Recent advances on the removal of dyes from wastewater using various adsorbents: a critical review†

Soumi Dutta,a Bramha Gupta,b Suneel Kumar Srivastava,c* and Ashok Kumar Gupta*a

The rapid increase in toxic dye wastewater generated from various industries remains a severe public health issue and prime environmental protection concern, posing a major challenge to existing conventional water treatment systems. Consequently, various physicochemical and biological treatment processes have been studied, which exhibit varying removal abilities depending on their experimental constraints. Among them, adsorption is considered to be the most efficient due to its high removal efficiency, easy operation, cost-effectiveness, and recyclability of the adsorbents. Considering this, the present review article focused on presenting a comprehensive summary of the various types of adsorbents such as commercial activated carbon, metal oxide-based, carbon-based, metal–organic framework, and polymer-based adsorbents used in dye remediation of contaminated water. The effects of several critical factors such as initial dye concentration, solution pH, temperature, and adsorbent dose on the dye adsorption performance are also described. In addition, the adsorption mechanisms responsible for dye removal are explained based on electrostatic attraction, ion exchange, surface complexation, and π–π interactions. Finally, critiques, future perspectives, and a summary of the present article are given. Various adsorbents such as carbon-based materials, metal oxides, bio-adsorbents, and polymer-based materials, have been shown to be efficient for the removal of dye pollutants from wastewater. Thus, it is anticipated that dye removal by adsorption can provide a feasible solution for the treatment of dye-laden water.

1. Introduction

The rapid growth of the global population, climate change, and industrial development has significantly affected water quality, resulting in an increasing freshwater crisis worldwide. Considering this, various consumers and polluters of freshwater significantly contribute to freshwater depletion.1,2 Among them, the increasingly used dyes including methylene blue (MB), rhodamine B (RhB), methyl orange (MO), Congo red (CR), Disperse Violet 26, methyl red, and crystal violet are the most important sources of industrial pollutants originating from different industries such as the textile, cosmetic, leather, food, pharmaceutical, paint and varnish, and pulp and paper industries (Table 1).3–16 According to a recent estimate, about 70 lakh tons of dyes are produced annually worldwide.17 The release of this industrial waste dye into water jeopardizes human health and the environment. Consequently, research in this area is ongoing, which is obvious from the drastic upsurge in the number of research articles published on ‘Dye Removal’ in 2016–2020, as displayed schematically in Fig. 1.

The direct disposal of untreated dye-containing effluent into natural water bodies has an adverse effect on the photosynthetic activity in aquatic ecosystems.18 It creates mutagenic or teratogenic effects on aquatic organisms and fish species due to the existence of metals19 and aromatics.20 Further, the presence of dyes in the environment has mild to severe toxic effects on human health, including carcinogenic, mutagenic, allergic, and dermatitis effects, kidney disease.21 It has been reported that chromium-based dyes are generally complex in structure and cause carcinogenic effects on human health.22 Thus, the disposal of dyes in the environment contaminates the water bodies, subsequently affecting the water quality, aquatic life, and human health. Table 1 also describes the ecotoxicological effects of dyes on freshwater living organisms. The sources and pathways of various dye pollutants in water bodies are depicted in Fig. 2.
Type of dye	Example of chemical structure of dye	Examples of dyes	Dye application	Solubility in water	Ecotoxicological effects	Ref.
Acid dye	![Acid red 36](image1.png)	Acid yellow 36, Acid orange 7, Acid blue 83, Acid blue 7	Textile, leather, and pharmaceutical industries; nylon, wool, silk, and modified acrylcs	Water soluble	Vomiting, nausea, diarrhea, carcinogenic and mutagenic effects	3 and 72–75
Basic dye	![Basic blue 26](image2.png)	Methylene blue (MB), Basic red 1 or rhodamine 6G, Basic yellow 2	Paper, polyacrylonitrile modified nylons, and modified polyesters	Water soluble	Altering the chemical and physical properties of water bodies and causing detrimental effects to the flora and fauna	3, 72, 76 and 77
Direct dye	![Direct red 28](image3.png)	Congo red (CR), Direct red 28, Direct black 38	Coloring paper products	Water soluble	Toxic to aquatic animals and plants; carcinogenic; mutagenic, and dermatitis	3, 72 and 78–80
Vat dye	![Vat blue 1](image4.png)	Vat blue 1, Vat acid blue 74	Insoluble pigment, indigo, and natural fibers, cellulosic fibers	Water insoluble	Severely affects the quality and clearness of water resources such as lakes and rivers; dermatitis, allergic conjunctivitis, rhinitis, and other allergic reactions	3, 72, 73, 76, 81 and 82
Disperse dye	![Disperse red 60](image5.png)	Disperse red 9, Disperse violet 1, Disperse red 60	Polyester, nylon, cellulose acetate, and acrylic fibers		Mutagenic; carcinogenic; causes soil and water pollution	3, 72 and 83
Type of dye	Example of chemical structure of dye	Examples of dyes	Dye application	Solubility in water	Ecotoxicological effects	Ref.
----------------	---------------------------------------	------------------------	--	---------------------	---	---------
Nitro dye		Naphthol yellow (II)	Dye wool		Decreases light penetration and photosynthetic activity; carcinogenic and mutagenic	3, 72, 84
Chromophore of nitro dye						
Mordant dye		Mordant red 11, Mordant Black 17	Textile fibres such as wool, silk, and leather		Shows allergic reactions	3, 72, 85, 86
Reactive dye		C.I. reactive red 120, C.I. reactive red 147, C.I. reactive blue 19	Dyeing cellulosic, silk, and wool fibres	High and unwanted levels of dissolved solids in the effluent	Allergic reaction in eyes, skin, mucous membrane, and the upper respiratory tract	3 and 72
Sulphur dye		Sulfur brilliant green, Sulfur blue, Sulfur Black 1, Leuco Sulfur Black 1, Phthalic anhydride	Dyeing cellulosic fibres and cotton	Water insoluble	Skin irritation; itchy or blocked noses; sneezing and sore eyes; carcinogenic	3, 72, 76
Accordingly, researchers have focused on the remediation of dye wastewater using coagulation/flocculation, electrocoagulation, filtration, adsorption, ion-exchange, advanced oxidation processes (AOPs), activated sludge processes (ASP), sequencing batch reactors (SBR), membrane bioreactors (MBR), moving bed biofilm reactors (MBBR), and constructed wetlands (CW). The coagulation process involves the destabilization of charged suspended and colloidal impurities. The electrocoagulation method employs a direct current source between metal electrodes containing iron or aluminum submerged in dye-contaminated water. Metal ions create a wide range of coagulated species and metal hydroxides at a certain pH, which destabilize and agglomerate suspended particles or precipitates and adsorb dye molecules. In the filtration techniques, the separation of dissolved and suspended particles is carried out by sieving and particle capturing mechanisms. Adsorption methods involve the movement of solids from the bulk liquid to the surface of the adsorbent. The ion-exchange method involves the removal of dyes through the strong interactions between the functional groups on ion exchange resins and charged dye molecules.

Table 1 (continued)

Type of dye	Example of chemical structure of dye	Examples of dyes	Dye application	Solubility in water	Ecotoxicological effects	Ref.
Azo dyes		Direct Black 22, Disperse Yellow 7, Acid Orange 20, Methyl red, Methyl orange (MO), Trypan blue	Textile industry for dyeing process and food coloring	Causes carcinogenicity in humans and animals. If inhaled or swallowed, it affects the eye, skin, and digestive tract. Affects aquatic life if present in excess.	3, 15, 72, 73 and 87–90	

Fig. 1 Frequency of publications on dye removal with selected keyword ‘Dye Removal’ (details are given in Section A of the ESI†).

Fig. 2 Sources and pathways of dyes in the environment.
The formation of strong linkages between the resins and the dye molecules results in the separation of dyes from wastewater.29 The use of AOPs, such as ozonation, ultraviolet/hydrogen peroxide (UV/H$_2$O$_2$), Fenton, ultrasound, anodic oxidation, and photocatalytic processes, have been efficiently employed to treat dye wastewater. AOPs involve the formation of active radicals, which degrade targeted contaminants.35,37–43 The suspended and/or attached growth of bacterial systems (i.e., ASP, MBBR, SBR, CW, and MBR) have been employed in the biodegradation of dye molecules.44,45 The number of articles on various existing physicochemical and biological treatment techniques is shown in Fig. 3a, which confirms that among these technologies, adsorption is considered to be one of the most important and useful decontamination processes. It is considered to be a fast, low cost, simple, sludge-free process, having high efficiency and/or selectivity, mechanical stability, and recycling facilities.14,46–51 The adsorption process is widely used for the remediation of different pollutants from wastewater, including heavy metals, arsenic, and dyes.52–59 Additionally, a pie chart displaying the percentage of literature available on dye removal using various adsorption techniques is shown in Fig. 3b. Considering this, the present study aims to review dye removal from polluted water via the adsorption process using various types of adsorbents. Specifically, several adsorbents, including activated carbon, metal oxide-based, carbon-based, bio-adsorbent, metal–organic framework (MOF), and polymer-based materials, are widely applied for the adsorption of dye from polluted water.13,14,60–67 These adsorbents possess the advantages of easy fabrication, high effective surface area, multi-functionalities, high surface volume ratio, high reactivity, large number of active sites, reusability, low cost, and high efficiency to treat recalcitrant compounds.68,69

According to the available literature, several techniques such as chemical oxidation, coagulation, filtration with coagulation, precipitation, adsorption, and biological treatments have been frequently used to remove dyes from industrial and domestic effluents. However, the use of each of these methods in separation has merits and disadvantages. For example, coagulation is most commonly used method in industry, which does not involve the formation of harmful and toxic intermediates. However, inherent sludge formation and its disposal remain its biggest drawback. Further, the choice of method is also guided by operational costs. Considering this, the adsorption process is considered to be one of the most effective and inexpensive treatment processes to remove dyes in wastewater. Accordingly, the present article presents a review of the challenges and opportunities of the adsorption methodology available as the current state of the art in the removal of dyes from contaminated water. This covers the classification of dye effluents released from various industries, their solubility in water, chemical structures, and impact of these toxic compounds on the environment and human health, and the types of adsorbents used in the remediation of dyes are reviewed. This is followed by an updated review on the removal of different dyes using a variety of adsorbents. In addition, the adsorptive separation of dyes is also assessed in terms of the critical factors influencing dye separation, maximum adsorption capacity, adsorption mechanisms, and adsorption kinetics. It is anticipated that
the current review will be helpful in identifying cost-effective and efficient adsorption methods for the remediation of industrial dyes in wastewater. Finally, the present review also targets various research gaps and their possible solution.

2. Dyes: sources, classifications, and ecotoxicological effects

A dye is generally described as substances capable of imparting color through physical/chemical binding on a substrate to which it is applied. The presence of chromophores in dye accounts for the development of color, which auxochromes are attached to. Table 1 describes the classification of dyes based on their physicochemical properties, applications, ecotoxicological effects, and water solubility. These dyes exhibit aromatic molecular structures originating from hydrocarbons, such as benzene, toluene, naphthalene, anthracene, and xylene. Dyes are mainly derived from two significant sources, including natural and anthropogenic. The natural sources include plants, different insects, animals, and minerals, whereas synthetic dyes are man-made or manufactured using various organic molecules. However, the multifaceted applications of dyes in daily life involve their release together with other toxic organic/inorganic chemicals from industrial effluents, resulting in detrimental effects on the environment. Therefore, it is necessary to protect the environment from these toxic dye effluents released in water by subjecting them to various physical, chemical, biological treatments or their combinations. Fig. 2 shows the sources and pathways of different dyes originating from various sources, such as industry, wastewater treatment plants and households, contributing to environmental pollution. Dyes can be classified considering their chemical structure, physico-chemical attributes, origin, and applications. This classification also considers the extremely hazardous/toxic industrial effluents that are carcinogenic to human health and the environment. Accordingly, Table 1 describes acid, basic, reactive, nitro, vat, disperse, azo, mordant dyes, etc.

3. Existing treatment processes for the remediation of dyes

Previously, conventional treatment processes were employed using proper regulatory guidelines for the treatment of dyes in wastewater. However, advanced dye removal processes have been established considering the discharge limit. They include several biological (e.g., ASP, MBR, SBR, MBBR, and CW), coagulation/flocculation, and advanced physicochemical processes (such as adsorption, filtration, photocatalysis, Fenton reaction, ozonation, UV/H$_2$O$_2$, and anodic oxidation) reported for the purification of dye-contaminated wastewater. Biological processes use attached and suspended growth systems for the removal of dyes using aerobic and anaerobic or facultative bacteria. In the coagulation/flocculation process, various coagulants are employed to destabilize the charged suspended and colloidal impurities. The advanced physicochemical processes are based on the principle of the sieving process, solid–liquid separation, attraction–repulsion, free radical reactions, catalytic oxidation, and electrochemical reactions. Adsorption is another simple facile process extensively used in the treatment of industrial dye effluents. This process involves the movement of dye molecules present in the liquid phase to a solid surface of various adsorbents. Membrane processes such as reverse osmosis (RO), nanofiltration (NF), and microfiltration (MF) have also been successfully employed in the treatment of dye–laden water (more than or about 90% removal efficiency). However, pore blockage and membrane fouling during these processes are still major drawbacks. In AOPs, active radicals are generated, mainly hydroxyl radicals, which play an important role in degrading persistent dye compounds. However, the high cost/energy requirements and the formation of toxic by-products are a few major constraints in their practical application.

In addition, biological processes, such as ASP, MBR, SBR, and MBBR, have shown good efficacy for dye removal. However, the good removal efficiency of dyes by biological processes is overshadowed by their limitations such as space requirements, low removal rate, and inefficiency to treat recalcitrant dye components. The number of articles published on various existing physicochemical and biological processes are compared and shown in Fig. 3a, which presents that adsorption is the most studied process for dye removal. Overall, it can be inferred that in comparison to the existing advanced oxidation, filtration, and biological treatment processes, the adsorption process is beneficial for treating dye wastewater owing to its easy operation, low cost, high efficiency, recycling of the adsorbents, suitability for the treatment of persistent dye compounds and applicability.

4. Overview of various adsorbents for the removal of dyes

At present, various adsorbents such as bio-sorbents, carbon-based nano-adsorbents, transition metal-based oxides, MOFs, and polymer-based adsorbents are used to treat dye-containing wastewater. The pie-chart in Fig. 3b displays the percentage of the literature available on dye removal using various adsorbents, where it can be observed that adsorbents such as polymer-based materials and activated carbon are studied more for the removal of dyes.

The possible responsible mechanisms (i.e., surface complexation, electrostatic interaction, and van der Waals force) and processes (i.e., surface diffusion and intraparticle pore diffusion) for the adsorption of dyes are discussed and shown in Tables 2–7. The detection wavelengths for the targeted dyes in the reported studies are also mentioned in Tables 2–7, which may be helpful for readers to measure the concentrations of these dyes. In the following sections, the above-mentioned adsorbents are discussed in detail. The classes of dye molecules, their ecotoxic effects, adsorptive removal of dyes using various classes of adsorbents together with their sub-categories, the critical influencing factors, and responsible adsorption mechanisms are displayed as a flow chart in Fig. 4.
4.1. Activated carbon

Activated carbon-based adsorbents are widely studied in the field of adsorption owing to their robust chemical stability, low density, structural diversity, and suitability for field-scale applications. These unique characteristics generally originate from their internal pore morphology, surface characteristics, porosity, pore volume, chemical structure, and presence of functional groups from their source material, including their activation.102–104 The commercial activated carbon and activated carbon synthesized from various waste materials are discussed in the subsequent section.

