PPARG rs3856806 C>T Polymorphism Increased the Risk of Colorectal Cancer: A Case-Control Study in Eastern Chinese Han Population

Jing Lin1,2†, Yu Chen1,2,3†, Wei-feng Tang4†, Chao Liu4, Sheng Zhang5, Zeng-qing Guo1,2,3, Gang Chen3,6* and Xiong-wei Zheng3,6*

1 Cancer Bio-immunotherapy Center, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, China, 2 Department of Medical Oncology, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, China, 3 Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, China, 4 Department of Cardiothoracic Surgery, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, China, 5 Department of General Surgery, Changzhou No. 3 People’s Hospital, Changzhou, China, 6 Department of Pathology, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, China

Purpose: Functional variants in the peroxisome proliferator-activated receptor gamma (PPARG) and PPARG co-activator 1 (PPARGC1) family (e.g., PPARGC1A and PPARGC1B) genes were predicted to confer susceptibility to colorectal cancer (CRC). The aim of the present study was to explore the relationship between PPARG, PPARGC1A, PPARGC1B polymorphism and the risk of CRC.

Patients and methods: We conducted a case-control study with 1,003 CRC cases and 1,303 controls. We selected the PPARG rs3856806 C>T, PPARGC1A rs2970847 C>T, rs8192678 C>T, rs3736265 G>A and PPARGC1B rs7732671 G>C and rs17572019 G>A SNPs to assess the relationship between PPARG, PPARGC1A, PPARGC1B polymorphism and the risk of CRC.

Results: We found that the PPARG rs3856806 C>T polymorphism increased the risk of CRC (TT vs. CC: adjusted OR, 1.59, 95% CI 1.08–2.35, P = 0.020; TT/CT vs. CC: adjusted OR, 1.26, 95% CI 1.06–1.49, P = 0.009 and TT vs. CC/CT: adjusted OR, 1.54, 95% CI 1.05–2.26, P = 0.028), even after a Bonferroni correction test. The stratified analysis revealed that the PPARG rs3856806 C>T polymorphism also increased the risk of CRC, especially in male, ≥61 years old, never smoking, never drinking, BMI ≥ 24 kg/m², colon cancer and rectum cancer subgroups.

Conclusion: Our findings highlight that the PPARG rs3856806 C>T polymorphism may increase the risk of CRC. In the future larger sample size case-control studies with a detailed functional assessment are needed to further determine the relationship of the PPARG rs3856806 C>T polymorphism with CRC risk.

Keywords: PPARG, PPARGC1A, PPARGC1B, polymorphism, colorectal cancer, risk
INTRODUCTION

Colorectal cancer (CRC) is one of the most common type of malignancies, accounting for 1.8 million cases in GLOBOCAN 2018 (1). The incidence of CRC is increasing in China, where it ranks as the fifth most common carcinoma in male and the fourth in female, with a total of 215,700 patients diagnosed in 2015 (2). Epidemiologic investigations have attributed most of CRC to some important environmental factors (3). The increase of the incidence of CRC is proposed to correlate with an unhealthy lifestyle, including drinking, smoking, low intake of dietary fiber, high intake of dietary fat, decreased consumption of vegetables, and fruits and being physically inactive (4–7). Accumulating evidence highlighted that besides these unhealthy lifestyles and environmental factors, some additional inherited susceptibility factors may be associated with the development of CRC. As CRC is associated with obesity and Waist-to-Hip Ratio (WHR) (8–10), the peroxisome proliferator-activated receptor gamma (PPARG), PPARG co-activator 1 (PPARGC1) family (e.g., PPARGC1A and PPARGC1B) may be strong candidate genes predisposing to CRC (11).

PPARG is located in 3p25. PPARG is also known as NR1C3 (nuclear receptor subfamily 1, group C, member 3) which shares some common conservative domains with other steroid receptors (e.g., estrogen, progesterone, retinoid, vitamin D and thyroid receptors). It was reported that PPARG is a regulator of adipocyte differentiation, energy homeostasis and obesity (12–14). PPARG decreases the inflammatory response of cells (15) and increases synthesis and release of peroxonase 1 (16). Wang et al. reported that PPARG gene might be one of the targets of miRNA-34a and a conceivable therapeutic targets for CRC (17): PPARGC1A and PPARGC1B, transcriptional co-activators of PPARG, may control transcription in adipogenesis, oxidative metabolism genes (18). Thus, PPARG, PPARGC1A, and PPARGC1B might be implicated in the development of cancer.

