Tuberculosis related disability: a systematic review and meta-analysis

Kefyalew Addis Alene1,2,3†, Kinley Wangdi3†, Samantha Colquhoun3*, Kudakwashe Chani3, Tauhid Islam4, Kalpeshsinh Rahevar4, Fukushi Morishita4, Anthony Byrne5,6, Justin Clark7 and Kerri Viney3,8,9

Abstract

Background: The sustainable development goals aim to improve health for all by 2030. They incorporate ambitious goals regarding tuberculosis (TB), which may be a significant cause of disability, yet to be quantified. Therefore, we aimed to quantify the prevalence and types of TB-related disabilities.

Methods: We performed a systematic review of TB-related disabilities. The pooled prevalence of disabilities was calculated using the inverse variance heterogeneity model. The maps of the proportions of common types of disabilities by country income level were created.

Results: We included a total of 131 studies (217,475 patients) that were conducted in 49 countries. The most common type of disabilities were mental health disorders (23.1%), respiratory impairment (20.7%), musculoskeletal impairment (17.1%), hearing impairment (14.5%), visual impairment (9.8%), renal impairment (5.7%), and neurological impairment (1.6%). The prevalence of respiratory impairment (61.2%) and mental health disorders (42.0%) was highest in low-income countries while neurological impairment was highest in lower middle-income countries (25.6%). Drug-resistant TB was associated with respiratory (58.7%), neurological (37.2%), and hearing impairments (25.0%) and mental health disorders (26.0%), respectively.

Conclusions: TB-related disabilities were frequently reported. More uniform reporting tools for TB-related disability and further research to better quantify and mitigate it are urgently needed.

Prospero registration number: CRD42019147488

Keywords: Tuberculosis, Meta-analysis, Disability, Treatment, Impairment

Background

Tuberculosis (TB) is a significant cause of death and disability worldwide, killing approximately 1.2 million people of an estimated 10 million new cases in 2019 [1]. While disability is a recognized consequence of TB, the prevalence of TB-related disability has not been estimated.

Disability includes any impairment or activity limitation as well as participation restriction [2]. Globally, low- and middle-income countries account for almost two-thirds of years lived with a disability [3]. While not well reported in the literature, TB can result in either temporary or permanent disability, arising from the disease process itself or side effects related to TB treatment, particularly related to second-line medicines used to treat drug-resistant (DR)-TB. TB service interruptions in high burden TB countries due to the ongoing COVID-19 pandemic may increase TB-related morbidity, disability, and mortality [4, 5].

Physical disabilities related to TB vary according to the bodily site affected by TB. For example, people with a history of pulmonary TB may suffer from a range of...
long-lasting respiratory-related sequelae such as impaired lung function (obstructive, restrictive), reduced diffusing capacity, or reduced lung volumes), chronic obstructive pulmonary disease (COPD), bronchiectasis, aspergillosis, pulmonary hypertension, or pulmonary fibrosis [6–9]. The global burden of COPD as a consequence of TB has recently been estimated to be 5.9 million disability-adjusted life years (DALYs) [10]. TB of the nervous system, affecting the meninges, brain, spinal cord, or cranial and peripheral nerves, can cause severe irreversible disability [11]. For example, spinal TB can result in paraparesis and quadriplegia due to spinal deformity and damage of the neural structures, often leading to permanent physical disabilities [12]. Some disabilities arise due to organ or tissue destruction in the host from TB disease, while others are a result of adverse effects of treatment. TB treatment is effective, prevents death, and limits disability, but certain medications have side effects which may result in temporary or permanent disability. Previous studies have demonstrated an increased prevalence of visual disturbance and hearing loss among people previously treated for DR-TB [13, 14]. However, some of the medicines that were used in these studies such as kanamycin and capreomycin are no longer recommended by the World Health Organization [15].

Mental health disorders may also be more prevalent among TB survivors than the general population [16, 17]. Mood disorders including anxiety and depression may be associated with TB disease, TB treatment, or factors not directly related to TB. Whereas the long treatment duration of 9–20 months for DR-TB results in disruptions to usual work, family, and social activities, TB patients may also be subjected to stigma and discrimination due to cultural norms or beliefs associated with TB, which can cause or exacerbate mental health disorders. Although not well studied, the effect of TB treatment on the cognitive development of children and adolescents as a result of disruption to schooling may also be significant [18].

Despite a growing interest in the long-term sequelae associated with TB, the global prevalence of TB-related disability is currently unknown. Describing the spectrum and prevalence of TB-related disabilities is crucial to informing service provision and policy making in countries where TB is common and to mitigate future disability in patients being treated for TB. In this systematic review, we aimed to quantify the global prevalence and types of TB-related disabilities.

Methods
Search strategy and selection criteria
We performed a systematic review following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines [19]. We searched PubMed, Embase, and Web of Science databases for studies that reported on permanent disability associated with TB, using pre-specified search terms. We checked the reference lists of included papers for additional relevant references and performed a backwards and forwards citation search. Our search strategy (Additional file 1) was developed by a senior research information specialist (IC) and respiratory physician (AB), both with extensive experience in conducting systematic reviews in health and medicine.

The screening of articles by title and abstract was carried out independently by three researchers (KW, KAA and SC) in Rayyan [20]. Full-text papers were then independently screened by four researchers (KW, KAA, CK, and SC) using eligibility criteria described below. Disagreement was resolved through discussion and consensus.

Inclusion criteria
Participants were people in all age groups with any type of TB (pulmonary and extra pulmonary TB, new and relapse, drug-sensitive (DS), and DR-TB), from all regions and countries. Our intervention of interest was TB treatment based on national and international guidelines for TB (for both DS and DR-TB). However, studies without a specific intervention (i.e., for those who did not specifically report that the patients were on TB treatment but which clearly stated that the patients had been diagnosed with TB) were also included.

Our outcomes of interest were the prevalence of TB patients who developed a permanent form of disability, detected or reported after TB diagnosis, and where TB disease or TB treatment may have contributed to the disability. Our definitions of disability are included in Additional file 2.

We included observational studies (e.g., cross-sectional, case-control, or cohort studies) and experimental epidemiological studies that reported data from the year 2000 until July 2019. Our research question in the PICO (Population, Intervention, Comparator, Outcome) format is included in Table 1.

Exclusion criteria
We excluded studies that reported temporary disabilities (for example, a mental health disorder attributable to an adverse event during treatment that was resolved by a change of medication). Descriptive epidemiological studies were also excluded (case reports and case series) as were other systematic reviews; scientific correspondence, posters, and conference abstracts; studies conducted in animals; and historical data reported before the year 2000.

Data extraction and quality assessment
Data were extracted into a Microsoft Excel 2016 spreadsheet (Microsoft, Redmond, Washington, USA) by four researchers (KW, SC, CK, and KA). The data extraction
spreadsheet was pilot tested and refined before extraction. The lists of variables included in the data extraction tool are available in the Additional file 3. All included articles were assessed for quality using a modified Ottawa Newcastle quality assessment scoring tool [21].

Data analysis
Meta-analysis was performed to estimate the pooled prevalence of each form of disability using the inverse variance heterogeneity model. Stratified analyses were conducted by country income-level and TB type, separately for each disability when two or more studies were available on the outcome of interest (see Additional file 4 for details).

This review was registered in the Prospective Register of Systematic Reviews (PROSPERO, CRD42019147488). Ethical approval was not sought for this study as it includes an analysis of secondary data.

Results
Characteristics of the included studies
The search strategy yielded 3485 unique publications, 619 articles remained after the title and abstract screening. After full-text review, 124 publications (comprising 164 datasets) were included in the review. A backward and forward citation search found 410 publications, of which 53 were not identified in the original search; seven of these were subsequently included in the final analysis. Some studies reported more than one type of disability, and thus a total of 175 datasets (217,475 patients) from 131 unique studies were included (Fig. 1).

The characteristics of the included studies are presented in Table 2. The included studies were conducted in 49 countries. The majority of studies were conducted in India 24.6% (n=43) followed by South Africa 9.7% (n=17) and Brazil 5.1% (n=9). The mean age of study participants was 36.7 years (±16.3) and 59.6% of cases were male. More than one-third of studies (39%, n=68) reported that their study population had DS-TB, while 29.1% (n=51) included patients with DR-TB. The site of TB disease was not reported in 41.1% of studies (n=72), while 28.6% (n=50) and 16.0% (n=28) included patients with pulmonary TB (PTB) and extra-pulmonary TB (EPTB), respectively. More than half of the studies (52.9%, n=90) reported that disabilities were diagnosed during TB treatment.

Prevalence of disabilities
The review showed that the most common type of disabilities were mental health disorders (23.1%), respiratory impairment (20.7%), musculoskeletal impairment (17.1%), hearing impairment (14.5%), visual impairment (9.8%), renal impairment (5.7%), and neurological impairment (1.6%).

Sources of heterogeneity
There was large heterogeneity in the prevalence of disability. Two variables, namely country income level and type of TB, were identified as the source of heterogeneity across all types of disability and therefore were used as the primary variables of stratification.

