BACKGROUND

Thrombopoietin (TPO) is a primary regulator of thrombopoiesis in physiological conditions. TPO, in combination with its specific cytokine receptor c-Mpl, drives platelet production by inducing the proliferation and differentiation of megakaryocytes. However, the role of TPO in sepsis is not well determined. The elevated levels of TPO are often accompanied by a decrease of platelet count (PLT) in systemic infected conditions, which is contrary to the view that TPO promotes platelet production under physiological conditions. In addition, whether TPO mediates organ damage in sepsis remains controversial.
AIM
To explore the relationships between TPO and inflammatory factors, platelet indices, and thrombotic indicators in sepsis.

METHODS
A total of 90 patients with sepsis diagnosed and treated at the emergency medicine department of The First People’s Hospital of Foshan between January 2020 and March 2021 were enrolled in this study. In addition, 110 patients without sepsis who came to the emergency medicine department were included as controls. Clinical and laboratory parameters including age, gender, TPO, blood cell count in peripheral blood, platelet indices, inflammatory factors such as high-sensitivity C-reactive protein (hs-CRP), interleukin (IL)-21, and IL-6, organ damage indicators, and thrombotic indicators were collected and analyzed by using various statistical approaches.

RESULTS
The results showed that the TPO levels were higher in the sepsis group than in controls [86.45 (30.55, 193.1) vs 12.45 (0.64, 46.09) pg/mL, \(P < 0.001 \)], but PLT was lower (\(P < 0.001 \)). Multivariable analysis showed that white blood cell count (WBC) [odds ratio (OR) = 1.32; 95% confidence interval (CI): 1.01-1.72; \(P = 0.044 \)], TPO (OR = 1.02; 95%CI: 1.01-1.04; \(P = 0.009 \)), IL-21 (OR = 1.02; 95%CI: 1.00-1.03; \(P = 0.019 \)), troponin I (OR = 55.20; 95%CI: 5.69-535.90; \(P = 0.001 \)), and prothrombin time (PT) (OR = 2.24; 95%CI: 1.10-4.55; \(P = 0.027 \)) were independent risk factors associated with sepsis. TPO levels were positively correlated with IL-21, IL-6, hs-CRP, creatinine, D-dimer, PT, activated prothrombin time, international normalized ratio, fibrinogen, WBC count, and neutrophil count, and negatively correlated with PLT, thrombin time, red blood cell count, and hemoglobin concentration (\(P < 0.05 \)). Receiver operating characteristic analysis showed that TPO had fair predictive value in distinguishing septic patients and non-septic patients (the area under the curve: 0.788; 95%CI: 0.723-0.852; \(P < 0.001 \)). With an optimized cutoff value (28.51 pg/mL), TPO had the highest sensitivity (79%) and specificity (65%).

CONCLUSION
TPO levels are independently associated with sepsis. High TPO levels and low PLT suggest that TPO might be an acute-phase response protein in patients with infection.

Key Words: Sepsis; Thrombopoietin; Interleukin-21; Platelets; Thrombosis

©The Author(s) 2022. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: This retrospective study was focused on the correlation between thrombopoietin (TPO) levels and platelet indices and inflammatory factors in sepsis patients. The potential role played by TPO in sepsis was investigated. The results demonstrated that TPO was significantly elevated in the sepsis group compared to the non-infected control group, with a negative correlation with platelet count (PLT) and a positive correlation with inflammatory factors. TPO may be an acute response protein in sepsis and may be negatively regulated by decreased PLT.

INTRODUCTION
According to the Third International Consensus Definition for Sepsis and Septic Shock, sepsis is a life-threatening organ dysfunction caused by the dysregulated host response to infection[1]. Sepsis occurs when the host response to an infectious pathogen causes life-threatening organ dysfunction, as manifested by an increase in sequential (sepsis-related) organ failure assessment (SOFA) score of \(\geq 2 \)[1]. Approximately 750000 cases of sepsis occur annually in the United States, representing 2% of hospitalizations in developed countries and 6%-30% of patients in intensive care units[2,3]. Without timely treatment, sepsis may advance to septic shock, which is defined as vasodilatory hypotension with a mean arterial pressure (MAP) < 65 mmHg and lactate level > 2 mmol/L and is associated with high
mortality (> 40%)[1,4-6].

Thrombopoietin (TPO) is the primary regulator of megakaryocytic lineage and stimulates platelet production[7]. The liver is the main source of TPO (endocrine fashion), followed by marrow stromal cells (paracrine fashion)[7,8]. Inflammatory conditions can increase the secretion of TPO, and the blood levels of TPO are determined by its production and sponging by the orphan cytokine receptor (c-Mpl) and senescent platelets[7,9-11]. Studies reported that TPO is upregulated in sepsis[12,13].

In addition to promoting platelet production, in vitro experiments have confirmed that TPO has a protective effect on organs (such as the myocardium and brain)[14-18]. On the other hand, preclinical mouse experiments showed that TPO reduction could alleviate organ damage[19]. In addition, TPO correlated with ex vivo platelet activation and might contribute to triggering thrombosis and multi-organ dysfunction in sepsis[13,20]. TPO also decreases cardiac contractility and could mediate pancreatitis[21,22]. Therefore, the results about the involvement of TPO in sepsis are conflicting.

Various risk factors have been associated with the prognosis of sepsis. The predisposition, insult/infection, response, and organ dysfunction model is based on age, chronic liver disease, congestive cardiomyopathy, type of infection, tachypnea, and organ dysfunction[23,24]. The mortality in emergency department sepsis score recognizes terminal illness, tachypnea/hypoxemia, septic shock, low platelets, high white blood cell count, age, pneumonia, nursing home residence, and altered mental status as prognostic factors in sepsis[25]. The risk, injury, failure, loss, and end-stage kidney disease system includes kidney dysfunction, kidney injury, and kidney failure to predict sepsis mortality[26]. Still, the relationship between TPO and these various prognostic factors is poorly known.

