Zusammenfassung

Hintergrund: Die HZB Qualifikation und die Wartezeit sind die wichtigsten Zulassungskriterien für das Medizinstudium in Deutschland. Seit der Novellierung der Approbationsordnung und der Einführung von Reformcurricula wurde der Vorhersagewert der HZB Qualifikation und der Wartezeit nicht ausführlich untersucht. Ebenso fehlen detaillierte Daten über die Studienprognose der unterschiedlichen Zulassungsquoten.

Ziel: Untersuchung des Vorhersagewerts der Abiturdurchschnittsnote und des Alters für Studienleistung und Kontinuität im Verlauf eines reformierten Medizinstudiums.

Methodik: Die Studie umfasste Studierende der Abiturbesten-, AdH- und Wartezeitquote sowie des Nachrückverfahrens von drei Kohorten. Die Beziehung zwischen Studienleistung bzw. Studienkontinuität und der Abiturdurchschnittsnote, dem Studieneintrittsalter und der Zulassungsquoten-Zugehörigkeit wurde bis zum PJ-Beginn statistisch untersucht.

Ergebnisse: Die Studienleistung und die Studienverzögerungsrate im vorklinischen Studienabschnitt standen in einem signifikanten Zusammenhang mit der Abiturdurchschnittsnote. Dagegen hing die Studienabbruchsrate mit dem Studieneintrittsalter zusammen. Die Studierenden der Abiturbesten- und AdH-Quote erreichten die besten Studienleistungen und niedrigsten Studienabbruchsrate. Das Leistungsniveau der nach Wartezeit sowie im Nachrückverfahren zugelassenen Studierenden war niedriger, und mehr als 20% von ihnen brachen das Studium während des vorklinischen Studienabschnitts ab, die Hälfte davon aufgrund von Leistungsschwäche. Die Studienleistungen aller Zulassungsgruppen waren jedoch sehr variabel, und nur ca. 35% der Studierenden einer jeden Zulassungsgruppe traten das PJ in der Regelstudienzeit an.

Diskussion: Die Abiturnote und das Alter haben unterschiedliche prognostische Bedeutungen für Studienleistung und -kontinuität. Auf die Prognose in der Gruppe der Studierenden der Wartezeitquote wirken sich beide Faktoren negativ aus. Die Studienprognose der Nachrücker ist ebenso problematisch wie die der Wartezeitquote. Zusätzliche Auswahlinstrumente erscheinen notwendig, um potentiell fähige Studierende unabhängig von der Abiturnote zu erkennen und ein Nachrückverfahren zu vermeiden.

Schlüsselwörter: Medizinstudium, Auswahlverfahren, Abitur

Einleitung

Studierendenzulassung in Deutschland

Die Zulassung zum Studiengang Humanmedizin in unterschiedlichen Zulassungsquoten und damit das Studieneintrittsalter werden in Deutschland nach wie vor maßgeblich von der Abiturdurchschnittsnote bestimmt. Eine Besonderheit des deutsches Zulassungsrechts besteht darin, dass die Auswahl Medizinstudierender über zwei alternative Wege erfolgt, über ein zentrales und ein lokales Auswahlverfahren; beide beinhalten die Auswahl von Studierenden in der Wartezeitquote oder im Nachrückverfahren, welche die regulären leistungsbezogenen Zulassungskriterien nicht oder unzureichend erfüllen.

Nach Zulassung der bevorzugt auszuwählenden Bewerber, werden 20% der verbleibenden Studienplätze in der Abiturbestenquote zentral durch die Stiftung Hochschul-
start in der Regel an Bewerber mit der Abiturdurchschnittsnote 1,0 vergeben. Weitere 20% der Studienplätze werden ebenfalls zentral Bewerbern nach Wartezeit zugeordnet, welche die Kriterien für die direkte Zulassung nicht erfüllen und häufig eine Abiturdurchschnittsnote schlechter als 2,0 haben. Im Auswahlverfahren der Hochschulen (AdH), das dem zentralen Zulassungsverfahren nachgeschaltet ist, erfolgt die Vergabe der restlichen 60% der Studienplätze nach hochschuleigenen Kriterien. Nach dem AdH-Hauptverfahren, unbesetzte Studienplätze werden in einem Nachrückverfahren vergeben. Da viele AdH-Bewerber dann schon anderweitig zentral vermittelt sind, werden im Nachrückverfahren Bewerber zugelassen, die ursprünglich weit unten auf der AdH-Rangliste standen und deren Zulassungskriterien einen geringeren Studiererfolg erwarten lassen. Schwerpunkt der vorliegenden Studie ist der Studienverlauf der Studierenden dieser unterschiedlichen Zulassungsgruppen.

Das Zulassungsinstrument Schulabgangsnoten

Die voruniversitäre Leistung, gemessen an Schul- oder Collegeabschlussnoten, ist das vorrangige Studierendenauswahlinstrument für medizinische Studiengänge weltweit [1], [2]. Universitäten, die zusätzliche Auswahlkriterien anwenden, z. B. in Australien [3], Großbritannien [4], [5], Schweden [6], oder Israel [7], führen ebenfalls eine Vorauswahl der Bewerber anhand ihrer voruniversitären Leistung durch. Schulabgangsnoten gelten als die verlässlichsten Prädiktoren für Erfolg im Medizinstudium und haben Validitätskoeffizienten zwischen 0,26-0,58 [2], [8], [9], [10], [11]. Ihr relativ hoher prognostischer Wert wurde auch für andere Studiengänge [8], [9] sowie für nicht-akademische Berufe [12] dokumentiert.

Die prognostische Validität der deutschen Abiturdurchschnittsnote für den Erfolg im Medizinstudium wurde Ende des 20. Jahrhunderts vorrangig in Bezug auf den ersten Abschnitt des Staatsexamens ausführlich [9], [13], später nur noch in kleinerem Umfang [8], [2] untersucht. Sie lag bei Werten um 0,5 [14].

Informationslücken

Seit der Novellierung der Ärztlichen Approbationsordnung (ÄAppO) vom 27. Juni 2002 und der damit verbundenen Etablierung von Reformcurricula [15] wurde der prädiktive Wert der Abiturdurchschnittsnote nicht mehr intensiv untersucht. Es ist fraglich, ob früher veröffentlichte prognostische Werte für die Abiturdurchschnittsnote gegenwärtig noch zutreffen. Der Vorhersagewert der Abiturdurchschnittsnote für die Lernleistung im gesamten Studienverlauf und insbesondere im klinischen Studienabschnitt ist noch kaum erforscht: Nur selten wurde wie von Ferguson und seinen Mitarbeitern [16] die Leistung in den fakultätseigenen Prüfungen als Endpunkt berücksichtigt. Die Noten im ersten Versuch einer Prüfung wurden in keiner uns bekannten Arbeit gezielt zur realistischen Darstellung der fortlaufenden Studienleistung herangezo-

gen. Ferner wurde die differenzielle prognostische Rolle der Abiturdurchschnittsnote und des Studieneintrittsalters unter Berücksichtigung der vom deutschen Zulassungsrecht bedingten Verknüpfung dieser Variablen noch nicht ausreichend aufgeklärt.

Bisherige Untersuchungen der prädiktiven Stärke der Abiturdurchschnittsnote unterschieden nicht detailliert zwischen den direkt, im Nachrückverfahren oder nach Wartezeit zugelassenen Studierenden und berücksichtigten nicht den möglichen Zusammenhang zwischen Studienleistung und Studienkontinuität. Ziel der vorliegenden Längsschnittuntersuchung ist es deshalb, den prädiktiven Wert der Abiturdurchschnittsnote und des Studieneintrittsalters für Studienleistung und -kontinuität während der gesamten Studienzeit des reformierten Curriculums HeiCuMed (Heidelberger Curriculum Medicinale) zu untersuchen. Analyisiert wird der Fortschritt von 720 Studierenden, die nach der Hochschulreform 2004 das Studium begannen. Als Maßstäbe für Studiererfolg dienen die Studiendauer und die Leistung im ersten angegangenen Versuch der jeweiligen fakultätsinternen Prüfungen.

Methoden

Studentenewähler und Einschlusskriterien

Studienbewerber waren Studierende der Humanmedizin an der Medizinischen Fakultät Heidelberg mit einer deutschen Hochschulzugangsberechtigung (Abitur), die ihr Studium in den Wintersemestern 2005/2006, 2006/2007 und 2007/2008 begannen. Eingeschlossen wurden Studierende der AdH-, Abiturbesten- und Wartezeitquote sowie die im Nachrückverfahren zugelassenen Studierenden (NRV-Gruppe). Auch Studierende im Zweitstudium und diejenigen, die aufgrund eines Klageverfahrens zum Studium zugelassen worden waren, wurden eingeschlossen, jedoch wegen der kleinen Fallzahlen nicht im Rahmen der Hauptanalyse ausgewertet.

Zulassungskriterien

Die Studierendenauswahl erfolgte je nach Zulassungsquote anhand folgender Kriterien:

- **Abiturbestenquote** – Abiturdurchschnittsnote
- **Wartezeitquote** – Wartezeit nach Wartesemestern
- **AdH-Quote und NRV-Gruppe** – Abiturdurchschnittsnote und weitere „Bonuskriterien“:
 - Ausbildung und Berufserfahrung in medizinähnlichen Berufen (6,5% der zusammengefassten AdH-Quote, 18,4% der zusammengefassten NRV-Gruppen aus den 3 Kohorten)
 - Erfolg in bildungsbezogenen Wettbewerben
 - freiwilliger sozialer Dienst (3,6% der zusammengefassten AdH-Quote und 1% der zusammengefassten NRV-Gruppen aus den 3 Kohorten).
Ausschlusskriterien

Von der Analyse ausgeschlossen wurden:
- Studierende, die aufgrund überdurchschnittlicher Leistung im Test für Medizinische Studiengänge (TMS) zugelassen wurden
- Zulassungsgruppen mit sehr kleinen Fallzahlen (bevorzugt Zugelassene, Härtefälle, Losverfahren)
- vorab Zugelassene, deren Erstzulassung vor der Einführung des AdH-Verfahrens 2005 und Beginn der Eingangsdatendokumentation durch die Fakultät erfolgte
- ausländische Studierende.

Datenerhebung und Datenschutz

Die Arbeit wurde in Zusammenhang mit der Qualitätssicherung der Studierendenauswahl an der Medizinischen Fakultät Heidelberg durchgeführt. Geburtsdaten,Immatrikulations-und Exmatrikulationsdaten, fakultätsinterne Prüfungsnoten und das Datum des Bestehens des M1-Examens wurden aus der Datenbank der Fakultät extrahiert. Die Schulabschlussnoten der lokal zugelassenen Studierenden (AdH und NRV) und der zentral zugelassenen Studierenden, die sich auch für die AdH-Quote beworben hatten, wurden deren Bewerbungsunterlagen entnommen. Die Schulabschlussnoten der übrigen zentral zugelassenen Studierenden fehlten, da sie zur Zeit der Datenerhebung nicht mehr zugänglich waren. Die Daten wurden in MS Excel® tabellarisch dargestellt und für die Analyse anonyrisiert, indem die Spalten mit persönlichen Daten – abgesehen vom Alter und Geschlecht – entfernt wurden. Die Arbeit wurde in Übereinstimmung mit der Erklärung von Helsinki und den gesetzlichen Datenschutzbestimmungen durchgeführt.

