Increase in stroke risk in patients with head and neck cancer: a retrospective cohort study

C-N Chu1,6, S-W Chen1,6, L-Y Bai3, C-H Mou3, CY Hsu6,4 and F-C Sung8,3,5
1Department of Radiation Oncology, China Medical University Hospital and College of Medicine, 2 Yue Road, Taichung 404, Taiwan; 2Division of Hematology and Oncology, China Medical University Hospital and College of Medicine, 2 Yue Road, Taichung 404, Taiwan; 3Management Office for Health Data, China Medical University Hospital and College of Medicine, 2 Yue Road, Taichung 404, Taiwan; 4Graduate Institute of Clinical Medical Science, China Medical University, 91 Hsueh-Shih Road, Taichung 404, Taiwan; 5Department of Public Health, China Medical University, 91 Hsueh-Shih Road, Taichung 404, Taiwan

BACKGROUND: This study investigated the stroke risk in patients with head and neck cancers (HNCs) using population-based data.

METHODS: From claims collected in the Taiwan National Health Insurance database, we identified 13 390 HNC patients with diagnosis made in 2000–2002. A reference cohort of 53 517 non-cancer individuals matched for age, gender, and stroke risk factors was used for assessing stroke risk in follow-up to 2008.

RESULTS: The overall stroke incidence was 1.44-fold higher in the HNC than in the reference cohort (11.4 vs 7.9 per 1000 person-years). Adjusted hazard ratios (HRs) were 1.54 (95% confidence interval (CI): 1.40–1.68) for ischaemic stroke and 1.36 (95% CI: 1.09–1.69) for haemorrhagic stroke. The cancer-to-reference stroke incidence rate ratio was age dependent and the highest in the age group younger than 40 years (5.45, 95% CI: 3.78–7.87) and decreased with aging. Comparing different therapeutic modalities, HNC patients receiving both radiotherapy (RT) and chemotherapy (CT) had the highest stroke risk (HR: 1.46, 95% CI: 1.22–1.74), followed in sequence by those who had RT alone, RT alone, and without therapy.

CONCLUSION: Patients with HNC are at increased risk of developing stroke, especially in the young age group and in those who received both RT and CT.

British Journal of Cancer (2011) 105, 1419–1423. doi:10.1038/bjc.2011.361 www.bjcancer.com
Published online 13 September 2011
© 2011 Cancer Research UK

Keywords: epidemiology; head and neck cancers; incidence; population-based study; stroke

Cancer is the leading cause of death in developed as well as developing countries. Stroke, a common neurological complication of cancer (Lindvig et al, 1990), adds burden to patients who suffer from cancer. The occurrence of stroke in cancer patients has been ascribed to many risk factors, including tumour-related disorders, coagulation disturbances, infection, complications of cancer therapies, and paraneoplastic causes (Lindvig et al, 1990; Rogers, 2003; Cestari et al, 2004; Nguyen and DeAngelis, 2006; Zhang et al, 2006; Grisold et al, 2009). An example of cancer as a stroke risk factor is radiation therapy (RT) for head and neck cancers (HNC) that accelerates carotid artery atherosclerosis resulting in stroke as a late complication (Rogers, 2003).

In the recent US cancer statistics, HNC accounted for ≈3% of adult malignancies (Jemal et al, 2006). In North America and Europe, HNC usually arises from the oral cavity, oropharynx, or larynx, whereas nasopharyngeal cancer is more common in Mediterranean countries and Southeast China. The incidence of oral and pharyngeal (including oral cavity, oropharynx, and hypopharynx) cancer has increased rapidly in Asia and the South Pacific area, including Taiwan (Chiba, 2001). HNC is strongly associated with certain environmental and lifestyle risk factors, including smoking, alcohol consumption, and certain strains of viruses, such as human papillomavirus (Freedman et al, 2007; Feng et al, 2009; Ridge et al, 2009). Head and neck cancer is highly curable if detected early, usually with surgery. In addition, RT and chemotherapy (CT) may also be of benefit. Head and neck cancer survivors may have compromised quality of life because of treatment-related complications even after successful definitive therapy. One of the adverse events of HNC is stroke. However, systematic assessment of stroke risk among HNC patients has not been made.

