Weak Forms of Soft Separation Axioms and Fixed Soft Points

T. M. Al-shami\(^a\), E. A. Abo-Tabl\(^{b,c}\) and B. A. Asaad\(^{d,e}\)

\(^a\) Department of Mathematics, Sana’a University, Sana’a, Yemen; \(^b\) Department of Mathematics, Faculty of Science, Assiut University, Assiut, Egypt; \(^c\) Department of Computer Science, College of Science, Cihan University-Duhok, Iraq; \(^d\) Department of Mathematics, College of Arts and Science, Methnab, Qassim University, Buridah, Saudi Arabia; \(^e\) Department of Mathematics, Faculty of Science, University of Zakho, Iraq

ABSTRACT

Realizing the importance of separation axioms in classifications of topological spaces and studying certain properties of fixed points, we formulate new soft separation axioms, namely \(tt\)-soft \(bT_i\) \((i = 0, 1, 2, 3, 4)\) and \(tt\)-soft \(b\)-regular spaces. Their definitions depend on three factors: soft \(b\)-open sets, total belong and total non-belong relations. In fact, they are genuine generalizations of \(p\)-soft \(T_i\)-spaces in the cases of \(i = 0, 1, 2\). With the help of examples, we study the relationships between them as well as with soft \(bT_i\) \((i = 0, 1, 2, 3, 4)\) and soft \(b\)-regular spaces. Some interesting properties of them are obtained under the conditions of soft hyperconnected and extended soft topological spaces. Also, we show that they are preserved under finite product soft spaces and soft \(b\)-homeomorphism mappings. Finally, we introduce a concept of \(b\)-fixed soft points and investigate its main properties.

ARTICLE HISTORY

Received 21 May 2020
Revised 6 April 2021
Accepted 21 April 2021

KEYWORDS

Soft \(b\)-open Set; \(tt\)-soft \(bT_i\)-space \((i = 0, 1, 2, 3, 4)\); Extended Soft Topology; Soft Hyperconnected Space; Additive Property; Topological Property; Soft \(b\)-compact Space; \(b\)-fixed Soft Point

2010 MATHEMATICS SUBJECT CLASSIFICATIONS

47H10; 54A05; 54C15; 54D10; 54D15

1. Introduction

Molodtsov’s soft set [1] was established in 1999 as a new technique for tackling real-life problems that suffer from imprecision and uncertainty. Molodtsov [1] investigated the merits of soft sets in comparison to probability theory and fuzzy set theory. The soft set-theoretic concepts were then introduced and investigated by a number of researchers, and many applications of soft sets were made in different disciplines such as decision-making [2], engineering [3] and medical science [2].

In 2011, Shabir and Naz [4] used soft sets defined over an initial universal set with a fixed set of parameters to introduce the concept of soft topological space. Researchers then studied several concepts of classical topological spaces through soft topological spaces and discussed the validity of some known topological results in soft topological spaces. Soft compactness was defined and studied by [27], in 2012. Hida [6] distinguished between two types of soft compactness depending on the belong relation. Al-shami et al. [7] studied almost soft compact and approximate soft compact spaces as extensions of a soft compact space. [8] utilized soft \(b\)-open sets to generalize soft compactness. The behavior of
soft closed sets in a soft Hausdorff was revised in [9] and many of the allegation results of soft separation axioms were corrected in [10] with the help of concrete examples. Al-shami and Kočinac [11] proved that the enriched and extended soft topologies are coincide. This result is very important in the study of the interrelationships between soft topological space and its parametric topological spaces.

The relations of belong and non-belong given in [4] were utilized in the studies of soft set and soft topology. However, the authors of [12], in 2018, came up new relations of belong and non-belong between an ordinary points and soft set, namely partial belong and total non-belong relations. In fact, these relations widely open the door to study and redefine many soft topological notions. This leads to obtain many fruitful properties and changes that can be seen significantly on the study of soft separation axioms as it was shown in [12–14]. These relations were studied in the contents of bipolar soft sets [15] and double framed soft sets [16].

Das and Samanta [17] studied the concept of a soft metric based on the soft real set and soft real numbers given in [18]. Wardowski [19] tackled the fixed point in the setup of soft topological spaces. Abbas et al. [20] presented soft contraction mappings and established a soft Banach fixed point theorem in the framework of soft metric spaces. Recently, many researchers explored fixed point findings in soft metric type spaces, see, for example, [21–24].

One of the main ideas that helps to prove some properties and eliminate some problems on soft topology is the concept of a soft point. It was first defined by Zorlutuna et al. [25] in order to study the interior points of a soft set and soft neighborhood systems. Then [18] and [26] redefined soft points concurrently to discuss soft metric spaces. In fact, the recent definition of a soft point shows similarity between many set-theoretic properties and their counterparts on soft setting. Two types of soft topologies, namely enriched soft topology and extended soft topology were introduced in [27] and [26], respectively. The equivalence between these two topologies have been recently proved in [11]. Recently, Al-shami [28, 29] has presented some practical applications of soft compact and soft separation axioms, and Kočinac et al. [30] have studied Menger spaces in soft setting.

We organized this paper as follows: Section 2 recalls the basic principles of soft sets and soft topologies. In Section 4, we introduce the concepts of \(tt \)-soft \(bT_i \) \((i = 0, 1, 2, 3, 4) \) and \(tt \)-soft \(b \)-regular spaces with respect to the ordinary points by using total belong and total non-belong relations. The relationships between them and their main properties are discussed with the help of interesting examples. In Section 5, we explore a \(b \)-fixed soft point theorem and study some main properties. In particular, we conclude under what conditions \(b \)-fixed soft points are preserved between a soft topological space and its parametric topological spaces. Section 6 concludes the paper.

2. Preliminaries

To well understand the results obtained in this study, we shall recall some basic concepts, definitions and properties from the literature.

2.1. Soft Sets

Definition 2.1 ([1]): Let \(X \) be the universal set and \(M \) be a set of parameters. A pair \((G, M)\) is said to be a soft set over \(X \) provided that \(G \) is a map of \(M \) into the power set \(2^X \).
In this study, we use a symbol G_M to refer to a soft set instead of (G, M) and we identify it as ordered pairs $G_M = \{(m, G(m)) : m \in M \text{ and } G(m) \subseteq 2^X\}$. A family of all soft sets defined over X with M is denoted by $S(X_M)$.

Definition 2.2 ([31]): A soft set G_M is said to be a subset of a soft set H_M, denoted by $G_M \subseteq H_M$, if $G(m) \subseteq H(m)$ for each $m \in M$.

The soft sets G_M and H_M are said to be soft equal if each one of them is a subset of the other.

Definition 2.3 ([1, 12]): Let G_M be a soft set over X and $x \in X$. We say that:

(i) $x \in G_M$, it is read: x totally belongs to G_M, if $x \in G(m)$ for each $m \in M$.

(ii) $x \notin G_M$, it is read: x does not partially belong to G_M, if $x \notin G(m)$ for some $m \in M$.

(iii) $x \in G_M$, it is read: x partially belongs to G_M, if $x \in G(m)$ for some $m \in M$.

(iv) $x \notin G_M$, it is read: x does not totally belong to G_M, if $x \notin G(m)$ for each $m \in M$.

Remark 2.1: Let G_M be a soft set over X and $x \in X$. We say that:

(i) G_M totally contains x if $x \in G_M$.

(ii) G_M does not partially contain x if $x \notin G_M$.

(iii) G_M partially contains x if $x \subseteq G_M$.

(iv) G_M does not totally contain x if $x \notin G_M$.

Definition 2.4 ([32]): The relative complement of a soft set G_M is a soft set G_M^c, where $G^c : M \to 2^X$ is a mapping defined by $G^c(m) = X \setminus G(m)$ for all $m \in M$.

Definition 2.5 ([12, 17, 26, 33]): A soft set (G, M) over X is said to be:

(i) A null soft set, denoted by Φ, if $G(m) = \emptyset$ for each $m \in M$.

(ii) An absolute soft set, denoted by X, if $G(m) = X$ for each $m \in M$.

(iii) A soft point P_m^x if there are $m \in M$ and $x \in X$ such that $G(m) = \{x\}$ and $G(m') = \emptyset$ for each $m' \in M \setminus \{m\}$. We write that $P_m^x \in G_M$ if $x \in G(m)$.

(iv) A stable soft set if there is a subset A of X such that $G(m) = A$ for each $m \in M$ and it is denoted by \hat{A}. In particular, we denote by x_M^A if $A = \{x\}$.

(v) A countable (resp. finite) soft set if $G(m)$ is countable (resp. finite) for each $m \in M$. Otherwise, it is said to be uncountable (resp. infinite).

Definition 2.6 ([32, 33]): Let G_M and H_M be two soft sets over X.

(i) Their intersection, denoted by $G_M \cap H_M$, is a soft set U_M, where a mapping $U : E \to 2^X$ is given by $U(m) = G(m) \cap H(m)$.

(ii) Their union, denoted by $G_M \cup H_M$, is a soft set U_M, where a mapping $U : E \to 2^X$ is given by $U(m) = G(m) \cup H(m)$.

Definition 2.7 ([34]): Let G_M and H_M be two soft sets over X and Y, respectively. Then the Cartesian product of G_M and H_M, denoted by $G \times H_M$, is defined as $(G \times H)(m, m') = G(m) \times H(m')$ for each $(m, m') \in M \times M$.

The soft union and intersection operators were generalized for any number of soft sets in a similar way.

Definition 2.8 ([35]): A soft mapping between \(S(X_M) \) and \(S(Y_N) \) is a pair \((f, \phi)\), denoted also by \(f_\phi \), of mappings such that \(f : X \to Y, \phi : M \to N \). Let \(G_M \) and \(H_N \) be subsets of \(S(X_M) \) and \(S(Y_N) \), respectively. Then the image of \(G_M \) and pre-image of \(H_N \) are defined as follows.