4.1.1 Commercial activated carbon. Researchers have reported the use of various commercial activated carbons as adsorbents for the separation of different dyes from wastewater.62,105,106 For instance, Malik (2004) developed an effective carbon-based adsorbent from mahogany sawdust and directly applied it to adsorb dyes. The experimental data well correlated with the Langmuir model, exhibiting an adsorption capacity of 518 and 327.9 mg g⁻¹ for Direct Blue 2B and Direct Green B dyes, respectively.105 In another study, Djilani et al. used activated carbon prepared from apricot stones and achieved an adsorption capacity of 36.68 and 32.25 mg g⁻¹ for MB and MO at a pH of 4.85 and 4.87, respectively. The corresponding adsorption data was found to be well correlated with the Langmuir isotherm.106 In another study, Rahman (2021) used activated carbon synthesized from red oak (i.e., Quercus rubra) for the adsorption of MB and observed adsorption efficiency of 97.18%.107 According to Giannakoudakis et al., the adsorption of Reactive Black 5 dye on the three different forms of commercial activated carbon, namely, Norit Darco 12 × 20 (DARCO), Norit R008 (R008), and Norit PK 1-3 (PK13) followed the Langmuir, Freundlich, and Langmuir–Freundlich models, achieving an adsorption capacity of 348, 527, and 394 mg g⁻¹ in 24 h by the corresponding commercial activated carbon as adsorbents, respectively.108 Activated carbon was also produced from spent tea leaves (STAC) to remove malachite green (MG), which showed an adsorption capacity of 256.4 mg g⁻¹ at 45 °C. These studies showed an increment in the adsorption of MG from aqueous solution up to pH 4 and then became more or less unaltered at higher pH.109

Fig. 4 Flow chart showing the classes of dye molecules, their ecotoxic effects, removal using different classes of adsorbents together with their sub-categories, critical influencing factors, and probable adsorption mechanisms.
4.1.2 Activated carbon from waste materials. Different waste materials such as lemongrass leaf, rice husk, orange peel, and spent tea leaves have been reported as important sources for deriving activated carbon, which can be effectively applied as adsorbents in dye remediation.106–114 For example, Ahmad \textit{et al.} utilized lemongrass leaf-based activated carbon to remediate methyl red from contaminated water. Their findings showed an optimum dye adsorption capacity of 76.923 mg g-1 at pH 2 within 5 h. An increase in the adsorption rate of methyl red dye was mainly observed with an increase in temperature, dye concentration, and contact time. Their thermodynamic study indicated that the adsorption of methyl red dye is endothermic and follows a physisorption process.110 In addition, Ding \textit{et al.} treated rhodamine B using activated carbon obtained from treated rice husk and achieved its equilibrium removal (478.5 mg g-1) within 5 h. The initial solution pH was found to have an insignificant effect on the adsorption of rhodamine B on the activated carbon.111 In another work, Lam \textit{et al.} reported an adsorption capacity of 28.5 mg g-1 while investigating the adsorption of MG cationic dye using activated carbon prepared from orange peel.112 Jawad \textit{et al.} prepared sulfuric acid-treated activated carbon derived from coconut leaves, exhibiting rough and irregular surfaces along with cavities, which was found to be a very effective adsorbent for MB dye (adsorption capacity: 149.3 mg g-1). It is also found that the adsorption capacity increased with an increase in the initial concentration of MB.115 In another study, chemical activated carbon (ACC) prepared from jute sticks (morphological image is shown in Fig. 5) showed an adsorption capacity of 480 mg g-1 for brilliant green dye.116 Guava leaf-based activated carbon exhibited a maximum adsorption capacity of 39.7 mg g-1 to remove CR dye.117 Low-cost activated carbon derived from Brazilian agriculture waste was also used for the adsorption of dyes, including Basic Blue 26, Basic Green 1, Basic Yellow 2, and Basic Red 1, which exhibited an adsorption capacity in the range of 10–76 mg g-1, 26–83 mg g-1, 27–83 mg g-1, and 21–70 mg g-1, respectively.118 The adsorption performance of commercial activated carbon and activated carbon derived from various waste materials for the treatment of dye-contaminated water is presented in Table 2.

![Morphological image of chemical activated carbon (ACC) prepared from jute sticks](image.png)

Table 2 Activated carbon (AC) as an adsorbent in dye removal

Source of AC	Dyes	Experimental conditions	Adsorption capacity/ removal efficiency	Adsorption kinetics; isotherm; and mechanisms
Commercial activated carbon	Direct Blue 2B and Direct Green B	Time: 120 min, pH: 3	518 and 327.9 mg g-1, respectively	Pseudo-second-order kinetics; Langmuir isotherm model; chemisorption
	Methylene blue (MB) and methyl orange (MO)	C_0: 10 mg L-1	Activated carbon prepared from apricot stones (ASAC): 36.68 and 32.25 mg g-1, respectively; Commercial activated carbon (CAC): 199.60 mg g-1 and 35.43 mg g-1, respectively.	Pseudo-second-order kinetics; Langmuir isotherm; chemisorption and intraparticle diffusion
Mesoporous carbon material	MO	Time: 60 min, C_0: 1000 mg L-1, Dose: 50 mg in 25 mL, pH: 3–9, λ_{max}: 665 and 465 nm, respectively	294.1 mg g-1	Pseudo-second-order kinetics; Langmuir isotherm; chemisorption
Red Oak (*Quercus rubra*)	MB	Time: 60 min, C_0: 10 mg L-1, Dose: 0.25 g/50 mL, pH: 10, T: 318 K, Agitation speed: 175 rpm, Time: 2 h, λ_{max}: 660 nm	97.18%	—
4.2. Non-conventional adsorbents

In recent years, several non-conventional adsorbents have been gaining substantial attention as potential economic alternatives of costly adsorbent materials to remove toxic pollutants. This includes the utilization of abundantly available agricultural, industrial, natural resources, bio wastes, etc. as waste materials. These waste materials prior to their application as adsorbents are subjected to various processes such as chemical treatment, conversion to powder form, and decomposition. Considering this, different waste materials to adsorb toxic dyes from contaminated water are described below.

4.2.1 Agricultural waste materials. Agricultural waste materials, such as raw maize cob, exhausted coffee ground powder, saw-dust, black cumin, neem leaf, pineapple leaf, and pine tree leaves, have been used by many researchers in dye remediation of contaminated water. Abubakar and Ibrahim (2019) used raw maize cob for the adsorption of bromophenol blue (96.5%) and bromothymol blue (94.4%) present in wastewater at the equilibrium time of 125 and 110 minutes, respectively. The effect of increasing the initial dye concentration on dye adsorption showed positive effects, and the dye adsorption followed the Temkin isotherm model. In another work, the adsorption of rhodamine B and rhodamine 6G on exhausted coffee ground powder achieved an adsorption capacity of up to 5.3 and 17.4 μmol g⁻¹, respectively. It was proposed that electrostatic, hydrophobic, and intermolecular interactions account for the adsorption of Rhodamine dye onto the adsorbent surface (Fig. 6). Sodium hydroxide-treated sawdust exhibited an adsorption
capacity of 55.86 mg g⁻¹ for brilliant green dye in 3 h.¹²¹ In a study by Siddiqui et al., an antimicrobial Nigella sativa seed-based manganese dioxide/black cumin (MnO₂/BC) nanocomposite was used for the adsorption of MB (adsorption capacity: 185.19 mg g⁻¹ at pH 7.0 and 318 K). The process of adsorption was endothermic and best described by the Langmuir isotherm. The adsorption mechanism involved hydrogen bonding and electrostatic interactions of MB onto the surface of MnO₂/BC.¹²³ Pineapple leaf powder,¹²⁵ pine tree leaves,¹²⁶ and Platamis orientalis leaf powder¹²⁷ as adsorbents achieved the maximum removal capacities of 48.72, 71.94, and 114.94 mg g⁻¹, corresponding to the contact time of 150, 120, and 70 min in the removal of Basic green 4, Basic red 46, and MB dye, respectively. Neem leaf powder was also used for the adsorption of brilliant green dye,¹²⁴ which showed 0.554 mmol g⁻¹ adsorption capacity within 240 min. Microwave-assisted spent tea leaves exhibited a maximum adsorption capacity of 242.72 mg g⁻¹ for Eriochrome black-T adsorption in a contact time of 24 h.¹¹³

4.2.2 Industrial waste materials. Various industrial wastes, including fly ash, slurry, and ceramic wastes, have been regularly used as adsorbents for dye removal from contaminated water.¹²⁸–¹³¹ Jain et al. used steel and fertilizer industrial waste as an adsorbent material for the adsorption of ethyl orange, metanil yellow, and Acid Blue 113 dyes. In this process, they achieved an adsorption capacity of 198, 211, and 219 mg g⁻¹, respectively.¹²³ Coal fly ash exhibited maximum removal efficiencies of more than 90% and up to 85% in 24 h for MB and crystal violet dyes, respectively.¹²⁹ Bhatnagar and Jain (2005) used carbonaceous slurry waste as an adsorbent to remove RhB and Bismark Brown R dye. They achieved an adsorption capacity of 91.1 and 85 mg g⁻¹ at a contact time of nearly 25 min for RhB and Bismark Brown R dye, respectively.¹³⁰ Ceramic adsorbents derived from industrial waste coal gangue achieved an adsorption capacity of 1.044 and 2.170 mg g⁻¹ for Cationic Red X-5GN and Cationic Blue X-GRRL dyes at a contact time of 180 min, respectively.¹³¹ The possible mechanisms displayed in Fig. 7 suggest electrostatic attraction, H-bonding, etc., playing an essential role in the adsorption of the X-5GN and X-GRRL dyes. Furthermore, industrial waste shells of eggs showed an adsorption capacity of 94.9 and 49.5 mg g⁻¹ in removing MB and CR, respectively.¹³²

4.2.3 Natural and synthetic clay. The easy availability, low cost, high porosity, high potential for ion exchange, and nontoxicity of several natural and synthetic clays have resulted in their significant use as adsorbents for dye removal from aqueous solution.¹³³–¹³⁶ For example, sulfuric acid-treated coal bearing kaolinite achieved a maximum adsorption capacity of MB dye corresponding to 101.5 mg g⁻¹.¹³³ In another work, the adsorptive behavior of RhB on sodium montmorillonite clay showed an adsorption capacity of 42.19 mg g⁻¹.¹³⁷ The adsorption process involved electrostatic attraction between the negatively charged adsorbent surfaces and positively charged cationic dye. Santos and Boaventura (2008) used sepiolite to remove Basic Red 46 and Direct Blue 85 dyes, achieving an adsorption capacity of 108 and 454 mg g⁻¹, respectively.¹³⁴ Acid-treated palygorskite was employed to remove crystal violet, cationic light yellow (7GL), MB, and MO dyes, exhibiting adsorption capacities of 223.43, 290.86, 86.53, and 276.11 mg g⁻¹, respectively.¹³⁶ Palygorskite modified by 3-aminopropyl triethoxysilane was successfully employed to remove reactive red 3BS, reactive blue KE-R, and reactive black GR dyes in 20 min with adsorption capacities of 34.23, 38.59, and 60.13 mg g⁻¹, respectively.¹³⁵ Kismir and Aroguz (2011) reported an adsorption capacity of 1.18 mg g⁻¹ for the adsorption of brilliant green dye on Saklikent mud as an adsorbent.¹³⁸ Flower-like¹³⁹ and hollow LDH¹⁴⁰ exhibited an adsorption capacity of 500.6 and 210 mg g⁻¹ in less than 10 min for methyl orange, respectively.

4.2.4 Bio-adsorbents. Significant advancement has been made in the field of dye removal from polluted water using biosorbents, such as Spirulina platensis, Penaeus indicus shrimp, cellulose, Ganoderma lucidum, wheat flour, and Graham flour.¹⁴¹–¹⁴⁶ According to Dotto et al., Acid Blue 9 and FD&C Red No. 40 were effectively adsorbed on the biosorbent synthesized from Spirulina platensis. The scanning electron microscopy (SEM) image of the Spirulina platensis biomass in Fig. 8 shows the presence of pores and cylindrical filaments on its surface, revealing the adsorption capability of Spirulina platensis. The experimental analysis showed a biosorption capacity of 400.3 and 1653.0 mg g⁻¹ for FD&C Red No. 40 and Acid Blue 9 dye, respectively, at initial solution pH of 2 and contact time of 100 min.¹⁴¹ The shell of Penaeus indicus shrimp was also found to be an effective adsorbent.
for Acid Blue 25, and dye biosorption fitted well with the pseudo-second-order model. The optimum condition of this dye adsorption corresponds to pH 2 and 0.1 g L\(^{-1}\) dose, resulting in an adsorption capacity of 1093 mg g\(^{-1}\). The adsorption capacities of 2.197, 2.120, 2.038, and 1.480 mg g\(^{-1}\) were achieved on neem sawdust for the removal of crystal violet, MB, MG, and RhB dyes, respectively, from contaminated water in 30 min. The adsorption capacities of 1201 and 1070 mg g\(^{-1}\) were observed within 3 h on cellulose nanocrystal-reinforced keratin for the adsorption of Reactive Black 5 and Direct Red 80, respectively. The adsorption process of both the dyes was well correlated with the Langmuir isotherm. Wu et al. used the spent substrate of *Ganoderma lucidum* for removing MG, safranine T, and MB dyes and observed the adsorption capacities of 40.65, 33, and 22.37 mg g\(^{-1}\), respectively, in 4 h. The adsorption performances of various non-conventional adsorbents are listed in Table 3.

