Topological valley crystals in a photonic Su-Schrieffer-Heeger (SSH) variant

Z. Yu, H. Lin, R. Zhou, Z. Li, Z. Mao, K. Peng, Y. Liu, and X. Shi

1) College of Physics Science and Technology, Central China Normal University, Wuhan 430079, Hubei Province
2) Department of Physics, Hubei University, Wuhan 430062, Hubei Province
3) School of Physics and Electronic Science, Hubei University, Wuhan 430062, Hubei Province
4) Hubei Key Laboratory of Ferroelectric and Piezoelectric Materials and Devices, Hubei University, Wuhan 430062, Hubei Province
5) Lanzhou Center for Theoretical Physics, Key Laboratory of Theoretical Physics of Gansu Province, Lanzhou University, Lanzhou 730000, Gansu Province
6) Wuhan Maritime Communication Research Institute, Wuhan, 430205, China

(*Electronic mail of corresponding author: yangjie@hubu.edu.cn)
(*Electronic mail of corresponding author: linhai@mail.ccnu.edu.cn)

(Dated: compiled 28 September 2022, submitted on 3rd July to J. Appl. Phys., accepted 12nd Sept. 2022.)

Progress on two-dimensional materials has shown that valleys, as energy extrema in a hexagonal first Brillouin zone, provide a new degree of freedom for information manipulation. Then valley Hall topological insulators supporting such-polarized edge states on boundaries were set up accordingly. In this paper, a two-dimensional valley crystal composed of six tunable dielectric triangular pillars in each unit cell is proposed in the photonic sense of a deformed Su-Schrieffer-Heeger (SSH) model. We reveal the vortex nature of valley states and establish the selection rules for valley-polarized edge states on boundaries. Valley Hall photonic crystals were experimentally demonstrated at various frequencies and have found potential applications in topologically protected refractive waveguides.

I. INTRODUCTION

In the past few years, inspired by the development of topological states of matter in condensed matter physics, such as quantum Hall states and topological insulators, the concept of topological band was introduced into valley photonic crystals (VPC) and quickly became a newly-chartered field. As the wave functions in photonic crystals (PC) appear similar to those of electrons in solid physical systems, various phenomena originally discovered in condensed matter physics, such as quantum Hall, quantum spin Hall, and quantum valley Hall effect, can be mapped to wave systems in analogous. As pioneers F. Haldane and S. Raghu broke the time-reversal symmetry by applying an external magnetic field to the magneto-optical material, and proposed the photonic quantum Hall effect in PC for the first time. Following the realization of the quantum Hall state using PC, photonic systems to simulate the quantum spin Hall effect using polarization degeneracy between transverse electric (TE) and transverse magnetic (TM) modes had been extensively studied. Furthermore, L.-H. Wu and X. Hu proposed a pair of pseudo-spin states based on equivalent irreducible representations of the Cnv symmetry group, by exploiting the spatial crystal symmetry of a two-dimensional (2D) all-dielectric PC. This profound proposal was verified experimentally both in microwave and optical regimes.

We understand that all these phase transitions derive from the famous Su-Schrieffer-Heeger (SSH) model in condensed matter physics, where one transforms phases via tuning inter/intra-cell coupling between/unit cells in periodic lattices.

Later on, a new degree of freedom (DOF) from the valley point, was also introduced to the PC platform. Valley points generally emerge at high-symmetry points of the Brillouin zone, and are referred to as minima in the conduction band or maxima in the valence band. The promise of using the valley DOF to store and carry information led to conceptual breakthrough known as valleytronics in electronic applications.

Then if the degeneracy between the two valleys is lifted, 2D materials can host the quantum valley Hall effect, which is manifested by a pair of counter-propagating scatteringless states with opposite valley-polarizations at non-trivial domain walls. The valley edge state can be realized by combining two types of photonic crystals with different valley Chern numbers. Valley Hall photonic crystals were experimentally demonstrated at various frequencies and have found potential applications in topologically protected refraction, high-efficiency waveguides, topological waveguide splitters, etc.