Therefore, this study aimed to explore the relationships between TPO and inflammatory factors such as interleukin (IL)-21 and IL-6, platelet indices, and thrombotic indicators in patients with sepsis. The results could help determine the clinical significance of TPO levels in sepsis, and it might be a potential predictive indicator for sepsis.

MATERIALS AND METHODS

Study design and patients

This retrospective study included patients with sepsis diagnosed and treated at the Emergency Medicine Department of The First People’s Hospital of Foshan between January 2020 and March 2021. This study was approved by the Medical Ethics Committee of The First People’s Hospital of Foshan, Approval No: L[2021]No.8. The requirement for informed consent was waived due to the retrospective nature of this study.

The inclusion criteria of the sepsis group were: (1) Diagnosed with sepsis caused by infection; and (2) ≥ 18 years of age. The exclusion criteria were: (1) History of malignant tumors; (2) severe cardiovascular and cerebrovascular diseases (not including mild strokes); (3) patients using glucocorticoids and immunosuppressants; (4) use of anticoagulants (warfarin or heparin) within 1 mo (but antiplatelet drugs such as aspirin and clopidogrel were allowed); (5) pregnancy status; and (6) incomplete data.

The control group included patients aged 18 years or older without sepsis or infection who came to the Emergency Medicine Department due to acute onset of hypertension or mild ischemic or hemorrhagic stroke. The exclusion criteria for the control group were the same as those for the sepsis group.

Data collection

After diagnosis, demographic data and clinical indicators were collected: TPO (ELISA Kit, R&D Systems, MN, United States), IL-21 (ELISA Kit, MEIMIAN, China), IL-6, high-sensitivity C-reactive protein (hs-CRP), procalcitonin (PCT), WBC, neutrophil count (N#), red blood cell count (RBC), hemoglobin concentration (Hb), platelet count (PLT), platelet distribution width (PDW), mean platelet volume (MPV), platelet large cell ratio (P-LCR), total bilirubin (TBIL), creatinine (Cre), oxygenation index, MAP, D-dimer (DD), prothrombin time (PT), activated partial thromboplastin time (APTT), thrombin time (TT), international normalized ratio (INR), and fibrinogen (FIB).

For patients with infection or suspected infection, sepsis was diagnosed when the SOFA score increased by ≥ 2 points from baseline. Septic shock was based on sepsis with persistently low blood pressure and blood lactic acid concentration > 2 mmol/L; under complete volume resuscitation, vasoactive drugs are still needed to maintain MAP ≥ 65 mmHg[1].

Statistical analysis

The statistical methods were reviewed by Xu WH, Mo LC, Shi MH, and Rao H from Nanfang Hospital, Southern Medical University, and The First People’s Hospital of Foshan.

SPSS 22.0 (IBM, Armonk, NY, United States) was used for the statistical analyses. The Shapiro-Wilk method was used to test the normality of the continuous data. The continuous data conforming to a normal distribution are expressed as the mean ± SD and were analyzed using Student’s t-test. The continuous data with a non-normal distribution are presented as the median (25th percentile, 75th percentile) and were analyzed using the Mann-Whitney U test. Categorical data are expressed as n (%)
and analyzed using the chi-square test or Fisher’s exact probability method. Pearson’s correlation analysis was used for bivariable analyses of data with a normal distribution, while Spearman’s correlation analysis was used for bivariable analyses of data with a non-normal distribution. Logistic regression models were used for univariable and multivariable regression analyses with sepsis as the outcome. Receiver operator characteristic (ROC) curve analysis was used to explore the abilities of TPO, MPV, and other inflammatory factors (IL-6, IL-21, and hs-CRP) to predict sepsis. ROC curves are presented, and the area under the curve (AUC) was calculated. Two-sided P values < 0.05 were considered statistically significant.

RESULTS

Characteristics of the patients
Table 1 presents the characteristics of the patients. The median age of the patients (n = 200) was 66 (54, 75) years, and 54.5% were male. Compared with the control group (n = 110), the patients in the sepsis group (n = 90) were older (P = 0.002), had higher WBC (P = 0.001), N# (P < 0.001), IL-21 (P = 0.001), IL-6 (P < 0.001), hs-CRP (P < 0.001), MPV (P = 0.035), TBLI (P < 0.001), Cre (P < 0.001), DD (P < 0.001), PT (P < 0.001), APTT (P < 0.001), INR (P < 0.001), and FIB (P < 0.001), and lower levels of RBC (P < 0.001), Hb (P < 0.001), PLT (P < 0.001), oxygenation index (P < 0.001), MAP (P < 0.001), and TT (P < 0.001). The TPO level was higher in the sepsis group than in controls [86.45 (30.55, 193.1) vs 12.45 (0.64, 46.09) pg/mL, P < 0.001].

Multivariable analysis
The multivariable analysis showed that WBC [odds ratio (OR) = 1.32; 95% confidence interval (CI): 1.01-1.72]; P = 0.044], TPO (OR = 1.02; 95%CI: 1.01-1.04; P = 0.009), IL-21 (OR = 1.02; 95%CI: 1.00-1.03; P = 0.019), troponin I (Tro) (OR = 55.20; 95%CI: 5.69-535.90; P = 0.001), and PT (OR = 2.24; 95%CI: 1.10-4.55; P = 0.027) were independent risk factors for patients with sepsis (Table 2).

Correlations of TPO levels with other factors
Figure 1 and Table 3 show that TPO levels were positively correlated with IL-21 (r = 0.362, P < 0.001) (Figure 1A), IL-6 (r = 0.385, P < 0.001) (Figure 1B), hs-CRP (r = 0.531, P < 0.001) (Figure 1C), Cre (r = 0.219, P = 0.002) (Figure 1D), DD (r = 0.453, P < 0.001) (Figure 1E), PT (r = 0.311, P < 0.001) (Figure 1G), APTT (r = 0.203, P = 0.004), INR (r = 0.310, P < 0.001), FIB (r = 0.438, P < 0.001) (Figure 1H), WBC (r = 0.176, P = 0.013) (Figure 1I), and N# (r = 0.235, P = 0.001), and negatively correlated with PLT (r = -0.177, P = 0.012) (Figure 1D), TT (r = -0.307, P < 0.001), RBC (r = -0.246, P < 0.001), and Hb (r = -0.209, P = 0.003) (Figure 1I).