(i) \(f_\phi(G_M) = (f_\phi(G))_N \) is a subset of \(S(Y_N) \) such \(f_\phi(G)(n) = \bigcup_{m \in \phi^{-1}(n)} f(G(m)) \) for each \(n \in N \).

(ii) \(f_\phi^{-1}(H)_M = (f_\phi^{-1}(H))_M \) is a subset of \(S(X_M) \) such that \(f_\phi^{-1}(H)(m) = f^{-1}(H(\phi(m))) \) for each \(m \in M \).

Definition 2.9 ([25]): A soft map \(f_\phi : S(X_M) \to S(Y_N) \) is said to be injective (resp. surjective, bijective) if \(\phi \) and \(f \) are injective (resp. surjective, bijective).

2.2. Soft Topology

Definition 2.10 ([4]): A family \(\tau \) of soft sets over \(X \) under a fixed set of parameters \(M \) is said to be a soft topology on \(X \) if it satisfies the following.

(i) \(\tilde{X} \) and \(\tilde{\Phi} \) are members of \(\tau \).

(ii) The intersection of a finite number of soft sets in \(\tau \) is a member of \(\tau \).

(iii) The union of an arbitrary number of soft sets in \(\tau \) is a member of \(\tau \).

The triple \((X, \tau, M)\) is called a soft topological space. A member in \(\tau \) is called soft open and its relative complement is called soft closed.

Proposition 2.1 ([4]): In \((X, \tau, M)\), a family \(\tau_m = \{G_M : G_M \in \tau\} \) is a classical topology on \(X \) for each \(m \in M \).

\(\tau_m \) is called a parametric topology and \((X, \tau_m)\) is called a parametric topological space.

Definition 2.11 ([4]): Let \((X, \tau, M)\) be a soft topological space and \(\emptyset \neq Y \subseteq X \). A family \(\tau_Y = \{\tilde{Y} \cap G_M : G_M \in \tau\} \) is called a soft relative topology on \(Y \) and the triple \((Y, \tau_Y, M)\) is called a soft subspace of \((X, \tau, M)\).

Definition 2.12: \((X, \tau, M)\) is said to be:

(i) soft hyperconnected ([36]) if it does not contain disjoint soft open sets;

(ii) soft extremally disconnected ([37]) if the closure of every soft open set is soft open.

Definition 2.13 ([38]): A subset \(G_M \) of \((X, \tau, M)\) is called soft \(b \)-open if \(G_M \subseteq \text{int}(\text{cl}(G_M)) \cap \text{cl}(\text{int}(G_M)) \).

Theorem 2.2 ([38]):

(i) Every soft open set is soft \(b \)-open.

(ii) The arbitrary union of soft \(b \)-open sets is soft \(b \)-open.
Definition 2.14 ([38]): Let G_M be a subset of (X, τ, M). Then G_M^b is the intersection of all soft b-closed sets containing G_M.

It is clear that: $x \in G_M^b$ if and only if $G_M \cap U_M \neq \emptyset$ for each soft b-open set U_M totally containing x; and $P_M^b \in G_M^b$ if and only if $G_M \cap U_M \neq \emptyset$ for each soft b-open set U_M totally containing P_M^b.

Theorem 2.3 ([39]): The soft intersection of finite soft pre-open subsets of a soft hyperconnected space is soft pre-open.

Definition 2.15 ([40]): (X, τ, M) is said to be:

(i) soft bT_0 if for every $x \neq y \in X$, there is a soft b-open set U_M such that $x \in U_M$ and $y \notin U_M$; or $y \in U_M$ and $x \notin U_M$;

(ii) soft bT_1 if for every $x \neq y \in X$, there are two soft b-open sets U_M and V_M such that $x \in U_M$ and $y \notin U_M$; and $y \in V_M$ and $x \notin V_M$;

(iii) soft bT_2 if for every $x \neq y \in X$, there are two disjoint soft b-open sets U_M and V_M such that $x \in G_M$ and $y \notin F_M$;

(iv) soft b-regular if for every soft b-closed set H_M and $x \in X$ such that $x \notin H_M$, there are two disjoint soft b-open sets U_M and V_M such that $H_M \subseteq U_M$ and $x \in V_M$;

(v) soft b-normal if for every two disjoint soft b-closed sets H_M and F_M, there are two disjoint soft b-open sets U_M and V_M such that $H_M \subseteq U_M$ and $F_M \subseteq V_M$;

(vi) soft bT_3 (resp. soft bT_4) if it is both soft b-regular (resp. soft b-normal) and soft bT_1-space.

Definition 2.16 ([8]): A family $\{G_M : i \in I\}$ of soft b-open subsets of (X, τ, M) is said to be a soft b-open cover of \tilde{X} if $\tilde{X} = \bigcup_{i \in I} G_M$. (X, τ, M) is said to be soft b-compact if every soft b-open cover of \tilde{X} has a finite subcover.

To study the properties that preserved under soft b^*-homeomorphism maps, the concept of a soft b-irresolute map will be presented in this work under the name of a soft b^*-continuous map.

Definition 2.17 ([41]): $g : (X, \tau, M) \rightarrow (Y, \tau, M)$ is called soft b^*-continuous if the inverse image of each soft b-open set is soft b-open.

Proposition 2.4 ([41]): The soft b^*-continuous image of a soft b-compact set is soft b-compact.

Definition 2.18 ([38]): A soft map $f : (X, \tau, A) \rightarrow (Y, \tau, B)$ is said to be:

(i) soft b-continuous if the inverse image of each soft open set is soft b-open;

(ii) soft b-open (resp. soft b-closed) if the image of each soft open (resp. soft closed) set is soft b-open (resp. soft b-closed);

(iii) a soft b-homeomorphism if it is bijective, soft b-continuous and soft b-open.
Definition 2.19: A soft topology \mathcal{T} on X is said to be:

(i) an enriched soft topology $[27]$ if all soft sets G_M such that $G(m) = \emptyset$ or X are members of \mathcal{T};
(ii) an extended soft topology $[26]$ if $\mathcal{T} = \{G_M : G(m) \in \tau_m \text{ for each } m \in M\}$, where τ_m is a parametric topology on X.

Al-shami and Kočinac $[11]$ proved the equivalence of enriched and extended soft topologies and obtained many useful results that help to study the relationships between soft topological spaces and their parametric topological spaces.

Theorem 2.5 ([11]): A subset (F, M) of an extended soft topological space (X, \mathcal{T}, M) is soft β-open if and only if each m-approximate element of (F, M) is β-open.

Proposition 2.6 ([5]): Let $\{ (X_i, \tau_i, M) : i \in I \}$ be a family of pairwise disjoint soft topological spaces and $X = \bigcup_{i \in I} X_i$. Then the collection

$$\mathcal{T} = \{ (G, M) \subseteq X : (G, M) \subseteq \bigcap_{i \in I} X_i \text{ is a soft open set in } (X_i, \tau_i, M) \text{ for every } i \in I \}$$

defines a soft topology on X with a fixed set of parameters M.

Definition 2.20 ([5]): The soft topological space (X, \mathcal{T}, M) given in the above proposition is said to be the sum of soft topological spaces and is denoted by $(\oplus_{i \in I} X_i, \mathcal{T}, M)$.

Theorem 2.7 ([5]): A soft set $(G, M) \subseteq \bigoplus_{i \in I} X_i$ is soft β-open (resp. soft β-closed) in $(\oplus_{i \in I} X_i, \mathcal{T}, M)$ if and only if all $(G, M) \subseteq \bigcap_{i \in I} X_i$ are soft β-open (resp. soft β-closed) in (X_i, τ_i, M).

Proposition 2.8 ([19]): Let $g_\varphi : (X, \mathcal{T}, M) \to (X, \mathcal{T}, M)$ be a soft map such that $\bigcap_{n \in \mathbb{N}} g_\varphi^n(X)$ is a soft point P_m. Then P_m is a unique fixed point of g_φ.

Theorem 2.9 ([25]): Let (X, \mathcal{T}, A) and (Y, \mathcal{T}, B) be two soft topological spaces and $\Omega = \{G_A \times F_B : G_A \in \mathcal{T} \text{ and } F_B \in \mathcal{T}\}$. Then the family of all arbitrary union of elements of Ω is a soft topology over $X \times Y$ under a fixed set of parameters $A \times B$.

3. Further Properties of Soft β-open Sets

In the following results, we prove under what condition the family of soft β-open subsets of (X, \mathcal{T}, M) forms a soft topology over X that is finer than \mathcal{T}. In fact, it will help us to study some properties of soft β-separation axioms and soft β-compact spaces, see, for example, Theorem (4.7) and Proposition (4.13).

Theorem 3.1: The following two properties are equivalent:

(i) (X, \mathcal{T}, M) is soft extremally disconnected.
(ii) A soft set is soft β-open iff it is soft pre-open.

Proof: Let (G, M) be a soft β-open set. Then $(G, M) \subseteq cl(int(cl(G, M))) \subseteq cl(G, M)$. By hypothesis, $cl(int(cl(G, M)))$ is soft open. This implies that (G, M) is soft pre-open.
Conversely, let \((G, M)\) be a soft open set. Then \(cl(G, M) \subseteq cl(int(cl(G, M)))\). This means that \(cl(G, M)\) is a soft semi-open set. Then it is soft \(\beta\)-open. By hypothesis, it is soft pre-open. Therefore \(cl(G, M) \subseteq int(cl(G, M))\). Since \(int(cl(G, M)) \subseteq cl(G, M)\) is true, we obtain \(cl(G, M) = int(cl(G, M))\). Thus \(cl(G, M)\) is a soft open set. Hence, \((X, \tau, M)\) is soft extremally disconnected.

