PRIMER NOTE

DEVELOPMENT AND CHARACTERIZATION OF MICROSATELITE MARKERS FOR CENTRAL AMERICAN Begonia sect. Gireoudia (Begoniaceae)1

ALEX D. TWYFORD2,3,5, RICHARD A. ENNOS4, AND CATHERINE A. KIDNER2,3

1Royal Botanic Garden Edinburgh, 20A Inverleith Row, Edinburgh EH3 5LR, United Kingdom; 2Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JH, United Kingdom; and 3Institute of Evolutionary Biology, School of Biological Sciences, Ashworth Laboratories, University of Edinburgh, Edinburgh EH9 3JT, United Kingdom

• Premise of the study: Transcriptome sequence data were used to design microsatellite primers for two widespread Central American Begonia species, B. heracleifolia and B. nelumbiifolia, to investigate population structure and hybridization.

• Methods and Results: The transcriptome from vegetative meristem tissue from the related B. plebeja was mined for microsatellite loci, and 31 primer pairs amplified in the target species. Fifteen primer pairs were combined in two multiplex PCR reactions, which amplified an average of four alleles per locus.

• Conclusions: The markers developed will be a valuable genetic resource for medium-throughput genotyping of Central American Begonia sect. Gireoudia. A subset of these markers have perfect sequence matches to Asian B. venusta, and are promising for studies in other Begonia sections.

Key words: Begonia heracleifolia; Begonia nelumbiifolia; Begoniaceae; hybridization; microsatellite primers; transcriptome sequences.

Methods and Results

Microsatellite markers were designed from the transcriptome sequence of vegetative meristem tissue from B. plebeja Liebm., a related species from Begonia sect. Gireoudia (European Nucleotide Archive Sequence Read Archive accession number: ERP001195; Brennan et al., 2012). The QDD bioinformatic pipeline (Meglécz et al., 2010), which integrates microsatellite detection, a redundancy check to avoid amplifying multiple PCR products, and designs primers, was used according to Lepais and Bacles (2011). A FASTA file of the B. plebeja transcriptome sequence assembly was analyzed in QDD version 1.3 using default parameters: selecting only primers that amplify a PCR product between 90 and 320 bp in length, with a repeat motif of 2–6 bp repeats, and a minimum length of four repeat units. To make microsatellite amplification in other species more likely, primers were excluded if they did not have a perfect BLAST match to the transcriptome of B. conchifolia A. Dietr. (sect. Gireoudia; Brennan et al., 2012). Reads from which the primers were designed were BLAST searched against the Arabidopsis Information Resource (TAIR) database (http://www.arabidopsis.org) to investigate the putative function of each locus.

Thirty-one primer pairs detected in QDD were tested for amplification in B. heracleifolia Cham. & Schltdl and B. nelumbiifolia Cham. & Schltdl. These species were chosen because they are two of the most widespread Begonia species in a genus of mostly rare endemics (Hughes and Hollingsworth, 2008). The species are known to hybridize (Burt-Utley, 1985), facilitating studies of species boundaries. Primer amplification was tested in seven individuals of the two species (Appendix 1). A subset of polymorphic markers that amplified reliably in both species was then tested for multiplex compatibility by mixing equimolar ratios of each primer. The PCR multiplexes were then tested on a population of each species (20 individuals) to estimate the genetic diversity of the markers. The primer sequences were BLAST searched against the transcriptome sequence of the divergent Asian species B. venusta King (sect. Platycentrum) to test for likely cross-amplification of primers in other Begonia species.

Approximately 15 mg of silica-dried leaf material was extracted using DNeasy 96-sample kit (QIAGEN, Germantown, Maryland, USA). To overcome an

Begonia L. is a diverse tropical genus with over 1500 species. Evolutionary research has focused on the early-diverging African species (e.g., Hughes and Hollingsworth, 2008) and the more derived Asian species (e.g., Thomas et al., 2011), with the American species largely overlooked. The most recent common ancestor of Central American Begonia is likely to be relatively recent (Miocene; Dewitte et al., 2011), and subsequent speciation has resulted in high species richness (total c. 690 species; Goodall-Copestake et al., 2010). Population studies of Central American Begonia species will shed light on the evolution of species richness in a morphologically diverse group of neotropical herbs; but to date, studies have been limited by the availability of suitable nuclear markers to complement plastid microsatellite markers (Twyford et al., 2013).

