Spin–Charge Interconversion in KTaO$_3$ 2D Electron Gases

Luis M. Vicente-Arche, Julien Bréhin, Sara Varotto, Maxen Cosset-Cheneau, Srijani Mallik, Raphaël Salazar, Paul Noël, Diogo C. Vaz, Felix Trier, Suvam Bhattacharyya, Anke Sander, Patrick Le Fèvre, François Bertran, Guilhem Saiz, Gerbold Ménard, Nicolas Bergeal, Agnès Barthélémy, Hai Li, Chia-Ching Lin, Dmitri E. Nikonov, Ian A. Young, Julien E. Rault, Laurent Vila, Jean-Philippe Attané, and Manuel Bibes*

1. Introduction

The interconversion between spin and charge currents is an active research direction in spintronics exploiting the spin–orbit interaction in a variety of materials and heterostructures.[1] Spin–charge interconversion can be achieved by the direct and inverse spin Hall effects in bulk materials such as Pt or Ta or by their two-dimensional equivalent, [2,3] but also through the direct and inverse Edelstein effects (DEE and IEE) in systems with substantial spin–orbit coupling and broken inversion symmetry. Interfaces between heavy metals (harboring a Rashba state), 2D materials or surfaces of topological insulators satisfy this condition and have been harnessed for spin–charge interconversion through DEE and IEE.[4–7]

In 2016, Lesne et al. demonstrated a very large IEE in the 2D electron gas (2DEG) (8) appearing at the interface...
between LaAlO$_3$ (LAO) and SrTiO$_3$ (STO)\cite{9} for which a sizeable Rashba spin–orbit coupling had been identified.\cite{10} By using spin-pumping ferromagnetic resonance (SP-FMR), they injected a spin current from a ferromagnetic layer of NiFe into the 2DEG and collected the transverse current generated by the IEE (cf. Figure\ 1a,b). Remarkably, the conversion figure of merit λ_{IEE} showed a strong dependence with the gate voltage (and thus the carrier density), even with a change of sign.\cite{8} Subsequent experiments on 2DEGs, formed by depositing a reducing agent such as Al on STO,\cite{11} revealed that this variation of λ_{IEE} with carrier density is linked to their rich multiorbital band structure, with trivial and topological avoided crossings.\cite{12,13} Fewer experiments have focused on charge–spin conversion in STO 2DEGs. Wang et al. used spin-torque ferromagnetic resonance (ST-FMR) and found a large efficiency at room temperature.\cite{14} More recently, Choe et al. and Vaz et al. measured a unidirectional magnetoresistance (coined the bilinear magnetoresistance) in an LAO/STO 2DEG,\cite{15,16} caused by the DEE, which generates a spin density transverse to the applied charge current that changes sign when the current is reversed (see Figure 1c,d).

Another promising oxide system with potential for spin–charge interconversion is KTaO$_3$ (KTO). Similarly to STO, KTO is an incipient quantum ferroelectric\cite{17} that becomes metallic when doped n-type with oxygen vacancies\cite{18} for example, and can harbor a 2DEG at its surface or when interfaced with various materials.\cite{19,20} As in STO, the deposition of a perovskite oxide film or the formation of oxygen vacancies (e.g., by ion irradiation\cite{21}) can generate a 2DEG in KTO,\cite{22,23} possessing high mobilities and exhibiting signatures of spin–orbit coupling in low-temperature magnetoresistance data (i.e., weak antilocalization\cite{20,24}). Because Ta is a 5d element and heavier than Ti, KTO is indeed expected to possess a larger spin–orbit coupling. Yet, to date, only one study has explored spin–charge conversion into KTO 2DEGs, which involved thermal spin injection from a ferromagnetic EuO overlayer with a modest current produced (≈ 1 nA at 10 K).\cite{25}

Here, we report the generation of 2DEGs in KTO by the deposition of ultrathin Al films at room temperature and their spin–charge interconversion properties. We study the formation of the 2DEG with in situ X-ray photoelectron spectroscopy (XPS) for increasing Al thickness, which is supported by complementary magnetotransport measurements. Angle-resolved photoemission (ARPES) data also reveal the presence of a 2DEG with a multiband structure, which is compatible with earlier results on KTO surfaces.\cite{26,27} In samples covered with
a NiFe layer, we conduct SP-FMR measurements and observe spin–charge conversion with an efficiency comparable to that of LAO//STO 2DEGs. Finally, we probe the charge–spin conversion by performing angle-dependent transport measurements and identify a unidirectional magnetoresistance term, ascribed to the DEE-driven bilinear magnetoresistance effect. We extract an estimate of the Rashba coefficient and compare the results from both experiments and with existing data for STO interfaces.