In this paper, we propose a 2D VPC in SSH model whose unit cell is composed of six tunable dielectric triangular pillars, which makes use of the reduced symmetry to switch topological phases. First, we propose a topological PC with Dirac points at valley points from its band structures. To verify the topological phase transition, we open the energy band-gap at valleys by breaking the spatial inversion symmetry. By changing the intra/inter-cell coupling strengths, the degeneracy at the Dirac points can be lifted to result in a bandgap. Meanwhile, Berry curvature in the reciprocal space would be different.

\[\text{http://faculty.ccnu.edu.cn/2006983688} \]
\[\text{http://wdxy.hubu.edu.cn/info/1020/1078.htm} \]
\[\text{JAP22-AR-03586: submitted on 3rd July to J. Appl. Phys., first reports back 1st Aug., revised 14th Aug., and resubmitted 24th Aug., proofed 22nd Sept. 2022.} \]
is calculated to show a pair of energy extrema with different signs at the K/K' point. The topological invariant (i.e., the valley Chern number) of VPCs is calculated by integrating the Berry curvature over the First Brillouin zone (FBZ). Also, we demonstrate that with the valley excited states of our structure, the valley selectivity of PCs is revealed by performing Fourier transform to their wave functions. Finally, we design a beam splitter of rhombus shape to verify the valley-selective transmission. Our work then provides a new idea for THz photonic devices manipulating valley DOF. To note, our model is a 2D variant of photonic SSH34,55 model when we adopt the hexagonal unit cell as shown below.

II. NUMERIC MODEL

In this paper, we consider a 2D hexagonal PC with C_6 symmetry as shown in Fig. 1(a), the unit cell of which is composed of six dielectric pillars embedded in air.34,56 And the maximal Wyckoff points in the unit cell are represented by labels α, β, γ in real space therein. The relative permittivity of the dielectric column is $\varepsilon_\text{d} = 11.7$, the lattice constant is $a_0 = 50 \mu m$, and a_1 and a_2 are the lattice vectors. In the following, we shall start from the trivial case PC0 and then construct two types of non-trivial cases: PC1 and PC2 respectively. For PC0, the dielectric pillars are equilateral triangles with the side length $a_0 = 4.9/4.9$, and the distance from the center of the lattice to the center of the dielectric column is $R_1 = R_2 = 19.7 \mu m \left(R_1 + R_2 = 39.4 \mu m\right)$. We only consider the TM modes and all our results are calculated by the numerical software COMSOL Multiphysics. The first Brillouin zone (FBZ) in the lattice contains a pair of K and K' points in its vertices, which are called valley points, as shown in Fig. 1(c) and its inset, where panel (c) displays the band structure of PC0. We use $\Delta R = R_1 - R_2$ to stand for the intra/inter-cell couplings strength37. Then PC1 corresponding to $\Delta R = -6.4 \mu m$, PC0 corresponding to $\Delta R = 0 \mu m$, PC2 corresponding to $\Delta R = 6.4 \mu m$, as shown in panels (b-e) respectively. When $\Delta R = 0$ [see panel (c)], two degeneracy points appear at K/K' point with $f = 2.3\text{THz}$ due to the C_6 symmetry. By changing ΔR, the intra/inter-cell coupling vary accordingly, and the lattice symmetry is reduced to C_3, so that the degeneracy at K/K' points is lifted, which is shown in panels (b) and (d). For one case of PC1, the bandgap is opened in the frequency range of 2.2-2.35 THz when $\Delta R = -6.4 \mu m$. For another case, PC2 is constructed by letting $\Delta R = R_1 - R_2 = 6.4 \mu m$, the corresponding band structure is shown in Fig. 1(d). So for PC2 the degeneracy points at K/K' are also lifted, and the bandgap appears from $f = 2.2 \text{THz}$ to $f = 2.35 \text{THz}$. We symbol the lower and upper frequencies of the band gap in K/K' points, and a complete band gap appears and the other way round in Fig. 4(d). In Fig. 4(e), $\Delta R = 0 \mu m$, the band gap disappears and the degeneracy point is located in K/K' points. Moreover, the effective Hamiltonian implies a valley-dependent topological index of Berry curvature. The Berry connection of the lowest band can be defined as

$$
\hat{A}(k) = i \left\langle u_k | \nabla_\text{k} | u_k \right\rangle,
$$

where $|u_k\rangle$ is the electromagnetic field, an asterisk denotes complex conjugation, and $\epsilon(\text{r})$ is the spatial permittivity. And
Berry curvature $\Omega(\vec{k})$ is

$$\Omega(\vec{k}) \equiv \nabla_{\vec{k}} \times \vec{A}(\vec{k}) = \frac{\partial A_{\mu}(\vec{k})}{\partial k_{\mu}} - \frac{\partial A_{\mu}(\vec{k})}{\partial k_{\nu}}.$$