Because the risk of stroke increases with age (Hollander et al, 2003), age-specific and age-adjusted analyses are required in assessing cancer-related stroke risk. To the best of our knowledge, no study has investigated the risk of stroke in HNC patients using a representative sample of adequate size, as well as taking into consideration comorbidity and age. Furthermore, a long-term follow-up study is essential because of the late occurrence of treatment-related complications. Whether the stroke risk profile in HNC survivors may have compromised quality of life because of treatment-related complications even after successful definitive therapy. One of the adverse events of HNC is stroke. However, systematic assessment of stroke risk among HNC patients has not been made.

Because the risk of stroke increases with age (Hollander et al, 2003), age-specific and age-adjusted analyses are required in assessing cancer-related stroke risk. To the best of our knowledge, no study has investigated the risk of stroke in HNC patients using a representative sample of adequate size, as well as taking into consideration comorbidity and age. Furthermore, a long-term follow-up study is essential because of the late occurrence of treatment-related complications. Whether the stroke risk profile in HNC survivors may have compromised quality of life because of treatment-related complications even after successful definitive therapy. One of the adverse events of HNC is stroke. However, systematic assessment of stroke risk among HNC patients has not been made.

Because the risk of stroke increases with age (Hollander et al, 2003), age-specific and age-adjusted analyses are required in assessing cancer-related stroke risk. To the best of our knowledge, no study has investigated the risk of stroke in HNC patients using a representative sample of adequate size, as well as taking into consideration comorbidity and age. Furthermore, a long-term follow-up study is essential because of the late occurrence of treatment-related complications. Whether the stroke risk profile in HNC survivors may have compromised quality of life because of treatment-related complications even after successful definitive therapy. One of the adverse events of HNC is stroke. However, systematic assessment of stroke risk among HNC patients has not been made.

Because the risk of stroke increases with age (Hollander et al, 2003), age-specific and age-adjusted analyses are required in assessing cancer-related stroke risk. To the best of our knowledge, no study has investigated the risk of stroke in HNC patients using a representative sample of adequate size, as well as taking into consideration comorbidity and age. Furthermore, a long-term follow-up study is essential because of the late occurrence of treatment-related complications. Whether the stroke risk profile in HNC survivors may have compromised quality of life because of treatment-related complications even after successful definitive therapy. One of the adverse events of HNC is stroke. However, systematic assessment of stroke risk among HNC patients has not been made.

Because the risk of stroke increases with age (Hollander et al, 2003), age-specific and age-adjusted analyses are required in assessing cancer-related stroke risk. To the best of our knowledge, no study has investigated the risk of stroke in HNC patients using a representative sample of adequate size, as well as taking into consideration comorbidity and age. Furthermore, a long-term follow-up study is essential because of the late occurrence of treatment-related complications. Whether the stroke risk profile in HNC survivors may have compromised quality of life because of treatment-related complications even after successful definitive therapy. One of the adverse events of HNC is stroke. However, systematic assessment of stroke risk among HNC patients has not been made.

Because the risk of stroke increases with age (Hollander et al, 2003), age-specific and age-adjusted analyses are required in assessing cancer-related stroke risk. To the best of our knowledge, no study has investigated the risk of stroke in HNC patients using a representative sample of adequate size, as well as taking into consideration comorbidity and age. Furthermore, a long-term follow-up study is essential because of the late occurrence of treatment-related complications. Whether the stroke risk profile in HNC survivors may have compromised quality of life because of treatment-related complications even after successful definitive therapy. One of the adverse events of HNC is stroke. However, systematic assessment of stroke risk among HNC patients has not been made.

