Chrysosplenium sangzhiense (Saxifragaceae), a new species from Hunan, China

Long-Fei Fu¹, Tian-Ge Yang², De-Qing Lan², Fang Wen¹, Hong Liu²

¹ Guangxi Key Laboratory of Plant Conservation and Restoration Ecology in Karst Terrain, Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin 541006, China
² College of Life Sciences & Key Laboratory for Protection and Application of Special Plant Germplasm in Wuhan Area of Hubei Province, South-Central University for Nationalities, Wuhan 430074, Hubei Province, China

Corresponding author: Hong Liu (liuhong@scuec.edu.cn)

Abstract

Chrysosplenium sangzhiense Hong Liu, a new species from Hunan, China, is described and illustrated. The phylogenetic analysis revealed that the new species belongs to subgen. Chrysosplenium and is closely related to C. grayanum, C. nepalense and C. sinicum. The chromosome number of the new species is 2n = 46, indicating a novel basic number x = 23 in Chrysosplenium that is different from other species. This also suggests that C. sangzhiense is probably an allopolyploid derivative of a species with x = 11 and one with x = 12. Morphologically, C. sangzhiense can be easily distinguished from C. grayanum, C. nepalense, C. sinicum and C. cavaleriei, a species not included in our phylogenetic analysis by a suite of characters relating to the sterile shoots, basal leaves, cauline leaves, flowering stem, sepals, disc, capsule and seed. A global conservation assessment is performed, and classifies C. sangzhiense as Least Concern (LC).

Keywords

Chrysosplenium, cytology, phylogeny, Saxifragaceae, subgen, taxonomy

Introduction

Chrysosplenium L. (1753) is a perennial herbaceous genus in Saxifragaceae and comprises more than 70 species (Kim et al. 2019; Fu et al. 2020). Chrysosplenium is distributed in Asia, America and Europe (Pan and Ohba 2001; Soltis 2007).

* These authors contributed equally to this work as first authors.
The latest revision of Chinese *Chrysosplenium* included 35 species (Pan and Ohba 2001). Although no particular infra-generic classification was adopted in this revision, use of leaf arrangement as the primary character in the key to species reflected the recognition of two subgenera in previous taxonomic revisions (Pan 1986a, b). In addition, seed surface has been used as an important character to delimit sections (Pan 1986a, b). Soltis et al. (2001) showed that the two subgenera are both monophyletic and sister to each other using *matK* sequence data, thereby confirming that leaf arrangement is a phylogenetically informative morphological character. Subsequent taxonomic research on Chinese *Chrysosplenium* has been undertaken by Liu et al. (2016), Kim et al. (2019) and Fu et al. (2020), bringing the total diversity of the Chinese flora to 38 species, of which 23 (60%) are endemic.

Previous studies have demonstrated that *Chrysosplenium* has a diverse basic chromosome number with $x = 7, 8, 9, 10, 11, 12$ and 13 at species level indicating cytological data provides important evidence for the delimitation and evolution of *Chrysosplenium* (Hara and Kurosawa 1963; Funamoto and Tanaka 1988a, b, 1989; Funamoto et al. 1997, 1999, 2000, 2004; Funamoto and Zhou 2010).

As part of ongoing research into the diversity of Chinese *Chrysosplenium*, the authors undertook an extensive fieldtrip in Hunan, China. During the trip an unknown species of *Chrysosplenium* was collected. Following a thorough literature survey (Hara 1957; Pan 1992; Pan and Ohba 2001; Liu et al. 2016; Kim et al. 2019; Fu et al. 2020) along with the molecular and cytological evidence, we confirmed that it is a distinct and undescribed species.

Materials and methods

Morphology observations and conservation assessments

All morphological characters were studied based on the material from field and herbarium specimens using a dissecting microscope (SMZ171, Motic, China). For seed morphology, we also undertook scanning electron micrograph (SEM) observation; seeds were collected from the field and dried by silica gel. The pre-treatment including impurities removing, air-drying and gold-coating was performed, following Fu et al. (2020). Observations and photographs were taken under a Hitachi SU8010 scanning electron microscope. At least 15 seeds were used to determine the size and surface. Conservation assessment was undertaken following IUCN (2019).

