Comparison of PM$_{2.5}$ Chemical Compositions during Haze and Non-haze Days in a Heavy Industrial City in North China

Menghui Li1,2, Liping Wu2, Xiangyan Zhang3, Xinwu Wang3, Wenyu Bai1, Jing Ming4, Chunmei Geng1*, Wen Yang1**

1 State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
2 School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China
3 Zibo Eco-Environmental Monitoring Center, Zibo 255000, China
4 Beacon Science & Consulting, Doncaster East, VIC 3109, Australia

ABSTRACT

This study aimed to determine the chemical composition, sources and contributing factors of airborne PM$_{2.5}$ (particulate matter with an aerodynamic diameter ≤ 2.5 μm) during a haze episode in Zibo, a heavy industrial city in China. Samples of PM$_{2.5}$ were collected 8–27 January 2018 and analyzed for water-soluble inorganic ions (WSIs), trace elements (TEs), organic carbon (OC) and elemental carbon (EC). The PM$_{2.5}$ concentration was 76.78% higher during the haze (mean ± standard deviation [SD] = 211 ± 39 µg m$^{-3}$) than before it (49 ± 38 µg m$^{-3}$), and the dominant ions were NO$_3^-$, SO$_4^{2-}$ and NH$_4^+$. Additionally, an elevated TE concentration was observed during the episode (exceeding the pre- and post-haze values by 54.70% and 31.98%, respectively), with crustal elements (K, Al, Ca, Si, Na, Fe and Mg), the most abundant elemental components, accounting for 88.64%. Carbonaceous species (OC and EC) contributed 15.45% of the PM$_{2.5}$, with crustal elements (K, Al, Ca, Si, Na, Fe and Mg), the most abundant elemental components, accounting for 88.64%. This study attempted to identify the chemical composition of PM$_{2.5}$ during a haze episode in Zibo, a heavy industrial city in North China. The haze episode was caused by a combination of unfavorable meteorological conditions, secondary formation, the accumulation of local pollutants, and peripheral transmission.

Keywords: Chemical composition; PM$_{2.5}$; Haze episode; Heavy industrial city.

INTRODUCTION

With the development of large-scale industrialization and accelerated urbanization, China has experienced rapid economic growth (Ji et al., 2014). Meanwhile, China is facing serious air pollution issues. Particulate matter pollution is one of the most urgent problems to be solved, especially in developing megacities, which are severely affected by emissions from industry, motor vehicle exhaust and other urban air pollution sources. Suspended particulate matter with an aerodynamic diameter ≤ 2.5 μm (PM$_{2.5}$) is of great significance because of its unique physical and chemical characteristics (Taghvaea et al., 2019). Previous studies have shown that PM$_{2.5}$ is a major cause of haze and can scatter and absorb sunlight, reduce atmospheric visibility and increase radiation forcing, leading to global climate change and harm to ecosystems and human health (Menon et al., 2002; Chan and Yao, 2008; Yang et al., 2011; Gens et al., 2014; Lin et al., 2014; Tan et al., 2016; Zou et al., 2017; Joharestani et al., 2019).

Many studies have been done on the chemical characteristics and source apportionment of PM$_{2.5}$ worldwide (Tan et al., 2016, 2017; Turap et al., 2019). The chemical composition of PM$_{2.5}$ is very complicated, and mainly includes organic substances, water-soluble inorganic salts, carbonaceous substances, trace elements, water, mineral dust, acidic substances, heavy metals and polycyclic aromatic hydrocarbons (PAHs) (Turpin and Lim, 2001; Tao et al., 2017; Zou et al., 2017). As the chemical composition of PM$_{2.5}$ is complex and diverse, it has become increasingly important to conduct an in-depth study on it and determine the key information necessary for effective emission reduction (Taghvaea et al., 2019).
Though the overall air quality has improved significantly in China, serious air pollution issues still occur frequently in heavy industrial cities in China. However, few studies have focused on the chemical composition of PM$_{2.5}$ before, during and after haze episodes in such cities. With the development of industry, air pollution in this region has become quite serious (Zhang et al., 2018). However, few studies have focused on the chemical composition of PM$_{2.5}$ in this area, especially during haze episodes.

Zibo is a heavy industrial city upwind of the Beijing-Tianjin-Hebei region (BTH). Serious pollution occurs in winter (Li et al., 2017), so there is an urgent need to learn more about the characteristics of PM$_{2.5}$ pollution. Monitoring data show that the annual average PM$_{2.5}$ concentrations in Zibo in 2015, 2016, 2017 and 2018 were 88 µg m$^{-3}$, 74 µg m$^{-3}$, 63 µg m$^{-3}$ and 55 µg m$^{-3}$, respectively, which all exceed the national annual secondary standard (35 µg m$^{-3}$). Zibo is often listed as one of the top ten most polluted cities in China, especially in winter (Li et al., 2017; Luo et al., 2018). Zibo is a typical heavy industrial city with petrochemical, ceramics, pharmaceutical, and building material industries (Li et al., 2017; Luo et al., 2018). It is undeniable that these industries produce a great deal of pollution.

In this study, the chemical composition of PM$_{2.5}$ was studied before, during and after a haze episode, and the causes of the haze episode are discussed. PM$_{2.5}$ samples and meteorological data were collected and systematically analyzed. This study increases our understanding of the chemical composition of PM$_{2.5}$ during haze episodes and provides a scientific basis for the prevention and control of atmospheric pollution in such heavy industrial cities.

METHODS

Sample Collection

Zibo is located in the central part of Shandong Province, China. It covers an area of 5965 km2 and has a population of about 4.32 million. Zibo has a warm temperate continental monsoon climate with northwesterly, westerly and southwesterly winds dominating in winter (Luo et al., 2018). There were more than 1.237 million vehicles in Zibo in 2018 (Statistical Communiqué of Zibo on the 2018 National Economic and Social Development). There is diverse terrain with mountains in the southern, eastern and western regions and low land to the north. A central depression in the north is not conducive to the spread of air pollutants.

Air quality will be recorded as polluted when it exceeds the Grade II limit (75 µg m$^{-3}$) for daily average PM$_{2.5}$ concentration stipulated by the Chinese National Ambient Air Quality Standard (GB 3095-2012). A haze episode is defined here as a weather phenomenon with horizontal visibility of ≤ 10 km, relative humidity (RH) of ≤ 90% (Wu et al., 2007), and a daily PM$_{2.5}$ concentration of > 75 µg m$^{-3}$ for ≥ 5 days. There was a haze episode from 15–21 January 2018 in Zibo. Atmospheric PM$_{2.5}$ samples were collected on 8–27 January 2018. The sampling site was approximately 6 m above the ground on the second rooftop of the Nanding Ambient Air Quality Monitoring Station, Zhangdian District, Zibo (36°48’10.67ʺN, 118°01’28.19ʺE) (Fig. 1). The sampling site was surrounded by residential and administrative agencies and located about 50 m from Xincun Road, with no other obvious sources of pollution. The sampling time was from 10:00 a.m. on the first day to 9:00 a.m. on the second day. Daily PM$_{2.5}$ samples were collected with a Teflon filter (diameter = 47 mm; Whatman, USA) and a quartz filter (diameter = 47 mm; Pall, USA) at a flow rate of 16.7 L min$^{-1}$ by a particulate sampler with two parallel channels (ZR-3930; Zhongrui Inc., China).

