Shared decision-making allows subordinates to lead when dominants monopolize resources

Danai Papageorgiou1,2,3,4* and Damien R. Farine1,2,3,5*

The concepts of leadership and dominance are often conflated, with individuals high in the social hierarchy assumed to be decision-makers. Dominants can exclusively benefit from monopolizing food resources and, therefore, induce an intragroup conflict when leading their group to these resources. We demonstrate that shared decision-making reduces such conflicts by studying movement initiations of wild vulturine guineafowl, a species that forms large, stable social groups with a steep dominance hierarchy. When dominant individuals displace subordinates from monopolizable food patches, the excluded subordinates subsequently initiate collective movement. The dominants then abandon the patch to follow the direction of subordinates, contrasting with nonmonopolizable resources where no individuals are excluded, and dominant individuals contribute extensively to group decisions. Our results demonstrate the role of shared decision-making in maintaining the balance of influence within animal societies.

INTRODUCTION

Across the animal kingdom, the power held by dominant individuals mirrors their ability to monopolize resources (1, 2), but not necessarily their influence on group decisions (3). When animals exploit food resources collectively, dominant group members often displace subordinates, forcing them to the periphery of the group (4, 5). In theory, this social stratification generates a conflict (6): Clumped food resources that can be monopolized are most beneficial for a dominant and least beneficial for the subordinate members of its group, if the latter get excluded. Shared decision-making is predicted to allow groups with stable membership to reduce this conflict (3), since all individuals can contribute to determining which resources their group encounters. However, despite being inherently linked, the processes of competitive exclusion and collective decision-making have been largely considered in isolation. For example, the exclusion of subordinates from food resources can generate differences in the state of need among group members, in turn shifting their priorities from group cohesion to moving toward a new resource (7, 8). Understanding the link between social interactions and collective decision-making, driven by resource competition, can illuminate how the balance of power is maintained or lost in animal societies.

RESULTS

To investigate the relationship between dominance interactions and leadership, we tracked groups of wild vulturine guineafowl (Acryllium vulturinum) at the Mpala Research Center, in a Kenyan savannah-woodland ecosystem. This largely terrestrial bird species lives in cohesive, stable, and nonterritorial groups (fig. S1) (9). Observations of 2113 dominance interactions across three habituated groups revealed a steep social hierarchy, with males always outranking females (Fig. 1A and fig. S2). Further, observations of 183 group departures (10) from natural resources, which cannot be monopolized by one or a few dominant individuals (hereby nonmonopolizable; table S1), suggest that higher-ranked individuals are more successful in initiating group movements [Generalized linear model (GLM): χ² = 8.22, P < 0.001, table S2]. However, all adults can initiate group movements successfully (Fig. 1B and fig. S3), complementing growing evidence that, in animal societies, group decisions are, to a large degree, shared (3, 11).

The distribution of food resources is often associated with rates of agonistic interactions, with dominant individuals excluding subordinates when resources are clumped (12). What are the consequences of such interactions on subsequent group departures? Vulturine guineafowl mainly feed on dispersed seeds and grasses (13), but they also feed on monopolizable resources such as insect-rich elephant dung and the fleshy fruit of prickly pear (Opuntia spp.). We created experimental monopolizable resources (herein patches), allowing us to record social interactions and subsequent leadership by multiple groups (see table S1). We found that after groups enter a patch, dominant individuals soon displace subordinates, with a number of subordinates accumulating at the periphery. Once reaching a critical number, these excluded subordinates then initiate collective movement away from the patch and are later followed by dominant individuals (Fig. 2).

All individuals enter a patch when a group first arrives. However, subordinates are soon displaced from the resource, with the mean time to first displacement (means ± SD: 4.72 ± 1.79 min after arrival; Fig. 2 and fig. S5A) taking place approximately half the time before the last group member leaves the patch (means ± SD: 8.16 ± 2.85 min). On average, excluded individuals spend more than a minute (means ± SD: 1.28 ± 1.19 min) at the periphery of the patch before departing (Fig. 2), suggesting that initiations and subsequent departures are not an immediate consequence of having lost an agonistic interaction. Not all displacements result in exclusion from the patch, with individuals that are displaced in the beginning of a session being less likely to be excluded to the periphery than those displaced later on (GLM: χ² = 11.51, P < 0.001; fig. S5B). Attempts to rejoin the patch after exclusion (fig. S5C) further highlight the idea that individuals do not leave voluntarily.

