Green: Towards a Pollution-Free Peer-to-Peer Content Sharing Service

Ruichuan Chen†, Eng Keong Lua‡, Zhuhua Cai†, Jon Crowcroft§, Zhong Chen†
†Peking University, China; ‡Carnegie Mellon University, US; §University of Cambridge, UK

Abstract

Peer-to-Peer (P2P) content sharing systems are susceptible to the content pollution attack, in which attackers aggressively inject polluted contents into the systems to reduce the availability of authentic contents, thus decreasing the confidence of participating users.

In this paper, we design a pollution-free P2P content sharing system, Green, by exploiting the inherent content-based information and the social-based reputation. In Green, a content provider (i.e., creator or sharer) publishes the information of his shared contents to a group of content maintainers self-organized in a security overlay for providing the mechanisms of redundancy and reliability, so that a content requestor can obtain and filter the information of his requested content from the associated maintainers. We employ a reputation model to help the requestor better identify the polluted contents, and then utilize the social (friend-related) information to enhance the effectiveness and efficiency of our reputation model. Now, the requestor could easily select an authentic content version for downloading. While downloading, each requestor performs a realtime integrity verification and takes prompt protection to handle the content pollution. To further improve the system performance, we devise a scalable probabilistic verification scheme.

Green is broadly applicable for both structured and unstructured overlay applications, and moreover, it is able to defeat various kinds of existing pollution attacks without incurring significant overhead on the participating users. The evaluation in massive-scale networks validates the success of Green against the content pollution.

1 Introduction

Peer-to-Peer (P2P) content sharing systems have experienced an explosive growth since their inception in 1999, and now dominate large fractions of both the Internet users and traffic volume [19]. However, due to the decentralized and unauthenticated nature, each participating user has to manage the potential risks involved in the application transactions without adequate experience and knowledge about other users.

Recently, many measurement studies reported that content pollution is pervasive in P2P content sharing systems, e.g., more than 50% of the copies of popular songs are polluted in KaZaA [20]. In a typical content pollution attack, the polluters first collectively tamper with the target content, degrading its quality or rendering it unusable. Then, they inject a massive number of tampered (i.e., polluted) contents into the system. Unable to distinguish between authentic contents and polluted contents, genuine users download the polluted contents unsuspectingly into their own shared folders, from which other users may download later without knowing that these contents have been polluted, thus passively contributing to the dissemination of pollution. As a result, the polluted contents spread through the whole system at extraordinary speed. Such content pollution has the detrimental effects of reducing the availability of the original authentic content, and ultimately, decreasing the confidence of users in the P2P content sharing system.

In general, the simple digital signature scheme could be used to defend against content pollution in many Internet applications. Nevertheless, due to the lack of centralized trusted authorities in P2P content sharing systems, the applicability of the signature scheme is questionable. So far, many pollution defenses have been further proposed, and most of them are built upon reputation models [8, 9, 10, 11, 17, 32, 33]. These models utilize the information derived from the participating users’ feedback; however, they are penalized by the lack of reliable user cooperation, and cannot defend against one concrete pollution attack: identifier corruption (described in section 3.2). In this paper, we design Green, a pollution-free P2P content sharing system. Our main motivation is to provide a total defense against various kinds of existing pollution attacks by exploiting not only the tradi-
tional reputation-based information but also the inherent content-based information and social-based information.

Firstly, in Green, a content provider (i.e., creator or sharer) publishes his shared contents’ information to a group of content maintainers self-organized in a security overlay for providing the mechanisms of redundancy and reliability. This allows a content requestor to obtain the authentic information of his requested content by first looking up in the overlay for the associated maintainers, and then executing a proactive filtering process to filter out the malicious information corrupted by malicious and compromised maintainers.

Secondly, after the proactive information filtering, a requestor resorts to the reputation-based information to better identify the polluted contents. Here, the requestor collects the past vote histories of the users who have voted the requested content, so that he could utilize the statistical correlation between his local vote history and each of these collected vote histories to compute the reputation score of any version of the requested content.

Thirdly, in order to enhance the effectiveness and efficiency of our basic reputation model, a requestor further utilizes the social (friend-related) information. Specifically, the requestor uses his friends’ vote histories to extend the local vote history reliably. By considering these extended vote histories, each requestor is able to perform the reputation computation more accurately; furthermore, if many friends have already voted the requested content, the requestor could use these associated friends’ votes to efficiently estimate the reputation score.

Finally, according to the authentic content-based information as well as the social-based reputation information, the requestor selects an authentic version of his requested content for downloading. In Green, we allow a requestor to verify the integrity of the requested content while downloading and take prompt protection actions to handle content pollution attacks. To reduce the verification overhead, we devise a scalable probabilistic verification scheme in which each requestor has the capability of flexibly adjusting the false positive rate of integrity verification according to the tradeoff between integrity assurance and verification overhead.

Green is broadly applicable for both structured and unstructured overlay applications. Moreover, it is able to defend against various kinds of content pollution attacks without incurring significant overhead on the participating users. We implemented a prototype system, and evaluate its performance on two massive-scale testbeds with realistic network traces. The evaluation results illustrate that Green can effectively and efficiently defend against content pollution in various scenarios.

The rest of this paper is organized as follows. We specify the system model and terminology in section 2 followed by a description of threat model in section 3. The details of our Green system are elaborated in section 4. We then analyze the defense capacity and maintenance overhead of Green in section 5. Section 6 presents the experimental design and discusses the evaluation results. Finally, we give an overview of related work in section 7 and conclude this paper in section 8.

2 System Model and Terminology

Current P2P overlay networks can generally be grouped into two categories [21]: structured overlay networks, e.g., Chord [31] and Pastry [30], that accurately build an underlying topology to support rapid searching, and unstructured overlay networks, e.g., Gnutella-like [11] networks, that merely impose loose structure on the topology. In Green, for providing the mechanisms of redundancy and reliability, we choose a structured P2P overlay network as the underlying structure. Without loss of generality, we utilize Chord as the dedicated underlying P2P overlay network, and we can also conveniently utilize another structured overlay as an alternative. Nowadays, the unstructured overlay applications are prevalent on the Internet; to illustrate the broad applicability, we will further describe how to deploy Green into unstructured overlays in section 4.6.

Generally, a P2P content sharing system is composed of contents and users. To elaborate our design clearly, we introduce some related terminology about contents and users in the following two sections, respectively.

2.1 Content-Related Terminology

We refer to a specific content (e.g., a document, video or song) existing in the P2P content sharing system as a title. A given title can generally have multiple different versions, each of which is published by a group of users. For instance, a large number of versions of the same video could be produced by various rippers/encoders, each of which may create a slightly different version. Specifically, each version has an identifier, which is typically a hash value of the associated data (and metadata) of the version; therefore, modifications of data (and metadata) no matter faithfully or maliciously could also produce additional different versions. Finally, each version may have many copies in the system due to the fact that participating users could lookup and download various versions of different titles from each other.

2.2 User-Related Terminology

In general, there is no centralized infrastructure in P2P content sharing systems, and each participating user can play one or several of the following three roles: provider, requestor and maintainer.
A provider publishes the information of his shared copies into the P2P content sharing system, and informs the associated maintainer(s) of building up or refreshing the corresponding index structure. On the other hand, a requestor who wants to obtain a copy of a specific title can utilize the underlying overlay to route a query towards the maintainer(s) associated with the requested title, then these maintainer(s) should respond with a list of corresponding index records. Once receiving the index records, the requestor could filter out malicious records and select one version to download from the associated providers in parallel.

