The complete chloroplast genome of *Stryphnodendron adstringens* (Leguminosae - Caesalpinioideae): comparative analysis with related Mimosoid species

Ueric José Borges de Souza 1, Rhewter Nunes 1, Cíntia Pelegrineti Targueta 1, José Alexandre Felizola Diniz-Filho 2 & Mariana Pires de Campos Telles 1,3

Stryphnodendron adstringens is a medicinal plant belonging to the Leguminosae family, and it is commonly found in the southeastern savannas, endemic to the Cerrado biome. The goal of this study was to assemble and annotate the chloroplast genome of *S. adstringens* and to compare it with previously known genomes of the mimosoid clade within Leguminosae. The chloroplast genome was reconstructed using *de novo* and referenced-based assembly of paired-end reads generated by shotgun sequencing of total genomic DNA. The size of the *S. adstringens* chloroplast genome was 162,169 bp. This genome included a large single-copy (LSC) region of 91,045 bp, a small single-copy (SSC) region of 19,014 bp and a pair of inverted repeats (IRa and IRb) of 26,055 bp each. The *S. adstringens* chloroplast genome contains a total of 111 functional genes, including 77 protein-coding genes, 30 transfer RNA genes, and 4 ribosomal RNA genes. A total of 137 SSRs and 42 repeat structures were identified in *S. adstringens* chloroplast genome, with the highest proportion in the LSc region. A comparison of the *S. adstringens* chloroplast genome with those from other mimosoid species indicated that gene content and synteny are highly conserved in the clade. The phylogenetic reconstruction using 73 conserved coding-protein genes from 19 Leguminosae species was supported to be paraphyletic. Furthermore, the noncoding and coding regions with high nucleotide diversity may supply valuable markers for molecular evolutionary and phylogenetic studies at different taxonomic levels in this group.

The chloroplast, which is considered to have originated from free-living cyanobacteria through endosymbiosis, plays an essential role in photosynthesis and in many processes in plant cells. In this evolutionary context, the chloroplast genome of angiosperms exhibit a highly conserved organization with a quadripartite structure, comprising two copies of inverted repeats (IRs), separated by large (LSC) and small (SSC) single-copy regions. The size of the circular chloroplast genome range between 120 and 160 kb in length, but varies considerably both within and among plant families. For example, in the Geraniaceae, the size of the chloroplast genome ranges from 116,935 bp in *Erodium carvifolium* to 242,575 bp in *Pelargonium transvaalense* (Accession: NC_031206.1 unpublished). For Leguminosae, the size ranges from 120,289 bp in *Lathyrus odoratus* (Accession: NC_027150.1 unpublished) up to 178,887 in *Pithecellobium flexicaule*. The variations in size can be attributed mostly to the expansion, contraction or loss of IRs, as well as variation in length of intergenic spacers. Most angiosperm chloroplast genome usually contain 100–130 distinct genes, comprising of 80–90 protein coding genes and approximately 30 transfer RNA (tRNA) genes and four ribosomal RNA (rRNA) genes. The IR region comprises a duplicated set of tRNA and rRNA genes, whereas the single copy regions mostly consists of protein-coding genes involved in cell functions, which include components of the photosynthetic machinery (such as photosystem I (PSI), photosystem II (PSII), the cytochrome b6/f complex, and the ATP synthase).
transcription, and translation. The two IRs are identical in their nucleotide sequence, so that every gene contained within them is present in two copies per genome which only differ in their relative orientation1,2.

The gene order and content of chloroplast genomes are generally highly conserved along plant evolution and the substitution rates are much lower than that of the nuclear genome13. This fact, coupled with the non-recombinant nature and maternal inheritance in most angiosperms, makes plant chloroplast genomes valuable sources of genetic markers for analyzing evolutionary relationships at multiple scales, ranging from short-term phylogeographic patterns up to phylogenetic relationships among large clades13,14.

The first complete chloroplast genomes were determined over 30 years ago, for Nicotiana tabacum15 and Marchantia polymorpha16. However, because the time and cost associated with the conventional Sanger sequencing, the reconstruction of complete chloroplast genome was impractical for non-model species. More recently, with the advent of next-generation sequencing technology, whole genome sequencing has increased dramatically17. This offers an alternative way to obtain chloroplast genome based on downstream bioinformatics pipelines that allows distinguishing plastid reads from nuclear and mitochondrial reads18. Currently, approximately 1,654 eudicotyledons chloroplast genomes have been sequenced and deposited in the NCBI Organelle Genome, out of which 114 belong to the legume family (Leguminosae) and 19 to Caesalpinioideae subfamily.

The Leguminosae is the third-largest angiosperm family, with approximately 751 genera and ca. 19,500 species19,20. The Leguminosae was divided into three sub-families, the Caesalpinioideae, Mimosoid and Papilionoideae21. However, a new classification of the legumes has been proposed by The Legume Phylogeny Working Group21. They used a metAK gene-based phylogeny and a wide Leguminosae sample (~90% of genera) to propose a new family organization consisting in six sub-families: Caesalpinioideae, Cercidioideae, Detarioideae, Dillatioideae, Duparquetioideae and Papilionoideae21. The traditional subfamily Mimosoid is now recognized as a distinct ‘mimosoid clade’ nested in the reassigned Caesalpinioideae21. Within the ‘mimosoid clade’, the genus Stryphnodendron Mart. includes approximately 21 species and two subspecies, mainly found in the South-American neotropical savannas22. Recently phylogenetic analysis demonstrated that the genus Stryphnodendron are not monophyletic23, clustering with the monospecific genus Microlobius inside the Piptadenia group23.

The S. adstringens, popularly known as “barbatimão”, is a common tree in the Brazilian Savanna. It’s a small, hermaphroditic, deciduous tree with a rough, light-colored, thick, tortuous trunk. It can reach 4–5 meters tall and the trunk can be 20–30 cm in diameter. The leaves alternate between composed and binary. Flowering occurs in September24,25 and the fruits are sessile, thick and fleshy, longob, light brown in color, 10 cm long, producing many brown seeds. The stem bark of this plant is used, popularly, in the treatment of several diseases because of its anti-inflammatory, antimicrobial and antulcerogenic properties26–29. These effects are directly correlated with many brown seeds. The stem bark of this plant is used, popularly, in the treatment of several diseases because of its anti-inflammatory, antimicrobial and antulcerogenic properties26–29. These effects are directly correlated with the presence of high concentrations of tannin into the barks29,30.

The goal of this study was to assemble the chloroplast genome of S. adstringens from whole genome sequence data, reporting the annotation and its structural characterization providing new genomic resources for this species. We also used a phylogenetic analysis to evaluate the sequence divergence in chloroplast regions of S. adstringens when compared with other known species of the mimosoid clade.

