Introduction

Complex total hip arthroplasties (THAs) resulting from anatomic variations or previous trauma and surgery often require unique solutions. Modular femoral implants have allowed surgeons to more easily address these complex cases [1-3]. But, despite the convenience of modularity, it has been associated with junctional fatigue fractures and consequences related to taper damage and corrosion [4-11].

Some modular femoral stems combine proximal modularity with distal osseointegration, bypassing missing or poor-quality proximal bone stock [12-15]. These implants have vastly simplified the challenges of complex cases by allowing independent proximal femoral version and height. But, if necessary, removal of a distal fixation stem can be both extremely difficult and destructive, requiring an extended trochanteric osteotomy (ETO) [16,17].

Other modular stem designs rely on metaphyseal fixation when adequate proximal bone stock remains. One of these designs, the S-ROM (DePuy Orthopedics, Inc., Warsaw), has undergone extensive biomechanical testing [18,19], and successful long-term clinical results have been documented [20-22]. It has a one-piece titanium ally neck-stem component that is inserted through a titanium alloy

One or more of the authors of this paper have disclosed potential or pertinent conflicts of interest, which may include receipt of payment, either direct or indirect, institutional support, or association with an entity in the biomedial field which may be perceived to have potential conflict of interest with this work. For full disclosure statements refer to https://doi.org/10.1016/j.arth.2019.07.004.

* Corresponding author. Department of Orthopaedics and Rehabilitation, University of Miami, 1400 NW 12th Avenue, Miami, FL 33136, USA. Tel.: +1 361 213 7406.
E-mail address: spencer.h.summers@gmail.com

Available online 7 August 2019
Accepted 11 July 2019
Received 2 May 2019
Received in revised form 26 June 2019
Accepted 11 July 2019
Available online 7 August 2019

This article was previously presented at the 2018 summer meeting of the North American Hip Society, and the abstract was published in the Bone and Joint Journal Orthopedic Proceedings.

Keywords:
Hip arthroplasty
Osteoarthritis of hip
Modular
Modular junction

Article history:
Received 2 May 2019
Received in revised form 26 June 2019
Accepted 11 July 2019
Available online 7 August 2019

Background: This study evaluates midterm results of a 3-part titanium alloy stem with metaphyseal fixation and a neck-metaphyseal taper junction strengthened with low plasticity burnishing (LPB). Our hypothesis is that this multimodular implant with LPB succeeds in offering the advantages of three-part modularity without junctional failure.

Methods: Twenty-eight of 32 complex primary (n = 9) and revision (n = 9) total hip arthroplasties were accounted for with minimum 2-year follow-up. Clinical and radiographic data were reviewed at a mean follow-up period of 60 months. One stem, removed for failure to osseointegrate, was submitted for sectioning and taper examination.

Results: There were no modular junction failures despite body mass indices of 20 to 40 and offsets of 34 to 47 mms. Implant survival was 96.3%, with one removal due to aseptic loosening in a patient with chronic renal failure. Taper analyses of the removed implant showed minimal damage. Preoperative and postoperative Harris Hip Scores and Oxford Hip Scores were 20 to 86 and 16 to 41, respectively. Patient satisfaction was 9.7/10. Radiographs showed stem subsidence >2 mm and radiolucencies around the metaphyseal cone only in the hip requiring implant removal.

Conclusions: This 3-part titanium alloy modular stem with LPB of the neck-metaphyseal taper junction showed good functional and radiographic results at a mean 5 years without junctional failures. Although this follow-up exceeds previously published reports, longer follow-up will be important to confirm our confidence in the additional strengthening provided by LPB.

© 2019 The Authors. Published by Elsevier Inc. on behalf of The American Association of Hip and Knee Surgeons. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Clinical and radiographic outcomes of total hip replacement with a 3-part metaphyseal osseointegrated titanium alloy stem enhanced with low plasticity burnishing: a mean 5-year follow-up study

Spencer Summers, MD *, Evan Nigh, BA, Karim Sabeh, MD, Raymond Robinson, MD

Department of Orthopaedics and Rehabilitation, University of Miami, Miami, FL, USA

Arthroplasty Today 5 (2019) 352–357
metaphyseal sleeve [20]. The sleeve has a bone ingrowth surface and connects to the central stem via a modular junction. The femoral neck version can be oriented completely independent of the sleeve, but, if a curved stem is chosen, the version of the neck is dependent on the anterior bow of the femur. Neck version and height are not completely independent of the sleeve and stem. Furthermore, not all metaphyseal sleeve sizes can be combined with all stem diameters, so a large metaphyseal defect cannot always be accommodated with a narrow diaphyseal canal.