In this study, we describe the development of nuclear microsatellite markers to study gene flow within and between Central American Begonia species. This requires markers that amplify over a broad phylogenetic scope, which can then be cross-amplified in divergent species.
Locus	Primer sequences (5'–3')	Multiplex	Fluorescent dye	T_m (°C)	Repeat motif^c	Allele sizes (bp)^d	Putative function^e	E-value
BI4329	F: M13-CACCACCAACAAATGCAAGCTTT	1	FAM	59	(GGA)₆	4 2 89–104	immunoglobulin E-set superfamily protein	2E-13
BI3043	F: M13-CGACATTCAACCAATCTGG	1	FAM	60	(TC)₅	1 2 173–179	—	—
BC432	F: M13-AAAACCGAATGCAAGCTTT	1	FAM	60	(TG)₄	1 1 261–263	endotransglucosylase/hydrolase	5E-18
BC344	F: M13-GGGGACTCTTGCTTTGAG	1	VIC	60	(GCA)₃	1 1 105–108	chitinase-like protein	3E-07
BI6278	F: M13-TGTAGTGTGTTGATGACGAATCTTTG	1	VIC	59	(TCC)₃	1 3 238–253	DOF zinc finger protein	3E-25
BI5347	F: M13-TCTGCAATTTCTTATCAAGACC	1	VIC	59	(CTT)₆	2 1 171–183	unknown gene	0.000002
BC552	F: M13-TGCTGAATGGAATCTCGCC	1	NED	60	(GT)₂	2 2 271–273	—	—
BI3348	F: M13-M13-TCAGCTGTTTTCCTGTGAGGA	1	PET	60	(CT)₅	3 3 279–283	—	—
BI1112	F: M13-M13-ATCCAAATGTCNACCTCTCG	2	FAM	60	(TCC)₃	2 2 109–115	—	—
BI3820	F: M13-AGGACCAATTTTGCACGCTTA	2	FAM	59	(CTT)₇	5 2 158–176	LOB domain-containing protein	2E-39
BI1.34	F: M13-M13-ATCAAGCTCCTATCTCTCCT	2	VIC	60	(CT)₅	4 2 306–314	—	—
BI4004	F: M13-TGCTGGAATATCCTGTTGACG	2	VIC	59	(AT)₃	2 3 155–169	O-fucosyltransferase family protein	1E-32
BI362	F: M13-M13-ATCCACCTGCTGTGCAACAC	2	NED	60	(ATG)₄	4 4 147–159	Acyl-CoA N-acyltransferases (NAT) superfamily protein	1.0E-45
BC332	F: M13-M13-AGACCAAGATGCAAGGTTCA	2	PET	59	(TCA)₅	4 2 188–200	ATPase	1.0E-122

Additional loci tested

Locus	Primer sequences (5'–3')	Multiplex	Fluorescent dye	T_m (°C)	Repeat motif^c	Allele sizes (bp)^d	Putative function^e	E-value
BC672	F: M13-CCTTGGCAAGAAGAAGCC	60	(CTT)₈	3 1	152–158	cellulose-synthase-like C12	2E-57	
BI4477	F: M13-GGTCCTCTCCTGCTTCTGTTG	60	(CT)₅	4 2	111–119	—	—	
BI06604	F: M13-ATTTTTTCCAAGAGAGGCC	59	(AT)₆	6 1	111–127	catalytic LigB subunit of aromatic ring-opening dioxygenase family	3E-13	
BI6294	F: M13-TGCTGTTGCTGATATTTAACTCA	59	(AT)₁₀	1^M 1^M	148	—	—	
BI6701	F: M13-AGGACGTTTCTCAGCTGCAC	60	(GA)₆	1^M 1^M	195	—	—	
BI05710	F: M13-AGAACTTTGAAATGGGTTTACCA	60	(GA)₃	3 1	178–184	—	—	
BI4848	F: M13-CACCACCCCTCTCAAGAAGCAA	59	(AG)₅	4 2	71–74	arabinogalactan protein	6E-07	
BC402	F: M13-TTACTGAGCTGTAAGGAGGC	60	(AT)₅	1^M 1^M	92	bifunctional inhibitor/lipid-transfer protein/seed storage 2S albumin superfamily protein	3E-09	
BC932	F: M13-AGATGCTTCTCACTGACTCCAT	60	(GA)₆	2 1	660–662†	cysteine proteinase superfamily protein	0.000001	

