Abstract

In the light of the Quantum Painlevé–Calogero Correspondence established in our previous papers [1, 2], we investigate the inverse problem. We imply that this type of the correspondence (Classical–Quantum Correspondence) holds true and find out what kind of potentials arise from the compatibility conditions of the related linear problems. The latter conditions are written as functional equations for the potentials depending on a choice of a single function – the left-upper element of the Lax connection. The conditions of the Correspondence impose restrictions on this function. In particular, it satisfies the heat equation. It is shown that all natural choices of this function (rational, hyperbolic and elliptic) reproduce exactly the Painlevé list of equations. In this sense the Classical–Quantum Correspondence can be regarded as an alternative definition of the Painlevé equations.
Contents

1 Introduction 3

2 Quantum Painlevé-Calogero Correspondence 6
 2.1 Example of Painlevé V 7
 2.2 Summary 7

3 The Scalar Linear Problems and Functional Equations 9
 3.1 One simple zero 12
 3.2 Two simple zeros 14

4 Rational Solutions 15
 4.1 The simplest case: \(b = x - u(t) \) 15
 4.2 The case \(b = (x - u_1(t))(x - u_2(t)) \) 16

5 Hyperbolic Solutions 19
 5.1 The case \(b = e^{t/2} \sinh(x - u(t)) \) 19
 5.2 The case \(b = e^t \sinh(x - u(t)) \sinh(x + u(t)) \) 20

6 Elliptic Solutions 21
 6.1 The case \(b = \vartheta_1(x - u(t), 2\pi it) \) 21
 6.2 The case \(b = \vartheta_1(x - u(t), 2\pi it) \vartheta_1(x + u(t), 2\pi it) \) 22

Appendix A: Special Cases 24

Appendix B: Elliptic Functions 27

Appendix C: U-V pairs for \(P_1-P_V \) 31

Acknowledgments 34

References 34
1 Introduction

The Painlevé equations (PI–PV) discovered by P. Painlevé, R. Fuchs and B. Gambier [3, 4, 5] were extensively studied during the last century [6, 7]. Their applications include self-similar reductions of non-linear integrable partial differential equations [8], correlation functions of integrable models [9, 10], quantum gravity and string theory [11], topological field theories [12], 2D polymers [13], random matrices [14, 15] and stochastic growth processes [16], conformal field theories and KZ equations [17, 18], the AGT conjecture [19, 20] and spectral duality [21, 22, 23] to mention only few applications and few references.

As is known from classical works [4, 24, 25] the Painlevé equations describe the monodromy preserving deformations of a system of linear differential equations with rational coefficients. The monodromy approach was developed by H. Flaschka, A. Newell and by M. Jimbo, T. Miwa, K. Ueno [8, 26, 27, 28], see also [29]. At present different types of linear problems are known (scalar [4, 24], 2×2-matrix [27] (see also [30, 31]) or 3×3-matrix [32]).

We deal with the linear problems depending on a spectral parameter [3]–[7], [24]–[29]:

\[
\begin{aligned}
\partial_x \Psi &= U(x,t) \Psi , \\
\partial_t \Psi &= V(x,t) \Psi , \\
\Psi &= \begin{pmatrix} \psi_1 \\ \psi_2 \end{pmatrix} ,
\end{aligned}
\]

(1.1)

where \(U, V \in \text{sl}_2\) explicitly depend on the spectral parameter \(x\), on the deformation parameter \(t\) (time-variable) and contain an unknown function \(u(t)\) to be constrained by the condition that the two equations have a family of common solutions. In fact, the latter is equivalent to the compatibility of the linear problems expressed as the zero curvature equation (integrability condition):

\[
\partial_x V - \partial_t U + [V, U] = 0 .
\]

(1.2)

Set

\[
U = \begin{pmatrix} a & b \\ c & d \end{pmatrix}, \quad V = \begin{pmatrix} A & B \\ C & D \end{pmatrix} .
\]

The matrices \(U, V\) are traceless, i.e., \(a + d = 0, A + D = 0\). Then the zero curvature equation gives:

\[
\begin{aligned}
a_t - A_x + bC - cB &= 0 , \\
b_t - B_x + 2aB - 2bA &= 0 , \\
c_t - C_x + 2cA - 2aC &= 0 .
\end{aligned}
\]

(1.3)

In [11, 2] by applying the diagonal gauge transformation \(\Omega = \text{diag}(\omega, \omega^{-1})\) we chose the matrices \(U, V\) such that

\[
b_x = 2B .
\]

(1.4)

Then the linear system (1.1) for the vector function \(\Psi = (\psi_1, \psi_2)^t\) can be reduced to two scalar equations for \(\psi := \psi_1:\)

\[
\begin{aligned}
\left(\frac{1}{2} \partial_x^2 - \frac{1}{2} (\partial_x \log b) \partial_x + W(x,t) \right) \psi &= 0 , \\
\partial_t \psi &= \left(\frac{1}{2} \partial_x^2 + U(x,t) \right) \psi ,
\end{aligned}
\]

(1.5)

1This function is going to satisfy one of the six Painlevé equations (in the Calogero form).
where
\[W = U(x, t) - \frac{1}{2} \partial_t \log b + \frac{1}{4} \partial^2_x \log b + \frac{1}{4} (\partial_x \log b)^2, \]
and
\[U(x, t) = \frac{1}{2} (ad - bc - ax) + A = \frac{1}{2} \det U - \frac{a_x}{2} + A. \] (1.6)

The second equation in (1.5) has the form of a non-stationary Schrödinger equation in imaginary time with the potential \(U(x, t) \). It describes the isomonodromic deformations of the first one and their compatibility implies the Painlevé equation (in the Calogero form) for the function \(u = u(t) \):
\[\ddot{u} = -\partial_u \tilde{V}(u, t), \] (1.7)
generated by the Hamiltonian \(H(\dot{u}, u, t) = \frac{1}{2} \dot{u}^2 + \tilde{V}(u, t) \). The function \(u = u(t) \) is defined as a (simple) zero of the function \(b(x) \):
\[b(u) = 0. \] (1.8)

The second important condition we are going to use together with (1.4) is
\[U(x, t) = U(x, \dot{u}(t), u(t), t) = V(x, t) - H(\dot{u}, u, t), \] (1.9)
where \(H(\dot{u}, u, t) \) is the classical Hamiltonian. The \(x \)-dependent part of the potential \(V(x, t) \) does not contain the dependent variable \(u \). Therefore, the second equation in (1.5) acquires the form
\[\partial_t \Psi(x, t) = \left(\frac{1}{2} \partial^2_x + V(x, t) \right) \Psi(x, t) \] (1.10)
with
\[\Psi(x, t) = e^{\int H(\dot{u}, u, t) dt} \psi(x, t). \] (1.11)

Notice that condition (1.4) can be easily satisfied by choosing a suitable gauge. However, together with (1.9) it becomes a non-trivial condition and leads to the Quantum Painlevé-Calogero Correspondence (see below) which relates the potentials of the classical problem \(\tilde{V} \) with \(V \) in the quantum one. It appears that the potentials differ only by “quantum corrections” of the coupling constants. Therefore, (1.10) is the quantization of (1.7) with the unit Planck constant.

In [1, 2] it was shown that there exists a choice of gauge and variables \((x, t)\) such that the non-stationary Schrödinger equation becomes a quantized Painlevé equation. Thus, the linear problem (1.1) leads to both classical and quantum Painlevé equations. The classical one is written in the variable \(u(t) \) and follows from the zero-curvature equation (1.1) valid for all \(x \). The quantum one is written in terms of the spectral parameter \(x \) for a component of the common solution \(\psi \) of the linear problems. We have called this construction the Quantum Painlevé-Calogero Correspondence. It is a quantum version of the classical correspondence introduced by A. Levin and M. Olshanetsky [34] and developed by K. Takasaki [35]. It should be mentioned that the phenomenon similar to the Quantum Painlevé-Calogero Correspondence [1, 2] was first observed by B. Suleimanov [36, 37] in terms of rational linear problems.
Let us note that the phenomenon of the classical-quantum correspondence is also known in the theory of integrable systems in some other contexts. There are interrelations between classical and quantum problems of a seemingly different type [38, 39, 40], where Bethe vectors of integrable quantum spin chains are related to some data of classical integrable many-body systems. A similarity between quantum transfer matrices and classical \(\tau \)-functions was pointed out in [41, 42, 43].

The aim of the paper is to address the inverse problem. We start with the system of scalar equations (1.5) and assume that the Quantum Painlevé-Calogero Correspondence takes place, i.e., equations (1.7)-(1.9) hold true (in this paper we refer to it as Classical-Quantum Correspondence since it is not clear initially which equations satisfy the conditions). Then we derive and solve functional equations\(^2\) for the potential \(V \) searching through possible choices of the function \(b \). In other words, we assume that the Classical-Quantum Correspondence holds true and find out what kind of potentials arise from the compatibility conditions.

We prove the following

Theorem 1 Let the compatibility condition for the system (1.7) with

\[
U(x, \dot{u}(t), u(t), t) = V(x, t) - H(\dot{u}, u, t)
\]

and

\[
H(\dot{u}, u, t) = \frac{1}{2} \dot{u}^2 + \tilde{V}(u, t)
\]

be equivalent to

\[
\ddot{u} = -\partial_u \tilde{V}(u, t),
\]

where \(u \) is defined as a simple zero of the function \(b(x, t) \): \(b(x, t) \big|_{x=u} = 0 \). Then there are two possibilities:

1. \[
b(x, u, t) = b(x - u, t). \tag{1.12}\]

The function \(b(z, t) \) satisfies the heat equation

\[
2 \partial_t b(z, t) = \partial_z^2 b(z, t), \tag{1.13}\]

the quantum potential coincides with the classical one,

\[
\tilde{V}(u, t) = V(u, t), \tag{1.14}\]

and satisfies the following functional equation:

\[
V_t(x) - V_t(u) - \frac{1}{2} f(x - u, t) (V'(x) + V'(u)) - f_x(x - u, t) (V(x) - V(u)) = 0. \tag{1.15}\]

where \(f(x, t) = b_x(x, t)/b(x, t) \).

