Excess/deviation properties of binary mixtures of 2,5-dimethylfuran with furfuryl alcohol, methyl isobutyl ketone, 1-butanol and 2-butanol at temperature range of (293.15–323.15) K

Mohammad Ridha Mahi, Faiza Ouaar, Amina Negadi, Indra Bahadur, Latifa Negadi

To cite this version:

Mohammad Ridha Mahi, Faiza Ouaar, Amina Negadi, Indra Bahadur, Latifa Negadi. Excess/deviation properties of binary mixtures of 2,5-dimethylfuran with furfuryl alcohol, methyl isobutyl ketone, 1-butanol and 2-butanol at temperature range of (293.15–323.15) K. Oil & Gas Science and Technology - Revue d'IFP Energies nouvelles, Institut Français du Pétrole, 2018, 73, pp.64. 10.2516/ogst/2018012. hal-01941472

HAL Id: hal-01941472
https://hal.archives-ouvertes.fr/hal-01941472

Submitted on 1 Dec 2018

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Dossier Thermal analysis and calorimetry techniques applied to the characterization of materials and fluids for energy
Edited by C. Dalmazzone (Guest editor)

REGULAR ARTICLE

Excess/deviation properties of binary mixtures of 2,5-dimethylfuran with furfuryl alcohol, methyl isobutyl ketone, 1-butanol and 2-butanol at temperature range of (293.15–323.15) K

Mohammad Ridha Mahi1, Faiza Ouaar1, Amina Negadi1, Indra Bahadur2, and Latifa Negadi1,3,*

1 LATA2M, Laboratoire de Thermodynamique Appliquée et Modélisation Moléculaire, University of Tlemcen, Post Office Box 119, Tlemcen 13000, Algeria
2 Department of Chemistry and Material Science Innovation & Modelling (MaSIM) Research Focus Area, Faculty of Agriculture, Science and Technology, North-West University (Mafikeng Campus), Private Bag X2046, Mmabatho 2735, South Africa
3 Thermodynamics Research Unit, School of Engineering, University of KwaZulu-Natal, Howard College Campus, King George V Avenue, 4041 Durban, South Africa

Received: 13 November 2017 / Accepted: 12 March 2018

Abstract. Experimental values of density and speed of sound for binary liquid mixtures of 2,5-dimethylfuran (2,5-DMF) with furfuryl alcohol (FA), methyl isobutyl ketone (MIBK), 1-butanol and 2-butanol and over the entire composition range of 2,5-DMF and at the temperature range of 293.15–323.15 K at 10 K intervals and at pressure p = 0.1 MPa were reported. Experimental data were used to assess the thermodynamics properties of studied mixtures. These properties were used to interpret the molecular interactions among component of liquids. The values of excess/deviation functions have been fitted to Redlich–Kister type polynomial equation. From the obtained results, a discussion was carried out in terms of nature of intermolecular interactions and structure factors in the binary mixtures.

1 Introduction

Nowadays, fossil energies such as petroleum, natural gas and coal dominate approximately more than 80% of primary energy consumption estimated by sources [1]. This excessive reliance on fossil fuels in the world has serious reservations about their depletion and green house emission. Now, with increasing the demand for environmental concerns about global warming, the development of eco-friendly and renewable energy sources have been a most important topic in the last few years [2,3]. The energy-efficient processes for the sustainable production of fuels derived from biomass such as biodiesel fuel (BDF), bio-ethanol and liquid alkanes have also attracted attention over the year [4].

5-hydroxymethylfurfural (HMF), obtained by dehydration of monosaccharides, is considered to be most promising important intermediate for the synthesis of a wide variety of chemicals and alternative fuels based on bio-refinery [5]. To upgrade furanic compounds toward bio-fuels, hydrogenation is the most versatile reaction. Among several furan-based biofuel candidates, which include 2,5-dimethylfuran (2,5-DMF), 2-methylfuran (2-MF), 5-ethoxymethylfurfural (EMF) and ethyl levulinate (EL), 2,5-dimethylfuran is known as one of the potential transportation fuels because of its high energy density (30 kJ·cm⁻³) together octane number (RON = 119), these values are similar to the gasoline which also have high energy density (34kJ·cm⁻³) together octane number (RON = 96). Moreover, DMF is nearly immiscible with water and thus easier to blend with gasoline than ethanol.

To explore the application of DMF as a fuel or as a gasoline additive, it is necessary to characterize its thermophysical properties including density, sound velocity, refractive indices, viscosity, surface tension and vapor–liquid equilibrium as a pure fluid as well as mixed with hydrocarbons or other gasoline additives. In the face of their importance, experimental and theoretical investigations concerning key properties are scarce and limited to narrow experimental conditions.

For the case of binary systems {2,5-dimethylfuran (2,5-DMF) + FA or MIBK or 1-butanol, or 2-butanol}, neither excess molar volumes (V_m^E), nor isentropic compressibility (β) data have been previously reported. Consequently, and as continuation of our systematic studies on thermodynamic and thermophysical properties of binary mixtures containing solvents derived from biomass, the

* Corresponding author: l_negadi@mail.univ-tlemcen.dz

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
present work is undertaken to measure new experimental data of densities, sound velocity, refractive indices of pure DMF and of the binary systems \{2,5-dimethylfuran (2,5-DMF) + FA or MIBK or 1-butanol, or 2-butanol\} over the entire composition range at (293.15, 303.15, 313.15 and 323.15) K and at pressure \(p = 0.1\) MPa. Reliable density and speed of sound data for the measured systems are needed for optimized design of several industrial processes such as separation, storage, mixing processes, and transport. These data also used to develop accurate empirical equations, models and simulation programs. The results from these studies can provide valuable information about fluid at different temperature conditions including room temperatures to higher temperatures at 50°C.

2 Experimental details

2.1 Chemicals

2,5-dimethylfuran (2,5-DMF), FA and 2-butanol were purchased from Sigma Aldrich, while 1-butanol was from Biochem and MIBK was from Fluka. The purity of these chemicals were declared to be more than 0.99 on mass fraction basis. The source and the purity of the utilized chemicals are shown in Table 1. As well the purity was checked by comparing the measured densities, speed of sound and refractive index, which are in good accord with literature values [66-68] and are presented in Table 2. All chemicals were kept in bottles to avoid contamination and evaporation during mixing.