3 Threat Model

To better understand the characteristics of pollution attack and design a more effective pollution defense, we discuss two attack forms of content pollution: decoy insertion [20] and identifier corruption [6].

3.1 Decoy Insertion

Decoy insertion is a common pollution mechanism utilized by polluters in today’s P2P content sharing systems. Here, the polluters target a specific title, and then manufacture decoys (i.e., corrupted versions with the same metadata but different identifiers) for the title in various ways, e.g., for media contents, inserting advertisements, cutting the duration, and replacing parts of the actual data with undecodable white noise. Afterwards, the polluters insert a massive number of decoys of the target title into the system in order to reduce the availability of authentic versions of the title severely.

In general, when a content requestor searches for a title, the associated maintainer(s) should group the information of the requested title’s available copies into different versions, and then return the grouped result back to the requestor. Unable to distinguish between authentic versions and polluted versions, the requestor would select the version with the largest number of copies to download; unfortunately, under collective decoy insertion attacks, this selected version may be polluted.

3.2 Identifier Corruption

In a P2P content sharing system, each version is associated with an identifier, which is typically generated by applying a hash function to the data (and metadata) of the version. The generated version identifier can be used by content requestors to identify different versions of a specific title, and moreover, this identifier is also important for maintainers to group the information of the requested title’s available copies into different versions.

Due to the feature of hash function, it is usually assumed that different data (and metadata) would generate different identifiers. However, it is still possible to have two actually different versions with the same identifier, especially for the consideration of efficiency, when some widely used P2P content sharing systems adopt weak hash functions based only on a fraction of the data (and metadata) of a version, e.g., the UUHash [4] function employed by KaZaA [2]. So now, the polluters could analyze the adopted hash function, and corrupt the fraction of data (and metadata) that are not used without altering the identifier of the corrupted version.

Under identifier corruption attacks, when a requestor searches for a title, he can receive the grouped information of the requested title’s versions from the maintainers, where each version is associated with an identifier. As usual, the requestor selects one version and downloads different blocks of the selected version from different associated providers in parallel. However, if a downloaded block is a corrupted part from the changed version, the entire downloaded version would be polluted.

4 Design of Green

In different P2P content sharing systems, each title may be associated with a topic, a file or a keyword, depending on different system designs. Without loss of generality, we use “file” to replace “title” hereafter for clarity.

In Green, a provider publishes the information of his shared files to a group of maintainers self-organized in a structured overlay (section 4.1), so that a requestor could obtain/filter the information of the requested file from the associated maintainers (section 4.2). Afterwards, the requestor utilizes a social-based reputation model to identify the polluted versions of his requested
meaning}

Symbol	Meaning
F	File
V_i	The i^{th} version of the requested file
VI_i	The identifier of the version V_i
D	The digest of a data block
DL_i	The digest list of the version V_i
U	User
UI	User identifier
P	Provider
PI	Provider identifier
PIL_i	The provider identifier list of the version V_i
R	Requestor
M_i	The i^{th} maintainer of a file
OI	Voter identifier
OIL_i	The voter identifier list of the version V_i
O_{ij}	The j^{th} voter who has voted the version V_i
O_{ij}	The vote on V_i given by the voter O_{ij}
OH_X	The vote history of the user X
OM_i	The i^{th} vote maintainer for a user
F_i	The i^{th} friend of the requestor

file (section 4.3), and then selects an authentic version for downloading (section 4.3). While downloading, we employ a realtime verification mechanism to help the requestor take prompt actions to handle content pollution (section 4.5). Finally, we discuss how to deploy our design in unstructured overlays (section 4.6). In particular, the abstract execution process of Green is illustrated in Figure 1 and the notation that we use to simplify the description of our design can be found in Table 1.

4.1 Content Publication

As described in section 2, the underlying network structure is assumed to be the Chord overlay, so we utilize SHA1 to assign each user and file an identifier. The user identifier of a participant is chosen by hashing the participant’s IP address, while a file identifier is produced by hashing the filename. Recently, many users in P2P content sharing systems reside behind network address translators (NATs), hence a number of participating users may share the same public IP address. Moreover, we could not guarantee that each user’s IP address stays constant in a dynamic P2P environment. That is, we are not able to distinguish between different users solely by their IP addresses. To solve the NAT and mobility problems, we may adopt another kind of unique and constant identifiers (e.g., HIP-based identifiers [27]) to replace the IP-based identifiers, which is not the focus of this paper.

Both the user identifiers and file identifiers are ordered in an identifier circle. Specifically, the information of a file F is assigned to the first user whose identifier is equal to or follows the F’s file identifier in the identifier circle. This user is called the successor of file F, denoted by $successor(F)$. Such structure tends to balance the load on the system, since each user maintains the information of roughly the same number of files; even if a user maintains the information of a popular file, several existing techniques [15, 29] have provided the solutions of load balancing.

In Green, a provider P, who wants to publish a specific file F, first divides the file F into b data blocks, and then, he computes the digest of each block to construct a digest list, i.e., $\{D_i\}_{i=1}^b$. Here we could further utilize the homomorphic hashing technique [18] to allow future file requestors to perform order-independent verification on these data blocks. Afterwards, according to F’s file identifier, the provider P maps the information of file F (including the file identifier, digest list and his own user identifier) onto the associated maintainer M, i.e., $successor(F)$ (step 1 in Figure 1). Once the maintainer M has received such file information, he can additionally take hash of the entire digest list as a version identifier of file F. Moreover, in order to support the social-based reputation model (described in section 4.3), each user who has voted some versions of the file F should inform the associated maintainer M (step 1’ in Figure 1), so that the maintainer can know which users have voted the versions of file F, i.e., the associated voters. In particular, since many providers may individually publish a number of versions of file F, the information of F stored at the maintainer M is shown in Table 2.

However, a maintainer may be offline and a malicious or compromised maintainer has the capacity of fabricating/refusing/corrupting the file information maintained by himself. Therefore, we map the information of a specific file F onto m maintainers $\{M_i\}_{i=1}^m$ to provide the mechanisms of redundancy and reliability, i.e., each file F corresponds to a unique group of maintainers.

\[
M_i = successor(filename(i)), \quad 1 \leq i \leq m \tag{1}
\]

In this paper, we omit the metadata-related information for clarity.
Here, \(M_i \) denotes the \(i^{th} \) maintainer of the file \(F \), \(filename \) denotes the name of the file, and \(m \) denotes the number of maintainers associated with the file. Due to the essential feature of structured overlay, these \(m \) associated maintainers are distributed in the identifier circle uniformly at random; therefore, we can design a filtering scheme to exclude the malicious activities.

4.2 Proactive Filtering

Since the providers publish much information about their shared files, we could collect such information from the associated maintainers (step 2 in Figure 1), and then provide a proactive defense against the content pollution (step 3 in Figure 1) as follows.