\(^2\)It should be mentioned that functional equations play a very important role in the theory of integrable systems; they underlie the Lax equations, the \(r \)-matrix and other structures [41, 42, 43].
2. \[b(x, u, t) = b(x - u, t)b(x + u, t). \] (1.16)

The function \(b(z, t) \) satisfies the heat equation

\[2\partial_t b(z, t) = \partial^2_x b(z, t), \] (1.17)

the classical and quantum potentials are related by

\[\tilde{V}(u, t) = V(u, t) + \frac{1}{2} \partial_x^2 \log b(x, t) \bigg|_{x=2u} \] (1.18)

and \(V(x, t) \) satisfies the following functional equation:

\[V_t(x) - V_t(u) - \frac{1}{2} f(x-u, t) (V'(x) + V'(u)) - \frac{1}{2} f(x+u, t) (V'(x) - V'(u)) \]
\[+ (f_x(x-u, t) + f_x(x+u, t)) (V(u) - V(x)) = 0. \] (1.19)

where \(f(x, t) = b_x(x, t)/b(x, t) \). The proof of the Theorem is based on Propositions 3.1, 3.2 and 3.3.

Solving equations (1.15) and (1.19) we get the following results: for the rational (in \(x \)) function \(b \) we obtain \(P_{\text{I}}, P_{\text{II}} \) from (1.15) and \(P_{\text{IV}} \) from (1.19), for the hyperbolic we obtain \(P_{\text{III}} \) from (1.15) and \(P_{\text{V}} \) from (1.19). The most general equation \(P_{\text{VI}} \) arises for the \(\theta \)-functional ansatz for \(b \) from (1.19) while the equation from (1.15) is shown to have only trivial solutions in this case.

Finally, it is shown that all natural choices of the function \(b \) (rational, hyperbolic and elliptic) reproduce exactly the Painlevé list of equations. In this sense the Classical-Quantum Correspondence can be viewed as an alternative definition for the Painlevé equations.

The paper is organized as follows. In the next section we recall the Quantum Painlevé-Calogero Correspondence. In Section 3 we derive the functional equations from (1.15) and (1.19) and then solve these equations in Sections 4-6. In the appendices we give the definitions and identities for necessary elliptic functions, discuss some special cases of the \(b \)-function and list the \(U-V \) pairs for \(P_{\text{I}}-P_{\text{V}} \) which are acceptable for the Quantum Painlevé-Calogero Correspondence.

2 Quantum Painlevé-Calogero Correspondence

In [1, 2] we described the Quantum Painlevé-Calogero Correspondence which states that for Painlevé equations the non-stationary Baxter equation at \(\hbar = 1 \) represents a classical linear problem. Let us start from example.
2.1 Example of Painlevé V

The P_{V} equation is conventionally written as:

\[
\partial^2_{T} T = \left(\frac{1}{2y} + \frac{1}{y-1} \right) (\partial_T y)^2 - \frac{\partial_T y}{T} + \frac{y(y-1)^2}{T^2} \left(\alpha + \frac{\beta}{y^2} + \frac{\gamma T}{(y-1)^2} + \frac{\delta T^2(y+1)}{(y-1)^3} \right),
\]

(2.1)

where $\alpha, \beta, \gamma, \delta$ are parameters. Making change of variable

\[y = \coth^2 u \]

together with

\[T = e^{2t} \]

P_{V} acquires the form

\[
\ddot{u} = -\frac{2\alpha \cosh u}{\sinh^3 u} - \frac{2\beta \sinh u}{\cosh^3 u} - \gamma e^{2t} \sinh(2u) - \frac{1}{2} \delta e^{4t} \sinh(4u).
\]

(2.4)

The later equation is Hamiltonian with $H_{V}(p, x) = \frac{p^2}{2} + V_{V}(u, t)$, where

\[
V_{V}(u, t) = -\frac{\alpha}{\sinh^2 u} - \frac{\beta}{\cosh^2 u} + \frac{\gamma e^{2t}}{2} \cosh(2u) + \frac{\delta e^{4t}}{8} \cosh(4u).
\]

(2.5)

The zero curvature representation is known from [27]. It is rational in spectral parameter X. As it was shown in [1] the change

\[X = \cosh^2 x \]

(2.6)

with (2.2) and (2.3) and some special gauge transformation brings the Jimbo-Miwa $U - V$ pair to the one given in (C.25)-(C.28). Then the first component of the linear problem (1.1) ψ satisfies the non-stationary Schrödinger equation

\[
\partial_t \psi = \left(H_{V}^{(\alpha - \frac{1}{8}, \beta + \frac{1}{8}, \gamma, \frac{1}{2})}(\partial_x, x) - H_{V}^{(\alpha, \beta, \gamma, \frac{1}{2})}(\dot{u}, u) \right) \psi
\]

(2.7)

and, therefore,

\[
\partial_t \Psi = H_{V}^{(\alpha - \frac{1}{8}, \beta + \frac{1}{8}, \gamma, \frac{1}{2})}(\partial_x, x) \Psi \left(\frac{1}{2} \partial^2_x + V_{V}^{(\alpha - \frac{1}{8}, \beta + \frac{1}{8}, \gamma, \frac{1}{2})}(x, t) \right) \Psi
\]

(2.8)

for $\Psi(x, t) = e^{\int_t^T H_{V}^{(\alpha, \beta, \gamma, \frac{1}{2})}(\dot{u}, u) dt} \psi(x, t)$, i.e. the linear problem admits the form of the quantized equation (in spectral parameter). Notice that the parameters α, β are shifted by $\pm \frac{1}{8}$ in the quantum Hamiltonian.

2.2 Summary

The following theorem summarizes the results of [1], [2] for all Painlevé equations, see also the table of changes of variables below.

There are in fact three essentially independent parameters.
Theorem \[1, 2\] For any of the six equations from the Painlevé list written in the Calogero form as classical non-autonomous Hamiltonian systems with time-dependent Hamiltonians \(H(p, u, t) \) there exists a pair of compatible linear problems

\[
\begin{align*}
\partial_x \Psi &= U(x, t, u, \{c_k\}) \Psi, \\
\partial_t \Psi &= V(x, t, u, \dot{u}, \{c_k\}) \Psi, \\
\Psi &= \begin{pmatrix} \psi_1 \\ \psi_2 \end{pmatrix},
\end{align*}
\]

where \(U \) and \(V \) are \(sl_2 \)-valued functions, \(x \) is a spectral parameter, \(t \) is the time variable and \(\{c_k\} = \{\alpha, \beta, \gamma, \delta\} \) is the set of parameters involved in the Painlevé equation, such that

1) The zero curvature condition

\[
\partial_t U - \partial_x V + [U, V] = 0
\]

is equivalent to the Painlevé equation for the variable \(u \) defined as any (simple) zero of the right upper element of the matrix \(U(x, t) \) in the spectral parameter:

\[
U_{12}(u, t) = 0.
\]

2) The function \(\Psi = e^{\int H(u, u', t) dt'} \psi_1 \) where \(\psi_1 \) is the first component of \(\Psi \) satisfies the non-stationary Schrödinger equation in imaginary time

\[
\partial_t \Psi = \left(\frac{1}{2} \partial^2_x + \tilde{V}(x, t) \right) \Psi
\]

with the potential

\[
\tilde{V}(x, t) = V(x, t, \{\tilde{c}_k\}),
\]

\[
V(x, t, \{\tilde{c}_k\}) - \left(\frac{1}{2} u^2 + V(u, t, \{c_k\}) \right) = \frac{1}{2} \left[\det(U) - \partial_x U_{11} + 2V_{11} \right],
\]

which coincides with the classical potential \(V(u, t) = V(u, t, \{c_k\}) \) up to possible shifts of the parameters \(\{c_k\} \):

\[
(\tilde{\alpha}, \tilde{\beta}) = (\alpha, \beta + \frac{1}{2}) \quad \text{for} \ \text{P}_{IV},
\]

\[
(\tilde{\alpha}, \tilde{\beta}, \tilde{\gamma}, \tilde{\delta}) = (\alpha - \frac{1}{8}, \beta + \frac{1}{8}, \gamma, \delta) \quad \text{for} \ \text{P}_{V}
\]

\[
(\tilde{\alpha}, \tilde{\beta}, \tilde{\gamma}, \tilde{\delta}) = (\alpha - \frac{1}{8}, \beta + \frac{1}{8}, \gamma - \frac{1}{8}, \delta + \frac{1}{8}) \quad \text{for} \ \text{P}_{VI}.
\]

The list of changes of variables is summarized in the following table:

Equation	\(y(u, t) \)	\(T(t) \)	\(X(x, t) \)	\(U_{12}(x, t) \)	
\(\text{P}_1 \)	\(u \)	\(t \)	\(x \)	\(x - u \)	
\(\text{P}_{II} \)	\(u \)	\(t \)	\(x \)	\(x - u \)	
\(\text{P}_{IV} \)	\(u^2 \)	\(t \)	\(x^2 \)	\(x^2 - u^2 \)	
\(\text{P}_{III} \)	\(e^{2u} \)	\(e^t \)	\(e^{2x} \)	\(2e^{t/2}\sinh(x-u) \)	
\(\text{P}_V \)	\(\coth^2 u \)	\(e^{2t} \)	\(\cosh^2 x \)	\(2e^t\sinh(x-u)\sinh(x+u) \)	
\(\text{P}_{VI} \)	\(\frac{\varphi(u) - \varphi(\omega_1)}{\varphi(\omega_2) - \varphi(\omega_1)} \)	\(\frac{\varphi(\omega_3) - \varphi(\omega_1)}{\varphi(\omega_2) - \varphi(\omega_1)} \)	\(\varphi(x) - \varphi(\omega_1) \)	\(\varphi(\omega_2) - \varphi(\omega_1) \)	\(\varphi_1(x - u) \varphi_1(x + u) \varphi(h(u, t)) \)
Function $h(u, t)$ for P_{VI} case can be found in [2]. Notice that the given above changes of variables can be derived in a general form from (1.4) and requirement that the potential (1.6) could be presented as a sum of two parts depending on x, t and u, t separately. This calculation was made in [2] for the most general - Painlevé VI equation. The appropriate U-V pairs for P_I-P_{VI} are given in the Appendix C.

