Role of destination smartness in shaping tourist satisfaction: A SEM based on technological attributes in Sri Lanka

J P R C Ranasinghe1, C P Danthanarayana2, R A A K Ranaweera3 and A A Idroos4

1 Uva Wellassa University of Sri Lanka, Badulla, Sri Lanka
2 University College of Matara, Matara, Sri Lanka
3 Uva Wellassa University of Sri Lanka, Badulla, Sri Lanka
4 Uva Wellassa University of Sri Lanka, Badulla, Sri Lanka

Corresponding author’s e-mail: ruwan@uwu.ac.lk

Abstract. The widespread sprout of mobile technology, specially the smartphone, has further transformed the tourism experience and empowered today's travellers by bringing together information search, communication, entertainment, social networking and mobility-related functionalities to the fingertips of on-the-go travellers & it provide quick response & information widely dispersed. Smart tourism has become a modern trend in tourism industry. It is one of the critical researchable area to search the potentiality of Sri Lanka as a smart tourist destination. The main objective is to identify smart features and the degree of smartness of Sri Lanka as a tourist destination from the perspective of tourists. One thousand fifty two tourists from Anuradhapura, Polonnaruwa, Sigiriya, Kandy, Nuwaraeliya, Ella, Galle, Matara, Kaluthara and Colombo districts are selected to collect data through a structured questionnaire. To identify the destination smartness researcher has been conducted multiple mediator analysis. Also structural equation modelling (SEM) has conducted by using smartPLS software. Results revealed that both mediators have partial mediation impact between the relationship of smart tourism attributes and travel experience satisfaction. Thus, the results could encourage the formation of Smart Tourism Destinations. With technology being embedded within the destinations environment, it can enrich tourist experiences and enhance destinations competitiveness. Tourism planners and managers will benefit from a better understanding of the integral elements of smart tourism destinations and it will support their efforts in developing competitiveness for destinations of the country.

1. Introduction
Tourism is an excellent strategy for kick-starting or boosting economic development in both developing and developed countries, contributed $8.9 trillion to the global economy in 2019, and constitutes 10.3% of global GDP [1]. Tourism is a major industry that contributes to the economic and social development of Sri Lanka by way of foreign exchange earnings, employment generation, income creation and generation of government revenue. The government of Sri Lanka has recently informed that it is looking at revenue from tourism in excess of $ 5.9 billion for 2018 end and $ 6.5 billion for 2019 end and a target of $ 7 billion for 2020 [2].

While the importance of information communication technology (ICT) to travel and tourism had been long recognized even before the commercialization of the internet [3]. ICT has never been so tightly knit in to the fashion of the travel experience and the management of the tourism product than today...
In recent years, we have observed immense growth of search engines, new distribution channels, virtual tourism communities and numerous social media platforms that are essential for travelers to make smarter decisions in order to develop the destination smartness of the country [5]. The widespread sprout of mobile technology, especially the smartphone, has further transformed the tourism experience and empowered today's travelers by bringing together information search, communication, entertainment, social networking and mobility-related functionalities to the fingertips of on-the-go travelers & it provide quick response & information widely dispersed [6].

The new era of ICT has also opened new opportunities and new tools for the tourism industry. Nowadays, tourism destinations face a set of new challenges arising from changes in both consumers and the environment as influenced by the emerging technologies & sometimes it brings unnecessary troubles to the destination. In order to deal with these challenges, first destinations have to recognize the kind of changes that occurred then proactively respond [7]. From a tourism perspective, ICT could contribute in terms of generating value-added experiences for tourists, while also improving efficiency and supporting process automation for the related organizations [8].

Smart tourism is the extensive tour information service received by tourists during a touring process. Tour information service is the integration of the common attributes of smart tourism. However, not all of the information service falls into the scope of smart tourism. Only the ubiquitous tour information service, provided to individual tourists through initiatives based on the particular requirements of those individuals, can be referred to as smart tourism.

In this study, to identify the destination smartness researcher has been identified the potentiality of Sri Lanka as smart tourism destination based on the gathered data. The main objective is to identify smart features and the contribution of these attributes on smart tourism exploration, smart tourism exploitation and travel experience satisfaction in their trips. Also it will identify the degree of smartness of Sri Lanka as a tourist destination from the perspective of tourists. With technology being embedded within the destinations environment, it can enrich tourist experiences and enhance destinations competitiveness. While majorities of discussion present only regarding smart tourism, only a few researchers have tackled the scale to meet the destination Smartness. This paper seeks to fill the research gap by developing a scientifically accepted scale to identify potentiality to meet tourist destination smartness in Sri Lanka.