In Green, a requestor \(R \), who wants to acquire a specific file \(F \), issues a query (i.e., \(F \)'s file identifier) towards the \(m \) associated maintainers in the system according to the expression 1. Each of these maintainers should maintain the information of at least one version of the requested file \(F \). Then, these \(m \) maintainers respond with the corresponding information of the requested file \(F \) (see Table 1). On harvesting these responses, the requestor \(R \) mixes them and generates a list \(L \) consisting of \(\langle VI, PI \rangle \) pairs (do not remove duplicate pairs), where the \(VI \) and \(PI \) denote the version and provider identifiers associated with the requested file \(F \), respectively.

Based on the generated list \(L \), we design a filtering scheme to exclude the malicious activities. Without loss of generality, we assume that the total percentage of malicious and compromised users is \(\beta \). Furthermore, as specified in section 4.1, each file corresponds to a group of \(m \) maintainers. Due to the features of hash-based maintainer assignment (see expression 1), these maintainers associated with the same file are distributed uniformly at random. Therefore, the probability that \(x \) out of \(m \) maintainers in a group are malicious is

\[
Pr(m, x) = \binom{m}{x} \times \beta^x \times (1 - \beta)^{m-x}
\]

Thus, the probability that less than half of these \(m \) maintainers are malicious is

\[
Pr(m, 0, \left\lfloor \frac{m - 1}{2} \right\rfloor) = \sum_{x=0}^{\left\lfloor \frac{m - 1}{2} \right\rfloor} Pr(m, x)
\]

The expression 3 implies that though the malicious and compromised maintainers may collectively create/delete/modify their maintained \(\langle VI, PI \rangle \) pair existing in the generated list \(L \) for no less than \(\left\lfloor \frac{m - 1}{2} \right\rfloor \) (i.e., \(m - \left\lfloor \frac{m - 1}{2} \right\rfloor \)) times is authentic with the probability of \(Pr(m, 0, \left\lfloor \frac{m - 1}{2} \right\rfloor) \). In practice, the system designer would need to estimate the worst network environment that the system should sustain in order to determine the corresponding \(\beta_{worst} \). Then, according to the \(\beta_{worst} \) and the expected communication overhead, the system designer could further tune the parameter \(m \) to guarantee that \(Pr(m, 0, \left\lfloor \frac{m - 1}{2} \right\rfloor) \) is large enough even in the worst environment. For instance, if \(\beta_{worst} = 0.2 \) and \(m = 5 \), the \(Pr(m, 0, \left\lfloor \frac{m - 1}{2} \right\rfloor) \) will be 94.2%, which is sufficient for common systems. In other words, by applying the suitable system parameters, the requestor \(R \) can safely employ a proactive filtering mechanism here by filtering the aforementioned list \(L \) through removing the \(\langle VI, PI \rangle \) pairs with less than \(\left\lfloor \frac{m - 1}{2} \right\rfloor \) times.

In the same way, the requestor \(R \) could filter out the malicious \(\langle VI, OI \rangle \) pairs, where the \(VI \) and \(OI \) denote the version and voter identifiers associated with the requested file \(F \), respectively. Moreover, the malicious maintainers may choose to corrupt a version identifier \(VI \) or a digest list \(DL_i \) of the file, but this generally could not take effect since the requestor is able to detect such corruption by simply hashing the digest list and then comparing the result with the corresponding version identifier. Certainly, these malicious and compromised maintainers may choose to corrupt a version identifier \(VI \) and the corresponding digest list \(DL_i \) simultaneously; if so, the requestor could also utilize the above proactive filtering mechanism to filter out the corrupted information. After all the previous kinds of filtering, the requestor excludes these filtered information, and groups the remainder to locally reconstruct the information of the requested file \(F \) (see Table 2).

4.3 Social-Based Reputation Model

Reputation model is a common technique to address the problem of content pollution. In this section, we first design a basic reputation model, and then we use the social information to enhance its effectiveness and efficiency.

4.3.1 Basic Reputation Model

Based on the proactive filtering mechanism, the requestor \(R \) can obtain the authentic information of the requested file \(F \) by filtering out the malicious activities performed by malicious and compromised maintainers. However, polluters could choose to simply inject polluted versions of the file \(F \) without corrupting the maintained information. Due to the lack of authenticity verification, the requestor \(R \) generally cannot know which versions have been polluted. Here, we resort to the general reputation-based information to further help requestors identify the polluted versions.

Vote Gathering (step 4 in Figure 1). The requestor \(R \) first extracts each version \(V_i \)'s associated voter identifier list \(OIL_i \) from the reconstructed information of file \(F \) (see Table 2). Then, the requestor traverses \(OIL_i \), and
contacts each voter O_{ij} indicated by OIL_i to gain the voter’s past vote history OH_{ij}. Once receiving these vote histories, the requestor can easily obtain each voter O_{ij}’s vote o_{ij} on the version V_i. The vote may be either -1, if the voter considers the version polluted, or 1, otherwise.

In the above simple vote gathering mechanism, voters are required to remain online, otherwise their votes would be lost. To solve this problem, besides the locally maintained vote history, we employ a redundancy mechanism (similar to the expression $[1]$) to map each user U_i’s vote history onto a group of m vote maintainers (steps $1’$ and $1’’$ in Figure $[1]$).

$$OM_i = successor(U_i | i), \ 1 \leq i \leq m \quad (4)$$

Here, OM_i denotes the i^{th} vote maintainer for the user U, U identifies the identifier of the user, and m denotes the number of vote maintainers for the user. Now, no matter the voter O_{ij} is online or offline, the requestor R has the capacity of obtaining O_{ij}’s past vote history from the associated vote maintainers, and then filtering out the malicious activities performed by malicious and compromised vote maintainers as described in section 4.2. Note that, when the number of a version’s associated voters is too large, the requestor should choose a set of randomly-selected voters to perform the vote gathering in order to control the communication overhead.

Reputation Computation (step 5 in Figure $[1]$). With the vote gathering mechanism, the requestor R could obtain each associated voter O_{ij}’s vote o_{ij} on the version V_i. Based on these votes, the requestor is able to compute the reputation score of V_i. The simplest way is to execute the unweighted averaging on these votes; however, it cannot distinguish between different voters, e.g., both like-minded voters and malicious voters are treated equally. Instead, in our design, we compute a Creden-cestyle $[2]$ weight coefficient θ for each vote and execute the weighted averaging to compute the reputation score.

The computation of weight coefficient is described as follows:

$$\theta_{(R,O_{ij})} = \begin{cases} \frac{p-ab}{\sqrt{a(1-a)b(1-b)}} & \text{if } \frac{p-ab}{\sqrt{a(1-a)b(1-b)}} \geq 0.5 \\ 0 & \text{if } \frac{p-ab}{\sqrt{a(1-a)b(1-b)}} < 0.5 \end{cases} \quad (5)$$

Here, given the set of versions on which both R and O_{ij} have voted, a and b are the fraction where R and O_{ij} voted positively, respectively, and similarly p is the fraction where both voted positively. Several abnormal cases that arise in practice are discussed in $[2]$.

