Universality of Non-Local Boxes

Manuel Forster and Stefan Wolf
Computer Science Department, ETH Zürich, CH-8092 Zürich, Switzerland
(Dated: November 17, 2008)

One of the most fascinating consequences of quantum theory is non-locality, i.e., the fact that the behavior under measurements of (spatially separated) parts of a system can have a correlation unexplainable by shared classical information. Note that at the same time, these correlations are non-signaling and do not allow for message transmission. Popescu and Rohrlich have defined a non-local box as a “basic building block of non-locality” and initiated a systematic study of non-local correlations and their applications. They left open, however, whether any bi-partite non-signaling correlation can be simulated by such non-local boxes. We show that the answer is yes with respect to arbitrarily accurate approximations.

INTRODUCTION

In probability theory, the term correlation is often used to indicate a departure from independence. When two separated parts of a quantum state are measured, then the outcomes can be correlated. While this may be surprising from a physical point of view, it is much less from an information-theoretical perspective since such correlations could have arisen by randomness shared when the two particles were generated. In this note we address correlations of a stronger kind - those which are unexplainable by shared randomness. More precisely, we study correlations between the outcomes of the two ends of a bipartite input-output system, characterized by a conditional probability distribution \(P(ab|xy) \). Let \(x \) and \(a \) stand for the input and output on the left-hand side of the system, and \(y \) and \(b \) for the corresponding values on the right-hand side.

\[
\begin{array}{c}
 x \rightarrow P(ab|xy) \leftarrow y \\
 a \leftarrow \quad \rightarrow b
\end{array}
\]

We call such a behavior local if it is explainable by shared classical information and signaling if it allows for message transmission in either direction.

Local correlations satisfy certain linear inequalities known as Bell inequalities \(^1\); in other words, violation of such inequalities indicates non-locality. John Bell was the first to realize that entangled quantum states can have a non-local behavior under measurements if \(x \) and \(y \) are the choice of the measurements to be carried out, and \(a \) and \(b \) are the measurement results. The non-local behavior of quantum systems was highlighted by Einstein, Podolsky and Rosen \(^2\), and what was originally (erroneously \(^1\)) considered a witness for the incompleteness of quantum mechanics, has proven to be a very useful information theoretic resource \(^3\).

In accordance with relativity theory, the joint behavior of quantum systems must be non-signaling: otherwise superluminal message transmission would be possible. A binary input-output system characterized by a conditional probability distribution \(P(ab|xy) \) is non-signaling if one cannot signal from one side to the other by the choice of the input.

We are interested in systems that are neither signaling nor local. It may not be obvious that such correlations can be defined, which are impossible to be simulated by quantum mechanics. Surprisingly, they can, and an example is the non-local box (NLB for short) or Popescu-Rohrlich (PR) machine \(^4\). The NLB is a system violating the Clauser-Horne-Shimony-Holt (CHSH) inequality \(^5\) to the algebraic maximum. Its behavior is as follows: We have \(x, y, a, b \in \{0, 1\} \); \(a \) and \(b \) are uniform and independent of \((x, y)\), but \(a + b \equiv xy \mod 2 \) always holds. Its probability distribution is, thus,

\[
P_{\text{NLB}}(ab|xy) = \begin{cases}
1/2 & \text{if } xy = a + b \mod 2, \\
0 & \text{otherwise}.
\end{cases}
\]

The PR machine cannot occur as the behavior of a quantum state \(^6\), but it can be approximated with an accuracy of roughly 85%, whereas 75% is the local limit.

With the definition of the non-local box, Popescu and Rohrlich raised the question why quantum mechanics is not maximally non-local, that is, why quantum non-locality is not solely constrained by the non-signaling conditions. It is hence possible to study non-locality without reference to quantum mechanics, but simply as a property of joint probability distributions. The non-local box has since been considered as a possible candidate for an “atom” or “basic building block” for non-locality. Clearly, this notion makes more sense if, actually, non-local boxes allow the realization of any non-signaling system, that is, if two parties can non-interactively simulate any non-signaling system by local operations on shared randomness and a finite quantity of non-local boxes.

