Amino acid metabolism in skeletal cells

Claire-Sophie Devignes, Geert Carmeliet, Steve Stegen

Laboratory of Clinical and Experimental Endocrinology, Department of Chronic Diseases and Metabolism, KU Leuven, O&N1bis, Herestraat 49 box 902, 3000 Leuven, Belgium

ABSTRACT

Amino acid metabolism regulates essential cellular functions, not only by fueling protein synthesis, but also by supporting the biogenesis of nucleotides, redox factors and lipids. Amino acids are also involved in tricarboxylic acid cycle anaplerosis, epigenetic modifications, next to synthesis of neurotransmitters and hormones. As such, amino acids contribute to a broad range of cellular processes such as proliferation, matrix synthesis and intercellular communication, which are all critical for skeletal cell functioning. Here we summarize recent work elucidating how amino acid metabolism supports and regulates skeletal cell function during bone growth and homeostasis, as well as during skeletal disease. The most extensively studied amino acid is glutamine, and osteoblasts and chondrocytes rely heavily on this non-essential amino acid during for their functioning and differentiation. Regulated by lineage-specific transcription factors such as SOX9 and osteoanabolic agents such as parathyroid hormone or WNT, glutamine metabolism has a wide range of metabolic roles, as it fuels anabolic processes by producing nucleotides and non-essential amino acids, maintains redox balance by generating the antioxidant glutathione and regulates cell-specific gene expression via epigenetic mechanisms. We also describe how other amino acids affect skeletal cell functions, although further work is needed to fully understand their effect. The increasing number of studies using stable isotope labelling in several skeletal cell types at various stages of differentiation, together with conditional inactivation of amino acid transporters or enzymes in mouse models, will allow us to obtain a more complete picture of amino acid metabolism in skeletal cells.

1. Introduction

Bone development, remodeling and repair are metabolically highly demanding processes. The regulatory role of cytokines, hormones and related signaling pathways on skeletal cell function has been well established, but recent evidence also shows the importance of cell metabolism as a control mechanism. The maintenance of cellular properties like proliferation and extracellular matrix synthesis is closely intertwined with energy metabolism, which comprises a series of metabolic pathways that generate energy in the form of adenosine triphosphate (ATP) from nutrients such as carbohydrates and lipids (Karner and Long, 2018; Kushwaha et al., 2018). Amino acid metabolism complements glucose and fatty acid-driven bioenergetic pathways during bone anabolism, as one of its major roles is to provide the molecular building blocks for protein synthesis, which is especially important for extracellular matrix-synthesizing cells like osteoblasts and chondrocytes. Not surprisingly, there is a significant requirement for amino acids within the skeleton, although some regional differences may exist that are linked to specific bone cell behavior.

There are nine essential amino acids, defined as those whose carbon skeleton cannot be synthesized by the cell and have to be obtained via the diet and the intestinal microbiota. On the other hand, non-essential amino acids can also be synthesized from exogenous sources, thereby providing more flexibility for cells to ensure an adequate supply. Some non-essential amino acids are categorized as conditionally essential or semi-essential, because their synthesis is limited in certain (pathological) conditions, for example during prematurity, infection or injury (Reeds, 2000) (Table 1).

In addition to protein synthesis, amino acids can also be used for other cellular processes (Fig. 1), either via direct incorporation in macromolecules such as nucleotides or after enzymatic breakdown and fueling other metabolic pathways (i.e. anaplerosis). First, they provide metabolic intermediates for the biosynthesis of lipids, nucleotides and the nucleotide coenzymes NAD+ and NADP+1. Indeed, in addition to the ribose-5-phosphate generated by the pentose phosphate pathway, nucleotide biosynthesis depends on feeder pathways that provide...
carbon or nitrogen precursors, including the amino acids glutamine, aspartate, serine and glycine (Lane and Fan, 2015). Furthermore, tryptophan is used to generate quinolinate, the α-ketoglutarate of tryptophan, aspartate, serine and glycine (Lane and Fan, 2015). Furthermore, tryptophan is used to generate quinolinate, the α-ketoglutarate of tryptophan, aspartate, serine and glycine (Lane and Fan, 2015).

Second, glutamate, glycine and cysteine are crucial for maintaining cellular redox balance by synthesizing glutathione (GSH), the most potent non-enzymatic cellular antioxidant. Moreover, serine-driven one-carbon metabolism via the folate cycle contributes, amongst others, to the generation of NADPH, which converts glutathione back to its reduced form and is critical for redox regulation under hypoxic conditions (Lieu et al., 2020; Ye et al., 2014). Third, in certain conditions, amino acids can serve as anaplerotic substrates that drive tricarboxylic acid (TCA) cycle activity to sustain mitochondrial ATP production or lipogenesis. Most studied is the anaplerotic metabolism of glutamine that generates α-ketoglutarate (αKG) and subsequently fuels the TCA cycle. The oxidation of (branched-chain) amino acids in the TCA cycle is also important for generating acetyl-CoA to support lipid biosynthesis (Lieu et al., 2020). Fourth, in addition to their direct integration into biosynthetic reactions, amino acids and their derivatives are also fundamental in mediating epigenetic modifications and thus gene transcription. For example, DNA and histone methylation are regulated by metabolites from the methionine cycle/one-carbon metabolism, including methionine, serine and glycine (Mentch and Locasale, 2016). Similarly, histone acetylation events that promote gene transcription require acetyl-CoA, which can be derived from (iso)leucine, valine or glutamine. Fifth, catabolism of specific amino acids, such as glutamate and arginine, generates metabolic precursors that support collagen synthesis (proline) and cell proliferation (polyamines). Finally, amino acids are also precursors of bioactive amines such as neurotransmitters or hormones, and are thus involved in cell-to-cell communication. For example, the non-essential amino acid glutamate is a major excitatory neurotransmitter and also functions as a precursor of gamma-aminobutyric acid (GABA), its inhibitory counterpart. Thus, amino acid metabolism is complex and highly interconnected with other pathways, and may therefore regulate cell function at different levels.

In this review, we will summarize the current knowledge of amino acid metabolism in skeletal cells, its regulation by lineage-specific (transcription) factors and signaling pathways, and how it is altered in skeletal disease.

