Multilevel evolution shapes the function of NB-LRR encoding genes in plant innate immunity

Maria Raffaella Ercolano*, Daniela D’Esposito, Giuseppe Andolfo and Luigi Frusciante
Department of Agricultural Sciences, University of Naples 'Federico II', Portici, Italy

A sophisticated innate immune system based on diverse pathogen receptor genes (PRGs) evolved in the history of plant life. To reconstruct the direction and magnitude of evolutionary trajectories of a given gene family, it is critical to detect the ancestral signatures. The rearrangement of functional domains made up the diversification found in PRG repertoires. Structural rearrangement of ancient domains mediated the NB-LRR evolutionary path from an initial set of modular proteins. Events such as domain acquisition, sequence modification and temporary or stable associations are prominent among rapidly evolving innate immune receptors. Over time PRGs are continuously shaped by different forces to find their optimal arrangement along the genome. The immune system is controlled by a robust regulatory system that works at different scales. It is important to understand how the PRG interaction network can be adjusted to meet specific needs. The high plasticity of the innate immune system is based on a sophisticated functional architecture and multi-level control. Due to the complexity of interacting with diverse pathogens, multiple defense lines have been organized into interconnected groups. Genomic architecture, gene expression regulation and functional arrangement of PRGs allow the deployment of an appropriate innate immunity response.

KEYWORDS
NBS-LRR genes, functional domain, genome organization, regulatory elements, plant receptor genes network, innate immunity

Overview

A large assortment of innate immunity receptors, able to perceive pathogen invasion and to activate a defense response, have evolved in plants.

Cell surface receptors, such as receptor-like proteins (RLPs) and receptor-like kinases (RLKs), are mainly involved in monitoring the extracellular space to detect exogenous
remarkable diversification of defense responses. The latter class showed a response increasing the plasticity of innate immunity (Maruta et al., 2022).

Plant innate immunity originated for combating diverse and ever-evolving pathogens and the complex organization of its main players has an important role in its functioning. Here, we summarize the current view of the dynamics of NLR domain arrangement and the genomic architecture of plant defense arsenal on different scales, ranging from physical organization to transcriptional regulation. We describe links between genome organization and various genomic processes, such as the interplay between different PRGs. Finally, we provide an overview of the multilevel organization of innate immune response.

Domain adaptation for promoting specific functions

The typical domains of NLR were already present in proteins of bacteria, protists, glaucophytes and red algae. In such organisms the NB is preferentially associated with domains like WD or beta-transducin repeat (WD40) or Tetratricopeptide repeat (TPR) domains to perform recognition/transduction activities (Andolfo et al., 2019). Several NB proteins with innovative domain combinations evolved in early plants. Independent NLR associations may have originated in Chlorophyta and in Charophyta algae (Sarris et al., 2016; Gao et al., 2018) by convergent evolution. An intriguing cross-species domain assembly between the NB domain and the LRR domain was highlighted in Charophyta unicellular green algae by Andolfo et al. (2019). The LRR-region of such genes showed high homology to RLPs, underpinning a putative cell-surface localization and an interconnected evolution history. Novel domain combinations have appeared, and the recombination of existing units has provided new functionalities. Best suited proteins with different cell locations from the plasma membrane (RLPs/RLKs) to cytoplasm (NLRs) have been employed for assembling a plant immunity network with the emergence of multicellularity. A burst of NB-LRR genes was observed in nonvascular plants (mosses, liverworts, and hornworts) mediated by reshuffling at the N- and C-terminal regions (Bornberg-Bauer et al., 2010; Sarris et al., 2016; Ortiz and Dodds, 2018). In vascular plants a large number of LRR encoding proteins, able to detect a variety of pathogens, was widespread in different species (Barragan and Weigel, 2021; Gao et al., 2018).

The ancient domain remodeling was further complicated by functional links connecting domains, supradomains and multidomains during the evolution of domain organization (Nepomnyachiy et al., 2017; Aziz and Caetano-Anollés, 2021).
Basic principles of PRG domain composition emerged by comparing the distributions of the theoretical and observed domain association in 33 eudicots, highlighting that the 30% of possible combinations were missed, more than 60% of protein showed two or three domains but up to 20% were single domains (Sanseverino and Ercolano, 2012). Favorable protein conformations can be promoted by specific domain combinations. In addition, proteins including domains with a two-component response, such as DNA-binding activity linked to transcriptional regulation of responses to stressors and signal transduction systems, may have some benefits (Aziz and Caetano-Anolles, 2021).

