Molecular Epidemiology of Antibiotic Resistance Genes and Virulence Factors in Multidrug-Resistant *Escherichia coli* Isolated from Rodents, Humans, Chicken, and Household Soils in Karatu, Northern Tanzania

Valery Silvery Sonola 1,2,3,*, Abdul Katakweba 3,4, Gerald Misinzo 5,6,7 and Mecky Isaac Matee 6,7

Article

Abstract: The interaction of rodents with humans and chicken in the household environment can facilitate transmission of multidrug-resistant (MDR) *Escherichia coli* (*E. coli*), causing infections that are difficult to treat. We investigated the presence of genes encoded for carbapenem, extended spectrum beta-lactamases (ESBL), tetracycline and quinolones resistance, and virulence among 50 *E. coli* isolated from human (*n* = 14), chicken (*n* = 12), rodent (*n* = 10), and soil (*n* = 14) samples using multiplex polymerase chain reaction (PCR). Overall, the antimicrobial resistance genes (ARGs) detected were: *blaTEM* 23/50 (46%), *blaCTX-M* 13/50 (26%), *tetA* 23/50 (46%), *tetB* 7/50 (14%), *qnrA* 12/50 (24%), *qnrB* 4/50 (8%), *blaOXA-48* 6/50 (12%), and *blaKPC* 3/50 (6%), while *blaIMP*, *blaVIM*, and *blaNDM-1* were not found. The virulence genes (VGs) found were: *ompA* 36/50 (72%), *traT* 13/50 (26%), *east* 9/50 (18%), *bfp* 5/50 (10%), *eae* 1/50 (2%), and *stx-1* 2/50 (4%), while *hlyA* and *cnf* genes were not detected. Resistance (*blaTEM*, *blaCTX-M*, *blaSHV*, *tetA*, *tetB*, and *qnrA*) and virulence (*traT*) genes were found in all sample sources while *stx-1* and *eae* were only found in chicken and rodent isolates, respectively. Tetracycline resistance phenotypes correlated with genotypes *tetA* (*r* = 0.94), *tetB* (*r* = 0.90), *blaKPC* (*r* = 0.90; *blaOXA-48* (*r* = 0.89), and *qnrA* (*r* = 0.96). ESBL resistance was correlated with genotypes *blaKPC* (*r* = 0.93), *blaOXA-48* (*r* = 0.90), and *qnrA* (*r* = 0.96) resistance. Positive correlations were observed between resistance and virulence genes: *qnrB* and *bfp* (*r* = 0.63) also *blaTEM*, and *traT* (*r* = 0.51). Principal component analysis (PCA) indicated that *tetA*, *tetB*, *blaTEM*, *blaCTX-M*, *qnrA*, and *qnrB* genes contributed to tetracycline, cephalaxime, and quinolone resistance, respectively. While *traT*, *stx-1*, *bfp*, *ompA*, *east*, and *eae* genes contributed to virulence of MDR *E. coli* isolates. The PCA ellipses show that isolates from rodents had more ARGs and virulence genes compared to those isolated from chicken, soil, and humans.

Keywords: multidrug-resistant; rodents; chicken; humans; soil; *E. coli*; PCR; genes
1. Introduction

Escherichia coli (*E. coli*) is a versatile bacterial pathogen that has the ability to cause various infections, most of which are difficult to treat [1,2]. In fact, this bacterium is listed by the World Health Organization (WHO) as one of the critical antimicrobial-resistant bacteria that can cause severe and often deadly infections such as bloodstream infections and pneumonia [3]. The pathogenicity of *E. coli* strains is enhanced by a variety of virulence and resistance genes [4,5]. *E. coli* strains producing extended-spectrum β-lactamases (ESBLs) and carbapenemases are potentially recognized pathogens that can resist most β-lactam antibiotics [6,7]. ESBLs are plasmid-mediated enzymes that hydrolyse β-lactam containing antimicrobial agents including penicillins, cephalosporins, and aztreonam. ESBLs are grouped into three main types: TEM, SHV, and CTX-M [8,9]. Carbapenemases are a major group of β-lactamases capable of hydrolysing penicillins, cephalosporins, monobactams, and carbapenems. They include β-lactamases of classes B (IMP and VIM), D (OXA-23 to -27), and A (IMI, KPC, NMC, and SME) [10,11]. Tetracycline resistance genes (*tetA* and *tetB*) coded for efflux pumps have been frequently detected in human and animal *E. coli* isolates [12]. The genes *qnrA* and *qnrB* are known to confer quinolone resistance in *E. coli* strains and spread horizontally through plasmids [13].