Sri Lanka is the idle country that is full of plenty of natural attractions therefore embedded with the new technology & new platforms make the country gain a competitive advantage from other countries. Since with the technology now world performs far better than before. Smart tourism provides & gather data with technological advancement. Here researcher gathered data from tourists from Anuradhapura, Polonnaruwa, Kandy, Nuwaraeliya, Ella, Galle, Kaluthara and Colombo districts of the island in order to meet the tourist destination smartness.

2. Literature review

2.1. Smart tourism destination

In a smart tourist destination, co-creation of tourism experience requires not only the experience of customization by visitors, but also, more significantly, the participation of destination marketing organizations and other tourists "experience sharing" [9]. The construction of a smart tourism platform could give the destination a competitive edge. Today, the competitive advantage of destinations comes not only from their resource endowment, but also from their managerial efficiency and ability to allocate optimal resources, which can lead to truly sustainable development of tourism [10].

2.2. Smart information system

An important component of a smart destination is the End-User Internet Service System, which refers to the cloud service and the Internet of Things applications and equipment support at different end-user levels [11]. Smart tourism is an application of networking and smart data mining technology applied to tourism experiences, industry development and administrative management through the systematic integration of each, thus continuing to develop and interact with tourism and information resources. As a result, it is a new form of business facing the future by combining modern information
technology with tourism services, tourism management and tourism marketing. By taking the interactive experiences of tourists as a core element, tourism resources and information can be systematically integrated, developed and better used in a new phase to serve the public, businesses and government [12].

2.3. **Intelligent tourism management**
Intelligent tourism represents technologies such as the Internet of Things, Cloud Computing, Internet and Intelligent Data Mining applied to the tourism industry. It integrates and operates tourism physical and information resources to improve tourism services, improve tourism experience, innovate tourism management and enhance the competitiveness of tourism enterprises [13]. Intelligent tourism has a significant impact on industrial transformation and is proposing counter-measures for industrial transformation [14]. The behaviors of tourists become more autonomous and individual as tourists are able to obtain diverse and general information in an intelligent tourism age [6].

2.4. **E-commerce systems**
Tourism is a business based on information; the product is a good trust a prior detailed assessment of its quality is impossible. In order to consume the product tourists must leave their daily environment only an approximate image of the brand is available at the time of decision-making, based on information obtained from multiple channels such as advertising, brochures, word-of-mouth, or the Internet. Tourism products require information collection on both the consumer and supply sides and thus involve the high cost of searching for information. Such informative market imperfections lead to comparatively long information and value chains being established [15].

2.5. **Virtual tourist attractions**
Virtual experience has started to play an important role in the tourism industry's marketing and promotion. Tourism-related services have emerged as a leading class of products to be marketed and sold via the Internet to consumer markets [16]. Portable wireless access is a promising addition to WWW and traditional electronic commerce. Handheld devices provide travelers with convenience, portable access and a large amount of information [17].

2.6. **Smart tourism technology attributes (STTA)**
STTA can be defined across four key attributes informativeness, accessibility, interactivity, and personalization. Those can improve technology usability and perceived usefulness. According to the previous literature, it is highlighted that informativeness is a combination of the quality of information and information trust as provided by online tourism information sources; accessibility is the degree to which travelers can easily access and use online tourism information sources. Interactivity facilitates travelers’ immediate actions when using STTA through real-time feedback and active communications. Finally, personalization represents the ability of a traveler to obtain specific information to suit his/her personal trip planning needs [18]. Travelers are more likely to use STTA that permit personalized searches (for instance, a hotel booking site that not only accept price ranges, dates, and locations but also nearby landmarks, service facilities, and types of fellow travelers as search variables) to look for the best options and booking [18].

H1 – STT are positively associated with the TES

2.7. **Smart tourism exploration (STexplo) and exploitation (STexploi)**
Exploitation refers to actions that maximizes performance in the current activity while exploration involves a defection from the current task and a check for alternatives [19]. The adaptation in the information systems relates to the execution of procedures and current knowledge in the process of exploitation. Moreover adaptation in the exploration could be explained as experimenting and identifying novel and alternative uses of existing systems. In addition the researcher has found out that smartphone users have positive correlation with competence and perceived usefulness with exploitation and exploration [20]. Here researcher used two mediator variables as Smart Tourism...
Exploration and Smart Tourism Exploitation. It can be argued that STT for planning a trip as a combination of exploration and sexploitation use.

