Stabilisation of semilocal strings by dark scalar condensates

Péter Forgács1,2, Árpád Lukács1

1 Wigner RCP RMI, H1525 Budapest, POB 49
2 LMPT CNRS UMR7350, Université de Tours, Parc de Grandmont, 37200 Tours, France

November 8, 2018

Abstract

Semilocal and electroweak strings are well-known to be unstable against unwinding by the condensation of the second Higgs component in their cores. A large class of current models of dark matter contains dark scalar fields coupled to the Higgs sector of the Standard Model (Higgs portal) and/or dark U(1) gauge fields. It is shown, that Higgs-portal-type couplings and a gauge kinetic mixing term of the dark U(1) gauge field have a significant stabilising effect on semilocal strings in the “visible” sector.

Cosmic strings and their observational signatures have been studied since a long time as they are expected to form in the early universe [1, 2, 3, 4, 5]. Even if by now it seems unlikely that cosmic strings could have significantly contributed to structure formation in the universe, string-like excitations in the Standard Model (SM) continue to be of great interest not only from a theoretical point of view, but such objects may eventually leave observable signatures, e.g., in the Large Hadron Collider [6, 7, 8]. Remarkable string solutions have been uncovered in the bosonic sector of the Glashow-Salam-Weinberg (GSW) theory (In this paper we shall refer to a generalisation of the electroweak sector of the SM allowing its parameters to take on non-physical values as the GSW theory.), for a review see Ref. [6]. A rather interesting class of models emerges by taking the $\theta_W \rightarrow \pi/2$ limit of the GSW theory, where θ_W denotes the electroweak mixing angle. One obtains this way an Abelian Higgs model with an extended scalar sector having an $SU(2)_{\text{global}}$ symmetry acting on the Higgs doublet, this a a prototype of semilocal models. Its strings solutions are referred to as semilocal strings [6, 9, 10, 11] and these are quite instructive to study as being potentially important object in the GSW theory. An important criterion for the physical relevance of string-type objects is their classical stability. Semilocal strings turned out to be stable only when the mass of the scalar particle is smaller than that of the (single) gauge boson, as shown in Refs. [10, 11]. The stability of electroweak strings (whose progenitors are the semilocal ones) has been considered in Refs. [6, 12, 13, 14, 15]; it was found that for physically realistic values of θ_W, electroweak strings are unstable.

Moreover there are good reasons to consider extended versions of the GSW theory by a dark sector (DS), motivated by the mystery of dark matter. In such extended models the question of the possible rôle of strings appears naturally. A minimalistic extension of the GSW theory is to couple a (dark) scalar field to the by now firmly established Higgs sector of the GSW theory (Higgs portal) [16, 17], but there are also well motivated extensions of the
GSW theory containing U(1) gauge fields in the DS. In Refs. [20, 21, 22, 23, 24, 25], physical properties and possible observational signatures of cosmic strings in the DS (dark strings) have been considered. A more detailed investigation of string solutions in Abelian Higgs theories modelling a “visible” and a “dark” U(1) gauge sector was presented in Ref. [26]. In subsequent works [27, 28] semilocal-type models with a “visible” and a “dark” U(1) gauge field spontaneously broken in both sectors have been investigated. It has been observed that the stability region of semilocal string solutions with a non-zero winding number in the DS can be extended in function of the couplings between the visible and the DS. Higher winding vortices in the U(1)×U(1) model and its supersymmetric generalisation have been considered in Refs. [29, 30]. An earlier work on string solutions in a portal-type theory is Ref. [31]. In all these works only strings with non-zero winding in the DS have been considered, because of the known instabilities of “visible” semilocal strings.

The main goal of the present paper is to complement these studies on dark strings by concentrating on the influence of the DS on “visible” semilocal-type string solutions (i.e. with zero winding in the DS). We consider a U(1)×U(1) Abelian Higgs (AH) model, whose scalar sector consist of a complex Higgs doublet with (global) SU(2) symmetry coupled to a dark scalar field with an U(1)×U(1) symmetric potential, which is a simple generalisation of the model of Witten [32]. We use this simplified model to study the effect of the DS on semilocal strings. It is convenient to distinguish between two symmetry breaking patterns; either both the visible Higgs and the dark scalar field have non-zero vacuum expectation values (2VEV), or there is no symmetry breaking in the DS (1VEV). The case with 1VEV is directly relevant to the Higgs portal (scalar phantom) model of Refs. [16, 17], whereas when the DS contains gauge fields to model interaction among the dark matter particles the symmetry must be broken in both the visible and the dark sector (2VEV case) [18, 19, 20].

Generically, semilocal strings are unstable with respect to condensation of the dark scalar field at their core [we shall refer to such strings as dark core, (DC) ones]. In the absence of the gauge kinetic mixing, the DC strings investigated in the present paper, correspond to embeddings of the solutions previously found in Refs. [33] resp. [34, 35] into the SU(2)×U(1) symmetric semilocal model coupled to a DS. When the gauge kinetic mixing is different from zero the string solutions we consider here differ from those of Ref. [27, 28] in that our strings have nontrivial winding only in the visible sector. Our main result is the stability of DC strings with respect to small perturbations for a rather large parameter domain.

It has to be pointed out that a number of mechanisms to stabilise semilocal strings have already been investigated. In Ref. [36], a stabilising effect due to a bound state of an additional scalar field on semilocal and electroweak strings has been found. In Ref. [37], it has been shown that a special (dilatonic-type) coupling between the gauge and the scalar field also has a stabilising effect on semilocal strings.

In the complementary limit of the electroweak theory, θ_W → 0, it has been demonstrated that quantum fluctuations of a heavy fermion doublet coupled to the string can also lead to stabilisation in Refs. [38, 39]. Stabilisation of electroweak strings due to the interaction with thermal photons has been demonstrated in Ref. [40].

The plan of the paper is as follows: in Sec. 1 we introduce the models considered, which is followed by the discussion of visible straight string solutions in the 2VEV case and their stability properties in Sec. 2. Next we analyse the 1VEV case in Sec. 3. We conclude in Sec. 4. Some details have been relegated to various appendices: scalar masses in the 2VEV case to Appendix A, radial equations of vortices to Appendix B and the linearisation of the field equations about the vortices to Appendix C.
1 Simple models of dark matter

In Refs. [18, 19], a unified model of dark matter has been presented, which posits a DS with a U(1) gauge symmetry, spontaneously broken in order to avoid long range interactions. The DS is modelled by an AH model \((C_\mu, \chi)\), where the dark scalar field, \(\chi\), couples to the GSW theory through a Higgs portal coupling [16, 17] and the dark gauge field \(C_\mu\) through a gauge kinetic mixing term [41].

