INVESTIGATION OF HOUSEHOLD LAUNDRY WATER AS AN ALTERNATIVE WATER SOURCE

Kelemen Orsolya,1 Izbékiné Szabolcsik Andrea,2 Bodnár Ildikó3

Debreceni Egyetem, Műszaki Kar, Környezetmérnöki Tanszék, Debrecen, Magyarország

1 kelemen727@gmail.com
2 szabolcsikandi@eng.unideb.hu
3 bodnari@eng.unideb.hu

Abstract

The goal of our research is to study the potential treatment options for the relatively contaminated greywater fraction from washing, in order to use this fraction as an alternative water source. During the research to compare the purification efficiency of different greywater treatment solutions we have created a constant composition synthetic laundry greywater, based on tap water, which represents the real laundry water in the terms of quality. As greywater treatment solutions, in terms of physical pre-treatment procedure we used a sand filtering method, and in terms of chemical processes we used coagulation and oxidation. Based on treatment efficiencies, we can say that the treatment procedures can achieve significant quality improvements, but none of the methods can achieve the required cleaning efficiency by itself. In order to reach the optimum quality parameters, the use of combined methods is required.

Keywords: greywater, laundry water, reuse, sustainability.

Összefoglalás

Kutatásunk célja a mosásból származó, viszonylag terhelt szürkevízfrakció potenciális kezelési lehetőségeinek tanulmányozása fenntartható vízhasználat biztosítása céljából. A kutatás során a különböző szürkevízkezelési megoldások tisztítási hatásfokának összehasonlíthatósága érdekében egy állandó összetételű, ivóvízalapú szintetikus mosóvizet készítettünk el, mely minőségi szempontból jól reprezentálja a valós mosóvizeket. A szürkevízkezelési megoldások közül mint fizikai előkezelési eljárást a szűrést, illetve mint kémiai eljárást a koagulációt és az oxidációt alkalmaztuk. A kezelési hatásfokok alapján elmondható, hogy a kezelési eljárásokkal jelentős minőségi javulást lehet elérni, de önmagában egyik módszerrel sem érhető el a megfelelő tisztítási hatásfok. Kombinált módszerek használata szükséges az optimális minőségi paraméterek eléréséhez.

Kulcsszavak: szürkevíz, mosóvíz, újrahasználat, fenntarthatóság.

1. Bevezető

A víz alapvető forrás a túléléshez minden élő szervezet számára. A rés az igényelt és az elérhető vízkészlet között napról napra növekszik. Napjainkban jelentős figyelmet kell fordítanunk a fenntartható vízgazdálkodásra, ezáltal a szennyvizek és a háztartásonként keletkezett szürkevizek újrahasznosítása egyre fontosabbná válik. Ezen vizek gyűjtésével és kezelésével olyan kezelt vízhez juthatunk, amelyet újrahasználhatunk háztartási szinten olyan tevékenységek során, melyek nem igényelnek ivóvíz-minőségű vizet, pl.: WC-öblítésre, öntözésre vagy akár autómosására is.
2. A szürkevizekről

Szürkevíznek nevezzük a mosogatásból, fürdésből és mosásból származó szennyvizet, mely nem tartalmazza a WC öblítésére használt vizet, tehát olyan, hárdatársból származó szennyvíz, amely nem érintkezik a WC vizőblítése során keletkezett vízzel. A kutatásunkban kifejezetten vizsgált, mosásból (laundry greywater) származó szürkevízfrakció nagy koncentrációban tartalmaz felületaktív anyagokat a mosóporokból, öblítőkből, fehérítőkből, valamint ruhákban szöveteket, továbbá elhalt emberi hármajsejtkeket és hajszálakat is [1]. A szürkevizekben a detergensek jelenléte mellett számolnunk kell a vizek mikro- és makroelem-tartalmának növekedésével, mivel a háztartáskban keletkezett vízben nagyságban koncentrációban találhatók nyomelek és nehézfémek is, melyek az újrahasználat esetén jelentős terhelést gyakorolhatnak az ökoszisztémára.

2.1. Detergensek

Mosás során a szennyeződések eltávolítására felületaktív anyagokat, detergenseket használunk, így a szürkevizekben nagy mennyiségű felületaktív anyag található, amelyek a háztartási szennyvizekben valóban keserűek lehetnek a felszín vizekbe, ahol annak felszínén vékony habréteget képezve csökkenhet a víz által felvehető oxigén mennyisége, illetve az öntisztulási folyamat hatásfoka, beindulhat az alga-virágzás. Ezért újrahasználat előtt a szürkevizeket fontos ezektől a felületaktív anyagoktól és más szennyezőktől is megtisztítani [2].

