Role of non-classical MHC class I molecules in cancer immunosuppression

Grazyna Kochan1,*, David Escors1,2, Karine Breckpot3, and David Guerrero-Setas1

1Navarrabiomed-Fundacion Miguel Servet; Navarra, Spain; 2Rayne Institute; University College London; London, UK; 3Vrije Universiteit Brussel; Brussels, Belgium

Keywords: antigen presentation, cancer, immunomodulation, NK cells, non-classical MHC class I molecules, T cells

Abbreviations: APC, antigen-presenting cell; ARG, arginase CTL, cytotoxic T lymphocyte; DC, dendritic cell; ER, endoplasmic reticulum; IFNγ, interferon γ; IL, interleukin; ILT, immunoglobulin-like transcript; iNOS, inducible nitric oxide synthase; MDSC, myeloid-derived suppressor cell; NK, natural killer; sHLA, soluble human leukocyte antigen; STAT3, signal transducer and activator of transcription 3; TAA, tumor-associated antigen; TAP, transporter associated with antigen presentation; TNF, tumor necrosis factor; Treg, regulatory T cell

Introduction

Paul Erlich was the first to propose that the immune system would play a significant role in protecting the organism from cancer, putting forward the “tumor surveillance” hypothesis as early as in 1909. Unfortunately, the lack of adequate tools and sufficient knowledge did not allow for testing this hypothesis until several decades later. In 1957, Thomas and Burnet reintroduced Erlich’s concept by proposing that specific lymphocyte populations act as sentinels, thus continuously recognizing and eliminating malignant cells before they can cause any harm. This tumor surveillance hypothesis gained support upon the identification of numerous tumor-associated antigens (TAAs). Thus, the presentation of TAA-derived antigenic peptides to effector cell immune systems constitutes one of the strategies whereby malignant cells escape immunosurveillance. The overexpression of HLA-G, -E, and -F is a common finding across a variety of malignancies. However, the presence of HLA-G and HLA-E has been recently correlated with poor clinical outcome, information on the clinicopathological significance of HLA-F is limited. In the present review, we summarize studies on non-classical MHC class I molecules with special emphasis on their role in the modulation of anticancer immune responses.

Growing neoplasms employ various mechanisms to evade immunosurveillance. The expression of non-classical MHC class I molecules by both immune and malignant cells in the tumor microenvironment constitute one of the strategies used by tumors to circumvent the cytotoxic activity of effector cells of the immune system. The overexpression of HLA-G, -E, and -F is a common finding across a variety of malignancies. However, while the presence of HLA-G and HLA-E has been recently correlated with poor clinical outcome, information on the clinicopathological significance of HLA-F is limited. In the present review, we summarize studies on non-classical MHC class I molecules with special emphasis on their role in the modulation of anticancer immune responses.

Genetic Organization and Polymorphism of Non-Classical MHC Genes

The genes encoding non-classical HLA molecules are localized on the short arm of chromosome 6.

HLA-G
In contrast to classical HLA molecules, the polymorphic diversity of HLA-G is limited to 46 alleles (including 2 null alleles), resulting in only 7 protein isoforms. Four of these isoforms are membrane-bound while 3 of them lack exons...
5–7, hence existing as secreted forms. Of all membrane-bound HLA-G variants, HLA-G1 represents the sole full-length version of the molecule. Conversely, HLA-G2 does not contain exon 3, HLA-G3 is missing exons 3 and 4, and HLA-G4 does not include exon 4. The soluble isoforms of HLA-G (namely, HLA-G5, HLA-G6, and HLA-G7) contain part of intron 4, harboring a stop codon. This results in the expression of truncated proteins lacking exon 5, which encodes the transmembrane domain. HLA-G5, -G6, and -G7 represent the soluble counterparts of HLA-G1, G2, and G3, respectively. Interestingly, there is an additional soluble form of HLA-G resulting from the proteolytic cleavage of HLA-G1. Similar to classical MHC class I molecules, HLA-G forms heterodimers with β2 microglobulin. In addition, HLA-G can form functionally active homodimers or tetramers. In fact, dimers and tetramers bind to HLA-G receptors (Table 1) with higher affinity than monomers.