We consider the following semilocal model coupled to a DS defined by the Lagrangian [32],

\[
\mathcal{L} = -\frac{1}{4} F_{\mu\nu} F^{\mu\nu} - \frac{1}{4} H_{\mu\nu} H^{\mu\nu} + \frac{\epsilon}{2} H_{\mu
u} F^{\mu\nu} + D_\mu \Phi^\dagger D^\mu \Phi + (\tilde{D}_\mu \chi)^* \tilde{D}^\mu \chi - V(\Phi, \chi),
\]

where \(\Phi = (\phi_1, \phi_2), D_\mu \Phi = (\partial_\mu - i A_\mu) \Phi\), \(\tilde{D}_\mu \chi = (\partial_\mu - i q C_\mu) \chi\), \(F_{\mu\nu} = \partial_\mu A_\nu - \partial_\nu A_\mu\), \(H_{\mu\nu} = \partial_\mu C_\nu - \partial_\nu C_\mu\). The potential, \(V(\Phi, \chi)\), is a slight generalization of that of the Witten model [32],

\[
V(\Phi, \chi) = \frac{\beta_1}{2} (|\Phi|^2 - 1)^2 + \frac{\beta_2}{2} |\chi|^4 + \beta' |\Phi|^2 |\chi|^2 - \alpha |\chi|^2.
\]

The parameters \(\beta_1, \beta_2, \beta', \alpha\) are restricted by demanding that \(V(\Phi, \chi) > 0\) for \(|\Phi|^2, |\chi|^2 \to \infty\), resulting in: \(\beta_1 > 0, \beta_2 > 0, \beta' > -\sqrt{\beta_1 \beta_2}\). For a description of the vacua of \(V(\Phi, \chi)\) we refer to Refs. [34, 35]. The parameters, \(\beta'\) and \(\epsilon\), correspond to the Higgs portal and gauge kinetic mixing [41], respectively.

The above model [11] can be viewed as the \(\theta_W = \pi/2\) limit of the GSW theory coupled to a DS, therefore we shall refer to the fields \(\Phi\) and \(A_\mu\) as the “visible sector”; and to \(\chi\) and \(C_\mu\) as the DS. Apart from the local U(1)\times U(1) it has a global SU(2) symmetry acting on the (complex) Higgs doublet, \(\Phi\), and we shall refer to [11] to as “semilocal-DS” model.

In the 2VEV case, for \(\epsilon = 0\), the gauge boson masses are given as \(m_A^2 = 2 \eta_1^2\) and \(m_C^2 = 2 q^2 \eta_2^2\), where the VEVs \(\eta_1\) and \(\eta_2\) expressed in terms of the parameters of the potential are listed in Appendix A, Eq. (3). The scalar particles \(\phi_1\) and \(\chi\) mix, the analysis thereof is presented in Appendix A. The field \(\phi_2\) remains massless (in the GSW theory, it is the would-be Goldstone boson corresponding to the longitudinal component of \(W^\pm\)). For a detailed analysis of the effects of the gauge kinetic mixing we refer to Refs. [21, 41]. Unless the mass of the DS scalar \(\chi\) is large \((m_\chi \gg 1\text{ TeV})\) compared to SM masses, \(\epsilon \lesssim 10^{-3}\) [18, 20]. In the 2VEV case, the dark sector Higgs and gauge bosons do not directly make up dark matter [18, 19]. As a result, there are much less stringent experimental bounds on the model parameters, e.g., if the mixing of the visible sector and the dark sector Higgs particles is small enough, and the dark sector particles are heavy enough, the model is viable.

By setting \(q = 0, C_\mu = 0\) we obtain a semilocal model coupled through the Higgs field to a dark scalar field (portal model). Assuming that there is an unbroken \(Z_2\) symmetry in the DS, the dark scalar cannot take on a VEV (1VEV case). The main interest of such portal models is their minimality in that the dark scalar field itself can be considered as a primary constituent of the dark matter. In the 1VEV case, the gauge boson mass is \(m_A^2 = 2\), and the scalar masses are \(m_{\phi_1}^2 = 2\beta_1, m_\chi^2 = \beta' - \alpha\). Due to the global SU(2) symmetry the field \(\phi_2\) stays massless. Experimental limits on the couplings can be found in Refs. [42, 43, 44]. We note that Higgs decays into the dark sector pose rather strong constraints on the coupling \(\beta'\) and dark matter density on \(m_\chi\).

\[\text{We use the metric signature } + - - - .\]
2 Visible semilocal strings with a broken symmetry in the dark sector

Straight string solutions in a two-component extended Abelian Higgs model with both fields having a non-zero VEV have been considered for two charged fields in Refs. [45, 46, 47] and for one charged and one neutral in Refs. [34, 35]. In the case of two electrically charged fields, unless the windings of the two scalar fields agree, the energy per unit length of such strings diverges logarithmically, and their flux is fractional.

In the absence of the gauge kinetic mixing term ($\epsilon = 0$) the 2VEV vortices of Refs. [34, 35] can be embedded in the model given by Eq. (1), by setting $\phi_2 = 0$. For $\epsilon \neq 0$ the angular component of the DS gauge field also becomes non-zero. The (straight) string solutions we consider are translationally symmetric in the z direction, and rotationally symmetric in (x, y) plane, corresponding to the Ansatz

$$\phi_1 = f(r)e^{in\vartheta}, \quad \chi = g(r), \quad A_\vartheta = na(r), \quad C_\vartheta = c(r),$$

where r, ϑ are polar coordinates in the plane and the other field components ($\phi_2, A_r, A_z, C_r, C_z$) vanish. Using the field equations (13) one obtains easily that the energy (14) is a monotonously increasing function of the dark charge q [see Eq. (16)]. The derivative w.r.t. the gauge kinetic mixing is given by

$$\frac{\partial E}{\partial \epsilon} = -2\pi n \int_0^\infty dr \frac{a'(r)c'(r)}{r},$$

which vanishes at $\epsilon = 0$, since in that case the field equation for $c(r)$ in Eq. (13) becomes homogeneous and a standard maximum principle argument implies $c(r) \equiv 0$. Expanding the fields in a power series of ϵ [see Eq. (18)], the energy of the vortex can be written as

$$E = E_0 + \epsilon^2 E_2 + O(\epsilon^3), \quad \text{where} \quad E_2 = -2\pi(2n-1) \int_0^\infty dr \frac{f_0^2(1-a_0)c_1}{r}. \quad (5)$$

At $\beta_1 = 2$, $\beta_2 = 3$, $\beta' = 2$, $\alpha = 2.1$, and $q^2 = 1$ Eq. (5) yields an excellent approximation up to $\epsilon \lesssim 0.2$. Moreover $E_0/(2\pi) = 0.906$ and the correction is $E_2/(2\pi) = -0.089$.

