Oxygen radical-mediated oxidation reactions of an alanine peptide motif - density functional theory and transition state theory study

Hsing-Yu Chen1, Soonmin Jang2, Tzyy-Rong Jinn3, Jia-Yaw Chang4, Hsiu-Feng Lu5* and Feng-Yin Li1*

Abstract

Background: Oxygen-base (O-base) oxidation in protein backbone is important in the protein backbone fragmentation due to the attack from reactive oxygen species (ROS). In this study, an alanine peptide was used model system to investigate this O-base oxidation by employing density functional theory (DFT) calculations combining with continuum solvent model. Detailed reaction steps were analyzed along with their reaction rate constants.

Results: Most of the O-base oxidation reactions for this alanine peptide are exothermic except for the bond-breakage of the Cα-N bond to form hydroperoxy alanine radical. Among the reactions investigated in this study, the activated energy of OHα-H abstraction is the lowest one, while the generation of alkylperoxy peptide radical must overcome the highest energy barrier. The aqueous situation facilitates the oxidation reactions to generate hydroxyl alanine peptide derivatives except for the fragmentations of alkoxyl alanine peptide radical. The Cα-Cβ bond of the alkoxyl alanine peptide radical is more labile than the peptide bond.

Conclusion: The rate-determining step of oxidation in protein backbone is the generation of hydroperoxy peptide radical via the reaction of alkylperoxy peptide radical with HO2. The stabilities of alkylperoxy peptide radical and complex of alkylperoxy peptide radical with HO2 are crucial in this O-base oxidation reaction.

Introduction

During the past decade, there was a rapidly increasing interest in oxidative damage to proteins, and its relevance to aging and pathological disorders [1-12]. The oxidation mechanism was constructed by identifying the trace of possible reaction intermediates and it is surmised that the mechanism is composed of a series reactions with HO2 radical, as suggested by Stadtman et al. [2-4]. However, the details of reactions are still undetermined. These reaction mechanisms can provide scientists with some clues to aid in the design of medicines or nutrients to slow down the aging process or to decrease the probability of the age-related diseases. Obviously, an understanding of the processes of the protein oxidation is important, particularly as life expectancy increases. To the best of our knowledge, there are only few articles using ab initio or density functional theory (DFT) methods to study the oxidative damage of proteins through structural factors [13-20]. The main goals of the previous studies were to estimate the stability of carbon-center radicals and the strength of the C-H bond via bond dissociation energy calculations. In our previous study, it was found that the α-H located on a β-sheet is more difficult to abstract than one located on an α-helix [21]. However, this finding contradicts the results reported by Rauk et al. [18] and Owen et al. [22,23]. There were several articles about the OH H-abstraction from several amino acids [24-28]. Huang and Rauk [29] performed a series of theoretical calculations on reactions theoretically starting from an alkylperoxyl radical. Wood et al. [30] studied the C-C backbone fission of four small alkoxyl radicals. To our best knowledge, there are no studies regarding the kinetic and thermodynamic aspects of the overall oxidation processes in proteins and therefore it becomes the
most crucial issue in understanding the protein oxidative damage.

To facilitate the calculation, acetyl(Ala)NH₂, HC(O)NHCH(CH₃)C(O)NH₂ denoted as PA-H, was chosen to model a simple alanine peptide, as used in the previous studies [13,29], to investigate the oxidation reactions mediated by reactive oxygen species (ROS). In this study, a simple peptide represents a peptide before any oxidation reactions take place. The following reaction scheme is the oxidation reaction process adopted from those suggested by Stadtman, [1-4] but without the metal catalysis in the reactions.

\[
\begin{align*}
\text{PA} - \text{H} + \text{OH} & \rightarrow \text{PA} + \text{H}_2\text{O} & (a) \\
\text{PA} + \text{O}_2 & \rightarrow \text{PA} - \text{O}_2 & (b) \\
\text{PA} - \text{O}_2 + \text{HO}_2 & \rightarrow \text{PA} - \text{O}_2\text{H} + \text{O}_2 & (c) \\
\text{PA} - \text{O}_2\text{H} + \text{HO}_2 & \rightarrow \text{PA} - \text{O} + \text{O}_2 + \text{H}_2\text{O} & (d) \\
\text{PA} - \text{O} & \rightarrow \text{NHCHO} + \text{NH}_2\text{COCHO} & (e) \\
\text{PA} - \text{O} & \rightarrow \text{NHCHO}\text{COCH}_3 + \text{NH}_2\text{CO} & (f) \\
\text{PA} - \text{O} + \text{HO}_2 & \rightarrow \text{PA} - \text{OH} + \text{O}_2 & (g) \\
\text{PA} + \text{HO}_2 & \rightarrow \text{PA} - \text{O}_2\text{H} & (h) \\
\end{align*}
\]

Where PA- represents (CHO)NHC(CH₃)CO(NH₂), an α-C center radical of this alanine peptide. Base on the previous theoretical study [31] for CH₃ reacting with HO₂, an association channel of PA reacting with HO₂ was also considered in this study.

