A modified cardiac triage strategy reduces door to ECG time in patients with ST elevation myocardial infarction

Hung‑Yuan Su1,2,3, Jen‑Long Tsai1, Yin‑Chou Hsu1,2,3, Kuo‑Hsin Lee1,3, Chao‑Sheng Chang1, Cheuk‑Kwan Sun1,3, Yu‑Han Wang1,4, Shu‑Ching Chi6 & Chih‑Wei Hsu1,3*

Timely performing electrocardiography (ECG) is crucial for early detection of ST‑elevation myocardial infarction (STEMI). For shortening door‑to‑ECG time, a chief complaint‑based “cardiac triage” protocol comprising (1) raising alert among medical staff with bedside triage tags, and (2) immediate bedside ECG after focused history‑taking was implemented at the emergency department (ED) in a single tertiary referral center. All patients diagnosed with STEMI visiting the ED between November 2017 and January 2020 were retrospectively reviewed to investigate the effectiveness of strategy before and after implantation. Analysis of a total of 117 ED patients with STEMI (pre‑intervention group, n = 57; post‑intervention group, n = 60) showed significant overall improvements in median door‑to‑ECG time from 5 to 4 min (p = 0.02), achievement rate of door‑to‑ECG time < 10 min from 45 to 57% (p = 0.01), median door‑to‑balloon time from 81 to 70 min (p < 0.01). Significant trends of increase in achievement rates for door‑to‑ECG and door‑to‑balloon times (p = 0.032 and p = 0.002, respectively) was noted after strategy implementation. The incidences of door‑to‑ECG time > 10 min for those with initially underestimated disease severity (from 90 to 10%, p < 0.01) and walk‑in (from 29.2 to 8.8%, p = 0.04) were both reduced. In conclusion, a chief complaint‑based “cardiac triage” strategy successfully improved the quality of emergency care for STEMI patients through reducing delays in diagnosis and treatment.

Primary percutaneous coronary intervention (PCI) is the gold‑standard treatment for patients with ST‑elevation myocardial infarction (STEMI)1,2. Timely coronary artery reperfusion after arriving at emergency department (ED) is important for reducing mortality and morbidity rates for patients with STEMI1‑3. Door‑to‑Balloon Alliance has chosen key strategies for improving door‑to‑balloon (DTB) time, which included the activation of the catheterization laboratory with a single call by emergency physicians, completion of PCI team preparation within 20‑30 min after the call, rapid data feedback, adoption of a team‑based approach, and administrative support6,7. Additionally, the American College of Cardiology and American Heart Association (ACC/AHA) has also recommended the target times of door‑to‑ECG (DTE) within 10 min and DTB within 90 min, respectively, which have become the benchmark for the management of acute coronary syndrome worldwide1.

Rapid performance of electrocardiography (ECG) for STEMI identification is crucial to achieving coronary artery reperfusion. Some studies have shown that improving DTE time can shorten DTB time8‑10. Although a previous large‑scale multicenter study has demonstrated no significant reduction in 30‑day in‑hospital mortality rate for STEMI patients achieving the target time of DTB within 90 min, improving DTE and DTB times should still be persistently emphasized owing to the potential benefits of long‑term reduction in mortality, improvement in left ventricular function, and decreasing the number of admissions for heart failure11. On the other hand, only 20–30 percent of patients with cardiac ischemic symptoms achieved the target time of DTE within 10 min8,12 so that several quality improvement programs had been proposed for shortening the DTE time. Among them, triage ECG, which is the acquisition of ECG during triage before history‑taking by emergency physicians, is

