A Possible Mechanism behind Autoimmune Disorders Discovered By Genome-Wide Linkage and Association Analysis in Celiac Disease

Malin Östensson1, Caroline Montén2, Jonas Bacelis2, Audur H. Gudjonsdottir4, Svetlana Adamovic3, Johan Ek5, Henry Ascher6, Elisabet Pollak3, Henrik Arnell7, Lars Browaldh6, Daniel Agardh2, Jan Wahlström3, Staffan Nilsson1, Åsa Torinsson-Naluai9,9*

1 Department of Mathematical Sciences, Chalmers University of Technology, Gothenburg, Sweden, 2 Diabetes and Celiac Disease Unit, Department of Clinical Sciences, Lund University, Malmö, Sweden, 3 Institute of Biomedicine, Department of Medical and Clinical Genetics, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden, 4 Queen Silvia Children’s Hospital, Sahlgrenska Academy at the University of Gothenburg, Department of Pediatrics, Gothenburg, Sweden, 5 Buskerud Central Hospital, Department of Pediatrics, Drammen, Norway, 6 Sahlgrenska Academy at the University of Gothenburg, Department of Public Health and Community Medicine, Unit of Social Medicine, Gothenburg, Sweden, 7 Department of Pediatric Gastroenterology, Hepatology and Nutrition, Karolinska University Hospital and Division of Pediatrics, CLINTEC, Karolinska Institutet, Stockholm, Sweden, 8 Department of Clinical Science and Education, Karolinska Institutet Sodersjukhuset, Stockholm, Sweden, 9 Systems Biology Research Centre, Tumor Biology, School of Life Sciences University of Skövde, Skövde, Sweden

Abstract

Celiac disease is a common autoimmune disorder characterized by an intestinal inflammation triggered by gluten, a storage protein found in wheat, rye and barley. Similar to other autoimmune diseases such as type 1 diabetes, psoriasis and rheumatoid arthritis, celiac disease is the result of an immune response to self-antigens leading to tissue destruction and production of autoantibodies. Common diseases like celiac disease have a complex pattern of inheritance with inputs from both environmental as well as additive and non-additive genetic factors. In the past few years, Genome Wide Association Studies (GWAS) have been successful in finding genetic risk variants behind many common diseases and traits. To complement and add to the previous findings, we performed a GWAS including 206 trios from 97 nuclear Swedish and Norwegian families affected with celiac disease. By stratifying for HLA-DQ, we identified a new genome-wide significant risk locus covering the DUSP10 gene. To further investigate the associations from the GWAS we performed pathway analyses and two-locus interaction analyses. These analyses showed an over-representation of genes involved in type 2 diabetes and identified a set of candidate mechanisms and genes of which some were selected for mRNA expression analysis using small intestinal biopsies from 98 patients. Several genes were expressed differently in the small intestinal mucosa from patients with celiac autoimmunity compared to intestinal mucosa from control patients. From top-scoring regions we identified susceptibility genes in several categories: 1) polarity and epithelial cell functionality; 2) intestinal smooth muscle; 3) growth and energy homeostasis, including proline and glutamine metabolism; and finally 4) innate and adaptive immune system. These genes and pathways, including specific functions of DUSP10, together reveal a new potential biological mechanism that could influence the genesis of celiac disease, and possibly also other chronic disorders with an inflammatory component.

Citation: Östensson M, Montén C, Bacelis J, Gudjonsdottir AH, Adamovic S, et al. (2013) A Possible Mechanism behind Autoimmune Disorders Discovered By Genome-Wide Linkage and Association Analysis in Celiac Disease. PLoS ONE 8(8): e70174. doi:10.1371/journal.pone.0070174

Editor: Anna Carla Goldberg, Albert Einstein Institute for Research and Education, Brazil

Received March 18, 2013; Accepted June 14, 2013; Published August 2, 2013

Copyright: © 2013 Östensson et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: The principal funding for this study was provided through the regional agreement on medical training and clinical research (ALF) between Gothenburg County Council and Gothenburg University. We also thank Bengt Hre’s, Claes Groshinsky’s, Magnus Bergvall’s, Nilsson-Ehle’s, Tore Nilsson’s and Professor Nanna Svartz Foundations, Kungliga fysiografiska sällskapet in Lund, Frimurare barnhusdirektionen, Ruth and Richard Julin Foundation and the Swedish Society of Medicine. The Swedish Medical Research Council and the Celiac Disease Foundation supported family sample collections. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: asa.torinsson.naluai@gu.se

Introduction

Celiac disease (CD) is a common chronic disease and even though most often diagnosed in early childhood, it can present itself at any age. Most of the individuals with CD remain undiagnosed and an estimated 2% of the Swedish population is affected without having been diagnosed [1]. Ongoing disease will increase the overall risk for developing other chronic inflammatory diseases, neurological manifestations and malnutrition disorders. CD is the only autoimmune disorder where the actual genes responsible for the association in HLA are known (HLA-DQA1 and HLA-DQB1) [2]. In the past few years Genome Wide Association Studies (GWAS) have had tremendous success in identifying new genes, or gene regions, that influence common diseases. These studies use several hundreds of thousands of genetic markers (single nucleotide polymorphisms, SNPs) across all human chromosomes in order to pin down the chromosomal locations of genes, which could influence the disease.

A large joint effort has been done, not the least in CD, and 40 new CD-associated genetic regions marked by SNPs have been
Genotyping and Imputation

We included single nucleotide polymorphism (SNP) markers that had a call rate above 97%, which led to the exclusion of 1.3% of the Omni Express and 0.6% of the 660W-Quad SNP markers. Out of the 127,535,126 imputed genotypes, 88.3% had a posterior probability of over 0.95. Approximately 90% of the 944,512 SNP markers had a minor allele frequency of at least 0.01 after imputation.

Interaction Analyses

Since some markers just below genome-wide significance are still expected to be true findings, we wanted to try and separate these from the, in fact, true negative findings (those that show linkage and association close to genome-wide significance just by chance). In total, 603 SNP markers from 383 independent regions and their surrounding genes were identified by three inclusion criteria (Fig. 2 and Table S1). These genes were subsequently used for pathway and two-locus interaction analyses.

Two-locus interaction analysis. Two-locus interaction analysis, identified 582 SNP pairs with a p-value of less than 1.0×10^{-4} for the test comparing the model M_{6} of no association and the general two-locus model M_{6}. Out of these, 101 pairs from 87 regions deviated significantly (p<0.05) from a purely multiplicative model (M_{6}), which is the best fitting model when at least one of the SNP markers is false. Under the null hypothesis we expect to find 29 such pairs. The 101 pairs showed either epistasis (individuals carry both risk alleles) or evidence of heterogeneity (individuals carry either the one or the other risk allele from the two loci).

The results with a p-value <1.0×10^{-4} for epistasis and those with high p-value (>0.05), which represent pairs that did not show convincing deviation from the heterogeneity model are listed in Table 3 and 4. Several loci were in an epistatic relationship with HLA: rs4899272 (ACTN1), rs1073933 (COX7C), rs10482751 (TGFB2), rs571879 (APP), and rs7590305 (FABP1). Also, previously identified susceptibility loci for CD were involved in the area of epistasis.
Chr	SNP	Genes	BP	A1	A2	T/U	p-value	expTDT	T/DI (PLINK) exp TDT	TDI/GWAS catalog
1	rs12743144	PPP1R12B, SYT2, UBE2T	127384568	C	T	90	61.44	0.31	4.34E-07	0.0095
1	rs10886159	EMA235, BAK1, TMEM137, BMI2	10886159	C	T	50	48.54	0.30	7.36E-07	0.10*
1	rs160888894	EAPF, SNK6, C4orf174 17	160888894	C	T	23	48.54	0.28	2.31E-07	0.22*
1	rs113801444	ST2, 2, ST2, P142	113801444	C	T	36	32.86	0.27	3.87E-06	0.22*
1	rs1032355	RG9MTD2, C4orf17, MTTP	1032355	G	T	25	138.45	0.46	3.41E-07	0.0069
19	rs4911642	CCL8L2, PSI, TPTE2 22	4911642	C	T	38	85.28	0.41	7.30E-07	0.19*
20	rs157640	DOK5, 52847946	157640	G	T	73	138.45	0.46	3.14E-07	0.63*
20	rs12668824	NAV1, 199861288	12668824	C	T	16	76.78	0.37	4.13E-06	0.26*
20	rs12668824	NAV1, 199861288	12668824	C	T	20	76.78	0.37	4.13E-06	0.26*
20	rs12668824	NAV1, 199861288	12668824	C	T	20	76.78	0.37	4.13E-06	0.26*
20	rs12668824	NAV1, 199861288	12668824	C	T	20	76.78	0.37	4.13E-06	0.26*
20	rs12668824	NAV1, 199861288	12668824	C	T	20	76.78	0.37	4.13E-06	0.26*
20	rs12668824	NAV1, 199861288	12668824	C	T	20	76.78	0.37	4.13E-06	0.26*
20	rs12668824	NAV1, 199861288	12668824	C	T	20	76.78	0.37	4.13E-06	0.26*
20	rs12668824	NAV1, 199861288	12668824	C	T	20	76.78	0.37	4.13E-06	0.26*
20	rs12668824	NAV1, 199861288	12668824	C	T	20	76.78	0.37	4.13E-06	0.26*
20	rs12668824	NAV1, 199861288	12668824	C	T	20	76.78	0.37	4.13E-06	0.26*
20	rs12668824	NAV1, 199861288	12668824	C	T	20	76.78	0.37	4.13E-06	0.26*
20	rs12668824	NAV1, 199861288	12668824	C	T	20	76.78	0.37	4.13E-06	0.26*
20	rs12668824	NAV1, 199861288	12668824	C	T	20	76.78	0.37	4.13E-06	0.26*
20	rs12668824	NAV1, 199861288	12668824	C	T	20	76.78	0.37	4.13E-06	0.26*
20	rs12668824	NAV1, 199861288	12668824	C	T	20	76.78	0.37	4.13E-06	0.26*
several interactions: rs4899272 (ACTN1), rs6741418 (STAT1, GLS), rs13096142 (CCR1,2,3,5), rs10197319 (ICOS, CTLA4) and rs870875 (CD247).

