Identification of multiple isomeric core chitobiose-modified high mannose and paucimannose N-glycans in the planarian *Schmidtea mediterranea*

Sabarinath Peruvemba Subramanian, Ponnuam Babu, Dasaradhi Palakodeti, and Ramaswamy Subramanian

From the 1Institute for Stem Cell Biology and Regenerative Medicine (inStem), GKVK Post Office, Bellary Road, Bangalore -560065, Karnataka, India; 2Glycomics and Glycoproteomics Facility, Centre for Cellular and Molecular Platforms (C-CAMP), GKVK Post Office, Bellary Road, Bangalore -560065, Karnataka, India.

Running title: Unusual core chitobiose-modified N-glycans

Key Words: Invertebrate, N-linked glycosylation, Mass spectrometry, galactosyltransferase, antisense RNA, planaria, *S. mediterranea*, Galβ1-4Fuc, GALT-1, O-methylation

Abstract

Cell surface-associated glycans mediate many cellular processes, including adhesion, migration, signaling, and extracellular matrix organization. The galactosylation of core fucose (GalFuc epitope) in paucimannose and complex-type N-glycans is characteristic of protostome organisms, including flatworms (planarians). Though uninvestigated, the structures of these glycans may play a role in planarian regeneration. Whole-organism MALDI-MS analysis of *N*-linked oligosaccharides from the planarian *Schmidtea mediterranea* were found to contain multiple isomeric high mannose and paucimannose structures with unusual mono-, di- and poly-galactosylated (n=3-5) core fucose structures - the latter structures unreported in other systems. Di- and tri-galactosylated core fucoses were the most dominant glycomers. *N*-glycans showed extensive, yet selective, methylation patterns, ranging from non-methylated to poly methylated glycoforms. Although the majority of glycoforms were poly methylated, a small fraction also consisted of non-methylated glycans. Remarkably, mono-galactosylated core fucose remained unmethylated, whereas its poly galactosylated forms were methylated, indicating structurally selective methylation. Using database searches, we identified two potential homologs of the Galβ1-4Fuc-synthesizing enzyme from nematodes (GALT-1), which were expressed in the pre-pharyngeal, pharyngeal, and mesenchymal regions in *S. mediterranea*. The presence of two GALT-1 homologs suggests different requirements for mono- and poly galactosylation of core fucose for the formation of multiple isomers. Furthermore, we observed variations in core fucose glycosylation patterns in different planarian strains, suggesting evolutionary adaptation in fucose glycosylation. The various core chitobiose modifications and methylations create >60 different glycoforms in *S. mediterranea*. These results contribute greatly to our understanding of *N*-glycan biosynthesis, and suggest the presence of a GlcNAc-independent biosynthetic pathway in *S. mediterranea*.
INTRODUCTION

Carbohydrates (glycans) on the cell surface are essential for cellular interactions. They mediate diverse cellular processes such as adhesion, migration, signaling, extracellular matrix organization, development, host-pathogen interactions, and immunity (1). Glycans are heterogeneous molecules; they vary widely in their composition, structure, distribution, linkage, stereo-chemical organization, and covalent modifications. Several studies have demonstrated that glycans are expressed in a spatiotemporal (2, 3) and species-specific manner (4), determined by levels of glycosyltransferases/glycosyl hydrolases and availability of nucleotide-sugar donors and acceptors. This selectivity in expression pattern is a key determinant of the roles they play in cellular interactions. Alterations in cell-surface glycans can modify cellular function; some aberrant alterations can lead to embryonic lethality and developmental abnormalities (5). Therefore, it is accepted that glycoproteins and glycolipids play a major role in cell fate determination, including differentiation and development. However, our understanding of the mechanisms by which glycans act is limited. To address this, several studies have employed in vitro cell-based systems and vertebrate and invertebrate models to understand the role of glycans in development and cellular transformation (6–8). Though genetically amenable, commonly used model systems such as mice, C. elegans, and D. melanogaster have a rigid or complex developmental process. Since glycans themselves are highly complex, using these systems to study the role of glycans in various processes becomes very difficult. This necessitates the use of simpler and more plastic model systems like planarians.

Planarians are of particular interest in stem cell biology and regenerative medicine due to their remarkable cellular plasticity and immense regenerative potential. A small body fragment can regenerate all body parts, regrow, and resize into a fully functional organism. In contrast to other invertebrate models, planarians can constantly replenish terminally differentiated organs and precisely restore their body plan. This property is attributed to the presence of pluripotent stem cells named ‘neoblasts’ (9). Although planarians lack a body cavity as well as skeletal, respiratory, and circulatory systems, they do have digestive (10), nervous (11), muscular (12), reproductive (13), and excretory systems (14). Planarians can exist as both sexual and asexual strains. Sexual strains are hermaphrodites; they cross-fertilize and lay eggs that undergo complex, anarchic embryogenesis (15), whereas, asexual strains propagate via transverse fission. In the last two decades, although genome and transcriptome analyses accompanied by the use of molecular tools, such as RNA interference (16) and in situ hybridization (17), have led to the identification of several genes essential for homeostasis, regeneration, and patterning in planarians. However, little is known about the role of post-translational events, specifically glycosylation, in mediating these biological processes. Therefore, the structural characterization of glycans is a logical first step in understanding the role of glycans in regeneration and tissue homeostasis in planarians. Previous studies by Natsuka et al. and Paschinger et al. have characterized the N-glycome of the planarian Dugesia japonica (18, 19). In this study, we characterize the N-glycome of the diploid, sexual strain of Schmidtea mediterranea, which is currently one of the most widely used planarian species. The N-glycans from S. mediterranea showed unusual structural complexity in their multiplicity, core chitobiose modifications, and methylation patterns. Furthermore, our work also demonstrates that the glycomes of different species of planarians are unique. These findings reiterate that invertebrates do not have simplistic glycomes, and that these glycomes are derived from complex biosynthetic process.

RESULTS

Total N-glycome profile of S. mediterranea— Ultrasensitive MALDI-TOF (MS) and TOF/TOF (MS/MS) techniques were employed to characterize PNGase A-released N-glycans from whole-planaria. The N-glycome of S. mediterranea was primarily composed of paucimannose (m/z 967.5, 1171.6, and 1375.7), high mannose (m/z 1579.8, 1783.9, 1988.0, 2192.0, 2396.1, and 2600.2), and structures...
having compositions of Fuc1Hex,α2HexNAc2 (F1HnN2) (m/z 1345.7, 1549.8, 1753.9, 1957.9, 2162.0, 2366.1, 2570.2, and 2774.3). Additionally, low amounts of complex type (m/z 1416.7, 1865.9, 2040.0, 2070.0, 2244.1, 2478.2, and 2682.3) and hybrid type (m/z 1824.9 and 2029.0) glycans were also observed (Fig. 1). The MS/MS analyses of individual masses in the F1HnN2 series revealed that each mass was composed of multiple isomers (glycomers), evident from the presence of two or more major B- and Y-ions formed from the breakdown of the facile glycosidic bond between the core-GlcNAc of a specific oligosaccharide motif (Fig. 2A–G). Major B-type ions (m/z 690, 894, 1098, 1302, and 1506) formed the non-reducing termini with compositions corresponding to Hex3,αGlcNAc1, whereas, major Y-type ions (m/z 474, 678, 882, 1086, 1290, and 1494) formed the reducing termini with compositions corresponding to Fuc1Hex0,αGlcNAc1. There was a tendency for the number of glycomers within a given mass to increase as the molecular mass increased. However, this tendency was observed only till m/z 2162.0, for which a maximum of four glycomers was observed. Subsequently, for m/z 2366.1 and 2570.2, only three glycomers were observed. The abundance of individual glycomers within a mass was variable; di- and tri-hexosylated core fucose was the most predominant isomer followed by mono-, tetra-, and penta-hexosylated core fucose (Fig. 2 A–G, Table 2). Complex-type N-glycans with core fucose of m/z 2040.0 and 2244.1 also showed the presence of core chitobiose modifications (CCM) with mono- and di-hexosylated core fucose. MS/MS spectra of complex and hybrid structures are presented in Supplementary Fig. S1.

