Mercury in soil, sediment, and lake water in upland headwater catchments in Ireland

Sarah A. M. Nelson1 · Holger Hintelmann1 · Julian Aherne1

Received: 31 December 2021 / Accepted: 24 September 2022 / Published online: 11 October 2022
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022

Abstract
Mercury concentrations in the atmosphere, surface waters, and soils have increased beyond natural levels as a result of human activities, which poses a risk to human and environmental health. Ireland is situated on the western periphery of Europe, and it is generally assumed that environmental mercury is low but there is limited information on mercury within natural environments. In this study, the interlinkages in the concentration of mercury in soils, lake sediment, and lake water were investigated in remote upland acid-sensitive catchments influenced by low deposition of atmospheric mercury. Thirty-one upland lake catchments were sampled for topsoil, lake sediment, and lake water during 2017–2018. Total mercury (THg) concentrations in water (median 5.4 ng/L) and sediment (median 30 ng/g) were low, owing to the remote location of the lakes. In contrast, THg in catchment soil was relatively high for a background region (median: 240 ng/g), which was attributed to the high organic matter content of the soil (median 87%). The results suggest catchment soils are the dominant driver of variation in THg in lake water and sediment in upland regions in Ireland. Further, given that highly organic soils can obscure interlinkages within catchments, this study demonstrated the value of exploring mercury independent of the influence of organic matter, i.e., THg normalized by organic carbon. As global action (such as the Minamata Convention) decreases mercury emissions, legacy soil mercury may become a more important input to aquatic systems than atmospheric deposition, which makes the relationships between terrestrial catchments and their water bodies vital for our understanding of mercury cycling.

Keywords Normalized mercury · Organic carbon · Acid-sensitive · Dissolved organic carbon · Atmospheric mercury

Introduction
Mercury is a metal found in the earth’s crust that is emitted into the atmosphere through natural (e.g., volcanic eruptions) or anthropogenic (e.g., burning fossil fuels) means. Globally, human activities have caused mercury concentrations to increase beyond natural levels in the atmosphere, surface waters, and soils (AMAP and UNEP 2019). This is a concern because mercury is a neurotoxin, and it can also cause damage to the digestive and immune systems; the World Health Organization named mercury as one of the top ten chemicals of public health concern due to its extreme effects on human health (WHO 2017). Mercury can occur in elemental, inorganic, and organic forms based on its binding to other elements. Historically, mercury has been of greatest concern within aquatic environments where it can be methylated by anaerobic sulphate reducing bacteria, allowing mercury to bioaccumulate in organisms, and bio-magnify up the food chain (Hsu-Kim et al. 2013; Ruus et al. 2015). The increase in environmental mercury concentrations have prompted global concern, notably leading to the United Nation’s Minamata Convention on Mercury, which entered into force on August 16, 2017 (UNEP 2019).

One goal of the Minamata Convention is to improve understanding of the cycling, transport, and fate of mercury in natural environments (UNEP 2019). This reflects a shifting paradigm in the study of natural resources, where interconnections are emphasized. For example, the Resource Nexus encourages an approach that considers the many
interlinkages between natural resources (e.g., air, water, soils) in contrast to the past when they were considered independently (EEA 2022; Bleischwitz et al. 2018). One part of the resource nexus that is particularly relevant for mercury is the interlinkages between the atmosphere, hydrosphere, and pedosphere. It is well-established that atmospheric deposition of mercury can introduce anthropogenic mercury pollution to aquatic and terrestrial ecosystems globally, no matter how remote (e.g., Zdanowicz et al. 2016; Aslam et al. 2019; Yang et al. 2010). Further, the movement of mercury from soils into aquatic systems through natural processes, such as soil erosion and leaching, can increase mercury concentrations in surface waters and sediments (Rose et al. 2012; Stoken et al. 2016).

The cycling of mercury is impacted by a variety of factors, organic matter content being the most notable within aquatic and terrestrial ecosystems (Watras et al. 1995; Tipping et al. 2011). Mercury binds to organic matter (Ravichandran 2004; Lavoie et al. 2019), and therefore the movement of terrestrial organic matter into an aquatic system (i.e., erosion or leaching) also has implications for mercury cycling (Yang and Smyntek 2014; Rose et al. 2012). This mechanism may become increasingly important as atmospheric mercury emissions are reduced globally, and terrestrial mercury (built up in catchment soils from decades of pollution) becomes the dominant controlling input of mercury to aquatic systems (Yang et al. 2016; Rose et al. 2012). Measuring the bulk concentration of mercury in all forms (elemental, inorganic, organic) is generally referred to as total mercury (denoted as THg). The positive relationship between THg and organic matter in surface waters, often measured as dissolved organic carbon (DOC), is well established (Lavoie et al. 2019), and has been widely observed (Watras et al. 1995; Burton et al. 2013; Braaten et al. 2014).

