A PHYLOGENETIC CLASSIFICATION OF WATERFOWL (AVES: ANSERIFORMES), INCLUDING SELECTED FOSSIL SPECIES

BRADLEY C. LIVEZEY
Associate Curator, Section of Birds

Abstract

A summary classification of 175 modern species and 30 well-represented fossil forms of waterfowl (Aves: Anseriformes) is presented, based on a series of phylogenetic (cladistic) analyses of the group using morphological characters (Livezey, 1986a, 1986b, 1986c, 1989a, 1989b, 1990, 1991, 1993a, 1993b, 1995a, 1995b, 1995c, 1996a, 1996b, 1996c, 1997a, 1997b). The proposed classification includes a superordinal grouping with the Order Galliformes, and subdivides the Anseriformes into two suborders (Anhimae and Anseres), two superfamilies (Anseranatoidea and Anatoidea), and five families (Anhimidae, Anseranatidae, †Presbyornithidae, †Cnemiornithidae, and Anatidae). Among the latter, the Anatidae is the largest and comprises six subfamilies: Dendrocygninae (comprising two tribes and two genera), Dendrocheninae (two genera), Anserinae (four tribes, nine genera), Stictonetinae (one genus), Tadorninae (four tribes, 15 genera), and Anatinae (five tribes, 31 genera). The classification also incorporates: phylogenetic inferences and associated taxonomic decisions subsequent to the preliminary work by Livezey (1986a); corrections of classifications included with the earlier analyses; recognition of two species of comb-duck (Sarkdiornis); and provisional partitions of several problematic species groups (Branta canadensis, Merganetta armata, and Somateria mollissima). Also included are a concise historical review of the classification of the order, an assessment of the relative support documented for the taxonomic groups defined within the classification, and suggestions for future investigations.

Introduction

Brief History of Classification

Early Treatises.—The first comprehensive classification of waterfowl was that by Willughby and Ray (1676), in which known members of the Anseriformes were segregated from other aquatic birds (e.g., Sphenisciformes, some Rallidae, some Charadriiformes). This classification was a largely dichotomous scheme in which the Anseriformes were defined as swimming birds having webbed feet, short legs, and with toes arranged three forward and one (free) digit oriented backward; most members were defined further by the possession of a broad bill, the sole exception being the separately grouped, narrow-billed Smew (Sarkdiornis) and mergansers (Lophodytes, Mergus). Within the larger group, Willughby and Ray (1676) partitioned members into the larger “goose-kind” (typified by the swans and true geese) and the smaller “duck-kind”; the latter group was subdivided further into the diving species or “sea-ducks” (typified by shelducks, eiders, scoters, goldeneyes, and scaup) and the “pond-ducks” (including the typical dabbling ducks).

The classification by Linnaeus (1758) was fundamental in the application of a binomial taxonomy. With respect to the waterfowl, however, Linnaeus (1758) adopted the primary segregation of mergansers proposed by Willughby and Ray (1676), although he placed the two groups adjacently within the eclectic “genus”
Anseres together with a number of taxa currently assigned to other taxonomic orders. Linnaeus (1758) sorted the other 39 recognized taxa among groups characterized as having bills with “humped” bases (swans, shelducks, and scoters), bills having sides of the base equal (most anatids), variably recurved wings (miscellaneous domestic ducks), or crests (including American Wood Duck [Aix sponsa] and Tufted Duck [Aythya fuligula]).

Finding the scheme by Linnaeus (1758) impractical, Brisson (1760) proposed an alternative in which 26 orders of birds were distinguished on the basis of an enlarged suite of characters. The resultant classification was the first in which the typical waterfowl (here including the mergansers) were segregated from all other birds in a single higher taxon; the poorly known screamers were classified apart from other waterfowl, as they would be until the study by Parker (1863). Brisson (1760) divided the group into three subgroups, termed genera: “Merganseris” (mergansers), “Anserinum” (geese, swans, some sheldgeese, and the Common Eider [Somateria mollissima]), and “Anatinum” (other ducks).

The classification of waterfowl by Buffon (1784, 1786) represented, at best, stasis in the classificatory history of waterfowl. Moreover, Buffon (1784, 1786) obscured the foregoing advancements by segregating the mergansers from other ducks (placing them adjacent to the loons), and simply listing (essentially in order of decreasing size, without indicating explicit subgroupings) the species of waterfowl within a diverse series of avian taxa; most of the latter taxa corresponded to higher groups currently considered taxonomic families. The absence of an obvious classificatory structure in the works by Buffon prompted Pennant (1786) to prepare an index to the series that corresponded with his own, earlier classification (Pennant, 1781).

Latham (1785) closely followed the classification by Linnaeus (1758) with respect to the waterfowl; however, although he retained a separate “genus” for the mergansers, he placed them immediately before the “genus” for the ducks, geese, and swans. Bonnaterre (1791) included waterfowl among a number of other aquatic groups and some shorebirds in his fifth class of genera; the mergansers were listed before other ducks, geese, and swans, immediately following the skimmers (Charadriiformes: Rynchopidae). Illiger (1811) advanced the concept of the taxonomic family as a natural group of genera, and united the ducks, geese, and swans within the single family “Lamellosodentati,” with the single exception of assigning the Cape Barren Goose (Cereopsis novaehollandiae) to the “Grallatores.” A series of largely derivative works by Merrem (1813), Cuvier (1817), Vieillot (1818), and Temminck (1820) followed, most perpetuating the fundamental division between mergansers and other waterfowl first formalized by Wilughby and Ray (1676). Leach (1820) prepared the first classification of birds in which family names were based on type genera and were derived using the suffix “-idae,” although whether the work meets all formal criteria of publication for purposes of seniority of family-group taxa remains a point of controversy (Bock, 1994; Olson, 1995).

Vigors (1825a) presented a quinarian arrangement of avian orders, the fifth of which comprised the waterfowl or Natatores. This division was partitioned further into five subgroups: (1) geese and swans, (2) Cereopsis, (3) dabbling ducks (Dendrocygna and other ducks lacking a lobed hallux), (4) mergansers, and (5) eiders and pochards. The singular placement of the poorly known Cereopsis as “transitional” between geese and ducks presumably stemmed in part from the earlier lapse by Illiger (1811). In a companion work, Vigors (1825b) provided a more
detailed classification of waterfowl, in which the waterfowl were restricted to the Family Anatidae of the Order Natatorios, the latter also including four other families of water birds; the Anatidae were subdivided into the subfamilies Anserina (geese, including Plectropterus), Cereopsina (Cereopsis), Anatina (shelducks and dabbling ducks), and Cygnina (swans), as well as an unnamed subfamily for the seaducks (tentatively including Mergus), pochards, and stiff-tailed ducks.

Subsequent classifications of waterfowl based on quinarian or related perspectives include those by Yarrell (1827) and Swainson (1837). Classifications by Lesson (1828, 1831) were quinarian at least at ordinal and subordinal levels, within which he included waterfowl as a single family in an order including most aquatic birds (e.g., loons, grebes, penguins, alcids, and pelecaniforms). Lesson (1828) placed Cereopsis immediately following the typical geese, but later he (1831) listed the genus immediately before them. In both works, however, Lesson (1828, 1831) included Mergus as the last member of the ducks.

Eyton (1838) held strong biblical beliefs and considered higher classification to be a largely arbitrary exercise, but nonetheless prepared a classification of waterfowl based on anatomical characters (including osteological) comprising six subfamilies: Plectropterinae (including modern genera Anseranas and Plectropterus), Anserinae (Cereopsis, Branta, Anser, Coscoroba, Cygnus, Sarkidornis, Alloochen, Chloephaga, Tadorna [part], and Nettapus), Anatinae (Dendrocygna, Tadorna [part], Malacorhynchus, Cairina, Aix, Anas, and Marmaronetta), Fuligulinae (Tachyeres, Rhodonessa, Netta, Atyña, Polylecta, Somateria, Histrionicus, Camptorhynchus, Melania, and Bucephala), Erismaturinae (Thalassornis, Oxyura [including Nomonyx], and Biziura), and Merginae (Mergellus and Mergus [including Lophodytes]). Eyton (1869) later produced an abridged version of this classification. Subsequent classificatory proposals by Gray (1841, 1871), Reichenbach (1849–1850), Bonaparte (1856), Baird et al. (1860), Sclater and Salvin (1876), Sclater (1880), Stejneger (1885), and Lydekker (1891), although not individually influential, contributed to the systematics of Anseriformes a number of minor taxonomic refinements and family-group names.

Fürbringer (1888) prepared a monumental summary of the comparative anatomy of birds, within which he delineated a number of taxonomic groups. In this scheme, the screamers were segregated from typical waterfowl, and within the latter the mergansers were considered distinct from other members. Although no classification of waterfowl was presented, the anatomical monograph by Parker (1890) contributed substantially to the osteological evidence for natural groups of Anseriformes. The syntheses by Gadow (1892, 1893) were important for the assessment of anatomical differences in a systematic context, but the included classifications of the waterfowl were rudimentary and accompanied by little explicit justification.

The most important systematic treatment of waterfowl to appear in the late 19th century was that by Salvadori (1895). Drawing largely from Sclater and Salvin (1876) and Sclater (1880), Salvadori (1895) arranged the waterfowl (Order Chenomorphae, here including the screamers and flamingos) in three couplets of suborders and families, the third (Anatidae) comprising 11 subfamilies. Salvadori (1895) formally grouped eight genera under the subfamilial taxon Plectropterinae, a group later to be modified for reference to the “perching ducks.” Salvadori (1895) also taxonomically distinguished the true geese (Anser and Branta) from the superficially similar sheldgeese (Chloephaga and Cyanochen) and Maned
Duck (Chenonetta), and grouped together three peculiar genera adapted to lotic habitats (Hymenolaimus, Salvadorina, and Merganetta).

Based on an anatomical study of the whistling ducks (Dendrocygna), Shufeldt (1914) altered the classification of the genus by Salvadori (1895) in elevating the genus to subfamilial rank. In his classic four-volume work, Phillips (1922, 1923, 1925, 1926) largely followed the subfamilial classification proposed by Shufeldt (1914), with most deviations from that scheme resulting from the deletion of "geese" (e.g., Cyanochen, Chenonetta) from this series dedicated to the "ducks." Among the important intuitions expressed by Phillips (1922) were the heterogeneity of the "perching ducks," the distinctness of the shelducks from the typical dabbling ducks, and intermediacy of Heteronetta between the surface-feeding and diving ducks.

In the first volume of the renowned "Check-list of Birds of the World," Peters (1931) classified waterfowl (including the screamers) in a single order comprising two couplets of suborders and families; the Anatidae were subdivided into ten subfamilies. The arrangement of genera among the latter resembled that by Salvadori (1895), but Peters (1931) made a number of changes, including the grouping of Plectropterus with Anseranas, the movement of some sheldgeese into the subfamily including the true geese, and the dismantling of the subfamily of "perching ducks." In a compilation of fossil birds, Lambrecht (1933) recognized ten subfamilies of the Anatidae; important deviations from contemporary arrangements included the essentially reversed sequence of subfamilies (Merginae first, Cygninae last) and inclusion of Nettapus with pochards in the Nyrocinæ. Kuroda (1939) primarily followed the classification by Salvadori (1895).

Delacour, the Ethological Tradition, and Contemporary Works. — Inspired by the seminal ethological works of Heinroth (1911) and the ongoing behavioral analyses by Lorenz (1941), Delacour (1936, 1938) began a series of works on the systematics of Anseriformes primarily based on behavioral patterns. In a landmark work, Delacour and Mayr (1945) presented what was to become the most influential classification of waterfowl of the 20th century. The key innovation of the classification by Delacour and Mayr (1945) was the delineation of tribes within subfamilies; the resultant scheme (Table 1) divided waterfowl (screamers excluded) into two subfamilies, Anserinae (true geese, swans, and allies) and Anatinae (true ducks and allies). This classification was followed, with only minor changes, in a subsequent series of monographs (Delacour, 1954, 1956, 1959, 1964). Notable revisions in the latter series included the movement of Anseranas from the Cairinini to a monotypic subfamily; and the erection of the Tribe Somateriini for the eiders, after Humphrey (1958).

During this period, Boetticher (1929, 1936–1938, 1937, 1942, 1943, 1950, 1952) presented a number of intuitive evolutionary trees for selected subgroups of waterfowl based on anatomical and behavioral similarities, and proposed a series of increasingly detailed and hierarchically complex classifications. In a final synthesis, Boetticher (1952) presented a classification of waterfowl (excluding screamers) comprising two families, Anseranatidae (Anseranas) and Anatidae (other taxa). The Anatidae was divided into two subfamilies, Anserinae (subdivided into two tribes comprising four "sections" and five genera) and Anatinae (subdivided into seven tribes comprising 16 "sections" and 36 genera); in addition, subgenera were given parenthetically and selected groups of species encompassing several subgenera were indicated by brackets.

As part of a remarkably long series of works in which a number of innovative
Table 1.—Classification of modern genera of Anatidae (Anseriformes exclusive of Anhimidae) proposed by Delacour and Mayr (1945). Genera are listed in the sequence used in the original work; those enclosed in brackets were annotated by Delacour and Mayr (1945) as “aberrant.”

I. Subfamily Anserinae	II. Subfamily Anatinae						
1. Tribe Anserini	1. Tribe Tadornini	2. Tribe Anatini	3. Tribe Aythyini	4. Tribe Cairinini	5. Tribe Mergini	6. Tribe Oxyumini	7. Tribe Merganetti
Branta	Lophonetta	Anas*	Netta	Amazonetta	Somateria*	Oxyura*	Merganetta
Dendrocygna	Tadorna	[Hymenolaimus]	Aythya	Cheronetta	Camptorhynchos	Biziura	
Anser	Alophoench	[Malacorhynchos]	Aix	Melanitta	Histrionicus		
Cygnus	Neoochen	[Rhodonetta]	Nettapus	Histrionicus			
Coscoroba	Cyanochen	[Stictonetta]	Sarkidiornis	Clangula			
	Chloephaga		Cairina*	Bucephala			
	[Cereopsis]		Plectopterus	Mergus*			
	[Tachyeres]						

* Includes Salvadorina, Marmaronetta, Callonetta, Speculanas, and Mareca.
* Includes Polysticta.
* Includes Nemonyx.
* Includes Pteronetta
* Includes Mergellus and Lophodytes.
anatomical and numerical characters were described, Verheyen (1953, 1955) proposed a novel classification of waterfowl. The idiosyncratic nature of the scheme by Verheyen (1953, 1955), in which the Anseriformes (exclusive of the screamers, Anhimae) were divided into four suborders (Anseres, Anseranates, Dendrocygnes, and Anates), 14 families (including monotypic Coscorobidae and Stictonettidae), and a number of tribes and informal groups, led to only a very limited acceptance by other systematists.