3 The Scalar Linear Problems and Functional Equations

It was shown in [1, 2] that each of the six equations from the Painlevé list, hereinafter referred to as P_I – P_{VI}, written in the so-called Calogero form, can be obtained as integrability conditions for two Schrödinger-like equations

\[
\begin{cases}
\left(\frac{1}{2} \partial_x^2 - \frac{b_x}{2b} \partial_x + W(x, t) \right) \Psi = 0 \\
\partial_t \Psi = \left(\frac{1}{2} \partial_x^2 + V(x, t) \right) \Psi,
\end{cases}
\tag{3.1}
\]

stationary and non-stationary. The time-dependent potentials W and V are related by

\[
W(x, t) = U - \frac{2b - b_{xx}}{4b} = V(x, t) - H - \frac{2b - b_{xx}}{4b}
\tag{3.2}
\]

where H does not depend on x and b is some function of the spectral parameter x and time t to be chosen in such a way that the two linear problems be compatible for some $V(x, t)$. Suppose it has a (simple) zero at the point $x = u = u(t)$: $b(u, t) = 0$ and let $V(x, t)$ be a function that depends on x, t in an explicit way only (i.e., $V(x, t)$ does not contain u). Let also H be a function of u and \dot{u}.

Remark. Note that function b may depend on t in two ways – explicit and implicit. The latter means the time dependence through the unknown functions of t (dependent variables). Writing $\partial_t b$ we mean the derivative with respect to the explicit dependence only. For example, $\partial_t (z - u) = 0$. The lower index t means the same ($\partial_t b(z, u(t), t) = b_t$) while the dot is the full time derivative: $\dot{b}(z, u(t), t) = \dot{u} \partial_u b + b_t$. The same notations are used for other functions depending on t and $u(t)$ apart from Ψ in the linear problem (where the partial derivative symbols ∂_x, ∂_t are traditionally used but, in fact, the operator ∂_t acts as the full time-derivative).

Combining equations (3.1), one can write another pair of linear problems whose compatibility implies the Painlevé equations:

\[
\begin{cases}
\left(\frac{1}{2} \partial_x^2 - \frac{b_x}{2b} \partial_x + W(x, t) \right) \Psi = 0 \\
\partial_t \Psi = \left(\frac{b_x}{2b} \partial_x + \frac{2b - b_{xx}}{4b} + H \right) \Psi,
\end{cases}
\tag{3.3}
\]
(The first equation is the same while the other one is a first order equation.) Passing to
the function $\tilde{\Psi} = \Psi / \sqrt{b}$, we can write these linear problems in the Fuchs-Garnier form:

$$
\begin{cases}
\left(\frac{1}{2} \partial_x^2 + S(x,t) \right) \tilde{\Psi} = 0 \\
\partial_t \tilde{\Psi} = \left(\frac{1}{2} f \partial_x - \frac{1}{4} f_x \right) \tilde{\Psi}
\end{cases}, \quad f = \partial_x \log b, \quad f_x \equiv \partial_x f, \quad (3.4)
$$

where we have introduced the function $S = S(x,t)$ by the formula

$$
S = U - \frac{\dot{b}}{2b} + \frac{b_{xx}}{2b} - \frac{3}{8} \left(\frac{b_x}{b} \right)^2 = V - H - \frac{\dot{b}}{2b} + \frac{b_{xx}}{2b} - \frac{3}{8} \left(\frac{b_x}{b} \right)^2 \quad (3.5)
$$

Their integrability is equivalent to the condition

$$
\left[\frac{1}{2} \partial_x^2 + S, \partial_t - \frac{1}{2} f \partial_x + \frac{1}{4} f_x \right] \tilde{\Psi} = 0
$$

which implies

$$
\dot{S} = Sf_x + \frac{1}{2} f S_x + \frac{1}{8} f_{xxx}. \quad (3.6)
$$

or

$$
bb_x U_x + 2bb_{xx} U - 2b_x^2 U - 2\dot{b}b^2 - \\
\frac{1}{2} b_x b_{xxx} + b_x \ddot{b}_x - \dot{b}^2 - \ddot{b} \dot{b}_{xx} + b\ddot{b} + \frac{1}{4} bb_{xxxx} + \frac{1}{4} b_{xx}^2 = 0. \quad (3.7)
$$

This equation is of our main interest in this paper. In the next sections we determine
the potential V making one or another ansatz for b.

Notice that the equation (3.7) can be obtained from the compatibility of initial matrix
linear problem (1.3) with U defined by (1.6). One can express all elements of U and V
in terms of three functions $a = U_{11}, b = U_{12}$ and U:

$$
U: \quad U_{11} = a, \quad U_{12} = b, \quad U_{21} = -\frac{1}{2b} \left(2a^2 b + 2a x b - 2ab_x + 4U b - 2\dot{b} + b_{xx} \right),
$$

$$
V: \quad V_{11} = \frac{1}{4b} \left(2ab_x + 2\dot{b} - b_{xx} \right), \quad V_{12} = \frac{1}{2} b_x, \quad V_{21} = -\frac{1}{4b} \left(4ab - 2\dot{b}_x + b_{xxx} - 2ab_{xx} + 2a^2 b_x + 4b_x U \right). \quad (3.8)(3.9)
$$

The function a cancels out from compatibility condition (1.3).

Recall that the dynamical variable u is defined as a zero of the function $b(x,t) = b(x,u(t),t)$: $b(u,u,t) = 0$. Suppose b is analytical function near $x = u$, then in the vicinity of $x = u$

$$
b = b_1(u,t)(x - u) + b_2(u,t)(x - u)^2 + b_3(u,t)(x - u)^3 + ... \quad (3.10)
$$
Consider equation (3.7) at \(x = u \):

\[
\left(-2b_x^2 U - \frac{1}{2} b_x b_{xxx} + b_x b_x - \dot{b}^2 + \frac{1}{4} b_{xx}^2 \right) \bigg|_{x=u} = 0 ,
\]

(3.11)

where we used that \(U = V(x, t) - H(\dot{u}, u, t) \) and, therefore, it is a regular function at \(x = u \) and \([bU](x = u) = 0\). From the expansion (3.10) we get

\[
b_x \bigg|_{x=u} = b_1 , \quad b_{xxx} \bigg|_{x=u} = 6b_3 , \quad \dot{b} \bigg|_{x=u} = -\dot{u}b_1 , \quad \dot{b}_x \bigg|_{x=u} = \dot{u}(b'_1 - 2b_2) + \partial_t b_1 .
\]

Plugging this into (3.11) we obtain:

\[
U \bigg|_{x=u} = -\frac{1}{2} \dot{v}^2 + \frac{1}{2b_1^2} \left[\left(b_2 - \frac{1}{2} b'_1 \right)^2 - 3b_1 b_3 + b_1 \partial_t b_1 + \frac{1}{4} b_{2}^2 \right] ,
\]

(3.12)

where

\[
v = \dot{u} + \frac{b_2}{b_1} - \frac{b'_1}{2b_1} .
\]

(3.13)

The latter expression is the “momentum”. Notice that this local evaluation at \(x = u \) fixes the dependence \(H(\dot{u}, u, t) \) since \(V(x, t) \) is independent of \(\dot{u} \). We consider some non-trivial cases \((v \neq \dot{u}) \) in Appendix A.

Let us find out what kind of restriction on the behavior of \(b = b(x, u(t), t) \) arises from the Classical-Quantum Correspondence. First, recall that the quantum Hamiltonian which we use in (1.5), (3.1) has the form \(\hat{H} = \frac{1}{2} \partial_x^2 + V(x, t) \). Therefore, the classical one is \(H(p_x, x, t) = \frac{1}{2} p_x^2 + V(x, t) \). The Classical-Quantum Correspondence implies that the classical equations for \(u(t) \) arising from the compatibility condition (1.2) (or (3.6) or (3.7)) are generated by \(H(\dot{u}, u, t) \) which differs from \(H(p_x, x, t) \) by only possible “quantum corrections” of the potential. Thus, the classical Hamiltonian should have the “Calogero form”, i.e. \(H(\dot{u}, u, t) = \frac{1}{2} \dot{u}^2 + \tilde{V}(u, t) \). At the moment we do not assume any relations between \(V(x, t) \) and \(\tilde{V}(u, t) \). However, the Calogero form of the Hamiltonian provides some special properties of \(b(x, u(t), t) \).

