Measurement of the High-Mass Drell-Yan Cross Section and Limits on Quark-Electron Compositeness Scales

B. Abbott,40 M. Abolins,37 V. Abramov,15 B.S. Acharya,8 I. Adam,39 D.L. Adams,49 M. Adams,24 S. Ahn,23 H. Aihara,17 G.A. Alves,2 N. Amos,36 E.W. Anderson,30 M.M. Baarmand,42 V.V. Babintsev,15 L. Babukhadija,16 A. Baden,33 B. Baldin,23 S. Banerjee,8 J. Bantly,46 E. Barberis,17 P. Baringer,31 J.F. Bartlett,23 A. Belyaev,14 S.B. Beri,6 I. Bertram,26 V.A. Bezzubov,15 P.C. Bhat,23 V. Bhatnagar,6 M. Bhattacharjee,42 N. Biswas,28 G. Blazey,23 S. Blessing,21 P. Bloom,18 A. Boenhlein,23 N.I. Bojko,15 F. Borcherding,23 C. Boswell,20 A. Brandt,23 R. Breeden,18 R. Brock,37 A. Bross,23 D. Buchholz,26 V.S. Burttovoi,15 J.M. Butler,34 W. Carvalho,2 D. Casey,37 Z. Casilum,42 H. Castillo-Valdez,15 Z. Chang,26 S.-M. Chekula,15 W. Chen,42 S. Choi,40 S. Chopra,36 B.C. Choudhary,20 J.H. Christensen,23 M. Chung,24 D. Claes,38 A.R. Clark,17 W.G. Cobal,33 J. Cochran,26 L. Coney,28 W.E. Cooper,23 C. Creitsinger,43 D. Cullen-Vidal,46 M.A.C. Cummings,25 D. Cutts,46 O.I. Dahl,17 K. Davis,16 K. De,47 K. Del Signore,36 M. Demarteau,23 D. Denisov,13 H.T. Diehl,23 M. Diesburg,23 G. Di Loreto,37 P. Draper,37 V. Dudko,14 S.R. Dugad,8 A. Dyshkant,15 D. Edmunds,33 J. Ellison,20 V.D. Elvira,42 R. Engelmann,42 S. Enf,33 G. Epplle,19 P. Ermolov,14 O.V. Eroshin,15 V.N. Evdokimov,15 T. Fuhlman,19 M.K. Fatyga,41 S. Feher,23 D. Fein,16 T. Ferbel,41 G. Finocchiaro,42 H.E. Fisk,23 Y. Fisyak,43 E. Flattum,23 G.E. Forden,16 M. Fortner,25 K.C. Frame,37 S. Fuess,23 E. Gallas,47 A.N. Galayev,15 P. Garton,20 V. Gavrilov,13 T.L. Geld,37 R.J. Genik II,37 K. Genzer,23 C.E. Gerber,23 Y. Gershtein,13 B. Gibbard,43 B. Gobbi,6 B. Gómez,4 G. Gómez,33 P.I. Goncharov,15 J.L. González Solís,11 H. Gordon,43 L.T. Goss,48 K. Gounder,20 A. Goussinou,42 N. Graff,43 P.D. Grannis,42 D.R. Green,23 H. Greenlee,23 S. Grinstein,1 P. Gruberg,17 S. Grünendahl,23 G. Guglielm,45 A.A. Guida,16 J.M. Guida,46 A. Gupta,8 S.N. Gurzhie,15 G. Gutierrez,23 P. Gutierrez,45 N.J. Hadley,32 H. Haggerty,22 H. Hapogian,21 V. Hapogian,21 K.S. Hahn,41 R.E. Hall,19 P. Hanlet,35 S. Hansen,23 J.M. Hauptman,30 D. Heidn,23 A.P. Heinson,20 U. Heintz,23 R. Hernández-Montoya,11 T. Heuring,21 R. Hirokawa,23 J.D. Hobbs,42 B. Hoeneisen,4,1 J.S. Hoftun,46 F. Hsieh,36 Tong Hu,23 K. Kato,37 A.J. Jaques,28 S.A. Jerger,37 R. Jeske,27 T. Joffe-Minor,26 K. Johns,16 M. Johnson,23 A. Jonckheere,23 M. Jones,22 H. Jöstlein,23 S.Y. Jun,26 C.K. Jung,42 S. Kahn,43 G. Kalbfleisch,45 D. Karmanov,14 D. Karmgard,21 R. Kehoe,28 M.L. Kelly,28 S.K. Kim,10 B. Klima,23 C. Klopfenstein,18 