The First Purine Nucleoside Phosphorylase Deficiency Patient Resembling IgA Deficiency and a Review of the Literature

Saba Fekrvand a, Reza Yazdani a, Hassan Abolhassani a,b, Javad Ghaffari c, and Asghar Aghamohammadi a

aResearch Center for Immunodeficiencies, Pediatrics Center of Excellence, Children’s Medical Center, Tehran, and the University of Medical Science, Tehran, Iran; bDivision of Clinical Immunology, Department of Laboratory Medicine, Karolinska Institute at Karolinska University Hospital Huddinge, Stockholm, Sweden; cDepartment of Pediatrics, Mazandaran University of Medical Sciences, Sari, Iran

ABSTRACT
Purine nucleoside phosphorylase (PNP) deficiency is a rare autosomal recessive primary immunodeficiency disorder characterized by decreased numbers of T-cells, variable B-cell abnormalities, decreased amount of serum uric acid and PNP enzyme activity. The affected patients usually present with recurrent infections, neurological dysfunction and autoimmune phenomena. In this study, whole-exome sequencing was used to detect mutation in the case suspected of having primary immunodeficiency. We found a homozygous mutation in PNP gene in a girl who is the third case from the national Iranian registry. She had combined immunodeficiency, autoimmune hemolytic anemia and a history of recurrent infections. She developed no neurological dysfunction. She died at the age of 11 after a severe chicken pox infection. PNP deficiency should be considered in late-onset children with recurrent infections, autoimmune disorders without typical neurologic impairment.

KEYWORDS
Purine nucleoside phosphorylase deficiency; combined immunodeficiency; IgA deficiency; autoimmune hemolytic anemia; chicken pox

Introduction
Purine nucleoside phosphorylase (PNP) deficiency is a rare autosomal recessive form of primary immunodeficiency disorders characterized by T-cell immunodeficiency (cellular immunity) and variable abnormalities of humoral (B-cell) immunity (Al-Herz et al., 2014). Patients with PNP deficiency present with recurrent infections, neurologic impairment (including ataxia, developmental delay, failure to thrive, mental retardation and spasticity), malignancies, and autoimmunity (especially autoimmune hemolytic anemia) (Markert, 1991; Tabarki et al., 2003; Watson et al., 1981). PNP is one of the enzymes involved in the purine salvage pathway which reversibly converts inosine to hypoxanthine and guanosine to guanine (Markert, 1991). PNP deficient-patients have increased amounts of deoxyguanosine and deoxyinosine in plasma and urine (Grunebaum et al., 2013). Intracellular accumulation of deoxyguanosine triphosphate has a toxic effect on thymocytes of the affected patients, resulting in
dysfunctional development and function of cellular immunity (Cohen et al., 1978). PNP deficiency is often fatal in the first two years of life (Fleischman et al., 1998) and hematopoietic stem cell transplantation (HSCT) is the only curative treatment for these patients (Classen et al., 2001). Herein, we report the third Iranian case with PNP deficiency with a tentative diagnosis of IgA deficiency without neurologic manifestations and a review of the literature of the previously reported patients.

Case presentation

The patient is an 11-year-old Iranian girl who was the only child of consanguineous parents. There was no family history of recurrent infections or immunologic disorders. She received all regular vaccinations according to the national vaccination schedule of Iran such as live vaccinations (Bacillus Calmette–Guérin, measles, mumps, rubella and oral polio vaccines) without any complications. At 24 months she was admitted due to the complaint of recurrent urinary tract infections and her urine culture was positive for *Escherichia coli*, which responded to antibiotic therapy. At 3 years, she underwent surgery for vesicoureteral reflux. She was healthy and had no complaint until 6 years of age when she was admitted due to pallor and fatigue. At this age, findings of bone marrow aspiration smears (hypercellular marrow with notable erythroid hyperplasia, dyserythropoiesis, karyorrhexis, binucleation, fragmentation of erythroid cells and detectable numerous mitotic figures of erythroid series and myeloid change) revealed autoimmune hemolytic anemia. After a diagnosis of autoimmune hemolytic anemia, intravenous immunoglobulin immunomodulation therapy, steroids and cyclosporine (Mastrandrea, 2015) were started for her and continued until the patient’s demise due to medical severity during withdrawal treatment phases. Beginning of episodic respiratory infections including pneumonia, otitis media and several hospitalizations for pansinusitis at 7 years, were all signs of immunodeficiency disorder. CT scan of the lung showed diffuse bronchiectasis. Laboratory tests revealed T-cell and B-cell lymphopenia (Table 1). Her serum immunoglobulin levels were all within normal limits except for IgA which was severely reduced. IgG4 was also diminished which was consistent with the autoimmune condition. At this time, she was diagnosed with late-onset combined immunodeficiency presenting with IgA-deficiency and placed on trimethoprim-sulfamethoxazole and amoxicillin antibacterial prophylaxis. Thus, the case was genetically evaluated by whole exome sequencing using a standard published method and pipeline analysis (Abolhassani et al., 2019). She had a novel homozygous missense mutation in exon 2 of the *PNP* gene (c.91T>C) and segregation analysis revealed that her parents were both heterozygous for this mutation. This variant results in a conversion of cysteine into an arginine at amino acid 31 (p.C31R, combined annotation dependent depletion score: 27.2, the mutation significance cutoff: 9.2) affecting the first β-strand in C terminal of the PNP protein (Figure 1).

Neurological examinations were all normal during her life and no organomegaly was observed. At the age of 11, autoimmune hemolytic anemia became severe and she frequently received blood transfusions. At the same age, she got a severe chicken pox infection and died 3 days later before finding an appropriate HLA-matched donor and HSCT performance. Unfortunately, no assessments were done for evaluation of T cell function or diversity. Other detailed laboratory findings of the patient during 5-year follow-up from the time of diagnosis of primary immunodeficiency until the patient’s
Table 1. Longitudinal laboratory and immunologic data of the patient in comparison to the age-appropriate reference value from healthy Iranian subjects during the 5-year follow-up.

