Short-term effectiveness of a theory-based intervention to promote diabetes management behaviours among adults with type 2 diabetes in Iran: A randomised control trial

Reza Daryabeygi-Khotbehsara1,2 | Katherine M. White3 | Kourosh Djafarian1
Sheikh Mohammed Shariful Islam2 | Susie Catrledge2,4 | Mohammad Payam Ghaifare5 | Seyed Ali Keshavarz1

1Department of Clinical Nutrition, Tehran University of Medical Sciences, Tehran, Iran
2Institute for Physical Activity and Nutrition (IPAN), Deakin University, Melbourne, VIC., Australia
3School of Psychology and Counselling and Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia
4Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, VIC., Australia
5Department of Business Management, Islamic Azad University, Science & Research Branch, Tehran, Iran

Correspondence
Reza Daryabeygi-Khotbehsara, Institute for Physical Activity and Nutrition (IPAN), Deakin University, Melbourne, VIC., Australia.
Email: reza.d@deakin.edu.au

Funding information
Tehran University of Medical Sciences and Health Services

Abstract

Background: Diet and physical activity are recommended for diabetes management. Evidence suggests theory-based interventions are more efficacious than non-theory approaches. This study aimed to test the short-term effectiveness of an integrated theoretical model-based intervention to encourage compliance for low-fat food consumption, carbohydrate counting and physical activity in adults with type 2 diabetes.

Methods: A 4-week parallel randomised control trial was conducted in Iran. Data were collected using a self-report questionnaire at baseline and 8-weeks post-intervention. This survey assessed the theory of planned behaviour (TPB) constructs of attitude, subjective norm (others’ approval) and perceived behavioural control (PBC). We also assessed risk perceptions (motivational) and planning (volitional) from the health action process approach (HAPA). Furthermore, weight, body mass index, triglyceride (TG) and LDL-cholesterol were measured, with a sub-sample of participants providing haemoglobin A1c (HbA1c) assessments.

Results: For both low-fat food consumption and physical activity, only planning revealed a significant improvement over time for intervention rather than control participants (F = 8.78, P ≤ .001 for low-fat vs F = 11.26, P ≤ .001 for physical activity). For carbohydrate counting, significant effects were found for behaviour (F = 4.37, P = .03), intention (F = 8.14, P ≤ .001), PBC (F = 7.52, P ≤ .001) and planning (F = 4.54, P = .03), reflecting improvements over time in the intervention participants compared to controls. Furthermore, the effects of the intervention on behaviour were partially mediated via participants’ degree of planning (B = 0.10, SE = 0.06, CI = 0.01 to 0.26). The serum TG level was significantly reduced from pre to post-intervention for intervention rather than for control participants (F = 18.69, P ≤ .001) as did HbA1c in a sub-sample of study participants.

Conclusions: This intervention showed promising short-term effects for carbohydrate counting but did not show improvements for low-fat diet nor physical activity. Given the improvement in psychological measures and self-reported behaviour for carbohydrate counting, coupled with the findings for TG, future research is needed to demonstrate longer-term improvements.
1 | INTRODUCTION

Diabetes is a significant health challenge and dramatically growing worldwide, especially in low-and middle-income countries. Uncontrolled diabetes in the long-term can progressively lead to complications, including retinopathy, nephropathy, neuropathy and cardiovascular effects. Maintenance of blood glucose, cholesterol and blood pressure to near normal levels can delay or prevent diabetes complications. Strategies to manage diabetes, suggested by leading international Diabetes Associations, include carbohydrate monitoring (using carbohydrate counting), lower saturated fat intake and physical activity.

2 | BACKGROUND

Behavioural interventions have demonstrated effectiveness in diabetes management, and theory-based interventions are more efficacious than non-theoretical approaches. Several theories have been used to inform health behaviour change, including the Theory of Planned Behaviour (TPB) and the Health Action Process Approach (HAPA). According to the TPB, a person's behaviour is a function of intention to engage in the behaviour. In turn, the intention is directly determined by attitude (positive or negative evaluation of the behaviour), subjective norm (perceived pressure to perform a behaviour) and perceived behavioural control (PBC, perception of control over performing the behaviour, also said to influence behaviour directly). The debate about the utility of the TPB in health psychology applications highlights the need to test the validity of the TPB. A recent meta-analysis demonstrated the effectiveness of TPB-based interventions including for people with type 2 diabetes (T2D). A TPB-based intervention among older T2D adults with cardiovascular disease found an extended TPB (with planning as an extra measure) intervention effective for improving physical activity but not healthy eating.

The HAPA is another theoretical framework focusing on motivational and volitional processes in health behaviour change. Preintentional (motivational) processes target behavioural intention, and post intentional (volitional) processes lead to actual behaviour change. Perceived risk and outcome expectancies drive contemplation in the motivation phase, with self-efficacy also influencing intention. Schwarzer considers a minimum level of perceived risk necessary for the initiation of contemplation regarding the benefits of behaviour and one's competence to perform the behaviour. For intentions to translate into behaviour, a volitional phase involving planning occurs, also underpinned by self-efficacy.

Moreover perceived risk is a core motivational concept in many health behaviour theories, such as the Health Belief Model [HBM] (Rosenstock, 1974). Typical inclusions of risk perception measurement are risk severity (feeling the seriousness of contracting an illness or of leaving it untreated) and risk susceptibility (beliefs about the likelihood of getting a disease). Risk severity has been effective in predicting haemoglobin A1C (HbA1c) reductions in T2D participants and those with higher perceived severity and susceptibility were more adherent to self-care behaviours.