ROC curve analysis for sepsis
TPO, MPV, and the inflammatory factors (IL-6, IL-21, and hs-CRP) showed significant AUCs for distinguishing septic patients from non-septic patients. The AUC of TPO (0.788; 95%CI: 0.723-0.852; P < 0.001) was larger than that of MPV (0.589; 95%CI: 0.506-0.671; P = 0.036) but smaller than that of the inflammatory factors (Figure 2). According to the maximum value of Youden’s index, the cut-off level for TPO to distinguish sepsis and non-sepsis was 28.51 pg/mL.

DISCUSSION

The role of TPO in sepsis is not well determined, and conflicting results were obtained from different studies[13,14,17,19]. This study aimed to investigate the role of TPO in sepsis and explore the relationships between TPO and inflammatory factors such as IL-21 and IL-6, platelet indices, and thrombotic indicators in patients with sepsis. Our results showed that the TPO levels were independently associated with sepsis. High TPO levels and low PLT in the sepsis patients implied that TPO might be an acute-phase response protein in patients with infection.

Neutralizing TPO in sepsis appears to alleviate organ damage[19], while TPO administration in thrombocytopenic patients improves their prognosis[27,28]. The primary role of TPO is to induce platelet production, either in an endocrine (TPO produced by the liver) or a paracrine manner (TPO produced by marrow stromal cells)[7,8]. In normal conditions, blood TPO is removed by the receptor c-Mpl on platelets[29]. Under inflammatory conditions, the liver production of TPO is increased, and the high TPO levels are more due to increased production than reduced removal[29]. In the present study, sepsis was independently associated with high TPO levels (6.9-fold that of controls), as supported by previous studies that reported elevated TPO levels in sepsis[12,13]. Still, in the present study, these high TPO levels did not result in increased platelet production since the platelet level was 28% lower in the sepsis group compared with the controls, which is also supported by studies reporting low platelet levels in the acute care setting[30,31]. It could be explained, at least in part, by the fact that platelets play
Table 1 Characteristics of the patients

Clinical information	Total (n = 200)	Control group (n = 110)	Sepsis group (n = 90)	P value
Age, yr	66 (54, 75)	64 (51, 71)	71 (57, 80)	0.002
Sex, male, n (%)	109.0 (54.5)	55.0 (50.0)	54.0 (60.0)	0.158
Hypertension, n (%)	40.0 (36.4)			
Infection site				
Lungs, n (%)			22.0 (24.4)	
Abdomen, n (%)			54 (60)	
Skin and soft tissue infections, n (%)			4.0 (4.4)	
Central nervous system infection, n (%)			1.0 (1.1)	
Others, n (%)			9 (10)	
SOFA, n (%)			5 (3.7)	
WBC, × 10⁹/L	9.20 (7.15, 13.58)	8.03 (6.55, 10.29)	13.12 (8.80, 18.39)	< 0.001
N#, × 10⁹/L	7.02 (4.88, 11.47)	5.75 (4.11, 7.28)	10.69 (7.24, 16.58)	< 0.001
RBC, × 10¹²/L	4.30 (3.67, 4.77)	4.44 (4.13, 4.88)	3.85 (3.24, 4.53)	< 0.001
Hb, g/L	129.5 (107.0, 145.0)	134.5 (126.0, 148.0)	110.5 (98.0, 136.0)	< 0.001
PLT, × 10⁹/L	221.0 (159.5, 276.0)	241 (198, 283)	174.5 (118, 251)	< 0.001
PDW, fl	11.9 (10.6, 13.5)	11.80 (10.55, 12.95)	11.90 (10.60, 14.15)	0.343
P-LCR	0.28 (0.23, 0.34)	0.280 (0.230, 0.325)	0.30 (0.23, 0.37)	0.059
MPV, fl	10.4 (9.8, 11.2)	10.3 (9.8, 11.0)	10.5 (9.9, 11.6)	0.035
TPO, pg/mL	37.91 (6.10, 107.91)	12.45 (6.64, 46.09)	86.45 (30.55, 193.1)	< 0.001
IL-21, pg/mL	506 (418, 566)	436 (366, 493)	565 (524, 610)	< 0.001
IL-6, pg/mL	16.7 (4.6, 219.0)	5.0 (2.0, 12.0)	310.4 (41.9, 1582.4)	< 0.001
hs-CRP, mg/L	10.8 (1.6, 114.4)	2.1 (0.8, 6.1)	130.7 (88.4, 196.5)	< 0.001
PCT, ng/mL	10.26 (9.97, 31.70)			
TBIL, µmol/L	11.05 (8.5, 16.9)	10.10 (7.75, 14.00)	14.25 (9.60, 23.00)	< 0.001
Cre, µmol/L	78 (60, 133)	69 (55, 87)	120.5 (73.0, 187.0)	< 0.001
TnI, ng/mL	61.0 (30.7)	3.0 (2.7)	58.0 (65.2)	< 0.001
Oxygenation index	138.0 (69.3)	107.0 (97.3)	31.0 (34.8)	< 0.001
MAP, mmHg	161.0 (80.9)	110.0 (100.0)	14.0 (17.3)	< 0.001
DD, µg/mL	38.0 (19.1)	0 (0)	38.0 (42.7)	< 0.001
PT, s	12.50 (11.6, 14.05)	11.8 (11.2, 12.5)	14.0 (13.1, 15.4)	< 0.001
APTT, s	27.15 (24.95, 30.60)	26.4 (24.7, 27.8)	30.1 (26.5, 34.6)	< 0.001
TT, s	16.2 (15.3, 17.2)	16.60 (15.75, 17.40)	15.7 (14.8, 16.7)	< 0.001
INR	1.090 (1.010, 1.225)	1.03 (0.97, 1.09)	1.22 (1.14, 1.34)	< 0.001
FIB, g/L	3.450 (2.750, 4.655)	2.91 (2.58, 3.48)	4.58 (3.65, 5.95)	< 0.001
All data are shown as the median (P25, P75) or n (%). SOFA: Sequential organ failure assessment; N#: Neutrophile; WBC: White blood cell count; RBC: Red blood cell count; Hb: Hemoglobin concentration; PLT: Platelet count; PDW: Platelet distribution width; P-LCR: Platelet large-cell ratio; MPV: Mean platelet volume; TPO: Thrombopoietin; IL: Interleukin; hs-CRP: High-sensitivity C-reactive protein; PCT: Procalcitonin; TBIL: Total bilirubin; Cre: Creatinine; TnI: Troponin I; MAP: Mean arterial pressure; DD: D-dimer; PT: Prothrombin time; APTT: Activated partial thromboplastin time; TT: Thrombin time; INR: International normalized ratio; FIB: Fibrinogen.

