Supplementary Information

The hydrothermal processing of iron oxides from bacterial biofilm waste as new nanomaterials for broad applications

Le Yua, Diana N.H. Tranab, Peter Forwardc, Martin F. Lambertd, and Dusan Losic*ab

a School of Chemical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia. E-mail: dusan.losic@adelaide.edu.au.
b ARC Graphene Enabled Industry Transformation Hub, The University of Adelaide, Adelaide, SA 5005, Australia.
c SA Water, South Australia, 5005, Australia.
d School of Civil, Environmental and Mining Engineering, The University of Adelaide, Adelaide, SA 5005, Australia. Email: martin.lambert@adelaide.edu.au.

Figure S1. XRD spectra of amorphous iron oxide1

![XRD spectra of amorphous iron oxide](image1)

Figure S2. (a) XRD and (b) FTIR spectra of crystalline iron oxide2,3

![XRD and FTIR spectra of crystalline iron oxide](image2)
References

1. L. Wang, T. Kumeria, A. Santos, P. Forward, M. F. Lambert and D. Losic, *ACS Appl. Mater. Interfaces*, 2016, 8, 20110-20119.
2. M. Sinha, S. Sahu, P. Meshram, L. Prasad, and B. Pandey, *Powder Technology*, 2015, 276, 217.
3. K. Supattarasakda, K. Petcharoen, T. Permpool, A. Sirivat and W. Lerdwijitjarud, *Powder Technology*, 2013, 249, 353-359.