In addition, planning has been suggested as a key volitional variable in behaviour change interventions, especially as it can mediate the intention-behaviour relationship. According to the HAPA, intention should be transformed into detailed instructions on how to perform the intended behaviour (action plans), which is necessary to prevent impulsive actions. Furthermore, maintaining the initiated behaviour should be protected from barriers and obstacles by consideration, for example, of effective coping strategies (coping plans). Similarly, objective measures such as weight, body mass index (BMI), triglycerides (TG), LDL-cholesterol (LDL-c) and HbA1c are essential components of comprehensive diabetes evaluation.

In a previous formative qualitative study among T2D we showed the inclusion of the standard TPB constructs (attitude, subjective norm, PBC), as well as risk perceptions and planning factors from the HAPA, which appeared viable as the focus of a behaviour change intervention among this cohort. To our knowledge, there is no TPB-based intervention among diabetes patients in Iran. Thus, the present study employed an integrated theoretical framework for informing and evaluating a behavioural intervention to promote low-fat food consumption, carbohydrate counting and physical activity, three critical behaviours in diabetes management. We hypothesised that intervention participants would demonstrate a short-term improvement compared to control participants at the end of the study, for (a) attitude, subjective norm, perceived behavioural control, intention, planning and risk perception for the three diabetes management behaviours, (b) the self-reported diabetes management behaviour, and (c) the behavioural indicators of weight, BMI, TG and LDL-c, as well as for HbA1c (sub-sample only).

3 | METHODS

A parallel randomised control trial was designed to assess the short-term effectiveness of a 4-week intervention based on the integrated theoretical model in adults with T2D. The factors and underlying beliefs identified for intervention focus were based on an initial, formative qualitative study among 30 T2D participants. Ethical approval was obtained from the Ethics Committee of Tehran University of Medical Sciences. Given there are no national dietary or educational guidelines for diabetes in Iran, target behaviours were adapted from international guidelines such as the American Diabetes Associations, Diabetes Australia and the Joslin Diabetes Center. The study was registered with the Iranian Registry of Clinical Trials (IRCT2013040912961N1).

3.1 | Definitions

Definitions of the included behaviours are as follows: Low-fat food/meal consumption was defined as “reducing saturated fat intake by
low-fat dairy products, using polyunsaturated and monounsaturated oils [plant based], avoiding fried foods and trimming the fat from meat [Lean meat].22 Carbohydrate counting was defined as “identifying which foods contain carbohydrate, then assessing how much carbohydrate a serving of food (or an entire meal) contains concerning recommendations and if you use insulin, match with insulin dose”21,23 and physical activity was defined as “engaging in moderate physical activity for at least 150 minutes per week [half an hour/day, most of the days of week]”.22

3.2 | Participants

T2D adults were recruited from the Iranian Diabetes Society (IDS), Tehran, Iran. Inclusion criteria were adults (aged 25-60 years) diagnosed with T2D for at least two years on lipid-lowering medications (eg, Statins, Nicotinic acid). They had taken part in regular diabetes education classes, including carbohydrate counting. People with diabetes complications (retinopathy, nephropathy and neuropathy), CVD (cardiovascular diseases) or other conditions that may prevent class attendance, taking medications that affect lipid levels such as antipsychotics (eg, Clozapine) and alcohol drinkers (consume beer, wine, liquor or hard liquor beverages at least once per week for a minimum of 6 months26) were ineligible.

3.3 | Design and procedure

The present study employed a 2 (Condition: intervention vs. control) by 2 (Time: pre-intervention vs 8-week post-intervention) mixed measure design, with Time a repeated measure factor. A power calculation was undertaken using G’power 3.1 software,25 whereby a repeated measure MANOVA is used with a power of 80%, an effect size of 0.4 and α = 0.05, yielding a minimum sample size required of 97 participants (that was minimally exceeded following exclusions, etc). A total of 220 adults diagnosed with T2D were selected from a list provided by IDS using permuted block randomisation (a 1:1 allocation ratio) and contacted. As a result, the exclusion could only take place after the randomisation process. Permuted block pattern was obtained via an Internet-generated pattern with a block size of 8. The participant list was provided by IDS staff, and the researchers were blinded. Figure 1 shows the flow of participants in the study. Written informed consent was obtained from each participant before the experiment. The study conforms to CONSORT guidelines26 (see Supplementary File S1).

3.4 | Control group

Participants in the control group completed pre- and post-intervention measures but received no intervention. They were offered one month of nutrition counselling after completion of the study.

3.5 | Intervention group

The intervention participants attended weekly 2-hour group-based intervention classes (each comprising 10 to 12 individuals) over four weeks, facilitated by two nutritionists. No outside of class contact was initiated between participants and educators during the study (see Table 1 for intervention strategies).

3.6 | Measures

At Time 1, one-week before the intervention, participants completed a demographic questionnaire at arrival, then via a face-to-face interview by a trained health care provider completed an integrated questionnaire. Bodyweight and height were measured, and fasting blood lipids were assessed Table 2. Time 2 (follow-up) measurements were performed eight weeks post-intervention during which time the integrated questionnaire measures were completed, of the pre-intervention individuals, 107 (control, n = 54; Intervention, n = 53) participated in all sessions and completed second measurements at week-8 Figure 1. Furthermore, a sub-sample of participants (n = 34, with n = 20 in the intervention condition and n = 14 in the control condition) provided access to the researchers for their HbA1c assessments pre and post-intervention.

