Assessment the Quality of Bottled Drinking Water Through Mamdani Fuzzy Water Quality Index

Ghorban Asgari
Hamadan University of Medical Sciences School of Public Health

Ensieh Komijani
Hamadan University of Medical Sciences School of Public Health

Abdolmotaleb Seid-Mohammadi
Hamadan University of Medical Sciences School of Public Health

Mohammad Khazaei (✉ khazaei57@gmail.com)
Hamadan University of Medical Sciences School of Public Health
https://orcid.org/0000-0002-7810-522X

Research Article

Keywords: Fuzzy inference system, Water quality index, Bottled water, Defuzzification, Membership functions

Posted Date: June 4th, 2021

DOI: https://doi.org/10.21203/rs.3.rs-453927/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License

Version of Record: A version of this preprint was published at Water Resources Management on October 29th, 2021. See the published version at https://doi.org/10.1007/s11269-021-03013-z.
Assessment the quality of bottled drinking water through Mamdani Fuzzy water quality index

Ghorban Asgaria,b, Ensieh Komijania, Abdolmotaleb Seid-Mohammadib, Mohammad Khazaeia*,

a. Department of Environmental Health Engineering, Research Center for Health Sciences, Hamadan University of Medical Sciences, Hamadan, Iran

b. Social Determinants of Health Research Center (SDHRC), Environmental Health Engineering, School of Public Health, Hamadan University of Medical Sciences, Hamadan, Iran;

*Corresponding Author:

Email: Mohammad Khazaei: khazaei57@gmail.com,

Address: Hamadan University of Medical Sciences, Hamadan, Iran. P.O. Box: 6517838736.

Abstract

In this investigation, an innovative index was developed based on the fuzzy inference system for assessing the quality of bottled drinking waters. A method was developed to aggregate the values obtained from the defuzzification step. A total number of 24 quality parameters revealing the characteristics of bottled were in terms of physiochemical, dietary, toxic, and pathogenic aspects were selected as the input parameters. 30 samples were taken from the independent brands found in the Hamadan province retail market to evaluate the bottled water quality index (BWQI). Results show that the values obtained from measuring the parameters are in the range of the standard levels set by national regulations. The BWQI scores obtained from samples were in the range of 61.2-73.8 attributing to the marginal and fair descriptive
classes. Sensitivity analysis using the Monte Carlo algorithm reveals that the parameters NO₃, Na, hardness, and NO₂ have the most impact on the BWQI scores.

Keywords: Fuzzy inference system, Water quality index, Bottled water, Defuzzification, Membership functions.

Introduction

The worldwide increasingly consumption of bottled waters during current years is mainly due to the reasons such as low-price, availability, supposed better quality than piped water, consumer higher social status indication (mainly in high price brands), and the prevalent idea that the bottled waters contain fewer contaminants (Felipe-Sotelo, Henshall-Bell et al. 2015; Ahmed, Rashid et al. 2016). Accordingly, the global bottled water market is viewed as the quickest expanding section of the non-alcoholic beverage sector (Rahman, Barua et al. 2017). However, despite the increasing rate of bottled water consumption, the lack of comprehensive frameworks to set a quality index for the bottled waters can be observed (Espejo-Herrera, Kogevinas et al. 2013). Water quality indices (WQIs) are now widely used to support decision-makers in terms of water quality management (Hounslow 2018). WQIs comprise different water quality parameters into one output indicator representing the easily and quickly recognized scores (UNEP 2007; Council 2012).

As denoted above, most WQIs have served as tools to monitor the quality of surface water, groundwater, and piped drinking water sources. Only a few studies are taking into account appropriate technical approaches to introduce a quality index for bottled waters (Toma, Ahmed et al. 2013; Tsakiris, Alexakis et al. 2017). The prominent studies among the former attempts to develop a water quality index are the works of Horton (Horton 1965) and Walski (Walski and Parker 1974). They developed indices to evaluate surface water sources, mainly rivers,
using the input parameters temperature, nutrients, suspended solids, turbidity, coliform bacteria, dissolved oxygen, color, pH, grease, odor, and toxic. The Walski’s index was based on a geometric mean of transformed values regarding the input parameters through a range of zero to one (Uusitalo, Lehikoinen et al. 2015). The most common WQI was developed by the National Sanitation Foundation (NSF) (Ott 1978). Afterward, numerous modified water quality indices have been developed according to the NSF approach (Mukhopadhay, Majumder et al. 2009; Khazaei, Mahvil et al. 2013; Fard, Mahvi et al. 2014; Nabizadeh, Mahvi et al. 2018).

However, some problems arise when these traditional indices are used. The main problem is reflecting the same effects on the output index score from the input values having different distances from a borderline (Icaga 2007). Consequently, in terms of making decisions about boundary values, the uncertain distinction between each mode of the index can occur that involved a vagueness nature in the output index (Chang, Chen et al. 2001). Furthermore, the uncertainty characteristics of environmental issues cannot be considered in the traditional WQIs (Gharibi, Mahvi et al. 2012).

The computational methods according to the artificial intelligence (AI) have been applied increasingly in the environmental issues during the recent decade, mainly because of the tremendous development in the computational techniques and the availability of powerful software tools (Gharibi, Sowlat et al. 2012). Fuzzy logic is one of the most effective tools of AI that was first introduced by Zadeh (1965)(Zadeh 1965). Indices developed based on fuzzy logic are believed to have the ability to indicate the human thoughts and processing the qualitative uncertain values expressed through the linguistic terms (Yekta, Khazaeei et al. 2015; Nabizadeh, Mahvi et al. 2018).

In this work, we aim to introduce an innovative index for assessing bottled water quality. The fuzzy inference system based on the Mamdani model is served a mathematical framework to
develop the index. During the study period, all bottled water brands found in the Hamadan province markets were sampled and analyzed to determine the water quality parameters and test the introduced indices.

Materials and methods

Study Area

Hamadan province is located in the western part of Iran, having a population of over 1.7 million (Gitau, Chen et al. 2016) and an area of 20200 km2 (Fig.1). Over 96.64% of drinking water consumption is provided using a public water distribution system (Abtahi, Yaghmaeian et al. 2016). Besides the piped drinking water, the population is also served by the bottled water distribution system. Based on the information obtained from the national bottled water association (NBWA), there are 110 active bottled water production companies in Iran (IBWA 2018/07/08). Among them, 30 different bottled water brands were distributed in the Hamadan province market during the study period from September 2018 through March 2019. As represented in Table 1, 3 brands are produced in the province and 27 others are imported from the other provinces. Furthermore, 12 brands from mineral and the remaining 18 brands are drinking grade. According to the privacy considerations, the name of brands was not mentioned in the results, instead, the samples were denoted by numbers. Fig. 1 also shows the approximate locations of the bottled water manufactures all around the country.
Figure 1. Map of the study area and the manufactures locations of bottled water samples

(Mosaferi, Hajizadeh et al. 2007; Abtahi, Yaghmaeian et al. 2016)

Table 1. List of water brands studied in this work.