1Max Planck Institute of Animal Behavior, Department of Collective Behavior, Universitätstraße 10, Konstanz 78457, Germany. 2University of Konstanz, Department of Biology, Universitätstraße 10, Konstanz 78457, Germany. 3Kenya Wildlife Service, P.O. Box 40241-00100, Nairobi, Kenya. 4Department of Ornithology, National Museums of Kenya, P.O. Box 40658-00100, Nairobi, Kenya.

*Corresponding author. Email: dpapageorgiou@ab.mpg.de (D.P.); dfarine@ab.mpg.de (D.R.F.)
Across all the observation sessions we conducted at patches (see table S1), we found that successful initiations take place once a critical number of excluded individuals accumulate at the periphery of the patch (means ± SD: 12.71 ± 5.37 individuals; Fig. 2). This critical number, on average 13 (± 5) individuals at the periphery, is independent of group size [Linear Model (LM): P > 0.05]. On average, the departure process (from the first departure to the final departure) takes approximately 25% of the time the group spent on the patch (means ± SD: 2.23 ± 1.37 min).

Data from departures by habituated groups (table S1) reveal no consistency in the identity of the first initiator. However, across all departures from the habituated groups, the three highest-ranked males never once initiated movement (0 of 33 departures, binomial P < 0.001; table S4). Instead, we found that, across all departures from all study groups (table S1), the first initiator is almost always an individual that has been previously displaced (excluded individuals initiated in 35 of 41 departures, binomial P < 0.001). Further, individuals occupying an early position in the departure order are also disproportionately more likely to have been excluded from the patch, while individuals that occupy later positions in the departure order are less likely to have been excluded (Fig. 3, fig. S6, and table S5).

Why would the exclusion of group members prompt them to initiate collective movement? Our data suggest that being excluded from a patch has consequences on food intake (Fig. 4). Individuals that initiate movement spend approximately one-third less time (means ± SD: 31.81 ± 28.67%) on the patch than nonexcluded individuals. While at the periphery, these birds consume hardly any food [means ± SD: 0.06 ± 0.19 pecks per second (pps)], which represents a substantial drop in foraging relative to when they first entered the patch (means ± SD: 4.06 ± 0.71 pps). Food intake at the periphery is also lower relative to individuals that remain on the patch halfway through the time the group spends there (means ± SD: 4.22 ± 0.95 pps), relative to individuals that remain on the patch at the moment of the initiation (means ± SD: 3.5 ± 0.91 pps) and also relative to individuals...
that remain on the patch in the final 10 s before the last individual departs (means ± SD: 2.72 ± 0.49 pps). Thus, patches remain relatively rich, even when the last individual departs.

To determine whether the departures by the last individual on each patch are caused by depletion or not, we test whether these individuals express disproportionate movement characteristics that indicate that they are being pulled away from the patch. We use data from a group where all members were fitted with Global Positioning System (GPS) tags to calculate the distance from the last individuals at the moment of leaving the patch to the rest of the group and their speed while rejoining the group. These data show that the distance and speed as they leave the patch are both much greater than the individuals’ corresponding mean daily values (fig. S7), suggesting that the departing group is strongly pulling this last individual.

These data do not support the hypothesis that dominant individuals that remain on the patch “lead from the back,” and rather show that these dominant individuals leave the patch to catch up with the rest of their group.

**DISCUSSION**

It is well established that the distribution of resources can shape the social environment of group-living animals (14–16). Here, we extend this knowledge by showing that the distribution of resources can also determine who contributes to collective decision-making. In vulturine guineafowl, dominant males are typically more successful at initiating movement from dispersed resources. A dominance bias in leadership has also been observed in some mammals, including
Japanese macaques (*Macaca fuscata*) (17) and wolves (*Canis lupus*) (18). Such outcomes can arise because larger individuals require more energy (19), and individuals that have a higher energetic demand, or are in a state of hunger, are more driven to move toward new resources. Such a mechanism has been found in groups in a range of species, including spotted hyenas (*Crocuta crocuta*) (20), plains zebras (*Equus burchellii*) (21), and schools of fish (*Rutilus rutilus*) (22). Given that male vulturine guineafowl are approximately 20% heavier than females, they are also presumably more motivated to find food, resulting in a greater tendency for them to initiate movements to new patches. However, when groups of vulturine guineafowl forage on monopolizable patches, dominant individuals exclude subordinates, causing the leadership to switch to subordinates. Being excluded from a patch reduces subordinates’ food intake (Fig. 4, A and B), which is likely to cause them to become more motivated to move to a new resource. Thus, our findings across both types of resources are consistent with the “leadership according to need” hypothesis (7), whereby motivation to forage shifts individuals’ priorities from group cohesion to finding new resources (23).

