The seasonal variations of allelopathic activity and allelopathic substances in *Brachiaria brizantha*

Ai Kobayashi and Hisashi Kato-Noguchi

Abstract

Background: Controlling weeds through allelopathy is one strategy to reduce dependency on synthetic herbicides. The plant shoots of the grass *Brachiaria brizantha* incorporated into the field soil were found to inhibit the growth of several plant species. We investigated the variations of allelopathic activity and allelopathic substances in *B. brizantha* harvested in June, October and January.

Results: All extracts of *B. brizantha* obtained from June, October and January inhibited the root and shoot growth of cress, lettuce, *Phleum pretense* and *Lolium multiflorum* in a concentration dependent manner. However, the inhibitory activity of *B. brizantha* of June and October was greater than that of *B. brizantha* of January. Concentrations of three potent allelopathic active substances, (6R,9S)-3-oxo-α-ionol, (6R,9R)-3-oxo-α-ionol and 4-ketopinoresinol were also greater in *B. brizantha* of June and October than those in *B. brizantha* of January.

Conclusion: The results suggest that the allelopathic activity and the levels of those allelopathic active substances are greater in *B. brizantha* of June and October than those in *B. brizantha* of January. It is possible that *B. brizantha* could be useful for a weed suppressive residue or soil additive materials in the variety of agricultural settings to develop sustainable agriculture options. The effectiveness of *B. brizantha* of June and October as a weed suppressive agent may be greater than that of January.

Keywords: Allelopathy, *Brachiaria brizantha*, Growth inhibitor, Phytotoxicity, Soil additive
B. brizantha shoots may be also useful as soil additives for weed management options in some sustainable agricultural settings because of their allelopathic active substances.

B. brizantha is a perennial grass, 1–2 m in height, with 2 m deep roots and rhizomes. The plant shoots with long leaf blades grow from spring to autumn and die in winter (Miles et al. 1996; Cook et al. 2005). Therefore, it is important to evaluate the variations of the allelopathic activity and the levels of allelopathic active substance in *B. brizantha* for soil additive materials. However, there is no information available about those variations. In the present research, allelopathic activity of *B. brizantha* shoots and the level of allelopathic active substances in the shoots were determined in June, October and January.

Methods

Plant materials

B. brizantha (Hochst. ex A. Rich.) Stapf. (common name; palisade grass, bread grass, syn; *Urochloa brizantha* Hochst. ex A. Rich.) was grown in the research field of National Institute for Agro-Environmental Sciences, Tsukuba, Japan. Shoots of the plants were harvested in June and October 2011 and January 2012, and stored at −20 °C until extraction. Cress (*Lepidium sativum* L.) and lettuce (*Lactuca sativa* L.) were used due to their uniform establishment and sensitivity as a seeding indicator (Kato-Noguchi et al. 2010, 2014). Weed species, *Phleum pratense* L. and *Lolium multiflorum* Lam. were also used for bioassay.

Extraction and bioassay

B. brizantha (100 g dry weight) shoots were extracted with 1 L of 70 % (v/v) aqueous methanol for 2 days. After filtration with filter paper (No. 2; Toyo, Tokyo, Japan), the residue was extracted again with 1 L methanol for 2 days and filtered, and the two filtrates were combined. An aliquot of the extract (final assay concentration of tested samples corresponded to the extracts obtained from 0.3, 1, 3, 10, 30, 100 and 300 mg dry weight of *B. brizantha* shoots per mL) was evaporated to dryness, dissolved in a 0.2 mL of methanol and added to a sheet of filter paper (No. 2) in a 3-cm Petri dish. The methanol was evaporated in a fume hood. Then, the filter paper in the Petri dishes was moistened with 0.8 mL of 0.05 % (v/v) polyoxyethylene sorbitan monolaurate (Tweem 20). Ten seeds of cress or lettuce, or 10 seedlings of *B. brizantha* shoots may be also useful as soil additives for weed management options in some sustainable agricultural settings because of their allelopathic active substances.

