Cutaneous allergic reaction to subcutaneous vitamin K₁: A case report and review of literature

Miao Zhang, Jia Chen, Chun-Xiao Wang, Nai-Xuan Lin, Xin Li

Abstract

BACKGROUND
Vitamin K₁ (phytomenadione) is a fat-soluble naturally occurring vitamin that is widely used to treat certain coagulation disorders. Adverse cutaneous reactions to vitamin K₁ can occur; however, owing to its low incidence and considerable variability in presentation and morphology, its diagnosis can be easily overlooked. Managing these reactions may be challenging for patients and clinicians. Therefore, reviewing the adverse cutaneous reactions to vitamin K₁ is important.

CASE SUMMARY
Here we report the case of a 50-year-old woman with no pre-existing hepatic disease who developed a cutaneous allergic reaction to subcutaneous vitamin K₁ that presented as localized eczematous plaques at the vitamin K₁ injection site. The eruption developed within 5 d of the injection and persisted for 32 mo despite treatment with topical and intraleisional steroids. Eczema was diagnosed based on the results of the pathological examination, immunohistochemical staining, and a skin biopsy. The patient was advised to take herbal medicines orally twice daily. After treatment and follow-up, the patient’s eczematous urticarial plaques improved and her condition stabilized.

CONCLUSION
Here we present the first case of a cutaneous allergic reaction to subcutaneous vitamin K₁ that was successfully treated with Chinese medicine.
Key Words: Vitamin K; Subcutaneous injection; Adverse reactions; Herbal medicine; Polyoxyethylated castor oil; Case report guidelines; Case report

©The Author(s) 2022. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: Adverse cutaneous reactions to vitamin K can occur; however, their diagnosis can easily be overlooked. Managing these reactions may be challenging for both patients and clinicians. Here we report a patient who developed a cutaneous allergic reaction to subcutaneous vitamin K that was successfully treated with herbal medicine, suggesting that Chinese medicine therapy may be a feasible way to treat adverse cutaneous reactions. We confirmed our clinical findings through physical examination, a skin biopsy, and immunohistochemical staining. We also conducted a literature review of eczematous-type reactions to clarify the possible pathogenesis and provoke new thinking regarding the clinical treatment of this disease.

INTRODUCTION

Vitamin K, currently available for oral, intramuscular, subcutaneous, or intravenous administration, is generally well tolerated[1]. However, adverse effects of vitamin K have rarely been observed and were mostly reported in the early 1960s in the European literature. The most important adverse effects of vitamin K are hyperbilirubinemia and kernicterus in newborn infants[2], particularly in premature infants resulting from the competition for glucuronyl transferase in the presence of immature liver function[3].

Based on the characteristics of skin rashes, three types of adverse events can be caused by vitamin K injection: (1) Localized pruritic erythematous, eczematous, indurated plaques (most common); (2) localized morphea-form eruptions (secondary to the eczematous type[4-8]); and (3) diffuse maculo-papular eruptions (very rare), which were reported in early studies[9-11]. In accordance with the case report guidelines[12], here we present a case of a patient who developed an eczematous-type reaction to vitamin K injection. Residual pigmentation persisted after 18 mo of treatment; however, the patient responded well to treatment with Chinese medicine (CM).

Cutaneous reactions caused by vitamin K injections are mainly treated symptomatically. Most patients are treated with topical corticosteroids with or without occlusion and intralesional steroids; however, these treatments are ineffective. The topical application of tacrolimus (FK-506), a potent interleukin-2 and T-cell activation inhibitor, may become a future treatment option. Lauerma[13] demonstrated that topical tacrolimus pretreatment effectively suppresses allergic contact dermatitis caused by dinitrobutylphenol. However, its use for treating cutaneous hypersensitivity reactions to vitamin K has not been reported.

Some researchers believe that the exacerbation of persistent eruptions may be related to dietary vitamin K. However, no follow-up investigation of this possibility is available in the English literature. This is probably due to difficulty avoiding dietary vitamin K, as small quantities are present in many different foods, with high concentrations in green leafy vegetables. Our patient failed to maintain a low vitamin K diet due to food preferences. Hence, whether the minute quantities of vitamin K present in some foods preclude the efficacy of dietary therapy remains unknown.

CASE PRESENTATION

Chief complaints

A 50-year-old woman was referred to our hospital on September 14, 2020 with the complaint of an intensely pruritic erythematous patch on her right hip.

History of present illness

The patient’s symptom of an intensely pruritic erythematous patch started 1 year before presentation.
History of past illness
One year prior, the patient had received subcutaneous injections of vitamin K1, 40 mg before thyroid nodule surgery to prevent bleeding. Five days after the injections, she developed the abovementioned symptoms at the injection site that caused discomfort without any obvious burning, pain, or other problems. She had not been treated with phytonadione, cyclosporine, or other medications containing polyoxymethylated castor oil (PEO-CO). She was diagnosed with urticaria, for which topical chloramphenicol betamethasone liniment, dexamethasone sodium phosphate, and chlorpheniramine maleate injections were prescribed. However, her condition did not improve substantially. Despite intermittent treatment for one year, her condition was not well controlled.

