Evidence for Horizontal Transmission of Secondary Endosymbionts in the *Bemisia tabaci* Cryptic Species Complex

Muhammad Z. Ahmed1,2, Paul J. De Barro3, Shun-Xiang Ren1, Jaco M. Greeff2, Bao-Li Qiu1*

1 Department of Entomology, South China Agricultural University, Guangzhou, People’s Republic of China, 2 Department of Genetics, University of Pretoria, Pretoria, South Africa, 3 CSIRO Ecosystem Sciences, Brisbane, Queensland, Australia

Abstract

Bemisia tabaci (Hemiptera: Aleyrodidae) is a globally distributed pest composed of at least 34 morphologically indistinguishable cryptic species. At least seven species of endosymbiont have been found infecting some or all members of the complex. The origin(s) of the associations between specific endosymbionts and their whitefly hosts is unknown. Infection is normally vertical, but horizontal transmission does occur and is one way for new infections to be introduced into individuals. The relationships between the different members of the cryptic species complex and the endosymbionts have not been well explored. In this study, the phylogenies of different cryptic species of the host with those of their endosymbionts were compared. Of particular interest was whether there was evidence for both coevolution and horizontal transmission. Congruence was observed for the primary endosymbiont, *Portiera aleyrodidarum*, and partial incongruence in the case of two secondary endosymbionts, *Arsenophonus* and *Cardinium* and incongruence for a third, *Wolbachia*. The patterns observed for the primary endosymbiont supported cospeciation with the host while the patterns for the secondary endosymbionts, and especially *Wolbachia*, showed evidence of host shifts and extinctions through horizontal transmission rather than cospeciation. Of particular note is the observation of several very recent host shift events in China between exotic invader and indigenous members of the complex. These shifts were from indigenous members of the complex to the invader as well as from the invader to indigenous relatives.

Citation: Ahmed MZ, De Barro PJ, Ren S-X, Greeff JM, Qiu B-L. (2013) Evidence for Horizontal Transmission of Secondary Endosymbionts in the Bemisia tabaci Cryptic Species Complex. PLoS ONE 8(1): e53084. doi:10.1371/journal.pone.0053084

Editor: Hauke Smit, Wageningen University, The Netherlands

Received May 15, 2012; **Accepted** November 27, 2012; **Published** January 7, 2013

Copyright: © 2013 Ahmed et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This research was funded by the Program for New Century Excellent Talents in University 2011, National Basic Research Program of China (973 Project, 2009CB119203) and the China National Natural Science Foundation (31071732). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: baileyyqiu@yahoo.com.cn

Introduction

A large number of herbivorous insects including the phloem feeding insects of the Hemiptera suborder Sternorrhyncha (aphids, whiteflies, psyllids, scales and mealybugs) harbour endosymbiotic bacteria [1]. The phloem is nutrient deficient, and the metabolites produced by some of these bacteria fortify their diet [2]. These bacteria, referred to as the primary endosymbionts (P-endosymbionts), are confined to specialized host cells called bacteriocytes (or mycetocytes) which form the bacteriome [3] and are transmitted vertically from mother to offspring [4]. In addition, insects have more recently acquired a number of endosymbiotic bacteria [1]. The phloem is nutrient deficient, and the metabolites produced by some of these bacteria fortify their diet [2]. These bacteria, referred to as the primary endosymbionts (P-endosymbionts), are confined to specialized host cells called bacteriocytes (or mycetocytes) which form the bacteriome [3] and are transmitted vertically from mother to offspring [4]. In addition, insects have more recently acquired a number of endosymbiotic bacteria [1]. The phloem is nutrient deficient, and the metabolites produced by some of these bacteria fortify their diet [2]. These bacteria, referred to as the primary endosymbionts (P-endosymbionts), are confined to specialized host cells called bacteriocytes (or mycetocytes) which form the bacteriome [3] and are transmitted vertically from mother to offspring [4].

Endosymbiont infections in arthropods are common [14] and amongst these, the whitefly, *Bemisia tabaci* (Gennadius) (Hemiptera: Aleyrodidae), contains the greatest known diversity with seven so far being described [8,15,16]. Studies of the Aleyrodidae show that a distinct lineage within the gammaproteobacteria of P-endosymbionts is always present [17,18] and has been given the provisional designation *Candidatus Portiera aleyrodidarum* [19]. In addition, *B. tabaci* is also infected with several species of S-endosymbionts, *Candidatus Hamiltonella defensa* (Enterobacteriaceae), *Arsenophonus, Cardinium* (Bacteroidetes), *Fritschea bennisiae* (Sphingobacteriaceae), *Ricketsia* and *Wolbachia* [13,16–18,20–24]. Our knowledge of the function of these S-endosymbionts in *B. tabaci* is limited, but evidence suggests that within populations, the
composition of S-endosymbionts varies both temporally and spatially [5,8,13,16,18,20,25-28]. Further, S-endosymbiont infections have been shown to carry a fitness benefit [24] as well as cost [29,30].

Our most recent understanding of B. tabaci is that it is a cryptic species complex of at least 34 morphologically indistinguishable species [31-34] that exhibit complete or partial mating isolation [35-37]. In the case of complete mating isolation copulation does not usually occur whereas for partial mating isolation, the resulting fitness of the progeny is substantially reduced relative to the parents. The complex has a global distribution with a distinct geographic structure in terms of genetic relatedness, Sub-Saharan Africa, New World, Africa/Mediterranean/Middle East/Asia Minor, Indian Ocean/East Africa and Asia/Australia [31,32,38]. Two members of the complex, Middle East - Asia Minor 1 (MEAM1, commonly referred to as biotype B in the literature) and Mediterranean (MED, commonly referred to as biotype Q in the literature) have spread well beyond their respective home ranges through the trade in ornamental plants [38,39] and both have invaded parts of Asia over the last 20 years [32]. As well as the invaders, Asia has at least 15 indigenous members of the complex; AsiaI, AsiaII_1, AsiaII_2, AsiaII_3, AsiaII_4, AsiaII_5, AsiaII_6, AsiaII_7, AsiaII_8, AsiaII_9, AsiaII_10, AsiaIII, China1, China2, China3 [31,33]. The question therefore arises as to what is the cause of this level of species diversification. S-endosymbiont diversity is known to vary both within and between different members of the complex [5,8,13,16,18,20,25-28] and it is possible that they have contributed to the development of this diversity.

