Reasons and evolution of non-thrombolysis in acute ischaemic stroke

T Reiff,1 P Michel2

ABSTRACT

Introduction Despite increasing evidence of its efficacy in advanced age or in mild or severe strokes, intravenous thrombolysis remains underused for acute ischaemic stroke (AIS). Our aim was to obtain an updated view of reasons for non-thrombolysis and to identify its changing patterns over time.

Methods This is a retrospective study of prospectively collected data from the Acute Stroke Registry and Analysis of Lausanne (ASTRAL) from the years 2003–2011. Patients admitted with acute stroke in the past 24 hours who had not had thrombolysis were identified; reasons for non-thrombolysis documented in the prospectively entered data were tabulated and analysed for the group as a whole. Data were analysed for the years 2003–2006 and 2007 forward because of changes in contraindications. A subgroup of patients who arrived within the treatment window ≤180 min was separately analysed for reasons for non-thrombolysis. Predictors of non-thrombolysis were investigated via multivariate regression analyses.

Results In the 2019 non-thrombolysed patients the most frequent reasons for non-thrombolysis were admission delays (66.3%), stroke severity (mostly mild) (47.9%) and advanced age (14.1%); 55.9% had more than one exclusion criterion. Among patients arriving ≤180 min after onset, the main reasons were stroke severity and advanced age. After 2006, significantly fewer patients were excluded because of age (OR 2.65, p<0.001) or (mostly mild) stroke severity (OR 10.56, p=0.029). Retrospectively, 18.7% of all non-thrombolysed patients could have been treated because they only had relative contraindications.

Conclusion Onset-to-admission delays remain the main exclusion criterion for thrombolysis. Among early arrivals, relative contraindications such as minor stroke severity and advanced age were frequent. Thrombolysis rate increased with the reduction of thrombolysis restrictions (eg, age and stroke severity).

INTRODUCTION

Intravenous thrombolysis with recombinant tissue plasminogen activator (rt-PA) administered within 4.5 hours from onset of stroke symptoms improves the clinical outcome of patients with acute ischaemic stroke (AIS).1–4 Some early arrival patients are not treated with rt-PA because of exclusion criteria that were previously based on exclusions from the initial thrombolysis trials.5 Further randomised trials6 and analyses from subgroups of trials7 and large case series have since suggested early thrombolysis is indicated even in advanced age.8–10 In both mild and high stroke severity and with rapidly improving symptoms.10–13 One prominent reason for non-thrombolysis is time delay.14 15 Although very early thrombolysis remains a major goal in acute stroke care, there is now scientific evidence that intravenous thrombolysis is effective up to 4.5 hours.2 4 With respect to relative and absolute contraindications for intravenous thrombolysis, our aim was to obtain the frequency and reasons for non-thrombolysis and how these have changes over time.

METHODS

This was a retrospective analysis of the Acute Stroke Registry and Analysis of Lausanne (ASTRAL). As described previously,16 data of all patients with AIS admitted to the stroke unit and/or intensive care unit at the Centre Hospitalier Universitaire Vaudois (CHUV), Switzerland, between 2003 and 2011 were collected in a pre-specified manner at the time of patient presentation. Demographic data, onset-to-door-time,
known or newly diagnosed vascular risk factors (arterial hypertension, atrial fibrillation, diabetes mellitus, valve replacements, coronary artery disease, smoking, etc) and previous cerebrovascular events were recorded. Stroke pathophysiology was classified according to the Trial of Org 10172 in Acute Stroke Treatment classification, with four classes added (cervical artery dissections, likely atherosclerosis without significant stenosis, multiple mechanisms and probable relation to a patent foramen ovale). Stroke severity on arrival was recorded with the National Institute of Health Stroke Scale (NIHSS) score per-admission delays, acute recanalisation treatment and reasons for non-thrombolysis were completely available because the registry forces the user to complete these fields.

Thrombolysis and stroke management of ASTRAL patients and the written in-hospital thrombolysis guidelines are in line with European Stroke Organisation (ESO) and Swiss recommendations and are adapted regularly to take account of evidence-based publications. Detailed reasons for non-thrombolysis are pre-specified in ASTRAL and collected in six domains: time delays, initial stroke severity, age, imaging, high bleeding risk and other reasons. The detailed reasons for each domain with modifications over time are listed in table 1. In the whole observation period, thrombolysis contraindications were classified as absolute or relative (table 1). Further absolute contraindications such as acute pancreatitis, bacterial endocarditis, pericarditis, oesophageal varices, ulcerative gastrointestinal disease or neoplasms with acute bleeding risk are not explicitly listed but were considered in the database. Reasons for non-thrombolysis could be singular or multiple. The absence of any good reasons against intravenous thrombolysis according to the current hospital recommendations (a ‘missed’ thrombolysis opportunity) was explicitly documented at the time of entering the data in ASTRAL, that is, during the acute hospital stay of the patient. Using the ASTRAL registry, consecutive patients with AIS admitted to the stroke unit and/or intensive care unit at the CHUV between 2003 and 2011 within 24 hours of the last proof of good health were retrospectively analysed for the reasons why they did not receive intravenous rt-PA treatment. Since delayed presentation was likely to be an important factor in those presenting outside the treatment window, we also compared the reasons for non-thrombolysis between those presenting within the early treatment window and those presenting later. Because the response to thrombolysis becomes minor beyond 3 hours and even less beyond 4.5 hours, we chose 180 min as the latest cut-off, considering that patients could not be thrombolysed beyond this delay before 2008 and allowing for some in-hospital time thereafter. Additionally, we compared the frequency and reasons for non-thrombolysis during the first (2003–2006) versus the second (2007–2011) half of the observation period to identify changes in thrombolysis implementation and decision-making over time. The 2006 cut-off was chosen in order to obtain two cohorts of comparable size which maximised the power of the statistical analysis to identify true differences between the two time periods. Sample size was based on the

