Chronic myelomonocytic leukemia-associated pulmonary alveolar proteinosis: A case report and review of literature

Can Chen, Xi-Lian Huang, Da-Quan Gao, Yi-Wei Li, Shen-Xian Qian

CASE REPORT

BACKGROUND
Pulmonary alveolar proteinosis (PAP) is a rare condition that can cause progressive symptoms including dyspnea, cough and respiratory insufficiency. Secondary PAP is generally associated with hematological malignancies including chronic myelomonocytic leukemia (CMML). To the best of our knowledge, this is the first reported case of PAP occurring secondary to CMML.

CASE SUMMARY
We report the case of a 63-year-old male who presented with a recurrent cough and gradually progressive dyspnea in the absence of fever. Based upon clinical symptoms, computed tomography findings, bone marrow aspiration, flow cytometry studies and cytogenetic analyses, the patient was diagnosed with PAP secondary to CMML. He underwent whole lung lavage in March 2016 to alleviate his dyspnea, after which he began combined chemotherapeutic treatment with decitabine and cytarabine. The patient died in January 2020 as a consequence of severe pulmonary infection.

CONCLUSION
This case offers insight regarding the mechanistic basis for PAP secondary to CMML and highlights potential risk factors.

Key Words: Pulmonary alveolar proteinosis; Chronic myelomonocytic leukemia; Diagnosis; Treatment; Prognosis; Case report
A 63-year-old male was admitted to our hospital in December 2015 for recurrent cough and gradually progressive dyspnea over the past 3 mo. The condition had become aggravated during the 2 wk prior to admission. The chief complaints were cough, dyspnea, and progressive symptoms including dyspnea, cough and respiratory insufficiency. The overall incidence of PAP is 8.7 per million\(^4\). It is classified into three categories: Idiopathic PAP (90% of total cases), secondary PAP (sPAP, less than 10% of total cases), and congenital PAP (2% of total cases). Cases of sPAP are most commonly associated with myelodysplastic syndrome (MDS), acute myelogenous leukemia (AML) and other hematological malignancies, affecting an estimated 5.3% of individuals with such malignancies\(^5\). The median age of MDS/sPAP onset is 51 years, and the most common symptoms include fever (45%), dyspnea on exertion (42%) and cough (42%)\(^6\). The estimated 2-year survival rate for patients with sPAP complicating hematological disorders is 46%\(^7\).

Some evidence suggests that interactions between aspergillosis antigens may interact with lung surfactant to induce PAP. Granulocyte-macrophage colony-stimulating factor (GM-CSF) knockout mice or interleukin-3/GM-CSF/interleukin-5βc chain knockout mice also develop pulmonary involvement similar to that observed in the context of human PAP\(^8\). This suggests that PAP may arise due to insufficient phospholipid clearance by pulmonary macrophages. In contrast to idiopathic PAP, congenital PAP may be due to a lack of macrophage-mediated surfactant clearance as a consequence of the deletion of the GM-CSF gene\(^9\). However, sPAP is primarily due to conditions that alter alveolar macrophage numbers or functionality.

Chronic myelomonocytic leukemia (CMML) is an age-related disease characterized by impaired hematopoiesis and myeloid cell dysplasia owing to myeloid cell progenitors being hypersensitive to GM-CSF stimulation\(^4\). It demonstrates a propensity to transform into AML and has long been considered a form of MDS. A variety of mechanisms may cause PAP in patients with hematologic malignancies including CMML. For example, prior work suggests that changes in cytokines capable of inhibiting GM-CSF synthesis such as IL-10 may cause PAP\(^10\). Moreover, macrophages develop from monocyte precursors, consistent with the etiology of CMML and sPAP being associated with mononuclear cell abnormalities. These findings may contribute to improvements in clinical practice.
History of present illness

The patient first presented 5 years ago with a cough and dyspnea with exercise that improved with rest. He returned to the clinic for follow-up care at regular intervals. He was admitted to the emergency department due to the gradual aggravation of these symptoms 2 wk ago. Chest computed tomography (CT) scans revealed a pattern of acute bilateral interstitial pneumonia, and as such the patient required hospitalization.

History of past illness

The patient had a 20-year history of hypertension and had been taking amlodipine regularly.

Personal and family history

The patient was free of any known congenital disease.

Physical examination

Vital signs were within normal limits at the time of admission, with a heart rate of 106 bpm, blood pressure of 178/71 mmHg, a respiratory rate of 20 breaths/min and a temperature of 37.1 °C. His height was 175 cm, and his weight was 76 kg. Physical examination revealed audible bilateral crackling in the lungs.

