Different Zn loading in Urea–Formaldehyde influences the N controlled release by structure modification

Amanda S. Giroto1, Stella F. do Valle1,2, Gelton G. F. Guimarães3, Nicolai D. Jablonowski4*, Caue Ribeiro2* & Luiz Henrique C. Mattoso1

Nitrogen fertilization has been a critical factor for high crop productivity, where urea is currently the most used N source due to its high concentration and affordability. Nevertheless, urea fast solubilization leads to frequent losses and lower agronomic efficiency. The modification of urea structure by condensation with formaldehyde has been proposed to improve nutrient uptake by plants and to reduce environmental losses. Herein we show that the co-formulation with Zn strongly modifies the N release (in lab conditions) and, more important, the Zn source—ZnSO4 or ZnO—has a critical role. Urea–formaldehyde (UF) served as a matrix for the zinc sources, and chemical characterizations revealed that Zn particles influenced the length of the polymeric chain formation. Release tests in an aqueous medium showed that the UF matrix favors ZnO release and, on the other hand, delays ZnSO4 delivery. Soil incubation with the fertilizer composites proved the slow-release of N from UF, is ideal for optimizing nutritional efficiency. Our results indicated that the ZnO-UF system has beneficial effects for both nutrients, i.e., reduces N volatilization and increases Zn release.

Boosts in modern agriculture are crucial to manage the increasing demand for food and other agro-products with the current trend of world population rapid growth. Chemical fertilizers have been essential to increase global agricultural production by approximately 50% over the last decades1,2. Most technological advances are related to N-based fertilizers, especially urea, the most commonly used N-fertilizer worldwide. Due to its high N content and safe handling, it is the least expensive fertilizer in terms of transportation cost per unit of nutrient and affordable to most farmers3,4. Unfortunately, its high water solubility leads to N losses, especially by volatilization, exceeding 50% of the total N applied and resulting in low fertilizer use efficiency1,2,5,6.

In this context, slow-release fertilizers (SRFs) have been shown as a promising approach to manage losses and improve nutrient use efficiency4. Urea–formaldehyde (UF) is one of the most common and the first group of products developed for SRFs fertilizer7–11. UF fertilizers are based on condensation products, mainly comprised of urea–formaldehyde polymers with different polymerization degrees12. UF is hydrolyzed by microorganisms in soil into ammonium, carbon dioxide, and water, allowing N absorption by plants. It also leads to complete compound degradation, i.e., an environmentally-friendly approach13. Besides all the positive points of UF fertilizers, their global market and production have been falling. Researchers argue that UF macromolecules' structure and crystallinity interfere in the material's short term biodegradation, being the main reason for the fertilizer industry to avoid this kind of product. The UF preparation can be modified using different processes to manage this aspect, e.g., solid-state processing, which abstains the use of extra reagents9, use of lower molar ratio between formaldehyde and urea producing shorter polymer chains and also urea units at the end of the chain; and reduction of hydrogen bond formation between UF chains to reduce crystallinity, thus improving the slow-release property14. The addition of some particles in the UF fertilizers during processing can reduce crystallinity by disturbing the regular UF molecular arrangement. In this sense, the introduction of a micronutrient source into the UF materials is beneficial. Some studies have indicated that the combined application of Zinc (Zn) and

1National Nanotechnology Laboratory for Agribusiness (LNNA), Embrapa Instrumentação, XV Novembro Street, CP: 741, São Carlos, SP 13560-206, Brazil. 2Department of Chemistry, Federal University of São Carlos, Washington Luiz Highway, km 235, São Carlos, SP 13565-905, Brazil. 3Agricultural Research and Rural Extension Company of Santa Catarina, 6800 Highway, Antônio Heil, Itajaí, Santa Catarina 88318112, Brazil. 4Forschungszentrum Jülich GmbH, Institute of Bio- and Geosciences, IBG-2: Plant Science, 52425 Jülich, Germany. *email: n.d.jablonowski@fz-juelich.de; caue.ribeiro@embrapa.br
dispersion of the ZnSO$_4$ particles over the polymer (Fig. S1, Supplementary Information). Possibly, ZnSO$_4$ is crystal formation, closer to pure UF, but with a superior size (superior to 50 µm), which is associated also to the new morphology is seen for the composites UFZO 0.5, 1, and 2 (Fig. 1e–g). ZnO probably acted as a catalyst not be ascribed as pure zinc oxide (Fig. 1c) or pure UF polymer due to the morphology differences. It indicates in urea polycondensation, changing the polymeric structure to rectangular crystals (5–50 µm). These should to the melting of oligomeric fractions with methylene-bridges. The endothermic peak related to methyl urea was the only one to maintain a crystalline peak of pure urea at 22.4°.

