Relatively low sex hormone-binding globulin concentration is a risk factor for hyperuricemia in middle-aged Japanese men

Yuya Fujihara1,2 | Nobuya Hamanoue2 | Yuko Akehi2,3 | Ryoko Motonaga2 | Tomoko Tanaka2,4 | Chikayo Iwaya1,2 | Hiromi Yano5 | Makito Tanabe2 | Takashi Nomiyama2 | Toshihiko Yanase1,2

1Department of Endocrinology and Diabetes Mellitus, Muta Hospital, Fukuoka, Japan
2Department of Endocrinology and Diabetes Mellitus, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
3Diabetes Therapeutics and Research Center, Institute of Advanced Medical Sciences, Tokushima University, Tokushima, Japan
4Department of Regenerative Medicine and Transplantation, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
5Department of Preventive Medicine, Iizuka Hospital, Iizuka, Japan

Correspondence
Toshihiko Yanase, Department of Endocrinology and Diabetes Mellitus, Muta Hospital, 3-9-1 Hoshikuma, Sawara-ku, Fukuoka 814-0163, Japan.
Email: t-yanase@seiwakai-hp.jp

Funding information
Japan Society for the Promotion of Science, Grant/Award Number: 23390248

Summary
Objective: Low testosterone and hyperuricemia are associated with metabolic syndrome (MetS). However, little is known about the nature of the relationships between serum testosterone and sex hormone-binding globulin (SHBG) concentrations, and hyperuricemia.

Methods: We evaluated the relationships between serum testosterone (calculated bioavailable testosterone [cbT], calculated free testosterone [cFT], SHBG, and total testosterone [TT]) and metabolic indices, including serum uric acid, in 363 Japanese males (mean age 51.1 ± 8.7 years) at routine health examinations.

Results: Participants with hyperuricemia (≥7.0 mg/dL) demonstrated lower adiponectin, cbT, cFT, SHBG, and TT, but a higher MetS prevalence and higher values of various MetS-related parameters than those without hyperuricemia (<7.0 mg/dL). Binary regression analysis revealed that less than 52 nmol/L SHBG, less than 5.0 μg/mL serum adiponectin, greater than or equal to 7.0 g/dL total protein, and greater than or equal to 1.0 mg/dL creatinine were statistically significant risk factors for hyperuricemia. Receiver operating characteristic analysis confirmed that less than 46.5 nmol/L (area under the curve [AUC] = 0.645) SHBG and less than 3.68 μg/mL (AUC = 0.691) adiponectin concentrations were significant risk factors for hyperuricemia.

Conclusions: We provide evidence that low SHBG provides an important marker for hyperuricemia in middle-aged Japanese men. This finding provides clinical evidence that low SHBG is closely associated with MetS, which is often accompanied with hyperuricemia.

KEYWORDS
Adiponectin, sex-hormone-binding globulin, testosterone, uric acid
1 | INTRODUCTION

Uric acid is a final product in purine metabolism, being produced in the liver and excreted mainly through the kidneys, but also via the intestine. Approximately two-thirds of uric acid is produced endogenously, and the remaining third is derived from purines abundant in the diet. Abnormalities in uric acid metabolism and its decreased excretion by the kidneys are the major causes of hyperuricemia and gout development. Hyperuricemia is a well-known comorbidity of metabolic syndrome (MetS).

Key factors explaining the relationship between MetS and hyperuricemia are thought to be ectopic fat accumulation and insulin resistance. Hyperinsulinemia caused by insulin resistance is thought to cause greater reabsorption of uric acid, as well as sodium, in the renal proximal tubule, via urate transporter. In addition, in obese patients with visceral fat accumulation, activation of the pentose phosphate pathway and lipogenesis in the liver is likely to be accompanied by an upregulation of de novo purine synthesis and uric acid production.

As serum uric acid concentration rises, the prevalence of MetS has been shown to increase. Furthermore, as the number of components of MetS increases, serum uric acid concentrations also increase. Indeed, visceral fat mass has been reported to show a positive correlation with serum uric acid levels and a negative correlation with uric acid clearance.

The relationship between testosterone and uric acid is complicated. A higher testosterone concentration is likely to lead to hyperuricemia, because the greater muscle mass caused by testosterone action is associated with the suppression of uric acid excretion, as shown mainly by testosterone replacement therapy in patients with female-to-male gender dysphoria. However, hyperuricemia is also associated with chronic inflammation and ectopic fat accumulation, which are considered to be mediated via lower testosterone levels.