Laboratory examinations

Hematological examination revealed a white blood cell count of 11.1 × 10^9/L, a hemoglobin level of 9.5 g/dL, a platelet count of 769 × 10^9/L, an absolute monocyte count of 3.8 × 10^9/L and an absolute eosinophil count of 0.3 × 10^9/L.

Bronchoalveolar lavage fluid (BALF) appeared light and milky, and differential BALF cell counts revealed the presence of 82% lymphocytes, 11% monocytes and 7% neutrophils. Arterial blood gas analyses under ambient air were performed in an effort to identify the causes of cough and dyspnea, revealing both hypoxemia and hypocapnia. Histological analyses exhibited the thickening of the alveolar septum with fiber hyperplasia, vasodilation, congestion and the infiltration of histiocytes and inflammatory cells. Samples were positive for periodic acid-Schiff staining, and flow cytometry analyses were performed as previously described\(^9\), revealing an elevated frequency of monocytes in the BALF samples (12.4%) with CD33+ CD14+ CD300e+ mature monocytes accounting for 4% of nucleated cells and CD33+ CD14- CD300e+ partially immature monocytes accounting for 8.4% of nucleated cells (Figure 1A).

To better understand the complete blood count abnormalities observed in this patient, we additionally conducted bone marrow aspiration and biopsy. Marked monocytic (30%) hyperplasia was detected with 7.4% monocytic blasts, while myeloid blasts were within the normal range (0.5%). Flow cytometry analyses of bone marrow samples additionally revealed elevated frequencies of monocytes (44% of nucleated cells) and of CD33\(^{bright}\) CD14- CD300e+ immature monocytes (7.4% of nucleated cells) (Figure 1B). Samples were negative for BCR/ABL, PDGFRA or PDGFRB cytogenetic aberrations but were positive for JAK2-V617F. CMML molecular studies revealed the presence of synonymous ASXL and SRSF mutations without any corresponding TET2 mutations. These examinations were performed as previously described\(^9\). Karyotyping revealed the inversion of chromosome 6.

Imaging examinations

Ultrasonographic analyses revealed mild splenomegaly. High creatinine levels were also detected. CT scans identified bilateral regions of ground-glass opacity (GGO) in the lungs of this patient (Figure 2A). Lung function tests revealed moderate reductions in the diffusing capacity of the lungs for carbon monoxide.

FINAL DIAGNOSIS

The patient was diagnosed with CMML-1 without eosinophilia, and his revised International Prognostic Scoring System score was 3 points.
Figure 1 Flow cytometry analyses of patient bronchoalveolar lavage and bone marrow. A: Bronchoalveolar lavage fluid samples were analyzed via flow cytometry, revealed an increased proportion of monocytes (12.4%, purple), CD33+ CD14+ CD300e+ mature monocytes accounted for approximately 4% of nucleated cells, and CD33+ CD14- CD300e+ partially immature monocyte accounted for 8.4% of nucleated cells; B: Flow cytometry studies of bone marrow samples revealed an increased proportion of monocytes (purple) that accounted for 44% of nucleated cells, and CD33bright CD14- CD300e+ immature monocytes accounted for approximately 7.4% of nucleated cells.

TREATMENT

The patient underwent whole lung lavage in March 2016 to alleviate his dyspnea, after which he began combined chemotherapeutic treatment with decitabine (30 mg qd for 5 d) and cytarabine (30 mg qd for 14 d). His white blood cell counts rapidly declined, and bronchoalveolar lavage was no longer required after one cycle of chemotherapy. This therapeutic regimen was maintained, and the patient underwent six total cycles of
monthly chemotherapy. During cycles 2-4 of treatment, the patient developed anemia that progressed from moderate to severe, while his platelet counts rose to (700-1000) × 10⁹/L. Subsequent bone marrow biopsy was indicative of myelofibrosis. The patient was then treated for 2 mo with ruxolitinib without any response.

OUTCOME AND FOLLOW-UP

After five cycles of chemotherapy, a lung CT scan was performed to assess sPAP status in this patient, revealing marked improvements in analyzed lung abnormalities (Figure 2B). The patient required transfusion therapy 1-2 timer per month followed by maintenance iron removal therapy.

From January 2018 through April 2019, the patient accepted an additional eight cycles of combined azacitidine and cytarabine treatment. At 2 mo following the final round of chemotherapy, the disease had progressed to CMML-2 with 16% blasts in the peripheral blood. Treatment with a Bcl-2 inhibitor was recommended, but the patient was unable to accept this treatment for financial reasons. The patient died in January 2020 as a consequence of severe pulmonary infection.

