Correlations between the properties of saliva and metabolic syndrome

A prospective observational study

Daisuke Suzuki, DDS, Shin-Ichi Yamada, DDS, PhD*, Akinari Sakurai, DDS, Imahito Karasawa, DDS, PhD, Eiji Kondo, DDS, PhD, Hironori Sakai, DDS, PhD, Hirokazu Tanaka, DDS, PhD, Tetsu Shimane, DDS, PhD, Hiroshi Kurita, DDS, PhD

Abstract
Saliva tests, which are easy to perform and non-invasive, can be used to monitor both oral disease (especially periodontal disease) and physical conditions, including metabolic syndrome (MetS). Therefore, in the present study the associations between saliva test results and MetS were investigated based on medical health check-up data for a large population. In total, 1,888 and 2,296 individuals underwent medical check-ups for MetS and simultaneous saliva tests in 2017 and 2018, respectively. In the saliva tests, the buffer capacity of saliva, salivary pH, the salivary white blood cell count, the number of cariogenic bacteria in saliva, salivary occult blood, protein, and ammonia levels were tested using a commercially available kit. The relationships between the results of the saliva tests and MetS components were examined in cross-sectional and longitudinal multivariate analyses. Significant relationships were detected between salivary protein levels and serum HbA1c levels or blood pressure levels and between the buffer capacity of saliva and serum triglyceride levels. In addition, salivary pH was increased irreversibly by impaired renal function. This study suggested that saliva tests conducted during health check-ups of large populations might be a useful screening tool for periodontal disease and MetS/MetS components.

Abbreviations: CKD = chronic kidney disease, DM = diabetes mellitus, HDL-C = high-density lipoprotein cholesterol, MetS = metabolic syndrome, SMT = salivary Multi Test, WBC = white blood cell.

Keywords: saliva test, metabolic syndrome, medical check-up, blood pressure, screening, periodontal disease

1. Introduction
Metabolic syndrome (MetS) is a complex medical disorder, which is defined as the presence of three out of five interrelated conditions attributed to visceral fat-type obesity, including hypertension and abnormal glucose and lipid metabolism.[1–2] MetS was reported to increase the risk of cardiovascular disease, including atherosclerotic cardiovascular disease, and type 2 diabetes mellitus (DM).[3–4] The prevalence of MetS has increased worldwide.[5] In 2011–2012, the estimated prevalence of MetS in the USA was 34.7% and increased with age; that is, it was 18.3% in adults aged 20 to 39 years and 46.7% in those aged ≥60 years.[6] In middle-aged Japanese individuals, the prevalence of MetS was reported to be 14.9%.[7]

Periodontitis is a pathological infectious inflammatory disease, which causes the destruction of periodontal tissue and can lead to tooth loss.[9] In previous studies,[7–9,11] a close correlation was detected between periodontitis and MetS, and individuals with MetS have been reported to present with a worse periodontal status, including a higher prevalence of periodontitis, more severe periodontitis, and more wide-ranging periodontitis.[10] Many chronic diseases, including periodontitis, hypertension, and DM, are influenced by common risk factors including diet, smoking, alcohol, a lack of exercise, and stress.[12,13] It has been reported that chronic systemic inflammation might predispose individuals with periodontal disease to develop components of MetS or vice versa.[14] Therefore, investigations and health public policies targeting MetS and periodontitis are important for promoting public health.

Saliva tests are easy to conduct and non-invasive, and it has been reported that such tests can produce clinically significant information relating to both systemic and oral disease.[15–21] Many researchers have reported that saliva-based screening tests are useful for diagnosing periodontitis.[15–21] As stated above,
periodontitis and MetS are closely related and influenced by the same common risk factors\[22\]. Previously, we reported the effectiveness of incorporating dental check-ups into health check-ups and detected a significant association between periodontitis and MetS.\[11\] These results suggested that saliva tests could be used to monitor not only periodontal conditions, but also physical conditions related to MetS. Therefore, the purpose of the present study was to investigate the associations between the results of saliva tests and MetS based on medical health check-up data for a large population.

2. Materials and methods

The protocol of the present study was approved by the Committee on Medical Research of Shinshu University (2775). Individuals who underwent specific health check-ups (health check-ups for MetS) in the Japanese cities Azumino and Shiojiri between 2017 and 2018 were invited to participate in the study. All of the subjects, which included self-employed workers, farmers, and the elderly, were insured by the Japanese national health insurance system and were aged ≥25 years. They all provided written informed consent before participating in this study. The subjects underwent saliva tests during their health check-ups. The health check-ups were conducted according to the standard program provided by the Ministry of Health, Labour and Welfare of Japan (2013).\[23\] They included an interview on lifestyle and systemic disease treatment status (including on medication for hypertension, lipid abnormalities, or hyperglycemia); height, weight, abdominal circumference, and blood pressure measurements; and blood tests (of triglyceride, high-density lipoprotein cholesterol [HDL-C], blood sugar, hemoglobin A1c [HbA1c], and creatinine levels).

