Noninvasive evaluation of nonalcoholic fatty liver disease: Current evidence and practice

Jiang-Hua Zhou, Jing-Jing Cai, Zhi-Gang She, Hong-Liang Li

Abstract

With the increasing number of individuals with diabetes and obesity, nonalcoholic fatty liver disease (NAFLD) is becoming increasingly prevalent, affecting one-quarter of adults worldwide. The spectrum of NAFLD ranges from simple steatosis or nonalcoholic fatty liver (NAFL) to nonalcoholic steatohepatitis (NASH). NAFLD, especially NASH, may progress to fibrosis, leading to cirrhosis and hepatocellular carcinoma. NAFLD can impose a severe economic burden, and patients with NAFLD-related terminal or deteriorative liver diseases have become one of the main groups receiving liver transplantation. The increasing prevalence of NAFLD and the severe outcomes of NASH make it necessary to use effective methods to identify NAFLD. Although recognized as the gold standard, biopsy is limited by its sampling bias, poor acceptability, and severe complications, such as mortality, bleeding, and pain. Therefore, noninvasive methods are urgently needed to avoid biopsy for diagnosing NAFLD. This review discusses the current noninvasive methods for assessing NAFLD, including steatosis, NASH, and NAFLD-related fibrosis, and explores the advantages and disadvantages of measurement tools. In addition, we analyze potential noninvasive biomarkers for tracking disease processes and monitoring treatment effects, and explore effective algorithms consisting of imaging and nonimaging biomarkers for diagnosing advanced fibrosis and reducing unnecessary biopsies in clinical practice.

Key words: Nonalcoholic fatty liver disease; Nonalcoholic steatohepatitis; Steatosis; Fibrosis; Noninvasive evaluation

©The Author(s) 2019. Published by Baishideng Publishing Group Inc. All rights reserved.
INTRODUCTION

With the increasing number of individuals with diabetes and obesity, nonalcoholic fatty liver disease (NAFLD) is becoming increasingly prevalent, affecting more than one-quarter of adults in the world\(^1\) and 60% of diabetic patients\(^2\) and rising to 90% in the obese people\(^3,4\). In the United States, the prevalence of NAFLD in adults is 24.13%\(^1\), and it is forecasted to be 33.5% in 2030, and NAFLD cases will reach 100.9 million in the general population\(^5\). In Asian, the prevalence of NAFLD has reached to 27.37%\(^1\), with 20.09% in China\(^6\). In some developing countries, such as Sudan, Nigeria, and Iran, the prevalence of NAFLD is about 8.7%-20%\(^7-9\). The spectrum of NAFLD covers from simple steatosis or nonalcoholic fatty liver (NAFL) to nonalcoholic steatohepatitis (NASH). NAFLD, especially NASH, may progress to fibrosis, leading to cirrhosis and hepatocellular carcinoma (HCC)\(^10\). NAFLD can impose a severe economic burden\(^11-13\), and patients with NAFLD-related terminal or deteriorative liver diseases have become one of the main groups receiving liver transplantation, overtaking hepatitis C patients\(^14,15\). Based on the double pressure of the increasing prevalence of NAFLD and severe outcomes of NASH, many effective treatments for NAFLD are under development. Lifestyle interventions combined with the loss of 10% of body weight may improve the state of steatosis, inflammation, and even fibrosis\(^16\). However, the majority of people poorly adhere to long-term, effective lifestyle interventions, which leads to the rapid development of pharmacological treatment. The current therapeutic targets of medicine in clinical trials cover metabolic targets, oxidative stress and inflammation, gut health, and antifibrotics\(^17-27\). During this period of clinical drug registration, histological biopsy is the key endpoint replacing the long-term main outcomes, such as mortality\(^28,29\). However, liver biopsy specimens have several limitations, such as representing only approximately 1/50000 of the organ and sampling bias. On the other hand, fibrosis is not uniformly distributed\(^30\), and liver biopsy may cause severe complications, such as mortality, bleeding, and pain. Therefore, it is preferable to use effective noninvasive methods in clinical practice for identifying NAFLD, tracking disease processes, and monitoring treatment effects\(^31\).

DIAGNOSIS OF NAFLD

Normal hepatic fat content is commonly defined when steatosis in liver histology is less than 5% of hepatocytes\(^20-30\). NAFLD is diagnosed by a histological phenotype of steatosis with the exclusion of other chronic liver diseases in more than 5% of cases\(^31,33\). However, in clinical practice, noninvasive methods, including assessment of biomarker panels and imaging, are widely applied instead of biopsy for diagnosing NAFLD.

Serum biomarkers and biomarker panels

Fatty liver index (FLI): The FLI is a prevalent biomarker panel consisting of body mass index (BMI), waist circumference, triglycerides, and gamma-glutamyl transferase for identifying NAFLD, with a total score varying between 0 and 100\(^37\). The area under the receiver operating characteristic curve (AUROC) of FLI for identifying NAFLD is 0.84\(^31\), a low cutoff of 30 is used to rule out NAFLD (the
negative likelihood ratio 0.2), and a high cutoff of 60 rule is used with a positive likelihood ratio of 4.3. However, the FLI poorly distinguishes moderate-to-severe steatosis from mild steatosis.[39]

Hepatic steatosis index (HSI): The HSI is a biomarker panel consisting of BMI, diabetes, and the alanine transaminase (ALT)/aspartate transaminase (AST) ratio. It had an AUROC of 0.79 and 0.82 in the derivation and validation groups, and the two cutoffs, 30 and 36, achieved a >90% sensitivity and specificity.[40]. However, the HSI accuracy decreases in obese children, with an AUROC of 0.67, sensitivity of 67%, and specificity of 62%.[41]. In addition, like the FLI, the HSI poorly distinguishes moderate-to-severe steatosis from mild steatosis.[39]

SteatoTest: The SteatoTest is a biomarker panel consisting of 10 biochemical tests, age, gender, and BMI. SteatoTest exhibited an AUROC of 0.8 for identifying a >5% liver fat content in patients with chronic liver diseases.[42]. Further studies are needed to validate the SteatoTest for differentiating individuals with NAFLD from healthy people.

NAFL screening score: The NAFL screening score is an easy-to-calculate model for identifying NAFLD with age, fasting blood glucose, BMI, triglyceride, ALT/AST, and uric acid. In a study of 48,489 patients with the gold standard of ultrasound (US), the NAFL screening score had different cutoffs for males and females, with a cutoff of 32 yielding an AUROC of 0.83 for males and a cutoff of 29 yielding an AUROC of 0.86 for females.[43]. In recent years, machine learning models based on laboratory parameters have been constructed. Yip et al.[43] conducted a study in 922 patients involving 264 NAFLD patients diagnosed by proton-magnetic resonance spectroscopy (1H-MRS). Six biomarkers from 23 routine laboratory tests were included to construct the NAFLD ridge score, with an AUROC of 0.87-0.88. The low cutoff of 0.24 achieved a sensitivity of 92% and negative predictive value (NPV) of 95%, and the high cutoff of 0.44 achieved a 90% specificity with a corresponding positive predictive value (PPV) of 84%.[44]. Other biomarker panels, such as the triglyceride and glucose index (TyG) and the FLD index, had a moderate AUROC of 0.78 (0.82-0.87) for identifying NAFLD in Chinese subjects.[45-47]. In sum, most studies of biomarker panels for diagnosing NAFLD are based on suboptimal gold standards with US or 1H-MRS, and few panels are validated in an independent group. Thus, future studies should not only focus on the gold standard of biopsy but also include a large independent validation group.

Imaging

US: US is the first-line imaging test used in clinical practice in individuals with suspected NAFLD,[48] with a typical appearance of a hyperechogenic liver. One recent meta-analysis demonstrated that compared with histology, US had a pooled sensitivity of 85% and specificity of 94% for moderate-to-severe steatosis.[49]. In contrast, US was incapable of detecting steatosis of less than 20%.[50,51] or steatosis in individuals with morbid obesity.[52]. In addition, the accuracy of US for hepatic steatosis assessment is affected by the presence of severe fibrosis[53] and intra- and inter-observer variability. To detect NAFLD at early stage, the computed-assisted US hepatic/renal ratio (H/R) and US hepatic attenuation rate are used to assess steatosis quantitatively.[47,49]. Both measurements exhibit a slightly better performance than conventional US for assessing hepatic steatosis with an excellent performance with a sensitivity of 95% and specificity of 100%, but the NPV is still low (72% for US H/R ratio and 67% for US hepatic attenuation rate).[53,54]. In addition, this quantitative US model could improve the reliability and reproducibility in comparison with conventional US, when it is standardized by a tissue-mimicking phantom, while these findings are needed to verify in further studies.[54]. Above all, US is still recommended for diagnosing moderate and severe steatosis in current guideline.[54]

Computed tomography (CT): Nonenhanced CT has been used in clinics to evaluate the severity of fatty liver since 1970, based on the fact that hepatic attenuation is inversely associated with the hepatic fat content. Normal liver has an attenuation value of 50-65 HU, and 8-10 HU higher than that of the spleen. However, the attenuation value of the liver may decrease to less than 40 HU when fatty infiltration occurs. Nonenhanced CT outperforms US in evaluating the severity of fatty liver, achieving a specificity of 100% and sensitivity of 82% for diagnosing higher (>30%) degrees of hepatic steatosis.[55]. Contrast-enhanced CT images are another CT model that can reduce the radiation exposure of nonenhanced CT.[56]. However, contrast-enhanced CT may be more suitable for severe hepatic steatosis using paraspinal or intercostal muscle as the standard reference[57] because its sensitivity for mild-moderate hepatic steatosis is only 25%.[58]. CT may also be used for hepatic fat
quantification, such as dual-energy CT and hepatic attenuation measurement, but these methods for assessing fatty liver should be sufficiently validated in future clinical studies\(^{[40]}\). Although CT is more effective for evaluating hepatic steatosis, it is also limited by insufficient accuracy for mild-to-moderate hepatic steatosis and radiation exposure, especially in children\(^{[41]}\).

Controlled attenuation parameter (CAP): CAP, a parameter based on ultrasonic signals, is measured by the FibroScan® with an M probe (3.5 MHz), with a result of 100–400 dB/m. CAP with an M probe is reported to have an AUROC of 0.82 for differentiating any degree of steatosis vs no steatosis\(^{[52]}\). In addition, the cutoff of 248 dB/m yields a sensitivity of 69% and specificity of 82%\(^{[53]}\). In addition, the study suggests deducting 10 dB/m from the optimal cutoff of the CAP value for individuals with NAFLD or NASH. However, the M probe is less accurate in differentiating hepatic steatosis in obese people\(^{[54]}\). Therefore, the XL probe was devised to overcome these limitations of the M probe with a lower failure rate and low reliability for measuring liver stiffness in patients with a BMI ≥ 28 kg/m\(^2\)\(^{[55]}\).