Table 2 Univariable/multivariable analyses of sepsis

	Univariable	Multivariable				
	OR	95%CI	P	OR	95%CI	P value
Age, yr	1.025	1.005-1.045	0.013	1.022	0.967-1.081	0.436
Gender						
Male	Reference					
Female	0.667	0.379-1.171	0.158			
WBC	1.230	1.140-1.328	< 0.001	1.317	1.007-1.722	0.044
N#	1.315	1.202-1.439	< 0.001			
RBC	0.404	0.272-0.600	< 0.001	1.398	0.376-5.197	0.617
Hb	0.972	0.960-0.985	< 0.001			
TPO	1.016	1.010-1.022	< 0.001	1.021	1.005-1.037	0.009
IL-21	1.020	1.015-1.026	< 0.001	1.016	1.003-1.029	0.019
IL-6	1.066	1.039-1.093	< 0.001			
hs-CRP	1.054	1.036-1.073	< 0.001			
PLT	0.993	0.990-0.997	< 0.001	0.996	0.984-1.008	0.523
PDW	1.116	0.995-1.251	0.06			
MPV	1.439	1.082-1.915	0.012	1.876	0.784-4.49	0.158
TBIL	1.084	1.04-1.13	< 0.001	1.023	0.925-1.131	0.658
Cre	1.005	1.001-1.008	0.004	0.993	0.981-1.005	0.26
TnI ≥ 0.01	66.731	19.556-227.712	< 0.001	55.199	5.686-535.903	0.001
TnI < 0.01	Reference					
DD	1.608	1.326-1.951	< 0.001	1.089	0.941-1.259	0.253
PT	2.677	2.004-3.576	< 0.001	2.235	1.097-4.554	0.027
APTT	1.310	1.190-1.443	< 0.001	1.057	0.809-1.381	0.684
TT	0.943	0.822-1.082	0.404			
FIB	2.594	1.917-3.509	< 0.001	0.85	0.407-1.774	0.665

Variables with P < 0.05 in univariate analysis were entered in multivariate analysis, while variables with strong collinearity or correlation were excluded: IL-6, hs-CRP, PDW, N#, and Hb. OR: Odds ratio; CI: Confidence interval; WBC: White blood cell count; N#: Neutrophile; RBC: Red blood cell count; Hb: Hemoglobin concentration; TPO: Thrombopoietin; IL: Interleukin; hs-CRP: High-sensitivity C-reactive protein; PLT: Platelet count; PDW: Platelet distribution width; MPV: Mean platelet volume; TBIL: Total bilirubin; Cre: Creatinine; TnI: Troponin I; MAP: Mean arterial pressure; DD: D-dimer; PT: Prothrombin time; APTT: Activated partial thromboplastin time; TT: Thrombin time; INR: International normalized ratio; FIB: Fibrinogen.

There may be a negative feedback mechanism in this process, which must be further confirmed in vitro. Future studies must elucidate the cause-to-effect relationships between TPO and clinical events.

Inflammatory factors can increase TPO production by the liver[7,9-11], as suggested in the present study by the correlations between TPO, hs-CRP, and inflammatory factors (IL-21 and IL-6). Furthermore, we found that TPO had superior diagnostic efficiency in sepsis prediction by using the roles in inflammation, tissue repair, and pathogen killing[32], which are processes that consume platelets. Therefore, platelet depletion in sepsis could be due to the host response to the infection, and the much-increased TPO levels could be a compensatory mechanism to activate platelet production[32]. There may be a negative feedback mechanism in this process, which must be further confirmed in vitro. Future studies must elucidate the cause-to-effect relationships between TPO and clinical events.
Table 3: Correlation analyses between indicators and thrombopoietin

Factor	Spearman correlation coefficient	P value
Age, yr	0.138	0.052
TPO	1	
IL-21	0.362	< 0.001
IL-6	0.385	< 0.001
hsCRP	0.531	< 0.001
PLT	-0.177	0.012
PDW	-0.043	0.556
MPV	0.034	0.641
P-LCR	0.017	0.819
TBIL	0.118	0.098
Cre	0.219	0.002
DD	0.453	< 0.001
PT	0.311	< 0.001
APTT	0.203	0.004
TT	-0.307	< 0.001
INR	0.310	< 0.001
FIB	0.438	< 0.001
WBC	0.176	0.013
N#	0.235	0.001
RBC	-0.246	< 0.001
Hb	-0.209	0.003

TPO: Thrombopoietin; IL-21: Interleukin-21; IL-6: Interleukin-6; hs-CRP: High-sensitivity C-reactive protein; PLT: Platelet count; PDW: Platelet distribution width; MPV: Mean platelet volume; P-LCR: Platelet large cell ratio; DD: D-dimer; TBIL: Total bilirubin; Cre: Creatinine; PT: Prothrombin time; APTT: Activated partial thromboplastin time; TT: Thrombin time; INR: International normalized ratio; FIB: Fibrinogen; WBC: White blood cell count; N#: Neutrophils; RBC: Red blood cell count; Hb: Hemoglobin concentration.