Previous Work

In \(^7\), and independently in \(^8\), it is proven that every non-signaling system with binary outputs \(a, b \in \{0, 1\} \) can be simulated by local operations on a finite number of NLBs. In \(^9\), the alternative case of binary inputs
Our Contribution

We show that, on the other hand, if one is willing to accept an arbitrarily small error, then non-local boxes are universal.

Theorem 1 (Main Result). Any bipartite non-signaling system can be approximated arbitrarily closely by shared randomness and non-local boxes.

DEFINITIONS

A bi-partite input-output system is characterized by a conditional probability distribution \(P(ab|xy) \) where \(a \in \mathcal{A} \) and \(x \in \mathcal{X} \) are the input and output one the left hand side of the system and \(b \in \mathcal{B} \) and \(y \in \mathcal{Y} \) the corresponding values on the right hand side, respectively. A system is non-signaling if it cannot be used to signal from one side to the other by the choice of the input. This means that the marginal probabilities \(P(a|x) \) and \(P(b|y) \) are independent of \(y \) and \(x \), respectively, i.e.,

\[
\sum_b P(ab|xy) = \sum_b P(ab|xy') \equiv P(a|x) \forall a, x, y, y',
\]

\[
\sum_a P(ab|xy) = \sum_a P(ab|x'y) \equiv P(b|y) \forall b, x, x', y.
\]

Using a non-signaling system a party receives its output immediately after giving its input, independently of whether the other has given its input already. Note that this is possible since the system is non-signaling. Furthermore, after a system is used once it is destroyed.

Definition 1. A permutation \(f \) on a set \(S \) is a bijective self mapping \(f : S \rightarrow S \).

Let \(\mathcal{P} \) denote the set of all bi-partite non-signaling systems. We define another set \(\mathcal{D} \subset \mathcal{P} \) as follows:

Definition 2. Let \(\mathcal{D} \) include all non-signaling systems \(D_d \) with output set \(S_d = \{0, 1, ..., d - 1\} \) and arbitrary input sets \(\mathcal{X}, \mathcal{Y} \). For \(a, b \in \mathcal{S}_d \) and \(x \in \mathcal{X}, y \in \mathcal{Y} \) its conditional probability distribution is defined as

\[
P_{D_d}(ab|xy) = \begin{cases} 1/d & \text{if } f_{xy}(a) = b, \\ 0 & \text{otherwise}, \end{cases}
\]

where \(f_{xy} : S \rightarrow S \) is a permutation on the output set depending on \(x, y \). Every \(D_d \in \mathcal{D} \) is fully defined by the set \(\{f_{xy} : x \in \mathcal{X}, y \in \mathcal{Y}\} \).

It is not hard to see that the marginal probabilities \(P_{D_d}(a|x) \) as well as \(P_{D_d}(b|y) \) are uniform independently of \(y \) and \(x \), respectively. Therefore \(\mathcal{D} \subset \mathcal{P} \) holds. Refer to the NLB as a prominent example of a \(D_2 \in \mathcal{D} \).

RESULTS

In this section we will prove Theorem 1. We distinguish two main parts of the proof: First (Subsection), we restrict the reasoning to the set \(\mathcal{D} \) and show that with a finite number of \(D_{d-1} \in \mathcal{D} \) and shared randomness one can approximate any \(D_d \in \mathcal{D} \) arbitrarily well. This induction step is anchored by the fact that any \(D_2 \in \mathcal{D} \), i.e., any distributed Boolean function, can be simulated by local operations on a finite number of NLBs [1]. Second (Subsection), the universality of the set \(\mathcal{D} \) itself is proven, that is, given an arbitrary non-signaling system \(\mathcal{P} \in \mathcal{P} \) we show a protocol that simulates \(\mathcal{P} \) by local operations on a \(D_d[P] \in \mathcal{D} \) arbitrarily closely.

Induction on \(d \)

In the following we reduce the problem of simulating any given system \(D_d \) to the task of simulating a finite number of \(D_{d-1} \). We define a simulation protocol as a number of classical operations on resource systems and (if needed) shared randomness. The operations are subsequently and non-interactively executed by two parties (usually called Alice and Bob) which finally simulate a certain target system.

