Significant Differences in BTI and TDDB Characteristics of Commercial Planar SiC-MOSFETs

Eiichi Murakami¹,a*, Tatsuya Takeshita¹,b and Kazuhiro Oda¹,c

¹Kyushu-Sangyo University, 2-3-1, Matsukadai, Higashi-ku, Fukuoka, 813-8503, Japan
aeiichi@ip.kyusan-u.ac.jp, bt.take@ip.kyusan-u.ac.jp and coda@ip.kyusan-u.ac.jp

Keywords: SiC-MOSFETs, reliability, time-dependent dielectric breakdown (TDDB), bias temperature instability (BTI), gate current, NO-annealing

Abstract. Silicon carbide (SiC) metal-oxide-semiconductor field-effect transistors (MOSFETs) have been produced by several vendors for commercial applications. SiC-MOSFET reliability was assessed using bias-temperature instability (BTI) and time-dependent dielectric breakdown (TDDB) characteristics. Here, we compared two planar SiC-MOSFET samples (A and B) from different vendors. The samples exhibited significantly different positive and negative BTI, time-dependent gate-current, TDDB lifetime statistics, and temperature dependence. These differences suggest NO (nitric oxide)-annealing variations.

Introduction

Silicon carbide metal-oxide-semiconductor field-effect transistors (SiC-MOSFETs) have been successfully applied to railway vehicles. They are also being applied to electric vehicles (EVs). As EVs lack a railway vehicle-like redundancy system, EVs require SiC-MOSFETs to reduce the extrinsic defects. Their reliability needs to be understood. The commercial SiC-MOSFET reliability was compared in bias-temperature instability (BTI) [1], and time-dependent dielectric breakdown (TDDB) [2,3]. Further, gate oxide integrity (GOI) [4, 5] was compared for automotive applications.

Several vendors produce SiC-MOSFETs. Here, we compared the reliability of two SiC-MOSFET samples (A and B) in BTI and TDDB.

Experimental

Both the MOSFETs exhibited a conventional planar vertical structure with a 45–46 nm-thick gate oxide when observed under a transmission electron microscope. Positive and negative BTI values (PBTI and NBTI) were measured at 200 °C using spot I_{ds} monitoring during the stress conditions as a JED0 pattern [6]. TDDBs were measured at room temperature (RT, 20–27 °C), −60 °C, and 200 °C, under a constant voltage stress (CVS, $V_{gs} = 46$ or 47 V). The gate current was monitored during the stress. We employed B2902A PC-controlled source measuring units (Keysight Technologies Inc., Santa Rosa, CA), STH-120 temperature-controlled furnaces (ESPEC CORP., Osaka, Japan), and LTF-70 cold plates (Graphtec Corporation, Yokohama, Japan).

Results and Discussion

Fig. 1 depicts the PBTI (a) and NBTI (b) threshold voltage shifts (ΔV_{th}). Sample A exhibited a lower PBTI and a higher NBTI than Sample B, as reported earlier [1]. Moreover, both the samples exhibited V_{th} hysteresis [7] around 0.4 V by sweeping the gate voltage (V_{gs}: −10→25→−10 V) at 200°C. NO (nitric oxide)-annealing studies suggested higher nitrogen concentration in Sample A [8].

This article is an open access article under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0)
Fig. 2(a) depicts the TDDB time-to-breakdown (t_{BD}) at different temperatures. Sample A exhibited larger t_{BD} variation, while Sample B exhibited smaller variations. As three samples were measured for each condition here, we present Weibull plots for t_{BD} at RT in Fig. 3(a), which were obtained from another experimental set. Sample A exhibited smaller Weibull slope than Sample B.

![Weibull plots for t_{BD} at RT](image)

Fig. 3(a). Weibull plots for t_{BD} at RT for different temperature conditions.

Fig. 2. Temperature dependence of t_{BD} (a) and Q_{BD} (b) at $V_{gs} = 46$ V. Sample A exhibited anomalous temperature dependence in t_{BD} and Q_{BD}. The t_{BD} and Q_{BD} values were lower at -60 ℃ than at RT.

for each condition here, we present Weibull plots for t_{BD} at RT in Fig. 3(a), which were obtained from another experimental set. Sample A exhibited smaller Weibull slope than Sample B.

![Temperature dependence plots](image)
Fig. 4 depicts the time-dependent gate currents, $I_g(t)$, that were measured during the CVS at 47 V, RT. Sample A exhibited initial higher $I_g(t)$ that subsequently decreased, while Sample B exhibited a continuous increase. Similar V_{gs}-dependent observations were reported at 150 °C [2, 3] and 175 °C [9]. Okada et al. [10] proposed charging-induced dynamic stress in SiO$_2$/Si system. This elucidated TDDB anomaly upon using $I_g(t)$ behavioral pattern.

