The JAK–STAT Pathway Is Critical in Ventilator-Induced Diaphragm Dysfunction

Huibin Tang,1,2 Ira J Smith,3 Sabah NA Hussain,4 Peter Goldberg,4 Myung Lee,1,2 Sista Sugiarto,1,2 Guillermo L Godinez,3 Baljit K Singh,3 Donald G Payan,3 Thomas A Rando,5,6 Todd M Kinsella,3 and Joseph B Shrager1,2

Online address: http://www.molmed.org

Supplementary Figure S1. Inhibition of JAK prevents the MV-induced reduction in gene expression of a core subunit of the mitochondrial respiratory chain (complex I), NDUFS3. Total RNAs were extracted from control (n=17), MV (n=11) and MV+R548 (Jak inhibitor, n=9) treated rat diaphragm muscle samples. Quantitative PCR was performed. Please note, NDUFS3 is suppressed by MV, but this suppression is reversed by the treatment of JAK inhibitor, R548.
Supplementary Figure S2. H2O2-induced protein oxidation and ubiquitination are reduced by JAK or STAT inhibitors. A) C2C12 myotubes were treated with H2O2 (400 μM, 24 h) in the presence or absence of pan-JAK inhibitor (JAK I, 0.2, 0.5 μM) and STAT inhibitor (Stattic, 0.2, 0.5 μM), respectively. Protein oxidation was examined by antibodies against DNP and nitrotyrosine. Fold changes shown by bars in bar charts represent change in oxidized protein amounts with increasing doses of inhibitors. B) H2O2-induced protein ubiquitination is reduced by JAK or Stat inhibitor. Fold changes shown by bars in bar charts represent change in oxidized protein amounts with increasing doses of inhibitors.
Supplementary Figure S3. Oxidative stress induced by H$_2$O$_2$ increases the expression of cytokines. Quantitative PCR was performed on H$_2$O$_2$ (400 mM)-treated C2C12 cells (6 h). Total RNA was extracted for RT-PCR. After normalized to actin expression levels, the gene expression levels are shown as fold changes (n=3, *p<0.05).

Supplementary Table S1. Potency of JAK inhibitors.

R545 (Rigel pharmaceuticals, Inc)

R545 is a JAK1/3 inhibitor with selectivity over JAK2 mediated signaling in cell-based assays. Compound potency (EC50 values) and selectivity (ratio between JAK2 and JAK1/3 assays) were assessed in the following cell-based assays: Interleukin-2 (IL2) mediated primary human T-cell proliferation (JAK1 and JAK3 signaling); Human primary cultured erythroid progenitor cell (CHEP) differentiation and survival assay (JAK2 signaling). Granulocyte-macrophage colony-stimulating factor (GM-CSF) stimulation of JAK2-dependent STAT5 phosphorylation in blood granulocytes.

Signaling Kinase(s)	Cell-based assay	R545 EC50 (nM)	Ratio
JAK1, JAK3	Primary T-cell: IL-2 proliferation	0.03	37
JAK2	CHEPs: Erythropoietin Survival	1.111	
JAK1, JAK3	Whole Blood lymphocytes: IL-2 induced pSTAT5	0.887	56
JAK2	Whole Blood granulocytes: GM-CSF induced pSTAT5	>50	

R548 (Rigel pharmaceuticals, Inc)

R548 is a JAK1/3 inhibitor with selectivity over JAK2-mediated signaling in cell based assays. Cell based assays were utilized to assess compound potency and selectivity. Interleukin-2 (IL2) drives primary human T-cell proliferation through JAK1 and JAK3. Erythropoietin (EPO) signaling through JAK2 us required for human primary cultured Erythroid progenitor cell (CHEP) differentiation and survival. IL-2 stimulates phosphorylation of STAT5 by JAK1 and JAK3 in blood lymphocytes. Granulocyte-macrophage colony-stimulating factor (GM-CSF) stimulates JAK2-dependent STAT5 phosphorylation in blood granulocytes.