The topological features of VPCs are related with the Berry curvature in the FBZ. As shown in Fig. 5(a), Berry curvature shows opposite signs at the K/K' points. For PC1 Berry curvature distribution around K are negative in value, and that around K' positive; and for PC2 vice versa. Therefore, the integration of Berry curvature over the whole FBZ is zero. Topological indices at K and K' valleys, defined as the integration of Berry curvature within half of the Brillouin zone (HBZ), can be calculated as:

$$C_{K/K'} = \frac{1}{2\pi} \int_{HBZ} \Omega(\vec{k})\delta^2 k = \pm \frac{1}{2} \text{sgn}(\Delta\rho).$$

The valley Chern number is only determined by the sign of $\Delta\rho$. And the nonzero topological invariant, i.e., valley Chern number is $C_V = (C_K - C_{K'})$. As depicted in Fig. 5(b), when $\Delta R < 0$, $C_V = -1$, and for $\Delta R > 0$, $C_V = 1$. Therefore PC1 and PC2 have quantized valley Chern number with opposite signs, which leads to a topological phase transition.

III. RESULTS AND DISCUSSION

Topological edge states at the zigzag interface: As the sign of the difference of the valley Chern numbers determines the propagation direction of the emerging edge states, the edge states at the two valleys have opposite velocities, locked by the valley states. To confirm this numerically, Fig. 6(a) displays a 30×1 cell structure composed of PC1 and PC2 constructed in our simulation. The separation interface is made of 30 cells in y-direction and infinite in x-direction. In simulation, Floquet periodic boundary conditions are imposed on the left and right boundaries of the supercell, and the upper and lower boundaries satisfy scattering boundary condition. Furthermore, Fig. 6(b) shows the spatial distribution of electric field with the frequency of 2.35 THz at $k_x = \pm 0.35 \times 2\pi/a_0$. And the energy band for our valley crystals is shown in Fig. 6(c), where the red curve represents the edge state with topological protection while the gray region represents the bulk band. And the black arrows represent the the Poynting vectors. It can be seen that the group velocities of the edge states at different valleys are opposite, indicating the valley-momentum locking behavior. Owing to the presence of nontrivial valley Chern number, the localized EM states are observed along the interfaces. Since the topological edge states are locked within the K/K' valleys, inter-valley scattering is strongly suppressed despite...
FIG. 2. Electric field distribution $|E_z|$ of the K-valley state [(a) low frequency K_1, (b) high frequency K_2] at positions p, q. The upper and lower panels respectively represent the valley phase and electric field amplitude of the periodic lattice, and the arrows in the lower panel indicate the corresponding time-averaged Poynting vector.

FIG. 3. Electric field E_z stimulated by a chiral source with (a) $m = -1$ and (b) $m = 1$ positioned in the center of samples. The insets in the left panels represent the vortex feature of the chiral source. The right panels display the corresponding Fourier spectra in the momentum space, where the green lines mark the boundary of the hexagonal FBZ.

FIG. 4. Schematic diagram of a 2D hexagonal lattice of dielectric rods embedded in an air background, e.g., blue and red rods in the dashed rhomboid. (b), (c) and (d) represent the unit cell with $\Delta R = -6.4 \, \mu m, 0 \, \mu m$ and $6.4 \, \mu m$.

FIG. 5. Valley Chern numbers. (a) Two PC structures and their corresponding Berry curvature distribution in the FBZ. (b) The variation of valley Chern number with change of ΔR. Blue dots for $C_v = -1$, red dots for $C_v = 1$, and the black line for theoretical calculation with FBZ shown as the inset.

the presence of obstacles of sharp corners. Such properties make the designed VPC an excellent candidate as waveguides.

Verification of valley-selective transmission: The valley-momentum locking edge states discussed above aim for designing functional EM devices, and henceforth we designed a rhombus-shaped beamsplitter (shown in Fig. 6) for prototype.
The beamsplitter consists of four regions, which is selectively activated by the valley degree of freedom. The upper-left and lower-right areas are filled by PC1, and the lower-left and upper-right areas are filled by PC2. In this way PC1/PC2 and PC2/PC1 interface domain walls between distinct PCs. By placing a chiral source, we calculate the electric field in xy plane of the diamond waveguide to directly visualize the edge states and to demonstrate the valley polarization. The simulated electric fields are shown in Fig. 6(d) and (e), where the blue asterisk is the source and the white arrow the direction of the propagation edge state. At $f = 2.26$ THz, the edge state is successfully excited by the chiral source and the electric field is well confined along the interface and propagates only in the direction correlating with the chirality of the source. Fig. 6(d) shows that when the chiral source is excited at the port 2, the wave propagates to port 1 and port 3. Whereas it is excited from port 1 shown in the Fig. 6(e), wave travels to the port 2 and port 4 barely leaking to port 3. This routing result is guaranteed by the different valley pseudospin of the interface states.