Genomic DNA extraction, PCR amplification, and Sequencing

To confirm the systematic position of this unknown species, we conducted phylogenetic studies using *matK* sequence data. We chose this DNA region due to its highest species coverage within the genus (Soltis et al. 2001; De Vere 2012;
A new species of *Chrysosplenium* from Hunan

Saarela et al. 2013; Ebersbach et al. 2017; Kim et al. 2018) so that we could trace the most closely related species. Forty-eight species of *Chrysosplenium* as in-group and three species of *Saxifraga* and *Itea* as out-group were sampled. Of these, 15 sequences were obtained from the Genbank (https://www.ncbi.nlm.nih.gov/), while 36 sequences were newly generated. Their species names and GenBank accession numbers are listed in Table 1. DNA extraction, PCR amplification, and sequencing were performed following Soltis et al. (2001).

Phylogenetic analysis

We performed phylogenetic analyses of *Chrysosplenium* based on *matK* sequence data-set using Bayesian inference (BI) and maximum likelihood (ML). For BI analysis, we employed MrBayes v.3.2.6 (Ronquist et al. 2012) to obtain a maximum clade credibility (MCC) tree. The matrix of *matK* sequence was aligned by MAFFT. Bayesian inference was performed using one million generations, four runs, four chains, a temperature of 0.001, 25% trees discarded as burn-in, and trees sampled every 1,000 generations (1,000 trees sampled in total) with GTR+F+G4 model.

We conducted the ML analysis using IQ-TREE v 2.0.6 (Nguyen et al. 2015) with 1,000 bootstrap replicates, and default ModelFinder (Kalyaanamoorthy et al. 2017) to find TVM+F+R3 as the best-fit substitution model. Tree visualization was achieved in FigTree v1.4.3 (http://tree.bio.ed.ac.uk/software/figtree/).

Chromosome preparations

Living plants of the new species were cultivated in the green house of South-Central University for Nationalities. Actively growing root tips were harvested after 1–2 weeks. Cytological examination was performed following Funamoto and Zhou (2010). The best metaphase plates were photographed using an imager microscope with a camera attachment. At least 3–5 cells from 3–5 root tips of five individuals of the new species at somatic metaphase were counted to determine the chromosome numbers.

Results

Molecular phylogenetic studies

The aligned matrix of *matK* sequence was 1,644 characters. Of the 154 variable characters, 90 (58.44%) were parsimony-informative, including indels. BI and ML analyses resulted in the same tree topology which showed the undescribed species as belonging to a strongly supported clade (BP = 89%, PP = 1) that included *Chrysosplenium grayanum* Maxim. (1877), *C. nepalense* D.Don (1825) and *C. sinicum* Maxim. (1877) (Fig. 1).
Table 1. Species names and GenBank accession numbers of matK DNA sequences used in this study (* newly generated sequences).

