CASE REPORT

Bilateral, Unaugmented, Loop Myopexy Performed for a Severe Case of Heavy Eye Syndrome

David Maskill¹, Janice Hoole¹, Katerina Oikonomi¹, Ian Simmons⁴ and Evangelos Drimtzias⁴

Aim: To report the clinical features and surgical outcomes of one patient with heavy eye syndrome who underwent bilateral, unaugmented, full loop myopexy.

Methods: A 47-year-old lady with high myopia, high axial length, progressive esotropia, slippage of the lateral rectus (LR) inferiorly and superior rectus (SR) medially on magnetic resonance imaging (MRI) was diagnosed with heavy eye syndrome. Unaugmented loop myopexy without medial rectus (MR) recession was offered.

Results: On follow-up at 30 months, a small residual esotropia of 6 prism dipters (PD) at near and 10 PD at distance was achieved. Both abduction and elevation were improved in both eyes.

Conclusions: The high angle of esodeviations can be challenging to correct adequately with surgery, with many options available: resection-recession, hemitranspositions (Yamada’s procedure), partial loop myopexy (modified Jensen’s procedure) and full loop myopexy (Yokoyama’s procedure). It remains unclear which procedure is optimal for severe disease. In this case, we present bilateral, unaugmented, full loop myopexy as our preferred choice for high esotropia.

Keywords: Heavy eye syndrome; Progressive esotropia

Introduction

The supertemporal quadrant between the SR and LR muscles lacks any extraocular muscles. The intermuscular membrane is the only supporting tissue giving way to the expanding force of the globe when it is too large to fit within the muscle cone because of axial high myopia (Yamaguchi, Yukoyama & Shiraki 2010). This results in supertemporal dislocation of the posterior portion of the elongated globe out from the muscle cone (Yamaguchi, Yukoyama & Shiraki 2010). As a consequence, eye movements become restricted in abduction and supraduction with subsequent progressive esotropia. This extreme condition has been called heavy eye syndrome. Previous authors hypothesized that the esotropia described is due to the weakening of the lateral rectus muscle from prolonged near work (Zheng et al. 2018). We present one case with heavy eye syndrome who underwent bilateral, unaugmented, full loop myopexy.

Case report

A 47-year-old lady was seen in the ocular motility clinic with a longstanding history of progressively increasing large-angle esotropia since early childhood, otherwise asymptomatic.

On examination, visual acuity was 0.8 LogMAR in the right eye and 0.8 LogMAR in the left. Ocular refraction was −24.00 D in the right eye and −25.00 D in the left eye. Anterior segment examination showed tiny dot cataracts in either eye of no clinical significance. Her fundus examination showed changes compatible with pathologic axial myopia.

She had a marked right esotropia with hypotropia measuring 70 prism diopters base out and 10 prism diopters base up in the right eye with the help of Krimsky’s test. Both abduction and elevation were limited to −7.00 and −5.00 respectively in the right eye and to −4.00 and −3.00 in the left. In contrast, both adduction and infraduction were found to be intact in either eye. Figure 1 shows primary position, right and left versions in our patient.

Subsequent MRI excluded any neuropathology, instead demonstrating inferior displacement of the LR and nasal displacement of the SR in both eyes (Figure 2). The patient was therefore diagnosed with myopic strabismus fixus, also known as heavy eye syndrome.

Surgery was done under general anesthesia. A forced duction test (FDT) was performed and was found to be negative showing no evidence of MR tightness in either eye. Therefore, recession of MR was considered to be inappropriate. A loop myopexy between SR and LR was performed to correct the path of the LR and SR. A superior and temporal limbal peritomy was performed and both the superior and lateral recti muscles were identified, dissected and isolated with a 4–0 silk suture (Mersilk, Ethicon). The

*St. James University Hospital, LEEDS Teaching Hospitals, GB
†Patras Olympion General Clinic, GR
Corresponding author: Evangelos Drimtzias (evangelosdrimtzias@gmail.com)
temporal half of the SR muscle and the superior half of the LR muscle were sutured with a non-absorbable suture (ethibond 5–0) and were then united together at two sites, 5 mm and 7 mm from their insertions without any attachment to the sclera. The conjunctiva was sutured with 8–0 vicryl. The operation was performed bilaterally.

The patient was nearly orthophoric the day after the operation. On follow-up at 30 months, a small esotropia of 6 PD at near and 10 PD at distance along with a small right hypotropia of 3 PD for both near and distance was achieved. Both abduction and elevation were improved in both eyes though were remained slightly limited (~2 respectively in either eye) as shown in Figure 3. Overall, the patient was satisfied with the result.