3. Kezelési eljárások

A szürkevíz kezelésére többféle eljárást alkalmazhatunk. Ezek fizikai, kémiai, fiziko-kémiai és biológiai módszerek lehetnek.

Fizikai eljárások kiemelt műveleti megoldás a szűrés, illetve az ülepítés. A szűrés általában önálló módszereknek tekintetlen és ezért ezt előkezelésként is alkalmazzuk, a felszín vizekben, ahol annak felszínén vékony habréteget képezve csökkenhet a víz által felvehető oxigén mennyisége, illetve az öntisztulási folyamat hatásfoka, beindulhat az alga-virágzás. Ezért újrahasználat előtt a szürkevizeket fontos ezektől a felületaktív anyagoktól és egyéb szennyezőktől is megtisztítani [2].

4. Szintetikus szürkevíz

A különböző szürkevízkezelési műveletek tisztítási hatásfokának összehasonlítása érdekében egy állandó összetételű, ivóvízalapú mosóvíz állítottunk elő, amely a felszín vizekben nagy koncentrációban találhatók, nyomelek és nehézfémek is, melyek az újrahasználat esetén jelentős terhelést gyakorolhatnak az ökoszisztémára.

5. Kezelésmódszerek tanulmányozása

Előjelűésben a mechanikai kezelésben a szürrelés hatásfokát tanulmányoztuk. A szürrelés eljárás során egy kvarcromok szűrőközettek alkalmaztunk. Ahogyan az 1. táblázatban látható, a mért para-
méterek elemzése alapján megállapítható, hogy a szűrés a pH-értékekben csökkenést eredményezett a kicsapódott és kiszűrt detergensek miatt. A kezelés hatására mind a biológiailag bontható szervesanyag-tartalom, mind az oldott formában lévő szervesanyag-tartalom mennyisége, valamint a zavarosság értéke is jelentősen csökkent.

1. táblázat. Homokszűrrel kezelt minta vízanalitikai paraméterei

	Szintetikus mosóvíz	Homoksűrzt minta
pH	7,87-8,16	7,66-7,68
Vezetőképesség	1,18-1,28	1,02-1,27
Zéta-potenciál	-37,2-(-28,3)	-30-(-22,1)
Zavarosság	97,76-175,05	43,88-133,04
DOC	283,2-514,55	107,09-144,05
BOD$_5$	360-666,67	183,67-235

Ezt követően kémiai kezelési eljárástokat vizsgáltunk. Koaguláció során koagulálószerként vas(III)-kloridot használtunk, melyet oldat formájában különböző koncentrációban adagoltunk a vízmintához. Folyamatosan mértük a zétapotenciál változását, és az eredményekből megállapítottuk a megfelelő vegyszerminőséget az optimális 0±5 mV közötti zétapotenciál eléréséhez. A megfelelő zétapotenciál-értéket minimum 46, de maximum 60 g/l FeCl$_3$ adagolásával értük el. A kezelés hatékonyságát a 2. táblázat szemlélteti.

2. táblázat. Optimális FeCl$_3$-dózissal kezelt minta vízanalitikai paraméterei

	Szintetikus mosóvíz	Koagulált minta
pH	7,87-8,16	2,99-3,95
Vezetőképesség	1,18-1,28	1,45-2,17
Zéta-potenciál	-37,2-(-28,3)	-4,45-4,22
Zavarosság	97,76-175,05	392,31-504,31
DOC	283,2-514,55	139,85-154,45

A kiindulási szintetikus mosóvízminta jellemzőihez viszonyítva látható, hogy a pH igen savas tartományba mozdult el a koagulálószer (FeCl$_3$) jelenlétének hatására. A flokkulálódott részecskének köszönhetően növekedett a fajlagos elektromos vezetőképesség és a zavarosság értéke is. A kezelés célja a szerves szennyeződések eltávolítása, melyeket az összes szerves széntartalom (DOC) mérésével követhetünk nyomon. A kezelés után ez az érték majdnem 60%-kal csökkent a kiindulási állapothoz viszonyítva.

Egy másik kémiai kezelési eljárást is vizsgáltunk, az oxidációt. Oxidáció során kezelőszerek különböző mennyiségben hidrogén-peroxidot (H$_2$O$_2$) adagoltunk a mintához. A kezelés hatására pH-növekedést valamint kismértékben a zavarosság, a vezetőképesség és az oldott formában lévő szervesanyagtartalom-értékek csökkenését tapasztaltuk.

