ABSTRACT: Five lanthanide complexes constructed from a stilbene derivative, (E)-N,N′-bis(pyridin-2-ylmethyl)-4- styrylbenzoyl hydrazide (HL), and two β-diketonates (2-thenoyltrifluoroacetone, tta), with or without a trifluoroacetate anion (CF₃CO₂⁻), namely, [Ln(tta)₂(HL) (CF₃CO₂⁻)] [LnC₅H₅N₂F₆O₇S₂, Ln = La (1), Nd (2), Eu (3), or Gd (4)] and [Yb(tta)₂(L)] (YbC₄₁H₃₃F₆N₄O₇S₂ (5), L = deprotonated HL), were synthesized and characterized. Crystals of these five complexes were obtained and analyzed by single-crystal X-ray diffraction. These complexes all belonged to the monoclinic P2₁/c space group. For La³⁺, Nd³⁺, Eu³⁺, and Gd³⁺, the central lanthanide ion was nine-coordinate with a monocapped twisted square antiprism polyhedron geometry. The central Yb³⁺ ion of complex 5 was eight-coordinate with a distorted double-capped triangular prism polyhedron geometry. Among the five complexes, trans-to-cis photoisomerization of the stilbene group in gadolinium complex 4 showed the largest quantum yield. Complexes 2, 3, and 4 showed dual luminescence and photoisomerization functions. The luminescence change of complex 3 was reversible upon the trans-to-cis photoisomerization process. The sensitization efficiencies of luminescent europium complex 3 in acetonitrile solutions and in the solid state were 49.9 and 42.6%, respectively. These medium sensitization efficiencies led to the observation of simultaneous photoisomerization and luminescence, which further confirmed our previous report that photoisomerization of the stilbene group within complexes was related to the lanthanide ion energy level and whether a ligand-to-ligand charge-transfer transition occurred. The presence of a ligand-to-ligand charge-transfer transition between tta and HL (LLCT, πHL→π*HL, and πHL→π*HL*) indicated whether the triplet-state energy of HL was able to transfer to the excited energy level of the lanthanide ions, leading to different extents of HL photoisomerization. These results provide an important route for the design of new dual-function lanthanide-based optical switching materials.

INTRODUCTION

In recent years, smart materials have been studied extensively for their important applications in molecular switches, white light-emitting diodes, information storage, anti-counterfeiting, separation and detection, drug delivery, and other fields. Smart material molecules can reversibly change their physical and chemical properties under different external stimuli. Among various external stimuli, including light energy, electrical energy, and chemical energy, light is the most suitable and convenient source of clean energy and has advantages of precise control as a stimulus source and energy-saving and environmental protection characteristics. Previously reported light stimulation of smart molecules includes the trans-to-cis isomerization of azobenzene and stilbene derivatives, photocyclization of diarylethenes, cycloaddition of alkenes, and photodimerization of anthracene. Photoinduced trans-to-cis isomerization has attracted much attention in inorganic and organic chemistry, materials science, and biology. Photoinduced trans-to-cis isomerization is the reversible conversion of trans isomers to cis isomers under a certain light wavelength. Isomers with different molecular structures have different physical and chemical properties (including magnetic, optical, and electrical properties), which can be controlled by illumination. This feature is widely used in biochemistry, pharmacology, and supramolecular chemistry. Much research has been conducted on the photoinduced trans-to-cis isomerization of various azobenzene and stilbene derivatives. In addition, we have studied a series of lanthanide β-diketonate complexes functionalized with azobenzene, finding that azobenzene groups attached to lanthanide β-
diketonate complexes were stable in both solution and the solid state, exhibiting the reversible trans-to-cis photoisomerization properties of azobenzene and good fatigue resistance.30,44,57,58 The introduction of electron donor substituents is not conducive to improving the photoisomerization quantum yield and photoisomerization rate.54 Although some ternary complexes of europium and ytterbium β-diketonate complexes functionalized with azobenzene exhibit both luminescence and photoisomerization properties, energy transfer from an azobenzene derivative to lanthanide ions is difficult owing to the first triplet-state energy level of azobenzene derivatives being lower than the excited-state energy level of most lanthanide ions.57 Therefore, most azobenzene-functionalized lanthanide β-diketonate complexes exhibit photoisomerization but not luminescence emission. Azobenzene-functionalized lanthanide β-diketonate complexes with good dual-function properties are difficult to achieve. To obtain lanthanide complex materials with both luminescent and trans-to-cis photoisomerization properties, we focused on designing stilbene derivatives, which are known for their rich optical properties, such as trans-to-cis photoisomerization, photocyclization, photodimerization, and fluorescence, for introduction into lanthanide β-diketonate complexes.35 The as-designed stilbene derivative ligand, (E)-N, N-bis(pyridin-2-ylmethyl)-4-styrylbenzoyl hydrazide (HL), is a tetradeptate chelating ligand that can strongly coordinate with lanthanide ions. HL was combined with benzoyl trifluoroacetate (Htta), a classic β-diketone ligand that sensitizes lanthanide ions, to obtain lanthanide β-diketonate complexes co-coordinated with a stilbene derivative. Stilbene derivative HL co-coordinated in the tdf–lanthanide β-diketonate complex maintained its trans-to-cis photoisomerization properties. The extent of stilbene photoisomerization within complexes was related to the lanthanide ion energy level and whether a ligand-to-metal center or ligand-to-ligand charge-transfer process was present. Trans-to-cis photoisomerization of the stilbene group in the gadolinium complex afforded an approximate fivefold enhancement in the quantum yield compared with HL alone. The Yb and Nd complexes had dual characteristics of infrared luminescence and trans-to-cis photoisomerization. However, in the europium complex, highly efficient ligand energy transfer to the Eu3+ ion led to completely suppressed stilbene group photoisomerization. The energy transfer efficiency among ligands HL and tdf and the lanthanide ions affected the lifetime of the lanthanide ion excited-state and photoisomerization behavior of the stilbene group. Therefore, we planned to design and synthesize dual-function materials with photo-isomerization properties and excellent optical properties. In this context, we selected 2-thenoyl trifluoroacetone (Htta), a ligand with a better “antenna effect”,59,60 for co-coordination with lanthanide ions to study its luminescence and photo-induced trans-to-cis isomerization and further clarify the relationship between luminescence and isomerization within these complexes.

