Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Problematic use of the Internet in low- and middle-income countries before and during the COVID-19 pandemic: a scoping review
Biljana Gjoneska1, Marc N Potenza2,3,4,5, Julia Jones6,* Célia MD Sales7,8, Georgi Hranov9 and Zsolt Demetrovics10,11,*

People from low- and middle-income countries (LMICs) represent large portions of the world population, often occupy less favorable living conditions, and typically suffer greater health risks, yet frequently receive little research and global health attention. The present study reviews emerging evidence on problematic use of the Internet (PUI) in LMICs prior/during the COVID-19 pandemic. Analyzed studies mainly focused on general properties of PUI in university students, problematic gaming in youth, or problematic use of social media in adults, registering higher prevalence estimates, as compared with earlier reports. Research mainly focused on initially affected regions and COVID-exposed populations. Overall, unfavorable circumstances, including poor social support, family relationships, and lifestyle tendencies/habits, may present potential risk for PUI in LMICs, likely exacerbated during the pandemic.

Addresses
1 Macedonian Academy of Sciences and Arts, Krste Misirkov 2, 1000 Skopje, North Macedonia
2 Department of Psychiatry and Child Study Center, Yale University School of Medicine, New Haven, CT 06511, United States
3 Department of Neuroscience and Wu Tsai Institute, Yale University, New Haven, CT 06510, United States
4 Connecticut Mental Health Centre, New Haven, CT 06519, United States
5 Connecticut Council on Problem Gambling, Wethersfield, CT 06109, United States
6 Centre for Research in Public Health and Community Care, University of Hartford, Hatfield AL10 9AB, United Kingdom
7 Centre for Psychology, University of Porto, R. Alfredo Allen, 4200-135 Porto, Portugal
8 Faculty of Psychology and Education Sciences, University of Porto, R. Alfredo Allen, 4200-135 Porto, Portugal
9 Military Medical Academy, Sofia, Bulgaria
10 Centre of Excellence in Responsible Gaming, University of Gibraltar, Gibraltar, Gibraltar
11 Institute of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary

Corresponding authors:
Biljana Gjoneska (biljanagjoneska@manu.edu.mk), Zsolt Demetrovics (zsolt.demetrovics@unigib.edu.gi)
*Twitter account: @JJonesatherts, @Demetrovics

Introduction
The largest [1] and fastest-growing [2] portion of the world population currently comprises 84.3% of all people and resides in low- and middle-income countries (LMICs) [3]. In comparison with high-income countries, people in LMICs typically occupy less favorable living conditions and live in societies with lower levels of wealth, health, and education [4]. As a result, they are more likely to experience mental health problems during a global health crisis, yet they receive relatively few global health resources [5•]. The risk for mental health concerns and increased use of the Internet during the COVID-19 pandemic may be more pronounced in vulnerable populations and manifested as excessive, maladaptive, or problematic use of the Internet (PUI). Disease-related anxieties and fears, economic insecurities, and financial losses, as well the desire to reduce emotional distress during the pandemic, may all contribute to increased risk for PUI in vulnerable populations, regardless of the country or world region [6••,7].

To date, comparatively little is known about the mental health of people in LMICs as most psychological research has been conducted on narrow populations from...
countries with established research infrastructures and abundant resources, often referred to as Western, educated, industrialized, rich, and democratic countries and populations [8]. This potentially generates an imbalanced global perspective that lacks sufficient insight into the circumstances of the less-developed countries.

The present article aims to contribute to fill this knowledge gap and reviews recent data on PUI in LMICs during the period that preceded or coincided with the COVID-19 pandemic, summarizing studies published between 2018 and 2021. Specifically, we aim to provide a broad overview on PUI-related areas of investigation, frequently employed measures and explored populations, and countries or regions in LMICs for the appointed periods.

The findings presented in this review stem from original research articles and are considered with respect to more comprehensive articles (reviews and meta-analyses) on more general topics (such as mental health, PUI, COVID-19, LMICs, and regions), thus providing more complete coverage.

Methods
A broader collection of related studies was retrieved with a search strategy (see Figure 1) that was designed to include articles in accordance with the following criteria:

a) The search was conducted via specialized academic databases, covering literature in the matching areas of interest from both biomedical and psychological domains (PubMed and APA PsycInfo).
b) The period of publication spanned between 2018 and 2021, covering studies from two years prior and two years into the COVID-19 pandemic.

c) The studies of interest originated from low-income, lower-middle-income, and upper-middle-income countries (in accordance with the latest classifications by the World Bank).

d) The searched keywords were terms and phrases that pertain to the topics of interest: problematic use, Internet activity, and low-income or middle-income countries. The search was performed by the title of the original research articles.