HLA-E

HLA-E consists of 8 exons. Of these, the first encodes the leader peptide sequence, exons 2, 3 and 4 encode the MHC immunoglobulin-like α domains 1, 2, and 3, respectively, exon 5 encodes the transmembrane domain and exons 6 and 7 encode the cytoplasmic tail. Similar to HLA-G, HLA-E forms a complex with β2 microglobulin. To date, only 4 alleles of HLA-E have been described, namely E*01:01, E*0102, E*01:03 and E*01:04. However, the existence of E*0102 and E*01:04 could not be confirmed in recent studies. Interestingly, these alleles only differ in a single amino acid that impacts on their peptide-binding affinity.

HLA-F

HLA-F consists of 8 exons and is organized in a similar way as HLA-E. Thus, the first HLA-F exon encodes the leader peptide, exons 2, 3, and 4 the MHC immunoglobulin-like α domains, exon 5 the transmembrane domain and exons 6 and 7 the cytoplasmic tail. Three splicing variants of HLA-F have been described so far, leading to the synthesis of HLA-F isoforms that differ from each other in the length of the cytoplasmic tail. Similar to other HLA molecules, HLA-F can form a complex with β2 microglobulin.

Role of Non-Classical MHC Class I Molecules in Antigen Presentation

Among the 7 HLA-G isoforms described so far, only HLA-G1 and HLA-G5 contain a peptide-binding region. Diehl and collaborators demonstrated that HLA-G-associated peptides correspond to classical MHC class I antigenic peptides originating from the proteolysis of intracellular proteins. HLA-E binds hydrophobic nanopeptides derived from the N-terminal leader sequences of MHC class I molecules, stress related-factors and pathogen-associated proteins. During transmembrane translocation, the signal peptide of these molecules is cleaved of by the signal peptide peptidase and remains in the endoplasmic reticulum (ER) membrane. The peptide is thus processed by the signal peptide peptidase and its hydrophilic part released back into the cytoplasm. Therein, it undergoes further trimming by the proteasome and can be transported into the ER by the transporter associated with antigen presentation (TAP) system, eventually binding HLA-E.

It has been demonstrated that HLA-E and G present antigenic peptides to T cells, a process that plays an important role in some lines of antiviral defense. So far, no report has been published demonstrating that HLA-F molecules also mediate antigen presentation.

Role of Non-Classical MHC Class I Molecules Immune Regulation and Cancer

HLA-G

In healthy individuals, the transcription of HLA-G takes place in most cells, but the expression of the corresponding protein is restricted to specific tissues including trophoblast, thymic epithelium, corneal keratocytes, as well as erythroid and endothelial precursors. In embryonic tissues, HLA-G can be detected from the oocyte to the blastocyst stage, erythroid cells and all organs involved in erythropoiesis. HLA-G molecules expressed on trophoblasts effectively suppress local immune responses in the placenta and hence contribute to maternal-fetal tolerance, a mechanism whereby the fetus is not recognized as a non-self tissue. In addition, HLA-G is expressed following organ transplantation, viral infection, inflammatory conditions and autoimmune diseases. Interestingly, ectopic HLA-G expression by tumor cells has first been described in 1998. Based on previous data suggesting that HLA-G2 strongly inhibits the lytic activity of NK cells in vitro, Paul and collaborators reported the inhibition of melanoma cell lysis by NK cells. The authors hypothesized that HLA-G plays a role in protecting cancer cells from NK- and cytotoxic T lymphocyte (CTL)-mediated destruction by binding to leukocyte immunoglobulin-like receptor, subfamily B (with TM and ITIM domains), member 1 (LILRB1, best known as ILT-2). This observation suggested that cancer cells in general might overexpress HLA-G to evade the host immune system. Since then, HLA-G expression has been detected in various types of cancers including melanomas, carcinomas (breast, renal, ovarian, lung, and colorectal) and leukaemia. Recently, Agaugue and collaborators demonstrated the expression of HLA-G on the surface of malignant cells induces the expansion of myeloid-derived suppressor cells (MDSCs) and shift cytokine production toward a Th2 profile. Interestingly, it has also been shown that cancer cells also transfer membrane patches to activated NK cells, a phenomenon that has been named trogocytosis. As the result of this process, NK cells receive HLA-G1 molecules, stop proliferating and become able to inhibit the cytotoxic effector functions of neighboring NK cells. In addition, high levels of soluble forms of HLA-G (sHLA-G) have been detected in the sera and ascites of melanoma, glioma, ovarian cancer and breast carcinoma patients. The circulating levels of sHLA-G have been shown to correlate with advanced disease stage and increased tumor load. Importantly, sHLA-G molecules are secreted not only by tumor cells but also by tumor-activated monocytes and T cells. Tumor-associated myeloid cells such as monocytes and macrophages are usually a bad
prognostic feature, as they exert robust immunosuppressive effects.\(^3\) In this context, the secretion of sHLA-G contributes to the immunosuppressive functions of tumor-infiltrating myeloid cells not only locally, at the tumor site, but also systemically. Elevated circulating levels of sHLA-G have been observed in the presence of interferon \(\gamma\) (IFN\(\gamma\))\(^3\) and interleukin (IL)-10.\(^3\)\(^9\)\(^1\) Other cytokine cocktails can stimulate the production of HLA-G (reviewed in ref. \(4\)).