\section*{RESULTS AND DISCUSSION}

\textbf{X-ray Crystallographic Analysis.} Crystals of the five complexes were obtained by slow evaporation from a methanol solution over 1 week. Crystal analysis showed that the five complexes had similar structures and all belonged to the monoclinic P2\textsubscript{1}/c space group. For complexes 1–4, the central lanthanide ion was coordinated with six oxygen atoms and three nitrogen atoms to form a stable nine-coordinate structure with monocapped twisted square antiprism polyhedron geometry. HL is a tetradeptate ligand that provides one oxygen atom and three nitrogen atoms as chelating atoms. The other four chelating oxygen atoms were provided by two 2-thenoyl trifluoroacetate (Htta) ligands, while the sixth oxygen was derived from the trifluoroacetate anion hydrolyzed by the ligand Htta. In complexes 1–4, intermolecular hydrogen bonding existed between the carbonyl oxygen of trifluoroacetate and hydrogen on the hydrazine nitrogen in HL. The coordination mode of complex 5 was slightly different from those of complexes 1–4, with the central Yb(III) ion having a coordination number of 8 with a distorted double-capped triangular prism polyhedron geometry. No trifluoroacetate anion was involved in coordination in 5 owing to removal of a proton from the hydrazine nitrogen in HL to balance the charge. This was similar to our previously reported Yb3+ complexes functionalized by azobenzene groups.58 The crystal structures of complexes 4 and 5 are shown in Figure 1, while those of complexes 1–3 are shown in Figure S1 in the Supporting Information. The crystallographic parameters of complexes 1–5 are provided in Table 1, while selected bond lengths and angles are shown in Tables S1 and S2 (Supporting Information). The lanthanide ion–oxygen bond length ranges in complexes 1–5 were 2.468–2.537, 2.357–2.451, 2.371–2.425, 2.377–2.465, and 2.206–2.475 Å, respectively. The corresponding lanthanide ion–nitrogen bond length ranges were 2.734–2.873, 2.644–2.755, 2.639–2.752, 2.613–2.706, and 2.475–2.546 Å, respectively. These results were within the ranges of reported lanthanide β–diketonate complexes.30,44,58 The measured XRD powder diffraction spectra of complexes 1–5 were in agreement with the simulated values (Figure S2 in the Supporting Information), confirming that the obtained five complexes had a pure phase.

\textbf{Thermal Analysis of Complexes 1–5.} Thermogravimetric analyses (TGAs) of complexes 1–5 were conducted using powder samples in the temperature range of 30–800 °C under a nitrogen atmosphere. The TGA plots showed that complexes 1–4 had similar thermal decomposition processes, with complex 5 also showing the same trend (Figure S3 in the Supporting Information). Complexes 1–4 underwent the first stage of decomposition in the temperature range of 255–380
\[\chi(M) = 7.42 \text{ cm}^3 \text{ K mol}^{-1}\] is slightly lower than the theoretical value (7.87 for one isolated \(\text{Gd}^{3+}\) ion) owing to quenching of the orbital magnetic moment contribution to the magnetic moment. The \(\chi_{MT}\) value was 7.14 and \(-0.77\), respectively, showing the presence of a weak antiferromagnetic interaction between \(\text{Gd}^{3+}\) ions.61,62

Magnetic Properties of Complex 4. The magnetic properties of complex 4 were also studied. Variable temperature molar magnetic susceptibility (\(\chi(M)\)) in the range of 2−300 K was measured under an applied field of 1000 Oe (Figure S4 in the Supporting Information). The room-temperature \(\chi(M)\) value was 7.42 cm\(^3\) K mol\(^{-1}\), which was slightly lower than the theoretical value (7.87 for one isolated \(\text{Gd}^{3+}\) ion) owing to quenching of the orbital magnetic moment contribution to the center ion. The values of \(\chi(M)\) (cm\(^3\) K mol\(^{-1}\)) and \(\chi(T)\) obtained from the best fit \(\chi_{MT}\) data (\(\chi(M)\) vs T) using the Curie–Weiss equation were 7.14 and \(-0.77\), respectively, showing the presence of a weak antiferromagnetic interaction between \(\text{Gd}^{3+}\) ions.61,62

Table 1. Crystallographic Data for Complexes 1−5

Crystal Data	1	2	3	4	5
Formula	LaC\(_{45}\)H\(_{32}\)F\(_9\)N\(_4\)O\(_7\)S\(_2\)	NdC\(_{45}\)H\(_{32}\)F\(_9\)N\(_4\)O\(_7\)S\(_2\)	EuC\(_{45}\)H\(_{32}\)F\(_9\)N\(_4\)O\(_7\)S\(_2\)	GdC\(_{45}\)H\(_{32}\)F\(_9\)N\(_4\)O\(_7\)S\(_2\)	YbC\(_{43}\)H\(_{31}\)F\(_6\)N\(_4\)O\(_5\)S\(_2\)
Space group	P2\(_1\)/c	P2\(_1\)/c	P2\(_1\)/c	P2\(_1\)/c	P2\(_1\)/c
a (Å)	9.89(5)	24.269(4)	24.1658(4)	9.762(4)	8.308(10)
b (Å)	17.372(10)	9.788(2)	9.7895(2)	17.811(6)	26.613(4)
c (Å)	30.071(2)	19.295(4)	19.2341(4)	17.585(17)	32.585(3)
α (°)	90	90	90	90	90
β (°)	93.666(6)	101.887(2)	101.828(2)	111.049(5)	95.7(10)
γ (°)	90	90	90	90	90
V (Å\(^3\))	5157.0(5)	4485.4(2)	4462.26(15)	5288.0(4)	4089.5(10)
Z	4	4	4	4	4
D (g cm\(^{-3}\))	1.436	1.659	1.679	1.423	1.681
θ range (°)	5.87 to 133.07	7.44 to 133.20	7.46 to 131.38	5.75 to 129.99	6.64 to 154.78
Refl. col.	29078	28401	31102	29121	28488
Data/res/para.	8837/1078/733	7912/1029/787	7585/924/761	8958/733/698	8299/282/624
GOF	1.044	1.054	1.162	1.057	1.027
Final R	R\(_f\) = 0.0889	R\(_f\) = 0.0922	R\(_f\) = 0.0518	R\(_f\) = 0.01001	R\(_f\) = 0.0351
R (all data)	R\(_f\) = 0.1585, wR\(_f\) = 0.2344	R\(_f\) = 0.0182, wR\(_f\) = 0.1401	R\(_f\) = 0.0627, wR\(_f\) = 0.3024	R\(_f\) = 0.0444, wR\(_f\) = 0.0903	

\(^\circ\text{C}\) with mass losses of 27.05, 27.92, 27.65, and 27.67%, respectively. These results were similar to theoretically calculated percentages for the loss of one trifluoroacetate anion and one tta dionate from the complexes (29.98, 29.84, 29.63, and 29.47%, respectively). Meanwhile, the TGA curves of complex 5 showed a first-stage mass loss of 24.23% in the temperature range of 270−370 °C, indicating a mass loss of one tta dionate from the complex (calculated, 23.43%). All complexes further decomposed between 380 and 800 °C. These thermal stability results showed that the trifluoroacetate anion and tta dionate were more readily removed from the complexes, indicating that HL was a strongly coordinating tetradentate ligand for chelating lanthanide ions.