Laboratory tests	Patient (at age 7y)	Patient (at age 8y)	Patient (at age 9y)	Patient (at age 10y)	Patient (at age 11y)	Reference Intervals
WBC (10^3/μL)	4.0l	4.0l	3.9l	4.15l	1.97l	5–13
RBC (10^6/μL)	3.4l	3.48l	2.18l	3.69l	2.25l	4–5.2
Hb (g/dL)	11.1l	11.1l	8.8l	12.1 (NL)	7.5l	11.5–15.5
Hematocrit (%)	33.8l	33.8l	25l	37 (NL)	24.6l	35–45
M.C.V (fL)	97.1l (slightly ↑)	114.7l ↑	100.3l	109.3l ↑	11.6–14	
M.C.H (pg)	3.19 (NL)	3.19 (NL)	40.4t	32.8 (NL)	33.3 (slightly ↑)	
M.C.H.C (g/dL)	32.8 (NL)	32.8 (NL)	35.2 (NL)	32.7 (NL)	30.5 (slightly ↑)	
R.D.W (%)	15.3l	15.3l	27.6l	14.9 (NL)	19.9l	
Platelets (10^5/μL)	3.3 (NL)	3.3 (NL)	3.11 (NL)	2.41 (NL)	1.96 (NL)	
ALC (cells/μL)	520l	640l	702l	1494 (NL)	315.2l	
CD3 + T lymphocytes (cells/μL)	320l	406l	293l	1330 (NL)	NA	
CD4+ helper T lymphocytes (cells/μL)	160l	196l	117l	448 (NL)	NA	
CD8+ cytotoxic T lymphocytes (cells/μL)	165l	203l	136l	NA	NA	
CD19 + B lymphocytes (cells/μL)	32l	39l	56l	45l	NA	
IgG (mg/dL)	1170 (NL)	1568 (NL)	1056 (NL)	1907l	NA	
IgA (mg/dL)	7l	2l	5l	undetectable	NA	
IgM (mg/dL)	139 (NL)	200 (NL)	95 (NL)	58 (NL)	NA	
IgE (IU/ml)	49.2 (NL)	0 (NL)	101t	140 (NL)	NA	
IgG1-subclass (mg/dL)	NA	1082 (NL)	NA	964 (NL)	NA	
IgG2-subclass (mg/dL)	NA	348 (NL)	NA	821t	NA	
IgG3-subclass (mg/dL)	NA	294t	NA	163 (NL)	NA	
IgG4-subclass (mg/dL)	NA	1l	NA	undetectable	NA	
Pneumonia Ab (IgG) (mg/L)	30.9 (+)	183 (+)	NA	NA	NA	
Pneumonia Ab (IgG2) (mg/L)	16.2 (+)	16.6 (+)	NA	NA	NA	
C3 (mg/dL)	NA	95 (NL)	NA	86 (slightly ↑)	NA	
C4 (mg/dL)	NA	15 (NL)	NA	19 (NL)	NA	
CH50 (U)	NA	100 (NL)	NA	140 (NL)	NA	
	AST (U/l)	ALT (U/l)	Creatinine (mg/dl)	Urea (mg/dl)	Anti-Tetanus (IU/ml)	Anti-Diphtheria (IU/ml)
-------------------------	-----------	-----------	--------------------	-------------	----------------------	------------------------
	36↑	19 (NL)	0.5 (slightly↓)	28 (NL)	NA	NA
	31 (slightly↑)	37↑	NA	NA	<0.1	<0.1: Basic immunization recommended
	<31	<31	0.5 (slightly↑)	24 (NL)	NA	NA
	15–36	<0.1	0.6–1.2	NA	<0.1	<0.1: Basic immunization recommended

WBC; white blood cell, RBC; red blood cell, Hb; hemoglobin, M.C.V; mean corpuscular volume, M.C.H; mean corpuscular hemoglobin, M.C.H.C; mean corpuscular hemoglobin concentration, R.D.W; Red blood cell distribution width, ALC; absolute lymphocyte count, CD; cluster of differentiation, Ig; immunoglobulin, Ab; antibody, C3; complement component 3, C4; complement component 4; CH50; 50% hemolytic complement, AST; aspartate aminotransferase, ALT; alanine aminotransferase, µL; microliter, dL; deciliter, fL; femtoliter, pg; picogram, IU; international unit, mg; milligram, U; units, U/l; units per liter, y; years, NL; normal, NA; not available.
death, are shown in Table 1. Since she was diagnosed with combined immunodeficiency presenting with IgA-deficiency and we had not primarily suspected to diagnosis of PNP deficiency in the patient, PNP activity and toxic metabolites' accumulation in patient's serum were not assessed until the age of 11 years when whole exome sequencing was

Figure 1. a: Mutations in PNP deficiency, frequency and types of reported variants (missense and loss of function) in the general populations according to genomAD database were compared with the distribution of mutations reported in PNP deficient patients. Type of mutations reported in PNP deficient patients within exons and introns of the PNP gene are depicted. b: The effect of currently identified mutation (p.C31R) in the index patient is illustrated on a ribbon protein structure of PNP.
performed for her and a novel missense mutation was found in PNP gene. Short time after diagnosis of PNP deficiency, she got a severe chicken pox and died 3 days later; thus we were unable to investigate further this case.

Discussion

We herein describe a novel missense mutation within exon 2 of *PNP* gene in a girl presenting with normal neurological function, recurrent infections and autoimmune hemolytic anemia. To date, 72 PNP-deficient cases have been reported which we reviewed and summarized these patients in Table 2 and Figure 1. Our case was the third reported PNP-deficient patient in Iran and the first one in the north of Iran. Among the previous cases, one of them was a 7-year-old boy who died due to pulmonary infections and the other was a 9-year-old boy with progressive multifocal leukoencephalopathy (Parvaneh et al., 2008).

PNP deficiency is characterized by impaired cellular immunity and variable humoral immunity abnormalities (Cohen et al., 2000). In total, 22 of the 72 reported cases have had decreased T-cell immunity and intact B-cell immunity, however, 26 cases have been reported with combined immunodeficiency as well as both abnormal T-cell and B-cell immunity similar to our patient (Alangari et al., 2009; Al-Saud et al., 2009; Aytekin et al., 2010, 2008; Brodzski et al., 2015; Celmeli et al., 2015; Classen et al., 2001; Delicou et al., 2007; Girit et al., 2012; Kiykim et al., 2016; Madkaikar et al., 2011; Markert et al., 1987; Myers et al., 2004; Parvaneh et al., 2007, 2008; Rich et al., 1979; Rijken et al., 1987; Sasaki et al., 1998; Somech et al., 2013, 2012; Stoop et al., 1976; Yamamoto et al., 1999; Yeates et al., 2017).

Reported PNP-deficient patients have presented different immunoglobulin profiles including: agammaglobulinemia (Markert et al., 1987; Myers et al., 2004; Parvaneh et al., 2008; Somech et al., 2012; Yeates et al., 2017), Hyper IgM (Rijken et al., 1987; Stoop et al., 1977; Watson et al., 1981), hypergammaglobulinemia (Alangari et al., 2009; Moallem et al., 2002; Tsuda et al., 2002), normal immunoglobulin levels (Al-Saud et al., 2009; Baguette et al., 2002; Brodzski et al., 2015; Celmeli et al., 2015; Classen et al., 2001; Delicou et al., 2007; Gelfand et al., 1978; Giblett et al., 1975; Girit et al., 2012; Hallett et al., 1994; Hamet et al., 1977; Kiykim et al., 2016; Kumar et al., 2012; Markert et al., 1987; Martin et al., 2016; Ozkinay et al., 2007; Rich et al., 1980; Simmonds et al., 1987; Somech et al., 2012; Soutar and Day, 1991; Tabarki et al., 2003; Virelizier et al., 1978) and increase or decrease in one or two immunoglobulin subclasses (Alangari et al., 2009; Aytekin et al., 2010, 2008; Dror et al., 2004; Gelfand et al., 1978; Kiykim et al., 2016; Parvaneh et al., 2008; Rich et al., 1979; Rijken et al., 1987; Somech et al., 2013; Stoop et al., 1976, 1977; Van Heukelom et al., 1977; Watson et al., 1981; Zabay et al., 1982). To the best of our
Table 2. Clinical and Immunologic presentation of 72 previously reported PNP-deficient patients.

