Variational eigenvalues of the fractional g-Laplacian

Sabri Bahrounia, Hichem Ounaiesa and Ariel Salortb

aMathematics Department, Faculty of Sciences, University of Monastir, Monastir, Tunisia; bInstituto de Cálculo (IC), CONICET, Departamento de matemática, FCEyN, Universidad de Buenos Aires. Ciudad Universitaria, Buenos Aires, Argentina

ABSTRACT

In the present work we study existence of sequences of variational eigenvalues to non-local non-standard growth problems ruled by the fractional g-Laplacian operator with different boundary conditions (Dirichlet, Neumann and Robin). Due to the non-homogeneous nature of the operator several drawbacks must be overcome, leading to some results that contrast with the case of power functions.

1. Introduction

Given two functionals A and B defined on a suitable space X and a prescribed number c, the task of analyzing the existence of numbers $\lambda \in \mathbb{R}$ and elements $u \in X$ satisfying (in some appropriated sense) equations of the type

$$B'(u) = \lambda A'(u), \quad A(u) = c,$$

has been a challenging labor whose beginning dates back to the mid-twentieth century (here A' and B' denote the Fréchet derivatives of the functionals). The study on Hilbert spaces was addressed by Krasnoselskij in [1]; for Banach spaces, it can be found in the literature the works of Citlana and Browder [2–5], where the notion of category of sets in the sense of Ljusternik and Schnirelman is used. See also [6,7] for some applications to partial differential equations. The amount of research on these topics is nowadays huge. For practical reasons, for an introduction to this theory and a comprehensive list of references we refer to the books [8–11].

After the introduction of the so-called monotonicity methods by Browder [12,13], Minty [14] and Vaţnberg and Kačurovski [15], the study of quasilinear operators experimented an explosive growth, and both variational and non-variational techniques
were introduced by Browder, Fučik, Ladyzhenskaya, Leray, Lions, Morrey, Nečas, Rabino
wicz, Schauder, Serrin, and Trudinger, among several other mathematicians.

The prototypical p-Laplace operator ($p > 1$) then became a focus of study, and in par-
ticular, to understand its spectral structure: given an open and bounded set $\Omega \subset \mathbb{R}^n$, to
determine the existence couples (λ, u) satisfying the equation

$$-\text{div}(|\nabla u|^{p-2} u) = \lambda |u|^{p-2} u \text{ in } \Omega, \quad u = 0 \text{ on } \partial \Omega$$ \hspace{1cm} (1)

in a suitable sense. In the seminal work of García Azorero and Peral Alonso [16], it was
proved the existence of a variational sequence of eigenvalues tending to $+\infty$, which
however, it is not known to exhaust the spectrum unless $p = 2$ or $n = 1$. Several prop-
ties on eigenvalues (and their corresponding eigenfunctions) were addressed by Anane et al. [17,18] and Lindqvist [19], among others, and also for more general boundary
conditions than Dirichlet. See also [20,21].

At this point, two possible generalizations of the eigenvalue problem (1) could be con-
sidered. First, its non-local counterpart governed by the well-known fractional p-Laplace
operator takes the form

$$(-\Delta_p)^s u = \lambda |u|^{p-2} u \text{ in } \Omega, \quad u = 0 \text{ in } \mathbb{R}^n \setminus \Omega$$ \hspace{1cm} (2)

where $s \in (0, 1)$ is a fractional parameter, $p > 1$, and

$$(-\Delta_p)^s u(x) := \text{p.v.} \int_{\mathbb{R}^n} \frac{|u(x) - u(y)|^{p-2} (u(x) - u(y))}{|x - y|^{n+sp}} \, dy.$$

The main difference here arises in the fact that this operator takes into account inter-
actions coming from the whole space. The same occurs with the boundary condition. Problem (2) was introduced in [22]. Existence of a sequence of (variational) eigenvalues to (2) and its behavior as $s \uparrow 1$ was dealt in [23]. Several properties on eigenvalues and

eigenfunctionswereobtainedin[22,24–26].

A second possible generalization of (1) can be obtained keeping the local structure of the
operator but allowing a growth behavior more general than a power. These considerations
lead to the well-known g-Laplace operator and the problem

$$-\Delta_g u = \lambda g(|u|) \frac{u}{|u|} \text{ in } \Omega, \quad u = 0 \text{ on } \partial \Omega,$$

where $\Delta_g := \text{div}(g(|\nabla u|) \frac{\nabla u}{|\nabla u|})$. The function $g = G'$ is given in terms of a so-called
Young function G. Here the structure of the spectrum radically changes due to the non-
homogeneity of the operator, fact that is key in the arguments corresponding to results
related to problems (1) and (2). Here several important differences appear: the spectrum
may not be discrete, then it is not clear the notion of a first eigenvalue nor of a sequence of
them. However, when restricting the energy level of functions, some properties of opera-
tors with p-structure are recovered: in [27–30] existence of eigenvalues was studied, and in
[31,32] the existence of a discrete sequence of eigenvalues was obtained. It is worth of men-
tion that under these settings, eigenvalues are not in general variational, so less information

The object of study of this manuscript is the eigenvalue problem ruled by the fractional
g-Laplacian, which can be seen as the non-local non-standard growth counterpart of (1).
Given an open and bounded set \(\Omega \subset \mathbb{R}^n \) and a fractional parameter \(s \in (0, 1) \), we are concerned with the following eigenvalue problems:

- **Dirichlet:**
 \[
 \begin{cases}
 (-\Delta_g)^s u = \lambda g(|u|) \frac{u}{|u|} & \text{in } \Omega \\
 u = 0 & \text{in } \mathbb{R}^n \setminus \Omega,
 \end{cases} \tag{D(\Omega)}
 \]

- **Neumann:**
 \[
 \begin{cases}
 (-\Delta_g)^s u = \lambda g(|u|) \frac{u}{|u|} & \text{in } \Omega \\
 \mathcal{N}_g u = 0 & \text{in } \mathbb{R}^n \setminus \Omega.
 \end{cases} \tag{N(\Omega)}
 \]

- **Robin:** given \(\beta \in L^\infty(\mathbb{R}^n \setminus \Omega) \)
 \[
 \begin{cases}
 (-\Delta_g)^s u = \lambda g(|u|) \frac{u}{|u|} & \text{in } \Omega \\
 \mathcal{N}_g u + \beta g(|u|) \frac{u}{|u|} = 0 & \text{in } \mathbb{R}^n \setminus \Omega.
 \end{cases} \tag{R(\Omega)}
 \]

The precise notion of *eigenvalues* and *eigenfunctions* to these problems is defined in Section 3.

Here, the fractional \(g \)-Laplacian is defined as
\[
(-\Delta_g)^s u := \text{p.v.} \int_{\mathbb{R}^n} g\left(|D_s u|\right) \frac{D_s u}{|D_s u|} \frac{dy}{|x-y|^{n+s}},
\tag{3}
\]
where \(G \) is a Young function (see Section 2 for the precise definition) such that \(g = G' \) and \(D_s u := \frac{u(x) - u(y)}{|x-y|^{n+s}} \). Clearly, \((-\Delta_g)^s\) boils down to the fractional \(p \)-Laplacian when \(G \) is a power function and to the \(p \)-Laplacian when \(s \uparrow 1 \). See [33]. The boundary conditions in the previous problems reflect the non-local nature of the operator \((-\Delta_g)^s\): the Dirichlet case corresponds to functions vanishing outside \(\Omega \) and not only on \(\partial \Omega \), whereas the Neumann and Robin equations make use of the non-local normal derivative \(\mathcal{N}_g \) introduced in [34].

Throughout this article we assume the Young function \(G = \int_0^t g(t) \, dt \) to satisfy the following structural conditions:
\[
1 < p^- \leq \frac{tg(t)}{G(t)} \leq p^+ < \infty \quad \forall \ t > 0, \tag{G_1}
\]
\[
t \mapsto G(\sqrt{t}), \ t \in [0, \infty) \text{ is convex,} \tag{G_2}
\]
\[
\int_0^1 \frac{G^{-1}(\tau)}{\tau^{\frac{n+2}{n}}} \, d\tau < \infty \quad \text{and} \quad \int_1^{+\infty} \frac{G^{-1}(\tau)}{\tau^{\frac{n+2}{n}}} \, d\tau = \infty. \tag{G_3}
\]

In the case of powers (i.e. \(G(t) = t^p \)) these conditions mean that \(p \geq 2 \), also, we mention some examples of functions \(g \) which satisfy these conditions

1. \(g(t) = q|t|^{q-2}t \), for all \(t \in \mathbb{R} \), with \(2 < q < n \) (it also satisfies condition \(G_3 \)).
2. \(g(t) = p|t|^{p-2}t + q|t|^{q-2}t \), for all \(t \in \mathbb{R} \), with \(2 < p < q < n \).
(3) \(g(t) = q|t|^q - 2 t \log(1 + |t|) + \frac{|t|^{q-1} t}{1 + |t|}, \) for all \(t \in \mathbb{R} \), with \(2 < q < n \).

The following functionals have an essential role in the study of eigenvalue problems for the fractional \(g \)-Laplacian

\[
I(u) := \int_{\Omega} G(|u|) \, dx, \quad J(u) := \iint_{\mathbb{R}^n \times \mathbb{R}^n} G(|D_s u|) \, \frac{dx \, dy}{|x - y|^n},
\]

and

\[
J_\beta(u) := \iint_{\mathbb{R}^{2n} \setminus (\Omega^2)\setminus (\Omega^2)} G(|D_s u|) \, \frac{dx \, dy}{|x - y|^n} + \int_{\mathbb{R}^n \setminus \Omega} \beta G(|u|) \, dx
\]

(see Section 3 for details).

Problem \((D(\Omega))\) was recently studied in \([35,36]\), where existence of eigenvalues was obtained by studying the following minimization problem with energy constraint

\[
\min \{ J(u) : I(u) = \alpha \}
\]

for a given value \(\alpha > 0 \). A further extension of this result for problems \((N(\Omega))\) and \((R(\Omega))\) is provided in \([34]\). Other very recent results involving eigenvalues of the fractional \(g \)-Laplacian can be found in \([35,37–47]\).

In the wake of the non-homogeneity of the operator, many of the properties that eigenvalues of the fractional \(p \)-Laplacian fulfill are possibly not inherited in the non-homogeneous case: for instance, isolation, simplicity and a variational characterization of the first eigenvalue, or a variational formula for the second one (see \([22,25,26]\)). Moreover, the spectrum of \((D(\Omega))\) could be continuous when \(G \) is a general Young function, and in principle, it is not clear the meaning of a first or second eigenvalue. Due to these drawbacks, the main aim of this manuscript is to understand under which conditions it is possible to build a sequence of eigenvalues to problems \((D(\Omega))\), \((N(\Omega))\) and \((R(\Omega))\).

