Association of sarcopenia with endocrine therapy toxicity in patients with early breast cancer

Gabriel Francisco Pereira Aleixo1 · Stephanie A. Valente2 · Wei Wei3 · Halle C. F. Moore4

Received: 26 April 2022 / Accepted: 5 September 2022 / Published online: 17 September 2022
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022

Abstract
Background Endocrine therapy reduces recurrence risk and improves survival in women with hormone receptor-positive breast cancer; however, side effects can decrease quality of life, leading to reduced treatment adherence. Sarcopenia is the loss of skeletal muscle mass that happens with age; it is associated with worse survival and reduced chemotherapy adherence in patients with breast cancer. The impact of sarcopenia on endocrine therapy tolerance has not been investigated. The current study evaluates the associations of sarcopenia with endocrine therapy toxicity and treatment tolerance.

Methods Skeletal muscle mass was measured by bioelectrical impedance spectrometry. Skeletal muscle index (SMI) was calculated to assess for sarcopenia: SMI = (SMM kg)/(patient height, m²). Patients with SMI ≤ 6.75 kg/m² were considered sarcopenic. A chart review was performed to obtain patient characteristics, endocrine therapy toxicity, and early treatment change or termination. Fisher’s exact test was performed to associate patient characteristics and outcomes with sarcopenia status.

Results Four hundred eighty-two patients with stage I–III breast cancer were prescribed endocrine therapy and had undergone sarcopenia evaluation. The median age was 61 years (29–88 years). Sarcopenia was identified in 35% of patients. Twelve percent of patients experienced grade 3–4 endocrine-related toxicities. On multivariable logistic analysis, sarcopenia was associated with increased odds of experiencing endocrine-related side effects (p = 0.006). In addition, patients with sarcopenia stopped or changed their medication due to side effects more often than those without sarcopenia (p = 0.03).

Conclusion The presence of sarcopenia in patients with EBC represents a potentially modifiable risk factor for more significant endocrine therapy side effects and reduced treatment tolerance.

Keywords Sarcopenia · Early breast cancer · Endocrine treatments · Outcomes

Introduction
Most patients with breast cancer present with hormone receptor (HR)-positive disease [1, 2]. The use of adjuvant endocrine therapy for 5 to 10 years after surgery reduces recurrence risk and improves survival for women with estrogen receptor and/or progesterone receptor-positive breast cancer [3]. Common side effects of endocrine therapy include musculoskeletal pain (arthralgias), hot flashes, and fatigue; in addition, endocrine treatments have been associated with bone density loss and cardiovascular events [4, 5]. Experiencing treatment-related side effects can decrease quality of life and reduce therapy adherence. Identification of patients at risk for more significant toxicity may provide an opportunity for interventions to mitigate these effects.

Associations between body composition and breast cancer have been well documented, though findings have been conflicting. While obesity has been associated with an overall increase in breast cancer risk, obesity appears to have a protective effect in premenopausal women, reducing the risk of breast cancer [6]. Among patients with breast cancer, those who are obese have higher rates of larger tumors, faster...
disease progression, and greater hormonal therapy resistance [7–9]. Studies have consistently shown that patients with breast cancer who were classified as grade 2 or 3 obese (BMI > 35) have worse survival compared to patients classified as normal weight [10]. On the other hand, research findings have been inconsistent regarding survival rates in breast cancer patients who were classified as obese or overweight (BMI > 25) [10, 11]. Similar discordance exists in the literature regarding the impact of obesity on outcomes with endocrine therapy for breast cancer [12]. Given inconsistent associations of BMI with clinical outcomes in patients with breast cancer, assessment of body composition by body compartments (i.e., muscle, fat, water) separately has evolved as a potentially more informative approach.

Sarcopenia is the decline in lean body mass or muscle mass, which happens over years of life [13] and has been associated with an increased risk of death and reduced quality of life [14]. It has also been associated with a worse prognosis in multiple cancer types [15]. Sarcopenia can be detected by a variety of methods, including computed tomography (CT) scans and Bioelectrical impedance spectrometry (BIS) [15]. BIS is a non-invasive method to estimate skeletal muscle mass (SMM), which is then divided by the squared height of the patient in meters to obtain skeletal muscle index (SMI). Patients with low SMI (< 6.75 kg/m²) are characterized as sarcopenic.

