Interpreting pulmonary function tests

Educational aims

To elucidate the purpose of pulmonary function tests (PFTs).

To describe a pathway (algorithm) for interpreting PFTs, in a diagnostic sense, from measurements of spirometry (forced expiratory volume in 1 s (FEV1)) and forced vital capacity (FVC), lung volume (total lung capacity (TLC)), and gas transfer and coefficient (transfer factor for the lung for carbon monoxide (TLCO) and transfer coefficient of the lung for carbon monoxide (KCO)).

Summary

PFTs are quantitative (for assessment) as well as qualitative (for diagnosis). The assessment aspect asks “are the results normal?”, “how abnormal?”, “has there been a significant change post–bronchodilator, or since the last measurement?”, “can this patient withstand a pneumonectomy?”, etc. The qualitative aspect looks at a portfolio of results (spirometry, lung volumes, gas transfer and muscle pressures) and makes a physiological diagnosis of 1) airflow obstruction: a) intrathoracic or extrathoracic, b) with or without alveolar damage; or 2) restriction: a) intrapulmonary, b) extrapulmonary — chest wall/pleura or neuromuscular. The physiological diagnosis may or may not support the provisional clinical diagnosis as given on the Pulmonary Function Request Form. Interpretation starts with the distinction between obstructive and restrictive disease, based primarily on TLC and the FEV1, the FVC and the FEV1/FVC ratio. The transfer factor and coefficient (TLCO and KCO) add useful information regarding alveolar damage, pulmonary microvascular pathology, decreased alveolar expansion (neuromuscular disease) and discrete loss of units. A high KCO should prompt measurement of maximal inspiratory (Pimax) and expiratory (PEmax) pressures. Special tests have been developed recently to detect bronchiolar disease (multi–breath nitrogen washout with slope analysis). Exercise testing focuses more on assessment and prognosis than on diagnosis.

PFTs are performance indicators: are the results normal? If abnormal, how abnormal? Is the patient better (or worse) than 6 months earlier? Is there a bronchodilator response? In addition, the basic tests (FEV1, FVC, TLC, residual volume (RV), TLCO, KCO, alveolar volume (VA)), in combination, reveal physiological patterns that contain diagnostic information; this diagnosis, together with histopathological, microbiological, biochemical and radiological diagnoses, added to the history and physical examination, contributes to the eventual clinical diagnosis. The physiological diagnosis becomes more secure if it is related to the clinical details on the request form (this is a plea to clinicians to cooperate!). Computerised pulmonary function reports cannot take these clinical details into account, and they tend to state the obvious and lack insight.

J.M.B. Hughes
National Heart and Lung Institute, Imperial College School of Medicine, Hammersmith Hospital Campus, London, UK

Correspondence
Professor JMB Hughes
4 Cedars Road
London SW13 0HP
UK
mike.hughes@imperial.ac.uk

Provenance
Commissioned article, peer reviewed.

Competing interests
None declared.

HERMES syllabus link: module D.1
Interpretation of pulmonary function tests

FEV1/FVC ratios were 78% and 69% (as in COPD) in older subjects. The linearity or scooping (not as severe with a “knee” in young and curvilinearly or scooping mid–lung volume) continued to increase being 0.3 L greater at 10 s (FVC) versus 6 s (FVC6), with a correspondingly greater FEV1/FVC (0.4) compared with the FEV1/FVC (0.35) ratio. FET: forced expired time.

 Spirometry and flow–volume curves

Forced expiratory volumes (FEV1 and FVC6) and capacity (FVC)

Figure 1 shows the three common spirometric patterns:

- normal FEV1, normal FVC, normal FEV1/FVC ratio = Normal
- low FEV1, normal or low FVC, low FEV1/FVC = Obstructive
- low FEV1, low FVC, normal or high FEV1/FVC = Restrictive

Good instruction by the operator and good performance by the subject are vital. The mantra is F-F-F: Full inspiration – Forceful expiration – Full expiration.

In chronic obstructive pulmonary disease (COPD), the true FVC, in terms of an end–plateau (figure 1) is often not reached because patients cannot sustain the effort required to reach full expiratory reserve volume (RV), and a slow expired or inspired vital capacity (VC) may exceed the FVC. Because of the time dependency of FVC in COPD, there have been proposals [1] to standardise the FVC at 6 s (FVC6; figure 1), and this may have some advantage in “field” or primary care settings. But FVC6, more than FVC, underestimates the true VC and overestimates FEV1/FVC (by 40% versus 35% in figure 1), so the notion that FVC6 will replace FVC remains controversial [1]. Anyway, there is an acceptable alternative, in the laboratory setting, for the FVC, which involves a separate measurement of the VC, giving an FEV1/VC ratio.

