HYDRODYNAMIC LIMIT OF A B.G.K. LIKE MODEL ON DOMAINS WITH BOUNDARIES AND ANALYSIS OF KINETIC BOUNDARY CONDITIONS FOR SCALAR MULTIDIMENSIONAL CONSERVATION LAWS

M. TIDRIRI

Abstract. In this paper we study the hydrodynamic limit of a B.G.K. like kinetic model on domains with boundaries via BV_{loc} theory. We obtain as a consequence existence results for scalar multidimensional conservation laws with kinetic boundary conditions. We require that the initial and boundary data satisfy the optimal assumptions that they all belong to $L^1 \cap L^\infty$ with the additional regularity assumptions that the initial data are in BV_{loc}. We also extend our hydrodynamic analysis to the case of a generalized kinetic model to account for forces effects and we obtain as a consequence the existence theory for conservation laws with source terms and kinetic boundary conditions.

1. INTRODUCTION

In this paper we consider the following kinetic model

\begin{align}
\partial_t + a(v) \cdot \partial_x g_\epsilon(x, v, t) &= \frac{1}{\epsilon} (\chi_{\Omega_\epsilon}(x, t)(v) - g_\epsilon(x, v, t)) \quad \text{in } \Omega \times V \times (0, T) \\
g_\epsilon(x, v, t) &= g_{\epsilon 0}(x, v, t) \quad \text{on } \Gamma_0^- \times (0, T) \\
g_\epsilon(x, v, t) &= g_{\epsilon 1}(x, v, t) \quad \text{on } \Gamma_1^- \times (0, T), \\
g_\epsilon(x, v, 0) &= g_\epsilon^0(x, v) \quad \text{in } \Omega \times V
\end{align}

and study its relation to the scalar multidimensional conservation laws

\begin{align}
\partial_t w + \partial_{x_i} [A_i(w)] &= 0 \quad \text{in } \Omega_g \times (0, T) \\
\text{Boundary conditions for } w \text{ on } \Gamma_0 \times (0, T) \text{ and } \Gamma_1 \times (0, T) \\
w(x, 0) &= w^0(x) \quad \text{in } \Omega
\end{align}

Here, $\Omega = (0, 1) \times \mathbb{R}^{d-1}$ is the physical domain. The boundaries are defined as follows

1991 Mathematics Subject Classification. 35L65; 82C40.
Key words and phrases. Conservation laws, Hydrodynamic limit, Kinetic boundary conditions.

The author is partially supported by the Air Force Office of Scientific Research under Grant F496200210354. This paper will appear in Journal of Statistical Physics.
\[\Gamma_0 = \{0\} \times \mathbb{R}^{d-1}, \quad \Gamma_1 = \{1\} \times \mathbb{R}^{d-1}, \]
\[\Gamma_0^- = \{(x,v) \in \{0\} \times \mathbb{R}^{d-1} \times V : a(v) \cdot n(x) < 0\} \]
\[\Gamma_1^- = \{(x,v) \in \{1\} \times \mathbb{R}^{d-1} \times V : a(v) \cdot n(x) < 0\} \]

where \(n \) denotes the exterior unit normal vector to \(\Omega \). The boundary conditions in (6) for the conservation laws are prescribed on a part of \(\Gamma_0 \) resp. \(\Gamma_1 \). These boundary conditions will be precised in Definition 3.1. The set \(V = \mathbb{R} \) is the velocity domain. The function \(g_\varepsilon \) describes the microscopic density of particles at \((x,t)\) with velocity \(v \) in the kinetic domain. The function \(w \) describes the local density of particles at \((x,t)\) in the hydrodynamic domain.

The physical parameter \(\epsilon > 0 \) is the microscopic scale. The functions \(g_0^\varepsilon \) and \(w^0 \) are the initial data while \(g_{0,1} \) and \(g_{1,1} \) are boundary data. The boundary conditions in (6) involve also \(w_1 \) and \(g_0 \) which are given boundary data; see Definition 3.1 below. Let \(A = (A_i)_{1 \leq i \leq d} \), the components of \(A \) are assumed to satisfy \(A_i(\cdot) \in C^1 \) and are related to \(a_i(\cdot) \) by \(a_i(\cdot) = A_i'(\cdot), i = 1, \cdots, d \). The local density of particles \(w_\varepsilon \) at \((x,t)\) is related to the microscopic density \(g_\varepsilon \) by \(w_\varepsilon(x,t) = \int_V g_\varepsilon(x,v,t)dv \). The collisions in the kinetic domain are given by the nonlinear kernel in the right hand side of Eq. (1) in which \(\chi_u(v) \) is the signature of \(u \) defined by

\[\chi_u(v) = \begin{cases} +1 & \text{if } 0 < v \leq u \\ -1 & \text{if } u \leq v < 0 \\ 0 & \text{otherwise} \end{cases} \]

Our main objective in this paper is to describe the conservation laws (5)-(7) as the macroscopic limit of the Boltzmann-like equations (1)-(4), as the microscopic scale, \(\epsilon > 0 \), goes to 0. This problem is a particular case of the more general problem of describing compressible Euler equations as the macroscopic limit of Boltzmann or B.G.K. equations, as the microscopic scale goes to 0. The convergence of the moments of the kinetic distributions of Boltzmann or B.G.K. equations to weak solutions of the compressible Euler equations is still an open problem. In the case of strong solutions this question has been solved by Caflisch [2]. The case of domains with boundaries is still completely open.

The study of the hydrodynamic limit of the kinetic model (1)-(4) in full space \((\Omega = \mathbb{R}^d) \) has been performed by Perthame and Tadmor [7]. They proved that this model converges as the microscopic scale goes to 0 to a conservation laws of the form in (5). Later Nouri, Omrane, and Vila attempted to study this hydrodynamic limit in the case of \(\mathbb{R}^+ \times \mathbb{R}^{d-1} \) [6]. Unfortunately their proofs are wrong. In their proofs of the various \(L^\infty, L^1, \) and \(BV \) uniform, in \(\epsilon \), estimates, they have used in an essential way Gronwall lemma, which does not yield the uniform bounds they claimed. These uniform bounds are central to their proofs. Therefore their proofs are wrong. In [6], Proposition 3 on page 784 and Proposition 4 on page 786, are obtained by applying Gronwall lemma to the inequality

\[V_\varepsilon(t) \leq \int_0^t \frac{1}{\varepsilon} e^{(s-t)/\varepsilon} V_\varepsilon(s)ds + C \]
and then they conclude that $|V_\epsilon(t)|$ is uniformly bounded. This is not the case as the following counterexample shows. Take $V_\epsilon(t) = \frac{Ct}{\epsilon}$. V_ϵ satisfies the inequality (9), however, V_ϵ is not uniformly in ϵ bounded.

In this paper, we shall see how the ideas developed by the author in [14, 15] to study the more difficult coupled system of kinetic equations (11) and their hydrodynamic limit (conservation laws of the form in (5)), which is a simplified case of the more general coupled system of Boltzmann equations and their hydrodynamic limits (compressible Euler and Navier-Stokes equations) introduced and studied in [11, 12, 13] (see also the references therein), can be applied to study the hydrodynamic limit of the kinetic model (11)-(14) in the case of domains with boundaries. Our proofs rely on optimal assumptions on the initial and boundary data and do not use any technical assumptions. For a further study of this problem and a generalization of the concept of kinetic formulation to conservation laws on domains with boundaries, we refer to the author’s work [16].

In the second part of this paper, we introduce a generalization of the kinetic model (11)-(14) that includes forces effects and whose macroscopic limit, as the microscopic scale go to 0, yields conservation laws with source terms. This kinetic model is more appropriate to describe the physics at the microscopic level than the model proposed in [7] for the approximation of conservation laws with source terms. We then study the hydrodynamic limit of the proposed kinetic model and prove the existence theory for its continuum limit, i.e. the conservation laws with source terms.

This paper is organized as follows. In the next section we study the kinetic problem. We prove various a priori estimates that are needed for the study of the hydrodynamic limit of the kinetic problem. In Section 3, we precise our definition of physically correct solution to the problem (5)-(7). We then study the hydrodynamic limit of the kinetic problem and prove our main result. Finally in Section 4, we study the one dimensional case via compensated compactness. We prove the convergence of the moments of the kinetic distributions to the solution of the conservation laws without any compactness argument (based on BV_{loc} theory).

2. The kinetic equations

In this section we shall study various properties of the solution of the kinetic equations (11)-(14). Some of our proofs are closely related to those for the full space case in [7]. However, our problem is on a domain with boundaries. This introduces new difficulties that are not present in the full space case. These difficulties must be handled by different techniques. We begin by stating a result about the well posedness of the kinetic problem (11)-(14). We then establish various properties of the solution, including L^∞, L^1, and BV_{loc} estimates. These estimates will be used for the study of the hydrodynamic limit of Problem (11)-(14) as $\epsilon \to 0$. We shall also use the following notations.

$$\Omega_0 = \{(x, v, t) \in \Omega \times V \times (0, T) : x_1 - a_1(v)t < 0\}$$
$$\Omega_{01} = \{(x, v, t) \in \Omega \times V \times (0, T) : 0 < x_1 - a_1(v)t < 1\}$$
$$\Omega_1 = \{(x, v, t) \in \Omega \times V \times (0, T) : x_1 - a_1(v)t > 1\}$$

where $x = (x_1, x_*)$.
2.1. Existence theory and basic estimates. We establish in this section the existence and uniqueness theory and derive basic estimates for the solutions of the kinetic equations.

Theorem 2.1. Assume that

\[g_\epsilon^0 \in L^1(\Omega \times V), \quad a(v) \cdot n g_{e1} \in L^1(\Gamma^-_1 \times (0, T)), \quad a(v) \cdot n g_{e0} \in L^1(\Gamma^-_0 \times (0, T)) \]

Then the problem (1)-(4) has a unique solution \(g_\epsilon \) in \(L^\infty((0, T); L^1(\Omega \times V)) \). Moreover, \(g_\epsilon \) satisfies the integral representation

\[
\begin{align*}
\text{In } \Omega_0 & \quad g_\epsilon(x, v, t) = g_{e0}(x^* - \frac{x_1}{a_1(v)} a_*(v), v, t - \frac{x_1}{a_1(v)} \exp(-x_1/(a_1(v)\epsilon)) + \frac{1}{\epsilon} \int_{t - \frac{x_1}{a_1(v)}}^t e^{(s-t)/\epsilon} \chi_{w_\epsilon(x(s), s)}(v) ds \\
\text{In } \Omega_{01} & \quad g_\epsilon(x, v, t) = g^0_{e}(x - a(v)t, v) \exp(-t/\epsilon) + \frac{1}{\epsilon} \int_0^t e^{(s-t)/\epsilon} \chi_{w_\epsilon(x(s), s)}(v) ds \\
\text{In } \Omega_1 & \quad g_\epsilon(x, v, t) = g_{e1}(x^* + \frac{1 - x_1}{a_1(v)} a_*(v), v, t - \frac{x_1 - 1}{a_1(v)} \exp((1 - x_1)/\epsilon a_1(v)) + \frac{1}{\epsilon} \int_{t - \frac{x_1}{a_1(v)}}^t e^{(s-t)/\epsilon} \chi_{w_\epsilon(x(s), s)}(v) ds
\end{align*}
\]

where \(x(s) = x + (s-t)a(v), \ x = (x_1, x^*), \) and \(a(v) = (a_1(v), a_*(v)) \).

Finally, let \(g_\epsilon \) and \(G_\epsilon \) be two solutions of (1)-(4) with corresponding densities \(w_\epsilon(x, t) = \int_V g_\epsilon(x, v, t) dv \) and \(W_\epsilon(x, t) = \int_V G_\epsilon(x, v, t) dv \) and let \(g^0_{e}, \ g_{e0}, \ g_{e1} \) resp. \(G^0_{e}, \ G_{e0}, \ G_{e1} \) denote the corresponding data. We have

\[\|g_\epsilon - G_\epsilon\|_{L^1(\Omega \times V)} + \|a(v) \cdot n(g_\epsilon - G_\epsilon)\|_{L^1(\Gamma^-_0 \times (0, t))} + \|a(v) \cdot n(g_{e0} - G_{e0})\|_{L^1(\Gamma^-_1 \times (0, t))} \]

\leq \|g^0_{e} - G^0_{e}\|_{L^1(\Omega \times V)} + \|a(v) \cdot n(g_{e0} - G_{e0})\|_{L^1(\Gamma^-_0 \times (0, t))} + \|a(v) \cdot n(g_{e1} - G_{e1})\|_{L^1(\Gamma^-_1 \times (0, t))}

(10)

Remark 2.1. Although we can derive contraction properties directly from the integral representation, we prefer to use a different method, which allows us to obtain the inequalities in (10).

Proof of Theorem 2.1
We begin with proving the uniqueness and the continuous dependence of the solution on the data given in (10). These estimates are needed for the proofs of various results below. Therefore, we shall give a somewhat detailed proof. The idea of the proof is to use a combination of the author’s method [10, 11] and ideas from [4].

