SCALAR CURVATURE RIGIDITY WITH A VOLUME CONSTRAINT

PENGZI MIAO1 AND LUEN-FAI TAM2

Abstract. Motivated by Brendle-Marques-Neves’ counterexample to the Min-Oo’s conjecture, we prove a volume constrained scalar curvature rigidity theorem which applies to the hemisphere.

1. Introduction

Recently, Brendle, Marques and Neves \cite{BrendleMarquesNeves} have solved the long-standing Min-Oo’s conjecture \cite{MinOo} by constructing a counterexample.

Theorem 1.1 (Brendle, Marques and Neves \cite{BrendleMarquesNeves}). Suppose \(n \geq 3 \). Let \(\bar{g} \) be the standard metric on the hemisphere \(S_+^n \). There exists a smooth metric \(g \) on \(S_+^n \), which can be made to be arbitrarily close to \(\bar{g} \) in the \(C^\infty \)-topology, satisfying

- the scalar curvature of \(g \) is at least that of \(\bar{g} \) at each point in \(S_+^n \)
- \(g \) and \(\bar{g} \) agree in a neighborhood of \(\partial S_+^n \),

but \(g \) is not isometric to \(\bar{g} \).

In this paper, we observe that if the metric \(g \) in Theorem 1.1 is assumed to satisfy an additional volume constraint, then it must be isometric to \(\bar{g} \). Precisely, we have

Theorem 1.2. Let \(\bar{g} \) be the standard metric on \(S_+^n \). Let \(g \) be another metric on \(S_+^n \) with the properties

- \(R(g) \geq R(\bar{g}) \) in \(S_+^n \)
- \(H(g) \geq H(\bar{g}) \) on \(\partial S_+^n \)
- \(g \) and \(\bar{g} \) induce the same metric on \(\partial S_+^n \)

where \(R(g) \), \(R(\bar{g}) \) are the scalar curvature of \(g \), \(\bar{g} \), and \(H(g) \), \(H(\bar{g}) \) are the mean curvature of \(\Sigma \) in \((\Omega, g) \), \((\Omega, \bar{g}) \). Suppose in addition

\[V(g) \geq V(\bar{g}) , \]

1 Research partially supported by Australian Research Council Discovery Grant #DP0987650 and by a 2011 Provost Research Award of the University of Miami.

2 Research partially supported by Hong Kong RGC General Research Fund #CUHK 403011.

2010 Mathematics Subject Classification. Primary 53C20; Secondary 53C24.
where $V(g), V(\bar{g})$ are the volume of g, \bar{g}. If $||g - \bar{g}||_{C^2(\Omega)}$ is sufficiently small, then there is a diffeomorphism $\varphi : \Omega \to \Omega$ with $\varphi|_\Sigma = \text{id}$, the identify map on Σ, such that $\varphi^*(g) = \bar{g}$.

Theorem 1.2 is indeed a special case of a more general result:

Theorem 1.3. Let (Ω, \bar{g}) be an n-dimensional compact Riemannian manifold, of constant sectional curvature 1, with smooth boundary Σ. Suppose $\Pi + H\bar{\gamma} \geq 0$ (i.e. $\Pi + H\bar{\gamma}$ is positive semi-definite), where $\bar{\gamma}$ is the induced metric on Σ and Π, H are the second fundamental form, the mean curvature of Σ in (Ω, \bar{g}). Suppose the first nonzero Neumann eigenvalue μ of (Ω, \bar{g}) satisfies $\mu > n - \frac{2}{n+1}$.

Consider a nearby metric g on Ω with the properties

- $R(g) \geq n(n - 1)$ where $R(g)$ is the scalar curvature of g
- $H(g) \geq \bar{H}$ where $H(g)$ is the mean curvature of Σ in (Ω, g)
- g and \bar{g} induce the same metric on Σ
- $V(g) \geq V(\bar{g})$ where $V(g), V(\bar{g})$ are the volumes of g, \bar{g}.

If $||g - \bar{g}||_{C^2(\Omega)}$ is sufficiently small, then there is a diffeomorphism φ on Ω with $\varphi|_\Sigma = \text{id}$, such that $\varphi^*(g) = \bar{g}$.

As a by-product of the method used to derive Theorem 1.3, we obtain a volume estimate for metrics close to the Euclidean metric in terms of the scalar curvature.

Theorem 1.4. Let $\Omega \subset \mathbb{R}^n$ be a bounded domain with smooth boundary Σ. Suppose $\Pi + H\bar{\gamma} > 0$ (i.e. $\Pi + H\bar{\gamma}$ is positive definite), where Π, H are the second fundamental form, the mean curvature of Σ in \mathbb{R}^n and $\bar{\gamma}$ is the metric on Σ induced from the Euclidean metric \bar{g}. Let g be another metric on Ω satisfying

- $H(g) \geq \bar{H}$, where $H(g)$ is the mean curvature of Σ in (Ω, g)
- g and \bar{g} induce the same metric on Σ.

Given any point $a \in \mathbb{R}^n$, there exists a constant $\Lambda > \frac{\max_{q \in \Omega}||g - a||^2}{4(n-1)}$, depending only on Ω and a, such that if $||g - \bar{g}||_{C^3(\Omega)}$ is sufficiently small, then

$$ (1.1) \quad V(g) - V(\bar{g}) \geq \int_{\Omega} R(g) \Phi \, d\text{vol}_{\bar{g}} $$

where $\Phi(x) = -\frac{1}{4(n-1)}|x - a|^2 + \Lambda > 0$ on $\bar{\Omega}$.

Theorem 1.4 may be compared to a previous theorem of Bartnik [2], which estimates the total mass [1] of an asymptotically flat metric that is a perturbation of the Euclidean metric.
Theorem 1.5 (Bartnik [2]). Let \(g \) be an asymptotically flat metric on \(\mathbb{R}^3 \). If \(g \) is sufficiently close to the Euclidean metric \(\bar{g} \) (in certain weighted Sobolev space), then
\[
16\pi m(g) \geq \int_{\mathbb{R}^3} R(g) \, d\text{vol}_g
\]
where \(m(g) \) is the total mass of \(g \).

Our proofs of Theorems 1.2 - 1.4 follow a recent perturbation analysis of Brendle and Marques in [5], where they established a scalar curvature rigidity theorem for “small” geodesic balls in \(S^n \).

Theorem 1.6 (Brendle and Marques [5]). Let \(\Omega \subset S^n \) be a geodesic ball of radius \(\delta \). Suppose
\[
\cos \delta \geq \frac{2}{\sqrt{n+3}}
\]
Let \(\bar{g} \) be the standard metric on \(S^n \). Let \(g \) be another metric on \(\Omega \) with the properties
\begin{itemize}
 \item \(R(g) \geq n(n-1) \) at each point in \(\Omega \)
 \item \(H(g) \geq \bar{H} \) at each point on \(\partial \Omega \)
 \item \(g \) and \(\bar{g} \) induce the same metric on \(\partial \Omega \)
\end{itemize}
where \(R(g) \) is the scalar curvature of \(g \), and \(H(g) \), \(\bar{H} \) are the mean curvature of \(\partial \Omega \) in \((\Omega, g) \), \((\Omega, \bar{g}) \). If \(g - \bar{g} \) is sufficiently small in the \(C^2 \)-norm, then \(\varphi^*(g) = \bar{g} \) for some diffeomorphism \(\varphi : \Omega \to \Omega \) such that \(\varphi|_{\partial \Omega} = \text{id} \).

In Theorem 1.6, the condition (1.3) is equivalently to
\[
H \geq 4 \tan \delta
\]
because the mean curvature \(\bar{H} \) of \(\partial B(\delta) \) is \((n-1) \frac{\cos \delta}{\sin \delta} \). As another application of the formulas in Section 2, we obtain a generalization of Theorem 1.6 to convex domains in \(S^n \).

Theorem 1.7. Let \(\Omega \subset S^n \) be a smooth domain contained in a geodesic ball \(B \) of radius less than \(\frac{\pi}{2} \). Let \(\bar{g} \) be the standard metric on \(S^n \). Let \(\bar{H} \) be the second fundamental form, the mean curvature of \(\partial \Omega \) in \((\Omega, \bar{g}) \). Suppose \(\Omega \) is convex, i.e. \(\bar{H} \geq 0 \). At \(\partial \Omega \), suppose
\[
\bar{H} \geq 4 \tan r
\]
where \(r \) is the \(\bar{g} \)-distance to the center of \(B \). Then the conclusion of Theorem 1.6 holds on \(\Omega \).
Theorem 1.7 is an immediate consequence of Theorem 5.1 in Section 5. In a simpler setting, where the background metric \bar{g} is a flat metric, we have

Theorem 1.8. Let Ω be a compact manifold with smooth boundary Σ. Suppose there is a flat metric \bar{g} on Ω such that $\bar{H} + \bar{\gamma} \geq 0$ (i.e. $\bar{\Pi} + \bar{H} \bar{\gamma}$ is positive semi-definite), where $\bar{\Pi}$, \bar{H} are the second fundamental form, the mean curvature of Σ, and $\bar{\gamma}$ is the induced metric on Σ. Given another metric g on Ω such that

- $R(g) \geq 0$ on Ω
- $H(g) \geq \bar{H}$ at Σ
- g and \bar{g} induce the same metric on Σ,

if $||g - \bar{g}||_{C^2(\Omega)}$ is sufficiently small, then $\varphi^*(g) = \bar{g}$ for some diffeomorphism $\varphi : \Omega \rightarrow \Omega$ with $\varphi|_{\Sigma} = \text{id}$.

Similar calculation at the infinitesimal level provides examples of compact 3-manifolds of nonnegative scalar curvature whose boundary surface does not have positive Gaussian curvature but still has positive Brown-York mass [7, 8]. We include this in the end of the paper to compare with known results in [17].

Theorem 1.9. Let $\Sigma \subset \mathbb{R}^n$ be a connected, closed hypersurface satisfying $\bar{\Pi} + \bar{H} \bar{\gamma} \geq 0$, where $\bar{\Pi}$, \bar{H} are the second fundamental form, the mean curvature of Σ, and $\bar{\gamma}$ is the induced metric on Σ. Let Ω be the domain enclosed by Σ in \mathbb{R}^n. Let h be any nontrivial $(0,2)$ symmetric tensor on Ω satisfying

$$(1.6) \quad \text{div}_g h = 0, \quad \text{tr}_g h = 0, \quad h |_{T\Sigma} = 0.$$

Let $\{g(t)\}_{|t| < \epsilon}$ be a 1-parameter family of metrics on Ω satisfying

$$(1.7) \quad g(0) = \bar{g}, \quad g'(0) = h, \quad R(g(t)) \geq 0, \quad g(t)|_{T\Sigma} = \bar{g}|_{T\Sigma}.$$

Then

$$(1.8) \quad \int_{\Sigma} \bar{H} d\sigma_{\bar{g}} > \int_{\Sigma} H(g(t)) d\sigma_g$$

for small $t \neq 0$, where $H(g(t))$ is the mean curvature of Σ in $(\Omega, g(t))$.

This paper is organized as follows. In Section 2, we derive a basic formula concerning a perturbed metric (Theorem 2.1), which corresponds to [5, Theorem 10] of Brendle and Marques. In Section 3, we prove Theorem 1.3, which implies Theorem 1.2. In Section 4, we give a proof of Theorem 1.4. In Section 5, we consider other applications of the formulas in Section 2 and prove Theorem 1.7 - 1.9.
Acknowledgment. The authors want to thank Simon Brendle and Fernando Marques for pointing out a false conjecture in a previous draft. The authors also want to thank the referees for useful comments that motivate Theorem 1.7 and Theorem 5.1.