2. Amino acid metabolism in bone cells

Bone development, maintenance and repair are achieved by the concerted action of several types of skeletal cells that differ in function and location. Osteoblasts are bone-forming cells and derive from mesenchymal precursor cells referred to as skeletal stem and progenitor cells (SSPCs) (Kurenkova et al., 2020). Under normal physiological conditions, early SSPCs remain relatively quiescent, but they are able to rapidly proliferate and differentiate upon exogenous stimuli or injury. Phenotypic markers are often used to target SSPC populations in different anatomical niches such as the bone marrow, the periosteum and the epiphysis and these markers include, but are not limited to, Leptin receptor (LepR), Nestin (Nes), Paired-related homeobox 1 (Prrx1) and the epiphysis. Early committed osteoprogenitors, generally defined by Osterix expression, are still able to proliferate but they also deposit a typical type 1 collagen-rich extracellular matrix. More mature, osteocalcin-expressing osteoblasts do not proliferate but one of their major functions is matrix deposition and its subsequent mineralization. At the final stages of differentiation, some osteoblasts become embedded in the mineralized bone matrix and are referred to as osteocytes. These long-living cells acquire other functions, including the regulation of phosphate/calcium homeostasis and bone remodeling, by secreting factors such as fibroblast growth factor 23 and receptor activator of nuclear factor κ-B ligand (RANKL), respectively (Robling and Bowneal, 2020). The second major skeletal cell type are bone-resorbing osteoclasts. These cells degrade the mineralized bone matrix by a dual mechanism: the local acidification dissolves the bone mineral and the produced catalytic

Table 1

Essential AA	Non-essential AA	Conditionally essential AA
Leucine – Leu - L	Alanine – Ala - A	Glycine – Gly - G
Isoleucine – Ile - I	Asparagine – Asn - N	Arginine – Arg - R
Valine – Val - V	Aspartate – Asp - D	Glutamine – Gln - Q
Phenylalanine – Phe - F	Glutamate – Glu - E	Tyrosine – Tyr - Y
Threonine – Thr - T	Serine – Ser - S	Cysteine – Cys - C
Lyssine – Lys - K	Homocyssteine (NP)	Proline – Pro - P
Tryptophan – Trp - W		
Histidine – His - H		
Methionine – Met - M		

Fig. 1. General overview of amino acids metabolism. Scheme showing the main amino acid-fueled and amino acid-generating metabolic pathways (in italic) and cellular processes (in green boxes). Dotted lines indicate a pathway consisting of several reactions. Abbreviations: αKG: α-ketoglutarate, BCAAs: branched chain amino acids, (N)EAs: (non-)essential amino acids, ECM: extracellular matrix, ETC: electron transport chain, GSH: glutathione, OAA: oxaloacetic acid, PPP: pentose phosphate pathway, SSP: serine synthesis pathway, TAA: transaminase, TCA cycle: tricarboxylic acid cycle, THF: tetrahydrofolate. Three-letter abbreviations are defined in Table 1.
enzymes degrade the extracellular matrix (Rucci and Teti, 2016). Osteoclasts are derived from proliferative monocyte/macrophage precursor cells, which upon activation with osteoblast/osteocyte-derived factors like RANKL form multinucleated cells that acquire bone-resorbing capacity.

Metabolic programs, including those fueled by amino acids, are intimately linked to specific cell functions, and recent studies indicate that these pathways may differ between proliferating progenitors versus differentiating cells. Moreover, the supply of amino acids is related to the type and density of blood vessels in the microenvironment, which is especially relevant for osteoblasts and osteoclasts that reside close to the vasculature (Stegen and Carmeliet, 2018). Interestingly, when comparing amino acid levels in bone marrow plasma to peripheral blood, significant differences were observed. For example, glutamate and aspartate are amongst the lowest amino acids in the circulation, but their respective levels were 20- to 70-fold higher in bone marrow plasma. On the other hand, glutamine and tryptophan were relatively less abundant in bone marrow (van Gastel et al., 2020a), suggesting that these amino acids may be actively consumed in the bone microenvironment. Together, these observations indicate that bone cells may display specific amino acid requirements depending on their functional properties, lineage allocation and differentiation status, which may be, at least partially, controlled by the local microenvironment. Below, we will summarize recent findings how amino acid metabolism regulates osteoblast and osteoclast function.

2.1. Amino acid metabolism in osteolineage cells

2.1.1. The pleiotropic metabolic roles of glutamine

In addition to its role as a proteogenic amino acid and metabolic precursor, glutamine acts as a reagent in nucleotide synthesis and glutathione generation. In proliferating osteoblast progenitors, glutamine uptake is regulated by a cellular sensing mechanism controlled by general control nonrepressible 2 (GCN2). In conditions of amino acid stress or increased demand, such as the high protein synthesis required for osteoblast proliferation and matrix production, GCN2 is activated by the presence of uncharged tRNA and phosphorylates the alpha subunit of eukaryotic translation initiation factor 2 (eIF2α). In turn, this leads to an increase in the translation of the transcription factor ATF4, which stimulates the expression of amino acid transporters such as SLC1A5, likely to provide sufficient glutamine to support SSC proliferation in a feed-forward mechanism (Hu et al., 2020). During osteoblast differentiation, SLC1A5 levels further increase and its expression is stimulated by osteoanabolic signals such as WNT and PTH (Sharma et al., 2021; Shen et al., 2021; Stegen et al., 2021). In vivo, ablation of Slc1a5 in Osterix-expressing osteolineage cells impairs intramembranous bone formation, while endochondral ossification is only transiently affected. Mechanistically, SLC1A5 facilitates glutamine and, to a lesser extent, asparagine import that is necessary to support amino acid biosynthesis required for osteoblast proliferation and matrix production (Sharma et al., 2021) (Fig. 2). Intriguingly, while glutamine is a critical nutrient during all stages of osteogenesis, asparagine appears more important for terminal osteogenic differentiation. Further studies are therefore required to elucidate the role of asparagine metabolism in osteogenic cells.