The questionnaires were constructed broadly according to guidelines and examples outlined in previous research,9,27,10 with some negatively-worded items to reduce response bias. (see Table 3. The first draft questionnaires were translated from English into Persian under the supervision of an expert panel (11 Professors of nutrition, psychology and health promotion) familiar with both Persian and English. The content validity of questionnaires was evaluated by a content validity index (CVI) and content validity ratio (CVR) and satisfactory scores (>0.82 and >0.75) for all measures. The questionnaires were then completed by five individuals with T2D to assess wording and their comprehension of items. The integrated questionnaires are available as supplementary (Supplementary File S2-S4).

3.7 | Data analysis

The impact of the intervention across all three behaviours was assessed using 2 (intervention, control) × 2 (pre, post-intervention) MANOVAs. The integrated model constructs were considered as predictor variables for low-fat food/meal consumption, carbohydrate counting and physical activity. In another MANOVA analysis, BMI, weight, TG and LDL-c were considered as predictors to show the effects of the intervention on clinical and biochemical outcomes. Mediation analyses were also conducted to assess whether any of the (significant) extended TPB variables mediated the impact of the intervention on behaviour. α was set at 0.05 as the significance level. Baseline differences for age, gender, education level, job, marital status, years since diagnosis, weight, height, BMI, TG, LDL-c and HbA1c were examined by Chi-square and independent t-tests.
RESULTS

The demographic characteristics of participants and baseline measures are shown in Table 2. The majority of participants were female (65.3%), full-time employees (53%), and married (90.3%). The mean age of the participants was 49.4 years ± SD = 6.15 in the control group and 48.05 years ± 5.69 in the intervention. No baseline differences were observed in any variables. The mean number of years since diagnosis was 5.85 years (SD = 2.89, range = 2-14 years).

To assess any baseline differences for the integrated model measures, MANOVAs revealed no significant differences between groups (intervention or control) on the constructs for all three behaviours. Intention-to-treat analysis showed similar findings to those with the full participation of the study.

For the 2 × 2 MANOVA analysis, the between-subject factor was the intervention condition (intervention vs control), and the within-subject factor was the time (Time 1: pre-intervention and Time 2: 8 weeks post-intervention). The integrated model variables and behaviour were entered as dependent variables (see Tables 4-7 for Ms, SDs and significance levels).

4.1 Impact of intervention on low-fat food consumption

No significant Condition effects were observed for low-fat food consumption. There were, however, significant Time and Time by Condition effects: F(11,80) = 3.01, P = .002, partial η² = 0.29 and F(11,80) = 2.65, P = .006, partial η² = 0.26, respectively. Univariate results revealed a significant Time effect for risk severity with a significant increase for risk severity over time. There was no significant Time by Condition effect, except for planning, with a significant increase for planning scores over time in the intervention group, but not the control condition.
4.2 Impact of intervention on carbohydrate counting

For carbohydrate counting, there were no significant main effects for Condition, but significant Time and Time by Condition effects with F(11,80) = 3.67, P = .000, partial η² = 0.33 and F(11,80) = 3.21, P = .001, partial η² = 0.30, respectively. Univariate Time effects showed significant results for behaviour attitude, risk severity and planning, which all increased over time. Furthermore, significant Time by Condition effects was observed for behaviour, intention and planning. Pairwise comparisons for the simple effects of time within the intervention conditions were then conducted. Participants in the intervention condition revealed significant increases in behaviour, intention, PBC and planning, at follow-up compared to pre-intervention. There were no significant changes in the control condition across time on these constructs.
Target construct	Content and Procedure	
Sessions 1-3	**Perceived risk**	Watching a 3-4 minute film about diabetic complications (retinopathy, neuropathy, nephropathy and cardiovascular disease) along with complementary explanations by the facilitators using simple terms (blurred vision and blindness, damage to nerves, kidney damage and irreparable effects on heart and vessels, respectively), followed by a 10 minute group-based discussion mainly about the costs of treatment and importance of complications.
Attitude		The elicited behavioural beliefs from the formative phase comprising advantages (e.g., helping control weight/weight loss, making me healthier, reducing/helping control blood sugar levels) and disadvantages (e.g., having a bad taste, restricting food intake, taking too much attention, making me tired) of the three behaviours were discussed in detail among participants.
Subjective norm		Perceptions of social support from others (i.e., normative beliefs) were discussed and appropriate approaches to deal with other people were considered to influence subjective norm. Participants were asked to mention referents (e.g., spouse, children) who approve or disapprove of their performing the behaviours and discuss strategies to encourage approval and tackle any disapproval.
PBC		The participants were encouraged to think about the extent to which they have control over performing the behaviours and discussed strategies to facilitate better control (to improve PBC). Barriers (e.g., eating out in restaurants/workplace or parties, hunger, high costs) and facilitators (e.g., promoting knowledge) identified in the formative stage were also considered.
Intention		A consideration of above influences, in combination, to produce healthier decision making specific to one's own particular circumstances regarding the behaviours were discussed and examples were given to strengthen intentions.
Planning		The necessity of planning including goal-setting and how to deal with difficult situations and setbacks to facilitate behaviour change were discussed.
Session 4	**All constructs**	The previous sessions were summarised and participants had an opportunity to ask any questions or raise any issues with the facilitators.

The participants' behavioural (underlying attitude), normative (underlying subjective norm), and control (underlying PBC) beliefs regarding low-fat food consumption, carbohydrate counting and physical activity were elicited prior to the present study in a formative phase via face-to-face interviews with 30 adults representative of the target population and then used as the basic components for discussions in each session.