2. Results and Discussion

Figure 2a–c shows the result of in situ XPS of the 4f levels of Ta in KTO before (Figure 2a) and after (Figure 2b,c) the deposition of Al by sputtering. For the virgin KTO substrate, the spectrum can be well fitted by two components corresponding to Ta$^{5+}$ ions, as expected from stoichiometry. After depositing 10 Å of Al (Figure 2b), some spectral contributions appear at low binding energies, which reflect the reduction of Ta$^{5+}$ into Ta$^{4+}$ and Ta$^{2+}$. This gives a measure of the population of the Ta 5d levels and points to the generation of an electron gas. The relative fraction of these reduced species increases for 21 Å of Al (Figure 2c). Similar measurements were performed for additional Al thicknesses and the results are displayed in Figure 2d. The relative fractions of Ta$^{4+}$ and Ta$^{2+}$ increase with Al thickness at the expense of Ta$^{5+}$, which indicates that the electron density in the 5d bands of Ta increases for thicker Al. XPS of the Al 2p levels for 21 Å of Al showed that the Al was almost fully oxidized after exposing the samples to atmosphere, which is consistent with results on Al//STO[13] (see the Supporting Information).

Complementary photoemission experiments were performed at the Cassiopée beamline of Synchrotron SOLEIL. Al//KTO samples were prepared by growing a film of Al in a molecular beam epitaxy chamber that is connected under ultra-high vacuum to a LEED (low-energy electron diffraction) setup and to the ARPES chamber. Figure 2e,f shows LEED diffraction patterns of a KTO substrate surface before and after the deposition of 2 Å of Al. Sharp diffraction spots corresponding to a square lattice attest to the high structural coherence of the surface. Figure 2g presents band dispersions near Γ probed by ARPES, which resemble those measured for KTO(001) surfaces[26,27] but without clear signs of the low dispersion band due to F centers.
mentioned by Santander-Syro et al.\cite{26} Measurements at different photon energies (not shown) confirmed that such electronic states are confined to the interface, as they do not disperse with \(k_z \). Three parabolic bands are visible. The dotted lines indicate the positions of the bands detected by Santander-Syro et al.\cite{26} which have been rescaled to better match our results. The bottom band (labelled \(E_{n\alpha} \), cf. ref. \cite{26}) has an effective mass of \(m^* \approx 0.23 m_0 \), the second band (\(E_{n\beta} \)) has \(m^* \approx 0.23 m_0 \), and the third band (\(E_{n\gamma} \)) has a mass \(m^* \approx 0.52 m_0 \), where \(m_0 \) is the free electron mass. Recent calculations suggest that \(E_{n\beta} \) should display a substantial Rashba splitting (\(\alpha_R \approx 300 \text{ meV \AA} \)),\cite{24} but this feature cannot be resolved here and was not detected in previous ARPES experiments.\cite{26,27} The corresponding energy cuts at the Fermi level are shown in Figure 2h, which show evidence of pseudocircular Fermi surfaces (FSs). The dotted lines correspond to the FSs adapted from ref. \cite{26}. From the ARPES data, we estimate that the carrier densities of bands \(E_{n\alpha} \), \(E_{n\beta} \), and \(E_{n\gamma} \) are around \(4.1 \times 10^{13} \), \(1.9 \times 10^{13} \), and \(1.3 \times 10^{13} \text{ cm}^{-2} \), respectively. This yields a total carrier density \(n_s \approx 7.3 \times 10^{13} \text{ cm}^{-2} \), which is lower than that for the free surface (\(1.26 \times 10^{14} \text{ cm}^{-2} \) in ref. \cite{26}; \(2 \times 10^{13} \text{ cm}^{-2} \) in ref. \cite{27}).