6. Következtetések

A kezelési hatásfokok tanulmányozása alapján elmondható, hogy szűréssel, illetve koagulálással jelentős minőségi javulást lehet elérni, de ömnagynak egy módszer sem ér el a legtetszősebb tisztítási hatásfokot. Az oxidációval sem értünk el jelentős változást a szintetikus mosóvízminták minőségi paramétereit tekintve.

Az eredményességet különféle vízanalitikai paraméterek mérésén keresztül követünk figyelemmel, ezek a pH, zavarosság, fajlagos elektromos vezetőképesség és a zétapotenciál. Továbbá a szervesanyag-tartalom mennyiségi meghatározására vizsgáltuk a minták biológiai oxigénigényét és oldott szerves széntartalmát is. A kezelések hatásfokát százalékosan a 3. táblázat mutatja be, mely a kezelten minta minőségi paramétereiben bekövetkező változások mértékeit szemlélteti.

3. táblázat. Kezelési hatásfokok

	Homokszűrés	Koagulálás	Oxidáció
pH	5,31% csökkénés	57,33% csökkénés	2,93% emelkedés
Fajlagos elektromos vezetőképesség	7,44% csökkénés	43,6% emelkedés	10,32% csökkénés
Zéta-potenciál	27% csökkénés	99,5% csökkénés	9,31% csökkénés
Zavarosság	50% csökkénés	242,9% emelkedés	30,59% csökkénés
BOD$_5$	56,7 % csökkénés	-	-
DOC	64,4 % csökkénés	59,15% csökkénés	20,35% csökkénés
A 3. táblázat adatait elemezve, a homokszűrés kapcsán összeségében elmondható, hogy minden vízminőségi paraméterben javulás látható, leginkább a szerves anyagok mennyiségének tekintetében történt csökkenés, illetve a zavarosság érték vonatkozásában ~50 %-os javulás érhető el.

Koagulálás során az optimális dózissal történő kezelés használatára a zetapotenciál-érték esetében közel 0 mV értéket lehet elérni, vagyis a hátsófok így igen magas, illetve az összes szerves széntartalom is közel 60 %-al csökkenthető ezzel a módszerrel. Azonban a koagulálószer (FeCl₃) jelenléte miatt a pH jelentősen savas irányba mozdul el, valamint a zavarosság értéke is a pohelyképződés hatására nagyon magas volt.

Az oxidatív kezelés kapcsán a pH tekintetében növekedés figyelhető meg, azonban a többi paramétert vizsgálva kismértékű csökkenés, vagyis minőségi javulás mutatkozik. Ezek alapján megállapítható, hogy mindhárom kezeléssel minőségi javulást lehet elérni, de önmagában egyik módszer sem ér el a nemzetközi ajánlások alapján elegendő tisztítási hatásfokot. Tapasztalataink alapján kombinált kezelési módszerek használata szükséges az optimális minőségi paraméterek eléréséhez. Végül célunk a kezelési lépések hatékonyság széielésére és eredményesen kezelt mosóvíz előállítása, mely alkalmazható háztartási szinten, például WC-öblítésre vagy öntözésre.

Szakirodalmi hivatkozások

[1] Ghaitidak D. M., Yadav K. D.: *Characteristics and treatment of grey-water*. A review. Environmental Science and Pollution Research, 20/5. (2013) 2795–2809.

[2] Juhász É., Erös M. L. I: *Felületaktív anyagok zsebkönyve*. Műszaki Könyvkiadó, Budapest, 1979.

[3] Y. P. V. K., A. M. Boyjoo: *A review of grey-water characteristics and treatment processes*. Water Science and Technology, 67/7. (2013) 1403–1424.

[4] M. Pidou, F. A. Memon, T. Stephenson, B. Jefferson, P. Jeffrey: *Greywater recycling: treatment options and applications*. Engineering Sustainability, 2007.

[5] Kárpáti Á. (Szerk.): *Vízgazdálkodás – Szennyvíztisztítás*. Környezetmérnöki Tudástár, Veszprém, 2011.

[6] W. H. Chin, F. A. Roddick, J. L. Harris: *Greywater treatment by UVC/H₂O₂*. Water Research, 43. (2009) 3940–3947.

[7] *Guidelines for water reuse*. Office of Wastewater Management, EPA/600/R-12/618, U.S. Environmental Protection Agency, Washington, 2012.

[8] Bodnár I., Szabolcsik A., Baranyai E., Üveges A., Boros N.: *Qualitative characterization of household greywater in the northern great plain region of Hungary*. Environmental Engineering and Management Journal, 13/11. (2014) 2717–2724.