Corollary 3.2: The families of soft pre-open, soft \(b\)-open and soft \(\beta\)-open subsets of a soft extremally disconnected space coincide.

Proposition 3.3: Every soft hyperconnected space is soft extremally disconnected.

Proof: The proof follows from the fact that every soft open subset of soft hyperconnected space is soft dense.

Theorem 3.4: The soft intersection of finite soft \(b\)-open subsets of a soft hyperconnected space is soft \(b\)-open.

Proof: Let \(G_M\) and \(H_M\) be two soft \(b\)-open subsets of a soft hyperconnected space \((X, \tau, M)\). Then they are \(\beta\)-open sets. It follows from Theorem (3.1) that they are pre-open sets. It follows from Theorem (2.3) that \(G_M \cap H_M\) is soft pre-open. Hence, \(G_M \cap H_M\) is soft \(b\)-open, as required.

Definition 3.1: \((X, \tau, M)\) is said to be soft \(bT_2\) if for every \(P_m^X \neq P_{m'}^Y \in \tilde{X}\), there are two disjoint soft \(b\)-open sets \(U_M\) and \(V_M\) containing \(P_m^X\) and \(P_{m'}^Y\), respectively.

Proposition 3.5: If \((H, M)\) is a soft \(b\)-compact subset of a soft hyperconnected soft \(bT_2\)-space \((X, \tau, M)\), then \((H, M)\) is soft \(b\)-closed.

Proof: Let the given conditions be satisfied and let \(P_m^X \in \text{int}(H, M)^c\). Then for each \(P_{m'}^Y \in (H, M), \) there are two disjoint soft \(b\)-open sets \((U_i, M)\) and \((V_i, M)\) such that \(P_m^X \in (U_i, M)\) and \(P_{m'}^Y \in (V_i, M)\). It follows that \([(V_i, M) : i \in I]\) forms a soft \(b\)-open cover of \((H, M)\). Therefore, \((H, M) \subseteq \bigcup_{i=1}^n (V_i, M)\). Since \((X, \tau, M)\) is soft hyperconnected, then \(\bigcap_{i=1}^n (U_i, M) = (U, M)\) is a soft \(b\)-open set and since \((U, M) \cap \bigcup_{i=1}^n (V_i, M) = \emptyset,\) then \((U, M) \subseteq \text{int}(H, M)^c\). Thus \((H, M)^c\) is a soft \(b\)-open set. Hence \((H, M)\) is soft \(b\)-closed.

Corollary 3.6: If \((H, M)\) is a soft pre-compact stable subset of a soft hyperconnected soft \(bT_2\)-space \((X, \tau, M)\), then \((H, M)\) is soft \(b\)-closed.

Proof: Since \((H, M)\) is stable, then \(P_m^X \in (H, M)\) if and only if \(x \in (H, M)\). So by using similar technique of the above proof, the corollary holds.

4. **\(b\)-soft Separation Axioms**

By making use of the relations of total belong and total non-belong, we define new type of soft separation axioms, namely \(tt\)-soft \(bT_i\) \(\ (i = 0, 1, 2, 3, 4)\). We provide some examples to elucidate the relationships between them and to show some of their properties. Furthermore, we study the interrelations of them and topological and additive properties.
First of all, we see that it is necessary to classify containment into several categories as it is shown in remark below. Factually, this classification will play a vital role in redefining many soft theoretic-set and soft topological concepts, in particular, the concepts of soft interior and closure operators, soft compactness and soft separation axioms.

Definition 4.1: (X, τ, M) is said to be

(i) tt-soft bT_0 if for every $x \neq y \in X$, there exists a soft b-open set U_M such that $x \in U_M$ and $y \notin U_M$ or $y \in U_M$ and $x \notin U_M$

(ii) tt-soft bT_1 if for every $x \neq y \in X$, there exist soft b-open sets U_M and V_M such that $x \in U_M$ and $y \notin U_M$; and $y \in V_M$ and $x \notin V_M$

(iii) tt-soft bT_2 if for every $x \neq y \in X$, there exist two disjoint soft b-open sets U_M and V_M such that $x \in U_M$ and $y \notin U_M$; and $y \in V_M$ and $x \notin V_M$

(iv) tt-soft b-regular if for every soft b-closed set H_M and $x \in X$ such that $x \notin H_M$, there exist disjoint soft b-open sets U_M and V_M such that $H_M \subseteq U_M$ and $x \in V_M$

(v) tt-soft bT_3 (resp. tt-soft bT_4) if it is both tt-soft b-regular (resp. soft b-normal) and tt-soft bT_1.

Remark 4.1: It can be noted that: if F_M and G_M are disjoint soft set, then $x \in F_M$ if and only if $x \notin G_M$. This implies that (X, τ, M) is a tt-soft bT_2-space if and only if is a soft bT_2-space. That is, the concepts of a tt-soft bT_2-space and a soft bT_2-space are equivalent.

We can say that: (X, τ, M) is tt-soft bT_2 if for every $x \neq y \in X$, there exist two disjoint soft b-open sets U_M and V_M totally contain x and y, respectively.

Remark 4.2: The soft b-regular spaces imply a strict condition on the shape of soft b-open and soft b-closed subsets. To explain this matter, let F_M be a soft b-closed set such that $x \notin H_M$. Then we have two cases:

(i) There are $m, m' \in M$ such that $x \notin H(m)$ and $x \in H(m')$. This case is impossible because there do not exist two disjoint soft sets U_M and V_M containing x and H_M, respectively.

(ii) For each $m \in M, x \notin H(m)$. This implies that H_M must be stable.

As a direct consequence, we infer that every soft b-closed and soft b-open subsets of a soft b-regular space must be stable. However, this matter does not hold on the tt-soft b-regular spaces because we replace a partial non-belong relation by a total non-belong relation. Therefore a tt-soft b-regular space need not be stable.

Proposition 4.1:

(i) Every tt-soft bT_i-space is soft bT_i for $i = 0, 1, 4$.

(ii) Every soft b-regular space is tt-soft b-regular.

(iii) Every soft bT_3-space is tt-soft bT_3.

Proof: The proofs of (i) and (ii) follow from the fact that a total non-belong relation \notin implies a partial non-belong relation \notin.

To prove (iii), it suffices to prove that a soft bT_i-space is tt-soft bT_i when (X, τ, M) is soft b-regular. Suppose $x \neq y \in X$. Then there exist two soft b-open sets U_M and V_M such that $x \in U_M$ and $y \notin U_M$; and $y \in V_M$ and $x \notin V_M$. Since U_M and V_M are soft b-open subsets of a
soft b-regular space, then they are stable. So $y \not\in U_M$ and $x \not\in V_M$. Thus (X, τ, M) is tt-soft bT_1. Hence, we obtain the desired result.

The following examples clarify that the converse of the above proposition is not always true.

Example 1: Let $M = \{m_1, m_2\}$. A family $\tau = \{\tilde{\Phi}, \tilde{X}, \{(m_1, \{x\}), (m_2, \emptyset)\}\}$ is a soft topology on $X = \{x, y, z\}$. Note that an m_1-approximate of any soft b-open set totally containing y or z contains x as well. Therefore (X, τ, M) is not tt-soft bT_0. On the other hand, one can examine that (X, τ, M) is a soft bT_1-space.

Example 2: Let $M = \{m_1, m_2\}$. A family $\tau = \{\tilde{\Phi}, \tilde{X}, G_i_M : i = 1, 2\}$ is a soft topology over $X = \{x, y\}$, where

$G_{1M} = \{(m_1, \{x\}), (m_2, \{y\})\}$ and $G_{2M} = \{(m_1, \{y\}), (m_2, \{x\})\}$.

It can be checked that every subset of (X, τ, M) is soft b-open. This means that there exist unstable soft b-open subsets of (X, τ, M). Therefore (X, τ, M) is not soft b-regular and hence it is not soft bT_3. However, (X, τ, M) is a tt-soft b-regular and tt-soft bT_1. Hence, it is tt-soft bT_3.

Before we show the relationship between tt-soft bT_i-spaces, we need to prove the following useful lemma.

Lemma 4.2: (X, τ, M) is a tt-soft bT_1-space if and only if x_M is soft b-closed for every $x \in X$.

Proof: *Necessity:* For each $y \in X \setminus \{x\}$, there is a soft b-open set G_{iM} such that $y \in G_{iM}$ and $x \not\in G_{iM}$. Therefore $X \setminus \{x\} = \bigcup_{i \in I} G_i(m)$ and $x \not\in \bigcup_{i \in I} G_i(m)$ for each $m \in M$. Thus $\bigcup_{i \in I} G_{iM} = X \setminus \{x\}$ is soft b-open. Hence, x_M is soft b-closed.

Sufficiency: Let $x \neq y$. By hypothesis, x_M and y_M are soft b-closed sets. Then x_M^c and y_M^c are soft b-open sets such that $x \in (y_M)^c$ and $y \in (x_M)^c$. Obviously, $y \not\in (y_M)^c$ and $x \not\in (x_M)^c$. Hence, (X, τ, M) is tt-soft bT_1.

Proposition 4.3: Every tt-soft bT_i-space is tt-soft bT_{i-1} for $i = 1, 2, 3, 4$.

Proof: We prove the proposition in the cases of $i = 3, 4$. The other cases follow similar lines.

For $i = 3$, let $x \neq y$ in a tt-soft bT_3-space (X, τ, M). Then x_M is soft b-closed. Since $y \not\in x_M$ and (X, τ, M) is tt-soft b-regular, then there are disjoint soft b-open sets G_M and F_M such that $x_M \subseteq G_M$ and $y \in F_M$. Therefore (X, τ, M) is tt-soft bT_2.

