP22 and elevated levels of PPARγ or ACC/ACLY exhibit poor prognosis and overall survival [18].

Taken together, in this study, Ning et al. demonstrated that USP22 promotes de novo synthesis of fatty acids and tumorigenesis by deubiquitinating PPARγ in HCC (Fig. 1) [18]. Considering the limitation of clinical therapeutic options for HCC, emerging molecular targets are urgently needed. Findings from this research may provide a new option for targeting fatty acid synthesis that could yield therapeutic benefits to HCC patients with high USP22 expression.

Funding information

None.

https://doi.org/10.1016/j.metop.2022.100218
Received 15 November 2022; Accepted 17 November 2022
Available online 21 November 2022
2589-9368/© 2022 Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Hepatocellular Carcinoma; PPAR may provide a rationale for therapeutic targeting lipogenesis via USP22 inhibition mechanisms involving the PPAR γ-ACLY/ACC axis in HCC pathogenesis. This may provide a rationale for therapeutic targeting lipogenesis via USP22 inhibition.

Abbreviations: ACC: acetyl-CoA carboxylase; ACLY: ATP citrate lyase; HCC: Hepatocellular Carcinoma; PPARγ: Peroxisome proliferator-activated receptor gamma; USP22: ubiquitin-specific protease 22.

Declaration of competing interest

None.

References

[1] Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2021;71(3):209-24.

[2] Qin S, Bai Y, Lim HY, Thongprasert S, Chao Y, Fan J, Yang TS, Bhudhisawasdi V, Kang WK, Zhou Y, Lee JH, Sun Y. Randomized, multicenter, open-label study of oxaliplatin plus fluorouracil/leucovorin versus doxorubicin as palliative chemotherapy in patients with advanced hepatocellular carcinoma from Asia. J Clin Oncol 2015;33(28):3501-8.

[3] Liu J, Dalamaga M. Emerging roles for stress kinase p38 and stress hormone fibroblast growth factor 21 in NAFLD development. Metabol Open 2021;12:100153.

[4] Fotis D, Liu J, Dalamaga M. Could gut microbiome play a role in NAFLD pathogenesis? Insights and therapeutic perspectives. Metabol Open 2022;4:100179.

[5] Dalamaga M, Zheng I, Liu J. Gut microbiome as a promising preventive and therapeutic target for metabolic disorders. Metabol Open 2022;13:100168.