Unusual core chitobiose-modified structures are glycomers of mono- and poly-galactosylated core fucose— Based on the characteristic B/Y-ions, it could be inferred that the glycomers were composed of paucimannose and high mannose (Man-2 to Man-6) structures with unusual CCM. To ascertain the monosaccharide composition and linkage of CCM structures, N-glycans were subjected to chemical/enzymatic hydrolysis and methylation analysis. No intensity changes were observed in peaks of the F1HnN2 series after hydrofluoric acid [specific to α(1-3) and α(1-2) fucose] and α-fucosidase (from bovine kidney) treatment, as compared to those from untreated sample (Supplementary Fig. S2 A–C). This result indicates that fucose moieties are α(1-6) linked to core-GlcNAc (reducing termini) and are capped by hexoses. As galactosylated fucose moieties are reported to be constituents of CCM in N-glycans of protostomes (20), we suspected that the hexoses attached to core fucose were galactose. To confirm this, these structures were subjected to β(1-4) galactosidase (from A. oryzae) treatment. Although a significant reduction in the intensity of m/z 1549.8 with a concomitant increase in the intensities of m/z 1345.6 and 1141.6 were seen, no significant changes were observed in the intensities of peaks of m/z 1753.8, 1957.9, 2162.0, 2366.1, and 2570.2 (Fig. 3A). Interestingly, MS/MS analysis following β(1-4) galactosidase treatment revealed that only Y-ion m/z 678 was susceptible to β(1-4) galactosidase, whereas Y-ions m/z 882, 1086, 1290, and 1494 were resistant (Fig. 3B–D). The loss of galactose from Y-ion m/z 678 resulted in Y-ion 474 and a concomitant shift to the preceding mass. This result confirmed that Y-ion m/z 678 was composed of Galβ1-4Fuc motif (GalFuc) and formed the core of Man-2 to Man-6 structures. As other major Y-ions were resistant to β(1-4) galactosidase treatment, we tested for alternate linkages of galactose. Treatment with β(1-3/6) galactosidase (from Xanthomonas manihotis, highly reactive to 3-linked galactose and moderately reactive to 6-linked galactose) and α-galactosidase (from Coffee beans) did not show any change in the F1HnN2 series (Supplementary Fig. S2D–E). This eliminated the presence of 3- and 6-linked, as well as α-linked galactose. In contrast, monosaccharide and linkage analyses using GC-MS showed the presence of terminal-galactose, 4-linked galactose, 4-linked fucose, and 4,6-linked N-acetylglucosamine residues (Table 1, Supplementary Fig. S3). The 1:8 ratio of terminal-galactose to 4-linked galactose confirmed that the unusual CCM structures were composed of extensions of 4-linked galactose (poly-galactosylated core fucose). However, the anomeric specificity of the poly-galactosylated core fucose could not be established, as both α- and β-galactosidase were ineffective in hydrolyzing these core-modified structures. Thus, the structures of the multiple isomers with
CCM seen in the F_HN_2 series were established to be Man-2 to Man-6 containing Galβ1-4Fucα1-6GlcNAc and poly-Galaβ1-4Fucα1-6GlcNAc at the core reducing termini.

N-glycans in *S. mediterranea* are selectively methylated— Despite the presence of terminal- and 4-linked galactose in CCM, its resistance to galactosidase was puzzling. A possible explanation for this phenomenon could be methylation, as methylated glycans have been shown to be resistant to enzymatic digestion (18). To verify this, N-glycans were subjected to 2-amino benzamide (2-AB) labeling and mass spectrometry. MALDI-TOF MS analysis revealed the presence of both non-methylated and methylated N-glycans, with a greater abundance of methylated glycans (Fig. 4). Paucomicannone and high mannose glycans displayed diverse methylation patterns, spanning from mono-methylated to poly-methylated forms (having up to six methyl groups), amongst which, trimethylated species (m/z 1419.5, 1581.6, 1743.6, 1905.7, and 2067.7) were the most predominant. MS/MS analysis of methylated high mannose-type structures revealed that methylation occurred at both the mannose termini, as well as at the core-GlcNAc residues (Fig. 5A, Supplementary Fig. S4), giving rise to isomers of methylated glycans. Furthermore, α-mannosidase (from Jack bean) treatment resulted in the hydrolysis of non-methylated glycans, while methylated glycans were resistant to this treatment. In addition to confirming the presence of methylation, these results also indicated that methylation occurred at the terminal mannose residues, explaining the resistance to α-mannosidases (Supplementary Fig. S5). MS/MS analysis of CCM structures revealed that only the Y-ion (m/z 672) corresponding to Galβ1-4Fuc was devoid of methylation. Other Y-ions (m/z 848, 1024, and 1200) corresponding to poly-galactosylated core fucose structures showed successive increases of 14 Da for every additional galactose (Fig. 5B–E). Since the extended CCM structures showed resistance to both α-mannosidase and β(1-4)galactosidase digestion, we deduced that the mannose termini and the extended galactose termini in F_HN_2 are methylated. These results confirm the presence of methylation in CCM structures and explain the resistance of the poly-galactosylated core fucose structures to β(1-4)galactosidase. Other glycan modifications, such as phosphorylation of mannose and phosphorylcholine on GlcNAc moieties, were not observed.

Identification and distribution of galt-1 in *S. mediterranea*— As galactosylation of core fucose was the predominant modification observed in the N-glycans from *S. mediterranea*, we hypothesized the presence of homologues of *C. elegans* GALT-1 (known to catalyze galactosylation of core α1-6 fucose (Galβ1-4Fuc) (21), in the organism. We used the GALT-1 sequence from *C. elegans* (NP_504545.2) and its avian (*C. livia*) homolog (FJ971845.1/ADC84389.1, shown to catalyze galactosylation of terminal β1-4 galactose in the antennae of complex-type N-glycans) (22), as query sequences to identify putative GALT-1 sequences in *S. mediterranea*. Sequence similarity searches using BLASTp in the PlanMine database (23) revealed the presence of two putative GALT-1 sequences, a short dd_Smed_v6_12154_0_1 (SMED-GALT-1-1) sequence and a long dd_Smed_v6_5401_0_1 (SMED-GALT-1-2) sequence. Phylogenetic analyses showed SMED-GALT-1-1 to be a homolog of the nematode GALT-1 and SMED-GALT-1-2 to be a homolog of the arthropod GALT-1 (Fig. 6A). A complete phylogenetic tree with all GALT-1 entries listed in the CAZy database along with SMED-GALT-1 is provided in Supplementary Fig. S6. The two SMED-GALT-1 homologs showed 22–26% identity with the GALT-1 sequences from *C. elegans* and *C. livia*, and exhibited a characteristic type II transmembrane domain, a GT-92 domain, and a DXD motif, signifying potential catalytic activity (Fig. 6B, C). To determine the spatial distribution of galt-1 homologs, two methods were employed: a) a bioinformatic analysis using a single cell sequencing (SCS) database (24), and b) whole mount in situ hybridization. The SCS database search revealed that the expression of dd_Smed_v6_12154_0_1 (Smed-galt-1-1) was sparse, whereas, the expression of dd_Smed_v6_5401_0_1 (Smed-galt-1-2) was predominant in the neoblast, epidermal cells, gut, and neurons (Fig. 6D) of *S. mediterranea*. Contrary to this, whole mount in situ
hybridization showed that both homologs of Smed-galt-1 were expressed in the pre-pharyngeal region, pharynx, and mesenchyme (Fig. 6E) of S. mediterranea. These results corroborate the presence of two putative GALT-1 enzymes that may be involved in the mono- and poly-galactosylation of core fucose structures. To ascertain the role of these putative candidates in tissue homeostasis, the target genes were knocked down using RNA interference (RNAi) technology with double stranded RNA (dsRNA). Knockdown of Smed-galt-1 resulted in a 60–70% reduction in RNA expression, as compared to the controls (Supplementary Fig. 7A). Knockdown using RNAi resulted in the occurrence of an unusual stick and stretch phenotype (Supplementary Fig. 7B), suggesting an alteration in tissue homeostasis.