Once taken up by the cell, glutamine metabolism is generally initiated by the enzyme glutaminase (GLS), which converts glutamine into glutamate that is further deaminated to form αKG. Other enzymes, mostly involved in nucleotide synthesis, can also generate glutamate from glutamine, but their functional role in osteoblast lineage cells is currently unknown. Conditional ablation of GLS in the early skeletal lineage using Lepr-Cre or Prrx1-Cre transgenic mice results in a decrease in SSPC proliferation and bone formation, and is associated with increased marrow adiposity (Yu et al., 2019). At the cellular level, differentiation of bone marrow stromal cells is shifted towards adipocytes at the expense of osteogenic differentiation, indicating that GLS is required for osteoblast lineage commitment. The decrease in proliferation is linked to a deficit in transaminase-dependent αKG synthesis, although the mechanism by which αKG regulates SSCP proliferation requires further investigation. Similarly, whether and how glutamine-derived αKG regulates SSCP lineage specification remains unknown, but might involve epigenetic regulation of gene expression as observed in growth plate chondrocytes (Stegen et al., 2020). Finally, we could demonstrate that in skeletal progenitors from the periosteum, the hypoxia-inducible transcription factor HIF-1α induces GLS-driven glutamine metabolism to support a glutathione-dependent antioxidant mechanism that safeguards cell survival during bone regeneration (Stegen et al., 2016) (Fig. 2).

GLS-mediated catabolism is also important in more lineage-committed osteogenic progenitors, as genetic inactivation (Osterix-Cre mice) results in decreased bone mass, which is caused by impaired biosynthesis but also cell survival of osteogenic cells (Stegen et al., 2021). Although not analyzed in detail, the decrease in bone mass is also in this model associated with increased bone marrow adiposity. In osteoprogenitors, GLS-mediated glutamine catabolism supports nucleotide and amino acid synthesis that is necessary for proliferation and matrix synthesis, whereas glutamine-derived glutathione prevents the accumulation of harmful reactive oxygen species (ROS) (Fig. 2). Supplementation of αKG fully prevents the detrimental effects of GLS deletion on osteoblast anabolism by restoring NEAA and nucleotide synthesis, whereas GSH supplementation rescues the defect in cell survival. Intriguingly, while GLS-mediated glutamine catabolism is important in early osteolineage cells, deletion of GLS in mature osteocalcin-expressing osteoblasts does not affect bone properties (Yu et al., 2019). These observations suggest that mature osteoblasts metabolize glutamine via other pathways, or that other nutrients such as glucose or fatty acids can compensate for the loss of GLS, but these hypotheses require further testing.

In addition to its role as a proteogenic amino acid and metabolic precursor, exogenous or glutamine-derived glutamate can also function as an excitatory neurotransmitter through binding on ionotropic (i.e. ligand-gated ion channel) or metabotropic receptors (i.e. inducing G-protein signaling cascades). Some early osteogenic cell types, including bone marrow SSPCs, osteoblasts and osteocytes express Slc1a5, a glutamate-aspartate transporter (also known as GLAST) involved in glutamate recapture from the extracellular space (Mason et al., 1997; van Gastel et al., 2020a), and osteoblasts and osteoclasts also express the ionotropic N-methyl-D-aspartate glutamate receptor (NMDAR) (Patton et al., 1998). In vitro, glutamate can induce osteoblast differentiation through NMDAR or α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor signaling. In rats, local injections of an AMPA agonist...
in the subcutaneous tissue surrounding the tibia results in increased bone mass (Lin et al., 2008), although the underlying mechanism was not fully investigated. Interestingly, systemic Slc1a3 knockout mice do not display a bone phenotype (Gray et al., 2001), whereas deletion of Nmdar1 in osteocalcin-expressing cells results in severe skeletal defects (Skerry, 2008). A more recent study revealed an additional role for Slc1a3-mediated glutamate uptake in regulating the acute stress response in rodents and human. Mechanistically, stress exposure favors glutamate uptake by osteoblasts, resulting in the secretion of bioactive osteocalcin as glutamate competitively inhibits γ-carboxylase activity. Further studies are therefore necessary to delineate the importance of proline uptake versus glutamine-mediated de novo synthesis during chondrogenesis (Stegen et al., 2020).

2.1.3. Amino acid metabolism: beyond glutamine and proline

A number of studies have suggested a regulatory role for other amino acids in osteogenic cells, although the molecular mechanism is often not fully understood or validated in vivo. Methionine is an essential amino acid that is critical for protein synthesis, as it is encoded by the start codon during protein synthesis, but also functions as a metabolic precursor of S-adenosylmethionine (SAM), which is used as a cofactor by DNA and histone methyltransferases and thereby regulates gene expression. Dietary methionine restriction is gaining interest over the last decade, as it may extend life-span and reduce malignancy by decreasing oxidative stress (Ables et al., 2016). However, methionine restriction negatively affects bone properties, which is, at least partially, caused by impaired osteoblast differentiation (Ouattara et al., 2016; Plummer et al., 2017). Whether these defects result from epigenetic changes or from detrimental metabolic alterations remains to be studied.

The tryptophan degradation pathway produces kynurenine metabolites with important effects on the brain, gut and skeletal muscle, but also on the skeleton (Cervenka et al., 2017). In patients, kynurenine serum levels increase with age, which are correlated with osteoporotic bone loss (Forrest et al., 2006). In accordance, kynurenine administration decreases bone mass in adult mice (Pierce et al., 2020). However, also deletion of indoleamine dioxygenase, the rate-limiting enzyme in the pathway, prevents bone loss (Vidal et al., 2015), arguing that regulation of skeletal cell function by kynurenine-derived metabolism is complex and requires further study.

Another amino acid that might be involved in osteoblast anabolism is taurine, a non-proteogenic amino acid that is predominantly synthesized by the liver (Hansen and Grunnet, 2013). Administration of taurine effects is unknown. Still, this relatively modest reduction in osteoblast-related proteins is physiologically relevant, as deletion of Slc38a2 in Osterix-expressing cells negatively impacts osteoblast differentiation and bone development (Shen et al., 2022). Interestingly, type X collagen remodeling is delayed in mutant mice. As Osterix-Cre also targets hypertrophic chondrocytes (Chen et al., 2014), these data suggest that loss of Slc38a2 impairs chondrocyte function during endochondral ossification. Further studies are therefore necessary to delineate the importance of proline uptake versus glutamine-mediated de novo synthesis during chondrogenesis (Stegen et al., 2020).
stimulates osteoblast differentiation \textit{in vitro}, and feeding rats a high-
taurine diet protects against ovariectomy-induced bone loss (Choi and
DiMarco, 2009). In a model of vitamin B12 deficiency that is associated
with skeletal defects, a taurine-supplemented diet increases IGFI syn-
thesis in the liver that results in increased osteoblast proliferation and
rescues the bone phenotype (Roman-Garcia et al., 2014). A recent study
shows that osteocytes synthesize taurine, which may be involved in
regulating osteocyte viability and sclerostin expression, although \textit{in vivo}
evidence is lacking (Prideaux et al., 2020).