Important virulence factors of *E. coli* are encoded by several genes including: locus enterocyte effacement (LEE), intimin, bundle forming (*bae*, *bfpA*) [14,15], Shiga toxins, adhesins (*stx1*, *stx2*, *eaeA*, *ehxA*, and *bfpA*) [15,16], heat-labile, heat stable, and colonization factors (*elt*, *est*) [14,16]. *E. coli* is a typical One Health pathogen, with the potential of resistomes spreading between humans, animals, and the environment, where such interactions exist [17]. In Tanzania, studies conducted in the Karatu ecosystem have revealed intense interactions between humans, rodents, and chicken, leading to frequent occurrence and recurrence of zoonotic infections [18–20]. Previous studies have suggested that the role of rodents in the transmission of multidrug-resistant (MDR) bacterial infections to humans and environmental contamination [21–24]. In a recent phenotypic study conducted in Karatu, we isolated *E. coli* strains from chickens, humans, rodents, and soils which showed high levels of resistance to cefotaxime (79.7%), imipenem (79.8%), and tetracycline (73.7%); 512 out of 650 (78.8%) were MDR [25].

We hypothesize that the intense interactions between chickens, humans, rodents, and soils may lead to the transfer of ARGs and VGs among them. However, molecular characterization of ARGs and VGs was not conducted in the phenotypic study [25]. Knowledge of ARGs and VGs is important in understanding the pathogenicity and virulence of *E. coli* [26]. This study was conducted in Karatu, Northern Tanzania to provide insights of molecular epidemiology of ARGs and VGs occurring in *E. coli* isolated among chickens, humans, rodents, and soils in households. To our knowledge, this is the first study in Tanzania that has investigated the genotypic diversity of *E. coli* isolated among chicken, humans, rodents, and soils in households. The working assumption is that MDR *E. coli* strains circulating in Karatu carry a variety of virulence genes capable of causing life-threatening infections that are difficult to treat.

2. Materials and Methods

2.1. Study Area

This study was conducted between June 2020 and March 2021 in the Karatu district in the northern zone of Tanzania, located between latitudes 3°10′ and 4°00′ S, and longitude 34°47′ and 35°56′ E. The district has a population of 230,166 people comprised of 117,769 men and 112,397 women with an average of five people per household [28]. Karatu has an altitude range from 1000 to 1900 m above sea level with two wet seasons annually (short rains between October and December and long rains from March to June).
2.2. Bacterial Isolates

A total of 50 MDR *E. coli* isolates from chicken cloaca swabs (12), human nasal swabs (14), rodents’ deep pharyngeal swabs (10), and household soil (14) samples, particularly those with higher phenotypic resistance to tetracycline, imipenem, and cefotaxime, were selected for genomic DNA extraction and further genomic analyses. All selected isolates were preserved in nutrient broth (TSB) with 50% glycerol (v/v) at −80 °C until DNA extraction. Isolates that were resistant to at least three different classes of antibiotics were considered as multidrug-resistant (MDR) [29].

2.3. DNA Extraction

The genomic DNA of all phenotypically MDR *E. coli* strains were extracted by using Zymo Research Fungal and Bacterial Genomic DNA MiniPrep™ kit (Zymo Research, Irvine, CA, USA), following the manufacturer’s instructions. The purity, quality, and quantity of DNA were determined using a nanodrop spectrophotometer (NanoDrop, Thermo Scientific, Ramsey, NJ, USA) and agarose gel electrophoresis. The extracted DNA samples were stored at −80 °C until when PCR analyses were performed.

2.4. Detection of Antimicrobial Resistance and Virulence Genes

Multiplex PCR [27] was used to detect the tetracycline (*tetA* and *tetB*), ESBL (*blaCTX-M*, *blaSHV*, and *blaTEM*), and Metallo beta-lactamases (*blaVIM*, *blaIMP*, and *blaNDM*) resistance and virulence (*bfp*, *east*, *traT*, *eae*, *ompA*, *cnf*, and *stx1*) genes. Briefly, lyophilized primers (Macrogen, Amsterdam, The Netherlands) for target genes (in supplementary materials) were reconstituted using nuclease-free water to obtain 100 µM stock and 10 µM working solutions before storage at −20 °C. PCR was carried out in a total volume of 25 µL containing 12.5 µL of 1 X Taq PCR Master Mix (Bio Basic, Canada), 1 µL of the forward primer and 1 µL of the reverse primer, 3 µL of DNA template, and 7.5 µL nuclease-free water. Multiplex PCRs were conducted using amplification conditions indicated in Table 1. PCR products were separated by electrophoresis on 1.5% (w/v) agarose gel pre-stained with Gel Red (Merck, Darmstadt, Germany) at 120 Volts for 1 h, and visualized under UV light using a BioDoc-it™ imaging system (Ultra-Violet Products, Cambridge, UK). PCR product size was determined by conducting electrophoresis along with a GeneRuler 100 bp Plus DNA Ladder (Bioneer, Daedeok-gu, Republic of Korea). DNA from *E. coli* American Type Culture Collection (ATCC) 29522 strain was used for quality assurance.

Table 1. Detection of virulence genes of MDR *E. coli* isolates from different sample sources.