Before sampling, the quartz filters were baked in a muffle furnace at 550°C for 4 hours to remove carbonaceous pollutants. Before and after sampling, the filters were balanced under constant temperature (20 ± 1°C) and humidity (50 ±

![Fig. 1. Location of the sampling site in Zibo.](image-url)
5%) for over 24 hours and weighed using an automatic filter weighing system (AWS-1; Comde-Derenda GmbH, Germany). The difference between two consecutive measurements was not more than 5 µg. After sampling, the filters were stored at –20°C until analysis to prevent volatilization of volatile components (Xiao et al., 2014).

Chemical Analysis

One quarter of each quartz filter was extracted via ultrasonication to analyze the concentration of water-soluble inorganic ions (WSIs). The sample was added to 10 mL of deionized water and sonicated for 20 minutes, centrifuged for 5 minutes, and then filtered through a microporous membrane (pore size = 0.45 µm; diameter = 25 mm). The concentrations of six anions (F-, Cl-, NO3-, NO2-, C2O42− and SO42−) and five cations (Na+, NH4+, K+, Mg2+ and Ca2+) were analyzed by ion chromatography (Dionex ICS-1100; Thermo Fisher Scientific, USA) (Wa et al., 2015; Yang et al., 2017).

In order to analyze the concentration of elements, each Teflon filter was divided into two parts, which were separately dissolved in acid and alkali solution (Kong et al., 2010). The elements Li, Be, Na, P, K, Sc, As, Rb, Y, Mo, Cd, Sn, Sb, Cs, La, V, Cr, Mn, Co, Ni, Cu, Zn, Ce, Sm, W, Ti, Pb, Bi, Th and U were analyzed by inductively coupled plasma mass spectrometry (ICP-MS; 7500a; Agilent, USA), while the elements Zr, Al, Sr, Mg, Ti, Ca, Fe, Ba and Si were analyzed by an inductively coupled plasma optical spectrometer (ICP-OES; Agilent, USA).

The thermal/optical reflectance (TOR) carbon analysis method was used based on the Interagency Monitoring of Protected Visual Environments (IMPROVE) protocol (Chow et al., 2004; Yang et al., 2017). The Desert Research Institute (DRI) Model 2001A was used for analysis. An area of 0.5 cm² was punched from each filter sample and analyzed for organic carbon (OC) in a helium (He) atmosphere and elemental carbon (EC) in a 2% O2/98% He atmosphere. In this process, the pyrolytic carbon was identified by reflected laser (Tao et al., 2017b; Turap et al., 2019). The method detection limits (MDLs) of OC and EC were 0.81 µg C cm⁻² and 0.12 µg C cm⁻², respectively.

Quality Assurance and Quality Control

All analytical processes were conducted under strict quality assurance (QA) and quality control (QC) to avoid any possible pollution. Before and after sampling, as well as during compositional analysis, the quartz filters were confirmed to be intact, and broken filters were excluded. The background was regularly monitored by blank testing, which was used to verify and correct the corresponding data (Turap et al., 2019).

RESULTS AND DISCUSSION

Mass Closure and Concentration of PM$_{2.5}$

Six conventional pollutants (O₃, CO, SO₂, NO₂, PM$_{10}$ and PM$_{2.5}$) and meteorological parameters (wind direction [WD], wind speed [WS], visibility, relative humidity [RH] and temperature [T]) were recorded simultaneously at Nanding Ambient Air Quality Monitoring Station near the sampling site. Table 1 shows a summary of the mass concentrations of PM$_{2.5}$ and average meteorological parameters in sampling periods. Fig. 2 shows the time series of WS, WD, visibility, T and RH, and six conventional pollutants over the sampling period. The daily concentrations of PM$_{2.5}$ were 20–129 µg m⁻³, 147–256 µg m⁻³, and 39–124 µg m⁻³ before, during, and after the haze episode, respectively, with means ± standard deviations (SDs) of 49 ± 38 µg m⁻³, 211 ± 39 µg m⁻³ and 58 ± 33 µg m⁻³. The concentration of PM$_{2.5}$ was 76.78% higher during the haze episode than before it. The highest PM$_{2.5}$ value was 256 µg m⁻³ on 19 January, which may be related to low WS (1.57 m s⁻¹), high RH (62.21%) and T (2.83°C). In contrast, the minimum value of PM$_{2.5}$ was 20 µg m⁻³ on 10 January, which may be related to high WS (1.98 m s⁻¹), low (RH 27.33%) and T (–4.4°C).

PM$_{2.5}$ concentrations were strongly affected by meteorological parameters such as wind direction, wind speed, temperature and RH. At low wind speeds, the atmosphere tends to stabilize and spread slowly and discharged contaminants easily accumulate, resulting in a higher concentration of particulate matter (Zhang et al., 2007). Lower wind speeds might inhibit the dispersion of pollutants in vertical and horizontal directions, while higher temperatures and RH promote gas-to-particle conversion and generate secondary aerosols (Wang et al., 2018). Using SPSS Statistics 22.0 software, the correlations between PM$_{2.5}$ concentration and meteorological parameters were analyzed (Table 2). PM$_{2.5}$ was significantly negatively correlated with wind speed and visibility, and positively correlated with RH and temperature. Similar results have been found by previous investigations (Li et al., 2017).

In order to ensure data quality, the method proposed by Wang et al. (2016) was used to reconstruct the PM$_{2.5}$ mass from measurements of mineral dust, organic matter (OM), EC, trace elements, water-soluble inorganic ions and other chemical substances. The OM mass was calculated by multiplying the OC mass by a factor of 1.6 (Wang et al., 2016). The mass closure is shown in Fig. 3. There was a significant correlation between the measured and reconstructed PM$_{2.5}$ masses ($R^2 = 0.96$) with a slope of 0.82. This result indicates that the chemical analysis was reliable.

Table 1. PM$_{2.5}$ mass concentrations and mean meteorological parameters before, during and after a haze episode.