Proposition 3.1 Let the compatibility condition (3.7) describe non-autonomous dynamics

\[
\dot{u} = v ,
\]

(3.14)

\[
\dot{v} = \ddot{u} = -\partial_u \tilde{V}(u, t)
\]

generated by the Hamiltonian

\[
H(\dot{u}, u, t) = \frac{1}{2} v^2 + \tilde{V}(u, t) .
\]

(3.15)

Then \(b(x, u(t), t) \) factorizes into the product

\[
b(x, u(t), t) = b_1(x - u(t), t) b_2(x + u(t), t)
\]

(3.16)

and each of the factors satisfies the heat equation:

\[
2\partial_t b_{1,2}(z, t) = \partial_z^2 b_{1,2}(z, t) .
\]

(3.17)
Proof: Substituting (3.14) and (3.15) into (3.7) we get an equation where the l.h.s. is quadratic in \(v = \dot{u} \). Since \(v \) is an independent variable, all the coefficients in front of \(v^k \) (\(k = 2, 1, 0 \)) vanish. The coefficient in front of \(v^2 \) gives

\[
b_x^2 - b_u^2 + bb_{uu} - bb_{xx} = 0 \tag{3.18}
\]

or

\[
\left(\partial_x^2 - \partial_u^2 \right) \log b = (\partial_x - \partial_u) (\partial_x + \partial_u) \log b = 0 \tag{3.19}
\]

which is equivalent to (3.16). The coefficient in front of \(v \) gives

\[
b_x b_{xu} - bb_{xux} + 2bb_{tu} - 2b_u b_t = 0 \tag{3.20}
\]

or

\[
\left(\frac{b_{xu}}{b} \right)_x = 2 \left(\frac{b_t}{b} \right)_u. \tag{3.21}
\]

Plugging (3.16) into (3.21) we obtain:

\[
2 \left(\frac{b_{2t}}{b_2} \right)' - 2 \left(\frac{b_{1t}}{b_1} \right)' = \left(\frac{b''}{b_2} \right)' - \left(\frac{b''}{b_1} \right)' . \tag{3.22}
\]

The variables \(x - u \) and \(x + u \) are independent. Therefore,

\[
2 \left(\frac{b_{kt}}{b_k} \right)' = \left(\frac{b''}{b_k} \right)', \quad k = 1, 2. \tag{3.23}
\]

Then

\[
2b_{kt} = b''_k + c(t)b_k, \quad k = 1, 2, \tag{3.24}
\]

where \(c(t) \) is the integration constant. The term with \(c(t) \) can be removed by the substitution \(b \to be^{\int c(t)} \).

The coefficient in front of \(v^0 \) gives rise to equations for \(V(x, t) \) and \(\tilde{V}(u(t), t) \). We study these equations in the next sections.

3.1 One simple zero

Let us first consider the case when \(b \) has only a simple zero at \(u(t) \). The reason for this behavior of \(b(z, t) \) is partly explained in Section 6.2.

Proposition 3.2 Let \(b(z, t) \) satisfy the heat equation

\[
2 \partial_t b(z, t) = \partial_z^2 b(z, t). \tag{3.25}
\]

and let \(u \) be a simple zero of the function \(b \): \(b(x - u, t) \big|_{x=u} = 0 \). Then integrability condition (3.7) implies that

\[
H = \frac{1}{2} \dot{u}^2 + V(u), \tag{3.26}
\]

\[
\ddot{u} = -V'(u), \tag{3.27}
\]

12
and

\[V_t(x) - V_t(u) - \frac{1}{2} f(x-u) (V'(x) + V'(u)) - f_x(x-u) (V(x) - V(u)) = 0. \] (3.28)

where \(f(x) = f(x, t) = b_x(x, t)/b(x, t) \) (for brevity we do not indicate the \(t \)-dependence of \(f \) explicitly). In particular, if \(f(x) = \frac{1}{x} + c_1 x + c_3 x^3 + \ldots \) then

\[V'_t = \frac{1}{12} V''' + 2c_1 V', \] (3.29)

\[\frac{1}{120} V^{(5)} = \frac{1}{2} c_1 V''' + 24c_3 V', \] (3.30)

where \(V_t(u) = \partial_t V(u, t) \).

Proof: Direct substitution of \(b = b(x - u(t), t) \) into (3.6) together with (3.25) yields

\[V_t(x) - \dot{H} - \frac{1}{2} f (V'(x) - \ddot{u}) - f_x \left(V(x) + \frac{1}{2} \dot{u}^2 - \dot{H} \right) = 0. \] (3.31)

Locally, \(f = \frac{b_x}{b} \sim \frac{1}{x-u} \). Therefore, the cancellation of the second order pole leads to (3.26). At this stage we have

\[V_t(x) - V_t(u) - \dot{u}(\ddot{u} + V'(u)) - \frac{1}{2} f (V'(x) - \ddot{u}) - f_x (V(x) - V(u)) = 0. \]

From the last two terms it is easy to see that the cancellation of the first order term gives (3.27). Substituting (3.27) into the above equation we get (3.28). The differential equations (3.29), (3.30) follows from the local expansion of (3.28) near \(x = u \). To be exact, (3.30) follows from (3.29) and \(V_t'' = \frac{3}{40} V^{(5)} + \frac{5}{2} c_1 V''' + 24c_3 V' \). \(\square \)

In this proof only the heat equation was used. In what follows we need some more properties that follow from the heat equation.

Lemma 3.1 Let \(b \) satisfy the heat equation (3.25) and \(f = \partial_x \log b \). Then

\[\partial_t f = \frac{1}{2} \partial_x \left(f^2 + f_x \right) = f_x f + \frac{1}{2} f_{xx}, \] (3.32)

\[\partial_t f_x = f_{xx} f + f^2 + \frac{1}{2} f_{xxx}. \] (3.33)

Suppose also that \(b \) is an odd function of \(x \) and has a simple zero at \(x = 0 \). Then

\[\frac{1}{2} f_x(x-w) f_x(x+w) = (f_x(x-w) + f_x(x+w)) f_{xx}(2w) \]

\[+ (f(x+w) - f(x-w)) f_{xx}(2w) - \partial_t f_x(2w). \] (3.34)

Proof: The proof of (3.32) and (3.33) is direct. Identity (3.34) is proved via consideration of the local expansion and comparing of the poles taking into account (3.33). \(\square \)
3.2 Two simple zeros

Suppose, \(b\) has two simple poles. Let us derive an analogue of (3.26)–(3.28) for this case.

Proposition 3.3 Let \(b = b_1(z,t)b_2(z,t)\) and each factor satisfies the heat equation

\[
2\partial_t b_{1,2}(z,t) = \partial_z^2 b_{1,2}(z,t).
\]

Suppose that \(b_{1,2}\) has a simple zero \(u_{1,2}: b_{1,2}(x - u_{1,2}, t) |_{x = u_{1,2}} = 0\). Then equation \((3.6)\) has the following solution:

\[
u_1 = -u_2, \quad V(u) = V(-u), \quad b_1 = b(x - u(t), t), \quad b_2 = b(x + u(t), t),
\]

\[
H = \frac{1}{2} \tilde{u}^2 + V(u) + \frac{1}{2} f_x(2u),
\]

\[
\dot{\tilde{u}} = -V''(u) - f_{xx}(2u),
\]

where \(b(x,t)\) is an odd function of \(x\), \(f = \partial_x \log b\) and the potential satisfies

\[
V_i(x) - V_t(u) - \frac{1}{2} f(x-u) (V'(x) + V'(u)) - \frac{1}{2} f(x+u) (V'(x) - V'(u)) + (f_x(x-u) + f_x(x+u)) (V(u) - V(x)) = 0.
\]

(3.39)

In particular, if \(f = \frac{1}{x} + c_1 x + c_3 x^3 + \ldots\) then

\[
V_i' = \frac{1}{12} V''' + \frac{1}{2} f(2x) V'' + (2c_1 + f_x(2x)) V',
\]

(3.40)

\[
V_i''' = \frac{3}{40} V^{(5)} + \frac{1}{2} f(2x) V^{(4)} + \frac{5}{2} (c_1 + f_x(2x)) V'''
\]

\[
\quad + \frac{9}{2} f_{xx}(2x) V'' + (24c_3 + 3f_{xxx}(2x)) V'.
\]

(3.41)

Proof: The direct substitution leads to

\[
V_i(x) - \dot{H} - \frac{1}{2} \frac{b_{1,2}}{b_1} (V'(x) - \dot{\tilde{u}}_1) - \frac{1}{2} \frac{b_{1,2}}{b_2} (V'(x) - \dot{\tilde{u}}_2)
\]

\[
- \left(\frac{b_{1,2}}{b_1} \right)_x (V(x) + \frac{1}{2} \tilde{u}_1^2 - H + \frac{1}{2} (\dot{u}_1 + \dot{\tilde{u}}_2) \frac{b_{1,2}}{b_2})
\]

\[
- \left(\frac{b_{1,2}}{b_2} \right)_x (V(x) + \frac{1}{2} \tilde{u}_2^2 - H + \frac{1}{2} (\dot{u}_1 + \dot{\tilde{u}}_2) \frac{b_{1,2}}{b_1})
\]

\[
- \frac{1}{2} \left(\frac{b_{1,2}}{b_1} \right)_x \left(\frac{b_{1,2}}{b_2} \right)_x = 0.
\]

(3.42)

From cancellation of the second order poles we get

\[
H = \frac{1}{2} \tilde{u}_1^2 + V(u_1) + \frac{1}{2} (\dot{u}_1 + \dot{\tilde{u}}_2) \frac{b_{2,2}}{b_2} (u_1) + \frac{1}{2} \left(\frac{b_{2,2}}{b_2} \right)_x (u_1),
\]

(3.43)

\[
H = \frac{1}{2} \tilde{u}_2^2 + V(u_2) + \frac{1}{2} (\dot{u}_1 + \dot{\tilde{u}}_2) \frac{b_{1,2}}{b_1} (u_2) + \frac{1}{2} \left(\frac{b_{1,2}}{b_1} \right)_x (u_2).
\]
Comparing these two expressions one can see that (3.36) and (3.37) indeed satisfy (3.36). Then vanishing of the first order poles at ± \(u \) gives (3.38). Substituting (3.38) into (3.42) we get

\[
V_t(x) - \partial_t \left(V(z) + \frac{1}{2} f(2z) \right) \bigg|_{z=u(t)}
\]

\[
-\frac{1}{2} \frac{b_1}{b_1} (V'(x) + V'(u) + f_{xx}(2u)) - \frac{1}{2} \frac{b_2}{b_2} (V'(x) - V'(u) - f_{xx}(2u))
\]

\[
+ \left(\left(\frac{b_1}{b_1} \right)_x + \left(\frac{b_2}{b_2} \right)_x \right) \left(V(u) - V(x) + \frac{1}{2} f_{xx}(2u) \right) - \frac{1}{2} \left(\left(\frac{b_1}{b_1} \right)_x \left(\frac{b_2}{b_2} \right)_x \right) = 0 .
\]

All terms that do not contain \(V \) cancel because of (3.34) and we get (3.39). Differential equations (3.40), (3.41) follows from the local expansion of (3.39) near \(x = u \). □

Remark. To investigate the case more general than (3.36) one should solve the equation emerging from equality of right hand sides of (3.43) (see Appendix A).