The broader collection of retrieved studies was then reduced to the most relevant studies (see Figure 2), after exclusion of articles in accordance with the following criteria:

a) Duplicates, or articles with similar reports (regarding used samples and methods) in different academic outlets.

b) Studies on topics that were outside the specific scope of interest.

c) Studies from countries that were outside the target list.

d) Studies conducted outside the target period and/or studies published in languages other than EN.

e) Studies with insufficient data regarding the study period and the methodologies used.

The organization of work throughout the selection process was conducted in two phases. In Phase 1, the initial selection was performed by the first author (BG) and supervised by the last author (ZD) on the basis of search criteria that were previously agreed upon by all authors (Figure 1). In Phase 2, the prefinalized selection, informed by international standards for review studies and meta-analyses (Figure 2), was reviewed separately by the remainder of the authors (MNP, JJ, CMDS, and GH). The individual evaluations sought to promote unbiased feedback and objective reporting of the results. Four additional studies were identified in this process, and included in the final selection as relevant for the current review (Figure 2). Ultimately, 69 studies were reviewed, and findings were organized according to most frequently researched topics (PUI in general, problematic gaming, or problematic use of social media), investigated populations, frequently employed measures, reported prevalence estimates, potential risk factors (see Table 1 for a summary of studies and findings), and geographical regions (see Table 2 for the global distribution of studies). Reports on problematic gambling in LMICs were excluded from the final review since they predominantly explored on-site, rather than online, gambling.

Results and discussion

PUI is a relatively recent phenomenon, and many LMICs still lack resources or policies to properly understand or address PUI [9]. The need for a broader outlook and more general understanding of PUI in...
Table 1

Summary of reviewed studies and reported findings on PUI in LMICs in the period preceding or coinciding with the pandemic [10-14,16,19-28,30-91].

Variable	Children	Adolescents	Young Adults	Adults	Time spent online	Most frequently used services	Other used services
Study	Before COVID-19	During COVID-19	During COVID-19				
	2021-2023	2021-2023	2021-2023	2021-2023	2021-2023	2021-2023	2021-2023
GPIUS2	No match found						
IGD	No match found						
SMUQ	No match found						
YDQ	No match found						
CIAS	No match found						
IGCS	No match found						

Findings

Demographic characteristics

- Prevalence of PUI is higher among males than females.
- Low socioeconomic status is associated with higher rates of PUI.
- Urban residents are more likely to engage in PUI than rural residents.

Personal characteristics

- Low self-esteem and anxiety are predictive of PUI.
- High levels of academic pressure are associated with PUI.

Parenting strategies

- Authoritative parenting styles are associated with lower PUI.
- Permissive parenting styles are associated with higher PUI.

Potential risk factors

- Physical illness and disability may increase the risk of PUI.
- Medication use may also contribute to PUI.

GPIUS2 Generalized Problematic Internet Use Scale 2; IGD = Internet Gaming Disorder Test; SMUQ = Social Media Use Questionnaire; YDQ = Young Diagnostic Questionnaire; CIAS = Chinese Internet Addiction Scale; IGCS = Internet Gaming Cognition Scale.
LMICs is reflected in the fact that most studies focused on exploring the general properties and correlates of PUI (n = 46). A smaller number of studies explored specific characteristics of problematic use of social media (n = 14) and problematic gaming (n = 9) in LMICs (see Table 1: ‘Gaming’ and ‘Social media’ columns, 1–8 rows).

With one notable exception that provided qualitative evidence [10], the remainder of the reviewed studies were quantitative, reporting findings that were based on survey methodologies and statistical analyses. Also, three longitudinal studies [11–13•] presented exceptions to the overwhelming body of cross-sectional research. The sample sizes varied considerably across studies, ranging between 200 and 20 000 participants, with an average size of around 2000 and a median size of approximately 750 participants per study. The most frequently represented populations also differed across research topics, depending on whether studies explored PUI in general, problematic gaming, or problematic use of social media. For more information regarding the study topics and types, methodologies, populations, and findings, please see the following sections of this paper.