XRD patterns were conducted to study the crystalline structures of the samples. As shown in Fig. 3a, the existence of crystalline regions in UF is confirmed, possibly belonging to hydroxymethyl urea crystallized by H bonding during aging$^{28-31}$. Peaks of ZnO were identified in the composites and no modification in UF patterns. The endothermic event of urea melting (135 °C) shifted to lower temperatures depending on the Zn source. We have prepared slow-release fertilizers from UF with the addition of two sources of Zn (ZnO and ZnSO$_4$), using the melting mix process strategy. This process is environmentally-friendly, easy to operate, and suitable for industrial production. The effects of the Zn sources in particle loading were thoroughly investigated using FTIR-ATR, TG/DTG, and 1H-, 13C-NMR, to verify changes in the morphology and structure that could influence their nutrient release profile. The dynamics of both N and Zn were investigated by release in water medium tests, and a release test of N in soil. In addition, a poor soil (with low N holding capacity and high Zn leaching capacity) was chosen to monitor the volatilization losses in lab conditions.

Results and discussions

Scanning electron microscopy (SEM) shows that urea is composed by agglomerated particles higher than 200 µm (Fig. 1a). The reaction with paraformaldehyde (UF) resulted in a heterogeneous morphology (Fig. 1b), with uneven surfaces covered by needle-shaped crystals, corresponding to the urea–formaldehyde fraction22,23. A new morphology is seen for the composites UFZO 0.5, 1, and 2 (Fig. 1c–g). ZnO probably acted as a catalyst in urea polycondensation, changing the polymeric structure to rectangular crystals (5–50 µm). These should not be ascribed as pure zinc oxide (Fig. 1c) or pure UF polymer due to the morphology differences. It indicates that the polymer is being nucleated by ZnO particles’ surface, as seen by the good dispersion in EDX (Fig. S1, Supplementary Information). In contrast, the composites UFZS 0.5, 1, and 2 (Fig. 1h–j) present needle-shaped crystal formation, closer to pure UF, but with a superior size (superior to 50 µm), which is associated also to the dispersion of the ZnSO$_4$ particles over the polymer (Fig. S1, Supplementary Information). Possibly, ZnSO$_4$ is partly solubilized during processing, by the water that is released during the reaction of urea and formaldehyde. After solubilization, zinc sulfate presents a higher dispersion throughout the polymer, and precipitates as needles during the drying process. Therefore, ZnSO$_4$ has acted as an electrostatic dispersing agent instead of a particle where the polymer is being nucleated.

The typical FTIR spectra of ZnO, ZnSO$_4$, UF, UFZO, and UFZS are shown in Fig. 2, Fig. S2 (inset) and Table S1 (peak assignment). The identification of free NH$_2$ groups shows that all composites have a polymer structure like urea:urea–formaldehyde as observed by Giroto et al.9. Thus, the materials have a mixed structure attributed to mono- or di-(hydroxymethyl) ureas, unreacted urea and linear polymerized urea chains. The region from 3350 to 3450 cm$^{-1}$ is related to hydrogen-bonded O–H and N–H, mainly attributed to monomers such as water and formaldehyde, whose O–H group may form H bonds with reactive functional groups such as CH$_2$OH, NH$_2$, and N–H34. A major broad peak is seen for UFZO 2 (Fig. 2a) compared to the others. No residual paraformaldehyde was detected in the polymers25. Other characteristic peaks are amide I, II, and C=O, which were shifted to lower frequencies for both pure UF and all composites. The dislocation strongly indicates a partial hydrogen-bond (H-bond) formation between C=O and N–H groups when the urea–formaldehyde polymer is formed. It is possible that the samples have partial hydrogen bonds due to the C=O bond with or without H-bonds. A high concentration of methylene-bridge bonds (N–CH$_2$–N) was detected26. These bands, together with the strong bands of C–N, C–O stretching in hydroxymethyl urea, and methylene ether linkage C–O–C, prove the formation of the structure of multiple methyl urea in the polymeric chain14,27,28. UFZO 2 was the only material to differ from the others, especially at 1700–1445 cm$^{-1}$, very likely due to a higher H-bond formation between the multiple hydroxymethyl urea chains with different size lengths.

The urea–paraformaldehyde reaction was investigated by thermoanalytical methods. Figure 4 shows the DSC thermograms for UF materials. The endothermic event of urea melting (135 °C) shifted to lower temperatures (from 115 to 122 °C) in reacted materials, indicating the melting of oligomeric fractions or decomposition of bridges22. This peak should not be ascribed as paraformaldehyde depolymerization/volatilization (144 °C), since no residue was detected in FT-IR (Fig. 2). An endothermic event at 166–180 °C can be seen, probably related to the melting of oligomeric fractions with methylene-bridges. The endothermic peak related to methyl urea.
bonds in UF (180.6 °C) has shifted to lower temperatures. DSC analysis showed that Zn sources might play a role in catalyzing the thermal degradation, with endothermic peaks shifted to lower temperatures, indicating lower thermal stability. The complete decomposition of the compound occurs over 200 °C.