Parameter	Before	During	After
PM$_{2.5}$ (µg m⁻³)	49	211	58
Wind speed (m s⁻¹)	2.7	1.3	1.7
T (°C)	–1.8	1.5	–6.2
RH (%)	33.9	61.8	63.0
Visibility (km)	28.9	5.1	22.7
Fig. 2. Time series of (a) wind speed (WS), (b) temperature (T) and relative humidity (RH), and (c) visibility; online monitoring of (d) CO and SO\(_2\), (e) O\(_3\) and NO\(_2\), and (f) PM\(_{2.5}\) and PM\(_{10}\) concentration.

Table 2. Correlations between PM\(_{2.5}\) and meteorological parameters.

Parameter	PM\(_{2.5}\)	T	RH	WS	Visibility
PM\(_{2.5}\)	1				
T	0.661**	1			
RH	0.554**	−0.016	1	−0.638**	1
WS	−0.542*	0.106		−0.691**	0.509*
Visibility	−0.907***	−0.635**			

P < 0.01, *P* < 0.05.

Fig. 3. Correlation between reconstructed and measured PM\(_{2.5}\) masses.

Water-soluble Inorganic Ions

As shown in Table 3, the total concentrations (mean ± SD) of water-soluble inorganic ions (TWSIs) were 24.70 ± 19.07 µg m\(^{-3}\), 131.97 ± 54.29 µg m\(^{-3}\) and 30.08 ± 17.56 µg m\(^{-3}\), accounting for 50.74%, 61.47% and 51.61% of the PM\(_{2.5}\) before, during and after the haze episode, respectively. The concentrations of water-soluble inorganic ions followed the order NO\(_3^-\) > SO\(_4^{2-}\) > NH\(_4^+\) > Cl\(^-\) > K\(^+\) > Na\(^+\) > Ca\(^{2+}\) > F\(^-\) > C\(_2\)O\(_4^{2-}\) > Mg\(^{2+}\) > NO\(_2^-\). The highest concentration during the haze episode was of NO\(_3^-\) (60.45 ± 27.67 µg m\(^{-3}\)). A favorable distribution of NO\(_3^-\) from the gas phase to the particle phase may lead to high NO\(_3^-\) concentration in PM\(_{2.5}\) at relatively low temperatures in winter (Luo et al., 2018). The SO\(_4^{2-}\) was mainly produced by the chemical reaction of gaseous precursors (such as SO\(_2\) gas, dimethyl sulfide in the ocean), which occur in the gas phase with OH radicals or in cloud drops with H\(_2\)O or ozone (Pandis et al., 1990). The NH\(_4^+\) was mainly caused by the reaction between NH\(_3\) and the acidic components of NO\(_3^-\) and SO\(_4^{2-}\) (He et al., 2012). NH\(_3\) emissions mainly derive from human activities and natural sources (Yang et al., 2017). The NO\(_3^-\), SO\(_4^{2-}\) and NH\(_4^+\) (SNA) were the dominant ions in PM\(_{2.5}\). The SNA concentrations were 19.55 ± 17.59 µg m\(^{-3}\), 120.58 ± 52.57 µg m\(^{-3}\) and 26.71 ± 16.31 µg m\(^{-3}\), accounting for 79.5%, 91.5% and 89.0% of TWSIs before, during and after the haze.
episode, respectively. These three ions made high contributions to PM$_{2.5}$, which is consistent with previous studies (Zhang et al., 2013; Luo et al., 2018). Moreover, a good correlation between SO$_4^{2-}$ and NO$_3^-$ was found (Pearson’s correlation coefficient = 0.979, $P > 0.01$), consistent with an earlier study (Luo et al., 2018). Compared with the other periods, the SNA concentrations were very high during the haze episode (Fig. 4), especially on 20 January with a total concentration of 224.99 µg m$^{-3}$.

The NO$_3^-$/SO$_4^{2-}$ ratio in atmospheric particles can be used as a comparative indicator of the contributions of stationary sources (such as coal combustion) and mobile sources (such as automobile exhaust) to sulfur and nitrogen concentrations in the atmosphere (Arimoto et al., 1996; Yao et al., 2002). The ratios of NO$_3^-$/SO$_4^{2-}$ produced by gasoline and diesel combustion were 13:1 and 8:1, respectively (Yao et al., 2002). The ratio of NO$_3^-$/SO$_4^{2-}$ from burning coal was 1:2 when the coal sulfur content was 1% (Yao et al., 2002). Hence, the higher the NO$_3^-$/SO$_4^{2-}$, the greater the contribution of mobile sources to PM$_{2.5}$ (Yang et al., 2017). In China, reported NO$_3^-$/SO$_4^{2-}$ ratios in PM$_{2.5}$ include 0.77–0.87 in Zhengzhou (Jiang et al., 2018), 0.14–1.12 in Xining’s Dushanzi District (Turap et al., 2019) and 1.2–1.7 in Beijing (Yang et al., 2017). The ratio of NO$_3^-$/SO$_4^{2-}$ in some Chinese cities is lower than that in downtown Los Angeles and in Rubidoux in southern California (2–5) (Kim et al., 2000). During the haze episode, the NO$_3^-$/SO$_4^{2-}$ ratio was 1.90, which is higher than before (1.73) and after (1.05) the haze episode. As shown in Fig. 4, the concentration of NO$_3^-$ was much higher than that of SO$_4^{2-}$ during the haze episode. Due to poor visibility on heavily polluted days, vehicles travel at low speeds and might emit large amounts of NO$_3^-$, resulting in high NO$_3^-$ concentrations (Jiang et al., 2018).

Other characteristic ions and ion ratios can also reflect the source contribution to PM$_{2.5}$. The molar ratios of Cl$^-$/Na$^+$ in PM$_{2.5}$ were 6.70, 8.20 and 4.98 before, during and after the haze episode, respectively. These values are much higher than the ratio in sea-water (1.17), indicating that coal combustion in winter is an important source of Cl$^-$ (Yao et al., 2002; Zhang et al., 2013; Tan et al., 2017). K$^+$ is used as

Table 3. Mass concentration of major chemical components in PM$_{2.5}$ (µg m$^{-3}$).

