Inhibition of jack bean urease by amphiphilic peptides

Zafar Ali Shah¹ · Sadam Hussain¹ · Serab Khan² · Nawab Ali¹ · Samiullah Burki³ · Syed Uzair Ali Shah⁴ · Ashfaq Ahmad⁴ · Faiz -Ur-Rehman⁵ · Muhammad Nasimullah Qureshi¹ · Syed Muhammad Mukram Shah⁴ · Farzana Shaheen²

Received: 13 January 2021 / Accepted: 4 June 2021 / Published online: 15 June 2021 © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021

Abstract
In the current study, amphiphilic peptides were designed and screened against Jack bean urease by using computer aided drug discovery approach. The result showed that out of thirty-eight amphiphilic peptides 1, 3, 12, 18, 30, and 33 exhibit stronger binding affinity with the active site of the enzyme through chelation of charged amino acids with the nickel ions i.e., Ni²⁺ 841 and Ni²⁺ 842 as well as hydrophobic contacts of the nonpolar tail with the nonpolar residues in the active site. The selected amphiphilic peptides were synthesized by solid-phase peptide synthesis strategy, characterized by fast atomic bombardment mass spectroscopy (FAB-MS) and nuclear magnetic resonance spectroscopy (¹H and ¹³C-NMR) and in vitro urease inhibitory activity of amphiphilic peptides was studied. Amphiphilic peptides 12 and 33 showed excellent urease inhibitory activity, (p < 0.001) with IC₅₀ values 20.5 ± 0.01, and 28.1 ± 0.03 µM respectively, which was considerably better than thiourea used as positive control.

Graphical Abstract

Keywords Docking · Synthesis · Amphiphilic Peptides · Jack Bean Urease · Inhibition

Highlights
• Molecular docking.
• Solid-phase synthesis of amphiphilic peptides.
• FAB MS-MS and ¹H and ¹³C NMR study of amphiphilic peptides.
• Urease inhibitory activity.

Supplementary information The online version contains supplementary material available at https://doi.org/10.1007/s00044-021-02757-y.

Zafar Ali Shah zafarali@uoswabi.edu.pk
Farzana Shaheen afnan.iccs@gmail.com

¹ Department of Chemistry, University of Swabi, Swabi, Khyber Pakhtunkhwa 23430, Pakistan
² H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
³ Department of Pharmacology, Faculty of Pharmacy, Jinnah Sindh Medical University, Karachi, Pakistan
⁴ Department of Pharmacy, University of Swabi, Swabi, Khyber Pakhtunkhwa 23430, Pakistan
⁵ College of Pharmaceutical Sciences, Soochow University, Suzhou, China
Introduction

Nitrogen is essential component for the growth of pathogenic bacteria and plants, which is produced by urease enzyme from urea [1]. The pathogens in large intestine of human being and animals hydrolyze urea into ammonia and carbamate by urease enzyme, which may cause adverse effects such as infectious stones, stomach ulcer, and peptic ulcer. It also causes the pathogenesis of hepatic encephalopathy, pylonephritis hepatic coma urolithiasis, ammonia, and urinary catheter encrustation [2–4]. The presence of this enzyme is an important indicative for bacterial infections [5].

The structure of urease isolated from *Klebsiella aerogenes* was first determined in 1995. The active site of this enzyme consists of two nickel ions (Ni$^{+2}$ 841 and Ni$^{+2}$ 842) having inter atomic distance of about 3.5 Å, which are joined together by carbamylated lysine (KCX 490) and an oxygen donor. Both Ni$^{+2}$ ions also coordinated with two histidines (His 409) and a water molecule, while Ni$_3$ has an addition coordination with aspartate (Asp 494) as shown in Fig. 1 [6].

Various urease inhibitory synthetic compounds like quinolones, oxadiazole and benzimidazol, ethyl thiazolidine-4-carboxylate, and dihydro pyridone, have been reported [7–10]. Recently Svane et al. studied seventy-one commercially available compounds for their anti-ureolytic properties against both the ureolytic bacterium (*Klebsiella pneumoniae*) and purified jack bean urease. Out of which thirty compounds showed more than 25% inhibition of the ureolytic activity of *Klebsiella pneumoniae* and jack bean urease [11]. Among natural products, flavonoids and terpenoids also showed urease inhibitory activity [7]. Currently available data represents irrefutable progress in the development of drugs due to their toxicity or their instability for the treatment of infections associated with *ureolytic bacteriai*. Therefore, structural activity relationship of organic compounds with the urease enzyme of different sources is necessary to identify selective sites (allosteric and catalytic site) [12, 13].