Species	Location	Voucher specimens	Herbarium	Genbank number
Chrysosplenium album Maxim.	Nikkou-shi, Japan	HSN09815	HSN	MW402998
Chrysosplenium aureobracteatum Y.I.Kim & Y.D.Kim	Gangwon, South Korea	KYI-2009032	–	AXY64019
Chrysosplenium biondianum Engl.	Shanxi, China	HZ2017050107362	HSN	MW402999
Chrysosplenium carnosum Hook.f. et Thoms.	Sichuan, China	HSN013113	HSN	MW403000
Chrysosplenium davidianum Deone. ex Maxim.	Sichuan, China	HSN06442	HSN	MW403001
Chrysosplenium delavayi Franch.	Hunan, China	SZZ2016080907105	HSN	MW403002
Chrysosplenium echiurus Maxim.	Nikkou-shi, Japan	HSN09817	HSN	MW403005
Chrysosplenium fauriae Franch.	Nikkou-shi, Japan	HSN09823	HSN	MW403004
Chrysosplenium flagelliferum Fr. Schmidt.	Nikkou-shi, Japan	HSN09816	HSN	MW403005
Chrysosplenium forrestii Diels	Nikkou-shi, Japan	HSN7797	HSN	MW403006
Chrysosplenium gracilidanum Engl.	Sichuan, China	JZ2018042507981	HSN	MW403007
Chrysosplenium glaucephylum Hara	Sichuan, China	QCS2017102608035	HSN	MW403008
Chrysosplenium grayanus Maxim.	Nikkou-shi, Japan	HSN09810	HSN	MW403009
Chrysosplenium griffithii Hook.f. et Thoms.	Shanxi, China	HSN7760	HSN	MW403010
Chrysosplenium hensleyi Franch.	Hunan, China	HSN7505	HSN	MW403011
Chrysosplenium hydrangeoides (Lév.) et Vant.	Hubei, China	HSN09188	HSN	MW403012
Chrysosplenium japonicum (Maxim.) Makino	Zhejiang, China	HSN7909	HSN	MW403013
Chrysosplenium kamtschaticum Fisch. ex Seringe	Shimane-ken, Japan	DG2019032310004	HSN	MW403014
Chrysosplenium kiotense Ohwi.	Nikkou-shi, Japan	HSN09818	HSN	MW403015
Chrysosplenium lanuginosum Hook.f. et Thoms.	Anhui, China	BD2017030507343	HSN	MW403016
Chrysosplenium lectus-cochlear Kitagawa	Jilin, China	HSN7379	HSN	MW403017
Chrysosplenium macrophyllum Oliv.	Hubei, China	BD2017030507344	HSN	MW403018
Chrysosplenium macrostemon Y.I.Kim & Y.D.Kim	Jilin, China	CBS2016062466656	HSN	MW403019
Chrysosplenium macrostemon Maxim. ex Franch. et Sav.	Nikkou-shi, Japan	HSN09820	HSN	MW403020
Chrysosplenium nepalense D.Don	Yunnan, China	GLGH20170607375	HSN	MW403021
Chrysosplenium medicule Bunge	Gansu, China	HSN07772	HSN	MW403022
Chrysosplenium picton Maxim.	Nikkou-shi, Japan	HSN09819	HSN	MW403023
Chrysosplenium pilosum Maxim.	Sichuan, China	HSN7980	HSN	MW403024
Chrysosplenium quinlingense Z.P.Jien ex J.T.Pan	Sichuan, China	SJH2017052107372	HSN	MW403025
Chrysosplenium ramousum Maxim.	Jilin, China	SJH2017052107371	HSN	MW403026
Chrysosplenium serreanum Hand.-Mazz.	Jilin, China	SJH2017052107371	HSN	MW403026
Chrysosplenium sincinum Maxim.	Hunan, China	TPS2017042407594	HSN	MW403027
Chrysosplenium talbaishanense J.T.Pan	Shanxi, China	HSN7761	HSN	MW403028
Chrysosplenium uniiflorum Maxim.	Tibet, China	HSN7380	HSN	MW403029
Chrysosplenium zhouchaense Hong Liu	Shanxi, China	HSN13356	HSN	MW403030
Chrysosplenium zangebienense Hong Liu sp. nov.	Hunan, China	TPS2017042307449	HSN	MW403032
Chrysosplenium alternifolium L.	Shimane-ken, Japan	DG2019032310003	HSN	MT362050
Chrysosplenium maximowiczi Franch. et Sav.	Kanagawa, Japan	–	–	AB003053
Chrysosplenium nagasei Wakab. & H.Ohba	Gifu, Japan	–	–	AB003054
Chrysosplenium rhodopernum Maxim.	Nagasaki, Japan	–	–	AB003058
Chrysosplenium tosaense Makino	Saitama, Japan	–	–	AB003059
Chrysosplenium xinensis Rydb.	Iowa, USA	–	–	L34120
Chrysosplenium oppositifolium L.	Wales, UK	–	–	JN894973
Chrysosplenium ruendahilii Packter	Northwest Territories, Canada	–	–	KC474470
Chrysosplenium tetrandrum (N. Lund) Th. Fries	Nunavut, Canada	Brysting_01-065_CAN	CAN	KC474473
Chrysosplenium wrightii Franch. & Sav.	Yukon, Canada	Bennett_08-125_CAN	CAN	KC474474
Chrysosplenium americanum Schwein. ex Hook.	Hartford, New Hampshire, USA	–	–	KU524206
Chrysosplenium valdivicum Hook.	Chile	–	–	KU524208
Chrysosplenium zhanglejaense	Hunan, China	ZJ2016031506369	HSN	MW402997
X.L.Yu, Hui Zhou & D.S.Zhou X.	Anhui, China	HSN07355	HSN	MW403031
Saxifraga stolonfera Curt.	–	–	–	NC_037884
Itea chinensis C.K.Schneider	–	–	–	MF350096
Itea virginica L.	–	–	–	
A new species of Chrysosplenium from Hunan

