Roles of galectins in inflammatory bowel disease

Akira Hokama, Emiko Mizoguchi, Atsushi Mizoguchi

INTRODUCTION

Inflammatory bowel disease (IBD), which is characterized by two forms of intestinal inflammation, Crohn’s disease (CD) and ulcerative colitis (UC), is a group of chronic, relapsing, and remitting inflammatory conditions that affect individuals throughout life [1]. Several factors such as immune imbalance, dysregulated host/microbial interaction, and genetic susceptibility are involved in the pathogenesis of IBD [2-4]. Experimental IBD models have provided a useful means to dissect the pathogenesis of this disease [5-7]. Among these models, chronic intestinal inflammation that spontaneously develops in T cell receptor α knockout (TCRα KO) mice shares several features with human UC, e.g. marked increase in autoantibodies such as antineutrophil cytoplasmic antigens and antitropomyosin, predominant Th2 responses and negative association of colitis development with prior appendectomy (resection of cecal patch) [8-12]. Importantly, B cells and autoantibodies in TCRα KO mice are involved in the regulation of this inflammation [13]. Therefore, a screening approach utilizing autoantibodies present in TCRα KO mice was proposed to have an ability to provide a useful tool in the identification of molecules, which may have a role in the pathogenesis of UC [14]. Indeed, the screening approach [serological analysis of recombinant cDNA expression libraries (SEREX) for the identification of candidate molecules that are recognized by autoantibodies from TCRα KO mice] has provided us an unexpected opportunity to identify galectin-4 as a potential stimulator of CD4+ T cells under intestinal inflammatory conditions [14,15]. Interestingly, galectin-4 was an unexpectedly discovered carbohydrate-binding protein through our screening approach, emphasizing its potential role in the pathogenesis of IBD.

Abstract

Protein/carbohydrate interactions through specific protein families termed lectin control essential biological processes. Galectins, a family of animal lectins defined by shared amino acid sequence with affinity for β-galactosides, appear to be functionally polyvalent in a wide range of biological activity. Recent studies have identified immunoregulatory roles of galectins in intestinal inflammatory disorders. Galectin-1 and galectin -2 contribute to the suppression of intestinal inflammation by the induction of apoptosis of activated T cells, whereas galectin-4 is involved in the exacerbation of this inflammation by specifically stimulating intestinal CD4+ T cells to produce IL-6. We review how different members of the galectins provide inhibitory or stimulatory signals to control intestinal immune response under intestinal inflammation.
the importance of carbohydrate/protein interactions in the pathogenesis of intestinal inflammation. Indeed, a recent study has demonstrated that an alteration of carbohydrate composition (carboxylated glycans) on macrophages and dendritic cells contributes to the early onset of intestinal inflammation[10]. Alternatively, carbohydrate/protein interactions also play a regulatory role in the intestinal inflammation as indicated by a suppressive effect of galectin-1 and galectin-2 on this inflammation[37-39]. We, herein, review recently identified novel roles of galectins in immune responses under intestinal inflammation.

GALECTINS

Several families of glycan-binding proteins or lectins, which include C-type lectins (such as selectin, DC-SIGN, dectin, and serum mannose binding protein)[30-32,36], S-type lectins (galectins)[24-28] and siglecs[39], have been implicated in a wide variety of immunological functions including first-line defense against pathogens, cell trafficking, cell differentiation and immune regulation. Galectins are a family of 15 members (galectin-1 to galectin-15) characterized by two properties: the ability to bind to lactosamine unit within glycans and the preserved carbohydrate recognition domains (CRD) composed of 130 amino acid residues. The 15 members of galectins are structurally classified into three groups; prototype, chimera-type, and tandem repeat type[30-32]. Prototype (galectins-1, -2, -5, -7, -10, -11, -13, -14, and -15) is non-covalent homodimers that are composed of two identical CRDs. Only galectin-3 is chimeric type that is composed of a CRD linked to a proline-, glycine-, and tyrosine-rich N-terminal domain. Tandem repeat type (galectins-4, -6, -8, -9, and -12) possesses two distinct CRDs. The ability of CRDs to cross-link the lactosamine unit within surface glycoreceptors allows galectins to actively participate in several immune responses. A large body of evidence indicates important roles of galectins in the development and progression of cancer[30-33]. Recently, compelling evidence has been accumulated regarding the immunoregulatory effects of galectins in inflammatory disorders[34-36]. We focus on four members of galectins (galectins-1, -2, -3 and -4), which have been studied regarding intestinal inflammation.

