Electronic properties of hybrid WS$_2$/MoS$_2$ multilayer on flexible PET

I Faraduan, I P Handayani, D A Diandra, H Delima and I W Fathona

Engineering Physics, School of Electrical Engineering, Telkom University, Bandung, Indonesia

E-mail: iphandayani@telkomuniversity.ac.id

Keywords: WS$_2$, MoS$_2$, hybrid WS$_2$/MoS$_2$, multilayer, Raman spectroscopy, electronic characteristics

Supplementary material for this article is available online

Abstract

Two-dimensional (2D) layered materials transition metal dichalcogenide compound (TMDC), which stack-together and form van der Waals heterostructures, have created interesting phenomena due to their interlayer interactions and their great potential for atom-scale devices. Various electrical properties have been investigated. The presence of vacancies and their related charge trappings have been reported to affect the electrical properties. In this study, we investigate the electrical properties of hybrid WS$_2$/MoS$_2$ multilayer film deposited on polyethylene terephthalate (PET). The hybrid morphology and signatures are confirmed by the scanning electron microscope image and Raman shift spectra, respectively. We observed a semiconductor like behaviour as well as the large hysteresis which indicates the vacancies inducing charge trappings. This characteristics is different with the electronic characteristics of WS$_2$ and MoS$_2$ multilayer which tend to exhibit insulating behaviours and small hysteresis. This study shows how hybrid dichalcogenide WS$_2$/MoS$_2$ multilayer might create new features for future electronic devices.

1. Introduction

The van der Waals interaction along c axis of TMDC provides the possibilities to create thin transparent flexible films which have different electrical and optical properties from the thick ones. The number of layers affect the electronic band structure [1–4]. Various studies reported the intriguing properties such as tunability of photoluminescence by strain [5, 6] and circularly polarized light [7, 8]. Those phenomena are suggested to have application in strain engineering devices [9, 10], optoelectronics [11, 12], and pseudo spin valleytronics [13, 14]. The possibility to create two dimensional materials with strong mechanical properties also trigger suggestions the exploration of TMDC deposited on flexible substrate to create flexible electronics [15, 16].

In addition to the study of the excellent pure TMDC properties, tremendous efforts have been also dedicated to investigate the properties of TMDC hybrids [17, 18] and heterostructure [19, 20]. The TMDC combination affects the electronic bandgap. For example, the WS$_2$/MoS$_2$ heterostructure has a bandgap of 1.42 eV [21], whereas the WS$_2$ and MoS$_2$ monolayer have bandgaps of 2.1 eV and 1.8 eV, respectively [1]. Lateral WS$_2$/MoS$_2$ heterostructures exhibits an intrinsic p-n junctions characteristics and a photovoltaic effect with an open-circuit voltage (Voc) of 0.15 V and a short-circuit current (Isc) of 5.2 pA [22].

The presence of hysteresis in I–V curve characteristics of hybrid TMDC has revealed various scenarios related to the presence of sulphur atom vacancies or defects in WS$_2$ and MoS$_2$ [23, 24]. The adsorbed oxygen and moisture or fabrication residues on the sample surface have been also discussed [25, 26]. The ohmic characteristics, the space charge limited current, and the trap filled limited current are suggested to be dominant factors influencing the hysteresis [27]. Despite its potential for memory devices, hysteresis influences the stability of the devices and required further investigations.

This study is aimed to explore the electronic characteristics of hybrid WS$_2$/MoS$_2$ multilayer on flexible substrate. We modified the thickness of WS$_2$ and MoS$_2$ layer by using liquid exfoliation method. A thin multilayer hybrid film is fabricated by dropping the WS$_2$ and MoS$_2$ supernatant on flexible Polyethylene terephthalate (PET) substrate. A semiconducting characteristics is shown by the I–V curve characterization. Furthermore, we elucidate three different hysteresis characteristics and discuss the possible reason behind them.
2. Experimental methods

The 1 mg ml$^{-1}$ WS$_2$ and 1 mg ml$^{-1}$ MoS$_2$ solutions were modified by liquid-phase exfoliation (LPE) [28, 29]. Detail of exfoliation process is explained in supplementary information (available online at stacks.iop.org/MRX/8/016409/mmedia). The supernatant was subsequently deposited by drop-casting on the Polyethylene