Total testosterone (TT) is an index that combines free T (FT), albumin-bound T (25-65%), bioavailable T, and sex hormone-binding globulin (SHBG)-bound T (35-75%), which contains the majority of T. Men with MetS and type 2 diabetes mellitus (T2DM) were found to exhibit low testosterone levels. Also, low SHBG was reported to be a predictor of non-alcoholic fatty liver disease (NAFLD) in both men and women. Meta-analysis revealed that serum FT and TT levels were associated with MetS in men and that SHBG levels correlated with MetS in both men and women.

Previously, TT was found to be the optimum serum testosterone parameter for use as an index of MetS in middle-aged Japanese men. Other research showed that hyperinsulinemia reduced SHBG, the largest fraction of TT, resulting in a decreased TT concentration. Low concentrations of bioactive serum testosterone were also correlated with MetS in men. Because TT measurements would include the reductions in both bioactive T and SHBG associated with MetS, it was considered that TT would provide the most sensitive indicator of MetS.

Although both low serum endogenous testosterone and hyperuricemia are associated with MetS, the nature of the relationship between these parameters has not been established. To date, a single report has indicated that gonadal dysfunction defined by low TT was negatively correlated with hyperuricemia in T2DM, and there have been no specific studies of the relationship between hyperuricemia and SHBG.

Hence, the current study examined the hypothesis that hyperuricemia is associated with various serum testosterone indicators, including SHBG, in healthy males.

2 | MATERIALS AND METHODS

2.1 | Participants

The first 684 participants that visited for a medical check were recruited at the Department of Preventive Medicine Iizuka Hospital. Excluded subjects included 163 women and 60 men taking drugs for diabetes mellitus and/or hyperlipidemia. The subjects taking antihypertensive medications were not excluded, because they were only considered to be hypertensive, even if their blood pressure was normal on the day of the medical check. All serum hormones targeted in this study were measured in 365 of the remaining 461 male subjects. None of these 365 participants were taking drugs for hyperuricemia. Two subjects lacked body measurement data and were also excluded. The remaining 363 asymptomatic male participants with a mean age of 51.1 ± 8.7 years (mean ± standard deviation [SD]) were analysed. The protocol of this study was approved by the Institutional Review Boards of Iizuka Hospital and Fukuoka University Hospital and complied with the principles of the Declaration of Helsinki.

2.2 | Anthropometric and serum measurements and calculations

Collected anthropometric data included body weight and height used to calculate body mass index (BMI) and waist circumference. Blood pressure (BP) was also measured.

Blood samples were collected from fasted participants in the morning and assayed to determine the index related to glucose metabolism (fasting blood glucose [FBG], fasting immunoreactive insulin [F-IRI], and glycohemoglobin [HbA1c]) and lipid profiles (high-density lipoprotein cholesterol [HDL-C], low-density lipoprotein cholesterol [LDL-C], serum triglycerides [TGs], and total cholesterol [TC]). The homeostasis model assessment of insulin resistance (HOMA-R) was calculated as [F-IRI [μU/mL] × FBG [mmol/L]]/22.523 and was used as an index of insulin sensitivity. Beta cell function (HOMA-β) was calculated as [F-IRI [μU/mL] × 20]/[FBG [mmol/L] − 3.5]23 and was used as a functional index of insulin secretion. Blood samples were also used to measure serum T concentrations in its various forms: calculated bioavailable testosterone (cFT), calculated free testosterone (cFT), SHBG, and TT.
The diagnosis of MetS in men followed international (International Diabetes Federation [IDF], 2009 version) and domestic (Japanese) criteria. For MetS diagnosis using IDF criteria, three or more of the following five items were required: (a) waist circumference greater than or equal to 90 cm, (b) serum TG greater than or equal to 150 mg/dL, (c) HDL-C less than 40 mg/dL, (d) serum FBG greater than or equal to 100 mg/dL, and (e) systolic and/or diastolic BP (SBP/DBP) greater than or equal to 130/85 mmHg. The diagnosis of MetS using Japanese criteria required a waist circumference of greater than or equal to 85 cm and two or more of the following three items: (a) serum TG greater than or equal to 150 mg/dL and/or HDL-C less than 40 mg/dL, (b) FBG greater than or equal to 110 mg/dL, and (c) SBP and/or DBP greater than or equal to 130/85 mmHg.