Figure 3 presents magnetotransport data for a series of Al//KTO samples. The temperature (\(T \)) dependence of the sheet resistance (\(R_S \)) reveals the presence of a 2DEG for all Al thicknesses with residual resistivity ratios in excess of 10. The low temperature \(R_S \) shows a general decrease with increasing Al thickness (Figure 3c). The Hall effect at 2 K (Figure 3b) exhibits a nonlinear variation with the magnetic field, which suggests the presence of at least two types of carriers. Fitting the data with a two-band model yields the carrier densities \(n_{s1} \) and \(n_{s2} \) plotted in Figure 3d and the corresponding mobilities \(\mu_1 \) and \(\mu_2 \) shown in Figure 3e. For both bands, the carrier densities and mobilities tend to increase with Al thickness. The majority carriers (with density \(n_{s1} \)) have relatively low mobilities, in the \(100-500 \text{ cm}^2 \text{ V}^{-1} \text{ s}^{-1} \) range, while the minority carriers (with density \(n_{s2} \)) have mobilities reaching \(\approx 2000 \text{ cm}^2 \text{ V}^{-1} \text{ s}^{-1} \). The maximum total carrier density extracted from the Hall data reaches \(\approx 6 \times 10^{13} \text{ cm}^{-2} \) and is thus slightly lower than that found in ARPES. This is possibly due to some reoxidation of the KTO when the samples are exposed to the atmosphere. However, one can ascribe the high-mobility minority carriers to the \(E_{n\gamma} \) band and the lower-mobility majority carriers to the \(E_{n\alpha} \) and \(E_{n\beta} \) bands. The apparent inconsistency between the high mobility and the larger effective mass of carriers from the \(E_{n\beta} \) band has previously been seen in STO 2DEGs and is ascribed to the larger distance of these carriers from the physical interface,\cite{28,29} which leads to longer scattering times \(\tau \) (here in the range of \(\tau_1 \approx 0.04 \text{ ps} \), versus \(\tau_2 \approx 0.2 \text{ ps} \) for the low-mobility carriers from bands \(E_{n\alpha} \) and \(E_{n\beta} \)).
To probe spin–charge conversion through SP-FMR experiments, we prepared AlO$_x$/NiFe/Al(0.9 nm)//KTO samples where the AlO$_x$-capped NiFe layer was grown in the same chamber and in the same vacuum cycle as the Al. The NiFe thickness was 20 nm but we also grew samples with a 2.5 nm thick NiFe layer. We performed magnetotransport measurements to extract the carrier densities and mobilities in the 2DEG,[30,31] from which we found a total carrier density of about 1×10^{14} cm$^{-2}$.

Figure 4 shows the SP-FMR results. Figure 4a,b displays the FMR response of the NiFe layer for two opposite directions of the magnetic field. The resonance field is close to 100 mT, which is consistent with earlier results.[8,12] Figure 4c, presents the detected charge current, which exhibits a clear symmetric peak about the resonance field. As expected for spin–charge conversion, the signal changes sign when the magnetic field is reversed, i.e., when the magnetization and thus the spin polarization of the injected spin current are inverted. For both configurations, the signal is largely dominated by a symmetric response due to the IEE, while the asymmetric component, which can arise from anisotropic magnetoresistance or planar Hall effect in the NiFe, is weak. We note that the sign of the conversion is opposite to that of LAO//STO at large negative gate voltages,[8] which would correspond here to a negative Rashba coefficient. From the extra damping induced by the 2DEG with respect to the damping of a reference NiFe layer, the spin current density injected into the 2DEG can be calculated and used to estimate the spin–charge conversion efficiency $\lambda_{\text{IEE}} = J_C/J_S$,[4] which we find here to be $\lambda_{\text{IEE}} \approx -3.5$ nm. This is comparable to what was measured in LAO/STO 2DEGs[8,32,33] (from 2 to -6.4 nm depending on the gate voltage) and is among the largest values reported to date, albeit lower than that for Al/STO ($\lambda_{\text{IEE}} \approx 30$ nm).[12] We also note that the raw current produced is of the order of 40 nA, i.e., much higher than the value of 1 nA reported in thermal spin injection experiments.[25]

To investigate charge–spin conversion, which remains relatively unexplored in oxide 2DEGs, we use magnetotransport to quantify the unidirectional magnetoresistance.[16,34,35] This nonreciprocal phenomenon[36] is a consequence of the generation of a transverse spin density by the DEE. Its amplitude is expected to vary linearly with both the current and the magnetic field, and is often referred to as the bilinear magnetoresistance (BMR). Here, we have probed the BMR by measuring the 2DEG longitudinal resistance while rotating the magnetic field in the film plane with respect to the current direction, where the field orientation is described by the angle ϕ with $\phi = 0$ representing the direction parallel to the current. Together with the BMR, a quadratic MR (QMR) component, i.e., which scales with the square of the magnetic field, is also observed. Notably, the ratio of the bilinear and quadratic amplitudes (A_{BMR} and A_{QMR}) allows us to extract the Rashba coefficient of the system[16]

$$\frac{A_{\text{BMR}}}{A_{\text{QMR}}} = \frac{2\pi \hbar \alpha_k J_c}{e \mu_B E_F B}$$

Figure 4. a,b) Derivative of the ferromagnetic resonance spectra at 10 K for positive (a) and negative (b) magnetic fields. c,d) Corresponding charge current produced transverse to the magnetization for positive (c) and negative (d) magnetic fields. The data in (c) and (d) are shown as symbols and the result of the fit as a thick solid line, while the symmetric and antisymmetric components are shown as thin solid and dashed lines, respectively.
Here \hbar is the reduced Planck constant, e is the elementary charge, μ_B is the Bohr magneton, and g is the g-factor.

