Age-Adjusted Endothelial Activation and Stress Index for Coronavirus Disease 2019 at Admission Is a Reliable Predictor for 28-Day Mortality in Hospitalized Patients With Coronavirus Disease 2019

Felipe Pérez-García 1,2†, Rebeca Bailén 3,4‡, Juan Torres-Macho 5, Amanda Fernández-Rodríguez 1, María Ángeles Jiménez-Sousa 1, Eva Jiménez 6, Mario Pérez-Butragueño 7, Juan Cuadros-González 2,8, Julen Cadiñanos 9, Irene García-García 10, María Jiménez-González 10, Pablo Ryan 5,11‡, and Salvador Resino 10*

Background: Endothelial Activation and Stress Index (EASIX) predict death in patients undergoing allogeneic hematopoietic stem cell transplantation who develop endothelial complications. Because coronavirus disease 2019 (COVID-19) patients also have coagulopathy and endotheliitis, we aimed to assess whether EASIX predicts death within 28 days in hospitalized COVID-19 patients.

Methods: We performed a retrospective study on COVID-19 patients from two different cohorts [derivation (n = 1,200 patients) and validation (n = 1,830 patients)].

The endpoint was death within 28 days. The main factors were EASIX [lactate dehydrogenase * creatinine/thrombocytes] and aEASIX-COVID (EASIX * age), which were log2-transformed for analysis.

Results: Log2-EASIX and log2-aEASIX-COVID were independently associated with an increased risk of death in both cohorts (p < 0.001). Log2-aEASIX-COVID showed a good predictive performance for 28-day mortality both in the derivation cohort (area under the receiver-operating characteristic = 0.827) and in the validation cohort (area under the receiver-operating characteristic = 0.820), with better predictive performance than log2-EASIX (p < 0.001). For log2 aEASIX-COVID, patients with low/moderate risk (<6) had a 28-day mortality probability of 5.3% [95% confidence interval (95% CI) = 4–6.5%], high (6–7) of 17.2% (95% CI = 14.7–19.6%), and very high (>7) of 47.6% (95% CI = 44.2–50.9%). The cutoff of log2 aEASIX-COVID = 6 showed a positive predictive value
INTRODUCTION

Around 80% of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-infected patients develop mild-to-moderate illness, 15% severe illness, and 5% critical illness, including acute respiratory distress syndrome, septic shock, and multiorgan failure (1). Severe coronavirus disease 2019 (COVID-19) is related to high mortality, mostly in older people with comorbidities such as diabetes and cardiovascular diseases (2). Besides, the excessive hospital demand generated by the COVID-19 pandemic during the first wave caused a high request for intensive care beds in Madrid, Spain (3), affecting the quality of medical care and impacting mortality due to COVID-19 (4).

A deregulated pro-inflammatory response (cytokine storm) usually appears in patients with severe COVID-19, which leads to coagulopathy and endothelial damage with frequent episodes of thromboembolism (1, 5). Widespread endothelitis with diffuse microcirculatory injury in the lung and other organs (brain, heart, kidneys, gut, and liver) is a central feature of severe COVID-19 (1). This disturbed coagulation is strongly associated with acute respiratory distress syndrome, multiorgan failure, and mortality, which is higher than in patients with COVID-19-unrelated pneumonia (1).

During the COVID-19 pandemic, many biomarkers to predict mortality have been reported (6, 7), including lactate dehydrogenase, creatinine, and thrombocyte count. These three markers are part of the Endothelial Activation and Stress Index (EASIX), a powerful score that was initially developed to predict survival in patients with acute graft vs. host disease (GVHD) after allogeneic hematopoietic stem cell transplantation (allo-HSCT) (8). Endothelial activation is the common trigger of several complications occurring after allo-HSCT, including transplant-associated microangiopathy, sinusoidal obstruction syndrome, and GVHD (9). In the last years, EASIX has also been validated as a predictor for the development of other allo-HSCT complications, including non-relapse mortality (10, 11), fluid overload (12), and sinusoidal obstruction syndrome (13). This score has also been validated in other hematological malignancies outside of the HSCT setting (14, 15).

Because coagulopathy and endothelial dysfunction are critical in the evolution of patients with COVID-19, we aimed to assess whether the EASIX score can predict 28-day mortality in hospitalized COVID-19 patients.