Magnetic resonance based techniques: Magnetic resonance imaging (MRI) determines steatosis by signal intensity differences on opposed-phase or fat saturation MRI\(^{[56]}\). MRI-derived proton density fat fraction (MRI-PDFF) is a robust, noninvasive MRI-based methods for assessing hepatic steatosis\(^{[57]}\). It uses MRI-visible protons that combine with fat in the liver to quantify steatosis by dividing all protons in the liver. Tang et al\(^{[58]}\) found that MRI-PDFF was significantly associated with the histological steatosis grade according to the NASH-CRN grade (\(\rho = 0.69\), \(P < 0.001\)), independent of age, sex, other NASH parameters, and NASH diagnosis. The robust correlation was confirmed in several studies\(^{[40,60]}\). Tang et al\(^{[60]}\) also reported an AUROC value of 0.99 for any grade of steatosis vs grade 0, 0.83 for grade 2 or higher vs grade 1 or lower, and 0.89 for grade 3 vs grade 2 or lower. In addition, MRI-PDFF is superior to other imaging tools for the assessment of hepatic steatosis\(^{[60,61]}\), and its performance is not affected by obesity. MRI-PDFF is also regarded as a robust noninvasive method to monitor the treatment effect\(^{[62]}\); this aspect will be described in detail below. \(^{1}H\)-MRS is another MR-based technique that directly measures the chemical compositions of the liver\(^{[63]}\). It is usually used in clinical studies of NAFLD representing biopsy for measurement of intrahepatocellular lipid (IHCL) through calculating PDFF\(^{[64]}\). \(^{1}H\)-MRS was reported to have a high correlation with biopsy in steatosis assessment\(^{[65]}\) and a sensitivity of 80% for diagnosis of liver fat content ≥ 5%\(^{[66]}\). \(^{1}H\)-MRS was reported to have a good accuracy to detect small amounts of liver fat. Nasr et al\(^{[67]}\) found that \(^{1}H\)-MRS had a specificity of 100% and sensitivity of 79% with a PDFF cutoff value of 3%, a specificity of 94% and sensitivity of 87% with a PDFF cut-off value of 2%. Although recognized as the most accurate noninvasive tool to assess PDFF quantitatively, MRS is limited to its device- and operator-dependency, complexity, and potentially errors. Complex-based chemical shift imaging (CSEMRI) is regarded as a promising method to quantify PDFF, which could quantitatively assess liver fat content with a refined pulse sequence\(^{[70-72]}\). It exhibits a high correlation with MRSPDFF \((r = 0.985\) for 1.5 T MR systems, \(r = 0.991\) for 3.0 T MR systems)\(^{[73]}\). MR diffusion weighted imaging (DWI) measures motion of water protons diffusing and tissue perfusing\(^{[75,76]}\) and is regarded another promising tool for assessing liver fat content\(^{[77]}\), while it exerts poor performance for detecting steatosis in comparison with MRS and dual echo in phase and out of phase imaging\(^{[78]}\). Therefore, more studies are needed to evaluate the performance of DWI in the future.

Clinical implication

US is recommended as the first-line diagnostic method in assessing steatosis, while serum biomarkers and biomarker panels are alternative tools when imaging tools are not available in larger scale screening studies (Table 1)\(^{[41]}\). An increasing number of biomarker panels are used in clinical and research applications, while most are validated in studies with relatively small populations, in individuals at their health checkup, or in studies with suboptimal gold criteria. Therefore, future well-designed studies are needed to develop a more effective noninvasive biomarker panel for identifying NAFLD. MRI-PDFF not only exerts an excellent performance for diagnosing NAFLD but also accurately detects changes in fat content during disease progression\(^{[79]}\); however, MRI-PDFF is costly, time-consuming, and device dependent, which makes it difficult for wide application. More effective, feasible, and easily
operated tools are needed for diagnosing NAFLD, especially for early steatosis.

DIAGNOSIS OF NASH

NASH is characterized by steatosis, ballooning, and inflammation, with/without fibrosis, which accelerates disease progression. Early detection of NASH is conducive to the prevention of NASH-related fibrosis. Noninvasive biomarkers for NASH include simple serum biomarkers, biomarker panels, and imaging.

Serum biomarkers

Cytokeratin-18 (CK18): CK18, an intermediate filament protein, is one of the most studied biomarkers for the diagnosis of NASH. It is cleaved during the period of cell death, containing CK18 M30 and CK18 M65. A meta-analysis of 25 studies reported that M30 and M65 had pooled AUROCs of 0.82 and 0.80, while the pooled sensitivity and specificity were 75% and 77%, and 71% and 77%, respectively. Therefore, CK18 is commonly used with other serum biomarkers to diagnose NASH. Anty et al. found that combining metabolic syndrome, ALT, and CK18 in a morbidly obese population could achieve an AUROC of 0.88 compared with CK18 alone, with an AUROC of 0.74. Grigorescu et al. reported that the triple combination of adiponectin, CK18, and interleukin (IL)-6 achieved an AUROC of 0.90, a specificity of 85.7%, and a sensitivity of 84.5%. However, the results should be further verified in future studies. In addition, some studies have examined the difference in the accuracy of CK18 in assessing NASH with different stages of fibrosis. Huang et al. found that CK18 had a sensitivity of 84.5%. However, the results should be further verified in future studies.

Inflammatory markers: CXCL10 is a proinflammatory cytokine involved in diabetes which may indicate that CK18 can predict the disease severity in NASH patients.

Adipocytokines and hormones: Fibroblast growth factor 21 (FGF21) secreted by the liver is another potential biomarker for NASH. One study reported that FGF21 had an AUROC of 0.62, and the two cutoffs of 126 and 578 pg/mL had a > 90% sensitivity and specificity for diagnosing NASH, but the PPV and NPV of FGF21 were moderate (0.59-0.78) and low (0.49-0.60), respectively. To improve the PPV and NPV, FGF21 was combined with CK18, which improved the PPV to 82% and the NPV to 74%. Adiponectin was reported to be decrease in NASH patients, which had an AUROC of 0.71 for diagnosing NASH. However, the AUROC could reach to 0.90 when adiponectin was combined with CK18 M65 and IL-8. Other adipocytokines, such as leptin and resistin, may be potentially markers for diagnosing NASH, while they are needed to be further validated in more groups.

Other serum biomarkers: Serum iron is a common protein associated with oxygen radicals, which contribute to necroinflammation and fibrosis, two important parameters of NAFLD. Serum iron was higher in individuals with NASH than in those with simple steatosis. In a Japanese study, serum ferritin exhibited a moderate performance for diagnosing NASH (AUROC, 0.73). Another study of 619 biopsy-proven NAFLD patients constructed a scoring system that combined serum ferritin with type IV collagen 7S and fasting insulin, which could be used to predict NASH with an AUROC of 0.78-0.85.

Biomarker panel

NASHTest: The NASHTest combines 13 parameters to diagnose NASH in three categories, namely, NASH, Borderline NASH, and No-NASH, according to Kleiner’s criteria. A study with 257 people found that the NASHTest achieved an AUROC of 0.79 for NASH, 0.69 for borderline NASH, and 0.77-0.83 for no-NASH.

NASH ClinLipMet score: The NASH Clin score is a biomarker panel combining AST, fasting insulin, and the PNPLA3 genotype at rs738409, which achieved an AUROC of 0.78 for diagnosing NASH in 384 patients with a histological diagnosis. To improve the accuracy, Zhou et al. added metabolic syndrome-based factors to the NASH Clin score, which was named the ‘NASH ClinLipMet score’. This latter score can improve the AUROC to 0.87 and the sensitivity to 75%. However, it is more
Table 1 Imaging modalities for diagnosing nonalcoholic fatty liver disease

Test	Description	Accuracy	Advantages	Disadvantages	Guideline recommendation
Ultrasound	Hyperechoic texture or a bright liver	AUROC 0.93, Sn 85%, Sp 94% for diagnosis of steatosis^[58]	Low sensitivity in individuals with steatosis < 20% or BMI > 40 kg/m²; Observer-dependency; Influenced by fibrosis or iron overload	The first-line diagnostic test for diagnosing moderate and severe steatosis^[23]	
Computed tomography	Measurement of liver steatosis with attenuation values of liver and spleen	AUROC 0.99, Sn 100%, Sp 82% for diagnosis of steatosis > 30%^[29]	Visualize the whole liver; Higher applicability; Quantify moderate-severe steatosis	Low sensitivity for light-moderate steatosis; Radiation exposure	NA
CAP	Measurement of liver steatosis with ultrasound attenuation by Fibroscan	AUROC 0.82, Sn 69%, Sp 82% for diagnosis of any steatosis^[44]	Operator-dependency; Limited sensitivity; High failure rates in obesity patient; Low accuracy for quantifying steatosis; Uncertain cutoff values	The role of CAP for steatosis assessment is inclusive, more future studies are needed to define the role of CAP^[23]	
Magnetic resonance based techniques	Quantitative measurement of steatosis over the entire liver by adding parameter to MRI scanners	MRI-PDFF: AUROC 0.99, Sn 96%, Sp 100% for diagnosis of any steatosis^[58] MRS: Sn 80%, Sp 80% for diagnosing steatosis ≥ 5%^[8]	Not affected by obesity; Quantify assess steatosis over the entire liver; Lower sampling variability	Expensive; Time consuming; Device- and operator-dependency; Not suitable for patients with implantable devices	It is excellent to quantify steatosis, but the high price limits its application^[23]
differentiating NASH and simple steatosis\cite{124,125}. The combination of miR-122, -192, and -21 with CK18-Asp396 achieved an AUROC of 0.83 for diagnosing NASH, while the optimal cutoff gave a moderate sensitivity and specificity\cite{126}. Other new methods have been investigated, such as breath volatile organic compounds (VOCs). Breath VOCs are closely related to oxidative stress, inflammation, and liver diseases\cite{127,128,129}. Froukje et al\cite{128} found that a panel consisting of three exhaled compounds, 1-propanol, 3-methyl-butanoctitrile, and n-tridecane, had an AUROC of 0.77, PPV of 81\%, and NPV of 82\% for differentiating NASH and non-NASH. In addition, some studies have focused on omic markers. The production of lipidomic, proteomic, metabolomics, and microbiome markers was elevated in NASH patients\cite{130-132}, but more studies with larger validation groups in the future are needed to confirm these findings.

Clinical implication
Noninvasive biomarkers for NASH are an attractive field. CK18 is regarded as a popular biomarker for NASH, but the accuracy varies in current studies. Biomarker panels perform well in diagnosing NASH, but most of them are not validated in an independent group. Although other noninvasive biomarkers, such as imaging and gene biomarkers, are reported to be relatively high in accuracy, effective methods should be available, simple, inexpensive, and accurate in the clinic. In addition, serum biomarkers (e.g., CK18) are less accurate for diagnosing NASH with mild fibrosis, which could lead to higher rates of misdiagnosis. To improve the diagnosis of early NASH, biomarker panels or the combination of serum biomarkers with imaging may contribute to ruling in or ruling out NASH with early fibrosis, but this prospect should be verified in future studies.

DIAGNOSIS OF NAFLD RELATED FIBROSIS

According to the recommendation of the NASH-CRN, fibrosis is categorized into nonfibrosis or mild fibrosis (Metavir = F0-1), significant fibrosis (SF, Metavir ≥ F2), advanced fibrosis (AF, Metavir ≥ F3), and cirrhosis (Metavir = F4)\cite{126}. The fibrosis stage is reported to increase the overall mortality in individuals with NAFLD, but not NASH\cite{127,128}. Furthermore, SF, AF, and cirrhosis increased the hazard ratios by 1.6-, 3.04-, and 6.53-fold for overall mortality in comparison with that of F0-F1\cite{127}. Therefore, it is urgent to identify early fibrosis through effective noninvasive methods.

Proprietary biomarkers of fibrosis
The proprietary biomarkers of fibrosis include the procollagen of type III collagen (PIIINP), precursor C3-protein (PRO-C3), hyaluronic acid (HA), and TIMP1. Serum PIIINP is a common fibrosis marker during fibrogenesis. It has a good performance for diagnosing SF (AUROC, 0.81)\cite{129}. Another PRO-C3 is a marker of the N-terminal propeptide of type III collagen. Several studies have demonstrated that PRO-C3 has an AUROC of 0.75-0.83 for diagnosing AF and 0.76 for cirrhosis\cite{129,130}. HA is an important element of the extracellular matrix, and it has AUROCs of 0.87, 0.89, and 0.92 for SF, AF, and cirrhosis, respectively\cite{131}. TIMP1 is a fibrosis biomarker reflecting tissue matrix remodeling, while TIMP1 shows a moderate performance for diagnosing SF (AUROC, 0.74)\cite{129}. To improve the accuracy, some models were constructed by combining several specific fibrosis biomarkers or combinations of these fibrosis biomarkers with other variables. The enhanced liver fibrosis (ELF) test is a commercial tool that combines three circulating matrix turnover components, including HA, PIIINP, and TIMP-1, with age\cite{129}. Using a cutoff of 9.8, the ELF test identified AF with a PPV of 72\% and NPV of 97\%\cite{131}. Another model consisting of PRO-C3, age, platelets, and the presence of diabetes can achieve an AUROC of 0.86-0.87 and an NPV of 0.97 for identifying AF\cite{132}. Using a cutoff of 9.8, the ELF test including HA, PIIINP, and TIMP-1, with age and platelet count, is reported to increase the overall mortality in individuals with NAFLD, but not NASH\cite{127,128}. Furthermore, SF, AF, and cirrhosis increased the hazard ratios by 1.6-, 3.04-, and 6.53-fold for overall mortality in comparison with that of F0-F1\cite{127}. Therefore, it is urgent to identify early fibrosis through effective noninvasive methods.