Figure 5a shows the dependence of the magnetoresistance $\Delta R/R$ with the angle ϕ for positive and negative currents for a sample with 2.1 nm of Al at 2 T. The data are dominated by a $\cos(2\phi)$ dependence (the QMR) but show slight shifts of opposite amplitudes at 90° and 270° depending on the current sign, as a result of a $\sin(\phi)$ term (the BMR). We extract the BMR and QMR traces through the half-difference and half-sum of the curves measured at positive and negative currents, which are shown for increasing magnetic fields in Figure 5b,c, respectively. The sign of the BMR is opposite to that found for LAO/STO\cite{16} and, in the framework of ref. [16], corresponds to a negative Rashba coefficient, which is consistent with the spin-pumping results. The amplitude of the BMR and QMR extracted from fits to the data are displayed in Figure 5e,f, respectively. As expected, the BMR scales linearly with magnetic field, while the QMR scales quadratically. Figure 5d shows the dependence of A_{BMR} with the current, which is also linear, albeit with a small negative offset.

To exclude spurious thermal effects as the source of the BMR, we also measured the angular dependence of the longitudinal and transverse resistances using harmonic transport at a frequency f (the QMR and the BMR appear in the f and $2f$ longitudinal signals, respectively).\cite{35} We found that the ratio of the transverse to the longitudinal signals was lower than the geometric factor of the Hall bar by at least a factor 3, which suggests that the contribution from thermal effects, if any, is very weak (see the Supporting Information).

Estimates of the Rashba coefficient α_R using Equation (1) require the knowledge of the Fermi energy E_F and the g-factor. As discussed earlier, the electronic structure of KTO 2DEGs comprises several bands with different Fermi energies and effective masses, which complicates the analysis. Nevertheless, due to their high mobility, electrons in the $E_{\text{F}+1}$ band carry more than 60% of the current. Because they are also expected to exhibit the largest Rashba coefficient,\cite{24} we can neglect contributions from the other bands to a good approximation.

We can now use these values of α_R to calculate $\lambda_{\text{IEE}} = \alpha_R \tau \hbar$, which with $\tau = 0.6$ ps yields $\lambda_{\text{IEE}} \approx -6$–25 nm, depending on the value of g, which can be compared with the value of -3.5 nm

Figure 5. a) Angle dependence of the normalized longitudinal resistance for two opposite currents ($J_C = \pm 0.64$ A m$^{-1}$) and $B = 2$ T. b,c) Angle dependence of the bilinear magnetoresistance (b) and the quadratic magnetoresistance (c) for increasing fields from 1 to 9 T. d) Dependence of the BMR amplitude with current at 9 T. e,f) Dependence of the BMR (e) and QMR (f) with magnetic field. All data at 2 K. In (b,c,e,f), $J_C = 0.64$ A m$^{-1}$.\cite{15}
extracted from SP-FMR. These values differ but fall within the same range. This discrepancy might be due to the over-simplification of the BMR analysis or to the fact that different carrier densities, and thus electronic structure, appear between the samples used for SP-FMR and BMR measurements.

3. Conclusion

We have synthesized a new Rashba 2D electron gas by depositing Al at room temperature on commercial (001)-oriented KTaO₃ single-crystal substrates. As for the Al/STO system, the deposition of Al reduces the KTO, which promotes the formation of the interfacial 2DEG. The carrier densities, mobilities, and sheet conductivities are found to increase systematically with the Al thickness, while ARPES measurements provide evidence of a complex multiband structure, reminiscent of that of KTO surfaces. By using spin-pumping FMR and unidirectional magnetoresistance experiments, we demonstrated very efficient spin–charge and charge–spin conversion. We obtained consistent results between spin–charge and charge–spin conversion experiments and extracted a negative Rashba coefficient in the range of 70–280 meV Å, which is significantly higher than that found in STO 2DEGs. The spin-conversion efficiency \(\lambda_{\text{H}} \) is among the highest reported in the literature \(\cite{4,6,8,15} \) to date, and is an order of magnitude larger than those observed with transition metals such as Pt (comparing \(\lambda_{\text{H}} \) with the product of the spin Hall angle and spin diffusion length, i.e., \(\theta_{\text{SF}} \times \lambda_{\text{H}} \)). We suggest that \(\lambda_{\text{H}} \) could probably be enhanced substantially by increasing the momentum relaxation time, which appears feasible in light of the very high mobilities \((>10^5 \text{ cm}^2 \text{ V}^{-1} \text{ s}^{-1}) \) reported in bulk or irradiated KTO.\(\cite{18,22} \) Accordingly, KTO 2DEG might represent an interesting candidate for the readout unit of MESSO transistors.\(\cite{18} \) Further experiments should aim at determining the g-factor of this material, along with investigating spin–charge interconversion as a function of gate voltage and at higher temperatures. Combined with the very recent reports of a superconducting state at (111)- and (110)-oriented KTO interfaces,\(\cite{39,40} \) our findings of a large Rashba coefficient in this system also offer interesting perspectives for topological superconductivity and Majorana physics.