DISCUSSION

PAP is a rare pulmonary disorder wherein patients exhibit alveolar surfactant-derived lipoprotein accumulation that can cause symptoms ranging from mild shortness of breath to severe respiratory distress. Patients suffering from PAP may exhibit impaired phagocytosis, chemotaxis or phagolysosomal fusion with defective surfactant clearance being linked to impaired alveolar macrophage functionality⁴⁻⁸. In mice, GM-CSF or GM-CSF/IL-3/IL-5-receptor common β chain defects result in the development of a PAP-like syndrome, and βc-chain defects impairing GM-CSF receptor expression on circulating mononuclear cells have been detected in those with congenital PAP⁹⁻¹³. Patients with idiopathic PAP have also been found to exhibit serum and BALF neutralizing antibodies specific for GM-CSF, whereas these are not evident in those with sPAP⁴. This indicates that idiopathic PAP is a form of autoimmune disease and that measuring anti-GM-CSF titers can differentiate between sPAP and idiopathic PAP⁹⁻¹⁰.

PAP is reported to affect approximately 8.7 per million persons, with sPAP secondary to MDS affecting fewer than 1 per million persons⁴⁻⁰. Hematologic malignancies are the most common underlying cause of sPAP⁹⁻¹⁰, with PAP secondary to hematologic malignancy being associated with a range of conditions among which hematological malignancies of myeloid origin are the most common⁹⁻¹⁹. In prior studies, MDS was identified as the underlying disease most often associated with PAP secondary to hematologic malignancy, accounting for 16% of such cases²⁰. As sPAP secondary to MDS is very rare, only a limited number of case reports and small case
Given that our patient presented with GGO findings upon chest CT scan, thrombocytopenia, potentially precluding the implementation of these invasive procedures. Given that our patient presented with GGO findings upon chest CT scan, thrombocytopenia, potentially precluding the implementation of these invasive procedures.

Most patients suffering from hematologic malignancies exhibit severe dyspnea were consistent with PAP; they were nonspecific findings. PAP can be only diagnosed upon postmortem examination. Chronic myelomonocytic leukemia-associated PAP was previously reported in the context of MDS complicated by sPAP. No gene abnormalities were found to be associated with CMML in this patient. GATA2 deficiency has recently been described as a condition resulting from heterozygous mutations and consequent GATA2 haploinsufficiency, resulting in a range of clinical manifestations including virus infections, CMML, MDS or AML[29]. Spinner et al[29] conducted a systematic review of 57 patients with GATA2 deficiency and found that 84%, 14% and 8% suffered from MDS, AML and CMML, respectively. The 10 patients with biopsy-confirmed PAP in their study did not exhibit autoantibodies specific for GM-CSF, and GATA2 mutation status was not assessed for this patient owing to laboratory limitations. GATA2 is a zinc finger transcription factor that serves as a key regulator of hematopoietic cell gene expression[23] while also regulating alveolar macrophage phagocytosis[23]. Patients with a GATA2 deficiency are more susceptible to both MDS and PAP. As there were no reductions in alveolar macrophage counts in the BALF of these patients, this may suggest that there is a functional defect in these alveolar macrophages thus explaining the link between PAP and hematologic malignancies[28].

Unlike other forms of lung disease, PAP has been studied only rarely and is often only diagnosed upon postmortem examination[23]. In the present case, the patient presented with dyspnea. Owing to the detection of leukocytosis, pulmonary infection was first considered as a possible diagnosis. Following a systematic evaluation, the diagnosis of PAP was confirmed after BALF examination. While dry cough and dyspnea were consistent with PAP, they were nonspecific findings. PAP can be difficult to differentiate from infections via chest X-ray, and even following chest CT-mediated detection of GGO regions it was difficult to exclude leukemic infiltration or noncardiogenic edema.

In general, leukemia infiltration is more likely to present with smooth or nodular thickening of the bronchovascular bundles[29]. Nodular disease can also present with prelymphatic, GGO, centrilobular or random radiological patterns[23]. As sensitive or specific biomarkers of this condition are lacking, invasive approaches such as lung biopsy, BAL or bronchoscopy are necessary in order to definitively diagnose PAP. Most patients suffering from hematologic malignancies exhibit severe thrombocytopenia, potentially precluding the implementation of these invasive procedures. Given that our patient presented with GGO findings upon chest CT scan...
Table 1 Clinical characteristics of published cases of secondary pulmonary alveolar proteinosis associated with myelodysplastic syndrome in adults