Pro12Ala and His499His (rs3856806 C>T) polymorphisms in the PPARG gene are two of the most common variants in the PPARG gene. Recently, a meta-analysis confirmed that the PPARG Pro12Ala polymorphism might decreased the risk of CRC (19). Several case-control studies focused on the potential role of PPARG variants in determining CRC susceptibility. The PPARG rs3856806 C>T is a common single-nucleotide polymorphism (SNP) in the coding region. Recently, a meta-analysis indicated that the PPARG rs3856806 C>T polymorphism may increase the susceptibility of overall cancer (20). In this pooled study, there were seven independent case-control studies with 1,720 cases and 3,458 controls focusing on the association of the PPARG rs3856806 C>T polymorphism with CRC risk (21–24). As well, a tendency to increased CRC susceptibility was noted. Because of the lack of sufficient sample sizes, the evidence may be limited. Additionally, (25) reported that the PPARGC1B rs7732671 G>C polymorphism may decrease the susceptibility of breast cancer. However, the association between PPARGC1A and PPARGC1B SNPs and the risk of CRC was unknown. The aim of this case-control study was to assess the association of PPARG, PPARGC1A, and PPARGC1B polymorphisms with CRC risk. We selected PPARG rs3856806 C>T, PPARGC1A rs2970847 C>T, rs8192678 C>T, rs3736265 G>A, and PPARGC1B rs7732671 G>C and rs17572019 G>A SNPs to determine the relationship between their variants and CRC risk in an Eastern Chinese Han population.

MATERIALS AND METHODS

Study Subjects

This cohort was in part previously studied (19, 26). The CRC cases were recruited from Fujian Medical University Union Hospital (Fuzhou city, China) and the Affiliated People’s Hospital of Jiangsu University (Zhenjiang city, China) between October 2014 and August 2017. The major inclusion criteria of CRC cases were: (1) sporadic CRC cases; (2) newly diagnosed CRC patients via pathology; and (3) Han population who living in Eastern China. And the exclusion criteria were: (1) hereditary non-polyposis CRC; (2) CRC cases who have been treated with chemoradiotherapy and (3) with another malignancy history. During the period, a total of 1,186 CRC patients were diagnosed in those local hospitals. Our study includes 1,003 (84.57%) patients, who agree to attend this study and provided blood samples for SNP analysis. The mean age of CRC patients was 61.10 ± 12.17 years. From 1,521 selected controls, 1,303 (85.67%) agreed to participate and donated a biological sample in this study. The controls included 1,303 healthy volunteers who participated in a routine examination in these hospitals, with a mean age of 61.40 ± 9.61 years. For selecting controls, the inclusion criteria were: (1) without a carcinoma history subjects; (2) similar age matched to CRC group; and (3) Han population who is a resident of Eastern China. Additionally, subjects who had a cancer history were excluded. The controls were matched with CRC patients by age and sex. The information on risk factor was obtained from the CRC cases and controls during a medical interview. And weight and height were measured. The body mass index (BMI) was calculated as weight/height^2 (kg/m^2) and BMI ≥ 24 kg/m^2 was considered as overweight and obesity for Chinese (27, 28). All participants enrolled in the present study signed the informed consent and were of Chinese origin. The study protocol was approved by the Ethics Committee of Fujian Medical University and Jiangsu University.

DNA Extraction and Genotyping

Two milliliters of Ethylenediamine tetra acetic acid (EDTA)-anticoagulated blood was collected from each participant. Blood samples were stored in a −80° C freezer. Using a Promega DNA Blood Mini Kit (Promega, Madison, USA), genomic DNA was isolated from lymphocytes. We placed the cryopreserved specimen at room temperature for an hour. After red blood cell removal, nuclear releasing and protein precipitation, we obtained genomic DNA. We add 300 µl of DNA solution (pH 8.0) and placed the sample in a refrigerator at 4°C for 1–2 weeks. A NanoDrop ND-1000 micro spectrophotometer was used to determine DNA concentration and purity. As described in previous studies, the genotypes of the PPARG rs3856806 C>T, PPARGC1A rs2970847 C>T, rs8192678 C>T, rs3736265 G>A, and PPARGC1B rs7732671 G>C for the examined SNPs were determined by PCR-SSCP.
G>C and rs17572019 G>A SNPs was determined by a custom-design 48-Plex SNPscan Kit (Genesky Biotechnologies Inc., Shanghai, China) (29, 30). This genotyping method was designed as a multiplex fluorescence PCR (31). Ninety-two DNA samples (4%) were randomly selected and tested by another technician for quality control. The genotypes of these SNPs were not changed.