3 | RESULTS

The clinical characteristics of all 363 participants and comparisons of the values for participants with hyperuricemia (serum uric acid ≥ 7.0 mg/dL) (N = 74, 20.4%) and without hyperuricemia (serum uric acid < 7.0 mg/dL) (N = 289, 79.6%) are shown in Table 1. The mean serum uric acid concentration of the cohort was 5.97 ± 1.21 mg/dL. MetS was diagnosed in 96 (26.4%) and 85 (23.4%) men using the IDF and Japanese criteria, respectively.

Significantly higher albumin, alanine aminotransferase (ALT) activity, aspartate aminotransferase (AST) activity, BMI, creatinine, DBP, FBG, F-IRI, gamma-glutamyl transferase (γGTP), HOMA-R, HOMA-β, SBP, serum total protein, TG, waist circumference, and number of individuals with MetS were found in the [uric acid] greater than or equal to 7.0 mg/dL group than in the [uric acid] less than 7.0 mg/dL group. In contrast, lower adiponectin, cFT, HDL-C, serum TT, and SHBG were found in the [uric acid] greater than or equal to 7.0 mg/dL group compared with the [uric acid] less than 7.0 mg/dL group. There was no difference in the serum concentration of 25-(OH)VD3 between the two groups.

The clinical data with and without MetS, defined with IDF criteria, are shown in Table 2. As expected, participants with MetS had significantly higher BP (SBP and/or DBP), BMI, γ-GTP, serum ALT and AST, TG, waist circumference, and uric acid than those without MetS. Furthermore, as previously reported, participants with MetS had significantly lower serum adiponectin, cBT, cFT, SHBG, and TT concentrations than those without MetS.

The relationships between the various serum testosterone values, uric acid concentration, and metabolic indices are shown in Table 3. Uric acid concentration and all of the testosterone values showed weak inverse correlations with BMI, SBP, and waist circumference. Serum SHBG, TT, and uric acid concentrations showed inverse correlations with adiponectin and TG. In addition, HOMA-β, HOMA-R, and insulin showed inverse correlations with all of the testosterone values, but not with uric acid.

To identify the predictors of hyperuricemia, binary regression analysis was carried out and ORs were calculated (Table 4). An FBG concentration of greater than or equal to 110 mg/dL and a TG concentration of greater than or equal to 150 mg/dL were used as cut-off values to diagnose MetS. A BMI greater than or equal to 25 kg/m² was the cut-off value recommended by the Japan Society for the Study of Obesity. In Japan, HOMA-R greater than or equal to 1.6 and HOMA-β greater than or equal to 60 are generally used as cut-off values for the diagnosis of MetS, median serum concentrations of less than 8.0 mg/dL cFT, less than 52 nmol/L SHBG, and less than 5.0 ng/mL TT were generally used as cut-off values for the diagnosis of insulin resistance and insulin secretion, respectively. Because no cut-off levels for cFT, SHBG, and TT have been published for the diagnosis of MetS, median serum concentrations of less than 8.0 ng/dL cFT, less than 52 nmol/L SHBG, and less than 5.0 ng/mL TT were tentatively selected for use in logistic regression analyses. Similarly, because no cut-off values for serum adiponectin, albumin, ALT, ASL, γGTP, and total protein were available for the diagnosis of MetS, median serum values of less than 5.0 μg/mL adiponectin and greater than or equal to 4.3 g/dL albumin, 35 IU/L ALT, 30 IU/L ASL, 70 IU/L γGTP, and
7.0 g/dL total protein were tentatively selected for logistic regression analyses. Unadjusted binary regression analyses revealed that adiponectin, albumin, BMI, creatinine, F-IRI, HOMA-β, HOMA-R, SBP, SHBG, TG, total protein, TT, and MetS (IDF criteria) were statistically significant markers of hyperuricemia, and after adjustment, adiponectin ($P = .002$), creatinine ($P < .001$), SHBG ($P = .007$), and total protein ($P = 0.047$) remained statistically significant (Table 4).
Lastly, ROC curve analysis was used to calculate the cut-off values for these predictors. As shown in Table 5, less than 46.5 nmol/L SHBG was a significant predictor of hyperuricemia (AUC = 0.645, P < .001), together with less than 3.68 μg/mL (AUC = 0.691, P < .001) adiponectin, greater than or equal to 1.0 mg/dL (AUC = 0.700, P < .001) serum creatinine, and greater than or equal to 7.2 g/dL (AUC = 0.617, P = 0.002) total protein.