1Department of Emergency Medicine, E‑Da Hospital and I‑Shou University, No.1, Yida Road, Jiao‑su Village, Yan‑Chao District, Kaohsiung City 82445, Taiwan. 2School of Chinese Medicine for Post Baccalaureate, I‑Shou University, Kaohsiung City, Taiwan. 3School of Medicine for International Students, I‑Shou University, Kaohsiung City, Taiwan. 4Medical Quality Department, E‑Da Hospital, Kaohsiung City, Taiwan. 5Email: saab30002000@gmail.com
were held to identify unforeseen problems with patient management and data collection during the process of
Data were continually being recorded electronically on the DTB checklist (Fig. 1) for review. Monthly meetings
comitant implementation of the five-class triage system and the Cardiac Triage program had become a routine.
were directed to the triage area where the triage nurse would immediately identify possible ischemic cardiac
involved two key steps to expedite STEMI diagnosis and management (Fig. 2). First, patients who visited ED
STEMI was introduced in our emergency care system in an attempt to reduce the DTE time. The new strategy
the five-level triage system, a Cardiac Triage program aiming at prioritizing the management of patients with
control team and the frontline emergency physicians and nursing staff. Following confirmation of the feasibility
image program. The algorithm of the cardiac triage protocol (Fig. 2) was also posted in the triage area for their easy
Second, history-taking focusing on the possibility of a STEMI was performed by the emergency physician who
seat of ED clinicians. In the meantime, the triage nurse would inform the ED physicians of the patient’s presence.
were classified in terms of disease severity and chief complaint into five categories according to the Taiwan Triage
and activated the “Code STEMI” to notify cardiologists for evaluation and preparation for PCI. On encounter-
ing patients with confirmed STEMI, the emergency physicians were required to complete a DTB checklist sum-
and or those who had received resuscitation before ECG acquisition were excluded. All methods were carried
out in accordance with relevant guidelines and regulations.

Pre-intervention management. During the pre-interventional period from November 2017 to November
2018, patients who visited ED were directed to the triage area where they were classified in terms of disease
severity and chief complaint into five categories according to the Taiwan Triage and Acuity Scale (TTAS), which
was modified from the Canadian Triage and Acuity Scale and has been officially adopted by the Taiwanese
emergency health care system since the year 2010: Level I, resuscitation; level II, emergent; level III, urgent; level
IV, less urgent; and level V, non-urgent. During this process, patients belonging to level I, II, III, IV, and V
should be evaluated by emergency physicians or nurse practitioners immediately, 10 min, 30 min, 60 min, and
120 min, respectively. Because the triage system did not specifically identify patients with potential ischemic
cardiac problems, those presenting with typical cardiac symptoms (e.g., chest pain) as well as those having high
vascular risks (i.e., age > 50, diagnosis of diabetes) with atypical manifestations (i.e., epigastralgia, nausea,
dyspnea, diaphoresis) according to the AHA emergency department screening criteria had to follow the above
management time frame according to the triage classification until the emergency physician identified STEMI
and activated the “Code STEMI” to notify cardiologists for evaluation and preparation for PCI. On encountering
patients with confirmed STEMI, the emergency physicians were required to complete a DTB checklist sum-
marizing the timing of every step of management (e.g., ECG, consultation with cardiologist) between the time
when the patients arrived in ED and the time when they received coronary intervention (Fig. 1). All data were
recorded in an electronic database.

Pilot study period: timing and procedures. In one month’s period (December 2018), in addition to
the five-level triage system, a Cardiac Triage program aiming at prioritizing the management of patients with
STEMI was introduced in our emergency care system in an attempt to reduce the DTE time. The new strategy
involved two key steps to expedite STEMI diagnosis and management (Fig. 2). First, patients who visited ED
were directed to the triage area where the triage nurse would immediately identify possible ischemic cardiac
symptoms (e.g., chest pain) as well as atypical presentations in those with high cardiovascular risk and label
them with a red tag on bedside or wheelchair and place their medical record in a red designated box next to the
seat of ED clinicians. In the meantime, the triage nurse would inform the ED physicians of the patient’s presence.
Second, history-taking focusing on the possibility of a STEMI was performed by the emergency physician who
ordered immediate 12-lead ECG for patients with suspected STEMI and activated the “Code STEMI” for con-
firmed cases. All the triage nurses were required to receive on-job training before participating in the cardiac tria-
gage program. The algorithm of the cardiac triage protocol (Fig. 2) was also posted in the triage area for their easy
reference. At the end of one month, a meeting was held for addressing all issues arising from program imple-
mentation to ensure adequate communication and satisfactory problem-shooting between the STEMI quality
control team and the frontline emergency physicians and nursing staff. Following confirmation of the feasibility
of the program, the new strategy was officially implemented from January 2019.