IV. CONCLUSIONS

In conclusion, we design a VPC to reveal the dynamic process of topological phase transition by turning the inter/intra-cell coupling strength. In our design, a VPC based on broken C_6 symmetry is adopted with Dirac points at K/K' points, and by twisting the dielectric columns in unit cells the intra/inter couplings are adjusted leading to a reduced symmetry of C_3,
when the degeneracy at Dirac points is lifted. Then our two distinct valley states are demonstrated to verify the vortex feature of the wave function. Also we calculate the valley Chern number of the VPC accordingly and reveal the topological phase transition. Finally, we confirm the valley selection principle of the designed VPC in a beam splitter of rhombus shape. Our work then provides a new experimental setup for application of THz VPC devices.

Appendix A: More on the periodic unit lengths setup in numerics for supercells

In Appendix A, we plot three cases in Fig. 7 for dispersion bands of a VPC serving as building blocks of our beam splitter in Fig. 6. This means that unit cell setup in one of the two dimensions may not be the only feasible one.

Appendix B: Field distributions on more working frequencies of beam-splitters

In Appendix B, we simulate the electric field of the beam-splitter on more frequencies in the gap. As seen in Fig. 8, at $f = 2.22$THz, 2.24THz and 2.26THz, the edge states are successfully excited by the chiral source.

ACKNOWLEDGMENTS

H. L. and Y. L. acknowledge helpful guidance and support from Zhou B. and Xu D.-H., and Y. L. thanks Zhao Y. for helpful discussion. Z. Y., H. L. and R. Z. thank Fundamental Research Funds for the Central Universities of China (CCNU20GF004, CCNU19TS073); Open fund of China Ship Development and Design Centre under Grant (XM0120190196); Guangxi Key Laboratory of Wireless Wideband Communication and Signal Processing, Guilin University of Electronic Technology (GXXL06190202) and Hongque Innovation Center (HQ202104001). H. L., Z. M., K. P. and Y. L. are supported by Young Scientists Fund (NSFC11804087); National Natural Science Foundation of China (NSFC141974195, NSFC12047501); Science and Technology Department of Hubei Province (2018CFB148, 2020CFB266); Department of Education in Hubei Province (T2020001-030200301301002, Q20201006, Q20211008).

DATA AVAILABILITY STATEMENT

The data that support the findings of this study are available from the corresponding authors upon reasonable request.

AUTHOR CONTRIBUTION

Z. Y. and H. L. proposed the idea. Z. Y. performed the calculation, produced all the figures, and wrote the manuscript draft. R. Z. and Z. L. contributed to the calculation tools. Z. Y. and Y. L. analyzed the data. H. L. and Y. L. lead the project and revised the whole manuscript thoroughly. Z. M., K. P. and X. Shi contributed to analyzing the data and to revising the paper.