W. Ko,18 J.M. Kohli,9 D. Koltick,29 A.V. Kostritska,15 J. Kotcher,43 A.V. Kotwal,39 A.V. Kozlov,15 E.A. Kozlovsky,15 J. Krale,38 M.R. Krishnaswamy,8 S. Krzywinski,23 S. Kuleshov,44 Y. Kulik,42 S. Kunori,33 F. Landry,37 G. Landsberg,46 B. Lauer,30 A. Leflat,14 J. Li,47 Q.Z. Li,20 J.G.R. Lima,9 D. Lincoln,23 S.L. Lin,21 J. Linnemann,37 R. Lipton,23 F. Lobkowicz,41 S.C. Loken,17 A. Luckote,42 L. Lucking,23 A.L. Lyon,33 A.K.A. Maciel,2 R.J. Madaras,17 R. Maddon,21 L. Magaña-Mendoza,11 V. Manankov,14 S. Mani,18 H.S. Mao,23 R. Markeloff,23 T. Marshall,27 M.I. Martin,23 K.M. Mauritz,30 B. May,26 A.A. Mayorov,15 R. McCarthy,42 J. McDonald,21 T. McKibben,24 J. McKinley,37 T. McMahon,44 H.L. Melanson,23 M. Merkin,14 K.W. Merritt,23 C. Mia,46 H. Miettinen,49 A. Mincer,40 C.S. Mishra,23 N. Mokhov,23 N.K. Mondal,8 H.E. Montgomery,23 P. Mooney,4 M. Mostafa,1 H. da Motta,2 C. Murphy,24 F. Nang,16 M. Narain,23 V.S. Narasimhan,8 A. Narayanan,16 H.A. Neal,36 J.P. Negret,4 P. Nemethy,48 M. Norman,48 L. Oesch,36 V. Oguri,3 E. Oliveira,2 E. Oltmann,17 N. Oshima,23 D. Owen,37 P. Padley,49 A. Para,23 Y.M. Park,8 R. Partridge,46 N. Parua,8 M. Paterno,41 B. Pawlik,12 J. Perkins,47 M. Peters,22 R. Piegia,1 H. Piekarcz,21 Y. Pischalnikov,29 B.G. Pope,37 H.B. Prosper,21 S. Protopenescu,33 J. Qian,36 P.Z. Quintas,23 R. Raja,23 S. Rajagopalan,43 O. Ramirez,24 S. Reucroft,35 M. Rijssenbeek,42 T. Rockwell,37 M. Roco,23 P. Rubinov,26 R. Ruchti,28 J. Romero,23 A. Sanchez-Hernández,11 A. Santoro,2 L. Sawyer,32 R.D. Schambach,42 H. Schellman,26 J. Sculli,50 E. Shabalina,14 C. Shaffer,21 H.C. Shank,26 R.K. Shivapuri,7 D. Shpakov,42 M. Shupe,16 H. Singh,20 J.B. Singh,8 V. Sirotenko,25 E. Smith,45 R.P. Smith,23 R. Snihur,26 G.R. Snow,35 J. Snyder,44 J. Solomon,24 M. Sosebee,47 N. Sotnikova,14 M. Souza,2 G. Steinburch,45 R.W. Stephens,47 M.L. Stevenson,17 F. Stichelbaut,42 D. Stoker,19 V. Stolin,13 D.A. Stoyanova,15 M. Strauss,44 K. Streets,30 M. Strovink,17 A. Szajder,33 P. Tamburello,38 J. Tarazi,19 M. Tartaglia,23 T.L.T. Thomas,26 J. Thompson,33 T.G. Tripe,17 P.M. Tuts,39 V. Vaniev,15 N. Varelas,24 E.W. Varnes,17 D. Vittoe,16 A.A. Volkov,15 A.P. Vorobiev,15 H.D. Wahl,21 G. Wang,21 J. Warchol,28 G. Watts,46 M. Wayne,28 H. Weerts,47 A. White,47 J.T. White,48 J.A. Wightman,30 S. Willis,22 S.J. Wimpenny,20 J.V.D. Wirawan,48 J. Womersley,23 E. Won,41 D.R. Wood,35 Z. Wu,33 R. Yamada,23 P. Yamin,43 T. Yasuda,30 P. Yanes,49 K. Yip,23 C. Yoshikawa,22 S. Youssef,21 J. Yu,23 Y. Yu,40 B. Zhang,23 Y. Zhou,23 Z. Zho,30 Z.H. Zhu,41 M. Zielinski,41 D. Zieminska,27 A. Zieminski,27 E.G. Zverev,14 and A. Zylberstejn5