Arginine is a conditionally essential amino acid that is also impli-
cated in bone biology (van’t Hof and Raiston, 2001). It can be taken up
primarily via the SLC7 transporter family or generated via a step-wise
process that involves the formation of arginosuccinate from citrulline
and aspartate by arginosuccinate synthase, which is subsequently
cleaved by arginosuccinate lyase (ASL) that generates arginine and
fumarate. The importance of arginine metabolism for skeletal cell
function is primarily attributed to its role in nitric oxide (NO) synthesis,
as loss of ASL in osteoblasts (Osteocalcin-Cre) results in decreased bone
mass caused by reduced osteoblast differentiation (Jin et al., 2021)
(Fig. 2). This defect in osteoblast function is associated with metabolic
changes, as decreased NO production downregulates glycolysis,
although the contribution of NO-induced metabolic alterations versus
direct effects of NO on osteoblasts and surrounding cells remains to be
investigated.

Together, these studies indicate that osteolineage cells can both
consume and synthesize the requisite amino acids to support their
anabolic functions during bone formation.

2.2. Metabolic interaction between bone marrow stromal cells and
 hematopoietic or leukemic cells

In adult life, the bone marrow is the main site of hematopoiesis.
Hematopoietic homeostasis, including self-renewal, proliferation, dif-
fentiation and migration of hematopoietic stem and progenitor cells, is
primarily ensured by bone marrow stromal cells through cell-bound or
secreted molecules (Calvi and Link, 2015). Recent studies also suggest a
regulatory role for cell metabolism, although insight is still limited,
especially concerning amino acids. The essential amino acid valine can
support the proliferation and maintenance of hematopoietic stem cells
(HSCs), as shown by \textit{in vivo} and \textit{in vitro} models of valine deprivation
(Taya et al., 2016). Interestingly, bone marrow-derived endothelial
cells, osteoblasts and stromal cells secrete valine \textit{in vitro}, suggesting that
cells from the niche maintain HSCs through the secretion of specific
amino acids but this hypothesis requires further testing \textit{in vivo}.

In hematological malignancies such as leukemia, which is charac-
terized by rapid expansion of abnormal white blood cells, the metabolic
crosstalk between bone marrow stromal cells and leukemia cells is
disturbed and likely contributes to disease progression. Acute leukemia
occurring less mature, fast-developing become dysfunctional cells
called blasts as they leave the bone marrow. By contrast, chronic
leukemia occurs when leukocytes develop more slowly, potentially taking
years to cause symptoms. In a model of chronic lymphocytic leukemia
(PLL), Zhang et al. have shown that bone marrow stromal cells modulate
the redox status of CLL cells, thereby promoting their survival and drug
resistance. Mechanistically, stromal cells take up cystine and convert it
into cysteine, which is then used by CLL cells to generate GSH. Blocks
cystine uptake \textit{in vivo} depletes intracellular GSH levels in CLL cells
specifically, resulting in increased drug-induced cytotoxicity and
decreased leukemia burden (Zhang et al., 2012). In a model of acute
myeloid leukemia (AML), van Gastel and colleagues showed that, in
addition to cell-intrinsic changes in glutamine metabolism, AML cells
also depend on aspartate derived from bone marrow stromal cells to
persist after chemotherapy treatment. Specifically, glutamine-derived
aspartate is predominantly provided by bone marrow stromal cells
and fuels nucleotide synthesis in chemotherapy-resistant AML cells. In
accordance, blunting glutamine metabolism or pyrimidine synthesis
selects against residual leukemia-initiating cells and thereby impairs
leukemia progression in mice (van Gastel et al., 2020a). Together, these
studies suggest that alterations in stromal cell amino acid metabolism
are an important driver of leukemia progression, and that targeting
these metabolic pathways, albeit in combination with known cytotoxic
drugs, may be an appealing strategy to treat this disease.

2.3. Amino acid metabolism in osteoclasts

In contrast to osteogenic cells, fewer studies have investigated amino
acid metabolism in bone-resorbing osteoclasts. Similar to osteoblasts,
amino acid-sensing factors like mTOR are important for osteoclast
formation and survival (Dai et al., 2017; Glantschnig et al., 2003; Hu et al.,
2016; Sugatani and Hruska, 2005), especially in the setting of osteolytic
bone metastasis (Abdelaziz et al., 2014; Hussein et al., 2012; Mercatelli
et al., 2016), although conflicting data exist (Huynh and Wan, 2018; Y.
Zhang et al., 2017). However, how specific amino acids and amino acid-
metabolizing pathways regulate osteoclast differentiation and function
is even less well understood, especially \textit{in vivo}, despite long-standing
knowledge that these cells express many amino acid transporters.

During \textit{in vitro} differentiation, osteoclasts take up a considerable
amount of amino acids, including glutamine, arginine, serine, and
branched-chain amino acids (BCAAs) such as (iso)leucine and valine,
and their withdrawal from the culture medium manifestly affects oste-
oclast formation and/or function (Brunner et al., 2020; Go et al., 2022;
Indo et al., 2013; Pollari et al., 2011). Glutamine metabolism appears to
be primarily sustained via its uptake through SLC1A5, as genetic or
pharmacological blockade of this transporter reduces intracellular
glutamine levels and impairs osteoclastogenesis \textit{in vitro} (Indo et al.,
2013; Tsumura et al., 2021). Supplementation of cell-permeable \textit{αKg} fully
rescues the phenotypic defects caused by SLC1A5 inhibition (Indo et
et al., 2013), although it remains unknown how glutamine is metabo-
lized in osteoclasts, which metabolic role(s) it fulfills and how it func-
tions \textit{in vivo}.

