The Proto-oncogene c-\textit{myc} Acts through the Cyclin-dependent Kinase (Cdk) Inhibitor p27\textsuperscript{kip1} to Facilitate the Activation of Cdk4/6 and Early G\textsubscript{1} Phase Progression*

Received for publication, March 15, 2002, and in revised form, June 12, 2002

Published, JBC Papers in Press, June 17, 2002, DOI 10.1074/jbc.M202828200

Alvaro J. Obaya §§, Iulia Kotenko ‡, Michael D. Cole ¶, and John M. Sedivy ‡

From the ‡Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island 02912 and the ¶Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544

Progression through the early G\textsubscript{1} phase of the cell cycle requires mitogenic stimulation, which ultimately leads to the activation of cyclin-dependent kinases 4 and 6 (Cdk4/6). Cdk4/6 activity is promoted by D-type cyclins and opposed by Cdk inhibitor proteins. Loss of c-\textit{myc} proto-oncogene function results in a defect in the activation of Cdk4/6. c-\textit{myc} \textsuperscript{-/-} cells express elevated levels of the Cdk inhibitor p27\textsuperscript{kip1} and reduced levels of p27, the catalytic subunit of Cdk-activating kinase. We show here that in normal (c-\textit{myc} \textsuperscript{+/+}) cells, the majority of cyclin D-Cdk4/6 complexes are assembled with p27 and remain inactive during cell cycle progression; their function is presumably to sequester p27 from Cdk2 complexes. A small fraction of Cdk4/6 protein was found in lower molecular mass catalytically active complexes. Conditional overexpression of p27 in c-\textit{myc} \textsuperscript{-/-} cells caused inhibition of Cdk4/6 activity and elicited defects in G\textsubscript{0} to S phase progression very similar to those seen in c-\textit{myc} \textsuperscript{-/-} cells. Overexpression of cyclin D1 in c-\textit{myc} \textsuperscript{-/-} cells rescued the defect in Cdk4/6 activity, indicating that the limiting factor is the number of cyclin D-Cdk4/6 complexes. Cdk-activating kinase did not rescue Cdk4/6 activity. We propose that the defect in Cdk4/6 activity, which resulted in a significant delay in the phosphorylation of Rb, is caused by increased levels of both G\textsubscript{1} and G\textsubscript{2}, resulting in a 3-fold reduced proliferation rate. Analysis of key cell cycle regulatory components showed that the absence of c-Myc coordinately reduced the activity of cyclin-D-Cdk4/6 complexes (16). The expression of the p27 protein was elevated 2–3-fold, and the expression of Cdk7 was reduced by a similar factor. During entry of quiescent cells into the cell cycle, the earliest and largest defect was a >10-fold reduction of cyclin D-Cdk4/6 activity, which resulted in a significant delay in the phosphorylation of Rb. Although the expression of Cdk4 is reduced in c-\textit{myc} \textsuperscript{-/-} cells (17), the defect in Cdk4/6 activity during the G\textsubscript{1}-to-S phase transition is significantly greater (16). In this study, we report an analysis of the role of p27 and Cdk7 in the regulation of Cdk4/6 activity in the presence and absence of c-Myc.

**MATERIALS AND METHODS**

*Cell Lines and Culture Conditions—TGR-1 is a subclone of the Rat-1 cell line, and HO15.19 is a c-\textit{myc}-null derivative constructed by sequen-
tial gene targeting (15). HO15.19 derivatives expressing ectopic cyclin D1 were constructed by retrovirus vector transduction of full-length murine or human cyclin D1 cDNA (16). Rat1p27 cells express p27 under the control of the ß-gal (18) and were obtained from Bruno Amati (19). Cultures were grown in Dulbecco's modified Eagle's medium supplemented with 10% fetal bovine serum at 37°C in an atmosphere of 5% CO2. Rat1p27 cells were grown in the presence of 2 µg/ml tetracycline to block the expression of p27. Great care was taken that cultures were cycling asynchronously and were in a rapid and exponential phase of growth. Briefly, cells were always split at subconfluent densities (<50%) and at relatively low dilution (1:10 for c-myc+/- and 1:4 for c-myc+/- cells can thus be maintained continuously at densities of 10–50% confluence (to avoid any contact inhibition), and the relatively frequent passaging (every 3–4 days) and media changes maintain a rapid growth rate. This regimen was followed for a minimum of two passages before cells were harvested for biochemical experiments. In G1 synchronization experiments, Rat1p27 cells were trypsinized and replated in the presence of 2 µg/ml tetracycline (p27-OFF condition) or 0 µg/ml tetracycline (p27-ON condition) 12–16 h prior to serum starvation (0.25% calf serum), which was initiated in 95% confluent cultures and maintained for 48 h. To induce cell cycle reentry, cells were trypsinized and replated at 50% confluence in the presence of 10% calf serum. Tetracycline concentrations were kept constant throughout the starvation and restimulation periods. Flow cytometry was as indicated (15). Labeling of cells with CFSE was performed as described (20, 21). Cells were labeled in suspension for brief periods of time (5 min) and then replated under standard exponential phase culture conditions. Cells were cultured for a minimum of one cell cycle (24 h for c-myc+/- and 48 h for c-myc+/- cells) to allow the clearing of unincorporated dye before the dye dilution experiments were commenced.