^a Multiplexed loci

^b Fluorescent dye

^c Repeat motif

^d Allele sizes (bp)

^e Putative function

^f Putative function

† Cysteine proteinase superfamily protein.

TABLE 1. Characterization of nuclear microsatellites for Central American *Begonia* species.
TABLE 1. Continued.

Locus	Primer sequences (5′–3′) a	Multiplex b	Fluorescent dye	T° C) Repeat motif c	Sizes (bp) d	Putative function e
BI3069	F: M13-AACCACAGTAATCATCCGGC	60 (CA) 5 1 1	184–192	—	—	—
	R: TGTCCGGTAACTGTGGTGAA	60 (AGG) 5 MP MP	—	—	—	—
BI5174	F: M13-GTCGCAGGGTTTGTCTAGGA	60 (CTT) 5 1 1	118–121	stromal cell-derived factor 2-like protein precursor	—	—
	R: GGAAATCAGAGTGCTGGCTC	59 (TC) 6 3 2	148–164	—	—	—
	R: GAAGGAGATGATTATGACGAA	59 (TG) 6 3 2	147–173	—	—	—
BI7247	F: M13-CTCTTATTCCGCGTCAAAGC	60 (GA) 5 2 1	178–180	—	—	—
	R: AGCGGAGAAGTCGAAAACAG	—	—	—	—	—
BC312	F: M13-ATTTCCTTCTGCGAACGATG	60 (GA) 5 2 1	178–180	—	—	—
	R: ATCGGAACTCTGAGCCTGAA	—	—	—	—	—

Note A

A B. heracleifolia; MP = multiple PCR products amplified; nel = B. nelumbiifolia; Tm = primer melting temperature when amplified individually.

a M13 sequence is: CACGACGTTGTAAAACGAC.
b Multiplex to which the primer was assigned.
c Repeat motif in

d The observed range of PCR product sizes excluding the M13 motif.
e Putative function in Arabidopsis.

CONCLUSIONS

We have described the development of nuclear microsatellite primers that amplify in two divergent Central American Begonia species. Some of the primers have exact BLAST matches in the transcriptome of the Southeast Asian species B. venusta, including both the forward and reverse primers for loci BI3348, BC932, and BC552.

Table 2. Genetic diversity in population samples of Begonia heracleifolia and B. nelumbiifolia.

Locus	A	Hs	He
BI4329	3	0.400	0.524
BEI0340	4	0.000	0.444
BEC432	2	0.100	0.097
BEC344	1	—	—
BEI6278	1	—	—
BEI5347	3	0.300	0.449
BEC552	1	—	—
BEI3348	4	0.579	0.604
BEI06534	5	0.500	0.750
BEI7112	2	0.400	0.467
BEI3820	5	0.600	0.623
BEC134	4	0.611	0.732
BEI04004	2	0.059	0.059
BIC362	2	0.050	0.050
BEC332	4	0.250	0.483
Mean	3.333	0.321	0.440
SD	1.155	0.228	0.246

Note: A = number of alleles per locus; Hs = total alleles observed in the two species; He = expected heterozygosity; Ht = observed heterozygosity.
multiplexed assay of 15 loci should enable accurate assignment to hybrid classes (e.g., F1, backcross). Future studies will use these loci to estimate the genetic structure of populations, the frequency of hybrids, and the extent of introgression in hybrid swarms.

LITERATURE CITED

Brennan, A. C., S. Bridgett, M. S. Ali, N. Harrison, A. Matthews, J. Pellicer, A. D. Twyford, and C. A. Kinder. 2012. Genomic resources for evolutionary studies in the large, tropical genus Begonia. *Tropical Plant Biology* 5: 261–267.