For $i = 4$, let $x \in X$ and H_M be a soft b-closed set such that $x \not\in H_M$. Since (X, τ, M) is tt-soft bT_1, then x_M is soft b-closed. Since $x_M \cap H_M = \emptyset$ and (X, τ, M) is soft b-normal, then there are disjoint soft b-open sets G_M and F_M such that $H_M \subseteq G_M$ and $x_M \subseteq F_M$. Hence, (X, τ, M) is tt-soft bT_3.

The following examples show that the converse of the above proposition is not always true.
Example 3: Let $M = \{m_1, m_2\}$. A family $\tau = \{\Phi, \bar{X}, ((m_1, \{x\}), (m_2, \{x\}))\}$ is a soft topology on $X = \{x, y\}$. The a family of all soft b-open subsets of (X, τ, M) is $S(X_M) \setminus \{G_i : i = 1, 2, 3\}$, where

- $G_{1M} = \{(m_1, \{y\}), (m_2, \{y\})\}$;
- $G_{2M} = \{(m_1, \{y\}), (m_2, \emptyset)\}$ and
- $G_{3M} = \{(m_1, \emptyset), (m_2, \{y\})\}$.

Now, $x \neq y$. We have $x \in \{(m_1, \{x\}), (m_2, \{x\})\}$ and $y \notin \{(m_1, \{x\}), (m_2, \{x\})\}$. Therefore, (X, τ, M) is tt-soft bT_0. However, there does not exist a soft b-open set such that x does not totally belong to it. Hence, (X, τ, M) is not tt-soft bT_1.

Example 4: It is well known that a soft topological space is a classical topological space if E is a singleton. Then it suffices to consider examples that satisfy an bT_2-space but not bT_3; satisfy an bT_3-space but not bT_4.

In what follows, we establish some properties of tt-soft bT_i and tt-soft b-regular.

Lemma 4.4: Let U_M be a subset of (X, τ, M) and $x \in X$. Then $x \notin U_M^b$ iff there exists a soft b-open set V_M totally containing x such that $U_M \cap V_M = \Phi$.

Proof: Let $x \notin U_M^b$. Then $x \in (U_M^b)^c = V_M$. So $U_M \cap V_M = \Phi$. Conversely, if there exists a soft b-open set V_M totally containing x such that $U_M \cap V_M = \Phi$, then $U_M \subseteq V_M$. Therefore $U_M^b \subseteq V_M^c$. Since $x \notin V_M$, then $x \notin U_M^b$. ■

Proposition 4.5: If (X, τ, M) is a tt-soft bT_0-space, then $x_M^b \neq y_M^b$ for every $x \neq y \in X$.

Proof: Let $x \neq y$ in a tt-soft bT_0-space. Then there is a soft b-open set U_M such that $x \in U_M$ and $y \notin U_M$ or $y \in U_M$ and $x \notin U_M$. Say, $x \in U_M$ and $y \notin U_M$. Now, $y_M \cap U_M = \Phi$. So, by the above lemma, $x \notin y_M^b$. But $x \in x_M^b$. Hence, we obtain the desired result. ■

Corollary 4.6: If (X, τ, M) is a tt-soft bT_0-space, then $P_X^b \neq P_{X'}^b$ for all $x \neq y$ and $m, m' \in M$.

Theorem 4.7: Let M be a finite set and (X, τ, M) be soft hyperconnected. Then (X, τ, M) is a tt-soft bT_1-space if and only if $x_M = \bigcap (U_M : x \in U_M \in \tau^b)$ for each $x \in X$.

Proof: To prove the ‘if’ part, let $y \in X$. Then for each $x \in X \setminus \{y\}$, we have a soft b-open set U_M such that $x \in U_M$ and $y \notin U_M$. Therefore $y \notin \bigcap (U_M : x \in U_M \in \tau^b)$. Since y is chosen arbitrary, then the desired result is proved.

To prove the ‘only if’ part, let the given conditions be satisfied and let $x \neq y$. Let $|M| = n$. Since $y \notin x_M$, then for each $j = 1, 2, \ldots, n$ there is a soft b-open set U_{iM} such that $y \notin U_i$ and $x \in U_{iM}$. Since (X, τ, M) is soft hyperconnected, then it follows from Theorem (3.4) that $\bigcap_{i=1}^n U_{iM}$ is a soft b-open set such that $y \notin \bigcap_{i=1}^n U_{iM}$ and $x \in \bigcap_{i=1}^n U_{iM}$. Similarly, we can get a soft b-open set V_M such that $y \in V_M$ and $x \notin V_M$. Thus (X, τ, M) is a tt-soft bT_1-space. ■

Theorem 4.8: If (X, τ, M) is an extended tt-soft bT_1-space, then P_X^b is soft b-closed for all $P_X^b \in \bar{X}$.
Proof: It follows from Lemma (4.2) that \(X \setminus \{x\}\) is a soft b-open set. Since \((X, \tau, M)\) is extended, then a soft set \(H_m\), where \(H(m) = \emptyset\) and \(H(m') = X\) for each \(m' \neq m\), is a soft b-open set. Therefore \(X \setminus \{x\}\) \(\cup H_m\) is soft b-open. Thus \((X \setminus \{x\}\) \(\cup H_m)\) is soft b-closed.

Corollary 4.9: If \((X, \tau, M)\) is an extended tt-soft b\(T_1\)-space, then the intersection of all soft b-open sets containing \(U_M\) is exactly \(U_M\) for each \(U_M \subseteq X\).

Proof: Let \(U_M\) be a soft subset of \(\widehat{X}\). Since \(P^b_M\) is a soft b-closed set for every \(P^b_M \in U^c_M\), then \(\widehat{X} \setminus P^b_M\) is a soft b-open set containing \(U_M\). Therefore \(U_M = \bigcap(\widehat{X} \setminus P^b_M : P^b_M \in U^c_M)\), as required.

Theorem 4.10: Let \((X, \tau, M)\) be finite soft hyperconnected. Then \((X, \tau, M)\) is tt-soft b\(T_2\) if and only if it is tt-soft b\(T_1\).

Proof: **Necessity:** It is obtained from Proposition (4.3).

Sufficiency: For each \(x \neq y\), we have \(x_M\) and \(y_M\) are soft b-closed sets. Since \(X\) is finite, then \(\bigcup_{y \in X \setminus \{x\}} y_M\) and \(\bigcup_{x \in X \setminus \{x\}} x_M\) are soft b-closed sets. Since \((X, \tau, M)\) is soft hyperconnected, then \((\bigcup_{y \in X \setminus \{x\}} y_M)^c = x_M\) and \((\bigcup_{x \in X \setminus \{x\}} x_M)^c = y_M\) are soft b-open sets. The disjointness of \(x_M\) and \(y_M\) end the proof that \((X, \tau, M)\) is tt-soft b\(T_2\).

Theorem 4.11: \((X, \tau, M)\) is tt-soft b-regular iff for every soft b-open subset \(F_M\) of \((X, \tau, M)\) totally containing \(x\), there is a soft b-open set \(V_M\) such that \(x \in V_M \subseteq V^b_M \subseteq F_M\).

Proof: Let \(x \in X\) and \(F_M\) be a soft b-open set totally containing \(x\). Then \(F^c_M\) is b-closed and \(x_M \cap F^c_M = \emptyset\). Therefore there are disjoint soft b-open sets \(U_M\) and \(V_M\) such that \(F^c_M \subseteq U_M\) and \(x \in V_M\). Thus \(V_M \subseteq U_M \subseteq F_M\). Conversely, let \(F^c_M\) be a soft b-closed set. Then for each \(x \notin F^c_M\), we have \(x \in V_M\). By hypothesis, there is a soft b-open set \(V_M\) totally containing \(x\) such that \(V^b_M \subseteq F_M\). Therefore \(F^c_M \subseteq (V^b_M)^c\) and \(V^b_M \subseteq (V^b_M)^c\). Thus \((X, \tau, M)\) is tt-soft b-regular, as required.

Theorem 4.12: The following properties are equivalent if \((X, \tau, M)\) is a tt-soft b-regular space.

(i) a tt-soft b\(T_2\)-space,
(ii) a tt-soft b\(T_1\)-space,
(iii) a tt-soft b\(T_0\)-space.

Proof: The directions \((i) \rightarrow (ii)\) and \((ii) \rightarrow (iii)\) are obvious.

To prove \((iii) \rightarrow (i)\), let \(x \neq y\) in a tt-soft b\(T_0\)-space \((X, \tau, M)\). Then there exists a soft b-open set \(G_M\) such that \(x \in G_M\) and \(y \notin G_M\), or \(y \in G_M\) and \(x \notin G_M\). Say, \(x \in G_M\) and \(y \notin G_M\). Obviously, \(x \notin G^c_M\) and \(y \notin G^c_M\). Since \((X, \tau, M)\) is tt-soft b-regular, then there exist two disjoint soft b-open sets \(U_M\) and \(V_M\) such that \(x \in U_M\) and \(y \in G^c_M \subseteq V_M\). Hence, \((X, \tau, M)\) is tt-soft b\(T_2\).

Proposition 4.13: Let \((X, \tau, M)\) be finite soft hyperconnected. If \((X, \tau, M)\) is a tt-soft b\(T_2\)-space, then it is tt-soft b-regular.
Proof: Let H_m be a soft b-closed set and $x \in X$ such that $x \notin H_m$. Then $x \neq y$ for each $y \in H_m$. By hypothesis, there are two disjoint soft b-open sets U_m and V_m such that $x \in U_m$ and $y \in V_m$. Since $(y : y \in X)$ is a finite set, then there is a finite number of soft b-open sets $V_{i,m}$ such that $H_m \subseteq \bigcup_{i=1}^{n} V_{i,m}$. Since (X, τ, M) is soft hyperconnected, then it follows from Theorem (3.4) that $\bigcap_{i=1}^{n} U_{i,m}$ is a soft b-open set containing x. Since $\bigcap_{i=1}^{n} U_{i,m} \bigcap_{i=1}^{n} V_{i,m} = \Phi$, then (X, τ, M) is tt-soft b-regular.

