On the Unsuspected Role of Multivalent Metal Ions on the Charge Storage of a Metal Oxide Electrode in Mild Aqueous Electrolytes

Yee-Seul Kim, Kenneth D. Harris, Benoit Limoges, Véronique Balland

Submitted date: 15/05/2019 • Posted date: 16/05/2019
Licence: CC BY-NC-ND 4.0

Citation information: Kim, Yee-Seul; Harris, Kenneth D.; Limoges, Benoit; Balland, Véronique (2019): On the Unsuspected Role of Multivalent Metal Ions on the Charge Storage of a Metal Oxide Electrode in Mild Aqueous Electrolytes. ChemRxiv. Preprint.

The main objective of the work is to elucidate and rationalize the role played by an Al$^{3+}$-based aqueous electrolyte on the charge accumulated in model mesoporous TiO$_2$ electrodes and to decipher the chemical nature of the inserting cation.

File list (2)

| Name | Size | View | Download |
|------------------|-------|-----|------------------------------|---------------------------|
| Kim_Main_Text.pdf | 2.45 MiB | view on ChemRxiv | download file |
| Kim_SI.pdf | 2.73 MiB | view on ChemRxiv | download file |
On the Unsuspected Role of Multivalent Metal Ions on the Charge Storage of a Metal Oxide Electrode in Mild Aqueous Electrolytes

Yee-Seul Kim, Kenneth D. Harris, Benoît Limoges, Véronique Ballard

Insertion mechanisms of multivalent ions in transition metal oxide cathodes are poorly understood and subject to controversy and debate, especially when performed in aqueous electrolytes. To address this issue, we have here investigated the reversible reduction of nanostructured amorphous TiO$_2$ electrodes by spectroelectrochemistry in mild aqueous electrolytes containing either a multivalent metal salt as AlCl$_3$ or a weak organic acid as acetic acid. Our results show that the reversible charge storage in TiO$_2$ is thermodynamically and kinetically indistinguishable when carried out in either an Al$^{3+}$- or acetic acid-based electrolyte, both leading under similar conditions of pH and concentrations to an almost identical maximal charge storage of \sim115 mA·h·g$^{-1}$. These observations are in agreement with a mechanism where the inserting/deinserting cation is the proton and not the multivalent metal cation. Analysis of the data also demonstrates that the proton source is the Brønsted weak acid present in the aqueous electrolyte, i.e. either the acetic acid or the aquo metal ion complex generated from solvation of Al$^{3+}$ (i.e. [Al(H$_2$O)$_3$]$^{3+}$). Such a proton-coupled charge storage mechanism is also found to occur with other multivalent metal ions such as Zn$^{2+}$ and Mn$^{3+}$, albeit with a lower efficiency than Al$^{3+}$, an effect we have attributed to the lower acidity of [Zn(H$_2$O)$_3$]$^{2+}$ and [Mn(H$_2$O)$_6$]$^{3+}$. These findings are of fundamental importance because they shed new light on previous studies assuming reversible Al$^{3+}$ insertion into metal oxides, and, more generally, they highlight the unsuspected proton donor role played by multivalent metal cations commonly involved in rechargeable aqueous batteries.

1 Introduction

Intercalation batteries based on the pairing of a multivalent metallic conversion anode (Mg, Zn, Al, etc.) with a multivalent metal ion-insertion cathode (i.e., electrode materials able to accommodate the reversible insertion of Mg$^{2+}$, Zn$^{2+}$, Al$^{3+}$, etc.) are an attractive alternative to rechargeable Li-ion batteries for grid-scale applications. These intercalation batteries have the potential for high-energy density (because of the multiple electrons involved at the anode), low cost (many multivalent metal ions are earth-abundant and relatively inexpensive to mine), and possibly long cycle life. Moreover, if operating in aqueous electrolytes, these intercalation batteries can offer additional advantages of sustainability, eco-compatibility, safety, and ease of fabrication at large scale.

To date, a variety of aqueous batteries based on naturally-abundant multivalent metal ions (Zn$^{2+}$, Mg$^{2+}$, Al$^{3+}$...) have been proposed (still in the experimental stage) and significant milestones have been achieved over the past few years. For instance, remarkably high energy densities (ranging from 150 to 200 Wh·kg$^{-1}$) with excellent capacity retentions (> 80% over a few thousands cycles) and rate capabilities have been obtained for a range of rechargeable aqueous zinc-ion batteries paired with different intercalation metal oxide cathodes in mild aqueous electrolyte conditions (from near neutral to slightly acidic pHs). In these studies, the soluble metal ion (Zn$^{2+}$) present in the electrolyte has been shown to be responsible for the reversible faradaic processes at the host electrode material, as evidenced by well-defined reversible waves in cyclic voltammetry (CV) and plateaus in galvanostatic experiments. The exact mechanism of charge storage, however, remains obscure and a matter of debate. By analogy with Li-ion batteries, it is often claimed that the charge storage arises from reversible intercalation/insertion of the aqueous multivalent metal cation within the metal oxide cathode. However, despite numerous attempts to establish the presence of intercalated multivalent cations via structural characterization, none of the studies to date have unambiguously demonstrated the intercalation/insertion mechanism. Additionally, in contrast to the high-charge storage capacities persistently achieved in aqueous electrolytes for a range of metal oxides hosts (i.e., manganese oxides, vanadium oxides, titanium oxides, and tungsten oxides) with different soluble multivalent metal cations (Zn$^{2+}$, Mg$^{2+}$ and even Al$^{3+}$), for unknown reasons, tiny capacities were systematically retrieved for the same systems in water-free organic electrolytes. These poor electrochemical
performances in non-aqueous electrolytes support the assumption that multivalent cations cannot readily insert in metal oxides because of their excessively strong Coulombic interactions with the oxide host lattices. Difficulties are also imposed as the oxidation state of the solid structure changes to redistribute the charge of the inserted multivalent cations; this process is presumed to result in a drastic local deformation in the host crystal structure concomitant with a sudden adjustment in the coordination environment and bond lengths.21,22

Among the multivalent ions, the Al3+ ion is a particularly intriguing case. The benefit of Al3+-based electrolytes on the charge storage capacity of many metal oxide cathodes has been unequivocally revealed.14,22-33 This was first reported in 2012 by Gao and colleagues23 for anatase TiO\textsubscript{2} nanotubes in a 1 M AlCl\textsubscript{3} aqueous electrolyte. The reversible CV peaks as well as the significant capacity (75 mAh g-1 at 4 mA cm-2) recovered from galvanostatic experiments were attributed to the reversible formation of the Al\textsubscript{0.079}TiO\textsubscript{2} intercalation compound.23 Similar observations were also made by other groups (see Table 1).26-28 The capacity was thereafter significantly improved using composite electrode materials incorporating black anatase TiO\textsubscript{2} nanoleaves or anatase TiO\textsubscript{2} nanospheres, reaching maximal capacities > 200 mAh g-1 in 1 M Al(NO\textsubscript{3})\textsubscript{3} or 1 M AlCl\textsubscript{3} aqueous electrolytes (attributed thus to the formation of Al\textsubscript{0.23}TiO\textsubscript{2}).29,30,34 Furthermore, with these high gravimetric capacities, high rate capability (141 mAh g-1 at 6 C) with reasonably good cyclability (> 300 cycles) were found.29 In order to demonstrate Al3+ insertion in the TiO\textsubscript{2} structure, different structural analyses have been undertaken, however, the results were generally inconclusive: the XPS peak of Al3+ in the reduced phase of TiO\textsubscript{2} is barely discernable,23,26,27 and no significant differences between the XRD spectra of the oxidized and reduced TiO\textsubscript{2} were observed.23,29 Besides TiO\textsubscript{2}, the advantageous effect of Al3+-based aqueous electrolytes has also been reported with other metal oxide electrodes such as WO\textsubscript{3} nanowire films,15,31 MnO\textsubscript{2},32,33 conductive polymer-coated MoO\textsubscript{3},24 and V\textsubscript{2}O\textsubscript{5} xerogels,25 but again, insertion of Al3+ within the metal oxide matrix has yet to be conclusively established.

One argument frequently used to support the insertion of Al3+ in metal oxide cathodes is the smaller ionic radius of Al3+ (54 pm) compared to Li+ (76 pm). This argument, however, does not take into account the strong desolvation energy associated with the highly positively charged Al3+ ion, especially in water.35 Also, it does not consider the particularly strong Coulombic interactions between the highly charged Al3+ and the surrounding metal oxide lattice, an effect that is assumed to considerably impede solid-state diffusion. By computing the theoretical migration energy barriers of multivalent ions such as Al3+, Mg2+, Zn2+, Ca2+ in Mn\textsubscript{2}O\textsubscript{4} or V\textsubscript{2}O\textsubscript{5}, Ceder and colleagues concluded that there is little hope of intercalating Al3+ in common metal oxide hosts at room temperature.36 An additional possibility is competitive proton intercalation, which can occur naturally in aqueous environments upon dissolution of aluminum salts at molar concentrations (pH < 3),27 or be easily triggered from side reactions (e.g., electrolysis of water) or deprotonation of Bronsted weak acids.37

All of this shows that many unanswered fundamental questions remain to be elucidated if one wants to better understand the role played by multivalent ions in the storage of charges in metal oxides, especially in aqueous electrolytes. The particularly striking case posed by Al3+ (i.e., can be inserted into a three-dimensional crystalline structure such as TiO\textsubscript{2}) has pushed us to carry out an in-depth study of this system in aqueous media. In this study, we seek to draw knowledge that can then be transposed to other multivalent ion/metal oxide systems. The additional advantage of working with TiO\textsubscript{2} is its rather simple solid-state redox chemistry, centered on a single reversible redox transition from TiIV and TiIII. Its excellent chemical stability in aqueous media over a wide range of pH is a further advantage, avoiding many complications commonly encountered with electrodissolution and/or electrodeposition of metal oxides such as manganic oxides or vanadate ions in aqueous electrolytes.38 The main objective of this work is therefore to elucidate and rationalize the role played by an Al3+-based aqueous electrolyte on the charge accumulated in model mesoporous TiO\textsubscript{2} electrodes and to decipher the chemical nature of the inserting cation. As will be shown, the present results strongly support a charge storage mechanism exclusively based on proton insertion in TiO\textsubscript{2}, wherein the hexaaquo complex [Al(H\textsubscript{2}O\textsubscript{6})\textsubscript{3}]3+ (generated upon solvation of the Al3+ inorganic salt in the aqueous electrolyte) behaves as a proton donor at the metal oxide/electrolyte interface. This reactivity is also demonstrated for other multivalent metal ions such as Zn2+ and Mn2+, which in their hexahydrazed forms, can play the role of a proton donor in water. This original result demonstrates that the Bronsted acidity of [M(H\textsubscript{2}O\textsubscript{6})\textsubscript{3}]3+ complexes can play a fundamental role in the charge storage of metal oxide electrode materials and that it must be taken into account when analyzing the charge storage mechanisms at rechargeable batteries combining metal salts and water molecules.