Maximum effort expiratory flow–volume curves

Spirometry plots volume against time; maximum effort expiratory flow–volume (MEFV) curves plot the same data as flow versus volume (figure 2). Various indices can be derived – forced expiratory flow at 25, 50 or 75% of FVC or maximum mid–expiratory flow over 25–75% of expired FVC; however, they are of limited usefulness because normal variation is so wide. Inspection of the shape of the curve is more pertinent. Airflow obstruction shows curvature or scooping of the MEFV curve over the last 50% of FVC, the curve is straight in normal patients (figure 2) and slightly scooped in the elderly. When the FEV1/FVC ratio is borderline, the shape of the MEFV curve may or may not support a diagnosis of airflow obstruction; repeat testing after a bronchodilator challenge is usually indicated.

Upper airway (extrathoracic) airflow obstruction

Obstruction of the upper airway occurs in:

- the larynx and extrathoracic trachea
- the pharynx in obstructive sleep apnoea (OSA)

The obstruction may be fixed (present all the time, and affecting inspiration and expiration) or variable. OSA is caused by variable closure (or extreme narrowing) of the pharynx, occurring only during sleep and made worse by obesity of the neck, sleeping supine and alcohol ingestion before retiring.

Narrowing of the pharynx or larynx during wakefulness may be difficult to detect with expiratory tests (FEV1) when the structures are “floppy”. The best test is the maximum inspiratory effort flow volume (MIFV) curve where flows are greatly reduced at mid–lung volume compared with flows on the MEFV curve. The maximal expiratory flow at 50% FVC (MIF50)/maximal inspiratory flow at 50% FVC (MIF50) ratio is >1.0 (normal <0.8), and the MIFV curve has a characteristic
Glossary of abbreviations

Forced (maximum effort) volumes and flows
- FEV1: forced expiratory volume in 1 s (maximum effort starting from TLC)
- FVC: forced vital capacity (< VC in airflow obstruction)
- FVC6: forced expiratory volume in 6 s (< FVC in airflow obstruction)
- VC: slow expired vital capacity
- MEFV: maximum effort expiratory flow-volume curve
- MIFV: maximum effort inspiratory flow-volume curve
- PEF: peak expiratory flow
- FF65: forced expiratory flow after 75% of FVC expired
- MMEF25–75: maximum mid-expiratory flow (between 25 and 75% expired FVC)
- MEF50: maximum expiratory flow after 50% of expired FVC
- MIF50: maximum inspiratory flow after 50% of inspired FVC
- FEV1/PEF: Empey index for "fixed" extrathoracic airflow obstruction: mL/L per min

Bronchial challenge
- PC20: provocative concentration for 20% fall of FEV1 after bronchoconstrictor challenge

Reference values
- SR: standardised residuals: (FEV1actual - FEV1predicted/RSD)
- RSD: relative standard deviation: confidence limits for a correlation coefficient
- LLN: lower limit of normal (-1.645 SRs)

Lung volumes
- TLC: total lung capacity (gas volume at full inflation)
- FRC: functional residual capacity (end-expired volume, at rest and relaxed)
- RV: residual volume (gas volume at full expiration)
- Raw: airways resistance (measured in a body plethysmograph)
- SGaw: specific airways conductance [1/(Raw × TGV)]
- TGV: thoracic gas volume (close to FRC) at which Raw is measured

Gas transfer
- TL,CO: transfer factor of the lung for carbon monoxide (~ KCO × VA); aka DL,CO (diffusing capacity)
- KCO: rate constant of CO uptake per unit pressure (~ kCO/Pb*)
- VA: alveolar volume measured by single-breath dilution
- kCO: rate constant for CO uptake by alveolar capillaries
- Pb*: barometric pressure minus water vapour pressure at 37˚C
- TL/VA: transfer factor per unit lung volume (actually a rate constant ~ KCO)