Pathway analysis. Biological functions clustered by Ingenuity Pathway Analysis (IPA) and Genetrail [13] are shown in Table 5, 6 and 7. Several clusters were significant after correction for multiple comparisons. The most significant network implicated by IPA included DUSP10 (Fig. 3 and Table 8). The second top network included the MHC complex (HLA) and the third top network included LPP, which is located within the most significantly non-HLA associated region identified in CD so far [3].

Gene Expression
Out of the 34 selected target genes, three were from the top associated SNPs (DUSP10, SVIL and PPP1R12B) and the remaining were genes identified from the two-locus and pathway analysis. Eight genes showed significant up- or down-regulation after correction for multiple testing using Bonferroni correction (Fig. 4). For the top associated genes, several transcript variants were tested (Table 9). For the PPP1R12B gene, Isoform c and d (transcript variants NM032103.2 and NM032104.2) also known as the small subunit (sm-M20) of myosin light chain phosphatase, show significant up-regulation in patients with CD autoimmunity compared to control patients. An additional ten genes showed nominally significant differences in expression (Expression Table 9).

Non-parametric Linkage (NPL)
The strongest linkage outside of HLA was detected in chromosome regions 5q23.2-q33.1, and 1q32.1. In total, thirteen regions with an NPL point wise p-value below 0.01 were detected (Fig. 5 and Table 10). In our previous linkage-scan, using almost the same set of families, we detected only one region (11q23-25) with a point wise p-value below 0.01 [14]. The reason for the improved results is mainly the almost perfect information content achieved by a dense set of highly successful SNP markers compared to a relatively sparse set of less successful microsatellite markers. Also in the NPL analysis, the PPP1R12B gene was located in one of the top regions (1q32.1).

Discussion
This study confirmed some previous GWAS findings and in addition, it established a new genome-wide significant region containing the DUSP10 gene. The top markers, rs12144971 and rs4240931 showed a substantial effect size in the HLA low-risk group with a transmitted versus non-transmitted allele ratio of 3.11 (Table 2).

DUSP10, TNF-α and Tissue Transglutaminase (TGM2)
The protein product of DUSP10 preferentially binds to the stress-activated p38 MAPK (mitogen-activated protein kinase) and plays an important role in regulating chemokine induction after infection by various pathogens [15], and in coordinating MAPK activity in response to oxidative stress [16]. In previous studies, both p38 MAPK and DUSP10 have been shown to activate TNF-α [17,18], of which one also demonstrates that TNF-α up-regulates TGM2 (the gene encoding the main autoantigen in CD [19]) in intestinal mucosa from untreated CD patients [17]. Whether this up-regulation of TGM2 is of importance for the immune response leading to formation of IgA-αTG and IgG-αTG autoantibodies, the serological markers for CD is still unresolved.
Chr	SNP	Gene(s)	BP	A1	T	U	T/U chisq	p-value
1	rs12144971	DUSP10	220099108	C	T	26	35	0.74
1	rs4240911	DUSP10	220105678	T	C	26	31	1.03
10	rs1247697	SVIL	29901347	C	A	41	35	1.17
10	rs12734338	DUSP10	220139621	G	A	20	25	0.80
10	rs11811613	DUSP10	220122026	G	A	19	25	0.76
2	rs13017044	PRKCE	46086853	A	G	12	39	0.31
10	rs11102146	KCNA3	111007559	C	T	13	17	0.76
3	rs3629249	STAC	36329541	A	C	15	25	0.60
3	rs1871350	STAC	36348239	C	T	15	26	0.59
10	rs10861397	SORCS1	108678768	G	A	50	35	1.35
10	rs10861397	SORCS1	108678768	G	A	46	34	1.35
10	rs10861397	SORCS1	108678768	G	A	43	33	1.30
10	rs10861397	SORCS1	108678768	G	A	46	34	1.35
10	rs10861397	SORCS1	108678768	G	A	46	34	1.35
10	rs10861397	SORCS1	108678768	G	A	43	33	1.30
10	rs10861397	SORCS1	108678768	G	A	46	34	1.35
10	rs10861397	SORCS1	108678768	G	A	46	34	1.35
10	rs10861397	SORCS1	108678768	G	A	46	34	1.35
10	rs10861397	SORCS1	108678768	G	A	46	34	1.35
10	rs10861397	SORCS1	108678768	G	A	46	34	1.35
10	rs10861397	SORCS1	108678768	G	A	46	34	1.35
10	rs10861397	SORCS1	108678768	G	A	46	34	1.35
10	rs10861397	SORCS1	108678768	G	A	46	34	1.35
10	rs10861397	SORCS1	108678768	G	A	46	34	1.35
10	rs10861397	SORCS1	108678768	G	A	46	34	1.35
10	rs10861397	SORCS1	108678768	G	A	46	34	1.35
10	rs10861397	SORCS1	108678768	G	A	46	34	1.35
10	rs10861397	SORCS1	108678768	G	A	46	34	1.35
10	rs10861397	SORCS1	108678768	G	A	46	34	1.35
10	rs10861397	SORCS1	108678768	G	A	46	34	1.35
10	rs10861397	SORCS1	108678768	G	A	46	34	1.35
10	rs10861397	SORCS1	108678768	G	A	46	34	1.35
10	rs10861397	SORCS1	108678768	G	A	46	34	1.35
10	rs10861397	SORCS1	108678768	G	A	46	34	1.35
10	rs10861397	SORCS1	108678768	G	A	46	34	1.35
10	rs10861397	SORCS1	108678768	G	A	46	34	1.35
10	rs10861397	SORCS1	108678768	G	A	46	34	1.35
10	rs10861397	SORCS1	108678768	G	A	46	34	1.35
10	rs10861397	SORCS1	108678768	G	A	46	34	1.35
10	rs10861397	SORCS1	108678768	G	A	46	34	1.35
10	rs10861397	SORCS1	108678768	G	A	46	34	1.35
10	rs10861397	SORCS1	108678768	G	A	46	34	1.35
10	rs10861397	SORCS1	108678768	G	A	46	34	1.35
10	rs10861397	SORCS1	108678768	G	A	46	34	1.35
Pathway Analyses

In order to discover possible functional connections between DUSP10 and other genes, we analyzed genes surrounding the top 603 markers. A total of 845 genes were used in the analysis. Ingenuity pathway analysis (IPA) included DUSP10 within the most significant network. Also part of this network were GLS and RGS1, two genes previously identified within significant GWAS loci [3], as well as the insulin (INS) gene, and the immune regulatory nuclear factor kappa B (NF-kB) complex (Fig. 3 and Table 8). The second top network included the MHC complex (HLA) and also several genes within already identified GWAS loci: ACTN1, CD247, CCR5, ICOS and STAT1 [3]. In addition, both IPA and GeneTrail [13] identified T2D genes as the most significantly overrepresented gene cluster after correction for multiple testing (Table 5 and 6). Among this set of genes surrounding the 603 markers, many genes belonged to growth and nutrient signaling pathways, for example, INS, INSR, EGF, POMC, TIPRL and PRR5L. There were also related genes directly involved in energy metabolism; PDK1, COX7C, COQ3 and GLS.

Overlapping Results with Other GWAS Findings

Surprisingly, four out of six top loci identified by a GWAS for anorexia nervosa [20] and two out of three loci involved in plasma glucose levels in type 1 diabetic patients [21] were among our 603 and 35 best SNP markers respectively. One of the genes in anorexia, namely AKAP6, is also associated to fasting insulin-related traits as well as the autoimmune disease Ankylosing spondylitis [22]. Of the 40 identified regions in CD, seven regions overlap with our 603 SNP list (LPP, STAT4/GLS, RGS1, CCR1/CCR3, PUS10, ICOS/CTLA4 and CD247). Out of the 69 regions reported in the GWAS catalog for type 1 diabetes, eight overlap with the regions reported in this study and out of those eight, CTLA4/ICOS also overlap with the previously reported CD associations. We compared minor allele frequencies between the previous CD GWAS by Dubois et al. and our GWAS. In their top 42 associations, there was no SNP below a minor allele frequency of 0.08. In our top 42 associations, we identified five SNPs with a minor allele frequency below 0.06. This observation could just be a chance finding or perhaps an indication that rare variants are easier to discover using families. We also identified a relatively rare variant in the LPP gene region (rs17283813), with a minor allele frequency of 0.075. This SNP was not at all significant in the GWAS by Dubois et al. (Table S1).

Neither was there an association with the DUSP10 region in the GWAS by Dubois and co-workers. The associated markers in the DUSP10 region in our GWAS have a minor allele frequency around 0.5 and are hence very common in the population. It is difficult to say if this is a population specific effect or if DUSP10 could be detected in an HLA stratified population from another ethnicity. Interestingly, the DUSP10 region has also been identified as a risk factor for colon cancer by a meta-analysis of three GWAS from the UK. This is an indication that colon cancer and CD could share genetic risk factors.

Key Metabolic Regulators as well as the Top Associated gene PPP1R12B were Differently Expressed in CD Cases Compared to Controls

Another important finding was the difference between cases and controls and their gene expression patterns in the small intestine. Eight of the 34 candidate genes selected for quantitative measurements of gene expression, including PPP1R12B, PDK1, GLS, PRR5L and the INSR, showed significant up or down regulation of mRNA levels in cases compared to controls (Fig. 4).
Figure 2. Illustration of the three inclusion criteria used for pathway and interaction analyses. The first criteria of p-values less than 3.0×10^{-2} in the linkage TDT analysis resulted in a total of 477 markers. The second criteria included a comparison of the results from this study with the results from the study by Dubois et al. [3]. We included 118 SNPs that had a simple score based on a combined p-value less than 5.0×10^{-2} and in the same allelic direction in both datasets. The third criteria involved selecting markers with a large effect size. We included 65 markers which had a ratio of transmitted versus not transmitted (T/NT) alleles of over 5 or below 0.2, combined with a p-value of less than 2.0×10^{-2}.

Table 3. The top epistasis interaction results from the 101 two-locus interaction analysis.

