On fibering compact manifold over the circle

Ameth Ndiaye

Keywords: foliation, fibering, Lie group, manifold, compact.

Résumé
In this paper, we show that any compact manifold that carries a $SL(n, \mathbb{R})$-foliation is fibered on the circle S^1.

1 Introduction

Definition 1.1. A codimension n foliation \mathcal{F} on a $(n + m)$-manifold M is given by an open cover $\{U_i\}_{i \in I}$ and submersions $f_i : U_i \to T$ over an n-dimensional manifold T and, for $U_i \cap U_j \neq \emptyset$, a diffeomorphism $\gamma_{ij} : f_i(U_i \cap U_j) \to f_j(U_i \cap U_j)$ such that $f_j = \gamma_{ij} \circ f_i$.

We say that $\{U_i, f_i, T, \gamma_{ij}\}$ is a foliated cocycle defining \mathcal{F}.

A transverse structure to \mathcal{F} is a geometric structure on T invariant by the local diffeomorphisms γ_{ij}. We say that \mathcal{F} is a Lie G-foliation, if T is a Lie group G and γ_{ij} are restrictions of left translations on G. Such foliation can also be defined by a 1-form ω on M with values in the Lie algebra \mathfrak{g} such that:

i) $\omega : T_x M \to \mathfrak{g}$ is surjective for every $x \in M$,

ii) $d\omega + \frac{1}{2}[\omega, \omega] = 0$.

If \mathfrak{g} is Abelian, ω is given by n linearly independent closed scalar 1-forms $\omega_1, ... \omega_n$.

In the general case, the structure of a Lie foliation on a compact manifold, is given by the following theorem due to E. Fédida [2]:

Let \mathcal{F} be a Lie G-foliation on a compact manifold M. Let \widetilde{M} be the universal covering of M and $\widetilde{\mathcal{F}}$ the lift of \mathcal{F} to \widetilde{M}. Then there exist a homomorphism $h : \pi_1(M) \to G$ and a locally trivial fibration $D : \widetilde{M} \to G$ whose fibres are the leaves of $\widetilde{\mathcal{F}}$ and such that, for every $\gamma \in \pi_1(M)$, the following diagram is commutative:

where the first line denotes the deck transformation of $\gamma \in \pi_1(M)$ on \widetilde{M}.

The group $\Gamma = h(\pi_1(M))$ (which is a subgroup of G) is called the holonomy group of \mathcal{F} although the holonomy of each leaf is trivial. The fibration $D : \widetilde{M} \to G$ is called the developing map of \mathcal{F}.

1. Université Cheikh Anta Diop, Dakar/ Département de Mathématiques(FASTEF)
Email: ameth1.ndiaye@ucad.edu.sn
2 Lie-foliation with transverse group $SL(n, \mathbb{R})$

In the first we want to decompose the group $SL(n, \mathbb{R})$ such that the group GA is one of the factor.

Let us compute an explicite example. Let GA be the Lie group of affine transformations $x \in \mathbb{R} \mapsto ax + b \in \mathbb{R}$, where $b \in \mathbb{R}$ and $a \in]0; +\infty[$. It can be embedded in the group $SL(2, \mathbb{R})$ as follows :

$$
\left(x \mapsto ax + b \middle| a > 0 \right) \in GA \mapsto \frac{1}{\sqrt{a}} \begin{pmatrix} a & b \\ 0 & 1 \end{pmatrix} \in SL(2, \mathbb{R})
$$

There exist a manifold M equipped with a Lie $SL(2, \mathbb{R})$-foliation F with GA as the closure of its holonomy group. Then, the basic cohomology of F is the cohomology of differential forms on $SL(2, \mathbb{R})$ invariant by GA. The quotient $SL(2, \mathbb{R})/GA$ is diffeomorphic to the circle S^1.

Example 2.1. Let F_o the Lie GA-foliation on a compact manifold M_o. We suppose that F_o can’t be obtain by inverse image of a homogenous foliation. The projection $p : SL(2, \mathbb{R}) \rightarrow S^1$ have a section given by the decomposition $SL(2, \mathbb{R}) \cong GA \times S^1$. Let $D_o : \tilde{V}_o \rightarrow GA$ the the developing map of F_o.

The map $D : \tilde{V}_o \times S^1 \rightarrow SL(2, \mathbb{R}), (\tilde{x}, y) \mapsto D_o \tilde{x}.\sigma(y)$ is local trivial fibration, these fibers define a Lie $SL(2, \mathbb{R})$-foliation on $\tilde{V}_o \times S^1$ and induce a Lie $SL(2, \mathbb{R})$-foliation F on the manifold $V = \tilde{V}_o \times S^1$ which is not conjugate to a homogenous foliation.

Theorem 2.2 (Tischler). If there exists on a compact manifold M a closed differential form without singularities, then M is fibered on the circle.

Proposition 2.3 (H.Dathe). A compact manifold that carry a Lie $SL(2, \mathbb{R})$-foliation is fiber on the circle S^1.

Our aim is to generalize this proposition to Lie $SL(n, \mathbb{R})$-foliation. Before that we have

Proposition 2.4. We have the decomposition $SL(n, \mathbb{R}) \cong T^{n-1} \times G$ where T^{n-1} is the maximal tore of $SL(n, \mathbb{R})$ identify by the subgroup of diagonal matrices. And G is Lie group such that $\text{Lie}(G) = \bigoplus_{i \neq j} < E_{ij} >$ and $\text{dim}G = n^2 - n$. Moreover we have :

$$
[E_{ij}, E_{kl}] = 0 \text{ if } i \neq l \text{ and } j \neq k
$$

$$
[E_{ij}, E_{ji}] = E_{il} \text{ if } i \neq l
$$

$$
[E_{ij}, E_{ki}] = -E_{kj} \text{ if } k \neq j
$$

2
\[[E_{ij}, E_{ji}] = E_{ii} - E_{jj} \]

\textbf{Démonstration.} Laissez \(SL(n, \mathbb{R}) \) l'ensemble des matrices spéciales du groupe linéaire réel et \(T \) le tore maximal de \(SL(n, \mathbb{R}) \) identifié avec le sous-groupe des matrices diagonales. Nous denotons par \(X(T) \) le groupe des morphismes \(T \rightarrow \mathbb{R}^\times \).