Immunoblotting and Antibodies—Samples for immunoblotting were prepared by direct rapid lysis in Laemmli sample buffer and analyzed as described (14, 16, 22). The sources of antibodies were as follows: Pharmingen, Rb (140001); and Santa Cruz Biotechnology, cyclin D1 (sc-450), cyclin A (sc-596), cyclin B1 (sc-245), Cdk4 (sc-260), Cdk2 (sc-163), Cdk6 (sc-177), and p27 (sc-528 and sc-1641).

Immunoprecipitation Kinase Assays—Immunoprecipitation and kinase assays performed as described (16, 23). Briefly, cultures at the indicated time points were harvested, trypsinized, washed with ice-cold Dulbecco's phosphate-buffered saline, and lysed for 2 h at 4°C in buffer containing 50 mM HEPES (pH 8), 150 mM NaCl, 2.5 mM EGTA, 1 mM EDTA, 1 mM dithiothreitol, 10% glycerol, 0.1% Tween 20, and protease and phosphatase inhibitors. Protein concentrations were determined with the Bio-Rad protein assay. Cyclin D1 was immunoprecipitated by reaction of extract with 1 µg of anti-cyclin D1 antibody and 20 µl of Gammabind G-Sepharose beads (Amersham Biosciences). Cdk2 was immunoprecipitated from 200 µg of extract with 1 µg of anti-Cdk2 antibody and 20 µg of protein A-agarose beads (Sigma). 1 µg of glutathione S-transferase-Rb (24) and 2 µg of histone H1 (Roche Molecular Biochemicals) were used as substrates to assay Cdk4 and Cdk2 activities, respectively. Kinase reactions were displayed by SDS-PAGE and analyzed with a PhosphorImager. CAK activation assays of Cdk4 and Cdk2 complexes were performed as described (16).

Size Exclusion Chromatography—TGR-1 or HO15.19 cultures in exponential growth were lysed as described for kinase assays. 1 mg of total protein (300 µl of extract) was chromatographed on a Superdex 200 column (24-ml bed volume) using a fast protein liquid chromatography system (Amersham Biosciences) at a flow rate of 0.5 ml/min. The column was run in lysis buffer and calibrated with gel filtration standards (Bio-Rad). 500-µl fractions were collected; 80 µl of each fraction was analyzed by immunoblotting, and the remainder was immunoprecipitated and assayed for Cdk kinase activity as described above.

RESULTS

The Majority of Cdk4 Is Found in Inactive Complexes in Both c-myc+/- and c-myc+/- Cells—The composition and activity of cyclin D1-Cdk4 complexes were examined in growing c-myc+/- and c-myc+/- cells by size exclusion chromatography. Both cultured cycling (asynchronous) growth is a rapid and exponential phase of growth (see “Materials and Methods”). Column fractions were immunoprecipitated with anti-cyclin D1 antibody; assayed for Cdk4 kinase activity; and then immunoblotted with antibody to cyclin D1, Cdk4, or p27 (Fig. 1). In both c-myc+/- and c-myc+/- cells, the Cdk4 and cyclin D1 proteins coeluted as a broad peak between 50 and 200 kDa. The p27 protein eluted as a sharper peak between 100 and 200 kDa. Cdk4 activity peaked in two fractions between 70 and 100 kDa and was reduced ~3-fold in c-myc+/- cells. The elution profile of Cdk6 was the same as that of Cdk4 (data not shown). The Rat-1 cells under study here express very low levels of cyclins D2 and D3 (16), which precluded their analysis.

Densitometric analysis of the immunoblots revealed that in c-myc+/- cells, ~80% of the Cdk4 protein was found in 125–200-kDa complexes that were catalytically inactive and coeluted with the peak of the p27 protein. p27 thus appears to be capable of both binding and inhibiting the activity of cyclin D1-Cdk4 complexes. Only a relatively small fraction of the Cdk4 protein (20%) was found in lower molecular mass (70–100 kDa) catalytically active complexes that migrated adjacent to the major peak of the Cdk4, cyclin D1, and p27 proteins. Although the resolution of the columns did not allow us to determine whether the lower molecular mass catalytically active complexes were free of p27 or contained low stoichiometries of p27, several reports in the literature indicate that both p27 and p21 promote the assembly of cyclin D-Cdk4 complexes at low stoichiometries without inhibiting the Rb kinase activity, but inhibit the activity at higher stoichiometries (25–27). The c-myc+/- elution profile contained clearly elevated levels of p27, and the peak was broader. The levels of both the cyclin D1 and Cdk4 proteins were also slightly elevated in c-myc+/- cells despite the fact that the mRNAs are down-regulated (16, 17), suggesting that p27 stabilizes cyclin D1-Cdk4 complexes. This observation is consistent with previous reports that the half-life of the cyclin D1 protein is increased in both p27 and p21 complexes (27–29).