The presence of several cryptic species in the B. tabaci complex might be the result of reproductive isolation induced by S-endosymbionts (e.g. Wolbachia, Arsenophonus, Cardinium) [27,40-42]. All S-endosymbionts are susceptible to horizontal transmission [11,12], however the high prevalence of Wolbachia [14] across so many species that are unable to copulate suggests it may be particularly prone to horizontal transfer.

One approach to explore whether horizontal transfer is occurring is to compare the evolutionary relationships of the host with those of their endosymbionts. This is usually done using tree-based methods which compare the branching structure to determine whether tree topologies are more similar and if more codivergence events are present than would be expected by chance. Commonly used tree based methods include reconciliation analysis (TreeMap) [43] and generalized parsimony (TreeFitter) [44]. TreeMap is used to find optimal reconstructions of the history of association by maximizing cospeciation events and minimizing host shifts. It uses the Jungles analysis [45] so as to consider all potentially optimal solutions and so enables host shifts to be considered. TreeFitter assigns costs against the four types of co-phylogenetic events (cospeciation, duplication, sorting and host shift) [43,46] and the optimal solution(s) is the one with the lowest global cost of reconstruction. Cospeciation is the joint speciation of two organisms with a close ecological association (usually a mutualistic or symbiotic relationship). In other words, cospeciation events occur when host and parasitoid species co-diverge and so display parallel cladogenesis. When incongruence occurs this signals the absence of cospeciation and instead suggests that host switching, sorting or duplication may be involved. Host switching events occur when a species successfully colonises a host species other than its current host. Duplication, or intrahost speciation, occurs when a species lineage diverges without the stimulus of host speciation and results in several closely related species on the descendant host lineage. Sorting events occur when species are entirely, or apparently, removed from host species. These reflect events where a species is predicted to occur, but does not [43,47]. TreeMap and TreeFitter enable the null hypothesis that the two phylogenies are related randomly to be tested by comparing the scores of optimal reconstructions (number of cospeciation events for TreeMap and global cost for TreeFitter) with those of phylogenies that have been obtained randomly through the use of the permutation procedure. Because these programs require fully resolved trees, all combinations of the obtained tree topologies between the host and its endosymbionts need to be tested so as to account for phylogenetic uncertainty. TreeFitter also allows assignment of different costs to the four types of events and by varying these costs, the effect on the test results can then be compared. In addition to tree-based methods, host and parasitoid phylogenies can be assessed for similarity using distance-based and data based methods [48-53], but these latter methods are only valid when the genetic data being compared is homologous and as the data in this study are derived from different gene regions, only tree-based methods are appropriate [48,54,55]. This approach was therefore adopted to explore the evolutionary relationships between B. tabaci, its P-endosymbiont and three of its S-endosymbionts, Arsenophonus, Cardinium and Wolbachia and to determine whether the patterns observed were more indicative of cospeciation and horizontal transfer events.

Results

Prevalence of endosymbionts among Asian B. tabaci cryptic species

All 570 individuals (30 individuals per location) collected from 19 different locations were infected with the species of primary endosymbiont, P. aleyrodidarum (Table S1). In case of the S-endosymbionts, 76.3% individuals of different B. tabaci cryptic species were positive for Wolbachia, 34.2% for Arsenophonus and 10.5% for Cardinium (Table S1). Out of a total of 19 collections, 16 positive collections were sequenced for primary endosymbionts and Wolbachia, ten for Arsenophonus and five for Cardinium based on B. tabaci cryptic species, geographical locations and plant hosts of B. tabaci cryptic species. Of the 16 different Wolbachia sequenced for the wsp gene, 11 were from members of the complex that are indigenous to Asia, two AsiaII_1, two AsiaII_7, five AsiaI and two ChinaI and five to invasive members of the complex, three MED and two MEAM1. For the Wolbachia ftsZ gene, 6 were from species indigenous to Asia, one ChinaI, four AsiaI, one AsiaII_7 and five that are invaders, three MED and two MEAM1 (Table S1). Of the 10 different Arsenophonus sequenced, three were from AsiaI, three from AsiaII_1, two from AsiaII_7, one from MED while for the five Cardinium, three were from AsiaII_1, one from AsiaII_6 and one from MED (Table S1). All three individuals from each infected sample location were infected with the same haplotype of endosymbiont i.e. there was no variation within location.

Phylogenetic analysis of host B. tabaci cryptic species and their endosymbionts

The phylogenetic reconstruction for B. tabaci complex from Asia and the clusters assigned to each of the different species is shown in Fig. 1A and is consistent with previously published trees [31,32]. The relationship between the different P. aleyrodidarum is shown in Fig. 1B. The relationships for the most part mirror those of B. tabaci (Fig. 1B).

The 16 Wolbachia were grouped into two main clusters, W1 and W2 (Fig. 2 A, B). All Wolbachia sequences found in this study belonged to supergroup B (Fig. 2 A, B). The relationships between different Wolbachia based on their wsp and ftsZ sequences are
shown in Fig. 2 A and B, respectively. The wsp tree has nine well supported clades (bootstraps >70%), wtab1-wtab9. Clades wtab1, 4, 6–9 consist of Wolbachia from indigenous Asian members of the complex only and wtab3 and wtab5 consist of invader members only whereas wtab2 has Wolbachia from both indigenous Asian and invader members of the B. tabaci complex (Fig. 2 A).