Muscle pressures
- Pimax: maximum inspiratory pressure (MIP) at RV or FRC
- Pemax: maximum expiratory pressure (MEP) at TLC
- sniff Pna: sniff nasal inspiratory pressure
- Pimax: maximum transdiaphragmatic pressure: also sniff Pdi
- Pga: gastric pressure (from balloon in the stomach); assesses cough
- Pmouth: mouth pressure (an index of expiratory muscle strength in the "whistle" test)

Exercise
- V′E: expired minute ventilation
- V′E,max: maximum minute ventilation during incremental exercise test to the limit
- V′O2: oxygen uptake in mmol per min or mL (STPD) per min
- V′O2,max: maximum oxygen consumption at exhaustion
- V′CO2: carbon dioxide uptake in mmol per min or mL (STPD) per min
- RER: respiratory exchange ratio (V′CO2 / V′O2)
- AT: anaerobic threshold (point where acidotic drive is discernible)
- V′O2/V′T: physiological dead space/tidal volume ratio
- HRR: heart rate (HR) reserve: maximum HR predicted - maximum HR achieved
Interpretation of pulmonary function tests

and a PC20 ≤1.0 mg per mL is diagnostic of asthma. Mannitol is increasing in popularity for bronchial challenges. It is delivered as a dry powder via an inhaler in doubling doses 5–160 mg. A positive test is defined as a fall in FEV1 of 15% compared with baseline with a cumulative dose of ≤635 mg Mannitol. Reactivity to Mannitol correlates with other osmotic stimuli as hypertonic saline [5]. Mannitol induces bronchoconstriction by changing the osmolality of the epithelium of the upper respiratory tract which, via mast cell activation, directly or reflexly, induces bronchoconstriction of the smaller intrapulmonary airways.

Reference values

A test result is normal if it falls within the range predicted for the age, sex and height of the patient, based on large population studies of healthy never-smoking adults. Additional factors such as body mass index and habitual activity (fitness) do not contribute significantly to the mean value or the variance. The scatter of values from a healthy population has a normal (or Gaussian) distribution; in linear regression (e.g. FEV1 versus age) the distribution (or variance) is described by the relative standard deviation (RSD) which is the \(\frac{\sigma}{\mu} \), where \(\mu \) is the mean value and \(\sigma \) the SD. The relative standard deviation (RSD) which is the SD/mean value

truncated shape (figure 3b). If the extrathoracic obstruction is fixed, the MEFV curve will also show truncation of flows, especially peak expiratory flow (PEF; figure 3a). FEV1 is less affected and the Empey index (FEV1 mL/PEF L per min) is >8–10 [2]. Visual inspection of the whole flow-volume curve is more important than relying on the calculation of flow indices.

Bronchodilator response

Any patient on a first visit who has airflow obstruction (reduced FEV1/FVC and/or scooping on the MEFV curve) warrants a bronchodilator challenge from a metered dose inhaler or from a nebuliser driven by compressed air. Salbutamol, a \(\beta_{2} \) agonist, is the usual agent. It is important that bronchodilator medication has been withdrawn for 6 h (short-acting) or 36 h (long-acting) beforehand. There are various ways to express the response.

1) \(\Delta FEV1 \geq 200 \) mL
2) \(\Delta FEV1 \geq 15\%
3) \(\Delta FEV1 \geq 12\% \) plus \(\Delta FEV1 >200 \) mL
4) \(\Delta FEV1 \% \) predicted ≥10%
3) is probably the most reliable index (see [3]). In COPD patients, 2) overestimates and 4) underestimates the number of responders compared with 3) [4].

Bronchoconstrictor challenge

PFTs in asthma may be normal; however bronchial hyperresponsiveness to constrictor–provoking agents such as methacholine or mannitol confirms the diagnosis. FEV1 is the usual measurement; for children, a PEF meter is the usual monitor when exercise is used to induce post-exercise bronchoconstriction, but pocket spiroimeters that measure FEV1 accurately are now available. For a methacholine challenge, increasing doses are nebulised or given via a dosimeter. The provocative concentration causing a 20% fall in FEV1 (PC20) is the end-point. A PC20 of 16 mg per mL is normal and a PC20 ≤1.0 mg per mL is diagnostic of asthma. Mannitol is increasing in popularity for bronchial challenges. It is delivered as a dry powder via an inhaler in doubling doses 5–160 mg. A positive test is defined as a fall in FEV1 of 15% compared with baseline with a cumulative dose of ≤635 mg Mannitol. Reactivity to Mannitol correlates with other osmotic stimuli as hypertonic saline [5]. Mannitol induces bronchoconstriction by changing the osmolality of the epithelium of the upper respiratory tract which, via mast cell activation, directly or reflexly, induces bronchoconstriction of the smaller intrapulmonary airways.