2.2 Apparatus and procedure

The binary mixtures were prepared by mass measurement using an OHAUS analytical mass balance with a precision of ±0.0001 g. The uncertainty in the mole fraction was ±0.0005. Density and speed of sound for pure components and their binary mixtures were measured using a digital vibrating-tube densimeter and sound velocity analyzer (Anton Paar DSA 5000M) with uncertainty of ±0.02 K in temperature. The speed of sound was measured using a propagation time technique with frequency of 3 MHz. The estimated uncertainty in density and speed of sound were ±0.003 g cm\(^{-3}\) and ±1.2 m/s, respectively. The refractive indices of the pure liquids used in the present work were measured using an Abbe digital refractometer (Model Abbemat 300, Anton Paar), with uncertainty of ±0.02 K in temperature. The measured values of the refractive indices using the method and apparatus were estimated to be ±0.005 of their true values.

3 Results and discussion

3.1 Density

The values of density \(\rho\) were measured at (293.15, 303.15, 313.15 and 323.15) K, and at pressure \(p = 0.1\) MPa for the binary systems \{2,5-dimethylfuran (2,5-DMF) + FA or MIBK or 1-butanol, or 2-butanol\} and are given in Table 3. The plots of density versus concentration at investigated temperatures are given in Figure S1 (a)–(d). From Figure S1 (a)–(d), it can be seen that the \(\rho\) value decreases with an increase in temperature, and increases with an increase in concentration for all investigated binary systems, except for the system containing FA whereas a decreasing value of \(\rho\) with an increase in concentration was observed.

3.2 Speed of sound

The measurement of speed of sound, \(u\), has been successfully employed in understanding the nature of molecular interactions in pure liquids and their liquid mixtures [66-68]. Speed of sound measurements are highly sensitive to molecular interactions and can be used to provide qualitative information about the physical nature and strength of molecular interaction in liquid mixtures [66-68]. In this regards, the speed of sound data, were also measured in the same conditions for all binary systems and are also given in Table 3. The plots of speed of sound versus concentration, at investigated temperatures, are given in Figure S2 (a)–(d). From Figure S2 (a)–(d), it can be seen that the \(u\) value also decreases with an increase in temperature, and in general, decreases with an increase in concentration for all binary systems excluding the \{2,5-dimethylfuran + MIBK\} system, whereas an increasing value of \(u\) with an increase in concentration was observed. Figure S2 (a)–(d), representing the variation of \(u\) as a mole fraction of 2,5-dimethylfuran for the systems containing FA or MIBK or 1-butanol, or 2-butanol, shows that at a given temperature, the curve of \(u\) as a function of \(x_1\) has a maximum of \(x_1 = 0.6773\) for MIBK whereas a minimum of \(x_1 = 0.6860\) for 2-butanol. The minimum of \(x_1\) observed for the systems whereas \(u\) value decreases with an increase in concentration while maximum of \(x_1\) observed for the systems whereas an increasing value of \(u\) with increasing concentration was observed.

Table 1. Molar mass, CAS number, suppliers and purities of chemicals used in this study.

Compound	Supplier	M (g mol\(^{-1}\))	Mixture mass fraction	CAS number	Lot#
2,5-DMF	Sigma-Aldrich	0.990	1	625-86-5	WXBB6542V
Furfuryl alcohol	Sigma-Aldrich	0.980	2.5	98-00-0	MKBP8421V
MIBK	Fluka	0.990	1.5	108-10-1	SZBF1820V
1-Butanol	Biochem	0.995	2	71-36-3	–
2-Butanol	Sigma-Aldrich	0.990	3	78-92-2	STBG2236V

* No further purification was done.
Table 2. Comparison of experimental density, \(\rho \), sound velocity, \(u \), and refractive indices, \(n_D \), of the pure component with the corresponding literature values at 293.15, 298.15, 303.15, 313.15 and 323.15 K and at pressure \(p = 0.1 \) MPa.