Genes	Humans (n = 14)	Chickens (n = 12)	Rodents (n = 10)	Soil (n = 14)	Total (n = 50)
Bfp	0 (0.0)	0 (0.0)	3 (30.0)	2 (14.3)	5 (10.0)
East	0 (0.0)	4 (33.3)	3 (30.0)	2 (14.3)	9 (18.0)
hlyA	0 (0.0)	0 (0.0)	0 (0.0)	0 (0.0)	0 (0.0)
traT	4 (28.6)	4 (33.3)	4 (40.0)	1 (7.1)	13 (26.0)
eae	0 (0.0)	0 (0.0)	1 (10.0)	0 (0.0)	1 (2.0)
ompA	10 (71.4)	12 (100.0)	7 (70.0)	7 (50.0)	36 (72.0)
cnf	0 (0.0)	0 (0.0)	0 (0.0)	0 (0.0)	0 (0.0)
stx-1	0 (0.0)	1 (8.3)	1 (10.0)	0 (0.0)	2 (4.0)
Total	2 (14.3)	4 (33.3)	6 (60.0)	4 (33.3)	16 (32.0)
χ^2-square	52.29	46.43	2.00	26.67	
p-value	0.001	0.001	0.0188	0.0004	

2.5. Statistical Analysis

The data obtained were entered into an Excel spreadsheet (Microsoft® Office Excel 2010) and analysed. The differences in occurrence of the genes (%) between categories were compared by chi-square test using R-software, version 4.0.2 (R Foundation for Statistical
Soil Rodents Chicken

Int. J. Environ. Res. Public Health

Sample Sources

3.1. Carbapenems, ESBL, Tetracycline, and Quinolones Resistance Genes in MDR E. coli Isolates from Different Sample Sources

Overall, the resistance genes blaTEM (46%), blaCTX-M (26%), tetA (46%), tetB (14%), qnrA (24%), qnrB (8%), blaoXA-48 (12%), and blakPC (6%) were detected (Figure 1) and distributed in isolates from human 8/14 (57.1%), chicken 9/12 (75.0%), rodent 8/10 (80.0%), and soil 7/14 (50.0%) samples, as shown in Table 2. For human isolates the most common ARGs were tetA 6/12 (50%), for rodents they were blaoXA-48 5/12 (41.7%) and qnrA 6/12 (50%), for chicken the most common ARGs were tetA 8/14 (57.1%) and blashv 5/14 (35.7%), while for soil they were blaoXA-48 6/14 (42.8%), and tetA 6/14 (42.8%).

Figure 1. Occurrence of resistance genes in MDR E. coli isolates from different sample types.

Table 2. Prevalence of antimicrobial resistance genes in MDR E. coli isolates from different sample types.

Genes	Human (n = 14)	Chicken (n = 12)	Rodents (n = 10)	Soil (n = 14)	Total Isolates (n = 50)
bladMP	0 (0.0)	0 (0.0)	0 (0.0)	0 (0.0)	0 (0.0)
blaVIM	0 (0.0)	0 (0.0)	0 (0.0)	0 (0.0)	0 (0.0)
blanDM-1	0 (0.0)	0 (0.0)	0 (0.0)	0 (0.0)	0 (0.0)
blakPC	1 (7.1)	2 (16.7)	0 (0.0)	0 (0.0)	3 (6.0)
blaoXA-48	2 (14.3)	3 (25.0)	1 (10.0)	0 (0.0)	6 (12.0)
blashv	5 (35.7)	2 (16.7)	2 (20.0)	2 (14.3)	11 (22.0)
blatem	4 (28.6)	6 (50.0)	6 (60.0)	7 (50.0)	23 (46.0)
blactx-m	3 (21.4)	3 (25.0)	4 (40.0)	3 (21.4)	13 (26.0)
tetA	8 (57.1)	5 (41.7)	6 (60.0)	4 (28.6)	23 (46.0)
tetB	2 (14.3)	3 (25.0)	1 (10.0)	1 (7.1)	7 (14.0)
qnrA	4 (28.6)	6 (50.0)	1 (10.0)	1 (7.1)	12 (24.0)
qnrB	0 (0.0)	1 (8.3)	2 (20.0)	1 (7.1)	4 (8.0)
Total	8 (57.1)	9 (75.0)	8 (80.0)	7 (50.0%)	32 (64.0)

χ²-square 52.29 46.43 2.00 26.67
p-value 0.001 0.001 0.0188 0.0004

3. Results

3.1. Carbapenems, ESBL, Tetracycline, and Quinolones Resistance Genes in MDR E. coli Isolates from Different Sample Sources

Principal component analysis (PCA) was used to investigate the distribution and relationships of antimicrobial resistance and virulence genes of MDR E. coli isolates with respect to their different sample sources. Any p-value less than 0.05 was considered statistically significant.
3.2. Detection of Virulence Genes in MDR E. coli Isolates from Different Sample Sources

Overall, the virulence genes were: ompA (72%), traT (26%), east (18%), bfp (10%), eae (2%), and stx-1 (4%), while hlyA and cnf were not detected (Table 1). For humans the most common VRs were traT 4/14 (28.6%) and ompA 10/14 (71.4%), while for chicken they were traT 4/12 (33.3%) and ompA 12/12 (100%), for rodents they were traT 4/10 (40%) and ompA 7/10 (70%), and for soil isolates they were predominated by ompA 7/14 (50%) and east 2/14 (14.3) (Figure 2).

