Optimization of Monte-Carlo calculations of the effective potential

A. Ardekania,b,\textdagger and A. G. Williamsa,b,\ddagger
aDepartment of Physics and Mathematical Physics
bSpecial Research Center for the Subatomic Structure of Matter,
University of Adelaide, SA 5005, Australia

Abstract

We study Monte Carlo calculations of the effective potential for a scalar field theory using three techniques. One of these is a new method proposed and tested for the first time. In each case we extract the renormalised quantities of the theory. The system studied in our calculations is a one component ϕ^4 model in two dimensions. We apply these methods to both the weak and strong coupling regime. In the weak coupling regime we compare our results for the renormalised quantities with those obtained from two-loop lattice perturbation theory. Our results are verified in the strong coupling regime through comparison with the strong coupling expansion. We conclude that effective potential methods, when suitably chosen, can be accurate tools in calculations of the renormalised parameters of scalar field theories.

\dagger aardekan@physics.adelaide.edu.au
\ddagger awilliam@physics.adelaide.edu.au
I. INTRODUCTION

An understanding of the underlying vacuum structure of a quantum field theory is essential for understanding its physical content. This analysis is conveniently carried out by calculating a quantity known as the effective potential, denoted by \(U(\phi) \), and the minimum of which gives information as to the nature of the lowest energy eigenstate of the theory. This makes \(U(\phi) \) very useful, particularly in studies of spontaneous symmetry breaking (SSB). The effective potential determines the one particle irreducible (1PI) vertices at zero momenta and reflects any non-trivial dynamics. It is also widely used to study radiative corrections in quantum field theories. Truncating the loop expansion of the effective potential often gives it a complex and nonconvex character, in spite of the fact that on general grounds the effective potential must be real and of convex character. It has been pointed out that the loop expansion for the effective potential fails for the fields in just those regions where the classical potential is nonconvex; the most familiar case corresponds to a double-well potential. Therefore, it is important to carry out nonperturbative studies which can be used even where the loop expansion is not applicable. One convenient nonperturbative approach is to employ a discrete version of the theory, i.e., lattice field theory. Lattice field theories have an ultraviolet (UV) regulator (the lattice spacing) and and an infrared (IR) cut-off (the lattice size) and are conveniently studied using Monte Carlo (MC) methods.

The model used in our study is the \(\lambda \phi^4_{1+1} \) model. The Higgs mechanism is based on a more elaborate version of such a model and is usually discussed at the tree level. A fully nonperturbative treatment of the Higgs model would be of considerable interest, but is not discussed further here.

In this work we investigate the effective potential for \(\lambda \phi^4_{1+1} \) using three different methods: The variation of the source method (VSM) and two types of constraint effective potential, which we denote as CEPI and CEPII, (see refs. and respectively).

We point out the advantages and disadvantages of each method and their accuracy. Some suggestions for improving the methods are also put to the test. In Sec. 2 we briefly summarise the model to be studied. In Sec. 3 we review the above methods of calculation of the effective potential. In Sec. 4 we perform the calculations for both the symmetric and the spontaneous symmetry breaking cases in the weak coupling regime and we compare our results with those obtained from lattice perturbation theory. We also perform calculations in the strong coupling regime and compare these with the strong coupling expansion.
II. THE $\lambda \phi^4$ MODEL

We start with the action of a single component $\lambda \phi^4$ theory in d-dimensions in Euclidean space in the presence of a source J, (in units where $\hbar = c = 1$)

$$S[\phi, J] = \int d^d x \left(\frac{1}{2} (\partial_\mu \phi)^2 + \frac{1}{2} m^2 \phi^2 + \frac{\lambda}{4!} \phi^4 - J \phi \right).$$

A discrete lattice version of the action can be written as

$$S[\hat{\phi}, \hat{J}] = \left[\frac{1}{2} \sum_{n, \mu} (\hat{\phi}_{n, \mu} - \hat{\phi}_n)^2 + \frac{1}{2} \sum_n \hat{m}^2 \hat{\phi}_n^2 + \sum_n \frac{\hat{\lambda}}{4!} \hat{\phi}_n^4 - \sum_n \hat{J}_n \hat{\phi}_n \right],$$

(1)

where we have defined the dimensionless quantities $\hat{\phi} \equiv a^{(d/2)-1} \phi$, $\hat{m} \equiv ma$ and $\hat{\lambda} \equiv \lambda a^{4-d}$ and $\hat{J} \equiv a^{(d/2)+1} J$. In addition $n \equiv (n_1, \ldots, n_d)$ is a d-dimensional vector labeling the lattice sites and μ is a unit vector in the temporal or spatial direction. The sum over μ is over the d Euclidean directions. We also have denoted the field on the neighboring site of n in the direction of μ by $\hat{\phi}_{n, \mu}$. Henceforth we drop the hat from the dimensionless field variables and sources for brevity unless it is necessary to avoid confusion. We also impose the appropriate periodic boundary condition on fields:

$$\hat{\phi}_{n+N_\mu} = \phi_n \quad \text{for all } \mu,$$

(2)

where $\hat{N}_\mu = (0, \ldots, N_\mu, \ldots, 0)$, is a d-dimensional vector with N_μ being the number of lattice sites in the direction μ.

The ϕ^4 theory is known to exist in two phases, one where the reflection symmetry $\phi \rightarrow -\phi$ is spontaneously broken and the other where it is not. The symmetric phase with $\langle \hat{\phi} \rangle = 0$, is separated from the broken symmetry phase with $\langle \hat{\phi} \rangle \neq 0$ by a line of second order phase transitions where \hat{m} and $\hat{\lambda}$ assume the critical values \hat{m}_c and $\hat{\lambda}_c$.

For the action $S[\phi]$ on the lattice the generating functional for the correlation functions is defined as:

$$Z[J] = \frac{\int [d\phi] e^{-S[\phi, J]} \right]}{\int [d\phi] e^{-S[\phi]}},$$

(3)

such that $Z[0] = 1$. From $Z[J]$ one can define the connected Green’s functions as:

$$G(n_1, \ldots, n_j) = \frac{\partial}{\partial J_{n_1}} \cdots \frac{\partial}{\partial J_{n_j}} W[J] |_{J=0},$$

(4)

where

$$W[J] = \ln Z[J].$$

(5)
III. THE LATTICE EFFECTIVE POTENTIAL

Consider a lattice lagrangian density on a d-dimensional cubic lattice with the total number of lattice sites N^d,

$$\mathcal{L}_n = \sum_\mu \frac{1}{2} (\phi_{n,\mu} - \phi_n)^2 + V(\phi_n).$$ \hspace{1cm} (6)

The classical vacuum (ground state) is at the minimum of $V(\phi)$. The vacuum expectation value $\langle \phi \rangle$ of the quantum field is not necessarily identical to the classical vacuum. The vacuum expectation value of the field in the presence of an external source, $J(x)$ is given by

$$\phi_{cn}[J] \equiv \frac{\partial W[J]}{\partial J_n}.$$ \hspace{1cm} (7)

The vacuum expectation value $\langle \phi \rangle$ is the limit of ϕ_{cn} as $J \to 0$. Hence we can ask for what value of J can one obtain a given ϕ_c. One can choose to treat ϕ_c as the independent variable instead of J and define the “effective action” $\Gamma[\phi_c]$ by a Legendre transformation:

$$\Gamma[\phi_c] = \sum_n \phi_{cn} J_n - W[J],$$ \hspace{1cm} (8)

where ϕ_c is defined in Eq. (7). It is easy to verify that

$$J_n[\phi_c] \equiv \frac{\partial \Gamma[\phi_c]}{\partial \phi_{cn}}.$$ \hspace{1cm} (9)