Regarding the saliva tests, each saliva sample was collected with 3 ml of mouthwash and was immediately evaluated using a commercially available test kit [Salivary Multi Test [SMT]; LION Dental Products Co., Ltd., Tokyo, Japan]. The saliva tests were performed according to the manufacturer’s protocols and were used to evaluate the buffer capacity of saliva; the number of cariogenic bacteria present in saliva; salivary pH; salivary occult blood, protein, and ammonia levels; and the salivary white blood cell (WBC) count. The test kit consisted of test strips and a measuring device. In this test, the color changes that occur in each pad of the test strip are assessed by measuring reflectance at a specific wavelength. Specifically, the number of cariogenic bacteria present in saliva is evaluated based on the reduction of resazurin sodium by Gram-positive bacteria. The salivary pH is assessed based on the color change exhibited by a pH indicator. The buffer capacity is determined based on the color change exhibited a compound pH indicator in the presence of a fixed quantity of acid. The salivary occult blood level is assessed by measuring pseudo-peroxidase activity in hemoglobin. The WBC count is evaluated by measuring leukocyte esterase activity, the salivary protein level is determined based on the “protein error of indicators” phenomenon. The salivary ammonia level is assessed based the color change seen after the addition of bromocresol green. The principles underlying the measurement of each parameter are summarized in Figure 1. The results of the saliva tests are expressed as percentages (0–100) and were classified into three categories (high, moderate, and low), according to the values established by the manufacturer.\[24\] Individuals who had been eating/drinking, had brushed their teeth, or had gargled within 2 two hours before the salivary test were excluded from the study because these might have affected the test results. The dental examination also included assessments of dental and periodontal conditions by well-trained dentists. The grade of

Test item	Measurement principle	Detection range	
Cariogenic bacteria	Resazurin reduction by bacteria	Resorufin (magenta)	10⁶ - 10⁹ cfu/mL
Acidity	pH indicator	pH 6.0 - 8.0	
Buffer capacity	Combined pH indicator	pH 2.8 - 6.0	
Blood	CHP + TMBZ	H₂O+Cumene+Oxidized TMBZ (blue)	0 - 0.50 mg/dL
Leukocyte	TAI Leukocyte esterase Hydrolysis	Indoxyl	0 - 200 U/L
Protein	Protein + TCTIF (light pink) Acid Complex formation (red)	0 - 60 mg/dL	
Ammonia	Ammonium ion Alkaline	Ammonia gas + BCG	1 - 10,000 N-µg/dL

Figure 1. Detection principle of the Salivary Multi Test. □: Detected substance [□] Ingredient in test strip. CHP: cumene hydroperoxide, TMBZ: 3,3’5,5’- tetramethylbenzidine, TAI: 3-[4-(touene-4-sulfonyl]-L- alanine-indole, MMIB: 2-methoxy-4-[4-(morpholino)benzenediazonium, TCTIF: 4,5,5,7-tetrachloro-2’,4’,6’,7’-tetrachlorofluorescin disodium salt, BCG: bromocresol green, cfu: colony forming unit.
periodontal disease was assessed according to the World Health Organization (WHO) Community Periodontal Index (CPI) criteria. PD was measured using standard WHO probes. Periodontal disease was diagnosed according to the CPI code: Code 0 (healthy periodontal condition) was judged as healthy, Codes 1 and 2 (with gingival bleeding on probing, BOP) as gingivitis, and Codes 3 and 4 (PD ≥ 4 mm) as periodontitis.

The results of the salivary test were compared with the results of the health check-up in the cross-sectional analysis. In addition, in the longitudinal analysis, the relationships between the changes in the salivary test results and the changes in the health check-up results were analyzed in the individuals who underwent examinations in both 2017 and 2018. In this study, the interyear changes in the salivary test results that occurred between 2017 and 2018 were classified into the four following categories:

- Remained high: “high” in both 2017 and 2018
- Increased: “moderate/low” in 2017 and “high” in 2018
- Decreased: “high” in 2017 and “moderate/low” in 2018
- Remained low: “moderate/low” in both 2017 and 2018

Statistical analyses were performed using JMP ver.13 (SAS Institute Inc., NC). In the cross-sectional analysis, the correlations between the results of the salivary test and the health check-up results were examined using univariate analyses (Spearman’s rank correlation coefficient) and multivariate analysis involving common risk (confounding) factors. In the longitudinal analysis, the correlations between the interyear changes in the results of the salivary test and the interyear changes in the health check-up parameters (the value obtained in 2018 minus the value obtained in 2017) were evaluated using univariate analyses (including the Tukey-Kramer HSD test) and multivariate analysis of common risk factors (sex, age in 2017, change in BMI, and change in smoking habits). P values of < .05 were considered to indicate statistical significance.

3. Results

Among the individuals who underwent the health check-up, 1,887 (24.0%) out of the 7,848 individuals who underwent the health check-up in 2017 and 2,279 (32.2%) out of the 7,084 individuals who underwent the health check-up in 2018 consented to saliva tests and participated in the study. The subjects’ characteristics and the results of the salivary tests are summarized in Table 1.

