Partial revision of the neustonic genus *Scapholeberis* Schoedler, 1858 (Crustacea: Cladocera): decoding of the barcoding results

Petr G Garibian Equal first author, 1, Anna N Neretina 1, Derek J Taylor 2, Alexey A Kotov Corresponding author. 1

1 A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Moscow, Russia
2 Department of Biological Sciences, State University of New York at Buffalo, Buffalo, New York, United States

Corresponding Author: Alexey A Kotov
Email address: alexey-a-kotov@yandex.ru

Water fleas (Crustacea: Cladocera) are among the most intensively studied freshwater invertebrates. But, ecologically important daphniids that live on the surface layer (neuston) remain taxonomically confused. Here we attempt to reconcile genetic and morphological information for the neustonic genus *Scapholeberis* Schoedler, 1858 (Cladocera: Daphniidae) and present the first revision of the *Scapholeberis kingii* species group. We analyzed new and existing mitochondrial DNA sequences (cytochrome C oxidase subunit I gene region) together with morphology for all but one of the known species of this neustonic daphniids genus. Morphological comparisons of available populations, belonging to the *Scapholeberis kingii* species group from several Australian, Asian and African localities, revealed, that they are almost identical according to parthenogenetic females. At the same time, Australian populations can be reliably distinguished from Asian ones based on the morphology of gamogenetic females. Mitochondrial DNA data analyses revealed divergent lineages (>17% for the DNA barcoding COI region) for the three different species (Australia, Asia and Africa). Based on this set of data, we redescribed *S. kingii* Sars, 1888 from Australia, its *terra typica*, and described a new species, *S. smirnovi* sp. nov. from the Russian Far East, Korea and Japan. The status of populations from Ethiopia and the Republic of South Africa remained unclear, because in the African material and the putative type material, we found only parthenogenetic females. Our results provide an integrative revision of the *S. kingii* species group and improve the taxonomic scaffold used for barcoding and genomics for the remaining species groups in the daphniid genus *Scapholeberis*.
Partial revision of the neustonic genus *Scapholeberis* Schoedler, 1858 (Crustacea: Cladocera): decoding of the barcoding results

Petr G. Garibian¹*, Anna N. Neretina¹, Derek J. Taylor², Alexey A. Kotov¹*

¹ A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Moscow, Russia.
² Department of Biological Sciences, the State University of New York at Buffalo, Buffalo, USA.

* Equal first authors

Corresponding author: Alexey A. Kotov¹

A.N. Severtsov Institute of Ecology and Evolution, Moscow, Russia Leninsky prospect 33, Moscow, 119071, Russia
alexey-a-kotov@yandex.ru

Abstract

Water fleas (Crustacea: Cladocera) are among the most intensively studied freshwater invertebrates. But, ecologically important daphniids that live on the surface layer (neuston) remain taxonomically confused. Here we attempt to reconcile genetic and morphological
information for the neustonic genus *Scapholeberis* Schoedler, 1858 (Cladocera: Daphniidae) and present the first revision of the *Scapholeberis kingii* species group. We analyzed new and existing mitochondrial DNA sequences (cytochrome C oxidase subunit I gene region) together with morphology for all but one of the known species of this neustonic daphniids genus. Morphological comparisons of available populations, belonging to the *Scapholeberis kingii* species group from several Australian, Asian and African localities, revealed, that they are almost identical according to parthenogenetic females. At the same time, Australian populations can be reliably distinguished from Asian ones based on the morphology of gamogenetic females. Mitochondrial DNA data analyses revealed divergent lineages (>17% for the DNA barcoding COI region) for the three different species (Australia, Asia and Africa). Based on this set of data, we redescribed *S. kingii* Sars, 1888 from Australia, its *terra typica*, and described a new species, *S. smirnovi* sp.nov. from the Russian Far East, Korea and Japan. The status of populations from Ethiopia and the Republic of South Africa remained unclear, because in the African material and the putative type material, we found only parthenogenetic females. Our results provide an integrative revision of the *S. kingii* species group and improve the taxonomic scaffold used for barcoding and genomics for the remaining species groups in the daphniid genus *Scapholeberis*.

Subjects: Biodiversity, Taxonomy, Freshwater Biology

Running title

An integrative revision of the neustonic genus *Scapholeberis*

Introduction
Integrative taxonomy combines the evidence from disparate biological disciplines to better understand biodiversity. This approach has been particularly fruitful for taxonomically challenging, yet well-studied aquatic groups such as the water fleas (Crustacea: Branchiopoda: Cladocera). For some cladoceran taxa successful advances have been made by morphological evidence alone (Smirnov, 1992, 1996; Van Damme, Sinev & Dumont, 2011; Neretina & Sinev, 2016) or genetic evidence alone (Adamowicz et al., 2009; Bekker et al., 2016; Thielsch et al., 2017). For some problematic cladoceran taxa, a combination of approaches has resulted in taxonomic progress (Belyaeva & Taylor, 2009; Kotov, Ishida & Taylor, 2009; Quiroz-Vázquez & Elías-Gutiérrez, 2009; Sinev, Karabanov, Kotov, 2020). The integrative approach has been particularly useful for taxa that lack distinguishing characters for parthogenetic females. For cladocerans, the sexual stages appear sporadically, but can be a rich source of diagnostic morphological characters (see review in Kotov, 2013). Genetic approaches, such as formal genetic barcoding (Hebert et al., 2003), have much value for the discovery of novel lineages and taxonomic diagnoses. However, taxonomic advances with genetic information alone are problematic because the existing taxonomic scaffold (i.e. from the 19th of 18th centuries) is based on morphology (Kotov & Gololobova, 2016; Dupéré, 2020). Moreover, as museum samples, including type materials, are generally not amenable to genetic study (but see Umetsu et al., 2002; Turko et al., 2019), taxonomic advances are often limited to morphological evidence.

At the same time, genetic data (sequences of different genes) for cladocerans (as well as other organisms) from different geographic regions are rapidly accumulating in specialized databases such as GenBank (Benson et al., 2012). A massive accumulation of cytochrome C oxidase subunit I gene region sequences (COI data) is available for many taxa due to the successful realization of the Barcoding of Life initiative (Hebert et al., 2003). The coordination
of this genetic information with formal taxonomic knowledge, even with the modest aim of
accurate species identifications, is a considerable challenge.

The aim of the present paper is to apply the integrative approach to the taxonomic
problems of cladocerans associated with the surface layer of standing waters, with a focus on the
genus *Scapholeberis* Schödler, 1858 (Anomopoda: Daphniidae: Scapholeberinae). Since the
revision of *Dumont & Pensaat* (1983), most efforts to understand the diversity within this genus
have been local (*Hudec, 1983; Elmoor-Loureiro, 2000; Elías-Gutiérrez et al., 2008; Quiroz-Vázquez & Elías-Gutiérrez, 2009; Hudec, 2000; Kotov, Jeong & Lee, 2012; Andrade-Sossa,
Buitron-Caicedo & Elías-Gutiérrez, 2020). Recently, a global phylogenetic study of the
subfamily based of 402 multigene sequences from the 12S rRNA, 16S rRNA, and tRNA (val)
regions of the mitochondrial genomes was carried out (*Taylor, Connelly & Kotov, 2020*). This
study revealed an unexpectedly high lineage diversity in the Eastern Palearctic. Other regions,
such as Africa, remained unexamined according to current standards of cladoceran taxonomy.
Notably, the within-genus divergences for neustonic taxa were much greater than that found
within other daphniid genera (*Taylor, Connelly & Kotov, 2020*). We were unable to reconcile the
newly uncovered taxa with existing databases, genome projects, and taxonomy or to assess if the
marked divergences were limited to non-protein coding regions. Here we address some
georgraphic sampling gaps (such as Africa), attempt to unify the genetic (including DNA
barcoding and genome projects) and morphological knowledge, and revise the taxonomy of the
genus *Scapholeberis*. We collect new COI sequences and revise the taxonomy of the widespread
and historically confused *Scapholeberis kingii* Sars, 1888 species group using an integrated
approach.
Material and methods

Collecting samples and their preliminary analysis

Numerous samples from different localities in different continents were collected by our team or by our colleagues via small-sized plankton nets (with mesh size 50 µm) and fixed with 4% formaldehyde or 96% ethanol in the fields, immediately after sampling. Sampling in non-protected water bodies of Russia does not require special permissions. Sampling in South Korea was conducted in frames of the program of the National Institute of Biological Resources (NIBR), of the Republic of Korea. Sampling in Ethiopia was conducted in frames of work of the Joint Ethiopian-Russian Biological Expedition (JERBE), with permission from the Ministry of Environment of Ethiopia to JERBE. Samples from Australia were obtained from colleagues having appropriate permissions.

All samples were preliminarily examined using a stereoscopic microscope. Individuals of Scapholeberis in them were initially identified via available references only according to morphological features (mainly, shape of head and rostrum from the ventral view) (Dumont & Pensaert, 1983; Kotov et al., 2010).

Genetics

Before genetic analysis, identification of each parthenogenetic female was re-checked under a binocular stereoscopic microscope in order to avoid mistakes, because some samples contained several Scapholeberis species simultaneously. Selected individuals were placed into 96-well PCR plates and dried from ethanol on air. DNA of single individuals was extracted using DNA QuickExtract (Epicenter) as modified by Ishida, Kotov & Taylor (2006). PCR reactions
were carried out in 25 µL or 50 µL volumes using the Promega GoTaq Master mix protocol with 5 µL of DNA extraction using HCO/LCO primers of Folmer et al. (1994). PCR cycling conditions were 95 °C for 2 m, 95 °C for 30 s, 48 °C for 30 s, and 72 °C for 1 m for 39 cycles, followed by 72 °C for 5 m. The sizes of the PCR products were verified by agarose gel electrophoresis. PCR products were then purified and sequenced by TACGEN (California). Amplicons were sequenced in both directions and the contigs were assembled in Geneious R7. The authenticity of newly obtained sequences was verified by BLAST comparisons. Additional sequences were obtained from NCBI GenBank. The alignment was carried out in the online version of MAFFT 7 using the default settings. Phylogenetic trees were estimated using a Maximum Likelihood (ML) optimality criterion (with a GTR+I+gamma model) and the Subtree Pruning and Regrafting branch-swapping algorithm in Seaview 4.7. Violin plots (which show the full distribution of the data) were created in R for major taxa based on pairwise Kimura’s 2-parameter distances (also calculated in Seaview). Branch support for the ML tree was estimated by the transfer bootstrap expectation method (using BOOSTER: https://booster.pasteur.fr/) which typically shows less “false” erosion of support compared to nonparametric bootstrap for deeper nodes (Lemonie et al., 2018). Bayesian analyses (BI) were performed in MrBayes v.3.2.6 (Ronquist et al., 2012). Four independent Markov chain Monte Carlo (MCMC) analyses were run simultaneously for 100000 generations and sampled every 500 generations. The site rate parameter (rates) was gamma plus invariable sites (invgamma) and the number of substitution types (nst) was six. The first 25% of the generations were discarded as the burn-in. Phylograms were visualized using the FigTree Version 1.4.4. The ML tree was rooted using specimens of the genus Megafenestra as outgroups.
Original sequences are deposited to the Genbank under Accession Numbers MT371605-MT371659.

Morphological analysis

The morphology of populations from Australia and Asia (southern part of the Russian Far East and South Korea), containing both parthenogenetic and ephippial females, was examined in detail with the aim of finding diagnostic characters. Only parthenogenetic females from Ethiopia and the Republic of South Africa were examined because ephippial females and males were lacking. Specimens of *Scapholeberis* from presorted samples were selected under a binocular stereoscopic microscope LOMO, and then studied *in toto* under optical microscopes Olympus BX41 or Olympus CX 41 in a drop of glycerol-formaldehyde or a glycerol-ethanol mixture. Then at least two parthenogenetic females and two ephippial females (if available) from each locality were dissected under a stereoscopic microscope for the study of appendages and postabdomen. Drawings were prepared via a camera lucida attached to optical microscopes. Several individuals from each population were dehydrated in a series of ethanol washes (30, 50, 70, 95%) and 100% acetone and then dried using hexamethyldisilazane (*Laforsch & Tollrian, 2000*). Dried specimens were mounted on aluminium stubs, coated with gold in a S150A Sputter Coater (Edwards, United Kingdom), and examined under a scanning electron microscope (Vega 3 Tescan Scanning Electron Microscope, TESCAN, Czech Republic). We used a system of setae enumeration by Kotov (*2013*), in cases of dubious homologies, the numbers are supplied by question marks.

Abbreviations
Abbreviations for collections: DAD, permanent slides from Collectio Dadayana, the Hungarian Natural History Museum, Budapest, Hungary; MGU ML, Invertebrate Collection of Moscow State University, Moscow, Russia; NIBR, collection of the National Institute of Biological Resources, Inchon, South Korea.

Abbreviations in illustrations and text: I–V, thoracic limbs I–V; acs, accessory seta; e1–e5, endites 1–5 of thoracic limbs; ejh, ejector hooks on limb I; epp, epipodite; ext, exopodite; IDL, inner distal lobe; ODL, outer distal lobe; pep, preepipodite.