Notice also that the r.h.s. of (3.40) and (3.41) are full derivatives:

\[
V_t' = \partial_x \left(\frac{1}{12} V'' + 2c_1 V + \frac{1}{2} f(2c_1) V' \right) ,
\]

\[
V_t''' = \partial_x \left(\frac{3}{40} V^{(4)} + \frac{5}{2} c_1 V'' + 24 c_3 V + \frac{3}{7} f_{xx}(2c_1) V' + \frac{5}{7} f_{xx}(2c_1) V'' + \frac{1}{7} f(2c_1) V''' \right) .
\]

In particular, this leads to the following equation:

\[
V^{(4)} - 60 c_1 V'' + 60 f_{xx}(2c_1) V' + 60 f_{xx}(2c_1) V'' + 24 c_3 V = \text{const}(t) .
\]

4 Rational Solutions

4.1 The simplest case: \(b = x - u(t) \)

The simplest possibility is to set \(b = x - u(t) \).

We will see that already this case is meaningful and leads to \(P_1 \) and \(P_{II} \) equations.

In this case integrability condition (3.28) turns into

\[
\left(V_t(x) - V_t(u) \right) - \frac{1}{2(x-u)} \left(V'(x) + V'(u) \right) + \frac{1}{(x-u)^2} \left(V(x) - V(u) \right) = 0
\]

or

\[
2(x-u)^2 \left(V_t(x) - V_t(u) \right) - (x-u) \left(V'(x) + V'(u) \right) + 2 \left(V(x) - V(u) \right) = 0
\]

It should be an identity for all \(x, u \) which enter here as independent variables on equal footing. The way to proceed is to take the third derivative of (4.3) with respect to \(x \).
The result is

\[2u^2 V_t'''(x) + u \left(V^\prime_4(x) - 4x V_t'''(x) - 12 V_t''(x) \right) \]

\[+ 12 V_t'(x) + 12x V_t''(x) + 2x^2 V_t'''(x) - V''''(x) - x V^\prime_4(x) = 0 \]

The equality holds identically if the coefficients in front of \(u^2 \), \(u \) and the free term in \(u \) vanish. This implies the conditions

\[\begin{array}{l}
V_t'''(x) = 0 \\
12 V_t'(x) = V''''(x)
\end{array} \quad (4.4) \]

From the first equation it follows that \(V_t(x) \) is a polynomial in \(x \) of second degree at most while from the second one it then follows that \(V(x) \) is a polynomial in \(x \) of fourth degree at most. There are three possibilities:

1) \(V_t'(x) \equiv 0 \), then \(V(x) \) is a quadratic polynomial \(V(x) = a_2 x^2 + a_1 x + a_0 \) with \(\dot{a}_2 = \dot{a}_1 = 0 \). Plugging it into equation (4.3), we see that the equation holds identically for any constants \(a_2, a_1 \), with the irrelevant free term \(a_0 \) being an arbitrary function of \(t \). This is the potential for the harmonic oscillator.

2) \(V_t''(x) \equiv 0 \), then \(V(x) \) is a 3-d degree polynomial \(V(x) = a_3 x^3 + a_2 x^2 + a_1 x + a_0 \) with \(\dot{a}_3 = \dot{a}_2 = 0 \). By rescaling and shift of the variable \(x \) we can set \(a_3 = 1, a_2 = 0 \). The free term, \(a_0 \), is irrelevant since it cancels in equation (4.3). Plugging the potential in the form \(V(x) = x^3 + a_1 x \) into equation (4.3), we get \((x - u)^2 (2 \dot{a}_1 - 1) = 0 \). Therefore, \(a_1 = t/2 \) and

\[V(x) = x^3 + \frac{tx}{2} \]

This is, up to a common factor, the potential for the \(\text{P}_1 \) equation.

3) \(V_t''(x) \neq 0 \), then \(V(x) \) is a 4-th degree polynomial \(V(x) = a_4 x^4 + a_3 x^3 + a_2 x^2 + a_1 x + a_0 \) with \(\dot{a}_4 = \dot{a}_3 = 0 \). Again, we can set \(a_4 = 1, a_3 = 0 \) and \(a_0 = 0 \). Plugging the potential in the form \(V(x) = x^4 + a_2 x^2 + a_1 x \) into equation (4.3), we get \((x^2 - u^2) (\dot{a}_2 - 1) + \dot{a}_1 = 0 \). Therefore, \(a_2 = t, a_1 = -2\alpha \), where \(\alpha \) is an arbitrary constant. Up to a common factor, we obtain the potential

\[V(x) = x^4 + tx^2 - 2\alpha x \]

for the \(\text{P}_{11} \) equation with the parameter \(\alpha \).

4.2 The case \(b = (x - u_1(t))(x - u_2(t)) \)

Let us make the similar calculations for \(b = (x - u_1(t))(x - u_2(t)) \). Instead of

\[V_t(x) - H_t - \frac{V'(x) - \ddot{u}}{2(x - u)} + \frac{V(x) - H + \dot{u}^2/2}{(x - u)^2} = 0 \]

for the \(\text{P}_1 \) equation with the parameter \(\alpha \).
we get, after cancellation of third and fourth order poles:

\[V_t(x) - H_t = \frac{1}{2(x-u_1)}\left(V'(x) - \dot{u}_1 - \frac{2}{u_1 - u_2} \right) - \frac{1}{2(x-u_2)}\left(V'(x) - \dot{u}_2 - \frac{2}{u_2 - u_1} \right) \]

\[+ \frac{1}{(x-u_1)^2} \left(V(x) - H + \frac{\dot{u}_1 + \dot{u}_2}{2(u_1 - u_2)} + \frac{1}{2} \dot{u}_1^2 - \frac{1}{2(u_1 - u_2)^2} \right) \]

\[+ \frac{1}{(x-u_2)^2} \left(V(x) - H + \frac{\dot{u}_1 + \dot{u}_2}{2(u_2 - u_1)} + \frac{1}{2} \dot{u}_2^2 - \frac{1}{2(u_1 - u_2)^2} \right) = 0 \]

(4.5)

Cancellation of the second order poles at \(x = u_{1,2} \) yields

\[H = \frac{1}{2} \dot{u}_1^2 + \frac{1}{2} \frac{\dot{u}_1 + \dot{u}_2}{u_1 - u_2} + V(u_1) - \frac{1}{2(u_1 - u_2)^2} \]

\[+ \frac{1}{2} \dot{u}_2^2 + \frac{1}{2} \frac{\dot{u}_1 + \dot{u}_2}{u_2 - u_1} + V(u_2) - \frac{1}{2(u_1 - u_2)^2} \]

\[= 0 \]

(4.6)

and

\[H = \frac{1}{2} \dot{u}_1^2 + \frac{1}{2} \frac{\dot{u}_1 + \dot{u}_2}{u_1 - u_2} + V(u_1) - \frac{1}{2(u_1 - u_2)^2} \]

\[+ \frac{1}{2} \dot{u}_2^2 + \frac{1}{2} \frac{\dot{u}_1 + \dot{u}_2}{u_2 - u_1} + V(u_2) - \frac{1}{2(u_1 - u_2)^2} \]

\[= 0 \]

(4.7)

By equating the two “kinetic” terms we get the following two possibilities:

1) \(\dot{u}_1 + \dot{u}_2 = 0 \)
2) \(\partial_t(u_1 - u_2)^2 = -4 \)

(4.8)

In the first case \(u_1 + u_2 = \) const and one can shift \(x \) in the initial problem to set \(u_1 = -u_2 \equiv u \). Therefore, the two possibilities are rewritten as

1) \[
\begin{cases}
 u_1 = -u_2 \equiv u \\
 V(u) = V(-u)
\end{cases}
\]

2) \[
\begin{cases}
 u_1 = u_2 + \sqrt{c - 4t} \\
 V(u) = V(u - \sqrt{c - 4t})
\end{cases}
\]

(4.9)

where \(c \) is some constant. The second case is given in the Appendix A. Here we consider the first one. In this case (4.5) leads to integrability condition (3.39):

\[V_t(x) - V_t(u) - \frac{1}{2(x-u)} \left(V'(x) + V'(u) - 2 \frac{V(x) - V(u)}{x-u} \right) \]

\[- \frac{1}{2(x+u)} \left(V'(x) - V'(u) - 2 \frac{V(x) - V(u)}{x+u} \right) = 0 \]

(4.10)

or, equivalently,

\[2(x^2 - u^2)(V_t(x) - V_t(u)) - (x + u)(x^2 - u^2)(V'(x) + V'(u)) \]

\[- (x - u)(x^2 - u^2)(V'(x) - V'(u)) + 4(x^2 + u^2)(V(x) - V(u)) = 0 \]