In patients with breast cancer, sarcopenia predicts worse survival and reduced chemotherapy completion rates in both early-stage breast cancer (EBC) and metastatic breast cancer (MBC) [16–18]. The impact of sarcopenia on endocrine therapy tolerance has not been well studied. This retrospective study assesses the association between sarcopenia and severe side effects of endocrine therapy in a cohort of women with EBC.

Methods

Following Institutional Review Board approval, data were collected via chart review and from stored BIS measurements on a cohort of patients with EBC who had undergone BIS analysis (Sozo machine, ImpediMed) as a part of their routine care and were prescribed endocrine therapy. Baseline characteristics included age at diagnosis, race, comorbidities (Hypertension, diabetes, heart failure, cirrhosis, chronic kidney disease stage III, COPD, hypothyroidism on treatment, previous breast cancer, previous cancer, severe osteoarthritis, rheumatoid arthritis, coronary artery disease, peripheral vascular disease, osteoporosis, and previous stroke), cancer stage, height, weight (at time of BIS analysis), radiation therapy, chemotherapy treatment, and type of endocrine treatment.

Body composition

The Sozo BIS was used to measure SMM and weight. Height was measured during the clinic visit on the day of the BIS body composition evaluation. SMI was calculated to assess for sarcopenia: SMI = (SMM, kg)/(patient height, m²). Patients were divided into non-sarcopenic (SMI > 6.75 kg/m²) and sarcopenic (SMI ≤ 6.75 kg/m²)[19].

Endocrine treatment side effects

Endocrine therapy toxicities were obtained through medical record review and assessed common and severe endocrine treatment-related side effects [20]. These included arthralgia, fatigue, hot flashes, nausea/vomiting, bone fracture, and cardiovascular incidents (acute coronary syndrome, stroke, myocardial infarct, and pulmonary embolism). The follow-up period was a minimum of six months after starting the treatment with endocrine therapy.

Toxicities described in the medical record were graded in accordance with Common Terminology Criteria for Adverse Events (CTCAE) [21] to characterize grade 3 or 4 endocrine therapy toxicity. In addition, information on early treatment termination or changes in the therapy due to severe side effects was also collected.

Statistical analysis

Fisher’s exact test was performed to associate the patients' characteristics, endocrine therapy toxicity, and early therapy change or discontinuation with sarcopenia status. In addition, multivariate logistic regression models were used to evaluate these associations adjusting for age (≤ 50 years old and > 50 years old to dichotomize patients who are more likely to be premenopausal versus likely postmenopausal) comorbidities and BMI. Odds ratio (OR) was reported as the measure of association estimated from these models. All analyses were done using R (R Core Team) statistical software and a 0.05 significance level.

Results

Table 1 summarizes patients' characteristics. Four hundred eighty-two patients with stage I–III breast cancer who were prescribed endocrine therapy and had undergone BIS were identified. The median age was 61 years (range: 29 to 88 years); all patients were female, 90% were white, 74% had one or more comorbidities, and 63% had stage 1 disease. Endocrine therapy included tamoxifen (n = 72),
Sarcopenia and endocrine therapy toxicity

Overall, 12% of patients experienced CTCAE grade 3 or 4 endocrine-related toxicities. Patients with sarcopenia had more endocrine therapy toxicity (17% vs 10% \(p = 0.01 \); Supplement Table 1). On multivariable logistic analysis, the presence of sarcopenia was associated with a significant increase in the odds of experiencing endocrine-related toxicity compared to those without sarcopenia (OR 2.44 95% CI 1.29–4.62, \(p = 0.006 \); Table 2). Early treatment change or discontinuation due to side effects was observed in 13% of the cohort. Patients with sarcopenia stopped or changed their medication due to side effects more often than those without sarcopenia (OR 2.00 95% CI 1.07–3.73 \(p = 0.03 \); Table 3). In addition, the presence of obesity was associated with increased endocrine toxicity and early discontinuation compared with normal weight individuals, however, no such associations were observed with being overweight versus normal weight.

In a univariate logistic regression model of sarcopenia and any endocrine toxicity, patients with sarcopenia (\(p = 0.03 \)) had worse endocrine therapy toxicity, while no association was observed for BMI, age, type of treatment or presence of comorbidity (Supplement 2). In an exploratory analysis looking at the type of endocrine therapy (tamoxifen versus aromatase inhibitor), the influence of sarcopenia on toxicity appeared similar (Supplement 1).

Discussion

To our knowledge, this is the first report of the impact of sarcopenia on endocrine therapy toxicity and endocrine treatment adherence in patients with EBC. Our findings suggest an opportunity to identify patients at higher risk for severe endocrine therapy side effects and early treatment discontinuation.