4 | DISCUSSION

In the present study, it was found that relatively low concentrations of adiponectin and SHBG are predictors of hyperuricemia, defined as a serum uric acid concentration greater than or equal to 7.0 mg/dL, using binary logistic regression analysis. ROC analysis established 3.68 μg/mL serum adiponectin and 46.5 nmol/L SHBG as cut-off values for the prediction of greater than or equal to 7.0 mg/dL uric acid, with AUC values of 0.691 and 0.645, respectively. These results also suggest a close association between serum uric acid levels and MetS, considering the reported beneficial effects of adiponectin and SHBG on obesity or MetS, respectively. This is the first study to establish relationships between measures of testosterone status, especially SHBG, and hyperuricemia. Although the measurement of adiponectin and SHBG for the prediction of hyperuricemia is not as practical as uric acid measurements, these values may help provide a comprehensive understanding of the pathophysiology of MetS.

The precise mechanism underlying the inverse relationship between SHBG and hyperuricemia is unclear. Hepatic SHBG production may be downregulated by insulin, consistent with effects observed in cultured HepG2 cells. Intracellular uric acid stimulates hepatic gluconeogenesis by inactivating adenosine monophosphate protein kinase (AMPK) and activating adenosine monophosphate dehydrogenase (AMPD), and hyperuricemia has been reported to cause insulin resistance by reducing endothelial nitric oxide (NO) synthase activity. Thus, hyperuricemia may result in hyperinsulinemia, leading to a reduction in SHBG production in the liver. Although the relationship between uric acid and insulin resistance was not so strong in this study, the above hypothesis may be supported by a significant positive correlation between serum uric acid and SHBG levels.
Table 3

Association between various testosterone values, uric acid, and metabolic markers
BMI, kg/m²
Waist, cm
SBP, mmHg
DBP, mmHg
Triglycerides, mg/dL
HDL-C, mg/dL
LDL-C, mg/dL
adiponectin, µg/mL
FBG, mg/dL
Insulin, µU/mL
HbA1c, %
HOMA-ΔR
HOMA-β

Note. Correlation coefficient was determined using Pearson product-moment correlation method (parametric). *P < .05 was considered to be significant.

Abbreviations: BMI, body mass index; cbT, calculated bioavailable testosterone; cFT, calculated free testosterone; DBP, diastolic blood pressure; FBG, fasting blood glucose; HbA1c, glycohemoglobin; HDL-C, high-density lipoprotein cholesterol; HOMA-β, homeostasis model assessment for β cell function; HOMA-R, homeostasis model assessment for insulin resistance; LDL-C, low-density lipoprotein cholesterol; SBP, systolic blood pressure; SHBG, sex hormone-binding globulin; TT, total testosterone.

* P < .05.
** P < .01.
*** P < .001.

Acid and F-IRI concentrations and a negative correlation between SHBG and F-IRI (Table 3).

Such functional interaction between uric acid and SHBG may be mediated through AMPK signalling. As mentioned above, uric acid inactivates AMPK. However, SHBG production is upregulated by adiponectin-AMPK signalling in HepG2 cells32, 33 and downregulated by inflammatory cytokines (tumour necrosis factor α and interleukin-1β).33 So, hyperuricemia-induced AMPK inactivation in liver may result in the reduction of SHBG production.

The regulatory relationship between uric acid and SHBG regarding hepatic fat accumulation may be mutually conflicting or compensatory. Uric acid induces hepatocyte endoplasmic reticulum stress, and then, as a result of the cleavage of sterol regulatory element-binding protein and its nuclear translocation, triglyceride is stimulated to accumulate in hepatocytes. From such ectopic fat accumulation in the liver, adiponectin secretion may be reduced and inflammatory cytokine secretion from adipose tissue increased. Indeed, in this study, serum uric acid concentration had a positive correlation with serum levels of TG and waist circumference and a negative correlation with serum adiponectin, as already reported in other studies.35, 36 As serum SHBG decreases, liver fat mass has been clinically reported to be increased. Conversely, it has been shown that serum SHBG concentrations were higher in individuals with lower levels of intrahepatic fat mass.38, 39 Recently, SHBG overexpression was found to protect against the progression of fatty liver disease induced by a high-fructose diet in mice, and exogenous SHBG inhibited lipogenesis by the reduction of PPAR expression through the extracellular signal-regulated kinase-1/2 mitogen-activated protein kinase pathway in HepG2 cells.40

From a dietary perspective, serum uric acid levels and the prevalence of gout both rise in proportion to the level of consumption of fructose or sucrose.41, 42 Interestingly, SHBG production by HepG2 cells was dose dependently reduced by supplementation of fructose or glucose in the medium, supporting a reciprocal association between SHBG and serum uric acid levels based on diet.