Table 1: Contraindications for thrombolysis in our centre, with changes over time (some further softening of contraindications took place since end of data collection for this analysis)

Domain	Contraindication	Change over time
Time delays		
Thrombolysis time window >180 min		Thrombolysis time window >180 min
Thrombolysis time window >180 min and no indication for intra-arterial treatment within 6 hours (‘too late intravenous and no indication intra-arterial’)	November 2008	
Unknown stroke onset and inability to treat within recommended time limits since last proof of good health		
Initial stroke severity	* Too mild: NIHSS <6	NIHSS <4, unless hemianopia or aphasia since
	* Too severe: NIHSS >25	October 2006
	* Any ‘rapid improvement’ (not quantified)	No upper NIHSS-limit since October 2006
Age limit	* >80 years	Rapid improvement reaching NIHSS <4 since October 2006
Imaging		
Imaging contraindications	Plain cCT: >30% hypo-attenuation of MCA territory	
	In borderline indications: large core on acute perfusion CT and/or little salvageable tissue	
	Large subacute (silent) infarction on imaging, defined as a poorly demarcated, hypodense territorial lesion with mild local swelling or absence of the usual atrophy of chronic stroke lesions	
High bleeding risk	INR >1.2	INR >1.5 since October 2006
	Thrombocytopenia <100 000/mm3	
	Recent surgical intervention <14 days	
	Previous intracranial haemorrhage	
	Intracranial vascular malformation (known or suspected on plain cCT)	
	Full dose heparin or LMWH	
Other reasons	No good reason (thrombolysis opportunity missed)	
	Recent ischaemic stroke or brain trauma <3 months	
	Stroke diagnosis uncertain	
	* Concomitant epileptic seizure	
	* Comorbidity, severely limiting life expectancy, or pre-stroke dependency, defined as mRS >2	

Asterisk (*) indicates a relative contraindication.
cCT, cranial CT; INR, international normalised ratio; LMWH, low molecular weight heparin; MCA, middle cerebral artery; mRS, modified Rankin Scale; NIHSS, National Institute of Health Stroke Scale score.
The OR and its 95% CI or significance for the strength of the association. Predictors with p<10% in bivariate analysis were used to fit a multivariate logistic model. P Values of 0.683 (table 2) and 0.469 (table 3) in Hosmer-Lemeshow goodness-of-fit test suggested that each model fitted reasonably well. Analyses were conducted with STATA/IC (V.13.0; College Station, Texas, USA).

RESULTS

Patient population

Over the 9-year observation period, 599 of 2618 patients with AIS (22.9%) in ASTRAL received thrombolysis. The annual thrombolysis rate increased from 9.7% in 2003 to 33.6% in 2011. Among all thrombolysed patients, 27.5% were thrombolysed between 2003 and 2006 and 72.5% were thrombolysed between 2007 and 2011. The median age of non-thrombolysed patients was 73 (IQR 61, 82); admission NIHSS score was 4.5 (IQR 2, 10), whereas the median age of those thrombolysed was 69 (IQR 58, 78) and median NIHSS score was 13 (IQR 8, 19, table 4). Among both thrombolysed and non-thrombolysed patients, cardioembolism was the most common aetiology of the stroke. Non-thrombolysed patients had less cardioembolic strokes respectively more microangiopathic aetiology than thrombolysed patients (see online supplementary table S1). Further baseline characteristics of thrombolysed and non-thrombolysed patients are listed in table 4. During the study period, the number of endovascular recanalisation treatments (mostly combined intravenous and mechanical thrombectomy)

Statistical analysis

We calculated the proportion of patients not receiving thrombolysis for the entire period and for the time periods between 2003–2006 and 2007–2011. Descriptive statistics of non-thrombolysed and thrombolysed patients (baseline characteristics/mechanisms of stroke) and of the most common reasons for non-thrombolysis are presented. Patients arriving before and after 180 min and patients with admission during the first (2003–2006) versus the second (2007–2011) half of the observation period were compared using a logistic regression model that included potential predictor variables (age, sex, NIHSS score at admission, risk factors, stroke mechanism, time/severity/imaging/bleeding/other reasons for non-thrombolysis). The OR and its 95% CI or its associated p values were given to quantify and test the significance of the strength of the association. Predictors with p<10% in bivariate analysis were used to fit a multivariate logistic model. P Values of 0.683 (table 2) and 0.469 (table 3) in Hosmer-Lemeshow goodness-of-fit test suggested that each model fitted reasonably well. Analyses were conducted with STATA/IC (V.13.0; College Station, Texas, USA).