While our study demonstrates a switch in leadership under non-monopolizable and monopolizable resources, we were limited to investigating decision-making dynamics in natural versus experimental patches. Nevertheless, our results raise interesting questions about the diversity of decision-making mechanisms that groups can express and how mechanisms might fluctuate in response to the types of resources group-living animals encounter. Future work would benefit from investigating how leadership emerges across a gradient of patch richness and distributions. One key future direction that warrants further exploration is whether there are critical transitions along the gradient of resource distributions or patch richness values at which leadership switches to being driven by subordinates.

Our data suggest that departures from monopolizable patches are not driven by food depletion but rather by social processes. In general, initiations take place when a large proportion of individuals have been displaced to the periphery (Fig. 4C), where they have no opportunity to forage (Fig. 4B). At this moment, the patch remains profitable, as birds that remain on it still peck more often than they do when the last bird leaves (Fig. 4B). Thus, departures are not driven by food because patches appear to remain profitable when the initiation takes place. Further, the last group members also appear to leave the patch while it remains productive, with these birds remaining on the patch until the last moment and then running to catch up with the group, confirming that they are being pulled away from the patch rather than moving on due to resource depletion. This finding raises interesting questions about how groups forage at a landscape scale. For example, optimal foraging theory suggests that larger groups of identical foragers should deplete patches more extensively than smaller groups, before leaving (24). However, groups of vulturine guineafowl, which live in a highly structured society, leave monopolizable patches, while the patch remains productive. A recent study on white-faced capuchins (*Cebus capucinus*) also showed that groups depleted patches differently, closer to the center versus closer to the periphery of their home ranges (25). Together, these results contribute to an emerging literature highlighting that within- and between-group social processes might alter the predictions of optimal foraging models.

In examining the social process during group departures, we found that subordinate vulturine guineafowl depart from the periphery of the patch once a critical number of birds accumulates there and that this critical number is not related to group size. This behavior is similar to what has been described as “quorum” decision-making, whereby the probability of group members performing a behavior (e.g. making a choice) is an increasing function of the number of group members that already performed it (26, 27). Quorum decision-making has previously been shown to allow groups to be more accurate when choosing among options, such as between richer patches (28) or safer shelters (29). Our data therefore extend this previous work by also suggesting that a quorum might provide groups with a mechanism by which they can escape an option when it does not sufficiently benefit the average group member.

Dominant individuals following subordinates could be due to producer-scrounger dynamics (30, 31), where subordinate individuals discover new resources that are then monopolized by dominants. An example of dominance-based producer-scrounger dynamics comes from flocks of Arctic barnacle geese (*Branta leucopsis*). Subordinate geese explore the environment for rich patches and are then excluded from these by dominant individuals that continue to monopolize the patch over the subsequent year (32). The behavior of dominant barnacle geese contrasts with those of dominant vulturine guineafowl. We found that the departure by subordinate vulturine guineafowl prompts dominant group members to abandon the patch, moving fast to rejoin the group while it remains “on the move” (movie S1). Thus, what pulls dominant vulturine guineafowl is the need to maintain group cohesion, as the distance to the group becomes large and not the opportunities to scrounge on new resources discovered by subordinates.

We show how shared decision-making can allow the average group member to reduce the costs that arise from the monopolization of resources by dominants (33). Previous research on chacma baboons (*Papio ursinus*) suggested that dominant individuals were leaders because groups moved to monopolizable food resources (1), while a later study on olive baboons (*Papio anubis*) suggested that, in general, baboon decisions were shared (3). Our results unite the findings from these two studies by revealing that who is most influential can be determined by prior context rather than by where groups are moving to next. In this way, shared decision-making allows groups to balance the needs of their members. When dominant individuals exert too much control, their actions promote greater influence by deprived group members in the subsequent decisions that determine what the group does next.