ROC curve analysis. Therefore, TPO in the context of sepsis could be an acute-phase protein. Segre et al. [33] reported that TPO levels could be used as an early biomarker for sepsis and used to assess sepsis severity in patients with systemic inflammatory response syndrome (SIRS). The reason why TPO might be considered an acute phase marker is that inflammatory thrombocytosis is related to acute phase reactants that act through TPO to increase the PLT [34] and that TPO levels are increased through the action of IL-6 on the liver [34,35]. TPO has been suggested by Ceresa et al. [36] to be an acute-phase protein correlated with IL-6 levels in various inflammatory conditions. Acute-phase proteins all share the characteristic of being increased together in the acute phase of inflammation. Accordingly, the present study showed significant correlations between the levels of IL-6, IL-21, and hsCRP, which are acute-phase markers [37].

The present study also showed that WBC, IL-21, TnI, and PT were independently associated with sepsis. Elevated WBC is already included in the SIRS model [1]. IL-21 plays a central role in the proliferation, survival, differentiation, and function of lymphoid, myeloid, and epithelial cells in the differentiation of B cells into plasma cells and various T cells and in autoimmune diseases [38]. Still, data about IL-21 in sepsis are scarce. One study reported that IL-21 could be a biomarker of neonatal sepsis [39]. TnI is a marker of cardiac injury and could be a marker of hypoperfusion in sepsis [40]. Sepsis is also associated with coagulopathy, as shown by abnormal PT [41,42]. Hence, besides TPO, the other independent biomarkers of sepsis identified by the present study are supported by the literature. Indeed, TPO has a protective effect on the myocardium and brain [14-18]. Still, future studies could aim to develop predictive models that could include TPO levels and other factors. That will be undertaken in future studies.

Of note, the correlation analyses indicated various metabolic variables to be associated with sepsis, such as Cre, DD, APTT, TT, INR, FIB, RBC, and Hb. The exact prognostic significance of TPO in relation to those metabolic markers remains to be determined. Still, TPO levels are elevated in renal injury [43].
Xu WH et al. TPO levels associated with sepsis

Figure 1 Correlation analyses between thrombopoietin levels and indicators. A: Interleukin (IL)-21 ($r = 0.362$, $P < 0.001$); B: IL-6 ($r = 0.385$, $P < 0.001$); C: High-sensitivity C-reactive protein ($r = 0.531$, $P < 0.001$); D: Platelet count ($r = -0.177$, $P = 0.012$); E: Creatinine ($r = 0.219$, $P = 0.002$); F: D-dimer ($r = 0.453$, $P < 0.001$); G: Prothrombin time ($r = 0.311$, $P < 0.001$); H: Fibrinogen ($r = 0.438$, $P < 0.001$); I: white blood cells (WBC) ($r = 0.176$, $P = 0.013$); J: Hemoglobin concentration ($r = -0.209$, $P = 0.003$). TPO: Thrombopoietin; IL-6: Interleukin-6; IL-21: Interleukin-21; hs-CRP: High-sensitivity C-reactive protein; PLT: Platelet count; Cre: Creatinine; DD: D-dimer; PT: Prothrombin time; FIB: Fibrinogen; Hb: Hemoglobin concentration.

Anemia[45] and coagulopathy[46] are also associated with a poor prognosis in sepsis. Microvascular thrombosis, as one of the major complications after sepsis, is caused by the activation of coagulation[46]. The strength of this study is that we presented result that TPO is significantly correlated with thrombotic index (D-Dimer) and coagulation indicators (APTT, TT, INR, and FIB); however, the direct relationship between TPO and prothrombotic process of sepsis is doubted. Despite the fact that a previous study[20] argued that TPO could promote platelet aggregation in sepsis, more studies in vitro are needed to confirm it. TPO levels are high in patients with an acute respiratory syndrome, in whom it could participate in the development of thrombocytosis[47]. Still, given the cross-sectional nature of the study, the causal relationships between TPO and these markers remain to be examined.

This study has limitations. The retrospective study design limited the data that could be analyzed to the data available in the charts. All patients were from a single center, resulting in a small sample size, and the bias cannot be avoided from this study. Although the eligibility criteria were relatively broad, using such criteria will inevitably introduce some selection bias. The results of this study can only...
Figure 2 Receiver operator characteristic curve analysis for sepsis. Thrombopoietin (TPO) [area under the curve (AUC) = 0.788; 95%CI: 0.723-0.852; \(P < 0.001 \)]; mean platelet volume (AUC = 0.589; 95%CI: 0.506-0.671; \(P = 0.036 \)); high-sensitivity C-reactive protein (AUC = 0.947; 95%CI: 0.915-0.979; \(P < 0.001 \)); interleukin (IL)-6 (AUC = 0.895; 95%CI: 0.848-0.941; \(P < 0.001 \)); IL-21 (AUC = 0.895; 95%CI: 0.848-0.941; \(P < 0.001 \)). At a TPO cut-off level of 28.51 pg/mL, the sensitivity was 79%, and specificity was 65%. MPV: Mean platelet volume; TPO: Thrombopoietin; hs-CRP: High-sensitivity C-reactive protein; IL-6: Interleukin-6; IL-21: Interleukin-21.

CONCLUSION

In summary, TPO levels are independently associated with sepsis. The results suggest that TPO might be an acute phase response protein in patients with infection. Increased TPO levels in sepsis may result from the involvement of platelets in the inflammation or a negative feedback effect caused by decreased platelets.

ARTICLE HIGHLIGHTS

Research background
Elevated levels of thrombopoietin (TPO) are often accompanied by a decrease in platelet count (PLT) in systemic infectious conditions, contrary to the view that TPO promotes platelet production under physiological conditions. In addition, whether TPO mediates organ damage in sepsis remains controversial.

Research motivation
The role of TPO in sepsis is not well determined. It is necessary to understand the role of TPO in the pathophysiological process of sepsis and the relationship between TPO and other inflammatory factors, platelet indices, and thrombotic indicators.
Research objectives
To explore the relationships between TPO and inflammatory factors, platelet indices, and thrombotic indicators in sepsis.

Research methods
Patients with sepsis diagnosed and treated at the Emergency Medicine Department were enrolled in this study. Patients without sepsis were included as controls. Clinical and laboratory parameters were collected. Pearson’s and Spearman’s correlation analyses were used for bivariable analyses of data with a normal- and non-normal distribution, respectively. Logistic regression models were used for univariable and multivariable regression to analyze the risk factors of sepsis. Receiver operator characteristic analysis was executed to evaluate the discriminative ability of the monograph.

