The kinetic theory of mutation rates

Lorenzo Pareschi ∗ Giuseppe Toscani †‡

December 2, 2022

Abstract

The Luria–Delbrück mutation model is a cornerstone of evolution theory and has been mathematically formulated in a number of ways. In this paper we illustrate how this model of mutation rates can be derived by means of classical statistical mechanics tools, in particular by modeling the phenomenon resorting to methodologies borrowed from classical kinetic theory of rarefied gases. The aim is to construct a linear kinetic model that can reproduce the Luria–Delbrück distribution starting from the elementary interactions that qualitatively and quantitatively describe the variation of mutated cells. The kinetic description is easily adaptable to different situations and makes it possible to clearly identify the differences between the elementary variations leading to the formulations of Luria–Delbrück, Lea–Coulson, and Kendall, respectively. The kinetic approach additionally emphasizes basic principles which not only help to unify existing results but also allow for useful extensions.

Keywords. Luria-Delbrück distribution; kinetic theory; mutation rates; Fokker-Planck equations.

1 Introduction

Statistical mechanics provides a powerful approach to the mathematical modeling of systems composed of a huge number of growing organisms interacting with each other and/or the environment, and has as its primary product the understanding of the relationship between parameters in microscopic rules and the resulting macroscopic statistical outcomes. In reason of this possibility, in the last two decades there has been a trend toward applications of statistical mechanics to interdisciplinary fields ranging from the classical biological context to new aspects of socio-economic phenomena [6, 36, 38].

In order to justify at best the statistical mechanics approach, classically used for gas dynamics where the number of molecules in a mole is quantified by Avogadro’s constant [7], the system under consideration must possess some minimum requirements. On the one hand, the population of entities composing the system must be at least of the order of millions, and on the other hand, the time in which we observe the system must be high enough to ensure that we are close to a stable statistical profile.

An issue that naturally satisfies these requirements is the time-evaluation of the number of mutation rates, a challenging problem which has attracted the interest of generations

∗Department of Mathematics and Informatics, University of Ferrara, Italy; lorenzo.pareschi@unife.it
†Department of Mathematics, University of Pavia, Italy; giuseppe.toscani@unipv.it
‡Institute of Applied Mathematics and Information Technologies, Pavia Italy
of both geneticists and mathematicians. This problem, which is essentially a matter of evaluating the growth of a population, originated from a series of classical experiments conducted by Luria and Delbrück [31], which led to a fundamental example of how mathematics can be used to estimate mutation rates. The model proposed by Luria and Delbrück assumed deterministic growth of mutant cells, which seemed too stringent an assumption to allow for efficient extraction of reliable information about mutation rates from experimental data.

This shortcoming of the Luria and Delbrück model was, some years later, remedied by a slightly different mathematical formulation proposed by Lea and Coulson [30], who adopted the Yule stochastic birth process to mimic the growth of mutant cells. In the ensuing decades the Lea–Coulson formulation occupied so prominent a place in the study of mutation rates that the Lea–Coulson formulation is now commonly referred to as the Luria–Delbrück model, as documented by the long list of contributions to the study of the Lea–Coulson formulation, including [1, 2, 3, 12, 25, 32, 33, 37], and numerous others cited in the essential review article by Zheng [45], which appeared at the end of the last century. In his paper, Zheng examines the various mathematical formulations, focusing on important practical issues closely linked with the distribution of the number of mutants. It appears evident that almost all of these formulations are prominently based on probabilistic arguments.

Adopting the point of view of statistical mechanics, the Luria–Delbrück problem has been first modeled only few years ago by Kashdan and one of the present authors in [26]. There, a kinetic description of the density of mutation rates has been considered, in which the Luria–Delbrück distribution appears as a suitable limit of a linear kinetic equation describing the growth of mutated cells. Following Luria and Delbrück’s original model, mutation is, in the kinetic picture, a consequence of a specific updating elementary rule, under which both the normal cells and the mutant cells grow deterministically but mutations occur randomly. The analysis in [26] has been subsequently extended by one of the present authors in [44] to cover the Lea and Coulson model [30], which is based on a different formulation under which the normal cells grow deterministically but the mutants grow stochastically [27].

As discussed in [40], the kinetic equations introduced in [26, 44] (see also [38]) are well-posed from a mathematical point of view, and various properties of the unique solutions are available to be studied from a numerical point of view.

The pioneering work [26] was credited with outlining the power of kinetic methodology to model growth processes in the field of mutation rates.

Indeed, for years various concepts and techniques of statistical mechanics have been successfully applied to a wide variety of complex systems, physical and otherwise, in an attempt to understand, starting from the elementary interactions, the emergent properties that appear therein.

In particular, this methodology has been employed to write down realistic evolution models for wealth in economics [4, 8, 9, 10, 11, 14, 15, 23, 24, 41]. In this context, it was rigorously shown that the asymptotic profile of wealth distribution, and the possibility to have Pareto-type tails, depends completely on the microscopic structure of binary trades [16, 35].

In the kinetic description of mutation rates, the core of the methodology is to identify the linear elementary interaction rule which drives the underlying process of mutation, in order to write a kinetic equation of the Boltzmann type for the distribution density of the mutated cells. As is common in this approach, the construction of the kinetic equation emphasizes the differences between the microscopic interaction rules of the original Luria–Delbrück distribution and the Lea–Coulson modification. Similarly to the collisional Boltzmann equation of rarefied gases in the case of Maxwell-type interactions [7], the kinetic description allows us to use in a natural and powerful way the weak formulation
in terms of the Fourier transform [5], which clarifies the nature of the assumption made by Lea and Coulson [30], namely the choice of a Yule process for the random growth of the mutated cells [27].

This challenging application shows that the kinetic description based on linear interactions is powerful and flexible, and allows us in most cases to establish a direct connection between the elementary interaction and the consequent macroscopic behavior. Once again, as happens in the study of wealth distribution in a multi-agent society, where the characteristics of the binary trade reflect into the steady profile of wealth, or in opinion formation [43], where the details of the binary exchange of opinion produce the steady distribution profile of opinion in the system, one can learn from microscopic dynamics the forthcoming macroscopic behavior of mutant cells, and associate with the various models the corresponding elementary mechanism of interaction.

Moreover, the kinetic description in terms of elementary interactions indicates in most cases the right way to design numerical algorithms useful to follow the process under study, where the numerical solution satisfies the main physical properties of the continuous one [39, 13]. Consequently, it gives a new possibility to approach the numerical simulation problem of mutation rates, and to compare it with existing ones [46, 47].

2 Basics of kinetic theory

The objective of linear kinetic theory is to determine the time evolution of the statistical distribution of a phenomenon subject to frequent elementary variations of the same type. Let \(x \in I \subseteq \mathbb{R} \) denote the amount of a certain evolving quantity (wealth, opinion, weight, . . .), and let us denote by \(f(x, t) \, dx, x \in \mathbb{R}, \) the amount of this quantity which at time \(t \geq 0 \) lies in the interval \((x, x + dx)\). Suppose moreover that the quantity \(f(x, t) \) changes over time due to repeated linear elementary variations given by

\[
x_* = Ax + B,
\]

where the coefficients \(A \) and \(B \) can be constant or, more generally, random quantities. According to classical kinetic theory [7, 38], the evolution in time of the density \(f(x, t) \) is captured by looking at its time variation along the observable quantities \(\varphi(x) \), given by the equation

\[
\frac{d}{dt} \int_{I} \varphi(x) f(x, t) \, dx = \frac{1}{\tau} \left\langle \int_{I} [\varphi(x_*) - \varphi(x)] f(x, t) \, dx \right\rangle.
\]

The integral on the right-hand side of equation (2) measures the variation of the observable quantity \(\varphi \) consequent to the variation of the quantity \(x \) under consideration, determined by the elementary law (1). The presence of the mean \(\langle \cdot \rangle \) is due to the (possible) presence of random quantities in the coefficients \(A \) and \(B \). The positive part of the integral quantifies the variation of \(\varphi \) consequent to the change from \(x_* \) to \(x \) (gain term), while the negative part of the integral quantifies the variation of \(\varphi \) consequent to the change from \(x \) to \(x_* \) (loss term). Last, the time frequency \(1/\tau \) is a measure of the speed at which the phenomenon relaxes towards the steady or self-similar solution [7]. This quantity can be easily absorbed by a suitable scaling of the time variable.