2. Basic formulas for a perturbed metric

Let Ω be an n-dimensional, smooth, compact manifold with boundary Σ. Let \bar{g} be a fixed smooth Riemannian metric on Ω. Given a tensor η, let $\|\eta\|$ denote the length of η measured with respect to \bar{g}. Denote the covariant derivative with respect to \bar{g} by ∇. Indices of tensors are raised by \bar{g}. Let \bar{R}_{ijkl} denote the curvature tensor of \bar{g} such that if \bar{g} has constant sectional curvature κ, then $\bar{R}_{ijkl} = \kappa (g_{ij} g_{kl} - g_{il} g_{kj})$. Consider a nearby Riemannian metric $g = \bar{g} + h$ where h is a symmetric $(0,2)$ tensor with $|h|$ very small, say $|h| \leq \frac{1}{2}$.

The following pointwise estimates of the scalar curvature of g and the mean curvature of Σ were derived by Brendle and Marques in [5].

Proposition 2.1 (Brendle and Marques [5]). The scalar curvatures $R(g)$, $R(\bar{g})$ of the metrics g, \bar{g} satisfy

$$
\left| R(g) - R(\bar{g}) + \langle \text{Ric}(\bar{g}), h \rangle - \langle \text{Ric}(\bar{g}), h^2 \rangle \right|
+ \frac{1}{4} |\nabla h|^2 - \frac{1}{2} |\bar{g}^{ij} g^{kl} \nabla_i h_{kp} \nabla_l h_{jq} + \frac{1}{4} |\nabla (\text{tr}_g h)|^2
+ \nabla_i [g^{ik} g^{jl} (\nabla_k h_{jl} - \nabla_l h_{jk})] |$$

$$\leq C (|h| |\nabla h|^2 + |h|^3)$$

where $\text{Ric}(\bar{g})$ is the Ricci curvature of \bar{g}, h^2 is the \bar{g}-square of h, i.e. $(h^2)_{ik} = \bar{g}^{ij} h_{ij} h_{kl}$, $\langle \cdot, \cdot \rangle$ is taken with respect to \bar{g}, and C is a positive constant depending only on n.

Remark 2.1. If the background metric \bar{g} is Ricci flat, i.e $\bar{R}_{ik} = 0$, then there will be no $|h|^3$ term in the above estimate. That is because

$$R(g) = g^{ik} \bar{R}_{ik} - g^{ik} g^{lj} (\nabla_i h_{jl} - \nabla_l h_{ij}) + g^{ik} g^{jl} g^{pq} (\Gamma^q_{il} \Gamma^p_{jk} - \Gamma^q_{jl} \Gamma^p_{ik}),$$

where each term on the right, except $g^{ik} \bar{R}_{ik}$, involves derivatives of h.

Proposition 2.2 (Brendle and Marques [5]). Assume that g and \bar{g} induce the same metric on Σ, i.e. $h|_{T \Sigma} = 0$ where $T \Sigma$ is the tangent bundle of Σ. Then the mean curvatures $H(g)$, $H(\bar{g})$ of Σ in (Ω, g),
(Ω, ̃g), each with respect to the outward normals, satisfy

\[
2 [H(g) - H(\bar{g})] - \left(h(\nabla, \nabla) - \frac{1}{4} h(\nabla, \nabla)^2 + \sum_{\alpha=1}^{n-1} h(e_\alpha, \nabla)^2 \right) H(\bar{g}) \\
+ \left(1 - \frac{1}{2} h(\nabla, \nabla) \right) \sum_{\alpha=1}^{n-1} \left[2 \nabla_{e_\alpha} h(e_\alpha, \nabla) - \nabla_{e_\alpha} h(e_\alpha, e_\alpha) \right]
\]

\[
\leq C (|h|^2 |\nabla h| + |h|^3)
\]

where \(\{e_\alpha \mid 1 \leq \alpha \leq n - 1\} \) is a local orthonormal frame on \(\Sigma \), \(\nabla \) is the \(\bar{g} \)-unit outward normal vector to \(\Sigma \), and \(C \) is a positive constant depending only on \(n \).

To derive the main formula (2.23) in this section, we let

\[
(2.1) \quad DR_\bar{g}(h) = -\Delta_\bar{g}(\text{tr}_g h) + \text{div}_\bar{g}\text{div}_\bar{g} h - \langle \text{Ric}(\bar{g}), h \rangle
\]

be the linearization of the scalar curvature at \(\bar{g} \) along \(h \). Here “\(\Delta_\bar{g} \), \(\text{div}_\bar{g} \)” denote the Laplacian, the divergence with respect to \(\bar{g} \).

Lemma 2.1. With the same notations in Proposition 2.1, assume in addition \(\text{div}_g h = 0 \), then

\[
R(g) - R(\bar{g}) = DR_\bar{g}(h) - \frac{1}{2} DR_\bar{g}(h^2) + \langle h, \nabla^2 \text{tr}_g h \rangle - \frac{1}{4} \left(|
abla h|^2 + |\nabla (\text{tr}_g h)|^2 \right)
\]

\[
+ \frac{1}{2} h^{ij} h^{kl} R_{ijkl} + E(h) + \nabla_i (E^i(h))
\]

where \(E(h) \) is a function and \(E_1(h) \) is a vector field on \(\Omega \) satisfying

\[
|E(h)| \leq C (|h| |
abla h|^2 + |h|^3), \quad |E_1(h)| \leq C |h|^2 |\nabla h|
\]

for a positive constant \(C \) depending only on \(n \).

Proof. First note that

\[
(2.2) \quad - \nabla_i \left[\bar{g}^{ik} \bar{g}^{jl} (\nabla_k h_{jl} - \nabla_l h_{jk}) \right] - \langle \text{Ric}(\bar{g}), h \rangle = DR_\bar{g}(h).
\]

Suppose \(\bar{g}^{ik} = \bar{g}^{ik} + \tau^{ik} \). Then \(\tau^{ik} = -h^{ik} + E_2^{ik}(h) \) where \(h^{ik} = \bar{g}^{ij} h_{jl} \bar{g}^{ik} \) and \(|E_2(h)| \leq C |h|^2 \). Hence,

\[
\bar{g}^{ik} \bar{g}^{jl} - \bar{g}^{ik} \bar{g}^{jl} = -h^{ik} h^{jl} - \bar{g}^{ik} \bar{g}^{jl} + E_3^{ikjl}(h)
\]

where \(|E_3(h)| \leq C |h|^2 \). Therefore,

\[
(2.3) \quad - \nabla_i \left[(\bar{g}^{ik} \bar{g}^{jl} - \bar{g}^{ik} \bar{g}^{jl}) (\nabla_k h_{jl} - \nabla_l h_{jk}) \right]
\]

\[
= \nabla_i \left[(\bar{g}^{ik} h^{jl} + \bar{g}^{jl} h^{ik} - E_3^{ikjl}(h)) (\nabla_k h_{jl} - \nabla_l h_{jk}) \right]
\]

\[
= \frac{1}{2} \Delta_\bar{g} |h|^2 + \langle h, \nabla^2 \text{tr}_g(h) \rangle \bar{g} - \text{div}_\bar{g}\text{div}_\bar{g} h^2 - \nabla_i \left(E_3^{ikjl}(\nabla_k h_{jl} - \nabla_l h_{jk}) \right).
\]
Applying the Ricci identity, one has

\begin{equation}
\frac{1}{2} \bar{g}^{ij} \bar{g}^{kl} \bar{g}^{pq} \nabla_i h_{kp} \nabla_l h_{jq} = \frac{1}{2} \text{div}_\bar{g} \text{div}_\bar{g} (h^2) - \frac{1}{2} \langle \text{Ric}(\bar{g}), h^2 \rangle + \frac{1}{2} h^{ij} h^{kl} R_{ikjl}.
\end{equation}

The lemma follows from Proposition 2.1, (2.2), (2.3) and (2.4).

Next, let \(DH_\bar{g}(h) \) denote the linearization of the mean curvature at \(\bar{g} \) along \(h \). Proposition 2.2 implies

\begin{equation}
DH_\bar{g}(h) = \frac{1}{2} \left[h(\bar{\nu}, \bar{\nu}) H(\bar{g}) - \sum_{\alpha=1}^{n-1} \left(2 \nabla_{e_\alpha} h(e_\alpha, \bar{\nu}) - \nabla_{\bar{\nu}} h(e_\alpha, e_\alpha) \right) \right].
\end{equation}

For later use, we note the following equivalent expression of \(DH_\bar{g}(h) \) (see [13, (34)] for instance)

\begin{equation}
DH_\bar{g}(h) = \frac{1}{2} \left\{ [d(\text{tr}_\bar{g} h) - \text{div}_\bar{g} h](\bar{\nu}) - \text{div}_\Sigma X \right\},
\end{equation}

where \(X \) is the vector field on \(\Sigma \) dual to the 1-form \(h(\bar{\nu}, \cdot) |_{T\Sigma} \).

Let \(DR_\bar{g}^*(\cdot) \) denote the formal \(L^2 \bar{g} \)-adjoint of \(DR_\bar{g}(\cdot) \), i.e.

\begin{equation}
DR_\bar{g}^*(\lambda) = -(\Delta_\bar{g} \lambda) \bar{g} + \nabla^2_\bar{g} \lambda - \lambda \text{Ric}(\bar{g})
\end{equation}

where \(\lambda \) is a function and \(\nabla^2_\bar{g} \lambda \) denotes the Hessian of \(\lambda \) with respect to \(\bar{g} \). The content of the following lemma had been used in [13].

Lemma 2.2. Let \(p \) be any smooth \((0, 2) \) symmetric tensor on \(\Omega \), then

\begin{equation}
\int_\Omega DR_\bar{g}(p) \lambda \ d\text{vol}_\bar{g} = \int_\Omega \langle DR_\bar{g}^*(\lambda), p \rangle \ d\text{vol}_\bar{g} - \int_\Sigma 2DH_\bar{g}(p) \lambda \ d\sigma_\bar{g}
+ \int_\Sigma \lambda_{\bar{\nu}}(\text{tr}_\bar{g}(p) - p(\bar{\nu}, \bar{\nu})) \ d\sigma_\bar{g}
\end{equation}

where \(\lambda_{\bar{\nu}} = \partial_{\bar{\nu}} \lambda \) denotes the directional derivative of \(\lambda \) along \(\bar{\nu} \).
Proof. Let \(Y \) be the vector field on \(\Sigma \) dual to the 1-form \(p(\nabla, \cdot)|_{T\Sigma} \). Integrating by parts, one has

\[
(2.9) \quad \int_{\Omega} DR_{\tilde{g}}(p) \lambda \, d\text{vol}_{\tilde{g}} = \int_{\Omega} \langle DR_{\tilde{g}}^*(\lambda), p \rangle \, d\text{vol}_{\tilde{g}}
\]

\[
= \int_{\Sigma} \lambda \partial_{\lambda} \langle tr_{\tilde{g}}p \rangle + \langle tr_{\tilde{g}}p \partial_{\lambda} \rangle + \lambda \partial_{\lambda} \langle \nabla_{\Sigma} \lambda \rangle - \lambda \partial_{\lambda} \langle \nabla \tilde{g} \rangle \, d\sigma_{\tilde{g}}
\]

\[
= \int_{\Sigma} \lambda \partial_{\lambda} \langle tr_{\tilde{g}}p \rangle + \langle \nabla_{\Sigma} \langle tr_{\tilde{g}}p \rangle \rangle - \langle Y, \nabla_{\Sigma} \lambda \rangle \, d\sigma_{\tilde{g}} + \int_{\Sigma} \lambda \partial_{\lambda} \langle \nabla_{\Sigma} \lambda \rangle \, d\sigma_{\tilde{g}} + \int_{\Sigma} \lambda \partial_{\lambda} \langle \nabla \tilde{g} \rangle \, d\sigma_{\tilde{g}}
\]

where \(\nabla_{\Sigma}(\cdot) \) denotes the gradient on \(\Sigma \) with respect to the induced metric. From this and (2.6) the Lemma follows. \(\square \)

Using Lemma 2.2, we can estimate \(\int_{\Omega} [R(g) - R(\tilde{g})] \lambda \, d\text{vol}_{\tilde{g}} \).