DISCUSSION

The occurrence of galactosylated fucose structures at the core of N-glycans is characteristic of protostomes, and has been observed previously in organisms such as the octopus (25), squid (26), snail (27, 28), nematode (29), and planaria (19). This modification, which includes both mono- and di-galactosylated core fucose, has only been observed in paucimannose and complex mono-antennary type structures. In this study, we show, for the first time, that CCM structures are not restricted to paucimannose and complex type N-glycans. Rather, they span across Man-2 to Man-6 structures (possibly even Man-7 in m/z 2774.3) in an extended fashion ranging from mono- to poly-galactosylated core fucose (poly-Galα1-3Fuc) (Fig. 2, Table 2). However, it is possible that B-ions m/z 1098 and 1302 corresponding to HexαGlcNAc1 and HexαGlcNAc1 may be paucimannosidic structures with terminal galactose residues. These glycans have been observed in wild type, pseudowild-type (pmk-1 knockdown), and fucosyltransferase knockout C. elegans (30, 31). Unfortunately, the extensive methylation (causing resistance to enzymatic hydrolysis) noted here and insufficient material for NMR or GC-MS of individual glycan fractions observed here limits the validation of these abovementioned structures.

Our analyses of these structural data have had an interesting consequence on our understanding of N-glycan biosynthesis. Based on the molecular ions obtained in MS spectra, we suspect a GlcNAc-independent biosynthetic pathway to be functional here. While it has been demonstrated that the presence of β(1-2) GlcNAc on the α(1-3) Man arm is a pre-requisite for α(1-6) core-fucosylation (FUT-8) and subsequent galactosylation (GALT-1), i.e. GalFuc formation (4, 32–34), the occurrence of GlcNAc-independent α(1-6) core-fucosylation has also been reported in vitro following knockout of GlcNAc transferase-I (GnT-1) (35–37). Notably, the presence of core-fucosylated high mannose has been reported in placental arylsulfatase A in humans (38). However, the mechanism of GlcNAc-independent core-fucosylation still remains unclear. A recent report suggests that FUT-8 interacts with the appropriate protein or peptide regions (in erythropoietin, and the V3 domain peptide) to facilitate core-fucosylation of oligomannoses (39). The presence of Man-5 and Man-6 with mono- and poly-galactosylated core fucose structures observed in this study suggests that these glycans may have been synthesized through a GlcNAc-independent core-fucosylation pathway. These structures provide evidence for the natural occurrence of α(1-6) core-fucosylation and subsequent galactosylation of high mannoses in vivo (Fig. 7). Alternatively, subsequent to core-fucosylation, GlcNAc residues on the α(1-3) Man arm can get truncated by hexosaminidase to form core chitobiose-modified Man-5. These structures can then undergo trimming by mannosidase to form Man-4, -3 and -2 with core modifications (via the GlcNAc-dependent pathway) (Fig. 7). The low levels of complex type structures observed here supports the presence of extensive hexosaminidase activity in this system. Therefore, it is likely that in planarians, the biosynthesis of core chitobiose-modified N-glycans proceeds via both GlcNAc-dependent and -independent pathways.

So far, GALT-1 (belonging to the GT-92 family of enzymes from C. elegans) is the only enzyme known to add galactose to α(1-6) core fucose. Two other enzymes from the GT-92 family have been shown to have different functions; one is the
avian homolog of GALT-1 known to catalyze the addition of \(\beta(1-4)\) galactose to complex biantennary structures (22), whereas, the other is GALS1 (a \(\beta1-4\) galactan synthase) from A. thaliana that catalyzes Gal-Gal formation in pectin (40). Our results demonstrate the presence of two genes that belong to the GT-92 family in the planarian S. mediterranea (Fig. 6 and Supplementary Fig. S6). Amongst the two, dd_Smed_v6_12154_0_1 (SMED-GALT-1-1), which is homologous to C. elegans GALT-1, is the most likely to have GALT-1-like activity. The second gene, dd_Smed_v6_5401_0_1 (SMED-GALT-1-2) is homologous to Drosophila GALT-1. However, since no ‘GalFuc’ moieties have been reported in Drosophila, the GALT-1 function in Drosophila remains unknown. Given the diversity in enzyme function among the different members of the GT-92 family, and in the galactosylation patterns in the core and termini in planaria, understanding the mechanisms of action of the SMED-GALT-1 orthologs in planaria can provide further insights into substrate specificity. The stick and stretch phenotype in S. mediterranea, which was observed following the knockdown of Smed-galt-1 has been reported earlier as occurring in knockdowns of the hepatocellular-associated carcinoma antigen (NBE 8.11C) (16). However, cellular alterations in this phenotype have not been characterized, and warrant further investigation. Further characterization of this phenotype will also aid in identifying the role of ‘GalFuc’ in planarian physiology.

This is the first study to perform a comprehensive analysis of methylated N-glycans in S. mediterranea, and our work brings to light a remarkable feature of the N-glycans in this system—their methylation patterns. In D. japonica, tri-methylated structures were found to be the most predominant forms of N-glycans (18, 19). However, in S. mediterranea, significant levels of tetra-, penta- and hexa-methylated N-glycans, with methylation at both mannose and GlcNAc termini have been observed. Furthermore, the selective sparing of monogalactosylated fucose from methylation (only poly-galactosylated fucose structures were methylated at the core) in S. mediterranea was rather intriguing. The detection of methylated species also explained the resistance of S. mediterranea N-glycans to galactosidase digestion, although the position of methylation and the number of methyl groups on the monosaccharides could not be ascertained in this study. Besides this, little is known about the enzymes responsible for methylation in invertebrates, as such enzymes are yet to be identified. Wohleclager et al. have demonstrated that knockout of smt-1 (S-adenosyl methionine transporter) reduced glycans methylation in C. elegans, suggesting that methylation of glycans occurs in the Golgi body (41). The selective methylation seen here, however, suggests that methylating enzymes are specific. Additionally, planarians have been shown to resist bacterial strains that infect humans (42). This characteristic may be attributed to the extensive methylation of glycans seen in planarians, as methylated glycans are known to prevent bacterial adhesion, thereby conferring resistance to bacterial infections.

This study also revealed considerable differences in the N-glycomes of different species and strains of planarians. The N-glycomes of D. japonica (18, 19), (which is closely related to S. mediterranea) and the Indian strain of planaria (Dugesia species, IN06), did not show the presence of higher masses with polygalactosylated core fucose structures and multiple isomers at the core (Supplementary Fig. S8) as seen in S. mediterranea. These differences in the glycome profiles may be the result of differences in the glyco-genomic potential of different planarian species. Determining the temporal and spatial distributions of these CCM structures and those of the methylated and non-methylated N-linked oligosaccharides using MALDI-based imaging and antibodies against ‘GalFuc’ epitopes will contribute to a better understanding of their tissue-specific functions.

EXPERIMENTAL PROCEDURES

Materials— All chemicals used in this study were of analytical grade, and purchased from Sigma-Aldrich (Bangalore, India), unless otherwise mentioned.

Planaria maintenance— Planarians were maintained in the dark at 20 °C in planaria media.
(43) and fed with homogenized beef liver twice a week. Planarians were starved for 10 days prior to experiments.

Glycan analysis—preparation of glycopeptides and release of N-glycans— Glycopeptide extracts from whole-planaria tissues were prepared using surfactant-aided precipitation/sonication method (44). Planarians (100 mg wet weight) were homogenized with sonication in 4 ml of 50 mM phosphate buffered saline pH 7.4 (PBS) containing 1% SDS and protease inhibitor cocktail (Roche Diagnostics, USA) using a Q500 sonicor (Qsonica, LLC, USA; at 20% amplitude, 20 sec pulse and 10 sec pause for 10 min), reduced (10 mM DTT for 30 min at 56 °C), and carboxymethylated (25 mM iodoacetic acid in dark for 30 min at 37 °C). Carboxymethylated proteins were precipitated by adding 6 volumes of ice cold acetone in a stepwise manner with vigorous mixing and incubation at -20 °C for 3 h. Precipitated proteins were collected by centrifugation at 20,000 g for 30 min at 4 °C, washed (in 6:1 v/v acetone:ultrapure water), air-dried, and subjected to tryptic digestion (1:25 ratio) in 0.2 ml of PNGase A (Roche) in 50 mM Ambic buffer pH 5.0 for 24 h at 37 °C. Liberated glycans were permethylated by treatment with 0.2 ml of NaOH in 2 ml of DMSO solution. Glycans were recovered in the 5% acetic acid fraction using a Sep-Pak Classic C18 cartridge (Waters), following which they were lyophilized and subjected to permethylation.