REGULATORY ROLE OF GALECTIN-2 IN INTESTINAL INFLAMMATION

Galectin-2 (prototype) is expressed by various cells including intestinal epithelial cells. Galectin-2, structurally related to galectin-1, has been demonstrated to be an inducer of apoptosis of activated T cells, although it lacks reactivity to CD7 characteristic for galectin-1[40]. A recent study has shown that galectin-2 is constitutively expressed mainly in the epithelial compartment of the mouse intestine and binds to lamina propria mononuclear cells[18]. In acute and chronic dextran sodium sulfate (DSS)-induced colitis, and in a Th1-driven model of antigen-specific transfer colitis, galectin-2 expression was reduced, but could be restored to normal levels by immunosuppressive treatment. Administration of human recombinant galectin-2 induced apoptosis of mucosal T cells and, thus, ameliorated. Furthermore, pro-inflammatory cytokine (IL-6, IL-12p70) release was inhibited by administration of galectin-2. Their study provides evidence that galectin-2, as well as galectin-1, induces apoptosis in vivo and ameliorates acute and chronic murine colitis.

ROLE OF GALECTIN-3 IN INTESTINAL INFLAMMATION

Galectin-3 (chimera type) is a multifunctional protein detected in the nucleus, cytoplasm and extracellular matrix of a wide variety of cells. Galectin-3 has the dual role of protecting T cells from apoptosis when present intracellularly while promoting apoptosis when acting on T cells from the extracellular space[30-32,36]. Regarding intestinal inflammation, a study showed that the titers of anti-galectin-3 autoantibodies were higher in CD patients with low activity index than with active disease[48]. The pathophysiological significance of the anti-galectin-3 autoantibody in Crohn’s disease still remains to be elucidated. The same research group
subsequently showed that expression of galectin-3 was reduced in the intestinal epithelium of CD patients and that colonic epithelial adenocarcinoma cell line HCT-8 cells reduced galectin-3 expression by incubation with TNF-α but not with other cytokines[49]. It was speculated that galectin-3 was consequently downregulated by enhanced TNF-α production in CD. Another research group confirmed the similar findings[49]. More recently, soluble galectin-3, which is secreted by colonic epithelial cells, was identified as an activator of lamina propria fibroblasts[50,51]. The study also indicated that galectin-3 induced NF-κB activation and IL-8 secretion in vitro. Its role in pathogenesis of intestinal inflammation, especially involvement in fibrosis formation of CD, has to be clarified in further studies. In a protein expression profile study of Enterococcus faecalis- monoassociated IL-10 KO mice under chronic intestinal inflammation and intestinal epithelial cell lines, galectin-3 expression was reduced in association with the activation of caspase 3, a major executive caspase of apoptosis[52]. Further studies are needed to address whether galectin-3 plays a pro-inflammatory role or an anti-inflammatory role in intestinal inflammation.

PATHOGENIC ROLE OF GALECTIN-4 IN INTESTINAL INFLAMMATION

Galectin-4 (tandem repeat type) is expressed only in the digestive tract[14,53-55] where epithelial cells are responsible for this production[14,55]. Galectin-4 can be secreted from both basolateral and apical sides of the intestinal epithelial cells through a nonclassical secretory pathway. In contrast to galectin-1[17], intestinal inflammatory conditions do not enhance the galectin-4 expression: there is no significant difference in the expression level of galectin-4 in the epithelial cells from control versus inflamed colons[14]. Interestingly, through a combined screening approach utilizing humoral (SEREX) and cellular immune responses, we have unexpectedly identified galectin-4 as a potential stimulator of CD4+ T cells to exacerbate intestinal inflammation[14]. Neutralization of galectin-4 activity in vivo by administration of the specific antibody suppresses the progression of chronic colitis that spontaneously develops in B cell-deficient TCRα double KO mice[14], whereas pretreatment with this antibody fails to abolish the development of colitis in these mice (A.M., unpublished observation). These data suggest that galectin-4 contributes to the exacerbation, rather than initiation, of chronic intestinal inflammation. Because it could be predicted that both acute (induction of inflammation) and healing (recovery from inflammation) processes are simultaneously involved in the chronic intestinal inflammation, galectin-4-mediated exacerbation of this inflammation may result from a suppression of the healing process. Indeed, treatment with recombinant galectin-4 delays the recovery from an acute intestinal inflammation that is induced by transient administration of DSS, whereas treatment with anti-galectin-4 antibody enhances the recovery from this acute inflammation. In contrast, galectin-1, as mentioned above, contributes to the suppression of acute intestinal inflammation[57].