Order	Diagnosis	Case number	Age/Gender	Duration from MDS to PAP	Treatment	Anti-GM-CSF Ab	Concomitant disease	Chromosomal abnormality	Genetic abnormality	Survival time after PAP	Outcome	Survival time after MDS	Ref.	
1	MDS	1	39/M	1 yr after MDS	NA	NA	Pulmonary fungus	NA	NA	Shortly	Died	1 yr	[21]	
2	MDS	1	65/F	Coincidence	Methylprednisolone and GM-CSF	NA	None	NA	NA	NA	Shortly	Died	Shortly	[21]
3	RA deteriorated into AL after 2 yr	1	27/M	1 yr after AL	Antibiotics and anti-tuberculosis agents	NA	None	NA	NA	NA	4 mo	Died	3 yr	[21]
4	RA deteriorated into AL after 1 yr	1	65/F	1 mo after AL	Fluconazole and miconazole	NA	Pulmonary fungus	NA	NA	NA	1 mo	Died	1 yr	[21]
5	RAEB-T	1	52/F	2 yr after RAEB-T	Amphotericin B	NA	Pulmonary fungus	NA	NA	NA	4 mo	Died	1 yr	[21]
6	RA deteriorated into AL within 1 yr	1	70/M	1 yr after AL	Chemotherapy	NA	Malignant melanoma	NA	NA	NA	4 mo	Died	2 yr	[21]
7	RA deteriorated into RAEB after 12 yr	1	50/M	Coincidence with RAEB	Prednisolone	Negative	Hypereosinophil	46, XY, -1, -14, +2mar[1] and 46, XY[1] at first diagnosis and 47, XY, add(1)(p13), +add(1), t(1;19)(q11;q11), -14, +mar at disease progression	NA	2 yr	Alive	14 yr	[21]	
8	MDS	1	66/M	12.5 yr	Prednisolone and amobroxol	Negative	NA	47, XY, add(1)(p11), +add(1), t(1;19)(p10; q10), -14, +mar1[20]/20	NA	NA	NA	NA	[21]	
9	MDS	1	47/M	2 yr	NA	Negative	NA	NA	NA	NA	Shortly	Died	2 yr	[21]
10	MDS-RA deteriorated into RAEB after 9 yr	1	36/M	1 yr after RAEB	Cord blood transplantation and GM-CSF	Negative	None	NA	NA	1 yr	Alive	11 yr	[21]	
11	MDS	1	39/F	NA	BAL	NA	NA	NA	NA	NA	NA	Alive	NA	[21]
12	MDS-RA deteriorated into RAEB after 1 yr	1	48/M	1 yr with RAEB	WLL	Negative	None	47, XY, +8	NA	2 yr	Alive	3 yr	[21]	
13	RCMD	1	41/F	3 yr	Prednisolone and antibiotics	NA	None	46, XX, -20; del (20)(p10) (q11q13) idic(20)(p11), del(20)(p10)	NA	7 mo	Died	4 yr	[21]	
14	MDS-RA	1	34/M	1 yr	Unrelated bone marrow	Negative	IBD	47, XY, +8	NA	1 yr	Alive	3 yr	[21]	
Case	Diagnosis	Age/Gender	Duration	Pre-treatment	Treatment	Karyotype	Follow-up	Outcome						
------	-----------	------------	----------	---------------	-----------	-----------	-----------	----------						
15	MDS-RAEB	42/F	4 mo	Unrelated cord blood transplantation	Negative	47, XX, +8	NA	Died	Shortly					
16	MDS-RAEB	52/F	8 yr	Unrelated bone marrow transplantation	Negative	47, XX, +8	NA	Alive	2 yr					
17	MDS	34/M	2 yr	BAL	NA	NA	NA	NA	NA					
18	MDS-MLD	38/M	NA	NA	Negative	NA	NA	Died	< 2 yr					
19	MDS-SLD	26/M	NA	NA	Negative	NA	NA	Died	< 2 yr					
20	MDS-U	37/M	NA	NA	Negative	NA	NA	Died	< 2 yr					
21	MDS-EB	33/M	NA	Negative	NA	NA	NA	Died	< 2 yr					
22	Very low + low MDS	13	Age: 45 (30-67); Gender: 7 M/6 F	MDS to sPAP: 0 to 168 mo 2 cases before	NA	Negative	NA	Good: 2; Intermediate: 11	13 mo	7 Died; 6 Alive	NA			
23	Inter-high + very high MDS	18	Age: 50 (27-57); Gender: 12 M/6 F	MDS to sPAP: 0 to 228 mo 6 cases before	NA	Negative	NA	Intermediate: 13; Poor: 5	15 mo	10 Died; 8 Alive	NA			
51	MDS-U deteriorated into RCMD after 11 mo and deteriorated into RAEB-1 after 13 mo	75/F	Coincidence with RAEB1	Prednisolone	Negative	Organizing pneumonia	Normal karyotype	NA	6 mo	Died	19 mo			
52	MDS-RA	46/F	3 yr	Steroid pulse, cyclosporine A and infliximab	NA	BD and myelofibrosis	Trisomy 8	NA	30 mo	Died	66 mo			
53	MDS-RA	31/M	2 yr	Steroid	NA	BD	Trisomy 8	NA	2 mo	Died	2 yr			
54	MDS-RAEB2	50/F	Coincidence with RAEB	WLL	NA	BD	Trisomy 8	NA	2 yr	Alive	2 yr			
55	MDS	40/M	NA	Stem cell transplantation	NA	NA	NA	NA	Alive	NA				
56	MDS	51/F	NA	Negative	LGL, metastatic melanoma, DVT	Normal karyotype	GATA2	NA	Died	12 yr				
57	MDS/AML	33/M	Less than 1 yr	NA	Negative	None	-7	GATA2	< 1 yr	Died	< 1 yr			
58	MDS	26/F	Less than 1 yr	NA	Negative	Hypothyroidism	Normal karyotype	GATA2	< 1 yr	Died	< 1 yr			
59	MDS	26/F	NA	Negative	LGL, breast cancer,	Normal karyotype	GATA2	NA	Died	27 yr				
---	---	---	---	---	---	---	---	---	---					
Miscarriage	**Chronic myelomonocytic leukemia (CMML)**	**Myelodysplastic syndrome (MDS)/Acute myelogenous leukemia (AML)**	**Large granular lymphocyte (LGL)**	**Deep venous thrombosis (DVT)**	**Normal karyotype**	**GATA2**	**Negative**	**Alive**	**25 yr**					
60	**MDS/AML**	**1**	**19/F**	**NA**	**NA**	**NA**	**Negative**	**LGL/DVT**	**Died**	**25 yr**				
61	**MDS**	**1**	**28/M**	**NA**	**NA**	**NA**	**Negative**	**None**	**Trisomy 8**	**GATA2**	**NA**	**Alive**	**6 yr**	
62	**MDS**	**1**	**18/F**	**NA**	**NA**	**NA**	**Negative**	**LGL, miscarriage**	**Normal karyotype**	**GATA2**	**NA**	**Died**	**31 yr**	
63	**CMML**	**1**	**48/F**	**NA**	**NA**	**NA**	**Negative**	**LGL, HT, Pancreatic cancer**	**Normal karyotype**	**GATA2**	**NA**	**Died**	**11 yr**	
64	**MDS**	**1**	**59/F**	**Very soon**	**NA**	**NA**	**Negative**	**NA**	**NA**	**GATA2**	**5 yr**	**Died**	**Currently**	
65	**CMML**	**1**	**63/M**	**Coincidence with CMML-1**	**Chemotherapy**	**NA**	**None**	**inv(6)**	**JAK2-V617F**	**5 yr**	**Died**	**Currently**		