Signaling Kinase(s)	Cell-based assay	R507 EC50 (nM)	Ratio
JAK1, JAK3	Primary T-cell: IL-2 proliferation	0.021	23
JAK2	CHEPs: Erythropoietin Survival	0.49	
JAK1, JAK3	Whole Blood lymphocytes: IL-2 induced pSTAT5	0.417	78
JAK2	Whole Blood granulocytes: GM-CSF induced pSTAT5	32.7	

Jak I (Jak inhibitor I, EMD Millipore)

Jak I is a potent, reversible, cell-permeable, and ATP-competitive Jak inhibitor, with inhibitory activity against JAK1 (IC50 = 15 nM for murine JAK1), JAK2 (IC50 = 1 nM), JAK3 (Ki = 5 nM), and Tyk2 (IC50 = 1 nM). Inhibits other kinases at much higher concentrations.
Supplementary Table S2. Primers used in quantitative PCR.

Forward Primer	Reverse Primer
hu IL6-forward	ACTCACCTCTTCAGAAGGATGG
hu IL6-reverse	CCATCTTTGGAAGGTTAGTTG
hu IL24-forward	CACACAGGCGGTTTCTGCTAT
hu IL24-reverse	TCCAACTGGTTGAGATCCTC
hu IL20RB-forward	GGCCACTGTGACCCTACAAC
hu IL20RB-reverse	TCTTTGGTACCTCCATCCA
hu IL20RA-forward	ACAAAATGTTCCAAATGGGCT
hu IL20RA-reverse	TGGGACACGGTCTGTTGAT
hu IL6R-forward	CCCCTCAGCAATGGTTTGT
hu IL6R-reverse	TCCGGGACTGCTACCTGG
hu SOCS3-forward	CCTGCGGCTCAAGACCTTC
hu SOCS3-reverse	GTCACTGCACCTCCAGTAAA
hu COX5B-forward	ATGCGCTTCAGTTACTTCGC
hu COX5B-reverse	CCGTTGAGGGCCAGTACATT
hu Bim-forward	CACATGAGCACAATTTCCCTC
hu Bim-reverse	AAGCACAACACTTGAGTAA
mo IL6Ra-forward	GCCACCGTTACCTGATTTG
mo IL6Ra-reverse	TCCTGGTGACTCTCCTCTG
hu UCP2-forward	GACCTATGACCTCAATCGC
hu UCP2-reverse	ATAGGGCGAACACTACACCG
mo IL6-forward	CTGCAAGAGACTTCCATCCAG
mo IL6-reverse	AGTGTTAGACAGGCTGTTG
mo IL24-forward	GAGCCTGCCCACCTTTTTGT
mo IL24-reverse	TGTTGGAAGAGGGGCCCAGT
mo IL20RB-forward	CGGATGCGAGTGCTGTTTACC
mo IL20RB-reverse	GGGTCTCACAATGAGATGC
mo IL20RA-forward	TGTCTCGTCTGGAATCCACC
mo IL20RA-reverse	CCTTTGGTACTCCCGCATTTAG
mo VEGF-forward	GGAGATCCTCCAGAGGACCTT
mo VEGF-reverse	GGCGATTAGCCAGAATAGAA
mo VEGF-forward	GGAGCGAGAAGTGCTGAGAC
mo VEGF-reverse	CTGCTCTCGTCTGTTG
Supplementary Table S3. Altered signaling pathway in mechanically ventilated human diaphragm.

Pathway	Gene	Accession No.	P-value	Exp 1. MV vs Con	Exp 2. MV vs Con	Exp 3. MV vs Con	Exp 4. MV vs Con
Wnt signaling pathway	CD41	NM_001562	0.00739	![Green]	![Green]	![Green]	![Green]
	CD42	NM_001579	0.00779	![Green]	![Green]	![Green]	![Green]
	HCAT	NM_014284	0.00809	![Green]	![Green]	![Green]	![Green]
	ITG5	NM_001779	0.00943	![Green]	![Green]	![Green]	![Green]
	MRK5	NM_001467	0.01164	![Green]	![Green]	![Green]	![Green]
	PDK1	NM_001370	0.00853	![Green]	![Green]	![Green]	![Green]
	RAC2	NM_002872	0.00853	![Green]	![Green]	![Green]	![Green]
	SHC3	NM_016486	0.00853	![Green]	![Green]	![Green]	![Green]

Continued on next page
Supplementary Table S3. Continued.