Permethyl and MADLI-MS and MS/MS— Permethylated glycans were carried out as described previously (45). Briefly, N-glycans were permethylated by treatment with 0.2 ml of methyl iodide (Merck) in NaOH-DMSO (3 g NaOH in 2 ml of DMSO) slurry for 15 min at 37 °C with intermittent mixing. Permethylated N-glycans were extracted in chloroform, dried under nitrogen, and purified on a Sep-Pak® Classic C18 column (Waters) using 3 ml each of 10%, 50%, and 75% acetonitrile in water. Eluted fractions were lyophilized and re-dissolved in 20 µl methanol, mixed with equal volumes of Super 2,5-dihydroxy benzoic acid (20 mg/ml in 70% methanol) and spotted on a MALDI plate. MS and MS/MS were acquired in positive ion mode using an AB SCIEX TOF/TOF 5800 system. Calmix (Applied Biosystems) was used as an internal standard for calibration in both modes. MS/MS collision-induced dissociation was carried out with argon gas at a voltage of 1 kV. Data was acquired using a TOF/TOF Series Explorer (AB SCIEX). Data from 10,000 shots, collected from different areas of the spot (laser intensity 4500 for MS and 5000-6000 for MS/MS) was summed up and analyzed using the Data Explorer Software (AB SCIEX). The observed peaks were annotated using the GlycoWorkbench software.

2-Aminobenzamide labeling and MALDI— N-glycans released from whole-planaria (100 mg wet weight) tissues were labeled with 2-aminobenzamide (2-AB) (46). Briefly, released glycans were incubated with 10 µl of 2-AB labeling mix (2.5 mg 2-AB in 50 µl of acetic acid:DMSO (3:7 v/v), 3 mg sodium cyanoborohydride, and 5 µl of ultrapure water) for 3 h at 65 °C. The reaction was stopped by adding a drop of ammonia; excess borohydride was removed by repeated washing with 200 µl of ethyl acetate. Labeled glycans were recovered in the water phase and dried under vacuum, following which they were dissolved in 200 µl of 50% acetonitrile in water, and purified using Hypercarb™ SPE cartridges (Thermo Scientific). The cartridge was washed successively with 15 ml of 1 M NaOH, ultrapure water, 30% acetic acid, and ultrapure water, respectively. The cartridge was pre-conditioned with 15 ml of 50% acetonitrile/0.1% formic acid followed by 15 ml of 5% acetonitrile/0.1% formic acid. The 2-AB labeled sample was passed through the cartridge and washed with 15 ml of 5% acetonitrile solution, followed by 15 ml of 15% acetonitrile solution. The bound glycans were eluted in 10 ml of 50% acetonitrile fraction and concentrated. The purified sample was re-dissolved in 20 µl of 50% methanol, mixed with equal volumes of Super DHB, and spotted on a MALDI plate. MS and MS/MS data were acquired and analyzed as described earlier in experimental procedures.
Unusual core chitobiose-modified N-glycans

Chemical and enzymatic treatment of N-glycans— Hydrofluoric acid treatment: N-glycans were incubated with 50 µl of hydrofluoric acid (48% v/v) in low-binding microcentrifuge tubes for 24 h at 4 °C, and dried under a stream of nitrogen. Enzyme treatment: β(1-4) galactosidase from Aspergillus oryzae was purified using an SP Sepharose Fast Flow column (GE Healthcare Lifesciences) as described previously (47). N-glycans were incubated with 25 µM of enzyme in 10 mM sodium acetate buffer pH 4.6 for 24 h at 37 °C. Coffee bean α-galactosidase (50 mU) and Jack bean α-mannosidase (15 mU) treatments were carried out in 50 mM ammonium acetate pH 5.0 buffer for 24 h at 37 °C. The β(1-3/6) galactosidase (P0726S, New England Biolabs, USA) and α-fucosidase (P0748S, NEB) treatments were carried out for 24 h at 37 °C as per the manufacturer’s instructions. Following enzymatic digestion, samples were subjected to Sep-Pak Classic C18 clean-up. The purified glycans were recovered in the 5% acetic acid fraction, lyophilized, permethylated (except those treated with α-mannosidase) and subjected to MALDI-TOF and TOF/TOF MS analysis. The α-mannosidase-treated sample was subjected to 2-AB labeling before MALDI-TOF and TOF/TOF MS analysis.

Determination of monosaccharide composition and linkage of N-glycans using gas chromatography-mass spectrometry (GC-MS)— Monosaccharide composition and linkage of glycans was determined using GC-MS of partially methylated alditol acetates (PMAAs) (48). N-glycan release and permethylation were carried out as described earlier in experimental procedures. Permethylated glycans were hydrolyzed (2.5 M trifluoroacetic acid for 4 h at 100 °C), reduced (10 mg sodium borodeuteride in 2 M ammonium hydroxide for 2 h at room temperature), and acetylated in 400 µl of acetic anhydride:pyridine (3:1 v/v) for 1 h at 100 °C. The PMAAs formed were dissolved in 50 µl of chloroform, of which 2 µl were used for analysis. GC-MS of PMAAs was carried out in a Clarus SQ 8C GC/MS (Perkin Elmer) using an RTX-5 fused silica column of length 30 m, and internal diameter 0.32 mm (Restek, Corp.) with helium as the carrier gas. The temperature of the oven was maintained at 40 °C for 1.5 min, ramped up to 130 °C at 40 °C/min and then to 290 °C at 8 °C/min and maintained at 290 °C for 5 min (49).

Sequence analysis— To identify putative GALT-1 sequences in S. mediterranea, amino acid sequences of GALT-1 from C. elegans (accession number NP 504545.2) and its avian homolog from C. livia (accession number FJ971845.1/ADC84389.1) were used as query sequences for a sequence similarity search using BLASTp against the PlanMine database (23). All entries in the GT-92 glycosyltransferase family listed in the CAZY database (50) and the two putative GALT-1 sequences from S. mediterranea obtained from the sequence search were aligned using MUSCLE (51). Phylogenetic analysis was performed using the maximum likelihood (ML) method based on the JTT matrix-based model (52) for 1000 bootstraps using MEGA7 (53). Domain organization was ascertained using SMART (54). The distribution of GALT-1 in different cell types was ascertained using the single cell sequencing (SCS Whitehead) database (24).

RNA isolation, cDNA synthesis, and PCRs— Total RNA was isolated from planarians using TRIzol reagent (Invitrogen) as per the manufacturer’s instructions. First-strand cDNA synthesis was carried out with 5 µg of total RNA and 1 µg of oligo dT (Invitrogen) using the Superscript III First strand synthesis kit (Invitrogen). PCR amplification was performed using TaKaRa LA Taq (R002M) at an annealing temperature of 52 °C. PCR products were gel-extracted using the Wizard® SV Gel and PCR Clean-Up System (Promega) and cloned into the pCR™I-TOPO® vector using the TOPO TA cloning kit (Invitrogen) as per the manufacturer’s instructions. The plasmid was isolated from transformed clones using the QIAprep® Miniprep kit (QIAGEN) and verified for inserts using in-house Sanger sequencing. The primer sequences used were:

- Smed-galt-1-1:
 Forward: CGTCTGAAACTCTCAATGGAC
 Reverse: TGAAACCAAACATTCCATCGCA
- Smed-galt-1-2:
 Forward: TCGGACAAGAAACAGTTACAGA
 Reverse: CGTCTGAAACTCTCAATGGAC
Reverse: TTTCCCCTAAGCCATCCCAG

Whole-planaria in situ hybridization (WISH)— A digoxigenin (DIG)-labeled antisense riboprobe was synthesized from the linearized plasmid using Sp6 polymerase (Roche) and a DIG RNA labeling kit (Roche) as per the manufacturer’s instructions. Formaldehyde-based whole-planaria in situ hybridization was carried out as described previously (17). Briefly, planaria were killed by treatment with 5% N-acetyl cysteine, fixed (in 4% formaldehyde for 40 min), dehydrated (in 100% methanol), and bleached with 6% H2O2 in methanol under white light. Hybridization was carried out at 55 °C for 16 h. Following hybridization, planaria were washed thrice with 2x SSC buffer (saline-sodium citrate buffer, pH 7.0, containing 0.1% Triton-X 100), followed by three washes with 0.2x SSC at 55 °C for 20 min each. Samples were blocked in MABT buffer (100 mM maleic acid, 150 mM NaCl, 0.1% Tween-20, pH 7.5) containing 5% horse serum and western blocking reagent (Roche) for 2 h at room temperature, followed by incubation with alkaline phosphatase-conjugated anti-DIG Fab (1:2000; Roche) in blocking buffer for 12 h at 4 °C. Color was developed using Nitro Blue Tetrazolium/5-bromo-4-chloro-3-indolyl-phosphate (NBT/BCIP) as the chromogen (1:30; Roche) in AP buffer (100 mM Tris-HCl pH 9.5, 100 mM NaCl, 50 mM MgCl2, 0.1% Tween 20, 2% polyvinyl alcohol) by incubating in the dark for 2 h at room temperature.