Because the risk of stroke increases with age (Hollander et al, 2003), age-specific and age-adjusted analyses are required in assessing cancer-related stroke risk. To the best of our knowledge, no study has investigated the risk of stroke in HNC patients using a representative sample of adequate size, as well as taking into consideration comorbidity and age. Furthermore, a long-term follow-up study is essential because of the late occurrence of treatment-related complications. Whether the stroke risk profile in HNC survivors may have compromised quality of life because of treatment-related complications even after successful definitive therapy. One of the adverse events of HNC is stroke. However, systematic assessment of stroke risk among HNC patients has not been made.
increases among subjects receiving RT (Dorresteijn et al., 2002; Haynes et al., 2002; Bowers et al., 2005; Moser et al., 2006; Scott et al., 2009). However, except for one study that used a sibling control (Bowers et al., 2005), most studies did not establish the independent contribution of RT to stroke by comparing HNC patients with and without RT.

In this study, we hypothesise that HNC patients exhibit increased risk of stroke compared with the general population. The Taiwan National Health Insurance (NHI) database was used to conduct this population-based study. With a large study sample size, the study subjects can be stratified by demographic factors, comorbidity, and therapeutic modalities. Comparison was made with a reference cohort matched for age, gender, and comorbidity, and free from any cancer.

MATERIALS AND METHODS

Data source and study subjects

The Taiwan NHI is a universal health insurance system started in March 1995 by the Taiwan Department of Health after integrating 13 insurance programs. Approximately 99% of the population has been covered in this system since 1999. The National Health Research Institute (NHRI) has computerised medical claims and selected sets of healthcare data for administrative use and research, as described in a large retrospective study (Lin et al., 2008). We used 2000–2008 NHI data, which include all inpatient and ambulatory care records for cancer care, registry for catastrophic illnesses, and basic demographic information. We applied codes of the International Classification of Diseases, 9th Revision, Clinical Modification (ICD-9-CM) and A-code to retrieve information on diagnosis.

Based on the registry for catastrophic illnesses, we identified 13 390 cases of HNC (ICD-9-CM code 140-149 and A-code A080), newly diagnosed in 2000-2002, as the study cohort. Patients with prior stroke or incomplete information were excluded. Head and neck cancer includes malignant neoplasms of tongue (17.5%), oral cavity and oropharynx (33.5%), nasopharynx (29.6%), hypopharynx (8.1%), and others (11.3% including lip, gum, floor of mouth, salivary gland, and ill-defined sites). The date the diagnosis of HNC had been made was set as the index date for beginning the measurement of follow-up person-years. From the reimbursement claim data files, using a ratio of 1:4, 53 517 individuals free from any cancer and prior stroke and matched for gender, age, comorbidity (hypertension, diabetes mellitus, or both), and index dates, were randomly selected as the reference cohort. The confirmation of stroke events was based on inpatient records in the NHI database.

Statistical analysis

The retrieved patient information also includes selected socio-demographic characteristics, such as gender, date of birth, residential area, occupation, and clinical features including comorbidity. Comorbidity retrieved for the present study was restricted to two key stroke risk factors, hypertension (ICD-9-CM 401-405, as well as A-code A260 and A269), diabetes mellitus (ICD-9-CM 250 and A-code A181), or both. Each subject was followed from the index date to the occurrence of stroke (ICD-9-CM 433-438 or A-code A292-294 and A299), death, loss to follow-up, withdrawal from the insurance policy, or until 31 December 2008 with follow-up person-years estimated. We first calculated the incidence densities of stroke in follow-up for both the study and reference cohorts.

Distributions of gender, age (<40, 40–49, 50–59, and ≥60 years), and comorbidity were compared between the study and reference cohorts, and examined using the χ²-test. The gender-, age-, and comorbidity-specific incidence densities of stroke were also measured for both cohorts. To assess the relative risk in each subgroup between the two cohorts, we measured the ratios of incidence rate. Cox proportional hazard regression analysis was used to estimate the stroke risks associated with HNC. Hazard ratios (HRs) and 95% confidence intervals (CIs) were provided in the Cox models. We also used the Kaplan–Meier survival analysis to estimate proportions of the studied subjects who did not suffer from stroke during the follow-up period in both cohorts.