A further approximation is to consider the $q^2 \to 0$ limit [see Appendix B esp. Eq. (19)], in which case $c_1 \approx a_0$, simplifying the expression for E_2:

$$E_2 = -\pi(2n-1) \int_0^\infty r dr \left(\frac{a_0'}{r}\right)^2 + \ldots . \quad (6)$$

Remarkably, E_2 in Eq. (6) is proportional to the magnetic energy of the unperturbed vortex. At $\beta_1 = 2$, $\beta_2 = 3$, $\beta' = 2$, $\alpha = 2.1$, and $q^2 = 0.1$, Eq. (6) yields $E_2/(2\pi) \approx -0.177$. For these parameter values, Eq. (3) gives $E_2/(2\pi) = -0.155$, which compares quite favourably.

Next we summarise the main results of our stability analysis of string (or vortex in the plane) solutions corresponding to Ansatz (3). The perturbation equations around the straight string solutions are given in Appendix C. Crucially the fluctuation equations for $\delta \phi_2$ resp. $\delta \phi_2^*$ decouple from the other components (and also from each other). This decoupling is related to $\phi_2 \equiv 0$ for the background solution and to the coupling structure of the DS. The (only) known
instabilities of the semilocal model (without a DS) have been found in the $\delta \phi_2$ sector. We argue that in the semilocal-DS model the only potential instabilities are expected to appear in the fluctuation equations for $\delta \phi_2$ (and for $\delta \phi_2^*$), at least for “not too large” values of β', simplifying considerably the stability analysis. Due to the translation symmetry in the t resp. z variables the linearised equations for the corresponding vector-field components $\delta A_0, \delta C_0$, resp. $\delta A_3, \delta C_3$, decouple from each other and from the other components. Exploiting the symmetries of the background string solution the linearised equations for the components $\Psi_\ell = (\delta \phi_1, \delta \phi_1^*, \delta A_i, \delta \chi, \delta \chi^*, \delta C_i)$ can be reduced to a coupled system of the form

$$M_\ell \Psi_\ell = \Omega^2 \Psi_\ell, \quad \ell = 0, 1, \ldots ,$$

constituting a system of 8 second order radial ODE’s for a given value of the angular momentum ℓ. For more details of the small fluctuation equations we refer to Appendix C and Refs. [48, 49, 50, 51, 55].

The coupled perturbation system (7) is not expected to give rise to instabilities at least for not too large values of β', ϵ. When $\beta' = \epsilon = 0$ the string solution reduces to an Abrikosov-Nielsen-Olesen (ANO) one [51, 52] in the visible sector, embedded into the semilocal-DS model with $\phi_2 \equiv 0$ and $\chi \equiv \eta_2$. Therefore Eqs. (7) decouple into the perturbations of the ANO vortex in the visible, and that of the vacuum in the dark sector. In the visible sector the lowest eigenvalues are well known to be positive [49] e.g., for vortex in the visible, and that of the vacuum in the dark sector. In the visible sector the eigenvalue is $\Omega^2 = \min(2\beta_1, 2\beta_2)$, while in the DS positivity is rather obvious as we are perturbing around a true vacuum state [continuum above $\Omega^2 = \min(2\beta_1, 2\beta_2)$]. Simple perturbation theoretic arguments show that for $\beta' \ll 1$, $\epsilon \ll 1$ the spectrum remains positive. Therefore in this paper we shall investigate only the decoupled fluctuation equations for $\delta \phi_2$, which can be written as:

$$-\frac{1}{r}(rs_{2\ell}')' + Us_{2\ell} = \Omega^2 s_{2\ell}, \quad U = \frac{(n\alpha - \ell)^2}{r^2} + \beta_1(f^2 - 1) + \beta'g^2. \quad (8)$$

For $\ell = 0$, the potential in Eq. (8) has a negative valley close to the origin (the core of the vortex), while for $r \to \infty$ it is given as $(n - \ell)^2/r^2$. The existence of negative eigenvalues depends on the depth of the attractive valley. The stabilizing effect of the scalar condensate comes from making this attractive potential valley shallower. More quantitatively, for a given value of $\beta_1 > 1$ by increasing α (remember $\alpha - \beta' > 0$) the negative eigenvalue approaches zero and for some value $\alpha = \alpha_s(\beta_1, \beta_2, \beta')$, it actually reaches zero. For $\alpha > \alpha_s$, DC vortices are then stable. Quite importantly, a large value of the coupling α is also compatible with the experimental bounds on the model, which is quite promising for electroweak-dark strings.

Numerical data are presented in Table 1. An unstable vortex and the potential in its perturbation equation, Eq. (8), is shown in Fig. 2 and a stable one in Fig. 3. As the parameters are tuned, the valley in the potential around the origin becomes shallow, and the bound mode disappears. Importantly, both the Higgs portal coupling and the gauge kinetic mixing act to stabilise semilocal vortices.

In Table 1 some numerical data of DC vortices are given for $\alpha = \alpha_s$, i.e., at the value of α when the change of stability sets in. Note that to larger values of ϵ correspond lower values of α_s (i.e., a larger domain of stability). One may note that the values of α_s decrease of the order of $O(10^{-2})$ while ϵ increases from 0 to 0.2. Therefore it may appear surprising that the change in the energy is rather small and positive although $\partial E/\partial \epsilon < 0$ while ϵ changes considerably more than α. This effect can be accounted for by observing that the energy is rather more sensitive
\[\beta_1 \quad \beta_2 \quad \beta_2' \quad \alpha_s \quad E/(2\pi) \quad \epsilon = 0 \quad \alpha_s \quad E/(2\pi) \quad \epsilon = 0.1 \quad \alpha_s \quad E/(2\pi) \quad \epsilon = 0.2 \]

2	5	2	4.571	0.149	4.567	0.150	4.559	0.153				
2	3	2	2.196	0.792	2.193	0.795	2.180	0.808				
2	1.5	1.25	2.025	0.329	2.020	0.332	2.011	0.341				

Table 1: Stabilisation of 2VEV vortices: the value of \(\alpha \) where the vortex becomes stable, and additionally the energy of the vortex at that value of \(\alpha \) is displayed. The hidden sector charge is \(q^2 = 1 \).