Species	Before Mean ± SD	During Mean ± SD	After Mean ± SD
Water-soluble inorganic ions			
F$^-$	0.15 ± 0.11	0.20 ± 0.14	0.09 ± 0.11
Cl$^-$	2.49 ± 1.71	7.15 ± 1.57	1.81 ± 0.59
NO$_3^-$	0.05 ± 0.06	0.03 ± 0.01	0.02 ± 0.01
NO$_2^-$	8.82 ± 9.94	60.45 ± 27.67	9.90 ± 7.78
SO$_4^{2-}$	5.06 ± 3.04	31.83 ± 14.55	9.41 ± 5.34
NH$_4^+$	5.67 ± 4.61	28.30 ± 10.35	7.40 ± 3.19
C$_2$H$_5$O$_2$$^-$	0.05 ± 0.05	0.12 ± 0.08	0.02 ± 0.00
Na$^+$	0.37 ± 0.16	0.87 ± 0.18	0.36 ± 0.17
K$^+$	0.57 ± 0.43	2.16 ± 0.74	0.55 ± 0.49
Mg$^{2+}$	0.08 ± 0.09	0.09 ± 0.01	0.07 ± 0.07
Ca$^{2+}$	1.40 ± 2.13	0.78 ± 0.19	0.46 ± 0.25
Elements			
Na	0.20 ± 0.17	0.77 ± 0.20	0.39 ± 0.20
P	0.01 ± 0.01	0.05 ± 0.02	0.02 ± 0.01
K	0.40 ± 0.42	1.61 ± 0.47	0.64 ± 0.56
Cr	0.01 ± 0.00	0.02 ± 0.01	0.02 ± 0.01
Mn	0.02 ± 0.01	0.06 ± 0.02	0.03 ± 0.02
Cu	0.01 ± 0.01	0.03 ± 0.01	0.01 ± 0.01
Zn	0.11 ± 0.10	0.37 ± 0.15	0.64 ± 1.25
Pb	0.03 ± 0.04	0.10 ± 0.05	0.06 ± 0.05
Al	0.75 ± 0.11	1.44 ± 0.44	1.07 ± 0.26
Mg	0.44 ± 0.13	0.39 ± 0.06	0.18 ± 0.06
Ti	0.10 ± 0.07	0.24 ± 0.34	0.03 ± 0.01
Ca	0.57 ± 0.08	1.11 ± 0.43	0.81 ± 0.23
Fe	0.27 ± 0.08	0.50 ± 0.22	0.20 ± 0.05
Si	0.55 ± 0.27	0.97 ± 1.24	1.11 ± 0.35
Ni	0.02 ± 0.01	0.06 ± 0.02	0.03 ± 0.01
Other elements	0.0011 ± 0.0020	0.0034 ± 0.0053	0.0016 ± 0.0024
OC and EC			
OC	7.54 ± 5.09	21.46 ± 4.94	6.57 ± 1.72
EC	4.09 ± 2.46	11.14 ± 1.74	3.79 ± 0.75
TC	11.63 ± 6.95	32.59 ± 5.48	10.36 ± 2.24
SOC	2.22 ± 1.97	7.11 ± 4.09	0.71 ± 0.62

This table shows the mass concentration of major chemical components in PM$_{2.5}$ during different periods.
Fig. 4. Time series of PM$_{2.5}$ and dominant chemical components.

Fig. 5. Correlations between cations and anions before, during and after the haze episode.

an indicator of biomass combustion (Yamasoe et al., 2000). During the haze episode, the concentration of K$^+$ was 2.16 μg\cdotm$^{-3}$, which is 3.79 times higher than before and 3.93 times higher than after the haze episode, suggesting that biomass combustion contributed to PM$_{2.5}$. The concentration of Mg$^{2+}$ did not change significantly and Ca$^{2+}$ decreased by 44.29% during the haze episode. The major sources of Ca$^{2+}$ are usually soil, road dust and construction. The decrease in Ca$^{2+}$ during the haze episode was probably due to control measures, including cessation of construction and frequent road sweeping (Yang et al., 2017). The concentration of NO$_2$ did not change much and C$_2$O$_4^{2-}$ increased by 58.33% in the haze days. The increase of C$_2$O$_4^{2-}$ may be due to various organic acids generated by the oxidation process of VOCs emitted by combustion, which become organic particulates through homogeneous and heterogeneous nucleation. Luo et al. (2018) showed that biomass burning and fossil fuel combustion were important sources of PM$_{2.5}$ in Zibo.

The ion balance calculation is a good method for studying the acidity of aerosols. It is determined by the anion equivalents (AE) and the cation equivalents (CE) (Xu et al., 2012). If the ratio of CE to AE is \geq 1, most of the acids are considered to be neutralized (He et al., 2011). In contrast, a ratio $<$ 1 indicates that the aerosols are acidic. In this study, the slope of the linear regression indicated that the aerosols are acidic, especially during the haze episode (Fig. 5). The slope of the linear regression during haze days was lower than during non-haze days, indicating that the proportion of acidity increased in the atmosphere. Therefore, the emissions of SO$_2$ and NO$_2$ should be strictly controlled to decrease the formation of SO$_4^{2-}$ and NO$_3^-$ (Yang et al., 2017).

Sulfate and nitrate were the major aerosol components in PM$_{2.5}$. In order to determine the extent of atmospheric conversion of SO$_2$ to SO$_4^{2-}$ and of NO$_2$ to NO$_3^-$, the sulfur oxidation ratio (SOR) and nitrogen oxidation ratio (NOR) were used (Fu et al., 2008; Lin, 2002). The higher the SOR and NOR values, the higher the oxidation degree of the gas species (Fu et al., 2008). Earlier studies reported that photochemical oxidation of SO$_2$ or NO$_2$ in the atmosphere occurs when the SOR or NOR is $>$ 0.10 (Ohta and Okita, 1990). As shown in Table 4, the SOR values were $>$ 0.10 during the haze episode (mean \pm SD = 0.31 \pm 0.11) and after it (mean \pm SD = 0.19 \pm 0.08). High SOR values demonstrate that secondary formation of SO$_4^{2-}$ from SO$_2$ occurs in the atmosphere. The values of NOR were \geq 0.10 before the haze episode (mean \pm SD = 0.13 \pm 0.09), during it (mean \pm SD = 0.34 \pm 0.09) and afterwards (mean \pm SD = 0.16 \pm 0.08). High NOR values suggest that secondary formation of NO$_3^-$ from NO$_2$ occurred in the atmosphere. High NOR and SOR values indicate that there was more active gas-to-particle conversion during the haze episode (Hua et al., 2015). In addition, Sun et al. (2013) has shown that RH has a significant effect on SO$_4^{2-}$ and NO$_3^-$ because higher RH can promote the formation of secondary inorganic ions in particles. In this study, the average RH during the haze episode was 61.8%,
which was higher than before (33.9%) and lower than after (63.0%) the haze episode. Although the RH during the haze episode was lower than afterwards, the concentrations of \(\text{SO}_2 \) and \(\text{NO}_x \) during the haze episode (0.30 \(\mu \text{g m}^{-3} \) and 0.31 \(\mu \text{g m}^{-3} \), respectively) were higher than after (0.24 \(\mu \text{g m}^{-3} \) and 0.14 \(\mu \text{g m}^{-3} \)), while the SOR and NOR were highest during the haze episode.