In the case $J = 0$, by translational invariance it follows that ϕ_c must become constant (i.e, independent of the label n). Hence the vacuum expectation value is given by $\langle \phi \rangle$ and satisfies

$$\frac{d\Gamma[\phi_c]}{d\phi_c} \bigg|_{\phi_c = \langle \phi \rangle} = 0.$$ \hspace{1cm} (10)

Similarly for any constant J we must have $\phi_c = \bar{\phi}$ also constant. Define the effective potential, $U(\bar{\phi})$, by

$$\Gamma[\bar{\phi}] = N^d U(\bar{\phi}).$$ \hspace{1cm} (11)

The Fourier transform on a finite, discrete lattice is defined by

$$\tilde{\phi}_k \equiv \sum_n e^{2\pi i n \cdot \hat{k}/N} \phi_n,$$ \hspace{1cm} (12)

where $\hat{k} \equiv \hat{k}_1, \ldots, \hat{k}_d$ is a d dimensional vector with $(-N/2) < \hat{k}_n \leq N/2$. (we assume N is even from this point) and where $n.\hat{k} \equiv n_1\hat{k}_1 + \ldots + n_d\hat{k}_d$. The coordinate-space and momentum-space δ-functions are
\[\delta_{m,n} = \frac{1}{N^d} \sum_k e^{-2\pi i (n-m) \hat{k}/N} \]
\[\hat{\delta}_{k,q} = \frac{1}{N^d} \sum_n e^{-2\pi i (\hat{k} - \hat{q}) n / N} \]

respectively. The inverse Fourier transform is
\[\phi_n = \frac{1}{N^d} \sum_k e^{-2\pi i n \hat{k}/N} \tilde{\phi}_k \]

Note that we have used the asymmetric normalisation of the Fourier transform and its inverse as is usual in the field theory in the continuum. The effective action is the generator of proper (i.e, one-particle irreducible) Green’s functions and in particular we can Taylor expand the effective action to give
\[\Gamma[\phi_c] = \sum_{M=0}^{\infty} \frac{1}{M!} \sum_{n_1,\ldots,n_M} \Gamma^{(M)}(n_1,\ldots,n_M) \phi_{cn_1} \cdots \phi_{cn_M}. \]

Here \(\Gamma^{(M)}(n_1,\ldots,n_M) \) is the proper \(M \)-point Green’s functions in presence of the source \(J_n \)
\[\frac{\partial^M \Gamma[\phi]}{\partial \phi_{cn_1} \cdots \partial \phi_{cn_M}} = \Gamma^{(M)}(n_1,\ldots,n_M). \]

In terms of its Fourier transforms we have
\[\Gamma[\tilde{\phi}_c] = \sum_{M=0}^{\infty} \frac{1}{M!} \frac{1}{N^d M!} \sum_{\hat{k}_1,\ldots,\hat{k}_M} \tilde{\Gamma}^{(M)}(\hat{k}_1,\ldots,\hat{k}_M) \tilde{\phi}_{-\hat{k}_1} \cdots \tilde{\phi}_{-\hat{k}_M}, \]

where here \(\tilde{\phi} \) is the Fourier transform of \(\phi_c \)

The vacuum proper Green’s functions are obtained by setting \(J = 0 \). If the source is a constant (\(J_n = J \) for all \(n \)), then the translational invariance is restored and we can factor out an overall normalisation and a \(\delta \)-function to define
\[\tilde{\Gamma}^{(M)}(\hat{k}_1,\ldots,\hat{k}_M) \equiv N^d \delta_{0,\hat{k}_1+\ldots+\hat{k}_M} \tilde{\Gamma}^{(M)}_c(\hat{k}_1,\ldots,\hat{k}_M) \]

Where in the limit \(J \to 0 \) we recognise that \(\tilde{\Gamma}^{(M)}_c(\hat{k}_1,\ldots,\hat{k}_M) \) is the dimensionless, lattice equivalent of the proper \(M \)-point Green’s function in momentum space. For constant \(J \) we also have \(\phi_{cn} \to \tilde{\phi} \) and hence \(\tilde{\phi} = N^d \delta_{\hat{k}_0,0} \tilde{\phi} \) and Eq. (18) gives
\[\Gamma(\tilde{\phi}) = N^d \sum_{M=0}^{\infty} \frac{1}{M!} \tilde{\Gamma}^{(M)}_c(0) \tilde{\phi}^M, \]

where
\[\tilde{\Gamma}^{(M)}_c(0) \equiv \tilde{\Gamma}^{(M)}_c(0,\ldots,0). \]
\[U(\phi) = \sum_{M=0}^{\infty} \frac{1}{M!} \tilde{\Gamma}_c(M)(0) \phi^M. \] (20)

It immediately follows that
\[\frac{d^M U(\phi)}{d\phi^M} \bigg|_{\phi=\langle \phi \rangle=0} = \tilde{\Gamma}_c^{(M)}(0), \] (21)

where here it is understood that we are working in the unbroken symmetry sector, \(\langle \phi \rangle = 0 \). In the unbroken sector we see from Eq. (20) that the dimensionless, proper Greens functions with vanishing momenta can be easily obtained from the effective potential, \(U(\phi) \), by differentiation. We see that \(\phi \) minimises \(U(\phi) \) and in the limit \(J \to 0 \) the minimum \(\phi \to \langle \phi \rangle \). Also note that Eq. (9) gives an expansion of \(J \) in terms of the \(\phi \)'s and \(\Gamma(0)'s \)
\[J(\phi) = N^d \sum_{M=1}^{\infty} \frac{1}{(M-1)!} \tilde{\Gamma}_c^{(M)}(0) \phi^{M-1}. \] (22)

In the broken symmetry sector, \(\langle \phi \rangle \neq 0 \), it is more appropriate to use the shifted field
\[\chi(x) \equiv \phi(x) - \langle \phi \rangle. \] (23)

The one-particle irreducible (1PI) vertex functions \(\Gamma^{(M)}(s) \) are linear combination of the \(\Gamma^{(M)}'s \), and can be obtained from the shifted version of Eq. (20)
\[U(\phi) \equiv U(s(\chi)) = U(s(\phi - \langle \phi \rangle)) = \sum_{M=0}^{\infty} \frac{[\phi - \langle \phi \rangle]^M}{M!} \tilde{\Gamma}^{(M)}(s)(0). \] (24)

As is usually done in lattice field theory studies we renormalise at the renormalisation point where all external momenta of the Greens functions vanish. The renormalised quantities can be obtained directly from the effective potential. For example in the \(\lambda \phi^4 \) theory we have:
\[\frac{dU(\phi)}{d\phi} \bigg|_{\phi=\langle \phi \rangle} = 0 \] (25)
\[Z \frac{d^2 U(\phi)}{d\phi^2} \bigg|_{\phi=\langle \phi \rangle} = Z \tilde{\Gamma}^{(2)}_c(0) = \tilde{\Gamma}_r^{(2)} = \tilde{m}_r^2 \] (26)
\[Z^2 \frac{d^3 U(\phi)}{d\phi^3} \bigg|_{\phi=\langle \phi \rangle} = Z^2 \tilde{\Gamma}^{(4)}_c(0) = \tilde{\Gamma}_r^{(4)} = \tilde{\lambda}_r. \] (27)

where \(\sqrt{Z} \) is the field wavefunction renormalisation constant \((\phi_r = \sqrt{Z}\phi) \). From the first two conditions above and requiring \(\tilde{m}_r^2 \geq 0 \) it follows that \(\langle \phi \rangle \) is at the minimum of \(U(\phi) \). Also note that \(\tilde{m}_r \) and \(\tilde{\lambda}_r \) defined as above are not the physical mass and coupling, which are defined in the pole of the propagator in the complex energy plane and the on shell four-point function, respectively. However in the scaling region (close to the critical line) these values are a good approximation to the physical mass and coupling \([8] \).
IV. THE MC EFFECTIVE POTENTIAL.