B. brizantha is a perennial grass, 1–2 m in height, with 2 m deep roots and rhizomes. The plant shoots with long leaf blades grow from spring to autumn and die in winter (Miles et al. 1996; Cook et al. 2005). Therefore, it is important to evaluate the variations of the allelopathic activity and the levels of allelopathic active substance in *B. brizantha* for soil additive materials. However, there is no information available about those variations. In the present research, allelopathic activity of *B. brizantha* shoots and the level of allelopathic active substances in the shoots were determined in June, October and January.

Methods

Plant materials

B. brizantha (Hochst. ex A. Rich.) Stapf. (common name; palisade grass, bread grass, syn; *Urochloa brizantha* Hochst. ex A. Rich.) was grown in the research field of National Institute for Agro-Environmental Sciences, Tsukuba, Japan. Shoots of the plants were harvested in June and October 2011 and January 2012, and stored at −20 °C until extraction. Cress (*Lepidium sativum* L.) and lettuce (*Lactuca sativa* L.) were used due to their uniform establishment and sensitivity as a seeding indicator (Kato-Noguchi et al. 2010, 2014). Weed species, *Phleum pratense* L. and *Lolium multiflorum* Lam. were also used for bioassay.

Extraction and bioassay

B. brizantha (100 g dry weight) shoots were extracted with 1 L of 70 % (v/v) aqueous methanol for 2 days. After filtration with filter paper (No. 2; Toyo, Tokyo, Japan), the residue was extracted again with 1 L methanol for 2 days and filtered, and the two filtrates were combined. An aliquot of the extract (final assay concentration of tested samples corresponded to the extracts obtained from 0.3, 1, 3, 10, 30, 100 and 300 mg dry weight of *B. brizantha* shoots per mL) was evaporated to dryness, dissolved in a 0.2 mL of methanol and added to a sheet of filter paper (No. 2) in a 3-cm Petri dish. The methanol was evaporated in a fume hood. Then, the filter paper in the Petri dishes was moistened with 0.8 mL of 0.05 % (v/v) polyoxyethylene sorbitan monolaurate (Tweem 20). Ten seeds of cress or lettuce, or 10 seedlings of *P. pratense* or *L. multiflorum* after germination in the darkness at 25 °C for 36–48 h were placed in the Petri dishes. The length of roots and shoots of these seedlings were measured after 48 h of incubation in the darkness at 25 °C. Controls were treated exactly as described above, with the exception that 0.2 mL methanol was used instead of *B. brizantha* extracts. Inhibitory activity (%) was determined by the formula: [(control plant length − plant length incubated with extract)/control plant length] × 100. The bioassay was repeated five times using a randomized design with 10 plants for each determination. Significant differences were examined by Duncan’s multiple comparison tests.

Quantification of allelopathic active substances

Brachiaria decumbens shoots was extracted as described above and the extracts were concentrated at 40 °C in vacuo to produce an aqueous residue. The aqueous residue was adjusted to pH 7.0 with 1 M phosphate buffer and partitioned three times against an equal volume of ethyl acetate as described by Kato-Noguchi et al. (2014). The ethyl acetate fraction was evaporated to dryness and separated on a column of silica gel (100 g, silica gel 60, 70–230 mesh; Merck), eluted with 20, 30, 40, 50, 60, 70 and 80 % ethyl acetate in n-hexane (100 mL per step) and ethyl acetate (100 mL). Allelopathic active substances, (6R,9R)-3-oxo-α-ionol and (6R,9S)-3-oxo-α-ionol, were obtained by the elution with 70 % ethyl acetate in n-hexane on the silica gel column, and 4-ketopinoresinol was obtained by the elution with 80 % ethyl acetate in n-hexane on the silica gel column (Kato-Noguchi et al. 2014).