Materials and Methods

DNA extraction and chloroplast genome sequencing. Fresh young leaves of S. adstringens were collected in Niquelândia, Goiás, Brazil (Sisgen Registration: A4EE2BE). Total genomic DNA was extracted using a CTAB protocol11. DNA quality was evaluated using horizontal electrophoresis with 1% agarose gel. In addition, DNA was quantified through fluorometry using Qubit 2.0 (Life Technologies). Genomic library preparation was performed using a Nextera DNA Sample Preparation Kit (Illumina, San Diego, USA). The resulted library was sequenced using the HiSeq2500 platform and V4 SBS kit (Illumina) on a single lane in paired-end mode (2 × 100 bp) at the University of São Paulo (Escola Superior de Agricultura Luiz de Queiroz da Universidade de São Paulo) in Piracicaba, Brazil.

Chloroplast genome assembly and annotation. Paired-end Illumina raw reads were filtered and trimmed using Trimmomatic v.0.3632 using the ILLUMINACLIP: NexteraPE-PE.fa:2:30:10 for adapter trimming, a sliding window of 10 base pairs with a minimum average quality score of 20 (SLIDINGWINDOW:10:20), and a minimum length of 40 bp (MINLEN:40).

The chloroplast genome of S. adstringens was reconstructed using a combination of de novo and reference-guided assemblies. To obtain the de novo chloroplast genome assembly, the paired-end sequence reads were mapped to five Mimosoid plastomes using Bowtie2 v.2.3.4.133 to exclude reads of nuclear and mitochondrial origins (Adenanthera microsperma Tejms. & Binn. [accession no. NC_034986], Dichrostachys cinerea (L.) Wight & Arn. [accession no. NC_035346], Leucaena trichandra (Zucc.) Urb. [accession no. NC_028733], Parkia javanica (Lam.) Merr. [accession no. NC_034989], Piptadenia communis Benth. [accession no. NC_034990]). The obtained putative chloroplast reads were then used for de novo assembly using SPAdes 3.6.1 with iterative k-mer sizes of 55, 69 and 8724,35. Reference guided assembly was performed with YASRA 2.3224 using Piptadenia communis Benth. as reference chloroplast genome. Contigs with coverage below than 10x were eliminated. The remaining de novo contigs were merged with reference-guided contigs in Sequencher 5.4.6 (GeneCodes, Ann Arbor, Michigan, USA) based on at least 20bps overlap and 98% similarity. Any discrepancies between de novo and reference-guided contigs were corrected by searching the high quality read pool using the UNIX ‘grep’ function. A “genome walking” technique, using the Unix “grep” function, was used to find reads that could fill any gaps between contigs that did not assemble in the initial set of analyses. Assembly curation was performed by aligning sequenced reads on the chloroplast using the Bowtie2 program. Sequencing depth was measured using the samtools platform (samtools.sourceforge.net/). Additionally, we also compared the position of the chloroplast genome regions of S. adstringens related species in circle alignment graphs made with the Circus program (http://circos.ca/).
 Annotation of the chloroplast genome was performed using Verdant36 and Dual Organellar Genome Annotator-DOGMA37, coupled with manual correction of start and stop codons and intron/exon boundaries. Transfer RNA (tRNA) genes were identified with DOGMA and the tRNAscan-SE program ver. 2.038 in organellar search mode with default parameters. The circular chloroplast genome map was drawn using OrganellarGenomeDRAW (OGDRAW).39 The codon usage analysis was performed in the web server Bioinformatics (https://www.bioinformatics.org/sms2/codon_usage.html).

Characterization of repeat sequences. The sizes and locations of forward, reverse, palindromic and complementary repeats in the S. adstringens chloroplast genome were determined by REPuter40 with a minimal size of 30 bp, hamming distance of 3 and over 90% identity. Simple sequence repeats (SSRs) were detected using the microsatellite identification tool MISA (available online: http://pgrc.ipk-gatersleben.de/misa/misa.html). The minimum number of SSRs was set to ten repeat units for mononucleotide, five repeat units for dinucleotide, four repeat units for trinucleotide and three repeat units for tetra-, penta- and hexanucleotide.

Nucleotide Diversity and Synonymous (Ks) and non-synonymous (Ka) substitution rate analysis. The complete chloroplast genome sequence of S. adstringens was compared with the chloroplast genome sequences of five Mimosoid chloroplast genomes used for assembling. To assess the complete nucleotide diversity (Pi) among the complete chloroplast genome of the six species, the complete chloroplast genome sequences were aligned using MAFFT aligner tool41, and manually adjusted with Bioedit42. We then performed a sliding window analysis to calculate the nucleotide variability (Pi) values using DnaSP 643 with window length of 600 bp and step size of 200bp. The 77 protein-coding genes were extracted and aligned separately using MAFFT to estimate the synonymous (Ks) and non-synonymous (Ka) substitution rates. The Ka/Ks for each gene were estimated in DnaSP 6.

Comparative analysis of genome structure. The mVISTA program was applied to compare the complete chloroplast genome of S. adstringens against the whole chloroplast genome of the five mimosoid species using the shuffle-LAGAN mode41. The annotated S. adstringens chloroplast genome was used as reference. The expansion and contraction of the IR regions at junction sites between the six mimosoid species were verified and plotted using IRscope45.

Phylogenetic analyses. Seventy-three protein-coding genes were recorded from 19 species within the Leguminosae – Caesalpinioideae, as well as from two outgroups (Cacuminis sativus L. and Fragaria vesca L.). All genes sequences were obtained from GenBank (see Supplementary Table S6 for accession numbers). The accD, ycf1, rps16, rps12 genes were not considered for phylogenetic analysis as they were not present in all chloroplast genomes among the species under analysis.

The nucleotide sequences were aligned using MAFFT41 with default parameters. The Akaike Information Criterion (AIC) in JModelTest v2.1.10 was used to determine the best-fitting model of molecular evolution for each gene46 (models selected can be seen in Supplementary Table S7). The alignments from the 73 protein-coding genes were concatenated and a Bayesian inference was performed using BEAST v1.10.147 at the XSEDE Teragrid with burn in of 20%. The final tree was produced using FigTree v.1.4.3 (http://tree.bio.ed.ac.uk/software/figtree/).