In this section we will examine three MC methods for calculation of the lattice effective potential. The renormalised coupling constants obtained by these methods are compared with analytical results. From this point on we work exclusively in two dimensions (d=2).

A. The variation of source method (VSM)

Eq. (22) suggests that in the Monte Carlo calculation one can calculate the mean value of the fields, ϕ, for different values of the source and as a result one obtains $\bar{\phi}$ as a function of J. This function can then be inverted to obtain J as a function of $\bar{\phi}$, i.e., $J(\bar{\phi})$. Then using Eq. (22) we see that the derivatives of J with respect to $\bar{\phi}$ would give the proper Green’s functions at zero momentum. From Eq. (7) one also concludes that ϕ_J is antisymmetric in J. That is

$$\phi_J = -\phi_{-J}. \tag{28}$$

Fig. 1 shows $J(\bar{\phi})$ as a function of $\bar{\phi}$ for the symmetric case (Fig. 1a) and the broken symmetry case (Fig.1b). Note that for the broken symmetry case, ϕ_J as a function of J is discontinuous and so the relation in Eq. (22) can not be inverted for all $\phi(J)$. Whenever it is possible Eq. (22) has to be inverted to obtain the source J as a function of $\bar{\phi}$. Then the derivatives of J with respect to $\bar{\phi}$ would give the vertex functions at zero momenta and consequently the renormalised masses and couplings can be calculated.

The mean value of the field in the presence of a source has a small statistical error. This is expected since it is an analog to the reduction of fluctuations of a spin system in the presence of an external magnetic field. As the source becomes smaller the fluctuations become larger. Thus one needs to perform the calculations for large enough sources that the error is small and then extrapolate the results to $J = 0$.

This method will be referred to as the variation of source method (VSM) and has a number of advantages. The vacuum expectation values of the field $\phi(J)$ are the simplest quantities to compute on the lattice and their J-dependence can be exploited to get the first derivative of the effective potential. Since the source effectively causes the boson field to become more massive, the finite size effects generated by the lattice become exponentially small provided that the lattice is large enough. Since the data become noisy for small values of J we need to restrict the analysis to a safe region of J, which can introduce some errors in the results through uncertainties in the extrapolation.
B. The Constraint Effective Potential (CEP I)

In the last section the effective action and the effective potential \(U(\phi) \) were defined through introduction of a source \(J \). There is a different method which does not require such a dynamical symmetry breaking source. The constraint effective potential was first introduced by Fukuda and Kyriakoloulos \([7]\) as an alternative way of obtaining the explicit expression for the effective potential. It was further analyzed by O’Raifertaigh, Wipf and Yoneyama \([9]\). In this approach one obtains an explicit expression for the effective potential, without introducing external sources, but instead through the introduction of a \(\delta \)-function in the functional integral.

In the constraint effective potential approach one first defines \(\widetilde{U}(\phi) \equiv U(N^2, \phi) \) as
\[
e^{-N^2\widetilde{U}(\phi)} = \int [d\phi] \delta \left(\frac{1}{N^2} \sum_n \phi_n - \phi \right) e^{-S[\phi]} \tag{29}
\]
and then uses the fact that as \(N^2 \to \infty \) we have \(\widetilde{U}(\phi) \to U(\phi) \) and the effective potential is recovered. It is easiest to demonstrate this result in Minkowski space, where Eq. (29) becomes
\[
e^{-iN^2\widetilde{U}(\phi)} = \int [d\phi] \delta \left(\frac{1}{N^2} \sum_n \phi_n - \phi \right) e^{iS[\phi]} \tag{30}
\]
We can replace the \(\delta \)-function in Eq. (30) by its integral representation to obtain (up to an irrelevant constant)
\[
e^{-iN^2\widetilde{U}(\phi)} = C \int dJ \int [d\phi] e^{i \int dx [L+J\phi-iN^2\phi J]} = C' \int dJ e^{i(W[J]-N^2J\phi)} \tag{31}
\]
Note that in the integrand of Eq. (31) we have \(\phi \) fixed and \(J \) arbitrary. In the limit, \(N^2 \to \infty \) the dominate contribution to the integral comes from the stationary point of the integral which is the value of \(J \) at which \(dW[J]/dJ = \phi \). Recall that \(\Gamma(\phi) = (J\phi - W[J])\big|_{\phi=dW[J]/dJ} \), from which we see that up to an irrelevant overall constant
\[
e^{-iN^2\widetilde{U}(\phi)} \to e^{-i\Gamma(\phi)} = e^{-iN^2U(\phi)} \quad \text{as} \quad N^2 \to \infty, \tag{32}
\]
as claimed.

We can also arrive at this result directly in Euclidean space by multiplying both sides of Eq. (29) by \(e^{NJ\phi} \) with \(J \) arbitrary and then integrating over \(\phi \) to obtain
\[
\int d\phi \ e^{-N^2\widetilde{U}(\phi)-J\phi} = \int [d\phi] \ e^{-S[\phi]+J\sum_n \phi_n}. \tag{33}
\]
As \(N^2 \to \infty \) the left hand side of Eq. (33) becomes entirely dominated by the stationary point of the one-dimensional \(\phi \) integration given by \(d\widetilde{U}(\phi)/d\phi = J \), while the right hand side is recognised as \(e^{W[J]} \) for a constant source, \(J \). Hence up to an irrelevant overall constant we find...
\[e^{-N^2 \tilde{U}(\phi) - J \phi} \rightarrow e^{W[J]} \quad \text{as} \quad N^2 \rightarrow \infty, \]

and so find that (up to a constant) \[e^{-N^2 \tilde{U}(\phi)} \rightarrow e^{W[J] - N^2 J \phi} = e^{-N^2 U(\phi)} \quad \text{as} \quad N^2 \rightarrow \infty, \]

as required.

It is important to note that the \(e^{-N^2 \tilde{U}(\phi)} \) relates to similar definitions in statistical mechanics and spin systems \[^{[10]}\] and that

\[P(\phi) = \frac{e^{-N^2 \tilde{U}(\phi)}}{\int d\phi \, e^{-N^2 \tilde{U}(\phi)}}. \]

(36)

can be interpreted as the probability density for the system to be in a state of “magnetization”, \(\bar{\phi} \). Then it can be seen that the probability for a state whose average field is not a minimum of \(\tilde{U}(\phi) \) then decreases as \(N^2 \rightarrow \infty \).