The Republic of Ireland is a signatory of the Minamata Convention, but there is limited data or knowledge of mercury concentrations or cycling within natural environments. It is generally assumed that environmental mercury concentrations are low and below detection for routine monitoring. Ireland sits on the western periphery of Europe and is considered a background region for atmospheric pollution (Leinert et al. 2008; Custodio et al. 2020). The prevailing wind direction is south-westerly, which brings in relatively clean air masses from the Atlantic Ocean, so atmospheric concentrations of mercury in Ireland are generally low (≤1.3 ng/m³ 2013–2018; Custodio et al. 2020).

The few studies that have measured environmental mercury in Ireland have primarily focused on a small number of study sites (e.g., Coggins et al. 2006; O’Halloran et al. 2003) or the measurement of air concentrations at Mace Head atmospheric research station (e.g., Weigelt et al. 2015; Custodio et al. 2020). An exception is a study of 54 lakes (Burton et al. 2013), with a subset of five sampled for catchment soil (Scott and Aherne 2013), which suggested associations between water and soil variables, but the exploration was limited owing to the small sample size. The objectives of this study were to investigate the interlinkages of mercury in soils, lake sediment, and lake water in upland acid-sensitive catchments in Ireland (n = 31) impacted by long-range atmospheric mercury pollution, and to contribute to the limited data on mercury in Irish natural environments, fulfilling some of the goals of the Minamata Convention.

Materials and methods

Study sites

Ireland has a relatively mild climate due to the influence of the Atlantic Ocean, with inland daytime temperatures generally ranging from 8 °C in the winter to around 20 °C in the summer (Met Éireann 2020). The prevailing wind direction is south-west, leading to greater annual rainfall in the west, which receives 1000–1400 mm, compared to 750–1000 mm in the east. In the mountainous regions of Ireland, rainfall tends to be greater, with some areas receiving 2000 mm or more per year (Met Éireann 2020).

During April–July 2017 and 2018, 31 upland acid-sensitive lakes in Ireland were sampled to determine the concentrations of THg in lake water, lake sediment, and catchment topsoil (Fig. 1). Irish uplands are generally undeveloped areas at elevations greater than 150 m above sea level (masl) along the coast margins, comprising habitats such as heaths, semi-natural grasslands, and bogs, and predominately used for rough grazing (Perrin et al. 2014). Soils within the upland catchments are shallow and tend to be highly organic with greater exposed rock in the southern catchments (Supplementary Information Fig. SI-1). The dominant soil type is peat or peaty podzols (Teagasc and EPA 2015), which is generally underlain by slowly weathering base-poor geologies, such as granite, quartzite, schist, and gneiss (Bowman 1991; Aherne et al. 2002).

Ireland is home to more than 12000 lakes; in the upland areas these lakes tend to be small precipitation-fed headwaters. Upland lake catchments are relatively un-impacted by development or local pollution owing to the rough landscape. The 31 study lakes were selected from a set of lakes sampled in 1997 to assess the impacts of long-range transboundary air pollution (Aherne et al. 2002) and re-sampled in 2007 and 2008 (Burton and Aherne 2012; Scott and Aherne 2013); the dominant inputs of mercury pollution to the study lakes are from long-range atmospheric transport. The lakes in the 1997 study were selected using stratified random sampling, with greater weighting on high elevation lakes in acid-sensitive regions (Aherne et al. 2002). In the present study, the lakes were selected to ensure spatial
coverage of all sampled regions, with preference for higher elevation sites (median elevation 476 masl), to limit the effects of local disturbance (Nelson and Aherne 2020). The study lakes are small (median: 1.6 ha) in small catchments (median: 11 ha) and were assumed to be representative of the ‘average lake’, as 88% of all lakes in Ireland are less than five hectares (EPA 2006).

Field sampling

Lake water samples were collected from the shore, approximately 15 cm below the surface in an area free from emergent vegetation. The lakes are small, shallow, and well-mixed by wind; therefore, shore samples were assumed to be representative of the entire lake. Prior to collection, the sample container was rinsed three times with lake water, and rinse water was poured onto the shore to avoid disturbance of sediment. At each lake, two 30 mL water samples were collected in 40 mL glass I-Chem vials and acidified with 0.5% HCl for THg analysis. Precautions were taken to limit potential contamination during sampling; vials were individually double bagged, and gloves were worn when handling the vial and inner bag during sampling. Field blanks were used to test for contamination during sample collection or from the vials themselves. A 250 mL unfiltered bulk water sample was also collected for all remaining chemical tests (e.g., DOC, pH, conductivity).

Lake sediment was also sampled from shore, using a stainless-steel trowel. The top 5–10 cm of sediment was collected at three randomly selected locations along the lake edge, mixed, and stored in a 250 mL glass jar as a composite of the three locations. Sampling of sediment was attempted at all 31 sites; however, rocky lake bottoms prevented sediment collection at three of the lakes.