Comparing DSC results with thermogravimetry (TG and DTG) (Fig. 4c–f), it is possible to identify that urea degrades in three stages (peaks at 182, 237, 292 °C), and paraformaldehyde has a single stage (154 °C). The UF profile shows that the endothermic peak in DSC from 115 to 122 °C corresponds to a degradation mechanism, thus confirming the correlation to bridge breaking in oligomeric fractions. The next three stages (centered at 235, 287, and 330 °C) are probably related to the loss of functional groups of different chemical natures and energy costs23. UFZO composites behave very closely to pure UF; however, in the 2nd degradation stage it shifts to lower temperatures, suggesting the breakdown of the H-bonds. UFZO 2 (Fig. 4c) has an additional degradation event (183 °C) suggesting chains with intermediary lengths. The residual mass increases according to the Zn content. It supports that Zn has acted as a catalyst for breaking chain interactions. Nevertheless, UFZS materials have gradual decomposition depending on the polycondensation degree. These composites show only 3 stages of

Figure 1. SEM images with its magnifications of (a) pure urea, (b) pure polymer UF, (c) ZnO, (d) ZnSO₄, (e) UFZO 0.5, (f) UFZO 1, (g) UFZO 2, (h) UFZS 0.5, (i) UFZS 1 and (j) UFZS 2. (UF = pure polymer, UFZO = composites with ZnO and UFZS composites with ZnSO₄).
Figure 2. Normalized FTIR spectra in (a): (i) paraformaldehyde, (ii) urea (iii) pure polymer UF, (iv) UFZO 0.5, (v) UFZO 1, (vi) UFZO 2 and in (b): (vii) UFZS 0.5, (viii) UFZS 1 and (ix) UFZS 2.

Figure 3. Normalized XRD pattern of Ur and UF with (a) ZnO, UFZO 0.5, UFZO 1, UFZO 2, (b) ZnSO₄, UFZS 0.5, UFZS 1 and UFZS 2 (c, d) amplification the area at 2θ = 21–23°.
degradation instead of 4, starting over 190 °C. UFZS 0.5 is closer to pure UF, while UFZS 1 and 2 had their 1st stage dislocated to lower temperatures with a major area of degradation compared to the subsequent events. As seen in XRD, ZnSO₄ may be intercalated to the UF, changing the crystallinity and reducing the thermal stability. The residual UFZS was also dependent on the ZnSO₄ content. Each Zn source led to different thermal behaviors, probably due to their different effects in crystallization.

The reaction extension and the effect of Zn sources has been verified by NMR techniques. ¹H- and ¹³C-NMR are shown in Figs. 5 and 6. Figure 5 a and b show the full spectra of ¹H NMR from 7.00 to 2.00 ppm. There are substantial regions of monosubstituted amide (–CONHCH₂) at 7.00 − 5.80 ppm, nonsubstituted amide (–CONH₂) at 5.80 − 5.40 ppm, hydroxyl (–OH) at 5.30 − 5.00 ppm, and methylene (–CH₂–) signal at 5.00 − 4.10 ppm. All materials have two signals at 6.83 and 6.60 ppm assigned to mono- and di-(hydroxymethyl) urea (Fig. S3 b). These signals confirmed the expected H-bond formation with the (–CONHCH₂) groups, as observed in the FTIR results. Multiple peaks at 5.61 indicate various chemical environments attached to the terminal –CONH₂ group. Only –CONH, attached to the smaller oligomer chains (Fig. S3 c) tends to have a higher chemical shift due to the inductive effect. Various oxygen atoms along the oligomer backbone could attract electron density from the hydrogen of –CONH₂, since UF has a small peak at 5.76 ppm. For other materials as UFZO and UFZS composites, the higher intensity of the signal at 5.61 ppm implies that all materials had a proportion of the –CONH₂ group attached to the long chains than that to the short ones. The strong peak at 5.41 ppm is assigned to –NH₂ group of free urea, indicating the type of urea–urea–formaldehyde polymer structure. Multiple signals (4.52 − 4.15 ppm) are assigned to (–CH₂−) methylene in (–NHCH₂NH−) and in hydroxymethyl (HOCH₂NH−) as illustrated in Fig. S3 d. A shoulder at 4.46 ppm is due to the presence of oxygen in the groups, which became smooth for the composites compared to pure UF, indicating that Zn guided the urea condensation to better dispersion, as shown in Fig.S3 c. It suggests that the formation of long UF chains is suppressed in composites. The increase of -OCH₃ peak (3.16 ppm) (obtained by reaction of formaldehyde at the end of the polymer chain) in composites suggest that there are more terminal groups, thus, smaller chains, which supports...
the proposed Zn effect. The hydroxyls remain in all materials as evidenced by the signals from 4.0 – 4.12 ppm, further corroborating with the suggested formation of hydroxyl methyl urea structures along the main chain of urea-formaldehyde. Urea-formaldehyde polymers cannot be described by a single formula and all analyses were done to approximate as much as possible to the real expected compound.

