A case study on the labeling of bottarga produced in Sardinia from ovaries of grey mullets (Mugil cephalus and Mugil caprurii) caught in Eastern Central Atlantic coasts

Pierluigi Piras,1 Francesco Sardu,2 Domenico Meloni,3 Maria Vittoria Riina,4 Chiara Beltramo,5 Pier Luigi Acutis4
1Veterinary Public Health and Food Security Service of the Region of Sardinia, Cagliari; 2Oristano Local Socio-Sanitary Area of Sardinia Public Company for Health Protection, Oristano; 3Department of Veterinary Medicine of the Sassari University, Sassari; 4Genetics and Immunobiochemistry Laboratory of the Zooprophylactic Institute of Turin, Italy

Abstract

The aim of this case study is to show how traditional and molecular methods can be employed to identify the Mugilidae species currently used in Sardinia (Italy) to produce the traditional bottarga for the processing of their ovaries. A total of six specimens of Mugil cephalus (n=3) and Mugil caprurii (n=3) were subjected to external morphology and meristic measurements. Subsequently, tissue samples of white muscle and ovaries from three individuals per species were underwent PCR-sequencing assay of mitochondrial DNA cytochrome oxidase subunit I (COI). The external morphology and meristic characters showed a sufficient level of reliability in the identification between the two species. At the same time, the molecular techniques showed the discriminatory power and confirmed the correct species identification in all the sampling units. DNA barcoding may be an effective aid to traditional taxonomy and can facilitate accurate species identification among the Mugilidae.

Introduction

Mugilidae are coastal fishes found in temperate, subtropical and tropical regions within marine, brackish and freshwater habitats worldwide and represent an important food source in several Mediterranean and Atlantic countries. According to FAO’s FishStat Plus data sources, the total fishery production of mullets from the Eastern Central Atlantic was over 30 thousand tonnes in 2010 (Harrison, 2016). They are members of the order Mugiliformes, represented by a single family, and including officially 62 species belonging to 14 genera (Thomson, 1997). Recently, (Whitfield et al., 2012) it was proposed to recognize 20 mullet genera including 70 species (11 of which belong to the genus Mugil). Systematics of Mugilidae are still much debated and based primarily on morphological characters, but those classically used in species identification are remarkably similar within this family (Durand et al., 2012) and make quite challenging species identification (Gonzales-Castro and Ghasemzadeh, 2016). Using a mitochondrial gene-based phylogeny as criterion, Mugilidae classification was recently proposed (Xia et al., 2016). While not disputing such author’s molecular results, Harrison (2016) found that they disagree with morphological analyses, and the nomenclature does not seem to be properly used in commercial and research fisheries communities and by other applied fieldworkers who might not be familiar with the systematic literature. Traditionally, the features of diagnostic value for Mugilidae include (Thomson, 1997): the presence or absence of an adipose eyelid (this character is commonly employed to differentiate the genus Mugil from remaining genera of the family), the origin of the various fins and the number of fin rays, the linear morphometric measurements of body proportions using the traditional measures employed on fishes (Harrison, 2016).

