SYSBIONS: nested sampling for systems biology

Rob Johnson†,*, Paul Kirk† and Michael P. H. Stumpf*

Centre for Integrative Systems Biology and Bioinformatics, Department of Life Sciences, Imperial College London, London SW7 2AZ, UK

Associate Editor: Janet Kelso

ABSTRACT

Motivation: Model selection is a fundamental part of the scientific process in systems biology. Given a set of competing hypotheses, we routinely wish to choose the one that best explains the observed data. In the Bayesian framework, models are compared via Bayes factors (the ratio of evidences), where a model’s evidence is the support given to the model by the data. A parallel interest is inferring the distribution of the parameters that define a model. Nested sampling is a method for the computation of a model’s evidence and the generation of samples from the posterior parameter distribution.

Results: We present a C-based, GPU-accelerated implementation of nested sampling that is designed for biological applications. The algorithm follows a standard routine with optional extensions and additional features. We provide a number of methods for sampling from the prior subject to a likelihood constraint.

Availability and implementation: The software SYSBIONS is available from http://www.theosysbio.bio.ic.ac.uk/resources/sysbions/

Contact: m.stumpf@imperial.ac.uk, robert.johnson11@imperial.ac.uk

Received on April 9, 2014; revised on July 30, 2014; accepted on October 13, 2014

1 INTRODUCTION

Given a set of models proposed to explain some observation, we seek to rank them according to the extent to which they are supported by some data. Likelihood-based approaches find the point at which the likelihood function is maximized, and compare models based on these maxima (Burnham and Anderson, 2002). Bayesian approaches for model selection rest on Bayes factors: the ratio of evidences of competing models. A number of methods exist to estimate the evidence (Kirk et al., 2013). Given a set of models proposed to explain some observation, we wish to choose the one that best explains the observed data. In the Bayesian framework, models are compared via Bayes factors (the ratio of evidences), where a model’s evidence is the support given to the model by the data. A parallel interest is inferring the distribution of the parameters that define a model. Nested sampling is a method for the computation of a model’s evidence and the generation of samples from the posterior parameter distribution.

Availability and implementation: The software SYSBIONS is available from http://www.theosysbio.bio.ic.ac.uk/resources/sysbions/

Contact: m.stumpf@imperial.ac.uk, robert.johnson11@imperial.ac.uk

Received on April 9, 2014; revised on July 30, 2014; accepted on October 13, 2014

2 APPROACH

The evidence is defined as $Z = \int_\Theta \ell(\theta)\pi(\theta)\,d\theta$, where θ is the parameter set and Θ the parameter space, ℓ the likelihood function and π the prior. The change in notation $\pi(\theta)\,d\theta = dX(\theta)$, where $X(\theta)$ is the cumulative density function, allows the integral to be written $Z = \int_\Theta \ell(\theta)\,dX(\theta)$. This can be approximated as a sum, $Z \approx \sum_{i=1}^N \ell_i W_i$, where N points are sampled and W_i is the proportion of prior mass represented by point i, calculated as the difference between the volume enclosed by the contour of constant likelihood through ℓ_i and that through ℓ_{i-1}. Nested sampling is a method for generating the sequence of points (ℓ_i, W_i).

For a thorough presentation of nested sampling, we refer the reader to the work of Skilling (2006) and Sivia and Skilling (2006). For our purposes, we follow the general algorithm:

1. Initialise $Z = 0$
2. Generate N points from $\pi(\theta)$
3. for $i = 1 \rightarrow M$
 a. Find θ^* with lowest likelihood, ℓ^*
 b. Calculate $W_i = \exp(-\ell^*) - \exp(-\ell_i)$
 c. Set $Z = Z + \ell^*W_i$
 d. Resample $\theta^* \sim \pi(\theta) | X(\theta) > \ell^*$
4. end for
5. Set $Z = Z + \sum_{i=1}^N \ell_i \exp(-M/N) / N$

Our program is written primarily in C with additional capability for GPU acceleration. Other features include an SBML parser for automated generation of likelihood functions (Lieber et al., 2010) and plotting tools. For the task of sampling from the prior subject to a likelihood constraint (step 3d), we provide three methods. The accuracy of the approximation in step 3b depends on the population of N points (live points) being truly distributed as the prior within the given likelihood constraint (Skilling, 2006).

