Serum Albumin as a Biomarker of Pulmonary Sarcoidosis Chronicity

Safayeth Jabeen Isma, Hesham R. Omar, Nadera Sweiss, Mehdi Mirsaeidi

INTRODUCTION

Sarcoidosis usually presents in adults younger than 40 years, most frequently between 25 and 40 years of age [1-5]. In the United States, chronic disease with the insidious onset of pulmonary symptoms is the most common mode of presentation, especially in African Americans. In contrast, Caucasians are usually affected by an acute, self-limited disease [4]. Among the factors regulating the clinical presentation of sarcoidosis is the duration of illness [1,6]. For example, patients with chronic sarcoidosis (10%–30% of cases) are at a high risk of extensive, irreversible pulmonary fibrosis [7]. It is important, therefore, to have a robust biomarker that indicates the length of time that a patient has suffered from pulmonary sarcoidosis. Therefore, we aimed to study various biomarkers that may provide information on the duration of disease, including patient demographics, clinical characteristics, pulmonary function tests (PFT) echocardiographic findings, and serum inflammatory markers.

MATERIAL AND METHODS

This is an observational study of consecutive adult subjects >18 years, who were seen with sarcoidosis at the University of Illinois at Chicago between January 2010 and January 2015. The diagnosis of sarcoidosis was made according to the European Respiratory Society (ERS) American Thoracic Society (ATS) and World Association of Sarcoidosis and other granulomatous disorders (WASOG) criteria [1]. Sarcoidosis was defined by these societies as a multisystem disorder of unknown cause that commonly affects young and middle-aged adults who present with characteristic clinico-radiographic findings supported by the presence of noncaseating epithelioid cell granulomas after the exclusion of granulomas of unknown causes and local sarcoid reaction. The Institutional Review Board of the University of Illinois at Chicago approved

CONCLUSION: The serum albumin level may be a biomarker of pulmonary sarcoidosis duration and chronicity of disease. Further investigations are required to confirm its predictive ability.

KEYWORDS: Hypoalbuminemia, pulmonary sarcoidosis, serum albumin

Received: 07.06.2018
Accepted: 06.11.2018
Available Online Date: 19.08.2019

INTRODUCTION

Sarcoidosis usually presents in adults younger than 40 years, most frequently between 25 and 40 years of age [1-5]. In the United States, chronic disease with the insidious onset of pulmonary symptoms is the most common mode of presentation, especially in African Americans. In contrast, Caucasians are usually affected by an acute, self-limited disease [4]. Among the factors regulating the clinical presentation of sarcoidosis is the duration of illness [1,6]. For example, patients with chronic sarcoidosis (10%–30% of cases) are at a high risk of extensive, irreversible pulmonary fibrosis [7]. It is important, therefore, to have a robust biomarker that indicates the length of time that a patient has suffered from pulmonary sarcoidosis. Therefore, we aimed to study various biomarkers that may provide information on the duration of disease, including patient demographics, clinical characteristics, pulmonary function tests (PFT) echocardiographic findings, and serum inflammatory markers.

MATERIAL AND METHODS

This is an observational study of consecutive adult subjects >18 years, who were seen with sarcoidosis at the University of Illinois at Chicago between January 2010 and January 2015. The diagnosis of sarcoidosis was made according to the European Respiratory Society (ERS) American Thoracic Society (ATS) and World Association of Sarcoidosis and other granulomatous disorders (WASOG) criteria [1]. Sarcoidosis was defined by these societies as a multisystem disorder of unknown cause that commonly affects young and middle-aged adults who present with characteristic clinico-radiographic findings supported by the presence of noncaseating epithelioid cell granulomas after the exclusion of granulomas of unknown causes and local sarcoid reaction. The Institutional Review Board of the University of Illinois at Chicago approved
the study and waived the need for patient consent (approval number of 20130195001). The aim of the study is to identify correlates of sarcoidosis duration in a cohort of patients with known pulmonary sarcoidosis. Sarcoidosis duration was measured in years from the onset of initial diagnosis until enrolling in this study. Inflammatory markers examined were the erythrocyte sedimentation rate (ESR), C-reactive protein (CRP), albumin, ferritin, 25-hydroxy vitamin D, and angiotensin-converting-enzyme (ACE) level.

