Revisiting the Functional Bootstrap in TFHE

Antonio Guimarães1 Edson Borin1 Diego F. Aranha2

September 14, 2021

1Institute of Computing, University of Campinas, Brazil

2Department of Computer Science, Aarhus University, Denmark
Efficiently evaluating non-linear functions with high precision is a challenge for FHE schemes.

CKKS1:
- Approximations using Taylor, Fourier, and Chebyshev series.
- Good performance (SIMD-like computation) for low-precision approximations.

TFHE2:
- Circuits are implemented using binary logic gates.
- Low throughput of operations.
- New approach: \textbf{Functional Bootstrap}3

1Cheon et al., “Homomorphic Encryption for Arithmetic of Approximate Numbers”, 2017.
2Chillotti et al., “TFHE: fast fully homomorphic encryption over the torus”, 2020.
3Boura et al., “Simulating Homomorphic Evaluation of Deep Learning Predictions”, 2019.
Outline

1. TFHE
2. The Functional Bootstrap
3. This work
4. Results
TFHE
TFHE - Fully homomorphic encryption over the Torus

• Security based on the Learning With Errors (LWE) problem.

• The Real Torus:
 - $\mathbb{T} = \mathbb{R}/\mathbb{Z}$: the set of real numbers modulo 1.
 - Unsigned: $[0, 1)$
 - Signed: $[-0.5, 0.5)$

• Ciphertexts:
 - TLWE
 - TRLWE
 - TGSW

4Regev, “On Lattices, Learning with Errors, Random Linear Codes, and Cryptography”, 2009.

5Chillotti et al., “TFHE: fast fully homomorphic encryption over the torus”, 2020.
Definition

A pair \((a, b) \in \mathbb{T}^{n+1}\), where \(b = \langle a, s \rangle + e\). The vector \(a\) is uniformly sampled from \(\mathbb{T}^n\), the secret key \(s\) is uniformly sampled from \(\mathbb{B}^n\), the error \(e \in \mathbb{T}\) is sampled from a Gaussian distribution with mean 0 and standard deviation \(\sigma\), and \(\langle , \rangle\) denotes the inner product.

- Example (\(n = 5\)):
 - \(a \leftarrow 0.32 \ -0.41 \ -0.12 \ 0.19 \ -0.40\)
 - \(b = \langle a, s \rangle + e\)
 - \(s \leftarrow 1 \ 0 \ 1 \ 0 \ 0\)
 - \(e \leftarrow 0.03\)
 - \(b = \langle a, s \rangle + e = 0.32 + -0.12 + 0.03 = 0.23\)
 - \(c_0 = (a, b) \in \text{TLWE}_s(0)\)
TLWE - Encryption

- Fresh sample of 0:
 - $a \leftarrow \begin{bmatrix} 0.32 & -0.41 & -0.12 & 0.19 & -0.40 \end{bmatrix}$
 - $s \leftarrow \begin{bmatrix} 1 & 0 & 1 & 0 & 0 \end{bmatrix}$
 - $e \leftarrow 0.03$
 - $b = \langle a, s \rangle + e = 0.32 - 0.12 + 0.03 = 0.23$
 - $c_0 = (a, b) \in \text{TLWE}_s(0)$

- Encrypting the message $m = 0.2$:
 - $c_m = c_0 + (0, m) = (a + 0, b + m) = (a, 0.43)$
 - $c_m \in \text{TLWE}_s(m)$

- Decryption:
 - Phase (message + error): $\phi(c_m) = b - \langle a, s \rangle = 0.43 - 0.20 = 0.23$
 - Approximate computing: $m \approx 0.23$
 - Exact computing: $m = \left\lceil \phi(c_m) \right\rceil_{\frac{1}{10}} = 0.2$
TLWE and TRLWE Samples

- TLWE Sample
 - Each element is a scalar in the Torus.

- TRLWE Sample
 - Each element is a polynomial with coefficient in the Torus.
 - Example ($N = 4$):
 - $m \leftarrow 0.32x^3 - 0.41x^2 - 0.12x^1 + 0.19$
Arithmetic

- Additions and multiplications by cleartext
 - \(c_1 + c_2 = (a_1 + a_2, b_1 + b_2) \)
 - \(c_1 \cdot z = (a_1 \cdot z, b_1 \cdot z) \), for \(z \in \mathbb{Z} \).

- Multiplication between ciphertexts
 - TFHE relies on external products.