![Figure 2. Prevalence of virulence genes in different types of the sample source.](image)

3.3. Comparison between Phenotypic and Genotypic Antibiotic Resistance

We found positive correlations between tetracycline resistance and tetA (0.94), tetB (0.90), carbapenem resistance and blaKPC (0.90) and blaOXA-48 (0.89), and quinolone resistance and qnrA (0.96). We also found correlation between tetracycline resistance and genotypes for carbapenem (blaKPC = 0.90, blaOXA-48 = 0.91), cefotaxime and qnrA (0.96), and quinolone resistance and qnrA (0.94). Cefotaxime resistance was correlated with genotypes for carbapenem (blaKPC = 0.93, blaOXA-48 = 0.90) and quinolone (qnrA = 0.96) resistance (Table 3). However, we found weak and negative correlation between phenotypes and genotypes for ESBL resistance (CTX-M = 0.60, blaTEM = −0.63 and blaSHV = 0.33) (Table 3).

Genotypes of Isolates	Tetracycline	Ciprofloxacin	Cefotaxime	Correlation Coefficients (r)
tetA	0.53	0.62	0.43	
tetB	0.90	0.86	0.93	
blaKPC	0.90	0.86	0.93	
blaOXA-48	0.91	0.90	0.90	
qnrA	0.94	0.90	0.96	
qnrB	−0.69	−0.67	−0.69	
blaCTX-M	−0.54	−0.45	−0.61	
blaTEM	−0.71	−0.78	−0.63	
blaSHV	0.43	0.51	0.33	

As shown in Table 4, we found correlations between qnrB and bfp genes (r = 0.63) and with blaTEM and traT genes (r = 0.51) and the remaining displayed weak and negative correlations.
Table 4. Correlation between resistance and virulence genes of MDR E. coli isolates.

ABR Genes	Virulence Genes	Correlation Coefficients (r)				
	bfp	east	traT	eae	ompA	stx-1
blaKPC	−0.11	0.30	0.41	−0.05	0.11	−0.07
blaOXA-48	−0.16	−0.06	0.15	0.38	−0.05	0.22
blaSHV	−0.24	−0.34	−0.44	−0.10	0.24	−0.15
blaTEM	0.39	0.44	0.51	0.17	−0.39	0.01
blaCTX-M	0.05	0.39	0.31	0.23	−0.22	0.08
tetA	0.36	−0.10	0.11	0.15	0.26	0.22
tetB	−0.18	0.06	−0.05	−0.08	0.18	−0.11
qnrA	−0.26	0.03	0.00	−0.11	0.09	0.10
qnrB	0.63	−0.19	0.12	−0.05	0.13	0.30

3.4. Co-Occurrence between Resistance and Virulence Genes

We observed that 38 out of 50 (76%) MDR E. coli isolates had at least one virulence gene. A co-existence of up to six resistance genes and at least one virulence gene was noted. In some cases, four resistance genes co-existed with four virulence genes (Figure 3). The combination consisting of blaTEM, blaCTX-M, tetA, ompA, and traT genes was common with 55% co-occurrence (Figures 4 and 5).

![Figure 3. Co-occurrence of resistance and virulence genes in isolates from different sample sources.](image-url)
Figure 4. Distribution of resistance genes in various sample sources.

Figure 5. Distribution of virulence genes in various sample sources.
3.5. Principal Component Analysis Results

According to Figure 6 below, the arrows (vectors) for tetA, qnrA, and tetB genes aligned closer to each other in principal component 1 (PC1) indicating greater and positive correlations among them. The lengths of arrows show that tetB gene contributed more to the resistance of isolates followed by qnrB and tetA genes. The vectors for blaTEM, blaCTX-M, and qnrB genes are close to each other and to PC2 showing their influence on resistance. These genes had greater and positive correlations between them, but all were negatively correlated to the blaSHV gene. The lengths of the vectors indicate that the blaTEM gene had a higher influence on resistance of isolates (PC2), followed by the blaCTX-M while qnrB had the lowest. According to PCA plane, rodent and chicken ellipses are extended in the upper quadrants indicating higher proportions of ARGs, followed by those from human and soil.

![Figure 6](https://via.placeholder.com/150)

Figure 6. Principal component analysis of resistance genes of *E. coli* isolates. The dots represent isolates from different sources of samples, arrows indicate the original variables (resistance genes of the isolates), and ellipses indicate a region that contains 95% of all samples of a particular source.