Brand Name	Address (Province)	Type
Armos	West Azarbaijan	Drinking
Alvand	Hamedan	Drinking
Wistler	Markazi	Drinking
Vivante	Kohgiluyeh	Mineral
Vata	Ardabil	Mineral
Vanitar	Kerman	Drinking
Avrin	East Azarbaijan	Drinking
Damavand	Tehran	Drinking
ijab	Kermanshah	Mineral
Hoolasoo	Ghazvin	Drinking
Parsi	Tehran	Drinking
Negin kohsar	Qazvin	Drinking
Crest	Gilan	Mineral
Di di	Ardabil	Mineral
Versay	Mazandaran	Drinking
Iceland	Lorestan	Mineral
Axaya	Hamedan	Mineral
Aftab	Hamedan	Mineral
Cheshme bolbol	Golestan	Mineral
Brand	Province	Type
-----------	-------------------	------------
Oxsina	Golestan	Drinking
Binalood	Khorasan Razavi	Drinking
Iranoosh	Khorasan Razavi	Mineral
Bolursa	Semnan	Mineral
Mishvan	Zanjan	Drinking
Hableh rod	Semnan	Drinking
Bika	Qazvin	Drinking
Souver	Alborz	Drinking
Bisheh	Lorestan	Mineral
Aqoalife	Fars	Mineral
Dasani	Tehran	Drinking

Parameters measuring and instrumentation

Samples were collected from retails of Hamadan province. Two 0.5 L bottles were purchased per each brand. Samples then were transferred to the laboratory and the values of nitrate, pH, fluoride, hardness, calcium, magnesium, sodium, chloride, sulfate, nitrite, turbidity, coliforms, and toxic metals were measured according to the Standard Methods. Metals, including iron, manganese, lead, mercury, cadmium, arsenic, barium, potassium zinc, and cobalt were measured using a Spectro Arcos ICP-optical emission spectrometer (SPECTRO Analytical Instruments, Kleve, Germany) based on radial plasma observation (Shakerkhatibi, Mosaferi et al. 2019). The values of pH, turbidity, and the concentration of anions were determined according to their instruction mentioned in the Standard Methods (American Public Health Association 1995). Total and fecal coliforms were determined using multiple tube technique based on approaches developed by Standard Methods (American Public Health Association 1995).

Determining Bottled water indices

Water quality indices usually have five components consist of 1) Input parameters, 2) Weights of parameters, 3) A normalization method, 4) A framework to determine the index, and 5) A protocol for the index judgment.
Here, a brief approach to develop a bottled water quality index is presented.

Bottled water quality index (BWQI)

Based on the following steps, in this work, the bottled water quality index (BWQI) is introduced:

1) The input parameters were selected regarding their human health risk, dietary, and aesthetical considerations (Khazaei, Mahvil et al. 2013; Fard, Mahvi et al. 2014; Abtahi, Yaghmaeian et al. 2016). Therefore, parameters were classified into five categories as represented in Table 2. Accordingly, the minerals such as calcium, magnesium, and fluoride were added in the input parameters in terms of their dietary values recommended by national and international agencies (Organization 2005; Katz, Njike et al. 2009; Abtahi, Yaghmaeian et al. 2016; Selvaraj, Mubarakali et al. 2016; Khazaei, Rahmani et al. 2019). Physicochemical properties, pH, and turbidity are selected because of their role in the treatment processes, mainly in the disinfection process. Mercury, cadmium, lead, chromium, and arsenic were considered as toxic elements according to their carcinogenic and toxic risks (Bahmani and Palangi 2018).

Table 2. Parameters considered in the BWQI

Category	Parameter	Reason	Reference
Toxic Metal	Mercury, lead, arsenic, cadmium, chromium,	Carcinogenic and toxic risk	(Haraoui, Tao et al. 2014; Bahmani and Palangi 2018)
			(Tsakiris, Alexakis et al. 2017; Eslami, Yaghmaeian et al. 2019)
Physicochemical	pH, Turbidity	Aesthetical, Preparing biological growth	(Mohebbi, Saeedi et al. 2013; Abtahi, Yaghmaeian et al. 2016; Khazaei,
Properties			
Dietary Elements	Calcium, Fluoride, magnesium, cobalt, potassium, sodium	Nutritional Importance	

Anions: Nitrate, Nitrite, chloride, sulfate,
Gastric disorders, probable carcinogenic

Microbial Quality	Total coliforms, Fecal coliforms	Pathogenic contaminants
Rahmani et al. 2019) (Council 1989; Espejo-Herrera, Kogevinas et al. 2013) (Alimentarius 2001; Hounslow 2018)		

2) A team comprising 10 multi-disciplinary decision-makers (DMs) determined the weights of parameters based on AHP weighting techniques. Then, weights obtained from the decision-makers were aggregated as follows

\[
W_p = \sum_{l=1}^{n} V_l W_{pl} \\
\sum_{p=1}^{P} W_p = 1
\]

(1)

Where \(W_p\) is the aggregated weight assigned to \(p\)th parameter, \(V_l\) represents weight determined for the \(l\)th decision-maker, and \(W_{pl}\) is the weigh proposed by \(l\)th DM for \(p\)th parameter. Table 3 presents the acquired weights assigned to each parameter.

3) Parameters have their scales for the report of their values such as mg/L, NTU, and MPN/100 mL so that the difference in the scale (or units) hinders them to be integrated and form a unique value. Accordingly, to develop an index representing all various input parameters, the values of parameters should primarily be developed into the unit free values. This process involves a mathematical basis and known as the normalization. The result of normalization is unit-less values obtained from the source values laid between 0 and 1. In this work, the fuzzy membership functions were applied to normalize the input values through the fuzzification process which receives the input
variables considering the linguistic terms as represents in Table 3. Accordingly, Table 3 represents the categories of parameters according to those that have a desirable range and those without a desirable range. Furthermore, the linguistic terms, the fuzzy sets, and the original form of the parameters can be found in Table 3. Fig. 2 shows triangular (FS = (\(a_1, a_2, a_3\)) and trapezoidal (FS = (\(a_1, a_2, a_3, a_4\)) fuzzy sets (FS) used for the normalization process.

Figure 2. Triangular (a) and trapezoidal (b) fuzzy sets
Table 3. Description of the input variables according to nature (desirable, undesirable) and the assigned fuzzy sets.