The success of the S-ROM (DePuy Orthopedics, Inc., Warsaw) stem leads to 3 questions. Can a modular titanium alloy metaphyseal osseointegration implant be designed that would allow independent sizing and positioning of each of the 3 components? Can a metaphyseal component accommodate 2 modular taper junctions and still fit within the anatomic confines of the proximal femur? And, can this implant tolerate the biomechanical loads experienced by the proximal femur?

The AcuMatch M-Series (Exactech, Inc., Gainesville) was designed with these goals in mind; however, its longevity has been questioned by reports of fatigue failures [23]. To respond to these concerns, low plasticity burnishing (LPB) was added to the manufacturing process of the neck-metaphyseal taper junction in 2006 to improve fatigue strength [24]. This study evaluates 5-year clinical results and survival rates of the M-Series modular femoral implants after the addition of LPB. Our hypothesis is that this multimodular implant now succeeds in offering the advantages of three-part modularity without junctional failure.

Material and methods

Patients

After institutional review board approval, we prospectively followed up 32 patients with 32 cementless THAs using the AcuMatch Modular stem (Exactech, Inc., Gainesville) between May 2010 and July 2016. A single arthroplasty surgeon performed all surgeries. Patients who failed to return for routine follow-up were contacted by phone or email. Of the 32 patients, 1 patient died before the 2-year follow-up (unrelated to the surgery) and was removed from the analysis. One patient was lost to follow-up, and two patients with retained implants were unable to communicate with us directly. One of these patients is in an acute care center, and the other had recurrent thyroid cancer with a radical neck dissection. Two patients had moved out of the country and were unable to return to clinic but did answer the clinical evaluation questions over the phone. This resulted in 28 patients available for clinical review and 26 for radiographic review.

Indications for surgery were as follows: final stage of a two-stage revision for infection (n = 7), failed open reduction and internal fixation (n = 6), revision THA for loosening (n = 4), post-traumatic arthritis (n = 4), avascular necrosis (n = 3), dysplasia (n = 2), pseudotumor from prior metal-on-metal arthroplasty (n = 1), and revision of a periprosthetic fracture (n = 1). A posterolateral approach was used in all but 2 cases due to previous anterolateral approaches. A trochanteric osteotomy was used in 5 patients to facilitate existing implant removal. Postoperatively, patients were initially weight bearing as tolerated with a walker.

Implant

The AcuMatch Modular stem (Exactech, Inc., Gainesville) is a 3-part modular, forged titanium alloy, cementless prosthesis designed for metaphyseal bone ongrowth. The diaphyseal segment is a polished cylindrical splined clothespin tip design available in varying lengths, diameters, and curvatures. The metaphyseal segment is plasma sprayed. The neck segments are available in low or high offset and come in varying heights that can be rotated freely. Unlike the S-ROM (DePuy Orthopedics, Inc., Warsaw), which is a 2-part modular stem with a metaphyseal portion and a single neck-stem component, the AcuMatch Modular’s 3 components (Exactech, Inc., Gainesville) are individually chosen and assembled. For this reason, a locking screw is inserted between the neck, metaphyseal, and stem segments to assure taper assembly between the components. To decrease risk of stem fracture, several features were introduced to maximize the strength of the multimodular connections in the metaphyseal component. A cylindrical tip was added to the male portion of the neck-metaphyseal taper to prevent excessive bending. The tip geometry of the stem-metaphyseal taper was modified to reduce point contact stresses.

The M-series stem was compared in independent laboratory testing (Greenwald, Orthopedic Research Laboratories, Cleveland) to the previously tested S-ROM stem (DePuy Orthopedics, Inc., Warsaw) and demonstrated increased fatigue strength and decreased potential for wear debris. The wear was described as Bobyn type B or mild wear (burnishing or slight roughening) (Seth Greenwald, written communication, October 2018) [18,19].

