Effects of the Great East Japan Earthquake and the Fukushima Daiichi Nuclear Power Plant accident on behavioural and psychological symptoms of dementia among patients

Akemi MIYAGAWA,1,2,3,4 Yasuto KUNII,5,6 Daisuke GOTOH,5 Hiroshi HOSHINO,5 Takeyasu KAKAMU,7 Tomoo HIDAKA,7 Tetsuo KUMAKURA,2 Tetsuhito FUKUSHIMA,7 Hirooki YABE5 and Shinobu KAWAKATSU1

1Department of Neuropsychiatry, Aizu Medical Centre, Fukushima Medical University, Aizuwakamatsu, 2Hibarigaoka Hospital, Minamisoma, 3Futaba Medical Centre, Futaba, Department of 4Disaster and Comprehensive Medicine, 5Neuropsychiatry, School of Medicine and 7Hygiene and Preventive Medicine, School of Medicine, Fukushima Medical University, Fukushima and 6Department of Disaster Psychiatry, International Research Institute of Disaster Science, Tohoku University, Sendai, Japan

*Correspondence: Dr Akemi Miyagawa, MD, Department of Neuropsychiatry, Aizu Medical Centre, Fukushima Medical University, 21-2 Kawahigashi, Aizuwakamatsu 969-3492, Japan. Email: a-miya@fmu.ac.jp

Disclosure: The authors have no potential conflicts of interest to disclose.

This manuscript is submitted for consideration for publication in the field of BPSD and Non-pharmacological Therapy.

Received 18 February 2021; revision received 30 April 2021; accepted 18 May 2021.

Key words: behavioural and psychological symptoms of dementia, complex disasters, Fukushima Daiichi Nuclear Power Plant accident, Great East Japan Earthquake, radioactive contamination.

Abstract

Background: The Great East Japan Earthquake triggered accidents at the Fukushima Daiichi Nuclear Power Plant, becoming the first complex disaster that included both a natural and a nuclear power disaster. This study examines how complex disasters affect patients with dementia.

Methods: Participants included the 331 people diagnosed with dementia out of the 2482 new patients (between January 2008 and December 2015) at a psychiatric hospital located in the indoor sheltering zones nearby mandatory evacuation zones. Medical records were retrospectively examined to identify the number of new patients with dementia, the severity, their chief complaints, and the behavioural and psychological symptoms of dementia (BPSD) types. BPSD were classified into the hyperactive BPSD group and the hypoactive BPSD group. The hyperactive BPSD group was further subdivided into the hyperactivity-impulsivity-irritability-disinhibition-aggression-agitation group, which exhibited agitation, disinhibition, and irritability, and the psychosis group, which exhibited delusions and hallucinations. The hypoactive BPSD group included depression, inactivity, apathy, and anxiety. Results were divided into the period before the complex disaster (2008–2010) and after (2012–2015) and were compared. In addition, the post-complex-disaster period was subdivided into the early phase (2012–2013) and the late phase (2014–2015).

Results: The proportion of new patients with dementia increased significantly after the disaster. Although there was no change in patients’ age and the disease’s severity, the proportion of patients whose chief complaint was BPSD increased significantly after the disaster. Furthermore, there was a significant increase in the hyperactivity-impulsivity-irritability-disinhibition-aggression-agitation group in the early post-complex-disaster phase and a significant increase in the psychosis group in the late post-complex-disaster phase.

Conclusion: This complex disaster caused increased consultations from patients with dementia and increased BPSD. Additionally, it increased participants’ symptoms of agitation and irritability in the early post-complex-disaster phase and the proportion of hallucinations and delusions in the late post-complex-disaster phase.
INTRODUCTION
Following the earthquake and tsunami from the Great East Japan Earthquake (GEJE, 2011), an explosion occurred at the Fukushima Daiichi Nuclear Power Plant (FDNPP), making this the first complex disaster in history which included natural and nuclear power disasters. To avoid radiation exposure, residents within a 20 km radius of the FDNPP received mandatory evacuation orders, and those within a 20–30 km radius were ordered to shelter indoors (Fig. 1).

Exposure to serious disasters causes post-traumatic stress disorder and other mental illnesses, and exposure to radioactive contamination, in particular, has a lasting effect on residents’ mental health. A study of the general population of Ichinoseki City, approximately 168 km from the FDNPP, found that the psychological distress of those who experienced both the earthquake and radioactive contamination may have been greater than those who lived through a single disaster.