Proposition 2.3. Suppose \(g \) and \(\tilde{g} \) induce the same metric on \(\Sigma \) and \(h \) satisfies \(\text{div}_{\tilde{g}} h = 0 \). Given any \(C^2 \) function \(\lambda \) on \(\Omega \), one has

\[
\int_{\Omega} [R(g) - R(\tilde{g})] \lambda \, d\text{vol}_{\tilde{g}} = \int_{\Omega} \langle h, DR_{\tilde{g}}^*(\lambda) \rangle \, d\text{vol}_{\tilde{g}} - \frac{1}{2} \int_{\Omega} \langle h^2, DR_{\tilde{g}}^*(\lambda) \rangle \, d\text{vol}_{\tilde{g}}
\]

\[
+ \int_{\Omega} \left[\langle tr_{\tilde{g}} h \rangle \langle h, \nabla_{\tilde{g}}^2 \lambda \rangle + \frac{1}{2} h_{ij} h_{kl} R_{ijkl} \lambda - \frac{1}{4} (|\nabla h|^2 + |\nabla (tr_{\tilde{g}} h)|^2) \lambda \right] \, d\text{vol}_{\tilde{g}}
\]

\[
+ \int_{\Sigma} \left[-\left(h_{nn} \right)^2 - \frac{1}{2} |X|^2 \right] \lambda_{nn} \, d\sigma_{\tilde{g}} - \int_{\Sigma} h_{nn} \langle X, \nabla_{\Sigma} \lambda \rangle \, d\sigma_{\tilde{g}}
\]

\[
+ \int_{\Sigma} \left[-\frac{1}{2} h_{nn}^2 \|\tilde{g}\| - \frac{1}{2} \Pi(X, X) - \frac{3}{2} |X|^2 \bar{H} \right] \lambda \, d\sigma_{\tilde{g}} - \int_{\Sigma} (2 - 2tr_{\tilde{g}} h) D\bar{H}_{\tilde{g}}(h) \lambda \, d\sigma_{\tilde{g}}
\]

\[
+ \int_{\Omega} E(h) \lambda \, d\text{vol}_{\tilde{g}} - \int_{\Omega} E_1^i(h) \nabla_i \lambda \, d\text{vol}_{\tilde{g}} + \int_{\Sigma} F_1(h) \lambda \, d\sigma_{\tilde{g}}
\]

where \(\Pi \) is the second fundamental form of \(\Sigma \) in \((\Omega, \tilde{g}) \) with respect to \(\tilde{g} \), \(X \) is the vector field on \(\Sigma \) that is dual to the 1-form \(h(e_n, \cdot)|_{T\Sigma} \), \(E(h) \) and \(E_1(h) \) are as in Lemma 2.1, and \(F_1(h) \) is a function on \(\Sigma \) satisfying

\[
|F_1(h)| \leq c |h|^2 |\nabla h|
\]

for a positive constant \(c \) depending only on \(n \).
Proof. By (2.8) with \(p = h \), using the fact that \(h|_{\mathcal{T}(\Sigma)} = 0 \), we have

\[
\int_{\Omega} DR_{\bar{g}}(h) \lambda \, d\text{vol}_{\bar{g}} = \int_{\Omega} \langle DR_{\bar{g}}(\lambda), h \rangle \, d\text{vol}_{\bar{g}} - \int_{\Sigma} 2DH_{\bar{g}}(h) \lambda \, d\sigma_{\bar{g}}. \tag{2.10}
\]

By the second line in (2.9) with \(p = h^2 \), and integrating by parts, we also have

\[
\int_{\Omega} -\frac{\lambda}{2} DR_{\bar{g}}(h^2) + \lambda \langle h, \nabla^2 \text{tr} \bar{g} h \rangle \, d\text{vol}_{\bar{g}}
= \int_{\Omega} -\frac{1}{2} \langle DR_{\bar{g}}^*(\lambda), h^2 \rangle + \text{tr} \bar{g} h \langle h, \nabla^2 \lambda \rangle \, d\text{vol}_{\bar{g}} + \mathcal{B} \tag{2.11}
\]

where

\[
\mathcal{B} = \int_{\Sigma} \frac{1}{2} \left[\lambda \partial_{\Sigma}(\langle h^2 \rangle) - |h|^2 \partial_{\Sigma} \lambda - \lambda(\text{div}_{\bar{g}} h^2)(\nabla) + (h^2)(\nabla \lambda) \right] \, d\sigma_{\bar{g}}
+ \int_{\Sigma} \left[\lambda h(\nabla \text{tr} \bar{g} h) - \text{tr} \bar{g} h \nabla \lambda \right] \, d\sigma_{\bar{g}}.
\tag{2.12}
\]

To compute \(\mathcal{B} \), let \(\{e_\alpha \mid 1 \leq \alpha \leq n-1\} \) be an orthonormal frame on \(\Sigma \) and let \(e_n = \nabla \). Denote \(\nabla \) also by “\(; \)”, thus \(h_{ij;\kappa} = \nabla_k h_{ij} \). The assumptions \(h|_{\mathcal{T}\Sigma} = 0 \) and \(\text{div}_{\bar{g}} h = 0 \) imply the following facts on \(\Sigma \):

\[
|h|^2 = (h_{nn})^2 + 2|X|^2, \quad (h^2)_{nn} = (h_{nn})^2 + |X|^2, \quad (h^2)_{n\alpha} = h_{nn} h_{n\alpha}, \tag{2.13}
\]

\[
(h^2)(\nabla \lambda) = [(h_{nn})^2 + |X|^2] \lambda_{n} + h_{nn} \langle X, \nabla \lambda \rangle, \tag{2.14}
\]

\[
h_{\beta\gamma;\alpha} = h_{\beta n} \nabla_{\alpha} + h_{n\gamma} \nabla_{\beta}, \tag{2.15}
\]

\[
h_{nn;\alpha} = (\text{tr} \bar{g} h)_{;\alpha} - \sum_{\beta=1}^{n-1} h_{\beta\beta;\alpha} = (\text{tr} \bar{g} h)_{;\alpha} - 2\Pi(X, e_\alpha), \tag{2.16}
\]

\[
0 = (\text{div} h)_\alpha = h_{\alpha n; n} + \sum_{\beta=1}^{n-1} h_{\alpha\beta;\beta} = h_{\alpha n; n} + h_{n\alpha} H(\bar{g}) + \Pi(X, e_\alpha), \tag{2.17}
\]

\[
0 = (\text{div}_{\bar{g}} h)_{n} = h_{nn; n} + \sum_{\alpha=1}^{n-1} h_{n\alpha;\alpha} = h_{nn; n} + \text{div}_\Sigma X + h_{nn} H(\bar{g}), \tag{2.18}
\]

\[
2DH_{\bar{g}}(h) = (\text{tr} \bar{g} h)_{;n} - \text{div}_\Sigma X, \tag{2.19}
\]
where \((2.19)\) follows from \((2.6)\). By \((2.16)-(2.18)\), we have

\begin{equation}
(2.20) \quad \partial_\nu(h^2) - \langle \text{div}_g h^2, \nabla \rangle = 3h_{mn}h_{n;\alpha} + h_{\alpha\beta}h_{mn;\beta} - h_{\alpha\beta}h_{mn;\beta}
\end{equation}

\begin{equation}
= - \Pi(X, X) - 3H(\bar{g})|X|^2 - H(\bar{g})(h_{mn})^2 - h_{mn}\text{div}_\Sigma X - \langle X, \nabla\Sigma \text{tr}_g h \rangle.
\end{equation}

By \((2.12), (2.13), (2.14), (2.20)\) and integration by parts, we have

\begin{equation}
(2.21) \quad B = \int_\Sigma \left[-(h_{mn})^2 - \frac{1}{2}|X|^2 \right] \lambda \, d\nu - \int_\Sigma h_{mn} \langle X, \nabla\Sigma \lambda \rangle
+ \int_\Sigma \left[-\frac{1}{2} \Pi(X, X) - \frac{3}{2} H(\bar{g})|X|^2 - \frac{1}{2} H(\bar{g})(h_{mn})^2 + 2h_{mn} \text{D}H_\bar{g}(h) \right] \lambda \, d\sigma_{\bar{g}}.
\end{equation}

Note that

\begin{equation}
(2.22) \quad \int_\Omega (\nabla_i E_i^\alpha(h)) \lambda \, d\text{vol}_{\bar{g}} = -\int_\Omega E_i^\alpha(h)\nabla_i \lambda \, d\text{vol}_{\bar{g}} + \int_\Sigma \lambda F_1(h) \, d\sigma_{\bar{g}}
\end{equation}

where \(|F_1(h) = \langle E_1(h), \nabla \rangle| \leq C|h|^2|\nabla h|\). Proposition \((2.3)\) now follows from Lemma \((2.1, 2.10, 2.11, 2.21,\) and \((2.22)\). \(\square\)

The formula \((2.23)\) next is a general form of [5, Theorem 10], which Brendle and Marques derived for geodesic balls in \(\mathbb{S}^n\).

