Perceptions, attitudes, and outcomes of human-snake encounters: A retrospective study of an online discussion community in Nigeria

OMOTOLA J. BABALOLA1,4, HENRY O. JEGEDE2,4, BAMIDELE N. OGUNRO3

1Faculty of Veterinary Medicine, University of Ibadan. Main Rd., Ibadan, Oyo State, Nigeria
2Veterinary Teaching Hospital, University of Ilorin. P.M.B. 1515, Ilorin, Kwara State, Nigeria. Tel. +234-8038070602, *email: drlanrejeg@gmail.com
3Veterinary Teaching Hospital, University of Ibadan. Main Rd., Ibadan, Oyo State, Nigeria
4Winthrop Veterinary Services. Osogbo, Osun State, Nigeria

Abstract. Babalola OJ, Jegede HO, Ogundro BN. 2020. Perceptions, attitudes, and outcomes of human-snake encounters: A retrospective study of an online discussion community in Nigeria. Asian J Ethnobiol 21: 1-9. The internet is a useful tool for obtaining data needed to study factors that hinder snake conservation especially in resource-limited settings. There is a paucity of peer-reviewed research on the use of online communities in the study of factors contributing to undesirable human-snake conflicts in Nigeria. A 12-month dataset (August 2016-July 2017) on human-snake encounters shared on Nairaland® - a popular online community forum in Nigeria - was retrieved and analyzed. Morphological characteristics observed in the snake photographs posted on the platform were used for species identification. A total of 203 human-snake encounters were recorded from 32/37 States of Nigeria. Men (n=133) reported more human-snake encounters than women (n=111) while “reporters of unspecified gender (n=59) accounted for the rest. Most postings were from the southern part of Nigeria with the highest number of postings from Lagos State (n=34). Of the 24 snake species reported in the study, the African Rock Python was the most encountered. The months of May to July recorded the highest number of snake species reported by the respondents. ‘Fear’ and ‘food’ were the major perceptions elicited by people during snake encounters. The outcome of human-snake conflicts resulted in snake deaths (n=182) irrespective of snake venomosity. Only 1.0% (n=2) of the snakes were protected from harm. This study revealed that data from online community forums are useful for retrospective studies of the perceptions and outcomes of human-snake encounters; the output of which policymakers and conservationists may find useful.

Keywords: Conservation, human-wildlife interface, nairaland, snakes, social media

INTRODUCTION

Wildlife populations and their habitats are declining at an alarming rate due in part to increasing human populations, climate change, and rapid urbanization (Kinnaird et al. 2003; Root et al. 2003; Carrete et al. 2007; Gusset et al. 2009). Although human conservation efforts and awareness have helped in mitigating their decline, attitudes towards wildlife vary across different species and countries. Reptiles and amphibians are some of the taxa of organisms that are least researched, under-reported, and poorly documented worldwide (Shine and Bonnet 2000; Magle et al. 2012). Among reptiles, snakes are prime examples of wildlife that have been negatively affected by environmental degradation and increased urbanization (Seigel and Mullin 2009; Bonnet et al. 2016). The animals and their by-products are useful in medicine, religion, fashion, the pet trade. Snakes provide ecosystem services in the form of predation (Alves and Filho 2007; Beaupre and Douglas 2009; 245; Herrel and van der Meijden 2014; Willson and Winne 2016).

Despite their importance, some species of snakes are under threat. A total of 185 snake species are listed in the IUCN red list of threatened species (IUCN 2013). This might be as a result of various reasons - killed for food, out of fear or for use in traditional medicine (Conant and Collins 1998; Soewu 2008; Pandey et al. 2016; IUCN 2018). Conservation efforts have shown varying impacts across species and countries. These varied conservational impacts can be due to the perceived socio-political construction and power that determines how allocations are distributed to benefit the endangered species (Czech et al. 1998; Shine and Bonnet 2000; Marešová and Frynta 2008; Magle et al. 2012; de Pinho et al. 2014). Unlike other vertebrates, the conservation towards snakes is poor due to their negative perception of humans. Their unappealing skin coloration and the innate, protective, evolutionary adaptation of the human brain - which influences the basic human emotions, are some of the factors that contribute to the negative perception of snakes by man (Prokop and Fancovicova 2013; Prokop and Randler 2017; Prokop et al. 2018). There is poor awareness of the conservation status of snakes especially in developing countries due to inadequate survey research (Pandey et al. 2016).