An overview of problematic use of the Internet in low- and middle-income countries

Generalized PUI was mainly assessed using convenience samples, with half of the studies (23 of 46 publications) surveying young adults attending universities or colleges (participants aged approximately 18–25 years). Approximately half of the studies investigating generalized PUI (22 of 46 studies) utilized the Internet Addiction Test (IAT) [14], a 20-item survey with 0–5-point Likert-type responses and 0–100 score range. The IAT was used to quantify self-reported preoccupation and compulsive use of the Internet, as well as behavioral problems, emotional changes, and diminished functionality due to Internet use. The measure has been reported to have relatively “high internal consistency reliability within homogenous samples (α = 0.90–0.93), test–retest reliability (ρ = 0.83), and a relatively simple factor structure of between one and two dimensions” [15•]. However, lately, the IAT has been subject to academic criticism regarding its psychometric properties. Some of the identified issues pertain to potentially redundant or outdated items, an unstable factor structure, arbitrary cutoff scores, and possible lack of universal validity [15•], so research may shift toward newer scales with better psychometric properties, such as the Compulsive Internet Use Scale (CIUS) [16]. However, this trend is still not evident in the latest research on PUI across LMICs. A considerable number of studies relied on IAT, while others relied on the average number of daily hours spent on the Internet as a rough estimation of PUI. Only a small group of studies relied on more targeted instruments (see Table 1 for the lists of assessment instruments that were used most frequently).

A frequently used cutoff score (≥50) for the IAT was considered for PUI in the present review (even though cutoff scores often differed across studies and the prevalence rates varied accordingly). Wherever applicable, the prevalence rate for the conventional cutoff score in healthy (control) individuals was extracted from the original report, to calculate an average prevalence estimate for PUI among the general population in LMICs. The final average rates (34.6%) and median prevalence estimates (31.0%) were retrieved on the basis of reports from 19 studies. The average prevalence rate in particular was considerably higher than earlier estimates, obtained from large samples with 89 281 participants [17] and 693 306 participants [18••] in 31 nations (6.0% and 7.0% accordingly). Such a discrepancy may reflect contextual factors, such as the time period and region. Namely, earlier meta-analyses relied on studies that were published in earlier time periods, considerably before the onset of the COVID-19 pandemic (1996–2012 and 1996–2018, respectively). On the other hand, the present review scopes evidence for the period shortly preceding and coinciding with the COVID-19 pandemic (2018–2021), which is marked by a global expansion of Internet use. Regarding the regional analysis, earlier studies have indicated that the prevalence estimates are likely higher in Eastern regions (10.9% and 8.9%, respectively) [17,18••] and societies with disadvantaged living conditions or dissatisfied populations [17]. Considerable [17,18••] differences in prevalence estimates between the present and the two referenced studies may also be technical in nature and attributable to the frequently used conventional cutoff score (IAT ≥50) being more inclusive than a stricter one (IAT ≥60) [18••]. In addition, several articles in the present review utilized the IAT to assess generalized PUI in children and adolescents [19,20], despite the IAT having been developed for assessing PUI in young and healthy
adults. Younger and more vulnerable populations may be more susceptible to PUI behaviors, and this may in part explain the higher scores.

In this regard, research on problematic gaming has explored almost exclusively effects on younger populations, comprised of youth attending elementary school (aged approximately 7–10 years) or middle or high school (aged approximately 11–17 years). Eight (of 10) studies focused on problematic gaming, and prevalence rates were frequently estimated using a nine-item checklist by the Diagnostic and Statistical Manual of Mental Disorders (DSM-5) [21]. Overall, prevalence estimates of problematic gaming across five studies, ranged between 11.7% and 40.0%, while the average prevalence was estimated at 18.4%. This value is higher than an earlier estimate of

