Designing A Zener Diode Using Ag$_2$O$_{(1-x)}$ZnO$_{(x)}$/Psi Structures Deposited by Laser Induced Plasma Technique

Raied K. Jamal1, Falah Hassen Ali1, Mohammed M. Hameed2, Kadhim Abdulwahid Aadim1

1 Physic Department of Physic, College of Science, University of Baghdad, Iraq
2 Ministry of Higher Education and Scientific Research

Received: 28/10/ 2019 Accepted: 15/3/2020

Abstract

In this paper Zener diode was designed by mixing three mixing ratios of Ag$_2$O$_{(1-x)}$ZnO$_{(x)}$, where x is 0.5, 0.3, and 0.1, that are deposited on a p-type porous silicon using laser induced plasma technique at room temperature (RT). The results of the Zener diode showed a decrease in knee and Zener voltage when the mixing ratio of Ag$_2$O$_{(1-x)}$ZnO$_{(x)}$ structure was increased.

Nanofilms of 200nm thickness were prepared from pure ZnO and Ag$_2$O as well as Ag$_2$O$_{(1-x)}$ZnO$_{(x)}$ with three maxing ratios and deposited on glass slides at RT to analyze the structure and optical properties. The structures of Ag$_2$O and Ag$_2$O$_{(1-x)}$ZnO$_{(x)}$ showed high absorbance in the visible region with redshift in spectra when the mixing ratio was increased, while ZnO had a high absorbance in the ultraviolet region. It is concluded that when the value of x increases the energy gap value for the Ag$_2$O$_{(1-x)}$ZnO$_{(x)}$ structure decreases.

Keywords: ZnO nanostructure, Ag$_2$O nanostructure, Zener diode, laser induced plasma.

In this paper Zener diode was designed by mixing three mixing ratios of Ag$_2$O$_{(1-x)}$ZnO$_{(x)}$, where x is 0.5, 0.3, and 0.1, that are deposited on a p-type porous silicon using laser induced plasma technique at room temperature (RT). The results of the Zener diode showed a decrease in knee and Zener voltage when the mixing ratio of Ag$_2$O$_{(1-x)}$ZnO$_{(x)}$ structure was increased.

Nanofilms of 200nm thickness were prepared from pure ZnO and Ag$_2$O as well as Ag$_2$O$_{(1-x)}$ZnO$_{(x)}$ with three maxing ratios and deposited on glass slides at RT to analyze the structure and optical properties. The structures of Ag$_2$O and Ag$_2$O$_{(1-x)}$ZnO$_{(x)}$ showed high absorbance in the visible region with redshift in spectra when the mixing ratio was increased, while ZnO had a high absorbance in the ultraviolet region. It is concluded that when the value of x increases the energy gap value for the Ag$_2$O$_{(1-x)}$ZnO$_{(x)}$ structure decreases.

Keywords: ZnO nanostructure, Ag$_2$O nanostructure, Zener diode, laser induced plasma.
Introduction

ZnO is a semiconductor material that has numerous applications because of its direct and high energy gap (equal to 3.3 eV) near to the UV region [1-5]. ZnO has plentiful opto-electronic applications in solar cells, spintronics [6-10], and laser diodes (LDs) [11]. It is an n-type semiconductor material due to its inner structural flaws such as oxygen and zinc spaces or interstitial situations in the lattice [12]. Ag_{2}O is a p-type semiconductor with a bandgap of about 1.3 eV. Ag_{2}O is a tiny dark brown powder used to initialize other silver compounds [13-15].

Numerous mechanisms were utilized to manufacture nanostructured thin films from ZnO/Ag_{2}O, such as thermal evaporation [16] and sputtering [17], while the laser-induced plasma (LIP) is considered as one of the most common and attractive techniques [18]. Among the most important advantages of LIP technology is the ease of obtaining homogeneous films with multiple layers and different materials and compounds. Moreover, the films produced by this technology have a homogeneous distribution.

Zener binaries are involved in the manufacturing of most modern electronic circuits and may be considered as one of the basic units in their construction. One of their most prominent uses is to protect the circuitry from overvoltage. In this paper, a Zener diode was designed by mixing three mixing ratios of Ag_{2}O_{1-x}ZnO_{x}, where x has value of 0.5, 0.3, and 0.1, that is deposited on a p-type of porous silicon using laser induced plasma technique at RT.