Post-intervention follow-up. During the post-intervention period (January 2019 to January 2020), con-
comitant implementation of the five-class triage system and the Cardiac Triage program had become a routine.
Data were continually being recorded electronically on the DTB checklist (Fig. 1) for review. Monthly meetings
were held to identify unforeseen problems with patient management and data collection during the process of
cardiac triage.
Outcomes and definitions. Data collection was completed by the end of January 2020 when outcomes of the strategy was assessed by the quality control team through analyzing and comparing the data acquired before and after implementation of the Cardiac Triage program. Data during the intervention period (December 2018) was excluded. The primary outcome of the study was the median DTE time and the achievement rate of DTE time < 10 min, while the secondary outcome was the median DTB time and the achievement rate of DTB time < 90 min as well as in-hospital mortality rate. The achievement rates of DTE time < 10 min and DTB time < 90 min were compared before and after implementation of the cardiac triage program by assessing the changes in the mean achievement rates every three months.

Door time, ECG time and balloon time were defined as the times of registration at ED reception, completion of ECG, and first balloon inflation in culprit lesion, respectively. Daytime and nighttime were defined as the periods from 07:01 to 17:00 and from 17:01 to 07:00, respectively. Weekdays and weekend were defined as from Monday morning to Friday night and from Saturday morning to Sunday night, respectively. For triage categories, high and low triage levels were defined as category I, II and category III, IV, V, respectively.
Statistical analysis. All data were analyzed by using SPSS version 22 (SPSS Inc, Chicago, IL). Mean values and median values were expressed as mean ± SD and median (IQR) respectively. Student’s t-test and Chi-squared test were used for determining the significance of difference among continuous and categorical variables, respectively. Fisher’s exact test was used to identify risk factors related to delayed ECG acquirement (i.e., > 10 min after ED arrival) before and after interventions. Independent sample t-test was used for determining the significance of changes in the achievement rates of DTE time < 10 min and DTB time < 90 min after implementation of the cardiac triage strategy. A two-tailed p value of less than 0.05 was considered statistically significant.
Ethics committee approval. Ethics approval for this study was granted by the Institutional Review Board of the E-DA Hospital (EMRP-109-026) and need for informed consents was waived because of the retrospective nature of the present study.

Results

Study population. Between November 2017 and January 2020, there were a total of 136,402 ED visits and 12,058 ECG examinations. Among them, 6,063 visits (8.83%) involved ECG in pre-intervention period and 5,995 visits (8.84%) in post-intervention period. Of the 193 patients with the diagnosis of STEMI, 66 had been diagnosed with STEMI before arrival at our ED and the other four had received resuscitation before ECG acquisition. Additionally, after excluding six more patients diagnosed with STEMI during the one-month pilot study period (December 2018), a total of 117 patients were enrolled into this study, including 57 in the pre-intervention group and 60 in the post-intervention group. A review of the characteristics of our patients with STEMI during the study period demonstrated no significant difference in age, gender, triage category, means of ED arrival, visiting time, typical angina presentations, and comorbidities between the pre- and post-intervention groups (Table 1).

Primary outcomes after intervention. The DTE time was significantly shorter after intervention than that before intervention (4 min vs. 5 min, \( p = 0.02 \)) (Table 2). In addition, there was a higher proportion of patients with DTE < 10 min in the post-intervention group compared with that in the pre-intervention group (95.0% vs. 78.9%, \( p = 0.01 \), respectively). Comparison of the achievement rate of DTE < 10 min before and after implementation of the cardiac triage program showed a significant trend of increase after initiation of the strategy (\( p = 0.032 \)) (Fig. 3).

Secondary outcomes after intervention. Consistent with the change in DTE time, the DTB time was significantly shorter after intervention compared to that before intervention (70 min vs. 81 min, \( p < 0.01 \), respectively) (Table 2). Besides, there was a higher proportion of patients achieving DTB time < 90 min in the post-intervention group than that in the pre-intervention group (83.3% vs. 68.4%, \( p = 0.08 \), respectively) despite the lack of statistical significance. On the other hand, there was a significant trend of increase in achievement rate of DTB time < 90 min after implementation of the cardiac triage strategy (\( p = 0.002 \)) (Fig. 3). However, there was no significant difference in the length of hospital stay, intensive care unit (ICU) stay, and in-hospital mortality between the pre- and post-intervention groups.