The function G_ϵ satisfies an equation similar to Eq. (1). Subtracting this equation from Eq. (1), and multiplying the resulting equation by φ a test function in $C^1(\bar{\Omega} \times V \times [0, T])$ to be precised later, and integrating by parts, we obtain

\[
\int_{\Omega \times V} ((g_\epsilon - G_\epsilon) \varphi) (\cdot, \cdot, t) - \int_{\Omega \times V} ((g_\epsilon - G_\epsilon) \varphi) (\cdot, \cdot, 0) \\
- \int_{\Omega \times V \times (0, t)} (\partial_t + a(v) \cdot \partial_x) (g_\epsilon - G_\epsilon) \\
+ \int_{\Gamma_0^+ \times (0, t)} a(v) \cdot n(g_{\epsilon 0} - g_{\epsilon 1}) \varphi + \int_{\Gamma_0^- \times (0, t)} a(v) \cdot n(g_{\epsilon 1} - g_{\epsilon 1}) \varphi \\
+ \int_{\Gamma_1^+ \times (0, t)} a(v) \cdot n(g_\epsilon - G_\epsilon) \varphi + \int_{\Gamma_1^- \times (0, t)} a(v) \cdot n(g_\epsilon - G_\epsilon) \varphi \\
= \frac{1}{\epsilon} \int_{\Omega \times V \times (0, t)} ((\chi_{\omega_\epsilon} - \chi_{\omega_\epsilon}) \text{sign}(g_\epsilon - G_\epsilon) - (g_\epsilon - G_\epsilon)) \varphi
\] (11)

We then take $\varphi = \text{sign}^\mu (g_\epsilon - G_\epsilon) \psi (x, t)$ with $x \text{sign}^\mu (x) \geq 0 \ x \in \mathbb{R}$, and ψ is a nonnegative test function and sign^μ is a regularization of sign function. Plugging in (11) and passing to the limit as $\mu \to 0$, we obtain

\[
\int_{\Omega \times V} (|g_\epsilon - G_\epsilon| \psi) (\cdot, \cdot, t) + \int_{\Gamma_0^+ \times (0, t)} a(v) \cdot n|g_\epsilon - G_\epsilon| \psi \\
+ \int_{\Gamma_0^- \times (0, t)} a(v) \cdot n|g_\epsilon - G_\epsilon| \psi + \int_{\Gamma_0^- \times (0, t)} a(v) \cdot n|g_{\epsilon 0} - G_{\epsilon 0}| \psi + \\
\int_{\Gamma_1^+ \times (0, t)} a(v) \cdot n|g_\epsilon - G_\epsilon| \psi - \int_{\Omega \times V} (|g_\epsilon - G_\epsilon| \psi) (\cdot, \cdot, 0) \\
= \frac{1}{\epsilon} \int_{\Omega \times V \times (0, t)} [(\chi_{\omega_\epsilon} - \chi_{\omega_\epsilon}) \text{sign}(g_\epsilon - G_\epsilon) - |g_\epsilon - G_\epsilon|] \psi + \\
\int_{\Omega \times V \times (0, t)} (\partial_t + a(v) \cdot \partial_x) (|g_\epsilon - G_\epsilon|) \psi
\] (12)

Using the properties of χ, this yields
\[
\int_{\Omega \times V} (|g_\epsilon - G_\epsilon| \psi)(\cdot, \cdot, t) + \int_{\Gamma_0^+ \times (0, t)} a(v) \cdot n |g_\epsilon - G_\epsilon| \psi
\]
\[
+ \int_{\Gamma_0^+ \times (0, t)} a(v) \cdot n |g_\epsilon - G_\epsilon| \psi
\]
\[
\leq \int_{\Omega \times V} (|g_\epsilon - G_\epsilon| \psi)(\cdot, \cdot, 0) - \int_{\Gamma_0^+ \times (0, t)} a(v) \cdot n |g_\epsilon - G_\epsilon| \psi
\]
\[
- \int_{\Gamma_1^- \times (0, t)} a(v) \cdot n |g_{\epsilon 1} - G_{\epsilon 1}| \psi + \int_{\Omega \times V \times (0, t)} (\partial_t + a(v) \cdot \partial_x)(\psi)|g_\epsilon - G_\epsilon|
\]

Taking now \(\psi(t) \equiv 1\) yields the estimate (10).

To prove the existence of a solution to the kinetic problem, we use the following iterations

(14) \[\partial_t + a(v) \cdot \partial_x g^{n+1}_\epsilon(x, v, t) = \frac{1}{\epsilon} (\chi w^n(x,t)(v) - g^{n+1}_\epsilon(x, v, t)) \text{ in } \Omega \times V \times (0, T)\]

(15) \[g^{n+1}_\epsilon(x, v, t) = g_{\epsilon 0}(x, v, t) \text{ on } \Gamma_0^- \times (0, T)\]

(16) \[g^{n+1}_\epsilon(x, v, t) = g_{\epsilon 1}(x, v, t) \text{ on } \Gamma_1^- \times (0, T)\]

(17) \[g^{n+1}_\epsilon(x, v, 0) = g^0_\epsilon(x, v) \text{ in } \Omega \times V\]

Using (14) in the present context with \(g_\epsilon = g^{n+1}_\epsilon\) and \(G_\epsilon = g^{n+1}_m\), and using the properties of \(\chi\), we obtain

\[
\int_{\Omega \times V} (|g_\epsilon - G_\epsilon| \psi)(\cdot, \cdot, t) + \int_{\Gamma_0^+ \times (0, t)} a(v) \cdot n |g_\epsilon - G_\epsilon| \psi + \int_{\Gamma_0^+ \times (0, t)} a(v) \cdot n |g_\epsilon - G_\epsilon| \psi + \frac{1}{\epsilon} \int_{\Omega \times V \times (0, t)} |g_\epsilon - G_\epsilon| \psi
\]
\[
= \frac{1}{\epsilon} \int_{\Omega \times V \times (0, t)} (\chi w^n - \chi w^m) \sigma(g_\epsilon - G_\epsilon) \psi + \int_{\Omega \times V \times (0, t)} (\partial_t + a(v) \cdot \partial_x)(\psi)|g_\epsilon - G_\epsilon|
\]
\[
\leq \int_{\Omega \times V \times (0, t)} (\partial_t + a(v) \cdot \partial_x)(\psi)|g_\epsilon - G_\epsilon| + \frac{1}{\epsilon} \int_{\Omega \times V \times (0, t)} |g^n_\epsilon - g^m_\epsilon| \psi
\]

Taking \(\psi = e^{-\frac{\alpha}{\epsilon} s}\), \(0 \leq s \leq t\), with \(\alpha\) a positive constant, we then obtain
\[
\int_{\Omega \times V} (|g_\epsilon^{n+1} - g_\epsilon^{m+1}| \psi)(\cdot, \cdot, t) + \int_{\Gamma_1^+ \times (0,t)} a(v) \cdot n |g_\epsilon^{n+1} - g_\epsilon^{m+1}| \psi \\
+ \int_{\Gamma_1^+ \times (0,t)} a(v) \cdot n |g_\epsilon^{n+1} - g_\epsilon^{m+1}| \psi + \frac{1 + \alpha}{\epsilon} \int_{\Omega \times V \times (0,t)} |g_\epsilon^{n+1} - g_\epsilon^{m+1}| \psi \leq \frac{1}{\epsilon} \int_{\Omega \times V \times (0,t)} |g_\epsilon^n - g_\epsilon^m| \psi
\]

Hence we obtain

\[
\int_{\Omega \times V \times (0,t)} \psi |g_\epsilon^{n+1} - g_\epsilon^{m+1}| \leq \frac{1}{1 + \alpha} \int_{\Omega \times V \times (0,t)} |g_\epsilon^n - g_\epsilon^m| \psi
\]

This and a reuse of (19) proves that the iterations are contracted to the unique fixed point in \(L^\infty([0, T]; L^1(\Omega \times V))\), which satisfies Eq. (1) and also the boundary and initial conditions (2)–(4). We also infer from the inequality (10) that the solution \(g_\epsilon\) depends continuously on the initial and boundary data.

The integral representation is obtained using the characteristic method. The proof of the theorem is now finished.

2.2. Kinetic entropy. We shall prove an entropy inequality for the solution of the kinetic problem. This is stated in the following theorem.

Theorem 2.2. The solution to the kinetic problem satisfies the relation

\[
- \int_{\Omega \times V \times (0,T)} (\partial_t + a(v) \cdot \partial_x)(\psi)|g_\epsilon - \chi_k| + \int_{\Gamma_0^- \times (0,T)} a(v) \cdot n\psi|g_0 - \chi_k| + \\
\int_{\Gamma_1^- \times (0,T)} a(v) \cdot n\psi|g_1 - \chi_k| \leq 0
\]

\forall \psi \in C^1_0(\bar{\Omega} \times V \times (0,T)), \psi \geq 0, \forall k \in \mathbb{R}

Proof

Multiplying Eq. (11) by \(\varphi = \text{sign}^\mu(g_\epsilon - \chi_k)\psi(x, t)\) with \(\text{sign}^\mu(x)\) the regularization of sign function mentioned in the proof of Theorem 2.1 and \(\psi\) is a nonnegative test function in \(C^1_0(\bar{\Omega} \times V \times (0,T))\), and proceeding as in the proof of Theorem 2.1 and using the properties of \(\chi_w\) the desired entropy inequality of the theorem.

2.3. Basic estimates of the solution. We shall state and prove here some basic estimates for the solution of the kinetic problem. We begin with \(L^\infty\) estimates.

Lemma 2.1. Assume that

\[
\|g_0\|_{L^\infty(\Gamma_0^0 \times [0,T])} < C_1, \|g_0\|_{L^\infty(\Omega \times V)} < C_2, \|g_1\|_{L^\infty(\Gamma_1^- \times [0,T])} < C_3
\]
with \(C_1, C_2, \) and \(C_3 \) positive constants independent of \(\epsilon \). Then \(g_\epsilon \) is uniformly bounded in \(L^\infty(\Omega \times V \times [0,T]) \). Moreover we have

\[
\|g_\epsilon\|_\infty \leq \max(\|g_{\epsilon 0}\|_{L^\infty(\Gamma^-_0 \times [0,T])}, \|g^0_\epsilon\|_{L^\infty(\Omega \times V)}, \|g_{\epsilon 1}\|_{L^\infty(\Gamma^-_1 \times [0,T])}) + 1
\]

Proof: The proof is based on the use of the integral representation of the solution respectively on \(\Omega_0 \), \(\Omega_{01} \), and \(\Omega_1 \).

We now present estimates of \(g_\epsilon \) and \(w_\epsilon \) in \(L^\infty([0,T];L^1(\Omega \times V)) \) and \(L^\infty([0,T];L^1(\Omega)) \) respectively.

Lemma 2.2. Assume that

\[
\|a(v) \cdot n g_0\|_{L^1(\Gamma^-_0 \times (0,T))} < C_1, \quad \|g^0_\epsilon\|_{L^1(\Omega \times V)} < C_2,
\]

\[
\|a(v) \cdot n g_{\epsilon 1}\|_{L^1(\Gamma^-_1 \times (0,T))} < C_3
\]

with \(C_1, C_2, \) and \(C_3 \) positive constants independent of \(\epsilon \). Then \(g_\epsilon \) is uniformly bounded in \(L^\infty([0,T];L^1(\Omega \times V)) \) and \(w_\epsilon \) is uniformly bounded in \(L^\infty([0,T];L^1(\Omega)) \). Moreover, we have

\[
\|w_\epsilon\|_{L^\infty([0,T];L^1(\Omega))} \leq \|g_\epsilon\|_{L^\infty([0,T];L^1(\Omega \times V))} \leq \|a(v) \cdot n g_0\|_{L^1(\Gamma^-_0 \times (0,T))} + \|a(v) \cdot n g_{\epsilon 1}\|_{L^1(\Gamma^-_1 \times (0,T))} + \|g^0_\epsilon\|_{L^1(\Omega \times V)}
\]

Proof: Using Formula (10) with \(G_\epsilon \equiv 0 \), we obtain

\[
\int_{\Omega \times V} |g_\epsilon(x,v,t)| \leq \int_{\Omega \times V} |g^0_\epsilon(x,v)| + \int_{\Gamma^-_0 \times (0,T)} |a(v) \cdot n g_0| + \int_{\Gamma^-_1 \times (0,T)} |a(v) \cdot n g_{\epsilon 1}|
\]

The lemma then follows.

Next we shall show that under the conditions that the supports in \(v \in V \) of the data are compact, the supports in \(v \in V \) of \(g_\epsilon \) remain compactly supported with supports included in a fixed compact set independent of \(\epsilon \). We shall also give some information about the speed of propagation \(a(v) \). This is stated in the following lemma.

Lemma 2.3. Assume that

\[
\|g_{\epsilon 0}\|_{L^\infty(\Gamma^-_0 \times [0,T])} < C_1, \quad \|g^0_\epsilon\|_{L^\infty(\Omega \times V)} < C_2,
\]

\[
\|g_{\epsilon 1}\|_{L^\infty(\Gamma^-_1 \times [0,T])} < C_3
\]

with \(C_1, C_2, \) and \(C_3 \) positive constants independent of \(\epsilon \). Assume also that the initial and boundary data \(g^0_\epsilon \), \(g_{\epsilon 0} \), and \(g_{\epsilon 1} \) are compactly supported in \(v \in V \) with supports included in a fixed compact set independent of \(\epsilon \). Then
(i) w_ϵ is uniformly bounded in $L^\infty(\Omega \times [0,T]).$
(ii) g_ϵ remains compactly supported in $v \in V$ with support included in a fixed compact set independent of ϵ.
(iii) The speed of propagation $a(v)$ is finite.

Remark 2.2. In [7] the uniform L^∞ boundedness (in ϵ) of the macroscopic density $u_\epsilon = \int_I f_\epsilon(x,v,t)dv$ and hence the compactness of the support in v of $f_\epsilon(t,x,v)$ together with the finite speed of propagation remained unproven. Since in their proof, which is given on page 504 lines 6 through 12 of [7], their argument is wrong. Following we quote lines 6 through 12 of page 504 of [7] “2. Finite speed of propagation. We assume that initially, $f_\epsilon(x,\cdot,0)$ has a compact support in \mathbb{R}_v. Let us first show that $f_\epsilon(x,\cdot,t)$ remains compactly supported. Indeed, by (2.6), $f_\epsilon(x,v,t)$ and hence $u_\epsilon(\cdot,t)$ are uniformly bounded, and therefore the contributions of $\chi_{x_0}(\cdot)(v)$ on the right hand side of (2.2) are supported by $v \in [-u_\infty,u_\infty]$, where $u_\infty = \|u_\epsilon(x,t)\|_{L^\infty(\mathbb{R}_x^d \times \mathbb{R}_t^+)}$. Consequently, $f_\epsilon(x,\cdot,t)$ given in 2.2 remains compactly supported for all $t > 0$, with support contained in $\text{supp}_v f_\epsilon(x,\cdot,0) \cup [-u_\infty,u_\infty] \cdots”$

The argument: Indeed, by (2.6), $f_\epsilon(x,v,t)$ and hence $u_\epsilon(\cdot,t)$ are uniformly bounded, is wrong since the uniform (in ϵ) boundedness of a function (here $f_\epsilon(x,v,t)$) in $L^\infty(\mathbb{R}^d \times \mathbb{R} \times \mathbb{R}_t^+)$ does not in general yield the uniform boundedness (in ϵ) of its velocity average (here $u_\epsilon(x,t) = \int_{\mathbb{R}} f_\epsilon(x,v,t)dv$). Take for example the function $h_\epsilon(x,v,t) = e^{-\epsilon|v|} \exp(-t - \sum |x_i|)$ and its velocity average $u_\epsilon(x,t) = \frac{2}{\epsilon} \exp(-t - \sum |x_i|)$.

