A possible scenario for thermally activated avalanches in type-II superconductors

R. Mulet, R. Cruz* and E. Altshuler
Superconductivity Laboratory, Physics Faculty-IMRE,
University of Havana
La Habana 10400, Cuba

March 9, 2018

Abstract

Using a simple cellular automaton with stochastic rules we show the possible emergence of thermally activated avalanches (power law distributed) in type-II superconductors. Scaling relations between the exponents characterizing these distributions and those obtained from field driven experiments are derived and proved through simulations. It is also shown that the conditions for the appearance of these avalanches are independent of the pinning mechanism. The relevance of our simulations for recently reported experimental results is also outlined.

PACS: 64.60.Lx, 74.69.Ge

Keywords: Type-II Superconductivity, Self-organized criticality

1 Introduction

Magnetic flux penetrates type-II superconductors above a certain critical field $H_{cl}$ in the form of vortices. The interaction of these vortices with the pinning centers produces a magnetic flux profile inside the superconductor with a slope proportional to the critical current density inside the sample,

*Present address: ICAI, University of Stuttgart
\( j_c \), defined as the maximum current density the material supports without dissipation, a situation which is accounted by the so called Bean’s Critical State Model \[1\]. This picture, as de Gennes first noted \[2\], is very similar to the case of sandpiles, where a constant slope appears in the pile resulting from the competition between gravity and the friction between grains.

In 1987, Bak et al \[3, 4\] proposed a theory – now known as Self Organized Criticality theory (SOC) – to explain the existence of self similar structures in Nature. Since then, SOC has been used to interpret the dynamics of many size avalanches in sandpiles \[5\], earthquakes \[6\], evolution \[7\], and other phenomena, see \[8\] for a general review.

The occurrence of self-organized criticality was soon searched also in superconductors where field driven experiments have been designed \[9, 10, 11\] and many numerical simulations developed \[12, 13, 14, 15, 16, 17\], unfortunately without conclusive answers.

Superconductors differ from most systems exhibiting SOC by the relevant role played by the temperature. The temperature causes the relaxation of the critical state leading to a nearly logarithmic magnetization decay, \( m(t) \sim \ln(t) \) \[18\]. In the early 90’s many researchers tried to relate the role played by the temperature to the existence of many size avalanches in relaxation experiments \[19, 20, 21, 22, 23\]. However in 1995 Bonabeau and Lederer \[24, 25\], approximatively solved the diffusion equation for the magnetic field inside a superconducting slab and demonstrated that (within the usually accessible time scales in the experiments) it is impossible to determine the existence of thermally activated avalanches by classical magnetic relaxation measurements, i.e by the study of the decay of the mean value of the magnetization in the sample \[18, 23\].

In 1998 Aegerter \[26\] studied the magnetic relaxation of a Bismuth single crystal but instead of the usually measured mean value of \( m(t) \) \[18\] he put attention to the fluctuations during the decay of the magnetization and showed evidences of power law distributed thermally activated avalanches.

In this work we develop a simple scenario able to account for the existence of these thermally activated avalanches. This does not mean we claim for the existence of SOC during the relaxation of the magnetization. SOC is well defined only for a system in a marginal stationary state and it is not the case for the vortex lattice in the presence of thermal activation. What we are claiming is that, because of the complex interaction between vortices, the pinning centers and the temperature, many size avalanches of moving vortices may produce the relaxation of the critical state as previously determined in
The remaining of the paper is organized as follows. In the next section we describe the Cellular Automaton used in our simulations. In section 3 we present and discuss the numerical results. Then, section 4 is devoted to the study of the scaling relations between our distributions and those usually obtained in field driven experiments. In section 5 we outlined some conditions needed for the occurrence of many sizes thermally activated avalanches and finally in section 6 the conclusions are given.

2 The model

While the use of “real” forces between vortices in molecular dynamics simulations \cite{12, 13} better resemble the experimental situation than simple cellular automata, they are by far more time consuming and it is an important drawback of the method, specially when we are looking for critical exponents or when we introduce the effects of the temperature in the system.