Note that, starting from equation (2), it is immediate to determine the evolution of the principal moments of the distribution function \(f(x, t) \), that are obtained by choosing the observable quantity \(\varphi(x) = x^n, \) \(0 \leq n \in \mathbb{N}, \) and consequently to identify eventual conservation laws.

As recently described in [22], this methodology can be profitably applied both to describe the well-known Galton’s experiment [20, 21], and to obtain information about its
behavior over long periods of time. Indeed, Galton bean machine represents a clear visual approach to link repeated elementary interactions to a consequent universal steady state density. In this famous experiment, balls subject to gravity exhibit repeated symmetric variations of direction before falling on the ground. Each variation is determined by interaction of the ball with the vertex of an isosceles triangle. At the bottom, if the number of balls is sufficiently high, one can catch a glimpse of the profile of the Gaussian density

$$M(x) = \frac{1}{\sqrt{2\pi\sigma}} \exp\left\{-\frac{x^2}{2\sigma}\right\}.$$

Galton experiment is equivalent to a sequence of Bernoulli trials (or binomial trials), in which the trial is a random experiment with exactly two possible outcomes, success and failure. The probability of success (1/2 in Galton experiment) is the same every time the experiment is conducted. The classical way to give a mathematical interpretation of the result is to pass from the discrete to the continuous description. In the half-plane \((x, t)\), \(t \geq 0\) the continuous description of the time variation of the probability \(p(x, t)\) to find the ball in the interval \((x, x + \Delta x)\) at time \(t + \Delta t \geq 0\) is expressed by the relationship

$$p(x; t + \Delta t) = \frac{1}{2}p(x + \Delta x, t) + \frac{1}{2}p(x - \Delta x, t).$$

Expanding in Taylor’s series, at the first order in time the left-hand side and at the second order in position the right-hand side, shows that in the limit \((\Delta x)^2/\Delta t \to \sigma > 0\), \(p(x, t)\) satisfies the linear diffusion equation

$$\frac{\partial p}{\partial t} = \frac{\sigma}{2} \frac{\partial^2 p}{\partial x^2}.$$

At this point, it is enough to observe that in Galton experiment the repeated trials start from \(x = 0\). Consequently, if the number of repeated trials is sufficiently large, the resulting profile is well approximated by the source-type solution of the linear diffusion equation. The source-type solution to the diffusion equation at time \(t > 0\) is the Gaussian density

$$M(x, t) = \frac{1}{\sqrt{2\pi\sigma t}} \exp\left\{-\frac{x^2}{2\sigma t}\right\}.$$

This gives an answer to the visual result of the experiment.

Let us now resort to the classical approach of collisional kinetic theory described above [22]. Let us consider a huge number of identical Galton bean machines, and let us run a trial of the experiment simultaneously on all machines. Let us denote by \(f(x, t)\) the percentage of balls which at time \(t \geq 0\) lie in the interval \((x, x + dx)\). The quantity \(f(x, t)\) changes in time since balls are subject to interactions which modify their position. The elementary interaction of type (1) is now given by

$$x_* = x + \sqrt{\sigma} \eta,$$

where \(\eta\) is a symmetric random variable taking values \(\pm 1\) with probability \(1/2\) (\(2\sqrt{\sigma}\) is the length of the base of the triangles). Let us further suppose that the trial starts with balls located in \(x = 0\), and let us compute, via the kinetic equation (2), the time evolution of the principal moments.

The choice \(\varphi(x) = 1\) gives

$$\frac{d}{dt} \int_\mathbb{R} f(x, t) \, dx = 0,$$

which shows that the mass is preserved in time. This means that \(f(x, t)\) remains a probability density for all \(t \geq 0\), if it is so initially.
Analogously, if we choose \(\phi(x) = x \), since \(\langle x^* - x \rangle = \langle \eta \rangle = 0 \), we find that the mean value is preserved in time. Thus, the mean value of \(f(x, t) \), equal to zero at time \(t = 0 \), is equal to zero for all times \(t \geq 0 \).

Moreover, since \(\langle x^2 - x^2 \rangle = \langle 2x \sqrt{\sigma \eta} + \sigma \eta^2 \rangle = \sigma \),

\[
\frac{d}{dt} \int_{\mathbb{R}} x^2 f(x, t) \, dx = \frac{\sigma}{\tau} \int_{\mathbb{R}} f(x, t) \, dx = \frac{\sigma}{\tau},
\]

Consequently, the variance of the density function diverges with time. This shows that we cannot expect that the solution will tend for large times towards a steady state of finite variance.

This obstacle can be circumvented by suitably shrinking the domain. Given a positive constant \(\lambda < 1 \) let us consider the modified interaction

\[x^* = x(1 - \lambda) + \sqrt{\sigma} \eta, \tag{4} \]

which still belongs to the class of interactions (1).

The shrinking does not modify the characteristics of the shape of \(f(x, t) \). Also, the mean value of \(f(x, t) \) remains equal to zero for all times \(t \geq 0 \). However, now \(\langle x^2_* - x^2 \rangle = \sigma - \lambda(2 - \lambda)x^2 \). Consequently

\[
\frac{d}{dt} \int_{\mathbb{R}} x^2 f(x, t) \, dx = \frac{\sigma}{\tau} \int_{\mathbb{R}} f(x, t) \, dx - \frac{\lambda(2 - \lambda)}{\tau} \int_{\mathbb{R}} x^2 f(x, t) \, dx. \tag{5}
\]

The variance of the density function remains uniformly bounded in time. Indeed, solving the differential equation (5) we obtain

\[
\int_{\mathbb{R}} x^2 f(x, t) \, dx = e^{-\lambda(2-\lambda)/\tau} \int_{\mathbb{R}} x^2 f_0(x) \, dx + \frac{\sigma}{\lambda(2-\lambda)} \left[1 - e^{-\lambda(2-\lambda)/\tau} \right].
\]

This suggest that, in presence of the elementary variation (4), the solution to the kinetic equation could relax towards a universal steady state. This characteristic can be captured by resorting to a second ingredient, which is now part of classical kinetic theory, which consists in studying the problem in the so-called grazing collision limit (cfr. [18] and the references therein). By this limit procedure, we mainly consider only interactions which produce a very small modification of the pre-interaction value (from this the name grazing which is borrowed from the kinetic theory of rarefied gases, where grazing interactions describe a binary collision in which the outgoing post-collision velocities remain very close to the ingoing ones), while waiting enough time to see a finite variation of the observable quantities.

Let us apply the grazing procedure to the modified Galton experiment. We reduce the size of the triangles, the shrinking parameter and the time frequency in such a way to still observe the evolution of the variance towards a value bounded away from zero. By looking at the coefficients of equation (5) we realize that this can be done by setting, for \(\varepsilon \ll 1 \)

\[
\sigma \to \varepsilon \sigma; \quad \lambda \to \varepsilon \lambda; \quad \tau \to \varepsilon \tau. \tag{6}
\]

The meaning of the scaling (6) is clear. Within this scaling, each interaction produces only a small variation of the position variable. To see its effect on the variation of the observable, one has to suitably increase the time frequency of the interactions!

In this regime, for a given regular observable function \(\phi(x) \), expanding in Taylor series up to the second order, and neglecting terms of order \(o(\varepsilon) \) (cf. [18] for details) we can write

\[
\langle (\phi(x_*) - \phi(x)) \rangle \simeq \phi'(x)(x_* - x) + \frac{1}{2}\phi''(x)(x_* - x)^2 \simeq
\]
\[\varepsilon \left[-\lambda x \varphi'(x) + \frac{\sigma}{2} \varphi''(x) \right]. \]

Setting for simplicity \(\tau = \varepsilon \) we conclude that the kinetic equation is well approximated by
\[
\frac{d}{dt} \int_{\mathbb{R}} \varphi(x)f(x,t) \, dx = \int_{\mathbb{R}} \left[-\lambda x \varphi'(x) + \frac{\sigma}{2} \varphi''(x) \right] f(x,t) \, dx. \quad (7)
\]
Equation (7) is the weak form of the Fokker–Planck equation [18]
\[
\frac{\partial f(x,t)}{\partial t} = \frac{\sigma}{2} \frac{\partial^2 f(x,t)}{\partial x^2} + \lambda \frac{\partial (x f(x,t))}{\partial x}.
\]
The equilibrium solution of the Fokker–Planck equation (of unit mass) is the Gaussian probability density [18]
\[
f_{\infty}(x) = \sqrt{\frac{\lambda}{4\pi \sigma}} \exp \left\{ -\frac{\lambda x^2}{\sigma} \right\}. \quad (8)
\]
The kinetic approach justifies the experimental evidence.