Reference values

A test result is normal if it falls within the range predicted for the age, sex and height of the patient, based on large population studies of healthy never-smoking adults. Additional factors such as body mass index and habitual activity (fitness) do not contribute significantly to the mean value or the variance. The scatter of values from a healthy population has a normal (or Gaussian) distribution; in linear regression (e.g. FEV1 versus age) the distribution (or variance) is described by the relative standard deviation (RSD) which is the \(\frac{\sigma}{\mu} \), where \(\mu \) is the mean value and \(\sigma \) the SD. The relative standard deviation (RSD) which is the SD/mean value

truncated shape (figure 3b). If the extrathoracic obstruction is fixed, the MEFV curve will also show truncation of flows, especially peak expiratory flow (PEF; figure 3a). FEV1 is less affected and the Empey index (FEV1 mL/PEF L per min) is >8–10 [2]. Visual inspection of the whole flow-volume curve is more important than relying on the calculation of flow indices.

Bronchodilator response

Any patient on a first visit who has airflow obstruction (reduced FEV1/FVC and/or scooping on the MEFV curve) warrants a bronchodilator challenge from a metered dose inhaler or from a nebuliser driven by compressed air. Salbutamol, a \(\beta_{2} \) agonist, is the usual agent. It is important that bronchodilator medication has been withdrawn for 6 h (short-acting) or 36 h (long-acting) beforehand. There are various ways to express the response.

1) \(\Delta FEV1 \geq 200 \) mL
2) \(\Delta FEV1 \geq 15\%
3) \(\Delta FEV1 \geq 12\% \) plus \(\Delta FEV1 >200 \) mL
4) \(\Delta FEV1 \% \) predicted ≥10%
3) is probably the most reliable index (see [3]). In COPD patients, 2) overestimates and 4) underestimates the number of responders compared with 3) [4].

Bronchoconstrictor challenge

PFTs in asthma may be normal; however bronchial hyperresponsiveness to constrictor–provoking agents such as methacholine or mannitol confirms the diagnosis. FEV1 is the usual measurement; for children, a PEF meter is the usual monitor when exercise is used to induce post-exercise bronchoconstriction, but pocket spiroimeters that measure FEV1 accurately are now available. For a methacholine challenge, increasing doses are nebulised or given via a dosimeter. The provocative concentration causing a 20% fall in FEV1 (PC20) is the end-point. A PC20 of 16 mg per mL is normal and a PC20 ≤1.0 mg per mL is diagnostic of asthma. Mannitol is increasing in popularity for bronchial challenges. It is delivered as a dry powder via an inhaler in doubling doses 5–160 mg. A positive test is defined as a fall in FEV1 of 15% compared with baseline with a cumulative dose of ≤635 mg Mannitol. Reactivity to Mannitol correlates with other osmotic stimuli as hypertonic saline [5]. Mannitol induces bronchoconstriction by changing the osmolality of the epithelium of the upper respiratory tract which, via mast cell activation, directly or reflexly, induces bronchoconstriction of the smaller intrapulmonary airways.

Reference values

A test result is normal if it falls within the range predicted for the age, sex and height of the patient, based on large population studies of healthy never-smoking adults. Additional factors such as body mass index and habitual activity (fitness) do not contribute significantly to the mean value or the variance. The scatter of values from a healthy population has a normal (or Gaussian) distribution; in linear regression (e.g. FEV1 versus age) the distribution (or variance) is described by the relative standard deviation (RSD) which is the \(\frac{\sigma}{\mu} \), where \(\mu \) is the mean value and \(\sigma \) the SD. The relative standard deviation (RSD) which is the SD/mean value

truncated shape (figure 3b). If the extrathoracic obstruction is fixed, the MEFV curve will also show truncation of flows, especially peak expiratory flow (PEF; figure 3a). FEV1 is less affected and the Empey index (FEV1 mL/PEF L per min) is >8–10 [2]. Visual inspection of the whole flow-volume curve is more important than relying on the calculation of flow indices.