METHODS

Patients

We performed a retrospective study on consecutively hospitalized patients between March 1 and May 31, 2020 (during the first wave of the COVID-19 pandemic) with a laboratory-confirmed with a laboratory-confirmed SARS-CoV-2 infection by real-time polymerase chain reaction. Our study population consisted of two cohorts from two hospitals in Madrid, Spain, which were previously described:

(i) derivation cohort from Infanta Leonor University Hospital (ILUH) (16, 17). Initially, 1,968 patients were included. However, we discarded 391 patients due to missing values for the EASIX variables and 377 patients due to transfer to another institution within 28 days after hospital admission, resulting in a final study population of 1,200 patients. The Ethics Committee of ILUH (Code ILUH R 027-20) approved the study.

(ii) Validation cohort from La Paz University Hospital (LPUH) (18). Initially, 2,226 patients were included. We discarded 396 patients due to missing values for the EASIX variables, resulting in a final study population of 1,830 patients. The Ethics Committee of LPUH (Code PI-4072) approved the study.

The study was conducted according to the Declaration of Helsinki. Written informed consent waiver was obtained from the Ethics Committees due to the retrospective nature of the study. In addition, the database was anonymized for statistical analysis. The research followed the Transparent Reporting of a Multivariable Prediction Model for Individual Prognosis or Diagnosis (TRIPOD) statement (19).

Clinical Data

Demographic and clinical data were extracted from medical records and managed using Research Electronic Data Capture (REDCap). We included age, sex, smoking habit, comorbidities [chronic heart disease, hypertension, chronic pulmonary disease, asthma, chronic kidney disease, liver disease (cirrhosis), neoplasm, hematological malignancy, obesity, diabetes, and dyslipidemia], laboratory findings, and signs at hospital admission [oxygen saturation, hematocrit, blood counts (lymphocytes, neutrophils, thrombocytes), aspartate aminotransferase and alanine aminotransferase, lactate dehydrogenase, glucose, creatinine, sodium, potassium, and C-reactive protein].

EASIX was calculated according to the previously reported formula [lactate dehydrogenase (IU/L) * creatinine
collinearity between them \(r < \text{poit} \) in COVID-19 patients \(20 \) and is also an easy variable to obtain at the time of the patient’s diagnosis. Both indexes were \(\log_2 \) transformed.

Outcome Variables

The primary endpoint was 28-day all-cause mortality. The baseline was the date at hospital admission. At the follow-up censoring date (May 31, 2020), the clinical status of the patients was discharged alive, currently hospitalized alive, or dead. When a patient was readmitted during the study period, a single hospital admission episode was considered for the purposes of the analysis.

Statistical Analysis

Quantitative variables were expressed as the median and interquartile range, and categorical variables were shown as absolute count (percentage). Comparisons between groups were performed using the Mann–Whitney U test for continuous variables and the chi-squared or two-tailed Fisher’s exact test for categorical variables.

We assessed the risk of death using the survival analysis (Kaplan–Meier and Cox regression analyses). The Kaplan–Meier product-limit method was used to estimate survival probabilities at 28 days, and the log-rank test was used to calculate the differences between groups and trends. Cox proportional-hazards models were used to study the association between risk factors (age, sex, smoking habit, comorbidities, laboratory findings, and signs at hospital admission) and mortality during the first 28 days. Continuous variables (including EASIX and \(\log_2 \)EASIX-COVID) were \(\log_2 \)-transformed (base-2 logarithms). First, we performed univariate Cox regression analyses. Then, we performed multivariate Cox regression analyses with variables that had a \(p \)-value \(\leq 0.05 \), missing values \(\leq 10\% \), and low collinearity between them \((r < 0.5) \), which were further selected by a stepwise forward selection method \((\text{pin}<0.05 \text{ and pout}<0.10) \).

Internal validation of the predictive model was made using 20-fold cross-validation. The predictive performance of death within 28 days of hospital admission for EASIX and \(\log_2 \)EASIX-COVID was evaluated by examining calibration (Hosmer–Lemeshow test) and discrimination \[\text{area under the receiver-operating characteristic (AUROC)} \] measures. We calculated the prediction error for EASIX and \(\log_2 \)EASIX-COVID in both cohorts using the Brier score. Differences between AUROC models were assessed using the Delong test. Sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) were calculated for the different deciles of the distribution.

Statistical analysis was performed using Stata/IC 15.1 (StataCorp, Texas, USA) and GraphPad Prism 7.04 (GraphPad Software, Inc., California, USA).

RESULTS

Patient Characteristics

Table 1 shows baseline characteristics of COVID-19 patients, stratified by survival/death within 28 days of hospital admission at ILUH (derivation cohort) and LPUH (validation cohort). In both cohorts, patients who died were significantly older, more frequently male, and presented more comorbidities such as chronic heart disease, hypertension, chronic kidney disease, solid neoplasm, hematological malignancy, diabetes, and dyslipidemia. Besides, patients who died showed significantly lower values of hematocrit, lymphocytes, thrombocytes, and alanine aminotransferase, whereas they had higher values of neutrophils, aspartate aminotransferase, lactate dehydrogenase, glucose, creatinine, potassium, and C-reactive protein. Mortality rate within 28 days was significantly lower in ILUH (derivation cohort, 17.7%) than in LPUH (validation cohort, 22.5%) \((p = 0.001) \).