Remark 1 The kinetic description remains valid even in the case in which the shrinking parameter \(\lambda \) is assumed equal to zero. In this case, instead of the Fokker–Planck equation we obtain that the grazing limit produces the linear diffusion equation classically obtained by adopting the continuous description in the half-plane we briefly illustrated before.

Remark 2 At difference with the classical Galton bean machine, where, as explained above, the normal density can be observed only if all the repeated trials start from \(x = 0 \), in the kinetic approach, that leads to the Fokker–Planck equation, any initial probability density of finite variance is shown to converge towards the Gaussian density (8) [18].

3 The kinetic description of mutation rates

The procedure of Section 2 is quite general, and can be easily adapted for studying the problem of mutation rates. This will be the object of this Section. Before illustrating the kinetic approach, let us briefly discuss the classical setting.

The most-used formulations of a mutation are generally expressed by
(A) grey \(\rightarrow \) black,
(B) grey \(\rightarrow \) grey + black.

Here, grey stands for a normal cell and black a mutant cell. Note that under formulation (A), a mutation entails the loss of the normal cell. In formulation (B), the normal cell continues to live after a mutation. Consequently, the occurrence of a mutation does not decrease the rate at which mutations occur in subsequent time intervals. Assumption (B) was implicitly made by Lea and Coulson [30] and Armitage [2]. Since our goal is to present a kinetic description of the Lea–Coulson formulation, in what follows we will assume formulation (B).

The first mathematical description of the mutation process, which was subsequently modified by Lea and Coulson, goes back to Luria and Delbrück [31]. Because all subsequent formulations are simple variations of this formulation, we detail below its underlying assumptions.

The process starts at time \(t = 0 \) with one normal cell and no mutants. Normal cells are assumed to grow deterministically at a constant rate \(\beta_1 \). Therefore, the number of normal cells at time \(t > 0 \) is \(N(t) = e^{\beta_1 t} \).

Mutants grow deterministically at a constant rate \(\beta_2 \). If a mutant is generated by a normal cell at time \(s > 0 \), then the clone spawned by this mutant will be of size \(e^{\beta_2 (t-s)} \).
for any $t > s$. Mutations occur randomly at a rate proportional to $N(t)$. If μ denotes the per-cell per-unit-time mutation rate, then the standard assumption is that mutations occur in accordance with a Poisson process having the intensity function

$$
\nu(t) = \mu N(t) = \mu e^{\beta t}.
$$

Consequently, the expected number of mutations occurring in the time interval $[0, t)$ is

$$
\int_0^t \nu(s) \, ds = \frac{\mu}{\beta} (e^{\beta t} - 1).
$$

Let $X(t)$ denote the number of mutants existing at time t, and $f(n, t)$ the probability of having n mutants at time t. The previous assumptions imply that $X(t)$ can be expressed as

$$
X(t) = \sum_{i=1}^{M(t)} \exp\{\beta_2(t - \tau_i)\}, \quad \text{if} \quad M(t) \geq 1,
$$

while

$$
X(t) = 0 \quad \text{if} \quad M(t) = 0.
$$

Here, τ_i are the random times at which mutations occur, and $M(t)$ stands for the mutation process which is a Poisson process with intensity function $\nu(t)$ given in (9). The probabilistic description (10) allows for recovering the various quantities like mean, variance and cumulants (cf. the detailed historical description in [45]).

An interesting alternative to the probabilistic construction described above, is to use the approach of Section 2. Within this approach, the study of the time evolution of the probability distribution $f(n, t)$ of mutants, together with a reasonable explanation of the growth process induced by this distribution, is achieved by means of linear kinetic models [26, 44].

In the rest of the paper, we will assume for simplicity a continuous parameter v for the number of mutants, and that the time variation of the distribution $f(v, t)$ of mutants is based on elementary interactions of type (1). The interaction rule described by the previous probabilistic description indeed corresponds to assuming that, at time $t > 0$, the microscopic growth of mutants is driven by the elementary law of variation

$$
v^* = (1 + \beta_2)v + \eta(t),
$$

where $\eta \geq 0$ (absence of backward mutations) is a discrete random variable distributed according to a Poisson density $p(\nu(t))$ of intensity given by (9).

This makes an essential difference between the elementary interactions considered in Section 2 and the present one. Now, the intensity of the elementary interaction varies in time, due to time variable random contribution. In reason of this, the principal moments of the distribution, including the mean value, are time dependent.

Also, for any given v, the number of mutants after the interaction can only assume the values

$$v_i^* = (1 + \beta_2)v + i, \quad i \in \mathbb{N}.
$$

The interaction (11) then leads to the kinetic equation (in weak form) [26]

$$
\frac{d}{dt} \int_{\mathbb{R}_+} f(v, t) \varphi(v) \, dv = \sum_{i=1}^{\infty} p_i(\nu(t)) \int_{\mathbb{R}_+} (\varphi(v_i^*) - \varphi(v)) f(v, t) \, dv,
$$

where $\varphi(v)$ is a smooth function. The condition of having no mutants at time $t = 0$ translates into the initial condition

$$
f(v, t = 0) = f_0(v) = \delta_0(v),
$$

where $\delta_0(v)$ is the Dirac delta function.
where $\delta_a(v)$ indicates as usual the Dirac delta function concentrated at $v = a$.

Interaction (11) belongs to the class of linear interactions (1), and it is sufficiently flexible to describe both the original Luria–Delbrück and Lea–Couls on formulations.

In any of the aforementioned formulations of the growth of the mutant cells, the microscopic process is due to two simultaneous events. The first one describes the intrinsic growth of the mutants, which can be represented by a general interaction of type

$$v' = v + L(v),$$ \hspace{1cm} (14)

where $v \to L(v) \geq 0$, as in (1), is a linear map acting on v. Note that the choice $L(v) = \beta_2v$ gives the classical Luria–Delbrück relation (11). The map can be either deterministic or random. In the latter case, corresponding to the Lea–Coulson formulation, denoting by $\langle \cdot \rangle$ the mathematical expectation, in order to maintain the same mean growth of the deterministic interaction we will assume that

$$\langle L(v) \rangle = \beta_2v.$$ \hspace{1cm} (15)

The second event describes the growth of the mutant cells due to the presence of the normal ones which can mutate according to assumption (B). In our picture this corresponds to assuming that the mutants are immersed in a background (of normal cells), which, due to their random mutation rule, undergo interactions which increase the number of mutants according to the time-dependent probability density $M(w, t)$. In the Luria–Delbrück setting the probability density of the background depends on time, and it is a probability mass function of Poisson type, with intensity $\nu(t) = \mu N(t)$.

This corresponds to say that the background density takes the form

$$M(w, t) = \sum_{k \geq 0} \frac{\nu(t)^k e^{-\lambda}}{k!} \delta_k(w),$$

where, as in (13), $\delta_k(w)$ indicate the Dirac delta functions located in the points $k \in \mathbb{N}_+$. Consequently,

$$\int_{\mathbb{R}_+} M(w, t) dw = 1; \quad \int_{\mathbb{R}_+} wM(w, t) dw = \mu e^{\beta_1t}.$$ \hspace{1cm} (16)

Coupling the interaction (11) with the contribution due to the background, one obtains the general elementary interaction

$$v^* = v + L(v) + w.$$ \hspace{1cm} (17)

Following the arguments of Section 2, the effect of interactions (17) on the time variation of the mutant density can be quantitatively described by a linear Boltzmann-type equation in which the variation of the density $f = f(v, t)$ is due to a balance between gain and loss terms that, for the given value v, take into account all the interactions of type (17) which end up with the number v (gain term) as well as all the interactions which, starting from the number v, lose this value after interaction (loss term). For a given observable $\varphi(v)$, the kinetic equation for the density $f(v, t)$ is given by

$$\frac{d}{dt} \int_{\mathbb{R}_+} \varphi(v)f(v, t) dv = \left\langle \int_{\mathbb{R}_+^2} (\varphi(v^*) - \varphi(v))f(v, t)M(w, t) dv dw \right\rangle.$$ \hspace{1cm} (18)

In equation (18), the presence of $\langle \cdot \rangle$ takes into account the possibility that $L(v)$ could be a random quantity. Note that the choice $\varphi(v) = 1$ implies that $f(v, t)$ remains a probability density if it is so initially:

$$\int_{\mathbb{R}_+} f(v, t) dv = \int_{\mathbb{R}_+} f_0(v) dv = 1.$$ \hspace{1cm} (19)
Moreover, given the elementary interaction (17), choosing \(\varphi(v) = v \) shows that the total mean number of mutants satisfies the differential equation

\[
\frac{dm(t)}{dt} = \int_{\mathbb{R}^+} \langle L(v) \rangle f(v, t) dv + \mu e^{\beta_1 t}.
\]

(20)

We note that the choice \(\langle L(v) \rangle = \beta_2 v \) implies

\[
\frac{dm(t)}{dt} = \beta_2 m(t) + \mu e^{\beta_1 t},
\]

(21)

which, coupled with the initial condition \(m(0) = 0 \) induced by (13), leads to the explicit computation of the mean value of the Luria–Delbrück distribution (\(\beta_1 \neq \beta_2 \)), for any time \(t > 0 \),

\[
m(t) = \frac{\mu}{\beta_1 - \beta_2} \left(e^{\beta_1 t} - e^{\beta_2 t} \right).
\]

This expression is independent of the particular form of the map \(L \), provided the map is such that condition (15) is satisfied. In other words, at the level of the growth of the mean value, the original formulation by Luria–Delbrück, and its modification considered by Lea–Coulson, produce the same time behaviour.