Soil was collected at three randomly selected locations around the perimeter of the lake, within 10 m of the shore. Vegetation was removed, and the top 5–10 cm of soil was collected. A composite of the three locations was stored in a 250 mL glass jar, consistent with the sediment. At each of the three locations a bulk density core (radius 5 cm, height 5 cm) was also collected and stored in individual Ziploc bags.

Samples were kept cool and transported to Trent University for analysis. Prior to sampling, vials for THg (Glass I-Chem with Teflon-lined caps) were cleaned in 10% BrCl/ HCl bath (v/v) for 48 h, triple rinsed with reverse osmosis water, once with b-pure water, and oven dried (> 100 °C). All other sample containers were soaked in a 10% HCl bath for 24 h, triple rinsed with reverse osmosis water, once with b-pure water, and then air dried.

Laboratory analysis

The water samples were analyzed for THg on a Tekran 2600 mercury analyzer, using US EPA method 1631. The samples for DOC were filtered using 0.45 μm disposable nylon syringe filters and measured on a Shimadzu TOC Analyzer. Conductivity and pH were determined on unfiltered samples using a Mantech PC-titrate.

The composite sediment and topsoil samples were oven dried for 72 h at 40–50 °C (to avoid volatilization of mercury). The dried samples were ground and sieved (< 2 mm). The fine material was used to determine THg, pH, percent organic matter (%OM), and particle size analysis (PSA); THg was determined using a DMA 80 (Direct Mercury Analyzer). Percent organic matter was calculated by loss-on-ignition (LOI) using a muffle furnace at 400 °C for 10 h. The residual ignited sample was used for PSA on a Horiba Particle Size Analyzer. Prior to PSA, samples were soaked in Calgon solution (30 g/L) for 12 h to promote separation of particles during analysis. Bulk density samples were oven dried at 105 °C for 24 h and the dry mass was used for bulk density calculations.

Data analysis

In this study, mercury was quantified as THg concentration (ng/L for water, ng/g for sediment and soil), THg normalized

Fig. 1 Location of study lakes (n=31) in the Republic of Ireland, sampled during April–July 2017 and 2018. Sampling sites are indicated by green circles, major cities in Ireland are indicated by black squares. Note: the circles overlap in some regions owing to the proximity between lakes. The inset shows the location of Ireland on the western periphery of Europe
by organic carbon (THg/OC mg/kg), and THg pool (µg/m²) in the catchment soil (see Supplementary Information A for calculations). The use of THg/OC allowed comparison of THg concentrations between the three environmental media (water, soil, and sediment), and the examination of interlinkages that were obscured by organic carbon. Total Hg and THg/OC were used as dependent variables in statistical tests.

The number of times each lake was sampled during April–July 2017 and 2018 varied; most lakes were sampled once or twice, though a small number had additional observations. To allow for comparison between lakes the data were averaged to one value per variable per lake to represent the 2017–2018 data. All variables were tested for normality using the Shapiro–Wilk test \((p < 0.05)\); due to the non-normal distribution of the data, non-parametric tests were used. All statistical tests were performed using the statistical software PAST version 4.03 (Hammer et al. 2001).

Variability between lakes was calculated as normalized median absolute deviation (NMAD) to best represent the non-normally distributed data (see Supplementary Information A). To assess regional variation across the north–south and east–west gradients, all variables were tested for significant Spearman Rank Correlations \((p < 0.05)\) with easting and northing as an indicator of spatial autocorrelation. Significant differences \((p < 0.05)\) between THg/OC in water, sediment, and soil, and between THg and organic matter in sediment and soil were assessed using Wilcoxon signed rank tests.

The associations between water, and sediment and soil were explored using Spearman rank correlations \((p < 0.05)\). Spurious correlations were excluded from this analysis, e.g., for THg/OC in lake water, correlation with THg and DOC were omitted; similarly, for sediment and soil, associations between THg/OC, %OM, and THg, or between THg in soil and THg soil pool, were excluded.

The influence of catchment soil and lake sediment on THg and THg/OC in lake water was assessed using Redundancy Analysis (RDA). Further, a second RDA was run with sediment THg and THg/OC as the dependent variables to determine the influence of soil on sediment. The biplots for RDA were scaled to allow easier visual interpretation, using scaling type 2 as determined by Legendre and Legendre (1998). The correlation strength of the individual axes (THg and THg/OC) with their dominant drivers is indicated as an \(r\) value within-text. The strength of the overall RDA (both THg and THg/OC axes) is noted in the RDA biplot figure caption as \(R^2\) and \(R^2_{adj}\).