2 Materials and Methods

2.1 Chemicals and Materials

Aluminum chloride hexahydrate (AlCl\textsubscript{3}\dot{6} H\textsubscript{2}O) and zinc chloride tetrahydrate (ZnCl\textsubscript{2}\dot{4} H\textsubscript{2}O) were purchased from Sigma-Aldrich. Manganese chloride tetrahydrate (MnCl\textsubscript{2}\dot{4} H\textsubscript{2}O) was purchased from Alfa Aesar. Potassium hydroxide, acetic acid (100%, AnalR NORMAPUR®) and hydrochloric acid (37 wt%) were obtained from VWR Prolabo. Potassium chloride (Merck & Co., puriss. p.a.) was used as received. All aqueous solutions were made with deionized water (18.2 M2-cm) from a TKA MicroPure UV purification system.

2.2 Mesoporous GLAD-TiO\textsubscript{2} electrodes

Nanostructured electrodes were prepared by physical vapor deposition of a mesoporous amorphous TiO\textsubscript{2} film using a glancing angle deposition (GLAD) approach. Two different electrode types, denoted GLAD-TiO\textsubscript{2}/ITO and GLAD-TiO\textsubscript{2}/Ti, were prepared. In the first case, the conductive side of
tin-doped indium oxide (ITO) coated glass (Delta Technologies, 8-12 Ω/□) was coated with a thin layer of bulk TiO₂ (15 nm thick) by conventional (i.e., non-GLAD) e-beam evaporation, followed by GLAD-TiO₂. For GLAD-TiO₂/Ti, clean glass substrates were coated with 250 nm of bulk Ti, followed by GLAD-TiO₂. In each case, the GLAD-TiO₂ process was performed at a fixed oblique angle of 72° while continuously rotating the substrate at a rate of one complete rotation for every 10 nm of TiO₂ film growth until the mesoporous TiO₂ film was 1 μm-thick. GLAD-TiO₂/Ti/ITO electrodes were thermally annealed at 100°C for 24 hours in order to increase the oxygen content and improve transparency. Prior to use, electrodes were cleaned in an ultraviolet ozone cleaner (UV/O₃ ProCleaner™ plus, Bioforce Nanosciences) for 15 min and subsequently soaked at room temperature in acetone and then ethanol for 15 and 30 min, respectively. The electroactive TiO₂ surface was delimited by depositing nail vanish to define a rectangular working electrode area of 0.5 ± 0.05 cm² (evaluated from a set of N = 15 independent electrodes).

2.3 Spectroelectrochemical and electrochemical experiments

Spectroelectrochemical experiments were performed with an Autolab PGSTAT-12 potentiostat (operated by GPES-4 software) synchronized through an input trigger signal to a fiber-coupled TORUS UV-visible spectrophotometer (Ocean Optics). This setup allows simultaneous monitoring of the electrochemical current and optical absorbance at a GLAD-TiO₂ electrode during any type of electrochemical experiment. A balanced deuterium tungsten source (Micropack) was used for illumination, and an integration time of 3 ms was used for UV-vis spectral acquisition. The spectroelectrochemical cell (Figure S2) was thermostated at a temperature of 25°C using a dedicated Peltier-heater (Quantum Northwest). The electrolyte solution was thoroughly deaerated by argon bubbling (for at least 10 min) before each experiment, and a constant flux of argon was maintained above the solution during experiments. An Ag/AgCl electrode filled with an internal 3 M KCl solution (WPI, Dri-Ref, +0.2 V vs. NHE at 25°C) and a Pt wire were used as the reference and counter electrodes, respectively. An average ohmic drop compensation of 41 ± 4 Ω (N = 24) was applied to the electrochemical experiments (except for the potential step experiments, vide infra).

In cyclic voltabsorptometry experiments, a satisfactory absorbance signal-to-noise ratio was obtained by averaging 12 scans for the experiments performed at 50 mV·s⁻¹, 6 scans for those at 100 mV·s⁻¹, and 4 scans for those at 200 mV·s⁻¹. The extinction coefficient of the charges accumulated in TiO₂ at λ = 780 nm was recovered from the following relationship (expressed here in flux density, φ, or mol·cm⁻²·s⁻¹) relating the measured current to the absorbance change:

\[
\phi = \frac{1}{1000 \times \varepsilon_{780}} \frac{dA_{780}}{dt} \frac{i}{F S}
\]

where \(A_{780}\) is the absorbance monitored at 780 nm, \(F\) is the Faraday constant (96 485 C·mol⁻¹), \(S\) the geometric electroactive surface area (in cm²) and \(\varepsilon_{780}\) is the extinction coefficient (in M⁻¹·cm⁻¹) of the stored charges. As a function of the electrode used, \(\varepsilon_{780}\) values ranging from 900 to 1200 M⁻¹·cm⁻¹ were obtained, which is in agreement with the values previously reported by us and others.³⁷-⁴¹

Galvanostatic experiments were performed with current densities ranging from 0.4 mA·cm⁻² to 2 mA·cm⁻² and cut-off charge voltages ranging from +0.24 V to -1.12 V vs. Ag/AgCl at pH 3.

Whatever the electrochemical technique used, the charge density \(Q\) (in mC·cm⁻²) accumulated in the GLAD-TiO₂ film was determined from the maximal absorbance change monitored at 780 nm using the following expression:

\[
Q = F \frac{\Delta A_{780}}{1000 \times \varepsilon_{780}} = \frac{\int \phi dt}{S} \tag{2}
\]

From the values determined for \(Q\), the corresponding gravimetric capacity (in mC·g⁻¹ or mA·h·g⁻¹) was calculated by taking into account the volumetric mass density of the GLAD-TiO₂ film (i.e. 2.5 × 10⁻³ g·cm⁻³ for the 1 μm-thick GLAD-TiO₂ film).⁴² The gravimetric capacity arising exclusively from ion intercalation in TiO₂ was determined after correcting for the amount of capacitive charges stored at the TiO₂/electrolyte interface in an inert 0.3 M KCl aqueous electrolyte (adjusted to pH 3.0).

3 Results and Discussion

3.1 Model GLAD-TiO₂ electrodes

Model mesoporous metal oxide electrodes were composed of a 1-μm thick nanostructured amorphous TiO₂ film. In contrast with the composite electrode materials commonly used for batteries (i.e., mixtures of active material, binder and conductive additives), these TiO₂ electrodes are exclusively composed of active material. The nanostructured TiO₂ film was obtained by glancing angle deposition (GLAD),⁴²-⁴³ a physical vapor deposition technique that leads to highly reproducible nanostructured metal oxide films of vertically aligned nanocolumns with well-controlled porosity and thickness. We have recently shown that protons can be rapidly and massively inserted/disinserted in these GLAD-TiO₂ electrodes, negatively polarized in a neutral aqueous buffer.³⁷ In this previous work, we also demonstrated that the inserted protons originate from the weak conjugate acid of the organic buffer present in solution at neutral pH. This is markedly different from proton insertion in a strongly acidic aqueous electrolyte (typically pH < 2) where free protons (or more rigorously hydronium ions) naturally serve as a proton source.³⁷,⁴⁴

For the present study, two different types of 1 μm-thick GLAD-TiO₂ electrodes were used (Figure S1): (i) 1 μm-thick amorphous TiO₂ mesoporous film deposited by GLAD (using a deposition angle of 72°) over flat transparent conductive ITO-coated glass surfaces (GLAD-TiO₂/TiO₂/ITO electrodes), and (ii) the same 1 μm-thick GLAD TiO₂ film deposited over a non-transparent conductive Ti-coated glass surfaces (GLAD-TiO₂/Ti electrodes) (see Materials and Methods for details). In the case of the GLAD-TiO₂/TiO₂/ITO electrodes, before the GLAD
mesoporous TiO$_2$ film deposition, a thin layer of bulk TiO$_2$ (~15 nm) was deposited over the ITO surface to protect the underlying ITO layer from the electrolyte. Without this TiO$_2$ shielding, the ITO suffers an irreversible loss of conductivity under excessively negative potentials37 (see Supporting Information for additional comments). The GLAD-TiO$_2$/TiO$_2$/ITO electrodes are optically transparent, allowing spectroelectrochemical investigation of storage properties, while the GLAD-TiO$_2$/Ti electrodes exhibit better stability under strongly reducing conditions, allowing investigation of charge storage at more negative potentials. As an illustration, Figure 1 shows SEM images (top and side views) of a 1 µm-thick GLAD-TiO$_2$/Ti electrode. The surface area enhancement and volumetric mass density of the GLAD TiO$_2$ film are the same as previous reports, i.e. 540 per µm of film thickness and 2.5 g·cm$^{-2}$, respectively.32

3.2 Charge storage in the presence of 0.3 M KCl, pH 3.0

The electrochemical charge storage properties of the transparent electrodes were characterized by real-time spectroelectrochemistry, a technique which allows absorbance changes (or electrochromic properties) of the TiO$_2$ film to be monitored as a function of cathodic or anodic polarization in a mild aqueous electrolyte (see Materials and Methods and Figures S1 and S2). The electronic properties of amorphous TiO$_2$ are characterized by a bandgap of ~3.2 eV and a pH-dependent conduction band potential of E_{CB} = -0.36 - 0.06 x pH (V vs. Ag/AgCl)36,45 and therefore, the GLAD-TiO$_2$/TiO$_2$/ITO electrodes exhibit good transparency in the visible range and poor electronic conductivity as long as the applied potential E >> E_{CB}. As the applied potential E is negatively increased and approaches E_{CB}, light absorbance at the electrode increases concomitant with a rise in conductivity. This behavior is attributed to progressive filling of localized electronic states within the bandgap until $E < E_{CB}$ is reached and a degenerate state characteristic of a metal-like conductive film is formed.46,47