Our constructions are based in the fact that existence of sequences of variational eigenvalues can be established when prescribing some energy level. First, when the functionals involving the \(s \)-Hölder quotient are prescribed, i.e. when we restrict ourselves to the following sets (with the notation introduced in Section 2)

\[
M_\alpha^D := \{ u \in W^{s,G}_0(\Omega) : J(u) = \alpha \},
M_\alpha^N := \{ u \in W^{s,G}_s(\Omega) : J_0(u) = \alpha \},
M_\alpha^R := \{ u \in X_\beta(\Omega) : J_\beta(u) = \alpha \},
\]

for some \(\alpha > 0 \), by means of the Ljusternik–Schnirelman theory, a sequence of non-negative eigenvalues of problems \((D(\Omega))\), \((N(\Omega))\) and \((R(\Omega))\) can be built in terms of critical points of \(I(u) \). More precisely, our first result reads as follows.

Theorem 1.1: For any \(\alpha > 0 \)

- **Dirichlet:** there is a non-negative sequence \(\{\lambda_{k,\alpha}^D\}_{k \in \mathbb{N}} \) of eigenvalues of \((D(\Omega))\) with eigenfunctions \(\{u_{k,\alpha}^D\}_{k \in \mathbb{N}} \subset W_0^{s,G}(\Omega) \) satisfying that

\[
J(u_{k,\alpha}^D) = \alpha, \quad I(u_{k,\alpha}^D) := c_{k,\alpha}^D = \sup_{K \in F_k} \inf_{u \in K} I(u);
\]
• **Neumann:** there is a non-negative sequence \(\{\lambda_{k,\alpha}^N\}_{k \in \mathbb{N}} \) of eigenvalues of \((N(\Omega))\) with eigenfunctions \(\{u_{k,\alpha}^N\}_{k \in \mathbb{N}} \subset W^{s,G}_*(\Omega) \) satisfying that
\[
\mathcal{J}_0(u_{k,\alpha}^N) = \alpha, \quad \mathcal{I}(u_{k,\alpha}^N) := c_{k,\alpha}^N = \sup_{K \in C_k} \inf_{u \in K} \mathcal{I}(u);
\]

• **Robin:** there is a non-negative sequence \(\{\lambda_{k,\alpha}^R\}_{k \in \mathbb{N}} \) of eigenvalues of \((R(\Omega))\) with eigenfunctions \(\{u_{k,\alpha}^R\}_{k \in \mathbb{N}} \subset \mathcal{X}_\beta(\Omega) \) satisfying that
\[
\mathcal{J}_\beta(u_{k,\alpha}^R) = \alpha, \quad \mathcal{I}(u_{k,\alpha}^R) := c_{k,\alpha}^R = \sup_{K \in C_k} \inf_{u \in K} \mathcal{I}(u).
\]

Here we have denoted

\[
C_k^D := \{K \subset M_\alpha^D \text{ compact, symmetric with } \mathcal{I}(u) > 0 \text{ on } K \text{ and } \gamma(K) \geq k\},
\]
and \(C_k^N \) and \(C_k^R \) are defined analogously by changing the superscript \(D \) by \(N \) and \(R \), respectively; \(\gamma(K) \) denotes the Krasnoselskii genus of \(K \).

Secondly, when \(\mathcal{I}(u) \) is prescribed, i.e. when we restrict ourselves to the sets
\[
M_\alpha^D := \{u \in W^{s,G}_0(\Omega) : \mathcal{I}(u) = \alpha\},
\]
\[
M_\alpha^N := \{u \in W^{s,G}_*(\Omega) : \mathcal{I}(u) = \alpha\},
\]
\[
M_\alpha^R := \{u \in \mathcal{X}_\beta(\Omega) : \mathcal{I}(u) = \alpha\},
\]
for some \(\alpha > 0 \), by using the so-called minimax theory we obtain (different) sequences of eigenvalues of \((D(\Omega))\), \((N(\Omega))\) and \((D(\Omega))\) in terms of critical points of \(\mathcal{J}(u) \). That is the content of our second main result.

Theorem 1.2: For any \(\alpha > 0 \)

• **Dirichlet:** there is a non-negative sequence \(\{\lambda_{k,\alpha}^D\}_{k \in \mathbb{N}} \) of eigenvalues of \((D(\Omega))\) with eigenfunctions \(\{u_{k,\alpha}^D\}_{k \in \mathbb{N}} \subset W^{s,G}_0(\Omega) \) satisfying that
\[
\mathcal{I}(u_{k,\alpha}^D) = \alpha, \quad \mathcal{J}(u_{k,\alpha}^D) := C_{k,\alpha}^D = \inf_{h \in \Gamma(S^{k-1}, M_\alpha^D)} \sup_{w \in S^{k-1}} \mathcal{J}(h(w));
\]

• **Neumann:** there is a non-negative sequence \(\{\lambda_{k,\alpha}^N\}_{k \in \mathbb{N}} \) of eigenvalues of \((N(\Omega))\) with eigenfunctions \(\{u_{k,\alpha}^N\}_{k \in \mathbb{N}} \subset W^{s,G}_*(\Omega) \) satisfying that
\[
\mathcal{I}(u_{k,\alpha}^N) = \alpha, \quad \mathcal{J}_0(u_{k,\alpha}^N) := C_{k,\alpha}^N = \inf_{h \in \Gamma(S^{k-1}, M_\alpha^N)} \sup_{w \in S^{k-1}} \mathcal{J}_0(h(w));
\]

• **Robin:** there is a non-negative sequence \(\{\lambda_{k,\alpha}^R\}_{k \in \mathbb{N}} \) of eigenvalues of \((R(\Omega))\) with eigenfunctions \(\{u_{k,\alpha}^R\}_{k \in \mathbb{N}} \subset \mathcal{X}_\beta(\Omega) \) satisfying that
\[
\mathcal{I}(u_{k,\alpha}^R) = \alpha, \quad \mathcal{J}_\beta(u_{k,\alpha}^R) := C_{k,\alpha}^R = \inf_{h \in \Gamma(S^{k-1}, M_\alpha^R)} \sup_{w \in S^{k-1}} \mathcal{J}_\beta(h(w)).
\]
Here we have denoted
\[\Gamma(S^{k-1}, M) = \{ h \in C(S^{k-1}, M) : h \text{ is odd} \}, \]
being \(S^{k-1} \) the unit sphere in \(\mathbb{R}^k \).

In the case of powers, Ljusternik–Schirelman eigenvalues are dominated by minimax eigenvalues, from where the minimax sequence diverges (see [48,49]). Now, in the general case, the sequences \(\{ /lambda_k \}_{k \in \mathbb{N}} \) and \(\{ \Lambda_k \}_{k \in \mathbb{N}} \) obtained in Theorems 1.1 and 1.2 are not comparable each other due to the lack of homogeneity. As a consequence, divergence of the minimax sequence is not immediate. However, in the Dirichlet case, by comparing with eigenvalues of the \(p^- \)-Laplacian (where \(p^- \) is given in \((G_1) \)) we get:

Theorem 1.3: With the notation of Theorem 1.2,
\[\Lambda^D_{k,\alpha}, C^D_{k,\alpha} \to \infty \quad \text{as } k \to \infty. \]

We remark that in the case of powers, eigenvalues and critical points obtained in Theorems 1.1 and 1.2 coincide, i.e. \(\lambda_k = c_k \) and \(\Lambda_k = C_k \) for all \(k \in \mathbb{N} \). In general it may not be true, although the following comparison result holds.

Theorem 1.4: With the notation of Theorems 1.1 and 1.2 we have
\[
\frac{\alpha p^-}{p^+} \leq \frac{\Lambda^D_{k,\alpha}}{C^D_{k,\alpha}} \leq \frac{\alpha p^+}{p^-}, \quad \frac{p^-}{p^+} \leq \frac{\Lambda^D_{k,\alpha}}{C^D_{k,\alpha}} \leq \frac{p^+}{\alpha p^-},
\]
where \(p^+ \) and \(p^- \) are the numbers defined in \((G_1) \).

Finally, our last result establishes the closedness of the spectrum of the fractional \(g \)-Laplacian in the following sense:

Theorem 1.5: Let \(\{ \alpha_k \}_{k \in \mathbb{N}} \subset \mathbb{R}_+ \) and let \(\{ /lambda_{\alpha_k} \}_{k \in \mathbb{N}} \) be a sequence of eigenvalues of \((D(\Omega)) \) with eigenfunctions \(\{ u_{\alpha_k} \}_{k \in \mathbb{N}} \subset W^{s,G}_0(\Omega) \) such that \(\mathcal{I}(u_{\alpha_k}) = \alpha_k \). Then, if there exist numbers \(\alpha, /lambda < \infty \) such that \(\lim_{k \to \infty} /lambda_{\alpha_k} = \alpha \) and \(\lim_{k \to \infty} \alpha_{\alpha_k} = /lambda \), we have that \(/lambda \) is an eigenvalue of \((D(\Omega)) \) with eigenfunction \(u \in W^{s,G}_0(\Omega) \) such that \(\mathcal{I}(u) = \alpha \).

A similar assertion holds for sequences of eigenvalues of \((N(\Omega)) \) and \((R(\Omega)) \).

2. Definitions and preliminary results

In this section we introduce the classes of Young function and fractional Orlicz–Sobolev functions, the suitable class where the fractional \(g \)-Laplacian is well defined.

2.1. Young functions

An application \(G : \mathbb{R}_+ \to \mathbb{R}_+ \) is said to be a **Young function** if it admits the integral formulation \(G(t) = \int_0^t g(\tau) \, d\tau \), where the right continuous function \(g \) defined on \([0, \infty)\) has the following properties:
\[g(0) = 0, \quad g(t) > 0 \quad \text{for } t > 0, \]
\[(g_1) \]
\(g \) is non-decreasing on \((0, \infty)\),

\[
\lim_{t \to \infty} g(t) = \infty.
\]

From these properties it is easy to see that a Young function \(G \) is continuous, non-negative, strictly increasing and convex on \([0, \infty)\).

The following properties on Young functions are well-known. See for instance [50] for the proof of these results.

Lemma 2.1: Let \(G \) be a Young function satisfying \((G_1)\) and \(a, b \geq 0 \). Then

\[
\min\{a^{p^+}, b^{p^+}\} G(b) \leq G(ab) \leq \max\{a^{p^+}, b^{p^+}\} G(b),
\]

\[
G(a + b) \leq C(G(a) + G(b)) \quad \text{with} \quad C = C(p^+),
\]

\[
\tilde{G}(a + b) \leq \tilde{C}(\tilde{G}(a) + \tilde{G}(b)) \quad \text{with} \quad \tilde{C} = \tilde{C}(p^-),
\]

\(G \) is Lipschitz continuous.