It has been reported that compounds having amphiphilic nature showed potent activity due to strong dipole-dipole interaction of the ligands with the nickel metallocentre and polar amino acids and hydrophobic interaction with non-polar amino acids in the vicinity of active sites [14]. Amphiphilic peptides (AP) have wide range of applications i.e., translational research [15–17], cancer research [18, 19], drug and gene delivery [20–22], and nanotechnology [23].

| Table 1 Designed amphiphilic peptides (1–38) |
No.	Sequence	No.	Sequence
1	N-Dodecanoyl-Arg-Ser-Ser	20	N-Dodecanoyl-Arg-Val-Ser
2	N-Dodecanoyl-Arg-Asp-Ser	21	N-Dodecanoyl-Arg-Ala-Ser
3	N-Dodecanoyl-Arg-Thr-Ser	22	N-Dodecanoyl-His-Met-Ser
4	N-Dodecanoyl-Arg-Gln-Ser	23	N-Dodecanoyl-His-Ile-Ser
5	N-Dodecanoyl-His-Ser-Ser	24	N-Dodecanoyl-His-Val-Ser
6	N-Dodecanoyl-His-Asn-Ser	25	N-Dodecanoyl-His-Ala-Ser
7	N-Dodecanoyl-His-Thr-Ser	26	N-Dodecanoyl-Lys-Met-Ser
8	N-Dodecanoyl-His-Gln-Ser	27	N-Dodecanoyl-Lys-Ile-Ser
9	N-Dodecanoyl-Lys-Asn-Ser	28	N-Dodecanoyl-Lys-Val-Ser
10	N-Dodecanoyl-Lys-Thr-Ser	29	N-Dodecanoyl-Lys-Ala-Ser
11	N-Dodecanoyl-Lys-Gln-Ser	30	N-Dodecanoyl-Lys-Arg-Ser
12	N-Dodecanoyl-Lys-Arg-Ser	31	N-Dodecanoyl-Lys-His-Ser
13	N-Dodecanoyl-Lys-Glu-Ser	32	N-Dodecanoyl-Lys-Lys-Ser
14	N-Dodecanoyl-Lys-Asp-Ser	33	N-Dodecanoyl-Arg-Arg-Ser
15	N-Dodecanoyl-Lys-Asp-Ser	34	N-Dodecanoyl-Lys-His-Ser
16	N-Dodecanoyl-Lys-Asp-Ser	35	N-Dodecanoyl-Lys-Arg-Ser
17	N-Dodecanoyl-Lys-Asp-Ser	36	N-Dodecanoyl-Lys-His-Ser
18	N-Dodecanoyl-Lys-Asp-Ser	37	N-Dodecanoyl-Lys-His-Ser
19	N-Dodecanoyl-Lys-Asp-Ser	38	N-Dodecanoyl-Arg-Asp-Ser

| Table 2 Inhibition constant (ki) and Gibb’s free binding energy (ΔG) of amphiphilic peptides calculated through MOE |
No.	ΔG (kcal mol$^{-1}$)	ki (μM)
1	−6.31	36.12
3	−6.65	20.80
12	−7.34	5.00
18	−5.58	64.74
30	−5.12	256.60
33	−7.63	4.25

Std = Thiourea

1570 Medicinal Chemistry Research (2021) 30:1569–1576
Keeping in view the need of more potent urease inhibitors and inspired from natural biomolecules such as lipids, and proteins having wide range of applications, we first time intended amphiphilic peptides to check urease inhibition potential.

Results and discussion

Thirty-eight amphiphilic peptides were designed by selecting amino acid from each group, i.e., group 1 = (RHK), group 2 = (DE) and group 3 = (STNQ) and hydrocarbons.
The binding affinity of all amphiphilic peptides 1–38 with active site of urease were investigated through docking and it was observed that 1, 3, 18, 30 has good binding affinity with active site of enzyme, while 12 and 33 has excellent binding affinity as shown in Table 2. The high potential of 12, and 33 might be due to carboxylic and guanidino group, respectively, at the side chain of second amino acid, which chelates with nickel ions and hydrophobic interaction with nonpolar amino acids in the vicinity of active site. The molecular interaction of the peptides 1, 3, 12, 18, 30, and 33 are shown in Fig. 2.