Results and Discussion

Genome assembly and annotation. A total of 563,117,260 raw Illumina paired-end reads from the S. adstringens genome were generated and filtered against Mimosoid chloroplast genomes. After trimming adapters, low quality bases, and mapping the reads to the reference set, a total of 10,549,708 reads were used to assemble the chloroplast genome. The filtered reads were assembled into 57 contigs with at least 10X of coverage with a total length of 271,468 bp and an N50 of 10,881. The reference guided assembly produced 64 contigs with an N50 of 3,938 (half of the assembly contained at least 3,938 bp). The final assembly from both approaches resulted in a single chromosome and was benchmarked based on the distribution of sequencing coverage by base. After that, for validation, a set of 18,937,635 raw paired-end Illumina reads were well aligned in the chloroplast genome. The average sequencing depth was 11,470X, with a standard deviation of 3,720 (median: 12,009; mode: 12,448; minimum: 29 and maximum: 72,245) (Supplementary Fig. 1A,B). The pairwise alignments with species close related to S. adstringens showed a high conservation of the general structure of the chromosome and correct arrangement of the chloroplast regions validating the proposed genome (Supplementary Fig. 2A–D). The sequence of the chloroplast genome was deposited in GenBank (accession number: MN196294).

The complete chloroplast genome of S. adstringens was assembled with a total of 162,169 bp in size, divided in four regions, which included a large single-copy (LSC) region of 91,045 bp, a small single-copy (SSC) region of 19,014 bp, separated by two inverted repeat (IR) regions of 26,055 bp each (Fig. 1; Table 1). Analogous to most angiosperms, the S. adstringens chloroplast genome comprises a single circular molecule with a quadripartite structure1 and it is similar in size from other species from the Mimosoid clade (Leguminosae; Table 1; see also7).

The GC content of the S. adstringens chloroplast genome was 35.9%, which is also consistent with other Mimosoid, whose plastomes ranged from 35.6 to 36.5% overall GC content (Table 1; see also1). Among the LSC, SSC and IR regions, the highest GC content was found in the IR regions (42.7%), while the GC content of LSC and SSC was 33.3% and 30.0%, respectively (Supplementary Table S1). The high GC content in the IR regions are...
mainly due to high GC contents of the four ribosomal RNA (rRNA) genes, *rrn23*, *rrn16*, *rrn5*, *rrn4.5*, with 55.3%, 56.4%, 52.9% and 50%, respectively, that are located in this region.

The assembled chloroplast genome contained 111 different genes, with 77 protein-coding genes, 30 transfer RNA (tRNA) and 4 ribosomal RNA genes (rRNA) (Fig. 1; Table 2). A total of nine protein-coding genes and 6 tRNAs genes contained a single intron, whereas three genes (*rps12*, *clpP* and *ycf3*) exhibit two introns each (Supplementary Table S2). The *rps12* gene was predicted to be trans-spliced, with the 5' end located in the LSC region and the duplicated 3' end in the IR region. The *trnK-UUU* has the largest intron encompassing the *matK* gene, with 2,558 bp, whereas the intron of *trnL-UAA* is the smallest (513 bp).

Table 1. Chloroplast genome information from sampled Mimosoid species and the newly assembled *S. adstringens*. LSC Large Single Copy, SSC Small Single Copy, IR Inverted Repeat.

![Figure 1. Gene map of the *S. adstringens* chloroplast genome. The genes drawn outside and inside of the circle are transcribed in clockwise and counterclockwise directions, respectively. Genes were colored based on their functional groups. The inner circle shows the quadripartite structure of the chloroplast: small single copy (SSC), large single copy (LSC) and a pair of inverted repeats (IRa and IRb). The gray ring marks the GC content with the inner circle marking a 50% threshold. Asterisks mark genes that have introns.](image-url)
Category	Gene groups	Name of genes
Self-replication	Large subunit of ribosomal proteins	rpl21, rpl14, rpl16, rpl20, rpl23, rpl32, rpl33, rpl36
	Small subunit of ribosomal proteins	rps2, rps3, rps4, rps7, rps8, rps11, rps12, rps14, rps15, rps16, rps18, rps19
	DNA-dependent RNA polymerase	rpa, rpb, rpoC1, rpoC2
Ribosomal RNA genes		rnrA, rnrB, rnrC, rnrD
	Transfer RNA genes	trnA-UGC, trnC-GCA, trnD-GUC, trnE-UCU, trnF-GAA, trnG-MAU, trnG-UCC, trnH-GUG, trnI-CAU, trnK-GAU, trnL-CAA, trnL-UAG, trnM-CAU, trnN-GUU, trnP-UGG, trnQ-UAG, trnR-AGC, trnR-CUC, trnR-GCU, trnS-UCU, trnS-GCA, trnT-GGU, trnV-UAC, trnV-GAC, trnW-CCA, trnY-GUA
Photosynthesis	Photosystem I	psaA, psaB, psaC, psaL
	Photosystem II	psbA, psbB, psbC, psbD, psbE, psbH, psbI, psbK, psbL, psbM, psbN, psbP, psbZ
NADH dehydrogenase	NADH dehydrogenase	ndhA, ndhB, ndhC, ndhD, ndhE, ndhF, ndhG, ndhH, ndhI, ndhJ
	Cytochrome b/f complex	petA, petB, petD, petG, petL, petN
	ATP synthase	atpA, atpB, atpE, atpF, atpH, atpL
	Rubisco large subunit	rbcL
Other genes	Maturase K	matK
	Envelope membrane protein	cemA
	Subunit of acetyl-CoAcarboxylase	accD
	C-type cytochrome synthesis gene	ccsA
	Protease	clpP
	Conserved hypothetical chloroplast open reading frames	ycf1, ycf2, ycf3, ycf4

Table 2. List of genes in the chloroplast genome of *S. adstringens*. 1 – Gene with introns. 2 – Gene completely duplicated in the inverted repeat.

Codon usage analysis performed using 77 protein coding gene sequences identified a total of 20,986 codons in the *S. adstringens* chloroplast genome (Table 3). Most identified codons are coders for amino acid leucine (2,227 codons, ~ 10.6% of the total number of codons) and the most abundant codon was TTA (33% of codons encoding leucine). The codons encoding the amino acid cysteine were identified as the least abundant in the *S. adstringens* chloroplast genome (256 codons, ~1.2%). Moreover, only one codon was identified for the coding of methionine (ATG) and tryptophan (TGG) amino acids.

The duplicated IR of the *S. adstringens* chloroplast genome resulted in complete duplication of sixteen genes (including five protein–coding genes [rpl2, rpl23, rps7, rps12 and ndhB]), seven tRNAs [trnA-UGC, trnI-CAU, trnL-GAU, trnL-CAA, trnN-GUU, trnR-AGC, and trnV-GAC], and all four rRNAs [rrn23, rrn16, rrn5, rrn4.5], see Table 2; Fig. 1) and parts of the 5′ end of ycf1 and rps19. The remaining genes, the LSC region contained 59 protein-coding and 22 tRNA genes, while the SSC region contained 11 protein-coding and one tRNA gene. These results corroborate the findings of Wang et al. (2017), which all species belonging to tribe Mimoseae had canonical IRs, with a typical gene content and general organization.