Personal and family history
The patient denied any family history of any hereditary disease.

Physical examination
A physical examination revealed an erythematous itchy-infiltrated area of approximately 10 cm × 10 cm on the right hip at the injection sites. The patient had a dry mouth, no sweat, and normal urine and bowel movements. Her tongue was red and covered with a thin and greasy coating, and her pulse was fine and rapid. Since the onset of the disease, she had no fever, chills, joint pain, swollen lymph nodes, weight loss, trauma, foreign body contact, or suspicious drug use. Her clinical symptoms of intense pruritus and weeping, erythematous, eczematous, and indurated plaques are shown in Figure 1A and B.

Laboratory examinations
Liver ultrasonography findings and aspartate aminotransferase (serum glutamic oxaloacetic transaminase), alkaline phosphatase, and serum bilirubin levels were normal.

Skin biopsy
A clear diagnosis of the disease could not be made based on the clinical manifestations of the erythematous and eczematous plaques. The patient’s skin lesions were nonspecific and could be easily confused with mycosis fungoides (MF). To ensure diagnostic accuracy, we performed a biopsy of the skin from the right hip during the examination, the results of which were available within a week. Considering the characteristics of the skin lesions, we temporarily suspected an adverse cutaneous reaction to vitamin K1 (eczematous type), and the CM diagnosis was “wet sores.” The tongue coating, pulse, and skin lesion characteristics were consistent with those of blood-heat syndrome. We considered blood heat and Yang floating as the main pathogeneses according to the CM theory.

Histological examination
The erythema area was reduced, the degree of itching was alleviated, and the patient’s condition gradually stabilized by November 12, 2020. The patient’s tongue was reddish with a white and greasy coating and her pulse was slippery. A skin biopsy was performed (Figure 1C and D), and a histological examination showed an intense perivascular infiltrate composed of lymphocytes and histiocytic cells with rare plasma cells and eosinophils. Prominent endothelial cell swelling was also observed. The infiltrate extended through the reticular dermis into the subcutaneous fat and focally surrounded the eccrine and neural structures. The lower half of the dermis was markedly sclerotic with thickened eosinophilic collagen bundles. These findings were consistent with our diagnosis.

Further diagnostic work-up
A microscopic examination revealed a normal epidermis and more lymphocytes infiltrating the blood vessels in the dermis, several of which mimicked Pautrier microabscesses (Figure 1E and F). Immunohistochemical (IHC) staining showed that T cells were positive for CD3, CD5, and CD4 and partially positive for CD8 (Figure 2A-D). B cells were positive for CD20 and CD79a (Figure 2E and F). Histocytes were positive for CD68, natural killer cells were positive for CD56, and mastocytes were negative for CD117 (Figure 3A-C). B cells tested positive for common acute lymphoblastic leukemia antigen (CD10), negative for platelet-endothelial cell adhesion molecule-1 was negative for (CD31), and negative for syndecan-1 (CD138) (Supplementary Figure 1). We ruled out MF because the IHC results suggested that the cells in this case were multi-lineage and polyclonal.

FINAL DIAGNOSIS
According to the clinical picture, histopathology results, and IHC results, the final diagnosis was a cutaneous allergic reaction to the vitamin K1 injections.
Figure 1 Clinical presentation and diagnostic clues from the original symptoms. A and B: Intensely pruritic, weeping, erythematous, eczematous, and indurated plaques; C: An intense perivascular infiltrate composed of lymphocytes and histiocytic cells, with rare plasma cells and eosinophils (hematoxylin–eosin stain, 100 ×); D: Prominent endothelial cell swelling. The infiltrate extended through the reticular dermis into the subcutaneous fat and focally surrounded the eccrine and neural structures (hematoxylin–eosin stain, 400 ×); E and F: The lower half of the dermis was markedly sclerotic with thickened eosinophilic collagen bundles. A microscopic examination revealed a normal epidermis and more lymphocytes infiltrating the blood vessels in the dermis, several of which were mimicking Pautrier microabscesses (100 ×).

TREATMENT

The patient was treated with an oral herbal medicine for “cooling blood and restraining Yang” twice daily, 30 min after meals. Our team previously reported that blood-cooling and Yang-restraining herbs had a positive clinical effect in the treatment of skin diseases such as blood-heat syndrome, eczema, and psoriasis vulgaris[14,15]. Other authors showed that the drug for cooling blood and restraining Yang may upregulate the expressions of PD-1 mRNA, PD-L2 mRNA, and their proteins in patients with psoriasis vulgaris, which manifests as blood-heat syndrome[16]. The specific compositions, dosages, and medicinal sources of these herbal decoctions are listed in Table 1.