| Characteristics                      | Pre-intervention group (n = 57) | Post-intervention group (n = 60) | \( p \) value |
|--------------------------------------|---------------------------------|---------------------------------|--------------|
| Age, y, mean ± SD                    | 62.5 ± 13.9                     | 62.2 ± 11.1                     | 0.91         |
| Male, n (%)                          | 50 (87.7)                       | 52 (86.7)                       | 1.00         |
| Triage category, n (%)               |                                 |                                 | 0.43         |
| Category 1                           | 13 (22.8)                       | 8 (13.3)                        |              |
| Category 2                           | 34 (59.6)                       | 42 (70.0)                       |              |
| Category 3                           | 10 (17.5)                       | 10 (16.7)                       |              |
| Category 4                           | 0                               | 0                               |              |
| Category 5                           | 0                               | 0                               |              |
| Means of ED arrival, n (%)           |                                 |                                 | 0.12         |
| Walk-in                              | 41 (71.9)                       | 34 (56.7)                       |              |
| Emergency medical service            | 16 (28.1)                       | 26 (43.3)                       |              |
| ED time, n (%)                       |                                 |                                 | 0.14         |
| Daytime                              | 34 (52.6)                       | 27 (60.0)                       |              |
| Nighttime                            | 23 (47.4)                       | 33 (40.0)                       |              |
| ED day, n (%)                        |                                 |                                 | 0.46         |
| Weekday                              | 30 (52.6)                       | 36 (60.0)                       |              |
| Weekend                              | 27 (47.4)                       | 24 (40.0)                       |              |
| Chest pain, n (%)                    | 49 (86.0)                       | 56 (93.3)                       | 0.39         |
| Comorbidities, n (%)                 |                                 |                                 |              |
| Diabetes Mellitus                    | 25 (43.9)                       | 24 (40.0)                       | 0.71         |
| Hypertension                         | 31 (54.4)                       | 35 (58.3)                       | 0.71         |
| Dyslipidemia                         | 37 (64.9)                       | 41 (68.3)                       | 0.70         |
| Old cerebrovascular accident         | 4 (7.0)                         | 4 (6.7)                         | 1.00         |
| Chronic kidney disease               | 20 (35.1)                       | 25 (41.7)                       | 0.57         |

Table 1. Baseline characteristics of STEMI patients (n = 117). STEMI ST-elevation myocardial infarction, ED emergency department. Triage categories according to the Taiwan Triage and Acuity Scale (TTAS), a modification of the Canadian Triage and Acuity Scale.
Effectiveness of interventions for improving DTE times. Our literature search identified four reported contributors to DTE delays, including STEMI without chest pain, underestimated disease severity (i.e., initially low triage levels of III–V), walk-in patient, and female gender. Therefore, the four factors were used for evaluating the effectiveness of the program for improving DTE times in STEMI patients. There were a total of 15 patients with DTE exceeding 10 min in the present study, including 12 in pre-intervention group and three in post-intervention group. A low triage level was found to be the most significant predictor of outcome improvement because the rate of DTE > 10 min decreased drastically from 90 to 10% after strategy implementation (\(p < 0.01\)) (Table 3). In addition, the DTE time of walk-in patients was significantly reduced from 29.2 to 8.8% (\(p = 0.04\)). On the other hand, despite the apparent decrease in the rate of DTE > 10 min in women, it failed to reach statistical significance (\(p = 0.62\)). In addition, there was no significant impact of STEMI without chest pain on the effectiveness of the cardiac triage program (Table 3).

### Discussion

The current study demonstrated that implementation of a modified cardiac triage protocol for early identification and treatment of patients with STEMI in the emergency care setting could significantly shorten the median DTE time and increase the achievement rate of DTE time less than 10 min. Moreover, median DTB time was also significantly reduced. Further investigation also revealed a significant reduction in the incidence of DTE time over 10 min among patients belonging to a low triage category (i.e., III, IV, or V) after intervention.

| Variables                        | Pre-intervention group (n = 57) | Post-intervention group (n = 60) | \(p\) value |
|----------------------------------|---------------------------------|---------------------------------|-------------|
| Door to ECG time (min), median (IQR) | 5.0 (1.5–8.0)                  | 4.0 (1.0–5.0)                   | 0.02*       |
| Door to ECG time < 10 min, n (%) | 45 (78.9)                      | 57 (95.0)                      | 0.01*       |
| Door to Balloon time (min), median (IQR) | 81.0 (70.5–91.5)              | 70.0 (53.3–84.0)               | <0.01**     |
| Door to Balloon time < 90 min, n (%) | 39 (68.4)                     | 50 (83.3)                      | 0.08        |
| Length of stay (day), median (IQR) | 6 (5–9)                        | 6 (5–7)                        | 0.73        |
| ICU stay (day), median (IQR)     | 3 (3–4)                        | 3 (3–4)                        | 0.71        |
| Mortality, n (%)                 | 2 (3.5)                        | 2 (3.3)                        | 1.00        |

