Z’ signals in polarised top-antitop final states

L. Basso1, K. Mimasu2, S. Moretti2,3

1Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, Germany
2School of Physics & Astronomy, University of Southampton, UK
3Particle Physics Department, Rutherford Appleton Laboratory, UK

arXiv:1203.2542
Overview

- **Introduction**
 - Extra neutral gauge bosons
 - $t\bar{t}$ channel: Asymmetries at the LHC

- **Benchmark Z' models and asymmetries**

- **Study of asymmetry variables in $t\bar{t}$ from broad classes of Z' models being searched for at the LHC**
 - Sensitivity to up quark chiral couplings
 - Distinguishability from SM and amongst themselves

- **Results**
 - Differential distributions; significance and luminosity analysis

- **Summary & outlook**
Introduction

• **Z’**: massive neutral s-channel resonance
 - Extra gauge boson from an extension of the SM symmetry group
 - KK excitation of SM gauge fields in extra dimensions
 - Many more...

• **Drell-Yan**: \(pp(\bar{p}) \rightarrow Z' \rightarrow l^+l^- \)
 - Discovery channel
 - Low background \(\sim 100\% \) reconstruction efficiency

• **Z’ \rightarrow t\bar{t}** also has a role to play being another significant channel at the LHC
 - Access to up-type quark coupling
 - Asymmetries
Charge asymmetry

• Measure of the symmetry of a process under charge conjugation ($qq\rightarrow f^+f^-$) → angular asymmetry
 - Tevatron $t\bar{t}$ forward backward asymmetry

• LHC: symmetric pp collider
 - Cannot define an absolute ‘forward’ direction
 - Boost of CM frame correlated with incoming quark direction
 - Top rapidity distribution broadened w.r.t antitop

\[
A_C = \frac{N_t(|y| < y_{cut}^C) - N_{\bar{t}}(|y| < y_{cut}^C)}{N_t(|y| < y_{cut}^C) + N_{\bar{t}}(|y| < y_{cut}^C)}
\]

\[
A_F = \frac{N_t(|y| > y_{cut}^F) - N_{\bar{t}}(|y| > y_{cut}^F)}{N_t(|y| > y_{cut}^F) + N_{\bar{t}}(|y| > y_{cut}^F)}
\]

\[
A_{OBF} = \frac{N(\Delta y > 0) - N(\Delta y < 0)}{N(\Delta y > 0) + N(\Delta y < 0)}|p_{t\bar{t}}^z| > p_{cut}^z
\]

\[
A_{RFB} = \frac{N(\Delta y > 0) - N(\Delta y < 0)}{N(\Delta y > 0) + N(\Delta y < 0)}|y_{t\bar{t}}| > y_{cut}^t
\]
Spin asymmetry

- Single (L) and double (LL) spin asymmetries: defined in terms of the helicity of the outgoing top/antitop
 - Can be extracted from kinematical properties of top decay products
 \[A_{LL} = \frac{N(+,+) + N(-,-) - N(+,-) - N(-,+)}{N_{Total}} \]
 \[A_L = \frac{N(-,-) + N(-,+) - N(+,+) - N(+,-)}{N_{Total}} \]

- \(N(h_t, h_{t\bar{t}}) \) obtained by calculating polarised matrix elements using helicity amplitude methods
 \[\text{[Hagiwara, Zeppenfeld '85; Mangano, Parke '90; Arai et al. '08]} \]

- Asymmetries are an independent probe of chiral couplings of new physics to tops
Z’: models

- **TeV scale extra U(1)’**:
 - Universal couplings to generations
 - Fields in the same SM representations will have the same charge under new U(1)
 - 5 independent couplings Q_L, L_L, u_R, d_R, e_R (ν_R decoupled)

- **Parametrise interaction in vector-axial basis**

- **Split models into two classes**
 - ‘E6 type’: $E_6 + G_{LR}(B-L)$ - only one non-zero up-type coupling
 - ‘Generalised’: $G_{LR} + G_{SM}$ - both non-zero

Benchmarks: E_6, G_{LR}, G_{SM}

$U(1)'$	Parameter	g'_U	g'_A	g'_L	g'_D
E_6 ($g' = 0.462$)	θ	0	-0.316	-0.632	0.316
$U(1)_x$	0	0	-0.316	-0.632	0.316
$U(1)_\psi$	0.5π	0	0.408	0	0.408
$U(1)_\eta$	-0.29π	0	-0.516	-0.387	-0.129
$U(1)_S$	0.129π	0	-0.129	-0.581	0.452
$U(1)_N$	0.42π	0	0.316	-0.158	0.474