Burt-Uhtley, K. 1985. A revision of the Central American species of Begonia section Gireoudia (Begoniaceae). *Tulane Studies in Zoology and Botany* 25: 1–131.

Dewitte, A., A. D. Twyford, D. C. Thomas, C. A. Kinder, and J. van Huylenbroeck. 2011. The origin of diversity in *Begonia*: Genome dynamism, population processes and phylogenetic patterns. In O. Grillo and G. Venora [eds.], *The dynamical processes of biodiversity: Case studies of evolution and spatial distribution*. InTech Press, New York, New York, USA.

Goodall-Copestake, W., S. Perez-Espona, D. J. Harris, and P. M. Hollingsworth. 2010. The early evolution of the mega-diverse genus *Begonia* (Begoniaceae) inferred from organelle DNA phylogenies. *Biological Journal of the Linnean Society* 101: 243–250.

Hughes, M., and P. M. Hollingsworth. 2008. Population genetic divergence corresponds with species-level biodiversity patterns in the large genus *Begonia*. *Molecular Ecology* 17: 2643–2651.

Lepais, O., and C. F. E. Bacles. 2011. Comparison of random and SSR-enriched shotgun pyrosequencing for microsatellite discovery and single multiplex PCR optimization in *Acacia harpophylla*. F. Muell. ex Benth. *Molecular Ecology Resources* 11: 711–724.

Mieglecz, E., C. Coste-Doat, V. Dubut, A. Gilles, T. Malaua, N. Pich, and J.-F. Martin. 2010. QDD: A user-friendly program to select microsatellite markers and design primers from large sequencing projects. *Bioinformatics (Oxford, England)* 26: 403–404.

Schuelke, M. 2000. An economic method for the fluorescent labeling of PCR fragments. *Nature Biotechnology* 18: 233–234.

Thomas, D. C., M. Hughes, T. Phuthai, W. H. Ardi, S. Rajhandary, R. Rubite, A. D. Twyford, J. E. Richardson. 2011. West to east dispersal and subsequent rapid diversification of the mega-diverse genus *Begonia* (Begoniaceae) in the Malesian archipelago. *Journal of Biogeography* 39: 1365–1399.

Twyford, A. D., C. A. Kinder, N. Harrison, and R. A. Ennos. 2013. Population history and seed dispersal in widespread Central American *Begonia* species (Begoniaceae) inferred from plastome-derived microsatellite markers. *Botanical Journal of the Linnean Society* 171: 260–276.
Appendix 2. Continued.