Examples of adsorbents from industries	Dyes	Experimental conditions	Adsorption capacity/ removal efficiency	Adsorption kinetics; isotherm; and mechanisms
Neem leaf powder\(^{124}\)	Brilliant green	\(C_0\): 10–50 mg/dm\(^3\)		
Time: 4 h				
\(T\): 300 K				
\(\lambda_{max}\): 624 nm	0.149 to 0.554 mmol g\(^{-1}\)	First-order kinetics; Langmuir isotherm; external surface and pore diffusion		
Pineapple leaf\(^{25}\)	Basic green 4 (BG4)	\(C_0\): 50 mg L\(^{-1}\)		
\(pH\): 9.0				
Time: 150 min				
\(T\): 298 K				
\(\lambda_{max}\): 618 nm	48.72 mg g\(^{-1}\)	Pseudo-second-order kinetics; Langmuir isotherm; chemisorption		
Pine tree leaves\(^{126}\)	Basic Red 46 (BR 46)	\(C_0\): 20–100 mg L\(^{-1}\)		
Dose: 1–6 g L\(^{-1}\)				
\(T\): 298–318 K				
Time: 0–120 min				
\(\lambda_{max}\): 530 nm	71.94 mg g\(^{-1}\)	Pseudo-second-order kinetics; Langmuir isotherm; physisorption		
Platanus orientalis leaf\(^{127}\)	MB	\(C_0\): 20–180 mg L\(^{-1}\)		
Dose: 80 mg/50 mL				
\(T\): 25–60 °C				
Time: 0–70 min				
\(\lambda_{max}\): 664 nm	114.94 mg g\(^{-1}\)	Pseudo-second-order kinetics; Langmuir isotherm; endothermic adsorption		
Microwave-assisted spent black tea leaves\(^{113}\)	Eriochrome black T (EBT)	\(C_0\): 10–400 mg L\(^{-1}\)		
Dose: 0.25–5.0 g L\(^{-1}\)				
\(T\): 298–338 K				
Time: 24 h				
\(\lambda_{max}\): 518 nm	242.72 mg g\(^{-1}\)	Pseudo-second-order kinetics; Langmuir isotherm; physico-chemical interaction		
Rice husk\(^{148}\)	MB	\(C_0\): 100 mg L\(^{-1}\)		
Dose: 250 mg L\(^{-1}\)				
\(pH\): 10				
\(T\): 298 K				
\(\lambda_{max}\): 664 nm	1350 mg g\(^{-1}\)	Pseudo-first-order kinetics; Freundlich and Sips isotherm; electrostatic interaction		
Coal fly ash\(^{129}\)	MB and crystal violet (CV)	\(C_0\): 475 nm, 432 nm, and 332 nm, respectively		
Dose: 0.08 g L\(^{-1}\)				
Time: 24 h				
\(\lambda_{max}\): 665 nm and 590 nm, respectively	CV: > 90% MB: < 85%	Pseudo-second-order kinetics; Langmuir isotherm; endothermic adsorption for CV and exothermic reaction for MB dye.		
Examples of adsorbents	Dyes	Experimental conditions	Adsorption capacity/removal efficiency	Adsorption kinetics; isotherm; and mechanisms
---------------------------------------	-----------------------------	--	---------------------------------------	---
Amine-functionalized biomass fly ash	Alizarin red S (ARS) and	Time: 10 min and 5 min, respectively; \(\lambda_{\text{max}}: 422 \text{ nm} \) and \(432 \text{ nm} \), respectively	13.42 and 15.44 mg g\(^{-1}\), respectively	Linear pseudo-second-order kinetics; modified Langmuir–Freundlich isotherm; electrostatic interaction
	bromothymol blue (BTB)			First-order and pore-diffusion; Langmuir isotherm; physisorption
Carbonaceous slurry waste	RhB and Bismark Brown R	pH: 5.5–6.5; Time: \(\sim 25 \text{ min} \); \(\lambda_{\text{max}}: 554 \text{ nm} \) and \(460 \text{ nm} \), respectively	91.1 mg g\(^{-1}\) and 85 mg g\(^{-1}\), respectively	Pseudo-second-order kinetics; Freundlich isotherm for CR and Langmuir isotherm for CB dye; electrostatic attraction, n–π interactions, and hydrogen bonding
Industrial waste coal gangue	Cationic Red X-5GN (CR) and	Time: 3 h; pH: 2–12	1.044 mg g\(^{-1}\) and 2.170 mg g\(^{-1}\), respectively	Pseudo-second-order kinetics; Freundlich isotherm; Electrical double layer mechanism, and electrostatic attraction for MB and CR dye, respectively
	Cationic Blue X-GRRL (CB)			
Industrial waste shells of egg	MB and CR	\(C_0: 50–1000 \text{ mg L}^{-1} \); \(T: \) room temperature; Time: 10–120 min	94.9 mg g\(^{-1}\) and 49.5 mg g\(^{-1}\), respectively	
Natural and synthetic materials	Natural clay	Dose: 10 mg/100 mL; pH: 7; \(\lambda_{\text{max}}: 530 \text{ nm} \)	594 mg g\(^{-1}\)	Pseudo-second-order kinetics; Langmuir isotherm; electrostatic interactions, including hydrogen bonding
	Sodium montmorillonite	pH: 7; \(\lambda_{\text{max}}: 554 \text{ nm} \)	42.19 mg g\(^{-1}\)	Pseudo-second-order kinetics; Langmuir isotherm; high electrostatic attraction
	Austrazon Red (Basic Red 46) and Sirius Blue (Direct Blue 85)	\(C_0: 75 \text{ mg L}^{-1} \) and 150 mg L\(^{-1}\), respectively; pH: 8 and 3.5, respectively; \(T: 313 \text{ K} \) and \(303 \text{ K} \), respectively; \(\lambda_{\text{max}}: 525 \text{ nm} \) and 590 nm, respectively	108 mg g\(^{-1}\) and 454 mg g\(^{-1}\), respectively	Langmuir isotherm and Freundlich isotherm; physisorption
Acid-treated palygorskite	Crystal violet (CV), cationic light yellow (7GL), MB, and MO	\(C_0: \) CV, 7GL, MB, and MO, were 500, 500, 200, 500, and 200 mg dm\(^{-3}\), respectively; \(\lambda_{\text{max}}: 581, 415, 662, 463, \) and 642 nm, respectively	CV: 223.43 mg g\(^{-1}\)	Sips and Langmuir isotherm; bridging effect mechanism
	Palygorskite modified by 3-amino-propyl triethoxysilane	\(C_0: 20–600 \text{ mg L}^{-1} \); pH: 2–12; \(\lambda_{\text{max}}: 546 \text{ nm} \), 620 nm, and 602 nm, respectively	MB: 86.53 mg g\(^{-1}\) and MO: 276.11 mg g\(^{-1}\), 38.59 mg g\(^{-1}\), and 60.13 mg g\(^{-1}\), respectively	Pseudo-second-order kinetics; Langmuir isotherm; electrostatic attraction
	Reactive red 3BS, reactive blue KE-R, and reactive black GR	Time: 20 min; \(C_0: \) 20–600 mg L\(^{-1}\); pH: 2–12; \(\lambda_{\text{max}}: 546 \text{ nm} \), 620 nm, and 602 nm, respectively	34.23 mg g\(^{-1}\); 38.59 mg g\(^{-1}\), and 60.13 mg g\(^{-1}\), respectively	Pseudo-first-order kinetics and intra-particle model at 25 °C and pseudo-second-order kinetics at the higher temperature; Langmuir isotherm; electrostatic attraction
Sahlikent mud	Brilliant green	\(C_0: 1–20 \text{ mg L}^{-1} \); Dose: 0.1 g/50 mL	1.18 mg g\(^{-1}\)	
Flower-like LDH	MO	\(\lambda_{\text{max}}: 625 \text{ nm} \); \(C_0: 100 \text{ mg L}^{-1} \); Dose: 1 g; pH: 3; \(T: 298 \text{ K} \); Time: 10 min	500.6 mg g\(^{-1}\)	Pseudo-second-order kinetics; Langmuir isotherm; chemisorption
Hollow LDH nanowires	MO	\(C_0: 5–40 \text{ mg L}^{-1} \); Dose: 0.5 g L\(^{-1}\); Time: 90% removal at <10 min	210 mg g\(^{-1}\)	Langmuir isotherm
4.3. Hybrid nanomaterials

Nanomaterials have been extensively used for water treatment applications because of their enhanced surface area and high adsorption-to-volume ratio. Accordingly, the combination of two or more nanomaterials, which is referred to as hybrid nanomaterials, exhibits multi-functionalities found to be very effective to remove dyes from contaminated water, as described below.\(^{155}\)

4.3.1 Carbon-based hybrid nanocomposite. Carbon-based hybrid nanocomposites are associated with easy synthesis, cost-effectiveness, availability, non-toxicity, high porosity, etc., similar to other carbon-based nanocomposites. Ultrafine nickel/carbon (dose: 2 g L\(^{-1}\)) on treatment with RhB and MB showed an adsorption capacity of 5.269 and 7.415 mg g\(^{-1}\), respectively.\(^{156}\) Manippady \textit{et al.} investigated the adsorption of CR and MB dye onto iron–carbon hybrid magnetic nanosheets and achieved an adsorption capacity of 531.9 and 185.2 mg g\(^{-1}\), respectively, in 24 min.\(^{157}\) In another study, a porous silicon–carbon–nitrogen (Si–C–N) hybrid was employed to remove methyl blue and acid fuchsin dyes, achieving an adsorption capacity of 1327.7 and 1084.5 mg g\(^{-1}\), respectively.\(^{158}\) The possible mechanism displayed in Fig. 9 suggests the presence of electrostatic interactions and van der Waals forces between the adsorbent and dye. An Ni/porous carbon nanotube nanocomposite was used to remove MG, CR, RhB, MB, and MO dye, exhibiting adsorption capacities of 898, 818, 395, 312, and 271 mg g\(^{-1}\), respectively.\(^{159}\)

4.3.2 Activated carbon-based hybrid nanocomposites. Activated carbon-based hybrid nanocomposites have been widely used in the purification of contaminated water. Wang \textit{et al.} observed an adsorption capacity of 416.67 mg g\(^{-1}\) (303 K) using...
activated carbon aerogel immobilized with konjac glucomannan for the removal of MB. In another study, ZnO nanoparticles loaded on Parthenium weed activated carbon achieved more than 99% removal of MB in 60 min. The adsorption of RhB and Orange G using sulfonic acid-modified activated carbon resulted in an adsorption capacity of 757.6 and 318.5 mg g\(^{-1}\), respectively. Gong et al. used activated carbon synthesized from finger citron residue as a new type of adsorbent for the removal of harmful dyes, namely, anionic dyes such as MO and cationic dyes such as MB, from contaminated water, achieving an adsorption capacity of 934.58 (MO) and 581.40 mg g\(^{-1}\) (MB).

4.3.3 Carbon nanotube-based hybrid nanomaterials

Recently, carbon nanotube (CNT)-based nanohybrid materials have received tremendous attention because of their high specific surface area, small sizes, and hollow structures. According to Gong et al., these hybrids are more efficient for the adsorption of organic contaminants compared to even activated carbon. Thus, the unique features of carbon nanotubes have been supplemented in the formation of several nanocomposites for dye removal from contaminated water. CNTs exhibited an adsorption capacity of 44.64 mg g\(^{-1}\) for CI Reactive Red 2 dye. Magnetic multi-walled CNT (MMWCNT) exhibited a poor adsorption performance for MB, neutral red, and brilliant cresyl blue dyes. In another study, Yao et al. achieved a maximum adsorption capacity of 51.74 mg g\(^{-1}\) MO dye on MMWCNT from wastewater. Further, Sui et al. studied the adsorption of MB and MO on a synthesized calcium alginate/MMWCNT hybrid and reported the maximum adsorption capacity of 606.1 and 12.5 mg g\(^{-1}\), respectively. HNO\(_3\)/NaClO/MMWCNT nano-hybrid and magnetite/MMWCNT hybrid materials showed a maximum adsorption capacity of 55 and 48.06 mg g\(^{-1}\) for the removal of bromothymol blue and MB dyes, respectively.

4.3.4 Graphene and reduced graphene oxide nanocomposites

Graphene oxide (GO) has been used as an adsorbent for dye removal from wastewater, such as Direct Red 81 and Indosol SFGl direct blue, crystal violet and methyl orange, and methylene blue. The adsorption mechanism involves strong interactions between graphene oxide (functionalized with hydroxyl and carboxylic groups) and active functional groups present in the dye. In addition, several studies have also been reported on GO and reduced graphene oxide (rGO)-based nanocomposites for the adsorption of dye from contaminated water. Zheng et al. prepared a 3D hierarchical GO-NiFe layered double hydroxide (LDH) sandwich hybrid as an adsorbent for the removal of CR and MO dye. The hybrid exhibited higher adsorption phenomena for CR and MO, as evident from the adsorption capacity values of 489 and 438 mg g\(^{-1}\), respectively. This was ascribed to the presence of electrostatic attraction and ion exchange reactions between the dye molecules and hybrid adsorbents. In another work, graphene/polyaniline (PANI)/Fe\(_2\)O\(_4\) was used as a nanoadsorbent for the removal of CR dye from contaminated water. It showed an excellent adsorption performance (adsorption capacity: 248.76 mg g\(^{-1}\)) for CR dye. MB dye (initial concentration: 250 mg L\(^{-1}\)) on treatment with GO showed an adsorption capacity of about 714 mg g\(^{-1}\). In another work, graphite oxide was used as an adsorbent to separate MB and MG dyes, with maximum adsorption capacities of 351 and 248 mg g\(^{-1}\), respectively.

Investigations have also been reported using a combination of magnetic Fe\(_2\)O\(_4\)/carboxylate GO and GO/Fe\(_2\)O\(_4\) nanostructures as adsorbents in dye removal. It was inferred that GO/Fe\(_2\)O\(_4\) and Fe\(_2\)O\(_4\)/carboxylate GO achieved complete removal (MB) and maximum adsorption capacity of 36 mg g\(^{-1}\) (MB) and 22.1 mg g\(^{-1}\) (RhB), respectively.

Further, GO-based nanocomposites have been reported for dye removal such as porous core–shell graphene/SiO\(_2\) nanocomposites for the removal of cationic neutral red dye, whereas GO-shielded Mg–Al-LDH, Au nanorod-doped CuO core–shell nanocube-embedded rGO composite, and GO-fabricated Fe–Al
bimetal oxide composite187 were reported for the for removal of MB. Several other GO-based nanocomposites have also been reported to adsorb various classes of dyes, for example, the removal of MB using impregnated graphene in porous wood filters,188 Fe\textsubscript{3}O\textsubscript{4}/GO composite,189 Fe\textsubscript{3}O\textsubscript{4} nanoparticle-functionalized GO/g-C\textsubscript{3}N\textsubscript{4} nanocomposite,190 and metal ferrite-enabled GO191 and PANI-GO–Fe\textsubscript{3}O\textsubscript{4} hybrid nanocomposite192 for the removal of CR and MO.

4.3.3 Hybrids of natural and synthetic clay

Hybrids adsorbents comprised of natural and synthetic clay-based materials possess several advantages, such as low cost, non-toxicity, thermal resistance, porosity, ion exchange ability, and the possibility of modification with various functionalities.193 Consequently, nanohybrids of natural and synthetic clay have been harnessed as adsorbents to remove dyes from wastewater. According to Marrakchi \textit{et al.}, the maximum adsorption capacity of 40.97 and 190.97 mg g-1 was achieved in 30 h on cross-linked chitosan/episilicate for MB and reactive orange, respectively.194 The removal efficiency of MO dye on an Mg-Al-layered double hydroxide supported MOF exceeded 99\% at the onset of 20 min.195 The adsorptive removal of reactive red, CR, and Acid Red 1on an Mg-Al-layered double hydroxide fitted well with the Langmuir model.196 The layered double hydroxide nanohybrid (Mg-Al-NO\textsubscript{3}) exhibited a maximum adsorption capacity of 0.8, 1.089, and 1.418 mmol g-1 for the adsorption of amaranth, diamine green B, and brilliant green dyes, respectively.197

4.3.6 Hybrids of fly ash

Fly ash is generally considered a by-product from coal-based industries and is often used either alone or in combination with other materials as a hybrid adsorbent in water purification.198,199 This is mainly attributed to its high porosity, economic viability, and easy availability.200

The adsorption study on MB dye using fly ash geopolymers monoliths attained a maximum adsorption capacity of 15.4 mg g-1 in 30 h and the absorbent could be reused for up to five cycles.199 Nova\textit{is et al.} reported the adsorption of MB dye on porous biomass fly ash-based geopolymers spheres. The findings showed an adsorption capacity of 79.7 mg g-1 in 30 h and reusability for up to eight cycles.198 Further, Duta and Visa (2015) conducted a study on the adsorption of a mixture of benacrid and benacrid blue dye on fly ash–TiO\textsubscript{2} and noted the adsorption capacity of 4.0 and 1.2 mg g-1, respectively.201 In another study, a maximum adsorption capacity of 24.8 mg g-1 was reported for the adsorption of Orange II dye on Ca(OH)\textsubscript{2}/Na\textsubscript{2}FeO\textsubscript{4} modified fly ash.202

4.3.7 Hybrids of bio-adsorbents

Bio-adsorbents can be easily modified and blended with other components, making them suitable as adsorbs for the removal of dyes from contaminated water. Cross-linked beads of an activated oil palm ash zeolite/chitosan composite showed an adsorption capacity of 199.2 and 270.27 mg g-1 for MB and acid blue dye, respectively.203 Liu \textit{et al.} reported that cellulose-g-poly(acrylic acid-co-acrylamide) exhibited an adsorption capacity of 1602 and 1814 mg g-1 for of Acid Blue 93 and MB dye, respectively.204 A sulphonated bio-adsorbent from waste hawthorn kernel as adsorbent attained a maximum adsorption capacity of 151.5 mg g-1 for MB dye with a contact time of up to 6 h.205 In another work, an adsorption study was conducted for the removal of MB dye on agricultural waste/GO.206 This study revealed a maximum adsorption capacity of 414.03 mg g-1 (pH = 12) with the successful reuse of the adsorbent for up to five cycles. Further, the dye adsorption was well correlated with the Temkin isotherm. The performance of various hybrid materials as adsorbents for the treatment of dyes is presented in Table 4.