G_{LR} ($g' = 0.595$)	ϕ	0	0.5	-0.5	-0.5	0.5
$U(1)_R$	0	0.5	-0.5	-0.5	0.5	
$U(1)_{B-L}$	0.5π	0.333	0	0.333	0	
$U(1)_{LR}$	-0.128π	0.329	-0.46	-0.591	0.46	
$U(1)_Y$	0.25π	0.589	-0.354	-0.118	0.354	

G_{SM} ($g' = 0.760$)	α	-0.072π	0.193	0.5	-0.347	-0.5
$U(1)_{SM}$	0	0.5	0.5	-0.5	-0.5	
$U(1)_{T3L}$	0.5π	1.333	0	-0.666	0	

[Accomando, Belyaev, Fedeli, King, Shepherd-Themistocleous. arXiv:1010.6058]
Z′: asymmetries

- **Charge asymmetry**
 - Asymmetric part of the matrix element (cos θ term) \(\propto g_V^i g_A^i g_V^t g_A^t \)
 - Requires all non-zero couplings to generate at tree-level
 - Purely vector/axial models only generate via interference with SM (EW)

- **Spin asymmetries**
 - Calculated using helicity amplitudes
 - \(A_{LL} \) depends on square of top couplings like \(\sigma_{\text{total}} \)
 - \(A_L \) only non-zero if both \(g_V^t g_A^t \) non-zero, sensitive to relative sign in these couplings

\[
A_{LL}^i \propto \left(3(g_A^t)^2 \beta^2 + (g_V^t)^2 (2 + \beta^2)\right) \left((g_V^i)^2 + (g_A^i)^2\right)
\]

\[
A_L^i \propto g_A^t g_V^t \beta \left((g_V^i)^2 + (g_A^i)^2\right); \quad \beta = \sqrt{1 - \frac{4m_t^2}{s}}
\]
Developed a tool based on HELAS/MADGRAPH that can output observables in $t\bar{t}$ final state
- $M_{Z'}=2.0$ and 2.5 TeV,
- LHC at $8[14] \text{ TeV}$ assuming $L_{\text{int}} = 15[100] \text{ fb}^{-1}$

Focus around Z' peak: $|M_{t\bar{t}}-M_{Z'}| < 500 \text{ GeV}$
- Invariant mass distributions/profiles of asymmetries
- Tree-level SM and interference
- Folded in $t\bar{t}$ reconstruction efficiency $\varepsilon = 10\%$

Statistical error on generic asymmetry δA based on invariant mass bins of 50 GeV

$$\delta A \equiv \delta \left(\frac{N_F - N_B}{N_F + N_B} \right) = \sqrt{\frac{2}{L\varepsilon} \left(\frac{\sigma_F^2 + \sigma_B^2}{\sigma_{Total}^3} \right)}$$

‘Significance’ measure, s, of distinguishability between models

$$s \equiv \frac{|A(1) - A(2)|}{\sqrt{\delta A(1)^2 + \delta A(2)^2}}$$
E₆ type models: A_{LL}

- Clear signatures with distinction between most models and the SM when up-type coupling is large enough
- Set of overlapping models have similar magnitude v/a couplings
- Neither A_{LL} nor cross section measurements can distinguish these
E\textsubscript{6} type models: A\textsubscript{LL}

