APPROXIMATION OF THE MULTIPLICATION TABLE FUNCTION

MEHDI HASSANI

Abstract. In this paper, considering the concept of Universal Multiplication Table, we show that for every \(n \geq 2 \), the inequality:

\[
M(n) = \# \{ij|1 \leq i, j \leq n\} \geq \frac{n^2}{N(n^2)},
\]

holds true with:

\[
N(n) = n \log_{\log_{\log n}}^2 (1 + \frac{387}{200 \log_{\log n}}).
\]

Note. In the first version of this paper, there are some great mistakes, which I have done them referring to a reference in internet (comparing two versions, you can find that mistakes). Professor Kevin Ford mentioned me that mistakes and announced my some very interested improvements concerning the results of this paper (see Remark \[\text{4.2} \] at the end of this paper). I deem my duty to thank him for his very kind comments.

1. Introduction

Consider the following \(n \times n \) Multiplication Table, which we denote it by \(MT_{n\times n} \):

\[
\begin{array}{cccc}
1 & 2 & 3 & \cdots \ n \\
2 & 4 & 6 & \cdots \ 2n \\
3 & 6 & 9 & \cdots \ 3n \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
n & 2n & 3n & \cdots \ n^2 \\
\end{array}
\]

Let \(\mathfrak{N}(n;k) \) be the number of \(k \)'s, which appear in \(MT_{n\times n} \); i.e.

\[
\mathfrak{N}(n;k) = \# \{(a,b) \in \mathbb{N}^2_n \mid ab = k\},
\]

where \(\mathbb{N}_n = \mathbb{N} \cap [1, n] \). For example, we have:

\[
\mathfrak{N}(2;2) = 2, \mathfrak{N}(7;6) = 4, \mathfrak{N}(10;9) = 3, \mathfrak{N}(100;810) = 10, \mathfrak{N}(100;9900) = 2.
\]

In this paper first we study some elementary properties of the function \(\mathfrak{N}(n;k) \), for a fixed \(n \in \mathbb{N} \). Then we try to connect \(\mathfrak{N}(n;k) \) by the famous Multiplication Table Function\(^1\); \(M(n) = \# \{ij| (i, j) \in \mathbb{N}^2_n \} \) in order to get some lower bounds for it. To do this, we introduce the concept of Universal Multiplication Table, which is an infinite array generated by multiplying the components of points in the

\[^{1}\text{This sequence, has been indexed in “The On-Line Encyclopedia of Integer Sequences” data base with ID A027424. Web page of above data base is:}
http://www.research.att.com/njas/sequences/index.html

©1997 American Mathematical Society
infinite lattice \(\mathbb{N}^2 \). Let \(D(n) = \{d : d > 0, d|n\} \). To get above mentioned bounds for the function \(M(n) \), we will need some upper bounds for the Divisor Function \(d(n) = \#D(n) \), which we recall best known, due to J.L. Nicolas \([5]\):

\[
\frac{\log d(n)}{\log 2} \leq \frac{\log n}{\log \log n} \left(1 + \frac{1.9349 \cdots}{\log \log n}\right) \quad (n \geq 3),
\]

or

(1.2) \quad d(n) \leq \mathfrak{N}(n)

for \(n \geq 3 \), with

\[
\mathfrak{N}(n) = n \frac{\log 2}{\log \log n} \left(1 + \frac{3.87}{200 \log \log n}\right).
\]

2. Some Elementary Properties of the Function \(\mathfrak{M}(n;k) \)

Considering (1.1), for every \(s \in \mathbb{C} \), we have:

(2.1)

\[
\sum_{1 \leq i,j \leq n} \frac{1}{(ij)^s} = \sum_{k=1}^{n^2} \mathfrak{M}(n;k) \frac{k}{k^s} = \sum_{k=1}^{\infty} \mathfrak{M}(n;k) \frac{k}{k^s}.
\]

The left hand side of above identity is equal to \(\zeta_n^2(s) \), in which \(\zeta_n(s) = \sum_{i=1}^{n} \frac{1}{i^s} \), and the number of summands in the right hand side of above identity, is equal to \(M(n) \). Also, summing and counting all numbers in \(MT_{n \times n} \), we obtain respectively:

\[
\sum_{k=1}^{n^2} k \mathfrak{M}(n;k) = \left(\frac{n(n+1)}{2}\right)^2,
\]

and

\[
\sum_{k=1}^{n^2} \mathfrak{M}(n;k) = n^2,
\]

which both of them are special cases of (2.1) for \(s = -1 \) and \(s = 0 \), respectively. To have some formulas for the function \(\mathfrak{M}(n;k) \), we define \textit{Incomplete Divisor Function} to be \(d(k;x) = \#D(k) \cap [1,x] \). This function has some properties, which we list some of them:

1. It is trivial that for every \(x \geq 1 \) we have:

\[
1 \leq d(k;x) \leq \min \{x, d(k)\}.
\]

So, \(d(k;x) = O(x) \) and naturally we ask: What is the exact order of \(d(k;x) \)? The next property, maybe useful to find answer.