The ftsZ tree has three well supported clades (bootstraps >70%). The Wolbachia from different clades of wsp tree were clustered together in same clade here in ftsZ tree (Fig. 2 A). Out of three clades of ftsZ tree, the top clade consists of Wolbachia from both indigenous Asian and invader members of the complex whereas the middle clade consists of Wolbachia from invader members along with one from indigenous member and the bottom clade consists of Wolbachia from only indigenous Asian members of the complex (Fig. 2 A).

All the Arsenophonus grouped into two well supported clusters Atab1-Atab5 (Fig. 3A). Atab5 had a single representative from MED whereas Atab1-Atab4 represented individuals found in indigenous Asian B. tabaci cryptic species.

Each of the five different Cardinium was belonging to one of two clusters, one containing two groups Ctab1 and Ctab2 and the other Ctab3. Ctab3 was from the invasive MED whereas the others represented individuals from indigenous Asian B. tabaci cryptic species.

Co-phylogenies of B. tabaci host and its endosymbionts

There was high congruence between the B. tabaci mtCOI and P. aleyrodidarum 16S rRNA gene phylogenies (Fig. 4A). In contrast, there is less agreement between the B. tabaci mtCOI and the S-endosymbiont phylogenies. The Wolbachia and B. tabaci phylogenies were incongruent (Fig. 4B, C) whereas the phylogenies for Cardinium and Arsenophonus showed partially congruence with B. tabaci (Fig. 4D and E).

Analysis of the single optimal topology for mtCOI with the ML and MP topologies for endosymbionts using TreeFitter at a p-value significance cut-off of 0.05 showed 12 cospeciation events and only two host switching and sorting events between B. tabaci and their P-endosymbionts (Fig. S2A). The two observed events of host switching in P-endosymbionts were actually between populations of same species (Fig. S2A). In the case of Wolbachia while there was evidence to support six to eight cospeciation events (six in the case of ftsZ and eight in the case of wsp), there was evidence to support a considerable number of random host switches (3–7) and sorting events (13–14) (Fig. S2B, C). This was also the case for Arsenophonus, five cospeciation events, four host switches and four sorting events (Fig. S2D) and for Cardinium, three cospeciation events, one host switch and one sorting events (Fig. S2E).
Geographical correlations of *B. tabaci* cryptic species and its endosymbionts

There were no significant correlations between host genetic variation and geographical distances in the case of both invasive and indigenous cryptic species and their P-endosymbionts (r = 0.23, P = 0.097 for indigenous; r = 0.112, P = 0.80 for invasive). Likewise, there are no significant correlations between S-endosymbionts genetic variation (measured separately from invasive and indigenous host cryptic species) and geographical distances between the collection site in case of *Wolbachia* using *ftsZ* gene (r = 0.072, P = 0.081 for indigenous; r = 0.232, P = 0.60 for invasive) or using *wsp* gene (r = 0.27, P = 0.197 for indigenous; r = 0.203, P = 0.66 for invasive) as well as in case of *Arsenophonus* (r = 0.083, P = 0.75 for indigenous) or *Cardinium* (r = -0.01, P = 1.00 for indigenous) suggesting that their genotypes are not geographically restricted.

Host mtCOI correlation with P- and S-endosymbionts

The P-endosymbiont, *Wolbachia* and *Arsenophonus* were significantly correlated with host mtCOI (Table 1). The correlation was highest for the P-endosymbiont followed by *Arsenophonus* then *Wolbachia* (Table 1). The small dataset for *Cardinium* lead to no significant correlation (Table 2). *Wolbachia* (*wsp* gene) was least, but with significant correlation with host genetic diversities while *Wolbachia* (*ftsZ* gene) was not correlated with host genetic variations (Table 1).

Overall, both distance and tree based analyses produced a very similar result. In the tree based analysis, there was high cospeciation in the case of P-endosymbionts as compared to S-endosymbionts and there are more host switches for the S-endosymbionts, especially in *Wolbachia* (Table 2, Fig. 4). Similarly in the distance based analysis, P-endosymbionts are highly correlated with their host as compared to S-endosymbionts with *Wolbachia* showing the lowest level of correlation (Table 1).

Discussion

The results confirmed a very high degree of co-cladogenesis between *B. tabaci* and *P. aleyrodoides*; this was expected and has been shown in numerous studies [56–58] and suggests a single infection of a whitefly ancestor with a bacterium followed by vertical transmission to the progeny. In contrast, the phylogenies of the S-endosymbionts were largely incongruent with that of the host. One explanation is that P-endosymbionts are always found within the bacteriocytes [4] which are highly specific cells with a limited distribution within the host. This suggests that being limited to the bacteriocytes makes it more difficult for horizontal transmission and this is supported by the very low number of host switches and sorting events. In contrast, S-endosymbionts are not limited to the bacteriocytes [4,6] and the much smaller number of cospeciation events and much higher numbers of host switches and sorting events suggest that being able to reside in multiple cell types makes it easier for horizontal transmission to occur. Of the S-
endosymbionts, \textit{Wolbachia} showed a lack of congruence whereas \textit{Arsenophonus} and \textit{Cardinium} showed partial congruence. This suggests that of these S-endosymbionts, \textit{Wolbachia} may be particularly adapted to undergoing horizontal transmission [11,12]. An alternative explanation is that P-endosymbionts are essential and so there may be extremely strong selection on both host and bacterium to maintain the association [2]. In contrast, S-endosymbionts are either parasites or mutualists. In the case of the former, the association is likely to be unstable due to selection for host resistance while in the later, the association is subject to changes in ecological circumstance and so lost when environmental change selects against the association [7,59].

It is generally assumed that vertical transmission of \textit{Wolbachia} predominates within species and that horizontal transfer is a rare event [60,61]. As a consequence, one would expect the association between the \textit{Wolbachia} genome and the mitochondrial genome to be non-random i.e. in linkage disequilibrium as both are vertically transmitted from mother to offspring [62]. However, if horizontal transmission is occurring then one would expect the relationship between the two genomes to become decoupled; the extent of which would be indicated by the level of incongruence between the two phylogenies. Our results show a considerable degree of congruence suggesting that horizontal transmission was occurring at a rate sufficient to mask linkage disequilibrium.