In the first three sessions, each was related to a single behaviour (session 1, low-fat food consumption; session 2, carbohydrate counting; session 3, physical activity, respectively), targeting all included constructs (perceived risk, attitude, subjective norm, PBC, intention and planning), while the last session (Session 4) summarised the previous content.
Table 3

Construct	# of items	\(\alpha/r\)	Response anchors	Measures (items examples for CC)
Intention	2	T1 = 0.82	1 (strongly disagree); 7 (strongly agree)	It is likely that I will count the number of carbohydrate in foods during the next month.
		T2 = 0.75		
		T1 = 0.73		
		T2 = 0.67		
		T1 = 0.65		
		T2 = 0.69		
Attitude	6	T1 = 0.96	1 (good); 7 (bad)	Most people who are important to me think that I should count the number of carbohydrate in foods during the next month.
		T2 = 0.83	1 (pleasant); 7 (unpleasant)	
		T1 = 0.84	1 (useful); 7 (useless)	
		T2 = 0.81	1 (wise); 7 (foolish)	
		T1 = 0.91	1 (valuable); 7 (worthless)	
		T2 = 0.80	1 (beneficial); 7 (harmful)	
Subjective norm	3	T1 = 0.96	1 (strongly disagree); 7 (strongly agree)	If I didn’t count the number of carbohydrates, it is likely to lead to further diabetic complications.
		T2 = 0.94		
		T1 = 0.95		
		T2 = 0.93		
		T1 = 0.93		
		T2 = 0.89		
Perceived behavioural	3	T1 = 0.91	1 (strongly disagree); 7 (strongly agree)	How to cope with possible setbacks, What to do if something interferes with my plans, and When I have to pay extra attention to prevent lapses.
control**		T2 = 0.90		
		T1 = 0.89		
		T2 = 0.90		
		T1 = 0.94		
		T2 = 0.91		
Perceived risk	1	-	1 (strongly disagree); 7 (strongly agree)	When to count carbohydrate, How to count carbohydrate, and When I have to pay extra attention to prevent lapses.
susceptibility**		-		
Risk severity**	1	-	1 (strongly disagree); 7 (strongly agree)	
(single item common across		-		
all behaviours)		-		
Planning**	7	T1 = 0.93	1 (almost never true) to 7 (almost always true)	
\(^b\)		T2 = 0.92		
		T1 = 0.83		
		T2 = 0.83		
		T1 = 0.91		
		T2 = 0.91		
Behaviour	1	-	1 (to a very small extent) / 7 (to a very large extent)	Counting the number of carbohydrate in foods during the next month.

Abbreviations: CC, carbohydrate counting; LFF, low-fat food; PA, physical activity.

Low-fat food/meal consumption was defined as “reducing saturated fat intake by low-fat dairy products, using polyunsaturated and monounsaturated oils [plant based], avoiding fried foods and trimming fat from meat [Lean meat]” (Diabetes Australia, 2015). **Carbohydrate counting** was defined as “identifying which foods contain carbohydrate, then assessing how much carbohydrate a serving of food (or an entire meal) contains with respect to recommendations and if you use insulin, match with insulin dose” (ADA, 2017; Joslin Diabetes Center, 2019) and **physical activity** was defined as “engaging in moderate physical activity for at least 150 minutes per week [half an hour/day, most of the days of week]” (Diabetes Australia, 2018). The item examples below are for carbohydrate counting.

\(^a\)Reverse scored items.

\(^b\)Included both action and coping planning.

\(^c\)Seven items for CC. LFF and PA contained 6 and 8 item measures for planning, respectively. LFF and PA items were “When to choose low-fat foods/engage in regular physical activity”, “Where to engage in regular physical activity”, “How to choose low-fat foods/engage in regular physical activity”, “How often to engage in regular physical activity”, “What to do if something interferes with my plans”, “How to cope with possible setbacks”, “What to do in difficult situations in order to stick to my intentions” and “When I have to pay extra attention to prevent lapses”.
Table 4

Variable	Condition	Pre-intervention	8-week post-intervention	F-value	P	Partial η²		
		n = 115	CIs	n = 107	CIs			
Behaviour	Control	4.84 (0.96)	4.54, 5.15	5.04 (0.86)	4.74, 5.34	0.336	.56	0.004
	Intervention	4.91 (1.09)	4.61, 5.21	5.00 (1.15)	4.70, 5.29			
Intention	Control	5.68 (0.92)	5.44, 5.92	5.67 (0.76)	5.44, 5.90	0.656	.42	0.007
	Intervention	5.76 (0.71)	5.51, 6.00	5.89 (0.81)	5.65, 6.12			
Attitude	Control	6.29 (0.64)	6.13, 6.45	6.27 (0.54)	6.13, 6.42	0.972	.32	0.011
	Intervention	6.43 (0.44)	6.27, 6.59	6.49 (0.41)	6.35, 6.63			
Subjective Norm	Control	5.34 (1.02)	5.07, 5.61	5.39 (0.97)	5.15, 5.64	2.019	.15	0.022
	Intervention	5.80 (0.81)	5.52, 6.06	5.69 (0.65)	5.45, 5.93			
PBC	Control	5.67 (0.82)	5.41, 5.92	5.66 (0.77)	5.41, 5.92	0.103	.74	0.001
	Intervention	5.82 (0.89)	5.57, 6.07	5.77 (0.95)	5.52, 6.03			
Susceptibility	Control	5.76 (0.94)	5.48, 6.03	5.73 (0.90)	5.49, 5.98	1.183	.28	0.013
	Intervention	5.80 (0.90)	5.53, 6.07	5.95 (0.78)	5.70, 6.20			
Severity	Control	5.86 (0.90)	5.58, 6.15	5.97 (0.80)	5.73, 6.21	1.579	.21	0.017
	Intervention	5.82 (1.01)	5.54, 6.10	6.13 (0.83)	5.89, 6.37			
Planning	Control	4.77 (0.96)	4.46, 5.09	4.58 (0.88)	4.28, 4.89	8.782	.00	0.089
	Intervention	4.73 (1.17)	4.42, 5.05	4.87 (1.18)	4.57, 5.18			

Abbreviations: η², eta squared; CIs, confidence intervals.