Condition \((G_1)\) is known as the \(\Delta_2 \) condition or doubling condition and, as it is showed in [50, Theorem 3.4.4], it is equivalent to the right-hand side inequality in \((G_1)\).

The complementary Young function \(\tilde{G} \) of a Young function \(G \) is defined as

\[
\tilde{G}(t) := \sup\{tw - G(w) : w > 0\}.
\]

From this definition the following Young-type inequality holds

\[
ab \leq G(a) + \tilde{G}(b) \quad \text{for all} \quad a, b \geq 0,
\]

and the following H"{o}lder’s type inequality

\[
\int_{\Omega} |uv| \, dx \leq \|u\|_{L^G(\Omega)} \|v\|_{L^{\tilde{G}}(\Omega)} \quad \text{for all} \quad u \in L^G(\Omega) \quad \text{and} \quad v \in L^{\tilde{G}}(\Omega).
\]

Moreover, it is not hard to see that \(\tilde{G} \) can be written in terms of the inverse of \(g \) as

\[
\tilde{G}(t) = \int_0^t g^{-1}(\tau) \, d\tau,
\]

see [51, Theorem 2.6.8].

Since \(g^{-1} \) is increasing, from (7) and \((G_1)\) it is immediate the following relation.

Lemma 2.2: Let \(G \) be an Young function satisfying \((G_1)\) such that \(g = G' \) and denote by \(\tilde{G} \) its complementary function. Then

\[
\tilde{G}(g(t)) \leq p^+ G(t)
\]

holds for any \(t \geq 0 \).

The following convexity property proved in [52, Lemma 2.1] will be useful.

Lemma 2.3: Let \(G \) be a Young function satisfying \((G_1)\) and \((G_2)\). Then for every \(a, b \in \mathbb{R},

\[
\frac{G(|a|) + G(|b|)}{2} \geq G\left(\frac{|a + b|}{2}\right) + G\left(\frac{|a - b|}{2}\right).
\]
2.2. Fractional Orlicz–Sobolev spaces

Given a Young function G such that $G' = g$, a parameter $s \in (0, 1)$ and an open set $\Omega \subseteq \mathbb{R}^n$ we consider the spaces

$$L^G(\Omega) := \{ u: \Omega \to \mathbb{R} \text{ measurable such that } \Phi_{G,\Omega}(u) < \infty \},$$

$$W^{s,G}(\Omega) := \{ u \in L^G(\Omega) \text{ such that } \Phi_{s,G,\Omega}(u) < \infty \},$$

$$W^{s,G}_0(\Omega) := \{ u \in W^{s,G}(\mathbb{R}^n): u = 0 \text{ a.e. in } \mathbb{R}^n \setminus \Omega \},$$

(we identify $W^{s,G}_0(\mathbb{R}^n)$ with $W^{s,G}(\mathbb{R}^n)$.) Here the modulars are defined as

$$\Phi_{G,\Omega}(u) := \int_{\Omega} G(|u(x)|) \, dx,$$

$$\Phi_{s,G,\Omega}(u) := \int_{\Omega} \int_{\Omega} G(|D_s u(x,y)|) \, d\mu,$$

where the s-Hölder quotient is defined as

$$D_s u(x,y) := \frac{u(x) - u(y)}{|x - y|^s},$$

being $d\mu(x,y) := \frac{dx \, dy}{|x-y|^n}$.

When $G(t) = t^p$, $p > 1$ we recover the usual fractional Sobolev spaces $W^{s,p}(\Omega)$ and $W^{s,p}_0(\Omega)$.

We denote by $(W^{s,G}_0(\Omega))^*$ the dual space of $W^{s,G}_0(\Omega)$.

The spaces $L^G(\Omega)$ and $W^{s,G}(\Omega)$ are endowed with the Luxemburg norms

$$\|u\|_{L^G(\Omega)} := \inf \left\{ \lambda > 0: \Phi_{G,\Omega} \left(\frac{u}{\lambda} \right) \leq 1 \right\},$$

$$\|u\|_{W^{s,G}(\Omega)} := \|u\|_{L^G(\Omega)} + [u]_{W^{s,G}(\Omega)},$$

where the (s,G)-Gagliardo semi-norm is defined as

$$[u]_{W^{s,G}(\Omega)} := \inf \left\{ \lambda > 0: \Phi_{s,G,\Omega} \left(\frac{u}{\lambda} \right) \leq 1 \right\}.$$

Moreover, in light of the modular Poincaré inequality stated in [36], $W^{s,G}_0(\Omega)$ is endowed with the norm $\|u\|_{W^{s,G}_0(\Omega)} := [u]_{W^{s,G}(\mathbb{R}^n)}$.

Since we assume (G_1), the space $W^{s,G}_0(\Omega)$ is a reflexive Banach space. Moreover C_0^∞ is dense in $W^{s,G}(\mathbb{R}^n)$. See [33, Proposition 2.11] and [44, Proposition 2.9] for details.
The space of fractional Orlicz–Sobolev functions is the appropriated one where to define the fractional \(g \)-Laplacian operator

\[
(-\Delta_g)^s u := 2 \text{p.v.} \int_{\mathbb{R}^n} g(|D_s u|) \frac{D_s u}{|D_s u|} \frac{dy}{|x - y|^{n+s}},
\]

where p.v. stands for \textit{in principal value}. This operator is well defined between \(W^{s,G}(\mathbb{R}^n) \) and its dual space \((W^{s,G}(\mathbb{R}^n))^* = W^{-s,G}(\mathbb{R}^n) \) (see [33] for details). In fact, it follows that

\[
\langle (-\Delta_g)^s u, v \rangle = \int_{\mathbb{R}^n} g(|D_s u|) \frac{D_s u}{|D_s u|} D_s v \mu,
\]

for any \(v \in W^{s,G}(\mathbb{R}^n) \).

As proved in [34, Proposition 2.6], the following integration by parts formula arise naturally for any \(u \in C^2 \) and a bounded set \(\Omega \subset \mathbb{R}^n \):

\[
\langle (-\Delta_g)^s u, v \rangle_* = \int_{\Omega} v(-\Delta_g)^s u \, dx + \int_{\mathbb{R}^n \setminus \Omega} v N_g u \, dx \quad \forall \, v \in C^2
\]

where the normal derivative \(N_g u \) is defined as

\[
N_g u(x) = \int_{\Omega} g(|D_s u|) \frac{D_s u}{|D_s u|} \frac{dy}{|x - y|^{n+s}}
\]

and the product \(\langle \cdot, \cdot \rangle_* \) is defined as

\[
\langle (-\Delta_g)^s u, v \rangle_* = \int_{\mathbb{R}^{2n} \setminus (\mathbb{R}^n \setminus \Omega)^2} g(|D_s u|) \frac{D_s u}{|D_s u|} D_s v \, d\mu.
\]

The previous definitions induce the following notation

\[
\Phi_{s,G,*}(u) = \int_{\mathbb{R}^{2n} \setminus (\mathbb{R}^n \setminus \Omega)^2} G(|D_s u(x,y)|) \, d\mu
\]

\[
[u]_{W^{s,G}(\mathbb{R}^n)} = \inf \left\{ \lambda > 0 : \Phi_{s,G,*} \left(\frac{u}{\lambda} \right) \leq 1 \right\}.
\]

Hence, it is natural to define the space

\[
W^{s,G}(\Omega) := \{ u \in L^G(\Omega) \text{ such that } \Phi_{s,G,*}(u) < \infty \},
\]

which will be the appropriate one when dealing with the Neumann boundary condition.
The suitable space in which to define a Robin boundary condition of the type \(N_g u + \beta g(|u|)u/|u| \) in \(\mathbb{R}^n \setminus \Omega \) (where \(\beta \) is a fixed function in \(L^\infty(\mathbb{R}^n \setminus \Omega) \)) is:

\[
X_\beta(\Omega) = \{ u \text{ measurable} : \Phi_{s,G,*}(u) + \Phi_{G,\Omega}(u) + \Phi_{G,\beta,\mathbb{R}^n \setminus \Omega}(u) < \infty \}
\]

where

\[
\Phi_{G,\beta,\mathbb{R}^n \setminus \Omega}(u) = \int_{\mathbb{R}^n \setminus \Omega} \beta G(|u|) \, dx.
\]

This space can be proved to be a reflexive Banach space endowed with the norm

\[
\|u\|_{X_\beta} := \left[u \right]_{W^{s,G}(\mathbb{R}^n)} + \|u\|_{L^G(\Omega)} + \|u\|_{L^{G,\beta}(\mathbb{R}^n \setminus \Omega)},
\]

being

\[
\|u\|_{L^{G,\beta}(\mathbb{R}^n \setminus \Omega)} = \inf \left\{ \lambda > 0 : \int_{\mathbb{R}^n \setminus \Omega} \beta \left(\frac{|u|}{\lambda} \right) \, d\mu \leq 1 \right\}.
\]

See [34] for more details.

Remark 2.4: With the notation introduced in this section, the functionals introduced in (4) and (5) can be identified as

\[
\begin{align*}
\mathcal{I} : L^G(\Omega) \rightarrow \mathbb{R}, & \quad \mathcal{I}(u) = \Phi_{G,\Omega}(u), \\
\mathcal{J} : W^{s,G}_0(\Omega) \rightarrow \mathbb{R}, & \quad \mathcal{J}(u) = \Phi_{s,G,\mathbb{R}^n}(u), \\
\mathcal{J}_\beta : X_\beta(\Omega) \rightarrow \mathbb{R}, & \quad \mathcal{J}_\beta(u) = \Phi_{s,G,*}(u) + \Phi_{G,\beta,\mathbb{R}^n \setminus \Omega}(u).
\end{align*}
\]

In order to state some embedding results for fractional Orlicz–Sobolev spaces we recall that given two Young functions \(A \) and \(B \), we say that \(B \) is essentially stronger than \(A \) or equivalently that \(A \) decreases essentially more rapidly than \(B \), if for each \(a > 0 \) there exists \(x_a \geq 0 \) such that \(A(x) \leq B(ax) \) for \(x \geq x_a \).

When the Young function \(G \) fulfills condition \((G_3)\), the critical function for the fractional Orlicz–Sobolev embedding is given by

\[
G_*^{-1}(t) = \int_0^t \frac{G^{-1}(\tau)}{\tau^{\frac{n+2}{n}}} \, d\tau.
\]

With these preliminaries the following compact embeddings hold.

Proposition 2.5: Let \(G \) be a Young function satisfying \((G_1)\) and \((G_3)\) and let \(s \in (0,1) \). Let \(\Omega \subset \mathbb{R}^n \) be a \(C^{0,1} \) bounded open subset. Then for any Young function \(B \) such that \(B \ll G_* \) it holds that

(i) the embedding \(W^{s,G}(\Omega) \hookrightarrow L^B(\Omega) \) is compact;
(ii) the embedding \(X_\beta(\Omega) \hookrightarrow L^B(\Omega) \) is compact.