Trace Elements

Elemental mass accounted for a small percentage (< 20%) of the total \(\text{PM}_{2.5} \) mass. However, they are easily absorbed on the surfaces of \(\text{PM}_{2.5} \) particulates and are harmful to the human body (Chan and Yao, 2008). Thirty-nine elements in \(\text{PM}_{2.5} \) were investigated and the concentrations during the sampling period are given in Table 3. The concentrations of TEs were 3.47 ± 1.50 \(\mu \text{g m}^{-3} \), 7.66 ± 3.67 \(\mu \text{g m}^{-3} \) and 5.21 ± 3.07 \(\mu \text{g m}^{-3} \) before, during and after the haze episode, respectively, making contributions to \(\text{PM}_{2.5} \) of 9.55%, 3.74% and 9.24%. During the haze episode, the most abundant elements were crustal elements (e.g., K, Al, Ca, Si, Na, Fe and Mg), which accounted for 88.64% of the TEs. Comparing elemental concentrations before and during the haze episode, the mean concentration of TEs increased by 57.10%, especially for crustal elements such as Na, Al, Ca, Fe and Si, with increases ranging from 43.36% to 74.56%. This increase in elements may be caused by source emissions and low wind velocities, which may cause an accumulation of atmospheric pollutants. While a large amount of particulate matter from the crust may decrease when the wind speed is low enough, crustal elements may still increase due to the build-up of dust re-suspended by road traffic (Gu et al., 2011).

Element K had the highest concentration (1.61 ± 0.47 \(\mu \text{g m}^{-3} \)), which may be related to the biomass combustion. Zn (0.37 \(\mu \text{g m}^{-3} \)) was the most abundant heavy metal in \(\text{PM}_{2.5} \), which may be related to tire wear and automotive lubricant additives (Zhang et al., 2018), followed by Pb, Mn, Cu and Cr. Ni is an indicator of petroleum combustion and is related to oil-fired power and steam boilers, while Fe and Mn are related to the steel industry (Khan et al., 2016; Luo et al., 2018; Zhang et al., 2018). There are petrochemicals, ceramics, pharmaceutical production and building materials in Zibo, so the elements detected in the samples are in line with the characteristics of Zibo’s heavy industries.

Carbonaceous Species

The carbonaceous fraction of ambient particulate matter is usually divided into organic carbon and elemental carbon (Park et al., 2001). The OC can be generated by primary emissions and secondary formation, while EC mainly comes from primary emissions (Tao et al., 2017a). The OC in \(\text{PM}_{2.5} \) varied from 15.38 \(\mu \text{g m}^{-3} \) to 30.83 \(\mu \text{g m}^{-3} \) (mean ± SD = 21.46 ± 4.94 \(\mu \text{g m}^{-3} \)), while EC varied from 8.09 \(\mu \text{g m}^{-3} \) to 13.31 \(\mu \text{g m}^{-3} \) (mean ± SD = 11.14 ± 1.74 \(\mu \text{g m}^{-3} \)) during the haze episode (Table 3). The OC accounted for 10.18% and the EC accounted for 5.41% of \(\text{PM}_{2.5} \) during the haze episode. Compared with before and after the haze episode, the OC concentration was 64.86% and 69.38% higher during it, while the EC concentration was 63.29% and 65.95% higher. OC and EC accounted for 23.73%, 15.45% and 17.86% of the \(\text{PM}_{2.5} \) before, during and after the haze episode, respectively.

The relationship between OC and EC was used to determine the source of carbon particles (Ram et al., 2008; Yang et al., 2017). If OC and EC are mainly emitted by primary sources, the correlation between the OC and EC should be high, because the relative emission rates of OC and EC are proportional (Zhang et al., 2007). Fig. 6 shows the correlation between OC and EC concentrations. The correlation between OC and EC was poor during the haze episode \((R^2 = 0.04) \), indicating that the sources of OC and EC were different. However, there was a strong correlation between OC and EC both before \((R^2 = 0.93) \) and after \((R^2 = 0.91) \) the haze episode. This difference may be interpreted as being affected by other sources in addition to local emissions (i.e., secondary OC) (Zhang et al., 2007).

The OC/EC ratio can provide source information. Watson (2002) reported OC/EC ratios of 0.3–7.6 for coal combustion, 0.7–2.4 for motor vehicle emissions and 4.1–14.5 for biomass combustion. In this study, the mean ± SD OC/EC ratios were 1.81 ± 0.34, 1.95 ± 0.39, and 1.72 ± 0.13 before, during and after the haze episode, indicating that coal combustion and vehicle exhaust were the dominant sources of pollution. An OC/EC value ≥ 2 was used to indicate the existence of significant secondary organic carbon (SOC) (Chow et al., 1996). The OC/EC values were about 2.0 during the haze episode, demonstrating that secondary organic carbon might

Table 4. SORs and NORs before, during and after a haze episode in Zibo.

Ratio	Before	During	After
SOR	0.10 ± 0.05	0.31 ± 0.11	0.19 ± 0.08
NOR	0.13 ± 0.09	0.34 ± 0.09	0.16 ± 0.08

Fig. 6. Correlations between OC and EC concentrations before, during and after the haze episode.
exist. The SOC calculation method can be found in a previous study (Ram et al., 2008). As shown in Table 3, the mean ± SD concentrations of SOC were 2.22 ± 1.97 µg m⁻³, 7.11 ± 4.09 µg m⁻³ and 0.71 ± 0.62 µg m⁻³ before, during and after the haze episode, respectively. The ratio of SOC/OC in haze days (0.31 ± 0.15) was slightly higher than before (0.25 ± 0.15) and after (0.10 ± 0.07), which indicates that the photochemical reaction in haze days was more intense than non-haze days (Jiang et al., 2018). There was a significant correlation between SOC and PM₉.₅ and Pearson’s correlation coefficient was 0.815 (P < 0.01), indicating SOC is an important component in PM₂.₅. As a city with heavy industry, there are many petrochemical enterprises and vehicles (1.237 million in 2018), and a great deal of VOCs is released into the atmosphere. Higher concentrations of VOCs produce higher concentrations of secondary organic carbon through photochemical reactions at high temperatures (Wang et al., 2018). The mean temperature was 1.73°C during the haze episode, which is the ideal temperature for SOC formation and accumulation, because evaporation is inhibited at low temperatures (Luo et al., 2018).