Chromosome characteristics

The chromosome number of *Chrysosplenium sangzhiense* was observed to be 2n = 46 (Fig. 2). The chromosome size fell into the range 0.93–2.43 μm, suggesting slight size variation. A detailed karyotype analysis was not possible because the chromosomes are small, and the position of centromere could not be determined.

Figure 1. Phylogenetic tree of *Chrysosplenium* generated from maximum likelihood (ML) of *matK* data-set. Numbers on the branches indicate bootstrap values (≥50%) of the ML and the posterior probability (≥0.5) of Bayesian inference analyses.
Taxonomic treatment

Chrysosplenium sangzhiense Hong Liu, sp. nov.
urn:lsid:ipni.org:names:77216564-1
Figs 3–5

Remarks. Similar to Chrysosplenium grayanum, C. nepalense, C. sinicum and C. cavaleriei (Table 2). C. sangzhiense differs from C. grayanum in its usually fewer cauline leaves, a square flowering stem and red-brown seeds; from C. nepalense it differs in its usually fewer cauline leaves, a square flowering stem and conspicuously unequal capsule lobes; from C. sinicum it differs in producing sterile shoots from all leaf axils, an absence of basal leaves, larger cauline leaves, and red-brown seeds; and from C. cavaleriei it differs in its erect sepals and absent disc.

Type. China. Hunan: Badagongshan National Nature Reserve, Sangzhi County, 29°47’10”N, 110°5’33”E, under broadleaved forests and near the stream in a mountain area at ca 1,220 m altitude, 22 April 2017, Hong Liu HSN07449 (holotype HSN; isotypes HSN, IBK).

Table 2. Morphological comparison of Chrysosplenium sangzhiense, C. cavaleriei, C. grayanum, C. nepalense and C. sinicum.

Characters	C. sangzhiense	C. cavaleriei	C. grayanum	C. nepalense	C. sinicum	
Sterile branch	from all leaf axils	from near stem base	from all leaf axils	from all leaf axils	only from basal leaf axils	
Basal leaves	absent	absent	absent	absent	present	
Cauline leaves	2–3 pairs, 10–30 × 10–25 mm	1–3 pairs, 9–13 × 10–14 mm	2–7 pairs, 4–17 × 4–17 mm	3–5 pairs, 3–18 × 5–18 mm	1–2 pairs, 6–10.5 × 7.5–11.5 mm	
Flowering stem (upper part)	square	unknown	rounded	rounded	square	
Sepals	erect	spreading	erect	erect	erect	
Disc	absent	distinct	somewhat inconspicuous	absent	absent	
Capsule lobe	lobes conspicuous unequal	lobes conspicuous unequal	lobes conspicuous unequal	lobes subequal	lobes conspicuous unequal	
Seed	red brown, papillose	dark brown, papillose	dark brown, papillose	red brown, smooth	dark brown, papillose	