Snp 1	Genes	chr	Snp 2	Genes	chr	N	P02	P12	Pm2	
rs2187668	HLA	6	rs4899272	ACTN1	14	95	4.0E-17	1.42E-13	4.0E-02	
			rs204034	SHISA9	16	94	1.3E-14	1.09E-12	5.0E-02	
			rs571879	APPL1	3	94	2.3E-15	5.21E-11	3.0E-02	
rs204999	HLA	6	rs1073933	COX7C	5	94	9.9E-14	9.27E-12	3.0E-02	
			rs11836636	ATXNL3B	12	91	1.7E-12	8.15E-11	4.0E-02	
rs7745052	FBXL4, C6orf168, USP45, COQ3, POU3F2, SFRS18	6					92	2.3E-05	1.79E-05	4.0E-02
rs10749738	FOXD3	1	rs1373649	BMPR1B	4	93	2.7E-05	1.78E-05	4.0E-02	
rs3860295	RASSF5, IKBKE	1	rs13096142	CCR5, CCR3, LTF, CCR2, CCR1	3	95	1.1E-05	6.48E-06	1.0E-02	
rs9396802	KIF13A, NUP153, FAM8A1	6	rs2194633	NETO1	18	95	3.8E-06	6.82E-06	2.0E-02	
rs9296204	MTCH1, P16	6	rs4385459	LY96, JPH1, GDAP1, TMEM70, TCEB1	8	95	2.8E-05	9.91E-06	3.0E-02	
rs9397928	ARID1B*	6	rs2415836	FSCB*	14	93	2.8E-05	1.75E-05	3.0E-02	
rs1145212	APOA5, ZNF259, BUD13	11	rs10083673	MYO5A	15	95	6.6E-05	1.77E-05	2.0E-02	
rs7756191	DNAH8	6	rs1108001	NAV2, HATATIP2, DBX1, PRMT3	11	95	3.5E-05	2.60E-05	3.0E-03	
rs10197319	ICO3, CTLA4	2	rs882820	SRL, TIPAP4	16	94	1.4E-05	3.03E-05	3.0E-05	
rs4899272	ACTN1	14	rs17703807	C15orf41	15	83	2.9E-05	8.68E-05	1.0E-02	

All SNP pairs which reached an interaction p-value of $P_{12} < 1.0 \times 10^{-2}$, in addition to $P_{m2} < 0.05$.

*closest known gene, located >500 kb from associated SNP.

P_{02} – p-value for the test statistic comparing the models M_0 (no association) and the general model M_G.

P_{12} – p-value for the test test comparing the models M_R (heterogeneity) and the general model M_G.

P_{m2} – p-value for the test comparing the models M_M (multiplicative) and the general model M_G.

doi:10.1371/journal.pone.0070174.g002
This could very well be a consequence of an ongoing inflammation or possibly also indicate an underlying metabolic difference. Glutamine is converted to glutamate by the enzyme glutaminase (GLS). In turn, glutamate can be converted to proline and subsequently catabolized by the enzyme proline dehydrogenase (GLS). In turn, glutamate can be converted to proline and is a critical regulator of insulin signaling pathways [28]. We could detect expression of both APPL1 and APPL2 in small intestinal biopsies and a significantly lower expression of APPL2 was detected in the CD autoimmunity cases as compared to controls (Fig. 4). Lower expression of APPL2 levels lead to enhanced adiponectin stimulated glucose uptake and fatty acid oxidation [29]. A SNP (rs10861406) included in the top 603 list was located upstream of APPL1, however the promotor of this gene was on the opposite side of a recombination hotspot and therefore not included in the gene list for pathway analyses. The most significant finding from our non-stratified linkage GWAS analysis was the association with the PPP1R12B gene region. *PPP1R12B* is involved in smooth muscle contractility and mediates binding to myosin [30]. Myosin light chain phosphatase from smooth muscle consists of a catalytic subunit (PP1c) and two non-catalytic subunits, M130 and M20. The two non-catalytic subunits are both encoded by the *PPP1R12B* gene. The M130 non-catalytic subunit (M130) mediates binding to myosin [30]. Myosin light chain phosphatase from smooth muscle consists of a catalytic subunit (PP1c) and two non-catalytic subunits, M130 and M20. The two non-catalytic subunits are both encoded by the *PPP1R12B* gene. The M130 non-catalytic subunit (M130) mediates binding to myosin [30]. Myosin light chain phosphatase from smooth muscle consists of a catalytic subunit (PP1c) and two non-catalytic subunits, M130 and M20. The two non-catalytic subunits are both encoded by the *PPP1R12B* gene. The M130 non-catalytic subunit (M130) mediates binding to myosin [30]. Myosin light chain phosphatase from smooth muscle consists of a catalytic subunit (PP1c) and two non-catalytic subunits, M130 and M20. The two non-catalytic subunits are both encoded by the *PPP1R12B* gene. The M130 non-catalytic subunit (M130) mediates binding to myosin [30]. Myosin light chain phosphatase from smooth muscle consists of a catalytic subunit (PP1c) and two non-catalytic subunits, M130 and M20. The two non-catalytic subunits are both encoded by the *PPP1R12B* gene. The M130 non-catalytic subunit (M130) mediates binding to myosin [30]. Myosin light chain phosphatase from smooth muscle consists of a catalytic subunit (PP1c) and two non-catalytic subunits, M130 and M20. The two non-catalytic subunits are both encoded by the *PPP1R12B* gene. The M130

Table 4. The top heterogeneity results from the 101 two-locus interaction analysis.

SNP1	Genes	chr	SNP2	Genes	chr	N	P 02	P 12	PM2
rs4899272	ACTN1	14	rs4820682	SRHD PS4 TFIP11	22	95	7.1E-06	6.97E-02	2.0E-02
rs4426448	DOK6		rs70875	CD247	1	94	9.4E-05	7.19E-02	3.0E-02
rs482007	PAEP		rs87085	CDRA2	8	94	4.1E-05	5.81E-01	5.0E-02
rs571879	APPL1, HES1X, IL17RD	3	rs4385459	LY96 JPH1 GDAP1 TMEM70 TCEB1	8	94	4.1E-05	5.81E-01	5.0E-02
rs5790305	FABP1, THNSL2	2	rs390495	MICAL3	2	93	7.0E-05	9.09E-01	3.0E-03
rs7745052	FBLX4, C6orf168, USP45, COQ3, POUSF2, 5F8S18	6	rs4930144	IGF2AS TH MRPL23 TNNT3 SYT8 ASCL2 TNNI2 LSP1 IGF2 INS-IGF2 INS H19	11	50	1.9E-05	5.30E-01	3.0E-02
rs10749738	FOXD3	1	rs10498982	EPHA7*	6	93	2.0E-05	1.95E-01	4.0E-02
rs2605393	STAC		rs2605393	MICAL3	3	63	7.3E-05	4.37E-01	4.0E-02
rs2187668	HLAQD	6	rs11013804	KIAA1217	10	94	3.5E-14	8.40E-02	2.0E-02
rs1676235	ESRRB ANGEL1, VASH1		rs1676235	KIAA1217	14	43	2.0E-07	8.55E-02	3.0E-02
rs958802	KANK4 L1TD1, INADL	1	rs2194633	NETO1	18	95	1.9E-05	5.55E-01	3.0E-02
rs2345981	KHRDS2	6	rs6495130	RYR3	15	94	6.1E-05	1.58E-01	3.0E-02
rs11940562	PCDH7*	4	rs4905043	ITPK1 CHGA	14	44	4.6E-05	2.77E-01	2.0E-02
rs4656538	POUSF1	1	rs2187668	HLAQD	6	94	3.0E-13	1.19E-01	5.0E-02
rs3860295	RASSF5 IKBE	1	rs7046385	SM2	9	94	5.3E-05	1.07E-01	2.0E-02
rs6741418	STAT1 GL5, STAT4	2	rs10798004	C1orf25 C1orf26	8	97	7.2E-05	7.68E-02	4.0E-02
rs1571812	VDLR	9	rs1571812	VDLR	9	86	3.0E-05	9.19E-02	4.0E-02
rs882820	SRL TFAP4	16	rs882820	SRL TFAP4	16	87	4.2E-05	3.52E-01	6.0E-03
rs1470379	VIM	10	rs1470379	VIM	10	82	1.0E-05	3.70E-01	8.0E-03
rs10946659	DCCD2 NRSN1	16	rs10946659	DCCD2 NRSN1	9	78	1.9E-06	6.64E-01	9.0E-03
rs10482751	TGFβ2	9	rs10482751	TGFβ2	9	92	5.2E-05	1.86E-01	1.0E-02

All SNP pairs which reached an interaction p-value of P12 > 0.05, in addition to P02 < 0.05.

*closest gene located > 500 kb from associated SNP.
P02 – p-value for the test statistic comparing the models M0 (no association) and the general model MG.
P12 – p-value for the test statistic comparing the models MR (heterogeneity) and the general model MG.
PM2 – p-value for the test comparing the models M0 (heterogeneity) and the general model MG.

doi:10.1371/journal.pone.0070174.t004

closest known gene located > 500 kb from associated SNP.
The second most significant region in the HLA-stratified analysis after DUSP10 contains the SVIL gene. The product of this gene has been suggested to bind LPP [33]. In our two-locus interaction analysis, the LPP locus and a locus containing KIF13A was one of the 101 interaction pairs. KIF13A is a motor protein, which shuttles vesicles containing AP-1 and the mannnose-6-phosphate receptor [34]. KIF13A was significantly down-regulated in intestinal biopsies from CD patients in our gene expression analysis (Fig. 4). SVIL is associated with cell-focal adhesions (substrate contacts), which are important for rapidly moving cells such as for example immune cells but also for motility and polarity of intestinal epithelial cells. SVIL mRNA was down-regulated in our gene expression analysis, however, not significant after correction for multiple testing.

Proline and Glutamine Metabolism - Part of a “Danger Signal”

Amoebiasis was one of the nominally significant pathways in the GeneTrail analysis of genes surrounding the two-locus interaction SNPs (Table 7). Several of these genes were also present together with DUSP10 and the MHC class II genes in the two most significant IPA generated networks (marked in bold text in

Figure 3. Ingenuity network 1. The top network identified by the Ingenuity IPA software using genes surrounding all 603 most associated SNPs from the TDT analysis. Molecules in gray were present among the genes from our TDT analysis and molecules in white were added by the IPA software. The DUSP10 gene is marked in yellow.
doi:10.1371/journal.pone.0070174.g003
Table 5. Biological functions of genes surrounding the 603 top associated SNPs. Results from IPA.