The complex long-term coevolutionary arms race between plant and pathogens promoted species specific NLR combinations. For instance, TIR-NB-LRR (TNL) proteins are predominant in basal lineages and represent an important portion in the eudicot genomes but are absent in the monocots (Shao et al., 2016; Andolfo et al., 2017). A large reservoir of single domains or truncated NLR proteins is also scattered within resistance loci (Nishimura et al., 2017; Zhang et al., 2017).

The evolutionary trajectories of plant receptor genes have been extended through the addition of endogenous and exogenous functional domains, such as the C-terminal jelly-roll/Ig-like domains (C-JIDs), found in many TNLs, that directly interact with effectors (Ma et al., 2020; Martin et al., 2020), or integrated decoy (ID) domains that can bind pathogen effectors (Cesari et al., 2014; Kroj et al., 2016). Unraveling protein architecture and discovering local sequence conservation and diversification provides the key to understanding how proteins evolve (Konagurthu et al., 2021). For instance, evolution studies on plant NB domain showed that motif patterns are rearranged to acquire more tuned functions and to refine folding ability (Andolfo et al., 2020). Over an evolutionary timescale, the immune receptors are under a strong selection pressure for fixing functional advantages.

Spatial genome organization of NB-LRR genes

Genomic-centric processes shaped the PRGs organization. NLR number can vary by orders of magnitude across different species with most plant genomes containing several hundred family members (Shao et al., 2016). Even closely related species can show lineage-specific mechanisms driving NLR expansions and contractions that reflect the plant lifestyle and theselection pressures derived from the environment (Tamborski and Krasileva, 2020), indicating that NLR evolution exhibits dynamic patterns of birth and death (Michelmore and Meyers, 1998). The NBS-LRR genes are not randomly distributed within plant genomes but rather are mainly organized in multi-gene clusters in hot-spot regions of plant genomes (Meyers et al., 1999; Hulbert et al., 2001; Richly et al., 2002; Zhou et al., 2004; Amelino-Torregroza et al., 2008). NLR clusters can be divided into: homogenous clusters, including the same type of NLR, and heterogeneous clusters containing diverse NLR classes. In addition, clusters containing a mixture of NLR, RLP and RLK were also found (Andolfo et al., 2013). Evolutionary forces governing gene clustering are not completely understood. The occurrence of gene duplication had great impact on expansion of this gene family in plant genomes (Baggs et al., 2017). Copy number variation likely maintains a diverse array of genes to retain advantageous resistance specificities (Jiang and Assis, 2017). Non-functional copies can evolve into functional alleles conferring disease resistance and changes in a pseudogene can lead to the gain of function. Individual NLR genes have also been associated with extreme allelic diversity as a consequence of point mutations enriched in surface-exposed regions of LRRs for acquiring new pathogen recognition capabilities by positive selection, inter-allelic and paralog recombination and domain fusions (Joshi and Nayak, 2013). On the other hand, large genomic deletion/insertion can provide the loss/gain of a specific gene family. Plant species arsenals are set up by the interplay of large-scale gene organization, that determines global conservation in the order of loci, and extensive local genome rearrangements mediated by recombination, tandem duplication, segmental and ectopic duplication, unequal crossovers, transposons, horizontal transfer and other reshuffling elements (Andolfo et al., 2021).

Adaptive diversification is induced by species-specific pathogen pressure thanks to the genome plasticity of plants (Mace et al., 2014; Di Donato et al., 2017; Mizuno et al., 2020). Regardless of the type of molecular mechanism, variations impact functionality and gene expression (Halder and Navarro, 2015). It seems that there is higher degree of association between genes in a cluster than just preferential co-localization. Recent studies showed that chromosomal regions with a defined gene density and activity, and with corresponding chromatin accessibility, histone modifications, and replication timing, are essential to orchestrate complex regulatory networks (Fritz et al., 2019). Each level of gene-genome intrinsic architecture is governed by mechanisms that we are just beginning to investigate (Nieri et al., 2017; Choi et al., 2018). An even more overwhelming challenge will be deciphering how PRGs are arranged, expressed and regulated within the three-dimensional (3-D) cellular context.