Experimental details

In this study, ZnO and Ag_{2}O nanopowders with a purity of 99.99% with three mixing ratios (x=0.5, 0.3, and 0.1) were pressed as a tablet using piston. The ZnO and Ag_{2}O mixture tablets were 2 cm in diameter and 1 cm in thickness. Glass substrates of 2.5 x 7.5 cm^2 were cleaned by an ultrasonic device using water for 10 min and then acetone for 10 min, followed by drying out in an oven. Pure ZnO, pure Ag_{2}O, and Ag_{2}O_{1-x}ZnO_{x} nanofilms were precipitated on glass slides using LIP technique at RT, as shown in Figure-1. The LIP deposition parameters maintained for the preparation of all films are given in Table 1. To determine the thickness of the prepared films, the optical interferometer method was used. The thickness of each of the pure ZnO, pure Ag_{2}O, and Ag_{2}O_{1-x}ZnO_{x} films was 200 nm. The structural properties of all nanofilms were examined using X-ray diffraction system, while their optical properties were examined using UV/Visible SP-8001 spectrophotometer.

The Zener diode was designed after deposition of Ag_{2}O_{1-x}ZnO_{x} on the p-type porous silicon which was prepared after leaving the silicon wafer in hydrofluoric acid (HF) for 20 min. The schematic diagram of p-n structure (Zener diode) is shown in Figure-2.

The electrical measurements for the heterojunctions, including the current-voltage characteristic measurements, are shown in Figure-3 at both states of forward and reversed bias.

Results and discussion

The XRD patterns of pure ZnO, pure Ag_{2}O, and Ag_{2}O_{1-x}ZnO_{x} nanofilms at x=0.5 and RT showed polycrystalline structure, as shown in Fig.(4). Table (2) demonstrates the five strongest peaks with fixing diffraction angle values, FWHM, grain size, and Meller’s indices of the prepared nanofilms. The grain size of the crystal structure can be calculated using Scherr’s equation [19]:

\[\tau = \frac{K\lambda}{\beta \cos \theta} \]

where (K) is a shape factor that is close to unity, (\lambda) is the X-ray wavelength, (\beta) is the line broadening of full width at half the maximum intensity (FWHM) in radians, and (\theta) is the Bragg angle. The sharp peaks at 100, 002, and 101 demonstrated the hexagonal-wurtzite structure of ZnO, while the peaks at 111 and 200 represented the cubic structure of Ag_{2}O. Fig(4) shows the x-ray diffraction of Ag_{2}O_{1-x}ZnO_{x} structure, where a set of strong diffraction pecks of two materials (coexisting composites) appears.

Figure-5 shows the absorbance spectra as a function of wavelength of pure ZnO, pure Ag_{2}O, and Ag_{2}O_{1-x}ZnO_{x} nanofilms with three mixing ratios, deposited on glass substrate using laser induced plasma at RT, where negligible scattering is assumed. It can be noticed from this figure that the absorbance spectra were generally high in the ultraviolet regions at 200 nm for pure ZnO, 344 nm for Ag_{2}O, and 385 nm for the mixed Ag_{2}O_{1-x}ZnO_{x} structure. The red shift behavior occurred when the mixing ratio (x) increased. The optical absorption coefficient (\alpha) was calculated as follows [20]:

\[\alpha = 2.303 \text{ Absorbance} / \text{thickness of film} \]
The thickness of the prepared nanofilms was 200 nm. The absorption spectrum increases with increasing the mixing ratio \(x \), leading to increased \(\text{ZnO} \) crystals, which absorb photon energy. The \((\alpha h\nu)^2 \) as a function of photon energy for all nanofilms is shown in Figure-6. The variation of \((\alpha h\nu)^2 \) is estimated by the Tauc’s Equation[21]:

\[
(\alpha h\nu) = A (h\nu - E_g)^n
\]

where \(\alpha \) is the absorption coefficient, \(A \) is a constant, \((h\nu) \) is the incident photon energy, and \((E_g) \) is the optical energy bandgap. This equation used a value of \(n=1/2 \) for direct transition [8]. The extrapolation of the linear part of the plot \((\alpha h\nu)^2 = 0\), which gives rise to the estimation of the \(E_g \) value of all prepared nanofilms. Table-3 shows the \(E_g \) values of all prepared samples, where the \(E_g \) was decreasing with increasing the mixing ratio \(x \), which indicates obtaining a redshift.

Figure-7 reveals that the \(n \) value was increased with increasing the wavelength of the pure \(\text{ZnO} \) at a range from 200 nm to 380 nm, whereas it was fixed at 2.4 approximately after that. While the \(n \) value of the pure \(\text{Ag}_2\text{O} \) was increased after 460 nm with increasing the wavelength to 600 nm and then fixed at around 2.6. The refractive index spectra of \(\text{Ag}_2\text{O}(1-x)\text{ZnO}(x) \) structure decreased with the increase in \(x \) (see table 3).