Beurteilung der Studienleistungen

Die Analyse der Studienleistungen basierte auf den Noten im jeweiligen ersten Versuch der fakultätsseigenen Prüfungen. Es wird angenommen, dass der erste Prüfungsversuch die tatsächliche Lernleistung genauer abbildet als die Wiederholung von nicht bestandenen Prüfungen. Für jeden Studierenden und Studienabschnitt – Vorklinik und Klinik – wurde ein Mittelwert für die Prüfungsnote berechnet. Die Prüfungsergebnisse des klinischen Studienabschnitts wurden auf die akademische Notenskala von 1,0 (beste Note) bis 5,0 (nicht ausreichend) übertragen. Die Prüfungsergebnisse des vorklinischen Studienabschnitts basieren auf unterschiedlichen Punkteskalen, sodass sie standardisiert und auf die 1,0 bis 5,0-Skala umgerechnet wurden. Prüfungsergebnisse in der Form „bestanden/nicht bestanden“ wurden von der Analyse ausgeschlossen.

Beurteilung der Studienkontinuität

Der Studienabbruch wurde auf Basis des Exmatrikulationsdatums definiert. Da viele Prüfungen nicht zeitgebun-
Studienleistung

Durchschnittlich erzielten die Studierenden aller untersuchten Zulassungsgruppen bessere Ergebnisse im klinischen als im vorklinischen Studienabschnitt. Mit Ausnahme der Wartezeitquote im klinischen Studienabschnitt waren ihre Noten jedoch schlechter als im Abitur (siehe Abbildung 1B). Die Studienleistungen von Männern und Frauen unterschieden sich weder im vorklinischen noch im klinischen Studienabschnitt signifikant voneinander. Die Studierenden verbesserten im klinischen Studienabschnitt ihre Noten durchschnittlich um 4,4 Zehntelnoten im Vergleich zum vorklinischen Studienabschnitt (p<0,001). Der Unterschied war am ausgeprägtesten in der NRV-Gruppe (7 Zehntelnoten), am geringsten in der Abiturbestenquote (3 Zehntelnoten) (siehe Abbildung 1B). In beiden Studienabschnitten erreichten die Studierenden der Abiturbestenquote im Schnitt die besten Studienleistungen, dicht gefolgt von der AdH-Quote. Die durchschnittlichen Studienleistungen der NRV-Gruppe und der Wartezeitquote unterschieden sich nicht signifikant voneinander. Sie waren im Schnitt sieben- bzw. acht Notenzehntel schlechter als die Studienleistungen der Abiturbesten in der Vorklinik und um zwei bzw. 3,6 Notenzehntel in der Klinik (siehe Abbildung 1B). Allerdings waren unter den Abiturbesten auch leistungsschwache Studierende und unter den Abiturienten mit schlechteren Abiturleistungen leistungsstarke Studierende, sodass sich die Spannweiten der Leistungen aller Alters- und Notengruppen überlappen (siehe Abbildung 2). Die Leistungsspannweiten und die Variabilität zwischen den Zulassungsgruppen (siehe Abbildung 1B) und Einzelstudienteilnehmern (siehe Abbildung 2) reduzierten sich im klinischen Studienabschnitt auffallend im Vergleich mit dem vorklinischen Studienabschnitt.

Relativer prognostischer Wert der Abiturdurchschnittsnote und des Alters

Abbildungen 1 und 2 weisen auf einen Zusammenhang zwischen der Abiturdurchschnittsnote und dem Studieneintrittsalter sowie zwischen diesen beiden Variablen und der Studienleistung hin. Deshalb wurde mittels partieller Korrelation und multipler Regression der relative prognostische Wert der Abiturdurchschnittsnote und des Studieneintrittsalters für die Studienleistung untersucht (siehe Abbildung 3). Die Korrelation zwischen der Studienleistung und der Abiturdurchschnittsnote war geringfügig niedriger unter Kontrolle des Studieneintrittsalters. Dagegen reduzierte sich die Korrelation zwischen der Studienleistung und dem Studieneintrittsalter deutlich unter Kontrolle der
Abbildung 2: Streudiagramme und quadratische Regressionskurven der Beziehung zwischen Studienleistung und Studieneintrittsalter bzw. der Abiturdurchschnittsnote. Abkürzungen: (r) Korrelationskoeffizient der quadratischen Beziehung zwischen Prädiktor und Kriterium.

A. Studienleistung vs. Alter
a. Vorklinik
b. Klinik

B. Studienleistung vs. Abiturdurchschnittsnote
a. Vorklinik
b. Klinik

C. Varianzschatzung mit Bootstrapping
a. Vorklinik
b. Klinik

Abbildung 2: Streudiagramme und quadratische Regressionskurven der Beziehung zwischen Studienleistung und Studieneintrittsalter bzw. der Abiturdurchschnittsnote. Abkürzungen: (r) Korrelationskoeffizient der quadratischen Beziehung zwischen Prädiktor und Kriterium.

Abiturdurchschnittsnote und war nicht mehr statistisch signifikant (siehe Abbildung 3A). Übereinstimmend mit diesem Befund zeigte die multiple Regression eine signifikante Beziehung zwischen Studienleistung und Abitur- durchschnittsnote, während die Beziehung zwischen Studienleistung und Studieneintrittsalter nicht signifikant war (siehe Abbildung 3B).

Studienkontinuität

Der Untersuchungszeitraum erstreckte sich bis 4,5 Jahre nach dem regulären Termin des M1-Examens, 1,5 Jahre nach dem regulären Zeitpunkt der Scheinfreiheit und ein Jahr nach dem regulären Beginn des Praktischen Jahres der letzten – dritten – untersuchten Kohorte. Diese Zeitabstände verlängern sich jeweils um ein Jahr für die zweite und um zwei Jahre für die erste untersuchte Kohorte. Diese Beobachtungszeiträume ermöglicht die sichere Dokumentation der Studienverzögerung. Innerhalb des Untersuchungszeitraums erreichten 89,3% der Studierenden der AdH-Quote, 87,5% der Studierenden der Abiturbestenquote, 78,4% der Studierenden der NRV-Gruppe und 76,6% der Studierenden der Wartezeitquote das praktische Jahr (siehe Abbildung 4A). Sämtliche Studienabbrüche brachen das Studium während oder am Ende des vorklinischen Studienabschnitts ab, sodass die Anzahl der Studierenden, die das PJ erreichten, fast identisch war mit der Zahl der Studierenden, die das M1-Examen erfolgreich absolvierten (siehe Abbildung 4A). Die Studienkontinuität in der Regelstudienzeit ergab ein differenzierteres Bild. Der Anteil der Studierenden der NRV-Gruppe und der Wartezeitquote, die das M1-Examen in der Regelzeit bestanden (knapp 60%), war um ein Viertel kleiner als der prozentuale Anteil der Studierenden der AdH- und Abiturbestenquote (siehe Abbildung 4A). Dagegen war der prozentuale Anteil der Studierenden der AdH- (34%) und Abiturbestenquote (43%), die den klinischen Studienabschnitt verzögerten, drei- bis vierfach höher als der Anteil der Studierenden der NRV-Gruppe (14,4%) und Wartezeitquote (10,9%). Insgesamt erreichte ein vergleichbarer Prozentsatz der Studierenden aller untersuchten Zulassungsgruppen die Scheinfreiheit (39-46%) bzw. das praktische Jahr (30-38%) in der Regelzeit (siehe Abbildung 4B). Anteilsmäßig brachen mehr Studierende der NRV-Gruppe und der Wartezeitquote das Studium ab als Studierende der AdH- und Abiturbestenquote, während der Anteil der Studierenden der AdH- und Abiturbestenquote, die ihre Studienzeit verlängerten, größer war als in der NRV-Gruppe und der Wartezeitquote (siehe Abbildung 4C).
Die Proportion der Studierenden, die das Studium verzögern oder abbrechen, erlaubt es, die prognostische Wahrscheinlichkeit der Studienverzögerung und des Studienabbruchs einzuschätzen. Aufgrund der unterschiedlichen Größe der untersuchten Zulassungsgruppen (siehe Abbildung 4C) trugen sie nominal unterschiedlich zum Studierendenschwund bei (33 Studierende der AdH-Quote, 17 der Abiturbestenquote, 21 aus der NRV-Gruppe und 43 Studierende der Wartezeitquote). Zusätzlich verließen ihre ursprüngliche Kohorte durch Studienverzögerung im vorklinischen Studienabschnitt 32 Studierende der AdH-Quote, 7 der Abiturbestenquote, 17 aus der NRV-Gruppe und 38 Studierende der Wartezeitquote.

Prädiktoren für Studienabbruch und -verzögerung

Der Vorhersagewert der Abitur durchschnittsnote, des Studieneintrittsalters, der Zulassungsgruppenzugehörigkeit und des Geschlechts für Studienabbruch und -verzögerung wurde mittels binär logistischer Regression untersucht (siehe Tabelle 1). Dabei zeigte sich, dass die Abiturdurchschnittsnote die Wahrscheinlichkeit für eine Studienverzögerung (odds ratio, OR=2,639) und das Studieneintrittsalter das Risiko für einen Studienabbruch (OR=0,854) im vorklinischen Studienabschnitt signifikant beeinflussen. Die Zulassungsgruppenzugehörigkeit hat sowohl einen signifikanten Einfluss auf das Studienabbruchsrisiko (OR=1,504) und die Studienverzögerung (OR=1,472) im ersten Studienabschnitt als auch auf die Studienverzögerung im klinischen Studienabschnitt (OR=0,874). Das Geschlecht schien die Wahrscheinlichkeit für Studienabbruch oder -verzögerung in keinem Studienabschnitt signifikant zu beeinflussen (siehe Tabelle 1).

Für eine differenziertere Analyse wurde die Bedeutung der Abiturdurchschnittsnote und des Studieneintrittsalters für Studienabbruch und -verzögerung im vorklinischen Studienabschnitt in den zusammengefassten Zulassungsgruppen, AdH- + Abiturbestenquote, NRV-Gruppe + Wartezeitquote, getrennt untersucht (siehe Tabelle 2). Die Abiturdurchschnittsnote hatte einen starken Einfluss auf die Wahrscheinlichkeit einer Studienverzögerung in beiden zusammengefassten Studierendengruppen (OR≥3,280), jedoch keinen signifikanten Einfluss auf den Studienabbruch. Das Studieneintrittsalter dagegen zeigte einen moderaten, aber signifikanten Einfluss auf beide Kriterien in der zusammengefassten Gruppe AdH- + Abiturbeste. In der zusammengefassten Gruppe NRV + Wartezeit beeinflusste das Studieneintrittsalter signifikant das Studienabbruchsverhalten, nicht jedoch die Studienverzögerung (siehe Tabelle 2).