RNA interference (RNAi)— Knockdown of target genes was performed using double-stranded RNA-mediated interference (55). Double-stranded RNA (dsRNA) was prepared using T7 RNA polymerase (Roche). Each 25 µl reaction contained 2.5 µg of template, 8 mM of rNTPs (NEB), 2 µl of T7 polymerase, 1 µl of RNAase out (Invitrogen), and nuclelease-free water. The contents were incubated at 37 °C for 16 h and treated with DNase I for 1 h at 37 °C. The dsRNA produced from 4 such reactions were pooled and recovered by precipitation with 0.6 M lithium chloride and ethanol (75%). RNAi was performed by injecting dsRNA for 5 consecutive days (280 nl each day) using Nanoject II injector (Drummond Scientific Company, USA). The dsRNA prepared from a GFP-plasmid was used as a negative control. Phenotypes were scored on the sixth day. Knockdown efficiency was verified using real-time quantitative PCR (qPCR). Real-time qPCR was carried out in a 384-well plate using the Maxima SYBR green/ROX master mix (Thermo Scientific) on a CFX384 Touch™ Real-Time PCR detection system (Bio-Rad Laboratories). A technical triplicate of three biological trials was performed and the mean threshold value of each gene was normalized with Smed-actin as described previously (56).

Imaging— Whole mount in situ hybridization and knockdown phenotypes were imaged on an Olympus SZX 16 stereomicroscope using the cellSens Dimension software. Acquired images were analyzed using the ImageJ software.

ACKNOWLEDGEMENTS

We thank Prof. Bernard Henriissat (Architecture et Fonction des Macromolécules Biologiques, CNRS, Aix-Marseille Université, F-13288 Marseille, France) for sharing FASTA sequences of GT-92 family of galactosyltransferase. We thank Mr. Vairavan Lakshmanan, Dr. Shaik Naseer Pasha, Dr. Praveen Anand, and Dr. Anna Protasio for their help with bioinformatics. We acknowledge the support from the Mass Spectrometry facility, Sequencing facility, and Centre for Imaging and Flow cytometry facility (CIFF) at Centre for Cellular and Molecular Platforms (C-CAMP), Bangalore, India. We thank Dr. Swapna Nandakumar for editing and proofreading the manuscript. This work was supported by Wellcome-DBT Alliance Intermediate Fellowship awarded to Dr. Dasaradhi. P (500160/Z/09/Z), inStem - intramural funding and by Post-Doctoral Research Associateship from Department of Biotechnology, Government of India, awarded to Dr. Sabarinath.P.S.

CONFLICT OF INTEREST

Authors declare no conflicts of interest related to the contents of this article.
AUTHOR CONTRIBUTION
S.P.S, P.B, D.P, and R.S were involved in the concept and design of experiments and data interpretation. S.P.S carried out all the experiments, acquired and analyzed the data, and wrote the manuscript. P.B, D.P, and R.S critically revised the manuscript. All authors approved the final content of this article.

REFERENCE
1. Varki, A. (2017) Biological roles of glycans. Glycobiology. 27, 3–49
2. Aoki, K., Perlman, M., Lim, J.-M., Cantu, R., Wells, L., and Tiemeyer, M. (2007) Dynamic developmental elaboration of N-linked glycan complexity in the Drosophila melanogaster embryo. J. Biol. Chem. 282, 9127–9142
3. Cipollo, J. F., Awad, A. M., Costello, C. E., and Hirschberg, C. B. (2005) N-Glycans of Caenorhabditis elegans are specific to developmental stages. J. Biol. Chem. 280, 26063–26072
4. Schiller, B., Hykollari, A., Yan, S., Paschinger, K., and Wilson, I. B. H. (2012) Complicated N-linked glycans in simple organisms. Biol. Chem. 393, 661–673
5. Freeze, H. H. (2013) Understanding Human Glycosylation Disorders: Biochemistry Leads the Charge. J. Biol. Chem. 288, 6936–6945
6. Hagen, K. G. T., Zhang, L., Tian, E., and Zhang, Y. (2009) Glycobiology on the fly: Developmental and mechanistic insights from Drosophila. Glycobiology. 19, 102–111
7. Muramatsu, T., and Muramatsu, H. (2004) Carbohydrate antigens expressed on stem cells and early embryonic cells. Glycoconj. J. 21, 41–45
8. Williams, S. A., and Stanley, P. (2011) Roles for N- and O-Glycans in Early Mouse Development. in The Molecular Immunology of Complex Carbohydrates-3, pp. 397–410, Advances in Experimental Medicine and Biology, Springer, Boston, MA, 10.1007/978-1-4419-7877-6_20
9. Baguñá, J., and Romero, R. (1981) Quantitative analysis of cell types during growth, degrowth and regeneration in the planarians Dugesia mediterranea and Dugesia tigrina. Hydrobiologia. 84, 181–194
10. Forsthoefel, D. J., Park, A. E., and Newmark, P. A. (2011) Stem cell-based growth, regeneration, and remodeling of the planarian intestine. Dev. Biol. 356, 445–459
11. Ross, K. G., Currie, K. W., Pearson, B. J., and Zayas, R. M. (2017) Nervous system development and regeneration in freshwater planarians. Wiley Interdiscip. Rev. Dev. Biol. 6, n/a-n/a
12. Cebrià, F. (2016) Planarian Body-Wall Muscle: Regeneration and Function beyond a Simple Skeletal Support. Front. Cell Dev. Biol. 4, 8
13. Chong, T., Stary, J. M., Wang, Y., and Newmark, P. A. (2011) Molecular markers to characterize the hermaphroditic reproductive system of the planarian Schmidtea mediterranea. BMC Dev. Biol. 11, 69
14. Rink, J. C., Vu, H. T.-K., and Sánchez Alvarado, A. (2011) The maintenance and regeneration of the planarian excretory system are regulated by EGFR signaling. Dev. Camb. Engl. 138, 3769–3780
15. Davies, E. L., Lei, K., Seidel, C. W., Kroesen, A. E., McKinney, S. A., Guo, L., Robb, S. M., Ross, E. J., Gotting, K., and Alvarado, A. S. (2017) Embryonic origin of adult stem cells required for tissue homeostasis and regeneration. eLife. 10.7554/eLife.21052
16. Reddien, P. W., Bermange, A. L., Murlfitt, K. J., Jennings, J. R., and Sánchez Alvarado, A. (2005) Identification of genes needed for regeneration, stem cell function, and tissue homeostasis by systematic gene perturbation in planaria. Dev. Cell 8, 635–649
17. Pearson, B. J., Eisenhoffer, G. T., Gurley, K. A., Rink, J. C., Miller, D. E., and Alvarado, A. S. (2009) A Formaldehyde-based Whole-Mount In Situ Hybridization Method for Planarians. Dev. Dyn. Off. Publ. Am. Assoc. Anat. 238, 443–450
18. Natsuka, S., Hirohata, Y., Nakakita, S., Sumiyoshi, W., and Hase, S. (2011) Structural analysis of N-glycans of the planarian Dugesia japonica. FEBS J. 278, 452–460
19. Paschinger, K., Razzazi-Fazeli, E., Furukawa, K., and Wilson, I. B. H. (2011) Presence of galactosylated core fucose on N-glycans in the planaria Dugesia japonica. *J. Mass Spectrom. JMS.* 46, 561–567

