Algorithms for the rainbow vertex coloring problem on graph classes

Paloma T. Lima1, Erik Jan van Leeuwen2, and Marieke van der Wegen2,3

1Department of Informatics, University of Bergen, Norway
2Department of Information and Computing Sciences, Utrecht University, The Netherlands
3Mathematical Institute, Utrecht University, The Netherlands

\texttt{paloma.lima@uib.no, \{e.j.vanleeuwen,m.vanderwegen\}@uu.nl}

Abstract

Given a vertex-colored graph, we say a path is a rainbow vertex path if all its internal vertices have distinct colors. The graph is rainbow vertex-connected if there is a rainbow vertex path between every pair of its vertices. In the Rainbow Vertex Coloring (RVC) problem we want to decide whether the vertices of a given graph can be colored with at most \(k\) colors so that the graph becomes rainbow vertex-connected. This problem is known to be \(NP\)-complete even in very restricted scenarios, and very few efficient algorithms are known for it. In this work, we give polynomial-time algorithms for RVC on permutation graphs, powers of trees and split strongly chordal graphs. The algorithm for the latter class also works for the strong variant of the problem, where the rainbow vertex paths between each vertex pair must be shortest paths. We complement the polynomial-time solvability results for split strongly chordal graphs by showing that, for any fixed \(p \geq 3\) both variants of the problem become \(NP\)-complete when restricted to split \((S_3, \ldots, S_p)\)-free graphs, where \(S_q\) denotes the \(q\)-sun graph.

1 Introduction

Graph coloring is a classic problem within the field of structural and algorithmic graph theory that has been widely studied in many variants. One recent such variant was defined by Krivelevich and Yuster \cite{Krivelevich2011} and has received significant attention: the rainbow vertex coloring problem. A vertex-colored graph is said to be rainbow vertex-connected if between any pair of its vertices, there is a path whose internal vertices are colored with distinct colors. Such a path is called a rainbow path. Note that this vertex coloring does not need to be a proper one; for instance, a complete graph is rainbow vertex-connected under the coloring that assigns the same color to every vertex. The Rainbow Vertex Coloring (RVC) problem takes as input a graph \(G\) and an integer \(k\) and asks whether \(G\) has a coloring with \(k\) colors under which it is rainbow vertex-connected. The rainbow vertex connection number of a graph \(G\) is the smallest number of colors needed in one such coloring and is denoted \(rvc(G)\). More recently, Li et al. \cite{Li2017} defined a stronger variant of this problem by requiring that the rainbow paths connecting the pairs of vertices are also shortest paths between those pairs. In this case we say the graph is strong rainbow vertex-connected. The analogous computational problem is called Strong Rainbow Vertex Coloring (SRVC) and the corresponding parameter is denoted by \(srvc(G)\).

Both the RVC and the SRVC problems are \(NP\)-complete for every \(k \geq 2\) \cite{Krivelevich2011, Chudak2003, Fomin2006}, and remain \(NP\)-complete even on bipartite graphs and split graphs \cite{Chudanov2012}. Both problems are also \(NP\)-hard to
approximate within a factor of $n^{1/3-\epsilon}$ for every $\epsilon > 0$, even when restricted to bipartite graphs and split graphs [7]. Contrasting these results, it was shown that RVC and SRVC are linear-time solvable on bipartite permutation graphs and block graphs [7], and on planar graphs for every fixed k [10]. Finally, RVC is also known to be linear time solvable on interval graphs [7].

The above mentioned results on bipartite permutation graphs and interval graphs led Heggernes et al. [7] to formulate the following conjecture concerning diametral path graphs. Recall that a graph G is a *diametral path graph* if every induced subgraph H has a dominating path whose length equals the diameter of H.

Conjecture 1.1 (Heggernes et al. [7, Conjecture 15]). *Let G be a diametral path graph. Then $rvc(G) = \text{diam}(G) - 1$.***

In this context, it is interesting to remark that both bipartite permutation graphs and interval graphs are diametral path graphs, and that Heggernes et al. [7] showed that the conjecture is true for these graphs.

Our Results Our main contribution is to show that the above conjecture is true for permutation graphs.

Theorem A (=Theorem 3.16). *If G is a permutation graph on n vertices, then $rvc(G) = \text{diam}(G) - 1$ and the corresponding rainbow vertex coloring can be found in $O(n^2)$ time.*

This generalizes the earlier result on bipartite permutation graphs [7]. The proof of our result follows from a thorough investigation of shortest paths in permutation graphs. We show that there are two special shortest paths that ensure that a rainbow vertex coloring with $\text{diam}(G) - 1$ colors can be found.

We also further the investigation of the rainbow vertex connection number of chordal graphs. As the problem is NP-hard and hard to approximate on split graphs [7], the hope for polynomial-time solvability rests either within subclasses of split graphs or other chordal graphs that are not inclusion-wise related to split graphs (such as the previously studied interval graphs and block graphs [7]). We make progress in both directions.

First, we show that the problem is polynomial-time solvable on strongly chordal split graphs.

Theorem B (=Theorem 4.3). *If G is a split strongly chordal graph with ℓ cut vertices, then $rvc(G) = \text{srvc}(G) = \max\{\text{diam}(G) - 1, \ell\}$.*

In order to obtain the above result, we exploit an interesting structural property of split strongly chordal graphs. Namely, if G is a split strongly chordal graph with clique K and independent set S, there exists a spanning tree of $G[K]$ such that the neighborhood of each vertex of S induces a subtree of this tree.

Second, we show that RVC remains polynomial-time solvable on powers of trees. This proof is based on a case analysis, depending on whether the diameter of the tree is a multiple of the power and how many long branches the tree has. We show that in some cases $\text{diam}(G) - 1$ many colors are enough to rainbow vertex color these graphs, but surprisingly this is not always the case. There are graphs in this graph class that actually require $\text{diam}(G)$ colors in order to be rainbow vertex colored. We provide a complete characterization of such graphs, as well as a polynomial time algorithm to optimally rainbow vertex color any power of a tree.

Theorem C (=Theorem 5.10). *If G is a power of a tree, then $rvc(G) \in \{\text{diam}(G) - 1, \text{diam}(G)\}$, and the corresponding optimal rainbow vertex coloring can be found in time that is linear in the size of G.***
As far as we are aware, this result provides the first graph class in which the rainbow vertex connection number is computable in polynomial time and does not always equal one of the two trivial lower bounds on the number of colors (e.g., \(\text{diam}(G) - 1\) and the number of cut vertices).

2 Preliminaries

Whenever we write graph, we will mean a finite undirected simple graph. We assume throughout that all graphs are connected and have at least four vertices.

Let \(G = (V,E)\) be a graph. For two vertices \(u, v \in V\), we use \(u \sim v\) to denote that \(u\) and \(v\) are adjacent. For a vertex \(v \in V\), we write \(d_G(v)\) for its degree. For a subgraph \(H\) of \(G\), we write \(V_H\) for the set of vertices of \(H\). Specifically, for a path \(P\) in \(G\), we write \(V_P\) for the vertices of \(P\). If \(X \subseteq V\), then by \(G[X]\) we denote the subgraph of \(G\) induced by \(X\), that is, \(G[X] = (X,E \cap (X \times X))\). We use \(N(v) = \{u \in V \mid u \sim v\}\) and \(N[v] = N(v) \cup \{v\}\).

The length of a path \(P\) equals the number of edges of \(P\). The distance \(d_G(u,v)\) is the length of a shortest \(u,v\)-path in \(G\). If the graph \(G\) is clear from the context, we simply write \(d(u,v)\).

The diameter \(\text{diam}(G)\) of \(G\) is the length of the longest shortest path between two vertices in \(G\), that is, \(\text{diam}(G) = \max\{d_G(u,v) \mid u,v \in V\}\). A center of a graph \(G\) is a vertex \(c\) such that \(\max\{d_G(c,v) \mid v \in V\}\) is maximum among all vertices of \(G\). Note that a graph can have multiple centers and that a tree can have at most two.

A graph \(G\) is a permutation graph if it is an intersection graph of line segments between two parallel lines (see Figure 1). The set of line segments that induce the permutation graph is called the intersection model. Alternatively, if \(G\) has \(n\) vertices, then there is a permutation \(\sigma\) of \(\{1,\ldots,n\}\) such that vertex \(i\) and vertex \(j\) with \(i < j\) are adjacent in \(G\) if and only if \(j\) comes before \(i\) in \(\sigma\).

A graph \(G\) is a chordal graph if every cycle \(C = \{c_1,\ldots,c_\ell\}\) on \(\ell \geq 4\) vertices has a chord, meaning an edge between two non-consecutive vertices of the cycle.

A graph \(G\) is a split graph if \(V_G\) can be split into two sets, \(K\) and \(S\), such that \(K\) induces a clique in \(G\) and \(S\) induces an independent set in \(G\).

For any \(k \geq 3\), we denote by \(S_k\) the \(k\)-sun on \(2k\) vertices, that is, a graph with a clique \(c_1,\ldots,c_k\) on \(k\) vertices and an independent set \(v_1,\ldots,v_k\) of \(k\) vertices such that \(v_i\) is adjacent to \(c_i\) and \(c_{i+1}\) for every \(1 \leq i < k\) and \(v_k\) is adjacent to \(c_k\) and \(c_1\). A graph \(G\) is a strongly chordal graph if it is chordal and it has no induced subgraph isomorphic to a \(k\)-sun for any \(k \geq 3\).

The \(k\)-th power of a graph \(G\) for \(k \geq 1\), denoted by \(G^k\), is the graph on the same vertex set of \(G\) where \(u \sim v\) in \(G^k\) if and only if there is a path of length at most \(k\) from \(u\) to \(v\) in \(G\). In particular, \(G^1 = G\). If \(G\) is a tree, then \(G^k\) is a chordal graph for any \(k \geq 1\).

Finally, we observe the following.

Observation 1. If \(\text{diam}(G) \leq 2\), then \(\text{srvc}(G) = \text{rvc}(G) = 1\).

Proof. Color all vertices of \(G\) by color 1. It suffices to note that between any two vertices, there is a shortest path with at most one internal vertex. \(\square\)

3 Permutation graphs

In this section, we consider rainbow coloring on permutation graphs. Let \(G\) be a permutation graph. Let \(L_1\) and \(L_2\) be two parallel lines in the plane and for each \(v \in V_G\), let \(s_v\) be the segment associated to \(v\) in the intersection model. We denote by \(t(v)\) the extreme of \(s_v\) in \(L_1\), that is \(t(v) = s_v \cap L_1\), and we refer to \(t(v)\) as the top end point of \(s_v\). By \(b(v)\) we denote the extreme of
Define a path \(X_{u,v} \) as follows. If \(u \sim v \), \(X_{u,v} \) will be \(u,v \). Otherwise, assume without loss of generality that \(u \prec v \). Start with \(x_1 = u \). Of all vertices \(x \) that intersect \(u \) with \(t(x) > t(u) \), let \(x_2 \) be the one with largest \(t(x_2) \). If there is no vertex \(x \) that intersects \(u \) with \(t(x) > t(u) \), we say that the path \(X_{u,v} \) does not exist. Otherwise, define \(x_i \), with \(i \geq 3 \), as follows. If \(x_{i-1} \) is incident to \(v \), set \(x_i = v \) and end the path. Otherwise, if \(i \) is even (resp. odd), let \(x_i \) be the vertex that intersects \(x_{i-1} \) where \(t(x_i) \) (resp. \(b(x_i) \)) is largest. Notice that it cannot be that \(x_{i-2} = x_i \), or \(G \) would not be connected.