1. X.-G. Wen, “Choreographed entanglement dances: Topological states of quantum matter,” Science 363, eaal3099 (2019).
2. K. von Klitzing, “Quantum hall effect: discovery and application,” Annual Review of Condensed Matter Physics 8, 13–30 (2017).
3. M. Z. Hasan and C. L. Kane, “Colloquium: topological insulators,” Reviews Of Modern Physics 82, 3045 (2010).
4. X.-L. Qi and S.-C. Zhang, “Topological insulators and superconductors,” Reviews Of Modern Physics 83, 1057 (2011).
5. T. Ozawa, H. M. Price, A. Arof, N. Goldman, M. Hafezi, L. Lu, M. C. Rechtsman, D. Schuster, J. Simon, O. Zilberberg et al., “Topological photonics,” Reviews of Modern Physics 91, 015006 (2019).
6. K. von Klitzing, G. Dorda, and M. Pepper, “New method for high-accuracy determination of the fine-structure constant based on quantized hall resistance,” Phys. Rev. Lett. 45, 494–497 (1980).
7. C. L. Kane and E. J. Mele, “Quantum spin hall effect in graphene,” Physical Review Letters 95, 226801 (2005).
8. C. L. Kane and E. J. Mele, “Z2 topological order and the quantum spin hall effect,” Physical Review Letters 95, 146802 (2005).
9. D. Xiao, W. Yao, and Q. Niu, “Valley-contrast physics in graphene: magnetic moment and topological transport,” Physical Review Letters 99, 236809 (2007).
10. F. D. M. Haldane and S. Raghu, “Possible realization of directional optical waveguides in photonic crystals with broken time-reversal symmetry,” Phys. Rev. Lett. 100, 013904 (2008).
11. J. D. Joannopoulos, P. R. Villeneuve, and S. Fan, “Photonic crystals: putting a new twist on light,” Nature 386, 143–149 (1997).
12. Z. Wang, Y. Chong, J. D. Joannopoulos, and M. Soljačić, “Reflection-free one-way edge modes in a gyromagnetic photonic crystal,” Physical Review Letters 100, 013905 (2008).
13. Z. Wang, Y. Chong, J. D. Joannopoulos, and M. Soljačić, “Observation of unidirectional backscattering-immune topological electromagnetic states,” Nature 461, 772–775 (2009).
14. A. B. Khanikaev, S. Hossein Mousavi, W.-K. Tse, M. Kargarian, A. H. MacDonald, and G. Shvets, “Photonic topological insulators,” Nature Materials 12, 233–239 (2013).
15. W.-J. Chen, S.-J. Jiang, X.-D. Chen, B. Zhu, L. Zhou, J.-W. Dong, and C. T. Chan, “Experimental realization of photonic topological insulator in a uniaxial metacrystal waveguide,” Nature Communications 5, 5782 (2014).
16. T. Ma, A. B. Khanikaev, S. H. Mousavi, and G. Shvets, “Guiding electromagnetic waves around sharp corners: topologically protected photonic transport in metawaveguides,” Physical Review Letters 114, 127401 (2015).
17. X. Cheng, C. Jouvaud, X. Ni, S. H. Mousavi, A. Z. Genack, and A. B. Khanikaev, “Robust reconfigurable electromagnetic pathways within a photonic topological insulator,” Nature Materials 15, 542–548 (2016).
18. A. Slobzhanyuk, A. V. Shchelkova, X. Ni, S. Hossein Mousavi, D. A. Smirnova, P. A. Belov, A. Alù, Y. S. Kivshar, and A. B. Khanikaev, “Near-field imaging of spin-locked edge states in all-dielectric topological metasurfaces,” Applied Physics Letters 114, 031103 (2019).
19. D. J. Bisharat and D. F. Sievenpiper, “Electromagnetic-dual metasurfaces for topological states along a 1d interface,” Laser & Photonics Reviews 13, 1900126 (2019).
20. L.-H. Wu and X. Hu, “Scheme for achieving a topological photocryt crystal by using dielectric material,” Physical Review Letters 114, 223901 (2015).
21. Y. Yang, Y. F. Xu, T. Xu, H.-X. Wang, J.-H. Jiang, X. Hu, and Z. H. Hang, “Visualization of a unidirectional electromagnetic waveguide using topological photocryt crystals made of dielectric materials,” Physical Review Letters 120, 217401 (2018).
FIG. 7. Three cases for dispersion bands of a VPC serving as building blocks of our beam splitter. Band structure of (a) 30×1 (b) 30×2 (c) 30×3 supercell and the schematic of the supercell composed of PC1 and PC2 with zigzag interfaces is on the right of each dispersion band.

FIG. 8. Electric field distributions in simulation at (a) 2.22 THz, (b) 2.24 THz and (c) 2.26 THz on the xy plane with a chiral source at port1 (lower panel) and port 2 (upper panel). The setup is the same as Fig. 6 (d-e).