In a 0.3 M KCl aqueous electrolyte (adjusted to pH 3.0), cyclic voltammograms (CVs) and cyclic voltabsorptograms (CVAs), monitored at 780 nm at a GLAD-TiO$_2$/TiO$_2$/ITO electrode show, as expected, a typical transition from an insulating to a conductive state as the Fermi level of electrons in the TiO$_2$ film increases toward the conduction band potential (a transition which starts here at ~0.3 V vs. Ag/AgCl) (Figure S1 and 2). This process is associated with a simultaneous increase of the TiO$_2$ film absorbance at 780 nm, which is characteristic of electrons accumulating in the electronic states of the semiconducting material (an increase that is proportional to the amount of charge accumulated within the semiconducting film).39 Once the applied potential lies within the potential window where TiO$_2$ behaves as a metal-like conductive film (i.e., at $E < -0.5$ V vs. Ag/AgCl at pH 3.0), the CV displays a rectangular-shaped current response (Figure 2A) almost independent of the applied potential and scaling linearly with the scan rate v (Figure S1). Such a behavior, corroborated by an almost linear and symmetric absorbance change during the forward and backward potential scans in the CVA (Figure 2A), is characteristic of electrical charging of the double layer capacitance arising from simple ion adsorption at the metal-like-TiO$_2$/electrolyte interface. The current density under these conditions is directly proportional to the high surface area of the mesoporous film.37 As attested by the complete restoration of the initial metal oxide transparency upon scanning back the potential in the anodic direction, the capacitive charging process is fully reversible. The maximal amount of charge (Q) that can be stored through the capacitive charging process can be easily inferred from the maximal absorbance change (ΔA_{max}) of the GLAD-TiO$_2$/TiO$_2$/ITO electrode at 780 nm (see Materials and Methods). As illustrated in Figure 2, a maximal Q value of 15 mC·cm$^{-2}$ at -1.0 V (i.e., 15 mF·cm$^{-2}$, which is equivalent to 60 F·g$^{-1}$ or 17 mA·h·g$^{-1}$) can be determined from the cyclic voltabsorptometry experiment, a value that matches those extracted from chronocalsorptometry or galvanostatic experiments (i.e., ~13-14 mC·cm$^{-2}$ at the applied voltage of -0.82 V, which corresponds to ~16-17 mF·cm$^{-2}$) (see blue curves on the bottom graphs of Figure 2). That the same maximum Q values are obtained, regardless of the technique used, suggests a fast charging process. This is further confirmed by the shape of the chronocalsorptogram in Figure 2B where the maximal Q value is reached within a few seconds, i.e., on a much shorter time scale than that required to perform CV or galvanostatic experiments. This behavior fully agrees with that expected for fast charging of the double layer electrical capacitance of a high surface area electrode.
Figure 2. Spectroelectrochemical characterization of a GLAD-TiO$_2$/TiO$_2$/TiO electrode in an aqueous electrolyte adjusted to pH 3.0 and containing (blue) 0.3 M KCl, (purple) 0.25 M acetic acid and 0.3 M KCl, or (red) 0.25 M AlCl$_3$. The orange lines in the top graphs in A and B and the middle graph in C represent the ramps or steps of potential or current which were applied during (A) the cyclic voltammetric, (B) chronoamperometric, and (C) galvanostatic (0.4 mA cm$^{-2}$) experiments. The current density is normalized to the geometric area (S) of the GLAD-TiO$_2$ electrode. The charge density Q is directly calculated from the visible absorbance change of the electrode at 780 nm and normalized to the geometric electrode area (see Materials and Methods). The CVs/CVAs were performed at a scan rate v of 0.1 V s$^{-1}$, while the chronoabsorptometric and galvanostatic experiments were carried out at a constant applied potential of $E = -0.82$ V or a constant applied current of $j = 0.4$ mA cm$^{-2}$. All experiments were performed at 25°C and potentials were quoted against the Ag/AgCl, 3 M KCl reference electrode.

Table 1. Comparison of the electrochemical properties of nanostructured TiO$_2$ electrodes in the presence of various aluminum salts in aqueous solutions. The performances obtained at GLAD-TiO$_2$ electrodes in the presence of a weak acid are also added (all potentials are quoted vs. Ag/AgCl) for comparison.

Film morphology	TiO$_2$ crystallinity	Electrolyte	pH	E' (V)	Maximal capacity (mA h g$^{-1}$)	Charging rate (A g$^{-1}$)	Charging cut-off potential (V)	Ref
Nanotubes	anatase	1 M AlCl$_3$	nr	-1.05	75	4 mA cm$^{-2}$	-1.2	23
Nanotubes	anatase	up to 0.5 M AlCl$_3$ or Al$_2$(SO$_4$)$_3$	2.5	-1.1	75	4 mA cm$^{-2}$	-1.15	26
Nanoleavesb	black anatase	1 M Al(NO$_3$)$_3$	nr	-1.05	278	0.05	-1.4	20
Nanospheresb	anatase	1 M AlCl$_3$	nr	-1.06	183	0.05	-1.2	30
Nanotubesc	anatase	1 M AlCl$_3$	3	-1.13	33	6.25	-1.075	28
		0.25 M AlCl$_3$	3.8	50	6.25			
Nanoparticlesd	anatase	1 M AlCl$_3$	\leq3	-1.07	225	0.05	-1.2	24
Nanocolumnse	amorphous	0.25 M AlCl$_3$	3	-0.75	115	1.6	-1.12	This work
		0.25 M KCl	3	25	1.6	-1.12	This work	
		0.25 M acetic acid + 0.3 M KCl	3	-0.75	118	1.6	-1.12	This work
		8 M acetic acid	5	-1.0	155	0.8	-1.24	This work

$nr =$ not reported, a formal potential of the reversible insertion wave in CV, b composite electrodes with acetylene black, c composite electrodes with graphene, d composite electrodes with carbon nanotubes, e data recovered from galvanostatic experiments at GLAD-TiO$_2$/Ti electrodes.
3.3 Charge storage in the presence of 0.25 M AlCl₃, pH 3.0

In the presence of AlCl₃ electrolyte (0.25 M, pH 3), the magnitude and shape of the cyclic voltammogram at GLAD-TiO₂/ITO electrodes is strongly modified. On top of the above-mentioned capacitive current, a broad reversible wave appears, centered on a formal potential of \(E^{\text{pc}} \approx -0.75 \) V, and this reversible wave appears together with a large increase in TiO₂ film absorbance (Figure 2). The magnitude of the reversible wave (or reversible absorbance change in CVA) increases with increasing Al³⁺ concentration in solution (Figure 3), thus confirming that Al³⁺ directly contributes to the reversible charge accumulation. Analysis of the cathodic and anodic waves in CV as a function of the scan rate shows that the current is no longer proportional to the scan rate, and that once corrected from the capacitive current, current is instead proportional to the square root of \(v \) over the entire range of Al³⁺ concentrations investigated (i.e., from 0.025 to 0.25 M, see Figure S3 – higher concentrations of Al³⁺ were not examined because they lead to pH values below 3, which cannot easily be adjusted to higher values without aluminum salt precipitation).¹³ Such behavior strongly supports a reversible charging/discharging process that is rate-controlled by diffusional mass transport of aluminum ions in solution.

As illustrated with the chronoabsorptometry or gavalnostatic experiments in Figure 2, when enough time is given for the charge storage process to take place, the electrode absorbance reaches an equilibrium value that depends only on the applied potential (suggested conditions entirely governed by thermodynamics). From the magnitude of the equilibrium absorbance change (indicative of an equilibrium amount of electrons stored within the material) recorded here at -0.82 V, a gravimetric capacity of 65 mAh g⁻¹ can be estimated, which is 5-fold more than in the absence of AlCl₃ at the same pH and potential (i.e., ~13 mAh g⁻¹). Additionally, under the selected experimental conditions, the charging process is fully reversible as attested by the complete restoration of the initial absorbance. All of these observations clearly suggest the occurrence of a reversible faradaic process, rate-limited by a diffusional mass transport involving Al³⁺. These results also confirm what has previously been obtained by other groups (see Table 1).²³,²⁶–³⁰,³⁴

At first sight, it is tempting to attribute this reversible charging process to the reversible faradaic reduction of the Ti⁴⁺ sites coupled with intercalation of Al³⁺ into TiO₂ (to locally compensate the loss of charge within the metal oxide lattice) according to the following global reaction:

\[
\text{TiO}_2 + 3 x \text{e}^- + x \text{Al}^{3+} \rightleftharpoons \text{Al}_x\text{TiO}_2
\]

This reaction mechanism was proposed by several groups²³,²⁶,²⁸–³⁰,³⁴ (see Table 1), arguing that the small radius of Al³⁺ as compared to Li⁺ (0.053 nm vs. 0.069 nm, see Table S1) facilitates intercalation and migration within the solid phase of TiO₂. On the basis of eq 3, experimental \(x \) values ranging from 0.076 to 0.27 were thus proposed,²³,²⁶ which for the highest values, is near the maximal theoretical value (i.e., 0.33) assuming that all the Ti⁴⁺ atoms in TiO₂ can be reduced into Ti³⁺ and that 3 Ti³⁺ atoms are involved for each Al³⁺ ion inserted. This, however, does not take into consideration that dissolution of Al³⁺ salts in aqueous solutions leads to the formation of \([\text{Al(H}_2\text{O})_6]^{3+}\), a hexaqua ion complex characterized by a rather large molecular size (diameter > 0.38 nm according to the Al-O internuclear distance of 0.19 nm⁴⁸), in which the coordinated water molecules are strongly bonded because of the high charge and small size of Al³⁺ (\(\Delta G_{\text{hydr}} = -4525 \text{ kJ mol}^{-1} \)), which is 10-fold higher than Li⁺.³⁵ Accordingly, insertion of the unsolvated Al³⁺ ion into TiO₂ must be thermodynamically more difficult (i.e., shifted to more negative potentials) than insertion of a monovalent cation of similar size and lower solvation energy (for instance Li⁺). In other words, insertion of Al³⁺ into TiO₂ is expected to be penalized by the high energy cost associated with desolvation of its hydration shell (corresponding to a high change in Gibbs free energy for the ion insertion potential, i.e. \(\Delta G = \Delta G_{\text{hydr}} + \Delta G_{\text{diff}} \)). Additionally, as already mentioned in the introduction, the strong Coulombic interaction that is presumed to occur between the highly charged Al³⁺ and the surrounding TiO₂ lattice should strongly hinder the solid-state cation diffusion.³⁶

An additional aspect that has not previously been sufficiently taken into account is the weak acidity of the \([\text{Al(H}_2\text{O})_6]^{3+}\) complex, resulting from the Lewis acidity of Al³⁺ that strongly polarizes the coordinated water molecules in the hexaqua complex. This polarization is sufficient to make the hydrogen atoms of the bonded water molecules more acidic than normal water molecules. For this reason, the \([\text{Al(H}_2\text{O})_6]^{3+}\) complex is characterized by a weak Brønsted acidity of \(pK_a = 4.97^{,49} \)

