α-Helical Structures Drive Early Stages of Self-Assembly of Amyloidogenic Amyloid Polypeptide Aggregate Formation in Membranes

Martina Pannuzzo¹, Antonio Raudino², Danilo Milardi³, Carmelo La Rosa² & Mikko Karttunen⁴

¹Department of Computational Biology, University of Erlangen-Nuremberg, Staudtstr. 5, 91058 Erlangen, Germany, ²Department of Chemical Sciences, University of Catania, Viale Andrea Doria 6, Catania, Italy 195125, ³Istituto di Biostrutture e Bioimmagini, CNR, Unità Organizzativa e di Supporto di Catania, Viale A. Doria 6, Catania, Italy 195125, ⁴Department of Chemistry & Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, Canada N2L 3G1.

The human islet amyloid polypeptide (hIAPP) is the primary component in the toxic islet amyloid deposits in type-2 diabetes. hIAPP self-assembles to aggregates that permeabilize membranes and constitutes amyloid plaques. Uncovering the mechanisms of amyloid self-assembly is the key to understanding amyloid toxicity and treatment. Although structurally similar, hIAPP’s rat counterpart, the rat islet amyloid polypeptide (rIAPP), is non-toxic. It has been a puzzle why these peptides behave so differently. We combined multiscale modelling and theory to explain the drastically different dynamics of hIAPP and rIAPP: The differences stem from electrostatic dipolar interactions. hIAPP forms pentameric aggregates with the hydrophobic residues facing the membrane core and stabilizing water-conducting pores. We give predictions for pore sizes, the number of hIAPP peptides, and aggregate morphology. We show the importance of curvature-induced stress at the early stages of hIAPP assembly and the α-helical structures over β-sheets. This agrees with recent fluorescence spectroscopy experiments.

Amyloidoses are a class of diseases including Type II Diabetes Mellitus, Alzheimer’s and Parkinson’s. These diseases are characterized by the conversion of peptides or proteins from their soluble functional states into fibrillar aggregates¹. The formation and buildup of these dense amyloid plaques has been widely accepted as the primary cause of disease (amyloid hypothesis)².

The amyloid hypothesis is challenged by the observation that a large number of Alzheimer’s patients³ with amyloid plaques in the brain show no symptoms⁴-⁷. Similarly, amyloid deposition in type II diabetes is evident in only about 90% of patients⁸-⁹ and the remaining 10% do not develop any significant amyloid deposition¹⁰. This evidence substantiates the hypothesis that soluble, small-sized oligomers rather than mature fibrils may be the root of the pathogenic state. Thus, understanding the early steps of their formation, oligomeric interactions, and inhibition are among the key issues and prerequisites to develop effective therapies¹¹-¹³. In general, the mechanism(s) by which amyloid intermediates cause cytotoxicity and disease remains unresolved. Nevertheless, the inhibition of amyloid toxicity by a common antibody, independent of the location of the oligomers in extracellular or intracellular compartments, clearly supports a common mechanism in areas which are accessible via extra- and intracellular regions, such as cell membranes¹⁴-¹⁸.

In general, amyloid-forming peptides are amphipathic. They may cause membrane perturbation through changes in bilayer fluidity, generate protein-stabilized pores (poration), lay on one leaflet of the membrane (carpeting), or remove lipid components from the bilayer by a detergent-like mechanism¹⁹. A recent study has also suggested a two-step mechanism for amyloid β induced disruption and pore formation with properties such as ion selectivity²⁰. There is, however, no consensus regarding which membrane perturbations are the most relevant to disease²¹. It has also been shown that the formation of amyloid fibers is a separate process from membrane disruption²² and that the composition of membrane and ions may have a significant influence membrane disruption²³. Brender et al.²⁴ provide an excellent review of membrane disruption induced by IAPP.
Islet Amyloid Polypeptide (IAPP) is the primary component in the pancreatic islet amyloid deposits observed in type 2 diabetes. Human IAPP (hIAPP) is a 37 amino acid peptide produced in the islet β-cells and co-secreted with insulin. Like other amyloid-forming peptides, hIAPP has been observed permeabilizing lipid membranes. The toxic oligomeric state of IAPP and its interaction with membranes has recently gained attention, but its transient nature makes experimental characterization highly elusive.

We employed a combination of atomistic MD (to explore the conformational space and its effect on peptide interactions), CG simulations (to unveil the dynamics of protein aggregation in membrane) and used a mapping procedure to switch between the different levels of representations. Based on the outcome of simulations, we developed a thermodynamic model for aggregate formation. By combining computational and analytical approaches, we demonstrate and explain the drastically different dynamics of oligomerization of hIAPP and its non-amyloidogenic rat variant (rIAPP). Our results underscore the importance of electrostatic dipolar interactions for determining the shape of membrane-bound hIAPP aggregates as well as their impact on membrane physical properties.

