Alves, Caio; Baldasso, Rangel

Sharp threshold for two-dimensional majority dynamics percolation. (English. French summary) Ann. Inst. Henri Poincaré, Probab. Stat. 58, No. 4, 1869-1886 (2022)

Summary: In this work we consider the two-dimensional percolation model arising from the majority dynamics process at a given time $t \in \mathbb{R}_+$. We show the emergence of a sharp threshold phenomenon for the box crossing event at the critical probability parameter $p_c(t)$ with polynomial size window. We then use this result in order to obtain stretched-exponential bounds on the one-arm event probability in the subcritical phase. Our results are based on differential inequalities derived from the OSSS inequality, inspired by the recent developments by Ahlberg, Broman, Griffiths, and Morris and by Duminil-Copin, Raoufi, and Tassion. We also provide analogous results for percolation in the voter model.

MSC:
60K35 Interacting random processes; statistical mechanics type models; percolation theory
82C27 Dynamic critical phenomena in statistical mechanics
82C43 Time-dependent percolation in statistical mechanics

Keywords:
opinion dynamics; percolation; sharp thresholds

Full Text: DOI arXiv Link

References:

1. D. Ahlberg and R. Baldasso. Noise sensitivity and Voronoi percolation. Electron. J. Probab. 23 (2018). - Zbl 1402.60122 · doi:10.1214/18-ejp233

2. D. Ahlberg, E. Broman, S. Griffiths and R. Morris. Noise sensitivity in continuum percolation. Israel J. Math. 201 (2) (2014) 847-899. - Zbl 1305.60100 · doi:10.1007/s11856-014-1038-y

3. D. Ahlberg, V. Tassion and A. Teixeira. Sharpness of the phase transition for continuum percolation in \mathbb{R}^d. Probab. Theory Related Fields 172 (1-2) (2016) 525-581. - Zbl 1404.60143 · doi:10.1007/s00440-017-0815-8

4. G. Amir and R. Baldasso. Percolation in majority dynamics, 2019. ArXiv preprint. Available at arXiv:1902.03349.

5. H. Duminil-Copin, A. Raoufi and V. Tassion. Subcritical phase of \mathbb{Z}^d-dimensional Poisson-Boolean percolation and its vacant set, 2018. ArXiv preprint. Available at arXiv:1805.00695.

6. H. Duminil-Copin, A. Raoufi and V. Tassion. Exponential decay of connection probabilities for subcritical Poisson-Voronoi percolation in \mathbb{R}^d. Probab. Theory Related Fields 173 (1-2) (2019) 479-590. - Zbl 1478.60259 · doi:10.1007/s00440-018-0838-9

7. H. Duminil-Copin, A. Raoufi and V. Tassion. Sharpness of the phase transition for the random-cluster and Potts models via decision trees. Ann. of Math. 189 (1) (2019) 75-99. - Zbl 1482.82009 · doi:10.4007/annals.2019.189.1.2

8. S. Popov and A. Teixeira. Soft local times and decoupling of random interlacements. J. Eur. Math. Soc. (JEMS) 17 (10) (2015) 2545-2593. - Zbl 1329.60342 · doi:10.4171/JEMS/565

9. L. Russo. An approximate zero-one law. Z. Wahrsch. Verw. Gebiete 61 (1) (1982) 129-139. - Zbl 0501.60043 · doi:10.1007/BF00536167

Edited by FIZ Karlsruhe, the European Mathematical Society and the Heidelberg Academy of Sciences and Humanities © 2022 FIZ Karlsruhe GmbH Page 1
[16] M. Talagrand. On Russo's approximate zero-one law. \textit{Ann. Probab.} 22 (3) (1994) 1576–1587. · Zbl 0819.28002

[17] V. Tassion. Crossing probabilities for Voronoi percolation. \textit{Ann. Probab.} 44 (5) (2016) 3385–3398. · Zbl 1352.60130

[18] E. H. Theodore. A correlation inequality for Markov processes in partially ordered state spaces. \textit{Ann. Probab.} (1977) 451–454. · Zbl 0381.60072 · doi:10.1214/aop/1176995804

[19] J. van den Berg. Sharpness of the percolation transition in the two-dimensional contact process. \textit{Ann. Appl. Probab.} (2011) 374–395. · Zbl 1247.60136 · doi:10.1214/10-AAP702

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.