ALGEBRAIC VECTOR BUNDLES
OVER REAL ALGEBRAIC VARIETIES

M. BUCHNER AND W. KUCHARZ

By an affine algebraic variety, we mean in this note a locally ringed space
\((X, R_X)\) which is isomorphic to a ringed space of the form \((V, R_V)\), where \(V\) is
a Zariski closed subset in \(R^n\) and \(R_V\) is the sheaf of rings of regular functions
on \(V\). Recall that \(R_V(V)\) is the localization of the ring of polynomial functions
on \(V\) with respect to the multiplicatively closed subset consisting of functions
vanishing nowhere on \(V\) \([2, 15]\).

Let \(F\) be one of the fields \(R, C\) or \(H\) (quaternions). A continuous \(F\)-vector
bundle \(E\) over \(X\) is said to admit an algebraic structure if there exists a finitely
generated projective module \(P\) over the ring \(R_X(X) \otimes_R F\) such that the \(F\)-
vector bundle over \(X\), associated with \(P\) in the standard way, is \(C^0\) isomorphic
to \(E\).

Our purpose is to study the following

PROBLEM. Characterize continuous \(F\)-vector bundles over \(X\) which admit
an algebraic structure.

This is an old problem, but despite considerable effort, the situation is well
understood only in a few special cases: when \(X\) is the unit sphere \(S^n\) \([4, 16]\),
when \(X\) is the real projective space \(RP^n\) \([5, 7]\) and when \(\dim X \leq 3\) and
\(F = R\) \([8, 9]\) (cf. also \([13]\) for a short survey).

Clearly, \(R. P^n\) with its natural structure of an abstract real algebraic variety
is actually an affine variety and every affine real algebraic variety admits a
locally closed embedding in some \(R. P^n\).

Let us first consider \(C\)-vector bundles.

Let \(X\) be an affine nonsingular real algebraic variety and assume for a mo­
moment that \(X\) is embedded in \(R. P^n\) as a locally closed subvariety. Consider
\(R. P^n\) as a subset of the complex projective space \(CP^n\). Let \(U\) be a Zariski
neighborhood of \(X\) in the set of nonsingular points of the Zariski (complex)
closure of \(X\) in \(CP^n\). Denote by \(H^{even}_{algl}(U, Z)\) the subgroup of the coho­
mology group \(H^{even}(U, Z)\) generated by the cohomology classes which are
Poincaré dual to the homology classes in the Borel-Moore homology group
\(H^{even}_{algl}(U, Z)\) represented by the closed irreducible complex algebraic subvari­
eties of \(U\) (cf. \([3]\)). Let \(H^{even}_{algl}(X, Z)\) be the image of \(H^{even}_{algl}(U, Z)\) via the
restriction homomorphism \(H^{even}_{algl}(U, Z) \rightarrow H^{even}(X, Z)\). One easily checks
that \(H^{even}_{algl}(X, Z)\) does not depend on the choice of \(U\) or the choice of the
embedding of \(X\) in \(R. P^n\).

Received by the editors November 14, 1986.
1980 Mathematics Subject Classification (1985 Revision). Primary 14F05, 55B15.
Both authors were supported by NSF grant DMS-8602672.
THEOREM 1. Let X be an affine nonsingular real algebraic variety and let ξ be a continuous \mathbb{C}-vector bundle over X. If ξ admits an algebraic structure, then the total Chern class $c(\xi)$ of ξ belongs to $H^\text{even}_{\text{alg}}(X, \mathbb{Z})$. Conversely, ξ admits an algebraic structure, provided that $c(\xi)$ belongs to $H^\text{even}_{\text{alg}}(X, \mathbb{Z})$, X is compact, $\dim X \leq 5$ and ξ is of constant rank.

SKETCH OF PROOF. We can assume that X is a locally closed subvariety in $\mathbb{R}P^n$. Suppose that ξ admits an algebraic structure. Then one can find a Zariski neighborhood U of X in the Zariski closure of X in $\mathbb{C}P^n$ and an algebraic vector bundle $\tilde{\xi}$ over U such that the restriction $\tilde{\xi}|X$ of $\tilde{\xi}$ to X is C^0 isomorphic to ξ. It easily follows from [3] that $c(\xi)$ belongs to $H^\text{even}_{\text{alg}}(X, \mathbb{Z})$.

If all assumptions of the second part of Theorem 1 are satisfied, then with the help of the Grothendieck formula (cf. [6, p. 151]), one constructs a continuous \mathbb{C}-vector bundle η over X such that rank $\eta = 2$, η admits an algebraic structure and $c(\eta) = c(\xi)$ (here both assumptions, $c(\xi) \in H^\text{even}_{\text{alg}}(X, \mathbb{Z})$ and $\dim X \leq 5$ are essential). Since ξ is of constant rank, ξ and η are stably equivalent [12]. The conclusion follows now from [16, Theorem 2.2].

Our next step is the calculation of the groups $H^k_{\text{alg}}(X, \mathbb{Z})$ for a large class of varieties.