Bronchodilator response

Any patient on a first visit who has airflow obstruction (reduced FEV1/FVC and/or scooping on the MEFV curve) warrants a bronchodilator challenge from a metered dose inhaler or from a nebuliser driven by compressed air. Salbutamol, a \(\beta_{2} \) agonist, is the usual agent. It is important that bronchodilator medication has been withdrawn for 6 h (short-acting) or 36 h (long-acting) beforehand. There are various ways to express the response.

1) \(\Delta FEV1 \geq 200 \) mL
2) \(\Delta FEV1 \geq 15\%
3) \(\Delta FEV1 \geq 12\% \) plus \(\Delta FEV1 >200 \) mL
4) \(\Delta FEV1 \% \) predicted ≥10%
3) is probably the most reliable index (see [3]). In COPD patients, 2) overestimates and 4) underestimates the number of responders compared with 3) [4].

Bronchoconstrictor challenge

PFTs in asthma may be normal; however bronchial hyperresponsiveness to constrictor–provoking agents such as methacholine or mannitol confirms the diagnosis. FEV1 is the usual measurement; for children, a PEF meter is the usual monitor when exercise is used to induce post-exercise bronchoconstriction, but pocket spiroimeters that measure FEV1 accurately are now available. For a methacholine challenge, increasing doses are nebulised or given via a dosimeter. The provocative concentration causing a 20% fall in FEV1 (PC20) is the end-point. A PC20 of 16 mg per mL is normal and a PC20 ≤1.0 mg per mL is diagnostic of asthma. Mannitol is increasing in popularity for bronchial challenges. It is delivered as a dry powder via an inhaler in doubling doses 5–160 mg. A positive test is defined as a fall in FEV1 of 15% compared with baseline with a cumulative dose of ≤635 mg Mannitol. Reactivity to Mannitol correlates with other osmotic stimuli as hypertonic saline [5]. Mannitol induces bronchoconstriction by changing the osmolality of the epithelium of the upper respiratory tract which, via mast cell activation, directly or reflexly, induces bronchoconstriction of the smaller intrapulmonary airways.
Lung volumes

TLC is the maximum achievable lung volume and RV is the minimum. The volume at the end of a relaxed tidal breath at rest is the functional residual capacity (FRC). In restrictive lung disease, caused by neuromuscular pathology, TLC is low, but FRC and RV (especially) are relatively well preserved; RV may be increased in mixed inspiratory and expiratory weakness [7].

In obstructive disease, RV rises first, followed by FRC. In severe emphysema, often with large bullae, TLC increases. The rise of FRC is termed hyperinflation; elevation of FRC increases expiratory flow rates during tidal breathing, and on exercise, but at the expense of an increase in the elastic work of breathing. FRC and RV increase with normal ageing due to a loss of lung elasticity. The increase of RV in obstructive disease is due to several factors: a) loss of lung elasticity (emphysema), b) bronchoconstriction ± bronchiolar closure and mucus impaction (asthma), and c) airway narrowing and/or obliteration from bronchial and bronchiolar wall pathology (COPD and obliterative bronchiolitis). A summary of lung volume changes is given in figure 4.

RV/TLC is a useful index, but only if TLC is normal. In mixed obstructive and restrictive disease (e.g. a smoker with COPD who develops interstitial lung disease with fibrosis), the FEV1/FVC ratio and the MEFV curve will detect the obstructive element better than the RV/TLC ratio. A rise in RV is an early sign of airflow obstruction, but it is no more sensitive than the FEV1/FVC ratio.

The gold standard for restrictive lung disease (small lungs) is a TLC <LLN. It is tempting to label a patient “restrictive” when they have a normal or high FEV1/FVC ratio and FVC <LLN (<1.645 SRs) (figure 4). But, for 95% certainty the FVC must be <60% of LLN or <50% pred normal [8]. FVC >100% pred excludes restriction.

$T_{L,CO}$ and K_{CO}

(Note that in North America and Australasia, the term $D_{L,CO}$ (diffusing capacity) is used instead of $T_{L,CO}$.)