Photolysis Behavior of Complexes 1−5. UV−vis absorption spectra of Htta, HL, and their complexes 1−5 in acetonitrile at room temperature were obtained with the corresponding spectral data listed in Table 2. The spectral shapes of complexes 1−5 showed iteration of the free ligand Htta and HL absorption spectra (Figure 2), with a red shift of about 20 nm at the long wavelength and a small shift at the short wavelength compared with free ligands. The molar absorption coefficients of complexes 1−5 at the maximum wavelength were in the same order as those of the free ligands. However, the results for complex 1 were higher than those of the free ligands, perhaps owing to the rigid structure resulting from the coordination effect of the lanthanum ion with no f electrons. Density functional theory (DFT)/time-dependent (TD)−DFT calculations (Table S5) showed that complex 1 has the largest oscillator strengths for the intramolecular charge transition of the ligands (IL, \(\pi_{\text{IL}}\)−\(\pi^*_{\text{IL}}\)), ligand-to-ligand charge transfer (LLCT, \(\pi_{\text{IL}}\)−\(\pi^*_{\text{IL}}\)), and ligand-to-metal center charge transfer (L→MCT) transitions among the five complexes. This might be the reason that complex 1 shows a different behavior.

Table 2. UV−Vis Absorption Data of Ligands and Complexes 1−5 in Acetonitrile Solutions

Compounds	\(\lambda_{\text{max}}[\text{nm}]\)	\((\varepsilon_{\text{max}}[10^4 \text{ L mol}^{-1} \text{ cm}^{-1}])\)
Htta	292(1.95)	262(2.64)
HL	317(5.16)	262(1.96)
1	335(10.50)	269(4.14)
2	337(5.14)	269(2.04)
3	335(6.52)	269(2.59)
4	336(4.94)	270(1.91)
5	337(5.44)	269(2.45)

Figure 2. UV−vis absorption spectra of Htta, HL, and complexes 1−5 in acetonitrile solutions.
The five complexes were similar to our previously reported lanthanide complexes, with only the two trifluoro-1-phenylbutanediionate (tfd) ligands changed to tta ligands, but they showed very different photoisomerization properties. The five complexes showed similar photoisomerization behavior in acetonitrile solutions but different photoisomerization rates and quantum yields. For example, the UV–vis absorption spectra of complex 3 in acetonitrile solutions showed a similar variation to that of free ligand HL. In acetonitrile solutions, under 312-nm UV light irradiation, the characteristic absorption peak intensity of the π−π* transition at 335 nm gradually decreased with increasing irradiation time. Simultaneously, the characteristic absorption peak intensity of the π−π* transition at 269 nm gradually increased, with an isosbestic point appearing at 287 nm (Figure 3). Complex 3 reached a photostable state after irradiation for 300 s. The solution was then subjected to 254 nm UV light irradiation, which caused the characteristic absorption peak intensity at 335 nm to increase with increasing irradiation time, with a constant intensity maintained after 600 s. These changes indicated that the stilbene group in the complex underwent a trans–cis–trans photoisomerization process.

Subsequently, the reversibility and recyclability of the trans–cis–trans photoisomerization behavior of complex 3 in acetonitrile solutions were tested. UV–vis absorption spectra of the solution were recorded alternately using 312 nm UV light irradiation for 3 min followed by 254 nm UV light for 5 min. As shown in Figure 4, the trans-to-cis photoisomerization reaction of complex 3 was reversible and recyclable. Although both the pure ligand and complex 3 underwent photolysis, the number of cycles for complex 3 under an alternating UV light irradiation was higher than that of the pure HL ligand owing to the enhanced photostability of the stilbene group after complex formation.

The photoisomerization properties of the four other complexes were also explored, showing similar photoisomerization behavior in acetonitrile solutions but with different photoisomerization quantum yields and rate constants. From variations in the UV absorption spectra with increasing irradiation time, the trans-to-cis photoisomerization quantum yields and first-order kinetic rate constants were determined. The UV–vis spectra of the other four complexes in acetonitrile solutions under alternating irradiation with UV light at 312 and 254 nm are shown in Figures S5 and S6 (Supporting Information).

![Figure 3](image-url) Figure 3. UV–vis spectral change of complex 3 in acetonitrile solutions (2.0 × 10−5 mol/L) upon irradiation at UV-312 nm and recoverable irradiation at UV-254 nm as a function of time.

![Figure 4](image-url) Figure 4. Cycles of maximum absorption intensity at 335 nm of complex 3 and 317 nm of HL in acetonitrile solutions are modulated by the irradiation of UV light at 312 nm for 3 min and 254 nm for 5 min, alternatively.

Table 3. Photoisomerization Rate Constants K_{iso} (s−1) and Quantum Yields ($Φ_{t-c}$) of HL and Complexes 1–5 in Acetonitrile Solutions

compounds	$10^3 k_{iso}$	$10^3 Φ_{t-c}$	R_1	R_2	R_3	R_4	R_5
HL	4.8 ± 0.5	1.9 ± 0.1	1.0	1.0	1.0	1.0	1.0
1	12.9 ± 0.2	1.9 ± 0.1	2.7	1.0	0.1	1.0	1.0
2	15.1 ± 0.5	3.3 ± 0.3	3.1	1.7	2.4	3.4	2.0
3	23.2 ± 1.8	10.4 ± 0.3	4.8	5.5	b	b	
4	33.7 ± 2.4	10.9 ± 0.3	7.0	5.7	4.8	4.5	
5	17.3 ± 0.3	5.7 ± 0.3	3.6	3.0	1.3	1.2	

aR1 is the ratio of the K_{iso} value of a complex to HL and R_2 is the ratio of the $Φ_{t-c}$ value of a complex to HL. bNo detectable value for complex 3 in ref 35. cData calculated from ref 35.

The photoisomerization quantum yields of the complexes were all higher than that of HL, while their isomerization rate constants (k_{iso}) were positively correlated with the photoisomerization quantum yields. The photoisomerization rate constant and quantum yield of complex 4 were largest among the five complexes. This was similar to our previously reported 4,4,4-trifluoro-1-phenylbutane-1,3-diketone gadolinium complex co-coordinated with a stilbene derivative ([Gd(tfd)2(HL) (CF3COO)])35. However, the photoisomerization rate constants (K_{iso}) and quantum yields ($Φ_{t-c}$) of the five complexes were different from the reported 4,4,4-trifluoro-1-phenylbutane-1,3-diketone europium complex co-coordinated with a stilbene derivative ([Eu(tfd)2(HL) (CF3COO)])35, which exhibited no detectable photoisomerization. This was due to the difference in energy transfer efficiency between the ligand and lanthanide ion, which will be discussed below in the studies on photoluminescence properties and theoretical calculations.
Photoluminescence Properties of Complexes 2, 3, and 5. Nd³⁺, Eu³⁺, and Yb³⁺ β-diketonate complexes are known to emit strong red or near-infrared (NIR) luminescence if efficient energy transfer from the β-diketonate and auxiliary ligands to the central lanthanide(III) ions is present. First, the luminescence properties of complex 3 at room temperature were investigated. Photoluminescence spectra of complex 3 in acetonitrile solutions and in the solid state are shown in Figure 5. Complex 3 displayed pure red photoluminescence and its CIE coordinate was $x = 0.67$ and $y = 0.33$ (Figure S7 in the Supporting Information). Upon excitation at 355 nm, complex 3 exhibited characteristic Eu(III) ion emission bands of $^5D_0 \rightarrow ^7F_{J}$ ($J = 0, 1, 2, 3, 4$) transitions. The $^5D_0 \rightarrow ^7F_2$ transition at 614 nm from the induced electric dipole hypersensitive transition was strongest and dominated the whole spectrum. The $^5D_0 \rightarrow ^7F_{0,1,3}$ transitions at 578, 590, and 650 nm, respectively, were relatively weak. Only one peak for the $^5D_0 \rightarrow ^7F_0$ (0-0) transition and three Stark components for the magnetic dipole $^5D_0 \rightarrow ^7F_2$ transition, in particular the splitting pattern of $^5D_0 \rightarrow ^7F_2$ in the emission spectra, suggested the major presence of a single chemical environment around the Eu(III) ion and lower complex symmetry. The overall luminescence quantum yields (Φ_{rad}) of complex 3 were determined experimentally to be 0.21 and 0.39 in acetonitrile solutions and in the solid state, respectively, at room temperature, which were slightly higher than those of complex [Eu(tfd)₂(HL) (CF₃COO)] with a similar structure, which exhibited a higher sensitization efficiency of 49.9% and 42.6% respectively (Table 4). These lower sensitization efficiencies indicated that the ligand energy transfer to the Eu³⁺ ion was still less efficient in this complex, with sufficient energy remaining for HL to undergo trans-to-cis photoisomerization. This explained why photoisomerization of the stilbene group was observed in complex 3 but suppressed complex [Eu(tfd)₂(HL) (CF₃COO)] with a similar structure, which exhibited a higher sensitization efficiency of 97.9% in acetonitrile solutions and 96.7% in the solid state, resulting in almost no energy remaining for HL to undergo trans-to-cis photoisomerization.

