Impact of stellar companions on precise radial velocities*

D. Cunha¹,², P. Figueira¹, N. C. Santos¹,², C. Lovis³, and G. Boué¹,⁴

¹ Centro de Astrofísica da Universidade do Porto, Rua das Estrelas, 4150-762 Porto, Portugal
e-mail: Diana.Cunha@astro.up.pt
² Departamento de Física e Astronomia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre 687, 4169-007 Porto, Portugal
³ Observatoire Astronomique de l’Université de Genève, 51 Ch. des Maillettes, 1290 Sauverny, Versoix, Suisse
⁴ ASD, IMCCE-CNRS UMR 8028, Observatoire de Paris, UPMC, 77 avenue Denfert-Rochereau, 75014 Paris, France

Received 23 July 2012 / Accepted 29 November 2012

ABSTRACT

Context. With the announced arrival of instruments such as ESPRESSO one can expect that several systematic noise sources on the measurement of precise radial velocity will become the limiting factor instead of photon noise. A stellar companion within the fiber is such a possible noise source.

Aims. With this work we aim at characterizing the impact of a stellar companion within the fiber to radial velocity measurements made by fiber-fed spectrographs. We consider the contaminant star either to be part of a binary system whose primary star is the target star, or as a background/foreground star.

Methods. To carry out our study, we used HARPS spectra, co-added the target with contaminant spectra, and then compared the resulting radial velocity with that obtained from the original target spectrum. We repeated this procedure and used different tunable knobs to reproduce the previously mentioned limitations.

Results. We find that the impact on the radial velocity calculation is a function of the difference between individual radial velocities, of the difference between target and contaminant magnitude, and also of their spectral types. For the worst-case scenario in which both target and contaminant star are well-centered on the fiber, the maximum contamination for a G or K star may be higher than 10 cm s⁻¹, on average, if the difference between target and contaminant magnitude is Δm < 10, and higher than 1 m/s if Δm < 8. If the target star is of spectral type M, Δm < 8 produces the same contamination of 10 cm s⁻¹, and a contamination may be higher than 1 m/s if Δm < 6.

Key words. techniques: radial velocities – planets and satellites: detection

1. Introduction

The search for extrasolar planets is currently a very active field of research in astronomy. Since the first discovery of Mayor & Queloz (1995), more than 800 planets were discovered, of which 80% were detected with the radial velocity method (RV). Because it is the workhorse for planetary detections, this method received much attention from the community, which constantly increased its precision (for some of the latest results check Mayor et al. 2011) and tried to characterize its limitations.

One of the fundamental drawbacks is that it is an indirect method, and therefore one should be extremely careful with false positives, i.e., signals created by other planetary RV signals. The literature provides many examples and techniques used to pinpoint these signals (e.g. Queloz et al. 2001; Santos et al. 2002; Melo et al. 2007; Huélamo et al. 2008; Figueira et al. 2010) or to average them out (Dumusque et al. 2011b,a). With the advent of very high precision spectrographs, such as ESPRESSO or CODEX (Pepe et al. 2010), the RV precision enters a new domain, that of cm s⁻¹, which in turn will increase the quality of our characterization of these unwanted yet ubiquitous signals (e.g. Cegla et al. 2012).

Here we address a so far unexplored mechanism that is capable of distorting RV signals and creating false ones: the contamination of the main spectrum by that of a (usually unresolved or otherwise undetectable) companion. We consider two different cases:

1. that of a faint gravitationally bounded companion; and
2. that of an unbound star that is aligned with the target at the moment of observation.

We assumed the target stars to be placed at the Galaxy disk edge to consider a representative case that encompasses several scenarios of contaminant stars. We used real high signal to noise ratio (S/N) observations obtained with HARPS to create the composite spectra and process these with the RV calculation pipeline to evaluate the impact of the contamination in the most realistic way possible. While we aim at characterizing this effect down to the precision level of ESPRESSO, 10 cm s⁻¹, it can be assessed at an even lower precision level.

Although this study is performed to characterize the impact on the RV when using the cross-correlation function (CCF), point spread function (PSF) modeling will also be affected by stellar companions, if in a different way. The results of this study are particularly interesting for deep surveys in crowded fields (Kepler).

If the contaminant RV remains constant, stellar blends will only cause a undetectable contamination in the RV calculation.
However, if the contaminant RV is changing, or if there are guiding problems during observations, the effect of the contamination will no longer be constant and it might mimic the presence of a planet. As an example of a false positive caused by blended stars we refer to the work of Santos et al. (2002), in which RV measurements derived from CORALIE blended spectra of HD 41004 AB have unveiled a radial-velocity variation with a period of 1.3 days and a small amplitude of 50 m/s, compatible with the signal expected to be caused by a planetary companion to HD 41004A. Another example is WASP-9b, which was discarded as a planet after it was discovered that the signal was due to a fortuitous alignment (Traud, priv. comm.).