Nonproprietary biomarkers of fibrosis or biomarker panels

AST-to-platelet ratio index (APRI): The APRI was originally a simpler calculation for diagnosing fibrosis severity in chronic hepatitis C\cite{133}. A recent meta-analysis reported that the APRI had an AUROC of 0.70 for SF, 0.75 for AF, and 0.75 for cirrhosis\cite{134}. Additionally, the pooled sensitivity of the APRI was relatively low, with a range of 0.33-0.73 for different cutoffs.

FIB-4: FIB-4 is a common biomarker panel used for assessing fibrosis severity and includes age, platelet count, AST, and ALT. FIB-4 was primarily devised to assess the liver fibrosis severity in hepatitis C patients who were also infected with human immunodeficiency virus\cite{135}. An AUROC value of 0.75 for SF, 0.80 for AF, and 0.85 for cirrhosis was reported in NAFLD patients\cite{136}. Two cutoffs were used for a higher PPV.
and NPV. For instance, using a cutoff of 1.3 for FIB-4, the panel predicted AF with an 85% sensitivity, 65% specificity, 36% PPV, and 95% NPV. On the other hand, using a cutoff of 3.25, FIB-4 predicted AF with a 26% sensitivity, 98% specificity, 75% PPV, and 85% NPV\(^{[139]}\). The two cutoffs may improve the PPV and NPV, avoiding unnecessary biopsy, while the specificity of FIB-4 was 0.35 for assessing AF in elderly individuals ≥ 65 years of age, which contributed to a high false positive rate\(^{[132]}\). Therefore, this study recommended a low cutoff of 2 for elderly patients > 65 years of age, with a 77% sensitivity and 70% specificity. In addition, a recent Japanese study of 1050 biopsy-confirmed NAFLD patients recommended cutoffs of 1.88 and 2.67 for 60-69 years of age and 1.95 and 2.67 for ≥ 70 years of age\(^{[139]}\).

NAFLD fibrosis score (NFS): The NFS is the most common noninvasive biomarker panel for assessing fibrosis severity; the panel consists of age, BMI, hyperglycemia, AST/ALT ratio, platelets, and albumin. A multicenter study of 733 people reported a low cutoff of -1.455 for AF with a PPV of 51%-56% and NPV of 88%-93%, and a high cutoff of 0.676 yielded a PPV of 82%-90% and NPV of 80%-85\(^{[139]}\). Using this model, 75% of biopsies could be spared with 90% correct prediction. In addition, Xiao et al\(^{[49]}\) demonstrated that the NFS had an AUROC of 0.72 for SF, 0.73 for AF, and 0.83 for cirrhosis. The NFS was widely validated in different races, with a high AUROC and NPV\(^{[135,137,138]}\). However, a low cutoff of 0.12 for NFS assessing fibrosis is recommended for the elderly due to a high false positive rate\(^{[139]}\). The NFS and FIB-4 are recommended to identify those at low or high risk for AF or cirrhosis in clinical guidelines.

BARD score: The BARD score was an easily calculated score system for assessing fibrosis severity, containing the parameters of BMI, aldosterone renin activity ratio, and the presence of type 2 diabetes mellitus. A score of 2-4 increased the risk of AF by 17-fold, with an AUROC of 0.81 and NPV of 96%, but a low PPV of 43\(^{[132]}\). However, a subsequent study validated that the tool in the Japanese group could not achieve a similar performance with an AUROC of 0.73 and NPV of 77% for AF\(^{[139]}\). In addition, a meta-analysis reported that the BARD score had a pooled AUROC of 0.64 for SF, 0.73 for AF, and 0.70 for cirrhosis in NAFLD patients\(^{[49]}\). Even so, the BARD score was a valuable model for predicting SF due to its ease and lack of indeterminate results in clinical application.

Imaging

VCTE: VCTE is the first Food and Drug Administration (FDA)-approved elastographic modality performed by FibroScan employing US-based technology. This technology measures the velocity of a 50 MHz shear wave that is emitted by a probe in the intercostal space into the liver. The velocity is positively related to liver stiffness with a range of 1.5 to 75 kPa. A higher shear wave value indicates higher liver stiffness. However, technical failure was found to be a common phenomenon during the operation, ranging from 6.7% to 27.0%, and was primarily reported to be related to a high BMI\(^{[140,141]}\). The “M” probe was the most prevalent probe measuring shear wave velocity, with an AUROC of 0.85 for SF, 0.87 for AF, and 0.92 for cirrhosis\(^{[142]}\). Although the “XL” probe was usually used for fibrosis in obese people to reduce the failure rate, this rate was still 35% in patients with a BMI over 30 kg/m\(^2\)\(^{[143]}\). Even so, the FibroScan XL probe yields an AUROC of 0.82 for SF, 0.86 for AF, and 0.94 for cirrhosis. One study investigating the suitable cutoffs indicated that 5.8 and 9.0, 7.9 and 9.6, and 10.3 and 11.5 had a > 90% sensitivity and specificity for SF, AF, and cirrhosis, respectively\(^{[144]}\). However, the PPV was low for diagnosing fibrosis, and transient elastography easily misclassifies AF as mild. One study comparing transient elastography with the NFS and FIB-4 found that transient elastography was better for AF and cirrhosis but less accurate for diagnosing fibrosis vs nonfibrosis and significant fibrosis\(^{[140]}\). Therefore, some studies have used VCTE along with a serum biomarker. Thomson et al\(^{[144]}\) combined VCTE with a FibroMeter and achieved a PPV of 84% for SF and PPV of 89% for AF.

Shear wave elastography (SWE): SWE is a new method integrated into conventional US for assessing fibrosis. It can measure the shear wave velocity and provide a 2-D, real-time, color map of liver elasticity, but it should be conducted under apnea, and the region of the color map should be large vessel-free and at least 15 mm below the capsule. SWE reportedly has a high diagnostic performance for fibrosis assessment in chronic hepatitis patients\(^{[145,144]}\). In NAFLD patients, SWE yielded an AUROC value of 0.86 for SF, 0.89 for AF, and 0.88 for cirrhosis, respectively\(^{[146]}\). The results also demonstrated that SWE was better than FibroScan and acoustic radiation force impulse (ARFI). No specific regulations are recommended by the manufacturer for assessing the quality of measurement; thus, some studies assessed the failure rate of SWE with reliability criteria of FibroScan\(^{[147]}\). In addition, as with the ARFI, the
accuracy of SWE is affected by interobserver variation and food intake. Therefore, these measurements are recommended to be performed by very experienced radiologists in patients with fasting for at least 2 h.

ARFI: ARFI elastography is an alternative tool for fibrosis assessment integrated into conventional US. It uses short-term acoustic pulses to produce shear waves, with the results expressed in m/s. ARFI should be operated under apnea, and the region of interest should be a vessel-free region. ARFI had an AUROC of 0.77 for SF, 0.84 for AF, and 0.84 for cirrhosis. Another meta-analysis reported that the pooled sensitivity and specificity were 80.2% and 85.2%, respectively, for detecting SF. However, its accuracy was affected by the presence of severe steatosis. Further studies are needed to explore the optimal cutoffs of ARFI at different levels of steatosis.

MRE: MRE is a noninvasive MRI-based method measuring liver stiffness by using a modified phase-contrast method. MRE can assess the entire liver with a high success rate. MRE is not affected by steatosis and may be applied in patients with obesity, ascites, or bowel interposition between the liver and anterior abdominal wall. The available MRE model contains 2D-MRE (shear wave frequency 60Hz) and 3D-MRE (shear wave frequency 40Hz). 2D-MRE is more frequently used for assessing liver fibrosis in NAFLD patients. A meta-analysis reported that the pooled AUROCs of 2D MRE for diagnosing SF, AF, and cirrhosis were 0.87, 0.90 and 0.91, respectively. 3D-MRE had a better performance (AUROC, 0.98) for detecting AF than 2D-MRE (AUROC, 0.92). The NPVs of 2D-MRE and 3D-MRE were 0.98 and 1.0, respectively. Compared to other noninvasive fibrosis biomarkers, MRE was superior to FibroScan, ARFI, and common biomarker panels for discriminating dichotomized fibrosis stages in NAFLD patients. Xiao et al. found that MRE had an AUROC of 0.96, sensitivity of 0.84, and specificity of 0.90 for detecting AF, which was better than BARD score, NFS, and FibroScan. Considering the higher accuracy of MRE in diagnosing fibrosis, it is increasingly regarded as a promising surrogate biomarker for monitoring fibrosis progression and endpoints of fibrosis therapy. However, MRE has several limitations. It cannot be applied to individuals with hepatic iron overload due to the interfering signal intensity. On the other hand, the cost of MRE and its dependence on MRI facilities limit its wide application.

New biomarkers

Serum DNA methylation has been investigated as a potential biomarker for assessing fibrosis. The plasma DNA methylation of PPARγ promoter was reported to have a good performance for diagnosing AF (AUROC, 0.91), and the cutoff of 0.81 gave a PPV of 91% and NPV of 87%. In addition, the DNA methylation at the PPARγ promoter is superior to the NFS in diagnostic performance and avoids using two cutoffs, but it should be validated in more independent groups.

Clinical implication

Biomarker panels are cheap, feasible, reproducible, and have a good NPV for fibrosis, but they are limited by its low PPV (Table 2). MRE shows excellent accuracy for fibrosis severity but may only be used in some drug studies due to its high cost and unavailability (Table 3). Transient elastography together with biomarker panels would be widely used for assessing fibrosis, but the efficiency should be evaluated in more independent groups. Above all, it is recommended to combine serum biomarkers or clinical rules with imaging tools to diagnose fibrosis, which could reduce unnecessary diagnostic liver biopsies.

NONINVASIVE BIOMARKERS FOR DISEASE PROGRESSION AND THERAPY

Tracking disease progression

NAFLD significantly increases the risk of liver disease-related morbidity, mortality, and liver transplantation. Fibrosis, but not simple steatosis and NASH, increased the risk of mortality in NAFLD patients in a retrospective study with a mean follow-up period of 20 years. Singh et al. found that one stage of fibrosis progression takes 14.3 years and 7.1 years in individuals with simple steatosis and NASH patients, respectively. In addition, most NAFLD cases are asymptomatic until the disease has progressed to cirrhosis, and repeated biopsy is impractical. Therefore, there is a need to apply useful noninvasive biomarkers to monitor disease progression. A prospective study with a median of seven follow-ups found that the ELF test had an AUROC of 0.87 for predicting liver-related clinical outcomes, which was higher than that of...
Table 2 Biomarker panels for diagnosing nonalcoholic fatty liver disease related fibrosis

Test	Description	Accuracy	Advantages	Disadvantages	Guideline recommendation
APRI	AST/platelet ratio index	AUROC 0.70 for SF, 0.75 for AF, and 0.75 for cirrhosis[28]	High feasibility; Cheap; Reproducible	Low specificity to diagnose AF; The application of two cut-offs could not discriminate between intermediate stages of fibrosis	NA
Fibrosis-4 index	Age, AST, ALT, and platelet count	AUROC 0.75 for SF, 0.80 for AF, and 0.85 for cirrhosis[29]	High feasibility; Cheap; Reproducible	The application of two cut-offs could not discriminate between intermediate stages of fibrosis; Influenced by age	FIB-4 can be used to identify those at low or high risk for AF or cirrhosis[32,34]
NFS	Age, BMI, impaired fasting glucose and/or diabetes, AST, ALT, platelet, Count, and albumin	AUROC 0.72 for SF, 0.73 for AF, and 0.83 for cirrhosis[30]	High feasibility; Cheap; Reproducible	The application of two cut-offs could not discriminate between intermediate stages of fibrosis; Influenced by age; Influenced by interpretation of BMI across different ethnic groups	NFS can be used to identify those at low or high risk for AF or cirrhosis[32]
BARD score	AST, ALT, BMI, and diabetes	AUROC 0.64 for SF, 0.73 for AF, and 0.70 for cirrhosis[31]	High feasibility; Cheap; Reproducible; No intermediate stages of fibrosis	Low specificity to diagnose SF and cirrhosis; Influenced by interpretation of BMI across different ethnic groups	NA

ALT: Alanine aminotransferase; AST: Aspartate aminotransferase; BMI: Body mass index; AUROC: Area under the receiver-operating characteristics curve; NFS: Nonalcoholic fatty liver disease fibrosis score; APRI: AST/platelet ratio index; NA: Not applicable; SF: Significant fibrosis; AF: Advanced fibrosis.