In [8], in order to obtain the uniform (in ϵ) bound of $u_\epsilon(x,t) = \int_{\mathbb{R}} f_\epsilon(x,v,t)dv$ in $L^\infty(\mathbb{R}^d \times \mathbb{R}_t^+)$, and hence to fill the gap of [2], the author assumed an additional assumption on the sign of the data: $f_\epsilon(\cdot,v,0)\text{sign}(v) \geq 0$. This assumption is quite restrictive if one wants to study the hydrodynamic limit of the kinetic model, which was one of the main objectives of the paper [7].

Because of the above it is clear that the general proof of the above results remained open despite the various attempts by various authors. We shall give below two different proofs. One is general and does not use any additional assumptions, thus solves also the gap in [7], and the second relies on the additional assumption on the sign of the data, and thus allows us to compare the two proofs.

Proof:

(i) First and general proof of the uniform in ϵ L^∞ bound

We first notice that for every fixed ϵ, using Gronwall lemma we conclude that g_ϵ is in $L^\infty(\Omega \times (0,T);L^1(V))$ and hence w_ϵ is in $L^\infty(\Omega \times (0,T))$. Observe that such argument does not provide a uniform in ϵ bound of g_ϵ in $L^\infty(\Omega \times (0,T);L^1(V))$.

Next we prove that g_ϵ is uniformly in ϵ bounded in $L^\infty(\Omega \times (0,T);L^1(V))$. We write the integral representation in Ω_0 in the form
for any convex function \(\varphi \),

\[
g_\epsilon(x, v, t) = g_0(x) - \frac{x_1}{a_1(v)} a_+(v), v, t - \frac{x_1}{a_1(v)} \exp(-x_1/(a_1(v)\epsilon))
\]

\[
+(1 - \exp(-x_1/(a_1(v)\epsilon))) \int_{t-\frac{s_1}{a_1(v)}}^{t} \frac{e^{(s-t)/\epsilon} \chi_{\mathcal{W}_\epsilon(x(s), s)}(v)}{\int_{t-\frac{s_1}{a_1(v)}}^{t} e^{(s-t)/\epsilon} ds}
\]

Thus \(g_\epsilon(x, v, t) \) is expressed as a convex combination. So by Jensen inequality, we obtain for any convex function \(\varphi(g_\epsilon) \),

\[
\varphi(g_\epsilon(x, v, t)) \leq \varphi(g_0(x) - \frac{x_1}{a_1(v)} a_+(v), v, t - \frac{x_1}{a_1(v)} \exp(-x_1/(a_1(v)\epsilon)))
\]

\[
+ \frac{1}{\epsilon} \int_{t-\frac{s_1}{a_1(v)}}^{t} \frac{e^{(s-t)/\epsilon} \varphi(\chi_{\mathcal{W}_\epsilon(x(s), s)}(v))}{\int_{t-\frac{s_1}{a_1(v)}}^{t} e^{(s-t)/\epsilon} ds}
\]

We obtain similar formula for \(g_\epsilon(x, v, t) \) in \(\Omega_01 \) and \(\Omega_1 \). Now taking \(\varphi(g) = |g|^p \) and integrating over \(x \) and \(t \), we obtain

\[
\int_{\Omega \times (0, T)} |g_\epsilon(x, v, t)|^p dx dt \leq \int_{\Gamma_0 \times (0, T)} |g_0(y, v, t)|^p dy dt + \int_{\Omega} |g_\epsilon(x, v, t)|^p dx
\]

\[
+ \int_{\Gamma_1 \times (0, T)} |g_\epsilon(y, v, t)|^p dy dt + \int_{\Omega \times (0, T)} \frac{1}{\epsilon} \int_{0}^{t} e^{(s-t)/\epsilon} |\chi_{\mathcal{W}_\epsilon(x(s), s)}| dx ds dt
\]

Taking the \(p \)-root of both sides and integrating over \(V \), we obtain

\[
\int_{V} \left(\int_{\Omega \times (0, T)} |g_\epsilon(x, v, t)|^{p} dx dt \right)^{1/p} dv
\]

\[
\leq 4^{1/p} \max \left[\int_{V} \left(\int_{\Gamma_0 \times (0, T)} |g_0(x, v, t)|^p \right)^{1/p} dv, \int_{V} \left(\int_{\Omega} |g_\epsilon(x, v, t)|^p dx \right)^{1/p} dv, \right.
\]

\[
\left. \int_{V} \left(\int_{\Gamma_1 \times (0, T)} |g_\epsilon(y, v, t)|^p dy \right)^{1/p} dv, \int_{V} \left(\int_{\Omega \times (0, T)} \frac{1}{\epsilon} \int_{0}^{t} e^{(s-t)/\epsilon} |\chi_{\mathcal{W}_\epsilon(x(s), s)}| dx ds dt \right)^{1/p} dv \right]
\]

(22)

We only need to prove that

\[
\int_{V} \left(\int_{\Omega \times (0, T)} \frac{1}{\epsilon} \int_{0}^{t} e^{(s-t)/\epsilon} |\chi_{\mathcal{W}_\epsilon(x(s), s)}| dx ds dt \right)^{1/p} dv
\]

is bounded uniformly in \(\epsilon \) for \(p \) large. The other terms are clearly bounded uniformly in \(\epsilon \) for \(p \) large. For example, the term \(\int_{V} \left(\int_{\Gamma_0 \times (0, T)} |g_\epsilon(x, v, t)|^p \right)^{1/p} dv \) is uniformly bounded since by assumption \(g_0 \) is uniformly bounded in \(\epsilon \) in \(L^\infty(\Gamma_0 \times (0, T) \times L^1(V)) \) and similarly for the other terms.

Let

\[
A_\epsilon = \{ (x, v, t) \in \Omega \times V \times (0, T) | \ |w_\epsilon(x, t)| > |v| \}
\]

\[
V_\epsilon = \{ v \in V | (x, v, t) \in A_\epsilon \text{ for some } (x, t) \in \Omega \times (0, T) \} \]
Let m_ϵ and n_ϵ denote the Lebesgue measure of E_ϵ respectively V_ϵ. We know from Lemma 2.2 that

$$m_\epsilon = \int_{\Omega \times V \times (0,T)} |\chi_{w_\epsilon(x,t)}(v)|dvdt = \int_{\Omega \times (0,T)} |w_\epsilon(x,t)|dxdt < C$$

where C is independent of ϵ.

Let $C_0 > 0$ be a fixed constant. Let Υ denote the set of all $\epsilon > 0$ such that

$$\|w_\epsilon\|_\infty > C_0$$

We know from the beginning of this proof that w_ϵ is in $L^\infty(\Omega \times (0,T))$ for every fixed ϵ. If the set Υ is empty or finite then the proof will be concluded easily. Therefore, we assume that Υ is neither empty nor finite.

We prove the following statements.

(24) $\|w_\epsilon\|_\infty > C_0$

We know from the beginning of this proof that w_ϵ is in $L^\infty(\Omega \times (0,T))$ for every fixed ϵ. If the set Υ is empty or finite then the proof will be concluded easily. Therefore, we assume that Υ is neither empty nor finite.

We prove the following statements.

$$\exists \beta \text{ with } 0 < \beta < C_0, \exists \epsilon \in \Upsilon \text{ such that } \|w_\epsilon\|_{\infty,E} > \beta$$

uniformly in $\epsilon \in \Upsilon$

(25) $\exists E \subset \Omega \times (0,T)$ with $|E| > 0$ such that $\|w_\epsilon\|_{\infty,E} > \beta$

(26) $\exists \gamma > 0$ such that $\gamma < m_\epsilon$ uniformly in $\epsilon \in \Upsilon$

Above $|F|$ denotes the Lebesgue measure of the set F. If the set E is of infinite measure, then any subset E' of E satisfying $0 < |E'| < \infty$ is enough for our purpose. So we may assume that the set E in (25) satisfies $0 < |E| < \infty$. This is important since we will use below Egoroff theorem for sequence defined on such set E.

We proceed now to prove (25) and (26). If (25) is not true then

$$\forall \beta \text{ with } 0 < \beta < C_0, \forall E \subset \Omega \times (0,T) \text{ with } |E| > 0, \exists \epsilon \in \Upsilon \text{ such that } \|w_\epsilon\|_{\infty,E} \leq \beta$$

Thus, taking $\beta = C_0 - \frac{1}{n}$, $E = \Omega \times (0,T)$, there exists ϵ_n a subsequence in Υ such that $|w_{\epsilon_n}(y)| \leq C_0 - \frac{1}{n}$, a.e. $y \in E$. This implies that $\|w_{\epsilon_n}\|_\infty \leq C_0$ with $\epsilon_n \in \Upsilon$. This contradicts (24). Therefore, (25) is true.

We now prove that (26) is true. Assume to the contrary that (26) is not true. Then there is a subsequence ϵ_k in Υ such that $m_{\epsilon_k} \to k \to \infty 0$. But we have

$$m_{\epsilon_k} = \int_{\Omega \times V \times (0,T)} |\chi_{w_{\epsilon_k}(x,t)}(v)|dvdt = \int_{\Omega \times (0,T)} |w_{\epsilon_k}(x,t)|dxdt$$

Hence $\int_{\Omega \times (0,T)} |w_{\epsilon_k}(x,t)|dxdt \to 0$. Therefore there is a subsequence $w_{\epsilon_{kn}}$ that converges a.e. to 0 on $\Omega \times (0,T)$. In particular, $w_{\epsilon_{kn}} \to 0$ on E, where E is the set given in (25). Using Egoroff theorem [3], $w_{\epsilon_{kn}} \to 0$ almost uniformly on E (Recall from the remark after the statement (26) that E can be selected to satisfy $0 < |E| < \infty$). That is, $\forall \eta > 0, \exists E_\eta \subset E$ such that $|E \setminus E_\eta| < \eta$ and $w_{\epsilon_{kn}} \to 0$ uniformly on E_η. Now fix $\eta > 0$ small and let $\delta > 0$ be given, then there is n' depending on δ such that
\begin{equation}
|w_{\varepsilon_{k_n}}(y)| < \delta \quad \forall y \in E_\eta, \forall \varepsilon_{k_n} < \varepsilon_{k_n'}
\end{equation}

Now let

\begin{equation}
\tilde{E} = \{ x \in E : |w_{\varepsilon_{k_n}}(x)| > \beta \quad \forall \varepsilon_{k_n} < \varepsilon_{k_n'} \}
\end{equation}

then (25) implies that $|\tilde{E}| > \alpha > 0$ for some $\alpha > 0$. Now choose $\eta < \alpha$ then E_η must contain a subset $\tilde{E} \subset \hat{E}$ with $|\tilde{E}| > 0$. For otherwise the set $F = \tilde{E} \setminus \hat{E}$ where

\begin{equation}
\tilde{E} = \{ x \in E \cap E_\eta : |w_{\varepsilon_{k_n}}(x)| > \beta \forall \varepsilon_{k_n} < \varepsilon_{k_n'} \}, \quad |\tilde{E}| = 0
\end{equation}
is included in $E \setminus E_\eta$ ($F \subset E \setminus E_\eta$) and $\alpha < |F| \leq |E \setminus E_\eta| < \eta < \alpha$ which is impossible.

Now pick $\delta < \beta$ in (28). Then in particular, we obtain

\[\|w_{\varepsilon_{k_n}}\|_{\infty,E} < \beta \quad \forall \varepsilon_{k_n} < \varepsilon_{k_n'} \]

which is a contradiction to (29). Therefore, (26) is true.

Thus, we have $0 < \gamma < m_\varepsilon = |A_\varepsilon| < C \quad \forall \varepsilon \in \Upsilon$ (Consult (28) and (26)). Now using the regularity of the Lebesgue measure, we have for any $\eta > 0$ such that $\gamma - \eta > 0$, there exist a compact set F^η_ε and an open set U^η_ε such that $F^\eta_\varepsilon \subset A_\varepsilon \subset U^\eta_\varepsilon$ and $|A_\varepsilon| - \eta < |F^\eta_\varepsilon| < |A_\varepsilon|$ and $|A_\varepsilon| < |U^\eta_\varepsilon| < |A_\varepsilon| + \eta < C + \eta$. Thus for $\eta < \gamma/2$, we can select F^η_ε and U^η_ε so that

\begin{equation}
0 < \gamma/2 < |F^\eta_\varepsilon| \leq |A_\varepsilon| \leq |U^\eta_\varepsilon| < C + \gamma/2 \quad \forall \varepsilon \in \Upsilon
\end{equation}

Above we have used (28) and (26). Now by Vitali’s Covering Theorem [3], there exists a countable collection G_ε of disjoint closed balls in U^η_ε such that diam $B \leq \eta$ for all $B \in G_\varepsilon$ and $|U^\eta_\varepsilon - \cup_{B \in G_\varepsilon} B| = 0$. Using (30) above, we then conclude that $| \cup_{B \in G_\varepsilon} B |$ is bounded below and above by positive constants independent of $\varepsilon \in \Upsilon$. Thus the projection V_ε of A_ε with respect to the ν axis has a one dimensional Lebesgue measure which is bounded above by a positive constant independent of $\varepsilon \in \Upsilon$. This proves the fact that $n_\varepsilon = |V_\varepsilon| < C$ with C a constant independent of $\varepsilon \in \Upsilon$.

Now we have

\[\int_{\Omega \times (0,T)} \frac{1}{\varepsilon} \int_0^t e^{(s-t)/\varepsilon}|\chi_{w_{\varepsilon}(x,s)}|dsdt dx = \int_{\Omega \times (0,T)} |\chi_{w_{\varepsilon}(x,s)}|(1 - e^{(s-T)/\varepsilon})ds dx \]

Thus, we have
also assume as in \cite{8} that

\[g(x, s) \quad (33) \in \Omega_0 \]

Using the fact that the data are bounded by 1 and the integral representation respectively

Second proof of the

This concludes the proof of (i).

\[\epsilon \]

is uniformly in \(V \) supports that are included in a fixed compact set of \(\Omega \). Above we have used Lemma \ref{lemma22}. Holder inequality, and the uniform boundedness of \(\eta_\epsilon = |V_\epsilon| \).