Statistical Analysis

We used an online Chi-square software (http://ihg.gsfc.de/cgi-bin/hw/hwa1.pl) to test deviation from the Hardy-Weinberg equilibrium (HWE) by using Pearson’s goodness-of-fit chi-square. The genotype frequencies of the PPARG rs3856806 C>T, PPARGC1A rs2970847 C>T, rs8192678 C>T, rs3736265 G>A, and PPARGC1B rs7732671 G>C and rs17572019 G>A variants among CRC cases were compared to those of controls using a χ² test or Fisher’s exact test. Multivariate logistic regression analysis was harnessed to obtain crude and adjusted odds ratios (ORs) with their 95% confidence intervals (CIs) to predict the relationship of the PPARG rs3856806 C>T, PPARGC1A rs2970847 C>T, rs8192678 C>T, rs3736265 G>A, and PPARGC1B rs7732671 G>C and rs17572019 G>A polymorphisms with susceptibility to CRC. Dominant, recessive, heterozygote and homozygote models were used to evaluate the association of these SNPs with CRC risk. The χ² test or Fisher’s exact test was first applied to compare the distribution of age, sex, alcohol consumption, smoking status, and BMI between CRC patients and controls. A Fisher’s exact test was first applied to compare the distribution of age, sex, alcohol consumption, smoking status, and BMI between CRC patients and controls. A Bonferroni tailed) was defined as a significant association. All data were analyzed by SAS software for Windows (9.4 version, SAS Institute, Cary, USA). In this case-control study, a Bonferroni correction test was applied for multiple testing (32, 33). An internal validation through bootstrap method was applied to PPARG rs3856806 C>T. We used 0.623 bootstrap method to resample 1,003 cases from the CRC patient group and 1,303 cases from the control group to validate our results.

RESULTS

Study Characteristics

Selected demographic variables and risk factors in the enrolled population and the correlation with CRC are summarized in Table 1. There was no significant difference between CRC patients and controls regarding sex (P = 0.867), age (61.10 ± 12.17 years for cases and 61.40 ± 9.61 years for controls, P = 0.496), suggesting that these variables were well-matched. Alcohol consumption, BMI and smoking status were statistically different (P < 0.001, P < 0.001, and P = 0.002, respectively) between two groups. The primary information of PPARG, PPARGC1A, and PPARGC1B SNPs is displayed in Table 2. The genotype distributions of PPARG rs3856806 C>T, PPARGC1A rs2970847 C>T, rs8192678 C>T, rs3736265 G>A, and PPARGC1B rs7732671 G>C and rs17572019 G>A are in accordance with HWE in controls (P = 0.143, 0.925, 0.800, 0.059, 0.970, and 0.372, respectively).

Association of PPARG rs3856806 C>T, PPARGC1A rs2970847 C>T, rs8192678 C>T, rs3736265 G>A, and PPARGC1B rs7732671 G>C and rs17572019 G>A Polymorphisms With CRC Risk

Table 3 summarizes the genotype distributions of PPARG rs3856806 C>T, PPARGC1A rs2970847 C>T, rs8192678 C>T, rs3736265 G>A, and PPARGC1B rs7732671 G>C and rs17572019 G>A SNPs in CRC cases and controls. The genotype frequencies of PPARG rs3856806 C>T were 55.51% (CC), 38.16% (CT), and 6.33% (TT) in CRC cases and 60.69% (CC), 35.31% (CT), and 4.00% (TT) in controls. When the frequency of PPARG rs3856806 CC genotype was used as a reference, individuals carrying the PPARG rs3856806 TT genotype had an increased risk to CRC (crude OR = 1.67, 95% CI 1.13–2.45 for TT vs. CC, P = 0.009). When compared with the frequency of PPARG rs3856806 CC genotype, individuals carrying the PPARG rs3856806 TT/CT genotype also had an increased the risk of CRC (crude OR = 1.24, 95% CI 1.05–1.46 for TT/CT vs. CC, P = 0.009). When compared with the frequency of PPARG rs3856806 TT genotype, an increased risk of CRC (crude OR = 1.62, 95% CI 1.11–2.37 for TT vs. CC/CT, P = 0.012). After adjustments for age, sex, smoking, BMI, and drinking, the observed increased susceptibility of CRC was not essentially altered (TT vs. CC: adjusted OR,
1.59, 95% CI 1.08–2.35, \(P = 0.020 \); TT/CT vs. CC; adjusted OR, 1.26; 95% CI 95% CI 1.06–1.49; \(P = 0.009 \) and TT vs. CC/CT; adjusted OR, 1.54; 95% CI 95% CI 1.05–2.26; \(P = 0.028 \), Table 3.

Table S1 shows the internal validation results through the bootstrap method. When compared with the \(\text{PPARG} \) rs3856806 CC genotype, the \(\text{PPARG} \) rs3856806 TT, and TT/CT genotypes also indicate an increased CRC risk (crude OR = 1.56, 95% CI 1.09–2.23 for TT vs. CC, \(P = 0.015 \); crude OR = 1.20, 95% CI 1.02–1.42 for TT/CT vs. CC, \(P = 0.033 \)). When compared with the \(\text{PPARG} \) rs3856806 CC/CT genotype, \(\text{PPARG} \) rs3856806 TT genotype also suggest an increased CRC risk (crude OR = 1.53, 95% CI 1.08–2.18 for TT vs. CC/CT, \(P = 0.017 \)). After being adjusted by age, sex, smoking BMI, and drinking, the increased susceptibility of CRC was not essentially altered.