20. Takeuchi, T., Arata, Y., and Kasai, K. (2016) Galactoseβ1-4fucose: A unique disaccharide unit found in N-glycans of invertebrates including nematodes. *PROTEOMICS.* 16, 3137–3147

21. Titz, A., Butschi, A., Henrisat, B., Fan, Y.-Y., Hennett, T., Razzazi-Fazeli, E., Hengartner, M. O., Wilson, I. B. H., Kuenzler, M., and Aebi, M. (2009) Molecular basis for galactosylation of core fucose residues in invertebrates: Identification of Caenorhabditis elegans N-glycan core α1,6-fucoside β1,4-galactosyltransferase GALT-1 as a member of a novel glycosyltransferase family. *J. Biol. Chem.* 10.1074/jbc.M109.058354

22. Suzuki, N., and Yamamoto, K. (2010) Molecular Cloning of Pigeon UDP-galactose:β-d-Galactoside α1,4-Galactosyltransferase and UDP-galactose:β-d-Galactoside β1,4-Galactosyltransferase, Two Novel Enzymes Catalyzing the Formation of Galα1–4Galβ1–4Galβ1–4GlcNAc Sequence. *J. Biol. Chem.* 285, 5178–5187

23. Brandl, H., Moon, H., Vila-Farré, M., Liu, S.-Y., Henry, I., and Rink, J. C. (2016) PlanMine—a mineable resource of planarian biology and biodiversity. *Nucleic Acids Res.* 44, D764–773

24. Wurtzel, O., Cote, L. E., Poirier, A., Satija, R., Regev, A., and Reddien, P. W. (2015) A Generic and Cell-Type-Specific Wound Response Precedes Regeneration in Planarians. *Dev. Cell.* 35, 632–645

25. Zhang, Y., Iwasa, T., Tsuda, M., Kobata, A., and Takasaki, S. (1997) A novel monoantennary complex-type sugar chain found in octopus rhodopsin: occurrence of the Gal β1-4Fuc group linked to the proximal N-acetylglucosamine residue of the trimannosyl core. *Glycobiology.* 7, 1153–1158

26. Takahashi, N., Masuda, K., Hiraki, K., Yoshihara, K., Huang, H.-H., Khoo, K.-H., and Kato, K. (2003) N-Glycan structures of squid rhodopsin. *Eur. J. Biochem.* 270, 2627–2632

27. Eckmair, B., Abed-Navandi, D., and Paschinger, K. (2016) Multistep Fractionation and Mass Spectrometry Reveal Zwitterionic and Anionic Modifications of the N- and O-glycans of a Marine Snail. *Mol. Cell. Proteomics MCP.* 15, 573–597

28. Wuhrer, M., Robijn, M. L. M., Koeleman, C. A. M., Balog, C. I. A., Geyer, R., Deelder, A. M., and Hokke, C. H. (2004) A novel Gal(beta1-4)Gal(beta1-4)Fuc(alpha1-6)-core modification attached to the proximal N-acetylglucosamine of keyhole limpet haemocyanin (KLH) N-glycans. *Biochem. J.* 378, 625–632

29. Hanneman, A. J., Rosa, J. C., Ashline, D., and Reinhold, V. N. (2006) Isomer and glycomer complexities of core GlcNAs in Caenorhabditis elegans. *Glycobiology.* 16, 874–890

30. Yan, S., Jin, C., Wilson, I. B. H., and Paschinger, K. (2015) Comparisons of Caenorhabditis Fucosyltransferase Mutants Reveal a Multiplicity of Isomeric N-Glycan Structures. *J. Proteome Res.* 14, 5291–5305

31. Yan, S., Brecker, L., Jin, C., Titz, A., Dragosits, M., Karlsson, N. G., Jantsch, V., Wilson, I. B. H., and Paschinger, K. (2015) Bisecting Galactose as a Feature of N-Glycans of Wild-type and Mutant Caenorhabditis elegans. *Mol. Cell. Proteomics MCP.* 14, 2111–2125

32. Schachter, H. (2009) Paucimannose N-glycans in Caenorhabditis elegans and Drosophila melanogaster. *Carbohydr. Res.* 344, 1391–1396

33. Wilson, J. R., Williams, D., and Schachter, H. (1976) The control of glycoprotein synthesis: N-acetylglucosamine linkage to a mannose residue as a signal for the attachment of L-fucose to the asparagine-linked N-acetylglucosamine residue of glycopeptide from alpha1-acid glycoprotein. *Biochem. Biophys. Res. Commun.* 72, 909–916

34. Shao, M. C., Sokolik, C. W., and Wold, F. (1994) Specificity studies of the GDP-[L]-fucose: 2-acetamido-2-deoxy-beta-[D]-glucose (Fuc–→Asn-linked GlcNAc) 6-alpha-[L]-fucosyltransferase from rat-liver Golgi membranes. *Carbohydr. Res.* 251, 163–173

35. Crispin, M., Harvey, D. J., Chang, V. T., Yu, C., Aricescu, A. R., Jones, E. Y., Davis, S. J., Dwek, R. A., and Rudd, P. M. (2006) Inhibition of hybrid- and complex-type glycosylation reveals the presence of the GlcNAc transferase I-independent fucosylation pathway. *Glycobiology.* 16, 748–756
Unusual core chitobiose-modified N-glycans

36. Lin, A. I., Philipsberg, G. A., and Haltiwanger, R. S. (1994) Core fucosylation of high-mannose-type oligosaccharides in GlcNAc transferase I-deficient (Lec1) CHO cells. Glycobiology. 4, 895–901

37. Yang, Q., and Wang, L.-X. (2016) Mammalian α,1,6-Fucosyltransferase (FUT8) Is the Sole Enzyme Responsible for the N-Acetylgulosaminyltransferase I-independent Core Fucosylation of High-mannose N-Glycans. J. Biol. Chem. 291, 11064–11071

38. Hoja-Łukowicz, D., Ciołczyk, D., Bergquist, J., Lityńska, A., and Laidler, P. (2000) High-mannose-type oligosaccharides from human placental arylsulfatase A are core fucosylated as confirmed by MALDI MS. Glycobiology. 10, 551–557

39. Yang, Q., Zhang, R., Cai, H., and Wang, L.-X. (2017) Revisiting the substrate specificity of mammalian α,1,6-fucosyltransferase (FUT8) reveals that it catalyzes core fucosylation of N-glycans lacking α1,3-arm GlcNAc. J. Biol. Chem. 10.1074/jbc.M117.804070

40. Liwanag, A. J. M., Ebert, B., Verherbruggen, Y., Rennie, E. A., Rautengarten, C., Oikawa, A., Andersen, M. C. F., Clausen, M. H., and Scheller, H. V. (2012) Pectin Biosynthesis: GALS1 in Arabidopsis thaliana Is a β-1,4-Galactan β-1,4-Galactosyltransferase. Plant Cell. 24, 5024–5036

41. Wohlschlager, T., Butschi, A., Grassi, P., Sutov, G., Gauss, R., Hauck, D., Schmieder, S. S., Knobel, M., Titz, A., Dell, A., Haslams, S. M., Hengartner, M. O., Aebi, M., and Künzler, M. (2014) Methylated glycans as conserved targets of animal and fungal innate defense. Proc. Natl. Acad. Sci. U. S. A. 111, E2787–2796

42. Abnave, P., Mottola, G., Gimenez, G., Boucherit, N., Trouvlin, V., Torre, C., Conti, F., Ben Amara, A., Lepolard, C., Djian, B., Hamaoui, D., Mettouchi, A., Kumar, A., Pagnotta, S., Bonatti, S., Lepidi, H., Salvetti, A., Abi-Rached, L., Lemichez, E., Mege, J.-L., and Ghigo, E. (2014) Screening in planarians identifies MORN2 as a key component in LC3-associated phagocytosis and resistance to bacterial infection. Cell Host Microbe. 16, 338–350

43. Cebría, F., and Newmark, P. A. (2005) Planarian homologs of netrin and netrin receptor are required for proper regeneration of the central nervous system and the maintenance of nervous system architecture. Development. 132, 3691–3703

44. An, B., Zhang, M., Johnson, R. W., and Qu, J. (2015) Surfactant-Aided Precipitation/on-Pellet-Digestion (SOD) Procedure Provides Robust and Rapid Sample Preparation for Reproducible, Accurate and Sensitive LC/MS Quantification of Therapeutic Protein in Plasma and Tissues. Anal. Chem. 87, 4023–4029