In Sect. 2 we explain which stars we consider most likely to contribute to a shift in the RV calculation, if the star is either in a G-, K- or M-dwarf binary system, or is affected by a fortuitous alignment. Then, in Sect. 3 we describe the properties of the spectra used in our simulations. In Sect. 4 we describe the method used to scramble spectra from target star and stellar companion. Results from our work, assuming the worst-case scenario in which both target and contaminant are well centered on the fiber, are shown in Sect. 5. The results are followed by a statistical analysis in Sect. 5.4, which is based on these results, but assumes a more realistic situation, in which the contaminant star may not be fiber centered. In Sect. 6 we discuss our work, and we present our conclusions in Sect. 7.

2. Contaminant cases

When one observes a target star, a secondary star may be present, even without one’s knowledge. This secondary star may be a source of contamination for the calculation of the target star’s RV. Secondary/contaminants stars may appear as two different types: real binaries or fortuitous alignments.

2.1. Real binaries

In the case of a real binary system, the contaminant star will be gravitationally bound. In this section we present the probability distributions of real binary properties that we used in our work.

Here, for G- and K primaries we based our study on the results of Duquennoy & Mayor (1991), who studied the multiplicity among solar-type stars in the solar neighborhood. They considered a subsample of 164 primary stars with spectral types between F7 and G9. Using Table 7 of Duquennoy & Mayor (1991) on the mass-ratio distribution among G-dwarf binaries, we can calculate the probability of observing a binary with a mass-ratio \(q = M_2/M_1 \), where \(M_2 \) is the mass of the secondary star and \(M_1 \) the mass of the primary. These probabilities are shown in Table 1, in which we can see that there is a maximum for the mass-ratio range \(0.2, 0.3 \). The distribution of orbital periods \(P \) of their study is approximated to a Gaussian with \(\mu = 4.8 \) and \(\sigma^2 = 2.3 \).

Duquennoy & Mayor also presented the eccentricity distribution for \(P < 1000 \) and \(P > 1000 \) days, shown here in Table 2.

We stress that there is a large uncertainty for VLMC (very low mass companion) binaries (with \(q < 0.1 \)), and that this study does not include values of \(q \) below 0.01. We also emphasize that this mass ratio distribution is calculated for binary stars, but we recall that, also according to Duquennoy & Mayor (1991), there are 57\% of binary systems with a mass ratio higher than 0.1, and 43\% of apparently single stars. Of these 43\%, (8 ± 6)\% most probably have a VLMC, which puts the percentage of single stars at ~30\%.

Table 1. Probability of observing a binary with a mass ratio \(q = M_2/M_1 \) among G-dwarf binaries for periods \(P < 10^3 \) days and \(P < 10^4 \) days.

\(q_{\text{min}} \)	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0	1.1
\(P < 10^3 \) days	12.0	16.3	13.1	12.7	12.3	12.9	6.5	1.9	2.6	3.4	6.2
\(P > 10^3 \) days	11.1	11.9	18.4	15.8	10.5	11.2	6.6	6.6	4.0	4.0	0.0
Total	11.4	13.6	16.4	14.6	11.2	11.8	6.5	4.8	3.4	3.8	2.4

Notes. From Duquennoy & Mayor (1991).

Table 2. Probability of observing a binary with an eccentricity \(e \) among G-dwarfs binaries for periods \(P < 10^3 \) days and \(P < 10^4 \) days.

\(e_{\text{min}} \)	0.15	0.3	0.45	0.6	0.75	0.9	1.0
\(P < 10^3 \) days	12.50	43.75	31.25	6.25	6.25	0.0	0.0
\(P > 10^3 \) days	5.88	11.76	23.53	14.71	20.59	23.53	0.0

Notes. From Duquennoy & Mayor (1991).

Table 3. Probability of observing an M-dwarf binary with a mass ratio \(q = M_2/M_1 \).

\(q_{\text{min}} \)	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0
\(P(q) \) [%]	0.0	1.61	5.95	10.45	12.93	13.84	14.48	13.03	14.58	13.13

Notes. From Janson et al. (2012).

Table 4. Probability of observing an M-dwarf binary with a certain \(\log a \).

\(\log a_{\text{min}} \)	0.25	0.75	1.0	1.25	1.5	1.75	2.0	2.25	2.5
\(P(log a) \) [%]	0.51	2.60	9.02	15.39	17.13	17.65	14.73	11.74	7.85

Notes. From Janson et al. (2012).

For M-dwarfs we used the distributions of mass ratio, \(q \), and semi-major axis, \(a \), from the work of Janson et al. (2012) on M-dwarf multiplicity. The authors suggest an M-dwarf total multiplicity fraction of 34\%. Table 3 shows the probability of observing an M-dwarf binary with a mass ratio \(q \). Janson et al. found a uniform distribution to be more consistent with the mass ratio of their observed sample, than a rising distribution. Accordingly, we assumed their uniform distribution in our work. For the semi-major axis distribution Janson et al. (2012) also compared the Sun-like and the narrow distribution, finding the latter to be more consistent with their sample. We therefore used this distribution, which is shown in Table 4. As no information was given on the eccentricity distribution for M-dwarf binaries, we assumed the distribution from Duquennoy & Mayor (1991).

These distributions were used in our statistical analysis (Sect. 5.4).