Table 2

Reason for non-thrombolysis. Multivariate analysis of reasons for non-thrombolysis divided by onset-to-admission delay (≤180 min vs >180 min)

Reason for non-thrombolysis	≤180 min (n=659)	>180 min (n=1360)	OR	p Value	95% CI
Too mild stroke	323 (49%)	567 (42%)	3.35*	0.000	1.82 to 6.18
Age >80 years	112 (17%)	164 (12%)	2.98*	0.007	1.36 to 6.56
Other bleeding reasons	15 (2%)	9 (1%)	10.12*	0.026	1.33 to 72.73
Recent stroke (clinically or radiologically) <3 months	36 (6%)	13 (1%)	4.50	0.071	0.88 to 23.01
Other reasons	16 (2%)	8 (1%)	13.77*	0.033	1.23 to 153.68
Microangiopathic stroke mechanism	75 (11%)	233 (17%)	0.28*	0.010	0.11 to 0.74
Other determined or rare stroke mechanism	54 (8%)	32 (2%)	3.48	0.096	0.80 to 15.08
Atrial fibrillation	179 (27%)	287 (21%)	1.94*	0.034	1.05 to 3.58
Mechanical or biological heart valves	23 (4%)	40 (3%)	3.62*	0.049	1.01 to 13.01

Table 3

Multivariate analysis of reasons for non-thrombolysis comparing the first (n=959) with the second (n=1060) half of the observation period

Reason for non-thrombolysis	2003–2006	2006–2011	OR	p Value	95% CI
Too late intravenous and no indication intra-arterial	127 (13%)	76 (7%)	1.79*	0.010	1.15 to 2.78
Unknown onset	268 (28%)	399 (38%)	0.69*	0.008	0.53 to 0.91
Too mild stroke	442 (46%)	497 (47%)	0.66*	0.002	0.51 to 0.86
Too severe stroke	20 (2%)	5 (1%)	10.56*	0.029	1.28 to 87.42
Rapid improvement to below threshold	16 (2%)	2 (0.2%)	5.43	0.109	0.69 to 43.01
Age >80 years	183 (19%)	102 (10%)	2.65*	0.000	1.76 to 3.99
Intracranial haemorrhage	3 (0.3%)	20 (2%)	0.11*	0.004	0.02 to 0.50
Other bleeding reasons	3 (0.3%)	21 (2%)	0.18*	0.020	0.04 to 0.77
Stroke uncertain	10 (1%)	48 (5%)	0.19*	0.000	0.08 to 0.44
Comorbidity/dependency	21 (2%)	64 (6%)	0.16*	0.000	0.09 to 0.31
Diabetes mellitus	132 (14%)	200 (19%)	0.53*	0.000	0.39 to 0.72
Hyperlipidaemia	589 (61%)	707 (67%)	0.53*	0.000	0.40 to 0.70
Probable atherosclerotic stroke mechanism (<50% stenosis)	151 (16%)	152 (14%)	1.50*	0.023	1.06 to 2.11
Microangiopathic stroke mechanism	171 (18%)	149 (14%)	1.72*	0.002	1.21 to 2.43

Table 4

Other reasons for non-thrombolysis. Further baseline characteristics of thrombolysed and non-thrombolysed patients (see online supplementary table S1). Further baseline characteristics of thrombolysed and non-thrombolysed patients are listed in table 4. During the study period, the number of endovascular recanalisation treatments (mostly combined intravenous and mechanical thrombectomy)
remained minor thrombolysis and reached 5/98 patients (5.1%) in 2011. Yearly thrombolysis rates are set out in figure 1. Stroke aetiology of the 2019 non-thrombolysed and 599 thrombolysed patients is shown in online supplementary table S1.

Relative contraindications
A total of 321 of all non-thrombolysed patients (15.9%) had only relative contraindications to thrombolysis as defined in table 1. Of these, 283 patients (14.0%) had only one and 38 (1.9%) had multiple relative contraindications. About 57 patients (2.8%) had clearly been overlooked as candidates for thrombolysis by the physician not performing the thrombolysis when compared with the current hospital recommendations at the time.

Reasons for non-thrombolysis of patients
The most frequent causes for exclusion of thrombolysis among all patients were onset-to-admission delays (often including wake-up strokes), which were found in 66.3% of non-thrombolysed patients followed by mild strokes (45.8%), according to the hospital guidelines at the time (table 5). A total of 1128 patients (55.9%) had more than only one reason for exclusion.

Reasons for non-thrombolysis for those within the early therapeutic window
The median age of non-thrombolysed patients treated \(\leq 180\) min was 73 (IQR 61, 82); admission NIHSS score was 4.5 (IQR 2, 11) and main stroke aetiology was cardioembolic (30.8%) followed by macroangiopathic stroke without significant stenosis (13.5%) and macroangiopathic stroke with \(\geq 50\%\) stenosis (13.2%), whereas the median age of those treated \(>180\) min was 73 (IQR 60, 82); median NIHSS score was 5 (IQR 2, 10) and main stroke aetiology was cardioembolic (26.1%) followed by macroangiopathic stroke (17.1%) and macroangiopathic stroke without significant stenosis (14.9%). The bivariate analysis of patients treated \(\leq 180\) min versus \(>180\) min after stroke onset is shown in table 6; significantly more patients in the early group had severity reasons for exclusion (mostly too mild strokes), were aged \(>80\) years, had higher bleeding risks and had other reasons like recent stroke or pre-stroke comorbidity/dependency. In the multivariate analysis of early (\(\leq 180\) min) versus late arriving non-thrombolysed patients, those in the early group significantly had more mild strokes, were aged \(>80\) years, had high bleeding risk and had atrial fibrillation (table 2). Among patients admitted early, reasons for not being thrombolysed were more often a combination of different reasons rather than one single reason alone.