The smaller angle between *traT* gene vector and PC1 indicates a greater and positive correlation between them (Figure 7). The same behaviour was displayed by *east* and *eae* genes which show a greater and positive correlation between them. Along PC2, stx-1, bfp and ompA genes had greater and positive correlations with PC2 indicating higher influence on virulence of isolates. The different sizes of loadings indicated higher and positive correlations between them. Different sizes of ellipses indicate variation in the prevalence of virulence genes across different sources of isolates. Rodent isolates had more virulence genes followed by chicken and soil isolates, while those from humans had the lowest gene prevalence.
4. Discussion

The study found 32/50 (64%) of MDR E. coli isolates carrying at least one AMR gene, with 10/50 (20%) having more than three. At the same time, 38 out of 50 (76%) MDR E. coli isolates had at least one virulence gene and 8/50 (16%) had more than three. PCA results showed that most of the resistance and virulence genes were found in isolates from rodents and chicken samples compared with human and soil isolates. (Figures 6 and 7). The most detected AMR genes included: tetA (46%), blaTEM (46%), blaCTX-M (26%), qnrA (24%), blaSHV (22%), tetB (8%), and blaOXA-48 (12%). This finding is in agreement with the results of our previous study in Karatu that reported higher resistance of E. coli to tetracycline (73.7%), imipenem (79.8%), and cefotaxime (79.7%) where 512 out of 650 (78.8%) isolates were multidrug-resistant [25]. Interestingly, the highest prevalence of AMR genes was observed in isolates from rodent (80.0%) followed by those from chicken (75.0%), human (57.1%), and lastly soil (50.0%) samples. Our findings imply that rodents that invade households have a potential to spread MDR E. coli infections with ARGs to other hosts, as observed by others [31–33]. The increased prevalence of resistance genes in isolates from chicken can be associated with frequent use and misuse of antibiotics in the prevention and treatment of poultry diseases, which is a common practice in the area as reported by previous studies [26,34,35]. The high prevalence of ESBL genes; blaSHV (20%), blaCTX-M (40%), blaTEM (60%), tetracycline; tetA (60%), and quinolone; qnrB (20%) resistance genes indicate the widespread of MDR E. coli infections in the Karatu district. This keeps with findings of a study conducted in nearby Arusha that found blaTEM, blaCTX-M, tetA, tetB, and qnrS [34–36]. This pattern can be explained by the frequent use and misuse of these antibiotics in veterinary and human medicines in the area [35], rendering these groups of antibiotics to be less effective. We found strong and positive correlations between tetracycline resistance and tetA \(r = 0.94 \) and tetB \(r = 0.90 \), carbapenem resistance and

Figure 7. Principal component analysis for virulence genes of E. coli isolates. The dots represent isolates from different sources of samples, arrows indicate the original variables (virulence genes of the isolates), and ellipses indicate a region that contains 95% of all samples of a particular source.
blaKPC \((r = 0.94)\), as well as blaOXA-48 \((r = 0.89)\) and quinolone resistance with qnrA \((r = 0.96)\), highlighting the dominant role of genes in causing resistance [37–39]. Similarly, we found strong and positive correlation between tetracycline resistance phenotypes and genotypes for carbapenem \((blaKPC = 0.90, blaOXA-48 = 0.91)\), quinolone \((qnrA = 0.94)\), as well as ESBL and carbapenem \((blaKPC = 0.93, blaOXA-48 = 0.90)\) and quinolone \((qnrA = 0.96)\) resistance genotypes. Such associations have been reported in previous studies [40,41] and can be explained by the fact that most of these genes are carried on similar transferrable plasmids [42,43].

Overall, the detected virulence genes were: bfp 5/50 (10%), east 9/50 (18%), traT 13/50 (26%), eae 1/50 (2%), ompA 36/50 (72%), and stx-1 2/50 (4%). For isolates obtained from human samples, the most common virulence genes were: traT (28.6%) and ompA (71.4%), for chickens ompA (100%), traT (33.3%), east (33.3%), and stx1 (8.3%) for rodents ompA (70%), eae (10%), traT (40%), east (30%), bfp (30%), and stx1 (10%). Isolates from soil samples contained bfp (14.3%), east (14.3%), traT (7.1%), and ompA (50%). The bundle forming pilus \((bfp)\) gene codes for adherence of *E. coli* strains to intestinal epithelial cells of the host [44], while *eae* gene promotes secretion of intimin protein for bacterial adherence to enterocytes [45]. The gene stx-1 encodes production of the Shiga toxin (stx) protein in some *E. coli* strains responsible for haemolytic uremic syndrome (HUS) and bloody diarrhoea in humans [45,46]. The gene east codes for production of heat-stable enterotoxin 1 in Enterohaemorrhagic *E. coli* (EAST1) which induces diarrhoea in humans and livestock [47].