Regulation of NB-LRR expression

The plant immune response must be highly plastic and strictly regulated, given the different types of pathogens to
counteract and its fitness cost. In fact, plants not challenged by pathogen show a basal level of PRG expression that is able to monitor non-self-mediated changes in the plant cell while minimizes costs of expression (Richard et al., 2018; Borrelli et al., 2018). On the other hand, when attacked by pathogens a tight regulation of the immune transcriptome is essential for the activation of effective defense response (Karasov et al., 2017). The plant immune transcriptome is regulated by many different, interconnected pathways that can determine the rate at which genes are transcribed. Epigenetic modifications, such as DNA methylation (associated with actively transcribed genes), are required in the regulation of PRGs. Trimethylation of lysine 4 of histone H3 (H3K4me3), di- or trimethylation of H3K36 have been identified being epigenetic modifications essential for the defense response (Richard et al., 2018). In addition, ubiquitination of histones regulates the expression of NLR genes (Zou et al., 2014; Lai and Eulgem, 2018). Interestingly, areas of the genome featuring NLRs also frequently contain high densities of transposons (Miyao et al., 2003; Wei et al., 2016; Lai and Eulgem, 2018), which may attract epigenetic modifications to reduce transcription in the area. TFs, such as WRKY, are involved in PRGs regulation through the binding to W-boxes found generally enriched in promoter regions of NLR genes (Mohr et al., 2010; Richard et al., 2018). Small RNAs (siRNAs), including miRNAs (miRNAs) and small interference RNAs (siRNAs) (Waheed et al., 2021) function as negative regulators of NLR transcripts (Zhai et al., 2011; Li et al., 2012; Shivaprasad et al., 2012; Halter and Navarro, 2015).

The RNA surveillance pathways also have a leading role in the control of NLR-mediated resistance signaling. For example, nonsense-mediated mRNA decay (NMD) of NLR transcripts appears to play a role in defense induction similar to the miRNA/phasiRNA cascades. The perception of MAMPs can trigger transient suppression of NMD of NLR transcripts and, consequently, a temporary increase in NMD-targeted NLR transcripts, associated with enhanced disease resistance (Gloggnitzer et al., 2014). In addition, the nuclear RNA exosome regulates innate immunity in plants. For instance, mutations in components of the RNA exosome, which degrades RNAs in a 3’ to 5’ direction, suppress RPS6-dependent autoimmune phenotypes (Takagi et al., 2020). Alternative splicing can destabilize NLR transcripts triggering their own degradation and preventing their over accumulation (van Wersch et al., 2020). However, at least in some cases, alternative splicing can secure the synthesis of diverse transcript isoforms for full immunity (Jung et al., 2020). Recently published studies indicated that alternative polyadenylation (APA) of pre-mRNA is also an important regulatory mechanism of plant immune responses (Jia et al., 2017). APA can produce distinct transcript forms that differ in their coding sequences and in their 3’-untranslated regions, which are important for their function, stability, localization and translation efficiency of target RNA.

Immune response networking

A complex network of interactions, based on intra- and inter-gene relationships, multilevel genome organization and DNA transcription and translation processes, regulates pathogen recognition events and defense responses. The defense mechanisms can be modulated through mutual interaction of a core set of receptors capable to activate the innate immunity responses (Saloman et al., 2020). The first discovered NLR-NLR cooperation dates to about twenty years ago, when it was discovered that two TNL genes, RPP2A and RPP2B, were required for resistance to downy mildew (Sinapidou et al., 2004). There are now many examples of NLR pairs, such as the Arabidopsis RPS4/RPS1 and the rice RGA4/RGA5 pairs (Cesari et al., 2014). One member (sensor) mimics the target of a pathogen effector, while the other member of the pair functions as a signaling ‘executor’ module that transduces the effector recognition. Moreover, it is emerging that many NLR-mediated immune responses require the presence and activity of so-called ‘helper’ NLRs, downstream signaling centers for a diverse array of sensor NLRs (Jubic et al., 2019). In this coupled reaction, sensor NLRs perceive effectors, and helper NLRs are involved in converting effector perception into immune activation (Cesari, 2018). Helpers are the Activated Disease Resistance 1 (ADR1), N Requirement Gene (NRG1) and NLR-REQUIRED FOR CELL DEATH (NRC1) (Gabriëls et al., 2007; Wu et al., 2016; Dong et al., 2016). Intriguingly, NRCs were first reported as required for the full function of transmembrane and cytoplasmic resistance receptors (Collier et al., 2011; Leibman-Markus et al., 2018). Functionally redundant NRC paralogs can display distinct specificities toward different sensor NLRs that confer immunity to oomycetes, bacteria, viruses, nematodes, and insects (Wu et al., 2017). The biochemical determinants that trigger helper-activation and physical interactions between sensor and helper remain unknown. Helpers could therefore act as ‘hubs’ to control signaling, guarding the whole immune signaling pathway rather than a specific molecule affected by an effector (Zhang et al., 2017; Leibman-Markus et al., 2018). Most likely, NLR helpers represent signal transduction and/or amplification levels that empower the innate immunity network (Wu et al., 2016). In addition, the plant pathogen immune response is promoted by the cooperation between the intracellular and extracellular receptors, even beyond early perception events (Yuan et al., 2021). A critical signaling component linking cell surface receptors and NLR-mediated immunity pathways is provided by reactive oxygen species produced by NADPH oxidase RBOHD (Yuan et al., 2021).