Furthermore, the emission of complex 3 in the photostationary cis form in the solid state was checked (Figure 6).

Therefore, using the equation $\Phi_{\text{rad}} = \tau_{\text{obs}} / \tau_{\text{rad}}$ the intrinsic quantum yields (Φ_{rad}) in acetonitrile solutions and in the solid state were calculated to be 42.4 and 91.5%, with sensitization efficiencies ($\eta_{\text{sen}} = \Phi_{\text{rad}} / \Phi_{\text{tot}}$) of 49.9 and 42.6% respectively (Table 4). These lower sensitization efficiencies indicated that the ligand energy transfer to the Eu³⁺ ion was still less efficient in this complex, with sufficient energy remaining for HL to undergo trans-to-cis photoisomerization. This explained why photoisomerization of the stilbene group was observed in complex 3 but suppressed complex [Eu(tfd)₂(HL) (CF₃COO)] with a similar structure, which exhibited a higher sensitization efficiency of 97.9% in acetonitrile solutions and 96.7% in the solid state, resulting in almost no energy remaining for HL to undergo trans-to-cis photoisomerization.

Table 4. Luminescence Physical Parameters of Complexes 2, 3, and 5

complex	environment	τ_{obs} (µs)	τ_{rad} (µs)	Φ_{rad} (%)	Φ_{tot} (%)	η_{sen} (%)
2	solution	3.2	1.3			
	solid	6.1	2.4			
3	solution	616	1452	21.10	42.4	49.9
	solid	765	835	38.94	91.5	42.6
5	solution	12.1	0.6			
	solid	14.3	0.7			

Figure 5. Luminescence spectra of complex 3 in acetonitrile solutions (2.0×10^{-5} mol/L) and in the solid state ($\lambda_{\text{ex}} = 355$ nm). The inset shows images of a bright red color luminescence in the solid state under a 365 nm UV lamp.

Figure 6. Luminescence spectral change of complex 3 in the solid state upon irradiation at UV-312 nm (a) and recoverable irradiation at UV-254 nm (b) as a function of time.
hypersensitive transition enhancement in complex 3. These results show that complex 3 is a new lanthanide-based optical switching material.

The NIR luminescence of complexes 2 and 5 in acetonitrile solutions and in the solid state was also examined. With excitation wavelengths set at 358 and 365 nm, respectively, complexes 2 and 5 showed luminescence peaks characteristic of Yb$^{3+}$ and Nd$^{3+}$ ions, respectively (Figure 7). The strong luminescence emission peak of complex 2 was located at about 1062 nm, which corresponded with the $^{4}F_{3/2} \rightarrow ^{4}I_{11/2}$ transition of Nd$^{3+}$ ions. The weak and broad emission peaks at 887 and 1335 nm corresponded to $^{4}F_{3/2} \rightarrow ^{4}I_{9/2}$ and $^{4}F_{3/2} \rightarrow ^{4}I_{13/2}$ transitions, respectively. Complex 5 also showed three luminescence emission peaks, among which the emission at 980 nm was strongest, attributed to the $^{2}F_{5/2} \rightarrow ^{2}F_{7/2}$ transition of Yb$^{3+}$ ions, while the broad emission peaks at around 1015 and 1050 nm were attributed to the Stark splitting of the $^{2}F_{7/2}$ multiplex.

The NIR intrinsic quantum yield of the lanthanide ions can be estimated using the equation

$$\Phi_{\text{Ln}} = \frac{\tau_{\text{obs}}}{\tau_{0}}$$

where τ_{0} is the natural lifetime (0.25 ms for Nd$^{3+}$ and 2.0 ms for Yb$^{3+}$). The luminescence lifetime (τ_{obs}) and intrinsic quantum yield (Φ_{Ln}) of complexes 2 and 5 are shown in Table 4. The decay curves of the strongest peaks of complexes 2 and 5 as a function of time, which fitted a single exponential behavior, were used to calculate τ_{obs}, as shown in Figure S11 (Supporting Information). The NIR luminescence properties of the two complexes were similar to our reported Nd$^{3+}$ and Yb$^{3+}$ complexes with similar structures, which also had observed lifetime values in the order of 1–10 μs. This indicated that the energy transfer efficiency of the two series of complexes was similar. Therefore, the photoisomerization rates and quantum yields of the two series of Nd and Yb complexes were also similar. The triplet excited-state energy levels ($3\pi\pi^*$) of ligands can be determined from the phosphorescence spectra of their corresponding Gd complexes. HL did not show phosphorescence at room temperature. The phosphorescence of Htta, Htfd, and their Gd complexes at room temperature was measured, with ligands and their complexes showing the same maximum emission wavelength of around 20,202 cm$^{-1}$ for Htta and 21,413 cm$^{-1}$ for Htfd (Figure S12), respectively, in agreement with the literature. The triplet energy of HL estimated by TD-DFT was 18,083 cm$^{-1}$. The energy levels of ligands HL, Htta, and Htfd and lanthanide ions Eu$^{3+}$, Nd$^{3+}$, Yb$^{3+}$, and Gd$^{3+}$ are shown in Scheme 2. All triplet energy levels of ligands HL, Htta, and Htfd and lanthanide ions Eu$^{3+}$, Nd$^{3+}$, Yb$^{3+}$, and Gd$^{3+}$ were higher than the Eu$^{3+}$ 5D$_{0}$ (17,241 cm$^{-1}$), Nd$^{3+}$ 4F$_{3/2}$ (11,500 cm$^{-1}$), and Yb$^{3+}$ 2F$_{5/2}$ (10,260 cm$^{-1}$) energy levels. HL might directly transfer energy to lanthanide ions through the triplet excited state. This explains why the stilbene-attached lanthanide β-diketonate complexes showed stronger luminescence than azobenzene-functionalized lanthanide complexes.

