THE DECAY WIDTH OF THE $Z_c(3900)$ AS AN AXIALVECTOR TETRAQUARK STATE IN SOLID QUARK-HADRON DUALITY

Zhi-Gang Wang, Jun-Xia Zhang
Department of Physics, North China Electric Power University, Baoding 071003, P. R. China

Abstract

In this article, we tentatively assign the $Z_c^+(3900)$ to be the diquark-antidiquark type axialvector tetraquark state, study the hadronic coupling constants $G_{Z_c,J/\psi\pi}$, $G_{Z_c,\eta\rho}$, $G_{Z_c,D\bar{D}}$, with the QCD sum rules in details. We take into account both the connected and disconnected Feynman diagrams in carrying out the operator product expansion, as the connected Feynman diagrams alone cannot do the work. Special attentions are paid to matching the hadron side of the correlation functions with the QCD side of the correlation functions to obtain solid duality, the routine can be applied to study other hadronic couplings directly. We study the two-body strong decays $Z_c^+(3900) \rightarrow J/\psi\pi^+$, $\eta\rho^+$, D^+D^0, D^0D^{*+} and obtain the total width of the $Z_c^+(3900)$. The numerical results support assigning the $Z_c^+(3900)$ to be the diquark-antidiquark type axialvector tetraquark state, and assigning the $Z_c^+(3885)$ to be the meson-meson type axialvector molecular state.

PACS number: 12.39.Mk, 12.38.Lg
Key words: Tetraquark state, QCD sum rules

1 Introduction

In 2013, the BESIII collaboration studied the process $e^+e^- \rightarrow \pi^+\pi^- J/\psi$ at a center-of-mass energy of 4.260 GeV using a 525 pb$^{-1}$ data sample collected with the BESIII detector, and observed a structure $Z_c(3900)$ in the $\pi^\pm J/\psi$ mass spectrum [1]. Then the structure $Z_c(3900)$ was confirmed by the Belle and CLEO collaborations [2, 3]. Also in 2013, the BESIII collaboration studied the process $e^+e^- \rightarrow \pi\bar{D}D^*$, and observed a distinct charged structure $Z_c(3885)$ in the $(\bar{D}D^*)^\pm$ mass spectrum [4]. The angular distribution of the $\pi Z_c(3885)$ system favors a $J^P = 1^+$ assignment [4]. Furthermore, the BESIII collaboration measured the ratio R_{\exp} [4],

$$R_{\exp} = \frac{\Gamma(Z_c(3885) \rightarrow \bar{D}D^*)}{\Gamma(Z_c(3900) \rightarrow J/\psi\pi)} = 6.2 \pm 1.1 \pm 2.7.$$ \hfill (1)

In 2015, the BESIII collaboration observed the neutral partner $Z_c^0(3900)$ with a significance of 10.4σ in the process $e^+e^- \rightarrow \pi^0\pi^0 J/\psi$ [5]. Recently, the BESIII collaboration determined the spin and parity of the $Z_c^+(3900)$ state to be $J^P = 1^+$ with a statistical significance larger than 7σ over other quantum numbers in a partial wave analysis of the process $e^+e^- \rightarrow \pi^+\pi^- J/\psi$ [6].

Now we list out the mass and width from different measurements.

$$Z_c^+(3900) : M = 3899.0 \pm 3.6 \pm 4.9 \text{ MeV}, \Gamma = 46 \pm 10 \pm 20 \text{ MeV}, \ BESIII [1],$$
$$Z_c^+(3900) : M = 3894.5 \pm 6.6 \pm 4.5 \text{ MeV}, \Gamma = 63 \pm 24 \pm 26 \text{ MeV}, \ Belle [2],$$
$$Z_c^+(3900) : M = 3886 \pm 4 \pm 2 \text{ MeV}, \Gamma = 37 \pm 4 \pm 8 \text{ MeV}, \ CLEO [3],$$
$$Z_c^+(3885) : M = 3883.9 \pm 1.5 \pm 4.2 \text{ MeV}, \Gamma = 24.8 \pm 3.3 \pm 11.0 \text{ MeV}, \ BESIII [4],$$
$$Z_c^0(3900) : M = 3894.8 \pm 2.3 \pm 3.2 \text{ MeV}, \Gamma = 29.6 \pm 8.2 \pm 8.2 \text{ MeV}, \ BESIII [5].$$ \hfill (2)

The values of the mass are consistent with each other from different measurements, while the values of the width differ from each other greatly. The $Z_c(3900)$ and $Z_c(3885)$ may be the same particle according to the mass, spin and parity.
R. Faccini et al tentatively assign the \(Z_c(3900) \) to be the negative charge conjunction partner of the \(X(3872) \) \(^7 \). There have been several possible assignments, such as tetraquark state \(^8 \), molecular state \(^9 \), \(^10 \), hadro-charmonium \(^11 \), rescattering effect \(^12 \).

In Ref.\(^9 \), we study the masses and pole residues of the \(J^{PC} = 1^{++} \) hidden charm tetraquark states with the QCD sum rules by calculating the contributions of the vacuum condensates up to dimension-10 in a consistent way in the operator product expansion, and explore the energy scale dependence in details for the first time. The predicted masses \(M_X = 3.87^{+0.09}_{-0.09} \) GeV and \(M_Z = 3.91^{+0.11}_{-0.10} \) GeV support assigning the \(X(3872) \) and \(Z_c(3900) \) to be the \(1^{++} \) and \(1^{+-} \) diquark-antidiquark type tetraquark states, respectively.

In Ref.\(^12 \), we study the axialvector charm hidden charm and hidden bottom molecular states with the QCD sum rules by calculating the vacuum condensates up to dimension-10 in the operator product expansion, and explore the energy scale dependence of the QCD sum rules for the heavy molecular states in details. The numerical results support assigning the \(X(3872), Z_c(3900), Z_b(10610) \) to be the color singlet-singlet type molecular states with \(J^{PC} = 1^{++}, 1^{+-}, 1^{--} \), respectively.

We reproduce the experimental value of the mass of the \(Z_c(3900) \) based on the QCD sum rules both in the scenario of tetraquark states and in the scenario of molecule states \(^9 \), \(^12 \). Additional theoretical works on the width are still needed to identify the \(Z_c(3900) \).

In Ref.\(^10 \), Dias et al identify the \(Z_c^\pm (3900) \) as the charged partner of the \(X(3872) \) state, and study the two-body strong decays \(Z_c^+(3900) \to J/\psi\pi^+, \eta_\rho^+, D^+\bar{D}^{0\ast}, D^0\bar{D}^{+-} \) with the QCD sum rules by evaluating the three-point correlation functions and take into account only the connected Feynman Diagrams, and they obtain the width \(\Gamma_{Z_c} = 63.0 \pm 18.1 \) MeV.

In Ref.\(^15 \), Agaev et al study the two-body strong decays \(Z_c^-(3900) \to J/\psi\pi^+, \eta_\rho^+ \) with the light-cone QCD sum rules by taking into account both the connected and disconnected Feynman Diagrams, and obtain the width \(\Gamma_{Z_c} = \Gamma(Z_c^+(3900) \to J/\psi\pi^+) + \Gamma(Z_c^+(3900) \to \eta_\rho^+) = 65.7 \pm 10.6 \) MeV.

It is interesting to know that the connected Feynman Diagrams alone or the connected plus disconnected Feynman Diagrams lead to the same result \(^10 \), \(^15 \). As far as the \(X(5568) \) is concerned, if we take the scenario of tetraquark states, the width can also be reproduced based on the connected Feynman Diagrams alone \(^16 \) or the connected plus disconnected Feynman Diagrams \(^17 \), \(^18 \). We should prove that the contributions of the disconnected Feynman diagrams can be neglected safely.