Nomenclatural acts

The electronic version of this article in Portable Document Format will represent a published work according to the International Commission on Zoological Nomenclature (ICZN), and hence the new names contained in the electronic version are effectively published under that Code from the electronic edition alone. This published work and the nomenclatural acts it contains have been registered in ZooBank, the online registration system for the ICZN. The ZooBank Life Science Identifiers (LSIDs) can be resolved and the associated information viewed through any standard web browser by appending the LSID to the prefix http://zoobank.org/. The LSID for this publication is: urn:lsid:zoobank.org:pub:A4A3415D-857E-42E5-9103-B8D48AC60832. The online version of this work is archived and available from the following digital repositories: PeerJ, PubMed Central and CLOCKSS.

Results

COI Phylogeny
106 Scapholeberine sequences (58 from this study) were aligned and analyzed. We detected 21 main mitochondrial clades of Scapholeberinae (Figs. 1–2, and Supplementary Table 1). We used the clade labels proposed by Taylor, Connelly & Kotov, 2020. Lineages novel to the present study are labelled: X, Y, L2, J1–J4. Deep branches within Scapholeberis had low to moderate support in the ML tree. In contrast, the differentiation of terminal taxa (species) was well-supported, as was the separation of major morphologically-based species/species groups: S. mucronata (clades A–C and X, green in Fig. 2), S. rammneri (clades F–H and Y, red), S. freyi (clades J1–J4, black), S. kingii (clades K, L1, L2, grey), S. spinifera (clade M), and S. cf. microcephala- armata (clades E and N) (Figs. 1 and 2).

The S. mucronata species group (Figs. 1 and 2) had four main geographic clades (A+B+C+X). Clade A (S. mucronata s. str.) was detected only in Western and Central Europe; clade B was detected from European Russia to Yakutia and Alaska; clade C was found in Western Alaska only. Clade X was detected in the vicinity of Churchill, Manitoba (Jeffery, Elías-Gutiérrez & Adamowicz, 2011).

The S. rammneri species group (Figs. 1 and 2) had five main geographic clades (F+G+H+I +Y). Clade F (S. rammneri s.str.) was found in a single locality in Mongolia; clade G was present in two localities in Eastern Siberia; clade H was widely distributed in North America and in a single locality in Patagonia; clade I was detected only in a single locality in Patagonia.

Clade Y was found in a single locality in Israel.

The S. freyi species group (Figs. 1 and 2) was represented by four main clades (J1–J4). Clade J1 (S. freyi s.str.) was detected in many localities in North America; clade J2 (S. duranguensis) was found in two localities in Mexico; clade J3 was found in three localities on the Yucatan Peninsula (sequences of Elias-Gutiérrez et al., 2008 and Prosser, Martínez-Arce &
Elías-Gutiérrez, 2013); clade J4 was present in a single locality in Brazil (sequence directly submitted to the GenBank and then described as *S. yahuarcaquensis* by Andrade-Sossa, Buitron-Caicedo & Elías-Gutiérrez, 2020 and found also in Amazon basin in Colombia) and a single locality in Belgium (also a direct submission to the GenBank).

The *S. microcephala-armata* species group (Figs. 1 and 2) was represented by two main clades, E from Alaska and Far east, and N from North America.

The *S. kingii* species group (Figs. 1 and 2) was represented by three clades (K, L1–L2).

Clade K (*Scapholeberis kingii* s. str.) was detected only in Australia; clade L1 was found in Japan and China; clade L2 was found in a single locality in Ethiopia.

The genus *Megafenestra* (Figs. 1 and 2) was represented by three clades: clade O (*M. aurita* s.str.) was found in Europe (Ukraine and Switzerland), clade P was present in Alaska only; clade Q (*M. nasuta* s.str.) was present in New York State, USA.

Sequence pairs within each genus (*Megafenestra* and *Scapholeberis*) had maximum K2 parameter distances that exceeded 30% (Fig. 3). Indeed, the mean pairwise sequence divergence within *Scapholeberis* exceeded 20%. Notably, pairwise sequence divergences within each major species group had e exceeded 20% as well. The closest members of the *S. kingii* complex were from Japan and Africa with a 17.4% distance estimate (Fig. 2). The large divergences within genera in DNA sequences were not accompanied by divergences in COI amino acid sequences. The most common protein sequence for example was >99% similar to that found in the genus *Daphnia* (e.g. AAL08864.1). Synapomorphic amino acid substitutions in *Scapholeberis* included: a glycine to an alanine for *S. kingii* (Australia), and an alanine to a serine for the *S. mucronata* group, and a serine to an alanine in *S. microcephala*.
Morphological analysis

Order Anomopoda Sars, 1865

Family Daphniidae Straus, 1820

Subfamily Scapholeberinae Dumont & Pensaert, 1983

Genus *Scapholeberis* Schödler, 1858

Scapholeberis kingii species group

Diagnosis. Species of medium size for the genus (length of adult parthenogenetic female up to 0.75 mm without mucro). Body with typical features of the genus (see Dumont & Pensaert, 1983), relatively elongated. In lateral view, head relatively large, without keel. Rostrum relatively short and blunt. In ventral view posteroventral portion of head forms a three-lobed rostrum, due to a shallow depression at the insertion point of antenna I on each side, its middle lobe rounded, with minute frontal head pore. Dorsal head pores absent. Head and valves without short denticles, spines or protuberances. Ventral margin of valve straight. Posteroventral angle with short mucro. Adhesive ventral rim of valves modified into "sucker-plate" (in terms of Dumont & Pensaert, 1983), no setae along most part of the sucker length except few rarely located setae at anteriormost portion and several sparsely located setae at posterior portion near mucro. Inner surface of posterior margin with broad "hyaline membrane" extending posterior rim and "denticulated membrane" consisting of row of short setules along posterior rim. Five pairs of thoracic limbs, proportions between seta 1’ and seta 2 of thoracic limb I are important for species identification. Ephippium with single egg and two longitudinal keels.

Differentiation of species is based on characters listed in Table 1.
1. *Scapholeberis kingii* Sars, 1888

Figures 4–9

Daphnia mucronata (Müller) in *King, 1853*, p. 255–265, fig. 6E.

Scapholeberis kingii Sars, 1888, p. 68.

Scapholeberis kingi Sars in *Henry, 1919*, p. 465; *Henry, 1922*, p. 29, Pl. 4: Fig. 3;

Dumont, 1983, 105–106, Pl. 3; *Dumont & Pensaert 1983*, p. 24–25, Fig. 2: 3; Fig. 4: 4; Fig. VI: 1–2; Pl. 1: 8; Pl. 2: 4; Pl. 3: 5, 7, 9; Pl. 4: 1–7; Pl. 5: 1–2, 4; Fig. 10: 3; Pl. 6: 6–8; Fig. 12 Fig. 21: 4 (partial); *Smirnov, 1995*, p. 5; *Shiel & Dickson, 1995*, p. 35.

? *Scapholeberis Kingi* n. sp. in *Sars, 1903*, p. 8–10, Pl. 1: Fig. 2a–c. – junior homonym of *S. kingi* Sars, 1888.

Type locality. "South Creek" and "Paramatta" (King, 1853), New South Wales, Australia.

Type material. Lost.

Material studied here. See Supplemental Table 2.

Redescription. Parthenogenetic female (Figs. 4A–E, 5, 6 and 7A–E). In lateral view body relatively elongated, dorsal margin regularly arched, ventral margin almost straight, maximum height at body midpoint (body height/length ratio about 0.6 for adults and 0.5 for juveniles) (Figs. 4A and 7A). In dorsal or ventral view body ovoid, moderately compressed from sides (Fig. 4B). In anterior view body moderately compressed, dorsal keel absent. Posterodorsal angle obtuse, posteroventral angle almost straight, with a long spine (mucro) (Figs. 4A, 5D–E and 7A–C). A row of numerous small setules on inner face of posterior margin of valve (Figs.
Ventral margin covered by setae of different size (Figs. 5A–D). Anterovenral angle of valve broadly rounded, its ventral portion with a small protuberance (Fig. 7B). Valves with well-developed sculpture of polygonal reticulation.

Head large for a daphniid (Figs. 4A and 7A). In lateral view head elongated, with a prominent rostrum, its distal portion roundish (Figs. 4A and 7A). In dorsal view head elongated, head shield with low lateral projections (fornices) covering bases of antennae II, a sclerotized ridge departs from the insertion of antenna II and extends to the side of head (Fig. 4B). In anterior view head slightly compressed from lateral sides (Figs. 4C and 7D). In ventral view postero-ventral portion of head forms a three-lobed rostrum, due to a shallow depression in points of antenna I insertion on each side, its middle lobe rounded, with a minute frontal head pore (Figs. 4C and 7D–E). In anterior view, distance between the center of ocellus and eye slightly greater (almost twice) than distance from the center of ocellus to the tip of rostrum (Fig. 4C). Dorsal head pores absent. Labrum large, distal labral plate with bunches of long setules, in ventral view labrum triangular, with lateral projections (Fig. 4D, 7D).

Valve with straight ventral margin (Figs. 4A, 5D and 7A–B). Adhesive ventral rim of valves modified into "sucker-plate" (in terms of Dumont & Pensaert, 1983), no setae along most part of the sucker length except few rarely located setae at anteriormost portion and several sparsely located setae at posterior portion near mucro (Figs. 5A–C). Inner surface of posterior margin with a broad "hyaline membrane" (in terms of Dumont & Pensaert, 1983) extending the posterior rim and a "denticulated membrane" (in terms of Dumont & Pensaert, 1983) consisting of row of short setules along the posterior rim (Figs. 5D–E, 7B–C).

Thorax relatively long for daphniids, abdomen short (Fig. 4A).
Postabdomen almost rectangular, postabdomen length/height ratio about 3 (Figs. 5F–G).

Ventral margin almost straight. Preanal margin two times longer than anal margin. Anal and postanal margins almost equal in length. Basis of claws slightly inflated, bordered from distal margin by a clear incision (Figs. 5G–I). Postanal portion of postabdomen armed with long, thin solitary teeth and bunches of fine setules (Figs. 5G–H). Bunches of fine setules also on anal margin and lateral surface of postabdomen. Postabdominal claw long (almost as long as anal margin), slightly curved (Figs. 5H–I). Its external side armed by three rows of small denticles, decreasing in size distally. Denticles in middle portion of claw are stronger and located more sparsely as compared to other denticles. Basal spine absent (Figs. 5H–I).

Antenna I jointed to the head surface, relatively short, antennular body with aesthetasc exceeds tip of rostrum in length (Figs. 5J–K, 7D–E). Antennular sensory seta slender, arising subdistally, almost equal in length to antennular body. Nine aesthetasc unequal in size (Figs. 5J–K, 7E). All aesthetasc tips projecting beyond tip of rostrum.

Antenna II relatively long (Figs. 4A, 5L–M, 7A). Antennal formula for setae: 0-0-1-3/1-1-3. Antennal formula for spines: 0-1-0-1/0-1. Coxal part folded, with two sensory setae. Basal segment elongated, covered by concentric rows of fine setules with a very thin spine between antenna II exopod and endopod branches on outer surface and a short bisegmented seta on outer surface (Figs. 5L–M). Branches relatively elongated, all segments cylindrical, covered by concentric rows of fine setules and tiny denticles around their distal margins. Apical setae typical for daphniids (as long as antennal branches), setulated asymmetrically. Lateral setae arising from basal and middle endopod segment long (reach tips of apical setae) (Fig. 5L). Lateral seta arising from third exopod segment thin and relatively short (reaches the middle of apical setae). Spine on the second exopod segment short and thin. Spines on apical segments of endopod and exopod
branches very small and short, subequal in size to concentric apical denticles, arising from distal portions of apical segments.

Thoracic limbs: five pairs (Figs. 6A–E).

Limb I with ovoid epipodite (Fig. 6A). Accessory setae long, armed by long setules.

Outer distal lobe with two setae unequal in size. Distal segment of the longest seta unilaterally armed by short setules; proximal portion of this seta bears especially long setules. Shorter seta of outer distal lobe bilaterally armed by short setules. Inner distal lobe (endite 5) with three setae unequal in size and shape (Fig. 5A: 1, 1', 1''). Two setae bisegmented, with elongated distal portions. A single seta 1 brush-shaped (in terms of Dumont & Pensaert, 1983), its distal end abrupt, bearing long thickened setules. Endite 4 with a short anterior seta 2 and two posterior setae (Fig. 6A: a–b). The ratio between seta 1’ and seta 2 is almost 2.5 (i.e. seta 2 is relatively short as compared to S. cf. intermedius from Africa, see below). Endite 3 with a short and thin anterior seta 3 and two posterior setae (Fig. 6A: c–d). Endite 2 with a short anterior seta 4 and four posterior setae (Fig. 6A: e–h). Two ejector hooks subequal in size.

Limb II large (Fig. 6B). Limb distal portion (exopodite) as large ovoid setulated lobe with two soft setae unequal in size. Four endites fused (e5–e2), bearing in toto six setae. Distal segments of anterior setae a–d covered by short denticles. Two posterior setae (Fig. 6B: a, d) bear long setules. Gnathobase (endite 5) with two rows of setae: four anterior setae (Fig. 6B: 1–4, among them seta 1 as a small elongated sensillum) and six posterior setae of gnathobasic “filter plate”.