It is important to point out that the structure of the chloroplast genome in species from Leguminosae family are highly variable because of either expansion or contraction of the IR52. This is mainly caused by the gene transfer from single copy regions to inverted repeat and vice versa in the boundaries of IRs, during evolution53. With the exception of *Acacia ligulata*54, the legume plastomes of all species documented to date within the clade formed by *Ingeae* and *Acacia* species, have IRs ca. 13 kb larger, and a SSC correspondingly smaller, than other legumes55. In addition, the size variation of the plastid genome has been explained, at least in part, by the loss of one IR. However, the mechanisms that led to IR loss are still unknown. Examples of variation within the Leguminosae include the loss of the IR in the monophyletic group within the subfamily Papilionoideae (including *Trifolium, Pismum, Cicer, Medicago, Glycyrrhiza* and *Vicia*), known as the “inverted repeat lacking clade”53,54.

Repeat sequences analysis. A total of 42 repeat structures, with lengths ranging from 30 bp to 128 bp, were detected in the *S. adstringens* chloroplast genome. They included 22 (52.38%) forward repeats, 18 (42.86%) palindrome repeats, and two (4.76%) reverse repeats (Supplementary Table S3), whereas none complementary structure was identified. The forward repeats ranged from 30 bp to 128 bp. The palindromic repeats were 30 bp to 60 bp, whereas the two reverse repeats were 30 bp and 38 bp (Supplementary Table S3). In the majority of Mimoseid species, the most abundant dispersed repeat identified were forward, then palindromic and the least was reverse.

Among the 42 repeats, 64.29% are located in the LSC region, 14.29% in the SSC region and 16.67% in the IR region. Two repeats, which were 39 bp and 52 bp, located in the intron region of ycf3 and rpl16, was found to repeat thrice (LSC/SSC/IR) and twice (LSC/SSC), respectively, as forward repeat. Most of the repeats (80.95%) were found in the intergenic spacer regions (IGS), whereas 19.05% were located in the introns (ndhA, ycf3 and rpl16) and only two were located in coding region (psaB and trnN-GCU) (Supplementary Table S3).

A total of 137 SSRs were detected in the *S. adstringens* chloroplast genome, which were composed by a length of at least 10 bp and repeated 3 to 21 times. Among them, 90 (65.69%) were mono-repeats, 19 (13.87%) were di-repeats, nine (6.57%) were tri-repeats, 11 (8.03%) were tetra-repeats, seven (5.11%) were penta-repeats and one (0.73%) was hexa-repeat. The majority (89 or 98.89%) of the mononucleotide repeats consisted of A/T motif(s), while only one was composed of a G/C motif. Likewise, most of the dinucleotides and trinucleotides were
AT-rich, being composed of AT/TA (84.21%) and AAT/TTA (77.78%) repeats, respectively (Fig. 2). These results showed that the SSRs exhibit a strong AT bias, which is consistent with the observed in other Leguminosae species, such as *Vigna radiata* [55], *Cajanus cajan* [10], *Cajanus scarabaeoides* [10] and *Arachis hypogaea* [56].

Concerning genomic localization, among the 137 SSRs, 114 (83.21%) were found in the LSC region, 17 (12.41%) in the SSC region and six (4.38%) in the IR region (Supplementary Table S4). Most of these SSRs were located in intergenic regions (102 or 74.45%), while 17 (12.41%) were in the introns and 18 (13.14%) were in the protein-coding genes (Supplementary Table S4). The *ycf1* gene contained more SSRs than the other genes (Supplementary Table S4). In addition, the results found herein are in agreement with those from *Cajanus cajan* [10], *Cajanus scarabaeoides* [10], *Vigna radiata* [55] and *Glycine* species [57]. The *ycf1* encodes a protein of approximately 1,800 amino acids. The *ycf1* located in the IR region is short and conserved, while the located in SSC region are extremely variable in seed plants [58,59]. Some studies reported that this region is the most variable locus for the design of primers, as well, as more variable than *matK* in many taxa, and thus suitable for molecular systematics at low taxonomic levels [58,60].

Nucleotide diversity and Ka/Ks ratio. The average nucleotide variability (*Pi*) among the five chloroplast genomes of Mimosoid species was estimated to be 0.01771, ranging from 0 to 0.172. The nucleotide variability was higher in the SSC (*Pi* = 0.02712) and LSC (*Pi* = 0.02488), when compared to IR regions, which had a much lower nucleotide diversity (*Pi* = 0.00339). Similar results were obtained in the comparison of chloroplast genome sequences among *Aconitum* L. species, in which the average *Pi* in the IR region was 0.00146, whereas in the LSC and SSC regions the diversity estimates were 0.007140 and 0.008368, respectively [61]. Park *et al.* (2018) analyzed the nucleotide diversity in six *Ipomoea* L. chloroplast genome and also found that the IR regions were more conserved than the LSC and SSC regions, with average *Pi* values of 0.003 for IR and more than 0.006 for SSC and LSC regions [62].

Five regions (*trnS-GCU-trnG-UCC, trnR-UCU-atpA, trnC-GCA-petN, psbZ-trnG-UCC, ndhC-trnV-UAC*) showed high levels of nucleotide diversity, with *Pi* values > 0.8 (Fig. 3). All of these highly variable regions are found in intergenic spacer from LSC region. Liu *et al.* (2018) analyzed the nucleotide diversity among seven

Amino Acid	Codon	Number	Fraction	Amino Acid	Codon	Number	Fraction
Ala	GCG	138	0.12	Leu	CTA	302	0.14
	GCA	321	0.27		CTT	462	0.21
	GCT	571	0.48		CTC	135	0.06
	GCC	168	0.14	Lys	AAG	245	0.24
Arg	AGG	134	0.11		AAA	759	0.76
	AGA	365	0.30	Met	ATG	504	1
	CGG	92	0.07	Phe	TTC	803	0.67
	CGA	282	0.23		TTC	397	0.33
	CGT	275	0.22	Pro	CCG	112	0.13
	GCC	87	0.07		CCA	249	0.29
Asn	AAT	737	0.78		CCT	341	0.39
	AAC	208	0.22		CCC	170	0.19
Asp	GAT	655	0.81	Ser	AGT	324	0.20
	GAC	149	0.19		AGC	97	0.06
Cys	TGT	186	0.74		TCG	145	0.09
	TGC	67	0.26		TCA	312	0.19
Gln	CAG	164	0.23		TCT	458	0.29
	CAA	559	0.77		TCC	267	0.17
Glu	GAG	264	0.25	Thr	ACG	113	0.11
	GAA	784	0.75		ACA	322	0.30
Gly	GGG	238	0.16	ACT	442	0.42	
	GGA	593	0.39		ACC	188	0.18
	GGT	531	0.35	Trp	TGG	370	1
	GCC	152	0.10	Tyr	TAT	622	0.80
His	CAT	395	0.78		TAC	153	0.20
	CAC	112	0.22	Val	GTG	168	0.14
Ile	ATA	564	0.31		GTA	460	0.38
	ATT	933	0.51		GTT	434	0.36
	ATC	341	0.19		GTC	134	0.11
Leu	TTG	466	0.21	End	TGA	29	0.28
	TTA	727	0.33		TAG	21	0.21
	C TG	138	0.06		TAA	52	0.51

Table 3. Codon usage for *S. adstringens* chloroplast genome.
species from caesalpinioid legumes and reported five regions including psbZ-trnG (trnT-trnL, rps3-rps19, rpl32 and ycf1) with higher \(P_i \) values, all with \(P_i > 0.1263 \). Highly variable regions among chloroplast genomes can be useful for phylogenetic reconstruction and may be used for further phylogenetic study of the genus *Stryphnodendron*.