Electronic Absorption Analysis. Complexes 1–5 in the acetonitrile solvent were successfully optimized using DFT, with the optimized structural geometric parameters shown in Tables S3 and S4. The optimized partial bond lengths and angles were compared with those obtained by X-ray single-crystal diffraction (measured crystal data shown in Tables S1 and S2, Supporting Information), showing some differences. The optimized lanthanide ion–oxygen bond length ranges in.
complexes 1−5 were 2.463−2.560, 2.386−2.445, 2.337−2.467, 2.322−2.470, and 2.229−2.263 Å, respectively. The corresponding lanthanide ion−nitrogen bond length ranges were 2.813−2.998, 2.729−2.779, 2.712−2.901, 2.719−2.918, and 2.522−2.585 Å, respectively. They are close to the crystal data (in crystal, Ln−O bond length ranges in complexes 1−5 were 2.468−2.537, 2.357−2.451, 2.371−2.425, 2.377−2.465, and 2.206−2.475 Å, respectively). The Ln−N bond length ranges were 2.734−2.873, 2.644−2.755, 2.639−2.752, 2.613−2.706, and 2.475−2.546 Å, respectively. These differences were within a reasonable range and acceptable for the simulation process conducted on the acetonitrile solution, while experimental data were obtained in the crystal state. The calculated bond lengths and angles were essentially consistent with the measured bond lengths and angles, confirming the rationality of the large-core effective core potentials (ECPs).

Electron density distributions of the highest occupied molecular orbitals (HOMOs) and lowest unoccupied molecular orbital (LUMO) of complexes 1−5 in the acetonitrile solvent were obtained, as shown in Figure 8. Among them, complexes 2, 4, and 5 were optimized using the UB3LYP functional and only their α-orbitals were shown. The HOMOs of the five complexes had similar orbital distributions and were mainly distributed on the stilbene group of ligand HL, while the LUMOs showed slight differences. Complexes 2, 3, and 4 showed similar LUMO distributions, with LUMOs mainly distributed on the two tta ligands, the stilbene group of ligand HL, and partially on the central metal. Although the LUMOs showed slight differences among the five complexes, the HOMO and LUMO energy levels were close to each other, with only complex 5 showing a small gap.

Based on the optimized geometric structure, electron absorption spectra calculated by TD−DFT were compared with those obtained experimentally. The simulated electronic absorption spectra are shown in Figure S13 (Supporting Information). The strongest absorption peaks of the five complexes in the acetonitrile solution obtained experimentally were all observed at around 335 nm, while the absorption peaks calculated by the polarized continuum model (PCM) simulation in the acetonitrile solvent were all around 345 nm. The simulated electronic absorption spectra were close to the experimental data. The solvent-corrected main transition energies (eV), with contributing excitation (%), oscillator strengths (f, only showing f > 0.1), associated wavelengths (λ), and dominant excitation character, are shown in Table 5. Complexes 1−4 showed similar mixed transitional characteristics. TD−DFT/PCM calculations showed that the absorption band in the range of 230−400 nm measured experimentally mainly originated from the IL (π→π* and π→π*), LLCT (σ→π* or π→π*), and a small charge-transfer transition from ligands to the central Ln3+ ion (LMCT). As shown in Table 3, the photoisomerization rate constants and quantum yields of complexes 1−4 evidently increased with increasing atomic number from La to Gd. Among the four complexes, complex 3 was rather different from our previously reported [Eu(tfd)_2(HL)-(CF3COO)]

Figure 8. HOMO and LUMO energy levels and orbital distributions of complexes 1−5. Most relevant MOs of complexes 1−5 associated with vertical excitation are shown in Table 5.
complex,35 in which photoisomerization of the stilbene group was suppressed owing to the presence of LLCT $\pi_{\text{HL}} \rightarrow \pi_{\text{tta}}$ and the absence of backward LLCT $\pi_{\text{tta}} \rightarrow \pi_{\text{HL}}$.

This resulted in complex [Eu(tfd)$_2$(HL) $\text{[CP}_,\text{COO]}$] having a higher sensitization efficiency of 97.9\% in the acetonitrile solution and 96.7\% in the solid state, making the isomerization reaction difficult to observe and the quantum yield too low to be detected. This study shows that complex 3 has good dual photoisomerization and photoluminescence functions owing to its lower sensitization efficiency.

Complex 4 showed the largest contribution from the LLCT (tta to HL) transition, which favored the energy transfer from tta to HL and promoted photoisomerization. Furthermore, energy transfer from the ligands to the gadolinium ion was inhibited, resulting in complex 4 showing the largest photoisomerization quantum yield. The transition characteristic of complex 5 was slightly different from those of complexes 1–4 but similar to that of the tfd-coordinated complex [Yb(tfd)$_2$(HL)]. The LLCT transition between ligands mainly originated from the hydrazide group in HL to the tta ligand, while the LLCT from tta to HL ($\pi_{\text{tta}} \rightarrow \pi_{\text{HL}}$) was absent. The LMCT transition mainly originated from the tta ligand to the central Yb$^{3+}$ ion. Therefore, the luminescence and trans-to-cis photoisomerization properties of complex 5 were similar to those of complex [Yb(tfd)$_2$(HL)].
CONCLUSIONS

Five new di-β-diketone lanthanide complexes co-coordinated with a stilbene derivative were synthesized and characterized. The crystals of the five complexes belonged to the monoclinic $P2_1/ c$ space group. For complexes 1–4, the central lanthanide ion was nine-coordinate with a monocapped twisted square antiprism polyhedron geometry. The central Yb(III) ion of complex 5 was eight-coordinate with a distorted double-capped triangular prism polyhedron geometry. The photo-induced trans-to-cis isomerization properties of the five complexes in acetonitrile solutions showed that their photoisomerization rate constants (k_{iso}) and quantum yields (Φ_{iso}) and those of the free ligand HL were in the order of $4 > 3 > 2 > 1 >$ HL. Complex 4 showed the best photoisomerization properties accompanied by magnetic properties. Complex 3 showed reversible luminescence change upon the trans-to-cis photoisomerization process. Such complexes are promising for pure ligands in molecular switch applications.