3.1. The results of the cross-sectional analysis

The correlations between systolic or diastolic blood pressure and the results of the salivary test are shown in Tables 2 and 3. This analysis included the data from the subjects who were not taking antihypertensive medication (n=1,374). Although in the univariate analyses weak but significant correlations were observed between systolic or diastolic blood pressure and the buffer capacity of saliva (diastolic blood pressure: P < .05), the salivary levels of occult blood (systolic blood pressure: P < .05; diastolic blood pressure: P < .05), protein (systolic blood pressure: P < .01; diastolic blood pressure: P < .05), or ammonia (systolic blood pressure: P < .01; diastolic blood pressure: P < .01), the multivariate analysis did not reveal any significant correlations between these parameters. The only significant correlation found in the multivariate analysis was between systolic blood pressure and the number of cariogenic bacteria in saliva (P < .05), even though no such correlation was detected in the univariate analysis.

Table 1

Characteristics of studied subjects.	2017 Number (%)	2018 Number (%)
Number of subjects received the specific health check-ups	7,848	7,084
Number of subjects received salivary examination	1,887 (24.0)	2,279 (32.2)
Gender		
Male	875 (46.3)	1,119 (49.1)
Female	1,012 (53.7)	1,160 (50.9)
Age		
Average ±SD	64.8 ±12.9	67.6 ±11.7
Range	25-95	29-96
Results of the salivary examination using SMT	1,887	2,279
Cariologenic bacteria		
Much	994 (52.7%)	1,051 (46.1%)
Average	495 (26.2%)	542 (23.8%)
Little	399 (21.1%)	686 (30.1%)
Acidity		
Much	1,239 (65.3%)	1,571 (69.9%)
Average	430 (22.8%)	485 (21.3%)
Little	219 (11.6%)	223 (9.8%)
Buffer capacity		
Much	757 (40.1%)	921 (40.4%)
Average	640 (33.9%)	788 (34.6%)
Little	491 (26.0%)	570 (25.0%)
Occult blood		
Much	941 (49.9)	1,253 (55.0)
Average	506 (31.6)	693 (30.4)
Little	350 (18.5)	333 (14.6)
White blood cell		
Much	1,050 (55.6)	1,253 (55.0)
Average	546 (28.9)	708 (31.1)
Little	291 (15.4)	318 (14.0)
Protein		
Much	1,253 (66.4)	1,463 (64.2)
Average	395 (20.9)	528 (23.2)
Little	239 (12.7)	288 (12.6)
Ammonium		
Much	1,541 (81.7)	1,658 (81.5)
Average	253 (13.6)	312 (13.7)
Little	93 (4.9)	109 (4.8)

SD: standard deviation.

The correlations between serum triglyceride or HDL-C levels and the results of the salivary test are shown in Tables 4 and 5. This analysis included the data for the subjects who were not taking antihyperlipidemic medication (n=1,345). The weak but significant or nearly significant correlations were observed between serum triglyceride or HDL-C levels and salivary buffer capacity (serum HDL-C level: P < .05), the salivary levels of occult blood (serum triglyceride level: P = .053) or HDL-C level: P = .05) and between the serum HDL-C level and the salivary WBC count (serum triglyceride level: P < .05; serum HDL-C level: P = .058) in the univariate analyses. However, the multivariate analysis only showed nearly significant correlations between the serum triglyceride (P = .053) or HDL-C (P = .091) level and the salivary WBC count. In addition, the multivariate analysis revealed significant correlations between the serum triglyceride level and salivary buffer capacity (P < .05) and between the serum HDL-C level and salivary pH (P < .05) or the salivary ammonia level (P < .01); however, no significant correlations were observed between these parameters in the univariate analyses.
Table 2

Correlation between systolic blood pressure and results of salivary multi test in those who had no antihypertensive medication (n = 1,374).

Level	n	Average	SE	95% CI	r	P value	Estimate	SE	t value	P value	
Systolic blood pressure											
Cariogenic bacteria	Much	703	122.0	0.62	120.8 – 123.2	-0.005	.853				
Average	362	122.2	0.86	120.5 – 123.9							
Little	309	122.6	0.93	120.8 – 124.4							
Acidity											
Much	912	121.9	0.5	120.9 – 123.0	-0.026	.342					
Average	310	122.6	0.9	120.7 – 124.4							
Little	152	123.1	1.3	120.5 – 125.7							
Buffer capacity											
Much	508	123.5	0.7	122.1 – 125.0	-0.026	.342					
Average	471	122.6	0.8	121.1 – 124.1							
Little	395	120.0	0.8	118.4 – 121.6							
Occult Blood											
Much	638	123.5	0.6	122.2 – 124.8	0.117	<.01					
Average	460	122.1	0.8	120.6 – 123.6							
Little	276	119.4	1.0	117.5 – 121.3							
Protein											
Much	854	123.4	0.6	122.3 – 124.5	0.111	<.01					
Average	321	121.2	0.9	119.4 – 122.9							
Little	199	118.6	1.2	116.4 – 120.9							
Leukocyte											
Much	734	122.5	0.6	121.3 – 123.7	0.031	.252					
Average	411	122.3	0.8	120.7 – 123.9							
Little	229	121.0	1.1	118.9 – 123.1							
Ammonia											
Much	1088	123.1	0.5	122.1 – 124.0	0.111	<.01					
Average	209	119.9	1.1	117.7 – 122.1							
Little	77	116.2	1.9	112.6 – 119.8							

Univariate analysis

Spearman’s rank correlation

Multivariate analysis

SE: standard error; CI: confidence interval.

Table 3

Correlation between diastolic blood pressure and results of salivary multi test in those who had no antihypertensive medication (n = 1,374).

