Gene Section
Review

TNFRSF9 (TNF receptor superfamily member 9)
Anette Gjörloff Wingren, Barnabas Nyesiga

Biomedical science, Health and society, Malmö University, Malmö, Sweden
nyesigabarnabas@gmail.com; anette.gjorloff-wingren@mah.se

Published in Atlas Database: January 2019
Online updated version: http://AtlasGeneticsOncology.org/Genes/TNFRSF9ID42631ch1p36.html
Printable original version: http://documents.revue.s.inist.fr/bitstream/handle/2042/70528/01-2019-TNFRSF9ID42631ch1p36.pdf
DOI: 10.4267/2042/70528

This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 2.0 France Licence.
© 2019 Atlas of Genetics and Cytogenetics in Oncology and Haematology

Abstract
Review on TNFRSF9 (CD137), with data on DNA, on the protein encoded, and where the gene is implicated.

Keywords
TNFRSF9; CD137; tumor necrosis factor receptors; Immune response; T cell response.

Identity
Other names: CDw137, CD137, ILA
HGNC (Hugo): TNFRSF9
Location: 1p36.23

DNA/RNA

Description
CD137 is a member of the tumor necrosis factor receptor superfamily 9 (TNFRSF9) first identified in mice (Kwon 1989, Kwon 1994) and found to map to murine chromosome 4 at the 75.5 cM position. Schwarz et al. isolated a 1.4-kb full-length cDNA from a library constructed from activated human T-cell leukemia virus (HTLV) type I-transformed human T-lymphocytes (Schwarz 1993). Schwarz et al. localized the CD137 gene to chromosome 1p36, a region that also harbors genes of several other members of this receptor family (e.g., TNFRSF1B (TNFR2), TNFRSF8 (CD30), TNFRSF4 (OX40) and TNFRSF25 (Apo3)) and is associated with deletions and rearrangements in several malignancies including neuroblastomas, myelodysplastic syndrome, and refractory acute non-lymphocytic leukemia (Schwarz 1997).

Human CD137 gene
Human CD137 consists of 255 amino acids with two potential N-linked glycosylation sites (Alderson 1994). Hydrophobicity analysis revealed amino acids 1-17 to be a putative signal peptide followed by an extracellular domain of 169 amino acids and then a transmembrane domain of 27 amino acids between positions 187-213 and lastly a short intracellular domain of 42 amino acids (Alderson 1994). The molecular weight of the protein was calculated to be 27 kDa (Zhou 1995) and was shown to be 60% identical to murine CD137 (Alderson 1994). Five regions of amino acid sequences were conserved between mice and human in the cytoplasmic domain an indication that these residues might be important for CD137 function (Alderson 1994). Murine and human CD137 ligands were identified and cloned by Alderson et al. (Alderson 1994).

![Figure 1. Mapping of CD137 gene on chromosome 1p36 (from GeneCards CD137 gene).](image-url)
The human TNFSF9 (CD137L) consisted of 254 amino acids and its gene maps to chromosome 19 in the region 19p13.3 (Alderson 1994). The human CD137-L shows 36% amino acid identity with its murine counterpart (Alderson 1994). High-affinity binding of huCD137 Fc to either native or recombinant human CD137-L was also demonstrated (Alderson 1994). The murine CD137 ligand consists of 309 amino acid polypeptide and its gene maps to murine chromosome 17 (Goodwin 1993).

Mouse CD137 gene

The CD137 gene in mice spans approximately 13kb and consists of 10 exons, two of them in the 50 untranslated regions and eight in the coding region (Kwon 1994). Nucleotide sequence analysis of CD137 showed a single open reading frame, which codes for a polypeptide 256 amino acids in length with a calculated molecular mass of 27.5kDa (Kwon 1994). The first 23 amino acids were shown to be a signal peptide, followed by a cysteine-rich region, which comprised of four potential TNFR motifs, of which the first was partial and the third distinct from those of the TNFR (Kwon 1994). Almost 30% of the amino acids residing between residues 140-185, a part that follows the ligand binding domain, were serine or threonines. These provide a potential site for O-linked glycosylation while amino acids 186-211 form the hydrophobic transmembrane domain which is followed by the stop-transfer sequence containing several basic residues (Kwon 1994). The carboxyl terminal part of the cytoplasmic domain contains two short runs of three and four acidic residues, respectively, and a sequence of five glycines followed by a tyrosine (Kwon 1994).

