The Highly Relativistic Binary Pulsar PSR J0737-3039A: Discovery and Implications

M. Burgay¹, N. D’Amico², A. Possenti¹, R.N. Manchester³, A.G. Lyne⁴, B.C. Joshi⁵, M.A. McLaughlin⁴, M. Kramer⁴, J.M. Sarkissian⁶, F. Camilo⁷, V. Kalogera⁸, C. Kim⁸, D.R. Lorimer⁴

¹INAF -Osservatorio Astronomico di Cagliari, Loc. Poggio dei Pini, Strada 54, 09012 Capoterra, Italy, ²Università degli Studi di Cagliari, Dipartimento di Fisica, SP Monserrato-Sestu km 0.7, 09042 Monserrato, Italy, ³Australia Telescope National Facility, CSIRO, P.O. Box 76, Epping, New South Wales 2121, Australia, ⁴University of Manchester, Jodrell Bank Observatory, Macclesfield, Cheshire, SK11 9DL, UK, ⁵National Center for Radio Astrophysics, P.O. Bag 3, Ganeshkhind, Pune 411007, India, ⁶Australia Telescope National Facility, CSIRO, Parkes Observatory, P.O. Box 276, Parkes, New South Wales 2870, Australia, ⁷Columbia Astrophysics Laboratory, Columbia University, 550 West 120th Street, New York, New York 10027, ⁸Northwestern University, Department of Physics and Astronomy, Evanston, Illinois 60208, USA

Abstract. PSR J0737–3039A is a millisecond pulsar with a spin period of 22.7 ms included in a double-neutron star system with an orbital period of 2.4 hrs. Its companion has also been detected as a radio pulsar, making this binary the first known double-pulsar system. Its discovery has important implications for relativistic gravity tests, gravitational wave detection and plasma physics. Here we will shortly describe the discovery of the first pulsar in this unique system and present the first results obtained by follow-up studies.

1. Introduction

Since the discovery of the first binary pulsar (Hulse & Taylor 1975), the detection of two active pulsars in the same binary system has been a primary aim of any pulsar survey. We here summarize the basic steps which eventually led to the discovery of this long-sought system and report on the first implications for gravitational waves detection. Papers by Kramer et al. and Manchester et al. (in these proceedings) will give more details on the second discovered pulsar, dealing with the opportunity to use this binary as a magnificent laboratory of relativistic gravity and for investigating magnetospheric processes.
Figure 1. Original detection plot for PSR J0737−3039A. The pulsar was detected in the 11th beam (beam B) of the Multibeam receiver of the Parkes 64 meter radiotelescope with a signal-to-noise ratio of 18.7. The offset between the sky coordinates of the centre of the beam and the (subsequently determined) position of PSR J0737−3039A is 6′3.

2. The discovery

PSR J0737−3039A, a millisecond pulsar with a spin period of 22.7 ms, was discovered in April 2003 (Burgay et al. 2003) in a 4-minute pointing of the Parkes High-Latitude Pulsar Survey (Burgay et al. in preparation). The original detection plot is shown in Figure 1, reporting a signal-to-noise ratio of 18.7. A higher signal-to-noise ratio of 26.3 resulted from the same observation for the first harmonics of the pulse period (≈ 11.3 ms), due to the similar energy contribution and roughly half-phase separation of the two peaks of the profile displayed in Figure 1; the pulse period ambiguity was easily solved as soon as further longer observations became available (a high resolution pulse profile for PSR J0737−3039A is presented in Manchester et al. 2004, these proceedings).

From the very pronounced curvature in the spin phase vs sub-integrations box (central panel on the left of the Figure 1), denoting a time depending change in the phase of arrival of the pulses, it was immediately clear that the pulsar signal was affected by a significant Doppler effect. That in turn suggested that
the pulsar was experiencing the gravitational pull of a nearby and relatively massive companion.