The proof of (i) can be found in [37, Theorem 9.1], [41, Theorem 1.2]; for the proof of (ii) see [34, Lemma 3.2].

The following relations between modular and norm hold. See [53, Lemma 2.1].
Lemma 2.6: Let G be a Young function satisfying (G1) and let $\xi^-(t) = \min\{t^{p^-}, t^{p^+}\}$, $\xi^+(t) = \max\{t^{p^-}, t^{p^+}\}$, for all $t \geq 0$. Then

(i) $\xi^-(\|u\|_{L^G(\mathbb{R}^n)}) \leq \Phi_{G,\mathbb{R}^n}(u) \leq \xi^+(\|u\|_{L^G(\mathbb{R}^n)})$ for $u \in L^G(\mathbb{R}^n)$,

(ii) $\xi^-([u]_{W^{s,G}(\mathbb{R}^n)}) \leq \Phi_{s,G,\mathbb{R}^n}(u) \leq \xi^+(|[u]_{W^{s,G}(\mathbb{R}^n)})$ for $u \in W^{s,G}(\mathbb{R}^n)$.

3. Lagrange multipliers and the eigenvalue problem

In this section we define the notion of eigenvalues in the context of fractional Orlicz–Sobolev spaces. We recall some existence results already proved in [35] and [36] for the Dirichlet case, and state further extension to more general boundary conditions.

We say that

- λ is an eigenvalue of $(D(\Omega))$ with eigenfunction $u \in W^{s,G}_0(\Omega)$ if
 $$\langle (-\Delta_g)^s u, v \rangle = \lambda \int_\Omega g(|u|) \frac{u}{|u|} v \, dx \quad \forall v \in W^{s,G}_0(\Omega). \quad (9)$$

- λ is an eigenvalue of $(N(\Omega))$ with eigenfunction $u \in W^{s,G}_*(\Omega)$ if
 $$\langle (-\Delta_g)^s u, v_\ast \rangle = \lambda \int_\Omega g(|u|) \frac{u}{|u|} v_\ast \, dx \quad \forall v_\ast \in W^{s,G}_*(\Omega).$$

- λ is an eigenvalue of $(R(\Omega))$ with eigenfunction $u \in X_\beta(\Omega)$ if
 $$\langle (-\Delta_g)^s u, v_\ast \rangle = \lambda \int_\Omega g(|u|) \frac{u}{|u|} v_\ast \, dx - \int_{\mathbb{R}^n \setminus \Omega} \beta g(|u|) \frac{u}{|u|} v_\ast \, dx \quad \forall v_\ast \in X_\beta(\Omega).$$

As mentioned, eigenvalues for non-homogeneous eigenproblems strongly depend on the energy level $\alpha > 0$. It is possible to prove existence of an eigenvalue by a multiplier argument once proved existence of the following minimization problems

$$\Lambda^D_\alpha := \min \{ \mathcal{J}(u) : u \in M^D_\alpha \}, \quad \text{where } M^D_\alpha = \{ u \in W^{s,G}_0(\Omega) : \mathcal{I}(u) = \alpha \},$$

$$\Lambda^N_\alpha := \min \{ \mathcal{J}_0(u) : u \in M^N_\alpha \}, \quad \text{where } M^N_\alpha = \{ u \in W^{s,G}_*(\Omega) : \mathcal{I}(u) = \alpha \},$$

$$\Lambda^R_\alpha := \min \{ \mathcal{J}_\beta(u) : u \in M^R_\alpha \}, \quad \text{where } M^R_\alpha = \{ u \in X_\beta(\Omega) : \mathcal{I}(u) = \alpha \}.$$

As pointed out in [34], by standard computations of the calculus of variations, for each $\alpha > 0$ the quantities Λ^D_α, Λ^N_α and Λ^R_α are attained by suitable functions u^D_α, u^N_α and u^R_α, respectively. Since condition (G1) is assumed on G, the functionals \mathcal{J}, \mathcal{J}_β and \mathcal{I} are class C^1 with Fréchet derivatives given by

$$\langle \mathcal{J}'(u), v \rangle = \langle (-\Delta_g)^s u, v \rangle \quad \forall v \in W^{s,G}_0(\Omega),$$

$$\langle \mathcal{J}_0'(u), v \rangle = \langle (-\Delta_g)^s u, v_\ast \rangle \quad \forall v_\ast \in W^{s,G}_*(\Omega),$$

$$\langle \mathcal{I}'(u), v \rangle = \int_\Omega g(|u|) \frac{u}{|u|} v \, dx \quad \forall v \in L^G(\Omega),$$

$$\langle \mathcal{J}_\beta'(u), v \rangle = \langle (-\Delta_g)^s u, v_\ast \rangle + \int_{\mathbb{R}^n \setminus \Omega} \beta g(|u|) \frac{u}{|u|} v \, dx \quad \forall v_\ast \in W^{s,G}_*(\Omega). \quad (10)$$
and therefore, by an application of the Lagrange multipliers rule, there exist numbers \(\lambda^D_\alpha \), \(\lambda^N_\alpha \) and \(\lambda^R_\alpha \) which are eigenvalues of \((D(\Omega)), (N(\Omega))\) and \((R(\Omega))\) with eigenfunctions \(u^D_\alpha \), \(u^N_\alpha \) and \(u^R_\alpha \), respectively. Furthermore, as proved in [34, Proposition 5.6 and 5.8], minimizers are comparable each other; more precisely, \(\Lambda^N_\alpha \leq \Lambda^R_\alpha \leq \Lambda^D_\alpha \), and a similar relation for the eigenvalues holds, up to a multiplicative constant.

In fact, proceeding as in [35, Theorem 1.3] (see Theorem 1.5) it can be proved that for each fixed \(\alpha_0 > 0 \) it holds that

\[
\hat{\lambda}^D := \inf_{\alpha \in (0, \alpha_0)} \{ \langle -\Delta g \rangle^y u, u \rangle : u \in W^s_G(\Omega) \}.
\]

are eigenvalues of \((D(\Omega)), (N(\Omega))\) and \((R(\Omega))\), respectively.

In contrast with \(p \)-Laplacian type problems, when dealing with non-homogeneous eigenproblems, eigenvalues are not variational in general. One could consider the variational quantity

\[
\tilde{\lambda}^D = \inf_{u \in W^s_G(\Omega) \setminus \{0\}} \frac{\int_{\Omega} g(|u|)|Du| \, dx}{\int_{\Omega} g(|u|) |u| \, dx},
\]

but in general this number cannot be proved to be an eigenvalue. In an analogous way, we can define \(\tilde{\lambda}^R \) and \(\tilde{\lambda}^N \), and the same assertion holds. However, the following result is true:

Theorem 3.1: It holds that \(\tilde{\lambda}^D \leq \hat{\lambda}^D \) and there is no eigenvalue \(\lambda \) of \((D(\Omega))\) such that \(\lambda < \tilde{\lambda}^D \).

The same holds by changing the superscript \(D \) with \(N \) or \(R \).

Proof: First observe that, since \(\hat{\lambda}^D \) is an eigenvalue of \((D(\Omega))\), there exists a non-trivial eigenfunction \(\hat{u} \in W^s_G(\Omega) \) such that (9) holds, therefore

\[
\tilde{\lambda}^D = \inf \left\{ \frac{\langle (-\Delta g)^y u, u \rangle}{\int_{\Omega} g(|u|) |u| \, dx} : u \in W^s_G(\Omega) \right\} \leq \frac{\langle (-\Delta g)^y \hat{u}, \hat{u} \rangle}{\int_{\Omega} g(|\hat{u}|) |\hat{u}| \, dx} = \hat{\lambda}^D.
\]

If we suppose that there exists \(\lambda < \tilde{\lambda}^D \) which is an eigenvalue of problem \((D(\Omega))\) with eigenfunction \(u_\lambda \in W^s_G(\Omega) \), we arrive to a contradiction since

\[
\lambda = \frac{\langle (-\Delta g)^y u_\lambda, u_\lambda \rangle}{\int_{\Omega} g(|u_\lambda|) |u_\lambda| \, dx} < \tilde{\lambda}^D = \inf \left\{ \frac{\langle (-\Delta g)^y u, u \rangle}{\int_{\Omega} g(|u|) |u| \, dx} : u \in W^s_G(\Omega) \right\}.
\]

The proofs of the Robin and Neumann case run analogously.

We finish this section by proving Theorem 1.5.
Proof of Theorem 1.5: Let \(\{\lambda_{\alpha_k}\}_{k \in \mathbb{N}} \) be a sequence of eigenvalues of \((D(\Omega))\) such that \(\lambda_{\alpha_k} \to \lambda \) and let \(\{u_{\alpha_k}\}_{k \in \mathbb{N}} \subset W_0^{s,G}(\Omega) \) be the corresponding sequence of associated eigenfunctions such that \(\Phi_{G,\Omega}(u_{\alpha_k}) = \alpha_k \) with \(\lim_{k \to \infty} \alpha_k = \alpha \). Then, for each \(k \in \mathbb{N} \),

\[
\int_{\mathbb{R}^n \times \mathbb{R}^n} g(|D_s u_{\alpha_k}|) \frac{D_s u_{\alpha_k}}{|D_s u_{\alpha_k}|} D_s v \, d\mu = \lambda_{\alpha_k} \int_{\Omega} g(|u_{\alpha_k}|) \frac{u_{\alpha_k}}{|u_{\alpha_k}|} v \, dx \quad \forall \ v \in W_0^{s,G}(\Omega).
\]

(11)

Observe that \(\{u_{\alpha_k}\}_{k \in \mathbb{N}} \) is bounded in \(W_0^{s,G}(\Omega) \) since by (G1) and (11)

\[
\Phi_{s,G,\mathbb{R}^n}(u_{\alpha_k}) \leq \frac{1}{p^-} \int_{\mathbb{R}^n \times \mathbb{R}^n} g(|D_s u_{\alpha_k}|) |D_s u_{\alpha_k}| \, d\mu
\]

\[
= \frac{\lambda_{\alpha_k}}{p^-} \int_{\Omega} g(|u_{\alpha_k}|) |u_{\alpha_k}| \, dx \leq \frac{p^+}{p^-} \lambda_{\alpha_k} \alpha_k
\]

\[
\leq \frac{p^+}{p^-} (1 + \lambda)(1 + \alpha)
\]

for \(k \) big enough. Then, by using the compact embedding given in Proposition 2.5 (i), up to a subsequence, there exists \(u \in W_0^{s,G}(\Omega) \) such that

\[
u_{\alpha_k} \to u \quad \text{strongly in } L^G(\Omega),
\]

\[
u_{\alpha_k} \to u \quad \text{a.e. in } \mathbb{R}^n.
\]

(12)

From (12) and the continuity of \(t \mapsto g(t) \frac{t}{|t|} \) we deduce that for any \(v \in W_0^{s,G}(\Omega) \),

\[
g(|D_s u_{\alpha_k}|) \frac{D_s u_{\alpha_k}}{|D_s u_{\alpha_k}|} D_s v \to g(|D_s u|) \frac{D_s u}{|D_s u|} D_s v \quad \text{a.e. in } \mathbb{R}^n
\]

and

\[
\lambda_{\alpha_k} g(|u_{\alpha_k}|) \frac{u_{\alpha_k}}{|u_{\alpha_k}|} v \to \lambda g(|u|) \frac{u}{|u|} v \quad \text{a.e. in } \mathbb{R}^n.
\]

Hence, by dominated convergence theorem, taking limit as \(k \to \infty \) in (11) we obtain that

\[
\int_{\mathbb{R}^n \times \mathbb{R}^n} g(|D_s u|) \frac{D_s u}{|D_s u|} D_s v \, d\mu = \lambda \int_{\Omega} g(|u|) \frac{u}{|u|} v \, dx \quad \text{for all } v \in W_0^{s,G}(\Omega)
\]

from where the result in the Dirichlet case follows.