Zur Kontrolle der Ergebnisse der logistischen Regression wurden die Abiturdurchschnittsnoten und das Studieneintrittsalter der zusammengefassten Studierendengruppen untersucht, die das M1-Examen in der Regelzeit bzw. verzögert bestanden oder das Studium abbrachen (siehe...
Abbildung 4: Studienkontinuität der verschiedenen Zulassungsgruppen. Maßstab für die Studienkontinuität waren der Zeitpunkt des Bestehens des M1-Exams, das Erreichen der Scheinfreiheit und der Zeitpunkt des PJ-Antritts. A. Prozentzatz der immatrikulierten Studierenden der jeweiligen Zulassungsgruppe (Studienanfänger), die die jeweilige Studienphase im Zeitraum der Untersuchung erfolgreich absolvierten. B. Prozentzatz der Studienanfänger, die die jeweilige Studienphase in der Regelstudienzeit absolvierten. C. Prozentzatz der Studienanfänger, die ihre Studienzeit verlängerten (Verzögerung) oder das Studium vorzeitig abbrachen. Signifikanz der Unterschiede wurde mittels χ²-Test für binomische Proportionen bestimmt.

Abkürzungen: (Verzög.) Verzögerung; (***) p≤0,001; (**) p≤0,01; (*) p≤0,05; (ns) 0,05<p≤0,10; (ns) nicht signifikant.

Gründe für Studienabbruch und -verzögerung

Der Studienabbruch von 19 der 43 Studienabbrucher der Wartezeitquote und die Verlängerung der vorklinischen Studienzeit durch 19 von 38 Studierenden derselben Zulassungsquote hingen mit Leistungsschwäche zusammen (siehe Abbildungen 6A und 6B). Leistungsschwäche war ebenso ursächlich für den Studienabbruch und die vorklinische Studienverzögerung von 15 der 38 Studierenden der NRV-Gruppe, 12 der 69 Studierenden der AdH-Quote und zwei der 24 Studierenden der Abiturbestenquote, die das Studium abbrachen oder den vorklinischen Studienabschnitt verzögerten (siehe Abbildun-
Tabelle 1: Logistische Regression des Zusammenhangs zwischen Studienabbruch bzw. -verzögerung und der Abiturdurchschnittsnote, dem Studieneintrittsalter, der Zulassungsgruppenzugehörigkeit (Quoten) sowie dem Geschlecht.

Gruppe	Prädiktor	kriterium	B	SE	p	OR
AdH+Beste	Abitur	Abbruch	0.369	0.518	0.476	1.446
		Verzögerung	1.223	0.460	0.008	3.399
	Alter	Abbruch	0.229	0.067	0.001	1.257
		Verzögerung	0.130	0.067	0.050	1.139
NRV+Warte	Abitur	Abbruch	0.226	0.318	0.477	1.254
		Verzögerung	1.188	0.348	0.001	3.280
	Alter	Abbruch	0.120	0.043	0.005	1.127
		Verzögerung	0.059	0.064	0.359	1.061

Studienabbruch und -verzögerung wurden gegen "Regelzeit" am Datum des M1-Bestehens festgestellt. Abkürzungen: (B) Regressionskoeffizient; (SE) Standardfehler von B; (p) Signifikanz von B; (OR) odds ratio.

Tabelle 2: Logistische Regression des Zusammenhangs zwischen Studienabbruch bzw. -verzögerung und der Abiturdurchschnittsnote sowie dem Studieneintrittsalter in den zusammengefassten Zulassungsgruppen AdH + Abiturbeste bzw. NRV + Wartezeitquote im vorklinischen Studienabschnitt.

Gruppe	Prädiktor	kriterium	B	SE	p	OR
AdH+Beste	Abitur	Abbruch	0.369	0.518	0.476	1.446
		Verzögerung	1.223	0.460	0.008	3.399
	Alter	Abbruch	0.229	0.067	0.001	1.257
		Verzögerung	0.130	0.067	0.050	1.139
NRV+Warte	Abitur	Abbruch	0.226	0.318	0.477	1.254
		Verzögerung	1.188	0.348	0.001	3.280
	Alter	Abbruch	0.120	0.043	0.005	1.127
		Verzögerung	0.059	0.064	0.359	1.061

Studienabbruch und -verzögerung wurden gegen "Regelzeit" am Datum des M1-Bestehens festgestellt. Abkürzungen: (B) Regressionskoeffizient; (SE) Standardfehler von B; (p) Signifikanz von B; (OR) odds ratio.

gen 6A und 6B). Bei neun Studierenden wurde Krankheit als Ursache für Studienabbruch und Studienverzögerung dokumentiert. Für die meisten Studienabbrecher wurde der Grund in der Datenbank der Fakultät nicht dokumentiert. Die Mehrheit dieser Studierenden verließ das Studium bereits im ersten Studienjahr, 25 von ihnen noch vor Mitte des ersten Semesters. Der Rest brach das Studium am Ende des zweiten Studienjahres ab (siehe Abbildung 6C). Die Mehrheit der Studierenden, die verzögert den klinischen Studienabschnitt begannen, hatte die vorklinischen Kurse in der Regelzeit absolviert, bestand aber das M1-Examen mit Verzögerung (siehe Abbildung 6B). Studienverzögerung im klinischen Studienabschnitt, einschließlich der Erlangung der Scheinfreiheit und dem Beginn des Praktischen Jahres hing nur in wenigen Fällen mit Leistungsschwäche zusammen. Ein freies Semester für die Promotionsarbeit konnte als Zeitpuffer genutzt werden. Am häufigsten war ein Auslandsaufenthalt der Grund für die Studienzeitverlängerung. Zu den weiteren, jedoch nicht systematisch untersuchten Gründen zählten der Besuch zusätzlicher Wahlkurse, verlängerte Promotionsarbeit, Parallelstudium, familiäre Umstände und Unterhalterwerb.

Weitere Zulassungsgruppen inländischer Studierender

In den drei untersuchten Kohorten waren 14 „Zweitstudium“-Studierende, die einen anderen Studiengang abgeschlossen hatten. Von diesen 14 Studierenden brachen sechs das Studium der Humanmedizin in der Vorklinik und eine im klinischen Studienabschnitt ab, drei weitere verlängerten ihre Studienzeit. Die im Studium verbliebenen Studierenden dieser Gruppe erreichten im Mittel die Note 2,7 im vorklinischen und 2,0 im klinischen Studienabschnitt. Dreundzwanzig Studierende erhielten ihren Studienplatz nach einem Klageverfahren. Von ihnen brachen sieben Studierende (30%) das Studium ab, fünf aufgrund von Leistungsschwäche in der Vorklinik oder dreimaligem Scheitern an der Note 2,7 im vorklinischen und 2,0 im klinischen Studienabschnitt. Dreundzwanzig Studierende erhielten ihren Studienplatz nach einem Klageverfahren. Von ihnen brachen sieben Studierende (30%) das Studium ab, fünf aufgrund von Leistungsschwäche in der Vorklinik oder dreimaligem Scheitern an der Note 2,7 im vorklinischen und 2,0 im klinischen Studienabschnitt.
Abbildung 5: Abiturdurchschnittsnoten und Studieneintrittsalter der Studierenden, die das M1-Examen in der Regelstudienzeit bzw. verzögert bestanden oder das Studium bereits davor abbrachen. Abkürzungen: (AdH+Best) Zusammengefasste Gruppe der AdH- und Abiturbestenquote; (NRV+Warte) Zusammengefasste Gruppe der NRV-Gruppe und Wartezeitquote; (ns) nicht signifikant; (*) p≤0,05; (**) p≤0,001.

Diskussion

Die vorliegenden Daten legen nahe, dass

- die Studienleistung und der vorklínische Studiendauer in den untersuchten Kohorten in direktem Zusammenhang mit der Abiturdurchschnittsnote steht, während der Studienabbruch eher mit dem Studieneintrittsalter zusammenhängt;
- die Prognose der zum Studiengang Humanmedizin im Nachrückverfahren zugelassenen Studierenden für Studienleistung und -kontinuität ähnlich ist wie die Prognose der nach Wartezeit zugelassenen Studierenden; die Prognose beider Gruppen ist schlechter als die der Abiturbestenquote und der im AdH-Hauptverfahren zugelassenen Studierenden;
Abbildung 6: Gründe für Studienabbruch und -verzögerung im vorklinischen Studienabschnitt. A. und B. Relative Verteilung der dokumentierten Gründe für Studienabbruch und Verzögerung. (Sonstiges) dokumentierte finanzielle und familiäre Gründe einschließlich Schwangerschaft. (M1-Verzögerung) zwischen freiwillig verlängertem Vorbereitungsweg und Examensverzögerung wegen Fehlleistung konnten nicht differenziert werden. C. Zeitpunkt des Studienabbruchs ohne Dokumentation von Gründen. (FS) Fachsemester.

- das Studienleistungsniveau im klinischen Studienabschnitt durchschnittlich höher ist als im vorklinischen Abschnitt;
- die hohe Variabilität der Studienleistungen einer jeden Abiturientengruppe weitere Zulassungsinstrumente erfordert, um die potentiell fähigen Bewerber erkennen zu können.