Prevalence of disabilities by country income level
Table 3 shows the number of studies and the prevalence of disabilities associated with TB, stratified by country income level. A total of 43 studies reported respiratory impairment. Nearly two-thirds of patients in LICs (61.2%) and just over half in LMICs (56.1%) experienced some form of respiratory impairment. The prevalence was low among HICs (14.9%) and UMICs (15.3%) (Fig. 2). Similarly, the highest prevalence of patients with mental health disorders was observed among patients in LICs (42.0%) and UMICs (15.3%) (Fig. 3). The prevalence of patients with neurological function impairment was highest in LMICs (30.0%) and UMICs (15.9%) and lowest in LICs (5.9%) and HICs (4.3%; Fig. 4). The highest prevalence of TB patients who experienced hearing impairment (59.1%) was reported in HICs and UMICs 27.4% and 11.0% and 5% were reported from LMICs and LICs, respectively (Fig. 5).

Prevalence of disabilities by the type of TB
Among patients with DS-TB, the prevalence of respiratory impairment was 33.1% while 21.9% of patients reported mental disorders, 12.5% reported neurological impairment, 11.9% reported visual impairment, and 2.3%
reported hearing impairment (Table 3). Among patients with DR-TB, the prevalence of patients reporting respiratory impairment was 58.7% while 26% reported mental disorder, 15% reported hearing impairment, 4.6% reported neurological impairment, and 2.7% reported visual impairment. Studies including patients with DS-TB and DR-TB (with the inclusion of an injectable agent) reported that 37.2% of patients had a neurological impairment, 33.1% had respiratory impairment, 25% had a hearing impairment, and 20.7% had a mental disorder, with none of the studies reporting visual impairment. Neurological impairment was also high in studies which included DS-TB and DR-TB patients who did not receive an injectable agent (28.5%). Additional information on disabilities by HIV status, timing of disability diagnosis, and study design is provided in Table 3.

Quality assessment
The quality of included studies was low to moderate overall, with a median score of 5 points (the maximum score is 9 points). Of the included 131 studies, only 11 studies had a score of 8 or 9 points, regarded as high-quality studies. The remaining studies scored 7 points or less, with 28 of them scoring 4 points or lower, classified as a low-quality study. Additional file 5: Table S1 presents the results of the quality assessment scores and Additional file 6: Table S2 includes the quality assessment tools.

Discussion
This systematic review attempts to quantify the prevalence and types of TB-related disabilities. We found a substantial burden of TB-related disabilities, with four common types: (1) respiratory impairment, (2) hearing impairment, (3) mental health disorders, and (4) neurological impairment.

Respiratory impairment
Respiratory impairment was the most common disability identified in this review. There was inconsistency in how respiratory impairment was diagnosed and reported. However, the prevalence of respiratory impairment was heterogeneous when stratified by country income level. The highest prevalence was reported in LICs (61.2%) and LMICs (56.1%). This may correlate with the high burden of TB in these countries, difficulties in accessing
Table 2 Characteristics of included studies

First author	Publication year	Country	Country income level	Type of TB	Years of data collection	Study design	Male proportion	Mean age	Sample size
Hearing impairment									
Seddon [22]	2012	South Africa	UMI DR	2009–2010	Retrospective cohort	48.0	3.6	94	
Shean* [23]	2013	South Africa	UMI DR	2002–2008	Retrospective cohort	53.9	115		
Ghafar [24]	2015	South Africa	UMI DR	2010	Prospective cohort	45.0	7	25	
Sagwa [25]	2015	Namibia	UMI DR	2004–2014	Retrospective cohort	56.09	36.4	353	
Appana [26]	2016	South Africa	UMI DR	2016	Prospective cohort	52.0	34	52	
Khoza-Shangase [27]	2016	South Africa	UMI DS & DR (I)	2012–2014	Retrospective cohort	46.0	36.6	191	
Trebuq* [28]	2018	Multiple countries†	LI DR	2013–2015	Prospective cohort	66.3	34	1006	
Harouna [29]	2019	Niger	LI DR	2008–2013	Retrospective	70.0	17	10	
Cohen [30]	2019	Malawi	LI DS & DR (I)	2013–2014	Prospective cohort	64.6	37	158	
Shibeshi [31]	2019	Ethiopia	LI DR	2010–2015	Retrospective cohort	54.2	32	879	
Bloss [32]	2010	Latvia	UMI DR	2000–2003	Retrospective cohort	76.0	42	996	
Ribeiro [33]	2015	Portugal	HI DR	2009–2012	Prospective	36.4	41	10	
Batrel [34]	2015	Multiple countries‡	UMI DS	2000–2013	Retrospective cohort	52.0	31.5	314	
Lima [35]	2006	Brazil	UMI DS & DR (I)	2000–2001	Cross-sectional	79.4	38.8	36	
Vasconselos [36]	2017	Brazil	UMI DR	2006–2014	Retrospective cohort	75.0	172		
Kittikraisak [37]	2008	Thailand	LMI DS & DR (I)	2005–2008	Prospective cohort	70.0	35	493	
Bharat [38]	2014	India	LMI DR	2012–2013	Retrospective cohort	63.28	42	207	
Nataprawira* [39]	2016	Indonesia	LMI DS	2007–2010	Prospective cohort	55.2	3.7	29	
Prasad* [40]	2016	India	LMI DR	2009–2010	Prospective	69.4	29.3	98	
Sharma [41]	2016	India	LMI DR	2012	Prospective	68.0	37.5	100	
Synmon* [42]	2017	India	LMI DS & DR (NI)	2013–2015	Prospective cohort	61.3	32.3	93	
Justin [43]	2019	India	LMI DR	2006–2015	Retrospective cohort	46.7	29	30	
Pipana [44]	2018	India	LMI DR	2014–2015	Retrospective cohort	66.7	32.8	108	
Hoa [45]	2015	Vietnam	LMI DR	2010	Cross-sectional	65.0	282		
Lebogang [46]	2012	South Africa	UMI DR	2014–2015	Cross-sectional	49.0	33	53	
Singla* [47]	2009	India	LMI DR	2002–2006	Prospective	53.9	126		
Aznar* [48]	2019	Angola	UMI DR	2013–2015	Prospective	57.4	216		

Mental health disorders

First author	Publication year	Country	Country income level	Type of TB	Years of data collection	Study design	Male proportion	Mean age	Sample size
Issa [49]	2009	Nigeria	LI -	2008	Retrospective cohort	63.1	35.1	65	
Deebew [50]	2010	Ethiopia	LI DS	2009	Case control	41.8	33.4	620	
Ige [51]	2011	Nigeria	LI DS	2010	Prospective cohort	31.8	27.1	88	
Shean* [23]	2013	South Africa	UMI DR	2002–2008	Retrospective cohort	53.9	115		
van den Heuvel [52]	2013	Zambia	LMI DS	2009–2010	Cross-sectional	54.0	33.9	231	
Peltzer [53]	2013	South Africa	UMI DS	2011	Cross-sectional	54.5	36.2	4225	
Peltzer [54]	2013	South Africa	UMI DS	2011	Cross-sectional	54.5	36.1	4900	
Xavier [55]	2015	Angola	UMI DS & DR (I)	2013–2015	Cross-sectional	58.0	18		
Duko [56]	2015	Ethiopia	LI DS	2014	Prospective	34.5	417		
Kehbia [57]	2016	Cameroon	LMI DS	2015	Cross-sectional	49.7	36.9	265	
Ambaw [58]	2017	Ethiopia	LI DS	2014–2016	Cross-sectional	54.2	30	657	
Tomita [59]	2019	South Africa	UMI DR	2015–2016	Prospective cohort	22.0	141		
Dasa [60]	2019	Ethiopia	LI DS & DR (I)	2017	Cross-sectional	59.0	39	403	
First author	Publication year	Country	Country income level	Type of TB	Years of data collection	Study design	Male proportion	Mean age	Sample size
-------------	------------------	------------------------	---------------------	------------	--------------------------	--------------------	-----------------	----------	-------------
Aamir [61]	2010	Pakistan	LMI	DS & DR (I)	2007–2008	Prospective	65		
Hadadi* [62]	2010	Iran	UMI	DS	2003–2005	Retrospective	61.3	39.8	403
Kaukab [63]	2015	Pakistan	LMI	DR	2014	Randomized control trial	45.7		70
Tariq [64]	2018	Pakistan	LMI	DS	2017	Case control	59.6		151
Khan [65]	2018	Pakistan	LMI	DR	2016–2017	Cross-sectional	52.0	31	1279
Bloss [32]	2010	Latvia	UMI	DR	2000–2003	Retrospective cohort	76.0	42	996
Yilmaz [66]	2016	Turkey	UMI	DS	2014–2015	Cross-sectional	63.0	45.5	208
Soriano-Arandes* [67]	2019	Spain	HI	DS & DR (I)	2005–2013	Retrospective cohort	50.7	1.1	134
dos-Santos [68]	2017	Brazil	UMI	-	2013	Cross-sectional	69.8	44.6	86
Castro-Silva [69]	2018	Brazil	UMI	DS	2015–2016	Cross-sectional	62.6	40.7	98
Bharat [38]	2014	India	LMI	DR	2012–2013	Retrospective cohort	63.28	42	207
Pardal [70]	2015	India	LMI	DS	2014–2015	Case control	100.0		100
Galhenage [71]	2016	Sri Lanka	LMI	DS	2014–2015	Cross-sectional	73.0	46.4	430
Prasad* [40]	2016	India	LMI	DR	2009–2010	Prospective cohort	69.4	29.3	98
Akaputra [72]	2017	Indonesia	LMI	DS	2016	Cross-sectional	74.5		55
Salodia [73]	2019	India	LMI	DS & DR (I)	2018	Cross-sectional	57.5	38.4	106
Masumoto [74]	2014	Philippines	LMI	DS	2012	Cross-sectional	65.4	41.9	561
Shen [75]	2014	Taiwan	HI	-	2000–2001	Case control	67.8	60.9	9092
Lee [76]	2017	Taiwan	HI	-	2013–2014	Cross-sectional	65.5	65.2	84
Xu [77]	2017	China	UMI	DS	2013–2014	Cross-sectional	70.5	53.6	372
Gong [78]	2018	China	UMI	DS	2013–2014	Cross-sectional	67.4	47.7	1342
Singla* [47]	2009	India	LMI	DR	2002–2006	Prospective cohort	53.9	26	126
Aznar* [48]	2019	Angola	UMI	DR	2013–2015	Prospective cohort	57.4	30	216