High-throughput gene expression data can provide reliable information for the inference of PRGs (Calle García et al., 2022). In two tomato-pathogen-specific interactions, different networks of PRGs acting in concert were found (Andolfo et al., 2014).
Although, plant immunity shares the same signaling mechanisms, the rewiring of PRGs networks may promote connection changes among defense pathways in specific plant-pathogen interactions. Investigation of differentially regulated PRGs could lead to the identification of pathogen-specific response patterns. Multiple responses can be merged into a single network model for capturing all the possible dynamic trajectories.

Organization of immune responses

Defense scenarios can be depicted taking into account: the layer of defense, direct and indirect interaction, the network of response, cell sensing of pathogen and fitness needs (Andolfo and Ercolano, 2015). NLRs are involved in both perception and activation of immune signaling. Recent breakthroughs are starting to disclose mechanisms by which NLRs initiate immune signaling after effector perception. Conformational changes lead to the exchange of ADP by ATP and the oligomerization induction with the establishment of a functional ‘resistosome’ (Burdett et al., 2019). Complex formation, self-association or heteroligomerization was shown to be important for the activity of many NLRs (Casey et al., 2016; Zhang et al., 2017; Li et al., 2020; Jacob et al., 2022).

Understanding how molecular entities evolve, work and are interconnected in any biological process is crucial. The high plasticity governing the innate immune system is founded on a complex functional architecture and a multi-level control as proposed in the Figure 1 model. Multiple levels, including gene

Figure 1

Organizational overview of plant innate immune system. Upper middle panel. The immune system functioning is modulated by a fine control over the pathogen receptor genes (PRGs) activities at different levels (ovals). They include gene structure, genome space, molecular interaction and gene expression regulation. The connections among the different levels show a very complex and dynamic arrangement (indicated by arrows). All the potential levels can determine the loss/gain of connections in PRG network. Left panel. PRGs network organization in plants not challenged by pathogen. NLRs are in a resting state (OFF state) resulting in a PRG surveillance activity to recognize potential pathogen infection. Right panel. PRGs network organization challenged by pathogen. The activation of a sensor NLR and a potential helper (ON state) can initiate a response culminating in innate immunity. The network edges represent every kind of biological interaction influencing the member activity. Gray color indicated the changing connections among members of each network. NLR, nucleotide-binding leucine-rich repeat proteins; RLK, receptor-like kinase; RLP, receptor-like protein.
structure, genome-gene relationships, gene regulation, molecular interaction show highly dynamic connections (Figure 1 upper middle panel) that are able to regulate the innate immunity receptors with a different output, surveillance or defense response (Figure 1 left and right panels). In particular, within this model, PRGs are involved in a “multi-actors” system, including NLRs that may act as sensors or “helpers” (Figure 1 left and right panels). Leading sensors are able to coordinate a response, which may include the activity of different PRG groups (Andolfo et al., 2014; Ngou et al., 2021). The understanding of network structure, considering the distribution of the interaction strength, the challenges for the establishment of these interactions and the corresponding effects could be highlighted by a decomposition approach. It would be interesting to dissect the whole set of molecular interactions across the different levels, to identify the role and the spatial distribution of each element. Current knowledge of the immune network system is still limited and can be improved by studying its structural properties. Pathogen receptor system is continuously shaped over time to find its optimal arrangement thanks to different biological dynamics.