HLA-G limit the activity of effector cells by binding to inhibitory receptors ILT-2, LILRB2 (best known as ILT-4) and killer cell immunoglobulin-like receptor, 2 domains, long cytoplasmic tail, 4 (KIR2DL4) on NK cells, T and B lymphocytes as well as APCs. sHLA-G binds to the CD8\(^+\) co-receptor (as other sHLA molecules do) and induces apoptosis.\(^4\) Moreover, Fond and collaborators have demonstrated the ability of sHLA-G to bind CD160, hence stimulating angiogenesis.\(^4\)\(^1\)\(^4\)\(^4\)\(^6\)\(^7\) Le Maoult and coworkers demonstrated that HLA-G promotes the expression of increased levels of inhibitory receptors.\(^4\)\(^5\) The binding partners of HLA-G are summarized in Table 1.

As demonstrated by several authors, the role of HLA-G in oncogenesis and tumor progression does not stem from its contribution to antigen presentation, and therefore deviates from that of classical MHC molecules. HLA-G triggers inhibitory receptors instead, hence switching off the effector function of multiple antitumor immune effectors (Fig. 1). The concerted efforts of several groups over the recent years have unveiled the molecular mechanisms underlying such an activity of HLA-G. In particular, it has been shown that renal carcinoma and melanoma cells expressing HLA-G are protected from the cytotoxic activity of NK cells and antigen-specific CD8\(^+\) T cells. This protective effect can be abolished by the administration of HLA-G-specific antibodies.\(^4\)\(^6\)\(^7\) Ristich and collaborators demonstrated HLA-G inhibits the maturation and activation of myeloid DCs at fetal-maternal interface, hence promoting the development of

Figure 1. Immunological mechanisms of HLA-G-mediated immunosuppression by cancer cells. Cancer cells expose HLA-G molecules (in green) on their surface or secrete it (HLA-G5), inducing the apoptotic demise of effector cells. The transfer of HLA-G-containing membranes to T and natural killer (NK) cells renders them immunosuppressive. The binding of HLA-G1 to inhibitory receptors such as ILT-2 and ILT-4 mediated immunosuppressive mechanisms in a variety of immune cells: ARG-1, arginase 1; iDC, immature dendritic cell; IFN\(\gamma\), interferon \(\gamma\); IL-10, interleukin-10; iNOS, inducible nitric oxide synthase; TGF\(\beta\), transforming growth factor \(\beta\); Tol DC, tolerogenic dendritic cell.
tolerogenic DCs that suppress CD4+ and CD8+ T cells. The same group described the involvement of IL-6 signaling and signal transducer and activator of transcription 3 (STAT3) in this process. It is possible, yet remains to be formally demonstrated, that cancer cells tolerate DCs in a similar fashion.