Parameter	Weight	Unit	Range	Linguistic terms and assigned fuzzy sets				
				Very Low	Low	Moderate	High	Very High
Nitrate	0.06	mg/L	0-60	0 0 15	0 15 30	15 30 45	30 45 60	45 60 60
Nitrite	0.06	mg/L	0-0.1	0 0 0.0	0 0.0 0.05	0.02 0.0 0.08	0.05 0.08 0.1	0.08 0.1 0.12
Turbidity	0.06	NTU	0-5	0 0 1 0 1	2 1 2 3	2 3 5 3	5 3 5 5	
Mercury	0.065	µg/L	0-8	0 0 2 0 2	4 2 4 6	4 6 8 6	8 6 8 8	
Cadmium	0.065	µg/L	0-4	0 0 1 0 1	2 1 2 3	2 3 4 3	4 3 4 4	
Nickel	0.065	µg/L	0-80	0 0 20 0 20	40 20 40 60	40 60 80 80	80 80 80 80	
Arsenic	0.065	µg/L	0-15	0 0 3.7 0 3.7	7 3.75 7 11.2	7 11.2 15 11.2	15 15 15 15	
Lead	0.065	µg/L	0-12	0 0 3 0 3	6 3 6 9	6 9 12 9	12 9 12 12	
pH	0.06	-	5.5-9.5	5.5 5.5 6.5	5.5 7 8	9.5 8	9.5 9.5	
Fluoride	0.03	mg/L	0-2	0 0 0.5	0 0.5 1.5	2 1.5 2	2 2	
Hardness (T)	0.017	mg /L as	0-500	0 0 50	0 50 200	500 200	500 500	
Calcium	0.037	mg/L	0-400	0 0 50	0 50 300	400 300	400 400	
Magnesium	0.02	mg/L	0-50	0 0 10	0 10 30	50 30	50 50	
Sodium	0.06	mg/L	0-800	0 0 50	0 50 200	800 200	800 800	
Potassium	0.01	mg/L	0-14	0 0 5	0 5 12	14 12	14 14	
Chloride	0.06	mg/L	0-450	0 0 100	0 100 250	450 250	450 450	
Sulfate	0.011	mg/L	0-1000	0 0 100	0 100 250	100 250	100 100	
Cobalt	0.01	µg/L	0-150	0 0	20 0 20	100 150	100 150	
Iron	0.01	µg/L	0-400	0 0	100 0 100	300 400	300 400	
Manganese	0.01	µg/L	0-500	0 0	100 0 100	400 500	400 500	
Parameter	Unit	Limit (mg/L)	Presence	Absence				
--------------------	--------	--------------	--------------	-------------				
Zinc	mg/L	0-4	0 0 1	0 1 3 4 3 4				
Copper	mg/L	0-2.5	0 0 0.5	0 0.5 1 2.5 1				
Total Coliform	MPN/100mL	0-1	0 0 1	0 1 1				
Fecal Coliform	MPN/100mL	0-1	0 0 1	0 1 1				
Equations 2 and 3 are the algebraic forms of Fig. 2 (a) and Fig. 2(b), respectively.

\[
\mu(x) = \begin{cases}
\frac{(x - a_1)}{(a_2 - a_1)}, & a_1 \leq x \leq a_2 \\
\frac{(x - a_3)}{(a_2 - a_3)}, & a_2 \leq x \leq a_3 \\
0, & \text{Otherwise.}
\end{cases} \tag{2}
\]

\[
\mu(x) = \begin{cases}
\frac{(x - a_1)}{(a_2 - a_1)}, & a_1 \leq x \leq a_2 \\
1, & a_2 \leq x \leq a_3 \\
\frac{(x - a_4)}{(a_3 - a_4)}, & a_3 \leq x \leq a_4 \\
0, & \text{Otherwise.}
\end{cases} \tag{3}
\]

where \(x\) is an input value of parameter \(j\), \(\mu(x)\) is a membership function of \(x\), and \(a_1\) through \(a_4\) values are the components of the triangular or trapezoidal fuzzy set (FS).

Fig. 3(a) reveals how the fuzzification process works. As shown, each input value, \(x_p\), produces two membership functions \(\mu(x_{p,i})\) and \(\mu(x_{p,j})\), be owned by two adjacent fuzzy sets \(FS_i\) and \(FS_j\), laid between 0 and 1.

4) The normalized values \(\mu(x_{p,i})\) and \(\mu(x_{p,j})\) are then mirrored on the Y-axis of the coordination system, representing in Fig. 3(b), which were arranged for the defuzzification process. Mapping the values belonged to the input fuzzy sets \(FS_i\) and \(FS_j\) on the output fuzzy sets \(\bar{FS}_i\) and \(\bar{FS}_j\) can be achieved using the fuzzy inference rules. The fuzzy inference rules decide the belongingness of an input FS to a predetermined output FS.

Fuzzy inference rules are the logic if-then instructions enacted by the multi-disciplinary decision-makers (DMs). The set of fuzzy inference rules applied to manage the logic relationships between input and output fuzzy numbers is known as the inference engine (IE). The inset of Fig. 3 presents the general forms of fuzzy inference rules. For
instance, considering the parameter, turbidity, a logic inference rule is: *if the turbidity is very low (VL), then, the turbidity sub-index is very good (VG)*. Here, the VL and VG are the linguistic terms to describe the input (FS) and output (\tilde{FS}) fuzzy sets, respectively.

Consequently, each input crisp parameter value, x_p (e.g. x_p can be a measured amount of turbidity as NTU in a bottled water sample) will produce two values $y_{p,i}$ and $y_{p,j}$ belonged to the adjacent fuzzy sets \tilde{FS}_i and \tilde{FS}_j, respectively, as illustrated in Fig. 3.

Accordingly, a set of 972 rules were produced and applied based on the Mamdani inference method.
Figure 3. Operation of a single-input-single-output fuzzy inference system (FIS) including the fuzzification (a), using the inference rules (b), and defuzzification by determining the resultant vector, $y_{p,r}$ (c).

The values $y_{p,i}$ or $y_{p,j}$ can be defined as the mapped quantities on the X-axis of the defuzzification coordination system, which is attributed to the input x_p after applying the inference rules. For triangular fuzzy sets, $y_{p,i}$ and $y_{p,j}$ can be obtained using the Eqs. 4 and 5, respectively. Furthermore, $y_{p,i}$ and $y_{p,j}$ can be determined by applying Eqs. 6 and 7, respectively in the case of trapezoidal fuzzy sets.

\[
\begin{align*}
y_{p,i} & = \mu(x_{p,i}) \times (a_{1,i} - a_{3,i}) + a_{3,i} \quad (4) \\
y_{p,j} & = \mu(x_{p,j}) \times (a_{1,j} - a_{3,j}) + a_{3,j} \quad (5)
\end{align*}
\]

For the triangular fuzzy sets

\[
\begin{align*}
y_{p,i} & = \mu(x_{p,i}) \times (a_{3,i} - a_{4,i}) + a_{4,i} \quad (6) \\
y_{p,j} & = \mu(x_{p,j}) \times (a_{3,j} - a_{4,j}) + a_{4,j} \quad (7)
\end{align*}
\]

For the trapezoidal fuzzy sets

where the $a_{1,i}$ through $a_{4,i}$ and the $a_{1,j}$ through $a_{4,j}$ are the values of triangular or trapezoidal fuzzy sets, FS_i and FS_j, respectively. $\mu(x_{p,i})$ and $\mu(x_{p,j})$ are the membership functions produced from the input parameter value, x_p.

