Forest plants selection as feed sources and nesting tree of obi cuscus (*Phalanger rothschildi* thomas, 1898) in Obi islands, North Maluku

W R Farida

Zoology Division, Research Center for Biology, Indonesian Institute of Sciences Cibinong Science Center, Jln. Raya Bogor-Jakarta Km 46, Cibinong 16911, West Java, Indonesia

E-mail: wrosafarida@gmail.com

Abstract. Obi cuscus (*Phalanger rothschildi*) is an arboreal marsupial and is an endemic animal from Obi Island, Bisa Island, and Obilatu Island part of the Obi Islands, North Maluku province. In Indonesia cuscuses are protected animals. The study with the roaming method are carried out by exploring the location where the obi cuscus is visible, collecting the forest plant as feed sources and nest tree. The potential information of forest plants as a feed sources and nest tree for cuscus, is needed in strategy of cuscus conservation both in situ and ex situ. The objective of this study was to identify the species of forest plant that serve as feed sources and nesting site for obi cuscus in North Maluku. The results showed 28 species of forest plants consisting of 21 families was selected by obi cuscus as their feed sources and 11 species of plants as their nesting site. Parts of the plants being consumed was fruit. The results of the analysis of nutrient content of feed plants are crude proteins ranging from 3.67% to 14.12% with an average (7.94±3.84)%, crude fiber (5.42% - 50.12%) with an average (20.52±14.43)%, NFC (35.91 - 84.72) with an average (57.00 ± 15.01)%, and gross energy content (3,269 – 4,489) cal/g with an average (3,525.5±1,241.3) cal/g.

1. **Introduction**

Obi Island is one of the islands included in South Halmahera Regency, North Maluku Province, with an area of 2,542km² and and geographically located at1°30’S 127° 45’E. Obi Sub-District region is bordered by the Obi Strait to the north, South Obi District to the south, Arafura Sea to the East, and the Maluku Sea to the West. Obi Subdistrict consists of eight villages, namely Desa Baru, Laiwui, Buton, Jikotamo, Sambiki, Anggai, Kelo, and Sum.

Forests on Obi Island are generally lowland rain forests with flat to hilly topography. On this island, there are many cocoa, clove, nutmeg, and coconut plantations belonging to the community to the forest. Information about obi’s biodiversity is still not available, so exploration is needed to reveal it. The survey was conducted in the forests of the villages of Baru, Buton, Anggai, Sum, and Bisa Island which are located north of Obi Island.
Cuscus is one of the endemic species of marsupialia of Eastern Indonesia whose distribution includes Papua, Maluku, Sulawesi and Timor cuscus, which is classified as the family of Phalangeridae, have long been hunted for the use of meat, fur and teeth by local peoples, especially in Papua, North Sulawesi, East Nusa Tenggara [1–4].

Until now several species of Phalangeridae have been categorized as critical endangered and towards extinction (vulnerable). Most of them are legally protected and listed in Appendix II of the CITES Convention [5]. However, [6] reported that Phalanegridae is still considered to be vulnerable by virtue of restricted distribution.

Cuscuses have been protected since 1990 through the Regulation of the Wild Animal Hunting (PPBL) No. 226/1931, Law No. 5/1990 concerning Conservation of Biological Natural Resources and their Ecosystems, and Law no. 7/1999 concerning Preservation of Plants and Animals. The current status of cuscus protection is stipulated in the Regulation of the Minister of Environment and Forestry of the Republic of Indonesia Number P.20 / MENLHK / SETJEN / KUM.1 / 6/2018 concerning protected species of plants and animals.

Obi cuscus (Phalanger rothschildi Thomas, 1898) is endemic to the islands of Obi, Bisa, Obi-Latoe in the North Central Moluccan Islands, Indonesia [7]. Hunting and capture activities in the wild and uncontrolled trade can cause the existence of this animals to be threatened in their natural habitat.

Reports that local people noted that the species had become rare in northern Bisa [8]. The biodiversity hotspot of Wallacea, Indonesia, is notable for its high rate of endemism, particularly in mammals, and its mix of fauna of both Asian and Australasian origin [9,10].