Transcription

CD137 was found to be induced on CD4+ and CD8+ T cells in mice and humans (Kwon 1989, Schwarz 1995, Vinay 1998, Pollok 1993). In mice, the expression takes several hours after stimulation, increases slowly, culminates at 60 hours and declines again by 110 hours (Goodwin 1993, Vinay 1998, Pollok 1994). In humans, CD137 mRNA was detected 1.5 hours after stimulation on T lymphocytes, reaching maximal levels at 8 hours, and declining to background levels by 48 hours (Schwarz 1995).

Protein

Description

CD137 is a 30-kDa glycoprotein and exists as both a monomer and a 55-kDa dimer on the T cell surface (Kwon 1994). The CD137 gene encodes a 255-amino acid protein with 3 cysteine-rich motifs in the extracellular domain, a transmembrane region, and a short N-terminal cytoplasmic portion containing potential phosphorylation sites (Schwarz 1993).

Structure: Bitra et al. determined the crystal structure of mCD137 to 2.2 Å resolution and found that similar to other TNFRSFs, mCD137 has four cysteine rich domains (CRDs). However, the organization of CRD1 and the orientation of CRD3 and CRD4 with respect to CRD2 in the mCD137 structure distinctly differed from those of other TNFRSFs (Bitra 2017).

Expression

In humans, CD137 expression has been reported in follicular DCs (Lindstedt 2003), monocytes (Kienzle 2000), hepatoma cells (Schwarz 1995) and blood vessels from individuals with malignant tumors (Broll 2001). Expression of CD137 soluble form has been reported in the serum of patients with rheumatoid arthritis (Michel 1998). Increased expression of CD137 in human peripheral blood mononuclear cells post exposure to mitomycin and other DNA damaging agents, such as doxorubicin, bleomycin and girradiation (Kim 2002). Expression of CD137 was observed following stimulation of professional antigen presenting cells (APCs) including dendritic cells (DCs) and macrophages as well as activated B cells in both human and mice (Alderson 1994, Goodwin 1993, Pollok 1994, Futagawa 2002, DeBenedette 1997). CD137 is also expressed by follicular DC, monocytes, mast cells, granulocytes, and endothelial cells (Anderson 2012). Anderson et al. described CD137 protein expression by follicular DC in the germinal center and scattered paracortical T cells, but not by normal germinal-center B cells, bone marrow progenitor cells, or maturing thymocytes. CD137 expression was also observed on activated natural killer (NK) (Malero 1998), dendritic cells (DC)(Futagawa 2002) as well as neutrophils (Heinisch 2000) in mice.

Localisation

Using immunohistochemical studies on human tissue samples to determine in vivo CD137 expression in non-immune tissue samples, Broll et al. found a strong CD137 expression in blood vessel walls, on the endothelial layer, and on the vascular smooth muscle cells.

Function

The CD137L-CD137 pathway is known to co-stimulate T cells to carry out effector functions such as eradication of established tumors (Malero 1997, Ye 2002) as well as the broadening of primary and memory CD8+ T cell responses (Halstead 2002, Bertram 2002). Signals moderated by CD137 have been shown to induce a novel subpopulation of CD11c+ CD8+ T cells that have strong anti-cancer and anti-autoimmune effects (Vinay 2006). A novel carbohydrate-mediated interaction between CD137
and LGALS9 (Galectin-9 (Gal-9)) was identified and it was demonstrated in several immune responses that Gal-9 plays a significant role in CD137 signaling activities (Madireddi 2014). Gal-9 binds to terminal galactose moieties of N-linked glycans within the CRD4 region of CD137 and there is no competition between this binding with the binding of CD137 to its natural ligand CD137L or to agonist antibodies against CD137 (Bitra 2017). Bitra et al. also demonstrated that Gal-9 facilitates signaling and functional activation of CD137 in mouse T cells, DCs and NK cells upon binding mouse CD137L or agonist antibodies to CD137 (Bitra 2017). Once ligated and crosslinked, CD137 interacts with the tumor necrosis factor (TNF)-associated factors 1 and 2 (TRAF1 and TRAF2), a process that leads to activation of the master immuno-regulatory transcription factor NF-κB (Chester 2016). In T cells, CD137 signaling results in upregulation of the anti-apoptotic B-cell lymphoma-extra large (BCL2L1 (Bcl-xl)), B-cell lymphoma 2 (BCL2) pathways and induces proliferation and production of pro-inflammatory cytokines interferon gamma (IFN-γ) and IL2 (Lee 2002, Snell 2011). Additionally, CD137 stimulation causes an increase in signaling through the T-cell receptor (TCR) and amplifies the cytotoxicity of CD8+ T cells (Shuford 1997). Similarly, in NK cells, CD137 stimulation enhances proliferation, IFN-γ production, and cytolytic action (Meler 1998). In DCs, CD137 ligation speeds up maturation through upregulation of B7 co-stimulatory molecules (CD80 and CD86) and elevates survival and production of IL6 and IL12 (Kuang 2012). Anti-CD137 immunotherapy has recently shown promise as a treatment for solid tumors and lymphoid malignancies in preclinical models (Anderson 2012). The mode of action underlying CD137-mediated tumor regression consists of multiple, complimentary antitumor immune pathways. Mainly, CD137 agonism activates a potent, cytotoxic T-cell population that can infiltrate and lyse tumors (Curran 2013). In addition to direct tumor lysis, CD137 stimulation stimulates secretion of type 1 cytokines, creating an inflammatory, immunogenic cytokine milieu within the tumor microenvironment (Li 2003). Finally, CD137 ligation increases the secretion of perforin (PRF1), granzyme and activation of the Fas ligand (FASLG) effector system by both CD8+ T cells and NK cells (Morales-Kastresana 2013).