Results

Self-assembly of hIAPP in a POPC lipid bilayer. We start by comparing the CG simulations of 36 hIAPP and as control 36 rIAPP peptides in 300 K in a POPC membrane at 1:44 peptide-lipid molar ratio (Fig. 1). This ratio and secondary structure were chosen in order to simulate typical experimental conditions. All hIAPP peptides remained collapsed at concentrations below 1 μM. At greater peptide concentrations the overall size of the aggregates is larger. As protein/lipid ratio increases (protein/lipid ratio of 1:44), a large, crescent shaped assembly containing 26 hIAPP molecules and a smaller circular one containing 10 hIAPP had formed: at greater peptide concentration the overall size of the aggregates is larger.

Repeated simulations showed that hIAPP aggregates consisting of less than 10 peptides preferred circular shapes and larger aggregates grew linearly to form crescent-like aggregates. We determined the basic stable structural unit to be a pentameric aggregate. Aggregate growth occurred through the formation of edge-fused pentameric clusters. This finding is in agreement with AFM experiments (both circular and pentameric aggregates have been observed) that have also indicated the possibility of a similar growth mechanism. Growth of hIAPP and rIAPP aggregates is shown in Fig. 2. We will discuss the physical mechanism determining the stability and shape of hIAPP aggregates later on.

Next, we compared the behavior of rIAPP (used here as a negative control) with hIAPP. As figure 1 show, hIAPP forms large aggregates (edge-fused pentameric assemblies). For rIAPP, the aggregate size appears to be limited and the preferred shape is more circular. Another important qualitative difference between hIAPP and rIAPP is that hIAPP peptides (monomers and assemblies) always
Figure 2 | hIAPP aggregation gives rise to larger peptide assemblies than rIAPP within a μs timescale. Peptide aggregation in a POPC membrane as a function of time for 36 molecules of rIAPP and hIAPP in 20 μs CG simulations.

Thermodynamic model for hIAPP self-assembly within lipid bilayer. We developed a simple thermodynamic model to study the stability and morphological changes of hIAPP aggregates. The basic assumptions: 1) Aggregates may consist of i) isolated monomers, ii) pentagonal aggregates and iii) aggregates of edge-fused pentagons. Since fused pentagons can be formed by adding (one-by-one) three peptides to a pentagonal assembly, aggregates contain 5, 8, … 3n + 2, … monomers. Smaller aggregates (n=5) exist in dilute systems and are of not of interest here. 2) Two regular pentagons sharing a common edge are rotated by π/5 with respect to each other. Although regular pentagonal tiling is not space filling in two dimensions, to keep the model simple we did not take into account the factors arising from incomplete packing. 3) Equilibrium requires the chemical potential of peptides in different aggregates to be the same, \(\mu_1 = \mu_2 = \mu_3 = \ldots = \mu_{3n+2} \ldots \) and \(\mu_1 = \mu_{3n+2} \) are the chemical potentials of linear and cyclic assemblies containing n and n* fused pentagons, respectively. The general form of \(\mu_{3n+2} \) is

\[
\mu_{3n+2} = \mu_{3n+2}^* + \frac{KT}{3n+2} \log \frac{X_{3n+2}}{3n+2},
\]

where \(X_j \) is the fraction of structures with aggregation number j, and \(\mu_j^* \) is the corresponding free energy per molecule. An analogous expression holds for \(\mu_{3n+2} \).

Each trimer forms 2 internal bonds with its own peptides and 4 bonds with the neighbouring trimers. The associated mean energy is -6\(\xi \alpha \), where \(-\xi \) is the strength of each intermolecular bond. Due to the two free ends in a linear aggregate, and since there are 4 missing bonds at the ends, we have \(U_{\text{bonds}} = -(6n - 4)\xi \).

The above is strictly local. To include non-local forces, we introduce electrostatics. Our MD simulations showed that the dipole moment of the hIAPP peptides is perpendicular to the membrane surface and in the range 300–500 D. This makes dipolar effects the most important interactions. Two identical parallel dipoles inserted into a lipid bilayer interact repulsively: \(U_{\text{dipole}}(\mathbf{r} - \mathbf{r}') = \frac{m_{\text{eff}}^2}{4\varepsilon_0 a^2(\mathbf{r} - \mathbf{r}')^2} \), where \(m_{\text{eff}} \) is the effective dipole moment of the protein repeat unit, \(\varepsilon \) is the bilayer dielectric permittivity and a is the mean distance between two nearby repeat units along the peptide. Summing over a line of n identical dipoles gives the dipolar energy (see Supplementary Material).
where \(\rho \) the density per unit length. Adding \(U_{BONDS} = -(6n-4)\alpha \) and Equation (2), and dividing by the number of peptides in a generic aggregate \((3n + 2)\), we find an expression for the chemical potential:

\[
\frac{1}{2} \int \rho(\mathbf{r})\rho(\mathbf{r}')U_{INTER}(|\mathbf{r} - \mathbf{r}'|)d\mathbf{r}d\mathbf{r}'
\]

\[+n \frac{m_{eff}^2}{2e}\left(1 - \frac{2}{n} + O(n^{-2})\right).\]

(2)

The numerical values of \(A, B \) and \(B^* \) in Equations 3a and 3b) obey \(A < B^* < B \).