HLA-E

Similar to HLA-G, HLA-E is expressed on the surface of the trophoblastic cells (during pregnancy) as well as following organ transplantation, viral infection, inflammatory conditions, and autoimmune diseases. The transcription of HLA-E has been detected in almost all cell types, although the expression of the corresponding protein on the cell surface is mainly restricted to endothelial cells, T and B lymphocytes, monocytes, and macrophages. Interestingly, while cells of the immune system express HLA-E at high levels, endothelial cells exhibit reduced levels of HLA-E on their surface, much lower than those of most MHC class Ia genes. Only when endothelial cells are exposed to pro-inflammatory cytokines such as tumor necrosis factor α (TNFα), IL-1β, and IFNγ, they produce and display on the surface increased levels of HLA-E. Such an upregulation also results in HLA-E secretion. The precise mechanism underlying sHLA-E production remains to be determined. Secreted forms of HLA-E may indeed originate from translation of an alternatively spliced transcript or, as suggested by several authors, result from metalloprotease-dependent shedding of membrane-bound HLA-E molecules. These possibilities are not mutually exclusive. The upregulation of HLA-E on the surface of endothelial cells correlates with an increased protection against the effector functions of NK cells, hence constituting a potential means of controlling excessive cytotoxic responses. Increased levels of surface-exposed and soluble HLA-E were observed in cultured melanoma cells. In this setting, NK cytotoxicity was increased upon blocking HLA-E or HLA-E-dependent ligand-receptor interactions with specific antibodies. Some evidence indicates that HLA-G could act in concert with HLA-E in immune regulation. Thus, it has been proposed that some HLA-G isoforms stimulate the expression of HLA-E on the cell surface. Braud and collaborators have shown that this process (the upregulation of HLA-E on the cell surface) is TAP- and tapasin-dependent. Some authors propose that low levels of surface-exposed HLA-E result from low-affinity interactions with β2 microglobulin and inefficient peptide loading in the ER. HLA-E binds killer cell lectin-like receptor subfamily C, member 1 (KLRC1), an activatory receptor best known as NKG2A, and KLRC2 (an inhibitory receptor best known as NKG2C) on NK cells, T lymphocytes and macrophages. The binding of HLA-E to NKG2A is much stronger than that to NKG2C, suggesting a subordinate role of this latter interaction in normal conditions. Michaelsson and collaborators have demonstrated that, upon binding to heat-shock protein-derived peptides, HLA-E loses its affinity for NKG2A, pointing to the existence of a peptide-dependent mechanism that regulates HLA-E functions. Interestingly, several groups have observed an interaction between peptide-loaded HLA-E molecules and the T-cell receptor (TCR) of CD8+ T cells, and CD160 (in thus far resembling HLA-G). The interaction of HLA-E with the TCR have been ascribed an important role in antiviral responses. However, the binding of HLA-E to the TCR might also stimulate the generation of CD8+ regulatory T cells (Tregs). Although it might be possible that the peptide presented by HLA-E would play a critical role in this settings, such a dual functionality has not yet been elucidated in detail.

Table 1. Types of HLA-G/E/F receptors and expression on the cells

	NK cells	Monocytes/ T cells	DCT cells	CD8+ molecule	CD4+	B cells	HLA
ILT2/CD85j/LILRB1	+/-	+	+	+/-	+/-	+	HLA-G, HLA-F
ILT4/CD85d/LILRB2	+	+	+	-	-	-	HLA-G, HLA-F
KIR2DL4/CD158d	+/-	-	-	+/-	+/-	-	HLA-G
CD8	+/-	-	-	+	-	-	HLA-F
CD160	+	-	+/-	-	+/-	-	HLA-E
NKG2A/CD159a	+/-	-	+/-	-	+/-	-	HLA-E
NKG2C/CD159c	+/-	+	-	+/-	+/-	-	HLA-E
TCR	+/-	-	+/-	+/-	-	-	HLA-E

+/- some

with β2 microglobulin and inefficient peptide loading in the ER. HLA-E binds killer cell lectin-like receptor subfamily C, member 1 (KLRC1), an activatory receptor best known as NKG2A, and KLRC2 (an inhibitory receptor best known as NKG2C) on NK cells, T lymphocytes and macrophages. The expression of HLA-E by trophoblasts correlates with the protection of the fetus from destruction by the maternal immune system, an observation that also applies to HLA-G and -E.

The majority of HLA-F is localize within the cell. Recently, HLA-F was detected on the surface of activated B-, T-, and NK cells. HLA-F molecules exposed form a complex with...
β2 microglobulin and can bind ILT-2 and ILT-4.71 Boyle and coworkers investigated the mechanisms whereby HLA-F is transported to the cell surface and proved that this process relies on the cytoplasmic tail of HLA-F, something that differentiates HLA-F from other MHC class I molecules.72 Different authors disagree on the fact that the exposure of HLA-F on the cell surface might depend or not on tapasin and TAP.73 The presence of HLA-F molecules on activated lymphocytes but not on Tregs suggests that HLA-F might be involved in providing signals that invoke the tolerogenic function of Tregs upon the secretion of anti-inflammatory cytokines.70 Thus, HLA-F may mediate important immunosuppressive functions that regulate the maternal tolerance to the fetus.