Using this in \ref{22}, we conclude that

\[
\int_V (\int_{\Omega \times (0, T)} |g_\epsilon(x, v, t)|^p dx dt)^{1/p} dv \\
\leq \; 4^{1/p} \max \left(\int_V (\int_{\Gamma_0 \times (0, T)} |g_\epsilon(x, v, t)|^p dx)^{1/p} dv, \int_V (\int_{\Omega} |g_\epsilon(x, v)|^p dx)^{1/p} dv, \right) \\
\int_V (\int_{\Gamma_1 \times (0, T)} |g_{\epsilon 1}(x, v, t)|^p dx dv)^{1/p} dv, C^{1/p} C^{1/p'} \right)
\]

(32)

On the other hand, using Minkowski inequality \ref{9}, we have

\[
\left(\int_{\Omega \times (0, T)} (\int_V |g_\epsilon| dv)^p dx dt \right)^{1/p} \\
\leq \; \int_V (\int_{\Omega \times (0, T)} |g_\epsilon(x, v, t)|^p dx dt)^{1/p} dv
\]

(33)

Taking the limit as \(p \to \infty \) in \ref{22} and \ref{23}, we conclude that \(\| \int_V |g_\epsilon| dv \|_{L^\infty(\Omega \times (0, T))} \) is uniformly in \(\epsilon \) bounded and hence \(w_\epsilon \) is also uniformly in \(\epsilon \) bounded in \(L^\infty(\Omega \times (0, T)) \). This concludes the proof of (i).

Second proof of the \(L^\infty \) bound

Here, we shall assume that \([g_\epsilon^0(x, v)] \leq 1, \ [g_\epsilon^0(y, v, t)] \leq 1, \ [g_{\epsilon 1}(y, v, t)] \leq 1 \). We shall also assume as in \ref{8} that \(g_\epsilon^0(x, v) \text{sign}(v) = [g_\epsilon^0(x, v)], \ g_\epsilon^0(y, v, t) \text{sign}(v) = [g_\epsilon^0(y, v, t)], \) and \(g_{\epsilon 1}(y, v, t) \text{sign}(v) = [g_{\epsilon 1}(y, v, t)] \). Let \(\tilde{v} \) denote a positive number such that the support in \(v \) of \(g_\epsilon^0, g_\epsilon^0, \) and \(g_{\epsilon 1} \) is included in \([-\tilde{v}, \tilde{v}] \) (recall that we assumed that these data have supports that are included in a fixed compact set of \(V \)). Then using the sign condition on the data and the integral representation we conclude that \(g_\epsilon(x, v, t) \text{sign}(v) = [g_\epsilon(x, v, t)] \).

Using the fact that the data are bounded by 1 and the integral representation respectively in \(\Omega_0 \), \(\Omega_{01} \), and \(\Omega_1 \), we obtain that \(|g_\epsilon(x, v, t)| \leq 1 \).
To obtain the uniform in ϵ bound of w_ϵ, we use the iterations 14-17 and its corresponding integral representation

In Ω_0

\[
g^1_c(x,v,t) = g_0(x - \frac{x_1}{a_1(v)} a_\ast(v), v, t - \frac{x_1}{a_1(v)}) \exp(-\frac{x_1}{a_1(v)}(v)) + \frac{1}{\epsilon} \int_{t - \frac{x_1}{a_1(v)}}^t \epsilon^{(s-t)/\epsilon} \chi_{w_0}(x(s),s)(v)ds
\]

In Ω_{01}

\[
g^1_c(x,v,t) = g^0_c(x - a(v)t, v) \exp(-t/\epsilon) + \frac{1}{\epsilon} \int_0^t \epsilon^{(s-t)/\epsilon} \chi_{w_0}(x(s),s)(v)ds
\]

In Ω_1

\[
g^1_c(x,v,t) = g_1(x + \frac{1-x_1}{a_1(v)} a_\ast(v), v, t - \frac{x_1-1}{a_1(v)}) \exp((1-x_1)/\epsilon a_1(v)) + \frac{1}{\epsilon} \int_{t - \frac{x_1-1}{a_1(v)}}^t \epsilon^{(s-t)/\epsilon} \chi_{w_0}(x(s),s)(v)ds
\]

where $x(s) = x + (s-t)a(v)$, $x = (x_1, x_\ast)$, and $a(v) = (a_1(v), a_\ast(v))$.

Let w^0_ϵ be an initial iterate such that $\|w^0_\epsilon\|_{L^\infty(\Omega \times (0,T))} \leq \tilde{v}$. Then by definition of \tilde{v}, we have $g_0(y,v,t) = 0$, $g_1(y,v,t) = 0$, $g^0_c(x,v) = 0$, and $\chi_{w_0}(x,t)(v) = 0$, for all v with $|v| > \tilde{v}$.

Now using the above integral representation, we conclude that $g_\epsilon(x,v,t) = 0$ for $|v| > \tilde{v}$. Using this and the sign property of $g_\epsilon (|g_\epsilon(x,v,t)| = g_\epsilon(x,v,t) \text{sign}(v))$, we obtain

\[
|w^1_\epsilon(x,t)| = \left| \int_V g_\epsilon(x,v,t)dv \right|
\]

\[
\leq \max (\left| \int_{v>0} g_\epsilon(x,v,t)dv \right|, \left| \int_{v<0} g_\epsilon(x,v,t)dv \right|)
\]

\[
\leq \tilde{v}
\]

Thus, the contraction operator maps elements w^0_ϵ with $\|w^0_\epsilon\|_{L^\infty(\Omega \times (0,T))} < \tilde{v}$ into element with the same property. Therefore the fixed point w_ϵ has also this property. This concludes the proof of the uniform bound in ϵ of w_ϵ in $L^\infty(\Omega \times (0,T))$.

Because of Lemma 2.1, g_ϵ is uniformly bounded in $L^\infty(\Omega \times V \times [0,T])$. Hence w_ϵ is uniformly bounded in $L^\infty(\Omega \times [0,T])$.

(ii) Now set $w_\infty = \sup_{\epsilon>0} \|w_\epsilon\|_{L^\infty(\Omega \times (0,T))}$, the terms χ_{w_ϵ} in the integral representation in Theorem 2.1 are supported by $v \in [-w_\infty, w_\infty]$, the other terms are supported by v in the compact supports of the boundary and initial data. Thus, for all $t \in [0,T]$, g_ϵ remains compactly supported, with compact supports included in $\text{Supp}_x g^0_\epsilon \cup \text{Supp}_x g_0 \cup \text{Supp}_x g_1 \cup [-w_\infty, w_\infty]$, which in turn are included in a fixed compact set independent of ϵ.

M. TIDRIRI
(iii) Now set \(a_\infty = \sup_{1 \leq i \leq N, v \in \mathbb{S}|a_i(v)| \), with \(S = \text{Supp}_x g_0^0 \cup \text{Supp}_x g_0^1 \cup \text{Supp}_x g_0^0 \cup \{-w_\infty, w_\infty\} \). We conclude that \(\sup_{1 \leq i \leq N, v \in \mathbb{S}} |a_i(v)| \leq a_\infty \), where \(S' = \{v \in \text{supp}_v g_t(x,.,t), (x, t) \in \Omega \times (0, T)\} \). And the lemma is proved.

In order to pass to the limit as the microscopic scale go to 0, we shall need to control the spatial and temporal variations of \(g_t \) and \(w_t \) in terms of \(\epsilon \). This is given in the following lemma.

Lemma 2.4. Assume that

\[
\|g_0\|_{L^\infty(\Gamma_0^1 \times [0,T])} < C_1, \quad \|g_0^0\|_{L^\infty(\Omega \times V)} < C_2, \quad \|g_1\|_{L^\infty(\Gamma_1^1 \times \{0,T\})} < C_3,
\]

\[
\|g_0^0\|_{L^1(\Omega \times V)} < C_4, \quad \|a(v) \cdot n g_0\|_{L^1(\Gamma_0^1 \times (0,T))} < C_5, \quad \|a(v) \cdot n g_1\|_{L^1(\Gamma_1^1 \times (0,T))} < C_6
\]

\[
\|g_0^0\|_{L^1(V; BV_{loc}(\Omega))} < C_7,
\]

with \(C_i, i = 1, \cdots, 7 \) positive constants independent of \(\epsilon \). Assume also that the initial and boundary data \(f_0^0, g_0^0, \) and \(g_1 \) are compactly supported in \(v \in V \) with supports included in a fixed compact set independent of \(\epsilon \).

Then

1) \(g_t(\cdot, t) \) and \(w_t(\cdot, t) \), \(t \in [0,T] \) are uniformly bounded in \(BV_{loc}(\Omega \times L^1(V)) \) and \(BV_{loc}(\Omega) \) respectively.

2) \(w_t \) is time Lipschitz continuous in \(L^1_{loc}(\Omega) \) uniformly in \(\epsilon \); i.e. for any open bounded subset \(U \) of \(\Omega \) with \(\bar{U} \subset \Omega \), we have

\[
\|w_t(\cdot, t_2) - w_t(\cdot, t_1)\|_{L^1(U)} \leq a_\infty a_\infty \|g_0\|_{L^\infty([0,T]; BV(U \times L^1(V)))}(t_2 - t_1) < C(t_2 - t_1),
\]

(34) \(\forall 0 \leq t_1 < t_2 \leq T \)

where \(C \) is a constant depending on \(U \) but is independent of \(\epsilon \) and \(a_\infty \) is introduced in the proof of Lemma 2.4 above.

3) Under the additional assumption

\[
\|g_0^0(\cdot, \cdot) - \chi_{w_0(\cdot)}(\cdot)\|_{L^1_{loc}(\Omega \times L^1(V))} \rightarrow_{\epsilon \rightarrow 0} 0
\]

we can estimate the error between the kinetic solution and exact entropy solution as follows

\[
\|g_t - \chi_{w_\epsilon}\|_{L^\infty([0,T]; L^1_{loc}(\Omega \times L^1(V)))} \leq \epsilon a_\infty \|g_0^0(x,v)\|_{BV_{loc}(\Omega \times L^1(V))}
\]

\[
+ \epsilon a_\infty \|g_t(x,v,t)\|_{L^\infty([0,T]; BV_{loc}(\Omega \times L^1(V)))}
\]

\[
+ 2 \|g_0^0(x,v) - \chi_{w_0(x)}\|_{L^1_{loc}(\Omega \times L^1(V))}
\]

(36) \(\rightarrow_{\epsilon \rightarrow 0} 0 \)

4) The function \(w_\epsilon \) is uniformly bounded in \(BV_{loc}(\Omega \times (0,T)) \).

Proof.
1) Let $0 < t < T$ be fixed and $h > 0$ be small. The case of $h < 0$ will be handled similarly. Let $\tau_h g_e(x, v, t) = g_e(x_1, \ldots, x_d + he_i, \ldots, x_d, v, t)$, $i = 1, \ldots, d$. Multiplying the equation (11) for $\tau_h g_e - g_e$ by φ with φ a test function which is Lipschitz continuous in $(0, 1 - h) \times \mathbb{R}^{d - 1} \times V \times [0, T]$ with compact support in x in $(0, 1 - h) \times \mathbb{R}^{d - 1}$ to be precised later, and integrating by parts, we obtain

\[
\int_{(0,1-h)\times\mathbb{R}^{d-1}\times V} ((\tau_h^1 g_e - g_e)\varphi)(\cdot, \cdot, t) - \int_{(0,1-h)\times\mathbb{R}^{d-1}\times V} ((\tau_h^1 g_e - g_e)\varphi)(\cdot, \cdot, 0) - \int_{(0,1-h)\times\mathbb{R}^{d-1}\times V\times(0,t)} (\partial_t \varphi + a(v) \cdot \partial_x \varphi)(\tau_h^1 g_e - g_e)
\]

\[
= \frac{1}{\epsilon} \int_{(0,1-h)\times\mathbb{R}^{d-1}\times V\times(0,t)} ((\chi \tau_h^1 w_e - \chi w_e) - (\tau_h^1 g_e - g_e))\varphi
\]

(37)

We then take $\varphi = \text{sign}^\mu(\tau_h^1 g_e - g_e)\psi(x, t)$ with $x \text{sign}^\mu(x) \geq 0$ $x \in \mathbb{R}$, and ψ is a nonnegative test function which is Lipschitz continuous in $(0, 1 - h) \times \mathbb{R}^{d - 1} \times V \times [0, T]$ with compact support in x in $(0, 1 - h) \times \mathbb{R}^{d - 1}$ and sign$^\mu$ is a regularization of sign function. Proceeding as in the proof of Theorem 2.4, we obtain

\[
\int_{(0,1-h)\times\mathbb{R}^{d-1}\times V} |\tau_h^1 g_e - g_e|\psi(\cdot, \cdot, t) - \int_{(0,1-h)\times\mathbb{R}^{d-1}\times V} |\tau_h^1 g_e - g_e|\psi(\cdot, \cdot, 0)
\]

\[
- \int_{(0,1-h)\times\mathbb{R}^{d-1}\times V\times(0,t)} (\partial_t \psi + a(v) \cdot \partial_x \psi)|\tau_h^1 g_e - g_e|
\]

\[
= \frac{1}{\epsilon} \int_{(0,1-h)\times\mathbb{R}^{d-1}\times V\times(0,t)} ((\chi \tau_h^1 w_e - \chi w_e) - (\tau_h^1 g_e - g_e))\text{sign}(\tau_h^1 g_e - g_e)\psi
\]

\[
\leq 0
\]

where in the last inequality we have used the properties of χ, we then have

\[
\int_{(0,1-h)\times\mathbb{R}^{d-1}\times V} \psi|\tau_h^1 g_e - g_e|(\cdot, \cdot, t)
\]

\[
\leq \int_{(0,1-h)\times\mathbb{R}^{d-1}\times V} \psi|\tau_h^1 g_e - g_e|(\cdot, \cdot, 0) + \int_{(0,1-h)\times\mathbb{R}^{d-1}\times V\times(0,t)} (\partial_t \psi + a(v) \cdot \partial_x \psi)|\tau_h^1 g_e - g_e|
\]

In particular we have

\[
\int_{O \times V} \psi|\tau_h^1 g_e - g_e|(\cdot, \cdot, t)
\]

\[
\leq \int_{O \times V} \psi|\tau_h^1 g_e - g_e|(\cdot, \cdot, 0) + \int_{O \times V\times(0,t)} (\partial_t \psi + a(v) \cdot \partial_x \psi)|\tau_h^1 g_e - g_e|
\]

(38)

for any open set with $O \subset (0, 1 - h) \times \mathbb{R}^{d - 1}$ and ψ any Lipschitz continuous function in $O \times V \times [0, T]$ with compact support in x in O. Similarly, we have for $i = 2, \ldots, d$
\[
\int_{O \times V} \psi |\tau^i g_\epsilon - g_\epsilon| (\cdot, \cdot, t) \leq \int_{O \times V} \psi |\tau^i g_\epsilon - g_\epsilon| (\cdot, \cdot, 0) + \int_{O \times V \times (0, t)} (\partial_t \psi + a(v) \cdot \partial_x \psi)|\tau^i g_\epsilon - g_\epsilon|
\]

for any open set with $\bar{O} \subset (0, 1) \times \mathbb{R}^{d-1}$ and ψ any Lipschitz continuous function in $O \times V \times [0, T]$ with compact support in x in O.

