Bombax ceiba flowers extract ameliorates hepatosteatosis induced by ethanol and relatively moderate fat diet in rats

A.F. Arafa⁎, D.S. Foda, A.H. Mahmoud, N.S. Metwally, A.R.H. Farrag

A Department of Therapeutic Chemistry, Pharmaceutical and Drug Industries Research Division, National Research Centre (NRC), El Bohouth st., Dokki, Giza, Egypt
B Department of Pathology, Medical Research Division, National Research Centre (NRC), El Bohouth st., Dokki, Giza, Egypt

ARTICLE INFO

Keywords:
Alcohol consumption
Hepatosteatosis
B. ceiba flowers extract

ABSTRACT

Chronic excessive alcohol consumption could induce serious liver injury. In this study, therapeutic effect of aqueous methanol extract of Bombax ceiba L. flowers (BCE) (Family: Bombacaceae) was investigated against hepatic steatosis. This study included seven groups, and the research period was eight weeks. The first group served as control. The six remaining groups were divided into two categories, three groups in each. The first category was fed fat diet. The second category was fed fat diet and orally administrated ethanol, which was given in graduate doses from 2 g/kg/d to 6 g/kg/d. Then, one group from each category was orally treated with the standard drug fluvastatin (2 mg/Kg/d). Another group was orally treated with BCE (200 mg/kg/d). The third group left untreated. The results revealed that BCE significantly decrease both the body and liver weight. The treatment with BCE extract also ameliorates the effect of alcohol induced increase of liver enzyme activities. In addition, the extract was significantly increased hepatic liver antioxidants and decreased malondialdehyde (MDA) level. Also, serum lipid profiles: triglycerides (TG), total cholesterol (TC) and low density lipoprotein (LDL) were significantly decreased after BCE treatment. Histopathological study showed fatty changes induced by alcohol which were improved by BCE treatment. These data suggest that the BCE has anti-inflammatory, anti-oxidant and anti-steatosis potential properties against alcohol induced liver damage. This may be due to the presence of flavonoids and other phenol compounds.

1. Introduction

Excessive alcohol consumption causes a wide spectrum of liver and other organ diseases. Alcoholic liver disease (ALD) has a complex and incompletely known pathogenic. The liver dysfunction ranges from fatty change to alcoholic hepatitis, cirrhosis and hepatocellular carcinoma [1]. In addition to the cumulative quantity of alcohol intake and alcohol addiction patterns, other factors such as gender, age, geographic area, nutritional factors, genetic background, immunological mechanisms and energy metabolism abnormalities also play a key role in the progression of alcoholic liver damage [2]. Dietary intake of fat and the development of fatty infiltration are important factors in the pathogenic of hepatosteatosis. The degree of fatty infiltration found in liver biopsy of alcoholic patients is a risk factor for the development of liver cirrhosis [3].

Ethanol is the principle ingredient in most of the syrups, mouthwash, tincture, and alcoholic beverages. It is also a common ingredient in a range of products, from cosmetics and beauty products to paints and varnishes to fuel. Ethanol is effective in killing micro-organisms like bacteria, fungi and viruses, so it is used in many hand sanitizes and personal care. Alcohol chemotherapy is the first choice treatment for cystic lesions and benign solid thyroid venous malformations [4]. In small doses it has a great medicinal value because of its effectiveness, ease of use, low cost and long shelf life. But some people tend to have ethanol abuse. In excessive dose, it induces severe liver injury in experimental animals and humans [5].

Three obvious enzymatic pathways shared in the process of ethanol oxidation [6]. The first pathway for the ethanol metabolism is dehydrogenase system. It is initiated by alcohol dehydrogenase (ADH), which oxidizes ethanol to acetaldehyde. Then, acetaldehyde enters the mitochondria where it is oxidized to acetate by aldehyde dehydrogenases (ALDH) giving rise to reactive oxygen species (ROS). In-
Increased oxidative stress is well recognized to be an essential factor in the pathogenesis of hepatic injury [7]. The second major pathway to oxidize ethanol is the microsomal ethanol oxidizing system (MEOS), which involves the cytochrome P450 enzyme CYP2E1. The MEOS pathway is stimulated in individuals who consume alcohol chronically. In addition, ethanol can be oxidized and this oxidation pathway requires the presence of hydrogen peroxide [8].