- The error increases with arithmetic operations
 - Eventually it would affect bits of the message.
 - Reset the error using a Bootstrap.
1. Key Switching
 - Ex: 4 TLWE samples $\text{TLWE}_s(m_i) \rightarrow \text{TRLWE}_S(\sum_{i=0}^{3} m_i X^i)$

2. Sample Extract
 - Ex: SampleExtract$_0$(TRLWE$_S(\sum_{i=0}^{3} m_i X^i)) \rightarrow \text{TLWE}_s(m_0)$
3. Blind Rotate

- $c, \text{ACC} \rightarrow \text{TRLWE}_S(\text{ACC} \cdot X^{[\phi(c)2^N]} \mod \Phi_{2^N})$
- **Input:**
 \[
 \text{ACC} = \text{TRLWE}_S(m_3X^3 + m_2X^2 + m_1X^1 + m_0)
 \]

 $c = \text{TLWE}_S(m), m = 0.25$

- **Output:**
 \[
 \text{TRLWE}_S(m_1X^3 + m_0X^2 - m_3X^1 - m_2)
 \]
Bootstrapping

- Boolean values in TFHE: $(0, 1) \mapsto (-\frac{1}{4}, \frac{1}{4})$

- Input:
 - $c \in \text{TLWE}_s(m)$, e.g. $\phi(c) = \frac{1}{8}$
 - $\text{ACC} = \sum_{i=0}^{N} \frac{1}{4}X^i$

- Bootstrap:
 1. Use BlindRotate to calculate $\text{ACC} \cdot X^{\lceil -\phi(c)2^N \rceil \mod \Phi_{2^N}}$
 2. Use SampleExtract to extract the constant term of rotated ACC.

- Result: $\overline{c} \in \begin{cases}
\text{TLWE}(\frac{1}{4}), & \text{if } \phi(c) \in [0, 0.5), \\
\text{TLWE}(-\frac{1}{4}), & \text{if } \phi(c) \in [-0.5, 0).
\end{cases}$
The Functional Bootstrap
Functional Bootstrap

Evaluate Lookup Tables (LUTs)

Example
Functional Bootstrap

- Integer values (base $B = 4$): $(0, 1, 2, 3) \mapsto (0, \frac{1}{8}, \frac{2}{8}, \frac{3}{8})$

- ACC now encodes a LUT that evaluates a function F:

$$L = [l_1, l_2, l_3, l_4] \mapsto \sum_{i=0}^{255} \frac{l_1}{8} X^i + \sum_{i=256}^{511} \frac{l_2}{8} X^i + \sum_{i=512}^{767} \frac{l_3}{8} X^i + \sum_{i=768}^{1023} \frac{l_4}{8} X^i$$

- $c \in \text{TLWE}_s(m)$ is the LUT selector.

- The bootstrap algorithm is similar:
 1. Add a precision offset to c: $c \leftarrow c + (0, 1/16)$.
 2. Use BlindRotate to calculate $\text{ACC} \cdot X[H(c)] \mod \Phi_{2N}$
 3. Use SampleExtract to extract the constant term of rotated ACC.

- Result: $\overline{c} \in \text{TLWE}(F(m))$
Multi-value Bootstrap

• A technique for evaluating multiple LUTs with the same selector.
• Asymptotic cost per LUT: $Base \times N$
• Output error increment6: $\|TV_f\|_2^2 \leq s(q - 1)^2$ times.
 • s: input base.
 • q: output base.

6Sergiu Carpov, Malika Izabachène, and Victor Mollimard. “New Techniques for Multi-value Input Homomorphic Evaluation and Applications”. In: Topics in Cryptology – CT-RSA 2019. Ed. by Mitsuru Matsui. Cham: Springer International Publishing, 2019, pp. 106–126. ISBN: 978-3-030-12612-4. DOI: 10.1007/978-3-030-12612-4_6.
Evaluating functions with high precision

Table 1: Functional bootstrap performance

	Precision (bits)	N	Error Rate (\log_2)	Execution Time
Sign Function7	1	1024	Negligible	13 ms
6-bit-to-6-bit LUT9	6	16384	-26.94	≈ 1 s

7Bourse et al., “Fast Homomorphic Evaluation of Deep Discretized Neural Networks”, 2018.
8Izabachène, Sirdey, and Zuber, “Practical Fully Homomorphic Encryption for Fully Masked Neural Networks”, 2019.
9Carpov, Izabachène, and Mollimard, “New Techniques for Multi-value Input Homomorphic Evaluation and Applications”, 2019.
Evaluating functions with high precision