Author contributions

MRE, conceived the study and was primarily involved in writing the manuscript and in producing the figure. DD, substantially contributed to the writing and revising of the manuscript and was centrally involved in figure design. GA, contributed to the writing of immune response networking paragraph and revised the manuscript. LF, revised the manuscript and coordinated the work. All authors contributed to the article and approved the submitted version.

References

Ameline-Torregrosa, C., Wang, B.B., O’Rilley, M.S., Deshpande, S., Zha, H., Roe, B., et al. (2008). Identification and characterization of nucleotide-binding site-leucine-rich repeat genes in the model plant Medicago truncatula. Plant Physiol. 146, 5–21. doi: 10.1104/pp.107.104588

Andolfo, G., Di Donato, A., Chiaie, P., De Natale, A., Pollio, A., Jones, J. D. G., et al. (2019). Alien domains shaped the modular structure of plant NLR proteins. Genome Biol. Evol. 11, 3466–3477. doi: 10.1093/gbe/evz248

Andolfo, G., Di Donato, A., Darrudi, R., Errico, A., Cigliano, R. A., and Ercolano, M. R. (2017). Draft of zucchini (Cucurbita pepo L) proteome: a resource for genetic and genomic studies. Front. Genet. 8. doi: 10.3389/fgene.2017.00181

Andolfo, G., and Ercolano, M. R. (2015). Plant innate immunity multicomponent model. Front. Plant Sci. 6. doi: 10.3389/fpls.2015.00987

Andolfo, G., Iupe, F., Wittek, K., Etherington, G. J., Ercolano, M. R., and Jones, J. D. G. (2014). Defining the full tomato NB-LLR resistance gene repertoire using genomic and cDNA RenSeq. BMC Plant Biol. 14, 1–12. doi: 10.1186/1471-2229-14-120

Andolfo, G., Sánchez, C. S., Calizares, J., Pico, M. B., and Ercolano, M. R. (2021). Large – scale gene gains and losses molded the NLR defense arsenal during the cucurbita evolution. Planta 254, 1–14. doi: 10.1007/s00218-021-03717-x

Andolfo, G., Sanseverino, W., Rombauts, S., Van de Peer, Y., Bradeen, J. M., Carpto, D., et al. (2013). Overview of tomato (Solanum lycopersicum) candidate pathogen recognition genes reveals important solanum Locus dynamics. New Phytol. 197, 223–237. doi: 10.1111/nph.12499

Andolfo, G., Villano, C., Errico, A., Fruciante, L., Carputo, D., Aversano, R., et al. (2020). Inferring RPW8-NLR’s evolution patterns in seed plants: case study in vitis vinifera. Planta 251, 1–13. doi: 10.1007/s00218-019-03324-x

Asai, S., Ohta, K., and Yoshioya, H. (2008). MAPK signaling regulates nitric oxide and NADPH oxidase-dependent oxidative bursts in nicotiana benthamiana. Plant Cell 20, 1390–1406. doi: 10.1105/tpc.107.055855

Azz, M. F., and Caetano-Anollés, G. (2021). Evolution of networks of protein domain organization. Sci. Rep. 11, 12075. doi: 10.1038/s41598-021-96498-8

Baggs, E., Daganas, G., and Krasileva, K. V. (2017). NLR diversity, helpers and integrated domains: making sense of the NLR Identity. Curr. Opin. Plant Biol. 38, 59–67. doi: 10.1016/j.pbi.2017.04.012

Barragan, A. C., and Weigel, D. (2021). Plant NLR diversity: The known unknowns of pan-NLRomes. Plant Cell 33, 814–831. doi: 10.1093/plcell/koaa002

Bentham, A., Burdett, H., Anderson, P. A., Williams, S. J., and Kobe, B. (2017). Animal NLRs provide structural insights into plant NLR function. Ann. Bot. 119, 689–702. doi: 10.1093/aob/mcw171

Bohne, B., Kühn, T., and Sikosek, T. (2010). How do new proteins arise? Curr. Opin. Struct. Biol. 20, 390–396. doi: 10.1016/j.sbi.2010.02.005