The real part of the dielectric constant value depends on the refractive index \((n) \) and the extinction coefficient \((K) \), as in the equation below [22]:

\[
\varepsilon_r = n^2 - k^2
\]

but the imaginary part depends on the refractive index \((n) \) only.

\[
\varepsilon_i = 2nk
\]

where \((\varepsilon_r) \) is the real part and \((\varepsilon_i) \) is the imaginary part of the dielectric constant. The spectrum of the excited electron can be explained by the dielectric constant (real and imaginary parts), where the imaginary part represents the absorption of energy from the electric field because of the molecules that possess the bipolar moment in the material, whereas the real part represents the low speed of light in the material.

Figures-(8 and 9) show the spectra of real and imaginary parts of the dielectric constant of all nanofilms. A Zener diode is a type of diode that allows the current to flow in the conventional manner from its anode to its cathode, i.e. when the anode is positive with respect to the cathode. When the voltage across the terminals is reversed and the potential reaches the Zener voltage (or "knee"), the junction will breakdown and the current will flow in the reverse direction, which is a desired characteristic. By connecting the electronic circuit as in Fig(3) and plotting the current-voltage characteristic, Fig(10) was obtained. In Fig (10), the greater the value of \(x \), the knee voltage or the Zener voltage will decrease, i.e. the relationship between them is inverse.

When looking at the circuit for the Zener diode in the reverse bias case, the voltage in a certain area is almost constant with the flow current. This area is called the breakdown region and the voltage in this region is called the breakdown voltage. But in the forward bias case, the diode acts as a normal diode. Also note that the diode will not work until it reaches a certain voltage value beyond the threshold.

Conclusions

The XRD profiles confirm that the composite is composed of a cubic-phase \(\text{Ag}_2\text{O} \) and a wurtzite-phase \(\text{ZnO} \). The activity dependence of the component revealed that the increased value of \(\text{Ag}_2\text{O} \) deposited on the composite greatly enhanced the photocatalytic activity. This can be attributed to the notion that the p-n junction in the composite effectively inhibited the recombination of electron–hole pairs.
Figure 1-Schematic diagram of LIP technique with \(\lambda = 532 \) nm.

Table 1-LIP parameters fixed for the deposited \(\text{Ag}_2\text{O}_{(1-x)}\text{ZnO}_{(x)} \) nanofilms.

Parameter	Value
Deposition technique	LIP
Deposition target	\(\text{Ag}_2\text{O}_{(1-x)}\text{ZnO}_{(x)} \) where \(x = 0.5, 0.3, \) and \(0.1 \)
Target to substrate distance	2 cm
Chamber pressure	\(2 \times 10^{-2} \) mbar
Substrate temperature	301 K
Wavelength of laser source	532 nm
Energy of pulse laser	700 mJ
NO. of laser pulse	300

Figure 2-Schematic diagram of the pn structure (Zener diode).

Figure 3-The circuit for I-V measurements for heterojunction. (a) Forward, (b) Reverse bias.
Figure 4-XRD patterns of pure ZnO, pure Ag2O and Ag2O(1-x)ZnO(x) nanofilms at x=0.5 and RT.

Table 2-The structural parameters like inter-planar spacing, crystallite size and miller of ZnO and Ag2O at RT

2θ (Deg.)	FWHM (Deg.)	G.S (nm)	hkl	Phase	Card No.
31.7742	0.3323	24.9	(100) Hex. ZnO	96-901-1663	
34.4449	0.3797	21.9	(002) Hex. ZnO	96-901-1663	
36.2659	0.2847	29.4	(101) Hex. ZnO	96-901-1663	
32.8465	0.31	31.6	(111) Cub. Ag2O	00-41-1104	
38.107	0.452	25.3	(200) Cub. Ag2O	00-41-1104	

Figure 5-Absorbance spectra of pure ZnO, pure Ag2O and Ag2O(1-x)ZnO(x) nanofilms at RT.
Figure 6-$a\nu$ spectra of pure ZnO, pure Ag2O and Ag$_2$O$_{(1-x)}$ZnO$_x$ nanofilms at RT.

Figure 7-Refractive index spectra of pure ZnO, pure Ag2O and Ag$_2$O$_{(1-x)}$ZnO$_x$ nanofilms at RT.

Figure 8-ε_i spectra of pure ZnO, pure Ag2O and Ag$_2$O$_{(1-x)}$ZnO$_x$ nanofilms at RT.
Figure 9-\(\varepsilon_r\) spectra of pure ZnO, pure Ag\(_2\)O and Ag\(_2\)O\(_{1-x}\)ZnO\(_x\) nanofilms at RT.