To obtain the parameter sub-index, SI_p, at first, the $y_{p,i}$ and $y_{p,j}$ should be integrated to form the resultant value, $y_{p,r}$. The resultant value, $y_{p,r}$ can be obtained using several approaches known as defuzzification methods (Silvert 2000; Ross 2004; Ocampo-Duque, Osorio et al. 2013). Here, we obtain a new approach to find $y_{p,r}$ from values $y_{p,i}$ and $y_{p,j}$ by using Eq. 8.

\[
y_{p,r} = \begin{cases}
\left(\frac{\mu(x_{p,i}) \times y_{p,i} + \mu(x_{p,j}) \times y_{p,j}}{\sum_{(i+j)} \mu(x_p)} \right), & \sum_{(i+j)} \mu(x_p) \neq 0 \\
0, & \sum_{(i+j)} \mu(x_p) = 0
\end{cases}
\]

As observed, the magnitudes of $y_{p,i}$ and $y_{p,j}$ are adjusted by the amounts of $\mu(x_{p,i})$ and $\mu(x_{p,j})$, respectively.
Then, regarding the nature of each parameter, the SI_p^q (sub-index of the parameter, p in BWQI) can be obtained as follows.

1. For the parameters comprise undesirable amounts at all levels, so that the zero value is the best (toxic metals, turbidity, nitrate, nitrite, coliforms), the SI_p^q is determined using Eq. 9.

\[SI_p^q = (100 - y_{p,r}) \] \hspace{1cm} (9)

2. For those have the desired values in a range of levels in such a way that lower than and above the range be considered as unacceptable values (pH, Fluoride, Calcium, Magnesium, Iron, Manganese, Zinc, Cobalt, Copper, and Hardness) the SI_p is determined by applying Eq. 10.

\[SI_p^q = y_{p,r} \] \hspace{1cm} (10)

The bottled water quality index (BWQI) can be determined using Eq. 11.

\[BWQI = \frac{\sum_p (W_p \times SI_p^q)}{\sum_p W_p}, \quad p \in \{1,2,...P\} \] \hspace{1cm} (11)

5) To introduce a facile and precise judgment on the water quality of bottled water samples, a straightforward protocol was designed according to the literature (UNEP 2007; DOE 2010; Mohebbi, Montazeri et al. 2013) and comprises the descriptive terms and color chart as shown in Table 4.

Range	Description	Color
0	Poor	
45	Marginal	
65	Fair	
80	Good	
95	Excellent	

Sensitivity analysis

Sensitivity analysis aims to determine the influence of each input parameter, p on the BWQI score. To obtain the sensitivity level of the index regarding the input values, each parameter
was withdrawn separately from the BWQI and the consequently reduced indices were
compared with the original form. Uncertainty and sensitivity analyses were conducted using
Crystal Ball, an Excel add-in by Oracle. Furthermore, triangle distributions were used for all
uncertain inputs.

Results and discussion

Table 5 presents the results of laboratory analyses for samples took from 30 separated brands
found in the Hamadan province retail market. As represented in Table 5, the mean values of 24
input parameters are in the safe range of the national standard of bottled water quality (Chang,
Chen et al. 2001) and Codex bottled water quality suggestions (Alimentarius 2001; Alimentarius 2008). Consequently, low scores of BWQI were not being expected. Samadi et al. examined 17 bottled water samples gathered in the Hamadan retail market during the years
2006 and 2007. The values inscribed on the bottle labels were compared with the parameter
values determined in the laboratory experiments (Samadi, Rahmani et al. 2009). The average
values obtained for the input parameters in our study had good confidence with those reported
by Samadi et al (Samadi, Rahmani et al. 2009). Fig. 4 exhibits the scattering pattern of cations
and anions measured in 30 obtained samples through a Piper plot. As shown, the bottled water
brands entered into the sample set mainly belong to the magnesium bicarbonate type
(Hounslow 2018). As shown, low contents of Cl and SO$_4$ ions are observed, instead, the main
share of the anions comprising HCO$_3$. Most studies conducted in the western part of Iran
reported bicarbonate type for bottled water and groundwater sources (Bahmani and Palangi
2018; Soleimani, Nasri et al. 2018; Shakerkhatibi, Mosaferi et al. 2019). Fig. 4 also reveals that
most of mineral bottled water samples belong to the calcium type water category confirming
the groundwater sources withdrawn from aquifers constructed from carbonate sedimentary
rocks (Dinelli, Lima et al. 2010; Hounslow 2018).
Table 6 shows the sub-indices, SI_p^q which are calculated for parameter p attributing to the brand q. Regarding the weights assigned to each parameter and the fuzzy inference rules, BWQI scores were obtained for each brand, as illustrated in Fig. 5. From Fig. 5, it is also revealed that the BWQI scores are laid between 45 and 79, which is indicated as "marginal" and "fair" quality (red and yellow region, respectively) according to the judgment protocol shown in Table 4.
Table 5. The values of input parameters measured in bottled water samples