Borrelli, G. M., Mazzucotelli, E., Marone, D., Cossati, C., Micheletti, V., Vali, G., et al. (2018). Regulation and evolution of NLR genes: A close interconnection for plant immunity. Int. J. Mol. Sci. 19, 1662. doi: 10.3390/ijms19061662

Burdett, H., Bentham, A. R., Williams, S. J., Dodds, P. N., Anderson, P. A., Banfield, M. J., et al. (2019). The plant “Resisotosome”: Structural insights into immune signaling. Cell Host Microbe. 26, 193–201. doi: 10.1016/j.chom.2019.07.020

Calle García, J., Guadagno, A., Paytuv Gallart, A., Saera-Vila, A., Amorosio, C. G., D’esposito, D., et al. (2012). PRGdb 4.0: An updated database dedicated to genes involved in plant disease resistance process. Nucleic Acids Res. 50, D1483–D1490. doi: 10.1093/nar/gkab1087

Funding

This work was supported by the Ministry of University and Research and carried out within the Harnessstone Project (101000716) funded by the European Community.

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.
Casey, L. W., Lavrencic, P., Bentham, A. R., Cesari, S., Ericsson, D. J., and Croll, T. (2016). The Ca2+ domain structure from the wheat stem rust resistance protein Sr33 challenges paradigms for dimerization in plant NLR proteins. Proc. Natl. Acad. Sci. U.S.A. 113, 12856–12861. doi:10.1073/pnas.1609922113

Cesari, S. (2018). Multiple strategies for pathogen perception by plant immune receptors. New Phytol. 219, 17–24. doi:10.1111/nph.14877

Cesari, S., Bernoux, M., Monquequet, P., Krou, T., and Dodds, P. N. (2014). A novel conserved mechanism for plant NLR protein pairs: The “integrated decay” hypothesis. Front. Plant Sci. 5. doi:10.3389/fpls.2014.00606

Choi, K., Zhao, X., Tock, A. J., Lambing, C., Underwood, C. J., Hardcastle, T. J., et al. (2018). Nucleosomes and DNA methylation shape m605F DBS frequency in arabidopsis thaliana transposons and gene regulatory regions. Genome Res. 28, 532–546. doi:10.1101/gr.225599.117

Collier, S. M., Hamel, L. P., and Moffett, P. (2011). Cell death mediated by the n-terminal domains of a unique and highly conserved class of NB-LRR protein. Mol. Plant-Microbe Interact. 24, 918–931. doi:10.1094/MPMI-03-11-0050

Dangl, J. L., and Jones, J. D. G. (2001). Plant pathogens and integrated defence responses to infection. Nature 411 (6839), 826–833. doi:10.1038/35081166

Di Donato, A., Andolfo, G., Ferrari, A., Delledonne, M., and Ercolano, M. R. (2017). Investigation of orthologous pathogen recognition gene-rich regions in solanaceous species. Genome 60, 850–859. doi:10.1139/gen-2016-0217

Dong, O. X., Tong, M., Bonardi, V., El Kasmi, F., Stuckey, D., and Dangl, J. L. (2018). Nonsense-mediated mRNA decay modulates immune receptor complexes: evolution and utilization. Proc. Natl. Acad. Sci. U. S. A. 115, 10010–10015. doi:10.1073/pnas.120015110

Ercolano, M. R., et al. (2016). TNL-mediated immunity in arabidopsis requires complex regulation of the activated ROQ1 resistosome directly recognizing the pathogen effector XopQ. Plant Cell Environ. 41, 2313–2327. doi:10.1111/pce.13347

Ercolano, M. R., et al. (2020). Structure of the activated ROQ1 resistosome directly recognizing the pathogen effector XopQ. Science 370, 1–21. doi:10.1126/science.aba4993

Fritz-Laylin, L. K., Krishnamurthy, N., Tör, M., Sjölander, K. V., and Jones, J. D. G. (2014). Receptor like proteins associate with SOBIR1–protein complexes: evolution and utilization. Trends Biochem. Sci. 39, 34–42. doi:10.1016/j.tibs.2008.05.008

Gao, Y., Wang, W., Zhang, T., Gong, Z., Zhao, H., and Han, G. Z. (2018). Out of water: The origin and early diversification of the Genome. Channels 25, 1–20. doi:10.1007/s00251-018-01242-5

