Draft Genome Sequence of the New Pathogen for Bivalve Larvae

Vibrio bivalvicida

Javier Dubert

Edward J. Spinard
University of Rhode Island

David R. Nelson
University of Rhode Island, dnelson@uri.edu

Marta Gomez-Chiarri
University of Rhode Island, gomezchi@uri.edu

Jesus L. Romalde

See next page for additional authors

Follow this and additional works at: https://digitalcommons.uri.edu/cmb_facpubs

Citation/Publisher Attribution
Dubert, J., Spinard, E. J., Nelson, D. R., Gomez-Chiarri, M., Romalde, J. L., and Barja, J. L. (2016). Draft genome sequence of the new pathogen for bivalve larvae Vibrio bivalvicida. Genome Announcements, 4(2), e00216-16. doi:10.1128/genomeA.00216-16
Available at: http://dx.doi.org/10.1128/genomeA.00216-16

This Article is brought to you for free and open access by the Cell and Molecular Biology at DigitalCommons@URI. It has been accepted for inclusion in Cell and Molecular Biology Faculty Publications by an authorized administrator of DigitalCommons@URI. For more information, please contact digitalcommons-group@uri.edu.
Draft Genome Sequence of the New Pathogen for Bivalve Larvae *Vibrio bivalvicida*

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 License.

Authors
Javier Dubert, Edward J. Spinard, David R. Nelson, Marta Gomez-Chiarri, Jesus L. Romalde, and Juan L. Barja

This article is available at DigitalCommons@URI: https://digitalcommons.uri.edu/cmb_facpubs/32
The genus *Vibrio* is the largest member of the family *Vibrionaceae* and comprises more than 126 bacterial species and 2 subspecies (http://www.bacterio.net/vibrio.html) clustered in 18 clades and 4 orphan species (1, 2). *Vibrios* are widespread in marine environments, showing high diversity at the metabolic and ecological levels, and their association with marine bivalves has regularly been reported (3). Vibriosis caused by some *Vibrio* spp. represents the main bottleneck of the production process at bivalve hatcheries due to the rapid colonization of the bivalve larvae by these pathogens, leading to high larval mortality rates and the loss of production batches (4). The *Orientalis* clade has a relevant significance for bivalve aquaculture since it includes some of the most well-known larval pathogens, such as *Vibrio tubishii* subsp. *tubishii*, *V. tubishii* subsp. *europaeus*, and the recently described *V. bivalvicida*, whose broad range of action was reported in larvae of different bivalve species (5).

V. bivalvicida 605T (= CECT 8855T = CAIM 1904T) was originally isolated from an episode of larval mortality of carpet shell clam (*Ruditapes decussatus*) in a bivalve hatchery located in Galicia (northwest Spain). Genomic DNA was sequenced using an Illumina MiSeq sequencer by Sistemas Genómicos (Valencia, Spain) with 100× coverage. Reads were trimmed for quality, ambiguous nucleotides, and adapters and were assembled using SPAdes version 3.6 (6). QUAST (7) was used to evaluate the assembly. The assembly produced 91 contigs totaling 4,922,047 bp with an average G+C content of 43.6%. The N50 contig size is 191,755 bp, with the largest contig being 691,504 bp. The resulting draft genome sequence was annotated with the Rapid Annotations using Subsystems Technology (RAST) server, resulting in 4,619 open reading frames (8).

The genome of *V. bivalvicida* 605T encodes three putative extracellular proteins that have been characterized in other *Vibrio* spp.: a phospholipase/hemolysin that shows similarity to Plp in *V. anguillarum* M93Sm (9), a hemolysin annotated as HlyA that shows similarity to Vah1 in *V. anguillarum* M93Sm (9), and a metalloprotease that shows similarity to VtpA in *V. coraliilyticus* RE22 (10). Additional putative extracellular virulence factors identified by RAST are five hemolysins and two phospholipases. Two secretion systems (type III and type VI) used to deliver effectors directly into a host cell were identified on the *V. bivalvicida* 605T genome. The only conserved domain annotated in the type III–injected virulence protein is the YopH N-terminal domain (11). This domain is needed for translocation from the bacterium into the eukaryotic host cell.

This work constituted the first draft genome description of the novel larval pathogen of bivalves *V. bivalvicida* 605T. This genome information contributes to the study of virulence factors, the development of new accurate diagnostic methods, and the knowledge of the bivalve pathogenic *Vibrio* spp.

Nucleotide sequence accession numbers. This whole-genome shotgun project has been deposited in DDBJ/EMBL/GenBank under the accession number LLEI00000000. The version described in this paper is the second version, LLEI02000000.

ACKNOWLEDGMENTS

This study was supported by grants AGL2014-59655 and AGL2013-42628-R from the Ministry of Economy and Competitiveness of Spain.