Table 5

Variable	Condition	Pre-intervention	8-week post-intervention	F-value	P	Partial η²		
		n = 115	CIs	n = 107	CIs			
Behaviour	Control	4.23 (1.12)	3.90, 4.56	4.36 (1.18)	4.03, 4.69	4.377	.03	0.046
	Intervention	4.54 (1.16)	4.20, 4.88	5.10 (1.07)	4.77, 5.44			
Intention	Control	5.70 (0.81)	5.43, 5.96	5.61 (0.68)	5.40, 5.83	8.144	.00	0.082
	Intervention	5.71 (0.99)	5.45, 5.98	6.02 (0.79)	5.80, 6.23			
Attitude	Control	6.02 (0.73)	5.82, 6.22	6.17 (0.57)	6.00, 6.33	0.061	.80	0.001
	Intervention	6.17 (0.63)	5.97, 6.38	6.35 (0.54)	6.18, 6.51			
Subjective Norm	Control	5.54 (0.97)	5.28, 5.80	5.60 (0.89)	5.25, 5.85	3.066	.08	0.033
	Intervention	5.79 (0.80)	5.53, 6.06	5.63 (0.84)	5.38, 5.89			
PBC	Control	5.34 (0.77)	5.10, 5.58	5.37 (0.67)	5.17, 5.57	7.528	.00	0.076
	Intervention	5.34 (0.88)	5.10, 5.59	5.68 (0.72)	5.48, 5.89			
Susceptibility	Control	5.68 (0.98)	5.39, 5.96	5.63 (0.98)	5.36, 5.91	2.896	.09	0.031
	Intervention	5.73 (0.99)	5.44, 6.02	6.02 (0.93)	5.74, 6.30			
Severity	Control	5.85 (0.90)	5.57, 6.13	5.97 (0.79)	5.74, 6.21	1.296	.25	0.014
	Intervention	5.82 (1.01)	5.54, 6.10	6.13 (0.83)	5.89, 6.36			
Planning	Control	4.31 (0.94)	4.04, 4.59	4.32 (1.03)	4.01, 4.63	4.548	.03	0.048
	Intervention	4.24 (0.94)	3.96, 4.52	4.57 (1.12)	4.26, 4.89			

Abbreviations: η², eta squared; CIs, confidence intervals.
4.3 | Mediation analyses for carbohydrate counting

As participants in the intervention condition showed significant improvement over time for carbohydrate counting, a mediation analysis\(^2\) was conducted to assess whether the integrated model variables mediated the impact of the intervention on carbohydrate counting. In addition to pre-intervention carbohydrate counting behaviour, all potential mediators, along with Condition, were entered into the model. The direct effect of Condition on behaviour was significant, \(B = 0.54, \text{ SE} = 0.14, P < .01\). Bootstrapping analyses resulted in the total significant mediated (indirect) effect as \(B = 0.26, \text{ SE} = 0.12, \text{ CI} = 0.01 \text{ to } 0.51\). The indirect effect was significant only via planning, \(B = 0.10, \text{ SE} = 0.06, \text{ CI} = 0.01 \text{ to } 0.26\). Furthermore, inspection revealed that, after the inclusion of potential mediators (integrated model variables), the direct effect of the intervention on carbohydrate counting behaviour remained significant, \(B = 0.37, \text{ SE} = 0.16, \text{ CI} = 0.03 \text{ to } 0.71\), indicating a partial mediation effect.
4.4 | Impact of intervention on physical activity

For physical activity, there were no significant effects for Condition but significant effects for Time and Time by Condition, F(1,92) = 4.01, P = .000, partial η² = 0.35 and F(1,81) = 3.83, P = .000, partial η² = 0.34, respectively. For Time, there were significant increases for intention, attitude, risk susceptibility and risk severity. There was a single significant Time by Condition interaction for planning whereby intervention participants indicated a significant improvement over time, with no significant change in the control condition.

4.5 | Effects of intervention on anthropometric measures and lipid profiles

Weight, BMI, TG and LDL-c changes were assessed by a 2 (condition: intervention, control) x 2 (time: pre, post-intervention) MANOVA. There were significant main effects for Time and Time by Condition, F(1,92) = 4.16, P = .002, partial η² = 0.19 and F(1,92) = 4.81, P = .001, partial η² = 0.21, respectively. Univariate results of Time indicated that TG increased significantly. The Time by Condition findings showed a significant effect on TG. There was a significant reduction of TG within the intervention condition with a significant reduction of approximately 10 mg/dl over time but no significant effect in the control condition.

4.6 | Effects of intervention on haemoglobin A1c

A sub-sample of participants (n = 34) provided HbA1c assessments. A significant Time by Condition effect, F(1,32) = 8.77, P = .006, partial η² = 0.21, was observed for HbA1c. This effect was significant within the intervention condition (P = .001) with an HbA1c reduction of −0.57% over time but no significant effect was observed for the control condition (See Table 8).