AL: Acute leukemia; AML: Acute myelogenous leukemia; BAL: Bronchoalveolar lavage; BD: Behçet’s disease; CMML: Chronic myelomonocytic leukemia; DVT: Deep venous thrombosis; EB: Excess blasts; GM-CSF: Granulocyte-macrophage colony stimulating factor; HT: Hereditary thrombocythemia; IBD: Inflammatory bowel disease; LGL: Large granular lymphocyte; MDS: Myelodysplastic syndrome; MLD: Multilineage dysplasia; NA: Not available; PAP: Pulmonary alveolar proteinosis; RA: Refractory anemia; RAEB: Refractory anemia with excess blasts; RAEB-T: Refractory anemia with excess blasts in transformation; RCMD: Refractory cytopenia with multilineage dysplasia; SLD: Single lineage dysplasia; sPAP: Secondary pulmonary alveolar proteinosis; U: Unclassifiable; WLL: Whole lung lavage.

and had been diagnosed with CMML, further classification of his lung disease would have been challenging in the absence of invasive diagnostic evaluation. Fortunately, this patient was able to tolerate BAL treatment. As the patient was found to be negative for leukemic infiltration and periodic acid-Schiff staining was positive, a diagnosis of PAP was confirmed. Flow cytometry analyses of BALF samples further provided strong evidence of a model wherein sPAP is primarily a result of abnormal alveolar macrophage numbers and functionality. In patients with hematologic malignancies, sPAP is thought to be underestimated as a driver of respiratory failure. PAP should therefore be considered in the differential diagnosis when evaluating patients suffering from hematologic malignancies accompanied with pulmonary symptoms or abnormal radiographic findings.