Musculoskeletal impairment

First author	Publication year	Country	Country income level	Type of TB	Years of data collection	Study design	Male proportion	Mean age	Sample size
Hadadi* [62]	2010	Iran	LMI	DS	2003–2005	Retrospective	61.3	39.8	403
Tinsa [79]	2019	Tunisia	LMI	DS	2005–2007	Retrospective cohort	41.5	7.5	41
Sezgi [80]	2014	Turkey	UMI	DS	2005–2010	Retrospective cohort	60.9		21
Batirel [34]	2015	Multiple countries*	UMI	DS	2000–2013	Retrospective cohort	52.0	51	314
Soriano-Arandes* [67]	2019	Spain	HI	DS & DR (I)	2005–2013	Retrospective cohort	50.7	1.1	134
Samuel [81]	2011	India	LMI	DS	2003–2008	Retrospective cohort	68.7	38	16
Kamara* [82]	2013	India	LMI	DS	2011	Cross-sectional	47.0	34	228
Agarwal [83]	2017	India	LMI	DS	2010–2015	Retrospective	40.0	8.2	30
Luo [84]	2018	China	UMI	DS	2009–2015	Retrospective	57.7	38.38	189

Neurological impairment

First author	Publication year	Country	Country income level	Type of TB	Years of data collection	Study design	Male proportion	Mean age	Sample size
Njoku [85]	2007	Nigeria	LI	DS	2000–2004	Prospective	77.2		92
Trebuca* [28]	2018	Multiple countries†	LI	DR	2013–2015	Prospective cohort	66.3	34	1006
Cohen [30]	2019	Malawi	LI	DS & DR (I)	2013–2014	Prospective cohort	64.6	37	158
Benzagmout [86]	2011	Morocco	LMI	DS	2001–2006	Retrospective cohort	64.9	9.1	37
Shalik [87]	2012	Pakistan	LMI	DS	2006–2011	Retrospective cohort	52.0	37.7	50
Barungi [88]	2014	South Africa	UMI	DS	2009	Retrospective	50.0	2.7	36
Quereshi [89]	2013	Pakistan	LMI	DS & DR (I)	2001–2010	Retrospective	57.5	36	87
Table 2: Characteristics of included studies (Continued)

First author	Publication year	Country	Country income level	Type of TB	Years of data collection	Study design	Male proportion	Mean age	Sample size
Alper [90]	2008	Turkey	UMI	DS & DR (I)	2000–2004	Retrospective cohort	58.3	34.5	12
Bloss [32]	2010	Latvia	UMI	DR	2000–2003	Retrospective cohort	76.0	42	996
Christensen [91]	2011	Denmark	HI	DS & DR (I)	2000–2008	Retrospective cohort	48.0	30	50
Miftode [92]	2015	Romania	UMI	DS & DR	2004–2013	Retrospective cohort	59.0	29.3	204
Batirel [34]	2015	Multiple countries‡	UMI	DS	2000–2013	Retrospective cohort	52.0	51	314
Paulsrud [93]	2019	Denmark	HI	DS & DR (I)	2000–2015	Retrospective cohort	29.0	4	21
Soriano-Arandes* [67]	2019	Spain	HI	DS & DR (I)	2005–2013	Retrospective cohort	50.7	1.08	134
Lucena [94]	2015	Brazil	UMI	DS	2010–2013	Cross-sectional	79.2	50.8	24
Ramos [95]	2017	USA	HI	DS	2003–2011	Retrospective cohort	61.0	51	2789
Karande [96]	2005	India	LMI	DS	2000–2003	Prospective	3.1	123	
Kalita [97]	2007	India	LMI	DS	2003–2006‡	Prospective cohort	58.5	33.2	65
Wani [98]	2008	India	LMI	DS	2004–2007‡	Prospective	4.0	38	
Garg [99]	2010	India	LMI	DS	2005–2007	Prospective cohort	53.0	26	60
Gunawardhana [100]	2012	Sri Lanka	LMI	DS	2010–2011	Prospective cohort	63.0	44	89
Lisha* [101]	2012	India	LMI	DS	2008–2010	Cross-sectional	81.0	47	224
Kamara* [82]	2013	India	LMI	DS	2011	Cross-sectional	47.0	34	228
Nataprawira* [39]	2016	Indonesia	LMI	DS	2007–2010	Prospective cohort	55.2	3.7	29
Symon [42]	2017	India	LMI	DS & DR (NI)	2013–2015	Prospective cohort	61.3	32.3	93
Justin [43]	2019	India	LMI	DR	2006–2015	Retrospective cohort	46.7	29	30
Sheu [102]	2010	Taiwan	HI	DS	2000–2003	Retrospective cohort	63.9	2283	
Chen [103]	2014	Taiwan	HI	DS	2002–2006	Prospective	61.5	65.1	38
Chen [104]	2015	Taiwan	HI	-	2009–2010	Case control	76.5	50.8	17
Hoa [45]	2015	Vietnam	LMI	DR	2010	Cross-sectional	65.0	282	
Shen [105]	2016	Taiwan	HI	-	2000–2009	Retrospective cohort	71.9	63	100000
Luo [84]	2018	China	UMI	DS	2009–2015	Retrospective cohort	57.7	38.3	189
Aznar* [48]	2019	Angola	UMI	DR	2013–2015	Prospective	57.4	30	216
Sheu [102]	2010	Taiwan	HI	-	2000–2003	Retrospective cohort	-	-	2283

Renal impairment

Shean* [23]	2013	South Africa [106]	UMI	DR	2002–2008	Retrospective cohort	53.9	115	
Arnold [107]	2017	UK	HI	DR	2008–2014	Prospective	8		
Ramos [95]	2017	USA	HI	-	2003–2011	Retrospective cohort	61.0	51	2789
Wagaskar [108]	2016	India	LMI	DS	2011–2013	Prospective	58.1	36.2	31
Aznar* [48]	2019	Angola	UMI	DR	2013–2015	Prospective	57.4	30	216

Respiratory impairment

Issa [49]	2009/10	Nigeria	LMI	-	2008	Prospective cohort	63.1	35.1	67
Maydell [109]	2010	South Africa	UMI	DS	2004–2007	Retrospective cohort	38.1	1.7	21
Nghane [110]	2015	Cameroon	LMI	DS	2014	Cross-sectional	54.3	34.2	269
Manji [106]	2016	Tanzania	LI	DS	2014	Cross-sectional	60.5	501	
Chin [111]	2018	Zimbabwe	LMI	DS & DR (I)	2011–2016	Prospective cohort	41	175	
Fiogbe [112]	2019	Benin	LI	DS	2016	Cross-sectional	67.7	37	189
Mikoko [113]	2019	South Africa	UMI	DS	2016	Retrospective cohort	50.8	50.8	173
Cohen [30]	2021	Malawi	LI	DS & DR (I)	2013–2014	Prospective cohort	64.6	37	158
Table 2 Characteristics of included studies (Continued)