4. Experimental Section

Preparation of KTO Substrates: Single-crystal KTO (001) substrates (5 mm × 5 mm × 0.5 mm, one-side polished with miscut angles < 0.1°) were purchased from SurfaceNet GmbH. The as-received substrates were cleaned by sonicating in deionized water, acetone and isopropyl alcohol and subsequently dried with nitrogen. This process was repeated until the cleanliness of the surface was confirmed by AFM. The cleaned substrates were inserted into a UHV metal deposition by magnetron sputtering and in situ XPS measurements.

Al Deposition by Sputtering: The Al deposition was performed at room temperature in a commercial dc magnetron sputtering system PLASSYS MP450S with a base pressure of 9 × 10⁻⁸ mbar. The deposition rate was derived by means of X-ray reflectometry (XRR) on thicker samples grown under the same conditions. Ar gas flow and the current intensity were set to 5.2 sccm and 30 mA, respectively. The pressure of the chamber during deposition was 5.3 ± 0.2 × 10⁻⁴ mbar and the plasma power was 10 W. The NiFe was also deposited by dc magnetron sputtering and capped with 1.5 nm of Al, which transformed into AlOₓ after exposure to air.

Al Deposition by Molecular Beam Epitaxy: After preannealing the KTO at 200 °C for 1 h in UHV, we grew 2 Å of Al at room temperature at 7 × 10⁻¹⁰ mbar using a Knudsen cell heated to 1000 °C at a growth rate of 0.011 Å s⁻¹.

XPS Measurements: The XPS measurements were performed at room temperature using an Omicron NanoTechnology GmbH system with a base pressure of 5 × 10⁻¹⁰ mbar, using a Mg Kα source (hv = 1253.6 eV) operating at 20 mA and 15 kV. The spectra were obtained at a pass energy of 20 eV. In situ XPS measurements were performed before and immediately after the deposition of Al. The spectral fits were carried out using CasaXPS (CasaSoftware Ltd.).

LEED Measurements: LEED diffraction patterns have been measured using an Omicron SPEACTLEED. All images have been acquired at room temperature.

ARPES Measurements: ARPES experiments were performed at the CASSIOPEE beamline of the SOLEIL synchrotron light source (Saint-Aubin, France). The CASSIOPEE beamline is equipped with a Scienta R4000 hemispherical electron analyser with angular acceptance of 15° (Scienta Wide Angle Lens). All the experiments were performed at room temperature. The angle and energy instrument resolutions were 0.25° and 12 meV, respectively. The incident photon beam was focused into a 50 μm spot (in diameter) on the sample surface. All ARPES measurements were performed with a linearly-polarized photon beam and at the photon energy hv = 30 eV. The collected data were normalized by the intensity background of the electron analyzer and smoothed using an averaging filter.

Magnetotransport Properties Measurements: The samples were measured with a Dynacool system from Quantum Design after bonding with Al wires in the Van der Pauw configuration. During the transport measurements of AlOₓ/NiFe/Al/KTO samples, the NiFe and 2DEG signals were probed in parallel.\(\cite{18} \) These contributions were separated in the following way. For the longitudinal configuration, \(R_{xx} \), two resistances in parallel were measured so that the resistance of the 2DEG alone is given by

\[
R_{2DEG} = \frac{R_{xx} \times R_{\text{Total}}}{R_{xx} - R_{\text{Total}}}
\]

For the transverse configuration, \(R_{xy} \) (Hall resistance), besides \(R_{xx} \) and \(R_{2DEG} \), the Hall voltages generated in each layer must be also considered. These circuits can be simplified using Millman’s theorem\(\cite{40} \) so that the Hall resistance of the 2DEG alone \(R_{H2DEG} \) is given by

\[
R_{H2DEG} = R_{xx} \times \left(\frac{R_{xx}}{R_{xx} - R_{\text{Total}}} + 1 \right)^2 - R_{xx} \times \left(\frac{R_{2DEG}}{R_{xx}} \right)^2
\]

The 2DEG contribution was then fitted with a standard two-band model in order to extract carrier densities and mobilities.