The feed choices made will be determined primarily by the animal’s regulatory phenotype, but constrained by the nutritional, chemical, and structural composition of the foods in the environment [11,12]. Quantifying the underpinnings of diet selection is challenging, especially in studies of wild animals, because it requires precise feeding observations of individuals over continuous periods, relevant analyses of all foods consumed [13].

The opening of forest and the activity of shifting cultivation still happened in Obi island that can threaten the existence of wild animal and the availability of forest plants as feed resources. The intact of the habitat of obi cuscus and the existence of plant forests as feed resources for this animal are crucial and need to be preserved. This action is need for guaranteeing the existence of this animal in its habitat.

Obi cuscus plays an important role in seed dispersal, including food selection and nutritional needs. Data obtained from this research on feed selection and nutritional composition of selected feed items will greatly inform the conservation of both wild and captive populations of this species.

The aim of this research was to identify the species of forest plant that serve as feed sources and nesting tree on obi cuscus in North Maluku.

2. Materials and Methods
Exploration to Obi Island, South Halmahera Regency has been carried out for 21 days. Surveys to the distribution area of the Obi cuscus habitat were carried out based on local community reports to observe the diversity of forest plant species as feed sources and nesting trees, as well as the condition of the habitat of the Obi cuscus. The survey with the roaming method are carried out by exploring the location where the obi cuscus is visible, collecting the forest plant as feed sources and nest tree, and interview with local people.

Every tree found as feed resources and temporary nesting site is measured its height and diameter at breast height (DBH), then is taken the samples of its trunk, branch, leaf, flower, and fruit. The samples are placed between used newspaper, moistened by methylated spirit as preservative, and arranged in orderly way. The preference of nesting tree is determined by describing and comparing the characteristics of the nest tree species with other trees around the nest tree. The identification of the forest plants, then, is conducted in Herbarium Bogoriense,
Botanic Division, Research Centre for Biology, Indonesian Institute of Sciences (LIPI), Cibinong.

The plant samples in the form of leaves, fruit, and flowers are collected as many as possible and kept in plastic bag. In the base camp, the samples were dried under the sun for 1 - 2 days to avoid decaying until sun dried weight were achieved. The fruit collected is cut to small pieces to accelerate the drying process. In the Laboratory of Nutrition Testing at the Zoology Division, Research Center for Biology - LIPI in Cibinong, all the fruit samples were oven dried at 60°C for 18 hours. The dried samples were milled and analyzed (proximate analysis) of its nutrient contents based by [14]. Crude protein was then calculated by multiplying the nitrogen value by a standard factor of 6.25. There is some uncertainty whether 6.25 is the best conversion factor for tropical fruits [15]. Gross energy was determined by compressing dried samples into pellets for analysis in an Oxygen Bomb Calorimeter (Parr 6200) with a benzoic acid standard [16].

For identification purposes, seven cuscuses captured in the Laboku forest (Buton village area), Tabuji (Baru village area), Gold mining (Anggai village area), Sum village area, and Bisa Island. Seven cuscuses (4 females and 3 males) recorded morphometric data, such as size of body’s parts and weight. Their photographs were taken, and their characteristics also noted. After all of these done, the cuscuses were released into the forest.

3. Result and Discussion

No.	Species name	Family	Local name	Height (m)	Nest height (m)
1.	*Dracontomelon dao* (Blanco) Merr. & Rolfe	Anacardiaceae	Rau	48	44
2.	*Asplenium nidus* L.	Asplenium group	Ponda sau	27	22
3.	*Aporosa frutescens* Bl.	Euphorbiaceae	Nam nam	19	13
4.	*Macaranga hispida* Muell – Arg.		Maro	18	14
5.	*Omalanthus giganteus* Zoll & Moritzi		Lapimatahuri	18	14
6.	*Albizia falcataria* (L.) Forberg	Fabaceae	Salawaku	37	31
7.	*Erythrina variegata* L.		Ro’da	29	21
8.	*Barringtonia racemosa* (L.) Spreng	Lecythidaceae	Katentehawa	19	13
9.	*Ficus uncinata* Becc.	Moraceae	Saudama	29	12
10.	*F. minahassae* Miq.		Lapikowulu	22	17
11.	*Chionanthus ramiflorus* Roxb.	Oleaceae	Tumpa	24	18
Table 2. The list of forest plant as feed sources for obi cuscus