The targeted amphiphilic peptides (Fig. 3) were synthesized by Fmoc protocol (Scheme 1). In brief, Fmoc-Serine (3 equiv.) was treated with Wang resin (2 gm) in presence of benzotriazol-1-yloxytripyrrolidinophosphonium hexafluorophosphate (PyBop) as a coupling reagent (3 equiv.) and N, N-diisopropylethylamine base (3 equiv.). In the same way, second and third amino acids were coupled. After the formation of polar head by Fmoc protection and deprotection strategy [24], peptides were further treated with decanoic acid to introduce nonpolar nature. 95% trifluoroacetic acid was used for the cleavage of amphiphilic peptides from Wang resin. Reverse-phase HPLC was used for purification of amphiphilic peptides to get 39% yield for 1, 12 and 33, while for 3, 18 and 30 yield was 56%.

The FAB MS spectra for 1, 3, 12, 18, 30, and 33 shows molecular ion [M + H]+ peak at 503.2, 517.3, 544.1, 547.3, 572.1 and 544.2, respectively. The FAB MS-MS spectra further confirmed fragmentation pattern of the peptides. The fragment ion peak at 416, 430, 457, 460, 457, and 485 in FAB MS spectra (see Supplementary Information) of amphiphilic peptides 1, 3, 12, 30 and 33 respectively showed the c1 cleavage i.e., between alpha carbon and amine groups of serine, while the peaks at 328 showed c2

Fig. 3 Structures of amphiphilic peptides (1, 3, 12, 18, 30, 33)
cleavage (between alpha carbon and amine groups of second amino acid). Similarly, the peaks at 311 in FAB MS spectra of all the amphiphilic peptides are due to the formation of b2 ion, i.e., loss of arginine + decanoic acid (Fig. 4).

The amphiphilic peptides were further characterized by 1H-NMR (400 MHz) and 13C-NMR (125 MHz, cryoprobe), by using CD3OH as solvent to record the data. The 1H-NMR spectra of amphiphilic peptides 1 showed three alpha protons in the region δ 3.90–4.50. Sixteen methylene protons of decanoic acid appeared as a multiplet at δ 1.39–2.06 and methyl proton between δ 0.90–1.15 (t). 13C-NMR data were recorded on 125 MHz (Cryoprobe) NMR machine, to obtained better 13C-NMR signals. 13C-NMR spectra of 1, 3, 12, 18, 30 and 33 showed carbonyl carbons between δ 170.0–174.0. (for detail 1H-NMR and 13C-NMR data see Supplementary Information Table 4).

Structure–activity relationships (SAR)

Structure–activity relationship (SAR) relates the chemical structure of a compound and its biological activity. In this study, inhibition of urease depends on the nature of the amphiphilic peptides. Structure displayed in Fig. 1 show that the first amino acid (L-serine) and third amino acid (L-Arginine) in all amphiphilic peptides are same, while nature of second amino acid, which played an important role in the inhibition of urease enzyme. The bioactive data presented in Table 3 showed that charged amino acid at second position i.e., L-Aspartic acid in 12 (IC50 = 20.5 ± 0.01 µM), and L-Arginine in 33 (IC50 = 28.1 ± 0.03 µM) showed good activity as compared to other amphiphilic peptides having uncharged amino acids.

Experimental

All chemicals, i.e., Wang resin Fmoc-protected L-amino acids, coupling reagents and solvents were purchased from Novabiochem, and Sigma-Aldrich. Bruker (Switzerland) 1H-NMR (400 MHz), 13C-NMR (125 MHz), and Fast atomic bombardment mass spectrometry (FAB-MS) were used for structure determination of amphiphilic peptides and purification of peptides were performed by reverse-phase recycling HPLC (Shimadzu).

Amphiphilic peptides 1–38 scan by molecular docking

Thirty eight peptides 1–38 having hydrophobic chain were docked against Jak bean urease enzyme (PDB ID: 4H9M) by using MOE software (2019.0102). The 2D structure of the peptides were generated in Chem sketch package and converted into 3D form in MOE packages. Thiourea (PubChem-2723790) was used as reference molecules for the comparative binding affinity of the peptides. Water and co-crystallized non-protein molecules were removed, from the enzyme, except the nickel ions and the ligand near nickel ions. The default parameters of the MOE package, i.e., Placement: Triangle Matcher, rescoring 1: London dG, Refinement: Forcefield, rescoring 2: GBVI/WSA, were used for docking study. For
each ligand total twenty conformations were set to generate, and the top-ranked conformations based on docking score were selected for additional analysis [25].

Urease inhibition assay

Modified Berthelot assay was used for urease activity determination [26]. Mixture of 25 μL Jack bean urease enzyme (0.015 unite), 10 μL of phosphate buffer (50 mM) having neutral pH, were incubated at 30 °C for 15 min in 96-well plates with 1, 3, 12, 18 and 33 (5 μL of 0.5 mM). 40 μL of urea (20 mM) solution was added to each well plate. Ammonia production was quantified by the reaction with phenol-hypochlorite, which produce light blue colored complex measured at 625 nm. Percent inhibitions were calculated by using the following formula.

\[
\text{Inhibition (\%)} = 100 - \left(\frac{\text{abs. of test well}}{\text{abs. of control}} \right)
\]

IC$_{50}$ values of active peptides were determined by measuring activities at further dilutions and the data was
computed by using EZ-11 Fit Enzyme software (Perrella Inc, USA).