In this article, we assign the \(Z_c(3900) \) to be the diquark-antidiquark type tetraquark state with \(J^{PC} = 1^{+-} \), study the hadronic coupling constants \(G_{Z_c J/\psi\pi}, G_{Z_c \eta_\rho}, G_{Z_c D\bar{D}} \) with the three-point QCD sum rules by including both the connected and disconnected Feynman diagrams, special attentions are paid to the hadronic spectral densities of the three-point correlation functions, then calculate the partial decay widths of the strong decays \(Z_c^+(3900) \to J/\psi\pi^+, \eta_\rho^+, D^+\bar{D}^{0\ast}, D^0\bar{D}^{+-} \), and diagnose the nature of the \(Z_c^\pm (3900) \) based on the width and the ratio \(R_{\text{exp}} = 6.2 \pm 1.1 \pm 2.7 \), if the \(Z_c(3900) \) and \(Z_c(3885) \) are the same particle with the diquark-antidiquark type structure.

The article is arranged as follows: we derive the QCD sum rules for the hadronic coupling constants \(G_{Z_c J/\psi\pi}, G_{Z_c \eta_\rho}, G_{Z_c D\bar{D}} \) in section 2; in Sect.3, we present the numerical results and discussions; and Sect.4 is reserved for our conclusion.
2 The width of the $Z_c(3900)$ as an axialvector tetraquark state

We study the two-body strong decays $Z^+_c(3900) \rightarrow J/\psi \pi^+, \eta_c \rho^+, D^+ \bar{D}^0, \bar{D}^0 D^+$ with the following three-point correlation functions $\Pi_{\mu \nu}^1(p, q), \Pi_{\mu \nu}^2(p, q)$ and $\Pi_{\mu \nu}^3(p, q)$, respectively,

\[\Pi_{\mu \nu}^1(p, q) = i^2 \int d^4 x d^4 y e^{i p x} e^{i q y} \langle 0 | T \left\{ J^{J/\psi}_\mu(x) J^\pi_5(y) J_\nu(0) \right\} | 0 \rangle, \]
\[\Pi_{\mu \nu}^2(p, q) = i^2 \int d^4 x d^4 y e^{i p x} e^{i q y} \langle 0 | T \left\{ J^{J/\psi}_5(x) J^\rho_\mu(y) J_\nu(0) \right\} | 0 \rangle, \]
\[\Pi_{\mu \nu}^3(p, q) = i^2 \int d^4 x d^4 y e^{i p x} e^{i q y} \langle 0 | T \left\{ J^{D^*}_\mu(x) J^\pi_5(y) J_\nu(0) \right\} | 0 \rangle, \]

where the currents

\[J^{J/\psi}_\mu(x) = \bar{c}(x) \gamma_\mu c(x), \]
\[J^\pi_5(y) = \bar{u}(y) \gamma_5 d(y), \]
\[J^\rho_\mu(y) = \bar{u}(y) \gamma_\mu d(y), \]
\[J^{D^*}_\mu(x) = \bar{c}(x) \gamma_\mu c(x), \]
\[J^\rho_\nu(y) = \bar{c}(y) \gamma_\nu d(y), \]
\[J^\rho_\nu(0) = \frac{\epsilon_{ijk} \epsilon_{mn}}{\sqrt{2}} \left\{ c^m(0) C \gamma_\nu u^m(0) c^k(0) \gamma_5 C \pi^j(0) - c^n(0) C \gamma_\nu u^m(0) c^k(0) \gamma_\nu C \pi^j(0) \right\}, \]

interpolate the mesons J/ψ, π, η_c, ρ, D^*, D and $Z_c(3900)$, respectively.

We insert a complete set of intermediate hadronic states with the same quantum numbers as the current operators into the three-point correlation functions $\Pi_{\mu \nu}^1(p, q), \Pi_{\mu \nu}^2(p, q)$ and $\Pi_{\mu \nu}^3(p, q)$ [19] [20], and isolate the ground state contributions to obtain the following results,

\[\Pi_{\mu \nu}^1(p, q) = \frac{f_\pi M^2 f_{J/\psi} M_{J/\psi} \lambda_{Z_c} G_{Z_c J/\psi\pi}}{m_u + m_d} \left(-i \frac{g_{\mu \nu}}{g_{\rho \rho}} + \frac{p^\mu p^\nu}{p^2} \right) + \cdots \]
\[= \left\{ \frac{f_\pi M^2 f_{J/\psi} M_{J/\psi} \lambda_{Z_c} G_{Z_c J/\psi\pi}}{m_u + m_d} \left(-i \frac{g_{\mu \nu}}{g_{\rho \rho}} + \frac{p^\mu p^\nu}{p^2} \right) \right. \]
\[+ \frac{-i}{(M_{Z_c}^2 - p^2)(M_{J/\psi}^2 - p^2)} \int_{s_{Z_c}}^\infty dt \rho_{Z_c \pi}(p^2, t) \frac{t - q^2}{t^2 - q^2} \]
\[+ \frac{-i}{(M_{Z_c}^2 - p^2)(M_{J/\psi}^2 - q^2)} \int_{s_{J/\psi}}^\infty dt \rho_{Z_c \pi}(t, p^2, q^2) \frac{t^2 - q^2}{t^2} \]
\[+ \frac{-i}{(M_{J/\psi}^2 - p^2)(M_{J/\psi}^2 - q^2)} \int_{s_{J/\psi}}^\infty dt \rho_{Z_c \pi}(t, p^2, q^2) \frac{t^2 - q^2}{t^2} \]
\[= \Pi_1(p^2, p^2, q^2) g_{\mu \nu} + \cdots, \]

(10)
\[\Pi_{\mu\nu}(p, q) = \frac{f_{\eta_c} M_{\eta_c} f_{\rho} M_{\rho} \lambda_{\eta_c} G_{Z_c \eta_c \rho}}{2 m_c} \left(\frac{M_{\eta_c}^2 - p^2)(M_{\eta_c}^2 - p^2)(M_{\eta_c}^2 - q^2)}{-(g_{\mu\alpha} + g_{\nu\beta}) q^2}\right)\]

\[= \left\{ \frac{f_{\eta_c} M_{\eta_c} f_{\rho} M_{\rho} \lambda_{\eta_c} G_{Z_c \eta_c \rho}}{2 m_c} \left(\frac{M_{\eta_c}^2 - p^2)(M_{\eta_c}^2 - p^2)(M_{\eta_c}^2 - q^2)}{-(g_{\mu\alpha} + g_{\nu\beta}) q^2}\right) \right\} \left(\mu_{\eta_c} + \cdots\right) + \cdots (11)\]

\[\Pi_{\mu\nu}(p, q) = \frac{f_{D} M_{D} f_{D} - M_{D} \lambda_{Z_c} G_{Z_c DD}}{m_c} \left(\frac{M_{Z_c}^2 - p^2)(M_{D}^2 - p^2)(M_{D}^2 - q^2)}{-(g_{\mu\alpha} + g_{\nu\beta}) q^2}\right)\]

\[= \left\{ \frac{f_{D} M_{D} f_{D} - M_{D} \lambda_{Z_c} G_{Z_c DD}}{m_c} \left(\frac{M_{Z_c}^2 - p^2)(M_{D}^2 - p^2)(M_{D}^2 - q^2)}{-(g_{\mu\alpha} + g_{\nu\beta}) q^2}\right) \right\} \left(\mu_{\eta_c} + \cdots\right) + \cdots (12)\]

where \(p' = p + q\), the \(f_{J/\psi}, f_{\pi}, f_{\eta_c}, f_{\rho}, f_{D\ast}, f_{D}\) and \(\lambda_{Z_c}\) are the decay constants of the mesons \(J/\psi,\pi,\eta_c,\rho, D^*, D\) and \(Z_c(3900)\), respectively, the \(G_{Z_c J/\psi\pi}, G_{Z_c \eta_c \rho}\) and \(G_{Z_c DD}\) are the hadronic
coupling constants, which are defined by

\[
\langle 0 | J_{\mu}^{J/\psi}(0) | J/\psi(p) \rangle = f_{J/\psi} M_{J/\psi} \xi_{\mu},
\]