Gobin and coworkers performed a study on non-classical HLA promoter regions and found that HLA-F transcription can be induced by IFNγ.74 HLA-F-coding transcripts have been detected in various cancer tissues. In addition, HLA-F-specific antibodies are present at increased levels in the serum of patients affected by multiple types of cancer.75 The analysis of HLA-F expression in a cohort of esophageal squamous cell carcinoma patients revealed that high HLA-F levels correlate with poor disease outcome.76 Similar results were obtained in patients with non-small lung carcinoma.77

Conclusions

HLA-G, -E, and -F are important regulators of the immune system and their role in tumor immunology is attracting a steadily growing interest. The upregulation of HLA-G, -E, and -F following IFNγ stimulation suggests that non-classical MHC class I molecules may be involved in negative feedback responses to potentially harmful pro-inflammatory responses. Inflammation is also one of the hallmarks of cancer. While inflammatory responses are required to eliminate cancer cells, they also trigger strong immunoregulatory mechanisms that limit the recognition of malignant cells by the immune system, hence favoring tumor progression. Thus, tumor-caused results in the recruitment strongly immunosuppressive cells such as Tregs, MDSCs and tumor-infiltrating macrophages. Non-classical MHC class I molecules constitute another means whereby malignant cells escape immunosurveillance. Indeed, these molecules inhibit the activity of the immune system by binding to inhibitory receptors expressed by effector cells, hence suppressing their functions or inducing their apoptotic demise.42,78 Unfortunately, data concerning HLA-F are scarce. Alike other non-classical MHC class I molecules, HLA-F molecules contribute to the maintenance of tolerance to semi-allogenic fetal allografts. Perhaps, HLA-F might exert similar immunosuppressive effects in cancer.

Based on the observation presented above, several groups have proposed the use of HLA-G and HLA-E as cancer biomarkers upon detection with ELISA or in situ immunostaining. Some authors have suggested that the presence of non-classical MHC class I molecules can be a predictor of poor prognosis.79-81 Even though some studies classify HLA-E as rather neutral,82 or even favorable,83,84 for disease outcome, accumulating evidence indicated that HLA-E overexpression is associated with poor prognosis.

Figure 2. Immunological mechanisms of HLA-E-mediated immunosuppression by cancer cells. In Cancer cells expose HLA-G (in green) and HLA-E (in red) molecules of their surface. The secretion of HLA-E induces apoptosis in immune effectors. Moreover, in the presence of interferon γ (IFNγ), HLA-G and HLA-E molecules are expressed at increased levels on the surface of both cancer cells and CD4+ T lymphocytes. The binding of HLA-E expressed on CD4+ T cells to the T-cell receptor (TCR) of CD4+ T lymphocytes can induce the differentiation of the latter into regulatory CD8+ T cells (CD8+ reg). The binding of HLA-E to NKG2A inhibits the cytotoxic functions of CD8+ T lymphocytes and NK cells.
In summary, a growing amount of data highlights an important role of non-classical MHC class I molecules in immune regulation and cancer. Thus, the molecules might become an important target for anticancer immunotherapy. Interfering with the functions of non-classical MHC class I molecules might robustly boost the antineoplastic potential of cytotoxic effectors while antagonizing the activity of intrinsically immunosuppressive cells. The specific mechanisms whereby these molecules control excessive inflammation are currently under investigation for therapeutic purposes, not only in the context of anticancer immunotherapy.

References

1. Cheever MA, Allison JP, Ferris AS, Finn OJ, Hastings BM, Hecht TT, Mellman I, Prindiville SA, Viner JL, Weiner LM, et al. The prioritization of cancer antigens: a national cancer institute pilot project for the acceleration of translational research. Clin Cancer Res 2009; 15:5325-37; PMID:19726565; http://dx.doi.org/10.1158/1078-0432.CCR-09-0737

2. Girardi M, Oppenheim DE, Steele CR, Lewis JM, Ghiaus E, Filler R, Hobbs P, Sutton B, Tigelaaer RE, Hayward AC. Regulation of cutaneous malignancy by summated T cells. Science 2001; 294:6059-9; PMID:11567106; http://dx.doi.org/10.1126/science.1063916