THEOREM 2. Let X be a locally closed nonsingular algebraic subvariety of $\mathbb{R}P^n$ and let X_C be the Zariski closure of X in $\mathbb{C}P^n$. Assume that X_C is nonsingular. Then $H^2_{\text{alg}}(X, \mathbb{Z})$ is equal to the image of the restriction homomorphism

$$H^2(\mathbb{R}P^n, \mathbb{Z}) \rightarrow H^2(X, \mathbb{Z})$$

in each of the following two cases:
(a) $2i \leq 2\dim X - n$.
(b) X_C is an ideal theoretic complete intersection in $\mathbb{C}P^n$ and $2i < \dim X$.

SKETCH OF PROOF. Consider the commutative diagram

$$
\begin{array}{ccc}
H^2i(\mathbb{C}P^n, \mathbb{Z}) & \longrightarrow & H^2i(X_C, \mathbb{Z}) \\
\delta \downarrow & & \beta \downarrow \\
H^2i(\mathbb{R}P^n, \mathbb{Z}) & \longrightarrow & H^2i(X, \mathbb{Z})
\end{array}
$$

where all homomorphisms are the restriction homomorphisms. If γ is an isomorphism, then $H^2i(X_C, \mathbb{Z}) = H^2i_{\text{alg}}(X_C, \mathbb{Z})$ and β maps $H^2i(X_C, \mathbb{Z})$ onto $H^2i_{\text{alg}}(X, \mathbb{Z})$. Moreover, since δ is an epimorphism, $H^2i_{\text{alg}}(X, \mathbb{Z})$ is equal to the image of α.

If (a) is satisfied, then γ is an isomorphism by the Lefschetz theorem [1].

If (b) is satisfied, then γ is an isomorphism by the Larsen theorem [10].

Notice that if (b) is satisfied and $\dim X$ is odd, then $H^\text{even}_{\text{alg}}(X, \mathbb{Z})$ is completely determined. For even $\dim X$, the situation is more complicated. Indeed, let

$$V^n = \{[x_0, \ldots, x_n, x_{n+1}] \in \mathbb{R}P^{n+1} | x_0^2 + \cdots + x_n^2 = x_{n+1}^2\}.$$

Then the Zariski closure of V^n in $\mathbb{C}P^{n+1}$ is nonsingular and the restriction homomorphism $H^\text{even}(\mathbb{R}P^{n+1}, \mathbb{Z}) \rightarrow H^\text{even}(V^n, \mathbb{Z})$ is the zero homomorphism.
On the other hand, V^n is algebraically isomorphic to S^n and hence every continuous \mathbb{C}-vector bundle over V^n admits an algebraic structure \cite{4,16}. It follows from Theorem 1 that $H^n_{C-\text{alg}}(V^n, \mathbb{Z})$ is nontrivial, provided that n is even.

The example above indicates that the case in which $\dim X$ is even can only be handled under some additional assumptions.

Denote by $P(n;k)$ the projective space associated with the vector space of all homogeneous polynomials in $\mathbb{R}[x_0,\ldots,x_n]$ of degree k. If an element H in $P(n;k)$ is represented by a polynomial G, then $V(H)$ will denote the subvariety of $\mathbb{R}P^n$ defined by G.

Theorem 3. Let Y be a locally closed algebraic subvariety of $\mathbb{R}P^n$, $\dim Y \geq 2$. Assume that the Zariski closure of Y in $\mathbb{C}P^n$ is a nonsingular ideal theoretic complete intersection. Then there exists a nonnegative integer k_0 such that, for every integer k greater than k_0, one can find a subset Σ_k of $P(n;k)$ which is a countable union of proper subvarieties of $P(n;k)$ and has the property that for every H in $P(n;k)\setminus \Sigma_k$, $V(H)$ is either empty or nonsingular and transverse to Y and the group $H^n_{C-\text{alg}}(Y \cap V(H), \mathbb{Z})$ is equal to the image of the restriction homomorphism

$$H^n(\mathbb{R}P^n, \mathbb{Z}) \to H^n(Y \cap V(H), \mathbb{Z}).$$

In particular, if $Y = \mathbb{R}P^n$, then Theorem 3 determines $H^n_{C-\text{alg}}$ for generic algebraic hypersurfaces in $\mathbb{R}P^n$, $n \geq 2$, of sufficiently high degree.

The proof of Theorem 3 is technically more complicated. Besides the Lefschetz theorem Moishezon’s result \cite[Theorem 5.4]{11} also plays an essential role.

Theorems 2 and 3 show that, in many cases, Theorem 1 imposes severe restrictions on continuous \mathbb{C}-vector bundles admitting an algebraic structure.

Among several applications of Theorem 3, we want to select only the simplest one.