World regions	Studies conducted before COVID-19 (2018-2019)	Studies conducted during COVID-19 (2020-2021)		
East Asia & Pacific				
Yu et al., 2019 [81]	Shao et al. 2021 [83]	Dong et al. 2020 [19]	Lee et al. 2020 [36]	
Yu et al., 2020 [40]	Nguyen et al. 2021 [61]	Siste et al. 2020 [52]	Sun et al. 2020 [85]	Zhang et al. 2020 [26]
Cai et al. 2021a [20]	Yu et al. 2021a [65]	Cai et al. 2021b [31]	Chen et al. 2021 [13]	
Kaya & Dalgiç, 2021 [63]	Yu et al. 2022 [24]	Cuong et al. 2021 [22]	Fernandes et al. 2021 [44]	
Shan et al. 2021 [79]	Cao et al. 2022 [56]	Fung et al. 2021 [13]	Huang et al. 2021 [49]	
Yu et al. 2021b [66]	Wang et al. 2022 [76]	Lamayo et al. 2021 [46]	Li et al. 2021a [38]	
		Li et al. 2021b [86]	Lugito et al. 2021 [28]	
		Luo et al. 2021 [47]	Rakhmawati et al. 2021 [10]	
		Sijaweshe et al. 2021 [41]	Zhao et al. 2021 [50]	
		Zhou et al. 2021 [39]		
South Asia				
Jahan et al. 2019 [69]	Singh et al. 2019 [35]	Islam et al. 2020 [53]	Sayeed et al. 2020 [43]	
Hassan et al. 2020 [72]	Sharma et al. 2020 [75]	Ashir et al. 2021 [54]	Fernandes et al. 2021 [44]	
Basu et al. 2021 [30]	Iqbal et al. 2021 [60]	Hosen et al. 2021 [51]	Mahmood et al. 2021 [27]	
Kaya & Dalgiç, 2021 [63]	Mohanty et al. 2021 [11]	Rizwan et al. 2021 [45]	Sayeed et al. 2021 [42]	
Europe & Central Asia				
Cam & Ustuner, 2020 [57]	Malte & Enea, 2020 [64]	Jovic et al. 2020 [84]	Saranaloglu et al. 2020 [67]	
Popadic et al. 2020 [59]	Kaya & Dalgiç, 2021 [63]			
Oranci & Cangil Sipic, 2022 [78]				
Middle East & North Africa				
Arafah et al. 2019a [68]	Arafah et al. 2019b [52]	Gueluana et al. 2021 [55]	Stehata & Abdelalim et al. 2021 [33]	
Salanas, 2020 [74]	Arefh et al. 2022 [23]			
Khazarie et al., 2021 [32]	Al Shawi et al. 2022 [71]			
Sub-Saharan Africa				
Arese & Muche, 2020 [71]		No matches found		
Mboya et al. 2020 [73]				
Zenebe et al. 2021 [86]				
Latin America & Caribbean				
No matches found				

Data source: World Bank Data Help Desk; URL: https://datahelpdesk.worldbank.org/knowledgebase/articles/906519-world-bank-country-and-lending-groups.

The list of world regions is based upon the latest classifications by the World Bank.
Problematic use of social media has been explored in different populations (mainly adults and young adults), in multiple ways (mainly via quantity of social media use and the Bergen Social Media Addiction Scale (BSMAS) [25]), and in different contexts (mainly the COVID-19 pandemic). Hence, it is difficult to identify common patterns and draw general conclusions (see Table 1). Nonetheless, the use of social media may have been beneficial during the COVID-19 pandemic, possibly serving as a corrective force that enabled more efficient health communication with safe and timely delivery of information that was provided by close and reliable sources [26]. Protective behaviors and self-efficacy of people may have increased as a result [27], while feelings of impending threat, anxiety, and depression decreased in some instances [28]. However, a larger body of research conducted during the same period describes the opposite (positive) relationship between the increased use of social media (usually more than 2–3 hours/day) and associated concerns among youth [12•,13•] and adults (see the next section for more details).

Problematic use of the Internet in low- and middle-income countries during the COVID-19 pandemic

Research conducted during the COVID-19 pandemic mainly stems from initially affected regions, with most studies (21 of 35) conducted in East Asia. In fact, the intensity of research of PUI in East-Asian countries nearly doubled in the years coinciding with the pandemic (2020–2021), as compared with the years that preceded the pandemic (2018–2019). This was not the case with the rest-of-the-world regions (see Table 2). China was a regional leader in research on the subject, exploring multiple PUI behaviors in different contextual settings and populations during the pandemic. Overall, prevalence estimates of PUI types in Eastern countries were higher than those previously reported. There is recent evidence to suggest that the prevalence estimates in Southeast Asia are higher than in other jurisdictions, but the findings stem from a single meta-analysis performed on nonrepresentative populations [29]. Hence, the present review may provide a more nuanced and better understanding of the situation in regions that were initially affected by the pandemic.