H2 – STT is positively associated with STexplo
H3 – STexplo is positively associated with TES
H5 - STT is positively associated with STexploi
H6 - STexploi is positively associated with TES

2.8. Travel experience satisfaction (TES)
STT characteristics like information quality, accessibility, interactivity, source and credibility have a positive influence on travel decision support satisfaction [18]. Smart tourism represents a new path for the Chinese tourism industry, with a considerable effect on tourist attractions, companies and tourists themselves. Smart tourism is best placed to fulfil the needs of tourists for customized tourism while achieving successful sharing and efficient use of tourism resources [21]. Explorative use has a significant impact on overall travel experience satisfaction, and exploitative use specifically improves transaction satisfaction [22].

The significance of this research reflects on the industry as well as academic; starting from the industry perspective, it is essential to draw attention to the gaining ground of smartness development, especially within destinations. This growing trend is currently and will exponentially affect the sector in the near future. However, there is not enough publications to cover this issue as most of the literatures are focusing on the development of smart city.

In the context of the growing tendency toward making destinations smarter, tourism planners and managers will benefit from a better understanding of the integral elements of smart tourism destinations and it will support their efforts in developing competitiveness for destinations of the country. This study is contributing to identify smart tourism technological features that can be developed at the destination as well as the role of exploring alternatives and maximizing the performance with current practices when satisfying travellers in the destination. In addition, scholarly researchers will find value in understanding the casual, contextual, and intervening conditions required to develop sustainable and smart destinations & it help to develop new research areas also. This research can support the development of implementation policies regarding smart tourism destinations in the country.

![Proposed conceptual framework](image-url)
3. Research methodology

3.1. Population and sample
The population of this study is all the tourists who are visiting Sri Lanka and the sample is 1200 tourists from Anuradhapura, Polonnaruwa, Sigiriya, Kandy, Nuwaraeliya, Ella, Galle, Matara, Kaluthara and Colombo districts. Accidental sampling technique used to draw the sample. In this research mentioned areas are selected to cover most of the tourist destinations within Sri Lanka. Therefore it can generalize the results to the whole country. One thousand two hundred respondents handed over with filled questionnaires and after initial screening, from these questionnaires one thousand fifty two were completed and filled. Therefore, the useable response for this study was 87.6%.

3.2. Data collection method and instrument
A self-administrated questionnaire is completed to collect primary data and researcher used personal visits to the destinations to collect data from the respondents. Purpose-trained enumerators were employed in collecting data through self-administrated questionnaire. The questionnaire consisted of 35 items drawn through rigorous analysis of literature. All variables are measured at a five-point Likert scale from “1” “strongly disagree” to “5” “strongly agree”. STTA considered as an independent variable, Smart tourism exploitation and smart tourism exploration considered as mediator variables and travel experience satisfaction considered as the dependent variable. Gender, age category, education level, occupation, days of trip planning, number of trips per year and years of STT used has measured as demographic factors of the respondents. Survey instrument has pilot tested by using 85 respondents. The final survey has conducted and collected primary data within the past two years of 2018 and 2019 by getting the assistance of tourism undergraduates.

3.3. Data analysis
Structural Equation Modelling was used to test the proposed theoretical model and SmartPLS 3 software package was used to analyze collected data and multiple mediator analysis. Partial least squares (PLS) path modelling [23] was used to analyze the data. Descriptive statistics was applied to analyze demographic factors of respondents. Compared with other statistical tools PLS handles smaller samples and it is suitable for theory building, theory extension and predictive applications with less restrictive on normality assumptions of data distribution [23].

3.3.1. Partial least squares regression
To validate the hypotheses of this study, partial least squares (PLS) regression [24]. Is used in this research. According to the previous studies, [25] PLS-SEM for mediation is not making assumptions about the sample distribution and all the relationships in the structural model in mediation can be calculated simultaneously by reducing the biasness. Therefore it is a popular multivariate technique used to analyze complex research models.

4. Data Analysis and interpretation

Demographic profile of respondents (n= 1052)

Variable	Group	Count	%	Variable	Group	Count	%
Gender	Male	653	62.07	Days of Trip Planning	Less than one day	110	10.45
	Female	399	37.93		2-3 days	339	32.22
Age	Below 20 years	43	4.09		4-7 days	282	26.81
	21-30 years	422	40.11		8-14 days	164	15.59
	31-40 years	319	30.32		15-30 days	102	9.7
4.1. Evaluation of measurement model

The robustness of reflective measurement models has measured. The reliability test is used to measure the consistency of the variables and convergent validity is used to measure the validity of the variables. As recommended by past researches [25] for the PLS measurement model, all outer loading values (OLVs) are more than 0.5 and significant at 0.05 significant statistical level. Therefore all the factors have considered to analyze the research model.