The utilization of osteological characters as a basis for the classification of waterfowl was advanced significantly by Woolfenden (1961). The summary classification proposed by Woolfenden (1961) largely followed that used by Delacour (1954, 1956, 1959), but with the following notable exceptions: Anseranas was segregated as a monotypic family; the swans (Coscoroba, Cygnus, and Olor), typical geese (Anser and Branta), and Cape Barren Goose were placed in separate tribes within the Anserinae; the Tribe Cairinini or “perching ducks” was dismantled, Plectropterus being assigned to the Tadornini and the remaining taxa to the Anatini; the eiders were returned to the seaducks (Mergini); and the aberrant Rhodonessa and Merganetta were moved from the Anatini to the Aythyini and the monotypic Merganettini, respectively.

The use of ethological phenetics for the estimation of the relationships of waterfowl became the primary focus of the research program of Johnsgard (1960a, 1961a, 1961b, 1962, 1965a, 1965b, 1968, 1978), and formed the basis for the second edition of Peter’s “Checklist” by Johnsgard (1979). The classification of waterfowl presented in the “Checklist” did not include tribal taxa, but indicated most of the corresponding divisions at subfamilial rank and the sequence and content of genera agree with the earlier schemes by Johnsgard (1965a, 1978). Widely adopted classificatory revisions made by Johnsgard (1961a, 1965a, 1978, 1979) include: placement of Thalassornis as a close relative of Dendrocygna; inclusion of Stictonetta among the Anserinae; confirmation of the Tadorninae, including Tadornaes, as distinct from the true geese and other ducks; placement of Marmaronetta as transitional between dabbling ducks and pochards; and opposition to the removal of the eiders (Somateria and Polysticta) from the seaducks (Mergini) by Humphrey (1958) and Delacour (1959). The systematic assessments by Johnsgard, like those of Delacour and Mayr (1945) and Delacour (1954, 1956, 1959), also considered capacity for interspecific hybridization to be indicative of close phylogenetic relationship (e.g., Johnsgard, 1960b, 1968; Gillham and Gillham, 1996). The study of interspecific hybrids in waterfowl has a long history (e.g., Phillips, 1915, 1928; Sibley, 1957; Johnsgard, 1960b, 1963; Scherer and Hilsberg, 1982), and the view that loss of capacity for hybridization is critical to speciation is related to the “recognition concept” of species (McEvey, 1993; Lambert and Spencer, 1995).

Brodkorb (1964) and Howard (1964) independently provided comprehensive, taxonomically arranged listings of fossil waterfowl. An original contribution to the systematics of waterfowl was the classification by Wolters (1976), one marked by narrowly delimited genera and an unusual attention to lesser taxonomic ranks. The classification by Delacour and Mayr (1945), as revised by Delacour (1954, 1956, 1959) and Johnsgard (1965a, 1978, 1979), was adopted with few or no refinements by Blake (1977), Cramp and Simmons (1977), Todd (1979, 1996), Brown et al. (1982), the American Ornithologists’ Union (1983), Marchant and Higgins (1990), and Carboneras (1992). The tradition of phenetic comparisons of behavioral patterns as a basis for the systematics of waterfowl continues to the
present day (e.g., Eldridge, 1979, 1985; Fullagar and Carbonell, 1986; Fullagar et al., 1990; Young, 1995), in spite of the advantages of applying phylogenetic methods for behavior-based reconstructions (de Queiroz and Wimberger, 1993; Wimberger and de Queiroz, 1996).

Classifications Based on Molecular Studies.—The first biochemically based assessments of the relationships of Anseriformes were not phylogenetic (sensu cladistic), and pose the same methodological difficulties as intuitive reconstructions based on comparative behavior. Regardless of the analytical details—including underlying data, metrics employed, presentation of dendrograms, or partial agreement among phenetic arrangements or between phenograms and phylogenetic trees (Scherer and Sontag, 1986; Bledsoe and Raikow, 1990)—patterns of overall similarity (or disimilarity) are not reliable estimators of phylogenetic relationships (Wiley, 1981). Nonphylogenetic, molecular comparisons involving waterfowl include: qualitative comparisons of proteins (Sibley, 1960; Sibley and Ahlquist, 1972; Brush, 1976), immunological comparisons (Bottjer, 1983), phenetic studies based on electrophoresis (Numachi et al., 1983; Patton and Avise, 1985; Oates and Principato, 1994), quantitative phenetics of uropygial lipids (Jacob and Glaser, 1975; Jacob, 1982; Jacob and Hoerschelmann, 1993), and restriction-site analysis of mitochondrial and nuclear DNA (Kessler and Avise, 1984, 1985; Tuohy et al., 1992). Although generalizations about these studies are problematic because of the diversity of methodologies and taxonomic representations upon which the inferences were based, several consistent patterns emerged (reviewed by Scherer and Sontag, 1986): *Anseranas* is markedly distinct from other waterfowl, swans and true geese are more similar to each other than to other anatids, and the true ducks (Anatini, Aythyini, Mergini, and Oxyurini) tend to be more similar to each other than to other anatids.

The most widely publicized DNA-based research program to date was that by Sibley and colleagues, using DNA hybridization (Sibley and Ahlquist, 1990). Unfortunately, this technique, like those summarized above, is phenetic and therefore subject to groupings distorted by autapomorphy, unequal rates of evolution, sympleiomorphy, or (as with any method of reconstruction) homoplasy (Cracraft, 1987a; Houde, 1987; Sarich et al., 1989; Springer and Krajeski, 1989; Sheldon and Bledsoe, 1993). Assertions that DNA hybridization, properly applied, can provide distance measures that transcend the inherent analytical shortcomings of phenetic estimates (e.g., Bledsoe and Sheldon, 1990; Sheldon, 1994; Sheldon et al., 1995) have not been substantiated. In addition, the application of this technique by Sibley and Ahlquist (1990) was criticized on other methodological grounds, including sparse data matrices, unspecified transformations of data, and suboptimal clustering algorithms (Lewin, 1988a, 1988b; Cracraft, 1992a; Lanyon, 1992; Mindell, 1992).

Classifications stemming from this work (Sibley et al., 1988; Sibley and Monroe, 1990, 1993) were based only loosely on the published trees (Siegel-Causey, 1993), and those for the Anseriformes were extended far beyond the 13 species (representing Anhimia, Chauna, Anseranas, Dendrocygna, Branta, Cygnus, Aix, Anas, Melanitta, and Oxyura) actually sampled by Sibley and Ahlquist (1990). Consequently, several unusual aspects of their proposed classification—including the merging of true geese, sheldgeese, shelducks, and some “perching” ducks in the single Tribe Anserini, or the inclusion of pochards and seaducks with dabbling ducks in the Tribe Anatini—were made without justification. The basis for the classification by Sibley and Monroe (1990) is undermined further by the subjective placements of most of the sampled taxa within the trees, necessitated by the sparsity of the distance matrix and the
asymmetry of comparisons; these empirically unsupported placements include those for *Dendrocygna, Branta, Cygnus*, and *Oxyura* (Lanyon, 1992). The supplement prepared by Sibley and Monroe (1993) included only two important classificatory revisions for the waterfowl: adoption of the taxonomic sequence for the Anatini proposed by Livezey (1991), and return of *Heteronetta* to the stiff-tailed ducks.

Reanalysis of the data compiled by Sibley and Ahlquist (1990) by Harshman (1994) confirmed only the basal position of *Anseranas* with respect to other waterfowl. A concurrent study using DNA hybridization by Madsen et al. (1988) suffered from comparable limitations of taxonomic sampling as well as unfavorable properties of summary metrics; the analysis indicated patterns of similarity largely congruent with traditional perceptions of relationships, with the exception of a comparatively basal placement of *Oxyura*, an inference shared by Sibley and Ahlquist (1990).

To date, the only published cladistic reconstructions of relationships of waterfowl using molecular data are those by Sraml et al. (1996) and Mindell et al. (1997); the first of these studies was based on sequence data from cytochrome *b* and the second from 12S rDNA. The study by Sraml et al. (1996) was severely limited both with respect to the taxa included and the sampling of the gene; the latter deficiency underlies the poor support of nodes in the resultant trees. The reconstruction by Mindell et al. (1997), to the extent possible given the limited number of anseriform taxa represented, is consistent with that presented here (Fig. 1) with the exception of the placement of *Anseranas* as the sister group of the Anhimidae; counter evidence for the latter grouping is presented by Livezey (1997a).

An ongoing analysis by Harshman (personal communication) using cytochrome *b* represents a significant improvement in both taxonomic and genomic sampling, and preliminary indications are that greater resolution and support of nodes was achieved. The relationships indicated in the analysis by Harshman (personal communication) contrast markedly with the poorly resolved groupings suggested by Sraml et al. (1996) and show substantial agreement with those proposed by Livezey (1986a) and Mindell et al. (1997). Reconstructions by Harshman (personal communication) that differ from those summarized in this classification include: the position of *Coscoroba* and *Cereopsis* as sister genera; the *Oxyurini* as sister group to the Tadorninae and Anatinae (the latter groups being merged); and unexpected difficulties in topological placements of *Nettapus*, some *Cairina*, and the bizarre *Biziura*.

The provision of sequence data for a number of Anseriformes and outgroups (Galliformes) makes possible the direct comparison of comparable phylogenetic (cladistic) hypotheses based on independent morphological and molecular data, and hopefully will contribute toward a consensus concerning the relative merit of congruence across analyses, trees based on combined data, and attendant issues of character weighting (morphological versus molecular characters, transversions versus transitions in sequence data), rooting of trees, and the statistical attributes of diverse types of data (Neff, 1986; Wheeler, 1986; Sanderson and Donoghue, 1989; Swofford, 1991; Chippindale and Wiens, 1994; Omland, 1994; de Queiroz et al., 1995; Hillis et al., 1996). Only with empirical assessments of this kind can systematics move away from speculation and prejudice (e.g., Sibley and Ahlquist, 1987, 1990; Monroe, 1989; Hedges and Sibley, 1994; Sibley, 1994) and toward reconstructive methods and hypotheses that incorporate the maximal phylogenetic information from all available data (Hillis, 1987; Cracraft and Mindell, 1989; Moritz and Hillis, 1990; Eernisse and Kluge, 1993; Patterson et al., 1993; Avise, 1996; Hillis et al., 1996).
Fig. 1.—Tree summarizing the phylogenetic relationships among genera of Anseriformes reflected in the proposed classification; halftone lines indicate provisional groupings or placements. Analyses upon which the classification is based include the original genus-level analysis of the order (Livezey, 1986a), as well as works specific to included subgroups (most to species level), indicated by circled numbers by corresponding nodes in the tree: (1) Livezey (1997a); (2) Livezey (1989a, 1996a); (3) Livezey (1995a); (4) Livezey (1996a); (5) Livezey (1986b, 1986c, 1989a, 1996b); (6) Livezey (1997a); (7) Livezey (1995b); (8) Livezey (1990, 1991, 1993a, 1996b); (9) Livezey (1996c); and (10) Livezey (1989b, 1993b, 1995c).
Proposed Phylogenetic Classification

General Objectives.—The primary objective of this paper is to summarize in a single classification the findings of a series of works on the systematics of Recent Anseriformes (Livezey, 1986a, 1986b, 1986c, 1989a, 1989b, 1990, 1991, 1993a, 1993b, 1995a, 1995b, 1995c, 1996a, 1996b, 1996c, 1997a, 1997b) using phylogenetic (cladistic) methods (Hennig, 1966; Wiley, 1981). A graphical summary of the genus-level phylogenetic inferences of these works is depicted in Figure 1. This classification is proposed in the hope that it will provide a constructive, evolutionary framework for the study of waterfowl, an aspiration contrary to the conservative view in which “standard taxonomic sequences” are to be insulated from classificatory revisions (Mayr, 1989; Bock, 1990; Mayr and Bock, 1994). The notion that stability of taxonomic sequences is of greater importance than the communication of current opinions on phylogeny, combined with an abiding pessimism regarding the likelihood of accurate phylogenetic reconstructions or classifications, reached an extreme in the recommendation that ornithologists adopt an alphabetical sequence of taxa (species within genera, genera within subfamilies, and so on) as a global standard (Moreau, 1961; Lack, 1967, 1968). Ironically, the proposed imposition of stability on the dynamic changes in accepted systematic relationships would exacerbate the mistaken notion that the phylogeny of the Class Aves is well known (e.g., Ricklefs, 1980).

Revisions and Corrections.—This classification incorporates a number of changes in phylogenetic inferences made since the original, preliminary work by Livezey (1986a), together with changes since Livezey (1989a). In addition, this final synthesis is updated by provisional species-level revisions of several problematic modern genera of waterfowl (e.g., Sarkidiornis, Merganetta), discussions of taxonomically vexing “species groups” (e.g., Branta canadensis), and preliminary placements of well-represented fossil taxa. Also included are two decisions subsequent to earlier phylogenetic works on the groups concerned (Livezey, 1996b, 1997a) to elevate taxa from subgeneric to generic rank (Casarca, Aristonetta), to better represent inferred phylogenetic relationships in the classification. This summary classification also incorporates the correction of several errors of authorship in preceding classifications (Livezey, 1995b, 1995c, 1996b, 1996c; Table 2) and generic seniority (Livezey, 1996c), clarifies adoption of subgenera of Dendrocygna under the principle of first reviser (Livezey, 1995a), and coordinates subtribal names in accordance with the recommendations of the International Commission on Zoological Nomenclature (1985).

Methods

Phylogenetic Classification

The construction of classifications based on explicit phylogenetic hypotheses follows the principles outlined by Wiley (1981), with the exception that normal taxa are used for fossils and annotated by a dagger (†), as opposed to the use of “plesion.” The dagger is restricted to fossil taxa (i.e., extinct forms known only from subfossil and fossil remains), and is not used to indicate species extirpated in modern times (e.g., Camptorhynchus labradorius). These conventions include the use of sequencing three or more taxa of the same rank (in order of increasing close relationship) within a single higher taxon to avoid the unwieldy proliferation of ranks to maintain a strictly dichotomous classificatory scheme. Where such sequences of taxa of equal rank are of indeterminate relationship, the defining,
Table 2.—Compilation of modern family-group taxa used in the proposed classification and corresponding authors, with comparison of original ranks of these group names and the first use of these names at the rank used in the present work.