Statistical Analysis
Continuous variables are expressed as the mean ± standard deviation and compared using the T-test, and categorical variables are described as counts and percentages and compared using the chi-squared test. The relationship between sarcoidosis duration and continuous parameters were analyzed by Spearman’s correlation coefficients because of skewed distribution. To identify independent correlates of sarcoidosis duration, all variables with a p-value <0.05 in univariate analysis were submitted to a stepwise multiple regression analysis. A multivariable model was considered relevant if the variables entered in the model were significant (p<0.05) and had a tolerance measure (equal to the inverse of the variance inflation factor) >0.7. A receiver operating characteristics (ROC) analysis was implemented to detect the ideal cut-off value of serum albumin that yields the highest sensitivity and specificity for predicting a sarcoidosis dura-

Table 1. Baseline demographics, clinical, and laboratory characteristics among 108 sarcoidosis cases

Baseline demographics and comorbidities	
Age (mean ± SD)	53.4±9.4
Female sex % (n)	76.9% (83)
BMI (mean ± SD)	31.9±8
Duration of sarcoidosis (y, mean ± SD)	12.2±9.1
African American % (n)	70.4% (76)
Diabetes % (n)	31.1% (33)
CKD % (n)	3.7% (4)
PCI or CABG % (n)	1.9% (2)
Atrial fibrillation % (n)	5.6% (6)
CHF % (n)	6.6% (7)
Pulmonary hypertension % (n)	26.2% (28)
Asthma % (n)	26.2% (28)
OSA % (n)	24.3% (28)
Dyspnea % (n)	52.9% (54)

Pulmonary function tests and echocardiography	
FVC % (mean ± SD)	93.2±20.9
FEV₁ % (mean ± SD)	88±24.9
TLC % (mean ± SD)	89.1±15.6
RV % (mean ± SD)	99.4±26.7
DLCO % (mean ± SD)	67±20.3
LVEF (mean ± SD)	57.8±4.8

Inflammatory markers	
CRP (mg/L, mean ± SD)	2.5±4.2
ESR (mm/hr., mean ± SD)	35.2±33.4
Albumin (g/dL, mean ± SD)	3.6±0.58
Ferritin (ng/mL, mean ± SD)	161.4±602
ACE level (U/L, mean ± SD)	63.2±49.5
25-OH vitamin D (ng/mL, mean ± SD)	16.1±8.5

Treatment	
Oral steroid % (n)	83.5% (86)
DMARD % (n)	43.9% (47)
Methotrexate % (n)	29.6% (32)
Azathioprine % (n)	4.7% (5)
Lasix % (n)	17.6% (19)
Warfarin % (n)	2.8% (3)
ACE or ARB % (n)	46.7% (50)

BMI: body mass index; CKD: chronic kidney disease; PCI: percutaneous coronary intervention; CABG: coronary artery bypass graft; OSA: obstructive sleep apnea; FVC: Forced Vital Capacity; FEV₁: Forced Expiratory Volume in first second; TLC: Total Lung Capacity; RV: Residual Volume; DLCO: Diffusion Capacity of lung for Carbon Monoxide; LVEF: left ventricular ejection fraction; CRP: C-reactive protein; ESR: erythrocyte sedimentation rate; DMARD: disease modifying anti-rheumatic drug; ACE: angiotensin-converting enzyme; y: year; m: mean; SD: standard deviation

Table 2. Clinical, laboratory, and echocardiographic correlates of sarcoidosis duration