ALT: Alanine aminotransferase; AST: Aspartate aminotransferase; BMI: Body mass index; AUROC: Area under the receiver-operating characteristics curve; NFS: Nonalcoholic fatty liver disease fibrosis score; APRI: AST/platelet ratio index; NA: Not applicable; SF: Significant fibrosis; AF: Advanced fibrosis.

biopsy (AUROC, 0.82)[166]. Sebastiani et al[169] found that baseline liver histology, APRI, FIB-4, and NFS for predicting clinical outcomes had AUROCs of 0.85, 0.89, 0.89 and 0.79, respectively. Another study reported that FibroScan had an accuracy of 0.73 for predicting all-course mortality[168]. Further studies are needed to determine more effective noninvasive biomarkers for the progression of NASH to NASH-related fibrosis and the progression of NASH-related fibrosis to adverse clinical outcomes.

Monitoring responses to therapies

In terms of NAFLD treatment, it is impractical to observe the primary endpoint of mortality due to long-term follow-up[28,169,170]. Therefore, the FDA recommends that histological improvement be confirmed when the resolution of NASH is obtained without the worsening of fibrosis or when fibrosis is improved without the worsening of NASH[171]. However, repeated biopsy hinders the development of drugs; thus, there is a need to investigate noninvasive surrogates replacing biopsy. MRI-PDFF was usually employed to evaluate the liver fat content change in clinical trials of NASH patients[66]. A study of 113 NASH patients treated with obeticholic acid found that MRI-PDFF had an AUROC of 0.81 for reduced histological steatosis grade[172]. In contrast, a recent phase II trial of selonsertib found that MRI-PDFF had an AUROC of 0.70 for reduced histological steatosis grade, and the optimal cutoff was 0% with a PPV of 39% and NPV of 92%[173]. Therefore, whether the change in MRI-PDFF could be regarded as an effective surrogate endpoint for NASH treatment should be further evaluated. Liver function has been regularly regarded as a noninvasive biomarker for assessing the monitoring treatment effect, while ALT concentrations in about two-thirds of patients is normal[174], and NASH patients usually exhibit spontaneous changes in liver function. Therefore, the ALT change is usually accompanied by a steatosis change, which is regarded as an effective noninvasive endpoint substituting the histological changes in NASH[171]. The change in liver stiffness measurement (LSM) measured by MRE was evaluated to investigate the antifibrosis effect in NAFLD. Jayakumar et al[175] showed that the MRE had an AUROC of 0.62, PPV of 39%, and NPV of 92% for fibrosis improvement. The biomarker panel has also been investigated for predicting fibrosis improvement in intervention studies of NASH patients. Vilar et al[176] constructed a model consisting of three variables, glycated

ALT: Alanine aminotransferase; AST: Aspartate aminotransferase; BMI: Body mass index; AUROC: Area under the receiver-operating characteristics curve; NFS: Nonalcoholic fatty liver disease fibrosis score; APRI: AST/platelet ratio index; NA: Not applicable; SF: Significant fibrosis; AF: Advanced fibrosis.
Table 3 Imaging modalities for diagnosing nonalcoholic fatty liver disease related fibrosis

Test	Description	Accuracy	Advantages	Disadvantages	Guideline recommendation
VCTE	Measuring the velocity of a 50 mHz shear wave, which is positively related to liver stiffness	AUROC 0.83, 0.87, and 0.92, respectively, for AF, SF, and cirrhosis with M probe \[3\]; AUROC 0.82, 0.86, and 0.94, respectively, for AF, SF, and cirrhosis with XL probe \[11\]	Relatively low cost; Good reproducibility; Short processing time; Can be used in ambulatory clinic setting	Fasting for 2 h; Device-and operator-dependency; Influenced by obesity, congestion, and inflammation; Uncertain cut-off values; Intermediate stages due to two cut-offs	FibroScan can be used to identify those at low or high risk for AF \[32,34\]
SWE	A method integrated into conventional ultrasound provides a 2-D, real-time, color map of liver elasticity	AUROC 0.86, 0.89, and 0.88, respectively, for AF, SF, and cirrhosis \[12\]	Good reproducibility; Not affected by obesity or ascites	Relatively high cost; Fasting for 2 h; Device- and operator-dependency; Quality criteria not well defined	NA
ARFI	A method integrated into a conventional ultrasound measures shear wave speed	AUROC 0.77, 0.84, and 0.84, respectively, for AF, SF, and cirrhosis \[12\]	Good reproducibility; Not affected by obesity or ascites ROIs smaller than transient elastography	High cost; Fasting for 2 h; Device- and operator-dependency; Quality criteria not well defined; Intermediate stages due to two cut-offs	NA
MRE	A noninvasive MRI based method measures liver stiffness by a modified phase-contrast method	AUROC 0.87, 0.90, and 0.91, respectively, for AF, SF, and cirrhosis \[13\]	Good reproducibility; Not affected by obesity or ascites	High cost; Time consuming; Fasting for 2 h; Device- and operator-dependency; Intermediate stages due to two cut-offs	MRE is clinically useful tools for identifying advanced fibrosis in patients with nonalcoholic fatty liver disease \[30\]

AUROC: Area under the receiver operating characteristic curve; MRE: Magnetic resonance elastography; VCTE: Vibration-controlled transient elastography; SWE: Shear wave elastography; TE: Transient elastography; ARFI: Acoustic radiation force impulse; NA: Not applicable; ROI: Region of interest.

hemoglobin, platelets, and ALT, which demonstrated an AUROC of 0.96 for fibrosis improvement, which is higher than the change in platelet count (AUROC, 0.80), APRI (AUROC, 0.50), FIB-4 index (AUROC, 0.63), and NFS (AUROC, 0.77). The biomarker panels may be the ideal noninvasive tools for assessing the response during the process of therapy, but they should be accurate, available, inexpensive, and simple.

CONCLUSION

The past several years have witnessed the extensive development of noninvasive methods in the NAFLD field, from serum biomarkers and imaging to omics. US and H-MRI have a relatively high accuracy for diagnosing NAFLD, and US is prevalently used in clinical practice and research due to its availability and low cost. There are currently no effective noninvasive biomarkers recommended for diagnosing NASH. Future studies are needed to investigate more efficient noninvasive biomarkers for distinguishing NASH from simple steatosis. VCTE is the FDA-approved elastographic model for assessing fibrosis severity, and it could further improve the diagnostic performance when combined with biomarker panels. Furthermore, effective algorithms consisting of imaging and nonimaging biomarkers should be applied to clinical practice to reduce unnecessary biopsies (Figure 1). In addition, there is a need to investigate the cost-effectiveness of noninvasive evaluations in diagnosing NAFLD, tracking disease progression, and monitoring responses to the therapies.
Figure 1 Clinical algorithm with noninvasive testing and liver content measurement by Fibroscan for detecting advanced fibrosis in nonalcoholic fatty liver disease patients. NFS: Nonalcoholic fatty liver disease fibrosis score; NAFLD: Nonalcoholic fatty liver disease; NASH: Nonalcoholic fatty hepatitis; LSM: Liver stiffness measurement.

ACKNOWLEDGEMENTS

The authors thank the staff at Institute of Model Animal of Wuhan University and Department of Cardiology, Renmin Hospital of Wuhan University.

REFERENCES

1. Younossi ZM, Koenig AB, Abdelaftif D, Fazel Y, Henry L, Wyner M. Global epidemiology of nonalcoholic fatty liver disease-Meta-analytic assessment of prevalence, incidence, and outcomes. *Hepatology* 2016; 64: 73-84 [PMID: 26707365 DOI: 10.1002/hep.28431]

2. Dai W, Ye L, Liu A, Wen SW, Deng J, Wu X, Lai Z. Prevalence of nonalcoholic fatty liver disease in patients with type 2 diabetes mellitus: A meta-analysis. *Medicine (Baltimore)* 2017; 96: e8179 [PMID: 28953675 DOI: 10.1097/MD.0000000000008179]

3. Machado M, Marques-Vidal P, Cortez-Pinto H. Hepatic histology in obese patients undergoing bariatric surgery. *J Hepatol* 2006; 45: 600-606 [PMID: 16899321 DOI: 10.1016/j.jhep.2006.06.013]

4. Milić S, Lulić D, Štimac D. Non-alcoholic fatty liver disease and obesity: biochemical, metabolic and clinical presentations. *World J Gastroenterol* 2014; 20: 9330-9337 [PMID: 25071327 DOI: 10.3748/wjg.v20.i28.9330]

5. Estes C, Razavi H, Loomba R, Younossi Z, Sanyal AJ. Modeling the epidemic of nonalcoholic fatty liver disease demonstrates an exponential increase in burden of disease. *Hepatology* 2018; 67: 123-133 [PMID: 28802062 DOI: 10.1002/hep.29466]

6. Li Z, Xue J, Chen P, Chen L, Yan S, Liu L. Prevalence of nonalcoholic fatty liver disease in mainland of China: a meta-analysis of published studies. *J Gastroenterol Hepatol* 2014; 29: 42-51 [PMID: 24219010 DOI: 10.1111/jgh.12479]

7. Almobarak AO, Barakat S, Khalifa MH, Elhoweris MH, Elhassan TM, Ahmed MH. Non alcoholic fatty
A common variant in PNPLA3, which encodes adiponutrin, is associated with liver fat content in humans.