The lack of congruence between mitochondrial and \textit{Wolbachia} gene genealogies cannot be explained in terms of a single infection event followed by co-divergence within the species. Instead, it is strongly compatible with extensive shuffling within the species. Overall, based on the \textit{Wolbachia}/mtCOI data, the pattern that emerges is a complex history of infection in \textit{B. tabaci} that is shaped by both vertical and horizontal transmission plus frequent turnover [loss and replacement] within a single species. The higher infection frequency in \textit{B. tabaci} and the common occurrence of multiple infections in \textit{B. tabaci} are good arguments that horizontal transfers occurs between different cryptic species of \textit{B. tabaci}. High rates of horizontal transmission are one explanation for the frequency of \textit{Wolbachia} infections that have been observed both across the \textit{B. tabaci} complex as well as in arthropods in general [13,14,47]. Moreover, \textit{B. tabaci} has been shown to harbor different \textit{Wolbachia} [13]. Theoretically, it has been shown that two different \textit{Wolbachia} strains can coexist stably in parapatric host populations [63] and that bidirectional cytoplasmic incompatibility reduces the gene flow of locally adapted alleles and selects for pre-mating isolation [63,64]. Research indicates that different \textit{Wolbachia} may contribute to reproductive isolation through cytoplasmic incompatibility [65]. It may therefore be that cytoplasmic incompatibility in combination with relatively high rates of horizontal transmission has been promoting the high level of diversity observed across the \textit{B. tabaci} cryptic species complex. In addition to \textit{Wolbachia}, \textit{Cardinium} and \textit{Arsenophonus} are also known to manipulate host reproduction in a wide range of insect species including \textit{B. tabaci} [27,59].

Extensive collections of MEAM1 across its home range (Middle East and Asia Minor) and invaded range have not provided any good evidence that the invading MEAM1 was infected with \textit{Wolbachia} prior to its invasion of China [8,13,16,31,32,38,66]. There is one study [67] that identifies MEAM1 infected with \textit{Wolbachia} in Israel, but this observation is in doubt as extensive sampling across Israel has since been unable to find any evidence for \textit{Wolbachia} infections in MEAM1 (Zchori Fein personnel communication). MEAM1 most likely invaded China in the mid-1990s and studies investigating the presence of S-endosym-
biont infections in MEAM1 in mainland China reported no presence of Wolbachia at least up to 2005 whereas studies from 2007 onwards have reported varying levels of infections with Wolbachia [13,18,28,66–68, Ahmed MZ et al. unpublished data]. The presence of similar Wolbachia in both Asian indigenous (AsiaI and China1) and exotic members of the B. tabaci complex provides good support for the argument that the Wolbachia in MEAM1 in China was acquired from the indigenous Asian members of the complex and that this has occurred within the last 6 years. On the other hand, the other exotic invader found in China, MED, was first detected in China in 2003 [69]. MED was known to have been infected with Wolbachia before its invasion of China [13,18] and our study shows a close association between the Wolbachia from Chinese MED and that found in the Mediterranean home range. The observation that some of the Wolbachia infecting AsiaI in China are less related to those from other indigenous Asian
Horizontal Transmission of Endosymbionts

Table 1. The mantel correlations between the genetic differences between B. tabaci sequences and that of their endosymbionts.

Endosymbionts Genes	n	Lower 95% CI	correlation	Upper 95% CI	P
P-Endosymbionts (16S rRNA)	16	0.75	0.78	0.83	0.0001
Arsenophonus (235 rRNA)	10	0.36	0.50	0.60	0.0001
Wolbachia (wsp)	16	0.10	0.17	0.26	0.0156
Wolbachia (ftsZ)	11	-0.30	-0.025	0.26	0.8531
Cardinium (16S rRNA)	5	-0.30	0.33	0.82	0.3610

Not all samples had all the endosymbionts resulting in different sample sizes (n). The lower and upper 95% confidence intervals (CI) of estimates are also given. doi:10.1371/journal.pone.0053084.t001

Table 2. Summary of co-phylogenetic comparisons of host species and their endosymbionts ML phylogenies.

Endosymbionts Genes	Cospéciation	Duplication	Host switch	Sorting
P-Endosymbionts (16S rRNA)	12	0	2	2
Arsenophonus (235 rRNA)	5	0	4	4
Wolbachia (wsp)	8	0	7	13
Wolbachia (ftsZ)	6	1	3	14
Cardinium (16S rRNA)	3	0	1	1

The reconstruction shows the co-phylogenetic analysis between the mtCOI gene of B. tabaci cryptic species with the genes of their primary endosymbionts and secondary endosymbionts. doi:10.1371/journal.pone.0053084.t002

Wolbachia and more related to Wolbachia of Mediterranean origin suggests that there has been a recent horizontal transfer of Wolbachia from the invading MED to the indigenous AsiaI and that this has occurred since 2003.

Our study showed that the indigenous AsiaI also harbored another Wolbachia infection that was the same as the one found in MEAM1. However, this also occurred in the other B. tabaci species to have invaded China, MED. This also occurs in MED from Egypt and suggests a second horizontal transfer event in China to AsiaI as well as MEAM1 and again this transfer has occurred within the last 10 years.

Intra- and interspecific horizontal transfers of Wolbachia occur between organisms that interact in close confinement [70]. In general, interspecific horizontal transfer is more successful than interspecific transfer [70] and is most likely due to incompatibilities between Wolbachia and hosts' nuclear/cytoplasmic background [12,71]. The apparently frequent interspecific horizontal transmission between different members of the B. tabaci complex suggests that there is sufficient similarity between the different members of the complex to support the Wolbachia from related members of the complex. This is supported by the numerous observations that have been made in regards to courtship interactions between different members of the complex [72]. While copulation seldom, if ever, occurs, there is still a complex courtship process which suggests that the different species are still sufficiently close that interspecies mate recognition persists.