Recently, to neglects these problems Bassler and Paczuski \cite{14} introduced a simple cellular automaton to study the behaviour of the vortex lattice in type-II superconductors. This cellular automaton avoids part of the relevant physics of the vortex lattice such as the variation of the pinning strenght with the increasing field, the possible mistmach between the vortex lattice and the pinning centers, the elasticity of the vortex lattice, etc. However, it contains the interaction between vortices and with the pinning centers, the long range order of the vortex interaction, first by the introduction of the parameter \( r \) (see below), but also implicitly assuming that each lattice cell contains more than one vortex. In addition it is able to predict the self organization of the lattice in a critical state characterized by power law distributed avalanches \cite{14, 15} and the irreversibility of the magnetization. Then, aimed at describing the influence of the temperature on this critical state we adopt this model with some modifications.

The cellular automata consists in a 2D honeycomb lattice, where each site is characterized by the number of vortices on it \( m(x) \), and by its pinning strength \( V(x) \) equal to 0 with probability \( p \), and to \( q \) with probability \( 1 - p \). The force acting on a vortex at site \( x \) in the direction to site \( y \) is calculated as:

\[
F_{x \to y} = -V(x) + V(y) + (m(x) - m(y) - 1)
\]
\[ + r [m(x_1) + m(x_2) - m(y_1) - m(y_2)] \] (1)

where \( x_1 \) and \( x_2 \) are the nearest neighbors of \( x \) (other than \( y \)) while \( y_1 \) and \( y_2 \) are the nearest neighbors of \( y \) (other than \( x \)) and \( r \) is a measure of their contribution to the total force on the vortex \( x \) \((0 < r < 1)\). A vortex in the site \( x \), moves to its neighbor site \( y \) if the force acting on it in that direction is greater than zero. If the force in more than one direction is greater than zero, then one of them is chosen at random [14, 15, 16].

To introduce the effect of the temperature we assumed that sites where the forces are lower than zero still have a probability of motion given by:

\[ P_{x \to y} \sim \exp(-U(j)/kT) \] (2)

where \( k \) is the Boltzman’s constant and \( T \) is the temperature. The current, \( j \), was locally calculated using the gradient of \( m(x) \) and \( U(j) \) represents different pinning barriers proposed in the literature \( U(j) = U_o\gamma_c/j, U(j) = U_o \ln(j_c/j) \) and \( U(j) = U_o(1 - j/j_c) \) [27].

An avalanche starts by randomly choosing a lattice site, and calculating (2). If it is smaller than a random number the procedure is repeated, else the vortex moves perturbing its neighbours. Then, the direction of motion of the new unstable vortices is calculated using (1). At this point, all the sites are updated in parallel until no more unstable sites persist. The avalanche size is defined as the number of topplings corresponding to the thermal activation of one vortex while the avalanche duration is defined as the number of updatings necessary to complete one avalanche.

In all the cases the procedure was repeated for \( 10^4 \) m.c.s, were one m.c.s was defined by the \( L^2 \) calculation of (2), and lattices up to \( L = 200 \) were used. The initial configuration was obtained slowly adding vortices to the system (at \( T = 0 \)) until a critical slope was reached [14]. The boundaries “parallel to the net vortex motion” were assumed periodic while the other two were fixed to mimic the applied external field.

The magnetization, \( M \) was calculated as the mean magnetic field inside the sample minus the external applied field [17], i.e.,

\[ M = \sum_{i=0}^{i=L} B(i) - H \] (3)

where \( H \) is the field, i.e. the number of vortices, at the borders of the lattice.
3 Numerical results

Figure 1 shows typical relaxation curves obtained for systems of different sizes using a vortex glass-like potential \( U(j) \sim j_c/j \) \([27]\) and the algorithm described above. In Figure 2 is represented the relaxation curve for a system with \( T \sim \infty \), it means when we disregard the avalanche-like behavior previously explained avoiding the calculation of equation (1) after a thermal jump.