Figure 6 shows that the chemical potential of the circular aggregate is almost independent of the aggregation number \(n \), while that of an open aggregate decreases monotonously. At small \(n \), circular aggregates are more stable than linear ones, but beyond a critical value the situation is reversed. This is a consequence of the non-local electrostatic interactions and it provides mechanism to relieve the electrostatic stress.

Combining the entropic and enthalpic contributions to the chemical potential (Equations 3a,b and 1) and equating the chemical potentials of the aggregate and free monomers, we calculate the concentrations of linear and cyclic aggregates \(X_{3n+2} = (3n+2)X_1^2\left(\frac{n^2}{2e}\right) \), and \(X_{3n+2} = (3n^2+2)X_1^2\left(\frac{n^2}{2e}\right) \).

Figure 3 | Membrane-embedded hIAPP peptides associate into \(\alpha \)-helical pentamers. (A) Pentameric assembly of membrane-bound hIAPP peptides obtained at the end of a 0.3 \(\mu \)s MD simulation at 300 K. Green: polar, white: non-polar, cyan: polar ionizable. (B) Helical wheel representation of hIAPP side chains 14–27. (C) Pentameric aggregate. The vector in the xy-plane represents the hydrophobic moment. The helix dipole moment (not shown) is along the z-axis. Color code (b and c): yellow: hydrophobic (large), light blue: polar ionizable, magenta: polar; gray: hydrophobic (small); pink: polar.

Figure 4 | hIAPP pentamers resemble barrel-shaped channels whereas the corresponding rIAPP assemblies look like loose funnels. Snapshots from AA-MD simulations of hIAPP (red) and rIAPP (green) pentamers after 300 ns. Color code: white-surf-lipids, white-CPK-water.
respectively. A_1, B_1 and B^* are defined by Equations. (3a,b). Eliminating the still unknown monomer concentration X_1 by using mass conservation for peptides, we numerically calculated the fraction of linear and cyclic aggregates as a function of the total peptide concentration C. The plot of $X_{\text{CYCLIC}}/X_{\text{TOTAL}}$ vs C is shown in the inset of Figure 6. At low concentrations, the fraction of cyclic aggregates is zero. At the critical protein concentration, C_{CYCLIC}, cyclic structures begin to form. Their concentration grows rapidly reaching a maximum at C_{MAX}. The concentration of circular aggregates decreases slowly with protein concentration, long fibers being more favoured. The maximum becomes less pronounced and shifts toward higher concentrations upon increasing dipole moment.

The existence of an optimum size for cyclic structures is further reinforced if we use the notion of spontaneous curvature. As discussed at the beginning of this section, the repeat units of hIAPP aggregates are fused pentamers. Each unit introduces a spontaneous bending of $\pi/5$. In order to form a closed circle, one must accommodate 10 fused pentamers (or 32 peptides). Such a structure has a zero internal strain, while larger or smaller cycles are less stable.

Kinetic control of the growing aggregate morphology. The simple model developed in the previous section relies on the assumption of a linear growth of the aggregate through continuous insertion of monomers at the growing free ends. MD simulations show a more complex mechanism involving a branching mechanism often observed in worm-like micellar systems. Branching strongly increases with local supersaturation, as also modelled in a recent paper. This parasitic process competes in a concentration-dependent way with the formation of closed regular toroids as discussed in the previous section. The formation of branched assemblies explains the slow and erratic kinetics of toroids birth and death in MD simulations we describe below.

![Figure 5](image1)

Figure 5 | Conformational preferences of monomeric hIAPP/rIAPP dictate the structural features of the pentameric assemblies. Snapshots of hIAPP (red) and rIAPP (green) at monomeric state after 40 ns of MD simulation. POPC lipids are shown in white and water molecules in cyan.

![Figure 6](image2)

Figure 6 | Kinetics obtained from the thermodynamic model shows the transient nature of aggregates. Variation of the chemical potentials of linear (full line) and cyclic (dashed line) vs the aggregation number n. At the intersection, linear and cyclic aggregate have the same energy. Insert: Relative concentration of cyclic aggregates vs. the total protein concentration C. Curves have been calculated for different values of the temperature scaled dipolar energy $m_c^2/\kappa a^4 kT$. From the top to the bottom: $m_c^2/\kappa a^4 kT = 1, 2, 3$.

\[m_c^2/\kappa a^4 kT \]
In order to verify if the distribution of the different aggregates is consistent with the prediction of our thermodynamic model, we performed a series of CG simulations at 300 K in the microsecond time range. Calculations were performed at different lipid/protein ratios (from 1/13 to 1/44). The most interesting outcomes were:

a) The shape of the hIAPP aggregates is not linear. This feature is consistent with the notion of spontaneous curvature stemming from the pentameric geometry of the repeat units. Moreover, the growth of the aggregates exhibits frequent branching points, a clear indication of comparable lipid-peptide and peptide-peptide interactions (Fig. 7 b, c).

b) Formation of closed toroids is a rare event. This observation is consistent with the large activation energy required to bend an aggregate made of self-repelling dipoles into a circle. High peptide concentrations favor closure (Fig. 7).

c) Once the toroid has been closed, it is thermodynamically stable because the energy gain associated to the sealing of the two free ends. This process was investigated by leaving a closed toroid in contact with a dispersion of monomers (protein/lipid ratio 1/13) for 2 μs at 300 K (Fig. 7d).