Limb III with a large ovoid epipodite (Fig. 6C) and a flat round exopodite bearing four distal setae (Fig. 6C: 1–4), (among them seta 2 the longest) and two lateral setae (Fig. 6C: 5–6) unequal in length. Setae 3–5 covered by long setules. Setae 1–2 featured by long setules in their
proximal portions and bearing shorter stiff setules on their distal segments. Inner distal portion of limb with four endites: endite 5 with a single, short anterior seta (1) and a posterior seta (a); endite 4 with a single anterior seta (2) and a single posterior (b) seta; endite 3 with a short anterior seta (3) and two posterior setae (c–d); endite 2 with two anterior seta (4–5?) and four posterior (e–h) setae. The rest of limb inner-distal portion as a singular large lobe, modified gnathobase, bearing numerous posterior soft setae, each with chitinous insertion within basal portion of distal segment, and a single, relatively long anterior seta (1) in its distal corner (Fig. 6C).

Limb IV with a large ovoid epipodite (Fig. 6D) and wide, flat rounded exopodite with two protruding setulated lobes, four distal (Fig. 6D: 1–4) and two lateral (Fig. 6D: 5–6) setae. Among them seta 4 the longest. Inner-distal portion of this limb with completely fused endites, distally with two setae (Fig. 6D: 1–2) of unclear homology, the most part of limb inner margin is a gnathobase filter plate consisting of numerous posterior setae.

Limb V (Fig. 6E) with a setulated preepipodite, large, subovoid epipodite, triangular exopodite supplied with two small, thin distal setae (Fig. 6E: 1–2) unequal in length and a large lateral seta (Fig. 6E: 3). Inner limb portion as an ovoid flat lobe, with setulated inner margin and a single, large seta.

Ephippial female (Figs. 4F–H, 7F–L, 8A–G). Body shape in general as in parthenogenetic female. Dorsal portion of valves modified into ephippium. Ephippium dark brown, ovoid, clearly bordered from ventral and lateral portions of valves separating during its casting off (Figs. 4F, 7F–G, I–J). Egg chamber with a single egg, elongated, its sculpture represented by shallow depressions (Figs. 4F–G, 7H, 7L, 8C). Sculpture of the rest of ephippium is represented by small polygons. Lateral keels are well distinguishable from the lateral (Figs.
4F–G, 7F–G, I–J) and dorsal view (Figs. 8A–B). From the dorsal view, area between two keels strongly elongated, keels not projected laterally out of body dorsal contour (Figs. 8A–B).

Preephippial female (Figs. 9A–F). Body shape in general similar to that in parthenogenetic female (Fig. 7A). Lateral keels already visible (Figs. 9A, D–E), but dorsal portion of valves almost weekly chitinized. Ventral and lateral borders between preephippium and the rest of valves not developed (Figs. 9A, D).

Male. Despite significant sampling effort, we failed to detect males in the investigated samples. Although males of *Scapholeberis* have been described by Dumont & Pensaert (1983), it is difficult to detect them in nature or in laboratory cultures. In general view, males are similar to juvenile females and could not be distinguished without dissection. Also, it seems possible, that at least in some *Scapholeberis* species, ephippial females may appear in the natural populations and under laboratory conditions without males. The same situation is known for some *Daphnia* O.F. Mueller, 1785 (*Kotov, 2013*).

Size. Medium-sized species, parthenogenetic female up to 0.55 mm in length without mucro (and 0.57 mm with mucro), ephippial female up to 0.57 mm in length without mucro (and 0.61 with mucro).

Variability. No significant variability was found among the investigated individuals.

Taxonomic notes. King (1853, p. 255-256, plate V, fig. e) found "Daphnia mucronata (Müller)" in "South Creek" and "Paramatta", New South Wales, Australia. In his diagnosis, he mainly reproduced the previous redescription of *Scapholeberis mucronata* by Baird (1850, p. 99–100) made for European populations, but pointed on two differences of the Australian specimens: (1) "European specimens have the upper part of the head sometimes terminated by a sharp-curved point, and directed upwards. I have not found any such variety here"; (2) "the head
of each of Baird's figures is larger than that of the Australian species". Sars (1888: p. 68) took these differences into his consideration and established new taxon, *S. kingii* Sars, 1888, referring to the description of *King* (1853) rather than based on his own original material. It is an acceptable action according to the *ICZN* (2000). Specimens of this taxon from Australia are absent from the collection of G.O. Sars in the Zoological Museum of the Oslo University, Norway. King's specimens were eligible to be designated as types for *S. kingii* *ICZN* (2000), but the specimens were apparently lost.

Then Sars (1903, p. 8–10, plate 1, figs 2, 2a, 2b) proposed the name "*Scapholeberis Kingi*, G.O. Sars, n. sp. "for populations from Sumatra (unknown water bodies in "territories of Deli and Langkat" collected by Mr. Iversen) with the following explanation: "The above-described species is unquestionably identical with the Australian form recorded by King as *Daphnia mucronata*. It is certainly very nearly allied to the European species, but apparently specifically distinct, differing, as it does, not only in the much smaller size, but also in the shape of the head and in the less sharply angulated anterior part of the valves. The sculpture of the shell is, moreover, much coarser than in the European species". But, Sars’ earlier species name “*S. kingii*” of Australia has precedence over the Sumatran species. The Sumatran specimens are present in the Collection of G.O. Sars (GOS F 9540, GOS F 12272, GOS F 12880). However, these specimens are not regarded as types because they were not reported in the original taxon description. According to the drawings of *Sars* (plate 1, figs 2, 2a, 2b), the specimens from Sumatra belong to the *S. kingii* group. Presently it is unknown if the populations from Sumatra belong to *S. kingii* s.str., *S. smirnovi* *sp.nov.*, or another taxon (tropical Asian populations are not revised here).
Dumont & Pensaert (1983) correctly pointed out that Dumont (1983) erroneously stated
that S. kingi Sars, 1888 was a nomen nudum (and claimed that the species should have been
named S. kingi Sars, 1903).

Distribution. To date, we can confirm its presence in Australia only, where it is a
common taxon (Dumont, 1983; Smirnov, 1995; Shiel & Dickson, 1995), but we cannot fully
exclude the chance that there are several additional taxa within this group.

Records of S. kingii from Spain, Sicily and Central Europe have been declared dubious
(Alonso 1996; Marrone, Barone & Naselli-Flores, 2005; Hudec, 2010), but members of the S.
kingii species group (see below) were found to be common in Northern Africa (Ghaouaci et al.,
2018; Neretina, 2018). In the Eastern Palearctic, the range of S. cf. kingii extends northwards, up
to Japan (Tanaka, 1998a; Tanaka, 1998b), the Korean Peninsula (Kotov, Jeong & Lee, 2012) and
the Russian side of the Amur River (=Heilong Jiang in Chinese) basin (Kotov et al., 2011).
Therefore, the S. kingii species complex is regarded as a typical "tropicopolitan" taxon with a
very wide geographic range in the Eastern Hemisphere.

2. Scapholeberis intermedius Daday, 1898

Figure 10

Scapholeberis mucronata var. intermedia Daday, 1898, p. 59–60, Fig. 29a–b.

? *Scapholeberis kingi* Sars in Gurney, 1907, p. 277–278; Fernando, 1980, p. 97; Michael
& Sharma, 1988, p. 73–74, Fig. 20a–c; Chatterjee et al., 2013, p. 20–21.

Type locality. "Sümpfe der Umgebung des Kalawewa-Sees", Sri Lanka (*Daday, 1898*).
Type material (studied here). See Supplemental Table 2.

Brief redescription of museum material. Redescription. Parthenogenetic female. In lateral view body elongated and ovoid, dorsal margin regularly arched, ventral margin straight, maximum height at middle of body (body height/length ratio about 0.61 for adults and 0.59 for juveniles) (Figs. 10A–B). Head large with well developed rostrum (Figs. 10A–B). Posterodorsal angle obtuse, posteroventral angle almost straight with long mucro (Figs. 10A–B). Posterior margin generally almost straight or slightly curved. Ventral margin almost straight. Anterovenral angle broadly rounded, its ventral side with small protuberance.

Head large (Figs. 10A–B). In lateral view head elongated with prominent rostrum. Distal portion of rostrum roundish. Compound eye large, ocellus is not recognizable (Figs. 10A–C).

Antenna II relatively long, endopod branch slightly longer than exopod (Fig. 10D).

Antennal formula identical to previous species.

Ephippial female, male. Completely absent in the type material.

Size. Medium-sized species, parthenogenetic female up to 0.62 mm in length without mucro (and 0.63 mm with mucro).

Variability. No significant variability was found in the investigated individuals.

Taxonomic remarks. According to Daday (1898) this "variety" has intermediate morphological characters between S. mucronata O.F. Müller and S. obtusa Schödler. The latter is now regarded as a junior synonym of Megafenestra aurita Fischer. Unfortunately, type material of S. intermedius is represented by permanent slides with parthenogenetic females in the lateral or almost lateral position (Fig. 10). Gamogenetic females and males are completely absent in the type series. Thus, we have no opportunity to compare the morphological features (proportions of head and shape of ephippium from the dorsal position) of typical S. intermedius, S. smirnovi
sp.nov. and African S. cf. intermedius (see below). Based on the genetic data, we demonstrated that populations from Ethiopia and the Russian Far East form unique lineages (Figs. 1 and 2).

We propose here that S. smirnovi sp.nov. is a separate taxon, well delineated from other S. kingii-like species (see below). Morphological and genetic investigations of kingii-like populations from the type locality of S. intermedius, Sri Lanka (and South Asia as a whole) will be carried out in future studies. To date we have no suitable material of S. kingii with ephippial females from this area.

3. Scapholeberis cf. intermedius Daday, 1898

Figures 11–15

Material studied here. See Supplemental Table 2.

Description. Parthenogenetic female (Figs. 11–15). In lateral view, body regularly elongated, dorsal margin broadly arched, ventral margin almost straight, maximum height at middle of body (body height/length ratio about 0.59 for adults, juveniles not studied) (Figs. 11A, 15A). In dorsal and ventral view body ovoid, only moderately compressed from sides. In anterior view body moderately compressed, dorsal keel absent. Head large with well developed rostrum (Figs. 11A–B, 15A–C). Depression between head and rest of body absent, but dorsal contour
may be slightly concave under compound eye and antenna. Posterodorsal and posteroventral angles expressed (Figs. 11A, E, 15A, D). Posterodorsal angle obtuse, posteroventral angle almost straight with long mucro (Figs. 11A, E, 15A, D). Posterior margin generally almost straight or slightly curved. A raw of numerous small setules on inner face of posterior margin of valve (Figs. 11F–G). Ventral margin almost straight, covered by setae of different size (Fig. 11E).

Anteroventral angle broadly rounded, its ventral side with small protuberance (Figs. 11A, E, 15A, D). Valves with developed sculpture, consisting of polygons (Figs. 11E, 15D–E).

Head large for daphniids (Figs. 11A–B, 15A–C). In lateral view head elongated, with a prominent rostrum. Distal portion of rostrum roundish. In anterior view, head elongated and round, slightly compressed from lateral sides (Fig. 11C). Its ventral portion three-lobed with depression for antennulae. A central lobe is rostrum, its tip broadly rounded with small shallow incision. In anterior view, distance between the center of ocellus and eye significantly greater (almost in three times) than distance from the center of ocellus to the tip of rostrum (Fig. 11C).

Dorsal head pores absent, frontal head pore was not studied. Labrum large (Fig. 11D). Distal labral plate with bunches of long setules.

Valve with straight ventral margin (Figs. 11E). Adhesive ventral rim of valves modified into "sucker-plate". Inner surface of posterior margin with a broad "hyaline membrane" (in terms of Dumont & Pensaert, 1983) extending the posterior rim and a "denticulated membrane" (in terms of Dumont & Pensaert, 1983) consisting of row of short setules along the posterior rim (Figs. 11F–G).

Postabdomen almost rectangular, slightly narrowing distally; postabdomen length/height ratio about 2.6 (Fig. 11I). Ventral margin straight. Preanal margin three times longer than anal margin. Anal and postanal margins almost equal in length. Basis of claws not inflated (Figs. 11I–
Postanal portion of postabdomen armed with long and thin denticles and bunches of fine setules. Bunches of fine setules also on anal margin and lateral surface of postabdomen.

Postabdominal claw long (almost as long as anal margin), slightly curved (Figs. 11I–J, 12A). Its external side armed by three rows of small denticles, deceasing in size distally. Basal spine absent (Figs. 11I–J, 12A).

Antenna I relatively short, antennular body with aesthetascs exceeds tip of rostrum in length (Fig. 11L). Nine aesthetascs unequal in size.

Antenna II relatively long (Figs. 11A, 12B–J). Antennal formula for setae: 0-0-1-3/1-1-3. Antennal formula for spines: 0-1-0-1/0-0-1. General structure of antenna II identical to species described above.

Thoracic limbs: five pairs.