- Integrating over narrow mass window around the peak increases significances

A\textsubscript{LL}(\times 10)	\(\sqrt{s} = 14\text{\ TeV}\)	\(\mathcal{L}_{\text{int}} = 100\text{\ fb}^{-1}\)	\(\sqrt{s} = 8\text{\ TeV}\)	\(\mathcal{L}_{\text{int}} = 15\text{\ fb}^{-1}\)
\(M_{Z'} = 2.0\text{\ TeV}\)	\(\Delta M_{\tilde{t}\tilde{t}} < 0.5\text{\ TeV}\)	\(\Delta M_{\tilde{t}\tilde{t}} < 0.1\text{\ TeV}\)	\(\Delta M_{\tilde{t}\tilde{t}} < 0.5\text{\ TeV}\)	\(\Delta M_{\tilde{t}\tilde{t}} < 0.1\text{\ TeV}\)
\(S\text{\ M}\)	\(-4.55 \pm 0.09\)	\(-5.07 \pm 0.11\)	\(-5.60 \pm 0.84\)	\(-6.26 \pm 1.24\)
\(E_6(\chi)\)	\(-4.65 \pm 0.09\)	\(-5.61 \pm 0.11\)	\(-5.72 \pm 0.84\)	\(-6.95 \pm 1.15\)
\(E_6(\eta)\)	\(-5.01 \pm 0.09\)	\(-7.01 \pm 0.10\)	\(-6.18 \pm 0.81\)	\(-8.40 \pm 0.90\)
\(E_6(\psi)\)	\(-4.81 \pm 0.09\)	\(-6.39 \pm 0.10\)	\(-5.92 \pm 0.83\)	\(-7.84 \pm 1.01\)
\(E_6(N)\)	\(-4.68 \pm 0.09\)	\(-5.77 \pm 0.11\)	\(-5.76 \pm 0.84\)	\(-7.16 \pm 1.12\)
\(E_6(S)\)	\(-4.56 \pm 0.09\)	\(-5.16 \pm 0.11\)	\(-5.62 \pm 0.84\)	\(-6.37 \pm 1.23\)
\(G_{LR}(BL)\)	\(-4.66 \pm 0.09\)	\(-5.58 \pm 0.11\)	\(-5.74 \pm 0.84\)	\(-6.94 \pm 1.14\)

\(M_{Z'} = 2.5\text{\ TeV}\)	\(\Delta M_{\tilde{t}\tilde{t}} < 0.5\text{\ TeV}\)	\(\Delta M_{\tilde{t}\tilde{t}} < 0.1\text{\ TeV}\)	\(\Delta M_{\tilde{t}\tilde{t}} < 0.5\text{\ TeV}\)	\(\Delta M_{\tilde{t}\tilde{t}} < 0.1\text{\ TeV}\)
\(S\text{\ M}\)	\(-5.54 \pm 0.21\)	\(-5.86 \pm 0.26\)	\(-6.69 \pm 2.64\)	\(-7.11 \pm 3.62\)
\(E_6(\chi)\)	\(-5.68 \pm 0.21\)	\(-6.47 \pm 0.25\)	\(-6.83 \pm 2.60\)	\(-7.76 \pm 3.29\)
\(E_6(\eta)\)	\(-6.16 \pm 0.20\)	\(-7.91 \pm 0.20\)	\(-7.37 \pm 2.43\)	\(-9.03 \pm 2.31\)
\(E_6(\psi)\)	\(-5.90 \pm 0.21\)	\(-7.33 \pm 0.22\)	\(-7.08 \pm 2.52\)	\(-8.61 \pm 2.71\)
\(E_6(N)\)	\(-5.72 \pm 0.21\)	\(-6.68 \pm 0.24\)	\(-6.88 \pm 2.58\)	\(-7.99 \pm 3.15\)
\(E_6(S)\)	\(-5.56 \pm 0.21\)	\(-5.96 \pm 0.26\)	\(-6.71 \pm 2.63\)	\(-7.22 \pm 3.58\)
\(G_{LR}(BL)\)	\(-5.69 \pm 0.21\)	\(-6.43 \pm 0.25\)	\(-6.86 \pm 2.59\)	\(-7.78 \pm 3.24\)
Generalised models: A_L

- Larger couplings contribute to more visible effects, increased width
- Good discrimination among models, sensitivity to relative sign of vector and axial couplings: G_{LR} and G_{SM} can be separated
Generalised models: $$A_L$$

- $$G_{LR}(LR)$$ and $$G_{LR}(Y)$$ are not visibly distinguishable in the invariant mass distributions due to similar magnitude of couplings but can be disentangled by the narrow mass window.