3. Smyth MJ, Thia KY, Street SE, Cretney E, Trapani JA, Taniguchi M, Kawanoto T, Pelikan SB, Crowe NY, Godfrey DI. Differential tumor surveillance by natural killer (NK) and NK T cells. J Exp Med 2000; 191:661-8; PMID:10684858; http://dx.doi.org/10.1084/jem.191.6.661

4. Geraghty DE, Koller BH, Orr HT. A human major histocompatibility complex class I gene that encodes a protein with a shortened cytoplasmic segment. Proc Natl Acad Sci U S A 1987; 84:9149-9; PMID:3480534; http://dx.doi.org/10.1073/pnas.84.24.9149

5. Koller BH, Geraghty DE, Shimizu Y, DeMars R, Orr HT. HLA-E. A novel HLA class I gene expressed in resting T lymphocytes. J Immunol 1988; 141:897-904; PMID:3260916

6. Carosella ED, Moreau P, Le Maoult J, Le Discorde M, Rouas-Freiss N. HLA-G molecules: a national cancer institute pilot project for antigen-G in health and sickness. Tissue Antigens 2003; 62:273-84; PMID:12974894; http://dx.doi.org/10.1039/0003-0005.00143

7. Crispin JC, Duarte RA, Soares CP, Costa R, Silva JS, Mendes-Júnior CT. Wastowski IJ, Faggioni LP, Saber IT, Donadi EA. Human leukocyte antigen-G expression after kidney transplantation is associated with a reduced incidence of rejection. Transpl Immunol 2008; 18:361-7; PMID:18158124; http://dx.doi.org/10.1016/j.transimp.2007.10.010

8. Lafon M, Preud'homme F, Maguet F, Lafage M, Mouillot G, Rix M, Moreau P, Rouas-Freiss N, Carosella ED. Modulation of HLA-G expression in human neural cells after neurotropic viral infections. J Virol 2005; 79:15226-37; PMID:16306594; http://dx.doi.org/10.1128/JVI.79.24.15226-15237.2005

9. Paul P, Rouas-Freiss N, Moreau P, Cabestre FA, Menier C, Khalil-Daher I, Panguel C, Onno M, Fauchet R, Martinez-Laso J, et al. HLA-G, E, F preworkshop: tools and protocols for analysis of non-classical class I genes and tapasin-dependent HLA-E surface expression. Hum Immunol 2000; 61:1177-95; PMID:11137224; http://dx.doi.org/10.1016/S0198-8859(00)00154-3

10. Rouas-Freiss N, Moreau P, Ferroni S, Carosella ED. HLA-G proteins in cancer: do they provide tumor cells with an escape mechanism? Cancer Res 2005; 65:10193-44; PMID:16287995; http://dx.doi.org/10.1158/0008-5472.CAN-05-0097

11. Agaugué S, Carosella ED, Rouas-Freiss N. Role of HLA-G in tumor escape through expansion of myeloid-derived suppressor cells and cytokine balance in favor of Th2 versus Th1/Th17 Blood 2011; 117:7021-31; PMID:21482709; http://dx.doi.org/10.1182/blood-2010-07-294389

12. Cauignant J, Lemaitre J, Carosella ED. Intercellular exchanges of membrane patch antigen (trogocytosis) highlight the next level of immune plasticity. Transpl Immunol 2006; 17:20-2; PMID:17157208; http://dx.doi.org/10.1016/j.transimpl.2006.09.032

13. Cauignant J, Favier B, Daouai M, Guillard C, Moreau P, Carosella ED, Le Maoult J. Trogocytosis-based generation of suppressive NK cells. EMBO J 2007; 26:1423-33; PMID:17318190; http://dx.doi.org/10.1038/sj.emboj.7601570

Disclosure of Potential Conflicts of Interest

No potential conflicts of interest were disclosed.

Acknowledgments

Karenne Brektop is a post-doctoral fellow funded by FWO-Vlaanderen and research of her group on immunosuppressive mechanisms exerted by tumor and its environment is also funded by the same organization (iMECHs grant, G.0234.11), David Escors has been funded by an Arthritis Research UK Career Development Fellowship (18433) and currently by a Miguel Servet Fellowship from the Instituto de Salud Carlos III, Spain.
LeMaoult J, Caumartin J, Daouya M, Favier B, Le Rond S, Gonzalez A, Carosella ED. Immune regulation by pretenders: cell-to-cell transfers of HLA-G make effector T cells act as regulatory cells. Blood 2007; 109:20640-8; PMID:17702792; http://dx.doi.org/10.1182/blood-2005-02-125457.