RESULTS

The HNC and reference cohorts were similar in distributions of gender, age, and comorbidity, with the median age of 50.1 years (Table 1). The dominant gender was male (85.0%). Both cohorts had the same prevalence rates of diabetes mellitus (13.0%), hypertension (16.1%), and others (5.4%).

After 5–7 years of follow-up, this study identified 694 cases of stroke among patients with HNC and 2915 in the reference cohort (Table 2). The overall incidence of stroke was 1.44-fold higher in the HNC than the reference cohort (1.14 vs 0.79 per 1000 person-years) with an adjusted HR of 1.52 (95% CI: 1.40–1.65). Generally, the incidence of stroke increased with age in both cohorts. However, the age-specific HNC-to-reference incidence rate ratio decreased with aging, with the highest noted in those HNC patients younger than 40 years (HR: 5.76, 95% CI: 3.99–8.33). The comorbidity-specific HRs show that hypertension and diabetes mellitus were, as predicted, significant stroke risk factors (HR: 1.37 vs 1.68, both with P < 0.0001). Data analysis also estimated the

Head and neck cancer	Total, N = 66,907	No, N = 53,517	Yes, N = 13,390	p-value
Gender				0.98
Female	10,038 (15.0)	8,030 (15.0)	2,008 (15.0)	
Male	56,869 (85.0)	45,487 (85.0)	11,382 (85.0)	
Age (years)				1.00
<40	11,410 (17.1)	9,127 (17.1)	2,283 (17.1)	
40–49	21,739 (32.5)	17,387 (32.5)	4,352 (32.5)	
50–59	16,872 (25.2)	13,495 (25.2)	3,377 (25.2)	
≥60	16,886 (25.2)	13,508 (25.2)	3,378 (25.2)	
Median ± s.d.*	50.1 ± 13.2	50.1 ± 13.2	50.1 ± 12.8	
Comorbidity				
Hypertension	10,779 (16.1)	8,621 (16.1)	2,158 (16.1)	0.98
Diabetes mellitus	8,727 (13.0)	6,973 (13.0)	1,754 (13.1)	0.83
Both	36,045 (53.9)	28,881 (53.8)	7,164 (54.0)	0.94

χ²-test was used for categorical data. Brown-Mood test for medians.
incidence by the follow-up year. With follow-up time beginning from years 2 to 4, the HR increased to the highest level of 1.97 (95% CI: 1.61–2.41) in years 7–8 after controlling for gender, age, hypertension, and diabetes mellitus. The stroke-free curves are depicted in Figure 1. Stroke appeared to occur immediately in small proportions in the HNC cohort, but a growing trend of disparity was observed between the two cohorts when the follow-up duration increased ($P<0.0001$).

Table 3 shows that the incidence of ischaemic stroke was approximately 6.1-fold higher than that of haemorrhagic stroke among patients with HNC. The corresponding incidence figure was 5.4 in the reference cohort. Compared with normal individuals, the adjusted HR was slightly higher for ischaemic stroke (1.54, 95% CI: 1.40–1.68) than haemorrhagic stroke (1.36, 95% CI: 1.09–1.69), but the difference was not significant.

Table 4 shows the stroke risk at each of the five HNC sites. Patients with nasopharynx had a trend of higher risk for ischaemic stroke with a HR of 2.61 (95% CI: 2.29–2.97), whereas hypopharynx had higher risk for haemorrhagic stroke (HR: 1.96, 95% CI: 1.01–3.79). Table 5 lists the stroke risk associated with treatment modalities. Compared with the patients with neither RT nor CT, the risk of stroke was the highest for the cancer patients receiving both RT and CT (HR: 1.46, 95% CI: 1.22–1.74), followed in sequence by those who had only CT, only RT, and neither CT nor RT.