Galectin-1 (prototype) is structurally characterized by homodimers with identical CRDs, and binds to a lactosamine unit within a mature core 2 O-glycan, whereas galectin-4 (tandem repeat type) consists of two distinct CRDs and possesses a unique carbohydrate-binding specificity as indicated by the capability of interacting with an immature core 1 O-glycan with 3'-O-sulfation[57]. Therefore, it is highly likely that the binding site (lactosamine unit versus core 1) and the structure (prototype versus tandem repeat type) are an important determinants of galectin-mediated immune function[30,31,32]. Galectin-4 specifically stimulates CD4+ T cells, but not other immune cells such as B cells or macrophages to produce IL-6[49], a well-known cytokine involved in the pathogenesis of not only intestinal inflammation, but also colon cancer[28-30]. Importantly, only CD4+ T cells that are present in the inflamed, but not non-inflamed, intestine can respond to galectin-4[54]. Splenic CD4+ T cells even from the diseased mice are unable to respond to galectin-4. These findings are consistent with the binding intensity of galectin-4 to the surface of CD4+ T cells; galectin-4 binding is significantly enhanced on the CD4+ T cells from the inflamed colon as compared to noninflamed colon and spleen. In addition, galectin-4 specifically binds to the lipid rafts on the CD4+ T cells to activate the protein kinase C θ-associated signaling cascade[14], a common and fundamental pathway in the different types of intestinal inflammation[60]. Notably, galectin-4 has been demonstrated to interact with lipid rafts of enterocytes as well, and subsequently stabilize the raft formation to generate “superrafts”[64]. A recent study has found that galectin-4 interacts with carcinoembryonic antigen of colon adenocarcinoma[65]. Alternatively, it remains obscure which glycosylated receptor(s) on intestinal CD4+ T cells to galectin-4 is specifically elicited under these conditions. Therefore, it is possible that a specific receptor that is selectively crosslinked by galectin-4 may be expressed on intestinal CD4+ T cells only under inflammatory conditions. However, galectin-4 can bind to the lipid rafts on both CD4+ T cells from inflamed and normal intestines although the binding intensity is much higher on diseased CD4+ T cells[14]. In addition, expression pattern of the enzymes that are involved in the glycan synthesis is altered by several inflammatory stimuli[57,34,35]. Therefore, it is more likely that an altered enzyme expression pattern by intestinal inflammatory stimuli results in the further exposure of core 1 O-glycan (a binding partner of galectin-4) on intestinal CD4+ T cells and consequently allows intensified binding of galectin-4 to them. Indeed, our recent studies have found that some glycosylation-associated enzymes, which are involved in the synthesis of core 2 from core 1, are significantly downregulated in the intestinal CD4+
T cells under inflammatory conditions as compared to a state of health (our unpublished observation). These findings provide an insight into an unexpected role of lectin/carbohydrate interaction in the pathogenesis of T cell-mediated chronic colitis.

CONCLUSION

Glycobiology has an exiting impact to molecular biology and clinical fields, given the multifunctional activities of galectins. In this review, we provide novel insights into the role of carbohydrates crosslinked by galectins in the immune responses involved in the pathogenesis of IBD. Different members of the galectin families provide inhibitory or stimulatory signals to control intestinal immune response under intestinal inflammatory conditions. A more thorough understanding of the molecular mechanisms involved in the immunoregulatory functions of galectins is needed before galectin-based therapeutic strategies for IBD can be realized.