First author	Publication year	Country	Country income level	Type of TB	Years of data collection	Study design	Male proportion	Mean age	Sample size
Baig [114]	2010	Pakistan	LMI -	-	2007	Prospective cohort	76.5	53.4	47
Radovic [115]	2016	Serbia	UMI DS	2005–2012	Case control	80.0	58.8	40	
Soriano-Arandes* [67]	2019	Spain	Hi DS & DR (I)	2005–2013	Retrospective cohort	50.7	1.1	134	
Vashakidze [116]	2019	Georgia (Tbilisi)	LMI DR	2009–2011	Cross-sectional	57.0	31.2	58	
Ramos [117]	2006	Brazil	UMI DS	2000–2004	Retrospective cohort	30	218		
Morene [118]	2007	Brazil	UMI DS	2003	Prospective	66.6	35.2	75	
Byrne [119]	2017	Peru	UMI DS & DR (I)	2014	Prospective cohort	57.6	29	177	
Godoy [120]	2012	Brazil	UMI DR	2008–2010	Cross-sectional	67.0	43.7	18	
Nihues [121]	2019	Spain	HI DS	2005–2013	Retrospective cohort	50.7	1.1	134	
Maguire [122]	2009	Indonesia	LMI DS	2003–2004	Prospective cohort	66.7	29.1	69	
Singla [47]	2009	India	LMI DR	2009	Cross-sectional	55.6	33.5	51	
Bhattacharyya [123]	2011	India	LMI -	2006–2010	Retrospective cohort	30	161		
Lisha* [101]	2012	India	UMI DS	2008–2010	Cross-sectional	81.0	47	224	
Das [124]	2014	India	LMI DR	2012–2014	Retrospective cohort	57.1	34.7	45	
Gandhi [125]	2016	India	LMI DS	2013	Case control	71.8	146		
Panda [126]	2016	India	LMI -	2016	Cross-sectional	71.3	38	101	
Deepak [127]	2017	India	LMI -	2016	Case control	88.9	60.2	74	
Mukati [128]	2017	India	LMI DR	2014	Prospective cohort	70.0	36.8	130	
Santra [129]	2017	India	LMI DS	2014–2015	Cross-sectional	84.1	53.4	218	
Patil [130]	2018	India	LMI DS	2013–2017	Prospective	60.1	1000		
Singla [131]	2018	India	LMI DR	2002–2006	Prospective	54.3	27.6	46	
Gupta [132]	2019	India	LMI DS	2016–2019	Prospective cohort	52.0	32	172	
Lee [133]	2003	Republic of Korea	Hi DS	2003–2006	Retrospective cohort	50.0	65.2	11	
Larm [134]	2010	China	UMI DS	2003–2006	Retrospective cohort	62.4	61.9	1954	
Hwang [135]	2014	Republic of Korea	Hi DS	2001–2002	Prospective	45.4	51	1384	
Rhee [136]	2013	Republic of Korea	Hi DS	2005–2012	Retrospective cohort	60.5	65.6	457	
Jung [137]	2015	Republic of Korea	Hi -	2008–2012	Prospective	43.3	57.1	14967	
Jo [138]	2017	Republic of Korea	Hi DS	2010–2015	Retrospective	195			
Jinnmin [139]	2018	China	UMI DS	2008–2016	Retrospective cohort	67.5	76.8	104	
Park [140]	2018	Republic of Korea	Hi DS	2011–2017	Retrospective	85.6	73.2	182	
Sun [141]	2018	China	UMI DS	2013–2016	Retrospective	49.6	34.5	135	
Akkara [142]	2013	India	LMI DS	2011–2012	Prospective	74		257	
Visual impairment									
Shean* [23]	2013	South Africa	UMI DR	2002–2008	Retrospective cohort	53.9	615		
Bloss [32]	2010	Latvia	UMI DR	2000–2003	Retrospective	76.0	42	996	
Urzua [143]	2017	Chile; Spain	Hi DS	2002–2012	Retrospective	25.7	54.9	35	
Gunasekeran [144]	2018	UK	Hi DS	2007–2014	Retrospective	53.4	48.5	354	
Bharat [38]	2014	India	LMI DR	2012–2014	Retrospective	63.3	42	207	
Soumyaya [145]	2014	India	LMI DS	2011–2012	Retrospective	67.5	34.4	61	
Natapravina* [39]	2016	Indonesia	LMI DS	2007–2010	Prospective	55.2	3.67	29	
Synnon* [42]	2017	India	LMI DS & DR (NI)	2013–2015	Prospective	61.3	32.3	93	
Hisa [146]	2015	Taiwan	Hi -	2000–2010	Retrospective	67.9	56	6994	
health care, or poverty. Poverty is widely recognized as a risk factor for TB and may also result in respiratory impairment [149–151]. High rates of respiratory impairment in LICs and LMICs may also be partially explained by low levels of health service coverage [152, 153]. High coverage of essential health services, including early access to TB diagnosis, treatment, and care, with appropriate monitoring of patients while on treatment, may minimize the long-term sequelae and disabilities associated with TB [154]. Other causes of lung diseases such as cigarette smoking and air pollution (indoor and outdoor) may contribute to the high prevalence of respiratory disabilities observed in LICs and LMICs [155, 156]. One systematic review reported a positive association between a history of TB treatment and chronic respiratory diseases, including COPD and bronchiectasis [157]. This association was much stronger in non-smokers and in high TB incidence countries [157]. WHO has recommended an integrated strategy to manage respiratory patients in primary health care settings with a focus on priority respiratory diseases, particularly TB [158].

Respiratory impairment was also higher among those with DR-TB. We found an almost twofold increase in the prevalence of respiratory impairment among patients with DR-TB (58.7%), compared with DS-TB (33.1%). This is consistent with previous research demonstrating a greater prevalence of COPD among successfully treated MDR-TB patients compared to patients treated for DS-TB and community controls [159]. This supports the notion of integration of DR-TB programs with respiratory health care. Importantly, there are currently no international guidelines that recommend screening for respiratory impairment after TB treatment, although there is interest in this from several clinical and public health groups [160]. Post TB treatment respiratory care including outpatient pulmonary rehabilitation may be beneficial for some TB survivors, especially in countries with a high burden of DR-TB. DR-TB treatment completion may be a possible entry point into these programs, where they exist. Similarly, national TB programs may want to consider how they provide incentives and enablers to patients with DR-TB so that they can monitor patients closely, or consider how they can link patients to services such as social protection schemes and disability services. Both are key interventions included in the End TB Strategy [161] and in many national TB strategic plans. While incentives and enablers are frequently provided, linkages to social protection and disability services are less frequently implemented.

Mental health disorders
Mental health disorders have historically been neglected as a focus in TB research [162–164]. Our review revealed a high prevalence of mental health disorders such as depression, anxiety and mood disorders, post-traumatic stress disorder (PTSD), and psychosis among TB patients, with substantial variation by country income level. The highest prevalence of mental health disorders was reported in LICs (42%) and the lowest prevalence in HICs (4.3%). Although our study did not include comparison data for the general population, based on other literature, we note that the prevalence of mental health disorders among TB patients in our review is higher than the prevalence of mental health disorders among the general population [165]. The prevalence of mental health disorders in our review was similar to the prevalence of mental health disorders among people with other chronic diseases such as HIV infection [166], diabetes mellitus [167], and cancer [168], from previous systematic reviews.

Table 2 Characteristics of included studies (Continued)

First author	Publication year	Country	Country income level	Type of TB	Years of data collection	Study design	Male proportion	Mean age	Sample size
Others ^	2011	Lesotho	LMI	DR	2007–2009	Retrospective cohort	60	-	186
Jo [138]	2017	Republic of Korea	Hl	DS	2010–2015	Retrospective cohort	67	63.5	195
Lhita [101]	2012	India	LMI	DS	Cross-sectional			224	
Wani [98]	2008	India	LMI	DS	Prospective cohort			38	
Harouna [29]	2019	Niger	LI	DR	2008–2013	Retrospective cohort	84	31	110
Prakash [148]	2017	India	LMI	DR	2008–2013	Prospective cohort	55	11.3	44

AFR: African Region, SEAR: South-East Asia Region, EUR: European Region, EMR: Eastern Mediterranean Region, PAHO: Pan American Health Organization, WPR: Western Pacific Region, LI: low-income, LMI: lower-middle income, UMI: upper-middle income, HI: high-income, DS: drug-sensitive TB, DR: drug-resistant TB, DS & DR (I): drug-sensitive and drug-resistant TB with injectables for treatment, DS & DR (NI): drug-sensitive and drug-resistant TB with no injectable
*Indicates studies with more than one disability
^Others include hypothyroidism, diabetes, carcinoma, endocrinopathies, and hepatic failure

Table 2 Characteristics of included studies (Continued)

Study	Country	Type of TB	Years of data collection	Study design	Male proportion	Mean age	Sample size
Alene	Turkey,	Egypt,	Cote d'Ivoire, Cameroon,	Retrospective cohort	60	-	186
Others	Angola,	Guinea,	Benin, Dem. Rep. Congo,	Retrospective cohort	67	63.5	195
Others	Pakistan,	India,	Nepal,	Cross-sectional	224		
Others	Bangladesh,	India,	Cambodia,	Prospective cohort	38		
Others	Nigeria,	Cote d'Ivoire,	Cameroon,	Retrospective cohort	84	31	110
Others	India,	LMI,	DS	Prospective cohort	55	11.3	44