For interpretation, the vital point to grasp [9, 10] is:

$$K_{CO} \times VA / P_b^* = T_{L,CO} \quad (1)$$

$$T_{L,CO} / VA = K_{CO} / P_b^* = K_{CO} \quad (2)$$

where K_{CO} (min⁻¹ or s⁻¹) is the rate of uptake of CO from the alveoli (to combine with haemoglobin (Hb) in the pulmonary capillaries) during a 10 s breathhold at full inflation (TLC). K_{CO} is a rate constant (or an efficiency index). VA is the alveolar volume “seen” by CO during the breath hold; VA is 91.48% (1.645 SRs) of TLC [11], but will be significantly less than this in the presence of airflow obstruction, because of gas mixing delays during the short breath hold time. P_b^* (barometric pressure minus water vapour pressure at 37°C) normalises the uptake (mmol or mL per min) per unit pressure (kPa or mmHg), so that the product, $T_{L,CO}$, has units of conductance, mmol per min per kPa in SI units (mL per min per mmHg in traditional units); divide by three to convert traditional to SI. The K_{CO} is the rate constant normalised to Pb, but the clumsy units used in pulmonary function reports (mmol per min per kPa per L) give the misleading impression that the rate constant K_{CO} corrects TLC for lung volume. It does not; in normal subjects the relationship between $T_{L,CO}$ and VA is not linear.

Once the physiology has been grasped (equations 1 and 2), the meaning of a low $T_{L,CO}$ depends on the relationship between its components, K_{CO} and VA. The causes of a low and high K_{CO} are given in table 1.

A low K_{CO} is caused by microvascular disease with or without diffuse alveolar damage. Anaemia (and a high carboxyhaemoglobin from smoking) reduce the K_{CO}, however, corrections can be made, and patients should be asked not to smoke for 12-24 h before testing. Paradoxically, physiological factors are the reason for a high K_{CO} (> pred K_{CO} at the pred TLC) in most instances. Reduced alveolar expansion (the breath-hold is at less than the pred TLC) elevates K_{CO} because the capillary (and Hb) to alveolar volume ratio increases. K_{CO} rises with exercise because high blood flow increases pulmonary capillary volume; K_{CO} increases with a left-to-right intracardiac shunt for...
Interpretation of pulmonary function tests

Table 1 Some causes and some examples of low and high KCO

Causes	Low KCO	Causes	High KCO
Diffuse alveolar destruction	Emphysema, diffuse pulmonary fibrosis	Decrease in alveolar expansion	Neuromuscular, chest wall/plural restriction
PHT	Primary PHT, vasculitis, CHF (severe)	'Discrete' loss of units	Pneumonectomy, local consolidation, atelect, granulomas
Pulmonary capillary dilatation	Hepatopulmonary syndrome, PAVMs	Technical artefact (decrease in alveolar expansion)	Poor co-operation, inadequate inspiration
Anaemia	Hb correction to be applied	Polycythaemia, alveolar haemorrhage	Hb correction to be applied

KCO: carbon monoxide; TLC: total lung capacity; PAVMs: pulmonary arteriovenous malformations.

Table 2 Different KCO and VA patterns and pathologies, but the same reason. KCO increases following a pneumonectomy (from 98 to 111% pred [12]) because blood flow per unit volume approximately doubles. It follows that loss of aerated lung units from any cause will divert blood flow to the remaining units, provided they are structurally sound, increasing their blood flow per unit volume. This is called discrete loss of units (table 1).

The combination of spirometry, lung volumes (as TLC) and TLC, KCO and KCO is shown in an algorithm in figure 5, which starts with the FEV1/FVC ratio (normal or low) and divides sequentially on the basis of a normal or low FVC and TLC, a low or normal TLC, and a high, normal or low KCO [13].

Respiratory muscle function

All pulmonary function laboratories should be able to measure the maximum pressures the inspiratory muscles can develop at RV or FRC (PI,max) and those the expiratory muscles can produce at TLC (PE,max). These are static pressures (flow is absent or minimal) and the glottis must remain open (with PE,max a small leak is introduced) so that alveolar pressure is recorded. The tests are essentially Mueller (PI,max) and Valsalva (PE,max) manoeuvres. Peak pressures should be sustained for 3 s. Flanged mouthpieces are preferred. Patients with facial weakness may have problems. Even so, many patients and normal subjects find it difficult to produce a maximal effort, although dynamic manoeuvres involving maximum efforts (FEV1, MEFV and MIFV curves) are in general performed very well. Thus, many patients underperform; 30% of patients with low PI,max or PE,max are normal after further testing. Sniffing (sniff nasal) [14], coughing (cough...
P\textsubscript{e} (P\textsubscript{orts}) [15] and blowing a whistle (P\textsubscript{mouth, whistle}) [16] are more natural and more familiar ways of obtaining an estimate of respiratory muscle capacity, except that they test force–velocity as well as force–pressure relationships. However, in the future, they should be introduced into all laboratories alongside the static P\textsubscript{I,max} and P\textsubscript{E,max} tests, as there is a good correlation between the dynamic (sniffs, etc.) and static manoeuvres.