Level	n	Average	SE	95% CI	r	P value	Estimate	SE	t value	P value	
Diastolic blood pressure											
Cariogenic bacteria	Much	703	73.9	0.41	73.1 – 74.7	-0.004	.880				
Average	362	74.1	0.57	73.0 – 75.3							
Little	309	74.3	0.62	73.1 – 75.5							
Acidity											
Much	912	73.9	0.36	73.2 – 74.6	-0.024	.380					
Average	310	74.2	0.62	73.0 – 75.4							
Little	152	74.8	0.88	73.0 – 76.5							
Buffer capacity											
Much	508	74.8	0.48	73.8 – 75.7	0.06	<.05					
Average	471	74.3	0.50	73.3 – 75.2							
Little	395	72.9	0.55	71.8 – 74.0							
Occult Blood											
Much	638	74.6	0.43	73.7 – 75.4	0.065	<.05					

Univariate analysis

Spearman’s rank correlation

Multivariate analysis

(continued)
Table 3 (continued)

Univariate analysis	Multivariate analysis										
Diastolic blood pressure	**Spearman’s rank correlation**	**Estimate**	**SE**	**t value**	**P value**						
Level	n	Average	SE	95% CI	r	P value					
Leukocyte Much	854	74.5	0.37	73.8	75.2	0.069	<.05				
Average	321	74.0	0.61	72.8	75.2						
Little	199	72.3	0.77	70.8	73.8						
Ammonia Much	1088	74.5	0.33	73.9	75.2	0.086	<.01				
Average	226	72.9	0.75	71.4	74.3						
Protein Much	842	116.1	2.44	111.3	117.9	0.036	.156				
Average	226	111.0	4.71	101.8	120.3						
Little	84	100.1	7.73	84.9	115.2						

SE: standard error; CI: confidence interval.

Table 4

Correlation between triglyceride and results of salivary multi test in those who had no antihyperlipidemic medication (n = 1,545).

Univariate analysis	Multivariate analysis										
Triglyceride	**Spearman’s rank correlation**	**Estimate**	**SE**	**t value**	**P value**						
Level	n	Average	SE	95% CI	r	P value					
Cariogenic bacteria Much	797	110.3	2.51	105.4	115.2	−0.011	.680				
Average	414	116.0	3.48	109.2	122.9						
Little	334	114.6	3.88	107.0	122.2						
Acidity	1033	113.9	2.21	109.6	118.3	0.013	.696				
Average	336	110.9	3.87	103.4	118.5						
Little	176	109.3	5.35	98.8	119.8						
Buffer capacity	506	113.3	2.91	107.6	119.0	0.016	.527				
Average	517	111.8	3.12	105.7	117.9						
Little	452	113.2	3.41	106.5	119.9						
Occult Blood	755	117.5	2.57	112.5	122.5	0.087	<.01				
Average	488	113.1	3.20	106.8	119.4						
Little	302	100.4	4.07	92.4	108.4						
Protein Much	992	116.8	2.25	112.4	121.2	0.083	<.01				
Average	324	107.8	3.87	100.3	115.4						
Little	219	102.2	4.78	92.9	111.5						
Leukocyte Much	842	116.1	2.44	111.3	120.9	0.054	<.05				
Average	226	111.0	4.71	101.8	117.9						
Little	84	100.1	7.73	84.9	115.2						
Ammonia Much	1235	113.9	2.02	110.0	117.9	0.036	.156				
Average	226	111.0	4.71	101.8	120.3						
Little	84	100.1	7.73	84.9	115.2						

SE: standard error; CI: confidence interval.
Table 5
Correlation between HDL-cholesterol and results of salivary multi test in those who had no antihyperlipidemic medication (n=1,545).

Level	n	Average	SE	95%CI	r	P value	Estimate	SE	t value	P value	
HDL-cholesterol											
Cariogenic bacteria	Much	797	63.6	0.58	62.4 - 64.7	-0.014	.580	0.174	0.460	0.38	.706
	Average	414	63.8	0.80	62.2 - 65.4			4.260	0.387	11	<.01
	Little	334	63.8	0.89	62.1 - 65.6			-0.067	0.028	-2.03	<.05
Acidity	Much	1033	63.5	0.51	62.5 - 64.5	-0.009	.723	-1.096	0.536	-2.04	<.05
	Average	336	64.2	0.89	62.5 - 66.0			3.344	0.389	11.17	<.01
	Little	176	63.9	1.22	61.5 - 66.3			-0.060	0.028	-2.13	<.05
Protein	Much	596	62.7	0.66	61.4 - 64.0	-0.002	<.05	0.563	0.487	1.16	.247
	Average	517	63.8	0.71	62.4 - 65.2			3.339	0.393	11.04	<.01
	Little	432	64.8	0.78	63.3 - 66.4			-0.067	0.030	-2.26	<.05
Occult Blood	Much	755	62.2	0.59	61.1 - 63.4	-0.107	<.01	-0.785	0.489	-1.61	.109
	Average	488	64.3	0.73	62.8 - 65.7			4.256	0.387	10.94	<.01
	Little	302	66.4	0.93	64.6 - 68.3			-0.045	0.029	-1.58	<.15
Leukocyte	Much	842	63.1	0.56	62.0 - 64.2	-0.048	.058	-0.834	0.493	-1.69	.091
	Average	449	63.9	0.77	62.4 - 65.4			4.275	0.387	11.05	<.01
	Little	254	65.3	1.02	63.3 - 67.2			-0.048	0.028	-1.7	.089
Ammonia	Much	1235	63.8	0.46	62.9 - 64.7	0.008	.766	1.984	0.699	2.84	<.01
	Average	226	63.6	1.08	61.4 - 65.7			4.347	0.387	11.22	<.01
	Little	84	62.8	1.77	59.3 - 66.3			-0.079	0.029	-2.71	<.01

SE: standard error CI: confidence interval.

