Orbital hybridization induced band offset phenomena in Ni$_x$Cd$_{1-x}$O thin films

Arkaprava Das*, Deobrat Singhb, C. P. Sainia, Rajeev Ahujab, Anumeet Kaurc, Sergei Aliukovd

aInter University Accelerator Centre, Aruna Asaf Ali Marg, New Delhi-110067, India
bDepartment of Physics and Astronomy, Condensed Matter Theory Group, Uppsala University, Sweden
cDepartment of Physics, Guru Nanak Dev University, Amritsar, India
dSouth Ural State University, Chelyabinsk, Russia

Authors for correspondence: *arkapravadas222@gmail.com
Table (S1): Calculated and obtained numerical values of different parameters

Sample name	2θ Position of (111) peak (degree)	FWHM of (111) peak	2θ Position of (220) peak (degree)	Effective reduced mass (atomic weight)	Compositional percentage from RBS measurements		
					Cd%	O%	Ni%
4Cd	33.06	0.42	55.42	14.00	49.8	49.2	0
3% Ni	33.04	0.60	55.43	13.98	49	49	1.9
5% Ni	33.10	0.63	55.44	13.96	46.6	49.9	3.4
10% Ni	33.13	0.88	55.51	13.92	44.3	50	5.9
20% Ni	33.24	0.87	55.66	13.82	36.5	52.9	10.6
40% Ni	33.34	1.39	56.04	13.60	24.1	51.9	24.1
80% Ni	n.a.	n.a.	n.a.	13.00	5.1	57.7	37.2
100% Ni	n.a.	n.a.	n.a.	12.57	0	58.1	41.9

n.a. = Not Applicable

Table (S2): Carrier concentration value with increasing Ni doping percentage for Ni_xCd_{1-x}O thin films

Sample name	Carrier concentration (/cc)
4Cd	-8.400E+19
3% Ni	-6.587E+19
5% Ni	-5.487E+19
10% Ni	-2.196E+19
20% Ni	-1.887E+19
40% Ni	N.A.

Reference: Arkaprava Das *et al.*, Electronic excitation induced anomalous band gap enhancement in Ni_xCd_{1-x}O thin films; Vacuum 146 (2017) 287-296
Table (S3): Fitting parameters for O 1s, Ni 2p and Cd 3d XPS spectra

sample	Peak position (eV)	area	fwhm
4Cd (Cd 3d)			
CdO	403.5	58900	1.46
CdO₂	404.4	22589	1.11
4Cd (O 1s)			
Cd(OH)₂/CdCO₃	530.5	10978	1.64
CdO	527.9	4704	0.91
CdO₂	528.8	2709	1.29
5% Ni (Cd 3d)			
CdO	403.5	58307	1.45
CdO₂	404.4	22352	1.09
5% Ni (O 1s)			
Cd(OH)₂/CdCO₃	530.5	10838	1.64
CdO	527.9	4600	0.91
CdO₂	528.8	2689	1.29
5% Ni (Ni 2p)			
Ni⁰	851.5	197	0.8
Ni²⁺	853.6	1259	3.1
Satellite	859.9	1143	5.8
Satellite	871.9	2198	13.9
10% Ni (Cd 3d)			
CdO	403.4	53205	1.15
CdO₂	404.3	31243	1.37
10% Ni (O 1s)			
Cd(OH)₂/CdCO₃	530.6	7728	1.74
CdO	528.1	8263	0.93
CdO₂	528.9	1982	0.94
10% Ni (Ni 2p)			
Ni⁰	851.6	2771	1.09
Ni²⁺	853.6	5492	2.9
Satellite	859.7	7844	7.3
Satellite	871.1	5605	6.1
Satellite	878.5	3302	6.2
40% Ni (Cd 3d)			
CdO	403.6	15848	1.24
CdO₂	404.5	10064	1.23
Compound	E (eV)	I (a.u.)	FWHM (eV)
---------------------------	--------	----------	-----------
Cd(OH)$_2$/CdCO$_3$	530.5	7646	1.86
CdO	528.4	4173	1.09
CdO$_2$	528.8	1958	0.84
40% Ni (Ni 2p)			
Ni0	851.8	9828	0.9
Ni$^{2+}$	852.8	19043	2.9
Ni$^{3+}$	855.3	5381	2.4
Satellite	859.4	19027	6.6
Satellite	872.0	19131	9
Satellite	879.6	4444	5
100% Ni (O 1s)			
NiO	529.7	12248	1.14
Ni(OH)$_2$	531.3	7300	1.92
100% Ni (Ni 2p)			
Ni0	852.5	12716	0.9
Ni$^{2+}$	854	33000	2.8
Ni$^{3+}$	856.4	13694	2.6
Satellite	860.5	37560	6.8
Satellite	873.3	33647	9.4
Satellite	880.8	8343	4.6