Air Mass Backward Trajectory Analysis

To better understand the impact of regional transmission during the haze episode, 24-h air mass back-trajectories were derived for clusters identified from 8–27 January 2018, starting at an altitude of 500 m from the ground (Li et al., 2017). Clusters were computed with the Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) 4 model developed by the U.S. National Oceanic and Air Administration (NOAA) Air Resources Laboratory (ARL) (Gao et al., 2015). Cluster analysis of 24-h backward trajectories before, during and after the haze episode are shown in Fig. 7. Before the haze episode, 60% (Clusters 1,
2, 3 and 4) was from the northwest and 39% (Clusters 5 and 6) was from Shandong Province and its adjacent areas. After the haze episode, the air masses were more from the Beijing-Tianjin-Hebei region (46%). During the haze episode, the air mass path was mainly derived from adjacent regions in Shandong Province (57%, Cluster 2), 36% (Cluster 1) was from the Beijing-Tianjin-Hebei region, and 7% (Cluster 3) was from Inner Mongolia and was transmitted to Zibo via Liaoning Province. Air mass backward trajectories for Cluster 2 were short, indicating that air masses moved slowly and pollutants tended to accumulate (Feng et al., 2018). PM$_{2.5}$ concentrations in each air mass during the haze episode showed decreasing trends in the order of Cluster 1 (185.10 µg m$^{-3}$) > Cluster 2 (179.71 µg m$^{-3}$) > Cluster 3 (85.08 µg m$^{-3}$). The above analysis illustrates that large amounts of pollutants from other regions were mixed in the air masses and transported to the research area, thus intensifying its PM$_{2.5}$ pollution level (Jiang et al., 2018). Thus, the regional transport of pollutants has an important impact on PM$_{2.5}$ (Yang et al., 2017).

CONCLUSIONS

The concentration and chemical composition of PM$_{2.5}$ in the heavy industrial city of Zibo were investigated in relation to a haze episode occurring 15–21 January 2018. The concentrations (mean ± SD) were 49 ± 38 µg m$^{-3}$, 211 ± 39 µg m$^{-3}$ and 58 ± 33 µg m$^{-3}$ before, during and after the episode, respectively, with the TWSIs, TEs and carbonaceous species (OC and EC) accounting for 50.74%, 61.47% and 51.61%; 9.55%, 3.74% and 9.24%; and 23.73%, 15.45% and 17.86%. The TWSIs primarily consisted of secondary ions (NO$_3^-$, SO$_4^{2-}$ and NH$_4^+$), and the TEs displayed an abundance (88.64%) of crustal elements (K, Al, Ca, Si, Na, Fe and Mg) during the episode. The CE/TE ratio indicated that the acidity increased on haze days, and the NO$_3^-$/SO$_4^{2-}$ and OC/EC ratios suggested that coal combustion and vehicle exhaust emission were the largest sources of pollution. Additionally, the higher SNA and SOC values identified secondary formation as a significant contributor to the elevated PM$_{2.5}$ concentration during the episode, and back-trajectory analysis traced the pollutive aerosols in Zibo on haze days to adjacent areas in Shandong Province (57%) and the Beijing-Tianjin-Hebei region (36%). Finally, unfavorable meteorological conditions were another factor that exacerbated the PM$_{2.5}$ pollution during the haze episode.

ACKNOWLEDGMENTS

This study was supported by the National Research Program for Key Issues in Air Pollution Control (No. DQGG0107-20 and DQGG0107-19), the National Key Research and Development Program of China (2017YFC0212503) and the Special Scientific Research Business of the Central Academy of Public Welfare Research Institute of the Chinese Research Academy of Environmental Sciences (2018-YSKY-041). The authors thank the editor and reviewers for their valuable comments.

DISCLAIMER

The authors declare that they have no conflicts of interest.

REFERENCES

Arimoto, R., Duce, R.A., Savoie, D.L., Prospero, J.M., Talbot, R., Cullen, J.D., Tomza, U., Lewis, N.F. and Ray, B.J. (1996). Relationships among aerosol constituents from Asia and the North Pacific during PEM-West A. J. Geophys. Res. 101: 2011–2023. https://doi.org/10.1029/95JD01071

Chan, C.K. and Yao, X. (2008). Air pollution in mega cities in China. Atmos. Environ. 42: 1–42. https://doi.org/10.1016/j.atmosenv.2007.09.003

Chow, J.C., Watson, J.G., Lu, Z., Lowenthal, D.H., Frazier, C.A., Solomon, P.A., Thunillier, R.H. and Magliano, K. (1996). Descriptive analysis of PM$_{2.5}$ and PM$_{10}$ at regionally representative locations during SJVAQS/AUSPEX. Atmos. Environ. 30: 2079–2112. https://doi.org/10.1016/1352-2310(95)00402-5

Chow, J.C., Watson, J.G., Chen, L.W.A., Anott, W.P., Moosmuller, H. and Fung, K. (2004). Equivalence of elemental carbon by thermal/optical reflectance and transmittance with different temperature protocols. Environ. Sci. Technol. 38: 4414–4422. https://doi.org/10.1021/es034936u

Duan, J., Tan, J., Hao, J. and Chai, F. (2014). Size distribution, characteristics and sources of heavy metals in haze episode in Beijing. J. Environ. Sci. 26: 189–196. https://doi.org/10.1016/S1001-0742(13)60397-6

Fann, N. and Risley, D. (2013). The public health context for PM$_{2.5}$ and ozone air quality trends. Air Qual. Atmos. Health 6: 1–11. https://doi.org/10.1007/s11869-010-0125-0

Feng, J., Yu, H., Mi, K., Su, X., Chen, Y., Sun, J.H. and Li, Q. (2018). The pollution characteristics of PM$_{2.5}$ and correlation analysis with meteorological parameters in Xinxing during the Shanghai Cooperation Organization Prime Ministers’ Meeting. Environ. Geochem. Health 40: 1067–1076. https://doi.org/10.1007/s10653-017-9976-8

Fu, Q., Zhuang, G., Wang, J., Xu, C., Huang, K., Li, J., Hou, B., Lu, T. and Streets, D.G. (2008). Mechanism of formation of the heaviest pollution episode ever recorded in the Yangtze River Delta, China. Atmos. Environ. 42: 2023–2036. https://doi.org/10.1016/j.atmosenv.2007.12.002

Gao, J., Tian, H., Cheng, K., Lu, L., Zheng, M., Wang, S., Hao, J., Wang, K., Hua, S., Zhu, C. and Wang, Y. (2015). The variation of chemical characteristics of PM$_{2.5}$ and PM$_{10}$ and formation causes during two haze pollution events in urban Beijing, China. Atmos. Environ. 107: 1–8. https://doi.org/10.1016/j.atmosenv.2015.02.022

Gens, A., Hurley, J.F., Tuomisto, J.T. and Friedrich, R. (2014). Health impacts due to personal exposure to fine particles caused by insulation of residential buildings in Europe. Atmos. Environ. 84: 213–221. https://doi.org/10.1016/j.atmosenv.2013.11.054

Gu, J., Bai, Z., Li, W., Wu, L., Liu, A., Dong, H. and Xie, Y. (2011). Chemical composition of PM$_{2.5}$ during winter in Tianjin, China. Particuology 9: 215–221. https://doi.org/10.1016/j.partic.2011.03.001
characteristics and source apportionment of PM$_{2.5}$ during a fall heavy haze episode in the Yangtze River Delta of China. *Atmos. Environ.* 123: 380–391. https://doi.org/10.1016/j.atmosenv.2015.03.046

