Hypothesis: A Challenge of Overexpression Zfp521 in Neural Tendency of Derived Dental Pulp Stem Cells

Fatemeh Behrouznezhad, M.Sc.1, Fatemeh Ejeian, M.Sc.2, Modjtaba Emadi-Baygi, Ph.D.1*, Parvaneh Nikpour, Ph.D.2, Mohammad Hossein Nasr-Esfahani, Ph.D.3*

1. Department of Genetics, Faculty of Basic Sciences, Shahrekord University, Shahrekord, Iran
2. Department of Cellular Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
3. Department of Genetics and Molecular Biology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran

*Corresponding Addresses: P.O.Box: 8818634141, Department of Genetics, Faculty of Basic Sciences, Shahrekord University, Shahrekord, Iran
P.O.Box: 8165131378, Department of Cellular Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
Emails: Emadi-m@sci.sku.ac.ir, mh_nasr@med.mui.ac.ir

Keywords: Mesenchymal Stem Cell, Neurodegenerative Diseases, Neuronal Differentiation, Zinc Finger Protein 521

Neurodegenerative diseases have now become a major challenge, especially in aged societies. Most of the traditional strategies used for treatment of these diseases are untargeted and have little efficiency. Developments in stem cell investigations have given much attention to cell therapy as an alternative concept in the regeneration of neural tissues. Dental pulp stem cells (DPSCs) can be readily obtained by noninvasive procedures and have been shown to possess properties similar to well-known mesenchymal stem cells. Furthermore, based on their neural crest origin, DPSCs are considered to have a good potential to differentiate into neural cells. Zfp521 is a transcription factor that regulates expression of many genes, including ones involved in the neural differentiation process. Therefore based on neural crest origin of the cell and high expression of neural progenitor markers, we speculate that sole overexpression of Zfp521 protein can facilitate differentiation of dental stem cells to neural cells and researchers may find these cells suitable for therapeutic treatment of neurodegenerative diseases.

Zinc finger protein 521 (Zfp521, also known ZNF521 in human) is a highly conserved nuclear factor that contains 30 Kruppel-like zinc finger motifs and different co-regulatory domains. As a result, Zfp521 is capable of interacting with many transcriptional co-factors (13, 14) in diverse developmental processes and is involved with nucleosome remodeling in various tissues and organs (15-17).

Furthermore, it has been proven that Zfp521 shares a common 12 amino acid motif with many transcriptional repressors, like nucleosome remodeling and deacetylase (NuRD). A significant amount of Zfp521 protein in osteo/chondro progenitor cells recruits NuRD and some other histone deacetylases (HDCAs) that consequently attenuates RUNX2, as a specification gene (18-20).
Several studies demonstrated that Zfp521 is highly expressed in the cerebellum, striatonigral neurons and neural stem cells. In this regard, Kamiya et al. (4) showed a pronounced expression of Zfp521 in the neuroectoderm of the rostral neural tube during neurulation, which play a key role in the conversion of ES cells into the neural progenitors. They also found that during neural differentiation Zfp521 acts in cooperation with the P300 activator via its N-terminal zinc-finger motifs and induces expression of many early neural genes, such as SOX1, SOX3, and PAX6. In this regard, Shahbazi et al. (21) verified that Zfp521 has the potential to directly convert human fibroblasts into neural progenitor cells. These cells are capable of surviving, migrating, and achieving neural phenotypes upon transplantation into the neonatal mouse and adult rat brains without tumor formation. Generally, there is considerable evidence that Zfp521 acts in association with its close paralog Zfp423, at least in part, for various explained functions (22, 23).

Recently, more attention has been paid to dental stem cells as a promising source of cells for the regeneration of various tissues due to availability, ectomesenchymal origin, and a relatively high level of neural progenitor markers. Despite many reports on the effective neural induction in DSCs, little success were achieved to produce clinically applicable neurons (24, 25).

Considering all the aforementioned promising features of the DSCs, to pave the way for the application of DSCs to challenging neurodegenerative disorders through neural
regeneration in future, we will propose that temporal overexpression of Zfp521 may efficiently leads DSCs to differentiate into functional neurons under specific culture conditions.

Previous studies have been revealed that epigenetic modifications have high impacts on the regulation of gene expression during neurogenesis (26). We believe that Zfp521 can mediate remodeling of nucleosome through recruitment of P300 in neural progenitor cells, which in turn promotes activation of neuron specification genes, like SOX3 (4). The intrinsic histone acetyltransferase (HAT) activity of P300 co-activator on neural genes (27) and co-repression of histone deacetylase (NuRD) complex on some sets of non-neural determination genes, such as RUNX2 or SOX9, via interaction with Zfp521, are suggested as the main mechanism involved in the neural induction effect of Zfp521.