Abiturnote und Alter als Erfolgsprädiktoren

Nach der 20:20:60-Regelung (Abitur:beste:Wartezeit:AdH) der Zulassung ist die Schulabschlussnote der einzige Erfolgsprädiktor von 40% und der maßgebliche Erfolgsprädiktor von 60% der Medizinstudierenden. Die vorliegende Studie fokussiert deshalb auf die Untersuchung des prädiktiven Wertes der Abiturdurchschnittsnote und auf den Studienverlauf der unterschiedlichen Zulassungsgruppen. Die Ergebnisse stehen in Einklang mit früheren Berichten und zeigen, dass auch im reformierten Curriculum die Abiturschnittsnote ein bedeutender Prädiktor für die Studienleistung und nach AdH-Verfahren. Die Vorteile der Berufserfahrung für das Medizinstudium wurden nach unserem Wissen noch nicht systematisch untersucht. Es kann vermutet werden, dass Ärzte und Ärztinnen mit Vorerfahrung im medizinischen
Bereich Vorteile haben, wenn sie eine medizinische Karriere in einem Bereich anstreben, den sie auch aus nicht-arztlicher Perspektive bereits gut kennen. Einige Studierende der Wartezeitquote erreichten durchaus gute Leistungen und absolvierten konsequent alle Kurse in der Regelstudienzeit. Es wäre vorteilhaft, solche Studierende schon unmittelbar nach Erreichen der HZB erkennen zu können. Im Allgemeinen ist die Studienprognose der Wartezeitquote sowohl aufgrund der Abiturnote als auch aufgrund des Alters ungünstiger als in den anderen Quoten. Die Studienabbruchrate in der Wartezeitquote war in der vorliegenden Studie mit über 20% ähnlich hoch wie in Hamburg [17]. Sie ging statistisch eher mit dem Alter und der Quotenzugehörigkeit als mit der Abiturdiurchschnittsnote zusammen, obwohl bei knapp der Hälfte dieser Studienabbrucher der Studienabbruch in Verbindung mit Studienleistungsschwäche stand. Es ist möglich, dass die einen Studienabbruch bedingende Leistungsschwäche in dieser Gruppe mehr mit altersbedingten Lebensumständen als mit der früheren schulischen Leistung zusammenhanging. In einer umfassenden Analyse der Ursachen für Studienabbruch zeigten Heublein und seine Mitarbeiter [18], [19], dass verzögerte Studienaufnahme ein maßgeblcher Risikofaktor für Studienerfolg und -kontinuität im Fach Medizin darstellt. Das Risiko ist besonders dann hoch, wenn soziökonomische und familiäre Umstände eine Nebenerwerbstätigkeit auf Kosten der Lernzeit erfordern. Eine der Studium vorangegangene Ausbildung kann außerdem die Entscheidung für eine berufliche Neuorientierung nach Studienabbruch erleichtern [ebd.]. Die Studienverzögerung im vorklinischen Studienabschnitt hinge ebenfalls mit der Quotenzugehörigkeit zusammen, war jedoch im Gegensatz zum Studienabbruch eher mit der Abiturnote als mit dem Alter assoziiert. Der Anteil der Studierenden der Wartezeitquote, der sein Studium bereits in dieser frühen Studienphase verlängerte, war deutlich größer als in der AdH- und Abiturbestenquote. Wie der Studienabbruch war auch die Studienverzögerung in der Wartezeitquote fast zur Hälfte an Leistungsschwäche gekoppelt. Es ist deshalb plausibel, dass Leistungsschwäche unterschiedliche Ursachen hat, die einerseits mit altersbedingten Faktoren wie Nebenerwerbstätigkeit und andererseits mit den kognitiven Fähigkeiten zusammenhängen. Sollte sich diese Vermutung zukünftig bestätigen lassen, wäre es sinnvoll, auch bei Zulassung nach Wartezeit geeignete weiteren Auswahlkriterien anzuwenden und zusätzlich potentiell fähige Wartezeitstudierende zu unterstützen, deren Stuendienerfolg eher durch ihre Lebensumstände eingeschränkt wird. Die Studierenden der Wartezeitquote, die den klinischen Studienabschnitt erreichten, setzten ihr Studium ohne Ausnahme bis zum PJ fort. Der Studienverzögerungstrend kehrte sich um: Ein deutlich kleinerer Anteil der Studierenden in der Wartezeitquote verlängerte die klinische Studienzeit als Studierende in der Abiturbesten- und der AdH-Quote. Die Hauptgründe für Studienverzögerung in dieser Studienphase waren allerdings Auslandaufenthalte, Promotionsarbeiten, und der Besuch freiwilliger Wahlkurse. Ältere Studierende neigten vermutlich dazu, auf diese Möglichkeiten zu verzichten, um das Studium möglichst schnell abzuschließen.

Das Nachrückverfahren

Der Studienerfolg der Studierenden, die im Nachrückverfahren ausgewählt wurden, ähnelte in allen untersuchten Parametern – Studienleistung, -verzögerung und -abbruch – dem Studienerfolg der Wartezeitquote. Wie in der Wartezeitquote war auch bei den Nachrückern Leistungsschwäche ein häufiger Grund für Studienverzögerung und -abbruch im vorklinischen Studienabschnitt. Die Nachrücker sind Studierende, die an keiner der deutschen medizinischen Fakultäten im Rahmen des innerkapazitären Zulassungsverfahrens vermittelt werden konnten. Ihr Studieneintrittsalter und ihre Abiturdiurchschnittsnote nehmen im Schnitt einen Platz zwischen den Abiturbesten/AdH-Quote und der Wartezeitquote ein. Ob die Unterschiede dieser Eingangsmerkmale zwischen der Nachrückergruppe und den in den Hauptverfahren Zugelassenen ausreichen, um den durchschnittlich schlechteren Studienverlauf der Nachrücker zu erklären, bleibt abzuklären. Möglicherweise spielt neben den kognitiven und altersbedingten Faktoren auch Motivation eine Rolle. Die Befunde deuten an, dass das Nachrückverfahren das allgemeine Leistungsniveau der Studierendenkohorte senkt und die Zahl der Studienabbrücher vergrößert. Im Gegensatz zu der Wartezeitregelung ist das Nachrückverfahren nicht gesetzlich erforderlich. Es ist möglich, ein Nachrückverfahren zu vermeiden, zum Beispiel durch Einschränkung der Studienortspräferenz der Studienbewerber und durch eine möglichst genaue Einschätzung der Zulassungsüberbuchung im AdH-Hauptverfahren. Die Anwendung dieser Maßnahmen liegt im Ermessen der Hochschulen.

AdH- vs. Abiturbestenquote

Die Studierenden der AdH-Quote, die nach der Abiturdiurchschnittsnote und zu einem kleinen Teil anhand von Bonukriterien ausgewählt wurden, erreichten im Schnitt geingüglich schlechtere Studienleistungen als die Studierenden der Abiturbestenquote. Dieser Unterschied kann allein durch den Unterschied in den mitgebrachten Schulnoten erklärt werden. Dagegen war die Studienkontinuität der Abiturbesten etwas schlechter als die der AdH-Quote. Ein möglicher Grund dafür könnte sein, dass einige Bewerber mit einer Abiturdiurchschnittsnote von 1,0 bei der ersten Hochschulanmeldungunschlüssig in Bezug auf ihre Studienfachwahl sind. Diese Interpretationsmöglichkeiten kann jedoch angesichts der kleinen Fallzahlen lediglich als eine Frage an die zukünftige Forschung gelten.
Zweitstudium und Klageverfahren

Die Analyse der Studienleistung und -kontinuität der Zweitstudium-Studierenden und der nach Klageverfahren zugelassenen Studierenden war durch die kleinen Fallzahlen eingeschränkt. Sie deckte jedoch einen Trend auf, der einer näheren Untersuchung bedarf. In beiden Gruppen befanden sich erfolgreiche Studierende. Im Allgemeinen ähnelten die Studienleistungen dieser Gruppen im günstigsten Fall denen der Wartezeitquote. Ihre hohen Studienabbruchs- und Studienverzögerungsquoten lassen eine gegenüber der Wartezeitquote geringere Fähigkeit vermuten, das Studium konsequent zu verfolgen.

Klinik vs. Vorklinik

Die allgemeine Studienleistung der Studierenden aller Quoten war deutlich besser im klinischen als im vorklinischen Studienabschnitt. Der höchste Anstieg wurde durch die NRV-Gruppen und die Studierenden der Wartezeitquote erreicht, obwohl deren Leistung nach wie vor unter dem Niveau der Abiturbesten blieb. Zu diesem Anstieg können mehrere Faktoren, einschließlich des Ausscheidens der leistungschwächeren Studierenden vor dem M1-Examen beigetragen haben. Es wurde mehrfach beschrieben, dass der Zusammenhang zwischen der schulischen und universitären Lernleistung im klinischen Studienabschnitt geringer ist als im vorklinischen Studienabschnitt [9], [20]. Zu der gestiegenen Studienleistung im klinischen Studienabschnitt dürften die stärkere Orientierung dieses Studienabschnitts am Berufsleben [21] sowie die Zufriedenheit mit dem Reformcurriculum des klinischen Studienabschnitts [22], [23], [24] beitragen. Evaluationen der Studierenden legen nahe, dass Interesse und aktive Teilnahme an Veranstaltungen die dominierenden Faktoren sind, die zum besseren subjektiven Wissenserwerb im Reformcurriculum beitragen [25].

Schlussfolgerung

Der prognostische Erfolg der Studierendenauswahl zum Studiengang Humanmedizin nach Abiturdurchschnittsquote, die in der geltenden Gesetzgebung maßgebliche Bedeutung zukommt, ist durch mehrere Faktoren eingeschränkt:

1. Die Abiturdurchschnittsquote klärt weniger als 30% der Varianz der Studienleistung auf, sodass die Streuung der Studienleistungen aller Abiturientengruppen groß ist. Es wäre deshalb folgerichtig, potentiell erfolgreichen Kandidaten mit einem breiten Spektrum an Abiturnoten die Zulassung auf Kosten von potentiell schwächeren Abiturbesten zu ermöglichen. Dieses Ziel kann durch den Einsatz weiterer, abituraufhängiger Auswahlinstrumente erreicht werden.

2. Die Zulassung nach Wartezeit unter Verzicht auf jegliche Erfolgssprädiktoren ist problematisch. Andererseits erscheint auch der Verzicht auf potentiell fähige Medizinstudierende mit Lebens- und Berufserfahrung aber mittelmäßigen Abiturnoten wenig sinnvoll. Zweckmäßig wäre die Anwendung geeigneter Auswahlinstrumente auch bei Zulassung nach Wartezeit.

3. Das Nachrückverfahren ähnelt der Zulassung nach Wartezeit in Bezug auf die Prognose für Studienleistung und -kontinuität und sollte, wenn möglich, vermieden werden.

Danksagung

Die Autoren sind Anna Kirchner, Dagmar Schweinfurth, Alexandra Keinert, Martina Damaschke und Dr. Ariunaa Batsaikhan für ihre hervorragende technische Unterstützung der Arbeit sehr dankbar. Anna Kirchner gebührt weiterer Dank für ihre stets geduldige Beratung bezüglich des Studierendenauswahlverfahrens.

Interessenkonflikt

Die Autoren erklären, dass sie keine Interessenkonflikte im Zusammenhang mit diesem Artikel haben.