Limb I (Figs. 12K, 13A). Accessory setae very long, prominent. Outer distal lobe with two setae unequal in size. Distal segment of the longest seta unilaterally armed with short setules; proximal portion of this seta bears especially long setules. Shorter seta of outer distal lobe bilaterally covered by short setules. Inner distal lobe (endite 5) with three setae unequal in size and shape (Figs. 12K, 13A: 1, 1’, 1”). Endite 4 with a short anterior seta 2 and two posterior setae (Figs. 12K, 13A: a–b). The ratio between seta 1’ and seta 2 is almost 1.5 (i.e. seta 2 is relatively long in the comparison of other Scapholeberis species investigated here, see redescription of S. kingii above and description of S. smirnovi sp.nov. below). Endite 3 with a short and thin anterior seta 3 and two posterior setae (Figs. 12K, 13A: c–d). Endite 2 with a short anterior seta 4 and four posterior setae (Figs. 12K, 13A: e–h). Two ejector hooks almost similar in size.
Limb II large, basically similar to other *Scapholeberis* species investigated here (Figs. 13B–D).

Limb III (Fig. 13E–G) with a large ovoid epipodite and a flat round exopodite bearing four distal setae, (among them seta 2 the longest, Figs. 13E–F) and two lateral setae unequal in length. Setae 3–5 covered by long setules. Setae 1–2 armed with long setules in their proximal portions and bear shorter stiff setules on their distal segments. Inner distal portion of limb (Fig. 13E, G) with four endites: endite 5 with a single, short anterior seta (1) and a posterior seta (a); endite 4 with a single anterior seta (2) and a single posterior (b) seta; endite 3 with a short anterior seta (3) and two posterior setae (c–d); endite 2 with two anterior seta (4–5) and four posterior (e–h) setae. The rest of limb inner-distal portion as a singular large lobe, modified gnathobase, bearing numerous posterior soft setae, each with chitinous insertion within basal portion of distal segment, and a single, relatively long anterior seta (1) in its distal corner. Also, two small sensillae recognizable in this portion.

Limb IV (Figs. 14A–C) with a large ovoid epipodite and wide, flat rounded exopodite with two protruding setulated lobes, four distal and two lateral setae. Among them seta 4 the longest (Figs. 14A–B). Inner-distal portion of this limb with completely fused endites, distally with two setae of unclear homology, the most part of limb inner margin is a gnathobase filter plate consisting of numerous posterior setae (Fig. 14C). Also, two small sensillae recognizable in this portion.

Limb V (Figs. 14D–E) with a setulated preepipodite, large, subovoid epipodite, triangular exopodite supplied with two small, thin distal setae (Figs. 14D–E: 1–2) unequal in length and a large lateral seta (Figs. 14D–E: 3). Inner limb portion as an ovoid flat lobe, with setulated inner margin and a single, large seta. A small sensillum recognizable near seta 2.
Ephippial female, male. Despite significant efforts, we did not find gamogenetic females and males in African localities. Other authors who dealt with the description of African populations also did not observe *Scapholeberis* ephippial females and males in their materials.

Size. Medium-sized species, parthenogenetic female up to 0.70 mm in length without mucro (and 0.73 mm with mucro).

Variability. No significant variability was found among the investigated individuals.

Other records in Africa. Distribution of *Scapholeberis* in Africa remains scarcely studied. Reliable records of *S. kingii* populations are known from West Africa (*Dumont*, 1981; *Egborge, Onwudinjo & Chigbu*, 1994; *Chiambeng & Dumont*, 2005), Central Africa (*Rey & Saint-Jean*, 1969), and South Africa (*Sars*, 1916; *Day et al.*, 1999).

4. *Scapholeberis smirnovi* sp. nov.

Figures 16–20

Scapholeberis kingi Sars *in Uéno*, 1940, p. 342; *Tanaka*, 1998a, p. 30–31, Fig. 2A–C; *Tanaka*, 1998b: p. 15–16, Fig. 9–10; *Tanaka, Ohtaka & Nishino*, 2004, p. 173–174, Fig. 3; *Kotov et al.*, 2011, p. 403, Table 1; *Kotov, Jeong & Lee*, 2012, p. 58, Fig. 5; *Jeong, Kotov & Lee*, 2014, p. 219.

? (at least partially) *Scapholeberis kingi* Sars *in Chiang & Du*, 1973, p. 145–146, Fig. 97a–c; *in Du Nan-shan*, 1973, p. 44, Fig. 13; *Xiang et al.*, 2015, p. 13–14.

Scapholebeis mucronata (O.F. Müller) *in Uéno*, 1927, p. 281, Fig. 9 (not 9a–9e!);

Scapholeberis rammneri Dumont & Pensaert *in Yoon*, 2010, p. 64–66, Fig. 34.
Publication Zoobank ID. See nomenclatural acta above.

Zoobank taxon ID. urn:lsid:zoobank.org:act:62ABBAFB-249D-453A-BB8D-E59ECB1AB2B0.

Etymology. The taxon is named after Professor Nikolai N. Smirnov, a renowned Russian zoologist and hydrobiologist, who established the Russian school of cladocerology and made large advances in the study of freshwater zooplankton.

Type locality. A puddle near Lake Maloe Utinoe (N 43.4127°, E 131.8214°), Primorski Territory, the Russian Far East.

Type material. Holotype: an ephippial female, fixed in 96% ethanol, deposited at the collection of Zoological Museum of Moscow State University, MGU MI-189. The label of holotype is: "Scapholeberis smirnovi sp. nov., 1 ephippial female from puddle near Lake Maloe Utinoe, Holotype". Paratypes. See Supplemental Table 2.

Description. Parthenogenetic female (Figs. 16A–F). In lateral view body relatively elongated, dorsal margin regularly arched, ventral margin almost straight, maximum height at body middle (body height/length ratio about 0.6 for adults and 0.5 for juveniles) (Figs. 16A and 16E, correspondingly). In dorsal or ventral view body ovoid, moderately compressed from sides (Fig. 16B). In anterior view body moderately compressed, dorsal keel absent. Posterodorsal angle obtuse, posteroventral angle almost straight, with a long spine (mucro) (Figs. 16A, E and 17A–E). A row of numerous small setules on inner face of posterior margin of valve (Fig. 17E).

Ventral margin covered by setae of different size (Figs. 17A–D). Anteroventral angle of valve broadly rounded, its ventral portion with a small protuberance (Fig. 16A, E). Valves with well-developed sculpture of polygonal reticulation.
Head large for a daphniid (Fig. 16A). In lateral view head elongated, with a prominent
rostrum, its distal portion roundish (Fig. 16A). In dorsal view head elongated, head shield with
low lateral projections (fornices) covering bases of antennae II, a sclerotized ridge departs from
the insertion of antenna II and extends to the side of head. In anterior view head slightly
compressed from lateral sides. In ventral view postero-ventral portion of head forms a three-
lobed rostrum, as there is a shallow depression at insertion points of antenna I on each side, its
middle lobe rounded, with a minute frontal head pore (Figs. 16C). In anterior view, distance
between the center of ocellus and eye significantly greater (almost in five times) than distance
from the center of ocellus to the tip of rostrum (Figs. 16F). Dorsal head pores absent. Labrum
large (Fig. 16D), similar to other Scapholeberis species.

Valve with straight ventral margin (Figs. 16A, 17A). Adhesive ventral rim of valves
modified into “sucker-plate” (Figs. 16A–D), details of its structure identical to S. kingii.

Thorax relatively long, abdomen short (Fig. 16A).

Postabdomen almost rectangular, postabdomen length/height ratio about 2.8 (Figs. 17F–
H). Ventral margin almost straight. Preanal margin two times longer than anal margin. Anal and
postanal margins almost equal in length. Basis of claws slightly inflated, bordered from distal
margin by a clear incision (Figs. 17G–I). Postanal portion of postabdomen armed with long, thin
solitary teeth and bunches of fine setules. Bunches of fine setules also on anal margin and lateral
surface of postabdomen. Postabdominal claw long (almost as long as anal margin), slightly
curved (Figs. 17G–I). Its external side armed by three rows of small denticles, decreasing in size
distally. Denticles in middle portion of claw are stronger and distributed more sparsely as
compared to other denticles. Basal spine absent (Figs. 17G–I).
Antenna I relatively short, its proportions similar to other *Scapholeberis* species (Figs. 17J–K). Nine aesthetascs unequal in size.

Antenna II relatively long (Figs. 16A, 17L–M). Antennal formula for setae: 0-0-1-3/1-1-3. Antennal formula for spines: 0-1-0-1/0-0-1. Fine armature of antenna II similar to *S. kingii*.

Thoracic limbs: five pairs (Figs. 18A–H).

Limb I with ovoid epipodite (Figs. 18A–B). Accessory setae long, armed by long setules. Outer distal lobe with two setae unequal in size. Distal segment of the longest seta unilaterally armed by short setules; proximal portion of this seta bears especially long setules. Shorter seta of outer distal lobe bilaterally armed by short setules. Inner distal lobe (endite 5) with three setae unequal in size and shape (Fig. 18A: 1, 1’, 1”). Two setae bisegmented, with elongated distal portions. A single seta 1 brush-shaped (in terms of Dumont & Pensaert, 1983), its distal end abrupt, bearing long thickened setules. Endite 4 with a short anterior seta 2 and two posterior setae (Fig. 18A: a–b). The ratio between seta 1’ and seta 2 is almost 2.5 (i.e. seta 2 is relatively short as compared to *S. cf. intermedius* from Africa, and comparable to *S. kingii*, see above).

Endite 3 with a short and thin anterior seta 3 and two posterior setae (Fig. 18A: c–d). Endite 2 with a short anterior seta 4 and four posterior setae (Fig. 18A: e–h). Two ejector hooks subequal in size.

Limb II large (Fig. 18C–D). Limb distal portion (exopodite) as large ovoid setulated lobe with two soft setae unequal in size. Four fused endites (e5–e2) bear six setae. Distal segments of anterior setae a–d covered by short denticles. Two posterior setae (a and d) bear long setules.

Gnathobase (endite 5) with two rows of setae: four anterior setae (Fig. 18C: 1–4, among them seta 1 as a small elongated sensillum) and six posterior setae of gnathobasic “filter plate”.
Limb III with a large ovoid epipodite (Fig. 18E) and a flat round exopodite bearing four distal setae (Fig. 18E: 1–4), (among them seta 2 the longest) and two lateral setae (Fig. 18E: 5–6) unequal in length. Proportions and armature of all setae similar to *S. kingii*.

Limb IV with a large ovoid epipodite (Fig. 18F–G) and wide, flat rounded exopodite with two protruding setulated lobes, four distal (Fig. 18F: 1–4) and two lateral (Fig. 18F: 5–6) setae. Proportions and armature of all setae similar to *S. kingii*.

Limb V (Fig. 18H) with a subovoid epipodite, triangular exopodite supplied with two small, thin distal setae (Fig. 18H: 1–2) unequal in length and a large lateral seta (Fig. 18H: 3). Inner limb portion as an ovoid flat lobe, with setulated inner margin and a single, large seta.

Ephippial female (Figs. 16G–I, 19A–B, D–F, 20A–L). Body shape in general as in parthenogenetic female. Dorsal portion of valves modified into ephippium. Ephippium dark brown, ovoid, clearly bordered from ventral and lateral portions of valves separating during its casting off (Figs. 16G, 19A–B, 20A, D). Egg chamber with a single egg, elongated, its sculpture represented by shallow depressions (Figs. 16G, 20F). Sculpture of the rest of ephippium is represented by small polygons. Lateral keels are well distinguishable from the lateral (Figs. 16G, 19A–B, 20A–D) and dorsal view (Figs. 16H, 19–E, 20G, I–L). From the dorsal view, area between two keels strongly rounded, keels strongly projected laterally out of body dorsal contour (Figs. 16H, 19D, 20G).

Preephippial female (Figs. 19C). Body shape in general similar to that in parthenogenetic female. Lateral keels already visible (Figs. 19C), but dorsal portion of valves weakly chitinized. Ventral and lateral borders between preephippium and the rest of valves not developed.

Male. Despite significant efforts, we did not find males in the investigated samples.
Taxonomic notes. Records of a "tropical" taxon, *S. kingii*, in northern regions such as South Korea and the Russian Far East surprised cladoceran investigators (*Kotov, Jeong & Lee, 2012*). However, we now know that the Far Eastern populations belong to a separate taxon, the real distribution of which needs to be accurately evaluated. To date, we had no DNA-available samples of *S. cf. kingii* from SE Asia, South China and Indian subcontinent where that taxon is common (*Michael & Sharma, 1988; Korovchinsky, 2013; Kotov et al., 2013; Sinev, Gu & Han, 2015*). Checking of the status of populations from different regions of the Palaeotropics is the next step in the revision of this group.

Our revision confirms again that the Far East of Eurasia, in its temperate portion, is an important source of new taxa, as it was already found previously (*Kotov, Ishida & Taylor, 2009; Kotov et al., 2011*).

Size. Medium-sized species, parthenogenetic female up to 0.75 mm in length without mucro (and 0.79 with mucro), ephippial female up to 0.70 mm in length (without mucro) (and 0.72 with mucro). Holotype 0.60 mm in length (without mucro), 0.37 mm in height.