Mental health disorders
Mental health disorders have historically been neglected as a focus in TB research [162–164]. Our review revealed a high prevalence of mental health disorders such as depression, anxiety and mood disorders, post-traumatic stress disorder (PTSD), and psychosis among TB patients, with substantial variation by country income level. The highest prevalence of mental health disorders was reported in LICs (42%) and the lowest prevalence in HICs (4.3%). Although our study did not include comparison data for the general population, based on other literature, we note that the prevalence of mental health disorders among TB patients in our review is higher than the prevalence of mental health disorders among the general population [165]. The prevalence of mental health disorders in our review was similar to the prevalence of mental health disorders among people with other chronic diseases such as HIV infection [166], diabetes mellitus [167], and cancer [168], from previous systematic reviews.
Categories	Respiratory impairment	Mental health disorders	Hearing impairment	Neurological impairment	Visual impairment	Musculoskeletal impairment						
	Number of studies	Prevalence of disabilities	Number of studies	Prevalence (%)	Number of studies	Prevalence of disabilities						
Overall	43	20.7	41	23.1	27	14.5	33	1.6	9	9.8	9	17.1
Countries income level												
High-income	9	14.9	3	4.3	1	59.1	9	1.3	3	11.1	1	2.5
Upper middle-income	12	15.3	14	30.6	11	27.4	8	15.9	2	3.1	4	32.5
Lower middle-income	19	56.1	18	31.3	11	11.0	13	25.6	4	10.7	4	4.7
Low-income	3	61.2	6	42.0	4	5.0	3	5.9	-	-	-	-
Type of TB												
Drug susceptible	24	33.1	24	21.9	2	2.3	17	12.5	4	11.9	8	20.2
Drug resistant	7	58.7	7	26.0	20	15.0	6	4.6	3	2.7	-	-
Drug susceptible and drug resistant	-	-	-	-	1	2.6	3	28.5	1	6.5	-	-
Drug susceptible and drug resistant												
(injectable)	4	33.1	6	20.7	3	25.0	5	37.2	-	-	1	2.5
Study design												
Cohort	28	18.1	15	23.2	24	14.5	28	1.5	9	9.8	8	23.0
Cross-sectional	10	54.5	22	33.3	3	13.6	4	6.8	-	-	1	2.7
Case control	5	47.9	4	05.0	-	-	1	30.5	-	-	-	-
HIV (%)												
< 1	5	14.7	5	4.9	3	2.7	5	9.0	1	1.1	3	21.2
1–50	9	51.8	12	31.5	10	12.5	11	8.2	3	3.3	1	38.2
51–100	3	38.9	6	30.0	3	22.5	12	65.1	-	-	-	-
Not recorded	26	18.8	18	38.5	11	26.4	16	1.3	5	11.5	5	12.8
Timing of disability diagnosis												
Before TB treatment	9	17.6	1	64.2	-	-	6	8.9	1	75.0	1	36.9
During TB treatment	6	61.0	35	22.0	22	14.7	11	1.23	4	3.0	6	12.4
After TB treatment	27	19.3	2	19.8	4	14.1	14	40.9	4	11.1	2	4.0
Not recorded	1	63.2	3	44.7	1	4.3	2	5.7	-	-	-	-

Dash line (-) indicates that there was no available study for the sub-group analysis.
Fig. 2 Prevalence of tuberculosis patients with hearing-related disorders from 24 studies in 23 countries

Fig. 3 Prevalence of tuberculosis patients with mental health disorders from 39 studies in 18 countries
Fig. 4 Prevalence of tuberculosis patients with neurological impairment from 31 studies in 27 countries.

Fig. 5 Prevalence of tuberculosis patients with respiratory impairment from 42 studies in 17 countries.
The relationship between mental health disorders and TB may be specific to the socioeconomic context or other factors such as health care affordability. Also, it has been well documented that TB patients and their families frequently face stigma and discrimination [169, 170]. Depression, anxiety, and other mental health disorders could be connected to this experience of stigma, loss of identity, ongoing symptoms, and the socioeconomic consequences of TB [171]. Mental health disorders can contribute to an inability to complete TB treatment and subsequently to disability [172]. The high burden of mental health disorders associated with TB suggests that additional efforts are required to improve TB care [173, 174].

Hearing impairment

We found hearing impairment (hearing loss) among TB survivors to be common, particularly among patients with DR-TB or after taking second-line TB medications. The prevalence of hearing impairment among patients with DR-TB was 15%, which is seven times higher than the prevalence of hearing impairment among patients with DS-TB (2.3%). The disorder of hearing in patients on second-line TB medications, such as the aminoglycosides (i.e., amikacin, kanamycin, and streptomycin), is common [36, 175]. A previously published review of aminoglycoside-induced hearing impairment among TB patients also reported a high incidence of ototoxicity (7–90%) [176]. The appropriate use of TB medications should help health care providers prevent hearing loss among patients. Therefore, WHO now recommends MDR-TB treatment without the aminoglycosides [174]. We found that the prevalence of hearing impairment was higher in HICs (59%) and UMICs (27%) compared to LMICS (11%) and LICs (5%). This could be due to differences in diagnostic methods or the availability of diagnostic (auditory) equipment in HICs and UMICs to assess hearing impairment [22]. Ascertainment and/or publication bias may also be relevant here as few studies were available from LMICS and LICs. Different audiological assessment methods were used for the diagnosis of hearing impairment in our included studies, including otoscopy, pure tone audiometry, otoacoustic product emissions, and automated auditory brainstem response testing [22]. Audiometry was not always available for all patients to assess hearing impairment at baseline, during treatment, and after completion of TB treatment, to quantify the timeline of hearing loss. As a result, it was not possible to establish the main cause of hearing loss among patients with TB in this review. However the prevalence of hearing impairment in this review (14.6%) is substantially higher than the global estimates of people with disabling hearing loss in 2018 (6.1%) [177]. It is worthwhile to highlight the definition of hearing impairment as defined in this review and the local estimates may be different [174]. The hearing impairment could have a considerable effect on the quality of life, work, and social relationships [22, 178]. Therefore, hearing assessments for TB patients receiving aminoglycosides should be included as part of the management package. In addition, rehabilitation packages for those with hearing impairment should be offered routinely [22, 179].

Neurological impairment

The patients on the second-line injectable drugs reported more than 37% neurological impairment compared to patients without an injectable TB medication (28.5%). The most common types of TB-related neurological impairments reported in our review were paraplegia, hemiplegia, cranial nerve palsies, peripheral neuropathy, hydrocephalus, and visual loss. These neurological impairments were permanent and irreversible and therefore have long-term functional, social, economic, and psychological consequences for affected patients [180, 181]. TB of the central nervous system accounts for 5–10% of all EPTB globally, with TB meningitis, intracranial TB, and spinal TB being some of the most severe forms of TB [182, 183]. TB of the spine (or Pott’s disease) affects the intervertebral discs and adjacent vertebrae, which may result in vertebral collapse, destruction, skeletal deformities, and disability [184, 185]. In addition, compression of the spinal cord and/or nerves may result in neurologic deficits [186]. To reduce the burden of neurological deficits in children from TB meningitis, improving BCG vaccination coverage in countries with low coverage of BCG is an important intervention [187].

The findings of our review suggest a pressing need to prevent or screen for TB-related disability among TB patients and survivors. Strategies to prevent or reduce TB-related disability include improving access to health care, promoting early TB diagnosis, appropriate use of TB medications, and providing training for health care workers. Adverse event monitoring, pharmacovigilance, therapeutic drug monitoring, and providing incentives and enablers for patients for treatment adherence or compliance and report adverse events should be introduced as part of the TB treatment package. After TB treatment, care including follow-up and continued monitoring for possible disability or sequelae should be initiated urgently.

Limitations

This systematic review has several limitations. There was large heterogeneity in the prevalence of disabilities across studies which limited our ability to conduct a meta-analysis for all type of disabilities. There was also a large amount of missing data noted in our studies; for
example, nearly 25% of studies had missing data for the type of TB, and HIV status was missing for 50% of the included studies. Therefore, we were unable to include these variables in the main analysis to explore the heterogeneity in these variables. In addition, in some studies, it was not possible to determine the temporal nature of the disability (i.e., whether disability occurred before, during, or after TB treatment) because the data were collected from studies that used cross-sectional study designs. For example, more than half of the papers (53%) included in the mental health impairment were cross-sectional studies. We may have some misclassification of disability for this reason. However, we attempted to explain this by conducting subgroup analysis. Moreover, we did not include studies published in languages other than English; 63 studies were excluded for this reason. Therefore, we may be missing important studies, from high TB and DR-TB burden countries such as China, the Russian Federation, and others. Lastly, as with all meta-analyses, the validity of the results is limited by the conduct and reporting of the studies from which the data were extracted and pooled.

Conclusions
TB-related disabilities are common affecting different body parts. The burden of TB-related disability varied by the income of country, susceptibility of TB, and second-line TB drugs. The commonly reported disabilities were respiratory impairment, hearing impairment, mental health disorders, and neurological impairment. Therefore, measures to prevent and reduce TB-related disabilities should be introduced urgently as a comprehensive TB treatment package.