In addition to citizens from affected regions, other populations exposed early to the virus also received considerable scholarly attention. These included medical and nursing students [11,30–34], medical residents, and doctors and nurses, among others [35–37]. However, the list of comorbidities frequently associated with PUI during the pandemic appears similar for medical and general populations. The problems ranged from amplified levels of stress and pronounced traumatic experiences, including depression [19,36–43], anxiety [12•,31,37,44–47], or post-traumatic stress disorder [48] (in which case, the link with PUI was established due to increased exposure to distressing content and disinformation on the Internet), to problems associated with instant gratification and stimulation such as substance use [49] and attention-deficit/hyperactivity [50] disorders.

Across different research topics and contexts, findings suggest that PUI behaviors link to various potential risk factors, broadly categorized as demographic characteristics, personality features, coping styles, parenting strategies, social surroundings, and lifestyle tendencies/habits (see Table 1, section ‘Findings’). Importantly, poor lifestyle tendencies/habits, living conditions, and negative coping styles appear implicated across different types of PUI and LMICs. For instance, poor quantity and quality of sleep (characterized by insufficient sleep hours or disorganized sleeping patterns with inadequate or irregular sleeping periods, and manifested as daytime sleepiness or even insomnia) was repeatedly described as a possible cause or a consequence of PUI during the pandemic [35,51,52]. Lack of physical activities (e.g. exercise and outdoor recreation) [53] and physical discomfort (e.g. headaches, back pains, and finger numbness) were also associated with PUI [54]. Prolonged exposure to inaccurate or distressing content on the Internet was also associated with PUI [30,55]. Regarding negative coping styles, feelings of boredom, isolation, and loneliness, coupled with a lack of social or emotional support from family and friends during long periods of quarantine and lockdown, were often associated with general and the specific forms of PUI [24,44,55].

Limitations

In line with journal aims, the present review focused on recent studies (conducted in the period around the COVID-19 pandemic) and aimed to present findings in a condensed format (offering a snapshot of PUI in LMICs). To achieve this end, the authors performed targeted searches by article titles in bibliographic databases with matching areas of interest. Future studies could benefit from expanded searches covering longer periods (e.g. last five or ten years of research), and extending across different article fields (e.g. keywords, title, abstract, body of text, or combinations thereof), as well as additional academic databases (e.g. Web of Science or Scopus). In essence, the present review scopes the existing evidence
and synthesizes recent findings, thus serving as a useful precursor for future reviews that could systematically assess the quality and quantity of accumulated knowledge and propose viable solutions.

Conclusions
The present study provides evidence on PUI in LMICs shortly before, and during, the COVID-19 pandemic. The articles reviewed mainly focused on the generalized PUI in university students, problematic gaming among children and adolescents, or problematic use of social media in adults, with most reporting higher-than-average prevalence estimates, as compared with earlier studies. Research covering PUI during the COVID-19 pandemic nearly doubled in the initially affected geographical regions and populations that were first exposed to the novel coronavirus. Overall, unfavorable conditions associated with poor lifestyle tendencies/habits, social support, and family relationships may represent risk factors for PUI in LMICs before and during the pandemic.

This paper reviews a modest body of knowledge from less-represented countries, thus contributing to a more comprehensive and balanced view of PUI across different geopolitical, social, and cultural contexts. The summary of findings may inform and inspire future research and policy strategies across concerned regions, countries, or populations, to mitigate PUI.

Editorial disclosure statement
Given his role as Guest Editor, Marc Potenza had no involvement in the peer-review of this article and has no access to information regarding its peer-review. Full responsibility for the editorial process for this article was delegated to Naomi Fineberg.

Conflict of interest statement
MNP reports no conflicts of interest with respect to the content of this manuscript. MNP has consulted for and advised Game Day Data, the Addiction Policy Forum, AXA, Idorsia and Opiant/Lakelight Therapeutics; has been involved in a patent application with Yale University and Novartis; received research support from the Veteran’s Administration, Mohegan Sun Casino and the National Center for Responsible Gaming (now the International Center for Responsible Gaming); participated in surveys, mailings, or telephone consultations related to drug addiction, impulse-control disorders, or other health topics; consulted for law offices, the federal public defender’s office and gambling entities on issues related to impulse-control and addictive disorders; provided clinical care in the Connecticut Department of Mental Health and Addiction Services Problem Gambling Services Program; performed grant reviews for the National Institutes of Health and other agencies; edited journals and journal sections; given academic lectures in grand rounds, CME events, and other clinical/scientific venues; and generated books or chapters for publishers of mental health texts.