The weight coefficient $\theta_{(R,O_{ij})}$ expresses the statistical correlation between the two users’ vote histories, and captures whether they tend to vote identically (i.e., $\theta_{(R,O_{ij})} \geq 0.5$), inversely (i.e., $\theta_{(R,O_{ij})} \leq -0.5$) or uncorrelated (i.e., $\theta_{(R,O_{ij})} < 0.5$). Based on the weight coefficient, the requestor performs the weighted averaging to compute the reputation score of each version V_i.

$$Rep(V_i) = \frac{\sum_{j=1}^{|OIL_i|} (o_{ij} \times \theta_{(R,O_{ij})})}{\sum_{j=1}^{|OIL_i|} |\theta_{(R,O_{ij})}|} \in [-1, 1] \quad (6)$$

Here, $|OIL_i|$ denotes the size of the associated voter identifier list of V_i; moreover, if $\sum_{j=1}^{|OIL_i|} |\theta_{(R,O_{ij})}| = 0$, then $Rep(V_i) = 0$. This weighted averaging scheme gives more weight to votes from like-minded voters, and it can be used to assist requestors in better identifying polluted versions.

4.3.2 Social-Based Enhancement

Currently, many P2P systems have already merged the social information, e.g., the friend links, for some purposes. These friend links are very different from the overlay links, and they could be created in various ways. For instance, the friends may be these real-world acquaintances, or many more. A user and his friends generally share a similar interest and give similar votes on a specific version; moreover, the friends are much more trustworthy than other common users. By exploiting the information of friends, we can provide two kinds of enhancement for the above basic reputation model: vote history extension and efficiency improvement.

Vote History Extension. In a P2P content sharing system, a requestor may have only a few local vote history. This would make the requestor cannot accurately compute the correlation between each associated voter and himself, thus influencing the performance of our reputation model. To extend the local vote history, the requestor could additionally consider his friends’ vote histories before performing the reputation computation.

We assume that the requestor R with local vote history OH_R has f friends in the system, denoted by $\{F_i\}_{i=1}^f$; moreover, each friend F_i has the vote history OH_{F_i}. In our vote history extension scheme, the requestor first collects his friends’ vote histories from the associated vote maintainers, by filtering out the malicious activities performed by malicious and compromised vote maintainers. Then, the requestor adopts an attenuation coefficient γ to weigh his friends’ vote histories. Finally, the requestor performs a simple non-zero averaging on these friends’ vote histories as well as his local vote history to compute the extended vote history $OH’_R$.

$$OH’_R = \text{avg} \left(OH_R, OH_{F_1} \times \gamma, \ldots, OH_{F_i} \times \gamma \right) = \text{avg} \left(OH_R, \{OH_{F_i} \times \gamma\}_{i=1}^f \right) \quad (7)$$
Here, each vote history is treated as a vector, and the \textit{avg} is defined to be a function of computing, in turn, the averages of nonzero values at each position in these vectors.

To illustrate the computation process intuitively, we give an example. Suppose a requestor R with local vote history $OH_R = \{1, -1, 0, 0, -1, 0\}$ has two friends F_1 and F_2 in the system. So, he is able to collect the two friends’ vote histories OH_{F_1} and OH_{F_2} from the associated vote maintainers.

$$OH_{F_1} = \{0, 0, 1, 0, -1, -1\}$$

$$OH_{F_2} = \{1, 0, 1, 0, -1, 0\}$$

In practice, the vote history can be stored and transmitted in a more compact way. If the attenuation coefficient γ is set to 0.9, then the final extended vote history OH'_R is

$$OH'_R = \left\{\frac{1+1 \times 0.9}{1+0.9}, \frac{1}{1+0.9} \times \frac{1 \times 0.9+1 \times 0.9}{1+0.9}, 0, \frac{1}{1+0.9} \times \frac{(-1) \times 0.9+(-1) \times 0.9}{1+0.9}, \frac{(-1) \times 0.9}{1+0.9}\right\}$$

$$= \{1, -1, 1, 0, -1, -1\}$$

Due to the fact that the friends are generally trustworthy, the requestor could apply the vote history extension to enrich his vote history reliably; therefore, he is able to perform the reputation computation more accurately. Note that, if a requestor R has many malicious friends, the extended vote history may be polluted; here, some existing mechanisms, e.g., SybilGuard [36] and Sybil-Limit [35], could be used to improve the trustworthiness of friends. Moreover, if the requestor does not have any friends in the system, our social-based reputation model falls back to the basic form. In some sense, the requestor should “pay the price” for having no friends or having many malicious friends.

Interestingly, our proposed vote history extension scheme can not only improve the accuracy of reputation computation, but also solve the “cold start” problem, i.e., a newly incoming user (i.e., newcomer) without any vote history cannot benefit from the reputation model. To address the “cold start” problem, once joining the system, the newcomer builds up the friend links. Then, he collects his friends’ vote histories to compute the extended vote history as described above. Specifically, this extended vote history could be treated as the newcomer’s initial local vote history, so that he could perform the reputation model normally.

Efficiency Improvement. From the previous description of vote history extension, each time a requestor executes the reputation computation, he should collect the vote histories from his friends’ associated vote maintainers, which is somewhat expensive. In Green, each user periodically collects his friends’ vote histories from these associated vote maintainers, and meanwhile, each user maintains a friend-vote database to store the latest collected vote histories (step 1”’” in Figure 1). With this kind of database, the requestor is able to retrieve his friends’ vote histories locally.

Secondly, due to the fact that a user and his friends generally have the similar interest, they may give the similar votes on a specific version. If many friends of a requestor have already voted a version, the requestor does not need to compute the reputation score of the version again; as an alternative, he could utilize these friends’ votes to efficiently estimate the reputation score.

Without loss of generality, we assume that the requestor wants to obtain the reputation score of a specific version V_i, and moreover he has f friends, among which there are f' friends $\{F_j\}_{j=1}^{f'}$ who have already given the votes $\{o_{ij}\}_{j=1}^{f'}$ on the version V_i. Note that, such information can be retrieved from the locally maintained friend-vote database. Specifically, if only a few friends have voted the version (i.e., f' is small), the associated votes may be biased, so now we have to return back to use the normal social-based reputation model described before; otherwise, if a sufficient number ($f' \geq 4$ in our design) of friends have voted the version, we utilize the associated votes to efficiently estimate the reputation score $Rep'(V_i)$ of the version V_i.

$$Rep'(V_i) = \frac{\sum_{j=1}^{f'} o_{ij}}{f'} \times \gamma \quad (8)$$

Here, the parameter γ denotes the attenuation coefficient. If $|Rep'(V_i)| \geq 0.5$, we consider that these friends voted the version V_i identically, so the $Rep'(V_i)$ can be treated as the final reputation score $Rep(V_i)$ of the version V_i; otherwise, there are significant differences among these f' associated friends, so we again return back to use the normal social-based reputation model described before.

With low probability, a malicious user may masquerade as genuine user to become the requestor’s friend, and a friend may also be compromised. To address this “malicious friend” problem, before performing the efficient reputation estimation, the requestor should first compute the correlation coefficient θ between each associated friend and himself, as specified in expression 5. If $\theta < 0.5$, the friend may be malicious or uncorrelated [32], so we choose not to take this friend’s vote into account. Due to the periodically updated friend-vote database, these correlation coefficients could be computed periodically instead of repeatedly.

In summary, we use the social (friend-related) information a to provide a vote history extension mechanism to enhance the effectiveness of basic reputation model even for a system newcomer, and b to further enhance the efficiency of both the vote history collection and reputation computation.
4.4 Version Selection

After the proactive filtering (section 4.2) and social-based reputation computation (section 4.3), the requestor has obtained two kinds of information about each version \(V_i\) of his requested file: the authentic provider identifier list \(PIL_i\) and the reputation score \(Rep(V_i)\). Based on such information, the requestor is able to select a version for downloading (step 6 in Figure 1).