Table 4 Hybrid nanomaterial as adsorbents for dye removal

Adsorbent	Dyes	Experimental conditions	Adsorption capacity/ removal efficiency	Adsorption kinetics, isotherm, and mechanisms
Carbon-based hybrid nanocomposite Ultrafine Ni/C156	RhB and MB	Dose: 2 g L-1 \(C_0\): 5 mg L-1 Time: 2 h \(\lambda_{\text{max}}\): 554 and 664 nm, respectively	5.269 and 7.415 mg g-1, respectively	Pseudo-second-order kinetics; Freundlich isotherm; chemisorption process
Iron–carbon hybrid magnetic nanosheets157	CR and MB	Time: 24 min \(pH\): 2 and 8, respectively Dose: 6 mg/15 mL \(\lambda_{\text{max}}\): 662 and 664 nm, respectively	531.9 and 185.2 mg g-1, respectively	Pseudo-second-order kinetics; Langmuir isotherm; chemisorption
Hierarchically porous silicon–carbon–nitrogen hybrid materials158	Methyl blue and acid fuchsin	\(C_0\): 300 mg L-1 and 200 mg L-1, respectively	1327.7 mg g-1 and 1084.5 mg g-1, respectively	Pseudo-second-order kinetics; Langmuir isotherm; Chemisorption
Ni/porous carbon-CNT159	MG, CR, RhB, MB, and MO	\(C_0\): 20 mg L-1 Time: 60 min	898 mg g-1, 818 mg g-1, 395 mg g-1, 312 mg g-1, and 271 mg g-1, respectively	Pseudo-second-order kinetics; Langmuir isotherm; multilayer adsorption mechanism
Activated carbon-based hybrid nanocomposites Konjac glucomannan/ activated carbon aerogel160	MB	\(C_0\): 140 mg L-1 Dose: 10 mg/20 mL \(T\): 313 K	416.67 mg g-1	Pseudo-second-order kinetics; Langmuir isotherm; density gradient force and hydrogen bond interaction
Table 4 (continued)

Adsorbent	Dyes	Experimental conditions	Adsorption capacity/ removal efficiency	Adsorption kinetics, isotherm, and mechanisms
ZnO-NP-loaded *Parthenium* weed activated carbon (ZnONPs-PWAC)	MB	C₀: 100 mg L⁻¹, pH: 6, Dose: 50 mg/100 mL, Time: 60 min, ξ_max: 670 nm	~99%	—
Sulfonic acid-modified activated carbon (MTLAC-SA) and MTLAC	RhB and Orange G	C₀: 200–800 mg L⁻¹, ξ_max: 646 nm and 476 nm, respectively	757.6 mg g⁻¹ using MTLAC-SA and 318.5 mg g⁻¹ using MTLAC, respectively	Pseudo-second-order kinetics; Langmuir isotherm; homogeneous adsorption
Finger-citron-residue-based activated carbon	MO and MB	C₀: 50–500 mg L⁻¹, ξ_max: 464 nm and 664 nm, respectively	934.58 and 381.40 mg g⁻¹, respectively	Pseudo-second-order kinetics; Langmuir isotherm; π-π stacking interaction and electrostatic attraction
Carbon nanotubes	Procion Red MX-5B (CM reactive red 2)	Dose: < 0.25 g L⁻¹, pH: 6.5, T: 291 K, ξ_max: 538 nm	44.64 mg g⁻¹	
Calcium alginate/multi-walled carbon nanotubes	MB and MO	pH: 4–12 for MB and <2 for MO	606.1 and 12.5 mg g⁻¹, respectively	Pseudo-second-order kinetics; Langmuir isotherm; Opposite charge attraction
Magnetic multi-wall carbon nanotube	MB, neutral red, and brilliant cresyl blue	C₀: 1.4–37.4 mg L⁻¹, Dose: 0.5 g L⁻¹, pH: ~7	15.74 mg g⁻¹, 20.33 mg g⁻¹, and 23.35 mg g⁻¹, respectively	Pseudo-second-order kinetics; Freundlich isotherm; van der Waals interactions occurring
Multi-wall carbon nanotubes	MO	C₀: 20 mg L⁻¹, T: 25 °C, pH: ~7, Time: 1 h, Dose: 15 mg/50 mL, ξ_max: 460 nm	51.74 mg g⁻¹	Pseudo-second-order kinetics; Langmuir isotherm; external diffusion, boundary layer diffusion, and intra-particle diffusion
Magnetite-loaded multi-walled carbon nanotubes	MB	C₀: 20 mg L⁻¹, Dose: 0.02 g/50 mL, T: 25 ± 1 °C, pH: 7	48.06 mg g⁻¹	
Magnetite/MWCNTs	MB	C₀: 10–70 mg L⁻¹, Dose: 0.02 g/25 mL, Time: 0–11 min, pH: 1	55 mg g⁻¹	
Graphene oxide, reduced graphene oxide, and their nanocomposites		Time: 225 min and 135 min, respectively	489 and 438 mg g⁻¹, respectively	Pseudo-second-order kinetics; Langmuir isotherm; electrostatic attraction, ions exchange, and π-π stacking interaction
Graphene/PANI/Fe₃O₄	CR	C₀: 100 mg L⁻¹, Time: 2 h, Dose: 25 mg/25 mL, ξ_max: 465 nm and 498 nm, respectively	248.76 mg g⁻¹	Pseudo-second-order kinetics; Langmuir isotherm; electrostatic interaction, hydrogen bond, and π-π stacking interaction
Graphene oxide	MB	C₀: < 250 mg L⁻¹, ξ_max: 646 nm	714 mg g⁻¹	Freundlich isotherm; exothermal adsorption reaction, and π-π stacking interaction
Layered graphite oxide	MB and MG	Dose: 10 mg/500 mL, ξ_max: 663 nm and 617 nm, respectively, pH: 11	351 mg g⁻¹ and 248 mg g⁻¹, respectively	Pseudo-second-order kinetics; Langmuir isotherm; electrostatic attraction
Graphene oxide/magnesium oxide nanocomposites	MB	C₀: 5–100 mg L⁻¹, Time: 5–60 min, Dose: 0.1–1 g L⁻¹, pH: 11, ξ_max: 664 nm	833 mg g⁻¹	Pseudo-second-order kinetics; Langmuir isotherm; electrostatic attraction, hydrogen bonding, and π-π stacking interaction
GO/Fe₃O₄ nanohybrids	MB	C₀: 20 mg L⁻¹, Dose: 3 mg/5 mL, pH: 6, ξ_max: 664 nm	~100%	Adsorption mechanism followed by π-π interaction
Sandwiched Fe₃O₄/carboxylate graphene oxide nanostructures	MB and RhB	C₀: 10 mg L⁻¹, Dose: 5 mg L⁻¹, RhB, pH: 6, ξ_max: 632 nm and 554 nm, respectively	36 mg g⁻¹ and 22.1 mg g⁻¹, respectively	Pseudo-second-order kinetics; electrostatic attraction
Adsorbent/Adsorbents	Dyes	Experimental conditions	Adsorption capacity/ removal efficiency	Adsorption kinetics, isotherm, and mechanisms
----------------------	------	--------------------------	--	---
Magnetic GO/poly(vinyl alcohol) composite gels	MB and methyl violet (MV)	Dose: 20 mg/5 mL, C_i: 0.2 mM, Time: 0.5 h, \(\lambda_{\text{max}} \): 662 nm and 583 nm, respectively	270.94 and 221.23 mg g⁻¹, respectively	Pseudo-second-order kinetics, Langmuir isotherm; strong electrostatic attraction and complexation
Hybrids of natural and synthetic clay	MB and Reactive orange 16	\(C_{\text{i}} \): 100 mg L⁻¹, Dose: 2 g L⁻¹, Time: 30 h, pH: > 9 for MB and 3 for reactive orange 16, \(\lambda_{\text{max}} \): 665 nm and 496 nm, respectively	40.986 mg g⁻¹ and 190.965 mg g⁻¹, respectively	Pseudo-second-order kinetics; Freundlich isotherm; physisorption
MgAl-layered double hydroxide supported MOF⁴⁹⁵	MO	Time: 20 min	99% and 600 mg g⁻¹	Pseudo-first-order kinetics; electrostatic attraction
Mg-Al-layered double hydroxide¹⁹⁶	Reactive Red, Congo red, and Acid Red 1	pH: 9–10, \(\lambda_{\text{max}} \): 543 nm, 500 nm, and 332 nm, respectively	59.49 mg g⁻¹ and 37.16 mg g⁻¹, and 108.0 mg g⁻¹, respectively	Pseudo-second-order kinetics; Langmuir isotherm; electrostatic attraction and ion exchange
Nanohybrid layered double hydroxides³⁷	Amaranth, diamine Green B, and brilliant green	pH: 7–9.5, \(\lambda_{\text{max}} \): 620 nm, 623 nm, and 624 nm, respectively	0.8 mmol g⁻¹ and 1.098 mmol g⁻¹ and 1.418 mmol g⁻¹, respectively	Pseudo-second-order kinetics; ion exchange
Hybrids of fly ash	MB	\(C_{\text{i}} \): 1–50 mg L⁻¹, Time: 30 h, \(\lambda_{\text{max}} \): 664 nm	15.4 mg g⁻¹	Freundlich isotherm; electrostatic attraction
Porous biomass fly ash-based geopolymers¹⁹⁸	MB	\(C_{\text{i}} \): 10–125 mg L⁻¹, Time: 30 h, \(\lambda_{\text{max}} \): 664 nm	79.7 mg g⁻¹	Freundlich isotherm; multilayer adsorption
Fly ash–TiO₂ composite²⁰¹	Mixture of bemacid red and bemacid blue	\(C_{\text{i}} \): 10 mg L⁻¹ each, pH: 10.6, \(\lambda_{\text{max}} \): 444 nm and 652 nm, respectively	4.003 and 1.194 mg g⁻¹	Pseudo-second-order kinetics; hydrogen abstraction, redox reactions, also the π-bonds
Ca(OH)₂/NaFeO₄ modified fly ash²⁰²	Orange II	\(C_{\text{i}} \): 50 mg L⁻¹, Dose: 2000 mg L⁻¹	24.8 mg g⁻¹	Pseudo-second-order kinetics; Langmuir isotherm; electrostatic interaction, hydrogen bonding
Hybrids of bio adsorbents	Acid blue 93 (AB93) and MB	\(C_{\text{i}} \): 200 mg L⁻¹, Time: 90 min, pH: 7, Dose: 0.4 g L⁻¹, \(\lambda_{\text{max}} \): 664 and 607 nm, respectively	1602 and 1814 mg g⁻¹, respectively	Pseudo-second-order kinetics, Freundlich isotherm; electrostatic interaction
Sulphonated bio-adsorbent from waste hawthorn kernel²⁰³	MB	\(C_{\text{i}} \): 25–400 mg L⁻¹, Time: 0–360 min T: 25–60 °C, Dose: 0.1 g in 50 mL, \(\lambda_{\text{max}} \): 665 nm	151.5 mg g⁻¹	Pseudo-second-order kinetics; Langmuir isotherm; ion exchange process
Cross-linked beads of activated oil palm ash zeolite/ chitosan¹⁹³	MB and acid blue 29	\(C_{\text{i}} \): 50–400 mg L⁻¹, Time: 30 °C, pH: 3–13, \(\lambda_{\text{max}} \): 668 and 602 nm, respectively	199.2 mg g⁻¹ and 270.27 mg g⁻¹, respectively	Pseudo-second-order kinetics; Freundlich isotherm; physisorption
Agricultural waste/graphene oxide 3D²⁰⁶	MB	\(C_{\text{i}} \): 1000 mg L⁻¹, T: 25 °C, pH: 12, \(\lambda_{\text{max}} \): 663 nm	414.03 mg g⁻¹	Pseudo-second-order kinetics; Temkin isotherm; multimolecular layers of coverage and heterogeneous adsorption

\(C_{\text{i}} \): initial dye concentration; T: temperature; and \(\lambda_{\text{max}} \): maximum wavelength detected for the analysis of dye.
4.4. Metal oxide-based (magnetic and non-magnetic) hybrid materials

In recent years, metal oxide-based nano-adsorbents have been widely applied in wastewater treatment due to their unique attributes such as large surface area, nano-size, high reactivity, high ability to blend, and robust solution mobility.\(^1\)\(^{208}\) Considering this, the performance of various metal oxide-based hybrid materials as adsorbents in dye removal is reviewed below.

4.4.1 Magnetic metal oxide nanocomposites. Magnetic nanomaterials exhibit additional advantages in the separation of the catalyst/adsorbent by applying an external magnetic field.\(^{209}\) Gao et al. used Fe\(_3\)O\(_4\)/CeO\(_2\) as a magnetic composite for the removal of Acid Black 210. The maximum adsorption capacity (93.1 mg g\(^{-1}\)) achieved was six times higher than of the commercial CeO\(_2\). The corresponding experimental data fitted well with the Langmuir isotherm.\(^{210}\) Fe\(_3\)O\(_4\) magnetic nanoparticles, due to their large surface-to-volume ratio and pore size, showed an adsorption capacity of 150–600 mg g\(^{-1}\) of Rhodamine 6G in 30 min.\(^{211}\) At room temperature, the adsorption of MO, Reactive Brilliant Red K-2BP, and Acid Red 18 in contaminated water on an amine/Fe\(_3\)O\(_4\)-functionalized biopolymer magnetic resin correlated well with the Langmuir adsorption isotherm.\(^{212}\) The corresponding adsorption capacity values were found to be 222.2, 101.0, and 99.4 mg g\(^{-1}\), respectively. This high adsorption capacity was attributed to the presence of amine groups and the enhanced surface area of amine/Fe\(_3\)O\(_4\)-resin. In another study, Mg-ferrite magnetic nanoparticles exhibited relatively low adsorption capacity in the removal of methyl green (1.23 mg g\(^{-1}\)) and basic fuchsin (2.55 mg g\(^{-1}\)).\(^{213}\) NaOH-treated wheat straw impregnated with Fe\(_3\)O\(_4\) nanoparticles achieved a maximum adsorption capacity of 1374.6 mg g\(^{-1}\) in the removal of MB from contaminated water.\(^{214}\) The adsorption process (endothermic) was likely to be dependent on pH and temperature. The adsorption mechanisms were proposed considering the formation of a surface complex and ion exchange between the MB molecules and adsorbent. Further, a γ-Fe\(_2\)O\(_3\) nanoadsorbent exhibited equilibrium adsorption of Acid Red 27 dye within 4 min at a low pH (<5.5), and a decrease in the dye removal efficiency was observed with an increase in temperature.\(^{215}\) The adsorption of Acid Red 27 dye on γ-Fe\(_2\)O\(_3\) followed both the Langmuir and Freundlich isotherms.

Mahapatra et al. reported a maximum adsorption capacity of 416.66 mg g\(^{-1}\) at pH 7 for the adsorptive decolorization of CR dye on an Fe\(_2\)O\(_3\)-Al\(_2\)O\(_3\) nanohybrid. This higher adsorption capacity was primarily due to the interaction of the amine functional group of the CR dye molecules with the oxy-hydroxide group of the nanohybrid material.\(^{216}\) An Fe–Mn–Zr metal oxide nanocomposite showed a maximum adsorption capacity of 196.07 and 175.43 mg g\(^{-1}\) for the adsorption of MO and eosin yellow dyes, respectively.\(^{217}\) The saturation magnetization of the adsorbent was found to be enough for its rapid magnetic separation from water. Further, the maximum adsorption capacity of 714.29 mg g\(^{-1}\) with a contact time of 3 h was achieved by a core@double-shell-structured HNTs/Fe\(_3\)O\(_4\)/poly(DA + KH550) adsorbent in the removal of MB dye.\(^{218}\)

4.4.2 Nonmagnetic metal-oxide nanocomposites. Various nonmagnetic oxide hybrid nanomaterials have been applied as adsorbents in the removal of dyes from the contaminated water. According to Li et al., the adsorption capacity of MO on nano-dimensional Co/Cr-codoped ZnO was 1057.9 mg g\(^{-1}\) due to its high specific surface area and positive charge on its surface.\(^{219}\) Lei et al. noted a maximum adsorption capacity of 397 mg g\(^{-1}\) on ZnO-Al\(_2\)O\(_3\) for the removal of CR dye in 12 h. This adsorbent consisted of microspheres a diameter in the range of 12–16 μm, which were assembled by nanosheets with a thickness of nearly 60 nm.\(^{220}\) The maximum adsorption capacity of 367 mg g\(^{-1}\) for methyl blue dye on Ni–MgO hybrid is attributed to the hydrogen bonding between the N-atoms (which have high electron affinity and smaller atom radius) of methyl blue and OH group on the surface of MgO.\(^{221}\) According to Lei et al., a maximum adsorption capacity of 357 mg g\(^{-1}\) was achieved in 12 h for CR dye on NiO-Al\(_2\)O\(_3\). This was ascribed mainly to the synergistic effect, high specific surface area, and positive surface charge (at pH 7) of the adsorbent.\(^{222}\) ZnV\(_2\)O\(_4\) hollow spheres comprised of a flower-like structure and a large number of compacted nanosheets, as depicted in the SEM image (Fig. 11), exhibited an adsorption capacity of 153.14 mg g\(^{-1}\) in 40 min for MB.\(^{223}\) Table 5 presents the performance of metal and metal oxide-based hybrid nanocomposite materials for dye removal.