Literatur

1. Ferguson E, James D, Madeley L. Factors associated with success in medical school: systematic review of the literature. BMJ. 2002;324:952-957. DOI: 10.1136/bmj.324.7343.952
2. Hampe W, Hissbach J, Kadmon M, Kadmon G, Kusmann D, Scheutzel P. Wer wird ein guter Arzt? Verfahren zur Auswahl von Studierenden der Human- und Zahnmedizin. Bundesgesundheitsbl. 2009;52:821-830. DOI: 10.1007/s00103-009-0905-6
3. Edwards T. Medical schools in Australia. Medical Schools & Nursing Colleges Worldwide. Stanmore, Middlesex: Thames Digital Media; 2003. Zugänglich unter/available from: http://www.medical-colleges.net/medical.htm (Link geprüft 8. Dezember 2011)
4. Arulampalam W, Naylor RA, Smith J. Doctor who? Who gets admission offers in UK medical schools. Forschungsinstitut zur Zukunft der Arbeit – Institute for the Study of Labor. IZA DP 1775, Bonn: Institut für die Studien von Labor; 2005.
5. McManus C, Woolf K, Dacre JE. Even one star at A level could be "too little, too late" for medical student selection. BMC Med Ed. 2008;8:16. DOI: 10.1186/1472-6920-8-16
6. Löfgren K. Validation of the Swedish university entrance system. Selected results from the VALUTA-project 2001-2004. EM no. 53. Umeå: Umeå University, Department of Educational Measurement; 2005.
7. Halpern N, Bentov-Gofrit D, Matot I, Abramowitz MZ. The effect of integration of non-cognitive parameters on medical students' characteristics and their intended career choices. Israel Med Assoc J. 2011;13(8):488-493.
8. Gold A, Souvignet E. Prognose der Studierfähigkeit. Ergebnisse aus Längsschnittanalysen. Zentrale Medizinische Nachrichten Schweiz. 2005;37(4):214-222. DOI: 10.1026/0049-8637.37.4.214
9. Trapmann, S, Hell B, Weigand S, Schuler H. Die Validität von Schulnoten zur Vorhersage des Studienerfolgs – eine Metaanalyse. Z Psychol Medizin Psychol. 2007;21(1):11-27. DOI: 10.1024/1010-0652.21.1.11
10. Salvatori P. Reliability and validity of admission tools used to select students for health professions. Adv Health Sci Edu. 2001;6(2):159-175. DOI: 10.1023/A:1011489618208
11. Wilkinson D, Zhang J, Byrne GJ, Luke H, Ozoilins IZ, Parker MH, Peterson RF. Medical school selection criteria and the prediction of academic performance. Evidence leading to change in policy and practice at the university of Queensland. Med J Austral. 2008;186(6):349-354.
12. Roth PL, BeVier CA, Switzer FS III, Schippmann JS. Meta-analysing the relationship between grades and job performance. J Appl Psychol. 1996;81(5):548-556. DOI: 10.1037/0021-9010.81.5.548
13. Trost G, Blum F, Fay E, Kliehene E, Maichle U, Meyer M, Nauels HU. Evaluation des Tests für medizinische Studiengänge (TMS): Synopsen der Ergebnisse. Bonn: Institut für Test- und Begabungsforschung; 1998.
14. Hell B, Trappmann S, Schuler H. Eine Metaanalyse der Validität von fachspezifischen Studierfähigkeitstests im deutschsprachigen Raum. Empir Pädagog. 2007;21(3):251-270.
15. Nikendei C, Weyrich P, Jünger J, Schrauth M. Medical education in Germany. Med Teach. 2009;31(7):591-600. DOI: 10.1080/01421590902833010
16. Ferguson E, Sanders A, O’Hehir F, James D. Predictive validity of personal statement and the role of the five factor model of personality in relation to medical training. J Occ Org Psychol. 2000;73:321-344. DOI: 10.1348/096317900167056
17. Hansme W, Hissbach J. Kein Ersatz für die Abiturnote. Dtsch Ärztebl. 2010;107(26):A1298-1299.
18. Heublein U, Hutzsch C, Schreiber J, Sommer D, Besuch G. Ursachen des Studienabbruchs in Bachelor- und in herkömmlichen Studiengängen. Ergebnisse einer bundesweiten Befragung von Exmatrikulierten des Studienjahres 2007/08. Hannover: HIS Hochschul-Informationssystem GmbH; 2010. Zugänglich unter/available from: http://www.his.de/pdf/pub_fth/fh-201002.pdf (verifiziert 31. Jan 2014).
19. Heublein U, Spangenberg H, Sommer D. Ursachen des Studienabbruchs. Analyse 2002. Hannover: HIS Hochschul-Informationssystem-System; 2003. Band 163. Zugänglich unter/available from: http://www.bmbf.de/pub/ursachen_des_studienabbruchs.pdf (verifiziert 31. Jan 2014).
20. Reede JY. Predictors of success in medicine. Clin Orthop Rel Research. 1999;362:72-77. DOI: 10.1097/00003086-199905000-00012
21. Mäkinen J, Olinkina E, Lonka K. Students at risk: Students’ general study orientations and abandoning/prlonging the course of studies. High Educ. 2004;48:173-188. DOI: 10.1023/B:HIGE.0000034312.79289.ab
22. Lieberman SA, Ainsworth MA, Asimakis GK, Thomas L, Cain LD, Mancuso MG, Rabek JP, Zhang N, Frye AW. Effects of comprehensive educational reforms on academic success in a diverse student body. Med Educ. 2010;44(12):1232-1240. DOI: 10.1111/j.1365-2923.2010.03770.x
23. Van der Veken J, Valcke M, De Maeseneer J, Derese A. Impact of the transition from a conventional to an integrated contextual medical curriculum on students’ learning patterns: A longitudinal study. Med Teach. 2009;31(5):433-441. DOI: 10.1080/01421590802141159
24. Kadmon G, Schmidt J, De Cono N, Büchler MW, Kadmon M. A model for persistent improvement of medical education as illustrated by the surgical reform curriculum HeiCuMed. GMS Z Med Ausb. 2011;28(2):Doc29. DOI: 10.3205/zma000741
25. Kadmon G, Schmidt J, De Cono N, Kadmon M. Integratives versus traditionelles Lernen aus Sicht der Studierenden. GMS Z Med Ausb. 2011;28(2):Doc28. DOI: 10.3205/zma000740

Korrespondenzadresse:
Dr. Guni Kadmon
Universität Heidelberg, Medizinische Fakultät, HeiCuMed Chirurgie, Im Neuenheimer Feld 155, 69120 Heidelberg, Deutschland, Tel.: +49 (0)6221/56-6716, Fax: +49 (0)6221/56-7207
guni.kadmon@med.uni-heidelberg.de

Bitte zitieren als
Kadmon G, Resch F, Duelli R, Kadmon M. Der Vorhersagewert der Abitur durchschnittsnote und die Prognose der unterschiedlichen Zulassungsquoten für Studienleistung und -kontinuität im Studiengang Humanmedizin – eine Längsschnittanalyse. GMS Z Med Ausbild. 2014;31(2):Doc21. DOI: 10.3205/zma000913, URN: urn:nbn:de:0183-zma0009138

Artikel online frei zugänglich unter http://www.egms.de/en/journals/zma/2014-31/zma000913.shtml

Eingereicht: 21.11.2011
Überarbeitet: 01.03.2014
Angenommen: 02.04.2014
Veröffentlicht: 15.05.2014

Copyright ©2014 Kadmon et al. Dieser Artikel ist ein Open Access-Artikel und steht unter den Creative Commons Lizenzbedingungen (http://creativecommons.org/licenses/by-nc-nd/3.0/deed.de). Er darf vervielfältigt, verbreitet und öffentlich zugänglich gemacht werden, vorausgesetzt dass Autor und Quelle genannt werden.
Predictive Value of the School-leaving Grade and Prognosis of Different Admission Groups for Academic Performance and Continuity in the Medical Course – a Longitudinal Study

Abstract

Background: The school-leaving GPA and the time since completion of secondary education are the major criteria for admission to German medical schools. However, the predictive value of the school-leaving grade and the admission delay have not been thoroughly examined since the amendment of the Medical Licensing Regulations and the introduction of reformed curricula in 2002. Detailed information on the prognosis of the different admission groups is also missing.

Aim: To examine the predictive values of the school-leaving grade and the age at enrolment for academic performance and continuity throughout the reformed medical course.

Methods: The study includes the central admission groups “GPA-best” and “delayed admission” as well as the primary and secondary local admission groups of three consecutive cohorts. The relationship between the criteria academic performance and continuity and the predictors school-leaving GPA, enrolment age, and admission group affiliation were examined up to the beginning of the final clerkship year.

Results: The academic performance and the prolongation of the pre-clinical part of undergraduate training were significantly related to the school-leaving GPA. Conversely, the dropout rate was related to age at enrolment. The students of the GPA-best group and the primary local admission group performed best and had the lowest dropout rates. The students of the delayed admission group and secondary local admission group performed significantly worse. More than 20% of these students dropped out within the pre-clinical course, half of them due to poor academic performance. However, the academic performance of all of the admission groups was highly variable and only about 35% of the students of each group reached the final clerkship year within the regular time.

Discussion: The school-leaving grade and age appear to have different prognostic implications for academic performance and continuity. Both factors have consequences for the delayed admission group. The academic prognosis of the secondary local admission group is as problematic as that of the delayed admission group. Additional admission instruments would be necessary, in order to recognise potentially able applicants independently of their school-leaving grade and to avoid the secondary admission procedure.

Keywords: Medical studies, admission, GPA, school leaving grades

Introduction

Student admission in Germany

The admission to German medical schools occurs via different central and local admission pathways (“quotas”). It is unique in that both pathways include both, selection by merit and admission of applicants who fail to meet the merit criteria. This is in accordance with the German constitution which guarantees free choice of profession also to applicants who do not qualify by merit. They are, however, put on a waiting list and are admitted up to six years after graduating from secondary education. Thus, age and merit of the students are mutually linked.
Moreover, all of the available study places must by law be occupied. Unoccupied admission slots following the regular selection process must be filled by applicants of lower merit. Approximately 10% of the admission slots are allocated to priority groups that do not concern the present study. Of the remaining admission slots, 20% are centrally allocated to applicants with the best school-leaving grade 1.0 (GPA; scale: 1.0-6.0, 4.0=pass), which is equivalent to the British A* and spans 768-840 points on the 840 assessment scale (GPA-best group). A further 20% of the admission slots are centrally allocated with a delay of up to six years to applicants who fail to qualify for direct admission and whose school-leaving grades usually are 2.0 (600 assessment points) or worse (delayed admission group). Following the central admission process, the remaining admission slots are allocated locally by the universities’ own admission criteria (primary local admission group). Following student registration, vacant admission slots due to declined admissions are allocated locally in a secondary admission process. Since many local applicants are centrally allocated to other universities, the secondary admission process includes applicants that originally were low on the applicants’ ranking list and whose qualifications predict relatively weak academic performance. The present study focuses on the academic progression of the students of these four admission groups.

The admission instrument School-leaving grade

The pre-university academic performance, assessed by school-leaving grades or college grades, serves as the primary admission instrument of medical schools around the world [1], [2]. Even universities that employ additional admission instruments such as in Australia [3], Great Britain [4], [5], Sweden [6], or Israel [7], pre-select their applicants by means of their school-leaving grades. With validity coefficients ranging between 0.26-0.58 [2], [8], [9], [10], [11], the school-leaving grade is considered the most reliable predictor for success in the medical course. Its high predictive value has also been documented for other academic courses [8], [9] as well as for non-academic professions [12].

Information gaps

The prognostic validity of the German baccalaureate for success in the medical course was extensively investigated at the end of the 20th century [9], [13], and on a smaller scale also later [2], [8], primarily with respect to the first, pre-clinical part of the Medical Licensing Examination. It had values of approximately 0.5 [14]. However, it has not yet been thoroughly examined since the amendment of the German Medical Licensing Regulations from 27th June 2002 and the resulting implementation of reformed curricula [15]. It is unclear whether previously published predictive values still apply. Moreover, the predictive value of the GPA for academic performance throughout the entire medical course, especially in the clinical part of the course, has scarcely been investigated. Internal examination results have only seldom been considered as academic endpoints as exemplified by Ferguson and his co-workers [16]. The examination results in the first try have to our knowledge never been specifically used as a realistic measure of progressive academic performance. Furthermore, the differential roles of the GPA and the enrolment age in predicting the academic outcome have not been sufficiently clarified with attention to their mutual linkage under the German admission regulations.