The genotype frequencies of \(\text{PPARGC1A} \) rs8192678 C>T were 35.10% (CC), 46.33% (CT), and 18.57% (TT) in CRC patients and 31.38% (CC), 49.62% (CT), and 19.00% (TT) in healthy controls. When the frequency of the \(\text{PPARGC1A} \) rs8192678 CC genotype was used as a reference, individuals carrying the \(\text{PPARGC1A} \) rs8192678 CT genotype had a decreased susceptibility to CRC (crude OR = 0.79, 95% CI 0.66–0.95 for CT vs. CC, \(P = 0.012 \)). After adjustments for age, sex, smoking, BMI and drinking, this association was also found (CT vs. CC; adjusted OR, 0.82; 95% CI 95% CI 0.68–0.989; \(P = 0.033 \)), Table 3.

We found no significant difference in the genotype distribution of the \(\text{PPARGC1A} \) rs3736265 G>A, rs2970847 C>T and \(\text{PPARGC1B} \) rs7732671 G>C, rs17572019 G>A polymorphisms among CRC cases and controls, Table 3. The Bonferroni correction test was applied to determine whether the association of the \(\text{PPARG} \) rs3856806 C>T and rs8192678 C>T polymorphisms with the risk of CRC was reliable. We defined the statistical significance level at 0.0125 (0.05/4 genetic models). We found the genotype distribution of that the \(\text{PPARG} \) rs3856806 C>T polymorphism was still significantly different between CRC patients and controls (TT/CT vs. CC: adjusted OR, 1.26; 95% CI 95% CI 1.06–1.49; \(P = 0.009 \)).

Association of \(\text{PPARG} \) rs3856806 C>T Polymorphism With CRC Risk in a Stratified Analysis

To further assess the association of the \(\text{PPARG} \) rs3856806 C>T polymorphism with CRC risk, we conducted a stratified analysis by BMI, gender, age, tobacco using and alcohol consumption. Table 4 presents the different genotype frequencies of the \(\text{PPARG} \) rs3856806 C>T polymorphism in a subgroup analysis. After an adjustment by logistic regression analysis with gender, age, BMI, tobacco using and drinking status, we found that the \(\text{PPARG} \) rs3856806 C>T polymorphism significantly increased the risk of CRC in several subgroups: 1) male subgroup, TT vs. CC, adjusted OR = 1.88, 95% CI 1.14–3.10, \(P = 0.014 \) and TT vs. CT/CC, adjusted OR = 1.84, 95% CI 1.12–3.02, \(P = 0.016; 2) \geq 61 years subgroup, CT/TT vs. CC, adjusted OR = 1.36, 95% CI 1.08–1.71, \(P = 0.010; 3) \) never smoking subgroup, CT/TT vs. CC, adjusted OR = 1.27, 95% CI 1.05–1.55, \(P = 0.015; 4) \) never drinking subgroup, CT/TT vs. CC, adjusted OR = 2.65, 95% CI 1.36–5.17, \(P = 0.004; 5) \) BMI \(\geq 24 \text{kg/m}^2 \) subgroup, TT vs. CC: adjusted OR = 2.45, 95% CI 1.50–3.95, \(P = 0.001; 6) \) smoking subgroup, CT/TT vs. CC, adjusted OR = 1.38, 95% CI 1.05–1.81, \(P = 0.022, \) and TT vs. CT/CC, adjusted OR = 2.51, 95% CI 1.03–4.86, \(P = 0.006 \) (Table 4).
TABLE 3 | Logistic regression analyses of associations between PPARG rs3856806 C>T, PPARGC1A rs2970847 C>T, rs8192678 C>T, rs3736265 G>A, and PPARGC1B rs7732671 G>C and rs17572019 G>A polymorphisms and risk of CRC.