N	Origin	AOD	AOD	Sex	Consanguinity	Lymphocyte (x10^3)	T-cells (x10^3)	CD4 (x10^3)	CD8 (x10^3)	B-cell (x10^3)	IgG (mg/ml)	IgA (mg/ml)
P 1	Bahamian	8 m	12 m	F	No	328	75	59	61	100	15.08	2.64
P 2	Palestinian	6 m	12 m	F	Yes	185	37	15	28	1	12.81	0.3(NL)
P 3	Iranian	4 y	6 y	M	Yes	300	66	25	40	130	25	0.55(NL)
P 4	Turkish	6 m	2 y	M	Yes	300	66	46	11	10	4.53(NL)	0.26(NL)
P 5	Swedish	9 m	2 y	M	Yes	600	390	130	150	70	NL	NL
P 6	Turkish	-	13 m	F	No	400	11	0.9	0.1	35	2.47	0.25(NL)
P 7	-	2 y	13 y	F	No	560	185	79	84	90	7.13	0.5(NL)
P 8	-	6 m	7 m	F	Yes	520	161	202	157	139	7.18	0.38(NL)
P 9	-	1 y	7 y	F	Yes	200	46	24	33	12	15.3	0.83(NL)
P 10	Turkish	2 y	-	F	Yes	520	261	15.6	15.6	130	NL	NL
P 11	-	3 y	3.5 y	F	Yes	600	132	30	60	11	7.56(NL)	0.371
P 12	Saudi Arabian	9 m	2 y	F	Yes	420	385	106	263	311	18.77	2.97
P 13	Iranian	7 y	9 y	M	Yes	410	220	137	64	55	51	undetectable
P 14	mixed Caucasian	26 m	4.5 y	M	-	280-4301	44.8-68.81	36.4-55.91	5.6-86.1	92.4-141.9(NL)	5.9(NL)	3.71
P 15	Arabian	2 m	9 y	M	Yes	680	272	143	95	2110	NL	NL
P 16	-	2 m	7 m	F	Yes	364	116	109	71	153	8.19(NL)	1.751
P 17	Indian	15 d	22 m	F	Yes	520	161	109	71	153	8.19(NL)	1.751
P 18	-	2 m	5 y	F	Yes	495	91	91	<0.01	<0.01	0.84(NL)	undetectable
P 19	Arab	4 m	9 m	F	Yes	420	261	15.6	15.6	130	NL	NL
P 20	Japanese	2.7 m	7 y	F	Yes	1008	6991	-	-	-	1.1	1
P 21	-	1 y	3 y	M	Yes	400	601	70	701	71	16.07(NL)	-
P 22	-	10 m	-	F	Yes	624	1451	231	1171	-	NL	NL
P 23	-	22 m	-	F	Yes	1350	13000	-	-	-	1.91	1.31
P 24	-	3 m	2.8 y	M	Yes	504	504	-	-	-	5.6(NL)	1.08(NL)
P 25	Tunisian	6 m	-	F	Yes	132	13000	-	-	-	1.91	1.31
P 26	-	3 m	2.9 y	M	Yes	504	504	-	-	-	5.6(NL)	1.08(NL)
P 27	Irish	2.7 m	7 y	F	Yes	1350	13000	-	-	-	1.91	1.31
P 28	Dutch	2 m	2.7 y	F	Yes	306	306	-	-	-	NL	NL
P 29	Post-mortem	1 y	-	M	No	432	432	-	-	-	19.66	0.52(NL)
P 30	Post-mortem	1 y	-	M	No	570	570	-	-	-	2.28	0.36(NL)
P 31	-	1 m	10.5 y	M	-	<750	13000	-	-	-	NL	NL
P 32	-	3 y	7 y	M	-	282	132	130	130	130	NL	NL
P 33	-	4 m	4.5 y	M	-	130	130	130	130	130	NL	NL
P 34	Caucasian	4 m	5.5 y	M	No	260-9501	46.3-256.51	-	-	-	0.014	0.1(NL)
P 35	-	13 m	-	M	Yes	300	41.7	32.7	207	16.05	5.51	0.738(NL)
P 36	-	15 m	15 m	M	No	1500	406	130	130	130	1.17	0.041
P 37	-	3 m	6.5 y	F	No	864	216	78	130	300	5.04	0.034
P 38	-	2 y	3 y	M	No	<500	200-275	100-250	50-90	50-95	6.1	1.1(NL)
P 39	-	13 m	2 y	M	-	1200	560	120	420	190	NL	0.9(NL)
---	---	---	---	---	---	---	---	---	---	---	---	---
P40	Saudi Arabian		2 y	F	Yes	618	314	167	18	58	10(NL)	0.14(NL)
P41										7.5(NL)	0.6(NL)	
P42										NL	NL	

IMMUNOLOGICAL INVESTIGATIONS

P43		15 m	15 m	F	No	319	83	1	1	NL	7.5(NL)	0.72(NL)
P44		6 m	22 m	F	No	96	70	17	61	NL	NL	
P45		3 m	5 y	M	No	500	1	1	1	NL	NL	
P46		1 y	3 y	F	No	120	400	Trace	20	-	-	