The correlations between the serum HbA1C level and the results of the salivary test are shown in Table 6. This analysis included the data for the subjects who were not taking antidiabetic medication (n=1,769). A significant correlation was found between the serum HbA1C level and salivary buffer capacity in both the univariate and multivariate analyses (univariate analysis: P<.01; multivariate analysis: P<.05). In addition, a significant correlation between the serum HbA1C level and the salivary protein level was detected in the univariate analysis (univariate analysis: pH: univariate analysis, P<.01, multivariate analysis, P<.01; buffer capacity: univariate analysis, P<.01, and multivariate analysis, P<.01). Although weak but significant correlations were observed between the serum creatinine level and the number of cariogenic bacteria in saliva (P<.05), the salivary occult blood level (P<.01), the salivary protein level (P<.01), and the salivary ammonia level (P<.01) in the univariate analyses, no such correlations between these parameters were detected in the multivariate analysis.

3.2. The results of the longitudinal analysis

The correlations between the interyear changes in systolic and diastolic blood pressure and the interyear changes in the salivary test results are shown in Tables 8 and 9. This analysis included the data for the subjects who were not taking antihypertensive medication in either 2017 or 2018 (n=539). The interyear change in systolic blood pressure was significantly correlated with the interyear changes in the salivary protein level (P<.01) and WBC count (P<.01), whereas diastolic blood pressure was significantly correlated with the interyear change in the salivary protein level (P<.01). The subjects that exhibited high salivary protein levels and WBC counts in both 2017 and 2018 had elevated blood pressure, while those with low salivary protein levels and WBC counts displayed decreased blood pressure in both years.
Table 6
Correlation between HbA1c and results of salivary multi test in those who had no antidiabetic medication (n = 1,769).

Level	Average	SE	95% CI	Spearman's rank correlation r	P value	Estimate	SE	t value	P value
Cariogenic bacteria				Cariogenic bacteria	0.001	0.13	0.17	.895	
Mean	926	0.72	0.02	5.69 – 5.75	0.017	.483			
Acidity				Acidity					
Mean	1156	0.72	0.01	5.69 – 5.74	–0.018	.451			
Buffer capacity									
Mean	1156	0.72	0.01	5.69 – 5.74	–0.018	.451			
Leukocyte									
Mean	980	5.74	0.03	5.63 – 5.76	0.129 .	<.01			
Occult Blood									
Mean	870	5.74	0.02	5.71 – 5.77	0.079 .	<.01			
Protein									
Mean	1427	5.74	0.01	5.71 – 5.76	0.157 .	<.01			
Leukocyte									
Mean	980	5.74	0.02	5.71 – 5.77	0.061 .	<.05			
Ammonia									
Mean	1427	5.74	0.01	5.71 – 5.76	0.135 .	<.01			

SE: standard error, CI: confidence interval.

Table 7
Correlation between serum creatinine and results of salivary multi test (n = 1,888).

Level	Average	SE	95% CI	Spearman's rank correlation r	P value	Estimate	SE	t value	P value
Acidity									
Mean	1239	0.71	0.01	0.69 – 0.72	–0.160	<.01			
Buffer capacity									
Mean	757	0.78	0.01	0.76 – 0.80	0.209 .	<.01			

(continued)
Table 7
(continued).

Univariate analysis	Multivariate analysis									
Level	n	Average	SE	95% CI	r	P value	Estimate	SE	t value	P value
occult blood										
Much	940	0.75	0.01	0.73	-	0.76	0.080		<.01	
age (years)										
BMI (kg/m2)										
Smoking (no/yes)										
protein										
Much	1254	0.74	0.01	0.73	-	0.76	0.067		<.01	
age (years)										
BMI (kg/m2)										
Smoking (no/yes)										
leukocyte										
Much	1050	0.73	0.01	0.71	-	0.74	0.001		.959	
age (years)										
BMI (kg/m2)										
Smoking (no/yes)										
ammonia										
Much	1539	0.74	0.01	0.73	-	0.75	0.114		<.01	
age (years)										
BMI (kg/m2)										
Smoking (no/yes)										

SE: standard error, CI: confidence interval.

Table 8
Correlation between the interval change of systolic blood pressure and that of salivary multi test in those who had no antihypertensive medication (n = 539).