Figure 10- I-V characteristics of Zener diode at (\(x=0.1\)-blue line, \(x=0.3\)-red line, and \(x=0.5\)-green line) at RT.

Table 3-The effect of the mixing ratio (\(x\)) on Zener and knee voltage and some optical properties at RT.

Structure	Zener voltage(V)	Knee voltage(V)	\(E_g\) (eV)	\(n\) at (vis. and inf.red)region--
Pure ZnO	--	--	3.3	2.44
Pure Ag\(_2\)O	--	--	1.87	2.66
\(x=0.1\)	13	12.06	1.62	2.1
\(x=0.3\)	9	10	1.45	1.99
\(x=0.5\)	7.64	8.7	1.44	1.96

References
1. Kowsari E. 2011. Sonochemically assisted synthesis and application of hollow spheres, hollow prism, and coralline-like ZnO nanophotocatalyst. *J Nanoparticle Res*, 13: 3363–3376.
2. Mang A, Reimann K and Rubenacke St. 1995. Band gap, crystal-field splitting, spin-orbit coupling, and exciton binding energies in ZnO under hydrostatic pressure. *Solid State Commun.* 94(4): 251.

3. Reynolds D C, Look D C, Jogai B, Litton C W, Cantwell G and Harsch W C. 1999. Valanced-band ordering in ZnO. *Phys. Rev. B.* 60: 2340.

4. Chen Y, Bagnall D, Koh H, Park K, Hiraga K, Zhu Z and Yao T. 1998. Plasma assisted molecular beam epitaxy of ZnO on c -plane sapphire: Growth and characterization. *J. Appl. Phys.* 84: 3912.

5. Raied K. Jamal, Mohammed A Hammed, Kadhim A, Adem. 2014. Optical properties of nanostructured ZnO prepared by a pulsed laser deposition technique. *Material letters,* 133: 31-33.

6. Look D. 2001. Recent advances in ZnO materials and devices. *Mater. Sci. Eng. B.* 80: 383.

7. Ozgur U, Alivov Y, Liu C, Teke A, Reshchikov M, Dogan S, Avrutin V, Cho S. and Morkoc H. 2005. A comprensive review of ZnO materials and devices. *J. Appl. Phys.* 98: 041301.

8. Ogale S. 2005. *Thin Films and Hetero structures for Oxide Electronics.* New York: Springer. E-book.

9. Nickel N. and Terukov E. 2005. *Zinc Oxide A Material for Micro- and Optoelectronic Applications.* Netherlands: Springer. E-book.

10. Jagadish C and Pearton S. 2006. *Zinc Oxide Bulk, Thin Films, and Nanostructures.* New York: Elsevier. E-book.

11. Sunayna B., Mohammad S, Muhammad M, Fan G and Jianlin L. 2016. An Sb-doped p-type ZnO nanowire based random laser diode. *IOP nanotechnology,* 27(6).

12. Reynolds D, Look D. and Jogai B. 1996. Optically pumped ultraviolet lasing from ZnO. *Solid State Commun.* 99(12): 873.

13. Holleman, A. F.; Wiberg, E. 2001. *Inorganic Chemistry.* Academic Press: San Diego. E-book.

14. Safa K. Mustafa, Raied K. Jamal. 2019. Studying the Effect of Annealing on Optical and Structure Properties of ZnO Nanostructure Prepared by Laser Induced Plasma. *Iraqi Journal of Science.* 60, (10): 2168.

15. Mundher, A. Hassan. 2012. Preparation and characterization ZnO nanoparticles and study of morphology at high temperature. *Iraqi Journal of Science.* 10(18): 17-23.

16. Sze M. 2012. *Semiconductor Devices: Physics and Technology.* 2nd Edition.

17. Windischman, H. 1992. Intrinsic stress in sputter-deposited thin film. *Crit. Rev. Sol. St.Mat.Sci.* 17(6): 547-596.

18. Douglas B. Chrisey and Graham K. 1994. *Pulsed laser deposition of thin films.* edited by John Wiley & Sons.

19. Muniz F, Miranda M, Morilla D, Sasaki J. 2016. The Scherrer equation and the dynamical theory of X-ray diffraction. *Acta Crystallogr A Found Adv.* 1: 385.

20. Goetzberger, A.1998. *Crystalline Silicon Solar Cells.* Chichester: John Wiley & Sons Ltd.

21. Tauc, J. 1968. Optical properties and electronic structure of amorphous Ge and Si. *Materials Research Bulletin.* 3: 37-46.

22. Vikass M. 1997. IEEE Standard Definitions of Terms for Radio Wave Propagation. IEEE Standards Board.