Glabinski, J. M., Saile, S., Furzer, O. J., El Kasmi, F., and Dangl, J. L. (2019). Help and autoimmunity. Cell Host Microbe 23, 1030–1032. doi:10.1016/j.chom.2018.06.008

Glay, A. A., and Felix, G. (2014). Receptor like proteins associate with SOBIR1–protein complexes: evolution and utilization. Trends Biochem. Sci. 39, 34–42. doi:10.1016/j.tibs.2008.05.008

Habring, A., Wang, K., and Weigel, D. (2020). Atypical resistance protein RPW8/HR triggers oligomerization of the NLR immune receptor RPP7 and autoimmunity. Cell Host Microbe 27, 405–417. doi:10.1016/j.chom.2020.01.012

Huang, J., Yuan, S., Wang, Y., Fu, Y., Ge, Y., Ge, Y., et al. (2017). The role of sugar: the origin and early diversification of the Genome. Channels 25, 1–20. doi:10.1007/s00251-018-01242-5

Jacob, P., Kim, N. H., Wu, F., El-kasmi, F., Chi, Y., William, G., et al. (2022). The intracellular nucleotide-binding leucine-rich repeat receptor RPS4X promotes disease resistance by integrating decoy domains derived from protein targets of pathogen effectors in Arabidopsis thaliana. Mol. Plant Pathol. 21, 615–629. doi:10.1111/mpp.12607

Keseru, B., and Dangl, J. L. (2020). NPG-SfN Blog. 1478–1479. doi:10.1038/sfnet/kneac041
Nieri, D., Di Donato, A., and Ercolano, M. R. (2017). Analysis of tomato meiotic recombination using Colinear acceleration for the determination of positions for NB-LRR genes. *Espychtia* 213, 206. doi: 10.1007/s10641-017-1982-5

Nishimura, M. T., Anderson, R. G., Cherukuri, K. A., Law, T. F., Liu, Q. L., Machius, M., et al. (2017). TIR-only plant protein RNA1 recognizes a pathogen effector to regulate cell death in arabidopsis. *Proc. Natl. Acad. Sci. U. S. A.* 114, E2053–E2062. doi: 10.1073/pnas.1620973114

Ortiz, D., and Dodds, P. N. (2018). Plant NLR origins traced back to green algae. *Trends Plant Sci.* 23, 651–654. doi: 10.1016/j.tplants.2018.05.009

Pruiit, R. N., Locci, F., Banke, F., Zhang, L., Sale, S. C., Joe, A., et al. (2021). The EDS1-PAD4-ADR1 node mediates arabidopsis pattern-triggered immunity. *Nature* 598, 495–499. doi: 10.1038/s41586-021-03829-0

Richard, M. M. S., Gracias, A., Meyers, B. C., and Geoffroy, V. (2018). Molecular mechanisms that limit the costs of NLR-mediated resistance in plants. *Mol. Plant Pathol.* 19, 2516–2523. doi: 10.1111mpp.12723

Richly, E., Kürth, J., and Leister, D. (2002). Mode of amplification and reorganization of resistance genes during recent Arabidopsis thaliana evolution. *Mol. Biol. Evol.* 19, 76–84. doi: 10.1093/molbev/19.1.021

Salomon, J. L., Cohen, J. A., and Kaplan, D. H. (2020). Intimate neuro-immune interactions: breaking barriers between systems to make meaningful progress. *Curr. Opin. Neurobiol.* 62, 60–67. doi: 10.1016/j.conb.2019.11.021

Sanseverino, W., and Ercolano, M. R. (2012). In silico approach to predict r protein and to define their domain architecture. * BMC Res. Notes* 5, 678. doi: 10.1186/1756-0500-5-678

Sarris, P. F., Cervk, V., Dagdas, G., Jones, J. D. G., and Krassilova, K. V. (2016). Comparative analysis of plant immune receptor architectures uncovers host pathogen proteins likely targeted by pathogens. *BMC Biol.* 14, 8. doi: 10.1186/s12915-016-0228-7

Shao, Z. Q., Xue, J. Y., Wu, P., Zhang, Y. M., Wu, Y., Hang, Y. Y., et al. (2016). Large-scale analyses of angiosperm nucleotide-binding site-leucine-rich repeat genes reveal three anciently diverged classes with distinct evolutionary patterns. *Plant Physiol.* 170, 2095–2109. doi: 10.1104/pp.15.01487