45. Babu, P., North, S. J., Jang-Lee, J., Chalabi, S., Mackerness, K., Stowell, S. R., Cummings, R. D., Rankin, S., Dell, A., and Haslam, S. M. (2009) Structural characterisation of neutrophil glycans by ultra sensitive mass spectrometry glycomics methodology. Glycoconj. J. 26, 975–986

46. Bigge, J. C., Patel, T. P., Bruce, J. A., Goulding, P. N., Charles, S. M., and Parekh, R. B. (1995) Nonselective and efficient fluorescent labeling of glycans using 2-amino benzamide and anthranilic acid. Anal. Biochem. 230, 229–238

47. Zeleny, R., Altmann, F., and Praznik, W. (1997) A capillary electrophoretic study on the specificity of beta-galactosidases from Aspergillus oryzae, Escherichia coli, Streptococcus pneumoniae, and Canavalia ensiformis (jack bean). Anal. Biochem. 246, 96–101

48. Albersheim, P., Nevins, D. J., English, P. D., and Karr, A. (1967) A method for the analysis of sugars in plant cell-wall polysaccharides by gas-liquid chromatography. Carbohydr. Res. 5, 340–345

49. Stepan, H., Bleckmann, C., Geyer, H., Geyer, R., and Staudacher, E. (2010) Determination of 3-O- and 4-O-methylated monosaccharide constituents in snail glycans. Carbohydr. Res. 345, 1504–1507

50. Lombard, V., Golaonnda Ramulu, H., Drula, E., Coutinho, P. M., and Henrissat, B. (2014) The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res. 42, D490-495

51. Edgar, R. C. (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32, 1792–1797

52. Jones, D. T., Taylor, W. R., and Thornton, J. M. (1992) The rapid generation of mutation data matrices from protein sequences. Comput. Appl. Biosci. CABIOS. 8, 275–282
Unusual core chitobiose-modified N-glycans

53. Kumar, S., Stecher, G., and Tamura, K. (2016) MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. *Mol. Biol. Evol.* **33**, 1870–1874
54. Schultz, J., Milpetz, F., Bork, P., and Ponting, C. P. (1998) SMART, a simple modular architecture research tool: Identification of signaling domains. *Proc. Natl. Acad. Sci.* **95**, 5857–5864
55. Sanchez Alvarado, A., and Newmark, P. A. (1999) Double-stranded RNA specifically disrupts gene expression during planarian regeneration. *Proc. Natl. Acad. Sci. U. S. A.* **96**, 5049–5054
56. Resch, A. M., Palakodeti, D., Lu, Y.-C., Horowitz, M., and Graveley, B. R. (2012) Transcriptome Analysis Reveals Strain-Specific and Conserved Stemness Genes in Schmidtea mediterranea. *PLOS ONE* **7**, e34447
57. Robert, X., and Gouet, P. (2014) Deciphering key features in protein structures with the new ENDscript server. *Nucleic Acids Res.* **42**, W320–W324

FOOTNOTES

Abbreviations
Man-2, -3, -4, -5, -6, and -7: Man$_2$GlcNAc$_2$, Man$_3$GlcNAc$_2$, Man$_4$GlcNAc$_2$, Man$_5$GlcNAc$_2$, Man$_6$GlcNAc$_2$, and Man$_7$GlcNAc$_2$.

CCM: core chitobiose modifications

MS: mass spectrometry

MALDI-TOF: matrix assisted laser desorption and ionization - time of flight

GC-MS: Gas chromatography - mass spectrometry

PMAAs: partially methylated alditol acetates
Table 1:

Monosaccharide composition and linkage analysis of N-linked oligosaccharides in *S. mediterranea*. PNGase A-released glycans were permethylated, hydrolyzed, reduced, and acetylated. Partially methylated altidol acetates (PMAAs) thus formed were subjected to GC-MS analysis.

Elution time (min)*	Signature ions*	Linkage Assignment
09.51	101, 118, 143, 203	4-linked Fucose
09.92	102, 118, 129, 145, 161, 205	Terminal Mannose
10.15	102, 118, 129, 145, 161, 205	Terminal Galactose
10.96	129, 130, 161, 190	2-linked Mannose
11.18	113, 118, 131, 173, 233	4-linked Galactose
11.29	118, 129, 161, 234, 277	3-linked Mannose
11.42	102, 118,129, 162, 189	6-linked Mannose
12.55	118, 129, 189, 234	3,6-linked Mannose
14.25	117, 159, 233	4-linked N-Acetylglucosamine
15.48	117, 159, 261	4,6-linked N-Acetylglucosamine

* – GC chromatogram and MS spectra of PMAAs (Supplementary Figure. S3). Terminal fucose was undetected.
Table 2: Summary of glycomers observed in \(F_1H_nN_2 \) series

Molecular ions represent singly charged monosodiated permethylated N-glycans in the \(F_1H_nN_2 \) series observed in MALDI-TOF MS spectra (Fig. 1). Based on the extensions seen in the core chitobiose, different glycomers were grouped into forms ranging from \(a \)-form to \(f \)-form. Percentages represent relative distributions of each glycomer observed in the MALDI-TOF/TOF MS spectra (Fig. 2). The relative distribution of each glycomer was determined by calculating the intensities of major B- and Y-ion pairs corresponding to a particular glycoform and dividing it by the sum total of the intensities of all major B- and Y-ions corresponding to each glycomer within the individual parent mass.

\(m/z \) \([M+Na]^+\)	\(a \)	\(b \)	\(c \)	\(d \)	\(e \)	\(f \)
1345	54%	46%	-	-	-	-
1549	-	-	-	-	-	-
1753	-	20%	80%	-	-	-
1958	-	14%	70%	16%	-	-
2162	-	14%	25%	56%	11%	-
2366	-	-	42%	45%	13%	-
2570	-	-	-	77%	12%	10%
FIGURE LEGENDS:

Fig. 1: MALDI-TOF MS spectra of permethylated N-glycans from S. mediterranea
MS spectra of the 50% acetonitrile fraction of permethylated N-glycans obtained from the C18 Classic cartridge. Molecular ions indicated are C^{12} mono-isotopic peaks of singly-charged monosodiated [M+Na]^+ N-glycans released with PNGase A treatment. Structure was annotated based on the putative composition, MS/MS fragmentation pattern, and biosynthetic knowledge, and represented as per the symbols used in the consortium for functional glycomics (CFG). Glycans at peaks of m/z 1345, 1549, 1753, 1957, 2162, 2366, and 2570 with multiple isomers are represented by their putative compositions: Fucose(F), Hexose(H), and HexNAc$_2$(N). Data presented here are representative of the MS spectra of three biological trials. Mass accuracy (± 0.05 Da). Monosaccharide moieties represented outside the brackets have not been unequivocally defined.

Fig. 2: MALDI-TOF/TOF and MS/MS spectra of the Fuc$_1$Hex$_n$HexNAc$_2$ series
Major peaks of the F$_n$H$_n$N$_2$ series were subjected to MALDI-TOF/TOF analysis. MS/MS spectra of singly-charged monosodiated [M+Na]$^+$ permethylated N-glycans of m/z A) 1345, B) 1549, C) 1753, D) 1957, E) 2162, F) 2366, and G) 2570 obtained in the 50% acetonitrile fraction. The B- and Y-fragment ions obtained are represented. Major B/Y-ion pairs corresponding to each isomer are color matched. Major B-ions of m/z 690, 894, 1098, 1302, and 1506 correspond to Man$_2$GlcNAc structures at the non-reducing termini. The Y-ion of m/z 474 represents fucose linked to proximal GlcNAc. The Y-ions of m/z 678, 882, 1086, 1290, and 1494 correspond to mono- or poly-galactosylated fucose linked to reducing termini core-GlcNAc. The data presented here are representative of the MS/MS spectra of three biological trials.