Current family-group taxon	Author of senior family-group taxon	Original rank of family-group taxon	First designation of taxon at current taxonomic rank
Superfamily Anseranatoidea	Sclater, 1880	Subfamily	Sibley et al., 1988
Superfamily Anatoidea	Leach, 1829	Family	Livezey, 1997
Family Anhimidae	Stejneger, 1885	Family	—
Family Anseranatidae	Sclater, 1880	Subfamily	Stejneger, 1885
Family Anatidae	Leach, 1829	Family	—
Subfamily Dendrocygnina	Reichenbach, 1849–1850	Family	—
Subfamily Anserinae	Vigors, 1825b	Subfamily	—
Subfamily Stictonettina	Boetticher, 1950	Subtribe	Wolters, 1976
Subfamily Tadorninae	Reichenbach, 1849–1850	Subfamily	—
Subfamily Anatinai	Leach, 1820	Family	Swainson, 1837
Tribe Dendrocygni	Reichenbach, 1849–1850	Family	Delacour and Mayr, 1945
Tribe Thalassornithini	Livezey, 1986	Subfamily	Livezey, 1995
Tribe Cereopsini	Vigors, 1825b	Subfamily	Boetticher, 1942
Tribe Anserini	Vigors, 1825b	Subfamily	Delacour and Mayr, 1945
Tribe Cygnini	Vigors, 1825b	Subfamily	Delacour and Mayr, 1945
Tribe Merganettinna	Bonaparte, 1853	Subfamily	Delacour and Mayr, 1945
Tribe Plectopterini	Eyton, 1838	Subfamily	Livezey, 1996
Tribe Tadorninae	Reichenbach, 1849–1850	Subfamily	Delacour and Mayr, 1945
Tribe Malacorhynchini	Boetticher, 1950	Tribe	—
Tribe Anatinai	Leach, 1820	Family	Delacour and Mayr, 1945
Tribe Aythyini	Delacour and Mayr, 1945	Tribe	—
Tribe Mergini	Rafinesque, 1815; or Swainson, 1831	Subfamily	Delacour and Mayr, 1945
Tribe Oxyurini	Phillips, 1926	Subfamily	Delacour and Mayr, 1945
Subtribe Coscorobina	Boetticher, 1936–1938	Subfamily	Boetticher, 1952
Subtribe Cygnina	Vigors, 1825b	Subfamily	Boetticher, 1952
Subtribe Chloephagina	Boetticher, 1942	Tribe	Boetticher, 1952
Subtribe Tadorninae	Reichenbach, 1849–1850	Subfamily	Boetticher, 1952
Subtribe Cairinina	Boetticher, 1936–1938	Subfamily	Boetticher, 1952
Subtribe Nettapodina	Bonaparte, 1856	Subfamily	Livezey, 1991
Subtribe Anatinai	Leach, 1820	Family	Boetticher, 1952
Subtribe Marmaroneettina	Livezey, 1996	Subtribe	—
Subtribe Rhodonesina	Boetticher, 1950	Tribe	Boetticher, 1952
Subtribe Aythyina	Delacour and Mayr, 1945	Tribe	Boetticher, 1952
Subtribe Somaterina	Reichenbach, 1849–1850	Subfamily	Boetticher, 1952
Subtribe Margina	Rafinesque, 1815; or Swainson, 1831	Subfamily	Boetticher, 1952
Subtribe Heteronettina	Boetticher, 1950	Tribe	Boetticher, 1952
Subtribe Oxyurina	Phillips, 1926	Subfamily	Boetticher, 1952

- Taxa given "section" endings of -eae, conventional for botanical tribe; Bonaparte (1853, 1856), Boetticher (1942), and Boetticher (1950) treated these as equivalent to tribes (i.e., as primary subdivisions of subfamilies), but Boetticher (1952) later explicitly treated these as partitions of tribes.
- Original derivation of subfamily (Thalassornithinae) incorrect; emended by Livezey (1989a).
- Originally used as subfamily of Family Erismatiuridae, comprising Merganetta and the stiff-tailed ducks, therefore approximately equivalent to a tribe in the current sense.
- First treated at tribal rank (Cairinini) by Delacour and Mayr (1945).
- Original ending of -eae retained by Livezey (1991, 1995b), coordinated herein with conventional ending of -ina for subtribes.
next-higher taxon is annotated sedis mutabilis; where groups of taxa are of uncertain monophyly, the defining taxon is annotated incertae sedis. Higher-order taxa were based largely on published synonymies and classifications (Boetticher, 1942, 1950, 1952; Brodkorb, 1964; Wolters, 1976; Bock, 1994). Within the limits of these conventions, the classification was constructed to: (1) conform with existing nomenclatural codes for availability and seniority of taxa; (2) reflect the maximal number of hierarchical ranks and areas of uncertainty inferred in the companion phylogenetic analyses; and (3) avoid, where content-neutral, the proposal of new ranks or binomial combinations. Complete literature references are not provided for each author-year citation given for taxa in the classification, but instead are limited to direct citations of publications in the narrative parts of the text, as well as in tables, figure legends, and appendices. The English name for a higher taxon is not given where this simply would repeat that of the next-lower, included taxon.

Species Limits

The identification of the working units in phylogenetic analyses, i.e., the delimitation of species, is a critical and problematic part of any systematic study. The prospects of achieving a species-level classification satisfactory to all is as unlikely for the Anseriformes as for any vertebrate order. The controversy and conflicting paradigms that attend such taxonomic decisions in waterfowl is exemplified by the continuing controversy involving the species-level delimitations within the mallard (Anas platyrhynchos) group (Yamashina, 1948; Johnsgard, 1961c, 1967; Aldrich and Baer, 1970; Williams and Roderick, 1973; Heusmann, 1974; Braithwaite and Miller, 1975; Morgan et al., 1976; Hubbard, 1977; Brodsky and Weatherhead, 1984; Haddon, 1984; Gillespie, 1985; Ankney et al., 1986, 1987; Ankney and Dennis, 1988; Bélanger et al., 1988; Brodsy et al., 1988; Hepp et al., 1988; Avise et al., 1990; Hitchmough et al., 1990; Livezey, 1991, 1993a; Browne et al., 1993; Reichel and Lemke, 1994; Rhymer et al., 1994).

In this work, the Anseriformes are classified to species level, with included subspecies indicated for polytypic species. In delimiting species-level taxa, my approach is simply to distinguish the terminal taxa that differ in at least one of the characters analyzed. This practice represents a practical application of the phylogenetic species concept in the context of morphological characters (Cracraft, 1983, 1987b, 1988, 1992b, McKittrick and Zink, 1988; Nixon and Wheeler, 1990; Davis and Nixon, 1992; Zink and McKittrick, 1995), which approximates in many such cases the lineages that are distinguished under the evolutionary species concept (Wiley, 1978; Frost and Hillis, 1990; Frost and Kluge, 1994). In some cases these terminal taxa correspond to conventional subspecies (e.g., within Somateria mollissima), whereas in others the working taxa include two or more recognized subspecies (e.g., even a narrowly delimited Anas platyrhynchos includes conboschias). However, this analytical extrapolation does not necessarily represent a recommendation to the ornithological community at large or the bird-watching public that these lineages be elevated uncritically to species status in checklists, field guides, and popular books. Instead, recognition of taxa at species rank in this classification represents a compromise based primarily on the practicalities of phylogenetic reconstruction and secondarily on the goal of conserving taxonomically the maximal amount of demonstrated evolutionary divergence between sister lineages. Characters used in provisionally delimiting taxa within species groups
not subjected to formal analysis in previous works (Branta canadensis, Sarkidiornis melanotos, and Merganetta armata) are given in the Appendix.

Fossil Taxa

In spite of persistent methodological shortcomings of many paleornithological reconstructions (see general critiques by Cracraft, 1979, 1980), paleontological finds continue to offer significant new insights into the phylogeny and biogeography of waterfowl. Paleontologically facilitated advances in our understanding of waterfowl include an enhanced appreciation of insular endemism (Olson and James, 1991), one likely to undergo further refinements with continued study of subfossil anseriforms in New Zealand (P. R. Millener, personal communication), Madagascar (S. M. Goodman, personal communication), and smaller Pacific islands (cf. Derscheid, 1939), as well as the paleontological documentation of former continental distributions of modern tribes (e.g., Nearctic tadornines; Ross, 1935; Brodkorb, 1964; Howard, 1964). Consequently, an effort was made to include well-represented fossil anseriforms in the classification, either on the basis of formal phylogenetic analyses (e.g., Livezey and Martin, 1988; Livezey, 1989a, 1996a, 1997b) or on diagnoses based on synapomorphies inferred from analyses of modern representatives (Livezey, 1986a, 1986b, 1986c, 1989a, 1989b, 1990, 1991, 1993a, 1993b, 1995a, 1995b, 1995c, 1996a, 1996b, 1996c, 1997a, 1997b).

A number of fossil taxa, however, lacked material adequate for phylogenetic assignment and were omitted from the classification, including: Paranyroca magna (Miller and Compton, 1939), Romainvillia stehlini (Lebedinsky, 1927), Eonesa anaticula (Wetmore, 1938), Cygnopterus affinis (Van Beneden, 1883), Cygnopterus alphonsii (Cheneval, 1984), Cygnus senckenbergi (Lambrecht, 1931), Cygnanser csakvarenisis (Lambrecht, 1933), Paracygnus plattensis (Short, 1969), Presbychen abavus (Wetmore, 1930), Heterochen pratensis (Short, 1970), Eremonchen russelli (Brodkorb, 1961), Brantadoma robusta (Short, 1970), Ocyplenessa Shotwelli (Brodkorb, 1961), and Aldabranas cabri (Harrison and Walker, 1978). Also excluded are a number of fossil taxa assigned to Dendrocycna, Anser, Branta, Cygnus, Anas, and Aythya, most of which is inadequately represented for confident assignment to genus (Brodkorb, 1964; Howard, 1964), although published descriptions indicate that some excluded taxa classified as Branta or Cygnus may be accurate at least to tribal level.

An indication of the poor diagnosibility of European fossils assigned to anseriform genera during the late 19th and early 20th centuries is provided by Milkovský (1992), in which 13 fossil anseriform taxa were reclassified as follows: Aves, incertae sedis (two); families in orders other than the Anseriformes (two); Anseriformes, incertae sedis (one); Anatidae, incertae sedis (one); Aythyni, incertae sedis (one); referral to a genus in another tribe of Anatidae, some merely confirming earlier reclassifications by others (four); referral to a genus in the same tribe of Anatidae (one); and retention in the original genus (one). Most assignments of fossils from the Oligocene or Miocene to modern genera (e.g., Anas and Aythya) probably represent misclassifications of at least subfamilial scale (Brodkorb, 1962; Livezey and Martin, 1988). Some taxa assigned to Cygnus (Northcote, 1982, 1988, 1992) and “Anas” (Newton and Gadow, 1893; Wetmore, 1960; Olson and Jouventin, 1996) were represented by sufficient material for approximate placements. Several taxa of fossil ducks from Australia were synonymized with modern species by Olson (1977a), whereas the validity and generic assignments
of two distinctive New Zealand fossil taxa were confirmed (Olson, 1977b). The position of "Mergus" miscellus described by Alvarez and Olson (1978), if inclusion within the Mergini is justified, remains unclear and the taxon is not included in this classification (Livezey and Martin, 1988).

PHYLOGENETIC CLASSIFICATION OF ANSERIFORMES

Superorder Galloanserimorphae (Sibley et al., 1988).—Fowl

Order Anseriformes (Wagler, 1831).—Waterfowl

Suborder Anhimae Wetmore and Miller, 1926

Family Anhimidae Stejneger, 1885.—Screamers

Genus *Anhima* Brisson, 1760

Anhima cornuta (Linnaeus, 1766).—Horned Screamer

Genus *Chauna* Illiger, 1811.—Crested screamers

Chauna chavaria (Linnaeus, 1766).—Northern Crested Screamer

Chauna torquata (Oken, 1816).—Southern Crested Screamer

Suborder Anseres Wagler, 1831.—True waterfowl

Superfamily Anseranatoidea (Sclater, 1880)

Family Anseranatidae (Sclater, 1880)

Genus *Anseranas* Lesson, 1828

Anseranas semipalmata (Latham, 1798).—Magpie Goose

Superfamily Anatoidea (Leach, 1820).—True waterfowl

†**Family Presbyornithidae** Wetmore, 1926

Genus *Presbyornis* Wetmore, 1926

Presbyornis perventus Wetmore, 1926

†**Family Cnemiornithidae** Stejneger, 1885

Genus *Cnemiornis* Owen, 1865.—New Zealand geese

Cnemiornis calcitrans Owen, 1866.—South Island Goose

Cnemiornis gracilis Forbes, 1892.—North Island Goose

Family Anatidae Leach, 1820.—Typical waterfowl

Subfamily Dendrocygninae Reichenbach, 1849—1850.—Whistling-ducks and allies

Tribe Dendrocygnini (Reichenbach, 1849—1850).—Whistling-ducks

Genus *Dendrocygna* Swainson, 1837

Subgenus *Lamprocygna* Boetticher, 1949

Dendrocygna viduata (Linnaeus, 1766).—White-faced Whistling-Duck

Dendrocygna autumnalis (Linnaeus, 1758).—Black-bellied Whistling-Duck (includes *fulgens* Friedmann, 1947)

Subgenus *Dendrocygna* Swainson, 1837

Infragenus *Nesocygna* Boetticher, 1949
Dendrocygna guttata Schlegel, 1866.—Spotted Whistling-Duck
Dendrocygna arborea (Linnaeus, 1758).—West Indian Whistling-Duck
Infragenus Dendrocygna Swainson, 1837; sedis mutabilis
Dendrocygna bicolor (Vieillot, 1816).—Fulvous Whistling-Duck
Dendrocygna eytoni (Eyton, 1838).—Plumed Whistling-Duck
Dendrocygna arcuata (Horsfield, 1824).—Wandering Whistling-Duck (includes australis Reichenbach, 1849–1850; and pygmaea Mayr, 1945)
Dendrocygna javanica (Horsfield, 1821).—Lesser Whistling-Duck

Tribe Thalassornithini (Livezey, 1986)
Genus Thalassornis Eyton, 1838
Thalassornis leuconotus Eyton, 1838.—White-backed Duck (includes insularis Richmond, 1897)

†Subfamily Dendrocheninae Livezey and Martin, 1988
Genus Dendrochen Miller, 1944
Dendrochen robusta Miller, 1944
Genus Mionetta Livezey and Martin, 1988 b
Mionetta blanchardi (Milne-Edwards, 1863)