Previous investigations of the predictive value of the German school-leaving GPA have not distinguished in detail between the direct, secondary and delayed admission groups and have not considered the possible association between academic performance and continuity of Undergraduate medical training. The aim of the present study is, therefore, to examine the predictive value of the GPA and the age at enrolment for academic performance and continuity during the entire duration of the reformed curriculum HeiCuMed (Heidelberg Curriculum Medicinale). The study analyses the academic progress of 720 students who enrolled after the tertiary education reform from 2004. The time taken to complete the studies and the performance in the first try at each examination were used as measures for academic progress.

Methods

Participants and inclusion criteria

The participants in the study were medical students at the Heidelberg Medical Faculty who had qualified for tertiary education by the German baccalaureate and had enrolled in winter semesters 2005/2006, 2006/2007, and 2007/2008. They included the central GPA-best and delayed admission groups as well as the primary and secondary local admission groups. Students having a previous academic degree and students who had enrolled by judicial verdict were also included, but their data neglected in the major analysis due to their small numbers.

Admission criteria

The admission criteria for the different admission groups were as follows:

- **GPA-best group** – GPA.
- **Delayed admission group** – waiting time by number of semesters.
- **Primary and secondary local admission groups** – GPA and additional “bonus criteria”:
 - Vocational training and professional experience in medicine-related fields (6.5% and 18.4% of the pooled primary and secondary local admission groups of the three cohorts, respectively).
 - Success in education-related competitions.
Voluntary social service (3.6% and 1.0% of the pooled primary and secondary local admission groups of the three cohorts, respectively).

Exclusion criteria

The following groups of students were excluded from the study:

- Students who had been admitted due to their excellent performance (in addition to the GPA) in the voluntary German Aptitude Test for Medical Studies (TMS).
- Admission groups with small case numbers (priority admissions, cases of hardship, admissions by lottery).
- Students with deferred enrolment who had been admitted prior to the implementation of the local admission procedure in 2005 and the local documentation of the qualifying data of applicants.
- Foreign students.

Data recruitment and data protection

The study was performed in connection with the quality management of the admission procedure of the Heidelberg Medical Faculty. Birth dates, registration and de-registration dates, examination results, and the date of passing the first part of the Medical Licensing Examination (M1) were retrieved from the data bank of the faculty. The school-leaving grades of the locally admitted students and of the centrally admitted students who had also applied locally were retrieved from the application files. The school-leaving grades of the remaining centrally admitted students were no longer available at the onset of the study. The data were tabulated in MS Excel® and anonymised prior to their analysis by removal of the columns that contained personal data except for age and gender. The work was performed in compliance with the Declaration of Helsinki and the German data protection laws.

Evaluation of academic performance

The analysis of the students’ performance was based on the results of their first try at each examination. It was assumed that the first try better reflects the actual learning performance than the repetition of failed examinations. An average result was calculated for each student and separately for the preclinical and clinical part of undergraduate training. The examination results of the clinical part were reported on the academic scale of 1.0 (best) to 5.0 (fail). The examination results of the preclinical part were reported on different point scales. They were then standardised and converted to the 1.0-5.0 scale. Examination results in the form of “pass/fail” were excluded from the analysis.

Evaluation of studies continuity

Dropout was determined by the date of de-registration. Since many examinations are not time-bound, regular and prolonged continuity (“deceleration”) were determined at three endpoints: the date of successfully passing the first part of the Licensing (M1) Examination, the date of passing the last internal examination that completes the academic requirements, and the date of entering the final clerkship year. The reasons for dropout and for prolongation of the studies were retrieved from the data bank of the faculty if recorded. Almost complete records were available for the factor academic difficulties.

Statistical methods

The data of the three cohorts were pooled. Basic statistics, distribution analyses, multiple and logistic regressions, Pearson correlation and partial correlation zero order analyses, two-way χ² tests for proportions, two-tailed t-test with Bonferroni correction for multiple comparisons, confidence interval determinations with bootstrapping when applicable, and SNK-test were performed in IBM SPSS® 19 and 21. Quadratic regression was performed in MS Excel®. Graphics were generated in Excel and finished in Canvas® 10 (ACD Systems).

Results

Enrolment age

The students of the GPA-best and primary local admission groups were on average 20.5 years old at registration. The students of the secondary local admission group were 22.3 years old. The students of the delayed admission group formed a distinctly older group with a mean age of 25 years (see figure 1A).

School-leaving GPA

Ninety-four percent of the students of the GPA-best group and 30% of the students of the primary local admission group had a GPA of 1.0. Only nine students of the delayed admission and secondary local admission groups had the GPA 1.0. On average, the students of the GPA-best group had the best school-leaving GPA. The students of the primary local admission group had on average somewhat inferior GPAs, the students of the secondary local admission group had still worse GPAs and the students of the delayed admission group had the worst GPAs (see figure 1B). The GPAs of the delayed admission group, 2.4±0.64 (mean±SD), corresponded to the national average.

The age at enrolment and the school-leaving GPA were closely associated (adjusted correlation coefficient r_adjusted=0.534) due to the dependence of the admission group affiliation on GPA.

Academic performance

In both the pre-clinical and clinical parts of undergraduate training, male and female students did not significantly differ in their performance. On average, the students of
all four admission groups achieved better examination results in the clinical part of the course than in the pre-clinical part. However, with the exception of the delayed admission group, their results in the clinical part were inferior to their school-leaving grades (see figure 1B). On average, the students improved their examination marks in the clinical part by 0.44 of a grade as compared to the pre-clinical part ($p<0.001$). The delayed admission group achieved the best improvement (0.7) whereas the GPA-best group showed the smallest improvement (0.3; see figure 1B).

The students of the GPA-best group performed on average best in both parts of undergraduate training and were closely followed by the primary local admission group. The delayed admission group and the secondary local admission group did not significantly differ from one another with respect to their performance. Their pre-clinical examination grades were on average 0.7 to 0.8 of a grade worse than those of the GPA-best group in the pre-clinical part of the course and 0.36 worse in the clinical part (see figure 1B). Yet, among the delayed admission group and secondary local admission group there were also highly performing students and the GPA-best group included also poorly performing students. Thus, the distributions of examination results of all GPA subgroups and age subgroups overlapped (see figure 2). The distribution range, the differences between the admission groups (see figure 1B) and the variability among the individual participants (see figure 2) were smaller in the clinical part of the course than in the pre-clinical part.

Relative predictive value of the GPA and the age at enrolment

Figures 1 and 2 indicate that the GPA and the enrolment age are mutually linked, and that academic performance is associated with both these variables. Therefore, the relative prognostic value of the GPA and the enrolment age for academic performance was examined by partial correlation and multiple regression (see figure 3).

The correlation between academic performance and GPA was slightly reduced under the control of enrolment age. In contrast, the correlation between academic performance and enrolment age was reduced to insignificance under the control of GPA (see figure 3A). In agreement with this finding, multiple regression analysis revealed a significant relationship between academic performance and GPA whereas the relationship between academic performance and enrolment age was not significant (see figure 3B).
Continuity of studies progression

With respect to the third (last) cohort, the study proceeded for 4½ years after the regular date for passing the M1 examination, 1½ years after the regular date for completion of all faculty examinations, and one year after the regular date for entering the clerkship year. For the second and first cohorts these intervals were one and two years longer, respectively. The long observation time enabled the reliable documentation of the prolongation of studies.

Eighty-nine point three percent of the students of the primary local admission group, 87.5% of the GPA-best group, 78.4% of the secondary local admission group, and 76.6% of the delayed admission group entered the clerkship year within the observation period (see figure 4A). All of the students who dropped out prematurely did so at the end of the pre-clinical part of the course or earlier, so that the number of students reaching the final clerkship year was almost identical to the number of students who successfully passed the M1 examination (see figure 4A).

The proportions of students of the different admission groups who completed each part of the course within the prescribed time varied considerably. The proportions of students of the secondary local admission group and the delayed admission group who passed the M1 examination in the prescribed time (almost 60%) was approximately 25% smaller than the respective proportions of the GPA-best and primary local admission groups (see figure 4B). Conversely, the percentage of the students of the primary local admission group (34%) and the GPA-best group (43%) who prolonged their clinical studies were three to four times higher than in the secondary local admission group (14.4%) and the delayed admission group (10.9%). Consequently, similar proportions of all four admission groups completed the academic part of the course (39-46%) and entered the clerkship year (30-38%) within the prescribed time (see figure 4B).

Altogether, the percentage of students who dropped out was larger in the secondary local admission group and the delayed admission group than in the GPA-best group and the primary local admission group. On the other hand, the proportion of the students who prolonged their studies was larger in the GPA-best group and the primary local admission group than in the secondary admission group and the delayed admission group (see figure 4C). The proportion of students who prolonged their studies or dropped out enabled predictions about the probability of the prolongation of studies and dropout. However, due to the different sizes of the different admission groups (see figure 4C) their nominal contribution to student loss
varied. Of the three pooled cohorts, 33 students of the primary local admission group, 17 of the GPA-best group, 21 of the secondary local admission group, and 43 students of the delayed admission group dropped out. In addition, 32 students of the primary local admission group, 7 of the GPA-best group, 17 of the secondary local admission group, and 38 students of the delayed admission group had prolonged their studies and thereby left their original cohorts.

Predictors for the prolongation of studies and dropout

The predictive value of the GPA, the enrolment age, the admission group affiliation, and the gender for dropout and the prolongation of studies were examined by binary logistic regression (see table 1). By this analysis, the probability of prolonging the pre-clinical studies is significantly influenced by the GPA (odds ratio, OR=2.639) and the risk of dropping out during the pre-clinical part of the course is significantly influenced by the enrolment age (OR=0.854). The admission group affiliation significantly influences both the risk for dropout (OR=1.504) and the prolongation of studies (OR=1.472) in the pre-clinical part of the course as well as the prolongation of studies in the clinical part of the course (OR=0.874). Neither prolongation nor dropout appeared to be associated with gender differences (see table 1).

For a more differentiated analysis, the influences of GPA and enrolment age on academic performance and continuity in the pre-clinical part of the course were separately examined. To this end, the primary local admission and the GPA-best groups as well as the secondary local admission and delayed admission groups were pooled (see table 2). The GPA strongly influenced the probability of the prolongation of studies in both pooled groups (OR=3.280) but had no significant influence on dropout. In contrast, the enrolment age had moderate but significant influence on both criteria in the pooled primary local admission + GPA-best group. In the pooled secondary local admission + delayed admission group, enrolment age significantly influenced the probability of dropping out but not the probability of prolonging the studies (see table 2).