In a recent study, Brunner and colleagues have shown that the
extracellular availability of the conditionally essential amino acid argi-
nine is also critical for RANKL-induced osteoclastogenesis (Brunner
et al., 2020). Although its uptake is not altered upon RANKL treatment,
extracellular arginine supports TCA cycle activity and oxidative phos-
phorylation, which are both critical metabolic regulators of osteoclast
formation (Arnett and Orriss, 2018; Da et al., 2021). Interestingly,
supplementation of the TCA cycle intermediate \textit{αKg} does not rescue the
defect in osteoclastogenesis caused by arginine depletion (Brunner et
et al., 2020), suggesting that other arginine-derived metabolites, including
NO, polyamines or proline (Brandi et al., 1995; Bronte and Zanovello,
2005; Klein-Nulend et al., 2014; Yamamoto et al., 2012), may be
involved. Another amino acid that regulates osteoclastogenesis is
methionine. During osteoclast differentiation, RANKL induces a shift
towards oxidative metabolism with increased ATP production, which is
accompanied by enhanced synthesis of SAM from methionine. In turn,
SAM supports the activity of DNA methyltransferases that regulate
osteoclast differentiation via epigenetic repression of anti-
osteoclastogenic genes (Nishikawa et al., 2015). However, impaired
osteoclast formation caused by inhibition of oxidative phosphorylation
is not rescued by exogenous SAM, suggesting that the changes in DNA
methyltransferase activity are not directly linked to altered ATP pro-
duction via oxidative phosphorylation. On the other hand, a high
methionine diet leads to increased circulating homocysteine levels,
which cause oxidative stress and osteoclast-mediated bone loss by dis-
rupting OPG and RANKL production in osteoblasts (Vijayan et al., 2015).
Finally, two recent studies have shown an important role for branched-
chain aminotransferase 1 (BCAT1) in regulating osteoclastogenesis.
BCAT1 is the cytoplasmic BCAT isoform that converts BCAAs into
branched-chain ketoacids, thereby generating glutamate from \textit{αKg}.
Systemic deletion of BCAT1 in mice results in increased bone mass,
which is caused by impaired osteoclastogenesis with no change in
3. Amino acid metabolism in chondrocytes

Another metabolically active skeletal cell type is the chondrocyte, whose anabolic actions are especially evident during bone development and repair. The developing growth plate, through a tightly regulated sequence of chondrocyte proliferation, hypertrophic differentiation and replacement of the cartilaginous extracellular matrix (ECM) by an osseous one, is responsible for the longitudinal growth of the skeleton. These aspects are recapitulated during fracture repair, whereby a cartilage callus is initially formed that is later replaced by bone through the concerted action of bone-resorbing osteoclasts and bone-forming osteoblasts (Hallett et al., 2019). Intriguingly, despite the highly anabolic nature of chondrocytes, cartilage is one of the few avascular tissues in the human body, suggesting that chondrocytes rely on specific modes of nutrient acquisition and removal. For example, while small metabolites like glucose or amino acids reach the centrally localized chondrocytes through passive diffusion, diffusion of free fatty acids and lipids is limited (Torzilli et al., 1998; van Gastel et al., 2020b). Moreover, amino acid recycling via autophagy is critical to safeguard chondrocyte homeostasis during nutrient shortage, but also in baseline conditions (Luo et al., 2019). Finally, the absence of blood vessels renders the growth plate hypoxic, especially in the central region, which in turn results in specific metabolic adaptations that facilitate cell survival and function in oxygen-lack conditions (Stegen and Carmeliet, 2019).

While glucose has been the main nutrient of interest in metabolic studies also in chondrocytes (Hollander and Zeng, 2019; Mobasher et al., 2017), recent studies started to uncover an important regulatory role for amino acid metabolism. Indeed, key amino acid-sensing signaling pathways and transcription factors such as mTOR and activating transcription factor 4 (ATF4) are critical for chondrocyte function during bone development, likely by integrating nutritional cues to sustain anabolic processes such as proliferation and matrix synthesis (Chen and Long, 2018; Wang et al., 2009). Moreover, specific amino acids and amino acid-metabolizing pathways have been shown to regulate chondrocyte behavior during endochondral ossification and altered amino acid metabolism may be linked to cartilage dysfunction during osteoarthritis, which will be further discussed below.

3.1. Amino acid metabolism regulates chondrocyte function

In line with their pleotropic metabolic roles, changes in the availability of amino acids such as glutamine, glycine or leucine significantly impact chondrocyte behavior, including survival, proliferation and matrix synthesis (de Paz-Lugo et al., 2018; Handley et al., 1986; Kim et al., 2009; Stegen et al., 2021). We could recently show that in mice, glutamine metabolism regulates multiple cellular properties in growth plate chondrocytes via a feedforward process (Stegen et al., 2020). In parallel with the induction of chondrogenesis, the master chondrogenic transcription factor SOX9 also promotes glutamine metabolism by increasing glutamine uptake together with GLSI mRNA and protein expression. In turn, enhanced glutamine metabolism controls the typical chondrogenic gene expression epigenetically through glutamate dehydrogenase–dependent acetyl-CoA synthesis, which is necessary for histone acetylation of active, chondrocyte-specific gene promoters such as Type 2 collagen and Aggrecan. Moreover, glutamine-derived aspartate serves as a nucleotide and protein precursor for chondrocyte proliferation and matrix synthesis, whereas glutamine-derived glutathione synthesis avoids the accumulation of harmful ROS and subsequent cell death (Fig. 3). Thus, glutamine metabolism is important for chondrocyte function during bone development and likely also during bone repair, as pharmacological inhibition of GLSI also impairs the formation of a cartilaginous callus (Stegen et al., 2020).

Glutamine metabolism is thus important for chondrocyte function during endochondral ossification. Importantly, the flux of glutamine into anabolic pathways has to be tightly regulated, as increased glutamine-mediated production of αKg, induced by constitutively active hypoxia-inducible factor 1α (HIF-1α) signaling, stimulates collagen hydroxylation and results in heavily cross-linked collagen. This collagen over-modification impairs osteosteat-mediated degradation of the cartilage matrix at the chondro-osseus junction and ultimately causes skeletal dysplasia that is associated with cartilage remnants and increased trabecular bone mass (Stegen et al., 2019). In the context of cartilage tumors, Zhang and colleagues recently showed that glutamine metabolism differentially regulates tumor development in benign enchondroma and cancer cell survival in malignant chondrosarcoma. While blocking GLS in enchondroma increases the number of tumor-like lesions, genetic ablation of Glis in IDH mutant chondrosarcomas results in reduced tumor volume (Zhang et al., 2022). Taken together, these studies highlight glutamine as a central metabolic regulator of chondrocyte function during endochondral bone development, and suggest that alterations in glutamine metabolism are linked to chondrocyte dysfunction and skeletal disease.