The proofs for the Neumann and Robin cases follow analogously by replacing \(W_0^{s,G}(\Omega) \) with \(W_+^{s,G}(\Omega) \) or \(\mathcal{X}_\beta(\Omega) \), respectively, and using the compact embedding given in Proposition 2.5 item (ii) to deduce (12). ■

4. Ljusternik–Schnirelman eigenvalues

In order to build a sequence of eigenvalues for problems \((D(\Omega)), (N(\Omega))\) and \((R(\Omega))\), the idea is to apply an abstract theorem of the so-called Ljusternik–Schnirelman theory. See for instance [9–11]. We will particularly use the result stated in [10, Theorem 9.27].

Given \(\alpha > 0 \), assume that \(\mathcal{A}, \mathcal{B} \) are two functionals defined in a reflexive Banach space \(\mathcal{X} \), such that
(h1) \(A, B \) are \(C^1(\mathcal{X}, \mathbb{R}) \) even functionals with \(A(0) = B(0) = 0 \) and the level set
\[
M_\alpha := \{ u \in \mathcal{X}: B(u) = \alpha \}
\]
is bounded.

(h2) \(A' \) is strongly continuous, i.e.
\[
u_j \rightharpoonup u \text{ in } \mathcal{X} \implies A'(u_j) \to A'(u).
\]
Moreover, for any \(u \) in the closure of the convex hull of \(M_\alpha \),
\[
\langle A'(u), u \rangle = 0 \iff A(u) = 0 \iff u = 0.
\]

(h3) \(B' \) is continuous, bounded and, as \(k \to \infty \), it holds that
\[
u_j \to u, \quad B'(u_j) \to v, \quad \langle B'(u_j), u_j \rangle \to \langle v, u \rangle \implies u_j \to u \text{ in } \mathcal{X}.
\]

(h4) For every \(u \in \mathcal{X}\setminus\{0\} \) it holds that
\[
\langle B'(u), u \rangle > 0, \quad \lim_{t \to +\infty} B(tu) = +\infty, \quad \inf_{u \in M_\alpha} \langle B'(u), u \rangle > 0.
\]

Define max-min values
\[
c_{k,\alpha} = \begin{cases}
\sup_{K \in \mathcal{C}_k} \inf_{u \in K} A(u), & \mathcal{C}_k \neq \emptyset, \\
0, & \mathcal{C}_k = \emptyset,
\end{cases}
\]
where, for any \(k \in \mathbb{N} \),
\[
\mathcal{C}_k := \{ K \subset M_\alpha \text{ compact, symmetric with } A(u) > 0 \text{ on } K \text{ and } \gamma(K) \geq k \},
\]
and the Krasnoselskii genus of \(K \) is defined as
\[
\gamma(K) := \inf\{ p \in \mathbb{N}: \exists h: \mathbb{R}^p \setminus \{0\} \text{ such that } h \text{ is continuous and odd} \},
\]
see [1] for details.
Thus, \(\{c_{k,\alpha}\}_{k \geq 1} \) forms a non-increasing sequence
\[
+\infty > c_{1,\alpha} \geq c_{2,\alpha} \geq \cdots \geq c_{k,\alpha} \geq \cdots \geq 0.
\]

Under these considerations, the Ljusternik–Schnirelmann principle stated in [10, Theorem 9.27] establishes that there exists a sequence \(\{(\mu_{k,\alpha}, u_{k,\alpha})\}_{k \geq 1} \) such that
\[
\langle A'(u_{k,\alpha}), v \rangle = \mu_{k,\alpha} \langle B'(u_{k,\alpha}), v \rangle \quad \forall v \in \mathcal{X}
\]
such that \(u_{k,\alpha} \in M_\alpha, A(u_{k,\alpha}) = c_{k,\alpha}, \mu_{k,\alpha} \neq 0, \mu_{k,\alpha} \to 0, \) and \(u_{k,\alpha} \rightharpoonup 0 \) in \(\mathcal{X} \).
4.1. The Dirichlet case

With these preliminaries, we are in position to prove Theorem 1.1.

We consider the space $X := W^{s,G}_0(\Omega)$ and the functionals $B(u) := J(u)$ and $A(u) := I(u)$ defined in (8). As mentioned, these functionals are C^1 and their Fréchet derivatives are given in (10).

Lemma 4.1: The functionals J and I defined above fulfill hypotheses (h_1)–(h_4).

Proof: (i) Clearly, the maps I, J are even and $I(0) = J(0) = 0$.

(ii) We notice that

\[p^- \xi^-(\|u\|_{L^G(\Omega)}) \leq p^- I(u) \leq \langle I'(u), u \rangle \leq p^+ I(u) \leq p^+ \xi^+(\|u\|_{L^G(\Omega)}). \]

Then immediately we obtain

\[\langle I'(u), u \rangle = 0 \Leftrightarrow I(u) = 0 \Leftrightarrow u = 0. \]

Thus, it remains to check that I' is strongly continuous. Let $u_j \to u$ in $W^{s,G}_0(\Omega)$, then $\{u_j\}_{j \in \mathbb{N}}$ is bounded in $W^{s,G}_0(\Omega)$. We need to show that $I'(u_j) \to I'(u)$ in $(W^{s,G}_0(\Omega))^*$.

Observe that

\[|\langle I'(u_j) - I'(u), v \rangle| = \left| \int_{\Omega} \left(g(|u_j|) \frac{u_j}{|u_j|} - g(|u|) \frac{u}{|u|} \right) v \, dx \right| \]

\[\leq \left| \int_{\Omega} g(|u_j|) \left(\frac{u_j}{|u_j|} - \frac{u}{|u|} \right) v \, dx \right| + \left| \int_{\Omega} (g(|u_j|) - g(|u|)) \frac{u}{|u|} v \, dx \right| \]

\[:= I_{1,j} + I_{2,j}. \]

We denote by $X_j = \frac{u_j}{|u_j|} - \frac{u}{|u|}$. By using Lemma 2.2 and Hölder’s inequality, the first term can be bounded as

\[I_{1,j} \leq \|g(|u_j|)\|_{L^{\tilde{G}}(\Omega)} \|X_j v\|_{L^G(\Omega)} \to 0, \ j \to +\infty. \]

Indeed, we have

\[G(|X_j v|) \leq 2G(|v|) \in L^1(\Omega). \]

Now, since $u_j \to u$ a.e. in Ω, we can deduce that

\[G(|X_j v|) \to 0 \text{ a.e. in } \Omega. \]

By applying dominated convergence theorem, we infer that

\[\|X_j v\|_{L^G(\Omega)} \to 0, \ j \to +\infty. \]

On the other hand, $(g(|u_j|))$ is bounded in $L^{\tilde{G}}(\Omega)$. So $I_{1,j} \to 0, j \to +\infty$ as expected.
Similarly, by using the Δ_2 condition, Lemma 2.2 and Hölder’s inequality we get
\[I_{2,j} \leq \|g(|u_j|) - g(|u|)\|_{L^\infty(\Omega)} \|v\|_{L^2(\Omega)}. \]

Indeed, since $u_j \rightharpoonup u$ in $W_0^{s, G}(\Omega)$, in light of Proposition 2.5, $u_j \rightarrow u$ strongly in $L^G(\Omega)$ and a.e. in \mathbb{R}^n, moreover, $\tilde{G}(|g(|u_j|) - g(|u|)|) \rightarrow 0$ a.e. in Ω. On the other hand, by Lemma 2.1 and Lemma 2.2, we have
\[\tilde{G}(|g(|u_j|) - g(|u|)|) \leq \tilde{G}(|g(|u_j|)| + |g(|u|)|) \leq \tilde{C} p^+ [G(|u_j|) + G(|u|)] \leq \tilde{C} p^+ [K + G(|u|)] \]
where $K > 0$ is such that $|G(|u_j|)| \leq K$. Therefore, by dominated convergence theorem, $\int_{\Omega} \tilde{G}(|g(|u_j|) - g(|u|)|) \, dx \rightarrow 0$ and hence $\|g(|u_j|) - g(|u|)\|_{L^\infty(\Omega)} \rightarrow 0$ as $j \rightarrow \infty$. From the last relations it follows that $\|\mathcal{I}'(u_j) - \mathcal{I}'(u)\|_{(W_0^{s, G}(\Omega))^*} \rightarrow 0$ as required.

(iii) One can easily see that \mathcal{J}' is continuous (see for instance [36, Proposition 4.1]). From Lemma 2.2 and Hölder’s inequality
\[|\langle \mathcal{J}'(u), v \rangle| \leq \|g(|D_s u|)\|_{L^\infty(\mathbb{R}^n \times \mathbb{R}^n, d\mu)} \|D_s v\|_{L^2(\mathbb{R}^n \times \mathbb{R}^n, d\mu)} \leq p^+ [u]_{W^{s, G}(\mathbb{R}^n)} [v]_{W^{s, G}(\mathbb{R}^n)} \]
from there \mathcal{J}' is bounded.

It remains to be showed that if $\{u_j\}_{j \in \mathbb{N}}$ is a sequence in $W_0^{s, G}(\Omega)$ such that
\[u_j \rightharpoonup u, \quad \mathcal{J}'(u_j) \rightharpoonup v, \quad \langle \mathcal{J}'(u_j), u_j \rangle \rightarrow \langle v, u \rangle \tag{13} \]
then $u_j \rightarrow u$ in $W_0^{s, G}(\Omega)$.