For quantification of (6R,9R)-3-oxo-α-ionol and (6R,9S)-3-oxo-α-ionol, the fraction obtained with 70 % ethyl acetate in n-hexane on the silica gel column was evaporated. The residue was then dissolved in 20 % (v/v) aqueous methanol (2 mL) and loaded onto reverse-phase C18 cartridges (YMC Ltd., Kyoto, Japan). The cartridge was eluted with 20, 40, 60 and 80 % (v/v) aqueous methanol (15 mL per step). The active fraction was eluted by 40 % aqueous methanol and evaporated to dryness. The residue was injected into reverse-phase HPLC (4.6 mm i.d. × 250 mm, Inertsil ODS-3, GL Sciences, Osaka, Japan) eluted at a flow rate of 0.8 mL min⁻¹ with 55 % aqueous methanol and detected at 220 nm. Retention time of (6R,9R)-3-oxo-α-ionol and (6R,9S)-3-oxo-α-ionol was 65 and 70 min, respectively. Quantification of those compounds was performed by measuring their peak areas on the chromatogram of HPLC. The quantification was repeated three times independently with three assays for each determination. Significant differences were examined by Duncan’s multiple comparison tests.

The 1H-NMR spectrum of (6R,9R)-3-oxo-α-ionol, δH: 1.00 (3H, s), 1.03 (3H, s), 1.24 (3H, d, J = 6.8 Hz), 1.94 (3H, d, J = 1.0 Hz), 2.05 (1H, d, J = 16.6 Hz), 2.40 (1H, d, J = 16.6 Hz), 2.65 (1H, d, J = 9.3 Hz), 4.27 (1H, m), 5.58 (1H, dd, J = 15.1, 8.8 Hz), 5.70 (1H, dd, J = 15.2, 5.9 Hz), 5.88 (1H, s). The specific rotation of the compound ([α]D²⁵) was +210° (c 0.03, CH₂Cl₂). The 1H-NMR spectrum of (6R,9S)-3-oxo-α-ionol, δH: 0.98 (3H, s), 1.03...
For quantification of 4-ketopinoresinol obtained with 80 % ethyl acetate in n-hexane on the silica gel column was evaporated. The residue was then dissolved in 20 % (v/v) aqueous methanol (2 mL) and loaded onto reverse-phase C18 cartridges. The cartridge was eluted with 20, 40, 60 and 80 % (v/v) aqueous methanol (15 mL per step). The active fraction was eluted by 40 % aqueous methanol and evaporated to dryness. The residue was then dissolved in 20 % (v/v) aqueous methanol and detected at 220 nm. Retention time of 4-ketopinoresinol was 145 mm and quantification of the compound was performed by measuring their peak areas as described above.

The 1H-NMR spectrum of 4-ketopinoresinol, δH: 3.25 (m, 1 H, H1), 3.47 (dd, J = 9.2, 3.8 Hz, 1 H, H5), 3.90 (s, 3 H, OCH3), 3.92 (s, 3 H, OCH3), 4.04 (dd, J = 9.4, 4.5 Hz, 1 H, H8a), 4.34 (dd, J = 9.3, 6.8 Hz, 1 H, H8b), 5.34 (d, J = 4.0 Hz, 1 H, H2), 5.35 (d, J = 3.6 Hz, 1 H, H6), 6.8 (m, 2H, aromatic H), 6.9 (m, 4H, aromatic H). The 13C NMR spectrum of the compound, δC: 50.1 (C1), 53.5 (C5), 56.2 (OCH3), 56.2 (OCH3), 72.8 (C8), 83.5 (C2), 84.8 (C6), 107.9 (C′2), 108.2 (C2″), 114.5 (C5″), 114.8 (C5″), 118.1 (C6″), 118.5 (C6″), 131.2 (C1″), 132.4 (C1″), 144.5 (C4″), 146.2 (C′4″), 146.9 (C3″), 147.1 (C3″), 177.1 (C4). The specific rotation of the compound ([α]D925) was +214° (c 0.05, CH2Cl2).