Accordingly, the dissolution of 0.25 AlCl₃ in water leads to the following equilibrium mixture of ionic species in solution: 0.249 M \([\text{Al(H}_2\text{O})_6]^{3+}\), 1 mM \([\text{Al(H}_2\text{O})_6(\text{OH})]^{3+}\), 1 mM H₂O⁻ (pH 3.0) and 0.75 M Cl⁻. The electrolyte therefore consists of a large amount of \([\text{Al(H}_2\text{O})_6]^{3+}\) which, due to its weakly acidic properties, can be considered as an abundant latent source of protons. This source is much more abundant than the free proton concentration, which at pH 3.0 can be considered negligible. This means that the aluminum hexaqua complex, rather than acting as an intercalating cation, can serve as a proton source to locally compensate the negative charge.
generated by reduction of TiO₂, a process that can be formally described by the following interfacial reaction scheme:

\[\text{TiO}_2 + x e^- + x [\text{Al(H}_2\text{O)}_6]^{3+} \rightleftharpoons \text{TiOOH} + x [\text{Al(H}_2\text{O)}_6\text{(OH)}]^{2+} \] (4)

This proposed mechanism is also based on our recent finding that a weak organic acid such as the conjugate acid form of the zwitterionic HEPES buffer (i.e., 4-(2-hydroxyethyl)-1-piperazineethanesulfonate, pKₕ₋ₓ = 7.5) can be an efficient proton donor to assist the proton insertion-coupled charge transfer generated at a negatively biased GLAD-TiO₂ electrode in a neutral aqueous buffer (pH 7.0). By extension, we can postulate that a similar charge storage mechanism is at work in the presence of an Al³⁺-based electrolyte, wherein [Al(H₂O)₆]³⁺ is recruited as a source of protons at the metal oxide/electrolyte interface to promote the insertion of protons within the metal oxide lattice.

The first item in favor of this proton insertion mechanism is the remarkably fast charging/discharging rate evidenced by: (i) the reversible wave in CV, which remains particularly well-defined despite the unusually high scan rate used here (ν = 0.1 V s⁻¹) in Figure 2, which is much higher than that ordinarily used to characterize Li-ion insertion in TiO₂ (ν < 10 mV s⁻¹), (ii) the chronocoulometry experiment of Figure 2 which demonstrates rapid charging to a gravimetric capacity as high as 61 mAh g⁻¹ in less than 1 min at -0.82 V, (iii) the galvanostatic experiments at different rates in Figure S4 from which remarkably high charging efficiencies could be estimated (i.e., values as high as 70% at 1.6 A g⁻¹, i.e. 45 mA h g⁻¹ at 0.4 mA cm⁻², or 40% at 8 A g⁻¹, i.e. 27 mA h g⁻¹ at 2 mA cm⁻² at a cut-off potential of -0.82 V). This fast charging/discharging rate clearly supports fast uptake/release of the charge compensating cation. Uptake/release is fast enough that charge/dischARGE is almost always fully controlled by the mass transport of [Al(H₂O)₆]³⁺ in solution, a behavior that is supported by the close-to-linear dependence of the peak current in CV as a function of [AlCl₃] (Figure 3 and S3). This observation argues in favor of proton insertion rather than Al³⁺ intercalation, which considering the ionic size argument, makes sense because the ionic radius of a proton is ~6 × 10⁻²²-fold smaller than Al³⁺ (see Table S1).

3.4 Charge storage in the presence of 0.25 M acetic acid, pH 3.0

If we assume that, because of its weakly acidic character, [Al(H₂O)₆]³⁺ only acts as a donor to promote proton insertion at the TiO₂/electrolyte interface, then by extrapolation, we can expect that other weak acids could support the same H⁺ insertion process. If this assumption is true, then it is reasonable to anticipate that under similar concentration and pH conditions, it should be impossible to differentiate the electrochemical experiments performed in an electrolyte containing [Al(H₂O)₆]³⁺ from those performed in an electrolyte containing an organic weak acid of similar pKₕ. To test this hypothesis, the spectroelectrochemical experiments performed with Al³⁺ were repeated with acetic acid, a monoprotic organic acid having a pKₐ of 4.76, almost identical to [Al(H₂O)₆]³⁺ (pKₐ = 4.97). To replicate the proton donor concentration and ionic strength of the Al³⁺-based experiments, an aqueous solution containing 0.25 M acetic acid and 0.3 M KCl, adjusted to pH 3.0, was used. The experimental data obtained with the acetic acid electrolyte at a GLAD-TiO₂/TiO₂/ITO electrode are reported in Figures 2 and 3. Whatever the electrochemical technique used, it immediately emerges from Figure 2 that the experimental data recorded in the presence of acetic acid are highly similar to those obtained in the Al³⁺-based electrolyte. In the presence of acetic acid, the CV and CVA show the appearance of an intense and broad reversible wave, whose shape, current intensity (or absorbance change), and potential positioning are almost overlaid with those obtained using the Al³⁺-based electrolyte. The absence of a potential shift in the position of the reversible wave is a strong indication that, thermodynamically, the same cationic species is involved in the faradic transformation of TiO₂. This observation is again consistent with proton insertion rather than Al³⁺ insertion. (It is indeed hard to envision that the reducing potential of TiO₂ does not depend on the nature of the inserted cation, a dependence that has been well-identified for the insertion of alkali-ions in solid metal hexacyanometalates and mainly attributed to a difference in the solvation energy of the cations). Also, similar to the results found with Al³⁺, the magnitude of the reversible wave and absorbance change was observed to increase with the concentration of acetic acid (Figure 3 and S5), confirming that acetic acid is directly involved in the charge storage mechanism. Furthermore, once corrected for the contribution of the capacitive current, the magnitude of the cathodic and anodic peak currents in CV were observed to vary proportionally with √ν over the entire range of acetic acid concentrations investigated (Figure S5). Again, this behavior is analogous to that obtained with the Al³⁺-based

![Figure 3. Cyclic voltammograms (CVs) and cyclic voltabsorptograms (CVAs) recorded at a GLAD-TiO₂/TiO₂/ITO electrode in an aqueous solution (adjusted to pH 3.0) containing 0.3 M KCl (except for the highest AlCl₃ concentration) and increasing concentrations of (left) AlCl₃, or (right) acetic acid. The AlCl₃, or acetic acid concentrations were as follows: (black curves) 0 mM, (blue curves) 25 mM, (purple curves) 50 mM, (magenta curves) 100 mM, and (red curves) 250 mM. Scan rate: 0.1 V s⁻¹. The black arrows indicate the potential scan direction.](#)
electrolyte, clearly suggesting a faradaic charging mechanism rate-controlled by diffusional mass transport, which here can unambiguously be attributed to the mass transport of the acetic acid in solution.

Other striking similarities in Figure 2 are the charging and discharging rates which, in light of the chronoamperometry or chronoaabsorptometry experiments, lead to almost identical kinetic traces for the two electrolytes. This is also the case for the galvanostatic experiments, which show very similar charging/discharging curves in each electrolyte. Additionally, the maximal equilibrium amount of charge reached at the end of the chronoamperometric or chronoaabsorptometric experiments (i.e., at -0.82 V) are the same in both electrolytes (i.e., 67-68 mA h g\(^{-1}\)). The similarities in the charging/discharging rates and in the amounts of accumulated charge with both electrolytes strongly suggest that the same cationic species is involved in the charge storage mechanism, and that the cation common to the two electrolytes is the proton, not Al\(^{III}\).

Because of their much higher stability under strongly reducing conditions, we examined the influence of an increasingly negative cut-off potential (ranging from -0.82 V up to -1.12 V) on the galvanostatic charging of GLAD-TiO\(_2\)/Ti electrodes. This was done both in the presence and the absence of a proton donor. The resulting galvanostatic charging/discharging curves reported in Figure 4 show that in the presence of AlCl\(_3\) or acetic acid, the amount of charge reversibly stored in the mesoporous film at a charging rate of 1.6 A g\(^{-1}\) is steadily increased as the negative cut-off potential is progressively shifted to more negative values, reaching a gravimetric capacity as high as 115 mA h g\(^{-1}\) at the most negative cut-off potential of -1.12 V in both electrolytes.\(^{55}\) The main factor that impedes a more extensive reduction of the GLAD-TiO\(_2\) film is the competitive hydrogen evolution reaction that becomes progressively more dominant with application of increasingly negative potentials (and which leads to the obvious release of dihydrogen bubbles at the electrode interface). This is well-evidenced in Figure 4 through the charge storage coulombic efficiency which decreases as the cut-off potential is raised to more negative values.

Despite the competitive hydrogen evolution, we found that the reversible gravimetric capacity could be improved to 155 mA h g\(^{-1}\) at a GLAD-TiO\(_2\)/Ti electrode by further increasing the acetic acid-based electrolyte concentration to 8 M (Figure S6). This charge storage capacity is not far from the maximal theoretical value of 167 mA h g\(^{-1}\) assuming by analogy to Li\(^{+}\),\(^{53}\) that only half of the bulk Ti\(^{IV}\) sites in TiO\(_2\) can be reduced into Ti\(^{III}\) (x = 0.5).

