Supplementary Information

Revealing mechanisms of mating plug function under sexual selection

Paula Stockley, Catarina Franco, Amy J. Claydon, Amanda Davidson, Dean E. Hammond, Philip J. Brownridge, Jane L. Hurst, Robert J. Beynon

Supplementary figure legends

Fig. S1. Comparison of SVS4 peptides with other peptide data. The copulatory plug is an intractable material to deal with, as it is extensively cross-linked. It contains multiple proteins derived from the secretory vesicle. However, in terms of extractable proteins (SVS2 is the protein that contains the repetitive cross-linked sequence, and is not extractable), the most abundant protein was SVS4. When extracted from the plug, this protein appears on reducing SDS-PAGE as a polymeric ladder, implying cross-linking of 1,2 3.. copies of the protein. Label-free quantification of the extractable plug proteome revealed that SVS4 was two orders of magnitude more abundant that other proteins. This protein consistently yielded a high-quality peptide from which we were able to recover a clean extracted ion chromatogram and mass spectrum, and allowed us to assess whether the copulatory plugs were derived from the unlabelled male, the labelled male, or both. Where other peptides could be obtained, we analysed the labelling pattern. Orange symbols: other SVS4 peptides, blue symbols: peptides from other proteins (see the accompanying table). In every instance, the categorisation of the plugs according to donor male was unchanged, irrespective of the protein/peptide used (these are individual values, obtained from portions of the plugs, and need to be interpreted in the context of Fig. S2).
Fig. S2. Recovered mating plugs. Plugs were recovered from female bank voles immediately after sequential copulation with two males, during which each male ejaculated once. Images of these plugs are numbered 1 to 17. Males mating in first or second mating roles had been fed either ‘heavy’ (H) or ‘light’ (L) diets to facilitate discrimination of their ejaculates, with the ‘heavy’ diet containing a stable isotope labelled amino acid ([\(^{13}\)C\(_6\) lysine) at a relative isotope abundance of 0.5. For each plug, the identity and labelling status of the first male to mate is presented first in square brackets, with H1-4 indicating the identity of a ‘heavy’ first male, and L1-L14 indicating the identity of a ‘light’ first male. The identity and labelling status of the second male is then presented, using the same abbreviations. Mating plugs were cut to analyse the outer two quartiles (1-4, 8, 9, 12-17), or if plugs split into two naturally, each part was cut in half (6, 7, 11, labelled as parts 1 and 2). A further two plugs were also cut in half (5, 10 – see main text). The ratio of H/(H+L) was calculated based on the area of a potential SVS4 tryptic peptide SASGSSTSYSLDK (see main text). In most cases (2-5, 8-10, 12-17), proteomic analysis revealed that the recovered plug material originated entirely from the second male to mate: when the second male was ‘light’ (coloured blue in the figure) the plug contained no \([^{13}\text{C}_6]\) lysine (H/(H+L)<0.04), and when the second male was ‘heavy’ (coloured red in the figure) the plug contained half (50\% \([^{13}\text{C}_6]\) lysine (H/(H+L)>0.47), consistent with full labelling. In four cases (1, 6, 7, 11) proteomic analysis revealed that recovered plug material originated from both the first and second males to mate (coloured purple in the figure). Plugs 6, 7 and 11 each split naturally into two on recovery. In these cases the section of the plug positioned closest to the cervix (part 1) contained protein from the first (heavy) male combined with protein from the second (light) male, whereas the plug section positioned behind this (part 2) contained protein only from
the second (light) male. Plug 1 did not split naturally on recovery but contained protein from both the second (heavy) and first (light) male.

Fig. S3. Influence of mating plugs on the number of sperm from competing males reaching the uterus. **A.** Shows variation in the mean (+ s.e) absolute number of sperm from the first and second males reaching the uterus following a double copulation when the first male’s plug was dislodged or retained. For statistical analysis with control for sperm numbers recovered when males mated alone, see Table S1. **B.** The mass of the mating plug that males produced explained significant variation in the number of their own sperm recovered from the uterus immediately after ejaculation. More sperm were recovered for males producing larger plugs, when mating in either a first mating role (as the only male) or second mating role (in a double mating). For statistical analysis, see Table 2.