Since oxidative stress and metabolite induced inflammatory factors are incorporated in the development of ALD, specific antioxidants potentially are useful for alleviation of ethanol induce oxidative stress and prevent this pathogenesis [9].

In mammals, a sophisticated antioxidant system, both enzymatic and non-enzymatic, has been developed to remain the redox homeostasis in the liver and deals with oxidative stress under physiological conditions. Therefore, the enzymatic antioxidants such as catalase, superoxide dismutase, and glutathione peroxidase and non-enzymatic antioxidant such as reduced glutathione are affected and used as indicators to evaluate the level of oxidative stress [10]. Among alcoholics, the altered lipid profile is one of the crucial factors of fatty liver. Fluctuation in the gene expressions that are involved in the synthesis or degradation of fatty acids, triglycerides, and/or cholesterol may be as a result of differential regulation at the post-transcriptional levels [11].

Bombax ceiba Linn. is known as silk cotton tree and it belongs to family Bombacaceae. The plant is widely cultivated in China, Pakistan, India, and Austria and was introduced into Egypt several decades ago as a shade tree and an ornamental plant [12]. For use in foods, plant extracts are nutritionally more relevant and have obvious advantages in safety [13]. It is well-reputed in traditional systems of medicine for treatment of diarrhea, fever, and ulceration of bladder as well as kidney [14]. Different parts of Bombax ceiba (B. ceiba) has shown to possess many biological properties predominantly antioxidant, antimicrobial, anti-inflammatory, anti-hyperlipidemic, and hypoglycemic activities [15].

The correct pathological mechanisms of alcoholic liver disease remain ambiguous and no new accepted drugs are now on the market. In spite of that, ameliorating hepatic steatosis and oxidative stress are considered to be a promising strategy for ALD treatment. So, the aim of this study is to evaluate the therapeutic effect of the Egyptian BCE flowers extract upon chronic alcohol consumption induced hepatosteatosis in rats fed fat diet.

2. Materials and methods

2.1. Chemicals and reagents

All chemicals used in the experiments were of analytical grade. Kits preformed for the quantitative determination of different parameters were purchased from Greiner Diagnostic GmbH- Germany and Bio-diagnostic Company, Egypt. Lescol XL drug (fluvastatin as the active ingredient) is a product purchased by Novartis, Switzerland.

2.2. Plant materials

Bombax ceiba (B. ceiba) flowers were collected from Orman botanical garden, Giza, Egypt, in January, 2016. The flowers were kindly authenticated by a botanist at the National Research Centre. A voucher specimen (No. 3241) was deposited in the herbarium of National Research Centre, Doki, Giza.

2.3. Preparation of aqueous methanol extracts of BCE

Shade dried B. ceiba flowers (1 Kg) were refluxed with aqueous methanol (70%W/V). The extracted solutions were combined, filtered,
and then concentrated by a rotary evaporator under reduced pressure to remove the methanol solvent. The extract was then subjected to lyophilization for removing the excess water yielding 100 g of crude dark-brown sticky BCE and stored at −20 °C for use.

2.4. Experimental design

2.4.1. Animals

Fifty six adult female Wistar rats weighing 130 ± 5 g were obtained from the animal house of National research Centre. Animals were maintained in clean cages under normal laboratory conditions (22 ± 5°C, 12 h light/dark cycle). They were allowed for a standard pellet diet and free access to water. The experimental work on rats was performed with the approval of the Animal care and Experimental Committee, National Research Centre, Cairo, Egypt (Approval no: 18085).

The animals were divided into seven groups of eight animals each. Group1: control and given only standard pellet diet. Group2: Fat diet (Fed 22% fat/kg diet). Group3: Ethanol-fat diet (fed fat diet 22% fat/kg diet + Ethanol). Group 4: Fat diet group treated with standard drug fluvastatin. Group 5: Fat diet group treated with BCE. Group 6: Ethanol-fat diet treated with standard drug fluvastatin. Group 7: Ethanol-fat diet treated with BCE.