2.2. Fortuitous alignment

Even if the target star is a single star, an alignment with a background/foreground object may occur. To study the probability of such an event we used the Besançon model (Robin et al. 2003). This allows one to compute the probable stellar
content on a given direction of the Galaxy, permitting one to infer the most probable contaminants. To do so, we simulated an observation in the direction of the HD 85512 coordinates, \((l, b) = (271.6759, 8.1599),\) which is positioned at the border of the Galactic disk. We also considered a distance interval of \(50 \text{ kpc}\) (approximately the diameter of the Milky Way), magnitudes between 0 and 30, and a solid angle for a radius of \(3^\circ\). The objective was to have a large number of stars for each bin of magnitude and spectral type and then to divide it by the ratio between the area considered and that for the HARPS fiber. In Fig. 1 we present a contour plot of the total number of stars \((\text{SN}\) at the center of the spectral order 50 (SN50).

Spectral type	\(m_V\)	\(P\) [%]
[F0, F5]	[13, 16] \& [20, 23]	0.08
[F5, G0]	[13, 24]	1.25
[G0, G5]	[13, 25]	1.74
[G5, K0]	[13, 25]	1.74
[K0, K5]	[12, 26]	2.5
[K5, M0]	[16, 30]	4.48
[M0, M5]	[17, 30]	16.99
[M5, M8]	[20, 30]	12.12
[M8, M9]	[21, 30]	13.17

Table 5. Most probable contaminants for the fortuitous alignments.

We contemplated target stars from spectral type G to late M, with visual magnitudes, \(m_v\), between 5 and 15. As described in the previous section (Sect. 2.2), the most probable contaminant stars are of spectral types FGKM. To represent both target and contaminant spectral types, we chose spectra from nine stars, which are shown in Table 6.

Object	Spec.Type	\(m_v\)	SN50
HD 20852	F2	6.92	225
HD 103774	F5	7.12	102
Sun	G2	3.65^2	225
Tau Ceti	G8	3.50	300
HD 69830	K0	5.95	293
Alpha Cen B	K1	1.33	385
HD 85512	K5	7.65	156
G1436	M1	10.68	15
G1581	M3	10.57	37

Table 6. Stars used in our simulations, their spectral type, visual magnitude (\(m_v\)), and S/N at the center of the spectral order 50 (SN50).

Notes. \(^1\) from Simbad (http://simbad.u-strasbg.fr/simbad/sim-fid); \(^2\) \(m_v\) of the moon within the HARPS 0.5\(^\circ\) radius fiber.

4. Method

The goal of this work is to study possible stellar contamination of a target star. To do so, we co-added target and contaminant spectra. We not only considered contaminant stars of spectral types F2, F5, G2, G8, K0/K1, K5, M1, and M3, but also different ratios of magnitude between target star and contaminant as well as differences in RV. To sum two spectra with these particular conditions is not trivial. We need to control the magnitudes and RVs.

We set the magnitude \(V\) of the target (\(m_t\)) according to the data available in Simbad\(^2\) and then calculated the magnitude of the contaminant (\(m_c\)) with respect to the target star using the apparent magnitude – flux relation. We also considered the relative RV between the two spectra as a tunable knob. However, when processing our spectra using the HARPS pipeline the reduction takes into account the header (and properties) of the parent spectra. To overcome this situation we calculated the contaminant RV in the target reference frame and shifted it afterwards.

We then co-added the target spectrum with the modified contaminant spectra and processed the result with the HARPS RV pipeline. More details of the method are presented in Appendix B.

4.1. The “real binaries” star strategy

To study the impact of a companion on the RV calculation of a binary primary star, we reproduced the cases discussed in the work of Duquennoy & Mayor (1991). We considered a primary G2 star with six different secondary/contaminant stars: G2, G8, K1, K5, M1, and M3.

The first case had a G2 as contaminant with positive and negative values of \(\Delta RV = RV^c_t - RV^c_c\), where \(RV^c_t\) is the target barycentric radial velocity (drift corrected) without contamination, and \(RV^c_c\) is the contaminant barycentric radial velocity (drift corrected) in the target reference frame. In Fig. 2 we show the impact, \(RV^c_t - RV^c_c\), of the stellar companion on the target RV, where \(RV^c_t\) is the target barycentric radial velocity (drift corrected) with contamination.

For each target-contaminant pair we considered a range of \(|\Delta RV|\) between 0 and 30 [\(\text{km s}^{-1}\)] (in steps of 1 [\(\text{km s}^{-1}\)], except for a secondary star of spectral type K5 in which the maximum \(|\Delta RV|\) was of 24 [\(\text{km s}^{-1}\)] (see Appendix B for details).

4.2. Fortuitous alignment strategy

The fortuitous alignment case is more generic. Here we considered six spectral types of primary stars (G2, G8, K0, K5, M1, and M3) in combination with the eight spectral types as contaminants – the same six used as target stars plus an F2 (HD 20852) and an F5 (HD 103774) star. For each spectral type of primary stars we considered contaminants with magnitudes \(m_c\) between 5 and 15 (in steps of one). The contaminants considered were those described in Table 5.