Results

Lake water

The upland lakes tended to be dilute and acidic systems, with median conductivity of 38.4 µS/cm and pH of 5.6 (Table 1). The pH was highly spatially variable (NMAD 96%) and ranged from pH 4.5 to 7.2, but only two lakes were above pH 7. Dissolved organic carbon ranged from 0.8 to 13.7 mg/L (NMAD 44%), with a median of 3.9 mg/L (Table 1). The upper limit of DOC (13.7 mg/L) was driven by a single lake (peatland pool); every other lake had a DOC less than 10 mg/L. Total mercury (THg) in the study lakes ranged from 2.0 to 19.7 ng/L (NMAD 28%), with a median of 5.4 ng/L (Table 1). The central 50% of the data fell between 4.0 and 8.1 ng/L (Fig. 2). The upper range of the data was driven by a small number of lakes with higher THg; only three lakes (≈10%) had a concentration greater than 11 ng/L (Fig. 2). The corresponding DOC concentrations for those three lakes were all greater than 7 mg/L and were some of the highest DOC values (Fig. 2), highlighting the well-established relationship between DOC and THg (Lavoie et al. 2019).

Variable	Units	Min–max	Median	NMAD (%)
Lake water				
THg	ng/L	2.0–19.7	5.4	28
THg/OC	mg/kg	0.3–6.2	1.3	31
DOC	mg/L	0.8–13.7	3.9	44
pH		4.5–7.2	5.6	96
Conductivity	µS/cm	24.3–108.3	38.4	25

Table 1 Statistical summary of physiochemical variables for upland lake water \((n = 31)\), sediment \((n = 28)\), and catchment topsoil \((n = 31)\); sampled in the Republic of Ireland during April–July 2017 and 2018

Catchment soil

Variable	Units	Min–max	Median	NMAD (%)
THg	ng/g	2.2–189	30	77
THg/OC	mg/kg	0.2–2.2	0.8	66
Organic matter	%	1–93	3	72
pH		3.4–6.5	4.9	83
Particle size*	µm	18–826	250	70
Sand	%	22–98	86	9
Silt	%	1–74	13	77
Clay	%	0–4	0.1	100

Catchment soil

Variable	Units	Min–max	Median	NMAD (%)
THg	ng/g	36.6–502	240	21
THg/OC	mg/kg	0.2–1.8	0.5	32
THg pool	µg m⁻²	1378–11535	3561	39
Organic matter	%	7–98	87	11
pH		3.2–5.9	4.0	57
Particle size*	µm	14–296	30	39
Sand	%	13–83	39	35
Silt	%	16–84	59	26
Clay	%	0.2–7	1	46

NMAD normalized median absolute deviation, THg total mercury, DOC dissolved organic carbon, THg/OC total mercury normalized by organic carbon

*Geometric mean
Sediment and soil

Lake sediment ranged from coarse texture (sandy) with low organic matter content, to fine organic sediment (Table 1). In contrast, catchment soil varied little, with the vast majority of samples being highly organic (peatland) soils with few exceptions (Fig. 2). Organic matter (%OM) in sediment and soil had similar ranges (Table 1), but %OM was significantly lower in sediment \((p < 0.05) \). In general, sediment %OM was very low, with a median of 3%, while catchment soils were primarily organic, with a median of 87% and only three catchments had soil OM less than 30% (Fig. 2). The median THg concentration was 30 ng/g in sediment and 240 ng/g in soil. Sediment THg had a much smaller range than soil THg, and the middle 50% of the data fell between 7 and 63 ng/g for sediment, compared with between 176 and 276 ng/g for soil (Fig. 2). When THg was normalized by organic carbon (THg/OC), the difference between THg in soil and sediment was small and not significantly different, with a median of 0.5 and 0.8 mg/kg respectively (Table 1).

Lake water THg/OC (median 1.3 mg/kg OC) was significantly higher than THg/OC for sediment and soil (Fig. 3); of the three media, THg in sediment had the greatest variability, with an NMAD of 67% (water: 31%; soil: 32%).

Relationship of THg between soil, sediment and water

Total Hg in lake sediment and lake water was strongly associated with catchment soil (Table 2 and Fig. 4). Variation in sediment THg was best explained by positive relationships with soil moisture and organic matter, and negative relationships with soil pH and coarse fragments \((r = 0.68; \text{Fig. 4}) \), suggesting a positive association with catchments containing wet organic soils.

THg/OC in sediment was positively correlated to THg/OC in soil \((r = 0.40) \) and also correlated to THg soil pool; however, the connection between soil mercury and sediment could only be seen when THg was organic carbon normalized (Table 2). Redundancy Analysis also highlighted these variables as best explaining the variation in THg/OC in sediment, and THg pool had the strongest relationship \((r = 0.68; \text{Fig. 4}) \).

The positive relationship between mercury and organic matter in the environment is well-established (Ravichandran 2004; Lavoie et al. 2019); in the current study, THg in water had a significant positive correlation to DOC \((r = 0.66) \) and THg in sediment had a significant positive correlation to %OM \((r = 0.88) \); however, THg in soil did not have a significant correlation with organic matter. The lack of correlation between THg and %OM in catchment soil was likely due to the fact that nearly all catchment soils were classified as...
highly organic (median 87%) with low spatial variability (11%), making THg the limiting factor rather than organic matter. While THg in soil did not have a significant correlation with %OM, it was positively correlated to moisture content, and negatively correlated to coarse fragments and pH, indicating that THg was greater in more organic (peaty) soils, though this relationship was not very strong (Supplementary Information Fig. SI-2).