![Morphology of a metal oxide-based adsorbent, ZnV\(_2\)O\(_4\) hollow spheres](image)

Table 5 Metal oxide-based hybrid (magnetic and non-magnetic) nanocomposite materials for dye removal

Adsorbent	Dyes	Experimental conditions	Adsorption capacity/removal efficiency	Adsorption kinetics, isotherm, and mechanisms
Pure magnetic materials Fe\(_3\)O\(_4\)\(^{212}\)	Rhodamine 6G	pH ~ 7; Dose: 2.5–10 mg L\(^{-1}\); Time: 30 min; \(\lambda_{\text{max}}\): 525 nm	150–600 mg g\(^{-1}\)	Fluorescence resonance energy transfer between the dye molecules and Fe\(_3\)O\(_4\) magnetic nanoparticle; Pseudo-second-order kinetics; Langmuir and Freundlich isotherm; physiosorption and electrostatic attraction
\(\gamma\)-Fe\(_2\)O\(_3\)\(^{215}\)	Acid red 27	pH < 5.5; Time: 4 min; \(\lambda_{\text{max}}\): 520 nm	0.027 mmol g\(^{-1}\)	
Adsorbent Dyes	Experimental conditions	Adsorption capacity/ removal efficiency	Adsorption kinetics, isotherm, and mechanisms	
----------------	-------------------------	---	---	
Magnetic-carbon-based nanocomposite	Anionic: Glenn Black R (GR) and Orange IV (OIV) cationic; acidicine orange (AO) and crystal violet (CV)	C_0: 40 mg L$^{-1}$ pH: 4 Dose: 0.01 g/25 mL λ_{max}: 520 nm, 440 nm, 490 nm, and 580 nm, respectively	GR, OIV, AO, and CV were 588.24, 57.37, 132.80, and 69.44 mg g$^{-1}$, respectively	Pseudo-second-order kinetics; Langmuir isotherm; electrostatic interaction
Magnetic graphene oxide freeze-dried225	RhB	Dose: 0.007 g/50 mL C_0: 30–80 mg L$^{-1}$ T: 25 °C λ_{max}: 553 nm	126.58 mg g$^{-1}$	Pseudo-second-order kinetics; Langmuir isotherm; electrostatic interaction
Humic acid–Fe$_3$O$_4$	Malachite green (MG)	Dose: 50 mg/50 mL λ_{max}: 618 nm	79.3 mg g$^{-1}$	Pseudo-second-order kinetics; Freundlich isotherm; electrostatic attraction, π–π interaction, and hydrogen bonding
Magnetic graphene oxide 227	MB and orange G	Dose: 20 mg/20 mL C_0: 90 and 60 mg L$^{-1}$ Time: 405 min λ_{max}: 676 and 475 nm, respectively	64.23 mg g$^{-1}$ and 20.85 mg g$^{-1}$, respectively	Langmuir isotherm; electrostatic interaction
Fe$_3$O$_4$/GO189	MB and MO	C_0: 1 mg L$^{-1}$ pH: 6 λ_{max}: 644 and 466 nm, respectively	666.7 and 714.3 mg g$^{-1}$, respectively	Langmuir isotherm; electrostatic interaction
Magnetic-based metal oxides	Azo dye (Acid Black 210 (AB210))	Dose: 50 mg/50 mL C_0: 20–400 mg L$^{-1}$ λ_{max}: 461 nm	93.08 mg g$^{-1}$	Pseudo-second-order kinetics; Langmuir isotherm; chemisorption
Iron oxide–alumina216	CR	pH: 7	416.66 mg g$^{-1}$	Pseudo-second-order kinetics; Freundlich isotherm; multilayer adsorption
Fe–Mn–Zr metal oxide217	MO and eosin yellow (EY)	Time: 62 min Dose: 0.45 g L$^{-1}$ C_0 (MO): 11 mg L$^{-1}$, C_0 (EY): 25 mg L$^{-1}$ λ_{max}: 464 and 517 nm, respectively	196.07 and 175.43 mg g$^{-1}$, respectively	Pseudo-second-order kinetics; Langmuir isotherm; surface adsorption and pore diffusions
TiO$_2$/SiO$_2$/Fe$_3$O$_4$ hollow magnetic microspheres228	MB	C_0: 20 mg L$^{-1}$ Dose: 0.5 g L$^{-1}$ Time: 50 min	147 mg g$^{-1}$	Pseudo-second-order kinetics; Langmuir isotherm; electrostatic interaction
Al cation-doped	MO	Time: 120 min Dose: 1g L$^{-1}$	274.6 mg g$^{-1}$	Pseudo-second-order kinetics; Langmuir isotherm; electrostatic interaction
CNT/MgO/CuFe$_3$O$_4$	Methyl violet dye and Nile blue dye	Dose: 1 g L$^{-1}$ C_0: 10 mg L$^{-1}$ λ_{max}: 584 and 638 nm, respectively	36.46 mg g$^{-1}$ and 35.60 mg g$^{-1}$, respectively	Pseudo-second-order kinetics; Langmuir isotherm; electrostatic interaction
Magnetic Fe$_3$O$_4$@UiO-66231	MB and MO	Dose: 20 mg/100 mL C_0: 20 mg L$^{-1}$ λ_{max}: 631 and 463 nm, respectively	205 mg g$^{-1}$ and 244 mg g$^{-1}$, respectively	Pseudo-second-order kinetics; Langmuir isotherm; electrostatic attraction and π–π stacking interactions
MgFe$_2$O$_4$	Methyl green (MG) and basic fuchsin (BF)	Dose: 0.8 g L$^{-1}$ C_0: 30 mg L$^{-1}$ λ_{max}: 632 and 541 nm, respectively	1.231 and 2.545 mg g$^{-1}$, respectively	Pseudo-second-order kinetics; Langmuir isotherm (MG) and Freundlich isotherm (BF); electrostatic interaction (MG) and hydrogen-bond interaction (BF)
MgFe$_2$O$_4$	MO	C_0: 100 mg L$^{-1}$ Dose: 1 g L$^{-1}$ λ_{max}: 464 nm	181.34 mg g$^{-1}$	Pseudo-second-order kinetics; Freundlich isotherm; electrostatic forces
Magnetic-based bio-adsorbents	MB	Dose: 0.01–0.2 g/100 mL pH: 7 λ_{max}: 668 nm	1374.6 mg g$^{-1}$	Pseudo-second-order kinetics; Freundlich isotherm; complexation formation and ion exchange
Adsorbent	Dyes	Experimental conditions	Adsorption capacity/ removal efficiency	Adsorption kinetics, isotherm, and mechanisms
-----------	------	--------------------------	---------------------------------------	---
Fe₃O₄-loaded protonated amine-modified hydrochar	MB and MO	Dose: 40 mg/50 mL \(C_{d,0} \) 100 mg L⁻¹ \(T \) 303 K \(\lambda_{\text{max}} \): 644 and 464 nm, respectively	148.84 mg g⁻¹ (pH 11) and 202.02 mg g⁻¹ (pH 5.0), respectively	Pseudo-second-order kinetics; Langmuir isotherm; electrostatic interaction

Magnetic-based polymers

Fe₃O₄/Fe(III) chelated silica microspheres	MB	\(C_{d,0} \) 70–130 mg L⁻¹ \(T \) 298 K Time: 3 h	714.29 mg g⁻¹ at 318.15 K	Pseudo-second-order kinetics; Langmuir isotherm; electrostatic interaction and \(\pi-\pi \) stacking interaction
Chitosan–Fe(III) hydrogel	C. I. Acid Red 73 (AR 73)	pH: 12 Time: <10 min \(C_{d,0} \) 50 mg L⁻¹ Dose: 8 mg/20 mL \(C_{d,0} \) 60 mg L⁻¹	294.5 mg g⁻¹	Pseudo-second-order kinetics; Langmuir–Freundlich isotherm; adsorption
Fe₃O₄@C@polyaniline trilaminar core–shell	MO	\(C_{d,0} \) 50 mg mL⁻¹ Dose: 10 mg/25 mL	120.2 mg g⁻¹	Pseudo-second-order kinetics; Langmuir isotherm; chemisorption followed by electrostatic attraction and \(\pi-\pi \) interaction
Fe₃O₄@sodium alginate–Fe(III) polymer gel beads	CR and Direct red 23 (DR 23)	Time: 30 min for CR and 60 min for DR 23 \(\lambda_{\text{max}} \): 402 nm and 502 nm, respectively	3333 and 1429 mg g⁻¹, respectively	Pseudo-second-order kinetics; Langmuir isotherm; electrostatic adsorption, hydrogen bonding, and surface complexation besides van der Waals forces
Magnetic halloysite-based molecularly imprinted polymer	Sunset yellow (SY)	pH: 2 Dose: 0.005 g/0.01 L \(\lambda_{\text{max}} \): 482 nm	46.43 \(\mu \)mol g⁻¹	Pseudo-second-order kinetics; Langmuir isotherm; electrostatic attraction
Sulfonic acid-modified polyacrylamide magnetic composite	Crystal violet (CV) and MB	\(C_{d,0} \) 100–4000 mg L⁻¹ Dose: 0.5 g L⁻¹ Time: 360 min	2106.37 mg g⁻¹ and 1462.34 mg g⁻¹, respectively	Pseudo-second-order kinetics; Langmuir isotherm; electrostatic adsorption, hydrogen bonding, and hydrophobic interaction
Fe₃O₄/graphite oxide nanosheet/citric acid-crosslinked \(\beta \)-cyclodextrin polymer	MB	\(C_{d,0} \) 50 mg mL⁻¹ Dose: 10 mg/25 mL	173 mg g⁻¹	Pseudo-first-order or the intraparticle diffusion model; Sips isotherm; electrostatic attraction, the Lewis acid–Lewis base interaction, the host–guest interaction, and the \(\pi-\pi \) interaction
Chitosan-fly ash/Fe₃O₄	Reactive Orange 16 (RO16)	pH ~ 4 Dose: 0.08 g \(T \) 303 K Time: 55 min \(\lambda_{\text{max}} \): 493 nm	66.9 mg g⁻¹	Pseudo-second-order kinetics; Langmuir isotherm; electrostatic attraction and hydrogen bonding
Miscellaneous magnetic-based materials	Naphthol blue black (NBB) and Erichrome blue black R (EBBR)	\(C_{d,0} \) 0.1 mmol L⁻¹ \(\lambda_{\text{max}} \): 618 nm and 569 nm, respectively	3.76 and 1.83 mmol g⁻¹	Pseudo-second-order kinetics; Langmuir isotherm; electrostatic interaction and hydrogen bonding
Ionic liquid grafted-magnetic nanoparticles	Reactive Black 5	\(C_{d,0} \) 100 mg L⁻¹	161.29 mg g⁻¹	Pseudo-second-order kinetics; Langmuir isotherm; electrostatic attraction and hydrogen bonding
Magnetic silica nanocomposite-immobilized *Pseudomonas fluorescens*	Rhodamine B	\(C_{d,0} \) 50 mg L⁻¹ Dose: 1 g L⁻¹ pH: 6 \(\lambda_{\text{max}} \): 558 nm	229.6 mg g⁻¹	Pseudo-second-order kinetics; Langmuir isotherm; electrostatic attraction and hydrogen bonding
Water-based ferro fluid	Ponceau S	Ferrofluid dose: 20 mg mL⁻¹	140.26 mg g⁻¹	Pseudo-second-order kinetics; Langmuir isotherm; electrostatic interaction
Clay/starch/Fe₃O₄	Methyl violet (MV)	\(C_{d,0} \) 10 mg L⁻¹ Dose: 1.5 g L⁻¹ pH 9 Time: 150 min \(T \) 298 K	29.67 mg g⁻¹	Pseudo-second-order kinetics; Freundlich isotherm; electrostatic interactions
(magnetic and non-magnetic) nanocomposites as adsorbents used in dye removal.

4.5. Metal–organic frameworks

Metal–organic frameworks (MOFs) have attracted much attention as adsorbents due to their fine tuneable pore structures and controllable structures/confined geometries. Besides, the large surface areas, multi-functionality, polar/polarisable bonds, and the possibility of the presence of host–guest interactions through the chemical modification of the organic ligands and/or the inorganic sub-units are also likely to play a unique role.250–255 According to Li et al., MIL-53(Al)-NH₂ could rapidly bind with MB (208.3 mg g⁻¹) and MG (164.9 mg g⁻¹) due to the hydrogen bonding between the amino groups of the dyes and MOF. Further, MIL-Ti MOFs was attributed to π–π interaction, H-bonding, and electrostatic interaction between the dye molecules and MOFs (Fig. 12). Further, the SEM image of the synthesized NH₂-MIL-125(Ti) having circular plates exhibited the transformation of its morphology due to the effect of the reactant concentration (Fig. 13), which also confirmed the excellent distribution of the nanomaterials. Haque et al. developed highly porous MIL-101 MOFs to study the adsorption of MO. The high adsorption capacity of 194 mg g⁻¹ depicted the significance of pore size and porosity in the adsorption of MO, following the mechanism of electrostatic interaction on MIL-101.258

Further, MIL-100(Fe) and MIL-100(Cr)-derived MOFs were also found to be efficient adsorbents in capturing MO and MB dye molecules from aqueous solution. MIL-100(Fe) showed an adsorption capacity of 1045.2 and 736.2 mg g⁻¹, while that of MIL-100(Cr) was 211.8 and 645.3 mg g⁻¹ for MO and MB, respectively.259 Further, magnetic MOFs have also been used for the adsorption of MB from dye-contaminated water.

Adsorbent	Dyes	Experimental conditions	Adsorption capacity/ removal efficiency	Adsorption kinetics, isotherm, and mechanisms
Activated carbon/bentonite/Fe₃O₄	Reactive Red 198	Dose: 2 g L⁻¹ C₀, 5 mg L⁻¹ pH: 8 Time: 50 min	4.86 mg g⁻¹	Pseudo-second-order kinetics; Langmuir isotherm
Amine/Fe₃O₄-resin	Anionic dye: MO, Reactive Brilliant Red K-2BP, and Acid Red 18	Dose: 0.1–0.5 g L⁻¹	397 mg g⁻¹	Pseudo-second-order kinetics; Langmuir isotherm; chemisorption
Non-magnetic oxide nanocomposites	Co/Cr-codoped ZnO²¹⁹	MO Dose: 10 mg Time: 120 min lₘₐₓ: 200 nm	1057.90 mg g⁻¹	Pseudo-second-order kinetics; Langmuir isotherm; chemisorption and electrostatic interaction.
ZnO-Al₂O₃	CR	C₀: 50 mg L⁻¹ Dose: 10 mg/100 mL Time: 12 h T: 303 K	689.7 mg g⁻¹	Pseudo-second-order kinetics; Langmuir isotherm; electrostatic interaction.
Mesoporous MgO²⁴⁷	CR	Dose: 0.02 g/50 mL Max: 498 nm	367 mg g⁻¹	Pseudo-second-order kinetics; Langmuir isotherm; Langmuir isotherm; electrostatic attractions and surface complexation
MgO/SiO₂	CR	Dose: 10 mg/50 mL T: 25 °C	237 mg g⁻¹	Pseudo-second-order kinetics; Langmuir isotherm; Electrostatic attraction and surface complexation
MgO-graphene oxide	CR	C₀: 50 mg L⁻¹ Dose: 10 mg/50 mL	357 mg g⁻¹	Pseudo-second-order kinetics; Langmuir isotherm; Positive negative charge attraction
Ni–MgO²²¹	Methyl blue	C₀: 375 mg L⁻¹ Dose: 0.1–0.5 g L⁻¹ lₘₐₓ: 600 nm	96% and 153.14 mg g⁻¹	Pseudo-second-order kinetics; Freundlich isotherm; Electrostatic attraction
NiO–Al₂O₃²²²	CR	C₀: 10–100 mg L⁻¹ Dose: 10 mg/50 mL T: 303 K	600 mg g⁻¹	Pseudo-second-order kinetics; Langmuir isotherm; Electrostatic attraction and surface complexation
ZnV₂O₄ hollow spheres²²³	MB	PH: 7 C₀: 10 mg L⁻¹ Dose: 0.02 g/50 mL Max: 664 nm	96% and 153.14 mg g⁻¹	Pseudo-second-order kinetics; Freundlich isotherm; Electrostatic attraction

C₀: initial dye concentration; T: temperature; and lₘₐₓ: maximum wavelength detected for the analysis of dye.