Let $i \in \{2, \cdots, d\}$ be fixed. Let U and O be open bounded subsets of Ω such that $\bar{U} \subset O \subset \bar{O} \subset \Omega$. Let ψ be a Lipschitz continuous function in $O \times V \times [0, T]$ with compact support in x in O such that $U \subset \text{supp}_x \psi \subset O$. Then (39) holds for such ψ and O.

We wish to prove that

\[
\int_{U \times V} |\tau^i g_\epsilon - g_\epsilon| \leq Ch
\]

where C depends on U but is independent of ϵ. It is enough to prove this relation for U of the form $U = (y_1 - \alpha, y_1 + \alpha) \times B((y_\ast, R) \in \Omega$ are arbitrary elements of \mathbb{R}^{+} and Ω such that $0 < y_1 - \alpha < y_1 + \alpha < 1$ and $R > 0$ is arbitrary radius. Let $\beta > 0$ and $\gamma > 0$ be such that $0 < y_1 - \alpha - \beta - \gamma < y_1 + \alpha + \beta + \gamma < 1$. Let $0 < t_1 < T$ be such that $a_\infty t_1 = \beta$. Let $O = (y_1 - \alpha - a_\infty t_1 - \gamma, y_1 + \alpha + a_\infty t_1 + \gamma) \times B((y_\ast, R + \delta + da_\infty t_1)$, with $\delta > 0$. Let $t \in (0, t_1]$. Consider now the functions

$$\varphi_1(x_1, \tau) = \begin{cases}
0 & 0 \leq x_1 < y_1 - \alpha - a_\infty (t - \tau) - \gamma \\
\frac{1}{2}(x_1 - y_1 + \alpha + a_\infty (t - \tau)) + 1 & y_1 - \alpha - a_\infty (t - \tau) - \gamma \leq x_1 < y_1 - \alpha - a_\infty (t - \tau)\\
1 & 0 \leq \tau \leq t \\
\frac{1}{2}(y_1 + \alpha + a_\infty (t - \tau) - x_1) + 1 & y_1 + \alpha + a_\infty (t - \tau) \leq x_1 < y_1 + \alpha + a_\infty (t - \tau)\\
0 & 0 \leq \tau \leq t
\end{cases}$$

and

$$\varphi_2(x_\ast, \tau) = \begin{cases}
1 & 0 \leq |x_\ast - y_\ast| < R + da_\infty (t - \tau) \\
\frac{1}{8}(R + da_\infty (t - \tau) - |x_\ast - y_\ast|) + 1 & R + da_\infty (t - \tau) \leq |x_\ast - y_\ast| < R + da_\infty (t - \tau) + \delta \\
0 & 0 \leq \tau \leq t
\end{cases}$$

Now let $\psi(x, \tau) = \varphi_1(x_1, \tau) \varphi_2(x_\ast, \tau)$, $\tau \in [0, T]$ and $x = (x_1, x_\ast)$. It is clear that ψ is nonnegative Lipschitz continuous function in $O \times V \times [0, T]$ with compact support in x in O and $U \subset \text{supp}_x \psi \subset O$. Thus, plugging ψ in (39) and using the fact that g_ϵ^0 is
uniformly bounded in $BV_{loc} (\Omega \times L^1 (V))$ (since g^0 is uniformly bounded in $L^1 (V; BV_{loc} (\Omega)) \subset BV_{loc} (\Omega \times L^1 (V))$) yields (10) for $t \in (0, t_1)$. Now let $t_2 > t_1$ be such that $a_\infty (t_2 - t_1) = \beta$. Proceeding as above and using the fact that $g_e (\cdot, \cdot, t_1)$ is uniformly bounded in $BV_{loc} (\Omega \times L^1 (V))$, we conclude that $g_e (\cdot, \cdot, t)$ is uniformly bounded in $BV_{loc} (\Omega \times L^1 (V))$ for any $t \in (t_1, t_2]$. Continuing this process we conclude that $g_e (\cdot, \cdot, t)$ is uniformly bounded in $BV_{loc} (\Omega \times L^1 (V))$ for any $t \in [0, T]$.

Finally, using similar constructions we can prove that for any open bounded subset O of $(0, 1 - h) \times \mathbb{R}^{d-1}$ with $\bar{O} \subset (0, 1 - h) \times \mathbb{R}^{d-1}$, we have

$$\int_{O \times V} |r_h g_e - g_e| \leq C h$$

where C is a constant depending on O, but is independent of h. This concludes the proof that g_e is uniformly bounded in $L^\infty ([0, T]; BV_{loc} (\Omega \times L^1 (V)))$. The uniform bound of w_e in $L^\infty ([0, T]; BV_{loc} (\Omega))$ can then be deduced from that of g_e. And the statement 1) is proved.

2) Let $0 \leq t_1 < t_2 \leq T$ and U be an open bounded subset of Ω with $\bar{U} \subset \Omega$. Let $\psi (x) \in C^1_0 (U)$. Multiplying Eq. (1) by ψ and integrating over $U \times (t_1, t_2) \times V$, we obtain

$$\int_{U \times V \times (t_1, t_2)} \partial_t g_e \psi + \sum_i \int_{U \times V \times (t_1, t_2)} a_i (v) \partial_x g_e \psi = \frac{1}{\epsilon} \int_{U \times V \times (t_1, t_2)} (\chi_{w_e} - g_e) \psi = 0$$

Hence, we have

$$\int_{U} (w_e (x, t_2) - w_e (x, t_1)) \psi (x) = - \int_{t_1}^{t_2} \int_{U \times V} a_i (v) \partial_x g_e \psi$$

Since $\partial_x g_e, \ i = 1, \cdots, d$ are locally finite measures (consult 1) above), the integrand on the right side is bounded by $a_\infty C (U)$ for $|\psi (x)| \leq 1$. Taking the supremum of (11) over all ψ with $|\psi (x)| \leq 1$ yields (41).

3) Let U be an open bounded set of Ω such that $\bar{U} \subset \Omega$. Let O be an open bounded set of Ω such that $\bar{U} \subset O \subset \bar{O} \subset \Omega$. Taking $G_e (x, v, t) = g_e (x, v, t + \Delta t)$ and proceeding as in the derivation of (10) and the proof of the uniform BV_{loc} bound (consult part 1) above), we obtain

$$\int_{U \times V} |g_e (x, v, t + \Delta t) - g_e (x, v, t)| \leq \int_{O \times V} |g_e (x, v, \Delta t) - g_e (x, v, 0)|$$

from which we deduce

$$\| \partial_t g_e (x, v, t) \|_{L^1 (U \times V)} \leq \| \partial_t g_e (x, v, t = 0) \|_{L^1 (O \times V)}$$

The kinetic equation (1) yields
\[\| \partial_t g_\epsilon(x,v,t = 0) \|_{L^1(O \times V)} \leq \| (a(v) \cdot \partial_x) g_\epsilon(x,v,t = 0) \|_{L^1(O \times V)} + \frac{1}{\epsilon} \| \chi_{w_\epsilon}(x,t=0) - g_\epsilon(x,v,t = 0) \|_{L^1(O \times V)} \]

Using again the kinetic equation \[(1) \] together with \[(43), (44) \] and the uniform bound of \(g_\epsilon(x,v,t) \) in \(L^\infty([0,T], BV_{loc}(\Omega \times L^1(V))) \), we obtain

\[\| g_\epsilon(x,v,t) - \chi_{w_\epsilon(x,t)}(v) \|_{L^1(U \times V)} \leq \epsilon \| \partial_t g_\epsilon(x,v,t) \|_{L^1(U \times V)} + \epsilon \| (a(v) \cdot \partial_x) g_\epsilon(x,v,t) \|_{L^1(U \times V)} \leq \epsilon a_{\infty} \| g_\epsilon(x,v,t = 0) \|_{BV(O \times L^1(V))} + \epsilon a_{\infty} \| g_\epsilon(x,v,t) \|_{BV(U \times L^1(V))} + 2 \| g_\epsilon^0(x,v) - \chi_{w_\epsilon^0(x)} \|_{L^1(O \times V)} \]

Now, \[(45) \] and \[(35) \] yield as \(\epsilon \to 0 \)

\[\| g_\epsilon(x,v,t) - \chi_{w_\epsilon(x,t)}(v) \|_{L^1(U \times V)} \to 0 \]

The proof of 3) is now complete.

4) The proof is an immediate consequence of a combination of 1) and 2) above.

Remark 2.3. Notice that Lemma \[2.4 \] part 1) furnishes a local uniform in \(\epsilon \) bound on the spatial variation on the microscopic scale. However, the local Lipschitz continuity is obtained only at the macroscopic level; consult Lemma \[2.4 \] part 2). The temporal variation at the microscopic level cannot, in general, be bounded uniformly in \(\epsilon \). Such uniform control can be achieved only if we can prevent the possibility of a kinetic layer in \[(7) \] (Consult Theorem \[5.5 \] and the remark before it).

3. **Hydrodynamic Limit of the Kinetic Problem and Existence Theory for the Conservation Laws**

In this section we shall prove that the conservation laws \[(5)-(7) \] has a solution in the sense of Definition \[3.1 \] below which selects a physically correct solution to this problem.

Definition 3.1. We say that \(w \in BV_{loc}(\Omega \times (0,T)) \cap L^\infty(\Omega \times [0,T]) \) is a weak entropic solution of the problem \[(5)-(7) \] if we have

\[- \int_{\Omega \times (0,T)} \left(|w - k| \partial_t \psi + \text{sign}(w - k)(A(w) - A(k)) \cdot \nabla_x \psi \right) \]

\[+ \int_{\Gamma_1 \times (0,T)} \psi \text{sign}(w_1 - k)((A(w_1) \cdot n)^- - (A(k) \cdot n)^-) \]

\[+ \int_{\Gamma_0^- \times (0,T)} a(v) \cdot n \psi |g_0 - \chi_k| \leq 0 \]

\(\forall \psi \in C^0_0(\Omega \times V \times (0,T)), \psi \geq 0, \forall k \in \mathbb{R} \)
and \(w \) satisfies the initial condition

\[
 w(x, 0) = w^0(x) \quad \text{in} \quad \Omega
\]

We now state the following theorem about the existence of a solution to the conservation laws.

Theorem 3.1. Assume that

\[
\begin{align*}
 \|g_{e0}\|_{L^\infty((\Gamma_0^- \times [0,T])} &< C_1, \quad \|g_e^0\|_{L^\infty(\Omega \times V)} < C_2, \quad \|g_{e1}\|_{L^\infty((\Gamma_0^- \times [0,T])} < C_3, \\
 \|g_e^0\|_{L^1(\Omega \times V)} &< C_4, \quad \|a(v) \cdot ng_{e0}\|_{L^1((\Gamma_0^- \times (0,T))} < C_5, \quad \|a(v) \cdot ng_{e1}\|_{L^1((\Gamma_1^- \times (0,T))} < C_6, \\
 \|g_e^0\|_{L^1(V; BV_{loc}(\Omega))} &< C_7
\end{align*}
\]

with \(C_i, i = 1, \ldots, 7 \) positive constants independent of \(\epsilon \).

Assume also that the initial and boundary data \(f_{e0}, g_{e0}^0, \) and \(g_{e1} \) are compactly supported in \(v \in V \) with supports included in a fixed compact set independent of \(\epsilon \). Finally assume that as \(\epsilon \to 0 \),

\[
\begin{align*}
 &\|w_e(\cdot, 0) - w^0(\cdot)\|_{L^1_{loc}(\Omega)} = \| \int_V g_e^0(\cdot, v) - w^0(\cdot)\|_{L^1_{loc}(\Omega)} \to 0 \\
 &a(v) \cdot ng_{e0} \to a(v) \cdot ng_0 \quad \text{strongly in} \quad L^1(\Gamma_0^- \times (0,T)) \\
 &a(v) \cdot ng_{e1} \to a(v) \cdot ng_1 = a(v) \cdot n\chi_{w_1} \quad \text{strongly in} \quad L^1(\Gamma_1^- \times (0,T))
\end{align*}
\]

Then \(w_e \) converges strongly in \(L^1(\Omega \times (0,T)) \), as \(\epsilon \) goes to 0, to an entropic solution of the problem (46)-(47) in the sense of Definition 3.2.

Before we give the proof of Theorem 3.1 we shall state and prove a preliminary result showing compactness of \(w_e \) and \(g_e \) respectively in \(L^1(\Omega \times (0,T)) \) and \(L^\infty(\Omega \times V \times (0,T)) \). We shall assume that \(\Omega = (0,1) \). It is not difficult to generalize our proof to the case \(\Omega = (0,1) \times \mathbb{R}^{d-1} \).

Lemma 3.1. Assume that all assumptions of Theorem 3.1 hold. Then
i) A subsequence of \(w_e \) (still denoted \(w_e \)) converges as \(\epsilon \to 0 \) to \(w \) in \(L^1_{loc}(\Omega \times (0,T)) \cap L^\infty([0,T];L^1_{loc}(\Omega)) \) and in \(L^\infty(\Omega \times [0,T]) \) weak-* . Moreover \(w_e \) converges a.e. to \(w \) in \(\Omega \times (0,T) \) and \(w \in BV_{loc}(\Omega \times (0,T)) \).
ii) The \(L^1_{loc} \) convergence of \(w_e \) takes place actually in \(L^1(\Omega \times (0,T)) \cap L^\infty([0,T];L^1(\Omega)) \).
iii) Finally, we have \(\|g_e - \chi_w\|_{L^1(\Omega \times V \times (0,T))} \to 0 \) as \(\epsilon \to 0 \).

To prove Lemma 3.1 part ii), we shall also need the following result.

Theorem 3.2. Let \(U \) be a bounded open subset of \(\mathbb{R}^N \) and let \(v_n \) be a sequence in \(L^1_{loc}(U) \). Assume that as \(n \to \infty \), the sequence \(v_n \) converges strongly in \(L^1_{loc}(U) \) to \(v \in L^1_{loc}(U) \). If \(v_n \) is uniformly bounded in \(L^\infty(U) \) then \(v_n \) converges strongly to \(v \) in \(L^1(U) \).