In both figures (see also the inset) three regimes are present, a plateau, then a logarithmic relaxation, and finally another plateau due to finite size effects. Only the time scales for these regimes are different, but this is irrelevant from the experimental point of view. So, as already noted before \([24, 25]\) our results suggest that it is not possible to decide about the existence or not of thermally activated vortex avalanches from “simple thermodynamic magnetic” relaxation measurements. Other pinning potential as well as different \( U_0/kT \) relations were used \([27]\) and no fundamental differences with the previous results were obtained.

Figure 3 and 4 represent the integrated distribution of avalanche sizes, \( D_{int}(s) \), and the integrated distribution of avalanche times, \( D_{int}(t) \) obtained using a classical Anderson-Kim potential, \( U(j) = U_o(1 - j/j_c) \) \([28, 27]\), for a system with \( L = 200 \) and \( U_0/kT = 10 \), as before, other pinning potentials were also used, resulting in a similar behavior. These distributions were obtained using the avalanche sizes and times (defined in section 2) obtained during all the relaxation process.

As figure 3 and 4 clearly show, many size avalanches emerge. It does not mean the system is critical, instead it is relaxing from a critical state to its corresponding thermodynamic equilibrium. What we are showing is that this relaxation could proceed by means of many size avalanches in accordance with recent experimental results \([26]\). However, somehow more surprisingly, we will show in the next section that the exponents characterizing these distributions are related through simple scaling relations to the exponents derived in the context of SOC for systems in a critical state \([14, 15]\).

Considering that \( D_{int}(s) \) follows a power law:

\[
D_{int}(s) \sim s^{-\tau_n}
\]  

the estimated exponent form figure 3 was \( \tau_n = 2.70 \pm 0.1 \) (different from the

\[\text{1\footnote{The meaning of this name will be clarified below}}\]
\( \tau = 1.63 \) obtained in references [14] and [15] for a field driven experiment) and, assuming \( D_{\text{int}}(t) \sim t^{-\tau_n} \) for the integrated distribution of avalanche times, we got from figure 4, \( \tau_{tn} = 4.0 \pm 0.2 \).

It is worth to mention here that the exponent \( \tau_n \) was also experimentally determined in reference [26] and reported as \( \tau_n = 2.0 \), lower than our value. This divergence can be explained since figures 3 and 4 represent the distribution of avalanches obtained for all the relaxation process, i.e starting at the critical state and finishing at equilibrium, a situation impossible to account for in real experimental situations.

To determine the distribution of avalanche sizes, using just part of the relaxation curves, gives different numerical estimates for \( \tau_n \) and \( \tau_{tn} \) as is evident from figure 5. In fact, figure 5 represents five avalanche size distributions, \( P(s) \), obtained for different time intervals of the relaxation curve, from the upper to the lower curve, \( t = 1 - 10 \), \( t = 11 - 100 \), \( t = 101 - 1000 \), \( t = 1001 - 10000 \) and \( t = 10001 - 100000 \) m.c.s, which superposition corresponds to the full relaxation of the system (see figure 1). The straight line represents the integrated distribution of avalanche sizes, \( D_{\text{int}}(t) \), obtained in figure 3, \( \tau = 2.7 \). Then, from the figure we can conclude that can be predicted different exponents depending on the range of time measured. For low enough times, the exponent is lower than that associate to \( D_{\text{int}} \), while for large times a peaked distribution is obtained with only very small avalanches.

Another source for discrepancies between our numerical estimates and experimental situations comes from the change of regimes of relaxation. In fact, there is not a priori justification to assume that many size avalanches will dominate the relaxation process within the all range of \( j \) and \( T \), a situation that was deeply analyze in references [24, 25] and is discussed in a different context in section 5.

4 Scaling relations

Rather than to introduce directly the derivation of our scaling relations we prefer to start with a short review of some important scaling concepts of the theory of self organized criticality.