Risk of Death Within 28 Days

\(\log_2 \)EASIX was associated with a higher risk for death within 28 days in the derivation cohort \[\text{adjusted hazard ratio (aHR)} = 1.55; p < 0.001 \] and the validation cohort \(\text{(aHR} = 1.41; p < 0.001) \) \(\text{(Supplementary Table 1)} \). Furthermore, \(\log_2 \)EASIX-COVID showed slightly higher mortality risk values for 28-day death compared with \(\log_2 \)EASIX \(\text{(Supplementary Table 2)} \), both in the derivation \(\text{(aHR} = 1.61; p < 0.001) \) and in the validation cohort \(\text{(aHR} = 1.51; p < 0.001) \).

Predictive Performance of Death Within 28 Days

\(\log_2 \)EASIX presented suitable values of calibration \(\text{(chi-squared} = 11.04; p = 0.198; \text{Figure 1A)} \), discrimination \(\text{(AUROC} = 0.784; \text{Figure 1B)} \), and an acceptable prediction error \(\text{(Brier score} = 0.119) \) at the derivation cohort. At the validation cohort, \(\log_2 \)EASIX showed similar predictive performance values to the derivation cohort for calibration \(\text{(chi-squared} = 7.36; p = 0.498; \text{Figure 1C)} \), discrimination \(\text{(AUROC} = 0.774; \text{Figure 1D)} \), and an admissible prediction error \(\text{(Brier score} = 0.141) \). \(\log_2 \)EASIX PPV increased with deciles but did not exceed 61% in the derivation cohort and 70% in the validation cohort, and NPV decreased with the increase of the deciles but was not <80% in both cohorts \(\text{(Supplementary Table 3)} \).

\(\log_2 \)EASIX-COVID showed better values of predictive performance than \(\log_2 \)EASIX for calibration and discrimination in the derivation cohort \[\text{chi-squared} = 3.09 \text{ \((p \) } = 0.928; \text{Figure 1A)} \) and \text{AUROC} = 0.827 \((p < 0.001; \text{Figure 1B)} \), respectively and in the validation cohort \[\text{chi-squared} = 6.66 \text{ \((p \) } = 0.574; \text{Figure 1C)} \) and \text{AUROC} = 0.820 \((p < 0.001; \text{Figure 1D)} \), respectively.\[\] Moreover, Brier scores of \(\log_2 \)EASIX-COVID were slightly lower than those obtained for \(\log_2 \)EASIX \(0.111 \) for derivation and 0.131 for validation cohorts). Internal validation showed an AUC of 0.832 \((95\% \text{ CI} = 0.786–0.849) \) in the derivation cohort and 0.818 \((95\% \text{ CI} = 0.795–0.842) \) in the validation cohort. \(\log_2 \)EASIX-COVID PPV raised with the increase in deciles but did not exceed 67% in the derivation cohort and 72% in the validation cohort. Besides, NPV decreased...
TABLE 1 Baseline characteristics of hospitalized COVID-19 patients, stratified by survival at 28 days after admission.