\[
\langle 0 | J_{\mu}^{\rho, 0}(0) | \rho(q) \rangle = \frac{f_{\rho} M_{\rho}^2}{m_u + m_d},
\]

\[
\langle 0 | J_{\mu}^{c}(0) | \eta_c(p) \rangle = \frac{f_{c} M_{c}^2}{2m_c},
\]

\[
\langle 0 | J_{\mu}^{D^*}(0) | D^*(p) \rangle = f_{D^*} M_{D^*} s_{\mu},
\]

\[
\langle 0 | J_{\mu}^{D^*}(0) | D_q(p) \rangle = \frac{f_{D^*} M_{D^*}^2}{m_c},
\]

\[
\langle 0 | J_{\mu}^{D^*}(0) | D_{q}(p) \rangle = \lambda_{Z_c} z_{\mu},
\]

\[
\langle J/\psi(p) | \pi(q) | Z_c(p') \rangle = \xi^*(p) \cdot \xi(p') G_{Z_c, J/\psi \pi},
\]

\[
\langle \eta_c(p) | \rho(q) | Z_c(p') \rangle = \epsilon^*(q) \cdot \xi(p') G_{Z_c, \eta_c \rho},
\]

\[
\langle D^*(p) | D_q(p) | Z_c(p') \rangle = \epsilon^*(p) \cdot \xi(p') G_{Z_c, D^* D^*},
\]

the \(\xi, \epsilon, \zeta\) and \(\eta\) are polarization vectors of the \(J/\psi, \rho, D^*\) and \(Z_c(3900)\), respectively. The \(s_{\pi}, s_{\rho, \rho}, s_{c, c}, s_{\eta_c, \eta_c}, s_{D^*, D^*}\) and \(s_{D^*, D^*}\) are the continuum threshold parameters. The 12 unknown functions \(\rho_{Z_c, \pi}(p^2, q^2, t), \rho_{Z_c, \rho}(p^2, q^2, t), \rho_{Z_c, \eta_c}(p^2, q^2, t)\) have complex dependence on the transitions between the ground states and the high resonances or the continuum states.

In this article, we choose the tensor \(g_{\mu \nu}\) to study the hadronic coupling constants \(G_{Z_c, J/\psi \pi}, G_{Z_c, \eta_c \rho}\) and \(G_{Z_c, D^* D^*}\) to avoid the contaminations from the corresponding scalar and pseudoscalar mesons, as the following current-meson couplings are non-vanishing,

\[
\langle 0 | J_{\mu}^{J/\psi}(0) | \chi_0(p) \rangle = f_{\chi_0} p_{\mu},
\]

\[
\langle 0 | J_{\mu}^{\rho}(0) | a_0(q) \rangle = f_{a_0} q_{\mu},
\]

\[
\langle 0 | J_{\mu}^{D^*}(0) | D_0(p) \rangle = f_{D_0^*} p_{\mu},
\]

\[
\langle 0 | J_{\mu}^{D^*}(0) | D_0(p) \rangle = -i \lambda_{Z_c} p_{\mu},
\]

where the \(f_{\chi_0}, f_{a_0}, f_{D_0^*}, \lambda_{Z_c}\) are the decay constants of the \(\chi_0(3414), a_0(980), D_0^*(2400)\) and \(Z_c(J^P = 0^-)\), respectively. The terms proportional to \(p_{\mu} p_{\nu}'\) in the \(\Pi_{\mu \nu}(p, q)\) and \(\Pi_{\mu \nu}^3(p, q)\) have contaminations from the hadronic coupling constants \(G_{Z_c, \chi_0 \pi}, G_{Z_c, D_0^* D^*}\) and \(G_{Z_c, a_0, a_0}\), respectively.

We introduce the notations \(C_{Z_c, \pi}, C_{Z_c, \rho}, C_{Z_c, \eta_c}, C_{Z_c, \eta_c}, C_{Z_c, \rho}, C_{Z_c, \eta_c}, C_{Z_c, \eta_c}, C_{Z_c, \eta_c}, C_{Z_c, \eta_c}, C_{Z_c, \eta_c}\) and \(C_{Z_c, \eta_c}\) to parameterize the net effects,

\[
C_{Z_c, \pi} = \int_{s_{\pi}}^{\infty} dt \frac{\rho_{Z_c, \pi}(p^2, q^2, t)}{t - q^2},
\]

\[
C_{Z_c, \rho} = \int_{s_{\rho, \rho}}^{\infty} dt \frac{\rho_{Z_c, \rho}(p^2, t, q^2)}{t - p^2},
\]

\[
C_{Z_c, \eta_c} = \int_{s_{\eta_c}}^{\infty} dt \frac{\rho_{Z_c, \eta_c}(p^2, t, q^2)}{t - p^2},
\]

\[
C_{Z_c, \eta_c} = \int_{s_{\eta_c}}^{\infty} dt \frac{\rho_{Z_c, \eta_c}(p^2, t, q^2)}{t - p^2}.
\]
In numerical calculations, we smear the dependencies of the η_{c}, Z_{c}, C_{Z_c}, Z_{c}^{\prime}, $C_{Z_c}^{\prime}$, $C_{Z_c}^{\prime'}$, $C_{Z_c}'\eta_{c}$, $C_{Z_c}D^{*}$, and $C_{Z_c}D'$ on the momentums p^2, p^2, q^2, and take them

\begin{align}
C_{Z_c,\rho'} &= \int_{s_{\rho'}}^{s_{\rho'}} dt \frac{\partial Z_c,\rho'(p^2, p^2, t)}{t - q^2}, \\
C_{Z_c,\eta'} &= \int_{s_{\eta'}}^{s_{\eta'}} dt \frac{\partial Z_c,\eta'(p^2, t, q^2)}{t - p^2}, \\
C_{Z_c,D} &= \int_{s_{D}}^{s_{D}} dt \frac{\partial Z_c,D(p^2, q^2)}{t - p^2}, \\
C_{Z_c,D'} &= \int_{s_{D}'}^{s_{D}'} dt \frac{\partial Z_c,D'(p^2, p^2)}{t - q^2}, \\
C_{Z_c,D''} &= \int_{s_{D}''}^{s_{D}''} dt \frac{\partial Z_c,D''(t, p^2, q^2)}{t - p^2}, \\
C_{Z_c,D'''} &= \int_{s_{D}'''}^{s_{D}'''} dt \frac{\partial Z_c,D'''(t, p^2, q^2)}{t - p^2}.
\end{align}

Then the correlation functions on the phenomenological side can be written as

\begin{align}
II_1(p^2, p^2, q^2) &= \frac{f_{\pi}M_{\pi}^2 f_{J/\psi}M_{J/\psi}^2 \lambda_{Z_c} G_{Z_c,j/\psi}}{m_u + m_d} \frac{-i}{(M_{Z_c}^2 - p^2)(M_{\pi}^2 - q^2)} \\
&\quad + \frac{-iC_{Z_c,\pi'}}{(M_{Z_c}^2 - p^2)(M_{\pi}^2 - q^2)} + \frac{-iC_{Z_c,\psi'}}{(M_{Z_c}^2 - p^2)(M_{\pi}^2 - q^2)} \\
&\quad + \frac{-iC_{Z_c,\psi'}}{(M_{J/\psi}^2 - q^2)(M_{\pi}^2 - q^2)} + \cdots,
\end{align}

\begin{align}
II_2(p^2, p^2, q^2) &= \frac{f_{\pi}M_{\pi}^2 f_{J/\psi}M_{J/\psi}^2 \lambda_{Z_c} G_{Z_c,\eta_{c}'\rho}}{2m_c} \frac{-i}{(M_{Z_c}^2 - p^2)(M_{\eta_c}^2 - q^2)} \\
&\quad + \frac{-iC_{Z_c,\rho'}}{(M_{Z_c}^2 - p^2)(M_{\eta_c}^2 - q^2)} + \frac{-iC_{Z_c,\eta_{c}'}}{(M_{Z_c}^2 - p^2)(M_{\rho}^2 - q^2)} \\
&\quad + \frac{-iC_{Z_c,\eta_{c}'}}{(M_{\eta_c}^2 - q^2)(M_{\rho}^2 - q^2)} + \cdots,
\end{align}

\begin{align}
II_3(p^2, p^2, q^2) &= \frac{f_D M_D^2 f_{D'} M_{D'} \lambda_{Z_c} G_{Z_c,DD'}}{m_c} \frac{-i}{(M_{Z_c}^2 - p^2)(M_{D}^2 - q^2)} \\
&\quad + \frac{-iC_{Z_c,D'}}{(M_{Z_c}^2 - p^2)(M_{D}^2 - q^2)} + \frac{-iC_{Z_c,D''}}{(M_{Z_c}^2 - p^2)(M_{D}^2 - q^2)} \\
&\quad + \frac{-iC_{Z_c,D''}}{(M_{D}^2 - p^2)(M_{D}^2 - q^2)} + \cdots.
\end{align}
as free parameters, and choose the suitable values to eliminate the contaminations from the high resonances and continuum states to obtain the stable QCD sum rules with the variations of the Borel parameters.