A recent report indicates that c-Myc may affect the frequency of productive cell cycles (30). This raises the possibility that the cultures under examination here may be mixtures of cycling and non-cycling cells and that the observed changes in Cdk4 activity may be caused by variable fractions of cycling cells. To address this issue, we performed a careful analysis of proliferation rates (Fig. 1B); the resultant growth curves show that both cultures were kinetically in exponential phase. Only if a constant fraction of cells were leaving the cycle at each division would the bulk culture still give the appearance of exponential kinetics. To further examine whether the cultures were composed of discrete cohorts of cycling and non-cycling cells, we monitored the dilution of the vital dye CFSE for several days under our standard exponential phase growth conditions. CFSE is a fluorescent dye that penetrates cell membranes and is metabolized and trapped within cells. The dye is evenly distributed to daughter cells, so fluorescence intensity decreases by half with each cell division. This method has been widely used in immunology (31) and neurobiology (32) to track cells both in vitro and in vivo for up to 10 generations. Dye dilution was found to be completely uniform in both c-myc+/- and c-myc+/- cell lines (Fig. 1C). In this experiment, cohorts of non-cycling (or slowly cycling) cells would be visualized as discrete peaks (or shoulders) at higher fluorescence intensity values. However, the peaks were found to be symmetrical and of the same width in both cultures at all time points. Furthermore, the rate of dye dilution (decrease in fluorescence intensity as a function of time) was completely consistent with the doubling times measured by standard growth curves. We therefore conclude that under our conditions, both c-myc+/- and c-myc+/- cultures are uniformly composed of continuously cycling cells.

Because the majority of assembled cyclin D1-Cdk4 complexes in normal (c-myc+/-) cells appeared to be catalytically inactive, we examined the activation and activation process during entry into S phase. Quiescent cells were induced to

http://www.jbc.org/
enter the cell cycle; and samples were collected at 2-h intervals, immunoprecipitated with anti-cyclin D1 antibody, assayed for Rb kinase activity, and then immunoblotted with antibodies to the known components of the complexes (Fig. 2). The cyclin D1, Cdk4, and p27 proteins appeared abruptly and concomitantly in the immunoprecipitates at the 6-h time point. This time coincides with the induction of cyclin D1 mRNA expression (16). The proliferating cell nuclear antigen and Cdk6 proteins appeared in the cyclin D1 immunoprecipitates with kinetics that followed closely those of Cdk4 and p27 (data not shown). In contrast, the appearance of Rb kinase activity was significantly delayed and was not fully induced until the 12-h time point in c-myc/H11001/H11001 cells (Fig. 2A, left panel). Examination of c-myc/H11001/H11001 cells revealed a very similar profile, except that the abundance of all the components was somewhat increased and that the Rb kinase activity was greatly reduced (Fig. 2B, left panel). A densitometric quantification of the immunoblots of cyclin D1, Cdk4, and p27 revealed that all proteins were present in the immunoprecipitates at low basal levels in quiescent cells and remained relatively constant at the 2- and 4-h time points (Fig.
p27 Acts Downstream of Myc to Inhibit Cdk4/6 Activity

Shown to cause G1 arrest (33). A stable Rat-1-derived cell line, active complexes. Transient overexpression of p27 has been predicted that increasing the p27 pool will inhibit the remaining inhibitors p15 INK4b and p16 INK4a (19), and neither express very similar to those shown in Fig. 1 (data not shown). c-myc, the data in the left panels were subjected to densitometric analysis. The experiment was repeated twice with consistent results. CycD1, cyclin D1.

Figure 2. Assembly and activation of cyclin D1-Cdk4 complexes during G0-to-S phase progression. A, c-myc+/− cells; B, c-myc−/− cells. Cell cycle entry of quiescent cells was initiated at 0 h, and samples were collected at the indicated time points. Left panels, extracts were immunoprecipitated with anti-cyclin D1 antibody and either immunoblotted (IB) as indicated or assayed for Rb kinase activity (32P-Rb). Right panels, the data in the left panels were subjected to densitometric analysis. The experiment was repeated twice with consistent results. CycD1, cyclin D1.

2, A and B, right panels). The maximum induction ratios were as follows: cyclin D1, 7-fold in c-myc+/− cells and 11-fold in c-myc−/− cells; Cdk4, 6-fold in c-myc+/− cells and 9-fold in c-myc−/− cells; and p27, 19-fold in c-myc+/− cells and 48-fold in c-myc−/− cells. Gel filtration chromatography of extracts collected at the time of peak activity (12–14 h) revealed profiles very similar to those shown in Fig. 1 (data not shown). c-myc+/− and c-myc−/− cells express equivalent amounts of the Cdk inhibitors p15INK4b and p16INK4a (19), and neither express detectable levels of p18INK4a and p19INK4d (data not shown). These results are consistent with the hypothesis that the majority of the newly synthesized cyclin D1 protein is rapidly assembled with Cdk4/6 and multiple molecules of p27. Of particular interest is the observation that complexes are apparently fully assembled at early times, but not activated until much later. The fact that the complexes are eventually activated without significant changes in overall stoichiometry further corroborates the interpretation that only a small fraction of total complexes become catalytically active.