Table 2. Comparison of outcomes among STEMI patients before and after intervention (n = 117). STEMI ST-elevation myocardial infarction, ECG electrocardiogram, IQR interquartile range, ICU intensive care unit. *\(p < 0.05\), **\(p < 0.01\).

Figure 3. Changes in achievement rates of “Door to ECG” (DTE) time < 10 min and “Door to Balloon” (DTB) time < 90 min after implementation of cardiac triage strategy. *Significance of difference determined by independent sample t-test.

| Reasons for ECG > 10 min | Pre-intervention group | Post-intervention group | \(p\) value |
|--------------------------|------------------------|-------------------------|-------------|
|                          | \(N1/N2\) (%)          | \(N1/N2\) (%)           |             |
| STEMI without chest pain | 3/8 (37.5%)            | 2/4 (50.0%)             | 1.00        |
| Low triage level         | 9/10 (90.0%)           | 1/10 (10.0%)            | <0.01**     |
| Walk-in patient          | 12/41 (29.2%)          | 3/34 (08.8%)            | 0.04*       |
| Female gender            | 4/7 (57.1%)            | 3/8 (37.5%)             | 0.62        |

Table 3. Comparison of factors associated with ECG > 10 min between pre- and post-intervention groups. ECG electrocardiogram, STEMI ST-elevation myocardial infarction. *\(p < 0.05\), **\(p < 0.01\). \(N1\) represents number of STEMI patients with door-to-ECG > 10 min and \(N2\) represents total numbers of STEMI patients.
DTB is a survival chain comprising early ECG with prompt interpretation, early catheterization lab activation, an expedited response to activation, and rapid reperfusion. Although multiple factors could affect DTB time, a previous study has shown a stronger association of DTB time with door-to-activation time compared to that with activation-to-laboratory and laboratory-to-balloon times. Timely ECG is crucial to the identification of patients with STEMI for prompt primary PCI. The American Heart Association (AHA) management guideline for patients presenting with symptoms of cardiac ischemia has indicated a DTB time of less than 10 min as a standard for acceptable emergency medical practice. Hence, various efforts have been made to shorten the DTB time, including designation of an ECG technician and equipment for triage ECG, organization of triage education, improvement of triage disposition, and data feedback. Although assigning a technician and ECG equipment to the conduction of triage ECG has been shown effective for reducing DTB time, indiscriminate ECG screening without a patient interview by an experienced emergency physician has raised the concern of increasing workload among nursing staff as well as the possibility of low cost-effectiveness. Indeed, a previous study has reported a 30% increase in ECG workload after implementation of a triage ECG program. By combining the strategies of cardiac triage and triage ECG, Coyne et al. have shown a reduction of DTB time by 39% (i.e., from 23 to 14 min) and DTB by 12% (from 85 to 75 min). Taking into consideration the downsides of triage ECG, the current study aims at investigating the impact of cardiac triage per se on DTB time reduction.

Our cardiac triage protocol included the triage nurse's early identification of patients with a possible ischemic heart disease by labeling the patients a red warning tag that alerted the emergency medical personnel (i.e., emergency physicians, residents, or nurse practitioners) of the need for prompt history-taking and placing their medical records in a designated box for expedited management. For patients presenting with a history suggestive of coronary heart disease, prompt ECG was acquired. In this way, indiscriminate ECG screening was avoided. This approach also eliminated the necessity of assigning nursing staff, space, and ECG equipment as required for triage ECG. This is of particular clinical importance amid the ED is a critical issue worldwide and efficient utilization of medical manpower remains one of the formidable challenges to healthcare organizations. Moreover, although the proportion of patients (8.84%) receiving ECG in our ED in the post-intervention group was not increased compared with that in the pre-intervention group (8.83%), our study demonstrated that the achievement rate of DTB < 10 min and DTB < 90 min were improved from 78.9 to 95% (20.4%) and 68.4 to 83.3% (21.8%), respectively (both p < 0.05). The findings, therefore, indicate significant reductions in both DTE and DTB without increasing the ECG workload.