Since the size of the associated provider identifier list generally reflects the availability of a specific version, in many cases, the requestor \(R\) selects the version with the largest provider identifier list. However, the analytical model presented in [13] characterized the impact of various selection strategies, and implied that the “largest” strategy is vulnerable to the pollution attack as well as the Denial-of-Service attack. As an alternative, in Green, the requestor \(R\)’s choice is biased towards versions with more providers. Furthermore, the reputation score of a version indicates the authenticity of the version, so the probability of selecting a version should also be proportional to the associated reputation score. Considering the above factors, we get the following expression:

\[
Pr(V_i) = \frac{|PIL_i| \times \overline{Rep(V_i)}}{\sum_{j=1}^{n} (|PIL_j| \times \overline{Rep(V_j)})}, \quad 1 \leq i \leq n
\]

(9)

Here, \(Pr(V_i)\) denotes the probability of selecting the version \(V_i\) for downloading, \(|PIL_i|\) denotes the size of the provider identifier list of \(V_i\), and \(n\) denotes the number of versions associated with the requested file. Specifically, as the original \(\overline{Rep(V_i)} \in [-1, 1]\), we make a linear mapping and let \(\overline{Rep(V_i)} = \overline{Rep(V_i)} + 1\) to ensure each \(Pr(V_i) \geq 0\). Note that, when the denominator of the expression is 0, the requestor has to perform an ad hoc version selection; however, this might happen only when all versions’ original reputation scores are \(-1\), which indicates that there is no authentic version of the requested file existing in the system.

4.5 Downloading with Realtime Verification

The requestor \(R\) starts downloading the data blocks of the selected version from these associated providers in parallel. Once the requestor receives a data block, he first locally computes a digest \(D\) by hashing the received data block, and then, matches \(D\) against the digest existing in the corresponding digest list of the requested \(F\)’s file information (reconstructed based on the proactive filtering as described in section 4.2). If they are matched, the received data block is accepted, otherwise the block is dropped. These operations make the requestor have the capacity of verifying the integrity of the selected version while downloading (step 7 in Figure 1).

In common as described above, aiming at verifying the data integrity, the requestor \(R\) verifies all the received data blocks while downloading. To reduce the verification overhead, we propose a probabilistic verification scheme which verifies randomly selected blocks instead of all blocks.

In this scheme, the requestor \(R\) assumes that a polluter should tamper with at least \(r\) blocks of all \(b\) blocks, and moreover, less than \(r\) polluted blocks could be successfully recovered by the error-correcting code (ECC) technique. Based on this assumption, the requestor \(R\) would need to determine the expected false positive rate (EFPR) of the probabilistic verification according to the tradeoff between integrity assurance and verification overhead. That is,

\[
FPR = \begin{cases} \frac{\binom{b-r}{v} \times \binom{b-v}{r}}{(b-r)\times(b-v)\times b!} & \text{if } r + v \leq b \\ 0 & \text{if } r + v > b \end{cases} \leq EFPR
\]

Here, \(FPR\) and \(EFPR\) denote the actual and expected false positive rate, respectively; moreover, \(b\) denotes the total number of data blocks, \(v\) denotes the number of verified data blocks, and \(r\) denotes the lower bound of the number of polluted data blocks. Now, the requestor \(R\) can randomly verify the minimal number of data blocks, denoted by \(v_{\text{min}}\), that satisfies the above expression (10) in order to reduce the verification overhead.

Finally, after the downloading and verification, the requestor builds the complete version from these data blocks. If the built version is authentic, the requestor gives/publishes a positive vote on the version, and then shares the downloaded version; otherwise, if the version is unfortunately found to be polluted, the requestor should delete it, give/publish a negative vote, and then repeat from the step of version selection (section 4.4) until he receives the authentic version or the authentic version is found to be non-existent in the system.

4.6 Deployment in Unstructured Overlay

In the previous sections, we focus on the design of Green in structured overlay systems; to illustrate the broad applicability, we further describe how to deploy Green in unstructured overlay systems.

Generally, an unstructured overlay system is composed of users joining the overlay with some loose rules. To deploy our design, we introduce a two-tier structure into the unstructured overlay: a subset of users (i.e., ultra-users) construct a structured mesh, while the other users (i.e., leaf-users) connect to the ultra-user tier for participating
into the overlay system. Specifically, we adopt the election algorithm in [22] to select the ultra-users, and then utilize our proposed design to construct the structured mesh among ultra-users, so that the unstructured overlay systems could also benefit from our defense mechanisms against content pollution. In practice, many modern unstructured P2P overlay systems have already implemented some similar two-tier structures, so that the deployment of Green in unstructured overlay systems will not make many modifications to their original network structures. Consequently, Green is broadly applicable, and it is able to work for both structured and unstructured overlays.

5 System Analysis

A well-designed pollution-free P2P content sharing system should seek to optimize its defense capacity and maintenance overhead under the two kinds of common content pollution attacks discussed in section 3.

5.1 Defense Capacity

Decoy Insertion. Under a decoy insertion attack, the polluters inject a massive number of corrupted versions (with the same metadata but different identifiers) for a target file, in order to reduce the availability of authentic versions of the file. In Green, we propose a social-based reputation model to defend against such decoy insertion.

In a P2P content sharing system, the genuine users give positive votes on the authentic versions, and negative votes on the polluted versions; on the contrary, in order to spread the polluted versions, the polluters give the opposite votes to value the polluted versions instead of authentic versions. However, this kind of malicious voting operations will notably impact the correlation between polluters and genuine users (see expression 5), and make genuine users give negative weights ($\theta < 0$) to the votes from polluters, i.e., a negative vote from polluters actually values a version (see expression 6). Even if the polluters apply a tricky voting strategy by giving correct votes sometimes, this will also not influence the system performance significantly because the genuine users would mark the votes from these tricky polluters as uncorrelated and then directly drop them. Moreover, each requestor considers his friends’ votes to extend the vote history reliably (see expression 7), so that the requestor could perform the reputation computation more accurately. To enhance the efficiency, if many friends of a requestor have voted a specific version, the requestor further utilizes his friends’ votes to quickly estimate the reputation score of the version (see expression 8).

Consequently, though polluters inject many corrupted versions of a target file into the system and perform the malicious voting, the genuine users are still able to select the authentic versions for downloading effectively and efficiently.

Identifier Corruption. To launch an identifier corruption attack, the polluters should first analyze the properties of the hash function used by a P2P content sharing system. Then, they accurately corrupt a fraction of data (e.g., the data that are not used) without changing the identifier of the corrupted version. Unfortunately, the reputation model cannot identify such attacks due to the unchanged version identifier. In our design, we propose a block-based verification mechanism to defend against the identifier corruption.

In Green, a maintainer manages many digest lists, each of which is associated with a maintained version. A requestor could obtain the digest lists, and then utilize them to verify the integrity of data blocks while downloading (see section 4.5). Due to the fact that each data block is used to generate the digest list and each block digest is verified, it is very difficult for polluters to perform the identifier corruption attack. Furthermore, we design a probabilistic verification mechanism to reduce the verification overhead. Here, each requestor randomly verifies a number of data blocks of the selected version (see expression 10), so that the polluters cannot always launch successful identifier corruption attacks by corrupting some fixed data blocks. Indeed, the probabilistic verification may impact our defense capacity against identifier corruption. There is a tradeoff between integrity assurance and verification overhead. If a requestor wants to completely defeat the identifier corruption, he should verify all the downloaded data blocks.