Constructing \(D_{d-1} \)

Suppose that a system \(D_d \in \mathcal{D} \), defined by the output set \(S_d \) and the permutations \(\{f_{xy} : x \in \mathcal{X}, y \in \mathcal{Y}\} \), is given. Let therefore \(D_{d-1} \) be characterized by the output set \(S_{d-1} = S_d \{d - 1\} \) and input sets \(\mathcal{X}' = \mathcal{X} \times S_d \), \(\mathcal{Y}' = \mathcal{Y} \times S_d \). For \(a, b \in S_{d-1} \) and \(x' \in \mathcal{X}', y' \in \mathcal{Y}' \) its conditional probability distribution shall be

\[
P_{D_{d-1}}(ab|x'y') = \begin{cases} 1/(d - 1) & \text{if } g_{x'y'}(a) = b, \\ 0 & \text{otherwise.} \end{cases}
\]

The function \(g_{x'y'} \) is fixed by the inputs \(x' = (x, a_0) \) and \(y' = (y, b_0) \) as

\[
g_{x'y'}(a) = \begin{cases} r_{a_0}^{-1}(f_{xy}(a)) & \text{if } f_{xy}(a) = b_0 \land a \neq a_0, \\ \nu_{b_0}(f_{xy}(r_{a_0}(a))) & \text{otherwise,} \end{cases}
\]

where \(r_{a_0} : S_{d-1} \rightarrow S_d \{a_0\} \) and \(r_{b_0} : S_{d-1} \rightarrow S_d \{b_0\} \) are bijections

\[
r_{a_0}(a) = \begin{cases} d - 1 & \text{if } a = a_0, \\ a & \text{otherwise,} \end{cases}
\]

\[
r_{b_0}(b) = \begin{cases} d - 1 & \text{if } b = b_0, \\ b & \text{otherwise.} \end{cases}
\]

The fact that \(D_{d-1} \) as defined above is a valid system in \(\mathcal{D} \) is proven by the following corollary:
Corollary 1. It holds that \(D_{d-1} \in D \).

Proof. Observe that the system \(D_{d-1} \) is fully characterized by the set \(\{ g_{x'y'} : x' \in \mathcal{X}', y' \in \mathcal{Y}' \} \). Therefore, we will prove that \(g_{xy} \) is a permutation on \(S_{d-1} \).

Given are arbitrary \(x \in \mathcal{X}, a_0 \in S_d \) and \(y \in \mathcal{Y}, b_0 \in S_t \). Since \(r_{a_0}(a) \neq a_0 \) for all \(a \in S_{d-1} \), we need only distinguish the following two cases in (1):

\[
\forall a, a' \in S_{d-1} : g_{xa_0,yb_0}(a) = g_{xa_0,yb_0}(a') \\
\Rightarrow r_{a_0}^{-1}(f_{xy}(a)) = r_{a_0}^{-1}(f_{xy}(a')) \\
\Rightarrow f_{xy}(a) = b_0 \land a \neq a_0 \land f_{xy}(a') = b_0 \land a' \neq a_0 \\
\Rightarrow a = a'.
\]

Here we used that \(f_{xy} \) is a permutation and, therefore, \(f_{xy}(a) = b_0 \) for exactly one input value \(a \). Otherwise:

\[
\forall a, a' \in S_{d-1} : g_{xa_0,yb_0}(a) = g_{xa_0,yb_0}(a') \\
\Rightarrow r_{a_0}^{-1}(f_{xy}(a)) = r_{a_0}^{-1}(f_{xy}(a')) \\
\Rightarrow a = a'.
\]

since \(r_{a_0}^{-1}, r_{a_0} \) are bijections. So \(g_{xa_0,yb_0} \) is injective from a finite set to itself — a permutation on \(S_{d-1} \). □

The Simulation Protocol

The following protocol consists of a finite number of rounds. Each round includes four steps subsequently and non-interactively executed by Alice and Bob. These are:

1. Let \(a_0, b_0 \in S_{d} \) in the initial round, otherwise \(a_0 = a_t = b_0 = b_t \). Alice holds \(a_0 \) and Bob \(b_0 \).
2. Let \(s \) denote a random bit shared by Alice and Bob, such that \(P(s = 0) = 1/d \).
3. System \(D_{d-1} \) is locally accessed by Alice and Bob through the functions \(D_{d-1}^A : \mathcal{X} \times S_d \to S_{d-1} \) and \(D_{d-1}^B : \mathcal{Y} \times S_d \to S_{d-1} \), respectively. Therefore, on input \((x, a_0) \) Alice obtains \(a = D_{d-1}^A(x, a_0) \) and Bob \(b = D_{d-1}^B(y, b_0) \) on input \((y, b_0) \), respectively. From the definition of \(D_{d-1} \) we have that always

\[
g_{xa_0,yb_0}(a) = b.
\]

4. Let the local computation of temporary outputs \(a_t, b_t \in S_d \) be defined as

\[
a_t = (1-s)a_0 + sr_{a_0}(a)
\]

for Alice and

\[
b_t = (1-s)b_0 + sr_{b_0}(b)
\]

for Bob.

\[
1st \ round \quad a_0 \in S_d \quad b_0 \in S_d \quad s \in \{0,1\} \quad P(s = 0) = \frac{1}{d} \quad s \in \{0,1\} \\
a = D_{d-1}^A(x, a_0) \quad b = D_{d-1}^B(y, b_0) \\
a_t = (1-s)a_0 \quad b_t = (1-s)b_0 \\
+ sr_{a_0}(a) \\
+ sr_{b_0}(b)
\]

FIG. 1: The simulation of \(D_d \) by local operations on \(n \) \(D_{d-1} \).

The next round starts with assignments \(a_0 = a_t, b_0 = b_t \) and then proceeds with the second step and so on. After the last round the parties output \(a_t, b_t \) as the final outputs of the simulation. (The relabeling functions \(r_{a_0}, r_{b_0} \) are necessary because the set \(S_{d-1} \), on which \(g_{xy} \) is defined, obviously lacks the element \(d-1 \), which is one of \(D_d \)'s outputs. On the other hand we have already correlated the outputs \(a_0, b_0 \) in the case \(s = 0 \), so these outputs can serve as replacements for \(d-1 \) and \(f_{xy}(d-1) \), respectively.)

Simulating \(D_d \)

Given are \(x, y \). Every round starts with a pair \(a_0, b_0 \). If \(f_{xy}(a_0) \neq (b_0) \), we have a certain error probability in simulating \(D_d \) in that round:

Corollary 2. Given any \(x, y \). In a round initialized with an incorrectly correlated pair \(a_0, b_0 \), Alice and Bob simulate \(D_d \), on inputs \(x, y \), with an error probability of \(2/d \).

Proof. \(a_0, b_0 \) are incorrectly correlated if and only if \(f_{xy}(a_0) \neq b_0 \). The second step of the simulation round follows. The possible events are:

1. \(s = 0 \), where \(P(s = 0) = 1/d \)

According to (5), Alice and Bob locally compute \(a_0 = a_t, b_0 = b_t \). Because \(f_{xy}(a_0) \neq b_0 \Rightarrow f_{xy}(a) \neq b \) they obtain an incorrectly correlated pair \(a_t, b_t \),
2. $s = 1$, where $P(s = 1) = 1 - 1/d$

According to (6) Alice and Bob locally compute $a_t = r_{a_0}(a)$, $b_t = r_{a_0}(b)$. Remember from (4) that the pairs $a = D_{d-1}^x(x')$, $b = D_{d-1}^y(y')$ always obey $g_{x'y'}(a) = b$, therefore $a_t = r_{a_0}(a)$ and $b_t = r_{a_0}(g_{x'y'}(a))$. $f_{xy}(a_0) \neq b_0$ implies $f_{xy}(a_0) = b^* \neq b_0$, $f_{xy}(b_0) = a^* \neq a_0$. From the initialization of the round a_0, b_0 are fixed and therefore also a^*, b^* are fixed. Let a' denote any element in S_{d-1} different to a_0, a^*. We analyze the three possible assignments to a:

- $a = a^*$, where $P(a = a^*) = \frac{1}{d-1}$

 $a_t = r_{a_0}(a^*) = a^*$,

 $b_t = r_{a_0}(g_{x_0,y_0}(a^*)) = r_{a_0}(r_{a_0}^{-1}(f_{xy}(a_0))))$

 $= f_{xy}(a_0) = b^*$.