Analogously, we define the path \(Y_{u,v} \). This path starts with \(y_1 = u \). Let \(y_2 \) be the vertex that intersects \(u \) with largest \(b(y_2) \), if \(b(y_2) > b(u) \) (otherwise the path \(Y_{u,v} \) does not exist). Now the next vertex \(y_i \) is the vertex that intersects \(y_{i-1} \) with largest \(b(y_i) \) (resp. \(t(y_i) \)) if \(i \) is even (resp. odd). Notice that it cannot be that \(y_{i-2} = y_i \), or \(G \) would not be connected.

The paths we just defined satisfy the following property. Let \(z_1, z_2, z_3, \ldots, z_a \) be a path. For all \(2 \leq i \leq a \),

\[
\begin{align*}
\text{(1)} & & t(z_i) > t(z_{i-1}) \text{ and } b(z_i) < b(z_{i-1}) \text{ if } i \text{ is even}, \\
\text{(2)} & & t(z_i) < t(z_{i-1}) \text{ and } b(z_i) > b(z_{i-1}) \text{ if } i \text{ is odd},
\end{align*}
\]

or, for all \(2 \leq i \leq a \),

\[
\begin{align*}
\text{(3)} & & t(z_i) < t(z_{i-1}) \text{ and } b(z_i) > b(z_{i-1}) \text{ if } i \text{ is even}, \\
\text{(4)} & & t(z_i) > t(z_{i-1}) \text{ and } b(z_i) < b(z_{i-1}) \text{ if } i \text{ is odd}.
\end{align*}
\]

Note that Equations (1) and (2) hold for \(X_{u,v} \), by definition, and that Equations (3) and (4) hold for \(Y_{u,v} \), by definition. In later proofs we will often use this property.
Lemma 3.1. $X_{u,v}$ or $Y_{u,v}$ is a shortest u,v-path.

Proof. See [Mondal et al. [13, Lemma 5]], or see Appendix A.

We define two special paths P and Q. For the definition of P, let p_1 be the vertex such that $t(p_1)$ is smallest among all vertices of G. Perform the same process as in the construction of $X_{p_1,v}$: for $i \geq 2$, if i is even (resp. odd), let p_i be the vertex that intersects p_{i-1} where $t(p_i)$ (resp. $b(p_i)$) is largest. Let P denote the resulting path and let p_d denote the last vertex of P. Observe that $P = X_{p_1,p_d}$.

For the definition of Q, let q_1 be the vertex such that $b(q_1)$ is smallest among all vertices of G. Perform the same process as in the construction of $Y_{q_1,v}$: for $i \geq 2$, if i is even (resp. odd), let q_i be the vertex that intersects q_{i-1} where $b(q_i)$ (resp. $t(q_i)$) is largest. Let Q denote the resulting path and let $q_{d'}$ denote the last vertex of Q. Observe that $Q = Y_{q_1,q_{d'}}$.

Corollary 3.2. P is a shortest p_1,p_d-path and Q is a shortest $q_1,q_{d'}$-path.

Proof. By Lemma 3.1, it follows that X_{p_1,p_d} or Y_{p_1,p_d} is a shortest p_1,p_d-path. We claim that Y_{p_1,p_d} does not exist. Assume the contrary and let y_2 be the vertex that follows p_1 on Y_{p_1,p_d}. Then $b(y_2) > b(p_1)$ by the definition and existence of Y_{p_1,p_d}. Since y_2 intersects p_1, it follows that $t(y_2) < t(p_1)$. This contradicts the definition of p_1. Hence, Y_{p_1,p_d} does not exist. Therefore, $X_{p_1,p_d} = P$ is a shortest p_1,p_d-path. Analogously, we can prove that Q is a shortest $q_1,q_{d'}$-path.

We will prove some more useful properties about the paths P and Q, before we show the rainbow coloring.

Lemma 3.3. Let v_t, resp. v_b, be the segment that has the rightmost top, resp. bottom, end point. Then $p_d = v_t$ if d is even, and vice versa if d is odd. Furthermore, we have $q_{d'} = v_b$ and $q_{d'-1} = v_t$ if d' is even, and vice versa if d' is odd.

Proof. Suppose that $p_d = v_t$. Since the top of p_d is rightmost, we see that d is even. Then, by definition of P, it holds that the segment, of all segments that intersect p_d, that ends rightmost at the bottom equals p_{d-1}. So, $p_{d-1} = v_b$.

Suppose that $p_d \neq v_t$ and $v_t \sim p_d$. It is clear that $t(p_d) < t(v_t)$, thus $b(p_d) > b(v_t)$. If d is even, then $v_t \sim p_{d-1}$. But p_d is the vertex that intersects p_{d-1} which has the rightmost top end, yielding a contradiction with the fact that $t(p_d) < t(v_t)$. If d is odd. Since the path ends at p_d, it follows that the vertex that intersects p_d that has the rightmost top is p_{d-1}. Hence $p_{d-1} = v_t$. By definition, p_d is the vertex that intersects p_{d-1} that has the rightmost bottom. Thus $p_d = v_b$.

Suppose that $p_d \neq v_t$ and $v_t \sim p_d$. It holds that p_d is left of v_t. Assume that d is even. Consider the shortest p_d,v_t-path. We know that either X_{p_d,v_t} or Y_{p_d,v_t} is a shortest path. (See Figure 2.) Suppose that $X_{u,v}$ is the shortest. We know that $t(x_2) > t(p_d)$ and $b(x_2) < b(p_d)$. It follows that x_2 intersects p_{d-1}. This yields a contradiction with the choice of p_d. Suppose that $Y_{u,v}$ is the shortest path. By the definitions of y_2 and P, it holds that $y_2 = p_{d-1}$. Then $y_3 = p_d = y_1$, so $Y_{u,v}$ is not a shortest path. We conclude that either $p_d = v_t$ or $v_t \sim p_d$. The case for d odd is analogous.

The proof for Q is analogous.

Lemma 3.4. The sets $V_P \setminus \{p_d\}$ and $V_Q \setminus \{q_{d'}\}$ are dominating sets of G.

Proof. Suppose that $V_P \setminus \{p_d\}$ is not a dominating set, and let v be a vertex that is not dominated. We prove with induction that v is right of p_i for all $1 \leq i \leq d-1$.
Figure 2: See Lemma 3.3, case \(p_d \neq v_t, v_t \sim p_d \). Either \(X_{p_d,v_t} \) or \(Y_{p_d,v_t} \) is a shortest path.

It is clear that \(v > p_1 \), since \(v \sim p_1 \) and \(t(v) > t(p_1) \). Suppose that \(v > p_{k-1} \), for some \(k \). Suppose that \(k \) is even. We use the induction hypothesis and Equation (1), to see that \(b(v) > b(p_{k-1}) > b(p_i) \). Since \(v \sim p_i \), it follows that \(v > p_i \). Suppose that \(k \) is odd. Then \(t(v) > t(p_{k-1}) > t(p_i) \), by the induction hypothesis and Equation (2). Since \(v \sim p_i \), it follows that \(v > p_i \).

By Lemma 3.3, we know that \(p_{d-1} = v_t \) or \(p_{d-1} = v_b \). In both cases, there is no vertex \(v \) with \(v > p_{d-1} \). This yields a contradiction, thus \(V_P \setminus \{p_d\} \) is a dominating set.

The proof for \(V_Q \setminus \{q_d'\} \) is analogous. \(\square \)

Lemma 3.5. It holds that \(d = \text{diam}(G) \) or \(d = \text{diam}(G)+1 \), and \(d' = \text{diam}(G) \) or \(d' = \text{diam}(G)+1 \).

Proof. Since \(P \) is a shortest path (by Corollary 3.2), we have that \(d-1 \leq \text{diam}(G) \). Or, equivalently \(d \leq \text{diam}(G)+1 \).

Let \(u \) and \(v \) be two vertices. Since the set \(V_P \setminus \{p_d\} \) is a dominating set (see Lemma 3.4), there are \(p_i, p_j \in V_P \setminus \{p_d\} \) such that \(p_i \sim u, p_j \sim v \). Without loss of generality, we assume that \(i < j \).

Then the path \(u, p_i, p_{i+1}, \ldots, p_j, v \) has length at most \(d \). Thus \(\text{diam}(G) \leq d \).

The proof for \(d' \) is analogous. \(\square \)

Now we start a breadth-first search from \(p_1 \). Call the layers \(L_1, L_2, \ldots, L_r \). Since \(P \) is a shortest path, it follows that \(p_i \in L_i \) for every \(i \). Thus \(r \geq d \). Since \(V_P \setminus \{p_d\} \) is a dominating set, we conclude that \(r = d \), thus the layers of the breadth-first search are \(L_1, L_2, \ldots, L_d \). We also start a breadth-first search in \(q_1 \), and call the layers \(M_1, M_2, \ldots, M_{d'} \). Again, we have that \(q_i \in M_i \) for every \(i \).

A nice property of the path \(P \) is that every vertex \(p_i \) is adjacent to all vertices in the next layer \(L_{i+1} \).

Lemma 3.6. For every \(i \), it holds that \(L_{i+1} \subseteq N(p_i) \) and \(M_{i+1} \subseteq N(q_i) \).

Proof. We will prove a somewhat stronger result by induction, namely that \(L_{i+1} \subseteq N(p_i) \) and if \(i \) is even (resp. odd) we have that for every \(u \) in \(L_{i+1} \):

\[
t(u) < t(p_i) \text{ and } b(u) > b(p_i) \quad (\text{resp. } t(u) > t(p_i) \text{ and } b(u) < b(p_i)).
\]

(5)

We use a proof by induction. The first layer \(L_1 \) contains only \(p_1 \). It is clear that every vertex in the second layer \(L_2 \) is a neighbour of \(p_1 \). Moreover, by the definition of \(p_1 \), we have that \(t(u) > t(p_1) \) for all \(u \in L_2 \), and thus \(b(u) < b(p_1) \).

Suppose that \(L_{i+1} \subseteq N(p_i) \) and Equation (5) holds for every \(i < k \). Let \(v \) be a vertex in \(L_{k+1} \). We know that \(v \) does not intersect \(p_{k-1} \), otherwise \(v \) would be contained in \(L_k \). So we know that \(t(v) > t(p_{k-1}) \) and \(b(v) > b(p_{k-1}) \). Since \(v \) is in layer \(L_{k+1} \), \(v \) intersects \(u \) for some \(u \in L_k \) (see Figure 3). So we either have that \(t(v) < t(u) \) and \(b(v) > b(u) \) or we have \(t(v) > t(u) \) and \(b(v) < b(u) \).

If \(k \) is even (resp. odd), we have \(t(v) < t(u) \) and \(b(v) > b(u) \) (resp. \(t(v) > t(u) \) and \(b(v) < b(u) \)),

\[
(5)
\]
Figure 3: If a vertex v in layer L_{k+1} intersects a vertex u in layer L_k, then it also intersects p_k. See Lemma 3.6.

Figure 4: The layers of the BFS, the layers $L_1, L_2, \ldots, L_{d-1}$ are all assigned a different color. See Lemma 3.7

otherwise, by the induction hypothesis, v would intersect p_{k-1}. By the induction hypothesis u intersects p_{k-1}, so by the definition of p_k, we have that $t(p_k) \geq t(u)$ (resp. $b(p_k) \geq b(u)$). It follows that $t(v) < t(p_k)$ (resp. $b(v) < b(p_k)$). We know that $b(p_k) < b(p_{k-1})$ (resp. $t(p_k) < t(p_{k-1})$), thus $b(v) > b(p_k)$ (resp. $t(v) > t(p_k)$). We conclude that v intersects p_k, and $t(v) < t(p_k)$ and $b(v) > b(p_k)$ (resp. $t(v) > t(p_k)$ and $b(v) < b(p_k)$).