The rate constants of the above reactions at 298.15 K was calculated using transition state theory to understand their reaction kinetics. However, the effect of tunneling was not considered in this study. The solvent effect was also simulated by using continuum model in order to investigate the influence of an aqueous solution environment on the protein oxidation reactions. Through this study, we hope to shed some light on the process of protein oxidation.

Computational method
The geometry optimizations and frequency calculations of all species in this study, such as reactants, intermediates, transition states (TS) and products, were carried out at B3LYP/6-31 G(d) level. The final energy values were calculated at BHandHLYP/6-31 + G(d, p) level with ZPE correction. This BHandHLYP calculated level is rather computationally inexpensive and sufficient to obtain the relative energies as described in the previous studies [24] about OH α-H abstraction from alanine and glycine, in spite of its small basis set. The conductor-like polarizable continuum model (CPCM) using UAHF cavities at B3LYP/6-31 + G(d, p) level was suggested as a proper method to obtain the free energies of aqueous solvation [32]. Therefore, in this study CPCM was used to estimate the aqueous solvation free energy of all species. The rate constants were calculated as the following equation

\[
k_{\text{TST}}(T) = \frac{k_b}{h} \frac{Q'(T)}{Q_A Q_B} \exp \left(-\frac{E_0}{k_b T} \right)
\]

where \(Q\) is partition function, which can be obtained in Gaussian output file; \(E_0\) is the energy with zero-point correction; \(k_b\) is Boltzmann constant; \(h\) is Planck constant and \(T\) is temperature. The transition states were verified by harmonic vibrational frequency analysis with only one negative frequency and checked their reaction pathways with intrinsic reaction coordinate (IRC) analysis by connecting the associated reactants and products. As to the \(\Delta H_{\text{rxn}}\) value, we just used those reported in Gaussian output. We used the structures optimized in the gas phase to do single point calculation with CPCM at B3LYP/6-31 G(d, p) level without zero-point correction. There are several issues are worth noting for the proposed oxidation mechanism before entering the discussion section. In Reaction \(b\), as mentioned in the introduction section, alkylperoxy peptide radical is an important intermediate in the oxidation chain reactions of many chemical and biological systems due to its stability [33-37]. An alkylperoxy peptide radical can be generated easily from an α-C peptide radical surrounded by oxygen molecules. There are rotational isomers for this radical, which can be located by rotating the oxygen molecule with respect to the α-C-C bond, followed by structural optimization. After locating the stable structures, their heat of formation values can be calculated. In Reaction \(d\), although PA-O₂Hs are rather difficult to obtain via Reaction \(c\), as stated in previous subsection, it can be generated without energy barrier by attaching the terminal O of HO₂ directly to the carbon radical site of PA, Reaction h. Therefore, it is important to study the reaction between PA and HO₂ in present study. Apart from PA-O₂Hs, the related isomers can be classified according to the rotation of the C₆₅-O or O-O bond. The H-migration reactions involved in Reaction \(c\) and \(g\) are crucial for the oxidation mechanism. Without them, the reactions involve higher energetic barriers. In Reaction \(c\), the spin densities of hydroperoxyl radical (HO₂) [38,39] and alkylperoxy alanine peptide radical (PA-O₂) are mostly located on the terminal oxygen. From literature [40,41], the most
stable structure of HO$_2$ dimer is HOO-OOH. This implies that the first step of Reaction c is to generate PA-OOOOH by attaching a HO$_2$ to the terminal O of PA-O$_2$s. After three consecutive H-migration reactions, the products of the Reaction c can be obtained. Reaction g is a reaction involving an HO$_2$ radical attacking an alkoxyl alanine peptide radical (PA-O), generating a hydroxyl alanine peptide derivative, i.e., PA-OH, and O$_2$. Similarly, owing to the dominant spin density of PA-O located on O, the pre-reactive species PA-OOOH are formed first and then Reaction g occurs via three consecutive H-migrations. All calculations were performed with Gaussian03 package [42].

Result and discussion

The focus of the present study is the oxidation reactions taking place at protein backbone, and therefore, no other intermediates, such as those generated via the rotation of the bonds in backbone, were considered. The relative energies were shown under the molecular labels in Figures 1,2,3,4,5,6,7 and the values without parentheses were in gas phase, while those in parenthesis were taken the free energies of aqueous solvation into consideration. The following discussion was organized according to the reaction types of the previously mentioned reaction scheme.