Subfamily Anserinae Vigors, 1825.—Geese and swans

Tribe Cereopsini (Vigors, 1825)
Genus Cereopsis Latham, 1801
Cereopsis novaehollandiae Latham, 1801.—Cape Barren Goose

Tribe Anserini (Vigors, 1825).—True geese; sedis mutabilis
Genus Anser Brisson, 1760.—Pale-breasted geese
Subgenus Anser Brisson, 1760
Anser cygnoides (Linnaeus, 1758).—Swan Goose
Anser fabalis (Latham, 1787).—Bean Goose c
Anser (f.) fabalis (Latham, 1787).—Taiga Bean Goose (includes middendorffii Severtsov, 1873; and johanseni Delacour, 1951)
Anser (f.) serrirostris Swinhoe, 1871.—Tundra Bean Goose (includes rossicus Buturlin, 1933)
Anser brachyrhynchus Baillon, 1834.—Pink-footed Goose
Anser anser (Linnaeus, 1758).—Greylag Geese
Anser (a.) anser (Linnaeus, 1758).—Western Greylag Goose
Anser (a.) rubrirostris Swinhoe, 1871.—Eastern Greylag Goose
Anser albifrons (Scopoli, 1769).—Greater White-
fronted Goose (includes gambeli Hartlaub, 1852; frontalis Baird, 1858; flavirostris Dalgety and Scott, 1948; and elgasi Delacour and Ripley, 1975)

Anser erythropus (Linnaeus, 1758).—Lesser White-fronted Goose

Subgenus *Chen* Boie, 1822

Anser indicus (Latham, 1790).—Bar-headed Goose

Anser canagicus (Sevastianov, 1802).—Emperor Goose

Anser caerulescens (Linnaeus, 1758).—Snow Goose (includes atlanticus [Kennard, 1927])

Anser rossii Cassin, 1861.—Ross’s Goose

†Genus *Geochen* Wetmore, 1943

Geochen rhuax Wetmore, 1943.—Large Hawaiian Goose

Genus *Branta* Scopoli, 1769.—Brant (dark-breasted) geese

Subgenus *Leucoblepharon* Baird, 1858; sedis mutabilis

Branta canadensis-group (Linnaeus, 1758); sedis mutabilis.—Canada Goose

Branta (c.) canadensis (Linnaeus, 1758).—Atlantic Canada Goose (includes interior Todd, 1938)

Branta (c.) moffitti Aldrich, 1946.—Giant Canada Goose (includes maxima Delacour, 1951)

Branta (c.) leucopareia Brandt, 1836.—Aleutian Canada Goose (includes asiatica Aldrich, 1946)

Branta (c.) hutchinsii (Richardson, 1832).—Lesser Canada Goose (includes parvipes [Cassin, 1852])

Branta (c.) occidentalis (Baird, 1858).—Dusky Canada Goose (includes fulva Delacour, 1951)

Branta (c.) minima Ridgway, 1885.—Cackling Canada Goose (includes taverneri Delacour, 1951)

†*Branta hylobadistes* Olson and James, 1991.—Greater Nene

Branta sandvicensis (Vigors, 1834).—Lesser Nene

Subgenus *Branta* Scopoli, 1769

Branta bernicla (Linnaeus, 1758).—Dark-bellied Brant (includes nigricans [Lawrence, 1846]; and orientalis Tugarinov, 1941)

Branta hrota (Müller, 1776).—Pale-bellied Brant

Subgenus *Leucopareia* Reichenbach, 1853

Branta leucopsis (Bechstein, 1803).—Barnacle Goose

Branta ruficollis (Pallas, 1769).—Red-breasted Goose

Tribe Cygnini (Vigors, 1825).—Swans

Subtribe Coscorobina (Boetticher, 1936–1938)

Genus *Coscoroba* Reichenbach, 1853
Coscoroba coscoroba (Molina, 1782). — Coscoroba Swan

Subtribe Cygnina (Vigors, 1825). — Typical swans

Genus *Cygnus* Bechstein, 1803

Subgenus *Chenopis* Wagler, 1823. — Austral swans

Cygnus atratus (Latham, 1790). — Black Swan

† *Cygnus summnerensis* (Forbes, 1890). — New Zealand Swan

Cygnus melanocoryphus (Molina, 1782). — Black-necked Swan

Subgenus *Cygnus* Bechstein, 1803

Cygnus olor (Gmelin, 1789). — Mute Swan

† *Cygnus equitum* Bate, 1916. — Dwarf Maltese Swan

Subgenus *Olor* Wagler, 1832. — Tundra swans

† *Cygnus falconeri* Parker, 1865. — Giant Maltese Swan

Cygnus buccinator (Richardson, 1831). — Trumpeter Swan

Cygnus columbianus (Ord, 1815). — Whistling Swan

Cygnus bewickii (Yarrell, 1830). — Bewick’s Swan

Cygnus cygnus (Linnaeus, 1758). — Whooper Swan

† Tribe Thambetochenini Livezey, 1996. — Moa-nalos

Genus *Chelychelynechen* Olson and James, 1991

Chelychelynechen quassus Olson and James, 1991. — Turtle-billed Moa-nalo

Genus *Ptaiochen* Olson and James, 1991

Ptaiochen pau Olson and James, 1991. — Short-billed Moa-nalo

Genus *Thambetochen* Olson and Wetmore, 1976

Thambetochen chauliodus Olson and Wetmore, 1976. — Greater Moa-nalo

Thambetochen xanion Olson and James, 1991. — Oahu Moa-nalo

Subfamily Stictonettinae (Boetticher, 1950)

Genus *Stictonetta* Reichenbach, 1853

Stictonetta naevosa (Gould, 1841). — Freckled Duck

Subfamily Tadorninae Reichenbach, 1849–1850. — Shelducks and allies

Tribe Merganettini (Bonaparte, 1853). — Torrent-ducks and allies

Genus *Hymenolaimus* Gray, 1843

Hymenolaimus malacorhynchos (Gmelin, 1789). — Blue Duck

Genus *Tachyeres* Owen, 1875. — Steamer-ducks

Tachyeres patachonicus (King, 1831). — Flying Steamer-Duck

Tachyeres pteneres (Forster, 1844). — Magellanic Flightless Steamer-Duck

Tachyeres brachypterus (Latham, 1790). — Falkland Flightless Steamer-Duck
Tachyeres leucocephalus Humphrey and Thompson, 1981.—White-headed Flightless Steamer-Duck
Genus Merganetta Gould, 1842.—Torrent-ducks
Merganetta armata-group Gould, 1841; sedis mutabilis
Merganetta (m.) armata Gould, 1841.—Southern Torrent-Duck
Merganetta (m.) turneri Sclater and Salvin, 1869.—Turner’s Torrent-Duck
Merganetta (m.) garleppi Berlepsch, 1894.—Bolivian Torrent-Duck (includes berlepschi Hartert, 1909)
Merganetta (m.) leucogenis (Tschudi, 1843).—Peruvian Torrent-Duck
Merganetta (m.) colombiana Des Murs, 1845.—Colombian Torrent-Duck

Tribe Plectropterini (Eyton, 1838).—Pied shelducks
Genus Plectropterus Stephens, 1824
Plectropterus gambensis (Linnaeus, 1766).—Spur-winged Goose (includes niger Sclater, 1877)
Genus Sarkidiornis Eyton, 1838.—Comb-ducks
Sarkidiornis melanotos (Pennant, 1769).—Gray-sided Comb-Duck
Sarkidiornis sylvicola Ihering and Ihering, 1907.—Black-sided Comb-Duck

†Tribe Euryanatini (Livezey, 1989)
Genus Euryanas Oliver, 1930
Euryanas finschi (Van Beneden, 1875).—Finsch’s Duck

Tribe Tadornini (Reichenbach, 1849–1850).—True shelducks and sheldgeese

Subtribe indeterminate
†Genus Centrornis Andrews, 1897
Centrornis majori Andrews, 1897.—Greater Madagascan Sheldgoose
†Genus Anabernicula Ross, 1935.—Pygmy sheldgeese
Anabernicula minuscula Wetmore, 1924
Anabernicula gracilenta Ross, 1935
Anabernicula oreonensis Howard, 1964

Subtribe Chloephagina (Boetticher, 1942).—Sheldgeese
Genus Cyanochen Bonaparte, 1856
Cyanochen cyanopterus (Rüppell, 1845).—Blue-winged Sheldgoose
Genus Alopochen Stejneger, 1885; sedis mutabilis
Alopochen aegypticus (Linnaeus, 1766).—African Sheldgoose
†Alopochen sirabensis (Andrews, 1897).—Lesser Madagascan Sheldgoose
†Alopochen mauritianus (Newton and Gadow, 1893).—Mauritius Sheldgoose
Genus *Neochen* Oberholser, 1918
 Neochen jubata (Spix, 1825).—Orinoco Sheldgoose
 †*Neochen pugil* (Winge, 1887).—Greater Orinoco Sheldgoose
Genus *Chloephaga* Eyton, 1838.—Neotropical sheldgeese
Subgenus *Oressochen* Bannister, 1870
 Chloephaga melanoptera (Eyton, 1838).—Andean Sheldgoose
Subgenus *Chloephaga* Eyton, 1838.—Patagonian sheldgoose; sedis mutabilis
Infragenus *Chloephaga* Eyton, 1838
 Chloephaga picta (Gmelin, 1789).—Upland Sheldgoose (includes *leucoptera* [Gmelin, 1789])
Infragenus *Taenidiestes* Reichenbach, 1853
 Chloephaga hybrida (Molina, 1782).—Kelp Sheldgoose (includes *malvinarum* Phillips, 1916)
Infragenus *Chloetropus* Bannister, 1870.—Hooded sheldgoose
 Chloephaga poliocephalus Sclater, 1857.—Ashy-headed Sheldgoose
 Chloephaga rubidiceps Sclater, 1860.—Ruddy-headed Sheldgoose
Subtribe *Tadornina* (Reichenbach, 1849–1850).—Shelducks
 †Genus *Pachyanas* Oliver, 1955
 Pachyanas chathamica Oliver, 1955.—Chatham Island Shelduck
Genus *Tadorna* Oken, 1817.—Banded shelducks
 Tadorna tadorna (Linnaeus, 1758).—Red-billed Shelduck
 Tadorna radjah (Lesson, 1828).—Radjah Shelduck (includes *raftergum* Hartert, 1905)
Genus *Casarca* Bonaparte, 1838.—Unbanded shelducks
Subgenus *Casarca* Bonaparte, 1838.—Reddish shelducks
 Casarca ferruginea (Pallas, 1764).—Ruddy Shelduck
 Casarca cana (Gmelin, 1789).—Cape Shelduck
Subgenus *Pseudotadorna* Kuroda, 1917.—Blackish shelducks
 Casarca tadornoides (Jardine and Selby, 1828).—Australian Shelduck
 Casarca variegata (Gmelin, 1789).—Paradise Shelduck
 Casarca cristata (Kuroda, 1917).—Crested Shelduck
Subfamily *Anatinae* (Leach, 1820).—True ducks; sedis mutabilis
 Tribe *Malacorhynchini* (Boetticher, 1950); incertae sedis
Genus *Malacorhynchus* Swainson, 1831.—Pink-eared ducks
 Malacorhynchus membranaceus (Latham, 1801).—Australian Pink-eared Duck
†Malacorhynchus scarletti Olson, 1977.—New Zealand Pink-eared Duck
Genus Salvadorina Rothschild and Hartert, 1894
Salvadorina waigiensis Rothschild and Hartert, 1894.—Salvadori’s Duck

Tribe Anatini (Leach, 1820).—Surface-feeding ducks; incertae sedis

Subtribe Cairinina (Boetticher, 1936–1938).—Long-billed wood ducks
Super genus Cairina Fleming, 1822.—Greater wood ducks
Genus Cairina Fleming, 1822.—Muscovy ducks
Cairina moschata (Linneaus, 1758).—Muscovy Duck
Cairina scutulata (Müller, 1842).—White-winged Duck
Genus Pteronetta Salvadori, 1895
Pteronetta hartlaubi (Cassin, 1859).—Hartlaub’s Duck
Super genus Aix Boie, 1828
Genus Aix Boie, 1828.—Northern wood ducks
Aix sponsa (Linneaus, 1758).—American Wood Duck
Aix galericulata (Linneaus, 1758).—Mandarin Duck

Subtribe Nettapodina (Bonaparte, 1856).—Stout-billed wood ducks
Genus Chenonetta Brandt, 1836
Chenonetta jubata (Latham, 1801).—Maned Duck
Genus Nettapus Brandt, 1836.—Pygmy-geese
Subgenus Nettapus Brandt, 1836
Nettapus auritus (Boddaert, 1783).—African Pygmy-goose
Subgenus Cheniscus Eyton, 1838.—Pale-rumped pygmy-geese
Nettapus coromandelianus (Gmelin, 1789).—Cotton Pygmy-goose (includes albipennis Gould, 1842)
Nettapus pulchellus (Gould, 1842).—Green Pygmy-goose

Subtribe Anatina (Leach, 1820).—Dabbling ducks
Super genus Amazonetta Boetticher, 1929.—Micro-teal
Genus Amazonetta Boetticher, 1929
Amazonetta brasiliensis (Gmelin, 1789).—Brazilian Teal (includes ipecutiri [Vieillot, 1816])
Genus Callonetta Delacour, 1936
Callonetta leucophrys (Vieillot, 1816).—Ringed Teal
Super genus Lophonetta Riley, 1914
Genus Lophonetta Riley, 1914
Lophonetta specularioides (King, 1828).—Crested Duck (includes alitricola Ménégaux, 1909)
Genus *Speculanas* Boetticher, 1929
Speculanas specularis (King, 1828).—Bronze-winged Duck

Supergenus *Anas* Linnaeus, 1758.—True dabbling ducks

Genus indeterminate
†*“Anas” theodori* Newton and Gadow, 1893.—Mauritius Duck
†*“Anas” pachyscelus* Wetmore, 1960.—Bermuda Duck
†*“Anas” marecula* Olson and Jouventin, 1996.—Amsterdam Island Duck

Genus *Mareca* Stephens, 1824.—Wigeons

Subgenus *Notonetta* Roberts, 1922
Mareca capensis (Gmelin, 1789).—Cape Teal

Subgenus *Chaulelasmus* Bonaparte, 1838.—Gadwalls
Mareca strepera (Linnaeus, 1758).—Common Gadwall
Mareca couesi (Streets, 1876).—Washington Island Gadwall