Fig. S4. Mass of seminal vesicles predicts plug mass and sperm transport. **A.** The mass of males’ seminal vesicles predicted the mass of their mating plugs when mating in either first or second mating roles. Data are presented for 18 males, excluding 4 plugs of mixed origin recovered after double copulations. For statistical analysis with control for male body mass, see Table S4. **B.** Following double copulations, the number of the second males’ sperm reaching the uterus was predicted by the mass of their seminal vesicles, and hence by inference, by the size of their mating plug. Larger seminal vesicles of the second male were associated with more of their sperm reaching the uterus. For statistical analysis with control for second males’ cauda sperm count (as measure of sperm production) see Table 3A.
Fig. S5. Sperm competition and paternity outcomes. Following double copulations, the relative proportion of sperm from two competing males in the uterus explained significant variation in paternity outcomes when the same males mated again with a different female. S2 is the proportion of sperm present in the uterus from the second male immediately after a double copulation, and P2 is the proportion of offspring sired by the second male in a subsequent double copulation. Linear regression analysis: $r^2 = 0.56$, $F_{1,7} = 8.9$, $P = 0.02$.

Fig. S6. Overview of methodological approach. Male bank voles were fed on a manipulated diet to facilitate discrimination of their ejaculates under sperm competition. ‘Heavy’ (H) males consumed a diet containing 50% $[^{13}C_6]$ lysine, and ‘light’ (L) males consumed a control diet with $[^{12}C_6]$ lysine for a minimum of 40 days prior to experimental mating. To investigate the consequences of natural variation in mating plug characteristics, a series of double and single copulations were conducted using differentially labelled males. A total of 60 copulations were achieved with 40 females, 20 of which mated with a single male (4H and 16L), and 20 of which mated sequentially with two differentially labelled males (16HL, 4LH).

Immediately after each single or double copulation, female voles were humanely killed to recover ejaculates and mating plugs. Mating plugs were removed from the vagina, the contents of the uterus were removed, sperm counts were performed and the ejaculated seminal fluid and sperm were separated for subsequent proteomic analysis.

Fig. S7. Isotope labelling of peptides from mating plugs.

Ejaculates were collected from unlabelled or ‘heavy’ labelled males, following a single copulation with a previously unmated female, and analysed by proteomics. The raw data files were interrogated to display the mass spectrum of a single peptide (from seminal...
vesicle protein IV (SVS4 peptide SASGSSTSYSLDK, m/z 645.296 light, m/z 648.306, heavy) to illustrate the differences in labelling profiles. Samples are from 4 ‘heavy’ labelled males (H1-H4), and 14 ‘light’ males (L1-L14). Note the absence of any peak corresponding to the heavy peptide in the light labelled samples (L1 to L14).

Supplementary Information Datasets

Supplementary Excel spreadsheet

Filename: Data files_mating plugs.xlsx

This multi-tab spreadsheet contains raw data used for each of the analyses. Tab 1 is the index relating Tabs 2-15 to the location of results for each dataset, with a description of the analyses used, including number of observations, dependent variables, factors and random effects in models.

Supplementary Excel spreadsheet

Filename: All plug proteome data.xlsx

This multi-tab spreadsheet is the output of Proteome Discoverer (Thermo). Tab 1 is the index relating individual sample IDs to proteomics file numbers. Tab 2 is the overall proteome abundance for the protein profile, heavily dominated by SVS4. Finally, a standard Proteome Discoverer analysis is present in tab 3.

Supplementary FASTA database

Filename: BankVoleProteinDB_fasta.txt
This database was constructed by reference to other rodent protein databases, as described in the text. Where proteins were manually searched and annotated, these are indicated by short accession numbers (e.g. ‘BV4’, the most abundant protein in plugs, equivalent to SVS4 in other rodents).
Figure S1.

List of additional peptides used in Figure S1, with the calculated RIA values:

RIA: SVS4/SASG..index peptide	RIA: Other peptide	Protein/sequence	Sample ID	From SVS4?	
0	.01	SVS4/FSQSEETSETVTGSGEK	12366_4	Y	
.001	.01	SVS4/FSQSEESTETVTGSGEK	12349_1	Y	
.011	.011	SERPIN/TQIMEGLGLSSLQSQEELHK	12070_4	N	
.004	.048	CAECAM10/VQVSWSYK	12696_4	N	
.014	.014	SVS4/FSQSEESTETVTGSGEK	12696_4	Y	
.027	.027	A1AT/QINDYVADETQGK	12111_1	N	
.034	.034	A1AT/QINDYVADETQGK	12111_1	N	
.011	.011	IL2ZR/VFIDNLLEK	12111_2	N	
.01	.01	SERPIN/DNFLSMAK	12070_1	N	
.013	.013	SVS4/AVASSESEYESSHK	12070_1	Y	
.048	.048	CAECAM10/VQVSWSYK	12696_4	N	
.014	.014	SVS4/FSQSEESTETVTGSGEK	12696_4	Y	
.018	.018	SVS4/AVASSESEYESSHK	12261_1	Y	
.032	.032	SVS4/AVASSESEYESSHK	12261_1	Y	
.032	.037	SVS4/FSQSEESTETVTGSGEK	12261_1	Y	
.032	.032	SERPIN/TQIMEGLGLSSLQSQEELHK	12261_1	N	
.017	.017	SERPIN/MQQVESLSLEWALK	12030_1	N	
.011	.011	SVS4/AVASSESEYESSHK	12030_1	Y	
.021	.021	T1MP1/NGNLHISACFPLPSHLNAQQK	12030_1	N	
.04	.04	SVS4/AVASSESEYESSHK	12030_1	Y	
.045	.045	SVS4/FSQSEESTETVTGSGEK	12030_1	Y	
11	105	SVS4/AVASSESEYESSHK	12361_2	Y	
.110	.314	B2C/INVYYNEATGGK	12631_2	N	
.13	.13	SVS4/AVASSESEYESSHK	12439_2	Y	
.173	.173	SVS4/FSQSEESTETVTGSGEK	12439_2	Y	
.237	.237	SVS4/AVASSESEYESSHK	12361_1	Y	
.307	.307	B2C/INVYYNEATGGK	12631_1	N	
.274	.274	SVS4/AVASSESEYESSHK	12439_1	Y	
.232	.232	SVS4/AVASSESEYESSHK	12364_4	Y	
.14	.14	SVS4/AVASSESEYESSHK	12364_4	Y	
.295	.295	SVS4/AVASSESEYESSHK	12364_4	Y	
.375	.375	TGM/FSVESLALSNMQSWNQEK	12417_1	N	
.375	.25	A1AT/EEELSSWVLVK	12417_1	N	
.375	.382	SERPIN/MQQVESSLSEWALK	12417_1	N	
.375	.366	TGM/FSVESLALSNMQSWNQEK	12417_1	N	
.473	.447	CAECAM10/VQVF5WVK	12365_1	N	
.473	.47	SERPIN/DNFLSAMK	12365_1	N	
.473	.459	SERPIN/MQQVESSLSEWALK	12365_1	N	
.475	.495	TIMPX1/FAYTPAQESLCGYVH	12260_4	N	
.48	.501	SV54/AVASSSEESYEESHK	12260_1	N	
.48	.474	SERPIN/QINDYVAK	12260_1	N	
.480	.500	SV54/FSQESTSETYVTSGEK	12260_1	N	
.480	.492	TIMPX1/FAYTPAQESLCGYVH	12260_1	N	
.480	.475	A1AT/EEELSSWVLVK	12260_1	N	
.480	.488	A1AT/QINDYVADETQGK	12260_1	N	
.480	.492	SERPIN/DNFLSAMK	12260_1	N	
.480	.486	CAECAM10/SVVLVHDLPEK	12260_1	N	
.482	.485	SV54/AVASSSEESYEESHK	12364_1	Y	
.482	.485	SV54/AVASSSEESYEESHK	12364_1	Y	
.482	.454	SV54/AVASSSEESYEESHKK	12364_1	Y	
.482	.521	SERPIN/TLYMADTFSTNFNGPMAK	12364_1	N	
.491	.472	CAECAM10/VQVF5WVK	12365_4	N	
.491	.482	SERPIN/DNFLSAMK	12365_4	N	
.491	.486	SERPIN/MQQVESSLSEWALK	12365_4	N	
.491	.486	SERPIN/FIEGTYHLEK	12365_4	N	
.493	.506	TIMPX1/FAYTPAQESLCGYVH	12693_4	N	
.493	.485	CAECAM10/SVVLVHDLPEK	12693_4	N	
.493	.495	SERPIN/LSLYLPK	12693_4	N	
.493	.494	SERPIN/DNFLSAMK	12693_4	N	
.496	.488	TIMPX1/FAYTPAQESLCGYVH	12693_1	N	
.496	.494	CAECAM10/WFLNGK	12693_1	N	
.496	.526	SV54/FSQESTSETYVTSGEK	12693_1	Y	
.242	.214	SV54/AVASSSEESYEESHK	12417_1	Y	
	[L12] H1	[L2] H2	[L13] H3	[L1] H4	[H4] L1
---	---------	---------	---------	---------	---------
H/H+L	H/H+L	H/H+L	H/H+L	H/H+L	H/H+L
1	0.482	0.473	0.480	0.496	0.002
2	0.308	0.491	0.478	0.493	0.012
	48.2%	47.3%	48.0%	49.6%	0.2%
	30.8%	49.1%	47.8%	49.3%	1.2%