P47 Irish At birth At birth M Yes 13001 ↓↓ ↓ ↓ ↓ 105-2801 20-64 ↓ ↓ ↓ |

P48 - - 18 y M - ↓ 191 ↓ 921 ↓ 71 ↓ - NL NL |

P49 - - 3 y F - - ↓ 1 ↓ 1 ↓ 1 NL 5.97(NL) 1.07(NL) |

P50 - - 1 y 3 y M - 492 ↓ 1 ↓ 1 ↓ 1 - - 11(NL) 0.8(NL) |

P51 - - 21 m F - 180 ↓ 1 ↓ 1 ↓ 1 NL - - |

P52 Tunisian 1 y - F Yes - - - - - - - - |

P53 - - 6 m - F No - - - - - - - - |

P54 - - 2 y F - - - - - - - - - - |

P55 - - 1 m F - - - - - - - - - - |

P56 - - 19 y M - - - - - - - - - - |

P57 - - 2 m M - - - - - - - - - - |

P58 - - 1 y M - - - - - - - - - - |

P59 - - 3 y M - - - - - - - - - - |

P60 - - 1 m F - - - - - - - - - - |

P61 - - 2 y - M - <370 - - - - - - - |

P62 Arab 11 m - M Yes - ↓ (We do not have further information, as only limited investigations were permitted.)
P 1	1.551	118.96 (at the lower limit of normal)	Homozygous	Exon 5	c.467G>A	p.Gly156Ala	+	+	+	-	failure to thrive	Moallem et al. (2002)	
P 2	5.51	118.96 (at the lower limit of normal)	Homozygous	Exon 5	c.649G>A	p.Val217Ile	+	+	+	-	diarrhea	Somech et al. (2013)	
P 3	0.35 l	34.51	Homozygous	Exon 3	c.212G>A	p.Gly71Glu	+	+	-	-	chronic diarrhea	Parvaneh et al. (2008)	
P 4	0.84 (NL)	5.95 l	Homozygous	Exon 5	c.393 C>T	p.Pro198Leu	-	+	-	-	fever and respiratory distress	Brodzski et al. (2016)	
P 5	NL	12 l	16 l	compound	Exon 6	c.729C>G	p.Asn243Lys	+	+	-	-	obesity	Kyykim et al. (2015)
P 6	0.25 l	11.9 l	30.5 l	Homozygous	Exon 5	c.593 C>T	p.Pro198Leu	+	+	-	-	persistent fever	Gelmeli et al. (2015)
P 7	1.83 (NL)	107.06	Homozygous	Exon 4	c.349G>A	p.Ala117Thr	+	+	+	+	vision loss due to herpes zoster infection	Aytekin et al. (2010)	
P 8	0.49 (NL)	<29.74 l	Homozygous	Exon 5	c.593C>T	p.Pro198Leu	+	+	-	-	intermittent hematuria	Girt et al. (2012)	
P 9	1.19 (NL)	35.69	42.4 l	Homozygous	Exon 4	c.349G>A	p.Ala117Thr	+	+	+	-	fever abscess by Aspergillus	Aytekin et al. (2010)
P 10	NL	49.37 l	1.4 l	Homozygous	Exon 4	c.349G>A	p.Ala117Thr	+	+	-	-	pulmonary tuberculosis	Ozkinay et al. (2007)
P 11	0.32 l	23.79 l	2 l	Homozygous	Exon 4	c.349G>A	p.Ala117Thr	+	-	+	-	progressive multifocal leukoencephalopathy	Aytekin et al. (2010)
P 12	3.66 l	62.6 l	324 l	Homozygous	Exon 4	c.437C>T	p.Pro146Leu	+	+	-	-	chronic diarrea	Alangari et al. (2009)
P 13	undetectable l	59.48 l	-	-	Exon 5	c.475T>G	p.Ala159Val	+	+	+	-	progressive multifocal leukoencephalopathy	Parvaneh et al. (2007, 2008)
Exon	Position	Mutation	p.Amino Acid	State	Disease Description
2	c.172C>T	p.Arg57Ter	+ + + -	Compound heterozygous	Dror et al. (2004), Dalal et al. (2001)
3	c.244C>T	p.Gln82Ter	- + + -	Homozygous	parvovirus infection which induced pure red cell aplasia requiring multiple blood transfusions-severe marrow dysplasia
5	c.285+1G>A	splicing site mutation	+ + + -	Homozygous 1	acute respiratory illness
5	c.265G>A	p.Glu89Lys	- - - -	Homozygous 2	diarrhea-bronchiolitis
3	c.487T>C	p.Ser163Pro	- - - -	Homozygous 3	
2	c.59A>C	p.His20Pro	+ + - -	Homozygous 4	
5	c.497A>G	p.Tyr166Cys	+ + - -	Homozygous 5	
2	c.70C>T	p.Arg24Ter	+ + - -	Homozygous 6	
3	c.218T>C	p.Leu73Pro	+ + + +	Homozygous 7	
2	c.161G>T	p.Leu54Val	+ + + +	Homozygous 8	
3	c.203A>G	p.Lys68Asn	+ + + +	Homozygous 9	
4	c.383A>G	p.Asp128Gly	+ + - -	Homozygous 10	
4	c.383C>G	p.Asp128Asp	+ + + +	Homozygous 11	
5	c.468delA	p.Gly156fsX170	+ + - -	Homozygous 12	
5	c.468del	p.Gly156fsX170	+ + - -	Homozygous 13	
4	c.349G>A	p.Ala117Thr	+ + - -	Homozygous 14	
5	c.385G>A	p.Asp128Glu	+ + - -	Homozygous 15	
6	c.385C>A	p.Asp128Asp	+ + - -	Homozygous 16	
4	c.383A>G	p.Asp128Gly	+ + - -	Homozygous 17	
4	c.383C>G	p.Asp128Asp	+ + + +	Homozygous 18	
5	c.468delA	p.Gly156fsX170	+ + - -	Homozygous 19	
5	c.468del	p.Gly156fsX170	+ + - -	Homozygous 20	
4	c.349G>A	p.Ala117Thr	+ + - -	Homozygous 21	
5	c.385G>A	p.Asp128Glu	+ + - -	Homozygous 22	
6	c.385C>A	p.Asp128Asp	+ + + +	Homozygous 23	
4	c.383A>G	p.Asp128Gly	+ + - -	Homozygous 24	
4	c.383C>G	p.Asp128Asp	+ + + +	Homozygous 25	
5	c.468delA	p.Gly156fsX170	+ + - -	Homozygous 26	
5	c.468del	p.Gly156fsX170	+ + - -	Homozygous 27	

(Continued)
	IgM (mg/ml)	Uric acid (μmol/L)	PNP activity (nmol/l/mg Hb)	Zygosity	Location	cDNA change	Protein change	Infections	Neurological impairment	Autoimmune phenomena	Eventful chicken pox infection	Other clinical manifestations	Reference
P 27	8.51	Partially	Undetectable	-	-	-	-	+	+	-	-	Aseptic meningitis-malignant lymphoma of the B immunoblastic type	Watson et al. (1981), Simmonds et al. (1987)
P 28	2.05 (NL)	-	01	-	-	-	-	+	-	-	-	Diarrhea	Zabay et al. (1982)
P 29	1.29 (NL)	30i	0.11	-	-	-	-	+	-	-	-	Lymphosarcoma	Van Heukelom et al. (1977), Stoop et al. (1976)
P 30	0.57 (NL)	I	I	-	-	-	-	+	-	-	-	Pyruvate-toxic epidermal necrolysis	Gelfand et al. (1978)
P 31	1.2 (NL)	-	I	-	-	-	-	+	+	-	-	Progressive pulmonary insufficiency	Rich et al. (1980)
P 32	NL	101.12I	Undetectable	-	-	-	-	+	+	+	-	Influenza-like illness-persistent ear infections	Simmonds et al. (1987)
P 33	1.1 (NL)	Trace	I	-	-	-	-	+	+	+	-	Died of complication related to immunosuppression of graft versus host disease	Aytekin et al. (2008)
P 34	21	107.06I	1.5I	-	-	-	-	+	+	+	-	Right preauricular and left axillary lymphadenitis due to disseminated BCG infection	Rich et al. (1979)
P 35	0.147I	5.95I	01	-	-	-	-	+	+	+	-	Right preauricular and left axillary lymphadenitis due to disseminated BCG infection	Myers et al. (2004)
P 36	0.18I	88.7I	56.4I	-	-	-	-	+	+	-	-	Right preauricular and left axillary lymphadenitis due to disseminated BCG infection	Boume et al. (1996)
P 37	NL	77I	95.8I	-	-	-	-	+	+	-	+	Right preauricular and left axillary lymphadenitis due to disseminated BCG infection	Rijken et al. (1987)
P 38	1.61	20I	30I	-	-	-	-	+	+	-	-	Right preauricular and left axillary lymphadenitis due to disseminated BCG infection	Hallett et al. (1994)
Page	Value	Expected Value	Comparison	Significance	Reference								
------	-------	----------------	------------	--------------	-----------								
40	0.2 i	undetectable	-	+	Alangari et al. (2009)								
41	0.8 (NL)	1560 i	-	+	Vrelizer et al. (1978)								
42	1.4 (NL)	i	-	+	Gefland et al. (1978)								
43	2.76 i	undetectable	-	+	Stoop et al. (1977)								
44	NL	31 i	-	+	Glassen et al. (2001)								
45	NL	630 i	-	+	Delicou et al. (2007)								
46	NL	undetectable	-	+	Soutar and Day (1991)								
47	NL	71 i	-	+	Pannicke et al. (1996)								
48	NL	i	-	+	Kumar et al. (2012)								
49	1.64 (NL)	0 i	-	+	Martin et al. (2016)								
50	1.5 (NL)	i	-	+	Hamet et al. (1977)								
51	-	214.12 (NL)	undetectable	+	Blatt (1990)								
52	-	184 (NL)	Homozygous	+	Tabarki et al. (2003)								
53	-	Compound heterozygous	Exon 4 c.349G>A p.Ala117Thr	+	Parmicke et al. (1996)								
54	-	Compound heterozygous	Exon 5 c.575A>G p.Tyr192Cys	+	-								
55	-	Compound heterozygous	Exon 6 c.199C>T c.730delA (1-bp deletion at position +730)	-	-								