Membrane curvature generated by hIAPP assemblies. Insertion of a protein into a membrane perturbs lipid packing and results in local bending deformations. To minimize energetically unfavorable deformations, proteins tend to cluster51. These elastic forces have to be added to other contributions such as hydrophobicity and electrostatics to understand the origin of protein aggregation in membranes. The intricate coupling between shape and aggregation has been studied both analytically52 and computationally53. When the bilayer-spanning impurity is anisotropic (e.g. wedge shaped), geometric anisotropy induces anisotropic interactions among the impurities resulting in linear rather than globular aggregates54,55.

Curvature stress has been suggested to account for the early stages of hIAPP-mediated membrane damage56–58.

hIAPP aggregates have a semi-toroid structure with cone-shaped cross-section (top side depth of about 43 Å and down side depth of about 22 Å), mainly due to the electrostatic repulsions between charges localized in the water-exposed region of the outer monolayer. Cone shapes have also been indicated in aggregates of amyloid β51. This geometry suggests a considerable aggregate-membrane bending coupling. The MD simulation of the 26-meric hIAPP assembly performed at 400 K showed significant curvature stress induced by the aggregate as shown in Fig. 8. This geometry can be explained by considering the electrostatic repulsions of the positively charged residues in the same side of the bilayer. We observed an increase in membrane fluctuations along the z-axis in the MD simulations of 26 hIAPP molecules.

Although the experimental data reported in Fig. 9 involve larger time and space scales than those investigated by our MD simulations, results are fully consistent. Well-founded analytical theories for the shape of multi-component vesicles predict a sphere to ellipsoid transition due to the segregation of the component with the greatest intrinsic curvature in the more curved regions of the vesicle59. The effect is enhanced in the case of strong incompatibility among the two vesicles components (segregation). Both incompatibility and spontaneous bilayer curvature were observed in all atoms simulations in the case of hIAPP but not with rIAPP.

Discussion

Previous theoretical considerations of oligomer and fibril growth in aqueous solutions have revealed some of the general principles governing the transition from monomeric proteins to ordered fibrillar aggregates60–62. However, increasing evidence supports the hypothesis that hIAPP permeabilizes membranes either through the formation of pores or through detergent-like damage of the bilayer.

Figure 7 | (a) snapshot at 10 μs (protein/lipid ratio 1/44); (b) snapshot at 8 μs (protein/lipid ratio 1/19); (c) snapshot at 6 μs (protein/lipid ratio 1/24); (d) snapshot taken after 1 μs from the toroid formation (protein/lipid ratio 1/13).
These mechanisms are not mutually exclusive. A recent report suggested a leakage mechanism wherein a porous protein aggregate is formed by stochastic nucleation of hIAPP molecules\(^6\). Such states have been referred to as less structurally defined chaotic pores\(^64,65\), a view reconcilable with the nonspecific nature of channel-like aggregates.

Our atomistic simulations performed at the critical intermediate steps along the CG simulation allowed: i) the capture of the structural details about the relevant intermediate peptide assemblies, and ii) construction of a thermodynamic model to study the importance of dipole interactions in determining size and morphology of the aggregates. CG simulations provided a mechanistic description of the interactions of transmembrane \(\alpha\)-helices with lipid bilayers\(^66\) as well as evidence that a water-permeable pentameric assembly of hIAPP \(\alpha\)-helices is a critical intermediate towards reconciliation with the predictions of the proposed thermodynamic model. The number of helices constituting the pore as well as its effective diameter predicted from our simulations are in agreement with previous experimental studies\(^28,38\). The multiscale approach allowed us to study the detailed mechanisms and to develop a minimal thermodynamic model for analysing the transient nature of toroidal aggregates and aggregate shapes. The balance among concentration-related entropy, unfavorable edge effects of a self-assembled small aggregates and repulsive dipolar interactions among the dipoles make the circular aggregates a metastable state that can be observed only in a narrow window of protein/lipid ratios. At lower concentrations smaller oligomers (from monomers to pentamers) prevail, while at higher values fibrils dominate over the toroidal aggregates.

The predictions of the model when compared with CG simulations by increasing hIAPP concentration above the threshold protein concentration showed that hIAPP pentamers spontaneously evolve into a large cyclic assembly.