The non-synonymous (\(K_a \)) to synonymous (\(K_s \)) rate ratio (\(K_a/K_s \)) was calculated for the 77 protein-coding genes in common across all six chloroplast genomes (Fig. 4 and Supplementary Table S5). The synonymous substitution does not change the amino acid within a peptide chain, whereas nonsynonymous substitution does. The *rpl32* gene associated with large subunit of ribosomal proteins had the highest synonymous rate, 0.09263, while the *ycf1* gene with unknown functions, had the highest nonsynonymous rate, 0.03534.

The \(K_a/K_s \) ratio may indicate whether selective pressure is acting on a particular protein-coding gene. A \(K_a/K_s > 1 \) indicates that the gene is affected by positive selection, whereas \(K_a/K_s < 1 \) indicates that the gene is affected by negative selection or purifying selection. A value of 0 indicates the presence of neutral selection. Concerning the different regions of chloroplast genomes, the \(K_a/K_s \) ratio were highest on average in the SSC region (0.2991) and lowest in the IR region (0.2856) and LSC region (0.2708). The lowest \(K_a/K_s \) ratio was observed for genes encoding subunits of ATP synthase, subunits of the cytochrome b/f complex, subunits of the large subunit of ribosomal proteins and subunits of photosystem II (Fig. 4; Supplementary Table S5).

Herein, the \(K_a/K_s \) ratio was calculated to be 0 for 13 genes, two inside the IR region (*rpl23*, *rps12*), ten in the LSC region (*rpl36*, *psbM*, *psbZ*, *psbF*, *psbT*, *psbN*, *petL*, *petG*, *atpH*) and one in the SSC region (*psaC*) (Fig. 4). This occurred because the \(K_a \) or \(K_s \) is 0 or extremely low, thus \(K_a/K_s \) ratio could not be calculated. Among the 77 protein-coding genes, \(K_a/K_s \) indicates purifying selection in 62 of them (Fig. 4; Supplementary Table S5). The \(K_a/K_s \) ration indicates positive selection for three genes analyzed, one of it is associated with small subunit of ribosomal proteins (*rps16*), the other is associated with Photosystem II (*psbH*) and the third with the *clpP* proteases (Fig. 4; Supplementary Table S5).

Liu et al. (2018) reported four genes with \(K_a/K_s \) ratio more than 1, indicating positive selection, *ndhD*, *ycf1*, *infA* and *rpl23* in caesalpinoid legumes, whereas, Park et al. (2018) observed positive selection in three genes,
accD, cemA, and ycf2, among six Ipomoea species. In addition, Tian et al. (2018) reported only one gene (rps12) with positive selection among nine Araceae species. In addition, it was demonstrated that Leguminosae chloroplast have regions with accelerated mutation rates, including genic regions such as the clpP in Mimosoids and rps16 in the IRLC clade. The rps16 gene encodes the ribosomal protein S16 and it is present in the chloroplast genome of the majority of higher plants. Moreover, a multiple gene-loss event of rps16 was reported for various legumes lineages. For instance, in the Leguminosae family,
Cicer arietinum, Caragana rosea, Phaseolus vulgaris, Lupinus species and Mucuna macrocarpa have lost this gene. As revealed in other studies, the multiple loss of the rps16 was assumed to be a consequence of the dual targeting of the nuclear rps16 copy to the plastid as well as the mitochondria, suggesting that the chloroplast-encoded rps16 has already been silenced and has become a pseudogene by the nuclear-encoded rps16.

The structural characteristics in chloroplast genome among Mimosoid species revealed that gene coding regions were more conserved than the non-coding regions, and IRs were more conserved than LSC and SSC regions (Fig. 5). This result is consistent with the pattern revealed in other Leguminosae species, such as Glycine species and species from Caesalpinioideae subfamily. Additionally, it was also observed that the intergenic spacers regions between several pairs of genes varied greatly, for example, between matK-rps16, rps16-psbK, trnS-GCU-trnG-UCC, atpH-atpI, trnC-GCA-petN, psbZ-trnG, trnT-UGU-trnL-UAA, ndhC-trnV-UAC and rps3-rps19. Some of these intergenic spacer regions had also the highest level of nucleotide diversity.

The expansion and contraction of the IR region and the single-copy boundary regions result in change in the position of the junction sites, which is considered as a primarily mechanism causing length variation of chloroplast genomes in higher plants. The length of the IR regions was similar, ranging from 26,006 bp in Parkia javanica to 26,143 bp in Dichrostachys cinerea (Fig. 6). Wang et al. (2017) observed that species belonging to tribe Mimoseae had canonical IRs, whereas species belonging to tribes Ingae and Acacieae had much long IRs, as all of them experienced ca. 13 kb IR expansion into SSC previously reported by Dugas et al. (2015).
The endpoint of the Mimoseae JLA (junction between IRa and LSC) was located upstream of the rps19 and downstream of the trnH–GUG. Similar patterns were observed by Amiryousefi et al. (2018b) in Solanaceae chloroplast genomes. The junction between IRb and SSC region (JSB) was located in the intergenic ycf1/ndhF, and the distance between the ndhF end to the junction of the IRb/SSC differs by 11 bp in Dichrostachys cinerea to 150 bp in Adenanthera microsperma. The junction between IRa and SSC (ISA) was located within the ycf1 gene, and the fragment located at the IRa region ranged from 692 bp to 779 bp (Fig. 6). The gene rps19 crossed the LSC/IRb region and the extent of the IR expansion to rps19 slightly varies among the Mimoseae species ranging from 101 bp to 105 bp.

Phylogenetic relationships. In this study, 19 species from Caesalpinioideae and two outgroups were analyzed based on 73 protein-coding genes of their chloroplast genomes. The total concatenated alignment length from the 73 protein-coding genes was 60,736 bp. The reconstructed phylogeny indicated that Caesalpinioideae was paraphyletic and that the species from tribe Mimoseae (Adenanthera microsperma, Dichrostachys cinerea, Leucaena trichandra, Parkia javanica, Piptadenia communis and S. adstringens) were deemed non-monophyletic (Fig. 7). All nodes were strongly supported, given the Bayesian posterior probability (Fig. 7). These results are consistent with those from Wang et al. (2017) and support the new classification system proposed for the Leguminosae.