Figure 1: (a) Schematic view of two two-dimensional slices of the domain of stability of DC vortices. (b) Contour plots of the boundary of the domain of stability of DC vortices to a change in \(\alpha \) than to one in \(\epsilon \), e.g. at \(\beta_1 = 2 \), \(\beta_2 = 5 \), \(\beta_2' = 2 \), \(\alpha = 4.6 \), \(E_2 = -0.002 \times 2\pi \) and \(\partial E/\partial \alpha \approx -0.344 \times 2\pi \). The relative smallness of \(\partial E/\partial \epsilon = 2E_2\epsilon \) as compared to \(\partial E/\partial \alpha \) can be understood from Eq. (6). Since \(a(r) - 1 \) is exponentially suppressed for large values of \(r \) the main contribution to the integral is expected to come from the region of \(r < 1 \), however \(f(r)^2 = \mathcal{O}(r^2) \) for \(r \to 0 \), accounting for the relative smallness of \(E_2 \). On the other hand, \(\partial E/\partial \alpha = \mathcal{O}(1) \) [see Eq. (17) in Appendix B].

In Fig. 1(a) two-dimensional slices for \(\beta_2 = 3 \) and 5 of the domain of stability of DC vortices are depicted schematically. For values \((\beta_1, \alpha)\) right of the curves, there exist stable DC vortices. Fig. 1(a) shows, that the domain of stability increases as \(\alpha \) increases, and/or as \(\beta_2 \) decreases. Fig. 1(b) shows additionally the curves separating stable and unstable vortices for fixed values of \(\beta' \); these show, that the domain of stability increases as \(\beta' \) increases. For better viewing, data points are connected with straight interpolating lines.

3 Semilocal strings in models with purely scalar dark matter

In Higgs portal models the DS contains only scalar fields, i.e., dark gauge fields are absent. Moreover the VEV of the dark scalars is zero to ensure an unbroken \(\mathbb{Z}_2 \) symmetry. This case is referred to as 1VEV case in this paper.

The string solutions we consider in this section correspond to the embedding of “condensate core” (CC) strings, with \(\phi_1 = \phi^{(CC)} \), \(A_\vartheta = A_\vartheta^{(CC)} \), \(\chi = \chi^{(CC)} \) and \(\phi_2 = 0 \). CC strings have been
Figure 2: An unstable 2VEV vortex and the potential in its perturbation equation (8): $\beta_1 = 2$, $\beta_2 = 3$, $\beta' = 2$, $\alpha = 2.011$, and $\epsilon = 0$. [For the notation, see Eqs. (3) and (8).]

Figure 3: A stable 2VEV vortex and the potential in its perturbation equation (8): $\beta_1 = 2$, $\beta_2 = 3$, $\beta' = 2$, $\alpha = 2.3$, and $\epsilon = 0$. [For the notation, see Eqs. (3) and (8).]
Table 2: Stabilisation of the strings by the condensate in the 1VEV case. The value of β_1 and the energy of the vortex at that value of β_1 is displayed. Embedded ANO strings are stable for $\beta_1 \leq 1$. The energy of the ANO vortex for $\beta_1 = 2$ is $2\pi \times 1.1568$, and at $\beta_1 = 1, 2\pi$.

β_1	β'	α	β_{1s}	$E/(2\pi)$
3	2.3	2.05	1.615	1.0846
4	2.3	2.05	1.459	1.0630
5	2.3	2.05	1.367	1.0504
6	2.3	2.05	1.247	1.0299
2	2	1.85	1.805	1.1022

4 Conclusions

We have investigated the effect of a dark scalar field with Higgs portal coupling and a U(1) gauge field with a gauge-kinetic mixing term on semilocal strings with a local U(1) and global SU(2) symmetry in the visible sector. The strings considered in this paper have unit winding number with respect to the visible U(1) and zero winding number with respect to the dark
U(1). We have found that in a minimal Higgs portal model (with a single dark scalar field), semilocal strings get stabilized by a dark scalar condensate at the core of the string. Considering also a dark U(1) gauge field with a gauge-kinetic mixing term an additional stabilising effect is found. These observations open up the possibility of the existence of classically stable dark core electroweak strings.

Acknowledgements

This work has been supported by the grant OTKA K101709.

A Scalar masses

To obtain scalar masses in the 2VEV case, we linearise the potential \((2) \) about the vacuum \(\phi_1 = \eta_1, \phi_2 = 0 \) and \(\chi = \eta_2 \), with

\[
\eta_1^2 = \frac{\beta_1 \beta_2 - \alpha \beta'}{\beta_1 \beta_2 - (\beta')^2}, \quad \eta_2^2 = \frac{\beta_1 (\alpha - \beta')}{\beta_1 \beta_2 - (\beta')^2}.
\]

We also introduce new variables, \(\delta \phi_1 = \phi_1^r + i \phi_1^i \), \(\delta \chi = \chi^r + i \chi^i \). The would-be Goldstone bosons, that are later gauged into the longitudinal components of the gauge fields are then \(\phi_1^r \) and \(\chi^i \). The propagating scalar particles are mixed out of \(\phi_1^i \) and \(\chi^r \), where their mixing matrix is

\[
M_S = \frac{1}{2} \begin{pmatrix}
4 \beta_1 \eta_1^2 & 4 \beta' \eta_1 \eta_2 \\
4 \beta' \eta_1 \eta_2 & 4 \beta_2 \eta_2^2
\end{pmatrix}.
\]
The Higgs particle H and the dark Higgs particle K are related to these as

$$
\begin{pmatrix}
\phi_1^r \\
\chi^r
\end{pmatrix} = \begin{pmatrix} \cos \theta & \sin \theta \\
-\sin \theta & \cos \theta \end{pmatrix} \begin{pmatrix} H \\
K
\end{pmatrix},
$$

(11)

where

$$
tan 2\theta = \frac{2\beta' \eta_1 \eta_2}{\beta_2 \eta_2^2 - \beta_1 \eta_1^2} = \frac{2 M_{S12}}{M_{S22} - M_{S11}}.
$$

The resulting scalar masses are

$$
M_{H}^2 = M_{S11} - (M_{S22} - M_{S11}) \sin^2 \theta/\cos 2\theta,
$$

$$
M_{K}^2 = M_{S22} + (M_{S22} - M_{S11}) \sin^2 \theta/\cos 2\theta.
$$

(12)

The second semilocal component, ϕ_2 remains massless.