5 | DISCUSSION

The current study tested the short-term utility of an intervention informed by an integrated theoretical model to promote low-fat food consumption, carbohydrate counting, and physical activity among adults with T2D in Iran. This theory-based intervention could be adopted by chronic disease health care professionals. Based on the results of earlier qualitative formative research among the target population, the intervention focused on constructs from the TPB and risk perceptions and planning factors from the HAPA. To our knowledge, this study comprises the first formal evaluation of a theory-based intervention to promote carbohydrate counting—a critical behaviour in diabetes management. The results suggest that the intervention was successful in changing behaviour and cognitions related to carbohydrate counting, showing some support for the integrated model to inform behaviour change in this context. However, it did not produce the expected changes for either low-fat food consumption or physical activity. The intervention was only successful in promoting the volitional construct of planning, but behaviour and other cognitions remained unchanged. This may be due to the nature of diabetes as a disease highly concerned with nutrition behaviours such that people already associate a diabetes diagnosis with a need to address any unhealthy eating patterns.

For carbohydrate counting, the intervention showed promise by significant increases in behaviour, intention, PBC and planning for intervention participants over time compared to control participants, with the improvements in carbohydrate counting behaviour at least partially due to enhanced planning. These findings emphasise the importance of including planning as a self-regulatory component in behavioural interventions, reinforcing assertions that the impact of cognitions on behaviour is mediated by planning. There were no improvements over time among intervention participants for the motivational phase constructs of attitudes, subjective norm and risk perceptions, but there was a significant change for PBC. This highlights the importance of control perceptions and the need to consider barriers to performance at both motivational and volitional stages of decision making for carbohydrate counting.

The observed differences for carbohydrate counting, as opposed to low-fat food consumption, may be due to the specificity of the carbohydrate counting behaviour for diabetes management and to the short-term acute symptoms resulting from non-compliance (leading to abnormal blood glucose and, consequently, clinical outcomes). Furthermore, participants had completed the study inclusion requirement of diabetes education, incorporating carbohydrate counting training. They were at least primed as to the importance and positive benefits of this crucial diabetes management behaviour.

For physical activity, intervention participants showed an improvement in their degree of planning for physical activity compared

![Table 8](image-url)

TABLE 8 Means (Standard Deviations) and Significance Levels Examining Time by Condition Effects for HbA1c at Baseline and 8-week Post-intervention for a Sub-sample (n = 34) of Study Participants

Variable	Condition	Pre-intervention n = 34	CI	8-week post-intervention n = 34	CI	F-value	P	Partial η²
HbA1c	Control	8.32 (1.04)	7.76, 8.87	8.48 (0.87)	7.98, 8.98	8.774	.006	0.215
	Intervention	8.21 (1.00)	7.76, 8.67	7.64 (0.95)	7.02, 8.06			

Abbreviations: η², eta squared; CI, confidence intervals; HbA1c, hemoglobin A1c.
to control groups but no other cognitions or activity behaviours. These findings are in contrast to other TPB-related studies showing it to be an effective basis for a physical activity behaviour change intervention among adults with T2D.13 The current study may have faced challenges in promoting physical activity due to: (a) most participants were females who are culturally less involved in physical activities, especially outdoor exercise, and (b) >60% of participants had full-time jobs. The commute in Tehran is often 3-4 h/d, both barriers which may benefit from direct targeting in future interventions.

The intervention significantly reduced TG levels by approximately 10 mg/dl but had no effects on LDL-c, weight and BMI. Low-carbohydrate diets have been shown to reduce TG rather than LDL-c.32,33 As the only behaviour change observed in this study was for carbohydrate counting. Because carbohydrate counting restricts carbohydrate intake explicitly, it seems reasonable to relate the reduction of TG to carbohydrate counting behaviour. Congruently, a meta-analysis by Santos et al, showed that low-carbohydrate diets did not affect LDL-c.33 Moreover results from a sub-sample of participants showed a significant reduction of 0.57% on HbA1c which is clinically important. HbA1c is the predominant indicator of glycaemia and diabetes complications. The United Kingdom Prospective Study 35 (UKPDS 35) showed each 1% reduction in HbA1c in newly diagnosed people with T2D decreased the risk of developing any diabetes related complications by 21%, risk of death related to diabetes by 21%, and risk of microvascular complications by 37%.34 A meta-analysis of consuming low-carbohydrate diets (50 to 130 g carbohydrate) in T2D showed a 0.49% reduction in HbA1c in studies ≤6 months.35 Results from a clinical trial of an advanced carbohydrate counting intervention resulted in a HbA1c reduction by 0.8% over 24 weeks.36 Finding of the current trial is comparable with these studies and provides preliminary evidence for the effectiveness of a behavioural carbohydrate counting intervention.

5.1 | Strengths and limitations

The study’s strengths include the strong theory base of the intervention informed by an initial pilot study20 and the mapping of these identified constructs on the intervention content. Furthermore, this study provided one of the first theory-based interventions tackling the fundamental diabetes management behaviour of carbohydrate counting. It offered a test of the utility of the integrated theoretical model in informing health behaviour change in a cultural context where there is a dearth of theory-based health behaviour change interventions for T2D adults. Additional strengths were RCT design and the use of face-to-face interviews by trained health care providers allowing participants to check their understanding of the questions posed, likely improving the reliability of responses.

The relatively small sample size and short duration of the intervention are important limitations of the current study. Moreover FBS and HbA1c are common outcome measures in diabetes but the researchers were granted access to HbA1c assessments in a sub-sample of participants only.

In consultation with the organisation granting access to the recruitment of participants, our post-intervention measurements were scheduled to be only performed on one occasion, two months post-intervention. While providing some useful preliminary evidence of short-term utility, ideally, a longer-term follow-up of assessments would provide stronger evidence of the effectiveness of the intervention. In addition, study participants were all IDS members. These individuals are usually highly motivated about their diabetes management, bringing into question the generalisability of the findings to other adults diagnosed with T2D not aligned with a national diabetes organisation.

