Analysis of the distribution pattern of Kaboa (*Aegiceras corniculatum*) in Cipalawah Beach

S Mulyaningsih*, A N Iman, K R Permana, L S Mulyani and C Ardiana

Prodi Pendidikan Biologi, Institut Pendidikan Indonesia, Jl Pahlawan Sukagalih no 32, Garut 44151, Jawa Barat, Indonesia

*srimulyaningsih65@gmail.com

Abstract. Kaboa (*Aegiceras corniculatum*) is a plant that lives around mangroves where the distribution pattern varies. Variations in the distribution are spread out or clustered. The study was conducted at Cipalawah beach in Garut Regency, with the aim of finding out the distribution pattern of kaboa (*Aegiceras corniculatum*). The research method uses descriptive methods. The plot line method with multilevel plots is used to obtain research data. Research data obtained from each location taken by the quadratic method. Where each data obtained from variations in plant diameter. Data on diameter of tree plants (10 cm) was obtained from plots of 10 x 10 m size. Data on diameter of sapling plants (2-10 cm) was obtained from plots with a size of 5 x 5 m. Data on seedling diameter (10 cm) was obtained from a plot of 1x 1 m size. The results showed that the distribution pattern of kaboa (*Aegiceras corniculatum*) was clustered.

1. Introduction

Mangrove plants are plants that are along the beach or estuary and is influenced by the tide, which inundated during high tide and free from puddles at low tide [1]. Mangroves have role of coastal protection from waves, wind, and prevent shoreline erosion [2]. The plants act as a barrier and alluvial material catcher as well as a hiding place and breeding of fish, crabs, shrimp, Mollusca and nesting place of hundreds of bird species [3-5].

Mangrove plant species can be differentiated into true mangrove (core) and mangrove follow-up (false). Is true mangrove mangrove can only live in a receding environment. While mangrove tides mangrove apparent is able to live outside the mangrove environment or indirectly affected by the tide. The factors that control the distribution of mangrove forests is the availability of suitable habitat for each species of mangrove and tide. The tidal movements are known to play a role in seed dispersal, seed growing power, but less contribute to the life of the tree grown [6]. High tides in coastal areas related to tofografi coastal mangrove forests will greatly affect the occurrence zonase) mangrove [7,8].

Garut has Sancang Region Nature Reserves and Marine Reserves Sancang. This forest has an area of 2,157 ha with a sea area of about 1,150 ha [9]. In this Nature Reserve are typical of mangrove plants are Kaboa (*Aegiceras corniculatum*). These plants are plants that live and thrive in Cipalawah Beach. Kaboa live on rocky substrate type, sandy and muddy. Kaboa (*Aegiceras corniculatum*) including true mangrove species. Kaboa plants rarely survive at the site or other area because of these plants require areas suitable for their survival. With the Kaboa it will prevent abrasion.

The research began in June 2019 at Cipalawah Beach, Sancang Sea Nature Reserve Area, Cibalong District, Garut Regency. The research method used is a descriptive method that is describing the state
of Kaboa (*Aegiceras corniculatum*) which is seen from the pattern of distribution, density and abundance. Data was obtained using the plot method with multilevel plots that were systematically distributed. From each location taken using the 10 m x 10 m quadratic method for trees > 10 cm in diameter. In each of these plots a smaller plot size of 5 m x 5 m is made. In the plot data were collected about 2-10 cm diameter saplings. As for seedling levels < 2 cm in diameter, data were collected from each 1 x 1 m plot placed in a 5 x 5 m plot [10].

2. Methods
This research began in June 2019 located on the Beach Cipalawah, The Sea Sancang Nature Reserve, Cibodas Sub district, Garut Regency. The research method used is descriptive method that is describing the state of the Kaboa (*Aegiceras corniculatum*) is seen from the distribution pattern, density and abundance. Data obtained using the method of line tile to the plot of the multilevel distributed systematically. From each location were taken by using the method of least squares measuring 10 m x 10 m for trees with diameter > 10 cm. On each plot is created plot is small with a size of 5 m x 5 m. In the plot it collected data about the children of the trees (saplings) with diameter of 2-10 cm. As for the levels seeding diameter < 2 cm, data were collected from each plot measuring 1 x 1 m were placed in a plot size of 5 x 5 m.