For P\textsubscript{I,max} and P\textsubscript{E,max}, the lower limit of normal is set at -1.96 SRs (95% confidence limits) rather than -1.645 because submaximal performance is common [17]. P\textsubscript{I,max} should be lower than -1.96 SRs (95% confidence limits) rather than -1.645 because submaximal performance is common [17].

If respiratory pressures are low, patients will usually be referred to more specialised centres for further tests such as maximum transdiaphragmatic pressure or magnetic stimulation of the phrenic nerve roots (over the cervical spinal cord) or of individual phrenic nerves in the neck if unilateral diaphragm paralysis is suspected.

A high KCO (>120% predicted) and a restrictive spirometric and volume pattern should alert the laboratory to the possibility of neuromuscular weakness, and prompt a measurement of P\textsubscript{I,max} and P\textsubscript{E,max}.

Exercise

Exercise testing is used most frequently as a performance indicator. Less emphasis is placed now on its role in physiological diagnosis. However, two questions may be asked: 1) is this patient’s exertional dyspnoea due to cardiac and/or pulmonary disease; and 2) is cardiac or is pulmonary disease contributing more to this patient’s exercise intolerance?

Exertional dyspnoea accompanied by a normal pulmonary function screen may be caused by:

- anaemia
- cardiovascular disease: i) left ventricular (LV) dysfunction; ii) pulmonary vascular disease
- anxiety (psychogenic breathlessness)

It is easy to exclude anaemia. Ischaemic heart disease (LV dysfunction) is usually accompanied by chest pain or ST-segment abnormalities on the exercise electrocardiogram. Pulmonary vascular disease usually shows some reduction of T\textsubscript{L,CO} and K\textsubscript{CO}, and exercise capacity is limited very early by extreme dyspnoea and faintness. In contrast, psychogenic breathlessness is more pronounced at rest, with an irregular chaotic breathing pattern and a low alveolar carbon dioxide tension and bicarbonate. These patients perform normally on exercise with normal parameters, though they may not reach their predicted maximum.

The second question concerning a cardiac or pulmonary origin of exertional dyspnoea requires full cardiopulmonary exercise testing with measurements of gas exchange and minute ventilation (V\textsubscript{E}; oxygen uptake (V\textsubscript{O}\textsubscript{2})); carbon dioxide production (V\textsubscript{CO}\textsubscript{2}); respiratory exchange ratio, dead space volume (V\textsubscript{D})/tidal volume (V\textsubscript{T}) and calculation of the anaerobic threshold (AT). Chronic heart failure is characterised by an AT occurring at a low V\textsubscript{O}\textsubscript{2}, (<30% of pred maximal V\textsubscript{O}\textsubscript{2}) with a high V\textsubscript{E}/V\textsubscript{T} ratio; maximum pred heart rate occurs at a low V\textsubscript{O}\textsubscript{2}, (there is no heart rate reserve (HRR) at the end-point). In COPD, the AT is often not achieved because of ventilatory limitation, nor is the maximum pred heart rate reached (there is surplus HRR at the breaking point). Maximum exercise V\textsubscript{E} exceeds the predicted maximum voluntary ventilation (~FEV\textsubscript{1} (actual) × 40) in COPD, but in heart failure maximal V\textsubscript{E} is <FEV\textsubscript{1} × 40.

![Interpretation of pulmonary function tests](image-url)
Tests for small airways disease

Small or peripheral airways are usually defined as airways <2 mM diameter. In fact, almost all intrapulmonary airways are <2 mM in diameter and most of those (in terms of numbers and area) are bronchioles (<0.8 mM diameter). The bronchioles are an important site of pathology in COPD, asthma, in the bronchioloectasis of cystic fibrosis, and in post-transplant obstructive disease (bronchiolitis obliterans). The standard pulmonary function tests (FEV1, MEFV curves, airway resistance or specific conductance) reflect the narrowing of all intrathoracic airways. What PFTs are specific for the bronchioles? The most sensitive and specific test is the multi-breath nitrogen wash-out analysis of Verbanck et al. [17] with calculation of Scord and Sacin, where S refers to the slopes of the alveolar plateau for expired nitrogen for individual breaths. For further discussion of this and other "bronchiolar" tests, see [18]. A simpler test of uneven ventilation, the phase III slope of the single-breath nitrogen test may also be a good, if less specific, marker of bronchiolar abnormalities.