Locus	Forward primer sequence (5’–3’)	Reverse primer sequence (5’–3’)	Repeat motif
BI1733	GTTCCAACCTCCAATGCTGTTT	CGAGTTTGGCTTTCGAAATCTTG	(GCCACA)_5
BI1816	GTTGTGCGGTTGAGGGTTGTT	CAAATGCTATCTCCAGCTATGG	(GAT)_1
BI1937	TCATTCTCCGAGCGAGGAA	GGAAGGTGAGGGAGG	(GGA)_5
BI1948	CAAGACCGTGGAGGAGGGA	CTGAGTGGAGGAGG	(TA)_5
BI2413	GAAGGGAGGACGGCTCAG	CGAGAGTGGCTTACATCC	(AGA)_5
BI2675	TTGCATATACCTCAGCCG	GGTTCTTCTCAGGGTAC	(GA)_5
BI2875	CCAATCTCCGATGTGTTGC	AGTGGAGACGGCTCAG	(TC)_5
BI2935	TGAGAAAGGTGGTCTCATATAAGTCA	CATGTGTCGTTGCCATTTT	(CA)_5
BI2946	ATTTGAGCAACCTAGGTTGCT	AAGGCTGAGGGGAGG	(GAA)_5
BI2961	TGCCGGAAGGAGGAGGAG	GAGGAGGAGGAGGAG	(AG)_5
BI2967	TGCGGCGGTTGAGGTAGGAT	TGGAGGAGGAGGAGGAG	(AGA)_5
BI2994	GATCCATCGGGACGAGAAGA	AAAACATCGGAGGACGAGA	(CT)_5
BI3043*	CGACCATCGGACAACAACTG	CGGATTAGGAGGAGG	(TC)_5
BI3069*	AACAGCATATCAGTCCGACG	TGTCGGAATGCTTGTTGAA	(CA)_5
BI3131	ACAAATGCCTGCAACGGG	GAAGCTGAGGGGGGAGG	(AAAG)_5
BI3153	ATGAAGAGGTAGGAGGAGG	GGTGGCTTGTACGGTGAGAT	(TC)_5
BI3286	TCTCATGAGCTATCCGAGCA	AACGCTGAGGGGAGG	(GAA)_5
BI3301	GCATTGAGATTGCGCAAGAT	TGTAGTCTGGAGGAGG	(TA)_5
BI3348*	ACTGTGCTTCTGTTGGAGGC	CTGACGGCCGATAGCTTAAA	(CT)_5
BI3377*	AAACACATCATACGCGGAG	AGAACGAGTTAAGTACG	(AGA)_5
BI3384	ATAACTGTCTGATGTGAGGG	GCTTGTGCTGCTGAGG	(TC)_5
BI3403	TGTTAGAGGAAGGAGGAGG	GCTGAGTGGCTTACATCC	(AGA)_5
BI3519	TCCAGAGGGCTTTGTTGTT	AGCAGTATCGGAGACGAT	(CT)_5
BI3865	ACCCTCACTACATGGCTGTA	TACAGTACGTTTGCGA	(CT)_5
BI3970	GTGTTGCTGCTCTGTTCT	TCCCTACGCTGAGGCA	(GAA)_5
BI4004*	CGGAGAATTCCTTGAGGGG	TCCCTATCGTGAAGCTAC	(AT)_5
BI4013	AGGCCAGATACACCCAAGGG	CGGTTGCTCTCTTCTTCTT	(TA)_5
BI4021	TGGTGGCTGGCTGCGAGTGA	GGAACCTTCTGAGCCTCA	(AT)_5
BI4028	GTCTTCTCCCATGCTTGAAG	GGCTTGGAGGCCAATCCT	(CT)_5
BI4031	TCTTCTGCTGTCAGGTTGCT	AATAAGTGCACAACTGAGG	(TC)_5