Diabetologia 2010; 53: 732-737 [PMID: 20594607 DOI: 10.1007/s00125-009-1255-z]
European Association for the Study of the Liver (EASL); European Association for the Study of Diabetes (EASD); European Association for the Study of Obesity (EASO). EASL-EASD-EASO Clinical Practice Guidelines for the management of non-alcoholic fatty liver disease. J Hepatol 2016; 64: 1388-1402 [PMID: 27062661 DOI: 10.1016/j.jhep.2015.11.004]

Chalasani N, Younossi Z, Lavine JE, Charlton M, Cusi K, Rinella M, Harrison SA, Brunt EM, Sanjay AJ. The diagnosis and management of nonalcoholic fatty liver disease: Practice guidance from the American Association for the Study of Liver Diseases. Hepatology 2018; 67: 328-357 [PMID: 28714183 DOI: 10.1002/hep.29367]

Bedogni G, Bellentani S, Miglioli L, Masotti F, Passalacqua M, Castiglia A, Tirielli C. The Fatty Liver Index: a simple and accurate predictor of hepatic steatosis in the general population. BMC Gastroenterol 2006; 6: 33 [PMID: 17081293 DOI: 10.1186/1471-230x-6-33]

Fedchuk L, Nascimbenni F, Pais R, Charlotte F, Houssset C, Ratziu V; LIDO Study Group. Performance and limitations of steatosis biomarkers in patients with nonalcoholic fatty liver disease. Aliment Pharmacol Ther 2014; 40: 1209-1222 [PMID: 25267215 DOI: 10.1111/apt.12901]

Kotronen A, Peltonen M, Hakkarainen A, Sebastianova M, Bergholm R, Johansson LM, Lundbom N, Rissanen A, Riddërstråle M, Group L, Orho-Melander M, Yki-Järvinen H. Prediction of non-alcoholic fatty liver disease and liver fat using metabolic and genetic factors. Gastroenterology 2009; 137: 865-872 [PMID: 19524579 DOI: 10.1053/j.gastro.2009.06.005]

Koot BG, van der Baan-Slootweg OH, Bohle AE, Nederveen AJ, van Werven JF, Tamminga-Smelders CL, Merkus MP, Schaap FG, Jansen PL, Stoker J, Bennenga MA. Accuracy of prediction scores and novel biomarkers for predicting nonalcoholic fatty liver disease in obese children. Obesity (Silver Spring) 2013; 21: 583-590 [PMID: 23592667 DOI: 10.1002/oby.20173]

Pouyart T, Ratziu V, Naveau S, Thabut D, Charlotte F, Messous D, Capron D, Abella A, Massard J, Nigo Y, Munteanu M, Mercadier A, Manns M, Albrecht J. The diagnostic value of biomarkers (SteatoTest) for the prediction of liver steatosis. Comp Hepatol 2005; 4: 10 [PMID: 16375767 DOI: 10.1186/1476-5926-4-10]

Zhang D, Du T, Zhang J, Lu H, Lin X, Xie J, Yang Y, Yu X. The triglyceride and glucose index (TyG) is an effective biomarker to identify nonalcoholic fatty liver disease. Lipids Health Dis 2017; 16: 15 [PMID: 28103934 DOI: 10.1186/s12944-017-0409-6]

Hernaez R, Lazo M, Boncàmp S, Kamel I, Brancati FL, Guallar E, Clark JM. Diagnostic accuracy and reliability of ultrasonography for the detection of fatty liver: a meta-analysis. Hepatology 2011; 54: 1082-1090 [PMID: 21618573 DOI: 10.1002/hep.24452]

Xia MF, Yan HM, He WY, Li XM, Li CL, Yao XZ, Li KK, Zeng MS, Gao X. Standardized ultrasound hepatic/renal ratio and hepatic attenuation rate to quantify liver fat content: an improvement method. Obesity (Silver Spring) 2012; 20: 444-452 [PMID: 22016092 DOI: 10.1038/oby.2011.302]

Zhang B, Ding F, Chen T, Xia LH, Qian J, Lv GY. Ultrasound hepatic/renal ratio and hepatic attenuation rate for quantifying liver fat content. World J Gastroenterol 2014; 20: 17985-17992 [PMID: 25548498 DOI: 10.3748/wjg.v20.i47.17985]

Xiao G, Zhu S, Xiao X, Yan L, Yang J, Wu G. Comparison of laboratory tests, ultrasound, or magnetic resonance elastography to detect fibrosis in patients with nonalcoholic fatty liver disease. A meta-analysis. Hepatology 2017; 66: 1486-1501 [PMID: 28586172 DOI: 10.1002/hep.29302]

Park SH, Kim PN, Kim KW, Lee SW, Yoon SE, Park SW, Ha HK, Lee MG, Hwang S, Yu ES, Cho EY. Macrovesicular hepatic steatosis in living liver donors: use of CT for quantitative and qualitative assessment. Radiographics 2006; 26: 105-112 [PMID: 16484355 DOI: 10.1148/rg.29405186]

Kodama Y, Ng CS, Wu TT, Ayers GD, Curley SA, Abdalla EK, Vauthey JN, Charnsangavej C. Comparison of CT methods for determining the fat content of the liver. Radiology 2006; 239: 1253-1277 [PMID: 17449775 DOI: 10.1148/radiol.2391050361]

Schwarz NJ, Springer F, Schraml C, Stefan N, Machann J, Schick F. Non-invasive assessment and quantification of liver steatosis by ultrasound, computed tomography and magnetic resonance. J Hepatol 2009; 51: 433-445 [PMID: 19004596 DOI: 10.1016/j.jhep.2009.05.023]

Panicek DM, Giegs CS, Schwartz LJ. Qualitative assessment of liver for fatty infiltration on contrast-enhanced CT: is muscle a better standard of reference than spleen? J Comput Assist Tomogr 1997; 21: 699-705 [PMID: 9294555]

Ma X, Holalkere NS, Kambadakone RA, Mino-Kenudson M, Hahn PF, Sahani DV. Imaging-based quantification of hepatic fat: methods and clinical applications. Radiographics 2009; 29: 1253-1277 [PMID: 19755595 DOI: 10.1148/rg.29406518]

Karlas T, Petroff D, Sasso M, Fan JG, Mi YQ, de Lédinghen V, Kumar A, Bojunga J, Bedossa P, Keim V, Wiegand J. Individual patient data meta-analysis of controlled attenuation parameter for the detection and quantification of hepatic steatosis in patients with non-alcoholic fatty liver disease: A meta-analysis. J Hepatol 2018; 67: 328-357 [PMID: 28714183 DOI: 10.1002/hep.29367]

Chan WK, Nik Mustapha NR, Mahadeva S. Controlled attenuation parameter for the detection and quantification of hepatic steatosis in nonalcoholic fatty liver disease. J Gastroenterol Hepatol 2014; 29: 1470-1476 [PMID: 25484002 DOI: 10.1111/j.1100-111x]

Myers RP, Ponsner-Layrargues G, Kirsch R, Pollatt A, Duarte-Roy J, Wong D, Beaton M, Levstik M, Crotty P, Elbashboush M. Feasibility and diagnostic performance of the FibroScan XL probe for liver stiffness measurement in overweight and obese patients. Hepatology 2012; 55: 199-208 [PMID: 21896479 DOI: 10.1002/hep.24624]

Chan WK, Nik Mustapha NR, Wong GL, Wong VW, Mahadeva S. Controlled attenuation parameter using the FibroScan® XL probe for quantification of hepatic steatosis for non-alcoholic fatty liver disease in an Asian population. United European Gastroenterol J 2017; 5: 76-85 [PMID: 28403325 DOI: 10.1177/2050640616673758]
Zhou JH et al. Noninvasive evaluation for NAFLD

10.1177/2050646616645628

59 Springer F, Machann J, Clausen CD, Schick F, Schweizer NF. Liver fat content determined by magnetic resonance imaging and spectroscopy. World J Gastroenterol 2010; 16: 1560-1566 [PMID: 20352234 DOI: 10.3748/wjg.v16.i13.1560]

60 Dulai PS, Sirlin CB, Loomba R. MRI and MRE for non-invasive quantitative assessment of hepatic steatosis and fibrosis in NAFLD and NASH: Clinical trials to clinical practice. J Hepatol 2016; 65: 1006-1016 [PMID: 27312947 DOI: 10.1016/j.jhep.2016.06.005]

61 Tang A, Tan J, Sun M, Hamilton G, Bydder M, Wolfson T, Garnst AC, Middleton M, Brunt EM, Loomba R, Lavine JE, Schimmer JB, Sirlin CB. Nonalcoholic fatty liver disease MRI: Imaging of liver proton density fat fraction to assess hepatic steatosis. Radiology 2013; 267: 422-431 [PMID: 23382291 DOI: 10.1148/radiol.12120896]

62 Idilman IS, Aniktar H, Idilman R, Kabacum G, Savas B, Elhan A, Celik A, Bahar K, Karcaaltincaba M. Hepatic steatosis: quantification by proton density fat fraction with MR imaging versus liver biopsy. Radiology 2013; 267: 767-775 [PMID: 23382920 DOI: 10.1148/radiol.13121360]

63 Bannas P, Kramer H, Hernandez D, Agni R, Cunningham AM, Mandal R, Motoussi U, Sharma SD, Munoz del Rio A, Fernandez L, Reeder SB. Quantitative magnetic resonance imaging of hepatic steatosis: Validation in ex vivo human livers. Hepatology 2015; 62: 1444-1455 [PMID: 26224591 DOI: 10.1002/hep.28012]

64 Reeder SB, Cruite I, Hamilton G, Sirlin CB. Quantitative assessment of liver fat with magnetic resonance imaging and spectroscopy. J Magn Reson Imaging 2011; 34: 729-749 [PMID: 21928307 DOI: 10.1002/jmri.22580]

65 Park CC, Nguyen P, Hernandez C, Bettencourt R, Ramirez K, Fortney L, Hooker J, Sy E, Savides MT, Alquirais MH, Valasek MA, Rizo E, Richards L, Bremner D, Sirlin CB, Loomba R. Magnetic Resonance Elastography vs Transient Elastography in Detection of Fibrosis and Noninvasive Measurement of Steatosis in Patients With Biopsy-Proven Nonalcoholic Fatty Liver Disease. Gastroenterology 2017; 152: 598-607.e2 [PMID: 27911262 DOI: 10.1053/j.gastro.2016.10.026]

66 Caussy C, Reeder SB, Sirlin CB, Loomba R. Noninvasive, Quantitative Assessment of Liver Fat by MRI-PDF for an Endpoint in NASH Trials. Hepatology 2018; 68: 763-772 [PMID: 29535032 DOI: 10.1002/hep.29797]

67 Cassidy FH, Yokota T, Aganovic L, Hanna RF, Bydder M, Middleton MS, Hamilton G, Chavez AD, Schimmer JB, Sirlin CB. Fatty liver disease: MR imaging techniques for the detection and quantification of liver steatosis. Radiographics 2009; 29: 231-260 [PMID: 19108847 DOI: 10.1148/rg.291075123]

68 Naor P, Forsgren MF, Ignatov N, Nilsson P, Ekelund M, Lundberg P, Kecharias S. Using a 3% Proton Density Fat Fraction as a Cut-Off Value Increases Sensitivity of Detection of Hepatic Steatosis, Based on Results From Histopathology Analysis. Gastroenterology 2017; 153: 53-55.e7 [PMID: 28286210 DOI: 10.1053/j.gastro.2017.03.005]

69 Cowin GJ, Jonson JR, Bauer AS, Ash S, Ali A, Osland EJ, Purdie DM, Powell EE, Galloway GJ. Magnetic resonance imaging and spectroscopy for monitoring liver steatosis. J Magn Reson Imaging 2008; 28: 937-945 [PMID: 18821619 DOI: 10.1002/jmri.21542]

70 Lee SS, Park SH, Kim HJ, Kim SY, Kim MY, Kim DY, Suh DJ, Kim KM, Bae MH, Lee JY, Lee SG, Yu ES. Noninvasive assessment of hepatic steatosis: prospective comparison of the accuracy of imaging examinations. J Hepatol 2010; 52: 579-585 [PMID: 20185198 DOI: 10.1016/j.jhep.2009.11.005]

71 Kim HJ, Cho HJ, Kim B, You MW, Lee JH, Huh J, Kim JK. Accuracy and precision of proton density fat fraction measurement across field strengths and scan intervals: A phantom and human study. J Magn Reson Imaging 2018 [PMID: 30408684 DOI: 10.1002/jmri.26575]

72 Liu CY, McKenzie CA, Yu H, Brittain JH, Reeder SB. Fat quantification with IDEAL gradient echo imaging: correction of bias from T(1) and noise. Magn Reson Med 2007; 58: 354-364 [PMID: 17654788 DOI: 10.1002/mrm.21201]

73 Yu H, McKenzie CA, Shimakawa A, Vu AT, Brau AC, Beatty PJ, Pineda AR, Brittain JH, Reeder SB. Multiecho reconstruction for simultaneous water-fat decomposition and T2* estimation. J Magn Reson Imaging 2007; 26: 1153-1161 [PMID: 17896369 DOI: 10.1002/jmri.21090]