Figure 2. Somatic chromosomes at metaphase of C. sangzhiense Hong Liu, sp. nov. from three different individuals. Scale bar: 10 μm.
Description. Perennial herbs, 10–25 cm tall. **Root** fibrous and robust. **Rhizome** long creeping without stolons or bulbs. **Basal leaves** absent. **Sterile shoots** well developed, arising from all leaf axils, round in cross-section, 5–15 cm long at anthesis, later elongate and decumbent, up to 50 cm long, rooting at nodes, without forming...
a rosette. *Leaves* of sterile shoots opposite, isophyllous, always ca 8 at anthesis, dark purple, petiole 6–10 mm long, blade 10–30 × 10–25 mm, rounded, glabrous, apex obtuse, margin obtusely dentate (10–16 teeth), base broadly cuneate; post-anthesis 10–30 or more, green, petiole 6–10 mm long, blade 20–35 × 15–20 mm, rounded or ovate, glabrous, apex obtuse, margin obtusely dentate (12–20 teeth), base broadly cuneate. *Cauline leaves* 4–6 (2–3 pairs), opposite, petiole 6–10 mm long; blade 6–13 × 5–12 mm, rounded or broadly ovate, glabrous, apex obtuse, margin obtusely dentate (10–14 teeth), base broadly cuneate. *Flowering stem(s)* erect, branched, 10–23 cm tall, glabrous, purple, square in cross-section. *Inflorescence* 8–25-flowered cyme, dense, 1.4–9 cm long, 5–10 cm in diam.; *bracteal leaves* yellow-green, triangular arrangement and unequal, the middle one larger, petiole 2–8 mm long, blade 4–15 × 7–10 mm, subrounded, glabrous, apex obtuse, margin obtusely dentate (6–12 teeth), base broadly cuneate; *Flowers* tetramerous, actinomorphic; *sepals* 4 (2 pairs), erect, yellow in flowering phase but turn green in fruiting time, 2–3 × 2–3 mm, broadly ovate, apex obtuse; disk absent; *stamens* 8, homostylic, 1–2 mm long, shorter than
A new species of *Chrysosplenium* from Hunan

sepals; filaments slender, ca 1 mm long; anther yellow, 2-locular, longitudinally dehiscent; ovary 2-locular, semi-inferior; stigma 2; styles erect, ca 1–2 mm long. **Fruit** a capsule, 5–7 mm long, green, smooth, 2-lobed (horn-shaped), conspicuous unequal, dehiscent along the adaxial suture; seeds numerous, reddish brown, sub-ovoid, a raphe on one side, 650–800 × 600–750 μm, papillose.

Etymology. *Chrysosplenium sangzhiense* is named after the type locality, Sangzhi County, Hunan Province, China.

Vernacular name. sāng zhí jīn yāo (Chinese pronunciation); 桑植金腰 (Chinese name).

Conservation status. At present, *Chrysosplenium sangzhiense* is only known from a single locality (IUCN criterion D2). At this locality, the population is ca 500 mature individuals (IUCN criterion D1) growing in at least ten patches within a nature reserve. Using the IUCN methodology, *C. sangzhiense* would be classed as Vulnerable (VU), however no plausible threat could be found to confirm its status as the population is located within a protected area and not under threat in the near future. In addition, considering that the surrounding area has not been completely explored, there may be hitherto undocumented additional populations. For these reasons the Global Species Conservation Assessment for *C. sangzhiense* is Least Concern (LC).
Discussion

Our phylogenetic analysis is consistent with previous studies (Soltis et al. 2001) that *Chrysosplenium* is monophyletic and comprises two strongly supported clades namely subgen. *Gamosplenium* (with alternate leaves) and subgen. *Chrysosplenium* (with opposite leaves). *C. sangzhiense* is recovered as a member of subgen. *Chrysosplenium* and falls into a strongly supported clade that includes *C. grayanum*, *C. nepalense* and *C. sinicum*. In addition, *C. cavaleriei* H.Lév. & Vaniot (1911) is also a morphologically similar species despite that it is not included in our phylogenetic analysis. All five species are closely related species despite the fact that it is endemic to Japan, while *C. nepalense*, *C. sinicum* and *C. cavaleriei* are widespread in China.

The basic chromosome number of Japanese *Chrysosplenium* species is x = 11 or x = 12, but in China there is more diversity with x = 7, 8, 9, 10, 12 and 13 (Hara and Kurosawa 1963; Funamoto and Tanaka 1988a, b, 1989; Funamoto et al. 1997, 1999, 2000, 2004; Funamoto and Zhou 2010). Our cytological studies support this. The chromosome number of *C. sangzhiense* is 2n = 46 indicating its basic number to be x = 23. Given the relationship of reported basic chromosome number of *Chrysosplenium*, it suggests that the new species is probably an allopolyploid derivative of a species with x = 11 and one with x = 12. Furthermore, this is a novel basic number for the genus, and different from the closely related species such as *C. grayanum* (x = 11), *C. sinicum* (x = 12) and *C. nepalense* (x = 12) (Hara and Kurosawa 1963; Funamoto and Tanaka 1989; Funamoto et al. 1999; Funamoto and Zhou 2010).