Interestingly, SHBG had a larger OR for its relationship with hyperuricemia than any of the other testosterone-related measurements, whereas TT was reported to be the most reliable marker of MetS.20 Serum testosterone and hyperuricemia thus have both positive and negative relationships, and SHBG not bound to testosterone seems to have the highest OR for hyperuricemia.

Binary logistic regression analysis revealed that relatively high concentrations of serum creatinine and total protein were also risk factors for [uric acid] greater than or equal to 7.0 mg/dL. These findings are compatible with the phenomenon observed in individuals that have hyperuricemia associated with a large muscle mass.44 In addition, the relationship between high serum creatinine and hyperuricemia may reflect chronic kidney disease due to hyperuricemia.45

Several limitations should be considered in this study. First, definitive conclusions regarding pathogenesis on the basis of the identified association between hyperuricemia and SHBG are not possible in this cross-sectional study. Second, this study was limited to middle-aged male participants. The relation between hyperuricemia and testosterone may be gender-specific, so the relation between hyperuricemia...
and testosterone status may be different in women. Most types of antihypertensive drugs are thought to be neutral regarding serum uric acid levels, but past work showed that thiazide slightly increased uric acid levels and losartan potassium, an angiotensin II receptor antagonist, reduced uric acid levels to about 0.7 mg/dL. A third limitation was that the current study had no information about the types/names of antihypertensive drugs. Fourth, information on alcohol use was not obtained from all 363 participants. However, for the 274 participants that provided alcohol habit information (226 drinking and 48 non-drinking participants), no significant difference was found for serum uric acid levels in drinking compared with non-drinking participants, suggesting that there was little impact of alcohol in this study (data not shown). Lastly, the present study did not investigate the influence of inherited genetic variants on hyperuricemia and the identified relationships. Recently, 23.9% of the variance in serum uric acid was reported to be explained by common, genome-wide, single nucleotide variants, which may have influenced the results of the present study.

In summary, approximately 20% of middle-aged asymptomatic Japanese men were found to have hyperuricemia during medical examination. All of the various testosterone indicators, including SHBG, showed negative correlations with serum uric acid. Therefore, building upon our previous findings that serum low TT concentration was a predictor for MetS, we provide evidence that low SHBG provides a reliable marker of hyperuricemia and was closely correlated with MetS. A reduction in SHBG may be the result of inflammation.

TABLE 4 Predictors for hyperuricemia determined by the binary logistic regression analysis

Variables	Before Adjustment OR (95%CI)	P values	After Adjustment OR (95%CI)	P Values
BMI ≥ 25 kg/m²	2.61 (1.54-4.41)	<.001	1.81 (0.98-3.31)	.056
SBP ≥ 135 mmHg	2.11 (1.26-3.54)	.005	1.77 (0.99-3.15)	.054
TT < 5.0 ng/mL	2.25 (1.30-3.90)	.004	Not applicable	
SHBG < 52 nmol/L	2.63 (1.46-4.74)	.001	2.44 (1.27-4.68)	.007
cFT < 8.0 ng/dL	1.27 (0.75-2.15)	.372	Not applicable	
Adiponectin < 5.0 μg/mL	3.41 (1.82-6.37)	<.001	2.96 (1.50-5.86)	.002
FBG ≥ 110 mg/dL	1.88 (0.98-3.61)	.058	Not applicable	
Insulin ≥ 10.4 μU/mL	2.48 (1.29-4.79)	.007	Not applicable	
HOMA-R ≥ 1.6	2.04 (1.22-3.42)	.007	Not applicable	
HOMA-β ≥ 60	2.01 (1.20-3.37)	.008	Not applicable	
Total protein ≥ 7.0 g/dL	2.06 (1.15-3.68)	.015	1.93 (1.01-3.70)	.047
Albumin ≥ 4.3 g/dL	2.03 (1.16-3.56)	.014	Not applicable	
AST ≥ 30 IU/L	1.72 (0.90-3.28)	.101	Not applicable	
ALT ≥ 35 IU/L	1.15 (0.63-2.10)	.642	0.53 (0.26-1.08)	.082
γGTP ≥ 70 IU/L	1.66 (0.89-3.06)	.109	Not applicable	
S-Creatinine ≥ 1.0 mg/dL	4.20 (2.31-7.65)	<.001	4.45 (2.25-8.77)	<.001
Triglycerides ≥ 150 mg/dL	2.21 (1.30-3.76)	.003	1.77 (0.97-3.24)	.064
MetS (IDF)	2.30 (1.34-3.95)	.002	Not applicable	
MetS (JPN)	2.11 (1.21-3.68)	.191	Not applicable	

Note. Chi-square value was 0.782 for Hosmer-Lemeshow test (P = .999).