(4.11)

Since the maximal degree of \(x \) in (4.11) is 4, the differential operator \(\partial_x^5 \) applied to this equation kills all terms containing \(V(u) \) and we are left with

\[\partial_x^5 \left[(x^2 - u^2)^2 V_t(x) - x(x^2 - u^2)V'(x) + 2(x^2 + u^2)V(x) \right] = 0 \]

Equating the coefficients in front of \(u^4, u^2 \) and \(u^0 \) to zero, we get the following conditions:

\[
\begin{cases}
\partial_x^5 V_t(x) = 0 \\
\partial_x^5 \left[-2x^2 V_t(x) + xV'(x) + 2V(x) \right] = 0 \\
\partial_x^5 \left[x^4 V_t(x) - x^3 V'(x) + 2x^2 V(x) \right] = 0
\end{cases}
\]
They mean that the expressions in the square brackets are polynomials in x of at most fourth degree:

\[V_t(x) = P_4(x) \]

\[-2x^2V_t(x) + xV'(x) + 2V(x) = Q_4(x) \]

\[x^4V_t(x) - x^3V'(x) + 2x^2V(x) = R_4(x) \]

Combining these conditions, we find that $x^2V(x)$ must be a polynomial of at most 8-th degree such that its highest and lowest coefficients do not depend on t. We also recall that it must contain only even powers of x. So we can write

\[V(x) = \mu x^6 + a_4 x^4 + a_2 x^2 + a_0 + \frac{\nu}{x^2}, \quad \dot{\mu} = \dot{\nu} = 0. \]

Plugging this potential back to equation (4.11), we obtain

\[(x^4 - u^4)(x^2 - u^2)(\dot{a}_4 - 4\mu) + (x^2 - u^2)^2(\dot{a}_2 - 2a_4) = 0 \]

The solution is $a_4 = 4\mu t + \alpha_4$, $a_2 = 4\mu t^2 + 2\alpha_4 t + \alpha_2$ with integration constants α_4, α_2 and a_0 is arbitrary. There are three cases:

1) $\mu \neq 0$ (the case of general position), then one can put it equal to 1 by rescaling and set $\alpha_4 = 0$ by a shift of the t-variable. Then the potential acquires the form

\[V(x,t) = x^6 + 4tx^4 + (4t^2 + \alpha_2)x^2 + a_0(t) + \frac{\nu}{x^2} \quad (4.12) \]

This is the potential for the P_{IV} equation.

2) $\mu = 0$ but $\alpha_4 \neq 0$, then one can put α_4 equal to 1 by rescaling and set $\alpha_2 = 0$ by a shift of the t-variable. The potential is

\[V(x,t) = x^4 + 2tx^2 + a_0(t) + \frac{\nu}{x^2} \quad (4.13) \]

It generates the equation

\[\ddot{u} = -4u^3 - 4tu + \frac{2\nu}{u^3} \quad (4.14) \]

The change of the dependent variable $u \rightarrow y$ such that $u^2 + y^2 + \frac{1}{2}y + t = 0$ (a version of a similar change in [33 section 14.331]) brings the equation to the form $\ddot{y} = 8y^3 + 8ty + \sqrt{-32\nu - 2}$ which is equivalent to the P_{II} equation.

3) $\mu = \alpha_4 = 0$, then

\[V(x,t) = \alpha_2 x^2 + \frac{\nu}{x^2} + a_0(t) \quad (4.15) \]

This gives the exactly solvable rational 2-particle Calogero model in the harmonic potential. The x-independent term $a_0(t)$ is irrelevant.
5 Hyperbolic Solutions

5.1 The case \(b = e^{t/2} \sinh(x - u(t)) \)

Let us consider the case when \(b \) is a trigonometric (hyperbolic, to be exact) function with one simple zero in the strip of periodicity:

\[
b = e^{t/2} \sinh(x - u(t)).
\]

We will see that it leads to the P\(_{III}\) equation. Since \(b \) satisfies the heat equation (3.25), the Proposition 3.2 can be applied. The integrability condition (3.28) with \(\frac{b}{b} = \coth(x) \) becomes:

\[
2 \sinh^2(x - u) \left(V_t(x) - V_t(u) \right) - \sinh(x - u) \cosh(x - u) \left(V'(x) + V'(u) \right)
+ 2 \left(V(x) - V(u) \right) = 0.
\]

Let us make the change of variables \(V \rightarrow \mathcal{V}, \ x \rightarrow X, \ u \rightarrow U \) such that

\[
V(x) \equiv e^{-4x \mathcal{V}(e^{2x})}, \quad X = e^{2x}, \quad U = e^{2u}
\]

then equation (5.2) is rewritten as

\[
(X - U)^2 (U^2 \mathcal{V}_t(X) - X^2 \mathcal{V}_t(U)) - U X (X^2 - U^2) (U \mathcal{V}'(X) + X \mathcal{V}'(U))
+ 2(X^2 - U^2) (U^2 \mathcal{V}(X) + X^2 \mathcal{V}(U)) + 4UX(U^2 \mathcal{V}(X) - X^2 \mathcal{V}(U)) = 0.
\]

Since the maximal degree of \(X \) here equals 4, the differential operator \(\partial_X^5 \) applied to this equation kills all terms containing \(\mathcal{V}(U) \) and we are left with

\[
\partial_X^5 \left[(X - U)^2 \mathcal{V}_t(X) - X(X^2 - U^2) \mathcal{V}'(X) + 2(X^2 - U^2 + 2UX) \mathcal{V}(X) \right] = 0.
\]

Equating the coefficients in front of \(U^2, U^1 \) and \(U^0 \) to zero, we get the following conditions:

\[
\begin{align*}
\partial_X^5 \left[\mathcal{V}_t(X) + X \mathcal{V}'(X) - 2 \mathcal{V}(X) \right] &= 0, \\
\partial_X^5 \left[-X \mathcal{V}_t(X) + 2X \mathcal{V}(X) \right] &= 0, \\
\partial_X^5 \left[X^2 \mathcal{V}_t(X) - X^3 \mathcal{V}'(X) + 2X^2 \mathcal{V}(X) \right] &= 0.
\end{align*}
\]

They mean that the expressions in the square brackets are polynomials in \(X \) of at most fourth degree:

\[
\begin{align*}
\mathcal{V}_t(X) + X \mathcal{V}'(X) - 2 \mathcal{V}(X) &= P_4(X), \\
-X \mathcal{V}_t(X) + 2X \mathcal{V}(X) &= Q_4(X), \\
X^2 \mathcal{V}_t(X) - X^3 \mathcal{V}'(X) + 2X^2 \mathcal{V}(X) &= R_4(X).
\end{align*}
\]

Combining these conditions, we obtain that \(X^2 \mathcal{V}'(X) \) and \(X^2 \mathcal{V}_t(X) \) are polynomials of at most 5-th and 6-th degrees respectively. It is easy to see that the former polynomial must
be divisible by X^2. Indeed, let it be $X^2 V'(X) = X^2 P_3(X) + p_1 X + p_0$ with some nonzero $p_{0,1}$, then the first equation in (5.5) implies $p_0 = 0$ (otherwise the left hand side contains a non-polynomial term $\propto X^{-1}$) and the second equation multiplied by X implies $p_1 = 0$ (otherwise the left hand side contains a non-polynomial term $\propto X^2 \log X$). Therefore, we conclude that $V'(X)$ is a polynomial of at most third degree and, thus, $V(X)$ itself is a polynomial of at most fourth degree:

$$V(X) = a_4 X^4 + a_3 X^3 + a_2 X^2 + a_1 X + a_0.$$

Let us plug it in equation (5.3). After simple transformations we obtain the relation:

$$(X - U)(X^2 - U^2)(\dot{a}_4 - 2a_4) + (X - U)^2(\dot{a}_3 - a_3)$$

$$- \frac{(X - U)^2}{UX} (\dot{a}_1 - a_1) - \frac{(X - U)(X^2 - U^2)}{U^2 X^2} (\dot{a}_0 - 2a_0) = 0.$$

It must be satisfied identically for all X, U. This implies $\dot{a}_4 = 2a_4$, $\dot{a}_3 = a_3$, $\dot{a}_1 = a_1$, $\dot{a}_0 = 2a_0$ and no condition for a_2. Therefore, the potential $V(x, t)$ is fixed to be

$$V(x, t) = \alpha_1 e^{2t+4x} + \alpha_2 e^{2t-4x} + \alpha_3 e^{t+2x} + \alpha_4 e^{t-2x} + a(t),$$

(5.6)

where α_i are arbitrary constants. This is precisely the potential for the P_{III} equation.