Conclusion

In this work, we assemble the complete chloroplast genome of *S. adstringens* with 162,169 bp. Genome gene contents and orientation are similar to those found in the chloroplast genome of other Mimosoid (Leguminosae) species. This study also revealed the distribution and location of repeated structures and microsatellites along the chloroplast genome. We also generated important genomic resources for Mimosoid group. Moreover, the Ka/Ks ratio was lower in the LSC region compared to SSC region. As expected, the comparison with other five Mimosoid species revealed that the coding regions are more conserved than non-coding regions, and IRs more conserved than LSC and SSC regions. Finally, the phylogenetic relationships built for 19 species of Caesalpinioideae, including the new data from *S. adstringens* and two outgroups, were fully resolved with high supports based on 73 conserved protein-coding genes. The maximum credibility tree revealed that the tribe Mimoseae is paraphyletic, consistent with the new classification proposed for the Leguminosae.

Data Availability

The complete chloroplast sequence generated and analyzed during the current study are available in GenBank, https://www.ncbi.nlm.nih.gov (accession numbers are described in the text).

References

1. Leister, D. Chloroplast research in the genomic age. *Trends in Genetics* **19**, 47–56 (2003).
2. Neuhaus, H. E. & Emes, M. J. Nonphotosynthetic Metabolism in Plastids. *Annual Review of Plant Physiology and Plant Molecular Biology* **51**, 111–140 (2000).
3. Rodríguez-Ezepeleta, N. et al. Monophyly of Primary Photosynthetic Eukaryotes: Green Plants, Red Algae, and Glaucophytes. *Current Biology* **15**, 1325–1330 (2005).
4. Jansen, R. K. & Ruhlman, T. A. Plastid Genomes of Seed Plants. In *Genomics of Chloroplasts and Mitochondria* 103–126, https://doi.org/10.1007/4735_2007_0223 (Springer-Verlag Berlin Heidelberg, 2007).
5. Palmer, J. D. Comparative Organization of Chloroplast Genomes. *Annual Review of Genetics* **19**, 325–354 (1985).
6. Blazier, J. C., Guisinger, M. M. & Jansen, R. K. Recent loss of plastid-encoded ndh genes within Erodium (Geraniaceae). *Plant Molecular Biology* **76**, 263–272 (2011).
7. Wang, Y.-H., Qu, X.-J., Chen, S.-Y., Li, D.-Z. & Yi, T.-S. Plastomes of Mimosoideae: structural and size variation, sequence divergence, and phylogenetic implication. *Tree Genetics & Genomes* **13**, 41 (2017).
8. Raubeson, L. A. & Jansen, R. K. Chloroplast genomes of plants. In *Plant diversity and evolution: genotypic and phenotypic variation in higher plants.* (ed. Henry, R.) 45–68 (Cambridge, MA: CABIL, 2005).
9. Bock, R. Structure, function, and inheritance of plastid DNA. In *Cell and Molecular Biology of Plastids* (ed. Bock, R.) 29–63, https://doi.org/10.1007/4735_2007_0223 (Springer-Verlag Berlin Heidelberg, 2007).
10. Kaila, T. et al. Chloroplast Genome Sequence of Pigeonpea (Cajanus cajan (L.) Millspaugh) and Cajanus scarabaeoides (L.) Thouars: Genome Organization and Comparison with Other Legumes. *Frontiers in Plant Science* **7**, 1847 (2016).
11. Li, B. & Zheng, Y. Dynamic evolution and phylogenomic analysis of the chloroplast genome in Schisandraceae. *Scientific Reports* **8**, 9285 (2018).
12. Wolfe, K. H., Li, W. H. & Sharp, P. M. Rates of nucleotide substitution vary greatly among plant mitochondrial, chloroplast, and nuclear DNAs. *Proceedings of the National Academy of Sciences* **84**, 9054–9058 (1987).
13. Provan, J., Powell, W. & Hollingsworth, P. M. Chloroplast microsatellites: new tools for studies in plant ecology and evolution. *Trends in Ecology & Evolution* **21**, 858–868 (2006).
14. Li, B. & Zheng, Y. Dynamic evolution and phylogenomic analysis of the chloroplast genome in Schisandraceae. *Scientific Reports* **8**, 9285 (2018).
15. Wolf, K. H., Li, W. H. & Sharp, P. M. Rates of nucleotide substitution vary greatly among plant mitochondrial, chloroplast, and nuclear DNAs. *Proceedings of the National Academy of Sciences* **84**, 9054–9058 (1987).
16. Provan, J., Powell, W. & Hollingsworth, P. M. Chloroplast microsatellites: new tools for studies in plant ecology and evolution. *Trends in Ecology & Evolution* **16**, 142–147 (2001).
17. Ravi, V., Khurana, J. P., Tyagi, A. K. & Khurana, P. An update on chloroplast genomes. *Plant Systematics and Evolution* **271**, 101–122 (2008).
18. Shinozaki, K. et al. The complete nucleotide sequence of the tobacco chloroplast genome: its gene organization and expression. *The EMBO Journal* **5**, 2043–2049 (1986).
19. Ohmatsu, K. et al. Chloroplast gene organization deduced from complete sequence of liverwort Marchantia polymorpha chloroplast DNA. *Nature* **322**, 572–574 (1986).
20. Nock, C. J. et al. Chloroplast genome sequences from total DNA for plant identification. *Plant Biotechnology Journal* **9**, 328–333 (2011).
21. Twyford, A. D. & Ness, R. W. Strategies for complete plastid genome sequencing. *Molecular Ecology Resources* **17**, 858–868 (2017).
22. Lewis, G. P., Schrire, B. D., Mackinder, B. & Lock, M. Legumes of the world. *Royal Botanic Gardens, Kew*, 577p (2013).
23. Azanci, N. et al. A new subfamily classification of the Leguminosae based on a taxonomically comprehensive phylogeny. *The Legume Phylogeny Working Group*. *Taxon* **66**, 44–77 (2017).
24. Souza, V. C. & Gibau, A. Stryphnodendron in Flora do Brasil 2020 em construção. *Jardim Botânico do Rio de Janeiro* (2018).
25. Nock, C. J. et al. Chloroplast genome sequences from total DNA for plant identification. *Plant Biotechnology Journal* **9**, 328–333 (2011).
26. Twyford, A. D. & Ness, R. W. Strategies for complete plastid genome sequencing. *Molecular Ecology Resources* **17**, 858–868 (2017).
27. Lewis, G. P., Schrire, B. D., Mackinder, B. & Lock, M. Legumes of the world. *Royal Botanic Gardens, Kew*, 577p (2013).
28. The Legume Phylogeny Working Group. Legume phylogeny and classification in the 21st century: Progress, prospects and lessons for other species-rich clades. *Taxon* **62**, 217–248 (2013).
29. Azanci, N. et al. A new subfamily classification of the Leguminosae based on a taxonomically comprehensive phylogeny. *The Legume Phylogeny Working Group* (LPWG). *Taxon* **66**, 44–77 (2017).
30. Souza, V. C. & Gibau, A. Stryphnodendron in Flora do Brasil 2020 em construção. *Jardim Botânico do Rio de Janeiro* (2018). Available at: http://reflora.jbrj.gov.br/reflora/floradobrasil/FB19133. (Accessed: 14th July 2018).
23. Simon, M. F. et al. Molecular phylogeny of Stryphnodendron (Mimosoideae, Leguminosae) and generic delimitations in the Piptadenia group. *International Journal of Plant Sciences* **177**, 44–59 (2016).
24. Sanches, A. C. C. et al. Estudo Morfológico Comparativo das Cascaes e Folhas de Stryphnodendron adstringens, S. polyphyllum e S. obovatum-Leguminosae. *Latin American Journal of Pharmacy* **26**, 22–35 (2007).
25. Lorenzo, H. Árvore brasileiras: manual de identificação e cultivo de plantas arboréas nativas do Brasil. *Nova Odessa: Plantarium* **2** (1998).
26. Audi, E. A. et al. Gastric antilucrogenic effects of Stryphnodendron adstringens in rats. *Phytotherapy Research* **13**, 264–266 (1999).
27. Ishida, K. et al. Influence of tannins from Stryphnodendron adstringens on growth and virulence factors of Candida albicans. *Journal of Antimicrobial Chemotherapy* **58**, 942–949 (2006).
28. Lima, J. C. S., Martins, D. T. O. & de Souza, P. T. Experimental evaluation of stem bark of Stryphnodendron adstringens (Mart.) Coville for antiinflammatory activity. *Phytotherapy Research* **12**, 218–220 (1998).
29. Luiz, R. L. E. et al. Procyanidinoids polymeric tannin from Stryphnodendron adstringens are active against Candida albicans biofilms. *BMC Complementary and Alternative Medicine* **15**, 68 (2015).
30. Santos, C. S. et al. Tannin composition of barbatimão species. *Fitoterapia* **73**, 292–299 (2002).
31. Doyle, J. J. & Doyle, J. L. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. *Phytochemical Bulletin* **19**, 11–15 (1987).