Variable	Sarcoidosis duration (years)	p
Age	r=0.492	0.0001
BMI	r=−0.068	0.495
DLCO%	r=-0.334	0.002
FVC%	r=−0.249	0.021
FVC% / DLCO%	r=0.161	0.143
6MWD test	r=0.074	0.613
SO₂ in room air	r=−0.064	0.563

Laboratory correlates of sarcoidosis duration		
ESR	r=0.375	p=0.001
CRP	r=0.184	p=0.101
Albumin	r=−0.414	p=0.0001
Ferritin	r=0.014	p=0.907
ACE	r=−0.118	p=0.342
25-OH vitamin D	r=−0.15	p=0.170
NLR	r=0.048	p=0.639
BNP	r=0.306	p=0.1
Calcium	r=−0.116	p=0.257

Echocardiographic correlates of sarcoidosis duration		
sPAP	r=0.468	p=0.003
LVEF	r=0.027	p=0.783

BMI: body mass index; DLCO: diffusion capacity; FVC: forced vital capacity; 6MWD: 6-minute walk distance; SO₂: oxygen saturation in room air; ESR: erythrocyte sedimentation rate; CRP: C-reactive protein; ACE: angiotensin-converting-enzyme level; NLR: neutrophil-to-lymphocyte ratio; BNP: brain natriuretic peptide; sPAP: pulmonary artery systolic pressure
tion of >10 years. A p-value <0.05 is considered statistically significant. Data were analyzed using the Statistical Package for the Social Sciences 21.0 statistical software (SPSS IBM Corp.; Armonk, NY, USA).

RESULTS

A total of 108 subjects with confirmed pulmonary sarcoidosis were included. The mean age of the study population was 53.4±9.4 years, 76.9% were females, and 70% had African descent. The average duration of sarcoidosis was 12 years. The baseline demographics, clinical variables, inflammatory marker values, pulmonary function tests, echocardiographic data, and treatment are summarized in Table 1. Clinical, laboratory and echocardiographic correlates of sarcoidosis duration are summarized in Table 2.

The univariate analysis demonstrated a significant moderate inverse correlation between the duration of sarcoidosis and

![Figure 1. a-f. The axial (a) and coronal (b) show the relationship between the duration of sarcoidosis and different clinical biomarkers. The duration of sarcoidosis was correlated with serum (a) erythrocyte sedimentation rate, (b) serum C-reactive protein, (c) serum albumin, (d) patients’ age at diagnosis, (e) diffusion capacity (DLCO%), and (f) pulmonary artery systolic pressure, sPAP; R-values and p-values are shown in each panel](image)

![Figure 2. a, b. (a) Showing receiver operating characteristic (ROC) curve for prediction of sarcoidosis duration >10 years, according to the albumin level, (b) showing ROC curve for prediction of sarcoidosis duration >10 years, according to patients age](image)
serum albumin levels ($r=−0.414, p=0.0001$) (Figure 1a), a significant moderate positive correlation between sarcoidosis duration and ESR ($r= 0.375, p=0.001$) (Figure 1b), but there was no association between sarcoidosis duration and serum CRP levels ($r=0.184, p=0.101$) (Figure 1c).

Diffusion Capacity of lung for Carbon Monoxide (DLCO) % had a significant moderate inverse correlation with pulmonary sarcoidosis duration ($r=−0.334, p=0.002$) (Figure 1d), while older patients with sarcoidosis had a longer disease duration ($r=0.492, p=0.0001$) (Figure 1e). In addition, a higher pulmonary artery systolic pressure (sPAP) measured by transthoracic echocardiography, was associated with longer pulmonary sarcoidosis duration ($r=0.468, p=0.003$) (Figure 1f).

Multivariate analysis revealed that the significant independent correlates of sarcoidosis duration were the serum albumin level ($\beta=−5.242, 95\% \text{ confidence interval } [CI] −8.372 \text{ to } −2.112, p=0.001$) and the patients’ age ($\beta= 0.367, 95\% \text{ CI } 0.164 \text{ to } 0.570, p=0.001$). There was a reasonable correlation ($R^2=0.377$) for the multivariate model.