SYNTHESSES OF THE CO-COORDINATED STILBENE LIGAND (HL) AND LANTHANIDE(III) COMPLEXES 1–5 (SCHEME 1)

HL was prepared in exactly the same way as the previous synthesized method. The lanthanide complexes were synthesized as follows: 0.42 g of ligand HL (1.0 mmol) and 0.30 g of Htta (2.5 mmol) were mixed and dissolved in 20 mL of tetrahydrofuran. After the mixed compounds were completely dissolved, 1 M sodium hydroxide solution was added dropwise slowly to the solution to adjust the pH to about 7. It should be pointed out that some of the Htta ligand is hydrolyzed to produce the CF$_3$COO$^-$ anion in the system. After that, the solution was heated to 65 °C, and 1.0 mmol LnCl$_3$·6 H$_2$O in 5 mL of methanol solution was added and allowed to stand for refluxing for 10 h. Then, the solution was filtered while hot, and the resulting solution was rotated to obtain the solids. The solid powder was washed and dried to obtain pure lanthanide complexes. The pure solid powder was dissolved in methanol and then filtered, and the solution was allowed to stand in the dark to volatilize. Crystals were obtained after 1 week.

For [Eu(tta)$_2$(HL) (CF$_3$COO)] (3). Yellow crystal, yield: 70% (0.76 g); ESI(+)-MS: m/z (CH$_3$OH) = 1001.0 [M$^+$$^+]$; 1H NMR (400 MHz, DMSO-d$_6$): δ (ppm) 9.68 (s, 1 H), 8.49 (s, 2 H), 7.84 (dd, $J = 7.4$, 8 H), 7.62 (m, 5 H), 7.38–7.16 (m, 10 H), 6.28 (s, 2 H), 4.30 (s, 4 H); FT-IR (cm$^{-1}$): 3214, 3062 (C=C–H, m), 1680 (C=O, s), 1610 (C=C, s), 1538 (N–H, m), 1344, 1285 (C=N–N, s), 1178, 1127 (C–F, s), 943 (C=C–S–C, s) 783, 711, 641 (P–H, w); elemental analysis calculated for LaC$_{45}$H$_{32}$F$_9$N$_4$O$_7$S$_2$ (%): N, 5.03; C, 48.48; H, 2.89; S, 5.75; found (%): N, 5.01; C, 48.39; H, 3.06; S, 5.70.

For [Nd(tta)$_2$(HL) (CF$_3$COO)] (4). Transparent crystal, yield: 75% (0.83 g); ESI(+)-MS: m/z (CH$_3$OH) = 1020.0 [M$^+$$^+]$; FT-
Structural Determination of Complexes 1–5 by X-ray Diffraction. Structural determination of complexes 1–5 was performed using X-ray diffraction. Single-crystal X-ray diffraction data of the five complexes were collected using a Rigaku Oxford Diffraction XtaLAB Synergy diffractometer with micro-focus sealed X-ray Cu Kα radiation (λ = 1.54184 Å) at 100 K. Crystallography data reduction and absorption correction were performed using CrystAlisPro 171.41_64.110a software (Rigaku Oxford Diffraction, 2015). The structures were solved by intrinsic phasing (SHEXT) and refined by full-matrix least-squares calculations based on F² using the SHELXTL-2014 software package. 71,72 All non-hydrogen atoms were refined anisotropically. The disordered solvent in the structures was removed using the PLATON SQUEEZE program. 73 Crystallographic details for complexes 1–5 are summarized in Table 1.

Theoretical calculations. Ground-state structures of the five complexes were optimized in the acetonitrile solvent using DFT. The solvent was simulated using the PCM. In our previous report on HL-related lanthanide complexes, the CAM-B3LYP functional combined with default MWD28 specified for the SDD [Stuttgart Dresden triple zeta ECPs] basis set was found to correlate well with the experimental absorption spectra. 35 In the present study, the SDD basis set was again selected, and both the B3LYP and CAM-B3LYP functionals were used to model the electronic structures of complexes. However, the B3LYP functional was found to yield results more consistent with the observed properties of the complexes. Therefore, the B3LYP functional was used, the 6–31g basis set was selected for elements C, H, O, N, S, and F, and relativistic ECP and segmented basis sets were used for lanthanide ions. Optimized structures were verified by frequency calculations to check that the energy minimum was reached. The optimized ground-state structure was then used to calculate the singlet and triplet excitation energies of the five complexes, and their electronic spectra were calculated using TD–DFT. The G16 package was used for all calculations. A free GaussSum program was selected to analyze the molecular orbitals. 74

ASSOCIATED CONTENT

Supporting Information
The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acsomega.1c05557.

Selected bond lengths and angles for complexes 1–5; selected bond lengths and angles for complexes 1–5 optimized by DFT method; crystal structure and coordination polyhedron geometry of complexes 1, 2, and 3; experimental and simulated X-ray powder diffraction patterns of complexes 1–5; TGA curves of complexes 1–5; UV-Vis spectral changes of complexes 1, 2, 4, and 5 in acetonitrile solutions upon irradiation and recoverable irradiation as a function of time; CIE color coordinates of complex 3; luminescence decay curves of complex 3 in an acetonitrile solution and in the solid state; cycle number of the maximum luminescence intensity of complex 3 modulated by irradiation of UV light; phosphorescence spectra of Htfd, Htta, and their Gd complexes in acetonitrile solutions; ESI mass spectra of complexes 1–5 in methanol solution; 1H NMR spectra of complexes 1 and 2 in DMSO-d₆ and IR spectra of complexes 1–5 and HL in KBr pellets (PDF) CCDC 2111389–2111393 contain the supplementary crystallographic data for this paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk/data_request/cif, or by emailing data_request@ccdc.cam.ac.uk for ESI or CIF.

AUTHOR INFORMATION

Corresponding Author
Li-Rong Lin—Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China; orcid.org/0000-0002-2521-3809; Email: linlr@xmu.edu.cn

Authors
Han Xu—Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
Yu Tan—Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
Ziting Hou—Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
Caixe Fu—Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China

Complete contact information is available at: https://pubs.acs.org/10.1021/acsomega.1c05557

Author Contributions
†H.X. and Y.T. contributed equally to this work.

Notes
The authors declare no competing financial interest.

ACKNOWLEDGMENTS

This study was supported by the National Natural Science Foundation of China (no. 21271150). We thank Simon Partridge, PhD, from Liwen Bianji (Edanz) for editing the English text of this manuscript.

REFERENCES

(1) Dattler, D.; FukS, G.; Heiser, J.; Moulin, E.; Perrot, A.; Yao, X.; Giuseppe, N. Design of Collective Motions from Synthetic Molecular Switches, Rotors, and Motors. Chem. Rev. 2020, 120, 310–433.
(2) Li, J.; Bisoiy, H. K.; Lin, S.; Guo, J.; Li, Q.; L.-2-Dithienyldicyanoethene-Based, Visible-Light-Driven, Chiral Fluorescent Molecular Switch: Rewritable Multimodal Photonic Devices. Angew. Chem. Int. Ed. 2019, 58, 16052−16056.

(3) Martynov, A. G.; Safonova, E. A.; Tsivadze, A. Y.; Gorbunova, Y. G. Functional Molecular Switches Involving Tetrpyrrolic Macrocycles. Coord. Chem. Rev. 2019, 387, 325−347.

(4) Suda, M.; Thathong, Y.; Promarak, V.; Kojima, H.; Nakamura, M.; Shiraogawa, T.; Ehara, M.; Yamamoto, H. M. Light-driven molecular switch for reconfigurable spin filters. Nat. Commun. 2019, 10, 245−251.