Furthermore, Zfp521 can promote cell cycle transition from precursor to post-mitotic state via down regulating cyclin dependent kinase 1 (CDK1) (28). Some recent studies provided evidences for the sequential switch of chromodomain-helicase-DNA-bindings (CHDs) in NuRD complex during neural progenitor proliferation and cortical layer specification, which can be further considered as a promoter of Zfp521 action (29).

Based on this speculation, we expect to observe higher efficacy of trans-differentiation of DPSCs after single transduction of Zfp521 in comparison to previously reported fibroblast induction by Shahbazi et al. (21). In this regard, to provide an evaluation for this hypothesis we assessed the impact of Zfp521 on some important genes such as SOX3, PAX6, CDK1, PPAR-γ and BMP2, which supported the neural induction potential of Zfp521 in mesenchymal stem cells.

Gene expression analysis was performed by real time polymerase chain reaction (PCR) after transduction of characterized DPSCs with a doxycycline inducible lentiviral vector and induction of Zfp521 overexpression for 2 days. We found a significant increase in Zfp521 expression in comparison to untransfected cells, which was accompanied by significantly acceleration in expression level of two main neural markers, SOX3 and PAX6 (Fig. 1). In contrast, it seems that the overexpression of Zfp521 not only resulted to the considerable reduction in CDK1 but also inhibited the expression of PPAR-γ and BMP2 which related to adipogenesis and osteogenesis, respectively. These data provide primary evidence in support of neural inductive potential of Zfp521, especially for dental stem cells.

Due to remarkable potency and their neural crest origin, DPSCs are considered to have a potential to differentiate into neural cells. Although numerous studies in the last decade focused on the neural differentiation of DPSCs, the extension to functional nerve cells remains a challenge. In conclusion, we speculate that the temporal overexpression of Zfp521 in dental pulp stem cells may prime cells for neural differentiation through chromatin modification that can lead to the expression of neural specification genes. Suggested mechanism of this effect is schematically presented in Figure 2. This proposed hypothesis should be evaluated in the neural differentiation progress to assess the neurogenesis efficiency in Zfp521 overexpressed in these cells. Further studies of involved cellular mechanisms and proteins interaction with Zfp521 are also valuable.
Zfp521 Promotes Neurogenesis in DSCs

Acknowledgements

We like to express our thanks to our colleagues at Stem Cell Department of Royan Institute who encouraged up for preparation of this manuscript. This hypothesis is based on our present study on neural differentiation of dental-originated stem cells, which was funded by Department of Cellular Biotechnology Cell Science Research Center, Royan Institute for Biotechnology and was supported in part by Shahrekord University. None of the authors have any conflict of interest to declare.

Authors’ Contributions

F.E., M.E.-B., M.H.N.-E.; Conceived of the presented idea and participated in drafting the manuscript. F.B.; Compiled the literature sources and developed the theory. P.N., M.E.-B.; Helped to evaluate and edit the manuscript. All authors give final approval of the submitted version of manumit.