74 Yu H, Shimakawa A, McKenzie CA, Broskdy E, Brittain JH, Reeder SB. Multiecho water-fat separation and simultaneous R2* estimation with multifequency fat spectrum modeling. Magn Reson Med 2008; 60: 1122-1134 [PMID: 18956464 DOI: 10.1002/mrm.21737]

75 Lewis S, Dyvorne H, Cui Y, Taouli B. Diffusion-weighted imaging of the liver: techniques and applications. Magn Reson Imaging Clin N Am 2014; 22: 373-395 [PMID: 25069355 DOI: 10.1016/j.mric.2014.08.009]

76 Tsoulis B, Koh DM. Diffusion-weighted MR imaging of the liver. Radiology 2010; 254: 47-66 [PMID: 20302142 DOI: 10.1148/radiol.0990021]

77 Manning P, Murphy P, Wang K, Hooker J, Wolfson T, Middleton MS, Newton KP, Behling C, Awai HI, Durelle J, Paiz MN, Angeles JE, De La Pena D, McCutchan JA, Schwimmer JB, Sirlin CB. Liver histology and diffusion-weighted MRI in children with nonalcoholic fatty liver disease: A MAGNET study. J Magn Reson Imaging 2017; 46: 1149-1158 [PMID: 28225568 DOI: 10.1002/mrm.25663]

78 d’Assignies G, Ruel M, Khiat A, Lepanto L, Chagnon M, Kauffmann C, Tang A, Gaboury L, Boulanger Y. Noninvasive quantification of human liver steatosis using magnetic resonance and biosassy methods. Eur Radiol 2009; 19: 2033-2040 [PMID: 19290196 DOI: 10.1007/s00330-009-1351-4]

79 Imajo K, Kessoku T, Honda Y, Tomeno W, Ogawa Y, Mawatari H, Fujita K, Yoneda M, Taguri M, Yoneda M, Kessoku T, Honda Y, Tomeno W, Ogawa Y, Mawatari H, Fujita K, Yoneda M, Taguri M. Noninvasive assessment of the fibrosis in patients with non alcoholic fatty liver disease using magnetic resonance elastography. J Magn Reson Imaging 2009; 2033-2040 [PMID: 19280194 DOI: 10.1007/s00330-009-1351-4]

80 Perera S, Jensen D, Hart J, Mohanty SR. Predictive value of ALT levels for non-alcoholic steatohepatitis (NASH) and advanced fibrosis in non-alcoholic fatty liver disease (NAFLD). Liver Int 2013; 33: 1398-1405 [PMID: 23763360 DOI: 10.1111/liv.12228]

81 He L, Deng L, Zhang Q, Guo J, Zhou J, Song W, Yuan F. Diagnostic Value of CK-18, FGF-21, and Related Biomarker Panel in Nonalcoholic Fatty Liver Disease: A Systematic Review and Meta-Analysis. Biomed Res Int 2017; 2017: 9729107 [PMID: 28326329 DOI: 10.1155/2017/9729107]

82 Anty R, Iannelli A, Patouraux S, Bonnafous S, Lavallard VJ, Senni-Buratti M, Amor IB, Stacciini-Myx A, Saint-Paul MC, Berthier H, Huet PM, Le Marchand-Brustel Y, Gugenheim J, Gaul P, Tran A. A new composite model including metabolic syndrome, alanine aminotransferase and cytochrome-18 for the diagnosis of non-alcoholic steatohepatitis in morbidly obese patients. Aliment Pharmacol Ther 2010; 32:
Noninvasive evaluation for NAFLD

Zhou JH et al.

1315-1322 [PMID: 21052233 DOI: 10.1111/j.1365-2036.2010.04480.x]

Grigorescu M, Crisan D, Radu C, Grigorescu MD, Sparerch Z, Serban A. A novel pathophysiological-based panel of biomarkers for the diagnosis of nonalcoholic steatohepatitis. *J Physiol Pharmacol* 2012; 63: 347-353 [PMID: 22070083]

Huang JF, Yeh ML, Huang CF, Huang CI, Tsai PC, Tai CM, Yang HL, Dai CY, Hsieh MH, Chen SC, Yu ML, Chuang WL. Cytokertatin-18 and uric acid predicts disease severity in Taiwanese nonalcoholic steatohepatitis patients. *PloS One* 2017; 12: e0174394 [PMID: 28473039 DOI: 10.1371/journal.pone.0174394]

Schultness FT, Paroni F, Sauter NS, Shu L, Ribau P, Haartaja L, Strieter RM, Oberholzer J, King CC, Maedler K. CXCL10 impairs beta cell function and viability in diabetes through TRAIL signaling. *Cell Metab* 2009; 9: 125-139 [PMID: 19187771 DOI: 10.1016/j.cmet.2009.01.003]

Zhang X, Shen J, Man K, Chu ES, You TD, Sung JC, Go MY, Deng J, Lu, W, Wong VW, Sung JJ, Farrell G, Yu J. CXCL10 plays a key role as an inflammatory mediator and a non-invasive biomarker of non-alcoholic steatohepatitis. *J Hepatol* 2014; 61: 1365-1375 [PMID: 25049551 DOI: 10.1016/j.jhep.2014.07.006]

Qi S, Xu D, Li Q, Xie N, Xia J, Hua Q, Li P, Chen Q, Huang S. Metabonomics screening of serum identifies pyrogulutamate as a diagnostic biomarker for nonalcoholic steatohepatitis. *Clin Acta Gastroenterol* 2017; 47: 89-95 [PMID: 28542175 DOI: 10.1515/cza-2017-0022]

Shen J, Chan HL, Wong GL, Choi PC, Chan AW, Chan CH, Chim AM, Yeung DK, Chan FK, Woo J, Yu J, Chu WC, Wong VW. Non-invasive diagnosis of non-alcoholic steatohepatitis by combined serum biomarkers. *J Hepatol* 2012; 56: 1363-1370 [PMID: 22134419 DOI: 10.1016/j.jhep.2011.12.025]

Tietge UJ, Schmidt HH, Schütz T, Dippe P, Lochs H, Pirlich M. Reduced plasma adiponectin in NASH: central obesity as an underestimated causative risk factor. *Hepatology* 2005; 41: 401; author reply 402 [PMID: 15600429 DOI: 10.1002/hep.20546]

George DK, Goldwurm S, MacDonald GA, Cowley LL, Walker NI, Ward PJ, Jazwinska EC, Powell LW. Increased hepatic iron concentration in nonalcoholic steatohepatitis patients is associated with increased fibrosis. *Gastroenterology* 1998; 114: 311-318 [PMID: 9453491 DOI: 10.1016/S0016-5085(97)70482-2]

Kalantar-Zadeh K, Rodriguez RA, Humphreys MH. Association between serum ferritin and measures of inflammation, nutrition and iron in haemodialysis patients. *Nephrol Dial Transplant* 2004; 19: 141-149 [PMID: 14671049 DOI: 10.1093/ndt/gfg493]

Puljiz Z, Stimac D, Kovac D, Puljiz M, Bratanic A, Kovacic V, Kardum D, Bonacini D, Hozo I. Predictors of nonalcoholic steatohepatitis in patients with elevated alanine aminotransferase activity. *Coll Antropol* 2010; 34 Suppl 1: 33-37 [PMID: 20402293]

Canbanak B, Senturk H, Tahan V, Haterni I, Balci H, Toptas T, Sonuaz M, Aydin S, Dirican A, Ozgulu S, Ozbay G. Clinical, biochemical and histological correlations in a group of non-drinker subjects with non-alcoholic fatty liver disease. *Acta Gastroenterol Belg* 2007; 70: 277-284 [PMID: 18074737]

Yoneda M, Nozaki Y, Endo H, Watariatari I, Iida H, Iida H, Fujita K, Yorokko K, Takahashi H, Inamori M, Kobayashi N, Kubota K, Saito S, Maeyama S, Hotta K, Nakajima A. Serum ferritin is a clinical biomarker in Japanese patients with nonalcoholic steatohepatitis (NASH) independent of HFE gene mutation. *Dig Dis Sci* 2010; 55: 808-814 [PMID: 19267193 DOI: 10.1007/s00467-009-0771-y]

Sumida Y, Yoneda M, Hyogo Y, Yamaguchi K, Ono M, Fuji H, Eguchi Y, Suzuki Y, Imai S, Kanemasa K, Fujita K, Chayama K, Yasui K, Saibara T, Kawada N, Fugimoto K, Kogho Y, Okanoue T, Japan Study Group of Nonalcoholic Fatty Liver Disease (JSG-NAFLD). A simple clinical scoring system using ferritin, fasting insulin, and type IV collagen 7S for predicting steatohepatitis in nonalcoholic fatty liver disease. *J Gastroenterol* 2011; 46: 257-268 [PMID: 20842510 DOI: 10.1038/jg.2010.305 DOI: 10.1007/s00535-010-0305-6]

Poynard T, Ratitza V, Charlotte F, Messons D, Munteanu M, Imbert-Bismut F, Massard J, Bonyhay L, Tahiri M, Thabut D, Cadranel JF, Le Bail B, de Ledinghen V; LIDO Study Group; CYTOL study group. Noninvasive diagnosis of nonalcoholic steatohepatitis in patients with non-alcoholic fatty liver disease. *BMC Gastroenterol* 2006; 6: 34 [PMID: 17096854 DOI: 10.1186/1471-230x-6-34]

Kleiner DE, Brunt EM, Van Natta M, Buhling C, Contos MJ, Cummings OW, Ferrld LD, Liu YC, Torbenson MS, Ulnal-Arida A, Yeh M, McCullough AJ, Sanyal AJ. Nonalcoholic Steatohepatitis Clinical Research Network. Design and validation of a histological scoring system for nonalcoholic fatty liver disease. *Hepatology* 2005; 41: 1313-1321 [PMID: 15915461 DOI: 10.1002/hep.20701]

Zhou Y, Orelšić M, Leivonen M, Gopalacharyulu P, Hyysalo J, Arola J, Verrijken A, Francque S, Van Gaal L, Hyötyläinen T, Yki-Järvinen H. Noninvasive Detection of Nonalcoholic Steatohepatitis Using Clinical Markers and Circulating Levels of Lipids and Metabolites. *Clin Gastroenterol Hepatol* 2016; 14: 1463-1472.e6 [PMID: 27317851 DOI: 10.1016/j.cgh.2015.06.046]

Hyysalo J, Mämmistö VT, Zhou Y, Arola J, Kärjä V, Leivonen M, Jäntti A, Jauhiainen S, Hyötyläinen T, Yki-Järvinen H, Feng Q. Serum ferritin is a diagnostic biomarker for nonalcoholic steatohepatitis. *J Hepatol* 2014; 60: 839-846 [PMID: 24333862 DOI: 10.1016/j.jhep.2013.12.009]

Tay CM, Yu ML, Tu HP, Huang CK, Huang WC, Chuang WL. Derivation and validation of a scoring system for predicting nonalcoholic steatohepatitis in Taiwanese patients with severe obesity. *Surg Obes Relat Dis* 2017; 13: 686-692 [PMID: 28099433 DOI: 10.1016/j.soard.2016.12.036]

Chen J, Talwalkar JA, Yin M, Glaser KJ, Sanderson SO, Ehlman RL. Early detection of nonalcoholic steatohepatitis in patients with nonalcoholic fatty liver disease by using MR elastography. *Radiology* 2011; 259: 749-756 [PMID: 21640032 DOI: 10.1148/rad.11101942]

Kim TH, Jeong CW, Jun HY, Kim YK, Lee YH, Yoon KH. Noninvasive Differential Diagnosis of Liver Iron Contents in Nonalcoholic Steatohepatitis and Simple Steatosis Using Multiecho Dixon Magnetic Resonance Imaging. *Acad Radiol* 2018; 25: 1034-1042 [PMID: 30143402 DOI: 10.1016/j.acra.2018.06.022]