(DO Collaboration)
We present a measurement of the Drell-Yan cross section at high dielectron invariant mass using 120 pb\(^{-1}\) of data collected in \(p\bar{p}\) collisions at \(\sqrt{s} = 1.8\) TeV by the DØ collaboration during 1992–96. No deviation from standard model expectations is observed. We use the data to set limits on the energy scale of quark-electron compositeness with common constituents. The 95% confidence level lower limits on the compositeness scale vary between 3.3 TeV and 6.1 TeV depending on the assumed form of the effective contact interaction.

PACS numbers: 12.60.Re, 13.85.Qk, 13.85.Rm
In $p\bar{p}$ collisions, dielectron pairs can be produced through the Drell-Yan process \[\gamma \] over a large range of available partonic center of mass energies. In the standard model (SM), the process occurs to first order via quark-antiquark annihilation into a virtual photon or Z boson. If quarks and leptons are composite with common constituents, the interaction of these constituents would likely be manifested through an effective four fermion contact interaction at energies below the compositeness scale. We consider a general contact-interaction Lagrangian \[\mathcal{L} \] of the form

\[
\mathcal{L} = \frac{4\pi}{\Lambda^2} \left[\eta_{LL}(q_L \gamma^\mu q_L)(\bar{e}_L \gamma_\mu e_L) + \eta_{LR}(q_L \gamma^\mu q_R)(\bar{e}_L \gamma_\mu e_R) + \eta_{RL}(q_R \gamma^\mu q_R)(\bar{e}_L \gamma_\mu e_L) + \eta_{RR}(q_R \gamma^\mu q_R)(\bar{e}_R \gamma_\mu e_R) \right]
\]

where $q=(u,d)$ represents the first generation quarks, Λ is the compositeness scale, $\eta_{ij} = \pm 1$, and L (R) denotes the left (right) helicity projection. The addition of this contact term to the SM Lagrangian modifies the dominant γ/Z boson matrix element, with the strongest effects at high dielectron invariant mass. Composite quarks and electrons have been proposed as a possible explanation of the high-Q^2 anomaly at HERA. Previous results on quark-electron compositeness set lower limits on the energy scale Λ in the range of 2.5–5.2 TeV and 2.1–3.5 TeV. In this Letter, we report the measurement of the Drell-Yan cross section at high mass and set the most stringent limits to date on the quark-electron compositeness scale.

The results presented here used 120 pb$^{-1}$ of data collected in $p\bar{p}$ collisions at $\sqrt{s} = 1.8$ TeV by the DØ detector during the 1992–1996 run at the Fermilab Tevatron. The detector consists of a tracking system, a highly linear, granular and stable uranium/liquid-argon calorimeter, and a muon spectrometer. Electron candidates are accepted in the pseudorapidity range of $|\eta| < 1.1$ for electrons detected in the central calorimeter (CC) and $1.5 < |\eta| < 2.5$ for electrons detected in the forward calorimeters (EC), where $\eta = -\log \tan(\theta/2)$ and θ is the polar angle with respect to the beam axis. CC electrons within 0.0098 radians in azimuth of any calorimeter module edge are removed to ensure uniform calorimeter response. At least two electrons are required to have transverse energy $E_T > 20$ GeV at the trigger level and $E_T > 25$ GeV offline. The two highest-E_T electrons in the event are selected for analysis.

Offline, a “loose” electron must satisfy three requirements: (i) the electron must deposit at least 95% of its energy in the central calorimeter, (ii) the transverse and longitudinal shower shapes must be consistent with those expected for an electron, and (iii) the electron must be isolated in energy in a cone of radius $R = \sqrt{\Delta\eta^2 + \Delta\phi^2} = 0.4$, such that

\[
\frac{E_{tot}(R=0.4) - E_{EM}(R=0.2)}{E_{EM}(R=0.2)} < 0.15,
\]

where E_{tot} and E_{EM} are the total and EM calorimeter energies respectively. A “tight” electron is additionally required to have a matching track in the drift chambers. In this analysis, any forward electron is required to be “tight” and at least one member of each electron pair must be “tight.”