Importantly, this structure is able to render the membrane water-permeable and, concomitantly, to induce significant curvature into the membrane. It is tempting to speculate that this assembly may involve more than one peptide-based mechanisms for membrane-damage, but a conclusive demonstration would require a separate study. Parallel simulations performed on the non-toxic,
non-amyloidogenic rat derivative rIAPP were significantly different from hIAPP. No compact ordered large aggregates were observed (Fig. 1).

There are also some important differences between our CG simulations and experimental observations previously reported. First, the time scale of the events: Experimental measurements require an initial diffusion to the membrane surface, and could be rate-determining (peptides are inserted into the membrane). The second difference is that the relatively small size of our system precludes the observation of large long-lived pores or other breakage mechanisms in the membrane. Thus, the increase in permeability of water and ions observed in our simulations may be a prelude to a multifaceted disruption of the membrane.

Most of the studies thus far have focussed on dimer formation, typically by investigating IAPPs in solutions 31–35. Two recent computational studies using very different methods have, however, suggested the importance of trimers 36, 37. Our analytical model shows how trimers are the most important building blocks in the formation of the stable fused pentameric superstructures. Our CG simulations confirm this mechanism.

Finally, using the structural differences between hIAPP and rIAPP observed in MD simulations, we speculate that α-helices may be the dominant structure under certain conditions. Using a simple model, Dias et al. 38 have shown that β-sheets, since they have the ability to lower hydrophobic energy, tend to be the favored ones in solution – this has also been seen in many simulations 31–35. In a membrane environment, however, the free energy difference between α-helices and β-sheet may become much smaller, although the conformations are separated by free energy barrier that can be large; here, we saw only a small increase in β-sheet formation even at an elevated temperature. This is in excellent agreement with the fluorescence correlation spectroscopy experiments of Magzoub and Miranker 39 who found that in membranes, IAPPs prefer α-helices over β-sheet, and that toxicity is related to the α-helical conformations. hIAPP is able to form aggregates that minimize the hydrophobic mismatch with the bilayer and peptide-peptide H-bonds that stabilize the pore and allow for a small number of waters to penetrate. Such stabilization mechanism does not exist for rIAPP and hence the peptides escape to the membrane surface. The stability of hIAPP assemblies also allows for diffusion of ions through the channel that may disrupt ion homeostasis and contribute to neuronal death as has been suggested in the case of amyloid-β 40. Whether or not the hIAPP channel is selective remains a topic for future studies.

Methods

We performed a combination of coarse grained (CG) and atomistic molecular dynamics (MD) simulations at 300, 350 and 400 K. Reverse mapping 41 was used to connect the different length scales. This protocol allowed for longer simulation times and detailed studies of the different intermediate states. The NMR structures of hIAPP bound to sodium dodecylsulfate (SDS) micelles (pdb ID: 2K8B) 42 and rIAPP in dodecylphosphocholine (DPC) micelles (pdb ID: 2K7K) 43 were first energy minimized using the method of steepest descent (the first structures in the PDB files were used). Pre-equilibration was done using atomistic MD in the NVT ensemble. This was followed by an equilibration simulation run of 40 ns. All simulations, CG and MD, were carried out using Gromacs 4.0 software and methodological issues 44 related to neighbor updates and charge groups were taken into account. GROMOS 53A6 force field was used in all atomistic MD. This force-field has been shown to perform well in simulations of membrane-protein systems 45, 46. Coarse-grained models based on the MARTINI 47, 48 force field were constructed based on the final configurations.

For the lipid bilayer, a pre-equilibrated (100 ns) 128 lipid POPC membrane 49 hydrated by 1500 water molecules was used as a starting point. This bilayer was replicated to obtain a membrane with 1596 lipids, energy minimized using the steepest descent algorithm (1000 steps), and equilibrated in the NPT ensemble for 100 ns. Finally, systems consisting of rIAPP or hIAPP and a bilayer were constructed. Peptides were inserted inside the membrane perpendicularly to the membrane surface using Gromacs tool boxgen. The box containing a single protein was then replicated and the lateral size adjusted to achieve the desired concentration. The CG systems were hydrated by ~23,000 water molecules in the presence of 0.1 M NaCl. CI counterions were added to preserve charge neutrality. This system was again energy minimized by the steepest descent algorithm and equilibrated in the NPT ensemble for 100 ns. The starting configurations were obtained by extracting a portion of the bilayer containing the corresponding structure, maintaining the same protein/lipid ratio, from the CG simulation; a section of the bilayer within a specified radius from the center of mass of a chosen aggregate was cut and reverted to an atomistic representation. As for pentamers, we selected and reverted three different aggregates to test the reproducibility of the structural properties investigated. Peptide chains had same orientations (in agreement with NMR experiments showing the tendency of the single peptide to penetrate in membrane through the N-terminal).