**MATERIALS AND METHODS**

**Experimental design**

The research took place at the southern part of the Mpala Research Center (0°17′N, 37°52′E), a conservancy area of nearly 20,000 ha of savannah and dry woodland habitats in Laikipia district, central Kenya. Within the study area, there are 18 color-banded and GPS-tracked groups of vulturine guineafowl (*A. vulturinum*), which we have been studying since August 2016. By GPS tagging and color banding several individuals in each group and monitoring membership composition twice a week, we have found that vulturine guineafowl live in a multilevel society that consists of stable groups that associate preferentially with specific other groups, and each contain many breeding males and females (9). Some of the subadults stay in their natal group, and others disperse. Breeding vulturine guineafowl split from their groups in the wet seasons; we collected our data during dry seasons when groups stay together and move...
determined who initiated movement away from such resources. For

We created monopolizable patches to study how social interactions

We defined initiators as individuals that moved more than 20 m away

ary for more than 3 min. These stationary periods typically involved

To estimate the dominance hierarchy in HG1, HG2, and HG3, we

Because our long-term data

from HG1 suggest that dominance ranks are maintained across years,

We assumed dominance ranks to be stable over the short period of

we used winner-loser interactions to calculate and rank each individual by Elo scores (38). Because our long-term data

We recorded all of the data from HG1 on a voice recorder. For

We also randomly selected 10 individuals (one from each video)

We also caught and GPS-tagged all the members of the HG3 to show

Hatched at least 13 months before the study season. When we col-

We also collected data from four additional, nonhabituated groups

We caught and GPS-tagged all the members of the HG3 to show

GPS-tagged group

We caught and GPS-tagged all the members of the HG3 to show

from the center of the group. We also recorded the departure order

The HG1 is the only group that we

The HG1 is the only group that we

 initiation. Successful initiations required all individuals to follow the

We recorded all of the data from HG1 on a voice recorder. For

We also randomly selected 10 individuals (one from each video)

From April to May and from October to December (34).

Three of our 18 study groups, containing 22 [habituated group 1

Three of our 18 study groups, containing 22 [habituated group 1

We also recorded the winners and losers (35, 36) of the agonistic interactions

To estimate food intake within and on the periphery of the patches, we

We also recorded the winners and losers (35, 36) of the agonistic interactions

To estimate food intake within and on the periphery of the patches, we

from HG1, there were no chicks in the group, and all subadults had

we defined a range of dyadic interactions as agonistic or dominance-related

We defined a range of dyadic interactions as agonistic or dominance-related

Every study day, we added a small quantity of seeds (9 g of seeds per

We also recorded the winners and losers (35, 36) of the agonistic interactions

We also recorded the winners and losers (35, 36) of the agonistic interactions
their solar-powered battery to charge. We collected a total of 13 days’ data from 9 February 2019 to 29 March 2019.

Data analysis
Movement initiation from nonmonopolizable food resources
We tested whether dominance rank could predict whether an individual would be a successful initiator in a given departure by running a GLM on departures of HG1 from nonmonopolizable resources. The response variable was binary (1: successful; 0: unsuccessful) for a given initiator, and the independent variable was the dominance rank.

The relationship between interactions on the monopolizable patch and departure orders
We tested whether dominance plays a mechanistic role in movement initiations in a social system where group decisions are shared. We used our data on agonistic interactions to test whether these interactions predicted the departure order from a patch. To do this, we fit an ordinal logistic regression model to our ordered response, which is the departure orders for each of the group members, using the R Package MASS (41). Our predictor variable was a binary variable, where 1 corresponded to cases where an individual was a loser of an agonistic interaction on the patch before the point of the initiation and 0 corresponded to cases that were not.