Change over time
The median age of non-thrombolysed patients treated in 2003–2006 was 73 (IQR 60, 81); admission NIHSS score was 5 (IQR 3, 12) and main stroke aetiology was cardioembolic (28.9%) followed by microangiopathic stroke (17.8%) and macroangiopathic stroke without significant stenosis (15.7%), whereas the median age of those treated in 2007–2011 was 74 (IQR 61, 83); median NIHSS score was 4 (IQR 2, 9) and main

Table 4 Baseline characteristics of non-thrombolysed and thrombolysed patients. Continuous variables are given as medians with IQR (lower and upper quartiles) and as n (%) for categorical variables

	Non-thrombolysed patients (n=2019)	Thrombolysed patients (n=599)
Age (years)	73	69
Sex (male)	1131	349
Onset-to-door time (min)	337	93
Onset to admission \(\leq 180\) min	659	523
Admission NIHSS	4.5	2, 10
Treated in first observation period (2003–2006)	959	173
Hypertension	1317	346
Hyperlipidaemia	1296	362
Atrial fibrillation	488	156
Active smoking	434	136
Diabetes mellitus	332	97
Symptomatic coronary artery disease*	295	85
Symptomatic peripheral artery disease	106	23
Low ejection fraction (\(<35\%\))	84	34
Cancer not in remission	77	14
Heart valves	64	10

*Documented by myocardial infarct diagnosis, coronarography or stress test.

NIHSS, National Institute of Health Stroke Scale score.

Figure 1 Rates of thrombolysed patients per year (n=2618).
stroke aetiology was cardioembolic (28.4%) followed by macroangiopathic stroke without significant stenosis (14.3%) and microangiopathic stroke (14.1%). Most frequently, time reasons were a cause for not being thrombolysed, showing significantly more patients with unknown stroke onset in the group treated 2003–2006 (table 7). More patients treated in 2003–2006 were excluded from thrombolysis than in 2007–2011 (86.7% vs 73.5%). Of those 378 non-thrombolysed patients who had no (or only relative) contraindications, 204 (54%) were treated in the earlier period and 174 (46%) in the later period. After distraction of patients thrombolysed in the extended time window of 3–4.5 hours after October 2008, there was still an increase in the number of thrombolysed patients in the later time period (figure 1). Compared with the 2007 onward group (multivariate analysis, table 3), in the 2003–2006 group, significantly more patients were excluded because they were thought to be too severely affected, their age was >80 years, they had rapid neurological improvement or they were too late arriving. After 2006 (when older patients and later-arriving patients could be thrombolysed), significantly more patients were excluded because of unknown stroke onset, too mild stroke, comorbidity or dependency, unrecognised stroke, increased bleeding risk, imaging reasons and intracranial haemorrhage. Also more patients had diabetes and hyperlipidaemia, while fewer patients had microangiopathic strokes.

DISCUSSION

Using a consecutive single-centre series of patients with AIS having detailed pre-specified recording of reasons for non-thrombolysis over a period of 9 years, we found time delays to be the main reason. We also found a remarkable number of patients excluded from thrombolysis on account of one single relative contraindication—mild stroke symptoms being the most frequent cause in all patients and in early arrivals.

The thrombolysis rate increased over time because fewer restrictions related to age, stroke severity, comorbidities or other relative contraindications were applied and the time window was increased from 3 to 4.5 hours in November 2008, leading to fewer patients excluded because of arriving too late. Long pre-hospital time delays underline the importance of improving stroke recognition via continuous public awareness campaigns and use of simplified pre-hospital stroke scales (eg, FASTER protocol24) by dispatchers and paramedics. Furthermore, triage, routines of pre-notification of specialised hospitals and diagnosis by telemedicine approaches could optimise pre-hospital patient flow.25–29 A significant number of patients (especially those with wake-up strokes) would also benefit from a further extension of the time window; several such late revascularisation trials are now in progress.30–33 The relative frequency of reasons for non-thrombolysis was similar to previously published data,34 35 but we found more patients excluded because of advanced age or unknown stroke onset. The large number of patients excluded because of unknown stroke onset, especially in the second observation period, may be due to an increase of such patients referred to us after our randomised pilot trial on thrombolysis for unknown stroke onset.36