During the duration of the experiment, daily food intake and weekly body weights were recorded. At the end of treatment period, blood samples were drawn from the animals via puncturing the retro-orbital venous plexus with a thin sterilized capillary tube. Blood specimens were subjected to serum separation and stored at −20 °C for biochemical analysis. Then, rats were sacrificed by decapitation, livers dissected out, cleaned and weighed. Some samples were rinsed and homogenized in a phosphate buffer (pH, 7.4) and centrifuged at 4000 rpm at 4 °C for 15 min. The obtained supernatants were used for biochemical assays. Other liver tissues were immediately removed and fixed with neutral formalin solution 10% for histological examination.

2.4.2. Doses and route of administration

The oral daily administration route was used in the study. The starting dose was 2 g.kg⁻¹.d⁻¹ and increased up to 6 g.kg⁻¹.d⁻¹ [16]. The dose of BCE was selected to be 200 mg/kg/day for 30 consecutive days according to the previous study [14]. Whereas; fluvastatin dose (2 mg/Kg/day) was selected based on the clinical application from previous studies on human and experimental animals [17].

2.4.3. Biochemical analysis

2.4.3.1. Measurements of blood alcohol concentration. Blood alcohol levels were carried out on samples obtained from tail veins of animals using a commercial kit (Bio STC- Science and Technology Center, Mohandeseen, Giza). This enzymatic test for alcohol utilizes the coenzyme nicotinamide adenine dinucleotide (NAD) and alcohol dehydrogenase (ADH). The formation of NADH can be measured quantitatively by the increase in absorbance at 340 nm.

2.4.3.2. Assays of serum liver enzyme activities. Serum transaminases (AST&ALT) activities were determined by a colormetric method according to Reitman and Frankel [18]. Serum alkaline phosphatase (ALP) activity was determined by enzymatic colorimetric method according to Belfield and Goldberg [19].

2.4.3.3. Assays of some antioxidant defense markers. Liver glutathione (GSH) content and glutathione-S-transferase (GST) activity were determined according to the methods of Beutler et al. [20] and Habig and Pabst [21], respectively. The activity of enzymatic antioxidant

Parameters	Groups	AST (U/ml)	ALT (U/ml)	ALP (U/L)	
% of change	% of improvement	% of change	% of improvement	% of change	% of improvement
1- Control	42.55 ± 3.28 (2,3,4,7)	–	15.39 ± 1.90 (2,3)	154.45 ± 15.47 (2,3,4,5,6,7)	
2- Fat diet	68.95 ± 4.69± (3,4,5,6)	–	21.87 ± 1.48 (1,3,4,5,6,7)	205.83 ± 13.53 (1,3)	
3- Ethanol-fat diet	25.91 ± 3.55± (3,4,5,6,7)	–	68.36	241.56 ± 16.84 (1,2,4,5,6,7)	
4- Fat diet- Fluvastatin	13.78 ± 0.87 (2,3,6)	–	183.79 ± 12.19 (1,3)	185.11 ± 14.28 (1,3)	
5- Fat diet- BCE	14.56 ± 2.17 (2,3,4)	–	17.38 ± 2.17 (2,3,4)	191.67 ± 21.22 (1,3)	
6- Ethanol-fat diet- Fluvastatin	11.96 ± 2.17 (2,3,4)	–	10.96	194.27 ± 15.22 (1,3)	
7- Ethanol-fat diet- BCE	10.46 ± 1.99 (2,3,4)	–	10.46	183.79 ± 12.19 (1,3)	

Data are represented as Mean ± SD of 8 rats in each group. Significant at P < 0.05.
The effect of BCE on some antioxidant enzymes of control, fat diet, ethanol-fat diet and treated rat groups.