5.2 | Future research directions

Further research is needed to confirm the present findings, especially for carbohydrate counting and longer-term follow-up designs to assess other biochemical outcomes to validate self-reported behaviour. Longer-term designs, potentially integrated into health care clinics, would also be useful to check for intervention effects given common health complications and to establish the cost-effectiveness of behaviour change interventions in this context. Also, the utility of an integrated theory intervention approach for other key self-management practices such as self-monitoring of blood glucose and medication adherence should be assessed. Considering the growing prevalence of T2D in adolescents and children, further studies are needed to promote diabetes management behaviours in these age groups including parental adherence to carbohydrate counting and individuals diagnosed with type 1 diabetes.37,38,39

6 | CONCLUSION

Overall, the present study provided short-term evidence for the utility of an intervention informed by an integrated theoretical model, incorporating aspects of both the TPB and the HAPA, targeting a critical behaviour (i.e., carbohydrate counting) for a clinical population of individuals with T2D. These results were encouraging not only in improving cognitions and showing promise, especially for constructs in the volitional phase of decision making, but also self-reported behaviour and a biochemical outcome. The intervention did not support a change in low-fat food consumption nor physical activity. Further research is needed to assess longer-term effects of interventions with a focus on carbohydrate counting and to attain generalised adherence to key management behaviours among this at-risk group to reduce the negative health consequences for people with a T2D diagnosis.

6.1 | Relevance to clinical practice

Health care staff including nurses, dietitians, diabetes educators, general physicians as well as specialists can use current health
promotion approaches for the management of carbohydrate intake as a diabetes-specific behaviour, especially as they potentially render clinical benefits (ie reduced TG and, for a sub-sample, HbA1c).

ACKNOWLEDGMENTS

This research was supported by vice chancellor for research, Tehran University of Medical Sciences, Iran. In the memory of Professor Hossein Ghasemi (deceased) who illuminated the idea of the current behavioural study and special thanks to Dr Louise Starfelt for her generous assists on the statistical analysis. The authors thank Dr Soheil Hassanipour Azgomi, Mr Reza Ghadiri Rad, Mr Illyar Yamrali, Mr Rezaei, Ms Bani and Ms Fouladvand for assistance with data collection.

CONFLICT OF INTERESTS

All authors declare that there is no conflict of interests.

AUTHOR CONTRIBUTION

Reza D contributed to designing the study, questionnaire development, recruitment of the participants, data collection, intervention delivery, data analysis and manuscript drafting. Katherine M.W and Kouros D contributed to designing the study, questionnaire development, data analysis and interpretation, confirmation of findings and manuscript drafting. Seyed Ali K contributed to grant funding, designing the study, questionnaire development, confirmation of findings and manuscript drafting. Mohammad Payam Gh contributed to recruitment of subjects and data collection and manuscript drafting. Sheikh Mohammed SI and Susie C contributed to critical revision of article for important intellectual content.

ORCID

Reza Daryabeygi-Khotbehsara https://orcid.org/0000-0003-4064-978X
Katherine M. White https://orcid.org/0000-0002-0345-4724
Kourosh Daryabegi-Khotbehsara https://orcid.org/0000-0002-9134-7178
Sheikh Mohammed Shariful Islam https://orcid.org/0000-0001-7926-9368
Susie Catrledge https://orcid.org/0000-0002-6837-2244