Theorem 2.1. Suppose \(g\) and \(\bar{g}\) induce the same metric on \(\Sigma\) and \(h\) satisfies \(\text{div}_g h = 0\). Given any \(C^2\) function \(\lambda\) on \(\Omega\), one has

\begin{equation}
(2.23) \quad \int_\Omega \left[R(g) - R(\bar{g}) \right] \lambda \, d\text{vol}_{\bar{g}} + \int_\Sigma (2 - \text{tr}_g h) [H(g) - H(\bar{g})] \lambda \, d\sigma_{\bar{g}}
= \int_\Omega \left[\langle h, \text{D}R^\alpha(g) \rangle \text{dvol}_{\bar{g}} - \frac{1}{2} \int_\Omega \langle h^2, \text{D}R^\alpha(g) \rangle \text{dvol}_{\bar{g}}
+ \int_\Omega \left[\text{tr}_g h \langle h, \nabla^2 \lambda \rangle + \frac{1}{2} h^{ij}h^{kl} \bar{R}_{ikjl} \lambda - \frac{1}{4} (|\nabla h|^2 + |\nabla(\text{tr}_g h)|^2) \lambda \right] \text{dvol}_{\bar{g}}
+ \int_\Sigma \left[-\frac{1}{4} (h_{mn})^2 H(\bar{g}) - \frac{1}{2} \Pi(X, X) + H(\bar{g})|X|^2 \right] \lambda \, d\sigma_{\bar{g}}
+ \int_\Sigma \lambda n \left[-(h_{mn})^2 - \frac{1}{2} |X|^2 \right] \, d\sigma_{\bar{g}} + \int_\Sigma (-1) h_{mn} \langle X, \nabla\Sigma \lambda \rangle \, d\sigma_{\bar{g}}
+ \int_\Omega E(h)\lambda \, d\text{vol}_{\bar{g}} + \int_\Omega Z(h)\nabla \lambda \, d\text{vol}_{\bar{g}} + \int_\Sigma F(h)\lambda \, d\sigma_{\bar{g}}
\end{equation}
where $E(h)$ is a function and $Z(h)$ is a vector field on Ω satisfying
\[|E(h)| \leq C(|h||\nabla h|^2 + |h|^3), \quad |Z(h)| \leq C|h|^2|\nabla h|, \]
and $F(h)$ is some function on Σ satisfying
\[|F(h)| \leq C(|h|^2|\nabla h| + |h|^3). \]

Proof. Proposition 2.2 implies
\[2[H(g) - H(\bar{g})] = 2DH_{\bar{g}}(h) + J(h) + F_2(h) \]
where
\[J(h) = \left[\frac{1}{4}(h_{nn})^2 + |X|^2 \right] H(\bar{g}) - h_{nn}DH_{\bar{g}}(h) \]
and $F_2(h)$ is some function on Σ satisfying $|F_2(h)| \leq C(|h|^2|\nabla h| + |h|^3)$.

Therefore
\[(2 - h_{nn})[H(g) - H(\bar{g})] = (2 - 2h_{nn})D\bar{g}(h) + \left[\frac{1}{4}(h_{nn})^2 + |X|^2 \right] H(\bar{g}) \]
\[+ F_2(h) - \frac{1}{2}h_{nn}[J(h) + F_2(h)]. \]

(2.23) now follows readily from Proposition 2.3 and (2.25). \hfill \Box

The term $D\mathcal{R}^*(\lambda)$ in (2.23) may suggest that one consider a background metric \bar{g} which admits a nontrivial function λ such that $D\mathcal{R}^*(\lambda) = 0$ (such metrics are known as static metrics [10]). For instance, if \bar{g} is the standard metric on S^n and $\lambda = \cos r$, where r is the \bar{g}-distance to a point, then (2.23) reduces to the formula in [11 Theorem 10].

Besides static metrics, one can also consider those metrics \bar{g} with the property that there exists a function λ such that
\[D\mathcal{R}^*(\lambda) = \bar{g}. \]

These metrics were studied by the authors in [13] and [14]. In this case, the terms
\[\int_\Omega \langle h, D\mathcal{R}^*(\lambda) \rangle \, d\Omega_{\bar{g}} - \frac{1}{2} \int_\Omega \langle h^2, D\mathcal{R}^*(\lambda) \rangle \, d\Omega_{\bar{g}} \]
in (2.23) become
\[\int_\Omega \text{tr}_g h \, d\Omega_{\bar{g}} - \frac{1}{2} \int_\Omega |h|^2 \, d\Omega_{\bar{g}}. \]

To compensate these terms, one can include the difference between the volumes of g and \bar{g} into (2.23).
Corollary 2.1. Suppose \(\bar{g} \) is a metric on \(\Omega \) with the property that there exists a function \(\lambda \) satisfying \(DR^{\ast}_{\bar{g}}(\lambda) = \bar{g} \). Let \(g = \bar{g} + h \) be a nearby metric such that \(g \) and \(\bar{g} \) induce the same metric on \(\Sigma \) and \(h \) satisfies \(\text{div}_\bar{g} h = 0 \). Let \(V(g) \), \(V(\bar{g}) \) denote the volume of \((\Omega, g)\), \((\Omega, \bar{g})\). Then
\begin{equation}
2(V(g) - V(\bar{g})) + \int_{\Sigma} [R(g) - R(\bar{g})] \lambda \, d\sigma_{\bar{g}} + \int_{\Sigma} (2 - \text{tr}\bar{g} h) [H(g) - H(\bar{g})] \lambda \, d\sigma_{\bar{g}}
\end{equation}
(2.27)
\begin{align*}
&= \int_{\Omega} \left[-\frac{1}{4} \frac{1}{n-1} \right] (\text{tr}\bar{g} h)^2 \, d\nu_{\bar{g}} + \int_{\Omega} \left[-\frac{1}{4} \left(|\nabla h|^2 + |\nabla_{\bar{g}} (\text{tr}\bar{g} h)|^2 \right) \lambda \right] \, d\sigma_{\bar{g}} \\
&\quad + \int_{\Omega} \left[\frac{1}{1-n} R(\bar{g}) (\text{tr}\bar{g} h)^2 + \langle h, \text{Ric}(\bar{g}) \rangle (\text{tr}\bar{g} h) + \frac{1}{2} h_{ij} h_{kl} R_{ijkl} \right] \lambda \, d\sigma_{\bar{g}} \\
&\quad + \int_{\Omega} \left[\frac{1}{4} (h_{nn})^2 H(\bar{g}) - \frac{1}{2} \langle \Pi(X, X) + H(\bar{g}) | X |^2 \rangle \right] \lambda \, d\sigma_{\bar{g}} \\
&\quad + \int_{\Omega} \lambda_{,n} \left[-(h_{nn})^2 - \frac{1}{2} |X|^2 \right] \, d\sigma_{\bar{g}} + \int_{\Omega} (-1) h_{nn} \langle X, \nabla \lambda \rangle \, d\sigma_{\bar{g}} \\
&\quad + \int_{\Omega} G(h) \, d\nu_{\bar{g}} + \int_{\Omega} E(h) \lambda \, d\nu_{\bar{g}} + \int_{\Omega} Z(h) \nabla \lambda \, d\nu_{\bar{g}} + \int_{\Sigma} F(h) \lambda \, d\sigma_{\bar{g}}
\end{align*}
where \(G(h) \) and \(E(h) \) are functions on \(\Omega \) satisfying
\begin{equation}
|G(h)| \leq C|h|^3, \quad |E(h)| \leq C(|h||\nabla h|^2 + |h|^3),
\end{equation}
\(Z(h) \) is a vector field on \(\Omega \) satisfying
\begin{equation}
|Z(h)| \leq C|h|^2|\nabla h|,
\end{equation}
and \(F(h) \) is a function on \(\Sigma \) satisfying
\begin{equation}
|F(h)| \leq C(|h|^2|\nabla h| + |h|^3).
\end{equation}

Proof. The difference between the volumes of \(\bar{g} \) and \(g = \bar{g} + h \) is
\begin{equation}
V(g) - V(\bar{g}) = \int_{\Omega} \frac{1}{2} (\text{tr}\bar{g} h) + \left[\frac{1}{8} (\text{tr}\bar{g} h)^2 - \frac{1}{4} |h|^2 \right] + G(h) \, d\nu_{\bar{g}},
\end{equation}
where \(G(h) \) is a function satisfying \(|G(h)| \leq C|h|^3\) for a constant \(C \) depending only on \(n \). Suppose \(DR^{\ast}_{\bar{g}}(\lambda) = \bar{g} \), i.e.
\begin{equation}
-(\Delta \lambda) \bar{g} + \nabla^{\ast}_{\bar{g}} \lambda - \lambda \text{Ric}(\bar{g}) = \bar{g}.
\end{equation}
Taking trace, one has \(\Delta \lambda = \frac{1}{1-n} [R(\bar{g}) \lambda + n] \). Thus,
\begin{equation}
\nabla^{\ast}_{\bar{g}} \lambda = \frac{1}{1-n} [R(\bar{g}) \lambda + 1] \bar{g} + \lambda \text{Ric}(\bar{g}).
\end{equation}
(2.27) follows from (2.23), (2.28) and (2.29). \(\square \)
3. VOLUME CONSTRAINED RIGIDITY

We prove Theorem 3.1 in this section. First, we recall its statement:

Theorem 3.1. Let (Ω, \bar{g}) be an n-dimensional compact Riemannian manifold, of constant sectional curvature 1, with smooth boundary Σ. Suppose $\bar{\Pi} + \bar{H} \bar{\gamma} \geq 0$ (i.e. $\bar{\Pi} + \bar{H} \bar{\gamma}$ is positive semi-definite), where $\bar{\gamma}$ is the induced metric on Σ and $\bar{\Pi}$, \bar{H} are the second fundamental form, the mean curvature of Σ in (Ω, \bar{g}). Suppose the first nonzero Neumann eigenvalue μ of (Ω, g) satisfies $\mu > n - \frac{2}{n+1}$.

Consider a nearby metric g on Ω with the properties

- $R(g) \geq n(n-1)$ where $R(g)$ is the scalar curvature of g
- $H(g) \geq H$ where $H(g)$ is the mean curvature of Σ in (Ω, g)
- g and \bar{g} induce the same metric on Σ
- $V(g) \geq V(\bar{g})$ where $V(g)$, $V(\bar{g})$ are the volumes of g, \bar{g}.

If $||g - \bar{g}||_{C^2(\Omega)}$ is sufficiently small, then there is a diffeomorphism φ on Ω with $\varphi|_\Sigma = \text{id}$, which is the identity map on Σ, such that $\varphi^*(g) = \bar{g}$.

Proof. Fix a real number $p > n$. By [3, Proposition 11], if $||g - \bar{g}||_{W^{2,p}(\Omega)}$ is sufficiently small, there exists a $W^{3,p}$ diffeomorphism φ on Ω with $\varphi|_\Sigma = \text{id}$ such that $h = \varphi^*(g) - g$ is divergence free with respect to \bar{g}, and $||h||_{W^{2,p}(\Omega)} \leq N||g - \bar{g}||_{W^{2,p}(\Omega)}$ for some positive constant N depending only on (Ω, \bar{g}). Replacing g by $\varphi^*(g)$, we may assume $g = \bar{g} + h$ with $\text{div}_\bar{g} h = 0$. We want to prove that if $||h||_{C^1(\Omega)}$ is sufficiently small and g satisfies the conditions in the theorem, then h must be zero.

Since \bar{g} has constant sectional curvature 1, we choose $\lambda = -\frac{1}{n-1}$ such that $DR^*_\bar{g}(\lambda) = \bar{g}$. Corollary 2.1 then shows

$$
(3.1) \\
- 2(V(g) - V(\bar{g})) - \frac{1}{n-1} \int_\Omega [R(g) - R(\bar{g})] \ dvol_{\bar{g}} \\
- \frac{1}{n-1} \int_\Sigma (2 - \text{tr}_\bar{g} h) [H(g) - H(\bar{g})] \ d\sigma_{\bar{g}} \\
\geq \frac{1}{4(n-1)} \int_\Omega [-(n+1)(\text{tr}_\bar{g} h)^2 + 2|h|^2 + |\nabla h|^2 + |\nabla (\text{tr}_\bar{g} h)|^2] \ dvol_{\bar{g}} \\
+ \frac{1}{4(n-1)} \int_\Sigma [(h_{mn})^2 H(g) + 2\bar{\Pi}(X, X) + H(g)|X|^2] \ d\sigma_{\bar{g}} \\
- C||h||_{C^2(\Omega)} \left[\int_\Omega (|h|^2 + |\nabla h|^2) \ dvol_{\bar{g}} + \int_\Sigma |h|^2 d\sigma_{\bar{g}} \right]
$$

for a constant C depending only on (Ω, \bar{g}).
Using the variational property of μ, we have

\begin{equation}
(3.2) \int_{\Omega} |\nabla (\nabla g)|^2 \, d\nu_{\bar{g}} \geq \mu \left[\left(\int_{\Omega} (\nabla g)^2 \, d\nu_{\bar{g}} \right) - \frac{1}{\nu(\bar{g})} \left(\int_{\Omega} \nabla g \, d\nu_{\bar{g}} \right)^2 \right].
\end{equation}

By (2.28), $\int_{\Omega} \nabla g \, d\nu_{\bar{g}}$ is related to $(V(g) - V(\bar{g}))$ by

\begin{equation}
(3.3) \int_{\Omega} \nabla g \, d\nu_{\bar{g}} = 2(V(g) - V(\bar{g})) - \int_{\Omega} \left\{ \frac{1}{4} (\nabla g)^2 - \frac{1}{2} |h|^2 \right\} + 2G(h) \, d\nu_{\bar{g}},
\end{equation}

where $G(h) \leq C|h|^3$.