Fig. 3: MALDI-TOF MS and MS/MS spectra of β(1-4) galactosidase-treated N-glycans
PNGase A-released N-glycans treated with and without β(1-4) galactosidase (from Aspergillus oryzae) were permethylated and analyzed using MALDI-TOF MS and MALDI-TOF/TOF MS/MS. (A) MS spectra of singly-charged monosodiated [M+Na]$^+$ permethylated N-glycans in galactosidase-treated and -untreated N-glycans. Glycans susceptible to Aspergillus β1-4 galactosidase treatment lost a galactose residue (204 Da) and showed a concomitant reduction in peak intensities at m/z 1549, 2040, 2070, 2244, and 2029. Loss of the galactose residue resulted in increases in peak intensities at m/z 1141, 1345, 1161, 1824, and 1836 (↑ indicates increased peak intensity, * indicates reduced peak intensity, ← indicates change between original m/z and products formed after enzyme treatment). Other CCM structures of m/z 1957, 2162, 2366, and 2570 were resistant to β(1-4) galactosidase. (B–D) MS/MS spectra of m/z 1549, 1753, and 2162. Following β(1-4) galactosidase treatment, MS/MS data show loss of Y-ion m/z 678, and its corresponding B-ion (*). Loss of a hexose from m/z 678 indicates the presence of a galactose 4-linked to core fucose. Other Y-ions of m/z 882, 1086, 1290, and 1496 remained resistant to β(1-4) galactosidase.

Fig. 4 MALDI-TOF MS spectra of 2-AB-labeled N-glycans from S. mediterranea
MS spectra of 2-AB-labeled N-glycans obtained in the 50% acetonitrile fraction using the Hypercarb cartridge. The molecular ions represented here are C^{12} mono-isotopic peaks of singly-charged monosodiated [M+Na]$^+$ 2-AB-labeled N-glycans released with PNGase A treatment. The structures of the glycans were annotated based on the MS/MS data and knowledge of biosynthesis, and depicted as per the symbols used in the consortium for functional glycomics (CFG). The masses of the annotated peaks show consecutive increases of 14 Da, indicating extensive methylation. Glycans with a putative composition belonging to the Fuc$_1$(F)Hex$_n$(H)HexNAc$_2$(N) series are represented in characters, and (Me) indicates methylation. The data presented here are representative MS spectra of three biological trials. Mass accuracy (± 0.05 Da). Monosaccharide moieties and methyl groups (Me) represented outside the brackets have not been unequivocally defined.
Unusual core chitobiose-modified N-glycans

Fig. 5 MALDI-TOF MS/MS spectra of 2-AB-labeled glycans
The data represent MS/MS spectra of singly-charged monosodiated [M+Na]+ 2-AB-labeled N-glycans released with PNGase A treatment. (A) MS/MS of m/z 1565. The B-ions of m/z 1240 and 1254 represent the presence of 2 isomers with differences in methylation along the non-reducing mannose termini. The Y-ions m/z 364 and 378 differing by 14 Da indicate the methylated and non-methylated core. (B–E) MS/MS spectra of CCM structures of m/z 1389, 1565, 1741, and 1917. The Y-ion of m/z 672, corresponding to GalFuc in the parent mass 1389 shows no methylation, while the Y-ions of m/z 848 and 1024 represent the sequential addition of methyl groups (+ 14 Da) in the extended GalFuc structures. The positions of methyl groups (Me) on the mannose and galactose moieties are not unequivocally defined, and are represented outside the brackets.

Fig. 6 Identification and expression of GALT-1 in S. mediterranea
(A) Maximum likelihood (ML) phylogenetic tree of identified SMED-GALT-1 proteins. The phylogenetic tree was generated from select sequences belonging to the GT-92 family. (B) The domain architecture of SMED-GALT-1 as visualized using SMART. The domain structure indicates the presence of a transmembrane domain (TM) at the N-terminal, and a GT-92 domain at the C-terminal. (C) Multiple sequence alignment of SMED-GALT-1 hits (dd_Smed_v6_12154_0_1 and dd_Smed_v6_5401_0_1), and C. elegans (NP504545.2) and C. livia (ADC84389.1) protein sequences. Sequences were aligned using MUSCLE and presented using ESPript 3.0 (57). The SMED-GALT-1 sequences show 26% identity with the C. elegans and C. livia homologs. The (*) represents the DXD domain, which is characteristic of Mn2+-dependent glycosyltransferases. (D) The distribution of putative Smed-galt-1 homologs in different cell types using the single cell sequencing (SCS) database (Key: NB - neoblast, EEP - early epidermal progenitor, LEP - late epidermal progenitor, E1/E2 - epidermis 1 and 2, Gut - intestine, PN - protonephridia, PP - parapharyngeal, Mu- muscles, N - neural, N-C - Ciliated neurons). (E) Whole mount in situ hybridization representing the spatial distribution of galt-1 in S. mediterranea. Smed-galt-1 is expressed in the pre-pharyngeal (a), pharynx (b), and mesenchyme (c) - the loose undefined tissue within the organism. Scale bar 200 µm.

Fig. 7 Proposed biosynthetic scheme for the galacto-fucosylation of high mannoses and paucimannosidic structures
MALDI-TOF and TOF/TOF MS analyses of both permethylated and 2-AB-labeled N-glycans reveal the presence of multiple isomeric structures containing mono- and poly-galactosylated core fucose structures. The presence of high mannoses with such modifications suggests the occurrence of a GlcNAc-independent fucosylation pathway. The proposed biosynthetic scheme for the production of the abovementioned structures would involve core-fucosylation reactions independent of β(1-2) GlcNAc at the α1-3 Man arm, and subsequent galactosylation (via GALT-1-1 or GALT-1-2 (*) whose functions are currently unknown) and trimming by mannosidase (represented by the dotted lines and the red box). An alternate biosynthetic scheme would involve GlcNAc-dependent biosynthesis where Man-5 to Man-2 are formed through the sequential action of FUT-8, hexosaminidase, mannosidase II, and GALT-1. This biosynthetic scheme was constructed using the data on molecular ions obtained through MALDI-TOF MS spectra of PNGase A-released N-glycans. The molecular ions indicated are singly-charged monosodiated permethylated N-glycans. Key: Man – Mannose, Gal – Galactose, Fuc – fucose, Gn – N-acetyl Glucosamine.
Figure 4

Intensity 3484.4

Intensity 1.2E+4

Intensity 683.1
Figure 6
Figure 7.

GlcNAc-independent pathway

Gal\textsubscript{α}FucMan6Gn2 $\xrightarrow{GALT-1}$ FucMan6Gn2 $\xrightarrow{FUT-8}$ Man6Gn2 (m/z 1783)

GlcNAc-independent Mannosidase

Gal\textsubscript{α}FucMan5Gn2 $\xrightarrow{GALT-1}$ FucMan5Gn2 $\xrightarrow{FUT-8}$ Man5Gn2 (m/z 1579)

GlcNAc-independent Mannosidase

Gal\textsubscript{α}FucMan4Gn2 $\xrightarrow{GALT-1}$ FucMan4Gn2 $\xrightarrow{FUT-8}$ Man4Gn2 (m/z 1375)

GlcNAc-independent Mannosidase

Gal\textsubscript{α}FucMan3Gn2 $\xrightarrow{GALT-1}$ FucMan3Gn2 $\xrightarrow{FUT-8}$ Man3Gn2 (m/z 1171)

GlcNAc-independent Mannosidase

Gal\textsubscript{α}FucMan2Gn2 $\xrightarrow{GALT-1}$ FucMan2Gn2 $\xrightarrow{FUT-8}$ Man2Gn2 (m/z 967)

GlcNAc-dependent pathway

GnMan5Gn2 (m/z 1825)

GlcNAc Transferase

FucGnMan5Gn2

GALT-1

GalFucGnMan5Gn2

Hexosaminidase

GalFucMan5Gn2 (m/z 1549)

GALT-1

Mannosidase II

Gal\textsubscript{α}FucMan5-2Gn2
Identification of multiple isomeric core chitobiose-modified high mannose and paucimannose N-glycans in the planarian Schmidtea mediterranea
Sabarinath Subramanian Peruvemba, Ponnusamy Babu, Dasaradhi Palakodeti and Ramaswamy Subramanian

J. Biol. Chem. published online February 23, 2018

Access the most updated version of this article at doi: 10.1074/jbc.RA117.000782

Alerts:
- When this article is cited
- When a correction for this article is posted

Click here to choose from all of JBC's e-mail alerts