3.1 The role of Fourier transform

As is usually done for this type of kinetic model, most of the analytical properties of the solution can be obtained by resorting to Fourier analysis. The choice \(\varphi(v) = e^{-i\xi v} \) in the formulation (18) is, in fact, equivalent to the Fourier-transformed equation

\[
\frac{\partial \hat{f}(\xi, t)}{\partial t} = \hat{M}(\xi, t) \int_{\mathbb{R}^+} \langle e^{-i\xi L(v)} \rangle e^{-i\xi v} f(v, t) dv - \hat{f}(\xi, t).
\]

(22)

In (22) we used the fact that \(M(w, t) \) is a probability mass function, so that \(\hat{M}(0, t) = 1 \). The initial condition (13) turns into

\[
\hat{f}_0(\xi) = 1.
\]

Note that, since \(M(w, t) \) is a probability mass function of Poisson type with intensity \(\nu(t) = \mu e^{\beta_1 t} \),

\[
\hat{M}(\xi, t) = \exp \{ \mu e^{\beta_1 t} (e^{-i\xi} - 1) \}.
\]

Clearly, the explicit evaluation of the gain term on the right-hand side of equation (22) requires the knowledge of \(L(v) \). In the case in which \(L(v) = \beta_2 v \), equation (22) takes the form [38, 44]

\[
\frac{\partial \hat{f}(\xi, t)}{\partial t} = \hat{M}(\xi, t) \hat{f}((1 + \beta_2)\xi) - \hat{f}(\xi, t).
\]

(23)

Likewise, by assuming that \(L(v) \) is a Poisson variable of mean value \(\beta_2 v \), thus satisfying (15),

\[
\langle e^{-i\xi L(v)} \rangle = \exp \{ \beta_2 v (e^{-i\xi} - 1) \} = \exp \{ -iv\beta_2 (e^{-i\xi} - 1) \},
\]

(24)

and equation (22) becomes [44]

\[
\frac{\partial \hat{f}(\xi, t)}{\partial t} = \hat{M}(\xi, t) \hat{f} \left(\frac{\xi + \beta_2 i (e^{-i\xi} - 1)}{t}, t \right) - \hat{f}(\xi, t).
\]

(25)

Equations (23) and (25) differ only in the gain term on the right-hand side, where the Fourier transform of the probability density is evaluated at different points.
The existence of a solution to equation (23) and (25) can be seen easily using well-consolidated techniques of common use in kinetic theory of social phenomena [18, 40]. The main argument is to resort to the class of Fourier-based metrics introduced in [19].

For a given pair of random variables X and Y distributed according to f and g these metrics read

$$d_r(X, Y) = \sup_{\xi \in \mathbb{R}} \frac{|\hat{f}(\xi) - \hat{g}(\xi)|}{|\xi|^r}, \quad r > 0. \quad (26)$$

As shown in [19], the metric $d_r(F, G)$ is finite any time the probability measures f and g have equal moments up to $[r]$, namely the entire part of $r \in \mathbb{R}_+$, or equal moments up to $r - 1$ if $r \in \mathbb{N}$, and it is equivalent to the weak* convergence of measures for all $r > 0$. Among other properties, it is easy to see [19, 38] that, for two pairs of random variables X, Y, where X is independent from Y, and Z, \tilde{Z} (Z independent from \tilde{Z}), and any constant c

$$d_r(X + Y, Z + \tilde{Z}) \leq d_r(X, Z) + d_r(Y, \tilde{Z})$$

$$d_r(cX, cY) = |c|r d_r(X, Y). \quad (27)$$

These properties classify d_r as an ideal probability metric in the sense of Zolotarev [48].

To illustrate how these metric work, we give some details.

Suppose the goal is to prove that the operator on the right-hand side of (22) is Lipschitz continuous in this metric. In order to show this, if $\widehat{f}_1(\xi, t)$ and $\widehat{f}_2(\xi, t)$ are two solutions to equation (23) corresponding to the initial data $\widehat{f}_{0,1}(\xi)$ and $\widehat{f}_{0,2}(\xi)$, it holds that

$$\frac{\partial}{\partial t} \frac{\widehat{f}_1(\xi, t) - \widehat{f}_2(\xi, t)}{|\xi|^s} + \frac{\widehat{f}_1(\xi, t) - \widehat{f}_2(\xi, t)}{|\xi|^s} = \frac{\widehat{f}_1((1 + \beta_2)\xi, t) - \widehat{f}_2((1 + \beta_2)\xi, t)}{|\xi|^s} \widehat{M}(\xi, t).$$

On the other hand, since $|\widehat{M}(\xi, t)| \leq 1$,

$$\sup_{\xi \in \mathbb{R}} \left| \frac{\widehat{f}_1((1 + \beta_2)\xi, t) - \widehat{f}_2((1 + \beta_2)\xi, t)}{|\xi|^s} \widehat{M}(\xi, t) \right| \leq \sup_{\xi} \left| \frac{\widehat{f}_1((1 + \beta_2)\xi, t) - \widehat{f}_2((1 + \beta_2)\xi, t)}{|\xi|^s} \right| = (1 + \beta_2)^s d_s(f_1(t), f_2(t)). \quad (28)$$

Thanks to (28),

$$\left| \frac{\partial}{\partial t} \frac{\widehat{f}_1(\xi, t) - \widehat{f}_2(\xi, t)}{|\xi|^s} + \frac{\widehat{f}_1(\xi, t) - \widehat{f}_2(\xi, t)}{|\xi|^s} \right| \leq (1 + \beta_2)^s d_s(f_1(t), f_2(t)),$$

which, by Gronwall’s inequality, implies

$$d_s(f_1(t), f_2(t)) \leq d_s(f_{0,1}, f_{0,2}) \exp \{(1 + \beta_2)^s - 1\} t, \quad (29)$$

which implies uniqueness.

The same method applies to equation (25). In this case, by choosing $s = 1$, formula (28) reads

$$\sup_{\xi} \left| \frac{\widehat{f}_1(\xi + \beta_2 i (e^{-i\xi} - 1), t) - \widehat{f}_2(\xi + \beta_2 i (e^{-i\xi} - 1), t)}{|\xi|} \left| \widehat{M}(\xi, t) \right| \right| \leq \sup_{\eta} \left| \frac{\widehat{f}_1(\eta, t) - \widehat{f}_2(\eta, t)}{|\eta|} \right| \frac{|\xi + \beta_2 i (e^{-i\xi} - 1)|}{|\xi|} \leq (1 + \beta_2) d_1(f_1(t), f_2(t)). \quad (30)$$
The previous analysis indicates that one can obtain both existence and uniqueness of a solution to equation (22) for a wide choice of the map $\mathcal{L}(v)$.

The Fourier-transformed kinetic equation further allows for a direct evaluation of the evolution equation for the cumulant-generating function, defined as

$$k(\xi, t) = \log \hat{f}(\xi, t).$$ \hfill (31)

As an example, a simple computation on equation (23) shows that $k(\xi, t)$ solves

$$\frac{\partial k(\xi, t)}{\partial t} = \exp \{ k((1 + \beta_2)\xi, t) - k(\xi, t) \} \hat{M}(\xi, t) - 1.$$ \hfill (32)

Generally, the cumulants can be extracted from the cumulant-generating function via differentiation (at zero) of $k(\xi, t)$. That is, the cumulants appear as the coefficients in the Maclaurin series of $k(\xi, t)$. In the case under consideration, the modulus of the first coefficient coincides with the mean value, and the second one with the variance. The evaluation of the subsequent derivatives of $k(\xi, t)$ appears extremely cumbersome, and the best one can do explicitly is to evaluate the first two coefficients of the Maclaurin series. On the other hand, since the explicit expression of the solution to the Boltzmann equation (22) is not known, the description of the solution though its cumulants is one of the main operative possibilities.