Several studies have found that disasters like earthquakes and complex disasters comprising earthquakes and tsunamis have a negative effect on the conditions of patients with dementia; however, no prior studies have explored the effects of complex disasters involving radioactive contamination on patients with dementia. Thus, we investigated the number of consultations of patients with dementia and types of behavioural and psychological symptoms of dementia (BPSD) at a psychiatric hospital near the FDNPP before and after the complex disaster involving radioactive contamination.

METHODS
Participants
The researchers reviewed the records of 2482 patients who visited the Department of Psychiatry at Hibarigaoka Hospital (Fig. 1) for the first time between January 2008 and December 2015. Hibarigaoka Hospital is located 25 km from the FDNPP, and it provided medical services before and after the complex disaster. Of these 2482 patients, the medical records of 331 patients whose primary diagnosis was dementia were included in the study and retrospectively examined. Since there were only a small number of new patients in 2011, the year the complex disaster occurred, that year was eliminated from the study.

Groups and comparisons
The participants were divided into the group before the complex disaster (January 2008–December 2010)
RESULTs

Table 1 shows the participants’ background and chief complaints classification. No significant difference was found concerning gender, age, or living situation of patients with dementia before and after the complex disaster. There was also no significant difference in the type or severity of dementia before and after the complex disaster. The number of patients whose chief complaint was BPSD increased significantly \(P < 0.001 \) after the complex disaster (79.6%) compared to before the complex disaster (60.4%).

Regarding BPSD types, most were in the HIDA groups both before and after the complex disaster, and no significant difference was found before and after the complex disaster \((P = 0.093) \) (Table 1). However, there was a significant increase in the HIDA group during the early post-complex-disaster phase \((P = 0.013) \) (Table 2). Then, in the late post-complex-disaster phase, the levels returned to those seen before the complex disaster. The psychosis group increased significantly after the complex disaster \((P = 0.034) \) (Table 1). However, no significant increase was found in the early post-complex-disaster phase \((P = 0.198) \) (Table 2), while a significant increase was found in the late post-complex-disaster phase \((P = 0.018) \) (Table 3).

Table 4 shows how the content of hallucinations and delusions before the complex disaster and in the late post-complex-disaster phase. Theft delusions were the most frequent in the late post-complex-disaster phase. The numbers of psychiatric symptoms were too small for performing statistical comparisons.
In this study, there was a significant increase in the proportion of patients with dementia among all new patients after the complex disaster. There was a link between the chronic continuation of psychological symptoms of dementia and the development of new cases of dementia.

Table 1 Participants’ background and results

	Before the complex disaster (2008–2010)	After the complex disaster (2012–2015)	P-value
	N = 96	N = 235	
Age, years, mean ± SD	81.8 ± 5.73	82.8 ± 6.80	0.186
Females, n (%)	67 (69.8)	141 (60)	0.094†
Functional assessment staging (FAST), mean ± SD	5.07 ± 1.08	5.02 ± 1.14	0.680†
Living situation, n (%)			0.794†
Single	10 (10.4)	31 (13.2)	
With one’s spouse or brother or sister	19 (19.8)	44 (18.7)	
With one’s spouse and child	58 (60.4)	130 (55.3)	
Nursing home	8 (8.3)	28 (11.9)	
Unknown	1 (1.0)	2 (0.9)	
Dementia diagnosis, n (%)			0.299†
Alzheimer’s disease	79 (82.3)	180 (76.6)	
Vascular dementia	11 (11.5)	27 (11.5)	
Other (DLB, FTD)	6 (6.2)	28 (11.9)	
Chief complaint, n (%)			P < 0.001†
Core symptoms of dementia	38 (39.6)	48 (20.4)	
BPDS	58 (60.4)	187 (79.6)	
BPSD type, n (%)			0.034†
HIDA	45 (46.9)	134 (57.0)	
Psychosis	8 (8.3)	41 (17.4)	
Hypoactive behaviour	5 (5.2)	12 (5.1)	0.580†

1 Independent t-test. 2 Chi-square test. 3 Fisher’s exact test. N: total number of new patients with dementia during each period. The % shows the ratio of the frequency of each factor to the total number of new patients with dementia in each period. BPDS, behavioural and psychological symptoms of dementia; DLB, dementia with Lewy bodies; FTD, frontotemporal dementia; HIDA, hyperactivity-impulsivity-irritability-disinhibition-agression-agitation. Psychosis: hallucination or delusion. Hypoactive behaviours: depression, inactivity, apathy, and anxiety.