3.5 Interpretation in terms of proton-coupled electron storage

As acetic acid cannot itself insert within the TiO\(_2\) structure, and the free proton concentration at pH 3.0 is quite low, the only way to explain the faradaic response observed in the presence of this weak acid is that the latter behaves as a proton donor (i.e., a Brønsted weak acid, AH) at the TiO\(_2\) interface, exactly as we have previously shown at neutral pH with the HEPES buffer.\(^{37,54}\) This type of proton-coupled electron charge storage can be formally expressed as follows:

\[
\text{TiO}_2 + x e^- + x AH \rightleftharpoons \text{TiOOH}_x + x A^- \tag{5}
\]

where AH is the weak acid (here the acetic acid) and A\(^-\) its conjugate base. Also, we have previously shown,\(^{37,54}\) this global reaction can be more accurately described by the following reaction mechanism:

\[
\begin{align*}
\text{Ti}^{IV}_2O_2 + x e^- + x AH & \rightleftharpoons \text{Ti}^{III}(O)(OH) + x A^- \\
\text{Ti}^{IV}_2O_2 + \text{Ti}^{III}(O)(OH) & \rightleftharpoons \text{Ti}^{III}(O)(OH) + \text{Ti}^{IV}O_2
\end{align*} \tag{6,7}
\]

wherein the first step corresponds to interfacial proton-coupled electron transfer at the metal oxide/electrolyte interface, and the second step to solid-state proton migration/diffusion within the metal oxide lattice (see the illustrative cartoon in Figure 1). An additional step that is not explicitly formulated here is the diffusional mass transport of AH in solution and which, under insufficiently high concentration of proton donor, can be rate limiting. As we have demonstrated in our previous work,\(^{37,54}\) depending on the experimental conditions, the charging/discharging process at a GLAD TiO\(_2\) electrode can be exclusively rate-limited by one of the aforementioned kinetic processes or by a mixed control of any combination.\(^{54}\) If we assume a fast interfacial proton-coupled electron transfer, which is reasonable on account of the relatively well-defined reversible peaks we observed in the CV at unconventionally fast scan rates, it becomes possible to experimentally extract some pertinent kinetic parameters. We consider the transition from one limiting case where the charge storage kinetics are entirely governed by diffusion of the proton donor in solution to another limiting case where the process is solely rate-limited by solid-state diffusion of protons within the TiO\(_2\) bulk lattice. This transition can be revealed by recording the diffusion controlled cathodic or anodic peak currents in CV as a function of the AH

![Figure 4](image-url)

Figure 4. Left: Galvanostatic charging and discharging curves recorded at 1.6 A g\(^{-1}\) at GLAD-TiO\(_2\)/Ti electrodes in aqueous electrolytes (adjusted to pH 3.0) containing (blue) 0.3 M KCl, (purple) 0.25 M acetic acid and 0.3 M KCl, or (red) 0.25 M KCl. The negative cut-off potential (dotted line) was fixed to (top) -0.82 V or (bottom) -1.12 V. Right: (dot symbols) reversible charge storage capacities (Q) and (start symbols) coulombic efficiencies (all recovered from galvanostatic experiments performed at 1.6 A g\(^{-1}\)) plotted as a function of the negative cut-off potential. The code color is the same as that on the left graph, referring to the electrolyte composition.
concentration, as shown in Figure 5. Whatever the nature of the electrolyte, a linear relationship is observed in Figure 5 (see the inset) at low AH concentrations ([AH] ≤ 0.1 M), characteristic of a charge storage mechanism rate-limited by the diffusional mass transport of either the acetic acid or [Al(H₂O)₆]³⁺ in the electrolyte. Under these conditions, the solution diffusion coefficient of AH can be directly extracted from the slope of the linear part (or tangent) of the experimental data using the following modified Randles-Sevcik equation:²⁴

\[
\frac{i_p}{5} = 0.419f[AH] \sqrt{D_{av} s F n v / RT}
\]

where \(i_p\) is the cathodic peak current (in A), \(S\) the delimited geometric electrode area (in cm²), \([AH]\) the concentration of proton donor in the aqueous electrolyte (in mol·cm⁻³), \(D_{av}\) the diffusion coefficient of AH in solution (in cm²·s⁻¹), \(v\) the scan rate (in V·s⁻¹). From the best curve fittings in Figure 5 (dashed straight lines), values of \(4 \times 10^{-6}\) cm²·s⁻¹ and \(3 \times 10^{-6}\) cm²·s⁻¹ were recovered for [Al(H₂O)₆]³⁺ and acetic acid, respectively. These values are in the range of those reported in the literature, i.e. 5.4 × 10⁻⁶ cm²·s⁻¹ for aqueous Al³⁺ and 1.3 × 10⁻⁶ cm²·s⁻¹ for the acetic acid.²³ The data we had previously reported²⁴ in a neutral HEPES buffer (pH 7.0) were also added to Figure 5. Comparison of data obtained in a HEPES buffer with those recovered in Al³⁺-based or acetic acid-based electrolytes shows similar trends with a near overlay of the data over the entire range of proton donor concentrations. Both trends also include progressive deviations from linearity at higher AH concentrations, which is characteristic of transition to kinetic control by the solid-state diffusion of the inserted cation. Although it was not possible to further increase the AlCl₃ concentration (because of both pH considerations and competitive proton insertion arising from the free protons in solution) to make the peak current fully independent of the AH concentration, we assessed this limiting case from numerical simulations of the model we have previously proposed.²⁴ The numerically calculated plots that best fit the experimental data are given in Figure 5 (black and grey curves). These plots were obtained by employing an average value for the diffusion coefficient of the various proton donors in solution (i.e., \(D_{av} = (3 ± 1.5) \times 10^{-6}\) cm²·s⁻¹), and by adjusting the value of the solid-state diffusion coefficient within a certain range reflecting the scatter in the experimental data. Considering all of the data obtained for the different electrolytes, the diffusion coefficients converged to a single average value of \((5 ± 2.5) \times 10^{-6}\) cm²·s⁻¹. This convergence to a single solid-state diffusion coefficient is once again a strong argument in favor of a consistent cationic species that inserts into TiO₂, and this species cannot be other than the proton.

3.6 Extension to other multivalent metallic ions

If [Al(H₂O)₆]³⁺ serves as an efficient proton source due to its Brønsted acidity, one can presume that this effect can also extend to other multivalent hexaaquo metal ions exhibiting weak acid properties in aqueous solution.⁴⁹ We have thus investigated the electrochemical charging of GLAD TiO₂/ITO electrodes in aqueous electrolytes (adjusted to pH 3.0) containing either 0.25 M ZnCl₂ or 0.25 M MnCl₂, two divalent metal ions that are commonly present in a wide range of aqueous zinc-ion batteries.¹,³,⁷,⁹-¹¹ As for AlCl₃, once ZnCl₂ and MnCl₂ are dissolved in aqueous solution, they form hexaaquo complexes [Zn(H₂O)₆]²⁺ and [Mn(H₂O)₆]²⁺, characterized by pKₐ values of 9.0 and 10.6, respectively (Table S1). The resulting CVs and CVAs reported in Figure 6 show a net increase in current density and absorbance change (monitored at 780 nm) at potentials lower than -0.5 V as compared to the same electrode scanned in a pure 0.3 M KCl electrolyte. Also similar to [Al(H₂O)₆]³⁺, this increase is proportional to \(v^{1/2}\) and a function of the metal ion concentration in solution, behaviors which attest to a charge storage process kinetically governed by the solution mass transport of metal ions toward the electrode surface. It is interesting to note that Zn²⁺ and Mn²⁺ have much larger ionic radii than Li⁺ and Al³⁺ (see Table S1), so that the cation size argument can no longer explain the increase of capacity by uptake of these divalent ions within the 3D structure of TiO₂. Hence, the increase of capacity can again be unambiguously attributed to the reversible insertion of protons provided by the hexaaquo metal ion complexes during the reversible reduction of TiO₂.

The main difference that become apparent in side-by-side comparison of the CVs and CVAs recorded in the various electrolytes is the somewhat lower charging/discharging current densities and absorbance changes when using [Zn(H₂O)₆]²⁺ and [Mn(H₂O)₆]²⁺, indicating a lower charge storage efficiency with these metal ions as compared to [Al(H₂O)₆]³⁺. We attribute this effect to the lower Brønsted acidity of [Zn(H₂O)₆]²⁺ and [Mn(H₂O)₆]²⁺, which indicates that protons are donated less easily than the aluminum complex.

| 9 |
This effect is also most likely accompanied by a shift of the reversible proton-insertion wave to more negative potentials, which makes sense if we consider the higher energetic cost required to dissociate the acidic proton from \([\text{Zn(H}_2\text{O)}_6]^{2+}\) and \([\text{Mn(H}_2\text{O)}_6]^{2+}\) as compared to \([\text{Al(H}_2\text{O)}_6]^{3+}\) (suggesting that the pK\(_a\) of the proton donor is involved in the thermodynamics of the reversible proton-insertion process). In an attempt to better resolve the reversible proton-insertion wave in CV for each of the metal ions and to assess their formal potentials, we attempted to push the CV scans to more negative potentials. Unfortunately, these experiments were unsuccessful due to both the interference of hydrogen evolution and recurrent electrode failures at excessively negative potentials.

In order to better compare the equilibrium amount of charge that can be stored at pH 3.0 within GLAD-TiO\(_2\)/ITO electrodes as a function of the chemical nature of the electrolyte, potential step chronoabsorptometric experiments were performed by applying a charging potential (i.e., -0.82 V) close to the formal potential of the reversible proton insertion wave measured for acetic acid- and Al\(^{3+}\)-based electrolytes (Figure 7). After less than 2 min of charging, an almost constant absorbance value was systematically attained for all of the electrolytes but with different magnitudes, indicative of different charging equilibria. In the presence of Zn\(^{2+}\)- and Mn\(^{2+}\)-based electrolytes, the absorbance increase at 780 nm is equivalent to a charge storage of ~25 mA-h-g\(^{-1}\), a value which is significantly higher than that obtained in a pure aqueous KCl electrolyte at the same pH (i.e. 13 mA-h-g\(^{-1}\)). Even if this increase of capacity remains lower than with the acetic acid- or Al\(^{3+}\)-based electrolytes, it demonstrates the advantageous effect of these metal ion electrolytes on proton-insertion charge storage. This effect was also observed to depend on pH as illustrated by the chronoabsorptometric experiments repeated for the same electrolytes at pH 5.0 and at an applied potential adjusted to -0.94 V (Figure 7). (The potential was adjusted to a 120 mV more negative value in order to take into account the ~60 mV shift of the conduction band potential per unit of pH,\(^{37}\) and through this to have comparable equilibrium charge storage conditions as at pH 3.0). This is particularly true for the weak acid \([\text{Zn(H}_2\text{O)}_6]^{2+}\) and \([\text{Mn(H}_2\text{O)}_6]^{2+}\) complexes which upon increasing the pH from 3.0 to 5.0 show a net gain in proton storage capacity. This, however, is not the case with acetic acid which remains nearly unchanged whatever the pH.

Independent of the proton storage capacities, the gravimetric capacities at pH 5.0 rapidly reach equilibrium whatever the nature of the electrolyte, and this proceeds with kinetics similar to those at pH 3.0.