Unidirectional Magnetoresistance Measurements: Angle-dependent magneto-transport experiments were performed on a 1.58 × 10 mm slab of Al(2.1 nm)/KTO. Electrical contacts were made by Al wedge bonding. For dc measurements, a current was applied between the extremities of the slab and the longitudinal resistance was measured between two lateral contacts separated by 5530 μm, using a Keithley 2400 source meter. Harmonic measurements were performed in a Hall bar device (10 × 100 μm) by injecting an a.c. current (Keithley 6221) at \(f = 3 \) kHz and demodulating the longitudinal and transverse voltages with a lock-in amplifier (Zurich Instruments HF2LI). The unidirectional terms appear in the second harmonic (2f) signal.

In-plane angle dependent magnetoresistance measurements were performed by rotating the sample inside a Dynacool PPMS, at constant applied magnetic field, temperature and current. Angular scans (Figure 5a) are plotted after subtraction of a linear drift and a sinusoidal background ascribed to out-plane residual magnetic field.

Spin-Pumping Ferromagnetic Resonance: The spin-to-charge interconversion in the 2DEG at the surface Al KTO was performed using the spin-pumping ferromagnetic resonance technique\(\cite{40} \) in a
cavity at 10 K on an AlO/ NiFe(20 nm)/ AlO/KTO sample. A d.c. and radiofrequency field at 9.7 GHz were applied to the system. The r.f. frequency was kept constant while the amplitude of the d.c. field was swept around the resonance field. At FMR, the magnetization of the NiFe film precesses uniformly around the direction of the d.c. field, creating a spin accumulation that leads to the injection of a pure spin current into the 2DEG at the AlO/KTO interface. The injected spin current is subsequently converted into a charge current in the 2DEG by the IEE. Figure 4 shows the charge current produced by unit of applied r.f. power at a gate voltage of ~120 V. This current possesses a symmetric and an antisymmetric component. The antisymmetric part corresponds to rectifications effect such as the planar Hall Effect. [44] The symmetric component is due to the spin to charge interconversion by the IEE in the 2DEG. The value of the injected spin current is computed by measuring the magnetization (Ms = 817 kA m−2), the g-factor (g = 2.1) enhancement of the damping between a reference 20 nm thick NiFe/Edelstein length.

Supporting Information
Supporting Information is available from the Wiley Online Library or from the author.

Acknowledgements
L.M.V.-A., J.B., and S.V. contributed equally to this work. The authors thank Marc Gabay, Annika Johansson, Börge Göbel, and Ingrid Mertig for useful discussions and Joo-Von Kim for a careful reading of the manuscript. This work was supported from the ERC Advanced Grant No. 833973 “FRESCO,” the QUANTERA project “QUANTOX,” the Laboratoire d’Excellence LANEF (ANR-10-LABX-51-01), the ANR projects TOPRISE (ANR-16-CE24-0017), and QUANTOP (ANR-19-CE47-0006-01) and Intel’s Science and Technology Center – FEINMAN. F.T. acknowledges support by research Grant 37338 (SANSIT) from VILLUM FONDEN. R.S. thanks support from the French ANR JCJC CORNFLAKE (ANR-18-CE24-0015-01).

Conflict of Interest
The authors declare no conflict of interest.

Data Availability Statement
Research data are not shared.

Keywords
Edelstein effect, oxide interfaces, spin–charge interconversion, spin–orbit coupling

Received: March 17, 2021
Revised: July 13, 2021
Published online: September 9, 2021