OUTCOME AND FOLLOW-UP

The previous misdiagnosis was corrected in a timely manner. Nevertheless, the main components of the blood-cooling and yang-restraining herbal medicine remained unchanged. The dose of the drug was adjusted appropriately, and the patient continued to reduce her intake of leafy green vegetables.
Table 1 Details of the decoction for blood cooling and Yang restraining (translated in English)

Main composition	Chinese pinyin	Latin scientific name	Medicinal source	Crude drug content (g)
Radix Cyathulae	Chuan Niu Xi	Cyathula officinalis Kuan	Root	12
Rhizoma Alismatis	Ze Xie	Alisma plantago-aquatica L.	Tuber	12
Belvedere fruit	Di Fu Zi	Fructus Kochiae	Fruit	15
Cortex	Bai Xian Pi	Cortex dictammini	Root bark	12
Mother of pearl	Zhen Zhu Mu	Concha Margarithrea Usta	Shell	30
Magnettite	Ci Shi	Magnetium	Fe$_3$O$_4$	30
Liquorice	Gan Cao	Glycyrrhiza uralensis Fisch	Root	3
Herba Lycopi	Ze Lan	Aconitum gymmacrum Maxim	Leaf	9
Scutellaria baikalensis	Huang Qin	Scutellaria baikalensis Georgi	Root	12
Rehmannia	Di Huang	Rehmannia glutinosa	Root	15
Prepared rehmannia	Shu Di Huang	Rehmannia glutinosa	Root	15
Cortex Moutan	Mu Dan Pi	Cortex Moutan Radicis	Root bark	12
Red-rooted Salvia	Sheng Dan Shen	Salvia miltiorrhiza Bge	Root	15
Red peony	Chi Shao	Radix Paeoniae Rubra	Root	12
Sophorae Flavescentis	Ku Shen	Sophora flavescens	Root	12
Angelicae Sinensis	Guan Huang Bai	Phellodendron amurense Rupr	Bark	12

The patient was followed up on June 23, 2021, March 6, 2022, and April 2, 2022. After taking the herbal medicine, the patient’s erythema area was reduced, the degree of itching was alleviated, and her symptoms improved significantly. Her tongue was still red with a thin and greasy coating and her pulse was fine and rapid; hence, the composition of the herbal medicine was adjusted accordingly. After taking the herbal medicine for 18 mo, her symptoms greatly improved with only a few residual pigments in the lesion area and no itching sensation. She stopped taking the oral herbal medicine in April 2022 in accordance with the doctor’s advice.

At presentation, the patient showed some inconspicuous pigment residues with no itching sensation, and the lesions did not involve the internal organs or lymph nodes. Throughout the treatment and follow-up period, the patient showed good adherence to and tolerance of the CM therapy, and no adverse or unanticipated events occurred during this period. The patient’s condition was well controlled, and her quality of life improved. She was regularly followed up at a local clinic, with no complaints of discomfort or adverse events during treatment. At the 18-mo follow-up, the eczematous erythema plaques on her right hip had notably improved compared to the pretreatment condition. However, the eruption persisted with occasional pruritus for approximately 32 mo. The patients’ skin lesions before and after treatment are shown in Figure 4A and 4B. The full timeline of diagnosis, medical treatment process, physical examination findings, clinical characteristics, and laboratory findings are shown in Figure 5.

DISCUSSION

Our patient developed severe localized reactions at the site of the subcutaneous injections of vitamin K$_1$, and the lesions slowly subsided over a 32-mo period. Although the early changes resembled urticaria, they were not transient. Most importantly, the swollen red plaques involved underlying dermal involvement and epidermal changes. The diagnosis was confirmed by clinical imaging, histopathology, and IHC staining. The persistence of the pruritus in our patient may imply that the drug may have remained locally at the injection site or that an altered host tissue reaction in the skin may have provided a continued antigen stimulus.

We summarized the results of the 20 cases reported to date of eczematous-type reactions in Table 2, including the administration route, dose, reaction, and diagnostic assessment, with the aim of determining the pathogenesis of this hypersensitivity. Several features of the eczematous reaction to vitamin K$_1$ suggest that it was a manifestation of delayed-type hypersensitivity, a prototype of type IV cell-mediated immunity. In most cases, lesions appeared approximately 7-10 d after the first dose of vitamin K$_1$.[17-36] In addition, subsequent patch and intradermal testing produce a reaction within 3-5 and 1-2 d, respectively.[17-21,23,25,26,31,32,34,36] The time sequence of the development of these
Table 2 Details of case reports of reactions to vitamin K1 (eczematous type)