Camera-tracking experiments to investigate the timing of the departure process from monopolizable patches
We studied the timing of the departure process from the patches and estimated food loss and food intake for dominants and excluded individuals by video-tracking HG2, HG3, and four additional, nonhabituated groups of vulturine guineafowl. We collected these tracking data during February 2018, from July to September 2018, and from February to March 2019. We used one close-up camera to clearly record agonistic interactions on the patch and one wide-view camera to track the movement of the birds on the periphery of the patch and their departure from the periphery. The wide-view camera was placed 15 to 20 m away from the center of the patch. The exact positioning of the camera depended on the fine-scale habitat configuration. Using the Tracker application (42), we assigned a visual identification code to each moving bird, by watching, in parallel, the two videos collected from each session. In each video, we tracked all individuals to record the losers of agonistic interactions within the patch, the time spent on the patch, the time spent in the periphery of the patch (within a 15-m diameter centered on the patch), the departure time, and the departure order of each bird.

For HG2 and HG3, we managed to extract all these data from the videos. However, from the nonhabituated groups, we could only collect data on whether the initiator was aggressed and then displaced from the patch before initiating and on the number of individuals in the periphery of the patch before initiating departure (see questions 11 and 12 from table S1). All members of the habituated groups were color-banded, and the observer (D.P.) could be close to the groups and could describe the departure process and all the interactions that took place. By contrast, the color bands were not always visible in the videos for all the members of the nonhabituated groups, and some group members were unbanded, meaning that we lost track of some individuals during the course of a trail. However, we could easily tell (i) whether the initiator was excluded from the patch and (ii) how many individuals were in the periphery of the patch when the first individual initiated movement.

 Movements of the GPS-tagged group
We used high-resolution GPS data (1-Hz sampling continuously, every 4th day) from HG3 to estimate the pairwise distances between all group members, when the group was cohesive. On the basis of the distribution of the pairwise distances within the group (fig. S1), we classified the group as cohesive for all 5-min intervals when no pairwise distances exceeded 100 m. When the group was cohesive, we also calculated the group’s centroid every 5 min to estimate group position. We extracted the directional vector of the initiator from the patch by watching the animations of the GPS data using Google Earth Pro and the method described above to determine initiations. We also calculated the distance of the last individuals that left the patch from the rest of the group’s centroid (fig. S7). Last, we plotted the vector of the initiator and the tracks of the group’s centroid from early morning (6:00 a.m.) when the birds were leaving their roost until 2:00 p.m., as presented in fig. S4.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/content/full/6/4/eaba5881/DC1

REFERENCES AND NOTES
1. A. J. King, C. M. S. Douglas, E. Huchard, N. J. B. Isaac, G. Cowlishaw, Dominance and affiliation mediate despotism in a social primate. Curr. Biol. 18, 1833–1838 (2008).
2. R. J. Lewis, Female power in primates and the phenomenon of female dominance. Ann. Rev. Anthropol. 47, 533–551 (2018).
3. A. Strandburg-Peshkin, D. R. Farine, I. D. Couzin, M. C. Crofoot, Shared decision-making drives collective movement in wild baboons. Science 348, 1358–1361 (2015).
4. C. K. Hemelrijk, Spatial centrality of dominants without positional preference. Artif. Life 6, 307–315 (1998).
5. C. H. Janson, Social correlates of individual spatial choice in foraging groups of brown capuchin monkeys, Cebus apella. Anim. Behav. 40, 910–921 (1990).
6. A. Strandburg-Peshkin, D. Papageorgiou, M. C. Crofoot, D. R. Farine, Inferring influence and leadership in moving animal groups. Philos. Trans. R. Soc. B 373, 20170006 (2018).
7. L. Conradt, J. Krause, I. D. Couzin, T. J. Roper, “Leading according to need” in self-organizing groups. Am. Nat. 173, 304–312 (2009).
8. C. Sueur, J.-L. Deneubourg, O. Petit, I. D. Couzin, Differences in nutrient requirements imply a non-linear emergence of leaders in animal groups. PLOS Comput. Biol. 6, e1000917 (2010).
9. D. Papageorgiou, C. Christensen, G. E. C. Gall, J. A. Klarevas-Irby, B. Nyaguthi, I. D. Couzin, D. R. Farine, The multiscale society of a small-brained bird. Curr. Biol. 29, R1120–R1121 (2019).
10. L. W. Pyritz, A. J. King, C. Sueur, C. Fichtel, Reaching a consensus: Terminology and concepts used in coordination and decision-making research. Int. J. Primatol. 32, 1268–1278 (2011).
11. R. Šárová, M. Špinka, J. L. A. Panamá, P. Šimeček, Graded leadership by dominant animals in a herd of female beef cattle on pasture. Anim. Behav. 79, 1037–1045 (2010).
12. L. A. Isbell, Contest and scramble competition: Patterns of female aggression and ranging behavior among primates. Behav. Ecol. 2, 143–155 (1991).
13. S. Madge, P. McGowan, in Pheasants, Partridges and Grouse: A Guide to the Pheasants, Partridges, Quails, Grouse, Guineafowl, Buttonquails and Sandgrouse of the World (London, 2002), p. 352.
14. M. Cantor, D. R. Farine, Simple foraging rules in competitive environments can generate socially structured populations. Ecol. Evol. 8, 4978–4991 (2018).
15. T. R. Bonnell, S. P. Herzi, L. Barrett, Functional social structure in baboons: Modeling interactions between social and environmental structure in group-level foraging. J. Hum. Evol. 126, 14–23 (2019).
16. D. M. Gordon, The evolution of the algorithms for collective behavior. Cell Syst. 3, 514–520 (2016).
17. A. Jacobs, K. Watanabe, O. Petit, Social structure affects initiations of group movements but not recruitment success in Japanese Macaques (Macaca fuscata). Int. J. Primatol. 32, 1311–1324 (2011).
18. R. O. Peterson, A. K. Jacobs, T. D. Drummer, L. D. Mech, D. W. Smith, Leadership behavior in relation to dominance and reproductive status in gray wolves, Canis lupus. Can. J. Zool. 80, 1405–1412 (2002).
Social relationships and nutritional state of individuals in schools of juvenile roach (Rutilus rutilus). Behav. Ecol. Sociobiol. 30, 177–180 (1992).

