Study of P-wave B^0_s states at the CMS experiment

Sergey Polikarpov1,2 on behalf of the CMS Collaboration

1 Lebedev Physical Institute of the Russian Academy of Sciences (LPI RAS), Moscow, Russia,
2 National Research Nuclear University “Moscow Engineering Physics Institute” (MEPhI),
Moscow, Russia
E-mail: sergey.polikarpov@cern.ch

Abstract. The observation of the $B^0_s(5840)^0 \rightarrow B^0 K^0_S$ decay and the evidence for the $B^0_s(5830)^0 \rightarrow B^{*0} K^0_S$ decay are presented. The analysis uses the data collected by the CMS experiment at the LHC in proton-proton collisions at $\sqrt{s} = 8$ TeV. In addition, properties of the P-wave B^0_s mesons are determined, as well as the mass differences $M(B^{*0}) - M(B^0)$ and $M(B^{*0}) - M(B^{*+})$, where the latter is measured for the first time.

1. Introduction

The CMS experiment [1] at the LHC continues to provide new important results in the area of Heavy Flavor physics. In this work, we report the study [2] of excited states of the B^0_s meson, $B^0_s(5830)^0$ and $B^0_s(5840)^0$, including the first observation of the $B^0_s(5840)^0 \rightarrow B^{*0} K^0_S$ decay, the measurements of $B^0_s(5840)^0$ and $B^0_s(5830)^0$ properties, and the measurements of mass differences $M(B^{*0}) - M(B^0) - M(K)$ and $M(B^{*0}) - M(B^{*+})$. Here and in the following, $B^{*0}_{s1,2}$ refers to either $B^0_s(5830)^0$ or $B^0_s(5840)^0$ and charge-conjugate states are implied throughout the text.

There are only a few experimental results on the excited B^0_s mesons. In particular, the P-wave B^0_s mesons were observed by the CDF and D0 Collaborations at the Tevatron [3, 4] as the narrow peaks in the $B^+ K^-$ invariant mass distribution. Subsequently, the LHCb Collaboration at the LHC presented precise measurements of the $B^{*0}_{s1,2}$ properties [5], including the observation of the $B^0_s(5840)^0 \rightarrow B^{*0} K^0_S$ decay. The observation of this decay allowed to determine precisely the mass difference $M(B^{*+}) - M(B^+)$. More recently, using the full CDF run II sample, the CDF Collaboration released a study of orbitally excited B mesons [6], which included the updated measurements of the $B^{*0}_{s1,2}$ properties. All the described analyses used only the decays into a charged B meson and a kaon to reconstruct the $B^{*0}_{s1,2}$ candidates, while report the search for the decays into a neutral B meson and a neutral kaon.

2. Data and event selection

The analysis uses the data sample collected by the CMS experiment in proton-proton collisions at $\sqrt{s} = 8$ TeV, corresponding to an integrated luminosity of about 20 fb$^{-1}$. The B^+ and B^0 candidates are obtained using the decays $B^+ \rightarrow J/\psi K^+$ and $B^0 \rightarrow J/\psi K^+(892)^0 (K^{*0} \rightarrow K^{+} \pi^-)$, where the J/ψ meson is reconstructed via its dimuon decay, using the muon pairs that triggered the event readout. The standard requirements are applied on the muon and track quality and
muon identification. The B meson vertices are required to be significantly displaced from the pp interaction vertex and the B meson momentum is required to be collinear with the direction from the pp interaction vertex to the B meson vertex. In case of B^0 \rightarrow J/\psi K^{0*}, additional selections are imposed, requiring the K^+\pi^- candidate to be consistent with the K^*(892)0 resonance and to be inconsistent with the \phi(1020) \rightarrow K^+K^- decay (where one of the kaons is misreconstructed as a pion candidate). The B^0K^- candidates are obtained by adding a track, originating from the same primary vertex as the B^+ candidate, to the selected B^+ candidate. The K_S^0 candidates are selected from significantly displaced from the pp interaction region two-track vertices, consistent with the K_S^0 \rightarrow \pi^+\pi^- decay. The selected K_S^0 candidates are combined with B^0 candidates yielding the B^0K_S^0 candidates.

3. Study of the B^+K^- invariant mass distribution
The selected B^+K^- sample includes a contribution from the excited B^0 mesons decaying into B^+ and a charged pion, as illustrated in Fig. 1, where the \mb_{B^+\pi^-} is obtained in the same data set by assigning the pion mass to the selected K^- candidate.