Parameters	Groups
	1- Control
GSH (mmol/g tissue)	201.97 ± 11.49
% change	(1,4,5,6,7)
% of improvement	
GST (U/g tissue)	10.57 ± 1.28
% change	(1,7)
% of improvement	
MDA (nmol/g tissue)	1106.51 ± 59.65
% change	(1,3,4,5,6,7)
% of improvement	
CAT (U/g tissue)	3.64 ± 1.37
% change	(2,3)
% of improvement	
SOD (U/g tissue)	8.02 ± 1.24
% change	(2,3)
% of improvement	
GSH (mmol/g tissue)	263.22 ± 9.35
% change	(1,4,5,6,7)
% of improvement	
GST (U/g tissue)	12.97 ± 1.26
% change	(2,3)
% of improvement	
MDA (nmol/g tissue)	839.16 ± 43.35
% change	(1,4,5,6,7)
% of improvement	
CAT (U/g tissue)	7.96 ± 0.49
% change	(2,3)
% of improvement	
SOD (U/g tissue)	9.81 ± 0.49
% change	(2,3)
% of improvement	
GSH (mmol/g tissue)	242.73 ± 4.43
% change	(1,2,3)
% of improvement	
GST (U/g tissue)	14.17 ± 0.95
% change	(2,3,4)
% of improvement	
MDA (nmol/g tissue)	842.07 ± 32.75
% change	(1,2,3,4)
% of improvement	
CAT (U/g tissue)	11.37 ± 0.95
% change	(2,3)
% of improvement	
SOD (U/g tissue)	13.76 ± 0.95
% change	(2,3)
% of improvement	

Data are represented as Mean ± SD of 8 rats in each group. Significant at P < 0.05.
Table 4: Effect of BCE extract on lipid profiles of control, fat diet, ethanol fat diet and treated rat groups.

Group	TG (mg/dL)	TC (mg/dL)	LDL (mg/dL)	% improvement	% of improvement
1. Control	254.25 ± 16.99	268.86 ± 14.59	210.45 ± 9.33	–	–
2. Fat diet	205.86 ± 14.59	57.20 ± 6.80	210.45 ± 9.33	63.98 ± 8.49	63.98 ± 8.49
3. Ethanol-fat diet	210.95 ± 14.88	69.22 ± 6.90	69.22 ± 6.90	57.68 ± 7.37	57.68 ± 7.37
4. Fat diet- Fluvastatin	202.73 ± 12.34	69.67 ± 4.63	69.67 ± 4.63	71.38 ± 5.89	71.38 ± 5.89
5. Fat diet- BCE	210.45 ± 9.33	69.67 ± 4.63	69.67 ± 4.63	71.38 ± 5.89	71.38 ± 5.89
6. Ethanol fat diet- Fluvastatin	210.45 ± 9.33	69.67 ± 4.63	69.67 ± 4.63	71.38 ± 5.89	71.38 ± 5.89
7. Ethanol fat diet- BCE	210.45 ± 9.33	69.67 ± 4.63	69.67 ± 4.63	71.38 ± 5.89	71.38 ± 5.89

Data are represented as Mean ± SD of 8 rats in each group. Significant at P < 0.05.
After one month of ethanol ingestion, the body weight of both fat diet and ethanol-fat diet groups were significantly higher than control. These observations may be due to hyperlipidemia and the effect of extra calories as ingesting excessive ethanol [36]. Treatment with BCE reduces the percentage of body weight gain of both fat-diet and ethanol-fat diet treated groups compared with the untreated ones. This explains that the extract may be preventing the pathological mechanisms susceptible for excessive fat accumulation and weight gain due to the presence of bioactive components like alkaloids and glycosides. In addition, the extract is possibly increasing leptin sensitivity, providing anorexic effect and increasing energy expenditure [35,37]. The liver is the primary organ responsible for ethanol metabolism and it is susceptible to alcohol’s toxic effects. In the present study, the elevated levels of serum enzymes such as AST, ALT and ALP were observed after consumption of alcohol. The leakage of these enzymes into the blood reflected liver damage [38]. However, BCE treatment significantly decreased the content of these serum parameters in both treated groups. This illustrates the integration of plasma membrane, as well as repair of hepatic tissue damage.