The gene *ompA* codes for outer membrane protein A, which enables intracellular survival of *E. coli* strains and protects them against host defence mechanism [48]. Meanwhile the *traT* gene codes for outer membrane protein, an important factor during urethral tract infections in humans [49]. The presence of wide-ranging virulence factors indicates that the MDR *E. coli* isolates circulating in Karatu have the ability to cause life-threatening infections that can be difficult to treat, given the fact that they occur in antibiotic-resistant isolates. We noted some significant differences with other studies. In this study, the prevalence of *ompA* in rodent isolates (70%) was lower than 93.5% reported in China by Guan et al. [50]. The 50% occurrence of *ompA* in *E. coli* from soil samples was greater than 42% documented in Indiana, USA [51]. However, we did not detect *stx1*, *eae*, and *hlyA* genes contrary to Cooley et al. [52] who reported *stx1* (100%), *eae* (100%), and *hlyA* (40%) in soil, livestock, wild birds, and water samples, respectively. Interestingly, we found a higher prevalence of virulence genes (60%) among *E. coli* isolates from rodent samples compared to previous studies in Berlin (0%) [21], in Hanoi (1.7%) [53], and in Vancouver (3.8%) [54]. These geographical related differences can be attributed to variations in levels of antibiotics use as well as environmental factors [55]. In this study, we found co-occurrence of resistance and virulence genes in 38/50 (76%) of the isolates. The most common combinations were: *blaSHV*, *tetA*, and *ompA* in humans; *blaTEM*, *tetA*, *tetB*, *qnrA*, and *ompA* in chicken; *blaTEM*, *blaCTX-M*, *tetA*, and *ompA* in rodents; and *blaTEM*, *tetA*, and *ompA* in soil isolates. Importantly, we found varying correlation between ARGs and VGs among the isolates. We found positive correlation between *blaTEM* and *traT* genes \((r = 0.51)\) and *qnrB* and *bfp* genes \((r = 0.63)\), while negative correlations were revealed between *blaOXA-48* and *ompA* \((r = −0.05)\), *blaSHV* and *traT* \((r = −0.44)\), and *tetA* and *east* \((r = −0.10)\). This finding is keeping with those of other studies, showing that acquisition of resistance to certain antimicrobial agents may be associated with an increase or decrease in the virulence levels of a microorganism. This result seems to indicate that acquisition of resistance to certain antibiotics may be associated with an increase or decrease in the virulence levels depending on location and mechanism of transfer of specific genes [27,56,57].

5. Conclusions

Our study revealed that MDR *E. coli* isolates from humans, chicken, rodents, and household soils harbour different ARGs \((blaTEM, blaCTX-M, blaSHV, tetA, tetB, qnrA, and qnrB)\) and VGs \((bfp, east, traT, ompA and stx-1)\). The PCA results show that *traT*, *stx-1*, *bfp*, *ompA*, *east*, and *eae* genes influenced the virulence of MDR *E. coli* isolates. Resistance
(blaTEM, blaCTX-M, blaSHV, tetA, tetB, and qnrA) and virulence (traT) genes were detected in isolates from all sample sources, while sxt-I and ear genes were specific to chicken and rodent isolates only. Interestingly, rodents had the highest percentage of both ARGs and VGs, indicating their potential in carriage and transmission of infections to other hosts in the environment. This situation urgently calls for One Health-based interventions including improving hygiene and control of rodents in households.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10.3390/ijerph19095388/s1, Table S1. List of primers used for amplification of selected antimicrobial resistance and virulence genes of *E. coli* isolates. Table S2. Multiplex PCR conditions used during amplification of antibiotic resistance and virulence genes of MDR *E. coli* isolates.

Author Contributions: Collection of samples, laboratory processing, and data analysis V.S.S., supervision and verification of the analytical methods M.I.M. and G.M. Manuscript developed by V.S.S. with input from M.I.M., G.M. and A.K. All authors have read and agreed to the published version of the manuscript.

Funding: The study was funded by the Government of Tanzania and the World bank through the Africa Centre of Excellence for Innovative Rodent Pest Management and Biosensor Technology Development (IRPM & BTD) at Sokoine University of Agriculture.

Institutional Review Board Statement: The ethical clearance for the study was issued by the National Institute for Medical Research (NIMR) of Tanzania (NIMR/HQ/R.8a/Vol.IX/3386). NIMR is the national institutional review board that ensures all health research follows the national health research ethics requirements for research involving human subjects. Sokoine University of Agriculture Institutional Animal Care and Use Committee (IACUC) approved the use of animals in this study. The permission to work in the study area was sought from the Regional Administrative Office (Arusha).

Informed Consent Statement: Informed verbal consent was obtained from all subjects involved in the study.

Data Availability Statement: The data presented in this study are available on request from the corresponding author. The data are not publicly available due to privacy restrictions.

Acknowledgments: We strongly appreciate the good cooperation from all participants, district medical office, and the livestock department during our study in the Karatu district. We also acknowledge for the field technical assistance from Dismas Joseph and Ramadani Kigunguli and laboratory technical assistance from Lawrence Mdimi and Mariam Makange.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Song, Y.; Yu, L.; Zhang, Y.; Dai, Y.; Wang, P.; Feng, C.; Liu, M.; Sun, S.; Xie, Z.; Wang, F. Prevalence and characteristics of multidrug-resistant mcr-1-positive *Escherichia coli* isolates from broiler chickens in Tai’an, China. *Poult. Sci.* 2020, 99, 1117–1123. [CrossRef] [PubMed]

2. Kim, Y.B.; Yoon, M.Y.; Ha, J.S.; Seo, K.W.; Noh, E.B.; Son, S.H.; Lee, Y.J. Molecular characterization of avian pathogenic *Escherichia coli* from broiler chickens with colibacillosis. *Poult. Sci.* 2020, 99, 1088–1095. [CrossRef] [PubMed]