Parameter	Sample No.																		
	1	2	3	4	5	6	7	8	9	10	11	12	13						
NO₃ (mg/L)	3.8	13.9	27.4	8.2	4.8	22.4	16.0	3.9	4.6	1.0	16.7	2.0	4.7						
NO₂ (mg/L)	0.0	0.1	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0						
pH	7.2	7.3	7.5	7.2	7.5	7.3	7.8	7.6	6.8	6.6	6.9	7.5	6.8						
F (mg/L)	0.1	0.1	0.4	0.3	0.8	0.2	0.3	0.5	0.3	0.1	0.7	0.3	0.2						
Hardness (mgCaCO₃/L)	112.7	119.5	98.9	147.1	104.1	238.9	102.2	116.9	131.8	36.1	141.9	47.9	104.9	178.1	90.9				
Ca (mg/L)	24.5	30.7	24.8	29.0	28.3	31.6	7.6	18.9	23.1	7.1	17.5	5.9	23.1	24.6					
Mg (mg/L)	12.5	10.4	9.0	18.1	8.1	38.9	20.2	16.9	17.9	4.4	23.8	8.0	11.5	28.3					
Na (mg/L)	27.6	4.1	32.0	8.7	7.6	31.2	67.2	3.6	2.5	38.7	61.1	13.5	27.8	3.0					
Cl (mg/L)	42.0	13.0	10.0	11.0	10.0	50.0	52.0	9.0	19.0	65.0	27.0	17.0	56.0	17.0					
SO₄ (mg/L)	11.0	29.0	22.0	23.0	3.0	78.0	67.0	26.0	10.0	22.5	29.3	13.4	9.5	19.6					
K (mg/L)	0.2	0.4	0.3	0.2	0.1	0.4	0.3	0.2	0.1	0.2	0.4	0.1	0.2	0.2					
Turbidity (NTU)	0.0	0.1	0.1	0.0	0.0	0.1	0.0	0.1	0.1	0.1	0.2	0.4	0.1	0.1					
TC (MPN/100mL)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0					
FC (MPN/100mL)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0					
Pb (µg/L)	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2					
Hg (µg/L)	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4					
Cd (µg/L)	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1					
Ni (µg/L)	1.2	4.8	3.1	3.4	2.1	1.9	2.6	1.5	2.1	0.5	3.6	2.1	1.4	2.1					
As (µg/L)	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2					
CO (mg/L)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0					
Fe (mg/L)	0.2	0.2	0.2	0.5	0.2	0.2	0.2	0.2	0.8	0.6	0.7	0.2	0.2	0.2					
Mn (mg/L)	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1					
Zn (mg/L)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.5	0.0	0.0	0.0	0.0	0.0					
Cu (mg/L)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0					
Parameter	Sample No.																		
--------------------	------------	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---
NO₃ (mg/L)	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	Mean	SD		
	16.5	18.2	15.5	5.0	3.2	2.6	17.7	9.2	19.2	13.7	18.4	24.7	14.3	3.3	1.3	10.54	7.81		
NO₂ (mg/L)	0.0	0.1	0.0	0.1	0.1	0.0	0.1	0.0	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.03	0.02		
pH	7.2	7.4	7.5	7.5	7.6	7.8	7.6	7.5	7.3	7.5	7.3	7.4	7.5	7.2	7.2	7.3	0.31		
F (mg/L)	0.2	0.1	0.1	0.3	0.1	0.0	0.2	0.0	0.1	0.2	0.2	0.4	0.1	0.0	0.1	0.23	0.18		
Hardness (mgCaCO₃/L)	63.7	134.0	48.4	98.4	54.7	81.5	153.2	149.2	117.3	73.5	80.2	143.5	114.5	50.6	85.5	107.34	42.99		
Ca (mg/L)	15.2	20.1	13.0	25.9	14.5	14.5	19.9	33.9	23.4	22.0	28.0	17.4	19.9	14.5	15.7	19.84	7.92		
Mg (mg/L)	6.2	20.4	3.9	8.2	4.5	11.0	25.2	15.6	11.3	4.5	2.5	24.3	15.8	3.5	1.3	13.59	8.83		
Na (mg/L)	23.1	64.5	42.3	1.3	4.9	38.2	22.3	11.1	15.5	48.8	29.6	61.8	2.0	5.1	17.1	23.95	20.55		
Cl (mg/L)	2.0	54.0	19.0	11.0	8.0	46.0	9.0	42.0	38.0	37.0	26.0	23.0	10.0	5.0	16.0	25.40	17.67		
SO₄ (mg/L)	15.0	63.0	21.0	5.0	23.0	30.0	9.0	18.0	17.0	53.0	9.0	68.0	24.0	16.0	20.0	26.48	19.54		
K (mg/L)	0.9	0.4	0.1	0.1	0.4	0.2	0.1	0.1	0.0	0.1	0.1	0.4	0.1	0.4	0.2	0.25	0.19		
Turbidity (NTU)	0.0	0.1	0.3	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.0	0.2	0.0	0.2	0.1	0.09	0.08		
TC (MPN/100mL)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00	0.00		
FC (MPN/100mL)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00	0.00		
Pb (µg/L)	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.20	0.00	
Hg (µg/L)	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.00	
Cd (µg/L)	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.05	0.00	
Ni (µg/L)	12.4	3.4	3.0	1.0	9.2	0.9	1.7	1.7	1.3	0.4	0.6	3.0	1.7	9.8	1.5	2.81	2.79		
As (µg/L)	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.20	
CO (mg/L)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00	
Fe (mg/L)	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.00	
Mn (mg/L)	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.06	
Zn (mg/L)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.09	

Table 5. The values of input parameters measured in bottled water samples (Continued.)
Cu (mg/L)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.02	0.00
	109														

Table 6. The BWQI scores obtained for the 30 studied samples

Parameter	Sample No.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
NO₃ (mg/L)	54.28	49.13	58.16	73.31	81.18	84.47	50.56	61.22	46.23	58.72	48.38	37.93	59.16	80.71	91.59	
NO₂ (mg/L)	45.6	40	56.18	36.18	40	38.04	45.6	26.84	42.4	38.04	38.04	49.6	38.04	56.18	42.4	
pH	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100
F (mg/L)	46	24	20	58	12	4	36	6	28	32	32	80	16	8	18	
Hardness (mgCaCO₃/L)	100	100	96.84	100	100	100	100	100	100	100	100	100	100	100	100	100
Ca (mg/L)	30.42	40	26.03	51.76	29	29	39.8	67.96	56.72	44	56	34.69	39.79	29	31.3	
Mg (mg/L)	62.37	100	38.66	82.12	45	100	100	100	100	45	100	100	35	100	100	100
Na (mg/L)	46.14	100	84.59	2.73	9.96	76.31	44.64	22.27	30.98	48.78	59.21	100	4.04	10.26	34.23	
Cl (mg/L)	2	54	19	11	8	46	9	42	38	37	26	23	10	5	16	
SO₄ (mg/L)	15	63	21	5	23	30	9	18	17	53	9	68	24	16	20	
K (mg/L)	19.32	8.67	1.93	1.37	8.09	3.6	2.03	2.79	0.62	1.78	2.05	7.47	1.89	8.10	3.54	
Turbidity (NTU)	97.63	90.95	80.61	97.63	99.2	97.63	96.86	97.63	96.10	93.11	98.42	88.86	96.86	53.12	95.34	
TC (MPN/100mL)	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100
FC (MPN/100mL)	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100
Pb (µg/L)	59.08	59.08	59.08	59.08	59.08	59.08	59.08	59.08	59.08	59.08	59.08	59.08	59.08	59.08	59.08	
Hg (µg/L)	84.3	84.3	84.3	84.3	84.3	84.3	84.3	84.3	84.3	84.3	84.3	84.3	84.3	84.3	84.3	
Cd (µg/L)	95.24	95.24	95.24	95.24	95.24	95.24	95.24	95.24	95.24	95.24	95.24	95.24	95.24	95.24	95.24	
Ni (µg/L)	60.75	84.56	86.24	94.97	66.66	95.85	92.02	91.89	93.56	98	97.05	86.5	91.88	65.35	92.94	
As (µg/L)	95.36	95.36	95.36	95.36	95.36	95.36	95.36	95.36	95.36	95.36	95.36	95.36	95.36	95.36	95.36	
CO (µg/L)	0	0.22	0.22	0.22	0.22	0.22	0.22	0.22	0.22	0.22	0.22	0.22	0.22	0.22	0.22	
Fe (µg/L)	0.16	0.2	0.16	0.16	0.16	0.16	0.16	0.16	0.16	0.16	3.11	0.26	0.16	0.75	0.16	
Mn (µg/L)	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.07	
Zn (µg/L)	0.32	0.59	0.74	0.72	0.54	0.99	1.19	0.57	0.6	1.09	0.62	0.46	0.54	1.5	0.51	
Cu (µg/L)	4.76	4.62	4.74	4.73	4.78	4.84	4.75	4.57	4.66	4.82	4.61	4.80	4.57	5.14	4.72	
BWQI	63.01	70.75	66.27	65.01	61.52	70.56	65.68	66.11	66.65	70.15	66.41	70.31	62.91	61.21	66.98	