To control the results of the logistic regression, the GPAs and the enrolment age of the students who passed the M1 examination in the prescribed time or with delay or who dropped out prior to the M1 examination were examined in the two pooled groups (see figure 5). The GPAs of the students who prolonged the studies were significantly worse than the GPAs of the students who passed the M1 examination in the prescribed time, whereas the GPAs of the students who dropped out were only slightly but insignificantly worse than the GPAs of the latter group. Conversely, the students who prolonged their studies were only slightly older, the students who dropped out were considerably older at enrolment than the students who passed the M1 examination in the prescribed time. These findings conform to the results of the logistic regression although positive but insignificant odds ratios partly corresponded to marginally significant differences in figure 5.
Figure 4: Studies continuity of the different admission groups. Continuity was assessed at the following end-points: passing the first part of the Medical Licensing Examination (M1), the completion of all prescribed courses (all credits) and the beginning of the clerkship year. A. Percentage of the enrolled students (starters) of the different admission groups who reached the given end-points during the investigation. B. Percentage of the starters who reached the given end-points in the prescribed (regular) time. C. Percentage of the starters, who prolonged their studies or dropped out prematurely. The significance of the differences was tested by χ^2-test for binomial proportions. Abbreviations: (All) all students over the complete course; (1°, 2°) primary and secondary local admission groups; (*** $p \leq 0.001$; (**) $p \leq 0.01$; (*) $p \leq 0.05$; ((ns)) $0.05 < p \leq 0.10$; (ns) not significant.

Reasons for the prolongation of studies and dropout

The early withdrawal from the course of 19 out of 43 students of the delayed admission group who dropped out was associated with academic difficulties. Similarly, 19 of the 38 students of the delayed admission group who took longer to complete the pre-clinical part of the course prolonged their studies due to academic difficulties (see figures 6A, 6B). Academic weakness was also the cause for the dropout and prolongation of studies of 15 out of 38 students of the secondary local admission group, 12 out of 69 students of the primary local admission group, and two out of 24 students of the GPA-best group, who quit or prolonged the studies in the pre-clinical part of the course (see figures 6A, 6B). Health problems were documented as the reason for prolongation or dropout of nine students. For the majority of the dropouts no reasons have been documented in the data bank of the faculty. Most of them left the course already in its first year, 25 of them already by the middle of the first semester. The rest dropped out at the end of the second year (see figure 6C). The majority of the students who entered the clinical part of the course with delay had passed the pre-clinical internal examina-
Table 1: Logistic regression of the relationship between dropout or prolongation of studies and school-leaving grade, enrolment age, admission group affiliation, and gender.

Predictor	Criterion	Phase	B	SE	p	OR
School-leaving GPA	Dropout	M1	-0.314	0.212	0.138 (ns)	0.730
	Prolongation	M1	0.971	0.211	4.1×10^{-5}	2.639
	All credits		0.058	0.177	0.743 (ns)	1.060
	Clerkship		-0.009	0.175	0.957 (ns)	0.991
Enrolment age	Dropout	M1	-0.158	0.037	2.4×10^{-5}	0.854
	Prolongation	M1	0.062	0.045	0.067 (ns)	1.068
	All credits		-0.035	0.039	0.358 (ns)	0.965
	Clerkship		-0.044	0.038	0.245 (ns)	0.957
Admission group affiliation	Dropout	M1	0.408	0.086	2.3×10^{-5}	1.504
	Prolongation	M1	0.387	0.062	2.4×10^{-5}	1.472
	All credits		-0.135	0.068	0.046	0.974
	Clerkship		-0.126	0.068	0.060 (ns)	0.980
Gender	Dropout	M1	-0.056	0.214	0.792 (ns)	0.945
	Prolongation	M1	0.248	0.234	0.290 (ns)	1.281
	All credits		-0.097	0.167	0.562 (ns)	0.908
	Clerkship		-0.041	0.168	0.807 (ns)	0.960

Odds ratios were calculated against ‘regular continuity’. Abbreviations: (M1) M1 examination; (B) regression coefficient; (SE) standard error of B; (p) significance of B; (OR) odds ratio.

Table 2: Logistic regression of the relationship between dropout or prolongation of studies and school-leaving GPA and enrolment age in the pooled admission groups, primary (1°) local admission + GPA-best and secondary (2°) local admission + delayed admission in the pre-clinical part of the course.

Group	Predictor	Criterion	B	SE	p	OR
1° local + GPA-best	GPA	Dropout	0.369	0.518	0.476	1.446
		Prolongation	1.223	0.460	0.008	3.399
Age	Dropout	0.229	0.067	0.001	1.257	
	Prolongation	0.130	0.067	0.050	1.139	
2° local + delayed	GPA	Dropout	0.226	0.318	0.477	1.254
		Prolongation	1.188	0.348	0.001	3.280
Age	Dropout	0.120	0.043	0.005	1.127	
	Prolongation	0.059	0.064	0.359	1.061	

Odds ratios were calculated against ‘regular continuity’ up to the M1 examination. Abbreviations: (B) regression coefficient; (SE) standard error of B; (p) significance of B; (OR) odds ratio.

The three investigated cohorts included 14 students who had a previous academic degree and had been admitted as “second degree students”. Six students of this group dropped out in the pre-clinical and one dropped out in the clinical part of the course. Another three students prolonged their studies. The students of this group who adhered to the course have achieved on average the grades 2.7 and 2.0 in the pre-clinical and clinical parts of the course, respectively.

Twenty-three students had been admitted due to a court verdict. Seven (30%) of these students dropped out – five of them due to academic difficulties in the pre-clinical part of the course or three times failing the M1 examination. Eight (35%) of these students prolonged their studies – three due to academic difficulties, two due to delayed passing of the M1 examination, and two due to prolonged work on their doctoral thesis. The students of this group who adhered to the course achieved on average the grades 3.1 and 2.1 in the pre-clinical and clinical parts of the course, respectively.

Discussion

The present data suggest that...
• the academic performance of the cohorts in question is directly associated with the school-leaving GPA, whereas adherence to the course is rather associated with the age at enrolment;
• the prognosis of the secondary local admission group for academic performance and continuity is similar to that of the delayed admission group; the prognosis of both groups is worse than that of the primary local admission group and the GPA-best group;
• the academic performance in the clinical part of the course is generally better than the academic performance in the pre-clinical part of the course;
• considering the high variability in the academic performance of students sharing the same GPA, additional admission instruments are required in order to facilitate better identification of potentially competent applicants.

GPA and age as predictors of successful studies

The 20:20:60 regulation (GPA-best:delayed admission:local admission) determines that the school-leaving grade is the single applied predictor for studies progression for 40% of the medical students and the major predictor for 60% of the students. For this reason the present study focussed on the predictive value of the school-leaving grade and the progress of students from the different admission groups during undergraduate training. The findings agree with previous reports and show that also in the reformed curriculum the school-leaving grade is a meaningful predictor for academic performance and older
students perform less well than young ones. By examination of the three cohorts this general observation could be further differentiated: The school-leaving grade appears to have significant prognostic importance for the prospective assessment of academic performance and the prolongation of studies in the pre-clinical part of training but not for dropout or overall time taken to complete the course. The dropout risk is associated with the age at the beginning of training, which in contrast to the GPA neither significantly predicts the probability of prolonging the training nor the level of academic performance. Hence, in the context of the German admission regulations, the weaker academic performance of the older students is probably related to their inferior GPAs rather than to their age.

Delayed admission and enrolment age

The students of the delayed admission group usually acquire a profession prior to their admission to medical school and have professional experience – often in the healthcare system. Many medical schools give applicants in the selection process bonus merit points for accomplished vocational training and experience in healthcare. To our knowledge, the advantage of previous professional experience for medical studies has not been systematically investigated. It is, however, plausible that previous experience in healthcare would be beneficial to doctors who pursue a medical career in a field they are also familiar with from a different perspective than that of the physician.

Some of the students of the delayed admission group have reached quite high levels of academic performance and consistently completed each part of the course in the prescribed time. It would be advantageous to recognise such potential students directly after leaving school.

In general, both on account of the school-leaving grade and due to age the prognosis of the delayed admission group is less favourable than that of the other admission groups.

The high dropout rate (20%) of the delayed admission group as observed in the present study was similar to that reported from Hamburg [17]. It was statistically more strongly associated with age and the admission group affiliation than with the school-leaving grade, although almost half of the dropouts of this admission group left the course in connection with poor academic performance. It is possible that their weak academic performance was related to age-dependent life circumstances rather than to earlier performance at school. In a comprehensive analysis of the reasons for dropping out from tertiary education Heublein and his co-workers [18], [19] have
shown that delayed enrolment is a major risk factor for success and continuity in the medical course. The risk is especially high when socioeconomic factors and familial circumstances make it necessary to earn money at the expense of study time. Moreover, having alternative professional qualifications may facilitate professional re-orientation (ibid.).

The prolongation of the pre-clinical studies was associated with the admission group affiliation but contrary to dropout it was more strongly related to the school-leaving grade than to the age. The proportion of the students of the delayed admission group who prolonged their studies already at this early stage was distinctly higher than in the GPA-best group and the primary local admission group, and half of them prolonged their studies in connection with insufficient academic performance. It appears likely that poor academic performance of students of the delayed admission group has different causes. On the one hand it is presumably affected by age-related factors such as financial self-support and on the other hand it may be associated with their level of cognitive competence. Should these assumptions be confirmed in the future, it would be reasonable to employ selective measures also for this group while in addition to support potentially competent, delayed-admission students whose academic success would otherwise be limited by their life situation.

All of the students of the delayed admission group who had reached the clinical part of the undergraduate training continued and reached without exception the final clerkship year. The tendency to prolong the studies changed: a considerably smaller proportion of the delayed admission group took longer than prescribed to complete the clinical part of the course than the respective proportion of the GPA-best group and the primary local admission group. The most frequent reasons for prolonging this part of the course were terms abroad, extended doctoral theses and visiting additional optional courses. It can be assumed that older students are inclined to refrain from such “extras” in order to finish the studies as early as possible.

Secondary local admission

The progress of students of the secondary local admission group during undergraduate training resembled that of the delayed admission group with respect to all of the examined parameters – academic performance, prolongation of studies and dropout rate. Similar too was the frequent association of prolongation and dropout during the pre-clinical part of the training with academic difficulties.

The secondary local admission group includes students who failed to be admitted to any other university in the primary admission process, but by law had to be admitted to fill in unoccupied admission slots. Their enrolment age and school-leaving grades are between those of the GPA-best/primary local admission groups and those of the delayed admission group. Whether the differences in age and GPA between the secondary and primary local admission groups suffice to explain the inferior performance and continuity of the secondary local admission group remains a matter for further investigations. It is possible that motivational factors are involved in addition to the cognitive and age-related factors. The data indicate that the secondary local admission procedure reduces the general level of performance of the respective cohort and increases the number of dropouts. In contrast to the delayed admission procedure, the secondary local admission procedure is not legally obligatory. It can be avoided, for example, by limiting the number of university choices in the applications and correctly estimating the number of surplus offers (“overbooking”) in the primary local admission process to account for declined offers. These measures are at the discretion of the university.