Local and international laws have been enacted to protect wildlife. However, these laws are not all-encompassing in protecting snakes in their natural environments (Czech et al. 1998; Trouwborst et al. 2017). Cultural beliefs, especially myths and poor knowledge of the laws and snake classification based on venomosity, are some of the factors that hamper the protection of snake populations in the wild (Prokop et al. 2009; Ballouard et al. 2013). Fortunately, efforts have been made to create awareness of these animals via the use of documentaries,
field trips, zoos, and wildlife parks (Morgan and Gramann 1989; Ballouard et al. 2012; Idowu and Morenikeji 2015; Pandey et al. 2016), however, zoos and wildlife parks conserve only a small population of snakes (Conway 2011). In developing countries, snake and human habitat are not usually delineated due to increasing urbanization, migration of people, and hunting practices (Bitaniy et al. 2012).

Recent advances in information technology are essential in conservation by providing easier access to information which can aid better decision making. The internet is beneficial in understanding factors hindering snake conservation. It can also enhance understanding of the socio-cultural background and motivation of people without undue interference by researchers (Gunther and Jeremy 2002; Arts et al. 2015). Social media, especially the online communities, have been used in creating awareness of the reintroduction of fish and amphibians (Jachowski et al. 2016). However, there is a paucity of peer-reviewed research involving the use of the online communities in understanding the perceptions, attitudes, and outcomes of snake-human interactions especially in developing countries like Nigeria. This study hypothesizes that social media - online communities - can be used as a medium to explore the perceptions, attitudes, and outcomes of human-snake encounters in Nigeria. In addition, we hypothesized that human-snake encounters as posted on popular online forums reflect the actual nature and relative proportions of such encounters in the respective locations from which the posts were made. This study aims to evaluate the engagement of an online discussion community in snake conservation and management in Nigeria. In this paper, our objectives include: assessing the species and the conservation statuses of snakes posted on an online discussion community website in Nigeria, evaluating the geographical and monthly distribution of snakes reported in an online discussion community website in Nigeria, determining the perceptions, attitudes, and outcomes of human-snake encounters as reported in an online discussion community website in Nigeria, as well as evaluating the sex characteristics and location of respondents that reported the human-snake encounters online on a discussion community website in Nigeria.

MATERIALS AND METHODS

Study site

Nairaland® was the primary website used for this study. It is a highly rated website in Nigeria, with more than one million registered members engaged in various topics (Osewa 2018; Alexa 2018). Google™ was also used to trawl data linked to the website. The data analyzed for this study were not password-protected and are not prohibited by the site’s policy. Also, the website members were anonymous (Eysenbach and Till 2001; Walther 2002; Gunther and Jeremy 2002; Herron et al. 2011; Harriman and Patel 2014).

Search terms

The search terms used ensured that the search was sensitive to capture all important details. The search terms used included: (i) Nairaland®: “snake(s)”; “snakes+2016”, “snakes AND 2016. (ii) Google™: “nairaland AND snake AND 2016”, snakes AND nairaland AND 2017.” The search was conducted retrospectively, spanning from August 2016 to July 2017. July 2017 was chosen as the end date of the study to coincide with the world snake day on 16 July, an occasion that highlights the need for snake conservation (Days of the week 2019). All the sections, images, and topics on Nairaland® were selected for review and analysis via the search filters.

Inclusion and exclusion criteria

We selected data based on the following inclusion criteria: snakes in Nigeria, pictures of the snakes being killed, snakes reportedly killed by Nigerians, the topics are written in English while the exclusion criteria include documentaries on snakes, snakes reported outside the country, no pictures of snakes, other sites not primarily Nairaland®, double entries by different profiles or same profile and snakes in established snake markets. Some data were classified as unknown/ unspecified/ uncertain if the respondents did not include their gender on the site or the snakes could not be identified using standard procedures by the authors.

Snakes displayed for sale in established markets were not included because it could introduce some form of sampling bias. Also, the location of the markets would be difficult to establish. The profile's characteristics that met the inclusion criteria were checked while the other areas of interest were iteratively analyzed to ensure data validity.

Snake species identification and data analysis

We identified snake species based on morphological characteristics and appearance. We verified conservation statuses of each snake species via relevant scientific literature and databases (Wallach et al. 2014; IUCN 2019; Uetz et al. 2017).

Data were collected and sorted with Microsoft Excel. Final dataset was transferred to SPSS 20 statistical computer software package. Description of the data was by frequency tables and charts. Multivariate logistic regression analysis was done and used to test if any of the following variables (sex of respondents, venomosity of snakes, circumstance of encounter, taxonomic class of snake, and geopolitical zone from which posts were identified) were predictors of outcomes of human-snake encounters. Respondents’ perceptions towards snakes (fear, food, etc.) and snake-human interactions were measured by assessing the overall tone of the post. For example, one of the respondents used wrote:

“How this snake crawled into our room, no one can possibly explain. My room mate was lucky. Cos he was trying to open the wardrobe and when he saw the snake he froze like a statue and all he could do was to keep shouting Jesus! ...Cos Even me no get mind, we were lucky cos a guy from another room helped us kill it.....”
To determine predictors for outcome of human-snake encounters, States were grouped into the 6 geopolitical zones of Nigeria. "Sold" and "captured" were collapsed into one category "spared"; "uncertain outcome" and "found dead" were excluded from the analysis - making three possible outcomes viz: "killed", "eaten", and "spared". Fisher exact or Chi-square tests were carried out on the data using Epi Info 7.2.0. A P-value less than 0.05 was considered statistically significant.