The male portion of the neck-metaphyseal junction was later enhanced with LPB, a work hardening process, in 2006 because of reportedly neck-metaphyseal taper fractures. This technique has been shown to increase strength to failure 40% in independent fatigue testing [24].

Radiographic and clinical outcomes

Medical records and joint registry data were reviewed to collect information on preoperative and postoperative clinical examinations, operative findings, implant component choices, and complications. The operating surgeon performed clinical evaluations at each visit, and outcomes were recorded using the Harris Hip Score [25], Oxford Hip Score [26], and a ten-point patient Likert Satisfaction Score. Radiographic evaluation included anteroposterior views of the pelvis and hip, as well as Lowenstein lateral view of the implant [27].

Radiographs were evaluated by 2 authors (S.S. and R.R.), and disagreements in findings were reconciled by discussion. Femoral geometries were categorized according to the classification system of Dorr et al [28] using preoperative anteroposterior radiographs of the hip. The calcar-to-canal ratio was calculated by dividing the canal width, measured at 10 cm below the lesser trochanter, by the calcar width, measured at the middle level of the lesser trochanter, as previously described [29]. Femurs with a ratio of 0.0-0.5 were considered type A, 0.5-0.75 as type B, and 0.75-1 as type C.

The most recent radiographs were compared to the first post-operative clinic radiographs to evaluate bony remodeling and changes in implant positioning. Leg length assessments were made by comparison of the difference from a horizontal pelvic reference line to the lesser trochanters in both the legs. Stem subluxation was assessed by measuring implant migration relative to the greater trochanter, as described by Callaghan et al [30], or if the greater trochanter could not be used as a fixed point, relative to the lesser trochanter, as described by Malchau et al [31]. Radiolucencies around the stem and metaphyseal portions of the implant were also recorded in the 14 gruen zones [22]. Spot welds were defined as a newly formed bone bridge between the endosteal and porous implant surfaces. Stress shielding was defined as an area with diminished cortical density between 2 areas of spot welds when compared over a period of time. Shelf formation was defined as endosteal new bone bridging the intramedullary canal in an apparent attempt to support the tip of the implant; however, if this bone was in contact with the distal stem tip and there were no new radiolucencies
or reactive lines around the stem, this was defined as a pedestal around a s—stem [33]. Finally, we recorded whether the clothespin tip was compressed at the final radiographic follow-up visit.

Statistics

Patient demographics and clinical and radiographic outcomes are presented as descriptive statistics. Mean and standard deviations are provided when applicable. Wilcoxon signed-rank analysis was used to assess significance in outcomes data preoperatively and postoperatively. Kaplan-Meier survival analysis was performed to assess survivorship. Statistics were performed using the SPSS software, version 25 (IBM, Armonk).

Results

Baseline demographic and clinical findings are presented in Table 1, grouped by primary and revision THAs. For the entire 28-patient cohort, the mean follow-up time was 61 months (range: 26-98), mean patient age at implantation was 58 years (range: 25-88), body mass index was 28 (range: 20-40), and the average total offset used was 40.8 mm (range: 34-47 mm).

Clinical results

Function improved in all patients after the procedure. Preoperative Harris Hip Score averaged 20 (range: 0 to 65) and improved to an average of 86 (range: 40 to 100) at the last follow-up visit (*P* = .002). Preoperative Oxford Hip Score averaged 16 (range: 0 to 29) and improved to an average of 41 (range: 13 to 48) at the last follow-up (*P* = .001). Final patient satisfaction score averaged 9.7 (range: 8 to 10) on a 10-point Likert Scale (Table 1).

Radiographic results

Anteroposterior and lateral radiographs were available in 26 patients (Table 2; Figs. 1 and 2). There was one case of stem subsidence >2 mm and radiolucrencies around the metaphyseal cone, occurring in the same patient that required implant removal. Radiolucrencies were seen along the polished stem tip in 35% of cases, spot welding around the distal portion of the metaphyseal cone in 58% of cases, and proximal stress shielding at the calcar in 27% of cases. There were no findings of shelf formations around apparent unstable stems. Fifteen percent of cases had pedestals surrounding a stable distal stem.