![Figure 1. The two-dimensional distribution of \mb_{B^+\pi^-} : \mb_{B^+K^-} observed in data [2]. The vertical bands correspond to the decays B_s^*(5747)0 \rightarrow B^+K^-, B_s^*(5840)0 \rightarrow B^{**}K^-, and B_{s1}(5830)0 \rightarrow B^{**}K^-, while the horizontal bands are related to the decays B_s^*(5747)0 \rightarrow B^+\pi^-, B_s^*(5747)0 \rightarrow B^{**}\pi^-, and B_1(5721)0 \rightarrow B^{**}\pi^-.

The horizontal bands in Fig. 1 indicating the enhancements in the B^+\pi^- invariant mass distribution are related to the decays of excited B^0 mesons: B_s^*(5747)0 \rightarrow B^+\pi^-, B_s^*(5840)0 \rightarrow B^{**}\pi^-, and B_1(5721)0 \rightarrow B^{**}\pi^- . In order to account for them, the simulated samples of these decays are analyzed. The reconstructed B^+K^- invariant mass distributions, where the kaon candidate corresponds to the pion from the three mentioned above excited B^0 decays, are shown in Fig. 2. They are modelled by the smooth functions, and the obtained shapes are used in the fit to B^+K^- invariant mass distribution in data. The magnitude of the contributions from the B_S^*(5747)0 \rightarrow B^+\pi^-, B_S^*(5747)0 \rightarrow B^{**}\pi^-, and B_1(5721)0 \rightarrow B^{**}\pi^- decays are estimated from an unbinned maximum-likelihood fit to the B^+\pi^- invariant mass distribution in data and are found to be about 10,000 events for each of the three mentioned above decays.

Figure 3 (left) presents the measured invariant mass distribution of the selected B^+K^- candidates with the fit results overlaid. The combinatorial background is modelled with a smooth function, while the three signals, corresponding to the decays B_s^*(5840)0 \rightarrow B^{**}K^-, B_s^*(5840)0 \rightarrow B^{**}K^-, and B_{s1}(5830)0 \rightarrow B^{**}K^-, are described with the relativistic Breit-Wigner (RBW) functions convoluted with the resolution (found from the simulation). The results of the fit are used in the relative branching fraction measurements, as well as in the determination of the mass differences, as described below.
Figure 2. Shapes of the B^+K^- invariant mass distributions reconstructed from the simulated decays [7]: (top left) $B_s^2(5747)^0 \rightarrow B^+\pi^-$, (top right) $B_s^2(5747)^0 \rightarrow B^+\pi^-$, (bottom) $B_s^2(5747)^0 \rightarrow B^+\pi^-$. Red lines show the results of the fits.

Figure 3. The B^+K^- (a) and $B^0K_S^0$ (b) invariant mass distributions observed in data [2].

4. Study of the $B^0K_S^0$ invariant mass distribution
Figure 3 (right) shows the invariant mass distribution of the selected $B^0K_S^0$ candidates with the fit results overlaid. Similar to the B^+K^- channel, the three RBW functions convolved with resolution functions are used to describe the three signals: $B_s^2(5840)^0 \rightarrow B^0K_S^0$, $B_s^2(5840)^0 \rightarrow B^{*0}K_S^0$, and $B_s(5830)^0 \rightarrow B^{*0}K_S^0$. The charged pion and kaon may be swapped in the $B^0 \rightarrow J/\psi K^+\pi^-$ reconstruction, which leads to narrow peaks at the same $m_{B^0K_S^0}$ value, as
found in simulation. The fraction of events where this happens is estimated from the fit to J/ψK⁺π⁻ invariant mass distribution to be around 19%. The contributions from from the signal decays with swapped kaon and pion in the B⁰ reconstruction are included in m_{BDKS} fit model. The results of this fit are used in the calculation of the branching fraction ratios and in the measurements of the mass differences, as described below.

5. Measured quantities and corresponding systematic uncertainties

The signal yields extracted from the fits to the B⁺K⁻ and B⁰K⁰S invariant mass distributions are used to determine the relative branching fractions R⁺, R⁻, R⁺, R⁻, R⁺, and R⁻, defined as:

\[R^± = \frac{B(B_s^+ \to B^0 K^±)}{B(B_s^0 \to B^± K^-)} \]

These ratios are calculated as the ratios of the corresponding signal yields observed in data corrected for the ratio of total efficiencies and, in case of R⁺ and R⁻, for the branching fractions of the intermediate decays involved (B(B⁺ → J/ψK⁺), B(B⁰ → J/ψK⁰), B(K⁺⁰ → K⁺π⁻), and B(K⁰S → π⁺π⁻)). For example,

\[R^± = \frac{B(B_s^+ \to B^0 K^±)}{B(B_s^0 \to B^± K^-)} = \frac{N(B_s^+ \to B^0 K^±)}{N(B_s^0 \to B^± K^-) \times \frac{\epsilon(B_s^+ \to B^0 K^+) \times B(B^+ \to J/ψK^+)}{\epsilon(B_s^0 \to B^0 K^+) \times B(B^0 \to J/ψK^0) \times B(K^0 \to K⁺π⁻) \times B(K^0 \to π⁺π⁻)}. \]