Table 2 The contents of hallucinations and delusions before the complex disaster and in the late post-complex-disaster phase

	Before the complex disaster (2008–2010)	The late post-complex-disaster phase (2014–2015)	P-value
	N = 96	N = 144	
Hallucination, n (%)			
Visual	3 (3.1)	5 (3.5)	
Tactile	1 (1.0)	0	
Delusion, n (%)			
Theft	2 (2.0)	14 (9.7)	
Jealousy	0	5 (3.5)	
Other delusion of persecution	0	4 (2.8)	

Other delusions of persecutions: delusion of poverty, intrusion, observation, being killed. Abbreviations are the same as in Table 1.

DISCUSSION

Trends in consultations by patients with dementia before and after the complex disaster

In this study, there was a significant increase in the proportion of patients with dementia among all new patients after the complex disaster. There was a link between the chronic continuation of psychological symptoms of dementia and the development of new cases of dementia.
stress and dementia onset, and experiences such as changing residence and losses of homes and other assets were risk factors for dementia exacerbation. Residents of the study area, nearly 72,000 people at the time of the disaster, moved on average six times, and 20% moved at least seven times. Therefore, in addition to the damage and suffering caused by the earthquake and tsunami, the repeated need to move to seek refuge from radiation exposure may have increased psychological stress and contributed to the development of dementia or BPSD. In fact, it has been reported that patients with dementia forced to make frequent moves to different evacuation facilities began to show BPSD. Furukawa et al. have shown that among those who experienced both earthquakes and tsunamis, BPSD was significantly exacerbated among those who evacuated compared to those who did not. According to their report, there was no significant difference in cognitive function deterioration between the group that evacuated and the group that did not. However, participants in the present study were forced to move more times, which may have exacerbated dementia or BPSD and increased the number of new consultations. The working-age population decreased to 45%–69%, and the number of nursing care facilities in operation also decreased; thus, there were fewer opportunities for older adults to access the nursing care they needed. This possibly was an important factor in the increased number of patients with dementia consultations. The increase in the number of consultations was more conspicuous in the late post-complex-disaster phase than in the early post-complex-disaster phase; this can be attributed to the long-term reduction in access to appropriate care. This may also be related to the disaster’s specific features, which include long-term psychological effects from radioactive contamination.

BPSD frequency before and after the complex disaster

Among patients whose chief complaint was BPSD, both the HIDA and psychosis groups increased significantly after the complex disaster. Factors such as living environment and dementia severity may affect BPSD emergence, but in the present study, there was no change in the living situation and dementia severity before and after the complex disaster. This suggested there are other factors behind the BPSD increase. The mechanism by which disasters directly exacerbate BPSD is unknown, but since factors such as the breakdown in circadian rhythm, changes in the environment, and loss of habitual lifestyle are known to trigger BPSD, living in evacuation shelters may have increased BPSD. Furthermore, participants’ caregivers were also impacted by the complex disaster, which may have influenced participants. Caregivers’ mental health was not investigated in this study, but since people in Fukushima who experienced the complex disaster faced high levels of ongoing psychological distress, it is possible that caregivers’ mental health also declined. And this decline may have led to the deterioration of relationships between caregivers and patients, thus accelerating BPSD appearance. Furthermore, the reduced number of nursing care facilities also meant that a larger burden of nursing care was placed on caregivers, further contributing to the negative impact on their mental health, and in turn possibly contributing to increased BPSD among patients.

BPSD characteristics before and after the complex disaster

Comparing the early and late post-complex-disaster phases, we found there was an increase in the HIDA group in the early phase compared to before, but in the late phase, it returned to a similar level as before the complex disaster. In a study by Furukawa et al., soon after the earthquake, people who experienced the entire complex disaster (both the earthquake and the tsunami) showed a significant increase not in hyperactive BPSD but in BPSD such as depression and anxiety, compared to those who had not. We conducted our investigation by extracting the BPSD types that were most difficult for caregivers. Possibly, the bias caused by the influence of the BPSD type on the degree of caregiving burden affected the differences between our findings and those of Furukawa et al. Furthermore, complex disasters involving radioactive contamination may be characterised more by hyperactive BPSD than by BPSD such as depression and anxiety.