Proof of Theorem 3.2

Let \(\eta > 0 \) be fixed. Since \(U \) is bounded there exists a compact set \(K_\eta \subset U \) such that the Lebesgue measure \(\text{meas}(U \setminus K_\eta) < \eta \). On the other hand since \(v_n \) is uniformly bounded in
$L^\infty(U)$, by diagonal process to pass to a further subsequence if necessary and uniqueness of the limit, v_n converges in L^∞ weak-\star to v. Hence $v \in L^\infty(U)$. Now

$$
\int_U |v_n - v| = \int_{U \setminus K_\eta} |v_n - v| + \int_{K_\eta} |v_n - v| \\
\leq \|v_n - v\|_\infty \text{meas}(U \setminus K_\eta) + \int_{K_\eta} |v_n - v| \\
\leq C\eta + \int_{K_\eta} |v_n - v|
$$

where C is a constant independent of n and η. Therefore since $\lim_{n \to \infty} \int_{K_\eta} |v_n - v| = 0$,

$$
\limsup_{n \to \infty} \int_U |v_n - v| \leq C\eta
$$

This proves the statement since η is arbitrary.

Proof of Lemma 3.1

Using Lemma 2.4 part 4) and Lemma 2.2 w_ϵ is bounded uniformly in $L^1 \cap BV_{loc}(\Omega \times (0,T))$. Hence a subsequence of w_ϵ (still denoted w_ϵ) converges to w in $L^1_{loc}(\Omega \times (0,T))$ and almost everywhere in $\Omega \times (0,T)$. Moreover $w \in BV_{loc}(\Omega \times (0,T))$. Using Lemma 2.3 and diagonal process to extract a further subsequence, if necessary, w_ϵ converges in $L^\infty(\Omega \times [0,T])$ weak-\star to a function $w \in L^\infty(\Omega \times [0,T])$. Since $\Omega \times (0,T)$ is bounded the limit w is in $L^1(\Omega \times (0,T))$. Now by the dominated convergence theorem and the above, the convergence of w_ϵ takes place in fact in $L^1(\Omega \times (0,T))$.

Now by Lemma 2.4 part 1) $w_\epsilon(\cdot, t)$, $t \in [0,T]$ is uniformly bounded in $BV_{loc}(\Omega)$. Hence it is precompact in $L^1_{loc}(\Omega)$. Using Lemma 2.2 part 2), $\|w_\epsilon(x,t)\|_{L^1(\Omega)}$ is Lipschitz continuous in time. By diagonal process to extract a further subsequence, if necessary, $w_\epsilon \to_{\epsilon \to 0} w$ strongly in $L^\infty([0,T];L^1_{loc}(\Omega))$. Now by the same process we used to prove the strong L^1 convergence of w_ϵ to w in $L^1(\Omega \times (0,T))$, we conclude that $w_\epsilon \to_{\epsilon \to 0} w$ strongly in $L^\infty([0,T];L^1(\Omega))$.

By the properties of χ, we conclude that χ_{w_ϵ} strongly converges to χ_w in L^1. Using this and the integral representation (Theorem 2.1), and recalling that the boundary data satisfy (47)-(48), we infer that g_ϵ strongly converges to χ_w in L^1. This concludes the proof of the lemma.

Proof of Theorem 3.1
Using Lemma 3.1, a subsequence of w_i (still denoted w_i) converges strongly in L^1 to w. We know that $w \in BV_{loc}(\Omega \times (0,T)) \cap L^\infty(\Omega \times [0,T])$ (consult the proof of Lemma 3.1). Using Theorem 2.2, we have

\[-\int_{\Omega \times V \times (0,T)} (\partial_t + a(v) \cdot \partial_x)(\psi)|g_\epsilon - \chi_k| + \int_{\Gamma_0^{-} \times (0,T)} a(v) \cdot n \psi|g_0 - \chi_k| + \int_{\Gamma_1^{-} \times (0,T)} a(v) \cdot n \psi|g_1 - \chi_k| \leq 0 \quad \forall \psi \in C^1_0(\bar{\Omega} \times (0,T)), \, \psi \geq 0, \, \forall k \in \mathbb{R}
\]

Using Lemma 3.1, Lemma 2.3 (17) and (18), and the properties of χ, we then obtain

\[-\int_{\Omega \times (0,T)} \partial_t \psi|w - k| - \int_{\Omega \times (0,T)} \text{sign}(w - k)(A(w) - A(k)) \cdot \partial_x \psi + \int_{\Gamma_0^{-} \times (0,T)} a(v) \cdot n \psi|g_0 - \chi_k| + \int_{\Gamma_1^{-} \times (0,T)} \text{sign}(w_1 - k)((A(w_1) \cdot n)^- - (A(k) \cdot n)^-)|\psi| \leq 0 \quad \forall \psi \in C^1_0(\bar{\Omega} \times (0,T)), \, \psi \geq 0, \, \forall k \in \mathbb{R}
\] (49)

Finally, thanks to Lemma 3.1 (10), and (18), w satisfies the initial conditions (7). Thus, combining (19) and the above, it is clear that w is an entropic solution in the sense of Definition 3.1 to the problem (5) - (7).

The proof of the theorem is now complete.

As we saw in Remark 2.3, the temporal variation at the microscopic level cannot, in general, be bounded uniformly in ϵ. Such uniform control can be achieved only if we can prevent the possibility of a kinetic layer in (11). For this purpose, we shall prepare the kinetic initial data so that $\frac{g_\epsilon}{\epsilon}$ is uniformly bounded in ϵ and t, in particular at $t = 0$. In such case no kinetic initial layer will be present. We therefore assume that the kinetic initial data satisfies (7)

$$\|g_\epsilon^0(\cdot, \cdot) - \chi_{w^0(\cdot)}(\cdot)\|_{L^1_{loc}(\Omega \times L^1(V))} \rightarrow \epsilon \rightarrow 0 \, 0$$

Theorem 3.3. Assume that

\[
\|g_0\|_{L^\infty(\Gamma_0^{-} \times [0,T])} < C_1, \quad \|g_0\|_{L^\infty(\Omega \times V)} < C_2, \quad \|g_1\|_{L^\infty(\Gamma_1^{-} \times [0,T])} < C_3,
\]

\[
\|g_\epsilon^0\|_{L^1(\Omega \times V)} < C_4, \quad \|a(v) \cdot n g_0\|_{L^1(\Gamma_0^{-} \times (0,T))} < C_5, \quad \|a(v) \cdot n g_1\|_{L^1(\Gamma_1^{-} \times (0,T))} < C_6
\]

\[
\|g_\epsilon^0\|_{L^1(V;BV_{loc}(\Omega))} < C_7
\]

with $C_i, i = 1, \cdots, 7$ positive constants independent of ϵ.

Assume also that the initial and boundary data f_ϵ, g_ϵ^0, and g_ϵ, are compactly supported in $v \in V$ with supports included in a fixed compact set independent of ϵ. Finally assume that as $\epsilon \rightarrow 0$,
(50) \[\| g^0(\cdot, \cdot) - \chi_{w^0}(\cdot) \|_{L^1_{loc}(\Omega \times L^1(V))} \to_{\epsilon \to 0} 0 \]

(51) \[a(v) \cdot n g_{0\epsilon} \to a(v) \cdot n g_0 \text{ strongly in } L^1(\Gamma_0^+ \times (0, T)) \]

(52) \[a(v) \cdot n g_{1\epsilon} \to a(v) \cdot n g_1 = a(v) \cdot n \chi_{w_1} \text{ strongly in } L^1(\Gamma_1^- \times (0, T)) \]

Then \(g_\epsilon \) converges strongly in \(L^\infty([0, T]; L^1(\Omega \times V)) \), as \(\epsilon \) goes to 0, to \(\chi_w \) and \(w \) is an entropic solution of the problem (5)-(7) in the sense of Definition 3.1.

Before we give the proof of Theorem 3.3, we shall state and prove the lemma below.

Lemma 3.2. Assume that all assumptions of Theorem 3.3 hold. Then i) and ii) of Lemma 3.1 hold true. Moreover, we have \(\| g_\epsilon - \chi_w \|_{L^\infty([0,T]; L^1(\Omega \times V))} \to 0 \) as \(\epsilon \to 0 \).

Proof of Lemma 3.2

We only need to prove the last statement in the lemma. By Lemma 2.4 part 3) \[\| g_\epsilon - \chi_{w_\epsilon} \|_{L^\infty([0,T]; L^1_{loc}(\Omega \times V))} \to_{\epsilon \to 0} 0 \]

Thus \[\| g_\epsilon - \chi_w \|_{L^\infty([0,T]; L^1_{loc}(\Omega \times V))} \to_{\epsilon \to 0} 0 \]

Since \(g_\epsilon \) is uniformly bounded in \(L^\infty(\Omega \times V \times [0, T]) \) (Lemma 2.1) and remains compactly supported in \(v \) with support included in a fixed compact set independent of \(\epsilon \) (Lemma 2.3), and \(g_\epsilon \) converges to \(g \) in \(L^\infty([0, T]; L^1_{loc}(\Omega \times L^1(V))) \), we can apply Theorem 3.2 to infer that \(g_\epsilon \to \chi_w \) in \(L^\infty([0, T]; L^1(\Omega \times L^1(V))) \). This concludes the proof of the lemma.

Proof of Theorem 3.3

The proof of this theorem is similar to that of Theorem 3.1 and will not be repeated.

Remark 3.1. Theorems 3.1 and 3.3 are obtained under various assumptions including the assumptions that the data \(g_0^0 \), \(g_0^1 \), and \(g_1 \) are compactly supported in \(v \). In fact these theorems are also valid when these data are not necessarily compactly supported in \(v \). The proof is based on a BV-regularization argument.

4. CANCELLATION OF MICROSCOPIC OSCILLATIONS VIA THE COMPENSATED COMPACTNESS

In this section we study the one-dimensional scalar conservation law
\[\partial_t w + \partial_x A(w) = 0 \text{ in } \Omega \times (0, T) \]
(54) \quad \text{Boundary conditions for } w \text{ on } \Gamma_0 \times (0, T) \text{ and } \Gamma_1 \times (0, T) \]

(55) \quad w(x, 0) = w^0(x) \text{ in } \Omega \]

The corresponding kinetic equation [7] is

\[[\partial_t + a(v) \cdot \partial_x] g_\epsilon(x, v, t) = \frac{1}{\epsilon} (\chi_{w_\epsilon(x, t)}(v) - g_\epsilon(x, v, t)) \text{ in } \Omega \times V \times (0, T) \]

(56) \quad g_\epsilon(x, v, t) = g_{0\epsilon}(x, v, t) \text{ on } \Gamma_0 \times (0, T) \]

(57) \quad g_\epsilon(x, v, t) = g_{1\epsilon}(x, v, t) \text{ on } \Gamma_1 \times (0, T), \]

(58) \quad g_\epsilon(x, v, 0) = g_{0\epsilon}(x, v) \text{ in } \Omega \times V \]

where all data and the relationships between the various quantities above were precised in the introduction, we only need to take \(d = 1 \). We assume that the conservation law (53) is nonlinear in the sense that there exists no interval on which the flux \(A(u) \) is linear, i.e. \(A''(u) \neq 0 \) a.e. In the full space case i.e. \(\Omega = \mathbb{R} \), the study of this problem without using compactness arguments (based on \(BV \) estimates as in Lemma 2.4) has been done in [7]. The authors use compensated compactness, specifically, the Tartar’s div-curl lemma [9]. We shall extend this result to the case of domains with boundaries. We first give a definition of a solution to the nonlinear conservation laws.

Definition 4.1. We say that \(w \in L^\infty(\Omega \times [0, T]) \) is a weak entropic solution of the problem (53)-(55) if we have

\[
- \int_{\Omega \times (0, T)} (|w - k| \partial_t \psi + \text{sign}(w - k)(A(w) - A(k)) \cdot \nabla_x \psi) \\
+ \int_{\Omega \times (0, T)} \psi \text{sign}(w_1 - k)((A(w_1) \cdot n)^- - (A(k) \cdot n)^-) \\
+ \int_{\Gamma^+ \times (0, T)} a(v) \cdot n\psi |g_0 - \chi_k| \leq 0 \\
\forall \psi \in C^1_0(\overline{\Omega} \times V \times (0, T)), \psi \geq 0, \forall k \in \mathbb{R}
\]

and \(w \) satisfies the initial condition

\[w(x, 0) = w^0(x) \text{ in } \Omega \]

The main result of this section is

Theorem 4.1. Assume that the conservation law (53) is nonlinear (see above). Let \(g_\epsilon \) be the solution of the corresponding kinetic equation (56)-(59). Assume that
\[\|g_0\|_{L^\infty(\Gamma_0 \times [0,T])} < C_1, \quad \|g_0^0\|_{L^\infty(\Omega \times V)} < C_2, \quad \|g_1\|_{L^\infty(\Gamma_1^{-} \times [0,T])} < C_3, \]
\[\|g_0^0\|_{L^1(\Omega \times V)} < C_4, \quad \|a(v) \cdot n g_0\|_{L^1(\Gamma_0^{-} \times (0,T))} < C_5, \quad \|a(v) \cdot n g_1\|_{L^1(\Gamma_1^{-} \times (0,T))} < C_6 \]

with \(C_i, i = 1, \cdots, 6 \) positive constants independent of \(\epsilon \).

Assume also that the initial and boundary data \(g_0^0, g_0^0, g_{1} \) are compactly supported in \(v \in V \) with supports included in a fixed compact set independent of \(\epsilon \). Finally assume that as \(\epsilon \to 0 \),
\[\|w_\epsilon - w^0\|_{L^1_{\text{loc}}(\Omega)} = \int_V g_\epsilon^0(\cdot,v) - w^0(\cdot) \|_{L^1_{\text{loc}}(\Omega)} \to 0 \]
\[a(v) \cdot n g_0 \to a(v) \cdot n g_0 \text{ strongly in } L^1(\Gamma_0^{-} \times (0,T)) \]
\[a(v) \cdot n g_1 \to a(v) \cdot n g_1 = a(v) \cdot n \chi_{w_1} \text{ strongly in } L^1(\Gamma_1^{-} \times (0,T)) \]

Then \(w_\epsilon = \int_V g_\epsilon(x,v,t)dv \) converges strongly in \(L^p(\Omega \times (0,T)), p < \infty \), to an entropic solution of the nonlinear conservation law \((53)-(55)\) in the sense of Definition 4.1.

Remark 4.1. 1) We observe that under the assumptions of the theorem above, the conclusions of Lemmas 2.1, 2.2, and 2.3 remain valid.

2) Remark 3.1 is also valid for Theorem 4.1.