The detector acceptance for dielectron events is defined as the fraction of produced events in which both electrons pass our kinematic and fiducial cuts. To calculate the acceptance, Drell-Yan events are generated using PYTHIA. The parton showering parameters in PYTHIA were tuned for good kinematic modeling of the data using the distribution of the Z boson transverse momentum (p_T) observed at DØ. The detector response is simulated using a parameterized Monte Carlo program. The sampling and noise terms in the electron energy resolution are derived from test beam data and the calorimeter pedestal distribution in $W \to e\nu$ collider data, respectively. The constant term is constrained by the observed width of the $Z \to ee$ mass peak. The known Z boson mass is used to set the electromagnetic energy scale.

The electron trigger and offline selection efficiency is determined using $Z \to ee$ data. One of the electrons is required to satisfy the “tight” selection criteria. The second electron then provides an unbiased sample to measure the efficiencies. Background subtraction is performed using the usage of the Z boson mass distribution. The trigger is found to be fully efficient for high mass dielectrons ($m_{ee} > 120$ GeV/c^2). The single-electron efficiency for the CC “loose” selection criteria is $(92.9\pm0.7)\%$ and for the “tight” selection criteria is $(74.1\pm0.6)\%$. The efficiency for EC “tight” selection criteria is $(52.6\pm1.0)\%$. The dependence of dielectron selection efficiency on invariant mass was studied using a detailed GEANT-based Monte Carlo simulation of dielectron events. The Monte Carlo events were embedded in unbiased data events to simulate the effects of multiple interactions and detector noise, and then reconstructed. No dependence of the selection efficiency on dielectron mass was found.

The most important sources of background to $p\bar{p} \to ee + X$ are QCD multijet events with two jets misidentified as electrons and direct-photon events where both the photon and a jet are misidentified as electrons. Jets with a leading p_T or η may produce an isolated and energetic photon that passes the “loose” or “tight” electron selection criteria, depending on the presence of an associ-
FIG. 1. Mass distribution dN/dm for dielectron data. The corresponding distributions for expectations from Drell-Yan and Drell-Yan + contact term process (both including all other backgrounds) are also shown. The effects of kinematic and fiducial cuts, dielectron identification efficiency, and detector smearing are folded into the predictions, and the predictions are normalized to the total luminosity. Error bars indicate only statistical uncertainties. There are no events with $m_{ee} > 400 \text{ GeV}/c^2$.

TABLE I. The observed number of events N, total detection efficiency, expected total background, and the dielectron production cross section in the given mass bins. In the three highest mass bins, we quote the 95% (84%) CL upper limits on the cross section. The last column gives the value \hat{m} of mass at which, for a NNLO SM calculation, $d\sigma^{\text{th}}/dm$ equals $\sigma^{\text{th}}/\Delta m$. Here σ^{th} denotes the total theoretical cross section in the bin and Δm denotes the bin width.

m_{ee} bin (GeV$/c^2$)	N	Total Efficiency	Background (pb)	σ (GeV$/c^2$)	\hat{m} (GeV$/c^2$)
120–160	136	0.32±0.01	64.0±10.0	1.93±0.44	135
160–200	38	0.34±0.01	22.0±3.5	0.49±0.18	177
200–240	18	0.36±0.01	6.34±0.96	0.28±0.09	218
240–290	7	0.37±0.01	3.61±0.56	0.066±0.052	262
290–340	2	0.38±0.01	1.37±0.23	0.033±0.030	312
340–400	4	0.39±0.01	0.75±0.13	0.057±0.042	367
400–500	0	0.40±0.01	0.23±0.04	<0.063 (0.039)	443
500–600	0	0.41±0.01	0.06±0.02	<0.060 (0.037)	544
600–1000	0	0.42±0.01	0.03±0.01	<0.058 (0.035)	729

PYTHIA-generated events through the parametric detector simulation, and includes contributions from summed background, which is also shown separately. Our data show no significant discrepancy from SM expectations.