Regarding the psychosis group, compared to before the complex disaster, there was no increase in the early post-complex-disaster phase, but there was a significant increase in the late post-complex-
disaster phase. Interestingly, after the complex disaster, a greater diversity of delusions related to other people emerged, including delusions of being watched or intrusion in addition to theft. It is thought that most of the participants in this study experienced evacuation. Hence, factors such as difficulty maintaining privacy at shelters and a lost sense of security may have influenced the emergence of persecution delusions. The long time spent living in evacuation shelters due to radioactive contamination and the long time spent in an environment different from one’s usual routine may have contributed to the increase in hallucinations and delusions as time went on after the complex disaster. Comparatively speaking, of the various BPSD types, delusions do not normally persist, but it has been shown that agitation does persist.27,28 For this study, we did not trace the progress of the same group over time. However, it is possible that the course of BPSD onset was different for patients with dementia forced to spend long periods living in evacuation shelters due to radioactive contamination.

This study had several limitations. First, since this was a retrospective study based on medical records, the investigation items that could be included in analysis were limited. In addition, the sample size was too small for further analysis of each dementia diagnosis. Second, since we focussed on the BPSD that were most difficult for caregivers, hypoactive BPSD may have been underestimated. Despite these limitations, this study contributes valuable knowledge regarding trends seen among patients with dementia in an area that experienced a complex disaster involving radioactive contamination.

In conclusion, the complex disaster of the GEJE and the FDNPP increased the number of consultations by patients with dementia and increased BPSD. Furthermore, in the early post-complex-disaster phase, the proportion of BPSD such as agitation and irritability, increased, while in the late post-complex-disaster phase, the proportion of hallucinations and delusions increased.

ACKNOWLEDGMENTS

We would like to thank Editage (www.editage.com) for English language editing.

REFERENCES

1. Faroqui M, Quadri SA, Suriya SS et al. Posttraumatic stress disorder: a serious post-earthquake complication. Trends Psychiatry Psychother 2017; 39: 135–143.
2. Evelyn JB, Parkinson DK, Leslie OD. Long-term mental health consequences of the accident at Three Mile Island. Int J Forensic Ment Health 1990; 19: 48–50.
3. Niitsu T, Takaoka K, Uemura S et al. The psychological impact of a dual-disaster caused by earthquakes and radioactive contamination in Ichinoseki after the Great East Japan Earthquake. BMC Res Notes 2014; 20: 307.
4. Furukawa K, Ootsuki M, Kodama M, Arai H. Exacerbation of dementia after the earthquake and tsunami in Japan. J Neural 2012; 259: 1243.
5. Furukawa K, Ootsuki M, Nitta N, Okinaga S, Kodama M, Arai H. Aggravation of Alzheimer’s disease symptoms after the earthquake in Japan: a comparative analysis of subcategories. Geriatr Gerontol Int 2013; 13: 1081–1082.
6. Hikichi H, Aida J, Kondo K et al. Increased risk of dementia in the aftermath of the 2011 Great East Japan Earthquake and Tsunami. Proc Natl Acad Sci U S A 2016; 113: E6911– E6918.
7. Nakamura K, Watanabe Y, Kitamura K, Kabasawa K, Someya T. Psychological distress as a risk factor for dementia after the 2004 Niigata-Chuetsu earthquake in Japan. J Affect Disord 2019; 259: 121–127.
8. World Health Organization. The ICD-10 Classification of Mental and Behavioural Disorders Clinical Description and Diagnostic Guidelines. [Cited 11 January 2021]. Available from URL: https://www.who.int/classifications/icd/en/bluebook.pdf.
9. Sclan SG, Reisberg B. Functional Assessment Staging (FAST) in Alzheimer’s Disease: reliability, validity, and ordinality. Int Psychogeriatr 1992; 4: 55–69.
10. Cummings JL, Mega M, Gray K, Rosenberg-Thompson S, Carusi DA, Gornbein J. The Neuropsychiatric Inventory: comprehensive assessment of psychopathology in dementia. Neurology 1994; 44: 2308–2314.
11. Aalten P, Verhey FR, Boziki M et al. Neuropsychiatric syndromes in dementia. Results from the European Alzheimer Disease Consortium: part I. Dement Geriatr Cogn Disord 2007; 24: 457–463.
12. Keszycki RM, Fisher DW, Dong H. The hyperactivity-impulsivity-irritability-disinhibition-aggression-agitation domain in Alzheimer’s Disease: current management and future directions. Front Pharmacol 2019; 27: 1109.
13. Lam CL, Chan WC, Mok CC, Li SW, Lam LC. Validation of the Chinese Challenging Behaviour Scale: clinical correlates of challenging behaviours in nursing home residents with dementia. Int J Geriatr Psychiatry 2006; 21: 792–799.
14. Hikichi H, Tsuboya T, Aida J et al. Social capital and cognitive decline in the aftermath of a natural disaster: a natural experiment from the 2011 Great East Japan Earthquake and Tsunami. Lancet Planet Health 2017; 1: e105–e113.
15. Brown LM, Dosa DM, Thomas K, Hyer K, Feng Z, Mor V. The effects of evacuation on nursing home residents with dementia. Am J Alzheimers Dis Other Demen 2012; 27: 406–412.
16. The Fukushima Nuclear Accident Independent Investigation Commission. Spread of the Damage. In: The National Diet of Japan Fukushima Nuclear Accident Independent Investigation Commission. [Cited 11 January 2021]. Available from URL: https://www.nirs.org/wp-content/uploads/fukushima/naic_report.pdf.
17 Tanigawa K. Medical and health surveillance in postaccident recovery: experience after Fukushima. *Ann ICRP* 2018; 47: 229–240.

