Results from the EPICAL-2 Ultra-High Granularity Electromagnetic Calorimeter Prototype

T. Peitzmann (Utrecht University/Nikhef) for the EPICAL-2 team
Introduction

• Digital calorimetry: count number of charged shower particles in sampling layers
 • Ideally: potential to reduce fluctuations from individual sampling layers
 • High granularity required due to high particle density

• State-of-the-art all-pixel calorimeter prototype
 • Follow up on proof of principle EPICAL-1 (JINST 13 (2018) P01014)
 • EPICAL-2: Si/W stack using ALPIDE sensors, detailed simulation in Allpix²

• Calorimetric performance from test-beam measurements
 • Detailed study at low energy (DESY)
 • First preliminary results from high energy (SPS)
New Digital Calorimeter Prototype – EPICAL-2

24 layers with each
- 3 mm W absorber
- 2 ALPIDE CMOS sensors
 - NIM A, 845:583–587, 2017
- ultra-thin flex cables (LTU Kharkiv)

29.24 x 26.88 µm² pixel size
active cross section 3 x 3 cm²
compact design: expect $R_M \approx 11$ mm

ALPIDE output via 1.2 Gb/s serial line
readout via 2 levels of FPGA
EPICAL-2 Measurements

- Cosmic muons (Utrecht University, 2020)
- Test beam DESY (Feb. 2020)
 - Electron/positron, $E = 1.0 - 5.8$ GeV
- H6 test beam SPS (Sept./Oct. 2021)
 - Mixed beam, $E = 20 - 80$ GeV
Allpix2 Simulations

- Detailed implementation of ALPIDE sensor and detector geometry
- Good description of detector behaviour

Allpix2: NIM A, 901:164–172, 2018
Event Displays

single electron event
5 GeV
raw data
colour → layer number
Sensor Calibration

- Use muons (from cosmics or in-beam) for relative calibration of sensors with different sensitivities
 - Expect identical response to muons in all layers in terms of hits and clusters
 - Ignore in-sensor variation of sensitivity
- Significant sensitivity variation observable in number of hits
- Minor variation in number of clusters
 - Number of clusters less susceptible to threshold variations
Detector Response

- Number of hits (N_{hits}) or number of clusters (N_{clus}) usable as response observable
 - Well defined peaks scaling with beam energy
- Allpix2 simulation
 - Tuned to number of hits at 5 GeV
 - Very good description for hits at all energies
 - Good description for clusters
 - Sensitive to details of cluster algorithm
Energy Linearity

- Average response as a function of beam energy
 - Described by linear fit
 - Constrained to (0,0) by pedestal measurements
 - Behaviour reproduced by simulation
- Small apparent deviations from linearity in ratio
 - Perfect linearity in hits from simulation
 - Hits in data agree with EPICAL-1
 - Non-linearity in hits strongly influenced by uncertainty in DESY beam energy
 - NIM A, 922:265–286, 2019
 - Stronger non-linearity from N_{clus}
 - Reproduced in simulation
- Response consistent with full linearity at low energy
Resolution shows the expected behaviour for calorimeters

Experimental data likely contain a significant contribution from beam energy spread at DESY

“Particle counting” (N_{clus}) shows superior performance here

- Confirmed by simulations

Resolution from hits better than EPICAL-1 results

Resolution from N_{clus} close to analog SiW ECAL (CALICE) physics prototype

NIM A 608:372-383, 2009

Cluster algorithm not yet optimised
Shower Profiles

- Longitudinal and lateral shower distributions show expected behaviour
 - Similar for N_{clus} and N_{hits}

- Wealth of information to extract details of shower development: work in progress

- Hit density well below saturation limit at low energy
 - Maximum at 5 GeV: ≈ 300 hits/mm2
 - Saturation at 1272 hits/mm2
 - Limit will be reached at high energy: correction required
SPS H6 Beam Composition

- Allows precise extraction of beam composition
- Hadron contamination of electron peak under control

- Detailed MC simulation (Allpix2) describes all components of calorimetric energy spectra very well

![Graph showing SPS H6 Beam Composition]

EPICAL-2 preliminary
$E_{\text{beam}} = 80$ GeV
- test-beam data
- fit range
 - Allpix2 simulation of:
 - π^+
 - K^+
 - p
 - e^-
 - μ^+
 - sum

N_devents
N
energy (GeV)

template contribution (%)
Energy Linearity at High Energy

- Electron peak position \((N_{\text{hits}}) \) extracted for different beam energies
- Behaviour at high energy matches well to low energy
- Good linearity at high energy
 - Confirms observed non-linearity at DESY to be related to test beam properties
Energy Resolution at High Energy

- Results of preliminary analysis from SPS data:
 good energy resolution from N_{hits}
 - High energy (SPS) consistent with extrapolation from low energy (DESY)
- Work in progress:
 - N_{clus} seen to yield better energy resolution at low energy, cluster algorithm needs to be adjusted for high energy
• Longitudinally integrated distribution makes separation challenging
• Much more information available in high-granularity 3D distributions
Application: Two-Shower Separation

- Full pixel detector information very powerful
 - Two-shower separation down to 1 mm should be possible
- Systematic studies to be done

EPICAL-2 preliminary
Allpix² simulation
30 GeV e⁻ + 250 GeV e⁻
1.2 mm separation
single event
Summary

• Digital calorimetry works
 • New prototype confirms findings with EPICAL-1
 • Much better performance of EPICAL-2
 • ALPIDE sensor: very low noise, readout speed compatible with modern experiments
 • Technology suitable for ALICE FoCal pixel layers

• Good energy linearity and resolution
 • Study limited by accelerator properties at DESY
 • To be confirmed at high energy – preliminary results very promising

• Very strong potential – so far “scratching the surface”
 • Use full 3D shower information for single- and multi-particle reconstruction
 • Improved jet measurements?
 • Study performance for particle flow algorithms
EPICAL-2 Team

J. Alme, a R. Barthel, b A. van Bochove, b V. Borshchov, c R. Bosley, d A. van den Brink, b E. Broeils, b H. Büsching, e V.N. Eikeland, a O.S. Groettvik, a Y.H. Han, f N. van der Kolk, b,g J.H. Kim, f T.J. Kim, f Y. Kwon, f M. Mager, h Q. W. Malik, i E. Okkinga, b T.Y. Park, f T. Peitzmann, b,l F. Pliquett, e M. Protsenko, c F. Reidt, h S. van Rijk, b K. Røed, i T.S. Rogoschinski, e D. Röhrich, a M. Rossewij, b G.B. Ruis, b E. H. Solheim, a,i I. Tymchuk, c K. Ullaland, a N. Watson, d H. Yokoyama b,g

a Department of Physics and Technology, University of Bergen, Bergen, Norway
b Institute for Gravitational and Subatomic Physics (GRASP), Utrecht University/Nikhef, Utrecht, Netherlands
c Research and Production Enterprise “LTU” (RPE LTU), Kharkiv, Ukraine
d School of Physics and Astronomy, University of Birmingham, Birmingham, United Kingdom
e Institut für Kernphysik, Johann Wolfgang Goethe-Universität Frankfurt, Frankfurt, Germany
f Yonsei University, Seoul, Republic of Korea
g Nikhef, National Institute for Subatomic Physics, Amsterdam, Netherlands
h European Organization for Nuclear Research (CERN), Geneva, Switzerland
i Department of Physics, University of Oslo, Oslo, Norway