Using a code suitable for searching strongly accelerated pulsars, we found the best correction to the Doppler phase shift for an acceleration of 99 m/s² suggesting a binary period of just a few hours for a companion of $\sim 1 \, M_\odot$. Follow-up observations performed in May 2004, consisting of three ~ 5-hour integrations, confirmed that the orbit is indeed very tight and far from being circular: the binary period P_b is only 2.4 hr and the eccentricity $e \sim 0.09$. This makes J0737–3039A’s orbit the tightest among those of all known binary pulsars in eccentric systems. Figure 2 shows the radial velocity curve obtained plotting the barycentric spin period of the pulsar, measured at different times, versus the binary phase: the fact that the orbit is eccentric is easily seen from the asymmetric shape of the curve.

Figure 2. The original radial velocity plot for PSR J0737–3039A, obtained from follow-up observations taken at Parkes early in May 2003.

From the approximate orbital parameters available after two days of follow-up observations ($P_b \sim 2.4$ hr, $a \sin i \sim 1.4$ lt-s; for the current best estimates of these parameters see Table 1 in Kramer et al., these proceedings), the pulsar mass function was calculated and resulted $M_f = 0.29 \, M_\odot$, implying a minimum companion mass of about 1.24 M_\odot, assuming $M_{NS} = 1.35 \, M_\odot$. According to this mass, the companion star could be a non degenerate object, a massive
Carbon-Oxygen white dwarf (CO-WD) or a second neutron star. The first hypothesis was immediately ruled out since the radius of a non degenerate object of the required mass would almost completely fill the orbit of the system, probably strongly affecting the radio emission, which is not seen in the signal of PSR J0737−3039A. On the other hand, also the CO-WD scenario appeared unlikely considering the eccentricity of the orbit: a binary containing a recycled neutron star and a white dwarf is indeed expected to be highly circular since it had the time to reach the minimum energy configuration (i.e. to circularise). If a second, recent supernova explosion has occurred forming another neutron star, the energy and momentum released can have distorted the system and this would explain the observed eccentricity.

A further strong constraint on the nature of PSR J0737−3039A companion came few days later from the first fit of a binary model to the times of arrival of the pulsations. By using a data span of only 6 days, a 10-σ determination of the advance of the periastron, \(\dot{\omega} \), was possible. This parameter resulted to have a remarkably high value: \(\dot{\omega} \sim 17^\circ/\text{yr} \) (note that the the previously highest observed value was \(5.33^\circ/\text{yr} \), for PSR J1141−6545, Kaspi et al. 2000). If interpreted in the framework of general relativity, the measured value of \(\dot{\omega} \) implied a total mass for the system containing PSR J0737−3039A of about 2.58 M\(_\odot\), giving a maximum mass for the pulsar of about 1.34 M\(_\odot\) and a minimum mass for the companion \(\sim 1.24 \) M\(_\odot\). While the maximum mass for the pulsar perfectly agrees with the other measurements of neutron star masses (Thorsett & Chakrabarty 1999), the mass of the companion is a little lower than average. In absence of additional information the white dwarf hypothesis could not be completely rejected. It is important to point out, anyway, that the \(\dot{\omega} \) value that one measures, in general, is given by the term of equation 1 plus two classical extra terms, arising (i) from tidal deformations of the companion star (relevant only if the companion is non degenerate) and (ii) from rotationally induced quadrupole moment of the companion star, applicable to the case of a fast rotating white dwarf. For a neutron star both the additional contributions are negligible. If the companion to J0737−3039A was a white dwarf the relativistic \(\dot{\omega} \), and by consequence the total system mass, would be smaller than the measured one (since \(\dot{\omega}_{\text{GR}} = \dot{\omega}_{\text{obs}} - \dot{\omega}_{\text{classical}} \)) implying an implausibly small (\(\leq 1 \) M\(_\odot\)) maximum allowed mass for J0737−3039A (that, being a pulsar, is certainly a neutron star). All these pieces of evidence strongly suggested that the discovered binary was the sixth, and by far the most relativistic, Double Neutron Star (DNS) system known. The ultimate confirmation of the above picture came few months later when, analysing the follow-up observations of PSR J0737−3039A, a strong signal with a repetition period of \(\sim 2.8 \) seconds occasionally appeared (Lyne et al. 2004). The newly discovered pulsar, henceforth called PSR J0737−3039B (or simply ‘B’), had the same dispersion measure as PSR J0737−3039A (or ‘A’), and showed orbital Doppler variations that identified it, without any doubt, as the companion to the millisecond pulsar. The first ever Double Pulsar system had been eventually discovered.
3. Determination of Post-Keplerian parameters