REFERENCES

1. Podolsky DK. Inflammatory bowel disease. N Engl J Med 2002; 347: 417-429
2. Strober W, Fuss IJ, Blumberg RS. The immunology of mucosal models of inflammation. Annu Rev Immunol 2002; 20: 495-549
3. Mizoguchi A, Mizoguchi E, Bhan AK. Immune networks in animal models of inflammatory bowel disease. Inflamm Bowel Dis 2003; 9: 246-259
4. Mizoguchi A, Mizoguchi E. Inflammatory bowel disease, past, present and future: lessons from animal models. J Gastroenterol 2008; 43: 1-17
5. Mizoguchi A, Mizoguchi E, Chiba C, Spiekermann GM, Tonegawa S, Nagler-Anderson C, Bhan AK. Cytokine imbalance and autoantibody production in T cell receptor-alpha mutant mice with inflammatory bowel disease. J Exp Med 1996; 183: 847-856
6. Mizoguchi A, Mizoguchi E, Chiba C, Bhan AK. Role of appendix in the development of inflammatory bowel disease in TCR-alpha mutant mice. J Exp Med 1996; 184: 707-715
7. Sugimoto K, Ogawa A, Mizoguchi E, Shimomura Y, Andoh A, Bhan AK, Blumberg RS, Xavier RJ, Mizoguchi A. IL-22 ameliorates intestinal inflammation in a mouse model of ulcerative colitis. J Clin Invest 2008; 118: 534-544
8. Mizoguchi A, Mizoguchi E, Smith RN, Preffer FL, Bhan AK. Suppressive role of B cells in chronic colitis of T cell receptor-alpha mutant mice. J Exp Med 1997; 186: 1749-1756
9. Mizoguchi A, Mizoguchi E, Takedatsu H, Blumberg RS, Bhan AK. Chronic intestinal inflammatory condition generates IL-10-producing regulatory B cell subset characterized by CD1d upregulation. Immunity 2002; 16: 219-230
10. Mizoguchi A, Bhan AK. A case for regulatory B cells. J Immunol 2006; 176: 705-710
11. Sugimoto K, Ogawa A, Shimomura Y, Nagahama K, Mizoguchi A, Bhan AK. Inducible IL-12-producing B cells regulate Th2-mediated intestinal inflammation. Gastroenterology 2007; 133: 124-136
12. Shimomura Y, Mizoguchi E, Sugimoto K, Kibe R, Benno Y, Mizoguchi A, Bhan AK. Regulatory role of B-1 B cells in chronic colitis. Int Immunol 2008; 20: 729-737
13. Targan SR. The search for pathogenic antigens in ulcerative colitis. Gastroenterology 1998; 114: 1099-1100
14. Hokama A, Mizoguchi E, Sugimoto K, Shimomura Y, Tanaka Y, Yoshida M, Rietdijk ST, de Jong YP, Snapper SB, Terhorst C, Blumberg RS, Mizoguchi A. Induced reactivity of intestinal CD4(+) T cells with an epithelial cell lectin, galectin-4, contributes to exacerbation of intestinal inflammation. Immunity 2004; 20: 681-693
15. Mizoguchi E, Mizoguchi A. Is the sugar always sweet in intestinal inflammation? Immuno Res 2007; 37: 47-60
16. Srirukshana G, Turovskaia O, Shaik R, Newlin R, Foell D, Murch S, Kronenberg M, Freeze HH. Carboxylated glycans mediate colitis through activation of NF-kappa B. J Immunol 2005; 175: 5412-5422
17. Santucci L, Fiorucci S, Rubinstein N, Mencarelli A, Palazzetti B, Federici B, Rabinovich GA, Morelli A. Galectin-1 suppresses experimental colitis in mice. Gastroenterology 2003; 124: 1381-1394
18. Pacific D, Berndt U, Guzy C, Dankof A, Danese S, Holzloehner P, Rosewicz S, Wiedenmann B, Wittig BM, Dignass AU, Sturm A. Galectin-2 induces apoptosis of lamina propria T lymphocytes and ameliorates acute and chronic experimental colitis in mice. J Mol Med 2008; 86: 1395-1406