Proof of Theorem 4.1

The proof follows the same lines as the one corresponding to the full space case in [7]. Thus, proceeding as in [7], we obtain
\[\int_V a(v) g_\epsilon dv = \int_V a(v) \chi_{w_\epsilon} dv = A(w_\epsilon) \]
\[A(w_\epsilon) = A(w_\epsilon) \]
for otherwise, \(|w_\epsilon - w^0|(x,t) = 0 \), which in turn yields again (64). Combining (63) and (64), and passing to the limit weakly in (56), we obtain
\[\frac{\partial}{\partial t} |w_\epsilon| + \frac{\partial}{\partial x} A(|w_\epsilon|) = 0 \]

Hence a subsequence of \(w_\epsilon \) (still denoted \(w_\epsilon \)) converges to a weak solution of the conservation law \((53)\). Thanks to the nonlinearity of \(A(w) \) and equality (64), we can use Tartar Theorem [9, Theorem 26] to conclude that \(w_\epsilon \) strongly converges in \(L^p_{\text{loc}}(\Omega \times (0,T)) \), \(1 \leq p < \infty \). This combined with the process used to prove Theorem 3.1 completes the proof of the theorem.

5. Conservation laws with source terms

In this section we introduce the following kinetic model with forces
\[
\begin{align*}
[\partial_t + a(v) \cdot \partial_x + S(x, t, v) \cdot \partial_v] g_e(x, v, t) &= \frac{1}{\epsilon}(\chi_{w_e(x,t)}(v) - g_e(x, v, t)) \\
\text{in } &\Omega \times V \times (0, T) \tag{65} \\
g_e(x, v, t) &= g_{e0}(x, v, t) \text{ on } \Gamma_0^- \times (0, T) \tag{66} \\
g_e(x, v, t) &= g_{e1}(x, v, t) \text{ on } \Gamma_1^- \times (0, T), \tag{67}
\end{align*}
\]

And study its relation to the inhomogeneous scalar conservation laws

\[
\begin{align*}
[\partial_t + a(v) \cdot \partial_x] w(x, t) + \partial_x [A_i(w)](x, t) &= S(x, t, w) \text{ in } \Omega \times (0, T) \tag{69} \\
\text{Boundary conditions for } w &\text{ on } \Gamma_0 \times (0, T) \text{ and } \Gamma_1 \times (0, T) \tag{70}
\end{align*}
\]

Here, \(S(x, t, .)\) is a source term, which is in \(L^\infty(\Omega \times (0, T); C^1)\) and satisfies \(S(x, t, 0) \equiv 0\).

As before \(w_e(x, t) = \int_V g_e(x, v, t) dv\) and \(\chi_w\) is defined by the relation \(8\).

In the full space case \(\Omega = \mathbb{R}^d\), a brief study of the inhomogeneous scalar conservation laws above has been given in \[7\] in connection with the kinetic model

\[
\begin{align*}
[\partial_t + a(v) \cdot \partial_x] g_e(x, v, t) &= \frac{1}{\epsilon}(\chi_{w_e(x,t)}(v) - g_e(x, v, t)) + S'(x, t, v)g_e(x, v, t) \\
\text{in } &\Omega \times V \times (0, T) \tag{72} \\
g_e(x, v, t) &= g_{e0}(x, v, t) \text{ on } \Gamma_0^- \times (0, T) \tag{73} \\
g_e(x, v, t) &= g_{e1}(x, v, t) \text{ on } \Gamma_1^- \times (0, T), \tag{74}
\end{align*}
\]

As compared with the kinetic model \(72\)-\(75\) proposed in \[7\], our kinetic model \(65\)-\(68\) is more appropriate to describe the physics at the microscopic level, which yields the conservation laws \(69\)-\(71\) at the macroscopic level as the microscopic scale tends to 0. Its analysis does not require additional assumptions on the source terms as in \[7\]. We shall clarify this later.

Since our kinetic model is new, we shall also indicate how our analysis extend to the full space case i.e. \(\Omega = \mathbb{R}^d\).

We begin with an existence and uniqueness result for the kinetic model.

Theorem 5.1. Assume that

\[
\begin{align*}
g^0_e &\in L^1(\Omega \times V), \quad a(v) \cdot ng_{e1} \in L^1(\Gamma_1^- \times (0, T)), \quad a(v) \cdot ng_{e0} \in L^1(\Gamma_0^- \times (0, T))
\end{align*}
\]

Then the kinetic model \(65\)-\(68\) has a unique solution in \(L^\infty([0, T]; L^1(\Omega \times V))\). Moreover, \(g_e\) satisfies the integral representation.
In Ω_0
\[g(x, v, t) = g_\epsilon((0, x_\omega - \frac{x_1}{a_1(v)} a_\omega(v)), v) - \frac{x_1}{a_1(v)} S(x, t, v), t - \frac{x_1}{a_1(v)} \exp(- \frac{x_1}{\epsilon a_1(v)}) + \frac{1}{\epsilon} \int_{t-1}^t \exp((s - t)/\epsilon) \chi_{w_\epsilon(x(s), s)}(v(s))ds \]

In Ω_0
\[g(x, v, t) = g_\epsilon^0(x - a(v)t, v - tS(x, t, v)) \exp(-t/\epsilon) + \frac{1}{\epsilon} \int_0^t \exp((s - t)/\epsilon) \chi_{w_\epsilon(x(s), s)}(v(s))ds \]

In Ω_1
\[g(x, v, t) = g_\epsilon(1, x_\omega + \frac{1 - x_1}{a_1(v)} a_\omega(v)), v) + \frac{1 - x_1}{a_1(v)} S(x, t, v), t - \frac{x_1 - 1}{a_1(v)} \exp(\frac{1 - x_1}{a_1(v)}) + \frac{1}{\epsilon} \int_{t-1}^t \exp((s - t)/\epsilon) \chi_{w_\epsilon(x(s), s)}(v(s))ds \]

where $x(s) = x + (s - t)a(v)$, $x_\omega = (x_1, x_\omega)$, $a(v) = (a_1(v), a_\omega(v))$, and $v(s) = v + (s - t)S(x, t, v)$.

Finally, Let g_ϵ and G_ϵ be two solutions of (7)-(7) with corresponding densities $w_\epsilon(x, t) = \int_V g_\epsilon(x, v, t)dv$ and $W_\epsilon(x, t) = \int_V G_\epsilon(x, v, t)dv$; and let g_ϵ^0, g_ϵ^0, g_ϵ^1 resp. G_ϵ^0, G_ϵ^0, G_ϵ^1 denote the corresponding data. Let

\[S_\epsilon'(t) = \{\max_{x,v} S'(x, t, v) : v \in supp_g(x, v, t) \cup supp_G(x, v, t)\} \]

We have

\[\|g_\epsilon - G_\epsilon\|_{L^\infty([0,T];L^1(\Omega \times V))} \leq \exp(\int_0^T |S_\epsilon'(s)|ds) \]

\[\|g_\epsilon - G_\epsilon\|_{L^\infty([0,T];L^1(\Omega \times V))} + \|a(v) \cdot n(g_\epsilon - G_\epsilon)\|_{L^1(\Gamma_1^- \times (0, T))} + \|a(v) \cdot n(G_\epsilon^1 - G_\epsilon)\|_{L^1(\Gamma_1^- \times (0, T))} \]

\[\|g_\epsilon - G_\epsilon\|_{L^\infty([0,T];L^1(\Omega \times V))} + \|a(v) \cdot n(g_\epsilon - G_\epsilon)\|_{L^1(\Gamma_1^+ \times (0, T))} + \|a(v) \cdot n(G_\epsilon^1 - G_\epsilon)\|_{L^1(\Gamma_1^+ \times (0, T))} \]

The proof of this theorem follows by arguing along the lines of the proof of Theorem 2.1, with obvious modification to account for the source term. We only point out here how
After multiplying the equation for g by $\varphi \eta_n$, the contribution of the source term is

$$\int_{\Omega \times V \times (0,t)} S(x,t,v) \partial_v g \varphi \eta_n$$

(78) $$= -\int_{\Omega \times V \times (0,t)} g \partial_v S(x,t,v) \varphi \eta_n - g \partial_v S(x,t,v) \varphi \eta_n - g \partial_v S(x,t,v) \varphi \partial_v \eta_n$$

After passing to the limit as $n \to \infty$, the right hand side converges to

$$-\int_{\Omega \times V \times (0,t)} g \partial_v S(x,t,v) \varphi - g \partial_v S(x,t,v) \varphi$$

We also pass to the limit as $n \to \infty$ in the other terms. The rest of the proof proceeds as in the proof of Theorem 2.1 with appropriate modifications due to the source term.

We shall give below an entropy inequality for the solution of the kinetic problem. This is stated in the following theorem.

Theorem 5.2. The solution to the kinetic problem satisfies the relation

$$-\int_{\Omega \times V \times (0,T)} (\partial_t + a(v) \cdot \partial_x)(\psi)g - \chi_k + \int_{\Gamma_0 \times (0,T)} a(v) \cdot n\psi |g| - \chi_k +$$

(79) $$\int_{\Gamma_1 \times (0,T)} a(v) \cdot n\psi \leq \int_{\Omega \times V \times (0,T)} g \partial_v S \text{sign}(g - \chi_k)$$

$$\forall \psi \in C^1_0(\bar{\Omega} \times V \times (0,T)), \psi \geq 0, \forall k \in \mathbb{R}$$

Before we state our main convergence results, we shall give below a definition of a solution to the conservation laws with source term (69)-(71). This definition selects a physically correct solution to this problem.

Definition 5.1. We say that $w \in BV_{loc}(\Omega \times (0,T)) \cap L^\infty(\Omega \times [0,T])$ is a weak entropic solution of the problem (69)-(71) if we have

$$-\int_{\Omega \times (0,T)} (|w - k| \partial_t \psi + \text{sign}(w - k)(A(w) - A(k)) \cdot \nabla \psi)$$

$$+ \int_{\Gamma_1 \times (0,T)} \psi \text{sign}(w - k)((A(w_1) \cdot n)^- - (A(k) \cdot n)^-)$$

$$+ \int_{\Gamma_0 \times (0,T)} a(v) \cdot n\psi \leq \int_{\Omega \times (0,T)} \psi S(x,t,w) \text{sign}(w - k)$$

$$\forall \psi \in C^1_0(\bar{\Omega} \times V \times (0,T)), \psi \geq 0, \forall k \in \mathbb{R}$$

and w satisfies the initial condition

$$w(x,0) = u^0(x) \text{ in } \Omega$$
We mention here that the kinetic entropy relations given in [7] on page 516, Formula (5.5) for the kinetic model [72]-[76] and their corresponding macroscopic “continuum limit” entropy inequality given at the end of page 516 in [7] for the conservation laws with source terms [69]-[71] are not correct.

Next we shall state the main convergence results about the kinetic distributions and their moments for the source case.

Theorem 5.3. Assume that

\[
\|g_0\|_{L^\infty(\Gamma_0 \times [0,T])} < C_1, \quad \|g_0^0\|_{L^\infty(\Omega \times V)} < C_2, \quad \|g_1\|_{L^\infty(\Gamma_1^- \times [0,T])} < C_3,
\]

\[
\|g_0^0\|_{L^1(\Omega \times V)} < C_4, \quad \|a(v) \cdot ng_0\|_{L^1(\Gamma_0^- \times (0,T))} < C_5, \quad \|a(v) \cdot ng_1\|_{L^1(\Gamma_1^- \times (0,T))} < C_6
\]

\[
\|g_0^0\|_{L^1(V;BV_{loc}(\Omega))} < C_7
\]

with \(C_1, i = 1, \ldots, 7\) positive constants independent of \(\epsilon\).

Assume also that the initial and boundary data \(f_0, g_0^0\), and \(g_1\) are compactly supported in \(v \in V\) with supports included in a fixed compact set independent of \(\epsilon\). Finally assume that as \(\epsilon \to 0\),

\[
\|w_\epsilon(\cdot, 0) - w^0(\cdot)\|_{L^1_{loc}(\Omega)} = \left\| \int_V g_0^0(\cdot, v) - w^0(\cdot)\right\|_{L^1_{loc}(\Omega)} \to 0
\]

\(a(v) \cdot ng_0 \to a(v) \cdot ng_0\) strongly in \(L^1(\Gamma_0^- \times (0,T))\)

\(a(v) \cdot ng_1 \to a(v) \cdot ng_1 = a(v) \cdot n\chi_{w_1}\) strongly in \(L^1(\Gamma_1^- \times (0,T))\)

Then \(w_\epsilon\) converges strongly in \(L^1(\Omega \times V \times (0,T))\), as \(\epsilon\) goes to 0, to an entropic solution of the problem [3]-[7] in the sense of Definition 3.1.

The theorem above does not provide a strong convergence uniform in \(\epsilon\) and time of the density distribution to the equilibrium distribution. This is due to the presence of initial layers and the lack of the control of the velocity variation of the density distribution. Under the present assumptions (assumptions of Theorem 5.3 only a uniform control of the spatial variation on the microscopic scale and a uniform control of the temporal variation only at the macroscopic level are allowed (consult Lemma 2.4 part 1) and 2) and the remark after the proof of Theorem in the sourceless case). The uniform control of the temporal variation of the kinetic distribution can be achieved only if we can control uniformly, in addition to the spatial variation, the the velocity variation and the initial temporal variation of the kinetic distribution. That is, we have to prepare the initial data so that \(\frac{\partial}{\partial t}g_\epsilon\) is uniformly bounded in \(\epsilon\) and \(t\), in particular at \(t = 0\), and \(g_0^0\) is uniformly bounded in \(BV(V; L^1_{loc}(\Omega))\).

We therefore assume that the kinetic initial data satisfies [7]

\[
\|g_0^0(\cdot, \cdot) - \chi_{w_\theta(\cdot)}(\cdot)\|_{L^1_{loc}(\Omega \times L^1(V))} \to \epsilon \to 0
\]

\[
\|g_0^0\|_{L^1_{loc}(\Omega; BV(V))} < C
\]

Under the new additional assumptions, we obtain the following uniform in \(\epsilon\) and time convergence of the kinetic distribution to an equilibrium distribution.
Theorem 5.4. Assume that

\[\| g_0 \|_{L^\infty(\Gamma_0^\epsilon \times [0,T])} < C_1, \| g_0^0 \|_{L^\infty(\Omega \times V)} < C_2, \| g_{\epsilon 1} \|_{L^\infty(\Gamma_1^\epsilon \times [0,T])} < C_3, \]

\[\| g_0^0 \|_{L^1(\Omega \times V)} < C_4, \| a(v) \cdot n g_0 \|_{L^1(\Gamma_0^\epsilon \times (0,T))} < C_5, \| a(v) \cdot n g_{\epsilon 1} \|_{L^1(\Gamma_1^\epsilon \times (0,T))} < C_6 \]

\[\| g_0^0 \|_{L^1(V;BV_{\text{loc}}(\Omega))} < C_7, \| g_0^\epsilon \|_{L^1_{\text{loc}}(\Omega;BV(V))} < C_8 \]

with \(C_i, i = 1, \cdots, 8 \) positive constants independent of \(\epsilon \).