Genotype	Cases (n = 1,003)	Controls (n = 1,303)	Crude OR (95%CI)	P	Adjusted OR a (95%CI)	P	
PPARG rs3856806 C>T							
CC	544	789	60.69	1.00	1.00	1.00	
CT	374	459	35.31	1.14(0.96–1.35)	0.145	1.16(0.97–1.39)	0.095
TT	62	52	4.00	1.67(1.13–2.45)	0.009	1.59(1.08–2.35)	0.020
CT+TT	436	511	39.31	1.24(1.05–1.46)	0.013	1.26(1.06–1.49)	0.009
CC+CT	918	1,248	96.00	1.00	1.00	1.00	
TT	62	52	4.00	1.62(1.11–2.37)	0.012	1.54(1.05–2.26)	0.028
T allele	498	563	21.65				
PPARGC1A rs2970847 C>T							
CC	593	788	60.62	1.00	1.00	1.00	
CT	344	449	34.54	0.98(0.83–1.17)	0.855	0.97(0.81–1.16)	0.743
TT	43	63	4.85	0.88(0.59–1.31)	0.520	0.92(0.61–1.38)	0.673
CT+TT	387	512	39.38	1.00(0.85–1.19)	0.959	1.00(0.84–1.19)	0.985
CC+CT	937	1,237	95.15	1.00	1.00	1.00	
TT	43	63	4.85	0.90(0.61–1.34)	0.610	0.95(0.63–1.42)	0.787
T allele	430	575	22.12				
PPARGC1A rs3736265 G>A							
GG	685	936	72.11	1.00	1.00	1.00	
GA	260	322	24.81	1.07(0.88–1.29)	0.493	1.06(0.87–1.29)	0.550
AA	32	40	3.08	1.06(0.66–1.70)	0.813	1.04(0.64–1.68)	0.885
GA + AA	292	362	27.89	1.10(0.92–1.32)	0.297	1.09(0.91–1.31)	0.357
GG + GA	945	1,258	96.92	1.00	1.00	1.00	
AA	32	40	3.08	1.07(0.66–1.71)	0.793	1.05(0.65–1.69)	0.854
A allele	324	402	15.49				
PPARGC1A rs8192678 C>T							
CC	344	408	31.38	1.00	1.00	1.00	
CT	454	645	49.62	0.79(0.66–0.95)	0.012	0.82(0.68–0.98)	0.033
TT	182	247	19.00	0.83(0.65–1.05)	0.113	0.85(0.66–1.08)	0.171
CT+TT	636	892	68.62	0.85(0.71–1.01)	0.062	0.87(0.73–1.05)	0.139
CC+CT	798	1,053	81.00	1.00	1.00	1.00	
TT	182	247	19.00	0.97(0.79–1.20)	0.796	0.98(0.79–1.21)	0.832
T allele	818	1,139	43.81				
PPARGC1B rs7732671 G>C							
GG	863	1,145	88.08	1.00	1.00	1.00	
GC	113	150	11.54	0.98(0.79–1.27)	0.855	0.99(0.76–1.29)	0.924
CC	4	5	0.38	1.04(0.28–3.87)	0.957	1.03(0.27–3.88)	0.967
GC+CC	117	155	11.92	1.00(0.78–1.29)	0.991	1.01(0.78–1.31)	0.927
GG + GC	976	1,295	99.62	1.00	1.00	1.00	
CC	4	5	0.38	1.06(0.28–3.96)	0.929	1.05(0.28–3.96)	0.946
C allele	121	160	6.15				
PPARGC1B rs17572019 G>A							
GG	862	1,144	88.00	1.00	1.00	1.00	
GA	115	149	11.46	1.00(0.77–1.30)	0.998	1.02(0.79–1.33)	0.877
AA	3	7	0.54	0.56(0.14–2.15)	0.395	0.47(0.12–1.84)	0.276
GA + AA	118	156	12.00	1.00(0.78–1.30)	0.976	1.02(0.78–1.32)	0.900
GG + GA	977	1,293	99.46	1.00	1.00	1.00	
AA	3	7	0.54	0.57(0.15–2.20)	0.412	0.48(0.12–1.86)	0.286
A allele	121	163	6.27				

aAdjusted for age, sex, smoking status, alcohol use and BMI status. Bold values are statistically significant (P < 0.05).
TABLE 4 | Stratified analyses between PPARG rs3856806 C>T polymorphism and CRC risk by sex, age, BMI, smoking status, and alcohol consumption.

Variable	PPARG rs3856806 C>T (case/control)	Adjusted OR (95% CI); P						
	CC	CT	TT	CC	CT	TT	CT/TT	TT vs. (CT/CC)
SEX								
Male	188/382	84/183	15/22	1.00	1.13(0.90–1.41); P: 0.296	1.88(1.14–3.10); P: 0.014	1.25(1.01–1.56); P: 0.042	1.84(1.12–3.02); P: 0.016
Female	146/288	79/135	9/19	1.00	1.23(0.92–1.64); P: 0.167	1.25(0.66–2.37); P: 0.487	1.26(0.96–1.67); P: 0.101	1.18(0.63–2.21); P: 0.603
AGE								
<61	155/309	71/152	12/14	1.00	1.06(0.81–1.38); P: 0.692	1.77(0.98–3.21); P: 0.060	1.15(0.89–1.49); P: 0.285	1.76(0.98–3.16); P: 0.060
≥61	179/361	92/166	12/27	1.00	1.27(1.00–1.61); P: 0.053	1.49(0.88–2.50); P: 0.135	1.36 (1.08–1.71); P: 0.010	1.40(0.84–2.33); P: 0.202
SMOKING STATUS								
Never	201/541	103/252	13/34	1.00	1.20(0.98–1.47); P: 0.078	1.48(0.95–2.30); P: 0.082	1.27(1.05–1.55); P: 0.015	1.41(0.91–2.17); P: 0.123
Ever	133/129	60/66	11/7	1.00	1.03(0.71–1.48); P: 0.892	2.09(0.87–5.05); P: 0.100	1.17(0.82–1.67); P: 0.391	2.13(0.89–5.09); P: 0.088
ALCOHOL CONSUMPTION								
Never	283/823	139/287	22/38	1.00	1.20(0.99–1.45); P: 0.067	1.48(0.97–2.26); P: 0.072	1.27(1.06–1.53); P: 0.011	1.41(0.93–2.15); P: 0.108
Ever	51/47	24/31	2/3	1.00	1.01(0.62–1.65); P: 0.969	2.59(0.89–7.54); P: 0.082	1.20(0.75–1.92); P: 0.445	2.62(0.91–7.52); P: 0.073
BMI (kg/m²)								
<24	210/353	107/171	20/22	1.00	1.13(0.90–1.42); P: 0.296	1.26(0.78–2.03); P: 0.343	1.18(0.95–1.47); P: 0.131	1.23(0.77–1.96); P: 0.391
≥24	124/317	56/147	4/19	1.00	1.21(0.92–1.61); P: 0.177	2.65(1.36–5.17); P: 0.004	1.39 (1.05–1.81); P: 0.022	2.51(1.03–4.86); P: 0.006