So $L_{k+1} \subseteq N(p_k)$ for every k. The proof that $M_{k+1} \subseteq N(q_k)$ is analogous.

For an illustration of the structure of G, see Figure 4. If $d = \text{diam}(G)$ or $d' = \text{diam}(G)$, we will color G layer by layer to obtain a rainbow coloring.

Lemma 3.7. If $d = \text{diam}(G)$ or $d' = \text{diam}(G)$, then $\text{rvc}(G) = \text{diam}(G) - 1$.

Proof. Assume that $d = \text{diam}(G)$. Consider the following coloring (see Figure 4):

$$c(v) = \begin{cases}
 i & \text{if } v \in L_i, \ 1 \leq i \leq d - 1, \\
 1 & \text{otherwise}.
\end{cases}$$

This coloring uses $d - 1 = \text{diam}(G) - 1$ colors. We claim that it is a rainbow coloring. Let u and v be two vertices. Then $u \in L_i$, $v \in L_j$ for some i, j. Without loss of generality, assume that $i \leq j$. If $i = 1$, then $u = p_1$. Then, by Lemma 3.6, the path $p_1, p_2, \ldots, p_{j-1}, v$ is a rainbow path. If $i > 1$, again by Lemma 3.6, the path $u, p_{i-1}, p_i, \ldots, p_{j-1}, v$ is a rainbow path.

We conclude that $\text{rvc}(G) = \text{diam}(G) - 1$. The proof for $d' = \text{diam}(G)$ is analogous.

Consider the case where $d = d' = \text{diam}(G) + 1$. In this case, we will still color the layers of a breadth-first search that starts at p_1, but we have to reuse the color of the first layer for layer
Lemma 3.8. For the following u and v, there exists a rainbow path:

1. for $u = p_1$, and v arbitrary,
2. for $u \in L_i$ with $i \geq 3$, and $v \in L_j$ with $j \geq 3$,
3. for $u \in L_2$, and $v \notin L_d$,
4. for $u \in L_2$, $u \sim p_2$, and $v \in L_d$.

Proof. 1. Suppose that $v \in L_i$. By Lemma 3.6, we know that $v \sim p_{i-1}$. The path $p_1, p_2, \ldots, p_{i-1}, v$ is a rainbow path.

2. Without loss of generality, we assume that $i \leq j$. By Lemma 3.6, we know that $u \sim p_{i-1}$ and $v \sim p_{j-1}$. Consider the path $u, p_{i-1}, p_i, \ldots, p_{j-1}, v$. The internal vertices are in different layers between L_2 and L_{d-1}. Hence, this is a rainbow path.

3. Suppose that $v \in L_i$, with $i < d$. Again, by Lemma 3.6, we know that $v \sim p_{i-1}$. The path $u, p_1, p_2, \ldots, p_{i-1}, v$ is a rainbow path.

4. Notice that the path $u, p_2, p_3, \ldots, p_{d-1}, v$ is a rainbow path.

We will show that this is a rainbow coloring. For almost every u and v, we readily construct a rainbow path.

Lemma 3.9. If $u \in L_2$, $u \sim p_2$, then $u \sim q_1$ or $u \sim q_2$.

Proof. Since $u \in L_2$, we know that u intersects p_1. Hence $t(u) > t(p_1)$ and $b(u) < b(p_1)$. If $u \sim q_1$, then u is right of q_1, since q_1 has the leftmost bottom end. So $t(u) > t(q_1) > t(q_2)$ by Equation (3). Since p_1 and q_2 both intersect q_1, we now that $b(q_2) \geq b(p_1)$, by the definition of q_2. Thus $b(u) < b(p_1) \leq b(q_2)$. We conclude that u intersects q_2.

Figure 5: The numbers indicate the colors of the layers. The path $u, p_2, p_3, \ldots, p_{d-1}, v$ is a rainbow path. See Lemma 3.8
Proof. By Lemma 3.9, we know that d is odd. For this last case we will show that either X or Y, since d is even. For Q we have that $q = v_b$ and $q_{d-1} = v_l$ if d is even, and conversely if d is odd. We conclude that $q = q_{d-1}$ and $p = q_d$.

Lemma 3.12. If $d = d' = \text{diam}(G) + 1$, then $p = q_{d-1}$ and $p = q_d$.

Proof. By Lemma 3.3, we know that, if d is even, then $p = v_t$ and $p = v_b$, and conversely if d is odd. For Q we have that $q = v_b$ and $q_{d-1} = v_l$ if d is even, and conversely if d is odd. We conclude that $p = q_{d-1}$ and $p = q_d$.

Corollary 3.11. If $d = d' = \text{diam}(G) + 1$, it holds that $q_i \in L_i + 1$, for every $1 \leq i < d$.

Proof. It is clear that $q_i \in L_2$, since $q_i \sim q_1$. By Lemma 3.10, we know that $q_{d-1} = p_d$, so $q_{d-1} \in L_d$. Since $q_1, q_2, \ldots, q_{d-1}$ is a path of length $d - 1$, it follows that $q_i \in L_i + 1$.

Lemma 3.12. If $d = d' = \text{diam}(G) + 1$, then for every $v \in L_d$, if $v \sim q_{d-2}$, then $v \sim q_{d-1}$.

Proof. Since $v \in L_d$, we know that $v \sim p_{d-1}$, so by Lemma 3.10, $v \sim q_d$. (See Figure 6.) Assume that d is even. Then $q_d = v_b$ by Lemma 3.3. It follows that $b(v) < b(v_b)$ and $t(v) > t(v_b)$. If $v \sim q_{d-2}$, we know that $b(v) > b(q_{d-2}) > b(q_{d-1})$. Since $q_{d-1} = v_t$ by Lemma 3.3, we know that $t(v) < t(q_{d-1})$. So, v intersects q_{d-1}.

The case that d is odd is analogous.

Now we can prove for even more vertices u and v that there is a rainbow path from u to v, see also Figure 7.

Lemma 3.13. For the following vertices u and v, there is a rainbow path:

5a. for $u \in L_2, v \sim q_2, v \sim q_{d-2}, v \sim q_{d-1}$.
5b. for $u \in L_2, v \sim q_2, v \sim q_{d-2}, v \sim q_2$.

Proof. 5a. By Lemma 3.9, we know that $u \sim q_1$ or $u \sim q_2$. By Corollary 3.11, we know that $q_1, q_2, \ldots, q_{d-2}$ are in layers $L_2, L_3, \ldots, L_{d-1}$, each vertex in a different layer. So, either $u, q_1, q_2, \ldots, q_{d-2}, v$ or $u, q_2, q_3, \ldots, q_{d-2}, v$ is a rainbow path.
5b. By Lemma 3.12, we know that $v \sim q_{d-1}$. By Corollary 3.11, we know that $q_1, q_2, \ldots, q_{d-2}$ are in layers $L_2, L_3, \ldots, L_{d-1}$, each vertex in a different layer. The path $u, q_2, q_3, \ldots, q_{d-1}, v$ is a rainbow path.

Now there is still one case of vertices u and v for which we did not prove yet that there is a rainbow path. Namely:

5c. for $u \in L_2, v \sim q_2, v \sim q_{d-2}, u \sim q_2$.

For this last case we will show that either $X_{u,v}$ or $Y_{u,v}$ is a rainbow path.

Lemma 3.14. If $u \sim p_1, u \sim p_2, u \sim q_2$, then $u \sim p_2$.

Figure 6: If a vertex v in layer L_d does not intersect q_{d-2}, then it intersects q_{d-1}. See Lemma 3.12.
Thus $b = \text{diam}(y)$ as well. By definition of u, q_1, \ldots, q_d, we know that $b(q_1) > b(q_2)$.

Proof. Since $u \sim p_2$, we know that either $u \prec p_2$ or $u \succ p_2$. Suppose that $u \succ p_2$. Then $t(u) > t(p_2)$. By the definition of p_2, we know that $t(p_2) \geq t(q_1)$ and by Equation (3) we see that $t(q_1) > t(q_2)$. Altogether, we see that $t(u) > t(q_2)$. By the definition of q_2, we know that $b(q_2) \geq b(p_1)$. Since $u \sim p_1$, it holds that $b(u) < b(p_1)$. Thus $b(u) < b(q_2)$. This yields a contradiction with the fact that $u \sim q_2$. We conclude that $u \prec p_2$. \qed

Lemma 3.15. For u and v satisfying case 5c, there is a rainbow path.

Proof. We distinguish two cases, based on Lemma 3.1: either $X_{u,v}$ is a shortest u,v-path or $Y_{u,v}$ is a shortest u,v-path.

Suppose that $X_{u,v}$ is a shortest u,v-path. Notice that $X_{u,v}$ has at least one vertex in every layer L_2, L_3, \ldots, L_d. Since $X_{u,v}$ has length at most $d-1$, there is at most one layer which contains two vertices of $X_{u,v}$. It is clear that $x_1 = u$ is in layer L_2. We will show that x_2 is in layer L_2 as well. By definition of x_2, we have $t(x_2) > t(u)$ and $b(x_2) < b(u)$. Since $u \sim p_1$ and p_1 has the leftmost top end, we know that $t(u) > t(p_1)$ and $b(u) < b(p_1)$. We conclude that $t(x_2) > t(p_1)$ and $b(x_2) < b(p_1)$, thus $x_2 \sim p_1$. So we see that x_1 and x_2 are both in layer L_2, so all internal vertices of $X_{u,v}$ are in different layers. So $X_{u,v}$ is a rainbow path.

Suppose that $Y_{u,v}$ is a shortest u,v-path. Write $Y_{u,v} = u, y_2, y_3, \ldots, y_{\alpha-1}, v$. Then $\alpha = d$ or $\alpha = d - 1$; note that $\alpha \leq \text{diam}(G) + 1 = d$ and that $d - 1 \leq \alpha$ because $Y_{u,v}$ contains a vertex from every layer. We prove by induction that $y_i \in L_{i+1}$ for all $2 \leq i \leq \alpha - 1$.

Since y_2 and p_1 both intersect u, by the definition of y_2, it follows that $b(y_2) \geq b(p_1)$. See Figure 8. If $y_2 = p_1$, then $y_{u,v} = u, p_1, p_2, \ldots, p_{d-1}, v$. Notice that the length of this path is $d = \text{diam}(G) + 1$. This yields a contradiction with the fact that $Y_{u,v}$ is a shortest u,v-path. Hence, $y_2 \neq p_1$, and $b(y_2) > b(p_1)$. Since p_1 is the vertex with the leftmost top end, we see that $t(p_1) < t(y_2)$. Hence $y_2 \succ p_1$. Since y_2 does not intersect p_1, it follows that $y_2 \notin L_2$.

By the definition of y_2, we know that $t(y_2) < t(u)$. By Lemma 3.14, it holds that $t(u) < t(p_2)$, thus $t(y_2) < t(p_2)$. Moreover, $b(y_2) > b(p_1) > b(p_2)$ (by Equation (1)). Hence, y_2 intersects p_2. We conclude that $y_2 \in L_3$.\]
Suppose that for all $i < k$, for some $k > 2$, it holds that $y_i > p_{i-1}$ and $y_i \in L_{i+1}$. Now consider y_k. Suppose that k is even. By the induction hypothesis and Lemma 3.6, we know that $y_{k-1} \sim p_{k-1}$, since $y_{k-1} \in L_k$. By definition of y_k, it follows that $b(y_k) \geq b(p_{k-1})$. And by Equation (1), we know that $b(p_{k-1}) > b(p_k)$, thus $b(y_k) > b(p_k)$. Similarly, by the definition of p_k, we know that $t(p_k) \geq t(y_{k-1})$. And by Equation (3), we know that $t(y_k) < t(y_{k-1})$, hence $t(p_k) > t(y_k)$. We conclude that p_k intersects y_k. It follows that y_k is in layer $k - 1$, k or $k + 1$.