First author	Country	Date	Sex	Age (yr)	Adm.	Dose (mg)	Onset	Reaction Location/duration	Patch	I.c.	Other assessments	Other comments	Comments	Outcome	
Piguet *et al.*[17]	France	1964	F	33	IM		Before surgery	Buttock/wk	K₁⁻	K₁⁺		Alcohol cirrhosis			
					IM			Buttock, chest, face/8 d							
Barnes *et al.*[18]	United Kingdom	1976	F	31	IM	10	2 wk	Buttock/2 mo	ND	K₁⁺		Budd-Chiari syndrome, PCV	Plaques disappeared		
					IM	100	Several weeks	Upper arm, thigh/2 mo	ND	K₁⁺		Drug overdose, renal failure, generalized rash			
Heydenreich *et al.*[19]	Denmark	1977	F	51	IV	20 daily	8-10 d	Arms	K₁⁺	K₁⁺		ST	Hepatitis, RA, GN	No skin problems	
					IV							Intracutaneous test, epicutaneous test			
Bullen *et al.*[20]	United Kingdom	1978	F	17	INJ	340	13 d	Buttock/11 d	ND	K₁⁺	K₁⁺		Biopsy	CAH	Resolution with scaling
					INJ	360	9 d	Buttock/9 d	ND	K₁⁺	K₁⁺		Biopsy	CAH	
					INJ	270	9 d	Buttock/19 d	ND	K₁⁺	K₁⁺		Biopsy	CAH, RA	
					INJ	440	16 d	Buttock/18 d	ND	ND	ND	Biopsy	CAH, liver congestion, RA		
					INJ	300	10 d	Buttock/22 d	ND	K₁⁺	K₁⁺		Biopsy	Congenital hepatic failure	
					INJ	280	7 d	Buttock/9 d	ND	K₁⁺	K₁⁺		Biopsy		
Robison *et al.*[21]	United States	1978	M	63	IM	30	10 d	Upper arm	K₁⁺	K₁⁺		Biopsy	Alcoholic cirrhosis	Temporarily alleviated	
					IM							Epicutaneous test			
Jean-Pastor *et al.*[22]	France	1981	F	26	SC	280	11 d	Months	K₁⁻	K₁⁻	K₁⁻		Biopsy	Metastatic cholangiocarcinoma	Hyperpigmentation remained
Finkelstein *et al.*[23]	Canada	1987	F	42	SC	40	14 d	Months	K₁⁺	K₁⁻	ND	Biopsy	Primary biliary cirrhosis	Total bilirubin remained elevated	
					SC	39	14 d	Months	K₁⁻	K₁⁻	ND	Biopsy	Chronic myeloid leukemia	Residual erythema scaling, pruritus, and hyperpigmentation	
					IM	1750	2 d	Months	K₁⁻	K₁⁻	K₁⁻		Biopsy	Amyloidosis	Mild improvement
					SC	51	14 d	Months	K₁⁺	K₁⁻	K₁⁻		Biopsy	Cardiac cirrhosis	Persistent pruritus
					SC	64	5 d	Months	K₁⁺	K₁⁻	ND	Biopsy	Preeclampsia with DIC		
					SC	32	14 d	Months	K₁⁺	K₁⁻	K₁⁻		Biopsy		
Author(s)	Country	Year	Age	Gender	Duration	Site	Diagnosis	Resolution/Outcome							
-------------------	---------------	------	-----	--------	----------	---------------------------	---	--							
Zhang et al.	United States	1998	F	36	14 d	Right arm/4 yr	Biopsy	Long-term warfarin therapy							
F 61	IM	10	6 d		Left arm/6 mo	Biopsy	Intermittent pruritus and persistent induration								
							Severe cardiac disease	Skin lesion persisted unchanged							
Sanders et al.	United States	1998	F	18	> 10 d	Buttock, upper arm/weeks	Biopsy	Anorexia, N/V							
F 28	SC	100	2 wk		Arm/1 mo	K1+, K4-	Lesions resolved								
F 31	SC	10	10 d		Upper arm/2 wk	K1+, K4-	Dilated cardiomyopathy								
F 25	SC	40	After the injection	Weeks	K1+, K4-	Biopsy	Slowly resolved								
							Healthy								
Joyce et al.	United States	1998	F	61	10 d	Buttock	Biopsy	Minor beta thalassemia							
F 18	IM	110	6 d				Some residual pigmentation								
Sanders et al.	United States	1998	F	49	110	During treatment	Biopsy	CAH, variceal bleeds							
F 28	SC	100	2 wk		Upper arms, thighs, and buttocks/2 mo	Biopsy	Total regression of lesions								
F 31	SC	10	10 d		Upper arm/2 mo	K1+, K4-	resolution of skin eruption								
F 25	SC	40	After the injection	Weeks	K1+, K4-	Biopsy	No scleroderma changes								
Pigatto et al.	Italy	1998	F	9	10 d	Buttocks	Biopsy	Minor beta thalassemia							
							Some residual pigmentation								
Sanders et al.	United States	1998	F	43	30	2 wk	Biopsy	Budd-Chiari syndrome, PCV							
							No scleroderma changes								
F 62	IM	20	2 wk		1 mo	Biopsy	Stage IV endometrial carcinoma								
F 57	IM	20	2 wk		Right arm/1 mo	Biopsy	Stage II ovarian cancer								
F 50	SC	10	2 wk		Left upper arm	Biopsy	Healthy								
Bruynzeel et al.	Netherlands	1998	F	49	30	Right buttock/4 mo	Biopsy	Acute pancreatic Ascaris lumbricoides infection							
F 62	IM	20	2 wk		1 mo	Biopsy	Stage IV endometrial carcinoma								
F 57	IM	20	2 wk		Right arm/1 mo	Biopsy	Stage II ovarian cancer								
F 50	SC	10	2 wk		Left upper arm	Biopsy	Healthy								
							Remained symptomatic								
Balato et al.	Italy	1998	F	49	30	Right buttock/4 mo	Biopsy	Lesion healed spontaneously							
							Scratch-patch test								
Wong et al.	Australia	1998	F	40	40	Thighs/mo	Biopsy	Cholelithiasis, asthma, duodenal ulcer, and esophagitis							
							Prick test	Residual erythema persisted							
Wilkins et al.	Canada	2000	F	50	15	Left arm/18 mo	Biopsy	Hypothyroidism,							
								Eruption persisted with							