Corollary 4.14: The following properties are equivalent if (X, τ, M) is finite soft hyperconnected.

(i) a tt-soft bT_3-space,
(ii) a tt-soft bT_2-space,
(iii) a tt-soft bT_1-space.

Proof: The directions (i) \rightarrow (ii) and (ii) \rightarrow (iii) follow from Proposition (4.3).

The direction (iii) \rightarrow (ii) follows from Theorem (4.10).

The direction (ii) \rightarrow (i) follows from Proposition (4.13).

Theorem 4.15: Let (X, τ, M) be extended and $i = 0, 1, 2, 3, 4$. Then (X, τ, M) is tt-soft bT_i iff (X, τ_m) is bT_i for each $m \in M$.

Proof: We prove the theorem in the case of $i = 4$ and one can similarly prove the other cases.

Necessity: Let $x \neq y$ in X. Then there exist two soft b-open sets U_m and V_m such that $x \in U_m$ and $y \notin U_m$; and $y \in V_m$ and $x \notin V_m$. Obviously, $x \in U(m)$ and $y \notin U(m)$; and $y \in V(m)$ and $x \notin V(m)$. Since (X, τ, M) is extended, then it follows from Theorem (2.5) that $U(m)$ and $V(m)$ are b-open subsets of (X, τ_m) for each $m \in M$. Thus (X, τ_m) is a bT_1-space. To prove that (X, τ, M) is b-normal, let F_m and H_m be two disjoint b-closed subsets of (X, τ_m). Let F_m and H_m be two soft sets given by $F(m) = F_m, H(m) = H_m$ and $F(m') = H(m') = \emptyset$ for each $m' \neq m$. It follows, from Theorem (2.5) that F_m and H_m are two disjoint soft b-closed subsets of (X, τ, M). By hypothesis, there exist two disjoint soft b-open sets G_m and W_m such that $F_m \subseteq G_m$ and $H_m \subseteq W_m$. This implies that $F(m) = F_m \subseteq G(m)$ and $H(m) = H_m \subseteq W(m)$. Since (X, τ, M) is extended, then it follows from Theorem (2.5) that $G(m)$ and $W(m)$ are b-open subsets of (X, τ_m). Thus (X, τ_m) it is a b-normal space. Hence, it is a bT_4-space.

Sufficiency: Let $x \neq y$ in X. Then there exists two b-open subsets U_m and V_m of (X, τ_m) such that $x \in U_m$ and $y \notin U_m$; and $y \in V_m$ and $x \notin V_m$. Let U_m and V_m be two soft sets given by $U(m) = U_m, V(m) = V_m$ for each $m \in M$. Since (X, τ, M) is extended, then it follows from Theorem (2.5) that U_m and V_m are soft b-open subsets of (X, τ, M) such that $x \in U_m$ and $y \notin U_m$; and $y \in V_m$ and $x \notin V_m$. Thus (X, τ, M) is a tt-soft bT_1-space. To prove that (X, τ, M) is soft b-normal, let F_m and H_m be two disjoint soft b-closed subsets of (X, τ, M). Since (X, τ, M) is extended, then it follows from Theorem (2.5) that $F(m)$ and $H(m)$ are two disjoint b-closed subsets of (X, τ_m). By hypothesis, there exist two disjoint b-open subsets G_m and W_m of (X, τ_m) such that $F(m) \subseteq G_m$ and $H(m) \subseteq W_m$. Let G_m and W_m be two soft sets given by $G(m) = G_m$ and $W(m) = W_m$ for each $m \in M$. Since (X, τ, M) is extended, then it follows from Theorem (2.5) that G_m and W_m are two disjoint soft b-open subsets of (X, τ, M) such that $F_m \subseteq G_m$ and $H_m \subseteq W_m$. Thus (X, τ, M) is soft b-normal. Hence, it is a tt-soft bT_4-space.
In the following examples, we show that there is no a relationship between soft topological space and their parametric topological spaces in terms of separation axioms if a condition of an extended soft topological space given in the above theorem does not exist.

Example 5: Let \((X, \tau, M)\) be the same as in Example (1). We showed that \((X, \tau, M)\) is not \(tt\)-soft \(bT_0\). On the other hand, \(\tau_{m_1} = \{\emptyset, X, \{x\}\}\) is a parametric topologies on \(X\). It can be checked that \((X, \tau_{m_1})\) is \(bT_0\).

Example 6: Let \(M = \{m_1, m_2\}\). A family \(\tau = \{\emptyset, \widetilde{X}, \{(m_1, \{x\}), (m_2, \{y\})\}\}\) is a soft topology on \(X = \{x, y\}\). The a family of all soft \(b\)-open subsets of \((X, \tau, M)\) is \(S(X_M) \setminus \{G_{m_i} : i = 1, 2, 3\}\), where

\[
\begin{align*}
G_{m_1} &= \{(m_1, \{y\}), (m_2, \{x\})\}; \\
G_{m_2} &= \{(m_1, \{y\}), (m_2, \emptyset)\} \text{ and} \\
G_{m_3} &= \{(m_1, \emptyset), (m_2, \{x\})\}.
\end{align*}
\]

It can be checked that \((X, \tau, M)\) is \(tt\)-soft \(bT_4\). On the other hand, the two parametric topological spaces \((X, \tau_{m_1})\) and \((X, \tau_{m_2})\) are not \(bT_1\).

Lemma 4.16: Let \((G, A)\) and \((H, B)\) be two subsets of \((X_1, \tau_1, A)\) and \((X_2, \tau_2, B)\), respectively. Then:

(i) \(cl(G, A) \times cl(H, B) = cl((G, A) \times (H, B))\).

(ii) \(int(G, A) \times int(H, B) = int((G, A) \times (H, B))\).

Proof: (i) **Necessity:** Suppose that \(P^{(x, y)}_{(a, b)} \notin cl((G, A) \times (H, B))\). Then there exists a soft open subset \(\widetilde{U} \times \widetilde{V}\) of \((X \times Y, \tau \times \tau, A \times B)\) containing \(P^{(x, y)}_{(a, b)}\) such that \((\widetilde{U} \times \widetilde{V}) \cap (G, A) = \emptyset\). Hence, \(cl((G, A) \times (H, B)) = \emptyset\). This means \(P^{(x, y)}_{(a, b)} \notin cl(G, A) \times cl(H, B)\).

Sufficiency: Suppose that \(P^{(x, y)}_{a} \notin cl(G, A)\) or \(P^{(x, y)}_{b} \notin cl(H, B)\). Without loss of generality, let \(P^{(x, y)}_{a} \notin cl(G, A)\). Then there exists a soft open subset \(\widetilde{U} \times \widetilde{V}\) of \((X \times Y, \tau \times \tau, A \times B)\) containing \(P^{(x, y)}_{(a, b)}\) such that \((\widetilde{U} \times \widetilde{V}) \cap (G, A) = \emptyset\). Hence, \(cl((G, A) \times (H, B)) = \emptyset\). This means \(P^{(x, y)}_{(a, b)} \notin cl((G, A) \times (H, B))\).

(ii) By using a similar way above, one can prove item (ii).

Theorem 4.17: The property of being a \(tt\)-soft \(bT_i\)-space \((i = 0, 1, 2)\) is preserved under a finite product soft spaces.

Proof: We prove the theorem in case of \(i = 2\). The other cases follow similar lines.

Let \((X_1, \tau_1, M_1)\) and \((X_2, \tau_2, M_2)\) be two \(tt\)-soft \(bT_2\)-spaces and let \((x_1, y_1) \neq (x_2, y_2)\) in \(X_1 \times X_2\). Then \(x_1 \neq x_2\) or \(y_1 \neq y_2\). Without loss of generality, let \(x_1 \neq x_2\). Then there exist two disjoint soft \(b\)-open subsets \(G_{E_1}\) and \(H_{E_1}\) of \((x_1, \tau_1, M_1)\) such that \(x_1 \in G_{E_1}\) and \(x_2 \notin G_{E_1}\); and \(x_2 \in H_{E_1}\) and \(x_1 \notin H_{E_1}\). Obviously, \(G_{E_1} \times \tilde{X}_2\) and \(H_{E_1} \times \tilde{X}_2\) are two disjoint soft \(b\)-open subsets \(X_1 \times X_2\) such that \((x_1, y_1) \in G_{E_1} \times \tilde{X}_2\) and \((x_2, y_2) \notin G_{E_1} \times \tilde{X}_2\) and \((x_2, y_2) \in H_{E_1} \times \tilde{X}_2\) and \((x_1, y_1) \notin H_{E_1} \times \tilde{X}_2\). Hence, \(X_1 \times X_2\) is a \(tt\)-soft \(bT_2\)-space.
Theorem 4.18: The property of being a tt-soft bT_i-space is an additive property for $i = 0, 1, 2, 3, 4$.

Proof: To prove the theorem in the cases of $i = 2$. Let $x \neq y \in \bigoplus_{i \in I} X_i$. Then we have the following two cases:

1. There exists $i_0 \in I$ such that $x, y \in X_{i_0}$. Since (X_{i_0}, τ_{i_0}, M) is tt-soft bT_2, then there exist two disjoint soft b-open subsets G_M and H_M of (X_{i_0}, τ_{i_0}, M) such that $x \in G_M$ and $y \in H_M$. It follows from Theorem (2.7) that G_M and H_M are disjoint soft b-open subsets of $(\bigoplus_{i \in I} X_i, \tau, M)$.