The observation of a number of apparent horizontal transfer events between different members of the B. tabaci complex raises the question as to the mechanism that may be enabling this to occur. The horizontal transfer of Wolbachia from an infected whitefly to other insects as a result of feeding on the same leaf substrate has been suggested as one mechanism [73]. For this to be possible, the bacterium needs to be small enough to pass through the salivary duct. Recent research involving mosquitoes suggests that the bacterium may be too large to pass through the salivary duct making the prospect of transmission through the plant unlikely [74].

Another possible route for horizontal transmission is parasitoids, of which numerous species parasitise the different members of the B. tabaci complex [75]. One study has shown that Rickettsia from B. tabaci were readily able to infect the larvae of two species of parasitoid within the whitefly host, but were unable to be vertically transmitted as the bacteria were unable to infect the parasitoid's oocytes [76]. Gueguen et al. [15] also found evidence for horizontal transfer between different members of the B. tabaci complex and suggested parasitoids may be involved. In contrast, it has been argued that transfer from parasitoids to hosts was quite unlikely [12], but as discussed above, the systems being considering did not involve closely related hosts and so the cytoplasmic backgrounds were likely to be quite different.

It has also been suggested that endosymbiont communities can be used to resolve taxonomic distinction within the B. tabaci complex [15,20,77]. As has been shown in aphids [78], our results indicate that the P-endosymbionts may be a useful means of considering the taxonomic relationships within the B. tabaci complex. However, the low level genetic linkage between the host and their S-endosymbionts, especially Wolbachia, due to frequent host shifts through horizontal transfer suggest that they have little role to play in resolving the taxonomy of the B. tabaci complex.

Conclusion

Endosymbionts of B. tabaci cryptic species show evidence for variable degrees of horizontal transmission. Primary endosymbionts are almost entirely vertically transmitted whereas the secondary endosymbionts and especially Wolbachia, show evidence of horizontal transfers between different species within the B. tabaci species complex. This also suggests that secondary endosymbiont genetic variation may not reflect host genetic variation and should not be used to infer taxonomic relationships within the host species complex. This is not surprising as secondary endosymbionts are facultative in their association with the host and so not always present within all individuals within a species. Wolbachia shows evidence a number of horizontal host shifts across the complex with three occurring within the last 20 years. This suggests that it may move readily between different members of the complex and most likely via parasitoid activity. If this is the case, then it is possible that Wolbachia may be playing a role in driving the process of speciation with the B. tabaci species complex and may help explain the high level of species level diversity that is being increasingly observed.
Materials and Methods

Whitefly sampling

Bemisia tabaci were collected from 19 locations in China between 2007 and 2010. All collections were undertaken by the Department of Entomology, South China Agricultural University, China and no any specific permission was required to collect any of these samples. The identity of the species was determined by comparing their mitochondrial cytochrome oxidase one (mtCOI) against published consensus sequences [31] and using the assignment rules from that study [31,79].

DNA extraction and PCR amplification

DNA was extracted from individual adult females using a previously published method [13,18]. The mtCOI was amplified using the primer pair C1-J-2195/TL2-N-3014 [80]. The *Portiera* 16S ribosomal RNA gene was amplified using the 23F and 1098R primer pair [8] while *Wolbachia* wsp was amplified using the wsp81F and wsp691R primers [10] and *ftsZ* using *Wolbachia* specific primers [9], the *Cardinium* 16S rRNA gene was amplified by Ch-F and Ch-R primers [81] and the *Arsenophonus* 23S rRNA gene was amplified using Ars23SF and Ars23R [23]. Amplification for the respective primer sets followed previously published methods [10,23,80,81].

Sequence alignments, measurement of genetic distances and phylogenetic analysis

Several recent studies have shown that exchange of genetic information can occur among *Wolbachia* supergroups [82,83] and/or among strains within the same individual [84]. It has been demonstrated that recombination occurs across the whole *Wolbachia* genome [83] and in most of genes including *wsp*, *glk*, *dnaA*, *ftsZ* and *groEL* [83,85,86]. As a result the two of the most frequently used genes (*wsp* and *ftsZ*) were used for genotyping *Wolbachia*, but because of the concern that recombination might influence the patterns observed, recombination analyses were undertaken to assess the level of recombination and identify portions of amplified fragment where recombination had taken place. All amplified gene products were cloned and three clones then sequenced. An additional three clones were sequenced if any sequence variation was detected in the first three clones. The sequences were first analyzed and aligned with DNAStar (Lasergene V5.0) and ClustalX 1.83 [87]. Genetic distances were calculated using the Kimura 2-parameter model in MEGA [88]. The phylogenetic relationships among the different cryptic species and their endosymbionts were analyzed by Maximum Likelihood (ML) using MEGA5 and PAUP*4.0b10 [88,89]. The tree is drawn to scale, and branch lengths are measured in number of substitutions per site using MEGA5. Bootstrap values >70% from 1,000 iterations are shown.

Recombination analysis

The consequences of incorrect phylogenetic signals caused by recombination can be avoided by first detecting recombination events prior to phylogenetic analysis. Two methods were used to consider recombination. The first was the bootstrap method, implemented in the program Simplot [90] to construct replicate trees in a sliding window approach. The threshold level of 70% of the permuted trees in a given window for the detection of a recombination was used. The second used a non-phylogenetic method to apply dynamic programming to minimize the mutation and recombination cost between the various sequences used. This method was implemented in the software RECCO [91] which tests the hypothesis of no recombination and in line with Maylt and Lengauer [91] a significance level of 0.05 as the cutoff was used. The number of permutations was set at 1000, gap extension cost to 0.2, max α for the permutation test to 1 and the significance level to P=0.05. The parameter α, representing the ratio of mutation cost to recombination cost was set to 0.2, the methods used to calculate mutation and recombination costs were respectively, Hamming and Delta Dirac. Those sequences where significant recombination was identified were not used in the subsequent phylogenetic analyses. Moreover *wsp* sequences have a number of hypervariable regions which on the basis of Braig et al. [92] and Nirgianaki et al. [20] were excluded from the analysis; this reduced the number of bases available for analysis from 625 to 480.