Since G is convex, we have
\[G(|D_s u|) \leq G \left(\left| \frac{D_s u + D_s u_j}{2} \right| \right) + g(|D_s u|) \frac{D_s u - D_s u_j}{2} \]
and
\[G(|D_s u_j|) \leq G \left(\left| \frac{D_s u + D_s u_j}{2} \right| \right) + g(|D_s u_j|) \frac{D_s u_j - D_s u}{2} \]
for every $u, v \in W_0^{s, G}(\Omega)$. Adding the above two relations and integrating over \mathbb{R}^n we find that
\[\frac{1}{2} \int_{\mathbb{R}^n \times \mathbb{R}^n} \left(g(|D_s u_j|) \frac{D_s u_j}{|D_s u_j|} - g(|D_s u_j|) \frac{D_s u_j}{|D_s u_j|} \right) (D_s u - D_s u_j) \, d\mu \]
\[\geq \Phi_{s, G, \mathbb{R}^n}(u) + \Phi_{s, G, \mathbb{R}^n}(u_j) - 2 \Phi_{s, G, \mathbb{R}^n} \left(\frac{u + u_j}{2} \right) \tag{14} \]
for every $u, v \in W^{s,G}_0(\Omega)$. By applying Lemma 2.3, the right part of the inequality above can be bounded by below by $2\Phi_{s,G,\mathbb{R}^n}(\frac{u-u_j}{2})$, and hence we get

$$((-\Delta)^s u) - (-\Delta)^s u_j, u-u_j) \geq 4\Phi_{s,G,\mathbb{R}^n}(u-u_j).$$

This, together with Lemma 2.6 yields

$$\langle J'(u) - J'(u_j), u - u_j \rangle \geq \xi - (|u - u_j|_{W^{s,G}(\mathbb{R}^n)}).$$

(15)

On the other hand, Proposition 2.5 gives that $u_j \rightarrow u$ in $L^G(\Omega)$ and a.e. in \mathbb{R}^n, which, mixed up with the assumptions (13) allows us to deduce that

$$\lim_{j \rightarrow \infty} \langle J'(u_j) - J'(u), u_j - u \rangle = \lim_{k \rightarrow \infty} \langle (J'(u_j) - J'(u_j)), u - (J'(u), u - u_j) \rangle = 0.$$

Hence, from (15), $[u_j - u]_{W^{s,G}(\mathbb{R}^n)} \rightarrow 0$ as $k \rightarrow \infty$ as required.

(iv) It is clear that, for any $u \in W^{s,G}_0(\Omega) \setminus \{0\}$,

$$\langle J'(u), u \rangle > 0, \quad \lim_{t \rightarrow +\infty} J(tu) = +\infty, \quad \inf_{u \in M_\alpha} \langle J'(u), u \rangle > 0.$$

This concludes the proof.

Proof of Theorem 1.1 (Dirichlet case): In light of Lemma 4.1 and in virtue of [10, Theorem 9.27], there exist a sequence of positive numbers $\{\mu_{k,\alpha}^D\}_{k \in \mathbb{N}}$ tending to 0 and a corresponding sequence of functions $\{u^D_{k,\alpha}\}_{k \in \mathbb{N}} \subset W^{s,G}_0(\Omega)$ such that

$$\langle (-\Delta)^s u^D_{k,\alpha}, v \rangle = \int_{\Omega} g(|u^D_{k,\alpha}|) \frac{u^D_{k,\alpha}}{|u^D_{k,\alpha}|^\alpha} v \, dx \quad \forall \, v \in W^{s,G}_0(\Omega).$$

Moreover, $J(u^D_{k,\alpha}) = \alpha$ and

$$\mathcal{I}(u^D_{k,\alpha}) := c^D_{k,\alpha} = \sup_{K \in \mathcal{K}} \inf_{u \in K} \mathcal{I}(u) > 0.$$

Consequently, $\lambda^D_{k,\alpha} = 1/\mu_{k,\alpha}^D$ is an eigenvalue of $(D(\Omega))$ with eigenfunction $u^D_{k,\alpha}$.

Remark 4.2: We mention some observations regarding the Ljusternik–Schnirelman sequence of eigenvalues obtained in Theorem 1.1.

(a) Since in general functionals \mathcal{I} and \mathcal{J} are not homogeneous, we cannot claim that $\lambda^D_{k,\alpha} = 1/c^D_{k,\alpha}$.

(b) The sequence $\{\lambda^D_{k,\alpha}\}_{k \in \mathbb{N}}$ does not exhaust the spectrum of $(D(\Omega))$. In fact, the spectrum is not discrete since the parameter α can be taken in \mathbb{R}^+.

(c) As mentioned in Section 3, due to the closedness of the spectrum Σ_D we have that the quantity $\inf \{\lambda^D_{k,\alpha}: 0 < \alpha < \alpha_0\}$ is also an eigenvalue of $(D(\Omega))$, for any $\alpha_0 > 0$ fixed.
4.2. The Neumann/Robin case

To deal with the Robin case we take $X := X_\beta(\Omega)$, $A := \mathcal{I}(u)$ and $B := \mathcal{J}_\beta(u)$. The Neumann case it follows just by setting $\beta = 0$.

Proof of Theorem 1.1 (Neumann/Robin case): The proof of this result is similar to the proof of the Dirichlet case, just noticing that, the embedding $X_{\beta}(\Omega) \hookrightarrow L^G(\Omega)$ is compact (see Proposition 2.5 (ii)) and the quantities $[u]_{W^{s,G}(\mathbb{R}^n)}$ and $[u]_{W^{s,G}_*(\mathbb{R}^n)}$ play a symmetrical role.

5. Minimax eigenvalues

This section is devoted to prove Theorem 1.2. We start with the Dirichlet case.

Given $\alpha > 0$ we recall that

\[M^D_\alpha := \{ u \in W^{s,G}_0(\Omega) : \mathcal{I}(u) = \alpha \} \]

defines a C^1 manifold. We denote τ_α the restriction of $(-\Delta_g)^s$ to M^D_α, i.e. for each $u \in M^D_\alpha$,

\[\langle \tau_\alpha(u), v \rangle := \langle (-\Delta_g)^s u, v \rangle \quad \forall \ v \in T_u M^D_\alpha \]

where the tangent space of M^D_α at u is defined as

\[T_u M^D_\alpha := \{ v \in W^{s,G}_0(\Omega) : \langle \mathcal{I}'(u), v \rangle = 0 \} \]

Thus, we define

\[\| \tau_\alpha u \| := \| \tau_\alpha u \|_{(T_u M^D_\alpha)^*} \]

where $(T_u M^D_\alpha)^*$ is the dual space of $T_u M^D_\alpha$.

We recall that the duality mapping $J : W^{s,G}_0(\Omega) \to (W^{s,G}_0(\Omega))^*$ is defined as a bijective isometry such that

\[\| J u \|_{(W^{s,G}_0(\Omega))^*} = [u]_{W^{s,G}_0(\Omega)} \quad \langle J u, v \rangle = [u]_{W^{s,G}_0(\mathbb{R}^n)}^2 \quad \forall \ u \in W^{s,G}_0(\Omega). \quad (16) \]

See [54, Chapter 18.11] and [11, Proposition 47.18] for details.

Given $\alpha > 0$, the idea is to apply the minimax theorem stated in [55] to the functional $\mathcal{J}(u)$ under the constraint $\mathcal{I}(u) = \alpha$ to obtain a sequence of critical points of the form

\[C^D_{k,\alpha} = \inf_{h \in \Gamma(S^{k-1}, M^D_\alpha)} \sup_{w \in S^{k-1}} \Phi_{s,G,\mathbb{R}^n}(h(w)). \]

being $\Gamma(S^{k-1}, M^D_\alpha) = \{ h \in C(S^{k-1}, M^D_\alpha) : h \text{ is odd} \}$.

Recall that the derivatives of \mathcal{I} and \mathcal{J} are given by $\mathcal{J}'(u) = (-\Delta_g)^s u$ and $\mathcal{I}'(u) = \frac{g(|u|) u}{|u|}$ for any $u \in W^{s,G}_0(\Omega)$.

Definition 5.1: We say that \mathcal{J} satisfies the Palais–Smale condition on M^D_α at level c if any sequence $\{u_j\}_{j \in \mathbb{N}} \subset M^D_\alpha$ such that $\mathcal{J}(u_j) \to c$ and $\| \tau_\alpha u_j \| \to 0$, possesses a convergent subsequence.
The key ingredient is to analyze the validity of the Palais-Smale condition.

Lemma 5.2: Given $\alpha > 0$ the functional J satisfies the Palais–Smale condition on M^D_α at level $C^D_{k,\alpha}$.

Proof: We follow closely the construction of [56, Theorem 5.3]. Given $k \in \mathbb{N}$, let $\{u_j\}_{j \in \mathbb{N}}$ be a sequence in M^D_α such that

$$J(u_j) \to C^D_{k,\alpha} \quad \text{and} \quad \|\tau_\alpha(u_j)\| \to 0. \quad (17)$$

For each $u \in M^D_\alpha$ define the projection $P_u : W_0^{s,G}(\Omega) \to T_u M^D_\alpha$ such that

$$P_u v = v - \frac{\langle \mathcal{I}'(u), v \rangle}{\|\mathcal{I}'(u)\|^2_{(W_0^{s,G}(\Omega))^*}} \mathcal{I}^{-1}(\mathcal{I}'(u)).$$

Observe first that P_u is well defined: given $v \in W_0^{s,G}(\Omega)$ and $u \in M^D_\alpha$ we have

$$\langle \mathcal{I}'(u), P_u v \rangle = \langle \mathcal{I}'(u), v \rangle - \frac{\langle \mathcal{I}'(u), v \rangle}{\|\mathcal{I}'(u)\|^2_{(W_0^{s,G}(\Omega))^*}} \langle \mathcal{I}'(u), \mathcal{I}^{-1}(\mathcal{I}'(u)) \rangle = 0$$

since due to (17), $\langle \mathcal{I}'(u), \mathcal{I}^{-1}(\mathcal{I}'(u)) \rangle = \|\mathcal{I}'(u)\|^2_{(W_0^{s,G}(\Omega))^*}$.