22M. G. Silveirinha, “Geometry and topological photonics,” ArXiv Preprint arXiv:2206.11231 (2022).
23S. Peng, N. J. Schilder, X. Ni, J. Van De Groep, M. L. Brongersma, A. Ali, A. B. Khanikaev, H. A. Atwater, A. Polman, et al., “Probing the band structure of topological silicon photonic lattices in the visible spectrum,” Physical Review Letters 122, 117401 (2019).
24N. Parappurath, F. Alpeggiani, L. Kuipers, and E. Verhagen, “Direct observation of topological edge states in silicon photonic crystals: Spin, dispersion, and chiral routing,” Science Advances 6, eaaw4137 (2020).
25W. Liu, M. Hwang, Z. Ji, Y. Wang, G. Modi, and R. Agarwal, “Z_2 photonic topological insulators in the visible wavelength range for robust nanoscale photonics,” Nano Letters 20, 1329–1335 (2020).
26R. Zhou, H. Lin, Y. Liu, X. Shi, R. Tang, Y. Wu, Z. Yu, et al., “Topological edge states of kekulé-type photonic crystals induced by a synchronized rotation of unit cells,” Physical Review A 104, L031502 (2021).
27J.-W. Dong, X.-D. Chen, H. Zhu, Y. Wang, and X. Zhang, “Valley photonic crystals for control of spin and topology,” Nature Materials 16, 298–302 (2017).
28T. Ma and G. Shvets, “All-Si valley-hall photonic topological insulator,” New Journal Of Physics 18, 025012 (2016).
29X.-D. Chen, F.-L. Zhao, M. Chen, and J.-W. Dong, “Valley-contrasting physics in all-dielectric photonic crystals: Orbital angular momentum and topological propagation,” Physical Review B 96, 020202 (2017).
30F. Gao, H. Xue, Z. Yang, K. Lai, Y. Yu, X. Lin, Y. Chong, G. Shvets, and B. Zhang, “Scattering-free edge states between heterogeneous photonic topological insulators,” Physical Review B 95, 165102 (2017).
31X. Wu, Y. Meng, J. Tian, Y. Huang, H. Xiang, D. Han, and W. Wen, “Direct observation of valley-polarized topological edge states in designer surface plasmon crystals,” Nature communications 8, 1–9 (2017).
et al., “Valley kink states and topological channel transitions in substrate-integrated photonic circuitry,” Laser & Photonics Reviews 13, 1900159 (2019).

G. Harari, M. A. Bandres, Y. Lumer, M. C. Rechtsman, Y. D. Chong, M. Khajavikhan, D. N. Christodoulides, and M. Segev, “Topological insulator laser: theory,” Science 359, eaar4003 (2018).

M. A. Bandres, S. Wittke, G. Harari, M. Parto, J. Ren, M. Segev, D. N. Christodoulides, and M. Khajavikhan, “Topological insulator laser: Experiments,” Science 359, eaar4005 (2018).

W. Noh, H. Nasari, H.-M. Kim, Q. Le-Van, Z. Jia, C.-H. Huang, and B. Kante, “Experimental demonstration of single-mode topological valley-hall lasing at telecommunication wavelength controlled by the degree of asymmetry,” Optics Letters 45, 4108–4111 (2020).

Y. Zhao, F. Liang, X. Wang, D. Zhao, and B.-Z. Wang, “Tunable and programmable topological valley transport in photonic crystals with liquid crystals,” Journal Of Physics D: Applied Physics 55, 155102 (2022).

Y. Yang, Y. Yamagami, X. Yu, P. Pitchappa, J. Webber, B. Zhang, M. Fujita, T. Nagatsuma, and R. Singh, “Terahertz topological photonics for on-chip communication,” Nature Photonics 14, 446–451 (2020).

F. Liu and K. Wakabayashi, “Novel topological phase with a zero berry curvature,” Physical review letters 118, 076803 (2017).

F. Liu, H.-Y. Deng, and K. Wakabayashi, “Topological photonic crystals with zero berry curvature,” Physical Review B 97, 035442 (2018).

X. Xi, X.-M. Li, K.-P. Ye, H.-B. Wu, J. Chen, and R.-X. Xu, “Dual-polarization topological phases and phase transition in magnetic photonic crystalline insulator,” New Journal Of Physics 23, 083042 (2021).

B.-Y. Xie, H.-F. Wang, H.-X. Wang, X.-Y. Zhu, J.-H. Jiang, M.-H. Lu, and Y.-F. Chen, “Second-order photonic topological insulator with corner states,” Physical Review B 98, 205147 (2018).

L. Xu, H. X. Wang, Y. D. Xu, H. Y. Chen, and J. H. Jiang, “Accidental degeneracy in photonic bands and topological phase transitions in two-dimensional core-shell dielectric photonic crystals,” Opt Express 24, 18059–71 (2016).

M. Settles, S. R. Power, M. Brandbyge, and A.-P. Jauho, “Graphene nanobubbles as valley filters and beam splitters,” Physical Review Letters 117, 276801 (2016).

H. T. Phan, F. Liu, and K. Wakabayashi, “Valley-dependent corner states in honeycomb photonic crystals without inversion symmetry,” Optics Express 29, 18277–18290 (2021).