Co-phylogenetic analysis

The Mantel test on the genetic distance matrices of coccipating hosts and parasitoids was used to test for significant association between the matrices [48]. TreeFitter was then used to compare the single optimal topology derived from the combined mtCOI sequences of each *B. tabaci* species and each of ML and MP topologies derived from the combined gene sequences of P- and S-endosymbionts. All tests were performed based on 999 permutations. The support for coccipation, host-switching, lineage sorting and duplication was explored using the exact search and best reconstructions option in TreeMap 2.0b. Only branches in the ML tree that were supported by at least 85% bootstrap support were considered [93].

Correlation analysis

To test whether the genetic differences between *B. tabaci* increased with geographic distance, Mantel correlations between *B. tabaci* genetic differences and mapped distances between collections were undertaken using the mantel function in the ecodist package [94] in R version 2.13.0 [R Development Core Team 2011]. The same approach was then used to analyze how well endosymbiont genetic variability correlated with differences in whitely genetic variability. Geographical distances between the locations from where the whiteflies were collected were calculated using their GPS coordinates.

Supporting Information

Figure S1 Phylogenetic tree reconstruction of *B. tabaci* and its endosymbionts based on various gene sequences. A. Phylogenetic tree reconstruction based on mtCOI gene sequences (length = 830 bp) of host *B. tabaci* cryptic species using maximum-likelihood analysis under the HKY+G substitution model. The bootstrap values are indicated. B. Phylogenetic tree reconstruction based on 16S rRNA gene sequences (length = 1100 bp) of P-endosymbionts of *B. tabaci* cryptic species using maximum-likelihood analysis under the JC+G substitution model. The bootstrap values are indicated. C. Phylogenetic tree reconstruction based on *wsp* gene sequences (length = 480 bp) of *Wolbachia* of *B. tabaci* cryptic species using maximum-likelihood analysis under the T92+G substitution model. The bootstrap values are indicated. D. Phylogenetic tree reconstruction based on *ftsZ* gene sequences (length = 850 bp) of *Wolbachia* of *B. tabaci* cryptic species using maximum-likelihood analysis under the TN93+G+I substitution model. E. Phylogenetic tree reconstruction based on 23S rRNA gene sequences (length = 550 bp) of *Arsenophonus* of *B. tabaci* cryptic species using maximum-likelihood analysis under the HKY+G substitution model. The bootstrap values are indicated. F. Phylogenetic tree reconstruction based on 16S rRNA gene sequences (length = 400 bp of *Cardinium* of *B. tabaci* cryptic species
using maximum-likelihood analysis under the K2+G substitution model. The bootstrap values are indicated.

(DOC)

Figure S2 The exact search at best reconstructions using TreeMap 2.0b show the ML phylogenetic comparison of endosymbionts over their hosts. Endosymbionts displayed in black and the hosts in light grey; in reconstruction, cospeciation events are shown by ω, duplications by γ, and host switches by ±. A. Host B. tabaci and its P-endosymbionts. B. Host B. tabaci and its Wolbachia (wsp). C. Host B. tabaci and its Wolbachia (ftsZ). D. Host B. tabaci and its Arsenophonus (23S). E. Host B. tabaci and its Cardinium (16S).

References

1. Moran NA, Baumann P (2000) Bacterial endosymbioses in animals.Curr Opin Microbiol 3: 270–275.
2. Baumann P (2005) Biology of bacteriocyte-associated endosymbionts of plant sucking insects. Annu Rev Entomol 50: 299–320.
3. Moran NA, Telang A (1998) Bacteriocyte-associated symbionts of insects: a variety of insect groups harbor ancient prokaryotic endosymbionts. BioScience 48: 295–304.
4. Buchachon P (1965) Endosymbiosis of animals with plant microorganisms, p. 332–338. John Wiley and Sons Interscience, New York, NY.
5. Costa HS, Westcot DM, Ullman DE, Rosell R, Brown JK, et al. (1995) Morphological variation in Birmania endosymbionts. Protoplea 198: 194–202.
6. Baumann PN, Moran A, Baumann L (2000) Bacteriocyte-associated endosymbionts of insects. In: M. Dworkin (ed.), The prokaryotes. Springer, New York, NY. Available: http://link.springer.de/link/service/books/10125.
7. Feldhaus H (2011) Bacterial symbionts as mediators of ecologically important traits of insect hosts. Evol Entomol 36: 533–549.
8. Zchori-Fein E, Brown JK (2002) Diversity of prokaryotes associated with whiteflies. Curr Microbiol 48: 140–144.
9. Werren JH, Zhang W, Guo LR (1995) Evolution and phylogeny of chlamydiae in whiteflies and scale insects: endosymbionts ‘Nasonia’ and its P-endosymbionts. Appl Environ Microbiol 70: 3401–3406.
10. Thao ML, Baumann P (2004) Evolutionary relationships of Wolbachia and the evolution of Birmania tabaci. (Hemiptera: Aleyrodidae) species complex. Mol Biol Evol 19: 4363–4378.
11. Thao ML, Baumann P (2000) Bacterial endosymbioses in animals. Curr Opin Microbiol 3: 270–275.
12. Vavre F, Fleury F, Lepetit D, Fouillet P, Bouletreau M (1999) Phylogenetic relationships of the Aphidoidea. Mol Ecol 8: 1061–1075.
13. Ahmed MZ, Ren SX, Mandour NS, Qiu BL (2010) Prevalence of Wolbachia supergroups A and B in the sweetpotato whitefly Birmania tabaci and its natural enemies. J Econ Entomol 103: 1084–1092.
14. Hilgenboecker K, Hammerstein P, Slattmeyr, T, Zehren JH (2008) How many species are infected with Wolbachia? — a statistical analysis of current data. FEMS Microbiol Lett 281:215–220.
15. Guerin G, Vair F, Guiraud O, Pernetti M, Charif D, et al. (2010) Endosymbiont metacommunities, mdDNA diversity and the evolution of the Birmania tabaci (Hemiptera: Aleyrodidae) species complex. Mol Ecol 19: 4521–4538.
16. Chiel E, Gottlieb Y, Zchori-Fein E, Mozes-Daube N, Katzir N, et al. (2007) Biotype-dependent second symbiont communities in sympatric populations of Birmania tabaci. Bull Entomol Res 97: 407–413.
17. Clark MA, Baumann M, Munsie MA, Baumann P, Campbell BC, et al. (1992) The bacterial endosymbionts of whiteflies (Homoptera: Aleyrodidae) constitute a lineage distinct from the endosymbionts of aphids and mealybugs. Curr Microbiol 25: 119–123.
18. Ahmed MZ, Xue X, Li XL, Ren SX, Jin GH, et al. (2010) Prevalence of endosymbionts in Birmania tabaci populations and their in vivo sensitivity to antibiotics. Curr Microbiol 61: 322–329.
19. Thao ML, Baumann P (2004) Evolutionary relationships of primary prokaryotic endosymbioses of whiteflies and their hosts. Appl Environ Microbiol 70: 3401–3406.
20. Nirgianaki A, Banks GK, Frolich DR, Veneti Z, Bragg HR, et al. (2003) Wolbachia infections of the whitefly Birmania tabaci. Curr Microbiol 47: 93–101.
21. Everett KDE, Thao M, Horn M, Duszyński GE, Baumann P (2005) Novel chlamydaceae-like bacteria and scale insect endosymbionts ‘Candidatus Fritschea eriococci’ strain Falk and ‘Candidatus Fritschea eucerosi’ strain Elm. Int J Syst Evol Microbiol 55: 1581–1587.
22. Weeks AR, Vellien R, Stouthamer R (2003) Incidence of a new sexratio-distorting endosymbiotic bacterium among arthropods. Proc R Soc Lond B Biol Sci 270: 1857–1865.
23. Thao ML, Baumann P (2004) Evidence for multiple acquisition of Arsenophonus by whitefly species (Sternotettix: Aleyrodidae). Curr Microbiol 48: 140–144.