Figure 1. The typical surface morphology of (a) WS$_2$, (b) MoS$_2$, and (c) hybrid WS$_2$/MoS$_2$ multilayer.
terephthalate (PET) substrate. The sample was dried using a commercial oven (oxone OX 858) for 1–3 h at a temperature of 70 °C to remove the remaining organic solvents. The surface morphology of the hybrid WS2/MoS2 thin film was characterized using scanning electron microscopy (SEM SU3500). To confirm the presence of WS2 and MoS2, we conducted the energy dispersive x-ray spectroscopy (EDS) measurement. Furthermore, the phonon vibrations were also investigated using Raman spectroscopy measurement (XploRA ONE Horiba) with a laser spot size of ∼1 μm and a laser excitation of 532 nm. Measurement of the electrical properties was conducted using 2400 Keithley in two probes configuration. Silver paste were used as electrodes on both sides of the sample.

3. Results and discussion

Figure 1 shows the typical surface morphology of (a) WS2, (b) MoS2, and (c) hybrid WS2/MoS2 multilayers, respectively. Clear well separated micro-size features are observed for WS2 sample. The individual flakes are stacked vertically on top of each other. The MoS2 flakes are observed to have smaller micro-size and vertically stacked forming a dense multilayer. Based on the characteristics of WS2 and MoS2 morphology, we interpret that the hybrid WS2/MoS2 multilayer morphology shows various micro-size WS2 flakes on top of MoS2 background. The EDS scanning confirmed the presence of W and Mo atoms in hybrid sample.

Raman shifts of WS2, MoS2, and hybrid WS2/MoS2 multilayers are presented in figures 2(a)–(c), respectively. Two characteristic vibrational modes of WS2 sample were observed at 353 (E_{2g} (Γ)) and 418.6 cm⁻¹ (A_{1g} (Γ)) (figure 2(a)). The modes have 65.6 cm⁻¹ difference indicating the formation of multilayer [30]. Figure 2(b) presents two characteristic modes of the MoS2 observed at 379.9 and 404.4 cm⁻¹, which correspond to the vibration modes of E_{2g} (Γ) and A_{1g} (Γ) [30, 31]. The 24.5 cm⁻¹ difference also indicates that the MoS2 sample is multilayer rather than bulk [20, 30]. Figure 2(c) shows that hybrid WS2/MoS2 multilayer consists of the summation of characteristic modes belonging to the WS2 and MoS2. The E_{2g} (Γ) and A_{1g} (Γ) modes of WS2 experience a blue shift and appear at 353.8 and 419.9 cm⁻¹, similar to the ones reported in nanocomposite WS2 [20]. The modes narrowing was also observed.
which might due to the three dimensional (3D) nature of hybrid multilayer. Meanwhile, the $E_{2g}^1(\Gamma)$ and $A_{1g}(\Gamma)$ of MoS$_2$ appear as broad peaks at 374 and 406 cm$^{-1}$. They undergo redshift and peak broadening compared to ones observed in pure MoS$_2$. These phenomena can be caused by interlayer interactions, charge transfers, and changes in the interface lattice that occur in the hybrid WS$_2$/MoS$_2$\cite{32, 33}.

The I–V curve characteristics of WS$_2$, MoS$_2$, and hybrid WS$_2$/MoS$_2$ are presented in figures 3(a)–(c), respectively. The red dots and black squares were observed when the voltages were varied from -5 to 5 V and

Figure 3. The I–V curve characteristics of (a) WS$_2$, (b) MoS$_2$, and (c) hybrid WS$_2$/MoS$_2$. Red and black arrows indicate the direction of voltage variation. Black solid lines at (c) are guide for eyes to show the slope variations.
vice versa, as indicating by red and black arrows, respectively. The WS₂ and MoS₂ exhibit insulating behavior whereas the hybrid WS₂/MoS₂ tends to have semiconductor characteristics. Our result is different with the one reported by Choudhary et al which shows rectifying p–n junction behavior in heterostructure MoS₂/WS₂ [20]. The mixed WS₂/MoS₂ flakes could be the reason behind the non rectifying behavior of our sample.