(a) Reaction a: the generation of an α-C center peptide radical by OH α-H abstraction

The mechanism of the α-H abstraction reaction by OH radical from alanine peptide -PA-H was presented in Figure 1. A pre-reactive complex IN1-a-PA is formed first, followed by H$_2$O elimination to generate an α-C center radical peptide intermediate, PA. The energy barrier of the OH α-H abstraction from PA-H, is 22.9 kJ mol$^{-1}$ in gas phase compared with 24.6 kJ mol$^{-1}$ in an aqueous environment. Their corresponding rate coefficients of these two reactions, without tunnel effect consideration are 4.38×10^7 M$^{-1}$s$^{-1}$ and 2.24×10^8 M$^{-1}$s$^{-1}$, respectively. The rate constant we found is one order lower than that for oligopeptides [8,43] ($k \sim 10^8$) and two order lower than that for cyclic peptides [8,44] ($k \sim 10^9$) in aqueous solutions. However, they are close to the rate constant [9] for free alanine, 7.7×10^7 M$^{-1}$ s$^{-1}$, at pH ca. 7.

(b) Reaction b: Alkylperoxy peptide radical generation through molecular oxygen molecular addition to α-C center peptide radical

Three different conformers of alkylperoxy alanine peptide radical can be found, i.e., PA-O$_2$-a, PA-O$_2$-b and PA-O$_2$-c. There is no energy barrier for this oxygen addition reaction. Interestingly, the rate constants of cyclic peptides with oxygen were measured, ca. 10^9 M$^{-1}$ s$^{-1}$ [44], which indicates that it could be barrierless and controlled by diffusion. In the gas phase, the most stable conformer is PA-O$_2$-b, consistent with the previous study [29], followed by PA-O$_2$-a and PA-O$_2$-c is the least stable one among these three. The optimized structures and the interconversion mechanisms among these three isomers were shown in Figure 2. However,
including solvent effect, \(\text{PA-O}_2\text{-c} \) becomes more stable than \(\text{PA-O}_2\text{-a} \). \(\text{PA-O}_2\text{-b} \) is a stable intermediate since its heat formation is not very large, 55.7 kJ mol\(^{-1}\) in gas phase and 64.7 kJ mol\(^{-1}\) in aqueous phase. All the energy barriers of the interconversion among \(\text{PA-O}_2\text{s} \), by rotating the C\(_a\)-O bond, are pretty small and lower than the energy required for dissociating the oxygen molecule directly.

(c) The generation of hydroperoxy analine peptide intermediate (\(\text{PA-OO}_2\text{H} \)) via Reactions \(c \)

The products of the Reaction \(c \) require three consecutive H-migration reactions as shown in Equation (2).

\[
\begin{align*}
\text{HO}_2 + \text{PA} & \rightarrow \text{PA-OOOOH} \\
\text{PA-OOOOH} & \rightarrow \text{PA-OOHOO} \\
\text{PA-OOHOO} & \rightarrow \text{PA-OOH} + \text{O}_2
\end{align*}
\]

According to the Equation (2), the possible conformations of \(\text{PA-OOOOH} \) were searched based on the orientation between \(\text{PA-O}_2\text{s} \) and \(\text{HO}_2 \) and the corresponding transition states and intermediate (\(\text{PA-OOOO(H)O} \)) of the two consecutive H-migration reactions were found. Figure 3 showed the least energy pathway of Reaction \(c \) found in our calculation. The adduct (IN1-c-PA) of \(\text{HO}_2 \) with \(\text{PA-O}_2\text{-b} \) is only stable in gas phase (10.5 kJ mol\(^{-1}\)) but is unstable in aqueous environment. The first H-migration, via TS1-c-PA, is the most difficult step in Reaction \(c \) and its energy barrier
in kJ mol\(^{-1}\) are 195.3 in gas phase, and 165.0 in an aqueous phase. Their corresponding rate constants were \(5.38 \times 10^{-22}\) and \(1.09 \times 10^{-16} \text{ s}^{-1} \text{ M}^{-1}\), respectively. Unstable as the intermediate IN2-c-PA is, it easily undergoes the second H-migration via TS2-c-PA and subsequently forms the product by losing O\(_2\). Therefore, to estimate the energy barrier and rate constant of Reaction \(c\) in the present study, only the first H-migration reaction was taken into consideration. The energy barriers were found in gas and in aqueous phases as 195.3 and 165.0 kJ mol\(^{-1}\), respectively. Their corresponding rate constants in sec\(^{-1} \text{ M}^{-1}\) were \(5.38 \times 10^{-22}\) and \(1.09 \times 10^{-16}\), respectively. Reaction \(c\) can also take place via a direct abstraction channel, as shown in following equation

\[
\text{PA-} \cdot \text{O}_2 + \text{HO}_2 \rightarrow \text{PA-} \cdot \text{OO...HOO} \rightarrow \text{PA-} \cdot \text{O}_2 \cdot + \text{O}_2
\]

(3)

This is similar to the reaction of \(\text{HO}_2\) with \(\text{CH}_3\) and \(\text{RO}_2\) as described in previous theoretical works [31,45,46]. However, we did not find any intermediate \text{PA-} \cdot \text{OO...HOO} that existed at singlet state, which is consistent with the previous study. Due to its high
energy, triplet state PA-OO...HOO was not considered in the present study [45].