Conditional Overexpression of p27 Results in a Phenotype Resembling Loss of c-Myc—The observation that the majority of cyclin D1-Cdk4/6 complexes appear to be bound by multiple molecules of p27 and are not activated even in c-myc−/− cells predicts that increasing the p27 pool will inhibit the remaining active complexes. Transient overexpression of p27 has been shown to cause G1 arrest (33). A stable Rat-1-derived cell line, Rat1p27 (19), in which p27 expression is controlled by the tTA tetracycline-controlled transactivator (18), proliferates normally in the presence of 2 μg/ml tetracycline, with a reduced rate of Cdk4/6 activity, delayed phosphorylation of Rb, delayed and dampened activation of Cdk2, and delayed induction of cyclin A (16). Under the p27-OFF condition, the onset of Rb phosphorylation was first evident at 4 h, whereas under the p27-ON condition, significant Rb phosphorylation was minimal even at the 12-h time point (Fig. 3C). 24 h after serum stimulation, Rb phosphorylation was still appreciably detectable. In comparison, Rb phosphorylation is first detectable at 8 h in c-myc−/− cells and at 6 h in parental c-myc+/− cells (16). Rb phosphorylation thus appears to be even more defective in the presence of excess p27 than in the absence of c-Myc.

The composition and activity of Cdk4 complexes were examined during the G0–G1 transition under the p27-OFF and p27-ON conditions and compared with the total expression of the constituent proteins. Immunoblot analysis (Fig. 4A) showed that total cyclin D1 levels were highest early in the transition (6 h) and declined at later times (18 and 30 h) under the p27-OFF condition; in the p27-ON cells, cyclin D1 levels were elevated throughout and peaked at much later times (18 h). Cdk4 and Cdk2 levels were constant throughout the time course under both conditions. Cdk2 showed a shift to higher mobility indicative of Cdk phosphorylation at 18 h in p27-Off cells, but not until 30 h in p27-ON cells. This result is consistent with observations that p27 can antagonize the phosphorylation of Cdk complexes by Cdk (34, 35). Immunoprecipitation with anti-cyclin D1 antibody (Fig. 4B) from extracts of p27-Off cells showed the expected induction of cyclin D1 early in the transition (6 h), and both the Cdk4 and p27 proteins were efficiently co-immunoprecipitated at this time. Cdk4 activity was strongly induced at later times. Under the p27-ON condition, cyclin D1-Cdk4 complexes were more abundant, were present at high levels at much later times, and at all times contained high levels of the p27 protein. The activity of the complexes was low throughout, although a weak induction was evident at 18 h. The defect in Cdk4 activity in the p27-ON cells was ~15-fold in this experiment.

Analysis of cell cycle progression by flow cytometry (Fig. 3, A and B) showed normal S phase entry in the presence of tetracycline (p27-Off) at 12 h after serum stimulation, the same as in parental Rat-1 cells. In the absence of tetracycline (p27-On), the S phase peaks were significantly diminished as well as delayed to 16–18 h. This profile was similar to that seen in c-myc−/− cells, which began to enter S phase at 20–22 h. As previously reported (15), bromodeoxyuridine labeling analyses showed that the entire cell population was delayed in S phase entry and that entry was spread over a longer time period, rather than a portion of the culture failing to enter the cell cycle. Immunoblot analysis of Rat1p27 cells showed clearly elevated levels of the p27 protein in quiescent cells in the absence of tetracycline (p27-ON), but not in its presence (p27-Off) (Fig. 3C). The elevated levels of p27 under the p27-ON condition persisted for ~24 h after serum stimulation, but were reduced at later times, which may account for the leakiness of the block and continued proliferation in the absence of tetracycline, albeit at reduced rates. In agreement with the previous results, the levels of cyclin D1 were also noticeably increased in the presence of elevated p27.

Given that increased p27 expression impeded S phase entry, we investigated the extent to which the molecular landmarks of this transition resembled those seen in c-myc−/− cells. The absence of c-Myc during the G0–G1 transition results in significantly reduced (>10-fold) Cdk4/6 activity, delayed phosphorylation of Rb, delayed and dampened activation of Cdk2, and delayed induction of cyclin A (16). Under the p27-Off condition, the onset of Rb phosphorylation was first evident at 4 h, whereas under the p27-ON condition, significant Rb phosphorylation was minimum even at the 12-h time point (Fig. 3C). 24 h after serum stimulation, Rb phosphorylation was still appreciably defective. In comparison, Rb phosphorylation is first detectable at 8 h in c-myc−/− cells and at 6 h in parental c-myc+/− cells (16). Rb phosphorylation thus appears to be even more defective in the presence of excess p27 than in the absence of c-Myc.
A comparison of Cdk4 and Cdk2 activities and the induction of cyclins A and B1 were monitored in a separate experiment (Fig. 4C). In p27-OFF cells, strong induction of both Cdk4 and Cdk6 activities was detected at 16 h, whereas neither activity was apparent in p27-ON cells until 24 h. The defect in activation in p27-ON cells was 5–7-fold for both Cdk4 and Cdk2; however, Cdk4 activity was barely elevated above the background level in p27-ON cells, whereas Cdk2 activity was substantially induced. Thus, the defect in activation is more pronounced for Cdk4 than for Cdk2. Both cyclins A and B1 were detected at 16 h in p27-ON cells but not until 24 h in p27-ON cells. In summary, elevated levels of p27 cause a significant delay in the G0-to-S phase transition that is characterized by a strong defect in Cdk4 activation and Rb phosphorylation and a delay in the activation of Cdk2 and the expression of cyclins A and B1. These molecular phenotypes are very similar to those caused by the absence of c-Myc (16).