Moreover, for every $v \in W_0^{s,G}(\Omega)$ we get the inequality

$$\langle \mathcal{I}'(u), v \rangle \leq \|\mathcal{I}'(u)\|_{(W_0^{s,G}(\Omega))^*} [v]_{W_0^{s,G}(\mathbb{R}^n)}$$

and by (16) it follows that

$$\left[\mathcal{I}^{-1}(\mathcal{I}'(u))\right]_{W_0^{s,G}(\mathbb{R}^n)} = \|\mathcal{I}'(u)\|_{(W_0^{s,G}(\Omega))^*}.$$

Therefore we get that $[P_u v]_{W_0^{s,G}(\mathbb{R}^n)} \leq 2[v]_{W_0^{s,G}(\mathbb{R}^n)}$, which implies that, for any $v \in W_0^{s,G}(\Omega)$

$$\langle (-\Delta_g)^s u, P_u v \rangle = \langle \tau_\alpha(u), P_u v \rangle \leq 2\|\tau_\alpha(u)\| [v]_{W_0^{s,G}(\mathbb{R}^n)}.$$

Consequently, by (17)

$$\sup_{[v]_{W_0^{s,G}(\mathbb{R}^n)} \leq 1} \|(-\Delta_g)^s u_j, P_u v\| \leq \sup_{[v]_{W_0^{s,G}(\mathbb{R}^n)} \leq 1} 2\|\tau_\alpha(u_j)\| [v]_{W_0^{s,G}(\mathbb{R}^n)} \to 0 \quad \text{as} \quad j \to \infty.$$

Hence we get that

$$\langle (-\Delta_g)^s u_j, P_u v \rangle = \langle (-\Delta_g)^s u_j, v \rangle - \frac{\langle \mathcal{I}'(u_j), v \rangle}{\|\mathcal{I}'(u_j)\|^2_{(W_0^{s,G}(\Omega))^*}} \mathcal{I}^{-1}(\mathcal{I}'(u_j))$$

$$= \langle (-\Delta_g)^s u_j, v \rangle - \left\langle (-\Delta_g)^s u_j, J^{-1}(\mathcal{I}'(u_j)) \right\rangle \frac{\langle \mathcal{I}'(u_j), v \rangle}{\|\mathcal{I}'(u_j)\|^2_{(W_0^{s,G}(\Omega))^*}}$$
that is
\[
(-\Delta_g)^s u_j - \frac{\langle(-\Delta_g)^s u_j, J^{-1}(I'(u_j))\rangle}{\|I'(u_j)\|^2_{(W^{s,G}_0(\Omega))^*}} I'(u_j) \to 0 \quad \text{weakly in } W^{s,G}_0(\Omega).
\]

From (17), up to a subsequence $u_j \rightharpoonup u$ weakly in $W^{s,G}_0(\Omega)$ and strongly in $L^G(\Omega)$ to some $u \in W^{s,G}_0(\Omega)$ due to Proposition 2.5. Observe that in Lemma 4.1 we have proved that I' satisfies property (h2) of Section 4, i.e. I is strongly continuous, which implies that $I'(u_j) \to I'(u)$.

Moreover, (17) also gives that $(-\Delta_g)^s u_j$ is bounded and u_j is bounded away from zero. Therefore, up to a subsequence
\[
(-\Delta_g)^s u_j \rightharpoonup v \quad \text{weakly in } (W^{s,G}_0(\Omega))^*
\]

In Lemma 4.1 we have proved that $\mathcal{J}' = (-\Delta_g)^s$ satisfies property (h3) of Section 4, from where, in view of (18) we have that $u_j \to u$ strongly in $W^{s,G}_0(\Omega)$. This proves that \mathcal{J} satisfies the Palais-Smale condition on M^D_α at level $C^D_{k,\alpha}$ which concludes the proof. ■

Remark 5.3: Observe that in the proof of Lemma 5.2 we have not used any particular property for functions in $W^{s,G}_0(\Omega)$. With the pertinent changes, the same arguments can be applied to deduce that, given $\alpha > 0$, the functional \mathcal{J} satisfies the Palais-Smale condition on M^N_α (resp. M^R_α) at level $C^N_{k,\alpha}$ (resp. $C^R_{k,\alpha}$), where $C^N_{k,\alpha}$ (resp. $C^R_{k,\alpha}$) is defined just by changing the superscript D by N (resp. R) in the definition of $C^D_{k,\alpha}$. We leave to the reader the remaining details.

Proof of Theorem 1.2: Due to Lemma 5.2, \mathcal{J} (resp. \mathcal{J}_0, \mathcal{J}_β) satisfies the Palais-Smale condition on M^D_α (resp. M^N_α, M^R_α) at level $C^D_{k,\alpha}$ (resp. $C^N_{k,\alpha}$, $C^R_{k,\alpha}$) for each $k \in \mathbb{N}$, then by [55, Proposition 2.7] there exists $u^D_{k,\alpha} \in M^D_\alpha$ (resp. $u^N_{k,\alpha} \in M^N_\alpha$, $u^R_{k,\alpha} \in M^R_\alpha$) such that
\[
\mathcal{J}(u^D_{k,\alpha}) = C^D_{k,\alpha}, \quad \text{(resp. } \mathcal{J}_0(u^N_{k,\alpha}) = C^N_{k,\alpha}, \mathcal{J}_\beta(u^R_{k,\alpha}) = C^R_{k,\alpha})
\]
and
\[
\mathcal{J}'(u^D_{k,\alpha}) = 0 \quad \text{(resp. } \mathcal{J}_0'(u^N_{k,\alpha}) = \mathcal{J}_\beta'(u^R_{k,\alpha}) = 0).
\]

Therefore, by the Lagrange multipliers rule, there exists $\Lambda^D_{k,\alpha} \in \mathbb{R}$ (resp. $\Lambda^N_{k,\alpha} \in \mathbb{R}, \Lambda^R_{k,\alpha} \in \mathbb{R}$) such that
\[
\mathcal{J}'(u^D_{k,\alpha}) = \Lambda^D_{k,\alpha} I'(u^D_{k,\alpha}) \quad \text{weakly in } \Omega,
\]

\[
\text{(resp. } \mathcal{J}_0'(u^N_{k,\alpha}) = \Lambda^N_{k,\alpha} I'(u^N_{k,\alpha}), \mathcal{J}_\beta'(u^R_{k,\alpha}) = \Lambda^R_{k,\alpha} I'(u^R_{k,\alpha})),
\]
that is, $\{\Lambda^D_{k,\alpha}\}_{k \in \mathbb{N}}, \{\Lambda^N_{k,\alpha}\}_{k \in \mathbb{N}}$ and $\{\Lambda^R_{k,\alpha}\}_{k \in \mathbb{N}}$ are eigenvalues of $(D(\Omega))$, $(N(\Omega))$ and $(R(\Omega))$, respectively, satisfying that
\[
\mathcal{J}(u^D_{k,\alpha}) = C^D_{k,\alpha}, \quad \mathcal{J}_0(u^N_{k,\alpha}) = C^N_{k,\alpha}, \quad \mathcal{J}_\beta(u^R_{k,\alpha}) = C^R_{k,\alpha}.
\]

The proof is concluded. ■
Finally we provide a proof of the comparison result Theorem 1.4.

Proof of Theorem 1.4. Let \(u_{k,\alpha}^D \) be the eigenfunctions corresponding to \(\lambda_{k,\alpha}^D \). By definition of \(\lambda_{k,\alpha}^D \) and property (G1) we get

\[
\lambda_{k,\alpha}^D = \frac{\langle (-\Delta_g)^s u_{k,\alpha}^D, u_{k,\alpha}^D \rangle}{\int_{\Omega} g(|u_{k,\alpha}^D|)|u_{k,\alpha}^D| \, dx} \leq \frac{p^+}{p^-} \Phi_{S,G,\mathbb{R}^n}(u_{k,\alpha}^D) = \frac{p^+}{p^-} c_{k,\alpha}^D.
\]

In a similar way, if we consider the sequence \(v_{k,\alpha}^D \) of eigenfunctions corresponding to \(\Lambda_{k,\alpha}^D \), by using (G1) we get

\[
\Lambda_{k,\alpha}^D = \frac{\langle (-\Delta_g)^s v_{k,\alpha}^D, v_{k,\alpha}^D \rangle}{\int_{\Omega} g(|v_{k,\alpha}^D|)|v_{k,\alpha}^D| \, dx} \leq \frac{p^+}{p^-} \Phi_{S,G,\mathbb{R}^n}(v_{k,\alpha}^D) = \frac{p^+}{p^-} C_{k,\alpha}^D.
\]

The lower bounds follow analogously.

Finally, we provide a proof of Theorem 1.3

Proof of Theorem 1.3. Step 1. In [45, Corollary 2.10] it is proved that \(W_{0}^{s,G}(\Omega) \subset W_{0}^{t,q}(\Omega) \) for \(0 < t < s \) and \(1 \leq q < p^- \), therefore, for \(u \in W_{0}^{t,q}(\Omega) \)

\[
[u]_{W_{t,q}^{s}(\mathbb{R}^n)} \leq C[u]_{W_{0}^{s,G}(\mathbb{R}^n)}.
\]

Given \(u \in M_{\alpha}^D \) we get

\[
\mathcal{J}(u) = \Phi_{S,G,\mathbb{R}^n}(u) \geq [u]_{W_{0}^{s,G}(\mathbb{R}^n)} \geq C \xi^-([u]_{W_{t,q}^{s}(\mathbb{R}^n)})
\]

where we have used Lemma 2.6. Then

\[
C[u]_{W_{t,q}^{s}(\mathbb{R}^n)} \leq \mathcal{J}(u)
\]

for some \(\gamma = \gamma(p^\pm) \).

Step 2. Define

\[
\mathcal{M}_\delta^D := \{ u \in W_{0}^{t,q}(\Omega) : [u]_{L^{q}(\Omega)}^\gamma \leq \delta \}
\]

where \(\gamma \) is the same of step 1.

As in [45, Lemma 2.7] it can be seen that \(L^{G}(\Omega) \subset L^{q}(\Omega) \). Then \(\| u \|_{L^{q}(\Omega)} \leq C \| u \|_{L^{G}(\Omega)} \).

Given \(u \in M_{\alpha}^D \),

\[
\alpha = \mathcal{I}(u) \geq \xi^- (\| u \|_{L^{G}(\Omega)}) \geq C \xi^- (\| u \|_{L^{q}(\Omega)}).
\]

Therefore, there exists some \(\delta = \delta(\alpha, p^\pm) \) such that \(\| u \|_{L^{q}(\Omega)} \leq \delta \) and then

\[
M_{\alpha}^D \subset \mathcal{M}_\delta^D.
\]
Step 3. By (19) and (20)

\[C_{k,\alpha}^D = \inf_{h \in \Gamma(S^{k-1}, M_{\alpha}^D)} \sup_{w \in S^{k-1}} \mathcal{J}(h(w)) \]

\[\geq C \inf_{h \in \Gamma(S^{k-1}, M_{\alpha}^D)} \sup_{w \in S^{k-1}} [h(w)]_{W^{1,q}}^\gamma := C(\mu_k^D)^\gamma \]

for some \(\gamma = \gamma(p^\pm) \), where \(\mu_k^D \) is the minimax eigenvalue of the fractional \((t, q)\)-Laplacian with Dirichlet boundary conditions obtained in [49, Theorem 4.1] (observe that since the \((t, q)\)-Laplacian is a homogeneous operator, in fact the same eigenvalue is obtained for any \(\delta \)).