Component	\(T \) (K)	\(\rho \) (g cm\(^{-3}\))	\(u \) (m s\(^{-1}\))	\(n_D \)			
		Exp	Lit.	Exp.	Lit.	Exp.	Lit.
2,5-DMF	293.15	0.901	0.90118 [7]	1214.3	–	1.442	1.4415 [11]
		0.90300 [8]					
		0.901016 [11]					
	298.15	0.896	0.89563 [6]	1193.1	–	1.439	1.44012 [6]
		0.89579 [7]					
		0.89588 [9]					
		0.89654 [10]					
		0.895633 [11]					
	303.15	0.890	0.89037 [7]	1171.2	–	1.436	1.4361 [11]
		0.890220 [11]					
	313.15	0.879	0.87943 [7]	1128.4	–	1.431	1.4305 [11]
		0.879290 [11]					
	323.15	0.868	0.86836 [7]	1086.0	–	1.425	1.4250 [11]
		0.868221 [11]					
Furfuryl alcohol	293.15	1.133	1.13226 [25]	1465.9	1464.4 [25]	1.487	–
		1.13200 [26]					
		1.134904 [27]					
		1.12850 [28]					
	298.15	1.128	1.12499 [12]	1449.8	–	1.485	–
		1.1260 [13]					
	303.15	1.124	1.12247 [12]	1433.6	1431.9 [25]	1.483	–
		1.1238 [13]					
		1.12299 [25]					
		1.12247 [29]					
		1.125616 [27]					
	313.15	1.114	1.11363 [25]	1401.7	1400.0 [25]	1.479	–
		1.116244 [27]					
	323.15	1.105	–	1370.0	–	1.475	–
1-Butanol	293.15	0.810	0.8098 [19]	1258.6	1257.5 [32]	1.399	–
		0.80954 [22]					
		0.8098 [23]					
		0.80965 [32]					
		0.8095 [33]					
		0.809530 [34]					
Component	T (K)	ρ (g·cm$^{-3}$)	u (m·s$^{-1}$)	n_D			
----------	--------	----------------	---------------	------			
	Exp.	Lit.	Exp.	Lit.			
298.15	0.806	0.805877 [11]	1241.8	1.397			
		0.80584 [14]	1239.8 [34]	1.397			
		0.8070 [15]	1240.37 [37]	1.3969 [14]			
		0.80575 [16]	1240.25 [38]	1.39732 [30]			
		0.8055 [17]	1.3973 [39]				
		0.8060 [18,19]					
		0.87071 [20]	1.39716 [20]				
		0.80589 [30]	1.3973 [40]				
		0.80577 [31]	1.3969 [36]				
		0.8057 [34]	1.3973 [30]				
		0.80607 [36]	1.3973 [30]				
		0.80548 [37]	1.3973 [30]				
		0.80581 [38]	1.3973 [30]				
		0.80601 [39]	1.3973 [30]				
		0.8055 [40]	1.3973 [30]				
303.15	0.802	0.8037 [15]	1224.9	1.395			
		0.8021 [19]	1223.6 [32]	1.395			
		0.80206 [20]	1224 [42]				
		0.8022 [21]	1223.55 [43]				
		0.80200 [32]	1222.9 [34]				
		0.8019 [34]					
		0.802407 [41]					
313.15	0.795	0.7967 [15]	1191.6	1.391			
		0.7943 [19]	1190.2 [32]	1.391			
		0.79421 [32]	1190 [42]				
		0.7946 [45,46]					
323.15	0.787	0.7864 [19]	1158.4	1.387			
		0.7861 [34]	1156.5 [34]	1.387			
2-butanol	293.15	0.806	0.8073 [32]	1229.8			
		0.8067 [42]	1232.4 [32]	1.397			
		0.8063 [34]	1230 [42]				
		1230.1 [34]					
298.15	0.802	0.80235 [32]	1212.0	1.395			
		0.80260 [31]	1230.18 [18]	1.395			
		0.80250 [36]	1212.1 [34]	1.3951			
		0.80239 [47]					
		0.80241 [18]					
		0.80235 [48]					
		0.8022 [34]					
303.15	0.798	0.79899 [32]	1193.9	1.393			
		0.7984 [42]	1196.1 [32]	1.393			
		0.7980 [34]	1194 [34]				
3.3 Excess molar volumes

The excess molar volumes, V_{E}^{m}, were calculated from the density data of the mixture and the pure components using Equation (1):

$$V_{E}^{m} = \frac{x_{1}M_{1} + x_{2}M_{2}}{\rho} - \frac{x_{1}M_{1}}{\rho_{1}} - \frac{x_{2}M_{2}}{\rho_{2}},$$

where x_{1} and x_{2} are mole fractions; M_{1} and M_{2} denote molar masses; ρ_{1} and ρ_{2} are the densities; where 1 refers to 2,5-dimethylfuran and 2 refers to FA or 1-butanol or 2-butanol or MIBK, and ρ is the density of the mixtures. Table S1 represents the results of excess molar volume, V_{E}^{m}, for the studied system and is also plotted in Figure S1 (a)–(d). The V_{E}^{m} values are positive for the systems (2,5-dimethylfuran + 1-butanol, or 2-butanol) and negative for the

Component	T (K)	ρ (g·cm$^{-3}$)	u (m·s$^{-1}$)	n_D
	Exp.	Lit.	Exp.	Lit.
313.15	0.789	0.79028 [32]	1157.5	1159.5 [32]
		0.7895 [42]	1157 [42]	1.389
		0.7893 [34]	1157.6 [34]	–
		0.78965 [49]		–
323.15	0.780	0.7802 [34]	1120.5	1120.6 [34]
		0.7805549 [49]		1.384
MIBK	293.15	0.801	1211.3	1212.3 [65]
		0.8007 [56]	1211.3	1212.3 [65]
		0.80075 [49]	1211.3	1212.3 [65]
		0.8008 [59]	1211.3	1212.3 [65]
		0.80083 [65]	1211.3	1212.3 [65]
298.15	0.796	0.79594 [30]	1191.2	–
		0.79640 [31]		1.393
		0.7965 [51]		1.393
		0.7963 [65]		1.393
303.15	0.791	0.79169 [50]	1171.0	1175.0 [50]
		0.7917 [51]	1175 [51]	1.391
		0.7913 [43]	1180.0 [53]	1.391
		0.7913 [42,13]	1172 [13]	1.391
		0.79163 [54]	1129.35 [63]	1.391
		0.7916 [56]	1170 [64]	1.391
		0.7920 [58]	1171.4 [65]	1.391
		0.79100 [61]		–
		0.78986 [62]		–
		0.798 [63]		–
		0.7916 [65]		–
		0.79191 [55]		–
		0.79163 [65]		–
313.15	0.782	0.7826 [51]	1131.1	1138.0 [51]
		0.7870 [54]	1131.4 [65]	1.386
		0.7822 [56]		1.386
		0.7823 [57]		1.386
		0.78237 [65]		–
323.15	0.773	–	1091.6	–

Standard uncertainties u are $u(T) = \pm 0.02$ K, $u(p) = \pm 0.04$ MPa and the combined expanded uncertainty U_c in mole fraction, density, sound velocity and refractive index were $U_c(x) = \pm 0.0005$, $U_c(\rho) = \pm 0.003$ g·cm$^{-3}$, $U_c(u) = \pm 1.2$ m·s$^{-1}$ and $U_c(n) = \pm 0.005$ respectively, (0.95 level of confidence).

3.3 Excess molar volumes

The excess molar volumes, V_{E}^{m}, were calculated from the density data of the mixture and the pure components using Equation (1):
Table 3. Densities, \(\rho \), sound velocity, \(u \), and isentropic compressibility, \(\kappa_s \), for the binary systems \{2,5-DMF (1)+FA (2), or MIBK (2), or 1-butanol (2), or 2-butanol (2)\} at (293.15, 303.15, 313.15 and 323.15) K and at pressure \(p = 0.1 \) MPa.