Although the Besançon model includes oxygen and carbon AGB (asymptotic giant branch) stars and white dwarfs in the search, we only considered main-sequence (MS) stars. Very metal-poor stars were also excluded from our study. For an M1 target star a K0 star (HD 69680) was used instead of the K1 mentioned above. This was because the barycentric Earth radial velocity (BERV) value form the K1 star did not allow the desired

\(^2\) http://simbad.u-strasbg.fr/simbad/sim-fid

A75, page 3 of 14
A&A 550, A75 (2013)

Fig. 1. Number of stars in each bin of spectral type and magnitude (radius of 3°).

Fig. 2. Shift of a G2 target RV caused by a contaminant of the same spectral type and magnitude, m_v, in function of the difference between individual radial velocities.

5. Results

5.1. Real binaries

The results for the contamination by the secondary star of a binary with a primary star of spectral type G2 as a function of ΔRV can be found in Fig. 3. Obviously, the impact on the RV calculation is a function of the difference between target and contaminant RV (ΔRV). One can interpret a CCF as an “average” line of a spectrum, that is fitted by a Gaussian curve to measure the center of the CCF. In the presence of a second star, the CCF is composed of two curves. For $\Delta RV = 0$ the two curves fully overlap, and so the impact on the Gaussian fit and on the RV calculation is minimum. As ΔRV increases, the impact on the Gaussian fit increases until the point when the two CCF curves overlap, with the contaminant RV, $|RV_c'|$, close to 0.6 times the FWHM of the target CCF. When the CCF curves become distinct, the impact on the measured RV of the primary decreases. For $|\Delta RV| > 20$ km s$^{-1}$ the peak of the contaminant CCF curve exits the CCF window that is usually computed with a value of 20 km s$^{-1}$, and for values $|\Delta RV| \geq 25$ km s$^{-1}$ the contaminant CCF curve completely exits the target CCF window. Nevertheless, the contamination is not null. There are bumps in the wings that slightly contaminate the target spectra.

Figure 4 shows the maximum contamination for each type of contaminant. As we can see, as the secondary stars become fainter and of later spectral type, the maximum contamination decreases.

5.2. Contamination by the sky

The sky brightness is not zero and its light results from the reflection and scattering of Sun spectra. The sky brightness has a shift in RV. For each target-contaminant pair we considered the differences between its RV, $|\Delta RV|$, under 20 km s$^{-1}$, which is half the width of the CCF window. Although giant stars will often be contaminant stars, we assumed that spectra from MS stars are similar to those of giants and used only spectra of MS stars in our simulations.
Fig. 3. Impact on the RV of a G2 target star caused by a companion of spectral type G2, G8, K1, K5, M1, and M3 (left to right, top to bottom). For each case a close-up with a bump for the impact for $10 < \Delta RV < 24$ km s$^{-1}$ is shown.

magnitude per arcsec2 in V band of 21.8 on a new-moon night, and of 20.0 on a full-moon night. To study the impact of this contamination we assumed that sky spectrum is the solar one. This is equivalent to say that for a fiber of 0.5$''$ radius, we have a systematic contamination of a G2 star with $m_V \sim 20$ on a full-moon night to a limit of a G2 star with $m_V \sim 22$ (new moon).

The results of the maximum contamination by the sky brightness study are shown in Fig. 5. We can see that when observing a G2, G8, K0, or a K5 target star fainter that $m_V = 11$, or M1, M3 fainter that $m_V = 14$, the errors induced on the observed RV can be larger than 10 cm s$^{-1}$, which can be a problem for future instruments such as ESPRESSO. For a night of observation with a full moon, induced errors become larger than 10 cm s$^{-1}$ for G- and K target stars fainter that $m_V = 9$ and for an M star fainter than $m_V = 12$.

5.3. Fortuitous alignment

In this section we present a more exhaustive study of all possible sources of stellar contamination. Beyond the moon as a contaminator, there is a vast range of possible contaminators, as was discussed in Sect. 2.2. Our study is simplified because our analysis holds for similar spectra with different magnitude for target and contaminant star, but with same difference between them ($\Delta m = m_c - m_t$), as we can see in Fig. 6. This way, we only carried out our study on the impact for a target star in which m_c differs $|\Delta m|$ from the contaminant star. The result of our study for contamination as a function of spectral type is shown in Fig. 7.

We first note that there is a clearly defined relation between Δm and the maximum of the contamination, except for some cases where the difference in magnitude between target and contaminant is null. A misidentification of the companion correlation peak with that of the primary may happen due to a (slightly) larger contrast. If we take only $\Delta m > 1$, we can describe the relation between Δm and the maximum of the contamination as

$$\text{Max}\{|\text{RVC}_t - \text{RVC}'_t|\} = 10^{a \Delta m + b},$$

where a and b are the coefficients presented in Table 7. In this table we also present the value for the root mean square (rms) for each fit. By comparing the panels of Fig. 7 we can also see that the contamination depends not only on Δm, but also on the target-contaminant spectral type combination. This becomes more evident in Fig. 8. This figure shows the maximum contamination as a function of the contaminant spectral type for a G2 and M3 target star with $\Delta m = 10$. We find two reasons for this behavior. First, less contamination occurs with increasingly different spectra. Also, the contamination will depend on the depth of spectral line. Thus, for similar spectra, cooler stars...
will cause a higher contamination, because their spectral lines depth is higher.