13C NMR is shown in Fig. 6, where the signals for urea carbonyls are assigned according to the substitution differences. No unreacted urea is seen in all materials, confirming that all urea was consumed in the polycondensation. The chemical assignments between 160 and 156 ppm are attributed to mono-, di-, and trisubstituted amides. Furthermore, the C=O signals at 159.5 ppm indicate the formation of H—bonds as shown in Fig. 6c, and it agrees to the 1H NMR and FTIR. Di-substituted urea appears at 157–158 ppm and monosubstituted urea at 158–159 ppm. All carbonyl signals shifted in due to Zn particles that disturb the carbon nucleus and modify its resonance. Therefore, all results indicate the formation of linear oligomers (with different lengths), and the formation of H-bonds between C=O and N–H groups in this kind of structure, leading to crystallization as verified by XRD pattern.

Figure 7a illustrates the urea release in water of pure urea and UF compared to all composites at 25 °C. It can be seen that almost all materials release more than 25% of the N content within 24 h. Some commercial urea brands show some controlled release behavior alone, as observed in Fig. 7. A small portion of formaldehyde might have been added to help the granulation process. Interestingly, when analyzing the FTIR of pure urea, the presence of this compound can be seen by the enlargement of the NH stretching of urea as well as the duplication of NH signals, which also indicate some interaction of NH of urea and OH band of formaldehyde form in the granule. Therefore, UF polymers presented a small difference compared to pure urea in the release test in water medium. As discussed, it is expected that the materials have a more controlled release compared to pure urea, due to the formation of small molecules of substituted urea, as observed in our experiments. About 20–30% of the urea has remained in the materials after 140 h, while pure urea is completely solubilized. UF fertilizers are already recommended to fertilize perennial plants, such as forests, fruit plants, and lawns, which require long N release. A new range of crops could be targeted to N fertilization with the studied materials.

The incubation in soil for 42 days reveals the behavior of N in real conditions and the effects of each Zn source, as shown in Fig. 8. In this experiment, N transformation was monitored from urea hydrolysis, assessing the available N-NH$_4^+$ in soil and the loss of N by NH$_3$ volatilization. N-release rate from UF and the composites was...
slower in the first 7 days and then gradually raised up, while pure urea displayed a fast initial release and started to decline after 14 days. UFZS 0.5 and 1 showed the highest NH$_4^+$ values after 14 days among the composites, but still lower than pure urea. This suggests that ZnSO$_4$ is favoring the N release from the UF structure. However,

Figure 6. Amplification spectra of 13C NMR 160–157 ppm of composites (a) UFZO and (b) UFZS solubilized in DMSO–d$_6$ and molecular structure proposed for the interaction of Zn particles with the polymers as well as the different medium of carbonyl groups. Molecular structure created using software Microsoft PowerPoint 2016 version.

Figure 7. Release rates for (a) urea species and (b) zinc of materials cultivated in still water.
the same result was not observed for UFZS 2, which had no release of urea in water medium (Fig. 7a). Pure UF and UFZO composites also presented low N release in soil (<5% of total N), indicating a need for longer periods (more than 42 days) to fully release the structural N, typical for slow-release fertilizers. UF presents a lower solubility compared to pure urea as its structure is more complex, with different chain lengths and substituents, slowing down the hydrolysis rate35.

Therefore, most of the N in the composites could be released with longer incubation time. The first N released to soil is possibly from low length compounds (mono and hydroxymethyl ureas or mono- and di- substituted ureas) while the longest release is due to hydrolysis of longer chains. Zn reduces the interaction between chains, especially ZnSO4 by its lower pH compared to ZnO. This behavior is verified by Zhang et al.11, in their NPK composites. With the highest profile of NH4+ release from UFZS0.5 and UFZS1, they also achieved the highest volatilized NH3 values among the composites, with 7.5 and 5.5%, respectively, which was still lower than pure urea (35%) in 28 days.

Table 1 shows the N application in soil that has been lost (volatilized) as NH3 and is still available after 42 days of incubation. N-residual corresponds to the nutrient still in the fertilizer matrix or immobilized by the soil microbiota. Although a small fraction could be lost by the formation of other N oxides that were not measured, they were considered less important in the experimental context. The results confirm the low availability of N-NH4+ species after 42 days of urea incubation in soil. This low efficiency is attributed to the high NH3 volatility, which in this study was 32% by the end of the experiment36–38. As previously discussed, although urea provides high availability of N-NH4+ 14 days after incubation, the available N for plant absorption considerably reduces after 28 days (Fig. 8a). The reduction in N-NH4+ is a consequence of its transformation to NH3 and subsequent loss through volatilization. In this way, the availability of N from urea fertilizer is concentrated in a short period of time, which reduces the use/absorption by the plants that require the nutrient throughout their vegetative and reproductive cycles. This result highlights the low agronomic efficiency of the urea when applied to the soil in these conditions35,36. This is one of the reasons for the effort in the search for a fertilizer capable of supplying N in a more regular and constant way, that can be synchronized with the plants’ demands.