Cyclin D1 (but Not Cdk7) Rescues Cdk4 Activity in c-myc−/− Cells—The hypothesis that increased p27 expression contributes to the Cdk4 defect seen in c-myc−/− cells by binding to the small fraction of potentially activable cyclin D1-Cdk4/6 complexes and converting them to unactivable complexes containing higher stoichiometries of p27 predicts that increasing the pool of cyclin D will rescue Cdk4 activity by allowing the assembly of additional complexes. To test this prediction, we constructed numerous clonal cell lines ectopically expressing a murine or human cyclin D1 transgene (16). All cell lines were screened by immunoblotting for expression of the exogenous cyclin D1 protein, and clones with a moderate level of overexpression were chosen. Kinase assays of two representative clones showed that the increase in cyclin D1 expression completely rescued Cdk4 activity, but did not rescue Cdk2 activity (Fig. 5A).

Cdk7 is expressed at reduced levels in c-myc−/− cells (16). Because cyclin D1-Cdk4/6 complexes in c-myc−/− cells are assembled at essentially normal levels in early G1, but subsequently fail to be activated, we investigated whether phosphorylation by CAK may be limiting. Cyclin D1-Cdk4/6 complexes were immunoprecipitated from c-myc−/− and c-myc−/− cells at successive times during the G0-to-S phase transition, incubated with active recombinant CAK, and subsequently assayed for Rb kinase activity (Fig. 5B). CAK did not increase the activity of cyclin D1-Cdk4/6 complexes at any time point in either c-myc−/− or c-myc−/− cells. The CAK preparation was catalytically active because it strongly activated purified recombinant cyclin A-Cdk2 complexes under the same assay conditions. CAK also activates native Cdk2 complexes immunoprecipitated from Rat-1 cells (16). We also ectopically expressed Cdk7 in c-myc−/− cells using the same strategy as that used for cyclin D1. Stable clonal cell lines were isolated, and restoration of Cdk7 expression levels to those seen in c-myc−/− cells was demonstrated by immunoblotting. However, in this case, nei-
are operative in early G1 at the time when cyclin D-Cdk4/6
E-Cdk2 phosphorylation, it is unlikely that these mechanisms
sis (39). Because the degradation of p27 is triggered by cyclin
promotion of p27 degradation by ubiquitin-mediated proteoly-
p27 protein by several mechanisms. One mechanism is the
cyclin E and Cdk2 activities, and finally a delay in cyclin A
Rb phosphorylation, a subsequent delay in the induction of
phenotype: an early large defect in Cdk4/6 activity, a delay in
the cell line hu-CycD1 (where hu is human, and CycD1 is cyclin D1)
was previously referred to as HO15D2 (16). The cell line mu-CycD1
(where mu is murine) was constructed in an analogous fashion. The
experiment was repeated twice with consistent results. B, cell cycle
entry of quiescent cells was initiated at 0 h; samples were collected at
the indicated time points; and extracts were immunoprecipitated with
anti-cyclin D1 antibody, incubated in the presence or absence of cata-
lytically active CAK, and subsequently assayed for Rb kinase activity.
Lower panel, activation of recombinant cyclin A-Cdk2 assayed by hist-
one H1 kinase activity.

FIG. 5. Effect of cyclin D1 and CAK on Cdk4 activity. A, the
indicated cell lines were grown exponentially, and extracts were as-
sayed for Cdk4 and Cdk2 activities as described in the legend to Fig. 4C.
The cell line hu-CycD1 (where hu is human, and CycD1 is cyclin D1)
was previously referred to as HO15D2 (16). The cell line mu-CycD1
(where mu is murine) was constructed in an analogous fashion. The
experiment was repeated twice with consistent results. B, cell cycle
entry of quiescent cells was initiated at 0 h; samples were collected at
the indicated time points; and extracts were immunoprecipitated with
anti-cyclin D1 antibody, incubated in the presence or absence of catal-
ytically active CAK, and subsequently assayed for Rb kinase activity.
Lower panel, activation of recombinant cyclin A-Cdk2 assayed by his-
tone H1 kinase activity.

ther the growth rate nor Rb phosphorylation was rescued (data
not shown).

DISCUSSION

During the entry of quiescent cells into the cell cycle, a
transition that is acutely dependent on strong and sustained
mitogenic signaling, the earliest and largest defect in c-myc−/−
cells is a >10-fold reduction of cyclin D-Cdk4/6 activity. The
magnitude of the activity defect cannot be explained by the
relatively modest effects on cyclin D1 and Cdk4 expression (16,
17). In fact, we show here that although c-myc-null cells as-
sembled slightly more cyclin D1-Cdk4/6 complexes than nor-
mal cells, the complexes remained largely inactive.