(Continued)
N	IgM (mg/ml)	Uric acid (μmol/L)	PNP activity (nmol/h/mg Hb)	Zygosity	Location	cDNA change	Protein change	Infections	Neurological impairment	Autoimmune phenomena	Eventful chicken pox infection	Other clinical manifestations	Reference
P56	-	100(at the lower limit of normal)	-	Compound heterozygous	Exon 2	c.172C>T	p.Arg57Ter	-	-	-	-	-	Walker et al. (2011)
P57	-	144(NL)	142I	Compound heterozygous	Exon 4	c.383A>G	p.Asp128Gly	-	-	-	-	-	Walker et al. (2011)
P58	-	152(NL)	1631I	Compound heterozygous	Exon 2	c.172C>T	p.Arg57Ter	-	-	-	-	-	Walker et al. (2011)
P59	-	15I	0I	Compound heterozygous	Exon 3	c.569G>T	p.Gly190Val	-	-	-	-	-	Walker et al. (2011)
P60	-	110(NL)	0I	Compound heterozygous	Exon 3	c.257A>G	p.His86Arg	-	-	-	-	-	Walker et al. (2011)
P61	-	11.9I	-	Compound heterozygous	Exon 3	c.257A>G	p.His86Arg	-	+	+	-	Encephalitis	McGinniss et al. (1985)
P62	-	5I	0.1I	-	-	-	-	-	+	-	-	Meningitis-paregenerative anemia-pneumopathy	Simmonds et al. (1987)
P63	-	17I	0I	-	-	-	-	+	-	-	-	-	Chantin et al. (1998)
P64	-	TraceI	0.1I	-	-	-	-	+	+	-	-	-	Simmonds et al. (1986, 1987)
P65	-	-	-	Compound heterozygous	IVS 3	c.286-18 G>A	splice site mutation	p.Arg234Pro	-	-	-	-	Markert et al. (1997)
P66	-	-	-	Compound heterozygous	Exon 4	c.385C>386C	387delATC	p.Lle129del	-	-	-	-	Markert et al. (1997)
P67	-	-	-	Compound heterozygous	Exon 6	c.701G>C	p.Arg234Pro	-	-	-	-	-	Markert et al. (1997)
P68	-	-	-	Compound heterozygous	Exon 5	c.520G>C	p.Ala174Pro	-	-	-	-	-	Markert et al. (1997)
P69	-	-	-	Compound heterozygous	Exon 3	c.701G>C	p.Arg234Pro	-	-	-	-	-	Markert et al. (1997)
P70	-	-	-	Compound heterozygous	Exon 6	c.769C>G	p.His257Asp	-	-	-	-	-	Grunebaum et al. (2004)
			Exon 6	c.700C>T	p.Arg234Ter					Grunebaum et al. (2004)			
----	----	----	--------	----------	-----------	----	----	----	----	------------------------			
P 71	-	-	-	-	-	-	-	-	-	-			
P 72	-	-	-	-	-	-	-	-	-	-			

N; number, AOO; age at onset of disease, AOD; age at diagnosis of disease, M; male; F; female, P; patient, NL; normal, n.d.; not determined.
knowledge, no cases of PNP-deficiency associated with IgA deficiency have been reported and this is the first case with low serum IgA levels.

Neurological impairments are typical clinical manifestations among PNP-deficient patients. Since PNP is essential for removing metabolites of DNA breakdown and induces recycling of purine bases, the lack of PNP leads to accumulation of metabolites which are toxic and cause lymphopenia and impaired cell-mediated immunity as well as neuronal cell apoptosis. Up to now, almost 70% of the reported cases have suffered from neurological dysfunction including ataxia, disequilibrium, developmental delay, hyper/hypotonia, spastic paresis, behavioral problems and mental retardation (Camici et al., 2010). In contrast, our case showed no neurological involvement during the life. In almost 1/3 of the cases similar to our patient, neurological involvements have not been detected (Aytekin et al., 2010; Blatt, 1990; Cohen et al., 1976; Gelfand et al., 1978; Hamet et al., 1977; Markert et al., 1987; Stoop et al., 1976; Virelizier et al., 1978; Zabay et al., 1982). Based on these data, it is suggested that although neurological deficits are an important feature of PNP deficiency, the severity and presentation vary significantly between patients and some of these patients may not manifest any neurologic complication. However, it is important not to rule out PNP deficiency in immunodeficient children with normal neurologic conditions.

Although the pathogenicity of p.C31R mutation was re-evaluated using the updated guideline for interpretation of molecular sequencing by the American College of Medical Genetics and Genomics (Richards et al., 2015), considering the allele frequency in the population database, computational data, immunological profile, familial segregation and parental data, atypical clinical phenotyping of the patient may suggest a hypomorphic mutation given the normal uric acid and the lack of neurological defects and severe cellular immunodeficiency. Recently, another study has reported a 13-year-old patient with a homozygous missense pathogenic variant with a late-onset PNP deficiency (p. A117T) diagnosed with hypogammaglobulinemia at the age of 10 (Celmeli et al., 2015), suggesting that residual PNP activity in patients with hypomorphic pathogenic variants can show atypical presentation like in adenosine deaminase deficiency, another enzyme important for purine degradation and salvage (Grunebaum et al., 2013).

Autoimmune phenomena including hemolytic anemia, idiopathic thrombocytopenic purpura, autoimmune neutropenia, systemic lupus erythematosus, sclerosing cholangitis, pericarditis and arthritis are another clinical manifestations among PNP-deficient patients (Buckley, 1994). Our patient was diagnosed with autoimmune hemolytic anemia. Similar to our patient, 13 other cases have been reported with hemolytic anemia (Dalal et al., 2001; Delicou et al., 2007; Dror et al., 2004; Kiykim et al., 2016; Moallem et al., 2002; Parvaneh et al., 2007; Rich et al., 1979, 1980; Simmonds et al., 1987; Somech et al., 2013, 2012; Walker et al., 2011). Thus, the presence of autoimmune disorders especially hemolytic anemia in immunodeficient patients with impaired cellular and humeral is an important clue for considering PNP deficiency.