In addition to enhanced glutamine metabolism, another important characteristic of many anabolic cell types is de novo glucose-dependent synthesis of the non-essential amino acid serine, even in conditions where sufficient extracellular serine is present. We recently uncovered an important role for the serine synthesis pathway (SSP) in regulating chondrocyte proliferation, whereas exogenous serine and its downstream metabolite glycine are less important. Deletion of the rate-limiting enzyme phosphoglycerate dehydrogenase (PHGDH) hinders chondrocyte proliferation through impaired nucleotide synthesis, resulting in decreased long bone growth (Fig. 3). Moreover, pharmacological inhibition of PHGDH impairs cartilaginous callus formation during fracture repair. On the other hand, in conditions of serine starvation, chondrocytes maintain their anabolic functions through ATF4-mediated transactivation of SSP-related enzymes (Stegen et al., 2022). Thus, apart from its physiological role during bone development, de novo serine synthesis could also be required to maintain intracellular serine levels necessary to sustain proliferation during fracture repair, when serine supply may be acutely limited.

Taken together, recent evidence shows that glutamine metabolism and de novo serine synthesis are essential to endow chondrocyte anabolicism during endochondral ossification. A potential role of other amino acids awaits further investigation.

3.2. Altered amino acid metabolism during osteoarthritis

Osteoarthritis (OA) is a chronic degenerative joint disease
characterized by gradual loss of articular cartilage, synovial inflammation, and subchondral bone remodeling (Martel-Pelletier et al., 2016). While the etiology of this disease is multifactorial, recent studies have shown that metabolic alterations in articular chondrocytes, including amino acid metabolism, may be involved (Zheng et al., 2021). Accordingly, mTOR signaling, and more specifically the amino acid-sensitive mTOR complex 1, is upregulated in OA cartilage (H. Zhang et al., 2017; Zhang et al., 2015). The underlying mechanism is not fully understood, but might involve a response to changes in amino acid levels in the microenvironment. Indeed, metabolic analysis using liquid/gas chromatography-based mass spectrometry or NMR reveals differences in amino acid concentrations in OA cartilage, synovial fluid, plasma and urine (Li et al., 2016). Efforts are now ongoing to validate and functionally link these changes to the disease phenotype, in order to use specific amino acid alterations as OA biomarkers (Johnson et al., 2016; Zhai et al., 2010).

In addition to the changes in amino acid levels, amino acid-metabolizing pathways may also be involved in OA pathogenesis. Arginine is the physiological nitrogenous substrate of the inducible NO synthase (iNOS), and iNOS-mediated production of NO from arginine in metabolizing pathways may also be involved in OA pathogenesis. Specific amino acid alterations as OA biomarkers (Johnson et al., 2016; Zhai et al., 2010).

4. Conclusions and future perspectives

Altogether, several studies have started to investigate the role of amino acid in bone homeostasis and diseases. For some of them, like glutamine, we now have a clearer view of its regulatory effects on bone cell function, while for other amino acids their exact role in different skeletal cell types remains to be elucidated. Glutamine uptake and catabolism are induced by anabolic stimuli such as WNT, ATF4 or HIF, but also by lineage-specific transcription factors such as SOX9. In turn, glutamine-derived metabolites sustain biosynthetic reactions and redox balance, and allow for epigenetic modifications. Proline complements glutamine metabolism by generating osteoblast-specific proteins. Cited studies also provide interesting clues on the role of asparagine, glutamate, methionine, tryptophan, arginine and BCAAs in skeletal cells, but their functional importance, especially in vivo, remains to be determined further. The increasing access to metabolomics techniques, together with novel methodologies that interrogate cell metabolism in vivo such as in vivo isotopic labelling and mass spectrometry imaging, will facilitate new research that will improve our understanding of amino acid metabolism in skeletal cells. In parallel, the use of transgenic mice with cell-specific modulation of metabolic enzymes or transporters is crucial to determine how amino acid cellular metabolism affects bone development and homeostasis. Finally, from a translational point of view, interfering with amino acid metabolism may be an appealing strategy to treat skeletal diseases. A high dietary amino acid intake might be beneficial for bone health, as it was reported to increase bone mineral density (Munger et al., 1999) and reduce fracture risk (Darling et al., 2009). On the other hand, amino acid metabolism may be dysregulated in skeletal diseases such as osteoporosis and osteoarthritis, although further work is needed to link specific metabolic reprogramming to skeletal cell dysfunction and to use these as a therapeutic target.

Declaration of competing interest

None.

Acknowledgements

We apologize for not being able to cite other interesting research manuscripts because of space limitations.
Funding

Work in the authors’ laboratory was supported by the Belgian Foundation Against Cancer (F/2020/1471); the Research Foundation Flanders (FWO) [G0F821N, G0B3418N, G0C5120N] and the KU Leuven (C24/17/077). C.-S. Devignes and S. Stegen hold postdoctoral research fellowships from H2020 Marie Skłodowska-Curie Actions (841199) and the FWO (12H5920N), respectively.

References

Abdelaziz, D.M., Stone, L.S., Komarova, S.V., 2014. Osteolysis and pain due to fellowships from H2020 Marie Skłodowska-Curie Actions (841199) and the KU Leuven (C24/17/077). C.-S. Devignes and S. Stegen hold postdoctoral research fellowships from H2020 Marie Skłodowska-Curie Actions (841199) and the FWO (12H5920N), respectively.

Abrahamsson, S.B., 2008. Osteoarthritis and nitric oxide. Osteoarthr. Cartil. 16 (Suppl. 2), S15–S20.

Arnett, T.R., Orris, L.R., 2018. Metabolic properties of the osteoclast. Bone 115, 25–30.

Berger, J.M., Singh, P., Khrimian, L., Morgan, D.A., Chowdhury, S., Arteaga-Solis, E., Darling, A.L., Millward, D.J., Torgerson, D.J., Hewitt, C.E., Lanham-New, S.A., 2009. Dietary protein and bone health: a systematic review and meta-analysis. Am. J. Clin. Nutr. 89, 833–851.

Choi, W.S., Yang, J.I., Kim, W., Kim, H.E., Kim, S.K., Won, Y., Son, Y.O., Chun, C.H., Go, M., Shin, E., Jang, S.Y., Nam, M., Hwang, G.S., Lee, S.Y., 2022. BCAT1 promotes growth and beyond. Int. J. Mol. Sci. 23, 1692.

Chun, M.J., DiMarco, N.M., 2009. The effects of dietary taurine supplementation on bone exercise, inflammation, and mental health. Science 357.

Chun, J.S., 2019. Critical role for arginase II in osteoarthritis pathogenesis. Ann. Rheum. Dis. 78, 412–423.