Research results
TPO levels were higher in the sepsis group than in controls, but platelets were lower. TPO was an independent risk factor associated with sepsis. TPO levels were positively correlated with inflammatory factors and some thrombotic indicators, and negatively correlated with PLT. TPO had fair predictive value in distinguishing septic patients and non-septic patients.

Research conclusions
TPO levels are independently associated with sepsis. TPO might be an acute-phase response protein in patients with infection.

Research perspectives
Future studies will further investigate whether TPO has prognostic value in sepsis.

ACKNOWLEDGEMENTS
The authors acknowledged the help of Tang QJ, Shu XW, Jiang LY, Teng H, Li XY, and Luo HS from the Emergency Medicine Department of The First People’s Hospital of Foshan in data collection.

FOOTNOTES
Author contributions: Xu WH contributed to investigation, original draft preparation, funding acquisition, software, and formal analysis; Mo LC and Rao H contributed to software, formal analysis, and resources; Shi MH contributed to methodology and formal analysis; Zhan XY contributed to investigation and data curation; Yang M contributed to conceptualization, manuscript review and editing, and study supervision; all authors have read and agreed to the published version of the manuscript.

Supported by the Guangdong Province Medical Science and Technology Research Foundation, No. B2014377; and the Medical Scientific Research Project of Foshan, No. 20190036.

Institutional review board statement: The study was reviewed and approved by the Medical Ethics Committee of The First People’s Hospital of Foshan, Approval No: L[2021]No. 8.

Informed consent statement: Informed consent to the study is not required due to the retrospective nature of this study.

Conflict-of-interest statement: There are no conflicts of interest to report.

Data sharing statement: Data can be acquired from the corresponding author.

Open-Access: This article is an open-access article that was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution NonCommercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: https://creativecommons.org/Licenses/by-nc/4.0/

Country/Territory of origin: China

ORCID number: Wan-Hua Xu 0000-0002-8957-3299; Li-Chan Mo 0000-0002-7650-9271; Mao-Hua Shi 0000-0002-0655-7956; Hui Rao 0000-0001-5709-0105; Xiao-Yong Zhan 0000-0002-5809-7904; Mo Yang 0000-0002-9138-7153.

S-Editor: Chen YL
REFERENCES

1. Singer M, Deutschman CS, Seymour CW, Shankar-Hari M, Annane D, Bauer M, Bellomo R, Bernard GR, Chiche JD, Coopersmith CM, Hotchkiss RS, Levy MM, Marshall JC, Martin GS, Opal SM, Rubenfeld GD, van der Poll T, Vincent JL, Angus DC. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA 2016; 315: 801-810 [PMID: 26903338 DOI: 10.1001/jama.2016.0287]

2. Rhee C, Dantes R, Epstein L, Murphy DJ, Seymour CW, Ivashyna TJ, Kadri SS, Angus DC, Danner RL, Fiore AE, Jernigan JA, Martin GS, Septimus E, Warren DK, Karzca A, Chan C, Menchaca JT, Wang R, Gruber S, Klompas M; CDC Prevention Epicenter Program. Incidence and Trends of Sepsis in U.S. Hospitals Using Clinical vs Claims Data, 2009-2014. JAMA 2017; 318: 1241-1249 [PMID: 28903154 DOI: 10.1001/jama.2017.13836]

3. Martin GS. Sepsis, severe sepsis and septic shock: changes in incidence, pathogens and outcomes. Expert Rev Anti Infect Ther 2012; 10: 701-706 [PMID: 22734959 DOI: 10.1586/eri.12.50]

4. Tulloch LG, Chan JD, Carl bomb DJ, Kelly MJ, Dellite TH, Lynch JB. Epidemiology and Microbiology of Sepsis Syndromes in a University-Affiliated Urban Teaching Hospital and Level-1 Trauma and Burn Center. J Intensive Care Med 2017; 32: 264-272 [PMID: 26130580 DOI: 10.1177/0885066615592851]

5. Eber MR, Laxminarayan R, Perencevich EN, Malani A. Clinical and economic outcomes attributable to health care-associated sepsis and pneumonia. Arch Intern Med 2010; 170: 347-353 [PMID: 2077037 DOI: 10.1001/archinternmed.2009.592]

6. Kaukonen KM, Bailey M, Suzuki S, Pilcher D, Bellomo R. Mortality related to severe sepsis and septic shock among critically ill patients in Australia and New Zealand, 2000-2012. JAMA 2014; 311: 1308-1316 [PMID: 24638143 DOI: 10.1001/jama.2014.2637]

7. Kaushansky K. Thrombopoietin and its receptor in normal and neoplastic hematopoiesis. Thromb J 2016; 14: 40 [PMID: 27760665 DOI: 10.1186/s12959-016-0095-2]

8. McIntosh B, Eber MR. Thrombopoietin Reduces Organ Damage in Experimental Endotoxemia and Polymicrobial Sepsis. Crit Care Med 2008; 36: 799-806 [PMID: 18410987 DOI: 10.1016/j.ccm.2008.02.012]

9. Nagata Y, Shozaki Y, Nagahisa H, Nagasawa A, Abe T, Todokoro K. Serum thrombopoietin level is not regulated by transcription but by the total counts of both megakaryocytes and platelets during thrombocytopenia and thrombocytosis. Thromb Haemost 1997; 77: 880-814 [PMID: 9184382]

10. Grozovsky R, Bogenja AJ, Liu K, Visner G, Hartwig JH, Falet H, Hoffmeister KM. The Ashwell-Morell receptor regulates hepatic thrombopoietin production via JAK2-STAT5 signaling. Nat Med 2015; 21: 47-54 [PMID: 25485912 DOI: 10.1038/nm.3770]

11. Wolber EM, Jelkman W. Interleukin-6 increases thrombopoietin production in human hepatoma cells HepG2 and Hep3B. J Interferon Cytokine Res 2000; 20: 499-506 [PMID: 10841078 DOI: 10.1089/1079900500023915]