REFERENCES

1. Guariguata L, Whiting D, Hambleton I, Beagley J, Linnenkamp U, Shaw J. Global estimates of diabetes prevalence for 2013 and projections for 2035. Diabetes Res Clin Pract. 2014;103:137-149.
2. IDF. International Diabetes Federation: Diabetes Atlas, 7th edn. 2015.
3. Alberti KGMM, Zimmet PF. Definition, diagnosis and classification of diabetes mellitus and its complications. Part 1: Diagnosis and classification of diabetes mellitus. Provisional report of a WHO consultation. Diabet Med. 1998;15:539-553.
4. IDF. International Diabetes Federation: Diabetes Atlas, 6th edn. Facts and Figures; 2013.
5. ADA. American Diabetes Association: Standards of Medical Care in Diabetes. Diabetes Care. 2019.
6. Clark M, Hampson SE, Avery L, Simpson R. Effects of a tailored lifestyle self-management intervention in patients with type 2 diabetes. Br J Health Psychol. 2004;9:365-379.
7. Wheeler G, Montgomery SB, Beeson L, et al. En balance the effects of spanish diabetes education on physical activity changes and diabetes control. The Diabetes Educator. 2012;38:723-732.
8. Michie S, Abraham C. Interventions to change health behaviours: evidence-based or evidence-inspired? Psychol Health. 2004;19:29-49.
9. Ajzen I. The theory of planned behavior. Organ Behav Hum Decis Process. 1991;50:179-211.
10. Schwarzer R. Modeling health behavior change: how to predict and modify the adoption and maintenance of health behaviors. Appl Psychol. 2008;57:1-29.
11. Sniehotta FF, Presseau J, Araújo-Soares V. Time to retire the theory of planned behaviour. Health Psychology Review. 2014;8:1-7.
12. Steinmetz H, Knappstein M, Ajzen I, Schmidt P, Kabst R. How effective are behavior change interventions based on the theory of planned behavior? Zeitschrift für Psychologie. 2016.
13. White KM, Terry DJ, Troup C, et al. An extended theory of planned behavior intervention for older adults with type 2 diabetes and cardiovascular disease. J Aging Phys Act. 2012;20(3):281-299.
14. Daniel M, Messer LC. Perceptions of disease severity and barriers to self-care predict glycemic control in Aboriginal persons with type 2 diabetes mellitus. Chronic Diseases and Injuries in Canada. 2002;23:130.
15. Ayele K, Tesfa B, Abebe L, Tilahun T, Girma E. Self care behavior among patients with diabetes in Harari, Eastern Ethiopia: The Health Belief Model perspective. PLoS One. 2012;7:e35515.
16. TAN MY. The relationship of health beliefs and complication prevention behaviors of Chinese individuals with Type 2 Diabetes Mellitus. Diabetes Res Clin Pract. 2004;66:71-77.
17. Norman P, Conner M. The theory of planned behavior and exercise: evidence for the mediating and moderating roles of planning on intention-behavior relationships. J Sport Exerc Psychol. 2005;27(4):488-504.
18. Sniehotta FF, Schwarzer R, Scholz U, Schü Z. Action planning and coping planning for long-term lifestyle change: theory and assessment. Eur J Soc Psychol. 2005b;35:565-576.
19. Luszczynska A. An implementation intentions intervention, the use of a planning strategy, and physical activity after myocardial infarction. Soc Sci Med. 2006;62:900-908.
20. Daryabeygi-Khotbehsara R, White Katherine M, Difajarian K, Shariful Islam SM, Maddison R, Ghaffari MP, Keshavarz SA. Examining Diabetes Management Beliefs among Adults Diagnosed with Type 2 Diabetes in Iran From a Theory Perspective. Under Review. 2021.
21. ADA. 2017. Available: http://www.diabetes.org/food-and-fitness/food/what-can-i-eat/understanding-carbohydrates/carbohydrate-counting.html?referrer=https://www.google.com/ [Accessed 2019]
22. Diabetes Australia, 2015. Available: An electronic version of these guidelines is available at www.diabetesaustralia.com.au [Accessed 2019]
23. Joslin Diabetes Center, 2019. Available: http://www.joslin.org/info/Carbohydrate_Counting_101.html [Accessed]
24. Lee CH, Wu DC, Lee JM, et al. Anatomical subsite discrepancy in relation to the impact of the consumption of alcohol, tobacco and betel quid on esophageal cancer. Int J Cancer. 2007;120:1755-1762.
25. Faul F, Erdfelder E, Buchner A, Lang A-G. Statistical power analyses using G Power 3.1: Tests for correlation and regression analyses. Behav Res Methods. 2009;41:1149-1160.
26. Schulz KF, Altman DG, Moher D. CONSORT 2010 statement: updated guidelines for reporting parallel group randomised trials. BMC Med. 2010;8:18.
27. Sniehotta FF. Towards a theory of intentional behaviour change: plans, planning, and self-regulation. Br J Health Psychol. 2009;14:261-273.
28. Hayes AF. Introduction to mediation, moderation, and conditional process analysis: A regression-based approach. Guilford Press; 2013.
29. Yannakoulia M. Eating behavior among type 2 diabetic patients: a poorly recognized aspect in a poorly controlled disease. Rev Diabet Stud. 2006;3:11-16.

30. Sniehotta FF, Scholz U, Schwarzer R. Bridging the intention-behaviour gap: planning, self-efficacy, and action control in the adoption and maintenance of physical exercise. Psychol Health. 2005a;20:143-160.

31. Gellert P, Ziegelmann JP, Lippke S, Schwarzer R. Future time perspective and health behaviors: Temporal framing of self-regulatory processes in physical exercise and dietary behaviors. Ann Behav Med. 2012;43:208-218.

32. Mahan LK, Escott-Stump S, Raymond JL, Krause MV. Krause's food & the nutrition care process. Elsevier Health Sciences; 2012.

33. Santos F, Esteves S, Da Costa Pereira A, Yancy Jr W, Nunes J. Systematic review and meta-analysis of clinical trials of the effects of low carbohydrate diets on cardiovascular risk factors. Obes Rev. 2012;13:1048-1066.

34. Stratton IM, Adler AI, Neil HAW, et al. Association of glycaemia with macrovascular and microvascular complications of type 2 diabetes (UKPDS 35): prospective observational study. BMJ. 2000;321:405-412.

35. McArdle P, Greenfield S, Rilstone S, Narendran P, Haque M, Gill P. Carbohydrate restriction for glycaemic control in Type 2 diabetes: a systematic review and meta-analysis. Diabet Med. 2019;36:335-348.

36. Christensen MB, Serifovski N, Herz AM, et al. Efficacy of bolus calculation and advanced carbohydrate counting in type 2 diabetes: a randomized clinical trial. Diabetes Technol Therapeutics. 2020.

37. Kawamura T. The importance of carbohydrate counting in the treatment of children with diabetes. Pediatric Diabetes. 2007;8: 57-62.

38. Scavone G, Manto A, Pitocco D, et al. Effect of carbohydrate counting and medical nutritional therapy on glycaemic control in type 1 diabetic subjects: a pilot study. Diabet Med. 2010;27:477-479.

39. Bell KJ, Barclay AW, Petocz P, Colagiuri S, Brand-Miller JC. Efficacy of carbohydrate counting in type 1 diabetes: a systematic review and meta-analysis. Lancet Diabetes Endocrinol. 2014;2:133-140.

SUPPORTING INFORMATION

Additional Supporting Information may be found online in the Supporting Information section.

How to cite this article: Daryabeygi-Khotbehsara R, White KM, Djafarian K, et al. Short-term effectiveness of a theory-based intervention to promote diabetes management behaviours among adults with type 2 diabetes in Iran: A randomised control trial. Int J Clin Pract. 2021;75:e13994. https://doi.org/10.1111/ijcp.13994