Function Annotation	p-value (Raw)	B-H p-value*	Molecules
non-insulin-dependent diabetes mellitus	0.0000057	0.025	ABCBC, ADRA1B, ADRA1D, AGT, APOA5, ATP10A, B2CL1.1, CCR5, CD38, CDNAP2, FOXP1, FTO, HFE, HFE2, INS, KCNJ11, KIRREL3, KLF10, mir-154, mir-448, MTPP, PBX3, PIEZO2, PPARA, PPS3CA, PRDM10, RG55, VEGFA, ZMYM2
quantity of metal	0.0000082	0.025	ABCBC, ADRA1B, AGP, PLP2, ATP2B3, B2CL, B2MP, BTK, CMLG, CCR5, CD247, CD38, CHGA, CX3CR1, CX5L3, DARC, DCC, DNL, EGF (includes EG:13645), FBXL5, FER1A, GNA14, GNB1, HFE, HFE2, IFG2, INS, INS, KCNJ11, LTF, NTS, NUCB2, POMC, PRL, PRNP, PTGDR2, RGS1, RYR3, SELL, SOD1, TRPM8, TNXIP, VAV3, VEGFA
incorporation of thymidine	0.000010	0.025	AGT, AKAP13, B2MP, CD40, EGF (includes EG:13645), IFG2, INS, INS, PRL, THBS2, TNSF13B, VEGFA, WT1
quantity of Ca2+	0.000018	0.033	ABCBC, ADRA1B, AGP, ATP2B3, B2CL, B2MP, BTK, CMLG, CCR5, CD247, CD38, CHGA, CX3CR1, CX5L3, DARC, DCC, DNL, EGF (includes EG:13645), FER1A, GNA14, GNB1, IFG2, INS, INS, KCNJ11, NTS, NUCB2, POMC, PRL, PRNP, PTGDR2, RGS1, RYR3, SELL, SOD1, TRPM8, TNXIP, VAV3, VEGFA
eye development	0.000022	0.033	ABCBC, ADRA1B, AGP, ATP2B3, B2CL, B2MP, BTK, CMLG, CCR5, CD247, CD38, CHGA, CX3CR1, CX5L3, DARC, DCC, DNL, EGF (includes EG:13645), FER1A, GNA14, GNB1, IFG2, INS, INS, KCNJ11, NTS, NUCB2, POMC, PRL, PRNP, PTGDR2, RGS1, RYR3, SELL, SOD1, TRPM8, TNXIP, VAV3, VEGFA
diabetes mellitus	0.000027	0.034	ABCBC, ADRA1B, AGP, ATP2B3, B2CL, B2MP, BTK, CMLG, CCR5, CD247, CD38, CHGA, CX3CR1, CX5L3, DARC, DCC, DNL, EGF (includes EG:13645), FER1A, GNA14, GNB1, IFG2, INS, INS, KCNJ11, NTS, NUCB2, POMC, PRL, PRNP, PTGDR2, RGS1, RYR3, SELL, SOD1, TRPM8, TNXIP, VAV3, VEGFA
angiogenesis of bone	0.000032	0.034	ABCBC, ADRA1B, AGP, ATP2B3, B2CL, B2MP, BTK, CMLG, CCR5, CD247, CD38, CHGA, CX3CR1, CX5L3, DARC, DCC, DNL, EGF (includes EG:13645), FER1A, GNA14, GNB1, IFG2, INS, INS, KCNJ11, NTS, NUCB2, POMC, PRL, PRNP, PTGDR2, RGS1, RYR3, SELL, SOD1, TRPM8, TNXIP, VAV3, VEGFA
quantity of bone	0.000071	0.043	ABCBC, ADRA1B, AGP, ATP2B3, B2CL, B2MP, BTK, CMLG, CCR5, CD247, CD38, CHGA, CX3CR1, CX5L3, DARC, DCC, DNL, EGF (includes EG:13645), FER1A, GNA14, GNB1, IFG2, INS, INS, KCNJ11, NTS, NUCB2, POMC, PRL, PRNP, PTGDR2, RGS1, RYR3, SELL, SOD1, TRPM8, TNXIP, VAV3, VEGFA
development of head	0.000069	0.043	ABCBC, ADRA1B, AGP, ATP2B3, B2CL, B2MP, BTK, CMLG, CCR5, CD247, CD38, CHGA, CX3CR1, CX5L3, DARC, DCC, DNL, EGF (includes EG:13645), FER1A, GNA14, GNB1, IFG2, INS, INS, KCNJ11, NTS, NUCB2, POMC, PRL, PRNP, PTGDR2, RGS1, RYR3, SELL, SOD1, TRPM8, TNXIP, VAV3, VEGFA
migration of cells	0.000057	0.043	ABCBC, ADRA1B, AGP, ATP2B3, B2CL, B2MP, BTK, CMLG, CCR5, CD247, CD38, CD40, CD99, CHGA, CMA1, CNTNAP2, CSF2RA, CTBP2, CTNNA2, CTSG, CX3CR1, CX5L3, DARC, DCC, DCL, DLX1, DNHLM3, DPH2, EGF (includes EG:13645), FER1A, GNA14, GNB1, IFG2, INS, INS, KCNJ11, NTS, NUCB2, POMC, PRL, PRNP, PTGDR2, RGS1, RYR3, SELL, SOD1, TRPM8, TNXIP, VAV3, VEGFA
cell movement	0.000073	0.043	ABCBC, ADRA1B, AGP, ATP2B3, B2CL, B2MP, BTK, CMLG, CCR5, CD247, CD38, CD40, CD99, CHGA, CMA1, CNTNAP2, CSF2RA, CTBP2, CTNNA2, CTSG, CX3CR1, CX5L3, DARC, DCC, DCL, DLX1, DNHLM3, DPH2, EGF (includes EG:13645), FER1A, GNA14, GNB1, IFG2, INS, INS, KCNJ11, NTS, NUCB2, POMC, PRL, PRNP, PTGDR2, RGS1, RYR3, SELL, SOD1, TRPM8, TNXIP, VAV3, VEGFA
apoptosis	0.000069	0.043	ABCBC, ADRA1B, AGP, ATP2B3, B2CL, B2MP, BTK, CMLG, CCR5, CD247, CD38, CD40, CD99, CHGA, CMA1, CNTNAP2, CSF2RA, CTBP2, CTNNA2, CTSG, CX3CR1, CX5L3, DARC, DCC, DCL, DLX1, DNHLM3, DPH2, EGF (includes EG:13645), FER1A, GNA14, GNB1, IFG2, INS, INS, KCNJ11, NTS, NUCB2, POMC, PRL, PRNP, PTGDR2, RGS1, RYR3, SELL, SOD1, TRPM8, TNXIP, VAV3, VEGFA
quantity of leukocytes	0.000076	0.043	ABCBC, ADRA1B, AGP, ATP2B3, B2CL, B2MP, BTK, CMLG, CCR5, CD247, CD38, CD40, CD99, CHGA, CMA1, CNTNAP2, CSF2RA, CTBP2, CTNNA2, CTSG, CX3CR1, CX5L3, DARC, DCC, DCL, DLX1, DNHLM3, DPH2, EGF (includes EG:13645), FER1A, GNA14, GNB1, IFG2, INS, INS, KCNJ11, NTS, NUCB2, POMC, PRL, PRNP, PTGDR2, RGS1, RYR3, SELL, SOD1, TRPM8, TNXIP, VAV3, VEGFA

A total of 823 genes surrounding the 603 top associated SNPs were put into the IPA software.

Surrounding genes were defined by either Grail (www.broadinstitute.org/mpg/grail/) or the Genome Browser (http://genome.ucsc.edu/). Gene families located in the same region were manually curated so that only one gene in each family remained in each region, based on a similar official gene symbol.

*Hochberg Y, Benjamini Y. Statistics in medicine 1990; 9:811–8.

doi:10.1371/journal.pone.0070174.0005

PLOS ONE | www.plosone.org 11 August 2013 | Volume 8 | Issue 8 | e70174
Table 6. Biological functions of genes surrounding the 603 top associated SNPs. Results from GeneTrail.