This suggests that one needs to study the probability distribution of the order parameter \(\bar{\phi} \). Using a Monte Carlo algorithm one generates a Boltzman ensemble of configurations, \(\{\phi\} \), weighted by \(e^{-S[\phi]} \). Let \(d\mathcal{N} \) be the number of configurations with average field values in an interval \(d\bar{\phi} \) about \(\bar{\phi} \). Then

\[d\mathcal{N}(\bar{\phi}) = C e^{-N^2 \tilde{U}(\bar{\phi})} d\bar{\phi}, \]

(37)

with \(C \) some constant. Then one can write

\[\tilde{U}(\bar{\phi}) = -\frac{1}{N^2} \ln d\mathcal{N}(\bar{\phi}) d\bar{\phi}, \]

up to an irrelevant additive constant. Eq. (36) suggests that one can generate a large number of configurations weighted by \(e^{-S[\phi]} \), calculate \(\bar{\phi} \) for each configuration and construct a normalised histogram. The histogram can be fitted to Eq. (38). The most probable average field values are near the minimum of the effective potential. In order to determine \(\tilde{U}(\bar{\phi}) \) away from its minimum, \(\text{i.e.}, \) to sample a range of relatively improbable values of \(\bar{\phi} \), one can introduce a small source. Then a simple generalisation of Eq. (36) allows a nonzero external source \[^{[11]}\]

\[\tilde{U}(\bar{\phi}) - J \bar{\phi} = -\frac{1}{N^2} \ln \frac{d\mathcal{N}(\bar{\phi})}{d\bar{\phi}}. \]

(39)

Thus one can check whether such an ansatz gives a good approximation for the effective potential, and so construct the effective potential by performing a simultaneous fit of several histograms corresponding to different values of \(J \). By the expression “simultaneous fit”, we mean that the chi-squared values corresponding to each \(J \) are summed and this sum is then minimised. This method can be applied easily on the lattice. Note that in Eq. (34) we have assumed that for sufficiently large \(N^2 \) the finite volume effects on \(\tilde{U}(\bar{\phi}) \) can be neglected, \(\text{i.e.}, \) that the lattice volume is sufficiently large. The constraint effective potential method summarised in Eq. (39) will be referred to as CEPI.
C. The Constraint Effective Potential (CEP II)

Now return to Eq. (29) and perform a shift of field, \(\phi(x) \rightarrow \phi(x) + \bar{\phi} \). Since the measure is translationally invariant we obtain

\[
e^{-N^2\tilde{U}(\bar{\phi})} = \int [d\phi] \delta\left(\frac{1}{N^2} \sum_n \phi_n\right) e^{-S[\phi + \bar{\phi}]} \tag{40}
\]

Taking the derivative with respect to \(\bar{\phi} \) we get

\[
\frac{d\tilde{U}(\bar{\phi})}{d\bar{\phi}} e^{-N^2\tilde{U}(\bar{\phi})} = \frac{1}{N^2} \int [d\phi] \delta\left(\frac{1}{N^2} \sum_n \phi_n\right) \frac{dS(\phi + \bar{\phi})}{d\bar{\phi}} e^{-S[\phi + \bar{\phi}]} \tag{41}
\]

Only the potential part of the action is affected by the shift of field since \(\bar{\phi} \) is constant and so \(dS/d\bar{\phi} = N^2 dV/d\bar{\phi} \). Using this fact and shifting the field back to its original form then gives

\[
\frac{d\tilde{U}(\bar{\phi})}{d\bar{\phi}} = \left\langle \frac{dV(\phi)}{d\phi} \right\rangle_{\phi}, \tag{42}
\]

where we have introduced the shorthand notation

\[
\langle O(\phi) \rangle_{\bar{\phi}} \equiv \left(e^{N^2\tilde{U}(\bar{\phi})} \right) \int [d\phi] \delta\left(\frac{1}{N^2} \sum_n \phi_n - \bar{\phi}\right) O(\phi) e^{-S[\phi]} \tag{43}
\]

In the \(\lambda \phi^4 \) theory being considered here we find

\[
\frac{d\tilde{U}(\bar{\phi})}{d\bar{\phi}} = \tilde{m}^2 \bar{\phi} + \frac{\lambda}{6} \langle \phi^3 \rangle_{\bar{\phi}} \tag{44}
\]

Expressions for some of the higher derivatives of \(U(\bar{\phi}) \) are given in Appendix A. These equations are very useful in the Monte Carlo (MC) calculations since they relate the derivatives of the effective potential (and consequently the zero momentum vertex function) to the averages of quantities that can be calculated directly from the lattice. This method will be referred to as CEPII.

There are two ways of calculating the renormalised quantities using CEP II. The first one applies the constraint on the lattice, fixing \(\bar{\phi} \), then calculates \(\langle \phi^3 \rangle \), and finally uses Eq. (44) to obtain the first derivative of the effective potential. Higher derivative are evaluated from fitting a curve to the \(d\tilde{U}/d\bar{\phi} \) versus \(\bar{\phi} \) results. This has some similarities with the variation of source method, however there is a difference between these two methods. In VSM one sets the source \(J \) to constant and \(\langle \phi \rangle = \bar{\phi} \) up to fluctuations due to finite \(N^2 \), whereas in CEPII we have \(\langle \phi \rangle = \bar{\phi} \) exactly by construction.

In the broken symmetry sector there is another difference between this method and VSM in the broken sector. When using VSM we are not able to obtain any value of \(\langle \phi \rangle \) in the region between the two minima, whereas both CEP methods are suitable for probing this region. One
can always fix \(\bar{\phi} \) to any value including the values between the two minima to get the full shape of \(J(\bar{\phi}) \) (see Fig.2). However as far as the practical calculation of renormalised quantities is concerned, this method is almost equivalent to VSM and so from here on we disregard this approach.

The second approach to CEPII is through the equations shown in Appendix A and is more direct. These equations relate the derivative of the effective potential to the averages of some derivatives of the classical potential. All these averages should be taken in the presence of the constraint which fixes \(\langle \phi \rangle = \bar{\phi} \).

Imposing a constraint on a Monte Carlo algorithm is relatively simple. One starts with a configuration with the field average being \(\bar{\phi} \). Each time a site is updated by a value \(\delta \) (say) such that

\[
\phi_i' = \phi_i + \delta, \quad (45)
\]

then some arbitrary site \(k \) must be updated simultaneously such that \(\phi_k' = \phi_k - \delta \). This procedure is carried out for all the sites, which completes a sweep. For a large enough lattice imposing such a constraint is not expected to violate the ergodicity of the MC algorithm.

The advantage of this method over the VSM is that one does not need to run a Monte Carlo routine several times with different sources, and no curve fitting is required. One disadvantage of this method is that for calculation of the renormalised coupling one needs to add and subtract many average terms as has been shown in Appendix A. Although the statistical errors might be small for each term, the overall errors contributing to the renormalised coupling can be large. However, the renormalised mass in the symmetric phase of the \(\lambda \phi^4 \) theory obtained using this method is very accurate.

We also would like to comment on Fig. 2. It has been shown by a very general argument that \(U''(\bar{\phi}) \geq 0 \) for all \(\bar{\phi} \) \[1\], (primes denote differentiation with respect to \(\bar{\phi} \)). This general property is known as the “convexity” of the effective potential. Looking at Fig. 2 it is clear that this condition is violated for \(\tilde{U}(\bar{\phi}) \). This can be understood by noting that convexity holds only in the thermodynamical limit, i.e., \(N^2 \to \infty \).

To conclude this section it should also be mentioned that the proper vertex functions can be obtained directly using the standard Monte Carlo (MC) method. For example for the \(\lambda \phi^4 \) four point vertex function one obtains

\[
\Gamma^{(4)}_{c}(0) = -\frac{\langle \phi^4 \rangle_c - 3\langle \phi^2 \rangle_c^2}{\langle \phi^2 \rangle_c}. \quad (46)
\]

Here, for example, \(\langle \phi^4 \rangle_c \) is the connected part of vacuum expectation value of fourth power of the Fourier transform of the field at zero momentum. As we will show, in the weak coupling regime this method suffers from very noisy signals giving rise to large statistical errors. The
errors are due to the large fluctuations of correlation functions in this regime as well as the subtraction of the disconnected pieces. However in the strong coupling regime this method gives a relatively good approximation for $\tilde{\Gamma}_c^{(4)}(0)$ and the statistical errors are reasonably small \cite{12}. However the higher order vertex functions calculated with this approach can be very noisy even in the strong coupling regime, primarily due to subtractions of noisy disconnected pieces.