Regarding this purpose, the N release profiles of the composites UFZS 0.5 and 1 indicate their potential use, considering the controlled N release, lower NH3 volatilization and greater NH4+ availability after 42 days of incubation, compared to pure urea (Fig. 8 and Table 1). By delivering N in a slower manner and avoiding its loss, the composites are less damaging to the environment and more efficient in the longer term. In addition, these materials provide the possibility of joint supply of N and Zn to plants, besides the effect of the interaction between urea-formaldehyde with Zn sources (ZnO and ZnSO4), which proved to be strategic to modulate the polymer chain growth and improve the Zn accessibility.

Figure 8. N recovery from the fertilizers as (a) N–NH4+ available and (b) N–NH3 volatilized for each fertilizer treatment over the 42-day incubation period.
Methods

Materials. Urea (Synth, Brazil) and paraformaldehyde (Sigma-Aldrich, USA) (both chemical structures displayed in Fig. S3 a), ZnO and ZnSO₄·7H₂O (Synth, Brazil) were used for the materials’ production. Urea and ZnSO₄ salt were previously milled to a size range of ≤ 300 µm using a TE-330 hammer mill (Tecnal, Brazil). The ZnO powder was sieved in 300 µm to standardize the initial particle size.

Preparation of materials. UF was prepared following the molar ratio of 1:0.5 between urea and paraformaldehyde. The reagents were processed using a torque rheometer (Polylab RHEODRIVE Rheomix mixer and OS4) under 60 rpm and 90 °C for 10 min to mix-melt the reagents. For the UF/Zn composites, all components were used as powders with standardized particle sizes of ~ 300 µm, previously mixed in plastic bags to achieve homogeneity before being submitted to the mixed-melting process, maintaining the same molar ratio of urea: paraformaldehyde as described. The Zn was added in varying proportions to the UF, namely 0.5, 0.7, and 1.45% (wt.%) of Zn for both ZnO and ZnSO₄. After mixing, the samples were cured in an oven at 80 °C for 12 h and before storage all samples were classified using a sieve of < 500 µm. No float was observed during the synthesis once urea melting helped in aggregating all solids together, followed by the homogenization reached by the mixture in the rheometer machine. The name and the total percentage of nutrients are described in Table 2.

Characterizations. The composites’ morphologies were characterized by scanning electron microscopy (SEM) using a JSM6510 microscope (JEOL) using the secondary electron mode. Thermal analysis was conducted at the range of 25 °C to 600 °C using a Q500 analyzer (TA Instruments, New Castle, DE, USA) with a heating rate of 10 °C min⁻¹ under nitrogen atmosphere. For the differential scanning calorimetry (DSC), samples were heated from 25 to 250 °C in a DSC Q100 (TA Instruments, USA) under nitrogen atmosphere. Fourier Transform Infrared was carried out in an FTIR spectrophotometer VERTEX 70 (Bruker Corporation) with ATR technique. Proton and carbon nuclear magnetic resonance (¹H- and ¹³C- NMR) spectra were obtained on a 600 MHz Avance III HD Bruker spectrometer using dimethyl sulfoxide (DMSO-d₆) as a solvent and tetramethylsilane (TMS) as the internal reference.

Table 1. N recovery from the fertilizers as N-NH₄⁺ available, and N-NH₃ volatilized, after 42 days soil incubation. The data shows average values of each N fraction derived of total N applied to the soil as urea, UF or composites. (UF = pure polymers, UFZO = composites with ZnO and UFZS composites with ZnSO₄). The estimative of N recovery percentage was calculated by the total N content present in the composites (10 mg of N) subtracted by the N content converted into ammonium or ammonia extracted from the soil (determined by colorimetric or titulation method). *Values within a column followed by the same letter do not differ significantly (Tukey’s test; P < 0.05) with n = 4 replicates.

Fertilizers	N-NH₄⁺ available in soil	N-NH₃ volatilized
Urea	4.40 b	32.7 d
UF	5.52 b	0.13 a
UFZO 0.5	4.47 b	0.05 a
UFZO 1	4.00 bc	0.05 a
UFZO 2	5.18 b	2.27 ab
UFZS 0.5	10.84 a	7.82 c
UFZS 1	12.77 a	7.41 bc
UFZS 2	2.60 c	0.13 a

Table 2. List of named composites with their final composition.