We carry out the operator product expansion up to the vacuum condensates of dimension 5 and neglect the tiny contributions of the gluon condensate. On the QCD side, the correlation functions \(\Pi_1(p^2, p^2, q^2) \) and \(\Pi_2(p^2, p^2, q^2) \) can be written as

\[
\Pi_1(p^2, p^2, q^2) = \frac{i}{32\sqrt{2}\pi^4} \int_{4m_c^2}^{\infty} ds \frac{1}{s-p^2} \int_0^{\infty} du \frac{1}{u-q^2} u (s+2m_c^2) \sqrt{1-4m_c^2/s} \\
+ \frac{im_c\langle \bar{q}q \rangle}{4\sqrt{2}\pi^2} \int_{4m_c^2}^{\infty} ds \frac{1}{s-p^2} \frac{p^2-s-q^2}{q^2} \sqrt{1-4m_c^2/s} \\
+ \frac{im_c\langle \bar{q}g, \sigma Gq \rangle}{16\sqrt{2}\pi^2} \int_{4m_c^2}^{\infty} ds \frac{1}{s-p^2} \frac{p^2-s-q^2}{q^4} \sqrt{1-4m_c^2/s} \\
+ \frac{im_c\langle \bar{q}g, \sigma Gq \rangle}{48\sqrt{2}\pi^2} \frac{\partial}{\partial m_A^2} \int_{(m_A+m_c)^2}^{\infty} ds \frac{1}{s-p^2} \frac{p^2-s-q^2}{q^2} \frac{\sqrt{2\lambda(s,m_A^2,m_c^2)}}{s} \bigg|_{m_A \rightarrow m_c},
\]

\[
\Pi_2(p^2, p^2, q^2) = \frac{i}{32\sqrt{2}\pi^4} \int_{4m_c^2}^{\infty} ds \frac{1}{s-p^2} \int_0^{\infty} du \frac{1}{u-q^2} us \sqrt{1-4m_c^2/s} \\
- \frac{im_c\langle \bar{q}q \rangle}{4\sqrt{2}\pi^2} \int_{4m_c^2}^{\infty} ds \frac{1}{s-p^2} \frac{p^2-s-q^2}{q^2} \sqrt{1-4m_c^2/s} \\
- \frac{im_c\langle \bar{q}g, \sigma Gq \rangle}{16\sqrt{2}\pi^2} \int_{4m_c^2}^{\infty} ds \frac{1}{s-p^2} \frac{p^2-s-q^2}{q^4} \sqrt{1-4m_c^2/s} \\
+ \frac{im_c\langle \bar{q}g, \sigma Gq \rangle}{48\sqrt{2}\pi^2} \frac{\partial}{\partial m_A^2} \int_{(m_A+m_c)^2}^{\infty} ds \frac{1}{s-p^2} \frac{p^2-s-q^2}{q^2} \frac{\sqrt{2\lambda(s,m_A^2,m_c^2)}}{s} \bigg|_{m_A \rightarrow m_c},
\]

where the last two terms originate from the Feynman diagrams where a quark pair \(\bar{q}q \) absorbs a gluon emitted from other quark line. The term

\[
+ \frac{im_c\langle \bar{q}g, \sigma Gq \rangle}{48\sqrt{2}\pi^2} \frac{\partial}{\partial m_A^2} \int_{(m_A+m_c)^2}^{\infty} ds \frac{1}{s-p^2} \frac{p^2-s-q^2}{q^2} \frac{\sqrt{2\lambda(s,m_A^2,m_c^2)}}{s} \bigg|_{m_A \rightarrow m_c},
\]

in above equations comes from the connected Feynman diagrams, if we set \(p^2 = p^2 \), then it reduces to

\[
- \frac{im_c\langle \bar{q}g, \sigma Gq \rangle}{48\sqrt{2}\pi^2} \frac{\partial}{\partial m_A^2} \int_{(m_A+m_c)^2}^{\infty} ds \frac{1}{s-p^2} \frac{\sqrt{2\lambda(s,m_A^2,m_c^2)}}{s} \bigg|_{m_A \rightarrow m_c}
\]

\[
- \frac{im_c\langle \bar{q}g, \sigma Gq \rangle}{48\sqrt{2}\pi^2} \frac{\partial}{\partial m_A^2} \int_{(m_A+m_c)^2}^{\infty} ds \frac{1}{q^2} \frac{\sqrt{2\lambda(s,m_A^2,m_c^2)}}{s} \bigg|_{m_A \rightarrow m_c}.
\]

It has no contribution after performing the double Borel transformation with respect to the variables \(P^2 = -p^2 \) and \(Q^2 = -q^2 \). It is more reasonable to performing the Borel transformation than taking the limit \(q^2 \rightarrow 0 \), as we carry out the operator product expansion at the large spacelike
region \(Q^2 = -q^2 \to \infty \). So the connected Feynman diagrams have no contributions in the correlation functions \(\Pi_{1/2}(p^2, p^2, q^2) \), which are in contrary to Refs. [10, 16], where only the connected Feynman diagrams have contributions and the limit \(Q^2 \to 0 \) is taken.

For the correlation function \(\Pi_3(p^2, p^2, q^2) \), only the connected Feynman diagrams have contributions, we can set \(p^2 = 4p^2 \) according to the relation \(M_{Z_c}^{(3900)} \approx 2M_{D^*} \), the complex expression of the correlation function \(\Pi_3(p^2, p^2, q^2) \) can be reduced to a more simple form,

\[
\Pi_3(4p^2, p^2, q^2) = \frac{im_c \langle \bar{q}g_s Gq \rangle}{96\sqrt{2\pi}^2} \int_{m_c^2}^\infty ds \frac{1}{s - p^2} \int_{m_c^2}^\infty du \frac{1}{u - q^2} \left(\frac{3}{2} \right) \left(\frac{10m_c^2}{s} + \frac{3m_c^4}{2s^2} \right) \]

\[
+ \frac{im_c \langle \bar{q}g_s Gq \rangle}{96\sqrt{2\pi}^2} \int_{m_c^2}^\infty ds \frac{1}{p^2 - m_c^2} \int_{m_c^2}^\infty du \frac{1}{u - q^2} \left(\frac{9}{2} \right) \left(\frac{8m_c^2}{u} + \frac{15m_c^4}{2u^2} \right).
\]

(28)

In the limit \(M_{Z_c}^2 \to 0, M_{D^*}^2 \to 0, M_{D^*}^2 \to 0 \) and \(m_c^2 \to 0 \), we maybe expect to choose \(Q^2 = -q^2 \) off-shell, and match the terms proportional to \(\rho_{1/2} \) in the limit \(Q^2 \to 0 \) on the hadron side with the ones on the QCD side to obtain QCD sum rules for the momentum dependent hadronic coupling constants \(G_{Z_c, J/\psi}(Q^2) \), \(G_{Z_{c}, J/\psi}(Q^2) \), \(G_{Z_{c}, D^*}(Q^2) \), then extract the values to the mass-shell \(Q^2 = -M_{Z_c}^2 - M_{D^*}^2 \) or \(-M_{D^*}^2 \) to obtain the physical values [11]. However, the approximations \(M_{D^*}^2 \to 0, M_{D^*}^2 \to 0 \) and \(m_c^2 \to 0 \) are rather crude, and we carry out the operator product expansion at the large space-like region \(Q^2 = -q^2 \to \infty \). We prefer taking the imaginary parts of the correlation functions \(\Pi_{1/2/3}(p^2, p^2, q^2) \) with respect to \(q^2 + i\epsilon \) through dispersion relation and obtain the physical hadronic spectral densities, then take the Borel transform with respect to \(Q^2 \) to obtain the QCD sum rules for the physical hadronic coupling constants.