Water THg/OC ($r_s = 0.95$; Fig. 5) was best explained by positive relationships with soil pH and soil THg/OC, and negative relationships with soil moisture content and sand content in sediment. The positive relationship with soil THg/OC is notable; the highly organic catchment soils obscure interlinkages between soil THg and other variables, but when THg was normalized by organic carbon, the connection between soil and water was evident (Table 2 and Fig. 5).

Lake water THg was negatively correlated to THg/OC in soil, soil THg pool, and soil texture (Table 2). Redundancy analysis also showed these soil variables best explained variation in THg in lake water, albeit with two differences: first, the addition of THg/OC in sediment in the RDA, and second, soil THg pool was the variable that best explained THg in water ($r = 0.82$; Fig. 5). There were a couple commonalities between the results for THg in water and THg/OC in sediment. First was their correlation with THg/OC in soil rather than with THg in soil (Table 2), which further suggests that the association was only apparent when total mercury was normalized for organic carbon. Second, the THg soil pool best explained variation in THg in water and THg/OC in sediment (see Figs. 4, 5).

The connection between THg in lake water and THg/OC in sediment to THg soil pool was also seen when regional variation was evaluated. The three variables had significant correlations to northing, indicative of regional spatial autocorrelation (Table 2). The northern sites were dominated by peatland, while the southern sites were rocky and had higher proportions of inorganic soil (Supplementary Information Fig. SI-1), with greater bulk density ($r_s = -0.40$) and consequently a larger THg soil pool ($r_s = -0.38$ since THg in soil did not vary by region (Supplementary Information Fig. SI-2). Accordingly, THg in water was higher in the north ($r_s = 0.47$) where peatlands dominated, and THg/OC in sediment was higher in the south ($r_s = -0.65$) where there was a greater soil THg pool (see Supplementary Information Fig. SI-3).

Table 2

Water THg	r_s	Sediment THg	r_s	Sediment THg/OC	r_s
Northing	+0.47	%OM$_{se}$	+0.88	Northing	−0.65
DOC$_w$	+0.66	%w$_{se}$	+0.68	%w$_{se}$	−0.58
pH$_w$	−0.59	%CF$_{se}$	−0.42	%CF$_{se}$	+0.52
THg$_{OC}$	−0.36	PS$_{se}$	−0.78	%w$_s$	−0.44
THg soil pool	−0.43	%sand$_{se}$	−0.81	THg$_{OC}$	+0.40
PS$_s$	−0.44			Soil THg pool	+0.48
%sand$_s$	−0.48			%OM$_s$	−0.57
pH$_s$				pH$_s$	+0.39
BD				BD	+0.56

Water THg/OC was not presented as it had no significant correlations.

Fig. 4 Biplot of Redundancy Analysis (RDA) for total mercury (THg) and total mercury normalized by organic carbon (THg/OC) in sediment ($n = 31$), sampled in the Republic of Ireland during April-July 2017 and 2018, with topsoil parameters as explanatory variables ($R^2 = 0.46; R^2$ adj $= 0.14$). Column amplitude set to 0.5 to allow easier visual interpretation. Variables starting with ‘S’ or ‘Se’ indicate soil and sediment respectively. %w sample moisture, %OM organic matter, CF coarse fragment, Ps particle size
Discussion

Total mercury concentrations in lake water, lake sediment and catchment soil

While THg concentrations in the upland lake waters (median 5.4 ng/L, range 2.0–19.7 ng/L) were high compared with a previous survey of Irish lakes in 2008, which included 13 lakes from this study (median 2.78 ng/L, n = 54 [Burton et al. 2013]), they were generally within the range of pristine lakes in Norway (0.5–6.6 ng/L, n = 51 [Braaten et al. 2014]; 1.7–5.1 ng/L, n = 4 [Poste et al. 2015]), and mountain lakes in the UK (mean 14 ng/L, n = 1 [Yang et al. 2002]) and in the US (mean 1.73 ng/L, n = 44; [Yu et al. 2011]; mean 1.5 ng/L, n = 1 [Gerson and Driscoll 2016]). Further, the study lakes with higher THg concentrations (> 10 ng/L) were consistent with streams and lakes influenced by peatlands (e.g., 4.6–25 ng/L, n = 1 [Woernndle et al. 2018]; inflow 26 ng/L, n = 1 [Yang et al. 2002]).