DISCUSSION

This study is the first population-based cohort analysis of the stroke risk in HNC patients, compared with a reference group free of cancer and matched for age, gender, and comorbidity. Results show that HNC increased the risk of stroke with a trend for more ischaemic than haemorrhagic stroke. As shown in Figure 1, disparity in stroke-free rate grew with extension of the follow-up period, suggesting delayed impact of HNC and therapies on the stroke risk. Treatment-related late cerebrovascular damage turned out to be prominent when more patients survived for longer periods. Furthermore, patients with nasopharyngeal carcinoma showed a trend for higher risk for ischaemic stroke, whereas hypopharynx had a higher tendency for haemorrhagic stroke.

Table 2 Incidence and hazard ratio of stroke by demographic factor and comorbidity among patients with head and neck cancers and reference cohort

Head and neck cancer	Cases	Person-years	Rate	Cases	Person-years	Rate	Rate Ratio (95% CI)	Adjusteda	HR (95% CI)
Overall	2915	369,020	7.90	694	60,983	11.4	1.44 (1.33–1.57)**	1.52	(1.40–1.65)**
Gender									
Female	435	65,138	6.68	110	10,783	10.2	1.52 (1.07–1.62)*	1.53	(1.24–1.88)**
Male	2480	312,882	7.93	584	50,200	11.6	1.47 (1.34–1.61)**	1.57	(1.43–1.72)**
Age (years)									
<40	57	65,882	0.87	57	12,085	4.72	5.45 (3.78–7.87)**	5.76	(3.99–8.33)**
40–49	392	124,335	3.15	146	20,644	7.07	2.24 (1.85–2.71)**	2.30	(1.90–2.78)**
50–59	689	94,619	7.28	203	15,433	13.2	1.81 (1.54–2.11)**	1.84	(1.57–2.15)**
≥60	1777	84,185	21.1	288	12,821	22.5	1.06 (0.94–1.21)	1.06	(0.93–1.20)
Comorbidity									
Hypertension	928	56,360	16.5	206	99,959	20.7	1.26 (1.08–1.46)*	1.37	(1.18–1.59)**
Diabetes mellitus	752	44,543	16.9	148	73,822	20.1	1.19 (1.00–1.42)	1.68	(1.52–1.84)**
Both	374	18,359	20.4	81	32,329	25.0	1.23 (1.00–1.52)	1.32	(1.04–1.68)*
Follow-up (years)									
<2	773	104,826	7.37	251	22,033	11.4	1.54 (1.36–1.78)**	1.64	(1.42–1.90)**
2–4	798	100,467	7.94	150	16,356	9.18	1.16 (0.97–1.38)	1.26	(1.05–1.50)*
5–6	795	96,087	8.27	164	13,847	11.8	1.43 (1.21–1.70)**	1.53	(1.29–1.81)**
7–8	495	60,391	8.20	118	79,114	14.9	1.82 (1.49–2.23)**	1.97	(1.61–2.41)**
≥8	54	72,488	7.45	11	83,615	13.2	1.76 (0.92–3.37)	1.97	(1.03–3.78)**

Abbreviations: CI = confidence interval; HR = hazard ratio. Rate: per 1000 person-years; Ratio: rate ratio of study cohort to reference cohort. *$P<0.05$, **$P<0.0001$. *Adjusted HR: multivariable analysis including gender, age, hypertension, diabetes mellitus, and years after index date.
It is worth noting that the stroke risk in HNC patients was relatively higher in patients of younger age. This important finding is made on the well-known observation that the stroke risk increases with aging as clearly shown in Table 2 and reported by others (Chen et al., 2008; Lip and Halperin, 2010). This is likely related to the notion that in HNC patients of older age, the impact of established stroke risk factors carries greater weight in the pathogenesis of stroke. A similar trend of relatively higher vulnerability for stroke in younger patients was observed in a study on the long-term risk of cerebrovascular disease associated with the use of RT and CT in survivors of Hodgkin’s lymphoma (De Bruin et al., 2009). Because of recent growing trends of HNC occurrence in younger patients (Ridge et al., 2009), it is prudent to include stroke prevention measures in follow-up of HNC survivors, especially for those of younger age. Results on comorbidity disclosed that stroke risk is increased further in patients with hypertension, diabetes, or both. Thus, close surveillance for HNC patients with hypertension, diabetes, or both for more intense management of these stroke risk factors is needed.