RESULTS AND DISCUSSION

Sex characteristics of the respondents that reported snake encounters on Nairaland®

The final sample consisted of 203 respondents. There were 133 men (65.5%), 11 women (5.4%) and 59 respondents with unspecified gender (29.1%) that reported the human-snake encounters online.

Number of snakes and snake posts reported on Nairaland® per state

A total of 203 snakes were reported in 202 separate encounters that encompassed almost all the states in Nigeria (n=31). Of the total snakes reported, 16.7 % were from Lagos State (n=34) (Fig. 1). The family Pythonidae accounted for 36.5 % of the snakes encountered (n=74) while 12.3% (n=25) were in Colubridae, 20.2% (n=41) in Elapidae, 19.7% (n=40) in Lamprophiidae, 9.9% (n=20) in Viperidae, and 1.5% (n=3) uncertain (Fig. 2). The non-venomous snakes (n =136) accounted for 67.0% of the snakes encountered while 31.5% of the snakes were venomous (n =64) and 1.5% of the snakes could not be categorized (n =3). The conservation status of the African Rock Python was ‘near threatened’ while the other snake species were of the ‘least concern’ status (Table 1). The months of May (n =35), June (n =38) and July (n =27) recorded the highest number of snakes encounters reported by Nairaland® users (Fig. 3).
Regardless of the online posts while 22.1% of the snakes (encounters with humans elicited fear (locations (human encounters between August 2016 - July 2017 =32) accounted for the rest (Fig. 4). Snake encounters with humans elicited fear (n =112) in 55.2% of the online posts while 22.1% of the snakes (n = 45) encountered were killed for food. Conservation (n = 2) and display (n = 3) accounted for 1.0% and 1.5% of the reports respectively. There were 41 reports (20.2%) that were classified as unknown because the perceptions of snake encounters with humans could not be deduced from the posts (Fig. 5). Display in this context refers to the use of these snakes as means of attraction of pedestrians by snake charmers.

The outcome of human-snake encounters resulted in the killing of the snakes encountered by humans (n =156) while 26 snakes were eaten by man. Other outcomes included being captured (n =8), uncertain (n =8), sold (n =1), found dead (n =3), and snake being left alone (n =1). Fisher exact test showed that there was no significant association between danger posed by snake regardless of venomosity and outcome of the snake-human encounter (OR=0.73, CI=0.33-1.62, P=0.56). Venomous snakes were not more likely to be feared than non-venomous ones. Multivariate logistic regression analysis revealed that none of the variables (sex of respondents, venomosity, circumstance of encounter, taxonomic class, and geopolitical zones from which the posts were identified) included in the model were predictors for the outcome of human-snake encounters at 90% or 95% confidence intervals.

Common name	Scientific name	Number of snakes (%)	Conservation status
African Rock Python	Python sebae (Gmelin, 1789)	55(27.1)	Near threatened
House snakes	Boaedon spp. (Boulenger, 1893)	27(13.3)	Least Concern
Black-necked spitting cobra	Naja nigricollis (Reinhardt, 1843)	21(10.3)	Least Concern
Royal python	Python regius (Shaw, 1802)	19(9.4)	Least Concern
Bush snakes	Philothamnus spp. (Smith, 1840)	12(5.9)	Least Concern
Forest cobra	Naja melanoleuca (Hallowell, 1857)	12(5.9)	Least Concern
Gaboon viper	Bitis gabonica (Duméril, Bibron and Duméril, 1854)	8(3.9)	Least Concern
Puff adder	Bitis arietans (Merrem, 1820)	7(3.4)	Least Concern
Olive Grass Viper	Psammophis phillipsi (Hallowell, 1844)	7(3.4)	Least Concern
African Garter Snake	Elapsoidea semiannulata moebiusi (Broadley, 1971)	6(3.0)	Least Concern
Common egg eater	Dasypletis scabra (Linnaeus, 1758)	4(2.0)	Least Concern
African night adder	Causus rhombeatus (Lichtenstein, 1823)	3(1.5)	Least Concern
Striped Sand Snake	Psammophis sibilans (Linnaeus, 1758)	3(1.5)	-
Uncertain	Uncertain	3(1.5)	-
Kattian Spitting cobra	Naja katiensis (Angel, 1922)	2(1.0)	Least Concern
Elegant sand racer	Psammophis elegans (Shaw, 1802)	2(1.0)	Least Concern
Smith's African Water Snake	Grayia smithii (Leach, 1818)	2(1.0)	Least Concern
Forest file snake	Mehelya poeniss (Smith, 1849)	2(1)	Least Concern
Blandings tree snake	Toxicodryas blandangii (Hallowell, 1844)	2(1.0)	-
West African Herald Snake	Crotophophis hippocrepis (Reinhardt, 1843)	1(0.5)	Least Concern
West African Night Adder	Causus maculatus (Hallowell, 1842)	1(0.5)	Least Concern
Rufous Beaked Snake	Rhamphiopsis oxyrynchus (Reinhardt, 1843)	1(0.5)	Least Concern
West African carpet Viper	Echis ocellatus (Stemmmer, 1970)	1(0.5)	Least Concern
Striped swamp snake	Dromophis praecornatus (Peters, 1869)	1(0.5)	Least Concern
Slender blind snake	Myriopholis narirostris (Peters, 1867)	1(0.5)	Least Concern
Total		**203(100.0)**	