No.	Species name	Family	Local name	Part of plant eaten
1.	*Dracontomelon dao* (Blanco) Merr. & Rolfe	Anacardiaceae	Rau	Fruit
2.	*Spondias novoguineensis* Kost.			Kandoro ewa
3.	*Parsonia buruensis* (T.et B) Boerl.	Apocynaceae	Uwo ewa	Fruit
4.	*Tabernaemontana sphaerocarpa* Bl.		Jempaka ewa	Fruit
5.	*Cocos nucifera*	Arecaceae	Kelapa	Fruit
6.	*Canarium asperum* Benth ssp.	Burseraceae	Saulangi jawa	Fruit
7.	*Alaeocarpus sphaericus* (Gaerth.) K. Schum	Elaeocarpaceae	Ketapang mohane	Fruit
8.	*Mallotus rhicinoides* Muell – Arg.	Euphorbiaceae	Sauhorogo	Fruit
9.	*Flacourtia inermis* Roxb.	Flacourtia	Tomi-tomi	Fruit
10.	*Lea indica* (Burn. F.) Merr.	Leeaceae	Kawiwintonu	Fruit
11.	*Dysoxylum gaudichaudianum* (Juss.) Miq			Fruit
	Kibara coriacea (BL) Tul.	Monimiaceae	Jambo ewa	Fruit
12.	*Ficus adenosperma* Miq.	Moraceae	Mataburi	Fruit
13.	*F. minahassae* Miq.		Lapikowulu	Fruit
14.	*F. septica* Burm. F.		Liboye’e	Fruit
15.	*F. variegata* Bl		Gondal	Fruit
16.	*Musa sp.*	Musaceae	Pisang utan	Fruit
17.	*Maesa tetrandra* A.DC.	Myrsinaceae	Saulantoro	Fruit
18.	*Syzygium aromaticum* Merr. & Perry	Myrtaceae	Cengkeh	Fruit
19.	*S. jambos* (L.) Ast.		Jambo uwo	Fruit
20.	*S. pycnathum* Merr. & Perry		Jambo ewa roomolewa	Fruit
21.	*Piper aduncum*	Piperaceae	Siri-siri	Fruit
22.	*Timonius rufescens* Boerl.	Rubiaceae	Kantintimuru	Fruit
23.	*Glycosmis pentaphylla* (Retz.) Corr.	Rutaceae	Ganemo ewa	Fruit
24.	*Pometia pinnata*	Sapindaceae	Matoa	Fruit
25.	*Theobroma cacao* L.	Sterculiaceae	Coklat	Fruit
26.	*Pipturus argenteus* (Forst.) Wedd.	Urticaceae	Saurore	Fruit
27.	*Zingiberaceae*		Galoba ewa	Fruit
28.	*) Not identified			

Cuscuses are generally nocturnal or active at night, during the day it is difficult to be able to directly see their activity, because they usually hide or sleep in their nests in the form of piles of leaves arranged in a tree. According to information from local people who accompany us to the forest, 20 years ago there were still many cuscus on Obi Island and it was easy to find. Obi Island residents can still fulfill their daily needs from farming and the majority of the population is Muslim so they do not consume cuscus meat.

The existence of cuscus is feared because of forest clearing for fields, deforestation both legal and illegal, the existence of forest concession rights on Obi Island, as well as communities gold mining in the Anggai region, thus decreasing habitat integrity for cuscus.

From the survey results it is known that Obi's cuscus is found in lowland forest, nest in tall trees and symbiose with ponda sau plants (*Asplenium nidus*). During the fruit season, cuscus is often found in the matoa tree (*Pometia pinnata*), rao (*Dracontomelon dao*), and lapikowulu (*F. Minahassae*), which is also a temporary nesting place (Figure 3). Table 2 presents 11 species of trees chosen by cuscus as temporary nesting sites.