5.2 Maintenance Overhead

To support the running of Green, a participating user plays two roles: file information maintainer and vote maintainer; and meanwhile, each user concretely maintains three information sets: a set of file information, a set of common users’ vote histories, and a set of his friends’ vote histories. Specifically, in Green, the maintained information is distributed averagely, and it will not incur much maintenance overhead on the participating users. The reason is twofold.

Firstly, since we use the hash function to perform the assignment of file information maintainers, each user maintains the information of roughly the same number of files, thus achieving a good load balancing. As shown in Table 2, the information of a file is composed of a number of $\langle V I_i, D L_i, P I L_i, O I L_i \rangle$ quaternions. In each quaternion, the version identifier $V I_i$ is a hash value; the digest list $D L_i$ is a list of data block digests, here the system designer could control the size of $D L_i$ through bounding the number of divided data blocks of a file;
moreover, both PIL_i and OIL_i merely store the associated provider identifiers and voter identifiers, respectively, which will not aggravate a user’s maintenance burden significantly. In addition, even if a user maintains the information of a popular file (with a large number of versions, providers and voters), several techniques [15, 29] could be employed here for load balancing.

Secondly, due to the hash-based vote maintainer assignment and the redundancy mechanism, each user maintains roughly m common users’ vote histories on average; furthermore, each user maintains a friend-vote database consisting of his friends’ vote histories. Generally, maintaining these vote histories will also not aggravate the burden of a user significantly.

6 Evaluation

In this section, we first describe the experimental setup, and then we present the key performance metric. Finally, we comparably evaluate the performance of Green.

6.1 Experimental Setup

To evaluate the performance, we developed a prototype system implementing all our proposed security mechanisms with approximately 5040 lines of Java code. Specifically, all the experiments are run on an OpenPower720 with four-way dual-core POWER5 CPUs and 16GB RAM running SLES 9.1.

Network Model: We use two realistic massive-scale network traces [25]. YouTube (1,157,827 users and 4,945,382 friend links, Jan 2007) and Flickr (1,846,198 users and 22,613,981 friend links, Jan 2007), to generate the social/friend networks. Specifically, since these traces do not indicate which users are genuine or malicious, we have to perform an appropriate processing on the two generated social networks.

According to the small-world property of online social networks [5, 25], we generate 50 genuine user groups for each generated social network as follows. We first randomly select 50 bootstrapping users as the seeds of these genuine user groups, and then use the breadth-first search algorithm to extend these genuine user groups to guarantee that each group contains a different number of unique users (Zipf distribution with its parameter $\alpha = 1$). Note that, if we cannot generate a required number of genuine users from a bootstrapping user, we randomly select another bootstrapping user to replace this one. Except these users contained by genuine user groups, the other users are polluters.

We choose Chord [31] as the underlying P2P overlay of Green, and all the users participate in the Chord overlay to construct a structured overlay network, so that we could use it to assign/lookup the file information maintainers, the vote maintainers, etc.

Content Model: The previous study in [20] reported the existence of a large number of polluted versions for a single file. In our experiments, there are 10,000 unique files, each of which has 100 different versions. Since we do not model the corruption activities performed by malicious maintainers, the information of a file is stored at only one information maintainer, and similarly the vote history of a user is also stored at one vote maintainer. Moreover, each version is associated with a number of providers which vary over time.

At the start of our experiments, each genuine user shares 20 authentic versions, and each polluter shares 400 and 50 polluted versions when performing decoy insertion and identifier corruption, respectively; this models a highly malicious environment. Here, the versions shared by a user are determined by first selecting a certain file and then its version. Specifically, both selections follow Zipf distribution with $\alpha = 0.8$ [20].

Execution Model: Different queries are initiated at uniformly distributed users, and the attenuation coefficient γ is set to 0.9. Specifically, an experiment is composed of 50 experimental cycles, and each experimental cycle is divided into 5,000,000 query cycles. In each query cycle, the selection of a specific version to download is done by first selecting a file according to Zipf distribution with $\alpha = 0.8$, and then choosing a version based on our proposed schemes. After each experimental cycle, the number of authentic downloads is computed.

For a genuine user, he gives a vote on the downloaded version with a probability of P_a. Here, we add noise to model users’ mistakes through making genuine users vote correctly with only 90% probability. Further, if a downloaded version is polluted, the genuine user deletes this version with a probability of P_d. On the other hand, for a polluter, he always gives a malicious (i.e., opposite) vote on the downloaded version, and then shares it. In addition, each user collects his friends’ vote histories from the associated vote maintainers and updates the local friend-vote database once per 100,000 query cycles.

6.2 Performance Metric

In our experiments, we characterize the system performance using the fraction of authentic downloads. It is defined as the fraction of downloads that the genuine users acquire authentic versions during one experimental cycle.

6.3 Evaluation Results

In this section, we evaluate the performance of Green under decoy insertion and identifier corruption, by con-
Meaning

The total fraction of polluters

The probability that a genuine user gives a vote on the downloaded version

The probability that a genuine user deletes the downloaded polluted version

The false positive rate of probabilistic verification

Table 3: Experimental Notation

Symbol	Meaning
β	The total fraction of polluters
P_o	The probability that a genuine user gives a vote on the downloaded version
P_d	The probability that a genuine user deletes the downloaded polluted version
FPR	The false positive rate of probabilistic verification

6.3.1 Under Decoy Insertion Attack

Comparison. Using two realistic traces, we evaluate the performance of Green as compared to four other systems with the default parameters.

- Baseline: The probability of selecting a version V_i to download is proportional to $|PIL_i|$ (i.e., the number of V_i’s associated providers).
- Credence: An ingenious and representative pollution defense system deployed on live networks [32].
- Social-based Credence: The Credence system with our social-based enhancement.
- Non-social Green: The Green system without our social-based enhancement.

As shown in Figures 2a and 2b, Green outperforms all other systems with only 3% of all the downloaded versions being polluted; moreover, the “Baseline” cannot work well. Specifically, two systems with social-based enhancement, i.e., Green and “Social-based Credence”, converge faster than “Non-social Green” and “Credence”. This is because that, though each user has only a small number of vote history at the startup, the user in social-based systems could additionally consider his friends’ vote histories to help judging the version authenticity more accurately.

Furthermore, we could find that the two systems with social-based enhancement, i.e., Green and “social-based Credence”, in the network with Flickr trace converge a little faster than in the network with YouTube trace. The reason is that each user in Flickr has 12.25 friend links on average which is larger than 4.27 in YouTube. This phenomenon also implies that, in order to achieve a good performance, a user in Green actually does not need too many friends.

Since Green always outperforms the four other systems in the following experiments and it performs similarly in the two networks with YouTube and Flickr traces, respectively, we hereafter choose to merely present the experimental results of Green in the network with YouTube trace for saving the space.

Impact of Polluters. In this experiment, we investigate the influence incurred by different fractions of polluters (β). As shown in Figure 2c, the performance of Green decreases slightly with the growth of the fraction of polluters, and Green can work well even in a highly malicious environment with 40% of users being polluters. Here, the slight performance decrease is mostly due to the fact that, with the increase of polluters, both the fraction of genuine users’ malicious friends and the number of polluted versions increase in the system. Also, the result implies that if a user could ensure most of his friends being genuine, he is able to select an authentic version to download with very high probability; this actually provides a strong incentive for genuine users to maintain the trustworthiness of their friends.