Ji, D., Li, L., Wang, Y., Zhang, J., Cheng, M., Sun, Y., Liu, Z., Wang, L., Tang, G., Hu, B., Chao, N., Wen, T. and Miao, H. (2014). The heaviest particulate air-pollution episodes occurred in northern China in January, 2013: Insights gained from observation. *Atmos. Environ.* 92: 546–556. https://doi.org/10.1016/j.atmosenv.2014.04.048

Jiang, N., Li, Q., Su, F., Wang, Q., Yu, X., Kang, P., Zhang, R. and Tang, X. (2018). Chemical characteristics and source apportionment of PM$_{2.5}$ between heavily polluted days and other days in Zhengzhou, China. *J. Environ. Sci.* 66: 188–198. https://doi.org/10.1016/j.ijes.2017.05.006

Joharestani, M.Z., Cao, C., Ni, X., Bashir, B. and Talebiesfandanari, S. (2019). PM$_{2.5}$ prediction based on random forest, XGBoost, and deep learning using multisource remote sensing data. *Atmosphere* 10: 373. https://doi.org/10.3390/atmos10070373

Khan, M.F., Latif, M.T., Saw, W.H., Amil, N., Nadzir, M.S.M., Sahsni, M., Tahir, N.M. and Chung, J.X. (2016). Chemical composition and evolution processes during the winter of 2013 in Chengdu (China). *Atmos. Environ.* 123: 380–391. https://doi.org/10.1016/j.atmosenv.2013.06.019

Kong, S., Han, B., Bai, Z., Chen, L., Shi, J. and Xu, Z. (2002). Characterization of PM$_{2.5}$ and PM$_{10}$ in the south coast air basin of southern California: Part I: Spatial variations. *J. Air Waste Manage. Assoc.* 50: 2034–2044. https://doi.org/10.1080/10473229.2000.10464242

Kong, S., Han, B., Bai, Z., Chen, L., Shi, J. and Xu, Z. (2010). Receptor modeling of PM$_{2.5}$, PM$_{10}$ and TSP in different seasons and long-range transport analysis at a coastal site of Tianjin, China. *Sci. Total Environ.* 408: 4681–4694. https://doi.org/10.1016/j.scitotenv.2010.06.005

Li, H., Ma, Y., Duan, F., He, K., Zhu, L., Huang, T., Kimoto, T., Ma, X., Ma, T., Xu, L., Xu, B., Yang, S., Ye, S., Sun, Z., An, J. and Zhang, Z. (2017). Typical winter haze pollution in Zibo, an industrial city in China: Characteristics, secondary formation, and regional contribution. *Environ. Pollut.* 229: 339–349. https://doi.org/10.1016/j.envpol.2017.05.081

Liao, T., Wang, S., Ai, J., Gui, K., Duan, B., Zhao, Q., Zhang, X., Jiang, W. and Sun, Y. (2017). Heavy pollution episodes, transport pathways and potential sources of PM$_{2.5}$ during the winter of 2013 in Chengdu (China). *Sci. Total Environ.* 584–585: 1056–1065. https://doi.org/10.1016/j.scitotenv.2017.01.160

Lin, J.J. (2002). Characterization of water-soluble ion species in urban ambient particles. *Environ. Int.* 28: 55–61. https://doi.org/10.1016/S0160-4120(02)00004-1

Lin, Y.C., Tsai, C.J., Wu, Y.C., Zhang, R., Chi, K.H., Huang, Y.T., Lin, S.H. and Hsu, S.C. (2014). Characteristics of trace metals in traffic-derived particles in Hsuehshan Tunnel, Taiwan: size distribution, potential source, and fingerprinting metal ratio. *Atmos. Chem. Phys.* 14: 13963–14004. https://doi.org/10.5194/acp-15-4117-2015

Luo, Y., Zhou, X., Zhang, J., Xiao, Y., Wang, Z., Zhou, Y. and Wang, W. (2018). PM$_{2.5}$ pollution in a petrochemical industry city of northern China: Seasonal variation and source apportionment. *Atmos. Res.* 212: 285–295. https://doi.org/10.1016/j.atmosres.2018.05.029

Menon, S., Hansen, N., Nazarenko, L. and Luo, Y. (2002). Climate Effects of black carbon aerosols in China and India. *Science* 297: 2250–2253. https://doi.org/10.1126/science.1075159

Ohta, S. and Okita, T. (1990). A chemical characterization of atmospheric aerosol in Sapporo. *Atmos. Environ.* 24: 815–822. https://doi.org/10.1016/0960-1686(90)90282-R

Pandis, S.N., Seinfeld, J.H. and Pilinis, C. (1990). The smog-fog-smog cycle and acid deposition. *J. Geophys. Res.* 95: 18489–18500. https://doi.org/10.1029/jd095i11p18489

Park, S.S., Kim, Y.J. and Fung, K. (2001). Characteristics of PM$_{2.5}$ carbonaceous aerosol in the Sihwa industrial area, Korea. *Atmos. Environ.* 35: 657–665. https://doi.org/10.1016/S1352-2310(00)00357-5

Ram, K., Sarin, M.M. and Hegde, P. (2008). Atmospheric abundances of primary and secondary carbonaceous species at two high-altitude sites in India: Sources and temporal variability. *Atmos. Environ.* 42: 6785–6796. https://doi.org/10.1016/j.atmosenv.2008.05.031

Sun, Y.L., Wang, Z.F., Fu, P.Q., Jiang, Q., Yang, T., Li, J. and Ge X.L. (2013). The impact of relative humidity on aerosol composition and evolution processes during wintertime in Beijing, China. *Atmos. Environ.* 77: 927–934. https://doi.org/10.1016/j.atmosenv.2013.06.019

Taghvaei, S., Sowlat, M.H., Diapouli, E., Manousakas, M.I., Vasilatou, V., Eleftheriadis, K. and Sioutas, C. (2019). Source apportionment of the oxidative potential of fine ambient particulate matter (PM$_{2.5}$) in Athens, Greece. *Sci. Total Environ.* 653: 1407–1416. https://doi.org/10.1016/j.scitotenv.2018.11.016

Tan, J., Duan, J., Ma, Y., He, K., Cheng, Y., Deng, S.X., Huang, Y.L. and Si-Tu, S.P. (2016). Long-term trends of chemical characteristics and sources of fine particle in Foshan City, Pearl River Delta: 2008–2014. *Sci. Total Environ.* 565: 519–528. https://doi.org/10.1016/j.scitotenv.2016.05.059

Tan, J., Zhang, L., Zhou, X., Duan, J., Li, Y., Hu, J. and He, K. (2017). Chemical characteristics and source apportionment of PM$_{2.5}$ in Lanzhou, China. *Sci. Total Environ.* 601–602: 1743–1752. https://doi.org/10.1016/j.scitotenv.2017.06.050