Characteristic	Survivors	Non-survivors	p-value
A) ILUH (derivation cohort)			
No. patients	988 (82.3%)	212 (17.7%)	–
Age, median (IQR)	64 (52–77)	82 (72–87)	<0.001
Sex (male)	562 (65.9%)	152 (71.7%)	<0.001
Comorbidities			
Chronic heart disease	182 (18.7%)	90 (42.5%)	<0.001
Hypertension	486 (49.9%)	152 (71.7%)	<0.001
Chronic pulmonary disease	106 (10.9%)	50 (23.9%)	<0.001
Asthma	85 (8.7%)	11 (5.2%)	0.052
Chronic kidney disease	50 (5.1%)	30 (14.3%)	<0.001
Liver cirrhosis	14 (1.4%)	7 (3.4%)	0.062
Neoplasm	32 (3.4%)	29 (12.7%)	<0.001
Hematological malignancy	18 (1.9%)	13 (5.6%)	0.004
Obesity	154 (18.6%)	26 (15.0%)	0.327
Diabetes	249 (21.4%)	73 (31.6%)	0.001
Dyslipidemia	220 (22.7%)	67 (31.8%)	0.005
Smoker	50 (7.4%)	9 (7.7%)	0.850
Laboratory findings and signs			
Oxygen saturation in room air (%)	95 (92–97)	90 (82–93)	<0.001
Hematocrit (%)	41.5 (38.4–44.2)	39.4 (35.0–43.7)	<0.001
Lymphocyte count (cells/µl)	1,000 (800–1,400)	800 (500–1,100)	<0.001
Neutrophil count (cells/µl)	4,800 (3,500–6,900)	5,900 (3,800–8,450)	<0.001
Thrombocyte count (x 10^9 cells/L)	37 (27–53)	47 (31–71)	<0.001
Aspartate Aminotransferase (IU/L)	212 (165–275)	187 (137–264)	<0.001
Alanine Aminotransferase (IU/L)	36 (26–56)	31 (22–48)	<0.001
Lactate dehydrogenase (IU/L)	255 (207–327)	353 (265–480)	<0.001
Glucose (mg/dL)	109 (98–132)	135 (110–167)	<0.001
Creatinine (mg/dL)	0.99 (0.80–1.20)	1.31 (1.03–1.94)	<0.001
Sodium (mEq/L)	159 (136–141)	138 (136–142)	0.715
Potassium (mEq/L)	4.2 (3.9–4.8)	4.4 (4.0–4.8)	0.004
C-reactive Protein (mg/L)	60.9 (22.7–122.0)	119.8 (56.2–208.7)	<0.001
B) LPUH (validation cohort)			
No. patients	1,418 (77.5%)	412 (22.5%)	–
Age, median (IQR)	65 (53–77)	81 (74–87)	<0.001
Sex (male)	745 (52.6%)	264 (64.1%)	<0.001
Comorbidities			
Chronic heart disease	281 (19.9%)	161 (36.4%)	<0.001
Hypertension	660 (46.7%)	278 (67.5%)	<0.001
Chronic pulmonary disease	108 (7.7%)	41 (10.1%)	0.124
Asthma	72 (5.1%)	12 (2.9%)	0.081
Chronic kidney disease	95 (6.7%)	80 (19.5%)	<0.001
Liver cirrhosis	15 (1.1%)	7 (1.7%)	0.305
Neoplasm	151 (10.7%)	86 (21.0%)	<0.001
Hematological malignancy	88 (6.2%)	53 (12.9%)	<0.001
Obesity	238 (17.2%)	67 (16.8%)	0.880
Diabetes	284 (20.1%)	125 (30.5%)	<0.001
Dyslipidemia	530 (37.6%)	212 (51.6%)	<0.001
Smoker	100 (7.3%)	36 (9.8%)	0.111
Laboratory findings and signs			
Oxygen saturation in room air (%)	91.9 (75.9–96.3)	92.4 (82.2–96.4)	0.258
Hematocrit (%)	42.3 (38.9–45.1)	40.5 (36.3–44.4)	<0.001

(Continued)
with increasing deciles but was not below 80% in both cohorts (Supplementary Table 4).

Probability of Death Within 28 Days

We considered the risk of 28-day mortality, joining the two cohorts, in three strata (low/moderate, high, and very high). For log$_2$ EASIX, 28-day mortality probability values were 7.8% for patients with low/moderate risk (<1), 18.6% for high risk (0–1), and 45.4% for very high risk (>1) (Figure 2A). The cutoff of log$_2$ EASIX = 0 showed a PPV of 29.8% and NPV of 92.2%, and log$_1$ EASIX = 1 showed a PPV of 45.3% and NPV of 87.4% (Table 2). For log$_2$ aEASIX-COVID, 28-day mortality probability values were 5.3% for patients with low/moderate risk (<6), 17.2% for high risk (6, 7), and 47.6% for very high risk (>7) (Figure 2B). The cutoff of log$_2$ aEASIX-COVID = 6 showed a PPV of 31.7% and NPV of 94.7%, and log$_2$ aEASIX-COVID = 7 showed a PPV of 47.6% and NPV of 89.8% (Table 2). The Kaplan–Meier curve for the 28-day mortality also showed a different evolution of patients according to the different risk strata according to log$_2$ EASIX (Figure 2C) and log$_2$ aEASIX-COVID (Figure 2D).

DISCUSSION

We evaluated EASIX for predicting mortality within 28 days in hospitalized COVID-19 patients from two large datasets in Spain. The main findings of our study were as follows: (i) the increase in EASIX values, especially in aEASIX-COVID, was linked to higher 28-day mortality. (ii) EASIX and aEASIX-COVID had a good predictive performance, but only aEASIX-COVID had AUROC >0.8 in the derivation and validation cohorts. (iii) EASIX and aEASIX-COVID were more reliable in predicting patient survival than death because the NPV values were much higher than the PPV values. (iv) EASIX and aEASIX-COVID allowed the stratification of COVID-19 patients into three risk categories of 28-day mortality.