ZD reports no conflicts of interest with respect to the content of this manuscript. ZD’s contribution was supported by the Hungarian National Research, Development and Innovation Office (KKP126835; K128614; K134807). The ELTE Eötvös Loránd University receives funding from the Szerencsejáték Ltd. to maintain a telephone helpline service for problematic gambling. ZD has also been involved in research on responsible gambling funded by Szerencsejáték Ltd and the Gambling Supervision Board and provided educational materials for the Szerencsejáték Ltd’s responsible gambling program. The University of Gibraltar receives funding from the Gibraltar Gambling Care Foundation. ZD has been member of a WHO advisory group on the public health consequences of addictive behaviors. In this capacity he has been eligible for travel support from WHO or the host center to attend advisory group meetings but have not been remunerated for their work. However, these funding aren’t related to this study and the funding institution had no role or any influence on this publication.

The other authors (BG, JJ, CMDS and GH) report no disclosures. The views presented in this manuscript represent those of the authors and not necessarily those of the funding agencies.

Data Availability
No data were used for the research described in the article.

Acknowledgements
The publication of this work is kindly supported by the Hungarian National Consortium (Electronic Information Service National Programme, EISZ). ZD’s contribution was supported by the Hungarian National Research, Development and Innovation Office (KKP126835; K128614; K134807). MNP was supported by the Connecticut Council on Problem Gambling, Children and Screens, and the National Institute of Mental Health RF1 MH128614.

References and recommended reading
Papers of particular interest, published within the period of review, have been highlighted as:

- of special interest
- of outstanding interest

1. Our World in Data: Population by income level, 1960 to 2020. Global Change Data Lab; 2022. Available from: (https://ourworldindata.org/grapher/population-by-income-level).

2. United Nations: World population projected to reach 9.8 billion in 2050, and 11.2 billion in 2100. World Population Prospects; 2017. Available from: (https://www.un.org/sw/desa/world-population-projected-reach-98-billion-2050-and-112-billion-2100).
3. The World Bank: World Bank country and lending groups. World Bank Data Help Desk; 2021. Available from: (https://datahelpdesk.worldbank.org/knowledgebase/articles/906519-world-bank-country-and-lending-groups).

4. United Nations Development Programme: Human Development Index (HDI). Human Development Reports; 2019. Available from: (https://hdr.undp.org/en/indicators/137506).

5. Kolář L: Global mental health and COVID-19. Lancet Psychiatry • 2020, 7:655-657, https://doi.org/10.1016/S2215-0366(20)30235-2. A commentary paper that raises awareness on the disrupted global delivery of mental health services during COVID-19 pandemic, with unequal distribution in LMICs.

6. Gjoneska B, Potenza MN, Jones J, Corazza O, Hall N, Sales CMD, Krüger B, Martinotti G, Burkaukas J, Werling AM, et al.: Problematic use of the internet during the COVID-19 pandemic: good practices and mental health recommendations. Compr Psychiatry 2022, 112:152279, https://doi.org/10.1016/j.comppsych.2021.152279. A narrative review by experts of the European Network for Problematic Use of the Internet (EU COST PUI), that summarizes evidence for the impact of PUI on the mental health, and provides recommendations for affected individuals and the general population.

7. Király O, Potenza MN, Stein DJ, King DL, Hodgins DC, Saunders JB, Griffiths MD, Billeux J, Brand M, et al.: Preventing problematic internet use during the COVID-19 pandemic: consensus guidance. Compr Psychiatry 2020, 100:152180, https://doi.org/10.1016/j.comppsych.2020.152180.

8. Henrich J, Heine SJ, Norenzayan A: The weirdest people in the world? Behav Brain Sci 2010, 33:61-83, https://doi.org/10.1017/S0140525X099152X.

9. Gjoneska B, Jones J, Vella AM, Bonanno P, Flora K, Fontalba-Navas A, Hall N, Igiatou L, Kirtava Z, Moreno Sanjuán D, et al.: Citizen consultation on problematic usage of the internet: ethical considerations and empirical insights from six countries. Front Public Health 2021, 9:587459, https://doi.org/10.3389/fpubh.2021.587459.