[1] W. Han, Y. C. Otani, S. Maekawa, npj Quantum Mater. 2018, 3, 27.
[2] J. Sinova, D. Culcer, Q. Niu, N. A. Sinitsyn, T. Jungwirth, A. H. MacDonald, Phys. Rev. Lett. 2004, 92, 126603.
[3] F. Trier, D. C. Vaz, P. Bruneel, P. Noël, A. Fert, L. Vila, J.-P. Attané, A. Barthélémy, M. Gabay, H. Jaffrès, M. Bibes, Nano Lett. 2020, 20, 395.
[4] J. C. R. Sánchez, L. Vila, G. Desfonds, S. Gambarelli, J. P. Attané, J. M. De Teresa, C. Magén, A. Fert, Nat. Commun. 2013, 4, 2944.
[5] J.-C. Rojas-Sánchez, S. Oyarzún, Y. Fu, A. Marty, C. Vergnaud, S. Gambarelli, L. Vila, M. Jamet, Y. Ohtsubo, A. Taleb-Ibrahimi, P. Le Fèvre, F. Bertran, N. Reyren, J.-M. George, A. Fert, Phys. Rev. Lett. 2016, 116, 096602.
[6] P. Noël, C. Thomas, Y. Fu, L. Vila, B. Haas, P.-H. Jouneau, S. Gambarelli, T. Meunier, P. Ballet, J. P. Attane, Phys. Rev. Lett. 2018, 120, 167201.
[7] L. Li, J. Zhang, G. Myeong, W. Shin, H. Lim, B. Kim, S. Kim, T. Jin, S. Cavill, B. S. Kim, C. Kim, J. Lischner, A. Ferreira, S. Cho, ACS Nano 2020, 14, 5251.
[8] E. Lesne, Y. Fu, S. Oyarzán, J. C. Rojas-Sánchez, D. C. Vaz, H. Naganuma, G. Scolari, Nat. Mater. 2016, 15, 1261.
[9] A. Ohtomo, H. Y. Hwang, Nature 2004, 427, 423.
[10] A. D. Caviglia, M. Gabay, S. Gariglio, N. Reyren, C. Cancellieri, J.-M. Trisccone, Phys. Rev. Lett. 2010, 104, 126803.
[11] T. C. Rödel, F. Fortuna, S. Sengupta, E. Frantzeskakis, P. Le Fèvre, F. Bertran, B. Mercey, S. Matzen, G. Aigruns, T. Maroutian, P. Lecoeur, A. F. Santander-Syro, Adv. Mater. 2016, 28, 1976.
[12] D. C. Vaz, P. Noël, A. Johansson, B. Göbel, F. Y. Bruno, G. Singh, S. McKeown-Walker, F. Trier, L. M. Vicente-Arche, A. Sander, S. Valencia, P. Bruneel, M. Vivek, M. Gabay, N. Bergeal, F. Baumberger, H. Okuno, A. Barthélémy, A. Fert, L. Vila, I. Mertig, J.-P. Attané, M. Bibes, Nat. Mater. 2019, 18, 1187.
[13] L. M. Vicente-Arche, S. Mallik, M. Kosot-Cheneau, P. Noël, D. C. Vaz, F. Trier, A. T. Gosavi, C.-C. Lin, D. E. Nikonov, I. A. Young, A. Sander, A. Barthélémy, J.-P. Attané, L. Vila, M. Bibes, Phys. Rev. Mater. 2021, 5, 064005.
[14] Y. Wang, R. Ramaswamy, M. Motapothula, K. Narayananpillai, D. Zhu, J. Yu, T. Venkatesan, H. Yang, Nano Lett. 2017, 17, 7659.
[15] D. Choi, M.-J. Jin, S.-I. Kim, H.-J. Choi, J. Jo, I. Oh, J. Park, H. Jin, H. C. Koo, B.-C. Min, H. Song, H.-W. Lee, S.-H. Baek, J.-W. Yoo, Nat. Commun. 2019, 10, 4510.
[16] D. C. Vaz, F. Trier, A. Drydał, A. Johansson, K. Garcia, A. Barthélémy, I. Mertig, J. Barnaś, A. Fert, M. Bibes, Phys. Rev. Mater. 2020, 4, 071001.
[17] J. H. Barrett, Phys. Rev. 1952, 86, 118.
[18] S. H. Wemple, Phys. Rev. 1965, 137, A1575.
[19] K. Zou, S. Ismail-Beigi, K. Kisslinger, X. Shen, D. Su, F. J. Walker, C. H. Ahn, APL Mater. 2015, 3, 036104.
[20] H. Zhang, H. Zhang, X. Yan, X. Zhang, Q. Zhang, J. Zhang, F. Han, L. Gu, B. Liu, Y. Chen, B. Shen, J. Sun, ACS Appl. Mater. Interfaces 2017, 9, 36456.
[21] G. Herranz, O. Copie, A. Gentils, E. Tafra, M. Basletic, F. Fortuna, K. Bouzehouane, S. Fusil, E. Jacquet, C. Carretéro, M. Bibes, A. Hamzic, A. Barthélémy, J. Appl. Phys. 2010, 107, 103704.
[22] S. Harashima, C. Bell, M. Kim, T. Yajima, Y. Hikita, H. Y. Hwang, Phys. Rev. B 2013, 88, 085102.
[23] N. Wadehra, R. Tomar, R. M. Varma, R. K. Gopal, Y. Singh, S. Dattagupta, S. Chakraverty, Nat. Commun. 2020, 11, 874.
[24] H. Zhang, X. Yan, X. Zhang, S. Wang, C. Xiong, H. Zhang, S. Qi, J. Zhang, F. Han, N. Wu, B. Liu, Y. Chen, B. Shen, J. Sun, ACS Nano 2019, 13, 609.
[25] H. Zhang, Y. Ma, H. Zhang, X. Chen, S. Wang, G. Li, Y. Yun, X. Yan, Y. Chen, F. Hu, J. Cai, B. Shen, W. Han, J. Sun, Nano Lett. 2019, 19, 1605.
[26] A. F. Santander-Syro, C. Bareille, F. Fortuna, O. Copie, M. Gabay, F. Bertran, A. Taleb-Ibrahimi, P. Le Fèvre, G. Herranz, N. Reyren,
M. Bibes, A. Barthélémy, P. Lecoeur, J. Guevara, M. J. Rozenberg, *Phys. Rev. B* 2012, 86, 121107.