Nesting tree of obi cuscus is a place in between branches and built from leaves as both floor and roof which is used as a temporary place for taking a rest and hiding, especially in the day
time. According to [4], cuscus chooses its nesting tree generally on trees grown by creeping plants or on trees grow side by side with other trees which their fruit or flowers are also its feed resources. Conform to its life habit: living on the trees (arboreal) and active in the night (nocturnal), in the day time cuscus hides and sleeps [17].

It is almost impossible to see directly the activities of obi cuscus in the day time because this animal is active in the night only. The information about plants which is selected by obi cuscus as feed resources is obtained from interview with local communities. They are invited to go along with researcher into the forest to find the location where they can see cuscus. They can find and show the rests of plant parts eaten by cuscus such as traces of a jerk on leaves, bitten on fruit, and scratched on a trunk.

Table 3. Morphometry of obi cuscus

Parts of cuscus body	Location and size of cuscuses				
	Laboku	Tabuji	Anggai	Sum	P. Bisa
Body length (mm)					
Adult ♂	385	390	390	380	395
Adult ♀	300	310	295	310	300
Tail length (mm)					
Adult ♂	300	310	305	295	310
Adult ♀	300	310	305	295	310
Hind foot (mm)					
Adult ♂	48.7	48.3	50.8	47.0	49.0
Adult ♀	20	15	18	15	18
Ear (mm)					
Adult ♂	1250	1425	1650	950	1600
Adult ♀	1000	1550	1550		

From the area explored on Obi Island, seven cuscus were captured for the purpose of measuring body parts (morphometry). The results of measurements of cuscus body parts are presented in Table 3. After comparing cuscus morphometry data from obi island with cuscus specimens at Zoology Division, Research Center for Biology, Indonesian Institute of Sciences (LIPI), it is known that the type of cuscus found on Obi Island is *Phalanger rothschildi* or obi cuscus (Figure 1 and Figure 2), which is a type of endemic cuscus on Obi Island and surrounding islands [8].

Information about the type of plant chosen by cuscus obi as feed sources obtained from interviews with local people or hunters who know the location in the forest, where they often find cuscus. They can show some evidence of the remnants of the fruit eaten or bitten by cuscus and nail claw marks on tree trunks. From the results of the survey, obi cuscus in its habitat only consumed fruits (Figure 4 and Figure 5) and information from local people, that they had never seen cuscus consume leaves except only fruits. This is very different from cuscus in Papua, Sulawesi and Timor, because it consumes fruits, young leaves, bark, or stem shoots [1,2,4,10,18]. Cuscus bear (*Ailurops cuscus*), while dwarf cuscous (*Strigocuscus celebensis*) which is also endemic to Sulawesi, prefers fruits [3].

Forest plants were chosen by cuscus obi as their feed sources, consisting of 28 numbers and 27 species that were identified belong to 21 families (Table 2). Reported by [19], the selection of feed types in marsupials is related to the morphological and histological structure of the gastrointestinal tract, while [20] explains that some marsupials such as dasyurid have simple gastrointestinal tracts and do not have a caecum.

The fruits chosen by the obi cuscus as feed are generally fruits from tall trees, this proves cuscus is an arboreal animal or animal that lives in trees and eats plants (herbivores). There are no reports from communities that obi cuscus consumes animal feed. The results of previous studies report that in their habitat cuscus also consumes bird eggs [21], chicks and lizards[22], and young
mammals [23]. From table 2 it can be seen that cuscus obi only consumes fruits, no other parts of the plant are consumed. This is because fruits contain high concentrations of sugar [24] and rich in carbohydrate [25]. Cuscus often avoids unripe fruits because it is less palatable than ripe fruits [26], contain less gross energy [27], and often contain toxins or antifeedants [28] but also have higher concentrations of toxins and other secondary compounds than ripe fruit [29]. From the results of previous studies, generally cuscus (Phalanger sp.) and spotted cuscus (Spilocuscus maculatus) prefer fresh fruits and sour taste containing high crude fiber and low fat [1–4,18,30,31]. Analysis of nutrient content (dry matter, ash, protein, fat, crude fiber, NFC and gross energy) of forest fruits as feed for Obi cuscus is listed in Table 4. Eight species of fruits (matoa, sauhorogo, forest banana, mohane ketapang, Jambo ewa roomolewa, jambo uwo, saurore, and uwo ewa) have not yet been analyzed for their nutritional content, because during the survey the fruits were not in season.