5.2 The case $b = e^t \sinh(x - u(t)) \sinh(x + u(t))$

In this case $b = \left(e^{t/2} \sinh(x - u) \right) \left(e^{t/2} \sinh(x + u) \right)$. Each of the multiples satisfies the heat equation (3.35). Therefore the Proposition 3.3 can be applied. Then equation (3.39) assumes the form

$$V_t(x) - V_t(u) - \frac{1}{2} \coth(x - u) \left(V'(x) + V'(u) \right) - \frac{1}{2} \coth(x + u) \left(V'(x) - V'(u) \right)$$

$$+ \left(V(x) - V(u) \right) \left(\frac{1}{\sinh^2(x-u)} + \frac{1}{\sinh^2(x+u)} \right) = 0.$$

(5.7)

Multiplying by $32 \sinh^2(x-u) \sinh^2(x+u)$ and making change of variables $X = \cosh^2(x)$, $y = \coth^2(u)$ we get

$$(Xy - X - y)^2(V_t(X) - V_t(y)) - 2X(X - 1)(y - 1)(Xy - X - y)V'(X) +$$

$$+ 2y(y - 1)(Xy - X - y)V'(y) + 2(y - 1)(Xy + X - y)(V(X) - V(y)) = 0.$$

(5.8)

Now one can apply the calculation method similar to the previous cases. That is to take the third derivative with respect to X and analyze the differential equations (the later equations appear as the coefficients behind different powers of y). This analysis gives the potential of the Painlevé V equation after some tedious evaluations. Instead of doing in this manner, let us simplify the problem by assuming that the solution is a sum of terms of the form $V(x) = e^{kt} v(X)$. Making this substitution one gets:

$$k(Xy - X - y)^2(v(X) - v(y)) - 2X(X - 1)(y - 1)(Xy - X - y)v'(X) +$$

$$+ 2y(y - 1)(Xy - X - y)v'(y) + 2(y - 1)(Xy + X - y)(v(X) - v(y)) = 0.$$

(5.9)
We will see that nontrivial solutions exist for \(k = 0, 2, 4 \). The way to proceed is to take the third derivative of the expression with respect to \(X \). The equality holds identically if the coefficients in front of \(y^2, y \) and the free term in \(y \) vanish. This implies the following conditions:

\[
\begin{align*}
X(X - 1)v'''(X) + 3(2X - 1)v''(X) + 3(2 - k)v'(X) &= 0, \\
X(X - 1)v^{(4)}(X) + 4(2X - 1)v'''(X) + 3(4 - k)v''(X) &= 0, \\
kv'''(X) &= 0.
\end{align*}
\] (5.10)

Consider the last equation. If \(k = 0 \) one gets

\[v(X) = \frac{c_1}{X} + \frac{c_2}{X - 1} + c_3 = \frac{\tilde{c}_1}{\sinh^2 x} + \frac{\tilde{c}_2}{\cosh^2 x} + \tilde{c}_3, \]

else \(v'''(X) = 0 \). The later case leads to \((k - 4)v''(X) = 0\) (from the second equation in (5.10)). Then, \(k = 4 \) or \(v''(X) = 0 \). In the later case one gets \((k - 2)v'(X) = 0\) (from the first equation in (2.5)). In this way one can easily recover the potential of the Painlevé V equation (2.5):

\[V(x, t) = -\frac{2(\xi + \sigma)^2}{\sinh^2 x} + \frac{2\xi^2}{\cosh^2 x} + \frac{\xi}{2}(2\sigma - 1) \cosh(2x) - \frac{\xi^4}{16} \cosh(4x). \] (5.11)

6 Elliptic Solutions

6.1 The case \(b = \vartheta_1(x - u(t), 2\pi it) \)

Consider an elliptic curve with moduli \(\tau = 2\pi it \)

\[\Sigma_{\tau} : \mathbb{C}/\mathbb{Z} + \mathbb{Z}\tau \]

and let \(b = \vartheta_1(x - u(t), 2\pi it) \). Definitions and properties of elliptic functions are given in the Appendix B. Then from (3.28) we have

\[V_t(x) - V_t(u) - \frac{1}{2} E_1(x - u)(V'(u) + V'(x)) + E_2(x - u) (V(x) - V(u)) = 0. \] (6.1)

We will show that this equation has only trivial solutions \(V(x, t) = f(t) \). For this purpose consider the same equation at \(x + \tau \) and subtract it from the initial one. Then, using the behavior of \(E_1(z) \) (B.12) and \(E_2(z) \) (B.13) on the torus lattice we get:

\[V_t(x + \tau) - V_t(x) - \frac{1}{2} E_1(x - u)(V'(x + \tau) - V'(x)) \]

\[+ E_2(x - u)(V(x + \tau) - V(x)) + \pi i (V'(u) + V'(x + \tau)) = 0. \] (6.2)

Let us now differentiate the obtained equality with respect to \(x \):

\[V_t'(x + \tau) - V_t'(x) - \frac{1}{2} E_1(x - u)(V''(x + \tau) - V''(x)) + \pi i V''(x + \tau) \]

\[+ \frac{3}{2} E_2(x - u)(V'(x + \tau) - V'(x)) + E_2'(x - u) (V(x + \tau) - V(x)) = 0. \] (6.3)
Similarly, let us shift the argument $u \to u + \tau$ in the equation (6.3) and subtract it from (6.3) itself (keeping in mind that E'_2 is the double-periodic function). This gives

$$V''(x + \tau) - V''(x) = 0$$ \hspace{1cm} (6.4)

or

$$V(x + \tau) - V(x) = a(\tau)x + b(\tau).$$ \hspace{1cm} (6.5)

Plugging this back to (6.2) one can easily get that $a(\tau) = b(\tau) = 0$ by analyzing coefficients behind the poles at $x - u$ of the second and the first orders. Therefore, the potential should be a double-periodic function. If it is, then (6.2) reduces to

$$\partial_t(V(x + \tau) - V(x)) + \pi i(V'(u) - V'(x)) = 0.$$ \hspace{1cm} (6.7)

since $\partial_t(V(x + \tau) - V(x)) = V_t(x + \tau) - V_t(x) + 2\pi iV'(x + \tau)$. The later equation should hold for all x and u. Then the only solution is

$$V(x, t) = f(t).$$

6.2 The case $b = \partial_1(x - u(t), 2\pi it)\partial_1(x + u(t), 2\pi it)$

Equation (6.3) in this case has the form

$$V_t(x) - V_{t}(u) - \frac{1}{2} E_1(x-u)(V'(u) + V'(x)) - \frac{1}{2} E_1(x+u)(-V'(u) + V'(x))$$

$$+ (E_2(x-u) + E_2(x+u))(V(x) - V(u)) = 0.$$ \hspace{1cm} (6.6)

Let us make a change of variables:

$$X(x,t) = \frac{\varphi(x) - e_1}{e_2 - e_1}, \quad Q(u,t) = \frac{\varphi(u) - e_1}{e_2 - e_1}, \quad T(t) = \frac{e_3 - e_1}{e_2 - e_1}.$$ \hspace{1cm} (6.7)

Then

$$E_1(x + u) + E_1(x - u) = 2E_1(x) + \frac{\varphi'(x)}{\varphi(x) - \varphi(u)} = 2E_1(x) + \frac{X}{X - Q},$$ \hspace{1cm} (6.8)

$$E_1(x + u) - E_1(x - u) = 2E_1(u) + \frac{\varphi'(u)}{\varphi(u) - \varphi(x)} = 2E_1(x) - \frac{Q_u}{X - Q},$$ \hspace{1cm} (6.9)

$$E_2(x + u) + E_2(x - u) = 2E_2(u) + \frac{Q_{uu}}{X - Q} + \frac{Q_u^2}{(X - Q)^2}.$$ \hspace{1cm} (6.10)

Therefore, equation (6.6) is written as

$$(V_T(X) - V_T(Q)) T_t + V_X(X) X_t - V_Q(Q) Q_t$$

$$- \frac{1}{2} V_X(X) X_x \left(2E_1(x) + \frac{X}{X - Q}\right) + \frac{1}{2} V_Q(Q) Q_u \left(2E_1(u) - \frac{Q_u}{X - Q}\right)$$

$$+ \left(2 [2\eta_1 + e_1 + (e_2 - e_1)] Q + \frac{Q_{uu}}{X - Q} + \frac{Q_u^2}{(X - Q)^2}\right) (V(x) - V(u)) = 0.$$ \hspace{1cm} (6.11)
It follows from (B.38) that

$$X_t - X_x E_1(x) = X_x (E_1(x + \omega_3) - E_1(x) - E_1(\omega_3)) = \frac{1}{2} X_x \frac{\varphi'(x)}{\varphi(x) - \varphi(\omega_3)} = \frac{1}{2} X_x^2 \frac{Q^2}{X - T}.$$

Therefore,

$$(V_T(X) - V_T(Q))T_t + V_X(X)\frac{1}{2} \frac{X^2}{X - T} - V_Q(Q)\frac{1}{2} \frac{Q^2}{Q - T}$$

$$- \frac{1}{2} V_X(X) \frac{X^2}{X - Q} - \frac{1}{2} V_Q(Q) \frac{Q^2}{Q - T}$$

$$+ \left(2 \left[2\eta_1 + e_1 + (e_2 - e_1)Q \right] + \frac{Q uu}{X - Q} + \frac{Q^2}{(X - Q)^2} \right) (V(x) - V(u)) = 0.$$ (6.12)

Now let us proceed as in the previous examples. First, multiply (6.12) by $(X - Q)^2$. Secondly, take the third derivative with respect to X. This excludes $V(Q)$. Thirdly, substitute $Q^2_u = 4(e_2 - e_1)Q(Q - 1)(Q - T)$ and $Q uu = 2(e_2 - e_1)(3Q^2 - 2Q(T + 1) + T)$. Then, the coefficients in front of Q^2, Q^1 and Q^0 should vanish independently:

$$\begin{cases}
F + 2V(X)(2\eta_1 + e_1 + X(e_2 - e_1)) = P_2(X), \\
-2XF + \frac{1}{2} V_X(X)X^2 \\
+ 2V(X)(X^2(e_2 - e_1) + 4X(e_1 - \eta_1) + T(e_2 - e_1)) = Q_2(X), \\
X^2F - \frac{1}{2} V_X(X)X^2X + 2V(X)((2\eta_1 + e_1)X^2 + (e_2 - e_1)XT) = R_2(X),
\end{cases}$$ (6.13)

where $P_2(X)$, $Q_2(X)$, $R_2(X)$ are the second order polynomials in X with times-dependent coefficients and $F = V_T(X)T_t + V_X(X)\frac{1}{2} \frac{X^2}{X - T}$.