Notice that if $y_k \in L_{k-1}$, then the length of $Y_{u,v}$ is at least $d = \text{diam}(G) + 1$. This yields a contradiction with the fact that $Y_{u,v}$ is a shortest u,v-path. Thus $y_k \notin L_{k-1}$. Suppose that $y_k \in L_k$. Then y_k intersects p_{k-1}. We have seen that $b(y_k) \geq b(p_{k-1})$, thus $t(y_k) < t(p_{k-1})$. By Equation (2), we have $b(p_{k-1}) > b(p_k)$, thus $b(y_k) > b(p_k)$. By Equation (2), we also have that $t(p_{k-1}) < t(p_{k-2})$, thus $t(y_k) < t(p_{k-2})$. It follows that $y_k \sim p_{k-2}$. This yields a contradiction with the assumption that $y_k \in L_k$. We conclude that $y_k \in L_{k+1}$.

The case for k odd is analogous. Since $y_i \in L_{i+1}$ for all internal vertices y_i of $Y_{u,v}$, we conclude that $Y_{u,v}$ is a rainbow path. \hfill \qed

Theorem 3.16 (=Theorem A). For every n-vertex permutation graph G, it holds that $\text{rvc}(G) = \text{diam}(G) - 1$. Moreover, we can compute an optimal rainbow vertex coloring in $O(n^2)$ time.

Proof. By Lemma 3.5 we know that either $d = \text{diam}(G)$ or $d = \text{diam}(G) + 1$, and either $d' = \text{diam}(G)$ or $d' = \text{diam}(G) + 1$. If $d = \text{diam}(G)$ or if $d' = \text{diam}(G)$, we have seen a rainbow coloring of G with $\text{diam}(G) - 1$ colors in Lemma 3.7. If both d and d' equal $\text{diam}(G) + 1$, then we have seen a coloring of G with $\text{diam}(G) - 1$ colors. Lemmas 3.8, 3.13 and 3.15 show that this coloring is indeed a rainbow coloring. We conclude that $\text{rvc}(G) = \text{diam}(G) - 1$.

Assume that we have given a permutation model of the graph and thus know the values $t(v)$ and $b(v)$ for each vertex $v \in V(G)$. Otherwise, a permutation model can be computed in linear time [12]. First, compute d and d'. Following the description of P and Q, this takes linear time. Computing the diameter of G takes $O(n^2)$ time using the algorithm of Mondal et al. [13]. The colorings given by Lemma 3.7 and before Lemma 3.8 can each be computed in linear time through a breadth-first search. By the preceding arguments, an optimal rainbow vertex coloring can be computed in $O(n^2)$ time. \hfill \qed

4 Split strongly chordal graphs

In this section, we show that RVC and SRVC are polynomial-time solvable on split strongly chordal graphs. We show that this result is tight in the sense that both problems become NP-complete on split graphs if we forbid any finite family of suns.

In order to prove our next theorem we will use the following property of dually chordal graphs, a graph class that contains that of strongly chordal graphs [1].

Lemma 4.1 (Brandstädt et al. [1]). A graph G is dually chordal if and only if G has a spanning tree T such that every maximal clique of G induces a subtree of T.

We prove a tree with a stronger property exists in split strongly chordal graphs.

Lemma 4.2. Let $G = (V, E)$ be a connected split strongly chordal graph, with $V = K \cup S$, where K is a clique and S is an independent set. Then G has a spanning tree T such that every maximal clique of G induces a subtree of T and every vertex of S is a leaf of T.
Proof. Since G is a strongly chordal graph (and thus a dually chordal graph [1]), by Theorem 4.1, G has a spanning tree T' such that the vertices of every maximal clique of G induce a subtree of T'. We observe the following simple property.

We will now modify T' in order to obtain another spanning tree of G that has the same property and, additionally, is such that every vertex of S is a leaf.

Tree Modification. Let $x \in S$ be such that x is not a leaf of T'. Let $u, v \in K$ be two neighbors of x in T'. Then

(i) add the edge uv to T';
(ii) delete the edge vx from T'.

Observe that the result from this operation is still a tree and it is still spanning.

Claim 1. Let T'' be the tree obtained after the application of the Tree Modification to T'. Then the following holds:

1. $d_{T''}(x) < d_{T'}(x)$;
2. Every maximal clique of G induces a subtree of T''.

Proof. It is easy to see that 1. holds, since the edge vx was deleted in step (ii) and no other edge incident to x was added. To see that 2. also holds note that since u is adjacent to both v and x and since $G[N(x)]$ is a clique, every maximal clique D of G that contains v and x also contains u. Since $uv, ux \in E(T''), the vertices of D still induce a connected subgraph of T''.

We now iteratively apply Tree modification to T' on non-leaf vertices of S. Indeed, if $x \in S$ is not a leaf of T', then it has at least two neighbors in T'. Since T' is a spanning tree, any neighbors of x in T' must be adjacent to x in G, and thus are in K. Hence, Tree Modification can be applied. By Claim 1, we can safely apply Tree Modification repeatedly to T' until we obtain a tree T in which all the vertices of S have degree 1 in T.

Theorem 4.3 (=Theorem B). If G is a split strongly chordal graph with ℓ cut vertices, then $\text{rvc}(G) = \text{srvc}(G) = \max\{\text{diam}(G) - 1, \ell\}$.

Proof. Let $G = (V, E)$ be a split strongly chordal graph, with $V = K \cup S$, where K is a clique and S is an independent set. Note that if $\text{diam}(G) \leq 2$, we can (strong) rainbow color G by assigning the same color to all the vertices. Notice that in this case G has at most one cut vertex, thus $\text{rvc}(G) = \text{srvc}(G) = \max\{\text{diam}(G) - 1, \ell\}$.

Assume then that $\text{diam}(G) = 3$ (recall that if G is a split graph, then $\text{diam}(G) \leq 3$). By Lemma 4.2, G has a spanning tree T such that every maximal clique of G induces a subtree of T and every vertex of S is a leaf of T. Let T denote the subtree of T induced by the vertices of K, that is, the subtree of T obtained by the deletion of the leaves corresponding to vertices of S. Note that T is a tree with $V_T = K$.

Claim 2. For every $x \in S, N(x)$ induces a subtree of T.

Proof. Since $N[x]$ is a maximal clique of G, the vertices of $N[x]$ induce a subtree of T. Since x is a leaf of T, we conclude that $N(x)$ indeed induces a subtree of T.

We will now use the tree T to provide a (strong) rainbow coloring of G.

Suppose first that G is 2-connected, that is, that no vertex of S has degree one in G. Color the vertices of K according to a proper 2-coloring of the vertices of T, and give arbitrary colors...
to the vertices of \(S \). Let \(\phi \) be the coloring of \(G \) obtained in this way. Note that \(\phi \) is indeed a (strong) rainbow coloring of \(G \). To see this, let \(u, v \in V \) be such that \(d_G(u, v) = 3 \). Since \(G \) is a split graph, we have that \(u, v \in S \). Since \(G \) is 2-connected, \(|N(u)| \geq 2 \) and \(|N(v)| \geq 2 \). Moreover, since \(N(u) \) and \(N(v) \) induce subtrees of \(T \), we know that these two sets are not monochromatic under \(\phi \). Thus, there exist \(x \in N(u) \) and \(y \in N(v) \) such that \(\phi(x) \neq \phi(y) \), which shows that \(uxyv \) is a rainbow (shortest) path between \(u \) and \(v \).

We now consider the case in which \(G \) has cut vertices. Let \(C \subset V \) be the set of cut vertices of \(G \). Consider a proper 2-coloring \(\phi \) of \(T \). If there exist \(c_1, c_2 \in C \) such that \(\phi(c_1) \neq \phi(c_2) \), then we can obtain a (strong) rainbow coloring for \(G \) with \(\ell \) colors by assigning distinct colors in the set \(\{3, \ldots, \ell\} \) to the remaining cut vertices of \(G \). Note that with this coloring of \(T \), it still holds that for every \(w \in S \), if \(|N(w)| > 1 \), then \(N(w) \) is not monochromatic under \(\phi \). Since all the cut vertices were assigned distinct colors, by the same argument used in the 2-connected case, this is indeed a (strong) rainbow coloring of \(G \). Note that this reasoning also applies if \(|C| = 1 \), so from now on we may assume \(|C| \geq 2 \).

If all the vertices of \(C \) were assigned the same color, since \(\phi \) was a proper 2-coloring of \(T \), we have that for every \(x, y \in C \), \(d_T(x, y) \geq 2 \). Let \(c_1, c_2 \in C \) be two cut vertices such that the unique path connecting \(c_1 \) and \(c_2 \) in \(T \) contains no other vertex of \(C \). Let \(z \) be the vertex adjacent to \(c_1 \) in this path. Note that \(z \notin C \). We will consider the following coloring \(\phi' \) of \(T \). Let \(\phi'(c_1) = \phi'(z) = 1 \). Now we extend \(\phi' \) by considering a proper 2-coloring of the subtree of \(T \) rooted in \(c_1 \) (resp. \(z \)) that assigns color 1 to the vertex \(c_1 \) (resp. \(z \)). Note that now we have \(\phi'(c_2) = 2 \). Finally, assign distinct colors from \(\{3, \ldots, \ell\} \) to the vertices of \(C \setminus \{c_1, c_2\} \). Note that, under this coloring, if there exists \(w \in S \) such that \(|N(w)| > 1 \) and \(N(w) \) is monochromatic under \(\phi' \), then \(N(w) = \{c_1, z\} \). To obtain a (strong) rainbow coloring of \(G \) with \(\ell \) colors, we color the vertices of \(K \) according to \(\phi' \) and give arbitrary colors to the vertices of \(S \). To see that this is indeed a (strong) rainbow coloring of \(G \), let \(u, v \in V \) be such that \(d_G(u, v) = 3 \). If \(|N(u)| = |N(v)| = 1 \), the unique shortest path between \(u \) and \(v \) is a rainbow path, since all cut vertices of \(G \) received distinct colors. Assume \(|N(u)| \geq 2 \).

Recall that if there exists \(w \in S \) such that \(|N(w)| \geq 2 \) and \(N(w) \) is monochromatic under \(\phi' \), then \(N(w) = \{c_1, z\} \). Moreover, since \(d_G(u, v) = 3 \), we have \(N(u) \cap N(v) = \emptyset \). If \(|N(v)| \geq 2 \), then at most one among \(N(u) \) and \(N(v) \) is monochromatic. Thus there exists \(x \in N(u) \) and \(y \in N(v) \) such that \(\phi'(x) \neq \phi'(y) \), and hence \(uxyv \) is a rainbow (shortest) path between \(u \) and \(v \). To conclude, consider the case in which \(|N(v)| = 1 \). Recall that \(c_1 \) is the only cut vertex such that \(\phi'(c_1) = 1 \). Therefore, if \(N(v) = \{c_1\} \), then \(N(u) \) is not monochromatic, which implies that we can find a vertex \(x \in N(u) \) such that \(\phi'(x) \neq 1 \). Finally, if \(N(v) = \{c\} \) with \(c \neq c_1 \), then we can again find \(x \in N(u) \) such that \(\phi'(x) \neq \phi'(c) \), since \(\phi'(c) \neq 1, \phi'(c_1) = \phi'(z) = 1 \) and any monochromatic subtree of \(T \) induced by the open neighborhood of a vertex of \(S \) is of the form \(\{c_1, z\} \).