The measurement of the inclusive dielectron cross section is performed in independent mass bins using a Bayesian [12] technique. In each bin k, we determine the posterior probability density $P(\sigma^k|N^k)$ for the cross section σ^k, given the observed number of events N^k. The expected number of events in the k^{th} mass bin is given by $N^k = b^k + \mathcal{L} \epsilon^k \sigma^k$, where b^k is the expected background, \mathcal{L} is the luminosity, ϵ^k is the total signal efficiency (including acceptance, selection efficiency, and smearing correction), and σ^k is the total cross section in that bin. The posterior probability density for the cross section σ^k is

$$P(\sigma^k|N^k) = \frac{1}{A} \int dB \, d\mathcal{L} \, d\epsilon \, e^{-N^k} \frac{N^k \epsilon^k \sigma^k}{N_0^k} \times P(b^k, \mathcal{L}, \epsilon^k) P(\sigma^k),$$

where A is the normalization. The prior probability density $P(b, \mathcal{L}, \epsilon)$ is taken to be a product of independent Gaussian distributions in b, \mathcal{L} and ϵ, with the measured value in each bin defining the mean and the uncertainty defining the width. The prior distribution $P(\sigma^k)$ in any bin is chosen to be uniform in σ. The measured value of the cross section for each bin is taken to be the mode of the posterior probability density (maximum likelihood estimate). The interval of minimum width containing 68% of the area defines the uncertainty on the cross section. Table I shows the observed number of events, the product of detector acceptance and efficiency, and the expected background for dielectron events. The second-to-last column shows the measured dielectron cross section and the associated uncertainty, dominated by event...
TABLE II. 95% CL lower limit on energy scale of compositeness Λ in TeV for different contact interaction models. The superscript on Λ indicates the sign of η_{ij}, which governs the nature of the interference (negative sign for constructive interference) between the contact interaction and the SM Lagrangian.

	Λ^- (TeV)	Λ^+ (TeV)
LL	3.3	4.2
LR	3.7	3.6
RL	3.3	4.0
RR	3.3	4.0
$LL + RR$	3.9	4.4
$LR + RL$	3.9	4.5
$LL - LR$	4.0	4.3
$RL - RR$	4.9	6.1
VV	4.7	5.5
AA	4.7	5.5

Statistics in the high-mass bins. In bins with no observed events, we quote the 95% and 84% confidence level (CL) upper limits on the cross section, defined by $\int_0^\Lambda P(\sigma'|N_0)d\sigma' = 0.95$ (0.84). The measured differential cross sections $d\sigma/dm$ are compared with predictions of a next-to-next-to-leading order (NNLO) SM calculation 13 in Fig. 2. We find no significant deviation between the measurement and theory.

In conclusion, we have measured the differential cross section for dielectron pair production at high dielectron mass. We find no significant deviation from the SM. We have used the data to set limits on the quark-electron compositeness scale Λ, given the observed data distribution (D), is given by

$$P(\Lambda|D) = \frac{1}{A} \int db \int dc \prod_{k=1}^{n} \left(e^{-N^k_{\Lambda} N^k_{\Lambda}} N^k_{0}^{-1} \Lambda^2 \right) P(b^k, c^k) P(\Lambda).$$

The bin-to-bin correlations in the data points. The last three bins, which have no events, show the 84% CL upper limit on the cross section corresponding to the upper end of the error bars in the preceding bins. Also shown is the prediction of the SM at NNLO.

To set limits on the compositeness scale Λ, we calculate the cross section for the Drell-Yan + contact term process by including terms from the contact interaction Lagrangian 46 with the SM Lagrangian. We correct the leading order (LO) cross section calculation for higher order QCD effects using a mass-dependent K-factor. The K-factor is defined as the ratio of the NNLO Drell-Yan cross section calculation from Ref. 13 to our calculated LO Drell-Yan cross section. Limits are set independently for each separate channel of the contact-interaction Lagrangian: LL, LR, RL and RR, and $\eta_{ij} = \pm 1$. The first letter indicates the helicity of the quark current and the second letter indicates the helicity of the lepton current. These terms are strongly constrained by atomic parity-violation measurements (APV) 14, implying $\Lambda > 10$ TeV. However, parity-conserving or other symmetric combinations of these terms, such as $LL+RR$, $LR+RL$ 15,16, $LL-LR$, $RL-RR$ 17, vector-vector ($VV = LL+RR+LR+RL$) 18, and axial vector - axial vector ($AA = LL+RR-LR-RL$) 18,19, are not constrained by APV. Our measurements impose strong constraints on all of these models.