3. Shrivastava, S.R.; Shrivastava, P.S.; Ramasamy, J. World health organization releases global priority list of antibiotic-resistant bacteria to guide research, discovery, and development of new antibiotics. *J. Med. Soc.* 2018, 32, 76–77. [CrossRef] [PubMed]

4. Sarowska, J.; Futoma-Koloch, B.; Jama-Kmiecik, A.; Frej-Madrzak, M.; Ksiazczyk, M.; Bugla-Ploskonska, G.; Choroszy-Krol, I. Virulence factors, prevalence and potential transmission of extraintestinal pathogenic *Escherichia coli* isolated from different sources: Recent reports. *Gut Pathog.* 2019, 11, 10. [CrossRef] [PubMed]

5. Abd El-Baky, R.M.; Ibrahim, R.A.; Mohamed, D.S.; Ahmed, E.F.; Hashem, Z.S. Prevalence of virulence genes and their association with antimicrobial resistance among pathogenic *E. coli* isolated from Egyptian patients with different clinical infections. *Infect. Drug. Resist.* 2020, 13, 1221–1236. [CrossRef]

6. Tooke, C.L.; Hinchliffe, P.; Bragginton, E.C.; Colenso, C.K.; Hirvonen, V.H.; Takebayashi, Y.; Spencer, J. β-Lactamases and β-Lactamate Inhibitors in the 21st Century. *J. Mol. Biol.* 2019, 431, 3472–3500. [CrossRef]

7. Masoud, S.M.; El-Baky, A.; Mahmoud, R.; Aly, S.A.; Ibrahim, R.A. Co-Existence of Certain ESBLs, MBLs and Plasmid Mediated Quinolone Resistance Genes among MDR *E. coli* Isolated from Different Clinical Specimens in Egypt. *Antibiotics* 2021, 10, 835. [CrossRef]
33. Poirel, L.; Madec, J.-Y.; Lupo, A.; Schink, A.-K.; Kieffer, N.; Nordmann, P.; Schwarz, S. Antimicrobial resistance in Escherichia coli. Microbiol. Spectr. 2018, 6, 4. [CrossRef]

34. Comparison of Antibiotic Resistant Escherichia coli Obtained from Drinking Water Sources in Northern Tanzania: A Cross-Sectional Study. Available online: https://www.researchgate.net/publication/309765672_Comparison_of_antibiotic_resistant_Escherichia_coli_obtained_from_drinking_water_sources_in_northern_Tanzania_a_cross-sectional_study (accessed on 2 February 2022).

35. Antimicrobial Resistance Profiles of Escherichia coli Isolated from Broiler and Layer Chickens in Arusha and Mwanza, Tanzania. Available online: https://www.hindawi.com/journals/ipmicro/2021/6799046/ (accessed on 2 February 2022).

36. Sale of Fluoroquinolones in Northern Tanzania: A Potential Threat for Fluoroquinolone Use in Tuberculosis Treatment. Available online: https://academic.oup.com/jac/article/65/1/145/727526?login=false# (accessed on 2 February 2022).

37. Comparison of the Prevalence of Antibiotic-resistant Escherichia coli Isolates from Commercial-Layer and Free-Range Chickens in Arusha District, Tanzania. Available online: https://www.researchgate.net/publication/308594993_Comparison_of_the_prevalence_of_antibiotic-resistant_Escherichia_coli_isolates_from_commercial-layer_and_free-range_chickens_in_Arusha_district_Tanzania (accessed on 2 February 2022).

38. Subbiah, M.; Caudell, M.A.; Mair, C.; Davis, M.A.; Matthews, L.; Quinlan, R.J.; Quinlan, M.B.; Lyimo, B.; Buza, J.; Keyyu, J. Antimicrobial resistant enteric bacteria are widely distributed amongst people, animals and the environment in Tanzania. Nat. Commun. 2020, 11, 228. [CrossRef] [PubMed]

39. Genetic Relatedness of Multidrug Resistant Escherichia coli Isolated from Humans, Chickens and Poultry Environments. Available online: https://aricjournal.biomedcentral.com/articles/10.1186/s13756-021-00930-x (accessed on 2 February 2022).

40. Mahmoud, N.E.; Altayb, H.N.; Gurashi, R.M. Detection of Carbapenem-Resistant Genes in Isolated from Drinking Water in Khartoum, Sudan. Available online: https://pubmed.ncbi.nlm.nih.gov/32612664/ (accessed on 2 February 2022).