5.4. Statistical analysis of the contamination

After calculating the impact caused by a contaminant star in the RV calculation, it is important to known how often this occurs. Therefore we calculated the probability of measuring the target RV with a given contamination.

In the previous two subsections (Sects. 5.1 and 5.3) we presented a study for the impact to have a contaminant star within the fiber on the RV calculations, assuming that the fiber was well centered on target and contaminant. Although this is a relevant study, the most probable scenario for real observations is that of a contaminant star that not centered in the fiber. In this case, we cannot consider that both target and contaminant fluxes will completely enter the fiber, and therefore we calculated how much of each flux enters the fiber. The fraction of binary and fortuitous alignments and their properties also follows established probability laws. To take these parameters into account in a realistic way, we ran Monte Carlo simulations with 10,000 trials, to calculate the distribution function of the impact of the presence of a contaminant star on the RV calculation. Once again, we had to consider both cases of contamination: binaries and fortuitous alignment. If in our simulations one star was in a binary system and had a background alignment. If in our simulations one star was in a binary system and had a background alignment.

5.4.1. Statistical analysis of binaries

For our statistical analysis of contamination in binary systems, we considered the mass ratio distributions, q, mentioned in Sect. 2.1. We used Table 1 based on the study of Duquennoy & Mayor (1991) for target stars of spectral types G and K, and Table 3 based on the study of Janson et al. (2012) for target stars of spectral type M. Because we had M1 and M3 spectra for M stars, we used the M1 spectra for [M0, M4] stars, and for the later types we used the M3 spectrum. From the work of Duquennoy & Mayor (1991) and Janson et al. (2012) we also used the probability density function for the orbital period and for the eccentricities (see Table 2) for G dwarfs, and the probability density function for the semi-major axis for M-dwarfs (see Table 4). The projected distance R and the ΔRV were drawn performing a Monte Carlo simulation of Kepler’s laws and its projection, considering a uniformly random mean anomaly ($M \in [0, 2\pi]$), inclination ($\cos i \in [-1, 1]$), longitude of the node ($\Omega \in [0, 2\pi]$), and argument of the periapsis ($\omega \in [0, 2\pi]$).

To compute the luminosity of the stellar companion given the mass of the star, we used relation 2 from Duric (2003):

$$L_{\odot} \propto \left(\frac{M}{M_{\odot}}\right)^{4.0} \text{ if } M > 0.43 M_{\odot};$$
$$L_{\odot} \propto 0.23 \left(\frac{M}{M_{\odot}}\right)^{2.3} \text{ if } M < 0.43 M_{\odot}. \quad (2)$$

5.4.2. Statistical analysis of fortuitous alignments

For the fortuitous alignment we are only interested in contaminant stars whose flux can enter the fiber. With a seeing of 0.93, which is the mean value for the La Silla observatory, we measured that the fraction of flux enters the fiber of a star at 2.6 arcsec from the fiber center is 2×10^{-3}. If target and contaminant star have the same magnitude, this corresponds to an effective Δm of 19 within the fiber, and so its impact on the target RV can be considered null for our purpose. We then created a probability density function to have a contaminant star of a certain spectral type and magnitude within a radius of up to 2.6 arcsec around the target star, using the density tables from Appendix A.

For background/foreground stars within the 2.6 arcsec radius we assumed a uniform distribution, and if a contaminant is present, the probability that the star is standing at a distance r from the target is proportional to r^2, and the probability to have the fortuitous contaminant star between r and $r + dr$ is given by Eq. (3):

$$P(r, r + dr) = \pi \left(2rdr + d^2r^2\right), \quad (3)$$

in which the members are self-explanatory.

To calculate ΔRV we used the probability density function for the systemic RV, which was computed by fitting a Gaussian to the systemic velocity of stars from HARPS. This yielded an average and a dispersion of $(\mu, \sigma) = (7.87, 29.87)$.

5.4.3. Statistical analysis results

The probability to have a given impact on the RV calculation for each case is presented in Fig. 9. We can see that the most probable scenario is to have a contamination of less than 10 cm s$^{-1}$. But contamination may happen and is more probable for far-away target stars, either because they become fainter, or because, in the case of a binary star, it is more probable that the companion star flux enters the fiber. We can examine the target star G8, for instance. In this case, if the target star is 100 pc...
Fig. 5. Maximum contamination of the sky brightness on a) G2, b) G8, c) K0, d) K5, e) M1, and f) M3 target star spectra. The blue triangles show the impact on the RV caused by the sky brightness on a full-moon night, while black diamonds show the impact on a new-moon night.

away, there is only a probability of 67% for a contamination below 10 cm s\(^{-1}\), and 14% probability for a contamination between 10 and 100 m/s. There is a peak around a contamination of 10\(^3\) cm s\(^{-1}\), which is, very probably, caused by physical binary contamination. This level of contamination needs to be taken into account when choosing targets for planet searches. This becomes even more important when choosing target stars to be observed with ESPRESSO.