Conclusion

In this study, we confirm and describe a new species of *Chrysosplenium* based on morphological, molecular and cytological evidence. The newly generated molecular data contributes to reconstruct a robust phylogenetic framework for further studies on the aspects of biogeography and character evolution of *Chrysosplenium*. In addition, a novel basic chromosome number for *Chrysosplenium* reported here will be useful data to evaluate the evolutionary pattern of chromosome number change and to estimate the basic chromosome number of clades of the genus.

Acknowledgements

This work was supported by the construction plan of Hubei province science and technology basic conditions platform (No.2017BEC014), Fund for key laboratory construction of Hubei province (No.2018BFC360) and the major projects of technological innovation in Hubei province (2019ABA101).
A new species of *Chrysosplenium* from Hunan

References

De Vere N (2012) Barcode wales: DNA barcoding the nation's native flowering plants and conifers. BGjournal 7(6): e37945. https://doi.org/10.1371/journal.pone.0037945

Don D (1825) Prodomus Florae Nepalensis. Londini, 256 pp.

Ebersbach J, Muellner-Riehl AN, Michalak I, Tkach N, Hoffmann MH, Röser M, Sun H, Favre A (2017) In and out of the Qinghai-Tibet Plateau: Divergence time estimation and historical biogeography of the large arctic-alpine genus *Saxifraga* L. Journal of Biogeography 44(4): 900–910. https://doi.org/10.1111/jbi.12899

Fu LF, Liao R, Lan DQ, Wen F, Liu H (2020) A new species of *Chrysosplenium* (Saxifragaceae) from Shaanxi, north-western China. PhytoKeys 159: 127–135. https://doi.org/10.3897/phytokeys.159.56109

Funamoto T, Tanaka R (1988a) Karyomorphological studies on the genus *Chrysosplenium* in Japan(1) four species in section *Nephrophylloides*. Shokubutsu Kenkyu Zasshi 63(5): 192–196.

Funamoto T, Tanaka R (1988b) Karyomorphological studies on the genus *Chrysosplenium* in Japan(2) four species and two varieties of the hairy group in section *Chrysosplenium*. Shokubutsu Kenkyu Zasshi 63(11): 370–376.

Funamoto T, Tanaka R (1989) Karyomorphological studies on the genus *Chrysosplenium* in Japan(3) five species and four varieties of the glabrous group in section *Chrysosplenium*. Shokubutsu Kenkyu Zasshi 63: 1818–1826.

Funamoto T, Zhou SL (2010) Chromosome studies of three species of *Chrysosplenium* (Saxifragaceae) in Heilongjiang Province, People’s Republic of China. Chromosome Botany 5(4): 81–85. https://doi.org/10.3199/iscb.5.81

Funamoto T, Kondo K, Hong DY, Zhou SL, Shimada T (1997) Karyomorphology of *Chrysosplenium griffithii* collected in Sichuan Province, China. Chromosome Science 1: 61–64.

Funamoto T, Kondo K, Hong DY, Zhou SL, Deguchi H (1999) A cytotaxonomy of six species of *Chrysosplenium* collected in the Qin Ling Mountains in Shaanxi Province, China. Chromosome Science 3: 97–91.

Funamoto T, Kondo K, Hong DY, Zhou SL, Ogura H (2000) A comparative chromosomal study of five species of *Chrysosplenium* collected in the northern part of Sichuan Province, China. Chromosome Science 4: 69–74.

Funamoto T, Kondo K, Tatarenko VI, Kulikov VP, Ogura H, Hoshi Y, Kokubugata G, Suzuki R, Verkholat PV, Gontcharov A (2004) A karyomorphological comparison in three species of *Chrysosplenium* (Saxifragaceae) collected in Primorye Territory, Russia. Chromosome Science 8: 17–22.