Table 1. Identity, frequency and conservation status of snakes encountered and posted on Nairaland® between August 2016-July 2017 in order of frequency.

Figure 2. Family classification of snakes posted on Nairaland® between August 2016-July 2017

Places, perceptions and outcomes of human-snake encounters

Most online posts reported an increased frequency of human-snake encounters at residential areas (n =118) while farms/forests (n =34), public places (n =19), and uncertain locations (n =32) accounted for the rest (Fig. 4). Snake encounters with humans elicited fear (n =112) in 55.2% of the online posts while 22.1% of the snakes (n = 45)
Figure 3. Monthly distributions of different individual snakes encountered as posted on Nairaland® between August 2016-July 2017

Figure 4. Site of human-snake encounters as posted on Nairaland® between August 2016-July 2017

Figure 5. Perceptions towards snakes as posted on Nairaland® between August 2016-July 2017

Discussion

Conservation of animals in their natural habitat is an urgent issue that requires numerous interventions. The advent of new information technologies such as the internet serves as another opportunity to harness its advantages towards animal conservation. Some authors advocate the internet as a new interface in wildlife management, ecotourism, and collaboration among numerous stakeholders engaged in conservation (Prendergast et al. 1999; Yasuda and Kawakami 2002; Huettmann 2005; Lai and Shafer 2005; Gusset and Dick 2010). It has also been used as a medium in understanding different perspectives and funding of animal conservation (Rastogi et al. 2013; Verissimo et al. 2017). Therefore, the internet provides a new avenue where the perceptions and attitudes of people toward conservation can be studied.

Snakes are good examples of wildlife that are poorly documented and understudied, and benefit poorly from allocated resources that will aid their conservation in the wild. Numerous studies have been conducted to unravel the perceptions towards human-wildlife conflict (Treves and Karanth 2003; Lucherini and Merino 2008; Inskip and Zimmermann 2009). A study by Miranda et al. (2016) used internet videos to examine the ecology of human-anaconda conflict. Their findings revealed another dimension of human-wildlife conflicts - anacondas were anticipatorily killed because they were negatively perceived by humans to be dangerous. Apart from this study, there is a scarcity of information on the use of the internet to investigate the conflict of humans towards snakes especially in developing countries like Nigeria. The choice of Nairaland® as the website for this study was the ease of access as a public forum in Nigeria. Nairaland® has been used in understanding the linguistic evolution of Nigerian pidgin in the digital world and public perceptions about some significant issues in Nigeria (Heyd and Mair 2014; Chiluwa and Odebunmi 2016). Therefore, this study used Nairaland® as a platform to understand the perceptions, attitudes, and outcomes of human-snake encounters.
Almost all the States in Nigeria were represented in the study via the snake posts uploaded online. This indicates that Nairaland® is a widely accessible forum in Nigeria. This agrees with Chiluwa and Odebunmi (2016)’s study which revealed that the site serves as a meeting place for people in Nigeria. Therefore, Nairaland® can be a platform for the delivery of educational interventions on conservations to its users.

We found out that the snakes encountered in this study were reported from almost all parts of Nigeria. This indicates that the geographical distribution of snakes was all over Nigeria (Luiselli 2001; Molesworth et al. 2003; Akani et al. 2013). Therefore, comprehensive conservational interventions need to be carried out all over the country to protect snakes in their natural habitats. The online community website, Nairaland®, could serve as a valuable source of data for mapping tools such as HerpMapper and iNaturalist, which could potentially benefit the conservation of snakes by providing new and readily accessible information on the distribution of different snake species in Nigeria.