2. If we let \(D(k) = \{1 = d_1, d_2, \cdots, d_{d(k)} = k\} \), then we have:

\[
\int_1^k d(k;x)dx = \sum_{i=1}^{d(k)-1} (d_{i+1} - d_i)i = \sum_{i=1}^{d(k)-1} (i+1)d_{i+1} - id_i - \sum_{i=1}^{d(k)-1} d_{i+1} = d(k)d_d(k) - 1d_1 - \sum_{d|k, d > 1} d - kd(k) - \sigma(k),
\]

where \(\sigma(k) = \sum_{\alpha \in D(k)} \alpha \), and we have the following bound due to G. Robin \([7]\):

(2.2) \quad \sigma(n) < \mathfrak{N}(n) \quad (n \geq 3),
with
\[R(n) = e^\gamma n \log \log n + \frac{3241n}{5000 \log \log n}, \]
where \(\gamma \approx 0.5772156649 \) is Euler’s constant. Considering (1.2) and (2.2), we obtain the following inequality for every \(k \geq 3 \):
\[2k - R(k) < \int_1^k d(k; x)dx < kR(k) - k - 1. \]

In general, every knowledge about \(d(k; x) \) is useful, because:

Proposition 2.1. For every positive integers \(k \) and \(n \), we have:
\[\mathfrak{M}(n; k) = d(k; n) - d\left(\frac{k}{n}\right) + R(n; k), \]
where
\[R(n; k) = \left\lfloor \frac{k}{n} \right\rfloor - \left\lfloor \frac{k-1}{n} \right\rfloor = \begin{cases} 1, & n \mid k, \\ 0, & \text{otherwise.} \end{cases} \]

Proof. Considering (1.1), we have:
\[\mathfrak{M}(n; k) = \# \{ (a, b) \in \mathbb{N}_n^2 \mid ab = k \} = \sum_{d \mid k, 0 < d \leq \sqrt{n}} 1 = \sum_{d \mid k, \frac{k}{d} \leq \frac{n}{d}} 1. \]
Applying the definition of \(d(k; x) \), completes the proof. \(\square \)

3. Universal Multiplication Table Function

We define the *Universal Multiplication Table Function* \(\mathfrak{M}(k) \) to be the number of \(k \)'s, which appear in the universal multiplication table.

Proposition 3.1. For every positive integer \(k \), we have:
\[\mathfrak{M}(k) = d(k). \]

Proof. Here we have two proofs:

Elementary Method. Considering the definition of universal multiplication table, we have:
\[\mathfrak{M}(k) = \lim_{n \to \infty} \mathfrak{M}(n; k) = \lim_{n \to \infty} \sum_{d \mid k, \frac{k}{d} \leq \frac{n}{d}} 1 = \sum_{d \mid k, 0 < d < \infty} 1 = d(k). \]

Analytic Method. Considering (2.2) for \(\Re(s) > 1 \) and taking limit both sides of it, when \(n \) tends to infinity, we obtain:
\[\sum_{k=1}^{\infty} \frac{\mathfrak{M}(k)}{k^s} = \zeta^2(s), \]
in which \(\zeta(s) \) is the Riemann zeta-function. According to the Theorem 11.17 of [1], we obtain:
\[\mathfrak{M}(k) = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} \zeta^2(\sigma + it)k^{\sigma + it}dt, \quad (\sigma > 1). \]
Since \(\zeta^2(s) = \sum_{m=1}^{\infty} d(m)m^{-s} \), we have:

\[
\mathcal{M}(k) = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} \zeta^2(\sigma + it)k^{\sigma+it} dt
\]

\[
= \sum_{m=1}^{\infty} d(m)m^{-\sigma}k^{\sigma} \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} \left(\frac{k}{m} \right)^{it} dt
\]

\[
= \sum_{m=1, m \neq k}^{\infty} d(m)m^{-\sigma}k^{\sigma} \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} \left(\frac{k}{m} \right)^{it} dt + d(k)
\]

\[
= \sum_{m=1, m \neq k}^{\infty} d(m)m^{-\sigma}k^{\sigma} \lim_{T \to \infty} \frac{1}{T} \sin \left(T \log \left(\frac{k}{m} \right) \right) + d(k) = d(k).
\]

This completes the proof. \(\square \)

Now, fix positive integer \(k \) and consider \(\mathcal{M}(n; k) \), as an arithmetic function of the variable \(n \). Clearly, \(\mathcal{M}(n; k) \) is increasing, and for \(n > k \), we have \(\mathcal{M}(n; k) = \mathcal{M}(k) \). Thus considering Proposition 3.1, we obtain:

(3.2) \(\mathcal{M}(n; k) \leq d(k) \)

and if \(k \geq 3 \), considering (1.2) yields that:

\(\mathcal{M}(n; k) \leq \mathcal{M}(k) \).