Abbreviations
BCG: Bacillus Calmette–Guerin; COPD: Chronic obstructive pulmonary disease; COVID-19: Coronavirus disease; DALYs: Disability-adjusted life years; DR: Drug-resistant; DR-TB: Drug-resistant TB; DS: Drug-sensitive; EPTB: Extra-pulmonary TB; HICs: High-income countries; HIV: Human immunodeficiency virus; LICs: Low-income countries; LMICs: Low- and middle-income countries; MDR-TB: Multidrug-resistant tuberculosis; PICO: Population, Intervention, Comparator, Outcome; PRISMA: Preferred Reporting Items for Systematic Reviews and Meta-Analyses; PROSPERO: Prospective Register of Systematic Reviews; PTSD: Post-traumatic stress disorder; WPRO: World Health Organization Regional Office for the Western Pacific; TB: Tuberculosis; MICS: Low- and middle-income countries; WHO: World Health Organization

Supplementary Information
The online version contains supplementary material available at https://doi.org/10.1186/s12916-021-02063-9.

Additional file 1. Search strategies.
Additional file 2. Definitions of disability in our study.
Additional file 3. Variables included in the data extraction tools.
Additional file 4. Data analysis.
Additional file 5: Table S1. Quality assessment tools.
Additional file 6: Table S2. Quality assessment article summary table.

Acknowledgements
Thank you for ANU and WHO WPRO for providing the opportunity to undertake this collaborative project.

Authors’ contributions
KAA, KW, and KV conceived the study, which was refined by SC, KC, TI, KR, FM, AB, and JC. KC conducted the literature search. KAA, KW, SC, and KC screened the full-text papers and extracted the data. KAA ran the analysis. KAA, KW, SC, KC, and KV drafted the manuscript, and all authors provided input into revisions and approved the final draft for submission.

Funding
This review was funded by the End TB Unit, World Health Organization Regional Office for the Western Pacific, under an Agreement for Performance of Work contract, with Australian National University. In-kind support was provided by the Australian National University, Curtin University, the Telethon Kids Institute, The University of Sydney, and Bond University. KV is supported by a Sidney Sax Early Career Fellowship from the Australian National Health and Medical Research Council (NHMRC), Canberra ACT, Australia (GNT1121611). SC is supported by NHMRC ISEP Centre for Research Excellence grant (APP1107393). KAA is funded by NHMRC Investigator Grant (APP1196549). The funders provided no input into the undertaking or reporting of the research.

Availability of data and materials
A list of included studies has been made available. The study protocol can be accessed on PROSPERO (CRD42019147488).

Declarations
Ethics approval and consent to participate
Not applicable
Consent for publication
All authors read and approved the final manuscript.

Competing interests
The authors have no competing interests to declare.

Author details
1Faculty of Health Sciences, Curtin University, Kent St, Bentley, Perth 6102, Western Australia, Australia. 2Telethon Kids Institute, 15 Hospital Ave, Nedlands, Perth, Western Australia 6009, Australia. 3Research School of Population Health, The Australian National University, 62 Mills Road, Acton, Canberra, ACT 2601, Australia. 4World Health Organization (WHO) Regional Office for the Western Pacific, The Philippines, Manila, Philippines. 5St Vincent’s Hospital, Sydney, 406 Victoria St, Darlinghurst, Sydney 2010, New South Wales, Australia. 6The University of New South Wales, Randwick, Sydney 2031, New South Wales, Australia. 7Institute for Evidence-Based Healthcare, Bond University, 14 University Drive, Robina 4226, Queensland, Australia. 8Karolinska Institutet, Solnavägen 1, 171 77 Solna, Stockholm, Sweden. 9The University of Sydney, University Road, Camperdown, Sydney 2066, New South Wales, Australia.

Received: 14 March 2021 Accepted: 14 July 2021
Published online: 09 September 2021

References
1. WHO. Global tuberculosis report 2020. Geneva; 2020.
2. WHO. International classification of functioning, disability and health. Geneva; 2012.
3. WHO. World Report of Disability. Geneva; 2011.
4. Alene KA, Wangdi K, Clements AC. Impact of the COVID-19 pandemic on tuberculosis control: an overview. Trop Med Infect Dis. 2020;5(3):123. https://doi.org/10.3390/tropicalmed5030123.
5. McQuad FD, McGreeh N, Read JM, Sumner T, Houben RM, White RG, et al. The potential impact of COVID-19-related disruption on tuberculosis burden. Eur Respir J. 2020;56.
6. Byrne AL, Marais BJ, Mitnick CD, Garden FL, Lecca L, Contreras C, et al. Chronic airflow obstruction after successful treatment of multidrug-resistant tuberculosis. ERI Open Research. 2017;3(3):00026–2017.
van Kampen SC, Wanner A, Edwards M, Harris ED, Kirenga BJ, Chakaya J, et al. International research and guidelines on post-tuberculosis chronic lung disorders: a systematic scoping review. BMU Glob Health. 2018;3(4):e000745. https://doi.org/10.1186/s40713-018-000745.

Anmar AF, Cotson S, Kato B, Tan WC, Studnicka M, Jenson C, et al. Tuberculosis associates with both airflow obstruction and low lung function: BOLD results. Eur Respir J. 2015;46(6):1014–12. https://doi.org/10.1183/13993003.02325–2014.

Akka S, Shah A, Adala M, Akkara A, Rathi A, Shah D. Pulmonary tuberculosis: the day after. Int J Tuberc Lung Dis. 2013;17(6):810–3. https://doi.org/10.5858/ijtln.2012.0317.

Coates MM, Kimbu A, Gupta N, Wroe EB, Alder AJ, Kwan GF, et al. Burden of non-communicable diseases from infectious causes in 2017: a modelling study. Lancet Glob Health. 2020;8(12).

Whiteman M, Espinoza L, Post MJ, Bell MD, Falcone S. Central nervous system tuberculosis in HIV-infected patients: clinical and radiographic findings. Am J Neuroradiol. 1995;16(6):1319–27.

Khanha S, Sabhanwal S. Spinal tuberculosis: a comprehensive review for the modern spine surgeon. Spine. 2019;19(11):1588–70. https://doi.org/10.1016/j.spinee.2019.05.002.

Zhang J, Herdman T, Saunders M, Montoya R, Ramos E, Tovar M, et al. Poverty. 2020;9(1):4. https://doi.org/10.1186/s40249-019-0619-4.

Coates MM, Kimbu A, Gupta N, Wroe EB, Alder AJ, Kwan GF, et al. Burden of non-communicable diseases from infectious causes in 2017: a modelling study. Lancet Glob Health. 2020;8(12).

Khoza-Shangase K, Stirk M. Audiological testing for ototoxicity monitoring in patients taking kanamycin for multidrug resistant tuberculosis. Iran J Pharm Res. 2010;9(4):169–73. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2943149/.

Bhatel A, Erdem H, Sengul C, Pehlivanoglu F, Ramusaco E, Gulsum S, et al. The course of spinal tuberculosis (Pott disease): results of the multinational, multicentre BackBone-2 study. Clin Microbiol Infect. 2015;21(11):e109–e18.

Lima ML, Lessa F, Aguilar-Santos AM, Medeiros Z. Hearing impairment in patients with tuberculosis from Northeast Brazil. Rev Inst Med Trop Sao Paulo. 2006;48(2):99–102. https://doi.org/10.1590/S0036-46652006000200008.

Vaccinocèles KA, Frota S, Ruffino-Netto A, Kritski AL. The importance of audiometric monitoring in patients with multidrug-resistant tuberculosis. Rev Soc Bras Med Trop. 2017;50(5):645–51. https://doi.org/10.1590/0037-8692-0465-2016.320

Kittikraisak W, Burapat C, Nateniyom S, Aksilp S, Manikatham W, Sirinak C, et al. Improvements in physical and mental health among HIV-infected patients treated for TB in Thailand. Southeast Asian J Trop Med Public Health. 2012;43(6):1361–71.

Singla N, Singla R, Fernandes S, Behera D. Post treatment sequelae of multi-drug resistant tuberculosis patients. Indian J Tuberc. 2009;56(4):206–12.
to tuberculosis in children younger than 2 years of age in Catalonia. Front Pediatr. 2019;7:238. https://doi.org/10.3389/fped.2019.00238.

60. Santos AP, Lazari TK, Silva DR. Health-related quality of life, depression and anxiety in hospitalized patients with tuberculosis. Tuberc Respir Dis. 2017;80(1):69–76. https://doi.org/10.1016/j.trd.2017.01.019.

61. Castro-Silva KM, Canvalho AG, Cavalcanti MT, Martins PDS, Franca JR, Oquendo M, et al. Prevalence of depression among patients with presumptive pulmonary tuberculosis in Rio de Janeiro, Brazil. Braz J Psychiatry. 2019;41(4):316–23. https://doi.org/10.1590/1516-4466-2018-0076.

62. Singh L, Pardal PK, Prakash J. Psychiatric morbidity in patients of pulmonary tuberculosis—an observational study. Ind Psychiatry. 2015;24(2):168–71. https://doi.org/10.4103/0972-6748.161722.

63. Galhenage JS, Rupasinghe JP, Abeywardena GS, de Silva AP, Williams SS, Gunasena B. Psychological morbidity and illness perception among patients receiving treatment for tuberculosis in a tertiary care centre in Sri Lanka. Ceylon Med J. 2016;61(1):37–40. https://doi.org/10.4038/cmj.v61i1.8261.