(DOC)

Table S1 Asian B. tabaci cryptic species population sampled for S-endosymbionts.

(DOC)

Author Contributions

Conceived and designed the experiments: MZA BLQ. Performed the experiments: MZA. Analyzed the data: MZA JMG. Contributed reagents/materials/analysis tools: MZA BLQ SXK. Wrote the paper: MZA PDB BLQ JMG.
62. Hurst GD, Jiggins FM (2005) Problems with mitochondrial DNA as a marker in
69. Chu D, Zhang YJ, Brown JK, Cong B, Xu BY, et al. (2006) The introduction of
67. Li ZX, Lin HZ, Guo XP (2007) Prevalence of
70. Huigens ME, de Almeida RP, Boons PAH, Luck RF, Stouthamer R (2004)
57. Thao ML, Moran NA, Abbot P, Brennan EB, Burckhardt DH, et al. (2000)
56. Peek AS, Feldman RA, Lutz RA, Vrijenhoek RC (1998) Cospeciation of
54. Light JE (2005) Host-parasite cophylogeny and rates of evolution in two rodent-
52. Huelsenbeck JP, Rannala B, Larget B (2000) A Bayesian framework for the
50. Kishino H, Hasegawa M (1989) Evaluation of the maximum likelihood estimate
318: 1769–1772.
315. Goslee SC, Urban DL (2007) The ecodist package for dissimilarity-based
92. Braig HR, Zhou W, Dobson S, O'Neill SL (1998) Cloning and characterization
91. Maydt J, Lengauer T (2006) Recco: recombination analysis using cost
77. Stahlhut J (2010) The endosymbiont community as taxonomic character: a novel
76. Chiel E, Zchori-Fein E, Inbar M, Gottlieb Y, Adachi-Hagimori T, et al. (2009)
75. Li SJ, Xue X, Ahmed MZ, Ren SX, Du YZ, et al. (2011) Host plants and natural
73. Sintupachee S, Milne JR, Poonchaisri S, Baimai V, Kittayapong P (2006)
72. Liu SS, De Barro PJ, O'Neill SL (1998) Chemosynthetic bacteria and deep sea clams. PNAS 95: 9962–9966.
66. Chu D, Cong B, Zhang YJ, Xu BY, Wu QJ, et al. (2005) Detection and
60. Keller GP, Windsor DM, Saucedo JM, Werren JH (2004) Reproductive effects
58. Kishino H, Hasegawa M (1989) Evaluation of the maximum likelihood estimate
515. Wolf D, Waldbauer FP, Stouthamer R (1986) Artificial male killing by a Wolbachia endosymbiont. Genetics 168: 2049–2058.
514. Watanabe H, Hasegawa M, Kishino H (1996) Reconstructions of evolutionary trees from nucleotide sequence data: a maximum likelihood approach. Mol Biol Evol 13: 960–972.
513. Wang Z, Zeng L, Song Z, Xing Y, Chen Z, et al. (2007) A new system for the identification of Wolbachia. Appl Environ Microbiol 73: 6410–6414.
512. Telford A, Hammerstein P, Werren JH (2002) Effects of Wolbachia on genetic divergence between populations: mainland-island model. Int Congr Comp Biol 42: 340–531.
511. Breeuwer JA, Werren JH (1990) Microorganisms associated with chromosome destruction and reproductive isolation between two insect species. Nature 346: 539–540.
510. Chu D, Cong B, Zhang YJ, Xu BY, Wu QJ, et al. (2005) Detection and phylogenetic analysis of Wolbachia in different Bemisia tabaci biotypes. Acta Entomol Sin 48: 510–525.
509. Li ZX, Liu HZ, Guo XP (2007) Prevalence of Wolbachia infection in Bemisia tabaci. Curr Microbiol 54: 467–471.
508. Guo XP, Li ZX (2008) Wolbachia extensively harbored by Bemisia tabaci in China. Acta Microbiol Sin 48: 63–67.
507. Chu D, Zhang YJ, Brown JS, Cong B, Xu BY, et al. (2006) The introduction of the exotic Q biotype of Bemisia tabaci from the Mediterranean region into China on ornamental crops. Fla Entomol 89: 168–174.
506. Huigens ME, de Almeida RP, Booms PAH, Luck RF, Stouthamer R (2004) Natural interspecific and intraspecific horizontal transfer of pathogenesis-inducing Wolbachia in Triatominae waps. Proc R Soc Lond B Biol Sci 271: 509–515.
505. Heath BD, Butcher RD, Whitfield WG, Hubbard SF (1999) Horizontal transfer of Wolbachia between phylogenetically distant insect species by a naturally occurring mechanism. Curr Biol 9: 313–316.
504. Liu SS, De Barro PJ, Xu J, Luan JB, Zang LS, et al. (2007) Asymmetric mating interactions drive widespread invasion and displacement in a whitely. Science 316: 1769–1772.
503. Sintupachee S, Mühe JR, Poonchaisri S, Baimai V, Kittayapong P (2006) Closely Related Wolbachia Strains within the Pumpkin Arthropod Community and the Potential for Horizontal Transmission via the Plant. Microb Ecol 51: 294–301.