Current guidelines recommend that adjuvant endocrine therapy be continued for 5 to 10 years. However, prolonged treatment duration combined with prevalent side effects [22–24] may lead to a decrease in adherence; up to 50% of patients report not taking these medications as often as prescribed, and up to 20% discontinue endocrine therapy in the first year due to side effects [25, 26]. We have identified sarcopenia and obesity as important risk factors for endocrine therapy toxicity and intolerance. Even though endocrine therapies have different toxicity profiles, the associations of sarcopenia and toxicity were similar among those on tamoxifen and those on aromatase inhibitors. Also, we did not find medical comorbidity, being overweight but not obese or age to be risk factors for endocrine therapy toxicity.

A recent review demonstrated that exercise could improve or reverse sarcopenia among cancer survivors [27]. Physical

Variable	482
Age at BC diagnosis	
Mean (min–max)	61 (29–88)
≤ 50 years old	108 (22%)
> 50 years old	374 (78%)
Race: White	432 (90%)
Body mass index	
Underweight (< 18.5 kg/m²)	6 (1%)
Normal (18.5 to < 25 kg/m²)	134 (28%)
Overweight (25 to < 30 kg/m²)	189 (39%)
Obese (> 30 kg/m²)	153 (32%)
Breast cancer stage	
Stage 1	308 (64%)
Stage 2	125 (26%)
Stage 3	49 (10%)
Radiation therapy	
Chemotherapy received	197 (41%)
Comorbidities ≥ 1	360 (74%)
Hypertension	232 (48%)
Diabetes	70 (15%)
Severe heart failure	9 (2%)
Cirrhosis	5 (1%)
Chronic kidney disease stage III	31 (7%)
COPD	30 (6%)
Hypothyroidism	80 (17%)
Previous breast cancer	27 (6%)
Previous cancer	28 (6%)
Severe osteoarthritis	89 (18%)
Rheumatoid arthritis	13 (3%)
Coronary artery disease	14 (3%)
Peripheral vascular disease	5 (1%)
Osteoporosis	115 (24%)
Stroke	9 (2%)
Type of treatment	
Ovarian ablation	23 (5%)
Aromatase inhibitor	410 (85%)
Tamoxifen	72 (15%)
Skeletal muscle index (SMI) (kg/m²)	
Median (min–max)	7.14 (4.84–12.61)
Sarcopenia < 6.75	169 (35%)
Early treatment change or termination	61 (13%)
Endocrine toxicity	58 (12%)

aromatase inhibitor therapy (\(n = 410 \)); some patients also received ovarian ablation via bilateral salpingo-oophorectomy or with a gonadotropin-releasing hormone agonist and some patients received multiple treatments. Baseline sarcopenia was identified in 35% of patients.

Variable	482
Age at BC diagnosis	
Mean (min–max)	61 (29–88)
≤ 50 years old	108 (22%)
> 50 years old	374 (78%)
Race: White	432 (90%)
Body mass index	
Underweight (< 18.5 kg/m²)	6 (1%)
Normal (18.5 to < 25 kg/m²)	134 (28%)
Overweight (25 to < 30 kg/m²)	189 (39%)
Obese (> 30 kg/m²)	153 (32%)
Breast cancer stage	
Stage 1	308 (64%)
Stage 2	125 (26%)
Stage 3	49 (10%)
Radiation therapy	
Chemotherapy received	197 (41%)
Comorbidities ≥ 1	360 (74%)
Hypertension	232 (48%)
Diabetes	70 (15%)
Severe heart failure	9 (2%)
Cirrhosis	5 (1%)
Chronic kidney disease stage III	31 (7%)
COPD	30 (6%)
Hypothyroidism	80 (17%)
Previous breast cancer	27 (6%)
Previous cancer	28 (6%)
Severe osteoarthritis	89 (18%)
Rheumatoid arthritis	13 (3%)
Coronary artery disease	14 (3%)
Peripheral vascular disease	5 (1%)
Osteoporosis	115 (24%)
Stroke	9 (2%)
Type of treatment	
Ovarian ablation	23 (5%)
Aromatase inhibitor	410 (85%)
Tamoxifen	72 (15%)
Skeletal muscle index (SMI) (kg/m²)	
Median (min–max)	7.14 (4.84–12.61)
Sarcopenia < 6.75	169 (35%)
Early treatment change or termination	61 (13%)
Endocrine toxicity	58 (12%)
exercise is often recommended to reduce arthralgias and other side effects of endocrine therapy [28–30]. It has been shown that exercise decreases sarcopenia and improves bone density and quality of life in patients on endocrine therapy [31, 32]. It would be of interest to study whether targeting patients with sarcopenia for a supervised exercise program could mitigate endocrine treatment toxicity and improve therapy adherence.