	[H7] L3 (1)	[H7] L3 (2)	[H2] L4 (1)	[H2] L4 (2)
H/H+L	H/H+L	H/H+L	H/H+L	
1	0.242	0.002	0.274	0.012
2	0.110	0.003	0.119	0.003
	24.2%	0.2%	27.4%	1.22%
	11.0%	0.3%	11.9%	0.31%
Figure S3

A

Bar chart showing mean sperm number (± SE) for first and second males with yes and no first plug retention.

B

Scatter plot showing focal male plug mass (mg) and focal male sperm number, with lines indicating trend for first and second males.
Figure S4

A

Plug mass (mg)

Seminal vesicles mass (mg)

Mating role

First

Second

B

Second male sperm number in uterus

Second male seminal vesicles mass (mg)
Figure S6

Diagram showing single and double matings with 'heavy' and 'light' males. The diagram depicts the flow of samples through mating plugs, recovered ejaculate, seminal fluid, and sperm, leading to protein solubilization and digestion, and finally proteomics.
Figure S7

A. SVS4 in ejaculates recovered following single copulations by 'heavy' labelled males

1. H1

2. H2
B. SVS4 in ejaculates recovered following single copulations by ‘light’ males

1. L1

2. L2
7. L7

8. L8
11. L11

12. L12
Table S1. Influence of dislodgement or retention of the first male’s mating plug on the absolute number of sperm from competing males that reach the uterus.

Results are shown for linear mixed models fit by maximum likelihood, testing the effect of plug dislodgement or retention on the absolute number of sperm recovered from the second male (A) and from the first male (B & C). Mean values are shown in Fig. S3A. The analysis in (A) and (B) includes 17 double copulations, with 17 males in role 2 (mating second) and 11 in role 1 (mating first). Male 1 ID is included as a random factor and sperm number when the focal male mated alone is included as a covariate. However, covariate data were not available for all males mating in role 1. Hence the analysis of first male sperm numbers in (B) reduces to 13 double copulations by 8 males. (C) Excludes one case in which no sperm from a male mating first were found in the uterus, leaving 12 double copulations by 7 males.

Absolute number of sperm recovered from double mating	\(\chi^2 \)	\(p \)
A) Second male		
Retention of first male’s mating plug	4.09	0.04*
Sperm number in uterus when focal male mated alone	6.76	<0.01**
B) First male		
Retention of first male’s mating plug	2.71	0.10
Sperm number in uterus when focal male mated alone	2.63	0.10
C) First male (excluding one for which no sperm recovered)		
Retention of first male’s mating plug	0.73	0.39
Sperm number in uterus when focal male mated alone	6.16	0.01*
Table S2. Copulatory behaviours in first versus second mating role. Comparisons of copulatory behaviour when the mating male is the female’s first versus second mate.

A) Copulation duration (from first intromission to ejaculation) was significantly longer for the second male to mate; B) the second male to mate performed significantly more intromissions per copulation, but C) the intromission rate (number of intromissions divided by copulation duration) and D) copulation latency (from introduction to initiation of copulation) were not significantly different for the first and second copulation. Results are shown for linear mixed models fit by REML, using data for 60 copulations (40 with males mating first or alone, and 20 with males mating second in a double copulation), by 24 males with 40 females. The analysis includes male and female ID as random factors. Copulation duration is log transformed. Intromission rate and copulation latency are square root transformed.

Factor	Mean (± SE)	X^2_f	P	
	First male	Second male		
A) Copulation duration	1181 (± 115) s	1837 (± 225) s	12.67	<0.001***
Mating role			<0.001***	
B) Number of intromissions	33 (± 2.5)	59 (± 6.7)	26.14	<0.001***
Mating role			<0.001***	
C) Intromission rate	2.17 (± 0.2) /m	2.11 (± 0.2)/m	0.18	NS
Mating role			NS	
D) Copulation latency	249 (± 44) s	256 (± 40) s	0.50	NS
Mating role			NS	
Table S3. Copulatory behaviour doesn’t predict plug retention. Following sequential copulations by two males with the same female, the retention of mating plug material from the first male within the female reproductive tract was not predicted by copulatory behaviour in the first or second copulations: A) copulation duration (first intromission to ejaculation), B) number of intromissions per copulation, and C) intromission rate (number of intromissions divided by copulation duration). Results are shown for linear mixed models fit by REML, using data for 17 double copulations, with 17 males in the second mating role and 11 in the first mating role. The analysis includes the first male’s ID as a random factor. Mating duration (all males) and intromission number (second males) are log transformed.