In the binary system containing PSR J0737−3039A and B, the relativistic effects are highly enhanced, thanks to its short orbital period and to its high orbital inclination. That makes it an excellent laboratory for studying relativistic gravity. Using only the follow up observations of pulsar A, we have been able, in less than a year of regular timing, to measure four Post-Keplerian parameters, whose values are listed in Table 1 of Kramer et al. (these proceedings): besides the already mentioned parameter \(\dot{\omega} \), we have measured \(\gamma \) (namely the term taking into account gravitational redshift and time dilation) and the parameters \(r \) and \(s \equiv \sin i \). The latter represent respectively the range and the shape of the Shapiro delay, measuring the time delays of the signal caused by the space-time deformations around the companion star. Having measured four PK-parameters, we succeeded in performing two independent tests of general relativity (see Kramer et al. for details) after less than 8 months of observations using PSR J0737−3039A only. The fifth PK parameter, the orbital decay, should be determined within 2004. The detectability of PSR J0737−3039B makes this system even more promising, providing further unprecedented tests of gravity theories, as explained in the contribution of Kramer et al. in this book.

4. Gravitational Wave Detection

The discovery of a binary system with the characteristics of J0737−3039 implies a significant increase of the estimates of the double neutron stars (DNSs) Galactic coalescence rate \(R \) (Burgay et al. 2003, Kalogera et al. 2004) and, in turn, of the gravitational waves detection rate for ground based observatories such as LIGO, GEO and VIRGO.

PSR J0737−3039A and B will coalesce due to the emission of gravitational waves in a merger time \(\tau_m \approx 85 \) Myr, a timescale that is a factor 3.5 shorter than that for PSR B1913+16 (Taylor, Fowler & McCulloch 1979). In addition, the estimated distance for J0737−3039 system (\(\sim 600 \) pc with an intrinsic uncertainty of about 50% from the dispersion measure, \(\sim 1 \) kpc from X-ray absorption) is an order of magnitude less than that of PSR B1913+16. These properties have a substantial effect on the prediction of the rate of merging events in the Galaxy.

For a given class \(k \) of binary pulsars in the Galaxy, in fact, apart from a beaming correction factor, the merger rate \(R_k \) is calculated (Kim, Kalogera & Lorimer 2003) as \(R_k \propto N_k/\tau_k \).