Function	Precision	N	Error Rate (\log_2)	Execution Time (ms)
Sign Function10,11	1	1024	Negligible	13 ms
6-bit-to-6-bit LUT12	6	16384	-26.94	\approx 1 s
6-bit-to-6-bit LUT (This work)	6	1024	-59.59	378 ms

10Bourse et al., “Fast Homomorphic Evaluation of Deep Discretized Neural Networks”, 2018.
11Izabachène, Sirdey, and Zuber, “Practical Fully Homomorphic Encryption for Fully Masked Neural Networks”, 2019.
12Carpov, Izabachène, and Mollimard, “New Techniques for Multi-value Input Homomorphic Evaluation and Applications”, 2019.
This work
Contributions

- Combining Multiple Functional Bootstraps
 - Tree-based Approach
 - Chaining Approach
- Building blocks optimizations
 - Base-aware key switching
 - Multi-value Extract
- Error variance analysis
- Implementation of common functions
 - Up to 8 times speedup over works using logic gates.
 - Up to 3 times speedup over previous works using TFHE’s functional bootstrap.
Combining Multiple Functional Bootstraps

Tree-based method

Chaining method

\[\bar{\tau} + \frac{1}{2} \] (output)
Chaining Method

Supported Functions (Recursive definition)

Let f be a function over an operand x with d digits. For each digit x_i for $i \in [0, d)$, there shall exist a linear combination \otimes_i and a LUT L_i, s. t.:

$$
\bar{x}_i = \begin{cases}
L_i(x_i) = \otimes_f(f(x_i)), & \text{if } i = 0 \\
L_i(\otimes_{i-1}(\bar{x}_{i-1}, x_i)) = \otimes_f(f(x_i : x_0)), & \text{if } i \geq 1.
\end{cases}
$$

- **Suitable Functions**
 - Test logic: integer comparison\(^{13}\), sign, parity.
 - Carry-like logic: addition, multiplication.

\(^{13}\)Bourse, Sanders, and Traoré, “Improved Secure Integer Comparison via Homomorphic Encryption”, 2020.
Tree-Based Method

(a) Full-tree

(b) Optimized tree
Tree-based approach

Algorithm 0: Tree-based method for combining functional bootstraps

Input : a set of TLWE samples $c_i \in \text{TLWE}_s\left(\frac{m_i}{2B}\right)$, such that $\sum_{i=0}^{d-1} m_i B^i = m$ is the integer m in base B with d digits.

Input : a set L of B^d polynomials $\in \mathbb{Z}_N[X]$ encoding the lookup table of an arbitrary function F.

Input : a bootstrapping key B_{K_i} and a Key Switching key $K_{S_{i,j}}$.

Output: A TLWE sample $\bar{c} \in \text{TLWE}_{\mathbb{S}}\left(\frac{F(m)}{2B}\right)$.

1. $TV \leftarrow L, f : T^B \mapsto T_N[X] = (a_1, ..., a_B) \mapsto a_1 X^{N-1} + ... + a_B$
2. for $i \leftarrow 0$ to $d - 1$ do
3. $\bar{c} \leftarrow \text{MultiValueBootstrap}(c_i, TV, BK)$
4. for $j \leftarrow 1$ to B^{d-i-2} do
5. $TV_{j-1} \leftarrow \text{PublicKeySwitch}((\bar{c}_{(j-1)X_B}, ..., \bar{c}_{jX_B}), f, KS)$
6. return \bar{c}_0
Building Blocks Optimizations

- Base-aware key switching
 - A specialized key switching to pack $B < N$ samples.
 - $\frac{N}{B}$ times speedup over the generic key switching.

- Multi-value extract
 - Enables ciphertext scalings with linear error growth (instead of quadratic).
 - Improves error output variance of the multi-value bootstrap from quadratic to linear.
Base-Aware Key Switching

- Homomorphically calculate the phase $\phi(c) = b - \langle a, s \rangle$.
- For packing LWE samples:

$$
(0, f(b^{(1)}, b^{(2)}, \ldots, b^{(p)})) - \sum_{i=1}^{n} f(a^{(1)}_{i}, a^{(2)}_{i}, \ldots, a^{(p)}_{i}) \cdot KS_{i,j}
$$

- $f: \mathbb{T}^B \mapsto \mathbb{T}_N[X] = (a_1, \ldots, a_B) \mapsto a_1X^{N-1} + \ldots + a_B$
- $KS_{i,j}$ is a bit by bit TRLWE encryption of the key.
Base-Aware Key Switching