Table 5 (continued)
The adsorption mechanism involves hydrophobic interactions and/or π–π interactions between the MB molecules and MOF. It was also noted that the adsorption capacity of a magnetic MOF increased from 84 to 245 mg g\(^{-1}\) on increasing the concentration of MB from 30 to 300 mg L\(^{-1}\), respectively.\(^{260}\) In addition, the adsorption capacity of the zeolitic imidazolate framework comprising ZIF-8, ZIF-8@CNT, and ZIF-8@GO depicted stable and high reusability for over four cycles for the adsorption of MG, corresponding to an adsorption capacity of 1667, 2034, and 3300 mg g\(^{-1}\), respectively.\(^{261}\) Zhao et al. used a zirconium-based metal–organic framework (Zr-MOF) as an adsorbent for the removal of crystal violet and RhB dyes with the maximum adsorption capacity corresponding to 63.38 and 67.73 mg g\(^{-1}\), respectively.\(^{262}\) Table 6 describes various MOFs used as adsorbents in dye remediation from wastewater.

4.6. Polymers and their nanocomposites

Polymer-based adsorbents, such as polyaniline (PANI), polypyrrole (PPY), PANI/PPY copolymer, PANI/GO, PANI-modified rice husk composites, polymeric rice and Graham flour, polymeric turmeric powder, and chitosan, have found enormous applications in the field of dye treatment due to their easy fabrication, high effective surface area, high selectivity, interesting doping/de-doping chemistry, electrical transport characteristics, strong binding affinities, and porous surface texture.\(^{263–266}\) For most of the conducting polymer composites, the adsorption of dyes follows the mechanism of physisorption, hydrogen bonding, π–π interactions, and electrostatic interaction.\(^{267}\) Further, the presence of active groups (i.e., amine and imine) in the polymer facilitates the adsorption process. Many researchers have proposed the applications of polymer-based adsorbents to remediate dyes originating from industrial effluent (Table 7).

MOF	Dyes	Experimental conditions	Adsorption capacity/ removal efficiency	Adsorption kinetics, isotherm, and mechanisms
MIL-53(Al)-NH\(_2\)^{256}	MB and MG	C\(_0\) = 5 mg L\(^{-1}\)	208.3 mg g\(^{-1}\) and 164.9 mg g\(^{-1}\), respectively	Langmuir (R\(^2\) = 0.99) and Freundlich isotherm (R\(^2\) = 0.97); electrostatic attraction or repulsion.
MIL-Ti\(^{257}\)	Basic Red 46, basic blue 41, and MB	Time: 30 min pH: 6.3 \(\lambda_{\text{max}}\): 530, 605, and 665 nm, respectively	1250, 1428, and 833 mg g\(^{-1}\), respectively	Pseudo-second-order kinetics; Langmuir isotherm; π–π interaction, hydrogen bonding, electrostatic interactions, and acid–base interactions
Porous MOF material-based on chromium-benzene dicarboxylate\(^{258}\)	MO	C\(_0\) = 30–50 mg L\(^{-1}\) \(\lambda_{\text{max}}\): 464 nm	194 mg g\(^{-1}\)	Pseudo-second-order kinetics; Langmuir isotherm; electrostatic interaction
MIL-100 (Fe,Cr)\(^{259}\)	MO and MB	C\(_0\) = 400 mg L\(^{-1}\)	MIL-100(Cr): MO 211.8 mg g\(^{-1}\) MIL-100(Fe): MO 1045.2 mg g\(^{-1}\) MIL-100(Cr): MB 645.3 mg g\(^{-1}\) MIL-100(Fe): MB 736.2 mg g\(^{-1}\) 245 mg g\(^{-1}\)	Pseudo-second-order kinetics; Langmuir isotherm; electrostatic interaction and π–π stacking interaction and/or hydrophobic interactions
(Fe\(_3\)O\(_4\)/Cu\(_3\)(BTC))\(^{260}\)	MB	C\(_0\) = 300 mg L\(^{-1}\) \(\lambda_{\text{max}}\): 660 nm		
Table 6 (continued)

MOF	Dyes	Experimental conditions	Adsorption capacity/removal efficiency	Adsorption kinetics, isotherm, and mechanisms
Zeolitic imidazolate framework (ZIF) ZIF-8, ZIF-8@CNT, ZIF-8@GO	MG	Dose: 0.062, 0.031, and 0.018 g L\(^{-1}\); ZIF-8, ZIF-8@CNT, ZIF-8@GO, respectively.	ZIF-8: 1667 mg g\(^{-1}\); Pseudo-second-order kinetics; Langmuir isotherm; electrostatic interaction	
		Time: 240 min	ZIF-8@CNT: 2034 mg g\(^{-1}\); ZIF-8@GO: 3300 mg g\(^{-1}\); Pseudo-second-order kinetics; chemisorption	
Zirconium-based MOFs\(^{262}\)	CV and RhB	C\(_{0}\): 10 mg L\(^{-1}\); pH: 11 and 7, respectively.	63.38 mg g\(^{-1}\); and 67.73 mg g\(^{-1}\), respectively	Pseudo-second-order kinetics; chemisorption
		\(\lambda_{\text{max}}\): 585 and 554 nm, respectively.		

C\(_{0}\): initial dye concentration; T: temperature; and \(\lambda_{\text{max}}\): maximum wavelength detected for the analysis of dye.

Table 7 Polymers and their nanocomposites for dye removal

Adsorbent	Dyes	Experimental conditions	Adsorption capacity/removal efficiency	Adsorption kinetics, isotherm, and mechanisms
Pure polyaniline and polypyrrole	CR	C\(_{0}\): 20 mg L\(^{-1}\); pH: 6.55; T: 298 K; Dose: 0.4 g L\(^{-1}\) and 1.73 g L\(^{-1}\), respectively	250.01 and 66.66 mg g\(^{-1}\), respectively; Pseudo-second-order kinetics; Langmuir isotherm; chemisorption	
PANI and PPY\(^{61}\)		\(\lambda_{\text{max}}\): 495 nm		
PPY and PANI\(^{272}\)	Azo dyes: sunset and CR	pH: 2; C\(_{0}\): 470 and 497 nm, respectively	212.1 and 147 mg g\(^{-1}\), respectively; \(\pi-\pi\) electron donor-acceptor interaction and electrostatic attraction	
PANI powder\(^{273}\)	MB	C\(_{0}\): 3.9 mg L\(^{-1}\); \(\lambda_{\text{max}}\): 664 nm	13.854 mg g\(^{-1}\); Pseudo-second-order kinetics; Langmuir isotherm; chemisorption	
PANI\(^{274}\)	MO	pH: 3; Time: 5 h; \(\lambda_{\text{max}}\): 498 nm	92%; Pseudo-second-order kinetics; Langmuir isotherm; chemisorption involved electrostatic interaction	
PANI HNTs\(^{275}\)	MB and acid green	pH: 3–11; \(\lambda_{\text{max}}\): 664 nm and 642 nm, respectively	69.44 and 57.87 mg g\(^{-1}\), respectively	

Polyaniline and polypyrrole based nanocomposites

PANI/GO and PANI/RGO\(^{280}\)	MB	Time: 270 min; C\(_{0}\): 50 mg L\(^{-1}\); \(\lambda_{\text{max}}\): 660 nm	14.2 and 19.2 mg g\(^{-1}\), respectively; Pseudo-first-order kinetics; Langmuir isotherm; the presence of imine groups and \(\pi-\pi\) stacking interactions	
Pani-modified rice husk composite\(^{281}\)	Acid red 18	C\(_{0}\): 40–120 mg L\(^{-1}\); \(\lambda_{\text{max}}\): 523 nm	100 mg g\(^{-1}\); Pseudo-second-order kinetics; Langmuir isotherm; chemisorption	
PANI/Fe\(_{3}\)O\(_{4}\)\(^{263}\)	Acid Blue 40	C\(_{0}\): 50 mg L\(^{-1}\); \(\lambda_{\text{max}}\): 620 nm	216.9 mg g\(^{-1}\); Pseudo-second-order kinetics; Freundlich isotherm; electrostatic interaction and H-bond formation Langmuir isotherm; \(\pi-\pi\) interaction; hydrogen bond formation Pseudo-second-order kinetics; Toth model; electrostatic interaction	
Alpha-cellulose/magnetite/PPA\(^{282}\)	Reactive Black 5	pH: 3; \(\lambda_{\text{max}}\): 597 and 577 nm, respectively	62.31 mg g\(^{-1}\); Pseudo-second-order kinetics; Temkin isotherm; chemisorption involves membrane diffusion, and intraparticle diffusion Electrostatic interaction	
Starch/polyaniline\(^{278}\)	Reactive Black and Reactive Violet 4	pH: 3; \(\lambda_{\text{max}}\): 597 and 577 nm, respectively	811.30 and 578.39 mg g\(^{-1}\), respectively	
PANI/TiO\(_{2}\)\(^{283}\)	MB	C\(_{0}\): 400 mg L\(^{-1}\); \(\lambda_{\text{max}}\): 664 nm	458.10 mg g\(^{-1}\); Pseudo-second-order kinetics; Langmuir isotherm; Ion-exchange processes and hydrophobic binding	
PANI/Starch\(^{279}\)	MB	C\(_{0}\): 1–2 \times 10\(^{-5}\) M; Dose: 1.2 g L\(^{-1}\)	6.8 \times 10\(^{6}\) mol g\(^{-1}\); Pseudo-second-order kinetics; Langmuir isotherm; Ion-exchange processes and hydrophobic binding	
Chitosan-based adsorbents	Direct blue-86, photosens, theraphthal, and C.I. Reactive Blue 21	pH: 4–6; C\(_{0}\): 10–130 mg L\(^{-1}\); \(\lambda_{\text{max}}\): 665, 679, 675, and 664 nm, respectively	1097 ± 55, 1049 ± 43, 367 ± 22, and 296 ± 18 mg g\(^{-1}\), respectively	Pseudo-second-order kinetics; Langmuir isotherm; Ion-exchange processes and hydrophobic binding
4.6.1 Pure polyaniline and polypyrrole. Polyaniline is one of the most studied conducting polymers due to its many advantages, such as simple synthesis, presence of –NH– groups, capability of doping, excellent physicochemical properties, mechanical flexibility, stability, low cost, and easy availability of its monomer.101,268 Alternatively, polypyrrole is another polymer studied for the removal of dyes from wastewater.51 Accordingly, Tanzifi \textit{et al.} studied the adsorption of methyl orange on nano polyaniline at 298 and 338 K. They inferred that an increase in temperature enhanced the adsorption capacity for the dye from 3.34 to 32.04 mg g\(^{-1}\) and 3.28 to 30.28 mg g\(^{-1}\) corresponding to the initial dye concentration of 10 and 100 mg L\(^{-1}\), respectively. The kinetics and isothermal studies established the pseudo-second-order model and validity of the Langmuir model (maximum monolayer adsorption capacity: 75.9 mg g\(^{-1}\)).300 PANI nanoparticles have also been utilized for the ultrasonication-assisted adsorption of crystal violet dye.270 The adsorption data fitted well with the Freundlich and Dubinin-Radushkevich isotherms. Accordingly, Sharma \textit{et al.}, hyper crosslinked polyaniline (specific surface area: 1083 m\(^2\) g\(^{-1}\)) achieved the maximum adsorption capacity of 245 and 220 mg g\(^{-1}\) in 60 min for cationic crystal violet and anionic MO dyes in aqueous medium, respectively. These studies also predicted the fitting of the Langmuir adsorption isotherm for both dyes.271 In another study, the adsorption of CR on PANI and PPY exhibited a maximum adsorption capacity of 250.01 and 66.66 mg g\(^{-1}\), respectively.51 Further, the experimental results revealed an increase in the adsorption efficiency with reaction time and adsorbent dosage. The kinetic data fitted well with the pseudo-second-order model, while the isothermal adsorption findings best correlated with the Langmuir isotherm model. In another study, the adsorption of sunset yellow and CR on a PPY–MWCNT composite achieved an adsorption capacity of 212.1 and 147 mg g\(^{-1}\), respectively.272 The adsorption mechanism involved electrostatic attraction and π–π interactions, and intermolecular H-bonding interaction. According to Ayad and Zaghlol (2012), cross-linked PANI exhibited an adsorption capacity of 13.85 mg g\(^{-1}\) for cationic dyes such as MB (surface area: 349 m\(^2\) g\(^{-1}\)). The SEM image of crosslinked polyaniline at high magnification revealed a sponge-like structure, indicating the presence of pores (Fig. 14).273 Smita \textit{et al.} used PANI to achieve a removal efficiency of 92% in 5 h for a toxic textile dye (MO) present in wastewater. The mechanistic study revealed that the electrostatic interaction between the counterions of the dye molecules and adsorbent was responsible for the adsorption of the dye.274 The adsorption of MB and acid green dye on PANI hollow nanotubes (internal diameter: 50–60 nm and outer diameter: 5–10 nm) followed the Langmuir model, and their maximum adsorption capacity corresponded to 69.4 and 57.87 mg g\(^{-1}\), respectively.275 Fig. 15 schematically
represents the proposed chemical interaction between PANI hollow nanotubes with MB and acid green dyes at pH of 9 and 3, respectively. MB completely adsorbed on the nanotubes of PANI within 20 min, and the adsorption process well fitted the Langmuir isotherm (maximum adsorption capacity: 9.21 mg g\(^{-1}\)).\(^{276}\) Bhaumik \textit{et al.} reported that the maximum monolayer adsorption capacity of Reactive Black 5 in aqueous solutions (pH 6) was 434.7 mg g\(^{-1}\) (318 K) on polyaniline nanofibers (diameter: 50–80 nm). The equilibrium isotherm data fitted the Langmuir isotherm.\(^{277}\)

4.6.2 Polyaniline and polypyrrole-based nanocomposites. Recently, polymeric nanohybrid materials have attracted significant attention in the field of wastewater treatment due to their high adsorption ability. For example, starch/polyaniline was used to treat reactive black and Reactive Violet 4 dyes, showing an adsorption capacity of 811.30 and 578.39 mg g\(^{-1}\), respectively.\(^{278}\) The Toth isotherm model better described the single-component equilibrium adsorption, whereas the modified Freundlich model well fitted dye removal. In one study, PANI/starch was used to adsorb MB dye, which showed an adsorption capacity of 6.8 × 10^6 mol g\(^{-1}\).\(^{279}\) Further, El-Sharkaway \textit{et al.} studied the removal of MB using PANI/GO and PANI/rGO nanocomposites. The adsorption capacity of PANI/GO and PANI/rGO for MB dye was 14.2 and 19.2 mg g\(^{-1}\), respectively, in 270 min.\(^{280}\) Besides, Shabandokht \textit{et al.} investigated the adsorption of Acid Red 18 dye using a PANI/HCl-modified rice husk composite, which showed an adsorption capacity of 100 mg g\(^{-1}.\)\(^{281}\) This study suggested that the Langmuir adsorption isotherm and pseudo-second-order kinetic model were compatible with the experimental results. In another work, Muhammad \textit{et al.} removed Acid Blue 40 dye using polyaniline, Fe\(_3\)O\(_4\), and their composites and the corresponding adsorption capacity was found to be 130.5, 264.9, and 216.9 mg g\(^{-1}\), respectively. The experimental result was better described by the Freundlich isotherm model and the mechanism involved electrostatic interactions and the significant amount of H-bonds present in PANI.\(^{283}\)

In another study, the adsorption of RB5 dye-cellulose coated with magnetite nanoparticles and conducting PPY followed at pH 3 fitted the Langmuir model well (maximum adsorption capacity: 62.31 mg g\(^{-1}\)).\(^{282}\) Further, Wang \textit{et al.} also used PANI/TiO\(_2\) to remove MB dye with a maximum adsorption capacity of 458.10 mg g\(^{-1}\), and the Langmuir adsorption isotherm well correlated with the experimental results. Chemical adsorption, membrane diffusion, and intraparticle diffusion were the responsible adsorption processes, while H-bonding, electrostatic interaction, and coordination interaction were the responsible adsorption mechanisms (Fig. 16). The attachment of MB on the surface of PANI mainly occurs on amino groups by electrostatic interaction and hydrogen bonding.\(^{283}\) Thus, a PANI zirconium oxide nanocomposite,\(^{284}\) PANI nanocomposite functionalized with zirconium\((iv)\) and silicophosphate\(^{285}\) and PANI-zirconium phosphate\(^{286}\) acted as efficient adsorbents for the removal of methylene blue and methyl orange dyes. The adsorption process for the cationic methylene blue dye\(^{287}\) and Acid Green 25\(^{288}\) on PANI nanotube/silica was best described by the pseudo-second-order kinetic model and Langmuir adsorption isotherm with the maximum monolayer adsorption capacity of 10.31 and 6.896 mg g\(^{-1}\), respectively. Studies have also been reported

![Fig. 14](image1.png) Scanning electron microscopy image of crosslinked PANI [Reprinted with permission from ref. 273. Copyright 2012, Elsevier].

