RATE OF GROWTH OF DISTRIBUTIONALLY CHAOTIC FUNCTIONS

Clifford Gilmore, Félix Martínez-Giménez and Alfred Peris *

Abstract. We investigate the permissible growth rates of functions that are distributionally chaotic with respect to differentiation operators. We improve on the known growth estimates for D-distributionally chaotic entire functions, where growth is in terms of average L^p-norms on spheres of radius $r > 0$ as $r \to \infty$, for $1 \leq p \leq \infty$. We compute growth estimates of $\partial / \partial x_k$-distributionally chaotic harmonic functions in terms of the average L^2-norm on spheres of radius $r > 0$ as $r \to \infty$. We also calculate sup-norm growth estimates of distributionally chaotic harmonic functions in the case of the partial differentiation operators D^α.

Mathematics subject classification (2020): 30D15, 47A16, 31B05, 47B38.

Keywords and phrases: Distributional chaos, distributionally irregular vectors, growth rates, entire functions, harmonic functions, differentiation operator, partial differentiation operators.

REFERENCES

[1] A. A. Albarese, X. Barrachina, E. M. Mangino, and A. Peris, Distributional chaos for strongly continuous semigroups of operators, Commun. Pure Appl. Anal. 12, 5 (2013), 2069–2082.
[2] M. P. Aldred and D. H. Armitage, Harmonic analogues of G. R. MacLane’s universal functions, J. London Math. Soc. (2) 57, 1 (1998), 148–156.
[3] M. P. Aldred and D. H. Armitage, Harmonic analogues of G. R. Mac Lane’s universal functions. II, J. Math. Anal. Appl. 220, 1 (1998), 382–395.
[4] D. H. Armitage and S. J. Gardiner, Classical potential theory, Springer Monographs in Mathematics, Springer-Verlag, London, 2001.
[5] S. Axler, P. Bourdon, and W. Ramey, Harmonic function theory, second edition, volume 137 of Graduate Texts in Mathematics, Springer-Verlag, New York, 2001.

[6] F. Bayart and S. Grivaux, Frequently hypercyclic operators, Trans. Amer. Math. Soc. 358, 11 (2006), 5083–5117.
[7] F. Bayart and É. Mathéron, Dynamics of linear operators, volume 179 of Cambridge Tracts in Mathematics, Cambridge University Press, Cambridge, 2009.
[8] F. Bayart and I. Z. Ruzsa, Difference sets and frequently hypercyclic weighted shifts, Ergodic Theory Dynam. Systems 35, 3 (2015), 691–709.
[9] B. Beauzamy, Introduction to operator theory and invariant subspaces, volume 42 of North-Holland Mathematical Library, North-Holland Publishing Co., Amsterdam, 1988.
[10] T. Bermúdez, A. Bonilla, F. Martínez-Giménez, and A. Peris, Li-Yorke and distributionally chaotic operators, J. Math. Anal. Appl. 373, 1 (2011), 83–93.
[11] L. Bernal-González and A. Bonilla, Order of growth of distributionally irregular entire functions for the differentiation operator, Complex Var. Elliptic Equ. 61, 8 (2016), 1176–1186.
[12] N. C. Bernardes, A. Bonilla, and A. Peris, Mean Li-Yorke chaos in Banach spaces, J. Funct. Anal. 278, 3 (2020), 108343, 31.
[13] N. C. Bernardes, Jr., A. Bonilla, V. Müller, and A. Peris, Distributional chaos for linear operators, J. Funct. Anal. 265, 9 (2013), 2143–2163.
[14] N. C. Bernardes, Jr., A. Bonilla, V. Müller, and A. Peris, Li-Yorke chaos in linear dynamics, Ergodic Theory Dynam. Systems 35, 6 (2015), 1723–1745.
[15] N. C. Bernardes, Jr., A. Bonilla, A. Peris, and X. Wu, Distributional chaos for operators on Banach spaces, J. Math. Anal. Appl. 459, 2 (2018), 797–821.
[16] O. Blasco, A. Bonilla, and K.-G. Grosse-Erdmann, Rate of growth of frequently hypercyclic functions, Proc. Edinb. Math. Soc. (2) 53, 1 (2010), 39–59.

[17] J. Bonet and A. Bonilla, Chaos of the differentiation operator on weighted Banach spaces of entire functions, Complex Anal. Oper. Theory 7, 1 (2013), 33–42.

[18] J. A. Conejero, M. Kostić, P. J. Miana, and M. Murillo-Arcila, Distributionally chaotic families of operators on Fréchet spaces, Commun. Pure Appl. Anal. 15, 5 (2016), 1915–1939.

[19] D. Drasin and E. Saksman, Optimal growth of entire functions frequently hypercyclic for the differentiation operator, J. Funct. Anal. 263, 11 (2012), 3674–3688.

[20] S. M. Duños-Ruis, Universal functions and the structure of the space of entire functions, Dokl. Akad. Nauk SSSR 279, 4 (1984), 792–795.

[21] C. Gilmore, Linear dynamical systems, Irish Math. Soc. Bull. 86, 1 (2020), 47–77.

[22] C. Gilmore, E. Saksman, and H.-O. Tylli, Optimal growth of harmonic functions frequently hypercyclic for the partial differentiation operator, Proc. Roy. Soc. Edinburgh Sect. A 149, 6 (2019), 1577–1594.

[23] K.-G. Grosse-Erdmann, On the universal functions of G. R. MacLane, Complex Variables Theory Appl. 15, 3 (1990), 193–196.

[24] K.-G. Grosse-Erdmann and A. Peris Manguilhot, Linear chaos, Universitext, Springer, London, 2011.

[25] Y. Katznelson, An introduction to harmonic analysis, second edition, Dover Publications, New York, 1976.

[26] Ü. Kuran, On Brelot-Choquet axial polynomials, J. London Math. Soc. (2) 4, 1 (1971), 15–26.

[27] T. Y. Li and J. A. Yorke, Period three implies chaos, Amer. Math. Monthly 82, 10 (1975), 985–992.

[28] G. R. MacLane, Sequences of derivatives and normal families, J. Analyse Math. 2, 1 (1952), 72–87.

[29] F. Martínez-Giménez, P. Oprocha, and A. Peris, Distributional chaos for backward shifts, J. Math. Anal. Appl. 351, 2 (2009), 607–615.

[30] F. Martínez-Giménez, P. Oprocha, and A. Peris, Distributional chaos for operators with full scrambled sets, Math. Z. 274, 1–2 (2013), 603–612.

[31] M. Nikula, Frequent hypercyclicity of random entire functions for the differentiation operator, Complex Anal. Oper. Theory 8, 7 (2014), 1455–1474.

[32] B. Schweizer and J. Smítal, Measures of chaos and a spectral decomposition of dynamical systems on the interval, Trans. Amer. Math. Soc. 344, 2 (1994), 737–754.

[33] S. A. Shkarin, On the growth of D-universal functions, Moscow Univ. Math. Bull. 48, 6 (1993), 49–51.

[34] X. Wu and G. Chen, Scrambled sets of shift operators, J. Nonlinear Sci. Appl. 9, 5 (2016), 2631–2637.

[35] X. Wu, L. Wang, and G. Chen, Weighted backward shift operators with invariant distributionally scrambled subsets, Ann. Funct. Anal. 8, 2 (2017), 199–210.

[36] X. Wu and P. Zhu, Dense chaos and densely chaotic operators, Tsukuba J. Math. 36, 2 (2012), 367–375.

[37] Z. Yin and Q. Yang, Distributionally n-chaotic dynamics for linear operators, Rev. Mat. Complut. 31, 1 (2018), 111–129.