- Homomorphically calculate the phase $\phi(c) = b - \langle a, s \rangle$.
- For packing LWE samples:

$$
(0, f(b^{(1)}, b^{(2)}, \ldots, b^{(p)})) - \sum_{i=1}^{n} f(a^{(1)}_i, a^{(2)}_i, \ldots, a^{(p)}_i) \cdot KS_{i,j}
$$

- $f : \mathbb{T}^B \mapsto \mathbb{T}_N[X] = (a_1, \ldots, a_B) \mapsto a_1X^{N-1} + \ldots + a_B$
- $KS_{i,j}$ is a bit by bit TRLWE encryption of the key.

- Base Aware logic:
 - We want to pack $B < N$ samples.
 - $KS_{i,j,b} \in \text{TRLWE}_{s_{\text{base}}}(\frac{s_i}{\text{base}}, \sum_{q=bN/B}^{(b+1)N/B-1} X^q)$
 - $\frac{N}{B}$ times improvement in performance and error growth.
\[\sigma_{x+y}^2 = \sigma_x^2 + \sigma_y^2 + 2\rho\sigma_x\sigma_y \]

- Addition of independent variables: \(\sigma_{x+y}^2 = \sigma_x^2 + \sigma_y^2 \)
- Multiplication by \(n \in \mathbb{Z} \): \(\sigma_{n\times x}^2 = n^2 \times \sigma_x^2 \)
- Can we implement multiplications as sequences of additions of independent TLWE samples?
LUT Encoding:

\[L = [l_1, l_2, l_3, l_4] \mapsto \sum_{i=0}^{255} \frac{l_1}{8} X^i + \sum_{i=256}^{511} \frac{l_2}{8} X^i + \sum_{i=512}^{767} \frac{l_3}{8} X^i + \sum_{i=768}^{1023} \frac{l_4}{8} X^i \]

Definition (Independence Heuristic\(^{14}\))

The error of the coefficients of TRLWE samples (including TRGSW samples) and all linear combinations of them considered in TFHE are independent and concentrated.

\(^{14}\)Chillotti et al., “TFHE: fast fully homomorphic encryption over the torus”, 2020.
Algorithm 1: Multiplication (scaling) using the multi-value extract

Input: a TRLWE sample \(c \in \text{TRLWE}_S(p) \), which is the accumulator (ACC) of a previous functional bootstrap, and a cleartext scalar \(b \in \mathbb{Z} \).

Output: a TLWE sample \(\overline{c} \in \text{TLWE}_\overline{S}(b \cdot p_0) \), where \(p_0 \) is the constant term of \(p \), and \(\overline{S} \in \mathbb{B}^N \) is a vector interpretation of \(S \in \mathbb{B}_N[X] \).

1. \(\overline{c} \leftarrow \text{TLWE}_\overline{S}(0) \)
2. \(\overline{c} \leftarrow \overline{c} + \text{SampleExtract}_i(p) \), for each \(i \in \left[0, \left\lceil \frac{b}{2} \right\rceil - 1 \right] \)
3. \(\overline{c} \leftarrow \overline{c} - \text{SampleExtract}_i(p) \), for each \(i \in \left[N - \left\lfloor \frac{b}{2} \right\rfloor, N - 1 \right] \)
4. Return \(\overline{c} \)
Multi-value Extract IV

Figure 2: Comparison between the variance of scaling using the multi-value extract and direct multiplication.
The multi-value extract allows evaluating any scalings with linear growth in the error variance.

In the Multi-value bootstrap of Carpov et al.15:

- Direct multiplication: $\| TV_f \|^2 \leq s(q - 1)^2$
- Multi-value extract scaling: $\| TV_f \|^2 \leq s(q - 1)$

15Sergiu Carpov, Malika Izabachène, and Victor Mollimard. “New Techniques for Multi-value Input Homomorphic Evaluation and Applications”. In: Topics in Cryptology – CT-RSA 2019. Ed. by Mitsuru Matsui. Cham: Springer International Publishing, 2019, pp. 106–126. ISBN: 978-3-030-12612-4. DOI: 10.1007/978-3-030-12612-4_6.
Results
Results

• Implementations using the Functional Bootstrap
 • Generic LUT (6-bit-to-6-bit): 3.19x
 • Integer comparison (32-bit): 2.49x

• Implementations using Logic gates
 • ReLU (8-bit): 6.98x
 • Addition (8-bit): 8.74x
 • Maximum (8-bit): 3.5x
6-bit-to-6-bit LUT

	Security	Key Size	Error Rate (\log_2)	Time (ms)	Speedup
Carpov et al.16	≥ 128	≈ 8 GB	-26.94	1570a	1.00
This work (1)	127	≈ 4.3 GB	-59.59	378.2	2.49
This work (2)	127	≈ 6.5 GB	-134.84	457.9	2.06

a Result provided by the authors, who executed experiments on a machine 1.67 times slower than ours. The speedup was adjusted accordingly.