Implicated in

Asthma

Polte et al. used a murine asthma model to demonstrate how a single injection of an anti-CD137 (CD137) mAb prevents the development of airway hyper reactivity, cosinophilic airway inflammation, excessive mucus production, and elevated IgE during a 7 week observation period. They further established that the disease is completely reversed by anti-CD137 mAb administration (Polte 2006).

Human atherosclerosis

CD137 is expressed in human atherosclerosis and its activation promotes inflammation and disease development in murine atherosclerosis (Söderström 2014). Söderström et al. showed that the minor T allele of rs2453021 is associated with increased intima-media thickness in the common carotid artery and increased risk of incident non-cardiac vascular events, thus providing the first human genetic evidence for involvement of CD137 in atherosclerosis (Söderström 2014).

Crystalline silica-induced lung inflammation and fibrosis

Li et al. found that CD137 is induced in response to crystalline silica injury in lungs and that it is highly expressed during development of experimental silicosis. The CD137 pathway signaling was discovered to enhance inflammatory response and promote pulmonary fibrosis induced by crystalline silica (Li 2016).

Colorectal cancer

Dimberg et al. investigated whether CD137 and CD137L protein levels are altered in colorectal tumours compared with normal tissues. They examined CD137 and CD137L plasma levels from patients with colorectal cancer. Collectively, they observed a significant lower CD137L level in cancerous tissue compared with paired normal tissue and the difference in CD137L protein level was significantly lower in the colon cancer subgroup compared with paired normal colon tissue. In addition, an elevated CD137 protein level in the rectal cancer subgroup compared with paired normal rectal tissue was observed. Higher soluble CD137 protein concentration was detected in the plasma of patients with a tumour localised in the colon compared to those with a tumour localised in the rectum. A tendency of higher CD137L protein concentration in the plasma from patients with colon tumour localization was observed. They also observed a strong correlation between plasma concentrations of CD137 and CD137L proteins. Their work revealed how different expression levels of CD137 and CD137L in the colon and rectum may indicate that various mechanisms are involved in the pathogenesis of colorectal cancer and lead to dissimilar protective immunity (Dimberg 2006).

Crohn’s disease

Maertens et al. investigated whether CD137/CD137L interactions might be involved in the pathogenesis of Crohn’s disease (CD) and found
that CD137 expression on lamina propria LP cells in inflamed and to a lesser extend in non-inflamed gut tissue from CD patients. They also found elevated CD137 mRNA levels in intestinal CD tissue. Their results suggest that CD137/CD137L interactions contribute to the persistence of gut inflammation in CD (Maerten 2004).

Type 1 diabetes

Forsberg et al. reported suppression of type 1 diabetes (T1D) progression in NOD mice by CD137 deficiency. From their findings, blockage of the CD137-CD137 ligand interaction significantly delayed T1D onset in NOD mice and absence of CD137 or its interaction with CD137 ligand led to suppression of T1D progression. They also demonstrated that soluble CD137 produced by regulatory T cells contributed to their autoimmun suppressive function in this model. Their results suggest that CD137 can either promote or suppress T1D development in NOD mice depending on where it is expressed (Forsberg 2017).