In atomistic MD, the SPL (simple point charge) water model 50 was used. The time step was set to 1 fs and the temperature was kept constant using the Nose-Hoover algorithm 51, 52 with a time constant of 0.1 ps. Periodic boundary conditions were applied. The Parrinello-Rahman algorithm 53 was applied for semi-isotropic pressure coupling (1 bar). The particle-mesh Ewald (PME) algorithm 54 was used for electrostatics in all CG and MD simulations, we used the Berendsen weak coupling thermostat and barostat algorithms 55 with coupling constants of 0.3 ps and 3.0 ps, respectively. The following CG-systems were used in production runs: 36 hIAPP/rIAPP peptides for 26 μs at 300 K. A 13 μs simulation at 300 K with 104 peptides. Several concentration ratios protein/lipids have been also tested (1:1, 1:1.9, 1:2, 1:4:4). MD production runs were as follows: Monomeric hIAPP or rIAPP embedded in a POPC membrane was simulated for 40 ns. Pentameric hIAPP/rIAPP assemblies obtained at the end of 6 μs CG simulation were simulated at 300 K for 0.3 μs. The temperature was increased to 400 K for 80 ns hIAPP semi-toroidal 10-meric and the hIAPP semi-toroidal 26-meric aggregates were simulated for 40 ns at 300 K. The structure at the end of 26 μs CG simulation was simulated. The temperature was increased to 400 K for 20 ns (after 40 ns at 300 K).

Atomic Force Microscopy (AFM) measurements were performed in liquid at room temperature using a Digital Instruments nanoScope, model Illa. Images were acquired in tapping mode with a fluid cell filled with phosphate buffer solution (pH 7.4, 100 mM NaCl). Where present, hIAPP or rIAPP concentration was 5 × 10−8 M. Model membranes were simulated employing the Berendsen weak coupling thermostat and barostat algorithms 85, 86 with a time constant of 0.1 ps. Periodic boundary conditions were applied.

1. Merliniti, G. & Bellotti, V. Molecular mechanisms of amyloidosis. N. Engl. J. Med. 349, 583–596 (2003).
2. Hardy, J. & Selkoe, D. J. The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science 297, 353–356 (2002).
3. Dickson, D. W. The pathogenesis of senile plaques. J. Neuropathol. Exp. Neurol. 56, 321–339 (1997).
4. Abbedini, A. & Raleigh, D. P. A role for helical intermediates in amyloid formation by natively unfolded polypeptides. Phys. Biol. 6, 015005 (2009).
5. Miller, Y., Ma, R. & Nussinov, R. Polymorphism in Alzheimer Abeta amyloid organization reflects conformational selection in a rugged energy landscape. Chem. Rev. 110, 4820–4838 (2010).
6. Dupuis, N. F., Wu, C., Shea, J. & Bowers, M. T. Human islet amyloid polypeptide monomers form ordered beta-hairpins: a possible direct amyloidogenic precursor. J. Am. Chem. Soc. 131, 18283–18292 (2009).
7. Bernstein, S. L. et al. Amyloid fibrillogenesis and the importance of tetramers and dodecamers in the etiology of Alzheimer’s disease. Nature Chem. 1, 326–331 (2009).
8. Hoppener, J. W., Ahren, B. & Lips, C. J. Islet amyloid and type 2 diabetes mellitus. N. Engl. J. Med. 343, 411–419 (2000).
9. Kahn, S. E., Andrikopoulos, K. & Verchere, C. B. Islet amyloid: a long-recognized but underappreciated pathologic feature of type 2 diabetes. Diabetes 48, 241–253 (1999).
10. Haataja, L., Gurlo, T., Huang, C. J. & Butler, P. C. Islet amyloid in type 2 diabetes, and the toxic oligomer hypothesis. Endocr. Rev. 29, 303–316 (2008).
11. Ramananthory, A. & Lim, M. H. Structural Characterization and Inhibition of Toxic Amyloid-β Oligomeric Intermediates. Biophys. J. 105, 287–288 (2013).
12. Milojovic, V. & Melacini, V. Stoichiometry and Affinity of the Human Serum Albumin-Alzheimer’s β-Aβ Peptide Interactions. Biophys. J. 100, 183–192 (2011).
13. Raditis, V., Milojovic, V. & Melacini, V. Aβ Association Inhibition by Transferrin. Biophys. J. 105, 473–480 (2013).
14. Gilabert, C. G. Common mechanisms of amyloid oligomer pathogenesis in degenerative disease. Neurobiol. of aging. 4, 570–575 (2006).
15. Kayed, R. et al. Common structure of soluble amyloid oligomers implies common mechanism of pathogenesis. Science 300, 486–489 (2003).
16. Demmester, N. et al. Apoptosis induced in neurones by C-terminal amyloid fragments is correlated with theiragggregation properties in phospholipid membranes. Mol. Membr. Biol. 17, 219–228 (2000).
17. Kawahara, M., Kuroda, Y., Ariipe, N. & Rojas, E. Alzheimer’s amyloid, human islet amylin, and prion peptide fragment evoke intracellular free calcium elevations by a common mechanism in a hypothalamic GnRH neuronal cell line. J. Biol. Chem. 275, 14077–14083 (2000).
18. Lin, H. & Bhata, R. & Lal, R. & Li, P. & Fletterick, R. J. Torsion induced order in a amyloid-containing protein: implications for Alzheimer’s disease pathology. FASEB. J. 15, 2433–2444 (2001).
19. Hebda, J. A. & Miranker, A. D. The interplay of Catalysis and Toxicity by Amyloid intermediates on Lipid Bilayers: Insights from Type II Diabetes. Ann. Rev. Biophys. 38, 125–152 (2009).
31. Kawahara, M., Kuroda, Y., Arispe, N. & Rojas, E. Alzheimer's beta-amyloid, et al.