In our study, alcohol induced liver steatosis was confirmed by significant increase in TG, TC and LDL in fat-diet and ethanol fat-diet groups compared to control group. This increase may be due to disturbance in lipid metabolism and lipid homeostasis [44]. These changes are the result of an adaptive mechanism to resist the fluidizing effect of ethanol [45]. Treatment with BCE significantly lowered the levels of lipid profiles due to the inactivation of acetyl-coA carboxylase as a result of adenosine monophosphate kinase activation that mediates thermogenesis and fatty acid synthesis inhibition [46]. Mangiferin, which is a polyphenol compound found in BCE upregulates proteins for mitochondrial bioenergetics and down regulates proteins controlling de novo lipogenesis [47].

Histopathological results indicated that in control group, there were neither lipid droplets nor steatosis distributed in the hepatic lobules, which approved the maintenance of the lobular structure integrity. On the other hand, liver sections of fat-diet and ethanol fat-diet groups showed different extents of steatosis in the hepatic lobules with mild inflammatory infiltration. Treatment with BCE alleviated the hepatic steatosis and reduced infiltrations of inflammatory cells in the hepatocyte.

5. Conclusion

BCE can be a safe treatment for the alcohol addiction cases accompanied by fat intake. The extract succeeded in decreasing the disease complications in addition to potentiating the antioxidant defenses in the liver. Further studies are needed for applying the extract as a recommended drug for ALD.
Fig. 2. A, B) Fat-diet standard treated group shows structure of the hepatic and portal lobules appeared more or less like normal. C) Fat-diet standard treated group shows congested portal tract associated with mild inflammatory infiltration (arrowhead) and the hepatocytes around the dilated congested vessels appeared variable in shape and size. D, E) Fat-diet BCE treated group shows the normal structure of the hepatic and portal lobules (H&E stain, bar: 5 μm).

Fig. 3. Micrograph of liver section of A, B) Ethanol fat-diet standard treated group show the structure of the hepatic and portal lobules appeared more or less like normal. C) Ethanol fat-diet BCE treated group shows the structure of the hepatic lobule appeared more or less like normal. D) Ethanol fat-diet BCE treated group shows congested portal tract associated with mild inflammatory infiltration (arrowhead) (H&E stain, bar: 5 μm).
Conflict of interest
The authors declare that there are no conflicts of interest.