Twenty four species of snakes out of 125 species (19.2%) found in Nigeria, were reported in our study (Uetz et al. 2017) . The snake species encountered in this study were classified into the Colubridae, Elapidae, Viperidae, Pythonidae, and Lamprophiidae families. Some of these families were also encountered in the study by Akani et al. (2013). The pattern of distribution indicates that the families are ubiquitous and represented among various snake species in Nigeria.

The months of May to July recorded the highest distribution of snakes reported on Nairaland®. This distribution pattern agrees with the findings of Akani et al. (2013) and Sani et al. (2013) who reported that April to July were the months that witnessed high snake and human activities. The high incidence of human-snake encounters in these months might be as a result of heavy rains in the rainy season that floods the habitats of these snakes, which drives them to seek shelter in warmer human residences. It could also be because the number of people accessing and posting to Nairaland peaks in May-July.

The African Rock Python, *Python sebae*, was the snake species that was encountered most in the study. It was killed mainly as a result of its intrinsic value as bushmeat. This agrees with the research findings of Mallon et al. (2015) which showed that pythons were widely hunted for consumption, traditional, and commercial purposes. This implies that bush meat and free international trade of wildlife are the significant barriers to conservation in developing countries.

The conservation statuses of the snake species reported in the study varied from” least concerned” to “near threatened” according to the IUCN classification. However, the study of Reading et al. (2010) indicated that some of the snake species encountered in our study - the Gaboon Viper, *Bitis gabonica* and the Royal Python, *Python regius* - have been undergoing some population decline in Nigeria. This shows that our knowledge of the conservation status of snake species is doubtful, and even though the IUCN lists only one species as near threatened, there could be a high chance that other snake species are also of conservation concern. A majority of snake species are listed as ‘Data Deficient’ by the IUCN, and many species are not listed at all (IUCN 2019). Therefore, further studies should be conducted to ascertain the true population statuses of each snake species in the wild to designate and enact the correct conservation status and laws respectively, thereby protecting the snake species.

In our present study, females reported fewer human-snake encounters online. Recent studies showed that females were less tolerant of snakes than males (Pinheiro et al. 2016; Liordos et al. 2017, 2018). This might be due to the complex biological and evolutionary roles that natural selection play in ensuring that females with lower bodily conditions have increased self-protection systems - which is manifested as fear - to combat potential physical dangers (Røskaft et al. 2003; Prokop and Fančovičová, 2010, 2013). Conversely, males reported higher number of human-snake encounters online. This could be explained by men's perception that displaying dead snakes online will be viable means of showing off, boost their masculine egos and online profiles in a bid to increase their biological attractiveness to the female members of the online discussion community. Escasa et al. (2010)'s study of male attractiveness rankings in a small-scale Amazonian society showed that females were attracted to male traits such as status, gallantry and hunting ability. However, the finding of this study cannot be generalized to other study settings, especially in a complex and ever-changing world.

Our study also revealed that the most frequent site of human-snake encounters was in residential areas. This agrees with the finding of Purkayastha et al. (2011) who found out that some snake species such as *Lycodon aulicus* were found in residential areas. Apart from residential areas, our study also revealed that farms, forests and public places were the other locations of high human-snake encounters. The studies of Whitaker and Shine (1999) and Carter et al. (2014) revealed that agricultural lands and recreational parks increased the chances of human encounters with the Australian brown snakes, *Pseudonaja textilis*, and copperhead snakes. Increased destruction and degradation of the snake's natural habitats, increased human population growth, and rapid urbanization is some of the reasons that could explain the above-described findings.

We found out that the perceptions of humans to snakes elicited fear regardless of their venomous nature. This agrees with the works of Alves et al. (2014) and Pandey et al. (2016) who found that fear was a real cause that hindered snake conservation. This might be as a result of poor awareness in distinguishing venomous and non-venomous snakes. However, Corbett et al. (2005)'s study found out that most people can correctly identify local venomous snakes. The sampling of interested people at a local snake street fair imparted sampling bias that might have restricted the generalization of the study findings to the entire population. Also, our study showed that venomous snakes were not more likely to be feared over non-venomous snakes. Local folklore and reported harms - mortalities, may accentuate the negative perception of
snakes. However, some traditional beliefs might positively protect some snake species from harm. A study by Rim-Rukeh et al. (2013) revealed that the reverence of pythons in some areas of Delta State, Nigeria boosted their local populations within those communities. Similarly, Sasaki et al. (2010) recommended the preservation of the vanishing Japanese traditional beliefs - the veneration of snakes as gods - very critical to the conservation of snakes in Japan. Nevertheless, the majority of snakes encountered in this study were killed out of fear and for food. Therefore, indiscriminate killing of snakes without proper awareness of their importance might lead to their decline in the world, and this might affect the balance of the ecosystem negatively.

