species level and for providing new data about the emergence or reemergence of rickettsioses, as reported here. These assays are, however, time-consuming and only available in specialized reference laboratories.

Clinicians need to be aware of the presence murine typhus in Algeria, especially among patients with unspecific signs and fever of unknown origin. Tetracyclines remain the treatment of choice.

Nadjet Mouffok,* Philippe Parola,† and Didier Raoult‡
*Service des Maladies Infectieuses CHU’Oran, Oran, Algeria; †World Health Organization Collaborative Centre for Rickettsial and Arthropod-borne Bacterial Diseases, Marseilles, France

References
1. Raoult D, Roux V. Rickettsioses as paradigms of new or emerging infectious diseases. Clin Microbiol Rev. 1997;10:694–719.
2. Letaief AO, Kaabia N, Chakroun M, Khalifa M, Bouzouaia N, Jenni L. Clinical and laboratory features of murine typhus in central Tunisia: a report of seven cases. Int J Infect Dis. 2005;9:331–4.
3. Mouffok N, Benabdellah A, Richet H, Rolain JM, Razik F, Belamandini D, et al. Re-emergence of rickettsiosis in Oran, Algeria. Ann N Y Acad Sci. 2006;1078:180–4.
4. Parola P, Miller RS, McDaniel P, Telford SR III, Wongsrichanalai C, Raoult D. Emerging rickettsiosis in the Thai-Myanmar border. Emerg Infect Dis. 2003;9:592–5.
5. Gikas A, Doukakis S, Pediaditis J, Kastanakis S, Psaroulaki A, Tselentis Y. Murine typhus in Greece: epidemiological, clinical, and therapeutic data from 83 cases. Trans R Soc Trop Med Hyg. 2002;96:250–3.
6. Dumler JS, Taylor JP, Walker DH. Clinical and laboratory features of murine typhus in south Texas, 1980 through 1987. JAMA. 1991;266:1365–70.
7. La Scola B, Raoult D. Laboratory diagnosis of rickettsioses: current approaches to diagnosis of old and new rickettsial diseases. J Clin Microbiol. 1997;35:2715–27.
8. La Scola B, Rydkina L, Nnihokubwayo JB, Vene S, Raoult D. Serological differentiation of murine typhus and epidemic typhus using cross-adsorption and Western blotting. Clin Diagn Lab Immunol. 2000;7:612–6.
9. Mokrani K, Fournier PE, Dalaichauque M, Tebbl S, Aouati A, Raoult D. Reemerging threat of epidemic typhus in Algeria. J Clin Microbiol. 2004;42:3898–900.
10. Parola P, Vogelaers D, Roure C, Janbon F, Raoult D. Murine typhus in travelers returning from Indonesia. Emerg Infect Dis. 1998;4:677–80.
and 2b/2c assays, and MGB probes specific for type 2a (type 2a/2b assay) and type 2c (type 2b/2c assay) were labeled with VIC.

All specimens from 1 dog (PT-32/07) were positive for the 2 variants of CPV type 2 (CPV 2b and CPV 2c). Conversely, of the 3 littermates, 2 were positive for CPV type 2b and 1 was positive for CPV type 2c in all samples (Table).

A conventional PCR and RFLP analyses were performed by using the method of Buonavoglia et al. with known positive CPV-2b and CPV-2c samples as controls to confirm our findings. The 583-bp PCR product obtained from the coinfected dog by using primer pair 555for/555rev was digested with MboII. Digestion generated 2 fragments (≈500 and 80 bp) in all dog samples. The CPV-2c control sample showed 2 fragments (≈500 and 80 bp), and CPV-2b control sample was not digested with MboII.

We report CPV-2b and CPV-2c variants in samples from a dog with littermates that were positive for CPV-2b or CPV-2c during an episode of gastrointestinal disease. Co-infection with multiple CPV variants that showed high genetic diversity in the VP2 gene has recently been reported in a domestic cat. Continuous and rapid evolution of CPV may cause serious problems in diagnostic testing and vaccine efficacy. Antigenic variation may negatively affect vaccine efficacy if changes occur at major antigenic sites. Thus, continuous monitoring for novel genetic and antigenic virus types is needed. Additional studies are in progress to characterize nucleotide sequences of all CPV isolates from this case.

Acknowledgments

We thank the Laboratório Nacional de Investigação Veterinária, Porto, Portugal, for infrastructural support. This work was supported by a course formation research fellowship of the Fundação para a Ciência e Tecnologia of the Ministry of Science and Technology, Portugal, and by Intervet Portugal.

Maria João Vieira,† Eliane Silva,† Costantina Desario,‡ Nicola Decaro,† Júlio Carvalheira,* Canio Buonavoglia,‡ and Gertrude Thompson*†

*Universidade do Porto, Porto, Portugal; †Clinício-Clinica Veterinária, Figueira da Foz, Portugal; and ‡University of Bari, Bari, Italy

References

1. Truyen U. Evolution of canine parvovirus: a need for new vaccines? Vet Microbiol. 2006;117:9–13.
2. Parrish CR, Aquandro CF, Strassheim ML, Evermann JF, Sagro JY, Mohammed HO. Rapid antigenic-type replacement and DNA and sequence evolution of canine parvovirus. J Virol. 1991;65:6544–52.

Table. Detection by minor groove binder probe assay of CPV antigenic variants in different specimens from dogs from the same litter (10 weeks old), Portugal, 2006

Dog	Vaccines	Rapid test result for CPV	Days in clinic	Clinical course	Samples	TagMan probe				
						FAM a/b	FAM b/c	VIC a/b	VIC b/c	CPV
PT-15/07	None	–	7	Recovered	Feces	+	+	–	–	2b
					Lingual swab	+	–	–	–	2b
					Serum	+	+	–	–	2b
PT-16/07	None	+	7	Recovered	Feces	+	+	–	–	2b
					Lingual swab	+	–	–	–	2b
					Serum	+	+	–	–	2b
PT-17/07	None	+	7	Recovered	Feces	–	–	–	–	2c
					Lingual swab	–	–	–	–	2c
					Serum	–	–	–	–	2c
PT-32/07	None	–	7	Recovered	Feces	+	+	–	–	2b/2c
					Lingual swab	+	–	–	–	2b/2c
					Serum	+	+	–	–	2b/2c

*CPV, canine parvovirus.