We now show that both RVC and SRVC are \textbf{NP}-complete if we only forbid a finite number of suns. In what follows, we make use of the same reduction of Hegner et al. \cite{Hegner08} for split graphs. Their reduction is from HYPERGRAPH COLORING. Given a hypergraph \(H = (U, E) \), where \(U = \{u_1, \ldots, u_n\} \), they construct a split graph \(G = (K' \cup I', E) \), where \(K' = K_1' \cup \cdots \cup K_{n+1}' \) with \(K_i' := \{u_i^t | u_t \in U\} \), \(I' = I_1' \cup \cdots \cup I_{n+1}' \) with \(I_i' := \{x_{e}^{t} | e \in E\} \) and \(E := \{xy | x, y \in K'\} \cup \{u_{e}^{t}x_{e}^{t} | u_t \in U, e \in E, u_t \in u_e, 1 \leq i \leq n + 1\} \).

In our case, we start with an instance of GRAPH COLORING restricted to \((C_3, \ldots, C_k)\)-free graphs, a problem that was shown to be \textbf{NP}-complete by Král’ et al \cite{Kral11} (see also \cite{Hegner08}) for every fixed \(k \geq 3 \). We can see an input \(G = (V, E) \) of GRAPH COLORING as a hypergraph in which every hyperedge has size two. We perform the same construction and obtain a graph \(G' \). The fact that
\(G'\) is a yes instance to RVC (and SRVC) if and only if \(G\) is a yes instance to Graph Coloring follows from [7, Lemma 11]. We now show that \(G'\) is a split graph with no induced \(t\)-sun, with \(3 \leq t \leq p\).

Lemma 4.4. \(G'\) is a split \((S_3, \ldots, S_p)\)-free graph.

Proof. Let \(G = (V,E)\) be the \((C_3, \ldots, C_p)\)-free graph that originated \(G'\). It is easy to see that \(G'\) is a split graph with clique \(K'\) and independent set \(I'\). Suppose \(G'\) contains an induced \(t\)-sun, for some \(t \in \{3, \ldots, k\}\), on vertex set \(A = \{v_1, \ldots, v_t, w_1, \ldots, w_t\}\), where \(G'\{v_1, \ldots, v_t\}\) is a clique, \(G'\{w_1, \ldots, w_t\}\) is an independent set, \(w_i\) is adjacent to \(v_i\) and \(v_{i+1}\) for \(1 \leq i \leq t-1\) and \(w_i\) is adjacent to \(v_i\) and \(v_1\). Since every vertex of \(I'\) has degree two and \(K'\) is a clique, we necessarily have that \(\{v_1, \ldots, v_t\} \subset K'\) and \(\{w_1, \ldots, w_t\} \subset I'\). Moreover, note that, by construction, for every \(j\), \(N_G(I'_j) \subseteq K'_j\). Hence, there exists \(p \in \{1, \ldots, n + 1\}\) such that \(\{v_1, \ldots, v_t\} \subset K'_p\) and \(\{w_1, \ldots, w_t\} \subset I'_p\). For simplicity assume \(v_i = w_i\). Since \(w_i\) is adjacent to \(u_i\) and \(w_{i+1}\) for \(1 \leq i < t\), we have that \(u_iu_{i+1} \in E(G)\) for \(1 \leq i < t\). Analogously, it holds that \(u_1u_1 \in E(G)\) as well. This implies that \(u_1u_2\ldots u_tu_1\) is a cycle in \(G\) and therefore \(G\) contains an induced cycle of length at most \(t\). This is a contradiction since \(t \leq p\) and \(G\) is \((C_3, \ldots, C_p)\)-free.

From Lemma 4.4 and Lemma 11 of [7], we obtain the following theorem.

Theorem 4.5. For any fixed \(p \geq 3\), RVC and SRVC are NP-complete on split \((S_3, \ldots, S_p)\)-free graphs for any fixed \(p \geq 3\).

5 Powers of trees

In this section we study powers of trees. Let \(T\) be a tree, and \(z\) in the center of \(T\). Let \(e = zv\) be an edge that is incident to \(z\), with \(v\) not in the center. When \(e\) is removed from the tree, the tree will fall apart in two parts, a *branch* is the part that does not contain \(z\). If the center of \(T\) contains only one vertex, the number of branches equals the degree of \(z\).

5.1 Squares of trees

Two trivial lower bounds for the rainbow coloring number of a graph \(G\) are the number of cut vertices in \(G\) and \(\text{diam}(G) - 1\). In squares of trees we found graphs that need more than \(\text{diam}(T^2) - 1\) colors. Notice that squares of trees are 2-connected, so there are no cut vertices.

Lemma 5.1. Let \(T\) be a tree such that the center of \(T\) consist of a single vertex \(z\), \(T\) has diameter at least 6, and there are at least three branches from the center with maximum length. Then \(\text{srvc}(T^2) \geq \text{rvc}(T^2) \geq \text{diam}(T^2)\).

Proof. Let \(v_1, v_2, v_3\) be three vertices with maximum distance to \(z\) in three different branches. We consider the case that \(\text{diam}(T^2)\) is odd. There is a unique shortest path \(P = v_1, p_1, p_2, \ldots, p_k, v_2\) from \(v_1\) to \(v_2\) in \(T^2\). Analogously, there is a unique shortest path \(Q = v_1, q_1, q_2, \ldots, q_k, v_3\) from \(v_1\) to \(v_3\) in \(T^2\). Notice that \(q_1 = p_1, q_2 = p_2, \ldots, q_j = p_j\), where \(j = \lfloor \text{diam}(T^2) / 2 \rfloor\). That is, \(P\) and \(Q\) use the same vertices in the branch of \(v_1\). The unique shortest path \(R\) in \(T^2\) from \(v_2\) to \(v_3\) is \(v_2, p_{k+1}, q_{j+1}, \ldots, q_k, v_3\). See Figure 9.

We give a proof by contradiction. Let \(c\) be a rainbow vertex coloring that uses at most \(\text{diam}(T^2) - 1\) colors. Notice that the paths \(P, Q, R\) have length \(\text{diam}(T^2)\). Therefore, for each of these paths, all internal vertices are assigned different colors and all colors appear in the path. Since the first \(j\) vertices of the paths \(P, Q, R\) are equal, we see that the colors used for
Figure 9: A graph T for which T^2 needs $\text{diam}(T^2)$ colours, see Lemma 5.1.

p_{j+1}, \ldots, p_k are the same as the colors used for q_{j+1}, \ldots, q_k. Since $\text{diam}(T) \geq 6$, $\{p_{j+1}, \ldots, p_k\}$ and $\{q_{j+1}, \ldots, q_k\}$ are non-empty. Hence, there is a color that appears twice in R, which yields a contradiction. We conclude that $\text{rvc}(T^2) \geq \text{diam}(T^2)$.

The case that $\text{diam}(T^2)$ is even is analogous. \hfill \square

The class of graphs described in the statement of Lemma 5.1 needs exactly $\text{diam}(T^2)$ colors. We define layer i as the set of all vertices with distance $\left\lfloor \frac{\text{diam}(T)}{2} \right\rfloor - i$ to the center of T. For a vertex v, we write $l(v)$ for the layer that it is contained in, so $l(v) = \left\lfloor \frac{\text{diam}(T)}{2} \right\rfloor - d$, where d is the distance of v to the center of T.

Lemma 5.2. Let T be a tree such that the center of T consist of a single vertex, T has diameter at least 6, and there are at least three branches from the center with maximum length. Then $\text{rvc}(T^2) = \text{diam}(T^2)$.

Proof. Consider the following coloring c:

$$c(v) = \begin{cases}
 i & \text{if } v \text{ is in layer } i, 1 \leq i \leq \frac{\text{diam}(T)}{2} \\
 1 & \text{otherwise.}
\end{cases}$$

Notice that the number of colors in this coloring is $\frac{\text{diam}(T)}{2} = \text{diam}(T^2)$.

We claim that this is a rainbow coloring. Let u and v be two vertices in T^2. Let w be the lowest common ancestor of u and v. Consider the following $u - v$-path: use the even layers to go from u to w, and the odd layers to go from w to v. See Figure 10. Notice that the internal vertices of such a path are in different layer, hence this is a rainbow path.

Combining this with Lemma 5.1, we conclude that $\text{rvc}(T^2) = \text{diam}(T^2)$. \hfill \square

Notice that this is not a strong rainbow vertex coloring, since the $u - v$-path described in the proof is not necessarily a shortest path.

In squares of trees this is the only example that needs more than $\text{diam}(T^2) - 1$ colors. For trees T with $\text{diam}(T) \leq 4$, it holds that $\text{diam}(T^2) \leq 2$. This shows that $\text{rvc}(T^2) = 1$ in those cases. We will distinguishing two cases for the rest of the graphs.

Lemma 5.3. Let T be a tree such that the center of T consist of a single vertex, T has diameter at least 6, and there are exactly two branches from the center with maximum length. Then $\text{rvc}(T^2) = \text{diam}(T^2) - 1$.

15
Figure 10: A tree T. The numbers indicate the colouring of T^2. The gray square vertices are a rainbow path in T^2 from u to v.

Proof. Let B_1 be one of the branches with maximum length. Let B_2 be all other branches, together with the center vertex. Suppose that diam(T^2) is odd. Consider the following coloring c:

$$
c(v) = \begin{cases}
i & \text{if } v \in B_2 \text{ is in layer } i, 1 \leq i \leq \frac{\text{diam}(T^2) - 1}{2} \\
2i - 1 & \text{if } v \in B_1 \text{ is in layer } 2i, 1 \leq i \leq \frac{\text{diam}(T^2) - 1}{2} \\
2i & \text{if } v \in B_1 \text{ is in layer } 2i - 1, 1 \leq i \leq \frac{\text{diam}(T^2) - 1}{2} \\
1 & \text{otherwise.}
\end{cases}
$$

Intuitively, we color B_2 per layer, and we color B_1 similar, but with the colors of layer 1 and 2 swapped, and the colors of layers 3 and 4 swapped, etc. See Figure 11. The number of colors used in this coloring equals diam(T^2) - 1.

Let u and v be two vertices of T. We claim that there exists a rainbow path between u and v. If u and v are both in B_i, for $i = 1, 2$, we can use the same path as in the proof of Lemma 5.2. Suppose without loss of generality that $l(u) \leq l(v)$ and let w be the lowest common ancestor of u and v. Use the even layers to go from u to w, and the odd layers to go from w to v. Notice that every layer has a unique color, except for the center vertex, which has the same color as layer 1 in B_2 and as layer 2 in B_1. When this path contains the center vertex, both u and v are in B_2. Because this path does not contain a vertex in layer 1 as an internal vertex, this is a rainbow path.

If $u \in B_i$ and $v \in B_j$, with $i \neq j$, consider the following path. Let P_1 be the path from u taking the even layers towards the center, as far as possible, so P_1 ends at a neighbour of the center. Let P_2 be the same from v. Then the path P_1 followed by P_2 reversed, is a path from u to v. This is a rainbow path since the colors used in the even layers of B_1 are exactly the colors of the odd layers of B_2 and vice versa. We conclude that c is a rainbow coloring.

Suppose that diam(T^2) is even. We slightly modify the coloring c:

$$
c(v) = \begin{cases}
i & \text{if } v \in B_2 \text{ is in layer } i, 1 \leq i \leq \frac{\text{diam}(T^2) - 1}{2} \\
2i + 1 & \text{if } v \in B_1 \text{ is in layer } 2i, 1 \leq i \leq \frac{\text{diam}(T^2) - 1}{2} \\
2i & \text{if } v \in B_1 \text{ is in layer } 2i + 1, 1 \leq i \leq \frac{\text{diam}(T^2) - 1}{2} \\
1 & \text{otherwise.}
\end{cases}
$$
Figure 11: A tree T. The numbers indicate a rainbow colouring of T^2. The gray square vertices are a rainbow path from u to v. See Lemma 5.3.