Given any constant $0 < \epsilon < 1$, using (3.2) and the fact $|h|^2 \geq \frac{1}{n} (\nabla g)^2$ and $|\nabla h|^2 \geq \frac{1}{n} |\nabla (\nabla g)|^2$, we have

\begin{equation}
(3.4) \int_{\Omega} \left[-(n+1)(\nabla g)^2 + 2|h|^2 + |\nabla h|^2 + |\nabla g(\nabla g)|^2 \right] \, d\nu_{\bar{g}}
\geq \int_{\Omega} \left(\epsilon |h|^2 + \epsilon |\nabla h|^2 + \left[-(n+1) + \frac{2 - \epsilon}{n} \right] (\nabla g)^2 + \left[\frac{(1-\epsilon)}{n} + 1 \right] |\nabla (\nabla g)|^2 \right) \, d\nu_{\bar{g}}
\geq \int_{\Omega} \left(\epsilon |h|^2 + \epsilon |\nabla h|^2 + \left[-(n+1) + \frac{2 - \epsilon}{n} + \frac{(1-\epsilon)}{n} \mu + \mu \right] (\nabla g)^2 \right) \, d\nu_{\bar{g}}
\geq \mu \left[\frac{(1-\epsilon)}{n} + 1 \right] \frac{1}{\nu(\bar{g})} \left(\int_{\Omega} \nabla g \, d\nu_{\bar{g}} \right)^2.
\end{equation}

Since $\mu > n - \frac{2}{n+1}$, we can chose ϵ (depending only on μ and n) such that

\begin{equation}
(3.5) \left[-(n+1) + \frac{2 - \epsilon}{n} + \frac{(1-\epsilon)}{n} \mu + \mu \right] \geq 0.
\end{equation}

Then it follows from (3.3), (3.4) and (3.5) that

\begin{equation}
(3.6) \int_{\Omega} \left[-(n+1)(\nabla g)^2 + 2|h|^2 + |\nabla h|^2 + |\nabla (\nabla g)|^2 \right] \, d\nu_{\bar{g}}
\geq \epsilon \int_{\Omega} \left(|h|^2 + |\nabla h|^2 \right) \, d\nu_{\bar{g}} - C_1 (V(g) - V(\bar{g}))^2 - C_1 \int_{\Omega} |h|^4 \, d\sigma_{\bar{g}}
\end{equation}

where C_1 is a positive constant depending only on (Ω, \bar{g}).

At the boundary Σ, the assumption $\Pi + H(\bar{g}) \geq 0$ implies $H(\bar{g}) \geq 0$, therefore

\begin{equation}
(3.7) \int_{\Sigma} [(h_{nn})^2 H(\bar{g}) + 2(\Pi(X, X) + H(\bar{g})|X|^2)] \, d\sigma_{\bar{g}} \geq 0
\end{equation}
for any \(h \). By (3.1), (3.6) and (3.7), we have
\[
-8(n-1)(V(g) - V(\bar{g})) - 4 \int_{\Omega} [R(g) - R(\bar{g})] \, d\text{vol}_{\bar{g}}
-4 \int_{\Sigma} (2 - \text{tr}_{\bar{g}} h) [H(g) - H(\bar{g})] \, d\sigma_{\bar{g}}
\geq 4 \epsilon \int_{\Omega} (|h|^2 + |\nabla h|^2) \, d\text{vol}_{\bar{g}}
\]
(3.8)
for some positive constant \(C \) depending only on \((\Omega, \bar{g}) \).

Finally, we note that
\[
(V(g) - V(\bar{g}))^2 \leq C \left(\int_{\Omega} |h| \, d\text{vol}_{\bar{g}} \right) (V(g) - V(\bar{g}))
\]
by (3.3) and the assumption \(V(g) \geq V(\bar{g}) \). Also, by the trace theorem,
\[
||h||_{L^2(\Sigma)} \leq C ||h||_{W^{1,2}(\Omega)}
\]
(3.10)
for some constant \(C \) only depending on \(\Omega \). Therefore, by (3.8), (3.9), (3.10) and the assumptions \(V(g) \geq V(\bar{g}) \), \(R(g) \geq R(\bar{g}) \) and \(H(g) \geq H(\bar{g}) \), we conclude that if \(||h||_{C^1(\Omega)} \) is sufficiently small, then
\[
0 \geq \frac{\epsilon}{2} \int_{\Omega} (|h|^2 + |\nabla h|^2) \, d\text{vol}_{\bar{g}}
\]
which implies \(h \) must be identically zero. This completes the proof. \(\square \)

Remark 3.1. In Theorem 3.1 if \(\Sigma \) is indeed empty, i.e \((\Omega, \bar{g}) \) is a closed space form, its first nonzero Neumann eigenvalue satisfies \(\mu \geq n \) as \((\Omega, \bar{g}) \) is covered by \(S^n \). In this case, Theorem 3.1 says that \(V(g) \geq V(\bar{g}) \) implies \(g \) is isometric to \(\bar{g} \) for a nearby metrics \(g \) with \(R(g) \geq R(\bar{g}) \). This could be compared to a more profound theorem known in 3-dimension:
\"If \((M, g)\) is closed 3-manifold with \(R(g) \geq 6, \text{Ric}(g) \geq g \) and \(V(g) \geq V(S^3) \), then \((M, g)\) is isometric to \(S^3 \).\" (See [4, Corollary 5.4] and earlier reference of [3, 11])

When \(\Sigma \neq \emptyset \), the boundary assumption \(\mathbb{I} + \bar{H} \bar{\gamma} \geq 0 \) in Theorem 3.1 can be relaxed in certain circumstances. A detailed examination of the above proof shows, if
\[
\mathbb{I}(v, v) + \bar{H} \bar{\gamma} \geq -\beta \bar{\gamma}
\]
(3.12)
for some positive constant β, where β is sufficiently small comparing to the constant ϵ in (3.5) and the constant C in (3.10), then the conclusion of Theorem 3.1 still holds on such an (Ω, \bar{g}). In particular, this shows Corollary 3.1.

Let (M, \bar{g}) be an n-dimensional Riemannian manifold of constant sectional curvature 1. Suppose $\Omega \subset M$ is a bounded domain with smooth boundary Σ, satisfying the assumptions in Theorem 3.1, i.e $\mu > n - \frac{2}{n+1}$ and $\bar{H} \geq 0$ on Σ. Let $\tilde{\Omega} \subset \bar{M}$ be another bounded domain with smooth boundary $\tilde{\Sigma}$. If $\tilde{\Sigma}$ is sufficiently close to Σ in the C^2 norm, then the conclusion of Theorem 3.1 holds on $\tilde{\Omega}$.

It is known that the first nonzero Neumann eigenvalue of S^n_+ is n (see [9, Theorem 3]). Therefore, Theorem 1.2 follows from Theorem 3.1.

Moreover, by Corollary 3.1, Theorem 3.1 holds on a geodesic ball in S^n whose radius is slightly larger than $\frac{\pi}{2}$.

By the next lemma, we know Theorem 3.1 also holds on any geodesic ball in S^n that is strictly contained in S^n_+.

Lemma 3.1. Let $B(\delta) \subset S^n$ be a geodesic ball of radius δ. Let $\mu(\delta)$ be the first nonzero Neumann eigenvalue of $B(\delta)$.

(i) $\mu(\delta)$ is a strictly decreasing function of δ on $(0, \frac{\pi}{2}]$.

(ii) For any $0 < \delta < \frac{\pi}{2}$,

$$
\mu(\delta) > n + \frac{(\sin \delta)^{n-2} \cos \delta}{\int_0^\delta (\sin t)^{n-1} dt} > \frac{n}{(\sin \delta)^2}.
$$

Proof. By [9, Theorem 2, p.44], $\mu(\delta)$ is characterized by the fact that

(3.13) \{ $(\sin t)^{n-1} J' \} + [\mu(\delta) - (n-1) (\sin t)^{-2}] (\sin t)^{n-1} J = 0$

has a solution $J = J(t)$ on $[0, \delta]$ satisfying

(3.14) \begin{align*}
J(0) &= 0, \quad J'(\delta) = 0, \
J'(t) &\neq 0, \quad \forall \ t \in [0, \delta).
\end{align*}

Given $0 < \delta_1 < \delta_2 < \frac{\pi}{2}$, let $J_i = J_i(t)$ be a solution to (3.13) with $\mu(\delta)$ replaced by $\mu(\delta_i)$, satisfying (3.14) on $[0, \delta_i]$, $i = 1, 2$. Replacing J_i by $-J_i$ if necessary, we may assume that $J_i' > 0$ on $[0, \delta_i)$, hence $J_i > 0$ on $(0, \delta_i]$. Define

$$
\beta_i(t) = \left[\frac{\mu(\delta_i) - n - 1}{(\sin t)^2} \right] (\sin t)^{n-1}.
$$

By (3.13), f_i satisfies

$$
f_i' = -\beta_i - \frac{1}{(\sin t)^{n-1}} f_i^2.
$$
Therefore, on \((0, \delta_1]\),

\[
(3.15) \quad (f_1 - f_2)' = \frac{1}{(\sin t)^{n-1}}(f_2^2 - f_1^2) + [\mu(\delta_2) - \mu(\delta_1)](\sin t)^{n-1}.
\]

Note that \(f_1(t), f_2(t)\) can be extended continuously to 0 such that \(f_1(0) = f_2(0)\). Moreover, \(f_1 > 0, f_2 > 0\) on \((0, \delta_1)\), \(f_2(\delta_1) > 0 = f_1(\delta_1)\). Let \(0 \leq t_0 < \delta_1\) be such that \(f_1 = f_2\) at \(t_0\) and \(f_2 > f_1\) for \(t_0 < t \leq \delta_1\). On \((t_0, \delta_1]\), one would have \((f_1 - f_2)' > 0\) if \(\mu(\delta_2) \geq \mu(\delta_1)\), which is a contradiction to \(f_2 > f_1\). Therefore, \(\mu(\delta_2) < \mu(\delta_1)\). This proves (i).

To prove (ii), we further claim that \(t_0 = 0\), i.e. \(f_2 > f_1\) on \((0, \delta_1]\). If not, there would be a nonpositive local minimum of \((f_2 - f_1)\) at some \(\tilde{t}_0 \in (0, t_0]\). At \(\tilde{t}_0\), (3.15) implies

\[
(3.16) \quad 0 = (f_1 - f_2)' \leq [\mu(\delta_2) - \mu(\delta_1)](\sin \tilde{t}_0)^{n-1} < 0
\]

because \(0 < f_2(\tilde{t}_0) \leq f_1(\tilde{t}_0)\) and \(\mu(\delta_2) < \mu(\delta_1)\). Hence \(f_2 > f_1\) on \((0, \delta_1]\).