Following the first ideas of Bak and collaborators[3, 4, 8], those systems who behave as predicted by SOC show a distribution of avalanche sizes and times that follow power laws, i.e.
\[ P(s) \sim s^{-\tau} \]  \hspace{1cm} (5)

and

\[ P(t) \sim t^{-\tau_t} \]  \hspace{1cm} (6)

respectively. For systems not exactly in the critical state, these expressions transform into:

\[ P(s) \sim s^{-\tau} f(s/s_c) \]  \hspace{1cm} (7)

and

\[ P(t) \sim t^{-\tau_t} f(t/t_c) \]  \hspace{1cm} (8)

where \( s_c \) and \( t_c \) reflect the departure of the system from criticality, \( s_c \sim (j_c - j)^{-1/\sigma_1} \) and \( t_c \sim (j_c - j)^{-1/\sigma_2} \) being \( \sigma_1 \) and \( \sigma_2 \) new critical exponents and where the function \( f(x) \) has the following properties \( f(x) \to cte \) if \( x \to 0 \) and \( f(x) \to 0 \) if \( x \to \infty \) in order to recover the “critical picture” when \( j \sim j_c \).

In finite size systems \( s_c \) and \( t_c \) also reflect the effect of the sample dimensions through two new critical exponents \( D \) and \( z \). In fact, in analogy with the theory of critical phenomena \( s_c \sim L^D \) and \( t_c \sim L^z \). Furthermore, the coherence length \( \xi \) diverges at the critical state as:

\[ \xi \sim (j_c - j)^{-\nu} \]  \hspace{1cm} (9)

From the definitions of \( s_c, t_c \) and the equation (9) it is straightforward to show that \( s_c \sim \xi^{1/\nu_1} \) and \( t_c \sim \xi^{1/\nu_2} \). Moreover, since for a finite size system at the critical state \( \xi = L \), our first scaling relation takes the form:

\[ \frac{D}{z} = \frac{\sigma_1}{\sigma_2} \]  \hspace{1cm} (10)

As already discussed above, the integrated distributions of avalanche sizes and times, calculated in section 2, \( D_{int}(s) \) and \( D_{int}(t) \) result, since the system is relaxing, from avalanches obtained for values of current densities ranging from \( j_c \) to \( j \). These distributions are different from those obtained in typical field driven experiments or simulations since the last are obtained “in principle” for a fixed value of current density \( j_c \) which, indeed, determines the criticality of the system.
Then, it is natural to assume that $D_{\text{int}}(s)$ and $D_{\text{int}}(t)$ are related to the distributions obtained just at the critical state, $D(s)$ and $D(t)$, by the following formulae:

$$D_{\text{int}}(s) \sim \int_{j_c}^{0} s^{-\tau} f(s/s_c) dj$$

and

$$D_{\text{int}}(t) \sim \int_{j_c}^{0} s^{-\tau_t} f(t/t_c) dj$$

which immediately explain the meaning of the label “integrated” used for these distributions.

Then substituing the definitions of $s_c$ and $t_c$ in equations (11) and (12) and after a simple change of variables, we obtain the following expressions for the integrated distributions of avalanche sizes and times:

$$D_{\text{int}}(s) = s^{\tau + \sigma_1} \int_{0}^{s(-j_c)^{1/\sigma_1}} \sigma_1 x^{\sigma_1 - 1} f(x) dx$$

and

$$D_{\text{int}}(t) = s^{\tau_t + \sigma_2} \int_{0}^{s(-j_c)^{1/\sigma_2}} \sigma_2 x^{\sigma_2 - 1} f(x) dx$$

which prove that for $s$ large enough both integrals are constants, and there is not a cut-off length in the integrated distributions, result already obtained in our simulations (see figures 3 and 4).

Also from equations (13) and (14) and the definitions of $D_{\text{int}}(s)$ and $D_{\text{int}}(t)$ we can immediately obtain the following scaling relations

$$\tau_n = \tau + \sigma_1$$

and

$$\tau_{tn} = \tau_t + \sigma_2$$

which in combination with (10) leads to:

$$\frac{D}{z} = \frac{\tau_n - \tau}{\tau_{tn} - \tau_t}$$

In this way expression (17) establishes a connection between the exponents obtained in field driven experiments or simulations, $\tau_n, \tau_{tn}, D, z$ and those from thermally activated avalanches $\tau_n, \tau_{tn}$. In fact, the results obtained in our
simulations and those obtained in references [14, 15] hold the previous relation.