PNP gene is located on chromosome 14q13.1 encoding PNP enzyme consisting of 289 amino acids (Williams et al., 1984). In our patient, sequence analysis revealed a novel mutation within the PNP gene. She inherited a novel missense mutation, putatively leading to a disruption of first β-stand and adjacent DNA binding site (polynucleotide binding region) composition in the PNP enzyme. So far, 37 unique mutations have been reported among the PNP-deficient patients (Table 2). Majority of
identified variants were missense (71.9%) reflecting the intolerance of the enzyme to the biallelic mild mutations as the most frequent mutations found are also missense (A117T and R234P, Figure 1). Moreover, mutations spread around different exons constituting the main functional domain of the protein, but the exon 2 (the exon affected in our index patient, 3.5 mutation/100 bp) is less affected compared to other exons (exons 4 and 5 contain almost 60% of the reported mutations, 11.7 mutation/100 bp). The rarity of the disease and the small number of reported mutations has limited the possibility to appraise the presence of hot spots within the gene. Mutation analysis in the affected patients will help to determine the genetic defects responsible for the disease.

Varicella-zoster virus (VZV) is the microorganism causing chicken pox. Previous investigations have demonstrated that recovery from varicella is associated with the development of VZV-specific T-cell mediated immunity (Arvin et al., 1986; Kumagai et al., 1980). The T-cell immunity against VZV-infected is related to CD4 and CD8 T-cells (Diaz et al., 1988; Frey et al., 2003; Hayward, 1990; Hayward et al., 1989), thus defective cellular immunity predisposes the affected immunodeficient patients to VZV infection and patients with an abnormality in T-cells manifest more severe disease than normal hosts (Arvin et al., 1986; Webster et al., 1988). PNP-deficient patients are at high risk of Varicella infection due to defective cellular immunity, as observed in our patient who died 3 days after a severe chicken pox infection and eight other reported PNP-deficient cases suffering from severe and even lethal varicella infection (Baguette et al., 2002; Broome et al., 1996; Celmeli et al., 2015; Gelfand et al., 1978; Hallett et al., 1994; Markert et al., 1987; Simmonds et al., 1987). In HIV-infected children with CD4 deficiency, it has been demonstrated that vaccination against VZV resulted in the prevention of varicella infection (Levin et al., 2006). Except for Japan, the United States, Canada, the United Kingdom, some parts of Australia and some European countries, vaccination against VZV is not routinely performed. Since children are not vaccinated against VZV in our country, individuals with PNP deficiency are predisposed to a higher risk of morbidity and mortality. On the other hand, cautious is required when live VZV attenuated vaccine is considered for a T cell immunodeficient patients. Since vaccine-associated varicella infections have been previously reported in patients with combined immunodeficiency (Bayer et al., 2014; Dalal et al., 2001), physicians must be aware of potential adverse effects of VZV vaccination and the early management. These data demonstrate that delayed diagnosis could be fatal for patients with PNP deficiency. Taken together, further investigations are needed to clarify the effectiveness of varicella vaccination in PNP deficiency and the feasible procedures for reducing the severity of varicella infection in the affected PNP-deficient patients.

In conclusion, it is important to confirm the diagnosis of PNP deficiency by genetic analysis, even in children with immunodeficiency who may not present with neurological abnormalities or autoimmune phenomena. Newborn screening, especially in families with the history of immunodeficiency disorders and earlier diagnosis of these patients, could help to better manage affected patients before the presentation of neurologic impairment and irreversible phenomena by means of supportive care and enzyme replacement therapy and HSCT, leading to lowering the mortality rate among the affected patients.
Conflict of interest

The authors declare no conflict of interest.

ORCID

Saba Fekrvand https://orcid.org/0000-0001-7091-9651

References

Abolhassani H, Aghamohammadi A, Fang M, et al. (2019). Clinical implications of systematic phenotyping and exome sequencing in patients with primary antibody deficiency. Genet Med. 21(1), 243.

Alangari A, Al-Harbi A, Al-Ghonaium A, et al. (2009). Purine nucleoside phosphorylase deficiency in two unrelated Saudi patients. Ann Saudi Med, 29(4), 309. doi:10.4103/0256-4947.55320

Al-Herz W, Bousfiha A, Casanova J-L, et al. (2014). Primary immunodeficiency diseases: an update on the classification from the international union of immunological societies expert committee for primary immunodeficiency. Front Immunol, 5, 162.

Al-Saud B, Alsmani O, Al-Muhisen S, et al. (2009). A novel mutation in purine nucleoside phosphorylase in a child with normal uric acid levels. Clin Biochem, 42(16-17), 1725–1727. doi:10.1016/j.clinbiochem.2009.08.017

Arvin AM, Koropchak CM, Williams BR, et al. (1986). Early immune response in healthy and immunocompromised subjects with primary varicella-zoster virus infection. J Infect Dis, 154(3), 422–429.

Aust MR, Andrews LG, Barrett MJ, et al. (1992 Oct). Molecular analysis of mutations in a patient with purine nucleoside phosphorylase deficiency. Am J Hum Genet, 51(4), 763–772.

Aytekin C, Dogu F, Tanir G, et al. (2010). Purine nucleoside phosphorylase deficiency with fatal course in two sisters. Eur J Pediatr, 169(3), 311–314. doi:10.1007/s00431-009-1029-6

Aytekin C, Yuksel M, Dogu F, et al. (2008). An unconditioned bone marrow transplantation in a child with purine nucleoside phosphorylase deficiency and its unique complication. Pediatr Transplant, 12(4), 479–482. doi:10.1111/j.1399-3046.2007.00890.x

Baguette C, Vermylen C, Brichard B, et al. (2002). Persistent developmental delay despite successful bone marrow transplantation for purine nucleoside phosphorylase deficiency. J Pediatr Hematol Oncol, 24(1), 69–71.

Bayer DK, Martinez CA, Sorte HS, et al. (2014). Vaccine-associated varicella and rubella infections in severe combined immunodeficiency with isolated CD4 lymphocytopenia and mutations in IL7R detected by tandem whole exome sequencing and chromosomal microarray. Clin Exp Immunol, 178(3), 459–469. doi:10.1111/cei.12421

Blatt J. (1990). Excessive chemotherapy-related granulocytopenia in a child with non-Hodgkin’s lymphoma and a congenital abnormality of purine salvage. Pediatr Blood Cancer, 18(4), 329–332.

Brodszki N, Svensson M, van Kuilenburg AB, et al. (Springer 2015). Novel genetic mutations in the first Swedish patient with purine nucleoside phosphorylase deficiency and clinical outcome after hematopoietic stem cell transplantation with HLA-matched unrelated donor. JIMD Rep, 24, 83–89. doi:10.1007/8890_2015_444

Broome CB, Graham ML, Saulsbury FT, et al. (1996). Correction of purine nucleoside phosphorylase deficiency by transplantation of allogeneic bone marrow from a sibling. J Pediatr, 128(3), 373–376.

Buckley RH. (1994). Breakthroughs in the understanding and therapy of primary immunodeficiency. Pediatr Clin North Am, 41(4), 665–690.

Camici M, Micheli V, Ipata PL, Tozzi MG. (2010). Pediatric neurological syndromes and inborn errors of purine metabolism. Neurochem Int, 56(3), 367–378. doi:10.1016/j.neuint.2009.12.003

Celmeli F, Turkkahraman D, Uygur V, et al. (2015). A successful unrelated peripheral blood stem cell transplantation with reduced intensity-conditioning regimen in a patient with late-onset purine nucleoside phosphorylase deficiency. Pediatr Transplant, 19(2), E47–E50. doi:10.1111/petr.12413
Chantin C, Bonin B, Boulieu R, Bory C. (1996). Liquid-chromatographic study of purine metabolism abnormalities in purine nucleoside phosphorylase deficiency. Clin Chem, 42(2), 326–328.