Distribution. This taxon is known from the southern portion of the Far East of Russia, the Korean Peninsula, Japan and an adjacent region of China (Dongbei = Manchuria). It has also been recorded from a single locality in the southernmost portion of European Russia, but such a disjunct population may be due to an anthropogenic introduction.

Discussion

Comparison of the COI and 12S+16S phylogenies
The COI-based analyses reveal that the large genetic divergences within and among species groups of neustonic daphniids exist for both rRNA (Taylor, Connelly & Kotov, 2020) and protein-coding regions of the mitochondrial genome (the present study). Costa et al. (2007) reported a 1.32% average divergence within species of *Daphnia* and a maximum divergence of 4.3%. In comparison, geographic clades within named species of *Scapholeberis* are often beyond 20% in divergence. These unusually high maximum values for *Scapholeberis* are unlikely to be reduced with further geographic sampling. The COI data showed similar levels of within genus variation for *Daphnia* (Costa et al. 2007), *Scapholeberis* and *Megafenestra* at just over 30%, while the rRNA genes show greater divergences within neustonic genera (*Scapholeberis* and *Megafenestra*) compared to those from other cladoceran genera (Taylor, Connelly & Kotov, 2020). This outcome is expected for rate increases in COI because the gene is prone to strong purifying selection resulting in substitutional saturation (Pentinsaari, et al. 2016).

The COI based tree (Fig. 2) is similar to the tree estimated from 16S+12S rRNA sequences (Taylor, Connelly & Kotov, 2020). The major groups in both trees are the same, while the grouping of the deep branches is different. But, as the deep branches for COI have low support, the discrepancies may be due to random error.

The *mucronata* group is well-supported in both trees, in each tree the group is represented by four main clades. Our study confirms that the *mucronata*-group (clade X) is present in non-Beringian North America. Clade X is known only from COI sequences from Manitoba, Canada (Jeffery et al. 2011).

All clades from the *rammneri* group represented in the rRNA tree (Taylor, Connelly & Kotov, 2020) are also present in the COI tree (Fig. 2). New information includes: (1) Clade H penetrates further north in the Nearctic (though not beyond the boreal zone); (2) there is a
previously unknown clade Y in Israel; (3) the grouping of clade I (which is also basal in the rRNA tree) with other clades is not well-supported in the COI tree.

The present study has much improved the geographic sampling of the *S. freyi* group compared to our rRNA tree (this is largely due to the inclusion of sequences from previous DNA barcoding projects). It is clear from the present results that *S. freyi* is indeed a diverse clade with many closely related, but geographically differentiated phylogroups in the New World.

There is a new genetic clade within the *S. kingii* species group, *S. cf. intermedius* (clade L2) (Figs 1–2) which was not sampled in the rRNA study. Therefore, the *S. kingii* group is more diverse as it was expected before. In our COI tree, *S. armata* (clade N) grouped with *S. cf. microcephala* (clade E) (Fig. 2), but they are distant branches on the rRNA tree. The source of the incongruence is unknown but such discrepancies are common with long branches and short internodes (see Omilian & Taylor, 2001; Bergstren, 2005).

Finally, the *Megafenestra* internal tree structure is different from that in rRNA tree, as the clade P is sister group of Q in the COI tree and O – in the rRNA tree.

De-coding of the DNA barcoding results

Before our study, 48 COI sequences were deposited to GenBank: *De Waard et al. (2006)* (1 sequence); *Richter, Olesen & Wheeler (2007)* (1); *Elías-Gutiérrez et al. (2008)* (6); *Jeffrey, Elías-Gutiérrez & Adamowicz (2011)* (2); *Elías-Gutiérrez & León-Regagnon (2013)* (3); *Prosser, Martinez-Arce & Elías-Gutiérrez (2013)* (2); *Yang et al. (2017)* (1); *Elías-Gutierrez et al. (2018)* (14), and 20 sequences as direct submissions, including the iBOL releases. Because the taxonomy of the Scapholeberinae is immature, identifications of the taxa by authors of these data were tentative (Fig. 21), only 30% of taxa were identified to species group accurately, while
others were misidentified or identified to the genus level. In some publications, species were
assigned to numbers: e.g. "sp. 1, sp. 2 and sp. 3" of Jeffrey, Elias-Gutiérrez & Adamowicz
(2011). Subsequently, S. duranguensis was reasonably described from Mexico (Quiroz-Vázquez
& Elias-Gutiérrez, 2009) based on specific COI sequences and morphological differences from
other North American taxa, but no suggestions on the diversity within the genus were made. S.
yahuarcaquensis was described recently from South America (Andrade-Sossa, Buitron-Caicedo
& Elias-Gutiérrez, 2020), it corresponds to our clade J4.

Assessments of species diversity based on genetics can be confused by an immature
taxonomic scaffold (as in Scapholeberis and Megafenestra). Indeed, before our study, GenBank
was a source of misidentification, as 70% of sequences had incorrect labels. The barcoding data
were an illegitimate alternative to real taxonomy based on the species typification and accurate
descriptions/identifications (see Kotov & Gololobova, 2016). Moreover, when there are
pervasive rate differences among taxa for mitochondrial DNA, as has been proposed for
neustonic daphniids (Taylor, Connelly & Kotov, 2020), mitochondrial DNA approaches may
yield very different diversity estimates from morphological or nuclear genomic evidence.

Our recent decoding of the data from GenBank led to several interesting conclusions. The
owners of sequences had no chance to make them because the barcoding data were not well-
integrated with taxonomy. Note that the following our conclusions are mainly based on the
analysis of the GenBank sequences rather than our original data: (1) S. freyi is not a subspecies
of S. armata, and even not single monotypic species, but a monophyletic group of closely related
 genetic lineages (potential biological species) with a clear latitudinal differentiation in the
Americas. Our previous hypothesis that S. freyi is a part of S. rammleri group (Taylor, Connelly
& Kotov, 2020) was wrong. Note that to date only S. freyi s. lat. is genetically detected in tropical
South and Central America. This conclusion agrees with opinions based on morphological data (Elmoor-Loureiro, 2000; Elías-Gutiérrez, Kotov & Garfías-Espejo, 2006). In contrast, S. freyi has not been detected in the western half of the Nearctic. S. yahuarcaguensis was also found in Europe – this population is most probably the result of human-mediated introduction (see also Taylor, Connelly & Kotov, 2020). The European population was used for a genomic study and identified as “S. mucronata group” (Cornetti et al., 2019).

(2) S. duranguensis is a member of a large group, namely the S. freyi species group. It is not micro-endemic of a single locality in Durango State, but also present in the mountains of Aguascalientes State.

(3) Members of the S. mucronata group (namely clade X) are present in non-Beringian North America, but probably only in its northernmost (Arctic) portion.

(4) A new lineage (most probably, a separate biological species) of the rammneri group is present in Israel.

(5) In contrast to our previous opinion (Taylor, Connelly & Kotov, 2020) representatives of the American clade H of the rammneri group are found in the Beringian zone (although they probably do not extend beyond the boreal zone in Alaska).

The information from "genetic barcoding" allows us to improve the biogeography of neustonic daphniids, but only after integrating this information with morphological and other genetic data (Schlick-Steiner et al., 2010).

Taxonomy

There are two species within the genus *Megafenestra* (Dumont & Pensaert, 1983): M. aurita (Fischer, 1849) and M. nasuta (Birge, 1879), and eleven valid species within the genus
Scapholeberis: (1) *S. mucronata* (O.F. Müller, 1776); (2) *S. spinifera* (Nicolet, 1849); (3) *S. armata* Herrick, 1882; (4) *S. kingii* Sars, 1888; (5) *S. microcephala* Sars, 1890; (6) *S. erinaceus* Daday, 1903; (7) *S. rammneri* Dumont & Pensaert, 1983; (8) *S. freyi* Dumont & Pensaert, 1983; (9) *S. duranguensis* Quiroz-Vázquez & Elías-Gutiérrez, 2009; (10) *S. yahuarcaquensis* Andrade-Sossa, Buitron-Caicedo & Elías-Gutiérrez, 2020; (10) *S. smirnovi* sp. nov.

But at least four "species" from this list (*S. kingi, S. microcephala, S. mucronata, S. rammneri*) could be considered as taxa requiring special attention to their taxonomy due to their very broad ranges both in the Eastern and Western Hemispheres. Such taxa need careful taxonomic revisions according to the logic of "non-cosmopolitanism" and "continental endemism" approaches (*Frey, 1982; Frey, 1987*) widely accepted in the cladoceran taxonomy and biogeography.

After two subsequent revisions (*Taylor, Connelly & Kotov, 2020; this study*) we know that the diversity of both genera has been strongly underestimated. The subfamily includes at least 23–24 distinct lineages (note that rare *S. erinaceus* was not studied either here or by *Taylor, Connelly & Kotov (2020)*). In contrast to many other cladoceran groups, we can confidently say that the phylogeny and taxonomy of *Scapholeberinae* is now relatively well-done. Main species groups correspond well to those separated based on the morphological analysis. But it is very obvious that further studies are necessary to find morphological differences between revealed taxa and formulate diagnoses of the taxa which needs to be formally described (as *Megafenestra cf. nasuta* clade P, *Scapholeberis cf. microcephala* clade E., *S. cf. rammneri* clades I, and possibly other un-named clades). Therefore the revision of the taxonomy only starts with this contribution. After all, from the lineages discovered up to now (and there are surely more to be found), most remain unnamed and phenotypically not characterised.
To date we do not know if these taxa are morphologically different from congeneric taxa. But, in this context, it is very premature to discuss a "lacking of resolution" of morphology and the "limitations inherent in morphology-based identification system" (Hebert et al., 2003: p. 313), as nobody tried to find such differences. Such search is a task for future.

We can immediately recommend the main direction of such studies: gamogenetic specimens must be analyzed for diagnostic characters first, as we did for the *S. kingii* species group. We can assume, following ideas of Goulden (1966), that differences in the ephippial morphology could provide a mechanism of reproductive isolation, as such differences could be used by male during the copulation to recognize correct mate. Lateral keels on the ephippium, characteristic of several, if not all, taxa of *Scapholeberis*, are analogous to the keels in *Bosminidae* (Kotov, 2013). Kerfoot & Peterson (1980) proposed that the lateral keels and special texture on the ephippium of *Bosmina* also contribute to pre-zygotic reproductive isolation. We believe that differences between *Scapholeberis* ephippial females could also contribute to reproductive isolation among congeneric species. Moreover, the situation with *Scapholeberis kingii* and *S. smirnovi* sp.nov., when parthenogenetic females are morphologically indistinguishable, but gamogenetic specimens have morphological differences, are usual among the cladocerans (Belyaeva & Taylor, 2009; Popova et al., 2016; Smirnov & Kotov, 2018). Such phenomena need further study to be accurately explained, but it is obvious that the morphological evolution in parthenogenetic and gamogenetic specimens follow somewhat different pathways. And the oft-reported morphological stasis in cladocerans (Sacherová & Hebert, 2003; Smirnov & Kotov, 2018) is more characteristic of parthenogenetic females (the sexual stages appear to evolve more rapidly in morphology).
Acknowledgements

Many thanks to E.I. Bekker, J.F. Cart, A.V. Chabovsky, S.E. Cherenkov, S.J. Connelly, Y.R. Galimov, S. Ishida, P.D. Karabanov, Y. Kobayashi, T.P. Korobkova, L.E. Savinetkskaya, A.B. Savinetsky and D.V. Vasilenko for samples with the Scapholeberinae, M. Ballinger, K.S. Costanzo, N.M., Korovchinsky and A. Medeiros for assistance in sampling trips.

We are deeply grateful to Sergei I. Metelev and Alexey N. Nekrasov for technical assistance during SEM investigations. SEM works are carried out at the Joint Usage Center “Instrumental Methods in Ecology” at A.N. Severtsov Institute of Ecol. Evol. of Russian Academy of Sciences.
References

Adamowicz SJ, Petrusek A, Colbourne JK, Hebert PDN, Witt JDS. 2009. The scale of divergence: a phylogenetic appraisal of intercontinental allopatric speciation in a passively dispersed freshwater zooplankton genus. Molecular Phylogenetics and Evolution 50: 423–436. DOI 10.1016/j.ympev.2008.11.026

Alexeev VR, Tsalolikhin SYM. 2010. Identification guide of zooplankton and zoobenthos in freshwaters of European Russia. Vol. 1. Zooplankton. Moscow: KMK.

Andrade-Sossa C, Buitron-Caicedo L, Elías-Gutiérrez M. 2020. A new species of Scapholeberis Schoedler, 1858 (Anomopoda: Daphniidae: Scapholeberinae) from the Colombian Amazon basin highlighted by DNA barcodes and morphology. PeerJ 8: e9989. DOI 10.7717/peerj.9989

Baird W. 1850. The natural history of the British Entomostraca. London: The Ray Society.