However, some points deserve further discussion. The power law divergence of $s_c$, $t_c$ and $\xi$ are strictly valid close to the critical state, $j_c$. Far away from this state these divergencies no longer exactly hold, however considering the good results obtained in the check of our calculations and the scaling law (17) we believe that this last assumption is not relevant for the solution of the model. Also, the scaling law (17) was obtained assuming the complete relaxation of the system, so it is difficult to be proved in real experiments.

5 Applicability

Our previous picture assumes that a thermally activated vortex jump would affect its neighborhood generating an unstability that leads to a cascade of vortex jumps related to the vortex distribution into the sample.

However, it is well known the existence of a characteristic time for thermally activated phenomena $t_{th} = t_o \exp (U(j)/kT)$ representing the time a vortex spends at a pinning site before jumping due to thermal activation [27].

This means that our model will be valid if these avalanches occur within times lower than $t_{th}$, i.e. the avalanches should develop fast enough to be mutually independent. This resembles the idea developed by Vespignani et al [29] in the context of sandpile and forest fire models. They showed through simulations and mean field considerations that one necessary condition for the occurrence of SOC, at least in these models, is the separation of time scales between the external exitation and the response of the system.

Then, as mentioned above, the maximum time an avalanche persists is,

$$t_c = t_{co}(1 - j/j_c)^{-1/\sigma_2}$$

where $t_{co}$ is the time a vortex spends moving from one site to another, and of course depends on the local current and flux density in the system. Considering that the vortices are separated a distance $a$ the time they spend traveling this distance is

$$t_{co} = \frac{a}{v}$$

(18)

where $v$ depends on the Lorentz force acting on the vortex $v = j\Phi_o/\eta$, and $a = (\Phi_o/B)^{1/2}$ which immedialy gives the following dependence of $t_{co}$ with $j$ and $B$. 

9
\[ t_{co} = \frac{\eta}{j \sqrt{\Phi_o B}} \]  \hspace{1cm} (19)

In the critical state \( B \) varies along the sample. This variation is, even in the presence of thermal activation, very well accounted by the Bean model [1, 30]. This means that for a fully penetrated sample

\[ B(x) = \mu_o H - \mu_o j x \]  \hspace{1cm} (20)

where \( H \) is the external field. Then, substituting equations (19) and (20) in the definition of \( t_c \) we obtain that

\[ t_c = \frac{\eta (1 - j/j_c)^{-1/\sigma_2}}{j \Phi_o^{1/2} \sqrt{\mu_o H - \mu_o j x}} \]  \hspace{1cm} (21)

Now, to determine the regime of applicability of our model, we must verify under which conditions the inequality \( t_c << t_{th} \) holds.

From the experimental point of view, the relevant avalanches to be detected measuring the fluctuations in the magnetization decay [26] are those starting at the border of the sample, since are those who produce changes in \( m \). Moreover, the avalanches starting at the border of the sample are also those with larger duration times since they have a larger area for spreading, (remember that the critical state in a type-II superconductor is symmetric with respect to the center of the sample). Then, we may assume in (21) \( x = 0 \) and obtain the following inequality:

\[ \frac{\eta (1 - j/j_c)^{-1/\sigma_2}}{j \Phi_o^{1/2} \sqrt{\mu_o H}} << t_o \exp \left( \frac{U(j)}{kT} \right) \]  \hspace{1cm} (22)

which can be written as:

\[ \frac{j^*}{j} \frac{1}{(1 - j/j_c)^{1/\sigma_2}} << \exp \left( \frac{U(j)}{kT} \right) \]  \hspace{1cm} (23)

where \( j^* = \frac{\Phi_o}{\sqrt{H}} t_o \). Assuming, for example \( U(j) = U_o \ln(j_c/j) \) [27], the previous inequality takes the form:

\[ \frac{j^* j^{\alpha - 1}}{j_c^{\alpha}} (1 - j/j_c)^{-1/\sigma_2} << 1 \]  \hspace{1cm} (24)

\[ \alpha = U_o/kT. \]
It is then straightforward to demonstrate that equation (24) holds under the following conditions, if $\alpha >> 1$ \( j \) must be much lower than \( j_c \) (\( j << j_c \)). In the opposite case \( j^* << j << j_c \). Similar expressions can be derived for the Anderson-Kim potentials and from potentials derived from the Collective Pinning Theory\[27\].