It is alarming to note that only a few snakes were captured alive in our study. Most respondents reported and posted killed snakes to get placement in a more prominent section - front page - of the online discussion community forum, this means that the attitudes of Nigerians towards conservation is relatively weak. Therefore, more efforts should be made by conservationists and other significant stakeholders in raising the awareness of the need to conserve wild herpetofauna among the Nigerian people.

A significant limitation of this study is the non-representativeness of the samples. The snakes reported in our study are mostly those found in residential areas or those that have dietary value (pythons). Although other species of snakes were not reported, it does not imply the absence of these snakes in Nigeria but suggests their absence, low relative abundance, or low detection probability in residential areas, or their lack of dietary value. For instance, unreported species like Calabaria and blind snakes are burrowing forest snakes which are rarely encountered while Dendroaspis (Tree Mambas) and Dispholidus (Boomslangs) are arboreal dwellers found mostly atop palm trees and very tall trees. Even though some snake species, such as the Mambas and the Boomslangs, are not hard to see, the photographs of these snake species are scarce because they are fast-moving and dangerous. This limits the studying of snakes from data taken from online communities because some important snake species might be excluded. However, because the perceptions of people towards snakes were examined, the accurate representation of the snake populations in the wild did not influence the validity of the study.

Another limitation of the study is that the community studied is an online community and this limits the data to only people that are internet savvy and also active members of the Nairaland® forum (as this was the only site studied). The study is also limited to people who own a device capable of taking a photo: a camera, smartphone, or other phones with a camera, and those that have the financial ability to purchase and access the data subscription needed to upload a photo. Although those in rural areas have the ability to purchase and use phones with a camera, and those that have the financial worth for that, this might affect the balance of the ecosystem negatively.

Inclusion criteria used during the methodology aspect were posts written in the English Language. This biased the results towards Nigerian users of this online discussion forum with higher levels of education (Hargittai 2007; 2010; Duggan and Brenner 2013). However, because the scope of this study was limited to the internet, this might not affect its validity. Perceptions toward snakes were measured by assessing the overall tone of the posts. This might introduce a measurement bias due to the subjective nature of interpreting the posts. However, the uploaded snake photographs, the locations, and outcomes of the human-snake encounters assisted in minimizing this bias.

This study was the first to our knowledge to retrospectively use social media to examine the perceptions and outcomes of human-snake encounters in a developing country. Policymakers and conservationists should consider social media, especially online discussion forums, as an avenue to deliver targeted educational interventions. The use of data from social media could aid in changing the perceptions and attitudes of these particular sets of internet-oriented Nigerian populations and educating them on the need to conserve snakes and other wildlife.

ACKNOWLEDGEMENTS

The authors would like to acknowledge the input of Babasola O. Olugasa of the Department of Veterinary Public Health and Preventive Medicine, University of Ibadan, Ibadan, for his input into the GIS design of the map of Nigeria. The contributions of Victor Ladipo of the 21st Century Environmental Consultants Inc, Calgary, in making the manuscript better in terms of grammar and clarity of words were appreciated. We would also like to appreciate the users of the website where the data used for this paper were obtained.

REFERENCES

Akani GC, Ebere N, Franco D, Eniang EA, Petrozzi F, Politano E, Luiselli L. 2013. Correlation between annual activity patterns of venomous snakes and rural people in the Niger Delta, southern Nigeria. J Venomous Animals and Toxins including Venoms. 19: 2.

Alves RR, Silva VN, Trovão DM, Oliveira JV, Mourão JS, Dias TL, Alves AG, Lucena RF, Barboza RR, Montenegro PF, Vieira WL. 2014. Students’ attitudes toward and knowledge about snakes in the semiarid region of Northeastern Brazil. J Ethnobiol and Ethnomedicine 10: 30.

Alves RRN, Filho GAP. 2007. Commercialization and use of snakes in North and Northeastern Brazil: implications for conservation and management. Biodiv Conserv 16: 969-985.

Arts K, Van Der Wal R, Adams WM. 2015. Digital technology and the conservation of nature. Ambio 44: 661-673.

Ballouard JM, Attar R, Balint H, Brito JC, Cnobenja-Isaiovic J, Desmonts D, Elmouden EH, Erdogan M, Feriche M, Plegazuelos JM, Prokop P. 2013. Schoolchildren and one of the most unpopular animals: are they ready to protect snakes? Anthrozoös 26: 93-109.

Ballouard JM, Provost G, Barré D, Bonnet X. 2012. Influence of a field trip on the attitude of schoolchildren toward unpopular organisms: an experience with snakes. J Herpetol 46: 423-428.