WJCC | https://www.wjgnet.com | 10748 | October 16, 2022 | Volume 10 | Issue 29 |
reactions corresponded well with type IV cell-mediated hypersensitivity. The positive results of sensitivity testing using patch test methods implied that sufficient antigens may have been absorbed to generate an immune response. Several patients exhibited a recall reaction\cite{21,23,30} in previously affected areas compatible with the recall phenomenon in allergic contact eczema when antigens applied in new areas precipitate an eczematous flare-up. Several histopathological studies of biopsy specimens from the lesion and the intracutaneous test site showed spongiosis of the epidermis, dermal edema, and perivascular mononuclear and eosinophilic cellular infiltrates consistent with delayed-type hypersensitivity\cite{18,20-25,27-31,33,36}.

To identify the allergen, we summarized the reported cases that used patch and intradermal testing to delineate the mechanism of skin hypersensitivity to vitamin K\(_1\). Previous studies consistently reported that only the whole preparation of vitamin K\(_1\) (in its vehicle) or vitamin K\(_1\) alone produced positive test results\cite{19-21}. When the individual components of the vehicles were tested, they almost always yielded negative results. In some cases, patch tests showed negative results, while intradermal tests showed opposite results\cite{23,30}, which may, to some degree, reflect insufficient percutaneous absorption. Page et al\cite{37} found that dermatitis from topically applied vitamin K\(_1\) was caused by the chemical rather than the base. One study in Australia\cite{32} illustrated the importance of testing with appropriate concentrations of reagents, as patch testing with Konakion Cremophor-EL 2 mg/mL showed a negative result, whereas testing with a 10 mg/mL concentration (the concentration administered at hospitals) showed a strongly positive result. Another study showed relatively high rates of intradermal positivity in control participants (4 of 10 controls)\cite{20}; however, the reactions in controls were not as florid, and in two cases, the reaction was delayed to day 6, which may indicate sensitization.
Previous reports suggested that the underlying cause of the reaction is not phytonadione but rather the vehicle, PEO-CO, which is used as a solubilizer or diluent for several drugs. Although experimental and clinical data are limited, these reactions have been classified as anaphylactoid reactions. Experimental and other evidence suggested that PEO-CO may cause anaphylaxis by releasing histamine, as demonstrated by studies showing its pharmacological action in dogs, a memory-mediated reaction involving complement activation, and the presence of immunoglobulin G steroid sulfatase antibodies as confirmed by appropriate immunological tests. However, PEO-CO may not be responsible for all anaphylactic events, as demonstrated by two cases of anaphylaxis after the administration of formulations that did not containing PEO-CO.

Several vitamin K preparations are available that contain different inactive ingredients. Most previous investigators did not use patches or intracutaneous testing for these additional ingredients of vitamin K. Five investigators tested the components of their particular preparations and obtained negative results. These results suggest that the antigen that causes adverse cutaneous reactions is not the inactive ingredient in the mixture but vitamin K itself. Because of the potential for exacerbating the long-lived reactions in our patient, no patch or intracutaneous tests were performed.

Liver disease was previously believed to play a role in the pathogenesis of this allergic reaction; however, six cases of cutaneous reactions to vitamin K have been described in patients with no known liver disease. One study in Japan showed, in 94 documented cases of cutaneous hypersensitivity reactions to vitamin K, no correlation between vitamin K hypersensitivity and liver disease. Nevertheless, as patients with liver disease account for the majority treatment demand for vitamin K, they may be at an increased risk of developing cutaneous reactions to it. An investigation into the
underlying liver dysfunction may be indicated when a patient develops a local eczematous reaction to vitamin K₁.