Conclusion

In conclusion, result obtained from the docking study showed that out of thirty-eight amphiphilic peptides, only 1, 3, 12, 18, 30, and 33 have strong interaction with the active site of enzyme by chelation charged amino acids with nickel ions and hydrophobic interaction with nonpolar amino acids in the vicinity of active site. Top-ranked amphiphilic peptides confirmed from the docking study were synthesized and evaluated for urease inhibition. All synthesized amphiphilic peptides showed some degree of inhibition (20.5–76 µM), but 12 and 33 showed excellent urease inhibition activity with IC₅₀ value 20.5 ± 0.01 µM, and 28.1 ± 0.03 µM, respectively.

Results suggest the contact of hydrophilic and hydrophobic part of the amphiphilic peptides with enzyme played an important role in inhibition. These discoveries create a scaffold of effective compounds with optimized pharmacological profile for the treatment of urease related diseases. Docking and in vitro studies six amphiphilic peptides agreed with experimental results related to inhibition of urease. More work, however, is needed to establish the efficacy and safety of these peptides prior to further steps. Animal studies are also recommended to get more information about the inhibitory and cytotoxicity of these compounds.

Funding Thanks to Higher Education Commission (HEC), Pakistan, for providing SRGP project (NO: 21-1505/SRGP/R&D/HEC/2017) and 8169 /Sindh/NRPU/R&D/HEC/2017 from the Higher Education Commission, Pakistan.

Compliance with ethical standards

Conflict of interest The authors declare no competing interests.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

1. Redgrave LS, Sutton SB, Webber MA, Piddock LJ. Fluoroquinolone resistance: mechanisms, impact on bacteria, and role in evolutionary success. Trends Microbiol. 2014;22:438–45. https://doi.org/10.1016/j.tim.2014.04.007.

2. Mobley HL, Hausinger RP. Microbial ureases: significance, regulation, and molecular characterization. Microbiol Mol Biol Rev. 1989;53:85–108. https://mmbr.asm.org/content/53/1/85 https://mmbr.asm.org/content/53/1/85.

3. Karplus PA, Pearson MA, Hausinger RP. 70 years of crystalline urease: what have we learned? Acc Chem. 1997;30:330–7. https://doi.org/10.1021/ar960022j.

4. Collins CM, D’Orazio SE. Bacterial ureases: structure, regulation of expression and role in pathogenesis. Mol Microbiol. 1993;9:907–13. https://doi.org/10.1111/j.1365-2958.1993.tb01220.x.

5. Burne RA, Chen YY. Bacterial ureases in infectious diseases. Microbes Infect. 2000;2:533–42. https://doi.org/10.1016/S1286-4579(00)00312-9.

6. Benini S, Rypniewski WR, Wilson KS, Miletii S, Ciurlı S, Mangani S. A new proposal for urease mechanism based on the crystal structures of the native and inhibited enzyme from Bacillus pasteurii: why urea hydrolysis costs two nickels. Structure. 1999;7:205–16. https://doi.org/10.1016/S0969-2129(99)80026-4.

7. Arshad T, Khan KM, Rasool N, Salar U, Hussain S, Asghar H, et al. 5-Bromo-2-aryl benzimidazole derivatives as non-cytotoxic potential dual inhibitors of α-glucosidase and urease enzymes. Bioorg Chem. 2017;72:21–31. https://doi.org/10.1016/j.bioorg.2017.03.007.

8. Hanif M, Shoaib K, Saleem M, Hasan Rama N, Zaib S, Iqbal J. Synthesis, urease inhibition, antioxidant, antibacterial, and molecular docking studies of 1, 3, 4-oxadiazole derivatives. ISRN Pharmacol. 2012;2012. https://doi.org/10.5402/2012/928901.

9. Horta LP, Mota YC, Barbosa GM, Braga TC, Marrelli IE, Fátima AD, et al. Urease inhibitors of agricultural interest inspired by structures of plant phenolic aldehydes. J Braz Chem Soc. 2016;27:1512–9. https://doi.org/10.1590/0103-5053.20160208.