According to previous studies, the most frequent cancer types associated with stroke are urogenital, breast, gastrointestinal, haematological, and lung cancers (Cestari et al., 2004; Grisold et al., 2009; Stefan et al., 2009). In addition, the frequency of ischaemic stroke exceeded that of haemorrhagic stroke in cancer patients, a situation similar to that in a non-cancer population. Except for deep vein thrombosis, other stroke-related risk factors do not significantly vary between cancer and non-cancer patients (Rogers, 2003; Stefan et al., 2009). To the best of our knowledge, no specific malignancy that causes stroke more often than cancer types has been identified (Li et al., 2006; Stefan et al., 2009).

Previous studies have reported various risk levels for stroke for HNC patients receiving RT. The risk may vary with the severity of internal carotid atherosclerosis. The frequency of internal carotid stenosis following neck RT ranged from 12 to 60% (Cheng et al., 1999), although controversies remain (Marcel et al., 2005). The stroke risk associated with RT to the neck appears variable. In addition, different study designs also contributed to risk variation (Dorresteijn et al., 2002; Haynes et al., 2002; Hoffman et al., 2006; Moset et al., 2006; Scott et al., 2009). In a systematic review, Scott et al. (2009) reported a range of 2.1–8.5-fold higher.

In the present study, we note a higher trend for ischaemic stroke for patients with nasopharyngeal cancer. This finding raises the concern of therapy-related complications. In definitive RT or concurrent chemoradiotherapy (CCRT) for HNC patients, the prescribed RT dosage is not particularly high for nasopharyngeal cancer patients. However, many patients with HNC, except nasopharyngeal cancer, may receive adjuvant RT/CCRT following surgery, in which the RT dose is lower. Thus, there is a need to analyse nasopharyngeal cancer populations using similar stratification strategies to precisely examine stroke risk associated with cancer per se or therapies, particularly treatment with both CT and RT.

Results presented here should be interpreted with caution because of the following limitations. First, smoking and alcohol consumption are two well-known lifestyle risk factors of HNC. The prevalence of smoking and drinking was likely higher in the study cohort than in the reference cohort. Information on smoking was unavailable from the insurance claims. However, diagnosis for alcoholism, which indicates heavy drinking, was available from the claims. Smoking generally parallels drinking behaviour. Further data analysis shows a higher prevalence of alcoholism in the HNC cohort than in the reference cohort (2.02 vs. 0.89%). Alcoholism was more prevalent in patients with malignant neoplasm of the hypopharynx (5.8%) than other types of HNC in the present study. It is well known that excessive alcohol intake is associated with increased risk of haemorrhagic stroke (Rymer, 2011). Second, the NHRI records do not provide information on whether the patients received adjuvant RT/CCRT following surgery, in which the RT dose is lower. Thus, there is a need to analyse nasopharyngeal cancer populations using similar stratification strategies to precisely examine stroke risk associated with cancer per se or therapies, particularly treatment with both CT and RT.

Table 3
Comparison of incidence of stroke by subtype and gender between patients with head and neck cancers and reference cohort

Head and neck cancer	No	Yes	Unadjusted	Adjusted*		
Case	Rate	Case	Rate	HR (95% CI)	HR (95% CI)	
Both genders						
HS	455	1.23	98	1.61	1.32 (1.06–1.64)*	1.36 (1.09–1.69)*
IS	2460	6.67	596	9.77	1.47 (1.34–1.60)**	1.54 (1.40–1.68)**
Women						
HS	60	0.92	14	1.30	1.23 (0.69–2.20)	1.34 (0.75–2.40)
IS	375	5.76	96	8.90	1.34 (1.07–1.67)*	1.49 (1.19–1.86)**
Men						
HS	395	1.26	84	1.67	1.34 (1.06–1.70)*	1.36 (1.08–1.73)*
IS	2085	6.66	500	9.96	1.49 (1.35–1.65)**	1.55 (1.40–1.71)**

Abbreviations: CI = confidence interval; HR = hazard ratio; HS = hemorrhagic stroke; IS = ischemic stroke. Rate: per 1000 person-years. *P<0.05, **P<0.001, ***P<0.0001. *T*mutually adjusted for gender, age, hypertension, and diabetes mellitus.