32. Bolger, A. M., Lohse, M. & Usadel, B. Trimomatic: a flexible trimmer for Illumina sequencing data. *Bioinformatics* **30**, 2114–2120 (2014).
33. Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. *Nature Methods* **9**, 357–359 (2012).
34. Bankevich, A. et al. SPades: A New Genome Assembly Algorithm and Its Applications to Single-Cell Sequencing. *Journal of Computational Biology* **19**, 455–477 (2012).
35. Ratna, A. Assembly algorithms for next-generation sequence data. (The Pennsylvania State University, University Park, PA, USA, 2009).
36. McKein, M. R., Hartsock, R. H., Wohl, M. M. & Kellogg, E. A. Verdant: automated annotation, alignment and phylogenetic analysis of whole chloroplast genomes. *Bioinformatics* **33**, 130–132 (2017).
37. Wymann, S. K., Jansen, R. K. & Boore, J. L. Automatic annotation of organellar genomes with DOGMA. *Bioinformatics* **20**, 3252–3255 (2004).
38. Lowe, T. M. & Chan, P. P. rRNAscan-SE On-line: integrating search and context for analysis of transfer RNA genes. *Nucleic Acids Research* **44**, W54–W57 (2016).
39. Lohse, M., Drechsel, O. & Bock, R. Organellar GenomeDRAW (OGDRAW): a tool for the easy generation of high-quality custom graphical maps of plastid and mitochondrial genomes. *Current Genetics* **52**, 267–274 (2007).
40. Kurt, S. REPiter: the manifold applications of repeat analysis on a genomic scale. *Nucleic Acids Research* **29**, 4633–4642 (2001).
41. Kato, H. & Standley, D. M. MAFFT Multiple Sequence Alignment Software Version 7: Improvements in Performance and Usability. *Molecular Biology and Evolution* **30**, 772–780 (2013).
42. Hall, T. H. BioEdit: a user friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. *Nucleic Acids Symp* **41**, 95–98 (1999).
43. Rozas, J. et al. DnaSP 6: DNA Sequence Polymorphism Analysis of Large Data Sets. *Molecular Biology and Evolution* **34**, 3299–3302 (2017).
44. Frazer, K. A., Pachter, L., Poliakov, A., Rubin, E. M. & Dubchak, I. VISTA: computational tools for comparative genomics. *Nucleic Acids Research* **32**, W273–W279 (2004).
45. Amiryousefi, A., Hyvönen, J. & Poczai, P. IRscope: an online program to visualize the junction sites of chloroplast genomes. *Bioinformatics* **34**, 3030–3031 (2018).
46. Darriba, D., Taboada, G. L., Doallo, R. & Posada, D. (ModelTest 2: more models, new heuristics and parallel computing. *Nature Methods* **9**, 772–772 (2012).
47. Suchard, M. A. et al. Bayesian phylogenetic and phylodynamic data integration using BEAST 1.10. *Virus Evolution* **4**, verv016 (2018).
48. Miller, M. A., Pfeiffer, W. & Schwartz, T. Creating the CIPRES Science Gateway for inference of large phylogenetic trees. in *Gateway Computing Environments Workshop (GCE)* 1–8 (2010).
49. Ramaut, A., Drummond, A. J., Xie, D., Baele, G. & Suchard, M. A. Posterior summarization in Bayesian Phylogenetics Using Tracer 1.7. *Systematic Biology* **67**, 901–904 (2018).
50. Dogus, D. V. et al. Mimosoid legume plastome evolution: IR expansion, tandem repeat expansions, and accelerated rate of evolution in clpP. *Scientific Reports* **5**, 16958 (2015).
51. Zhu, A., Guo, W., Gupta, S., Fan, W. & Mower, J. P. Evolutionary dynamics of the plastid inverted repeat: the effects of expansion, contraction, and loss on substitution rates. *New Phytologist* **209**, 1747–1756 (2016).
52. Williams, A. V., Boykin, L. M., Howell, K. A., Nevill, P. G. & Small, I. The Complete Sequence of the Acacia liguiflora Chloroplast Genome Reveals a Highly Divergent clpP1 Gene. *PLOS ONE* **10**, e0125768 (2015).
53. Wojciechowski, M. F., Lavin, M. & Sanderson, M. J. A phylogeny of legumes (Leguminosae) based on analysis of the plastid matK gene resolves many well-supported subclades within the family. *American Journal of Botany* **91**, 1846–1862 (2004).
54. Sabir, J. et al. Evolutionary and biotechnology implications of plastid genome variation in the inverted-repeat-lacking clade of legumes. *Plant Biotechnology Journal* **12**, 743–754 (2014).
55. Tangphathornruang, S. et al. The Chloroplast Genome Sequence of Mungbean (Vigna radiata) Determined by High-throughput Pyrosequencing: Structural Organization and Phyllogenetic Relationships. *DNA Research* **17**, 11–22 (2010).
56. Yin, D. et al. Development of chloroplast genotype resources for peanut (Arachis hypogaea L.) and other species of Arachis. *Scientific Reports* **7**, 11649 (2017).
57. Ozyigit, I. I., Dogan, I. & Filiz, E. In silico analysis of simple sequence repeats (SSRs) in chloroplast genomes of Glycine species. *Plant Omics Journal* **8**, 24–29 (2015).
58. Dong, W., Liu, J., Yu, J., Wang, L. & Zhou, S. Highly Variable Chloroplast Markers for Evaluating Plant Phylogeny at Low Taxonomic Levels and for DNA Barcoding. *PLoS ONE* **7**, e35071 (2012).
59. Dong, W. et al. ycf1, the most promising plastid DNA barcode of land plants. *Scientific Reports* **5**, 8348 (2015).
60. Redwan, R. M., Saidin, A. & Keenan, S. V. Complete chloroplast genome sequence of MD-2 pineapple and its comparative analysis among nine other plants from the subclass Commeliniidae. *BMC Plant Biology* **15**, 196 (2015).
61. Wang, D., Liu, F., Wang, L., Huang, S. & Yu, J. Nonsynonymous substitution rate (Ka) is a relatively consistent parameter for defining fast-evolving and slow-evolving protein-coding genes. *Biology Direct* **6**, 13 (2011).
67. Tian, N., Han, L., Chen, C. & Wang, Z. The complete chloroplast genome sequence of Epipremnum aureum and its comparative analysis among eight Araceae species. PLOS ONE 13, e0192956 (2018).
68. Magee, A. M. et al. Localized hypermutation and associated gene losses in legume chloroplast genomes. Genome Research 20, 1700–1710 (2010).
69. Ueda, M. et al. Substitution of the gene for chloroplast RPS16 was assisted by generation of a dual targeting signal. Molecular biology and evolution 25, 1566–1575 (2008).
70. Keller, J. et al. The evolutionary fate of the chloroplast and nuclear rps16 genes as revealed through the sequencing and comparative analyses of four novel legume chloroplast genomes from Lupinus. DNA Research 24, 343–358 (2017).
71. Jansen, R. K., Wojciechowski, M. F., Sanniyasi, E., Lee, S.-B. & Daniell, H. Complete plastid genome sequence of the chickpea (Cicer arietinum) and the phylogenetic distribution of rps12 and clpP intron losses among legumes (Leguminosae). Molecular phylogenetics and evolution 48, 1204–1217 (2008).
72. Jiang, M. et al. Sequencing, characterization, and comparative analyses of the plastome of Caragana rosea var. rosea. International journal of molecular sciences 19, 1419 (2018).
73. Schwarz, E. N. et al. Plastid genome sequences of legumes reveal parallel inversions and multiple losses of rps16 in papilionoids. Journal of Systematics and Evolution 53, 458–468 (2015).
74. Guo, X. et al. Rapid evolutionary change of common bean (Phaseolus vulgaris L) plastome, and the genomic diversification of legume chloroplasts. BMC genomics 8, 228 (2007).
75. Jin, D.-P., Choi, I.-S. & Choi, B.-H. Plastid genome evolution in tribe Desmodieae (Fabaceae: Papilionoideae). PloS one 14, e0218743 (2019).
76. Roy, S., Ueda, M., Kadowaki, K. & Tsutsumi, N. Different status of the gene for ribosomal protein S16 in the chloroplast genome during evolution of the genus Arabidopsis and closely related species. Genes & genetic systems 85, 319–326 (2010).
77. Azal, S. et al. Comparative analysis of complete plastid genomes from wild soybean (Glycine soja) and nine other Glycine species. PLOS ONE 12, e0182281 (2017).
78. Niu, Y.-T. et al. Combining complete plastome genome sequences with target loci data and morphology to resolve species limits in Triplostegia (Caprifoliaceae). Molecular Phylogenetics and Evolution 129, 15–26 (2018).
79. Amiriyousefi, A., Hyvönen, J. & Poczaí, P. The chloroplast genome sequence of bittersweet (Solanum dulcamara): Plastid genome structure evolution in Solanaceae. PLOS ONE 13, e0196069 (2018).