Tao, J., Zhang, L., Cao, J. and Zhang, R. (2017a). A review of current knowledge concerning PM$_{2.5}$ chemical composition, aerosol optical properties and their relationships across China. *Atmos. Chem. Phys.* 17: 9485–9518. https://doi.org/10.5194/acp-17-9485-2017

Tao, J., Zhang, L., Cao, J., Zhong, L., Chen, D., Yang, Y.,
Chen, D., Chen, L., Zhang, Z., Wu, Y., Xia, Y., Ye, S. and Zhang, R. (2017b). Source apportionment of PM$_{2.5}$ at urban and suburban areas of the Pearl River Delta region, south China - With emphasis on ship emissions. *Sci. Total Environ.* 574: 1559–1570. https://doi.org/10.1016/j.scitotenv.2016.08.175

Turap, Y., Talifu, D., Wang, X., Abulizi, A., Maihemuti, M., Tursun, Y., Ding, X., Aierken, T. and Rekefu, S. (2019). Temporal distribution and source apportionment of PM$_{2.5}$ chemical composition in Xinjiang, NW-China. *Atmos. Res.* 218: 257–268. https://doi.org/10.1016/j.atmosres.2018.12.010

Turpin, B.J. and Lim, H.J. (2001). Species contributions to PM$_{2.5}$ mass concentrations: Revisiting common assumptions for estimating organic mass. *Aerosol Sci. Technol.* 35: 602–610. https://doi.org/10.1080/02786820152051454

Wang, H., Tian, M., Chen, Y., Shi, G., Liu, Y., Yang, F., Zhang, L., Deng, L., Yu, J., Peng, C. and Cao, X. (2018). Seasonal characteristics, formation mechanisms and source origins of PM$_{2.5}$ in two megacities in Sichuan Basin, China. *Atmos. Chem. Phys.* 18: 865–881. https://doi.org/10.5194/acp-18-865-2018

Wang, Y., Zhuang, G., Tang, A., Yuan, H., Sun, Y., Chen, S. and Zheng, A. (2005). The ion chemistry and the source of PM$_{2.5}$ aerosol in Beijing. *Atmos. Environ.* 39: 3771–3784. https://doi.org/10.1016/j.atmosenv.2005.03.013

Wang, Y., Jia, C., Tao, J., Zhang, L., Liang, X., Ma, J., Gao, H., Huang, T. and Zhang, K. (2016). Chemical characterization and source apportionment of PM$_{2.5}$ in a semi-arid and petrochemical-industrialized city, northwest China. *Sci. Total Environ.* 573:1031–1040. https://doi.org/10.1016/j.scitotenv.2016.08.179

Watson, J.G. (2002). Visibility: Science and regulation. *J. Air Waste Manage. Assoc.* 52: 628–713. https://doi.org/10.1080/10473289.2002.10470813

Wu, D., Bi, X.L., Deng, X.J., Li, F., Tan, H.B., Liao, G.L. and Huang, J. (2007). Effect of atmospheric haze on the deterioration of visibility over the Pearl River Delta. *J. Meteorol. Res.* 21: 215–223. http://jmr.cmsjournal.net/en/article/id/1097

Xiao, S., Wang, Q.Y., Cao, J.J., Huang, R.J., Chen, W.D., Han, Y.M., Xu, H.M., Liu, S.X., Zhou, Y.Q., Wang, P., Zhang, J.Q. and Zhan, C.L. (2014). Long-term trends in visibility and impacts of aerosol composition on visibility impairment in Baoji, China. *Atmos. Res.* 149: 88–95. https://doi.org/10.1016/j.atmosres.2014.06.006

Xu, L., Chen, X., Chen, J., Zhang, F., He, C., Zhao, J. and Yin, L. (2012). Seasonal variations and chemical compositions of PM$_{2.5}$ aerosol in the urban area of Fuzhou, China. *Atmos. Res.* 104–105: 264–272. https://doi.org/10.1016/j.atmosres.2011.10.017

Yamasoe, A., Artaxo, P., Miguel, A.H. and Allen, A.G. (2000). Chemical composition of aerosol particles from direct emissions of vegetation fires in the Amazon Basin: water-soluble species and trace elements. *Atmos. Environ.* 34: 1641–1653. https://doi.org/10.1016/S1352-2310(99)00329-5

Yang, F., Tan, J., Zhao, Q., Du, Z., He, K., Ma, Y., Duan, F., Chen, G. and Zhao, Q. (2011). Characteristics of PM$_{2.5}$ speciation in representative megacities and across China. *Atmos. Chem. Phys.* 11: 5207–5219. https://doi.org/10.5 194/acp-11-5207-2011

Yang, X., Cheng, S., Li, J., Lang, J. and Wang, G. (2017). Characterization of chemical composition in PM$_{2.5}$ in Beijing before, during, and after a large-scale international event. *Aerosol Air Qual. Res.* 17: 896–907. https://doi.org/10.4209/aaqr.2016.07.0321

Yao, X., Chan, C.K., Fang, M., Cadle, S., Chan, T., Mulawa, P., He, K. and Ye, B. (2002). The water-soluble ionic composition of PM$_{2.5}$ in Shanghai and Beijing, China. *Atmos. Environ.* 36: 4223–4234. https://doi.org/10.1016/S1352-2310(02)00342-4

Zhang, R.J., Cao, J.J., Lee, S.C., Shen, Z.X. and Ho, K.F. (2007). Carbonaceous aerosols in PM$_{10}$ and pollution gases in winter in Beijing. *J. Environ. Sci.* 19: 564–571. https://doi.org/10.1016/S1001-0742(07)60094-1

Zhang, J., Zhou, X., Wang, Z., Yang, L., Wang, J. and Wang, W. (2018). Trace elements in PM$_{2.5}$ in Shandong province: Source identification and health risk assessment. *Sci. Total Environ.* 621: 558–577. https://doi.org/10.1016/j.scitotenv.2017.11.292

Zhang, R., Jing, J., Tao, J., Hsu, S.C., Wang, G., Cao, J., Lee, C.S.L., Zhu, L., Chen, Z., Zhao, Y. and Shen, Z. (2013). Chemical characterization and source apportionment of PM$_{2.5}$ in Beijing: Seasonal perspective. *Atmos. Chem. Phys.* 13: 7053–7074. https://doi.org/10.5194/acp-13-7053-2013

Zou, B.B., Huang, X.F., Zhang, B., Dai, J., Zeng, L.W., Feng, N. and He, L.Y. (2017). Source apportionment of PM$_{2.5}$ pollution in an industrial city in southern China. *Atmos. Pollut. Res.* 8: 1193–1202. https://doi.org/10.1016/j.apr.2017.05.001

Received for review, December 29, 2019
Revised, April 29, 2020
Accepted, May 26, 2020