Category	rank	Subcategory	expected	observed	p-value (raw)	Genes
KEGG	1	Type II diabetes mellitus	1.91	7	0.0026	ABC2C8, CACNA1A, INS, INSR, KCNJ11, MAPK1, PRKCZ
KEGG	2	Salivary secretion	3.62	9	0.003	ADRA1B, ADRA1D, AMY1B, ATP2B3, BST1, CALML6, CD38, CST2, RYR3
KEGG	3	Pathways in cancer	13.35	23	0.007	APP1L1, BCL2, BID, BMP2, CBL, CSF2RA, CTBP2, CTTNA2, DVL1, E2F3, EGF, FGF2, FH, ITGAV, LAM2, MAPK1, MIF, PTK2, RASSF5, STAT1, TECB1, TGF2, VEGFA
KEGG	4	T cell receptor signaling pathway	4.40	10	0.012	CA2B311, CBL, CD247, COS5, MAPK1, NCQ1, PDK1, PPP3CA, PRKCQ, VAV3
KEGG	5	TGF-beta signaling pathway	3.46	8	0.022	BMP2, BMP8B1, DCN, ID4, MAPK1, NOG, TGF2B, THBS2
KEGG	6	Cytokine-cytokine receptor interaction	10.79	18	0.022	BMP2, BMP8B1, CCR5, CD40, CBL, CSF2RA, CX3CR1, CXCL13, EGF, IFNRA6, IL1R2, PRK1, PRL, TGF2, THBS, VEGFA
KEGG	7	Arrhythmogenic right ventricular cardiomyopathy	3.09	7	0.034	ACTN1, CTTNA2, DMD, ITGA10, ITGAV, LAM2, SGCG
Gene Ontology	1	negative regulation of phosphatase activity	0.21	3	0.0006	PPP2R4, TGF2B, TIPRL
Gene Ontology	2	positive regulation of apoptosis	13.93	27	0.0008	AGT, AKAP13, ARHGEF18, BCL2, BCL2L11, BCL2L13, BID, BIK, BMP2, BTK, CD38, HATAT2P1, IKBKE, ITGAV, MAGED1, MAPK1, MITCH1, PAVR, PPP2R4, PRUNE2, PVR, SOD1, TFAAP2, TGF2B, TAM1, VAV3, WTI
Gene Ontology	3	regulation of phosphatase activity	0.53	4	0.0015	BMP2, PPP2R4, TGF2B, TIPRL
Gene Ontology	4	glomerular epithelium development	0.08	2	0.0017	BASP1, WTI
Gene Ontology	5	vesicle	12.50	24	0.0017	APP1L1, BGN, CD36, CTSG, CUZD1, CXC4, CYBA, DVL1, EGF, GRIA2, HFE, HPS4, LTF, NRSN1, PALM, RASSF9, SEC24A, SOD1, SYT1, SYT2, TGF2, TH, THBS2, VEGFA
Gene Ontology	6	cellular defense response	2.38	8	0.0024	CCR5, CD300C, CD5L, CX3CR1, DCDC2, LSP1, LY96, NCR2
Gene Ontology	7	cytoplasmic vesicle	12.17	23	0.0026	BGN, CD36, CTSG, CUZD1, CXC4, CYBA, DVL1, EGF, GRIA2, HFE, HPS4, LTF, NRSN1, PALM, RASSF9, SEC24A, SOD1, SYT1, SYT2, TGF2, TH, THBS2, VEGFA
Gene Ontology	8	phosphoinositide 3-kinase cascade	0.33	3	0.0033	AGT, INS, TGF2B
Gene Ontology	9	hindbrain development	0.37	3	0.0048	CTNN2A, MYO1D, SDF4
Gene Ontology	10	regulation of neuronal synaptic plasticity	0.37	3	0.0048	NETO1, SHSA9, SYNGRI
Gene Ontology	11	neuron projection membrane	0.12	2	0.0049	CTNNAP2, SHSA9
Gene Ontology	12	dopamine biosynthetic process	0.12	2	0.0049	TGF2B, TH
Gene Ontology	13	hydrogen peroxide biosynthetic process	0.12	2	0.0049	CYBA, SOD1
Gene Ontology	14	positive regulation of respiratory burst	0.12	2	0.0049	INS, INSR
Gene Ontology	15	cardiac epithelial to mesenchymal transition	0.12	2	0.0049	TGF2B, TH
Gene Ontology	16	enzyme activator activity	7.11	15	0.0051	AGT, APOA5, ARHGEF18, BCL2L13, BMP2, EGF, MMP17, OPN1, PPRM1, PPP1R12B, PPP2R4, RGS5, RGS5, TBC1D15, VAV3
Gene Ontology	17	phosphoinositide 3-kinase cascade	0.33	3	0.0033	AGT, INS, TGF2B
Gene Ontology	18	hindbrain development	0.37	3	0.0048	CTNN1A2, MYO1D, SDF4
Gene Ontology	19	regulation of neuronal synaptic plasticity	0.37	3	0.0048	NETO1, SHSA9, SYNGRI
Gene Ontology	20	neuron projection membrane	0.12	2	0.0049	CTNNAP2, SHSA9
Gene Ontology	21	dopamine biosynthetic process	0.12	2	0.0049	TGF2B, TH
Gene Ontology	22	hydrogen peroxide biosynthetic process	0.12	2	0.0049	CYBA, SOD1
Gene Ontology	23	positive regulation of respiratory burst	0.12	2	0.0049	INS, INSR
Gene Ontology	24	cardiac epithelial to mesenchymal transition	0.12	2	0.0049	TGF2B, TH
Gene Ontology	25	enzyme activator activity	7.11	15	0.0051	AGT, APOA5, ARHGEF18, BCL2L13, BMP2, EGF, MMP17, OPN1, PPRM1, PPP1R12B, PPP2R4, RGS5, RGS5, TBC1D15, VAV3
Table 6. Cont.

Category	rank	Subcategory	expected	observed	p-value (raw)	Genes
Genes	18	epidermal growth factor receptor signaling	0.74	4	0.0054	AGT EGF NCRI2 SNX6
Genes	19	extracellular matrix	7.23	15	0.0060	ASRPN BGN CMA1 CPXM2 CTSG DCN ECM2 LAMA2 LUM MPP23B OGN SOD1 TGF82 USH2A VEGFA
NIA human disease 1	1	Diabetes Mellitus. Type 2	10.49	22	0.0003*	ABCC8 AGT AKAP10 APOA5 BLC CCR5 CD40 CMA1 CYBA FABP1 DFO INS INSR KNCN11 MTTP PRKZSell TH THBS2 TXNIP VEGFA
NIA human disease 2	2	Hyperlipoproteinemias	0.26	3	0.0012	APOA5 FABP1 PPARA
NIA human disease 3	3	Diabetic Angiopathies	1.94	7	0.0024	CD40 CYBA INS KNCN11 PPARA TXNIP VEGFA
NIA human disease 4	4	Postmortem Changes	0.10	2	0.0026	DAOA TH2
NIA human disease 5	5	Disease Progress	7.77	16	0.0030	AGT BLC2 CCR5 CD40 CMA1 CX3CR1 DCN EGF HFE KNCN11 PPARA PRKZSELL SOX1 VEGFA WT1
NIA human disease 6	6	Birth Weight	1.69	6	0.0054	EGF EPHX1 DFO KNCN11 INS TH
NIA human disease 7	7	Pathological Conditions. Signs and Symptoms	23.66	34	0.0073	AGT APOA5 BLC2 CCR5 CD40 CMA1 CX3CR1 CYBA DAAO DCN DISC1 DMD EGF EPHX1 FCER1A FTO HFL HTR2C INS INSR KNCN11 LTTF MTTP PDXNA2 POMC PPARA PRKZSELL SOX1 TH THBS2 TXNIP VEGFA WT1
NIA human disease 8	8	Bronchiolitis. Viral	0.15	2	0.0075	CCR5 CX3CR1
NIA human disease 9	9	Kidney Failure. Acute	0.15	2	0.0075	CYBA WT1
NIA human disease 10	10	Diseases in Twins	0.46	3	0.0086	DISC1 HFE PDXNA2
NIA human disease 11	11	Coronary Artery Disease	4.55	10	0.0127	AGT APOA5 CD36 CD40 CMA1 CX3CR1 CYBA PPARA THBS2 VEGFA
NIA human disease 12	12	Dyslexia	0.26	2	0.0233	DYX1C1 KIA0319
NIA human disease 13	13	Myocardial Infarction	6.64	12	0.0282	AGT AKAP10 APOA5 CCR5 CTSG CX3CR1 HFE INSR MTTP THBS2 TNRF54 VEGFA
NIA human disease 14	14	Nutritional and Metabolic Diseases	18.45	26	0.0295	ABC8 AGT AKAP10 APOA5 BTC CBLB CCR5 CD36 CMA1 CYBA DCN FABP1 FTO HTR2C INS INSR KNCN11 MTTP POMC PPARA PRKZSELL TH THBS2 TXNIP VEGFA
NIA human disease 15	15	Overweight	0.31	2	0.0338	APOA5 FTO

A total of 823 genes surrounding the 603 top associated SNPs were put into the GeneTrail software. Surrounding genes were defined by either Grail (http://www.broadinstitute.org/mpg/grail/) or the Genome Browser (http://genom.ucsc.edu/). Gene families located in the same region were manually curated so that only one gene in each family remained in each region, based on a similar official gene symbol. *Significant after multiple testing correction using FDR adjustment. (p corr-value = 0.032). Size of test set: 823 (768 known). Number of known ref. IDs: 44829 Kegg: Number of annotated genes in test set was 220. Number of annotated genes in ref set was 5405. Gene Ontology: Number of annotated genes in test set was 476. Number of annotated genes in ref set was 11580. NIA human genes sets: Number of annotated genes in test set was 76. Number of annotated genes in ref set was 1487. doi:10.1371/journal.pone.0070174.t006
as part of an immune evasion strategy [36]. Leishmania Major inhibits CD40-triggered p38 MAPK signaling to anti-leishmanial functions [35]. It has been suggested that regulates DUSP expression and activity, which in turn contribute signaling through p38 MAPK and ERK1/2 [35]. CD40 also responses to another parasite, Leishmania Major, by shared rs6065961, Table S1). CD40 has been shown to regulate immune encoding for the immune molecule CD40 (associated SNP Table 8). Another gene present in these networks was the gene

Table 7. Biological functions of genes surrounding SNPs from the two-locus interaction. Results from GeneTrail.

Category	rank	Subcategory	expected	observed	p-value (raw)	enrichment	Genes
KEGG	1	Amoebiasis	1.01	4	0.0178	up	ACTN1 CTSG GNA14 TGFB2
KEGG	2	T cell receptor signalling	1.04	4	0.0196	up	CBLB CD247 ICOS VAV3
KEGG	3	PPAR signaling pathway	0.66	3	0.0282	up	APOAS CD36 FABP1
KEGG	5	Ubiquitin mediated proteolysis	1.34	4	0.0438	up	CBLB KLHL9 TCEB1 UBR5
KEGG	6	Primary immunodeficiency	0.34	2	0.0441	up	BTK ICOS
KEGG	7	Basal transcription factors	0.35	2	0.0465	up	GTF2B TAF7L
NIA human disease gene sets	1	Hyperlipoproteinemias	0.07	2	0.0017	up	APOAS FABP1
NIA human disease gene sets	2	Diabetes Mellitus Type 2	2.80	6	0.0493	up	APOAS CCR5 CD36 CMA1 FABP1 TH

A total of 187 genes from the interaction analysis were put into the GeneTrail software.

Surrounding genes were defined by either Grail (www.broadinstitute.org/mpg/grail/) or the Genome Browser (http://genome.ucsc.edu/). Gene families located in the same region were manually curated so that only one gene in each family remained in each region, based on a similar official gene symbol. Size of test set: 186 (173 known). Number of known ref. IDs: 44829. KEGG: number of annotated genes in test set: 52. Genes in reference set: 5405. NIA human disease gene sets: number of annotated genes in test set: 20. Genes in reference set: 1487.
doi:10.1371/journal.pone.0070174.t007

Table 8). Another gene present in these networks was the gene encoding for the immune molecule CD40 (associated SNP rs6065961, Table S1). CD40 has been shown to regulate immune responses to another parasite, Leishmania Major, by shared signaling through p38 MAPK and ERK1/2 [35]. CD40 also regulates DUSP expression and activity, which in turn contribute to anti-leishmanial functions [35]. It has been suggested that Leishmania Major inhibits CD40-triggered p38 MAPK signaling as part of an immune evasion strategy [36].