Complications

There were 3 intraoperative complications. One patient sustained a calcar fracture during impaction of the final implant, and this was treated with a single cable. This patient showed no implant subsidence and had positive spot welds around the metaphyseal cone at the final follow-up visit. One patient sustained a nondisplaced femoral shaft fracture during removal of a prior cemented stem; this was treated with 3 cables. Another patient required an ETO when we were unable to remove the spout and metaphyseal reaming jig. After performing the ETO, the jig was removed and the ETO was repaired with cables. This patient did go onto successful union.

One stem was revised for loosening at 33 months due to failed osseointegration in a patient with chronic renal failure, human immunodeficiency virus, and hepatitis C. The index procedure was performed for posttraumatic arthritis. The AcuMatch M-series stem (Exactech, Inc., Gainesville) was chosen because the patient was at higher risk for postoperative infection and the polished stem of the implant was theorized to be easier to remove should the implant require revision. This patient was revised with a Restoration Modular stem (Stryker Orthopedics, Mahwah) and subsequently did effectively integrate the stem with a good functional outcome. This removed stem was submitted for taper examination and sectioning (Fig. 3). Analysis procedure on the examined stem.

Table 1

Demographics and Outcomes	Primary THA (n = 28)	Revision THA (n = 19)			
Mean (n)	Minimum	Maximum	Mean (n)	Minimum	Maximum
Male/female	5/4	8/11			
Age (y)	48	62			
BMI (kg/m²)	21	59		20	26
Follow-up (months)	36	98		27	95
Dorr Femur type	Type A: 43%	Type A: 53%			
High offset neck	67%	63%			
Total offset (mm)	40.4	41			
Harris Hip Scorea	20	21			
Preoperative	92	83			
Postoperative	59	100			
Oxford Hip Scoreb	18	15			
Preoperative	44	48			
Postoperative Satisfaction Scorec	44	39			

BMI, body mass index; THA, total hip arthroplasty.

a Score out of 100.

b Score out of 48.

c Score out of 10.
included sectioning of the implant to isolate the tapers using a low-speed diamond saw. Tapers were evaluated by light microscopy for evidence of wear and corrosion. The modular junctions demonstrated minimal wear.

Survivorship

There were 2 reoperations: 1 for a nonunion of a greater trochanter osteotomy and 1 for failure to osseointegration. The estimated survival rate with reoperation for any reason as an end point was 92.7% (95% confidence interval, 83% to 100%) at a mean follow-up time of 61 months. The estimated survival rate with revision of the femoral component as an end point was 96.3% (95% confidence interval, 89% to 100%) at a mean follow-up time of 61 months (Fig. 4).

Discussion

We present a series of cases that show good outcomes and 96% survival at a mean follow-up period of 5 years in an implant that combines 2 modular junctions within a metaphyseal component that fits within the anatomic constraints of the proximal femur. There were no instances of implant failure in this implant with the LPB-strengthened neck-metaphyseal taper junction.

The midterm success of this implant is likely due, in part, to its design of a titanium alloy-titanium alloy taper junctions and LPB. The titanium alloy-titanium alloy alloy junctions decrease rates of corrosion when compared with modular stems with dissimilar metals or cobalt-chromium-molybdenum components [4]. LPB is a work hardening surface-enhancement method patented by Lambda Technologies (Cincinnati) that produces compressive residual stress to metal subsurfaces and an improved surface finish [24,34]. Originally used to treat turbine blades in aircraft engines, the process uses cold work hardening to enhance both thermal and biomechanical stability in biomedical devices [24,35]. LPB was added to the AcuMatch M-series implant (Exactech, Inc., Gainesville) in 2006, and independent fatigue testing has shown a 40% increase in the fatigue strength of the neck segment and an increased implant lifespan by 10-fold [24].