18 Horikoshi N, Iwasa H, Kawakami N, Suzuki Y, Yasumura S. Residence-related factors and psychological distress among evacuees after the Fukushima Daiichi nuclear power plant accident: a cross-sectional study. *BMC Psychiatry* 2016; 16: 420.

19 Hori A, Ozaki A, Murakami M, Tsubokura M. Development of behavior abnormalities in a patient prevented from returning home after evacuation following the Fukushima Nuclear Disater: case report. *Disaster Med Public Health Prep* 2020; 24: 1–4.

20 Ishikawa K, Kanazawa Y, Morimoto S, Takahashi T. Depopulation with rapid aging in Minamisoma City after the Fukushima Daiichi nuclear power plant accident. *J Am Geriatr Soc* 2012; 60: 2357–2358.

21 Tomii H, Kawasaki K. Current state and issues of nursing care in 11 municipalities affected by the nuclear disaster in Fukushima after the lift of evacuation orders. *J City Plan Inst Jpn* 2019; 54: 203–211. (In Japanese).

22 Cerejeria J, Lagarto L, Mukaetova-Ladinska EB. Behavioural and psychological symptoms of dementia. *Front Neurol*; 2012; 3: 73.

23 International Psychogeriatric Association. *The IPA Complete Guides to Behavioural and Psychological Symptoms of Dementia*. [Cited 11 January 2021]. Available from URL: https://www.ipa-online.org/publications/guides-to-bpsd

24 Oe M, Fujii S, Maeda M et al. Three-year trend survey of psychological distress, post-traumatic stress, and problem drinking among residents in the evacuation zone after the Fukushima Daiichi Nuclear Power Plant accident [The Fukushima Health Management Survey]. *Psychiatry Clin Neurosci* 2016; 70: 245–252.

25 Fauth EB, Gibbons A. Which behavioural and psychological symptoms of dementia are the most problematic? Variability by prevalence, intensity, distress ratings, and associations with caregiver depressive symptoms. *Int J Geriatr Psychiatry* 2014; 29: 263–271.

26 Sato A. Information needs and modalities among people affected by the Fukushima Nuclear Disaster. *Univ J Manag* 2017; 5: 67–79.

27 Haupt M, Kurz A, Yanner M. A 2-year follow-up of behavioural and psychological symptoms in Alzheimer’s disease. *Dement Geriatr Cogn Disord* 2000; 11: 147–152.

28 Devenand DP, Jacobs DM, Tang MX et al. The course of psychological features in mild to moderate Alzheimer disease. *Arch Gen Psychiatry* 1997; 54: 257–263.