In Figure 7, the results of earlier studies in HEPES buffer adjusted to either pH 3.0 or 5.0 were also added. The peculiarity of HEPES is its weak acidity characterized by two pK\(_a\) values (i.e., pK\(_{a1}\) = 3.0 and pK\(_{a2}\) = 7.5). At pH 3.0, the diprotic acidic form of HEPES is predominantly involved as a proton donor, while at pH 5.0 the less acidic zwitterionic form of HEPES dominates the proton charge storage. The equilibrium amounts of charge reversibly stored either at pH 3.0 and 5.0 were plotted for each electrolyte as a function of the pK\(_a\) of the proton donor in solution (Figure 7). We also added water to the plot (i.e., the H\(_2\)O/\(\text{OH}^-\) couple with a pK\(_a\) value of 14) because of its potential involvement as a proton donor, although this effect is more likely to be observed in a pure KCl electrolyte under our experimental conditions. The results gathered in Figure 7 clearly demonstrate that the proton storage efficiency at GLAD-TiO\(_2\) films strongly depends on both the pH of the electrolyte and the pK\(_a\) of the proton donor. In agreement with our previous finding,\(^{37}\) water is inefficient in delivering protons under the present experimental conditions (aqueous KCl electrolyte of pH 3.0 or 5.0) and this is in spite of its very high concentration (i.e. ~55 M). This behavior is clearly related to the low acidity of water (pK\(_a\) = 14). Likewise, at pH 3.0, the lower efficiency of Zn\(^{2+}\)- and Mn\(^{2+}\)-based electrolytes as compared to Al\(^{3+}\), acetic acid or HEPES can also be attributed to the lower acidity (or higher pK\(_a\) values) of \([\text{Zn(H}_2\text{O)}_6]^{2+}\) and \([\text{Mn(H}_2\text{O)}_6]^{2+}\) relative to \([\text{Al(H}_2\text{O)}_6]^{3+}\), acetic acid or HEPES. This effect is partially countered upon raising the pH to 5.0, wherein the weak acids \([\text{Zn(H}_2\text{O)}_6]^{2+}\) and \([\text{Mn(H}_2\text{O)}_6]^{2+}\) complexes become more efficient proton donors, but at the expense of a more negative applied potential value (or higher energy) than at pH 3.0.
3.7 Comments on the discharging mechanism

It is interesting to note that if we compare the discharging process to the charging process (Figure 2), the former clearly appears to be much faster than the latter. This is a behavior we observed whatever the nature of the electrolyte. While a thermodynamic equilibrium is typically reached within ~60 s of application of a reductive potential close to the formal potential of the reversible proton insertion ($E < E_{CB}$), the subsequent discharge of the electrode upon applying a positive bias ($E >> E_{CB}$) occurs within a significantly shorter time, i.e. < 10 s. If we assume that eq 4 is a fully reversible process at the microscopic level, then one would assume that the discharging process also depends on the amount of conjugate base available at the metal oxide/electrolyte interface. Since the present experiments were all performed at pH << pK_a, the amount of base is low relative to the weak acid. The discharging process should thus be a priori slower than the charging process, however, this is not what we observed. This behavior thus raises fundamental questions on the mechanism of proton disinsertion from TiO$_2$ that will be addressed in future work.

Conclusions

By comparing the electrochemical reversible charge storage at model GLAD-TiO$_2$ electrodes in mild aqueous electrolytes containing either AlCl$_3$ or acetic acid, we demonstrate that an identical faradaic charge storage mechanism occurs in both electrolytes. Contrary to the general belief that Al$^{3+}$ ions insert within TiO$_2$, we reveal rather that its hexaquo ion complex acts as a proton donor at the TiO$_2$/electrolyte interface, similar to acetic acid. This allows for fast and massive proton-coupled electron storage even under conditions with a negligible concentration of free protons. These results are of great significance because the role of proton donor played by metal aquo complexes on the charge/discharge of TiO$_2$ in an aqueous electrolyte can a priori extend to many other metal oxide electrode materials immersed either in aqueous electrolytes containing multivalent metal ions or in organic electrolytes containing multivalent metal ions and a small amount of water. Additionally, the present results shed new light on mechanisms that may lead to systematically improved battery performances (i.e., higher gravimetric capacities as well as better rates) when the so-called rechargeable multivalent ion-insertion batteries operate in aqueous electrolytes$^{7-13}$ rather than in a water-free organic electrolyte.$^{14,16,18-20}$

Footnotes

[a] The problem of working at a pH well below 3.0 is that the concentration of free protons becomes high enough to contribute significantly to charge storage via proton insertion, which therefore makes it more difficult to properly interpret the results we observed with the aluminum ion.

[b] Similar results were also obtained with the GLAD-TiO$_2$/Ti electrodes under the same experimental conditions, confirming that the mesoporous TiO$_2$ films behave similarly whether the GLAD TiO$_2$ film has been deposited over an underlying ITO or Ti conductive substrate.

[c] It is important to note that this gravimetric capacity also includes the charges stored in the double layer capacitance of the high-conductive substrate.

Conflicts of interest

The authors declare no conflicts of interest.

Acknowledgements

K.D.H. thanks Jeremy Sit for access to the GLAD evaporator, and the NRC Nanotechnology Initiative GIANNT project for partial funding support.

Notes and references

(1) Guduru, R.; Icaza, J. A Brief Review on Multivalent Intercalation Batteries with Aqueous Electrolytes. Nanomaterials 2016, 6 (3), 41.

(2) Canepa, P.; Sai Gautam, G.; Hannah, D. C.; Malik, R.; Liu,
M.; Gallagher, K. G.; Persson, K. A.; Ceder, G. Odyssey of Multivalent Cathode Materials: Open Questions and Future Challenges. *Chem. Rev.*, 2017, 117 (5), 4287–4341.

(3) Xing, Z.; Wang, S.; Yu, A.; Chen, Z. Aqueous Intercalation-Type Electrode Materials for Grid-Level Energy Storage: Beyond the Limits of Lithium and Sodium. *Nano Energy* 2018, 50 (May), 229–244.

(4) Verma, V.; Kumar, S.; Manalastas, W.; Satish, R.; Srinivasan, M. Progress in Rechargeable Aqueous Zinc–Aluminium-Ion Battery Electrodes: Challenges and Outlook. *Adv. Sustain. Syst.* 2018, 3 (1), 1800111.

(5) Chang, Z.; Yang, Y.; Li, M.; Wang, X.; Wu, Y. Green Energy Storage Chemistries Based on Neutral Aqueous Electrolytes. *J. Mater. Chem. A* 2014, 2 (28), 10739–10755.

(6) Liu, J.; Xu, C.; Chen, Z.; Ni, S.; Shen, Z. X. Progress in Aqueous Rechargeable Batteries. *Green Energy Environ.* 2018, 3, 20–41.

(7) Pan, H.; Shao, Y.; Yan, P.; Cheng, Y.; Han, K. S.; Nie, Z.; Wang, C.; Yang, J.; Li, X.; Bhattacharya, P.; et al. Reversible Aqueous Zinc/Manganese Oxide Energy Storage from Conversion Reactions. *Nat. Energy* 2016, 1 (5), 16039.

(8) Kundu, D.; Adams, B. D.; Duffort, V.; Vajargah, S. H.; Nazar, L. F. A High-Capacity and Long-Life Aqueous Rechargeable Zinc Battery Using a Metal Oxide Intercalation Cathode. *Nat. Energy* 2016, 1, 16119.

(9) Zhang, N.; Cheng, F.; Liu, J.; Wang, L.; Long, X.; Liu, X.; Li, F.; Chen, J. Rechargeable Aqueous Zinc–Manganese Dioxide Batteries with High Energy and Power Densities. *Nat. Commun.* 2017, 8 (1), 405.

(10) Sun, W.; Wang, F.; Hou, S.; Yang, C.; Fan, X.; Ma, Z.; Gao, T.; Han, F.; Hu, R.; Zhu, M.; et al. Zn/MnO2 Battery Chemistry with H+ and Zn2+ Coinserter. *J. Am. Chem. Soc.* 2017, 139 (29), 9775–9778.

(11) Qiu, W.; Li, Y.; You, A.; Zhang, Z.; Li, G.; Lu, X.; Tong, Y. High-Performance Flexible Quasi-Solid-State Zn–MnO2 Battery Based on MnO2 Nanorod Arrays Coated 3D Porous Nitrogen-Doped Carbon Cloth. *J. Mater. Chem. A* 2017, 5 (28), 14838–14846.

(12) Zhang, N.; Dong, Y.; Jia, M.; Bian, X.; Wang, Y.; Qiu, M.; Xu, J.; Liu, Y.; Jiao, L.; Cheng, F. Rechargeable Aqueous Zn–V2O5 Battery with High Energy Density and Long Cycle Life. *ACS Energy Lett.* 2018, 3 (6), 1366–1372.

(13) Qiu, W.; Li, Y.; You, A.; Zhang, Z.; Li, G.; Lu, X.; Tong, Y. High-Performance Flexible Quasi-Solid-State Zn–MnO2 Battery Based on MnO2 Nanorod Arrays Coated 3D Porous Nitrogen-Doped Carbon Cloth. *J. Mater. Chem. A* 2017, 5 (28), 14838–14846.

(14) Nam, K. W.; Lim, S.; Lee, S.; Salama, M.; Shterenberg, I.; Gofer, Y.; Kim, J.-S.; Yang, E.; Park, C. S.; Kim, J.-S.; et al. The High Performance of Crystal Water Containing Manganese Birnessite Cathodes for Magnesium Batteries. *Nano Lett.* 2015, 15 (6), 4071–4079.

(15) Tian, Y.; Zhang, W.; Cong, S.; Zheng, Y.; Geng, F.; Zhao, Z. Unconventional Aluminium Ion Intercalation/Deintercalation for Fast Switching and Highly Stable Electrochromism. *Adv. Funct. Mater.* 2015, 25 (36), 5833–5839.

(16) Sun, X.; Duffort, V.; Mehdi, B. L.; Browning, N. D.; Nazar, L. F. Investigation of the Mechanism of Mg Insertion in Birnessite in Nonaqueous and Aqueous Rechargeable Mg-Ion Batteries. *Chem. Mater.* 2016, 28 (2), 534–542.

(17) Koketsu, T.; Ma, J.; Morgan, B. J.; Body, M.; Legein, C.; Dachraoui, W.; Giannini, M.; Demortière, A.; Salanne, M.; Dardoize, F.; et al. Reversible Magnesium and Aluminium Ions Insertion in Cation-Deficient Anatase TiO2. *Nat. Mater.* 2017, 16 (11), 1142–1148.

(18) Jia, X.; Chen, J.; Wang, F.; Sun, W.; Ruan, Y.; Miao, L.; Jiang, J.; Wang, C. Water-Activated VOP04 for Magnesium Ion Batteries. *Nano Lett.* 2018, 18 (10), 6441–6448.

(19) Wang, F.; Sun, W.; Shadike, Z.; Hu, E.; Ji, X.; Gao, T.; Yang, X.-Q.; Xu, K.; Wang, C. How Water Accelerates Bivalent Ion Diffusion at the Electrolyte/Electrode Interface. *Angew. Chemie Int. Ed.* 2018, 57 (37), 11978–11981.