21
Table 6. The BWQI scores obtained for the 30 studied samples (Continued.)

Parameter	Sample No.	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
NO₃ (mg/L)		78.46	58.87	37.74	63.39	74	40.16	56.03	78.02	75.06	93.54	53.65	87.68	74.77	82.76	92.38
NO₂ (mg/L)		56.18	40	26.84	82.4	82.4	90.60	75.40	75.4	70.13	76.70	72.35	73.74	72.35	74.98	76.05
pH		100	100	100	100	100	100	88.27	78.67	94.67	100	87.73	78.67	100		
F (mg/L)		20	22	72	60	100	44	56	100	64	24	100	48	46	78	30
Hardness	(mgCaCO₃/L)	100	100	100	100	100	100	75.73	100	100	72.22	100	95.86	100	100	100
Ca (mg/L)		49.08	61.45	49.59	58.01	56.57	63.23	15.13	37.75	46.25	14.27	35.03	11.89	46.19	49.29	1.29
Mg (mg/L)		100	100	89.95	100	81.2	31.07	100	100	100	44.44	100	80.33	100	100	100
Na (mg/L)		55.33	8.22	63.98	17.36	15.14	62.37	100	7.17	4.89	77.35	100	26.94	55.52	6.02	4.59
Cl (mg/L)		42	13	10	11	10	50	52	9	19	65	27	17	56	17	18
SO₄ (mg/L)		11	29	22	23	3	78	67	26	10	22.5	29.3	13.44	9.53	19.6	40.2
K (mg/L)		3.79	8.21	4.33	4.4	2.74	7.56	5.4	2.97	2.19	4.52	7.49	2.54	4.01	2.9	13.47
Turbidity (NTU)		99.2	95.34	95.34	96.86	98.42	94.59	98.42	95.34	90.25	91.66	85.54	74.14	94.59	93.11	92.38
TC (MPN/100mL)		100	100	100	100	100	100	100	100	100	100	100	100			
FC (MPN/100mL)		100	100	100	100	100	100	100	100	100	100	100	100			
Pb (µg/L)		59.08	59.08	59.08	59.08	59.08	59.08	59.08	59.08	59.08	59.08	59.08	59.08	59.08		
Hg (µg/L)		84.3	84.3	84.3	84.3	84.3	84.3	84.3	84.3	84.3	84.3	84.3	84.3	84.3		
Cd (µg/L)		95.24	95.24	95.24	95.24	95.24	95.24	95.24	95.24	95.24	95.24	95.24	95.24	95.24		
Ni (µg/L)		94.07	79.5	86.08	84.72	90.33	91	87.93	92.88	90.06	97.39	83.9	90.18	93.35	90.01	98.58
As (µg/L)		95.36	95.36	95.36	95.36	95.36	95.36	95.36	95.36	95.36	95.36	95.36	95.36	95.36		
CO (mg/L)		0.22	0.22	0.22	0.22	0.22	0.22	0.22	0.22	0.22	0.22	0.22	0.22	0.22		
Fe (mg/L)		0.16	0.16	0.16	0.47	0.16	0.16	0.16	0.16	0.16	0.81	0.63	0.7	0.23		1.6
Mn (mg/L)		0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.07		0.07
Zn (mg/L)		0.44	0.61	0.73	0.63	0.87	0.54	0.82	0.5	0.44	51.09	0.68	1.14	0.68	0.46	4.49
Cu (mg/L)		4.74	4.78	4.62	4.95	4.61	4.70	4.86	4.84	4.87	4.52	4.70	4.79	4.93	4.77	4.87
BWQI		70.78	63.65	65.93	68.23	69.67	71.20	73.88	68.86	66.69	71.99	72.36	66.45	71.98	67.63	66.77
Figure. 4. BWQI scores comparison between drinking and mineral bottled water samples.

Figure. 5. BWQI scores obtained for 30 samples taken from Hamadan province retails (a), the number of brands belonged to the assigned categories (b).
The Shapiro-Wilk test results showed the non-significant P values, 0.78 and 0.12 for the mineral and drinking water samples, respectively, revealing that the values obtained from the measurement of bottled water samples have the normal distribution. Furthermore, the F-test value of 0.29 represents the equality of variances regarding both the drinking and mineral bottled water samples. However, the results of two independent samples T-test indicated that the difference between BWQI scores obtained from drinking bottled water and mineral drinking water samples was not significant ($P_{\text{value}} = 0.2$). Fig. 6 presents the differences between the BWQI scores obtained for mineral and drinking bottled water samples. As shown, the scores acquired for the bottled drinking water samples are slightly higher than those assigned to the mineral drinking water samples. Better scores obtained for the drinking bottled water samples are mainly due to low contents of NO$_3$, NO$_2$, Fe, Mn, Cu, and Zn in these samples which are exploited from public distribution systems having the rigorous standards on municipal water treatment plants for providing safe water. The mineral bottled water samples mainly obtain from the private springs of provinces denoted in Table 1 located in mountainous areas in the neighboring agricultural regions. They are mainly affected by the mineral contents of sedimentary rocks and NO$_3$ leaks from fertilizers used in the agricultural activities. Furthermore, the private springs may have not involved the rigorous surveillance system like those enforced in the public water distribution systems (Viscusi, Huber et al. 2015).
Figure 6. BWQI scores comparison between drinking and mineral bottled water samples.

An innovative method for defuzzifying the output values $y_{p,i}$ and $y_{p,j}$ was introduced adopted from an approach used for determining the acting point of the resultant force on a free-end cantilever beam (Hibbeler 2004). In Fig. 3.b, if the X-axis be supposed as a cantilever having a fixed end at zero, so that, the resultant value of $y_{p,r}$ can be obtained using Eq. 8.

Figure 7. weighted average method of defuzzification (Ross 2004).

Four principal methods for defuzzifying fuzzy output functions (membership functions), were suggested during recent years including the max membership principle, centroid method,
weighted average method, and mean max membership (Ross 2004). All the above-mentioned methods determine a defuzzified representative value regarding the geometric shape of the fuzzy output membership functions like those observed in Fig. 7. For example, the centroid method yields a defuzzified value which is the center of gravity of the confined geometric shape under the curves (Yager and Zadeh 2012). In case of obtaining an index, like those performed in our work, the output membership functions comprise the X-axis graded between 0 and 100. Accordingly, the output index does not merely depend on the value obtained from the area under the confined geometric shape but also relies on the magnitude of assigning membership function. Consequently, the values of membership functions $\mu(x_{p,i})$ and $\mu(x_{p,j})$ can be considered as the weights of output values $y_{p,i}$ and $y_{p,j}$, respectively. Comparing with a one-side fixed cantilever, the membership function $\mu(x_p)$ can be assumed as force (F) and the output value $y_{p,j}$ is the distance (D) (Hibbeler 2004).