- $a = a_0$, where $P(a = a_0) = \frac{1}{d-1}$

 $a_t = r_{a_0}(a_0) = d - 1$,

 $b_t = r_{a_0}(g_{x_0,y_0}(a_0)) = r_{a_0}(r_{a_0}^{-1}(f_{xy}(r_{a_0}(a_0))))$

 $= f_{xy}(r_{a_0}(a_0)) = f_{xy}(d - 1)$.

- $a = a'$, where $P(a = a') = \frac{d-2}{d-1}$

 $a_t = r_{a_0}(a') = a'$,

 $b_t = r_{a_0}(g_{x_0,y_0}(a')) = r_{a_0}(r_{a_0}^{-1}(f_{xy}(r_{a_0}(a'))))$

 $= f_{xy}(r_{a_0}(a')) = f_{xy}(a')$.

We saw that if $s = 0$ the round will end in an incorrectly correlated pair, however, if $s = 1$ only the case $a = a^*$ yields an incorrect correlation, that is, $f_{xy}(a^*) \neq b^*$. The round ends with uniform probability in d different pairs a_t, b_t, such that $f_{xy}(a_t) = b_t$ in $d - 2$ cases and $f_{xy}(a_t) \neq b_t$ in 2 cases. That is, wrong output pairs — not correlated according to D_d given x, y — are obtained with a probability of $P(s = 0) + P(s = 1)P(a = a^*) = 2/d$.

The next corollary ensures that once we achieved a correct correlation in a round then all the following rounds will simulate D_d.

Corollary 3. Given any x, y. In a round initialized with a correctly correlated pair a_0, b_0, Alice and Bob simulate D_d on inputs x, y.

Proof. a_0, b_0 are correctly correlated if and only if $f_{xy}(a_0) = b_0$. The second step of the simulation round follows. The possible events are:

1. $s = 0$, where $P(s = 0) = 1/d$

 According to (6) Alice and Bob locally compute $a_t = a_0, b_t = b_0$. If $f_{xy}(a_0) = b_0$ then also $f_{xy}(a_t) = b_t$.

2. $s = 1$, where $P(s = 1) = 1 - 1/d$

 According to (6) Alice and Bob locally compute $a_t = r_{a_0}(a), b_t = r_{a_0}(b)$. Remember from (4) that the pairs $a = D_{d-1}^x(x'), b = D_{d-1}^y(y')$ always obey $g_{x'y'}(a) = b$, therefore $a_t = r_{a_0}(a)$; $b_t = r_{a_0}(g_{x'y'}(a))$. From the initialization of the round a_0, b_0 are fixed. Let a' denote any element in S_{d-1} different to a_0. We analyze what happens locally in the two situations:

 - $a = a_0$, where $P(a = a_0) = \frac{1}{d-1}$

 $a_t = r_{a_0}(a_0) = d - 1$,

 $b_t = r_{a_0}(g_{x_0,y_0}(a_0)) = r_{a_0}(r_{a_0}^{-1}(f_{xy}(r_{a_0}(a_0))))$

 $= f_{xy}(r_{a_0}(a_0)) = f_{xy}(d - 1)$.

 - $a = a'$, where $P(a = a') = \frac{d-2}{d-1}$

 $a_t = r_{a_0}(a') = a'$,

 $b_t = r_{a_0}(g_{x_0,y_0}(a')) = r_{a_0}(r_{a_0}^{-1}(f_{xy}(r_{a_0}(a'))))$

 $= f_{xy}(r_{a_0}(a')) = f_{xy}(a')$.

We see that the round ends with uniform probability in d different pairs a_t, b_t, such that always $f_{xy}(a_t) = b_t$, which is the exact behavior of D_d given x, y.

Induction Step

The shown construction of D_{d-1} from D_d and the proven corollaries of the simulation protocol are sufficient to complete this section by proving the following lemma:

Lemma 1. For any alphabet size $d > 2$ any system $D_d \in \mathcal{D}$ can be simulated, within any error probability $\delta_d > 0$, by local operations on shared randomness and a finite number of approximations to a system $D_{d-1} \in \mathcal{D}$.