In addition, the mass differences between the neutral and charged B mesons are measured using the following equations:

\[M(B^0) - M(B^+) = \Delta M^±_{B_s^+} - \Delta M^0_{B_s^0} + M(K^-) - M(K_S^0) \]

\[M(B^0) - M(B^+) = \Delta M^±_{B_s^+} - \Delta M^0_{B_s^0} + M(K^-) - M(K_S^0) \]

where the mass differences ΔM^±_{B_s^+}, ΔM^0_{B_s^0}, ΔM^±_{B_s^+}, and ΔM^0_{B_s^0} denote the values obtained from the fits to the B⁺K⁻ and B⁰K⁰S invariant mass distributions:

\[\Delta M^±_{B_s^+} = M(B_s^+ - m_{PDG}^{B_s^+} - m_{PDG}^{K^-}), \quad \Delta M^±_{B_s^0} = M(B_s^0 - m_{PDG}^{B_s^0} - m_{PDG}^{K^-}) \]

\[\Delta M^0_{B_s^+} = M(B_s^+ - m_{PDG}^{B_s^+} - m_{PDG}^{K^-}), \quad \Delta M^0_{B_s^0} = M(B_s^0 - m_{PDG}^{B_s^0} - m_{PDG}^{K^-}). \]

The considered systematic uncertainties in the measured branching fraction ratios, mass differences and the B_s^0 natural width, are related to:

- The choice of the fit model;
- The track reconstruction efficiency;
- The invariant mass resolution uncertainty;
- The uncertainty in the fraction of events where kaon and pion are swapped in the B⁰ → J/ψK⁺π⁻ decay reconstruction;
• The fraction of non-K*(892)^0 contribution in the selected B^0 \rightarrow J/\psi K^+\pi^- candidates;
• Finite size of the simulation samples;
• The uncertainties in the known mass differences M(B^{*+}) - M(B^+) and M(B^{*0}) - M(B^0);
• The possible misalignment of the detector;
• The shift in the measured masses introduced by the reconstruction algorithms.

The obtained systematic uncertainties are up to 20% for the ratios of branching fractions, up to 0.1 MeV for the measured mass differences, and 0.3 MeV for the measured natural width $\Gamma_{B_s^*(5840)^0}$.

6. Results
The measured branching fraction ratios are

$$R^{0+}_{2} = \frac{B(B^*_{s2} \rightarrow B^0 K^0_S)}{B(B^*_{s2} \rightarrow B^0 K^-)} = 0.432 \pm 0.077 \text{ (stat)} \pm 0.075 \text{ (syst)} \pm 0.021 \text{ (PDG)},$$

$$R^{0+}_{1} = \frac{B(B_{s1} \rightarrow B^0 K^0_S)}{B(B_{s1} \rightarrow B^0 K^-)} = 0.492 \pm 0.122 \text{ (stat)} \pm 0.068 \text{ (syst)} \pm 0.024 \text{ (PDG)},$$

$$R^{+}_{2} = \frac{B(B^*_{s2} \rightarrow B^{*+} K^-)}{B(B^*_{s2} \rightarrow B^{+} K^-)} = 0.081 \pm 0.021 \text{ (stat)} \pm 0.015 \text{ (syst)},$$

$$R^{0}_{2} = \frac{B(B^*_{s2} \rightarrow B^{*0} K^0_S)}{B(B^*_{s2} \rightarrow B^{0} K^0_S)} = 0.093 \pm 0.086 \text{ (stat)} \pm 0.014 \text{ (syst)},$$

$$R^{0}_{S} = \frac{\sigma(pp \rightarrow B_{s1}X) \times B(B_{s1} \rightarrow B^{*+} K^-)}{\sigma(pp \rightarrow B_{s2}X) \times B(B^*_{s2} \rightarrow B^{+} K^-)} = 0.233 \pm 0.019 \text{ (stat)} \pm 0.018 \text{ (syst)},$$

$$R^{0}_{F} = \frac{\sigma(pp \rightarrow B_{s1}X) \times B(B_{s1} \rightarrow B^{*0} K^0_S)}{\sigma(pp \rightarrow B_{s2}X) \times B(B^*_{s2} \rightarrow B^{0} K^0_S)} = 0.266 \pm 0.079 \text{ (stat)} \pm 0.063 \text{ (syst)},$$

where the first uncertainties are statistical, the second systematic, and the third are due to the uncertainties in the world-average branching fractions. The third and fifth ratios are consistent with the previous measurements of LHCb [5] and CDF [6] Collaborations.