Many predictive scores for mortality in COVID-19 patients have been developed (20, 21). However, most of these predictive scores do not exceed the AUROC of 0.8, including comorbidities related to poor COVID-19 prognosis or variables that are not always available in clinical practice. Besides, these scores require laborious calculations as long as they are based on complex multivariate models. Therefore, we hypothesized that EASIX, a simple score developed for endotheliopathy associated with allo-HSCT, could also predict mortality in COVID-19 patients because endotheliopathy is crucial for its pathophysiology (1).

EASIX was initially developed by Luft et al. as a predictor of survival in patients with acute GVHD after allo-HSCT (8) and later validated to predict mortality related to different post-HSCT complications (10–15). For the development of EASIX, the authors chose three laboratory parameters that were part of the classical diagnostic criteria of thrombotic microangiopathy (creatinine, lactate dehydrogenase, and thrombocyte counts) due to both their simplicity and their association with endothelial dysfunction and microangiopathy (8). Widespread endothelitis and coagulopathy are also keys in the pathophysiology of COVID-19 (1). Recently, Luft et al. (22) have reported in two cohorts of 100 and 126 patients that EASIX predicts COVID19 outcome and may discriminate patients who need intensive surveillance. Besides, high EASIX values correlated with increased serum values of endothelial (angiopoietin-2, CXCL8, soluble thrombomodulin, and suppressor of tumorigenicity-2) and inflammatory (CXCL9, IL18, and IL18BPa) biomarkers (22).

In our study, EASIX showed reasonable accuracy in predicting death within 28 days in hospitalized COVID-19 patients despite its simplicity and the fact that it was developed in a different setting. Both the simplicity and applicability make this score especially useful in healthcare overload and low-resource settings.

Moreover, because age has largely been described as one of the most important predictors of mortality in patients with COVID-19 (20), we postulated that an age-adjusted EASIX (aEASIX-COVID) might increase its predictive performance for 28-day mortality. In our study, the predictive performance...
Pérez-García et al. aEASIX-COVID Predicts Death in COVID-19

FIGURE 1 | Predictive performance of death within 28 days in COVID-19 patients. Calibration plots (A,C) were performed from Hosmer–Lemeshow test. Discrimination analysis was performed by AUROC curves (B,D), and p-values were calculated using Delong test. Abbreviations: X², Chi-squared; AUROC, area under the receiver-operating characteristic curve; 95% CI: 95% confidence interval; EASIX, endothelial activation and stress index; aEASIX-COVID: age-adjusted EASIX at COVID-19 diagnosis.

Our study presents some limitations. First, this retrospective study only included patients belonging to the first pandemic wave, which was associated with higher mortality rates worldwide. Another limitation could be that aEASIX-COVID relied exclusively on hospitalized patients. Consequently, its applicability in primary care settings, where routine laboratory tests are not usually used, is unknown. Finally, a limitation common to all reported COVID-19 prognostic models is that our study was carried out in Spain, limiting our findings' extrapolation to other countries and healthcare settings. In this regard, the level of hospital saturation generated in the first wave of the COVID-19 epidemic could affect our results (new admissions, number of transfers to other hospitals daily, patient/physician ratio, available intensive care unit beds, among others). Consequently, additional studies are needed to validate

do the aEASIX-COVID was significantly superior to the EASIX (initial model) in our two cohorts (derivation and validation) (23). However, EASIX and aEASIX-COVID were more reliable in predicting patient survival than death because NPV values were much higher than PPV values. Furthermore, the predictive performance of aEASIX-COVID for 28-day mortality was similar to Sociedad Española de Enfermedades Infecciosas y Microbiología Clínica (SEIMC) (24) and PANDEMYC scores (17), which were both constructed from patients included in our study. However, SEIMC and PANDEMYC scores are more complex to calculate because they are constructed with a higher number of variables (seven to nine variables) than aEASIX-COVID (four variables), and their developments were based on more complex calculations.
the diagnostic performance of aEASIX-COVID in different epidemiological contexts. Further complementary studies could include the evaluation of EASIX and aEASIX-COVID for the prediction of cardiovascular and thromboembolic complications (such as pulmonary thromboembolism) in the context of COVID-19.

This study also has several strengths. First, our research has a large sample size and a large number of events, both in the derivation and validation cohorts. Besides, our research adheres to the TRIPOD recommendations. Finally, the aEASIX-COVID score is easy to calculate with normally accessible variables, which would allow rapid decision-making in COVID-19 patients.