Proof. Given is D_d. We construct D_{d-1} as previously defined. Let $\delta_{d-1} > 0$ denote its error probability, that is, the probability that outputs a, b on inputs x', y' do not satisfy $g_{x'y'}(a) = b$. According to Corollaries 2 and 3 the probability that our protocol simulates D_d after n rounds is therefore:

$$\Pr\{P_{D_d} = P_{\text{SIM}(n)}\} \geq (1 - \delta_{d-1})^n \left(d - \frac{2}{d}\right) \sum_{i=0}^{n-1} \left(\frac{2}{d}\right)^i.$$

(7)

Where $(1 - \delta_{d-1})^n$ denotes the probability that all the used systems D_{d-1} worked correctly. Obviously (7) is a geometric series with $q = \frac{2}{d}$. Therefore we can rewrite the term as

$$\Pr\{P_{D_d} = P_{\text{SIM}(n)}\} \geq (1 - \delta_{d-1})^n \left(1 - \left(\frac{2}{d}\right)^n\right).$$
We fix \(n \) as the, since \(d \) and \(\delta_d \) are given, finite quantity
\[
 n = \varepsilon + \log_{2/d} \delta_d, \tag{8}
\]
where \(0 < \varepsilon \leq 1 \) is used to round up to the next integer or maximally increase the directly obtained integer by one. We guarantee a maximal error probability \(\delta_d \) by demanding
\[
 (1 - \delta_{d-1})^n \left(1 - \left(\frac{2}{d} \right)^n \right) = 1 - \delta_d.
\]
By substituting \(n \) we obtain
\[
 \delta_{d-1} = 1 - \left(\frac{1 - \delta_d}{1 - (2/d)^n} \right)^{n-1} = 1 - \left(\frac{1 - \delta_d}{1 - (2/d)^n} \right)^{(\varepsilon + \log_{2/d} \delta_d)^{-1}} > 0.
\]
Here \(\varepsilon > 0 \) and \(d > 2 \) ensure \(\delta_{d-1} > 0 \), that is, because \(1 - \delta_d < 1 - (2/d)^n \delta_d \) we can guarantee that there always exists a \(\delta_{d-1} \) sufficiently small but still above zero, such that the error probability of our simulation is upper bounded by \(\delta_d \).

\(\mathcal{D} \) is universal

In this subsection we generalize our findings of the last subsection by proving that the set \(\mathcal{D} \) is actually universal in simulating any non-signaling correlation arbitrarily closely. More precisely, we will show the following:

Lemma 2. For any system \(P \in \mathcal{P} \) we find \(D_d(P) \in \mathcal{D} \), such that Alice and Bob can approximate \(P \) by local operations on \(D_d(P) \) arbitrarily well.

Proof. Alice and Bob approximate \(P \) by simply locally relabeling the outputs of \(D_d(P) \). According to Definition \ref{def:universal} it is sufficient to define \(D_d(P) \) by the output alphabet \(S_d = \{0, 1, \ldots, d - 1\} \), i.e., the cardinality \(d \), and a set of permutations \(\{f_{xy} : x \in X, y \in Y\} \) on \(S_d \).

Constructing \(S_d \)

Given \(P \) we find \(d \) as follows: First we replace any non-signaling system \(P \) with irrational output probabilities \(P(ab|xy) \in \mathbb{R} \setminus \mathbb{Q} \) with another non-signaling system which is entirely in the rational number space \(\mathbb{Q} \) and as close as desired to the original \(P \). (Note that, as an implication of the following proof, any entirely rational \(P \) can be simulated perfectly by local operations on \(D_d(P) \).) The parameter \(d \) is now chosen such that \(1/d \) divides all output probabilities \((P(ab|xy)) \) for all \(a, b, x, y \) without remainder. So \(d \) shall be the least common multiple of the set of inverted output probabilities (divided by their denominators to have only integers).

