Axler, Christian
On Robin’s inequality. (English) Zbl 07713337
Ramanujan J. 61, No. 3, 909-919 (2023)

Summary: Let \(\sigma(n) \) denote the sum of divisors function of a positive integer \(n \). Robin proved that the Riemann hypothesis is true if and only if the inequality \(\sigma(n) < e^{\gamma}n \log \log n \) holds for every integer \(n > 5040 \), where \(\gamma \) is the Euler-Mascheroni constant. In this paper we establish a new family of integers for which Robin’s inequality \(\sigma(n) < e^{\gamma}n \log \log n \) hold. Further, we establish a new unconditional upper bound for the sum of divisors function. For this purpose, we use an approximation for Chebyshev’s \(\theta \)-function and for some product defined over prime numbers.

MSC:
11A25 Arithmetic functions; related numbers; inversion formulas
11N56 Rate of growth of arithmetic functions

Keywords:
Riemann hypothesis; Robin’s inequality; sum of divisor function

Full Text: DOI arXiv

References:
[1] Akbary, A.; Friggstad, Z.; Juricevic, R., Explicit upper bounds for \(\prod_{p \le \omega(n)} p/(p-1) \), Contrib. Discrete Math., 2, 2, 153-160 (2007)
[2] Alaoğlu, L.; Erdös, P., On highly composite and similar numbers, Trans. Am. Math. Soc., 56, 448-469 (1944)· doi:10.1090/S0002-9947-1944-0011087-2
[3] Axler, C., A new upper bound for the sum of divisors function, Bull. Aust. Math. Soc., 96, 3, 374-379 (2017)· doi:10.1017/S0004972717000624
[4] Axler, C., Effective estimates for some functions defined over primes, preprint (2022). arXiv:2203.05917
[5] Banks, WD; Hart, DN; Moree, P.; Nevans, CW; Wesley, C., The Nicolas and Robin inequalities with sums of two squares, Monatsh. Math., 157, 4, 303-322 (2009)· doi:10.1007/s00605-008-0022-x
[6] Briggs, K., Abundant numbers and the Riemann hypothesis, Exp. Math., 15, 2, 251-256 (2006)· doi:10.1080/10586458.2006.10128957
[7] Broadbent, S.; Kadiri, H.; Lumley, A.; Ng, N.; Wilk, K., Sharper bounds for the Chebyshev function \(\theta(x) \), Math. Comput., 90, 331, 2281-2315 (2021)· doi:10.1090/mcom/3643
[8] Broughan, K., Trudgian, T.: Robin’s inequality for 11-free integers. Integers 15, Paper No. A12 (2015)· Zbl 1316.11088
[9] Choie, Y-J; Lichiardopol, N.; Moree, P.; Solé, P., On Robin’s criterion for the Riemann hypothesis, J. Théor. Nombres Bordx, 19, 2, 357-372 (2007)· doi:10.5802/jtnb.591
[10] Gronwall, TH, Some asymptotic expressions in the theory of numbers, Trans. Am. Math. Soc., 14, 1, 113-122 (1913)· doi:10.1090/S0002-9947-1913-1500940-6
[11] Grytczuk, A., Upper bound for sum of divisors function and the Riemann hypothesis, Tsukuba J. Math., 31, 1, 67-75 (2007)· doi:10.21099/tkbjm/1496165115
[12] Grytczuk, A., Some remarks on Robin’s inequality, Bol. Soc. Mat. Mex., 16, 2, 95-101 (2010)· Zbl 1277.11086
[13] Hertlein, A., Robin’s inequality for new families of integers, Integers 18, Paper No. A71 (2018)
[14] Ivic, A., Two inequalities for the sum of divisors functions, Univ. u Novom Sadu Zb. Rad. Prirod.-Mat. Fak., 7, 17-22 (1977)
[15] Mertens, F., Ein Beitrag zur analytischen Zahlentheorie, J. Reine Angew. Math., 78, 42-62 (1874)
[16] Morrill, T., Platt, D.J.: Robin’s inequality for 20-free integers. Integers 21, Paper No. A28 (2021)
[17] Nicolas, J-L, The sum of divisors function and the Riemann hypothesis, Ramanujan J., 58, 1113-1157 (2022)· doi:10.1007/s11139-021-00491-y
[18] Ramanujan, S., Highly composite numbers, Ramanujan J., 1, 2, 119-153 (1997)· doi:10.1023/A:1009764017495
[19] Robin, G., Grandes valeurs de la fonction somme des diviseurs et hypothèse de Riemann, J. Math. Pures Appl., 63, 2, 187-213 (1984)· Zbl 0516.10036
[20] Rosser, JB; Schoenfeld, L., Approximate formulas for some primes of prime functions, Ill. J. Math., 6, 64-94 (1962)· Zbl 0122.05001
[21] Solé, P.; Planat, M., The Robin inequality for 7-free integers, Integers, 12, 301-309 (2012)· doi:10.1515/integ.2011.103

Edited by FIZ Karlsruhe, the European Mathematical Society and the Heidelberg Academy of Sciences and Humanities
© 2023 FIZ Karlsruhe GmbH
Walisch, K.: Primecount, https://github.com/kimwalisch/primecount. Accessed 1 June 2022

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.