10. Hakimi AM, Lashgari N, Mahernia S, Ziarani GM, Armanlou M. Facile one-pot four-component synthesis of 3, 4-dihydro-2-pyridone derivatives: novel urease inhibitor scaffold. Res Pharm Sci. 2017;12:353 https://doi.org/10.4103/1735-5362.213980.

11. Svane S, Sigurdarson JJ, Finkenwirth F, Ettinger T, Karring H. Inhibition of urease activity by different compounds provides insight into the modulation and association of bacterial nickel import and ureolysis. Sci Rep. 2020;10:1–4. https://doi.org/10.1038/s41598-020-65107-9.

12. Rego YF, Queiroz MP, Brito TO, Carvalho PG, de Queiroz VT, de Fátima A, et al. A review on the development of urease inhibitors as antimicrobial agents against pathogenic bacteria. J Adv Res. 2018;13:69–100. https://doi.org/10.1016/j.jare.2018.05.003.

13. Kafarski P, Talma M. Recent advances in design of new urease inhibitors: A review. J Adv Res. 2018;13:101–12. https://doi.org/10.1016/j.jare.2018.01.007.

14. Ansari FL, Wadood A, Ullah A, Iftikhar F, Ul-Haq Z. In silico studies of urease inhibitors to explore ligand-enzyme interactions. J Enzym Inhib Med Chem. 2009;24:151–6. https://doi.org/10.1080/147563608019445598.

15. Schneider A, Garlick JA, Egles C. Self-assembling peptide nanostructures accelerate wound healing, PLoS one. 2008;3:1410 https://doi.org/10.1371/journal.pone.0001410.

16. Meng H, Chen L, Ye Z, Wang S, Zhao X. The effect of a self-assembling peptide nanofiber scaffold (peptide) when used as a wound dressing for the treatment of deep second degree burns in rats. J Biomed Mater Res B. 2009;89:379–91. https://doi.org/10.1002/jbm.b.31226.

17. Koutsopoulos SI. Self-assembly peptide nanofiber hydrogels in tissue engineering and regenerative medicine: Progress, design guidelines, and applications. J Biomed Mater Res Part A. 2016;104:1002–16. https://doi.org/10.1002/jbm.a.35638.

18. Tang C, Shao X, Sun B, Huang W, Zhao X. The effect of self-assembling peptide RADA16-I on the growth of human leukemia cells in vitro and in nude mice. Int J Mol Sci. 2009;10:2136–45. https://doi.org/10.3390/ijms10051236.

19. Mi K, Wang G, Liu Z, Feng Z, Huang B, Zhao X. Influence of a self-assembling peptide, RADA16, compared with collagen I and matrigel on the malignant phenotype of human breast cancer cells in 3D cultures and in vivo. Macromol Biosci. 2009;9:437–43. https://doi.org/10.1002/mabi.200800262.
20. Fung SY, Yang H, Chen P. Formation of colloidal suspension of hydrophobic compounds with an amphiphilic self-assembling peptide. Colloids Surf B. 2007;55:200–11. https://doi.org/10.1016/j.colsurfb.2006.12.002.
21. Wang M, Adikane HV, Duhamel J, Chen P. Protection of oligodeoxynucleotides against nuclease degradation through association with self-assembling peptides. Biomaterials. 2008;29:1099–108. https://doi.org/10.1016/j.biomaterials.2007.10.049.
22. Liu J, Zhang L, Yang Z, Zhao X. Controlled release of paclitaxel from a self-assembling peptide hydrogel formed in situ and anti-tumor study in vitro. Biomaterials 2011;6:2143 https://doi.org/10.2147/IJN.S24038.
23. Zhang H, Xin X, Sun J, Zhao L, Shen J, Song Z, et al. Self-assembled chiral helical nanofibers by amphiphilic dipeptide derived from d- or l-threonine and application as a template for the synthesis of Au and Ag nanoparticles. J Colloid Interface Sci. 2016;484:97–106. https://doi.org/10.1016/j.jcis.2016.08.052.
24. Merrifield RB. Solid phase peptide synthesis. I. The synthesis of a tetrapeptide. J Am Chem Soc. 1963;85:2149–54. https://doi.org/10.1021/ja00897a025.
25. Balasubramanian A, Ponnuraj K. Crystal structure of the first plant urease from jack bean: 83 years of journey from its first crystal to molecular structure. J Mol Biol. 2010;400:274–83. https://doi.org/10.1016/j.jmb.2010.05.009.
26. Taha M, Ismail NH, Khan A, Shah SA, Anwar A, Halim SA, et al. Synthesis of novel derivatives of oxindole, their urease inhibition and molecular docking studies. Bioorg Med Chem Lett. 2015;25:3285–9. https://doi.org/10.1016/j.bmcl.2015.03.069.