In the first half of the observation period, age >80 years was a main reason for non-thrombolysis. ‘Too severe stroke’ or rapid improvement was also found as a reason but, because of low frequencies, did not contribute to the failure of thrombolysis in a substantial way. In the second half of the observation period, after the age restriction was removed, ‘too mild stroke’ became a relatively more frequent reason for non-thrombolysis, although we lowered our threshold NIHSS score from 6 to 4 and recommended thrombolysis for patients with isolated aphasia or hemianopia. Significantly more patients in the second observation period were not thrombolysed because of comorbidities, pre-stroke dependency or bleeding risks, probably reflecting an increasingly fragile stroke population over time. Many trials now confirm the safety and efficacy of thrombolytic therapy in patients with too mild stroke symptoms and in those aged >80 years.9–11 22 23 However, only one of these trials (International Stroke Trial-3) had a randomised controlled design with pre-specified subgroup analysis. The main

Table 5 Reasons for not being thrombolysed (n=2019)

Reason: time	Total
Too late intravenous	51 2.5%
Too late intravenous and no indication intra-arterial	203 10.1%
Too late intravenous and intra-arterial	418 20.7%
Unknown onset*	667 33.0%
Total	1339 66.3%

Reason: severity

Too mild†	924 45.8%
Too severe‡	25 1.2%
Rapid improvement to below threshold	18 0.9%
Total	967 47.9%

Reason: age

| >80 years till 2006§ | 285 14.1% |

Reason: imaging

Too large infarct¶	32 1.6%
Too little penumbra	12 0.6%
Too large infarct and too little penumbra	7 0.3%
Large subacute infarct on imaging**	18 0.9%
Other/intracranial haemorrhage	23 1.1%
Total	92 4.6%

Reason: high bleeding risk

INR elevated††	174 8.6%
Thrombocytopenia‡‡	6 0.3%
Recent intervention	19 0.9%
Previous intracranial haemorrhage	17 0.8%
Intracranial vascular malformation	14 0.7%
Full dose heparin or LMWH	20 1.0%
Other bleeding risk	24 1.2%
Total	274 13.6%

Reason: other

No good reason according to hospital recommendations (thrombolysis missed)	57 2.8%
Recent stroke§§	51 2.5%
Stroke uncertain	58 2.9%
Epileptic seizure	13 0.6%
Comorbidty/dependency	85 4.2%
Total	290 14.4%

*>60 min uncertainty and too late for thrombolysis.
†NIHSS <6 until September 2006, NIHSS <4 from October 2006 without isolated hemiparesis or aphasia thereafter.
‡NIHSS >25 till September 2006, no limit thereafter.
§Since October 2006: >80 and significant comorbidity or dependency.
¶Non-contrast image or perfusion image.
**Defined as a poorly demarcated, hypodense territorial lesion with mild local hemianopia or aphasia thereafter.
††>1.2 before October 2006 and >1.5 thereafter.
‡‡6 0.3%
benefit in this study was seen within the first 3 hours. Another randomised trial focusing on the elderly is in progress (Thrombolysis in Elderly Stroke Patients in Italy 37). Thrombolysis is also effective in patients with mild stroke symptoms38–43 and can be improved by multimodal imaging.44 The strengths of our study are pre-specified and detailed documentation of exclusion criteria for thrombolysis. Its limitation is its monocentric character with specialised stroke care, where a subset of patients with AIS was specifically referred for acute recanalisation therapy. Still, 77.8% of the population examined came from our primary catchment area and most non-thrombolysed patients came from this area.

CONCLUSIONS

Liberalising criteria for thrombolysis were associated with an increase in thrombolysis of stroke patients at our centre. Onset-to-admission delays remain the main exclusion criteria for thrombolysis, emphasising the need for better pre-hospital