These conditions are the consequence of the competition between the increase of \( t_{th} \) when \( j \to 0 \) and the divergence of \( t_c \) when \( j \to 0 \) and \( j \to j_c \), see equation (21), and can be interpreted in the following way. Close to \( j_c \) the avalanche durations are very high because the avalanche sizes become huge, so one always need to be far from \( j_c \), a situation often accounted in high temperature superconductors \[18\], to assure that \( t_{av} << t_{th} \). Particularly for \( U_o << kT \), when thermally activated jumps become frequent (\( t_{th} \) small), high enough currents (\( j >> j^* \)) are also necessary to assure rapid vortex motion during the avalanche, and hence low avalanche time durations. From the experimental point of view these conditions should be seen with some caution. For example, since \( j_c \) decays with temperature \[27\], for \( U_o << kT \), the range of current densities where thermally activated avalanches could appear is still narrower than that suggested by a simple inspection to the formula \( j^* << j << j_c \) so, we strongly recommend to look for these avalanches at low temperatures and in very disordered systems were \( U_o >> kT \).

In the light of these results it is useful to come back to the experiment of Aegerter \[26\]. He found one critical exponent characterizing the avalanche size distribution during the relaxation of the magnetization and that this exponent was independent of the temperature of the system. Neither of these results contradict our model. Even when his critical exponent was 2.0 and our \( \tau_n = 2.7 \), figure 5 indicates that small exponents are associated to small relaxation times in our model. This suggest that, if in the experiment of reference \[26\] the time window had been shifted to larger times, and exponent closer to our one would have been observed. This does not mean, of course, that such a shift can be trivially performed in the practice.

In addition he found, during the relaxation, one initial regime where avalanches are not power law distributed. While he explained this due to a transient period the system takes to reach the SOC, our results suggest a different explanation. During this period the system is still too close to the critical state \( j \sim j_c \), and power law avalanches are not yet developed since the thermally activated avalanches overlap each other. This explanation is consistent with the long time associated to this transient period, and to the dependence of this time with the temperature. Experimentally Aegerter
found that larger times are associated with larger temperatures and in fact, in our model larger temperatures imply the necessity of lower values of the relation $j/j_c$ to found power law distributed avalanches and this means larger transient periods.

6 Conclusions

In conclusion, we developed a simple scenario to explain recently reported thermally activated avalanches power law distributed for type-II superconductors. We proved that the exponents associated with these distributions depend on the time interval of the measurement. We also proved that the exponents characterizing a distribution of thermally activated avalanches obtained during the whole relaxation experiment, (i.e, from the critical to the equilibrium states), are related to those obtained in field driven experiments by scaling relations, a situation also supported by our simulations. The conditions for the appearance of these avalanches were discussed and it was also proved that, in a rough approximation, they do not depend on the pinning mechanism in the sample. All ours theoretical predictions are consistent with the known experimental results.

Acknowledgments

We are very grateful to A. Vázquez for many interesting discussions and suggestions. We acknowledge also useful comments from M. Paczuski, K. Bassler, D. Domínguez, E. Osquiguil, O. Sotolongo and C. Rodríguez. E. A. acknowledges partial financial support from the World Laboratory Center for Pan-American collaboration in Science and Technology, the Texas Center for Superconductivity, and the Department of Physics, University of Houston.

References

[1] C.P.Bean, Rev. Mod. Phys 36, 31 (1964)

[2] P.G. de Gennes Superconductivity of Metals and Alloys. Benjamin, New York 1966.