TABLE 5 Cut-off values of predictors and AUC for hyperuricemia determined by ROC curve analysis

Predictors	Cut-Off Values	AUC (95%CI)	P values
SHBG	46.5 nmol/L	0.645 (0.577-0.712)	<.001
Adiponectin	3.68 μg/mL	0.691 (0.625-0.756)	<.001
Total protein	7.2 g/dL	0.617 (0.546-0.689)	.002
S-Creatinine	1.0 mg/dL	0.700 (0.633-0.767)	<.001

Abbreviations: AUC, area under the curve; CI, confidence interval; ROC, receiver operating characteristics; SHBG, sex hormone-binding globulin.
associated with hyperuricemia and from the ectopic fat accumulation associated with MetS. Therefore, SHBG may provide a valuable clinical marker for hyperuricemia.

ACKNOWLEDGEMENTS
We are grateful to Mr Takahito Kaji for his support with the statistical evaluations. We also thank K. Kusamato, M. Ochi, T. Onimaru, and R. Makita from the Department of Preventive Medicine of lizuka Hospital for their assistance with this study. We thank Charles Allan, PhD, and Mark Cleasby, PhD, from Edanz Group (www.edanzediting.com/ac) for editing drafts of this manuscript. This study was partially supported by a Grant-in-Aid for Scientific Research (B) from the Japan Society for the Promotion of Science (JSPS) (ID: 23390248).

CONFLICT OF INTEREST
The authors declare no conflict of interest relevant to this manuscript.

AUTHOR CONTRIBUTIONS
The manuscript draft. Yuko Akehi contributed to the statistics. Hiromi Yano contributed to sample collection at lizuka Hospital. Nobuya Hamanoue, Ryoko Motonaga, Tomoko Tanaka, Chikayo Iwaya, Makito Tanabe, and Takashi Nomiyama were responsible for critically reading and reviewing the manuscript and discussion. Toshihiko Yanase organized the research, planned the analysis, and revised the manuscript as corresponding author.