Impact of Voting. Figure 2d shows that Green can work well with various different voting probabilities (P_o); moreover, even if genuine users are very inactive to vote the downloaded versions ($P_o = 0.2$), Green can still work well. This benefits from our vote history extension scheme which could extend a user’s vote history by considering his friends’ vote histories. Specifically, in current P2P content sharing systems, only a few users may...
vote the downloaded versions \[20\], so the above experimental result further indicates that Green can indeed be deployed in practice. Note that, if \(P_o = 0 \), Green would fall back to a Baseline-like system and any existing reputation systems cannot work, under decoy insertion.

Impact of Deleting. We further evaluate the system performance with different deleting probabilities (\(P_d \)). In Green, the deleting strategy impacts the number of a polluted version’s associated providers, thus influencing the probability of selecting this version to download in the future (see expression \[9\]). Hence, we would expect that the system performance increases with the growth of deleting probability.

Interestingly, different deleting probabilities have, however, no significant impact on the performance of Green. Our analysis takes three factors into consideration. Firstly, a user may activate his own deleting module only after he has already downloaded a polluted version. Secondly, Green is able to identify most of the polluted versions, and therefore, a genuine user downloads polluted versions with very low probability. Thirdly, even if a genuine user has downloaded a polluted version and does not delete it, he may give a negative vote on this version; thus, other genuine users could also identify this polluted version based on the negative vote. As a result, no matter which deleting strategy is adopted by these genuine users, Green could always work well under decoy insertion attacks. Specifically, Green also keeps this property under identifier corruption attacks. Due to the space limit, we omit the two corresponding figures.

6.3.2 Under Identifier Corruption Attack

Comparison. In this experiment, we comparably evaluate the performance of Green in the network with YouTube trace. Figure 3a illustrates that Green outperforms all other four systems. Moreover, the three systems, i.e., “Baseline”, “Credence” and “Social-based Credence”, which do not perform verification while downloading cannot defend against identifier corruption effectively; this validates the effectiveness of our proposed realtime verification mechanism. In addition, the experimental result also indicates that the effect of social-based enhancement is limited under the identifier corruption attack.

Due to the space limit and the similar performance in both networks with the YouTube and Flickr traces, respectively, we omit to present the system performance using Flickr trace, and hereafter choose to merely present the experimental results of Green in the network with YouTube trace.

Impact of Polluters. We vary the fraction of polluters (\(\beta \)), and investigate the influence incurred by polluters. Figure 3b shows that Green can defeat identifier corruption even in a highly malicious environment with 40% of users being polluters. In real-world P2P systems, some polluters may perform Sybil attacks to create a large number of virtual malicious users, and the above experimental result implies that Green could also work well under the Sybil attack. Of course, we are able to incorporate Green with other Sybil defenses, e.g., Sybil-Guard \[36\] and SybilLimit \[35\], to achieve a better system performance.

Impact of Voting. As shown in Figure 3c, we evaluate the system performance with the voting probability (\(P_o \)) varying in steps of 0.2. The experimental result illustrates that the voting probability has little effect on the system performance, i.e., our system always works well no matter which voting strategy the genuine users adopt. The reason of this phenomenon is that Green’s defense capacity against identifier corruption is mostly provided by the realtime verification mechanism which does not utilize the vote history. This experimental result further validates that our proposed mechanism is applicable in real-world P2P systems where only a few users may give votes on the downloaded versions.

Impact of False Positive Rate. In Green, each user is able to flexibly adjust the false positive rate (\(FPR \)) of probabilistic verification. The experimental result in Figure 3d shows that the false positive rate of probabilistic verification impacts our defense capacity against the identifier corruption attack. There is a tradeoff between
7 Related Work

7.1 Pollution Defenses

So far, many reputation models have been proposed to address the problem of content pollution in P2P content sharing systems. In general, these reputation models can be grouped into three main categories: peer-based models, object-based models and hybrid models.

In peer-based reputation models, e.g., EigenTrust [17], PeerTrust [33] and Scrubber [9], to reflect the level of honesty, each participating user is assigned a reputation score by considering his past behaviors in pairwise transactions. According to the reputation score, genuine users could collectively identify content polluters, and then isolate these polluters from the system. However, the studies in [13, 32] evaluated the potential impact of peer-based reputation models, and implied that these models are insufficient to defend against the pollution attack.

Among the object-based reputation models, Credence [32] is the typical representative of them. In Credence, genuine users determine the object authenticity through secure tabulation and management of endorsements from other users. This model utilizes the statistical correlation to measure the reliability of users’ past votes, and designs a decentralized flow-based trust computation to discover trustworthy users. However, a newcomer without vote history hardly has any capacity of distinguishing between authentic objects and polluted objects.

Aiming at combining the benefits of both peer-based and object-based models, several hybrid reputation models, e.g., XRep [11], X²Rep [10] and extended Scrubber [8], have been further presented. Nevertheless, due to the fact that most of the participating users in P2P content sharing systems are rational in seeking to maximize their individual utilities, the reputation models are penalized by the lack of reliable user cooperation.

Currently, without resorting to reputation models, several other pollution defenses have been proposed. Micropayment techniques, e.g., MojoNation [3] and PPay [34], can be utilized to counter the pollution attack by imposing a cost on content polluters — to inject polluted content into the system they should first commit a certain amount of resources. Furthermore, Habib et al. in [16] developed an integrated security framework to verify content integrity in P2P media streaming. This framework could provide high assurance of data integrity with low computation and communication overheads; however, it requires centralized supplying peers. In [23], Michalakis et al. presented a “Repeat and Compare” system to ensure content integrity by utilizing the P2P substrate to repeat content generation on other peers and compare the results to detect content pollution. This system focuses on the replication of computations instead of data replication and comparison, and its application field is generally the P2P content distribution networks. Recently, Chen et al. in [21] proposed a new pollution defense based on the notion that the content providers are the only sources to accurately distinguish polluted contents and verify the integrity of the requested contents; however, it cannot defeat decoy insertion effectively.

7.2 Social Networking

Social networking sites such as YouTube, Facebook, MySpace, Orkut and Flickr are experiencing explosive growth, both in terms of involved communities and overall participating users. The social networking technique has significantly impacted how Internet users make use of the today’s Internet. So far, several proposals have been made to improve existing distributed systems by exploiting the inherent properties of social networks.

PGP [37] is one of the early social networking applications, in which the participants create a “web of trust” to authenticate public keys based on their acquaintances’ opinions in a fully self-organized manner. This “web of trust” model utilized the friend-of-friend trust structure, and then Garriss et al. in [14] adopted the similar structure to develop the “Reliable Email (RE:)”, an automated whitelisting-based email acceptance system, to mitigate email spam. RE: exploits social relationships among email correspondents, and moreover, it does not incur false positives among socially connected users. In [24], Mislove et al. tried to combine the information contained in both hyperlinks and social links, so they merged the social networking technique into the Web search engine to optimize the ranking results by considering various interests of different users.