(d) The generation of hydroperoxy alanine peptide by a HO₂ addition to PA

The relative energy of TS-r-O₂H-bbb, which is the activated complex of the conversion reaction between PA-O₂H-bb and PA-O₂H-bbb, is lower than that of PA-O₂H-bbb in gas phase. In aqueous phase, the strong solvation of TS-r-O₂H-bbb makes its relative energy even lower than those of both reactant and product for the inter-conversion reaction. These results indicate that the rotation of the O-O bond has a small or no energy barrier, therefore, the conformers formed by rotating the O-O bond were ignored and only the conformers formed by rotation of the C₅-O bond were considered in this study. Two conformers were found, PA-O₂H-a and PA-O₂H-c. The related optimized structures and conversion mechanism were presented in Figure 4.

In general, the conversion by rotation across C₅-N bond is difficult in gas phase but is rather easy in aqueous phase due to the strong solvation in its TS, TS-r-

O₂H-bbb. Moreover, the conversions among PA-O₂H₃s are even harder than the conversions among PA-O₂S. The most stable conformer of PA-O₂H₃s in gas phase is PA-O₂H-c because the H in HO₂ can serve as a hydrogen bond (HB) donor [38-41,47,48], interacting with carbonyl O, which is consistent with the previous study [29,30]. It also can explain why PA-O₂H-b is more stable than PA-O₂H-bbb in gas phase. However, PA-O₂H-bbb becomes the most stable conformer among PA-O₂H₃s when the aqueous solvation is taken into consideration. The dominant species of PA-O₂H₃s in gas and in aqueous phases are PA-O₂H-c and PA-O₂H-bb, respectively. Their corresponding formation heats are -210.7 and -175.6 kJ mol⁻¹, highly exothermic.

(e) Reaction d: PA-O₂H + HO₂ → PA-O + H₂O + O₂

The alkoxyl radical peptide intermediate (PA-O) can be generated by the hydroperoxy alanine peptide intermediate (PA-O₂H) first reacted with HO₂ and then followed by the loss of H₂O and O₂. The reaction mechanism of Reaction d can be proposed as the following:

\[
PA - O₂H + HO₂ → PA - O₂H₂ → PA - O + H₂O + O₂
\]

(4)

There exists a pre-reactive species, PA-(O₂H)₂, before the generation of products, i.e., PA-O, H₂O and O₂. Therefore, all probable conformations of PA-(O₂H)₂ s were searched by taking into account all conformers of PA-O₂H₃s interacting with HO₂, as found in the previous subsection. Through the above process, the generated PA-(O₂H)₂ s were selected as the pre-reactive of Reaction d and their corresponding TSs were found. Meanwhile, the possible TSs of Reaction d were also searched by considering all conformers of hydroperoxy peptide intermediate (PA-O₂H₃s) attacked by HO₂ directly from all probable directions. The found TSs were verified by tracing along the reaction pathway to find the related pre-reactive species. Finally, the lowest energy pathway among those we found were listed in Figure 5.

The structure of IN-d-PA, also a pre-reactive species of Reaction d, has the terminal O of HO₂ connected to the amino H and the H of HO₂ close to the terminal O of the other HO₂ bonded to C₅. Consistent with previous studies [38-41,47,48] about the reaction with HO₂, its terminal O can serve as a HB acceptor and the H as a HB donor. These HB interactions stabilize the complex about 40.8 kJ mol⁻¹ in gas phase. Via TS-d-PA, IN-d-PA can generate PA-O, O₂ and H₂O, with the energy barrier in gas phase and in aqueous phase of 150.8 and 121.4 kJ mol⁻¹, respectively. Their corresponding rate constants are \(1.56 \times 10^{-13}\) and \(2.20 \times 10^{-8}\) s⁻¹ M⁻¹, respectively.
(f) The fragmentations of alkoxyl radical peptide intermediate (PA-O): Reaction e and f
With a rather long C-Cα bond (1.607 Å), PA-O can break the C-Cα bond rather easily. Our calculated results also support this statement with the energy barrier, the reaction energies and corresponding rate constant in gas phase are 0.48 kJ mol⁻¹, 33.0 kJ mol⁻¹ and 1.05 × 10⁷ s⁻¹ M⁻¹, respectively. Their counterparts in aqueous phase are 43.6 kJ mol⁻¹, 34.8 kJ mol⁻¹ and 5.06 × 10⁶ s⁻¹ M⁻¹, respectively. These imply the probability for an alkoxyl peptide radical to yield peptide fragmentations. The breakage of Cα-N bond in PA-O is more difficult than that of the Cα-C bond. As to the Cα-N bond breakage, the energy barrier, reaction energy and the corresponding rate constant in gas phase are 127.6 kJ mol⁻¹, 63.9 kJ mol⁻¹ and 7.50 × 10⁻¹⁰ s⁻¹ M⁻¹, respectively. Their corresponding values in aqueous phase are 131.4 kJ mol⁻¹, 47.0 kJ mol⁻¹ and 1.62 × 10⁻¹⁰ s⁻¹ M⁻¹, respectively. This data were also listed in Table 1 for comparison. The trend is in agreement with the previous theoretical study [29]. The optimized structures of their transition states and fragments for both Cα-N and Cα-C bond-breakage were presented in Figure 6. Because the backbone breaking reaction of the peptide was the main issue in this study, our products were all TS-like species but not the lowest-energy products. Therefore, the energy released in the studied reactions is lower than that found in the previous studies [29,30]. Interestingly, the backbone of the above transition states, TS-e-PA and TS-f-PA, are almost folded, and therefore, it will be rather difficult for these reactions to take place in proteins with restriction from the whole structure, as observed in this alanine peptide motif.

