The complete mitochondrial genome of the edible mushroom *Grifola frondosa*

Ying Song, Jianing Wan, Jun-Jun Shang, Zhan Feng, Yuchang Jin, Hewen Li, Ting Guo, Ying-Ying Wu, Da-Peng Bao, Min Zhang, Litaoc, Junjie Liu, and Rui-Heng Yang

Institute of Edible Fungi, LiaoNing Academy of Agricultural Sciences, Shenyang, PR China; National Engineering Research Center of Edible Fungi, Ministry of Science and Technology (MOST), Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, PR China; Jiangsu China Green Co. Ltd, Siyang, PR China

ABSTRACT

The culinary-medicinal mushroom *Grifola frondosa* is widely cultivated in East Asia. In this study, the complete mitochondrial genome of *G. frondosa* was determined using Illumina sequencing. The circular molecule was 197,486 bp in length with a content of 25.01% GC, which was one of the largest mitochondrial genomes in the order Polyporales. A total of 39 known genes encoding 13 common mitochondrial genes, 24 tRNA genes, 1 ribosomal protein s3 gene (rps3), and 1 DNA polymerase gene (dpo) were predicted in this genome. The phylogenetic analysis showed that *G. frondosa* clustered together with *Sparassis crispa*, *Laetiporus sulphureus*, *Wolfiporia cocos*, and *Taiwanofungus camphoratus*. The complete mitochondrial genome reported here may provide new insight into genetic information and evolution for further studies.

ARTICLE HISTORY

Received 4 December 2020
Accepted 12 April 2021

KEYWORDS

Mitochondrial genome; *Grifola frondosa*; Illumina sequencing; phylogenetic analyses

CONTACT Rui-Heng Yang, yangrh@saas.sh.cn
National Engineering Research Center of Edible Fungi, Ministry of Science and Technology (MOST), Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, PR China

© 2022 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
the previous report (Justo et al. 2017). The mitochondrial genome of *G. frondosa* would contribute to the understanding of the phylogeny and evolution of Polyporales.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Funding

This work was supported by Science and Technology Innovation Action of Shanghai Science and Technology Commission (No. 17391900400).

Data availability statement

The genome sequence data that support the findings of this study are openly available in GenBank of NCBI at https://www.ncbi.nlm.nih.gov/ under the accession number MW324678. The associated BioProject, Biosample, and SRA of numbers are PRJNA703746, SAMN18022987, and SRR13759100, respectively. The strain used in this study was deposited at Guangdong Microbial Culture Collection Center (GDMCC, http://www.gimcc.net/, gdmcc@gdim.cn) under the number GDMCC5.625.

References

Fischer M, Seefelder S. 1995. Mitochondrial DNA and its inheritance in *Pleurotus ostreatus* and *P. pulmonarius*. Bot Acta. 108(4):334–343.
Huang SJ, Tsai SY, Lin SY, Liang CH, Mau JL. 2011. Nonvolatile taste com-
ponents of culinary-medicinal maitake mushroom, *Grifola frondosa* (dicks.:fr.) s.f. gray. Int J Med Mushr. 13(3):265–272.

Jin JJ, Yu WB, Yang JB, Song Y, Yi TS, Li DZ. 2020. Get organelle: a fast
and versatile toolkit for accurate de novo assembly of organelle
genomes. Genome Biol. 21:241.

Justo A, Miettinen O, Floudas D, Ortiz-Santana B, Sjökvist E, Lindner D,
Nakasone K, Niemelä T, Larsson KH, Ryvarden L, et al. 2017. A revised
family-level classification of the Polyporales (Basidiomycota). Fungal
Biol. 121(9):798–824.

Kumar S, Stecher G, Tamura K. 2016. MEGA7: molecular evolutionary gen-
etics analysis version 7.0 for bigger datasets. Mol Biol Evol. 33(7):
1870–1874.

Li Q, Yang L, Xiang D, Wan Y, Wu Q, Huang W, Zhao G. 2020. The com-
plete mitochondrial genomes of two model ectomycorrhizal fungi
(*Laccaria*): features, intron dynamics and phylogenetic implications. Int
J Biol Macromol. 145(15):974–984.

Liu C, Ji HY, Wu P, Yu J, Liu AJ. 2020. The preparation of a cold-water sol-
able polysaccharide from *Grifola frondosa* and its inhibitory effects on
MKN-45 cells. Glycoconj J. 37(4):413–422.

Numata F, Kawaguchi N, Yamada C, Ota Y, Chen FC, Hayashi M,
Shimomura N, Yamaguchi T, Aimi T. 2019. Mitochondrial DNA
dynamics during fruiting body formation in *Grifola frondosa*. Mycoscience. 60(3):147–150.

Wang G, Lin J, Shi Y, Chang X, Wang Y, Guo L, Wang W, Dou M, Deng Y,
Ming R, et al. 2019. Mitochondrial genome in *Hypsizygus marmoreus*
and its evolution in Dikarya. BMC Genomics. 20(1):765.

Wang X, Song A, Wang F, Mingyue C, Li X, Li Q, Liu N. 2020. The 206
kbp mitochondrial genome of *phanerochaete canosa* reveals dynami-
rics of introns, accumulation of repeat sequences and plasmid-derived
genes. Int J Biol Macromol. 162:209–219.

Westermann B, Prokisch H. 2002. Mitochondrial dynamics in filamentous
fungi. Fungal Genet Biol. 36(2):91–97.

Wu YY, Shang JJ, Li Y, Zhou CL, Hou D, Li JL, Tan Q, Bao D-P, Yang RH.
2018. The complete mitochondrial genome of the Basidiomycete
edible fungus *Hypsizygus marmoreus*. Mitochondrial DNA Part B. 3(2):
1241–1243.

Yang R, Li Y, Song X, Tang L, Li C, Tan Q, Bao D. 2017. The complete
mitochondrial genome of the widely cultivated edible fungus
Lentinula edodes. Mitochondrial DNA Part B. 2(1):13–14.

Yang RH, Li Y, Wang Y, Wan JN, Zhou CL, Wang Y, Gao YN, Mao WJ,
Tang LH, Gong M, et al. 2016. The genome of *Pleurotus eryngii* pro-
vides insights into the mechanisms of wood decay. J Biotechnol. 239:
65–67.