To defend against Sybil attacks [12], two promising decentralized social-based protocols, SybilGuard [36] and SybilLimit [35], have been proposed. They utilize the social networks among user identities based on the fact that Sybil users could create many identities but few trust relationships; finally, the two protocols have the capacity of allowing only very limited Sybil users to be accepted even in a large-scale network. Furthermore in [26], based on the similar fact that it is difficult for a user to create arbitrarily many trust relationships, the Ostra system explored the use of existing social links to impose a cost on the information senders, thus preventing the adversary from sending excessive unwanted communication. Recently, Ramachandran and Feamster in [28] proposed a framework called Authenticatr to es-
establish authenticated out-of-band communication channels between applications by utilizing social links existing in various social networking sites.

8 Conclusion

In this paper, we design a pollution-free P2P content sharing system, Green. In Green, a content provider (i.e., creator or sharer) publishes the information of his shared contents into a security overlay; in order to obtain the authentic contents, a content requestor can utilize the inherent content-based information to perform the proactive filtering and realtime verification, and utilize the traditional reputation information and the social information to perform the social-based reputation computation. Green is broadly applicable for both structured and unstructured overlay applications. The analysis and prototype-based evaluation (in massive-scale networks with realistic traces) indicate that Green is able to defend against the content pollution effectively and efficiently.

References

[1] Gnutella. http://www.gnutella.com/
[2] Kazaa. http://www.kazaa.com/
[3] Mojonation. http://www.mojonation.net/
[4] Uuhash. http://en.wikipedia.org/wiki/uuHash
[5] Ahn, Y.-Y., Han, S., Kwak, H., Moon, S., and Jeong, H. Analysis of topological characteristics of huge online social networking services. In WWW (2007), pp. 835–844.
[6] Benevenuto, F., Costa, C. P., Vasconcelos, M. A., Almeida, V., Almeida, J. M., and Mowbray, M. Impact of peer incentives on the dissemination of polluted content. In SAC (2006), pp. 1875–1879.
[7] Chen, R., Lua, E. K., Crowcroft, J., Guo, W., Tang, L., and Chen, Z. Securing peer-to-peer content sharing service from poisoning attacks. In Peer-to-Peer Computing (2008).
[8] Costa, C. P., and Almeida, J. M. Reputation systems for fighting pollution in peer-to-peer file sharing systems. In Peer-to-Peer Computing (2007), pp. 53–60.
[9] Costa, C. P., Soares, V., Almeida, J. M., and Almeida, V. Fighting pollution dissemination in peer-to-peer networks. In SAC (2007), pp. 1586–1590.
[10] Curtis, N., Safavi-Naini, R., and Susilo, W. X2rep: Enhanced trust semantics for the xrep protocol. In ACS (2004).
[11] Damiani, E., Di Vimercati, S. D. C., Paraboschi, S., Samarati, P., and Volante, F. A reputation-based approach for choosing reliable resources in peer-to-peer networks. In CCS (2002), pp. 207–216.
[12] Douceur, J. R. The sybil attack. In IPTPS (2002).
[13] Dumitriu, D., Knightly, E. W., Kuzmanovic, A., Stojica, I., and Zwanepeol, W. Denial-of-service resilience in peer-to-peer file sharing systems. In SIGMETRICS (2005).
[14] Gareiss, S., Kaminsky, M., Freedman, M. J., Karp, B., Mazieres, D., and Yu, H. Re: Reliable email. In NSDI (2006).
[15] Godfrey, B., Lakshminarayanan, K., Surana, S., Karp, R. M., and Stoica, I. Load balancing in dynamic structured p2p systems. In INFOCOM (2004).
[16] Habib, A., Xu, D., Atallah, M., Bhargava, B., and Chuang, J. Verifying data integrity in peer-to-peer media streaming. In M M C N (2005).
[17] Kamvar, S. D., Schlosser, M. T., and Garcia-Molina, H. The eigentrust algorithm for reputation management in p2p networks. In WWW (2003), pp. 640–651.
[18] Krohn, M. N., Freedman, M. J., and Mazieres, D. On-the-fly verification of rateless erasure codes for efficient content distribution. In IEEE Symposium on S & P (2004), pp. 226–240.
[19] Kumar, R., Yao, D. D., Bagchi, A., Ross, K. W., and Rubenstein, D. Fluid modeling of pollution proliferation in p2p networks. In SIGMETRICS/Performance (2006).
[20] Liang, J., Kumar, R., Xi, Y., and Ross, K. W. Pollution in p2p file sharing systems. In INFOCOM (2005), pp. 1174–1185.
[21] Lua, E. K., Crowcroft, J., Pias, M., Sharma, R., and Lim, S. A survey and comparison of peer-to-peer overlay network schemes. IEEE Communications Surveys and Tutorials 7, 2 (2005), 72–93.
[22] Lua, E. K., and Zhou, X. Network-aware superpeers-peers geometric overlay network. In ICCCN (2007), pp. 141–148.
[23] Michalakis, N., Soulé, R., and Grimm, R. Ensuring content integrity for untrusted peer-to-peer content distribution networks. In NSDI (2007).
[24] Mislove, A., Gummadi, K. P., and Druschel, P. Exploiting social networks for internet search. In HotNets-V (2006).
[25] Mislove, A., Marcon, M., Gummadi, K. P., Druschel, P., and Bhattacharjee, B. Measurement and analysis of online social networks. In IMC (2007), pp. 29–42.
[26] Mislove, A., Post, A., Druschel, P., and Gummadi, K. P. Ostra: Leveraging trust to thwart unwanted communication. In NSDI (2008).
[27] Moskowitz, R., Nikander, P., Jokela, P., and Henderson, T. Host identity protocol (rfc5201). http://www.ietf.org/rfc/rfc5201.txt.
[28] Ramachandran, A., and Femaister, N. Authenticated out-of-band communication over social links. In WOSN (2008).
[29] Rao, A., Lakshminarayanan, K., Surana, S., Karp, R. M., and Stoica, I. Load balancing in structured p2p systems. In IPTPS (2003), pp. 68–79.
[30] Rowstron, A. I. T., and Druschel, P. Pastry: Scalable, decentralized object location, and routing for large-scale peer-to-peer systems. In Middleware (2001), pp. 329–350.
[31] Stoiica, I., Morris, R., Karger, D. R., Kaashoek, M. F., and Balakrishnan, H. Chord: A scalable peer-to-peer lookup service for internet applications. In SIGCOMM (2001).
[32] Walsh, K., and Sierer, E. G. Experience with an object reputation system for peer-to-peer filesharing. In NSDI (2006).
[33] Xiong, L., and Liu, L. Peertrust: Supporting reputation-based trust for peer-to-peer electronic communities. IEEE Trans. Knowl. Data Eng. 16, 7 (2004), 843–857.
[34] Yang, B., and Garcia-Molina, H. Ppay: micropayments for peer-to-peer systems. In CCS (2003), pp. 300–310.
[35] Yu, H., Gibbons, P. B., Kaminsky, M., and Xiao, F. Sybillimit: A near-optimal social network defense against sybil attacks. In IEEE Symposium on S & P (2008), pp. 3–17.
[36] Yu, H., Kaminsky, M., Gibbons, P. B., and Flaxman, A. Sybilguard: defending against sybil attacks via social networks. In SIGCOMM (2006), pp. 267–278.
[37] Zimmermann, P. R. The Official P2P User’s Guide. MIT Press, 1995.