ORCID
Toshihiko Yanase https://orcid.org/0000-0003-2971-9943

REFERENCES
1. de Oliveira EP, Burini RC. High plasma uric acid concentration: causes and consequences. Diabetol Metab Syndr. 2012;4:12. https://doi.org/10.1186/1758-5969-4-12.
2. Yuan H, Yu C, Li X, et al. Serum uric acid levels and risk of metabolic syndrome: a dose-response meta-analysis of prospective studies. J Clin Endocrinol Metab. 2015:100:4198-4207.
3. Alberti KG, Eckel RH, Grundy SM, et al. Harmonizing the metabolic syndrome: a joint interim statement of the International Diabetes Federation task force on epidemiology and prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation. 2009;120:1640-1645.
4. Rizzo M, Obrodovic M, Labudovic-Borovic M, et al. Uric acid metabolism in pre-hypertension and the metabolic syndrome. Curr Pharmaco-l. 2014;12:572-585.
5. Toyoki D, Shibata S, Kuribayashi-Oikuma E, et al. Insulin stimulates uric acid reabsorption via regulating urate transporter 1 and ATP-binding cassette subfamily G member 2. Am J Physiol Renal Physiol. 2017;313:F826-F834.
6. Matsusura F, Yamashita S, Nakamura T, et al. Effect of visceral fat accumulation on uric acid metabolism in male obese subjects: visceral fat obesity is linked more closely to overproduction of uric acid than subcutaneous fat obesity. Metabolism. 1998;47:929-933.
7. Fabregat I, Revilla E, Machado A. Short-term control of the pentose phosphate cycle by insulin could be modulated by the NADPH/NADP ratio in rat adipocytes and hepatocytes. Biochem Biophys Res Commun. 1987;146:920-925.
8. Numata T, Miyatake N, Wada J, Makino H. Comparison of serum uric acid levels between Japanese with and without metabolic syndrome. Diabetes Res Clin Pract. 2008:80:e1-e5.
9. Sui X, Church TS, Meriwether RA, Lobelo F, Blair SN. Uric acid and the development of metabolic syndrome in women and men. Metabolism. 2008;57:845-852.
10. Rho YH, Choi SJ, Lee YH, et al. The prevalence of metabolic syndrome in patients with gout: a multicenter study. J Korean Med Sci. 2005;20:1029-1033.
11. Takahashi S, Yamamoto T, Tsutsuzi Z, Moriwaki Y, Yamakita J, Higashino K. Close correlation between visceral fat accumulation and uric acid metabolism in healthy men. Metabolism. 1997;46:1162-1165.
12. Kurahashi H, Watanabe M, Sugimoto M, et al. Testosterone replacement elevates the serum uric acid levels in patients with female to male gender identity disorder. Endocr J. 2013;60:1321-1327.
13. Yahyaou R, Esteva I, Haro-Mora JJ, et al. Effect of long-term administration of cross-sex hormone therapy on serum and urinary uric acid in transsexual persons. J Clin Endocrinol Metab. 2008;93:2230-2233.
14. Dunn JF, Nisula BC, Rodbard D. Transport of steroid hormones: binding of 21 endogenous steroids to both testosterone-binding globulin and corticosteroid-binding in human placenta. J Clin Endocrinol Metab. 1981;53:58-68.
15. Grossmann M. Low testosterone in men with type 2 diabetes: significance and treatment. J Clin Endocrinol Metab. 2011;96:2341-2353.
16. Rao PM, Kelly DM, Jones TH. Testosterone and insulin resistance in the metabolic syndrome and T2DM in men. Nat Rev Endocrinol. 2013;9:479-493.
17. Jaruvongvanich V, Sanguankeo A, Riangwiwat T, Upala S. Testosterone, sex hormone-binding globulin and nonalcoholic fatty liver disease: a systematic review and meta-analysis. Ann Hepatol. 2017;16:382-394.
18. Ding EL, Song Y, Manson JE, et al. Sex hormone-binding globulin and risk of type 2 diabetes in women and men. N Engl J Med. 2009;361:1152-1163.
19. Brand JS, van der Tweel I, Grobbee DE, Emmelot-Vonk MH, van der Schouw YT. Testosterone, sex hormone-binding globulin and the metabolic syndrome: a systemic review and meta-analysis of observational studies. Int J Epidemiol. 2011;40:189-207.
20. Tanabe M, Akehi Y, Nomiyama T, Murakami J, Yanase T. Total testosterone is the most valuable indicator of metabolic syndrome among various testosterone values in middle-aged Japanese men. Endocr J. 2015;62:123-132.
21. Plymate SR, Jones RE, Matej LA, Friedl KE. Regulation of sex hormone binding globulin (SHBG) production in Hep G2 cells by insulin. Steroids. 1988;52:339-340.
22. Cao W, Zheng RD, Xu SH, Fan YF, Sun HP, Liu C. Association between sex hormone and blood uric acid in male patients with type 2 diabetes. Int J Endocrinol. 2017;2017:437523.
23. Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC. Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentra-tions in man. Diabetologia. 1988;28:412-419.
24. The Examination Committee of Criteria for Metabolic syndrome. The definition and criteria of metabolic syndrome. Nippon Naika Gakkai Zasshi. 2005;94:794-809. Japanese
25. Japan Society for the Study of Obesity. Guidelines for the management of obesity disease 2016. Japanese.
26. Japan Diabetes Society. Treatment Guide for Diabetes 2018–2019. Treatment Guide for Diabetes Editorial Committee (eds). Bunkodo, Tokyo, 2018. Japanese.

27. Japan Diabetes Society. Guidebook for Diabetes Specialist Training 7th Edition. Guidebook for Diabetes Specialist Training Editorial Committee (eds). Shindan to Chiryosya, Tokyo, 2017. Japanese.

28. Maeda N, Funahashi T, Matsuzawa Y, Shimomura I. Adiponectin, a unique adipocyte-derived factor beyond hormones. Atherosclerosis. 2020;292:1-9.

29. Yanase T, Fan W, Kyoya K, et al. (2008) Androgens and metabolic syndrome: lessons from androgen receptor knockout (ARKO) mice. J Steroid Biochem Mol Biol. 2008;109:254-257.