\(x_1 \)	\(\rho/(g\cdot cm^{-3}) \)	\(u/(ms^{-1}) \)	\(\kappa_s/(10^{12} \times Pa^{-1}) \)
\{2,5-DMF (1)+FA (2)\} \(T=293.15 \) K			
0.0000	1.133	1465.9	410.7
0.0996	1.107	1430.0	441.7
0.1996	1.081	1395.2	475.2
0.2964	1.057	1363.4	509.1
0.4031	1.031	1331.2	547.6
0.4954	1.009	1305.9	581.3
0.5973	0.985	1280.5	618.8
0.7022	0.962	1258.4	656.2
0.7916	0.943	1242.3	687.0
0.9004	0.921	1226.6	721.9
1.0000	0.901	1214.3	752.7
\(T=303.15 \) K			
0.0000	1.124	1433.6	432.9
0.0996	1.098	1396.9	466.9
0.1996	1.071	1361.1	503.8
0.2964	1.047	1328.3	541.4
0.4031	1.021	1295.1	581.4
0.4954	0.999	1269.0	621.8
0.5973	0.975	1242.7	664.0
0.7022	0.952	1219.6	706.2
0.7916	0.933	1202.7	741.4
0.9004	0.910	1185.7	781.6
1.0000	0.890	1171.2	818.9
\(T=313.15 \) K			
0.0000	1.114	1401.7	456.7
0.0996	1.088	1363.9	494.1
0.1996	1.062	1327.1	534.8
0.2964	1.037	1293.5	576.4
0.4031	1.011	1259.3	623.7
0.4954	0.988	1232.3	666.2
0.5973	0.965	1205.3	713.5
0.7022	0.941	1181.2	761.3
0.7916	0.922	1163.3	801.6
0.9004	0.899	1145.0	848.3
1.0000	0.879	1128.4	893.2
\(T=323.15 \) K			
0.0000	1.105	1370.0	482.1
0.0996	1.078	1331.3	523.2
0.1996	1.052	1293.6	568.2
0.2964	1.027	1259.1	614.3
0.4031	1.000	1223.9	667.4
0.4954	0.978	1196.1	714.7
0.5973	0.954	1168.2	767.9
0.7022	0.931	1143.2	822.2
0.7916	0.911	1124.4	868.2
0.9004	0.888	1104.6	922.9
Table 3. (continued).

\(x_1\)	\(\rho/(g.cm^{-3})\)	\(u/(ms^{-1})\)	\(\kappa_s/(10^{12} \times Pa^{-1})\)
1.0000	0.868	1086.0	976.6
\{2,5-DMF (1)+MIBK (2)\}			
\(T=293.15\) K			
0.0000	0.801	1211.3	851.3
0.1015	0.810	1213.2	838.7
0.2002	0.819	1214.8	827.0
0.3044	0.829	1216.3	815.0
0.3976	0.839	1217.2	805.0
0.5000	0.849	1217.5	795.0
0.6004	0.859	1217.5	785.7
0.6779	0.867	1217.5	778.3
0.7885	0.878	1216.6	769.3
0.8536	0.885	1216.0	764.2
0.9276	0.893	1214.8	758.8
1.0000	0.901	1214.3	752.7
\(T=303.15\) K			
0.0000	0.791	1171.0	921.4
0.1015	0.801	1172.6	908.3
0.2002	0.810	1173.8	896.2
0.3044	0.820	1174.9	883.8
0.3976	0.829	1175.5	873.4
0.5000	0.839	1175.5	863.1
0.6004	0.848	1175.2	853.4
0.6779	0.857	1175.0	845.7
0.7885	0.868	1173.8	836.4
0.8536	0.875	1173.1	831.0
0.9276	0.882	1171.8	825.4
1.0000	0.890	1171.2	818.9
\(T=313.15\) K			
0.0000	0.782	1131.1	999.3
0.1015	0.791	1132.2	985.9
0.2002	0.800	1133.1	973.3
0.3044	0.810	1133.8	960.5
0.3976	0.819	1134.0	949.8
0.5000	0.828	1133.7	939.1
0.6004	0.838	1133.1	929.2
0.6779	0.846	1132.7	921.1
0.7885	0.857	1131.3	911.6
0.8536	0.864	1130.4	906.0
0.9276	0.871	1129.1	900.1
1.0000	0.879	1128.4	893.2
\(T=323.15\) K			
0.0000	0.773	1091.6	1085.9
0.1015	0.782	1092.3	1072.1
0.2002	0.790	1092.8	1059.1
0.3044	0.800	1093.1	1046.1
0.3976	0.809	1093.0	1035.0
0.5000	0.818	1092.4	1024.1
0.6004	0.828	1091.5	1014.0
Table 3. (continued).

\(x_1\)	\(\rho/(\text{g.cm}^{-3})\)	\(u/(\text{ms}^{-1})\)	\(\kappa_s/(10^{12} \times \text{Pa}^{-1})\)
0.6779	0.836	1090.9	1005.6
0.7885	0.846	1089.2	995.8
0.8536	0.853	1088.2	990.0
0.9276	0.861	1086.8	983.9
1.0000	0.868	1086.0	976.6

\[[2,5-\text{DMF (1)+1-butanol (2)}]\]

\(T = 293.15\) K

\(x_1\)	\(\rho/(\text{g.cm}^{-3})\)	\(u/(\text{ms}^{-1})\)	\(\kappa_s/(10^{12} \times \text{Pa}^{-1})\)
0.0000	0.810	1258.6	779.3
0.1053	0.821	1248.4	781.5
0.2013	0.831	1239.6	783.6
0.3027	0.840	1231.1	785.3
0.3969	0.849	1223.9	786.4
0.5099	0.859	1216.6	786.5
0.6051	0.867	1211.4	785.8
0.6947	0.875	1208.0	783.4
0.7944	0.883	1206.0	778.5
0.8938	0.891	1207.4	769.5
1.0000	0.901	1214.3	752.7