CMML treatment is challenging and is largely influenced by patient age, with hypomethylating agents such as 5-azacitidine and decitabine often being used in this therapeutic context. The patient in this report was treated with a low dose combination of cytarabine and decitabine with whole lung lavage and exhibited a good response to this treatment. After one cycle of treatment, the patient’s pulmonary lesions were significantly improved, and he was free of hypoxia. An analysis of prior cases of sPAP and MDS revealed that pulmonary function could only be restored when MDS was controlled, consistent with the present case. These findings suggest that the treatment of underlying disease is essential when attempting to alleviate PAP symptoms. Whole lung lavage can also effectively alleviate patient symptoms.
CONCLUSION

In summary, the present case offers evidence regarding the mechanistic basis for PAP secondary to CMMML. As PAP is associated with a high mortality rate, early detection is essential. No predictive models are currently available to gauge the risk of PAP development, and genetic analyses of GATA2 may offer value as a means of more precisely diagnosing underlying hematological conditions in affected patients. When patients present with unexplained dyspnea and GGO findings upon chest CT while suffering from hematologic disorders, PAP should be considered as a possible diagnosis. Patients with GATA2 deficiencies or primary disease progression are also at a high risk of PAP development. Other factors including trisomy 8 and autoimmune diseases. High levels of CD14dimCD16+ monocytes may also be indicative of an increased PAP risk. Future prospective or high-quality objective studies are needed to better evaluate risk factors associated with sPAP and to confirm related prior findings.

ACKNOWLEDGEMENTS

The authors gratefully appreciate the staff of the Medical Records Room of Hangzhou First People’s Hospital for the support of this study. The authors are also thankful to all the patients for their understanding and cooperation.

REFERENCES

1. Trapnell BC, Whitsett JA, Nakata K. Pulmonary alveolar proteinosis. N Engl J Med 2003; 349: 2527-2539 [PMID: 14695413 DOI: 10.1056/NEJMra023226]
2. Rosen SH, Castelenan B, Liebow AA. Pulmonary alveolar proteinosis. N Engl J Med 1958; 258: 1123-1142 [PMID: 15552931 DOI: 10.1056/NEJM195806052582301]
3. Cordonnier C, Fleury-Feith J, Escudier E, Atassi K, Bemaudin JF. Secondary alveolar proteinosis is a reversible cause of respiratory failure in leukemic patients. Am J Respir Crit Care Med 1994; 149: 788-794 [PMID: 8181651 DOI: 10.1164/ajrccm.149.3.8118651]
4. Xue Y, Han Y, Li T, Chen S, Zhang J, Pan J, Wu Y, Wang Y, Shen J. Pulmonary alveolar proteinosis as a terminal complication in a case of myelodysplastic syndrome with idic(20q-). Acta Haematol 2010; 123: 55-58 [PMID: 19955712 DOI: 10.1159/000262292]
5. Ishii H, Seymour JF, Tazawa R, Inoue Y, Uchida N, Nishida A, Kogure Y, Saraya T, Tomii K, Takada T, Itoh Y, Hojo M, Ichiwata T, Goto H, Nakata K. Secondary pulmonary alveolar proteinosis complicating myelodysplastic syndrome results in worsening of prognosis: a retrospective cohort study in Japan. BMC Pulm Med 2014; 14: 37 [PMID: 24597668 DOI: 10.1186/1471-2466-14-37]
6. Robb L, Drinkwater CC, Metcalf D, Li R, Köntgen F, Nicola NA, Begley CG. Hematopoietic and lung abnormalities in mice with a null mutation of the common beta subunit of the receptors for granulocyte-macrophage colony-stimulating factor and interleukins 3 and 5. Lung 1995; 92: 956-969 [PMID: 7568173 DOI: 10.1073/pnas.92.21.9565]
7. Solary E, Itzykson R. How I treat chronic myelomonocytic leukemia. Blood 2017; 130: 126-136 [PMID: 28572287 DOI: 10.1182/blood-2017-04-736421]
8. Pollack SM, Gutierrez G, Ascenso J. Pulmonary alveolar proteinosis with myeloproliferative syndrome with myelodysplasia: bronchoalveolar lavage reduces white blood cell count. Am J Hematol 2006; 81: 634-638 [PMID: 16996593 DOI: 10.1002/ajh.20670]
9. Can Chen, Xuan Chen, Xilian Huang, Kaile Wang, Shexian Qian. Concurrent eosinophilia and IgG4-related disease in a child: A case report and review of the literature. Exp Ther Med 2018; 2739-2748 [PMID: 5795490 DOI: 10.3892/etm.2018.5743]
10. Shoji N, Ito Y, Kimura Y, Nishimaki J, Kuriyama Y, Tauchi T, Yaguchi M, Payzulla D, Ebihara Y, Ohyashiki K. Pulmonary alveolar proteinosis as a terminal complication in myelodysplastic syndromes: a report of four cases detected on autopsy. Leuk Res 2002; 26: 591-595 [PMID: 12007507 DOI: 10.1016/S0145-2126(01)00178-3]
11. Chaulagain CP, Pilichowska M, Brinckerhoff L, Tabba M, Erban JK. Secondary pulmonary alveolar proteinosis in hematologic malignancies. Hematol Oncol Stem Cell Ther 2014; 7: 127-135 [PMID: 25300566 DOI: 10.1016/j.hemonc.2014.09.003]
12. Shah PL, Hansell D, Lawson PR, Reid KB, Morgan C. Pulmonary alveolar proteinosis: clinical aspects and current concepts on pathogenesis. Thorax 2000; 55: 65-77 [PMID: 10607805 DOI: 10.1136/thorax.55.1.67]
13. Dirksen U, Nishinakamura R, Gronke P, Hattenhorst U, Nogee L, Murray R, Burdach S. Human pulmonary alveolar proteinosis associated with a defect in GM-CSF/IL-3/IL-5 receptor common beta chain expression. J Clin Invest 1997; 100: 2211-2217 [PMID: 9410898 DOI: 10.1172/JCI19758]
14. Kitamura T, Tanaka N, Watanabe J, Uchida, Kanegasaki S, Yamada Y, Nakata K. Idiopathic pulmonary alveolar proteinosis as an autoimmune disease with neutralizing antibody against
Chen C et al. Chronic myelomonocytic leukemia-associated PAP

