A comparison of Numerical Solutions for Linear Fredholm Integral Equation of the Second Kind

Jalil Talab Abdullah¹, * and Ali Hussein Shuaa Al-Taie²

¹ University of Wasit, College of Economics and Administration, Iraq
² University of Wasit, College of Education for Pure Science, Iraq
*Email: jalil.talab@gmail.com

Abstract: The aim of this paper, we offered a new numerical method which is Touchard Polynomials (T-Ps) for solving Linear Fredholm Integral Equation of the Second Kind (LFIE2-K), to find approximating Numerical Solution (N-S). At the beginning, we demonstrate (T-Ps) and construct the operational matrix which is a matrix representation for solution. The algorithm and some examples are given; comparing the numerical results of proposed method with the numerical results of the other numerical method which is Bernstein Polynomials (B-Ps). We will show the high resolution of results by proposed method. The comparison between the Exact Solution (E-S) and the results of two methods are given by calculating absolute value of error and the Least Square Error (L.S.E). The results are calculated in Matlab code.

Keywords: Fredholm Integral Equation, Touchard & Bernstein polynomials.

1. Introduction

The (LFIE2-K) is the equation where the unknown function sees inside and outside the integral sign [1, 3]. The standard form of (LFIE2-K) is

\[V(\tau) = g(\tau) + \phi \int_{x_1}^{x_2} X(\tau, y) V(y) dy \quad x_1 \leq \tau, y \leq x_2, \]

where \(V(\tau) \) is unknown function or approximate solution of (1) to be calculated, \(\phi \) is a known constant, contains physical meanings of the properties of the material, and \(X(\tau, y) \) is a known function of the variables \(\tau \) and \(y \), called the nucleus of the Integral Equation (IE) bear characteristics and properties of material may be continuous or discontinuous, \(g(\tau) \) is a known function represents the function of the surface on which we want to calculate integration. (FIE2-K) which can be came from boundary value problem. Erik I. Fredholm (1866-1927) was a Swedish mathematician whomentioned for his research on (IE) which arises in several applications [2, 4].

Recently, there exist many enhanced methods to get the approximatesolutions of (IE). [5] introduced (T-Ps) Method to obtained (N-S) for (IE). [6] introduced a successive approximation method in terms of a combination of (B-Ps) and block-pulse function. [7] used (B-Ps) method, integral mean value method, Tylor series method, the least square method are used to solve the (IE2-K). [8] employed (T-Ps) to treatment steepest descents to a suitable integral
representation of $T_n(x)$ to find that the number of saddle points that contribute to the expansion depends on the values n and z.[9] Established some relation between (T-Ps) and Bell polynomials and the polynomials of binomial type.

2. Touchard’s Polynomials:

These polynomials was studied in (1939) by Jacques Touchard (1885–1968) was a French mathematician, which is consist of a polynomial sequence of binomial type, by [8, 9, 10, 11] are given as

$$J_n(\tau) = \sum_{m=0}^{n} S(n, m) \tau^m = \sum_{m=0}^{n} \left(\begin{array}{c} n \\ m \end{array} \right) \tau^m$$

(2)

The first six (T-Ps) are given as

1. $J_0(\tau) = 1$
2. $J_1(\tau) = 1 + \tau$
3. $J_2(\tau) = 1 + 2\tau + \tau^2$
4. $J_3(\tau) = 1 + 3\tau + 3\tau^2 + \tau^3$
5. $J_4(\tau) = 1 + 4\tau + 6\tau^2 + 4\tau^3 + \tau^4$
6. $J_5(\tau) = 1 + 5\tau + 10\tau^2 + 10\tau^3 + 5\tau^4 + \tau^5$

3. The Function Approximation

For determining an approximate (N-S) of (1) the function $V(\tau)$ is approximated by (T-Ps) basis on $[x_1, x_2]$ as follows:

$$V(\tau) \cong [\tau] = \delta_0 J_0(\tau) + \delta_1 J_1(\tau) + \cdots + \delta_n J_n(\tau) = \sum_{m=0}^{n} \delta_m J_m(\tau),$$

(3)

where δ_m ($m = 0, 1, ..., n$) are unknown constant values to be calculated.