Mugil cephalus (Linnaeus, 1758) is diversified worldwide and according to FAO is marketed as flathead grey mullet and MUF (3-Alpha Species Codes). Mugil cephalus is an important species for both aquaculture and fisheries, and in many regions of the world it is captured during the spawning migration to harvest the egg roe which is salted and dried prior to be marketed as a delicatessen (Livi et al., 2011). Linnaeus, referring briefly to this species in his Systema Natura (1758), stated: Botargo italorum ex hujus ovis. In Italy, the botargo or mullet roe, is traditionally produced from flathead grey mullet’s egg roe, and marketed as bottarga. This name derives from the Arabic word batārikh, which in turn, derives from the greek-byzantine term ootàrichon meaning dried and salted fish eggs. In the Sardinian language (Italy), it is called butàriga, preserving a strong assonance with the original Arabic word. Moreover, the technological process of grey mullets bottarga was formerly described in the Storia naturale di Sardegna (Cetti, 1777), in which it is reported that several species of mullets are found in the Sardinian Sea, but that: ... as far as I am concerned, having observed these mullets, I have not found any difference indicating that they could be considered different species. The morphological distinction between the various species belonging to the Mugilidae has always been a difficult task because of the extreme homogeneity of the family. In particular, referring to the systematic of Mugilidae, in the eleventh volume of the Histoire naturelle des poissons, Valenciennes (1836) reported that ...in general, the great similarity between species of this genus makes their distinction one of the most difficult tasks in Ichthyology. Describing the Mugil cephalus, the same author reported that …precisely aligned with the second dorsal fin is the anal, presenting eight soft rays. Despite its global spread in both hemispheres, Mugil cephalus has a discontinuous distribution. As it will be reported later, the key features regarding its taxonomic status have been raised in many genetic studies, most of which suggest that this scientific name includes a
species complex (Whitfield et al., 2012) or, in other words, that Mugil cephalus, once presented as an example of globally distributed species, is now shown to harbor several cryptic species (Durand et al., 2012). Mugil capurrii (Perugia, 1892) inhabits only the Eastern Central Atlantic and according to FAO is marketed as leaping African mullet and MUO (3-Alphspecies Codes). It was initially described as having the second dorsal fin behind the anal. At a later time, Tortonese (1963) highlighted one of the key features allowing to differentiate it in respect to the Mugil cephalus, since his anal fin invariably presented nine soft rays.

Other authors (Trewavas and Ingham, 1972) published a key to the mullets species, with the purpose of supplementing the section on the Mugilidae in the fishes checklist of the Northeastern Atlantic and Mediterranean (valid as to genera only within the region). The following key was reported: cleft of mouth as wide or wider than long = Mugil cephalus; cleft of mouth longer than wide = Mugil capurrii. In this regard, in the FAO species identification sheets for fishery purposes of the Eastern Central Atlantic, fishing areas 34 and, in part, 47 (Fischer et al., 1981), the same approach for the species belonging to the same genus has been confirmed. Thomson (1997) reported the diagnostic characters of the Mugilidae of the world and highlighted that Mugil cephalus presents robust body, rounded profile and the pectoral fin reaching the posterior rim of eye or slightly behind when laid forward. On the contrary, Mugil capurrii presents slender body, pointed head and a mouth corner on vertical from the anterior rim of eye, in other words, the lip of upper jaw reaching vertical from anterior field of iris. In addition, the pectoral fin does not reach the eye when laid forward. Even though their weakness, these diagnostic characters between these two grey mullets, have recently been confirmed in the FAO species identification guide of the living marine resources of the Eastern Central Atlantic (Harrison, 2016). At present, they are routinely used as distinctive characters in ichthyology practice. New methodologies have been developed in the past few decades, which improved the accurate discrimination of species, for example the geometric morphometrics (González-Castro and Ghasedzadeh, 2016) and the sequencing of nuclear and mitochondrial genes. It is clear that historical methods of identifying fishes, even for practical reasons, are predominantly based on visible morphology. Although modern taxonomy regularly employs many other traits, including internal anatomy, physiology, behavior, geography and lately isozymes and genes, morphological characters remain the cornerstone of taxonomy. However, there are difficulties in relying primarily on morphology when attempting to identify fishes from isolated portions or processed products (Ward et al., 2009). In this regard, it has been long recognized that nucleic acids sequence diversity, whether assessed directly or indirectly through protein analysis, can be used to discriminate species. By using these methods, the identification of Eastern Central Atlantic Mugilidae species has been firstly proposed (Trape et al., 2009) by PCR restriction fragment length polymorphism (RFLP) analysis of mitochondrial 16S ribosomal RNA region. The grey mullets from African waters and in particular from southern Mauritania to Senegalese coast are also increasingly represented in international trade of fishing products. Ovaries of large species such as Mugil cephalus are specifically exported and due to its commercial importance there is an increasing risk of fraud by substitution (Trape et al., 2009). The molecular techniques could help food inspection in order to reinforce labeling regulations. Furthermore, the demand for mullet roe in many parts of the world has grown considerably in recent decades and elevated the status of grey mullet to be called grey gold by fishermen (Whitfield et al., 2012). Several nuclear and mitochondrial DNA regions have been successfully used for the identification of fish species, even though the reliability of such techniques, relies on DNA regions that are highly conserved within the same species and sufficiently variable between species. In previous studies, analysis of random amplified polymorphic DNA (RAPD) and proteins, coupled with both, of above mentioned salted and semi-dried grey mullet ovary product known as bottarga di muggine from different geographical origins did not differentiate samples (Barra et al., 2008). In other studies, mitochondrial DNA sequencing was used to identify and distinguish different species of commercially important Mediterranean grey mullets. These fingerprints were used to identify the species of several samples of bottarga from Mugil genus which, as previously reported, is a well-established traditional product of Sardinia, Italy (Murgia et al., 2002). The demand of consumers to know the origin of food is significantly increasing and novel methods of understanding and assessing consumer trust have been studied to meet this demand. In previous studies, partial cytochrome b gene sequences were resolved for Mugil cephalus specimens sampled from fourteen different geographic sites (Livi et al., 2011). Other authors (Durand et al., 2012) have provided an initial comprehensive molecular systematic account of the Mugilidae using nucleotide sequence variation at three mitochondrial loci (16S rDNA, cytochrome b and cytochrome oxidase I) from fifty-five species.