Classen C, Schulz A, Sigl-Kraetzig M, et al. (2001). Successful HLA-identical bone marrow transplantation in a patient with PNP deficiency using busulfan and fludarabine for conditioning. Bone Marrow Transplant, 28(1), 93. doi:10.1038/sj.bmt.1703100

Cohen A, Doyle D, Martin Jr DW, Ammann AJ, et al. (1976). Abnormal purine metabolism and purine overproduction in a patient deficient in purine nucleoside phosphorylase. N Engl J Med, 295(26), 1449–1454. doi:10.1056/NEJM197612222952603

Cohen A, Grunebaum E, Arpaia E, Roifman CM. (2000). Immunodeficiency caused by purine nucleoside phosphorylase deficiency. Immunol Allergy Clin, 20(1), 143–159. doi:10.1016/S0889-8561(05)70139-9

Cohen A, Gudas LJ, Ammann AJ, et al. (1978). Deoxyguanosine triphosphate as a possible toxic metabolite in the immunodeficiency associated with purine nucleoside phosphorylase deficiency. J Clin Invest, 61(5), 1405–1409. doi:10.1172/JCI109058

Dalal I, Grunebaum E, Cohen A, Roifman C. (2001). Two novel mutations in a purine nucleoside phosphorylase (PNP)-deficient patient. Clin Genet, 59(6), 430–437.

Delicou S, Kitra-Roussou V, Peristeri J, et al. (2007). Successful HLA-identical hematopoietic stem cell transplantation in a patient with purine nucleoside phosphorylase deficiency. Pediatr Transplant, 11(7), 799–803. doi:10.1111/j.1399-3046.2007.00772.x

Diaz PS, Smith S, Hunter E, Arvin AM. (1988). Immunity to whole varicella-zoster virus antigen and glycoproteins I and p170: relation to the immunizing regimen of live attenuated varicella vaccine. J Infect Dis, 158(6), 1245–1252.

Dror Y, Grunebaum E, Hitzler J, et al. (2004). Purine nucleoside phosphorylase deficiency associated with a dysplastic marrow morphology. Pediatr Res, 55(3), 472. doi:10.1203/01.PDR.0000111286.23110.F8

Fleischman A, Hershfield MS, Toutain S, et al. (1998). Adenosine deaminase deficiency and purine nucleoside phosphorylase deficiency in common variable immunodeficiency. Clin Diagn Lab Immunol, 5(3), 399–400.

Frey CR, Sharp MA, Min AS, et al. (2003). Identification of CD8+ T cell epitopes in the immediate early 62 protein (IE62) of varicella-zoster virus, and evaluation of frequency of CD8+ T cell response to IE62, by use of IE62 peptides after varicella vaccination. J Infect Dis, 188(1), 40–52. doi:10.1086/375828

Gelfand EW, Dosch H-M, Biggar WD, Fox IH. (1978). Partial purine nucleoside phosphorylase deficiency: studies of lymphocyte function. J Clin Invest, 61(4), 1071–1080. doi:10.1172/JCI110906

Giblett E, Ammann A, Sandman R, et al. (1975). Nucleoside-phosphorylase deficiency in a child with severely defective T-cell immunity and normal B-cell immunity. Lancet, 305(7914), 1010–1013. doi:10.1016/S0140-6736(75)91950-9

Girit S, Genel F, Can D, et al. (2012). Case of purine nucleoside phosphorylase deficiency presented with hematuria. Open J Pediatr, 2(04), 268. doi:10.4236/ojped.2012.24044

Grunebaum E, Cohen A, Roifman CM. (2013). Recent advances in understanding and managing adenosine deaminase and purine nucleoside phosphorylase deficiencies. Curr Opin Allergy Clin Immunol, 13(6), 630–638. doi:10.1097/ACI.0b013e3283280606

Grunebaum E, Zhang J, Roifman CM. (2004). Novel mutations and hot-spots in patients with purine nucleoside phosphorylase deficiency. Nucleosides Nucleotides Nucleic Acids, 23(8–9), 1411–1415. doi:10.1081/NCN-200027647

Gudas L, Zannis V, Clift S, et al. (1978). Characterization of mutant subunits of human purine nucleoside phosphorylase. J Biol Chem, 253(24), 8916–8924.

Hallett RJ, Cronin SM, Morgan G, et al. (1994). Normal uric acid concentrations in a purine nucleoside phosphorylase (PNP) deficient child presenting with severe chicken pox, possible immunodeficiency and developmental delay. In: Sahota A, Taylor MW, eds. Purine and Pyrimidine Metabolism in Man VIII. Boston, MA: Springer, 387–389.

Hamet M, Griscelli C, Cartier P, et al. (1977). A second case of inosine phosphorylase deficiency with severe T-cell abnormalities. In: Müller MM, Kaiser E, Seegmiller JE, eds. Purine Metabolism in Man—II: Regulation of Pathways and Enzyme Defects. Boston, MA: Springer, 477–480.
Hayward A, Giller R, Levin M. (1989). Phenotype, cytotoxic, and helper functions of T cells from varicella zoster virus stimulated cultures of human lymphocytes. Viral Immunol, 2(3), 175–184. doi:10.1089/vim.1989.2.175

Hayward AR. (1990). T-cell responses to predicted amphipathic peptides of varicella-zoster virus glycoproteins II and IV. J Virol, 64(2), 651–655.

Kiykim A, Simsek IE, Kiykim E, et al. (2016). Two patients with novel missense mutation in the purine nucleoside phosphorylase gene without serious or recurrent infections. Clin Exp Immunol, 7(1), 79–82. doi:10.1111/cen3.12254

Kumagai T, Chiba Y, Wafaya Y, et al. (1980). Development and characteristics of the cellular immune response to infection with varicella-zoster virus. J Infect Dis, 141(1), 7–13.

Kumar A, Ziahosseini K, Saeed MU, et al. (2012). Bilateral viral retinitis in a patient with immune deficiency because of purine nucleoside phosphorylase deficiency. Retin Cases Brief Rep, 6(2), 153–155. doi:10.1097/ICB.0b013e318218f37e

Levin MJ, Gershon AA, Weinberg A, et al. (2006). Administration of live varicella vaccine to HIV-infected children with current or past significant depression of CD4+ T cells. J Infect Dis, 194(2), 247–255. doi:10.1086/505149

Madkaikar MR, Kulkarni S, Utage P, et al. (2011). Purine nucleoside phosphorylase deficiency with a novel PNP gene mutation: a first case report from India. BMJ Case Rep, 2011, bcr0920114804. doi:10.1136/bcr.09.2011.4804

Markert ML. (1991). Purine nucleoside phosphorylase deficiency. Immunodefici Rev, 3(1), 45–81.

Markert ML, Finkel BD, McLaughlin TM, et al. (1997). Mutations in purine nucleoside phosphorylase deficiency. Hum Mutat, 9(2), 118–121. doi:10.1002/(SICI)1098-1004(1997)9:2<118::AID-HUMU3>3.0.CO;2-5

Markert ML, Hershfield M, Schif R, Buckley R. (1987). Adenosine deaminase and purine nucleoside phosphorylase deficiencies: evaluation of therapeutic interventions in eight patients. J Clin Immunol, 7(5), 389–399.