Table 4. Nutrient contents of forest plants as feed sources for obi suscus (100% DM)

Species name	DM (%)	Ash (%)	Protein (%)	Fat (%)	Crude Fiber (%)	NFE (%)	Gross Energy (cal/g)
Piper aduncum	96.43	8.44	13.71	3.73	20.81	53.30	4252
Dracontomelon dao	90.23	3.37	5.24	0.66	6.01	84.72	3269
Ficus microcarpa	94.35	10.19	4.55	3.89	18.55	62.83	3806
F. adenosperma	95.51	11.59	9.30	2.49	30.05	46.57	3844
Tabernaemontana	96.34	4.06	11.18	3.46	25.93	55.38	4407
Tabernaemontana	96.34	4.06	11.18	3.46	25.93	55.38	4407
Flacourtia inermis	92.28	3.75	1.98	0.81	22.14	71.32	3629
F. septica	95.01	8.45	13.58	2.21	32.09	43.67	4051
Timonius rufescens	93.69	5.80	5.17	1.49	46.41	41.14	4489
Mahaea tetrandra	93.49	4.93	5.68	4.00	*	*	*
Kibara coriacea	93.23	5.55	10.26	5.30	10.77	68.12	3965
Galoba ewa (local name)	90.40	9.57	8.10	3.90	*	*	*
Syzygium aromaticum	92.47	4.09	4.11	0.71	8.08	83.01	3850
Syzygium aromaticum	92.47	4.09	4.11	0.71	8.08	83.01	3850
Dysoxylum	90.94	6.11	15.53	1.13	19.75	57.48	3883
Canarium asperum	95.36	5.17	4.26	2.11	52.56	35.91	4247
Glycosmis pentaphylla	89.29	4.66	14.53	1.38	*	*	3728
F. variegata	93.36	12.26	9.04	4.46	23.64	50.60	3912
Theobroma cacao	96.40	8.05	12.73	0.68	31.89	46.65	3782
Cocos nucifera	94.48	8.78	10.00	0.18	40.04	49.99	3989

*) sample is not enough; DM = Dry matter; NFE = Nitrogen free extract.

The nutritional content of forest fruits as a source of Obi cuscus feed turns out to be very varied. Table 4 presents that ash content ranged from (3.04 - 11.45)%, with an average (6.49 ± 2.52)%; crude protein (3.67 ± 14.12)% with an average (7.94 ± 3.84)%, fat (0.17 - 4.16)% with an average (2.13 ± 1.44)%; crude fiber (5.42 - 50.12)% with an average (20.52 ± 14.43)%, NFC (35.91 - 84.72) with an average (57.00 ± 15.01)%; and gross energy (3269 - 4489) cal/g with an average (3525.5 ± 1241.3) cal/g.

The analysis results of nutrient contents shows that nutrient need of obi cuscus has contain crude protein, crude fiber, and nitrogen free extract contents range which are wide so that the preparation of feed for these animals in captive breeding (ex situ) will be relatively easier. This is also supported by the fact that plant selected by the obi cuscus as feed resources are very diverse. In addition to energy and protein, animals may select feed based on fiber and secondary compound concentrations [32]. This is perhaps to be expected, considering that feed items with
high concentrations of secondary metabolites may be difficult to digest, lack nutritional value, and can contain toxins [33–35].