Bekker EI, Karabanov DP, Galimov YR, Kotov AA. 2016. DNA barcoding reveals high cryptic diversity in the North Eurasian Moina Species (Crustacea: Cladocera). PLoS ONE 11(8): e0161737. DOI 10.1371/journal.pone.0161737

Belyaeva M, Taylor DJ. 2009. Cryptic species within the Chydorus sphaericus species complex (Crustacea: Cladocera) revealed by molecular markers and sexual stage morphology. Molecular Phylogenetics and Evolution 50: 534–546. DOI 10.1016/j.ympev.2008.11.007

Benson DA, Cavanaugh M, Clark K, Karsch-Mizrachi I, Lipman DJ, Ostell J, Sayers EW. 2012. GenBank. Nucleic acids research 41(D1): D36–D42.
Brehm V. 1938. Cladoceren and Ostracoden (d'Angola). Archiv für Hydrobiologie 32: 488–502.

Chatterjee T, Kotov AA, Van Damme K, Chandrasekhar SVA, Padhye S. 2013. An annotated checklist of the Cladocera (Crustacea: Branchiopoda) from India. Zootaxa 3667: 1–89. DOI 10.11646/zootaxa.3667.1.1

Chiambeng GY, Dumont HJ. 2005. The Branchiopoda (Crustacea: Anomopoda, Ctenopoda and Cyclestherida) of the rain forests of Cameroon, West Africa: low abundances, few endemics and a boreal-tropical disjunction. Journal of Biogeography 32: 1611–1620. DOI 10.1111/j.1365-2699.2005.01280.x

Cornetti L, Fields PD, Van Damme K, Ebert D. 2019. A fossil-calibrated phylogenomic analysis of Daphnia and the Daphniidae. Molecular Phylogenetics and Evolution 137:250-262. DOI 10.1016/j.ympev.2019.05.018

Day JA, Stewart BA, de Moor IJ, Louw A.E. 1999. Guides to the Freshwater Invertebrates of Southern Africa: Crustacea I: Notostraca, Anostraca, Conchostraca and Cladocera. Water Research Commission Report No. TT 121/00, Pretoria: 1–126.

DeWaard JR, Sacherova V, Cristescu MEA, Remigio EA, Crease TJ, Hebert PDN. 2006. Probing the relationships of the branchiopod crustaceans. Molecular Phylogenetics and Evolution 39 (2):491–502. DOI 10.1016/j.ympev.2005.11.003

Dumont HJ. 1981. Cladocera and free-living Copepoda from the Fouta Djalon and adjacent mountain ares in West Africa. Hydrobiologia 85(2): 97–116.
Dumont HJ. 1983. Genus Simocephalus Schoedler, 1858. Genus Scapholeberis Schoedler, 1858. In: Smirnov NN, Timms BV, eds. A revision of the Australian Cladocera (Crustacea). Records of the Australian Museum Suppl. 1: 97–106.

Dumont HJ, Laureys P, Pensaert J. 1979. Anostraca, Conchostraca, Cladocera and Copepoda from Tunisia. Hydrobiologia 66(3): 259–274.

Dumont HJ, Pensaert J. 1983. A revision of the Scapholeberinae (Crustacea: Cladocera). Hydrobiologia 100: 3–45.

Dumont HJ, & Van de Velde I. 1977. Cladocères et Conchostracéc récoltes par le professeur Th. Monod dans la moyenne vallée du Niger en décembre 1972 et janvier 1973. Bull. Inst. fondam. Afr. Noire (sér. A) 39 (1): 75–93.

Du Nan-shan. 1973. Cladocera of China. Peking: Science Press, Academia Sinica.

Dupérré N. 2020. Old and new challenges in taxonomy: what are taxonomists up against? Megataxa 1(1): 59–62.

Egborge ABM, Onwudinjo CC, Chigbu PC. 1994. Cladocera of coastal rivers of western Nigeria. Hydrobiologia 272(1/2): 39–46.

Elías-Gutiérrez M, Kotov AA, Garfias-Espejo T. 2006. Cladocera (Crustacea: Ctenopoda, Anomopoda) from southern Mexico, Belize and northern Guatemala, with some biogeographical notes. Zootaxa 1119: 1–27.
Elías-Gutiérrez M, Martínez Jerónimo F, Ivanova NV, Valdez Moreno M, Hebert

PDN. 2008. DNA barcodes for Cladocera and Copepoda from Mexico and Guatemala, highlights and new discoveries. *Zootaxa* **1839**: 1–42.

DOI 10.11646/zootaxa.1839.1.1

Elías-Gutiérrez M, León-Regagnon V. 2013. DNA barcoding in Mexico: an introduction. *Molecular Ecology Resources* **13(6)**: 1093–1096.

DOI 10.1111/1755-0998.12149

Elías-Gutiérrez M, Valdez-Moreno M, Topan J, Young MR, Cohuo-Colli JA. 2018. Improved protocols to accelerate the assembly of DNA barcode reference libraries for freshwater zooplankton. *Ecology and evolution* **8(5)**: 3002–3018.

DOI 10.1002/ece3.3742

Elmoor-Loureiro LMA. 2000. Ocorrência de *Scapholeberis armata* freyi Dumont & Pensaert (Crustacea, Anomopoda, Daphniidae) no estado de São Paulo, Brasil. *Revista Brasileira de Zoologia* **17(1)**: 301–302.

DOI 10.1590/S0101-81752000000100026

Fernando CH. 1980. The freshwater zooplankton of Sri Lanka, with a discussion of tropical freshwater zooplankton composition. *Internationale Revue der gesamten Hydrobiologie und Hydrographie* **65(1)**: 85–125.

DOI 10.1002/iroh.19800650105

Frey DG. 1982. Questions concerning cosmopolitanism in Cladocera. *Archiv für Hydrobiologie* **93**: 484–502.

Frey DG. 1987. The taxonomy and biogeography of the Cladocera. *Hydrobiologia* **145**: 5–17.
M. Ghaouaci, M. Amarouayache, A. Y. Sinev, N. M. Korovchinsky, and A. A. Kotov. 2018. An annotated checklist of the Algerian Cladocera (Crustacea: Branchiopoda). *Zootaxa* **4377** (3): 412–430.

C. E. Goulden. 1966. Co-occurrence of moinid Cladocera and possible isolating mechanisms. *Verhandlungen der Internationalen Vereinigung für Theoretische und Angewandte Limnologie* **16**(3): 1699–1672.

R. Gurney. 1907. On some freshwater Entomostraca in the collection of the Indian Museum, Calcutta. *Journal and Proceedings of the Asiatic Society of Bengal, New Series* **2**(7): 273–281.

P. D. N. Hebert, A. Cywinska, S. L. Ball, and J. R. De Waard. 2003. Biological identifications through DNA barcodes. *Proceedings of the Royal Society, Series B* **270**: 313–321.

M. Henry. 1919. On some Australian Cladocera. *Journal and Proceedings of the Royal Society of New South Wales* **52**: 463–485.

M. Henry. 1922. A monograph of the freshwater Entomostraca of New South Wales. Part I. Cladocera. *Proceedings of the Linnean Society of New South Wales* **47**(1): 186: 26–52.

I. Hudec. 1983. Redescription of *Scapholeberis echinulata* Sars 1903 (Crustacea: Cladocera). *Hydrobiologia* **107**: 63–69.
945 International Commission on Zoological Nomenclature (ICZN). 2000. *International code of zoological nomenclature. Fourth edition*. London: The Natural History Museum.

946 Jeffery NW, Elías-Gutiérrez M, Adamowicz SJ. 2011. Species Diversity and Phylogeographical Affinities of the Branchiopoda (Crustacea) of Churchill, Manitoba, Canada. *PLoS ONE 6*(5): e18364.

947 DOI 10.1371/journal.pone.0018364

948 Jeong HG, Kotov AA, Lee W. 2014. Checklist of the freshwater Cladocera (Crustacea: Branchiopoda) of South Korea. *Proceedings of the Biological Society of Washington 127*(1): 216–228.

949 DOI 10.2988/0006-324X-127.1.216

950 Kerfoot WC, Peterson C. 1980. Predatory copepods and *Bosmina*: replacement cycles and further influences of predation upon prey reproduction. *Ecology 61*: 417–431.

951 DOI 10.2307/1935198

952 King RL. 1853. On Australian Entomostraca – in continuation. *Papers and proceedings of the Royal Society of Tasmania 2*: 253–263.

953 Korovchinsky NM. 2013. Cladocera (Crustacea: Branchiopoda) of South East Asia: history of exploration, taxon richness and notes on zoogeography. *Journal of Limnology 72*(s2): 109–124.

954 DOI 10.4081/jlimnol.2013.s2.e7

955 Kotov AA. 2013. *Morphology and phylogeny of the Anomopoda (Crustacea: Cladocera)*. Moscow: KMK Press.

956 Kotov AA, Gololobova MA. 2016. Traditional taxonomy – quo vadis? *Integrative Zoology 11*: 500–505.
Kotov AA, Ishida S, Taylor DJ. 2009. Revision of the genus *Bosmina* Baird, 1845 (Cladocera: Bosminidae), based on evidence from male morphological characters and molecular phylogenies. *Zoological Journal of the Linnean Society* **156** (1): 1–56. DOI 10.1111/j.1096-3642.2008.00475.x

Kotov AA, Jeong HJ, Lee W. 2012. Cladocera (Crustacea: Branchiopoda) of the southeast of the Korean Peninsula, with twenty new records for Korea. *Zootaxa* **3368**: 50–90. DOI 10.11646/zootaxa.3368.1.4

Kotov, AA, Sinev AY, Glagolev SM, Smirnov NN. 2010. Water fleas (Cladocera). In: Alexeev VR & Tsalolokhin SY, eds. *Key book for zooplankton and zoobenthos of fresh waters of European Russia*. Moscow: KMK, 151–276.

Kotov AA, Korovchinsky NM, Sinev AY, Smirnov NN. 2011. Cladocera (Crustacea, Branchiopoda) of the Zeya basin (Amurskaya Area, Russian Federation). 3. Systematic-faunistic and zoogeographic analysis. *Zoologichesky Zhurnal* **90**: 402–411.

Kotov AA, Van Damme K, Bekker EI, Siboualipha S, Silva-Briano M, Adabache

Ortiz A, Galván de la Rosa R, Sanoamuang L. 2013. Cladocera (Crustacea: Branchiopoda) of Vientiane province and municipality, Laos. *Journal of Limnology* **72**(s2): 81–108. DOI 10.4081/jlimnol.2013.s2.e6

Laforsch C, Tollrian R. 2000. A new preparation technique of daphnids for Scanning Electron Microscopy using hexamethyldisilazane. *Archiv fuer Hydrobiologie* **149**: 587–596.

Lemoine F, Entfellner JBD, Wilkinson E, Correia D, Felipe MD, De Oliveira T, Gascuel O. 2018. Renewing Felsenstein’s phylogenetic bootstrap in the era of big data. *Nature* **556**: 452–456.
Marrone F, Barone R, Naselli-Flores L. 2005. Cladocera (Branchiopoda: Anomopoda, Ctenopoda, and Onychopoda) from Sicilian inland waters: An updated inventory. *Crustaceana* 78: 1025–1039.

Michael RG, Sharma BK. 1988. *Fauna of India and adjacent countries. Indian Cladocera (Crustacea: Branchiopoda: Cladocera).* Calcutta: Zool. Surv. India.

Neretina AN. 2018. Fauna of the Cladocera (Crustacea: Cladocera) of Ethiopia. Unpublished D. Phil. Thesis, A.N. Severtsov Institute of Ecology and Evolution.

Neretina AN, Sinev AY. 2016. A revision of the genus *Leberis* Smirnov, 1989 (Cladocera: Chydoridae) in the Old World and Australia. *Zootaxa* 4079(5): 501–533.

Popova EV, Petrusek A, Kořínek V, Mergeay J, Bekker EI, Karabanov DP, Galimov YR, Neretina TV, Taylor DJ, Kotov AA. 2016. Revision of the Old World *Daphnia (Ctenodaphnia) similis* group (Cladocera: Daphniidae). *Zootaxa* 4161(1): 1–40.

Prosser S, Martínez-Arce A, Elías-Gutiérrez M. 2013. A new set of primers for COI amplification from freshwater microcrustaceans. *Molecular ecology resources* 13(6): 1151–1155.

Omilian AR, Taylor DJ. 2001. Rate acceleration and long-branch attraction in a conserved gene of cryptic daphniid (Crustacea) species. *Molecular Biology and Evolution* 18(12): 2201–2212.

DOI 10.1093/oxfordjournals.molbev.a003767
Pentinsaari M, Salmela H, Mutanen M, Roslin T. 2016. Molecular evolution of a widely-adopted taxonomic marker (COI) across the animal tree of life. Scientific Reports 6: 35275.

DOI 10.1038/srep35275

Quiroz-Vázquez P, Elías-Gutiérrez M. 2009. A new cryptic species of the freshwater cladoceran genus Scapholeberis Schoedler, 1858 (Cladocera: Anomopoda) from the Semidesert Northern Mexico, highlighted by DNA barcoding. Zootaxa 2236: 50–64.

DOI 10.11646/zootaxa.2236.1.4

Rey J, Saint-Jean L. 1969. Les Cladocères (Crustacés, Branchiopodes) du Tchad (Deuxième note). Cahiers ORSTOM, série Serie Hydrobiologie 3: 21–42.

