Optimal design of foundations by means of nonlinear calculation methods

I Yu Dezhina
Chair of technology of construction operations, Don State Technical University, 1, Gagarin Square, Rostov-on-Don 344000, Russia

E-mail: irdezhina@yandex.ru

Abstract. This paper proposes using the defining equations from the theory of adaptive evolution of mechanical systems (which is based on the variational principles of nonlinear structural mechanics) to design the shape and size of foundations. It presents an expression for finding the potential energy of a system and the deformation energy density, as well as the variational Lagrange equation. The paper formulates a nonlinear boundary problem solved by finite-element analysis. The solution imposes a constraint on the modulus of elasticity to take into account the physico-mechanical properties of the materials. A calculation algorithm and an ADPL program are written for ANSYS. The paper also presents a solution to the problem of finding the rational foundation shaped for the case of plain strain. The solution-derived rational foundation shape is shown. The authors plot the stresses and energy densities as a function of evolution at the onset and finish of iterative processes. Note that the resulting foundation shape is more stable, more accurately positioned in the soil, and can carry a greater load compared to more conventional shapes.

1. Introduction
The choice of a foundation design for a building depends on a number of factors, including geotechnical conditions, the presence or absence of groundwater, the design of the structure itself, the loads it has to sustain, and the calculation methods. The foundation shape determines the bearing capacity, the cost-effectiveness, the constructability, and the conditions of further use.

Advancements in the methods for optimizing the foundation design must be reflected in the effective standards; any such advancement is imperative today.

As of today, foundation design uses calculations of two groups of limit states: those by strength, and those by strain. Conventionally, the foundation shape is designed and calculation-verified to suit the conditions of further use and the geotechnical conditions. Shall it be necessary to increase the bearing capacity or stability, engineers usually use variational design of specific elements, enlarge the cross-sections, or adjust the material properties.

The existing method for calculating settling and subsidence per SNiP 2.02.01-83* [1] uses a few conventions and assumptions. The disadvantages of the conventional foundation-sizing method are as follows: it produces a profile with an uneven distribution of material stiffness; it cannot precisely identify the capacity of the compressible stratum; it uses linear calculation models.
2. Defining Equations of a Nonlinear Structural System per TAEMS

Optimal structural design is a matter covered in a number of papers [1-10]. The theory of adaptive evolution of mechanical systems ("the TAEMS") [11] is based on synergetic principles [12,13] and can be used to rationally configure this or that object while predicting their behavior in this or that application.

This paper proposes using G.V. Vasilkov’s theory of adaptive evolution of mechanical systems [11] (which is based on the variational principles of nonlinear structural mechanics) to design the shape and size of foundations [14-17].

The variational principle of nonlinear mechanics is formulated in [11]. The total potential energy of the system Π_1:

$$\Pi_1 = U - \int_V u^T \rho dV - \int_S u^T g dS;$$

$$U = \frac{1}{2} \int_V (Au)^T DAu dV;$$ \hspace{1cm} (1)

Where

$$dV' = \varepsilon^{-1} \varepsilon dV; \Rightarrow V' = \int \varepsilon^{-1} \varepsilon dV; \varepsilon \leq \varepsilon_0; \varepsilon_0 \leq \left[e_{ij} \right]; u_i \leq \left[u_i \right];$$

ε is the current strain energy density; ε_0 is the standardized value of the same.

While evolving, the system is in equilibrium. At the (n+1) step, the variational Lagrange equation is written as (2):

$$\delta \Pi^n = \int_V \delta \varepsilon^n \varepsilon^{-1} \varepsilon^n dV - \int_V \delta u_i^n \rho_i dV - \int_S \left(\delta u_i^n \right) g_i dS = 0;$$ \hspace{1cm} (2)

where Π^n is the full potential system at the nth step.

The defining value of obtaining a more uniformly strong foundation design the better meets the strength requirements is such value, at which the condition holds (3)

$$E^{n+1} = \left(\varepsilon^n \cdot \varepsilon_0^{-1} \right) E^n;$$ \hspace{1cm} (3)

To find the optimal foundation design, state a nonlinear boundary problem soluble by nonlinear iterative methods. To solve such practical problems, use finite-element analysis [18,19].