10. Rakhmawati W, Kosasih CE, Widiasih R, Suryani S, Ariffin H: Internet addiction among male adolescents in Indonesia: a qualitative study. Am J Mens Health (3) 2021, 15, https://doi.org/10.1177/15578983211029459.

11. Mohanty R, Dey P, Hebbar NVR, SinghHN: Effect of internet use on medical students before and after 4g internet service in India: a comparative study. Encephale 2021, 47:189-194, https://doi.org/10.1016/j.encep.2020.10.001.

12. Fung XCC, Siu AMH, Potenza MN, O’Brien KS, Latner JD, Chen C-Y, Chen I-H, Lin C-Y: Problematic use of internet-related activities and perceived weight stigma in schoolchildren: a longitudinal study across different epidemic periods of COVID-19 in China. Front Psychiatry 2021, 12:675839, https://doi.org/10.3389/fpsyt.2021.675839. A longitudinal study that investigates the direct effect of school suspensions and associated lockdowns on problematic Internet behaviors of school-aged children during the pandemic. Comparing data from periods preceding or coinciding with the COVID-19 pandemic, it shows that problematic use of smartphones may have increased during the pandemic.

13. Chen C-Y, Chen I-H, Hou W-L, Potenza MN, O’Brien KS, Lin C-Y, Latner JD: The relationship between children’s problematic internet-related behaviors and psychological distress during the onset of the COVID-19 pandemic: a longitudinal study. J Addict Med (2) 2021, 16:673-680, https://doi.org/10.1097/ADM.0000000000001645. A longitudinal study that investigates problematic smartphone use and problematic gaming, as well as their relationship with psychological distress in school-aged children during the pandemic. It shows that problematic use of the smartphones (but not gaming) may have exacerbated psychological distress during the pandemic.

14. Young KS: Caught in the Net: How to Recognize the Signs of Internet Addiction — and A Winning Strategy for Recovery. John Wiley & Sons; 1998.

15. Tigges J, Lochner C, Ioannidis K, Brand M, Stein DJ, Yücel M, Grant JE, Chamberlain SR: Measurement of the problematic usage of the Internet unidimensional quasitrait continuum with item response theory. Psychol Assess 2021, 33:652-671, https://doi.org/10.1037/pas0000870. Original research that summarizes latest criticism on IAT as a widely used scale for assessment of PUI in LMICs, and proposes a refined version of the instrument.

16. Meeker G-J, Van Den Eijnden RJJM, Vermulst AA, Garretsen HFL: The Compulsive Internet Use Scale (CIUS): some psychometric properties. Cyberpsychol Behav 2009, 12:1-6, https://doi.org/10.1089/cpb.2008.0181.

17. Cheng C, Li AY: Internet addiction prevalence and quality of (real) life: a meta-analysis of 31 nations across seven world regions. Cyberpsychol Behav Soc Netw 2014, 17:755-760, https://doi.org/10.1089/cyber.2014.0317.

18. Pan Y-C, Chiu Y-C, Lin Y-H: Systematic review and meta- • analysis of epidemiology of internet addiction. Neurosci Biobehav Rev 2020, 118:612-622, https://doi.org/10.1016/j.neubiorev.2020.08.013.

19. The largest systematic review and meta-analysis to date, analyzing 113 epidemiologic studies with 693 306 subjects from 31 nations, to estimate the worldwide prevalence of generalized Internet addiction (7.02%) and Internet gaming disorder (2.47%).

20. Dong H, Yang F, Lu X, Hao W: Internet addiction and related psychological factors among children and adolescents in China during the coronavirus disease 2019 (COVID-19) epidemic. Front Psychiatry 2020, 11:00751, https://doi.org/10.3389/fpsyt.2020.00751.

21. Henrich J, Heine SJ, Norenzayan A: The weirdest people in the world? Behav Brain Sci 2010, 33:61-83, https://doi.org/10.1017/S0140525X099152X.

22. Cuong VM, Assanangkornchai S, Wichaidit W, Minh Hanh VT, My Hanh HT: Associations between gaming disorder, parent-child relationship, parental supervision, and discipline styles: findings from a school-based survey during the COVID-19 pandemic in Vietnam. J Behav Addict 2021, 10:722-730, https://doi.org/10.15586/2006.00064.

23. Areeshrnab HN, Fathollahpour F, Bostanabad MA, Ebromhi M, Hosseinizadeh M, Foolad MM: Internet gaming disorder and its relationship with behavioral disorder and mother’s parenting styles in primary school students according to gender in Iran. BMC Psychol 2021, 9:110, https://doi.org/10.1186/s40359-021-00616-4.