6. Discussion

We showed that we should not neglect the possibility that a stellar companion contaminates the RV calculations. This is specially true for far-away stars, which have a higher probability to have two stars within the fiber. Nevertheless, we stress some assumptions we made that may have some impact on our work. Because spectra with high SN are scarce for late-M stars, in our
6.1. Impact on typical cases

As a consequence of the results presented in Fig. 7, we present in Table 8 a study on the limit Δm for which the maximum impact on the RV calculation is higher than 10 cm s$^{-1}$, 1, 10, and 100 m/s. From this table we can see that for a G star with a contaminant M star, an impact higher than 100 m/s only occurs if $\Delta m < 2$. However, in Table 5 from Sect. 2.2 we have seen that the probability to have a contaminant M star of $m_v < 17$ is very low. Thus, if we are only interested in target stars brighter than $m_v = 15$, an impact higher than 100 m/s is very unlikely. We can also see that when observing an M star, an F star can never cause an impact higher than 100 m/s, and an impact of tens m/s is only possible if target and contaminant have almost the same magnitude ($\Delta m \lesssim 1.5$). On the other hand, even for actual precisions, we may reach a potentially detectable contamination due to a $\Delta m = 9$. In many cases the induced effect is not detectable because it is a constant effect. Nevertheless, there are conditions (variable seeing, centering and/or pointing problems, etc.) in which the induced effect will not be constant. Even so, a very particular configuration is necessary (and is highly unlikely) for the effect to create a periodic signal. A contamination stronger than 1 m/s on the RV calculation of a K0 target star is possible if $\Delta m < 9$. If the K0 star is at 10 pc, it will have a $m_v \sim 6$, which means that contaminant stars with $6 \leq v \leq 15$ can cause such a contamination. The probability to have one contaminant star with $6 \leq m_v \leq 15$ within the 0.5" radius fiber is 0.02% only.

These tabled effects correspond to the maximum case, i.e., to the difference between contamination and no contamination. Discussed cases are extreme in the sense that they are contamination and no contamination. Nevertheless, to extensively analyze a variable contamination impact we would need to perform many hypotheses with uncertain parameters, such as seeing or flux counts.

6.1.1. Sky brightness

In our analysis of the sky brightness impact we assumed that sky brightness is mainly caused by the moon, and so its spectra will be that of a star with spectral type G2. The new-moon sky brightness should then be considered as a lower limit for the contamination from the sky brightness with a G2 spectrum. However, we should not forget that sky brightness has other sources and may depend on the sky zone. Sky spectra from the Galactic disk are surely different from the Galactic halo. Moreover, there is also the possibility to have a galaxy as contaminant, which was not considered. Nevertheless, we consider it a good approximation, or at least a good starting point, to treat the sky brightness as a G2 star.

If observations are carried out on a night with moon, and if cirrus are present, the contamination by the moon will be enhanced.

Tripathi et al. (2010), reported two outlier RV data points caused by cirrus during their observations of WASP-3, an F7 star of $m_v = 10.7$, on a full-moon night. Their RV measurements present a redshift of 140 m/s and of 49 m/s with respect to their best-fitting models. If we assume that cirrus will reflect some of the moonlight, we have a G2 contaminant. The maximum value considered for all practical effects for the visual magnitude of this contaminant will be that of the target star (if it were higher than the target magnitude, the target star would be no longer visible). Thus, for a G2 target star with $m_v = 10.7$ and a contaminant with the same spectral type and magnitude, the maximum contamination will be 2.7 km s$^{-1}$. This corresponds to 0.15% of the moonlight flux, considering that 100% of the moonlight flux corresponds to a star of magnitude 3.65. If 0.01% of the moonlight reaches the fiber, corresponding to a contaminant of spectral type G2 with $m_v = 13.7$, the contamination would be 140 m/s. For a contamination of 49 m/s, 0.003% of the moonlight flux would be enough, corresponding to a G2 contaminant with $m_v = 14.8$. Because the Tripathi et al. (2010) data were taken with the High Resolution Échelle Spectrometer (HIRES) on the Keck I telescope, and we used HARPS spectra in our simulation, and also because we did not calculate the impact for

![Fig. 6. Contour plot of the maximum induced RV shift in the target $|RVC_t-RVC_c|$ depending on the target (m_v) and contaminant (m_c) magnitudes.](image-url)
Fig. 7. Maximum impact of $|\Delta \alpha|$ on the $|RV_{\text{C}}|$ for a target star of spectral type (a) G2, (b) G8, (c) K0, (d) K5, (e) M1, and (f) M3, and contaminants of spectral types F2 (star), F5 (hexagon), G2 (squares), G8 (diamonds), K1 (circles), K5 (triangles), M1 (× crosses), and M3 (+ crosses).

A target of spectral type F, these contamination values are presented here just as a reference, since we cannot directly compare them. Nevertheless, we consider that their hypothesis of cirrus contamination is valid.

The sky brightness contamination is not easily removed. Although its signal may be strong enough to contaminate the RV calculations, it will be too weak to be adequately characterized, fitted, and removed, even for a long-slit spectrograph.
Table 7. Coefficients a and b for each fitting of the relation between Δm and the maximum impact on the RV calculations: $\text{Max}(RV_C - RV_{C'}| = 10^6 \Delta m)$, and rms resulting from each combination of target spectral type (TST) and contaminant spectral type (CST).