(5) Wang, H.; Bisoiy, H. K.; Urbas, A. M.; Bunning, T. J.; Li, Q. Reversible Circularly Polarized Reflection in a Self-Organized Helical Superstructure Enabled by a Visible-Light-Driven Axially Chiral Molecular Switch. J. Am. Chem. Soc. 2019, 141, 8078−8082.

(6) Zhang, Y.; Zhou, Y.; Gao, T.; Yan, P.; Li, H. Metal-directed synthesis of quadruple-stranded helical Eu(iii) molecular switch: a significant improvement in photocyclization quantum yield. Chem. Commun. 2020, 56, 13213−13216.

(7) Devi, R.; Rajendran, M.; Singh, K.; Pal, R.; Vaidyanathan, S. Smart Luminescent Molecular Europium Complexes and Their Versatile Applications. J. Mater. Chem. C 2021, 9, 6618−6633.

(8) Boddula, R.; Tagare, J.; Singh, K.; Vaidyanathan, S. White Light-Emissive Europium Complexes and Their Versatile Applications. Mater. Chem. Front. 2021, 5, 3159−3175.

(9) Devi, R.; Vaidyanathan, S. Narrow Band Red Emitting Europium Complexes and Their Application in Smart White LEDs and Vapoluminescence Sensors. Dalton Trans. 2020, 49, 6205−6219.

(10) Ma, L.; Li, C.; Yan, Q.; Wang, S.; Miao, W.; Cao, D. Unsymmetrical photochromic bithienylethenethene tetraphenylethenene molecular switches: Synthesis, aggregation-induced emission and information storage. Chin. Chem. Lett. 2020, 31, 361−364.

(11) Areephong, J.; Browne, W. R.; Katsonis, N.; Feringa, B. L. Photo- and electro-chromism of diarylethene modified ITO electrodes - towards molecular based read-write-erase information storage. Chem. Commun. 2006, 3930−3932.

(12) Gao, Z.; Han, Y.; Wang, F. Cooperative supramolecular polymers with anthracene, endoperoxide photo-switching for fluorescent anti-counterfeiting. Nat. Commun. 2018, 9, 3977−3985.

(13) Zhang, Z.; Ma, N.; Yao, S.; Han, W.; Li, X.; Chang, H.; Wang, Y.-Y. Transparent and Hazy EuxTb1-x-Nanopaper with Color-Tuning, Photo-Switching, and White Light-Emitting Properties for Anti-counterfeiting and Light-Softened WLEDs. ACS Sustain. Chem. Eng. 2021, 9, 5827−5837.

(14) Yan, D.; Wang, Z.; Cheng, P.; Chen, Y.; Zhang, Z. Rational Fabrication of Crystalline Smart Materials for Rapid Detection and Efficient Removal of Ozone. Angew. Chem., Int. Ed. 2021, 60, 6055−6060.

(15) García-Calvo, J.; Vallejos, S.; García, F. C.; Rojo, J.; García, J. M.; Torroba, T. A smart material for the in situ detection of mercury in fish. Chem. Commun. 2016, 52, 11915−11918.

(16) Alam, R.; Lightcap, I. V.; Karwacki, C. J.; Kamat, P. V. Sense and Shoot: Simultaneous Detection and Degradation of Low-Level Contaminants Using Graphene-Based Smart Material Assembly. ACS Nano 2014, 8, 7277−7278.

(17) Zhang, H.; Fan, T.; Chen, W.; Li, Y.; Wang, B. Recent advances of two-dimensional materials in smart drug delivery nano-systems. Bioact. Mater. 2020, 5, 1071−1086.

(18) Wang, X.; Cheng, R.; Cheng, L.; Zhong, Z. Lipoyl Ester Terminated Star PLGA as a Simple and Smart Material for Controlled Drug Delivery Application. Biomacromolecules 2018, 19, 1368−1373.

(19) Das Mahapatra, S.; Mohapatra, P. C.; Aria, A. I.; Christie, G.; Mishra, Y. K.; Hofmann, S.; Thakur, V. K. Piezoelectric Materials for Energy Harvesting and Sensing Applications: Roadmap for Future Smart Materials. Adv. Sci. 2021, 7, 25−44.

(20) Kampes, R.; Zecl, S.; Hager, M. D.; Schubert, U. S. Halogen bonding in polymer science: towards new smart materials. Chem. Sci. 2021, 12, 9275−9286.
Mechanism of Inter- and Intramolecular Iron-Catalyzed [2+2]...nology. Angew. Chem., Int. Ed. 2021, 60, 18484−18488.

(43) Ma, J.; Chen, S.; Bellotti, P.; Guo, R.; Schäfer, F.; Heusler, A.; Zhang, X.; Daniluc, C.; Brown, M. K.; Houk, K. N.; Glorius, F. Photochemical intermolecular deamortative cycloaddition of bicyclic azaranes with alkenes. Scienc 2021, 371, 1338−1345.

(44) Joannou, M. V.; Hoyt, J. M.; Chirik, P. J. Investigations into the Mechanism of Inter- and Intramolecular Iron-Catalyzed [2+2] Cycloaddition of Alkenes. J. Am. Chem. Soc. 2017, 142, 5314−5330.

(45) Taura, D.; Urushima, A.; Sugioka, Y.; Ousaka, N.; Yashima, E. Remote-controlled regio- and diastereodifferentiating photoisomerization of a dynamic helical peptide-bound 2-substituted anthracene. Chem. Commun. 2020, 56, 13433−13436.

(46) Tanabe, J.; Taura, D.; Ousaka, N.; Yashima, E. Chiral Template-Directed Regio-, Diastereo-, and Enantioselective Photoisomerization of an Anthracene Derivative Assisted by Complementary Amidinium-Carbonyl Salt Bridge Formation. J. Am. Chem. Soc. 2017, 139, 7388−7398.

(47) Maturi, M. M.; Fukushima, G.; Tanaka, K.; Kawanami, Y.; Mori, T.; Inoue, Y.; Bach, T. Enantioslective [4+4] photodimerization of anthracene-2,6-dicarboxylic acid mediated by a C-2-symmetric chiral template. Chem. Commun. 2016, 52, 1032−1035.

(48) Manchester, J.; Bassani, D. M.; Duprey, J.-L. H. A.; Giordano, L.; Vyle, J. S.; Zhao, Z.-y.; Tucker, J. H. Photocontrolled Binding and Binding-Controlled Photochromism within Anthracene-Modified DNA. J. Am. Chem. Soc. 2012, 134, 10791−10794.

(49) Irie, M. Photochromism: Memories and switches - Introduction. Chem. Rev. 2000, 100, 1683.

(50) Donthamsetti, P. C.; Broichhagen, J.; Vyklicky, V.; Stanley, C.; Fu, Z.; Visel, M.; Levit, J. L.; Javich, J. A.; Trauner, D.; Isaccoff, E. Y. Genetically Targeted Optical Control of an Endogenous G Protein-Coupled Receptor. J. Am. Chem. Soc. 2019, 141, 11522−11530.