References
[1] Y. Zhou, J. Zheng, S. Li, T. Zhou, P. Zhang, H.B. Li, Alcoholic beverage consumption and chronic diseases, Int. J. Environ. Res. Public Health 13 (6) (2016) 522–531.
[2] S. Kendrick, Natural history and factors influencing the course of alcoholic-related liver disease, Clin. Liver Disease 2 (2) (2013) 61–63.
[3] S. Stewart, D. Jones, C.P. Day, Alcoholic liver disease: new insights into mechanisms and preventative strategies, Trends Mol. Med. 7 (2001) 408–413.
[4] G.M. Leghiz, M.K. Heran, Venous malformations: classification, diagnosis and interventional radiologic management, Radiol. Clin. North Am. 46 (2008) 545–597.
[5] S. Zakhari, T.K. Li, Determinants of alcohol use and abuse: impact of quantity and frequency patterns on liver disease, Hepatology 46 (2007) 2032–2039.
[6] H. Wang, X. Chen, T. Su, P. Pauerksukon, W. Hu, M.Z. Zhang, R.C. Harris, T.S. Blackwell, R. Zent, A. Pozzi, p47phox contributes to albuminuria and kidney fibrosis in mice, Kidney Int. 87 (2015) 948–962.
[7] E. Albano, Oxidative mechanisms in the pathogenesis of alcoholic liver disease, Mol. Aspects Med. 29 (2008) 9–16.
[8] A. Dey, J. Lakshmanan, The role of antioxidants and other agents in alleviating hyperglycemia mediated oxidative stress and injury in liver, Food Funct. 4 (2013) 1148–1184.
[9] H. Liu, X. Qi, S. Cao, P. Li, Protective effect of flavonoid extract from Chinese bayberry (Myrica rubra Sieb. et Zucc.) fruit on alcoholic liver oxidative injury in mice, J. Nat. Med. 68 (2014) 521–529.
[10] K. Mallikarjuna, K.K. Shammugam, M.C. Nisanth, C.W. Wu, C.H. Hou, K.S. Reddy, Alcoholic-induced deterioration in primary antioxidant and glutathione family enzymes reversed by exercise training in the liver of old rats, Alcohol 44 (2010) 523–529.
[11] V.R. Lucero López, G.S. Razzeto, M.S. Gimenez, Biochemical and molecular study of the influence of Amaranthus hypochondriacus flour on serum and liver lipids in rats treated with ethanol, Plant Foods Hum. Nutr. 68 (2013) 396–402.
[12] A.A. Shahat, R.A. Hasan, N.M. Nazif, S.V. Miert, F.M. Hammuda, A.A. Shahat, R.A. Hasan, N.M. Nazif, S.V. Miert, Pieter L.U.C, F.M. Hammuda, V.R. Lucero López, G.S. Razzeto, M.S. Gimenez, Biochemical and molecular study of the influence of Amaranthus hypochondriacus flour on serum and liver lipids in rats treated with ethanol, Plant Foods Hum. Nutr. 68 (2013) 396–402.
[13] S.P. Wong, L.P. Leong, J.H.W. Koh, Antioxidant activities of aqueous extracts of Bombax ceiba against high fat diet induced obesity, Complement. Altern. Med. 13 (2013) 281–289.
[14] C.W. Pyun, K.H. Han, G.E. Hong, C.H. Lee, Effect of curcumin on the increase in hepatic or brain phosphatidylcholine hydroperoxide levels in mice after consumption of excessive alcohol, Bio. Med. Res. Int. 2013 (2013) 1–6.
[15] V. Ambadath, R.G. Venu, J. Madumadh, Comparative study of the efficacy of acetic acid, quercetin, and thiamine for reversing ethanol-induced toxicity, J. Med. Food 13 (6) (2010) 1485–1489.
[16] T. Teng, F.F. Guo, C.L. Zhang, S. Zhao, D.D. Dou, X.C. Gao, K.Q. Xie, The anti-fatty liver effects of garlic oil on acute ethanol-exposed mice, Chem. Biol. Interact. 176 (2008) 234–242.
[17] S.M. Wanjari, R. Gangoraya, V.N. Dey, S.N. Gaidhani, N.K. Pandey, A.D. Jadhav, Hepatoprotective and antioxidant activity of Bombax ceiba flowers against carbon tetrachloride-induced hepatotoxicity in rats, Hepatoma Res. 2 (2014) 145–155.
[18] A. Hamid, F.W. Ibrahim, T.H. Ming, M.N. Narrom, N. Eusoff, K. Husain, M.A. Latif, L. Zingiber Zerumbet, (Smith) extract alleviates the ethanol-induced brain damage via its antioxidant activity, Complement. Altern. Med. 18 (2011) 101–110.