32. Weise, K., Radovan, D., Gohlke, A., Opitz, N. & Winter, R. Interaction of hIAPP

33. Meier, J. J.

34. Laghaei, R., Mousseau, N. & Wei, G. Effect of the disulfide bond on the

35. Quist, A.

36. Xu, W., Wei, G., Su, H., Nordenskioèld, L. & Mu, Y. Effects of cholesterol on pore

37. With model raft membranes and pancreatic beta-cells: cytotoxicity of hIAPP

38. Scalisi, S.

39. Dupuis, N. F., Wu, C., Shea, J. E. & Bowers, M. T. The amyloid formation

40. Andrews, M. N. & Winter, R. Comparing the structural properties of human and

41. Kawahara, M., Kuroda, Y., Arispe, N. & Rojas, E. Alzheimer's beta-amyloid, et al.

42. Hirakura, Y., Liu, W., Yamamoto, A. & Kagan, B. L. Amyloid peptide channels:

43. Xu, W., Wei, G., Su, H., Nordenskioèld, L. & Mu, Y. Effects of cholesterol on pore

44. Lee, C., Sun, Y. & Huang, H. How Type II Diabetes-Related Islet Amyloid

45. Lee, C., Sun, Y. & Huang, H. How Type II Diabetes-Related Islet Amyloid

46. Andrews, M. N. & Winter, R. Comparing the structural properties of human and

47. Weise, K., Radovan, D., Gohlke, A., Opitz, N. & Winter, R. Interaction of hIAPP

48. Andrews, M. N. & Winter, R. Comparing the structural properties of human and

49. Oelschlaeger, C., Schopferer, M., Schiffeld, F. & Willenbacher, N. Linear-to-

50. Tang, M. & Carter, W. C. Branching Mechanisms in Surfactants Micellar Growth.

51. Pannuzzo, M., Milardi, D., Raudino, A., Karttunen, M. & La Rosa, C. Analytical

52. Zimmerberg, J. & Kozlov, M. H. How proteins produce cellular membrane

53. Bahrami, A. H. & Jalali, M. A. Vesicle deformations by clusters of transmembrane

54. Dommersnes, P. G. & Fournier, J. B. N-body study of anisotropic membrane

55. Sciacca, M. F. M. Pappalardo, M., Milardi, D., Grasso, D. M. & La Rosa, C.

56. Ramamoorthy, A., Thennarasu, S., Lee, D.-K., Tan, A. & Maloy, L. Solid-State

57. Sciacca, M. F. M., Pappalardo, M., Milardi, D., Grasso, D. M. & La Rosa, C.

58. Sciacca, M. F. M. et al. Inhibition of human IAPP fibril formation does not prevent beta-

59. Nath, A., Miranker, A. D. & Rhoades, E. A membrane-bound antiparallel dimer of

60. Straub, J. E., Thirumalai, D. Toward a molecular theory of early and late events in

61. Last, N. B., Rhoades, E. & Miranker, A. D. Islet amyloid polypeptide demonstrates a

62. Bond, P. & Sansom, M. S. P. Insertion and assembly of membrane proteins via

63. Metz, J. J. et al. Inhibition of human IAPP fibril formation does not prevent beta-

64. Gregory, S. M., Cavanaugh, A., Journigan, V., Polkornay, A. & Almeida, P. F. F. A

65. Axelien, P. H. A chaotic pore model of peptidic antibiotic action. Biophys. J.

66. Straub, J. E. & Thirumalai, D. Toward a molecular theory of early and late events in

67. Nicaragua, J. & Miranker, A. D. Concentration-dependent transitions govern the

68. Dias, C. L., Karttunen, M. & Chan, H. S. Hydrophobic interactions in the formation of secondary structures in small peptides. Phys. Rev. E 84, 041931 (2011).

69. Mappouh, J. & Miranker, A. D. Concentration-dependent transitions govern the subcellular localization of islet amyloid polypeptide. FASEB J. 26, 1228 (2012).

70. Yu, S. P., Farhangrazi, Z. S., Ying, H. S., Yeh, C.-H. & Choi, D. W. Enhancement of Excitation Potassium Current May Participate in Cortical Neuronal Death. Neurobiol. Dis. 43, 226–237 (2011).

71. Yu, S. P., Farhangrazi, Z. S., Ying, H. S., Yeh, C.-H. & Choi, D. W. Enhancement of Excitation Potassium Current May Participate in Cortical Neuronal Death. Neurobiol. Dis. 43, 226–237 (2011).