Constructing \(D_d \)

Given \(P \) and \(S_d \) we find \(\{f_{xy} : x \in X, y \in Y\} \) as follows: Let \(A, B \) denote \(P \)’s output sets of cardinalities \(d_a, d_b \). Since \(P \in \mathcal{P} \) the non-signaling conditions hold
\[
 \sum_{b \in B} P(ab|xy) = P(a|x) \text{ for all } a, x, y, \tag{9}
\]
\[
 \sum_{a \in A} P(ab|xy) = P(b|y) \text{ for all } b, x, y.
\]
We fix arbitrary inputs \(x, y \). First we partition the output set \(S_d \) into \(d_a \) and \(d_b \) pairwise disjoint parts, respectively
\[
 S_d = A_0x \cup A_1x \cup \ldots \cup A_{(d_a-1)}x = \bigcup_{a \in A} A_{ax},
\]
\[
 S_d = B_0y \cup B_1y \cup \ldots \cup B_{(d_b-1)}y = \bigcup_{b \in B} B_{by}.
\]
The parts shall have cardinalities
\[
 |A_{ax}| = dP(a|x) \text{ and } |B_{by}| = dP(b|y) \tag{10}
\]
each. Next we partition \(S_d \) a second time into \(d_a, d_b \) disjoint parts
\[
 S_d = \bigcup_{a \in A, b \in B} A_{abxy}, \quad S_d = \bigcup_{a \in A, b \in B} B_{abxy}.
\]
The parts shall have cardinalities
\[
 |A_{abxy}| = |B_{abxy}| = dP(ab|xy). \tag{11}
\]
Note that if \(P(ab|xy) = 0 \) then \(A_{abxy} = B_{abxy} = \emptyset \). Additionally the following conditions for all \(a \in A \) and \(b \in B \) shall hold:
\[
 A_{abxy} \subseteq A_{ax}, \quad B_{abxy} \subseteq B_{by}. \tag{12}
\]
Observe that we can always choose such a second partitioning that fulfills the conditions (12), because
\[
 \sum_{b \in B} |A_{abxy}| = \sum_{b \in B} dP(ab|xy) = dP(a|x) = |A_{ax}|,
\]
and therefore, for all \(a, x, y \), we have \(\sum_{b \in B} |A_{abxy}| = |A_{ax}| \). The same argument obviously holds for Bobs second partitioning of \(S_d \). The permutation \(f_{xy} \) is now defined by arbitrary bijections on these pairs of subsets, that is, given \(a, b \),
\[
 f_{xy} : A_{abxy} \rightarrow B_{abxy} \tag{13}
\]
is defined and bijective. Since this holds for any pair \(a, b \) we have that \(f_{xy} \) is a bijection from \(S_d \) to itself.

Corollary 4. Given \(x, y, f_{xy} \) is a permutation on \(S_d \).

Therefore the set of permutations \(\{f_{xy} : x \in X, y \in Y\} \) defines a valid element of \(\mathcal{D} \).
The Protocol

For the simulation, Alice and Bob have access to a system $D_d[P]$ and a description of the partitionings $\{A_{ax} : a \in A, x \in X\}$ and $\{B_{by} : b \in B, y \in Y\}$ respectively. For inputs x, y they locally obtain outputs a', b' from $D_d[P]$ indicated by functions $a' = D^a_d[P](x)$ and $b' = D^b_d[P](y)$ and select their final outputs a, b according to the rules

$$ a \text{ if } a' \in A_{ax}, \quad b \text{ if } b' \in B_{by}. \quad (14) $$

The simulation protocol (SIM) is summarized in the following figure.

ALICE	SIM	BOB
$x \in X$	inputs	$y \in Y$
$\{A_{ax} : \forall a, x\}$	knowledge	$\{B_{by} : \forall b, y\}$
$a' = D^a_d[P](x)$	$D_d[P]$	$b' = D^b_d[P](y)$
a if $a' \in A_{ax}$	outputs	b if $b' \in B_{by}$

FIG. 2: The simulation of P by local operations on one $D_d[P]$.