V. THE NUMERICAL RESULTS

In this section we present our results for the calculation of renormalised coupling, λ_r, in two dimensions. It includes the symmetric and broken symmetry sector in the weak coupling regime as well as the strong coupling regime. In the case of the weak coupling regime the results are compared with 2-loop results and the direct calculation of λ_r using the standard MC method in Eq. (46). In the strong coupling regime we also compared the results of each method with the strong coupling expansion results. The details of the numerical simulation are included at the end of this article.

Case 1: The symmetric sector in the weak coupling regime (WCR)

The variation of the source method (VSM):
Here we study the model in the symmetric sector where $\langle \phi \rangle = 0$. As we will see, all methods presented in this paper require the calculation of renormalised mass \tilde{m}_r, and the wavefunction renormalisation constant, Z. In general, the boson propagator extracted from the lattice has the form

$$\tilde{G}(\hat{k}) = \frac{Z}{\hat{k}^2 + \tilde{m}_r^2(\hat{k}^2)},$$

where $\tilde{m}_r \equiv \tilde{m}_r(\tilde{m}_r^2)$ is the mass-pole of the scalar particle, i.e., the renomalised mass. In particular at zero momentum

$$\tilde{G}(\hat{k} = 0) = \frac{Z}{\tilde{m}_r^2},$$

where we make the standard approximation that $\tilde{m}_r^2 \approx \tilde{m}_r^2(0)$. The renormalised mass, \tilde{m}_r, is then given as the reciprocal of $\tilde{\zeta}$, the lattice correlation length

$$\tilde{\zeta}^2 = \frac{1}{\tilde{m}_r^2} = \frac{1}{G(\hat{k})} \frac{d\tilde{G}(\hat{k})}{d\hat{k}^2} \bigg|_{\hat{k}=0}. $$

12
Taking into account the translational invariance of the correlation functions, one can choose to approximate the momentum derivative in Eq. (49) by the variation of $\tilde{G}(\hat{k})$ across one lattice spacing and in one direction to obtain

$$\zeta^2 = \frac{N}{2\pi} \left[\frac{\langle \gamma^2 \rangle_c - \langle \alpha^2 \rangle_c - \langle \beta^2 \rangle_c}{\langle \alpha^2 \rangle_c + \langle \beta^2 \rangle_c} \right], \quad (50)$$

with

$$\alpha = \sum_{n=1}^{N} \sum_{m=1}^{N} \phi_{n,m} \cos \left(\frac{2\pi}{N} (n - \frac{N}{2}) \right)$$

$$\beta = \sum_{n=1}^{N} \sum_{m=1}^{N} \phi_{n,m} \sin \left(\frac{2\pi}{N} (n - \frac{N}{2}) \right)$$

$$\gamma = \sum_{n=1}^{N} \sum_{m=1}^{N} \phi_{n,m}, \quad (51)$$

where here n, m label the temporal and spatial coordinates for the field ϕ respectively.

There are two different ways of calculating Z. One is to use Eq. (48) and the fact that $\tilde{G}(0) = N^2 \langle \tilde{\phi}^2 \rangle$ to calculate Z. The second way of calculating Z comes from combining Eqs. (48) and (27) which gives

$$\frac{d^2 U(\tilde{\phi})}{d\phi^2} \bigg|_{\phi = \langle \phi \rangle} = \frac{1}{G(0)}. \quad (52)$$

Thus $\tilde{G}(0)$ can be directly calculated from the fit and the calculation of Z follows as before. An accurate calculation of \hat{m}_r is crucial for both methods. We found that in the weak coupling regime, the second method was more precise. We compared our results with the 2-loop lattice perturbation theory calculations (LPT) of the renormalised parameters. This means that finite size effects may be present in our comparisons at some level. The comparison is shown in Fig. 3. The values for λ_r seem to be accurate even in the very weak coupling regime. In this regime the effective potential results are in good agreement with the lattice perturbation calculations. The MC results begin to deviate from the perturbative calculations as $\hat{\lambda}_r$ increases. This is expected since a loop expansion in $\lambda \phi^4$ theory is an expansion in $\hat{\lambda}_r$ and as this is increased the contribution from higher loops becomes more significant.

The VMS can be expensive in CPU time but the cost can be reduced to some extent. For a value of J it is possible to calculate $D^n(\phi) \equiv \frac{d^n \phi}{dJ^n} \big|_{\phi = \langle \phi \rangle}$ during the calculation of ϕ_J, for each value of J. From these derivatives one can expand $\overline{\phi}_J$ around J and then use a curve fitting routine to calculate λ_r, as we did before. The statistical errors can become larger for the higher derivatives because of the subtraction of the disconnected pieces of $D^n(\phi)$. In Table 1 we have shown a comparison of our previous results for $\overline{\phi}_J$ and results obtained by expansion around three J values, namely, $J = 0.075, 0.25, 0.4$ for $\hat{m}^2 = 0.1, \hat{\lambda} = 0.1$. We see
that the calculated values of ϕ are reasonably close to the previous results. However, the price for reduced computational time is a slight increase in uncertainties.

We have also calculated $\hat{\lambda}$ for $\hat{\lambda} = 0.055$, $\hat{m}^2 = 0.1$ using Eq. (10) and the result is included in Fig. 3. The statistical errors are extremely large and it suggests that the calculation of the 4-point vertex function in this region is impractical with this method.

The constraint effective potential method I (CEPI):

This method is the easiest to implement. We generated the Boltzman ensemble of independent configurations. For every configuration we measured $\bar{\phi} = (1/N^2) \sum_i \phi_i$ and computed the histograms for the probability density $P(\bar{\phi})$ for several values of J. We also noticed that the anzatz of Eq. (39) only worked well for very small J in this region. We did a simultaneous fit to Eq. (36) of a few histograms corresponding to $J = 0$ and small J’s using a three-parameter anzatz for $\bar{U}(\bar{\phi})$ of the form

$$\bar{U}(\bar{\phi}) = a_1 \bar{\phi}^2 + a_2 \bar{\phi}^4 + a_3 \bar{\phi}^6.$$

Although there was no systematic discrepancy between the data and the fit, the statistical errors were very large. We unsuccessfully tried more histograms and higher powers of $\bar{\phi}$ in the fit. The statistical errors remained large and we concluded that even a reasonable estimate of renormalised parameters in this region was not feasible with this method.

The constraint effective potential method II (CEPII):

In this method Eqs. (A4) and (A8) can be used for calculations of \hat{m} and $\hat{\lambda}$, respectively. All averages shown in these equations are to be taken with the constraint of $\bar{\phi} = 0$. Although the statistical errors for each term are small, the overall error can be large. However in the symmetric case in the weak coupling regime most of the terms either vanish at $\bar{\phi} = 0$ or are small enough to be neglected. For example for \hat{m} only three terms need to be considered. But the computation of $\hat{\lambda}$ suffers from larger cumulative errors.

The results are compared with the VSM results and are shown in Table 2. We also compared the calculation of renormalised mass using Eq. (50) with the CEPII calculations in Table 3. The comparison indicates that in this sector the CEPII method can provide an accurate calculation of the renormalised vertex functions.