![Figure 1. Plot design.](image)

Data obtained in the field were analyzed by calculating the values of density, abundance and distribution patterns.

1. Density = \(\frac{m}{V} \) [7]
2. The abundance is calculated with the formula
 \[
 A = \frac{X}{n}
 \]
 Description:
 A= Abundance (individual/m2)
 \(X_i \)= Number of individuals (individuals) \(n_i \)=Area of the plot type to-I found (m2) [11]

3 Distribution Patterns
 Distribution patterns are calculated using a standardized Morisita index [12]:
 \[
 Id=n \frac{(\sum X_i^2 - \sum X_i)}{(\sum X_i)^2 - \sum X_i}
 \]
 Description:
 Id: Morisita Index.
 \(n \): Total number of plots.
 \(X_i \): The total number of individuals of an organism in a square \((X1 + X2 +...) \)
 \(X_i^2 \): The total square of the number of individuals of an organism in the square \((X12 + X22 +...) \)
3. Results and discussion

Table 1. Distribution patterns Kaboa (Aegiceras corniculatum).

The name of the species	the growth rate of	number of individuals	Ip	Distribution Patterns
Aegiceras corniculatum	Seedling	189	0,5	Clustered
	Stake	295	0,5	Clustered
	Tree	38	0,5	Clustered

Table 2. Density and abundance Kaboa (Aegiceras corniculatum).

The name of the species	Density	Abundance
Aegiceras corniculatum	7436 individual/ha	0,744 individual/m2

Table 3. Results of abiotic factor measurement.

No	Abiotic Factors	Cipalawah Beach		
		The beginning	The Middle	The End of the
1.	Wind Speed (km/h)	3,7 km/h	5,0 km/h	2,9 km/h
2.	Light intensity (lux)	633 x10 lux	310 x10 lux	233 x 10 lux
3.	Soil pH	5	4,5	5,2
4.	Temperature	25,5°C	25°C	27°C
5.	Salinity (ppt)	30,55 ppt	31 ppt	32 ppt

Based on Table 1, it can be seen that the distribution pattern of kaboa (Aegiceras corniculatum) on Cipalawah Beach analyzed based on growth rate is clustered. The Morista Index (Ip) value is 0.506 in the seedling phase, 0.503 in the sapling phase, 0.527 in the tree phase. Based on the Morista Index (Ip) value, it can be seen that each growth phase does not differ greatly and the distribution pattern is clustered. The calculation results are in accordance with observations in the field, namely (Aegiceras corniculatum growing in groups (Clustered). Environmental factors on the Cipalawah beach are suitable for growing and developing Kaboa, this can be seen from the density and abundance of these plants in accordance with those contained in table 2. Three main environmental parameters that determine the survival and growth of mangroves are salinity, fresh water supply, substrate stability, nutrient supply [13,14]. One of the environmental factors measured is salinity. Salinity obtained ranged between 30.55 - 32 ppt. This indicates that kaboa can live in high salinity. Aegiceras corniculatum has a high tolerance to varying salinity, soil and light [15,16]. Kaboa are tolerant of the high salinity because it can excrete salts through the leaves [17]. Different types of mangroves overcome salinity levels in different ways. Some
of them are selectively able to avoid the absorption of salt from the growing media, while some other types are able to secrete salt from special glands on the leaves [17,18].

Kaboa plant substrate (*Aegiceras corniculatum*) in the Sancang Sea Nature Reserve Area including rocky, muddy and sandy. This shows that kaboa (*Aegiceras corniculatum*) have characteristics that can be adapt to the three substrates. *Aegiceras corniculatum* grows in mangrove areas, on the edge of the sandy beach to the edge of the river and rocky substrates. In Cipalawah Beach, kaboa grows near the mainland. The type of substrate is the most dominating that is rocky and muddy.

4. Conclusion
The distribution pattern of kaboa (*Aegiceras corniculatum*) in Cipalawah Beach, Garut Regency which is analyzed based on the growth rate is clustered. The Morista Index (Ip) value is 0.506 in the seedling phase, 0.503 in the sapling phase, 0.527 in the tree phase.

The density of kaboa (*Aegiceras corniculatum*) at Cipalawah Beach in Garut Regency is very dense, with a density of 7436 individuals /m2.