Educational questions

1. Which is compatible with "obstructive" disease?
 - a. normal FEV1
 - b. normal FVC
 - c. low FEV1/FVC ratio

2. Which is compatible with "restrictive" disease?
 - a. normal FEV1
 - b. normal FVC
 - c. low FEV1/FVC ratio

3. Which is compatible with "interstitial" disease?
 - a. normal FEV1
 - b. normal FVC
 - c. normal/high FEV1/FVC ratio

4. Which is compatible with "neuromuscular" disease?
 - a. normal FEV1
 - b. normal FVC
 - c. low FEV1/FVC ratio

References

1. Pedersen OF. A shortcut in spirometry. *Eur Respir J* 2006; 27:245–247.
2. Empey DW. Assessment of upper airways obstruction. *Brit Med J* 1972; 3: 503–505.
3. Pellegreno R, Vieggi G, Brusasco V, et al. Interpretive strategies for lung function tests (ATS/ERS Task Force: Standardisation of Lung Function Testing). *Eur Respir J* 2005; 26: 948–968.
4. Tashkin DP, Celli B, Decramer M, et al. Bronchodilator responsiveness in COPD. *Eur Respir J* 2008; 31: 742–750.
5. Brannan JD, Anderson SD, Perry CP, et al. The safety and efficacy of inhaled dry powder mannitol as a bronchial provocation test for airway hyperresponsiveness: a phase 3 comparison study with hypertonic (4.5%) saline. *Respir Res* 2005; 6: 144.
6. Hughes JMB. Physiology and Practice of Pulmonary Function. Association for Respiratory Technology and Physiology (ARTP) [publisher], 2009; pp. 261–271.
7. Hart N, Kramer D, Ward SP, et al. Effect of pattern and severity of respiratory muscle weakness on carbon monoxide gas transfer and lung volumes. *Eur Respir J* 2002; 20: 996–1002.
8. Vandenvoorde S, Verbanc S, Schuermans D, et al. Forced vital capacity and forced expired volume in six seconds as predictors of reduced total lung capacity. *Eur Respir J* 2008; 31: 391–395.
9. Hughes JMB, Pride NB. In defence of the carbon monoxide transfer coefficient Kco (TlVA). *Eur Respir J* 2001; 17: 168–174.
10. Hughes JMB. Physiology and Practice of Pulmonary Function. Association for Respiratory Technology and Physiology (ARTP) [publisher], 2009; pp. 101–113.
11. Roberts CM, MacRae KD, Seed WA. Multi-breath and single breath helium dilution lung volumes as a test of airway obstruction. *Eur Respir J* 1990; 3: 515–520.
12. Corris PA, Ellis DA, Hawkins T, Gibson GJ. Use of radionuclide screening in the preoperative estimation of pulmonary function after pneumonectomy. *Thorax* 1987; 42: 285–291.
13. Hughes JMB. Physiology and Practice of Pulmonary Function. Association for Respiratory Technology and Physiology (ARTP) [publisher], 2009; pp. 273–281.
14. Hotter F, Rahm F, Pasche F, Fitting J-W. Sniff nasal pressure: a non-invasive assessment of inspiratory muscle strength. *Am J Respir Crit Care Med* 1994; 150: 1678–1683.
15. Steier J, Kaul S, Seymour J, et al. The value of multiple tests of respiratory muscle strength. *Thorax* 2007; 62: 975–980.
16. Chetta A, Harris ML, Lyall RA, et al. Whistle mouth pressure as a test of expiratory muscle strength. *Eur Respir J* 2001; 17: 688–695.
17. Verbanc S, Schuermans D, Meysman M, et al. Noninvasive assessment of airway alterations in smokers. The small airways revisited. *Am J Respir Crit Care Med* 2004; 170: 414–419.
18. Hughes JMB. Physiology and Practice of Pulmonary Function. Association for Respiratory Technology and Physiology (ARTP) [publisher], 2009; pp. 72–74.

Further reading

Hughes JMB. Physiology and Practice of Pulmonary Function. Association for Respiratory Technology and Physiology (ARTP) [publisher], 2009.

Gibson GJ. Clinical tests of respiratory function. 3rd Edn. London, Hodder Arnold, 2009.