Table 6	Reasons for non-thrombolysis divided by onset-to-admission delay (≤180 min vs >180 min)					
Arrival						
≤180 min (n=659)	>180 min (n=1360)	OR	95% CI			
Patient characteristics						
Age (median quartiles)	73	61, 82	73	60, 82	1.00	0.99 to 1.01
Sex (male)	393	59.6%	699	51.4%	1.24*	1.03 to 1.50
Admission NIHSS (median quartiles)	4.5	2, 11	5	2, 10	1.00	0.99 to 1.00
Stroke mechanism (TOAST)†						
Atherosclerosis with ≥50% (NASCET) stenosis	87	13.2%	158	11.6%	1.08	0.82 to 1.43
Likely atherosclerosis/aortic, without significant stenosis‡	89	13.5%	203	14.9%	0.83	0.63 to 1.08
Cardioembolism	203	30.8%	355	26.1%	1.16	0.95 to 1.43
Small vessel occlusion	75	11.4%	233	17.1%	0.58*	0.44 to 0.76
Dissections	24	3.6%	49	3.6%	0.95	0.58 to 1.56
Other determined	54	8.2%	32	2.4%	3.49*	2.23 to 5.46
Undetermined mechanism	57	8.6%	121	8.9%	0.91	0.65 to 1.26
Multiple mechanisms	39	5.9%	56	4.1%	1.38	0.90 to 2.10
PFO as likely cause	19	2.9%	50	3.7%	0.73	0.43 to 1.25
Reason: severity						
Too mild	323	49.0%	567	41.7%	1.22*	1.01 to 1.47
Too severe	12	1.8%	12	0.9%	1.97	0.88 to 4.40
Rapid improvement to below threshold	15	2.3%	3	0.2%	9.94*	2.87 to 34.48
Total	350	53.1%	582	42.8%	1.37*	1.13 to 1.66
Reason: age						
>80 years	112	17.0%	164	12.1%	1.40*	1.08 to 1.82
Reason: imaging						
Too large infarct	3	0.5%	27	2.0%	0.21*	0.06 to 0.70
Too little penumbra	6	0.9%	6	0.4%	1.96	0.63 to 6.09
Too large infarct and too little penumbra	3	0.5%	3	0.2%	1.95	0.39 to 9.70
Subacute infarct on imaging	12	1.8%	5	0.4%	4.74*	1.66 to 13.52
Other/intracranial haemorrhage	10	1.5%	13	1.0%	1.51	0.66 to 3.45
Total	34	5.2%	54	4.0%	1.24	0.80 to 1.92
Reason: high bleeding risk						
INR elevated	71	10.8%	96	7.1%	1.49*	1.08 to 2.06
Thrombocytopenia	2	0.3%	4	0.3%	0.97	0.18 to 5.33
Recent intervention	16	2.4%	3	0.2%	10.62*	3.08 to 36.60
Previous intracranial haemorrhage	10	1.5%	6	0.4%	3.28*	1.19 to 9.07
Intracranial vascular malformation	5	0.8%	9	0.7%	1.08	0.36 to 3.24
Other	15	2.3%	9	0.7%	3.30*	1.44 to 7.58
Full dose heparin or LMWH	17	2.6%	3	0.2%	11.31*	3.30 to 38.72
Total	136	20.6%	130	9.6%	2.31*	1.78 to 3.00
Reason: other						
No good reason according to hospital recommendations	45	6.8%	10	0.7%	9.34*	4.68 to 18.66
Recent stroke	36	5.5%	13	1.0%	5.65*	2.98 to 10.73
Stroke uncertain	26	3.9%	29	2.1%	1.78*	1.04 to 3.04
Epileptic seizure	7	1.1%	4	0.3%	3.43*	1.00 to 11.78
Comorbidity/dependency	38	5.8%	43	3.2%	1.77*	1.13 to 2.76
Total	152	23.1%	99	7.3%	3.97*	1.69 to 9.32

Asterisk (*), significant on p<0.05 level. Definitions of reasons for non-thrombolysis see text/Table 5.

†TOAST17 classification.

‡Ipsilateral internal carotid stenosis <50%(NASCET)/risk factors for atherosclerotic disease, for details see PERFORM definition.18

INR, International Normalised Ratio; LMWH, low molecular weight heparin; NIHSS, National Institute of Health Stroke Scale score; PFO, patent foramen ovale; TOAST, Trial of Org 10172 in Acute Stroke Treatment.
Year	OR	95% CI
Patients (n=2019)		
Age (median quartiles)	73	60, 81
Sex (male)	530	55.3%
Admission NIHSS (median quartiles)	5	3, 12

Stroke mechanism (TOAST)†

Stroke mechanism	2003–2006 (n=959)	2007–2011 (n=1060)	OR	95% CI		
Atherosclerosis with ≥50% (NASCET) stenosis	106	11.1%	147	13.9%	0.73*	0.56 to 0.95
Likely atherosclerosis/aortic, without significant stenosis‡	151	15.7%	152	14.3%	1.06	0.83 to 1.35
Cardioembolism	277	28.9%	301	28.4%	1.02	0.84 to 1.25
Small vessel occlusion	171	17.8%	149	14.1%	1.26	0.99 to 1.60
Dissections	45	4.7%	30	2.8%	1.61*	1.01 to 2.58
Other determined	38	4.0%	48	4.5%	0.83	0.54 to 1.28
Undetermined mechanism	89	9.3%	93	8.8%	1.01	0.74 to 1.37
Multiple mechanisms	46	4.8%	54	5.1%	0.89	0.60 to 1.34
PFO as likely cause	35	3.6%	36	4.5%	0.83	0.54 to 1.28

Reason: time

Reason	2003–2006 (n=959)	2007–2011 (n=1060)	OR	95% CI		
Too late intravenous	25	2.6%	26	2.5%	1.04	0.59 to 1.81
Too late intravenous and no indication intra-arterial	127	13.2%	76	7.2%	1.92*	1.42 to 2.59
Too late intravenous and intra-arterial	209	21.8%	209	19.7%	1.10	0.88 to 1.36
Unknown onset	268	27.9%	399	37.6%	0.62*	0.51 to 0.74
Total	629	65.6%	710	67.0%	0.86	0.72 to 1.04

Reason: severity

Reason	2003–2006 (n=959)	2007–2011 (n=1060)	OR	95% CI		
Too mild	442	46.1%	497	46.9%	0.97	0.82 to 1.16
Too severe	20	2.1%	5	0.5%	4.37*	1.63 to 11.70
Rapid improvement to below threshold	16	1.7%	2	0.2%	8.73*	2.90 to 38.08
Total	478	49.8%	489	46.1%	1.10	0.92 to 1.32

Reason: age

Reason	2003–2006 (n=959)	2007–2011 (n=1060)	OR	95% CI		
>80 years	183	19.1%	102	9.6%	2.15*	1.66 to 2.79