Hodgkin lymphoma

Anderson et al. showed that CD137 protein is expressed by a selected group of hematolymphoid tumors, including classical Hodgkin lymphoma, T-cell and NK/T-cell lymphomas, and follicular dendritic cells neoplasms (Anderson 2012).

Malignant and benign tumors

In the 32 healthy tissue samples they examined, none contained CD137-positive vessels while malignant tumors had a significantly enhanced frequency of CD137-expressing blood vessels (11/34). In benign tumors (2/14) and in inflammatory tissues (2/9) only a minority had CD137-expressing vessels (Broll 2001). Salih et al. described CD137 expression on various human carcinoma cell lines, on cells of solid tumors derived from these cell lines, and cells obtained from human tumors (Salih 2000).

References

Alderson MR, Smith CA, Tough TW, Davis-Smith T, Armitage RJ, Falk B, Roux E, Baker E, Sutherland GR, Din WS. Molecular and biological characterization of human 4-1BB and its ligand. Eur J Immunol. 1994 Sep;24(9):2219-27

Anderson MW, Zhao S, Freund AG, et al. CD137 is expressed in follicular dendritic cell tumors and in classical Hodgkin and T-cell lymphomas: diagnostic and therapeutic implications. Am J Pathol. 2012 Sep;181(3):795-803

Bansal-Pakala P, Croft M. Defective T cell priming associated with aging can be rescued by signaling through 4-1BB (CD137). J Immunol. 2002 Nov 1;169(9):5005-9

Bertram EM, Lau P, Watts TH. Temporal segregation of 4-1BB versus CD28-mediated costimulation: 4-1BB ligand influences T cells numbers late in the primary response and regulates the size of the T cell memory response following influenza infection. J Immunol. 2002 Apr 15;168(8):3777-85

Bitra A, Doukov T, Wang J, Picarda G, Benedict CA, Croft M, Zajonc DM. Crystal structure of murine 4-1BB and its interaction with 4-1BBL support a role for galectin-9 in 4-1BB signaling. J Biol Chem. 2018 Jan 26;293(4):1319-1329

Broll K, Richter G, Pauly S, Hofstaedter F, Schwarz H. CD137 expression in tumor vessel walls. High correlation with malignant tumors. Am J Clin Pathol. 2001 Apr;115(4):543-9

Chester C, Ambulkar S, Kohrt HE. 4-1BB agonism: adding the accelerator to cancer immunotherapy Cancer Immunol Immunother. 2016 Oct;65(10):1243-8

Cheuk AT, Mufti GJ, Guinn BA. Role of 4-1BB:4-1BB ligand in cancer immunotherapy Cancer Gene Ther 2004 Mar;11(3):215-26

Choi BK, Kim YH, Lee DG, Oh HS, Kim KH, Park SH, Lee J, Vinay DS, Kwon BS. In vivo 4-1BB deficiency in myeloid cells enhances peripheral T cell proliferation by increasing IL-15. J Immunol 2015 Feb 15;194(4):1580-90

Curran MA, Geiger TL, Montalvo W, Kim M, Reiner SL, Al-Shamkhani A, Sun JC, Allison JP. Systemic 4-1BB activation induces a novel T cell phenotype driven by high expression of Eomesoderm J Exp Med 2013 Apr 8;210(4):743-55

DeBenedette MA, Shahinian A, Mak TW, Watts TH. Costimulation of CD28- T lymphocytes by 4-1BB ligand J Immunol 1997 Jan 15;158(2):551-9

Dimberg J, Hugander A, Wågsäter D. Expression of CD137 and CD137 ligand in colorectal cancer patients Oncol Rep 2006 May;15(5):1197-200

Forsberg MH, Ciecko AE, Bednar KJ, Itoh A, Kachapati K, Ridgway WM, Chen YG. CD137 Plays Both Pathogenic and Protective Roles in Type 1 Diabetes Development in NOD Mice J Immunol 2017 May 15;198(10):3857-3868

Futagawa T, Akiba H, Kodama T, Takeda K, Hosoda Y, Yagiha O, Okumura K. Expression and function of 4-1BB and 4-1BB ligand on murine dendritic cells Int Immunol 2002 Mar;14(3):275-86

Goodwin RG, Din WS, Davis-Smith T et al. Molecular cloning of a ligand for the inducible T cell gene 4-1BB: a member of an emerging family of cytokines with homology to tumor necrosis factor Eur J Immunol 1993 Oct;23(10):2631-41