\(T = 303.15\) K

\(x_1\)	\(\rho/(\text{g.cm}^{-3})\)	\(u/(\text{ms}^{-1})\)	\(\kappa_s/(10^{12} \times \text{Pa}^{-1})\)
0.0000	0.802	1224.9	830.6
0.1053	0.813	1213.2	835.8
0.2013	0.822	1203.3	840.2
0.3027	0.831	1193.7	844.2
0.3969	0.840	1185.6	847.3
0.5099	0.849	1177.4	849.4
0.6051	0.857	1171.6	849.9
0.6947	0.865	1167.6	848.4
0.7944	0.873	1165.2	844.0
0.8938	0.881	1166.1	835.0
1.0000	0.890	1171.2	818.9

\(T = 313.15\) K

\(x_1\)	\(\rho/(\text{g.cm}^{-3})\)	\(u/(\text{ms}^{-1})\)	\(\kappa_s/(10^{12} \times \text{Pa}^{-1})\)
0.0000	0.795	1191.6	886.4
0.1053	0.804	1178.4	895.0
0.2013	0.813	1167.3	902.3
0.3027	0.822	1156.6	909.2
0.3969	0.830	1147.6	914.6
0.5099	0.840	1138.5	919.0
0.6051	0.847	1132.1	921.1
0.6947	0.854	1127.6	920.6
0.7944	0.862	1124.8	916.9
0.8938	0.870	1125.1	908.0
1.0000	0.879	1128.4	893.2

\(T = 323.15\) K

\(x_1\)	\(\rho/(\text{g.cm}^{-3})\)	\(u/(\text{ms}^{-1})\)	\(\kappa_s/(10^{12} \times \text{Pa}^{-1})\)
0.0000	0.787	1158.4	947.3
0.1053	0.796	1143.8	960.1
0.2013	0.805	1131.6	970.8
0.3027	0.813	1119.9	980.9
0.3969	0.821	1110.1	989.0
0.5099	0.830	1100.1	996.2
Table 3. (continued).

x_1	$\rho/(\text{g.cm}^{-3})$	$u/(\text{ms}^{-1})$	$\kappa_s/(10^{12} \times \text{Pa}^{-1})$
0.6051	0.837	1093.1	1000.1
0.6947	0.844	1088.2	1001.0
0.7944	0.851	1084.8	998.1
0.8938	0.859	1084.6	989.7
1.0000	0.868	1086.0	976.6

\{2,5-DMF (1)+2-butanol (2)\}

$T = 293.15$ K

x_1	$\rho/(\text{g.cm}^{-3})$	$u/(\text{ms}^{-1})$	$\kappa_s/(10^{12} \times \text{Pa}^{-1})$
0.0000	0.806	1229.8	819.9
0.1033	0.817	1220.7	821.7
0.1972	0.826	1213.3	822.6
0.2955	0.835	1206.7	822.4
0.3920	0.844	1201.7	820.4
0.5124	0.855	1197.4	815.8
0.5938	0.862	1196.0	810.6
0.6860	0.871	1196.3	802.3
0.7963	0.881	1199.0	789.6
0.8957	0.890	1204.4	774.4
1.0000	0.901	1214.3	752.7

$T = 303.15$ K

x_1	$\rho/(\text{g.cm}^{-3})$	$u/(\text{ms}^{-1})$	$\kappa_s/(10^{12} \times \text{Pa}^{-1})$
0.0000	0.798	1193.9	879.0
0.1033	0.808	1183.3	884.0
0.1972	0.817	1174.9	887.1
0.2955	0.825	1167.5	888.8
0.3920	0.834	1161.9	888.0
0.5124	0.845	1157.2	884.0
0.5938	0.852	1155.6	878.9
0.6860	0.860	1155.6	870.3
0.7963	0.870	1157.9	857.0
0.8957	0.879	1163.0	840.8
1.0000	0.890	1171.2	818.9

$T = 313.15$ K

x_1	$\rho/(\text{g.cm}^{-3})$	$u/(\text{ms}^{-1})$	$\kappa_s/(10^{12} \times \text{Pa}^{-1})$
0.0000	0.789	1157.5	945.4
0.1033	0.799	1145.6	954.1
0.1972	0.807	1136.3	959.7
0.2955	0.816	1128.2	963.3
0.3920	0.824	1123.3	963.6
0.5124	0.834	1117.2	960.3
0.5938	0.842	1115.4	955.1
0.6860	0.850	1115.2	946.4
0.7963	0.859	1117.1	932.4
0.8957	0.868	1121.6	915.3
1.0000	0.879	1128.4	893.2

$T = 323.15$ K

x_1	$\rho/(\text{g.cm}^{-3})$	$u/(\text{ms}^{-1})$	$\kappa_s/(10^{12} \times \text{Pa}^{-1})$
0.0000	0.780	1120.5	1020.6
0.1033	0.789	1107.5	1033.1
0.1972	0.797	1097.6	1041.3
0.2955	0.805	1089.1	1046.9
0.3920	0.814	1082.8	1048.4
The positive V_E values can be explained by (i) mutual loss of dipolar association due to addition of the 1-butanol or 2-butanol and contributions due to difference in size and shape of the components in the mixtures, and (ii) dipole–dipole and dipole-induced dipole interaction between unlike molecules. The first factor contributes to expansion in volume and second factor contributes to decrease in volume, which will cause contraction in volume. The experimental results in this work suggested that the factors responsible for expansion

x_1	$\rho/(\text{g}\cdot\text{cm}^{-3})$	$u/(\text{ms}^{-1})$	$\kappa_s/(10^{12}\times\text{Pa}^{-1})$
0.5124	0.824	1077.5	1045.6
0.5938	0.831	1075.6	1040.5
0.6860	0.839	1075.1	1031.5
0.7963	0.848	1076.6	1016.9
0.8957	0.857	1080.5	999.1
1.0000	0.868	1086.0	976.6

Standard uncertainties u are $u(T) = \pm 0.02\,\text{K}$, $u(p) = \pm 0.04\,\text{MPa}$ and the combined expanded uncertainty U_c in mole fraction, density and sound velocity were $U_c(x) = \pm 0.0005$, $U_c(\rho) = \pm 0.003\,\text{g}\cdot\text{cm}^{-3}$ and $U_c(u) = \pm 1.2\,\text{m}\cdot\text{s}^{-1}$, respectively, (0.95 level of confidence).