![Fig. 15](image2.png) Schematic illustration of PANI-HNTs at pH 3 and 9 (blue color: PANI-HNTs and green color: AG) [Reprinted with permission from ref. 275. Copyright 2018, The Royal Society of Chemistry].

![Fig. 16](image3.png) Schematic showing the adsorption mechanisms of PANI/TiO\(_2\) [Reprinted with permission from ref. 283. Copyright 2019, Elsevier].
using PANI/silver, PANI/alumina, PANI/nickel ferrite, and PANI/zinc ferrite composites for the adsorption of brilliant green dye, anionic dyes (reactive red, Acid Blue 62, and Direct Blue 199), MB, and RhB, respectively.

4.6.3 Chitosan-based adsorbents. Chitosan is considered one of the most economical bio-polymers for dye removal, which can be extracted from natural resources. In comparison to other commercial adsorbents, it has attained great interest due to its unique properties such as cationic charge, high adsorption capacity, macromolecular structure, abundance, and cost-effectiveness. Chitosan is also an attractive source of natural polymers for the adsorption of pollutants from wastewater due to its biocompatibility, biodegradability, antibacterial properties, and nontoxicity. However, owing to its poor mechanical properties, low surface area, pH sensitivity, and low porosity, it is generally used in the form of a composite. Considering this, Janaki et al. reported that a PANI/chitosan composite efficiently removed Congo red, Coomassie brilliant blue, and Remazol brilliant blue R sulfonated anionic dye with a removal efficiency of 95.4%, 98.2%, and 99.8%, respectively. In contrast, it showed a removal efficiency of only 10.6% for the nonsulfonated cationic dye methylene blue.

The adsorptive removal of Reactive Orange 16 on chitosan/PANI/ZnO agreed well with the Langmuir isotherm and corresponded to a maximum monolayer adsorption capacity of 476.2 mg g⁻¹. In another work, the removal of anionic dyes, namely Direct Blue 86, photosens, theraphthal, and C.I. Reactive Blue 21m was studied on chitosan supported on a fibrous carrier. The experimental data fitted the Langmuir isotherm and showed the maximum adsorption capacity of anionic dye in the range of 300–1050 mg g⁻¹ depending on the type, molecular size, and number of anionic groups in the dye. According to Cojocaru et al., spinel ferrite (15%) dispersed in the matrix of chitosan inter-linked with glutaraldehyde, showing an adsorption capacity of 45.02 mg g⁻¹ for Acid Orange 7 dye. The hydrogen bonding and hydrophobic interaction between the dye molecules and composite were responsible for the adsorption mechanism. An Fe₂O₃/chitosan-bamboo saw-dust composite efficiently removed the acid dye bromothymol blue. The experimental data well correlated with the Langmuir isotherm model with an adsorption capacity of 217.39 mg g⁻¹ achieved in 30 min contact time using 0.5 g L⁻¹ adsorbent dose. Copello et al. treated Remazol black B, Erythrosine B, neutral red, and gentian violet dyes with chitosan hydrogel/SiO₂ and achieved the maximum adsorption capacity of 0.081, 0.08, 0.88, and 0.17 mmol g⁻¹, respectively.

4.6.4 Miscellaneous polymer-based adsorbents. Agarwal et al. used polyvinyl alcohol (PVA) as an adsorbent for the removal of bromothymol and MB from wastewater. The corresponding adsorption isotherms were well fitted with both the Langmuir and Freundlich models. The adsorbent attained the maximum adsorption capacity in 10 min, corresponding to 276.2 and 123.3 mg g⁻¹, respectively. For the adsorption of Coomassie brilliant blue R 250 dye on poly(para-, ortho- and meta-phenylenediamine (PPDA)) grafted electrospun carbon nanofibers, the effective adsorption capacity of 141 mg g⁻¹ was achieved and the adsorption kinetics and isotherm data were well correlated with the Elovich kinetic and Redlich–Peterson isotherm models respectively. The adsorption mechanism study suggested electrostatic interaction, π-π interactions, and intermolecular H-bonding controlled the dye sorption. Table 7 shows the removal of dye from contaminated water using conducting polymer, copolymer, and their nanocomposite-based adsorbents. Fig. 17 shows a schematic representation of dye pollution in water and its adsorptive removal using different adsorbents.
5. Critical factors influencing dye adsorption

Critical factors such as initial dye concentration, solution pH, temperature, adsorbent dose, and time play a significant role in the adsorptive removal of dyes (Table 8). In this regard, the initial dye concentration makes substantial contributions to the adsorption phenomena. It should be noted that an increase in dye concentration shows positive effects up to a certain limit. Further, the increasing tendency of adsorption for high levels of dye contaminants is directly related to the available active sites on the surface of the adsorbent. The enhanced adsorption capacity is initially accelerated due to the presence of unsaturated active sites in the adsorbent. As the surface of the adsorbent becomes saturated, a considerable reduction in the adsorption of dye occurs.14,302 According to Mane and Babu (2011), for brilliant green dye with an initial concentration of 100 mg L\(^{-1}\), sodium hydroxide treated saw-dust exhibited an adsorption capacity of 55.86 mg g\(^{-1}\).121 In another work, the adsorption capacities of 1602 and 1814 mg g\(^{-1}\) were recorded on cellulose-g-poly(acrylic acid-co-acrylamide) as an adsorbent for the initial concentration of acid blue and MB of 200 mg L\(^{-1}\), respectively.204 These observations suggest, in general, a high initial concentration results in a high adsorption capacity. In addition, the solution pH also plays an essential role in the adsorption of dye from contaminated water. According to Zhou et al., a variation in pH can affect the possible reactions between dye molecules and adsorbents due to the change in the ionization level and surface charge of the adsorbent.14 In general, low and high solution pH favor the adsorption of anionic and cationic dyes, respectively.103 This was substantiated by Daneshvar et al. and Phoemphoonthanyakit et al., where they reported an adsorption capacity of 1093 mg g\(^{-1}\) at pH 2 for Acid Blue 25 and 600 mg g\(^{-1}\) at pH 7 for Rhodamine 6G.142,211 Further, the temperature has a prominent effect on the adsorption of dyes. Additionally, a variation in temperature is also helpful in identifying if adsorption process is endothermic or exothermic. In an exothermic process, the adsorption capacity decreases an increase in temperature, whereas it increases with an increase in temperature in an endothermic process.304

In general, an increase in the adsorbent dose has positive effects on the adsorptive removal of dyes, mainly due to the increment in the active sorption sites.303 In contrast, a higher dose may cause congestion in active sites of the adsorbent. Khan and Nazir (2015) achieved an adsorption capacity of 217.39 mg g\(^{-1}\) for bromothymol blue at a dose of 0.5 g L\(^{-1}\) using an Fe\(_2\)O\(_3\)/chitosan–bamboo saw-dust composite.298 In contrast, Ebrahimian Pirbazari et al. reported an adsorption capacity of 1374.6 mg g\(^{-1}\) for MB at a dose of 1.0 g L\(^{-1}\) NaOH-treated wheat straw impregnated with Fe\(_3\)O\(_4\) nanoparticles.214 These findings clearly demonstrate the positive effects manifested by an increased adsorbent dosage. Finally, an increase in

Critical influencing factor	Salient features	Influence on adsorption	Remarks	Ref.
Initial dye concentration	Showing the dissolved amount of dye in aqueous solution and the amount of dye adsorption are directly related to the active sites present on the surface of the adsorbent.	Increased dye concentration causes an increment in adsorption capacity until the unsaturated active sites of the adsorbent become saturated.	In an aqueous environment, the initial concentration of dye may vary from trace level to mg L\(^{-1}\) or even more.	14 and 302
pH of the solution	Has a prominent role in dye adsorption.	A variation in pH affects the reaction between dye molecules and adsorbents because of the change in the ionization level and surface charge of the adsorbents.	The pH of the dye effluent may vary depending on the presence of different types of salts (acidic and basic).	14 and 303
Adsorbent dose	Controls the degree of electrostatic charges provided by ionized dye molecules and causes the varying rate of adsorptions with changing pH. Showing the amount of adsorbent used to remove dye particles.	Directly related to the number of active sites available on the surface of the adsorbent.	High dose affects the economy of the treatment process.	95 and 303
Temperature	Shows the adsorption nature, whether it is endothermic or exothermic.	An increase in adsorption capacity with an increase in temperature shows the endothermic nature, whereas a decrease in adsorption capacity an increase in temperature shows the exothermic nature of reactions.	In general, an increase in temperature increases the adsorption capacity, but a higher temperature is not desirable.	95 and 304
Reaction time	Shows the contact time between adsorbent and adsorbate.	An increase in contact time causes positive effects on the adsorption until equilibrium among active sites of adsorbent and dye molecules is established.	High reaction time affects the economy of the treatment processes due to an increase in energy requirements.	95
contact time may have a negative and/or positive effects on the adsorptive removal of dyes. When equilibrium is established between the active sites of the adsorbent and dye molecules, a further increment in the reaction time has no involvement in the adsorption. Khan and Nazir (2015) have observed an adsorption capacity of 217.39 mg g\(^{-1}\) for bromothymol blue in 30 min on an Fe\(_2\)O\(_3\)/chitosan-bamboo saw-dust composite.\(^{208}\) In contrast, an adsorption capacity of 1057.90 mg g\(^{-1}\) for MO dye was achieved on a nano-dimensional Co/Cr-codoped ZnO adsorbent in 120 min, indicating that an increase in reaction time has positive effects on the adsorption process.\(^{219}\)

6. Mechanisms of dye adsorption

The adsorption of dye from contaminated water on the surface of an adsorbent is achieved via various adsorption mechanisms, as schematically shown in Fig. 18 and displayed in Tables 2–7. It should be noted that the adsorption of water pollutants on adsorbents is mainly guided by electrostatic attraction, π–π interactions, van der Waals forces, hydrogen bonding, acid–base reactions, and hydrophobic interaction.\(^1\) Shen and Gondal reported that electrostatic and intermolecular interactions govern the adsorption of Rhodamine dye on the surface of the adsorbent.\(^{60}\) According to Zheng et al., the adsorption of anionic dyes, such as CR and MO on GO–NiFe-LDH, is achieved by electrostatic attraction and ion exchange phenomena.\(^{178}\) Furthermore, the ion exchange mechanism involves the exchange of ions between a liquid (dye solution) and solid phase (adsorbent). Ebrahimian Pirbazari et al. suggested that two principal mechanisms are involved in removing the MB dye on NaOH-treated wheat straw impregnated with Fe\(_3\)O\(_4\), namely the formation of a surface complex and ion exchange between the dye molecule and adsorption surfaces.\(^{214}\) The formation of a surface complex is a mechanism associated with the adsorption process, which is described by the binding of ions to various surface functional groups available onto the surface of the adsorbent and electrostatic interaction between the adsorbent–adsorbate surfaces. Cojocaru et al. proposed that the formation of hydrogen bonds between Acid Orange 7 dye and adsorbents accounts for the adsorption process.\(^{64}\) According to Siddiqui et al., H-bonds between MB and MnO\(_2\)/BC arise due to the interaction between the –OH groups present in MnO\(_2\)/BC and the acceptor present in MB molecules.\(^{123}\) Similarly, π–π bonding/π-effects/π-interactions (non-covalent) involve π systems, where similar to electrostatic interactions, positively charged molecules interact with negatively charged surfaces. Further, the adsorption process can follow more than one mechanism simultaneously. For example, the adsorption of Coomassie Brilliant Blue R 250 dye on the surface of adsorbents is governed by electrostatic interactions, π–π interactions, and intermolecular H-bonding.\(^{63}\) The probable adsorption mechanisms involved in dye removal are shown in Fig. 18, together with the various adsorption processes.

![Fig. 18 Adsorption processes and mechanisms for dye removal from bulk liquid.](image-url)
7. Critiques, future perspectives, and summary

7.1. Critiques and future perspectives

Adsorption is the most preferred technique for dye removal due to its ease of operation, high efficiency, recyclability, and cost-effectiveness. This is also one of the most suitable methods employed for both pilot and field-scale wastewater treatment facilities. The adsorption ability depends on the type of adsorbent used in the removal of dyes from contaminated water. Therefore, adsorbents should have easy availability, cost-effectiveness, high porosity, recycling ability, and abundant active sites on its surface. Recently, commercial adsorbents, such as industrial waste-based adsorbents for the treatment of dyes, pesticides, pharmaceuticals, etc., have received considerable attention due to their involvement in waste minimization. Besides, metal oxide-based adsorbents are also preferred on a large scale due to their unique properties, such as highly active sites and ability to blend with other sorbents. Furthermore, metal–organic framework- and polymer-based adsorbents have also been explored as adsorbents in the treatment of dye-contaminated water owing to their enhanced surface activity and porosity. Considering this, future studies could target the better utilization of commercial and natural bio-adsorbents having good adsorption and desorption capabilities, recyclability, and cost-effectiveness. MOFs and polymer-based adsorbents can be widely researched for wastewater treatment. The adsorption techniques can also be explored in the field of micropollutant remediation such as dyes, pharmaceuticals, and other emerging contaminants at the field scale.

Continuing research is focused on adsorption as one of the prime strategies in the separation of dye from wastewater. However, challenges still exist in developing low-cost, high-performing adsorbents with significantly enhanced activity and long-term stability. In this regard, integrating agro-industrial waste, several naturally existing materials, and eco-friendly industrial waste materials with other biodegradable nanomaterials with no risk to human health and environmental sustainability may be the best alternative. Further, the choice of nanomaterials as adsorbents in wastewater treatment is guided by their high surface area and high adsorption capacity. However, the production cost of nano-adsorbents needs to be considered for their commercial use in any industrial effluent treatment. Despite this, the separation of nanomaterials after adsorption and their disposal are complex and costly processes.\(^\text{105}\)

Additionally, cost-effectiveness in terms of reusability of the spent adsorbent should also be considered. Spent adsorbents need to be regenerated and activated by treating them with acid or alkali for their safe and effective reuse.\(^\text{106}\) Further, the economical and safe disposal or reuse of spent/exhausted adsorbents need to be considered.\(^\text{107,108}\) Dye-loaded spent adsorbents can be utilized to produce biochar materials, fuel cells, for energy production purposes, and also in landfilling.\(^\text{36,40}\) Simultaneously, the difficulties and limitations in the scale-up of the treatment technology at the commercial level need to be considered in terms of economic aspects and energy-related issues.

7.2. Summary

The disposal of colored dye wastewater in the environment has depleted freshwater resources and compelled scientists to rethink the availability of clean and safe water. It has been reported that the presence of toxic and colored compounds in dye-containing wastewater results in carcinogenic, mutagenic, allergic, and dermatitis effects on living organisms. This review article reported various classes of dyes and their applications, ecotoxic effects, and sources of dye-contaminated water. The textile, leather, and cosmetic industries were found to be the primary sources of dye-polluted water. Different existing treatment techniques were reviewed and compared for dye removal. Among them, adsorption was selected as a potential technique to treat dye wastewater due to its easy application, simple and scalable synthesis of adsorbents, high removal efficiency, and cost-effectiveness. In this direction, the various adsorbents reported for the removal of dyes from aqueous solution were highlighted. In addition, investigations revealing the adsorption kinetics and fitting of the adsorption isotherm were also presented. MOFs, metal-oxides, and hybrids of bio-adsorbents and carbon show significant adsorption ability for dye contaminants. Various critical factors, such as solution pH, adsorbent dosage, initial dye concentration, temperature, and equilibrium time, were identified as essential factors influencing the adsorption process. Besides, the driving forces responsible for the adsorption of dye molecules are electrostatic interactions, van der Waals forces, hydrogen bonding, and π–π interactions. Thus, the high removal efficiency and field applicability of the adsorption technique make this process suitable for the treatment of dye-contaminated water.