Currently, the use of a universally accepted short DNA sequence for identification of species (DNA barcoding or Barcode) has been proposed for many groups of animals, both invertebrate and vertebrate, and a fragment of the mitochondrial gene cytochrome c oxidase subunit I (COI), is the most used sequence of DNA barcoding. In fact, within-species variation for this gene is low if compared with between-species variation. Therefore, species are regularly identified by a particular sequence or by a tight cluster of very similar sequences. The effectiveness of this gene region for species-level identifications was recently validated for application across all fish species (Ward et al., 2009), including Mugilidae family (Durand et al., 2017). Accurate and unambiguous identification of fish and fish products, from eggs to adults, is in fact important in many aspects: it would enable retail substitutions of species to be detected, assist in managing fisheries for long-term sustainability, and improve ecosystem research and conservation (Ward et al., 2009).

The aim of this case study was to show how both the traditional and new molecular tools can be employed to identify/discriminate these two species in order to guarantee the proper commercial labeling of mullet roe bottarga produced in Sardinia (Italy).

Case Report

Only a small part of the mullet egg roes processed in Sardinia (Italy) originates from fishing in its coastal waters and lagoons. On the other hand, the ability of Sardinian producers to transform grey mullets ovaries imported from different parts of the world in an excellent product is well-known. As a matter of fact, originality of this product is strongly linked to local raw materials. Otherwise, it is well-known that the meticulous choice of good raw material of non-local origin and the use of consolidated processing techniques as traditional salting and drying parameters, leads to a finished product bearing the peculiar characters of bottarga di muggine, even though appropriate labelling in terms of ingredients and traceability should be guaranteed. Nowadays, regular supply of frozen raw material, guarantees production all year round. The final products acquire the origin of the country or territory where, pursuant to article 60 of Regulation (EU) No 952/2013, they under-
entire batch was accompanied by a health alert sent to the Genetics and Immunobiology laboratory of the Zooprophylactic Institute of Turin for further biomolecular analysis. Species identification was performed using COI gene as a genetic marker and comparing the obtained nucleotide sequences with public DNA databases. Genomic DNA was extracted from all samples using commercial kit based on spin column containing a silica resin (ReliaPrep™ gDNA Tissue Miniprep System, Pomega), and a specific PCR reaction amplified a portion of COI gene following the standard protocol described by Ward et al. (2005). The reaction was run on GeneAmp® PCR System 9700 (Applied Biosystems, Life Technolgies), and the amplicons were sequenced according to the method of Sanger et al. (1977). The obtained sequences were compared with those deposited both in GenBank and in BOLD databases. Based on validation data of the method, the final specimens assignment to species was based on a minimum similarity value of 98%. Out of the five sampling units, three were identified as Mugil capurrii and the remaining two as Mugil spp. In the latter two cases, it was not possible to define the species, but only a genus level determination analyses revealed a mixture of eggs deriving from different species of Mugil. As a matter of fact, the sequences of the two samples presented heterozygous mutation sites and the comparison with the databases revealed a significant similarity with different species of Mugil. According to these results, an information for attention (iRASFF No 2017/327039 of March 28) was notified. Successively, since the notification of different species identified does not represent any health related issues, and then does not fall within the scope of the RASFF system, this information for attention was rejected. Although this topic essentially concerns with fair practices in food trade and protection of consumer interests, including food labeling, it is included in the scope of Regulation (EC) No 882/2004 on official controls and, pursuant to article 35 of Regulation (EU) No 1379/2013, as fishery products can be offered for sale to the final consumer or to a mass caterer only if appropriate labelling indicates: the commercial designation of the species and its scientific name.