Fig. 1. Plot of excess molar volumes, V_E, for the binary mixtures: (a) $\{2,5$-$\text{DMF} \,(1)+\text{FA} \,(2)\}$; (b) $\{2,5$-$\text{DMF} \,(1)+\text{MIBK} \,(2)\}$; (c) $\{2,5$-$\text{DMF} \,(1)+1$-$\text{butanol} \,(2)\}$ and (d) $\{2,5$-$\text{DMF} \,(1)+2$-$\text{butanol} \,(2)\}$ as function of the composition expressed in the mole fraction at $293.15\,\text{K}$ (♦); $303.15\,\text{K}$ (▪); $313.15\,\text{K}$ (▴) and $323.15\,\text{K}$ (●). The dotted lines were generated using Redlich-Kister polynomial curve-fitting.
in volume are dominant over the entire composition range in the mixtures (2,5-DMF + the 1-butanol or 2-butanol) systems whereas an inversion in sign for (2,5-DMF + MIBK or FA) systems suggested that factors responsible for decrease in volume are dominant over the composition range. As can be seen in Table S1, the V_{Em} values at $x_1 = 0.5938$ for 2-butanol > 1-butanol > MIBK > FA indicating that the interaction between 2,5-DMF with FA or MIBK or 1-butanol or 2-butanol as in order FA > MIBK > 1-butanol > 2-butanol. This observation based on fact that lower the V_{Em} values have stronger interaction and vice versa. From Figure 1 (a)–(d), shows that the V_{Em} values increase with the temperature for all systems except MIBK whereas decrease with temperature. The V_{Em} minimum and maximum values increase with an increase in temperature for all the systems except the system containing FA. The excess molar volume of an equimolar mixtures for studied systems at 293.15, 303.15, 313.15 and 323.15 K are $C_00.266$, $C_00.292$, $C_00.318$, $C_00.344$ for FA; $C_00.231$, $C_00.229$, $C_00.223$, $C_00.222$ for MIBK; 0.112, 0.150, 0.195, 0.245 for 1-butanol and 0.395, 0.472, 0.549, 0.625 for 2-butanol were observed.

3.4 Isentropic compressibility, and deviation in isentropic compressibility

The Newton–Laplace equation was used to calculate the isentropic compressibility, κ_s,

$$\kappa_s = \frac{1}{\rho u^2}$$

![Fig. 2. Plot of deviation in isentropic compressibility, $\Delta\kappa_s$, for the binary mixtures: (a) {2,5-DMF (1)+FA (2)}; (b) {2,5-DMF (1)+MIBK (2)}; (c) {2,5-DMF (1)+1-butanol (2)} and (d) {2,5-DMF (1)+2-butanol (2)} as function of the composition expressed in the mole fraction at 293.15 K (♦); 303.15 K (■); 313.15 K (▲) and 323.15 K (●). The dotted lines were generated using Redlich-Kister polynomial curve-fitting.](image-url)
The deviations in isentropic compressibility, $\Delta \kappa_s$, were calculated using the equation given below:

$$\Delta \kappa_s = \kappa_s - \sum_{i}^{2} x_i \kappa_{s,i}$$ \hspace{1cm} (3)$$

where $\kappa_{s,i}$ and x_i are the isentropic compressibility and mole fractions of the pure component i, respectively. The results of isentropic compressibility, κ_s, for studied systems at 293.15, 303.15, 313.15 and 323.15 K are given in Table 3 and are also plotted in Figure S3 (a)–(d). The isentropic compressibility, κ_s, value increases with an increase in

Table 4. Coefficients A_i and standard deviations, obtained for the binary systems studied in this work at different temperatures and at pressure $p = 0.1$ MPa for the Redlich–Kister equation.

System	T / (K)	A_1	A_2	A_3	A_4	A_5	σ
{2,5-DMF (1) + FA (2)}	293.15	-1.063	0.225	0.110	0.392	-0.421	0.004
	303.15	-1.167	0.249	0.114	0.464	-0.359	0.004
	313.15	-1.273	0.263	0.090	0.554	-0.223	0.004
	323.15	-1.377	0.297	0.075	0.603	-0.107	0.004

$\Delta \kappa_s / (10^{-12} \text{ Pa}^{-1})$	T / (K)
293.15	5.4
303.15	-8.6
313.15	-26.9
323.15	-49.1

$\Delta \kappa_s / (10^{-12} \text{ Pa}^{-1})$	T / (K)
293.15	51.5
303.15	52.9
313.15	53.3
323.15	50.4

$\Delta \kappa_s / (10^{-12} \text{ Pa}^{-1})$	T / (K)
293.15	2.0
303.15	2.8
313.15	3.7
323.15	5.0

$\Delta \kappa_s / (10^{-12} \text{ Pa}^{-1})$	T / (K)
293.15	2.6
303.15	6.9
313.15	7.2
323.15	8.2

$\Delta \kappa_s / (10^{-12} \text{ Pa}^{-1})$	T / (K)
293.15	82.7
303.15	98.2
313.15	115.7
323.15	134.9

Traditional uncertainties u are $u(T) = \pm 0.02$ K, $u(p) = \pm 0.04$ MPa and the combined expanded uncertainty Uc in mole fraction, density and sound velocity were $Uc(x) = \pm 0.0005$, $Uc(p) = \pm 0.003$ g cm$^{-3}$ and $Uc(u) = \pm 1.2$ m s$^{-1}$, respectively, (0.95 level of confidence).
temperature at a fixed composition for all binary systems due to an increase in thermal agitation, making the solution more compressible [69]. The κ value increases with an increase in temperature and increases with an increase in the concentration of 2,5-DMF at a fixed temperature for the system of 2,5-DMF with FA, 1-butanol and 2-butanol except for the 1-butanol, 2-butanol systems whereas start decreasing from $x_1 = 0.5099$, $x_1 = 0.1972$ upwards respectively, while for the MIBK solution of 2,5-DMF, decreases with concentration.