Table 4
Incidence of hemorrhagic and ischemic stroke and multivariable Cox model hazard ratios compared with reference cohort by head and neck cancer sites

Cancer site (ICD)	N Person-years	Case	IR	HR (95% CI)	Case	IR	HR (95% CI)	Case	IR	HR (95% CI)	
Tongue (141)	2369	10739	94	1.25	1.25	1.25	(1.02–1.54)*	15	1.40	1.22	(0.73–2.05)
Oral cavity	4503	19203	204	1.31	1.31	1.31	(1.13–1.51)**	29	1.51	1.20	(0.82–1.75)
oropharynx (145,146)	3957	20581	293	2.47	2.47	2.47	(2.19–2.79)**	36	1.75	1.74	(1.24–2.45)*
Nasopharynx (147)	1078	3185	50	1.60	1.60	1.60	(1.21–2.12)**	9	2.83	1.96	(1.01–3.79)*
Hypopharynx (148)	1483	7275	56	0.89	0.89	0.89	(0.68–1.16)	47	6.46	0.96	(0.50–1.60)

Abbreviations: CI = confidence interval; HR = hazard ratio adjusted for gender, age, hypertension, and diabetes mellitus; HS = hemorrhagic stroke; IR = incidence rate per 1000 person-years; IS = ischemic stroke. *P<0.05, **P<0.001, ***P<0.0001.
Head and neck cancer and stroke
C-N Chu et al

ACKNOWLEDGEMENTS

We thank the National Health Research Institute in Taiwan for providing the NHI database. This study was supported in part by the National Sciences Council, Executive Yuan (grant numbers NSC 97-2625-M-039-003, NSC 99-2621-M-039-001), China Medical University Hospital (grant number 1M51), Taiwan Department of Health Clinical Trial and Research Center for Excellence (grant number DOH100-TD-B-111-004), Cancer Research Center of Excellence (DOH100-TD-C-111-005), and Tseng-Lien Lin Foundation.

Conflict of interest

The authors declare no conflict of interest.

REFERENCES

Bowers DC, McNeil DE, Liu Y, Yasui Y, Stovall M, Gurney JG, Hudson MM, Donaldson SS, Packer RJ, Mithy PA, Kasper CE, Robison LL, Oeffinger KC (2005) Stroke as a late treatment effect of Hodgkin’s disease: a report from the childhood cancer survivor study. J Clin Oncol 23: 6508–6515

Cestari DM, Weine DM, Panageas KS, Segal AZ, DeAngelis LM (2004) Stroke in patients with cancer: incidence and etiology. Neurology 62: 2025–2030

Chen PC, Chien KL, Chang CW, Su TC, Jeng JS, Lee YT, Sung FC (2008) Irradiation-induced extracranial carotid stenosis in patients with head and neck malignancies. Am J Surg 178: 323–328

Chiba I (2001) Prevention of Betel Quid Chewers’ Oral Cancer in the Asian-Pacific Area. Asian Pac J Cancer Prev 2: 263–269

De Bruin ML, Dorresteijn LD, van’t Veer MB, Krol AD, van der Pal HJ, Kappelle AC, Boogerd W, Aleman BM, van Leeuwen FE (2009) Increased risk of stroke and transient ischemic attack in 5-year survivors of Hodgkin’s lymphoma. Nat Canc 101: 928–937

Dorresteijn LD, Kappelle AC, Boogerd W, Klokkman WJ, Balm AJ, Keus RB, van Leeuwen FE, Bartlink H (2002) Increased risk of ischemic stroke after radiotherapy on the neck in patients younger than 60 years. J Clin Oncol 20: 282–288