16 Carpov, Izabachène, and Mollimard, “New Techniques for Multi-value Input Homomorphic Evaluation and Applications”, 2019.
32-bit Integer Comparison

	Security	Key Size	Error Rate (\(\log_2\))	Time (ms)	Speedup
Bourse *et al.*\(^{17}\)					
90	≈ 1.2 GB	-50\(^b\)	2232\(^a\)	1.75	
109	≈ 3.4 GB	-47\(^b\)	3902\(^a\)	1.00	
211	≈ 4.6 GB	-89\(^b\)	3840\(^a\)	1.02	
Zhou *et al.*\(^{18}\)					
80	≈ 0.3 GB	Negligible	1143.2	0.93	
127	≈ 0.3 GB	Negligible	1867.2	0.57	
This work (1)					
127	≈ 4.3 GB	-26.51	334.1	3.19	
This work (2)					
127	≈ 6.5 GB	-129.58	396.4	2.68	

\(^a\) Execution time provided by the authors, who executed experiments on a machine 3.67 times slower than ours. The speedup was adjusted accordingly.

\(^b\) Error Rate provided by the authors. We speculatively estimate it to be much lower, but we do not have sufficient data to calculate.

\(^{17}\) Bourse, Sanders, and Traoré, “Improved Secure Integer Comparison via Homomorphic Encryption”, 2020.

\(^{18}\) Zhou et al., “Deep Binarized Convolutional Neural Network Inferences over Encrypted Data”, 2020.
8-bit Addition

	Security	Key Size	Error Rate \((\log_2)\)	Time (ms)	Speedup
Lou and Jiang\(^{19}\)	80	\(\approx 0.3\) GB	Negligible	585	1.21
	127	\(\approx 0.3\) GB	Negligible	708.9	1.00
Zhou et al.\(^{20}\)	80	\(\approx 0.3\) GB	Negligible	338	2.10
	127	\(\approx 0.3\) GB	Negligible	548.7	1.29
This work (1)	127	\(\approx 4.3\) GB	-124.7	81.1	8.74
This work (2)	127	\(\approx 6.5\) GB	-176.139	94.8	7.48

\(^{19}\) Lou and Jiang, “SHE: A Fast and Accurate Deep Neural Network for Encrypted Data”, 2019.

\(^{20}\) Zhou et al., “Deep Binarized Convolutional Neural Network Inferences over Encrypted Data”, 2020.
Estimation of a full inference

Table 3: Estimation of an inference on the Binarized CNN of Zhou *et al.*\(^{21}\).

Security Level	Execution time per layer (h)	Total (h)	Speedup			
	Bin. Conv.	Max-Pool.	Fully Conn.			
Zhou *et al.* (reported)	80	19.20	0.67	21.35	41.22	1.88
Zhou *et al.*	80	20.18	0.96	26.87	48.01	1.62
	127	32.46	1.56	43.62	77.64	1.00
This work (1)	127	7.39	0.53	7.91	15.83	4.90
This work (2)	127	8.19	0.61	9.20	18.00	4.31

\(^{21}\)Zhou *et al.*, “Deep Binarized Convolutional Neural Network Inferences over Encrypted Data”, 2020.
Conclusion

- Two methods for combining Multiple Functional Bootstraps
 - Gains of up to 8 times over previous literature
 - The possibility of efficiently implementing functions with high precision.

- Building blocks optimizations
 - Specialized packing key switching: 256 times performance and error improvements over the generic technique.
 - Multi-value extract: scaling with linear error growth.

- Complete error analysis with experimental validation.
Thank you!22

22We would like to thank the São Paulo Research Foundation (grants 2013/08293-7 and 2019/12783-6), and the National Council for Scientific and Technological Development (grant 313012/2017-2) for supporting this research. We also would like to thank Tancrède Lepoint for serving as the shepherd for this paper.