Possible etiologies for the association between sarcopenia and worse endocrine therapy tolerance are that patients with sarcopenia have greater frailty and metabolic dysfunction [33, 34]. Patients with sarcopenia have higher levels of pro-inflammatory factors, including fibrinogen, TNF alfa, IL-6, C-reactive protein, which may impact the metabolism of drugs, promote further sarcopenia, and impair cancer therapy due to side effects [35–37].

Limitations of our study include the retrospective observational design and the homogeneous population (90% white), which may influence the external validity of the results. Also, the timing of the collection of body composition data was not standardized with respect to the initiation of endocrine therapy or receipt of additional treatment, including chemotherapy and surgery, which may influence body composition and affect results. Strengths of our study include the size of the cohort, and the use of BIS rather than CT scans to screen for sarcopenia. BIS is a reliable, inexpensive, easy-to-use, radiation-free technique and provides the SMM immediately with potential for real-time use in clinical decision making.

In patients with EBC, sarcopenia was associated with worse endocrine therapy side effects independent of BMI, age and other medical comorbidities. Future prospective studies may determine optimal interventions to mitigate toxicity for this at-risk group.

Supplementary Information The online version contains supplementary material available at https://doi.org/10.1007/s10549-022-06741-x.

Author contributions GFPA—conceptualization, data curation, investigation, methodology, project administration, resources, software, supervision, validation, visualization, writing the original draft and writing review and editing. SAV—conceptualization, investigation, methodology, project administration, software, supervision, validation, visualization, writing to review and editing. WW—formal analysis and writing review and editing. HCFM—conceptualization, data curation, investigation, methodology, project administration, resources, software, supervision, validation, visualization, writing the original draft and writing review and editing.

Funding Not applicable.

Data availability The datasets generated during and/or analyzed during the current study are not publicly available due to confidentiality reasons but are available from the corresponding author on reasonable request.

Declarations

Conflict of interest All authors declare they have no financial interests to report.

Table 2 Summary of multivariate logistic regression model for any endocrine therapy related toxicity

Factor	Comparison	Odds ratio	95% LCL	95% UCL	p value
Age	≤ 50 years old vs > 50 years old	1.57	0.64	3.84	0.31
BMI	Overweight vs. normal weight	1.66	0.77	3.57	0.19
	Obese vs. normal weight	2.29	1.04	5.07	0.04
SMI	< 6.75 kg/m² vs. ≥ 6.75 kg/m²	2.44	1.29	4.63	0.006
Number of comorbidities	≥ 1 vs. 0	1.10	0.53	2.27	0.79
Type of treatment	Tamoxifen vs aromatase inhibitor	0.89	0.38	2.10	0.80

LCL lower confidence limit, **UCL** upper confidence limit

Bold = statistically significant

Table 3 Summary of multivariate logistic regression model for early endocrine therapy change or discontinuation

Factor	Comparison	Odds ratio	95% LCL	95% UCL	p value
Age	≤ 50 years old vs > 50 years old	1.29	0.54	3.01	0.54
BMI	Overweight vs. normal weight	1.86	0.86	4.02	0.11
	Obese vs. normal weight	2.41	1.09	5.33	0.03
SMI	< 6.75 kg/m² vs. ≥ 6.75 kg/m²	2.00	1.07	3.73	0.03
Number of comorbidities	≥ 1 vs. 0	1.65	0.77	3.52	0.19
Type of treatment	Tamoxifen vs aromatase inhibitor	1.02	0.44	2.38	0.95

LCL lower confidence limit, **UCL** upper confidence limit

Bold = statistically significant
Disclosures GFPA—No disclosures to report. SAV—serves as consultant for SOZO. WW—no disclosures to report. HCFM—reports grants or contracts received by AstraZeneca, Roche/Genetech, Daiichi-Sankyo, Sermonix, Seattle genetics.

Ethical approval This study was performed in line with the principles of the Declaration of Helsinki. Approval was granted by the Ethics Committee of the Cleveland Clinic.

Consent to participate Informed consent was not needed due to observational characteristics of the study.

Prior presentations Not applicable.