Our study showed no modular junction failures and good implant survival without radiologic signs of loosening or metallic debris. In the case that failed to osteointegrate, sectioning of the implant and taper analysis showed no abnormal wear properties such as fretting or corrosion. Although there have been reports of fracture of this M-series implant, it remains a rare phenomenon, and to our knowledge, there are no reported fractures since the addition of LPB [23]. In 2010, Paliwal et al. published 3 cases of this implant failing, 2 of which occurred nearly identically at the stem taper junction with characteristics of fatigue failure [23]. Importantly, these implants were placed before the LPB process implementation. The Emperion is also an all-titanium alloy implant, and fractures occurred at the stem-sleeve junction. Shah et al. found 8
fractures at a mean 3.1-year (1.1-4.8 years) follow-up in the Emperion femoral stem (Smith and Nephew, Memphis). They determined that high body mass index and high offset (mean: 40.2 mm) contributed to the high fracture rate [36]. Although our sample size is smaller, our population experienced no junctional failures despite higher average offset (40.8 mm) and a longer average follow-up period (61 months).

While studies continue to show satisfactory survival outcomes of modular femoral systems, concerns regarding fracture and fretting-corrosion of these multijunctional stems have led to a number of implant failures and recalls [7-11]. Despite the increasing number of reports of modular implants failing, the S-ROM prosthesis (DePuy Orthopedics, Inc., Warsaw) has a stellar clinical record with good results in primary and revision THA [20,37]. Midterm results of 795 S-ROM stems (DePuy Orthopedics, Inc., Warsaw) by Cameron et al found only 2 cases of aseptic loosening after a mean follow-up of 11 years [38]. Longer term results up to 20 years have been reported with excellent survivorship, with no cases of aseptic loosening or junctional failures [21]. Time will tell if the AcuMatch M-series (Exactech, Inc., Gainesville) with LPB implant will match the long-term success of the S-ROM (DePuy Orthopedics, Inc., Warsaw), which was beyond the scope of the present study.

This is the first study to discuss descriptive radiographic outcomes of this proximal fixation modular stem type. The bone loss around the femoral stem after THA is commonly explained by stress shielding because of changes in the distribution of load after placement of the femoral implant. Revision surgery in severely stress-shielded bone can be technically challenging due to lack of proximal bony support. Therefore, the preservation of proximal bone stock is a fundamental goal in THA. It has been generally held that stress shielding can be minimized by using proximally porous-coated stems made of lower modulus alloys such as titanium alloy [39]. Prior reports using proximally fixed modular titanium alloy stems have found stress shielding to still be a prominent radiologic finding at the calcar region (Gruen zone 7) in 74%-78% of cases, resulting in loss of cortical thickness and calcar height [20,40]. Compared with other studies, we found radiologic evidence of stress shielding in 27% of cases. This supports evidence that stress shielding is multifactorial, and the design of the M-series implant may prove to be advantageous in minimizing bone loss from stress shielding compared with similar devices.

The design of this implant allows solution to complex anatomic revision challenges while preserving proximal bone stock; however, its use is limited in smaller femurs. The removable neck and the avoidance of stem osseointegration may make removal less destructive than distal fixation stems. This is particularly desirable
when implanting an implant in a two-stage revision after peri-
prosthetic infection in a patient with multiple comorbidities.
Removal of a solidly fixed implant has not been experienced by
the authors but the metaphyseal fixation, the ability to remove
the neck component, and the polished distal stem would logically make
removal less destructive of bone than a distal osseointegrated
revision stem. The complete interchangeability of the 3 com-
ponents allows solutions to extreme differences in metaphyseal and
diaphyseal defects. However, the metaphyseal cone is too bulky to
fit into the confines of some smaller dysplastic femurs. The smallest
metaphyseal implant, a size 21, is 21 mm across proximally and 19.7
mm distally, which do limit the applications of the stem in this
select patient population.

Our study, although prospective, is not without limitations. First,
while the 2- to 8-year follow-up cases in this study did not reveal
any implant failures, it is impossible to extrapolate these finding to
long-term survival estimates. There is a need for longer term
follow-up to ensure that there are no late junctional failures or
adverse local tissue reactions. Second, this is a relatively small
sample size, and it is possible that we are underpowered to identify
failures that would have a low rate of occurrence at our follow-up
period, specifically implant failure.