Another overrepresented category from GeneTrail was the extracellular matrix (ECM) (Table 6). Also, in the two most significant Ingenuity networks from the 603 marker analyses, ECM molecules and matrix metalloproteinases (MMPs) were included (Table 8). The ECM represents a major barrier to parasites like amoebas and leishmania. Parasites produce a wide variety of proteases to break down the ECM in order to access essential nutrients and invade host tissue [37]. A different situation when the ECM is degraded is during nutrient deprivation. In this way the ECM can provide energy for starving host cells. Just like gluten, the ECM has an unusually high proline content. MMPs are enzymes, which break down ECM making proline readily available as a nutritional source. Pandhare and co-workers have shown that energy or nutrient stress activates MMPs as well as the degradation of proline and furthermore demonstrated that, as the levels of glucose decreased to 1 mM and lower in the medium, intracellular proline increased almost 2-fold [38]. If gluten lingering in the intestine conveys a signal of ECM degradation (due to increased proline levels), several other mechanisms will most likely signal that there is food available at the same time (salivary secretion as one example is shown in Table 6). In this case, the immune system will rule out starvation as a possibility and the only other sensible option would be to search for an invasive intruder breaking down the ECM. The autoantigen in CD, TGM2, counteracts proteolysis and degradation of ECM by crosslinking ECM proteins [39]. If DUSP10 and PRR5 up-regulate TNF-α and subsequently TGM2 [17,18,25], in CD, the purpose may very well be for TGM2 to help prevent an apparent or illusory pathogenic invasion. It has also been shown that down-regulation of SVIL protects against ECM invasion by pathogens [40]. In our gene expression analysis SVIL was nominally significantly down-regulated in cases (Table 9).

When the body “senses” a pathogen disturbing energy balance or breaking down ECM, but there are no pathogenic antigens present, maybe there could be a risk that “self” antigens become our immune systems futile attempt to rid the perceived pathogen. In HLA-DQA1*02/05 and HLA-DQB1*02 carriers, peptides derived from TGM2 could constitute such “self” antigens. It is possible that individuals carrying other HLA molecules still respond to this “phantom pathogen” and that under these circumstances, various other antigens present in the intestine at the time could become triggers of other autoimmune diseases. If the expression or presence of an autoantigen, like TGM2, was stimulated by the disturbed proline/glutamine homeostasis, it can explain why symptoms in CD also disappear by withdrawal of gluten.

Conclusion

At least four major functional components together with gluten, all seem to play a role in forming an individual’s risk for CD:

1. polarity and epithelial cell functionality, e.g. nutrient/vesicle transport, proliferation and apoptosis, important for cell migration from the crypt to the shedding (apoptosis) at the apical villi.
2. intestinal smooth muscle, which is important for the movement of the bowel as well as the villi.
3. growth and energy homeostasis, which includes proline and glutamine metabolism, and finally
4. the innate and adaptive immune system.
Table 8. The top four networks generated by the Ingenuity IPA software (allowing only direct connections between proteins/genes).

Rank	Top functions	Ingenuity score	Number of focus molecules
1	Cell Morphology, Cellular Assembly and Organization, Hair and Skin Development and Function. Ingenuity Score: 155, 109 focus molecules.	97	86 focus molecules.
2	Cell Signaling, Metabolism. Ingenuity Score: 74, 67 focus molecules.	74	69 focus molecules.
3	Cellular Assembly and Organization, Cellular Function and Maintenance. Ingenuity Score: 67, 69 focus molecules.	77	69 focus molecules.
4	Post-Translational Modification, Carbohydrate Metabolism, Lipid Metabolism. Ingenuity Score: 74, 67 focus molecules.	74	67 focus molecules.

The results of the network analysis included our genome-wide significant finding (DUSP10) within the top scoring network. P38 MAPK which interacts with DUSP10 is included in the second top network. The MHC class II complex is part of the second network. Genes within ours (P38 MAPK and DUSP10) and previously identified genome-wide significant regions are marked in italic, bold text. Only bold text show genes involved in amoebiasis. Underlined genes showed differences in our gene expression analysis (Table 9).

Rank: Top functions; Ingenuity score: Number of focus molecules; Molecules in Network.

doi:10.1371/journal.pone.0070174.t008
A slight dysfunction combining these categories together with gluten consumption would result in a metabolic imbalance which in turn could convey enough stress or “danger signal”, to trigger the immunological process and tissue destruction. A schematic illustration showing a rough outline of a possible disease model is presented in Figure 6.

In this study, we identified DUSP10 to be significantly associated with celiac disease. We also identified mechanisms, which we believe influence the risk of developing disease. Our data points towards genes that are involved in cancer as well as metabolic and cardiovascular diseases. Besides understanding how they work in celiac disease, our findings could also have consequences for these other common diseases.

Whole genome analysis allows for discovering completely unknown mechanisms behind disease. Even if the discovered genes and gene variants won’t be able to predict who will develop disease in the future, they can be used to identify the underlying molecular pathways that influence disease. These molecular pathways would then be valuable targets for drug intervention. Our data provides new insights and hypotheses to the research field of CD and autoimmunity. However, the functional variants behind associations as well as mechanisms causing differences in gene expression and if and how these are relevant for disease, remains to be identified.

Materials and Methods

Ethics Statement

The regional ethics board in Gothenburg approved this study and participants in the study gave written informed consent after being fully informed about the aim of the study. For all children in the study, parental written consent was obtained.

Study Population

A total of 106 families with multiple affected individuals, mostly nuclear families with an affected sib pair (ASP), were collected from Sweden and Norway. There were 403 subjects and 97 families with DNA to complete the analysis. A total of 226 of the family members had CD, including 20 parents. The makeup and selection process regarding the families has been described previously in detail [41].

Small-intestinal biopsies, for the gene expression analysis, were collected at four pediatric clinics in Sweden: Skåne University Hospital in Malmö, Sach’s Childrens’ Hospital and Karolinska...
Table 9. Results from gene expression analysis of 34 candidate genes.

Gene Symbol	Assay Id	Gene	Fold Change	p-value	p-value corr. b	Selection criteria
ADCY9a	Hs00181599_m1	adenylate cyclase 9	1.58	DOWN	7.55E-06	two-locus
APPL2a	Hs00216855_m1	adaptor protein, phosphotyrosine interaction, PH domain and leucine zipper cont. 2	1.51	DOWN	2.15E-05	two-locus
GLS	Hs00221514_m1	glutaminase	1.46	UP	4.99E-06	two-locus/IPA/previous
IRS1	Hs00233154_m1	insulin receptor	1.15	UP	7.75E-04	two-locus/IPA/previous
PDE18A	Hs00134678_m1	protein phosphatase 1, regulatory (inhibitor) subunit 12B	1.15	UP	0.029	top
PDK1	Hs01561850_m1	pyruvate dehydrogenase kinase, isozyme 1	1.30	DOWN	8.39E-05	two-locus
PRK1	Hs00223154_m1	kinesin family member 13A	1.22	DOWN	1.76E-04	two-locus
PPP1R12B	Hs00364073_m1	protein phosphatase 1, regulatory (inhibitor) subunit 12B	1.44	DOWN	2.03E-04	two-locus/IPA/previous
PTP4A	Hs00186620_m1	regulator of G-protein signaling 1	1.11	DOWN	0.015	IPA
RGS2	Hs00364078_m1	protein phosphatase 1, regulatory (inhibitor) subunit 12B	1.08	DOWN	0.053	two-locus/IPA/previous
DUSP10	Hs00200527_m1	dual specificity phosphatase 10	1.12	UP	0.704	two-locus
IKBKE	Hs01063858_m1	inhibitor of kappa light polypeptide gene enhancer in B-cells, kinase epsilon	1.18	UP	0.014	two-locus/IPA/previous
UNC5C	Hs00931734_m1	supervillin	1.13	DOWN	0.026	two-locus/IPA/previous
ARID1B	Hs00368175_m1	AT rich interactive domain 1B	1.13	DOWN	0.024	two-locus/IPA/previous
PKN2	Hs00178944_m1	protein kinase N2	1.14	DOWN	0.026	two-locus/IPA/previous
ITPK1	Hs00356546_m1	inhibitor of kappa light polypeptide gene enhancer in B-cells, kinase	1.12	UP	0.024	two-locus/IPA/previous
ITK	Hs00397766_m1	dipeptidyl-peptidase 10	1.75	DOWN	0.035	two-locus/IPA/previous
RGS5	Hs0031734_m1	regulator of G-protein signaling 1	1.34	DOWN	0.053	two-locus/IPA/previous
SVIL	Hs00356656_m1	regulator of G-protein signaling 1	1.34	DOWN	0.035	two-locus/IPA/previous
MAGED1	Hs00986269_m1	melanoma antigen family D, 1	1.10	DOWN	0.053	two-locus/IPA/previous
FOXD3	Hs00255287_s1	forkhead box D3	1.10	DOWN	0.053	two-locus/IPA/previous
ITPK1-AS1	Hs01053867_s1	inositol 1,3,4-triphosphate 5/6 kinase Associated	1.10	DOWN	0.053	two-locus/IPA/previous
LPP	Hs00353878_m1	lipoprotein receptor	1.10	DOWN	0.053	two-locus/IPA/previous
CCR5	Hs00168212_m1	regulator of G-protein signaling 5	1.10	DOWN	0.047	two-locus/IPA/previous
CD5L	Hs00353257_m1	fibronectin	1.10	DOWN	0.053	two-locus/IPA/previous
CTNNB1	Hs00353623_m1	chemokine (C-C motif) receptor 3	1.10	DOWN	0.053	two-locus/IPA/previous

Celiac Disease Genome-Wide Linkage and Association
Cont.