Therefore, we decided to study in depth the manageability aspects regarding the differential identification of the two Mugil species of the Eastern Central Atlantic coasts (Mugil cephalus and Mugil capurrii), upstream as well as downstream of the supply chain. The availability of vouchered sequences of the other Mugil spp. sharing the aforesaid FAO area (e.g. Mugil banaensis, Mugil curema and Mugil curvidens) has not been verified because these species reach too small adult medium lengths (Harrison, 2016) and, therefore, the ovaries...
cannot be used in the technological process of bottarga production. In order to compare with local specimens of *Mugil cephalus*, one of the main Sardinian importer was asked to integrate the next buying of grey mullets ovaries from Mauritania, with a monospecific batch of frozen adult specimens of *Mugil capurrii*. Comparable *Mugil capurrii* and *Mugil cephalus* specimens with the same standard length of 40 cm were subjected to external morphology and meristic measurements (Figure 1). Subsequently, the same specimens underwent PCR-sequencing assays as previously described for frozen fish eggs, isolating samples both from fragments of white muscle samples and ovaries of three individuals per species. Biomolecular tests showed that three samples of muscle belonged to *Mugil cephalus*, while the others to *Mugil capurrii*. Same results were obtained from the analyses of the correspondent ovaries.

Discussion

The results of the present case study highlighted that the external morphology and meristic characters of practical use, if correctly applied by well-trained workers, showed sufficient level of reliability in the identification between the two *Mugilidae* species. These results are in accordance with the findings of previous authors (Fischer et al., 1981; Harrison, 2016; Thomson, 1997; Trewavas and Ingham, 1972). In particular, the more specific characters are those related to head length development of labial split (both in profile and ventral vision) and lastly to number of soft rays of the anal fin (Figure 2). The examination of mouth shape and length (Figure 3) in relation to eye margin, together with development of pectoral fin (if conveniently tilt forward) as regards to rear-ocular space and, in the event of doubt, the count of soft rays of the anal fin (Figure 4), represent confident criteria for effectiveness of a practical diagnosis, or at least a screening, in mono or polyspecific fisheries of *Mugil* spp. on the Eastern Central Atlantic coasts by local fishermen. At present, the systematic control of the species identity upstream of the supply chain can be supported by the examination (on a sampling basis) through molecular analysis aimed to determine the presence of genetic markers specific for each species. Our results, related to a blind trial (the samples were delivered to the laboratory not reporting the species) on three female specimens for each of the two species *Mugil cephalus* and *Mugil capurrii*, confirmed the correct species identification in all the sampling units of muscle and ovary. The molecular method showed the discriminatory capability in terms of verification of species identification and compliance to the requirements for the labelling of fishery products. Taking into account the different importance of the two approaches in forensic sciences, they should be considered as complementary in the routinely practice, both by fisheries operators and by competent authorities, as it is happening for example, in the field of *integrative taxonomy* of fishes as the *Mugilidae* family. This integrate approach combines morphological and meristic analysis with newer disciplines, such as molecular genetics (González-Castro and Ghasemzadeh, 2016).