(g) Reaction g: it is a generation of a hydroxyl derivative through an alkoxyl radical with HO₂
In order to generate the products, Reaction g needs to undergo three consecutive H-migrations as indicated in Equation (4).

\\[PA-O+HO_2→PA-OOH→PA-OOOH→PA-OHO→PA-OH+O_2\] (5)

Similar to Reaction c, we searched all possible PA-OOOHs, then tried to find the corresponding PA-OO (H)O and the TSs for the two corresponding H-migration based on Equation (5). Figure 7 lists the lowest energy pathway of Reaction g that we have found. The association energy of IN1-g-PA to form the isolated PA-O and HO₂ is 46.7 kJ mol⁻¹ in gas phase. The terminal H of HO₂ interacts with carbonyl O of backbone. Similarly, the first H-migration via TS1-g-PA is the rate determining step and the second H-migration is almost barrierless since the relative energy of TS2-g-PA is lower than that of IN2-g-PA. Therefore, only the first H-migration from IN1-g-PA to IN2-g-PA via TS1-g-PA was considered to represent Reaction g. And, the energy barriers were found to be 127.6 kJ mol⁻¹ in gas phase and 131.4 kJ mol⁻¹ in aqueous phase, respectively. Their corresponding rate constants in were 7.50 × 10⁻¹⁰ and 1.62 × 10⁻¹⁰ s⁻¹ M⁻¹, respectively.

(h) The overview from reaction a to reaction g
Although, all the oxidation reactions for the alanine peptide considered in the present study are exothermic, except for the breakage of Cα-N bond in PA-O. Table 2 lists the energies and rate constants of all the mentioned reactions with barriers in both gas and aqueous phases. It indicates that OH α-H abstraction is the easiest step and the generation of hydroperoxy alanine peptide radical PA-O2H via Reaction c is the most difficult one. Except for those reactions involved the fragmentations of PA-O, the oxidation reactions are facilitated by the aqueous solvation, especially for the two most difficult steps, Reaction c and d. To generate the hydroperoxy peptide intermediate via Reaction c is rather difficult and should go through the HO₂ addition reaction to form α-C center radical.

| Table 1 The energy barriers, reaction energies and rate constants of the two fragmentation reactions in Reaction f as investigated in the current study, with energy in kJ mol⁻¹ and rate constant in sec⁻¹ mol⁻¹ |
|---|---|---|---|---|---|---|
| Bond to be fragmented | Gas phase | | | | Aqueous phase | |
| | \(E_a\) | \(\Delta H_{rxn}\) | \(k\) | \(E_a\) | \(\Delta H_{rxn}\) | \(k\) |
| C-Cα | 0.48 | 33.0 | 1.05 × 10⁷ | 43.2 | 34.8 | 5.06 × 10⁶ |
| Cα-N | 127.6 | 63.9 | 7.5 × 10⁻¹⁰ | 131.4 | 47.0 | 1.62 × 10⁻¹⁰ |