However, significant uncertainty in the score (output) values of water quality indices can exist which would not be considered (Xu, Wang et al. 2015; Zheng and Han 2016). Here, we attempt to involve the uncertainty nature of the BWQI input parameters to apply the appropriate distribution regarding the output score.

Fig. 8 shows the uncertainty analysis of BWQI scores using a Monte Carlo simulation analysis. Output results of the simulation obtained from 10^4 trials, proposed the beta distribution to predict the probability of values versus BWQI scores. As shown, regardless of the type of bottled water (drinking or mineral), the mean score of BWQI obtained from the 30 drinking water samples was 67.89 ± 2.29. Results also display that the BWQI scores obtained from samples will be laid between 64 and 74 under the certainty of 95%.
Figure 8. Uncertainty analysis of BWQI scores.

The sensitivity analysis of BWQI was conducted applying the Monte Carlo algorithm. BWQI involves 24 input parameters so that only the parameters acquired the sensitivity values more than 2% appeared in Fig. 9 and the other parameters were not shown here. The sensitivity analysis demonstrated that withdrawing each of the input parameters NO$_3$, Na, hardness, and NO$_2$ from BWQI tends to more than 10% change in the BWQI original form, which comprises all input parameters. The BWQI original score has +15% sensitivity to NO$_3$ whereas it reveals less than -10% sensitivity to the input parameters Na and hardness.
Conclusions

- The BWQI was developed for the judgment of bottled water quality based on the fuzzy inference system.
- BWQI is the first attempt to introduce a bottled water quality index by an innovative fuzzy inference method.
- All bottled water brands available in the retail market of the Hamadan province were used to evaluate the index known as bottled water quality index (BWQI).
- Various parameters were used as the input factors aiming to consider physiochemical properties, dietary issues, toxic effects, and microbial hazards.
- A new method to produce the sub-index values from the fuzzy numbers applied in the inference system was developed.
- Piper diagram prepared based on 30 measured samples depicted that most of the bottled water in the Iranian retail market is classified in the bicarbonate-calcium category.
Uncertainty and sensitivity analyses were developed to indicate the range of BWQI having more than 95% of certainty and to determine the impact of omitting each input parameter on the output index, respectively.

Acknowledgments
The authors acknowledge the Hamadan University of Medical Sciences for financial funding (Number of Grant: 9705022492) and charge to instruments in this work.

Authors Contributions All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by Mohammad Khazaei and Ensieh Komijani. Ghorban Asgari and Abdolmotaleb Seid-Mohammadi wrote the first draft of the manuscript, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Funding Hamadan University of Medical Sciences (Number of Grant: 9705022492)

Data Availability Available upon request.

Ethical Responsibilities The manuscript complies with all the ethical requirements; the paper was not submitted to any journal at a time. All the sources and contributors were acknowledged properly.

Consent to Participate I am very much to participate in the task for the journal including reviewing similar works.

Consent to Publish I have fully agreed to publish the manuscript “Assessment the quality of bottled drinking water through Mamdani Fuzzy water quality index” after peer review on the journal of water resources management.

Conflict of Interest/Competing Interests The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
References

Abtahi, M., K. Yaghmaeian, et al. (2016). "An innovative drinking water nutritional quality index (DWNQI) for assessing drinking water contribution to intakes of dietary elements: A national and sub-national study in Iran." Ecological Indicators 60(Supplement C): 367-376.

Ahmed, T., K. Rashid, et al. (2016). "Nutrient minerals in commercially available bottled waters of Bangladesh: dietary implications." Bangladesh journal of scientific and industrial research 51(2): 111-120.

Alimentarius, C. (2001). "General standard for bottled/packaged drinking waters (Other than natural mineral waters). Codex Stan 227–2001." Joint FAO/WHO Food Standards Program, FAO, Rome Google Scholar.

Alimentarius, C., Ed. (2008). Codex standard for natural mineral waters. Codex FAO.

American Public Health Association, A. (1995). Standard methods for the examination of water and wastewater. American public health association Washington, DC.

Bahmani, O. and S. Palangi (2018). "Assessment of Groundwater Quality in Human Health Risk, Agriculture and Industry with the Qualitative Indices in the Bahar Plain, West Iran." Asian Journal of Water, Environment and Pollution 15(4): 81-88.

Chang, N.-B., H.-W. Chen, et al. (2001). "Identification of river water quality using the fuzzy synthetic evaluation approach." Journal of environmental management 63(3): 293-305.

Council, N. R. (1989). Recommended dietary allowances, National Academies Press.

Council, N. R. (2012). Review of the EPA's Economic Analysis of Final Water Quality Standards for Nutrients for Lakes and Flowing Waters in Florida, National Academies Press.
Dinelli, E., A. Lima, et al. (2010). "Hydrogeochemical analysis on Italian bottled mineral waters: Effects of geology." *Journal of Geochemical Exploration* **107**(3): 317-335.

DOE (2010). "Iran Water Quality Index (IRWQI)." *Dot Environment* (Ed.), Tehran, Iran.

Eslami, F., K. Yaghmaeian, et al. (2019). "An integrated evaluation of groundwater quality using drinking water quality indices and hydrochemical characteristics: a case study in Jiroft, Iran." *Environmental Earth Sciences* **78**(10).

Espejo-Herrera, N., M. Kogevinas, et al. (2013). "Nitrate and trace elements in municipal and bottled water in Spain." *Gaceta Sanitaria* **27**(2): 156-160.

Espejo-Herrera, N., M. Kogevinas, et al. (2013). "Nitrate and trace elements in municipal and bottled water in Spain." *Gaceta Sanitaria* **27**(2): 156-160.

Fard, R. F., A. H. Mahvi, et al. (2014). "Fluoride concentrations in bottled drinking water available in Najaf and Karbala, Iraq." *Fluoride* **47**(3): 249-252.

Felipe-Sotelo, M., E. Henshall-Bell, et al. (2015). "Comparison of the chemical composition of British and Continental European bottled waters by multivariate analysis." *Journal of Food Composition and Analysis* **39**: 33-42.

Gharibi, H., A. H. Mahvi, et al. (2012). "A novel approach in water quality assessment based on fuzzy logic." *Journal of Environmental Management* **112**: 87-95.

Gharibi, H., M. H. Sowlat, et al. (2012). "Development of a dairy cattle drinking water quality index (DCWQI) based on fuzzy inference systems." *Ecological Indicators* **20**: 228-237.

Gitau, M. W., J. Chen, et al. (2016). "Water Quality Indices as Tools for Decision Making and Management." **30**(8): 2591-2610.

Haraoui, N. E., T. Tao, et al. (2014). "Trace elements in spring and purified bottled water: A case study in Shanghai." *Fresenius Environmental Bulletin* **23**(5): 1203-1208.

Hibbeler, R. (2004). *Statics*, Pearson Education Inc.
Horton, R. K. (1965). "An index number system for rating water quality." *Journal of Water Pollution Control Federation* **37**(3): 300-306.