Conclusions

This unique 3-part modular stem with metaphyseal fixation shows
good functional and radiographic results at a mean 5-year
period without junctional failures after the addition of LPB at the
neck-metaphyseal taper junction. Proximal stress shielding and
lucencies around the distal stem are seen in patients doing well
without any apparent adverse outcomes. There was one case that
failed to osseointegrate. The possibility of easier removal especially
in second stage reimplantation after infection is attractive. Neither
definitive recommendations regarding safety or longevity of this
implant nor claims of noninferiority to comparable modular im-
plants can be made given the short follow-up and low sample size
of this study group. Further follow-up is important to support
confidence in this unique stem design.

Acknowledgments

The authors acknowledge and appreciate the support of Exact-
tech, Inc., in providing financial support for the creation and
maintenance of our institutional joint registry established to follow
up implants from multiple companies.

References

[1] Sporer SM, Paprosky WG. Femoral fixation in the face of considerable bone
loss: the use of modular stems. Clin Orthop Relat Res 2004;429(2):237.
[2] Jones RE. Modular revision stems in total hip arthroplasty. Clin Orthop Relat
Res 2004;420(1):142.
[3] Higuera CA, Hanna G, Florjancik K, Allan DG, Robinson R, Barsoum WK. The
use of proximal fixed modular stems in revision of total hip arthroplasty. J
Arthroplasty 2006;21(4 Suppl 1):112.
[4] Kop AM, Keogh C, Swarts E. Proximal component modularity in THA—at what
cost? An implant retrieval study. Clin Orthop Relat Res 2012;470(7):1885.
[5] Molloy DO, Munir S, Jack CM, et al. Fretting and corrosion in modular-neck
total hip arthroplasty femoral stems. J Bone Joint Surg Am 2014;96(6):488.
[6] Lakstein D, Eliaz N, Levi O, et al. Fracture of cementless femoral stems at the
mid-stem junction in modular revision hip arthroplasty systems. J Bone Joint
Surg Am 2011;93(1):57.
[7] Berry DJ. Failure analysis of three uncemented titanium-alloy modular hip stems. Eng Fail Anal 2010;17(5):1230.
[8] Horsnacheck C, Pevrey PS, Lossus EF. Application of low plasticity burnishing
(LPB) to improve the fatigue performance of Ti-6Al-4V hip femur stems. J
ASTM Int 2006;3(5):1.
[9] Rongis WH. Traumatic arthritis of the hip after dislocation and acetabular
fractures: treatment by mold arthroplasty. An end-result study using a new
method of result evaluation. J Bone Joint Surg Am 1969;51(4):737.
[10] Dawson J, Fitzpatrick R, Cari A, M. D. D. Questionnaire on the perceptions of
patients about their total hip replacement. J Bone Joint Surg Br 1990;72(6):85.
[11] Dunn DM. Anteverision of the neck of the femur: a method of measurement.
J Bone Joint Surg Br 1952;34-B(2):181.
[12] Dorr LD, Faugere MC, Mackel AM, Gruen TA, Bognar N, Malluche HH. Struc-
tural and cellular assessment of bone quality of proximal femur. Bone 1993;
14(3):231.
[13] Park CW, Eun HJ, Oh SH, Kim HJ, Lim SJ, Park YS. Femoral stem survivorship
in Dorr type A femurs after total hip arthroplasty using a cementless tapered
stem: a matched comparative study with type B femurs. J Arthroplasty
2019;34(3):527.
[14] Callaghan JJ, Salvati EA, Pellicci PM, Wilson JP, Ranawat CS. Results of revision
for mechanical failure after cemented total hip replacement, 1979 to 1982. A
two-to five-year follow-up. J Bone Joint Surg Am 1985;67(7):1074–85.
[15] Maleh K, Karrholm J, Wang XY, Herberts P. Accuracy of migration analysis
in hip arthroplasty. Digitized and conventional radiography, compared to
radiodensitometry in 51 patients. Acta Orthop Scand 1995;66(5):418.