Several studies have indicated that members of the Cip/Kip
family of Cdk inhibitors are required for the assembly of cyclin
D-Cdk4/6 complexes (25–29, 36–38). The picture emerging
from in vitro studies is that both p27 and p21 promote the
assembly of the complexes at low (1:1) stoichiometries without
inhibition of the Rb kinase activity, but inhibit the activity at higher stoichiometries (25–27). p27 can also interfere with the
activation of cyclin D-Cdk4/6 complexes by CAK. The experi-
ments reported here involving conditional expression of p27
show that elevated p27 expression can potently inhibit the in
vivo activity of cyclin D1-Cdk4/6 complexes. In fact, during
G1/S transition, elevated expression of p27 elicited a remarkable molecular phenocopy of the c-myc loss-of-function
phenotype: an early large defect in Cdk4/6/ activity, a delay in
Rb phosphorylation, a subsequent delay in the induction of
cyclin E and Cdk2 activities, and finally a delay in cyclin A
expression and S phase entry. Although both Cdk4/6 and Cdk2
activities were affected, the Cdk4/6 defect was earlier and larger in magnitude, exactly as seen in c-myc-null cells.

It is likely that C-Myc can affect the expression level of the
p27 protein by several mechanisms. One mechanism is the
promotion of p27 degradation by ubiquitin-mediated proteoly-
sis (39). Because the degradation of p27 is triggered by cyclin
E-Cdk2 phosphorylation, it is unlikely that these mechanisms
are operative in early G1, at the time when cyclin D-Cdk4/6
complexes are being assembled and activated. C-Myc can also
influence the expression of the p27 mRNA, which is not down-
regulated normally in c-myc−/− cells after mitogenic stimula-
tion of quiescent cells (16). This study did not, however, address
whether these effects are transcriptional or post-transcrip-
tional. Repression of some (but not all) genes by c-Myc has been
shown to involve the Inr promoter element (40); the p27 pro-
moter contains an Inr element, and one study suggested that
the repression of p27 by c-Myc may be mediated in part
through this site (41). However, the mechanisms by which
C-Myc affects the expression of the p27 gene need to be further
investigated.

How could a 3-fold increase in the steady-state level of the
p27 protein result in a >10-fold defect in Cdk4/6 activity? A key
observation that shed light on this mechanism was that ~80%
of the Cdk4/6 protein was found in inactive complexes that
contained high stoichiometries of p27. Gel filtration experi-
ments showed that Cdk4/6 migrated as a broad peak of ~160
kDa that comigrated with the peak of cyclin D1. However, Rb
kinase activity migrated as a distinct peak of 70–100 kDa, and
the distribution of p27 was skewed toward the higher molecu-
lar mass inactive complexes. Although the resolution of the
columns did not allow us to determine whether the active
complexes were free of p27, it is clear that the higher molecular mass complexes contained more abundant p27 (compare frac-
tions 16 and 13 in Fig. 1) and were inactive as Rb kinases.
Thus, even in c-myc−/− cells, only a small fraction of the total
cyclin D-Cdk4/6 complexes become activated. The column pro-
file in c-myc−/− cells was qualitatively very similar; but levels
of p27 were elevated, the peak was broader, and the kinase
activity of the 70–100-kDa fractions was reduced.

During the G1-to-S phase transition, cyclin D1 and Cdk4/6
were rapidly assembled in early G1 into complexes that con-
tained abundant p27, whereas the appearance of Rb kinase
activity was delayed by several hours. Again, c-myc−/− cells
displayed the same profile; the abundance of Cdk4/6 complexes
was somewhat increased; and Rb kinase activity was greatly
reduced. The absence of a significant change in the stoichi-
ometry of the complexes in either c-myc+/+ or c-myc−/− cells
during the activation process suggests that activation does not
involve rearrangement of the complexes, but is likely depend-
ent on additional events such as phosphorylation by CAK of
pre-existing complexes that contain a few (or no) molecules
of p27.

Taken together, the gel filtration data and the G1-to-S phase
induction profiles suggest the following model. Mitogenic sig-
aling induces the expression of cyclin D, which, with the aid of
p27, is rapidly assembled with Cdk4/6 and transported into the
nucleus. The majority of the nuclear cyclin D-Cdk4/6 complexes
are bound to multiple molecules of p27 and remain inactive
throughout G1. As previously suggested (1), the physiological
function of these complexes would be to eliminate the free pool
of p27 and p21 or even to actively sequester these Cdk inhibi-
tors from the low levels of cyclin E-Cdk2 complexes present in
early G1 to facilitate their subsequent activation. A small frac-
tion of cyclin D-Cdk4/6 complexes would be bound to only one
(or no) p27 molecule and could thus become activated later in
G1. The key prediction of this model is that even a modest
increase in overall p27 levels could convert a significant frac-
tion of the low abundance activable complexes into unactivable
complexes containing higher stoichiometries of p27.