CONCLUSION

Both EASIX and aEASIX-COVID were associated with death within 28 days in hospitalized COVID-19 patients. However, aEASIX-COVID had significantly better predictive performance than EASIX, particularly for discarding death. Thus, our findings suggest that aEASIX-COVID could be a reliable predictor of death that could help to manage COVID-19 patients.
DATA AVAILABILITY STATEMENT

The datasets used and/or analyzed during the current study may be available from the corresponding author upon reasonable request.

ETHICS STATEMENT

The studies involving human participants were reviewed and approved by Infanta Leonor University Hospital Ethics Committee (Code: ILUH R 027-20) and the Ethics Committee of La Paz University Hospital (Code: PI-4072). Written informed consent for participation was not required for this study in accordance with the national legislation and the institutional requirements.

AUTHOR CONTRIBUTIONS

SR and PR: funding body. FP-G and SR: study concept, design, statistical analysis, and interpretation of data. PR, JT-M, EJ, MP-B, JC, J-CG, IG-G, and MJ-G: patients’ selection and clinical data acquisition. FP-G, RB, and SR: writing of the manuscript. PR, MÁJ-S, and AF-R: critical revision of the manuscript for relevant intellectual content. SR: supervision and visualization. All authors contributed to the article and approved the submitted version.

FUNDING

This study was supported by grants from Instituto de Salud Carlos III [grant number COV20/1144 [MPY224/20] to AF-R/MÁJ-S]. MÁJ-S and AF-R are supported by Instituto de Salud Carlos III (grant numbers CP17CIII/00007 and CP14CIII/00010, respectively).

ACKNOWLEDGMENTS

We would like to thank all the frontline ILUH and LPUH staff for their dedication and their work in facing this pandemic under enormous pressure.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fmed.2021.736028/full#supplementary-material

COLLABORATORS

A) Derivation cohort from Infanta Leonor University Hospital (ILUH): José Ramón Arribas; Alberto M. Borobia; Antonio Carcas-Sansuán; Jesús Frias; Elena Ramírez; Alejandro Martín-Quirós; Manuel Quintana-Díaz; Jesús Mingorance; Francisco Arnalich; Francisco Moreno; Juan Carlos Figueiras; Nicolás García-Arenzana; María Dolores Montero Vega; María Pilar Romero Gómez; Carlos Toro-Rueda; Silvia García-Bujalance; Guillermo Ruiz-Carrascoso; Emilio Cendejas-Bueno; Iker Falces-Romero; Fernando Lázaro-Perona; Mario Ruiz-Bastián; Almudena Gutiérrez-Arroyo; Patricia Girón De Velasco-Sada; Elie Dahdouh; Bartolomé Gómez-Arroyo; Consuelo Garcia-Sánchez; Virginia Guezed-López; Iván Blaise-Sánchez; Marina Alguacil-Guillén; María Gracia Liras-Hernández; Miguel Angel Sánchez-Castellano; Paloma Garcia-Clemente; Patricia González-Donapetry; Sol San José-Villar; Manuela de Pablos Gómez; Rosa Gómez-Gil; María Teresa Corcuera-Pindado; Alicia Rico-Nieto; Alicia Herrero; Daniel Prieto Arribas; Paloma Oliver-Saez; Roberto Mora Corcovado; Pilar Fernández-Calle; Mª José Alcaide Martín; Jorge Díaz-Garzón Marco; Belén Fernández-Puntero; Rocio Nuñez Cabetas; Gema Crespo Sánchez; Olafa Rodríguez Fraga; Helena Mendez del Sol; Marta Duque Alcorta; Rubén Gómez Rioja; María Sanz de Pedro; Lydia Pascual García; Marta Segovia Amaro; Jose Manuel Iturzaeta Sánchez; Mercedes Rodriguez Gutiérrez; Amparo Perez Garcia Morillon; Miguel Angel Martinez Gallego; Blanca Fabe Esteemera; Estefani Martinez; Isabel Moreno Parra; Neila Rodriguez Rocca; Daniel Ortiz Sánchez; Manuela Simon Velasco; Ileana Gabriela Tomoiu; Cristina Pizarro Sanchez; Blanca Montero San Martín; Ana Laila Qasem Moreno; Marta Gómez López; Ismael Casares Guerrero; Antonio Buño Soto; Milagros Martí de Gracia; Luz Parra Gordo; Aurea Diez Tascón; Silvia Ossaba Vélez; Inmaculada Pinilla; Emilio Cuesta; María Fernández-Velilla; Maria Isabel Torres; Gonzalo Garzón.; Verónica Pérez-Blanco; Almudena Quintás-Viqueira; Isabel San Juan; José Miguel Cantero-Exibrido; César Pérez-Romero; Mercedes Castro-Martinez; Lucia Hernández-Rivas; Teresa Pedraz; Eva Fernández-Bretón; Claudia García-Vaz; Ana Robustillo-Rodela; Rosario Maria Torres Santos-Olmo; Angélica Rivera Núñez; Ignacio Fernández Osaba; Marina Neguerol Gutiérrez; Ana María Martínez Virt; Manuel González Viñolís; Regina Cabrera Gamero; Rosa Mayayo Alvira; Raquel Marin Baselga; Victoria Lo-Iacono Garcia; Macarena Lenín Baratas; Paloma Romero Gallego-Acho; Begoña Reche Martínez; Renzo Tejada Sorados; Mikel Rico Briñas; Ricardo Deza Palacios; Sara Fabra Cadenas; Isabel Arroyo Rico; Lubna Dani Ben-Abdellah; Laura Labajo Montero; Rubén Soriano Arroyo; Lorena López-Corcuera; Elena Calvin García; Susana Martínez Álvarez; Laura López-Tappero Izrazábal; Martín Pilares Barco; Olga González Peña; Guillermina Bejarano Redondo; Alberto Iglesias Sígueniza; Yael Tung Chen; Charbel Maroun Eid; Ruth Bravo Lizcano; Miguel Silvestre Niño; Frank Perdomo García; Berta Alonso González; Berta Antón Huguet; Isabel Arenas Berenguer; Clara
REFERENCES