The nutritional content of feed plants needs to be analyzed to meet nutritional needs if cuscus is kept in captivity for both conservation, research, and commercial purposes, so that alternative feeds that can be found close to the nutritional content in their natural habitat. In the feeding of captive animals, it is necessary to know the nutritional content of feed from their habitats to support the ex-situ breeding program. In captivity, animals have no choice of feed. Animals will consume the feed provided by breeding managers, of course, must take into account the adequacy of nutrition in order to meet the basic life and production needs (meat, milk, pregnancy, etc.). The choice of plant species eaten by animals reflects the need to optimize the nutrient mix and the total amount of feed [36], and animals will instinctively choose plants that contain low toxicity that can inhibit their digestion [37].

According to [38], in nature the availability of feed is one of the most important factors in determining animal abundance and habitat quality including its distribution.

4. Conclusion
The habitat of the Obi cuscus (Phalanger rothschildi) is generally located in low land areas where many tall trees, lush and overgrown with an epiphytic species of fern (Asplenium nidus). Eleven species of trees are often used as temporary nesting tree for Obi cuscus. Until now, the condition of cuscuses habitat in Obi Island is still quite good, but the anticipation of forest clearing for local farming needs to be supported by forest protection efforts, so that the forest area that is cleared does not expand. The forest fruits chosen by the cuscus as feed sources were identified as many as 28 species belonging to 21 families, and there are no reports of forest leaves being consumed by the Obi cuscus

Acknowledgements
Author are thankful to Head of BKSDA of North Maluku Province and all staff, Head of Forestry Services of North Maluku Province, and Head of Obi Island Sub-district for the research permit granted. Thank you to Hadi Dahruddin for the help during the field research, and also to Tri H. Handayani and R. Lia R. Amalia for analyzing the nutritional content of forest plants. This research was funded from the DIPA budget of the Research Center for Biology, Indonesian Institute of Sciences.

References
[1] Farida W R, Triono T H T R I H A I 2005 Feed Plants Selection and Nesting Site of Cuscus (Phalanger sp.) in Nature Reserve of Gunung Mutis, East Nusa Tenggara Biodiversitas J. Biol. Divers. 6
[2] Farida W R, Semiadi G and Wirdateti W 1999 Pemanfaatan Kuskus oleh Masyarakat Pedalaman Irian Jaya Ber. Biol. 4 341–2
[3] Farida W R and Dahrudin H 2017 The selection of forest plants as feed resources and nesting site of dwarf cuscus (Strigocuscus celebensis) and nutrient analysis in Wawonii Island, south-east Sulawesi J. Biol. Indones. 5
[4] Farida W R, Semiadi G and Dahruddin H 1999 Pemilihan jenis-jenis tumbuhan sebagai tempat bersarang dan sumber pakan kuskus (Famili Phalangeridae) di Irian Jaya J. Biol. Indones. 2 235–43
[5] Nature I U for C of, Centre I C M, Centre W C M, Nature I U for C of, Commission N R S S, Preservation I C for B and International B 1996 IUCN red list of threatened animals (International Union for Conservation of Nature and Natural Resources)
[6] Norris C A 1999 Phalanger lullulae Mamm. Species 1–4
[7] IUCN I 2010 Red list of threatened species Int. Union Conserv. Nat. (Available www.iucnredlist.org/mammals, 2008)
[8] Flannery T F 1995 *Mammals of the south-west Pacific & Moluccan Islands* (Cornell University Press)

[9] Whitten T and Henderson G S 2012 *Ecology of Sulawesi* (Tuttle Publishing)

[10] Norman M 2003 Biodiversity hotspots revisited *Bioscience* **53** 916–7

[11] Lambert J E 2010 Primate nutritional ecology: feeding biology and diet at ecological and evolutionary scales *Primates Perspect.*

[12] Milton K 1993 Diet and primate evolution *Sci. Am. Ed.* **269** 70

[13] Felton A M, Felton A, Wood J T, Foley W J, Raubenheimer D, Wallis I R and Lindenmayer D B 2009 Nutritional ecology of Ateles chamek in lowland Bolivia: how macronutrient balancing influences food choices *Int. J. Primatol.* **30** 675–96

[14] William H 2000 Official methods of analysis of AOAC International *AOAC Off. method* 985.29