Furthermore, through adopting the concept of mass casualty triage, the triage nurse labeled the patients suspected of experiencing acute coronary syndrome with a red tag and placed their medical records in a designated box to expedite medical attention by emergency clinicians in a busy and noisy environment as well as the acquisition of an ECG for early diagnosis, thereby enabling prompt primary PCI for confirmed cases of STEMI.

As a DTE time over 10 min is an indicator of unacceptable emergency medical practice, we investigated the effectiveness of our interventions for reducing the DTE time by selecting the predictors previously reported to be related to DTE > 10 min, including the female gender, STEMI without chest pain, relatively non-severe initial presentations (i.e., Triage Category III, IV, V), and walk-in patients, for analysis. Among them, DTE time of STEMI patients assigned into a low (i.e., less severe) triage category and walk-in patients were significantly reduced after intervention. The designation of triage levels to patients with cardiac ischemic symptoms by triage nurses might be affect by multiple factors, including patient's characteristics, acute myocardial infarction volume, or subjective experience of triage nurses. Clare et al. has reported that up to one third of patients with STEMI could have an initial non-severe presentation (i.e., a low triage score), resulting in prolonged DTE and DTB times. Albeit not as high as the proportion previously reported, there were still 17% of STEMI patients being assigned to a low triage category in our study. Although there was no significant difference in the proportion of patients with a low triage score between pre- and post-intervention groups in the current study as well as in a previous triage ECG report, the percentage of patients with STEMI assigned with a low triage score decreased significantly from 90% (9 of 10) to 10% (1 of 10 (p < 0.01) after cardiac triage implementation. Additionally, the mode of arrival may also contribute to a prolonged DTE time. Literature review showed that patients with walk-in arrival are more likely to be designated into a low triage category compared with those arrived by ambulance, contributing to a possible delay in receiving medical attention under the circumstances of ED overcrowding. This is supported by our study in which all STEMI patients with DTE > 10 min arrived at the ED on foot in both pre- and post-intervention periods. Utilizing cardiac triage with a red warning tag could expedite ECG examination for patients presenting with ischemic cardiac symptoms even if they belong to a low triage category.

Despite the lack of statistical significance, DTE > 10 min in the female gender was decreased after our intervention. Female gender has been reported as a strong independent predictor of delayed ECG acquisition in several literature reviews. Possible reasons for delayed ECG in females include atypical symptom presentation and the concern for ECG acquisition-related violation of personal privacy to which a sufficient number of female triage nurses has been reported to be a possible solution. During the post-intervention period, all female patients undergoing cardiac triage received ECG performed by female nurse practitioners so that the influence of personal privacy on DTE time could be minimized.

There were 14% and 6% of STEMI patients without chest pain in our pre- and post-intervention groups, respectively. The figure was within the range of 6–9% previously reported. Our results showed no significant difference in the rate of DTE time < 10 min before and after implementation of the cardiac triage program (37.5% vs. 50%, respectively), indicating no notable benefit in this particular patient population. One of the possible reasons could be atypical initial presentations of STEMI such as general discomfort, dizziness or weakness in some of the patients, which have not been included in the AHA screening guidelines. Further emendations of the cardiac triage protocol may be necessary to expand the criteria for inclusion. Nevertheless, the number of patients with atypical STEMI presentations was too small to arrive at a robust conclusion.
The present study had its limitations. Firstly, the statistical power and reliability of our results were limited by the relatively small number of patients, which was due to the single center nature of the current study instead of a nationwide investigation. Besides, STEMI patients usually comprise only a minor portion of patients visiting the ED during the study period. Second, because the modified cardiac triage protocol is aimed at expediting STEMI patient management in a high-volume emergency care setting as a quality improvement strategy, its feasibility and effectiveness in other ED settings remain to be validated. Third, the accuracy of data acquisition may be hampered by ambiguous symptom descriptions in medical records, for which experts in the quality control team were recruited as reviewers to categorize the nature of those symptoms to minimize the impact of this potential confounder.