Results and discussion

Three extracts obtained from 10 mg B. brizantha shoots harvested in June, October and January inhibited the growth of cress roots and shoots (Fig. 1). The inhibitory activity of the June extract on the cress roots and shoots was 76.1 and 79.5 %, respectively, that of the October extract on the cress roots and shoots was 55.7 and 71.5 %, respectively, and that of the January extract on the cress roots and shoots was 35.8 and 15.8 % respectively. Although B. brizantha is perennial plant, its shoots re-start to grow around May and die in November and only its underground parts survive after November. The shoots of the plants were growing stage in June and mature stage in October and both shoots were green. The shoots of January had already died and turned brown (Fig. 2). The results indicate that allelopathic activity of B. brizantha of June and October was greater than that of January. Thus, green plant materials may be better than dead plant materials for a weed suppressive residue or soil additive materials.

Inhibitory activity of B. brizantha shoot extracts obtained from June, October and January was determined by root and shoot growth of cress, lettuce, P. pretense and L. multiflorum (Fig. 2). All extracts inhibited the growth of the roots and shoots of those test plants with extract-concentration dependent. The concentrations required for 50 % growth inhibition on the roots and shoots of the test plants in the assay (defined as I50) were determined by a logistic regression (Y = b + a log10X). Y: % length, X: concentration, a: slope, b: intercept) analysis (Table 1). Comparing those I50 values, inhibitory activity of the June extract was 1.1- to 1.8-fold and 4.4- to 27.8-fold greater than that of the October extract and January extract, respectively. These results suggest that all B. brizantha extracts have inhibitory effects on both dicotyledonous plants (cress and lettuce) and monocotyledonous weed plants (P. pretense and L. multiflorum) and the June extract has the greatest inhibitory activity. (6R,9S)-3-oxo-α-ionol, (6R,9R)-3-oxo-α-ionol and 4-ketopinoresinol were isolated from B. brizantha shoots as three major active substances in B. brizantha (Kato-Noguchi et al. 2014). Thus, concentrations of those allelopathic active substances, (6R,9S)-3-oxo-α-ionol, (6R,9R)-3-oxo-α-ionol and 4-ketopinoresinol were determined in B. brizantha shoots of June, October and January (Fig. 3). Those concentrations in the January shoots were significantly lower than those in the June and October shoots. Concentration of (6R,9S)-3-oxo-α-ionol, (6R,9R)-3-oxo-α-ionol and 4-ketopinoresinol in the June shoots was 2.3-, 2.2- and 2.4-fold greater than that in the January shoots, respectively. This result is consistent with the result of inhibitory activity of the shoot extracts of June, October and January (Table 1) and also indicates that June and October shoots may be better than January shoots for a weed suppressive residue or soil additive materials.

(6R,9S)-3-Oxo-α-ionol, (6R,9R)-3-Oxo-α-ionol and 4-ketopinoresinol inhibited the growth of cress at concentrations greater than 10, 30 and 30 μM, respectively. I50 values on cress roots and shoots were 223 and 156 μM for (6R,9R)-3-Oxo-α-ionol, respectively, and 41.7 and 25.1 μM for (6R,9S)-3-Oxo-α-ionol, respectively, and 83.5 and 141 μM for 4-ketopinoresinol, respectively (Kato-Noguchi et al. 2014). Therefore, the inhibitory activity of (6R,9S)-3-Oxo-α-ionol was 5.3 to 6.2- and 2 to 5.6-fold greater than that of (6R,9R)-3-Oxo-α-ionol and 4-ketopinoresinol, respectively. These results indicate that the growth inhibitory activity of (6R,9S)-3-Oxo-α-ionol is the greatest, followed by 4-ketopinoresinol and (6R,9R)-3-Oxo-α-ionol.
3-Oxo-α-ionol was first identified as the aglycone of a glucoside isolated from *Rubus idaeus* (Pabst et al. 1992; D’Abrosca et al. 2004) and was reported to act as allelopathic active substance in *rattail fescue* (Kato-Noguchi et al. 2010). However, the specific biological activities of (6R,9R)-3-oxo-α-ionol and (6R,9S)-3-oxo-α-ionol were first reported by Kato-Noguchi et al. (2014). 4-Keto-pinoresinol was first isolated from *Aegilops ovate* as germination inhibitor (Lavie et al. 1974; Cooper et al. 1977), but the information on the biological activity of the compound is very limited.