\section{The quasi-invariant limit of the growth of mutant cells}

As it happens in the Galton experiment discussed in Section 2, in general it is quite difficult to obtain explicit results, or to describe precisely the main properties of the solution to equation (22). Also, as explained at the end of the previous section, it is cumbersome to deduce from equation (32) a recursive relation which allows for detailed computation of the cumulants. This difficulty is well known to people working on this topic, where explicit results are rarely present, independent of the different formulations.

From this point of view, while alternative to standard probabilistic approaches, the kinetic picture does not produce evident simplifications.

On the other hand, as discussed in Section 2, the kinetic formulation allows for the possibility to make use of the grazing asymptotics, which, as we showed in the case of Galton experiment, result in simplified models of Fokker–Planck type, for which it is relatively easier to achieve in many cases the relevant properties of the solution, if not its analytic expression.

In order to give, in the present case, a physical basis to these asymptotics, let us discuss in some detail the evolution equation for the mean, given by (21). This evolution equation has a universal value, since it does not depend on the particular choice of the map \mathcal{L}, but on its mean value only. Let $\varepsilon \ll 1$. Then, the scaling

$$\beta_1 \rightarrow \varepsilon \beta_1, \quad \beta_2 \rightarrow \varepsilon \beta_2, \quad \mu \rightarrow \varepsilon \mu, \quad t \rightarrow \varepsilon t = \tau,$$ \hfill (33)

is such that, while the elementary interaction is scaled by ε, the mean value of the density $f(v, t)$ satisfies

$$\frac{df(t)}{dt} = \varepsilon \beta_2 f(t) + \varepsilon \mu e^{\varepsilon \beta_1 t} = \varepsilon \left(\beta_2 f(t) + \mu e^{\beta_1 \tau} \right).$$

If we set $g_\varepsilon(v, \tau) = f(v, t)$, then $m_{g_\varepsilon}(\tau) = m_f(t)$, and the mean value of the density $g_\varepsilon(v, \tau)$ solves

$$\frac{d g_\varepsilon(\tau)}{d\tau} = \beta_2 g_\varepsilon(\tau) + \mu e^{\beta_1 \tau}.$$ \hfill (34)
Note that equation (34) does not depend explicitly on the scaling parameter \(\varepsilon \). In other words, the idea is to reduce the growth of the mutants by reducing the values of the constants, waiting enough time to get the same law for the mean value of the density of mutants. Note that the time scaling is equivalent to the scaling we did on Galton experiment in Section 2, where we scaled the frequency \(\tau \rightarrow \varepsilon \).

Using (33), we can write the kinetic equation (18) in terms of \(g_\varepsilon(v, \tau) \). This equation reads

\[
\frac{d}{d\tau} \int_{\mathbb{R}_+} \varphi(v) g_\varepsilon(v, \tau) \, dv = \frac{1}{\varepsilon} \left(\int_{\mathbb{R}_+^2} \left(\varphi(v_\varepsilon^*) - \varphi(v) \right) g_\varepsilon(v, \tau) M_\varepsilon(w, \tau) \, dw \right). \tag{35}
\]

In (35),

\[
v_\varepsilon^* = v + \mathcal{L}_\varepsilon(v) + w,
\]

and \(\mathcal{L}_\varepsilon(v) \) denotes the map with mean growth \(\varepsilon \beta_2 \). Moreover, \(M_\varepsilon(v, \tau) \) is the Poisson process with intensity \(\varepsilon \mu \) and growth parameter \(\varepsilon \beta_1 \).

By means of equation (35) we can consequently investigate the situation in which most of the interactions produce a very small growth of mutants \((\varepsilon \rightarrow 0) \), while at the same time the evolution of the density is such that (34) remains unchanged. In accord with the discussion of Section 2, where a similar procedure has been applied to the kinetic model simulating Galton board, we will denote this limit as the quasi-invariant growth limit.

Under the scaling (33), equation (22) for \(g_\varepsilon(v, \tau) \) reads

\[
\frac{\partial \hat{g}_\varepsilon(\xi, \tau)}{\partial \tau} = \frac{1}{\varepsilon} \left[\hat{M}_\varepsilon(\xi, \tau) \int_{\mathbb{R}_+} (e^{-i\xi \mathcal{L}_\varepsilon(v)}) e^{-i\xi v} g_\varepsilon(v, \tau) \, dv - \hat{g}_\varepsilon(\xi, \tau) \right]. \tag{36}
\]

Let us observe that equation (36) can be written equivalently as

\[
\frac{\partial \hat{g}_\varepsilon(\xi, \tau)}{\partial \tau} = \frac{1}{\varepsilon} \int_{\mathbb{R}_+} \left(\left(e^{-i\xi \mathcal{L}_\varepsilon(v)} \right) \hat{M}_\varepsilon(\xi, \tau) - 1 \right) e^{-i\xi v} g_\varepsilon(v, \tau) \, dv, \tag{37}
\]

where

\[
\hat{M}_\varepsilon(\xi, \tau) = \exp \left\{ \varepsilon \mu e^{\beta_1 \tau} (e^{-i\xi} - 1) \right\}
\]

is the Fourier transform of the Poisson process \(M_\varepsilon(v, \tau) \). By assuming that \(\mathcal{L}(v) \) is a Poisson variable of mean value \(\beta_2 v \), so that (24) holds, (37) becomes

\[
\frac{\partial \hat{g}_\varepsilon(\xi, \tau)}{\partial \tau} = \frac{1}{\varepsilon} \int_{\mathbb{R}_+} \left(\exp \left\{ \varepsilon \left(\beta_2 v + \mu e^{\beta_1 \tau} \right) (e^{-i\xi} - 1) \right\} - 1 \right) e^{-i\xi v} g_\varepsilon(v, \tau) \, dv,
\]

which, expanding the exponential function in the integral in Taylor series gives

\[
\frac{\partial \hat{g}_\varepsilon(\xi, \tau)}{\partial \tau} = (e^{-i\xi} - 1) \int_{\mathbb{R}_+} \left(\beta_2 v + \mu e^{\beta_1 \tau} \right) e^{-i\xi v} g_\varepsilon(v, \tau) \, dv + \varepsilon R(\xi, \tau)
\]

\[
= (e^{-i\xi} - 1) \left(i\beta_2 \frac{\partial \hat{g}_\varepsilon(\xi, \tau)}{\partial \xi} + \mu e^{\beta_1 \tau} \hat{g}_\varepsilon(\xi, \tau) \right) + \varepsilon R_\varepsilon(\xi, \tau). \tag{38}
\]

The remainder term \(R \) is such that

\[
|R_\varepsilon(\xi, \tau)| \leq \frac{1}{2} (e^{-i\xi} - 1)^2 \int_{\mathbb{R}_+} \left| \beta_2 v + \mu e^{\beta_1 \tau} \right|^2 g_\varepsilon(v, \tau) \, dv. \tag{39}
\]

Standard computations then show that, for any fixed time \(\tau > 0 \), the remainder term remains uniformly bounded with respect to \(\varepsilon \). Therefore, letting \(\varepsilon \rightarrow 0 \) we obtain that the limit function \(g(v, \tau) \) satisfies the equation

\[
\frac{\partial \hat{g}(\xi, \tau)}{\partial \tau} = (e^{-i\xi} - 1) \left(i\beta_2 \frac{\partial \hat{g}(\xi, \tau)}{\partial \xi} + \mu e^{\beta_1 \tau} \hat{g}(\xi, \tau) \right). \tag{40}
\]
We remark that equation (40) is the evolution equation for the Fourier transform of the Lea–Coulson distribution function [45]. Consequently, the Lea–Coulson formulation of the Luria–Delbrück distribution coincides with the quasi-invariant growth limit of the kinetic model (25), where the self-growth of the mutated cells follows a Poisson process of intensity proportional to the number \(v \) of mutated cells. Under this assumption, differently from what happens in the original Luria–Delbrück distribution, the distribution function \(g(v, \tau) \) takes values only on the positive natural numbers.