Subgenus *Eunetta* Bonaparte, 1856
Mareca falcata (Georgi, 1775).—Falcated Duck

Subgenus *Mareca* Stephens, 1824.—Typical wigeons
Mareca sibilatrix (Poeppig, 1829).—Chiloé Wigeon
Mareca penelope (Linnaeus, 1758).—Eurasian Wigeon
Mareca americana (Gmelin, 1789).—American Wigeon

Genus *Anas* Linnaeus, 1758.—Typical dabbling ducks; sedis mutabilis

Subgenus *Anas* Linnaeus, 1758.—Mallards
Infragenus *Melananas* Roberts, 1922
Anas sparsa Eyton, 1838.—African Black Duck (includes *leucostigma* Rüppell, 1845)

Infragenus *Anas* Linnaeus, 1758.—Northern mallards; sedis mutabilis
Anas rubripes Brewster, 1902.—American Black Duck
Anas platyrhynchos Linnaeus, 1758.—Mallard (includes *conboschas* Brehm, 1831)
Anas fulvigula Ridgway, 1874.—Mottled Duck (includes *maculosa* Sennett, 1889)
Anas diazi Ridgway, 1886.—Mexican Duck
Anas wyvilliana Sclater, 1878.—Hawaiian Duck
Anas laysanensis Rothschild, 1892.—Laysan Duck
Anas oustaleti Salvadori, 1894.—Marianas Duck

Infragenus *Polionetta* Oates, 1899.—South Pacific mallards
Anas luzonica Fraser, 1839.—Philippine Duck
Anas superciliosa Gmelin, 1789.—Pacific Gray
Duck (includes pelewensis Hartlaub and Finsch, 1872; and rogersi Mathews, 1912)
Anas poecilorhyncha Forster, 1781.—Indonesian Spot-billed Duck (includes haringtoni Oates, 1907)
Anas zonorhyncha Swinhoe, 1866.—Chinese Spot-billed Duck
Infragenus Afranas Roberts, 1922.—African mallards
Anas undulata Dubois, 1839.—Yellow-billed Duck (includes rueppelli Blyth, 1855)
Anas melleri Sclater, 1865.—Meller’s Duck
Subgenus Spatula Boie, 1822.—Blue-winged ducks
Infragenus Pterocyanea Bonaparte, 1841.—Blue-winged teal
Anas discors Linnaeus, 1766.—Blue-winged Teal
Anas cyanoptera Vieillot, 1816.—Cinnamon Teal (includes orinomus [Oberholser, 1906]; septentrionalium Snyder and Lumsden, 1951; tropica Snyder and Lumsden, 1951; and borreroi Snyder and Lumsden, 1951)
Infragenus Spatula Boie, 1822.—Shovelers
Anas smithii Hartert, 1891.—Cape Shoveler
Anas platalea Vieillot, 1816.—Red Shoveler
Anas rhynchotis Latham, 1802.—Australasian Shoveler (includes variegata [Gould, 1856])
Anas clypeata Linnaeus, 1758.—Northern Shoveler
Subgenus Nesonetta Gray, 1844.—Australasian teal
Infragenus Virago Newton, 1872.—Gray teal; sedis mutabilis
Anas bernieri Hartlaub, 1860.—Madagascan Teal
Anas gibberifrons Müller, 1842.—Indonesian Gray Teal
Anas gracilis Buller, 1869.—Australasian Gray Teal (includes remissa Ripley, 1942)
Anas albogularis (Hume, 1873).—Andaman Teal
Infragenus Nesonetta Gray, 1844.—Reddish teal
Anas castanea (Eyton, 1838).—Chestnut Teal
Anas chlorotis Gray, 1845.—Brown Teal
Anas aucklandica Gray, 1844.—Auckland Islands Teal
Anas nesiotis (Fleming, 1935).—Campbell Island Teal
Subgenus Dafila Stephens, 1824.—Pintails
Infragenus Paecilonitta Eyton, 1838.—Pale-cheeked pintails
Anas bahamensis Linnaeus, 1758.—White-cheeked Pintail (includes rubirostris Vieillot, 1816; and galapagensis [Ridgway, 1889])
Anas erythrorhyncha Gmelin, 1789.—Red-billed Pintail
Infragenus *Dafilonettion* Boetticher, 1937.—Speckled teal
 Anas flavirostris Vieillot, 1816.—Yellow-billed Teal (includes *oxyptera* Meyen, 1834)
 Anas andium (Sclater and Salvin, 1873).—Andean Teal (includes *altipetens* [Conover, 1941])
Infragenus *Dafila* Stephens, 1824.—Brown pintails
 Anas georgica Gmelin, 1789.—Brown Pintail (includes *spinicauda* Vieillot, 1816; and *niceforoi* Wetmore and Borrero, 1946)
 Anas acuta Linnaeus, 1758.—Northern Pintail
 Anas eatoni (Sharpe, 1875).—Eaton’s Pintail (includes *drygalskii* Reichenow, 1904)

Subgenus *Querquedula* Stephens, 1824.—Holarctic teal
Infragenus *Querquedula* Stephens, 1824
 Anas querquedula Linnaeus, 1758.—Garganey Teal
Infragenus *Nettion* Kaup, 1829.—Green-winged teal
 Anas formosa Georgi, 1775.—Baikal Teal
 Anas crecca Linnaeus, 1758.—Eurasian Green-winged Teal (includes *nimia* Friedmann, 1948)
 Anas carolinensis Gmelin, 1789.—American Green-winged Teal

Subgenus *Punanetta* Bonaparte, 1856.—Spotted teal
Infragenus *Punanetta* Bonaparte, 1856.—Pale-cheeked teal
 Anas versicolor Vieillot, 1816.—Silver Teal (includes *fretensis* King, 1831)
 Anas puna Tschudi, 1844.—Puna Teal
Infragenus *Micronetta* Roberts, 1922
 Anas hottentota Eyton, 1838.—Hottentot Teal

Tribe Aythyini Delacour and Mayr, 1945.—Pochards

Subtribe Marmaronettina (Livezey, 1996)
 Genus *Marmaronetta* Reichenbach, 1853
 Marmaronetta angustirostris (Ménétriers, 1832).—Marbled Duck

Subtribe Rhodonessina (Boetticher, 1950).—Stem pochards
 Genus *Netta* Kaup, 1829
 Subgenus *Netta* Kaup, 1829
 Netta rufina (Pallas, 1773).—Red-crested Pochard
 Subgenus *Rhodonessa* Reichenbach, 1853
 Netta caryophyllacea (Latham, 1790).—Pink-headed Pochard
 Genus *Metopiana* Bonaparte, 1856
 Subgenus *Metopiana* Bonaparte, 1856
 Metopiana peposaca (Vieillot, 1816).—Rosy-billed Pochard
 Subgenus *Phaeoaythia* Delacour, 1937
 Metopiana erythrophthalma (Wied, 1832).—Southern Pochard (includes *brunnea* [Eyton, 1838])
Subtribe Aythyina (Delacour and Mayr, 1945).—True pochards
Genus Aristonetta Baird, 1858.—Red-headed pochards
Aristonetta valisineria (Wilson, 1814).—Canvasback
Aristonetta americana (Eyton, 1838).—Redhead
Aristonetta ferina (Linnaeus, 1758).—Eurasian Pochard
Genus Aythya Boie, 1822.—Typical pochards
Subgenus Nyroca Fleming, 1822.—White-eyed pochards
Aythya australis (Eyton, 1838).—Australian White-eyed Pochard (includes extima Mayr, 1940)
Aythya innotata (Salvadori, 1894).—Madagascan White-eyed Pochard
Aythya nyroca (Güldenstädt, 1770).—Ferruginous White-eyed Pochard
Aythya baeri (Radde, 1863).—Siberian White-eyed Pochard
Subgenus Aythya Boie, 1822.—Scaup
Aythya novaeseelandiae (Gmelin, 1789).—New Zealand Scaup
Aythya collaris (Donovan, 1809).—Ring-necked Scaup
Aythya fuligula (Linnaeus, 1758).—Tufted Scaup
Aythya marila (Linnaeus, 1761).—Greater Scaup (includes mariloides [Vigors, 1839])
Aythya affinis (Eyton, 1838).—Lesser Scaup

Tribe Mergini (Rafinesque, 1815; alternatively, Swainson, 1831).—Seaducks
Subtribe Somaterina (Reichenbach, 1849–1850).—Eiders
Genus Polysticta Eyton, 1836
Polysticta stelleri (Pallas, 1769).—Steller’s Eider
Genus Somateria Leach, 1819.—Greater eiders
Subgenus Lampronetta Brandt, 1847
Somateria fischeri (Brandt, 1847).—Spectacled Eider
Subgenus Somateria Leach, 1819
Somateria spectabilis (Linnaeus, 1758).—King Eider
Somateria mollissima-group (Linnaeus, 1758).—Common Eider
Somateria (m.) v-nigrum Gray, 1855.—Pacific Eider
Somateria (m.) borealis (Brehm, 1824).—Northern Eider
Somateria (m.) dresseri Sharpe, 1871.—Canada Eider (includes sedentaria Snyder, 1941)
Somateria (m.) mollissima (Linnaeus, 1758).—European Eider (includes islandica Brehm, 1831; and faeroeensis Brehm, 1831)
†Subtribe Chendytina, new taxon

Genus Chendytes Miller, 1925
 Chendytes lawi Miller, 1925
 Chendytes milleri Howard, 1955

Subtribe Mergina (Rafinesque, 1815; alternatively, Swainson, 1831).—Typical seaducks

Supergenus Histrionicus Lesson, 1828
 Genus Histrionicus Lesson, 1828
 Histrionicus histrionicus (Linnaeus, 1758).—Harlequin Duck
 Genus Camptorhynchus Bonaparte, 1838
 Camptorhynchus labradorius (Gmelin, 1789).—Labrador Duck
 Genus Melanitta Boie, 1822.—Scoters and allies
 Subgenus Melanitta Boie, 1822.—White-marked scoters
 Melanitta perspicillata (Linnaeus, 1758).—Surf Scoter
 Melanitta fusca (Linnaeus, 1758).—Velvet Scoter
 Melanitta deglandi (Bonaparte, 1850).—White-winged Scoter (includes stejnegeri [Ridgway, 1887])
 Subgenus Oidemia Fleming, 1822.—Black scoters
 Melanitta nigra (Linnaeus, 1758).—Eurasian Black Scoter
 Melanitta americana (Swainson, 1832).—American Black Scoter
 Supergenus Mergus Linnaeus, 1758.—Mergansers and allies
 Genus Clangula Leach, 1819
 Clangula hyemalis (Linnaeus, 1758).—Long-tailed Duck
 Genus Bucephala Baird, 1858.—Goldeneyes
 Subgenus Bucephala Baird, 1858
 Bucephala albeola (Linnaeus, 1758).—Bufflehead
 Subgenus Glaucomictes Stejneger, 1885
 Bucephala clangula (Linnaeus, 1758).—Common Goldeneye (includes americana [Bonaparte, 1838])
 Bucephala islandica (Gmelin, 1789).—Barrow’s Goldeneye
 Genus Mergellus Selby, 1840
 Mergellus albellus (Linnaeus, 1758).—Smew
 Genus Lophodytes Reichenbach, 1853
 Lophodytes cucullatus (Linnaeus, 1758).—Hooded Merganser
 Genus Mergus Linnaeus, 1758.—Typical mergansers
 Subgenus Promergus Mathews and Iredale, 1913
 Mergus australis Hombron and Jacquinot, 1841.—Auckland Islands Merganser
 Subgenus Prister Heine, 1890
Mergus octosetaceus Vieillot, 1817.—Brazilian Merganser
Subgenus Mergus Linnaeus, 1758.—Greater mergansers
Mergus merganser Linnaeus, 1758.—Common Merganser (includes orientalis Gould, 1845; and americanus Cassin, 1852)
Mergus serrator Linnaeus, 1758.—Red-breasted Merganser (includes schoelieri Salomonsen, 1949)
Mergus squamatus Gould, 1864.—Chinese Merganser

Tribe Oxyurini (Phillips, 1926).—Stiff-tailed ducks and allies
Subtribe Heteronettina (Boetticher, 1950)
Genus Heteronetta Salvadori, 1865
Heteronetta atricapilla (Merrem, 1841).—Black-headed Duck

Subtribe Oxyurina (Phillips, 1926).—Stiff-tailed ducks
Supergenus Nomonyx Ridgway, 1880
Genus Nomonyx Ridgway, 1880
Nomonyx dominicus (Linnaeus, 1766).—Masked Duck
Supergenus Oxyura Bonaparte, 1828.—Typical stiff-tailed ducks
Genus Oxyura Bonaparte, 1828.—Ruddy (blue-billed) ducks
Subgenus Oxyura Bonaparte, 1828
Oxyura jamaicensis (Gmelin, 1789).—Northern Ruddy Duck (includes rubida Wilson, 1814)
Subgenus Cerconectes Wagler, 1832; sedis mutabilis
Oxyura ferruginea (Eyton, 1838).—Peruvian Ruddy Duck
Oxyura vittata (Philippi, 1860).—Argentine Ruddy Duck
Oxyura australis Gould, 1836.—Blue-billed Duck
Oxyura maccoa (Eyton, 1836).—Maccoa Duck
Oxyura leucocephala (Scopoli, 1769).—White-headed Duck
Genus Biziura Stephens, 1824.—Musk-ducks
Biziura lobata (Shaw, 1796).—Australian Musk-Duck
†Biziura delautouri Forbes, 1892.—New Zealand Musk-Duck

^ Adoption by Livezey (1995a) of two of four subgenera of Dendrocygna erected by Boetticher (1949) was performed under the Principle of First Reviser (International Commission on Zoological Nomenclature, 1985: Article 24).

^ Several other fossil taxa from the Miocene may be assignable to Mionetta (Livezey and Martin, 1988; see also Cheneval, 1987), including: Anas[?] consobrina Milne-Edwards, 1867; and Anas[?] natator Milne-Edwards, 1867.
Partition of complex into orange-billed, taiga-breeding form and largely black-billed, tundra-breeding form is provisional.

Position tentative, genus may be synonymous with Branta (Livezey, 1996a).

Probably includes several phylogenetic species; one geo-phenotypic partitioning of subspecific taxa is shown (Livezey, 1996a).

Relationships among some Cygnus not resolved (Livezey, 1996a), and Maltese fossil swans provisionally placed based on Northcote (1982, 1988, 1992).

 Provisionally placed based on Livezey (1989a).
Position of tribe provisional (Livezey, 1996a).

Based on Livezey (1986b) and Livezey and Humphrey (1992).

Genus may comprise 3–5 sibling species; weak support for segregating the three southern forms from the two northern forms.