Phytotoxic active substances in plants can be released into the soil, either by exudates from living plant tissues or by decomposition of plant residues, and act as allelopathic active substances which inhibit seed germination, seedling establishment and plant growth (Bais et al. 2006; Bonanomi et al. 2006; Belz 2007). The present results showed that *B. brizantha* inhibited root and shoot growth of four test plant species including weed plants (*P. pretense* and *L. multiflorum*) in a concentration dependent manner. Thus, *B. brizantha* could be useful for a weed suppressive residue or soil additive materials in
Fig. 2 Effects of aqueous methanol extracts of *B. brizantha* shoots harvested in June (filled circle), October (unfilled circle) and January (filled diamond) on root and shoot growth of cress, lettuce, *P. pratense* and *L. multiflorum*. Concentrations of tested samples corresponded to the extracts obtained from 0.3, 1, 3, 10, 30, 100 and 300 mg dry weight of *B. brizantha* per mL. Mean ± SE from five independent experiments with ten plants for each determination are shown.
the variety of agricultural settings to reduce dependency on synthetic herbicides. Natural products are considered to be more environmentally benign than most synthetic herbicides. Their environmental half-lives can be expected to be shorter, and the fact that they have been part of the natural environment suggests a lesser demand for regulatory measures (Duke et al. 2000). In addition, *B. brizantha* has been reported to have a potential to enhance mineral nutrients (Souza et al. 2006). Further studies are required to determine the effectiveness of *B. brizantha* on weeds in the field conditions.

Conclusion

The extracts of *B. brizantha* shoots harvested in June, October and January inhibited root and shoot growth of cress, lettuce, *Phleum pretense* and *Lolium multiflorum* in a concentration dependent manner. However, the inhibitory activity of *B. brizantha* of June and October was greater than that of *B. brizantha* of January. Concentrations of three allelopathic active substances, (6R,9S)-3-oxo-α-ionol, (6R,9R)-3-oxo-α-ionol and 4-ketopinoresinol were also greater in *B. brizantha* shoots of June and October than those in *B. brizantha* shoots of January. Therefore, *B. brizantha* could be useful for a weed suppressive residue or soil additive materials in the variety of agricultural settings to develop sustainable agriculture options due to those allelopathic active substances. The effectiveness of *B. brizantha* of June and October as a weed suppressive agent may be greater than that of January.

	June	October	January
Cress			
Root	4.5	6.3	19.8
Shoot	2.8	4.9	22.3
P. pretense			
Root	2.5	4.5	55.7
Shoot	5.3	7.9	25.3
L. multiflorum			
Root	1.8	2.5	23.7
Shoot	4.4	4.7	122.5

The values were determined by a logistic regression analysis after bioassays.
Abbreviations

I50: concentrations required for 50 % growth inhibition.

Authors’ contributions

KA is responsible for the whole experiments and wrote the article. HK-N is responsible for experimental design, result interpretation, made discussion and conclusion. Both authors read and approved the final manuscript.

Acknowledgements

The authors thank Dr. Fujii Y (National Institute for Agro-Environmental Science, Tsukuba, Japan) for giving us plant materials of B. brizantha. The authors thank Dr. Ohno O and Suenaga K (Department of Chemistry, Keio University, Yokohama, Japan) for NMR analyses and specific rotation measurements of the compounds.

Compliance with ethical guidelines

Competing interests

The authors declare that they have no competing interests.