We have to be cautious in matching the QCD side with the hadron side of the correlation functions \(\Pi_{1/2/3}(p^2, p^2, q^2) \), as there appears the variable \(p^2 = (p + q)^2 \). We rewrite the correlation functions \(\Pi_{1/2/3}^H(p^2, p^2, q^2) \) on the hadron side into the following form through dispersion relation,

\[
\Pi_1^H(p^2, p^2, q^2) = \int_{(M_{J/\psi} + M_{c})^2}^{s_c} ds' \int_{m_c^2}^{s_c} ds \int_{0}^{v^0_{1/2}} du \frac{\rho_1^H(s', s, u)}{(s' - p^2)(s - p^2)(u - q^2)} + \cdots, \tag{29}
\]

\[
\Pi_2^H(p^2, p^2, q^2) = \int_{(M_c + M_{c})^2}^{s_c} ds' \int_{m_c^2}^{s_c} ds \int_{0}^{v^0_{1/2}} du \frac{\rho_2^H(s', s, u)}{(s' - p^2)(s - p^2)(u - q^2)} + \cdots, \tag{30}
\]

\[
\Pi_3^H(p^2, p^2, q^2) = \int_{(M_{D^*} + M_{c})^2}^{s_c} ds' \int_{m_c^2}^{s_c} ds \int_{0}^{v^0_{1/2}} du \frac{\rho_3^H(s', s, u)}{(s' - p^2)(s - p^2)(u - q^2)} + \cdots \tag{31}
\]

where the \(\rho_{1/2/3}^H(s', s, u) \) are the hadronic spectral densities,

\[
\rho_{1/2/3}^H(s', s, u) = \lim_{\epsilon_1 \to 0} \lim_{\epsilon_2 \to 0} \lim_{\epsilon_3 \to 0} \frac{\text{Im}_{s'} \text{Im}_u \Pi_{1/2/3}^H(s' + i\epsilon_3, s + i\epsilon_2, u + i\epsilon_1)}{\pi^3} \tag{32}
\]

we add the superscript \(H \) to denote the hadron side. However, on the QCD side, the QCD spectral densities \(\rho_{1/2/3}^{QCD}(s', s, u) \) do not exist,

\[
\rho_{1/2/3}^{QCD}(s', s, u) = \lim_{\epsilon_1 \to 0} \lim_{\epsilon_2 \to 0} \lim_{\epsilon_3 \to 0} \frac{\text{Im}_{s'} \text{Im}_u \Pi_{1/2/3}^{QCD}(s' + i\epsilon_3, s + i\epsilon_2, u + i\epsilon_1)}{\pi^3} = 0 \tag{33}
\]

because

\[
\lim_{\epsilon_3 \to 0} \frac{\text{Im}_{s'} \Pi_{1/2/3}^{QCD}(s' + i\epsilon_3, p^2, q^2)}{\pi} = 0 \tag{34}
\]

we add the superscript \(QCD \) to denote the QCD side.
On the QCD side, the correlation functions $\Pi^{QCD}_{1/2/3}(p^2, p^2, q^2)$ can be written into the following form through dispersion relation,

$$
\Pi^{QCD}_{1/2/3}(p^2, p^2, q^2) = \int_{m_0^2}^{s_{j/\psi}} ds \int_0^{u_0} du \rho^{QCD}_1(p^2, s, u) + \cdots ,
$$

$$
\Pi^{QCD}_{2}(p^2, p^2, q^2) = \int_{m_0^2}^{s_{c/\psi}} ds \int_0^{u_0} du \rho^{QCD}_2(p^2, s, u) + \cdots ,
$$

$$
\Pi^{QCD}_{3}(p^2, p^2, q^2) = \int_{m_0^2}^{s_{D^*}} ds \int_0^{u_0} du \rho^{QCD}_3(p^2, s, u) + \cdots ,
$$

where the $\rho^{QCD}_{1/2/3}(p^2, s, u)$ are the QCD spectral densities,

$$
\rho^{QCD}_{1/2/3}(p^2, s, u) = \lim_{\epsilon_2 \to 0} \lim_{\epsilon_1 \to 0} \frac{\text{Im} \text{Im}_u \Pi^{QCD}_{1/2/3}(p^2, s + i\epsilon_2, u + i\epsilon_1)}{\pi^2} ,
$$

We math the hadron side of the correlation functions with the QCD side of the correlation functions,

$$
\int_{4m_0^2}^{s_{j/\psi}} ds \int_0^{u_0} du \rho^{QCD}_1(p^2, s, u) = \int_{(M_{j/\psi} + M_{s})^2}^{\infty} ds' \int_{4m_0^2}^{s_{j/\psi}} ds \int_0^{u_0} du \frac{\rho^H_1(s', s, u)}{(s' - p^2)(s - p^2)(u - q^2)}
$$

$$
= \frac{f_{\pi} M_2^2 f_{j/\psi} M_{J/\psi} \lambda_Z G_{Z, J/\psi}}{m_u + m_d} \frac{-i}{(M_{Z/\pi}^2 - p^2)(M_{J/\psi}^2 - p^2)(M_{Z}^2 - q^2)}
$$

$$
+ \frac{-iC_{Z^*/J/\psi} - iC_{Z^*/\pi}}{(M_{Z/\pi}^2 - p^2)(M_{Z}^2 - q^2)} ,
$$

$$
\int_{4m_0^2}^{s_{c/\psi}} ds \int_0^{u_0} du \rho^{QCD}_2(p^2, s, u) = \int_{(M_{c/\psi} + M_{s})^2}^{\infty} ds' \int_{4m_0^2}^{s_{c/\psi}} ds \int_0^{u_0} du \frac{\rho^H_2(s', s, u)}{(s' - p^2)(s - p^2)(u - q^2)}
$$

$$
= \frac{f_{\eta} M_2^2 f_{\rho} M_{\rho} \lambda_Z G_{Z, \eta/\rho}}{2m_c} \frac{-i}{(M_{Z/\rho}^2 - p^2)(M_{\rho}^2 - q^2)}
$$

$$
+ \frac{-iC_{Z^{*/\eta} - iC_{Z^{*/\rho}}}}{(M_{Z/\rho}^2 - p^2)(M_{\rho}^2 - q^2)} ,
$$

$$
\int_{m_0^2}^{s_{D^*}} ds \int_0^{u_0} du \rho^{QCD}_3(p^2, s, u) = \int_{(M_{D^*} + M_{s})^2}^{\infty} ds' \int_{m_0^2}^{s_{D^*}} ds \int_0^{u_0} du \frac{\rho^H_3(s', s, u)}{(s' - p^2)(s - p^2)(u - q^2)}
$$

$$
= \frac{f_D M_2^2 f_{D} M_{D} \lambda_Z G_{Z, D,D^*}}{m_c} \frac{-i}{(M_{Z/\rho}^2 - p^2)(M_{D}^2 - q^2)}
$$

$$
+ \frac{-iC_{Z^{*/D} - iC_{Z^{*/D}}}}{(M_{D}^2 - p^2)(M_{D}^2 - q^2)} ,
$$

where the integrals over ds' are carried out firstly to obtain the solid duality,

$$
\int_{\Delta_2^0}^{\infty} ds \int_0^{u_0} du \rho^{QCD}(p^2, s, u) = \int_{\Delta_2^0}^{\infty} ds \int_0^{u_0} du \frac{1}{(s - p^2)(u - q^2)} \left[\int_{\Delta_2^0}^{\infty} ds' \rho^H(p^2, s, u) \right] ,
$$

(42)
the Δ_2^π and Δ_2^0 denote the thresholds $4m_c^2$, m_π^2, 0, the Δ_2 denotes the thresholds $(M_{J/\psi} + M_{\pi})^2$, $(M_{n_c} + M_{\rho})^2$ and $(M_{D} + M_{D'})^2$. No approximation is needed, the continuum threshold parameter $s_{Z_c}^0$ in the s' channel is also not needed. The present routine can be applied to study other hadronic couplings directly.