In all reported cases of skin reactions, the dose range was 10-1750 mg\(^{[17-36]}\). One study\(^{[20]}\) hypothesized that even a minimum dose can cause an eruption. Some researchers have noted that patients in some of the more recalcitrant cases received the smallest doses\(^{[33]}\). In addition, the dosage of vitamin K₁ seems to have no correlation with the onset of the allergic reaction as confirmed by a study\(^{[45]}\) that described sclerodermatous reactions associated with large doses of vitamin K₁, 100-500 mg. This finding suggests that neither injections nor large doses are required for a sclerodermatous reaction to occur\(^{[46]}\). Our patient had no evidence of preexisting hepatic disease and received a total dose of 40 mg.

CONCLUSION

Although the incidence of adverse reactions to the subcutaneous injection of vitamin K₁ is considerably
low, such adverse effects can be devastating. In our case, the patient experienced discomfort only in the area of the local lesions and the disease did not have a particularly serious impact on her daily life. Overall, the disease progressed slowly and was well controlled from onset to follow-up. However, it remains difficult to make an accurate clinical conclusion about this case of hypersensitivity, which creates new challenges and requirements for the diagnosis and treatment of such conditions that, in the future, may be avoided with a more judicious use of this form of vitamin K_1 in the clinical setting. In contrast to the previously reported cases, our patient was treated its CM. The key to CM treatment is to accurately identify the syndrome and treat the symptoms. CM may achieve unexpectedly good results in terms of improving the patient’s condition. However, the efficacy, safety, and mechanisms of CM therapy require further investigation. Additionally, whether CM therapy alone or combined with Western medicine has better clinical efficacy for the treatment of these adverse reactions requires confirmation.
FOOTNOTES

Author contributions: Zhang M contributed to the manuscript writing and editing and the data collection; Chen J, Wang CX, and Lin NX contributed to the data analysis; Li X contributed to the study conceptualization and supervision; all authors have read and approved the final manuscript.

Informed consent statement: Written informed consent was obtained from the patient for the publication of this case and accompanying images.

Conflict-of-interest statement: The authors declare no conflicts of interest related to the publication of this report.

CARE Checklist (2016) statement: The authors read the CARE Checklist (2016) and prepared and revised the manuscript accordingly.

Open-Access: This article is an open-access article that was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution NonCommercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: https://creativecommons.org/Licenses/by-nc/4.0/

Country/Territory of origin: China

ORCID number: Miao Zhang 0000-0002-0340-2043; Jia Chen 0000-0002-7094-9460; Chun-Xiao Wang 0000-0002-5233-9079; Nai-Xuan Lin 0000-0002-6754-4606; Xin Li 0000-0003-2525-9679.