[3] P. Bak, C.Tang and K. Wiesenfeld, Phys. Rev. Lett. 59, 381 (1987)
[4] P. Bak, C. Tang and K. Wiesenfeld, Phys. Rev. A. 38, 3645 (1988)

[5] G. A. Held, D. H. Solina, D. T. Keane, W. J. Haag, P. M. Horn, G. Grinstein, Phys. Rev. Lett 65, 1120 (1990)

[6] J. M. Carlson and J. S. Langer, Phys. Rev. Lett 62, 2632 (1989)

[7] P. Bak and K. Sneppen, Phys. Rev. Lett 71, 4083 (1993)

[8] P. Bak, How Nature Works, Springer Verlag, New York, 1996

[9] S. Field, J. Witt and F. Nori, Phys. Rev Lett 74, 1206 (1995)

[10] E.R. Nowak, O.W. Taylor L.Liu, H.M. Jaeger and T.J. Selinger, Phys. Rev. B 55, 11702 (1997)

[11] D. K. Behnia, C. Capan, D. Mailly and B. Ettiene, Phys. Rev. B 61, R3815 (2000)

[12] O. Pla and F. Nori, Phys. Rev. Lett 67, 919 (1991)

[13] R. A. Richardson, O. Pla and F. Nori, Phys. Rev. Lett 72, 1268 (1994)

[14] K. E. Bassler and M. Paczuski, Phys. Rev. Lett 81, 3761 (1998)

[15] R. Cruz, R. Mulet y E. Altshuler, Physica A, (2000)

[16] G. Mholer and D. Stroud. cond-mat/9905125

[17] R. Mulet and E. Altshuler, Physica C 281, 317 (1997)

[18] Y. Yeshurun, A.P. Malozemoff and A. Shaulov, Rev. Mod. Phys 68, 911 (1996)

[19] V.M. Vinokur, M.V. Feigelman and V.B. Geshkenbein Phys. Rev. Lett 67, 915 (1991)

[20] H.G. Schnack and R. Griessen, Phys. Rev. Lett 68, 2706 (1992)

[21] V.M. Vinokur and M.V. Feigelman, Phys. Rev. Lett 68, 2707 (1992)

[22] C. Tang, Physica A 194, 315 (1993)

[23] Z. Wang and D. Shi, Phys. Rev. B 48, 16176 (1993)
[24] E. Bonabeau and P. Lederer, Phys. Rev. B 52, 494 (1995)
[25] E. Bonabeau and P. Lederer, Physica C 256, 365 (1996)
[26] C. M. Aegerter, Phys. Rev. E 58, 1438 (1998)
[27] G. Blatter, M.V. Feigel’man, V.B. Geshkenbein, A.I. Larkin and V.M. Vinokur, Rev. Mod. Phys 66, 1125 (1994)
[28] P. W. Anderson and Y. B. Kim, Rev. Mod. Phys. 36, 39 (1964)
[29] A. Vespignani and S. Zapperi, Phys. Rev. E 57, 6345 (1998)
[30] Y. Abufalia, A. Shaulov, Y. Wolfus, R. Prozorov, L. Burlachkov, Y. Yeshurun, D. MAjer, E. Zeldov, H. Wuhl, V.B. Geshkenbein and V.M. Vinokur, Phys. Rev. Lett 77, 1596 (1996)
Figure captions

Figure 1 Magnetic relaxation curves for systems of sizes $L = 60, 100, 200$. $U(j) \sim j_c/j$, $U_o/kT = \infty$. The inset shows the data collapse of the curves.

Figure 2 Magnetic relaxation curves for systems of sizes $L = 60, 100, 200$. $U(j) \sim j_c/j$, $U_o/kT = 10$ The inset shows the collapse of the curves.

Figure 3 Avalanche sizes distribution for $L = 200$, $U(j) \sim (1 - j/j_c)$, $U_o/kT = 10$.

Figure 4 Avalanche times distribution for $L = 200$, $U(j) \sim (1 - j/j_c)$, $U_o/kT = 10$.

Figure 5 Avalanche size distribution for $L = 200$, $U(j) \sim j_c/j$, $U_o/kT = 10$. From the upper to the lower curve: $t = 1 - 10$, $t = 11 - 100$, $t = 101 - 1000$, $t = 1001 - 10000$ and $t = 10001 - 100000$ m.c.s. The straight line represents a power law with exponent 2.7.
$L = 60$

$L = 100$

$L = 200$
$\tau_n = 2.7$
\[ \tau_{tn} = 4.0 \]