$$A_L(\times 10)$$	$$\sqrt{s} = 14\text{ TeV}$$	$$\mathcal{L}_{int} = 100\text{ fb}^{-1}$$	$$\sqrt{s} = 8\text{ TeV}$$	$$\mathcal{L}_{int} = 15\text{ fb}^{-1}$$
$$M_{Z'} = 2.0\text{ TeV}$$	$$\Delta M_{t\bar{t}} < 0.5\text{ TeV}$$	$$\Delta M_{t\bar{t}} < 0.1\text{ TeV}$$	$$\Delta M_{t\bar{t}} < 0.5\text{ TeV}$$	$$\Delta M_{t\bar{t}} < 0.1\text{ TeV}$$
$$SM$$	-0.01 ± 0.08	-0.01 ± 0.10	-0.02 ± 0.7	-0.02 ± 1.05
$$G_{LR}(LR)$$	-1.27 ± 0.08	-4.17 ± 0.08	-1.86 ± 0.67	-5.73 ± 0.76
$$G_{LR}(R)$$	-1.97 ± 0.07	-5.30 ± 0.08	-2.85 ± 0.65	-6.92 ± 0.70
$$G_{LR}(Y)$$	-1.28 ± 0.08	-3.94 ± 0.08	-1.97 ± 0.66	-5.51 ± 0.72
$$G_{SM}(SM)$$	1.04 ± 0.07	2.87 ± 0.08	1.56 ± 0.66	4.02 ± 0.72
$$G_{SM}(T_3L)$$	2.40 ± 0.07	5.03 ± 0.08	3.47 ± 0.63	6.68 ± 0.72

$$M_{Z'} = 2.5\text{ TeV}$$	$$\Delta M_{t\bar{t}} < 0.5\text{ TeV}$$	$$\Delta M_{t\bar{t}} < 0.1\text{ TeV}$$	$$\Delta M_{t\bar{t}} < 0.5\text{ TeV}$$	$$\Delta M_{t\bar{t}} < 0.1\text{ TeV}$$
$$SM$$	-0.01 ± 0.18	-0.01 ± 0.22	-0.02 ± 2.19	-0.03 ± 2.95
$$G_{LR}(LR)$$	-1.97 ± 0.17	-4.87 ± 0.18	-4.00 ± 1.83	-7.46 ± 1.85
$$G_{LR}(R)$$	-2.93 ± 0.17	-6.01 ± 0.17	-4.00 ± 1.83	-7.46 ± 1.85
$$G_{LR}(Y)$$	-2.00 ± 0.17	-4.62 ± 0.17	-2.95 ± 1.86	-6.14 ± 1.89
$$G_{SM}(SM)$$	1.58 ± 0.17	3.32 ± 0.17	2.22 ± 1.84	4.38 ± 1.91
$$G_{SM}(T_3L)$$	3.41 ± 0.16	5.65 ± 0.17	4.63 ± 1.76	7.16 ± 1.92
Significance

- Significance s of A_L and A_{RFB} between models, $M_{Z'}=2[2.5]$ TeV in upper[lower] triangles, invariant mass window $\Delta M_{tt}=100(500)$ GeV, LHC at 14 TeV $L=100\text{fb}^{-1}$

A_L	SM	$GLR(LR)$	$GLR(R)$	$GLR(Y)$	$GSM(SM)$	$GSM(T_3L)$
SM	–	31.9(11.1)	40.6(18.3)	30.1(11.2)	22.1(9.8)	38.7(22.5)
$GLR(LR)$	16.9(7.7)	–	10.0(6.6)	2.0(0.1)	62.2(21.7)	81.3(34.5)
$GLR(R)$	21.3(11.5)	4.6(4.0)	–	12.0(6.5)	72.2(30.4)	91.3(44.1)
$GLR(Y)$	16.3(7.8)	1.0(0.1)	5.8(3.9)	–	60.2(21.8)	79.3(34.6)
$GSM(SM)$	11.8(6.3)	33.1(14.8)	38.8(18.8)	33.0(14.9)	9.7(7.8)	19.1(13.7)
$GSM(T_3L)$	20.1(13.9)	42.5(23.0)	48.5(27.2)	42.7(23.2)	–	–

A_{RFB}	SM	$GLR(LR)$	$GLR(R)$	$GLR(Y)$	$GSM(SM)$	$GSM(T_3L)$
SM	–	9.2(3.3)	12.8(5.7)	8.6(3.4)	5.2(2.2)	12.2(7.2)
$GLR(LR)$	4.8(2.2)	–	4.1(2.5)	0.8(0.1)	4.9(1.2)	3.4(3.9)
$GLR(R)$	6.4(3.6)	1.9(1.5)	–	4.9(2.4)	9.2(3.7)	0.8(1.4)
$GLR(Y)$	4.4(2.2)	0.6($\ll 1$)	2.5(1.5)	–	4.1(1.3)	4.1(3.9)
$GSM(SM)$	2.6(1.4)	2.7(0.8)	4.7(2.4)	2.2(0.9)	–	8.4(5.2)
$GSM(T_3L)$	5.9(4.2)	1.4(2.1)	0.4(0.7)	2.0(2.2)	4.2(3.0)	–
Luminosity dependence