Factor	First male		Second male	
	X^2_1	P	X^2_2	P
A) Copulation duration				
Plug retention	0.11	NS	0.42	NS
B) Number of intromissions				
Plug retention	0.90	NS	0.48	NS
C) Intromission rate				
Plug retention	0.19	NS	1.68	NS
Table S4. Seminal vesicles mass predicts mating plug mass. When subject males mated in either first (in single copulations) or second (in double copulations) mating roles, the mass of the mating plug recovered from the uterus immediately after ejaculation was strongly predicted by the mass of the mating male’s seminal vesicles, but not by their mating role (first or second to mate). Body mass is included as a covariate. Results are shown for linear mixed models fit by REML, for 18 males mating both first (in single copulations) and second (in double copulations) mating roles. Plug mass data excludes 4 cases where proteomic analysis revealed that the recovered plug originated from more than one. Male ID is included as a random factor. Plug mass is log transformed.

Factor	X_i^2	P
Mating plug mass		
Seminal vesicle mass	12.2	<0.001***
Mating role (first or second to mate)	0.02	NS
Body mass	0.42	NS
Table S5. Selection of proteins used to quantify relative sperm numbers from competing males. To calculate the number of sperm from ‘heavy’ and ‘light’ labelled males in the uterus following double copulations, a set of sperm derived proteins was identified. Initially, data were recovered from 46 proteins from recovered ejaculates. Those that were unlikely to be male-specific were first eliminated by analysing four ejaculates from heavy labelled males that had each mated once with a different (unlabelled) female. Proteins were only retained for analysis if their abundance from the heavy labelled male was greater than 90% (median proportion over four ejaculates >0.9). Sperm proteins were then identified based on two criteria. First, proteins that were significantly correlated with the number of sperm counted in each sample. To account for multiple testing a Bonferroni correction was applied, with an adjusted significance level of 0.001. Second, remaining proteins were individually examined to check that they were likely to be found in sperm. The remaining 21 proteins were used to calculate sperm numbers from competing males (see Table S7 for a list of peptides used).