Richter S, Olesen J, Wheeler WC. 2007. Phylogeny of Branchiopoda (Crustacea) based on a combined analysis of morphological data and six molecular loci. Cladistics 23(4): 301–336.

DOI 10.1111/j.1096-0031.2007.00148.x

Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Höhna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP. 2012. MrBayes 3.2: Efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic biology 61(3): 539–542.

DOI 10.1093/sysbio/sys029

Sacherová V, Hebert PDN. 2003. The evolutionary history of the Chydoridae (Crustacea: Cladocera). Biological Journal of the Linnean Society 79: 629–643.

DOI 10.1046/j.1095-8312.2003.00216.x

Sars GO. 1903. Fresh-water Entomostraca from China and Sumatra. Archiv for Mathematik og Naturvidenskab 25(8): 1–44.
Sars GO. 1916. The fresh-water Entomostraca of the Cape Province (Union of South Africa). Part 1: Cladocera. *Annals of the South African Museum* 15: 303–351.

Schlick-Steiner BC, Steiner FM, Seifert B, Stauffer C, Christian E, Crozier RH. 2010. Integrative taxonomy: a multisource approach to exploring biodiversity. *Annual Review of Entomology* 55: 421–438.

DOI 10.1146/annurev-ento-112408-085432

Shiel RJ, Dickson JA. 1995. Cladocera recorded from Australia. *Transactions of the Royal Society of South Australia* 119(1): 29–40.

Sinev AY, Gu Y, Han BP. 2015. Cladocera of Hainan Island, China. *Zootaxa* 4006 (3): 569–585.

DOI 10.11646/zootaxa.4006.3.9

Sinev AY, Karabanov DP, Kotov AA, 2020. A new North Eurasian species of the *Alona affinis* complex (Cladocera: Chydoridae). *Zootaxa* 4767: 115–137.

DOI 10.11646/zootaxa.4767.1.5

Smirnov NN. 1992. *The Macrothricidae of the world. Guides to the identification of the microinvertebrates of the Continental Waters of the world*. The Hague: SPB Academic Publishing.

Smirnov NN. 1995. Check-list of the Australian Cladocera (Crustacea). *Arthropoda Selecta* 4(1): 3–6.

Smirnov NN. 1996. *Cladocera: the Chydorinae and Sayciinae (Chydoridae) of the world. Guides to the identification of the microinvertebrates of the Continental Waters of the world*. Amsterdam: SPB Academic Publishing.
Smirnov NN, Kotov AA. 2018. On morphological radiation of Cladocera (Crustacea).

Invertebrate Zoology **15(3)**: 231–248.

Tanaka S. 1998a. Microcrustaceans (Cladocera and Copepoda) of Ryushou-iike Pond located in the central part of the Hida Mountain Range. *Bull. Toyama Biol. Soc.* **37**: 29–34.

Tanaka S. 1998b. Notes on the Cladocera of Japan - 6. Family Daphniidae Straus, 1820 - 3. Genus *Ceriodaphnia* and genus *Scapholeberis*. *Memoirs of the Faculty of Education Toyama University, Series B. Natural Sciences* **52**: 9–18.

Tanaka S, Ohtaka A, Nishino M. 2004. Cladoceran fauna in littoral zones and Naikos (attached lakes or lagoons) of Lake Biwa, central Japan. *Japanese Journal of Limnology* **65**: 167–179.

Taylor DJ, Connelly SJ, Kotov AA. 2020. The intercontinental phylogeography of neustonic daphniids. *Scientific Reports* **10(1)**: 1–12.

DOI 10.1038/s41598-020-58743-8

Thielsch A, Knell A, Mohammadyari A, Petrusek A, Schwenk K. 2017. Divergent clades or cryptic species? Mito-nuclear discordance in a *Daphnia* species complex. *BMC Evolutionary Biology* **17(1)**: 227.

DOI 10.1186/s12862-017-1070-4

Turko P, Wolinska J, Tellenbach C, Dziuba MK, Monchamp ME, Spaak P. 2019. Using DNA from formaldehyde-preserved *Daphnia* to reconstruct past populations.

Hydrobiologia **841(1)**: 153–161.

DOI 10.1007/s10750-019-04015-0

Uéno M. 1927. The freshwater Branchiopoda of Japan I. *Memoirs of the College of Science, Kyoto Imperial University, Series B* **2(5)**: 259–311.
1081 Uéno M. 1940. Cladocera of Manchoukuo. Phyllopoda of Manchoukuo. Report of the Limnological Survey of Kwantung and Manchoukuo, Dairen: 323–367.

1083 Umetsu K, Iwabuchi N, Yuasa I, Saitou N, Clark PF, Boxshall G, Osawa M, Igarashi K. 2002. Complete mitochondrial DNA sequence of a tadpole shrimp (Triops cancriformis) and analysis of museum samples. Electrophoresis 23: 4080–4084.

1086 DOI 10.1002/elps.200290024

1087 Van Damme K, Sinev AY, Dumont HJ. 2011. Separation of Anthalona gen.n. from Alona Baird, 1843 (Branchiopoda: Cladocera: Anomopoda): morphology and evolution of scraping stenothermic alonines. Zootaxa 2875: 1–64.

1089 DOI 10.11646/zootaxa.2875.1.1

1090 Xiang XF, Ji GH, Chen SZ, Yu GL, Xu L, Han BP, Kotov AA, Dumont HJ. 2015. Check-List of Chinese Cladocera (Crustacea: Branchiopoda). Part 1. Haplopoda, Ctenopoda, Onychopoda and Anomopoda (families Daphniidae, Moinidae, Bosminidae, Ilyocryptidae). Zootaxa 3904: 1–27.

1092 Yang J, Zhang X, Zhang W, Sun J, Xie Y, Zhang Y, Burton G.A, Yu H. (2017). Indigenous species barcode database improves the identification of zooplankton. PloS one 12(10).

1098 DOI 10.1371/journal.pone.0185697

1099 Yoon SM. 2010. Arthropoda: Branchiopoda: Anostraca, Notostraca, Spinicaudata, Laevicaudata, Ctenopoda, Anomopoda, Haplopoda Branchiopods. Invertebrate fauna of Korea 21(2): 1–156.
Captions

Figure 1. Map of populations of *Scapholeberis* and *Megafenestra* studied here genetically. Symbols correspond to mitochondrial clades (see Figure 2): (A) populations of the *S. mucronata* species group (northern hemisphere); (B) populations of the *S. rammneri* species group in the northern hemisphere; (C) populations of the *S. freyi* species group (western hemisphere); (D) populations of *Megafenestra* (clear symbols), *S. microcephala, S. smirnovi sp. nov.*, *S. armata, S. cf. microcephala* in northern hemisphere; (E) all populations studied in southern hemisphere. The base maps are from the public domain atlas in the desktop app, Marble 2.2.20 (http://edu.kde.org/marble). Symbols were placed manually using the output from DIVA-GIS 7.5 (https://www.diva-gis.org/) as a guide. Note that the base maps and symbols are basically same as in Taylor et al. (2020), but only localities are represented from where the COI sequences were obtained here in addition to Taylor et al. (2020).

Figure 2. Maximum likelihood mitochondrial phylogeny of neustonic daphniids (*Scapholeberis* and *Megafenestra*). Bold letters (A–Q, X–Y) indicate geographic clades. Numbers at the nodes indicate Bayesian posterior probabilities and Transfer Bootstrap Expectations (TBE). Colours represent major species groups in the Scapholeberinae: *Scapholeberis mucronata* group (green), *S. rammneri* group (red), *S. freyi* group (black), *S. kingii* group (grey), *S. armata-microcephala* clade (blue), genus *Megafenestra* (white). The tree is outgroup-rooted using sequences from the genus *Megafenestra*. See Appendix S1 for individual sequences.
Figure 3. Violin plots of pairwise Kimura’s 2 Parameter Distances from the COI region of mitochondrial DNA in clades of neustonic daphniids (Scapholeberinae). Horizontal bars indicate means. Gray rectangles show the ranges. See Appendix S1 for individual sequences.

Figure 4. *Scapholeberis kingii* Sars, 1888, parthenogenetic and ephippial females from Farm Dam, New South Wales, Australia. A–D, Adult parthenogenetic females, E, Juvenile parthenogenetic female, F–H, Ephippial females. A, Parthenogenetic female, lateral view. B, Adult parthenogenetic female, dorsal view. C, Head, ventral view. D, Labrum. E, Juvenile parthenogenetic female, lateral view. F, Ephippial female, lateral view. G, Ephippial female, dorsal view. H, Ornamentation of ephippium. Scale bars = 0.1 mm.

Figure 5. *Scapholeberis kingii* Sars, 1888, parthenogenetic females from Farm Dam, New South Wales, Australia. A, Valve, ventral view. B–C, Armature of valve. D–E, Posteroventral portion of valve, inner view. F–G, Postabdomen. H–I, Postabdominal claw. J–K, Antenna I. L–M, Antenna II. Scale bars = 0.1 mm.

Figure 6. *Scapholeberis kingii* Sars, 1888, parthenogenetic females from Farm Dam, New South Wales, Australia. A, Thoracic limb I. B, Thoracic limb II. C, Thoracic limb III. D, Thoracic limb IV. E, Thoracic limb V. Scale bar = 0.1 mm.
Figure 7. *Scapholeberis kingii* Sars, 1888, parthenogenetic and ephippial females from Farm Dam, New South Wales, Australia. A–E, Parthenogenetic females, F–L, Ephippial females. A, Ephippial female, lateral view. B, Valve, inner view. C, Posteroventral portion of valve, inner view. D, Head, ventral view. E, Antenna I. F, I, Ephippial females, lateral view. G, J, Ephippia, lateral view. K, Head, lateral view. H, L, Ornamentation of central portion of ephippia. Scale bars = 0.2 mm for A–B, F–G, I–J, 0.1 mm for D, K, 0.05 mm for H, 0.02 mm for C, E, L.

Figure 8. *Scapholeberis kingii* Sars, 1888, ephippial females from Farm Dam, New South Wales, Australia. A, Ephippial female, dorsal view. B, Ephippium, dorsal view. C, Ephippium, dorsal view on higher magnification. D, Head, dorsal view. E, Ephippial female, ventral view. F, Head, ventral view. G, Head on higher magnification, ventral view. Scale bars = 0.2 mm for A–B, E, 0.1 mm for C–D, 0.05 mm for F–G.

Figure 9. *Scapholeberis kingii* Sars, 1888, preephippial female from the roadside pool near Lake Bantic, West Coast, Tasmania, Australia. A, Preephippial female, lateral view. B, Head, lateral view. C, Postabdominal claw, lateral view. D, Posterior portion of body. E–F, Posterior portion of body on higher magnifications. Scale bars = 0.2 mm for A, D, 0.1 mm for B, E, 0.05 mm for F, 0.02 mm for C.

Figure 10. *Scapholeberis intermedius* Daday, 1898, parthenogenetic females from Collectio Dadayana. A, Adult parthenogenetic female, lateral view (DAD 10-70-159). B, Juvenile parthenogenetic female, lateral view (DAD 10-70-156). C, Head, dorsal (?) view (DAD 10-70-156). D, Antenna II (DAD 10-70-156). Scale bars = 0.1 mm.
Figure 11. *Scapholeberis cf. intermedius* Daday, 1898, a parthenogenetic female from Bahir Dar Bay of Lake Tana, Amhara, Ethiopia. A, Parthenogenetic female, lateral view. B, Head, lateral view. C, Head, ventral view. D, Labrum. E, Valve. F–H, Armature of posteroventral angle of valve. I, Postabdomen. J, Distal portion of postabdomen. K, Postabdominal seta. L, Antenna I. Scale bars = 0.1 mm.

Figure 12. *Scapholeberis cf. intermedius* Daday, 1898, a parthenogenetic female from Bahir Dar Bay of Lake Tana, Amhara, Ethiopia. A, Distal portion of postabdomen. B, Antenna II. D–J, Fragments of antenna II. K, Thoracic limb I. Scale bars = 0.1 mm.

Figure 13. *Scapholeberis cf. intermedius* Daday, 1898, a parthenogenetic female from Bahir Dar Bay of Lake Tana, Amhara, Ethiopia. A, Thoracic limb I. B, Thoracic limb II. C–D, Fragments of thoracic limb II. E, Thoracic limb III. F–G, Fragments of thoracic limb III. Scale bars = 0.1 mm.

Figure 14. *Scapholeberis cf. intermedius* Daday, 1898, a parthenogenetic female from Bahir Dar Bay of Lake Tana, Amhara, Ethiopia. A, Thoracic limb IV. B–C, Fragments of thoracic limb IV. D, Thoracic limb V. E, Fragment of thoracic limb V. Scale bars = 0.1 mm.

Figure 15. *Scapholeberis cf. intermedius* Daday, 1898, a parthenogenetic female from Bahir Dar Bay of Lake Tana, Amhara, Ethiopia. A, Parthenogenetic female, lateral view. B,
Anterior portion of body. C, Head, lateral view. D, Posterior portion of body. E, Ornamentation of valve. Scale bars 0.2 mm for A, D, 0.1 mm for B, 0.05 mm for C, E.