Nicotinate and nucleotide metabolism

Insulin signaling pathway

Complement and coagulation cascades

Toll-like receptor signaling pathway

Facial adhesion

Trypsinogen metabolism

Continued on next page
Supplementary Table S3. Continued.

MEK/ERK signaling pathway

Gene	Expression	
CACGR1B	NM_000735	
CASP1	NM_033302	
CASP6	NM_033356	
CD4	NM_000569	
CDC42	NM_044171	
DUSP1	NM_044171	
DUSP10	NM_007207	
FGFR1	NM_002692	
FGFR2	NM_002090	
FGFR3	NM_002090	
FLNC	NM_001456	
FOS	NM_002522	
GADD45A	NM_016924	
GADD45B	NM_016873	
GADD45G	B171972	
MAK	NFKB1	NM_004758
MARK2	NFKB2	NM_004550
MAX	NFKB1	NM_014514
MINK1	NFKB1	NM_003694
MINK2	NFKB1	NM_130544
MRAS	NM_012219	
MYC	A178811	
NTRK2	NM_01007997	
PDK1	NM_002096	
PDK2	NM_002096	
RAC1	NM_002572	
RAC2	NM_002572	
RASSF1	NM_055708	
TGFBR3	NM_002935	

SCF-receptor interaction

Gene	Expression
CD44	U69401
CD47	NM_001377
COL1A1	NM_085629
COL1A2	NM_085679
COL3A1	AK021351
COL5A1	NM_000605
COL5A1	NM_001646
FN1	NM_022060
FNG1	NM_022060
FSCN1	NM_003523
ITGAV	AK028265
ITGB6	NM_002214
LAMB4	NM_002200
RELA	NM_050640
SDC2	NM_002996
SDC4	NM_002996
THBS2	NM_002347
THBS4	NM_002347

Regulation of actin cytoskeleton

Gene	Expression
ARHGEF4	NM_013320
ARHGEF7	NM_145735
BDNF	NM_006110
CD4	NM_005691
CDC2	NM_044472

Cell cycle

Gene	Expression	
0	ATM	NM_000051
0	CCNB1	NM_033531
0	CCNB2	NM_035036
0	CCNB2	NM_001709
0	CDC45L1	NM_003504
0	CDK4A1	NM_074847
0	CDK6B	NM_074847
0	GADD45A	NM_010024
0	GADD45B	NM_015875
0	TGFBR3	NM_002709

TGF-beta signaling pathway

Gene	Expression	
0	CDK6B	NM_074847
0	CNTF	NM_000055
0	DCC	NM_000055
0	FST	NM_013449
0	ID2	NM_021666
0	ID4	NM_015046
0	IGF-1	NM_021662
0	MYC	NM_018011
0	NEDD4	NM_018055
0	TGFB3	NM_002359
0	TGFB3	NM_002347
0	TGFB3	NM_002348

Leukocyte transendothelial migration

Gene	Expression	
0	CD24	NM_044472
0	CXCL12	NM_019368
0	CXCL14	NM_044857
0	CYBB	NM_006101
0	ITGAM	NM_006832

Continued on next page
Supplementary Table S3. Continued.

Cell adhesion molecules (CAMs)

Gene	Description
ITGB2	Nil 0.0021
NCF2	Nil 0.00430
NCF4	Nil 0.00561
PKRIR	Nil 0.18152
PRKCB1	Nil 0.20736
RAC2	Nil 0.05272
RASGFr	Nil 0.05066
RARV1	Nil 0.05952
VCA	Nil 0.05978
VCL	Nil 0.01400
VIL2	Nil 0.05337

Glycan structures - biosynthesis 1

Gene	Description
POE45B	Nil 0.30260
POE4G0	Nil 0.30260
POELE2	Nil 0.50262
PRPS1L1	Nil 0.17868

Cell Communication

Gene	Description
COL11A1	Nil 0.08652
COL1A2	Nil 0.09909
COL1A3	Nil 0.09131
COL1D1	Nil 0.05149
COL1A1	Nil 0.09909
COL1A2	Nil 0.05149
COL4A1	Nil 0.05149
FN1	Nil 0.21402
GJA1	Nil 0.20462
GJA4	Nil 0.15321
KRT16	Nil 0.20276
KRT13	Nil 0.20027
KRT33A	Nil 0.04138
LAMA4	Nil 0.20239
PREL1	Nil 0.60922
TNBS	Nil 0.15024
TNFB	Nil 0.16910
VIM	Nil 0.05330