References

1. Bakopoulou A, About I. Stem cells of dental origin: current research trends and key milestones towards clinical application. Stem Cells Int. 2016; 2016: 4209891.
2. Hemmat S, Lieberman DM, Most SP. An introduction to stem cell biology. Facial Plast Surg. 2010; 26(5): 343-349.
3. Sakai K, Yamamoto A, Matsubara K, Nakamura S, Naruse M, Yamagata M, et al. Human dental pulp-derived stem cells promote locomotor recovery after complete transection of the rat spinal cord by multiple neuro-regenerative mechanisms. J Clin Invest. 2012; 122(1): 80-90.
4. Kamiya D, Banos S, Sasai N, Ogushi M, Inomata H, Watanabe K, et al. Intrinsic transition of embryonic stem-cell differentiation into neural progenitors. Nature. 2011; 470(7335): 503-509.
5. Gronthos S, Brahimi J, Li W, Fisher LW, Cherman N, Boyde A, et al. Stem cell properties of human dental pulp stem cells. J Dent Res. 2002; 81(8): 531-535.
6. Gato A, Moro JA, Alonso MI, Bueno D, De La Mano A, Martin C. Embryonic cerebrospinal fluid regulates neuroepithelial survival, proliferation, and neurogenesis in chick embryos. Anat Rec A Discov Mol Cell Evol Biol. 2005; 284(1): 475-484.
7. Gronthos S, Mankani M, Brahimi J, Robey PG, Shi S. Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proc Natl Acad Sci USA. 2000; 97(25): 13625-13630.
8. Huang AH, Snyder BR, Cheng PH, Chan AW. Putative dental pulp-derived stem/stromal cells promote proliferation and differentiation of endogenous neural cells in the hippocampus of mice. Stem Cells. 2008; 26(10): 2654-2663.
9. Karamz E, Demircan PC, Saglam O, Aksoy A, Kaynak F, Durukus G. Human dental pulp cells demonstrate better neural and epithelial stem cell properties than bone marrow-derived mesenchymal stem cells. Histochim Cell Biol. 2011; 136(4): 455-473.
10. Lehtinen MK, Zappaterra MW, Chen X, Yang YJ, Hill AD, Lun M, et al. The cerebrospinal fluid provides a proliferative niche for neural progenitor cells. Neuron. 2011; 69(5): 893-905.
11. Laino G, d’Aquino R, Graziano A, Lanza V, Carinci F, Naro F, et al. A new population of human adult dental pulp stem cells: a useful source of living autologous fibrous bone tissue (LAB). J Bone Miner Res. 2005; 20(8): 1394-1402.
12. Arthur A, Rychkov G, Shi S, Koblar SA, Gronthos S. Adult human dental pulp stem cells differentiate toward functionally active neurons under appropriate environmental cues. Stem cells. 2008; 26(7): 1787-1795.
13. Bond HM, Mesuraca M, Carbone E, Bonelli P, Agosti V, Amadio N, et al. Early hematopoietic vascular zinc finger protein (EHZF), the human homolog to mouse Ev3, is highly expressed in primitive human hematopoietic cells. Blood. 2004; 103(6): 2062-2070.
14. Lin AC, Roche AE, Wilk J, Svensson EC. The N termini of Friend (GATA) proteins define a novel transcriptional repression motif and a superfamily of transcriptional repressors. J Biol Chem. 2004; 279(53): 55017-55023.
15. Hong W, Nakazawa M, Chen YY, Kori R, Vakoc CR, Rakowski C, et al. Zfp521 recruits the NuRD repressor complex to mediate transcriptional repression by GATA-1. EMBO J. 2005; 24(13): 2367-2378.
16. Hashemi M-S, Esfahani AK, Peymani M, Nejati AS, Ghadei K, Nasr-Esfahani MH, et al. Zinc finger protein 521 overexpression increased transcript levels of Fndc5 in mouse embryonic stem cells. J Biosci. 2016; 41(1): 69-76.
17. Shen S, Pu J, Lang B, McCaig CD. A zinc finger protein Zfp521 directs neural differentiation and beyond. Stem Cell Res Ther. 2011; 2(2): 20.
18. Correa D, Hesse E, Seriwatanaachai D, Kiviranta R, Saito H, Yamana K, et al. Zfp521 is a target gene and key effector of parathyroid hormone-related peptide signaling in growth plate chondrocytes. Dev Cell. 2010; 19(4): 533-546.
19. Hesse E, Saito H, Kiviranta R, Correa D, Yamana K, Neff L, et al. Zfp521 controls bone mass by HDAC3-dependent attenuation of Runx2 activity. J Cell Biol. 2010; 191(7): 1271-1283.
20. Wu M, Hesse E, Morvan F, Zhang J-P, Correa D, Rowe GC, et al. Zfp521 antagonizes Runx2, delays osteoblast differentiation in vitro, and promotes bone formation in vivo. Bone. 2009; 44(4): 528-536.
21. Shahbazi E, Moradi S, Namati S, Satarian L, Basiri M, Gourabi H, et al. Conversion of human fibroblasts to stably self-renewing neural stem cells with a single zinc-finger transcription factor. Stem Cell Reports. 2016; 6(4): 539-551.
22. Kang S, Akerblad P, Kiviranta R, Gupta RK, Kajimura S, Griffin MJ, et al. Regulation of early adipose commitment by Zfp521. PLoS Biol. 2012; 10(11): e1001433.
23. Warming S, Rachel RA, Jenkins NA, Copeland NG. Zfp423 is required for normal cerebellar development. Mol Cell Biol. 2006; 26(18): 6913-6922.
24. Victor AK, Reiter LT. Dental pulp stem cells for the study of neurogenetic disorders. Hum Mol Genet. 2017; 26(R2): R186-R171.
25. Ghasemi Hamidabadi H, Rezvani Z, Nazm Bojnordi M, Shirzaei H, Seifalian AM, Joghataei MT, et al. Chitosan-intercalated montmorillonite/poly (vinyl alcohol) nanofibers as a platform to guide neuronal differentiation of human dental pulp stem cells. ACS Appl Mater Interfaces. 2017; 9(13): 11392-11404.
26. Denslow SA, Wade PA. The human M-2/NuRD complex and gene regulation. Oncogene. 2007; 26(37): 5433-5438.
27. Goodman RH, Smolik S. CBP/p300 recruits the NuRD repressor complex to mediate transcriptional repression by GATA-1. EMBO J. 2005; 24(13): 2367-2378.
28. Matsuhashi H, Ewen ME, Strom DK, J-Y, Hanks SK, Rous-sel MF, et al. Identification and properties of an atypical catalytic subunit (p34PSK-J3/cdk4) for mammalian D type G1 cyclins. Cell. 1992; 71(2): 323-334.
29. Nitarska J, Smith JG, Sherlock WT, Hillege MM, Nott A, Barshop WD, et al. A functional switch of NuRD chromatin remodeling complex subunits regulates mouse cortical development. Cell Rep. 2016; 17(6): 1683-1698.