We also observed a clear hysteresis when the voltage polarity was varied. The suspected intrinsic factors behind the hysteresis were the presence of sulphur atom vacancies or defects in WS₂ and MoS₂ [23, 24]. Besides, there might be also extrinsic factors such as adsorbed oxygen and moisture or fabrication residues on the sample surface [25, 26]. Both intrinsic and extrinsic factors can cause charge trapings. Following the discussion at [27], the current characteristics at our hybrid sample can be divided into three regions which are (1) the linear ohmic, (2) the large slope nonlinear, and (3) the small slope nonlinear characteristic. The linear ohmic behaviour indicates that the thermally generated carriers are dominating the system below 2 V. For applied voltage larger than 2 V, the injected carriers are more dominant. The large and small slopes at nonlinear regions might due to abrupt and gradual distribution of injected carriers in the sample, respectively. The wider hysteresis at negative voltage polarity indicates the positive trapped charges are more dominant influencing the electronic characteristics. We should note that smaller sample is more sensitive to any fluctuation or disturbance in electronic system such as trap states from edge defect or mismatched layer stacking which affects charge transport. This sensitivity might generate more visible hysteresis in I–V curve which was not observed in previous study [20].

4. Conclusions

We conclude that the hybrid WS₂/MoS₂ multilayer thin film deposited on PET flexible substrate exhibits semiconducting electronic properties. It is different from the MoS₂ and WS₂ ones which tend to have insulating properties. The hysteresis are also observed more clearly in the hybrid sample. Three different characteristics of I–V curve suggest various charge carrier distributions mechanism. The wider hysteresis curve at negative voltage polarity indicates that positive trapped charges are more dominant in the sample. Further investigation to control the hysteresis will be useful for memory application.

Acknowledgments

This work is financially supported by Direktorat Riset dan Pengabdian Masyarakat Direktorat Jenderal Pendidikan Tinggi (DRPM Kemenristek/BRIN) No. 23/E1/KPT/2020, 226/SP2H/ AMD/LT/DRPM/2020, 002/SP2H/AMD/LT-AMAND/L4/2020, 036/PNLT2/PPM/2020

ORCID iDs

I Faraduan @ https://orcid.org/0000-0002-8691-9768
I P Handayani @ https://orcid.org/0000-0002-7949-225X