Here \(\tau_k \) is the binary pulsar lifetime defined as the sum of the time since birth, \(\tau_b \), and the remaining time before coalescence, \(\tau_m \), whereas \(N_k \) is the scaling factor defined as the number of binaries in the Galaxy belonging to the given class. The value of \(\tau_b \) for PSR J0737-3039A can be computed as the time since the pulsar left the spin-up line (as calculated by Arzoumanian, Cordes & Wasserman, 1999) and it results \(\sim 150 \) Myr. Alternatively one can assume that the characteristic age of pulsar B is a reliable estimate of the true age of both pulsars. In this case \(\tau_b \sim 50 \) Myr. In either cases the lifetime of PSR J0737−3039 is much shorter than that of PSR B1913+16 (\(\tau_{1913}/\tau_{0737} = (365 \text{ Myr})/(235 - 135 \text{ Myr}) \approx 1.6 - 2.7 \)), where the subscript numbers refer to the pulsars), implying roughly a doubling of the ratio \(R_{0737}/R_{1913} \).
A much more substantial contribution to the increase factor comes from the comparison of the pulsars' luminosities. Assuming conservatively a distance of 1 kpc (as suggested by the X-ray observations; McLaughlin et al. 2004), the pulsed luminosity at 400 MHz of J0737-3039 binary system results $L_{0737} \sim 30$ mJy kpc2, much lower than that of PSR B1913+16 (~ 200 mJy kpc2). For a planar homogeneous distribution of pulsars in the Galaxy, the ratio N_{0737}/N_{1913} scales as $L_{1913}/L_{0737} \approx 6$. Therefore we obtain $\mathcal{R}_{0737}/\mathcal{R}_{1913} \approx 12$. Including the moderate contribution of the longer-lived PSR B1534+12 system to the total rate (van den Heuvel & Lorimer 1996, Arzoumanian, Cordes & Wasserman 1999, Kalogera et al. 2001, Kim, Kalogera & Lorimer 2003), we obtain an increase factor for the total merger rate $(\mathcal{R}_{0737} + \mathcal{R}_{1913} + \mathcal{R}_{1534})/(\mathcal{R}_{1913} + \mathcal{R}_{1534})$ of about an order of magnitude. Similar results have been obtained by Kim et al. (these proceedings) with a different approach.

This means that ground based gravitational wave detectors such as LIGO, VIRGO or GEO should be able to detect a burst of gravitational waves produced in a DNS merger event once every few years instead than once in few decades, with important consequences for the gravitational wave community.

References

Arzoumanian, Z., Cordes, J. M. and Wasserman, I. 1999, ApJ, 520, 696
Burgay, M., D’Amico, N., Possenti, A., Manchester, R. N., Lyne, A. G., Joshi, B. C., McLaughlin, M. A., Kramer, M., Sarkissian, J. M., Camilo, F., Kalogera, V., Kim, C. and Lorimer, D. R. 2003, Nature, 426, 531
Hulse, R. A. & Taylor, J. H. 1975, ApJ, 195, L51
Kaspi, V. M., Lyne, A. G., Manchester, R. N., Crawford, F., Camilo, F., Bell, J. F., D’Amico, N., Stairs, I. H., McKay, N. P. F., Morris, D. J., Possenti, A. 2000, ApJ, 543, 321
Kalogera, V., Narayan, R., Spergel, D. N. and Taylor, J. H. 2001, ApJ, 556, 340
Kalogera, V., Kim, C., Lorimer, D. R., Burgay, M., D’Amico, N., Possenti, A., Manchester, R. N., Lyne, A. G., Joshi, B. C., McLaughlin, M. A., Kramer, M., Sarkissian, J. M. and Camilo, F. 2004, ApJ, 601, L179
Kim, C., Kalogera, V. and Lorimer, D. R. 2003, ApJ, 584, 985
Kramer, M. et al. 2004, in Binary Pulsar, ASP Conf. Ser., eds. F. Rasio & I. H. Stairs, (San Francisco: ASP)
Lyne, A. G., Burgay, M., Kramer, M., Possenti, A., Manchester, R. N., Camilo, F., McLaughlin, M. A., Lorimer, D. R., D’Amico, N., Reynolds, J., Freire, P. C. C. 2004, Science, 303, 1153
Manchester, R.N., et al. 2004, in Binary Pulsar, ASP Conf. Ser., eds. F. Rasio & I. H. Stairs, (San Francisco: ASP)
McLaughlin, M. A., Camilo, F., Burgay, M., D’Amico, N., Joshi, B. C., Kramer, M., Lorimer, D. R., Lyne, A. G., Manchester, R. N. and Possenti, A. 2004, ApJ, accepted
Taylor, J. H., Fowler, L. A. and McCulloch, P. M. 1979, Nature 277, 437
Thorsett, S. E. & Chakrabarty, D. 1999, ApJ, 512, 288
van den Heuvel, E. P. J. & Lorimer. D. R. 1996, MNRAS, 283, L37