It is easy to write equation (3) as a dot scalar of two vectors:

$$V(\tau) = [\tau] = \begin{bmatrix} \delta_0 \\ \delta_1 \\ \vdots \\ \delta_n \end{bmatrix} \cdot \begin{bmatrix} J_0(\tau) \\ J_1(\tau) \\ \cdots \\ J_n(\tau) \end{bmatrix},$$

(4)

we can convert equation (4) to the operational matrix for (T-Ps) form as:
V(τ) = \begin{bmatrix}
1 & 1 & 1 & 1 & 1 \\
0 & 1 & 2 & 3 & 4 \\
0 & 0 & 1 & 3 & 6 \\
0 & 0 & 0 & 1 & 4 \\
0 & 0 & 0 & 0 & 1 \\
\end{bmatrix} \begin{bmatrix}
\delta_0 \\
\delta_1 \\
\delta_2 \\
\delta_3 \\
\delta_4 \\
\end{bmatrix}, \quad \text{(5)}

where \(a_m \) are known coefficients of the power basis, used to calculate the (T-Ps). “It is clear that this matrix upper triangular”.

Now, for example, in cases \(n=2 \) and \(4 \), the operational matrices are equation (6) and equation (7) respectively.

\[
V(τ) = \begin{bmatrix}
1 & τ & τ^2 \\
0 & 1 & 2 \\
0 & 0 & 1 \\
\end{bmatrix} \begin{bmatrix}
\delta_0 \\
\delta_1 \\
\delta_2 \\
\end{bmatrix}, \quad \text{(6)}
\]

\[
V(τ) = \begin{bmatrix}
1 & τ & τ^2 & τ^3 & τ^4 \\
0 & 1 & 2 & 3 & 4 \\
0 & 0 & 1 & 3 & 6 \\
0 & 0 & 0 & 1 & 4 \\
0 & 0 & 0 & 0 & 1 \\
\end{bmatrix} \begin{bmatrix}
\delta_0 \\
\delta_1 \\
\delta_2 \\
\delta_3 \\
\delta_4 \\
\end{bmatrix}, \quad \text{(7)}
\]

4. Solution of (LFIE2-K) using (T-Ps).

In this section, we will use (T-Ps) to estimate the (N-S) for the (LFIE2-K).

Recalling that equation (1) is:

\[
V(τ) = g(τ) + φ \int_{x_1}^{x_2} X(τ, y) V(y) dy \quad x_1 ≤ τ, y ≤ x_2 , \quad \text{(8)}
\]

and by using equation (3), let

\[
V(τ) = \sum_{m=0}^{n} \delta_m J_m(τ) , \quad \text{(9)}
\]

where \(\delta_m \) (\(m = 0, 1, ..., n \)) are unknown values to be calculated by applying (T-Ps).

Substituting equation (9) in equation (8), we have:

\[
\sum_{m=0}^{n} \delta_m J_m(τ) = g(τ) + φ \int_{x_1}^{x_2} x(τ, y) \sum_{m=0}^{n} \delta_m J_m(y) dy , \quad \text{(10)}
\]

also by using equation (4), equation (10) become:
by using equations (5), then equation (11) converted to the form:

\[
\begin{bmatrix}
\delta_0 \\
\delta_1 \\
\vdots \\
\delta_n
\end{bmatrix} = g(\tau) + \varphi \int_{x_1}^{x_2} x(\tau,y) \begin{bmatrix}
\delta_0 \\
\delta_1 \\
\vdots \\
\delta_n
\end{bmatrix} dy
\]

After computing the integration, the linear system in equation (12) can be solved by standard method to calculate the unknown values \(\delta_i\)'s, where these values are used in equation (3) to get the (N-S) approximately.

The following algorithm shows the steps for getting the (N-S) for the (LFIE2-K).

5. The Algorithm:

Step 1:
We choose \(n\), degree of (T-Ps)

\[
J_n(\tau) = \sum_{m=0}^{n} S(n,m)\tau^m = \sum_{m=0}^{n} \binom{n}{m} \tau^m.
\]