Hara H (1957) Synopsis of genus *Chrysosplenium* L. Journal of the Faculty of Science, University of Tokyo, Section III. Botany 7: 1–90.

Hara H, Kurosawa S (1963) Cytotaxonomical studies on Japono-Himalayan elements I. Shokubutsu Kenkyu Zasshi 38: 71–74.

IUCN (2019) Guidelines for Using the IUCN Red List Categories and Criteria. Version 14. Prepared by the Standards and Petitions Committee. http://www.iucnredlist.org/documents/RedListGuidelines.pdf [accessed 11.12.2020]
Kalyaanamoorthy S, Minh BQ, Wong TK, von Haeseler A, Jermiin LS (2017) ModelFinder: Fast model selection for accurate phylogenetic estimates. Nature Methods 14(6): 587–589. https://doi.org/10.1038/nmeth.4285

Kim YI, Lee JH, Kim YD (2018) The complete chloroplast genome of a Korean endemic plant *Chrysosplenium aureobracteatum* YI Kim & YD Kim (Saxifragaceae). Mitochondrial DNA. Part B, Resources 3(1): 380–381. https://doi.org/10.1080/23802359.2018.1450668

Kim YI, Shin JS, Lee S, Chen JH, Choi S, Park JH, Kim YD (2019) A new species of *Chrysosplenium* (Saxifragaceae) from Northeastern China. PhytoKeys 135: 39–47. https://doi.org/10.3897/phytokeys.135.39036

Liu H, Luo J, Liu Q, Lan D, Qin R, Yu X (2016) A new species of *Chrysosplenium* (Saxifragacae) from Zhangjiajie, Hunan, central China. Phytotaxa 277(3): 287–292. https://doi.org/10.11646/phytotaxa.277.3.7

Maximowicz CJ (1877) Diagnoses plantarum novarum asiaticarum. Mélanges biologiques tirés du Bulletin de l’Académie impériale des sciences de St. Pétersbourg 9: 348–348. [769 pp.] https://doi.org/10.5962/bhl.title.46308

Nguyen LT, Schmidt HA, von Haeseler A, Minh BQ (2015) IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Molecular Biology and Evolution 32(1): 268–274. https://doi.org/10.1093/molbev/msu300

Pan JT (1986a) A study on the genus *Chrysosplenium* L. from China. Journal of University of Chinese Academy of Sciences 24(2): 81–97.

Pan JT (1986b) A study of the genus *Chrysosplenium* L. from China (sequel). Zhiwu Fenlei Xuebao 24(3): 203–214.

Pan JT (1992) *Chrysosplenium* L. In: Pan JT (Ed.) Flora of Reipublicae Popularis Sinicace 34(2). Science Press, Beijing, 234–279.

Pan JT, Ohba H (2001) *Chrysosplenium*. In: Wu ZY, Raven PH (Eds) Flora of China, Vol. 8. Science Press, Beijing, and Missouri Botanical Garden Press, St. Louis, 346–358.

Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Höhna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP (2012) MrBayes 3.2: Efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology 61(3): 539–542. https://doi.org/10.1093/sysbio/sys029

Saarela JM, Sokoloff PC, Gillespie LJ, Consaul LL, Bull RD (2013) DNA barcoding the Canadian Arctic Flora: Core plastid barcodes (*rbcL + matK*) for 490 vascular plant species. PLoS ONE 8(10): e77982. https://doi.org/10.1371/journal.pone.0077982

Soltis DE (2007) Saxifragaceae. In: Kubitzki K (Ed.) Flowering Plants. Eudicots, Springer Berlin Heidelberg, 418–435. https://doi.org/10.1007/978-3-540-32219-1_47

Soltis DE, Tago-Nakazawa M, Xiang Q, Kawano S, Murata J, Wakabayashi M, Hibsch-Jetter C (2001) Phylogenetic relationships and evolution in *Chrysosplenium* (Saxifragaceae) based on *matK* sequence data. American Journal of Botany 88(5): 883–893. https://doi.org/10.2307/2657040