72. Rezaei, F. A., Rostamzad, B., Ghasemi, M. & Sedighi, Z. Reconstruction of atomistic details from coarse grained structures. J. Comp. Chem. 31, 1333–1343 (2010).

73. Patil, S. M., Xu, S., Sheftic, S. R. & Alexandrescu, A. T. Dynamic alpha-helix structure of midline-bound human amylin. J. Biol. Chem. 284, 11982–11991 (2009).

74. Nanga, R. P. R. et al. Three-dimensional structure and orientation of rat islet amyloid polypeptide in a membrane environment by solution NMR spectroscopy. J. Am. Chem. Soc. 131, 8252–8261 (2009).

75. Hess, B., Kutzner, C., Van der Spoel, D. & Lindahl, E. GROMACS 4: Algorithms for Efficient, Load-Balanced, and Scalable Molecular Simulation. J. Chem. Theory. Comput. 4, 435–447 (2008).

76. Wang-eldkabut, J., Miettinen, M. S., Dias, C. & Karttunen, M. Static charges cannot drive a continuous flow of water molecules through a carbon nanotube. Nature Nanotech. 5, 555–557 (2010).

77. Oostenbrink, C., Soares, T. A., van der Vest, N. F. & van Gunsteren, W. F. Validation of the S3A6 GROMOS force field. Biophys. J. 34, 273–284 (2005).
78. Wong-ekkabut, J. & Karttunen, M. Assessment of common simulation protocols for simulations of nanopores, membrane proteins & channels. *J. Chem. Theory Comput.* 8, 2905–2911 (2012).

79. Cino, E. A., Choy, W.-Y. & Karttunen, M. Comparison of secondary structure formation using 10 different force fields in microsecond molecular dynamics simulations. *J. Chem. Theory Comput.* 8, 2725–2740 (2012).

80. Monticelli, L. *et al.* The MARTINI coarse grained force field: extension to proteins. *J. Chem. Theory Comp.* 4, 819–834 (2008).

81. Marrink, S. J., Risselada, H. J., Yefimov, S., Tieleman, D. P. & de Vries, A. H. The MARTINI forcefield: coarse grained model for biomolecular simulations. *J. Phys. Chem. B* 111, 7812–7824 (2007).

82. Monticelli, L. *et al.* The MARTINI coarse grained force field: extension to proteins. *J. Chem. Theory Comp.* 4, 819–834 (2008).

83. Marrink, S. J., de Vries, A. H. & Mark, A. E. Coarse grained model for semi-quantitative lipid simulations. *J. Phys. Chem. B* 108, 750–760 (2004).

84. de Jong, D. H., Singh, G., Bennett, W. F. D., Arnarez, C., Wassenaar, T. A., Schaefer, L. V., Periole, X., Tieleman, D. P. & Marrink, S. J. Improved parameters for the Martini coarse-grained protein force field. *J. Chem. Theory Comput.* 9, 687–697 (2013). Parameters at http://md.chem.rug.nl/cgmartini/index.php/force-field-parameters/lipids.

85. Berendsen, H. J. C., Postma, J. P. M., van Gunsteren, W. F. & Hermans, J. *Interaction Models for Water in Relation to Protein Hydration, in Intermolecular Forces*, edited by Pullman, B. 331–342 D. Reidel Publishing Company, Dordrecht (1981).

86. Nose, S. A unified formulation of the constant temperature molecular dynamics methods. *J. Chem. Phys.* 81, 511 (1984).

87. Hoover, W. Canonical dynamics: Equilibrium phase-space distributions. *Phys. Rev. A* 31, 1695–1697 (1985).

88. Parrinello, M. & Rahman, A. Polymorphic transitions in single crystals: A new molecular dynamics method. *J. Appl. Phys.* 52, 7182–7190 (1981).

89. Berendsen, H. J. C., Postma, J. P. M., van Gunsteren, W. F., DiNola, A. & Haak, J. R. Molecular dynamics with coupling to an external bath. *J. Chem. Phys.* 81, 3684–3690 (1984).

Acknowledgments

We thank NSERC of Canada (MK) and the Ontario Early Researcher Award Program (MK) for financial support. SharCNet [www.sharcnet.ca] and CINECA (Bologna, Italy) are acknowledged for computational resources. We thank Prof. Luisa D’Urso for AFM measurements.

Author contributions

M.K., C.L.R., A.R., D.M. and M.P. designed the experiments, performed the analysis and wrote the manuscript. M.P. performed the simulations.

Additional information

Supplementary information accompanies this paper at http://www.nature.com/scientificreports.

Competing financial interests: The authors declare no competing financial interests.

How to cite this article: Pannuzzo, M., Raudino, A., Milardi, D., La Rosa, C. & Karttunen, M. α-Helical Structures Drive Early Stages of Self-Assembly of Amyloidogenic Amyloid Polypeptide Aggregate Formation in Membranes. *Sci. Rep.* 3, 2781; DOI:10.1038/srep02781 (2013).

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported license. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0