41. Schages, L.; Wicher, F.; Kalscheuer, R.; Bockmühl, D. Winter is coming–Impact of temperature on the variation of beta-lactamase and mcr genes in a wastewater treatment plant. Sci. Total Environ. 2020, 712, 136499. [CrossRef] [PubMed]

42. Gutkind, G.O.; Di Conza, J.; Power, P.; Radice, M. β-Lactamase-mediated resistance: A biochemical, epidemiological and genetic overview. Curr. Pharm. Des. 2013, 19, 164–208. [CrossRef] [PubMed]

43. Evans, B.A.; Amyes, S.G. OXA-β-lactamas. Clin. Microbiol. Rev. 2014, 27, 241–263. [CrossRef]

44. Hamilton, M.J.; Hadi, A.Z.; Griffith, J.F.; Ishii, S.; Sadowsky, M.J. Large scale analysis of virulence genes in Escherichia coli strains isolated from Avalon Bay, CA. Water Res. 2010, 44, 543–547. [CrossRef] [PubMed]

45. Patel, J.; Yin, H.B.; Bauchan, G.; Mowery, J. Inhibition of Escherichia coli O157: H7 and Salmonella enterica virulence factors by benzyl isothiocyanate. Food Microbiol. 2020, 86, 103303. [CrossRef]

46. Pan, Z.; Chen, Y.; McAllister, T.A.; Gänzle, M.; Plastow, G.; Guan, L.L. Abundance and Expression of Shiga Toxin Genes in Escherichia coli at the Recto-Anal Junction Relates to Host Immune Genes. Front. Cell. Infect. Microbiol. 2021, 11, 148. [CrossRef]

47. Ménard, L.-P.; Dubreuil, J.D. Enterogastric Escherichia coli heat-stable enterotoxin 1 (EST1): A new toxin with an old twist. Curr. Pharm. Des. 2013, 19, 164–208. [CrossRef] [PubMed]

48. Wang, Y.; Kim, K.S. Role of OmpA and IbEL in Escherichia coli K1 invasion of brain microvascular endothelial cells in vitro and in vivo. Pediatr. Res. 2002, 51, 559–563. [CrossRef]

49. Firoozeh, F.; Saffari, M.; Neamati, F.; Zibaei, M. Detection of virulence genes in Escherichia coli isolated from patients with cystitis and pylonephritis. Int. J. Infect. Dis. 2014, 29, 219–222. [CrossRef]

50. Guan, J.; Liu, S.; Lin, Z.; Li, W.; Liu, X.; Chen, D. Severe sepsis facilitates intestinal colonization by extended-spectrum-β-lactamase-producing Klebsiella pneumoniae and transfer of the SHV-18 resistance gene to Escherichia coli during antimicrobial treatment. Antimicrob. Agents Chemother. 2014, 58, 1039–1046. [CrossRef] [PubMed]

51. Duffitt, A.D.; Reber, R.T.; Whipple, A.; Chauret, C. Gene expression during survival of Escherichia coli O157: H7 in soil and water. Int. J. Microbiol. 2011, 2011, 340506. [CrossRef] [PubMed]

52. Cooley, M.B.; Jay-Russell, M.; Atwill, E.R.; Carycho, D.; Nguyen, K.; Quiñones, B.; Patel, R.; Walker, S.; Swimley, M.; Pierre-Jerome, E. Development of a robust method for isolation of Shiga toxin-positive Escherichia coli (STEC) from fecal, plant, soil and water samples from a leafy greens production region in California. PLoS ONE 2013, 8, e65716. [CrossRef]

53. Le Huy, H.; Koizumi, N.; Ung, T.T.H.; Le, T.T.; Nguyen, H.L.K.; Hoang, P.V.M.; Nguyen, C.N.; Khong, T.M.; Hasebe, F.; Haga, T.; et al. Antibiotic-resistant Escherichia coli isolated from urban rodents in Hanoi, Vietnam. J. Vet. Med. Sci. 2020, 82, 653–660. [CrossRef] [PubMed]

54. Himsworth, C.G.; Zabek, E.; Desruisseaux, A.; Parmley, E.J.; Reid-Smith, R.; Jardine, C.M.; Tang, P.; Patrick, D.M. Prevalence and characteristics of Escherichia coli and Salmonella spp. in the feces of wild urban Norway and black rats (Rattus norvegicus and Rattus rattus) from an inner-city neighborhood of Vancouver, Canada. J. Wildl. Dis. 2015, 51, 589–600. [CrossRef]

55. Bengtsson-Palme, J.; Hammaren, R.; Pal, C.; Östman, M.; Björlenius, B.; Flach, C.-F.; Fick, J.; Kristiansson, E.; Tysklind, M.; Larsson, D.J. Elucidating selection processes for antibiotic resistance in sewage treatment plants using metagenomics. Sci. Total Environ. 2016, 527, 697–712. [CrossRef] [PubMed]

56. Soto, S.; Zuniga, S.; Ulleryd, P.; Vila, J. Acquisition of a pathogenicity island in an Escherichia coli clinical isolate causing febrile urinary tract infection. Eur. J. Clin. Microbiol. Infect. Dis. 2011, 30, 1543–1550. [CrossRef] [PubMed]

57. Hacker, J.; Blum-Oehler, G.; Mühl dorfer, I.; Tschäpe, H. Pathogenicity islands of virulent bacteria: Structure, function and impact on microbial evolution. Mol. Microbiol. 1997, 23, 1089–1097. [CrossRef] [PubMed]