The paths constructed above are rainbow paths in this coloring as well. □

Again, this is not a strong rainbow coloring.

Lemma 5.4. Let T be a tree such that the center of T consist of two vertices and T has diameter at least 5. Then $\text{rvc}(T^2) = \text{diam}(T^2) - 1$.

Proof. We will color per layer:

$$c(v) = \begin{cases} i & \text{if } v \text{ is in layer } i, 1 \leq i \leq \frac{\text{diam}(T)}{2} \\ 1 & \text{otherwise.} \end{cases}$$

The number of colors used in this coloring equals $\left\lfloor \frac{\text{diam}(T)}{2} \right\rfloor = \text{diam}(T^2) - 1$.

We claim that this is a rainbow coloring. Let u and v be two vertices of T. Write z_1 and z_2 for the two center vertices. If u and v are both in a branch of z_i, for $i = 1, 2$, we can use the same path as in the proof of Lemma 5.2: Let w be the lowest common ancestor of u and v. Use the even layers to go from u to w, and the odd layers to go from w to v. Since we use at most one vertex per layer, this is a rainbow path.

Otherwise, assume without loss of generality that u is in a branch of z_1 and v in a branch of z_2. Use the even layers to go from u to z_1, and the odd layers to go from z_1 to v. Again, this is a rainbow path. See Figure 12. □

5.2 Higher powers of trees

In this section we consider higher powers T^k for $k \geq 3$. We will see that the same results hold for the higher powers, but we have to distinguish more cases. Specifically, for the cases where the center consists of a single vertex, we have to consider whether $\text{diam}(T) \equiv 0 \pmod{k}$ or not. For squares of trees we did not consider the case that $\text{diam}(T) \not\equiv 0 \pmod{k}$, since the diameter is always even if the center consists of a single vertex.
Figure 12: A tree T. The numbers indicate the colouring of T^2. The gray square vertices are a rainbow path in T^2 from u to v.

Lemma 5.5. Let T be a tree such that the center of T consist of a single vertex, T has diameter at least $3k$, $\text{diam}(T) \equiv 0 \pmod{k}$, and there are at least three branches from the center with maximum length. Then $\text{srvc}(T^k) \geq \text{rvc}(T^k) \geq \text{diam}(T^k)$.

Proof. This proof is analogous to the proof of Lemma 5.1. □

As for squares of trees, we can proof that $\text{diam}(T^k)$ colors suffices in this case.

Lemma 5.6. Let T be a tree such that the center of T consist of a single vertex, T has diameter at least $3k$, $\text{diam}(T) \equiv 0 \pmod{k}$, and there are at least three branches from the center with maximum length. Then $\text{rvc}(T^k) = \text{diam}(T^k)$.

Proof. To describe a rainbow coloring with $\text{diam}(T^k)$ colors, we need to count the layers bottom up. That is, we start counting the layers at the vertices that are furthest from the center. Recall that $l(v)$ is the number of the layer that contains v.

Consider the following coloring c:

$$c(v) = \begin{cases} 1 & \text{if } v \text{ is the center vertex,} \\ i & \text{if } l(v) = i, \text{ and } i \equiv 0 \pmod{2} \text{ or } i \equiv -1 \pmod{2}, \text{ and } 0 < i < \frac{\text{diam}(T)}{2}, \\ 1 & \text{otherwise.} \end{cases}$$

We will count the number of colors we used. We have one color for every layer i with $i \equiv -1$, or $i \equiv 0 \pmod{2}$ minus layer 0 and the layer with the center vertex, and one extra color 1 for the rest of the vertices. There are $\frac{\text{diam}(T)}{2}$ layers excluding the center vertex. Divide the layers $0, 1, 2, \ldots, \frac{\text{diam}(T)}{2} - 1$ into blocks of size k (the topmost block does not need to be a complete block). The vertices in layers -1 (mod k) are exactly the topmost vertices of the complete blocks, and the vertices in layers 0 (mod k) are exactly the lowest vertices in the blocks. The number of complete blocks is $\left\lfloor \frac{\text{diam}(T)}{2k} \right\rfloor$, thus the number of layers that is -1 (mod k), is $\left\lfloor \frac{\text{diam}(T)/2}{k} \right\rfloor$. And the total number of blocks is $\left\lceil \frac{\text{diam}(T)/2}{k} \right\rceil$, so the number of layers that is 0 (mod k), minus layer
Figure 13: A tree T. Let $k = 6$. The numbers indicate the coloring of T^6, all unlabeled vertices have color 1. The gray square vertices are a rainbow path in T^6 from u to v. See Lemma 5.6.

We claim that this is a rainbow coloring. Let u and v be two vertices in T^k. Let w be the lowest common ancestor of u and v. Consider the following $u - v$-path: use the layers that are 0 (mod k) to go from u to w, and the layers that are -1 (mod k) to go from w to v. See Figure 13. Notice that the internal vertices of such a path are in different layer, all of which are 0 or -1 (mod k), except for vertex w. Hence this is a rainbow path.

Combining this with Lemma 5.5, we conclude that $rvc(T^k) = \text{diam}(T^k)$.

We claim that this is a rainbow coloring. Let u and v be two vertices in T^k. Let w be the lowest common ancestor of u and v. Consider the following $u - v$-path: use the layers that are 0 (mod k) to go from u to w, and the layers that are -1 (mod k) to go from w to v. See Figure 13. Notice that the internal vertices of such a path are in different layer, all of which are 0 or -1 (mod k), except for vertex w. Hence this is a rainbow path.

Combining this with Lemma 5.5, we conclude that $rvc(T^k) = \text{diam}(T^k)$. \square

As in squares of trees, these are the only powers of trees with $rvc(T^k) \geq \text{diam}(T^k)$. For all other powers of trees it holds that $rvc(T^k) = \text{diam}(T^k) - 1$. If $\text{diam}(T) \leq 2k$, then $\text{diam}(T^k) \leq 2$, so then one color suffices.

Lemma 5.7. Let T be a tree such that the center of T consist of a single vertex, T has diameter at least $2k + 1$, and $\text{diam}(T) \not\equiv 0$ (mod k). Then $rvc(T^k) = \text{diam}(T^k) - 1$.

Proof. We will start with a partial coloring of the vertices, almost the same coloring as in the proof of Lemma 5.6:

$$c(v) = \begin{cases} i & \text{if } l(v) = i, \text{ and } i \equiv 0 \text{ (mod } k) \text{ or } i \equiv -1 \text{ (mod } k), 0 < i < \frac{\text{diam}(T)}{2} \end{cases}.$$

We colored every layer that is 0 or -1 (mod k), excluding layer 0 and the center vertex, with a unique color, see Figure 14. The idea of a rainbow path from a vertex u to a vertex v will be, as in
Figure 14: Trees $T, k = 5$. The numbers indicate the partial coloring of T^k, as in Lemma 5.7.

Lemma 5.6, that we walk from u to the lowest common ancestor w using the layer $0 \pmod{k}$ and then from w to v via the layer $-1 \pmod{k}$. This time, since we want to use only $\diam(T^k) - 1$ colors, we have to be careful about the color that we assign to the lowest common ancestor w.

First, we count the number of colors we used so far. The number of layers l excluding 0 and the center is $l = \diam(T) - 1$. We will divide those layers in blocks of size k, starting at layer 1 (the topmost block does not need to be a complete block). Notice that the top two layers in every complete block are colored. There are $\left\lfloor \frac{l}{k} \right\rfloor$ complete blocks, so $2 \left\lfloor \frac{l}{k} \right\rfloor$ colors for those blocks. If the topmost block is not a complete block, it uses a color only if it has size $k - 1$. But then the center vertex is in a layer $0 \pmod{k}$, which implies that $\diam(T) \equiv 0 \pmod{k}$, a contradiction with the assumptions. We conclude that the number of colors used is $2 \left\lfloor \frac{l}{k} \right\rfloor$.

We distinguish cases for the coloring of rest of the vertices. Let z be the center vertex, and let B_1 and B_2 be two longest branches from z. Define b_1 as a vertex in B_1 in the highest layer $0 \pmod{k}$ that is colored and b_2 as a vertex in B_2 in the highest layer $0 \pmod{k}$ that is colored. Let $d(b_1, b_2)$ be the distance between b_1 and b_2 in T.

Suppose that $d(b_1, b_2) > k$. We claim that $\diam(T^k) - 1 \geq 2 \left\lfloor \frac{l}{k} \right\rfloor + 1$. Let $u \in B_1, v \in B_2$ be vertices in layer 0. A u, v-path contains a vertex in every complete block in B_1, a vertex in every complete block in B_2 and a vertex in a topmost incomplete block or z. All in all, this are $2 \left\lfloor \frac{l}{k} \right\rfloor + 1$ internal vertices. So $\diam(T^k) - 1 \geq 2 \left\lfloor \frac{l}{k} \right\rfloor + 1$. It follows that we can use one more color in our coloring c. Use this extra color for all uncolored vertices. Then, for any two vertices u, v, the path described before is a rainbow path: use the $0 \pmod{k}$ layers to go from u to z and the $-1 \pmod{k}$ layers to go from z to v.

Now suppose that $d(b_1, b_2) = k$. It follows that $k \mid \diam(T)$, a contradiction with the assumptions of the lemma.

Now suppose that $d(b_1, b_2) \leq k - 1$. Color all uncolored vertices with the highest color used, that is color ki where $i = \left\lfloor \frac{\diam(T)}{k} \right\rfloor$. Let u and v be two vertices. We distinguish two cases.

If the lowest common ancestor w is in layer ki or lower, we use the same path described above: use the $0 \pmod{k}$ layers to go from u to w and the $-1 \pmod{k}$ layers to go from w to v. Because w is in layer ki or lower, no vertex of layer ki is used as internal vertex of the $u - w$ and $w - v$
paths. So the color of \(w \) is unique in the path, and this is a rainbow path.

If \(w \) is above layer \(ki \), then we use the same path but exclude vertex \(w \). Write \(w_1 \) for the last internal vertex of the \(u \to w \)-path, and \(w_2 \) for the first internal vertex of the \(w \to v \)-path. Notice that \(w_1 \) is in layer \(ki \) and \(w_2 \) is in layer \(ki - 1 \). As \(d(b_1, b_2) \leq k - 1 \), the distance between \(w_1 \) and \(w_2 \) is at most \(k \), so there exists an edge \(w_1w_2 \) in \(T^k \). We conclude that the path using the \(0 \pmod{k} \) vertices to go from \(u \) to \(w_1 \) combined with the path using the \(-1 \pmod{k} \) vertices to go from \(w_2 \) to \(v \) is a rainbow path in \(T^k \).

Lemma 5.8. Let \(T \) be a tree such that the center of \(T \) consist of a single vertex, \(T \) has diameter at least \(3k \), \(\text{diam}(T) \equiv 0 \pmod{k} \), and there are exactly two branches from the center with maximum length. Then \(\text{rvc}(T^k) = \text{diam}(T^k) - 1 \).