Cytokine-cytokine receptor interaction

Gene	Description
COL13	Nil 0.05464
COL17	Nil 0.05067
COL18	Nil 0.02996
COL18	Nil 0.02996
COL21	Nil 0.02369
COL22	Nil 0.05064
COL26	Nil 0.07072
COL5	Nil 0.02966
GCR1	Nil 0.00195
GCR2	Nil 0.00195
GCR5	Nil 0.00557
GCR7	Nil 0.00153
CSF1R	Nil 0.05211
CSF3	Nil 0.05735
CXCL1	Nil 0.02906

Mitochondrial metabolism

Gene	Description
AK5	Nil 0.14658
AMPD3	Nil 0.06046
ENPP1	Nil 0.09306
ENPP5	Nil 0.05201
GART	Nil 0.06810
GDA	Nil 0.04970
NTSE	Nil 0.05253
POE1A	Nil 0.01000603
Supplementary Table S3. Continued.

Adipocytokine signaling pathway	0.00004 FCGR1A	MW_000901
	MSA2	MW_001396
	PIK3R1	MW_110123
	PLASKA	MW_204340
	PRKCB1	MW_002738
	PTGER5	MW_000960
	RAC2	MW_002872
	SYK	MW_011771
	VAV1	MW_005428
Basal transcription factors	0.008141 GTF2RD1	MW_000680
	TAF13	MW_000545
	TAF9	MW_000851
	TAF5L	MW_014409
VEGF signaling pathway	0.0000 COLDC2A	MW_004472
	MAPKAPK22	MW_004799
	MAPKAPK2Q	MW_004365
	MKR1	MW_012199
	PIK3R1	MW_110123
	PLASKA	MW_204340
	PRKCB1	MW_002738
	RAC2	MW_002872
	VEGFA	MW_010238
Glutathione metabolism	0.03461 GGT17	MW_178626
	GSHR	MW_009537
	GSTM5	MW_009051
	GGT1T	MW_009533
Cysteine metabolism	0.00053 CAR8	MW_001443
	CHST8	MW_021615
	LYSX	MW_002385
	LOX-C	MW_002361
	IDS	MW_000943
Type II diabetes mellitus	0.00241 ADPOQ	MW_004797
	KCNQ1	MW_000325
	PIK3R1	MW_110123
	SOC9	MW_001235
Linoleic acid metabolism	0.00012 AKR1B10	MW_002099
	CYP3E1	MW_000773
	FA2S1	MW_014003
	FA2S2	MW_004205
	FA2S3	MW_017377
	PLASKA	MW_204340
Tight junction	0.0008 AMOTL1	MW_130947
	CCO2	MW_004472
	COX2	MW_022970
	CSDE	MW_003851
	HDN	MW_179777
	MII	MW_012199

Continued on next page

Table S3. Continued.