\(T \) agit sur l'algèbre de Lie \(G \) de \(SL(n, \mathbb{R}) \) par conjugaison et nous avons
\[G = \mathcal{H} \oplus \bigoplus_{i \neq j} \lambda E_{ij}, \quad \lambda \in \mathbb{R}, \]

où \(\mathcal{H} \) est le sous-ensemble de matrices diagonales de trace nulle.

En utilisant ce découpage, nous pouvons alors décomposer \(SL(n, \mathbb{R}) \) \(\cong T \times G \) de telle sorte que \(\text{Lie}(G) = \bigoplus_{i \neq j} < E_{ij} > \), \(E_{ij} \) étant la matrice \(n \times n \) où le coefficient de la ligne \(i \) et de la colonne \(j \) est égal à 1 et les autres coefficients sont nuls.

\(Y = (a_{ij}), i, j = 1, \ldots, n \in \mathcal{H}, \) donc nous avons
\[\sum_{i}^{n} a_{ii} = 0 \Rightarrow a_{11} = -\sum_{i \neq 1} a_{ii} \]

alors
\[Y = \sum_{i \neq 1} a_{ii} Y_i \]

où \(Y_i = (b_{kl}) \) est la matrice avec \(b_{11} = -1, b_{kk} = 1, k \neq 1 \) et \(b_{kl} = 0 \) pour \(k \neq l \).

Nous pouvons facilement noter que les \((Y_i), i = 2, \ldots, n \) sont également linéairement indépendants, donc \(\mathcal{H} = \langle Y_i, i = 2, \ldots, n \rangle \) et alors \(\dim \mathcal{H} = n - 1 \). Ceci implique \(\dim T = n - 1 \), donc \(\dim G = (n^2 - 1) - (n - 1) = n^2 - n \).

Par une simple calcul de la matrice produit, nous avons la valeur du bracket de Lie \([E_{ij}, E_{kl}] \), ce qui termine la démonstration.

\textbf{Remarque 2.5.} La group \(G \) de la proposition précédente peut être identifié avec le groupe \(SO(n) \times SO(n) \) et le tore maximal \(T \) est isomorphe à \(\mathbb{R} \frac{n(n+1)}{2} - 1 / SO(n) \) et alors nous avons
\[SL(n, \mathbb{R}) \cong SO(n) \times \mathbb{R} \frac{n(n+1)}{2} - 1 \]

\textbf{Proposition 2.6.} Soit \(F \) une feuilletage de Lie \(G \)-foliation sur une variété compacte \(M \), avec \(G = G_1 \times G_2 \). Il existe un feuilletage de Lie \(G_i \)-foliation \(F_i \) sur \(M \) induit par la feuilletage \(F \).

\textbf{Démonstration.} Soient \(G_1 \) et \(G_2 \) deux groupes de Lie et \(F \) un feuilletage de Lie \(G \)-foliation sur une variété compacte \(M \), où \(G = G_1 \times G_2 \).

Si \(D \) est le développement de \(F \) sur la variété universelle \(\tilde{M} \) de \(M \), alors le simple feuilletage défini par \(p_i \circ D \) (où \(p_i, i = 1, 2 \) est la projection de \(G \) sur \(G_i, i = 1, 2 \)), passant en quotient et induit une feuilletage \(F_i \) sur \(M \).

\textbf{Théorème 2.7.} Un variété compacte qui porte une feuilletage de Lie \(SL(n, \mathbb{R}) \)-foliation fibre sur l' cercle \(S^1 \).
Démonstration. Let M be a compact manifold with a Lie $SL(n, \mathbb{R})$-foliation. We have also

$$SL(n, \mathbb{R}) \cong SO(n) \times \mathbb{R}^{\frac{n(n+1)}{2} - 1}$$

$$SL(n, \mathbb{R}) \cong SO(n) \times \mathbb{R}^{\frac{n(n+1)}{2} - 3} \times \mathbb{R}^2$$

Now we take $G = SL(n, \mathbb{R}), G_1 = SO(n) \times \mathbb{R}^{\frac{n(n+1)}{2} - 3}$ and $G_2 = \mathbb{R}^2$
so using the proposition, the Lie $SL(n, \mathbb{R})$-foliation induces a Lie \mathbb{R}^2-foliation on M. Since \mathbb{R}^2 is abelian the structures equations of the Lie \mathbb{R}^2-foliation are closed 1-forms on M, then using the Tischler theorem, M is a fibration over the circle.

Références

[1] D. Tischler, On fibering certain manifold over the circle, Topology 9 (1970), 153-154.
[2] E. Fedida, Feuilletages du plan, feuilletage de Lie, thèse université Louis Pasteur, Strasbourg (1973).
[3] E. Fedida, Sur les feuilletages de Lie, C. R. Acad. Sci. Paris 272 (1971)999 1001
[4] A. El Kacimi Alaoui, G. Guasp, M. Nicolau, On deformations of transversely homogeneous foliations, Topology 40 (2001), 1363-1393.
[5] H. Dathe, Sur l’existence des feuilletages de Lie, Thèse de troisième cycle, Université Cheikh Anta Diop, Dakar (Sénégal) (1999).
[6] S. Riche, Sur les représentations des groupes algébriques et des groupes quantiques