22. J. Krause, D. Bumann, D. Todt, Relationship between the position preference and nutritional state of individuals in schools of juvenile roach (Rutilus rutilus). Behav. Ecol. Sociobiol. 30, 177–180 (1992).

23. J. Krause, P. Reeves, D. Hoare, Positioning behaviour in roach shoals: The role of body length and nutritional state. Behaviour 135, 1031–1039 (1998).

24. L.-A. Giraldeau, T. Caraco, Social Foraging Theory (Princeton Univ. Press, 2018).

25. L. L. Tórrez-Herrera, G. H. Davis, M. C. Crofoot, Do monkeys avoid areas of home range overlap because they are dangerous? A test of the risk hypothesis in white-faced capuchin monkeys (Cebus capucinus). Int. J. Primatol. 41, 246–264 (2020).

26. A. J. W. Ward, D. J. T. Sumpter, I. D. Couzin, P. J. B. Hart, J. Krause, Quorum decision-making facilitates information transfer in fish shoals. Proc. Natl. Acad. Sci. U.S.A. 105, 6948–6953 (2008).

27. C. A. H. Bouquet, D. J. T. Sumpter, M. B. Manser, Moving calls: A vocal mechanism underlying quorum decisions in cohesive groups. Proc. R. Soc. B Biol. Sci. 278, 1482–1488 (2011).

28. D. J. T. Sumpter, S. C. Pratt, Quorum responses and consensus decision making. Philos. Trans. R. Soc. B Biol. Sci. 364, 743–753 (2009).

29. A. J. W. Ward, J. E. Herbert-Read, D. J. T. Sumpter, J. Krause, Fast and accurate decisions through collective vigilance in fish shoals. Proc. Natl. Acad. Sci. U.S.A. 108, 2312–2315 (2011).

30. L.-A. Giraldeau, G. Beauchamp, Food exploitation: Searching for the optimal joining policy. Trends Ecol. Evol. 14, 102–106 (1999).

31. A. J. King, N. J. B. Isaac, G. Cowlishaw, Ecological, social, and reproductive factors shape producer–scrounger dynamics in baboons. Behav. Ecol. 20, 1039–1049 (2009).

32. J. Stahl, P. H. Tolsma, M. J. J. E. Loonen, R. H. Drent, Subordinates explore but dominants profit: Resource competition in high Arctic barnacle goose flocks. Anim. Behav. 61, 257–264 (2001).