Univariate analysis	Multivariate analysis							
Interval change of Systolic blood pressure	Tukey-Kramer HSD							
n	Average	SE	95% CI	P value	Estimate	SE	t value	P value
calorie								
increased	136	1.169	1.079	−0.950	3.288	NS		
change in smoking habit								
sex (woman/man)								
age (years)								
BMI (kg/m2)								
smoking (no/yes)								
buffer capacity								
increased	77	−0.558	1.435	−3.378	2.261	NS		
change in Battery								
sex (woman/man)								
age (years)								
BMI (kg/m2)								
smoking (no/yes)								
occult blood								
increased	168	0.881	0.968	−1.021	2.783	NS		
change in occult								
sex (woman/man)								
age (years)								
BMI (kg/m2)								
smoking (no/yes)								
protein								
increased	233	2.498	0.815	0.898	4.098	<.01		
change in protein								
sex (woman/man)								
age (years)								
BMI (kg/m2)								
smoking (no/yes)								
leukocyte								
increased	93	1.538	1.296	−1.008	4.083	<.05		
change in leucocyte								
sex (woman/man)								

(continued)
The correlations between the interyear changes in the serum levels of triglycerides or HDL-C and the interyear changes in the saliva test results are shown in Tables 10 and 11. This analysis included the data for the subjects who were not taking antihyperlipidemic medication in either 2017 or 2018 (n=608).

A significant inverse correlation was found between the interyear change in the serum triglyceride level and the interyear change in the buffer capacity of saliva in the multivariate analysis (P < .05), even though no significant correlation between these parameters was detected in the univariate analysis.
Table 10
Correlation between the interval change of triglyceride and that of salivary multi test in those who had no antihyperlipidemic medication (n=608).

Univariate analysis	Interval change of triglyceride	Tukey-Kramer HSD	Multivariate analysis						
	n	Average	SE	95%CI	P value	Estimate	SE	t value	P value
Carriogenic bacteria	Remain high	157	3.02	4.50	–5.82	–11.85	NS		
	Increased	100	2.34	5.64	–8.73	–13.41			
	Decreased	150	8.43	4.60	–0.61	–17.47			
	Remain low	201	1.53	3.98	–9.14	–6.47			
	Acidity	Remain high	300	3.24	3.62	–3.16	–9.64	NS	
	Increased	111	0.84	5.36	–9.69	–11.36			
	Decreased	86	6.44	6.09	–5.51	–18.40			
	Remain low	111	0.77	5.36	–9.76	–11.29			
	Buffer capacity	Remain high	85	–8.35	6.10	–20.34	–3.63	NS	
	Increased	83	6.40	6.17	–5.73	–18.52			
	Decreased	95	0.73	5.77	–12.06	–10.61			
	Remain low	345	5.66	3.03	–0.29	–11.61			
	Occult Blood	Remain high	214	1.21	3.84	–6.34	–8.76	NS	
	Increased	106	1.80	5.46	–12.53	–8.93			
	Decreased	68	17.21	6.82	3.81	–30.60			
	Remain low	220	2.12	3.79	–5.32	–9.57			
	Protein	Remain high	287	3.42	3.33	–3.12	–9.96	NS	
	Increased	60	7.27	7.28	–7.03	–21.56			
	Decreased	77	7.42	6.43	–5.21	–20.04			
	Remain low	182	1.54	4.16	–9.70	–6.63			
	Leukocyte	Remain high	228	4.04	3.73	–3.30	–11.37	NS	
	Increased	99	7.80	5.67	–3.33	–18.93			
	Decreased	99	3.11	5.67	–8.02	–14.24			
	Remain low	182	1.63	4.18	–9.04	–6.58			
	Ammonia	Remain high	416	3.71	2.77	–1.72	–9.15	NS	
	Increased	65	0.12	7.00	–13.63	–13.88			
	Decreased	65	3.12	7.00	–10.63	–16.88			
	Remain low	62	0.82	7.17	–14.90	–13.26			

SE: standard error CI: confidence interval, NS: not significant HSD: honestly significant difference

4. Discussion

Saliva is widely used for diagnostic purposes, monitoring systemic disease status, and predicting disease progression. The purpose of this study was to investigate the associations between the results of saliva tests and MetS based on medical health check-up data for a large population. Both the longitudinal and cross-sectional studies showed a significant relationship between salivary protein levels and serum HbA1c levels. The subjects with higher serum HbA1c levels had higher salivary protein levels. The SMT was used to measure three items (the salivary levels of occult blood and protein and the salivary WBC count) as markers of periodontal disease. In a study involving the SMT, periodontal pocket depth, bleeding on probing, and the Community Periodontal Index were reported to be correlated with salivary occult blood and protein levels as well as the salivary WBC count. Salivary occult blood and protein levels and the salivary WBC count are considered to be markers of inflammation in periodontal tissue. Salivary protein levels and the salivary WBC count are considered to be markers of inflammation in periodontal tissue.

[26] Suzuki et al. Medicine (2020) 99:51
Table 11
Correlation between the interval change of HDL-cholesterol and that of salivary multi test in those who had no antihyperlipidemic medication (n=608).