4. Statistical Study of \(\mathcal{M}(n; k)'s \)

Consider \(S = [\mathcal{M}(n; k) \mid 1 \leq k \leq n^2] \) as a list of statistical data and suppose \(\overline{\mathcal{M}}(n) \) is the average of above list, then we have:

\[
\overline{\mathcal{M}}(n) = \frac{\sum_{k=1}^{n^2} \mathcal{M}(n; k)}{\# \{ ij \mid (i, j) \in \mathbb{N}_n^2 \}} = \frac{n^2}{M(n)}.
\]

Thus, we have:

(4.1) \(M(n) = \frac{n^2}{\overline{\mathcal{M}}(n)} \)

Considering (3.2), it is clear that:

\[
\overline{\mathcal{M}}(n) \leq \max(\mathcal{M}(n; k)) \leq d(k) = d(k).
\]

To use (1.2), we observe that the function \(\mathcal{M}(n) \) is increasing for \(n \geq 114 \). So, we have:

\[
\overline{\mathcal{M}}(n) \leq \max\{d(1), d(2), \ldots, d(114), d(n^2)\} \leq \max\{12, \mathcal{M}(n^2)\} \quad (n \geq \sqrt{3}),
\]

and since \(\mathcal{M}(n) > 114.1 \) holds for every \(n > 0 \), we obtain:

\[
\overline{\mathcal{M}}(n) \leq \mathcal{M}(n^2) \quad (n \geq 2).
\]

Therefore, we have proved the following result.

Theorem 4.1. For every \(n \geq 2 \), we have:

\[
M(n) \geq \frac{n^2}{\overline{\mathcal{M}}(n^2)}.
\]
Remark 4.2. One of the wonderful results about $MT_{n \times n}$ is Erdős Multiplication Table Theorem [6], which asserts:

$$\lim_{n \to \infty} \frac{M(n)}{n^2} = 0.$$

Above theorem yields that in the Erdős’s theorem, however the ratio $\frac{M(n)}{n^2}$ tends to zero, but it doesn’t faster than $\frac{1}{\log^{2} n}$. More precisely, Erdős showed that $M(n) = n^2(\log n)^{-c + o(1)}$ for $c = 1 + \frac{\log \log 2}{\log 2}$ [2, 3]. The following table includes some computational results about $M(n)$ by the Maple software.

n	$M(n)$	$M(n)/n^2 \approx$	n	$M(n)$	$M(n)/n^2 \approx$
10	42	0.4200000000	2000	959759	0.2399397500
50	800	0.3200000000	3000	2121063	0.2356736667
100	2906	0.2906000000	4000	3723723	0.2327326875
1000	248083	0.2480830000	5000	5770205	0.2308082000

Note that, the true order of $M(n)$ is $n^2(\log n)^{-c}(\log \log n)^{-3/2}$ [3].

Acknowledgment. I would like to express my gratitude to Professor Aleksandar Ivic for his kind help on calculating integral of $\mathfrak{M}(k)$. Also, I deem my duty to thank Professor Jean-Louis Nicolas for kind sending the paper [5]. Finally, I would like to thank professor Kevin Ford for his very kind helps to clarify the historical background of this note.

References

[1] Tom. M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, New York, 1976.
[2] Paul Erdős, An asymptotic inequality in the theory of numbers (Russian), Vestnik Leningrad Univ. Mat. Mekh. i Astr., 13, (1960), 41 - 49.
[3] Kevin Ford, personal comments.
[4] Aleksandar Ivic, The Riemann Zeta Function, John Wiley & sons, 1985.
[5] Jean-Louis Nicolas, On highly composite numbers. Ramanujan revisited (Urbana-Champaign, Ill., 1987), 215–244, Academic Press, Boston, MA, 1988.
[6] László Babai, Carl Pomerance, and Péter Vértesi, The Mathematics of Paul Erdős, Notices of Amer. Math. Soc., vol. 45, no. 1, 1998, 19-23.
[7] Guy Robin, Grandes valeurs de la fonction somme des diviseurs et hypothèse de Riemann, J. Math. Pures Appl. (9) 63 (1984), no. 2, 187–213.

Institute for Advanced Studies in Basic Sciences, P.O. Box 45195-1159, Zanjan, Iran.
E-mail address: mmhassany@srttu.edu