Ferreira VM, Piechnik SK, Dall`Armellina E, Karamitros TD, Francis JM, Choudhury BP, Richardson MG, Robson MD, Neubauer S. Non-contrast T1-mapping detects acute myocardial edema with high diagnostic accuracy: a comparison to T2-weighted cardiovascular magnetic resonance. *J Cardiovasc Magn Reson* 2012; 14: 42 [PMID: 22729999 DOI: 10.1186/1532-4295-14-42]

Piechnik SK, Ferreira VM, Dall`Armellina E, Cochin LE, Glauser A, Neubauer S, Robson MD. Shortened
Modified Look-Locker Inversion recovery (SiMOLLIR) for clinical myocardial T1-mapping at 1.5 and 3 T within a 9 heartbeat breathhold. *J Cardiovasc Magn Reson* 2010; 12: 69 [PMID: 21092095 DOI: 10.1186/1532-429X-12-69]

Rial B, Robson MD, Neubauer S, Schneider JE. Rapid quantification of myocardial lipid content in humans using single breath-hold 1H MRS at 3 Tesla. *Magn Reson Med* 2011; 66: 619-624 [PMID: 21721038 DOI: 10.1002/mrm.23011]

Banerjee R, Pavilides M, Tunicciilife EM, Piechnik SK, Saramia N, Phillips R, Collier JD, Booth JC, Schneider JE, Wang LM, Delaney DW, Fleming KA, Robson MD, Barnes E, Neubauer S. Multispectral magnetic resonance for the non-invasive diagnosis of liver disease. *J Hepatol* 2014; 60: 69-77 [PMID: 24036007 DOI: 10.1016/j.jhep.2013.09.002]

Eddowes PJ, MacDonald N, Davies N, Semple SIK, Kendall TJ, Hodson J, Newsome PN, Flintham RB, Wesolowski R, Blake L, Duarte RV, Kelly CJ, Herlihy AH, Kelly MD, Oliff SP, Hübscher SG, Fallowfield JA, Hirschfield GM. Utility and cost evaluation of multiparametric magnetic resonance imaging for the assessment of non-alcoholic fatty liver disease. *Aliment Pharmacol Ther* 2018; 47: 631-644 [PMID: 29271504 DOI: 10.1111/apt.14449]

Zhang P, Wang PX, Zhao LP, Zhang X, Li XY, Zhang JX, Fang C, Lu YX, Yang X, Gao MM, Zhang Y, Tian S, Zhu XY, Gong J, Ma XL, Li F, Wang Z, Huang Z, She ZG, Li HL. The deubiquitinating enzyme TNFAIP3 mediates inactivation of hepatic ASK1 and ameliorates nonalcoholic steatohepatitis. *Nat Med* 2018; 24: 84-94 [PMID: 29227477 DOI: 10.1038/nm.4453]

Wang S, Yan ZZ, Yang X, An S, Zhang K, Qi Y, Zheng J, Ji YX, Wang PX, Fang C, Zhu XY, Shen LJ, Yan FJ, Bao R, Tian S, She ZG, Tang YD. Hepatocyte DUSP14 maintains metabolic homeostasis and suppresses inflammation in the liver. *Hepatology* 2018; 67: 1520-1538 [PMID: 29077210 DOI: 10.1002/hep.29816]

Zhou GN, Zhang P, Gong J, Zhang XJ, Wang PX, Yin M, Jiang Z, Shen LJ, Ji YX, Tong J, Wang Y, Wei QF, Wang Y, Zhu XY, Zhang X, Fang J, Xie Q, She ZG, Wang Z, Huang Z, Li H. Tmbl1m is a multivisceral body regulator that protects against non-alcoholic fatty liver disease in mice and monkeys by targeting the lysosomal degradation of Tnfr1. *Nat Med* 2017; 23: 742-752 [PMID: 28481357 DOI: 10.1038/nm.4334]

Wang PX, Ji YX, Zhang XJ, Zhao LP, Yan ZZ, Zhang P, Shen LJ, Yang X, Fang J, Tian S, Zhu XY, Gong J, Zhang X, Wei QF, Wang Y, Li J, Wan L, Xie Q, She ZG, Wang Z, Huang Z, Li H. Targeting CASP8 and FADD-like apoptosis regulator ameliorates nonalcoholic steatohepatitis in mice and nonhuman primates. *Nat Med* 2017; 23: 439-449 [PMID: 28218919 DOI: 10.1038/nm.4290]

Zhu LH, Wang A, Luo P, Wang X, Jiang DS, Deng W, Zhang X, Wang T, Li Y, Guo L, Zhang S, Zhang X, Zhang Z, Li H. Minidlin/Spondin2 inhibits hepatic steatosis, insulin resistance, and obesity via interaction with peroxisome proliferator-activated receptor α in mice. *J Hepatol* 2014; 60: 1046-1054 [PMID: 24445216 DOI: 10.1016/j.jhep.2014.01.011]

Liu XL, Pan Q, Zhang RN, Shen F, Yan SY, Sun C, Xu ZJ, Chen YW, Fan JG. Disease-specific miR-34a as diagnostic marker of non-alcoholic steatohepatitis in a Chinese population. *World J Gastroenterol* 2016; 22: 9844-9852 [PMID: 27956809 DOI: 10.3748/wjg.v22.i44.9844]

Liu CH, Ampuero J, Gil-Gómez A, Montero-Velarde R, Rojas Á, Muñoz-Hernández R, Gallego-Durán R, Romero-Gómez M. miRNAs in patients with non-alcoholic fatty liver disease: A systematic review and meta-analysis. *J Hepatol* 2018; 69: 1335-1348 [PMID: 30142428 DOI: 10.1016/j.jhep.2018.08.008]

Cermelli S, Ruggieri A, Marrero JA, Ioannou GN, Beretta L. Circulating microRNAs in patients with chronic hepatitis C and non-alcoholic fatty liver disease. *PLoS One* 2011; 6: e23937 [PMID: 21886843 DOI: 10.1371/journal.pone.0023937]

Pirola CJ, Fernández Gianotti T, Castaño GO, Mallardi P, San Martin J, Mora Gonzalez Lopez Ledesma M, Flichman D, Mirshahi F, Sanyal AJ, Sveskoian S. Circulating microRNA signature in non-alcoholic fatty liver disease: from serum non-coding RNAs to liver histology and disease pathogenesis. *Gut* 2015; 64: 800-812 [PMID: 24973316 DOI: 10.1136/gutjnl-2014-306996]

Becker PP, Rau M, Schmitt J, Malsch C, Hammer C, Bantel H, Müllhaupt B, Geier A. Performance of noninvasive evaluation for NAFLD.

Verdam FJ, Dallinga JW, Driessen A, de Jonge C, van Berkel JB, Luijk J, Bouvy ND, Buurman WA, Rensen SS, Greve JW, van Schooten FJ. Non-alcoholic steatohepatitis: a non-invasive diagnosis by analysis of exhaled breath. *Respir Med* 2010; 104: 557-563 [PMID: 19906520 DOI: 10.1016/j.rmed.2009.10.018]

Dallinga JW, Robroeks CM, van Berkel JJ, Mokh SP, Dempingel E, Wouters EF, van Schooten FJ. Volatile organic compounds in exhaled breath as a diagnostic tool for asthma in children. *Clin Exp Allergy* 2014; 44: 68-76 [PMID: 17993006 DOI: 10.1111/cea.12227.2009.03343.x]

Lang AL, Beier JI. Interaction of volatile organic compounds and underlying liver disease: a new paradigm for risk. *Biol Chem* 2018; 399: 1237-1248 [PMID: 29924722 DOI: 10.1515/biche-2017-0324]

Verdam FJ, Dallinga JW, Driessen A, de Jonge C, Moenan EJ, van Berkel JB, Luijk J, Bouvy ND, Buurman WA, Rensen SS, Greve JW, van Schooten FJ. Non-alcoholic steatohepatitis: a non-invasive diagnosis by analysis of exhaled breath. *J Hepatol* 2013; 58: 543-548 [PMID: 23142062 DOI: 10.1016/j.jhep.2012.10.036]

Duarte SMB, Stefano JT, Miele L, Penziani FR, Souza Basqueira M, Okada LSRR, de Barros Costa FG, Toda K, Mace FDF, Sabino EC, Carrilho F, Gasbarrini A, Oliveira CP. Gut microbiome composition in lean patients with NASH is associated with liver damage independent of caloric intake: A prospective pilot study. *Nutr Metab CardiovascDis* 2018; 28: 369-384 [PMID: 29482963 DOI: 10.1016/j.numecd.2017.01.041]

Alonso C, Fernández-Ramos D, Varela-Rey M, Martínez-Arranz I, Navasa N, Van Liempd SW, Dallinga JW, Mayoral A, Díaz-Vázquez MP, Pérez-Calviño E, Robinson A, Crespo J, Martín-Duce A, Romero-Gómez M, Sann H, Platon J, Van E J, An S, Ziaqui P, Laurent M, Gómez R, Goñi E, García-Moscoso E, Egozcue P, Ballestero N. Noninvasive diagnosis of Subtypes of Nonalcoholic Steatohepatitis. *Gastroenterology* 2017; 152: 1449-1461.e7 [PMID: 28132309 DOI: 10.1053/j.gastro.2017.01.034]

Soga T, Sugimoto M, Homma M, Mori M, Igarashi K, Kashikura K, Ikeda S, Hirayama A, Yamamoto T, Yoshida H, Otsuka M, Tsuji S, Yatomi Y, Sakuragawa T, Watanabe H, Nihei K, Saito T, Kawata S, Suzuki H, Tomita M, Suenatsu M. Serum metabolomics reveals γ-glutamyl dipeptides as biomarkers for discrimination among different forms of liver disease. *J Hepatol* 2011; 55: 896-905 [PMID: 21334394 DOI: 10.1016/j.jhep.2011.01.031]

Puri P, Weinmann, Cheung O, Mirshahi F, Sargeant C, Min HK, Contos MJ, Sterling BK, Fuchs M, Zhou
Zhou JH et al. Noninvasive evaluation for NAFLD

H. Watkins SM, Sanyal AJ. The plasma lipidomic signature of nonalcoholic steatohepatitis. Hepatology 2009; 50: 1827-1838 [PMID: 19937697 DOI: 10.1002/hep.23220]

Hagström H, Nasr P, Ekstedt M, Hammar U, Stål P, Hultcrantz R, Keckhags S. Fibrosis stage but not NASH predicts mortality and time to development of severe liver disease in biopsy-proven NAFLD. J Hepatol 2017; 67: 1265-1273 [PMID: 28803953 DOI: 10.1016/j.jhep.2017.07.027]

Polyzos SA, Slavakis A, Kounourkeridis G, Katsinelos P, Konstantou J. Noninvasive Liver Fibrosis Tests in Patients with Non-alcoholic Fatty Liver Disease: An External Validation Cohort. Horm Metab Res 2019; 51: 134-140 [PMID: 30279394 DOI: 10.1055/a-0713-1330]

Hansen JF, Jaul Nielsen M, Nyström K, Leeming DJ, Magging M, Nørkans G, Brehm Christensen P, Karsdal M. PRO-C3: a new and more precise collagen marker for liver fibrosis in patients with chronic hepatitis C. Scand J Gastroenterol 2018; 53: 83-87 [PMID: 29069955 DOI: 10.1080/00365521.2017.1392596]

Daniels SJ, Leeming DJ, Ismail M, Hashem AM, Nielsen MJ, Krag A, Karsdal MA, Grove JI, Gulla DN, Kawaguchi T, Torigura T, McLeod A, Doaka J, Kaye P, de Boer B, Aithal GP, Adams LA, George J. ADAPT: An algorithm incorporating PRO-C3 accurately identifies patients with NAFLD and advanced fibrosis. Hepatology 2018 [PMID: 30014517 DOI: 10.1002/hep.20163]