Bold values are statistically significant (P < 0.05).

For PPARG rs3856806 C>T, the genotyping was successful in 980 (97.71%) CRC cases, and 1300 (99.77%) controls.

Adjusted for multiple comparisons in a logistic regression model (age stratified analysis; sex, BMI, smoking status and alcohol consumption adjusted; sex stratified analysis: age, BMI, smoking status and alcohol consumption adjusted; BMI stratified analysis: age, sex, smoking status and alcohol consumption adjusted; smoking stratified analysis: age, sex, BMI and alcohol consumption adjusted and drinking stratified analysis: age, sex, BMI and smoking status adjusted).

Association of PPARG rs3856806 C>T Polymorphism With CRC in a Stratification Group by Site of Tumor

To determine whether the association between the PPARG rs3856806 C>T polymorphism and CRC risk was modified by the site of CRC, we conducted stratified analyses. The results of the stratified analyses suggested this SNP increased the risk of colon cancer (CT vs. CC: adjusted OR = 1.27, 95% CI 1.01–1.60, P = 0.044 and TT/CT vs. CC: adjusted OR = 1.34, 95% CI 1.07–1.68, P = 0.011) and rectum cancer (TT vs. CC: adjusted OR = 1.58, 95% CI 1.01–2.49, P = 0.045 and TT vs. CC/CT: adjusted OR = 1.58, 95% CI 1.01–2.46, P = 0.043), Table 5.

DISCUSSION

Accumulating evidence has highlighted that CRC is associated with obesity and Waist-to-Hip Ratio (WHR) (8–10). Some important metabolism-related genes may be strong candidates for predisposing to CRC (11). PPARG may be implicated in metabolism, inflammatory response, adipose cell differentiation, and cellular apoptosis (34–37). The PPARG family (e.g., PPARGC1A, PPARGC1B) also regulate fatty acid oxidation, gluconeogenesis and adaptive thermogenesis (38). These proteins may be involved in the development of obesity. Several studies have focused on the association between the PPARG rs3856806 C>T polymorphism and the risk of CRC (21–24). However, the results were inconsistent. In addition, the potential relationships of the PPARGC1A, PPARGC1B SNPs with the development of CRC are unknown. To shed some light on this issue, we carried out a case-control study in Eastern Chinese Han population. Our findings suggested that the PPARG rs3856806 C>T polymorphism is associated with an increased risk of CRC, especially in male, ≥ 61 years old, never smoking, never drinking, BMI ≥ 24 kg/m², colon cancer, and rectum cancer subgroups.

PPARG is one of the three subtypes of peroxisome proliferator-activated receptors (PPARs). The PPARG gene encodes a member of the PPAR subfamily of nuclear receptors, which form heterodimers with retinoid X receptors (RXRs) and then influence the transcription of many target genes. A previous...
A common functional polymorphism (His449His; rs3856806) in PPARG is a C → T coding-synonymous substitution in codon 449 of exon 6. Grygiel-Górniak and colleagues reported that higher BMI and visceral fat deposition were promoted by the presence of the PPARG rs3856806 T allele (40). Previous studies suggested a potential correlation of this SNP with atherosclerosis, type 2 diabetes and cancer (20, 41–44). Although rs3856806 is a coding-synonymous SNP, it is proposed that a C → T substitution could alter the expression of PPARG protein by altering mRNA processing or translation. Doecke et al. reported that the PPARG rs3856806 CT genotype may increase the susceptibility of adenocarcinoma of the esophagus in an obesity subgroup (BMI ≥ 30 kg/m²) (45). The PPARG rs3856806 C>T polymorphism was also found to be significantly over-represented in sporadic glioblastoma multiforme in American populations (46). Jiang et al. reported that the PPARG rs3856806 C>T polymorphism was associated with an increased risk of CRC in India (21). However, other case-control studies suggested that PPARG rs3856806 C>T might not influence the development of CRC (22–24). Thus, the results were inconsistent and ambiguous. Considering a common SNP having low penetrance susceptibility to cancer, we performed a case-control study with large sample sizes to obtain a more precise assessment. As demonstrated in the results, we found that the PPARG rs3856806 C>T polymorphism was associated with an increased risk of CRC, even after a Bonferroni correction test. Thus, our findings were reliable. Recently, a meta-analysis reported that the PPARG rs3856806 C>T polymorphism increased the risk of overall cancer (20). Our findings were very similar to this pooled-analysis. Additionally, it is worth noting that we found the that the PPARG rs3856806 C>T polymorphism was associated with an increased risk of CRC in the BMI ≥ 24 kg/m² subgroup. It suggested that this SNP might be implicated in the development of obesity and overweight, and subsequently lead to an increased risk to CRC.