2. There exist $i_0 \neq j_0 \in I$ such that $x \in X_{i_0}$ and $y \in X_{j_0}$. Now, \tilde{X}_{i_0} and \tilde{X}_{j_0} are soft b-open subsets of (X_{i_0}, τ_{i_0}, M) and (X_{j_0}, τ_{j_0}, M), respectively. It follows from Theorem (2.7), that \tilde{X}_{i_0} and \tilde{X}_{j_0} are disjoint soft b-open subsets of $(\bigoplus_{i \in I} X_i, \tau, M)$.

It follows from the two cases above that $(\bigoplus_{i \in I} X_i, \tau, M)$ is a tt-soft bT_2-space. The theorem can be proved similarly in the cases of $i = 0, 1$.

To prove the theorem in the cases of $i = 3$ and $i = 4$, it suffices to prove the tt-soft b-regularity and soft b-normality, respectively.

First, we prove the tt-soft b-regularity property. Let F_M be a soft b-closed subset of $(\bigoplus_{i \in I} X_i, \tau, M)$ such that $x \notin F_M$. It follows from Theorem (2.7) that $\bigcap_{i \in I} \tilde{X}_i$ is soft b-closed in (X_i, τ_i, M) for each $i \in I$. Since $x \in \bigoplus_{i \in I} X_i$, there is only $i_0 \in I$ such that $x \in X_{i_0}$. This implies that there are disjoint soft b-open subsets G_M and H_M of (X_{i_0}, τ_{i_0}, M) such that $\bigcap_{i \in I} \tilde{X}_i = G_M$ and $y \in H_M$. Now, $G_M \bigcup_{i \neq i_0} \tilde{X}_i$ is a soft b-open subset of $(\bigoplus_{i \in I} X_i, \tau, M)$ containing F_M. The disjointness of $G_M \bigcup_{i \neq i_0} \tilde{X}_i$ and H_M ends the proof that $(\bigoplus_{i \in I} X_i, \tau, M)$ is a tt-soft b-regular space.

Second, we prove the soft b-normality property. Let F_M and H_M be two disjoint soft b-closed subsets of $(\bigoplus_{i \in I} X_i, \tau, M)$. It follows from Theorem (2.7) that $\bigcap_{i \in I} \tilde{X}_i$ and $H_M \bigcap \tilde{X}_i$ are soft b-closed in (X_i, τ_i, M) for each $i \in I$. Since (X_i, τ_i, M) is soft b-normal for each $i \in I$, then there exist two disjoint soft b-open subsets U_{iM} and V_{iM} of (X_i, τ_i, M) such that $\bigcap_{i \in I} \tilde{X}_i \subseteq U_{iM}$ and $H_M \bigcap \tilde{X}_i \subseteq V_{iM}$. This implies that $F_M \subseteq \bigcup_{i \in I} U_{iM}$, $H_M \subseteq \bigcup_{i \in I} V_{iM}$ and $\bigcup_{i \in I} U_{iM} \bigcap \bigcup_{i \in I} V_{iM} = \emptyset$. Hence, $(\bigoplus_{i \in I} X_i, \tau, M)$ is a soft b-normal space.

In the following, we probe the behaviors of tt-soft bT_i-spaces under some soft maps.

Definition 4.2: A map $f_\varphi : (X, \tau, A) \rightarrow (Y, \tau, B)$ is said to be:

1. soft b^*-continuous if the inverse image of soft b-open set is soft b-open;
2. soft b^*-open (resp. soft b^*-closed) if the image of soft b-open (resp. soft b-closed) set is soft b-open (resp. soft b-closed);
3. soft b^*-homeomorphism if it is bijective, soft b^*-continuous and soft b^*-open.

Proposition 4.19: Let $f_\varphi : (X, \tau, A) \rightarrow (Y, \tau, B)$ be a soft b-continuous map such that f is injective. Then if (Y, τ, B) is a p-soft T_i-space, then (X, τ, A) is a tt-soft bT_i-space for $i = 0, 1, 2$.

Proof: We only prove the proposition for $i = 2$.

Let $f : (X, \tau, A) \rightarrow (Y, \tau, B)$ be a soft b-continuous map and $v \neq w \in X$. Since f is injective, then there are two distinct points x and y in Y such that $f(v) = x$ and $f(w) = y$. Since (Y, τ, B) is a p-soft T_2-space, then there are two disjoint soft open sets G_B and F_B such that $x \in G_B$ and $y \in F_B$. Now, $f^{-1}(G_B)$ and $f^{-1}(F_B)$ are two disjoint soft b-open subsets of (X, τ, A) such that $v \in f^{-1}(G_B)$ and $w \in f^{-1}(F_B)$. Thus (X, τ, A) is a tt-soft bT_2-space.

In a similar way, one can prove the following result.

Proposition 4.20: Let $f : (X, \tau, A) \rightarrow (Y, \tau, B)$ be a soft b^*-continuous map such that f is injective. Then if (Y, τ, B) is a tt-soft bT_i-space, then (X, τ, A) is a tt-soft bT_i-space for $i = 0, 1, 2$.

Proposition 4.21: Let $f : (X, \tau, A) \rightarrow (Y, \tau, B)$ be a bijective soft b-open map. Then if (X, τ, A) is a p-soft T_i-space, then (Y, τ, B) is a tt-soft bT_i-space for $i = 0, 1, 2$.

Proof: We only prove the proposition for $i = 2$.

Let $f : (X, \tau, A) \rightarrow (Y, \tau, B)$ be a soft b-open map and $x \neq y \in Y$. Since f is bijective, then there are two distinct points v and w in X such that $v = f^{-1}(x)$ and $w = f^{-1}(y)$. Since (X, τ, A) is a p-soft T_2-space, then there are two disjoint soft open sets U_A and V_A such that $x \in U_A$ and $y \in V_A$. Now, $f_A(U_A)$ and $f_A(V_A)$ are two disjoint soft b-open subsets of (Y, τ, B) such that $x \in f_A(U_A)$ and $y \in f_A(V_A)$. Thus (Y, τ, B) is a tt-soft bT_2-space.

In a similar way, one can prove the following result.

Proposition 4.22: Let $f : (X, \tau, A) \rightarrow (Y, \tau, B)$ be a bijective soft b^*-open map. Then if (X, τ, A) is a tt-soft bT_i-space, then (Y, τ, B) is a tt-soft bT_i-space for $i = 0, 1, 2$.

Proposition 4.23: The property of being tt-soft bTi $(i = 0, 1, 2, 3, 4)$ is preserved under a soft b^*-homeomorphism map.

We complete this section by discussing some interrelations between tt-soft bT_i-spaces $(i = 2, 3, 4)$ and soft b-compact spaces.

Proposition 4.24: A stable soft b-compact subset of a tt-soft bT_2-space is soft b-closed.

Proof: It follows from Proposition (3.5) and Remark (4.1).

Theorem 4.25: Let H_M be a soft b-compact subset of a soft hyperconnected tt-soft bT_2-space. If $x \notin H_M$, then there are disjoint soft b-open sets U_M and V_M such that $x \in U_M$ and $H_M \subseteq V_M$.

Proof: Let $x \notin H_M$. Then $x \neq y$ for each $y \in H_M$. Since (X, τ, M) is a tt-soft bT_2-space, then there exist disjoint soft b-open sets U_m and V_m such that $x \in U_{im}$ and $y \in V_{im}$. Therefore (V_{im}) forms a soft b-open cover of H_M. Since H_M is soft b-compact, then $H_M \subseteq \bigcup_{i=1}^{n} V_{im}$. By the soft hyperconnectedness of (X, τ, M), we obtain $\bigcap_{i=1}^{n} U_{im} = U_M$ is a soft b-open set. Hence, we obtain the desired result.
Theorem 4.26: Every soft hyperconnected, soft b-compact and tt-soft bT₂-space is tt-soft b-regular.

Proof: Let \(H_M \) be a soft b-closed subset of soft b-compact and tt-soft bT₂-space \((X, τ, M)\) such that \(x \notin H_M \). Then \(H_M \) is soft b-compact. By Theorem(4.25), there exist disjoint soft b-open sets \(U_M \) and \(V_M \) such that \(x \in U_M \) and \(H_M \subseteq V_M \). Thus \((X, τ, M)\) is tt-soft b-regular. ■

Corollary 4.27: Every soft hyperconnected, soft b-compact and tt-soft bT₂-space is tt-soft bT₃.

Lemma 4.28: Let \(F_M \) be a soft b-open subset of a soft b-regular space. Then for each \(P_x^m \in F_M \), there exists a soft b-open set \(G_M \) such that \(P_x^m \in G_M \subseteq F_M \).

Proof: Let \(F_M \) be a soft b-open set such that \(P_x^m \in F_M \). Then \(x \notin F_M^c \). Since \((X, τ, M)\) is soft b-regular, then there exist two disjoint soft b-open sets \(G_M \) and \(W_M \) totally containing \(x \) and \(F_M^c \), respectively. Thus \(x \in G_M \subseteq W_M \subseteq F_M \). Hence, \(P_x^m \in G_M \subseteq F_M \). ■

Theorem 4.29: Let \(H_M \) be a soft b-compact subset of a soft b-regular space and \(F_M \) be a soft b-open set containing \(H_M \). Then there exists a soft b-open set \(G_M \) such that \(H_M \subseteq G_M \subseteq F_M \).

Proof: Let the given conditions be satisfied. Then for each \(P_x^m \in H_M \), we have \(P_x^m \in F_M \). Therefore there is a soft b-open set \(W_{x M} \) such that \(P_x^m \in W_{x M} \subseteq W_{x M}^b \subseteq F_M \). Now, \(\{W_{x M} : P_x^m \in F_M\} \) is a soft b-open cover of \(H_M \). Since \(H_M \) is soft b-compact, then \(H_M \subseteq \bigcup_{j=1}^{n} W_{x M} \).