The basic ratios of finite-element analysis are as follows: $u = \Phi^T q$ is the vector function of displacements; $e = Au$ are the finite-element deformations; $\sigma = D e$ are the stresses; A is the matrix of differentiation operation; D is the matrix of the medium moduli; q is the vector of nodal displacements.

Equation of the onset of possible displacements:

$$\delta \Pi = \int_V \delta e^T \sigma dV - \int_V \delta u_i^n \rho_i dV - \int_S \left(\delta u_i^n \right) g_i dS = 0;$$ \hspace{1cm} (4)

Here ρ_i is the vector of bulk forces, g_i is the vector of surface forces.

The finite-element stiffness matrix $k_i = \int_V \Phi^T D \Phi dV$ and the nodal-force vector $P_i = \int_V \Phi q dV - \int_S \Phi g_i dS$ are constructed by standard methods. The general stiffness matrix (K) and the general nodal-force vector (P) are linked by the ratio $K \cdot q = P$.

Moduli of elasticity are constant within a finite element; however, they are different for different finite elements. When solving the nonlinear problem, each iteration imposes the constraint $E_{k,n} \in \left(E_{SO}, E_{CON} \right)$ on the modulus of elasticity of the medium.

3. Algorithm to Find the Rational Foundation Structure

To solve practical problems, the author has compiled a calculation algorithm that comprises the following operations:

- introduce the dimensions of the analyzed area, construct a grid of triangular elements of optimal shape for the case of plain strain, the initial moduli of soil (E_{SO}) and concrete (E_{CON}) and Poisson’s ratios of soil (ν_{SO}) and concrete (ν_{CON});
- recalculate the moduli of strain and Poisson’s ratios in the context of the physico-mechanical properties of soil and concrete

$$
E_{SO} = \frac{E_{SO}}{1 - \nu_{SO}^2}; \quad \nu_{SO} = \frac{\nu_{SO}}{1 - \nu_{SO}^2}; \quad E_{CON} = \frac{E_{CON}}{1 - \nu_{CON}^2}; \quad \nu_{CON} = \frac{\nu_{CON}}{1 - \nu_{CON}^2};
$$

(5)

- adjust the energy density; calculate the modulus of elasticity at the n+1 step

$$
E_{FE} = E_{SO}; \quad \nu_{FE} = \nu_{SO};
$$

$$
\nu_{n+1} = \frac{R_{n,SO}^2}{2E_{SO}^n}; \quad E_{n+1} = \left\{ E^n + \left[\frac{\nu_{SO}}{\nu_{CON}} E^n \right] \right\}/2
$$

(6)

- calculate the coefficient to account for the presence of reinforcements in the foundation

$$
k_{arm} = \frac{E_{CON} - E^n}{E_{SO} - E^n};
$$

$$
\nu_{n+1} = \nu_{SO} \left(1 - k_{arm} \right) + \nu_{CON} k_{arm};
$$

(7)

(8)

- solve the system of equations

$$
K^n q = P^n; \quad \Rightarrow U_n = 0.5 \left(q_{\eta}^n \right)^T k_n q_{\eta}^n \quad \Rightarrow \varepsilon_{\eta}^n = U_{\eta}^n / V_{\eta};
$$

$$
E_{n+1} = (S \cdot \varepsilon_{\eta}^n) E^n; \quad n = 1, 2, ..., S_1; \quad r = 1, 2, ..., S_2
$$

(9)

- plot the displacement and stress curves.

Stop calculating when the relative error of calculating the total potential energy is below the value μ:

$$
\frac{\sum U_{n+1} - \sum U_n}{\sum U_{min}} \leq \mu = 0.05%;
$$

(10)
4. Problem. Find the rational shape of a continuous footing

Source data: the soil area is 18m x10m; the distributed surficial load is \(q_{\text{conv}} = 315.0 \text{kN/m} \) 1.2 wide in the middle of the area; for the soil \(E_{SO} = 6.5 \text{ MPa}, \; \nu_{SO} = 0.25 \), for the concrete \(E_{CON} = 23.0 \text{ GPa}, \; \nu_{CON} = 0.2 \).