There are, however, several limitations in this case-control study. First, the CRC patients and non-cancer controls were from two local hospitals. The potential selection bias might have occurred. Second, a replicated study focusing on the association of these SNPs with CRC risk was not carried out. Third, although we took some risk factors into consideration such as BMI, gender, age, drinking, and smoking status, many other environmental and lifestyle factors, possibly related to the development of CRC, were not collected in this study. Fourth, due to the moderate sample size in some subgroups, the power might be limited. Fifth, a functional study for the PPARG rs3856806 C>T polymorphism has not been conducted. Finally, in the future, it is necessary to carry out a functional study to identify the mechanism of the PPARG rs3856806 C>T polymorphism.

In conclusion, our findings suggest that the PPARG rs3856806 C>T polymorphism may increase the risk of CRC. In the future, larger sample size case-control studies with a detailed functional assessment are needed to further evaluate the relationship of PPARG rs3856806 C>T polymorphism with CRC risk.

Table 5

Genotype	Colon cancer cases (n = 431)	Rectum cancer cases (n = 572)
	Crude OR (95%CI)	Adjusted OR (95%CI)
	P	Adjusted OR (95%CI)
	P	P
	n	Crude OR (95%CI)
	%	Adjusted OR (95%CI)
CC		
CT		
TT		
CT+TT		
CT+CC		
TT		
T allele		

Adjusted for age, sex, smoking status, alcohol use and BMI status.

Genotype	Crude OR (95%CI)	Adjusted OR (95%CI)

Bold values are statistically significant (P < 0.05).
AUTHOR CONTRIBUTIONS
JL, YC, GC, and XZ conceived and designed the experiments. YC, WT, CL, and GC performed the experiments. JL, YC, SZ, and ZG analyzed the data. JL, YC, and WT wrote the paper.

FUNDING
The project was supported by the National Natural Science Foundation of China (Grant No. U1705282), the Ministry of Health P.R. China (Grant No. WKJ2016-2-05), Natural Science Foundation of Fujian Province (Grant No. 2016J01513, 2017J01259, 2018J01267), Fujian provincial health and family planning research talent training program (Grant No. 2015-CX-7, 2018-ZQN-13, 2016-1-11, 2018-1-13), Joint Funds for the innovation of science and Technology, Fujian province (Grant No. 2017Y9077), and the National Clinical Key Specialty Construction Program. Science and Technology Program of Fujian Province, China, No. 2018Y2003.

ACKNOWLEDGMENTS
We appreciate all subjects who participated in this study. We wish to thank Dr. Yan Liu (Genesky Biotechnologies Inc., Shanghai, China) for technical support.

SUPPLEMENTARY MATERIAL
The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fonc.2019.00063/full#supplementary-material

REFERENCES
1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. (2018) 68:394–424. doi: 10.3322/caac.21492
2. Chen W, Zheng R, Baade PD, Zhang S, Zeng H, Bray F, et al. Cancer statistics in China. 2015. CA Cancer J Clin. (2016) 66:115–32. doi: 10.3322/caac.21338
3. Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics 2010. CA Cancer J Clin. (2011) 61:69–90. doi: 10.3322/caac.20107
4. Weitz J, Koch M, Debus J, Hohler T, Galle PR, Buchler MW. Colorectal cancer. Endocr Rev. (2003) 24:78–90. doi: 10.1210/er.2002-0012
5. Dong Y, Zhou J, Zhu Y, Luo L, He T, Hu H, et al. Abdominal obesity and PPARG Polymorphism in Colorectal Cancer

Frontiers in Oncology | www.frontiersin.org 8 February 2019 | Volume 9 | Article 63
colorectal cancer in Chinese Han population. Oncotarget (2017) 8:63518–27. doi: 10.18632/oncotarget.18845

27. Zhai Y, Zhao WH, Chen CM. [Verification on the cut-offs of waist circumstance for defining central obesity in Chinese elderly and tall adults]. Zhonghua Liu Xing Bing Xue Za Zhi. (2010) 31:621–5.

