Sequencing and analysis of the complete mitochondrial genome of *Hippopus porcellanus*

Haitao Ma*, Baolu Zhang*, Yuehuan Zhang, Yang Zhang, Yanping Qin, Chenghui Han, Shixi Chen, and Ziniu Yu

*Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China; †South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangzhou, China; ‡Hainan Provincial Key Laboratory of Tropical Marine Biology Technology, Sanya Institute of Oceanology Chinese Academy of Sciences, Tropical Marine Biological Research Station in Hainan, Chinese Academy of Sciences, Sanya, China; †Key Laboratory of Sichuan Province, Conservation and Utilization of Fishes resources in the Upper Reaches of the Yangtze River, College of Life Sciences, Neijiang Normal University, Neijiang, China; ‡Oceanic Consultation Center, Ministry of Natural Resources of the People’s Republic of China, Beijing, China

ABSTRACT

In this study, the complete mitochondrial genome of *Hippopus porcellanus* was reported. The whole mitochondrial genome was 21,565bp in length with a typical mitochondrial genomic structure including 13 protein-coding genes, 23 transfer RNA genes, 2 ribosomal RNA genes and 1 control region (D-loop). Mitogenome base composition was biased toward A + T content, at 60.3%. A phylogenetic tree based on complete mitogenome sequences revealed that, *H. porcellanus* is closely related to *H. hippocus*, both of which belong to the genus *Hippopus*.

CONTACT Shixi Chen (10001662@njtc.edu.cn) Key Laboratory of Sichuan Province, Conservation and Utilization of Fishes resources in the Upper Reaches of the Yangtze River, College of Life Sciences, Neijiang Normal University, Neijiang, China; Ziniu Yu (carlyyu@scsio.ac.cn) Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China

These authors contributed equally to this work

© 2021 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
located between tRNA-Met and COII, with an A+T content of 54.7%.

A neighbor-joining phylogenetic tree of *H. porcellanus* with five other closely related species was constructed with the complete mitochondrial genomes using MEGA6 (Tamura et al. 2013) (Figure 1). The result suggested that, *H. porcellanus* is closely related to *H. hippopus*, both of which belong to the genus *Hippopus*.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Funding

This work was supported by the National Science Foundation of China [31702340; 31872566]; Strategic Pilot Project of the Chinese Academy of Sciences [XDA13020202; XDA13020403]; Key Special Project for Introduced Talents Team of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou) [GML2019ZD0404]; National Key R&D Program of China [2018YFC1406505; 2020YFD0901100]; Science and Technology Program of Guangzhou, China [No.201804020073]; the Network Service Local Plan STS of the Chinese Academy of Sciences [KFJ-STS-QYZD-158; ISEE2018PY03]; the Open Foundation of the State Key Laboratory of Loess and Quaternary Geology [SKLQG1813; SKLQG1918]; the China Agricultural Shellfish Industry Technology System Project [CARS-49] and the Science and Technology Planning Project of Guangdong Province, China [2017B030314052].

Data availability statement

The genome sequence data that support the findings of this study are openly available in GenBank of NCBI at (https://www.ncbi.nlm.nih.gov/) under the accession no. MT755622. The associated BioProject, SRA, and Bio-Sample numbers are PRJNA704757, SRR13827840, and SAMN18054235, respectively.

References

Attitalla IH. 2011. Modified CTAB method for high quality genomic DNA extraction from medicinal plants. Pak J Biol Sci. 14(21):998–999.

Keys JL, Healy JM. 1999. Sperm ultrastructure of the giant clam *Tridacna maxima* (Tridacnidae: Bivalvia: Mollusca) from the Great Barrier Reef. Mar Biol. 135(1):41–46.

Othman AS, Goh GHS, Todd PA. 2010. The distribution and status of giant clams (Family Tridacnidae) – a short review. The Raffles Bulletin of Zoology. 58(1):103–111.

Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. 2013. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol. 30(12):2725–2727.

Zhao QY, Wang Y, Kong YM, Luo D, Li X, Hao P. 2011. Optimizing de novo transcriptome assembly from short-read RNA-Seq data: a comparative study. BMC Bioinf. 12(Suppl 14):S2.