Martin J, Sharma R, Nelson RP, et al. (2016 Mar 03). The first report of a pregnancy in a patient with purine nucleoside phosphorylase deficiency. Fetal Pediatr Pathol, 35(2), 120–123. doi:10.3109/15513815.2016.1139020

Mastrandrea LD. (2015 Nov 17). An overview of organ-specific autoimmune diseases including immunotherapy. Immunol Invest, 44(8), 803–816. doi:10.1089/imi.2015.1099409

McGinniss MH, Wasniowska K, Zopf DA, et al. (1985 Mar-Apr). An erythrocyte Pr auto-antibody with sialoglycoprotein specificity in a patient with purine nucleoside phosphorylase deficiency. Transfusion, 25(2), 131–136.

McRoberts JA, Martin D. (1980). Submolecular characterization of a mutant human purine-nucleoside phosphorylase. J Biol Chem, 255(12), 5605–5615.

Moallem HJ, Taningo G, Jiang C, et al. (2002). Purine nucleoside phosphorylase deficiency: a new case report and identification of two novel mutations (Gly156A1a and Val217Ile), only one of which (Gly156A1a) is deleterious. Clin Immunol, 105(1), 75–80.

Myers LA, Hershfield MS, Neale WT, et al. (2004). Purine nucleoside phosphorylase deficiency (PNP-def) presenting with lymphopenia and developmental delay: successful correction with umbilical cord blood transplantation. J Pediatr, 145(5), 710–712. doi:10.1016/j.jpeds.2004.06.075

Ozkinay F, Pehlivan S, Onay H, et al. (2007). Purine nucleoside phosphorylase deficiency in a patient with spastic paraplegia and recurrent infections. J Child Neurol, 22(6), 741–743. doi:10.1177/088307307302617

Pannicke U, Tuchschmid P, Friedrich W, et al. (1996). Two novel missense and frameshift mutations in exons 5 and 6 of the purine nucleoside phosphorylase (PNP) gene in a severe combined immunodeficiency (SCID) patient. Hum Genet, 98(6), 706–709.

Parvaneh N, Ashrafi M-R, Yeganeh M, et al. (2007). Progressive multifocal leukoencephalopathy in purine nucleoside phosphorylase deficiency. Brain Dev, 29(2), 124–126. doi:10.1016/j.braindev.2006.07.008

Parvaneh N, Teimourian S, Jacomelli G, et al. (2008). Novel mutations of NP in two patients with purine nucleoside phosphorylase deficiency. Clin Biochem, 41(4–5), 350–352.

Rich KC, Arnold WJ, Palella T, Fox IH. (1979). Cellular immune deficiency with autoimmune hemolytic anemia in purine nucleoside phosphorylase deficiency. Am J Med, 67(1), 172–176.
Rich KC, Mejias E, Fox IH. (1980). Purine nucleoside phosphorylase deficiency: improved metabolic and immunologic function with erythrocyte transfusions. N Engl J Med, 303(17), 973–977. doi:10.1056/NEJM198010233031705

Richards S, Aziz N, Bale S, et al. (2015 May). Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med, 17(5), 405–424. doi:10.1038/gim.2015.30

Rijksen G, Kuis W, Wadman SK, et al. (1987). A new case of purine nucleoside phosphorylase deficiency: enzymologic, clinical, and immunologic characteristics. Pediatr Res, 21(2), 137. doi:10.1203/00006450-198702000-00006

Sandman R, Ammann AJ, Grose C, Wara DW. (1977). Cellular immunodeficiency associated with nucleoside phosphorylase deficiency: immunologic and biochemical studies. Clin Immunol Immunopathol, 8(2), 247–253.

Sasaki Y, Iseki M, Yamaguchi S, et al. (1998). Direct evidence of autosomal recessive inheritance of Arg24 to termination codon in purine nucleoside phosphorylase gene in a family with a severe combined immunodeficiency patient. Hum Genet, 103(1), 81–85.

Simmonds H, Fairbanks L, Morris G, et al. (1986). Erythrocyte GTP depletion in PNP deficiency presenting with haemolytic anaemia and hypouricaemia. Adv Exp Med Biol, 195, 481.

Simmonds H, Fairbanks L, Morris G, et al. (1987). Central nervous system dysfunction and erythrocyte guanosine triphosphate depletion in purine nucleoside phosphorylase deficiency. Arch Dis Child, 62(4), 385–391.

Simmonds HA, Watson AR, Webster DR, et al. (1982). GTP depletion and other erythrocyte abnormalities in inherited PNP deficiency. Biochem Pharmacol, 31(6), 941–946.

Somech R, Lev A, Grisaru-Soen G, et al. (2013). Purine nucleoside phosphorylase deficiency presenting as severe combined immune deficiency. Immunol Res, 56(1), 150–154. doi:10.1007/s12026-012-8380-9

Stoop J, Eijsvoogel V, Zegers B, et al. (1976). Selective severe cellular immunodeficiency: effect of thymus transplantation and transfer factor administration. Clin Immunol Immunopathol, 6(3), 289–298.

Van Heukelom LS, Akkerman J, Staal G, et al. (1977). A patient with purine nucleoside phosphorylase deficiency associated with selective cellular immunodeficiency. N Engl J Med, 296(12), 651–655. doi:10.1056/NEJM197703242961203

Virelizier J-L, Hamet M, Ballet -J-J, et al. (1978). Impaired defense against vaccinia in a child with T-lymphocyte deficiency associated with inosine phosphorylase defect. J Pediatr, 92(3), 358–362.

Walker P, Corrigan A, Arenas M, et al. (2011). Purine nucleoside phosphorylase deficiency: a mutation update. Nucleosides Nucleotides Nucleic Acids, 30(12), 1243–1247. doi:10.1080/15257770.2011.630852
Webster AD, Spickett GP, Thomson BJ, Farrant J. (1988 Apr). Viruses and antibody deficiency syndromes. Immunol Invest, 17(2), 93–105.
Williams SR, Gekeler V, McIvor R, Martin D. (1987). A human purine nucleoside phosphorylase deficiency caused by a single base change. J Biol Chem, 262(5), 2332–2338.
Williams SR, Goddard JM, Martin Jr DW. (1984). Human purine nucleoside phosphorylase cDNA sequence and genomic clone characterization. Nucleic Acids Res, 12(14), 5779–5787.
Yamamoto T, Moriwaki Y, Matsui K, et al. (1999). High IL-18 (interferon-γ inducing factor) concentration in a purine nucleoside phosphorylase deficient patient. Arch Dis Child, 81(2), 179–180.
Yeates L, Slatter MA, Gennery AR. (2017). Infusion of sibling marrow in a patient with purine nucleoside phosphorylase deficiency leads to split mixed donor chimerism and normal immunity. Frontiers Pediatrics, 5, 143. doi:10.3389/fped.2017.00143
Zabay J, De La Concha E, Ludeña C, et al. (1982). B cell hyperactivity and abnormalities in T cell markers and immunoregulatory function in a patient with nucleoside phosphorylase deficiency. Clin Exp Immunol, 50(3), 610.