This model is supported by the observation that even a
modest overproduction of cyclin D1 in c-myc−/− cells can com-
pletely rescue complex activity. This is because cyclin D levels
are limiting for the assembly of cyclin D-Cdk4/6 complexes, and
overexpression of cyclin D1 results in the assembly of addi-
tional complexes. The observations that CAK activity is not
limiting for the activation of cyclin D1-Cdk4/6 complexes in
either c-myc+/+ or c-myc−/− cells, that the expression of Cdc25A
is not affected in c-myc−/− cells (42), and that the activation of
cyclin D1-Cdk4/6 complexes is initiated normally in both
c-myc<sup>+/−</sup> and c-myc<sup>−/−</sup> cells at the same time after serum stimulation (~12 h) (19) are all consistent with the interpretation that the major reason for the observed Cdk4/6 activity defect is the assembly of fewer potentially active complexes. Furthermore, in light of the recent report that the p21 gene is silenced in Rat-1 cells by promoter methylation (43), this model also provides an attractive explanation of why c-myc<sup>−/−</sup> Rat-1 cells are capable of proliferation, albeit at greatly reduced rates.

However, it also needs to be stressed that p27 is unlikely to be the only c-Myc target relevant to regulation of cell cycle progression. For example, although the expression of p27 in the conditional Rat1p27 cell line was higher than that seen in c-myc<sup>−/−</sup> cells, the proliferation defect during either exponen
tial growth or the G<sub>0</sub>-to-S phase transition was not as severe in Rat1p27 cells as in c-myc<sup>−/−</sup> cells. Similarly, if the only function of c-Myc were to promote the activity of Cdk4/6 complexes, overexpression of cyclin D would be expected to rescue cell cycle progression as well as Cdk2 activity, which is not the case. Although CAFK is not limiting for Cdk4/6 activity, it appears to be consistent with the interpretation (data not shown). Furthermore, the lack of rescue by cyclin E is not consistent with the possibility that the major bottleneck in c-myc<sup>−/−</sup> cells is the failure of Cdk2. Cdk4/6 complexes to sufficiently sequester the elevated levels of p27. By extension, this would then argue in favor of a functional role for Cdk4/6 catalytic activity during G<sub>1</sub> phase progression.

The function of the cyclin D pathway is subverted to a greater or lesser extent in most (if not all) cancer cells and derived cell lines. Given the importance of this signaling connection between the extracellular environment and the intracellu
}

Acknowledgments—We gratefully acknowledge Bruno Amati for the kind gift of the Rat1p27 cell line prior to its publication and Mark Solomon for providing catalytically active CAFK. We thank Maria Mateyak and Brenda O’Connell for many stimulating conversations and encouragement during all phases of this work.