Tribal taxon for this genus in Livezey (1986a), Sarkidiornini, was incorrectly derived and should have been Sarkidiornithini (the same change in stem would apply to corresponding subtribal name); authorship for the family-group name is Oberholser, 1918 (Sarkidiornithinae).

 Provisionally placed based on Livezey (1989a) and subsequent assessments of related genera (Livezey, 1996b).

Provisionally placed based on codings of characters for limited fossil elements (unpublished data).

 Relationships among C. hybrida, C. picta, and the sister species C. poliocephala and C. rubidiceps unresolved (Livezey, 1997a).

Generic assignment based on codings of characters for limited fossil elements (unpublished data) and/or published descriptions.

 Relationships among tribes in Subfamily Anatinae not resolved (Livezey, 1996b).

Composition of tribe and its inclusion in Subfamily Anatinae provisional (Livezey, 1996b).

Monophyly of the Tribe Anatini not confirmed (Livezey, 1996b).

Generic placement within supergenus not possible based on available specimens.

Recognition of species provisional (Livezey, 1993a).

Relationships and species status of included taxa unresolved (Livezey, 1991); A. wyvilliana and A. laysanensis assignable to Horizonetta Oberholser, 1917.

 Possibly of hybrid origin (Yamashina, 1948; Ripley, 1957; Livezey, 1991), and evidently extinct (Reichel and Lemke, 1994).

Subgeneric assignment tentative (Livezey, 1991).

Segregation of A. gracilis from A. gibberifrons at species level follows osteological evidence presented by Ripley (1942), Mees (1982), and Parker et al. (1985).

Correction of mistaken attribution of seniority to Rhodonessa by Livezey (1996c).

Relationships between the sister species A. nyroca and A. baeri and other white-eyes remain unresolved (Livezey, 1996c).

May comprise two or more sibling species (Livezey, 1995c); it is recommended minimally that v-nigrum be segregated.

Position of genus provisional (Livezey, 1993b).

 Provisionally includes sibling species from the Chatham Islands and South Island, New Zealand (Livezey, 1995c).
Oxyura (J.) andina Lehmann, 1946 (Colombian Ruddy Duck) is provisionally considered here to pertain to hybrid progeny of O. (J.) jamaicensis and O. ferruginea (Livezey, 1995b).

DISCUSSION

Points of Consensus and Controversy

Graded Classes of Support.—In order to provide an assessment of the relative empirical support of taxonomic groupings defined in the classification, I discuss below selected taxa under five provisional classes based on the evidence presented in the associated analyses (Livezey, 1986a, 1986b, 1986c, 1989a, 1989b, 1990, 1991, 1993a, 1993b, 1995a, 1995b, 1995c, 1996a, 1996b, 1996c, 1997a, 1997b) and a familiarity with the underlying characters. The lists are not intended to be exhaustive, and therefore interpretations of support may not be given for some taxa of interest; for such groups, the reader is invited to examine the original analyses.

Practically Unassailable.—Among the higher taxonomic groups for which I consider that monophyly has been established beyond a reasonable doubt are: Order Anseriformes, Suborder Anhimae, Suborder Anseres, Superfamily Anatoidea (including Presbyornis), and Family Anatidae. The monophyly of many polytypic genera also has been established using a variety of characters; these genera include Chauna, Cygnus, Tachyeres, Somateria, Mergus, and Oxyura (sensu stricto).

Strongly Supported.—Contrary to the arguments of Feduccia (1980, 1996), Olson and Feduccia (1980), and Olson (1985), the position of the Galliformes as the sister order of the waterfowl is supported by substantial evidence from both morphological and molecular studies (Livezey, 1997b), therefore justifying the Superorder Galloanserimorphae. Monophyly has been well demonstrated for the node uniting the subfamilies Tadorninae and Anatinia, as well as those defining the Tribe Thamboetochemini, Subtribe Tadornina, Subtribe Aythyina, Subtribe Oxyurina, and Supergenus Mergus. Strong support also is known for several polytypic genera, including Dendrocygna, Somateria, the subgenus Olror, as well as a number of species groups (Chloephaga poliocephala and C. rubidiceps; Bucephala clangula and B. islandica).

Moderately Supported.—Adequate but suboptimal support attends a number of inferred groups of Anseriformes. These include the tribes Cygnini, Mergini, and Oxyurini; Subtribe Somaterina; genera Chloephaga, Aristonetta, Melanitta, Bucephala, Oxyura; Subgenus Nyroca; and a number of species groups (Casarca tadornoides and C. variegata; Aythya fuligula, A. affinis, and A. marila; Somateria exclusive of fischeri).

Weakly Supported.—Marginally supported nodes and associated taxonomic groups include the subfamilial position of the tribes Thamboetochemini (Anserinae or Tadorninae) and Malacorhynchini (Tadorninae or Anatinae), monophyly of the Subfamily Dendrocygnine and the subtribes Chloephagina and Mergina, the node uniting Mergellus with its sister genus, monophyly of the genera Anser and Bran- ta, and monophyly of a number of subgenera and species groups in most anatid tribes (especially within the Dendrocygningar, Anserini, Tadornini, Anatini, Aythynini, and Oxyurini). Also, for reasons detailed elsewhere (Livezey, 1996c), the position of Aythya collaris within the Subtribe Aythyina remains problematic. Finally, the positions of many fossil taxa remain tentative, notably those of Eu- ryanas, Centrornis, Anabernicula, and Pachyanas.

Unresolved.—Monophyly of the subfamilies Tadorninae and Anatinia has not
been demonstrated; provisional support for the naturalness of these two groups hinges on ancillary analytical methods, e.g., weighting of osteological characters more heavily than those of plumages (Livezey, 1996b). No single, empirically preferable reconstruction is available for the phylogenetic relationships among members of the following groups: Olor group of swans, tribes within the Tadorninae, tribes within the Anatinae, and subtribes within the Anatini. Also unresolved are: the subgeneric placement of Anas bernieri (Anatini), relationships within the subgenus Nyroca (Aythyini), the sister group of Oxyura jamaicensis, and relationships among several members of the Anas platyrhynchos group (Anatini). Also, relationships within Branta canadensis, Merganetta armata, and Somateria mollissima, three taxa traditionally considered monospecific but possibly comprising several species, require concerted reassessment.

Future Directions

Much remains to be done concerning the study of the evolution of waterfowl, and these understudied topics include more than confirmatory systematic investigations and attention to areas of poor resolution. In addition to the use of this classification for organizational purposes (e.g., Madge and Burn, 1988) and the refinement of the consensus concerning the phylogeny of Anseriformes (e.g., Christidis and Boles, 1994), it is hoped that the preceeding classification will facilitate the use of the underlying phylogenetic hypothesis for comparative study. Appropriate topics for such explorations, some of which have been examined already in a phylogenetic context, include: nest parasitism (Eadie et al., 1988; Rohwer and Freeman, 1989), parental care (Johnsgard and Kear, 1968; Kear, 1970; Scott and Clutton-Brock, 1989), natal vocalizations (Kear, 1968), parameters of reproduction (Rohwer, 1988), morphological convergence (Faith, 1989), brood amalgamation (Beauchamp, 1997), evolutionary patterns in flightlessness and ontogeny (Livezey and Humphrey, 1986; Livezey, 1989b, 1990, 1993a, 1993b, 1995a, 1995b), historical biogeography (Livezey, 1991, 1996a, 1997a), and diel activity patterns (McNeil et al., 1992).

Courtship behavior, one of the first behavioral aspects of waterfowl to be subjected to intense study (Lorenz, 1941; Delacour and Mayr, 1945; Johnsgard, 1961a, 1965a; Johnsgard and Carbonell, 1996), especially merits reassessment within a phylogenetic context. Indeed, behavioral characters merit consideration as characters in primary phylogenetic reconstruction (de Queiroz and Wimberger, 1993; Wimberger and de Queiroz, 1996), although problems of homology, inadequate data for many species, and variation among studies in the treatment of rare or infrequent behavioral patterns render suspect any analyses based uncritically on the ethological literature (e.g., Irwin, 1996). Myriad other aspects of the evolution of waterfowl await study, and as the availability of quantitative methods for phylogenetic assessments improves (Brooks and McLennan, 1991; Harvey and Pagel, 1991; Martins and Hansen, 1996; Ridley and Grafen, 1996), the revelation of patterns extendable to fossil taxa and other avian groups can be expected in the near future.
names. The hospitality of G. Mack and R. L. Zusi is much appreciated, and I thank P. S. Humphrey and two anonymous referees for helpful criticisms of the manuscript.

This classification is dedicated to Philip S. Humphrey, Director Emeritus of the Natural History Museum, University of Kansas, without whose friendship and unwavering encouragement my studies of the systematics of waterfowl would not have been completed.

LITERATURE CITED

ALDRICH, J. W., AND K. P. BAER. 1970. Status and speciation in the Mexican Duck (Anas diazi). Wilson Bulletin, 82:63–73.

ALVAREZ, R., AND S. L. OLSON. 1978. A new merganser from the Miocene of Virginia (Aves: Anatidae). Proceedings of the Biological Society of Washington, 91:522–532.

AMERICAN ORNITHOLOGISTS’ UNION. 1983. Check-list of North American Birds, Sixth Edition. American Ornithologists’ Union, Washington, D. C.

ANKNEY, C. D., AND D. G. DENNIS. 1988. Response to Hepp et al. Auk, 105:807–808.

ANKNEY, C. D., D. G. DENNIS, L. N. WISHARD, AND J. E. SEEB. 1986. Low genic variation between Black Ducks and Mallards. Auk, 103:710–709.

ANKNEY, C. D., D. G. DENNIS, AND R. O. BAILEY. 1987. Increasing Mallards, decreasing American Black Ducks: Coincidence or cause and effect? Journal of Wildlife Management, 51:523–529.

AVISE, J. C. 1996. Three fundamental contributions of molecular genetics to avian ecology and evolution. Ibis, 138:16–25.

AVISE, J. C., C. D. ANKNEY, AND W. S. NELSON. 1990. Mitochondrial gene trees and the evolutionary relationship of Mallard and Black Ducks. Evolution, 44:1109–1119.

BAIRD, S., J. CASSIN, AND G. N. LAWRENCE. 1860. The Birds of North America. J. B. Lippincott, Philadelphia, Pennsylvania.

BEAUCHAMP, G. 1997. Determinants of intraspecific brood amalgamation in waterfowl. Auk, 114:11–21.

BELANGER, L., S. TREMBLAY, AND R. COUTURE. 1988. Bill morphology in American Black Ducks, Anas rubripes, and Mallards, A. platyrhynchos. Canadian Field-Naturalist, 102:720–722.

BLAKE, E. R. 1977. Manual of Neotropical Birds, Volume 1: Spheniscidae (Penguins) to Laridae (Gulls and Allies). University of Chicago Press, Chicago, Illinois.

BLEDSOE, A. H., AND R. J. RAIKOW. 1990. A quantitative assessment of congruence between molecular and nonmolecular estimates of phylogeny. Journal of Molecular Evolution, 30:247–259.

BLEDSOE, A. H., AND F. H. SHELDON. 1990. Molecular homology and DNA hybridization. Journal of Molecular Evolution, 30:425–433.

BOCK, W. J. 1990. A special review: Peter’s “Check-list of Birds of the World” and a history of avian checklists. Auk, 107:629–639.

———. 1994. History and nomenclature of avian family-group names. Bulletin of the American Museum of Natural History, 222:1–281.

BOTTJER, P D. 1983. Systematic Relationships among the Anatidae: An Immunological Study, with...
Cuvier, G. L. C. F. D. 1817. Les Oiseaux. Pp. 290–540, in Le Règne Animal, Volume 1 (G. L. C. F. D. Cuvier, ed.). Detterville, Paris, France.

Davis, J. I., and K. C. Nixon. 1992. Populations, genetic variation, and the delimitation of phylogenetic species. Systematic Biology, 41:421–435.

de Queiroz, A., and P. H. Wiemberger. 1993. The usefulness of behavior for phylogeny estimation: Levels of homoplasy in behavioral and morphological characters. Evolution, 47:46–60.

de Queiroz, A., M. J. Donoghue, and J. Kim. 1995. Separate versus combined analysis of phylogenetic evidence. Annual Review of Ecology and Systematics, 26:657–681.

Delacour, J. 1936. Note sur la classification des Anatides. L'Oiseau et la Revue Française d'Ornithologie (Nouveau Série), 6:366–379.

——. 1938. La systématique des Anatidés et leurs mœurs. Pp. 225–242, in Proceedings of the Eighth International Ornithological Congress (F. C. R. Jourdain, ed.). University Press, Oxford, England.

——. 1954. The Waterfowl of the World, Volume 1. Country Life, London, United Kingdom.

——. 1956. The Waterfowl of the World, Volume 2. Country Life, London, United Kingdom.

——. 1959. The Waterfowl of the World, Volume 3. Country Life, London, United Kingdom.

——. 1964. Corrections and additions. Pp. 327–354, in The Waterfowl of the World, Volume 4 (J. Delacour, ed.). Country Life, London, United Kingdom.

Delacour, J., and E. Mayr. 1945. The family Anatidae. Wilson Bulletin, 57:3–55.

Derscheid, J. M. 1939. An unknown species—the Tahitian Goose(?). Ibis, 81:756–760.

Eadie, J. M. C., F. P. Kehoe, and T. D. Nudds. 1988. Pre-hatch and post-hatch brood amalgamation in North American Anatidae: A review of hypotheses. Canadian Journal of Zoology, 66:1707–1721.

Eernisse, D. J., and A. G. Kluge. 1993. Taxonomic congruence versus total evidence, and amniote phylogeny inferred from fossils, molecules, and morphology. Molecular Biology and Evolution, 10:1170–1195.

Eldridge, J. L. 1979. Display inventory of the Torrent Duck. Wildfowl, 30:5–15.

——. 1985. Display inventory of the Blue Duck. Wildfowl, 36:109–121.

Eyton, T. C. 1838. A Monograph on the Anatidae or Duck Tribe. Longman, Orme, Brown, Green, and Longman, London, United Kingdom.

——. 1869. Synopsis of the Anatidae or Duck Tribe. Published privately, Wellington, Salop, England.

Faith, D. P. 1989. Homoplasy as pattern: Multivariate analysis of morphological convergence in anseriforms. Cladistics, 5:235–258.

Feduccia, A. 1980. The Age of Birds. Harvard University Press, Cambridge, Massachusetts.

——. 1996. The Origin and Evolution of Birds. Yale University Press, New Haven, Connecticut.

Frost, D. R., and D. M. Hillis. 1990. Species in concept and practice: Herpetological applications. Herpetologica, 46:87–104.