Fig. 3. Weibull plots depicting SiC-MOSFET TDDB data at $V_{gs} = 47$ V, RT, for samples A and B (a) and at $V_{gs} = 46$ V, RT and -60 °C for Sample B (b). The vertical axes are defined as $-\ln(1-F_i) (F_i=(i-0.3)/(n+0.4));$ median rank), wherein F and n denote the cumulative failure and total sample number, respectively. The cumulative defect density is defined as $D(t)=-\ln(1-F)/A$ (A: gate area). Thermostream was used in the -60 °C experiment.

Fig. 4. Time dependence of gate current during gate stress ($V_{gs}=47$ V, RT). (a) Sample A and (b) Sample B. The change in color indicates the stress interruption for I–V measurements. Insets depict linear I_g increase during the interruptions, suggesting electron detrapping. The data also suggest higher nitrogen concentration in Sample A than in Sample B.
When \(I_g \) is in the decreasing phase, a sample with a larger \(Q_{BD} \) shows a much larger \(t_{BD} \) by CVS than expected. On the contrary, in the increasing phase, a sample with larger \(Q_{BD} \) suffers stronger stress than expected; thus, reducing its \(t_{BD} \). Consequently, while the former resulted in larger \(t_{BD} \) variations (as in Sample A), the latter resulted in smaller \(t_{BD} \) variations (as in Sample B).

Moreover, we elucidated the TDDB’s NO-annealing dependence using test element group (TEG) chips [11]. The samples A and B corresponded to heavy and light NO-annealing situations, respectively. This argument was consistent with the BTI characteristics (Fig. 1). We hypothesized that holes and electrons were trapped near the SiO\(_2\)/SiC interface [11]. The trapped location remains to be investigated [2, 3, 5, 9].

Fig. 2 (b) depicts the calculated \(Q_{BDs} \). Larger \(Q_{BD} \) values and normal \(Q_{BD} \) temperature dependence were observed in Sample A, as reported for SiO\(_2\)/Si system [12]. Although higher temperatures resulted in lower hot-carrier generation, the defect formed upon thermal activation. Therefore, the TDDB temperature coefficient remained positive [13]. However, an anomalous temperature dependence for \(t_{BD} \) and \(Q_{BD} \) was observed in Sample B, which resulted in the largest RT values. Weibull plots from a different experimental set are presented (Fig. 3(b)) to support this anomaly. The extrinsic mode was observed to a greater extent at -60 °C. This phenomenon should be investigated further.

Understanding the basis of this anomaly requires further investigation. The presence of residual carbon at the SiO\(_2\)/SiC interface in an oxidized SiC sample was demonstrated in a carbon-ejection study [14]. The residual carbon might alter thermal activation during the defect formation process. The NO-annealing dependence is being investigated using the TEG chips [11].

Summary

The two SiC MOSFETs exhibited different PBTI, NBTI, TDDB statistics, and temperature dependence in commercial planar structures. These differences are probably due to NO-annealing variations.

Acknowledgements

The authors show gratitude to students and faculty members of Department of Electrical Engineering in Kyushu Sangyo University for supporting this study.

References

[1] R. Green, A. Lelis, and D. Habersat, Jpn. J. Appl. Phys. 55 (2016) 04EA03.
[2] S. Zhu, T. Liu, M. H. White, A. K. Agarwal, A. Salemi, and D. Sheridan, IRPS 2021, 5C.7.
[3] T. Liu, et al., J. Electron Dev. Soc., 9 (2021) 633-639.
[4] E. Mengotti et al., Materials Science Forum, 1004 (2020) 1033-1044.
[5] T. Liu, S. Zhu, M. Jin, L. Shi, M. H. White, and A. K. Agarwal, WiPDA 2021, 5-8.
[6] G. Rescher, et al., IEEE Trans. Electron Devices, 65 (2018) 1419-1426.
[7] G. Rescher, G. Pobegen, T. Aichinger, and T. Grassner, IEDM 2016, 276-279.
[8] J. Rosen, S. Dhar, M. E. Zvanut, J. R. Williams, and L. C. Feldman, J. Appl. Phys. 105, (2009) 124506.
[9] P. Moens, J. Franchi, J. Lettens, L. De Schepper, D. Domeij, and F. Allerstam, ISPSD 2020, 78-81.
[10] K. Okada, K. Kurimoto, and M. Suzuki, IEEE Trans. Electron Devices, 63 (2016) 2268-2274.
[11] E. Murakami and M. Okamoto, IEEE Trans. Electron Devices, 68 (2021) 1207-1213.
[12] C. Lin, J. Cable, and J. Woo, IEEE Trans. Electron Devices, 42 (1995) 1329-1332.
[13] D. Dimaria and J. Stasiak, J. Appl. Phys. 65 (1989) 2342-2356.
[14] T. Kobayashi and T. Kimoto, Appl. Phys. Lett. 111 (2017) 062101.