[19] O.R. Oyenihi, A.B. Oyenihi, O.J. Ogumokun, Hepato- and neuroprotective effects of watermelon juice on acute ethanol-induced oxidative stress in rats, Toxicol. Rep. 3 (2016) 288–294.
[20] K.K. Bhopale, S. Condraganti, H. Fernando, P.J. Boor, B.S. Kaholds, J.J. Tissani, Alcoholic steatosis in different strains of rats: a comparative study, J. Drug Alcohol Res. 15 (2015) 1–11.
[21] R. Cioboata, A. Gaman, D. Trasca, A. Ungureanu, A. Oanadocea, P. Tomescu, R. Cioboata, A. Gaman, D. Trasca, A. Ungureanu, A. Oanadocea, P. Tomescu, A.J. Vlietinck, Isolation of mangiferin from Bombax malabaricum and structure analysis of Mangiferin, Global J. Addict. Rehabil. Med. 1 (3) (2011) 34 (3) (2010) 19–26.
[22] X.U. Guang-Kai, Q.I.N. Xia-Ying, W.A.N. Guo-Kai, X.I.E. Guo-Yong, L.I. Xu-Sen, Isolation of mangiferin from Bombax malabaricum and structure analysis of Mangiferin, Global J. Addict. Rehabil. Med. 1 (3) (2011) 34 (3) (2010) 19–26.
[23] N. Rifai, P.S. Bachorik, J.J. Albers, Lipids, lipoproteins and apolipoproteins, in: C.A. Burton, E.R. Ashwood (Eds.), Tietz Text Book of Clin. Chemistry, 3rd ed, 1999, pp. 809–861 Philadelphia.
[24] A. Aroon, Kinetic enzymatic method for automated determination of total cholesterol in serum, Clin. Chem. 29 (1983) 1798–1802.
[25] A. Aliff, Contribution to the Chemical Carcinogenesis in Xenopus, ph. D.Thesis, UCL, Louvain La Neuve, Belgium, 1986, pp. 90–91.
[26] J. Alamariano, R. Bataller, Alcoholic liver disease: pathogenesis and new targets for therapy, Nat. Rev. Gastroenterol. Hepatol. 8 (2011) 491–501.
[27] Q. Sun, W. Zhang, W. Zhong, X. Sun, Z. Zou, Pharmacological inhibition of NOX4 ameliorates alcohol-induced liver injury in mice through improving oxidative stress and mitochondrial function, Biochim. Biophys. Acta 1861 (1) (2017) 2912–2921.
[28] X. Xie, X. Xu, X. Sun, Z. Yu, Protective effects of cistoloxan on ethanol-induced damage in primary cultured hepatocytes, Cell Stress Chaperones 23 (2018) 203–211.
[29] W. Zhao, J. Li, X. He, O. Ly, Y. Cheng, R. Liu, In vitro steatosis hepatic cell model to compare the lipid-lowering effects of pomegranate peel polyphenols with several other plant polyphenols as well as its related cholesterol efflux mechanisms, Toxicol. Rep. 1 (2014) 945–954.
[30] A. Aourem, H. Keita, P. Duan, C. Quan, K.K. Bilvegou, S. Qi, O. Asamayimen, K. Yang, Effects of 4-nonylphenol on antioxidant/antioxidant balance system inducing hepatic steatosis in male rat, Toxicol. Rep. 2 (2015) 1423–1433.
[31] A. Said, E.A. Aboutabl, S.M. Nofal, H. Tokuda, M. Raslan, Phytoconstituents and bioactivity evaluation of Bombax ceiba L. Flowers, J. Tradit. Med. 28 (2) (2011) 55–62.
[32] M.A. Mir, B.A. Mir, A. Bishit, Z. Rao, D. Singh, Antidiabetic properties and metal analysis of Bombax ceiba flower extracts, Global J. Addict. Rehabil. Med. 1 (3) (2017) 1–7.
[33] P. Gupta, R. Goyal, Y. Chauhan, P.L. Sharma, Possible modulation of FAS and FTP-1B signaling in ameliorative potential of Bombax Ceiba against high fat diet induced obesity, Complement. Altern. Med. 13 (2013) 281–289.
[34] H. Aebi, Catalase in vitro, Methods Enzymol. 105 (1984) 121–126.
[35] H. Okawa, W. Ohishi, K. Yagi, Assay of lipid peroxides in animal tissues by thiorubarbituric acid reaction, Anal. Biochem. 95 (1979) 351–358.
[36] N. Rifi, P.S. Bachorik, J.J. Albers, Lipids, lipoproteins and apolipoproteins, in: C.A. Burton, E.R. Ashwood (Eds.), Tietz Text Book of Clin. Chemistry, 3rd ed, 1999, pp. 809–861 Philadelphia.
[37] R. Deeg, Z. Riegler, Kinetic enzymatic method for automated determination of total cholesterol in serum, Clin. Chem. 29 (1983) 1798–1802.
[38] A. Aliff, Contribution to the Chemical Carcinogenesis in Xenopus, ph. D.Thesis, UCL, Louvain La Neuve, Belgium, 1986, pp. 90–91.