12. Zakynthinos SG, Papanikolaou S, Theodoridis T, Zakynthinos EG, Christopoulou-Kokkinou Y, Katsaris G, Mavrommatis AC. Sepsis severity is the major determinant of circulating thrombopoietin levels in septic patients. Crit Care Med 2004; 32: 1004-1010 [PMID: 15071393 DOI: 10.1097/001.018863.61546.00]

13. Lupia E, Goffi A, Bosco O, Montrucchio G. Thrombopoietin as biomarker and mediator of cardiovascular damage in critical diseases. Mediators Inflamm 2012; 2012: 390892 [PMID: 22577249 DOI: 10.1155/2012/390892]

14. Wang H, Wang H, Liang X, Zhou LX, Dong ZL, Liang P, Qiu P, Yang M. Thrombopoietin protects H9C2 cells from excessive autophagy and apoptosis in doxorubicin-induced cardiomyopathy. Oncol Lett 2018; 15: 839-848 [PMID: 29403560 DOI: 10.3892/ol.2017.7410]

15. Zhou J, Li J, Rosenbaum DM, Barone FC. Thrombopoietin protects the brain and improves sensorimotor functions: reduction of stroke-induced MMP-9 upregulation and blood-brain barrier injury. J Cereb Blood Flow Metab 2011; 31: 924-933 [PMID: 20877384 DOI: 10.1038/jcbfm.2010.171]

16. Li K, Sung RY, Huang WZ, Yang M, Pong NH, Lee SM, Chan WW, Zhao H, To MY, Fok TF, Li CK, Wong YO, Ng PC. Thrombopoietin protects against stroke and in vitro and in vivo cardiac injury induced by doxorubicin. Circulation 2006; 113: 2211-2220 [PMID: 16651475 DOI: 10.1161/CIRCULATIONAHA.105.560250]

17. Baker JE, Su J, Hsu A, Shi Y, Zhao M, Strande JL, Fu X, Xu H, Eis A, Komorowski R, Jensen ES, Tweddell JS, Rafiee P, Gross GJ. Human thrombopoietin reduces myocardial infarct size, apoptosis, and stunning following ischemia/reperfusion in rats. Cardiovasc Res 2008; 77: 44-53 [PMID: 18006466 DOI: 10.1093/cvr/cvm026]

18. Li L, Yi C, Xia W, Huang B, Chen S, Zhong J, Fang X, Yang L, Xin H, Zheng SS, Chong BH, Fu Y, Chen C, Yang M. C-Mpl and TPO expression in the human central nervous system neurons inhibits neuronal apoptosis. Aging (Albany NY) 2020; 12: 7397-7410 [PMID: 32341206 DOI: 10.18632/aging.103086]

19. Cuccurullo A, Greco E, Lupia E, De Giuli P, Bosco O, Martin-Coente E, Spatola T, Turco E, Montrucchio G. Blockade of Thrombopoietin Reduces Organ Damage in Experimental Endotoxemia and Polymicrobial Sepsis. PLoS One 2016; 11: e0151088 [PMID: 26965310 DOI: 10.1371/journal.pone.0151088]

20. Lupia E, Bosco O, Mariano F, Doni AE, Goffi A, Spatola T, Cuccurullo A, Tizzani P, Brondino G, Stella M, Montrucchio G. Elevated thrombopoietin in plasma of burned patients without and with sepsis enhances platelet activation. J Thromb Haemost 2009; 7: 1000-1008 [PMID: 19317837 DOI: 10.1111/j.1538-7836.2009.03348.x]

21. Lupia E, Spatola T, Cuccurullo A, Bosco O, Mariano F, Pucci A, Ramella R, Alliotgi G, Montrucchio G. Thrombopoietin modulates cardiac contractility in vitro and contributes to myocardial depressing activity of septic shock serum. Basic Res Cardiol 2010; 105: 609-620 [PMID: 20467749 DOI: 10.1007/s00395-010-0103-6]

22. Shen J, Wan R, Hu G, Wang F, Shen J, Wang X. Involvement of thrombopoietin in acinar cell necrosis in L-arginine-
induced acute pancreatitis in mice. Cytokine 2012; 60: 294–301 [PMID: 22698803 DOI: 10.1016/j.cyto.2012.05.005]

Levy MM, Fink MP, Marshall JC, Abraham E, Angus D, Cook D, Cohen J, Opal SM, Vincent JL, Ramsay G; International Sepsis Definitions Conference. 2001 SICCM/ESICM/ACCP/ATS/SIS International Sepsis Definitions Conference. Intensive Care Med 2003; 29: 530–538 [PMID: 12664219 DOI: 10.1007/s00134-003-1662-x]

Opal SM. Concept of PIRO as a new conceptual framework to understand sepsis. Pediatr Crit Care Med 2005; 6: S55-S60 [PMID: 15837560 DOI: 10.1097/01.pcc.0000161580.79526.4C]

Chang SH, Hsieh CH, Weng YM, Hsieh MS, Goh ZNL, Chen HY, Chang T, Ng CJ, Seak JC, Seak CK, Seak CJ. Performance Assessment of the Mortality in Emergency Department Sepsis Score, Modified Early Warning Score, Rapid Emergency Medicine Score, and Rapid Acute Physiology Score in Predicting Survival Outcomes of Adult Renal Ablssess Patients in the Emergency Department. Biomed Res Int 2018; 2018: 6983568 [PMID: 30327779 DOI: 10.1155/2018/6983568]

Lopes JA, Jorge S, Resina C, Santos C, Pereira A, Neves J, Antunes F, Prata MM. Prognostic utility of RFLE for acute renal failure in patients with sepsis. Crit Care 2007; 11: 408 [PMID: 17430577 DOI: 10.1186/cc5722]

Wu Q, Ren J, Wu X, Wang G, Gu G, Liu S, Wu Y, Hu D, Zhao Y, Li J. Recombinant human thrombopoietin improves platelet counts and reduces platelet transfusion possibility among patients with severe sepsis and thrombocytopenia: a prospective study. J Crit Care 2014; 29: 362-366 [PMID: 24405656 DOI: 10.1016/j.jcrc.2013.11.023]