Chun, J., Long, F., 2018. mTOR signaling in skeletal development and disease. Blood 126, 2443–2451.

Cervera, V., Agudelo, L.Z., Ruas, J.L., 2017. Kyurenine: Tryptophan's metabolites in exercise, inflammation, and mental health. Science 357.

Chen, J., Long, F., 2018. mTOR signaling in skeletal development and disease. Bone Res. 6, 59.

Chen, J., Shi, Y., Regan, J., Karuppaiah, K., Ornitz, D.M., Long, F., 2014. Osx-cre targets nutritional basis for congenital skeletal dysplasias. Cell Metab. 4, 441–451.

Karsenty, G., 2006. ATF4 mediation of NF1 functions in osteoblast reveals a role for nutrient sensing in bone development. Cell Metab. 4, 441–451.

Klein-Nulend, J., van Oers, R.F., Bakker, A.D., Bacabac, R.G., 2014. Nitric oxide signaling in mechanical adaptation of bone. Osteoporos. Int. 25, 1427–1437.

Krae, S.M., 2008. The importance of proline residues in the structure, stability and susceptibility to proteolytic degradation of collagens. Amino Acids 35, 703–710.

Kurenkova, A.D., Medvedeva, E.V., Newton, P.T., Chagin, A.S., 2020. Niches for skeletal stem cells of mesenchymal origin. Front. Cell Dev. Biol. 8, 592.

Kushwaha, P., Wolfgang, M.J., Riddle, R.C., 2018. Fatty acid metabolism by the osteoblast. Bone 115, 8–14.

Lane, A.N., Fan, T.W., 2015. Regulation of mammalian nucleotide metabolism and biosynthesis. Nucleic Acids Res. 43, 2466–2485.

Li, Y., Xiao, W., Luo, W., Zeng, C., Deng, Z., Ren, W., Wu, G., Lei, J., 2016. Alterations of amino acid metabolism in osteoarthritis: its implications for nutrition and health. Amino Acids 48, 907–914.

Liu, E.L., Nguyen, T., Rhune, S., Kim, J., 2020. Amino acids in cancer. Exp. Mol. Med. 52, 15–20.

Liu, T.H., Yang, R.S., Tang, C.H., Wu, M.Y., Fu, W.M., 2008. Regulation of the maturation and function of osteoclasts by glutamine. J. Biol. Chem. 283, 2451–2459.

Liu, P., Gao, F., Niu, D., Sun, X., Song, Q., Guo, C., Liang, Y., Sun, W., 2019. The role of mTOR in osteoclast differentiation and osteoarthritis. J. Cell. Biochem. 120, 3275–3287.

Mason, D.J., Suva, L.J., Generi, P., Patton, A.J., Steuckle, S., Hillam, R.A., Skerry, T. M., 1997. Mechanically regulated expression of a neural tracer gene in bone: a role for excitatory amino acids as osteotropic agents? Bone 20, 199–205.

Mentch, S.J., Locasale, J.W., 2016. One-carbon metabolism and epigenetics: mechanisms both dependent and independent of mTOR signaling. Am. J. Physiol. Endocrinol. Metabol. 296, E1374–E1382.

Nishikawa, K., Iwamoto, Y., Kobayashi, Y., Katsuoka, F., Kawaguchi, S., Tsujita, T., Fukasawa, K., Kamada, H., Tokumura, K., et al., 2019. The L-type amino acid transporter LAT1 inhibits osteoclastogenesis and maintains bone homeostasis through the mTORC1 pathway. Sci. Signal. 12.

Patton, A.J., Genever, P.G., Birch, M.A., Suva, L.J., Skerry, T.M., 1998. Expression of an amino acid transporter LAT1 inhibits osteoclastogenesis and maintains bone homeostasis through the mTORC1 pathway. Sci. Signal. 12.
Pereira, M., Ko, J.H., Logan, J., Protheroe, H., Kim, K.B., Tan, A.L.M., Croucher, P.I., Park, K.S., Rottival, M., Petretto, E., et al., 2020. A trans-eQTL network regulates osteoclast multineurulation and bone mass. elle-B.

Pierce, J.L., Roberts, R.L., Yu, K., Kendall, R.K., Kaiser, H., Davis, C., Johnson, M.H., Will, W.D., Iades, C.M., Bollag, W.B., et al., 2020. Kynurenine suppresses osteoclast cell energetics in vitro and osteoblast numbers in vivo. Exp. Gerontol. 130, 110818.

Plummer, J., Park, M., Perdoni, F., Horowitz, M.C., Hens, J.R., 2017. Methionine-restricted diet decreases miRNAs that can target RUNX2 expression and alters bone structure in young mice. J. Cell. Biochem. 118, 31–42.

Pollari, S., Kakonen, S.M., Edgren, H., Wolf, M., Kohnen, P., Sara, H., Guice, T., Nees, M., Kallionemi, O., 2011. Enhanced serine production by bone metastatic breast cancer cells stimulates osteostegostasis. Breast Cancer Res. Treat. 125, 421–430.

Pradeaux, M., Kitase, Y., Kimble, M., O’Connell, T.M., Bonefeld, L.F., 2020. Taurine, an osteocyte metabolite, protects against oxidative stress-induced cell death and decreases inhibitors of the Wnt/beta-catenin signaling pathway. Bone 137, 115374.

Rached, M.T., Kode, A., Xu, L., Yoshikawa, Y., Paik, J.H., Depinho, R.A., Kousteni, S., 2010. FoxO1 is a positive regulator of bone formation by favoring protein synthesis and resistance to oxidative stress in osteoblasts. Cell Metab. 11, 147–160.

Reeds, P.J., 2000. Dispensable and indispensable amino acids for humans. J. Nutr. 130, 3583–3589.

Roman-Garcia, P., Quiros-Gonzalez, I., Mottram, L., Lieben, L., Sharan, K., Baryawno, N., Rhee, C., Oki, T., Grace, E., Soled, H.J., Milojevic, J., et al., 2020a. Induction of a timed metabolic collapse to overcome cancer chemoresistance. Cell Metab. 32 (391–403), e396.

Ralphs, S.H., van’t Hof, R.J., 2001. Nitric oxide and bone. Immunology 103, 255–261.