In conclusion, utilizing a modified chief complaint-based cardiac triage strategy, the current study showed that the DTE and DTB times could both be significantly shortened for STEMI patients. Moreover, the pitfall of failure in early discrimination of patients with STEMI associated with the conventional triage system could also be improved as reflected by the shortened ECG time in STEMI patients with initially underestimated disease severity.

Data availability
Data relevant to the present study are available on request made to the corresponding author.

Received: 6 January 2021; Accepted: 9 March 2021
Published online: 18 March 2021

References
1. Antman, E. M. et al. ACC/AHA guidelines for the management of patients with ST-elevation myocardial infarction—executive summary. A report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Writing Committee to revise the 1999 guidelines for the management of patients with acute myocardial infarction). J. Am. Coll. Cardiol. 44, 671–719 (2004).
2. Neumann, F. J. et al. 2018 ESC/EACTS Guidelines on myocardial revascularization. Eur. Heart J. 40, 87–165 (2019).
3. Chen, F. C., Liu, Y. R., Kung, C. T., Cheng, C. I. & Li, C. J. The association between door-to-balloon time of less than 60 minutes and prognosis of patients developing ST segment elevation myocardial infarction and undergoing primary percutaneous coronary intervention. Biomed. Res. Int. 2017, 1910934. https://doi.org/10.1155/2017/1910934 (2017).
4. Kuo, F. Y. et al. The effect of failure mode and effect analysis on reducing percutaneous coronary intervention hospital door-to-balloon time and mortality in ST segment elevation myocardial infarction. BMJ Qual. Saf. 22, 626–638 (2013).
5. McCabe, J. M. et al. Impact of door-to-activation time on door-to-balloon time in primary percutaneous coronary intervention for ST-segment elevation myocardial infarctions: A report from the Activate-SF registry. Circ. Cardiovasc. Qual. Outcomes. 5, 672–679 (2012).
6. Bradley, E. H. et al. Strategies for reducing the door-to-balloon time in acute myocardial infarction. N. Engl. J. Med. 355, 2308–2320 (2006).
7. Krumholz, H. M. et al. A campaign to improve the timeliness of primary percutaneous coronary intervention: Door-to-Balloon: An alliance for quality. JACC Cardivas. Interv. 1, 97–104 (2008).
8. Takakuwa, K. M., Burek, G. A., Estepa, A. T. & Shofer, F. S. A method for improving arrival-to-electrocardiogram time in emergency department chest pain patients and the effect on door-to-balloon time for ST-segment elevation myocardial infarction. Acad. Emerg. Med. 16, 921–927 (2009).
9. Keats, A. et al. A quality improvement project to reduce door-to-electrocardiogram time: A multicenter study. J. Saudi Heart Assoc. 30, 180–187 (2018).
10. Lee, C. K. et al. The impact of door-to-electrocardiogram time on door-to-balloon time after achieving the guideline-recommended target rate. PLoS ONE 14, e0222019. https://doi.org/10.1371/journal.pone.0222019 (2019).
11. Menees, D. S. et al. Door-to-balloon time and mortality among patients undergoing primary PCI. N. Engl. J. Med. 369, 901–909 (2013).
12. Diercks, D. B. et al. Frequency and consequences of recording an electrocardiogram >10 minutes after arrival in an emergency room in non-ST-segment elevation acute coronary syndromes (from the CRUSADE Initiative). Am. J. Cardiol. 97, 437–442 (2006).
13. Chhabra, S., Eagles, D., Kwok, E. S. H. & Perry, J. J. Interventions to reduce emergency department door-to-electrocardiogram times: A systematic review. CJEM. 21, 607–617 (2019).
14. Phelan, M. P. et al. Improving emergency department door-to-electrocardiogram time in ST segment elevation myocardial infarction. Crit. Pathw. Cardiol. 8, 119–121 (2009).
15. Borden, W. B. et al. Quality improvement in the door-to-balloon times for ST-elevation myocardial infarction patients presenting without chest pain. Catheter Cardiovasc. Interv. 79, 851–858 (2012).
16. Noll, S. et al. The utility of the triage electrocardiogram for the detection of ST-segment elevation myocardial infarction. Am. J. Emerg. Med. 36, 1771–1774 (2018).