According to the researchers [26], Composite reliability (CR) of all constructs should be 0.7 and in the results, all the CR values are expecting the minimum level. Cronbach’s alpha of all items is meeting the minimum threshold level of 0.70 [27]. Therefore all the constructs can be considered as reliable to use to analyze the research model. To measure the convergent validity of the constructs, researcher used average variance extracted (AVE) and based on past researchers [24], all the AVE values are meeting the minimum threshold level of 0.5. All the results of reliability and validity tests are mentioned in the below Table 2.

Table 2. Measurement model evaluation - reliability and validity.

Construct	Item	OLVs	CR	Alpha	AVE	R²
STTA	acce1	0.565	0.940	0.930	0.570	
	acce2	0.726				
	acce3	0.610				
	info1	0.815				
	info2	0.713				
	info3	0.758				
	inte1	0.888				
	inte2	0.806				
	inte3	0.828				
	pers1	0.755				
	pers2	0.782				
	pers3	0.753				
Smart Tourism Exploitation	STexpli1	0.904	0.981	0.978	0.848	0.578
	STexpli2	0.932				
	STexpli3	0.913				
	STexpli4	0.905				
	STexpli5	0.930				
	STexpli6	0.922				
	STexpli7	0.923				
	STexpli8	0.937				
	STexpli9	0.922				
Smart Tourism	STexpli1	0.931	0.976	0.971	0.853	0.563
Based on the Fornell-Lacker criterion, the discriminant validity of all constructs is measured in the model. As shown in Table 3, all the discriminant validity values (square root of AVE) are higher than the correlation values of all constructs. Therefore it is following the criteria recommended by past researchers [27].

Table 3. Discriminant validity.

	STT	STexplo	STexploi	TES
STT	0.755			
STexplo	0.750	0.923		
STexplo	0.760	0.966	0.921	
TES	0.692	0.690	0.753	0.834

Source: SmartPLS output from field information.

4.2. Evaluation of structural model and hypothesis testing

Coefficient of determination values (R^2) of endogenous latent variables are assessed and as recommended by the past researcher, Hair et al (2013, p-186), R^2 values of 0.25, 0.50 and 0.75 representing weak, moderate and substantial predictive power of endogenous latent constructs respectively. By referring to Table 2 it can identify that the model explains 57.8% of the variance of smart tourism exploitation, 56.3% variance of smart tourism exploration, and 62.6% of the variance of travel experience satisfaction (Figure 1).
One thousand fifty two cases have been analysed by generating 5000 sub samples and is implemented PLS bootstrapping procedure through it. Table 4 is representing the hypothesized relationships of each variable in the conceptual model by using path coefficient statistics and all the results were statistically significant and supported with PLS outcomes. Thus, the H1, H2, H3, H5 and H6 of this study are supported. All variables are statistically significant at the 0.05% level.

Hypothesis	Path Coefficient	Result
H1 STT -> TES	0.306	Supported
H2 STT -> STexplo	0.750	Supported
H5 STT -> STexplo	0.760	Supported
H3 STexplo -> TES	-0.616	Not Supported
H6 STexplo -> TES	1.116	Supported

Source: SmartPLS output from field information.

To verify the mediating effect of two mediators, smartPLS bootstrapping technique has used and the results are shown in Table 5. In Table 5 it is showing the indirect and total mediating effects of variables. Since the direct effect between STT and TES (c’) is 0.306, and statistically significant, there is no full mediation impact from the mediators. When considering specific indirect effect (H4) of STT and TES through STexplo, it is showing the negative effect (-0.462) (a1*b1) and statistically significant. The negative value indicates the presence of competitive mediation [28]. This indicates that the portion of the effect of STT on TES mediated through STexplo while STT still explains a portion of TES that is independent of STexplo.

Figure 2. Estimated structural model.
When considering specific indirect effect (H7) of STT and TES through STexplo, it is showing the positive effect (0.848) \((a2*b2)\) and statistically significant. In here direct effect, \(c'\) and indirect effect is in the same direction and it shows complementary partial mediation \([29]\). It indicates that a portion of the effect of STT on TES is mediated through STexplo, while STT still explains a portion of TES that is independent of STexplo. Therefore, it can consider that, both mediators have partial mediation impacts on the relationship between independent and dependent variables.