28. Zhang X, Zhang S, Li Y, Detrano RC, Chen K, Li X, et al. Association of obesity and atrial fibrillation among middle-aged and elderly Chinese. Int J Obes. (2009) 33:1318–25. doi: 10.1038/ijo.2009.157

29. Chen X, Li S, Yang Y, Yang X, Liu Y, Liu Y, et al. Genome-wide association study validation identifies novel loci for atherosclerotic cardiovascular disease. J Thromb Haemost. (2012) 10:1508–14. doi: 10.1111/j.1538-7836.2012.04815.x

30. Chen Y, Tang W, Liu C, Liu J, Wang Y, Zhang S, et al. miRNA-146a rs2910164 C>G polymorphism increased the risk of esophagogastic junction adenocarcinoma: a case-control study involving 2,740 participants. Cancer Manage Res. (2018) 10:1657–64. doi: 10.2147/CMAR.S165921

31. Yin J, Wang X, Wei J, Wang L, Shi Y, Zheng L, et al. Interleukin 12B rs3212227 T > G polymorphism was associated with an increased risk of gastric cardiac adenocarcinoma in a Chinese population. Dis Esophagus (2015) 28:291–8. doi: 10.1111/dote.12189

32. Bland JM, Altman DG. Multiple significance tests: the Bonferroni method. BMJ (1995) 310:170. doi: 10.1136/bmj.310.6973.170

33. Lesack K, Naugler C. An open-source software program for performing Bonferroni and related corrections for multiple comparisons. J Pathol Inform. (2011) 2:52. doi: 10.4103/2153-3539.91130

34. Elrod HA, Sun SY. PPARgamma and Apoptosis in Cancer. PPAR Res. (2008) 2008:704165. doi: 10.1155/2008/704165

35. Girnun GD, Smith WM, Drori S, Sarraf P, Mueller E, Eng C, et al. APC-inducible coactivator of nuclear receptors linked to adaptive thermogenesis. Cell (2002) 99:1771–6. doi: 10.1073/pnas.152114099

36. Sarraf P, Mueller E, Jones D, King FJ, DeAngelo DJ, Partridge JB, et al. Differentiation and reversal of malignant changes in colon cancer through PPARgamma. Nat Med. (1998) 4:1046–52.

37. Tontonoz P, Spiegelman BM. Fat and beyond: the diverse biology of PPARgamma. Annu Rev Biochem. (2008) 77:289–312. doi: 10.1146/annurev.biochem.77.061307.091829

38. Puigserver P, Wu Z, Park CW, Graves R, Wright M, Spiegelman BM. A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis. Cell (1998) 92:829–39. doi: 10.1016/S0092-8674(00)81410-5

39. Lauby-Secretan B, Scoccianti C, Loomis D, Grosse Y, Bianchini F, Straif K, et al. Body fatness and cancer—viewpoint of the IARC working group. N Engl J Med. (2016) 375:794–8. doi: 10.1056/NEJMr1606602

40. Grygiel-Gorniak B, Kaczmarek E, Mosor M, Przylawski J, Bogacz A. Genetic background, adipocytokines, and metabolic disorders in postmenopausal overweight and obese women. Biochem Genet. (2016) 54:636–52. doi: 10.1007/s10528-016-9743-z

41. Lv X, Zhang L, Sun J, Cai Z, Gu Q, Zhang R, et al. Interaction between peroxisome proliferator-activated receptor gamma polymorphism and obesity on type 2 diabetes in a Chinese Han population. Diabetol Metabol Syndrome (2017) 9:7. doi: 10.1186/s13098-017-0205-5

42. Lu Y, Ye X, Cao Y, Li Q, Yu X, Cheng J, et al. Genetic variants in peroxisome proliferator-activated receptor-gamma and retinoid X receptor-alpha gene and type 2 diabetes risk: a case-control study of a Chinese Han population. Diabetes Technol Therap.. (2011) 13:157–64. doi: 10.1089/dia.2010.01122

43. Du J, Shi H, Lu Y, Du W, Cao Y, Li Q, et al. Tagging single nucleotide polymorphisms in the PPAR-gamma and RXR-alpha gene and type 2 diabetes risk: a case-control study of a Chinese Han population. J Biomed Res.. (2011) 25:33–41. doi: 10.1016/S1674-8301(11)60004-3

44. Wang P, Wang Q, Yin Y, Yang Z, Li W, Liang D, et al. Association between peroxisome proliferator-activated receptor gamma gene polymorphisms and atherosclerotic diseases: a meta-analysis of case-control studies. J Atheroscler Thromb. (2015) 22:912–25. doi: 10.5551/ja.126138

45. Doecke JD, Zhao ZZ, Stark MS, Green AC, Hayward NK, Montgomery GW, et al. Single nucleotide polymorphisms in obesity-related genes and the risk of esophageal cancers. Cancer Epidemiol Biomarkers Prev. (2008) 17:1007–12. doi: 10.1158/1055-9965.EPI-08-0023

46. Zhou XP, Smith WM, Gimm O, Mueller E, Gao X, Sarraf P, et al. Over-representation of PPARgamma sequence variants in sporadic cases of glioblastoma multiforme: preliminary evidence for common low penetrance modifiers for brain tumour risk in the general population. J Med Genet. (2000) 37:410–4. doi: 10.1136/jmg.37.6.410

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2019 Lin, Chen, Tang, Liu, Zhang, Gao, Chen and Zheng. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.