Biodiversity of Mushrooms in Conservative Forest of Batu Katak resort, Langkat regency, North Sumatra

Doni Aldo Samuel Siahaan*, Kiki Nurtjahja, Adrian Hartanto, Etti Sartina Siregar, Kaniwa Berliani

Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Sumatera Utara, Medan, Indonesia

*Email: donialdo77@gmail.com

Abstract. Eighty mushroom species were collected during a field study at Conservative Forest in Batu Katak resort, Langkat regency, North Sumatera. Inventory was conducted by exploring four accessible paths and mushrooms were recorded for its identity and growth substrates. The most common mushroom species found in this study were lignicolous species, i.e. *Polyporus*, *Marasmius*, *Schizophyllum*, *Trametes* and *Xylaria*. The most utilized substrates for mushroom growth were dead logs which indicate a light-penetrated area of opened gap in forest favoring the growth of bracket fungi or lignicolous species. This baseline study may be used as data record for further mycological and laboratory studies. In addition, our records may be utilized as valuable information to local and foreign tourists who interest of mushroom picking and hunting in the future.

1. Introduction
Mushrooms are non-timber product in forest with potential as economical and medicinal products. Mushrooms are bio-products with multifunctional properties as medicine, food and forest ecological drivers of successions through wood decomposition [1]. Mushrooms may grow on variety of substrates, explaining their versatility to inhabit or even colonize spatial region especially during rainy season [2]. To date, ± 140,000 mushroom species have been identified with 70% of informations were derived from Northern America as a country known for its mushroom hunting [3].

To date, information or study of tropical mushroom in Indonesia is still limited. In North Sumatra, tropical distribution of mushrooms have been recorded with 89 lignicolous macromycetes found in Sibolangit forest [4]. During a field study in forest region of Gunung Leuser National Park, we attempted to collect lignicolous fungi or mushrooms community inhabiting Conservative Forest near Batu Katak resort. To our understanding, there is no information on mushroom diversity in this forest area.

2. Method
The study was an exploratory survey conducted in Batu Katak forest resort managed by Bahorok district officials. Batu Katak forest resort is located ± 80 km from Medan, a capital city of North Sumatra, Indonesia. The exploration began by following accessible paths in Conservative Forest adjacent to Gunung Leuser National Park forest region (N: 03°26′,53.2″ E: 98°07′06.4″). Mushrooms were visually observed and collected by hand. Mushroom specimens were identified tentatively and stored in paper wrap prior laboratory identification. Substrates of growth were also noted in the field.
Identification was based on morphological characteristics using literatures [5,6]. Information regarding taxa of mushrooms is presented and analyzed descriptively.

3. Results and Discussion

Our survey found 51 mushroom species belonging to 8 species of Ascomycota and 43 species of Basidiomycota. The 8 species of Ascomycota represented 7 genera from 4 families while 43 species of Basidiomycota represented 28 genera from 19 families. Marasmiaceae and Polyporaceae were two most speciose families in this study. The list of taxa is presented in Table 1. The percentage of colonization based on variety of growth substrates is presented in Figure 1.

Table 1. List of mushroom taxa collected in Batu Katak Conservative Forest

N	Division	Class	Order	Family	Genera/Species
1	Ascomycota	Pezizomycetes	Peziales	Helvellaceae	Helvella sp.
2				Pyrenomataceae	Scutellinia scutellata
3				Sacroscyphaceae	Cookeina speciosa
4					Microstoma sp.
5					Pityha sp.
6	Sodariomycetes	Xylariales			Daldinia concentrica
7			Xylariaceae		Xylaria hypoxylon
8				Xylaria polymorpha	
9	Basidiomycota	Agaricomycetes	Agaricales	Agaricaceae	Coprinus arramentarius
10					Coprinus disseminatus
11					Lencogaricus puidicus
12					Lycoperdon perlatum
13					Lycoperdon pyriforme
14				Clavariaceae	Ramariopsis kunzei
15					Ramariopsis tenuiramosa
16				Crepidotaceae	Crepidotus sp.
17				Marasmiaceae	Marasmiellus affixus
18					Marasmiellus candidus
19					Marasmius androsaceus
20				Marasmius candidus	
21					Marasmius cohaerens
22					Marasmius siccus
23				Pleurocybella porignens	
24				Mycenaceae	Mycena vulgaris
25				Physalaciaceae	Rhizomarasmius pyrocephalus
26					Oudemansiella mucida
27				Pleurotaceae	Pleurotus ostreatus
28				Plateaceae	Plateus sp.
29				Psathyrellaceae	Psathyrella foeniseccii
30					Psathyrella longipes
31				Schizophyllaceae	Schizophyllum commune
32				Strophariaceae	Pholiota carbonaria
33				Tricholomataceae	Clitocybe trullaeformis
34					Collybia cirrhata
During our field observation, the tracking paths were less covered by forest canopies. Many dead logs were found during exploration indicating intense gap opening within forest. The conservative forest in Batu Katak was still considered as secondary forest due to its official status not yet recognized by the government. Hence, the dense dead logs are suitable habitat for the growth of lignicolous fungi (Figure 1) such as Polyporus, Marasmius, Schizophyllum, Trametes and Xylaria. Dead logs are suitable habitat for mushrooms in wet tropical forest by increasing possible substrate for growth [7]. Mushrooms play a significant role in wood decomposition in the forest. Although mostly substrates found were dead logs, some white-rot fungi may also act as facultative pathogen to infect living trees [8].