Ugurel S, Rehmann V, Ferrone S, Tilgen W, Gross-Wilde H, Reinhold U. Soluble human leukocyte antigen-G serum level is elevated in melanoma patients and is further increased by interferon-alpha immunotherapy. Cancer 2001; 92:369-76; PMID:11466602; http://dx.doi.org/10.1002/1097-0248(20010715)92:2<369::AID-CNCR1332-3.0.CO;2-U.

Rehmann V, Ugurel S, Tilgen W, Reinhold U, Gross-Wilde H. HLA-G: a potential predictive indicator of disease progression in serum from early-stage melanoma patients. Int J Cancer 2002; 100:580-5; PMID:12124808; http://dx.doi.org/10.1002/ijc.10524.

Singer G, Rehmann V, Chen YC, Liu HT, Ali SZ, Rebmann V, Ugurel S, Ferrone S, Tilgen W, Reinhold U, Grosse-Wilde H. Soluble HLA-G protein secreted by alloreactive CD8+ T cells suppresses the alloproliferative response: a CD4+ T cell regulatory mechanism. Proc Natl Acad Sci U S A 2001; 98:12150-5; PMID:11572934; http://dx.doi.org/10.1073/pnas.98.21.12150.

Ristic V, Liang S, Zhang W, Wu J, Horozuks A. Tolerization of dendritic cells by HLA-G. Eur J Immunol 2005; 35:1133-42; PMID:15777071; http://dx.doi.org/10.1002/eji.20042574.

Lianas P, Ristic V, Gámez M, Daussert J, Carosella ED, Horozuks A. Modulation of dendritic cell differentiation by HLA-G and ILT4 require the IL-6--STAT3 signaling pathway. Proc Natl Acad Sci U S A 2008; 105:8557-62; PMID:18550823; http://dx.doi.org/10.1073/pnas.0803129105.

Iwasaki M, Bogunia-Kubik K. Clinical significance of the HLA-E and CD94/NKG2E interaction. Am Immunol Ther Exp (Warsz) 2011; 59:353-67; PMID:21800130; http://dx.doi.org/10.1007/s00005-011-0137-y.

Czopp S, Moreau A, Hamidou M, Hoegy V, Soulillou JP, Charteau B. Expression and release of soluble HLA-E is an immunoregulatory feature of endothelial cell activation. Blood 2007; 109:2064-14; PMID:17179229.

Dong Y, Lieskovska J, Kedrin D, Porcelli S, Gao W, Trimbos JB, van der Burg SH, Nijman H, van Hall N. HLA-E expression by immune cells from NKG2D-mediated immune responses in vitro: implications for immune escape in vivo. J Neuroimmunol 2005; 168:120-7; PMID:15977644.

Levy EM, Bianchini M, Von Euw EM, Barrio MM, Bravo AI, Furman D, Domenichini E, Macagno C, Pinsky Y, Zucchini C, et al. Human leukocyte antigen-E protein is overexpressed in primary human colorectal cancers. Int J Cancer 2003; 108:63-41; PMID:12609899.

Wischhusen J, Friese MA, Mittelborn M, Meermann R, Weller M. HLA-E protects glioma cells from NKG2D-mediated immune responses in vitro: implications for immune escape in vivo. J Neuroimmunol 2005; 168:523-53; PMID:15977644.

Gooden M, Lampen M, Jordanova ES, Leffers N, Triimbos JB, van der Burg SH, Nijman H, van Hall N. HLA-E expression by gynaecological cancers restrains tumor-infiltrating CD8+ T lymphocytes. Proc Natl Acad Sci U S A 2011; 108:10656-61; PMID:21670276; http://dx.doi.org/10.1073/pnas.1101345108.

Wei XI, Orr HT. Differential expression of HLA-E, HLA-F, and HLA-G on HNSCC cells. Hum Immunol 1999; 29:131-42; PMID:9929551; http://dx.doi.org/10.1016/S0198-8859(99)00076-2.