Acknowledgements

Our research has been continuously supported by several grants and fellowships to the research network GENPAC (Geographical Genetics and Regional Planning for Natural Resources in Brazilian Cerrado) from CNPq/FAPEG (projects #563839/2010-4 and #201110267000125), by the FAPEG Universal (CH n. 07/2014) and by the CNPq/Universal project 402178/2016-5. Our study has also been developed in the context of the National Institutes for Science and Technology in Ecology, Evolution and Biodiversity Conservation (INCT_EECBio), supported by MCTIC/CNPq (process #465610/2014-5) and FAPEG, in addition to support from PPGS CAPES/GENPAC (Geographical Genetics and Regional Planning for Natural Resources in Brazilian Cerrado) from CNPq/FAPEG (projects #563839/2010-4 and #201110267000125), by the FAPEG Universal (CH n. 07/2014) and by the CNPq/Universal project 402178/2016-5. Our study has also been developed in the context of the National Institutes for Science and Technology in Ecology, Evolution and Biodiversity Conservation (INCT_EECBio), supported by MCTIC/CNPq (process #465610/2014-5) and FAPEG, in addition to support from PPGS CAPES/FAPEG (Public Call #08/2014). U.J.B. Souza and R. Nunes were supported by Doctoral fellowships from CAPES. J.A.F. Diniz-Filho and M.P.C. Telles were supported by productivity fellowships from CNPq.

Author Contributions

U.J.B.S., M.P.C.T. and J.A.F.D.-F. conceived and designed research. M.P.C.T. and J.A.F.D.-F. provided financial resources to research. U.J.B.S. and C.P.T. performed the experiments. U.J.B.S. and R.N. analyzed data. U.J.B.S., R.N., C.P.T., M.P.C.T. and J.A.F.D.-F. wrote the paper. All authors reviewed the paper.

Additional Information

Supplementary information accompanies this paper at https://doi.org/10.1038/s41598-019-50620-3.

Competing Interests: The authors declare no competing interests.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2019