Halstead ES, Mueller YM, Altman JD, Katsikis PD. In vivo stimulation of CD137 broadens primary antiviral CD8+ T cell responses Nat Immunol 2002 Jun;3(6):536-41

Heinisch IV, Daigle I, Knöpfli B, Simon HU. CD137 activation abrogates granulocyte-macrophage colony-stimulating factor-mediated anti-apoptosis in neutrophils Eur J Immunol 2000 Dec;30(12):3441-6

Kienzle G, von Kempis M, Zajonc DM. Crystal structure of murine 4-1BB and its ligand, CD137. Nature 1999 Jan 22;397(6718):481-8

Kim HW, Kim JO, Baek KM, Kim JG, Kang CY. Induction of 4-1BB (CD137) expression by DNA damaging agents in human T lymphocytes Immunology 2002 Dec;107(4):472-9

Kuang Y, Weng X, Liu X, Zhu H, Chen Z, Chen H. Effects of 4-1BB signaling on the biological function of murine dendritic cells Oncol Lett 2012 Feb;3(2):477-481

Atlas Genet Cytogenet Oncol Haematol. 2019; 23(9) 272
Kwon BS, Kozak CA, Kim KK, Pickard RT. Genomic organization and chromosomal localization of the T-cell antigen 4-1BB J Immunol 1994 Mar 1;152(5):2256-62

Kwon BS, Weissman SM. cDNA sequences of two inducible T-cell genes Proc Natl Acad Sci U S A 1989 Mar;86(6):1963-7

Lee HW, Park SJ, Choi BK, Kim HH, Nam KO, Kwon BS. 4-1BB promotes the survival of CD8+ T lymphocytes by increasing expression of Bcl-xL and Bf-1 J Immunol 2002 Nov 1;169(9):4882-8

Li C, Du S, Lu Y, Lu X, Liu F, Chen Y, Weng D, Chen J. Blocking the 4-1BB Pathway Ameliorates Crystalline Silica-Induced Lung Inflammation and Fibrosis in Mice Theranostics 2016 Sep 9;6(12):2052-2067

Li Q, Carr A, Ito F, Teitz-Tennenbaum S, Chang AE. Polarization effects of 4-1BB during CD28 costimulation in generating tumor-reactive T cells for cancer immunotherapy Cancer Res 2003 May 15;63(10):2546-52

Lindstedt M, Johansson-Lindbom B, Borrebaeck CA. Expression of CD137 (4-1BB) on human follicular dendritic cells Scand J Immunol 2003 Apr;57(4):305-10

Madireddi S, Eun SY, Lee SW, Nemcovcová I, Mehta AK, Zajonc DM, Nishi N, Niki T, Hirashima M, Croft M. Galectin-9 controls the therapeutic activity of 4-1BB-targeting antibodies J Exp Med 2014 Jun 30;211(7):1433-48

Maerten P, Geboes K, De Hertogh G, Shen C, Cadot P, Bullens DM, Van Asseghhe G, Penninckx F, Rutgeert P, Ceuppens JL. Functional expression of 4-1BB (CD137) in the inflammatory tissue in Crohn's disease Clin Immunol 2004 Sep;112(3):239-46

Melero I, Johnston JV, Shufford WW, Mittler RS, Chen L. NK1 1 cells express 4-1BB (CD137) costimulatory molecule and are required for tumor immunity elicited by anti-4-1BB monoclonal antibodies Cell Immunol

Melero I, Shufford WW, Newby SA, Aruffo A, Ledbetter JA, Hellström KE, Mittler RS, Chen L. Monoclonal antibodies against the 4-1BB T-cell activation molecule eradicate established tumors Nat Med 1997 Jun;3(6):825-5

Michel J, Langstein J, Hofstädter F, Schwarz H. A soluble form of 4-1BB (ILA/4-1BB), a member of the TNF receptor family, is released by activated lymphocytes and is detectable in sera of patients with rheumatoid arthritis Eur J Immunol 1998 Jan;28(1):290-5

Morales-Kastresana A, Catalán E, Hervás-Stubbbs S, et al. Essential complicity of perforin-granzyme and FAS-L mechanisms to achieve tumor rejection following treatment with anti-CD137 mAb J Immunother Cancer 2013 May 29;1:3