[15] Milton K and Dintzis F R 1981 Nitrogen-to-protein conversion factors for tropical plant samples *Biotropica* **13** 177–81

[16] Cowan I M, O’riordan A M and Cowan J S M 1974 Energy requirements of the dasyurid marsupial mouse Antechinus swainsonii (Waterhouse) *Can. J. Zool.* **52** 269–75

[17] George G G 1973 Land mammal fauna *Aust. Nat. Hist.* **17** 420–6

[18] Dahruddin H, Farida W R and Rohman A E 2005 Jenis-jenis tumbuhan sumber pakan dan tempat bersarang Kuskus (Famili Phalangeridae) di Cagar Alam Biak Utara *Biodiversitas* **6** 253–8

[19] Stannard H J, McAllan B M and Old J M 2014 Dietary composition and nutritional outcomes in two marsupials, Sminthopsis macoura and S. crassicaudata *J. Mammal.* **95** 503–15

[20] Hume I D 1999 *Marsupial nutrition* (Cambridge University Press)

[21] Menzies J 2011 *A handbook of New Guinea’s marsupials and monotremes* (University of Papua New Guinea Press)

[22] Petocz R G and Raspado G P 1994 *Mamalia Darat Irian Jaya* (Grahamy Pusataka Utama)

[23] Winter J W 1976 The behaviour and social organisation of the brush-tail possum (Trichosurus vulpecula; Kerr)

[24] Ma C, Liao J and Fan P 2017 Food selection in relation to nutritional chemistry of Cao Vit gibbons in Jingxi, China *Primates* **58** 63–74

[25] Hon N 2016 Food selection by the northern yellow-cheeked crested gibbons (Nomascus annamensis), northern Cambodia

[26] Venu D K, Munjal S V, Waskar D P, Patil S R and Kale A A 2005 Biochemical changes during growth and development of r (Ficus carica L.) fruits *J. Food Sci. Technol.* **42** 279–82

[27] Schaefer H M, Schmidt V and Winkler H 2003 Testing the defence trade-off hypothesis: how contents of nutrients and secondary compounds affect fruit removal *Oikos* **102** 318–28

[28] Cipollini M L and Levey D J 1997 Why are some fruits toxic? Glycoalkaloids in solanumand fruit choice by vertebrates *Ecology* **78** 782–98

[29] Wrangham R W and Waterman P G 1983 Condensed tannins in fruits eaten by chimpanzees *Biotropica* 217–22

[30] Saragih E V I W, Sadositoebone M J and Pattiselanno F 2010 The diet of spotted cuscus (Spilocuscus maculatus) in natural and captivity habitat *Nusant. Biosci.* 2

[31] Farida W S, Nurjaeni M R and Diapari D 2004 Kemampuan cerna kuskus beruang (Ailurops ursinus) terhadap pakan alternatif di penangkaran *Biosmart* 6 65–70

[32] Hanya G and Bernard H 2015 Different roles of seeds and young leaves in the diet of red leaf monkeys (Presbytis rubicunda): comparisons of availability, nutritional properties, and associated feeding behavior *Int. J. Primatol.* **36** 177–93

[33] Chapman C A and Chapman L J 2002 Foraging challenges of red colobus monkeys: influence of nutrients and secondary compounds *Comp. Biochem. Physiol. Part A Mol. Integr. Physiol.* **133** 861–75

[34] Acamovic T and Brooker J D 2005 Biochemistry of plant secondary metabolites and their effects in animals *Proc. Nutr. Soc.* **64** 403–12

[35] Simmen B, Tarnaud L, Marez A and Hladik A 2014 Leaf chemistry as a predictor of primate biomass and the mediating role of food selection: a case study in a folivorous lemur (Propithecus verreauxi) *Am. J. Primatol.* **76** 563–75

[36] Westoby M 1974 An analysis of diet selection by large generalist herbivores *Am. Nat.* **108** 290–
304

[37] Milton K 1979 Factors influencing leaf choice by howler monkeys: a test of some hypotheses of food selection by generalist herbivores Am. Nat. 114 362–78