Protein	Male origin	Correlates with sperm number	Sperm-related number	Used for calculation																							
14-3-3 protein zeta/delta	✗	--	--	No																							
2-oxoglutarate dehydrogenase, mitochondrial	✓	✓	✓	Yes																							
61 kDa heat shock protein, mitochondrial	✗	--	--	No																							
Aconitate hydratase, mitochondrial	✓	✓	✓	Yes																							
ADP/ATP translocase 4	✓	✓	✓	Yes																							
A-kinase anchor protein 3	✓	✓	✓	Yes																							
A-kinase anchor protein 4	✓	✓	✓	Yes																							
Protein/Enzyme	Alpha-enolase	Annexin A6	ATP synthase subunit alpha, mitochondrial	ATP synthase subunit beta, mitochondrial	Calcin	Calmodulin	Citrate synthase, mitochondrial	Cytochrome b-c1 complex subunit 2, mitochondrial	Cytosol aminopeptidase	Cytosolic 5'-nucleotidase 1B	Dihydrolipoyllysine-residue acetyltransferase component of pyruvate dehydrogenase complex, mitochondrial	Dynein heavy chain 8, axonemal	F-actin-capping protein subunit alpha-3	Fructose-bisphosphate aldolase A	Glucose-6-phosphate isomerase	Glutathione S-transferase Mu 6	Heat shock cognate 71 kDa protein	L-lactate dehydrogenase A chain	Malate dehydrogenase, mitochondrial	Outer dense fiber protein 2	Outer dense fiber protein 3	Phosphoglycerate kinase 1	Phospholipid hydroperoxide glutathione peroxidase, mitochondrial	Protein-glutamine gamma-glutamyltransferase 4	Pyruvate dehydrogenase E1 component subunit beta, mitochondrial	Pyruvate kinase isozymes M1/M3	Ropporin-1
--	---------------	------------	---	---	--------	------------	---------------------------------	---	---------------------------	-----------------------------	---	--------------------------	--------------------------------	-----------------------------	-------------------------------	---------------------------	-----------------------------	-----------------------------	---------------------	---------------------	-----------------------------	-------------------------------	-----------------------------	--------------------------------	-----------------------------	---------------------	
x	✓	x	Yes	Yes	Yes	No		Yes	No	No	Yes	Yes	Yes	No	No	Yes	No	No	Yes	No	No	No	No				
Annexin A6	✓	x	Yes	Yes	Yes	No		Yes	No	No	Yes	Yes	Yes	No	No	Yes	No	No	Yes	No	No	No	No				
ATP synthase subunit alpha, mitochondrial	✓	✓	Yes	Yes	Yes	No		Yes	No	No	Yes	Yes	Yes	No	No	Yes	No	No	Yes	No	No	No	No				
ATP synthase subunit beta, mitochondrial	✓	✓	Yes	Yes	Yes	No		Yes	No	No	Yes	Yes	Yes	No	No	Yes	No	No	Yes	No	No	No	No				
Calcin	✓	✓	Yes	Yes	Yes	No		Yes	No	No	Yes	Yes	Yes	No	No	Yes	No	No	Yes	No	No	No	Yes				
Calmodulin	x	✓	No	No	No	No		No	No	No	Yes	No	No	No	No	No	No	No	No	No	No	No	No				
Citrate synthase, mitochondrial	✓	✓	Yes	Yes	Yes	No		Yes	No	No	Yes	Yes	Yes	No	No	Yes	No	No	Yes	No	No	No	No				
Cytochrome b-c1 complex subunit 2, mitochondrial	✓	✓	Yes	Yes	Yes	No		Yes	No	No	Yes	Yes	Yes	No	No	Yes	No	No	Yes	No	No	No	No				
Cytosol aminopeptidase	✓	✓	Yes	Yes	Yes	No		Yes	No	No	Yes	Yes	Yes	No	No	Yes	No	No	Yes	No	No	No	No				
Cytosolic 5'-nucleotidase 1B	x	✓	No	No	No	No		No	No	No	Yes	No	No	No	No	No	No	No	No	No	No	No	No				
Dihydrolipoyllysine-residue acetyltransferase component of pyruvate dehydrogenase complex, mitochondrial	✓	✓	Yes	Yes	Yes	No		Yes	No	No	Yes	Yes	Yes	No	No	Yes	No	No	Yes	No	No	No	Yes				
Dynein heavy chain 8, axonemal	✓	✓	Yes	Yes	Yes	No		Yes	No	No	Yes	Yes	Yes	No	No	Yes	No	No	Yes	No	No	No	Yes				
F-actin-capping protein subunit alpha-3	✓	✓	Yes	Yes	Yes	No		Yes	No	No	Yes	Yes	Yes	No	No	Yes	No	No	Yes	No	No	No	Yes				
Fructose-bisphosphate aldolase A	x	✓	No	No	No	No		No	No	No	Yes	No	No	No	No	No	No	No	No	No	No	No	No				
Glucose-6-phosphate isomerase	x	✓	No	No	No	No		No	No	No	Yes	No	No	No	No	No	No	No	No	No	No	No	No				
Glutathione S-transferase Mu 6	✓	✓	Yes	Yes	Yes	No		No	No	No	Yes	No	No	No	No	No	No	No	No	No	No	No	No				
Heat shock cognate 71 kDa protein	x	✓	No	No	No	No		No	No	No	Yes	No	No	No	No	No	No	No	No	No	No	No	No				
L-lactate dehydrogenase A chain	x	✓	No	No	No	No		No	No	No	Yes	No	No	No	No	No	No	No	No	No	No	No	No				
Malate dehydrogenase, mitochondrial	x	✓	No	No	No	No		No	No	No	Yes	No	No	No	No	No	No	No	No	No	No	No	No				
Outer dense fiber protein 2	✓	✓	Yes	Yes	Yes	No		Yes	No	No	Yes	Yes	Yes	No	No	Yes	No	No	Yes	No	No	Yes	Yes				
Outer dense fiber protein 3	x	✓	No	No	No	No		No	No	No	Yes	No	No	No	No	No	No	No	No	No	No	No	No				
Phosphoglycerate kinase 1	x	✓	No	No	No	No		No	No	No	Yes	No	No	No	No	No	No	No	No	No	No	No	No				
Phospholipid hydroperoxide glutathione peroxidase, mitochondrial	✓	✓	Yes	Yes	Yes	No		Yes	No	No	Yes	Yes	Yes	No	No	Yes	No	No	Yes	No	No	No	Yes				
Protein-glutamine gamma-glutamyltransferase 4	✓	✓	Yes	Yes	Yes	No		Yes	No	No	Yes	Yes	Yes	No	No	Yes	No	No	Yes	No	No	Yes	No				
Pyruvate dehydrogenase E1 component subunit beta, mitochondrial	✓	✓	Yes	Yes	Yes	No		Yes	No	No	Yes	Yes	Yes	No	No	Yes	No	No	Yes	No	No	Yes	Yes				
Pyruvate kinase isozymes M1/M3	x	✓	No	No	No	No		No	No	No	Yes	No	No	No	No	No	No	No	No	No	No	No	No				
Ropporin-1	✓	✓	Yes	Yes	Yes	No		Yes	No	No	Yes	Yes	Yes	No	No	Yes	No	No	Yes	No	No	Yes	Yes				
Protein/Protein Complex	Status	Status	Status	Result																							
-------------------------	--------	--------	--------	--------																							
Serotransferrin	×	--	--	No																							
Serum albumin	×	--	--	No																							
Sodium/potassium-transporting ATPase subunit alpha-4	✓	✓	✓	Yes																							
Succinate dehydrogenase [ubiquinone] flavoprotein subunit, mitochondrial	×	--	--	No																							
SVS4_CGrf SVS 4 Vole DNA	✓	×	--	No																							
Testis-specific gene 10 protein	×	--	--	No																							
Transitional endoplasmic reticulum ATPase	×	--	--	No																							
Triosephosphate isomerase	×	--	--	No																							
Tubulin alpha-3 chain	✓	✓	✓	Yes																							
Tubulin beta-2C chain	✓	✓	✓	Yes																							
Voltage-dependent anion-selective channel protein 2	×	--	--	No																							
Voltage-dependent anion-selective channel protein 3	✓	✓	✓	Yes																							
Table S6. Lysine-containing peptides used to define proportion of sperm originating from heavy and light labelled males. From 21 proteins identified as sperm derived, 83 lysine containing peptides were used to calculate sperm numbers from competing males following double copulations. These were identified from a total of 93 available peptides by removing any identified as giving outlying values. Outliers were defined as more than 2 IQRs above the upper quartile or below the lower quartile. Peptides were excluded if they were identified as outliers in 5 or more of 20 samples analysed.