Then we set $p'^2 = p^2$ and $p'^2 = 4p^2$ in the correlation functions $\Pi_{1/2}(p'^2, p^2, q^2)$ and $\Pi_3(p'^2, p^2, q^2)$, respectively, and perform the double Borel transformations with respect to the variables $P^2 = -p^2$ and $Q^2 = -q^2$, respectively to obtain the following QCD sum rules,

\[
\begin{align*}
&\frac{f_{\pi} M_{J/\psi}^2 f_{J/\psi} M_{J/\psi} \lambda_Z G_{Z_c, J/\psi \pi}}{m_u + m_d} \left[\frac{1}{M_{Z_c}^2 - M_{J/\psi}^2} \left(-\frac{M_{J/\psi}^2}{T^2} \right) - \exp \left(-\frac{M_{Z_c}^2}{T^2} \right) \right] \exp \left(-\frac{M_{Z_c}^2}{T^2} \right) \\
&\quad + [C_{Z_c, J/\psi} + C_{Z_c, \pi}] \exp \left(-\frac{M_{J/\psi}^2}{T^2} \right) = -\frac{1}{32\sqrt{2}\pi^4} \int_{4m_c^2}^{\infty} ds \int_0^{\infty} du s \left(s + 2m_c^2 \right) \sqrt{1 - \frac{4m_c^2}{s}} \exp \left(-\frac{s}{T^2} - \frac{u}{T^2} \right), \\
&\exp \left(-\frac{s}{T^2} - \frac{u}{T^2} \right), \\
&\end{align*}
\]

\[
\begin{align*}
&\frac{f_{\rho} M_{n_c}^2 f_{\rho} M_{\rho} \lambda_Z G_{Z_c, n_c \rho}}{2m_c} \left[\frac{1}{M_{Z_c}^2 - M_{n_c}^2} \left(-\frac{M_{n_c}^2}{T^2} \right) - \exp \left(-\frac{M_{Z_c}^2}{T^2} \right) \right] \exp \left(-\frac{M_{Z_c}^2}{T^2} \right) \\
&\quad + [C_{Z_c, n_c} + C_{Z_c, \rho}] \exp \left(-\frac{M_{n_c}^2}{T^2} \right) = \frac{1}{32\sqrt{2}\pi^4} \int_{4m_c^2}^{\infty} ds \int_0^{\infty} du s \left(s + 2m_c^2 \right) \sqrt{1 - \frac{4m_c^2}{s}} \exp \left(-\frac{s}{T^2} - \frac{u}{T^2} \right), \\
&\exp \left(-\frac{s}{T^2} - \frac{u}{T^2} \right), \\
&\end{align*}
\]

\[
\begin{align*}
&\frac{f_{D} M_{D}^2 f_{D'} M_{D'} \lambda_Z G_{Z_c, D D'}}{4m_c} \left[\frac{1}{M_{Z_c}^2 - M_{D}^2} \left(-\frac{M_{D}^2}{T^2} \right) - \exp \left(-\frac{M_{Z_c}^2}{T^2} \right) \right] \exp \left(-\frac{M_{Z_c}^2}{T^2} \right) \\
&\quad + [C_{Z_c, D'} + C_{Z_c, D}] \exp \left(-\frac{M_{D}^2}{T^2} \right) = \frac{m_c (\bar{g}_s \sigma G q)}{96\sqrt{2}\pi^2} \int_{m_c^2}^{\infty} du \left(\frac{9}{2} - \frac{10m_c^2}{u} + \frac{3m_c^4}{2u^2} \right) \exp \left(-\frac{m_c^2}{T^2} - \frac{u}{T^2} \right), \\
&\exp \left(-\frac{m_c^2}{T^2} - \frac{u}{T^2} \right), \\
&\end{align*}
\]

where the $s_{J/\psi}^0$, v_{π}^0, $s_{n_c}^0$, v_{ρ}^0, $s_{D'}^0$ and $v_{D'}^0$ are the continuum threshold parameters, the T^2 and T_2^2 are the Borel parameters.

In the three QCD sum rules, the terms depend on T_2^2 can be factorized out explicitly,

\[
\begin{align*}
&\frac{f_{\pi} M_{J/\psi}^2 f_{J/\psi} M_{J/\psi} \lambda_Z G_{Z_c, J/\psi \pi}}{m_u + m_d} \left[\frac{1}{M_{Z_c}^2 - M_{J/\psi}^2} \left(-\frac{M_{J/\psi}^2}{T^2} \right) - \exp \left(-\frac{M_{Z_c}^2}{T^2} \right) \right] \exp \left(-\frac{M_{Z_c}^2}{T^2} \right) \\
&\quad + [C_{Z_c, J/\psi} + C_{Z_c, \pi}] \exp \left(-\frac{M_{J/\psi}^2}{T^2} \right) = -\frac{1}{32\sqrt{2}\pi^4} \int_{4m_c^2}^{\infty} ds \int_0^{\infty} du s \left(s + 2m_c^2 \right) \sqrt{1 - \frac{4m_c^2}{s}} \exp \left(-\frac{s}{T^2} - \frac{u}{T^2} \right), \\
&\exp \left(-\frac{s}{T^2} - \frac{u}{T^2} \right), \\
&\end{align*}
\]
the dependence on the Borel parameter T^2 is trivial, \(\exp \left(-\frac{u - M_{Z^2}^2}{T^2} \right) \), \(\exp \left(-\frac{u - M_{Z^2}^2}{T^2} \right) \), \(\exp \left(-\frac{m_c^2 - M_{Z^2}^2}{T^2} \right) \), which differ from the QCD sum rules for the three-meson hadronic coupling constants greatly \cite{21}. It is difficult to obtain T^2 independent regions in the present three QCD sum rules, as no other terms to stabilize the QCD sum rules. We can take the local limit $T^2 \to \infty$, as so called local-duality limit (the local QCD sum rules are reproduced from the original QCD sum rules in infinite Borel parameter limit) \cite{22}, then \(\exp \left(-\frac{u}{T^2} \right) = \exp \left(-\frac{m_c^2}{T^2} \right) = \exp \left(-\frac{M_{Z^2}^2}{T^2} \right) = \exp \left(-\frac{T^2}{m_c^2} \right) = 1 \), the three QCD sum rules are greatly simplified.

Now we write down the simplified QCD sum rules explicitly,

\[
\begin{align*}
& f_{\pi} M_{\pi}^2 f_{\psi} M_{\psi} \lambda_{Z^2} G_{Z^2, \psi} \frac{1}{2m_c} \left[\frac{1}{M_{Z^2}^2 - M_{\psi}^2} \exp \left(-\frac{M_{\psi}^2}{T^2} \right) - \exp \left(-\frac{M_{Z^2}^2}{T^2} \right) \right] \\
& + \left[C_{Z^2, \psi} + C_{Z^2, \pi} \right] \exp \left(-\frac{M_{Z^2}^2}{T^2} \right) = -\frac{1}{32\sqrt{2}\pi^4} \int_{4m_c^2}^{s_G} \frac{du}{u} \int_{0}^{u} du \left(s + 2m_c^2 \right) \sqrt{1 - \frac{4m_c^2}{s}} \exp \left(-\frac{M_{Z^2}^2}{T^2} \right),
\end{align*}
\]

(49)
where $\tilde{M}_{Z_c}^2 = \frac{M_s^2}{4}$.