Beaupre SJ, Douglas LE. 2009. Snakes as indicators and monitors of ecosystem properties. In: Seigel RA, Mullin SJ (eds). Snakes, Ecology and Conservation. Cornell University Press, Ithaca, New York, USA.

Bitanyi S, Njesie M, Kusiluka LJ, Chenyambuga SW, Kaltenborn BP. 2012. Awareness and perceptions of local people about wildlife.
hunting in western Serengeti communities. Trop Conserv Sci 5: 208-224.

Bonnet X, Leqc S, Lassy JL, Ballouard JM, Barbraud C, Souchet J, Mullin SJ, Provost G. 2016. Forest management boisters native snake populations in urban parks. Biol Conserv 193: 1-8.

Coltman M, Gomis E, Tella JL, Sánchez-Zapata JA, Donázar JA, Díaz-Delgado R, Romeo A. 2007. Habitat, human pressure, and social behaviour: partitioning out factors affecting large-scale territory extinction in an endangered vulture. Biological Conservation 136: 143-154.

Carter ET, Attum O, Eads BC, Hoffman AS, Kingsbury BA. 2014. Reducing the potential for human-snake encounters in a recreational park. Human-Wildlife Interactions 8: 158-167.

Chituwa I, Odebumni A. 2016. On terrorist attacks in Nigeria: stance and engagement in conversations on Nigerian Public 1: 91-109.

Conant R, Collins JT. 1998. A field guide to reptiles & amphibians: eastern and central North America. Vol. 12. Houghton Mifflin Harcourt. 12: 11-12.

Conway WG. 2011. Buying time for wild animals with zoos. Zoo Biol 30: 8.

Cooper C, Dickinson J, Phillips T, Bonney R. 2007. Citizen science as a tool for conservation in residential ecosystems. Ecol and Society 12.

Corbett SW, Anderson B, Nelson B, Bush S, Hayes WK, Cardwell MD. 2005. Most lay people can correctly identify indigenous venomous snakes. The Am J Emergency Med 23: 759-762.

Czech B, Krausman PR, Borkhataria R. 1998. Social construction, political power, and the allocation of benefits to endangered species. Conservation Biol 12: 1103-1112.

De Pinho JR, Grilo C, Boone RB, Galvin KA, Snodgrass JG. 2014. Influence of aesthetic appreciation of wildlife species on attitudes towards their conservation in Kenya. Agroecological communities. PloS ONE 9 (2): e88842. DOI: 10.1371/journal.pone.0088842.

Duggan M, Brenner J. 2013. The demographics of social media users, 2012. (Vol.14). Washington, DC: Pew Research Center's Internet & American Life Project.

Escasa M, Gray JR, Patton JQ. 2010. Male traits associated with attractiveness in Conambo, Ecuador, Evolution and Human Behavior 31: 193-200.

Eysenbach G, Till JE. 2001. Ethical issues in qualitative research on internet communities. British Medical Journal 323: 1103-1105.

Gautier H, Chaminade JM, Tella JL, Klerkx K, Mecnutt JW. 2009. Human-wildlife conflict in northern Botswana: livestock predation by endangered African wild dog Lycaon pictus and other carnivores. Oryx 43: 67-72.

Hargitai E. 2007. Whose space? Differences among users and non-users of social network sites. J Computer-mediated Commun 13: 276-297.

Hargitai E. 2010. Digital na (t) lives? Variation in internet skills and uses among members of the "net generation". Sociol Inquiry 80: 92-113.

Harriman S, Patel J. 2014. The ethics and editorial challenges of internet-based research. BMC Med 12: 124.

Herrel A, Van Der Meijden A. 2014. An analysis of the live reptile and amphibian trade in the USA compared to the global trade in endangered species. Herpetol J 24: 103-110.

Herrem M, Sinclair M, Kernohan WG, Stockdale J. 2011. Ethical issues in undertaking internet research of user-generated content: a review of the literature. Evid Based Midwifery 9: 9-15.

Heyd T, Maur C. 2014. From vernacular to the digital ethnolinguistic repertoire: the case of Nigerian Pidgin. Indexing Authenticity: Sociolinguistic Perspectives. de Gruyter, Berlin.

Huettemann F. 2005. Databases and science-based management in the context of wildlife and habitat: toward a certified ISO standard for objective decision-making for the global community by using the internet. J Wildl Manag 69: 466-472.

Idowu MA, Morenikeji OA. 2015. Wild Fauna Conservation in Nigeria. Environ Nat Resour Res 5 (3): 98-108.

Inskeep C, Zimmermann A. 2009. Human-felid conflict: a review of patterns and priorities worldwide. Oryx 43: 18-34.

International Union for the Conservation of Nature (IUCN). 2013. Year of the Snake: an online reference. https://www.iucn.org/content/year-snake.