The results for the mass differences are

$$\Delta M_{B^*_{s2}B_{s1}} = M(B^*_{s2}) - m_{B^{*+}_{PDG}} - m_{K^-_{PDG}} = 66.870 \pm 0.093 \text{ (stat)} \pm 0.073 \text{ (syst)} \text{ MeV},$$

$$\Delta M_{B^*_{s1}B_{s1}} = M(B_{s1}) - m_{B^{+}_{PDG}} - m_{K^-_{PDG}} = 10.452 \pm 0.089 \text{ (stat)} \pm 0.063 \text{ (syst)} \text{ MeV},$$

$$\Delta M^0_{B^*_{s2}B_{s1}} = M(B^*_{s2}) - m_{B^0_{PDG}} - m_{K^0_{PDG}} = 62.37 \pm 0.48 \text{ (stat)} \pm 0.07 \text{ (syst)} \text{ MeV},$$

$$\Delta M^0_{B^*_{s1}B_{s1}} = M(B_{s1}) - m_{B^0_{PDG}} - m_{K^0_{PDG}} = 5.61 \pm 0.23 \text{ (stat)} \pm 0.06 \text{ (syst)} \text{ MeV},$$

$$M(B^0) - M(B^+) = 0.57 \pm 0.49 \text{ (stat)} \pm 0.10 \text{ (syst)} \pm 0.02 \text{ (PDG)} \text{ MeV},$$

$$M(B^{*0}) - M(B^{*+}) = 0.91 \pm 0.24 \text{ (stat)} \pm 0.09 \text{ (syst)} \pm 0.02 \text{ (PDG)} \text{ MeV},$$

where the second, fourth, and sixth mass differences are measured for the first time. The first two of these values are used together with the known masses of B and K mesons to obtain the $B_{s1,2}^{(*)}$ masses:

$$M(B^*_{s2}) = 5839.857 \pm 0.093 \text{ (stat)} \pm 0.073 \text{ (syst)} \pm 0.151 \text{ (PDG)} \text{ MeV},$$

$$M(B_{s1}) = 5828.779 \pm 0.089 \text{ (stat)} \pm 0.063 \text{ (syst)} \pm 0.275 \text{ (PDG)} \text{ MeV},$$

where the last uncertainties are from the uncertainties in the world-average masses and mass differences. The $B^*_{s2}(5840)^0$ natural width is determined to be

$$\Gamma_{B^*_{s2}(5840)^0} = 1.52 \pm 0.34 \text{ (stat)} \pm 0.30 \text{ (syst)} \text{ MeV}.$$
7. **Summary**

In summary, the excited states of the B^0_s meson are studied in the B^+K^- and $B^0K^0_S$ decay channels using the data sample of about 20 fb$^{-1}$ collected by the CMS experiment at the LHC in proton-proton collisions at $\sqrt{s} = 8$ TeV. The $B^*_s(5840)^0 \rightarrow B^0K^0_S$ decay is observed for the first time and the evidence for the $B_{s1}(5830)^0 \rightarrow B^0K^0_S$ decay is found. The measured properties of $B_{s1,2}^{(*)}$ mesons include masses, mass differences with respect to the sum of B meson and kaon mass, branching fraction ratios, and the $B^*_s(5840)^0$ natural width. We also report the first measurement of $M(B^0) - M(B^{*+})$.

Acknowledgments

The author’s work was supported by the Russian Competitiveness Program of the National Research Nuclear University Moscow Engineering Physics Institute. The author would like to thank the ICPPA 2018 conference organizers for the excellent program and organization, as well as for the opportunity to present these new results.

References

[1] Chatrchyan S et al. (CMS Collaboration) 2008 *JINST* 3 S08004
[2] Sirunyan A M et al. (CMS Collaboration) 2018 *Eur. Phys. J. C* 78 939 (Preprint 1809.03578)
[3] Aaltonen T et al. (CDF Collaboration) 2008 *Phys. Rev. Lett.* 100 082001 (Preprint 0710.4199)
[4] Abazov V M et al. (D0 Collaboration) 2008 *Phys. Rev. Lett.* 100 082002 (Preprint 0711.0319)
[5] Aaij R et al. (LHCb Collaboration) 2013 *Phys. Rev. Lett.* 110 151803 (Preprint 1211.5994)
[6] Aaltonen T A et al. (CDF Collaboration) 2014 *Phys. Rev. D* 90 012013 (Preprint 1309.5961)
[7] CMS Collaboration 2018 Tech. Rep. CMS-PAS-BPH-16-003 CERN Geneva URL: https://cds.cern.ch/record/2621562