Case 2: The broken symmetry sector

In this section we consider the calculation of the renormalised mass and renormalised coupling in the broken sector, $\langle \phi \rangle \neq 0$, in the weak coupling regime. The VSM procedure is exactly the same as for the symmetric sector. For fixed $\hat{m}^2 = -0.1$ and $0 < \hat{\lambda} \leq 0.17$ we calculated \hat{m} and $\hat{\lambda}$ for different values of $\hat{\lambda}$. The error on $\tilde{G}(0)$ is larger than the symmetric case due to the subtraction of the disconnected pieces. Thus we used Eq. (52) to calculate $\tilde{G}(0)$ and subsequently extracted Z as previously discussed.
In order to calculate the renormalised quantities using lattice perturbation theory we followed the standard approach to treating the broken sector. That is, in the bare Lagrangian we shifted the field by the classical value of the vacuum, \(\nu = \sqrt{-6m^2/\lambda} \), such that

\[
\chi(x) = \phi(x) + \nu .
\]

(54)

After this translation the mean value of the field, \(\langle \chi \rangle \), vanishes and the perturbative calculation proceeds in the standard manner, keeping in mind that a non-symmetric \(\chi^3 \) interaction has been generated. In lattice perturbation theory one then needs to also consider vertex functions with a three point interaction.

The comparison between the two-loop results and the results from the VSM method are shown in Fig. 4. In applying the CEPII method to the broken symmetry sector, evaluation of all the terms in Eq. (app8) is necessary. This renders this method impractical. As one might expect from the symmetric sector results the calculation of the renormalised parameters using CEPI also suffers from large noise difficulties and the signal could not be recovered.

Case 3 : Strong coupling regime

In a weak coupling expansion the interactive term is pulled out of the path integral representation of the partition function as a functional operator. That is

\[
Z[\hat{J}] = \exp \left[\frac{\lambda}{4!} \sum_n \frac{\delta^4}{\delta J_n^4} \right] \int [d\phi] \exp \left[-\sum_{n,\mu} \frac{1}{2} (\phi_n - \phi_{n,\mu})^2 + \frac{1}{2} \hat{m}^2 \phi_n^2 + \hat{J}_n \phi_n \right].
\]

(55)

The remaining functional is Gaussian and can be done exactly. The partition function can then be written in terms of a power series of \(\hat{\lambda} \) and the standard perturbation theory follows.

The strong coupling expansion was first proposed by the authors of Ref. [13]. For this expansion, unlike the weak coupling expansion, the kinetic and the mass terms are pulled out of the path integral as a functional operator. That is

\[
Z[\hat{J}] = \exp \left[\sum_{m,n} \frac{\delta}{\delta \hat{J}_n} G^{-1}(n, m) \frac{\delta}{\delta \hat{J}_m} \right] Z_0[\hat{J}] ,
\]

(56)

where

\[
Z_0[\hat{J}] = \int [d\phi] \exp \left[\sum_n \frac{\hat{\lambda}}{4!} \phi_n^4 + \hat{J}_n \phi_n \right].
\]

(57)

The remaining functional integral is not Gaussian but can be evaluated as a product of ordinary functions on the lattice,

\[
Z_0[\hat{J}] = \mathcal{N} \prod_n \frac{F(x)}{F(0)},
\]

(58)
where
\[F(x) \equiv \int dze^{-\left[\frac{\hat{\lambda}}{m_t^4} x^4 + xz \right]} . \] (59)
and \(\mathcal{N} \) is a constant. The function \(F(x) \) is a transcendental function and can be expanded as a power series in \(x \)
\[F(x) = \frac{1}{\sqrt{2}} \sum_{n=0}^{\infty} \frac{2^n x^{2n}}{(2n)!} \Gamma\left(\frac{n}{2} + \frac{1}{4} \right) . \] (60)
Using this series expansion one can easily expand the both terms in the r.h.s. of Eq. (56) to obtain a power series expansion for \(Z[J] \) which assumes the general form
\[Z[\hat{J}] = \mathcal{N}' \left[1 + \sum_{k=1}^{\infty} \hat{\lambda}^{-k/2} A_k[\hat{J}] \right] . \] (61)
where \(A_k[\hat{J}] \) are integrals over the source function \(J \). Thus the strong coupling expansion is an expansion in powers of \(\hat{\lambda}^{-k/2} \). Bender et al. [13,14] obtained a series expansion for \(G = \hat{\lambda} r / m_t^4 - d \)
of the form
\[G = y_{-d/2} \sum_{l=0}^{L} \sum_{n=0}^{N} a_{nl} x^n y^l , \] (62)
where
\[x = y_{-d/2} \frac{m_t^2}{\hat{\lambda}_r} \quad \text{and} \quad y = \zeta^2 = \frac{1}{m_t} . \] (63)
For fixed \(x \) one has
\[G = y_{-d/2} \sum_{l=0}^{L} a_i^{(N)}(x) y^l , \] (64)
where
\[a_i^{(N)}(x) = \sum_{n=0}^{N} a_{ln} x^n . \] (65)
This series does not converge for large correlation lengths. Thus the authors of Ref. [14] proposed a scheme to extrapolate the expression for \(\hat{\lambda}_r \) to large \(y \) assuming that \(\hat{\lambda}_r \) remains finite in the limit \(y \to 0 \).
Raising Eq. (62) to the power of \(2L/d \) and expanding to order \(L \) we find
\[G_{2L/d} = y^{-L} \left(\sum_{l=0}^{L} a_i^{(N)}(x) y^l \right)^{2L/d} \equiv y^{-L} \sum_{l=0}^{L} b_i^{(N)}(x) y^l . \] (66)
We then find
\[G = y^{-d/2} \left(\sum_{l=0}^{L} b_l(x)y^l \right)^{(d/2)L} , \] which is equivalent to Eq. (62) for small \(y \) and approaches \([b_L^N(x)]^{d/2l}\) in the limit \(y \to \infty \). In this manner the authors of Ref. [15] obtained an analytical series for Eq. (67). Since the interesting physics lies in a regime where the correlation length is large, we performed our calculation in this regime. Thus the above extrapolation scheme was necessary.

We chose a moderate correlation length \(\zeta = 3.6 \) by an appropriate tuning of the bare parameters. This can be done by fixing \(\hat{\lambda} \) and choosing \(\hat{m} \) to be in the symmetric region. As one decreases \(\hat{m} \), one gets closer to the critical line and the correlation length increases. Using this, one can reach the required correlation length.

To apply VSM we followed the same procedure as before. For six different \(\hat{\lambda} \)'s and fixed correlation length \(\zeta = 3.6 \pm 4\% \), we calculated the values of \(\phi_J \) for different values of \(J \). The curve fitting procedure was carried out in the same way as for the previous cases. We noticed that in this regime the inclusion of larger \(\phi_J \)'s can change the behavior of the fit at small \(\phi_J \), the region which is of most interest to us. The problem arises due to the curve fitting procedure. In the WCR the data points close to \(\bar{\phi} = 0 \) have much larger weighting that the one far away from this point. Thus, calculating the derivatives of \(U(\bar{\phi}) \) at \(\bar{\phi} = 0 \) seem to be reliable. However, in the strong coupling regime, the data points that are far away from \(\bar{\phi} = 0 \) have much higher weighting and even a small fluctuation might affect the calculated \(J(\bar{\phi}) \) considerably.

We improved the results by imposing the condition in Eq. (62), that is to fixing the coefficient \(a_1 = 1/\hat{G}(0) \) where \(a_1 \) is defined in Eq. (53) and \(\hat{G}(0) = N^2\langle \tilde{\phi}^2 \rangle \). This improved the results and the inclusion of larger \(\phi_J \)'s did not affect the results significantly (up to 3%).