The abundance of kaboa (*Aegiceras corniculatum*) in Cipalawah Beach in Garut Regency is evenly distributed with an abundance of 0.744 individuals /m2.

Acknowledgements
The author would like thank to Rektor IPI Garut, who has help and facilitated the authors in conducting research and publications. Than the Faculty of FITS along with the Biology Education Study Program of the Institut Pendidikan Indonesia which has given permission and facilities for the implementation of this research.

References
[1] Melana D M, Atchue III J, Yao C E, Edwards R, Melana E and Gonzales H I 2000 Mangrove management handbook *Department of Environment and Natural Resources, Manila, Philippines through the Coastal Resource Management Project, Cebu City, Philippines* 55
[2] Alongi D M 2008 Mangrove forests: Resilience, protection from tsunamis, and responses to global climate change *Estuarine, Coastal and Shelf Science* 76(1) 1–13
[3] Setyawan A D, Susilowati A and Sutarno 2002 Genetic biodiversity, Species and Ecosystem Mangrove in Java *Kelompok Kerja Biodiversitas Jurusan Biologi FMIPA Universitas Sebelas Maret, Surakarta*
[4] Chen G C and Ye Y 2011 Restoration of Aegiceras corniculatum mangroves in Jiulongjiang Estuary changed macro-benthic faunal community *Ecological Engineering* 37(2) 224–228
[5] Wang M, Huang Z, Shi F and Wang W 2009 Are vegetated areas of mangroves attractive to juvenile and small fish? The case of Dongzhaihang Bay, Hainan Island, China *Estuarine, Coastal and Shelf Science* 85(2) 208–216
[6] Budiman A and Prawiroatmodjo S 1992 Mangrove Forest Research in Indonesia: Utilization and Conservation National Workshop on Research Program Formulation Process Dynamics of Marine Biology and Coastal. Role and Their Management *Jurnal Kelautan*
[7] Macnae W 1966 Mangroves in Eastern and Southern Australia *Aust. J. Bot.* 14 6107
[8] Youssef T and Saenger P 1999 Mangrove zonation in Mobbs Bay - Australia. *Estuarine, Coastal and Shelf Science* 49 43–50
[9] BKSDA Jawa Barat 2017 *Nature Reserve Leuwung Sancang* [Online] retrieved from http://bksdajabar.ksdae.menlhk.go.id/wpcontent/ Profil-Bidwil-3-Fix_skw_Sancang.pdf.
[10] Fachrul F M 2012 *Sampling method BioEkologi. 1st Edition* (Jakarta: Bumi Aksara)
[11] Barus T A 2001 *Introduction to limnology, the study of the ecosystem of the river and lake* (Medan: Jurusan Biologi, Fakultas Mipa USU)
[12] Krebs C J 1989 *Ecological Methodology* (New York: Harper Collins Publisher, Inc.)
[13] Dahuri R 2003 *Marine Biodiversity Assets Sustainable Development Indonesia* (Jakarta: PT. Gramedia Pustaka Utama)
[14] Ye Y, Tam N F Y, Lu C Y and Wong Y S 2005 Effects of salinity on germination, seedling growth and physiology of three salt-secreting mangrove species *Aquatic Botany* 83(3) 193–205

[15] Noor Y R, Khazali M and Suryadiputra I N N 1999 Free Introduction Mangroves in Indonesia Cetakan ulang ketiga (Bogor: Westlands Internasional (PHKA/WI-IP))

[16] Win S, Tomprayoon S and Amnat C 2019 Adaptation of mangrove trees to different salinity areas in the Ayeyarwaddy Delta Coastal Zone, Myanmar *Estuarine, Coastal and Shelf Science* 228

[17] Parida A K, Das A B, Sanada Y and Mohanty P 2004 Effects of salinity on biochemical components of the mangrove, Aegiceras corniculatum *Aquatic Botany* 80(2) 77–87

[18] Chen J, Xiao Q, Wang C, Wang W H, Wu F H, He B Y, Zhu Z, Ru Q M, Zhang L L and Zheng H L 2014 Nitric oxide alleviates oxidative stress caused by salt in leaves of a mangrove species, Aegiceras corniculatum *Aquatic Botany* 117 41–47