Integrating (3.15) on \([0, \delta_1]\), we have

\[
(3.17) \quad - f_2(\delta_1) = \int_0^{\delta_1} (f_1 - f_2)' dt > [\mu(\delta_2) - \mu(\delta_1)] \int_0^{\delta_1} (\sin t)^{n-1} dt.
\]

Therefore

\[
(3.18) \quad \mu(\delta_1) > \mu(\delta_2) + \frac{f_2(\delta_1)}{\int_0^{\delta_1} (\sin t)^{n-1} dt}.
\]

Now let \(\delta_1 = \delta \in (0, \frac{\pi}{2})\) and \(\delta_2 = \pi/2\). Applying the fact that \(\mu(\frac{\pi}{2}) = n\), \(J_2 = \sin t\), and

\[
f_2 = (\sin t)^{n-2} \cos t,
\]

we have

\[
(3.19) \quad \mu(\delta) > n + \frac{(\sin \delta)^{n-2} \cos \delta}{\int_0^{\delta} (\sin t)^{n-1} dt}
\]

\[
> n + \frac{(\sin \delta)^{n-2} \cos^2 \delta}{\int_0^{\delta} \cos t(\sin t)^{n-1} dt}
\]

\[
= \frac{n}{\sin^2 \delta}.
\]

Therefore, (ii) is proved.

\[\square\]

4. A Volume estimate on domains in \(\mathbb{R}^n\)

On \(\mathbb{R}^n\), the standard Euclidean metric \(\bar{g}\) satisfies \(DR_\bar{g}(\lambda) = \bar{g}\) with

\[
\lambda(x) = -\frac{1}{2(n-1)}|x - a|^2 + L
\]
where $| \cdot |$ denotes the Euclidean length, $a \in \mathbb{R}^n$ is any fixed point and L is an arbitrary constant. In this section, we use this fact and Corollary 2.1 to prove Theorem 1.4 in the introduction. First we need some lemmas.

Lemma 4.1. On a compact Riemannian manifold (Ω, \bar{g}) with smooth boundary Σ, there exists a positive constant C depending only on (Ω, \bar{g}) such that, for any Lipschitz function ϕ on Σ, there is an extension of ϕ to a Lipschitz function $\tilde{\phi}$ on Ω such that

$$
(4.2) \quad \int_{\Omega} \left(|\tilde{\phi}|^2 + |\nabla \phi|^2 \right) d\text{vol}_{\bar{g}} \leq C \int_{\Sigma} \left(\phi^2 + |\nabla^\Sigma \phi|^2 \right) d\sigma_{\bar{g}}
$$

where ∇, ∇^Σ denote the gradient on Ω, Σ respectively.

Proof. Let $d(\cdot, \Sigma)$ be the distance to Σ. Let $\delta > 0$ be a small constant such that the tubular neighborhood $U_{2\delta} = \{ x \in \Omega \mid d(x, \Sigma) < 2\delta \}$ can be parametrized by $F : \Sigma \times [0, 2\delta) \to U_{2\delta}$, with $F(y, t) = \text{exp}_y(t\nu(y))$ where $\text{exp}_y(\cdot)$ is the exponential map at $y \in \Sigma$ and $\nu(y)$ is the inward unit normal at y. In $U_{2\delta}$, the metric \bar{g} takes the form $dt^2 + \sigma^t$, where $\{\sigma^t\}_{0 \leq t < 2\delta}$ is a family of metrics on Σ. By choosing δ sufficiently small, one can assume σ^t is equivalent to σ^0 in the sense that $\frac{1}{2} \leq \sigma^t(v, v) \leq 2$ for any tangent vector v with $\sigma^0(v, v) = 1$, $\forall \ 0 \leq t < 2\delta$.

Let $\rho = \rho(t)$ be a fixed smooth cut-off function on $[0, \infty)$ such that $0 \leq \rho \leq 1$, $\rho(t) = 1$ for $0 \leq t \leq \delta$ and $\rho(t) = 0$ for $t \geq \frac{3}{2}\delta$. On $U_{2\delta}$, consider the function $\tilde{\phi}(y, t) = \phi(y)\rho(t)$. Since $\tilde{\phi}$ is identically zero outside $U_{\frac{3}{2}\delta} = \{ x \in \Omega \mid d(x, \Sigma) < \frac{3}{2}\delta \}$, $\tilde{\phi}$ can be viewed as an extension of ϕ on Ω. For such an $\tilde{\phi}$, one has

$$
(4.3) \quad \int_{\Omega} |\tilde{\phi}|^2 d\text{vol}_{\bar{g}} \leq \int_{0}^{2\delta} \left(\int_{\Sigma} |\phi|^2 d\sigma^t \right) dt \leq C\delta \int_{\Sigma} |\phi|^2 d\sigma_{\bar{g}}
$$

and

$$
(4.4) \quad \int_{\Omega} |\nabla \tilde{\phi}|^2 d\text{vol}_{\bar{g}} \leq 2 \int_{U_{2\delta}} \left(|\nabla \rho|^2 \phi^2 + |\nabla \phi|^2 \rho^2 \right) d\text{vol}_{\bar{g}}
$$

$$
\leq C\delta \int_{\Sigma} |\phi|^2 d\sigma_{\bar{g}} + 2 \int_{0}^{2\delta} \left(\int_{\Sigma} |\nabla_t \phi|^2 d\sigma^t \right) dt
\leq C \left[\int_{\Sigma} |\phi|^2 d\sigma_{\bar{g}} + \int_{\Sigma} |\nabla^\Sigma \phi|^2 d\sigma_{\bar{g}} \right]
$$

where ∇^Σ_t denotes the gradient on (Σ, σ^t) and C is a positive constant depending only on (Ω, \bar{g}). (4.2) now follows from (4.3) and (4.4).

\Box
Lemma 4.2. On a compact Riemannian manifold \((\Omega, \bar{g})\) with smooth boundary \(\Sigma\), there exists a positive constant \(C\) depending only on \((\Omega, \bar{g})\) such that, for any smooth \((0, 2)\) symmetric tensor \(h\) on \(\Omega\), one has

\[
\int_{\Omega} |h|^3 d\sigma_{\bar{g}} \leq C \left(\int_{\Sigma} |h|^3 d\sigma_{\bar{g}} + ||h||_{C^2(\Omega)} \int_{\Sigma} |h|^2 d\sigma_{\bar{g}} + \int_{\Omega} ||h||^2 |\nabla h|^2 d\sigma_{\bar{g}} \right)
\]

Proof. On \(\Omega\), let \(\phi = |h|^\frac{3}{2}\). By lemma 4.1, there exists a Lipschitz function \(\tilde{\phi}\) on \(\Omega\) such that \(\tilde{\phi}|_\Sigma = \phi|_\Sigma\) and

\[
\int_{\Omega} (|\tilde{\phi}|^2 + |\nabla \tilde{\phi}|^2) d\sigma_{\bar{g}} \leq C \int_{\Sigma} \left(\phi^2 + |\nabla^\Sigma \phi|^2 \right) d\sigma_{\bar{g}}.
\]

Let \(\lambda_1 > 0\) be the first Dirichlet eigenvalue of \((\Omega, \bar{g})\), then

\[
\int_{\Omega} \phi^2 d\sigma_{\bar{g}} \leq 2 \int_{\Omega} \left[\tilde{\phi}^2 + (\phi - \tilde{\phi})^2 \right] d\sigma_{\bar{g}}
\]

\[
\leq 2 \int_{\Omega} \tilde{\phi}^2 d\sigma_{\bar{g}} + 2\lambda_1^{-1} \int_{\Omega} |\nabla (\phi - \tilde{\phi})|^2 d\sigma_{\bar{g}}
\]

\[
\leq C \left[\int_{\Sigma} \left(\phi^2 + |\nabla^\Sigma \phi|^2 \right) d\sigma_{\bar{g}} + \int_{\Omega} |\nabla \phi|^2 d\sigma_{\bar{g}} \right]
\]

where

\[
\int_{\Omega} |\nabla \phi|^2 d\sigma_{\bar{g}} = \int_{\Omega} |\nabla |h|^\frac{3}{2}|^2 d\sigma_{\bar{g}} \leq \frac{9}{4} \int_{\Omega} |h||\nabla h|^2 d\sigma_{\bar{g}}.
\]

To handle the boundary term \(\int_{\Sigma} |\nabla^\Sigma \phi|^2 d\sigma_{\bar{g}}\), given any constant \(\epsilon > 0\), one considers

\[
\int_{\Sigma} |\nabla^\Sigma (|h|^2 + \epsilon)^\frac{3}{2}|^2 d\sigma_{\bar{g}} = -\int_{\Sigma} (|h|^2 + \epsilon)^\frac{3}{2} \Delta_{\Sigma} (|h|^2 + \epsilon)^\frac{3}{4} d\sigma_{\bar{g}}
\]

where \(\Delta_{\Sigma}\) denotes the Laplacian on \(\Sigma\). Let \(\{e_\alpha \mid \alpha = 1, \ldots, n-1\}\) be a local orthonormal frame on \(\Sigma\) and \(e_n\) be the outward unit normal to \(\Sigma\). Let \(\bar{H}\) be the mean curvature of \(\Sigma\) with respect to \(e_n\). Denote covariant differentiation \(\Omega\) by “; “. Let \(i, j\) run through \(\{1, \ldots, n\}\). One has

\[
\Delta_{\Sigma} |h|^2 = \sum_{\alpha} (|h|^2)_{,\alpha\alpha} - \bar{H} (|h|^2)_{,n}
\]

\[
= \sum_{\alpha, i,j} 2(h_{ij}h_{ij,\alpha\alpha} + h_{ij,\alpha}^2) - \bar{H} \sum_{i,j} 2h_{ij}h_{ij,n}
\]

\[
\geq - C||h||_{C^2(\bar{g})} |h|.
\]
Therefore,

\[
\Delta_\Sigma (|h|^2 + \epsilon)^{\frac{3}{4}} = \frac{3}{4} (|h|^2 + \epsilon)^{-\frac{1}{4}} \Delta_\Sigma |h|^2 - \frac{3}{16} (|h|^2 + \epsilon)^{-\frac{3}{4}} |\nabla_\Sigma |h|^2|^2 \\
\geq - C||h||_{C^2(\Omega)} (|h|^2 + \epsilon)^{-\frac{1}{4}} |h| - \frac{3}{16} (|h|^2 + \epsilon)^{-\frac{3}{4}} |\nabla_\Sigma |h|^2|^2.
\]

(4.10)

It follows from (4.8) and (4.10) that

\[
\int_\Sigma |\nabla_\Sigma (|h|^2 + \epsilon)^{\frac{3}{4}}|^2 d\sigma_\bar{g} \leq C||h||_{C^2(\Omega)} \int_\Sigma (|h|^2 + \epsilon)^{\frac{3}{4}} |h| d\sigma_\bar{g} \\
+ \frac{1}{3} \int_\Sigma |\nabla_\Sigma (|h|^2 + \epsilon)^{\frac{3}{4}}|^2 d\sigma_\bar{g}.
\]

(4.11)

Letting \(\epsilon \to 0 \), one has

\[
\int_\Sigma |\nabla_\Sigma |h|^2|^2 d\sigma_\bar{g} \leq C||h||_{C^2(\Omega)} \int_\Sigma |h|^2 d\sigma_\bar{g}.
\]

(4.12) now follows from (4.6), (4.7) and (4.12).