(20) Liu, D.; Hosseini Vajargah, S.; Wan, L.; Adams, B.; Prendergast, D.; Nazar, L. F. Aqueous vs. Nonaqueous Zn-Ion Batteries: Consequences of the Desolvation Penalty at the Interface. *Energy Environ. Sci.* 2018, 11 (4), 881–892.

(21) Levis, E.; Levis, M. D.; Chasid, O.; Aurbach, D. A Review on the Problems of the Solid State Ions Diffusion in Cathodes for Rechargeable Mg Batteries. *J. Electroceramics* 2009, 22 (1), 13–19.

(22) Levis, E.; Gofer, Y.; Aurbach, D. On the Way to Rechargeable Mg Batteries: The Challenge of New Cathode Materials. *Chem. Mater.* 2010, 22 (3), 860–868.

(23) Liu, S.; Hu, J. J.; Yan, N. F.; Pan, G. L.; Li, G. R.; Gao, X. P. Aluminum Storage Behavior of Anatase TiO2 Nanotube Arrays in Aqueous Solution for Aluminum Ion Batteries. *Energy Environ. Sci.* 2012, 5 (12), 9743.

(24) Wang, F.; Liu, Z.; Wang, X.; Yuan, X.; Wu, X.; Zhu, Y.; Fu, L.; Wu, Y. A Conductive Polymer Coated MoO3 Anode Enables an Al-Ion Capacitor with High Performance. *J. Mater. Chem. A* 2016, 4 (14), 5115–5123.

(25) González, J. R.; Nacimiento, F.; Cabello, M.; Alcántara, R.; Lavela, P.; Tirado, J. L. Reversible Intercalation of Aluminium into Vanadium Pentoxide Xerogel for Aqueous Rechargeable Batteries. *RSC Adv.* 2016, 6 (67), 62157–62164.

(26) Liu, Y.; Sang, S.; Wu, Q.; Lu, Z.; Liu, K.; Liu, H. The Electrochemical Behavior of Cl– Assisted Al3+ Insertion into Titanium Dioxide Nanotube Arrays in Aqueous Solution for Aluminium Ion Batteries. *Electrochim. Acta* 2014, 143, 340–346.

(27) Sang, S.; Liu, Y.; Zhong, W.; Liu, K.; Liu, H.; Wu, Q. The Electrochemical Behavior of TiO2-NTAs Electrode in H+ and Al3+ Coexistent Aqueous Solution. *Electrochim. Acta* 2016, 187, 92–97.

(28) Lahan, H.; Boruah, R.; Hazarika, A.; Das, S. K. Anatase TiO2 as an Anode Material for Rechargeable Aqueous Aluminium-Ion Batteries: Remarkable Graphene Induced Aluminium Ion Storage Phenomenon. *J. Phys. Chem. C* 2017, 121 (47), 26241–26249.

(29) He, Y. J.; Peng, J. F.; Chu, W.; Li, Y. Z.; Tong, D. G. Black Mesoporous Anatase TiO2 Nanoleaves: A High Capacity and High Rate Anode for Aqueous Al-Ion Batteries. *J. Mater. Chem. A* 2014, 2 (6), 1721.
(30) Kazazi, M.; Abdollahi, P.; Mirzaei-Moghadam, M. High Surface Area TiO$_2$ Nanospheres as a High-Rate Anode Material for Aqueous Aluminium-Ion Batteries. *Solid State Ionics* **2017**, *300*, 32–37.

(31) Li, K.; Shao, Y.; Liu, S.; Zhang, Q.; Wang, H.; Li, Y.; Kaner, R. B. Aluminium-Ion-Intercalation Supercapacitors with Ultrahigh Areal Capacitance and Highly Enhanced Cycling Stability: Power Supply for Flexible Electrochromic Devices. *Small* **2017**, *13* (19), 1700380.

(32) Chen, T.; Peled, E. Aluminum Sulfate—an Electrolyte for MnO$_2$ Hybrid Supercapacitor. *J. Solid State Electrochem.* **2017**, *22* (11), 3325–3331.

(33) Wu, C.; Gu, S.; Zhang, G.; Bai, Y.; Li, M.; Yuan, W.; Wang, H.; Liu, X.; Yuan, Y.; Zhu, N.; et al. Electrochemically Activated Spinel Manganese Oxide for Rechargeable Aqueous Aluminum Battery. *Nat. Commun.* **2019**, *10* (1), 73.

(34) Kazazi, M.; Zafar, Z. A.; Delshad, M.; Cervenka, J.; Chen, C. TiO$_2$/CNT Nanocomposite as an Improved Anode Material for Aqueous Rechargeable Aluminum Batteries. *Solid State Ionics* **2018**, *320* (December 2017), 64–69.

(35) Marcus, Y. Thermodynamics of Solvation of Ions. Part 5.— Gibbs Free Energy of Hydration at 298.15 K. *J. Chem. Soc., Faraday Trans. 1991*, *87* (18), 2995–2999.

(36) Rong, Z.; Malik, R.; Canepa, P.; Sai Gautam, G.; Liu, M.; Jain, A.; Persson, K.; Ceder, G. Materials Design Rules for Multivalent Ion Mobility in Intercalation Structures. *Chem. Mater.* **2015**, *27* (17), 6016–6021.

(37) Kim, Y.-S.; Kriegel, S.; Harris, K. D.; Costentin, C.; Limoges, B.; Balland, V. Evidencing Fast, Massive, and Reversible H$^+$ Insertion in Nanostructured TiO$_2$ Electrodes at Neutral PH. Where Do Protons Come From? *J. Phys. Chem. C* **2017**, *121*, 10325–10335.

(38) Pourbaix, M. *Atlas of Electrochemical Equilibria in Aqueous Solutions*, 2d English; National Association of Corrosion Engineers, Houston, Texas, 1974.

(39) Berger, T.; Anta, J. A.; Morales-Florez, V. Electrons in the Band Gap: Spectroscopic Characterization of Anatase TiO$_2$ Nanocrystal Electrodes under Fermi Level Control. *J. Phys. Chem. C* **2012**, *116* (21), 11444–11455.

(40) Rothenberger, G.; Fitzmaurice, D.; Graetzel, M. Spectroscopy of Conduction Band Electrodes in Transparent Metal Oxide Semiconductor Films: Optical Determination of the Flatband Potential of Colloidal Titanium Dioxide Films. *J. Phys. Chem. 1992*, *96* (14), 5983–5986.

(41) Boschloo, G.; Fitzmaurice, D. Electron Accumulation in Nanostructured TiO$_2$ (Anatase) Electrodes. *J. Phys. Chem. B* **1999**, *103*, 7860–7868.

(42) Krause, K. M.; Taschuk, M. T.; Harris, K. D.; Rider, D. A.; Wakefield, N. G.; Sit, J. C.; Buriak, J. M.; Thommes, M.; Brett, M. J. Surface Area Characterization of Obliquely Deposited Metal Oxide Nanostructured Thin Films. *Langmuir* **2010**, *26* (6), 4368–4376.

(43) Brett, M. J.; Hawkeye, M. M. New Materials at a Glance. *Science*. **2008**, *319* (February), 1192–1193.

(44) Ghicov, A.; Tsuchiya, H.; Hahn, R.; MacAk, J. M.; Munoz, A. G.; Schmuki, P. TiO$_2$ Nanotubes: H$^+$ Insertion and Strong Electrochromic Effects. *Electrochem. commun.* **2006**, *8* (4), 528–532.

(45) Lyon, L. A.; Hupp, J. T. Energetics of the Nanocrystalline Titanium Dioxide/Aqueous Solution Interface: Approximate Conduction Band Edge Variations between H$_2$O = –10 and H. = +26. *J. Phys. Chem. B* **1999**, *103* (22), 4623–4628.

(46) Fabregat-Santiago, F.; Mora-Seró, I.; Garcia-Belmonte, G.; Bisquert, J. Cyclic Voltammetry Studies of Nanoporous Semiconductors. Capacitive and Reactive Properties of Nanocrystalline TiO$_2$ Electrodes in Aqueous Electrolyte. *J. Phys. Chem. B* **2003**, *107* (3), 758–768.

(47) Berger, T.; Monlor-Satoca, D.; Jankulovska, M.; Lanave-Villarreal, T.; Gomez, R. The Electrochemistry of Nanostructured Titanium Dioxide Electrodes. *ChemPhysChem* **2012**, *13* (12), 2824–2875.

(48) Marcus, Y. Ionic Radii in Aqueous Solutions. *Chem. Rev.* **1988**, *88* (8), 1475–1498.

(49) Hawkes, S. J. All Positive Ions Give Acid Solutions in Water. *J. Chem. Educ.* **1996**, *73* (6), 516.

(50) Lindström, H.; Södergren, S.; Solbrand, A.; Renso, H.; Hjelm, J.; Hagfeldt, A.; Lindquist, S.-E. Li$^+$ Ion Insertion in TiO$_2$ (Anatase). 2. Voltammetry on Nanoporous Films. *J. Phys. Chem. B* **1997**, *101* (39), 7717–7722.

(51) Scholz, F.; Dostal, A. The Formal Potential of Solid. *Angew. Chemie - Int. Ed.* **1995**, *34* (23/24), 1-52685–52687.

(52) Lee, H. W.; Pasta, M.; Wang, R. Y.; Ruffo, R.; Cui, Y. Effect of the Alkali Insertion Ion on the Electrochemical Properties of Nickel Hexacyanoferrate Electrodes. *Faraday Discuss.* **2014**, *176*, 69–81.

(53) Cava, R. J.; Murphy, D. W.; Zahrak, S.; Santoro, A.; Roth, R. S. The Crystal Structures of the Lithium-Inserted Metal Oxides Li$_2$Ti$_2$O$_7$ Anatase, Li$_2$Ti$_2$O$_5$ Spinel, and Li$_2$Ti$_2$O$_4$. *J. Solid State Chem.* **1984**, *53* (1), 64–75.

(54) Kim, Y. S.; Ballard, V.; Limoges, B.; Costentin, C. Cyclic Voltammetry Modeling of Proton Transport Effects on Redox Charge Storage in Conductive Materials: Application to a TiO$_2$ Mesoporous Film. *Phys. Chem. Chem. Phys.* **2017**, *19* (27), 17944–17951.