The limit on the quark-electron compositeness scale is calculated using a Bayesian analysis of the shape of the mass distribution of events. The expected number of events in the k^{th} mass bin is denoted by N^k, where σ^k_{LL+RR} is the predicted cross section including compositeness ($\Lambda \rightarrow \infty$ gives the SM cross section). To reduce the normalization uncertainty in the theory for the limit-setting analysis, the SM prediction for the number of events in the Z boson mass bin is normalized to the observed number of events. The posterior probability density for the compositeness scale Λ, given the observed data distribution (D), is given by

$$P(\Lambda|D) = \frac{1}{A} \int db \int dc \prod_{k=1}^{n} \left(e^{-N^k_{\Lambda} N^k_{\Lambda}} N^k_{0}^{-1} \Lambda^2 \right) P(b^k, c^k) P(\Lambda).$$

The bin-to-bin correlations in the data points. The last three bins, which have no events, show the 84% CL upper limit on the cross section corresponding to the upper end of the error bars in the preceding bins. Also shown is the prediction of the SM at NNLO.

To set limits on the compositeness scale Λ, we calculate the cross section for the Drell-Yan + contact term process by including terms from the contact interaction Lagrangian 46 with the SM Lagrangian. We correct the leading order (LO) cross section calculation for higher order QCD effects using a mass-dependent K-factor. The K-factor is defined as the ratio of the NNLO Drell-Yan cross section calculation from Ref. 13 to our calculated LO Drell-Yan cross section. Limits are set independently for each separate channel of the contact-interaction Lagrangian: LL, LR, RL and RR, and $\eta_{ij} = \pm 1$. The first letter indicates the helicity of the quark current and the second letter indicates the helicity of the lepton current. These terms are strongly constrained by atomic parity-violation measurements (APV) 14, implying $\Lambda > 10$ TeV. However, parity-conserving or other symmetric combinations of these terms, such as $LL+RR$, $LR+RL$ 15,16, $LL-LR$, $RL-RR$ 17, vector-vector ($VV = LL+RR+LR+RL$) 18, and axial vector - axial vector ($AA = LL+RR-LR-RL$) 18,19, are not constrained by APV. Our measurements impose strong constraints on all of these models.

The limit on the quark-electron compositeness scale is calculated using a Bayesian analysis of the shape of the mass distribution of events. The expected number of events in the k^{th} mass bin is denoted by N^k, where σ^k_{LL+RR} is the predicted cross section including compositeness ($\Lambda \rightarrow \infty$ gives the SM cross section). To reduce the normalization uncertainty in the theory for the limit-setting analysis, the SM prediction for the number of events in the Z boson mass bin is normalized to the observed number of events. The posterior probability density for the compositeness scale Λ, given the observed data distribution (D), is given by

$$P(\Lambda|D) = \frac{1}{A} \int db \int dc \prod_{k=1}^{n} \left(e^{-N^k_{\Lambda} N^k_{\Lambda}} N^k_{0}^{-1} \Lambda^2 \right) P(b^k, c^k) P(\Lambda).$$

The bin-to-bin correlations in the data points. The last three bins, which have no events, show the 84% CL upper limit on the cross section corresponding to the upper end of the error bars in the preceding bins. Also shown is the prediction of the SM at NNLO.

To set limits on the compositeness scale Λ, we calculate the cross section for the Drell-Yan + contact term process by including terms from the contact interaction Lagrangian 46 with the SM Lagrangian. We correct the leading order (LO) cross section calculation for higher order QCD effects using a mass-dependent K-factor. The K-factor is defined as the ratio of the NNLO Drell-Yan cross section calculation from Ref. 13 to our calculated LO Drell-Yan cross section. Limits are set independently for each separate channel of the contact-interaction Lagrangian: LL, LR, RL and RR, and $\eta_{ij} = \pm 1$. The first letter indicates the helicity of the quark current and the second letter indicates the helicity of the lepton current. These terms are strongly constrained by atomic parity-violation measurements (APV) 14, implying $\Lambda > 10$ TeV. However, parity-conserving or other symmetric combinations of these terms, such as $LL+RR$, $LR+RL$ 15,16, $LL-LR$, $RL-RR$ 17, vector-vector ($VV = LL+RR+LR+RL$) 18, and axial vector - axial vector ($AA = LL+RR-LR-RL$) 18,19, are not constrained by APV. Our measurements impose strong constraints on all of these models.