Table 5. Indirect and Total Effect

Hypothesis	Indirect Effect	Total Effect	Result
H4 STT -> STexplo -> TES	-0.462	0.386	Supported
H7 STT -> STexplo -> TES	0.848	0.692	Supported
H8 STT -> STexplo + STexplo -> TES	0.386	0.692	Supported

Source: SmartPLS output from field information.

\[
\text{Total effect, } c = c' + (a1 \times b1) + (a2 \times b2)
\]

\[
= 0.306 + (0.75\times 0.616) + (0.76 \times 1.116)
\]

\[
= 0.692
\]

Based on the results in Table 5, it can identify that there is 0.386 total indirect effect of STT and TES with the mediation effect of STexplo and STexplo. The total effect of STT on TES with the mediation effect of STexplo and STexplo is 0.692. All the results are statistically significant at 0.05 significant level \([25]\). If the two parameters of total effect \((c)\) and indirect effect \((c')\) show the same sign, a \(c'\) (0.306) is closer to zero than \(c\) (0.692), indicates overall mediation or positive cofounding. Therefore as an overall effect of STexplo and STexplo between the relationship of STT and TES is representing a partial mediation impact.

5. Discussion and conclusion

It is important to understand how travelers are using STTA when they are planning their tours and frequency of their usage. With the results of the study, it is found that STTs are directly associated with TES \((\beta = 0.423, p<0.05)\) and by using STTs when planning a trip, it will cause to travelers satisfaction. Based on findings in the study, explorative use of STT is having strongly related to TES \((\beta = 0.526, p<0.05)\). It can identify that, STT allows travelers to explore more alternatives when they are planning their trip than the traditional information sources such as brochures and travel agents. STTs are frequently updating and easy to access than these traditional sources. It is supporting on travel idea formation and information search on their travel planning. Using STT is very useful to find the right destination, places to visit, using transportation and accommodation modes and etc.. Therefore that directly relate to TES. The researcher found that exploitative use also as an important determinant of TES \((\beta = 0.572, p<0.05)\), since it is directly related to analysis and evaluation of travel alternatives, travel products and services and bookings which directly affects to TES. These results are in line with the results of previous research \([22]\).

When analyzing the structural model, it was identified that these two mediator variables were having mediator impacts on the relationship between STTs and TES. As discussed above it can be concluded that STTAs attributes are having an impact on travel experience satisfaction since it saves money, time and effort of planning and engaging in tours. Moreover, STexplo and STexplo having partial mediation between the STT and TES. Results are confirming past researches’ \([22]\) result. However it stated that the mediating role of these mediators is a full mediation between STT and TEs.

There are few empirical researches done about explorative and exploitative use of information for tourism setting. However this study examines the impact of STTA on travel experience satisfaction. Based on the results it can identify the importance of exploration and exploitation to make travelers satisfy. Smart tourism exploitative is using at product comparison and bookings as well as smart
tourism exploration is using to search for information, share them and discovering unique travel opportunities.

As managerial implications, with the smart features all the location-based services have changed in the travel and tourism industry. People can virtually visit the places and engage in activities with their smartphones before they visit the place. STTs play a significant role in tourism and marketing. Managers required to find novel ways to make their products and destination more competitive. Also, smart tourism information sources must be informative, accessible, interactive and flexible since these attributes are directed to traveller satisfaction.

Like previous research, there are also some limitations exist in this study. Although the research sample showing a good representation of travelers all over the country, findings can only generalize to those who are using STT while they are traveling. Even though this study has done throughout a period of two years, the researcher has not observed the same variables repeating within a long period as a longitudinal study. However, this will require to identify the behavior of the variables, since STTAs are rapidly changing. Future researchers can focus on that aspect as well.

However this study is contributing to identify that, there is an impact of STTAs on travel experience satisfaction. Also results conclude that there are close associations between smart tourism technological attributes, smart tourism exploration, smart tourism exploitation and travel experience satisfaction. There is a potentiality of Sri Lanka to develop as smart tourism destination since there is a demand and high usage of identified STTA among tourists when they are planning and involving their trip to Sri Lanka.