Step 2:
Substitute the (T-Ps) in the (LFIE2-K)
Step 3:
Compute
\[
\begin{bmatrix}
1 & \tau & \tau^2 & \ldots & \tau^n \\
\end{bmatrix}
\begin{bmatrix}
a_{00} & a_{01} & a_{02} & \ldots & a_{0n} \\
0 & a_{11} & a_{12} & \ldots & a_{1n} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \ldots & a_{nn} \\
\end{bmatrix}
\begin{bmatrix}
\delta_0 \\
\delta_1 \\
\vdots \\
\delta_n \\
\end{bmatrix}
\]
\[= g(\tau) + \varphi \int_{x_1}^{x_2} X(\tau, y) [1 \ y \ y^2 \ldots y^n] \, dy\]
and Compute
\[
\begin{bmatrix}
1 & \tau & \tau^2 & \ldots & \tau^n \\
\end{bmatrix}
\begin{bmatrix}
a_{00} & a_{01} & a_{02} & \ldots & a_{0n} \\
0 & a_{11} & a_{12} & \ldots & a_{1n} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \ldots & a_{nn} \\
\end{bmatrix}
\begin{bmatrix}
\delta_0 \\
\delta_1 \\
\vdots \\
\delta_n \\
\end{bmatrix}
\]
\[= \delta_{x_1}^{} + \delta_{x_2}^{} (1.3437) \delta_{x_3}^{} + (1.5155) \delta_{x_4}^{} = \begin{bmatrix} 0.7408 \end{bmatrix}
\]

Step 4:
Compute \(\delta_m\), by choosing \(\tau_1, \tau_2, \ldots, \tau_n\), \(m = 0, 1, 2, \ldots, n\)

6. The illustrative Examples

Example (1): consider the following (LFIE2-K) on \([0, 1]\) given in [13, 14]

\[J(\tau) = e^{-\tau} - \int_0^1 \tau e^\varphi J(y) \, dy\]

where \(g(\tau) = e^{-\tau}, \varphi = -1, X(\tau, y) = \tau e^\varphi\),

and the exact solution is \(J(\tau) = e^{-\tau} - \frac{\tau}{2}\).

Now, we apply the algorithm of the proposed method with degree \(n=2\) for (T-Ps), we have the linear system:

(\(1.1718\)) \(\delta_0 + (1.3718) \delta_1 + (1.6537) \delta_2 = (0.9048)\)

(\(1.3437\)) \(\delta_0 + (1.7437) \delta_1 + (2.3273) \delta_2 = (0.8187)\)

(\(1.5155\)) \(\delta_0 + (2.1155) \delta_1 + (3.0210) \delta_2 = (0.7408)\)

we solve this system by “Gauss elimination” we have:

\(\delta_0 = 2.90821516\), \(\delta_1 = -2.31996650\), \(\delta_2 = 0.41088681\)
Then, we substitute these values in equation (3) we get the (N-S) of equation (1) approximately as follows:

\[V(\tau) \approx (2.90821516) + (-2.31996650)(1 + \tau) + (0.41088681)(1 + 2\tau + \tau^2). \]

According to the (L.S.E.) between the (E-S) and approximating (N-S) are presented in Table (1) and Figure (1).

Table (1): The Numerical Results for (LFIE2-K)

\(\tau \)	\((E-S) = V(\tau) = e^{-\tau} - \frac{\tau}{2} \)	Method (B-Ps) of [13] for \(n=2 \)	Method (B-Ps) of [14] for \(n=2 \)	Proposed Method (T-Ps) for \(n=2 \)
0.0	1	1	1	1
0.1	0.8548	0.8590	0.8590	0.8534
0.2	0.7187	0.7241	0.7241	0.7160
0.3	0.5908	0.5955	0.5955	0.5867
0.4	0.4703	0.4730	0.4730	0.4657
0.5	0.3565	0.3568	0.3568	0.3528
0.6	0.2488	0.2467	0.2467	0.2481
0.7	0.1466	0.1428	0.1428	0.1517
0.8	0.0493	0.0452	0.0452	0.0634
0.9	-0.0434	-0.0463	-0.0463	-0.0167
1.0	-0.1321	-0.1316	-0.1316	-0.0885

L.S.E. = \(\sum_{i=0}^{10} (V(\tau)_{\text{Exact}} - V(\tau)_{\text{Numerical}})^2 \) = 1.0 E–3

Figure (1): (E-S) and (N-S) for (LFIE2-K).
Example (2): consider the following (LFIE2-K) on $[-1, 1]$ given in [12]

$$J(\tau) = \tau + \int_{-1}^{1} (\tau^4 - y^4) J(y) dy,$$

where $\varphi = 1$, $\lambda(\tau, y) = (\tau^4 - y^4)$, and the exact solution is $J(\tau) = \tau$

choosing $n=4$, $\delta_m (m = 0, 1, ..., 4)$ are obtained as follows:

$\delta_0 = -1.0$, $\delta_1 = 1.0$, $\delta_2 = 0$, $\delta_3 = 0$, $\delta_4 = 0$,

after substituting these values in equation (3) we have the (N-S) of equation (1) approximately by:

$$V(\tau) \cong -1.0 + (1.0)(1 + \tau)$$

Table(2) and Figure (2) show the results.