(55) CRC Handbook of Chemistry and Physics, Internet V.; Lide, D. R., Ed.; CRC Press, Boca Raton, FL, 2005.
Supplementary Electronic Information

On the Unsuspected Role of Multivalent Metal Ions on the Charge Storage of a Metal Oxide Electrode in Mild Aqueous Electrolytes

Yee-Seul Kim,† Kenneth D. Harris,‡,¶ Benoît Limoges,*† Véronique Balland*†

† Laboratoire d’Electrochimie Moléculaire, UMR CNRS 7591, Université Paris Diderot, Sorbonne Paris Cité, 15 rue J-A de Baïf, Paris F-75205 cedex 13, France
‡ Nanotechnology Research Institute, National Research Council Canada, Edmonton, Alberta T6G 2M9, Canada
¶ Department of Mechanical Engineering, University of Alberta, Edmonton, Alberta T6G 2V4, Canada
Figure S1. (Top) Schematic representations of the 1-μm thick mesoporous GLAD-TiO₂ electrodes used in the present study and previous work, including (top, left) GLAD-TiO₂/ITO from previous work, (top, center) GLAD-TiO₂/TiO₂/ITO and (top, right) GLAD/TiO₂/Ti. (Bottom) Cyclic voltammograms (normalized to the scan rate and geometric surface area) corresponding to the electrodes above recorded at different scan rates \(v \) (ranging from 0.05 to 0.5 V s\(^{-1}\)) in an aqueous electrolyte containing 0.3 M KCl (pH > 5).

Comments. In our previous work,\(^{51}\) the mesoporous GLAD-TiO₂ film was directly deposited on a ITO substrate, leaving a fraction of the underlying ITO surface accessible to the aqueous electrolyte *via* the film porosity. The main problem with this electrode configuration was the electrochemical instability of the unprotected ITO surface, which under strongly reducing conditions (*i.e.*, upon applying exceedingly negative potentials for prolonged time) led to irreversible reduction with a complete loss of the electrical properties.\(^{52}\) In order to avoid/minimize this electrode failure and to allow for the application of exceedingly negative potentials, we prepared two new types of GLAD-TiO₂ electrode architectures. First, a structure in which the ITO surface was isolated from the aqueous electrolyte by a thin compact layer of TiO₂ (15-nm, generated in the GLAD evaporator using a non-glancing deposition angle of 0°) over which the 1-μm thick mesoporous GLAD-TiO₂ film was then deposited (at a glancing deposition angle of 72°). For the second electrode structure, the underlying conductive ITO layer was completely replaced with a metallic titanium layer (250 nm thickness) over which the 1-μm thick mesoporous GLAD-TiO₂ film was deposited (at a deposition angle of 72°).

The main advantage of the GLAD-TiO₂/TiO₂/ITO electrodes over the GLAD-TiO₂/Ti electrodes is that they remain optically transparent in the UV-visible region, which is useful for
spectroelectrochemical studies. Moreover, the presence of the thin layer of dense TiO\(_2\) does not significantly alter the electrochemical response (Figure S1). As anticipated, the electrochemical stability of the GLAD-TiO\(_2\)/TiO\(_2\)/ITO electrodes was significantly improved compared to our previous GLAD-TiO\(_2\)/ITO electrodes when they were polarized at highly negative potentials. However, under prolonged and strongly reducing conditions they were still irreversibly degraded, an effect we have attributed to the presence of defects and/or pinholes in the bulk TiO\(_2\) coating that impedes a definitive protection of the ITO surface from the aqueous electrolyte. In contrast, with the GLAD-TiO\(_2\)/Ti electrodes it was possible to apply strongly reducing conditions without electrode failure, clearly demonstrating that the electrode failure was the result of the electrochemical instability of the underlying conductive ITO material under strongly reducing potentials.

The morphology of the mesoporous GLAD-TiO\(_2\) film is not expected to strongly depend on the nature of the underlying substrate. In order to confirm that the GLAD-TiO\(_2\) films, once deposited under identical conditions, behave similarly whatever the substrate used, the different GLAD-TiO\(_2\) electrodes were characterized by CV in an aqueous electrolyte containing no insertion cations, *i.e.* in 0.3 M KCl electrolyte of pH > 5 (Figure S1). Under these conditions, the great similarities observed between CVs recorded with each of the three different types of GLAD-TiO\(_2\) electrodes (Figure S1) suggest no significant difference in the double layer charging capacitance (especially at potentials below 0 V vs. RHE where TiO\(_2\) behaves as a metal-like conductive material). From this, we conclude that all of these mesoporous semiconductive films possess similar surface area enhancement and porosity. It can be noticed that at potential below ~0.5 V vs. RHE, the GLAD-TiO\(_2\)/ITO and GLAD-TiO\(_2\)/TiO\(_2\)/ITO electrodes show, on their forward cathodic scans in CV, the rise of a faradaic current response, characteristic of an irreversible reduction of the underlying ITO substrate, an electrochemical process that is not present in the CVs of the GLAD-TiO\(_2\)/Ti electrode. This result is in line with our assumption of ITO instability under strongly reducing conditions.
Figure S2. Schematic representation of the three-electrode spectroelectrochemical cell (1-cm optical path length) used in the present study to investigate the charge storage at GLAD-TiO$_2$/TiO$_2$/ITO electrodes. The geometric electrode surface area (~0.5 cm2) is delimited by nail vanish. Electrical contact with the working electrodes is made at the top of the electrode at a location where the underlying ITO/glass substrate was not coated with GLAD-TiO$_2$/TiO$_2$. The electrolyte volume was ca. 1.2 mL. Prior to electrochemical measurements, the electrolyte was thoroughly degassed by argon bubbling. The counter electrode was a Pt wire, and the reference electrode an Ag/AgCl/3M KCl (+0.2 V vs. NHE).
Figure S3. (Top) Cyclic voltammograms and (middle) cyclic voltabsorptograms (at 780 nm) recorded at a GLAD-TiO$_2$/TiO$_2$/ITO electrode in different aqueous electrolyte solutions (adjusted to pH 3.0) containing 0.3 M KCl and increasing concentrations of AlCl$_3$ (from left to right: 0, 25, 50, 100 mM), or (last right graph) without KCl and only 250 mM AlCl$_3$ (the KCl and AlCl$_3$ concentrations are also reported on top of the figure). Currents are converted to flux density normalised to the scan rate. The scan rate was (black) 50, (blue) 100, (violet) 250, and (magenta) 500 mV·s$^{-1}$. (Bottom) Faradaic current component (corrected from the capacitive current) expressed in flux density and normalized to the square root of the scan rate.
Figure S4. Galvanostatic charging (black and green) and discharging (red and orange) curves recorded at GLAD-TiO$_2$ electrodes in an aqueous electrolyte adjusted to pH 3.0 and containing (top) 0.3 M KCl, (middle) 0.25 M AlCl$_3$, and (bottom) 0.25 M acetic acid + 0.3 M KCl. The dotted and dashed lines correspond to the charging and discharging curves recorded at a GLAD-TiO$_2$/TiO$_2$/ITO electrode, while the plain lines are those obtained at a GLAD-TiO$_2$/Ti electrode. The applied current density was fixed to (dotted lines) 2 mA/cm2, (dashed lines) 1 mA/cm2 or (solid lines) 0.4 mA/cm2, which are equivalent to rates of 48, 24 and 10 C (assuming for TiO$_2$ a maximal theoretical capacity of 166 mA·h·g$^{-1}$). The cut-off potential values were -0.82 V and 0.0 V (vs. Ag/AgCl) for the charge and discharge curves, respectively.
Figure S5. (Top) Cyclic voltammograms and (middle) cyclic voltabsorptograms (at 780 nm) recorded at a GLAD-TiO$_2$/TiO$_2$/ITO electrode in different aqueous electrolyte solutions (adjusted to pH 3.0) containing 0.3 M KCl and increasing concentrations of acetic acid (from left to right: 0, 25, 50, 100, and 250 mM). Currents are converted to flux density normalised to the scan rate. The scan rate was (black) 50, (blue) 100, (violet) 250, and (magenta) 500 mV{s}^{-1}. (Bottom) Faradaic current component (corrected from the capacitive current) expressed in flux density and normalized to the square root of the scan rate.
Figure S6. Galvanostatic charging (dashed lines) and discharging (solid lines) curves recorded at a GLAD-TiO$_2$/Ti electrode immersed in (black lines) a 0.3 M KCl aqueous electrolyte (adjusted to pH 5.0) or (blue lines) a 8 M acetic acid/acetate buffer (pH 5.0). The applied current density was 0.2 mA/cm2, and the charging/discharging cut-off potentials were -1.24 V and 0 V, respectively.
Table S1. Characteristics of selected cations in aqueous solution including, ionic radii, r_{ion}; distance between ion and surrounding water molecules, $d_{\text{ion-water}}$; number of surrounding water molecules, n, and dissociation constant, pK_a.

Salt	Cation	r_{ion} (nm)	$d_{\text{ion-water}}$ (nm)	n	pK_a
AlCl₃	Al³⁺	0.053	0.19	6	4.97
LiCl	Li⁺	0.069	0.2	4	13.6
ZnSO₄	Zn²⁺	0.075	0.21	6	9
MnSO₄	Mn²⁺	0.083	0.22	6	10.6
KCl	K⁺	0.138	0.27	6	14
H⁺		8.7×10⁻⁷			

References

(S1) Kim Y.-S., Kriegel S., Harris K. D., Costentin C., Limoges B., Balland V., Evidencing fast, massive, and reversible H⁺ insertion in nanostructured TiO₂ electrodes at neutral pH. Where do protons come from? J. Phys. Chem. C, 2017, 121, 10325–10335.

(S2) Kim Y.-S., Balland V., Limoges B., Costentin C., Cyclic voltammetry modeling of proton transport effects on redox charge storage in conductive materials: application to a TiO₂ mesoporous film, Phys. Chem. Chem. Phys., 2017, 19, 17944–17951.

(S3) Liu L., Yellinek S., Valdinger I., Donval A., Mandler D., Important implications of the electrochemical reduction of ITO. Electrochim. Acta, 2015, 176, 1374–1381.

(S4) Marcus Y., Ionic radii in aqueous solutions, Chem. Rev., 1988, 88, 1475–1498.

(S5) Hawkes S. J., All positive ions give acid solutions in water, J. Chem. Educ., 1996, 73, 516-517.

(S6) Beyer A., Maisenbacher L., Matveev A., Pohl R., Khabarova K., Grinin A., Lamour T., Yost D. C., Hänsch T. H., Kolachevsky N., Udem T., The Rydberg constant and proton size from atomic hydrogen, Science, 2017, 358, 79–85.