Discussion

For small-angle deviations of myopic strabismus fixus, combined recession-resection procedures can be sufficient (Sturm et al. 2008). With more severe abduction deficits however, as in the presented case, this approach results in poor long-term outcomes. Once MRI imaging has identified the altered courses of the extraocular muscles, it becomes
Muscle union surgery is an effective procedure for heavy eye syndrome. This surgery can normalize the vectors of deviation. This casts doubt on their comparison. Previous study suggested that additional MR recession may worsen the single-suture technique than have been reported in previous studies (Akar et al. 2014; Zou et al. 2017), likely due to a large difference in preoperative angles of deviation. No MR recession was necessary in the present case. Indeed, a study of unaugmented loop myopexy without MR recession has demonstrated that muscle union alone is an effective treatment (Bansal & Marsh 2016). The present case serves to strengthen this argument.

Conclusion
Muscle union surgery is an effective procedure for heavy eye syndrome. This surgery can normalize the vectors of muscle force of the SR and LR restoring the dislocated globe back into the muscle cone. MR recession is not essential, however this would be obligatory when contracture of the MR is suspected during surgery.

Competing Interests
The authors have no competing interests to declare.

References
Akar, S, Gokyigit, B, Aribal, E, Demir, A, Goker, YS and Demirok, A. 2014. Surgical procedure joining the lateral rectus and superior rectus muscles with or without medial rectus recession for the treatment of strabismus associated with high myopia. Journal of Pediatric Ophthalmology and Strabismus, 51: 53–8. DOI: https://https://doi.org/10.3928/01913913-20131119-01

Bansal, S and Marsh, IB. 2016. Unaugmented Muscle Union Surgery for Heavy Eye Syndrome Without Combined Medial Rectus Recession. Journal of Pediatric Ophthalmology and Strabismus, 53: 40–3. DOI: https://https://doi.org/10.3928/01913913-20160113-02

Farid, MF, Elbarky, AM and Saeed, AM. 2016. Superior rectus and lateral rectus muscle union surgery in the treatment of myopic strabismus fixus: Three sutures versus a single suture. Journal of AAPOS: The official publication of the American Association for Pediatric Ophthalmology and Strabismus, 20: 100–5. DOI: https://https://doi.org/10.1016/j. jaapos.2015.11.015

Lam, CP, Yam, JC, Lau, FH, Fan, DS, Wong, CY, Yu, CB, et al. 2015. SR and LR Union Suture for the Treatment of Myopic Strabismus Fixus: Is Scleral Fixation Necessary? BioMed Research International, 2015: 470–73. DOI: https://https://doi.org/10.1155/2015/470473

Shenoy, BH, Sachdeva, V and Kekunnaya, R. 2015. Silicone band loop myopexy in the treatment of myopic strabismus fixus: Surgical outcome of a novel modification. The British Journal of Ophthalmology, 99: 36–40. DOI: https://https://doi.org/10.1136/bjophthalmol-2014-305166

Shih, M-H, Li, M-L and Huang, F-C. 2012. A preequatorial Gore-Tex sling to restore rectus muscle pathways in myopic strabismus fixus. Journal of American Association for Pediatric Ophthalmology and Strabismus, 16: 80–2. DOI: https://https://doi.org/10.1016/j. jaapos.2011.08.013

Sturms, V, Menke, MN, Chaloupka, K and Landau, K. 2008. Surgical treatment of myopic strabismus fixus: A graded approach. Graefe’s Archive for Clinical and Experimental Ophthalmology, 246: 1323–9. DOI: https://https://doi.org/10.1007/s00417-008-0885-5

Yamaguchi, M, Yokoyama, T and Shiraki, K. 2010. Surgical procedure for correcting globe dislocation in highly myopic strabismus. American Journal of Ophthalmology, 149: 341. DOI: https://https://doi.org/10.1016/j.ajo.2009.08.035

Zheng, K, Han, T, Hanandy, Y and Qu, X. 2018. Acquired distance esotropia associated with myopia in the young adult. BMC Ophthalmology, 18: 51. DOI: https://https://doi.org/10.1186/s12886-018-0717-2

Zou, L, Liu, S, Liu, R, Yao, J, Liu, Y, Lin, J, et al. 2017. Modified loop myopexy technique for severe high myopic strabismus fixus. Clinical & Experimental Ophthalmology, 45: 790–6. DOI: https://https://doi.org/10.1111/ceo.12961

How to cite this article: Maskill, D, Hoole, J, Oikonomi, K, Simmons, I and Drintzias, E. 2019. Bilateral, Unaugmented, Loop Myopexy Performed for a Severe Case of Heavy Eye Syndrome. British and Irish Orthoptic Journal, 15(1), pp. 25–27. DOI: https://https://doi.org/10.22599/bioj.125

Submitted: 28 November 2018 Accepted: 31 January 2019 Published: 15 February 2019

Copyright: © 2019 The Author(s). This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International License (CC-BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. See http://creativecommons.org/licenses/by/4.0/.

British and Irish Orthoptic Journal is a peer-reviewed open access journal published by White Rose University Press.