IUCN [International Union for the Conservation of Nature]. 2018. The IUCN Red List of Threatened Species. 2018. https://www.iucnredlist.org/search?g=2.

IUCN [International Union for the Conservation of Nature]. 2019. The IUCN Red List of Threatened Species, Version 2019-1. https://www.iucnredlist.org/.

Jachowski DS, Millsbaugh JJ, Angermeier PL, Slотов R. 2016. Reintroduction of Fish and Wildlife Populations. University of California Press, Berkeley, California, USA.

Kinnarid MF, Sanderson EW, O'Brient TG, Wibisono HT, Woolmer G. 2003. Deforestation trends in a tropical landscape and implications for endangered large mammals. Conserv Biol 17: 245-257.

Lai PH, Shauer S. 2005. Marketing ecotourism through the Internet: an evaluation of selected ecotologies in Latin America and the Caribbean. J Ecotourism 4: 143-160.

Liordos V, Kontsiotis VJ, Anastasiadou M, Karavasias E. 2017. Effects of attitudes and demography on public support for endangered species conservation. Sci Total Environ 595: 25-34.

Liordos V, Kontsiotis VJ, Kokoris S, Pimenidou M. 2018. The two faces of Janus, or the dual mode of public attitudes towards snakes. Sci Total Environ 621: 670-678.

Lucherm J, Merino MJP. 2008. Perceptions of human-carnivore conflicts in the high Andes of Argentina. M Rev Des 28: 81-85.

Luissel L. 2001. The ghost of a recent invasion: in the reduced feeding rates of spitting cobras during the dry season in a rainforest region of tropical Africa? Acta Oecologica 22: 311-314.

Magle SB, Hunt VM, Vernon M, Crooks KR. 2012. Urban wildlife research: past, present, and future. Biol Conserv 155: 23-32.

Mallon DP, Hoffmann M, Grainger MJ, Hibert F, Van Vilet N, Mecgowan PKJ. 2015. An IUCN situation analysis of terrestrial and freshwater fauna in West and Central Africa. Occasional paper of the IUCN species survival commission, 54, Gland.

Marečová J, Frynta D. 2008. Noah’s Ark is full of common species attractive to humans: The case of boid snakes in zoos. Ecol Econ 64: 554-558.

Miranda EB, Ribeiro JP Jr., Strüssmann C. 2016. The ecology of human-anconda conflict: a study using internet videos. Trop Conserv Sci 9: 43-77.

Molessworth AM, Harrion R, David R, Theakston G, Lalloo DG. 2003. Geographic information system mapping of snakebite incidence in northern Ghana and Nigeria using environmental indicators: a preliminary study. Trans R Soc Trop Med Hygiene 97: 188-192.

Morgan JM, Gramann JH. 1989. Predicting the effectiveness of wildlife education programs: A study of students’ attitudes and knowledge toward snakes. Wildlife Society Bulletin 17: 501-509.

Pandey DP, Pandey GS, Devkota K, Goode M. 2016. Public perceptions of snakes and snakebite management: implications for conservation and human health in southern Nepal. J Ethnobiol Ethnomed 12 (1): 22. DOI: 10.1186/s13002-016-0092-0.

Pinheiro LT, Rodrigues JFM, Borges-Nonoja DM. 2016. Formal education, previous interaction and perception influence the attitudes of people toward the conservation of snakes in a large urban center of northeastern Brazil. J Ethnobiol Ethnomed 12 (1): 25. DOI: 10.1186/s13002-016-0096-9.

Prendergast JR, Quinn RM, Lawton JH. 1999. The gaps between theory and practice in selecting nature reserves. Conserv Biol 13: 484-492.

Prokop P, and Randler C. 2018. Biological predispositions and individual differences in human attitudes toward animals. 447-466 In: Alves RNN, Albuquerque UP, (eds). Ethnozoology: Animals in Our Lives, 1st ed. Academic Press, Cambridge, MA.

Prokop P, Fančovičová J, Klučová A. 2018. Aposematic colouration does not explain fear of snakes in humans. J Ethol 36: 35-41.

Prokop P, Fančovičová J. 2010. Perceived body condition does not explain fear of large carnivore predator in humans. Annales Zoologici Fennici 47: 417-425.

Prokop P, Fančovičová J. 2013. Does colour matter? The influence of animal warning colouration on human emotions and willingness to protect them. Anim Conser 16: 458-466.

Prokop P, Ozel M, Usak M. 2009. Cross-cultural comparison of student attitudes toward snakes. Soc Anim 17: 224-240.

Purkeyashita J, Das M, Sengupta S. 2011. Urban herpetofauna: a case study in Guwahati City of Assam, India. Herpetol Notes 4: 195-202.