1. Osuchowski MF, Winkler MS, Skirecki T, Cajander S, Shankar-Hari M, Lachmann G, et al. The COVID-19 puzzle: deciphering pathophysiology and phenotypes of a new disease entity. *Lancet Respir Med.* (2021) 9:622–42. doi: 10.1016/S2213-2600(21)00218-6

2. Zhou M, Zhang X, Qu J. Coronavirus disease 2019 (COVID-19): a clinical update. *Front Med.* (2020) 14:126–35. doi: 10.1007/s11684-020-0767-8

3. Sanchez-Ubeda EF, Sanchez-Martín P, Torrego-Ellacuria M, Rey-Mejias AD, Morales-Contreras MF, Puerta JL. Flexibility and bed margins of the community of madrid's hospitals during the first wave of the SARS-CoV-2 Pandemic. *Int J Environ Res Public Health.* (2021) 18:3510. doi: 10.3390/ijerph18073510

4. Sen-Crowe B, Sutherland M, McKenney M, Ellbouli A. A closer look into global hospital beds capacity and resource shortages during the COVID-19 pandemic. *J Surg Res.* (2021) 260:56–63. doi: 10.1016/j.jsr.2020.11.062
5. Bermejo-Martin JF, Almansa R, Torres A, Gonzalez-Rivera M, Kelvin DJ. COVID-19 as a cardiovascular disease: the potential role of chronic endothelial dysfunction. *Cardiovasc Res.* (2020) 116:e132–3. doi: 10.1093/crccy/cva140

6. Izcovich A, Ragusa MA, Tortosa F, Lavena Marzio MA, Agnoletti C, Bengolea A, et al. Prognostic factors for severity and mortality in patients infected with COVID-19: a systematic review. *PLoS ONE.* (2020) 15:e0241955. doi: 10.1371/journal.pone.0241955

7. Khodeir MM, Shabana HA, Alkhamiss AS, Rasheed Z, Alsoghair M, Alsagaby SA, et al. Early prediction keys for COVID-19 cases progression: a meta-analysis. *J Infect Public Health.* (2021) 14:561–9. doi: 10.1016/j.jiph.2021.03.001

8. Luft T, Benner A, Jodele S, Dandoy CE, Storb R, Gooley T, et al. EASIX in patients with acute graft-versus-host disease: a retrospective cohort analysis. *Lancet Haematol.* (2017) 4:e414–23. doi: 10.1016/S2353-3026(17)30108-4

9. Pagliuca S, Michonneau D, Sicre de Fontbrune F, Sutra Del Galy A, Xhaard A, Robin M, et al. Allogeneic reactivity-mediated endothelial cell complications after HSCT: a plea for consensual definitions. *Blood Adv.* (2019) 3:2424–35. doi: 10.1182/bloodadvances.2019000143

10. Luft T, Benner A, Terzer T, Jodele S, Dandoy CE, Storb R, et al. EASIX and mortality after allogeneic stem cell transplantation. *Bone Marrow Transplant.* (2020) 55:553–61. doi: 10.1038/s41409-019-0703-1