A ROC curve analysis for the prediction of sarcoidosis duration >10 years was performed. Serum albumin levels gave an area under curve (AUC) of $0.722 (95\% \text{ CI } 0.620–0.824, p<0.0001)$ and an albumin $<2.4 \text{ gm/dL}$ yielded a 90.5% sensitivity and 98.2% specificity for predicting a sarcoidosis duration >10 years (Figure 2a). Regarding patients’ age, the AUC was $0.665 (95\% \text{ CI } 0.561–0.768, p<0.004)$ (Figure 2b). A patients’ age of 51.5 years would have a sensitivity of 70.2% and a specificity of 50% for predicting a sarcoidosis duration >10 years.

DISCUSSION

We have shown in this retrospective analysis that hypoalbuminemia is a main determinant of sarcoidosis duration. Albumin is an acute phase reactant and usually decreased in the setting of inflammation [8,9]. Hypoalbuminemia is observed in acute as well as chronic inflammatory states, such as pulmonary sarcoidosis, and it represents increased albumin degradation due to a high catabolic rate in combination with its transudation into the extravascular space resulting from increased capillary permeability [10,11]. A reduction in the serum albumin level with increasing duration of sarcoidosis may be explained by a higher degree of systemic inflammation in patients with a longer duration of disease [11]. A β value of $−5.242$ for albumin means that for each gram, a reduction in the albumin level would be associated with an increase of 5.242 years in sarcoidosis duration. Because sarcoidosis duration is an important determinant of the clinical presentation and complications in pulmonary sarcoidosis patients, we propose that serum albumin measurement could be a simple predictor for the disease duration.

Patients’ age is a second determinant of sarcoidosis duration with a β of 0.367, and therefore each 10-year increase in patients’ age will be associated with a 3.67-year increase in sarcoidosis duration. Age as a predictor of sarcoidosis duration can be explained by the early onset of disease where 70% of the cases are diagnosed at between 25 and 40 years of age [12], and only 30% are over 50 years of age at onset [6]. When including the 81 females in our cohort, patients’ age still predicted a duration of sarcoidosis >10 years (AUC 0.630, 95% CI 0.509–0.751, $p=0.044$), but when including only the 24 males, patients’ age was not associated with a sarcoidosis duration >10 years (AUC 0.714, 95% CI 0.454–0.975, $p=0.105$). One of the probable reasons might be that the number of female patients is significantly higher in our cohort: 4 times the number of males. Thus, older patients are more likely to have a longer duration of the disease. Sarcoidosis is a heterogeneous disease with an extreme diversity of clinical presentations, which in addition to the lack of specific diagnostic tests, makes its diagnosis challenging. A Case Control Etiologic Study of Sarcoidosis (The ACCESS Study), a multicenter study from 10 centers in the United States, showed that there was a delay in making the diagnosis of sarcoidosis, even if patients presented with pulmonary symptoms [6]. This delay in diagnosis highlights the importance of finding biomarkers of sarcoidosis duration that will indicate disease onset rather than the confirmed pathological diagnosis.

The limitations of the study are mainly those related to non-randomized studies. It is a single center, retrospective study with a relatively small cohort. We have used the age of confirmed pathological diagnosis of the disease, which is unlikely to be the time of disease onset. In addition, we have not adjusted for confounding factors that may affect ESR and CRP. For example, it is known that sarcoidosis patients with active disease have very high levels of ESR and CRP [13]. These inflammatory markers are also significantly elevated in sarcoidosis-associated arthritis [14], concomitant connective tissue disease, or simultaneous acute infections. Albumin is a negative acute phase protein whose expression is likely to be modulated by other inflammatory processes and to a lesser extent by the patients' nutritional status. Hepatic function or hepatic involvement of the disease can also influence the serum albumin level. We could not discuss the hepatic function or organ involvement pattern due to unavailability of data. Further studies are required, including those of patient’s liver function.