It is well known that the addition of 2,5-DMF molecules to self-associated hydrogen bonded FA, 1-butanol and 2-butanol will induce breaking of clusters of these molecules thereby releasing so many dipoles, which interact with dipoles of 2,5-DMF. This causes an increase in free space, decrease in speed of sound and positive deviation in isentropic compressibility [70]. The calculated $\Delta \kappa_s$ values for studied system at (293.15, 303.15, 313.15 and 323.15) K are also given in Table S1 and are graphically presented in (Figure 2 (a)–(d)). It is observed from Figure 2 (a)–(d), the values of $\Delta \kappa_s$ are negative for (2,5-DMF + MIBK) binary system, and both positive and negative for the systems (2,5-DMF + FA). The positive values of $\Delta \kappa_s$ are also observed for (2,5-DMF + 1-butanol or 2-butanol) systems. The negative values of deviations in isentropic compressibility, $\Delta \kappa_s$, indicate that there is strong unlike dipole–dipole interaction in the mixtures which compensates greater to the positive contribution to $\Delta \kappa_s$ arising from the mutual rupturing of the dipolar aggregates in components 1 and 2 by each other [71]. The positive values of $\Delta \kappa_s$ may be due to rupture of hydrogen bonded associates of 1-butanol or 2-butanol dominated over hydrogen bonding between unlike molecules.

3.5 Correlation of derived properties

Experimental excess/deviation properties of the {2,5-dimethylfuran (DMF)+FA or 1-butanol or 2-butanol, or MIBK} were correlated by Redlich–Kister Equation (4):

$$X = x_1x_2\sum_{i=1}^{k} A_i(1 - 2x_1x_2)^{i-1}$$ \hspace{1cm} (4)

where X is excess molar volumes, V_m^{E} and deviation in isentropic compressibility, $\Delta \kappa_s$. The values of the fitting parameters A_i have been evaluated using a least-square method. These results are summarized in Table 4, together with the corresponding standard deviations, σ, which was determined using Equation (5):

$$\sigma(X) = \left[\frac{\sum_{i=1}^{N}(X_{exp} - X_{calc})^2}{(N - k)}\right]^{1/2}$$ \hspace{1cm} (5)

where N is the number of experimental points and k is the number of coefficients used in the Redlich-Kister equation. The values of V_m^{E} and $\Delta \kappa_s$, as well as the plots of the Redlich-Kister model are displayed in Figures 1 (a)–(d) and 2 (a)–(d), respectively. The standard deviations, between the experimental data and those calculated using Redlich–Kister equation are also given in Table 4, show very small values at the investigated temperatures for all the systems.

4 Conclusion

In this work, density and speed of sound of {2,5-dimethylfuran (DMF) + FA or 1-butanol or 2-butanol, or MIBK} systems were measured over the temperature range of 293.15–323.15 K and at atmospheric pressure. The experimental values were used to calculate the excess functions, which were then correlated using a Redlich-Kister-type polynomial equation. The excess molar volumes were negative for {2,5-dimethylfuran (DMF) + F} or MIBK} systems and positive for {2,5-dimethylfuran (DMF)-+1-butanol or 2-butanol} systems; deviations in isentropic were negative for (2,5-DMF+MIBK) binary system, and both positive and negative for the system (2,5-DMF+FA). The positive values of $\Delta \kappa_s$ are also observed for (2,5-DMF+1-butanol or 2-butanol) systems.

Supplementary Material

Supplementary figures and table.

The Supplementary Material is available at https://www.ogst.ifpenergiesnouvelles.fr/10.2516/ogst/2018012/olm.

References

1. Annual Energy Outlook (2013) The U.S. Energy Information Administration (EIA), Washington, DC.
2. Huber G.W., Iborra S., Corma A. (2006) Synthesis of transportation fuels from biomass: chemistry, catalysts, and engineering, Chem. Rev. 106, 4044–4098.
3. Alonso D.M., Bond J.Q., Dumesic J.A. (2010) Catalytic conversion of biomass to biofuels, Green Chem. 12, 1493–1513.
4. Wilson K., Lee A.F. (2013) Heterogeneous Catalysts for Clean Technology: Design, Analysis and Application, first ed. Wiley-VCH, Weinheim, Germany.
5. Van Putten R.J., Van der Waal J.C., de Jong E., Rasrendra C.B., Heeres H.J., de Vries J.G. (2013) Hydroxymethylfurfural, A versatile platform chemical made from renewable resources, Chem. Rev. 113, 1499–1507.
6. Mejia A., Oliveira M.B., Segura H., Cartes M., Coutinho J.A.P. (2013) Isobaric vapor-liquid equilibrium and isothermal surface tensions of 2,2-oxoybis[propane]+2,5-Dimethylfuran, Fluid Phase Equilib. 345, 60–67.
7. Mejia A., Segura H., Cartes M., Coutinho J.A.P. (2012) Vapor-liquid equilibrium, densities, and interfacial tensions of the system hexane+2,5-dimethylfuran, J. Chem. Eng. Data 57, 2681–2688.
8. Verevkin S.P., Welle F.M. (1998) Thermochemical studies for determination of the standard molar enthalpies of formation of alkyl-substituted furans and some ethers, Struct. Chem. 9, 215–221.
Mejia A., Segura H., Cartes M. (2014) Experimental determination and theoretical prediction of the vapor-liquid equilibrium and interfacial tensions of the system methyl-tet-butyl ether+2,5-dimethylfuran, Fuel 116, 183–190.

Mesina A., Segura H., Cartes M. (2013) Isobaric vapor-liquid equilibrium and isothermal interfacial tensions for the system ethanol+2,5-Dimethylfuran, J. Chem. Eng. Data 58, 3226–3232.

d'a Silva J.L., Azeam M. (2014) Thermophysical properties of 2,5-dimethylfuran and liquid-liquid equilibria of ternary systems water+2,5-dimethylfuran+alcohols (1-butanol or 2-butanol or 1-hexanol), Fuel 136, 316–325.

Orem H., Sur S.K. (1989) Can. J. Chem. 67 65–85.

Riddick J.A., Bringer W.B. (1970) Organic Solvents, 3rd Edn. Wiley, New York.

Zorebski E., Waligora A. (2008) Densities, excess molar volumes, and isobaric thermal expansibilities for 1,2-ethanediol+1-butanol, or 1-hexanol, or 1-octanol in the temperature range from 293.15 to 313.15 K, J. Chem. Eng. Data 53, 591–595.