11. Shouval R, Fein JA, Shouval A, Danylesko I, Shem-Tov N, Zlotnik M, et al. External validation and comparison of multiple prognostic scores in allogeneic hematopoietic stem cell transplantation. *Blood Adv.* (2019) 3:1881–90. doi: 10.1182/bloodadvances.201903268

12. Varma A, Rondon G, Srouf SA, Chen J, Ledesma C, Champlin RE, et al. Endothelial activation and stress index (EASIX) at admission predicts fluid overload in recipients of allogeneic stem cell transplantation. *Biol Blood Marrow Transplant.* (2020) 26:1013–20. doi: 10.1016/j.bbmt.2020.01.028

13. Jiang S, Penack O, Terzer T, Schultz D, Major-Lauterbach J, Rudajkovic A, et al. Predicting sinusoidal obstruction syndrome after allogeneic stem cell transplantation with the EASIX biomarker panel. *Haematologica.* (2021) 106:446–53. doi: 10.3324/haematol.2019.238790

14. Song GX, Jung SH, Kim K, Kim SJ, Yoon SE, Lee HS, et al. Endothelial activation and stress index (EASIX) is a reliable predictor for overall survival in patients with multiple myeloma. *BMJ Cancer.* (2020) 20:803. doi: 10.1186/s12885-020-07317-y

15. Merz A, Germing U, Kobbe G, Kaivers J, Jauch A, Rudajkovic A, et al. EASIX for prediction of survival in lower-risk myelodysplastic syndromes. *Blood Cancer J.* (2019) 9:85. doi: 10.1038/s41408-019-0247-z

16. Jiménez E, Fontan-Vela M, Valencia J, Fernandez-Jimenez I, Alvaro-Alonso EA, Izquierdo-Garcia E, et al. Characteristics, complications and outcomes among 1549 patients hospitalised with COVID-19 in a secondary hospital in Madrid, Spain: a retrospective case series study. *BMJ Open.* (2020) 10:e042398. doi: 10.1136/bmjopen-2020-042398

17. Torres-Macho J, Ryan P, Valencia J, Perez-Butragueno M, Jimenez E, Fontan-Vela M, et al. The PANDEMYC score. An easily applicable and interpretable model for predicting mortality associated with COVID-19. *J Clin Med.* (2020) 9:3066. doi: 10.3390/jcm9103066

18. Borobia AM, Carcas AJ, Arnalich F, Alvarez-Sala R, Monserrat-Villatoro J, Quintana M, et al. A cohort of patients with COVID-19 in a major teaching hospital in Europe. *J Clin Med.* (2020) 9:1733. doi: 10.3390/jcm9061733

19. Collins GS, Reitsma JB, Altman DG, Moons KG. Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD): the TRIPOD statement. *Ann Intern Med.* (2015) 162:55–63. doi: 10.1161/CIRCULATIONAHA.114.014508

20. Gupta RK, Marks M, Samuels THA, Luintel A, Ramlung T, Chowdhury H, et al. Systematic evaluation and external validation of 22 prognostic models among hospitalised adults with COVID-19: an observational cohort study. *Eur Respir J.* (2020) 56:2003498. doi: 10.1183/13993003.03498-2020

21. Miller JL, Tada M, Goto M, Mohr N, Lee S. Prediction models for severe manifestations and mortality due to COVID-19: a rapid systematic review. *medRxiv.* [Preprint], (2021). doi: 10.1101/2021.01.28.21250718

22. Luft T, Wendtner CM, Kosely F, Rudajkovic A, Benner A, Korell F, et al. EASIX for prediction of outcome in hospitalized SARS-CoV-2 infected patients. *Front Immunol.* (2021) 12:634416. doi: 10.3389/fimmu.2021.634416

23. Altman DG, Vergouwe Y, Royston P, Moons KG. Prognosis and prognostic research: validating a prognostic model. *BMJ.* (2009) 338:b605. doi: 10.1136/bmj.b605

24. Berenguer J, Borobia AM, Ryan P, Rodríguez-Bano J, Bellon JM, Jarrín I, et al. Development and validation of a prediction model for 30-day mortality in hospitalised patients with COVID-19: the COVID-19 SEIMC score. *Thorax.* (2021) 10:920–9. doi: 10.1136/thoraxjnl-2020-216001

Conflict of Interest: PR reports grants and personal fees from GILEAD and MSD and personal fees from AbbVie and ViV Healthcare, outside the submitted work. SR reports grants from GILEAD and MSD, outside the submitted work.

The remaining authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher's Note: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Copyright © 2021 Pérez-Garcia, Bailén, Torres-Macho, Fernández-Rodríguez, Jiménez-Sousa, Jiménez, Pérez-Butragueno, Cuadros-González, Cadiranos, García-García, Jiménez-González, Ryan and Resino. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.