19. Uchimura K, Rosen SD. Sulfated L-selectin ligands as a therapeutic target in chronic inflammation. Trends Immunol 2006; 27: 559-565
20. Gringhuis SI, den Dunnen J, Lijtens M, van Het Hof B, van Kooiy Y, Geijtenbeek TB. C-type lectin DC-SIGN modulates Toll-like receptor signaling via Raf-1 kinase-dependent acetylation of transcription factor NF-kappa B. Immunity 2007; 26: 605-616
21. Cunningham AL, Harman AN, Donaghy H. DC-SIGN ‘AIDS’ HIV immune evasion and infection. Nat Immunol 2007; 8: 556-558
22. Hodges A, Sharrocks K, Edelman M, Baban D, Moris A, Schwartz O, Drakesmith H, Davies K, Kessler B, McMichael A, Simmons A. Activation of the lectin DC-SIGN induces an immature dendritic cell phenotype triggering Rho-GTPase activity required for HIV-1 replication. Nat Immunol 2007; 8: 569-577
23. van Vliet SJ, Gringhuis SI, Geijtenbeek TB, van Kooiy Y. Regulation of effector T cells by antigen-presenting cells via interaction of the C-type lectin MGL with CD45. Nat Immunol 2006; 7: 1201-1208
24. Perillo NL, Pace KE, Seilhamer JJ, Baum LG. Apoptosis of T cells mediated by galectin-1. Nature 1995; 378: 736-739
25. Demetriou M, Granovsky M, Quaggin S, Dennis JW. Negative regulation of T-cell activation and autoimmunity: implications for the role of Maptin. Nature 2001; 409: 733-739
26. Zhu C, Anderson AC, Schubart A, Xiong H, Limotla J, Khoury J, Zheng XX, Strom TB, Kuchroo VK. The Tim-3 ligand galectin-9 negatively regulates T helper type 1 immunity. Nat Immunol 2005; 6: 1245-1252
27. Toscano MA, Bianco GA, Irazoqui JM, Croci DO, Correale J, Hernandez JD, Zvirner NW, Poirier F, Riley EM, Baum LG, Rabinovich GA. Differential glycosylation of TH1, TH2 and TH17 effector cells selectively regulates susceptibility to cell death. Nat Immunol 2007; 8: 825-834
28. van Kooiy Y, Rabinovich GA. Protein-glycan interactions in the control of innate and adaptive immune responses. Nat Immunol 2008; 9: 593-601
29. Crocker PR, Paulson JC, Varki A. Siglecs and their roles in the immune system. Nat Rev Immunol 2005; 5: 29-41
30. Rabinovich GA, Liu FT. Galectins as modulators of tumour progression. Nat Rev Cancer 2005; 5: 29-41
31. Rabinovich GA, Liu FT, Hirashima M, Anderson A. An emerging role for galectins in tuning the immune response: lessons from experimental models of inflammatory disease, autoimmunity and cancer. Scand J Immunol 2007; 66: 143-158
32. Elola MT, Wolfenstein-Todel C, Troncoso MF, Vasta GR, Rabinovich GA. Galectins: macromolecular glycans linking cell adhesion, migration, and survival. Cell Mol Life Sci 2007; 64: 1679-1700
33. Demetter P, Nagy N, Martin B, Mathieu A, Dumont P, Decaestecker C, Salmon I. The galectin family and digestive
Galectin-1: a galectin-3 is downregulated in the intestinal epithelia of patients with Crohn's disease and tumour necrosis factor alpha decreases the level of galectin-3-specific mRNA in HCT-8 cells. \textit{Eur J Gastroenterol Hepatol} 2002; \textbf{14}: 145-152