Step 4. From Theorem 1.4 and (21) we get

\[C_{\frac{p^-}{\alpha p^+}}(\mu_k^D)^\gamma \leq \frac{p^-}{\alpha p^+} C_{k,\alpha}^D \leq \Lambda_{k,\alpha}^D. \]

Since \(\mu_k^D \to \infty \) as \(k \to \infty \) we obtain that \(C_{k,\alpha}^D, \Lambda_{k,\alpha}^D \to \infty \) as \(k \to \infty \). \(\blacksquare \)

Disclosure statement

No potential conflict of interest was reported by the author(s).

Funding

The third author was partially supported by Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET-Argentina).

References

[1] Krasnoselskij A. Topological methods in the theory of nonlinear integral equations. N. P: Pergamon Press; 1964.

[2] Citlanadze Ė. Existence theorems for minimax points in Banach spaces and their applications. Trudy Moskov Mat Obšč. 1953;2:235–274.

[3] Browder F. Infinite dimensional manifolds and nonlinear elliptic eigenvalue problems. Ann Math. 1965;52:459–477.

[4] Browder F. On the eigenfunctions and eigenvalues of the general linear elliptic differential operator. Proc Nat Acad Sci USA. 1953;39:433–439.

[5] Browder F. Variational methods for nonlinear elliptic eigenvalue problems. Bull Amer Math Soc. 1965;71:176–183.

[6] Fučík S, Nečas J. Ljusternik–Schnirelmann theorem and nonlinear eigenvalue problems. Mathematische Nachrichten. 1972;53(1–6):277–289.

[7] Fučík S, Nečas J. Spectral theory of nonlinear operators. Proceedings of Equadiff III (Third Czechoslovak Conf. Differential Equations and their Appl., Brno, 1972); Folia Fac. Sci. Natur. Univ. Purkyňianae Brunensis, Ser. Monograph., Tomus 1; 1973. p. 163–174.

[8] Browder F. Existence theorems for nonlinear partial differential equations. 1970 Global Analysis (Proc. Sympos. Pure Math., Vol. XVI, Berkeley, Calif., 1968), Providence (RI): Amer. Math. Soc.; p. 1–60.

[9] Browder F. Ljusternik–Schnirelmann category and nonlinear elliptic eigenvalue problems. Bull Amer Math Soc. 1965;71:644–648.

[10] Motreanu D, Motreanu VV, Papageorgiou NS. Topological and variational methods with applications to nonlinear boundary value problems. New York: Springer; 2014.
[11] Zeidler E. Nonlinear functional analysis and its applications: III: variational methods and optimization. Springer Science & Business Media. New York: Springer-Verlag; 1985.

[12] Browder FE. Nonlinear elliptic boundary value problems. Bull Amer Math Soc. 1963;69: 862–875.

[13] Browder FE. Nonlinear elliptic problems II. Bull Amer Math Soc. 1964;70:299–302.

[14] Minty GJ. Monotone (nonlinear) operators in Hilbert space. Duke Math J. 1962;29:341–346. MR0169064.

[15] Vařnberg MM, Kačurovskij RI. On the variational theory of non-linear operators and equations. Dokl Akad Nauk SSSR. 1959;129:1199–1202.

[16] García Azorero JP, Peral Alonso I. Existence and nonuniqueness for the p-Laplacian: nonlinear eigenvalues. Comm Partial Differ Equ. 1987;12:1389–1430.

[17] Anane A. Simplicité et isolation de la première valeur propre du p-Laplacien avec poids. C R Acad Sci Paris. 1987;305:725–728.

[18] Anane A, Tsouli N. On the second eigenvalue of the p-Laplacian. Nonlinear Partial Differential Equations. 1996. p. 1–9. (Pitman Research Notes Mathematics Series; 343).

[19] Lindqvist P. On the equation $\text{div}(\text{sign} u |\nabla u|^p - 2 \nabla u) + \lambda |u|^{p-2} u = 0$. Proc Am Math Soc. 1990;109:157–164.

[20] Fernández Bonder J, Pinasco JP, Salort A. Quasilinear eigenvalues. Rev Un Mat Argentina. 2015;56(1):1–25.

[21] Lê An. Eigenvalue problems for the p-Laplacian. Nonlinear Anal. 2006;64:1057–1099.

[22] Lindgren E, Lindqvist P. Fractional eigenvalues. Calc Var Partial Differ Equ. 2014;49:795–826.

[23] Brasco L, Parini E, Squassina M. Stability of variational eigenvalues for the fractional p-Laplacian. Discrete Contin Dyn Syst. 2016;36(4):1813–1845.

[24] Brasco L, Parini E. The second eigenvalue of the fractional p-Laplacian. Adv Calc Var. 2016;9(4):323–355.

[25] Del Pezzo LM, Salort AM. The first non-zero Neumann p-fractional eigenvalue. Nonlinear Anal: Theor, Meth Appl. 2015;118:130–143.

[26] Franzina G, Palatucci G. Fractional p-eigenvalues. Riv Mat Univ Parma. 2014;5(2):315–328.

[27] Gossez JP, Manásevich R. On a nonlinear eigenvalue problem in Orlicz–Sobolev spaces. Proc Roy Soc Edinburgh Sect. 2002;132 A:891–909.

[28] García-Huidobro M, Le VK, Manásevich R, et al. On principal eigenvalues for quasilinear elliptic differential operators: an Orlicz–Sobolev space setting. NoDEA Nonlinear Differ Equ Appl. 1999;6(2):207–225. MR1694787.

[29] Mustonen V, Tienari M. An eigenvalue problem for generalized Laplacian in Orlicz–Sobolev spaces. Proc R Soc Edinburgh Sec A: Math. 1999;129(1):153–163.

[30] Montenegro M, Lorca S. The eigenvalue problem for quasilinear elliptic operators with general growth. Appl Math Lett. 2012;25(7):1045–1049.

[31] Elmahi A. Sur certains problèmes elliptiques et paraboliques non linéaires dans les espaces d’Orlicz [Thèse]. Fes, Maroc: Université Sidi Mohamed Ben Abdellah; 1996.

[32] Tienari M. Ljusternik–Schnirelmann theorem for the generalized Laplacian. J Differ Equ. 2000;161(1):174–190.

[33] Fernández Bonder J, Salort AM. Fractional order Orlicz–Sobolev spaces. J Funct Anal. 2019;277(2):333–367.

[34] Bahrouni S, Salort AM. Neumann and Robin type boundary conditions in fractional Orlicz–Sobolev spaces. ESAIM Control Optim Calc Var. 2021;27:1815. suppl., Paper No. 23 pp.

[35] Salort AM, Vivas H. Fractional eigenvalues in Orlicz spaces with no Δ_2 condition. preprint Available from: arXiv:2005.01847.

[36] Salort AM. Eigenvalues and minimizers for a non-standard growth non-local operator. J Differ Equ. 2020;268(9):5413–5439.

[37] Alberico A, Cianchi A, Pick L, et al. Fractional Orlicz–Sobolev embeddings. Journal De Mathématiques Pures Et Appliquées. 2021;149:216–253.

[38] Alberico A, Cianchi A, Pick L, et al. On the limit as $s \to 0^+$ of fractional Orlicz–Sobolev spaces. J Fourier Anal Appl. 2020;26(6):1–19.
[39] Azroul E, Benkirane A, Srati M. Existence of solutions for a nonlocal type problem in fractional Orlicz Sobolev spaces. Adv Oper Theor. 2020;5(4):1350–1375.
[40] Bahrouni S, Ounaies H, Tavares LS. Basic results of fractional Orlicz–Sobolev space and applications to non-local problems. Topol Meth Nonlinear Anal. 2020;55(2):681–695.
[41] Bahrouni S, Ounaies H. Embedding theorems in the fractional Orlicz–Sobolev space and applications to non-local problems. Discret Contin Dyn Syst. 2020;40(5):2917–2944.
[42] Bahrouni S. Infinitely many solutions for problems in fractional Orlicz–Sobolev spaces. Rocky Mt J Math. 2020;50(4):1151–1173.
[43] Bahrouni A, Bahrouni S, Xiang M. On a class of nonvariational problems in fractional Orlicz–Sobolev spaces. Nonlinear Analysis. 2020;190:111595.
[44] De Nápoli P, Fernández Bonder J, Salort AM. A Pólya–Szegö principle for general fractional Orlicz–Sobolev spaces. Complex Variables Elliptic Equ. 2020;66:546–568.
[45] Fernández Bonder J, Pérez-Llanos M, Salort AM. A Hölder infinity Laplacian obtained as limit of Orlicz fractional Laplacians. Rev Mat Complut. 2021. https://doi.org/10.1007/s13163-021-00390-2
[46] Fernández Bonder J, Salort AM, Vivas H. Interior and up to the boundary regularity for the fractional g-Laplacian: the convex case. 2020. Available from: arXiv:2008.05543.
[47] Salort AM. Hardy inequalities in fractional Orlicz–Sobolev spaces. Publ Mat. 2022;66:183–195. DOI: 10.5565/PUBLMAT6612207.
[48] Drábek P, Robinson SB. Resonance problems for the p-Laplacian. J Funct Anal. 1999;169:189–200.
[49] Lê An, Schmitt K. Variational eigenvalues of degenerate eigenvalue problems for the weighted p-Laplacian. Adv Nonlinear Stud. 2005;5(4):573–585.
[50] Pick Luboš, Kufner Alois, John Oldřich, Fučík Svatopluk. Function spaces. Vol. 1. Second revised and extended edition. De Gruyter Series in Nonlinear Analysis and Applications, 14. Walter de Gruyter & Co., Berlin, 2013. xvi+479 pp. ISBN: 978-3-11-025041-1; 978-3-11-025042-8
[51] Rao M, Ren Z. Applications of Orlicz spaces. Monographs and Textbooks in Pure and Applied Mathematics, 250. Marcel Dekker, Inc., New York, 2002.
[52] Lamperti J. On the isometries of certain function-spaces. Pacific J Math. 1958;8(3):459–466.
[53] Fukagai N, Ito M, Narukawa K. Positive solutions of quasilinear elliptic equations with critical Orlicz–Sobolev nonlinearity on \mathbb{R}^d. Funkcialaj Ekvacioj. 2006;49:235–267.
[54] Zeidler E. Nonlinear functional analysis and its applications: II/B: nonlinear monotone operators. Translated from the German by the author and Leo F. Boron. New York: Springer-Verlag; 1990.
[55] Cuesta M. Minimax theorems on C^1 manifolds via Ekeland variational principle. Abstract Appl Anal. 2003;13:757–768.
[56] Szulkin A. Ljusternik–Schnirelmann theory on C^1-manifolds. Ann Inst Henri Poincaré. 1988;5(2):119–139.