| Table 2 The energy barriers, reaction energies and rate constants of the oxidation reactions for the simple alanine peptide as investigated in the current study, with energy in kJ mol⁻¹ and rate constant in sec⁻¹ mol⁻¹ |
|---|---|---|---|---|---|
| Reactions | Gas phase | | | | Aqueous phase |
| | \(E_a\) | \(\Delta H_{rxn}\) | \(k\) | \(E_a\) | \(\Delta H_{rxn}\) | \(k\) |
| (a) | 22.9 | -113.6 | 4.38 × 10⁷ | 24.6 | -103.3 | 2.24 × 10⁶ |
| (b) | 195.3 | -148.4 | 5.38 × 10⁻¹² | 165.0 | -96.4 | 10.9 × 10⁻¹⁰ |
| (c) | 150.8 | -129.3 | 1.56 × 10⁻¹³ | 121.4 | -125.9 | 2.20 × 10⁻⁸ |
| (d) | 33.0 | -0.84 | 1.05 × 10⁷ | 34.8 | -43.6 | 5.06 × 10⁵ |
| (e) | 127.6 | 63.9 | 7.50 × 10⁻¹⁰ | 131.4 | 47.0 | 1.62 × 10⁻¹⁰ |
| (f) | 132.1 | -231.7 | 1.46 × 10⁻²² | 116.7 | -167.0 | 8.19 × 10⁻⁸ |
| (g) | 132.1 | -231.7 | 1.46 × 10⁻²² | 116.7 | -167.0 | 8.19 × 10⁻⁸ |
peptide intermediate. With the participation of HO$_3^\cdot$, in Reaction c, d and g, pre-reactive peptide intermediates, IN1-c-PA, IN1-d-PA and IN1-g-PA, were formed first, respectively. Their dissociation energies to separate into reactants were 10.5, 40.8 and 46.7 kJ mol$^{-1}$ in gas phase, respectively. However they all become unstable in aqueous environment. Because IN1-c-PA is the most unstable one, the effects that increase its stability will be the key factors to enhance the oxidation processes tha involving it. The generation of alkoxyl alanine peptide radical is a critical step since it can break the C$_\alpha$-C$_\beta$ bond easily to yield the peptide backbone fragmentation.

Conclusion

Theoretical O-base oxidation in protein backbone was performed, using an alanine peptide as a model, and focused on the peptide backbone. The solvent participating in oxidation procedure was not considering this study, however, continuum model was used to estimate the influence of the aqueous phase. Several important features were found as shown in the following. Most of the oxidation reactions in this alanine peptide are exothermic, except for the breakage of the C$_\alpha$-N bond from hydroperoxy alanine peptide radical. The OH α-H abstraction is the easiest step and the generation of alkylperoxy peptide radical is the most difficult one. The aqueous environment facilitates the oxidation processes, except for the fragmentations of alkoxyl alanine peptide radical. The C$_\alpha$-C$_\beta$ bond of the alkoxyl alanine peptide radical is more labile than the peptide bond. Generating a hydroxyl alanine peptide derivative from the alkoxyl alanine peptide radical is feasible. The C$_\alpha$-C$_\beta$ fragmentation takes place easily and causes large structural deformation by yielding alkoxyl peptide radical. Therefore, the rate determining step of oxidation in protein backbones is the generation of hydroperoxy peptide radical via the HO$_2$ addition reaction to form the alkylperoxy peptide radical. The stabilities of alkylperoxy peptide radical and the alkylperoxy peptide radical and HO$_2$ complex are important factors that influence the reaction rate.

Acknowledgements

The authors thank the National Science Council and Academia Sinica in Taiwan for their financial support. The computer center of Academia Sinica and National Center for High-Performance Computing are acknowledged for providing computational resources.

Author details

1Department of Chemistry, National Chung Hsing University, Taichung, Taiwan 402, R.O.C. 2Department of Applied Chemistry, Sejong University, Seoul 143-747, South Korea. 3School of Chinese medicine, China Medical University, chung, Taiwan 402, R.O.C. 4Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan 106, R.O.C. 5The Institute of Chemistry, Academia Sinica, Taipei, Taiwan 115, R.O.C.

Authors’ contributions

HYC and JYC performed all the calculations. SJ and TRU analyzed the data. HFL and FYL initiated and designed the study and finalized the manuscript. All authors have read and approved the final version.

Competing interests

The authors declare that they have no competing interests.

Received: 27 September 2011 **Accepted:** 24 April 2012 **Published:** 24 April 2012