REFERENCES
1. Sherr, C. J., and Roberts, J. M. (1999) Genes Dev. 13, 1504–1512
2. Weinberg, R. A. (1995) Cell 81, 323–330
3. Hall, M., and Peters, G. (1996) Adv. Cancer Res. 68, 67–108
4. Geng, Y., Whoriskey, W., Park, M. Y., Brenson, R. T., Medema, R. H., Li, T., Weinberg, R. A., and Sicinski, P. (1999) Cell 97, 767–777
5. Lundberg, A. S., and Weinberg, R. A. (1998) Mol. Cell. Biol. 18, 753–761
6. Henriksson, M., and Luscher, B. (1996) Adv. Cancer Res. 65, 109–182
7. Dang, C. V. (1999) Mol. Cell. Biol. 19, 1–11
8. Kelly, K., Cochran, B. H., Stiles, C. D., and Leder, P. (1983) Cell 35, 603–610
9. Waters, C. M., Littlewood, T. D., Hancock, D. C., Moore, J. P., and Evan, G. I. (1991) Oncogene 6, 797–805
10. Kaczmarek, L., Hyland, J. K., Watt, R., Rosenberg, M., and Baserga, R. (1985) Science 228, 1313–1315
11. Eilers, M., Schirm, S., and Bishop, J. M. (1991) EMBO J. 10, 123–141
12. Karn, J., Watson, J. V., Lowe, A. D., Green, S. M., and Vedeckis, W. (1989) Oncogene 4, 773–787
13. Shichiri, M., Hansen, K. D., and Sedivy, J. M. (1993) Cell Growth Diff. 4, 93–104
14. Hansson, K. D., Shichiri, M., Follansbee, M. R., and Sedivy, J. M. (1994) Mol. Cell. Biol. 14, 5748–5755
15. Mateyak, M. K., Obaya, A. J., Adachi, S., and Sedivy, J. M. (1997) Cell Growth Diff. 8, 1039–1048
16. Mateyak, M. K., Obaya, A. J., and Sedivy, J. M. (1999) Mol. Cell. Biol. 19, 4672–4683
17. Hernebring, H., Rago, C., Schuhmacher, M., Li, Q., Barrett, J. F., Obaya, A. J., O’Connell, B. C., Mateyak, M. K., Tam, W., Kohlhuber, F., Dang, C. V., Sedivy, J. M., Eick, D., Vogelstein, B., and Kinzler, K. W. (2000) Proc. Natl. Acad. Sci. U. S. A. 97, 2239–2244
18. Gossen, M., and Bujard, H. (1992) Proc. Natl. Acad. Sci. U. S. A. 89, 5547–5551
19. Alevisopoulos, K., Catarin, B., Vlach, J., and Amati, B. (1998) EMBO J. 17, 5867–5907
20. Nikiforov, M. A., Katenko, I., Petrenko, O., Beavis, A., Valenzik, L., Lemiczka, I., and Cole, M. D. (2000) Oncogene 19, 4828–4831
21. Lyons, A. B., Hasbold, J., and Hodgkin, P. D. (2001) Methods Cell Biol. 63, 375–398
22. Lu, K. K., Bazarov, A. V., Yoon, L. S., and Sedivy, J. M. (1998) Cell Growth Diff. 9, 367–380
23. Matsushima, H., Queelle, D. E., Shutteff, S. A., Shibuya, M., Sherr, C. J., and Kato, J. Y. (1994) Mol. Cell. Biol. 14, 2066–2076
24. Ewen, M. E., Sluss, H. K., Sherr, C. J., Matsushima, H., Kato, J., and Livingston, D. M. (1993) Cell 73, 487–497
25. Zhang, H., Hannon, G. J., and Beach, D. (1994) Genes Dev. 8, 1750–1758
26. Blain, S. W., Matalova, E., and Massague, J. (1997) J. Biol. Chem. 272, 25863–25872
27. LaBaer, J., Mckinley, D., Fishman, Y., and Solin, S. (1999) Mol. Cell. Biol. 19, 1377–1383
28. Araki, K., Takahashi, T., and Kato, J. (1999) EMBO J. 18, 2827–2830
29. Parry, D., Mahony, D., Wills, K., and Lees, E. (1999) Mol. Cell. Biol. 19, 1775–1783
30. Holzel, M., Kohlhuber, F., Schlosser, I., Holzel, D., Luscher, B., and Eick, D. (2001) EMBO Rep. 2, 1125–1132
31. Lyons, A. B. (1999) Immunol. Cell Biol. 77, 509–515
32. Groszer, M., Erickson, R., Scripture-Adams, D. D., Lesche, R., Trump, A., Zack, J. A., Kornblum, H. I., Liu, X., and Wu, H. (2001) Science 294, 2186–2189
33. Vlach, J., Henecke, S., Alevisopoulos, K., Conti, D., and Amati, B. (1996) EMBO J. 15, 6595–6604
34. Koff, A., Ohtsuki, M., Polyak, K., Roberts, J. M., and Massague, J. (1995) Science 269, 536–539
35. Kato, J., Matsuzaka, K., Polyak, K., Massague, J., and Sherr, C. J. (1994) Cell 79, 487–496
36. Soos, T. J., Kiyokawa, H., Yan, J. S., Rubin, M. S., Giordano, A., DeBiasio, A., Bottega, S., Wong, B., Mendezloben, J., and Koff, A. (1996) Cell Growth Diff. 7, 135–146
37. Mahony, D., Parry, D. A., and Lees, E. (1996) Oncogene 16, 603–611
38. McConnell, B. B., Gregory, F. J., Stott, F. J., Hara, E., and Peters, G. (1999) Mol. Cell. Biol. 19, 1981–1989
39. Obaya, A. J., Mateyak, M. K., and Sedivy, J. M. (1999) Oncogene 18, 2534–2541
40. Li, H. H., Nerlov, C., Prendergast, G., MacGregor, D., and Ziff, E. B. (1994) EMBO J. 13, 4970–4979
41. Yang, W., Shen, J., Wu, M., Arsuao, M., Fitzgerald, M., Sultadn, Z., Kim, D. W., Hofman, C. S., Piantetti, S., Romieu-Moure, R., Freedman, L. P., and Sonenberg, G. (2001) Oncogene 20, 1688–1702
42. Bush, A., Mateyak, M. K., Dugan, K., Obaya, A. J., Adachi, S., Sedivy, J. M., and Cole, M. D. (1998) Genes Dev. 12, 3797–3802
43. Allan, L. A., Duhig, T., Read, M., and Fried, M. (2000) Mol. Cell. Biol. 20, 1291–1298

Downloaded from http://www.jbc.org/ by guest on July 23, 2018
The Proto-oncogene c-myc Acts through the Cyclin-dependent Kinase (Cdk) Inhibitor p27Kip1 to Facilitate the Activation of Cdk4/6 and Early G1 Phase Progression

Alvaro J. Obaya, Iulia Kotenko, Michael D. Cole and John M. Sedivy

J. Biol. Chem. 2002, 277:31263-31269.
doi: 10.1074/jbc.M202528200 originally published online June 17, 2002

Access the most updated version of this article at doi: 10.1074/jbc.M202528200

Alerts:

- When this article is cited
- When a correction for this article is posted

Click here to choose from all of JBC's e-mail alerts

This article cites 43 references, 24 of which can be accessed free at http://www.jbc.org/content/277/34/31263.full.html#ref-list-1