Frost, D. R., and A. G. Kluge. 1994. A consideration of epistemology in systematic biology, with special reference to species. Cladistics, 10:259–294.

Fullagar, P. J. and M. Carbonell. 1986. The display postures of the male Musk Duck. Wildfowl, 37:142–150.

Fullagar, P. J., C. C. Davey, and D. K. Rushton. 1990. Social behaviour of the Freckled Duck Stictonetta naevosa with particular reference to the Axlegrind. Wildfowl, 41:53–61.

Fürbringer, M. 1888. Untersuchungen zur Morphologie und Systematik der Vögel, zugleich ein Beitrag zur Anatomie der Stütz- und Bewegungsorgane. T. J. Van Holkema, Amsterdam, Holland.

Gadow, H. 1892. On the classification of birds. Proceedings of the Zoological Society of London, 1892:229–256.

——. 1893. Dr. H. G. Bronn’s Klassen und Ordnungen des Their-Reichs, Volume 2, Vögel. Systematischer Theil. C. F. Winter, Leipzig, Germany.

Gillespie, G. D. 1985. Hybridization, introgression, and morphometric differentiation between Mallard (Anas platyrhynchos) and Grey Duck (Anas superciliosa) in Otago, New Zealand. Auk, 102:459–469.

Gillham, E., and B. Gillham. 1996. Hybrid Ducks: A Contribution Towards an Inventory. Published Privately, Surrey, United Kingdom.

Gray, G. R. 1841. A List of the Genera of Birds, with Their Synonyms, and an Indication of the Typical Species of Each Genus, Second Edition. Richard and John E. Taylor, London, England.

——. 1871. Hand-list of Genera and Species of Birds, Distinguishing Those Contained in the British Museum, Part III. Struthiones, Grallae, and Anseres, with Indices of Generic and Specific Names. British Museum (Natural History), London, England.
HADDON, M. 1984. A re-analysis of hybridization between Mallards and Grey Ducks in New Zealand. Auk, 101:190–191.

HARRISON, C. J. O., AND C. A. WALKER. 1978. Pleistocene bird remains from Aldabra Atoll, Indian Ocean. Journal of Natural History, 12:7–14.

HARSHMAN, J. 1994. Reweaving the tapestry: What can we learn from Sibley and Ahlquist (1990)? Auk, 111:377–388.

HARVEY, P. H., AND M. D. PAGEL. 1991. The Comparative Method in Evolutionary Biology. Oxford University Press, Oxford, United Kingdom.

HEDGES, S. B., AND C. G. SIBLEY. 1994. Molecules vs morphology in avian evolution: The case of the “pelecaniform” birds. Proceedings of the National Academy of Science (U.S.A.), 91:9861–9865.

HEINROTH, O. 1911. Beiträge zur Biologie, namentlich Ethologie und Psychologie der Anatiden. Pp. 589–702, in Verhandlungen des Fünften Internationalen Ornithologen-Kongresses (H. Schalow, ed.). Deutsche Ornithologische Gesellschaft, Berlin, Germany.

HENNING, W. 1966. Phylogenetic Systematics. University of Illinois Press, Urbana, Illinois.

HEPP, G. R., J. M. NOVAR, K. T. SCHEINER, AND P. W. STANGEL. 1988. Genetic distance and hybridization of Black Ducks and Mallards: A morph of a different color? Auk, 105:804–807.

HEUSSMANN, H. W. 1974. Mallard–Black Duck relationships in the Northeast. Wildlife Society Bulletin, 2:171–177.

HILLIS, D. M. 1987. Molecular versus morphological approaches to systematics. Annual Review of Ecology and Systematics, 18:23–42.

HILLIS, D. M., B. K. MABLE, AND C. MORITZ. 1996. Applications of molecular systematics: The state of the field and a look to the future. Pp. 515–543, in Molecular Systematics, Second Edition (D. M. Hillis, C. Moritz, and B. K. Mable, eds.). Sinauer Associates, Sunderland, Massachusetts.

HITCHMOUTH, R. A., M. WILLIAMS, AND C. H. DAUGHERTY. 1990. A genetic analysis of Mallards, Grey Ducks, and their hybrids in New Zealand. New Zealand Journal of Zoology, 17:467–472.

HOUDE, P. 1987. Critical evaluation of DNA hybridization studies in avian systematics. Auk, 104:17–32.

HOWARD, H. 1964. Fossil Anseriformes. Pp. 233–326, in The Waterfowl of the World, Volume 4. (J. Delacour, ed.). Country Life, London, United Kingdom.

HUBBARD, J. P. 1977. The biological and taxonomic status of the Mexican Duck. Bulletin of the New Mexico Department of Game and Fish, 16:1–56.

HUMPHREY, P. S. 1958. Classification and systematic position of the eiders. Condor, 60:129–135.

ILLIGER, J. K. W. 1811. Prodromus systematis Mammalium et Avium. C. Salfeld, Berlin, Germany.

INTERNATIONAL COMMISSION ON ZOOLOGICAL NOMENCLATURE. 1985. International Code of Zoological Nomenclature, Third Edition. International Trust for Zoological Nomenclature, London, United Kingdom.

Irwin, R. E. 1996. The phylogenetic content of avian courtship display and song evolution. Pp. 234–252, in Phylogenies and the Comparative Method in Animal Behavior (E. P. Martins, ed.). Oxford University Press, New York, New York.

JACOB, J. 1982. Integumentlipide—ihre chemische Struktur und ihre Bedeutung als systematisches Merkmal in der Zoologie. Funktionelle Biologie und Medizin, 1:83–90.

JACOB, J., AND A. GLASER. 1975. Chemotaxonomy of Anseriformes. Biochemical Systematics and Ecology, 2:215–220.

JACOB, J., AND H. HOERSCHELMANN. 1993. Ein Beitrag zur Chemotaxonomie der Entenvögel (Aves: Anseriformes). Mitteilung aus der Hamburgischen Zoologischen Museum und Institut, 90:379–400.

JOHNSGARD, P. A. 1960a. Comparative behavior of the Anatidae and its evolutionary implications. Wildfowl, 11:31–45.

———. 1960b. Hybridization in the Anatidae and its taxonomic implications. Condor, 62:25–33.

———. 1961a. The taxonomy of the Anatidae—a behavioural analysis. Ibis, 103:71–85.

———. 1961b. Tracheal anatomy of the Anatidae and its taxonomic significance. Wildfowl, 12:58–69.

———. 1961c. Evolutionary relationships among the North American mallards. Auk, 78:3–43.

———. 1962. Evolutionary trends in the behaviour and morphology of the Anatidae. Wildfowl, 13:130–148.

———. 1963. Behavioral isolating mechanisms in the family Anatidae. Pp. 531–543, in Proceedings XIII International Ornithological Congress, Volume 1 (C. G. Sibley, ed.). American Ornithologists’ Union, Washington, D. C.

———. 1965a. Handbook of Waterfowl Behavior. Constable, London, United Kingdom.

———. 1965b. Observations on some aberrant Australian Anatidae. Wildfowl, 16:73–83.
—. 1967. Sympatry changes and hybridization incidence in Mallards and Black Ducks. American Midland Naturalist, 77:51–63.
—. 1968. Waterfowl: Their Biology and Natural History. University of Nebraska Press, Lincoln, Nebraska.
—. 1978. Ducks, Geese, and Swans of the World. University of Nebraska Press, Lincoln, Nebraska.
—. 1979. Order Anseriformes. Pp. 425–506, in Checklist of Birds of the World, Volume 1, Second Edition (E. Mayr and C. W. Cottrell, eds.). Museum of Comparative Zoology, Cambridge, Massachusetts.
JOHNSGARD, P. A., AND M. CARBONELL. 1996. Ruddy Ducks and Other Stifftails: Their Behavior and Biology. University of Oklahoma Press, Norman, Oklahoma.
JOHNSGARD, P. A., AND J. Kear. 1968. A review of parental carrying of young by waterfowl. Living Bird, 7:89–102.
KEAR, J. 1968. The calls of very young Anatidae. Beihefte der Vogelwelt, 1:93–133.
—. 1970. The adaptive radiation of parental care in waterfowl. Pp. 357–392, in Social Behaviour in Birds and Mammals (J. H. Crook, ed.). Academic Press, New York, New York.
KESSLER, L. G., AND J. C. AVISE. 1984. Systematic relationships among waterfowl (Anatidae) inferred from restriction endonuclease analysis of mitochondrial DNA. Systematic Zoology, 33:370–380.
—. 1985. A comparative description of mitochondrial DNA differentiation in selected avian and other vertebrate genera. Molecular Biology and Evolution, 2:109–125.
KURODA, N. 1939. Geese and Ducks of the World. Published privately, Tokyo, Japan.
LACK, D. 1967. Proposal for an internationally agreed world list of birds. Pp. 365–367, in Proceedings of the XIV International Ornithological Congress (D. W. Snow, ed.). Blackwell Scientific Publications, Oxford, United Kingdom.
—. 1968. The sequence in European bird-lists. Ibis, 110:107–113.
LAMBERT, D. M., AND H. G. SPENCER. 1995. Speciation and the Recognition Concept: Theory and Application. Johns Hopkins University Press, Baltimore, Maryland.
LAMBRECHT, K. 1931. Cygnopterus und Cygninus, zwei fossile Schwanen aus dem Tertiär Europas. Bulletin du Musée Royal d’Histoire Naturelle de Belgique, 7(31):1–6.
—. 1933. Handbuch der Palaeornithologie. Gebruder Borntraeger, Berlin, Germany.
LANYON, S. M. 1992. [Review of] Phylogeny and Classification of Birds: A Study in Molecular Evolution (C. G. Sibley and J. E. Ahlquist). Condor, 94:304–307.
LATHAM, J. 1785. A General Synopsis of Birds, Volume 3. Part 2. Leigh and Sotheby, London, England.
LEACH, W. E. 1820. Eleventh room. Pp. 65–70, in Synopsis of the Contents of the British Museum, 17th Edition. British Museum (Natural History), London, England. [See Bock, 1994, for description.]
LEBEDINSKY, N. G. 1927. Romainvillia stehlini n. g. n. sp. canard Eocène provenant des marnes blanches du bassin de Paris. Memoires de la Société Paléontologique Suisse, 47:1–8.
LESSON, R. P. 1828. Manuel d’Ornithologie, ou Description des Genres et des Principales Espèces d’Oiseaux, Volume 2. Roret, Paris, France.
—. 1831. Traité d’Ornithologie. Ou Tableau Méthodique des Ordres, Sous-Ordres, Familles, Tribus, Genres, Sous-Genres et Races d’Oiseaux, Volume 1. F. G. Levrault, Paris, France.
LEWIN, R. 1988a. Conflict over DNA clock results. Science, 241:1598–1600.
—. 1988b. DNA clock conflict continues. Science, 241:1756–1759.
LINNAEUS, C. 1758. Systema Naturae per Regna Tria Naturae, Tenth Edition, Revised. Impensis Laurentii Salvii, Stockholm, Sweden.
LIVEZEY, B. C. 1986a. A phylogenetic analysis of Recent anseriform genera using morphological characters. Auk, 105:681–698.
—. 1986b. Phylogeny and historical biogeography of steamer-ducks (Anatidae: Tachyeres). Systematic Zoology, 35:458–469.
—. 1986c. Geographic variation in skeletons of Flying Steamer-Ducks (Tachyeres patachonicus). Journal of Biogeography, 13:511–525.
—. 1989a. Phylogenetic relationships of several subfossil Anseriformes of New Zealand. University of Kansas Museum of Natural History Occasional Paper, 128:1–25.
—. 1989b. Phylogenetic relationships and incipient flightlessness of the extinct Auckland Islands Merganser. Wilson Bulletin, 101:410–435.
—. 1990. Evolutionary morphology of flightlessness in the Auckland Islands Teal. Condor, 92:639–673.
—. 1991. A phylogenetic analysis and classification of Recent dabbling ducks (Tribe Anatini) based on comparative morphology. Auk, 108:471–507.

—. 1993a. Comparative morphometrics of Anas ducks, with particular reference to the Hawaiian Duck Anas wyvilliana, Laysan Duck A. laysanensis, and Eaton’s Pintail A. eatoni. Wildfowl, 44: 75–100.

—. 1993b. Morphology of flightlessness in Chenydes, fossil seedaucks (Anatidae: Mergini) of coastal California. Journal of Vertebrate Paleontology, 13:185–199.

—. 1993a. A phylogenetic analysis of the whistling and White-backed ducks (Anatidae: Denrocygninae) using morphological characters. Annals of Carnegie Museum, 64:65–97.

—. 1995b. Phylogeny and comparative ecology of stilt-tailed ducks (Anatidae: Oxyurini). Wilson Bulletin, 107:214–234.

—. 1995c. Phylogeny and evolutionary ecology of modern seedaucks (Anatidae: Mergini). Condor, 97:233–255.

—. 1995d. Heterochrony and the evolution of avian flightlessness. Pp. 169–193, in Evolutionary Change and Heterochrony (K. J. McNamara, ed.). J. Wiley, London, United Kingdom.

—. 1996a. A phylogenetic analysis of geese and swans (Anseriformes: Anserinae), including selected fossil species. Systematic Biology, 45:415–450.

—. 1996b. A phylogenetic reassessment of the tadornine–anatine divergence (Aves: Anseriformes: Anatidae). Annals of Carnegie Museum, 65:27–88.

—. 1996c. A phylogenetic analysis of modern pochards (Anatidae: Aythyini). Auk, 113:74–93.

—. 1997a. A phylogenetic analysis of modern shelducks and sheldgeese (Anatidae, Tadornini). Ibis, 139:51–66.

—. 1997b. A phylogenetic analysis of basal Anseriformes, the fossil Presbyornis, and the interordinal relationships of waterfowl. Zoological Journal of the Linnean Society, 121:in press.

LIVEZEY, B. C., AND P. S. HUMPHREY. 1986. Flightlessness in steamer-ducks (Anatidae: Tachyeres): Its morphological bases and probable evolution. Evolution, 40:540–558.

—. 1992. Taxonomy and identification of steamer-ducks (Anatidae: Tachyeres). University of Kansas, Museum of Natural History Monographs, 8:1–125.

LIVEZEY, B. C., AND L. D. MARTIN. 1988. The systematic position of the Miocene anatid Anas[?] blanchardi Milne-Edwards. Journal of Vertebrate Paleontology, 8:196–211.

LORENZ, K. 1941. Vergleichende Bewegungsstudien an Anatini. Journal für Ornithologie, 89(Supplement):194–294.