BI4088	GTTTGCTGACATGAGGCTC	TTGAGAAATATCCCTCCC	(GGC)_5
BI4128	AGAACAGAGTTGCCAAGGG	AGGAGCACTGCAAGGAGG	(AGA)_5
BI4166	CGGGCAAAATGTGAGGG	AAAATGAGGAGGAGG	(TA)_5
BI4175	GCCAATCAAAGGGTGATTTA	CAGATTGATCTTGAGC	(TA)_5
BI4233	ATGCAGCTCAAGTCAGG	CAAGTCTGGTGCTAGG	(TG)_5
BI4279	GCAGAGACGAGGAGGAG	CAGATGACGAGGAGG	(AG)_5
BI4329*	CAACAACATCAAGGGAGCT	CATGAGGATCAAGGGAG	(AGA)_5
BI4360	CCAGGACCTCCTCCATGAGA	TATTCGCTCAATCCT	(TG)_5
BI4477*	GGATCTGCTGTCCTGTCG	GGGCCAGACGAGAGAAATTTG	(CT)_5
BI4594	CGGAGATGACGAGGAGG	CGTTAGTCACTTGAG	(GT)_5
BI4600	GCTATGGGAAATGGTGAGA	AGCCTCTCCTCTCCTTG	(AGA)_5
BI4641	GCCAGACATTGTCCTGCTGAT	GTGCAAACCCGGAGCATGA	(CT)_5
BI4721	ACTACCTCTCCAAAGGCTGTT	GCCGAAATGCACTTACG	(TC)_5
BI4740	AGGCCACCTCCAAGAATGAAT	GCCCTGATCTGCAATGGGA	(GA)_5
BI4976	GTCGAGACGAGGAGG	TGAGCTTAATGCGAGG	(AGA)_5
BI4779	CGAAGGGAGGAGGAGGAT	TGCCACATATTACCACT	(AAGC)_5
BI4793	CAGTCCGCTGCTACCTTC	GGAAGGCACTGCTGAGG	(GAA)_5
BI4804	TGCGCTGATGTTGTTGGA	AGGAGACGAGAGAATGAG	(TA)_5
BI4848*	GACAGCTCCTCAGAAGGAA	GACGTTGAGGTCTCTCAG	(AT)_5
BI4899	CCAATGGTTTCTCCTAAAACT	GAGTGGAGGACGACGACT	(GA)_5
BI4987	AGTGAACACTGTTGCAAGCC	ACCCTTTTCTTACCTCAGG	(GGA)_5
BI5091	TGCGCTTGAGGGTTGGAAT	GCCAGGCTGGAATTTTGTG	(AGA)_5
BI5107	CGGGTTTATACAGGCTAGGA	GATGTGGAAGATTGATGTA	(AT)_5
BI5115	AGACGGACGAGGAGGAAA	TCCCTGCTTCTACAGGTTG	(TA)_5
BI5162	CTGAGACGAGGAGGAGG	GCTGACGAGGAGGAGG	(AGA)_5
BI5174*	GTCGAGGTTTTCTTCTAGGA	GGGTACAGGGTCTGAGC	(CTT)_5
BI5285	GGTCAATAGGTTACCTGAA	CTTGCTATCTCGTCGTCAT	(GGT)_5
BI5317	GCCCTCAATGCTTCTCATCAT	GGGACCACGATATTCCCAT	(AT)_5
BI5325	TGGGCTGAGGAAAATAAGGT	GGTAGTAGGTGTTGAAGT	(TC)_5
BI5347*	TCACTGTGTTTCTATGCAAGCC	CTGCTATATGCGAAGATGAC	(CTT)_5
BI5377*	ATGGGAGGAGGAGGAGG	GGTGGAGGAGGAGGAG	(AGA)_5
BI5414	GCGAAGGGAGGAGGAGGAA	GCCAGCAGTCTGAGCTTAA	(AT)_5
BI5423	GCTTCCATGATGCAAAACT	GAGAAGGCGGAGGAGG	(AGA)_5