Total Hg in sediment for the study lakes (median 30 ng/g, range 2.2–189 ng/g) was generally consistent with pristine remote lakes, e.g., arctic lakes (mean 22.2 ng/g, n = 3 Gopikrishna et al. 2020; 9.4–164 ng/g, n = 6 Korosi et al. 2018) but lower than observations from high elevation lakes in two national parks in the US (92–288 ng/g, n = 9 Mast et al. 2010). In contrast to lake water and sediment, THg concentration in catchment topsoil (median 240 ng/g) was higher than topsoil from other background regions (e.g., Svalbard: median 107 ng/g, n = 57 Halbach et al. 2017; Himalayas: 3.82–106 ng/g, n = 5 Tripathee et al. 2018), owing to their high organic content (87%). Total Hg in the study soils was more than twice as high as rural topsoil in the UK (median 95 ng/g, n = 898); however, when normalized by organic matter content they were lower (median 0.5 mg/kg OC versus 0.63 mg/kg OM in the UK Tipping et al. 2011).

The low variation in soil THg and THg/OC across the study sites (21–32%) suggests a consistent Hg source, i.e., atmospheric deposition dominated by long-range transport, which is low in Ireland (e.g., Custodio et al. 2020). The influence of atmospheric mercury deposition on Irish environments has been previously demonstrated by analysis of peat cores, which reflect historical atmospheric mercury concentrations (Scott and Aherne 2013; Coggins et al. 2006), including suspected long-range pollution from North America (Coggins et al. 2006). The lakes in this study are headwater lakes originally selected to study the impacts of long-range atmospheric pollution (Aherne et al. 2002) and therefore the only anthropogenic source of mercury to these catchments are low levels of atmospheric deposition.

Interlinkages between soil, sediment and water

The results suggest that catchment topsoils drive variation in Hg concentrations in lake water and sediment in the upland regions of Ireland. The soil THg pool best explained the variation in sediment THg (r = 0.68) and especially water THg (r = 0.82), but THg concentration was also highly correlated toorganic matter (sediment THg and %OM: r = 0.88; water THg and DOC: r = 0.66). The relationship between organic matter and THg has been widely reported for aquatic (e.g., Watras et al. 1995; Lavoie et al. 2019) and terrestrial (e.g., Tipping et al. 2011; Eklöf et al. 2012) systems. Further, it is
well established that soil processes that affect the transport of DOC from terrestrial catchments to surface waters also strongly influence the concentration of THg (e.g., Stoken et al. 2016). However, in the current study the highly organic soils obscured this relationship. Stoken et al. (2016) similarly found that soils with high carbon content could ‘dilute’ THg, owing to limited Hg supply for adsorption to soils with relatively large carbon pools. This highlights the need to normalize THg by organic carbon to evaluate the interlinkages within lake catchments.

The interlinkages between lakes and their catchments may become increasingly important for aquatic mercury concentrations as decreasing anthropogenic emissions lead to legacy mercury pollution from atmospheric deposition stored in soils becoming the dominant source to aquatic systems, which has been observed for trace metals (Yang et al. 2018, 2016). In the study lakes, the source of mercury is still atmospheric, but with a shift away from direct atmospheric deposition toward the delayed inputs of legacy atmospheric mercury stored in the catchment soils. Since the study lakes are headwater systems, the movement of mercury from the soils to the lake is largely from erosion and seepage.

Conclusions

Total Hg concentrations in water and sediment in upland Irish lakes were low, consistent with pristine (background) regions. In contrast, topsoil THg concentrations were relatively high, with little variation, owing to the organic soils that dominate the study sites. This emphasizes the value of exploring mercury independent of the influence of organic matter, i.e., THg normalized by organic carbon. This study suggests that catchment soils are the dominant driver of variation in Hg concentrations in lake water and sediment in the upland regions of Ireland. Further, the low variation in topsoil THg across the study sites suggests that (long-range) atmospheric inputs were the dominant source. As global action (such as the Minamata Convention) decreases mercury emissions, soil mercury inputs to aquatic systems may become more important than atmospheric deposition, which makes the relationships between terrestrial catchments and their water bodies vital for our understanding of mercury cycling.

Supplementary Information The online version contains supplementary material available at https://doi.org/10.1007/s12665-022-10618-z.

Acknowledgements Financial support for this research was provided by the Irish Environmental Protection Agency under the Climate Change Research Programme (CCRP) 2014–2020. This work would not have been possible without the extraordinary efforts of the field crew: Connor Gaffney, Tanner Liang, Keelan McHugh, Brett Roblin, Hazel Cathcart, Ken Brown, and Kayla Wilkins.

Funding Financial support for this research was provided by the Irish Environmental Protection Agency under the Climate Change Research Programme (CCRP) 2014–2020. Grant code: 2016-CCRP-MS.43.

Declarations

Conflict of interest The authors have no relevant conflicts of interest to disclose.