S-Editor: Zhang H
L-Editor: A
P-Editor: Zhang H

REFERENCES

1 World Health Organization International Agency for Research on Cancer (IARC). Vitamin K substances: IARC monograph. IARC Monogr Eval Carcinog Risks Hum 2000; 76: 417-486
2 De Jonge GA. Vruchtbeschadiging door farmaca. Folia Medica Neerlantica 1965; 8: 65
3 Wynn RM. The obstetric significance of factors affecting the metabolism of bilirubin, with particular reference to the role of vitamin K. Obstet Gynecol Surv 1963; 18: 333-354 [PMID: 14002133 DOI: 10.1097/00006066-196306000-00001]
4 Morell A, Betlloch I, Sevilla A, Bahuls J, Botella R. Morphea-like reaction from vitamin K1. J Int J Dermatol 1995; 34: 201-202 [PMID: 7751098 DOI: 10.1111/j.1365-4362.1995.tb01569.x]
5 Guidetti MS, Vincenzi C, Papi M, Tosti A. Sclerodermatous skin reaction after vitamin K1 injections. Contact Dermatitis 1994; 31: 45-46 [PMID: 7924294 DOI: 10.1111/j.1600-0536.1994.tb01905.x]
6 Pang BK, Munro V, Kossard S. Pseudoscleroderma secondary to phytoenoamine (vitamin K1) injections: Texier's disease. Australas J Dermatol 1996; 37: 44-47 [PMID: 8936071 DOI: 10.1111/j.1440-0960.1996.tb00994.x]
7 García-Gavin J, Goossens A, Tenstedt D. Allergic contact dermatitis due to cosmetics containing vitamin K1 oxide. Contact Dermatitis 2010; 62: 248-250 [PMID: 20433466 DOI: 10.1111/j.1600-0536.2010.01717.x]
8 Alonso-Illamares J, Ahmed I. Vitamin K1-induced localized scleroderma (morphea) with linear deposition of IgA in the basement membrane zone. J Am Acad Dermatol 1998; 38: 322-324 [PMID: 9486707 DOI: 10.1016/s0190-9622(98)70754-2]
9 Tsuboi R, Ogawa H. Skin eruption caused by fat-soluble vitamin K injection. J Am Acad Dermatol 1988; 18: 386-387 [PMID: 2964462 DOI: 10.1016/s0190-9622(88)80154-3]
10 Honda M, Hattori Y, Moriyama M. Skin eruptions caused by vitamin K. Hifuka no Rinsho 1970; 12: 295-301
11 Anekoji K. Skin eruptions caused by vitamin K injection. Chiryo 1970; 52: 1577-1587
12 Riley DS, Barber MS, Kienle GS, Aronson JK, von Schoen-Angerer T, Tugwell P, Kienle H, Helfand M, Altman DG, Sox H, Werthmann PG, Moher D, Rison RA, Shamseer L, Koch CA, Sun GH, Hanaway P, Sudak NL, Kaszkin-Bettag M, Carpenter JE, Gagnier JJ. CARE guidelines for case reports: explanation and elaboration document. J Clin Epidemiol 2017; 89: 218-235 [PMID: 28529185 DOI: 10.1016/j.jclinepi.2017.04.026]
13 Lauerma AI. Immunomodulation of contact dermatitis. Curr Probl Dermatol 1995; 22: 51-53 [PMID: 7587333 DOI: 10.1159/0000422431]
14 Ru Y, Xu XZ, Kuai L. Study on the Drugs Used in the Treatment of Eczema by Li Bin Lianxue Qianzhen. Zhong Yi Jichu Yi Xue Zazhi 2018; 24: 1773-1776
15 Kuai L, Xu XZ, Ru Y. Analysis of Li Bin's formula for treating psoriasis vulgaris with the method of cooling blood and burying Yang. Zhong Yi Jichu Yi Xue Zazhi 2018; 24: 1474-1477
16 Xu R, Miao X, Li X, Chen J, Zhang YN, Li B. Effects of cooling blood restrain Yang drugs on programmed death protein-1 and its ligands in patients with psoriasis blood heat syndrome. World Clin Drugs 2018; 39: 247-252
17 Piguet B, Bertheull F. Accidents cutanes allergiques provoques par une preparation injectable de vitamine K1 synthetique. Bull Soc Fr Dermatol Sphyllig 1964; 71: 486-490
18 Barnes HM, Sarkany I. Adverse skin reaction from vitamin K1. Br J Dermatol 1976; 95: 653-656 [PMID: 1009013 DOI: 10.1111/j.1365-2339.1976.tb01250.x]
Cutaneous allergic reaction to vitamin K

Zhang M et al. WJCC 2022; 10: 10754

19 Heydenreich G. A further case of adverse skin reaction from vitamin K1. Br J Dermatol 1977; 97: 697 [PMID: 603752 DOI: 10.1111/j.1365-2133.1977.tb07041.x]

20 Bullen AW, Miller JP, Cunliffe WJ, Losowsky MS. Skin reactions caused by vitamin K in patients with liver disease. Br J Dermatol 1978; 98: 561-565 [PMID: 148906 DOI: 10.1111/j.1365-2133.1978.tb01943.x]

21 Robinzon JW, Odorn RB. Delayed cutaneous reaction to phytonadione. Arch Dermatol 1978; 114: 1790-1792 [PMID: 735577]

22 Jean-Pastor MJ, Jean Ph, Gamby T. Accidents cutanés consecutifs it l'administration parenterale de vitamine K. Therapie 1981; 36: 369-374

23 Finkelstein H, Champion MC, Adam JE. Cutaneous hypersensitivity to vitamin Kt injection. J Am Acad Dermatol 1987; 16: 540-545 [DOI: 10.1016/S0190-9622(87)70071-1]

24 Joyce JP, Hooft AF, Weiss MM. Persistent cutaneous reaction to intramuscular vitamin K injection. Arch Dermatol 1988; 124: 27-28 [PMID: 3337543]

25 Sanders MN, Winkelmann RK. Cutaneous reactions to vitamin K. J Am Acad Dermatol 1988; 19: 699-704 [PMID: 2972759 DOI: 10.1016/S0190-9622(88)70225-x]

26 Pigatto PD, Bigardi A, Fumagalli M, Altomare GF, Riboldi A. Allergic dermatitis from parenteral vitamin K. Contact Dermatitis 1990; 22: 307-308 [PMID: 2143455 DOI: 10.1111/j.1600-0536.1990.tb01615.x]

27 Lee MM, Gellis S, Dover JS. Eczematous plaques in a patient with liver failure. Fat-soluble vitamin K hypersensitivity. Arch Dermatol 1992; 128: 260 [PMID: 1531408 DOI: 10.1001/archderm.128.2.257]