\textbf{Lowe JB}. Glycosylation, immunity, and autoimmunity. \textit{Cell} 2001; \textbf{104}: 809-812

\textbf{Baum LG}. Developing a taste for sweets. \textit{Immunity} 2002; \textbf{16}: 5-8

\textbf{Toscano MA}, Ilarregui JM, Bianco GA, Campagna L, Croti DO, Salatino M, Rabinovich GA. Dissecting the pathophysiologic role of endogenous lectins: glycan-binding proteins with cytokine-like activity? \textit{Cytokine Growth Factor Rev} 2007; \textbf{18}: 57-71

\textbf{Camby I}, Le Mercier M, Lefranc F, Kiss R. Galectin-1: a small protein with major functions. \textit{Glycobiology} 2006; \textbf{16}: 1378-1578

\textbf{Pace KE}, Hahn HP, Pang M, Nguyen JT, Baum LG. CD7 delivers a pro-apoptotic signal during galectin-1-induced T cell death. \textit{J Immunol} 2000; \textbf{165}: 2331-2334

\textbf{Nguyen JT}, Evans DP, Galvan M, Pace KE, Leitenberg D, Bui TN, Baum LG. CD45 modulates galectin-1-induced T cell death: regulation by expression of core 2 O-glycans. \textit{J Immunol} 2001; \textbf{167}: 5097-5707

\textbf{Stillman BN}, Hsu DK, Pang M, Brewer CF, Johnson P, Liu FT, Baum LG. Galectin-3 and galectin-1 bind distinct cell surface glycoprotein receptors to induce T cell death. \textit{J Immunol} 2006; \textbf{176}: 778-789

\textbf{Offner H}, Celnik B, Bringman TS, Casentini-Borocz D, Nedwin GE, Vandenbark AA. Reombinant human beta-galactoside binding lectin suppresses clinical and histological signs of experimental autoimmune encephalomyelitis. \textit{J Neuroimmunol} 1990; \textbf{28}: 177-184

\textbf{Rabinovich GA}, Daly G, Dreja H, Tailor H, Riera CM, Hirabayashi J, Chernajovsky Y. Reombinant galectin-1 and its genetic delivery suppress collagen-induced arthritis via T cell apoptosis. \textit{J Exp Med} 1999; \textbf{190}: 385-398

\textbf{Toscano MA}, Commodaro AG, Ilarregui JM, Bianco GA, Liberman A, Serra HM, Hirabayashi J, Rizzo LV, Rabinovich GA. Galectin-1 suppresses autoimmune retinal disease by promoting concomitant Th2- and T regulatory-mediated anti-inflammatory responses. \textit{J Immunol} 2006; \textbf{176}: 6323-6332

\textbf{Santucci L}, Fiorucci S, Cammilleri F, Servillo G, Federici B, Morelli A. Galectin-1 exerts immunomodulatory and protective effects on concanavalin A-induced hepatitis in mice. \textit{Hepatology} 2000; \textbf{31}: 399-406

\textbf{Perone MJ}, Bertera S, Tawadrous ZS, Shufesky WJ, Piganelli JD, Baum LG, Trucco M, Morelli AE. Galectin-1 homodimers. \textit{Mol Immunol} 2007; \textbf{44}: 506-513

\textbf{Sturm A}, Lensch M, Andre S, Kaltner H, Wiedenmann B, Rosewicz S, Dignass AU, Gabius HJ. Human galectin-2: novel inducer of T cell apoptosis with distinct profile of caspase activation. \textit{Immunol} 2004; \textbf{173}: 3825-3837

\textbf{Jensen-Jarolim E}, Neumann C, Oberhuber G, Schiedlinder R, Neuchrist C, Reinsch W, Zuberi RI, Penner E, Liu FT, Boltz-Niitulescu G. Anti-Galectin-3 IgG autoantibodies in patients with Crohn’s disease characterized by means of phage display peptide libraries. \textit{J Clin Immunol} 2001; \textbf{21}: 348-356

\textbf{Jensen-Jarolim E}, Schiedlinder R, Oberhuber G, Neuchrist C, Lucas T, Bises G, Radauer C, Willheim M, Scheiner O, Liu FT, Boltz-Niitulescu G. The constitutive expression of galectin-3 is downregulated in the intestinal epithelia of Crohn’s disease patients, and tumour necrosis factor alpha decreases the level of galectin-3-specific mRNA in HCT-8 cells. \textit{Eur J Gastroenterol Hepatol} 2002; \textbf{14}: 145-152

\textbf{Smul L}, Schaffer T, Flogerzi B, Fleetwood A, Weimann R, Schoepfer AM, Seibold F. Galectin-3 modulates T cell activity and is reduced in the inflamed intestinal epithelium in IBD. \textit{Inflamm Bowel Dis} 2006; \textbf{12}: 588-597