granulocyte/macrophage colony-stimulating factor. J Exp Med 1999; 190: 875-880 [PMID: 10499925 DOI: 10.1084/jem.190.6.875]

15 Zhang D, Tian X, Feng R, Guo X, Wang P, Situ Y, Xiao Y, Xu KF. Secondary pulmonary alveolar proteinosis: a single-center retrospective study (a case series and literature review). BMC Pulm Med 2018; 18: 15 [DOI: 10.1186/s12890-018-0590-z]

16 Inoue D, Marumo S, Ishii H, Fukui M. Secondary pulmonary alveolar proteinosis during corticosteroid therapy for organising pneumonia associated with myelodysplastic syndrome. BMJ Case Rep 2019; 12 [PMID: 31537595 DOI: 10.1136/bcr-2019-231055]

17 Zhao Y, Xiong W, Wu X. A case of secondary pulmonary alveolar proteinosis, but prior to myelodysplastic syndrome. Respir Fail Case Rep 2013; 1: 58-61 [PMID: 25473545 DOI: 10.1002/rcr2.29]

18 Gacouin A, Le Tulzo Y, Suprin E, Briens E, Bernard M, Camus C, Thomas R. Acute respiratory failure caused by secondary alveolar proteinosis in a patient with acute myeloid leukemia: a case report. Intensive Care Med 1998; 24: 265-267 [PMID: 9565812 DOI: 10.1007/s001340050563]

19 Chung JH, Pipavath SJ, Myerson DH, Godwin D. Secondary pulmonary alveolar proteinosis: a confusing and potentially serious complication of hematologic malignancy. J Thorac Imaging 2009; 24: 115-118 [PMID: 1946834 DOI: 10.1097/RTI.0b013e3181934ede]

20 Ohmachi O, Ogiya D, Morita F, Kojima M, Tsuboi K, Tazuke K, Komatsu M, Hayama N, Kamaki N, Ogawa Y, Ando K. Secondary pulmonary alveolar proteinosis in a patient with chronic myeloid leukemia in the accelerated phase. Tokai J Exp Clin Med 2008; 33: 146-149 [PMID: 21318986]

21 Liu Y, Chen LL, Qiu YY, Xiao YL, Cai HR. Clinical features of secondary pulmonary alveolar proteinosis associated with myelodysplastic syndrome: Two case reports. Medicine (Baltimore) 2017; 96: e8481 [PMID: 28905306 DOI: 10.1097/MD.0000000000008481]

22 Ando J, Tamayose K, Sugimoto K, Oshimi K. Late appearance of t(1;19)(q11;q11) in myelodysplastic syndrome associated with dysplastic eosinophilia and pulmonary alveolar proteinosis. Cancer Genet Cytogenet 2002; 139: 14-17 [PMID: 12547151 DOI: 10.1016/s0165-8450(02)00652-0]

23 Yoshioka Y, Ohwada A, Harada N, Satoh N, Sakuraba S, Damba T, Fukuchi Y. Increased circulating CD16+ CD14dim monocytes in a patient with pulmonary alveolar proteinosis. Respirology 2002; 7: 273-279 [PMID: 12153694 DOI: 10.1046/j.1440-1843.2002.00392.x]