- Required integrated luminosity to achieve \(s=3 \) between models
 - Measure of the power of an asymmetry variable

- Even for the higher mass, there is scope for disentanglement (where possible) at relatively early stages of 14 TeV run

\(A_L \) \(A_{LL} \)	SM	\(E_6(\chi) \)	\(E_6(\eta) \)	\(E_6(\psi) \)	\(E_6(N) \)	\(E_6(S) \)	GLR(\(B-L \))	GLR(LR)	GLR(R)	GLR(Y)	GSM(SM)	GSM(\(T_{3L} \))
SM	-	314.7	23.0	48.3	167.6	>300	360.4	22.0	15.1	21.5	23.7	17.6
\(E_6(\chi) \)	-	44.5	135.0	>300	>300	>300	41.6	25.5	40.5	>300	>300	
\(E_6(\eta) \)	-	236.5	58.1	25.5	42.1	>300	>300	>300	>300	>300		
\(E_6(\psi) \)	-	225.8	55.6	123.2	>300	>300	200.5	77.3	188.3	263.0	110.4	
\(E_6(N) \)	-	-	217.4	>300	>300	53.6	30.9	52.0	61.0	38.5		
\(E_6(S) \)	-	-	-	>300	24.2	16.4	23.7	26.3	19.3			
GLR(\(B-L \))	3.2	-	-	-	39.4	24.4	38.4	43.9	29.7			
GLR(LR)	2.0	-	-	-	-	>300	>300	>300	>300			
GLR(R)	3.4	-	-	-	>300	26.9	-	>300	>300			
GLR(Y)	6.4	-	-	-	>300	>300	>300	>300	>300			
GSM(SM)	2.2	0.8	0.6	0.8	0.5	0.4	0.5	9.6	-			
GSM(\(T_{3L} \))	-	-	-	-	-	-	-	-	-			
Conclusion

- Overview of a phenomenological study of spin and spatial asymmetries from a set of benchmark Z' models in $t\bar{t}$ channel.

- Quantified the ability to distinguish these models from the SM and among themselves.

- Clear that such models will be visible/distinguishable in the relatively early stages of LHC running.

- Spin asymmetries depend strongly on the chiral couplings of the Z' and in some cases can disentangle models which would not be by cross section measurements.
The set of benchmark models considered lend themselves to di-lepton searches
- $t\bar{t}$ can complement but not compete

Other BSM scenarios with Z’s naturally have preferential couplings to the top or are leptophobic
- Dynamical EWSP / composite Higgs
- Extra dimensions
- etc.

Apply this kind of study to such models in which the $t\bar{t}$ channel is a competitive discovery mode

Investigate the complementarity of asymmetries in $t\bar{t}$, $b\bar{b}$ and l^+l^- channels to fully probe parameter space of Z' models
Z’: Models

• **E₆ models**
 - Two additional U(1)’s from GUT group breaking pattern
 - \(E₆ \rightarrow SO(10) \otimes U(1) \psi \rightarrow SU(5) \otimes U(1) \psi \otimes U(1) \chi \rightarrow SM \otimes U(1) \psi \otimes U(1) \chi \)
 - Linear combination survives down to TeV scale
 - \(Q(E₆) = \cos \theta \ T_\chi + \sin \theta \ T_\psi \)

• **Left-Right symmetric**
 - \(SU(2)_L \otimes SU(2)_R \otimes U(1)_{B-L} \rightarrow SU(2)_L \otimes U(1)_Y \)
 - \(U(1)_R \otimes U(1)_{B-L} \rightarrow U(1)_Y \)
 - \(Q(G_{LR}) = \cos \phi \ T_{3R} + \sin \phi \ T_{B-L} \)

• **Generalised sequential SM**
 - Sequential = SM couplings: Standard candle in experimental searches
 - \(Q(G_{SM}) = \cos \alpha \ T_{3L} + \sin \alpha \ Q_{EM} \)
Invariant Mass

M_{tt} Dist. LHC at 14 TeV, 100 fb$^{-1}$ and $\epsilon_{\text{reco}}=0.1$, $M_{Z'}=2.0$ TeV

M_{tt} Dist. LHC at 14 TeV, 100 fb$^{-1}$ and $\epsilon_{\text{reco}}=0.1$, $M_{Z'}=2.0$ TeV