TST	CST	a	b	rms [cm s$^{-1}$]
G2	F2	-0.4008	5.0735	815.0813
F5	-0.4019	5.1601	1644.9045	
G2	-0.4022	5.4288	4491.1375	
G8	-0.4023	5.4829	4956.4768	
K1	-0.4026	5.4556	5136.0605	
K5	-0.4009	5.1859	1500.0546	
M1	-0.4001	4.8096	23.3793	
M3	-0.3996	4.7301	197.1604	
G8	-0.4008	4.9379	681.0614	
F5	-0.4019	5.0222	1075.0923	
G2	-0.4027	5.3440	3968.9098	
G8	-0.4021	5.3154	2697.4956	
K1	-0.4027	5.3641	4215.8544	
K5	-0.4007	5.11	1319.4446	
M1	-0.3995	4.7357	3.0972	
M3	-0.3984	4.651	51.545	
K0	F2	-0.3812	4.7320	1566.6309
F5	-0.4008	4.9521	871.3506	
G2	-0.3933	5.2712	5307.563	
G8	-0.3929	5.2613	4246.1257	
K1	-0.3954	5.3704	7390.8788	
K5	-0.3914	5.1827	3347.1766	
M1	-0.3799	4.7540	566.5518	
M3	-0.3777	4.6783	532.1239	
K5	F2	-0.3988	4.9559	200.036
F5	-0.3999	5.0865	724.4446	
G2	-0.4035	5.4592	7366.4185	
G8	-0.4032	5.5354	8587.4134	
K1	-0.4053	5.5580	14146.5377	
K5	-0.4030	5.3793	4935.42	
M1	-0.4011	4.9458	71.0313	
M3	-0.4009	4.9257	98.6934	
F2	-0.4056	3.5177	18.1497	
F5	-0.3932	3.4673	24.6295	
G2	-0.4018	4.1212	10.1997	
G8	-0.4011	4.2786	13.0058	
K1	-0.3990	4.1604	24.4166	
K5	-0.4014	4.5525	19.9346	
M1	-0.3985	4.0993	33.3093	
M3	-0.3994	4.1581	56.2493	
M1	-0.4052	5.4770	14.7282	
M3	-0.3924	3.4421	25.7393	
G2	-0.4035	4.0854	30.8372	
G8	-0.4019	4.2469	23.5459	
K1	-0.4024	4.2649	35.7392	
K5	-0.4021	4.5317	32.2298	
M3	-0.3991	5.0440	13.2551	
M3	-0.3999	5.1436	63.9946	

6.1.2. Kepler stars

Our work can also be a valuable asset for the follow-up of programs such as Kepler. Kepler stars have $11 \leq m_v \leq 18$ (see Batalha et al. 2012), and consequently, measuring the RV becomes challenging. Beyond the problem of these being faint stars, there is also the problem of the false-positive planet transit. As an example, we consider the case of Kepler-14b (Buchhave et al. 2011), a planet orbiting an F star with a companion star of nearly the same magnitude and only 0.3 arcsec of sky-projected angular separation. Buchhave and collaborators were not able to detect a second peak on the CCF and concluded that the two stars probably have nearly the same RV. They computed an impact of 280 m/s on the RV caused by the companion star. A direct comparison with their work is not possible, because their observations were carried out with the Fiber-fed Échelle Spectrograph (FIES) at the 2.5 m NOT at La Palma, and with the HIRES mounted on the Keck I on Mauna Kea, Hawaii. Moreover, our simulation only contemplates target stars of spectral GKM, and this is an F star. Still, performing a rough comparison, we see that our simulations indicate an impact of ~ 276 m/s.
Fig. 9. Close-up of the distribution of the expected contamination, $|\text{RVC}_t - \text{RVC}'_t|$, on the radial velocity, RVC_t, of a target star of spectral type (a) G2, (b) G8, (c) K0, (d) K5, (e) M1, and (f) M3, and at distance d, caused by a background or a companion star. The green thick solid line shows the distribution if the target star stands at a distance of $d = 1$ pc, the blue dotted line for $d = 5$ pc, black dashed line for $d = 10$ pc, magenta dash-dotted line for $d = 50$ pc, and red solid line for 100 pc. Numbers in each bin correspond to the impact probability for each target distance: the number in the top corresponds to 1 pc and the number in the bottom to 100 pc.
for a G2 target star with a contaminant of the same spectral type, \(\Delta m = 1 \), and \(\Delta RV = 1 \).

7. Conclusions

This study on the impact of stellar companions within the fiber of RV calculations allows us to conclude that we should not neglect the possibility of contaminant flux from stellar companions stars, specially if we are observing far-away stars. On average, if we are observing a G or a K star, the contamination may be higher than 10 cm s\(^{-1}\) if the difference between target and contaminant magnitude is \(\Delta m < 10 \), and higher than 1 m/s if \(\Delta m < 8 \). If the target star is a star of spectral type M, a \(\Delta m < 8 \) is enough to obtain the same contamination of 10 cm s\(^{-1}\), and a contamination may be higher than 1 m/s if \(\Delta m < 6 \). We also showed that sky brightness should not be discarded, particularly on full-moon nights, if one observes faint target stars (\(m_v > 10 \)).