B Radial equations

Inserting the Ansatz (3) into the field equations corresponding to the Lagrangian (1) yields the radial equations

$$
\begin{align*}
\frac{1}{r}(a' r)' &= \frac{2 \pi}{\epsilon^2} f^2 (a - 1) + \frac{2 \epsilon}{1 - \epsilon^2} g^2 g^2 c, \\
\frac{1}{r}(c' r)' &= \frac{2 \pi}{\epsilon^2} g^2 g^2 c + \frac{2 \epsilon}{1 - \epsilon^2} f^2 (a - 1), \\
\frac{1}{r}(rf')' &= \left[\frac{n^2 (1 - a)^2}{r^2} + \beta_1 (f^2 - 1) + \beta' g^2 \right] f, \\
\frac{1}{r}(rg')' &= \left[\frac{q^2 c^2}{r^2} + \beta_2 g^2 - \alpha + \beta' f^2 \right] g.
\end{align*}
$$

(13)

The boundary conditions at the origin are demanded by regularity of the fields in the plane, for $r \to 0$, $f \sim f^{(n)} r^n$, $g \to g(0)$, $a \sim a^{(2)} r^2$ and $c \sim c^{(2)} r^2$. For $r \to \infty$ we impose $a \to 1$, $c \to 0$, $f \to \eta_1$ and $g \to \eta_2$ in the 2VEV case, and $f \to 1$ and $g \to 0$ in the 1VEV one.

The energy density of a field configuration in the Ansatz (3) is

$$
\mathcal{E} = \frac{1}{2} \left[\left(\frac{na'}{r} \right)^2 + \left(\frac{c'}{r} \right)^2 - 2\epsilon n \frac{a' c'}{r^2} \right] + \left(f' \right)^2 + \left(g' \right)^2 + \frac{n^2 (1 - a)^2}{r^2} f^2 + \frac{q^2 c^2}{r^2} g^2 + V(f, g),
$$

(14)

where

$$
V(f, g) = \frac{\beta_1}{2} (f^2 - 1)^2 + \frac{\beta_2}{2} g^4 - \alpha g^2 + \beta' f^2 g^2 - V_0, \quad V_0 = -\frac{1}{2} \frac{\beta_1 (\alpha - \beta')^2}{\beta_1 \beta_2 - (\beta')^2}.
$$

(15)

In Eq. (15), V_0 is the term subtracted in the 2VEV case to set the potential to zero at its minimum. In the 1VEV case, no such term is necessary.

As the fields satisfy the Euler-Lagrange equations, in the derivatives of the energy w.r.t. the parameters of the model, terms proportional to the implicit derivatives of the fields vanish, and only explicit terms remain, e.g.,

$$
\frac{\partial E}{\partial q^2} = 2\pi \int_0^\infty dr \frac{c^2 g^2}{r} > 0.
$$

(16)
We spell out explicitly the derivative used in Sec. 2 in the 2VEV case,
\[\frac{\partial E}{\partial \alpha} = -2\pi \int_0^\infty r dr (g^2 - \eta_0^2), \] (17)
where the second term is due to the subtraction of V_0 in Eq. (15). In the 1VEV case, the derivative is the same as in Eq. (17) without the subtraction of η_2^2.

A series expansion of the solutions in ϵ is as follows,
\[a = a_0 + \epsilon^2 a_2 + O(\epsilon^3), \quad f = f_0 + \epsilon^2 f_2 + O(\epsilon^3), \quad g = g_0 + \epsilon^2 g_2 + O(\epsilon^3), \quad c = \epsilon c_1 + O(\epsilon^3). \] (18)
The resulting equations of motion are obtained for a_0, f_0, g_0 by setting $\epsilon = 0$ and $c = 0$ in the radial equations (13). The leading order correction, c_1, satisfies
\[r \left(\frac{c'_1}{r} \right)' = 2q^2 g_0^2 c_1 + 2f_0^2 (a_0 - 1), \] (19)
which can be approximated in the limit $q^2 \to 0$: In this limit, the right hand side of Eq. (19) becomes the same as that of the equation of a_0 [see Eq. (13)], and therefore $c_1 \approx a_0$. Although the $q^2 \to 0$ limit is not uniform in r, the dominant contribution in the energy correction Eq. (6) is expected to come from the core, which is numerically verified.

C Linearised equations

For the linearised field equations we use the formalism of Ref. [49] (see also Refs. [50, 55, 56] for applications to multi-component vortices).

For the 2VEV case, in the linearised field equations we introduce a set of new variables for the gauge fields,
\[\delta A_\mu = \frac{\delta K_\mu}{\sqrt{2\sqrt{1-\epsilon}}}, \quad \delta L_\mu = \frac{\delta L_\mu}{\sqrt{2\sqrt{1+\epsilon}}}, \quad \delta C_\mu = \frac{\delta K_\mu}{\sqrt{2\sqrt{1-\epsilon}}} - \frac{\delta L_\mu}{\sqrt{2\sqrt{1+\epsilon}}}, \] (20)
which diagonalise the gauge kinetic terms at the cost of introducing couplings between both gauge fields and both scalars,
\[e_- = \frac{1}{\sqrt{2\sqrt{1-\epsilon}}}, \quad e_+ = \frac{1}{\sqrt{2\sqrt{1+\epsilon}}}, \quad q_- = \frac{q}{\sqrt{2\sqrt{1-\epsilon}}}, \quad q_+ = \frac{q}{\sqrt{2\sqrt{1+\epsilon}}}. \] (21)