Proof. To prove this, we will combine the ideas of Lemma 5.3 and 5.7. Let \(B_1 \) and \(B_2 \) be the branches with maximum length. Let \(B_3 \) be all other branches. Suppose that \(\text{diam}(T^k) \) is even. Consider the following coloring \(c \), see Figure 15:

\[
c(v) = \begin{cases}
 i & \text{if } v \in B_2 \text{ is in layer } i, i \equiv 0, -1 \pmod{k}, 1 \leq i < \text{diam}(T)/2 - 1 \\
 ki - 1 & \text{if } v \in B_1 \text{ is in layer } ki, 1 \leq ki < \text{diam}(T)/2 - 1 \\
 ki & \text{if } v \in B_1 \text{ is in layer } ki - 1, 1 \leq ki - 1 < \text{diam}(T)/2 - 1 \\
 ki & \text{if } v \in B_3 \text{ is in layer } ki, 1 \leq ki < \text{diam}(T)/2 - 1 \\
 ki - 1 & \text{if } v \in B_3 \text{ is in layer } ki + 1, 1 \leq ki + 1 < \text{diam}(T)/2 - 1 \\
 1 & \text{otherwise.}
\end{cases}
\]

First, we count the number of colors we used. We used the colors \(ki \) and \(ki - 1 \) for \(1 \leq ki - 1 < \text{diam}(T)/2 - 1 \). These are

\[
2 \left\lfloor \frac{\text{diam}(T)/2 - 1}{k} \right\rfloor = 2 \left\lfloor \frac{\text{diam}(T)/k - 1}{2} \right\rfloor \\
= 2 \left\lfloor \frac{\text{diam}(T^k)/2 - 1}{k} \right\rfloor \\
= 2 \left(\frac{\text{diam}(T^k)/2 - 1}{k} \right) \\
= \text{diam}(T^k) - 2
\]

colors. Here, the third line holds since we assumed that \(\text{diam}(T^k) \) is even. We used one extra color for the rest of the vertices, which makes a total of \(\text{diam}(T^k) - 1 \) colors.

Let \(u \) and \(v \) be two vertices of \(T \). We claim that there exists a rainbow path between \(u \) and \(v \) in \(T^k \). We will distinguish several cases.

Suppose that \(u \in B_1, v \notin B_1 \). Let \(z \) be the center of the graph. Use the layers \(0 \pmod{k} \), to walk from \(u \) to \(z \), and the layers \(0 \pmod{k} \), to go from \(z \) to \(v \). This is a rainbow path.

Suppose that \(u \in B_1, v \in B_i, i = 1, 2 \). Let \(w \) be the lowest common ancestor of \(u \) and \(v \). Use the layers \(0 \pmod{k} \) to go from \(u \) to \(w \), and the layers \(-1 \pmod{k} \) to go from \(w \) to \(v \). This is a rainbow path.

Suppose that \(u \in B_i, v \in B_3, i = 2, 3 \). Let \(w \) be the lowest common ancestor of \(u \) and \(v \). Use the layers \(0 \pmod{k} \) to walk from \(u \) to \(w \), and the layers \(1 \pmod{k} \) to go from \(w \) to \(v \). This is a rainbow path.
Now suppose that \(\text{diam}(T^k) \) is odd. We slightly change the coloring: use color \(ki \) with \(i = \left\lfloor \frac{\text{diam}(T)/2 - 1}{k} \right\rfloor \) for the case ‘otherwise’ instead of color 1. Notice that this is the highest color used in the rest of the coloring. The number of colors used is:

\[
2 \left\lfloor \frac{\text{diam}(T)/2 - 1}{k} \right\rfloor = 2 \left\lfloor \frac{\text{diam}(T^k)/2 - 1}{k} \right\rfloor
= 2 \left\lfloor \frac{\text{diam}(T^k)}{2} - \frac{1}{k} \right\rfloor
\leq 2 \left\lfloor \frac{\text{diam}(T^k)}{2} \right\rfloor
= \text{diam}(T^k) - 1
\]

We can use almost the same paths as in the case of \(\text{diam}(T^k) \) being even.

Suppose that \(u \in B_1, v \notin B_1 \). Let \(z \) be the center of the graph. Let \(P \) be the path from \(u \) to \(z \) that uses the layers \(0 \pmod{k} \), and \(Q \) the path from \(z \) to \(v \) that uses the layers \(0 \pmod{k} \). Let \(p_j \) be the last vertex before \(z \) in \(P \) and let \(q_1 \) be the first vertex after \(z \) in \(Q \). Notice that \(z \) has the same color as \(q_1 \), so we cannot include both \(z \) and \(q_1 \) in a rainbow path. Notice that both \(p_j \) and \(q_1 \) are in the highest layer \(kl \). Since the diameter \(\text{diam}(T) \equiv 0 \pmod{k} \) and \(\text{diam}(T^k) \) is odd, it follows that the distance between \(p_j \) and \(q_1 \) in \(T \) is exactly \(k \). Thus there is an edge \(p_jq_1 \) in \(T^k \). Combine the paths \(P \) and \(Q \) but exclude vertex \(z \), to obtain a path from \(u \) to \(v \). This is a rainbow path.

Consider the other two cases, so, suppose that \(u \in B_i, v \in B_i, i = 1, 2 \) or \(u \in B_i, v \in B_3, i = 2, 3 \). Let \(w \) be the lowest common ancestor of \(u \) and \(v \). If \(w \) is in layer \(i \) with \(i \leq k \left\lfloor \frac{\text{diam}(T)/2 - 1}{k} \right\rfloor \), then use the same path as in the case \(\text{diam}(T^k) \) even. If \(w \) is in layer \(i \) with \(i > k \left\lfloor \frac{\text{diam}(T)/2 - 1}{k} \right\rfloor \), then \(w \) has the same color as its predecessor \(p_j \) or successor \(q_1 \) in the path described in the case \(\text{diam}(T^k) \) even. As in the previous case, the distance between \(p_j \) and \(q_1 \) in \(T \) is at most \(k \), so there exists an edge \(p_jq_1 \) in \(T^k \). So if we exclude \(w \) from the path described in the case \(\text{diam}(T^k) \) even, we still have a path, and this is a rainbow path.

Lemma 5.9. Let \(T \) be a tree such that the center of \(T \) consist of two vertices and \(T \) has diameter at least \(2k + 1 \). Then \(\text{rvc}(T^k) = \text{diam}(T^k) - 1 \).

Proof. Let \(z_1 \) and \(z_2 \) be the two center vertices. Let \(B_1 \) be all branches of \(z_1 \), including \(z_1 \), and \(B_2 \) be all branches of \(z_2 \), including \(z_2 \).

Divide the layers \(1, 2, \ldots, \frac{\text{diam}(T) - 1}{2} \) in blocks of size \(k \), starting at layer 1 (the topmost block does not need to be a complete block). Let \(l \) be the number of complete blocks in \(B_1 \). Let \(a_1, a_2, \ldots \) be the topmost vertices in the topmost complete blocks in \(B_1 \) (possibly \(a_1 = z_1 \)), that is, \(a_1, a_2, \ldots \) are all vertices in \(B_1 \) in layer \(kl \). Analogously, let \(b_1, b_2, \ldots \) be the topmost vertices in the topmost complete blocks in \(B_2 \) (possibly \(b_1 = z_2 \)), that is, \(b_1, b_2, \ldots \) are all vertices in \(B_2 \) in layer \(kl \). Let \(d(a_1, b_1) \) be the distance between \(a_1 \) and \(b_1 \) in \(T \). We will distinguish two cases.

First, suppose that \(1 \leq d(a_1, b_1) \leq k \). Consider the following partial coloring:

\[
c(v) = \begin{cases}
 i & \text{if } v \in B_1 \text{ is in layer } i, i \equiv 0, -1 \pmod{k}, 1 \leq i \leq kl \\
 ki - 1 & \text{if } v \in B_2 \text{ is in layer } ki, 1 \leq ki \leq kl \\
 ki & \text{if } v \in B_2 \text{ is in layer } ki - 1, 1 \leq ki - 1 \leq kl.
\end{cases}
\]
Figure 15: A tree T. The numbers indicate a rainbow colouring of T^k, for $k = 5$, the unlabeled vertices have color 1. See Lemma 5.8.

Color the rest of the vertices with the highest color used in the partial coloring, that is, with color kl.

Notice that the partial coloring colors the top two vertices of every complete block, so the number of colors we used equals $2l$. Let u be a vertex in layer 0 in B_1 and v a vertex in layer 0 in B_2. Notice that a shortest path from u to v uses at least one vertex from every complete block. It follows that $\text{diam}(T^k) \geq 2l + 1$. So we conclude that the number of colors we used is at most $\text{diam}(T^k) - 1$.

We show that this coloring is a rainbow coloring. Let $u \in B_1$ and $v \in B_2$ be two vertices in different sets of branches. Consider the path P from u to its ancestor a_1 using the layers that are 0 (mod k), and the path Q from the ancestor b_j of v to v using the layers that are 0 (mod k). Since $d(a_i,b_j) = d(a_1,b_1) \leq k$, there exists an edge a_ib_j in T^k. Hence we can combine P and Q to a path from u to v. This is a rainbow path.

Let u and v be two vertices in the same set of branches, so u and v are both in B_1 or both in B_2. Let w be their lowest common ancestor, and let i be the layer that contains w. If $i \leq kl$, then consider the path P from u to w using the layer 0 (mod k) and the path Q from w to v using the layers -1 (mod k). Combining them yields a rainbow path from u to v. Suppose that $i > kl$. Notice that we cannot simply use the path PQ, since w has the same color as the vertices in layer kl or $kl - 1$ (depending on whether u and v are in B_1 or B_2). Let P and Q be as before and let p_j be the last vertex before w in P and q_1 the first vertex after w in Q. Notice that p_j is in layer kl and q_1 is in layer $kl - 1$. Then the distance between p_j and q_1 in T is at most $d(a_1,b_1) \leq k$, hence there is an edge p_jq_1 in T^k. So combining P and Q but excluding vertex w is a path from u to v, and it is a rainbow path.
Figure 16: Trees T, $k = 5$. The numbers indicate the colouring of T^k. See Lemma 5.9.

Second, suppose that $d(a_1, b_1) > k$. Consider the following coloring:

$$
c(v) = \begin{cases}
i & \text{if } v \in B_1 \text{ is in layer } i, i \equiv 0, -1 \pmod{k}, 1 \leq i \leq kl \\
i-1 & \text{if } v \in B_2 \text{ is in layer } ki, 1 \leq ki \leq kl \\
ki & \text{if } v \in B_2 \text{ is in layer } ki - 1, 1 \leq ki - 1 \leq kl \\
1 & \text{otherwise.}
\end{cases}
$$

The number of colors we used in this coloring is $2l + 1$. The diameter of this graph is also $2l + 2$: for a vertex u in layer 0 of B_1 and v in layer 0 of B_2, a shortest path needs at least one vertex from every complete block and a vertex from the topmost (incomplete) blocks. Such a path has length at least $2l + 2$. So the number of colors we used is at most $\text{diam}(T^k) - 1$.

We will show that this is a rainbow coloring. For vertices $u \in B_1$ and $v \in B_2$, we use the following path: from u to z_1 using the layers 0 (mod k) and from z_1 to v using the layers 0 (mod k). For two vertices u and v in the same set of branches, so both in B_1 or both in B_2, use the layers 0 (mod k) to go from u to the lowest common ancestor w and the layers -1 (mod k) to go from w to v. Those paths are rainbow paths.

Theorem 5.10 (=Theorem C). If G is a power of a tree, then $\text{rvc}(G) \in \{\text{diam}(G) - 1, \text{diam}(G)\}$, and the corresponding optimal rainbow vertex coloring can be found in time that is linear in the size of G.

Proof. In Lemmas 5.2, 5.3, 5.4, 5.6, 5.7, 5.8, 5.9, it is shown that $\text{rvc}(G) \in \{\text{diam}(G) - 1, \text{diam}(G)\}$.
Suppose that \(G = T^k \). If the tree \(T \) is unknown, it can be computed in linear time [2]. First, we compute the center of \(T \), and then we distinguish cases as in Lemmas 5.2, 5.3, 5.4, 5.6, 5.7, 5.8, 5.9. This costs linear time. In each of those lemmas, an optimal coloring is given that can be computed in linear time.