3 METHODS

Our nested sampling package is a command-line tool for Linux and MacOSX platforms. Pre-requisites are listed in the accompanying...
3.2 Sampling methods

We include three sampling methods for step 3d of the algorithm: rejection, for perfectly sampling from the prior, and random walk (following Sivia and Skilling, 2006) and ellipsoidal (following Feroz et al., 2009) for refined sampling with reduced computational cost.

Rejection: The rejection method samples from the prior as initially defined, accepting the point if its likelihood value is within the constraint and rejecting otherwise. This method remains true to the requirement that samples are taken from the prior subject to the likelihood constraint, but its efficiency is poor: as the lowest likelihood increases, the acceptance rate becomes prohibitively small.

Random walk: The random-walk method duplicates a point randomly chosen from the current live-point population and walks it 20 steps, accepting the new point at each step if its likelihood is within the constraint. The steps are scaled according to the covariance among the present population, and scaled further to converge to an acceptance rate of 0.5 (Sivia and Skilling, 2006).

Ellipsoidal: The ellipsoidal method (Mukherjee et al., 2006) creates an ellipsoid surrounding the current population of live points, expanded and rejecting otherwise. This method remains true to the requirement that areas of prior mass that lie inside the current likelihood constraint.

3.3 Output

A summary file of input and output information is created, documenting the number of live points, number of iterations, tolerance, sampling method and parameter ranges, followed by the evidence with standard deviation, the prior-to-posterior information gain and the means of all parameters and their standard deviations. Posterior distributions of the parameters can be plotted individually as histograms and in pair-wise scatter plots using the data stored in the posterior file. Finally, a file of trajectories is created that can be compared against the input data.

Restart files are created, documenting input parameters that must persist upon restart (such as the number of live points) and listing all points, live and discarded. These files can be used to restart the program from where it completed. It is also possible to specify the path to where the restart files are written.

4 SUMMARY

We present SYSBIONS, a computational tool for model selection and parameter inference using nested sampling. Using a data-based likelihood function, our package calculates the evidence of a model and the corresponding posterior parameter distribution.

ACKNOWLEDGEMENT

We gratefully acknowledge the help and support of the Theoretical Systems Biology Group at Imperial College London.

Funding: This work was supported through a BBSRC PhD studentship to R.J. and an HFSP grant [RGP0061/2011] to P.K. and M.P.H.S.

Conflict of interest: none declared.

REFERENCES

Aitken,S. and Akman,O.E. (2013) Nested sampling for parameter inference in systems biology: application to an exemplar circadian model. BMC Syst. Biol., 7, 72.

Burkoff,N.S. et al. (2012) Exploring the energy landscapes of protein folding simulations with Bayesian computation. Biophys. J., 102, 878-886.

Burnham,K.P. and Anderson,D.R. (2002) Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach. Springer, New York.

Dybwolski,R. et al. (2013) Nested sampling for Bayesian model comparison in the context of Salmonella disease dynamics. PLoS One, 8, e82317.

Feroz,F. et al. (2009) MultiNest: an efficient and robust Bayesian inference tool for cosmology and particle physics. Mon. Not. R. Astron. Soc., 398, 1601–1614.

Kirk,P. et al. (2013) Model selection in systems and synthetic biology. Curr. Opin. Biotech., 21, 1–8.

Liepe,J. et al. (2010) ABC-SysBio—approximate Bayesian computation in Python with GPU support. Bioinformatics, 26, 1797–1799.

Mukherjee,P. et al. (2006) A nested sampling algorithm for cosmological model selection. Astrophys. J., 638, L51–L54.

Pullen,N. and Morris,R.J. (2014) Bayesian model comparison and parameter inference in systems biology using nested sampling. PLoS One, 9, e88419.

Rodriguez,N. et al. (2007) SBMLeditor: effective creation of models in the Systems Biology Markup Language (SBML). BMC Bioinformatics, 8, 79.

Sivia,D. and Skilling,J. (2006) Data Analysis: A Bayesian Tutorial. Oxford University Press, Oxford.

Skilling,J. (2006) Nested sampling for general Bayesian computation. Bayesian Anal., 1, 833–860.
Author/s:
Johnson, R; Kirk, P; Stumpf, MPH

Title:
SYSBIONS: nested sampling for systems biology.

Date:
2015-02-15

Citation:
Johnson, R., Kirk, P. & Stumpf, M. P. H. (2015). SYSBIONS: nested sampling for systems biology. Bioinformatics, 31 (4), pp.604-605. https://doi.org/10.1093/bioinformatics/btu675.

Persistent Link:
http://hdl.handle.net/11343/246077

File Description:
published version

License:
CC BY