Reason: imaging

Reason	2003–2006 (n=959)	2007–2011 (n=1060)	OR	95% CI		
Too large infarct	0	0.0%	32	3.0%	30.24*§, p=0.000	
Too little penumra	6	0.6%	6	0.6%	1.08	0.35 to 3.35
Too large infarct and too little penumra	0	0.0%	7	0.7%	6.53*¶, p=0.016	
Subacute infarct on imaging	6	0.6%	12	1.1%	0.53	0.20 to 1.43
Other/intracranial haemorrhage	3	0.3%	20	1.9%	0.16*	0.05 to 0.54
Total	15	1.6%	77	7.3%	0.20*	0.11 to 0.34

Reason: high bleeding risk

Reason	2003–2006 (n=959)	2007–2011 (n=1060)	OR	95% CI		
INR elevated	98	10.2%	76	7.2%	1.43*	1.05 to 1.96
Thrombocytopenia	1	0.1%	5	0.5%	0.21	0.02 to 1.84
Recent intervention	5	0.5%	14	1.3%	0.38	0.14 to 1.06
Previous intracranial haemorrhage	5	0.5%	12	1.1%	0.45	0.16 to 1.27
Intracranial vascular malformation	6	0.6%	8	0.8%	0.81	0.28 to 2.33
Other	3	0.3%	21	2.0%	0.15*	0.04 to 0.51
Total	5	0.5%	15	1.4%	0.36*	0.13 to 0.98

Reason: other

Reason	2003–2006 (n=959)	2007–2011 (n=1060)	OR	95% CI		
No good reason according to hospital recommendations	32	3.3%	25	2.4%	1.39	0.82 to 2.36
Recent stroke	25	2.6%	26	2.5%	1.04	0.59 to 1.81
Stroke uncertain	10	1.0%	48	4.5%	0.22*	0.11 to 0.43
Epileptic seizure	5	0.5%	8	0.8%	0.67	0.22 to 2.06
Comorbidity/dependency	21	2.2%	64	6.0%	0.34*	0.20 to 0.56
Other	13	1.4%	13	1.2%	1.08	0.50 to 2.33
Total	106	11.1%	184	17.4%	0.57*	0.44 to 0.74

Asterisk (*), significant on p<0.05 level. Definitions of reasons for non-thrombolysis see text/table 5.

†TOAST classification.

‡Ipsilateral internal carotid stenosis <50%(NASCET)/risk factors for atherosclerotic disease, for details see PERFORM definition.

§χ² test.

¶Fisher’s exact test (expected cell frequency <5).

INR, international normalised ratio; LMWH, low molecular weight heparin; NIHSS, National Institute of Health Stroke Scale score; PFO, patent foramen ovale; TOAST, TOAST, Trial of Org 10172 in Acute Stroke Treatment.
stroke identification and patient delivery. However, in patients arriving early, relative contraindications prevented thrombolysis in about 20% of otherwise eligible patients.

Contributors PM: designing data collection tools, monitoring data collection, conception and design of the study, interpretation of data, manuscript writing, final approval of the version to be published and responsible for the overall content as guarantor. TR: conception and design of the study, cleaning and statistical analysis of data, interpretation of data, manuscript writing, submitting and responsible for the overall content as guarantor.

Funding Swiss Heart Foundation.

Competing interests PM: speaker fees from Bayer, Pfizer, Medtronic, St Jude Medical and Boehringer Ingelheim; consulting fees from Fiene-Fabre and Agenas; honoraria from scientific advisory boards of Bayer, Pfizer and Boehringer Ingelheim.

Ethics approval Ethics Committee for Research on Humans of the canton of Vaud, sub-committee III.

Provenance and peer review Not commissioned; externally peer reviewed.

Data sharing statement All the data of this study are only available with the authors.

Open Access This is an Open Access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/