Materials	Name	% Nutrient	N	Zn
Urea	Ur	45	–	–
UrPf 1:0.5	UF	40.71	–	–
UrPfZnO 0.5	UFZO 0.5	40.07	0.456	
UrPfZnO 1	UFZO 1	41.40	0.732	
UrPfZnO 2	UFZO 2	40.43	1.440	
UrPfZnSO₄ 0.5	UFZS 0.5	43.70	0.352	
UrPfZnSO₄ 1	UFZS 1	44.52	0.635	
UrPfZnSO₄ 2	UFZS 2	37.96	1.880	
Nitrogen mineralization in soil. Nitrogen transformations in soil to ammonium and ammonia volatilization were investigated in an Oxisol (Red-Yellow Oxisol which was collected at 20 cm depth at a pasture site in São Carlos, Brazil), which was characterized according to its physical and chemical aspects40–42. Details of the soil characteristics are provided in Table 3. The soil samples were air-dried and crushed to pass through a 2 mm screen before use. Soil samples (10 g) were incubated using an incubation system with the tested fertilizers at a 1000:1 g g⁻¹ ratio of soil:N, placed in 125 mL polyethylene screw-cap bottles as Ur, UF and composites (UFZO 0.5, 1 and 2) or (UFZS 0.5, 1 and, 2), as described by Guimarães et al.36 and Giroto et al.8. Zn release rate determination was performed using atomic absorption spectrophotometry using a part of the aliquots (PinAAcle 900 T- PerkinElmer). Thus, a curve of urea and zinc concentration in solution versus release time was obtained.

Release tests in solution. The composites were submitted to test for both urea and Zn release as a function of time. The release rate in water was determined by adding the samples to beakers and gently stirring for 5 days using an orbital shaker at 50 rpm (Thermo scientific) and 25 °C. To determine the dissolution of urea and zinc, aliquots of 2 mL were collected and centrifuged (15 min at 14,000 rpm, MiniSpin Plus) at different time intervals (three times in the first day and after once a day), over 5 days. The maximum level of urea added in each experiment was the same (1250 mg L⁻¹); that is, different mass values for the composites were calculated so that each experiment had the same amount of urea. For comparison, a test with pure urea, ZnO and ZnSO₄ was also performed as a control experiment. The determination of urea concentration in solution was done by UV–vis spectrophotometry (Shimadzu-1601PC), according to the method of Tomaszewska and Jarosiewicz39, and Giroto et al.8. Zn release rate determination was performed using atomic absorption spectrophotometry using a part of the aliquots (PinAAcle 900 T- PerkinElmer). Thus, a curve of urea and zinc concentration in solution versus release time was obtained.

Table 3. Chemical and physical properties of the studied soils. aCEC, cation exchange capacity. bWHC, water-holding capacity.

Soil characteristics	pH	CEC a	Organic C	Sand	Silt	Clay	WHC b	N	Zn	Urease activity
		(cmol, kg⁻¹)	(g kg⁻¹)				(mg kg⁻¹)	(mg N kg⁻¹ h⁻¹)		
	5.0	4.2	7.0	433	35	532	200	1.06	0.51	7.1

Conclusions
The results of this study showed that the formation of the UF polymers was affected by the loading of Zn in composites during the synthesis with no dependence on a specific Zn source. XRD analysis clearly showed the distinction in the crystallinity of the materials with the addition of Zn, which was also verified in the nutrients released in water medium, promoting the controlled release of nitrogen in all composites. Zn sources featured a different solubilization behavior in the release test. ZnSO₄, a soluble source, had a controlled delivery due to its dispersion throughout the UF composite, as verified by XRD and SEM analysis. On the other hand, the low solubility of ZnO was enhanced in the composites, with a better performance after 4 days of water immersion, releasing 40% of Zn at 7 days. ¹H- and ¹³C- NMR analyses showed the Zn particles have unsettled the arrangement of the polymer chains, which prevented the length growth of the polymer chains compared to the pure UF. This study proved the feasibility of the production and applications of UF loaded with Zn, as slow-release fertilizers or other products in agriculture, showing the beneficial effects for both nutrients, i.e., reduces N volatilization and increases Zn bio-availability.

Received: 5 February 2021; Accepted: 23 March 2021
Published online: 07 April 2021

References
1. Neamaţu, C., Popescu, M., Oancea, F. & Dima, ŞO. Synthesis optimization and characterization of microencapsulated N-P-K Slow-release fertilizers. Open Chem. 13, 813–823 (2015).
8. Giroto, A. S. & Ribeiro, G. G. F. A. Novel, simple route to produce urea: urea–formaldehyde composites for controlled release of fertilizers. J. Polym. Environ. 26, 2448–2458 (2018).

9. Guo, J. et al. Effects of soil zinc availability, nitrogen fertilizer rate and zinc fertilizer application method on zinc biofortification of rice. J. Agric. Sci. 154, 584–597 (2016).

10. Yang, J., Kong, X., Xu, D., Xie, W. & Wang, X. Evolution of the polydispersity of ammonium polyphosphate in a reactive extrusion process: Polycondensation mechanism and kinetics. Chem. Eng. J. 287, 390–397 (2016).