Equation (40) can easily be transformed back to the space of probability distributions to get, for \(n \geq 0 \), the evolution equation for the probabilities \(g(n, \tau) \) of having \(n \) mutant cells at time \(\tau \). These probabilities obey the recursive equation

\[
\frac{\partial g(n, \tau)}{\partial \tau} = \beta \left((n-1)g(n-1, \tau) - ng(n, \tau)\right) + \mu e^{\beta \tau} (g(n-1, \tau) - g(n, \tau)),
\]

(41)

where \(g(-1, \tau) = 0 \). Note that, if we assume that at time \(\tau = 0 \) there are no mutants, the initial conditions are given by

\[
g(0, \tau = 0) = 1, \quad g(n, \tau = 0) = 0 \quad \text{if} \quad n \geq 1.
\]

Consider now that, for a given \(\varepsilon > 0 \), the Taylor expansion we used to obtain formula (38) can be used to express equation (40) like a kinetic equation of type (37) plus a remainder term which now depends on the solution \(\hat{g}(n, \tau) \). Using equation (42), and proceeding as in the computations of formula (28), we find that \(\hat{g}(\eta, \tau) \) satisfies

\[
\hat{g}(\eta, \tau) = \hat{g}(\eta, 0) + \int_0^\tau \left(1 + \frac{\varepsilon \beta_2}{\varepsilon} \right) \| h(\cdot, \tau)e^{\tau/\varepsilon} \|_\infty + \varepsilon K(\tau)e^{\tau/\varepsilon} \, dt.
\]

Integrating from 0 to \(\tau \), we get

\[
h(\eta, \tau)e^{\tau/\varepsilon} \leq h(\eta, 0) + \int_0^\tau \left(1 + \frac{\varepsilon \beta_2}{\varepsilon} \right) \| h(\cdot, t)e^{t/\varepsilon} \|_\infty + \varepsilon K(t)e^{t/\varepsilon} \, dt.
\]
Hence, if \(H_\varepsilon(\tau) = \| h(\cdot, \tau) e^{\tau/\varepsilon} \|_\infty \),

\[
H_\varepsilon(\tau) \leq H_\varepsilon(0) + \int_0^\tau \frac{1 + \varepsilon \beta_2}{\varepsilon} H_\varepsilon(t) \, dt + \int_0^\theta \varepsilon K(t) e^{t/\varepsilon} \, dt.
\]

To the previous inequality we can apply the following classical generalized Gronwall inequality. If \(u(\tau) \) satisfies

\[
u(\tau) \leq \phi(\tau) + \int_0^\tau \lambda(t) u(t) \, dt,
\]

then it satisfies

\[
u(\tau) \leq \phi(0) \exp \left\{ \int_0^\tau \lambda(t) \, dt \right\} + \int_0^\tau \exp \left\{ \int_t^\tau \lambda(\tau) \, d\tau \right\} d\phi \, dt.
\]

Applying this inequality with \(\lambda(\tau) = (1 + \varepsilon \beta_2)/\varepsilon \) and \(\phi(\tau) = H_\varepsilon(0) + \int_0^\tau \varepsilon K(t) e^{t/\varepsilon} \, dt \), we obtain

\[
H_\varepsilon(\tau) \leq \exp \left\{ \frac{1 + \varepsilon \beta_2}{\varepsilon} \right\} \left(H_\varepsilon(0) + \varepsilon \int_0^\tau K(t) e^{\beta_2 t} \, dt \right),
\]

namely

\[
\| h(\cdot, \tau) \|_\infty \leq e^{\beta_2 \tau} \left(\| h(\cdot, 0) \|_\infty + \varepsilon \int_0^\tau K(t) e^{\beta_2 t} \, dt \right).
\]

Therefore, by choosing the same initial data for equations (36) and (40), so that \(\| h(\cdot, 0) \|_\infty = 0 \), we obtain that, for \(\tau > 0 \),

\[
d_1(g, g_\varepsilon)(\tau) = \sup_\xi \left| \hat{g}(\xi, \tau) - \hat{g}_\varepsilon(\xi, \tau) \right| = \varepsilon e^{\beta_2 \tau} \int_0^\tau K(t) e^{\beta_2 t} \, dt.
\]

Letting \(\varepsilon \to 0 \) shows that the solution to the kinetic model (36) converges to the solution of the evolution equation for the Lea–Coulson formulation (40). The previous computations can be put in the form of a rigorous Theorem.

Theorem 1 Let the probability density \(f_0 \) be defined as in (13). Then, choosing as parameters \(\varepsilon \beta_1, \varepsilon \beta_2 \) and \(\varepsilon \mu \), as \(\varepsilon \to 0 \), the weak solution to the kinetic equation for the scaled density \(g_\varepsilon(v, \tau) = f(v, t) \), with \(\tau = \varepsilon t \), converges to a probability density \(g(w, \tau) \), which is the Fourier transform of the Luria–Delbrück distribution in the Lea–Coulson formulation.

The same strategy applies to the classical Luria–Delbrück distribution, which appears as the weak limit of the kinetic equation (23). In this case, using the same mathematical tools, one can prove that the solution to (23) converges to the solution to the Fokker–Planck-like equation

\[
\frac{\partial \hat{g}(\xi, \tau)}{\partial \tau} = \beta_2 \xi \frac{\partial \hat{g}(\xi, \tau)}{\partial \xi} + \mu e^{\beta_1 \tau} \left(e^{-i\xi} - 1 \right) \hat{g}(\xi, \tau).
\]

(45)

Once again, the limit procedure leading to equation (45) illustrates the powerful role of the Fourier-based metric (26).

4.1 The Bartlett formulation

The kinetic approach is quite general, and can be extended to cover more general situations, including the Bartlett formulation \([3, 45]\).

As extensively discussed in Section 3, in the Lea–Coulson formulation of the Luria–Delbrück distribution, the growth of mutants is assumed to be a random process, while
the growth of normal cells is assumed to be completely deterministic. In the Bartlett formulation the growth of both normal and mutant cells is assumed to be fully stochastic. In this formulation the Luria–Delbrück model is represented by a two-dimensional birth process \((X_1(t); X_2(t)), t \geq 0 \), where \(X_1(t) \) and \(X_2(t) \) represent the population size at time \(t \) of the normal cells and that of the mutant cells, respectively. The formulation is called fully stochastic because it models the growth of both the normal cells and the mutant cells by stochastic growth processes.

At a kinetic level, the Bartlett formulation belongs to a class of linear kinetic equations for the distribution density \(f = f(v, w, t) \) in which \(v \) and \(w \) represent the number of mutant and normal cells, respectively, which are subject to the interaction rules

\[
v^* = v + L_2(v) + w; \quad w^* = w + L_1(w).
\]

As for the simpler interaction (17), the two maps \(L_1 \) and \(L_2 \) can be either deterministic or random. According to our standard assumptions,

\[
\langle L_1(w) \rangle = \beta_1 w; \quad \langle L_2(v) \rangle = \beta_2 v.
\]

Resorting to the scaling of Section 4, the effect of interactions (46) on the time variation of the density \(f = f(v, w, t) \) can be quantitatively described by a linear Boltzmann-type equation, where the observable quantities \(\varphi = \varphi(v, w) \) are now dependent on two variables. This equation reads

\[
\frac{d}{dt} \int_{\mathbb{R}^*_+} \varphi(v, w)f(v, w, t) \, dv \, dw = \left(\int_{\mathbb{R}^*_+} (\varphi(v^*, w^*) - \varphi(v, w)) \, f(v, w, t) \, dv \, dw \right)
\]

In (47), the presence of \(\langle \cdot \rangle \) takes into account the possibility that \(L_i(v), i = 1, 2, \) could be random quantities. Note that, by choosing \(\varphi(v, w) = 1 \), one easily recovers that \(f(v, w, t) \) remains a probability density if it is so initially,

\[
\int_{\mathbb{R}^*_+} f(v, w, t) \, dv \, dw = \int_{\mathbb{R}^*_+} f_0(v, w) \, dv \, dw = 1.
\]

Moreover, on the basis of (46), choosing \(\varphi(v, w) = v \) (respectively \(\varphi(v, w) = w \)) shows that the total mean numbers \(m_1(t) = \int_{\mathbb{R}^*_+} w f(v, w, t) \) and \(m_2(t) = \int_{\mathbb{R}^*_+} v f(v, w, t) \) of normal and, respectively, mutant cells, satisfy the differential system

\[
\frac{dm_1(t)}{dt} = \int_{\mathbb{R}^*_+} \langle L_1(w) \rangle f(v, w, t) \, dv = \beta_1 m_1(t),
\]

\[
\frac{dm_2(t)}{dt} = \int_{\mathbb{R}^*_+} \langle L_2(w) \rangle + w f(v, w, t) \, dv = \beta_2 m_2(t) + m_1(t).
\]

Note that, by solving (49) with initial condition \(m_1(0) = \mu \) and substituting the result into (50), one obtains that the mean value \(m_2(t) \) of mutants solves (21). Therefore, the evolution of the mean of mutants in the Bartlett formulation coincides with the evolution of the mean in the original Luria–Delbrück model.