Conclusions

According to other authors (Durand et al., 2017), DNA barcoding may be an effective aid to traditional taxonomy, designed to facilitate fast and accurate species identification, especially among the *Mugilidae*. Although these results should be considered preliminary, we have confirmed that DNA barcoding discriminates against the two mullet species (*Mugil cephalus* and *Mugil capurrii*), and can identify individually isolated fish ovary and muscle portions from these species. However, in order to better control the identity of species upstream of the supply chain and in particular the whole fish from which the ovaries are extracted, practical and up-to-date criteria of external morphology and meristic characters (Figure 2) are still necessary. This will help in the systematic and immediate use in the fishing and selection stages of *Mugilidae* batches or, as reported by previous authors (Ward et al., 2009), barcoding and morphological analysis should go hand-in-hand.

References

Barra A, Garau VL, Dessi S, Sarais G, Cereti E, Arliorio M, Coisson JD, Cabras P, 2008. Chemical characterization and DNA tracking of sardinian bottaro by Mugil cephalus from different geographical origins. J Agr Food Chem 56:10847-52.

Cetti F, 1777. Pesci addominali. In: Storia naturale di Sardegna. Nella stamperia di Giuseppe Piattoli, Sassari, pp 195-201.

Durand JD, Shen KN, Chen WJ, Jamandre BW, Blel H, Diop K, Nirchio M, Garcia de León FJ, Whitfield AK, Chang CW, Borsa P, 2012. Systematics of the grey mullets (teleostei: mugiliformes: mugi-
Duran JD, Hubert N, Shen KN, Borsa P, 2017. DNA barcoding grey mullets. Rev Fish Biol Fisher 27:233-43.
Fischer W, Bianchi G, Scott WB (eds) 1981. Mugilidae. In: FAO species identification sheets for fishery purposes - Eastern Central Atlantic - Fishing areas 34, 47 (in part). Volume III. Published by arrangement whit the FAO of the ONU, Ottawa, pp 1-28.
González-Castro M, Ghasemzadeh J, 2016. Morphology and morphometry based taxonomy of Mugilidae. In: Crosetti D, Blaber S (eds) Biology, ecology and culture of grey mullet (Mugilidae). CRC Press Taylor & Francis Group, Boca Raton, pp 1-21.
Harrison IJ, 2016. Mugilidae. In: Carpenter KE, De Angelis N (eds) The living marine resources of the Eastern Central Atlantic. Volume 3 - Bony fishes part 1. FAO species identification guide for fishery purposes, FAO of the ONU, Rome, pp 2077-110.
Linnaeus C, 1758. Pisces abdominales (Mugil cephalus). Systema naturae per regna tria naturae, secundum classes, ordines, genera, species, cum characteribus, differentiis, synonymis, locis. Tomus I, editio decima, reformata. Impensis direct. Laurentii Salvi, Holmia, pp 303-26.
Livi S, Sola L, Crosetti D, 2011. Phyleogeographic relationships among worldwide populations of the cosmopolitan marine species, the striped grey mullet (Mugil cephalus), investigated by partial cytochrome b gene sequences. Biochem Syst Ecol 39:121-31.
Murgia R, Tola G, Archer SN, Vallerga S, Hirano J, 2002. Genetic identification of grey mullet species (Mugilidae) by analysis of mitochondrial DNA sequence: application to identify the origin of processed ovary products (bottarga). Mar Biotecnol 4:119-26.
Perugia A, 1892. Descrizione di una nuova specie di Myxus raccolta nel Rio Senegal dal Cap. G. Capurro. In: Doria G, Gestro R (eds) Annali del Museo civico di storia naturale di Genova. Serie 2°, Vol. XII (XXXII). Tipografia del R. Istituto sordo-muti, Genova, pp 1007-8.
Thomson JM, 1997. The Mugilidae of the world. Memoirs of the Queensland Museum. Vol 41 (part 3), Brisbane, pp 457-562.
Tortonese E, 1963. Catalogo dei tipi di pesci del Museo civico di storia naturale di Genova (parte III): Mugilidae. In: Tortonese E (ed) Annali del Museo civico di storia naturale G. Doria. Volume LXIII. Fratelli Pagano - Tipografi Editori - S.A.S. Genova, pp 334-5.
Xia R, Durand JD, Fu C, 2016. Multilocus resolution of Mugilidae phylogeny (teleostei: Mugiliformes): implications for the family’s taxonomy. Mol Phylogenet Evol 96:161-77.