6. References

[1] World Travel & Tourism Council (WTTC) 2020 Economic Impact
[2] Anon 2018 Annual Statistical Report 2018 (Colombo, Sri Lanka: Search Results Web result with site links Sri Lanka Tourism Development Authority (SLTDA))
[3] Benckendorff P, Xiang Z and Sheldon P 2019 Tourism Information Technology (Wallingford, England: CBAI)
[4] Buhalís D 2003 eTourism: Information technology for strategic tourism management (Harlow, England: Pearson)
[5] Buhalís D and Law R 2008 Progress in information technology and tourism management: 20 years on and 10 years after the Internet—The state of eTourism research Tourism Management 29 609–23
[6] Wang D, Xiang Z and Fesenmaier D R 2014 Adapting to the mobile world: A model of smartphone use Annals of Tourism Research 48 11–26
[7] Soteriades M D and Avgeli V A 2007 Promoting tourism destinations: A strategic marketing approach Tourism: An International Interdisciplinary Journal 55 335–45
[8] Xiang Z and Gretzel U 2010 Role of social media in online travel information search Tourism Management 31 179–88
[9] Chen T, Drennan J and Andrews L 2012 Experience sharing Journal of Marketing Management 28 1535–52
[10] Anon 1995 Tourism Destination Management: Issues, Analysis and Policies. Eric Laws. Routledge, 29 West 35th Street, New York, NY 10001. 1995. 208p Journal of Travel Research 34 71–71
[11] Zhao J 2018 The Hospitality and Tourism Industry in China: New Growth, Trends, and Developments (Florida, USA: CRC Press)
[12] Tang H 2012 Smart tourism and informationization China Tourism News
[13] Jiang H 2013 The Research Review of Intelligent Tourism Journal of Management and Strategy 4 65
[14] Liu X X, Yan M and Zhang J F 2012 The research on transformation and upgrading strategies of tourism industry in Xinjiang Market Forum 11 93–5
[15] Werthner H and Ricci F 2004 E-commerce and tourism Commun. ACM 47 101–5
[16] Palmer A and McCole P 2000 The role of electronic commerce in creating virtual tourism destination marketing organisations International Journal of Contemporary Hospitality Management 12 198–204
[17] Lee J kook and Mills J E 2010 Exploring Tourist Satisfaction with Mobile Experience Technology
[18] Yoo C W, Goo J, Huang C D, Nam K and Woo M 2017 Improving travel decision support satisfaction with smart tourism technologies: A framework of tourist elaboration likelihood and self-efficacy Technological Forecasting and Social Change 123 330–41
[19] Aston-Jones G and Cohen J D 2005 Adaptive gain and the role of the locus coeruleus-norepinephrine system in optimal performance J. Comp. Neurol. 493 99–110
[20] Koo C, Chung N and Kim H-W 2015 Examining explorative and exploitative uses of smartphones: a user competence perspective Information Technology & People 28 133–62
[21] Li Y, Hu C, Huang C and Duan L 2017 The concept of smart tourism in the context of tourism information services Tourism Management 58 293–300
[22] Huang C D, Goo J, Nam K and Yoo C W 2017 Smart tourism technologies in travel planning: The role of exploration and exploitation Information & Management 54 757–70
[23] Hair J F, Ringle C M and Sarstedt M 2013 Editorial - Partial Least Squares Structural Equation Modeling: Rigorous Applications, Better Results and Higher Acceptance (Rochester, NY: Social Science Research Network)
[24] Fornell C and Larcker D F 1981 Evaluating Structural Equation Models with Unobservable Variables and Measurement Error Journal of Marketing Research 18 39–50
[25] F. Hair Jr J, Sarstedt M, Hopkins L and G. Kuppelwieser V 2014 Partial least squares structural equation modeling (PLS-SEM): An emerging tool in business research European Business Review 26 106–21
[26] Sánchez-Medina A J, Romero-Quintero L and Sosa-Cabrera S 2014 Environmental Management in Small and Medium-Sized Companies: An Analysis from the Perspective of the Theory of Planned Behavior PLOS ONE 9 e88504
[27] Mihail D M and Kloutsiniotis P V 2016 The effects of high-performance work systems on hospital employees’ work-related well-being: Evidence from Greece European Management Journal 34 424–38
[28] MacKinnon D P, Krull J L and Lockwood C M 2000 Equivalence of the Mediation, Confounding and Suppression Effect Prev Sci 1 173–81
[29] Baron R M and Kenny D A 1986 The moderator-mediator variable distinction in social psychological research: conceptual, strategic, and statistical considerations J Pers Soc Psychol 51 1173–82