References

1. Stadtmn ER: Protein oxidation and aging. Science 1992, 257:1220.
2. Berlett BS, Stadtmn ER: Protein oxidation in aging, disease, and oxidative stress. J Biol Chem 1997, 272:20313.
3. Stadtmn ER: Importance of individuality in oxidative stress and aging 1, 2. Free Radic Biol Med 2002, 33:597-604.
4. Stadtmn E, Levine R: Free radical-mediated oxidation of free amino acids and amino acid residues in protein. Free Radic Res 2003, 35:207-218.
5. Garrison WM: Reaction mechanisms in the radiolysis of peptides, polypeptides, and proteins. Chem Rev 1987, 87:381-398.
6. Smith MA, Sayre LM, Monnier VM, Perry G: Radical AGing in Alzheimer’s disease. Trends Neurosci 1995, 18:172-176.
7. Remmen HV, Richardson A: Oxidative damage to mitochondria and aging. Exp Gerontol 2001, 36:957-968.
8. Hawkins CL, Davies MJ: Generation and propagation of radical reactions on proteins. Biochimica et Biophysica Acta (BBA)-Bioenergetics 2001, 1504:196-219.
9. Davies MJ: The oxidative environment and protein damage. Biochimica et Biophysica Acta (BBA)-Proteins & Proteomics 2005, 1703:93-109.
10. Mariani E, Polidori M, Cherubini A, Mecocci P: Oxidative stress in brain aging, neurodegenerative and vascular diseases: an overview. J Chromatogr B 2005, 827:65-75.
11. Brennan ML, Hazen A: Amino acid and protein oxidation in cardiovascular disease. Amino acids 2003, 25:365-374.
12. Lin MT, Flint Beal M: The oxidative damage theory of aging. Clin Neurosci Res 2003, 3:305-315.
13. Armstrong D, Yu D, Rauk A: Oxidative damage to the glycol-α-carbon site in proteins: an ab initio study of the CH bond dissociation energy and the reduction potential of the C-centered radical. Can J Chem 1996, 74:1192-1199.
14. Rauk A, Yu D, Armstrong DA: Toward Site Specificity of Oxidative Damage in Proteins: C - H and C - C Bond Dissociation Energies and Reduction Potentials of the Radicals of Alanine, Serine, and Threonine Residues: An ab Initio Study. J Am Chem Soc 1997, 119:208-217.
15. Block D, Yu D, Armstrong D, Rauk A: On the influence of secondary structure on the α-C \equiv H bond dissociation energy of proline residues in proteins: a theoretical study. Can J Chem 1998, 76:1042-1049.
16. Jonsson M, Wayner DDM, Armstrong DA, Yu D, Rauk A: On the thermodynamics of peptide oxidation: anhydrides of glycine and alanine. Journal of the Chemical Society, Perkin Transactions 2 1998, 1967-1972.
17. Rauk A, Yu D, Armstrong D: Oxidative damage to and by cysteine in proteins: An ab initio study of the radical structures, CH \equiv SH, and CC bond dissociation energies, and transition structures for H abstraction by thiyl radicals. J Am Chem Soc 1998, 120:8848-8853.
18. Rauk A, Yu D, Taylor J, Shustov G, Block D, Armstrong D: Effects of structure ono-α-C \equiv H bond enthalpies of amino acid residues: relevance to H transfers in enzyme mechanisms and in protein oxidation. Biochemistry 1999, 38:9089-9096.
19. Rauk A, Armstrong DA: Influence of α-Sheet Structure on the Susceptibility of Proteins to Backbone Oxidative Damage: Preference for β-Centered Radical Formation at Glycine Residues of Alphaparallel β-Sheets. J Am Chem Soc 2000, 122:4185-4192.
20. Rauk A, Armstrong DA, Fairlie DP: Is Oxidative Damage by α-Amylloid and Prion Peptides Mediated by Hydrogen Atom Transfer from Glycine β-Carbon to Methionine Sulfur within α-Sheets? J Am Chem Soc 2000, 122:9761-9767.
21. Lu H-F, Li F-Y, Lin SH: Site specificity of α-H abstraction reaction among secondary structure motif: An ab initio study. J Comput Chem 2007, 28:783-794.
22. Owen MC, Viskolcz B, Czizmadia IG: Quantum chemical analysis of the unfolding of a penta-glycyl 3[sub 10]-helix initiated by HO[sub 2] + bullet1, HO[sub 2] + bullet1, and O[sub 2] + bullet. J Chem Phys 2011, 135:035101-135:035109.

23. Owen MC, Viskolcz B, Czizmadia IG: Quantum Chemical Analysis of the Unfolding of a Penta-aryl 310-Helix Initiated by HO2, HO2- and O2-. The Journal of Physical Chemistry B 2011, 115:8041-8023.

24. Galano A, Alvarez-Idaboy JR, Montero LA, Viver-Bunge A: OH hydrogen abstraction reactions from alanine and glycine: a quantum mechanical approach. J Comput Chem 2001, 22:1138-1153.

25. Galano A, Alvarez-Idaboy JR, Bravo-Pérez G, Ruiz-Santoyo ME: Mechanism and rate coefficients of the gas phase OH hydrogen abstraction reaction from aspiraginase: a quantum mechanical approach. J Mol Struct (THEOCHEM) 2002, 617:77-86.

26. Galano A, Alvarez-Idaboy JR, Cruz Torres A, Ruiz Santoyo M: Kinetics and mechanism of the gas phase OH hydrogen abstraction reaction from methionine: A quantum mechanical approach. Int J Chem Kinet 2003, 35:21-221.

27. Galano A, Alvarez-Idaboy JR, Cruz Torres A, Ruiz Santoyo ME: Rate coefficients and mechanism of the gas phase OH hydrogen abstraction reaction from serine: a quantum mechanical approach. J Mol Struct (THEOCHEM) 2003, 629:165-174.