502. Moreira LA, Saig E, Turley AP, Ribeiro JM, O'Neill SL, et al. (2009) Human probing behavior of Drosophila when infected with a life-shortening strain of Wolbachia. PLoS Negl Trop Dis 3: e568. doi:10.1371/journal.pntd.0000568.
501. Li SJ, Xue X, Ahmed MZ, Ren SX, Du YZ, et al. (2011) Host plants and natural enemies of Bemisia tabaci (Hemiptera: Aleyrodidae) in China. Insect Sci 18:101–129.
500. Cheli E, Zchori-Fein E, Inbar M, Gottlieb Y, Adachi-Hagimori T, et al. (2009) Almost there: Transmission routes of bacterial symbionts between trophic levels. PLoS One 4(3): e4767. doi:10.1371/journal.pone.0004767.
499. Stachel J (2010) The endosymbiont community as taxonomic character: a novel approach to resolving the Bemisia tabaci complex. Mol Ecol 19: 4102–4104.
498. Munson MA, Baumann P, Clark MA, Baumann L, Moran NA, et al. (1991) Evidence for the establishment of aphid-endo bacterium endosymbiosis in an ancestor of four aphid families. J Biotechnol 173: 6321–6324.
497. Ahmed MZ, De Barro PJ, Olieko A, Ren SX, Mandour NS, et al. (2012) Use of consensus sequences to identity members of the Bemisia tabaci (Hemiptera: Aleyrodidae) cryptic species complex in Egypt and Syria. J Appl Entomol 136: 510–519.
496. Simon C, Frati F, Beckenbach A, Crespi B, Liu H, et al. (1994) Evolution, weighting, and phylogenetic utility of mitochondrial gene-sequences and a compilation of conserved polymerase chain-reactor primers. Annu Entomol Soc Am 87: 651–701.
495. Zchori-Fein E, Perlman SJ (2004) Distribution of the bacterial symbiont Cardinium in arthropods. Mol Ecol 13: 2009–2016.
494. Baldo L, Dunning Hotopp JC, Jolley KA, Bordersten SR, Biber SA, et al. (2006a) Multisource sequence typing system for the endosymbiont Wolbachia. Appl Environ Microbiol 72: 7960–7110.
493. Baldo L, Bordersten S, Werneegren JJ, Werren JH (2006b) Widespread recombination throughout Wolbachia genomes. Mol Biol Evol 23: 437–449.
492. Von der Schulenburg JHG, Hurst GDD, Huignes TME, Van Meur MMM, Jiggins FM, et al. (2008) Molecular evolution and phylogenetic utility of Wolbachia fliC and wsp gene sequences with special reference to the origin of male-killing. Mol Biol Evol 17: 504–600.
491. Jiggins FM, von der Schulenburg JH, Hurst GD, Majerus ME (2001) Recombination confounds interpretations of Wolbachia evolution. Proc R Soc Lond B Biol Sci 268: 1425–1427.
490. Werren JH, Bartos JD (2001) Recombination in Wolbachia. Curr Biol 11: 431–433.
489. Thompson JD, Higgins DG, and Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positions-specific gap penalties and weight matrix choice. Nuc Acids Res 22: 4673–4680.
488. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, et al. (2011) MEGA5: Molecular Evolutionary Genetics Analysis using Maximum Likelihood, Evolutionary Distance, and Maximum Parsimony Methods. Mol Biol Evol 28: 2731–2739.
487. Swoford DL (2002) PAUP*: Phylogenetic Analysis Using Parsimony (*And Other Methods), version 4, Sinauer Associates, Sunderland, MA.
486. Braig HR, Zhou W, Dobson S, O'Neill SL (1998) Cloning and characterization of a gene encoding the major surface protein of the bacterial endosymbiont Wolbachia pipientis. J Bacteriol 179: 294–301.
485. Salminen MO, Carr JK, Burke DS, McCutcheon FE (1995) Identification of breakpoints in intergenic recombinants of HIV type 1 by bootscanning. AIDS Res Hum Retronv 11: 1423–1425.
484. Maydt J, Lengauer T (2006) Recco: recombination analysis using cost optimization. Bioinformatics 22: 1064–1071.
483. Braig HR, Zhou W, Dobson S, O'Neill SL (1998) Cloning and characterization of a gene encoding the major surface protein of the bacterial endosymbiont Wolbachia pipientis. J Bacteriol 179: 2373–2378.
482. Leikosi K, Fewer DP, Severen K (2009) Widespread occurrence and lateral transfer of the cytochrome biosynthesis gene cluster in Cyanobacteria. Appl Environ Microbiol 75: 853–857.
481. Goslee SC, Urban DL (2007) The ecodist package for dissimilarity-based analysis of ecological data. J Statist Soft 22: 1–19.