Conflicts of interest

There are no conflicts of interest to declare.

Acknowledgements

S. Dutta and B. Gupta are grateful to the Indian Institute of Technology Kharagpur, India, for financial support.

References

1. F. Lu and D. Astruc, *Coord. Chem. Rev.*, 2020, *408*, 213180.
2. J. K. H. Wong, H. K. Tan, S. Y. Lau, P. S. Yap and M. K. Danquah, *J. Environ. Chem. Eng.*, 2019, 7, 103261.
3. S. Benkhaya, S. M’rabet and A. El Harfi, *Inorg. Chem. Commun.*, 2020, *115*, 107891.
4. J. Chen, Y. Xiong, M. Duan, X. Li, J. Li, S. Fang, S. Qin and R. Zhang, *Langmuir*, 2020, *36*, 520–533.
5. C. Sahoo, A. K. Gupta and A. Pal, *Desalination*, 2005, *181*, 91–100.
6. C. Sahoo and A. K. Gupta, *J. Environ. Sci. Health, Part A: Toxic/Hazard. Subst. Environ. Eng.*, 2015, *50*, 1333–1341.
7. H. Znad, K. Abbas, S. Hena and M. R. Awual, *J. Environ. Chem. Eng.*, 2018, *6*, 218–227.
C. Sahoo, A. K. Gupta and I. M. S. Pillai, J. Environ. Sci. Health, Part A: Toxic/Hazard. Subst. Environ. Eng., 2021, 26, 668–673.

K. Meerbergen, S. Crauwels, K. A. Willems, R. Dewil, J. Van Impe, L. Appels and B. Lievens, J. Biosci. Bioeng., 2017, 124, 668–673.

B. Dong, H. Chen, Y. Yang, Q. He and X. Dai, Desalin. Water Treat., 2014, 52, 4562–4567.

K. Rachna, A. Agarwal and N. Singh, Mater. Today: Proc., 2019, 12, 573–580.

A. Ahmad, Electroanal. Chem., 2020, 873, 114456.

M. Shaban, M. R. Abukhadr, A. Hamd, R. R. Amin and A. Abdel Khalek, J. Environ. Manage., 2017, 204, 189–199.

S. Samsami, M. Mohamadi, M. H. Sarrazfazadeh, E. R. Rene and M. Firoozbahr, Process Saf. Environ. Prot., 2020, 143, 138–163.

H. C. Tee, P. E. Lim, C. E. Seng, M. A. Mohd Nawi and R. Adnan, J. Environ. Manage., 2015, 147, 349–355.

S. Sonal, D. Ugale and B. K. Mishra, Mine Water Environ., 2021, 1, 3.

B. Gupta, T. Priya and B. Kumar Mishra, Environ. Eng. Res., 2020, 26, 200234.
Materials Advances

Review

63 B. M. Thamer, A. Aldalbahi, M. Moysdeen A, H. El-Hamshary, A. M. Al-Enizi and M. H. El-Newehy, Mater. Chem. Phys., 2019, 234, 133–145.
64 C. Cojocaru, P. Samoila and P. Pascariu, Int. J. Biol. Macromol., 2019, 123, 587–599.
65 V. K. Gupta, Suhas, I. Ali and V. K. Saini, Ind. Eng. Chem. Res., 2004, 43, 1740–1747.
66 S. K. Srivastava, S. Senapati, S. B. Singh and P. K. Raul, RSC Adv., 2016, 6, 113424.
67 A. K. Sahoo, S. K. Srivastava, P. K. Raul, A. K. Gupta and R. Shrivastava, J. Nanopart. Res., 2014, 16, 1–17.
68 P. Basnet and Y. Zhao, J. Mater. Chem. A, 2014, 2, 911–914.
69 C. B. Godiya, L. A. Martins Ruotolo and W. Cai, J. Mater. Chem. A, 2020, 8, 21585–21612.
70 J. L. Gong, B. Wang, G. M. Zeng, C. P. Yang, C. G. Niu, Q. Y. Niu, W. J. Zhou and Y. Liang, J. Hazard. Mater., 2009, 164, 1517–1522.
71 D. A. Yaseen and M. Scholz, Int. J. Environ. Sci. Technol., 2019, 16, 1193–1226.
72 Pubchem, Home – PubChem Compound – NCBI, https://www.ncbi.nlm.nih.gov/pcompound, (accessed 3 February 2021).
73 K. Yamjala, M. S. Nainar and N. R. Ramisetti, Food Chem., 2016, 192, 813–824.
74 L. C. Davies, G. J. M. Cabrita, R. A. Ferreira, C. C. Carías, J. M. Novais and S. Martins-Dias, Ecol. Eng., 2009, 35, 961–970.
75 M. KashefiAlasl, M. Khosravi, R. Marandi and K. Seyyedi, Int. J. Environ. Sci. Technol., 2006, 2, 365–371.
76 K. Jain, D. Madamwar and O. Tiwari, Mapping of Research Outcome on Remediation of Dyes, Dye Intermediates and Textile Industrial Waste, 2019.
77 S. Shakoor and A. Nasar, J. Taiwan Inst. Chem. Eng., 2016, 66, 154–163.
78 H. Xiao, T. Zhao, C. H. Li and M. Y. Li, J. Cleaner Prod., 2017, 165, 1499–1507.
79 A. C. Jalandoni-Buan, A. L. A. Decena-Soliven, E. P. Cao, V. L. Barraquio and W. L. Barraquio, Philippines J. Sci., 2010, 139, 71–78.
80 D. T. Sponza and M. Işı̇k, Process Biochem., 2005, 40, 2735–2744.
81 S. M. Burkinshaw and Y. A. Son, Dyes Pigments, 2010, 87, 132–138.
82 G. Muthuraman and T. T. Teng, Prog. Nat. Sci., 2009, 19, 1215–1220.
83 G. L. Baughman and E. J. Weber, Dyes Pigm., 1991, 16, 261–271.
84 C. D. Raman and S. Kanmani, J. Environ. Manage., 2016, 177, 341–355.
85 A. A. Shalaby and A. A. Mohamed, RSC Adv., 2020, 10, 11311–11316.
86 K. R. Millington, K. W. Fincher and A. L. King, Sol. Energy Mater. Sol. Cells, 2007, 91, 1618–1630.
87 M. Berradi, R. Hsissou, M. Khudhair, M. Assouagm, O. Cherkaoui, A. El Bachiri and A. El Harfi, Heliyon, 2019, 5, e02711.
88 M. F. Abid, M. A. Zablouk and A. M. Abid-Alameer, J. Environ. Health Sci. Eng., 2012, 9, 1–9.
89 B. Manu and S. Chaudhari, Bioresour. Technol., 2002, 82, 225–231.
90 A. K. Yadav, C. K. Jain and D. S. Malik, J. Sustainable Environ. Res., 2014, 3, 95–102.
91 T. Robinson, G. McMullan, R. Marchant and P. Nigam, Bioresour. Technol., 2001, 77, 247–255.
92 J. Garvasis, A. R. Prasad, K. O. Shamsheera, P. K. Jaseela and A. Joseph, Mater. Chem. Phys., 2020, 251, 123040.
93 M. F. Abid, M. A. Zablouk and A. M. Abid-Alameer, Iran. J. Environ. Health Sci. Eng., 2012, 9, 1–9.
94 R. Singh, M. K. Sinha and M. K. Purkait, Sep. Purif. Technol., 2020, 250, 117247.
95 V. Katheresan, J. Kansedo and S. Y. Lau, J. Environ. Chem. Eng., 2018, 6, 4676–4697.
96 D. Saidulu, B. Gupta, A. K. Gupta and P. S. Ghosal, J. Environ. Chem. Eng., 2021, 105282.
97 N. Al-Bastaki, Chem. Eng. Process., 2004, 43, 1561–1567.
98 S. K. Nataraj, K. M. Hosamani and T. M. Aminabhavi, Desalination, 2009, 239, 12–17.
99 G. Moradi, S. Zinadini and L. Rajabi, Process Saf. Environ. Prot., 2020, 144, 65–78.
100 S. Senapati, S. K. Srivastava and S. B. Singh, Nanoscale, 2012, 4, 6604–6612.
101 A. Nasar and F. Mashkoor, Environ. Sci. Pollut. Res., 2019, 26, 5333–5356.
102 K. Y. Foo and B. H. Hameed, Desalin. Water Treat., 2010, 29, 255–274.
103 S. Sonal, P. Prakash, B. K. Mishra and G. C. Nayak, RSC Adv., 2020, 10, 13783–13798.
104 X. W. Liu, T. J. Sun, J. L. Hu and S. D. Wang, J. Mater. Chem. A, 2016, 4, 3584–3616.
105 P. K. Malik, J. Hazard. Mater., 2004, 113, 81–88.
106 C. Djilani, R. Zaghdoudi, F. Djazi, B. Bouchekima, A. Lallam, A. Modarressi and M. Rogalski, J. Taiwan Inst. Chem. Eng., 2015, 53, 112–121.
107 M. S. Rahman, Water, Air, Soil Pollut., 2021, 232, 1–14.
108 D. A. Giannakoudakis, G. Z. Kyzas, A. Avranas and N. K. Lazaridis, J. Mol. Liq., 2016, 213, 381–389.
109 E. Akar, A. Altimişik and Y. Seki, Ecol. Eng., 2013, 52, 19–27.
110 M. A. Ahmad, N. B. Ahmed, K. A. Adgeoke and O. S. Bello, Chem. Data Collect., 2019, 22, 100249.
111 L. Ding, B. Zou, W. Gao, Q. Liu, Z. Wang, Y. Guo, X. Wang and Y. Liu, Colloids Surf., A, 2014, 446, 1–7.
112 S. S. Lam, R. K. Liew, Y. M. Wong, P. N. Y. Yik, N. M. Ma, C. L. Lee and H. A. Chase, J. Cleaner Prod., 2017, 162, 1376–1387.
113 A. Khan, X. Wang, K. Gul, F. Khuda, Z. Aly and A. M. Elseman, Egypt. J. Basic Appl. Sci., 2018, 5, 171–182.
114 B. Szczęśniak, J. Prurirapgitikhon, J. Choma and M. Jaroniec, J. Mater. Chem. A, 2020, 8, 18464–18491.
115 A. H. Jawad, R. A. Rashid, M. A. M. Ishak and L. D. Wilson, Desalin. Water Treat., 2016, 57, 25194–25206.
116 M. Asadullah, M. Asaduzzaman, M. S. Kabir, M. G. Mostofa and T. Miyazawa, J. Hazard. Mater., 2010, 174, 437–443.
Materials Advances

279 M. Bin Yeamin, M. M. Islam, A. N. Chowdhury and M. R. Awual, *J. Cleaner Prod.*, 2021, **291**, 125920.

280 E. A. El-Sharkaway, R. M. Kamel, I. M. El-Sherbiny and S. S. Gharib, *Environ. Technol.*, 2020, **41**, 2854–2862.

281 M. Shabandokht, E. Binaeian and H. A. Tayebi, *Desalin. Water Treat.*, 2016, **57**, 27638–27650.

282 P. E. Díaz-Flores, C. J. Guzmán-Álvarez, V. M. Ovando-Medina, H. Martínez-Gutirriéz and O. González-Ortega, *Desalin. Water Treat.*, 2019, **155**, 350–363.

283 N. Wang, J. Chen, J. Wang, J. Feng and W. Yan, *Powder Technol.*, 2019, **347**, 93–102.

284 S. Agarwal, I. Tyagi, V. K. Gupta, F. Golbaz, A. N. Golikand and O. Moradi, *J. Mol. Liq.*, 2016, **218**, 494–498.

285 V. K. Gupta, D. Pathania, N. C. Kothiyal and G. Sharma, *J. Mol. Liq.*, 2014, **190**, 139–145.

286 L. Wang, X. L. Wu, W. H. Xu, X. J. Huang, J. H. Liu and A. W. Xu, *ACS Appl. Mater. Interfaces*, 2012, **4**, 2686–2692.

287 M. M. Ayad, A. Abu El-Nasr and J. Stejskal, *J. Ind. Eng. Chem.*, 2012, **18**, 1964–1969.

288 M. M. Ayad and A. A. El-Nasr, *J. Nanostruct. Chem.*, 2012, **3**, 1–9.

289 M. A. Salem, R. G. Elsharkawy and M. F. Hablas, *Eur. Polym. J.*, 2016, **75**, 577–590.

290 H. Javadian, M. T. Angaji and M. Naushad, *J. Ind. Eng. Chem.*, 2014, **20**, 3890–3900.

291 M. R. Patil and V. S. Shrivastava, *Desalin. Water Treat.*, 2016, **57**, 5879–5887.

292 K. Rachna, A. Agarwal and N. B. Singh, *Environ. Nanotechnol., Monit. Manage.*, 2018, **9**, 154–163.

293 M. Vakili, M. Rafatullah, B. Salamatinia, A. Z. Abdullah, M. H. Ibrahim, K. B. Tan, Z. Gholami and P. Amouzgar, *Carbohydr. Polym.*, 2014, **113**, 115–130.

294 R. A. A. Muzzarelli, J. Boudrant, D. Meyer, N. Manno, M. Demarchis and M. G. Paolletti, *Carbohydr. Polym.*, 2012, **87**, 995–1012.

295 V. Janaki, B. T. Oh, K. Shanthi, K. J. Lee, A. K. Ramasamy and S. Kamala-Kannan, *Synth. Met.*, 2012, **162**, 974–980.

296 P. Kannusamy and S. Thambidurai, *Colloids Surf., B*, 2013, **108**, 229–238.

297 I. M. Lipatova, L. I. Makarova and A. A. Yusova, *Chemosphere*, 2018, **212**, 1155–1162.

298 T. A. Khan and M. Nazir, *Environ. Prog. Sustainable Energy*, 2015, **34**, 1444–1454.

299 G. J. Copello, A. M. Mebert, M. Raineri, M. P. Pesenti and L. E. Diaz, *J. Hazard. Mater.*, 2011, **186**, 932–939.

300 S. Agarwal, H. Sadegh, M. Monajjemi, A. S. Hamdy, G. A. M. Ali, A. O. H. Memar, R. Shahryari-Ghoshekandi, I. Tyagi and V. K. Gupta, *J. Mol. Liq.*, 2016, **218**, 191–197.

301 N. Nekouei Marnani and A. Shahbazi, *Chemosphere*, 2019, **218**, 715–725.

302 Z. Eren and F. N. Acar, *Desalination*, 2006, **194**, 1–10.

303 M. A. M. Salleh, D. K. Mahmoud, W. A. A. Karim and A. Idris, *Desalination*, 2011, **280**, 1–13.

304 S. Agarwal, H. Sadegh, M. Monajjemi, A. S. Hamdy, G. A. M. Ali, A. O. H. Memar, R. Shahryari-Ghoshekandi, I. Tyagi and V. K. Gupta, *J. Mol. Liq.*, 2016, **218**, 191–197.

305 N. Nekouei Marnani and A. Shahbazi, *Chemosphere*, 2019, **218**, 715–725.

306 S. Homaeigohar, *Nanomaterials*, 2020, **10**, 1–42.

307 D. Harikishore Kumar Reddy, K. Vijayaraghavan, J. A. Kim and Y. S. Yun, *Adv. Colloid Interface Sci.*, 2017, **242**, 35–58.

308 S. Homeigohar, *Nanomaterials*, 2020, **10**, 1–42.

309 Y. Feng, D. D. Dionysiou, Y. Wu, H. Zhou, L. Xue, S. He and L. Yang, *Bioresour. Technol.*, 2013, **138**, 191–197.