24 Sawada K, Yamada G, Shijubo N, Takagi-Takahashi Y, Ohtsiji T, Saioh T, Takahashi H, Watanabe A, Satoh M, Abe S. Biphagic pulmonary blastoma presenting as endobronchial polyp with a long stalk. Intern Med 2005; 44: 516-517 [PMID: 15942110 DOI: 10.2169/internalmedicine.44.516]

25 Fukuno K, Tomonari A, Tuskada N, Takahashi S, Ooi J, Konuma T, Uchiyama M, Fujii T, Endo T, Iwamoto A, Oyaizu N, Nakata K, Moriwaki H, Tojo A, Asano S. Successful cord blood transplantation for myelodysplastic syndrome resulting in resolution of pulmonary alveolar proteinosis. Bone Marrow Transplant 2006; 38: 581-582 [PMID: 16953205 DOI: 10.1038/sj.bmj.1705491]

26 Tabata S, Shimoji S, Murase K, Takiuchi Y, Inoue D, Kimura T, Nagai Y, Mori M, Togami K, Karata M, Ito K, Hashimoto H, Matsuura A, Nagai K, Takahashi T. Successful allogeneic bone marrow transplantation for myelodysplastic syndrome complicated by severe pulmonary alveolar proteinosis. Int J Hematol 2009; 90: 407-412 [PMID: 19693450 DOI: 10.1007/s12185-009-0404-4]

27 Nishida A, Miyamoto A, Yamamaoto H, Uchida N, Izutsu K, Wake A, Ohta Y, Fujii T, Arai H, Taniguchi S, Kishi K. Possible association of trisomy 8 with secondary pulmonary alveolar proteinosis in myelodysplastic syndrome. Am J Respir Crit Care Med 2011; 184: 277-280 [PMID: 21765036 DOI: 10.1164/rccm.184.2.279a]

28 Handa T, Nakatsu T, Baba M, Takada T, Nakata K, Ishii H. Clinical features of three cases with pulmonary alveolar proteinosis secondary to myelodysplastic syndrome developed during the course of Behçet's disease. Respir Investig 2014; 52: 75-79 [PMID: 24388375 DOI: 10.1016/j.resinv.2013.05.005]

29 Spinner MA, Sanchez LA, Hsu AP, Shaw PA, Zerbe CS, Calvo KR, Arthur DC, Gu W, Gould CM, Brewer CC, Cowen EW, Freeman AF, Ollivier KN, Uzel G, Zelazny AM, Daub JR, Spalding CD, Claypool RJ, Giri NK, Alter BP, Mace EM, Orange JS, Cuellar-Rodriguez J, Hickstein DD, Holland SM. GATA2 deficiency: a prototypic disorder of hematopoesis, lymphatics, and immunity. Blood 2014; 123: 809-821 [PMID: 24227816 DOI: 10.1182/blood-2013-07-515253]

30 Gries E, Zaroock R, Costabel U, Hildebrandt F, Theegarten D, Albert M, Schams A, Lange J, Krenke K, Wesselak T, Schön C, Kappler M, Blum H, Krebs S, Jung A, Kröner C, Klein C, Campo I, Luissetti M, Bonella F. GATA2 deficiency in children and adults with severe pulmonary alveolar proteinosis and hematologic disorders. BMC Pulm Med 2015; 15: 87 [PMID: 26264606 DOI: 10.1186/s12890-015-0083-2]

31 Itzykson R, Fenaux P, Bowen D, Cross NCP, Cortes J, De Witte T, Gromling U, Onida F, Pipavath SJ, Godwin D. Master regulatory GATA transcription factors: mechanistic principles and emerging links to hematologic malignancies. Nucleic Acids Res 2012; 40: 5819-5831 [PMID: 22492510 DOI: 10.1093/nar/gks281]

32 Lasbury ME, Tang X, Durant PJ, Lee CH. Effect of the transcription factor GATA-2 on phagocytic
activity of alveolar macrophages from Pneumocystis carinii-infected hosts. *J Eukaryot Microbiol* 2001; Suppl: 158S-159S [PMID: 11906041 DOI: 10.1111/j.1550-7408.2001.tb00499.x]

34 Tanaka N, Matsumoto T, Miura G, Emoto T, Matsunaga N, Satoh Y, Oka Y. CT findings of leukemic pulmonary infiltration with pathologic correlation. *Eur Radiol* 2002; 12: 166-174 [PMID: 11868094 DOI: 10.1007/s003300101013]

35 Heyneman LE, Johkoh T, Ward S, Honda O, Yoshida S, Müller NL. Pulmonary leukemic infiltrates: high-resolution CT findings in 10 patients. *AJR Am J Roentgenol* 2000; 174: 517-521 [PMID: 10658733 DOI: 10.2214/ajr.174.2.1740517]