3 Numerical results and discussion

The input parameters on the QCD side are taken to be the standard values $\langle \bar{q}q \rangle = -(0.24 \pm 0.01 \text{GeV})^3$, $\langle \bar{q}q, \sigma Gq \rangle = m_c^2 \langle \bar{q}q \rangle$, $m_c^2 = (0.8 \pm 0.1) \text{GeV}^2$ at the energy scale $\mu = 1 \text{GeV}$ [19, 20, 23], $m_c(m_c) = (1.28 \pm 0.03) \text{GeV}$ from the Particle Data Group [24]. Furthermore, we set $m_u = m_d = 0$ due to the small current quark masses. We take into account the energy-scale dependence of the input parameters from the renormalization group equation,

$$\langle \bar{q}q, \sigma Gq \rangle(\mu) = \langle \bar{q}q, \sigma Gq \rangle(0) \left[\frac{\alpha_s(\mu)}{\alpha_s(\mu_0)} \right]^{\frac{1}{25}},$$

$$m_c(\mu) = m_c(m_c) \left[\frac{\alpha_s(\mu)}{\alpha_s(m_c)} \right]^{\frac{1}{25}},$$

$$\alpha_s(\mu) = \frac{1}{b_0 t} \left[1 - b_1 \log t + \frac{b_2^2 (\log^2 t - \log t - 1) + b_1 b_2}{b_0^2 t^2} \right],$$

where $t = \log \frac{M^2}{\Lambda^2}$, $b_0 = \frac{33 - 2n_f}{12\pi}$, $b_1 = \frac{153 - 19n_f}{12\pi}$, $b_2 = \frac{2857 - 5033n_f + 325n_f^2}{12\pi^2}$, $\Lambda = 210 \text{MeV}$, 292 MeV and 332 MeV for the flavors $n_f = 5$, 4 and 3, respectively [24], and evolve all the input parameters to the optimal energy scale $\mu = 1.4 \text{GeV}$ to extract hadronic coupling constants [9, 25].

The hadronic parameters are taken as $M_\pi = 0.13957 \text{GeV}$, $M_\rho = 0.77526 \text{GeV}$, $M_{J/\psi} = 3.0969 \text{GeV}$, $M_{\eta_c} = 2.9834 \text{GeV}$ [24], $f_\pi = 0.130 \text{GeV}$, $f_\rho = 0.215 \text{GeV}$, $\sqrt{s_{\pi}} = 0.85 \text{GeV}$, $\sqrt{s_{\rho}} = 1.3 \text{GeV}$ [23], $M_D = 1.87 \text{GeV}$, $f_D = 208 \text{MeV}$, $u_D^0 = 6.2 \text{GeV}^2$, $M_{D^*} = 2.01 \text{GeV}$, $f_{D^*} = 263 \text{MeV}$, $s_{D^*} = 6.4 \text{GeV}^2$ [26], $f_{J/\psi} = 0.418 \text{GeV}$, $f_{\eta_c} = 0.387 \text{GeV}$ [27], $\sqrt{s_{J/\psi}} = 3.6 \text{GeV}$, $\sqrt{s_{\eta_c}} = 3.5 \text{GeV}$, $M_{Z_c} = 3.899 \text{GeV}$, $\lambda_{Z_c} = 2.1 \times 10^{-2} \text{GeV}^5$ [9, 25], $f_\pi M_{Z_c}^2/(m_u + m_d) = -2 \langle \bar{q}q \rangle / f_\pi$ from the Gell-Mann-Oakes-Renner relation.

In the scenario of tetraquark states, the QCD sum rules indicate that the $Z_c(3900)$ and $Z_c(4430)$ can be tentatively assigned to be the ground state and the first radial excited state of the axialvector tetraquark states, respectively [28], the coupling of the current $J_\mu(0)$ to the excited state $Z_c(4430)$ is rather large, so the unknown parameters cannot be neglected. The unknown parameters are fitted to be $C_{Z_{cJ/\psi}} + C_{Z_{cJ}} = 0.001 \text{GeV}^8$, $C_{Z_{c\rho}} + C_{Z_{c\eta}} = 0.0046 \text{GeV}^8$ and $C_{Z_{cD^*}} + C_{Z_{cD}} = 0.00013 \text{GeV}^8$ to obtain platforms in the Borel windows $T^2 = (1.9 - 2.6) \text{GeV}^2$, $(1.9 - 2.5) \text{GeV}^2$ and $(1.5 - 2.1) \text{GeV}^2$ for the hadronic coupling constants $G_{Z_{cJ/\psi}}, G_{Z_{c\eta}}, G_{Z_{cD^*}}, G_{Z_{cD}}$, respectively.

Then it is easy to obtain the values of the hadronic coupling constants,

$$|G_{Z_{cJ/\psi}}| = 3.63 \pm 0.70 \text{GeV},$$

$$G_{Z_{c\eta}} = 4.38 \pm 1.86 \text{GeV},$$

$$|G_{Z_{cD^*}}| = 0.62 \pm 0.09 \text{GeV},$$

(53)
Figure 1: The hadronic coupling constants $G_{Z_c J/\psi\pi}$ (I), $G_{Z_c \eta_c \rho}$ (II) and $G_{Z_c D\bar{D}}$ (III) with variations of the Borel parameter T^2.
which are shown explicitly in Fig. 1.

We choose the masses $M_{\pi} = 0.13957$ GeV, $M_{\rho} = 0.77526$ GeV, $M_{J/\psi} = 3.0969$ GeV, $M_{\eta} = 2.9834$ GeV, $M_{D^{+}} = 1.8695$ GeV, $M_{D^{+}\pi} = 2.00685$ GeV, $M_{D^{0}} = 1.86484$ GeV, $M_{D^{0}\pi} = 2.01026$ GeV [24], $M_{Z_{c}} = 3.899$ GeV [1], and obtain the partial decay widths,

\[
\begin{align*}
\Gamma(Z_{c}^{+}(3900) \rightarrow J/\psi^{+}) & = 25.8 \pm 9.6 \text{ MeV}, \\
\Gamma(Z_{c}^{+}(3900) \rightarrow \eta \rho^{+}) & = 27.9 \pm 20.1 \text{ MeV}, \\
\Gamma(Z_{c}^{+}(3900) \rightarrow D^{+} D^{0}) & = 0.22 \pm 0.07 \text{ MeV}, \\
\Gamma(Z_{c}^{+}(3900) \rightarrow \bar{D}^{0} D^{+}) & = 0.23 \pm 0.07 \text{ MeV},
\end{align*}
\]

and the total width,

\[
\Gamma_{Z_{c}} = 54.2 \pm 29.8 \text{ MeV},
\]

which is consistent with the experimental data considering the uncertainties [1] [4] [5]. If we take the central values of the hadronic coupling constants $|G_{Z,J/\psi\pi}| = 3.63$ GeV, $G_{Z,\eta\rho} = 4.38$ GeV, $|G_{Z,DD}| = 0.62$ GeV, we can obtain the total width $\Gamma_{Z_{c}(3900)} = 48.9$ MeV, which happens to coincide with the central value of the experimental data $\Gamma = 46 \pm 10 \pm 20$ MeV from the BESIII collaboration [1], while the predicted ratio

\[
R = \frac{\Gamma(Z_{c}(3900) \rightarrow DD^{*})}{\Gamma(Z_{c}(3900) \rightarrow J/\psi\pi)} = 0.02 \ll R_{exp} = \frac{\Gamma(Z_{c}(3885) \rightarrow DD^{*})}{\Gamma(Z_{c}(3900) \rightarrow J/\psi\pi)} = 6.2 \pm 1.1 \pm 2.7,
\]

from the BESIII collaboration [4]. It is difficult to assign the $Z_{c}(3900)$ and $Z_{c}(3885)$ to be the same diquark-antidiquark type axialvector tetraquark state. We can assign the $Z_{c}(3900)$ to be the diquark-antidiquark type axialvector tetraquark state, and assign the $Z_{c}^{+}(3885)$ to be the molecular state $D^{+} D^{0} + D^{+} D^{0}$ according to the predicted mass 3.89 ± 0.09 GeV from the QCD sum rules [12]. If the $Z_{c}(3885)$ is the $D^{+} D^{0} + D^{+} D^{0}$ molecular state, the decays to $D^{+} D^{0}$ and $D^{+} D^{0}$ take place through its component directly, it is easy to account for the large ratio R_{exp}.