References

1. Mohsin SK, Weiss H, Havighurst T, Clark GM, Berardo M, le Roith D et al (2004) Progesterone receptor by immunohistochemistry and clinical outcome in breast cancer: a validation study. Mod Pathol 17(12):1545–1554
2. Anderson WF, Chatterjee N, Ershler WB, Brawley OW (2002) Estrogen receptor breast cancer phenotypes in the Surveillance, Epidemiology, and End Results database. Breast Cancer Res Treat 76(1):27–36
3. Early Breast Cancer Trialists’ Collaborative Group (EBCTCG) (2005) Effects of chemotherapy and hormonal therapy for early breast cancer on recurrence and 15-year survival: an overview of the randomised trials. Lancet 365(9472):1687–1717
4. Cell d, Fallowfield LJ (2008) Recognition and management of treatment-related side effects for breast cancer patients receiving adjuvant endocrine therapy. Breast Cancer Res Treat 107(2):167–180
5. Eastell R, Adams JE, Coleman RE, Howell A, Hannon RA, Cuzick J et al (2008) Effect of anastrozole on bone mineral density: 5-year results from the anastrozole, tamoxifen, alone or in combination trial 18233230. J Clin Oncol 26(7):1051–1057
6. Mohanty SS, Mohanty PK (2021) Obesity as potential breast cancer risk factor for postmenopausal women. Genes Dis 8(2):117–123
7. Santa-Maria CA, Yan J, Xie XJ, Euhus DM (2015) Aggressive estrogen-receptor-positive breast cancer arising in patients with elevated body mass index. Int J Clin Oncol 20(2):317–323
8. Chan DS, Norat T (2015) Obesity and breast cancer: not only a risk factor of the disease. Curr Treat Options Oncol 16(5):22
9. Gerard C, Brown KA (2018) Obesity and breast cancer - Role of estrogens and the molecular underpinnings of aromatase regulation in breast adipose tissue. Mol Cell Endocrinol 466:15–30
10. Kwan ML, Chen WY, Kroenke CH, Bloomston M, Nechuta SJ et al (2012) Pre-diagnosis body mass index and survival after breast cancer in the After Breast Cancer Pooling Project. Breast Cancer Res Treat 132(2):729–739
11. Greenlee H, Unger JM, LeBlanc M, Ramsey S, Hershman DL (2013) Association between body mass index and cancer survival in a pooled analysis of 22 clinical trials. Cancer Epidemiol Biomarkers Prev 22(6):2977–2987
12. Goodwin PJ (2013) Obesity and endocrine therapy: host factors and breast cancer outcome. Breast 22(Suppl 2):S44–S47
13. Rosenberg IH (1997) Sarcopenia: origins and clinical relevance. J Nutr 127(5 Suppl):S905–S991
14. Rolland Y, Czerwinski S, Abellan Van Kan G, Morley JE, Cesari M, Onder G et al (2008) Sarcopenia: its assessment, etiology, pathogenesis, consequences and future perspectives. J Nutr Health Aging 12(7):433–50
15. Aleixo GFP, Shachar SS, Nyrop KA, Muss HB, Battaglini CL, Williams GR (2020) Bioelectrical Impedance Analysis for the Assessment of Sarcopenia in Patients with Cancer: A Systematic Review. Oncologist 25(2):170–182
16. Shachar SS, Deal AM, Weinberg M, Williams GR, Nyrop KA, Popuri K et al (2017) Body composition as a predictor of toxicity in patients receiving antracycline and taxane-based chemotherapy for early-stage breast cancer. Clin Cancer Res 23(14):3537–3543
17. Shachar SS, Deal AM, Weinberg M, Nyrop KA, Williams GR, Nishijima TF et al (2017) Skeletal muscle mass measures as predictors of toxicity, hospitalization, and survival in patients with metastatic breast cancer receiving taxane-based chemotherapy. Clin Cancer Res 23(3):658–665
18. Shachar SS, Williams GR, Muss HB, Nishijima TF (2016) Prognostic value of sarcopenia in adults with solid tumours: a meta-analysis and systematic review. Eur J Cancer 57:58–67
19. Otten L, Stobaus N, Franz K, Genton L, Muller-Werdan U, Wirth R et al (2019) Impact of sarcopenia on 1-year mortality in older patients with cancer. Age Ageing 48(3):413–418
20. Zhu Y, Cohen SM, Rosenzweig MQ, Bender CM (2019) Symptom map of endocrine therapy for breast cancer: a scoping review. Cancer Nurs 42(5):E19–E30