Feng BJ, Khyyati M, Ben-Ayoub W, Dahmoul S, Ayad M, Maachi F, Bedadra W, Abdoum M, Mesli S, Akkali H, Jalboub M, Hamdi-Cherif M, Boualga K, Bouaouina N, Chouchane L, Benider A, Ben-Ayed F, Goldgar DE, Corbex M (2009) Cannabis, tobacco and domestic fumes intake are associated with nasopharyngeal carcinoma in North Africa. Br J Cancer 101: 1207–1212

Freedman ND, Schatzkin A, Leitzmann MF, Hollenbeck AR, Abnet CC (2007) Alcohol and head and neck cancer risk in a prospective study. Br J Cancer 96: 1469–1474

Grisold W, Oberndorfer S, Struhal W (2009) Stroke and cancer: a review. Acta Neurol Scand 119: 1–16

Haynes JC, Machtay M, Weber RS, Weinstein GS, Chalian AA, Rosenthal DI (2002) Relative risk of stroke in head and neck carcinoma patients treated with external cervical irradiation. Laryngoscope 112: 1883–1887

Hoffman HT, Porter K, Karnell LH, Cooper JS, Weber RS, Langer CJ, Ang KK, Gay G, Stewart A, Robinson RA (2006) Laryngeal cancer in the United States: changes in demographics, patterns of care, and survival. Laryngoscope 116(9 Part 2 Suppl 111): 1–13

Hollander M, Koudstaal PJ, Bots ML, Grobbee DE, Hofman A, Breteler MM (2003) Incidence, risk, and case fatality of first ever stroke in the elderly population. The Rotterdam Study. J Neurol Neurosurg Psychiatry 74: 317–321

Jenal A, Siegel R, Ward E, Murray T, Xu J, Smigal C, Thun MJ (2006) Cancer statistics, 2006. CA Cancer J Clin 56: 106–130

Li SH, Chen WH, Tang Y, Rau KM, Chen YY, Huang TL, Liu JS, Huang CH (2006) Incidence of ischemic stroke post-chemotherapy: a retrospective review of 10963 patients. Clin Neurol Neurosurg 108: 150–156

Lin HC, Chao PZ, Lee HC (2008) Sudden sensorineural hearing loss increases the risk of stroke: a 5-year follow-up study. Stroke 39: 2744–2748

Lindvig K, Moller H, Mosbech J, Jensen OM (1990) The pattern of cancer in head and neck region in Denmark. Acta Neurol Scand 82(1): 1–16

Moser EC, Noordijk EM, van Leeuwen FE, le Cessie S, Baars JW, Keus RB, van Leeuwen FE, Bartlink H (2002) Increased risk of ischemic stroke after radiotherapy on the neck in patients younger than 60 years. J Clin Oncol 20: 282–288

Nishio S, Kato S, Tsuji H, Hayashi T, Kido T, Inoko H, Yoshida K, Yamasaki S, Yasuda M, Iwata N, Hamada T (1994) Stroke risk of neck radiation in patients younger than 60 years of age. J Clin Oncol 12: 781–784

Nyugen T, DeAngelis LM (2006) Stroke in cancer patients. Curr Neurol Neurosci Rep 6: 187–192

Rymer MM (2011) Hemorrhagic stroke: intracerebral hemorrhage. Mo Med 108: 30–34

Scott AS, Parr LA, Johnstone PA, Scott AS, Parr LA, Johnstone PAS (2009) Risk of cerebrovascular events after neck and supraclavicular radiotherapy: a systematic review. Radiother Oncol 90: 163–165

This work is published under the standard license to publish agreement. After 12 months the work will become freely available and the license terms will switch to a Creative Commons Attribution-NonCommercial-Share Alike 3.0 Unported License.

© 2011 Cancer Research UK

British Journal of Cancer (2011) 105(9), 1419–1423

Epidemiology