FUNDING INFORMATION

This work, including the efforts of Juan L. Barja, was funded by Ministerio de Economía y Competitividad (MINECO) (AGL2014-59655). This work, including the efforts of Jesus L. Romalde, was funded by Ministerio de Economía y Competitividad (MINECO) (AGL2013-42628-R).

REFERENCES

1. Sawabe T, Ogura Y, Matsumura Y, Feng G, Amin AR, Mino S, Naga-gawa S, Sawabe T, Kumar R, Fukui Y, Satomi M, Matsushima R, Thompson FL, Gomez-Gil B, Christen R, Maruyama F, Kurokawa K, Hayashi T. 2013. Updating the Vibrio clades defined by multilocus sequence phylogeny: proposal of eight new clades, and the description of *Vibrio tritonius* sp. nov. Front Microbiol 4:414. http://dx.doi.org/10.3389/fmicb.2013.00414.

2. Al-saari N, Gao F, Rohul AAKM, Sato K, Sato K, Mino S, Suda W, Oshima K, Hattori M, Okhuma M, Meirelles PM, Thompson FL, Thompson C, Filho GM, Gomez-Gil B, Sawabe T, Sawabe T. 2015. Advanced microbial taxonomy combined with genome-based-
approaches reveals that *Vibrio astriarenae* sp. nov., an agarolytic marine bacterium, forms a new clade in *Vibrionaceae*. PLoS One 10:e0136279. http://dx.doi.org/10.1371/journal.pone.0136279.

3. Romalde JL, Dieguez AL, Lasa A, Balboa S. 2014. New *Vibrio* species associated to molluscan microbiota: a review. Front Microbiol 4:413. http://dx.doi.org/10.3389/fmicb.2013.00413.

4. Dubert J, Nelson DR, Spinard EJ, Kessner L, Gomez-Chiarri M, da Costa Fd, Prado S, Barja JL. 2016. Following the infection process of vibriosis in Manila clam (*Ruditapes philippinarum*) larvae through GFP-tagged pathogenic *Vibrio* species. J Invertebr Pathol 133:27–33. http://dx.doi.org/10.1016/j.jip.2015.11.008.

5. Dubert J, Romalde JL, Prado S, Barja JL. 2016. *Vibrio bivalvicida* sp. nov., a novel larval pathogen for bivalve molluscs reared in a hatchery. Syst Appl Microbiol 39:8–13. http://dx.doi.org/10.1016/j.syapm.2015.10.006.

6. Nurk S, Bankevich A, Antipov D, Gurevich A, Korobeynikov A, Lapidus A, Prielbysky A, Pyshkin A, Sirotkin A, Sirotkin Y, Stepanauskas R, McLean J, Lasken R, Clingenpeel SR, Woyke T, Tesler G, Alekseyev MA, Pevzner PA. 2013. Assembling genomes and mini-metagenomes from highly chimeric reads, p. 158–170. In Deng M, Jiang R, Sun F, Zhang X (ed), Research in computational molecular biology. Springer, Berlin. http://dx.doi.org/10.1007/978-3-642-37195-0_13.

7. Gurevich A, Saveliev V, Vyahhi N, Tesler G. 2013. QUAST: quality assessment tool for genome assemblies. Bioinformatics 29:1072–1075. http://dx.doi.org/10.1093/bioinformatics/btt086.

8. Aziz RK, Bartels D, Best AA, DeJongh M, Disz T, Edwards RA, Formsma K, Gerdes S, Glass EM, Kubal M, Meyer F, Olsen GJ, Olson R, Osterman AL, Overbeek RA, McNeil IK, Paarmann D, Paczian T, Parrello B, Pusch GD, Reich C, Stevens R, Vassieva O, Vonstein V, Wilke A, Zagnitko O. 2008. The RAST server: Rapid Annotations using Subsystems Technology. BMC Genomics 9:75. http://dx.doi.org/10.1186/1471-2164-9-75.

9. Rock JL, Nelson DR. 2006. Identification and characterization of a hemolysin gene cluster in *Vibrio anguillarum*. Infect Immun 74:2777–2786. http://dx.doi.org/10.1128/IAI.74.5.2777-2786.2006.

10. Hasegawa H, Häse CC. 2009. The extracellular metalloprotease of *Vibrio tubiashii* directly inhibits its extracellular haemolysin. Microbiology 155:2296–2305. http://dx.doi.org/10.1099/mic.0.028605-0.

11. Evdokimov AG, Tropea JE, Routzahn KM, Copeland TD, Waugh DS. 2001. Structure of the N-terminal domain of *Yersinia pestis* YopH at 2.0-A resolution. Acta Crystallogr D Biol Crystallogr 57:793–799. http://dx.doi.org/10.1107/S0907444901004875.