The linearised equations assume a particularly simple form in the background field gauge [48, 49],
\[F_K = \partial_\mu \delta K^\mu + ie_- (\delta \Phi^\dagger \Phi - \Phi^\dagger \delta \Phi) + iq_- (\delta \chi^* \chi - \chi^* \delta \chi), \]
\[F_L = \partial_\mu \delta L^\mu + ie_+ (\delta \Phi^\dagger \Phi - \Phi^\dagger \delta \Phi) + iq_+ (\delta \chi^* \chi - \chi^* \delta \chi). \] (22)
The components $\delta K_{0,3}$ and $\delta L_{0,3}$ decouple from the rest of the variables due to the t, z independence of the background, satisfying
\[(\Box + U_{KK}) \delta K_{0,3} + U_{KL} \delta L_{0,3} = 0, \quad (\Box + U_{LL}) \delta L_{0,3} + U_{KL} \delta K_{0,3} = 0, \] (23)
where
\[U_{KK} = 2e^2 \Phi^\dagger \Phi + 2q_-^2 |\chi|^2, \quad U_{KL} = 2e_- e_+ \Phi^\dagger \Phi + 2q_- q_+ |\chi|^2, \quad U_{LL} = 2e^2 \Phi^\dagger \Phi + 2q_+^2 |\chi|^2. \]
Infinitesimal gauge transformations act on the fields as
\[\delta K_\mu \rightarrow \delta K_\mu + \partial_\mu \xi, \quad \delta L_\mu \rightarrow \delta L_\mu + \partial_\mu \zeta, \quad \delta \phi_a \rightarrow \delta \phi_a + i \phi_a (e_- \xi + e_+ \zeta), \quad \delta \chi \rightarrow \delta \chi + i \chi (q_- \xi + q_+ \zeta). \] (24)

Due to the residual gauge freedom allowed by the gauge fixing \(^{22}\), there are ghost modes, satisfying the equations
\[(\Box + U_{KK}) \xi + U_{KL} \zeta = 0, \quad (\Box + U_{LL}) \zeta + U_{KL} \xi = 0, \] (25)
which agree with those of the 0, 3 gauge field components, Eq. \(^{23}\), and cancel part of the spectrum, including all modes in the \(\delta K_{0,3} \delta L_{0,3} \) sector, therefore, in what follows, we omit these components.

The following Ansatz is compatible with the field equations, due to the cylindrical symmetry of the background,
\[\begin{align*}
\delta \Phi_1 &= e^{i(\Omega - k_x)} e^{i(n+\ell) \partial} s_{1,\ell}(r) + e^{-i(\Omega - k_x)} e^{i(n-\ell) \partial} s_{1,-\ell}(r), \\
\delta \Phi_2 &= e^{i(\Omega - k_x)} e^{i\ell \partial} s_{2,\ell}(r) + e^{-i(\Omega - k_x)} e^{-i\ell \partial} s_{2,-\ell}(r), \\
\delta \chi &= e^{i(\Omega - k_x)} e^{i\ell \partial} h_\ell(r) + e^{-i(\Omega - k_x)} e^{-i\ell \partial} h_{-\ell}(r), \\
\delta K_+ &= e^{i(\Omega - k_x)} e^{i(\ell - 1) \partial} i t_\ell(r) + e^{-i(\Omega - k_x)} e^{-i(\ell - 1) \partial} i t_{-\ell}(r), \\
\delta K_- &= -e^{i(\Omega - k_x)} e^{i(\ell + 1) \partial} i t_{-\ell}^*(r) - e^{-i(\Omega - k_x)} e^{-i(\ell + 1) \partial} i t_\ell^*(r), \\
\delta L_+ &= e^{i(\Omega - k_x)} e^{i(\ell - 1) \partial} i u_\ell(r) + e^{-i(\Omega - k_x)} e^{-i(\ell - 1) \partial} i u_{-\ell}(r), \\
\delta L_- &= -e^{i(\Omega - k_x)} e^{i(\ell + 1) \partial} i u_{-\ell}^*(r) - e^{-i(\Omega - k_x)} e^{-i(\ell + 1) \partial} i u_\ell^*(r),
\end{align*} \] (26)
where \(K_\pm = \exp(\mp i \partial)(K_r \mp i K_\theta / r) / \sqrt{2} \) and similarly for \(L \) (note that \(K_\mp = K_\pm \)). With the Ansatz \(^{26}\), the perturbation equation assume the form
\[\mathcal{M}_\ell \Psi_\ell = (\Omega^2 - k^2) \Psi_\ell, \] (27)
where \(\Psi_\ell = (s_{1,\ell}, s_{1,-\ell}^*, s_{2,\ell}, s_{2,-\ell}^*, h_\ell, h_{-\ell}^*, t_\ell, t_{-\ell}^*, u_\ell, u_{-\ell}^*) \). Note that the lowest eigenvalue corresponds to \(k = 0 \), therefore in what follows, we shall only consider such perturbations. We write the \(10 \times 10 \) matrix operator \(\mathcal{M}_\ell \) in Eq. \(^{27}\) as (suppressing all zero entries)
\[\mathcal{M}_\ell = \begin{pmatrix}
D_1 & U_1 & V & V' & e_- A_1 & e_- A'_1 & e_+ A_1 & e_+ A'_1 \\
U_1 & D_1 & V' & V & e_- A'_1 & e_+ A_1 & e_+ A'_1 & e_+ A_1
\end{pmatrix}
\begin{pmatrix}
D_2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & D_2 & 0 & 0 & 0 & 0 & 0 & 0
\end{pmatrix}
\begin{pmatrix}
U & U & U & U & U & U & U & U \\
V & V' & V & V & V & V & V & V
\end{pmatrix}
\begin{pmatrix}
D_3 & U_2 & q_- A_2 & q_- A'_2 & q_+ A_2 & q_+ A'_2 \\
U_2 & D_3 & q_- A'_2 & q_- A_2 & q_+ A'_2 & q_+ A_2
\end{pmatrix}
\begin{pmatrix}
q_- A_1 & q_- A'_1 & q_+ A_1 & q_+ A'_1 \\
q_- A'_1 & q_- A_1 & q_+ A'_1 & q_+ A_1
\end{pmatrix}
\begin{pmatrix}
q_+ A_2 & q_+ A'_2 & U_{KL} & U_{KL} \\
q_+ A'_2 & q_+ A_2 & U_{KL} & U_{KL}
\end{pmatrix}
\begin{pmatrix}
U_{KL} & D_5 & D_5 & D_5 \\
D_{KL} & U_{KL} & U_{KL} & U_{KL}
\end{pmatrix}. \] (28)
In Eq. (28), the following notation is used
\[
D_1 = -\nabla^2_r + \left(\frac{(n(1-a) + \ell)}{r^2}\right) + W_1 ,
\]
\[
D_2 = -\nabla^2_r + \left(\frac{(na - \ell)}{r^2}\right) + W_2 ,
\]
\[
D_3 = -\nabla^2_r + \left(\frac{\ell}{r^2}\right) + W_3 ,
\]
\[
D_4 = D_K + \left(\frac{(\ell - 1)}{r^2}\right) ,
\]
\[
D_5 = D_L + \left(\frac{(\ell - 1)}{r^2}\right) ,
\]
\[
\bar{D}_1 = -\nabla^2_r + \left(\frac{(n(1-a) - \ell)}{r^2}\right) + W_1 ,
\]
\[
\bar{D}_2 = -\nabla^2_r + \left(\frac{(na + \ell)}{r^2}\right) + W_2 ,
\]
\[
\bar{D}_3 = -\nabla^2_r + \left(\frac{\ell}{r^2}\right) + W_3 ,
\]
\[
\bar{D}_4 = D_K + \left(\frac{(\ell + 1)}{r^2}\right) ,
\]
\[
\bar{D}_5 = D_L + \left(\frac{(\ell + 1)}{r^2}\right) ,
\]
with
\[
D_K = -\nabla^2_r + U_{KK} ,
\]
\[
D_c = -\nabla^2_r + U_{LL} ,
\]
and
\[
W_1 = \left(2\beta_1 + \frac{1}{1 - \epsilon^2}\right) f^2 - \beta_1 + \beta' g^2 ,
\]
\[
W_2 = \beta_1 (f^2 - 1) + \beta' g^2 ,
\]
\[
W_3 = \left(2\beta_2 + \frac{q^2}{1 - \epsilon^2}\right) g^2 - \alpha + \beta' f^2 ,
\]
\[
U_1 = \left(\beta_1 - \frac{1}{1 - \epsilon^2}\right) f^2 ,
\]
\[
U_{KK} = \frac{2}{1 - \epsilon} f^2 + \frac{2q^2}{1 + \epsilon} g^2 ,
\]
\[
U_{LL} = \frac{2}{1 + \epsilon} f^2 + \frac{2q^2}{1 - \epsilon} g^2 ,
\]
\[
A_1 = -\sqrt{2} \left(\frac{f' - nf}{r} (1 - a)\right) ,
\]
\[
A_1' = \sqrt{2} \left(\frac{f' + nf}{r} (1 - a)\right) ,
\]
\[
A_2 = -\sqrt{2} (g' - qgc/r) ,
\]
\[
A_2' = \sqrt{2} (g' + qgc/r) .
\]