Putting \(G_M = \bigcup_{j=1}^{n} W_{x M} \). Thus \(H_M \subseteq G_M \subseteq F_M \). ■

Corollary 4.30: If \((X, τ, M)\) is soft b-compact and soft bT₃, then it is tt-soft bT₄.

Proof: Suppose that \(F_{1 M} \) and \(F_{2 M} \) are two disjoint soft b-closed sets. Then \(F_{2 M} \subseteq F_{1 M}^c \). Since \((X, τ, M)\) is soft b-compact, then \(F_{2 M} \) is soft b-compact and since \((X, τ, M)\) is soft b-regular, then there is a soft b-open set \(G_M \) such that \(F_{2 M} \subseteq G_M \subseteq F_{1 M}^c \). Obviously, \(F_{2 M} \subseteq G_M, F_{1 M} \subseteq (G_M^c) \) and \(G_M \cap (G_M^c) = \emptyset \). Thus \((X, τ, M)\) is soft b-normal. Since \((X, τ, M)\) is soft bT₃, then it is tt-soft bT₁. Hence, it is tt-soft bT₄. ■

5. b-fixed Soft Points of Soft Mappings

In this section, we introduce a b-fixed soft point property and investigate some main features, in particular, those are related to parametric topological spaces.

Theorem 5.1: Let \(\{B_n : n \in \mathbb{N}\} \) be a collection of soft subsets of a soft b-compact space \((X, τ, M)\) satisfying:

(i) \(B_n \neq \emptyset \) for each \(n \in \mathbb{N} \);
(ii) \(B_n \) is a soft b-closed set for each \(n \in \mathbb{N} \);
(iii) \(B_{n+1} \subseteq B_n \) for each \(n \in \mathbb{N} \).

Then \(\bigcap_{n \in \mathbb{N}} B_n \neq \emptyset \).
Proof: Suppose that \(\bigcap_{n \in \mathbb{N}} B_n = \emptyset \). Then \(\bigcap_{n \in \mathbb{N}} B_n^c = \bar{X} \). It follows from (ii) that \(\{ B_n^c : n \in \mathbb{N} \} \) is a soft \(b \)-open cover of \(\bar{X} \). By hypothesis of soft \(b \)-compactness, there exist \(i_1, i_2, \ldots, i_k \in \mathbb{N}, i_1 < i_2 < \cdots < i_k \) such that \(\bar{X} = B_{i_1}^c \cup B_{i_2}^c \cup \cdots \cup B_{i_k}^c \). It follows from (iii) that \(B_k \subset \bar{X} = B_{i_1}^c \cup B_{i_2}^c \cup \cdots \cup B_{i_k}^c \). This yields a contradiction. Thus we obtain the proof that \(\bigcap_{n \in \mathbb{N}} B_n \neq \emptyset \).

Proposition 5.2: Let \((X, \tau, M)\) be a soft \(b \)-compact and soft \(bT_2\)-space and \(g_\varphi : (X, \tau, M) \to (X, \tau, M)\) be a soft \(b^*\)-continuous map. Then there exists a unique soft point \(P^x_m \in \bar{X}\) of \(g_\varphi \).

Proof: Let \(\{ B_1 = g_\varphi(\bar{X}) \text{ and } B_n = g_\varphi(B_{n-1}) = g_\varphi^n(\bar{X}) \text{ for each } n \in \mathbb{N} \} \) be a family of soft subsets of \((X, \tau, M)\). It is clear that \(B_{n+1} \subset B_n \) for each \(n \in \mathbb{N} \). Since \(g_\varphi \) is soft \(b^*\)-continuous, then \(B_n \) is a soft \(b \)-compact set for each \(n \in \mathbb{N} \) and since \((X, \tau, M)\) is soft \(bT_2\), then \(B_n \) is also a soft \(b \)-closed set for each \(n \in \mathbb{N} \). It follows from Theorem (5.1) that \((H, M) = \bigcap_{n \in \mathbb{N}} B_n \) is a non null soft set. Note that \(g_\varphi(H, M) = g_\varphi(\bigcap_{n \in \mathbb{N}} g_\varphi^n(\bar{X})) \subset \bigcap_{n \in \mathbb{N}} g_\varphi^n(\bar{X}) = (H, M) \). To show that \((H, M) \subset g_\varphi(H, M)\), suppose that there is a \(P^x_m \in (H, M) \) such that \(P^x_m \notin g_\varphi(H, M) \). Let \(C_n = g_\varphi^{-1}(P^x_m) \cap B_n \). Obviously, \(C_n \neq \emptyset \) and \(C_n \subset C_{n+1} \) for each \(n \in \mathbb{N} \). By Theorem 5.1, \(C_n \) is a soft \(b \)-closed set for each \(n \in \mathbb{N} \); and by Theorem (5.1), there exists a soft point \(P^x_m \) such that \(P^x_m = g_\varphi(P^x_m) \in g_\varphi(H, M) \). This is a contradiction. Thus \(g_\varphi(H, M) = (H, M) \). Hence, the proof is complete.

Definition 5.1: (i) \((X, \tau, M)\) is said to have a \(b \)-fixed soft point property if every soft \(b^*\)-continuous map \(g_\varphi : (X, \tau, M) \to (X, \tau, M) \) has a fixed soft point.

(ii) A property is said to be an \(b^*\)-soft topological property if the property is preserved by soft \(b^*\)-homeomorphism maps.

Proposition 5.3: The property of being a \(b \)-fixed soft point is a \(b^*\)-soft topological property.

Proof: Let \((X, \tau, M)\) and \((Y, \tau, M)\) be a soft \(b^*\)-homeomorphic. Then there is a bijective soft map \(f_\varphi : (X, \tau, M) \to (Y, \tau, M) \) such that \(f_\varphi \) and \(f_\varphi^{-1} \) are soft \(b^*\)-continuous. Since \((X, \tau, M)\) has an \(b \)-fixed soft point property, then every soft \(b^*\)-continuous map \(g_\varphi : (X, \tau, M) \to (X, \tau, M) \) has an \(b \)-fixed soft point. Now, let \(h_\varphi : (Y, \tau, M) \to (Y, \tau, M) \) be a soft \(b^*\)-continuous. Obviously, \(h_\varphi \circ f_\varphi : (X, \tau, M) \to (Y, \tau, M) \) is a soft \(b^*\)-continuous. Also, \(f_\varphi^{-1} \circ h_\varphi \circ f_\varphi : (X, \tau, M) \to (X, \tau, M) \) is a soft \(b^*\)-continuous. Since \((X, \tau, M)\) has an \(b \)-fixed soft point property, then \(f_\varphi^{-1}(h_\varphi(f_\varphi(P^x_m))) = P^x_m \) for some \(P^x_m \in \bar{X} \). Consequently, \(f_\varphi(f_\varphi^{-1}(h_\varphi(f_\varphi(P^x_m)))) = f_\varphi(P^x_m) \). This implies that \(h_\varphi(f_\varphi(P^x_m)) = f_\varphi(P^x_m) \). Thus \(f_\varphi(P^x_m) \) is a \(b \)-fixed soft point of \(h_\varphi \). Hence, \((Y, \tau, M)\) has an \(b \)-fixed soft point property, as required.

Before we investigate a relationship between soft topological space and their parametric topological spaces in terms of possessing a fixed (soft) point, we need to prove the following result.

Theorem 5.4: Let \(\tau \) be an extended soft topology on \(X \). Then a soft map \(g_\varphi : (X, \tau, M) \to (Y, \tau, M) \) is soft \(b^*\)-continuous if and only if a map \(g : (X, \tau_m) \to (Y, \tau_{\varphi(m)}) \) is \(b^*\)-continuous.

Proof: Necessity: Let \(U \) be an \(b \)-open subset of \((Y, \tau_{\varphi(m)})\). Then there exists a soft \(b \)-open subset \(G_M \) of \((Y, \tau, M)\) such that \(G(\varphi(m)) = U \). Since \(g_\varphi \) is a soft \(b^*\)-continuous map, then
$g_\phi^{-1}(G_M)$ is a soft b-open set. From Definition (2.8), it follows that a soft subset $g_\phi^{-1}(G_M) = (g_\phi^{-1}(G))_M$ of (X, τ, M) is given by $g_\phi^{-1}(G)(m) = g^{-1}(G(\phi(m)))$ for each $m \in M$. By hypothesis, τ is an extended soft topology on X, we obtain from Theorem (2.5) that a subset $g^{-1}(G(\phi(m))) = g^{-1}(U)$ of (X, τ_m) is b-open. Hence, a map g is b^*-continuous.

Sufficiency: Let G_M be a soft b-open subset of (Y, τ, M). Then from Definition (2.8), it follows that a soft subset $g_\phi^{-1}(G_M) = (g_\phi^{-1}(G))_M$ of (X, τ, M) is given by $g_\phi^{-1}(G)(m) = g^{-1}(G(\phi(m)))$ for each $m \in M$. Since a map g is b^*-continuous, then a subset $g^{-1}(G(\phi(m)))$ of (X, τ_m) is b-open. By hypothesis, τ is an extended soft topology on X, we obtain from Theorem (2.5) that $g_\phi^{-1}(G_M)$ is a soft b-open subset of (X, τ, M). Hence, a soft map g_ϕ is soft b^*-continuous.

Definition 5.2: (X, τ) is said to have an b-fixed point property if every b^*-continuous map $g : (X, \tau) \rightarrow (X, \tau)$ has a fixed point.

Proposition 5.5: (X, τ, M) has the property of an b-fixed soft point iff (X, τ_m) has the property of an b-fixed point for each $m \in M$.