21. Trottii A, Colevas AD, Setser A, Basch E (2007) Patient-reported outcomes and the evolution of adverse event reporting in oncology. J Clin Oncol 25(32):5121–5127
22. Kidwell KM, Harte SE, Hayes DF, Storniolo AM, Carpenter J, Flockhart DA et al (2014) Patient-reported symptoms and discontinuation of adjuvant aromatase inhibitor therapy. Cancer 120(16):2403–2411
23. Kadakia KC, Snyder CF, Kidwell KM, Seewald NJ, Flockhart DA, Skaar TC et al (2016) Patient-reported outcomes and early discontinuation in aromatase inhibitor-treated postmenopausal women with early stage breast cancer. Oncologist 21(5):539–546
24. Wagner LI, Zhao F, Goss PE, Chapman JW, Shepherd LE, Whelan TJ et al (2018) Patient-reported predictors of early treatment discontinuation: treatment-related symptoms and health-related quality of life among postmenopausal women with primary breast cancer randomized to anastrozole or exemestane on NCIC Clinical Trials Group (CCTG) MA.27 (E1Z03). Breast Cancer Res Treat 169(3):537–548
25. Smith GL (2014) The long and short of tamoxifen therapy: a review of the ATLAS trial. J Adv Pract Oncol 5(1):57–60
26. Murphy CC, Bartholomew LK, Carpentier J, Bluthmann SM, Vernon SW (2012) Adherence to adjuvant hormonal therapy among breast cancer survivors in clinical practice: a systematic review. Breast Cancer Res Treat 134(2):459–478
27. Cao A, Ferrucci LM, Caan BJ, Irwin ML (2022) Effect of exercise on sarcopenia among cancer survivors: a systematic review. Cancers (Basel) 14(3):786
28. Irwin ML, Cartmel B, Gross CP, Ercolano E, Li F, Yao X et al (2015) Randomized exercise trial of aromatase inhibitor-induced arthralgia in breast cancer survivors. J Clin Oncol 33(10):1104–1111
29. Bartlett DB, Hanson ED, Lee JT, Wagoner CW, Harrell EP, Sullivan SA et al (2021) The effects of 16 weeks of exercise training on neutrophil functions in breast cancer survivors. Front Immunol 12:733101
30. Li C, Zhou C, Li R (2016) Can exercise ameliorate aromatase inhibitor-induced cognitive decline in breast cancer patients? Mol Neurobiol 53(6):4238–4246
31. Thomas GA, Cartmel B, Harrigan M, Fiellin M, Capozza S, Zhou Y et al (2017) The effect of exercise on body composition and pathogenesis, consequences and future perspectives. J Nutr Health Aging 12(7):433–50
bone mineral density in breast cancer survivors taking aromatase inhibitors. Obesity (Silver Spring) 25(2):346–351
32. Adams SC, Segal RJ, McKenzie DC, Vallerand JR, Morielli AR, Mackey JR et al (2016) Impact of resistance and aerobic exercise on sarcopenia and dynapenia in breast cancer patients receiving adjuvant chemotherapy: a multicenter randomized controlled trial. Breast Cancer Res Treat 158(3):497–507
33. Villasenor A, Ballard-Barbash R, Baumgartner K, Baumgartner R, Bernstein L, McTiernan A et al (2012) Prevalence and prognostic effect of sarcopenia in breast cancer survivors: the HEAL Study. J Cancer Surviv 6(4):398–406
34. Arango-Lopera VE, Arroyo P, Gutierrez-Robledo LM, Perez-Zepeda MU, Cesari M (2013) Mortality as an adverse outcome of sarcopenia. J Nutr Health Aging 17(3):259–262
35. Batsis JA, Mackenzie TA, Jones JD, Lopez-Jimenez F, Bartels SJ (2016) Sarcopenia, sarcopenic obesity and inflammation: results from the 1999–2004 National Health and Nutrition Examination Survey. Clin Nutr 35(6):1472–1483
36. Caan BJ, Cespedes Feliciano EM, Prado CM, Alexeeff S, Kroenke CH, Bradshaw P et al (2018) Association of muscle and adiposity measured by computed tomography with survival in patients with nonmetastatic breast cancer. JAMA Oncol 4(6):798–804
37. Williams GR, Dunne RF, Giri S, Shachar SS, Caan BJ (2021) Sarcopenia in the older adult with cancer. J Clin Oncol 39(19):2068–2078

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.