64. Akopatra R, Qumroaay’un S, Freihebn H. Effect of duration tuberculosis treatment on depression symptoms level of tuberculosis patients in Karang Bahagia, Prim Health Care Bekasi. 2017;1:150–4.

65. Salodia UP, Sethi S, Khokhar A. Depression among tuberculosis patients attending a DOTS centre in a rural area of Delhi: a cross-sectional study. Ind J Public Health. 2019;63(1):139–43. https://doi.org/10.4103/ijnjph.IJPH_1_08.

66. Mazumoto S, Yamamoto T, Ohtako A, Yoshimatsu S, Queri A, Amiya Y. Prevalence and associated factors of depressive state among pulmonary tuberculosis patients in Manila, The Philippines. Int J Tuberc Lung Dis. 2014;18(2):174–9. https://doi.org/10.5588/ijtl.d.13.0335.

67. Shen X, Yuan Z, Mei J, Zhang Z, Guo J, Wu Z, et al. Anti-tuberculosis drug-induced liver injury in Shanghai: validation of Hy’s Law. Drug Saf. 2014;37(1):43–51. https://doi.org/10.1007/s40264-013-0119-6.

68. Lee LY, Tung HH, Chen SC, Fu CH. Perceived stigma and depression in initially diagnosed pulmonary tuberculosis patients. J Clin Nurs. 2016;25(23-24):3481–23. https://doi.org/10.1111/jocn.13637.

69. Xu M, Markstrom U, Lu J, Xu L. Survey on tuberculosis patients in rural areas in China: tracing the role of stigma in psychological distress. Int J Environ Res Public Health. 2017;14(10).

70. Gong Y, Yan S, Qiu L, Zhang S, Lu Z, Tong Y, et al. Prevalence of depressive symptoms and related risk factors among patients with tuberculosis in China: a multistage cross-sectional study. Am J Trop Med Hyg. 2018;98(6):1624–8. https://doi.org/10.4269/ajtmh.18-0175.

71. Tinsa F, Essaddam L, Fitouti Z, Nouira F, Douira W, Ben Becher S, et al. Extra-pulmonary tuberculosis in children: a study of 41 cases. Tunis Med. 87(10):693–8.

72. Sezgi C, Taylan M, Kaya H, Sen HS, Akiayak O, Bulut M, et al. Spinal tuberculosis: a retrospective chart review. Acta Medica Mediterr. 2014;30(3):725–33. https://doi.org/10.31502/1516-4466-2018-0076.

73. Njoku CH, Makusidi MA, Ezunu EO. Experiences in management of Pott's Disease in Patients of Orthopaedic Practice. Paper Presented at the 4th International Conference on Orthopaedic Practice and Research, Lagos, Nigeria. 2018;2:114–20.

74. Orcau A, Martin-Nalda A, et al. Clinical presentations and outcomes related to tuberculosis in children younger than 2 years of age in Catalonia. Front Pediatr. 2019;7:238. https://doi.org/10.3389/fped.2019.00238.

75. Shah MA, Shah M, Channa F. Criteria indicating morbidity in tuberculosis meningitis. J Pak Med Assoc. 62(11):1137–9.

76. Nicollete N-B, Wilmshurst J, Mulkens R, James N. Presentation and outcome of tuberculous meningitis among children: experiences from a tertiary children’s hospital. Afr Health Sci. 2014;14(1):143–9. https://doi.org/10.4314/ahs.v14i1.22.

77. Qureshi MA, Khalique AB, Afzal W, Pasha IF, Aebi M. Surgical management of contiguous multilevel thoracolumbar tuberculosis spondylodiscitis. Eur Spine J. 2013;22(54):618–23. https://doi.org/10.1007/s00586-012-2459-9.
90. Eker A, Tansel O, Yuksel P, Celik AD. Evaluation of twelve patients with tuberculous meningitis. Turk J Neurosurg. 2018;28(6):909–15.

91. Christensen AS, Andersen AB, Thomsen VO, Andersen PH, Johansen IS. Tuberculous meningitis in Denmark: a review of 50 cases. BMC Infect Dis. 2021;11(1):47. https://doi.org/10.1186/s12879-021-05234-7.

92. Mithode EG, Donneau OS, Leca DA, Juangariu G, Teodor A, Humruzache M, et al. Tuberculous meningitis in children and adults: a 10-year retrospective comparative analysis. PLoS One. 2015;10(7):e0133477. https://doi.org/10.1371/journal.pone.0133477.

93. Paulbrud C, Poulsen A, Vissing N, Johansen IS, Nygaard U. Risk assessment of the functional outcome for cerebral infarction in tuberculous meningitis. Rev Neurol (Paris). 2014;170(8-9):512–6. https://doi.org/10.1016/j.neurol.2014.06.013.

94. Lucena MM, da Silva FS, da Costa AD, Guimaraes GR, Ruas AC, Braga FP, et al. The epidemiology of spinal tuberculosis in the United States: an analysis of 2002–2011 data. J Neurosurg Spine. 2017;26(4):507–12.

95. Kiarande S, Gupta V, Valkurni M, Jashi A. Prognostic clinical variables in children with tuberculous meningitis: an experience from Mumbai, India. Neurol India. 2005;53(2):191–5; discussion 5-6. https://doi.org/10.4103/0028-3886.16407.

96. Kalita J, Misra UK, Ranjan P. Predictors of long-term neurological sequelae of tuberculous meningitis: a multivariate analysis. Eur J Neurol. 2007;14(1):33–7. https://doi.org/10.1111/j.1468-1331.2006.01534.x.

97. Wani AM, Hussain WM, Fatani M, Shakour BA, Akhtar M, Ibrahim F, et al. Changes in respiratory function impairment following the treatment of severe pulmonary tuberculosis - limitations for the underlying COPD detected. Int J Chron Obstruct Pulmon Dis. 2016;11:1307–16. https://doi.org/10.2147/IJCOPD.S106875.

98. Vashalidze SA, Kempker JA, Jakobia NA, Gogishvili SG, Nikolaidishvili KA, Goginashvili LM, et al. Pulmonary function and respiratory health after successful treatment of drug-resistant tuberculosis. Int J Infect Dis. 2019;82:66–72. https://doi.org/10.1016/j.ijid.2019.02.039.

99. Ramos LM, Sulmonnett N, Ferreira CS, Henriques JF, de Miranda SS, Miranda-De Souza S. Functional profile of patients with tuberculosis sequelae in a university hospital. J Bras Pneumol. 2006;32(1):143–7. https://doi.org/10.1590/S0100-69802006000100010.

100. Moronne N, Abe NS. Bronchoscopic findings in patients with pulmonary tuberculosis. J Bronchol. 2007;14(1):15–8. https://doi.org/10.1097/01.JBR.00002383.48703.2c.

101. Byrne AL, Marx AJ, Mitnick CD, Garden FL, Lecca L, Contreras C, et al. Chronic airflow obstruction after successful treatment of multidrug-resistant tuberculosis. ERJ Open Res. 2017;3(3).

102. Godoy MDP, Mello FCO, Lopes AJ, Costa W, Guimaraes FS, Pacheco AGF, et al. The functional assessment of patients with pulmonary multidrug-resistant tuberculosis. Respir Care. 2012;57(1):149–54. https://doi.org/10.4187/respcare.01532.

103. Nihues SDE, Manucoz EV, Sulmonnett N, Sacchi FPC, Viana VD, Netto EM, et al. Chronic symptoms and pulmonary dysfunction in post-tuberculosis Brazilian patients. Braz J Infect Dis. 2015;19(5):492–7. https://doi.org/10.1016/j.bjid.2015.06.005.

104. Maguire GP, Anstey NM, Ardian M, Waramori G, Tjitra E, Kenangalem E, et al. Pulmonary tuberculosis, impaired lung function, disability and quality of life in a high burden setting. Int J Tuberc Lung Dis. 2009;13(12):1500–6. https://doi.org/10.5588/ijt110005.

105. Bhattacharyya SK, Mandal A, Thakur SB, Mukherjee S, Saha SK, Ghoshal AG. Radiological evaluation of chest in abdominal tuberculosis. J Clin Diag Res. 2017;11(5):926–8.

106. Das M, Isakidis P, Van den Bergh R, Kumar AM, Nagaraja SB, Vallkayat A, et al. HIV, multidrug-resistant TB and depressive symptoms: when three conditions collide. Glob Health Action. 2014;7(1):24912. https://doi.org/10.3432/gha.v7.24912.

107. Gandhi K, Gupta S, Singh R. Factors associated with development of pulmonary impairment after tuberculosis. Indian J Tuberc. 2016;63(1):34–8. https://doi.org/10.1016/j.ijt.2016.01.006.

108. Panda A, Bhalia AS, Sharma R, Mohan A, Sreenivas V, Kailammannan U, et al. Correlation of chest computed tomography findings with dyspnea and lung functions in post-tuberculosis sequelae. Lung India. 2016;33(6):592–9. https://doi.org/10.4103/0970-1215.192871.