Suzuki A, Angulo P, Lymph J, Li D, Satorumura S, Lindor K. Hyaluronic acid, an accurate serum marker for severe hepatic fibrosis in patients with non-alcoholic fatty liver disease. Liver Int 2005; 25: 779-786 [PMID: 15998429 DOI: 10.1111/j.1478-3231.2005.01064.x]

Miele L, De Michele T, Marrone G, Antonietta Igrò M, Basile U, Cefalo C, Biotalo M, Maria Vecchio F, Lodovicapacchi G, Gasbarrini A, Zuppi G, Gréco A. Enhanced liver fibrosis test as a reliable tool for assessing fibrosis in nonalcoholic fatty liver disease in a clinical setting. J Int Bio Markers 2017; 32: e846-e802

Wai CT, Greenoos JK, Fontana RJ, Kalbfleisch JD, Marrero JA, Conjeevaram HS, Lok AS. A simple noninvasive index can predict both significant fibrosis and cirrhosis in patients with chronic hepatitis C. Hepatology 2003; 38: 518-526 [PMID: 12883497 DOI: 10.1053/hep.2003.50346]

Sterling RK, Lissen E, Chumee N, Sola R, Correa MC, Montaner J, S Sulkowski M, Torriani FJ, Dieterich DT, Thomas DL, Messinger D, Nelson M, Nguyen TV, Rixmeyer D, Spielvogel A. APRICOT Clinical Investigators. Development of a simple noninvasive index to predict significant fibrosis in patients with HIV/HCV coinfection. Hepatology 2006; 43: 1317-1325 [PMID: 16729309 DOI: 10.1002/hep.21178]

McPherson S, Stewart SF, Henderson E, Burt AD, Day CP. Simple non-invasive fibrosis scoring systems can reliably exclude advanced fibrosis in patients with non-alcoholic fatty liver disease. Gut 2010; 59: 1265-1269 [PMID: 20091772 DOI: 10.1136/gut.2010.201677]

McPherson S, Hardy T, Dufort JF, Petta S, Romero-Gomez M, Allison M, Oliveira CP, Franche S, Van Gaal L, Schattenberg JM, Tiniakos D, Burt A, Bugianesi E, Ratziu V, Day CP, Anstee QM. Age as a Confounding Factor for the Accurate Non-Invasive Diagnosis of Advanced NAFLD Fibrosis. Am J Gastroenterol 2017; 112: 740-751 [PMID: 27725647 DOI: 10.1038/ajg.2016.243]

Ishibashi H, Sumida Y, Takanao S, Yoneida M, Hiroyo H, Oso M, Fujin H, Eguchi Y, Suzuki Y, Yoneida M, Takahashi H, Nakahara T, Seko Y, Morik K, Kanemasa K, Shimada K, Inami S, Imajo K, Kawaguchi T, Nakajima A, Chayama K, Saibara T, Shima T, Fujimoto K, Okanoue T, Itoh Y; Japan Study Group of Non-Alcoholic Fatty Liver Disease (JS-GN-ALFD). The novel cutoff points for the FIB-4 index categorized by age increase the diagnostic accuracy in NAFLD: a multicenter study. J Gastroenterol 2018; 53: 1216-1224 [PMID: 29744597 DOI: 10.1002/ajg.31847]

Angulo P, Hui JM, Marchesini G, Bugianesi E, George J, Farrell GC, Enders F, Saksena S, Burt AD, Bida JP, Lindor K, Sanderson SO, Lenzi M, Adams LA, Kench J, Therneau TM, Day CP. A simple noninvasive index that identifies liver fibrosis in patients with NAFLD. Hepatology 2007; 45: 846-854 [PMID: 17395109 DOI: 10.1002/hep.21493]

Harrison SA, Oliver D, Arnold HL, Gogia S, Neuschwander-Tetri BA. Development and validation of a simple NAFLD clinical scoring system for identifying patients without advanced disease. Gastroenterology 2008; 135: 1441-1447 [PMID: 18390757 DOI: 10.1111/j.1457-0061.2007.01619.x]

Fuji H, Enomoto M, Fukushima W, Tamori A, Sakaguchi H, Kawada N. Applicability of BARD score to Japanese patients with NAFLD. Gut 2009; 58: 1566-7; author reply 1567 [PMID: 18973847 DOI: 10.1136/gut.2008.167758]

Wong VW, Vergniol J, Wong GL, Foucher J, Chan HL, Le Bail B, Choi PC, Kowlo M, Chan AW, Merrouche W, Sung J, de Lèdighen V. Diagnosis of fibrosis and cirrhosis using liver stiffness measurement in nonalcoholic fatty liver disease. Gastroenterology 2010; 51: 454-462 [PMID: 20101745 DOI: 10.1002/hep.23512]

de Lèdighen V, Vergniol J. Transient elastography (FibroScan). Gastroenterol Clin Biol 2008; 32: 58-67 [PMID: 18973847 DOI: 10.1016/s0399-8308(08)73994-0]

Wong VW, Vergniol J, Wong GL, Foucher J, Chan AW, Chermak F, Choi PC, Merrouche W, Chu SH, Pesque S, Chan HL, de Lèdighen V. Liver stiffness measurement using XL probe in patients with nonalcoholic fatty liver disease. Am J Gastroenterol 2012; 107: 1862-1871 [PMID: 23032979 DOI: 10.1038/ajg.2012.331]

Loong TC, Wei JL, Leung JC, Wong GL, Shu SS, Chim AM, Chan AW, Choi PC, Tse YK, Chan HL, Wong WV. Application of the combined FibroMeter vibration-controlled transient elastography algorithm in Chinese patients with non-alcoholic fatty liver disease. J Gastroenterol Hepatol 2017; 32: 1363-1369 [PMID: 27936280 DOI: 10.1111/jgh.13671]

Leung YL, Shen J, Wong VW, Abrego J, Wong GL, Chim AM, Chu SH, Chan AW, Choi PC, Ahuja AT, Chan HL, Chu WC. Quantitative elasticity of liver fibrosis and spleen stiffness in chronic hepatitis B carriers: comparison of shear-wave elastography and transient elastography with liver biopsy correlation. Radiology 2013; 269: 910-918 [PMID: 23912619 DOI: 10.1148/radiol.13130125]

Ferraidii G, Tinelli C, Dal Bello B, Zicchetti M, Filice G, Filice C; Liver Fibrosis Study Group. Accuracy of real-time shear wave elastography for assessing liver fibrosis in chronic hepatitis C: A pilot study. Hepatology 2012; 56: 2125-2133 [PMID: 22767302 DOI: 10.1002/hep.25936]

Cassinotto C, Boursier J, de Lèdighen V, Legibot J, Lapugnoy B, de Hirta JB, Michalak S, Bail BL, Cartier F, Monniaux I, Oberti F, Foucher-Hubert I, Vergniol J, Aubì C. Liver stiffness in nonalcoholic fatty liver disease: A comparison of supersonic shear imaging, FibroScan, and ARFI with liver biopsy. Hepatology 2016; 63: 1817-1827 [PMID: 26659452 DOI: 10.1002/hep.28394]

Karage E, Orturker C, Sonmez G. Noninvasive Evaluation of Liver Fibrosis: Supersonic Shear Imaging or Acoustic Radiation Force Impulse Imaging? Radiology 2016; 279: 979-980 [PMID: 27183412 DOI: 10.1148/radiol.2016152532]

Endpoints and clinical trial design for nonalcoholic steatohepatitis. Hepatology: 344-353 [PMID: 2011; Brunt EM, Kleiner DE, Kowdley KV, Chalasani N, Lavine JE, Ratziu V, McCullough A.

2015; 7, Tognarelli JM, Crossey MM, Catalano D, Taylor-Robinson SD, Trovato GM. Challenges of liver disease: Relationship with cardiovascular risk markers and clinical endpoints. Diabetes Res Clin Pract: 1245-1251 [PMID: 20675693 DOI: 10.1016/j.diar.2014.04.014]

2015; 13, Parkes J, Roderick P, Harris S, Day C, Mutimer D, Collier J, Lombard M, Alexander G, Ramage J, Zhou JH. Noninvasive evaluation for NAFLD. Clin Gastroenterol Hepatol: 296-304 [PMID: 29203992 DOI: 10.1016/j.cgh.2017.11.028]

2018; 111, Zeybel M, Day CP, Dipper C, Masson S, McPherson S, Henderson E, Tiniakos D, White S, Godfrey EM, Asbach P, Murad MH, Lomas DJ, Tiniakos D, White S, French J, Mann DA, Ansee MQ, Mann J. Plasma DNA methylation: a potential biomarker for stratification of liver fibrosis in non-alcoholic fatty liver disease. Gut: 2017; 66: 1381-1382 [PMID: 27002905 DOI: 10.1136/gutjnl-2016-315526]

2017; 68, Cui J, Heba E, Hernandez C, Haufe W, Hooker J, Andre MP, Valasek MA, Arya H, Sirlin C, Loomba R. Magnetic resonance elastography is superior to acoustic radiation force impulse for the Diagnosis of fibrosis in patients with biopsy-proven nonalcoholic fatty liver disease: A prospective study. Hepatology: 2016; 63: 453-461 [PMID: 26560234 DOI: 10.1002/hep.28337]

2015; 10, Ray K. NAFLD-the next global epidemic. Nat Rev Gastroenterol Hepatol: 2013; 10: 621 [PMID: 24185985 DOI: 10.1038/nrgastro.2013.197]

2016; 65: 570-578 [PMID: 27151181 DOI: 10.1016/j.jhep.2016.04.023]

2018; 144: 144-152 [PMID: 30170074 DOI: 10.1016/j.diabres.2018.08.011]

2015; 7, Trovato FM, Tognarelli JM, Crosse MM, Catalano D, Taylor-Robinson SD, Trovato GM. Challenges of liver cancer: Future emerging tools in imaging and urinary biomarkers. World J Hepatol: 2015; 7: 2664-2675 [PMID: 26095345 DOI: 10.4245/wjh.v7.i26.2664]

2011; 54: 344-353 [PMID: 2127782]
Middleton MS, Heba ER, Hooker CA, Bashir MR, Fowler KJ, Sandrasegaran K, Brunt EM, Kleiner DE, Doo E, Van Natta ML, Lavin JE, Neuschwander-Tetri BA, Sanyal A, Loomba R, Sirlin CB; NASH Clinical Research Network. Agreement Between Magnetic Resonance Imaging Proton Density Fat Fraction Measurements and Pathologist-Assigned Steatosis Grades of Liver Biopsies From Adults With Nonalcoholic Steatohepatitis. *Gastroenterology* 2017; 153: 753-761 [PMID: 28624576 DOI: 10.1053/j.gastro.2017.06.005]

Jayakumar S, Middleton MS, Lawitz EJ, Mantry PS, Caldwell SH, Arnold H, Mae Dichl A, Ghalib R, Elkhashab M, Abdelmalik MF, Kowdley KV, Stephen Djedjos C, Xu R, Han L, Mani Subramanian G, Myers RP, Goodman ZD, Aldhal NH, Charlton MR, Sirlin CB, Loomba R. Longitudinal correlations between MRE, MRI-PDFF, and liver histology in patients with non-alcoholic steatohepatitis: Analysis of data from a phase II trial of selonsertib. *J Hepatol* 2019; 70: 133-141 [PMID: 30291868 DOI: 10.1016/j.jhep.2018.09.024]

Wieckowska A, Feldstein AE. Diagnosis of nonalcoholic fatty liver disease: invasive versus noninvasive. *Semin Liver Dis* 2008; 28: 386-395 [PMID: 18956295 DOI: 10.1055/s-0028-1091983]

Vilar-Gomez E, Calzadilla-Bertot L, Friedman SL, Gra-Oramas B, Gonzalez-Fabian L, Lazo-Del Vallin S, Diago M, Adams LA. Serum biomarkers can predict a change in liver fibrosis 1 year after lifestyle intervention for biopsy-proven NASH. *Liver Int* 2017; 37: 1887-1896 [PMID: 28544769 DOI: 10.1111/liv.13480]