http://www.bioone.org/loi/apps

5 of 6
APPENDIX 2. Continued.

Locus	Forward primer sequence (5′–3′)	Reverse primer sequence (5′–3′)	Repeat motif
BI5561	GTGAGCTCTGCTCCCTCCTCAGTGGG	GTTCGTTTCTCAGGTAATCTTC	(CTT)$_3$
BI5588	CAGCTGTTGAGAAACCGTGA	AATCTATCGCTCAAGGATCAA	(TC)$_5$
BI5593	ACTCCAATTGGTCGTCGTCGTC	AGATAGGAAGGAAAGGAGA	(AG)$_6$
BI5638	GCTTCTTCCCTCCCTCCTTCCC	TTACGSCCTCCAGATCTCTGCT	(TCT)$_7$
BI5668	ACTCTGTTGAGAAACCCGTCAGATCTTC	AGGAGGAGGAGGAGGAG	(AGC)$_8$
BI5710	GAAATTTTTGGAGGAAGCCC	TGGAGATGATGACAGAAGGTTATGTC	(GA)$_7$
BI5800	CGGCTCCCATATCTCCTGAAA	GGAAGCTGAGTGGTTGTTGCT	(TCT)$_3$
BI5813	CGGTTAGTGATGAAAGGAGA	AGCATGCGCTCAAGGATGGCT	(AG)$_6$
BI6067	CATCTGGAGGAATCTCAGAGCC	AGGCCGGAATAGCAAGGATGAC	(TA)$_8$
BI6141	GTGCCATGACGATAAGGTTT	TCTGACCATGAGAGTGAGC	(AG)$_8$
BI6227	GAGGCCGGGGAATGAGAAGGAGA	ATAGCATGGAGGAGGAGAA	(TCT)$_6$
BI6278	TGAGATGATGAGTGAGGAGAAC	CATGATGAGGAGGAGGAGAA	(TCC)$_7$
BI6294	TGCTGCTCTGCTAGCTTTTAATC	TGGGACCTGACTCCTTTACC	(AT)$_6$
BI6299	CATGCCTCTTATGAGCTCTACT	CTTGAGACCCTGACTTACCA	(AT)$_3$
BI6399	CGTCATCAGCTCAGCTCAACATCA	CGAGAGAAAGGAGGAGGAGTAC	(TC)$_3$
BI6422	TTTAGTTGGAGAGTATTAGTGAAGA	AGGCGGAATACGTTCTGCT	(TTC)$_3$
BI6423	ATATGGAGAGATCCGAGGAGGAGA	CTGAGGAGGAGGAGGAGGAGA	(AG)$_6$
BI6469	TCTAGTGGCCTCCAGAAGGAGA	CTTCCCTACCTATGCGGAT	(GA)$_7$
BI6534	CGTCTGTCTGCTCTCTACCT	AGATACAGCCACCGGATATC	(TC)$_5$
BI6535	AAAAGGGGAAAGCAGGAAAGA	GGGGATGAGGAGGAGGAGGAGA	(GAA)$_7$
BI6561	CCTCTGAGACTGCTGACCGCC	TAGCTGCGCCTCAAAACCC	(GTA)$_3$
BI6581	TTGCTTTTCTCTTCAGTCTC	CGGATCTCCAGCTATCAC	(CT)$_6$
BI6604	ATTTTCCACAGAAGAGGCC	GGCAGAAGCCGAGATATAC	(TA)$_8$
BI6605	TCAAAAGGCTGTCCCTCCATT	GGAAGGAGCAAGATGCTGAGG	(TTC)$_3$
BI6701	AGATACCCCAGACTCAGGCC	GAGATGATGAGGAGGAGCC	(GA)$_3$
BI6717	GATCTGCGTGGATGATTTTTAT	AGTCCGACAGCAGGATGTAAC	(CT)$_8$
BI6761	GTGTTTCTTCTGCTCCATC	ACATGCTCTCTGCTGCTT	(TC)$_6$
BI6776	CCAACAGCAGAACACTGCACTGCA	GCTGCCAGACCTGCTGAAGTAC	(AG)$_5$
BI6828	TGGCTCTTCTCTTGTCTTCTC	GGTGCTGCTGCTGCTTC	(CT)$_3$
BI6849	CCTGAGACTGAGAGGAGGAGA	GCCCTTTCTCTTTAAGTTAC	(TA)$_5$
BI6886	TTCCTCAGCCTGCCTCATT	TGGAAATCAGGAAAGAAGC	(CT)$_5$
BI6901	CGAAGTGGAGAAGAAGACTCATAAC	GTCGAGGGACGGGAGATGATG	(AG)$_6$
BI6984	GTATGGCAAGGAGAGGAGGCC	TTGTCAATCTCCATGACAGA	(TC)$_6$
BI7015	TGGCAGCATATGATCAGCAGC	TCTCCTGGGCTCACGTCGAC	(GAA)$_5$
BI7023	TTAAGGCGGTTGAGGAGA	CTTTCTGCTGCAADGATG	(GAA)$_5$
BI7036	TTGAGGAGGAGGAGGAGGAGGAGA	ATGCTGAGGAGGAGGAGGAGA	(CT)$_3$
BI7059	CTCTCCGCGCCTCCGCTCATAAC	TGGCTCTTCTGCGGAGTTT	(CT)$_3$
BI7085	ACTGCGAGAATACGCTCCGAA	CACCTCTCTAGCTGCTCCTC	(GA)$_3$
BI7112	ATCCAAATGTCACCTCCCTC	GTGATAGTATGTCCTGCTT	(TTC)$_6$
BI7149	CCGAGAATGTCACCTCCGAGT	CCTGGAAGGAGGAGGAGGAGA	(CT)$_3$
BI7165	AATGCGACGACGACCTGCTTT	GAGAATTTTTTTGGACGCTGCTGA	(AG)$_3$
BI7247	CAGGAGGCAAGGAGGAGGAGGAGA	AGGAGGAGGAGGAGGAGGAGA	(AG)$_3$
BI7287	TGGGAGCAGAAACAGGAGA	CAGTGCTTTCTCTACACACACACACAC	(TGA)$_5$

*Indicates markers tested for amplification and polymorphism.