Now we compare the present work with the work in Ref. [10] in details. In the two works, the same currents are chosen except for the currents to interpolate the π meson, the operator product expansion is carried out at the large space-like regions $P^{2} = -p^{2} \rightarrow \infty$ and $Q^{2} = -q^{2} \rightarrow \infty$. In the present work, we take into account both the connected and disconnected Feynman diagrams, and obtain the solid quark-hadron duality by getting the physical spectral densities through dispersion relation, then perform double Borel transforms with respect to the variables P^{2} and Q^{2} to obtain the QCD sum rules for the physical hadronic coupling constants directly. We pay special attention to the hadron spectral densities, and present detailed discussions and subtract the continuum contaminations in a solid foundation. In Ref. [12], Dias et al take into account only the connected Feynman diagrams, and obtain the quark-hadron duality by taking the limit $Q^{2} \rightarrow 0$, $M_{c}^{2} \rightarrow 0$, $M_{D}^{2} \rightarrow 0$, $M_{D}^{2} \rightarrow 0$ and $m_{c}^{2} \rightarrow 0$ and choosing special tensor structures, then perform single Borel transform with respect to the variable P^{2} to obtain the QCD sum rules for the momentum dependent hadronic coupling constants. They subtract the continuum contaminations by hand, then parameterize the momentum dependent hadronic coupling constants by some exponential functions with arbitrariness to extract the values to the mass-shell $Q^{2} = -M_{c}^{2}$, $-M_{D}^{2}$ or $-M_{D}^{2}$ to obtain the physical hadronic coupling constants. Although the values of the width of the $Z_{c}(3900)$ obtained in the present work and in Ref. [12] are both compatible with the experimental data, the present predictions have much less theoretical uncertainties.

4 Conclusion

In this article, we tentatively assign the $Z_{c}^{\pm}(3900)$ to be the diquark-antidiquark type axialvector tetraquark state, study the hadronic coupling constants $G_{Z,J/\psi\pi}$, $G_{Z,\eta\rho}$, $G_{Z,DD^{*}}$ with the QCD
sum rules in details. We introduce the three-point correlation functions, and carry out the operator product expansion up to the vacuum condensates of dimension-5, and neglect the tiny contributions of the gluon condensate. In calculations, we take into account both the connected and disconnected Feynman diagrams, as the connected Feynman diagrams alone cannot do the work. Special attentions are paid to matching the hadron side of the correlation functions with the QCD side of the correlation functions to obtain solid duality, the routine can be applied to study other hadronic couplings directly. We study the two-body strong decays $Z_c^+(3900) \rightarrow J/\psi\pi^+$, $\eta_c\rho^+$, D^+D^{*-} and obtain the total width of the $Z_c^+(3900)$, which is consistent with the experimental data. The numerical results support assigning the $Z_c^+(3900)$ to be the diquark-antidiquark type axialvector tetraquark state, and assigning the $Z_c^+(3885)$ to be the meson-meson type axialvector molecular state.

Acknowledgements

This work is supported by National Natural Science Foundation, Grant Number 11775079.

References

[1] M. Ablikim et al, Phys. Rev. Lett. 110 (2013) 252001.
[2] Z. Q. Liu et al, Phys. Rev. Lett. 110 (2013) 252002.
[3] T. Xiao, S. Dobbs, A. Tomaradze and K. K. Seth, Phys. Lett. B727 (2013) 366.
[4] M. Ablikim et al, Phys. Rev. Lett. 112 (2014) 022001.
[5] M. Ablikim et al, Phys. Rev. Lett. 115 (2015) 112003.
[6] M. Ablikim et al, Phys. Rev. Lett. 119 (2017) 072001.
[7] R. Faccini, L. Maiani, F. Piccinini, A. Pilloni, A. D. Polosa and V. Riquer, Phys. Rev. D87 (2013) 111102(R).
[8] M. Karliner and S. Nussinov, JHEP 1307 (2013) 153; N. Mahajan, [arXiv:1304.1301]; E. Braaten, Phys. Rev. Lett. 111 (2013) 162003; C. F. Qiao and L. Tang, Eur. Phys. J. C74 (2014) 3122.
[9] Z. G. Wang and T. Huang, Phys. Rev. D89 (2014) 054019.
[10] J. M. Dias, F. S. Navarra, M. Nielsen and C. M. Zanetti, Phys. Rev. D88 (2013) 016004.
[11] F. K. Guo, C. Hidalgo-Duque, J. Nieves and M. P. Valderrama, Phys. Rev. D88 (2013) 054007; J. R. Zhang, Phys. Rev. D87 (2013) 116004; Y. Dong, A. Faessler, T. Gutsche and V. E. Lyubovitskij, Phys. Rev. D88 (2013) 014030; H. W. Ke, Z. T. Wei and X. Q. Li, Eur. Phys. J. C73 (2013) 2561; S. Prelovsek and L. Leskovec, Phys. Lett. B727 (2013) 172; C. Y. Cui, Y. L. Liu, W. B. Chen and M. Q. Huang, J. Phys. G41 (2014) 075003.
[12] Z. G. Wang and T. Huang, Eur. Phys. J. C74 (2014) 2891.
[13] M. B. Voloshin, Phys. Rev. D87 (2013) 091501.
[14] D. Y. Chen, X. Liu and T. Matsuki, Phys. Rev. Lett. 110 (2013) 232001; Q. Wang, C. Hanhart and Q. Zhao, Phys. Rev. Lett. 111 (2013) 132003; X. H. Liu and G. Li, Phys. Rev. D88 (2013) 014013.
[15] S. S. Agaev, K. Azizi and H. Sundu, Phys. Rev. D93 (2016) 074002.
[16] J. M. Dias, K. P. Khemchandani, A. Martinez Torres, M. Nielsen and C. M. Zanetti, Phys. Lett. B758 (2016) 235.

[17] Z. G. Wang, Eur. Phys. J. C76 (2016) 279.

[18] S. S. Agaev, K. Azizi and H. Sundu, Phys. Rev. D93 (2016) 114007.

[19] M. A. Shifman, A. I. Vainshtein and V. I. Zakharov, Nucl. Phys. B147 (1979) 385; Nucl. Phys. B147 (1979) 448.

[20] L. J. Reinders, H. Rubinstein and S. Yazaki, Phys. Rept. 127 (1985) 1.

[21] M. E. Bracco, M. Chiapparini, F. S. Navarra and M. Nielsen, Prog. Part. Nucl. Phys. 67 (2012) 1019.

[22] V. A. Nesterenko and A. V. Radyushkin, Phys. Lett. 115B (1982) 410; A. V. Radyushkin, Acta Phys. Polon. B26 (1995) 2067; A. P. Bakulev, Nucl. Phys. Proc. Suppl. 198 (2010) 204.

[23] P. Colangelo and A. Khodjamirian, hep-ph/0010175.

[24] C. Patrignani et al, Chin. Phys. C40 (2016) 100001.

[25] Z. G. Wang, Eur. Phys. J. C76 (2016) 387.

[26] Z. G. Wang, JHEP 1310 (2013) 208; Z. G. Wang, Eur. Phys. J. C75 (2015) 427.

[27] D. Becirevic, G. Duplancic, B. Klajn, B. Melic and F. Sanfilippo, Nucl. Phys. B883 (2014) 306.

[28] Z. G. Wang, Commun. Theor. Phys. 63 (2015) 325.