LYDEKKER, R. 1891. Catalogue of the Fossil Birds in the British Museum (Natural History). British Museum (Natural History), London, England.

MADGE, S. C., AND H. BURN. 1988. Waterfowl: An Identification Guide to the Ducks, Geese and Swans of the World. Houghton Mifflin, Boston, Massachusetts.

MADSEN, C. S., MCHUGH, K. P., AND S. R. DE KLOET. 1988. A partial classification of waterfowl (Anatidae) based on single-copy DNA. Auk, 105:452–459.

MARCHANT, S., AND P. J. HIGGINS (COORDS.). 1990. Handbook of Australian, New Zealand and Antarctic Birds, Volume 1, Part B. Oxford University Press, Melbourne, Australia.

MARTINS, E. P., AND T. F. HANSEN. 1996. The statistical analysis of interspecific data: A review and evaluation of phylogenetic comparative methods. Pp. 22–75, in Phylogenies and the Comparative Method in Animal Behavior (E. P. Martins, ed.). Oxford University Press, New York.

MAYR, E. 1989. A new classification of the living birds of the world. Auk, 106:508–512.

MAYR, E., AND W. J. BOCK. 1994. Provisional classifications v standard avian sequences: Heuristics and communication in ornithology. Ibis, 136:12–18.

MCeVEY, S. F. (ED.). 1993. Evolution and the Recognition Concept of Species: Collected Writings, Hugh E. H. Paterson. Johns Hopkins University Press, Baltimore, Maryland.

MCKITTRICK, M. C., AND R. M. ZINK. 1988. Species concepts in ornithology. Condor, 90:1–14.

McNEil, R., P. DRAPEAU, AND J. D. GOSS-CUSTARD. 1992. The occurrence and adaptive significance of nocturnal habits in waterfowl. Biological Review (Cambridge), 67:381–419.

MEES, G. F. 1982. Birds from the lowlands of southern New Guinea (Merauke and Koembe). Zooloeische Verhandelingen (Leiden), 191:1–188.

MERREM, B. 1813. Tentamen Systematis Naturalis Avium ex Osteologie Principiis. Abhandlungen der Königlichen Preussichen Akademie der Wissenschaften (Berlin), 1812–1813:237–259.

MILLER, A. H., AND L. V. COMPTON. 1939. Two fossil birds from the Lower Miocene of South Dakota. Condor, 41:153–156.

MINDELL, D. P. 1992. [Review of] Phylogeny and Classification of Birds: A Study in Molecular Evolution (C. G. Sibley and J. E. Ahlquist). Systematic Biology, 41:126–134.

MINDELL, D. P., M. D. SORENSON, C. J. HUDDLESTON, H. C. MIRANDA, JR., A. KNIGHT, S. J. SWACHUK, AND T. YURI. 1997. Phylogenetic relationships among and within select avian orders based on
mitochondrial DNA. Pp. 213–247, in Avian Molecular Evolution and Systematics (D. P. Mindell, ed.). Academic Press, San Diego, California.

Mlikovsky, J. 1992. The present state of knowledge of the Tertiary birds of central Europe. Pp. 433–458, in Papers in Avian Paleontology Honoring Pierce Brodkorb (K. E. Campbell, ed.). Natural History Museum of Los Angeles County, Los Angeles, California.

Monroe, B. L., Jr. 1989. Response to E. Mayr. Auk, 106:515–516.

Moreau, R. E. 1961. Taxonomic realism. Proceedings of the Zoological Society of London, 137: 623–626.

Morgan, R. P., II, L. A. Noe, and C. J. Henny. 1976. Biochemical identification of the Mallard, Anas platyrhynchos, and Black Duck, A. rubripes. Comparative Biochemistry and Physiology (Series B), 53:499–503.

Moritz, C., and D. M. Hillis. 1990. Molecular systematics: Context and controversies. Pp. 1–10, in Molecular Systematics (D. M. Hillis and C. Moritz, eds.). Sinauer Associates, Sunderland, Massachusetts.

Neff, N. A. 1986. A rational basis for a priori character weighting. Systematic Zoology, 35:110–123.

Newton, E., and H. Gadow. 1893. On additional bones of the dodo and other extinct birds of Mauritius obtained by Mr. Théodore Sauzier. Transactions of the Zoological Society of London, 13:281–302.

Nixon, K. C., and Q. D. Wheeler. 1990. An amplification of the phylogenetic species concept. Cladistics, 6:211–223.

Northcote, E. M. 1982. Size, form and habit of the extinct Maltese Swan Cygnus falconeri. Ibis, 124:148–158.

—. 1988. An extinct ‘swan-goose’ from the Pleistocene of Malta. Palaeontology, 31:725–740.

—. 1992. Swans (Cygnus) and cranes (Grus) from the Maltese Pleistocene. Pp. 285–291, in Papers in Avian Paleontology Honoring Pierce Brodkorb (K. E. Campbell, ed.). Natural History Museum of Los Angeles County, Los Angeles, California.

Numachi, K., M. Watada, R. Kakizawa, N. Kuroda, and S. Utida. 1983. Evolutionary genetics of the Anatidae. Tori (Tokyo), 32:117–126.

Olson, S. L. 1911a. The identity of the fossil ducks described from Australia by C. W. De Vis. Emu, 77:127–131.

—. 1995. [Review of] History and Nomenclature of Avian Family-group Names (W. J. Bock). Auk, 112:539–546.

—. 1985. The fossil record of birds. Pp. 79–252, in Avian Biology, Volume 8 (D. S. Farner, J. R. King, and K. C. Parkes, eds.). Academic Press, New York, New York.

—. 1996. A new species of small flightless duck from Amsterdam Island, southern Indian Ocean. Condor, 98:1–9.

Olson, S. L., and P. Jouventin. 1996. Omland, K. E. 1994. Character congruence between a molecular and a morphological phylogeny for dabbling ducks (Anas). Systematic Biology, 43:369–386.

Omland, K. E. 1994. Character congruence between a molecular and a morphological phylogeny for dabbling ducks (Anas). Systematic Biology, 43:369–386.

Olson, S. L., and A. Feduccia. 1980. Presbyornis and the origin of the Anseriformes (Aves: Charadriomorphae). Smithsonian Contributions to Zoology, 323:1–24.

Olson, S. L., and H. F. James. 1991. Descriptions of thirty-two new species of birds from the Hawaiian Islands: Part I. Non-Passeriformes. Ornithological Monographs, 45:1–88.

Olson, S. L., and P. Jouventin. 1996. A new species of small flightless duck from Amsterdam Island, southern Indian Ocean. Condor, 98:1–9.

Olson, S. L., and P. Jouventin. 1996. A new species of small flightless duck from Amsterdam Island, southern Indian Ocean. Condor, 98:1–9.

Omland, K. E. 1994. Character congruence between a molecular and a morphological phylogeny for dabbling ducks (Anas). Systematic Biology, 43:369–386.

Olson, S. L., and P. Jouventin. 1996. A new species of small flightless duck from Amsterdam Island, southern Indian Ocean. Condor, 98:1–9.

Patton, J. C., and J. C. Avise. 1985. Evolutionary genetics of birds IV: Rates of protein divergence in waterfowl (Anatidae). Genetica, 68:129–143.

Pennant, T. 1781. Genera of Birds. B. White and Son, London, England.

—. 1786. Histoire Naturelle des Oiseaux, par le Compte de Buffon, and les Planches Enluminées, Systematically Disposed. B. White and Son, London, England.
Shufeldt, R. W. 1914. Contributions to the study of the “tree-ducks” of the genus *Dendrocygna*. Zoologische Jahrbücher (Systematik, Geographie und Biologie der Tiere), 38:1–70.

Sibley, C. G. 1957. The evolutionary and taxonomic significance of sexual dimorphism and hybridization in birds. Condor, 59:166–191.

———. 1960. The electrophoretic patterns of egg-white proteins as taxonomic characters. Ibis, 102:215–284.

———. 1994. On the phylogeny and classification of living birds. Journal of Avian Biology, 25:87–92.

Sibley, C. G., and J. E. Ahlquist. 1972. A comparative study of the egg white proteins of non-passerine birds. Peabody Museum of Natural History Bulletin, 39:1–276.

———. 1987. Avian phylogeny reconstructed from comparisons of the genetic material, DNA. Pp. 95–121, in Molecules and Morphology in Evolution: Conflict or Compromise? (C. Patterson, ed.). Cambridge University Press, Cambridge, United Kingdom.

———. 1990. Phylogeny and Classification of Birds: A Study in Molecular Evolution. Yale University Press, New Haven, Connecticut.

Sibley, C. G., and B. L. Monroe, Jr. 1990. Distribution and Taxonomy of Birds of the World. Yale University Press, New Haven, Connecticut.

———. 1993. A Supplement to Distribution and Taxonomy of the Birds of the World. Yale University Press, New Haven, Connecticut.

Sibley, C. G., J. E. Ahlquist, and B. L. Monroe, Jr. 1988. A classification of the living birds of the world based on DNA–DNA hybridization studies. Auk, 105:409–423.

Siegel-Causey, D. 1993. [Review of] Distribution and Taxonomy of Birds of the World (C. G. Sibley and B. L. Monroe, Jr.). Auk, 109:939–944.

Springer, M., and C. Krajevski. 1989. DNA hybridization in animal taxonomy: A critique from first principles. Quarterly Review of Biology, 64:269–318.

SrAmL, M., L. Christidis, S. Easteal, P. Horn, and C. Collet. 1996. Molecular relationships within Australasian waterfowl (Anseriformes). Australian Journal of Zoology, 44:47–58.

Steinenger, L. 1885. Order VIII.—Chenomorphae. Pp. 132–157, in The Standard Natural History, Volume 4 (J. S. Kingsley, ed.). S. E. Casino, Boston, Massachusetts.

Swainson, W. (with J. Richardson). 1831 (= 1832). Fauna Boreali-Americana. Part 2, The Birds. J. Murray, London, England.

———. 1837. On the Natural History and Classification of Birds. London, Rees, Orme, Brown, Green, and Longman, London, England.

Springer, M., and C. Krajevski. 1989. DNA hybridization in animal taxonomy: A critique from first principles. Quarterly Review of Biology, 64:269–318.

Temminck, C. J. 1820. Manuel d’Ornithologie; ou, Tableau Systématique des Oiseaux qui se Trouvent en Europe, Deuxième Édition, Volumes 1 et 2, H. Cousin, Paris, France.

Todd, F. S. 1979. Waterfowl: Ducks, Geese and Swans of the World. Harcourt-Brace Jovanovich, New York, New York.

———. 1996. Natural History of the Waterfowl. Hancock Wildlife Research Center, Blaine, Washington.

Tuohy, J. M., K. P. McHugh, and S. R. de Kloet. 1992. Systematic relationships among some Anatini as derived from restriction-endonuclease analysis of a repeated DNA component. Auk, 109:465–473.

Van Beneden, P.-J. 1883. Sur quelques formes nouvelles des terrains tertiaires du pays. Academie Royale des Sciences, des Lettres et des Beaux-arts de Belgique (Série 3), 6:132–134.

Verheyen, R. 1953. Bijdrage tot de osteologie en de systematiek der Anseriformes. Gefaart, 43:373–456.

———. 1955. La systématique des Ansériformes basée sur l’ostéologie comparée. Bulletin de l’Institut Royal des Sciences Naturelles de Belgique, 31(35):1–18, (36):1–16, (37):1–22, (38):1–16.

Vieillot, L. P. 1818. Noveau Dictionnaire d’Histoire Naturelle. Deuxième Édition, Volume 23, Devertville, Paris, France.

Vigors, N. A. 1825a. Observations on the natural affinities that connect the orders and families of birds. Transactions of the Linnean Society of London, 14:395–517.

———. 1825b. Sketches in ornithology; or, observations on the leading affinities of some of the more extensive groups of birds [part]. Zoological Journal (London), 2:368–405.

Wetmore, A. 1930. Fossil bird remains from the Temblor Formation near Bakersfield, California. Proceedings of the California Academy of Science (Series 4), 19:85–93.

———. 1938. A fossil duck from the Eocene of Utah. Journal of Paleontology, 12:280–283.

———. 1960. Pleistocene birds in Bermuda. Smithsonian Miscellaneous Collections, 140:1–11.
APPENDIX

Characters Used in Preliminary Analyses of Miscellaneous Genera and Species Groups

Branta canadensis Complex

A tentative partitioning of the complex into five geographically integritous, phenotypically congruent forms is adopted, based on three external characters:

1. Body size (mean mass, kg), ordered: (a) small, 1.5–2.0 (other Branta spp., B. [c.] minima, B. [c.] hutchinsii); (b) medium, 2.1–3.9 (all other B. canadensis); (c) large, 4.0–5.2 (B. [c.] moffitti, B. [c.] maxima).

2. Brown color of ventrum: (a) pale (all others); (b) dark (B. [c.] minima, B. [c.] occidentalis, B. [c.] fulva).

3. Narrow white collar at base of neck: (a) typically absent (other Branta); (b) typically present (B. [c.] leucopareia, including “asiatica”). Note: also occurs uncommonly to rarely in B. (c.) taverneri and B. (c.) minima; possibly treat as intermediate state or polymorphism.

Sarkidiornis Complex

Two allopatric species are recognized based on color of contrasting, uniformly dark sides and flanks.

1. Sides and flanks: (a) gray (S. melanotos); (b) black (S. sylvicola).

Merganetta Complex

Five diagnosable, parapatric taxa are tentatively recognized. Provisional diagnostic characters (for adult males) include:

1. Black suborbital stripe (adult males): (a) absent (other Merganetta); (b) present (M. armata).

2. Contrastingly black chin and throat (adult males): (a) absent (other Merganetta); (b) present (M. armata).

3. Venter, contrastingly black color (adult males, ordered): (a) absent (other
Merganetta [berlepschi variable]); (b) present, confined to breast (M. armata); (c) present, including entire ventrum (M. turneri).

4. Ground color of venter, rusty color (adult males): (a) absent (Merganetta colombiana and M. leucogenis); (b) present (other Merganetta [very dark in turneri, berlepschi]).

5. Mantle, at least lateral margins (adult males): (a) black and white striped (others, including Merganetta armata, M. garleppi [intermediate, variable]); (b) black and brown striped (M. leucogenis, M. colombiana, M. turneri).

6. Mantle, medial portion, black color (adult males): (a) absent (other Merganetta); (b) present (M. turneri, M. leucogenis).
Livezey, Bradley C. 1997. "A phylogenetic classification of waterfowl (Aves: Anseriformes), including selected fossil species." *Annals of the Carnegie Museum* 66(4), 457–496. https://doi.org/10.5962/p.215141.