These results will allow us to more wisely choose target stars to be observed with instruments such as ESPRESSO and CODEX, and they provide reference values for the different cases of contamination possible in fiber-fed high-resolution spectrographs. We also stress that there are diagnosis methods that should be capable of detecting most of the blends that mimic planets. We can detect a blend through bisector analysis of the CCF or from correlations using different templates (Santos et al. 2002).

Acknowledgements. This research has made use of the SIMBAD database, operated at CDS, Strasbourg, France. D.C., P.F., N.C.S., and G.B. acknowledge the support from the European Research Council/European Community under the FP7 through Starting Grant agreement number 239953, as well as from Fundação para a Ciência e a Tecnologia (FCT), Portugal, in the form of grant reference PTDC/CTE-AST/098528/2008. We also thank J.S. Amaral for a critical reading of the manuscript.

References

Batalha, N. M., Rowe, J. F., Bryson, S. T., et al. 2012, ApJS, submitted

Buchhave, L. A., Latham, D. W., Carter, J. A., et al. 2011, ApJS, 197, 3

Cegla, H. M., Watson, C. A., Marsh, T. R., et al. 2012, MNRAS, 421, L54

Dumusque, X., Santos, N. C., Udry, S., Lovis, C., & Bonfils, X. 2011a, A&A, 527, A82

Dumusque, X., Udry, S., Lovis, C., Santos, N. C., & Monteiro, M. J. P. F. G. 2011b, A&A, 525, A140

Duquennoy, A., & Mayor, M. 1991, A&A, 248, 485

Duric, N. 2003, Advanced Astrophysics (UK: Cambridge University Press)

Figueira, P., Marmier, M., Bonfils, X., et al. 2010, A&A, 513, L8

Huelamo, N., Figueira, P., Bonfils, X., et al. 2008, A&A, 489, L9

Janson, M., Hornuth, F., Bergfors, C., et al. 2012, ApJ, 754, 44

Mayor, M., & Queloz, D. 1995, Nature, 378, 355

Mayor, M., Marmier, M., Lovis, C., et al. 2011, A&A, submitted

Melo, C., Santos, N. C., Gieren, W., et al. 2007, A&A, 467, 721

Pepe, F. A., Cristiani, S., Rebolo Lopez, R., et al. 2010, in SPIE Conf. Ser., 7735

Queloz, D., Henry, G. W., Sivan, J. P., et al. 2001, A&A, 379, 279

Robin, A. C., Reylé, C., Derrière, S., & Picaut, S. 2003, A&A, 409, 523

Santos, N. C., Mayor, M., Naef, D., et al. 2002, A&A, 392, 215

Tripathi, A., Winn, J. N., Johnson, J. A., et al. 2010, ApJ, 715, 421
Appendix A: Density of stars

Fig. A.1. Number of stars in each bin of spectral type and magnitude for an area of the sky with a radius of 3°.

Fig. A.2. Density of stars in each bin of spectral type and magnitude for an area of the sky with a radius of 0.5 arcsec.
Appendix B: Method details

To control the magnitude of the contaminant star we first used the relation (B.1) to calculate \(m_v \) in the target reference frame,

\[
\begin{align*}
\mu - \mu_c &= -2.5 \times \log\left(\frac{F_t}{F_c} \right),
\end{align*}
\]

where \(F_t \) and \(F_c \) are the fluxes of the target and of the contaminant. The magnitudes are now calibrated and can be changed by multiplying the flux by a factor of

\[
\begin{align*}
f &= 10^{-x/2.5},
\end{align*}
\]

where \(x \) is the difference between the new chosen magnitude and the true magnitude of the star in the target-star system.

To change the RV of the contaminant spectra we also had to modify them. The first challenge when processing our co-added spectra with the HARPS RV pipeline is that it will take into account the header (and proprieties) of the parent spectra. To compensate for this we first need to replace the header of the contaminant spectrum file with that from the target, and then run the cross correlation function (CCF) recipe of the RV pipeline. The next step in this process was to shift the contaminant spectra. To assess by how much the contaminant spectra had to be shifted, we used Eq. (B.3)

\[
\begin{align*}
\lambda_c = \lambda_t \times \left(1 + \left(\frac{RC_c - RC_t - \Delta RV}{c} \right) \right),
\end{align*}
\]

where \(\lambda_t \) are the new wavelengths to derive the desired \(\Delta RV \) (difference between the RV of the target and the contaminant), \(\lambda_c \) are the wavelengths from the wave file corresponding to the target, and \(c \) is the light speed in vacuum. These new wavelengths were used to calculate, by linear interpolation, the number of pixels by which the contaminant needed to be shifted. This gives a new axis that it was used, recurring to another linear interpolation, to shift the contaminant spectra. With the target RV for the contaminant, the next step is the sum of the target with the modified contaminant spectra, which is the sum of their fluxes. The shift of the contaminant spectra should not be larger than the maximum barycentric Earth radial velocity (BERVMX) of the star, otherwise there is the risk that the spectral lines enter and leave the orders when performing the CCF calculation. BERVMX defines the excluded spectral lines from the correlation due to the orbital movement of the Earth toward the star. Our goal is to introduce a shift equivalent to a BERV value lower than the |BERVMX|, so that we do not need to exclude new lines.