The limit on the quark-electron compositeness scale is calculated using a Bayesian analysis of the shape of the mass distribution of events. The expected number of events in the k^{th} mass bin is denoted by N^k, where σ^k_{LL+RR} is the predicted cross section including compositeness ($\Lambda \rightarrow \infty$ gives the SM cross section). To reduce the normalization uncertainty in the theory for the limit-setting analysis, the SM prediction for the number of events in the Z boson mass bin is normalized to the observed number of events. The posterior probability density for the compositeness scale Λ, given the observed data distribution (D), is given by

$$P(\Lambda|D) = \frac{1}{A} \int db \int dc \prod_{k=1}^{n} \left(e^{-N^k_{\Lambda} N^k_{\Lambda}} N^k_{0}^{-1} \Lambda^2 \right) P(b^k, c^k) P(\Lambda).$$

The bin-to-bin correlations in the data points. The last three bins, which have no events, show the 84% CL upper limit on the cross section corresponding to the upper end of the error bars in the preceding bins. Also shown is the prediction of the SM at NNLO.
These are the best limits to date on quark-electron compositeness and are fairly independent of the helicity structure of the contact interaction.

We thank T. Sjöstrand for discussions regarding PYTHIA and W. L. Van Neerven for providing the code to compute the NNLO SM Drell-Yan cross section. We thank the staffs at Fermilab and collaborating institutions for their contributions to this work, and acknowledge support from the Department of Energy and National Science Foundation (U.S.A.), Commissariat à L’Energie Atomique (France), Ministry for Science and Technology and Ministry for Atomic Energy (Russia), CAPES and CNPq (Brazil), Departments of Atomic Energy and Science and Education (India), Colciencias (Colombia), CONACyT (Mexico), Ministry of Education and KOSEF (Korea), and CONICET and UBACyT (Argentina).

* Visitor from Universidad San Francisco de Quito, Quito, Ecuador.
† Visitor from IHEP, Beijing, China.

[1] S. D. Drell and T. M. Yan, Phys. Rev. Lett. 25, 316 (1970).
[2] E. Eichten, K. Lane and M. Peskin, Phys. Rev. Lett. 50, 811 (1983); E. Eichten, I. Hinchliffe, K. Lane and C. Quigg, Rev. Mod. Phys. 56, 4 (1984).
[3] T. Lee, Phys. Rev. D 55, 2591 (1997).
[4] H1 Collaboration, C. Adloff et al., Z. Phys. C 74, 191 (1997); ZEUS Collaboration, J. Breitweg et al., Z. Phys. C 74, 207 (1997).
[5] CDF Collaboration, F. Abe et al., Phys. Rev. Lett. 79, 2198 (1997).
[6] OPAL Collaboration, K. Ackerstaff et al., Phys. Lett. B 391, 221 (1997).
[7] DØ Collaboration, S. Abachi et al., Nucl. Instrum. Methods in Phys. Res. A 338, 185 (1994).
[8] T. Sjöstrand, Comp. Phys. Commun. 82, 74 (1994).
[9] DØ Collaboration, B. Abbott et al., Phys. Rev. D 58, 092003 (1998).
[10] A. D. Martin, R. G. Roberts, and W. J. Stirling, Phys. Rev. D 50, 6734 (1994); ibid., 51, 4756 (1995).
[11] F. Carminati et al., “GEANT Users Guide V3.14,” CERN Library Writeup W5013, 1993 (unpublished).
[12] E. T. Jaynes, Probability Theory: The Logic of Science, http://bayes.wustl.edu/pub/Jaynes/book.probability.theory/ (unpublished).
[13] R. Hamberg, W. L. Van Neerven and T. Matsuura, Nucl. Phys. B359, 343 (1991).
[14] P. Langacker, Phys. Lett. B 256, 277 (1991); M. Leurer, Phys. Rev. D 49, 333 (1994).
[15] K. S. Babu, C. Kolda, J. March-Russell and F. Wilczek, Phys. Lett. B 402, 367 (1997).
[16] V. Barger, K. Cheung, K. Hagiwara and D. Zeppenfeld, Phys. Lett. B 404, 147 (1997).
[17] A. Nelson, Phys. Rev. Lett. 78, 4159 (1997).
[18] N. Bartolomeo and M. Fabbrichesi, Phys. Lett. B 406, 237 (1997).
[19] W. Buchmüller and D. Wyler, Phys. Lett. B 407, 147 (1997).