24. Yu Y, Peng L, Mo PKH, Yang X, Cai Y, Ma L, She R, Lau JFT: Association between relationship adaptation and Internet gaming disorder among first-year secondary school students in China: mediation effects via social support and loneliness. Addict Behav 2022, 125:107166, https://doi.org/10.1016/j.addbeh.2021.107166.

25. Andreassen CS, Billieux J, Griffiths MD, Kuss DJ, Demetrovics Z, Mazzoni E, Pallesen S: The relationship between addictive use of social media and video games and symptoms of psychiatric disorders: a large-scale cross-sectional study. Psychol Addict Behav 2016, 30:252-262, https://doi.org/10.1037/adb0000160.

26. Zhang SX, Graf-Vlachy L, Looi KH, Su R, Li J: Social media use as a predictor of handwashing during a pandemic: evidence from COVID-19 in Malaysia. Epidemiol Infect 2020, 148:e261, https://doi.org/10.1017/S0950268820002575.

27. Mahmood QK, Jafree SR, Mukhtar S, Fischer F: Social media use, self-efficacy, perceived threat, and preventive behavior in times of COVID-19: results of a cross-sectional study in Pakistan. Front Psychol 2021, 12:562042, https://doi.org/10.3389/fpsyg.2021.562042.

28. Lugito NPH, Damay V, Chyntya H, Sugianto N: Social media exposure and mental health problems during coronavirus disease 2019 pandemic in Indonesia. J Educ Health Promot 2021, 10:200, https://doi.org/10.4103/jehp.jehp_1032_20.
Biol Rhythm among students: a cross-sectional study in Bangladesh

Association between internet addiction and sleep quality

Problematic internet use among students in Bahir Dar, Ethiopia: a community university-based cross-sectional study

Internet addiction and associated factors among left-behind children in China: a cross-sectional study

BMC Psychol version of the revised internet gaming cognition scale among adolescents in China: maladaptive cognitions as potential determinants of internet gaming disorder, Int J Environ Res Public Health 2021, 17:E290, https://doi.org/10.3390/ijerph17010290

Excessive Internet use and self-esteem among Internet users in Egypt, Int J Ment Health 2019, 48:95-105, https://doi.org/10.1080/20474481.2019.1611167

Internet use during coronavirus disease of 2019 pandemic: psychiatric history and sociodemographics as predictors, Indian J Psychiatry 2020, 62:S383-S390, https://doi.org/10.4103/psychiatry.IndianJPsychiatry_1036_20

Internet addiction and substance use behavior during the COVID-19 pandemic in China, Am J Addict 2020, 29:268-270, https://doi.org/10.1111/ajad.13066

Internet addiction increases in the general population during COVID-19: evidence from China, Am J Addict 2021, 30:389-397, https://doi.org/10.1111/ajad.13156

A large-scale, cross-sectional study (on 20 472 participants from China), investigating PUI in the early period of the COVID-19 pandemic (March–April, 2020). The results suggest relatively high prevalence estimates (36.7%) and identify potential risk factors including poor social support and perceived impact on the mental health due to the threat from the COVID-19 pandemic.
87. Young KS: Internet addiction: the emergence of a new clinical disorder. Cyberpsychol Behav 1998, 1:237-244, https://doi.org/10.1089/cpb.1998.1.237

88. Caplan SE: Theory and measurement of generalized problematic Internet use: a two-step approach. Comput Hum Behav 2010, 26:1089-1097, https://doi.org/10.1016/j.chb.2010.03.012

89. Pontes HM, Király O, Demetrovics Z, Griffiths MD: The conceptualisation and measurement of DSM-5 internet gaming disorder: the development of the IGD-20 test. PLoS One 2014, 9:e110137, https://doi.org/10.1371/journal.pone.0110137

90. King DL, Delfabbro PH: The cognitive psychopathology of internet gaming disorder in adolescence. J Abnorm Child Psychol 2016, 44:1635-1645, https://doi.org/10.1007/s10802-016-0135-y

91. Xanidis N, Brignell CM: The association between the use of social network sites, sleep quality and cognitive function during the day. Comput Hum Behav 2016, 55:121-126, https://doi.org/10.1016/j.chb.2015.09.004