Complete Genome Sequence of a Bacterium Representing a Deep Uncultivated Lineage within the *Gammaproteobacteria* Associated with the Degradation of Polycyclic Aromatic Hydrocarbons

David R. Singleton, a Allison N. Dickey, b Elizabeth H. Scholl, b Fred A. Wright, b Michael D. Aitken a

Department of Environmental Sciences and Engineering, University of North Carolina, Gillings School of Global Public Health, Chapel Hill, North Carolina, USA a; Bioinformatics Research Center, North Carolina State University, Raleigh, North Carolina, USA b

The bacterial strain TR3.2, representing a novel deeply branching lineage within the *Gammaproteobacteria*, was isolated and its genome sequenced. This isolate is the first cultivated representative of the previously described “Pyrene Group 2” (PG2) and represents a variety of environmental sequences primarily associated with petrochemical contamination and aromatic hydrocarbon degradation.
pyrene degradation in a bioreactor treating PAH-contaminated soil. Environ Microbiol 8:1736–1745. http://dx.doi.org/10.1111/j.1462-2920.2006.01112.x.

2. Jones MD, Crandell DW, Singleton DR, Aitken MD. 2011. Stable-isotope probing of the polycyclic aromatic hydrocarbon-degrading bacterial guild in a contaminated soil. Environ Microbiol 13:2623–2632. http://dx.doi.org/10.1111/j.1462-2920.2011.02501.x.

3. Singleton DR, Hunt M, Powell SN, Frontera-Suau R, Aitken MD. 2007. Stable-isotope probing with multiple growth substrates to determine substrate specificity of uncultivated bacteria. J Microbiol Methods 69:180–187. http://dx.doi.org/10.1016/j.mimet.2006.12.019.

4. Jones MD, Singleton DR, Carstensen DP, Powell SN, Swanson JS, Pfaender FK, Aitken MD. 2008. Effect of incubation conditions on the enrichment of pyrene-degrading bacteria identified by stable-isotope probing in an aged, PAH-contaminated soil. Microb Ecol 56:341–349. http://dx.doi.org/10.1007/s00248-007-9352-9.

5. Paise S, Goni-Urriza M, Coulon F, Duran R. 2010. How a bacterial community originating from a contaminated coastal sediment responds to an oil input. Microb Ecol 60:394–405. http://dx.doi.org/10.1007/s00248-008-9440-6.

6. Kim J-S, Crowley DE. 2007. Microbial diversity in natural asphalts of the Rancho la Brea tar pits. Appl Environ Microbiol 73:4579–4591. http://dx.doi.org/10.1128/AEM.01372-06.

7. Lagesen K, Hallin P, Rodland EA, Stærfeldt HH, Rognes T, Ussery DW. 2007. RNaMer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res 35:3100–3108. http://dx.doi.org/10.1093/nar/gkm160.

8. Terrón-González L, Martín-Cabello G, Ferrer M, Santero E. 2016. Functional metagenomics of a biostimulated petroleum-contaminated soil reveals an extraordinary diversity of extradiol dioxygenases. Appl Environ Microbiol 82:2467–2478. http://dx.doi.org/10.1128/AEM.03811-15.

9. Martin F, Malagnoux L, Violet F, Jakoncic J, Jouanneau Y. 2013. Diversity and catalytic potential of PAH-specific ring-hydroxylating dioxygenases from a hydrocarbon-contaminated soil. Appl Microbiol Biotechnol 97:5125–5135. http://dx.doi.org/10.1007/s00253-012-4335-2.