References

Aherne J, Kelly-Quinn M, Farrell EP (2002) A survey of lakes in the Republic of Ireland: hydrochemical characteristics and acid sensitivity. AMBIO A J Human Env 31(6):452–459
AMAP & UN Environment Programme. (2019). Technical background report for the global mercury assessment 2018. Arctic monitoring and assessment programme, Oslo, Norway/UN Environment Programme, Chemicals and Health Branch, Geneva, Switzerland
Aslam SN, Huber C, Asimakopoulos AG, Steinnes E, Mikkelsen Ø (2019) Trace elements and polychlorinated biphenyls (PCBs) in terrestrial compartments of Svalbard, Norwegian Arctic. Sci Total Environ 685:1127–1138
Bleischwitz R, Hoff H, Spatari C, Van der Voet E, VanDeveer SD (eds) (2018) Routledge handbook of the resource nexus. Routledge, Abingdon, Oxfordshire
Bowman J (1991) Acid sensitive surface waters in Ireland. Environment Research Unit, Dublin, Ireland, p 321
Braaten HFV, de Wit HA, Fjeld E, Rognerud S, Lydersen E, Larsen T (2014) Environmental factors influencing mercury speciation in subarctic and boreal lakes. Sci Total Environ 476:336–345
Burton A, Aherne J (2012) Changes in the chemistry of small Irish lakes. Ambio 41:170–179
Burton A, Aherne J, Hassan N (2013) Trace metals in upland headwater lakes in Ireland. Ambio 42(6):702–714
Coggins AM, Jennings SG, Ebinghaus R (2006) Accumulation rates of the heavy metals lead, mercury and cadmium in ombrotrophic peatlands in the west of Ireland. Atmos Environ 40(2):260–278
Custodio D, Ebinghaus R, Spain TG, Bieser J (2020) Source apportionment of atmospheric mercury in the remote marine atmosphere: mace head GAW station, Irish western coast. Atmos Chem Phys 20(13):7929–7939
Eklöf K, Fölster J, Sonesten L, Bishop K (2012) Spatial and temporal variation of THg concentrations in run-off water from 19 boreal catchments, 2000–2010. Environ Pollut 164:102–109
Environmental Protection Agency. (2006) Ireland: Water Framework Directive Monitoring Programme. Version 1.0. Johnstown Castle, Co. Wexford, Ireland. Accessed: www.epa.ie/pubs/reports/water/other/wfd/
European Environment Agency. (2022) Resource nexus, challenges and opportunities. Accessed: https://www.eea.europa.eu/publications/resource-nexus-challenges-and-opportunities
Gerson JR, Driscoll CT (2016) Is mercury in a remote forested watershed of the adirondack mountains responding to recent decreases in emissions? Environ Sci Technol 50(20):10943–10950
Gopikrishna VG, Kannan VM, Binish MB, Shukkur MA, Krishnan KP, Mohan M (2020) Mercury in the sediments of freshwater lakes in Ny-Ålesund. Arctic Env Monitor Assess 192(8):1–10
Halbach K, Mikkelsen Ø, Berg T, Steinnes E (2017) The presence of mercury and other trace metals in surface soils in the Norwegian Arctic. Chemosphere 188:567–574
Hammer Ø, Harper DAT, Ryan PD (2001) PAST: paleontological statistics software package for education and data analysis. Palaeontol Electron 4(1):9
Hsu-Kim H, Kucharzyk KH, Zhang T, Deshusses MA (2013) Mechanisms regulating mercury bioavailability for methylaing microorganisms in the aquatic environment: a critical review. Environ Sci Technol 47(6):2441–2456

Korosi JB, Griffiths K, Smol JP, Blais JM (2018) Trends in historical mercury deposition inferred from lake sediment cores across a climate gradient in the Canadian High Arctic. Environ Pollut 241:459–467

Lavoie RA, Amyot M, Lapierre JF (2019) Global meta-analysis on the relationship between mercury and dissolved organic carbon in freshwater environments. J Geophys Res Biogeosci 124(6):1508–1523

Legendre P, Legendre L (1998) Numerical ecology, 2nd edn. Elsevier, Amsterdam, p 853

Leinert S, OBrien P, Mooney P, Ebinghaus R, Kock H, Spain G. (2008) Long-term measurements of atmospheric mercury at Mace Head, Carna, Co. Galway. In: Environmental Research Centre Report Series, Vol 9. Environmental Protection Agency, Johnstown Castle, Co. Wexford Ireland

Mast MA, Manthorne DJ, Roth DA (2010) Historical deposition of mercury and selected trace elements to high-elevation National Parks in the Western US inferred from lake-sediment cores. Atmos Environ 44(21–22):2577–2586

Met Éireann (2020) Climate of Ireland. Retrieved on 01 December 2020 from: https://www.met.ie/climate/climate-of-ireland

Nelson SAM, Aherne J (2020) Decadal changes in trace metal concentrations in upland headwater lakes. Bull Environ Contam Toxicol 105:679–684

O’Halloran J, Irwin S, Harrison S, Smiddy P, O’Mahony B (2003) Mercury and organochlorine content of Dipper Cinclus cinculus eggs in south-west Ireland: trends during 1990–1999. Environ Pollut 123(1):85–93