References

[1] Wang Q et al 2012 Electronics and optoelectronics of two-dimensional transition metal dichalcogenides Nature Nanotech 7 699–712
[2] Qiao S et al 2017 Identifying the number of WS₂ layers via Raman and photoluminescence spectrum Proc. of the 2017 5th Int. Conf. on Mechatronics, Materials, Chemistry and Computer Engineering (ICMMCCE 2017)
[3] Sun L et al 2018 Nano Lett. 18 3435–40
[4] Cong C, Shang J, Wang Y and Yu T 2017 Adv. Optical Mater. 6 1700767
[5] Lu P, Wu X, Guo W and Zeng X C 2012 Phys. Chem. Chem. Phys. 14 13035–40
[6] Muoi D, Hieu N N, Phung H T T, Phuc H V, Amin B, Hoi B D, Hieu N V, Nhan L C, Nguyen C V and Le P T T 2019 Electronic properties of WS₂ and WSe₂ monolayers with biaxial strain: a first-principles study Chem. Phys. 519 69–73
[7] Mak K F, McGill K L, Park J and McEuen P L 2014 The Valley Hall Effect in MoS₂ Transistors 344 1489–92
[8] Zhua B, Zengb H, Daic J, Gong Z and Cuia X 2014 Anomalously robust valley polarization and valley coherence in bilayer WS₂ PNAS 111 11606–11
[9] Dai Z, Liu L and Zhang Z 2019 Strain engineering of 2D materials: issues and opportunities at the interface Adv. Mater. 31 1805417
[10] Li Z et al 2020 Efficient strain modulation of 2D materials via polymer encapsulation Nat. Commun. 11 1151
[11] Lembke D, Bertolazzi S and Kis A 2015 Single-layer MoS₂ electronics Acc. Chem. Res. 48 100–10
[12] Choi W et al 2012 High–detectivity multilayer MoS₂ phototransistors with spectral response from ultraviolet to infrared Adv. Mater. 24 5832–6
[13] Bussolotti F, Kawai H, Ooi Z E, Chellappan V, Thian D, Pang A L C and Goh K E J 2018 Roadmap on finding chiral valleys: screening 2D materials for valleytronics Nano Futures 2 032001
[14] Li Z et al 2018 Tailoring MoS₂ valley–polarized photoluminescence with super chiral near-field Adv. Mater. 30 1801908
[15] Kang M-A, Kim S, Song W, Chang S-Jin, Myung C-Y P S, Lim I, Lee S S and An K-S 2017 Fabrication of flexible optoelectronic devices based on MoS₂/graphene hybrid patterns by a soft lithographic patterning method Carbon 116 167–73
[16] Gao L 2017 Flexible device applications of 2D semiconductors Small 13 1603994
[17] Yu L et al 2014 Graphene/MoS₂ hybrid technology for large-scale two-dimensional electronics Nano Lett. 14 3053–63
[18] Jiang L, Lin B, Li X, Song X, Xia H, Li L and Zeng H 2016 Monolayer MoS₂—graphene hybrid aerogels with controllable porosity for lithium-ion batteries with high reversible capacity ACS Appl. Mater. Interfaces 8 2680–7
[19] Geim A and Grigorieva I 2013 Van der Waals heterostructures Nature 499 419–25
[20] Choudhary N et al 2016 Centimeter scale patterned growth of vertically stacked few layer only 2D MoS₂/WS₂ van der Waals heterostructure Sci. Rep. 6 25456
[21] Gong Y et al 2014 Vertical and in-plane heterostructures from WS₂/MoS₂ monolayers Nat. Mater. 13 1135–42
[22] Chen K et al 2015 Electronic properties of MoS₂—WS₂ heterostructures synthesized with two-step lateral epitaxial strategy ACS Nano 9 9868–76
[23] Hong J et al 2015 Exploring atomic defects in molybdenum disulphide monolayers Nat. Commun. 6 6293
[24] Addou R et al 2015 Surface defects on natural MoS₂ ACS Appl. Mater. Interfaces 7 11921–9
[25] Bartolomeo A D 2017 Hysteresis in the transfer characteristics of MoS₂ transistors 2D Mater. 5 015014
[26] Shu J 2016 The intrinsic origin of hysteresis in MoS₂ field effect transistors Nanoscale 8 3049–56
[27] Shang D S, Wang Q, Chen L D, Dong R, Li X M and Zhang W Q 2006 Effect of carrier trapping on the hysteretic current-voltage characteristics in Ag/La₀.₇Ca₀.₃MnO₃/Pt heterostructure Phys. Rev. B 73 245427
[28] Delima H, Rafli A M, Wibowo E and Handayani I P Electrical properties of MoS₂ thin layer deposited on PET and SiO₂ substrates, Indonesian Journal of Science and Technology [https://ejournal.upi.edu/index.php/ijost/]
[29] Handayani I P, Utama A M, Rafli A M and Rosi M Optical and electrical characterization of WS₂ multilayer on flexible PET substrate Mater. Res. Express
[30] Li H et al 2012 From bulk to monolayer MoS₂: evolution of Raman scattering Adv. Funct. Mater. 22 1385–90
[31] Zobeiri H et al 2020 Effect of temperature on Raman intensity of nm-thick WS₂: combined effects of resonance Raman, optical properties, and interface optical interference Nanoscale 12 6064–78
[32] Lu C et al 2019 Band alignment of WS₂/MoS₂ photoanodes with efficient photoelectric responses based on mixed Van der Waals heterostructures Phys. Status Solidi (a) 216 1900544
[33] Yang W et al 2018 Interlayer interactions in 2D WS₂/MoS₂ heterostructures monolithically grown by in situ physical vapor deposition Nanoscale 10 22927–36