Theorem 4. Let n be a positive integer. Then there exists a C^∞ embedding $h: S^n \to \mathbb{R}^{n+1}$, arbitrarily close in the C^∞ topology to the inclusion map, and a closed nonsingular algebraic subvariety X in \mathbb{R}^{n+1} such that $h(S^n) = X$ and every continuous \mathbb{C}-vector bundle over X admitting an algebraic structure is stably trivial. If $n = 4 \pmod 8$, then also every continuous \mathbb{R}- or \mathbb{H}-vector bundle over X admitting an algebraic structure is stably trivial.

Theorem 4 is interesting in view of the fact that every continuous \mathbb{F}-vector bundle over S^n admits an algebraic structure \cite{4,16}. Let us also mention that every continuous stably trivial \mathbb{F}-vector bundle admits an algebraic structure \cite[Theorem 2.2]{16}.

The second part of Theorem 4 immediately implies that Shiota’s conjecture \cite[p. 1007]{14} is false over X. Shiota has conjectured that a continuous \mathbb{R}-vector bundle ξ of constant rank over an affine nonsingular compact real algebraic variety Y admits an algebraic structure if and only if all Stiefel-Whitney classes of ξ are Poincaré dual to the $\mathbb{Z}/2\mathbb{Z}$-homology classes of Y represented by closed algebraic subvarieties of Y. He proved the “only if” part of the
conjecture and the "if" part is established in [8, 9] for vector bundles over surfaces and threefolds.

SKETCH OF THE PROOF OF THEOREM 4. Let G be an element in $P(n+1; 2k+2)$ represented by the homogeneous polynomial
\[(x_0^2 + \cdots + x_n^2 - x_{n+1}^2)(x_0^2 + \cdots + x_n^2 + x_{n+1}^2)^k.\]
If we identify \mathbb{R}^{n+1} with a subset of $\mathbb{R}P^{n+1}$ via the map which sends (x_0, \ldots, x_n) to $[x_0, \ldots, x_n; 1]$, then $S^n = V(G)$. By Theorem 3 (applied to $Y = \mathbb{R}P^{n+1}$ and k sufficiently large) together with Theorem 1, there exists an element H in $P(n+1; 2k+2)$ such that H is arbitrarily close to G and for every continuous \mathbb{C}-vector bundle ξ over $X = V(H)$, the total Chern class of ξ is equal to 0. Clearly, there exists a C^∞ embedding $h: S^n \to \mathbb{R}^{n+1}$ which is close to the inclusion map and satisfies $h(S^n) = X$. Since X is diffeomorphic to S^n, the vector bundle ξ is stably trivial.

The second part of Theorem 4 follows by considering the complexification and the realification of vector bundles and by using the fact that the reduced Grothendieck group of continuous \mathbb{F}-vector bundles over X is isomorphic to Z.

REFERENCES

1. A. Andreotti and T. Frankel, The Lefschetz theorem on hyperplane sections, Ann. of Math. 69 (2) (1959), 713–717.
2. J. Bochnak, M. Coste and M. F. Roy, Géométrie algébrique réelle, Ergeb. Math. Grenzgeb., Vol. 12, Springer-Verlag, New York, 1987.
3. A. Borel and A. Haefliger, La classe d’homologie fondamentale d’un espace analytique, Bull. Soc. Math. France 89 (1961), 461–513.
4. R. Fossum, Vector bundles over spheres are algebraic, Invent. Math. 8 (1969), 222–225.
5. A. V. Geramita and L. G. Roberts, Algebraic vector bundles on projective spaces, Invent. Math. 10 (1970), 298–304.
6. A. Grothendieck, La théorie des classes de Chern, Bull. Soc. Math. France 86 (1958), 137–154.
7. J. P. Jouanolou, Comparaison des K-theories algébrique et topologique de quelque variétés algébrique, C. R. Acad. Sci. Paris Ser. A 272 (1971), 1373–1375.
8. W. Kucharz, Vector bundles over real algebraic surfaces and threefolds, Compositio Math. 60 (1986), 209–225.
9. M. E. Larsen, On the topology of complex projective manifolds, Invent. Math. 19 (1973), 251–260.
10. B. G. Moishezon, Algebraic homology classes on algebraic varieties, Math. USSR-Izv. 1 (1967), 209–251.
11. F. P. Peterson, Some remarks on Chern classes, Ann. of Math. (2) 60 (1959), 414–420.
12. L. G. Roberts, Comparison of algebraic and topological K-theory, Algebraic K-Theory II, Lecture Notes in Math., vol. 342, Springer-Verlag, Berlin and New York, 1973, pp. 74–78.
13. M. Shiota, Real algebraic realization of characteristic classes, R. I. M. S. Kyoto Univ. 18 (1982), 995–1008.
14. R. Silhol, Géométrie algébrique sur un corps non algébriquement clos, Comm. Alg. 6 (1978), 1151–1155.
15. R. G. Swan, Topological examples of projective modules, Trans. Amer. Math. Soc. 230 (1977), 201–234.

DEPARTMENT OF MATHEMATICS AND STATISTICS, UNIVERSITY OF NEW MEXICO, ALBUQUERQUE, NEW MEXICO 87131