6 Conclusion and open problems

In this work, we provided polynomial-time algorithms to rainbow vertex color permutation graphs, powers of trees, and split strongly chordal graphs. The algorithm provided for split strongly chordal graphs also works for the strong variant of the problem, where the rainbow paths connecting pairs of vertices are required to be also shortest paths.

An interesting question to be answered towards solving Conjecture 1.1 is whether RVC can be solved in polynomial time on AT-free graphs, i.e. graphs that do not contain an asteroidal triple. Conjecture 1.1 has been proved true for interval graphs [7] and, in this work, for permutation graphs, both of which are important subclasses of AT-free graphs.

Another direction of research within graph classes lies in determining the complexity of RVC and SRVC on strongly chordal graphs. Note that both powers of trees and split strongly chordal graphs form subclasses of strongly chordal graphs for which RVC is polynomial-time solvable, as we show in this work. Finally, note that every strongly chordal graph is also a chordal graph, and the problems are known to be NP-hard when restricted to chordal graphs.

References

[1] A. Brandstädt, F. Dragan, V. Chepoi, and V. Voloshin, Dually chordal graphs, SIAM Journal on Discrete Mathematics, 11 (2007), pp. 71 – 77.

[2] M.-S. Chang, M.-T. Ko, and H.-I. Lu, Linear-time algorithms for tree root problems, Algorithmica, 71 (2015), pp. 471–495.

[3] L. Chen, X. Li, and H. Lian, Further hardness results on the rainbow vertex-connection number of graphs, Theoretical Computer Science, 481 (2013), pp. 18–23.

[4] L. Chen, X. Li, and Y. Shi, The complexity of determining the rainbow vertex-connection of a graph, Theoretical Computer Science, 412 (2011), pp. 4531–4535.

[5] E. Eiben, R. Ganian, and J. Lauri, On the complexity of rainbow coloring problems, Discrete Applied Mathematics, 246 (2018), pp. 38–48.

[6] P. A. Golovach, M. Johnson, D. Paulusma, and J. Song, A survey on the computational complexity of coloring graphs with forbidden subgraphs, Journal of Graph Theory, 84 (2017), pp. 331–363.

[7] P. Heggernes, D. Issac, J. Lauri, P. T. Lima, and E. J. van Leeuwen, Rainbow vertex coloring bipartite graphs and chordal graphs, in Proceedings of MFCS 2018, vol. 117 of Leibniz International Proceedings in Informatics, 2018, pp. 83:1–83:13.

[8] D. Kráľ’, J. Kratochvíl, Z. Tuza, and G. J. Woeginger, Complexity of coloring graphs without forbidden induced subgraphs, in Graph-Theoretic Concepts in Computer Science, A. Brandstäd and V. B. Le, eds., 2001, pp. 254–262.
A Shortest paths in permutation graphs

As mentioned in Section 3, Lemma 3.1 can also be found in [13, Lemma 5], but for completeness we write the proof in this appendix. We first prove some basic lemmas about paths in the intersection model.

Lemma A.1. If $u \preceq z \prec v$, then for every u, v-path $z_1(= u), z_2, \ldots, z_a(= v)$, there is a vertex z_i that intersects z (or equals z).

Proof. Suppose that none of the vertices z_i intersects z. With induction we show that $z_i \preceq z$ for all $1 \leq i \leq a$. By assumption $u = z_1 \prec z$. Suppose that $z_{i-1} \prec z$. Since $z_i \preceq z_{i-1}$, we have that exactly one of $t(z_i) < t(z_{i-1}) < t(z)$ or $b(z_i) < b(z_{i-1}) < b(z)$. Because z_i does not intersect z, it follows that $z_i \preceq z$. This yields a contradiction with $z \prec v$. \square

Lemma A.2. If $u \prec v$ and z is a vertex in an induced u, v-path, then z is not left of u and not right of v.

Proof. Suppose that $z \prec u$. Then by Lemma A.1, it follows that there is a vertex in the z, v-path that intersects u. This yields a contradiction with the fact that u, \ldots, z, \ldots, v is an induced u, v-path. We conclude that z is not left of u. Analogously, we see that z is not right of v. \square

Lemma A.3. If $u \prec v$ and $z_1(= u), z_2, z_3, \ldots, z_a(= v)$ is a shortest u, v-path, then for all $2 < i < a - 1$, it holds that $u \prec z_i \prec v$.

Proof. By Lemma A.2, we know that z_i is not left of u for all $1 \leq i \leq a$. Since $z_1, z_2, z_3, \ldots, z_a$ is a shortest path, z_i does not intersect u, for $2 < i$. Hence $u \prec z_i$ for all $i > 2$. Analogously, it holds that $z_i \prec v$ for $i < a - 1$. \square

Lemma A.4. If $z_1, z_2, z_3, \ldots, z_a$ is a shortest z_1, z_a-path, then it either satisfies Equations (1) and (2), or Equations (3) and (4).

Proof. We know that z_2 intersects z_1, so we have either $t(z_2) > t(z_1)$ and $b(z_2) < b(z_1)$, or $t(z_2) < t(z_1)$ and $b(z_2) > b(z_1)$.

Suppose that $t(z_2) > t(z_1)$ and $b(z_2) < b(z_1)$. Then we prove by induction that we are in the first case. Suppose that Equations 1 and 2 hold for all $i < k$. Then consider z_k. Since z_k is adjacent to z_{k-1}, we either have $t(z_k) > t(z_{k-1})$ and $b(z_k) < b(z_{k-1})$, or $t(z_k) < t(z_{k-1})$ and $b(z_k) > b(z_{k-1})$.

[9] M. Krivelevich and R. Yuster, The rainbow connection of a graph is (at most) reciprocal to its minimum degree, Journal of Graph Theory, 63 (2010), pp. 185–191.

[10] J. Lauri, Chasing the Rainbow Connection: Hardness, Algorithms, and Bounds, PhD thesis, Tampere University of Technology, 2016.

[11] X. Li, Y. Mao, and Y. Shi, The strong rainbow vertex-connection of graphs, Utilitas Mathematica, 93 (2014), pp. 213–223.

[12] R. M. McConnell and J. P. Spinrad, Modular decomposition and transitive orientation, Discrete Mathematics, 201 (1999), pp. 189 – 241.

[13] S. Mondal, M. Pal, and T. K. Pal, An optimal algorithm to solve the all-pairs shortest paths problem on permutation graphs, Journal of Mathematical Modelling and Algorithms, 2 (2003), pp. 57–65.
Thus by Lemma A.4, we see that the induction hypothesis, we know that Equations (6) and (7). The dashed segments are examples of z_{i-1} and z_i. See Lemma A.5.

Suppose that k is even (See Figure 17). If $t(z_k) < t(z_{k-1})$ and $b(z_k) > b(z_{k-1})$, then, by the induction hypothesis, we know that $t(z_k) < t(z_{k-1}) < t(z_{k-2})$ and $b(z_k) > b(z_{k-1}) > b(z_{k-2})$. Thus $z_k \sim z_{k-2}$. This yields a contradiction with the assumption that $z_1, z_2, z_3, \ldots, z_a$ is a shortest z_1, z_a-path. Hence, $t(z_k) > t(z_{k-1})$ and $b(z_k) < b(z_{k-1})$. The case that k is odd is analogous.

Analogously, if $t(z_k) < t(z_1)$ and $b(z_2) > b(z_1)$, then we are in the second case.

Lemma A.5. Let $Z = z_1 = u, z_2, \ldots, z_a = v$ be a u, v-path and $t(z_2) > t(u)$. Then $X_{u,v}$ exists and the length of Z is at least the length of $X_{u,v}$.

Proof. Since $t(z_2) > t(u)$ and $z_2 \sim u$, there exists a vertex $x \sim u$ with $t(x) > t(u)$, hence the path $X_{u,v}$ exists.

Let $c - 1$ be the length of $X_{u,v}$. Suppose that Z is a shorter path than $X_{u,v}$, that is, $a < c$. In fact, let Z be a shortest u, v-path with $t(z_2) > t(u)$.

We will prove by induction that for $1 < i \leq a$, it holds that

\[t(z_i) \leq t(x_i) \text{ and } b(z_i) \leq b(x_{i-1}) \text{ if } i \text{ is even,} \]

\[t(z_i) \leq t(x_{i-1}) \text{ and } b(z_i) \leq b(x_i) \text{ if } i \text{ is odd.} \]

Intuitively, this means that z_i is not right of x_i. See Figure 18 for the possible location of z_i compared to x_i.

We start with the base case $i = 2$. We know that $t(z_2) \leq t(x_2)$ by the definition of x_2. And $b(z_2) < b(u) = b(x_1)$, since z_2 intersects u and $t(z_2) > t(u)$.

Suppose that Equations (6) and (7) hold for $i = k - 1$, where $3 \leq k \leq a$. Suppose that k is even. By Lemma A.4, we see that $b(z_k) < b(z_{k-1})$. By the induction hypothesis, we know that $b(z_{k-1}) \leq b(x_{k-1})$, thus $b(z_k) \leq b(x_{k-1})$.

Now we distinguish two cases: $z_k \sim x_{k-1}$ or $z_k \sim x_{k-1}$. In the first case, by the definition of x_k, we have that $t(x_k) \geq t(z_k)$. In the second case, it holds that $t(z_k) \leq t(x_{k-1})$, since we already proved that $b(z_k) \leq b(x_{k-1})$. By Equation (1), we have that $t(x_k) > t(x_{k-1})$. We conclude that $t(z_k) \leq t(x_k)$.

\[\text{Figure 17: See Lemma A.4. Since } z_k \sim z_{k-1}, \text{ there are two cases: } t(z_k) < t(z_{k-1}) \text{ or } t(z_k) > t(z_{k-1}). \]

\[\text{Figure 18: The thick lines indicate where the segment of } z_{i-1} \text{ and } z_i \text{ can possibly end according to Equations (6) and (7). The dashed segments are examples of } z_{i-1} \text{ and } z_i. \text{ See Lemma A.5.} \]
The case that \(k \) is odd is analogous.

So, we conclude that

\[
\begin{align*}
 t(z_{a-1}) &\leq t(x_{a-1}) \text{ and } b(z_{a-1}) \leq b(x_{a-2}) \text{ if } a - 1 \text{ is even}, \\
 t(z_{a-1}) &\leq t(x_{a-2}) \text{ and } b(z_{a-1}) \leq b(x_{a-1}) \text{ if } a - 1 \text{ is odd}.
\end{align*}
\]

Since we assumed that \(a < c \) and \(X_{u,v} \) is induced by definition, Lemma A.2 implies that \(x_{a-1} \) and \(x_{a-2} \) are both left of \(v \). This yields a contradiction with the fact that \(z_{a-1} \) intersects \(v \). We conclude that \(Z \) is at least as long as \(X_{u,v} \).

Lemma A.6. Let \(Z = z_1 = u, z_2, \ldots, z_a = v \) be a \(u, v \)-path and \(b(z_2) > b(u) \). Then the length of \(Z \) is at least the length of \(Y_{u,v} \).

Proof. This is analogous to the proof of Lemma A.5.

Proof of Lemma 3.1. For every \(u, v \)-path \(Z = z_1, z_2, \ldots, z_a \), it holds that either \(t(z_2) > t(u) \) or \(b(z_2) > b(u) \). By A.5 and A.6 it follows that the length of \(Z \) is at least the minimum of the length of \(X_{u,v} \) and the length of \(Y_{u,v} \). Hence, at least one of \(X_{u,v} \) and \(Y_{u,v} \) is a shortest \(u, v \)-path.