\textbf{Lippert E}, Falk W, Bataille F, Kaehne T, Naumann M, Goede M, Herfarth H, Schoelmerich J, Rogler G. Soluble galectin-3 is a strong, colonic epithelial-cell-derived, lamina propria fibroblast-stimulating factor. \textit{Gut} 2007; \textbf{56}: 43-51

\textbf{Lippert E}, Gunckel M, Bremboehl J, Bataille F, Falk W, Scholmerich J, Obermeier F, Rogler G. Regulation of galectin-3 function in mucosal fibroblasts: potential role in mucosal inflammation. \textit{Clin Exp Immunol} 2008; \textbf{152}: 285-297

\textbf{Werner T}, Shkoda A, Haller D. Intestinal epithelial cell proteome in IL-10 deficient mice and IL-10 receptor reconstituted epithelial cells: impact on chronic inflammation. \textit{J Proteome Res} 2007; \textbf{6}: 3691-3702

\textbf{Rechere H}, Mallo GV, Montalto G, Dagnor JC, Ivanna JL. Cloning and expression of the mRNA of human galectin-4, an S-type lectin down-regulated in colorectal cancer. \textit{Eur J Biochem} 1997; \textbf{248}: 225-230

\textbf{Gitt MA}, Colnot C, Poirier F, Nani KJ, Baronesh SH, Leffler H. Galectin-4 and galectin-6 are two closely related lectins expressed in mouse gastrointestinal tract. \textit{J Biol Chem} 1998; \textbf{273}: 2954-2960

\textbf{Huflejt ME}, Leffler H. Galectin-4 in normal tissues and cancer. \textit{Glycocom} 2004; \textbf{20}: 247-255

\textbf{Ideo H}, Seko A, Ohkura T, Matta KL, Yamashita K. High-affinity binding of recombinant human galectin-4 to SO(3)(-) -->3Galbeta1-->3GalNAc pyranoside. \textit{Glycobiology} 2002; \textbf{12}: 199-208

\textbf{Atreya R}, Muder J, Finotto S, Mullberg JL, Jostock T, Wirtz S, Schutz M, Bartsch B, Holtmann M, Becker C, Strand D, Craja J, Schlaak JF, Lehr HA, Autschbach F, Schurmann G, Nishimoto N, Yoshizaki K, Ito H, Kishimoto T, Galle PR, Rose-John S, Neurath MF. Blockade of interleukin 6 trans signaling suppresses T-cell resistance against apoptosis in chronic intestinal inflammation: evidence in crohn disease and experimental colitis in vivo. \textit{Nat Med} 2000; \textbf{6}: 583-588

\textbf{Becker C}, Fantini MC, Schramm C, Lehr HA, Wirtz S, Nikolaev A, Burg J, Strand S, Kiesslich R, Huber S, Ito H, Nishimoto N, Yoshizaki K, Kishimoto T, Galle PR, Blessing M, Rose-John S, Neurath MF. \textit{J. Immunol} 2004; \textbf{21}: 491-501

\textbf{Muder J}, Neurath MF. IL-6 signaling in inflammatory bowel disease: pathophysiologic role and clinical relevance. \textit{Inflamm Bowel Dis} 2007; \textbf{13}: 1016-1023

\textbf{Nagahama K}, Ogawa A, Shirane K, Shimomura Y, Sugimoto K, Mizoguchi A. Protein kinase C theta plays a fundamental role in different types of chronic colitis. \textit{Gastroenterology} 2008; \textbf{134}: 459-469

\textbf{Braccia A}, Villani M, Immundel L, Niels-Christiansen LL, Nystrom BT, Hansen GH, Danielsen EM. \textit{J. Immunol} 2007; \textbf{178}: 15679-15684

\textbf{Ideo H}, Seko A, Yamashita K. Galectin-4 binds to sulfated glycosphingolipids and carciinoembryonic antigen in patches on the cell surface of human colon adenocarcinoma cells. \textit{J Biol Chem} 2005; \textbf{280}: 4730-4737

S-Editor Zhong XY E-Editor Zhang WB

www.wjgnet.com