For \(\epsilon = 0\), the ghost mode equations (25) decouple. The visible sector one has been solved numerically; it has positive eigenvalues, which change slowly with the parameters. The DS one has a positive potential. Therefore, no modes corresponding to instabilities are cancelled by ghosts.

The formulae presented above also apply for the 1VEV case by setting \(\epsilon = q_+ = 0\), replacing \(\delta K_\mu\) with \(\delta A_\mu\), and dropping \(\delta L_\mu\) and \(\zeta\) altogether.

References

[1] T.W.B. Kibble, “Topology of cosmic domains and strings”, J. Phys. A: Math. Gen. 9, 1387 (1976).

[2] A. Vilenkin and E.P.S. Shellard, Cosmic strings and other topological defects, Cambridge University Press, Cambridge, 1994.

[3] M.B. Hindmarsh and T.W.B. Kibble, “Cosmic strings”, Rep. Prog. Phys. 58, 477 (1995) arXiv:hep-ph/9411342
[4] T. Vachaspati, L. Pogosian, and D. Steer, “Cosmic strings”, Scholarpedia, 10, 3168 (2015) arXiv:1506.04039 [astro-ph.CO].

[5] Ch. Ringeval, “Cosmic strings and their induced non-Gaussianities in the cosmic microwave background”, Adv. Astron. 2010: 380507 (2010).

[6] A. Achúcarro and T. Vachaspati, “Semilocal and electroweak strings”, Phys. Rept. 327 (2000) 347 arXiv:hep-ph/9904229.

[7] Y. Nambu, “String-like configurations in the Weinberg-Salam theory”, Nucl. Phys. B 130, 505-516 (1977).

[8] K. Huang and R. Tipton, “Vortex excitations in the Weinberg-Salam theory”, Phys. Rev. D 23, 3050 (1981).

[9] T. Vachaspati and A. Achúcarro, “Semilocal cosmic strings”, Phys. Rev. D 44 (1991) 3067.

[10] M. Hindmarsh, “Existence and stability of semilocal strings”, Phys. Rev. Lett. 68 (1992) 1263.

[11] M. Hindmarsh, “Semilocal topological defects”, Nucl. Phys. B 392 (1993) 461-492 arXiv:hep-ph/9206229.

[12] M. James, L. Perivolaropoulos, and T. Vachaspati, “Stability of electroweak strings”, Phys. Rev. D 46, R5232 (1992).

[13] M. James, L. Perivolaropoulos, and T. Vachaspati, “Detailed stability analysis of electroweak strings”, Nucl. Phys. B 395, 534-546 (1993) arXiv:hep-ph/9212301.

[14] W.B. Perkins, “W condensation in electroweak strings”, Phys. Rev. D 47, R5224 (1993).

[15] M. Goodband and M. Hindmarsh, “Instabilities of electroweak strings”, Phys. Lett. B 363, 58-64 (1995) arXiv:hep-ph/9505357.

[16] V. Silveira, A. Zee, “Scalar phantoms”, Phys. Lett. 161B, 136-140 (1985).

[17] B. Patt, F. Wilczek, “Higgs-field portal into hidden sectors”, arXiv:hep-ph/0605188 (2006).

[18] N. Arkani-Hamed, D.P. Finkbeiner, T.R. Slatyer, and N. Weiner, “A theory of dark matter”, Phys. Rev. D 79, 015014 (2009) arXiv:0810.0713 [hep-ph].

[19] N. Arkani-Hamed and N. Weiner, “LHC signals for a superunified theory of dark matter”, JHEP 0812, 104 (2008) arXiv:0810.0714 [hep-ph].

[20] T. Vachaspati, “Dark strings”, Phys. Rev. D 80, 063502 (2009) arXiv:0902.1764 [hep-ph].

[21] J.M. Hyde, A.J. Long, and T. Vachaspati, “Dark Strings and their Couplings to the Standard Model”, Phys. Rev. D 89, 065031 (2014) arXiv:1312.4573 [hep-ph].