Liu Y, Jin G, Sun J, Wang X, Guo L. Recombinant human thrombopoietin in critically ill patients with sepsis-associated thrombocytopenia: A clinical study. J Infect Dis 2020; 98: 144-149 [PMID: 32561426 DOI: 10.1097/01.jid.2020.06.045]

Kausanskys K. The molecular mechanisms that control thrombopoiesis. J Clin Invest 2005; 115: 3339-3347 [PMID: 16322778 DOI: 10.1172/JCI26674]

Strauss R, Wehler M, Mehler K, Kreutzer D, Koebnick C, Hahn EG. Thrombocytopenia in patients in the medical intensive care unit: bleeding prevalence, transfusion requirements, and outcome. Crit Care Med 2002; 30: 1765-1771 [PMID: 12163790 DOI: 10.1097/00003246-200208000-00015]

Drews RE, Weinberger SE. Thrombocytopenic disorders in critically ill patients. Am J Respir Crit Care Med 2000; 162: 347-351 [PMID: 10934051 DOI: 10.1164/ajrccm.162.2.ncc-3]

Dewitte A, Lepreux S, Villeneuve J, Rigotthier C, Conv.ReadIntDis 2010: 39: 97-102 [PMID: 21032580 DOI: 10.1001/ajrccm.162.2.ncc-3]

Dewitte A, Lepreux S, Villeneuve J, Rigotthier C, Convздравньедиспансер 2010: 39: 97-102 [PMID: 21032580 DOI: 10.1001/ajrccm.162.2.ncc-3]

Segre E, Pigozzi L, Lison D, Pistone L, Bosco O, Vizio B, Suppo U, Turvani F, Morello F, Battista S, Moiraghi C, Montrucchio G, Lupia E. May thrombopoietin be a useful marker of sepsis severity assessment in patients with SIRS entering the emergency department? Clin Chem Lab Med 2014; 52: 1479-1483 [PMID: 24887960 DOI: 10.1515/cclm-2014-0219]

Kaser A, Brandacher G, Steurer W, Kaser S, Offner FA, Zoller H, Theurl I, Wilder W, Molnar C, Ludwiezek O, Atkins MB, Mier JW, Tülg H. Interleukin-6 stimulates thrombopoiesis through thrombopoietin: role in inflammatory thrombocytopenia. Blood 2001; 98: 2720-2725 [PMID: 11675343 DOI: 10.1182/blood.v98.9.2720]

Tefferi A, Ho TC, Ahmann GJ, Katzmann JA, Greipp PR. Plasma interleukin-6 and C-reactive protein levels in reactive versus clonal thrombocytopenia. Am J Med 1994; 97: 374-378 [PMID: 7942941 DOI: 10.1016/0002-9345(94)90306-9]

Ceresa IF, Noris P, Ambaglio C, Pecchi A, Bultiun C. Thrombopoietin is not uniquely responsible for thrombocytopenia in inflammatory disorders. Platelets 2007; 18: 579-582 [PMID: 18041648 DOI: 10.1080/09537100701593661]

Gulhar R, Ashraf MA, Jialal I. Physiology, Acute Phase Reactants. 2021 Apr 30. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2022 Jan - [PMID: 3017854]

Spolski R, Leonard WJ. Interleukin-6: a double-edged sword with therapeutic potential. Nat Rev Drug Discov 2014; 13: 379-395 [PMID: 24751819 DOI: 10.1038/nrd4296]

Froeschle GM, Bedelke T, Boetchter M, Huber S, Singer D, Ebenebe CU. T cell cytokines in the diagnostic of early-onset sepsis. Pediatr Res 2021; 90: 191-196 [PMID: 33173118 DOI: 10.1038/s41390-020-01248-x]

Bonk MP, Meyer NJ. Thrombopoietin I: A New Marker of Sepsis-induced Hyperfibrinogen? Am Ann Thorac Soc 2019; 16: 552-553 [PMID: 3104089 DOI: 10.1513/AnnalsATS.201902-099ED]

Simmons J, Pittet JF. The coagulopathy of sepsis. Curr Opin Anaesthesiol 2015; 28: 227-236 [PMID: 25590467 DOI: 10.1097/ACO.000000000000163]

Saracco P, Vitale P, Scolfaro C, Pollo B, Pagliarino M, Timeus F. The coagulopathy in sepsis: significance and implications for treatment. Pediatr Rep 2011; 3: e30 [PMID: 22355515 DOI: 10.4081/pr.2011.e30]

Kazama I, Endo Y, Toyama H, Ejima Y, Kurosawa S, Murata Y, Matsubara M, Maruyama Y. Compensatory thrombopoietin production from the liver and bone marrow stimulates thrombopoiesis of living rat megakaryocytes in chronic renal failure. Nephron Extra 2011; 1: 147-156 [PMID: 22470388 DOI: 10.1159/000333018]

De Vriese AS. Prevention and treatment of acute renal failure in sepsis. Am J Nephrol 2003; 9: 742-805 [PMID: 12595518 DOI: 10.1074/jn.2003.05652.37736.7T]

Jiang Y, Jiang FQ, Kong F, An MM, Jin BB, Cao D, Gong P. Inflammatory anemia-associated parameters are related to 28-day mortality in patients with sepsis admitted to the ICU: a preliminary observational study. Ann Intensive Care 2019; 9: 67 [PMID: 31183575 DOI: 10.1186/s13613-019-0542-7]

Iba T, Levy JH. Sepsis-induced Coagulopathy and Disseminated Intravascular Coagulation. Anesthesiology 2020; 132: 1238-1245 [PMID: 32044801 DOI: 10.1097/ALN.0000000000003122]

Yang M, Ng MH, Li CK, Chan PK, Liu C, Ye JY, Chong BH. Thrombopoietin levels increased in patients with severe acute respiratory syndrome. Thromb Res 2008; 122: 473-477 [PMID: 18314161 DOI: 10.1016/j.thromres.2007.12.021]