Bahadur I., Deenadayalu N., Tywabi Z., Sen S., Hofman T. (2012) Volumetric properties of ternary (IL+2-propanol or 1-butanol or 2-butanol+ethyl acetate) systems and binary (IL+2-propanol or 1-butanol or 2-butanol) and (1-butanol or 2-butanol+ethyl acetate) systems, J. Chem. Thermodyn. 49, 24–38.

Riddick J.A., Bunker W.B., Sakano T.K. (1986) Organic solvents: Physical properties and methods of purification, fourth ed., Wiley, New York.

Mokhtaran B., Shari A., Mortaheb H.R, Mirzaei M., Mafi M., Sadeghian F. (2009) Density and viscosity of pyridinium-based ionic liquids and their binary mixtures with water at several temperatures, J. Chem. Thermodyn. 41, 1432–1438.

Animbahvi T., Benerjee K. (1998) Density, viscosity, refractive index, and speed of sound in binary mixtures of 2-Chloroethanol with Alkanols (C1–C6) at 298.15, 303.15, and 308.15 K, J. Chem. Eng. Data 43, 509–513.

VIJayaalakhrmi T.S., NaMu P.R. (2007) Volumetric properties of binary mixtures of 1,2,4-trichlorobenzene with 1-Alkanois, J. Chem. Eng. Data, 37, 360–369.

Thermodynamic Tables-Non-hydrocarbons; Thermodynamics Research Center, The Texas ABM University System: College Station, TX (loose-leaf data sheets, extant1988, pd-5000).

Torres G., Apesteguia C.R., DiCosimo J.I. (2007) Volumetric properties of binary mixtures of acetonitrile and alcohols at different temperatures and atmospheric pressure, J. Mol. Liq. 131–132, 139–144.

CRC Handbook of Chemistry and Physics, (2004–2005) 85th Edition CRC PRESS, Inc.

Zaon-Djelloul-Daoudadji M., Bendia L., Bahadur I., Negadi A., Ramjugernath D., Ebenso E.E., Negadi L. (2015) Volumetric and acoustic properties of binary systems (furfural or furfuryl alcohol+toluene) and (furfuryl alcohol+ethanol) at different temperatures, Thermochim. Acta 611, 47–55.

Lomba L, Giner B., Bandres I., Lafuente C., Pinao M.R. (2011) Physicochemical properties of green solvents derived from biomass, Green Chem. 13, 2062–2070.

Tari W.-P., Lee H.-Y., Lee M.-J. (2014) Isothermal vapor-liquid equilibrium for binary mixtures containing furfural and its derivatives, Fluid Phase Equilib. 384, 134–142.

Flick E.W. (1998) Industrial Solvents Handbook, 5th ed., Noyes Data Corporation, Westwood, New Jersey, U.S.A, pp. 340.

Naorem H., Suri S.K. (1993) Molar excess volumes of furfuryl alcohol and aromatic hydrocarbons at 25°C, J. Solution Chem. 22, 183–189.

Martinez N.F., Lladosa E., Burguet M., Montón J.B., Yazimon M. (2009) Isobaric vapour-liquid equilibria for the binary systems 4-methyl-2-pentanone+1-butanol and+2-butanol at 20 and 101.3 kPa, Fluid Phase Equilib. 277, 49–54.

TRC Thermodynamic Tables, Non-Hydrocarbons, Thermodynamics Research Center, NIST/TRC Table Database, Win Table, 2004.

Bendia L., Bahadur I., Negadi A., Naidoo P., Ramjugernath D., Negadi L. (2015) Effects of alkyl group and temperature on the interactions between furfural and alcohol: Insight from density and sound velocity studies, Thermochim. Acta 599, 13–22.

Nasterlack T., Blottnitz H.V., Wynnberg R. (2014) Are biofuel concerns globally relevant? Prospects for a proposed pioneer bioethanol project in South Africa, Energy Sustainable Dev. 23, 1–14.

Outcalt S.L., Laesecke A., Fortin T.J. (2010) Density and speed of sound measurements of 1- and 2-butanol, J. Mol. Liq. 151, 50–59.

Wilson W., Bradley D. (1964) Speed of sound in four primary alcohols as a function of temperature and pressure, J. Acoust. Soc. Am. 36, 333–337.

Guan W., Chang N., Yang L., Bu X., Wei J., Liu Q. (2017) Determination and Prediction for the Polarity of Ionic Liquids, J. Chem. Eng. Data 62, 2610–2616.

Varfolomeev M.A., Zaitseva K.V., Rakipov I.T., Solomonov B.N., Marczak W. (2016) Speed of sound, density, and related thermodynamic excess properties of binary mixtures of 2-pyrrolidone and N-methyl-2-pyrrolidone with acetonitrile and chloroform, J. Chem. Eng. Data 61, 1032–1046.

Zorebski E., Gořański P., Godula B., Zorebski M. (2014) Thermodynamic and acoustic properties of binary mixtures of 1-butanol with 1,2-butandiol. The comparison with the results for 1,3- and 1,4-butandienol, J. Chem. Thermodyn. 68, 145–152.

Lee K.-H., Park S.-J. (2017) Isothermal vapor-liquid equilibria, excess molar volume and the deviation of refractive indices for binary mixtures of 1-butanol, 1-hexanol, 3-methyl-1-butanol and butyl acetate, Fluid Phase Equilib. 436, 47–54.

Jimenez E., Casas H., Segade L., Franjo C. (2000) Surface tensions, refractive indexes and excess molar volumes of hexane+1-alkanol mixtures at 298.15 K, J. Chem. Eng. Data 45, 862–866.

Bruno F., Thiago M.W., Thiago M.C., Leonardo H., Azeam M. (2012) Experimental and calculated liquid-liquid equilibria data for water+furfural+solvents, Fluid Phase Equilib. 334, 97–105.

Rodriguez A., Canosa J., Tojo J (2001) Density, refractive index, and speed of sound of binary mixtures (diethyl carbonate+alcohols) at several temperatures, J. Chem. Eng. Data 46, 1506–1515.