Next we calculated the renormalised parameters using CEPI. Unlike the previous cases the errors in the results were reasonable. For the extraction of renormalised parameters we only used two histograms corresponding to \(J = 0 \) and \(J = 0.005 \). In the weak coupling regime where the mass term is dominant, one needs to sample the higher values of \(\bar{\phi} \) in order to improve the calculation of \(\hat{\lambda}_r \). Thus in the strong coupling regime there might not be a need for additional histograms. From the VSM results one might expect that sampling very high \(\bar{\phi} \) might have a similar problem. This was confirmed from our data for this particular case.

We also calculated the renormalised coupling using Eq. (66). Unlike the weak coupling regime, uncertainties in the results in this region were reasonable. All the results in the strong coupling regime are shown in Fig. 5 and 6. They also are compared with the strong coupling expansion results. They all seem to be in agreement with each other within errors. This indicates that as the coupling increases the MC results approach the strong coupling expansion results. In order to apply the CEPII method, there are numerous terms in (A.8) which have
to be evaluated and consequently the accumulated errors can be very large. However we found that as before the renormalised mass can be calculated accurately.

Details of the simulations

In our MC calculation we chose the Hybrid MC algorithm. In a run we have taken a number of decorrelation MC iterations between two measurements. All the calculations were done on a 20^2 lattice and the rate of acceptance was kept between 40% and 60%. In all cases (except the broken sector) the calculations of renormalised mass and $\tilde{G}(0)$ (where it was needed) and the direct calculation of $\tilde{G}^{(4)}(0)$ were done using 6,800 uncorrelated samples with 50,000 thermalisation configurations. In the broken sector we used 11,000 uncorrelated samples with the same thermalisation configurations. The reason for the increase was to obtain better statistics, since the measured quantities have larger errors due to the non-vanishing disconnected pieces. In applying the VSM to the symmetric case (and in the weak coupling regime), we calculated ϕ with $0.025 \leq J \leq 0.425$. We noticed that the necessary number of decorrelation iterations in the presence of nonzero J was smaller than for the $J = 0$ case. The calculations were carried out using 2,500 decorrelated configurations. We took the number of thermalisation configurations to be 10,000. In the broken symmetry sector we increased the number of uncorrelated configurations to 3,200. In the strong coupling regime only the range of the values for J was different (as mentioned in the previous section). For CEPII we used 5,000 uncorrelated configurations with 50,000 thermalisation iterations. In construction of the probability distribution histograms, we used 750,000 configurations. The curve fits were done using a standard χ^2 fitting algorithm where the uncertainties on the parameters were obtained from the diagonal of the covariant matrix. For the strong coupling results we also estimated the systematic error due to the fact that $\tilde{\zeta}$ was fixed to be approximately 4% by varying the fixed value within reasonable limits.

VI. CONCLUSIONS

We have studied the calculation of the effective potential for $\lambda\phi^4_{1+1}$ theory using three different methods: the variation of source method (VSM) and two constraint effective potential methods (CEPI I) and (CEPI II). Using our new method, referred to as CEPII, we showed how to calculate the vertex function using the correlation functions in the presence of a constraint. We calculated the effective potential in the symmetric and the broken sector in the weak coupling regime as well as in the symmetric sector in the strong coupling regime. The renormalised quantities, $\hat{\lambda}_r$ and \hat{m}_r, were then obtained from the effective potential for each case. In the weak coupling regime we compared our results with lattice perturbation theory. We found that
in the symmetric case both VSM and CEP II can give accurate results, whereas the CEPI
method and the direct Monte Carlo calculation of the (2 and 4 point) vertex functions failed
to do so. We also found that in the broken symmetry sector VSM is the most practical and
accurate of these methods. We also studied the model in the strong coupling regime and the
results were compared with the strong coupling expansion results. In this regime we found that
CEPI, VSM, and the results from the direct Monte Carlo calculation of the vertex functions
were consistent with each other and with the strong coupling expansion results. In summary
then, we have shown that Monte Carlo effective potential methods can be accurate and reliable
tools for calculating physical quantities for scalar field theories, but that one should use the
method of evaluating the effective potential and its derivatives which is best suited to the regime
of interest.

APPENDIX A:

The differential equations relating the constraint effective potential and the classical poten-
tial are:

For the first derivative we have

$$\frac{dU(\phi)}{d\phi} = \langle \frac{dV(\phi)}{d\phi} \rangle_{\bar{\phi}},$$ \hspace{1cm} (A1)

which for $\lambda \phi^4$ theory becomes

$$\frac{dU(\phi)}{d\phi} = m^2 \bar{\phi} + \frac{\lambda}{6} \langle \phi^3 \rangle.$$ \hspace{1cm} (A2)

The second derivative is given by

$$\frac{d^2U(\phi)}{d\phi^2} = \left(\frac{d^2V(\phi_1)}{d\phi_1^2} \right)_{\bar{\phi}} - \sum_{i=1}^{N^d} \left(\frac{dV(\phi_1) dV(\phi_i)}{d\phi_1 d\phi_i} \right)_{\bar{\phi}} + N^d \left(\langle \frac{dV(\phi_1)}{d\phi} \rangle_{\bar{\phi}} \right)^2,$$ \hspace{1cm} (A3)

which for $\lambda \phi^4$ theory becomes

$$\frac{d^2U(\phi)}{d\phi^2} = m^2 + \frac{\lambda}{2} \langle \phi^2 \rangle + N^d \left[\frac{\lambda^2}{36} \langle \phi^3 \rangle^2 + \frac{\lambda m^2}{3} \langle \phi^3 \rangle + m^4 \bar{\phi} \right]$$

$$- N^d \left[m^4 \langle \phi \bar{\phi} \rangle + \frac{\lambda m^2}{6} \langle \phi^3 \bar{\phi} \rangle + \frac{\lambda^2}{36} \langle \phi^3 \bar{\phi} \rangle + \frac{\lambda m^2}{6} \langle \phi \bar{\phi}^3 \rangle \right].$$ \hspace{1cm} (A4)

The third derivative gives
\[
\frac{d^3 U(\bar{\phi})}{d\bar{\phi}^3} = N^d \frac{d^2 U(\bar{\phi})}{d\bar{\phi}^2} \frac{dU(\bar{\phi})}{d\bar{\phi}} + 2N^d \left(\frac{dU(\bar{\phi})}{d\bar{\phi}} \right)^2 - N^{2d} \left(\frac{dU(\bar{\phi})}{d\bar{\phi}} \right)^3 + \left\langle \frac{d^3 V(\phi_1)}{d\phi_1^3} \right\rangle_{\bar{\phi}} + \ldots, \quad (A5)
\]

which for \(\lambda \phi^4\) theory becomes

\[
\frac{d^3 U(\bar{\phi})}{d\bar{\phi}^3} = m^2 \frac{\lambda}{6} \langle \phi^3 \rangle - N^d \frac{\hat{\lambda}}{6} \langle \phi^2 \bar{\phi}^3 \rangle - N^d \hat{\lambda} \langle \phi^2 \bar{\phi} \rangle + \quad [\mathcal{O}(\hat{\lambda}^2) \text{ terms}] + [\mathcal{O}(m^2) \text{ terms}] + [\text{terms that vanish at } \bar{\phi} = 0] + \ldots \quad (A6)
\]

Finally for the fourth-derivative we obtain

\[
\frac{d^4 U(\bar{\phi})}{d\bar{\phi}^4} = N^d \left(\frac{d^2 U(\bar{\phi})}{d\bar{\phi}^2} \right)^2 - 4N^{2d} \frac{d^2 U(\bar{\phi})}{d\bar{\phi}^2} \left(\frac{dU(\bar{\phi})}{d\bar{\phi}} \right)^2 + \left\langle \frac{d^4 V(\phi_1)}{d\phi_1^4} \right\rangle_{\bar{\phi}} + \ldots, \quad (A7)
\]

which for \(\lambda \phi^4\) theory gives

\[
\frac{d^4 U(\bar{\phi})}{d\bar{\phi}^4} = \hat{\lambda} - \lambda \hat{m}^2 - N^d \lambda \hat{m}^2 \langle \phi^2 \rangle - N^d \hat{\lambda} \hat{m}^2 \langle \phi^2 \rangle + \quad [\mathcal{O}(\lambda^2) \text{ terms}] + [\mathcal{O}(\hat{m}^4) \text{ terms}] + [\text{terms that vanish at } \bar{\phi} = 0]. \quad (A8)
\]
TABLE I. The comparison of the calculations of $\bar{\phi}_J$ for different values of J's and perturbative calculations of $\bar{\phi}_J$ around $J = 0.1$, $J = 0.225$ and $J = 0.425$ with $\hat{m}^2 = 0.1$, $\hat{\lambda} = 0.055$ and $N = 20$.