Assume also that the initial and boundary data \(f_{\epsilon 0}, g_0^\epsilon, \) and \(g_{\epsilon 1} \) are compactly supported in \(v \in V \) with supports included in a fixed compact set independent of \(\epsilon \). Finally assume that as \(\epsilon \to 0 \),

\[\| g_0^\epsilon(\cdot, \cdot) - \chi_v^\epsilon(\cdot) \|_{L^1_{\text{loc}}(\Omega \times L^1(V))} \to_{\epsilon \to 0} 0 \]

\[a(v) \cdot n g_0 \to a(v) \cdot n g_0 \text{ strongly in } L^1(\Gamma_0^\epsilon \times (0,T)) \]

\[a(v) \cdot n g_{\epsilon 1} \to a(v) \cdot n g_1 = a(v) \cdot n \chi w_1 \text{ strongly in } L^1(\Gamma_1^\epsilon \times (0,T)) \]

Then \(g_\epsilon \) converges strongly in \(L^\infty([0,T];L^1(\Omega \times V)) \), as \(\epsilon \) goes to 0, to \(\chi_w \) and \(w \) is an entropic solution of the problem \(\mathbb{[2], [7]} \) in the sense of Definition \(\mathbb{[2]} \).

Remark 5.1. 1) Remark \(\mathbb{[3.1]} \) is also valid for Theorems \(\mathbb{5.3} \) and \(\mathbb{5.4} \).

2) Notice that Theorems \(\mathbb{5.3} \) and \(\mathbb{5.4} \) are also valid for the simpler case of full space \(\Omega = \mathbb{R}^d \) with appropriate modifications. We shall compare below our results for the full space case to those of \(\mathbb{[4]} \). For our generalized kinetic model the corresponding theorem to Theorem \(\mathbb{5.5} \) for the full space case is obtained under no additional assumptions on the data or source terms. The analysis in \(\mathbb{[4]} \) required the additional assumption that the source terms are in \(BV(\Omega) \). However, to obtain the uniform in \(\epsilon \) and time convergence of the density distribution to an equilibrium distribution (the corresponding theorem to Theorem \(\mathbb{5.4} \) for the full space case) we had to assume an additional assumption that the initial distribution \(g_0^\epsilon \) is uniformly bounded in \(L^1_{\text{loc}}(\Omega;BV(V)) \). As a result in our case the existence theory for conservation laws with source terms is obtained under no additional assumptions on the source terms as opposed to the existence theory given in \(\mathbb{[4]} \) which required the additional assumption that the source terms are \(BV \). Thus our theory is more general.

To prove these theorems we argue along the lines of the proof of Theorem \(\mathbb{3.1} \) for the sourceless case, with appropriate modifications due to the source term. We shall therefore state without proofs the corresponding lemmas with the necessary modifications caused by the presence of the source term.

We begin with \(L^\infty \) estimates.

Lemma 5.1. Assume that

\[\| g_0 \|_{L^\infty(\Gamma_0^\epsilon \times [0,T])} < C_1, \| g_0^0 \|_{L^\infty(\Omega \times V)} < C_2, \| g_{\epsilon 1} \|_{L^\infty(\Gamma_1^\epsilon \times [0,T])} < C_3 \]

with \(C_1, C_2, \) and \(C_3 \) positive constants independent of \(\epsilon \). Then \(g_\epsilon \) is uniformly bounded in \(L^\infty(\Omega \times V \times [0,T]) \). Moreover we have
\[\|g_{e}\|_{\infty} \leq \max(\|g_{0}\|_{L^{\infty}(\Gamma_{0}^{-}\times[0,T])}, \|g_{e}^{0}\|_{L^{\infty}(\Omega\times V)}, \|g_{e}^{1}\|_{L^{\infty}(\Gamma_{1}^{-}\times[0,T])}) + 1\exp(\int_{0}^{T} |S_{\infty}'(\tau)|d\tau) \]

Here
\[S_{\infty}'(t) = \{ \max_{x,v} S_{\infty}^{e}(x,t,v) : v \in \text{supp}_{v}g_{e}(x,v,t) \} \]

Lemma 5.2. Assume that
\[\|a(v) \cdot ng_{0}\|_{L^{1}(\Gamma_{0}^{-}\times[0,T])} < C_{1}, \quad \|g_{e}^{0}\|_{L^{1}(\Omega\times V)} < C_{2}, \quad \|a(v) \cdot ng_{e}^{1}\|_{L^{1}(\Gamma_{1}^{-}\times(0,T))} < C_{3} \]

with \(C_{1}, C_{2}, \) and \(C_{3} \) positive constants independent of \(\epsilon \). Then \(g_{e} \) is uniformly bounded in \(L^{\infty}([0,T]; L^{1}(\Omega \times V)) \) and \(w_{e} \) is uniformly bounded in \(L^{\infty}([0,T]; L^{1}(\Omega)) \). Moreover, we have

\[\|w_{e}\|_{L^{\infty}([0,T]; L^{1}(\Omega))} \leq \|g_{e}\|_{L^{\infty}([0,T]; L^{1}(\Omega\times V))} \leq \exp(\int_{0}^{T} |S_{\infty}'(\tau)|d\tau)\|a(v) \cdot ng_{0}\|_{L^{1}(\Gamma_{0}^{-}\times[0,T])} + \|a(v) \cdot ng_{e}^{1}\|_{L^{1}(\Gamma_{1}^{-}\times(0,T))} + \|g_{e}^{0}\|_{L^{1}(\Omega\times V)} \]

Lemma 5.3. Assume that
\[\|g_{0}\|_{L^{\infty}(\Gamma_{0}^{-}\times[0,T])} < C_{1}, \quad \|g_{e}^{0}\|_{L^{\infty}(\Omega\times V)} < C_{2}, \quad \|g_{e}^{1}\|_{L^{\infty}(\Gamma_{1}^{-}\times[0,T])} < C_{3} \]

with \(C_{1}, C_{2}, \) and \(C_{3} \) positive constants independent of \(\epsilon \). Assume also that the initial and boundary data \(g_{e}^{0}, g_{0}, \) and \(g_{e}^{1} \) are compactly supported in \(v \in V \) with supports included in a fixed compact set independent of \(\epsilon \). Then
(i) \(w_{e} \) is uniformly bounded in \(L^{\infty}(\Omega \times [0,T]) \).
(ii) \(g_{e} \) remains compactly supported in \(v \in V \) with support included in a fixed compact set independent of \(\epsilon \).
(iii) The speed of propagation \(a(v) \) is finite.

Lemma 5.4. Assume that
\[\|g_{0}\|_{L^{\infty}(\Gamma_{0}^{-}\times[0,T])} < C_{1}, \quad \|g_{e}^{0}\|_{L^{\infty}(\Omega\times V)} < C_{2}, \quad \|g_{e}^{1}\|_{L^{\infty}(\Gamma_{1}^{-}\times[0,T])} < C_{3}, \quad \|g_{e}^{0}\|_{L^{1}(\Omega\times V)} < C_{4}, \quad \|a(v) \cdot ng_{0}\|_{L^{1}(\Gamma_{0}^{-}\times(0,T))} < C_{5}, \quad \|a(v) \cdot ng_{e}^{1}\|_{L^{1}(\Gamma_{1}^{-}\times(0,T))} < C_{6} \]
\[\|g_{e}^{0}\|_{L^{1}(V; BV_{loc}(\Omega))} < C_{7}, \]

with \(C_{i}, i = 1, \ldots, 7 \) positive constants independent of \(\epsilon \). Assume also that the initial and boundary data \(f_{0}, g_{e}^{0}, \) and \(g_{e}^{1} \) are compactly supported in \(v \in V \) with supports included in a fixed compact set independent of \(\epsilon \).

Then
1) \(g_\varepsilon(\cdot, t) \) and \(w_\varepsilon(\cdot, t) \), \(t \in [0, T] \) are uniformly bounded in \(BV_{\text{loc}}(\Omega \times L^1(V)) \) and \(BV_{\text{loc}}(\Omega) \) respectively. More precisely, if \(U \) and \(O \) are open bounded subsets of \(\Omega \) such that \(\bar{U} \subset O \subset \Omega \), we have for \(i = 1, \cdots, d \)

\[
\int_{U \times V} |\tau_h g_\varepsilon - g_\varepsilon| \leq \exp(\int_0^t |S_\varepsilon^{-1}(s)| ds) \int_{O \times V} |\tau_h^i g_\varepsilon^0 - g_\varepsilon^0|
\]

2) \(w_\varepsilon \) is time Lipschitz continuous in \(L^1_{\text{loc}}(\Omega) \) uniformly in \(\varepsilon \); i.e. for any open bounded subset \(U \) of \(\Omega \) with \(\bar{U} \subset \Omega \), we have

\[
\|w_\varepsilon(\cdot, t_2) - w_\varepsilon(\cdot, t_1)\|_{L^1(U)} < \begin{cases} a_\infty \|g_\varepsilon\|_{L^\infty([0, T]; BV(U \times L^1(V)))} + \|\partial_v S\|_{L^\infty(\Omega \times [0, T])}\|g_\varepsilon\|_{L^\infty(\Omega \times V \times [0, T])} & (t_2 - t_1) \\
C(t_2 - t_1), & \forall 0 \leq t_1 < t_2 \leq T
\end{cases}
\]

(86)

where \(C \) is a constant depending on \(U \) but is independent of \(\varepsilon \) and \(a_\infty \) is introduced in the proof of Lemma 2.3 above.

3) Under the additional assumptions

\[
\|g_\varepsilon^0(\cdot, \cdot) - \chi w^0(\cdot)(\cdot)\|_{L^1_{\text{loc}}(\Omega \times L^1(V))} \to \varepsilon \to 0 0
\]

\[
\|g^0_{\text{loc}}(\cdot; BV(V)) < C_8
\]

\(g_\varepsilon(\cdot, \cdot, t) \), \(t \in [0, T] \) is uniformly bounded in \(BV_{\text{loc}}(V; L^1_{\text{loc}}(\Omega)) \). Moreover, we can estimate the error between the kinetic solution and exact entropy solution as follows

\[
\|g_\varepsilon - \chi w_\varepsilon\|_{L^\infty([0, T]; L^1_{\text{loc}}(\Omega \times L^1(V)))} \leq \begin{cases} \epsilon a_\infty \|g_\varepsilon^0(x, v)\|_{BV_{\text{loc}}(\Omega \times L^1(V))} \\
+ \epsilon a_\infty \|g_\varepsilon(x, v, t)\|_{L^\infty([0, T]; BV_{\text{loc}}(\Omega \times L^1(V)))} \\
+ 2\|g_\varepsilon^0(x, v) - \chi w^0(x)\|_{L^1_{\text{loc}}(\Omega \times L^1(V))} \\
+ \epsilon \max_v \|S\|_{L^\infty(\Omega \times [0, T])} \\
(\|g_\varepsilon(x, v, t = 0)\|_{BV(V \times L^1(\Omega))} + \|g_\varepsilon(x, v, t)\|_{BV(V \times L^1(\Omega))}) & \to \varepsilon \to 0 0
\end{cases}
\]

(87)

4) The function \(w_\varepsilon \) is uniformly bounded in \(BV_{\text{loc}}(\Omega \times (0, T)) \).

References

1. Bardos C., Leroux A.-Y., and Nédélec J.-C., First order quasilinear equations with boundary conditions, Cmm. PDE 4 (9), 1017–1034 (1979).
2. Caflisch, R., The fluid dynamic limit of the nonlinear Boltzmann equation. Commun. Pure Appl. Math. 33, 651–666 (1980).
3. Evans, L. C. and Gariepy, R. F., Measure Theory and Fine Properties of Functions, Studies in advanced mathematics, CRC Press, 1992.
4. Kruskov S. N., First order quasilinear equations with several independent variables, Math. Sbornik. 81 (123), 228–255; Math USSR Sbornik 10, 217–243 (1970).
5. Lieb, E. H. and Loss, M. Analysis, Graduate studies in Mathematics Volume 14, AMS.
6. Nouri A., Omrane, A., and Vila J.-P., Boundary conditions for scalar conservation laws from a kinetic point of view, Journal Stat. Phys. 94 (5 & 6) (1999).
7. Perthame B. and Tadmor E., A kinetic equation with kinetic entropy functions for scalar conservation laws, Comm. Math. Phys. 136, 501–517 (1991).
8. Perthame B., Kinetic formulations of conservation laws, Oxford, 2002.
9. Tartar, L. Compensated compactness and applications to partial differential equations. in: Research Notes in Mathematics, vol. 39, Nonlinear Analysis and Mechanics, Heriot-Watt Sympos., vol. 4. Knopps, R.J. (ed.) pp. 136–211. Boston, London: Pitman Press 1975.
10. Tidriri M., Asymptotic analysis of a coupled system of kinetic equations. C. R. Acad. Sci. Paris, t. 328, Série I Math., 637-642, 1999.
11. Tidriri M., Numerical analysis of coupling for a kinetic equation. Mathematical Modelling and Numerical Analysis M2AN, Vol. 33, No 6, 1999, p. 1121–1134.
12. Tidriri M., A novel class of multiscale models in mathematical physics. Vol. 47 Issue 7 (2001) Journal of Nonlinear Analysis.
13. Tidriri M., Rigorous derivation and analysis of coupling of kinetic equations and their hydrodynamics limits for a simplified Boltzmann model. Journal of Statistical Physics, Vol. 104. Nos. 1/2 (2001), pp. 257–292.
14. Tidriri M., Analysis of a coupled system of kinetic equations and their hydrodynamic (conservation laws) limit: rigorous derivation and existence theory via BV theory. Preprint.
15. Tidriri M., Analysis of a coupled system of kinetic equations and conservation laws: rigorous derivation and existence theory via defect measures. Preprint.
16. Tidriri M., Hydrodynamic limit of a BGK kinetic model and kinetic formulation of conservation laws on domains with boundaries. Preprint.

M. TIDRIRI, DEPARTMENT OF MATHEMATICS, ISU, AMES, IA 50011-2064
E-mail address: tidriri@iastate.edu