30. Cicerchi C, Li N, Kratzer J, et al. Uric acid-dependent inhibition of AMP kinase induces hepatic glucose production in diabetes and starvation: evolutionary implications of the uricase loss in hominids. FASEB J. 2014;28:3339-3350.

31. Roy D, Perreault M, Marette A. Insulin stimulation of glucose uptake in skeletal muscles and adipose tissues in vivo is NO dependent. Am J Physiol. 1998;274:E692-E699.

32. Simó R, Sáez-López C, Barbosa-Desongles A, Hernández C, Selva DM. Novel insights in SHBG regulation and clinical implications. Trends Endocrinol Metab. 2015;26:376-383.

33. Simó R, Saez-Lopez C, Lecube A, Hernandez C, Fort JM, Selva DM. Adiponectin upregulates SHBG production: molecular mechanisms and potential implications. Endocrinology. 2014;155:2820-2830.

34. Choi YJ, Shin HS, Choi HS, et al. Uric acid induces fat accumulation via generation of endoplasmic reticulum stress and SREBP-1c activation in hepatocytes. Lab Invest. 2014;94:1114-1125.

35. Conen D, Wietlisbach V, Bovet P, et al. Prevalence of hyperuricemia and relation of serum uric acid with cardiovascular risk factors in a developing country. BMC Public Health. 2004;25:4-9.

36. Gradinaru D, Margina D, Borsa C, et al. Adiponectin: possible link between metabolic stress and oxidative stress in the elderly. Aging Clin Exp Res. 2017;29:621-629.

37. Stefan N, Schick F, Häring HU. Sex hormone-binding globulin and risk of type 2 diabetes. N Engl J Med. 2009;361:2675-2676. author reply 2677-2678

38. Flechtnr-Mors M, Schick A, Oezturk S, et al. Associations of fatty liver disease and other factors affecting serum SHBG concentrations: a population based study on 1657 subjects. Horm Metab Res. 2014;46:287-293.

39. Lazo M, Zeb I, Nasir K, et al. Association between endogenous sex hormones and liver fat in a multietnic study of atherosclerosis. Clin Gastroenterol Hepatol. 2015;13:1686-1693.

40. Saez-Lopez C, Barbosa-Desongles A, Hernandez C, et al. Sex hormone-binding globulin reduction in metabolic disorders may play a role in NAFLD development. Endocrinology. 2017;158:545-559.

41. Gao X, Qi L, Qiao N, et al. Intake of added sugar and sugar-sweetened drink and serum uric acid concentration in US men and women. Hypertension. 2007;50:306-312.

42. Choi HK, Curhan G. Soft drinks, fructose consumption, and the risk of gout in men: prospective cohort study. BMJ. 2008;336:309-312.

43. Selva DM, Hogveen KN, Innis SM, Hammond GL. Monosaccharide-induced lipogenesis regulates the human hepatic sex hormone-binding globulin gene. J Clin Invest. 2007;117:3977-3987.

44. Patel SS, Molnar MZ, Tayek JA, et al. Serum creatinine as a marker of muscle mass in chronic kidney disease: results of a cross-sectional study and review of literature. J Cachexia Sarcoopenia Muscle. 2013;4:19-29.

45. Iseki K, Oshiro S, Tozawa M, Iseki C, Ikemina Y, Takishita S. Significance of hyperuricemia on the early detection of renal failure in a cohort of screened subjects. Hypertens Res. 2001;24:691-697.

46. Doghramji PP, Wortmann RL. Hyperuricemia and gout: new concepts in diagnosis and management. Postgrad Med. 2012;124:98-109.

47. Nairnani H, Fujita T, Itó S, et al. Efficacy and safety of long-term losartan therapy demonstrated by a prospective observational study in Japanese patients with hypertension: The Japan Hypertension Evaluation with Angiotensin II Antagonist Losartan Therapy(J-HEALTH)study. Hypertens Res. 2008;31:295-304.

48. Major TJ, Topless RK, Dalbeth N, Merriman TR. Evaluation of the diet wide contribution to serum urate levels: meta-analysis of population based cohorts. BMJ. 2018;363:k3951.

How to cite this article: Fujihara Y, Hamanoue N, Akehi Y, et al. Relatively low sex hormone-binding globulin concentration is a risk factor for hyperuricemia in middle-aged Japanese men. Obes Sci Pract. 2020;6:425-433. https://doi.org/10.1002/osp4.413