The Simulation

P will be simulated because for arbitrary x, y, a, b it follows, from the defined relabellings (14), that

$$ P_{SIM}(ab|xy) \equiv \frac{1}{d} \sum_{a' \in A_{ax}, b' \in B_{by}} P_{D_d[P]}(a'b'|x, y). $$

Furthermore, the probability that $D_d[P]$ outputs a pair a', b' given a pair x, y is $1/d$ if and only if $f_{xy}(a') = b'$, therefore

$$ \sum_{a' \in A_{ax}, b' \in B_{by}} P_{D_d[P]}(a'b'|x, y) = \sum_{a' \in A_{ax}, b' \in B_{by}} \frac{1}{d}. $$

We now concentrate on the summation index for a moment. By (13) we have the implication

$$ f_{xy}(a') = b' \Rightarrow a' \in A_{a^*b'^*}, \quad b' \in B_{a^*b'^*}. $$

for any a^*, b^*. The additional condition $a' \in A_{ax}, b' \in B_{by}$ in the summation index and (12) fixes $a^* = a, b^* = b$ to the originally given values. Therefore we can change the summation index as

$$ \sum_{f_{xy}(a')=b', a' \in A_{ax}, b' \in B_{by}} \frac{1}{d} = \sum_{a' \in A_{abxy}, b' \in B_{abxy}} \frac{1}{d}. $$

The defined cardinalities $|A_{abxy}| = |B_{abxy}| = dP(ab|xy)$ in (11) lead to the wanted probability

$$ \sum_{a' \in A_{abxy}, b' \in B_{abxy}} \frac{1}{d} = |A_{abxy}| \frac{1}{d} = |B_{abxy}| \frac{1}{d} = P(ab|xy). $$

Since a, b, x, y where arbitrary we have proved that the simulation holds for any outcome probability and therefore for P.

Let us summarize the situation: First we have proven the induction step from D_{d-1} to D_d, i.e., given a finite supply of imperfect systems D_{d-1} and shared randomness we constructed a non-interactive protocol between Alice and Bob that approximates D_d arbitrarily well. The induction is anchored by the fact that any D_2, which is a distributed Boolean function, can be simulated by a finite number of non-local boxes [11]. Therefore, we have shown that a finite quantity of non-local boxes is sufficient for approximating any element of \mathcal{D} arbitrarily closely. In a second part we have provided a proof that \mathcal{D} is actually universal in approximating any non-signaling system. Concluding we have shown the claimed main result.

CONCLUDING REMARKS

With this note we have shown that any non-signaling bi-partite system can be approximated arbitrarily well by a finite number of non-local boxes. This complements an earlier result [10], which states that a perfect simulation is not always possible. Our result implies that the non-local box should be considered as a unit of bi-partite non-locality. Another implication is that every inner correlation, that is, any correlation which is not element of the convex hull of the non-signaling polytope, can be simulated perfectly by non-local boxes.

It is a challenging open problem whether the non-local box is also a universal unit for multi-partite non-signaling systems. If this fails to be true, a natural question would be whether there still exists a single system, or a finite number of systems, which is universal in the same sense as the NLB in the two-partite case.

This work was funded by the Swiss National Science Foundation (SNSF).

[1] J. Bell, Physics 1, 195 (1964).
[2] A. Einstein, B. Podolsky, and N. Rosen, Physical Review 47, 777 (1935).
[3] M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge: Cambridge University Press, 2000).
[4] S. Popescu and D. Rohrlich, Foundations of Physics 24, 379 (1994).
[5] J. F. Clauser, M. A. Horne, A. Shimony, and R. A. Holt, Physical Review Letters 23, 880 (1969).
[6] B. S. Tsirelson, Letters in Mathematical Physics 4, 93 (1980).
[7] N. S. Jones and L. Masanes, Physical Review 72, 052312 (2005), quant-ph/0506182.
[8] J. Barrett and S. Pironio, Physical Review Letters 95, 140401 (2005), arXiv:quant-ph/0506180.
[9] J. Barrett, N. Linden, S. Massar, S. Pironio, S. Popescu, and D. Roberts, Physical Review 71, 022101 (2005), quant-ph/0404097.
[10] F. Dupuis, N. Gisin, A. Hasidim, A. A. Méthot, and H. Pilpel, Journal of Mathematical Physics 48, 082107 (2007), arXiv:quant-ph/0701142.
[11] W. van Dam, ArXiv Quantum Physics e-prints (2005), arXiv:quant-ph/0501159.