Pathway	Gene Symbol	Gene Name	Category	Score
Glutamate metabolism	NADSYT1	ALST1	Glutamate	0.1418
	ALST2A	ALST2	Glutamate	0.1984
	MNAT2	MNAT2	Glutamate	0.2483
	GLUL	GLUL	Glutamate	0.3044
	GLUR2	GLUR2	Glutamate	0.3050
B cell receptor signaling pathway	NRAS	NRAS	B cell receptor	0.0004
	FCGR2B	FCGR2B	B cell receptor	0.00001
	SYK	SYK	B cell receptor	0.00017
	PLCB1	PLCB1	B cell receptor	0.00029
	NF2BB	NF2BB	B cell receptor	0.00031
	PKCD1	PKCD1	B cell receptor	0.00039
	RAC2	RAC2	B cell receptor	0.0004
Linoleic acid and palmitic degradation	ACOX1	ACOX1	Linoleic acid	0.0021
	DHPR	DHPR	Linoleic acid	0.0025
	DHPS	DHPS	Linoleic acid	0.0029
	HUDP	HUDP	Linoleic acid	0.0031
T cell receptor signaling pathway	CD2B	CD2B	T cell receptor	0.0036
	CD3E	CD3E	T cell receptor	0.0047
	CD45	CD45	T cell receptor	0.0053
	HAVCR1	HAVCR1	T cell receptor	0.0057
	VAV1	VAV1	T cell receptor	0.0059
Propanoic metabolism	ACAA6	ACAA6	Propanoic	0.0053
	CK15	CK15	Propanoic	0.0106
	HADHA	HADHA	Propanoic	0.0107
	LCH1	LCH1	Propanoic	0.0128
	LCH2	LCH2	Propanoic	0.0176
Glycine, serine, and threonine metabolism	AABP1	AABP1	Glycine, serine,	0.00513
	AKR1B10	AKR1B10	Glycine, serine,	0.0063
	ALAS2	ALAS2	Glycine, serine,	0.0067
	PFK2H4	PFK2H4	Glycine, serine,	0.0075
	PKP1	PKP1	Glycine, serine,	0.0077
	SOD2	SOD2	Glycine, serine,	0.0084
Toll-like receptor signaling	GIG1	GIG1	Toll-like	0.0054
	PDE4A	PDE4A	Toll-like	0.0109
	TAO2R10	TAO2R10	Toll-like	0.0122
Butyrate metabolism	AADAC1	AADAC1	Butyrate	0.00241
	AKR1B10	AKR1B10	Butyrate	0.00289
	HADHA	HADHA	Butyrate	0.0032
	OXCT1	OXCT1	Butyrate	0.0037
Arachidonic acid metabolism	ACOX1	ACOX1	Arachidonic acid	0.00001
	DHPR	DHPR	Arachidonic acid	0.00031
	DHPS	DHPS	Arachidonic acid	0.00033
	HUDP	HUDP	Arachidonic acid	0.00039

Note: The scores in the table represent the significance of the gene expression changes in each pathway. The pathways are color-coded to indicate the direction of change (increased or decreased expression).
Supplementary Table S3. Continued.

Metabolism	Significance	Expression	P-value
SREBP1C	0.0120 E2F2	NM_006284	0.00135
SREBP1D	0.0058 E2F2	NM_006286	0.00155
SREBP1E	0.0048 E2F2	NM_006287	0.00165
SREBP1F	0.0039 E2F2	NM_006288	0.00175
SREBP1G	0.0029 E2F2	NM_006289	0.00185
SREBP1H	0.0019 E2F2	NM_006290	0.00195
SREBP1I	0.0010 E2F2	NM_006291	0.00205
SREBP1J	0.0001 E2F2	NM_006292	0.00215

Pathway	Description	Significance	Expression	P-value
SREBP1C	SREBP1C	0.0120 E2F2	NM_006284	0.00135
SREBP1D	SREBP1D	0.0058 E2F2	NM_006286	0.00155
SREBP1E	SREBP1E	0.0048 E2F2	NM_006287	0.00165
SREBP1F	SREBP1F	0.0039 E2F2	NM_006288	0.00175
SREBP1G	SREBP1G	0.0029 E2F2	NM_006289	0.00185
SREBP1H	SREBP1H	0.0019 E2F2	NM_006290	0.00195
SREBP1I	SREBP1I	0.0010 E2F2	NM_006291	0.00205
SREBP1J	SREBP1J	0.0001 E2F2	NM_006292	0.00215

Pathway	Description	Significance	Expression	P-value
SREBP1C	SREBP1C	0.0120 E2F2	NM_006284	0.00135
SREBP1D	SREBP1D	0.0058 E2F2	NM_006286	0.00155
SREBP1E	SREBP1E	0.0048 E2F2	NM_006287	0.00165
SREBP1F	SREBP1F	0.0039 E2F2	NM_006288	0.00175
SREBP1G	SREBP1G	0.0029 E2F2	NM_006289	0.00185
SREBP1H	SREBP1H	0.0019 E2F2	NM_006290	0.00195
SREBP1I	SREBP1I	0.0010 E2F2	NM_006291	0.00205
SREBP1J	SREBP1J	0.0001 E2F2	NM_006292	0.00215