Shen, L., Sharma, D., Yu, Y., Zhou, Y., Prueett-Miller, S.M., Zhang, G.F., Karner, C.M., 2021. Biphasic regulation of glutamine consumption by WNT during osteoblast differentiation. J. Cell Sci. 134, Shen, L., Yu, Y., Zhou, Y., Prueett-Miller, S.M., Zhang, G.F., Karner, C.M., 2022. Slc1a5 provides glutamine and asparagine necessary for bone development in mice. elle 10.

Shen, L., Sharma, D., Yu, Y., Long, F., Karner, C.M., 2021. Biphase regulation of glutamine consumption by WNT during osteoblast differentiation. J. Cell Sci. 134, Shen, L., Yu, Y., Zhou, Y., Prueett-Miller, S.M., Zhang, G.F., Karner, C.M., 2022. Slc1a5 provides proline to fulfill unique synthetic demands arising during osteoblast differentiation and bone formation. elle 11.

Skerry, T.M., 2008. The role of glutamate in the regulation of bone mass and architecture. J. Musculoskelet. Neuronal Interact. 8, 166–173.

Stegen, S., Carmeliet, G., 2018. The skeletal vascular system - breathing life into bone tissue. Bone 115, 50–58.

Stegen, S., Carmeliet, G., 2019. Hypoxia, hypoxia-inducible transcription factors and oxygen-sensing prolyl hydroxylases in bone development and homeostasis. Curr. Opin. Nephrol. Hypertens. 28, 328–335.

Stegen, S., Devignes, C.S., Torrekens, S., Van Looveren, R., Carmeliet, P., Carmeliet, G., 2021. Glutamine metabolism in osteoprogenitors is required for bone mass accrual and PTH-induced bone anabolism in male mice. J. Bone Miner. Res. 36, 604–616.

Stegen, S., Laperre, K., Eelen, G., Rinaldi, G., Fraisl, P., Torrekens, S., Van Looveren, R., Loopmans, S., Bultynck, G., Vinckier, S., et al., 2019. HIF-1alpha metabolically controls collagen synthesis and modification in chondrocytes. Nature 565, 511–515.

Stegen, S., Loopmans, S., Stockman, J., Moermans, K., Carmeliet, P., Carmeliet, G., 2022. De novo serine synthesis regulates chondrocyte proliferation during bone development and repair. Bone Res. 10, 14.

Stegen, S., Rinaldi, G., Loopmans, S., Stockman, J., Moermans, K., Thiwnpo, B., Fendt, S.M., Carmeliet, P., Carmeliet, G., 2020. Glutamine metabolism controls chondrocyte identity and function. Dev. Cell 53 (530–544), e538.

Stegen, S., van Gastel, N., Eelen, G., Ghesquire, B., D’Anna, F., Thiwnpo, B., Doveia, J., Torrekens, S., Van Looveren, R., Luyten, F.P., et al., 2016. Hif-1alpha promotes glutamine-mediated redox homeostasis and glycogen-dependent bioenergetics to support postimplantation bone cell survival. Cell Metab. 23, 265–279.

Sugatani, T., Hiruka, K.A., 2005. Akt1/Akt2 and mammalian target of rapamycin/Bim play critical roles in osteoclast differentiation and survival, respectively, whereas akt is dispensable for cell survival in isolated osteoclast precursors. J. Biol. Chem. 280, 3583–3589.

Taya, Y., Ota, Y., Wilkinson, A.C., Kanazawa, A., Watarai, H., Kasai, M., Nakachi, H., Yamazaki, S., 2016. Depleting dietary valine permits nonmyeloablative mouse hematopoietic stem cell transplantation. Science 354, 1152–1155.

Torzilli, P.A., Grande, D.A., Arduini, J.M., 1998. Diffusive properties of immature articular cartilage. J. Biomed. Mater. Res. 40, 132–138.

Trumura, H., Shinodo, M., Ito, M., Igarashi, A., Takekawa, K., Matsumoto, K., Ohkura, T., Miyado, K., Sugiyama, F., Umezawa, A., et al., 2021. Relationships between Slc1a5 and osteostegostasis. Comp. Med. 71, 285–294.

Vidal, C., Li, W., Santer-Nanan, B., Lim, C.K., Guillemin, G.J., Ball, H.J., Hunt, N.H., Ranan, N., Duque, G., 2015. The kynurenine pathway of tryptophan degradation is activated during osteostegostasis. Stem Cells 33, 111–121.

Vijayan, V., Khandelwal, M., Manglani, K., Singh, R.R., Gupta, S., Surlida, A., 2013. Homocysteine alters the osteoprotegerin/RANKL system in the osteoblast to promote bone loss: pivotal role of the regulator forkhead O1. Free Radic. Biol. Med. 61, 72–84.

Wang, C., Ying, J., Niu, X., Li, X., Patti, G.J., Shen, J., O’Keefe, R.J., 2021. Deletion of Glut1 in early postnatal cartilage reprograms chondrocytes toward enhanced glutamine oxidation. Bone Res. 9, 38.

Wang, W., Lian, N., Li, M., Moss, H.E., Wang, W., Perrien, D.S., Elefteriou, F., Yang, X., 2009. Aa4 regulates chondrocyte proliferation and differentiation during endochondral ossification by activating ahh transcription. Development 136, 4143–4153.

Wangwiwatsin, A., Tubio, J., Lewis, K., Wilkinson, D., Santhanam, B., et al., 2014. Glutamine metabolism in osteoprogenitors is required for bone mass accrual –485. –485.

Wang, W., Lian, N., Li, M., Moss, H.E., Wang, W., Perrien, D.S., Elefteriou, F., Yang, X., 2009. Aa4 regulates chondrocyte proliferation and differentiation during endochondral ossification by activating ahh transcription. Development 136, 4143–4153.

Wang, W., Lian, N., Li, M., Moss, H.E., Wang, W., Perrien, D.S., Elefteriou, F., Yang, X., 2009. Aa4 regulates chondrocyte proliferation and differentiation during endochondral ossification by activating ahh transcription. Development 136, 4143–4153.

Watanabe, T., Fujita, T., Sugiyama, F., et al., 2010. FoxO1 is a positive regulator of bone formation by favoring protein synthesis and resistance to oxidative stress in osteoblasts. Cell Metab. 11, 147–160.

Welsh, J.A., Brook, R.L., Tennant, D.A., 2021. Proline metabolism and redox - maintaining a balance in health and disease. Amino Acids 53, 1779–1788.

Whitman, J.G., 2022. Hypoxia and bone. Immunology 103, 255–261.