Protein	Peptide
2-oxoglutarate dehydrogenase, mitochondrial	DPAAAPATGKN
2-oxoglutarate dehydrogenase, mitochondrial	IEQLSPFDFLDLLK
Aconitate hydratase, mitochondrial	DLEDLQILIK
Aconitate hydratase, mitochondrial	IHETNLK
Aconitate hydratase, mitochondrial	LQIYLEPFDK
Aconitate hydratase, mitochondrial	LTGSLSGWTSPK
Aconitate hydratase, mitochondrial	LTQQLK
Aconitate hydratase, mitochondrial	VAGILTVK
Aconitate hydratase, mitochondrial	YDLLEK
ADP/ATP translocase 4	ASYFGAYDVTK
ADP/ATP translocase 4	DLLAGVAAAVSK
ADP/ATP translocase 4	LGVDIGK
A-kinase anchor protein 3	DTTIATILLK
A-kinase anchor protein 3	EVVSDLIDSFMK
A-kinase anchor protein 4	DLIVSALMLIQYHTQAOAK
A-kinase anchor protein 4	EFADSISK
A-kinase anchor protein 4	GLMVyanqvasdmmvsk
A-kinase anchor protein 4	GYSVGDLLQEVMK
A-kinase anchor protein 4	KQLLDWLLANL
A-kinase anchor protein 4
ATP synthase subunit alpha, mitochondrial
ATP synthase subunit beta, mitochondrial
ATP synthase subunit beta, mitochondrial
Calcin
Citrate synthase, mitochondrial
Citrate synthase, mitochondrial
Citrate synthase, mitochondrial
Cytochrome b-c1 complex subunit 2, mitochondrial
Dihydrolipoyllysine-residue acetyltransferase component of pyruvate dehydrogenase complex, mitochondrial

LEMAASK
LPEVSAK
NLFNHGK
NLHNITGVLMTDSDFVSAVK
QFIDQLVESVMK
QNAADIMEAMLK
RLVSALLGEK
GMSLNLEPDNVGVVVFGNDK
LTELLK
RFNDGTDEK
TSIAIDTIINQK
ILQDYK
TVLIMELINNVAK
YLFLAELFELK
ALGFPLERPK
EFALK
SMSTDGLMK
AVAQGNLSSADVQAAK
DIDSFVPSK
GLETIASDVSLASK
ISVNDIFIK
VFVSPLAK
YLEKPITMLL
F-actin-capping protein subunit alpha-3
FFDYQSK