Let us now suppose that the two maps \(L_i(v), i = 1, 2, \) are independent random quantities. Then, by choosing \(\varphi(v, w) = e^{-i(\xi v + \eta w)} \), it is easily seen that the Fourier transform of the solution to (47),

\[
\hat{f}(\xi, \eta, t) = \int_{\mathbb{R}^*_+} e^{-i(\xi v + \eta w)} f(v, w, t) \, dv \, dw,
\]
satisfies the equation
\[
\frac{\partial \hat{f}(\xi, \eta, t)}{\partial t} = \int_{\mathbb{R}^2_+} \langle e^{-i\xi(L_2(v) + w)} e^{-inL_1(w)} e^{-i(\xi v + \eta w)} f(v, w, t) dv - \hat{f}(\xi, \eta, t) \rangle. \tag{51}
\]
If now \(L_i(v), i = 1, 2\) are Poisson distributed with means \(\beta_i v, i = 1, 2\), so that
\[
\langle e^{-i\xi L_2(v)} \rangle = e^{\beta_2 v(e^{-i\xi} - 1)}, \quad \langle e^{-inL_1(w)} \rangle = e^{\beta_1 w(e^{-in} - 1)},
\]
equation (51) reduces to
\[
\frac{\partial \hat{f}(\xi, \eta, t)}{\partial t} = \hat{f}(\xi + i\beta_2(e^{-i\xi} - 1), \eta + i\beta_1(e^{-in} - 1), t) - \hat{f}(\xi, \eta, t), \tag{52}
\]
which represents the kinetic equation relative to the Bartlett formulation. Note that the initial conditions on mass and mean value move to
\[
\hat{f}(0, 0, t = 0) = 1, \quad \frac{\partial \hat{f}(\xi, \eta, t = 0)}{\partial \xi} \bigg|_{\xi = \eta = 0} = 0, \quad \frac{\partial \hat{f}(\xi, \eta, t = 0)}{\partial \eta} \bigg|_{\xi = \eta = 0} = \mu. \tag{53}
\]
Let us apply to the parameters the same scaling as in (33). Then proceeding as in Section 4 we find that the function \(\tilde{g}(\xi, \eta, \tau) = \hat{f}(\xi, \eta, \tau)\), where \(\tau = \varepsilon t\), solves the equation
\[
\frac{\partial \tilde{g}(\xi, \eta, \tau)}{\partial \tau} = i\beta_2(e^{-i\xi} - 1) \frac{\partial \tilde{g}}{\partial \xi} + (\xi + i\beta_1(e^{-in} - 1)) \frac{\partial \tilde{g}}{\partial \eta}, \tag{54}
\]
with initial conditions given as in (53). Equation (54) differs from equation (95) in Zheng [45] in the coefficient of \(\partial \tilde{g}/\partial \eta\). Reverting to the physical space, we obtain, for \(n, m \geq 0\), the evolution equation for the probabilities \(g(n, m, \tau)\) of having \(n\) mutant cells and \(m\) normal cells at time \(\tau\). These probabilities obey the recursive equation
\[
\frac{\partial g(n, m, \tau)}{\partial \tau} = \beta_2 ((n - 1)g(n - 1, m, \tau) - ng(n, m, \tau)) + \\
\beta_1 ((m - 1)g(n, m - 1, \tau) - mg(n, m, \tau)) (g(n - 1, \tau) - g(n, \tau)), \tag{55}
\]
where \(g(-1, \tau) = 0\). If we assume, as in Section 3, that at time \(\tau = 0\) there are no mutants, the initial conditions are given by
\[
g(0, \tau = 0) = 1, \quad g(n, \tau = 0) = 0 \quad \text{if} \quad n \geq 1.
\]

4.2 Numerical examples

We compare the continuous distribution of mutants obtained using the different kinetic models in the generalized Fokker–Planck limit and some standard methods for computing the approximated discrete distribution in the Luria–Delbrück and Lea–Coulson settings (see Lemma 2, page 11, in [45]).

As usual, for the numerical solution of the kinetic models we can adopt a Monte Carlo simulation method. Here, the main difference is the necessity of generating Poisson samples at each time step. This can easily be achieved by standard algorithms; see, for example [28, 34]. For convenience of the reader we report the details of the Monte Carlo method used to solve the kinetic model (18) under scaling (33) in Algorithm 1.

Note that, in the above algorithm, the number of iterations \(n_T\) scales as \(1/\varepsilon\), since it has to be sufficiently large to guarantee that \(\Delta t \leq 1\). The stochastic rounding \(\text{Round}(x)\)
Algorithm 1: Monte Carlo method for the kinetic model (18) under scaling (33)

Define interaction parameters: β_1, β_2, μ;
Initialize algorithm parameters: $N_s, T_f, \varepsilon, n_T$;
Set initial conditions: $N_0 = 1, v_j = 0, j = 1, \ldots, N_s$;
Set $t = 0, \Delta t = T_f/(\varepsilon n_T)$;
for $k = 1, \ldots, n_T$ do
 $t = t + \Delta t$;
 $N_k = N_0 e^{\varepsilon \beta_1 t}$;
 $M = \text{round}(\Delta t N_s)$;
 Select M samples v_h uniformly among the N_s samples v_j and for those compute:
 $\eta_h \sim \text{Poisson}(\varepsilon \mu N_{k-1})$;
 For the Luria-Delbrück case: $L_h = \varepsilon \beta_2 v_h$;
 For the Lea-Coulson case: $L_h \sim \text{Poisson}(\varepsilon \beta_2 v_h)$;
 $v_h = v_h + L_h + \eta_h$;
end

rounds a real number x to the next larger or smaller floating-point number with probabilities 1 minus the relative distances to those numbers.

The test cases considered were proposed in [45]. We start from initial conditions where no mutants are present: $f_0(m) = \delta_0(m)$ and $N(0) = 1$. The parameters are $\mu = 10^{-7}$, $\beta_1 = 3$ and the final computation time is $T_f = 6.7$. To reduce fluctuations, the total number of simulation samples N_s is 5×10^5. First we consider the Luria–Delbrück case for $\beta_2 = 2.5$, and then the Lea–Coulson case for $\beta_2 = 2.8$.

In Figure 1 we report the solution obtained simulating the kinetic model (35) for different values of the scaling parameter ε, and for the map $L_\varepsilon(v) = \varepsilon \beta_2 v$. The results show the convergence of the mutant distribution prescribed by the model towards the classical Luria–Delbrück solution computed as in [45].

Similarly, we report in Figure 2 the solution of the kinetic model (35) for different values of the scaling parameter ε and for the random map $L_\varepsilon(v)$ such that $\langle L_\varepsilon(v) \rangle = \varepsilon \beta_2 v$. As expected, convergence of the mutant distribution towards the Lea–Coulson solution computed as in [45] is observed.

5 Conclusions

Linear kinetic theory is a powerful tool for modeling many particles systems subject to elementary interactions. Among the various problems that can benefit from this methodology, successful attempts have been made in recent years to study the classical problem of mutation rates, pioneered by the Luria and Delbrück experiment. In this paper, following the work done in [26, 44], we briefly presented the main building blocks that enable the construction of easy-to-handle mathematical models that use the relationships between elementary interactions to define the macroscopic behavior of the whole system. Theoretical results as well as numerical simulations show how these models can be used to characterize the asymptotic distribution of mutant cells.

Acknowledgments: This work has been written within the activities of GNFM and GNCS groups of INdAM (National Institute of High Mathematics).
Figure 1: Luria–Delbrück case. Distribution of mutant cells at $T_f = 6.7$ with $\beta_1 = 3$, $\beta_2 = 2.5$ for $\varepsilon = 0.1$ (left) and $\varepsilon = 0.01$ (right) in the kinetic model (18) under scaling (33), with $\mathcal{L}(v) = \beta v$. The reference solution is computed using Lemma 2 in [45].