Shivaprakash, P. V., Chen, H. M., Patel, K., Bond, D. M., Santos, B. A. C. M., and Ortiz, D., and Dodds, P. N. (2018). What do we know about NOD-like receptors in plant immunity? *Curr. Opin. Plant Biol.* 39, 859–874. doi: 10.1016/j.molbev.2004.03.089

Sinapidou, E., Williams, K., Nott, L., Bahkt, S., Tör, M., Crute, I., et al. (2004). Genomics of histone 2B at the disease resistance gene locus regulates its expression and impacts immune responses in arabidopsis. *Nature* 430, 209–212. doi: 10.1038/nature02941

Thomas, C. M., Jones, D. A., Parniske, M., Harrison, K., Balint-Kurti, P., Hatzixinanthis, K., et al. (1997). Characterization of the tomato cd4 gene for resistance to cladosporium fulvum identifies sequences that determine recognition specificity in cd4 and cd8. *Plant Cell* 9, 2209–2224. doi: 10.1105/tpc.9.12.2209

Urbach, J. M., and Ausubel, F. M. (2017). The NBS-LRR architectures of plant r-proteins and metazoan NLRs evolved in independent events. *Proc. Natl. Acad. Sci. U. S. A.* 114 (5), 1065–1068. doi: 10.1073/pnas.1619730114

Van Der Hoeven, R. A. L., and Kamoun, S. (2008). From guard to decoy: A new model for perception of plant pathogen effectors. *Plant Cell* 20, 2009–2017. doi: 10.1105/tpc.108.060194

Wang, L., Zhao, L., Zhang, X., Zhang, Q., Jia, Y., Wang, G., et al. (2019). Large-scale identification and functional analysis of NLR genes in blast resistance in the tetra rice genome sequence. *Proc. Natl. Acad. Sci. U. S. A.* 116, 18479–18487. doi: 10.1073/pnas.1910291116

Wei, C., Chen, J., and Kuang, H. (2016). Dramatic number variation of r genes in solanaceae species accounted for by a few r gene subclasses. *PLoS One* 11, 1–15. doi: 10.1371/journal.pone.0148708

Wu, C. H., Abd-El-Haliem, A., Bozkurt, T. O., Belhaj, K., Terauchi, R., Vossen, J. H., et al. (2017). NLR network mediates immunity to diverse plant pathogens. *Proc. Natl. Acad. Sci. U. S. A.* 114, 8113–8118. doi: 10.1073/pnas.1702411114

Wu, C. H., Belhaj, K., Bozkurt, T. O., Bark, M. S., and Kamoun, S. (2016). Helper NLR proteins NRC2a/b and NRC3 but not NRC1 are required for pto-mediated cell death and resistance in nicotiana benthamiana. *New Phytol.* 209 (4), 1344–1352. doi: 10.1111/nph.13764

Yuan, M., Jiang, Z., Bi, G., Nomura, K., Liu, M., Wang, Y., et al. (2021). Pattern-recognition receptors are required for NLR-mediated plant immunity. *Nature* 592 (7852), 105–109. doi: 10.1038/s41586-021-03316-6

Zhai, J., Jeong, D. H., de Paoli, E., Park, S., Rosen, B. D., Li, Y., et al. (2011). MicroRNAs as master regulators of the plant NB-LRR defense gene family via the production of phased, trans-acting siRNAs. *Genes Dev.* 25, 2540–2553. doi: 10.1101/gad.77527.111

Zhang, X., Dodds, P. N., and Bernoux, M. (2017). What do we know about NOD-like receptors in plant immunity? *Annu. Rev. Phytopathol.* 55, 205–229. doi: 10.1146/annurev-phyto-080516-033520

Zhou, T., Wang, Y., Chen, J. Q., Araki, H., Jing, Z., Jiang, K., et al. (2004). Genome-wide identification of NBS genes in japonica rice reveals significant expansion of divergent non-TIR NBS-LRR genes. *Mol. Genet. Genomics* 271, 402–415. doi: 10.1007/s00438-004-0990-x

Zou, B., Yang, D. L., Shi, Z., Dong, H., and Hua, J. (2014). Monoubiquitination of histone 2B at the disease resistance gene locus regulates its expression and impacts immune responses in arabidopsis. *Plant Physiol.* 165, 309–318. doi: 10.1104/pp.113.227801