We recall the statement of Theorem 1.4 and give its proof.

Theorem 4.1. Let \(\Omega \subset \mathbb{R}^n \) be a bounded domain with smooth boundary \(\Sigma \). Suppose \(\Pi + \bar{H}\bar{\gamma} > 0 \) (i.e. \(\Pi + \bar{H}\bar{\gamma} \) is positive definite), where \(\Pi \), \(\bar{H} \) are the second fundamental form, the mean curvature of \(\Sigma \) in \(\mathbb{R}^n \) and \(\bar{\gamma} \) is the metric on \(\Sigma \) induced from the Euclidean metric \(\bar{g} \). Let \(g \) be another metric on \(\bar{\Omega} \) satisfying

- \(g \) and \(\bar{g} \) induce the same metric on \(\Sigma \).
- \(H(g) \geq \bar{H} \), where \(H(g) \) is the mean curvature of \(\Sigma \) in \((\Omega, g) \).

Given any point \(a \in \mathbb{R}^n \), there exists a constant \(\Lambda > \frac{\max_{q \in \bar{\Omega}} |q - a|^2}{4(n-1)} \), which depends only on \(\Omega \) and \(a \), such that if \(||g - \bar{g}||_{C^3(\Omega)} \) is sufficiently small, then

\[
V(g) - V(\bar{g}) \geq \int_\Omega R(g) \Phi \, d\vol_\bar{g}
\]

where \(\Phi = -\frac{1}{4(n-1)}|x - a|^2 + \Lambda > 0 \) on \(\bar{\Omega} \).

Proof. Fix a number \(p > n \). By the proof of [5, Proposition 11], one knows if \(||g - \bar{g}||_{W^{4,p}(\Omega)} \) is sufficiently small, then there exists a \(W^{4,p} \) diffeomorphism \(\varphi : \bar{\Omega} \to \Omega \) such that \(\varphi|_{\Sigma} = \text{id} \), \(h = \varphi^*(g) - \bar{g} \) is divergence free with respect to \(\bar{g} \), and \(||h||_{W^{3,p}(\Omega)} \leq N||g - \bar{g}||_{W^{3,p}(\Omega)} \) for a positive constant \(N \) depending only on \((\Omega, \bar{g}) \). In what follows, we will work with \(\varphi^*(g) \). For convenience, we still denote \(\varphi^*(g) \) by \(g \).
Given $a \in \mathbb{R}^n$, consider $\lambda(x) = -\frac{1}{2(n-1)}|x-a|^2 + L$ where L is a constant to be determined. First, we require $L > \frac{1}{2(n-1)} \max_{q \in \Omega} |q-a|^2$ so that $\lambda > 0$ on $\bar{\Omega}$. Since λ satisfies $DR_g^*(\lambda) = \bar{g}$, Corollary 2.1 shows

\begin{equation}
(4.14)
\end{equation}

\begin{equation}
-2(V(g) - V(\bar{g})) + \int_{\Omega} R(g) \lambda \, d\sigma_g + \int_{\Sigma} (2 - \text{tr}_{\bar{g}} h) \left[H(g) - \bar{H} \right] \lambda \, d\sigma_g
\leq - \frac{1}{4} \int_{\Omega} |\nabla h|^2 \lambda \, d\sigma_g + \int_{\Sigma} \left[-\frac{1}{4}(h_{nn})^2 \bar{H} - \frac{1}{2}(\Pi(X, X) + \bar{H}|X|^2) \right] \lambda \, d\sigma_g
\end{equation}

\begin{equation}
+ \int_{\Sigma} \lambda_n \left[-(h_{nn})^2 - \frac{1}{2}|X|^2 \right] \, d\sigma_g + \int_{\Sigma} (-1) h_{nn} \langle X, \bar{\nabla}^\Sigma \lambda \rangle \, d\sigma_g
\end{equation}

\begin{equation}
+ \int_{\Omega} G(h) \, d\sigma_g + \int_{\Omega} E(h) \lambda \, d\sigma_g + \int_{\Omega} Z^i(h) \bar{\nabla}^i \lambda \, d\sigma_g + \int_{\Omega} F(h) \lambda \, d\sigma_g
\end{equation}

where $|G(h)| \leq C|h|^3$, $|E(h)| \leq C(|h||\nabla h|^2 + |h|^3)$, $|Z(h)| \leq C|h|^2 |\nabla h|$, $|F(h)| \leq C(|h|^2 |\nabla h| + |h|^3)$ for some constant C depending only on Ω.

At Σ, λ_n and $\bar{\nabla}^\Sigma \lambda$ are determined solely by Ω and a (in particular they are independent on L). Apply the assumption $\Pi + \bar{H} > 0$ (which implies $\bar{H} > 0$) and the fact $|h|^2 = (h_{nn})^2 + 2|X|^2$, we have

\begin{equation}
(4.15)
\end{equation}

\begin{equation}
\left[-\frac{1}{4}(h_{nn})^2 \bar{H} - \frac{1}{2}(\Pi(X, X) + \bar{H}|X|^2) \right] \lambda
\end{equation}

\begin{equation}
+ \lambda_n \left[-(h_{nn})^2 - \frac{1}{2}|X|^2 \right] + (-1) h_{nn} \langle X, \bar{\nabla}^\Sigma \lambda \rangle
\end{equation}

\begin{equation}
\leq - LC_1|h|^2 + C_2|h|^2
\end{equation}

where C_1, C_2 are positive constants depending only on Ω and a. We fix L such that

\begin{equation}
(4.16)
LC_1 - C_2 > 0
\end{equation}

and let $m = \frac{1}{4} \min_{\Omega} \lambda$ (note that λ is fixed now). (4.14)-(4.16) imply

\begin{equation}
(4.17)
\end{equation}

\begin{equation}
-2(V(g) - V(\bar{g})) + \int_{\Omega} R(g) \lambda \, d\sigma_g + \int_{\Sigma} (2 - \text{tr}_{\bar{g}} h) \left[H(g) - \bar{H} \right] \lambda \, d\sigma_g
\leq - m \int_{\Omega} |\nabla h|^2 \, d\sigma_g - (LC_1 - C_2) \int_{\Sigma} |h|^2 \, d\sigma_g
\end{equation}

\begin{equation}
+ C_3 \left(\int_{\Omega} (|h||\nabla h|^2 + |h|^3) \, d\sigma_g + \int_{\Sigma} (|h|^2 |\nabla h| + |h|^2) \, d\sigma_g \right)
\end{equation}
where C_3 depends only on Ω, a and L. Apply Lemma 4.2 to the term $\int_{\Omega} |h|^3 \ d\text{vol}_g$ on the right side of (4.17), we have

$$-2(V(g) - V(\bar{g})) + \int_{\Omega} R(g) \lambda \ d\text{vol}_g + \int_{\Sigma} (2 - \text{tr}_g h) [H(g) - \bar{H}] \lambda \ d\sigma_{\bar{g}}$$

$$\leq -m \int_{\Omega} |\nabla h|^2 \ d\text{vol}_{\bar{g}} - (LC_1 - C_2) \int_{\Sigma} |h|^2 \ d\sigma_{\bar{g}}$$

$$+ C||h||_{C^2(\Omega)} \left(\int_{\Omega} |\nabla h|^2 \ d\text{vol}_{\bar{g}} + \int_{\Sigma} |h|^2 \ d\sigma_{\bar{g}} \right).$$

where C is independent on h. From this, we conclude that if $||h||_{C^2(\Omega)}$ is sufficiently small, then (4.13) holds with $\Phi = \frac{1}{2} \lambda$. This completes the proof. \[\square\]

Remark 4.1. When $\Omega \subset \mathbb{R}^n$ is a ball of radius R, one can take a to be the center of Ω. In this case, by computing $\bar{H}, \bar{\Pi}$ and λ_n explicitly in (4.16), the constant L can be chosen to be any constant satisfying

$$L > \left[\frac{1}{2(n-1)} + \frac{4}{(n-1)^2} \right] R^2.$$

Remark 4.2. By the results in [12,17] based on the positive mass theorem [16,18], a metric g on Ω satisfying the boundary conditions in Theorem 4.1 must be isometric to the Euclidean metric if $R(g) \geq 0$. Therefore, a nontrivial metric g in Theorem 4.1 necessarily has negative scalar curvature somewhere. For such a g, Theorem 4.1 shows if the weighted integral $\int_{\Omega} R(g) \Phi \ d\text{vol}_g$ is nonnegative, then $V(g) \geq V(\bar{g})$.

5. Other related results

In this section, we collect some other by-products of the formulas derived in Section 2. First, we discuss a scalar curvature rigidity result for general domains in \mathbb{S}^n.

Theorem 5.1. Let $\Omega \subset \mathbb{S}^n$ be a smooth domain contained in a geodesic ball B of radius less than $\frac{\pi}{2}$. Let \bar{g} be the standard metric on \mathbb{S}^n. Let $\bar{\Pi}, \bar{H}$ be the second fundamental form, the mean curvature of $\Sigma = \partial \Omega$ in (Ω, \bar{g}) with respect to the outward unit normal $\bar{\nu}$. Suppose $\bar{\Pi} \geq -c\bar{g}$, where $c \geq 0$ is a function on Σ and \bar{g} is the induced metric on Σ. Let q be the center of B. Suppose at $\Sigma \setminus \{q\}$,

$$\bar{H} - c \geq \left[\frac{5 \cos \theta + \sqrt{\cos^2 \theta + 8}}{2} \right] \tan r$$

where r is the \bar{g}-distance to q and θ is the angle between $\bar{\nu}$ and ∇r. Then the conclusion of Theorem 4.1 holds on Ω.

Proof. As before, replacing g by $\varphi^*(g)$ for some diffeomorphism φ, we may assume $\div g h = 0$ where $h = g - \bar{g}$. On Ω, let $\lambda = \cos r > 0$, where r is the \bar{g}-distance to q. At $\Sigma \setminus \{q\}$, we have

$$\lambda_n = -\sin r \cos \theta, \quad |\nabla^\Sigma \lambda| = \sin r \sin \theta.$$

Apply Theorem 2.1, using the fact $D\mathcal{R}_{\bar{g}}^*(\lambda) = 0$ and the assumptions on $R(g)$ and $H(g)$, we have

$$\int_{\Omega} \left[\frac{1}{4}(|\nabla h|^2 + |\nabla (\tr g h)|^2) + \frac{1}{2}(|h|^2 + (\tr g h)^2) \right] \cos r \ d\vol_{\bar{g}}$$

$$\leq \int_{\Sigma} \left[-\frac{1}{4}(h_{nn})^2 \bar{H} - \frac{1}{2}(\bar{g}(X, X) + \bar{H}|X|^2) \right] \cos r \ d\sigma_{\bar{g}}$$

$$+ \int_{\Sigma \setminus \{q\}} \left[(h_{nn})^2 + \frac{1}{2}|X|^2 \right] (\sin r \cos \theta) \ d\sigma_{\bar{g}} + \int_{\Sigma \setminus \{q\}} |h_{nn}| |X| (\sin r \sin \theta) \ d\sigma_{\bar{g}}$$

$$+ C||h||_{C^1(\bar{\Omega})} \left\{ \int_{\Omega} (|h|^2 + |\nabla h|^2) \ d\vol_{\bar{g}} + \int_{\Sigma} |h|^2 \ d\sigma_{\bar{g}} \right\}$$

$$\leq - \int_{\Sigma \setminus \{q\}} \left[\left(\frac{1}{4}(\bar{H} - c) \cos r - \sin r \cos \theta \right) (h_{nn})^2 + \frac{1}{2} \left((\bar{H} - c) \cos r - \sin r \cos \theta \right) |X|^2 \right.$$

$$- |h_{nn}| |X| (\sin r \sin \theta) \ d\sigma_{\bar{g}}$$

$$+ C||h||_{C^1(\bar{\Omega})} \left\{ \int_{\Omega} (|h|^2 + |\nabla h|^2) \ d\vol_{\bar{g}} + \int_{\Sigma} |h|^2 \ d\sigma_{\bar{g}} \right\}$$

for some positive constant C independent on h.