Received: 26 February 2015 Accepted: 27 August 2015

Published online: 19 September 2015

References

Bais HP, Weir TL, Perry LG, Gilroy S, Vivanco JM (2006) The role of root exudates in rhizosphere interactions with plants and other organisms. Annu Rev Plant Biol 57:233–266
Belz RG (2007) Allelopathy in crop/weed interactions—an update. Pest Manag Sci 63:308–326
Bonanomi G, Sicurezza MG, Caporaso S, Esposito A, Mazzoleni S (2006) Phytotoxicity dynamics of decaying plant materials. New Phytol 169:571–578
Cook BG, Pengelly BC, Brown SD, Donnelly JL, Eagles DA, Franco MA, Hanson J, Mullen BF, Partridge IJ, Peters M, Schultz-Kraft R (2005) Tropical forages. CSIRO, Brisbane
Cooper R, Levy EC, Lavie D (1977) Novel germination inhibitors from Aegilops ovata L. J Chem Soc Chem Comm 21:794–795
D’Abrosca B, DellaGreca M, Fiorentino A, Monaco P, Oriano P, Temussi F (2004) Structure elucidation and phytotoxicity of C9 nor-isoprenoids from Centrum parvis. Phytochemistry 65:497–505
Duke SC, Dayan FE, Romagni JG, Rimando AM (2000) Natural products as sources of herbicide, current status and future trends. Weed Res 40:99–111
Inderjit (1996) Plant phenolics in allelopathy. Bot Rev 62:186–202
McGregor JT Jr, Smith RJ Jr, Talbert RE (1988) Broadleaf signalgrass (Brachiaria platyphylla) duration of interference in rice (Oryza sativa). Weed Sci 36:747–750
Kato-Noguchi H, Yamamoto M, Tamura K, Teruya T, Suenaga K, Fujii Y (2010) Isolation and identification of potent allelopathic substances in rat tail fescue. Plant Grow Regul 60:127–131
Kato-Noguchi H, Kobayashi A, Ohno O, Kimura F, Fujii Y, Suenaga K (2014) Phytotoxic substances with allelopathic activity may be central to the strong invasive potential of Brachiaria brizantha. J Plant Physiol 171:525–530
Lavie D, Levy EC, Choen A, Evenari M, Guttermann Y (1974) New germination inhibitor from Aegilops ovata L. Nature 249:388
Macias FA, Molinillo JMG, Varela RM, Galindo JGG (2007) Allelopathy—a natural alternative for weed control. Pest Manag Sci 63:327–348
Martins D, Martins CC, Costa NV (2006) Allelopathic potential of solutions of soils cultivated with Brachiaria brizantha: effects on some pasture grass and weeds seeds. Planta Daninha 24:61–70
Miles JW, Maas BL, do Valle CB, Kumble V (1996) Brachiaria: biology, agronomy and improvement. CIAT, Embrapa, Brazil
Narwal SS (1999) Allelopathy in weed management. In: Narwal SS (ed) Allelopathy update, vol 2, Basic and applied aspectsScience Publishers Inc, Enfield, pp 203–254
Pabst A, Barona D, Sémonon E, Schreier P (1992) Two diastereomeric 3-oxo-α-ionol-β-glucosides from raspberry fruit. Phytochemistry 31:1649–1652
Putnam AR (1988) Allelochemicals from plants as herbicides. Weed Technol 2:510–518
Rodrigues APDC, Laura VA, Pereira SR, Deiss C (2012) Allelopathy of two Brachiaria species in seeds of three species of Stylosanthes. Ciencia Rural 42:1758–1763
Souza LS, Velini ED, Martins D, Rosolem CA (2006) Allelopathic effects of Brachiaria decumbens on the initial development of seven crops. Planta Daninha 24:657–668
Weston LA (1996) Utilization of allelopathy for weed management in agroecosystems. Agron J 88:860–866