Protein	Remain high	157	-0.09	0.89	-1.83	-	1.65	NS	Change in cariogenic bacteria
	Increased	100	-0.62	1.11	-2.80	-	1.56	NS	Sex (woman/man)
	Decreased	150	-0.56	0.91	-2.34	-	1.22	NS	age (2017)
	Remain low	201	1.03	0.78	-0.51	-	2.57	NS	Change in BMI
									Change in smoking habit
Ammonia	Remain high	300	0.36	0.64	-0.90	-	1.62	NS	Change in acidity
	Increased	111	0.08	1.06	-1.99	-	2.16	NS	Sex (woman/man)
	Decreased	86	-0.33	1.20	-2.68	-	2.03	NS	age (2017)
	Remain low	111	-0.57	1.06	-2.45	-	1.71	NS	Change in BMI
									Change in smoking habit
Leukocyte	Remain high	85	0.11	1.21	-2.27	-	2.48	NS	Change in Buffer capacity
	Increased	83	0.10	1.22	-2.30	-	2.50	NS	Sex (woman/man)
	Decreased	95	0.56	1.14	-1.69	-	2.80	NS	age (2017)
	Remain low	345	-0.06	0.60	-1.14	-	1.11	NS	Change in BMI
									Change in smoking habit
Occult Blood	Remain high	214	0.49	0.76	-1.00	-	1.98	NS	Change in occult blood
	Increased	106	-0.84	1.08	-2.96	-	1.28	NS	Sex (woman/man)
	Decreased	68	-0.51	1.35	-3.16	-	2.14	NS	age (2017)
	Remain low	220	0.30	0.75	-1.17	-	1.78	NS	Change in BMI
									Change in smoking habit
Protein	Remain high	287	-0.36	0.65	-1.64	-	0.93	NS	Change in protein
	Increased	60	0.58	1.43	-2.23	-	3.40	NS	Sex (woman/man)
	Decreased	77	2.58	1.26	0.10	-	5.07	NS	age (2017)
	Remain low	184	-0.46	0.82	-2.06	-	1.15	NS	Change in BMI
									Change in smoking habit
Leukocyte	Remain high	228	0.00	0.74	-1.45	-	1.44	NS	Change in leukocyte
	Increased	99	-0.45	1.12	-2.65	-	1.74	NS	Sex (woman/man)
	Decreased	99	0.90	1.12	-1.30	-	3.10	NS	age (2017)
	Remain low	182	0.03	0.83	-1.59	-	1.65	NS	Change in BMI
									Change in smoking habit
Ammonia	Remain high	416	-0.32	0.54	-1.39	-	0.75	NS	Change in ammonia
	Increased	65	3.37	1.37	0.67	-	6.07	NS	Sex (woman/man)
	Decreased	65	-0.48	1.37	-3.18	-	2.22	NS	age (2017)
	Remain low	62	-0.11	1.41	-2.88	-	2.65	NS	Change in BMI
									Change in smoking habit

CI = confidence interval, HSD = honestly significant difference, NS = not significant, SE = standard error.

In addition, many investigators have suggested that a two-way relationship exists between DM and periodontal disease. Previously, it was reported that salivary protein concentration was higher in DM patients with HbA1c levels of >0.7% than in those with HbA1c levels of <0.7%. It was also stated that the increase in the salivary protein concentration was due to a reduction in salivary secretion and inflammatory oral conditions, including periodontitis. In a prospective Japanese cohort study conducted over three years, it was suggested that the progression of periodontal disease might be associated with blood pressure in the univariate analyses. These findings suggested that a causal relationship exists between higher salivary protein levels and increased blood pressure/hypertension. As stated above, the salivary protein level is a marker of periodontal disease.

In this study, the longitudinal analysis revealed significant correlations between the interyear change in systolic blood pressure and the interyear changes in the salivary protein level and WBC count, and between the interyear change in diastolic blood pressure and the interyear change in the salivary protein level. In the cross-sectional analysis, significant relationships were observed between the salivary levels of protein or occult blood and blood pressure in the univariate analyses. These findings suggested that a causal relationship exists between higher salivary protein levels and increased blood pressure/hypertension. It was also suggested that a two-way relationship exists between DM and periodontal disease. A few previous studies have investigated the associations among hypertension, blood pressure, and periodontal disease. In a prospective Japanese cohort study conducted over three years, it was suggested that the progression of periodontal disease might be associated with blood pressure. In another four-year longitudinal study involving Japanese employees, the worsening of hypertension was also reported to be correlated with the presence of periodontal pockets. On the other hand, it was reported that there was no association between periodontal measurements and hypertension in a cohort study of middle-aged health-professionals. Although the precise mechanism responsible for the association between hypertension and periodontal disease remains uncertain, increased levels of C-reactive protein,
A significant relationship was observed between salivary protein level and the serum triglyceride level in both the cross-sectional and longitudinal analyses. The buffer capacity of saliva was also lower in the subjects with higher levels of triglycerides.

The salivary protein level was found to be inversely correlated with the salivary pH levels. This finding is consistent with the literature, which suggests that saliva with a higher protein content has a lower pH.

Buffer capacity is an important parameter that reflects the buffering capacity of saliva. Increased buffer capacity is associated with reduced pH changes, which could be beneficial in maintaining oral health.

The correlation between salivary protein level and systolic blood pressure was also noted, indicating that a high protein level might be related to higher blood pressure.

Furthermore, the salivary protein level, which is affected by age, smoking habits, and medications, was found to be correlated with changes in systolic and diastolic blood pressure.

The results of this study suggested that the salivary protein level, the salivary occult blood level, and WBC count are important parameters that can be used to monitor inflammatory processes and metabolic conditions.