[22] A.J. Long, J.M. Hyde, and T. Vachaspati, “Cosmic Strings in Hidden Sectors: 1. Radiation of Standard Model Particles”, JCAP 09, 030 (2014) arXiv:1405.7679 [hep-ph].
[23] A.J. Long and T. Vachaspati, “Cosmic Strings in Hidden Sectors: 2. Cosmological and astrophysical signatures”, JCAP 12, 040 (2014) arXiv:1409.6979 [hep-ph]

[24] C. Gomez-Sanchez and B. Holdom, “Monopoles, strings, and dark matter”, Phys. Rev. D 83, 123524 (2011) arXiv:1103.1632 [hep-ph]

[25] M. Hindmarsh, R. Kirk, J.M. No, and S.M. West, “Dark matter with topological defects in the inert doublet model”, JCAP 05 (2015) 048 arXiv:1412.4821 [hep-ph]

[26] B. Hartmann and F. Arbabzadah, “Cosmic strings interacting with dark strings”, JHEP 07 (2009) 068 arXiv:0904.4591 [hep-th]

[27] Y. Brihaye and B. Hartmann, “Effect of dark strings on semilocal strings”, Phys. Rev. D 80, 123502 (2009) arXiv:0907.3233 [hep-th]

[28] A. Babeanu and B. Hartmann, “Stability of superconducting strings coupled to cosmic strings”, Phys. Rev. D 85, 023518 (2012) arXiv:1110.5497 [hep-th]

[29] P. Arias and F.A. Schaposnik, “Vortex solutions of an Abelian Higgs model with visible and hidden sectors”, JHEP 1412, 011 (2014) arXiv:1407.2634 [hep-th]

[30] P. Arias, E. Ireson, C. Núñez, and F.A. Schaposnik, “$\mathcal{N} = 2$ SUSY Abelian Higgs model with hidden sector and BPS equations”, JHEP 1502, 156 (2015) arXiv:1410.7701 [hep-th]

[31] P. Peter, “Low-mass current-carrying cosmic strings”, Phys. Rev. D 46, 3322 (1992).

[32] E. Witten, “Superconducting string”, Nucl. Phys. B 249 (1985) 557–592.

[33] P. Peter, “Superconducting cosmic string: Equation of state for spacelike and timelike current in the neutral limit”, Phys. Rev. D 45, 1091 (1992).

[34] P. Forgács and Á. Lukács, “Vortices with scalar condensates in two-component Ginzburg-Landau systems”, Phys. Lett. B 762, 271-275 (2016) arXiv:1603.03291 [hep-th]

[35] P. Forgács and Á. Lukács, “Vortices and magnetic bags in Abelian models with extended scalar sectors and some of their applications”, arXiv:1608.00021 [hep-th]

[36] T. Vachaspati and R. Watkins, “Bound states can stabilize electromagnetically charged strings”, Phys. Lett. B 318, 163-168 (1993) arXiv:hep-ph/9211284.

[37] L. Perivolaropoulos and N. Platis, “Stabilizing the semilocal string with a dilatonic Coupling”, Phys. Rev. D 88, 065017 (2013) arXiv:1307.3920 [hep-ph]

[38] H. Weigel, M. Quandt, and N. Graham, “Stable charged cosmic strings”, Phys. Rev. Lett. 106, 101601 (2011) arXiv:1011.2636 [hep-th]

[39] N. Graham, M. Quandt, and H. Weigel, “Fermion energies in the background of a cosmic string”, Phys. Rev. D 84, 025017 (2011) arXiv:1105.1112 [hep-th]

[40] M. Nagasawa and R. Brandenberger, “Stabilization of the electromagnetically charged Z string in the early Universe”, Phys. Rev. D 67, 043504 (2003) arXiv:hep-ph/0207246
[41] B. Holdom, “Two U(1)’s and ϵ charge shifts”, Phys. Lett. 166B, 196-198 (1986).

[42] D.E. Holz and A. Zee, “Collisional dark matter and scalar phantoms”, Phys. Lett. B 517, 239-242 (2001) [arXiv:hep-ph/0105284].

[43] K. Cheung, Y.-L.S. Tsai, P.-Y. Tseng, T.-C. Yuan, and A. Zee, “Global study of the simplest scalar phantom dark matter model”, JCAP 1210, 042 (2012) arXiv:1207.4930 [hep-ph].

[44] A. Beniwal, F. Rajec, C. Savage, P. Scott, C. Weniger, M. White, and A.G. Williams, “Combined analysis of effective Higgs portal dark matter models”, Phys. Rev. D 93, 115016 (2016) [arXiv:1512.06458v2 [hep-ph]].

[45] Á. Lukács, “Twisted strings in Extended Abelian Higgs Models”, In: A. Zichichi (ed): What is known and unexpected at the LHC, Proceedings of the International School of Subnuclear Physics, Erice-Sicily, Italy, 29 August – 7 September 2010, World Scientific, 2013.

[46] E. Babaev, “Vortices with fractional flux in two-gap superconductors and in extended Faddeev model”, Phys. Rev. Lett. 89, 067001 (2002) [arXiv:cond-mat/0111192].

[47] E. Babaev and M. Speight, “Semi-Meissner state and neither type-I nor type-II superconductivity in multicomponent systems”, Phys. Rev. B 72 (2005) 180502 [arXiv:cond-mat/0411681].

[48] J. Baacke and T. Daiber, “One-loop corrections to the instanton transition in the two-dimensional Abelian Higgs model”, Phys. Rev. D 51, 795 (1995) [arXiv:hep-th/9408010].

[49] M. Goodband and M. Hindmarsh, “Bound states and instabilities of vortices”, Phys. Rev. D52 4621 (1995) [arXiv:hep-ph/9503457].

[50] P. Forgács, Á. Lukács, “Instabilities of twisted strings”, JHEP 0912 (2009) 064 [arXiv:0908.2621 [hep-th]].

[51] A.A. Abrikosov, “The magnetic properties of superconducting alloys”, Journal of Physics and Chemistry of Solids, 2(3), 199-208 (1957).

[52] H.B. Nielsen and P. Olesen, “Vortex-line models for dual strings”, Nucl. Phys., B 61 (1973) 45.

[53] P. Forgács, S. Reuillon, and M.S. Volkov, “Superconducting vortices in semilocal models”, Phys. Rev. Lett. 96, 041601 (2006) [arXiv:hep-th/0507246].

[54] P. Forgács, S. Reuillon, and M.S. Volkov, “Twisted superconducting semilocal strings”, Nucl. Phys. B 751 (2006) 390–418 [arXiv:hep-th/0602175].

[55] J. Garaud and M.S. Volkov, “Stability analysis of the twisted superconducting semilocal strings”, Nucl. Phys. B799 (2008) 430-455 [arXiv:0712.3589 [hep-th]].

[56] B. Hartmann, P. Peter, “Can type II Semilocal cosmic strings form?”, Phys. Rev. D86 (2012) 103516 [arXiv:1204.1270 [hep-th]].