Calculate by means of finite elements using the TAEMS defining equations [11]. The calculation algorithm and an ADPL program are written for ANSYS [20]. In this case, there are 18,372 triangular elements and 9,384 nodes. The required accuracy is attained after 270 iterations.

The solution-derived rational continuous-footing shape is shown in Figures 1 to 4. The displacement of the rationally shaped foundation totals 3.2 cm; cf. the 5.3 cm vertical displacement of a rectangular foundation of an equally sized foundation. That being said, a TAEMS-derived optimized foundation will under the same conditions settle to a lesser degree, be more stable, have better carrying capacity, and feature more accurate depth and cross-section profile. The shape of the foundation greatly depends on the order of load application.

After finding the foundation shape, the engineers finalize the design and make calculations for limit state groups I and II (strength and strain limit states). The foundation is either a standard design or is based on the reinforced-concrete structures calculations.

5. Summary
The variational principles of the structural mechanics (the TAEMS) have been used to develop a method to optimize the foundation shape and to propose a foundation cross-section shape. The model features better bearing capacity, stability, and more accurate positioning in the soil.

References
[1] SNiP 2.02.01-83* 1995 Construction standards and regulations Foundations of buildings and structures (Moscow: Russian Ministry of Construction) p 48
[2] Bobyr G A, Bogdanova M V and Bikineyev M G 1995 Optimization approach to designing the interior finish of tunnels mechanics of soils and foundation construction (St. Petersburg: Proc. of the Russian Conf.) 1 p 130
[3] Banichuk N V 1986 Introduction to structural optimization (Moscow: Nauka) p 304
[4] Rasskazov L N and Orekhova I L 1985 Optimizing the design of groundwater dams hydrogeological construction 7 p 32
[5] Reutmann M I and Shapiro G S 1976 Methods for optimal design of deformable bodies (Moscow: Nauka) p 226
[6] Slyusarenko S A and Akimov S D 1978 Optimizing the parameters of pile foundations to support building walls foundations (Kiev: Budivelnik) 11 p 46
[7] Yuryev A G 2006 Evolutionary and genetic algorithms for optimization of building structures (Belgorod: Shukhov BSTU Publ.) p 134
[8] Balling R 2006 Multiple optimum size/shape/topology designs for skeletal structures using a genetic algorithm Journal of Structural Engineering 132(7) 1158–65
[9] Bulatov G Ya and Kolosova N B 2013 Efficiency of piles of various cross-sectional forms Magazine of Civil Engineering 7 67–74
[10] Masur E F 1970 Optimum stiffness and strength of elastic structures ASCE J Engr Mech Div 96(5) 621–40
[11] Vasilkov G V 2003 Theory of adaptive evolution of mechanical systems (Rostov-on-Don) p 180
[12] Loskutov A Yu and Mikhailov A S 1990 Introduction to synergetics (Moscow: Nauka) p 272
[13] Malinetsky G G 2009 Mathematical foundations of synergetics: chaos, structures, and computational experiment (LIBROKOM) p 312
[14] Vasilkov G V 2008 Evolutionary theory of the life cycle of mechanical systems. Theory of structures (Moscow: LKI Publ) p 320
[15] Vasilkov G V 2001 Novel variational principles of nonlinear structural mechanics university news (North-Caucasian Region: Natural Sciences Series) 1 15–20
[16] Vasilkov G V 2002 On the Variational Principles and Methods for Defining Equally Energy-Strong Systems (University News North-Caucasian Region: Natural Sciences Series) 2 pp 23–29
[17] Vasilkov G V 2003 Evolutionary problems of constructional mechanics. Synergetic Paradigm (Rostov-on-Don) p 180
[18] Zienkiewicz O C, Cheung Y K 1967 The finite element method in structural and continuum mechanics (LONDON:McGraw-Hill)
[19] Bate K 1961 Numerical analysis methods and finite-element analysis (Moscow: Stroiizdat) p 537
[20] Dezhina I Yu Certificate of State Registration of a Computer Program 2012660504. Using ANSYS to Optimize the Foundation Shape