(51) Gascón-Moya, M.; Pajon, M.; Izquierdo-Serra, M.; Pottolo, S.; Cabré, H.; Hernandez, J.; Alibés, R.; Gorostiza, P.; Busqué, F. An Optimized Glutamate Receptor Photoswitch with Sensitized Azobenzene Isomerization. J. Org. Chem. 2015, 80, 9915−9925.

(52) Goudet, C.; Rovira, X.; Llebaria, A. Shedding light on metabotropic glutamate receptors using optogenetics and photopharmacology. Curr. Opin. Pharmacol. 2018, 38, 8−15.

(53) Herrera-Arozamena, C.; Estrada-Vallen, M.; Martí-Mari, O.; Pérez, C.; de la Fuente Revenga, M.; Villalba-Galea, C. A.; Rodríguez-Franco, M. I. Optical control of muscular nicotinic channels with azocuroniums, photoswitchable azobenzene bearing two N-methyl-N-carbocyclic quaternary ammonium groups. Eur. J. Med. Chem. 2020, 200, 112403.

(54) Hüll, K.; Morstein, J.; Trauner, D. In Vivo Photopharmacology. Chem. Rev. 2018, 118, 10710−10747.

(55) Yamauchi, M.; Yamamoto, S.; Masuo, S. A Highly Ordered Quantum Dot Supramolecular Assembly Exhibiting Photocinduced Emission Enhancement. Angew. Chem., Int. Ed. 2021, 60, 6473−6479.

(56) Zhang, M.; Yan, X.; Huang, F.; Niu, Z.; Gibson, H. W. Stimuli-Responsive Host-Guest Systems Based on the Recognition of Cryptands by Organic Guests. Accounts Chem. Res. 2014, 47, 1995−2005.

(57) Lin, L.-R.; Wang, X.; Wei, G.-N.; Tang, H.-H.; Zhang, H.; Ma, L.-H. Azobenzene-derived tris-beta-diketone lanthanide complexes: reversible trans-to-cis photoisomerization in solution and solid state. Dalton Trans. 2016, 45, 14954−14964.

(58) Wang, Y.-G.; Li, Y.-Q.; Tang, H.-H.; Lin, L.-R.; Ma, L.-H. Near-Infrared Photoluminescence and Reversible Trans-to-Cis Photoisomerization of Mononuclear and Binuclear Ytterbium(III) Complexes Functionalized by Azobenzene Groups. ACS Omega 2018, 3, 5480−5490.

(59) Singh, K.; Boddula, R.; Vaidyathan, S. Versatile Luminescent Europium(III)-beta-Diketone-imidazo-bipyririd Complexes Intended for White LEDs: A Detailed Photophysical and Theoretical Study. Inorg. Chem. 2017, 56, 9376−9390.

(60) Elsève, S. V.; Bünzli, J.-C. G. Lanthanide luminescence for functional materials and bio-sciences. Chem. Soc. Rev. 2010, 39, 189−227.

(61) Zhang, H.; Li, N.; Tian, C.; Liu, T.; Du, F.; Lin, P.; Li, Z.; Du, S. Unusual High Thermal Stability within a Series of Novel Lanthanide Ttb Frameworks: Synthesis, Structure, and Properties. (Ttb=4 ′,4- ’′-Triazine-2,4,6-Triyl-Tribenzoate). Cryst. Growth Des. 2012, 12, 670−678.

(62) Akhtar, M. N.; Chen, Y.-C.; AlDamen, M. A.; Tong, M.-L. 3d Oxalato-Bridged Lanthanide(iii) Mofs with Magnetcatorial, Magnetic and Photoluminescence Properties. Dalton Trans. 2017, 46, 116−124.

(63) Zanoni, K. P. S.; Murakami Iha, N. Y. Reversible Trans Reversible Arrow Cis Photosomomerizations of [Re(CO)(PH)2(Phen)- (Spyccn)] (+) Towards Molecular Machines. Dalton Trans. 2017, 46, 9951−9958.

(64) Amaral, R. C.; Matos, L. S.; Zanoni, K. P. S.; Iha, N. Y. M. Photoresponsive Molecular Motion of Spyccn Coordinated to Fac-[Re(CO)(3)(Nn)](+)+ Complexes. J. Phys. Chem. A 2018, 122, 6071−6080.

(65) Werts, M. H. V.; Jukes, R. T. F.; Verhoeven, J. W. The Emission Spectrum and the Radiative Lifetime of Eu3+ in Luminescent Lanthanide Complexes. Phys. Chem. Chem. Phys. 2002, 4, 1542−1548.

(66) He, H.; Zhu, X.; Hou, A.; Guo, J.; Wong, W.-K.; Wong, W.-Y.; Li, K.-F.; Cheah, K.-W. Reactivity of Aqua Coordinated Monoporphyrinate Lanthanide Complexes: Synthetic, Structural and Photo-luminescent Studies of Lanthanide Porphyrin Dimer. Dalton Trans. 2004, 23, 4064−4073.

(67) Klink, S. I.; Hebbink, G. A.; Grace, L.; Van Veghel, F. C. J. M.; Reinholdt, D. N.; Slooff, L. H.; Polman, A.; Hofstraat, J. W. Sensitized near-Infrared Luminescence from Polydentate Triphenylene-Functionalized Nd3+,Yb3+, and Er3+ Complexes. J. Appl. Phys. 1999, 86, 1181−1185.

(68) Khan, L. U.; Brito, H. F.; Hölsä, J.; Pirotta, K. R.; Muraca, D.; Felinto, M. C. F. C.; Teotonio, E. E. S.; Malta, O. L. Red-Green Emitting and Superparamagnetic Nanomarkers Containing Fe3O4 Functionalized with Calixarene and Rare Earth Complexes. Inorg. Chem. 2014, 53, 12902−12910.

(69) Gavriluta, A.; Fix, T.; Nonat, A.; Slauoi, A.; Guillemeoles, J.-F.; Charbonnière, L. J. Tuning the Chemical Properties of Europium Complexes as Downshifting Agents for Copper Indium Gallium Selenide Solar Cells. J. Mat. Chem. A 2017, 5, 14031−14040.

(70) Brouwer, A. M. Standards for Photoluminescence Quantum Yield Measurements in Solution (Iupac Technical Report). Pure Appl. Chem. 2011, 83, 2213−2228.

(71) Sheldrick, G. M. Sheld - Integrated Space-Group and Crystal-Structure Determination. Acta Crystallogr., Sect. A: Found. Adv. 2015, 71, 3−8.

(72) Sheldrick, G. M. Crystal Structure Refinement with Sheld. Acta Crystallogr., Sect. C: Struct. Chem. 2015, 71, 3−8.

(73) Spek, A. L. Platon Squeeze: A Tool for the Calculation of the Disordered Solvent Contribution to the Calculated Structure Factors. Acta Crystallogr., Sect. C: Struct. Chem. 2015, 71, 9−18.

(74) O’boyle, N. M.; Tenderholt, A. L.; Langner, K. M. cclib: A library for package-independent computational chemistry algorithms. J. Comput. Chem. 2008, 29, 839−845.