[38] Borror D J, Triplehorn C A and Johnson N F 1992 Pengenalan pelajaran serangga Donald J (Gadjah Mada University Press)
Appendix 1. Position of Survey Location in Obi Island and Bisa Island

LATD	LATM	LATS	DIRLAT	LONGD	LONGM	LONG	DIRLON	ALT (m ASL)	LOCATION	
0	47	95	N	127	22	589	E	10	Office of BPS, Ternate	
0	45	580	N	127	22	396	E	1	Port of Bostong, Ternate	
0	37	169	S	127	23	487	E	1	Bai, Obi Island	
0	40	60	S	127	28	267	E	1	Kupal, Bacan Island	
1	13	194	S	127	39	108	E	1	Obi Island	
0	20	353	S	127	39	241	E	1	Port of Jikotamo, Obi Island	
0	22	225	S	127	38	161	E	5	District office of Obi	
0	20	188	S	127	38	318	E	10	Butun village	
1	29	22	S	127	38	475	E	40	Lawun river, Laboku	
1	23	31	S	127	38	387	E	45	Laboku, base camp	
1	23	193	S	127	38	438	E	50	Laboku, found 2 cuscuses (male and female) on amatao tree (daytime) and 1 female on a Kuini tree (at night)	
1	23	360	S	127	38	547	E	40	Lamakatto	
1	23	387	S	127	38	579	E	40	Logging path in Lamakatto	
1	22	470	S	127	39	18	E	35	Former logging path in Kilonoo	
1	23	2	S	127	39	63	E	35	Swamp location, Kilonoo	
1	22	581	S	127	39	74	E	40	A great rain tree in Kilonoo	
1	27	335	S	127	39	74	E	50	Kaba mori	
1	23	533	S	127	38	542	E	40	Kaba sumbali	
1	24	141	S	127	39	177	E	147	Ewa damara	
1	22	373	S	127	38	486	E	35	Buarao kapasi	
1	24	85	S	127	38	432	E	85	Camp of HPH in Sanjiang, Lokotonga	
1	23	554	S	127	38	540	E	70	Found 2 cuscuses on Salawuku tree	
1	21	240	S	127	36	358	E	30	Potholes damaged roads in Tuduku	
1	23	99	S	127	36	8	E	45	Found 1 female cuscus on libo tree in Tabuji	
1	23	225	S	127	36	58	E	50	Found 1 female cuscus with young in pouch on maro tree in Tabuji	
1	23	385	S	127	36	15	E	40	Tabuji river	
1	21	79	S	127	37	145	E	1	Akebari, Baru village	
1	20	457	S	127	44	23	E	1	Port of Anggai village	
1	21	532	S	127	43	415	E	20	Gold mining site in Anggai	
1	22	135	S	127	43	437	E	30	Found 1 male cuscus on galala tree, near Anggai river	
1	22	173	S	127	43	194	E	50	Anggai river, headed to the forest	
1	20	114	S	127	42	392	E	1	Sambiki Island	
1	33	374	S	128	6	305	E	1	Pot of Sum village	
1	36	366	S	128	9	46	E	28	Sum village	
1	36	397	S	128	7	239	E	33	Found 1 male cuscus on allapimatahari tree, km 7, Sum	
1	15	110	S	127	31	383	E	1	Port of Lapananawa village, Bisa Island	
1	14	483	S	127	31	214	E	80	Headed to the forest, Jurami, Bisa Island	
								E	85	Found 1 female cuscus with young in pouch on tumpa tree in Jurami, Bisa Island
								E	85	Found 1 male cuscus on nam-nam tree in Jurami, Bisa Island

* GPS failed showing coordinate position in that location
Appendix 2. Photos from survey activities

Figure 1. Male obi’s cuscus (*Phalanger rotschildi*)

Figure 2. Female obi’s cuscus with young in pouch on matoa tree (*Pometia pinnata*)

Figure 3. Lapikowulu (*F. minahassae*), Nesting tree of obi cuscus

Figure 4. Fruit of lapikowulu (*Ficus minahassae*)

Figure 5. Fruit of Jambo ewa (*Kibara coriacea*)