[16] Jacquot L, Bonnin MP, Machenaud J, Choutaff JA, Saffarrini M, Vidallon JP.
Clinical and radiographic outcomes at 25–30 years of a hip stem fully coated
with hydroxylapatite. J Arthroplasty 2018;33(2):482.
[17] Ehrig CA, Massim P, Soehrs KE. Rhoenarchetopographic assessment of the biologic
fixation of porous-surfaced femoral components. Clin Orthop Relat Res
1996(257):107.
[18] Uddin MS, Hall C, Murphy P. Surface treatments for controlling corrosion rate
of biodegradable Mg and Mg-based alloy implants. Sci Technol Adv Mater
2015;16(5):053501.
[19] Seemikeri C, Brahmanarkar P, Mahagoniak S. Low plasticity burnishing: an
innovative manufacturing method for biomedical applications. J Manufacturing
Sci Eng 2009;130(2):021008.
[20] Jeffrey SGR, Alexander G, Matthew J, Wayne C. Alarmingly high rate of implant
failures in one modular femoral stem design: a comparison of two implants.
American Association of Orthopaedic Surgeons Annual Meeting; Orlando, 2016.
[21] Agrawal DC, Politi JR, Hauser WH. S-ROM hip prosthesis: 10-to 14-year re-
results. J Arthroplasty 2016;31(10):1787.
[22] Osman K, Panagiotidou A, Khan M, Blunn G, Haddad F. Corrosion at the head-
neck interface of current designs of modular femoral components: essential
questions and answers relating to corrosion in modular head–neck junctions.
Bone Joint J 2016;98-B(7):980.
[23] Jang HG, Lee KJ, Min BW, Ye HU, Lim KH. Mid-term results of revision total hip
arthroplasty using modular cementless femoral stems. Hip Pelvis 2015;27(3):135.
[24] Hashem A, Al-Azzawi A, Rayiah H, Mukka S, Sayed-Noor A. Cementless,
nondistally fixed stem in hip revision arthroplasty: a single center study of
132 consecutive hips. Eur J Orth Surg Traumatol 2018;28(1):45.
[25] Weiss RJ, Beckman MO, Enocson A, Schmalholz A, Stark A. Minimum 5-year
follow-up of a cementless, modular, tapered stem in hip revision arthro-
plasty. J Arthroplasty 2011;26(1):16.
[26] Kwong LM, Miller AJ, Lubinus P. A modular distal fixation option for proximal
bone loss in revision total hip arthroplasty: a 2- to 6-year follow-up study.
J Arthroplasty 2002;18(3 Suppl 1):94.
[27] Rodriguez JA, Deshmukh AJ, Robinson J, et al. Reproducible fixation with a
tapered, fluted, modular, titanium stem in revision hip arthroplasty in 8 to 15 years
follow-up. J Arthroplasty 2014;29(9 Suppl):214.
[28] Younger Tl, Bradford MS, Magnus R, Paprosky WG. Extended proximal femoral
eomyotomy. A new technique for femoral revision arthroplasty. J Arthroplasty
1995;10(3):329.
[29] Bobyn JD, Tanzer M, Krygger JJ, Djuvone AR, Brooks CE. Concerns with
modularity in total hip arthroplasty. Clin Orthop Relat Res 1995;298(2):77.
[30] Bobyn JD, Kryger JJ, Young R, Young H. Surface analysis of taper junctions
and in vitro tested modular hip prostheses. New York (NY): Raven Press Ltd.; 1993.
[31] Tanzer M, Chan S, Brooks CE, Bobyn JD. Primary cementless total hip
arthroplasty using a modular femoral component: a minimum 6-year follow-
up. J Arthroplasty 2001;16(8 Suppl 1):64.
[32] Drexler M, Dwyer T, Marmor M, et al. Nineteen year results of THA using
modular 9 mm S-ROM femoral component in patients with small femoral
canals. J Arthroplasty 2013;28(9):1667.
[33] Le D, Smith K, Tanzer D, Tanzer M. Modular femoral sleeve and stem implant
provides long-term total hip survivorship. Clin Orthop Relat Res 2011;469(2):508.
[34] Faliwal M, Allan DG, Filip P. Failure analysis of three uncentered titanium-
alloy modular total hip stems. Eng Fail Anal 2010;17(5):1230.
[35] Seemikeri C, Brahmankar P, Mahagaonkar S. Low plasticity burnishing: an
innovative manufacturing method for biomedical applications. J Manufacturing
Sci Eng 2009;130(2):021008.