11. Zhang, W. et al. Biodegradable urea-formaldehyde/PBS and its ternary nanocomposite prepared by a novel and scalable reactive extrusion process for slow-release applications in agriculture. J. Agric. Food Chem. 68, 4595–4606 (2020).

12. Trenkel, M. E. Controlled-Release and Stabilized Fertilizers in Agriculture. Libro Fertilizantes (1997).

13. Guo, Y. et al. Modeling and optimizing the synthesis of urea-formaldehyde fertilizers and analyses of factors affecting these processes. Sci. Rep. 8, 1–9 (2018).

14. Wang, H. et al. Characterization of the low molar ratio urea-formaldehyde resin with 13C NMR and ESI-MS: Negative effects of the post-added urea on the urea-formaldehyde polymers. Polymers (Basel). 10, 1 (2018).

15. Zhao, P., Yang, F., Sui, F., Wang, Q. & Liu, H. Effect of nitrogen fertilizers on zinc absorption and translocation in winter wheat. J. Plant Nutr. 39, 1311–1318 (2016).

16. Deouchy, M. & Singh, R. Effect of Nitrogen and Sulphur on Growth and Yield of Hybrid Maize (Zea mays L.). Int. J. Curr. Microbiol. Appl. Sci. 6, 1930–1935 (2017).

17. Salehin, F. & Rahman, S. Effects of zinc and nitrogen fertilizer and their application method on yield and yield components of Phaseolus vulgaris L. Agric. Sci. 03, 9–13 (2012).

18. Cakmak, I. Enrichment of cereal grains with zinc: Agronomic or genetic biofortification?. Plant Soil 302, 1–17 (2008).

19. Alvarez, J. M. & Rico, M. I. Effects of metal oxides and urea fertilizer on agronomic traits of Zea mays L. J. Agric. Food Chem. 51, 5760–5767 (2003).

20. Sun, H. Synthesis and characterization of zinc-coated urea fertilizer. J. Appl. Polym. Sci. 102, 1625–1635 (2018).

21. Pereira, E. I. et al. Controlled release employing nanocomposites increases the efficiency of nitrogen use by forage. ACS Chem. Eng. 5, 9993–10001 (2017).

22. González-Hurtado, M., RieuMont-Briones, J., Castro-González, L. M., Zumaeta-Dube, I. & Galano, A. Combined experimental-theoretical investigation on the interactions of Diuron with a urea-formaldehyde matrix: Implications for its use as an ‘intelligent pesticide’. Chem. Pap. 71, 2495–2503 (2017).

23. Zorba, T., Papadopoulou, E., Hajiissisak, A., Paraskevopoulos, K. M. & Chrissafis, K. Urea-formaldehyde resins characterized by thermal analysis and FTIR method. J. Therm. Anal. Calorim. 92, 29–33 (2008).

24. Mattos, Ed. C., Viganó, I., Dutra, R. D. C. L., Diniz, M. F. & Iha, K. Aplicação de metodologias FTIR de transmissão e fotoacústica para caracterização de materiais altamente energéticos: parte II. Quim. Nova 25, 722–728 (2002).

25. Irfan, M., Khan Niazi, M. B., Hussain, A., Farooq, W. & Zia, M. H. Synthesis and characterization of zinc-coated urea fertilizer. J. Plant Nutr. 41, 1625–1635 (2018).

26. Pereira, E. I. et al. Controlled release of fertilizers based on urea/formaldehyde polymer nanocomposites. Front. Plant Sci. 9, 1–46 (2018).

27. Pang, W. et al. Preparation of microcapsules of slow-release NPK compound fertilizer and the release characteristics. J. Braz. Chem. Soc. 29, 2397–2404 (2018).

28. Silva, D. R. G. & Lopes, A. S. Princípios Básicos Para Formulação E Mistura De Fertilizantes. (2012).

29. Dimkpa, C. O. et al. Facile Coating of Urea With Low-Dose ZnO Nanoparticles promotes wheat performance and enhances Zn uptake under drought stress. Front. Plant Sci. 11, 1–12 (2020).

30. Yamamoto, C. F., Pereira, E. I., Mattoso, L. H. C., Matsunaka, T. & Ribeiro, C. Slow release fertilizers based on urea/formaldehyde polymer nanocomposites. Chem. Eng. J. 385, 1435–1462 (2019).

31. Dimkpa, C. O. et al. Facile Coating of Urea With Low-Dose ZnO Nanoparticles promotes wheat performance and enhances Zn uptake under drought stress. Front. Plant Sci. 11, 1–12 (2020).

32. Tomaszewska, M. & Jarosiewicz, A. Use of polysulfone in controlled-release NPK fertilizer formulations. J. Appl. Polym. Sci. 102, 13093–13104 (2018).

33. Alvarez, J. M. & Rico, M. I. Effects of metal oxides and urea fertilizer on agronomic traits of Zea mays L. J. Agric. Food Chem. 51, 5760–5767 (2003).