33. L. Conradt, T. J. Roper, Consensus decision making in animals. Trends Ecol. Evol. 20, 449–456 (2005).

34. S. C. Strum, G. Stirling, S. K. Mutungu, The perfect storm: Land use change promotes Opuntia stricta's invasion of pastoral rangelands in Kenya. J. Arid Environ. 118, 37–47 (2015).

35. I. Devost, T. B. Jones, M. Cauchoux, C. Montréuil-Spencer, J. Marand-Ferron, Personality does not predict social dominance in wild groups of black-capped chickadees. Anim. Behav. 122, 67–76 (2016).

36. L. Snijders, M. Naguib, K. van Oers, Dominance rank and boldness predict social attraction in great tits. Behav. Ecol. 28, 398–406 (2017).

37. J. Altmann, Observational study of behavior: Sampling methods. Behaviour 49, 227–266 (1974).

38. C. Neumann, J. Duboscq, C. Dubuc, A. Ginting, A. M. Irwan, M. Agil, A. Widdig, A. Engelhardt, Assessing dominance hierarchies: Validation and advantages of progressive evaluation with Elo-rating. Anim. Behav. 82, 911–921 (2011).

39. A. Sánchez-Tójar, J. Schroeder, D. R. Farine, A practical guide for inferring reliable dominance hierarchies and estimating their uncertainty. J. Anim. Ecol. 87, 594–608 (2018).

40. D. R. Farine, A. Sánchez-Tójar, Package ‘aniDom’: Inferring Dominance Hierarchies and Estimating Uncertainty (2017).

41. W. N. Venables, B. D. Ripley, Modern Applied Statistics with S (Springer, ed. 4, 2002).

42. D. Brown, Tracker video analysis and modeling tool (2019); http://physlets.org/tracker/.

Acknowledgments: We thank the Kenya National Science and Technology Council (NACOSTI/P/16/3706/6465), the Kenya Wildlife Service, the National Museums of Kenya, the Mpala Research Center, and the Max Planck Society’s Ethikrat Committee for permission to conduct this research. We are indebted to J. Ewoi and B. Nyaguthi for field assistance. We thank the Farine laboratory, R. Mann, L. Aplin, M. Crofoot, and A. King for comments and P. Marketos for designing Fig. 2. Funding: The research was funded by the Max Planck Society grants awarded to D.F. from the Daimler und Benz Stiftung (32-03/16), the Association for the Study of Animal Behavior, and the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement no. 850859). D.P. received additional funding from a DAAD PhD fellowship and an Early Career Grant from the National Geographic Society (WW-17SER-17). Open access funding was enabled and organized by the DFG Centre of Excellence 2117 “Centre for the Advanced Study of Collective Behaviour” (ID: 420037984). Author contributions: D.P. and D.R.F. conceived and designed the study, D.P. collected the data and performed the analyses, D.R.F. supervised the study; both authors wrote the manuscript and contributed to revisions. Competing interests: The authors declare that they have no competing interests. Data and materials availability: All data needed to evaluate the conclusions in the paper are present in the paper and/or the Supplementary Materials. Additional data related to this paper may be requested from the authors.

Submitted 16 December 2019
Accepted 13 October 2020
Published 25 November 2020
10.1126/sciadv.aba5881

Citation: D. Papageorgiou, D. R. Farine, Shared decision-making allows subordinates to lead when dominants monopolize resources. Sci. Adv. 6, eaba5881 (2020).
Shared decision-making allows subordinates to lead when dominants monopolize resources
Danai Papageorgiou and Damien R. Farine

Sci Adv 6 (48), eaba5881
DOI: 10.1126/sciadv.aba5881

ARTICLE TOOLS

http://advances.sciencemag.org/content/6/48/eaba5881

SUPPLEMENTARY MATERIALS

http://advances.sciencemag.org/content/suppl/2020/11/19/6.48.eaba5881.DC1

REFERENCES

This article cites 37 articles, 4 of which you can access for free
http://advances.sciencemag.org/content/6/48/eaba5881#BIBL

PERMISSIONS

http://www.sciencemag.org/help/reprints-and-permissions

Use of this article is subject to the Terms of Service

Science Advances (ISSN 2375-2548) is published by the American Association for the Advancement of Science, 1200 New York Avenue NW, Washington, DC 20005. The title Science Advances is a registered trademark of AAAS.
Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution License 4.0 (CC BY).