Perrin PM, Barron SJ, Roche JR, O’Hanrahan B (2014) Guidelines for a national survey and conservation assessment of upland vegetation and habitats in Ireland version 2.0. Irish wildlife manuals, No.79. National Parks and wildlife service. Department of Arts Heritage and the Gaeltacht, Dublin, Ireland

Poste AE, Braaten HFV, de Wit HA, Sørensen K, Larssen T (2015) Effects of photodemethylation on the methymercury budget of boreal Norwegian lakes. Environ Toxicol Chem 34(6):1213–1223

Ravichandran M (2004) Interactions between mercury and dissolved organic matter—a review. Chemosphere 55:319–331

Rose NL, Yang H, Turner SD, Simpson GL (2012) An assessment of the mechanisms for the transfer of lead and mercury from atmospherically contaminated organic soils to lake sediments with particular reference to Scotland, UK. Geochem Cosmochim Acta 82:113–135

Ruus A, Øverjordet IB, Braaten HFV, Evenset A, Christensen G, Heimstad ES, Gabrielsen GW, Borgå K (2015) Methylmercury biomagnification in an Arctic pelagic food web. Environ Toxicol Chem 34(11):2636–2643

Scott HE, Aherne J (2013) Mercury concentrations in Irish headwater lake catchments. Biogeochemistry 116(1):161–173

Stoken OM, Riscassi AL, Scanlon TM (2016) Association of dissolved mercury with dissolved organic carbon in US rivers and streams: the role of watershed soil organic carbon. Water Resour Res 52(4):3040–3051

Teagasc & Environmental Protection Agency. (2015). Irish soil information system. Accessed from: http://gis.teagasc.ie/soils/map.php

Tipping E, Poskitt JM, Lawlor AJ, Wadsworth RA, Norris DA, Hall JR (2011) Mercury in United Kingdom topsoils; concentrations, pools, and critical limit exceedances. Environ Pollut 159(12):3721–3729

Tripathee L, Guo J, Kang S, Paudyal R, Huang J, Sharma CM, Zhang Q, Rupakheti D, Chen P, Ghimire PS, Gyawali A (2018) Concentration and risk assessments of mercury along the elevation gradient in soils of Langtang Himalayas, Nepal. Human Ecological Risk Assess 25(4):1006–1017

United Nations Environment Program (2019). Minamata convention on mercury: text and annexes. Retrieved from: www.mercurevconvention.org

Watras CJ, Morrison KA, Host JS, Bloom NS (1995) Concentration of mercury species in relationship to other site-specific factors in the surface waters of northern wisconsin lakes. Limnol Oceanogr 40(3):556–565

Weigelt A, Ebinghaus R, Manning AJ, Derwent RG, Simmonds PG, Spain TG, Jennings SG, Slemr F (2015) Analysis and interpretation of 18 years of mercury observations since 1996 at Mace Head, Ireland. Atmos Environ 100:85–93

Woerdle GE, Tsz-Ki Tsui M, Sebestyen SD, Blum JD, Nie X, Kolka RK (2018) New insights on ecosystem mercury cycling revealed by stable isotopes of mercury in water flowing from a headwater peatland catchment. Environ Sci Technol 52(4):1854–1861

World Health Organization. (2017). Mercury and health. retrieved from: www.who.int/news-room/fact-sheets/detail/mercury-and-health

Yang H, Engstrom DR, Rose NL (2010) Recent changes in atmospheric mercury deposition recorded in the sediments of remote equatorial lakes in the Rhenziorni Mountains, Uganda. Env Sci Technol 44(17):6570–6575

Yang H, Rose NL, Battarbee RW, Boyle JF (2002) Mercury and lead budgets for Lochnagar, a Scottish mountain lake and its catchment. Environ Sci Technol 36(7):1383–1388

Yang H, Smyntek P (2014) Use of the mercury record in Red Tarn sediments to reveal air pollution history and the implications of catchment erosion. Environ Sci Process Impacts 16(11):2554–2563

Yang H, Turner S, Rose NL (2016) Mercury pollution in the lake sediments and catchment soils of anthropogenically-disturbed sites across England. Environ Pollut 219:1092–1101

Yang H, Shilland E, Appleby PG, Rose NL, Battarbee RW (2018) Legacy lead stored in catchments is the dominant source for lakes in the UK; evidence from atmospherically derived 210Pb. Environ Sci Technol 52(24):14070–14077

Yu X, Driscoll CT, Montesdeoca M, Evers D, Duron M, Williams K, Schoch N, Kamman NC (2011) Spatial patterns of mercury in biota of Adirondack, New York Lakes. Ecotoxicology 20(7):1543–1554

Zdanowicz CM, Krümmel EM, Zdanowicz CM, Krümmel EM, Spain TG, Jennings SG, Slemr F (2015) Historical variations of mercury stable isotope ratios in Arctic glacier firn and ice cores. Global Biogeochem Cycles 30(9):1324–1347

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.