Figure 2: Lea–Coulson case. Distribution of mutant cells at $T_f = 6.7$ with $\beta_1 = 3$, $\beta_2 = 2.8$ for $\varepsilon = 0.1$ (left) and $\varepsilon = 0.01$ (right) in the kinetic model (18) under scaling (33), with $\mathcal{L}(v)$ a Poisson process of mean βv. The reference solution is computed using Lemma 2 in [45] and numerical quadrature.

References

[1] Angerer, W.P. An explicit representation of the Luria-Delbrück distribution, J. Math. Biol., 2001, 42, 145–174.
[2] Armitage, P. The statistical theory of bacterial populations subject to mutation, J. Royal Statist. Soc. B, 1952, 14, 1–40.
[3] Bartlett, M.S. An Introduction to Stochastic Processes With Special Reference to Methods and Applications, 2nd ed.; Cambridge University Press, London-New York, 1966.
[4] Bernardi, B.; Pareschi, L.; Toscani, G.; Zanella, M. Effects of vaccination efficacy on wealth distribution in kinetic epidemic models. Entropy 2022, 24, 216.
[5] Bobylev, A.V. The theory of the spatially Uniform Boltzmann equation for Maxwell molecules, Sov. Sci. Review C, 1988, 7, 111–233.
[6] Castellano, C.; Fortunato, S.; Loreto, V. Statistical physics of social dynamics. Rev. Mod. Phys. 2009, 81, 591–646.
[7] Cercignani, C. *The Boltzmann Equation and its Applications* Applied Mathematical Sciences, 67. Springer-Verlag, New York, 1988.

[8] Chakraborti, A. Distributions of money in models of market economy, *Int. J. Modern Phys. C*, 2002 13, 1315–1321.

[9] Chakraborti A.; Chakrabarti, B.K. Statistical mechanics of money: Effects of saving propensity, *Eur. Phys. J. B*, 2000, 17, 167–170.

[10] Chatterjee, A.; Chakrabarti B.K.; Stinchcombe, R.B. Master equation for a kinetic model of trading market and its analytic solution, *Phys. Rev. E*, 2005, 72, 026126.

[11] Cordier, S.; Pareschi L.; Toscani, G. On a kinetic model for a simple market economy, *J. Stat. Phys.*, 2005, 120, 253–277.

[12] Crump K.S.; Hoel, D.G. Mathematical models for estimating mutation rates in cell populations, *Biometrika*, 1974, 61, 237–252.

[13] Dimarco, G.; Pareschi, L.; Zanella, M. Micro-macro stochastic Galerkin methods for nonlinear Fokker-Plank equations with random inputs, *preprint arXiv:2207.06494*, 2022.

[14] Dimarco G., Pareschi, L., Toscani, G. Wealth distribution under the spread of infectious diseases, *Physical Review E* 2020, 102, 022303.

[15] Drăgulescu A.; Yakovenko, V.M. Statistical mechanics of money, *Eur. Phys. Jour. B*, 2000, 17, 723–729.

[16] Düring, B.; Matthes, D.; Toscani, G. Kinetic equations modelling wealth redistribution: A comparison of approaches, *Phys. Rev. E*, 2008, 78, 056103.

[17] Düring, B.; Matthes, D.; Toscani, G. A Boltzmann type approach to the formation of wealth distribution curves, *Riv. Mat. Univ. Parma*, 2009, 1, 199–261.

[18] Furioli, G.; Pulvirenti, A.; Terraneo, E.; Toscani, G. Fokker–Planck equations in the modelling of socio-economic phenomena. *Math. Mod. Meth. Appl. Sci.* 2017, 27 (1), 115–158.

[19] Gabetta, E.; Toscani G.; Wennberg, B. Metrics for probability distributions and the trend to equilibrium for solutions of the Boltzmann equation, *J. Statist. Phys.*, 1995, 81, 901–934.

[20] Galton, F. Typical laws of heredity. *Nature* April, 5 1877, 492–495.

[21] Galton, F. *Natural Inheritance*. Mcmillan & Co. London UK 1889.

[22] Gualandi, S.; Toscani, G.; Vercesi, E. A kinetic description of the body size distributions of species, *Math. Mod. Meth. Appl. Sci.* (to appear) 2022.

[23] Hayes, B. Follow the money, *American Scientist*, 2002 90, 400–405.

[24] Iglesias, J.R.; Gonçalves, S.; Pianegonda, S.; Vega J.L.; Abramson, G. Wealth redistribution in our small world, Nonequilibrium statistical mechanics and nonlinear physics, *Physica A*, 2003 327, 12–17.

[25] Jones, M.E.; Thomas, S.M.; Rogers, A. Luria-Delbrück fluctuation experiments: Design and analysis, *Genetics*, 1994, 136, 1209–1216.

[26] Kashdan E.; Pareschi, L. Mean field dynamics and the continuous Luria–Delbrück distribution, *Mathematical Biosciences*, 2012, 240, 223–230.

[27] Kendall, D.G. Stochastic processes and population growth, *Journal of the Royal Statistical Society, B*, 1949, 11, 230–264.

[28] Knuth, D.E. *The art of computer programming*. Vol 1. 1997, Addison Wesley, Reading, MA.
[29] Koch, A.L. Mutation and growth rates from Luria-Delbrück fluctuation tests, *Mutat. Res.*, **1982**, 95, 129–143.

[30] Lea D.E.; Coulson, C.A. The distribution of the numbers of mutants in bacterial populations, *J. Genetics*, **1949**, 49, 264–285.

[31] Luria S.E.; Delbrück, M. Mutations of bacteria from virus sensitivity to virus resistance, *Genetics*, **1943**, 28, 491–511.

[32] Ma, W.T.; Sandri G.vH.; Sarkar, S. Analysis of the Luria and Delbrück distribution using discrete convolution powers, *J. Appl. Prob.*, **1992**, 29, 255–267.

[33] Mandelbrot, B. A population birth-and-mutation process, I: Explicit distributions for the number of mutants in an old culture of bacteria, *J. Appl. Prob.*, **1974**, 11, 437–444.

[34] Marsaglia, G. The incomplete Γ function as a continuous Poisson distribution. *Computers and Mathematics with Applications*, **1986**, 12, 1187–1190.

[35] Matthes D.; Toscani, G. On steady distributions of kinetic models of conservative economies, *J. Stat. Phys.*, **2008**, 130, 1087–1117.

[36] Naldi, G.; Pareschi, L.; Toscani, G. *Mathematical modeling of collective behavior in socio-economic and life sciences*, Birkhäuser, Boston 2010.

[37] Pakes, A.G. Remarks on the Luria-Delbrück distribution, *J. Appl. Prob.*, **1993**, 30, 991–994.

[38] Pareschi L.; Toscani, G. *Interacting Multiagent Systems: Kinetic equations & Monte Carlo Methods*, Oxford University Press, Oxford 2013.

[39] Pareschi L.; Zanella, M. Structure preserving schemes for nonlinear Fokker-Planck equations and applications. *Journal of Scientific Computing* **2018**, 74, 1575–1600.

[40] Sakamoto, S. Global solutions to an equation for mutation process in bacteria and its preservation of positive supports, *J. Math. Anal. Appl.*, **2022**, 507, 125771.

[41] Slanina, F. Inelastically scattering particles and wealth distribution in an open economy, *Phys. Rev. E*, **2004**, 69, 046102.

[42] Stewart, F.M.; Gordon D.M.; Levin, B.R. Fluctuation analysis: The probability distribution of the number of mutants under different conditions, *Genetics*, **1990**, 124, 175–185.

[43] Toscani, G. Kinetic models of opinion formation, *Commun. Math. Sci.*, **2006**, 4, 481–496.

[44] Toscani, G. A kinetic description of mutation processes in bacteria, *Kinet. Relat. Models* **2013**, 6, 1043–1055.

[45] Zheng, Q. Progress of a half century in the study of the Luria–Delbrück distribution, *Math. Biosciences*, **1999**, 162, 1–32.

[46] Zheng, Q. New algorithms for Luria–Delbrück fluctuation analysis. *Mathematical Biosciences* **2005**, 196, 198–214.

[47] Zheng, Q. Comparing mutation rates under the Luria–Delbrück protocol. *Genetica* **2016**, 144, 351–359.

[48] Zolotarev, V.M. Metric distances in spaces of random variables and their measures. *Math. USSR-Sb*, **1976**, 30 373–40.