Oh HS, Choi BK, Kim YH, Lee DG, Hwang S, Lee MJ, Park SH, Bae YS, Kwon BS. 4-1BB Signaling Enhances Primary and Secondary Population Expansion of CD8+ T Cells by Maximizing Autocrine IL-2/IL-2 Receptor Signaling PLoS One 2015 May 11;10(5):e0126765

Palma C, Binaschi M, Bigioni M, Maggi CA, Gosu C, CD137 and CD137 ligand constitutively coexpressed on human T and B leukemia cells signal proliferation and survival Int J Cancer 2004 Jan 20;108(3):390-8

Pollok KE, Kim YJ, Hurtado J, Zhou Z, Kim K, Kwon BS. 4-1BB T-cell antigen binds to mature B cells and macrophages, and costimulates anti-mu-primed splenic B cells Eur J Immunol 1994 Feb;24(2):367-74

Polte T, Foell J, Werner C, Hoymann HG, Braun A, Burdach S, Mittler RS, Hansen G. CD137-mediated immunotherapy for allergic asthma J Clin Invest 2006 Apr;116(4):1025-36

Qi Y, Zhao R, Cao H, Sui X, Krantz SB, Zhao ZJ. Purification and characterization of protein tyrosine phosphatase PTP-MEG2 J Cell Biochem 2000;8(1):79-89

Söderström LA, Gertow K, Folkesen L, Sabater-Lleal M, et al. Human genetic evidence for involvement of CD137 in atherosclerosis Mol Med 2014 Oct 14;20:456-65

Salih HR, Kosowski SG, Haluska VF, Starling GC, Loo DT, Lee F, Aruffo AA, Trail PA, Kiener PA. Constitutive expression of functional 4-1BB (CD137) ligand on carcinoma cells J Immunol 2000 Sep 1;165(5):2903-10

Sanchez-Paulete AR, Labiano S, Rodriguez-Ruiz ME, Azpilikueta A, Etxeberria I, Bolaños E, Lang V, Rodriguez M, Aznar MA, Jure-Kunkel M, Melero I. Deciphering CD137 (4-1BB) signaling in T cell costimulation for translation into successful cancer immunotherapy Eur J Immunol 2016 Mar;46(3):513-22

Schwarz H, Arden K, Lotz M. CD137, a member of the tumor necrosis factor receptor family, is located on chromosome 1p36, in a cluster of related genes, and colocalizes with several malignancies Biochem Biophys Res Commun 1997 Jun 27;235(3):699-703

Schwarz H, Tuckwell J, Lotz M. A receptor induced by lymphocyte activation (ILA): a new member of the human nerve-growth-factor/tumor-necrosis-factor receptor family Gene 1993 Dec 8;132(2):259-8

Shuford WW, Klussman K, Tritchler DD, et al. 4-1BB costimulatory signals preferentially induce CD8+ T cell proliferation and lead to the amplification in vivo of cytotoxic T cell responses J Exp Med 1997 Jul 7;186(1):47-55

Snell LM, Lin GH, McPherson AJ, Moraes TJ, Watts TH. T-cell intrinsic effects of GITR and 4-1BB during viral infection and cancer immunotherapy Immunol Rev 2011 Nov;244(1):197-217

Vinay DS, Cha K, Kwon BS. Dual immunoregulatory pathways of 4-1BB signaling J Mol Med (Berl) 2006 Sep;84(9):726-36

Vinay DS, Kwon BS. Role of 4-1BB in immune responses Semin Immunol 1998 Dec;10(6):481-9

Won EY, Cha K, Byun JS, Kim DU, Shin S, Ahn B, Kim YH, Rice AJ, Walz T, Kwon BS, Cho HS. The structure of the trimer of human 4-1BB ligand is unique among members of the tumor necrosis factor superfamily J Biol Chem 2010 Mar 19;285(12):9202-10

Ye Z, Hellström I, Hayden-Ledbetter M, Dahlen A, Ledbetter JA, Hellström KE. Gene therapy for cancer using single-chain Fv fragments specific for 4-1BB Nat Med 2002 Apr;8(4):343-8

Zhou Z, Kim S, Hurtado J, Lee ZH, Kim KF, Pollok KE, Kwon BS. Characterization of human homologue of 4-1BB and its ligand Immunol Lett 1995 Feb;45(1-2):67-73

This article should be referenced as such: Gjörloff Wingren A, Nyesiga B. TNFRSF9 (TNF receptor superfamily member 9). Atlas Genet Cytogenet Oncol Haematol. 2019; 23(9):269-273.