F-actin-capping protein subunit alpha-3
SKWIFQVNPLFLQTGTR

Outer dense fiber protein 2
DFTMLQK

Outer dense fiber protein 2
ELLLQK

Outer dense fiber protein 2
KEELEEEAHEAHELAEHENTVLR

Outer dense fiber protein 2
LLLLLDK

Outer dense fiber protein 2
LNQAHLVEQQLK

Outer dense fiber protein 2
NYEGMIDNYK

Outer dense fiber protein 2
QFQSDLADLQQLPDILK

Outer dense fiber protein 2
QTAEYSAFK

Outer dense fiber protein 2
SEEEYAEQLHVQLADK

Outer dense fiber protein 2
VTDLVQNQQQSLEEK

Outer dense fiber protein 2
YNQVVK

Phospholipid hydroperoxide glutathione peroxidase, mitochondrial
EFAAGYNVK

Phospholipid hydroperoxide glutathione peroxidase, mitochondrial
FLIDK

Phospholipid hydroperoxide glutathione peroxidase, mitochondrial
GMLGNAIK

Phospholipid hydroperoxide glutathione peroxidase, mitochondrial
QEPGSNQEIK

Phospholipid hydroperoxide glutathione peroxidase, mitochondrial
WNFTK

Pyruvate dehydrogenase E1 component subunit beta, mitochondrial
DFLIPIGK

Pyruvate dehydrogenase E1 component subunit beta, mitochondrial
DIIFAVK

Pyruvate dehydrogenase E1 component subunit beta, mitochondrial
TIRPMIDIEAIEASVMK

Pyruvate dehydrogenase E1 component subunit beta, mitochondrial
VFLLEGEEVAQYGAYK

Pyruvate dehydrogenase E1 component subunit beta, mitochondrial
VVSVPNSEDADK

Pyruvate dehydrogenase E1 component subunit beta, mitochondrial
LIIHADELAQMVK

Ropporin-1
MLNIEQEVIGPDGLIK

Ropporin-1
DVNAAIATIK

Tubulin alpha-3 chain
EDLAAALEK

Tubulin alpha-3 chain
FDLMYAK
Protein Name	Peptide Sequence
Tubulin alpha-3 chain	IHFPLATYAPVISAEK
Tubulin alpha-3 chain	LSVDYGGK
Tubulin alpha-3 chain	QLFHPEQLITGK
Tubulin alpha-3 chain	VGINYQPPTVPGGLAK
Tubulin beta-2C chain	ALTVPELTQQMFDK
Tubulin beta-2C chain	EVDEQMLNVQNK
Tubulin beta-2C chain	KLAVNMVPFPR
Tubulin beta-2C chain	NSSYFVEWIPNNVK
Voltage-dependent anion-selective channel protein 3	GYGFGMVK
Voltage-dependent anion-selective channel protein 3	LAEGLK
Voltage-dependent anion-selective channel protein 3	LSQNNFALGYK
Voltage-dependent anion-selective channel protein 3	VNNASLIGLGYTQLRGVK
Voltage-dependent anion-selective channel protein 3	WNTDNTLGEISWENK
Table S7. Markers used for genotyping analysis.

Locus	GenBank accession	Repeat	Primer sequence 5’–3’
Cg16A3	EU285428	(CT)$_{22}$	F: TAACTGCCAAGGGTGATAGA R: TCCAAATCTTTTGACCTACCT
Cg2D3	EU285383	(CT)$_{22}$(CA)$_{13}$	F: TCCTTCCTTTTTATTCCTCC R: GAGCAACACTAAACGGATTCC
Cg5E8	EU285398	(GT)$_{19}$(GA)$_{21}$	F: ATTTatakaAAGCCCTCTCTTC R: AGTTCACTGATTTGGATCCTG
Cg17D5	EU285438	(GA)$_{11}$N$_{2}$(GA)$_{7}$	F: TTTTAGCTCCTAATAATGGACA R: GCAGTAGATTTCGCTCACAC
Cg2A4	EU285381	(GT)$_{15}$(GA)$_{13}$	F: GGAATGGTAGGAGGAGAAA R: CTCTTTCACTCGTTGTTT
Cg13B8	EU285417	(CT)$_{20}$(GT)$_{9}$	F: GCCTAATGTTTTCTCTGTGC R: CACATGGAATGAGGTTTTAC