17. Coyne, C. J. et al. Improving door-to-balloon time by decreasing door-to-ECG time for walk-in STEMI patients. West J. Emerg. Med. 16, 184–189 (2015).
18. Wiler, J. L. et al. Optimizing emergency department front-end operations. Ann. Emerg. Med. 55, 142–160.e141 (2010).
19. Ng, C. J. et al. Validation of the Taiwan triage and acuity scale: A new computerised five-level triage system. Emerg. Med. J. 28, 1026–1031 (2011).
20. Yiadom, M. Y. et al. Performance of emergency department screening criteria for an early ECG to identify ST-segment elevation myocardial infarction. J. Am. Heart Assoc. 6, e003528. https://doi.org/10.1161/jaha.116.003528 (2017).
21. Chen, K. C., Yen, D. H., Chen, C. D., Young, M. S. & Yin, W. H. Effect of emergency department in-hospital tele-electrocardiographic triage and interventional cardiologist activation of the infarct team on door-to-balloon times in ST-segment elevation acute myocardial infarction. Am. J. Cardiol. 107, 1430–1435 (2011).
22. Atzema, C. L., Austin, P. C., Tu, J. V. & Schulz, M. J. ED triage of patients with acute myocardial infarction: Predictors of low acuity triage. Am. J. Emerg. Med. 28, 694–702 (2010).
23. Kaila, K. S. et al. Reperfusion times for ST elevation myocardial infarction: A prospective audit. Medull. J. Med. 10, 75–80 (2007).
24. Piggott, Z., Weldon, E., Strome, T. & Chochinov, A. Application of Lean principles to improve early cardic care in the emergency department. CJEM. 13, 325–332 (2011).
25. Sprockel, J. J. et al. Optimization of door-to-electrocardiogram time within a critical pathway for the management of acute coronary syndromes at a teaching hospital in Colombia. Crit. Pathw. Cardiol. 14, 25–30 (2015).
26. Jayaprakash, N., O'Sullivan, R., Bey, T., Ahmed, S. S. & Lotfipour, S. Crowding and delivery of healthcare in emergency departments: The European perspective. *West J. Emerg. Med.* **10**, 233–239 (2009).
27. Tanaka, K. *et al.* Development of a novel information and communication technology system to compensate for a sudden shortage of emergency department physicians. *Scand J. Trauma Resusc. Emerg. Med.* **25**, 6. https://doi.org/10.1186/s13049-017-0347-3 (2017).
28. Lee, C. H. Disaster and mass casualty triage. *AMA J. Ethics.* **12**, 466–470 (2010).
29. Atzema, C. L., Schull, M. J., Austin, P. C. & Tu, J. V. Temporal changes in emergency department triage of patients with acute myocardial infarction and the effect on outcomes. *Am. Heart J.* **162**, 451–459 (2011).
30. Bansal, E. *et al.* Importance of hospital entry: Walk-in STEMI and primary percutaneous coronary intervention. *West J. Emerg. Med.* **15**, 81–87 (2014).
31. Canto, J. G. *et al.* Use of emergency medical services in acute myocardial infarction and subsequent quality of care: Observations from the National Registry of Myocardial Infarction 2. *Circulation* **106**, 3018–3023 (2002).
32. Blomkalns, A. L. *et al.* Gender disparities in the diagnosis and treatment of non-ST-segment elevation acute coronary syndromes: large-scale observations from the CRUSADE (Can Rapid Risk Stratification of Unstable Angina Patients Suppress Adverse Outcomes With Early Implementation of the American College of Cardiology/American Heart Association Guidelines) National Quality Improvement Initiative. *J. Am. Coll. Cardiol.* **45**, 832–837 (2005).
33. Bjorck, L. *et al.* Absence of chest pain and long-term mortality in patients with acute myocardial infarction. *Open Heart.* **5**, e000909. https://doi.org/10.1136/openhrt-2018-000909 (2018).

**Author contributions**
H.Y.S., J.L.T., C.K.S. and C.W.H. conceived and designed the study and drafted manuscript. J.L.T., C.S.C., K.H.L. and C.W.H. conducted data extraction and manual chart review. Y.C.H. and Y.H.W. performed data analysis. H.Y.S., S.C.C. and C.W.H. critically revised manuscript and final approval.

**Competing interests**
The authors declare no competing interests.

**Additional information**
Correspondence and requests for materials should be addressed to C.-W.H.

**Reprints and permissions information** is available at www.nature.com/reprints.

**Publisher’s note** Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2021