In conclusion, the measurement of salivary protein level and other markers can provide valuable information about the systemic health status, which is important for the early detection and management of various diseases.

Table 12

Parameter	Baseline	Change	Estimate	SE	P value
Protein	Decreased	98	0.03	0.03	0.03
Blood pressure	Decreased	79	0.03	0.03	0.03
Acidosis	Increased	124	0.02	0.02	0.02
Acidity	Increased	135	0.02	0.02	0.02
Carbohydrates	Increased	117	0.02	0.02	0.02

Note:
- Decreased indicates a decrease in the parameter from baseline.
- Increased indicates an increase in the parameter from baseline.
- NS indicates not significant.
- P value indicates the significance level of the change from baseline.
association between salivary and serum urea levels was reported in previous studies. A significant relationship between creatinine level and the pH or buffer capacity of saliva. Both salivary pH and buffer capacity were higher in the CKD patients. In one study, which was based on health check-up data for a large population, is the first to demonstrate the utility of saliva tests for screening individuals for MetS/MetS components as well as periodontal disease. However, it had some limitations. Another limitation was the cut-off values used for each test item in the SMT. In the SMT, the detection for salivary components. Another limitation was the standard error.

CI = confidence interval, HSD = honestly significant difference, NS = not significant, SE = standard error.

and serum lipid levels. These results indicate that associations exist between serum triglyceride levels and the salivary flow rate/ salivary pH.

In the present study, the cross-sectional analysis (multivariate analysis) revealed a significant relationship between the serum creatinine level and the pH or buffer capacity of saliva. Both salivary pH and salivary buffer capacity were higher in the subjects with higher serum creatinine levels/decreased renal function. Previous studies have assessed salivary flow, pH, and buffer capacity in chronic kidney disease (CKD) patients. In one study, the CKD patients exhibited hypoalimentation and increased salivary pH and buffer capacity. Our results were consistent with the latter study. In CKD patients, the blood tends to become acidic (due to metabolic acidosis) as renal function degrades, and metabolic acidosis is a common finding. Therefore, we speculated that the salivary pH might decrease as the serum creatinine level increases. However, our results showed the opposite, as was demonstrated in previous studies. A significant association between salivary and serum urea levels was reported to exist in pre-dialysis patients. The hydrolysis of nitrogen compounds by bacterial urease has been reported to result in the production of carbon dioxide and ammonium ions, leading to increased alkalizing potential. Impaired renal function might also affect salivary flow and salivary properties, which can result in saliva becoming alkaline.

The present study, which was based on health check-up data for a large population, is the first to demonstrate the utility of saliva tests for screening individuals for MetS/MetS components as well as periodontal disease. However, it had some limitations. For example, we used a commercially available saliva test kit. The test kit had a limited analytical ability and limited ranges of detection for salivary components. Another limitation was the cut-off values used for each test item in the SMT. In the SMT, the salivary WBC count and the salivary levels of occult blood, protein, and ammonia were classified into three grades. Further studies involving more sophisticated methods are required.

In conclusion, correlations between the results of saliva tests and the results of health check-ups for MetS were revealed in a large population study. A longitudinal study revealed significant correlations between salivary protein levels and serum HbA1c
levels or blood pressure. In addition, a significant correlation was detected between the buffer capacity of saliva and the serum triglyceride level. Salivary pH increased irreversibly in subjects detected between the buffer capacity of saliva and the serum levels or blood pressure. In addition, a significant correlation was detected between the buffer capacity of saliva and the serum triglyceride level. Salivary pH increased irreversibly in subjects detected between the buffer capacity of saliva and the serum levels or blood pressure. In addition, a significant correlation was detected between the buffer capacity of saliva and the serum levels or blood pressure.
[43] Dodds MW, Johnson DA, Yeh CK. Health benefits of saliva: a review. J Dent 2005;33:223–33.
[44] Dawes C, Edgar M, Dawes C, O’Mullane D. Factors influencing salivary flow rate and composition. Saliva and oral health 3rd edn. London: British Dental Association; 2004;32–49.
[45] Izumi M, Hida A, Takagi Y, et al. MR imaging of the salivary glands in sicca syndrome: comparison of lipid profiles and imaging in patients with hyperlipidemia and patients with Sjogren’s syndrome. AJR Am J Roentgenol 2000;175:829–34.
[46] Bayraktar G, Kurtulus I, Kazancioglu R, et al. Oral health and inflammation in patients with end-stage renal failure. Perit Dial Int 2009;29:472–9.
[47] Hahr AJ, Molitch ME. Management of diabetes mellitus in patients with chronic kidney disease. Clin Diabetes Endocrinol 2015;1:2.
[48] Marinonoki J, Bokor-Bratic M, Mitic I, et al. Oral mucosa and salivary findings in non-diabetic patients with chronic kidney disease. Arch Oral Biol 2019;102:203–11.
[49] Obry F, Belcourt AB, Frank RM, et al. Biochemical study of whole saliva from children with chronic renal failure. ASDC J Dent Child 1987;54:429–32.
[50] Patini R, Staderini E, Camodeca A, et al. Case reports in pediatric dentistry journals: a systematic review about their effect on impact factor and future investigations. Dent J (Basel) 2019;7:103.