Gene symbol	Assay id	Gene Fold Change	p-value	p-value corr.	Selection criteria	
TIPRL	Hs00295580_m1	TIP41, TOR signaling pathway regulator-like (S. cerevisiae)	1.01	DOWN	0.752	genetrail
KHDRBS2	Hs01061150_m1	KH domain containing, RNA binding, signal transduction associated 2	1.06	UP	0.840	two-locus
GTF2B	Hs00976258_m1	general transcription factor IIB	1.03	UP	0.888	IPA/genetrail
ACTN1	Hs00998100_m1	actinin, alpha 1	1.01	DOWN	0.914	two-locus
DUSP10	Hs04189838_m1	dual specificity phosphatase 10	No expression detected	top		

Expression (e.g. mRNA levels) of these genes was either up- or down-regulated in small intestinal biopsies from CD cases compared with control patients. Effect direction is presented for cases with control group as a reference. The selection column indicates if the gene was selected due to its presence in two-locus or pathway analyses. "Top" indicates top SNP in the present GWAS and "top previous" indicates that it was present in the GWAS by Dubois et al. All the gene assays (primers and probes) were predesigned and ordered from Life technologies (CA, USA).

Reference genes tested were: ACTB (Hs00357333_g1), B2M (Hs99999907_m1), EPCAM (Hs00158980_m1), GUSB (Hs99999908_m1), HPRT1 (Hs99999909_m1), MUC1 (Hs00159357_m1), PGK1 (Hs00999906_m1). For the results a combined value of ACTB, EPCAM, and PGK1 showed to be optimal when analysed by GeNorm and were selected as reference.

Gene not included in the gene list used for pathway analyses due to recombination between associated SNP and gene promotor: rs10861406. (APPL2), rs882820 (ADCY9). However, possible regulatory site could be close to associated SNP and influence gene expression.

bP-values corrected using Bonferroni correction.

dGene not included in the gene list used for pathway analyses due to recombination between associated SNP and gene promotor.

Celiac Disease Genome-Wide Linkage and Association

Gene Expression Analysis

We performed quantitative gene expression analysis using duodenal biopsies from CD autoimmunity patients and control patients. Biopsies were immediately put in RNAlater solution (Life Technologies, CA, USA). Total RNA was extracted using the miRNeasy Mini Kit (QIAGEN, Germany). RNA was converted to cDNA and quantitative PCR was run using TaqMan chemistry and the ABI7900 SDS instrument (Life Technologies, CA, USA).

Seven control genes were evaluated using GeNorm [45] (ACTB (Hs00357333_g1), B2M (Hs99999907_m1), EPCAM (Hs00158980_m1), GUSB (Hs99999908_m1), HPRT1 (Hs99999909_m1), MUC1 (Hs00159357_m1), PGK1 (Hs00999906_m1)) and the geometrical mean of ACTB, EPCAM, and PGK1 were selected as reference for the relative quantification analysis (Delta-Delta Ct method). A total of 34 expressed genes located close to some of the most significantly associated SNPs were evaluated (Table 9). The top associated genes from our Linkage GWAS (DUSP10, STL, PPP1R12B) were selected as well as several genes from the two-locus interaction analysis and pathway analyses including LPP which is the top associated from the GWAS by Dubois et al. Also the RGS genes (RGS1, 2 and 5) and GLS show genome-wide association in the study by Dubois et al. and are also present in our two-locus and pathway analyses.

Genotyping and Imputation

Samples were genotyped using two different SNP arrays, 211 samples with Human Omni Express and 192 samples with Human 660W-Quad (Illumina Inc, CA, USA). A total of 308,246 markers were available on both arrays and were therefore genotyped in the entire material. For the remaining 682,470 and for sporadic missing values we performed genotype imputation using the Impute 2 software [46], with the Hapmap 2 (rel. 24 Build 36) as a reference.

All individuals in the same family were located on the same plate. Quality control was first performed separately for the two arrays. SNP markers with less than 97% call rate in either of the two arrays were excluded.

Mendelian errors were detected by PLINK [47], 125,874 family-wise mendelian inconsistencies were set to missing (in each family the genotypes were set to missing for all subjects if there were any mendelian inconsistencies for a specific SNP).

Statistical Analysis

Linkage. For the linkage analysis only markers from both platforms were considered. From this set of 271,078 common SNP markers a LD pruned set of 105 539 SNPs were selected using PLINK. Parameters were a window size of 50 and R^2<0.5. The Decode genetic map as supplied by Illumina was used to run non-parametric linkage using Merlin version 1.1.2 [48] with the NPL
all method [49]. Marker allele frequencies were estimated from the founders.

Transmission Disequilibrium Test (TDT). Spielman et al introduced the Transmission Disequilibrium Test (TDT) in 1993 [50].

The imputation analysis provides us with (posterior) probabilities for each of the possible genotypes at each locus and to utilize all posterior probabilities, we performed an analysis where we use the expected values of the transmission counts. The test statistic will then have the following form,

\[
T_{\text{imp}} = \frac{(E[b] - E[c])^2}{E[b] + E[c]},
\]

(1)

\(T_{\text{imp}}\) has approximately the same distribution as the test statistic \(T\) in [50].

Stratified TDT. We implement a stratified TDT analysis where trios are split into a low-risk and a high-risk group based on the HLA genotype of the affected offspring. Children carrying the HLA-DQA1*02/05 risk allele and homozygous for the HLA-DQB1*02 risk allele (i.e. individuals carrying the DR3/DR3 or the DR3/DR7 haplotypes) were put in the “high-risk” group and the remaining children were put in the “low-risk” group. The rationale behind this is explained in the introduction and further information about this stratification can be found in our previous Linkage study [14]. A standard TDT analysis, with the 0.95 cut-off for imputation probabilities, was applied to each of these groups using PLINK [47].

Test for two-locus interaction. To examine possible interactions between marker variants, we used a pairwise test based on the one introduced by Kotti [51]. Consider two biallelic markers without linkage disequilibrium between their alleles. In the general model \(M_G\), the penetrance matrix has 9 parameters,

\[
\phi^G = \begin{bmatrix}
\phi_{00} & \phi_{01} & \phi_{02} \\
\phi_{10} & \phi_{11} & \phi_{12} \\
\phi_{20} & \phi_{21} & \phi_{22}
\end{bmatrix},
\]

Let \(n\) be the 3×3 matrix of genotype counts among the cases for the two markers, and let \(m\) be the corresponding matrix for the non-transmitted allele combinations. The likelihood for the models is

Figure 5. NPL results. Non-Parametric Linkage score displayed as \(-\log_{10}(p\text{-value})\) on the y-axis and chromosome 1–22 and X on the x-axis. doi:10.1371/journal.pone.0070174.g005

chr	from(Mb)	to(Mb)	max NPL	p-value
6*	12.5	52.6	5.42	3.03E-08
5	124.5	149.3	3.33	4.36E-04
1	200.2	231.8	3.12	9.20E-04
11	122.2	130.2	2.95	1.59E-03
9	30.3	34.7	2.82	2.40E-03
4	96.5	111.3	2.81	2.46E-03
3	104.7	108.6	2.70	3.49E-03
14	85.7	86.4	2.57	5.16E-03
6	160.4	161.0	2.54	5.50E-03
11	77.6	78.4	2.48	6.64E-03
18	55.0	55.1	2.45	7.20E-03
1	29.7	29.9	2.42	7.87E-03
2	127.0	127.1	2.41	8.00E-03
2	106.3	106.4	2.37	8.89E-03

Regions showing significant linkage (the HLA region only) and putative linkage (nominal \(p<0.01\). Regions in the table are defined as the Megabase (Mb) interval showing a nominal \(p<0.01\). Neighbouring regions were merged if \(<15\ Mb pairwise distance\).

Max NPL – the maximum Z score across the region between the positions ‘from’ and ‘to’.

p-value – the p-value for the max NPL score.

*=The HLA region.

doi:10.1371/journal.pone.0070174.t010
For this analysis we use one affected subject from each family and markers were chosen based on the expected counts TDT (equation 1) and three different inclusion criteria:

1. P-value less than 3.0×10^{-4}.
2. P-value less than 0.01 in our analysis and with a p-value less than 0.05 in the GWAS by Dubois et al. [3] and if the product of these p-values were less than 5.0×10^{-5} and the association were in the same allelic direction.
3. An allele transmission ratio of <0.2 or >5 combined with a p-value less than 2.0×10^{-3}.

We defined 383 regions using the inclusion criteria above (Fig. 2 and Table S1) a region consisted of a set of markers where the distance between adjacent markers was less than 100 kb. With these regions defined we analyzed all pairwise interactions using a Likelihood Ratio (LR) tests comparing the following four models:

- N_{M0}: None of the two loci is associated with CD,
- N_{M0}: Heterogeneity model [52], with penetrance

where α_i and β_j are the penetrance factors for the genotypes A_i and B_j [53] respectively.

- M_{G}: Multiplicative model,
- M_{G}: the general model.

The restricted model used in [51] is the multiplicative model. We use the M_{G}-versus-M_{M} test to filter out false positives, based on that if one or both of the SNPs were marginally significant by chance, then the joint distribution (penetrance) of these markers should follow a multiplicative model.

We have the likelihood ratio statistic

$$T_{jk} = -2 \log \frac{\max L_j}{\max L_j}$$

T_{jk} will follow a x^2 distribution under the restricted model if M_j is nested in M_k. The maximum likelihood estimates of the penetrance parameters and allele frequencies do not have a simple explicit expression, so to maximize the likelihoods we use the function `optim` in the statistical software R.

Gene Selection

Out of the 603 SNPs selected from the three inclusion criteria (Fig. 2 and Table S1), we were able to identify genes surrounding...
444 SNPs using GRAIL [54]. Grail uses known recombination hotspots in order to limit the region of interest surrounding each SNP marker. Genes around the remaining SNPs were identified with the Genome Browser [http://genome.ucsc.edu] and the 5 closest genes within 250 kb from the associated SNPs were included. In cases where there were no genes within this distance we included the closest gene.

Pathway Analysis
We analyzed connections between genes in different regions, using GeneTrail [13] and the Ingenuity Pathway Analysis (IPA) software (Ingenuity Inc., CA, USA). Within each associated region, all but one gene from the same gene family were removed. This was done in order not to amplify the significance of homologous gene clusters, i.e. chemokine receptor-, interferon- and histone-gene clusters.