Proof: **Necessity:** Let (X, τ, M) has the property of an b-fixed soft point. Then every soft b^*-continuous map $g_\phi : (X, \tau, M) \rightarrow (X, \tau, M)$ has a fixed soft point. Say, P_m^ϕ. It follows from the above theorem that $g_m : (X, \tau_m) \rightarrow (X, \tau_{\phi(m)})$ is b^*-continuous. Since P_m^ϕ is a fixed soft point of g_ϕ, then it must be that $g_m(x) = x$. Thus g_m has a fixed point. Hence, we obtain the desired result.

Sufficiency: Let (X, τ_m) has the property of an b-fixed point for each $m \in M$. Then every b^*-continuous map $g_m : (X, \tau_m) \rightarrow (X, \tau_{\phi(m)})$ has a fixed point. Say, x. It follows from the above theorem that $g_\phi : (X, \tau, M) \rightarrow (X, \tau, M)$ is soft b^*-continuous. Since x is a fixed point of g_m, then it must be that $g_\phi(P_m^\phi) = P_m^\phi$. Thus, g_ϕ has a fixed soft point. Hence, we obtain the desired result.

6. Conclusion

One of the reasons of diversity of soft separation axioms is the variety of belong and non-belong relations between ordinary points and soft set. This article is devoted to studying separation axioms and fixed points in soft setting. First, we have introduced new soft separation axioms with respect to ordinary points by using total belong and total non-belong relations. This way of definition helps us to generalize existing comparable properties via general topology and to remove a strict condition of the shape of soft open and closed subsets of soft b-regular spaces. In general, we have studied their main properties and showed the interrelations between them with help of interesting examples. Second, we have defined b-fixed soft point theorem and investigated its basic properties. Finally, we hope that the concepts initiated herein will find their applications in many fields soon.

Human participants

This article does not contain any studies with human participants performed by any of the authors.
Acknowledgments
The authors would like to thank the editor and the referees for their valuable comments which help us to improve the manuscript.

Disclosure statement
No potential conflict of interest was reported by the author(s).

Notes on contributors
T. M. Al-shami is an assistant professor of Mathematics at Sana’a University in Yemen. He received his M.SC. and Ph.D. degrees from Faculty of Science, Mansoura University-Egypt in 2016 and 2020, respectively. He has authored/co-authored over 82 scientific papers in top-ranked international journals and conference proceedings. He is a referee of several international journals in the frame of pure and applied mathematics. His research interests include General topology, Ordered topology, Soft set theory and its applications, Soft topology, Rough set theory, Menger spaces. He received Obada-Prize for postgraduate students in February 2019.

E. A. Abo-Tabl is an associate professor in Department of Mathematics, Faculty of Science, Assiut University, Assiut, Egypt. His current address is Department of mathematics, College of Science and Arts, Methnab, Qassim University, Buridah, Saudi Arabia. He received his M.S.D in 2002 in Digital topology, and his Ph.D. in 2008 in topology (Relations and topology), from Assiut University. His research interests are Topology, Rough sets, Granular Computing, and soft sets. In these areas, he has published over 30 technical papers in refereed international journals or conference proceedings.

B. A. Asaad is an assistant professor of Mathematics Department in Faculty of Science, University of Zakho, Iraq. He received his B.Sc. degree in Mathematics in 2003 from University of Duhok, Iraq. He obtained his M.Sc. with distinction in Mathematics from University of Duhok in 2008, and later awarded scholarship to University Utara Malaysia in Malaysia when he carried out his postgraduate studies in Mathematics leading him to obtain his Ph.D. in 2015. His research interests are: General topology, Ordered topology, Soft topology, Mathematical analysis. In these areas, he has published over 45 technical papers in refereed international journals or conference proceedings.

References
[1] Molodtsov D. Soft set theory-first results. Comput Math Appl. 1999;37:19–31.
[2] Maji PK, Biswas R, Roy R. An application of soft sets in a decision making problem. Comput Math Appl. 2002;44:1077–1083.
[3] Karaaslan F. Soft classes and soft rough classes with applications in decision making. Math Probl Eng. 2016:Article ID 1584528, 11 pages.
[4] Shabir M, Naz M. On soft topological spaces. Comput Math Appl. 2011;61:1786–1799.
[5] Al-shami TM, Kočinac LDR, Asaad BA. Sum of soft topological spaces. 2020;8(6):990.doi:10.3390/math8060990.
[6] Hida T. A comparison of two formulations of soft compactness. Ann Fuzzy Math Inform. 2014;8(4):511–524.
[7] Al-shami TM, El-Shafei ME, Abo-Elhamayel M. Almost soft compact and approximately soft Lindelöf spaces. J Taibah Univ Sci. 2018;12(5):620–630.
[8] Ozkan A, Akdag M, Erol F. Soft b-compact spaces. New Trends Math Sci. 2016;4(2):211–219.
[9] Al-shami TM. Comment on “soft mappings space”. Sci World J. 2019;2019:Article ID 6903809, 2 pages. https://www.hindawi.com/journals/tswj/2019/6903809/.
[10] Al-shami TM. Comments on some results related to soft separation axioms. Afr Mat. 2020;31(7):1105–1119.
[11] Al-shami TM, Kočinac LDR. The equivalence between the enriched and extended soft topologies. Appl Comput Math. 2019;18(2):149–162.
[12] El-Shafei ME, Abo-Elhamayel M, Al-shami TM. Partial soft separation axioms and soft compact spaces. Filomat. 2018;32(13):4755–4771.

[13] Al-shami TM, El-Shafei ME. Partial belong relation on soft separation axioms and decision making problem: two birds with one stone. Soft Comput. 2020;24:5377–5387.

[14] El-Shafei ME, Al-shami TM. Applications of partial belong and total non-belong relations on soft separation axioms and decision-making problem. Comput Appl Math. 2020;39(3):138. doi.org/10.1007/s40314-020-01161-3.

[15] Al-shami TM. Bipolar soft sets: relations between them and ordinary points and their applications. Complexity. 2021;2021:Article ID 6621854, 14 pages. https://www.hindawi.com/journals/complexity/2021/6621854/.

[16] Al-shami TM, Mhemdi A. Belong and non-belong relations on double framed soft sets and their applications. J Math. 2021;Article ID 9940301.

[17] Das S, Samanta SK. Soft metric. Ann Fuzzy Math Inform. 2013;6(1):77–94.

[18] Das S, Samanta SK. Soft real sets soft real numbers and their properties. J Fuzzy Math. 2012;20(3):551–576.

[19] Wardowski D. On a soft mapping and its fixed points. Fixed Point Theory Appl. 2013;2013:182.

[20] Abbas M, Murtaza G, Romaguera S. Soft contraction theorem. J Nonlinear Convex Anal. 2015;16(3):423–435.

[21] Abbas M, Murtaza G, Romaguera S. Remarks on fixed point theory in soft metric type spaces. Filomat. 2019;33(17):5531–5541.

[22] Mohinta S, Samanta TK. Variant of soft compatible weakly soft commuting maps and common fixed point theorem. Int J Math Sci Appl. 2016;2(2).

[23] Mohinta S, Samanta TK. A comparison of various type of soft compatible maps and common fixed point theorem-II. Int J Cybernetics Inform.. 2015;4(5).

[24] Yazar MI, Gündüz Ç., Bayramov S. Fixed point theorems of soft contractive mappings. Filomat. 2016;30(2):269–279.

[25] Zorlutuna I, Çakir H. On continuity of soft mappings. Appl Math Inf Sci. 2015;9(1):403–409.

[26] Nazmul S, Samanta SK. Neighbourhood properties of soft topological spaces. Ann Fuzzy Math Inform. 2013;6(1):1–15.

[27] Aygün Çöglu A, Aygün H. Some notes on soft topological spaces. Neural Comput Appl. 2012;21:113–119.

[28] Al-shami TM. Compactness on soft topological ordered spaces and its application on the information system. J Math. 2021;Article ID 6699092, 12 pages.

[29] Al-shami TM. On soft separation axioms and their applications on decision-making problem. Math Probl Eng. 2021;Article ID 8876978, 12 pages.

[30] Kočinac LDR, Al-shami TM, Çetkin V. Selection principles in the context of soft sets: menger spaces. Soft Comput.

[31] Feng F, Li YM, Davvaz B, et al. Soft sets combined with fuzzy sets and rough sets: a tentative approach. Soft Comput. 2010;14:899–911.

[32] Ali MI, Feng F, Liu X, et al. On some new operations in soft set theory. Comput Math Appl. 2009;57:1547–1553.

[33] Maji PK, Biswas R, Roy R. Soft set theory. Comput Math Appl. 2003;45:555–562.

[34] Babitha KV, Suntill JJ. Soft set relations and functions. Comput Math Appl. 2010;60:1840–1849.

[35] Kharal A, Ahmad B. Mappings on soft classes. New Math Nat Comput. 2011;7(3):471–481.

[36] Kandil A, Tantawy OAE, El-Sheikh SA, et al. Soft connectedness via soft ideals. J New Results Sci. 2014;4:90–108.

[37] Asaad BA. Results on soft extremally disconnected soft topological spaces. J Math Comput Sci. 2017;17:448–464.

[38] Akdag M, Ozkan A. On soft b-open sets and soft b-continuous functions. Math Sci. 2014;8:1–9.

[39] Al-shami TM, El-Shafei ME. On soft compact and soft Lindelöf spaces via soft pre-open sets. Ann Fuzzy Math Inform. 2019;17(1):79–100.

[40] El-Sheikh SA, Hosny RA, Abd El-latif AM. Characterizations of b-soft separation axioms in soft topological spaces. Inf Sci Lett. 2015;4(3):125–133.

[41] Abd El-latif AM. Soft connected properties and irresolute soft functions based on b-open soft sets. Facta Univ Ser Math Inform. 2016;31(5):947–967.