Figure 16. Scapholeberis smirnovi sp. nov. from the puddle near Lake Maloe Utinoe, Primorski Territory, Far East, Russia. A–D, Adult parthenogenetic females, E–F, Juvenile parthenogenetic female, G–I, Ephippial females. A, Adult parthenogenetic female, lateral view. B, Parthenogenetic female, dorsal view. C, Head, ventral view. D, Labrum. E, Juvenile parthenogenetic female. F, Head, ventral view. G, Ephippial female, lateral view. H, Ephippial female, dorsal view. I, Ornamentation of ephippium. Scale bars = 0.1 mm.

Figure 17. Scapholeberis smirnovi sp. nov. from the puddle near Lake Maloe Utinoe, Primorski Territory, Far East, Russia. A, Valve, outer view. B, Valve, ventral view. C–D, Armature of valve. E, Posteroventral portion of valve, inner view. F–H, Postabdomen. I, Postabdominal claw. J–K, Antenna I. L–M, Antenna II. Scale bars 0.1 = mm.

Figure 18. Scapholeberis smirnovi sp. nov. from the puddle near Lake Maloe Utinoe, Primorski Territory, Far East, Russia. A–B, Thoracic limb I. C–D, Thoracic limb II. E, Thoracic limb III. F–G, Thoracic limb IV. H, Thoracic limb V. Scale bar = 0.1 mm.

Figure 19. Scapholeberis smirnovi sp. nov., ephippial and preephippial females from the puddle near Lake Maloe Utinoe, Primorski Territory, Far East, Russia. A–B, D–F, Ephippial females, C, Preephippial female. A, Ephippial female, lateral view. B, Ephippium, lateral view. C, Preephippial female, lateral view. D, Ephippial female, anterodorsal view. E,
Ephippium, anterodorsal view. F, Ephippial female, ventral view. Scale bars = 0.2 mm for A–D, F, 0.1 mm for E.

Figure 20. *Scapholeberis smirnovi* sp.nov., ephippial females from a pond in Choenggye Mountains, Seoul, the Republic of South Korea. A, Ephippial female, lateral view. B–C, Head, lateral view. D, Ephippium, lateral view. E–F, Ornamentation of ephippium. G, Ephippial female, dorsal view. H, Head, dorsal view. I–J, Ephippium, dorsal view. K–L, Armature of ephippium on higher magnifications. Scale bars = 0.2 mm for A, D, G, I, 0.1 mm for B–C, H, J–L, 0.5 mm for F, 0.2 mm for E.

Figure 21. Analysis of identification for four species groups of *Scapholeberis* based on GenBank data.

Table 1. Differentiation of presently recognised species of the *Scapholeberis kingii* group in Eurasia based on morphological characters.
Figure 1

Map of populations of *Scapholeberis* and *Megafenestra* studied here genetically.

Symbols correspond to mitochondrial clades (see Figure 2): (A) populations of the *S. mucronata* species group (northern hemisphere); (B) populations of the *S. rammneri* species group in the northern hemisphere; (C) populations of the *S. freyi* species group (western hemisphere); (D) populations of *Megafenestra* (clear symbols), *S. microcephala*, *S. smirnovi sp.nov.*, *S. armata*, *S. cf. microcephala* in northern hemisphere; (E) all populations revealed in southern hemisphere. The base maps are from the public domain atlas in the desktop app, Marble 2.2.20 (http://edu.kde.org/marble). Symbols were placed manually in Microsoft PowerPoint using the output from DIVA-GIS 7.5 (https://www.diva-gis.org/) as a guide. Note that the base maps and symbols are basically same as in Taylor et al. (2020), but just the only localities are represented from where the COI sequences were obtained here in addition to Taylor et al. (2020).
Figure 2

Maximum likelihood mitochondrial phylogeny of neustonic daphniids (*Scapholeberis* and *Megafenestra*).

Bold letters (A–Q, X–Y) indicate geographic clades. Numbers at the nodes indicate Bayesian posterior probabilities and Transfer Bootstrap Expectations (TBE). Colours represent major species groups in the Scapholeberinae: *Scapholeberis mucronata* group (green), *S. rammneri* group (red), *S. freyi* group (black), *S. kingii* group (grey), *S. armata-microcephala* clade (blue), genus *Megafenestra* (white). The tree is outgroup-rooted using sequences from the genus *Megafenestra*. See Appendix S1 for individual sequences.
Figure 3

Violin plots of pairwise Kimura’s 2 Parameter Distances from the COI region of mitochondrial DNA in clades of neustonic daphniids (Scapholebeberinae).

Horizontal bars indicate means. Gray rectangles show the ranges. Taxa are genera or species groups in the Scapholeberinae. See Appendix S1 for individual sequences.
Figure 4

Scapholeberis kingii Sars, 1888, parthenogenetic and ephippial females from Farm Dam, New South Wales, Australia.

A–D, Adult parthenogenetic females, E, Juvenile parthenogenetic female, F–H, Ephippial females. A, Parthenogenetic female, lateral view. B, Adult parthenogenetic female, dorsal view. C, Head, ventral view. D, Labrum. E, Juvenile parthenogenetic female, lateral view. F, Ephippial female, lateral view. G, Ephippial female, dorsal view. H, Ornamentation of ephippium. Scale bars = 0.1 mm.
Figure 5

Scapholeberis kingii Sars, 1888, parthenogenetic females from Farm Dam, New South Wales, Australia.

A, Valve, ventral view. B–C, Armature of valve. D–E, Posteroventral portion of valve, inner view. F–G, Postabdomen. H–I, Postabdominal claw. J–K, Antenna I. L–M, Antenna II. Scale bars = 0.1 mm.
Figure 6

Scapholeberis kingii Sars, 1888, parthenogenetic females from Farm Dam, New South Wales, Australia.

A, Thoracic limb I. B, Thoracic limb II. C, Thoracic limb III. D, Thoracic limb IV. E, Thoracic limb V. Scale bar = 0.1 mm.
Figure 7

Scapholeberis kingii Sars, 1888, parthenogenetic and ephippial females from Farm Dam, New South Wales, Australia.

A–E, Parthenogenetic females, F–L, Ephippial females. A, Ephippial female, lateral view. B, Valve, inner view. C, Posteroventral portion of valve, inner view. D, Head, ventral view. E, Antenna I. F, I, Ephippial females, lateral view. G, J, Ephippia, lateral view. K, Head, lateral view. H, L, Ornamentation of central portion of ephippia. Scale bars = 0.2 mm for A–B, F–G, I–J, 0.1 mm for D, K, 0.05 mm for H, 0.02 mm for C, E, L.
Figure 8

Scapholeberis kingii Sars, 1888, ephippial females from Farm Dam, New South Wales, Australia.

A, Ephippial female, dorsal view. B, Ephippium, dorsal view. C, Ephippium, dorsal view on higher magnification. D, Head, dorsal view. E, Ephippial female, ventral view. F, Head, ventral view. G, Head on higher magnification, ventral view. Scale bars = 0.2 mm for A–B, E, 0.1 mm for C–D, 0.05 mm for F–G.
Figure 9

Scapholeberis kingii Sars, 1888, preehippial female from the roadside pool near Lake Bantic, West Coast, Tasmania, Australia.

A, Preehippial female, lateral view. B, Head, lateral view. C, Postabdominal claw, lateral view. D, Posterior portion of body. E–F, Posterior portion of body on higher magnifications. Scale bars = 0.2 mm for A, D, 0.1 mm for B, E, 0.05 mm for F, 0.02 mm for C.
Figure 10

Scapholeberis intermedius Daday, 1898, parthenogenetic females from Collectio Dadayana.

A, Adult parthenogenetic female, lateral view (DAD 10-70-159). B, Juvenile parthenogenetic female, lateral view (DAD 10-70-156). C, Head, dorsal (?) view (DAD 10-70-156). D, Antenna II (DAD 10-70-156). Scale bars = 0.1 mm.
Figure 11

Scapholeberis cf. *intermedius* Daday, 1898, a parthenogenetic female from Bahir Dar Bay of Lake Tana, Amhara, Ethiopia.

A, Parthenogenetic female, lateral view. B, Head, lateral view. C, Head, ventral view. D, Labrum. E, Valve. F–H, Armature of posteroventral angle of valve. I, Postabdomen. J, Distal portion of postabdomen. K, Postabdominal seta. L, Antenna I. Scale bars = 0.1 mm.
Figure 12

Scapholeberis cf. *intermedius* Daday, 1898, a parthenogenetic female from Bahir Dar Bay of Lake Tana, Amhara, Ethiopia.

A, Distal portion of postabdomen. B, Antenna II. D–J, Fragments of antenna II. K, Thoracic limb I. Scale bars = 0.1 mm.
Manuscript to be reviewed
Figure 13

Scapholeberis cf. *intermedius* Daday, 1898, a parthenogenetic female from Bahir Dar Bay of Lake Tana, Amhara, Ethiopia.

A, Thoracic limb I. B, Thoracic limb II. C–D, Fragments of thoracic limb II. E, Thoracic limb III. F–G, Fragments of thoracic limb III. Scale bars = 0.1 mm.
Figure 14.

Figure 14. *Scapholeberis* cf. *intermedius* Daday, 1898, a parthenogenetic female from Bahir Dar Bay of Lake Tana, Amhara, Ethiopia.

A, Thoracic limb IV. B–C, Fragments of thoracic limb IV. D, Thoracic limb V. E, Fragment of thoracic limb V. Scale bars = 0.1 mm.
Figure 15

Scapholeberis cf. intermedius Daday, 1898, a parthenogenetic female from Bahir Dar Bay of Lake Tana, Amhara, Ethiopia.

A, Parthenogenetic female, lateral view. B, Anterior portion of body. C, Head, lateral view. D, Posterior portion of body. E, Ornamentation of valve. Scale bars 0.2 mm for A, D, 0.1 mm for B, 0.05 mm for C, E.
Figure 16

Scapholeberis smirnovi sp. nov. from the puddle near Lake Maloe Utinoe, Primorski Territory, Far East, Russia.

A–D, Adult parthenogenetic females, E–F, Juvenile parthenogenetic female, G–I, Ephippial females. A, Adult parthenogenetic female, lateral view. B, Parthenogenetic female, dorsal view. C, Head, ventral view. D, Labrum. E, Juvenile parthenogenetic female. F, Head, ventral view. G, Ephippial female, lateral view. H, Ephippial female, dorsal view. I, Ornamentation of ephippium. Scale bars = 0.1 mm.
Figure 17

Scapholeberis smirnovi sp.nov. from the puddle near Lake Maloe Utinoe, Primorski Territory, Far East, Russia.

A, Valve, outer view. B, Valve, ventral view. C-D, Armature of valve. E, Posteroventral portion of valve, inner view. F-H, Postabdomen. I, Postabdominal claw. J-K, Antenna I. L-M, Antenna II. Scale bars 0.1 = mm.
Figure 18

Scapholeberis smirnovi sp.nov. from the puddle near Lake Maloe Utinoe, Primorski Territory, Far East, Russia.

A–B, Thoracic limb I. C–D, Thoracic limb II. E, Thoracic limb III. F–G, Thoracic limb IV. H, Thoracic limb V. Scale bar = 0.1 mm.
Figure 19

Scapholeberis smirnovi sp.nov., ephippial and preephippial females from the puddle near Lake Maloe Utinoe, Primorski Territory, Far East, Russia.

A–B, D–F, Ephippial females, C, Preephippial female. A, Ephippial female, lateral view. B, Ephippium, lateral view. C, Preephippial female, lateral view. D, Ephippial female, anterodorsal view. E, Ephippium, anterodorsal view. F, Ephippial female, ventral view. Scale bars = 0.2 mm for A–D, F, 0.1 mm for E.
Figure 20

Scapholeberis smirnovi sp.nov., ephippial females from a pond in Choenggye Mountains, Seoul, the Republic of South Korea.

A, Ephippial female, lateral view. B–C, Head, lateral view. D, Ephippium, lateral view. E–F, Ornamentation of ephippium. G, Ephippial female, dorsal view. H, Head, dorsal view. I–J, Ephippium, dorsal view. K–L, Armature of ephippium on higher magnifications. Scale bars = 0.2 mm for A, D, G, I, 0.1 mm for B–C, H, J–L, 0.5 mm for F, 0.2 mm for E.
Figure 21

Analysis of identification for four species groups of *Scapholeberis* based on GenBank data.
Table 1. Differentiation of presently recognised species of the *Scapholeberis kingii* group in Eurasia based on morphological characters.
Taxon	*S. kingii*	*S. intermedius*	*S. smirnovi* sp.nov.
Rate of distance between the center of ocellus and eye to distance from the center of ocellus to the tip of rostrum	almost 2	almost 3	about 5
On thoracic limb I, the ratio between seta 1’ and seta 2	almost 2.5 (i.e. seta 2 is relatively short)	almost 1.5 (i.e. seta 2 is relatively long)	almost 2.5 (i.e. seta 2 is relatively short)
In ephippial females, area between two keels of ephippium	strongly elongated, keels not projected laterally out of body dorsal contour	Unknown	strongly rounded, keels strongly projected laterally out of body dorsal contour