URLs
PLINK [http://pngu.mgh.harvard.edu/purcell/plink/]
KEGG [www.genome.jp/kegg/]
Gene Ontology [www.genontology.org/]
GWAS catalog [http://www.genome.gov/gwastudies/]
GRAIL [http://www.broadinstitute.org/mpg/grail/]
SNAP [http://www.broadinstitute.org/mpg/snap/lpdlplot.php/]
GeneTrail [http://genetraill.bioinf.uni-sb.de/]

References
1. Mylrea A, Ivarsson A, Webb C, Danielson L, Hernell O, et al. (2009) Celiac disease revealed in 3% of Swedish 12-year-olds born during an epidemic. J Pediatr Gastroenterol Nutr 49: 170–176.
2. Soloid LM, Markussen G, Ekj J, Gjerde H, Vardal F, et al. (1989) Evidence for a primary association of celiac disease to a particular HLA-DQ alpha/beta heterodimer. J Exp Med 169: 345–350.
3. Dubois PC, Trynka G, Franke L, Hunt KA, Romanos J, et al. (2010) Multiple common variants for celiac disease influencing immune gene expression. Nat Genet 42: 295–302.
4. Festen EA, Gothey P, Green T, Boucher G, Beauchamp C, et al. (2011) A meta-analysis of genome-wide association scans identifies IL1RAP, PTTRN2, TAGAP, and PASU1 as shared risk loci for Crohn’s disease and celiac disease. PLoS Genet 7: e1001283.
5. Hunt KA, Zhermakova A, Turner G, Heap GA, Franke L, et al. (2008) Newly identified genetic risk variants for celiac disease related to the immune response. Nat Genet 40: 395–402.
6. van Heel DA, Franke L, Hunt KA, Gwilliam R, Zhernakova A, et al. (2007) A meta-analysis of genome-wide association scans identifies IL18RAP, PTPN2, TAGAP, and PASU1 as shared risk loci for Crohn's disease and celiac disease. PLoS Genet 7: e1000249.
7. Kumar V, Wijnenga C, Witthoff S (2012) From genome-wide association studies to disease mechanisms: celiac disease as a model for autoimmune diseases. Semin Immunopathol 34: 567–580.
8. Risch N, Teng J (1998) The relative power of family-based and case-control designs for linkage disequilibrium studies of complex human diseases I. DNA pooling. Genome Res 8: 1273–1288.
9. Risch N, Merikangas K (1996) The future of genetic studies of complex human diseases. Science 273: 1516–1517.
10. Risch N, Teng J (1998) The relative power of family-based and case-control designs for linkage disequilibrium studies of complex human diseases I. DNA pooling. Genome Res 8: 1273–1288.
11. Nalini AT, Nilsson S, Gutjonsdottr AH, Louka AS, Ascher H, et al. (2001) Genome-wide linkage analysis of Scandinavian affected sib-pairs supports presence of susceptibility loci for celiac disease on chromosomes 5 and 11. Genet Epidemiol 25: 827–829.
12. Zhermakova A, Stahl EA, Trynka G, Raychaudhuri S, Festen EA, et al. (2011) Meta-analysis of genome-wide association studies in celiac disease and rheumatoid arthritis identifies fourteen non-HLA shared loci. PLoS Genet 7: e1002405.
13. Dubois et al. [3].
14. Teng CH, Huang WN, Meng TC (2007) Several dual specificity phosphatases coordinate to control the magnitude and duration of JNK activation in signaling response to oxidative stress. J Biol Chem 282: 29395–29407.
15. Holmes B, Artinian N, Anderson L, Martin J, Masri J, et al. (2012) Protor-2 interacts with trinucleotripol to regulate mRNA stability during stress. Cell Signal 24: 309–315.
16. Luo LJ, Liu F, Wang XY, Dai FY, Dai XL, et al. (2012) An essential function for MKP5 in the formation of oxidized low density lipid-induced foam cells. Cell Signal 24: 1889–1898.
17. Dieiterich W, Ehns T, Bauer, M, Donner P, Volta U, et al. (1997) Identification of tissue transglutaminase as the autoantigen of celiac disease. Nat Med 3: 797–801.
18. Wang K, Zhang H, Blos CS, Duvvari V, Kaye W, et al. (2011) A genome-wide association study on common SNPs and rare CNVs in anorexia nervosa. Mol Psychiatry 16: 949–959.
19. Paterson AD, Waggott D, Boright AP, Hossein SM, Shen E, et al. (2010) A genome-wide association study identifies a novel major locus for glycemic control in type 1 diabetes, as measured by both A1C and glucose. Diabetes 59: 330–339.
20. Lin Z, Beit JX, Shen M, Li Q, Liao Z, et al. (2012) A genome-wide association study in Han Chinese identifies new susceptibility loci for angiogenesis. Nat Genet 44: 77–83.
21. Liu W, Le A, Hancock C, Lane AN, Dang CV, et al. (2012) Reprogramming of proline and glutamine metabolism contributes to the proliferative and metabolic responses regulated by oncogenic transcription factor c-MYC. Proc Natl Acad Sci U S A 109: 19883–19890.
22. D'Alessandro G, Calcagno E, Tartari S, Rizzardi M, Invernizzi RW, et al. (2011) Glutamate and glutathione interplay in a motor neuronal model of amyotrophic lateral sclerosis reveals altered energy metabolism. Neurobiol Dis 45: 346–355.
23. Holmes B, Artinian N, Anderson L, Martin J, Masri J, et al. (2012) Protor-2 interacts with trinucleotripol to regulate mRNA stability during stress. Cell Signal 24: 309–315.
24. Saito T, Jones CC, Huang S, Czech MP, Plich PF (2007) The interaction of Akt with APPL1 mediates apoptosis and glucose transport by c-Myc. Proc Natl Acad Sci U S A 104: 3530–3535.
25. Holmes B, Artinian N, Anderson L, Martin J, Masri J, et al. (2012) Protor-2 interacts with trinucleotripol to regulate mRNA stability during stress. Cell Signal 24: 309–315.
26. Saito T, Jones CC, Huang S, Czech MP, Plich PF (2007) The interaction of Akt with APPL1 mediates apoptosis and glucose transport by c-Myc. Proc Natl Acad Sci U S A 104: 3530–3535.
27. Holmes B, Artinian N, Anderson L, Martin J, Masri J, et al. (2012) Protor-2 interacts with trinucleotripol to regulate mRNA stability during stress. Cell Signal 24: 309–315.
28. Saito T, Jones CC, Huang S, Czech MP, Plich PF (2007) The interaction of Akt with APPL1 mediates apoptosis and glucose transport by c-Myc. Proc Natl Acad Sci U S A 104: 3530–3535.
29. Holmes B, Artinian N, Anderson L, Martin J, Masri J, et al. (2012) Protor-2 interacts with trinucleotripol to regulate mRNA stability during stress. Cell Signal 24: 309–315.
30. Ito M, Nakano T, Erdodi F, Hartshorne DJ (2004) Myosin phosphatase: a novel MAPK-regulated protein phosphatase that opposes Rap1 in the regulation of Mek1 activation. J Biol Chem 279: 31608–31615.
31. Holmes B, Artinian N, Anderson L, Martin J, Masri J, et al. (2012) Protor-2 interacts with trinucleotripol to regulate mRNA stability during stress. Cell Signal 24: 309–315.
32. Ito M, Nakano T, Erdodi F, Hartshorne DJ (2004) Myosin phosphatase: a novel MAPK-regulated protein phosphatase that opposes Rap1 in the regulation of Mek1 activation. J Biol Chem 279: 31608–31615.
31. Goto S, Bono H, Ogata H, Fujisuchi W, Nishihira T, et al. (1997) Organizing and computing metabolic pathway data in terms of binary relations. Pac Symp Biocomput: 175–186.
32. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, et al. (2000) Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet 25: 25–29.
33. Takizawa N, Smith TC, Nebl T, Crowley JL, Palmieri SJ, et al. (2006) Supervillin modulation of focal adhesions involving TRIP6/ZRP-1. J Cell Biol 174: 447–458.
34. Nakagawa T, Setou M, Seog D, Ogasawara K, Dohmae N, et al. (2000) A novel motor, KIF13A, transports mannose-6-phosphate receptor to plasma membrane through direct interaction with AP-1 complex. Cell 103: 569–581.
35. Srivastava N, Sudan R, Saha B (2011) CD40-modulated dual-specificity phosphatases MAPK phosphatase (MKP)-1 and MKP-3 reciprocally regulate Leishmania major infection. J Immunol 186: 5863–5872.
36. Awasthi A, Mathur R, Khan A, Joshi BN, Jain N, et al. (2009) CD40 signaling is impaired in L. major-infected macrophages and is rescued by a p38MAPK activator establishing a host-protective memory T cell response. J Exp Med 197: 1037–1043.
37. Pina-Vazquez C, Reyes-Lopez M, Oriz-Estrada G, de la Garza M, Serrano-Luna J (2012) Host-parasite interaction: parasite-derived and -induced proteases that degrade human extracellular matrix. J Parasitol Res 2012: 748206.
38. Pandhare J, Donald SP, Cooper SK, Phang JM (2009) Regulation and function of proline oxidase under nutrient stress. J Cell Biochem 107: 759–768.
39. Mangala LS, Arun B, Sahin AA, Mehta K (2005) Tissue transglutaminase-induced alterations in extracellular matrix inhibit tumor invasion. Mol Biol Cell 20: 948–962.
40. Gudjonsdottir AH, Nilsson S, Ek J, Kristiansson B, Ascher H (2004) The risk of celiac disease in 107 families with at least two affected siblings. J Pediatr Gastroenterol Nutr 38: 338–342.
41. Howie BN, Donnelly P, Marchini J (2009) A flexible and accurate genotype imputation method for the next generation of genome-wide association studies. PLoS Genet 5: e1000529.
42. Spielman RS, McGinnis RE, Ewens WJ (1993) Transmission test for linkage disequilibrium: the insulin gene region and insulin-dependent diabetes mellitus (IDDM). Am J Hum Genet 52: 506–516.
43. Otto S, Bickeboller H, Clerget-Darpoux F (2007) Strategy for detecting susceptibility genes with weak or no marginal effect. Hum Hered 63: 85–92.
44. Rice JP, Neuman RJ (2005) Two-locus models of disease. Genetic Epidemiology 9: 347–365.
45. Risch N (1990) Linkage strategies for genetically complex traits. I. Multilocus models. Am J Hum Genet 46: 222–228.
46. Raychaudhuri S, Plenge RM, Rossin EJ, Ng ACY, Purcell SM, et al. (2009) Identifying Relationships among Genomic Disease Regions: Predicting Genes at Pathogenic SNP Associations and Rare Deletions. PLoS Genet 5.