Hounslow, A. (2018). *Water quality data: analysis and interpretation*, CRC press.

IBWA. (2018/07/08). "Iranian Bottled Water Association." from http://www.irbwa.com/.

Icaga, Y. (2007). "Fuzzy evaluation of water quality classification." *Ecological Indicators* **7**(3): 710-718.

Katz, D. L., V. Y. Njike, et al. (2009). "The Stratification of Foods on the Basis of Overall Nutritional Quality: The Overall Nutritional Quality Index." *American Journal of Health Promotion* **24**(2): 133-143.

Khazaei, M., A. H. Mahvil, et al. (2013). "Dental caries prevalence among schoolchildren in urban and rural areas of Qom province, central part of Iran." *Middle East Journal of Scientific Research* **18**(5): 584-591.

Khazaei, M., A. R. Rahmani, et al. (2019). "Development and Application of a Potentiometric Hg2+-Imprinted Polymer/graphitic Carbon Nitride/Carbon Paste Electrode." *Analytical & Bioanalytical Electrochemistry* **11**(4): 535-545.

Mohebbi, M.-R., A. Montazeri, et al. (2013). "Development of a modified drinking water quality index (MDWQI) and its application for assessing water quality in groundwater resources of Iran." *Iranian Journal of Health and Environment* **6**(2): 187-200.

Mohebbi, M. R., R. Saeedi, et al. (2013). "Assessment of water quality in groundwater resources of Iran using a modified drinking water quality index (DWQI)." *Ecological Indicators* **30**: 28-34.

Mosaferi, M., Y. Hajizadeh, et al. (2007). "Importance of water quality control in food safety, case study: drinking, dairy and caning industries of east Azerbaijan."
Mukhopadhay, B., M. Majumder, et al. (2009). "Verification of filter efficiency of horizontal roughing filter by Weglin's design criteria and Artificial Neural Network." Drinking Water Engineering and Science 2(1): 21-27.

Nabizadeh, R., A. H. Mahvi, et al. (2018). "A fuzzy multi-criteria decision making approach for evaluating the health-care waste treatment alternatives." Environmental Engineering and Management Journal 17(12): 2795-2805.

Nabizadeh, R., A. H. Mahvi, et al. (2018). "A fuzzy multi-criteria decision making approach for evaluating the health-care waste treatment alternatives." Environmental Engineering & Management Journal (EEMJ) 17(12).

Ocampo-Duque, W., C. Osorio, et al. (2013). "Water quality analysis in rivers with non-parametric probability distributions and fuzzy inference systems: Application to the Cauca River, Colombia." Environment International 52: 17-28.

Organization, W. H. (2005). "Nutrients in drinking water."

Ott, W. R. (1978). "Environmental indices: theory and practice."

Rahman, I. M., S. Barua, et al. (2017). "Quality assessment of the non-carbonated bottled drinking water marketed in Bangladesh and comparison with tap water." Food control 73: 1149-1158.

Ross, T. J. (2004). Fuzzy logic with engineering applications, Wiley Online Library.

Samadi, M., A. Rahmani, et al. (2009). "Evaluation of chemical quality in 17 brands of Iranian bottled drinking waters." Journal of research in health sciences 9(2): 25-31.

Selvaraj, K. K., H. Mubarakali, et al. (2016). "Cumulative exposure and dietary risk assessment of phthalates in bottled water and bovine milk samples: A preliminary case study in Tamil Nadu, India." Human and Ecological Risk Assessment: An International Journal 22(5): 1166-1182.
Shakerkhatibi, M., M. Mosaferi, et al. (2019). "Comprehensive investigation of groundwater quality in the north-west of Iran: Physicochemical and heavy metal analysis." *Groundwater for Sustainable Development* 8: 156-168.

Silvert, W. (2000). "Fuzzy indices of environmental conditions." *Ecological Modelling* 130(1): 111-119.

Soleimani, H., O. Nasri, et al. (2018). "Data on drinking water quality using water quality index (WQI) and assessment of groundwater quality for irrigation purposes in Qorveh&Dehgolan, Kurdistan, Iran." *Data in Brief* 20: 375-386.

Toma, J., R. Ahmed, et al. (2013). "Application of water quality index for assessment water quality in some bottled water Erbil City, Kurdistan Region, Iraq." *Journal of Advanced Laboratory Research in Biology* 4(4): 118-124.

Tsakiris, V., D. Alexakis, et al. (2017). "Assessing the quality of bottled water brands using a new water quality index."

UNEP, G. (2007). "Global Drinking Water Quality Index Development and Sensitivity Analysis Report." Ontario, Canada: Water Programme Office.

Uusitalo, L., A. Lehikoinen, et al. (2015). "An overview of methods to evaluate uncertainty of deterministic models in decision support." *Environmental Modelling & Software* 63: 24-31.

Viscusi, W. K., J. Huber, et al. (2015). "The private rationality of bottled water drinking." *Contemporary Economic Policy* 33(3): 450-467.

Walski, T. M. and F. L. Parker (1974). "Consumers water quality index." *ASCE J Environ Eng Div* 100(EE3): 593-611.

Xu, S., T. Wang, et al. (2015). "Dynamic Assessment of Water Quality Based on a Variable Fuzzy Pattern Recognition Model." *12*(2): 2230-2248.
Yager, R. R. and L. A. Zadeh (2012). An introduction to fuzzy logic applications in intelligent systems, Springer Science & Business Media.

Yekta, T. S., M. Khazaei, et al. (2015). "Hierarchical distance-based fuzzy approach to evaluate urban water supply systems in a semi-arid region." Journal of Environmental Health Science and Engineering 13(1): 53.

Zadeh, L. A. (1965). "Fuzzy sets." Information and Control 8(3): 338-353.

Zheng, Y. and F. Han (2016). "Markov Chain Monte Carlo (MCMC) uncertainty analysis for watershed water quality modeling and management." Stochastic Environmental Research and Risk Assessment 30(1): 293-308.
Figures

Figure 1

Map of the study area and the manufactures locations of bottled water samples (Mosaferi, Hajizadeh et al. 2007; Abtahi, Yaghmaeian et al. 2016) Note: The designations employed and the presentation of the material on this map do not imply the expression of any opinion whatsoever on the part of Research Square concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. This map has been provided by the authors.
Triangular (a) and trapezoidal (b) fuzzy sets
Figure 3

Operation of a single-input-single-output fuzzy inference system (FIS) including the fuzzification (a), using the inference rules (b), and defuzzification by determining the resultant vector, $y_{p,r}$ (c).
Figure 4

BWQI scores comparison between drinking and mineral bottled water samples.
Figure 5

BWQI scores obtained for 30 samples taken from Hamadan province retails (a), the number of brands belonged to the assigned categories (b).

Figure 6
BWQI scores comparison between drinking and mineral bottled water samples.

Figure 7

weighted average method of defuzzification (Ross 2004).

Figure 8

Uncertainty analysis of BWQI scores.
Figure 9

Sensitivity analysis of BWQI parameters.