Batu Katak is a tourist resort located in Batu Jong Jong village and managed by local communities. Prolonged survey within varying season is assumed to record more species in Batu Katak
Conservative Forest but existence of bracket fungi is seemed to persist in forest area through the year. Bracket fungi species, *Ganoderma* and *Phelinus* were reported to persist all around year in Western Ghats, India [9]. A higher dominance of mushroom species was also reported during rainy season than dry season in Nigeria [10]. A two-year survey conducted in Central India has reported 153 edible mushroom species with participation of local community [11]. Other discipline, called ethnomycology is of recent interest as well in discovering potential medicinal mushroom in tropical region. To date, ethnomycology studies in Indonesia were still limited. A study reported the utilization of *Xylaria* as traditional remedies by Dayak Ngaju tribe in Central Kalimantan [12]. Other study also reported the use of bracket fungi by Baduy tribe in Banten, Java in specific of *Ganoderma lucidum* [13]. By looking to our result, many possibility on finding unique application of indigenous mushrooms can be achieved in the future investigations.

4. Conclusion
The preliminary investigation of mushroom taxa has recorded 51 mushroom species belonging to 4 classes, 9 orders and 23 families of Ascomycota and Basidiomycota. Further investigations are needed to extract more valuable information upon their assemblages in Conservative Forest of Batu Katak.

References
[1] Odeyemi O, Adeniyi M A, Odeyemi Y 2014 *Introduction to Tropical Mycology* China: Universal Academic Press
[2] Gbolagade J, Ajayi A, Oku I, Wankasi D 2006 Nutritive value of common wild edible mushrooms from Southern Nigeria *Global J Biotechnol Biochem* 1 16
[3] Cofrin Center for Biodiversity (CCB) 2017 Biodiversity of macrofungi in Northern Door country, WI. University of Wisconsin, Green-Bay, WI.
[4] Nurtjahja K, Munir E, Nugroho R P 2004 The distribution of tropical mushrooms in Sibolangit Conservation Forest, North Sumatra, Indonesia *Proceedings of the 5th International Wood Science Symposium* Kyoto: Japan
[5] Arora D 1987 *Mushroom Demystified* Berkeley: Ten Speed Press
[6] Widhiastuti R, Nurtjahja K 2015 *Biodiversitas cendawan di Sicikeh-cikeh dan Sibolangit Sumatera Utara* Medan: USU Press
[7] Thulasinathan B, Kulanthaisamy M R, Nagarajan A, Soorangkattan S, Muthuramalingam J B, Jeyaraman J, Arun A 2018 Studies on the diversity of macrofungus in Kodaikanal region of Western Ghats, Tamil Nadu, India *BIODIVESITAS* 19 2283
[8] Adeniyi M, Odeyemi Y, Odeyemi O 2018 Ecology, diversity, and seasonal distribution of wild mushrooms in a Nigerian tropical forest reserve *BIODIVESITAS* 19 285
[9] Karwa A, Rai M K 2010 Tapping into the edible fungi biodiversity of Central India *BIODIVESITAS* 11 97
[10] Lack A J 1991 Dead logs as a substrate in rain forest trees in Dominica *Journal of tropical ecology* 7 401
[11] Pavlik M, Pavlik S 2013 Wood decomposition activity of oyster mushroom (*Pleurotus ostreatus*) in situ *Journal of forest science* 59 28
[12] Frantika S S A, Purnaningisih T 2016 Studi etnomikologi pemanfaatan jamur Karamu (*Xylaria* sp.) sebagai obat tradisional suku Dayak Ngaju di desa Lamunti *Proceeding Biology Education Conference* 13 633
[13] Khastini R O, Wahyuni I, Saraswati I 2018 Ethnomycology of bracket fungi in Baduy tribe Indonesia *Biosaintifikasi* 10 423