J	$\bar{\phi}_J$	error	$[\bar{\phi}_J]_{\text{per}}$	error
0.050	0.4052	0.0032	0.409	0.0057
0.075	0.5841	0.0031	0.5880	0.0052
0.100	0.7648	0.0031	0.7648	0.0031
0.125	0.9253	0.0027	0.9320	0.0042
0.150	1.0840	0.0027	1.095	0.0048
0.175	1.2112	0.0027	1.218	0.0047
0.200	1.3399	0.0027	1.4510	0.0039
0.225	1.4505	0.0026	1.4505	0.0026
0.250	1.5590	0.0026	1.5646	0.0038
0.275	1.6659	0.0026	1.6680	0.0043
0.300	1.7620	0.0026	1.7720	0.0049
0.325	1.8564	0.0026	1.8706	0.0048
0.350	1.9411	0.0026	1.945	0.0038
0.375	2.0166	0.0026	2.0209	0.0033
0.400	2.0963	0.0026	2.0963	0.0026
0.425	2.1704	0.0026	2.1714	0.0029
0.450	2.2430	0.0026	2.2470	0.0029
TABLE II. The comparison of the calculations of $\hat{\lambda}_r$ using the VSM and the CEPII in the symmetric sector and weak coupling regime. $\hat{\lambda}_{r\text{cons}}$ denotes the renormalised coupling calculated by CEPII. Here $\hat{m}^2 = 0.1$ and $N = 20$.

$\hat{\lambda}$	$\hat{\lambda}^2_r$	error	$\hat{\lambda}_{r\text{cons}}$	error
0.02	0.0191	0.0003	0.018	0.0007
0.04	0.0386	0.0003	0.0363	0.0008
0.055	0.0518	0.0008	0.0510	0.0017
0.07	0.0670	0.0009	0.0657	0.0019
0.1	0.0891	0.0008	0.092	0.0016
0.13	0.112	0.0013	0.121	0.004
0.19	0.165	0.002	0.175	0.0061
0.24	0.216	0.0023	0.22	0.007
0.35	0.313	0.0035	0.321	0.018

TABLE III. The comparison of the calculations of \hat{m}_r^2 using the VSM and the CEPII in the symmetric sector and weak coupling regime. $\hat{\lambda}_{r\text{cons}}$ denotes the renormalised mass calculated by CEPII. Here $\hat{m}^2 = 0.1$ and $N = 20$.

$\hat{\lambda}$	\hat{m}_r	error	$\hat{m}_{r\text{cons}}$	error
0.02	0.324	0.001	0.323	0.007
0.04	0.334	0.002	0.330	0.007
0.055	0.340	0.0008	0.332	0.008
0.07	0.343	0.0014	0.339	0.006
0.1	0.345	0.0023	0.347	0.008
0.13	0.350	0.0023	0.357	0.009
0.19	0.375	0.0025	0.372	0.009
0.24	0.398	0.003	0.384	0.010
0.3	0.408	0.003	0.399	0.009
0.35	0.421	0.0035	0.410	0.010
0.40	0.433	0.004	0.428	0.010
REFERENCES

[1] S. Coleman and E. Weinberg, Phys. Rev. D 7, 1888 (1973).
[2] R. Jakiw, Phys. Rev. D 9, 1686 (1974).
[3] S. Coleman, R. Jakiw and H.D. Politzer, Phys. Rev. D 10, 2491 (1974).
[4] K. Symanzik, Commun. Math. Phys. 16, 48 (1970).
[5] Y. Fujimoto, L. O’Raifeartaigh and G. Parravicini, Nucl. Phys. B 122, 268 (1984).
[6] D.J.E. Callaway and D.J. Maloof, Phys. Rev. D 27, 406 (1983).
[7] R. Fukuta, E. Kyrikopoulos, Nucl. Phys. B 85, 354 (1975).
[8] I. Montvay, I. Munster, *Quantum fields on the lattice*, (University of Cambridge Press, 1994).
[9] L. O’Raifeartaigh, A. Wipf, and H. Yoneyama Nucl. Phys. B 271, 653 (1986).
[10] G.J. Lasino, *Scaling and self-similarity in physics*, J. Frohlich, Ed. (Birkhauser).
[11] M.M. Tsypin, Phys. Rev. Lett. 73, 2015 (1994).
[12] F. Cooper, B. Freedman and D. Preston Nucl. Phys. B 210, [FS6] 210-228 (1982).
[13] C. M. Bender, F. Cooper, G.S. Guralnik and D. Sharp Phys. Rev. D 19, 1865 (1979).
[14] C.M. Bender, F. Cooper, G.S. Guralnik and D. Sharp, Phys. Rev. D 23, 2976 (1981).
[15] G.A. Baker, L.P. Benofy, F. Cooper and D. Preston, Nucl. Phys. B 210, [FS6] (1982).
FIGURES

FIG. 1. An example of $J(\bar{\phi})$ versus $\bar{\phi}$ in the symmetric sector (a) and for the broken symmetry sector (b). The stars (*) correspond to the values of $\bar{\phi}$ at $J = 0$. For these results $N = 20$.

FIG. 2. An example of $J(\bar{\phi})$ versus $\bar{\phi}$ in the broken sector using the constraint effective potential. For these results $N = 20$.
FIG. 3. The plot of $\hat{\lambda}_r$ versus $\hat{\lambda}$ in the symmetric sector using lattice perturbation theory (solid line) and Eq. (40) (stars) and the VSM (diamonds) with $\hat{m}^2 = 0.1$ and $N = 20$.

FIG. 4. The plot of $\hat{\lambda}_r$ versus $\hat{\lambda}$ in the broken symmetry sector $\hat{\lambda}$ using lattice perturbation theory (solid line) and VSM (diamonds) with $\hat{m}^2 = -0.1$ and $N = 20$.
FIG. 5. The plot of $G = \hat{\lambda}_r/\hat{m}_r$ versus $\beta = \hat{\lambda} + 100/\hat{\lambda}$ with strong coupling expansion results (solid line), using Eq. (40) (stars) and the VSM results (diamonds) with $\hat{m}_r^2 = 0.078 \pm 4\%$ and $N = 20$.

FIG. 6. The plot of $G = \hat{\lambda}_r/\hat{m}_r$ versus $\beta = (\hat{\lambda} + 100)/\hat{\lambda}$ with strong coupling expansion results (solid line), using Eq. (40) (stars) and the CPII method results (diamonds) with $\hat{m}_r^2 = 0.078 \pm 4\%$ and $N = 20$.