In conclusion, we show that the serum albumin level is a biomarker of sarcoidosis duration that suggests that following up of its level may predict the real duration of disease. Larger longitudinal follow-up studies are required to confirm these results and to further assess the value of determining sarcoidosis duration and how it affects the clinical course, prognosis, and treatment.

Ethics Committee Approval: Ethics committee approval was received for this study from the ethics committee of University of Illinois at Chicago (protocol no: approval number of 20130195001; date: 2013)

Informed Consent: Written informed consent was obtained from patients who participated in this study.

Peer-review: Externally peer-reviewed.

Author Contributions: Concept – S.J.I., H.R.O., M.M.; Design – M.M., H.R.D., S.J.I.; Supervision – M.M., S.J.I., N.S., H.R.O.; Data Col-
Conflict of Interest: The authors have no conflicts of interest to declare.

Financial Disclosure: The authors declared that this study has received no financial support.

REFERENCES

1. Statement on sarcoidosis. Joint Statement of the American Thoracic Society (ATS), the European Respiratory Society (ERS) and the World Association of Sarcoidosis and Other Granulomatous Disorders (WASOG) adopted by the ATS Board of Directors and by the ERS Executive Committee, February 1999. Am J Respir Crit Care Med 1999;160:736-55.

2. Costabel U. Sarcoidosis: clinical update. Eur Respir J Suppl 2001;32:56s-68s.

3. Wu JJ, Schiff KR. Sarcoidosis. Am Fam Physician 2004;70:312-22.

4. Newman LS, Rose CS, Maier LA. Sarcoidosis. N England J Med 1997;336:1224-34. [CrossRef]

5. Rybicki BA, Major M, Popovich Jr J, et al. Racial differences in sarcoidosis incidence: a 5-year study in a health maintenance organization. Am J Epidemiol 1997;145:234-41. [CrossRef]

6. Baughman RP Teirstein AS, Judson MA, et al. Clinical characteristics of patients in a case control study of sarcoidosis. Am J Respir Crit Care Med 2001;164:1885-9. [CrossRef]

7. Culver DA, Thomassen M, Kavuru MS. Pulmonary sarcoidosis: new genetic clues and ongoing treatment controversies. Cleve Clin J Med 2004;71:88. [CrossRef]

8. Ishida S, Hashimoto I, Seike T, et al. Serum albumin levels correlate with inflammation rather than nutrition supply in burns patients: a retrospective study. J Med Invest 2014;61:361-8. [CrossRef]

9. Franch-Arcas G. The meaning of hypoalbuminaemia in clinical practice. Clin Nutr 2001;20:265-9. [CrossRef]

10. Lyons O, Whelan B, Bennett K, et al. Serum albumin as an outcome predictor in hospital emergency medical admissions. Eur J Intern Med 2010;21:17-20. [CrossRef]

11. Mirsaiedi M, Omar HR, Sweiss N. Hypoalbuminemia is related to inflammation rather than malnutrition in sarcoidosis. Eur J Intern Med 2018;53:e14-e6. [CrossRef]

12. Neville E, Walker A, James DG. Prognostic factors predicting the outcome of sarcoidosis: an analysis of 818 patients. Q J Med 1983;52:525-33.

13. Rothkrantz-Kos S1, van Dieijen-Visser MP, Mulder PG, et al. Potential usefulness of inflammatory markers to monitor respiratory functional impairment in sarcoidosis. Clin Chem 2003;49:1510-7. [CrossRef]

14. Shorr AF, Murphy FT, Gilliland WR, et al. Osseous disease in patients with pulmonary sarcoidosis and musculoskeletal symptoms. Respir Med 2000;94:228-32. [CrossRef]