Note that the assumption (5.1) implies

$$\frac{1}{4}(\bar{H} - c) \cos r - (\sin r \cos \theta) \geq 0$$

and

$$\bar{H} - c \cos r - (\sin r \cos \theta) \geq 0.$$

By (5.1), (5.4) and (5.5), we have

$$0 \leq \left(\frac{1}{4}(\bar{H} - c) \cos r - \sin r \cos \theta \right) (h_{nn})^2 - |h_{nn}| |X| (\sin r \sin \theta)$$

$$+ \frac{1}{2} \left((\bar{H} - c) \cos r - \sin r \cos \theta \right) |X|^2$$

for any h_{nn} and X. The result now follows from (5.3) and (5.6). □

Remark 5.1. It is clear from the proof of Theorem 5.1 that the center q of B does not need to be inside Ω.

Theorem 5.1 directly implies Theorem 1.7 in the introduction.

Proof of Theorem 1.7. Choose $c = 0$ in Theorem 5.1. Since
\[
4 \geq \frac{5 \cos \theta + \sqrt{\cos^2 \theta + 8}}{2}
\]
for any θ, the result follows from Theorem 5.1. \(\square\)

Next, we consider a corresponding scalar curvature rigidity result when the background metric \bar{g} is a flat metric.

Theorem 5.2. Let Ω be a compact manifold with smooth boundary Σ. Suppose \bar{g} is a smooth Riemannian metric on Ω such that \bar{g} has zero sectional curvature and $\bar{\Pi} + \bar{H} \bar{\gamma} \geq 0$ on Σ, where $\bar{\Pi}$, \bar{H} are the second fundamental form, the mean curvature of Σ, and $\bar{\gamma}$ is the induced metric on Σ. Suppose g is another metric on Ω satisfying
- $R(g) \geq 0$ where $R(g)$ is the scalar curvature of g
- g and \bar{g} induce the same metric on Σ
- $H(g) \geq H$ where $H(g)$ is the mean curvature of Σ in (Ω, g).

If $\|g - \bar{g}\|_{C^2(\bar{\Omega})}$ is sufficiently small, then there is a diffeomorphism φ on Ω with $\varphi|_\Sigma = \text{id}$ such that $\varphi^*(g) = \bar{g}$.

Proof. As before, we may assume $\text{div}_{\bar{g}} h = 0$ where $h = g - \bar{g}$. Choose $\lambda = 1$ in (2.23), one has
\[
\int_{\Omega} \left[\frac{1}{4}(|\nabla h|^2 + |\nabla(\text{tr}_g h)|^2) \right] \, d\text{vol}_{\bar{g}} + \int_{\Sigma} \left[\frac{1}{4}(h_{nn})^2 H(\bar{g}) + \frac{1}{2} \bar{\Pi}(X, X) + H(\bar{g})|X|^2 \right] \, d\sigma_{\bar{g}}
\leq \int_{\Omega} E(h) \, d\text{vol}_{\bar{g}} + \int_{\Sigma} F(h) \, d\sigma_{\bar{g}}
\]
where $|F(h)| \leq C(|h|^2|\nabla h| + |h|^3)$ and $|E(h)| \leq C|h||\nabla h|^2$ by Remark 2.1. The result follows from (5.7). \(\square\)

To finish, we mention that the positive Gaussian curvature condition of the boundary surface in [17] is not a necessary condition for the positivity of its Brown-York mass.

Theorem 5.3. Let $\Sigma \subset \mathbb{R}^n$ be a connected, closed hypersurface satisfying $\bar{\Pi} + \bar{H} \bar{\gamma} \geq 0$, where $\bar{\Pi}$, \bar{H} are the second fundamental form, the mean curvature of Σ, and $\bar{\gamma}$ is the induced metric on Σ. Let Ω be the domain enclosed by Σ in \mathbb{R}^n. Let h be any nontrivial $(0, 2)$ symmetric tensor on Ω satisfying
\[
\text{div}_{\bar{g}} h = 0, \quad \text{tr}_g h = 0, \quad h|_{T\Sigma} = 0.
\]
Let \(\{g(t)\}_{|t|<\epsilon} \) be a 1-parameter family of metrics on \(\Omega \) satisfying
\[
g(0) = \bar{g}, \quad g'(0) = h, \quad R(g(t)) \geq 0, \quad g(t)|_{\Sigma} = \bar{g}|_{\Sigma}.\tag{5.9}
\]
Then
\[
\int_{\Sigma} H d\sigma_{\bar{g}} > \int_{\Sigma} H(g(t)) d\sigma_{\bar{g}} \tag{5.10}
\]
for small \(t \neq 0 \), where \(H(g(t)) \) is the mean curvature of \(\Sigma \) in \((\Omega, g(t))\).

Proof. By Lemma 2.2, one knows
\[
\frac{d}{dt} \left(\int_{\Omega} [R(g(t)) - R(\bar{g})] \ d\text{vol}_{\bar{g}} - 2 \int_{\Sigma} [\bar{H} - H(g(t))] \ d\sigma_{\bar{g}} \right) \bigg|_{t=0} = 0.
\]
Direct calculation using Lemma (2.2) (2.17) and (5.8) shows
\[
\frac{d^2}{dt^2} \left(\int_{\Omega} [R(g(t)) - R(\bar{g})] \ d\text{vol}_{\bar{g}} - 2 \int_{\Sigma} [\bar{H} - H(g(t))] \ d\sigma_{\bar{g}} \right) \bigg|_{t=0} = -\frac{1}{2} \int_{\Omega} |\nabla h|^2 \ d\text{vol}_{\bar{g}} - \int_{\Sigma} [\frac{1}{2}(\bar{\Pi}(X,X) + H(\bar{g})|X|^2) \ d\sigma_{\bar{g}}
\]
which is negative by the assumption on \(\bar{\Pi} + \bar{H}\bar{\gamma} \). Thus, for small \(t \),
\[
2 \int_{\Sigma} [\bar{H} - H(g(t))] \ d\sigma_{\bar{g}} > \int_{\Omega} [R(g(t)) - R(\bar{g})] \ d\text{vol}_{\bar{g}} \geq 0. \tag{5.11}
\]

Given an \(h \) satisfying (1.6), a family of deformation \(\{g(t)\} \) satisfying (1.7) is given by \(g(t) = u(t)\bar{g} \rightarrow (\bar{g} + th) \) for small \(t \), where \(u(t) > 0 \) is a conformal factor such that \(R(g(t)) = 0 \) (see [13, Lemma 4]).

An example of a non-convex surface \(\Sigma \subset \mathbb{R}^3 \), which is topologically a 2-sphere and satisfies the condition \(\bar{\Pi} + \bar{H}\bar{\gamma} \geq 0 \), is given by a capsule-shaped surface with its middle slightly pinched.

References

[1] Arnowitt, R., Deser, S. and Misner, C.W., Coordinate invariance and energy expressions in general relativity, Phys. Rev. (2) 122, 997–1006 (1961)
[2] Bartnik, R. The mass of an asymptotically flat manifold, Comm. Pure Appl. Math. 39, 661–693 (1986)
[3] Bray, H., The Penrose inequality in general relativity and volume comparison theorems involving scalar curvature, PhD thesis, Stanford University (1997)
[4] Brendle, S., Rigidity phenomena involving scalar curvature, arXiv:1008.3097v2, to appear in Surveys in Differential Geometry
[5] Brendle, S. and Marques, F. C., Scalar curvature rigidity of geodesic balls in \(\mathbb{S}^n \), J. Differential Geom. 88, 379–394 (2011)
[6] Brendle, S., Marques, F. C. and Neves, A., Deformations of the hemisphere that increase scalar curvature, Invent. Math. 185, 175–197 (2011)
[7] Brown, J. D. and York, J. W. Jr., Quasilocal energy in general relativity, In Mathematical aspects of classical field theory (Seattle, WA, 1991), Contemp. Math. 132, 129–142, Amer. Math. Soc., Providence, RI (1992)
[8] Brown, J. D. and York, J. W. Jr., Quasilocal energy and conserved charges derived from the gravitational action, Phys. Rev. D (3), 47 (4):1407–1419 (1993)
[9] Chavel, I., Eigenvalue in Riemannian geometry, Pure and Applied mathematics 115, Academic Press (1984)
[10] Corvino, J., Scalar curvature deformation and a gluing construction for the Einstein constraint equations, Commun. Math. Phys. 214 (1), 137–189 (2000)
[11] Gursky, M. J. and Viaclovsky, J. A., Volume comparison and the σ_k-Yamabe problem, Adv. Math. 187, no. 2, 447–487 (2004)
[12] Miao, P., Positive mass theorem on manifolds admitting corners along a hypersurface, Adv. Theor. Math. Phys. 6, no. 6, 1163–1182 (2002)
[13] Miao, P. and Tam, L.-F., On the volume functional of compact manifolds with boundary with constant scalar curvature, Calc. Var. 36, 141–171 (2009)
[14] Miao, P. and Tam, L.-F., Einstein and conformally flat critical metrics of the volume functional, Trans. Amer. Math. Soc. 363 (6), 2907–2937 (2011)
[15] Min-Oo, M., Scalar curvature rigidity of certain symmetric spaces, In Geometry, topology, and dynamics (Montreal, 1995), 127–137, CRM Proc. Lecture Notes vol. 15, Amer. Math. Soc., Providence RI (1998)
[16] Schoen, R. and Yau, S.-T., On the proof of the positive mass conjecture in general relativity, Comm. Math. Phys. 65, 45–76 (1979)
[17] Shi, Y.-G. and Tam, L.-F., Positive mass theorem and the boundary behaviors of compact manifolds with nonnegative scalar curvature, J. Differential Geom. 62, 79–125 (2002)
[18] Witten, E., A new proof of the positive energy theorem, Comm. Math. Phys. 80, 381–402 (1981)

(Pengzi Miao) SCHOOL OF MATHEMATICAL SCIENCES, MONASH UNIVERSITY, VICTORIA 3800, AUSTRALIA; DEPARTMENT OF MATHEMATICS, UNIVERSITY OF MIAMI, CORAL GABLES, FL 33124, USA.
E-mail address: Pengzi.Miao@sci.monash.edu.au; pengzim@math.miami.edu

(Luen-Fai Tam) THE INSTITUTE OF MATHEMATICAL SCIENCES AND DEPARTMENT OF MATHEMATICS, THE CHINESE UNIVERSITY OF HONG KONG, SHATIN, HONG KONG, CHINA.
E-mail address: lftam@math.cuhk.edu.hk