34. Sun, H. Synthesis and characterization of zinc-coated urea fertilizer. J. Appl. Polym. Sci. 102, 1625–1635 (2018).

35. Irfan, M., Khan Niazi, M. B., Hussain, A., Farooq, W. & Zia, M. H. Synthesis and characterization of zinc-coated urea fertilizer. J. Plant Nutr. 41, 1625–1635 (2018).

36. Pereira, E. I. et al. Controlled release employing nanocomposites increases the efficiency of nitrogen use by forage. ACS Chem. Eng. 5, 9993–10001 (2017).

37. González-Hurtado, M., RieuMont-Briones, J., Castro-González, L. M., Zumaeta-Dube, I. & Galano, A. Combined experimental-theoretical investigation on the interactions of Diuron with a urea-formaldehyde matrix: Implications for its use as an ‘intelligent pesticide’. Chem. Pap. 71, 2495–2503 (2017).

38. Zorba, T., Papadopoulou, E., Hajiissisak, A., Paraskevopoulos, K. M. & Chrissafis, K. Urea-formaldehyde resins characterized by thermal analysis and FTIR method. J. Therm. Anal. Calorim. 92, 29–33 (2008).

39. Mattos, Ed. C., Viganó, I., Dutra, R. D. C. L., Diniz, M. F. & Iha, K. Aplicação de metodologias FTIR de transmissão e fotoacústica para caracterização de materiais altamente energéticos: parte II. Quim. Nova 25, 722–728 (2002).

40. Irfan, M., Khan Niazi, M. B., Hussain, A., Farooq, W. & Zia, M. H. Synthesis and characterization of zinc-coated urea fertilizer. J. Plant Nutr. 41, 1625–1635 (2018).

41. Pereira, E. I. et al. Controlled release of fertilizers based on urea/formaldehyde polymer nanocomposites. Front. Plant Sci. 9, 1–46 (2018).

42. Pang, W. et al. Preparation of microcapsules of slow-release NPK compound fertilizer and the release characteristics. J. Braz. Chem. Soc. 29, 2397–2404 (2018).

43. Silva, D. R. G. & Lopes, A. S. Princípios Básicos Para Formulação E Mistura De Fertilizantes. (2012).

44. Dimkpa, C. O. et al. Facile Coating of Urea With Low-Dose ZnO Nanoparticles promotes wheat performance and enhances Zn uptake under drought stress. Front. Plant Sci. 11, 1–12 (2020).

45. Yamamoto, C. F., Pereira, E. I., Mattoso, L. H. C., Matsunaka, T. & Ribeiro, C. Slow release fertilizers based on urea/formaldehyde polymer nanocomposites. Chem. Eng. J. 385, 1435–1462 (2019).

46. Dimkpa, C. O. et al. Facile Coating of Urea With Low-Dose ZnO Nanoparticles promotes wheat performance and enhances Zn uptake under drought stress. Front. Plant Sci. 11, 1–12 (2020).

47. Tomaszewska, M. & Jarosiewicz, A. Use of polysulfone in controlled-release NPK fertilizer formulations. J. Agric. Food Chem. 50, 14634–14639 (2002).

48. Kilmer, V. J. & Alexander, L. T. Methods of making mechanical analyses of soils. Soil Sci. 77, 1–9 (1954).

49. Embrapa. Documentos 132 Manual de Métodos de. (2011).

50. Nelson, D. W. Chapter 34 Total Carbon, Organic Carbon, and Organic Matter. 53711 (1996).
Acknowledgments
This work was supported by FAPESP (São Paulo State Research Foundation, grants #2016/09343-6, #2016/10636-8 and #2018/10104-1), CNPq (Brazilian National Council for Scientific and Technological Development, grant #2014/142348-7), and CAPES (Coordination for the Improvement of Higher Education Personnel, Finance Code 001). The authors thank the Agronano Network (Embrapa Research Network), SISNANO/MCTI, and the National Nanotechnology Laboratory for Agribusiness (LNNA) for providing institutional support and facilities. Caue Ribeiro also acknowledges Alexander von Humboldt Foundation and CAPES by Experienced Research Fellowship (CAPES/Humboldt Agreement – Process 88881.145566/2017-18) and Return Fellowship.

Author contributions
A.S.G., S.F.V., N.D.J., C.R., and L.H.C.M. designed research; A.S.G. and S.F.V. conducted the experiment; G.G.F.G. performed the statistical analyses; A.S.G., S.F.V., G.G.F.G., N.D.J., and C.R. wrote the paper. All authors reviewed the manuscript.

Funding
Open Access funding enabled and organized by Projekt DEAL.

Declarations

Competing interests
The authors declare no competing interests.

Additional information
Supplementary Information The online version contains supplementary material available at https://doi.org/10.1038/s41598-021-87112-2.

Correspondence and requests for materials should be addressed to N.D.J. or C.R.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2021