Primary local admission vs. GPA-best admission

The students of the primary local admission group had been selected by their school-leaving grades and to a small extent also by bonus criteria. Their average academic performance was slightly lower than that of the GPA-best group. The difference can be explained solely by the difference between the average school-leaving grades of the two groups. By contrast, the primary local admission group has shown somewhat better continuity than the GPA-best group. A possible explanation for this is that some of the students with the best GPA, 1.0, are still uncertain about their preferred choice of academic course at the time of their first enrolment. However, in light of the small number of these cases this interpretation awaits clarification by future research.

Second course of studies and admission by lawsuit

The analysis of the academic performance and the continuity of the students who study medicine after graduating from a previous course of tertiary education and of students who acquired their study place by legally suing the university are limited by the small number of cases. However, it reveals a trend that should be looked at more closely in the future. There were successful students in both groups. Yet, in general the academic performance and continuity of both these groups were at best on a similar level as seen in the delayed admission group. Their relatively weak performance, high dropout rates and frequent prolongation of their pre-clinical studies may indicate that their ability to meet the demands of the course is inferior even to that of the delayed admission group.

Clinical vs. pre-clinical part of undergraduate training

The academic performance of all four admission groups was generally better in the clinical part of undergraduate
training than in the preceding pre-clinical part. The maximal increase was achieved by the delayed admission group and the secondary local admission group, although their level of performance still remained below the level of the students with the best school-leaving grades. Several factors may have contributed to this increase in academic performance including the withdrawal of the weaker students prior to the M1 examination. Previous reports have established that the relationship between academic performance and school-leaving grades is weaker in the clinical part of training than in the pre-clinical part [9, [20]. The factors that may contribute to this increase in academic performance include the closer orientation of the clinical curriculum to the professional life in health-care [21] and the satisfaction of the students with the reformed curriculum of the clinical part of the course [22], [23], [24]. Student evaluations suggest that interest and active participation in the course are dominant factors that contribute to subjective knowledge acquisition in the reformed curriculum [25].

Conclusion

The prognostic success of the differential student admission procedure that is primarily based on school-leaving grades, to which substantial predictive importance is attached by the current German law, is limited by several factors:

1. The school-leaving grade explains less than 30% of the variance of academic performance, so that the variation of examination grades of students sharing the same GPA is large. Consequently, it would be beneficial to admit potentially successful candidates with a wide spectrum of school-leaving grades at the expense of applicants having top school-leaving grades but low potential for academic aptitude. This aim can be reached by employment of additional admission instruments that are independent of the school-leaving grade.

2. The delayed admission by waiting time and renunciation of merit-assessing predictors is problematic. Yet, rejecting potentially able students with life and work experience but mediocre school-leaving grades would also be counter-productive. Thus, it would seem advisable to apply suitable selection instruments also to the delayed admission.

3. The secondary admission is similar to the delayed admission with respect to the prognosis of academic performance and continuity. It should be avoided when possible.

Acknowledgement

The authors wish to thank Anna Kirchner, Dagmar Schweinfurth, Alexandra Keinert, Martina Damaschke, and Dr. Ariunaa Batsonkhan for their excellent technical support. The authors are also indebted to Anna Kirchner for her patient advice concerning student admission procedures.

Competing interests

The authors declare that they have no competing interests.

References

1. Ferguson E, James D, Madeley L. Factors associated with success in medical school: systematic review of the literature. BMJ. 2002;324:952-957. DOI: 10.1136/bmj.324.7343.952
2. Hampe W, Hissbach J, Kadmon M, Kadmon G, Kiusmann D, Scheutz P. Wer wird ein guter Arzt? Verfahren zur Auswahl von Studierenden der Human- und Zahnmedizin. Bundesgesundheitsbl. 2009;52:821-830. DOI: 10.1007/s00103-009-0905-6
3. Edwards T. Medical schools in Australia. Medical Schools & Nursing Colleges Worldwide. Stanmore, Middlesex: Thames Digital Media; 2003. Zugänglich unter/available from: http://www.medical-colleges.net/medical.htm (Link geprüft 8. Dezember 2011)
4. Arulampalam W, Naylor RA, Smith J. Doctor who? Who gets admission offers in UK medical schools. Forschungsinstitut zur Zukunft der Arbeit – Institute for the Study of Labor. IZA DP 1775. Bonn: Institut für the Study of Labor, 2005.
5. McManus C, Woolf K, Dacre JE. Even one star at A level could be "too little, too late" for medical student selection. BMC Med Ed. 2008;8:16. DOI: 10.1186/1472-6920-8-16
6. Löfgren K. Validation of the Swedish university entrance system. Selected results from the VALUTA-project 2001-2004. EM no. 53. Umeå: Umeå University, Department of Educational Measurement; 2005.
7. Halpern N, Bentov-Gofrit D, Matot I, Abramowitz MZ. The effect of integration of non-cognitive parameters on medical students’ characteristics and their intended career choices. Israel Med Assoc J. 2011;13(8):488-493.
8. Gold A, Souvignier E. Prognose der Studierfähigkeit. Ergebnisse aus Längsschnittanalysen. Z Entwicklungspsychol Pädagog Psychol. 2005;37(4):214-222. DOI: 10.1026/0049-8637.37.4.214
9. Trapmann, S, Hell B, Weigand S, Schulter H. Die Validität von Schulnoten zur Vorhersage des Studienerfolgs – eine Metaanalyse. Z Pädagog Psychol. 2007;21(1):11-27. DOI: 10.1024/1010-0652.21.1.11
10. Salvatori P. Reliability and validity of admission tools used to select students for the health professions. Adv Health Sci Educ. 2001;6(2):159-175. DOI: 10.1023/A:1011489618208
11. Wilkinson D, Zhang J, Byrne GJ, Luke H, Ozolins IZ, Parker MH, Peterson RF. Medical school selection criteria and the prediction of academic performance. Evidence leading to change in policy and practice at the university of Queensland. Med J Austral. 2008;188(6):349-354.
12. Roth PL, BeVier CA, Switzer FS III, Schippmann JS. Meta-analysing the relationship between grades and job performance. J Appl Psychol. 1996;81(5):548-556. DOI: 10.1037/0021-9010.81.5.548
13. Trost G, Blum F, Fay E, Kliehe E, Maichle U, Meyer M, Nauels HU. Evaluation des Tests für medizinische Studiengänge (TMS): Synopse der Ergebnisse. Bonn: Institut für Test- und Begabungsforschung; 1998.
14. Hell B, Trapmann S, Schuler H. Eine Metaanalyse der Validität von fachspezifischen Studierfähigkeitstests im deutschsprachigen Raum. Empir Pädagog. 2007;21(3):251-270.

15. Nikendei C, Weyrich P, Jünger J, Schrauth M. Medical education in Germany. Med Teach. 2009;31(7):591-600. DOI: 10.1080/01421590902833010

16. Ferguson E, Sanders A, O’Hehir F, James D. Predictive validity of personal statement and the role of the five factor model of personality in relation to medical training. J Occ Org Psychol. 2000;73:321-344. DOI: 10.1348/096317900167056

17. Hampe W, Hissbach J. Kein Ersatz für die Abiturnote. Dtsch Ärztebl. 2010;107(26):A1298-1299.

18. Heublein U, Hutzsch C, Schreiber J, Sommer D, Besuch G. Ursachen des Studienabbruchs in Bachelor- und in herkömmlichen Studiengängen. Ergebnisse einer bundesweiten Befragung von Exmatrikulierten des Studienjahres 2007/08. Hannover: HIS Hochschul-Informationssystem GmbH; 2010. Zugänglich unter/available from: http://www.his.de/pdf/pub_fn/3h-201002.pdf (verifiziert 31. Jan 2014).

19. Heublein U, Spangenberg H, Sommer D. Ursachen des Studienabbruchs. Analyse 2002. Hannover: HIS Hochschul-Informationssystem; 2003. Band 163. Zugänglich unter/available from: http://www.bmbf.de/pub/ursachen_des_studienabbruchs.pdf (verifiziert 31. Jan 2014).

20. Reede JY. Predictors of success in medicine. Clin Orthop Rel Research. 1999;362:72-77. DOI: 10.1097/00003086-199905000-00012

21. Mäkinen J, Oikinoua E, Lonka K. Students at risk: Students’ general study orientations and abandoning/prolonging the course of studies. High Educ. 2004;48:173-188. DOI: 10.1023/B:HIGH.0000034312.79289.ab

22. Lieberman SA, Ainsworth MA, Asimakis GK, Thomas L, Cain LD, Mancuso MQ, Rabek JP, Zhang N, Frye AW. Effects of comprehensive educational reforms on academic success in a diverse student body. Med Educ. 2010;44(12):1232-1240. DOI: 10.1111/j.1365-2923.2010.03770.x

23. Van der Veken J, Valcke M, De Maeseneer J, Derese A. Impact of the transition from a conventional to an integrated contextual medical curriculum on students’ learning patterns: A longitudinal study. Med Teach. 2009;31(5):433-441. DOI: 10.1080/01421590802141159

24. Kadmon G, Schmidt J, De Cono N, Büchler MW, Kadmon M. A model for persistent improvement of medical education as illustrated by the surgical reform curriculum HeiCuMed. GMS Z Med Ausb. 2011;28(2):Doc29. DOI: 10.3205/zma000741

25. Kadmon G, Schmidt J, De Cono N, Kadmon M. Integratives versus traditionelles Lernen aus Sicht der Studierenden. GMS Z Med Ausb. 2011;28(2):Doc28. DOI: 10.3205/zma000740

Corresponding author:
Dr. Guni Kadmon
Heidelberg University, Heidelberg Medical Faculty, HeiCuMed Surgery, Im Neuenheimer Feld, 155, 69120 Heidelberg, Germany, Phone: +49 (0)6221/56-6716, Fax: +49 (0)6221/56-7207, guni.kadmon@med.uni-heidelberg.de

Please cite as:
Kadmon G, Resch F, Duelli R, Kadmon M. Der Vorhersagewert der Abiturdurchschnittsnote und die Prognose der unterschiedlichen Zulassungsquoten für Studienleistung und -kontinuität im Studiengang Humanmedizin – eine Längsschnittanalyse. GMS Z Med Ausbild. 2014;31(2):Doc21. DOI: 10.3205/zma000913, URN: urn:nbn:de:0183-zma000913

This article is freely available from http://www.egms.de/en/journals/zma/2014-31/zma000913.shtml

Received: 2011-11-21
Revised: 2014-03-01
Accepted: 2014-04-02
Published: 2014-05-15

Copyright ©2014 Kadmon et al. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by-nc-nd/3.0/deed.en). You are free: to Share — to copy, distribute and transmit the work, provided the original author and source are credited.