[27] P. D. C. King, R. H. He, T. Eknapakul, P. Buaphet, S.-K. Mo, Y. Kaneko, S. Harashima, Y. Hikita, M. S. Bahramy, C. Bell, Z. Hussain, Y. Tokura, Z.-X. Shen, H. Y. Hwang, F. Baumberger, W. Meevasana, *Phys. Rev. Lett.* 2012, 108, 117602.

[28] G. Singh, A. Jouan, L. Benfatto, F. Couédo, P. Kumar, A. Dogra, R. C. Budhani, S. Caprara, M. Grilli, E. Lesne, A. Barthélémy, M. Bibes, C. Feuillet-Palma, J. Lesueur, N. Bergeal, *Nat. Commun.* 2018, 9, 407.

[29] P. Delugas, A. Filippetti, V. Fiorentini, D. I. Bilc, D. Fontaine, P. Ghosez, *Phys. Rev. Lett.* 2011, 106, 166807.

[30] E. Lesne, N. Reyren, D. Doennig, R. Mattana, H. Jaffrès, V. Cro, F. Petroff, F. Choueikani, P. Ohresser, R. Pentcheva, A. Barthélémy, M. Bibes, *Nat. Commun.* 2014, 5, 4291.

[31] D. C. Vaz, E. Lesne, A. Sander, H. Naganuma, E. Jacquet, J. Santamaria, A. Barthélémy, M. Bibes, *Adv. Mater.* 2017, 29, 1700486.

[32] J.-Y. Chauleau, M. Boselli, S. Gariglio, R. Weil, G. de Loubens, J.-M. Triscone, M. Viret, *EPL* 2016, 116, 17006.

[33] S. Ohya, D. Araki, L. D. Anh, S. Kaneta, M. Seki, H. Tabata, M. Tanaka, *Phys. Rev. Res.* 2020, 2, 012014.

[34] P. He, S. S.-L. Zhang, D. Zhu, Y. Liu, Y. Wang, J. Yu, G. Vignale, H. Yang, *Nat. Phys.* 2018, 14, 495.

[35] T. Gillett, C. Zucchetti, Q. Barbedienne, A. Marty, G. Isella, L. Cagnon, C. Vergnaud, H. Jaffrès, N. Reyren, J.-M. George, A. Fert, M. Jamet, *Phys. Rev. Lett.* 2020, 124, 027201.

[36] Y. Tokura, N. Nagaosa, *Nat. Commun.* 2018, 9, 3740.

[37] N. Kumar, N. Wadehra, R. Tomar, S. K. Shama, Y. Singh, S. Dattagupta, S. Chakraverty, *Adv. Quantum Tech.* 2021, 4, 2000081.

[38] S. Manipatruni, D. E. Nikonov, C.-C. Lin, T. A. Gosavi, H. Liu, B. Prasad, Y.-L. Huang, E. Bonturim, R. Ramesh, I. A. Young, *Nature* 2019, 565, 35.

[39] C. Liu, X. Yan, D. Jin, Y. Ma, H.-W. Hsiao, Y. Lin, T. M. Bretz-Sullivan, X. Zhou, J. Pearson, B. Fisher, J. S. Jiang, W. Han, J.-M. Zuo, J. Wen, D. D. Fong, J. Sun, H. Zhou, A. Bhattacharya, *Science* 2021, 371, 716.

[40] Z. Chen, Y. Liu, H. Zhang, Z. Liu, H. Tian, Y. Sun, M. Zhang, Y. Zhou, J. Sun, Y. Xie, *Science* 2021, 372, 721.

[41] Z. Chen, Z. Liu, Y. Sun, X. Chen, Y. Liu, H. Zhang, H. Li, M. Zhang, S. Hong, T. Ren, C. Zhang, H. Tian, Y. Zhou, J. Sun, Y. Xie, *Phys. Rev. Lett.* 2021, 126, 026802.

[42] J. Millman, *Proc. IRE* 1940, 28, 413.

[43] Y. Tserkovnyak, A. Brataas, G. E. W. Bauer, *Phys. Rev. Lett.* 2002, 88, 117601.

[44] J.-C. Rojas-Sánchez, M. Cubukcu, A. Jain, C. Vergnaud, C. Portemon, C. Ducruet, A. Barski, A. Marty, L. Vila, J.-P. Attané, E. Augendre, G. Desfonds, S. Gambarelli, H. Jaffrès, J.-M. George, M. Jamet, *Phys. Rev. B* 2013, 88, 064403.