Le Bouteiller P, Lenfant F. Antigen-presenting function(s) of the non-classical HLA-E, F and G class I molecules: the beginning of a story. Res Immunol 1996; 147:301-5; PMID:8876098; http://dx.doi.org/10.1016/0198-8859(96)90065-6.

Ishitani A, Sageshima N, Lee N, Dorofeeva N, Berrebi A, Bensussan A, Strbo N, Rukavina D, Silvestrini M, Berenji B, et al. Altered HLA-E and CD94/NKG2A recognition. J Exp Med 2002; 196:1403-17; PMID:12334487; http://dx.doi.org/10.1084/jem.20020345.

Michaelsson J, Teixeira de Matos C, Achar Chau A, Lanier LL, Kärre K, Söderström K. A signal peptide derived from hsp60 binds HLA-E and interferes with CD94/NKG2A recognition. J Exp Med 2002; 196:1403-14; PMID:12460766; http://dx.doi.org/10.1084/jem.20020345.
72. Boyle LH, Gillingham AK, Munro S, Trowsdale J. Selective export of HLA-F by its cytoplasmic tail. J Immunol 2006; 176:6464-72; PMID:16709803
73. Lee N, Geraghty DE. HLA-F surface expression on B cell and monocyte cell lines is partially independent from tapasin and completely independent from TAP. J Immunol 2003; 171:5264-71; PMID:14607927
74. Gobin SJ, van den Elsen PJ. Transcriptional regulation of the MHC class Ib genes HLA-E, HLA-F, and HLA-G. Hum Immunol 2000; 61:1102-7; PMID:11137213; http://dx.doi.org/10.1016/S0198-8859(00)00198-1
75. Noguchi K, Isogai M, Kuwada E, Noguchi A, Goto S, Egawa K. Detection of anti-HLA-F antibodies in sera from cancer patients. Anticancer Res 2004; 24(5C):3387-92; PMID:15515436
76. Zhang X, Lin A, Ruan YY, Yan WH. Alteration of HLA-F and HLA I antigen expression in the tumor is associated with survival in patients with esophageal squamous cell carcinoma. Int J Cancer 2013; 132:85-9; PMID:23864553; http://dx.doi.org/10.1002/ijc.26453
77. Contini P, Ghio M, Merlo A, Beccini S, Filaci G, Indiveri F, Puppo F. Soluble HLA class I/CD8 ligation triggers apoptosis in EBV-specific CD8+ cytotoxic T lymphocytes by Fas/Fas-ligand interaction. Hum Immunol 2000; 61:1347-51; PMID:1163092; http://dx.doi.org/10.1016/S0198-8859(00)00212-3
78. Wolpert F, Rohr P, Lamszus K, Tabatabai G, Weller M, Eisele G. HLA-E/E beta2 microglobulin overexpression in colorectal cancer is associated with recruitment of inhibitory immune cells and tumor progression. Int J Cancer 2012; 131:85-63; PMID:21953582; http://dx.doi.org/10.1002/ijc.26453
79. Stjecan C, Bézieau S, Matysiak-Budnik T, Volteau C, Laboisse CL, Jotereau F, Mosnier JF. HLA-E/β2 microglobulin overexpression in colorectal cancer is associated with recruitment of inhibitory immune cells and tumor progression. Int J Cancer 2012; 131:85-63; PMID:21953582; http://dx.doi.org/10.1002/ijc.26453
80. Allard M, Oger R, Vignard V, Percier JM, Fregni G, Périer A, Caignard A, Charreau B, Bernardeau K, Khammari A, et al. Serum soluble HLA-E in melanoma: a new potential immune-related marker in cancer. PLoS One 2011; 6:e21118; PMID:21712991; http://dx.doi.org/10.1371/journal.pone.0021118
81. Benevolo M, Mottolese M, Tremante E, Rollo F, Diotallevi MG, Ercolani C, Sperduti I, Lo Monaco E, Cosimelli M, Giacomini P. High expression of HLA-E in colorectal carcinoma is associated with a favorable prognosis. J Transl Med 2011; 9:184; PMID:22032294; http://dx.doi.org/10.1186/1479-5876-9-184
82. Spaans VM, Peters AA, Fleuren GJ, Jordanova ES. HLA-E expression in cervical adenocarcinomas: association with improved long-term survival. J Transl Med 2012; 10:184; PMID:22947189; http://dx.doi.org/10.1186/1479-5876-10-184