109. Aggarwal D, Gupta A, Janmeja A, Bhardwaj M. Evaluation of tuberculosis-associated chronic obstructive pulmonary disease at a tertiary care hospital: a case-control study. Lung India. 2017;34(5):415–9. https://doi.org/10.4103/0377-0833.1522_1.

110. Mukati S, Julka A, Varadarajan KG, Singapunwala M, Agrawal JC, Bhardwaj D, et al. A study of clinical profile of cases of MDR-TB and evaluation of challenges faced in initiation of second line anti tuberculosis treatment for MDR-TB cases admitted in drug resistance tuberculosis center. Indian J Tuberc. 2016;66(3).

111. Santra A, Dutta P, Manjhi R, Pothal S. Clinicoradiologic and spirometric profile of an Indian population with post-tuberculous obstructive airway disease. J Clin Diagn Res. 2017;11(3):OC35–88.
130. Patil S, Patil R, Jadhav A. Pulmonary functions' assessment in post-
tuberculosis cases by spirometry: obstructive pattern is predominant and
needs cautious evaluation in all treated cases irrespective of symptoms. Int
J Mycobacteriol. 2018;2(2):128–33. https://doi.org/10.1016/j.ijmyc.2017.18.
131. Singla R, Mallick M, Mirgipuri P, Singla N, Gupta A. Sequence of pulmonary
multidrug-resistant tuberculosis at the completion of treatment. Lung India.
2018;35(1):4–8. https://doi.org/10.4103/lungindia.lungindia_269_16.
132. Gupta AN, Paradkar M, Selvaraju S, Thiruvengadam K, Shivakumar S, Sekar K, et
al. Assessment of lung function in successfully treated tuberculosis reveals
high burden of ventilatory defects and COPD. PLoS One. 2019;14(5):
e0217289. https://doi.org/10.1371/journal.pone.0217289.
133. Lee JH, Chang JH. Lung function in patients with chronic airflow
obstruction due to tuberculosis destroyed lung. Respir Med. 2003;97(11):
1237–42. https://doi.org/10.1053/j respmed.2003.080255.
134. Lam KBH, Jiang CQ, Jordan RE, Miller MR, Zhang WS, Cheng KK, et al. Prior
TB, smoking, and airflow obstruction a cross-sectional analysis of the
Guangzhou Biobank Cohort Study. Chest. 2010;137(3):593–600. https://doi.
org/10.1378/chest.09-1435.
135. Hwang YI, Kim JH, Lee CY, Park S, Park YB, Jang SH, et al. The
prevalence of tuberculosis and lung health: perspectives from the First
International Symposium. Int J Tuberc Lung Dis. 2020;24(8):820–8. https://doi.org/10.5588/
ijtl d.200067.
136. Jo YS, Park JH, Lee JK, Heo EY, Chung HS, Kim DK. Risk factors for
pulmonary arterial hypertension in patients with tuberculosis-destroyed lungs
and their clinical characteristics compared with patients with chronic
obstructive pulmonary disease. Int J Chron Obstruct Pulmon Dis. 2017;12:
2433–43. https://doi.org/10.2147/COPD.S136304.
137. Jin J, Li S, Yu W, Liu X, Sun Y. Emphysema and bronchiectasis in COPD
patients with previous pulmonary tuberculosis: computed tomography
features and clinical implications. Int J Chron Obstruct Pulmon Dis. 2018(13:
375–84. https://doi.org/10.2147/COPD.S152447.
138. Park JH, Byun MK, Kim HJ, Ahn CM, Kim DK, Kim YI, et al. History of pulmonary
tuberculosis affects the severity and clinical outcomes of COPD.
Respirology. 2018;23(1):1100–6. https://doi.org/10.1111/resp.13147.
139. Sun F, Li L, Xiao X, Han X, Lee R, Wu Y, et al. Adjunctive use of prednisolone
in the treatment of free-flowing tuberculous pleural effusion: A
retrospective cohort study. Respir Med. 2018;139:93–90. https://doi.org/10.
1016/j.resmed.2018.05.002.
140. Akkara SA, Shah AD, Adalja M, Akkara AG, Rathi A, Shah DN. Pulmonary
tuberculosis: the day after. Int J Tuberc Lung Dis. 2013;17(7):67–75.
https://doi.org/10.5588/ijtld.13.0255.
141. Jung JW, Choi JS, Shin JW, Cho BW, Park IW. Pulmonary impairment in
tuberculosis survivors: The Korean National Health and Nutrition
Examination Survey 2008-2012. PLoS One. 2015;10(10):e0141230. https://doi.
org/10.1371/journal.pone.0141230.
142. Lee JH, Chang JH. Lung function in successfully treated tuberculosis
cases by spirometry: obstructive pattern is predominant and
needs cautious evaluation in all treated cases irrespective of symptoms. Int
J Mycobacteriol. 2018;2(2):128–33. https://doi.org/10.1016/j.ijmyc.2017.18.
143. Singla R, Mallick M, Mirgipuri P, Singla N, Gupta A. Sequence of pulmonary
multidrug-resistant tuberculosis at the completion of treatment. Lung India.
2018;35(1):4–8. https://doi.org/10.4103/lungindia.lungindia_269_16.
144. Satti H, Mufakude A, Jostoe PL, McLaughlin MM, Farmer PE, Seung KH.
High rate of hypothyroidism in lung function among patients treated for multidrug-resistant
tuberculosis in Lesotho. Int J Tuberc Lung Dis. 2012;16(4):468–72. https://doi.org/10.5588/
ijtld.11.0615.
145. Prakash J, Mehtani A. Hand and wrist tuberculosis in paediatic patients -
our experience in 44 patients. J Pediatr Orthop B. 2017;26(3):250–60. https://doi.
org/10.1097/BPO.0000000000000325.
171. Thoits PA. Self, identity, stress, and mental health. Handbook of the sociology of mental health. Springer; 2013. p. 357–77.

172. Pachi A, Bratis D, Mousas G, Tsielbis A. Psychiatric morbidity and other factors affecting treatment adherence in pulmonary tuberculosis patients. Tuberc. Res. Treat. 2013;2013:1–37. https://doi.org/10.1155/2013/489865.

173. WHO. Companion handbook to the WHO guidelines for the programmatic management of drug-resistant tuberculosis: World Health Organization; 2014.

174. WHO Consolidated Guidelines on Tuberculosis. Module 4: Treatment - Drug-Resistant Tuberculosis Treatment: WHO; 2020.

175. Lima ML, Lessa F, Aguiar-Santos AM, Medeiros Z. Hearing impairment in patients with tuberculosis from Northeast Brazil. Rev Inst Med Trop Sao Paulo. 48(2):99–102.

176. Petersen L, Rogers C. Aminoglycoside-induced hearing deficits—a review of cochlear ototoxicity. S Afr Fam Pract. 2015;57(2):77–82. https://doi.org/10.1080/20786190.2014.1002220.

177. WHO. World report on hearing. Geneva; 2021.

178. Cox H, Reuter A, Furin J, Seddon J. Prevention of hearing loss in patients with multi-drug-resistant tuberculosis. Lancet. 2017;390(10098):934. https://doi.org/10.1016/S0140-6736(17)32170-0.

179. Byaruhanga R, Roland JT Jr, Bunarme G, Kakande E, Awubwa M, Ndorelire C, et al. A case report: the first successful cochlear implant in Uganda. Afr Health Sci. 2015;15(4):1342–8. https://doi.org/10.4314/ahs.v15i4.38.

180. Mafukidze AT, Calinan M, Furin J. Peripheral neuropathy in persons with tuberculosis. J Clin Tuberc Other Mycobact Dis. 2016;2:5–11. https://doi.org/10.1016/j.jctube.2015.11.002.

181. Maguire G, Anstey NM, Ardonri M, Waramori G, Tijra T, Kenangalem E, et al. Pulmonary tuberculosis, impaired lung function, disability and quality of life in a high-burden setting. Int J Tuberc Lung Dis. 2009;13(12):1500–6.

182. Caminero J, Van Deun A, Fujiwara P. Guidelines for clinical and operational management of drug-resistant tuberculosis. Paris: International Union Against Tuberculosis and Lung Disease; 2013. p. 18–9.

183. Thakur K, Das M, Dooley KE, Gupta A, editors. The global neurological burden of tuberculosis, Seminars in neurology: Thieme Medical Publishers; 2018.

184. Garg RK, Somvanshi DS. Spinal tuberculosis: a review. J Spinal Cord Med. 2011;34(5):440–54. https://doi.org/10.1179/2045772311Y.0000000023.

185. Garg RK, Malhotra HS, Gupta R. Spinal cord involvement in tuberculous meningitis. Spinal Cord. 2011;53(9):649–57.

186. Garg R, Somvanshi D. Spinal tuberculosis: a review. J Spinal Cord Med. 2011;34(5):440–54. https://doi.org/10.1179/2045772311Y.0000000023.

187. Syggelou A, Spyridis N, Benetatou K, Kourtoumi E, Koulalba G, Tsagaraki M, et al. BCG vaccine protection against TB infection among children older than 5 years in close contact with an infectious adult TB case. J Clin Med. 2020;9(3224).

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.