REFERENCES
1. Tissue plasminogen activator for acute ischemic stroke. The National Institute of Neurological Disorders and Stroke rt-PA Stroke Study Group. N Engl J Med 1995;333:1581–7.
2. Hacke W, Kaste M, Bluhmki E, et al. Thrombolysis with alteplase 3 to 4.5 hours after acute ischemic stroke. N Engl J Med 2008;359:1317–29.
3. Hacke W, Kaste M, Fieschi C, et al. Randomised double-blind placebo-controlled trial of thrombolytic therapy with intravenous alteplase in acute ischaemic stroke (ECASS II). Second European-Australasian Acute Stroke Study Investigators. Lancet 1998;352:1245–51.
4. Lees KR, Bluhmki E, von Kummer R, et al. Are all IV thrombolysis exclusion criteria necessary? Being SMART about thrombolysis with recombinant tissue plasminogen activator within 6 h of acute ischemic stroke. De lausanne (ASTRAL): design and baseline analysis of an ischemic stroke registry including acute multimodal imaging. Stroke 2010;41:2491–8.
5. Tong D. Are all IV thrombolysis exclusion criteria necessary? Being SMART about thrombolysis with recombinant tissue plasminogen activator within 6 h of acute ischemic stroke? A meta-analysis of individual patient data from randomised trials. Lancet 2014;384:1929–35.
6. O’Brien W, Crimmins D, Donaldson W, et al. Faster (Face, Arm, Speech, Time, Emergency Response): experience of Central Coast Stroke Services implementation of a pre-hospital notification system for expedient management of acute stroke. J Clin Neurosci 2012;19:234–1.
7. Leira EC, Ludwig BR, Gurol ME, et al. Thrombolysis is associated with consistent functional improvement across baseline stroke severity: a comparison of outcomes in patients from the Virtual International Stroke Trials Archive (VISTA). Stroke 2010;41:1621–17.
8. Engelter ST, Gostynski M, Papa S, et al. Effect of treatment delay, age, and stroke severity on the effects of thrombolysis with alteplase for acute ischaemic stroke: a meta-analysis of individual patient data from randomised trials. Lancet 2014;384:1929–35.
9. McKechnie JS, Mulyavanakup K, Lane J, et al. Hospital prenotification of stroke patients by emergency medical services improves stroke time targets. J Stroke Cerebrovasc Dis 2013;22:113–18.
10. Ma H, Parsons MW, Christiansen S, et al. A multicentre, randomized, double-blinded, placebo-controlled Phase III study to investigate Extending the time for Thrombolysis in Emergency Neurological Deficits (EXTEND). Int J Stroke 2012;7:74–80.
11. Thomalla G, Ebinge M, Fieberl J, et al. [EU-funded treatment study: WAKE-UP: A randomized, placebo-controlled MRI-based trial of thrombolysis in wake-up stroke]. Nervenarzt 2012;83:1241–51.
12. Amidi H, Bluhmki E, Bendzus M, et al. European cooperative acute stroke study 4: extending the time for thrombolysis in emergency neurological deficits ECASS-4; ExTEND. Int J Stroke 2016;11:260–7.
13. Cocho D, Belvis R, Martí-Fàbregas J, et al. Reasons for exclusion from thrombolytic therapy following acute ischaemic stroke. Neurology 2005;64:719–20.
14. Hills NK, Johnston SC. Why are eligible thrombolysis candidates left untreated? Am J Prev Med 2006;31(suppl 2):S120–15.
15. Laloux P, Thijs V, Peeters A, et al. Obstacles to the use of intravenous tissue plasminogen activator for acute ischaemic stroke. Is there the only barrier? Acta Neurolog Belg 2007;107:103–7.
16. Michel P, Ntafos G, Reichart M, et al. Thrombolysis and rapidly improving symptoms: it’s not always a happy ending. Stroke 2011;42:3005–7.
17. Nedeltchev K, Schwegler B, Hafeli T, et al. Outcome of stroke with mild or rapidly improving symptoms. Stroke 2007;38:2531–5.
18. Bousser MG, Amarenco P, Chamorro A, et al. Rationale and design of a randomized, double-blind, parallel-group study of tenecturop 30 mg/day versus aspirin 100 mg/day in stroke patients: the prevention of cerebrovascular and cardiovascular events of ischemic origin with tenecturop in patients with a history of ischemic stroke or transient ischemic attack (PERFORM) study. Cerebrovasc Dis 2009;27:509–18.
19. Guidelines for management of ischemic stroke and transient ischemic attack 2008. Cerebrovasc Dis 2008;25:457–507.
20. Michel P, Arnold M, Hungerbühler H, et al. Thrombolyse beim ischämischen Hirnschlag—Aktualisierte Leitlinien. Schweiz Med Forum 2009;49:892–6.
21. Mithra NK, Lyden P, Gotze IA, et al. Thrombolysis is associated with consistent functional improvement across baseline stroke severity: a comparison of outcomes in patients from the Virtual International Stroke Trials Archive (VISTA). Stroke 2010;41:1621–17.
22. Mishra NK, Diener HC, Lyden PD, et al. Influence of age on outcome from thrombolysis in acute stroke: a controlled comparison in patients from the Virtual International Stroke Trials Archive (VISTA). Stroke 2010;41:2840–8.
23. Emberger J, Lees KR, Lyden P, et al. Effect of treatment delay, age, and stroke severity on the effects of thrombolysis with alteplase for acute ischaemic stroke: a meta-analysis of individual patient data from randomised trials. Lancet 2014;384:1929–35.
24. Baumann CR, Baumgartner RW, Gandjour J, et al. How to make better use of thrombolytic therapy in acute ischemic stroke. Nat Rev Neurol 2011;7:400–9.
25. Asdaghi N, Butcher KS, Hill MD. Risks and benefits of intravenous thrombolysis for acute ischemic stroke. De lausanne (ASTRAL): design and baseline analysis of an ischemic stroke registry including acute multimodal imaging. Stroke 2010;41:2491–8.
26. Berg AT, Furlan AJ, Higashida RT, et al. Low-dose intravenous alteplase for the treatment of acute ischemic stroke: analysis of patient eligibility. Neurological Disorders and Stroke rt-PA Stroke Study Group. Neurology 1998;51:511–5.
27. Fassbender K, Balacu C, Waltier S, et al. Streamlining of prehospital stroke management: the golden hour. Lancet Neurol 2013;12:585–96.
28. Audebert HJ, Saver JL, Starkman S, et al. Prehospital stroke care: new prospects for treatment and clinical research. Neurology 2013;81:501–8.