Table (2): Absolute Error of (E-S) and (N-S) for (LFIE2-K).

τ	Absolution Value of Error, Method of [12]: (B-Ps) for n=4	Absolution Value of Error, Proposed Method: (T-Bs) for n=4
-1.0	0	0
-0.8	0	0
-0.6	1.110223024625157e−016	9.18355e157999121e−41
-0.4	2.220446049250313e−016	4.59177480789956e−41
-0.2	1.665334536937735e−016	1.37753e42369868e−40
0	0	0
0.2	5.551115123125783e−017	9.18355e157999121e−41
0.4	1.110223024625157e−016	1.37753e42369868e−40
0.6	2.220446049250313e−016	0
0.8	1.110223024625157e−016	1.836709923159824e−40
1.0	0	0
7. Conclusion

In this paper, we applied the (T-Ps) method on two examples for solution of (LFIE2-K) and compared our numerical solutions with numerical solutions of other method (B-Ps) which is used by three researchers they are [12], [13] and [14], we found that our proposed method is very convenient and effective for finding approximate numerical solutions for integral equations as shown in tables and figures.

References

[1]. R. P. Kanwal, “Linear Integral Equations theory & technique”, Springer Science +Media New York, 2013.

[2]. Abdul-Majid Wazwaz, “Linear and Nonlinear Integral Equations Methods and Applications”, Springer, Heidelberg, Dordrecht, London, New- York, 2011.

[3]. A. Polyanin and A. V. Manzirov, “Handbook of Integral Equations”, 2nd Edition, Chapman and Hall/ CRC, 2008.

[4]. A.J. Jerri, “Introduction to Integral Equations with Applications”, Wiley, New York, 1999

[5]. A. Nazir, Muhammad Usman and Syed Tauseef Mohyud-din, “Touchard Polynomials Method for Integral Equations”, International Journal of Modern Theoretical physics, 3(1), pp: 74-89, 2014

[6]. V. S. Khalifeh and R. ezzati, “Numerical Solution of two Dimensional Nonlinear Fuzzy Fredholm Integral Equations of Second Kind Using Hybrid of Block-Plus Function and Bernstein Polynomials”, Faculty of Science and Mathematics, Vol. 32, pp: 4923-4935, 2018

[7]. B. Yilmaz and Y. Cetin, “Numerical Solution of Fredholm Integral Equations of the Second Type”, New Trends, No.3, pp: 284-292, 2017

[8]. R. B. Paris, “The Asymptotes of the Touchard Polynomials”, Mathematica Aeterna, Vol. 6, No. 5, pp: 765-779, 2016
[9]. M. Mihoubi and M. Maamra, “Touchard polynomials, Partial Bell polynomials and polynomials of Binomial type”, Journal of Integer Sequences, Vol.14, Article 11.3.1, 2011

[10]. Z. W. Sun and D. Zagier, “ON A curious Property of Bell Numbers”, Bull. Aust. Math. Soc. 84, pp: 153-158, 2011

[11]. T. Mansour and M. Schork, “The Generalized Touchard Polynomials Revisited”, Vol. 28, No.17, 2010.

[12]. J. Hou, C. Yang and S. Wang, “Numerical Solution of Fredholm Integral Equation by Using Bernstein Polynomials”, Published in IEEE International Conference on Progress in Informatics and Computing, Shanghai, china, Inspect Accession Number: 11747230, pp: 427-430, 2010.

[13]. H. S. Ali, W. S. Ali, “An approximate Solution of Fredholm Integral Equation Using Bernstein Polynomials”, Eng. & Tech. Journal, Vol. 28, No.17, 2010

[14]. A. K. Al-Juburee, “Approximate Solution for Linear Fredholm Integro-Differential Equation and Integral Equation by using Bernstein Polynomials Method”, Journal of the collage of basic education, vol 15, Issue 66, pp: 11-20, 2010