28. Galano A, Alvarez-Idaboy JR, Agagino-Valdés E, Ruiz-Santoyo ME: Quantum mechanical approach to isoleucine-Oh gas phase reaction. Mechanism and kinetics. J Mol Struct (THEOCHEM) 2004, 676:97-103.

29. Huang ML, Rauk A: Structure and reactions of the peroxy radicals of glycine and alanine in peptides: an ab initio study. J Phys Org Chem 2004, 17:777-786.

30. Wood GPF, Rauk A, Radom L: Modeling β-Scission Reactions of Peptide Backbone Alkoxy Radicals: Backbone C - C Bond Fission. Journal of Chemical Theory and Computation 2005, 1:889-899.

31. Zhu R, Lin M: The CH3+ HO2 reaction: First-principles prediction of its rate constant and product branching probabilities. J Phys Chem A 2001, 105:6243-6248.

32. Takano Y, Houk K: Benchmarking the conductor-like polarizable continuum model (CPCM) for aqueous solvation free energies of neutral and ionic organic molecules. Journal of Chemical Theory and Computation 2005, 1:70-77.

33. Ingold KU: Peroxy radicals. Accounts of Chemical Research 1969, 2:1-9.

34. Porter NA: Mechanisms for the autooxidation of polyunsaturated lipids. Accounts of Chemical Research 1986, 19:262-268.

35. Bowry W, Ingold K: The Unexpected Role of Vitamin E (α-Tocopherol) in the Peroxidation of Human Low-Density Lipoprotein 1. Accounts of Chemical Research 1999, 32:27-34.

36. Tallman KA, Pratt DA, Porter NA: Kinetic Products of Linoleate Peroxidation: Rapid β-Fragmentation of Nonconjugated Peroxyls. J Am Chem Soc 2001, 123:11627-11638.

37. Pratt DA, Porter NA: Role of Hyperconjugation in Determining Carbon – Oxygen Bond Dissociation Enthalpies in Alkylperoxyl Radicals. Org Lett 2003, 5:387-390.

38. Jackels CF, Phillips DH: An ab initio investigation of possible intermediates in the reaction of the hydroxyl and hydroperoxyl radicals. J Chem Phys 1986, 84:10013.

39. Panteria B, Galembeck SE: Characterization of Hydrogen Bonds in the Interactions between the Hydroperoxyl Radical and Organic Acids. J Am Chem Soc 2003, 125:15614-15622.

40. Fitzgerald G: The cyclic, two-hydrogen bond form of the HO2 dimer. J Chem Phys 1984, 81:362.

41. Fitzgerald G: The open chain or chemically bonded structure of H2O4: The hydroperoxyl radical dimer. J Chem Phys 1985, 83:6275.

42. Gaussian 03. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar S, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fujita R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T,Clark BA, Schlegel HB, Raghavachari K, Adiels DA, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA: Gaussian, Inc., Wallingford CT; 2004.

43. Rao PS, Hayon E: Reaction of hydroxyl radicals with oligopeptides in aqueous solutions. Pulse radiolysis study. J Phys Chem 1975, 79:109-115.

44. Hayon E, Simic M: Pulse radiolysis study of cyclic peptides in aqueous solution. Absorption spectrum of the peptide radical -NHCH2CO. J Am Chem Soc 1971, 93:6781-6786.

45. Hou H, Wang B: A Systematic Computational Study on the Reactions of HO2 with RO2: The HO2 + CH3O2(CD3O2) and HO2 + CH2FO2 Reactions. J Phys Chem A 2004, 109:451-460.

46. Hou H, Li J, Song X, Wang B: A Systematic Computational Study of the Reactions of HO2 with RO2: The HO2 + CH2O2 Reaction. J Phys Chem A 2005, 109:2492-2496.

47. Aloisi S, Francisco JS: Complexes of Hydroperoxyl Radical with Glyoxal, Methylglyoxal, Methylvinyl Ketone, Acrolein, and Methacrolein: Possible New Sinks for HO2 in the Atmosphere? J Phys Chem A 2003, 107:2492-2496.

48. Shi Q, Belair SD, Francisco JS, Kais S: On the interactions between atmospheric radicals and cloud droplets: A molecular picture of the interface. Proc Natl Acad Sci 2003, 100:9686.

Cite this article as: Chen et al: Oxygen radical-mediated oxidation reactions of an alanine peptide motif - density functional theory and transition state theory study, Chemistry Central Journal 2012 6:33.

Publish with ChemistryCentral and every scientist can read your work free of charge

"Open access provides opportunities to our colleagues in other parts of the globe, by allowing anyone to view the content free of charge."

W. Jeffery Hurst, The Hershey Company.

- available free of charge to the entire scientific community
- peer reviewed and published immediately upon acceptance
- cited in PubMed and archived on PubMed Central
- yours—you keep the copyright