28 Tupp R, Tremaine R. Cutaneous eruption from vitamin K1 injection. J Am Acad Dermatol 1992; 27: 105-106 [PMID: 1535636 DOI: 10.1016/S0190-9622(98)00816-x]

29 Lemlich G, Green M, Phelps R, Lebwolh M, Don P, Gordon M. Cutaneous reactions to vitamin K1 injections. J Am Acad Dermatol 1993; 28: 345-347 [PMID: 8436655 DOI: 10.1016/10190-9622(93)70051-t]

30 Bruynzeel I, Hebeda CL, Folkers E, Bruynzeel DP. Cutaneous hypersensitivity reactions to vitamin K: 2 case reports and a review of the literature. Contact Dermatitis 1995; 32: 78-82 [DOI: 10.1111/j.1600-0536.1995.tb0750x]

31 Balato N, Cuccurullo FM, Patruno C, Ayala F. Adverse skin reactions to vitamin K1: report of 2 cases. Contact Dermatitis 1997; 38: 341-342 [PMID: 9857038 DOI: 10.1111/j.1600-0536.1997.tb0774.x]

32 Wong DA, Freeman S. Cutaneous allergic reaction to intramuscular vitamin K1. Australas J Dermatol 1999; 40: 147-152 [PMID: 10439527 DOI: 10.1046/j.1440-0960.1999.00348.x]

33 Wilkins K, DeKoven J, Assaad D. Cutaneous reactions associated with vitamin K1. J Cutan Med Surg 2000; 4: 164-168 [PMID: 11003724]

34 Sommer S, Wilkinson SM, Peckham D, Wilson C. Type IV hypersensitivity to vitamin K. Contact Dermatitis 2002; 46: 94-96 [PMID: 11918602 DOI: 10.1034/j.1600-0536.2002.460206.x]

35 Bui L, Huynt Th, Lam V. Skin reaction to subcutaneous phytonadione injections. Am J Health Syst Pharm 2004; 61: 407 [PMID: 15011773 DOI: 10.1093/ajhp/61.4.407]

36 Giménez-Arnau AM, Toll A, Pujol RM. Immediate cutaneous hypersensitivity response to phytonadione induced by vitamin K in skin diagnostic procedure. Contact Dermatitis 2005; 52: 284-285 [PMID: 15899004 DOI: 10.1111/j.1036-0076.2005.05734.x]

37 Page RC, Bercovitz Z. Dermatitis from topical application of 2-methyl-1-4-naphthoquinone (synthetic vitamin K analogue). Am J Med Sci 1942; 203: 566-569 [DOI: 10.1097/00000441-194204000-00012]

38 Executive summary of disease management of drug hypersensitivity: a practice parameter. Joint Task Force on Practice Parameters, the American Academy of Allergy, Asthma and Immunology, the American Academy of Allergy, Asthma and Immunology, the Joint Council of Allergy, Asthma and Immunology. Ann Allergy Asthma Immunol 1999; 83: 665-700 [PMID: 10616910]

39 Lorenz W, Reimann HJ, Schmaul A, Dormann P, Schwarz B, Neugebauer E, Doenincke A. Histamine release in dogs by Cremophor E1 and its derivatives: oxethylated oleic acid is the most effective constituent. Agents Actions 1977; 7: 63-67 [PMID: 7811464 DOI: 10.1007/BF01684882]

40 Dye D, Watkins J. Suspected anaphylactic reaction to Cremophor EL. Br Med J 1980; 280: 1353 [PMID: 7388538 DOI: 10.1136/bmj.280.6228.1353]

41 Moncret-Vautrin DA, Laxenaire MC, Viry-Babel F. Anaphylaxis caused by anti-cremophor EL IgG STS antibodies in a case of reaction to althesin. Br J Anaesth 1983; 55: 469-471 [PMID: 6849729 DOI: 10.1093/bja/55.5.469]

42 Aziz NA, Kamaruddin Z, Hassan Y, Jaalam K. Vitamin K1 induced anaphylactic shock. J Pharm Technol 1996; 12: 214-216 [DOI: 10.1177/875512259601200506]

43 Havel M, Muller M, Graninger W, Kurz R, Lindemayr H. Tolerability of a new vitamin K1 preparation for parenteral administration to adults: one case of anaphylactoid reaction. Clin Ther 1987; 9: 373-379 [PMID: 5607819]

44 Carton FX. Reaction allergique au cours d'un traitement: vitamine K, + extrait de foie. Bull Soc Fr Dermatol Syphil 1965; 72: 228

45 Texier L, Gendre P, Gauthier O. Hypodermites sclerodermiformes lombo-fessières induites par des injections medicamenteuses intramusculaires associees it la vitamine K. Ann Dermatol (Paris) 1982; 29: 64-66

46 Rommel A, Saurat JH. Hypodermitte Fessi-re-sclerodermiforme et injections de vitamine K, /~ la naissance. Ann Pediatr (Paris) 1982; 29: 64-66