Excluding F from two upper equations in (6.13) we obtain the following equality:

$$V_X(X)(X - 1)(X - T) + V(X) \left(X(X - 1) + X(X - T) + (X - 1)(X - T) \right)$$

$$= \frac{1}{e_2 - e_1} \left(\frac{1}{2} Q_2(X) + XP_2(X) \right).$$ (6.14)

General solution of the later equation has a form:

$$V(X) = \frac{1}{X(X - 1)(X - T)} \int^X dZ \frac{1}{e_2 - e_1} \left(\frac{1}{2} Q_2(Z) + ZP_2(Z) \right) = \frac{H_4(X)}{X(X - 1)(X - T)},$$ (6.15)

where $H_4(X)$ is the forth order polynomials in X with times-dependent coefficients. Therefore, $V(X)$ can be presented as

$$V(X) = a(T)X + \frac{b(T)}{X} + \frac{c(T)}{X - 1} + \frac{d(T)}{X - T} + h(T).$$ (6.16)

The last term $h(T)$ is not fixed by (6.6), i.e. $h(T)$ is arbitrary.

Plugging (6.16) into (6.12) and multiplying the result by $(X - Q)X(X - 1)(X - T)Q(Q - 1)(Q - T)$ we get a polynomial function in X and Q. The coefficients in front
of Q^kX^j provides differential equations. It can be verified that all of them are equivalent to the following system:

$$\begin{cases}
a_T(T)(T-1)(e_2-e_1) + a(T)(e_3 + 2\eta_1) = 0, \\
b_T(T)(T-1)(e_2-e_1) + b(T)(e_2 + 2\eta_1) = 0, \\
c_T(T)(T-1)(e_2-e_1) + c(T)(e_1 + 2\eta_1) = 0, \\
d_T(T)(T-1)(e_2-e_1) + d(T)(-2e_3 + 2\eta_1) = 0.
\end{cases} \quad (6.17)$$

Its solutions (see (B.35)-(B.36)) are

$$\begin{cases}
a(T) = \alpha(e_2 - e_1), \quad \alpha = \text{const}, \\
b(T) = \beta(e_2 - e_1)T, \quad \beta = \text{const}, \\
c(T) = \gamma(e_2 - e_1)(T-1), \quad \gamma = \text{const}, \\
d(T) = \delta(e_2 - e_1)T(T-1), \quad \delta = \text{const}.
\end{cases} \quad (6.18)$$

Then, in view of (B.34) we have

$$V(x) = \alpha\wp(x) + \beta\wp(x + \omega_1) + \gamma\wp(x + \omega_2) + \delta\wp(x + \omega_3) + h(t). \quad (6.19)$$

This is the potential of the Painlevé VI equation in the elliptic form \[46, 47, 48, 30\] (see also \[31, 49\] and \[50\]). We remark that the non-stationary Lamé equation in connection with the PVI equation (and with the 8-vertex model) was discussed in \[51\]. Recently, the non-stationary Lamé equation has appeared \[19, 20, 21, 22, 23\] in the context of the AGT conjecture. The results of \[21, 22, 23\] allow in principle to construct higher Painlevé equation\[^4\] in terms of 2x2 linear problems related to spin chains via spectral duality transformation. We are going to study this possibility in our future publications.

Appendix A: Special Cases

$$b = (x - u(t))e^{g(t)x} \quad \text{and} \quad b = (x - u(t))e^{g(t)x^2}$$

Let $b = (x - u(t))e^{g(t)x}$. The calculation similar to the one leading to (4.2) gives in this case:

$$V_i(x) - V_i(u) - \frac{V'(x) + V'(u)}{2(x - u)} + \frac{V(x) - V(u)}{(x - u)^2} - \frac{\ddot{g}}{2} (x - u) - \frac{g}{2} (V'(x) - V'(u)) = 0 \quad (A.1)$$

and

$$H = \frac{1}{2} \left(\dot{u} + \frac{g}{2} \right)^2 + V(u, t) - \frac{1}{2} u\dot{g} + \frac{1}{8} g^2 \quad (A.2)$$

\[^4\]See also \[52, 53\] and \[54\].
with equation of motion
\[\ddot{u} = -V'(u). \tag{A.3} \]

It is easy to see that the equation \((A.1) \) becomes equivalent to \((4.2) \) for the potential \(\tilde{V}(\tilde{x}) \) after the change of variables
\[x \rightarrow \tilde{x} = x - \frac{1}{2} G(t), \quad V(x) \rightarrow \tilde{V}(x) = V\left(x - \frac{1}{2} G(t)\right) - \frac{\dot{g}}{2} x, \]
where \(\dot{G} = g \). Notice also that the dependence \(H(\dot{u}) \) in \((A.2) \) can be obtained from \((3.13) \) via the local expansion \((3.10) \). The later gives \(b_1 = e^{ug} \) and \(b_2 = g e^{ug} \). Then \(v = \dot{u} + \frac{g}{2} \).

Consider now the case \(b = (x-u(t))e^{g(t)x^2} \). Let us perform the calculation similar to the one leading to \((4.2) \) again. In this case we have:
\[V_t(x) - V_t(u) - \frac{V'(x)+V'(u)}{2(x-u)} + V(x-V(u)) - 2g (V(x) - V(u)) - g \left(xV'(x) + uV'(u) \right) + (x^2 - u^2) \left[3g \dot{g} - \frac{1}{2} \ddot{g} - 2g^3 \right] = 0 \tag{A.4} \]
and
\[H = \frac{1}{2} (\dot{u} + gu)^2 + V(u, t) + \frac{1}{2} (g^2 - \dot{g}) u^2 + \frac{3}{2} g \tag{A.5} \]
with equation of motion
\[\ddot{u} = -V'(u). \tag{A.6} \]

As in the previous example it can be shown that the equation \((A.4) \) becomes equivalent to \((4.2) \) for the potential \(\tilde{V}(\tilde{x}) \) after the following change of variables:
\[x \rightarrow \tilde{x} = \alpha x = x e^\int_t g(t), \quad \alpha = e^\int_t g(t), \]
\[V(x) \rightarrow \tilde{V}(x) = \alpha^2 \left(V(\alpha x) - x^2 \left(g^2 - \int_t \frac{\dot{g} - 2g\dot{g}}{2\alpha^2} \right) \right) = e^2 \int_t g(t) \left(V(x e^\int_t g(t)) - x^2 \left(g^2 - \int_t \left[e^{-2 \int_t g(t)} \left(\frac{1}{2} \dot{g} - gg \right) \right] \right) \right. \]

Notice also that the dependence \(H(\dot{u}) \) in \((A.5) \) can be obtained from \((3.13) \) via the local expansion \((3.10) \). The later gives \(b_1 = e^{gu^2} \) and \(b_2 = 2gu e^{gu^2} \). Then \(v = \dot{u} + gu \).

\[b = (x-u_1(t))(x-u_2(t))(x-u_3(t)) \]

When \(b = (x-u_1)(x-u_2)(x-u_3) \) the coefficient behind the second order pole \(\frac{1}{(x-u_1)^2} \) in \((3.6) \) have the following form:
\[V(x, t) - H + \frac{1}{2} u_1^2 + \frac{1}{2} \frac{u_1+u_2}{u_1-u_2} + \frac{1}{2} \frac{u_1+u_3}{u_1-u_3} - \frac{1}{2} \frac{1}{(u_1-u_2)^2} - \frac{1}{2} \frac{1}{(u_1-u_3)^2} + \frac{1}{2} \frac{1}{(u_1-u_2)(u_1-u_3)} \]
and two other coefficients can be obtained by the cyclic permutations. All three coefficients can not vanish simultaneously. Therefore, some other anzats for \(W \) \((3.2) \) should be used in this case. This notice reflects the fact that \((3.1)-(3.2) \) imply the one degree of freedom case.
$b = (x - u_1(t))^\gamma$ and $b = (x - u_1(t))^{\gamma_1}(x - u_2(t))^{\gamma_2}$

Let us study the case $b = (x - u_1(t))^\gamma$, where $\gamma \in \mathbb{C}^*$ (the case $\gamma = 0$ is trivial). Notice that under change $b \to b^\gamma$ the functions f (3.4) and S (3.5) transform as follows:

$$f = \frac{b_x}{b} \longrightarrow \frac{b_x}{b^\gamma},$$
$$S \longrightarrow V - H - \frac{1}{2} \gamma \frac{b_x}{b} + \frac{1}{2} \gamma \frac{b_{xx}}{b} + \frac{1}{2} \left(\frac{1}{4} \gamma^2 - \gamma\right) \left(\frac{b_x}{b}\right)^2.$$

For the case under consideration we have $f = \gamma \frac{1}{x-u}$ and

$$S = V - H + \frac{2}{3} \frac{u}{x-u} + \frac{1}{2} \left(\frac{1}{4} \gamma^2 - \gamma\right) \frac{1}{(x-u)^2}.$$

Substituting it into (3.6) we obtain the following condition for cancellation of the forth and the third order poles:

$$(x-u)^{-4}: 0 = \frac{1}{4} \gamma (\gamma^2 - 4 \gamma + 3),$$
$$(x-u)^{-3}: \dot{u} \left(\frac{1}{4} \gamma^2 - \gamma\right) = -\frac{2}{3} \gamma^2 \dot{u}.$$

The first one equation gives $\gamma = \{0, 1, 3\}$ while the second one $\gamma = \{0, 1\}$. Therefore, the non-trivial solution is

$$\gamma = 1.$$

Similarly, the case $b = (x - u_1(t))^{\gamma_1}(x - u_2(t))^{\gamma_2}$ leads to the following conditions:

$$(x-u_1)^{-4}: \frac{1}{4} \gamma_1 (\gamma_1^2 - 4 \gamma_1 + 3) = 0,$$
$$(x-u_1)^{-3}: \frac{1}{2} \gamma_1 (\gamma_1 - 1) \gamma_2 (u_1 - u_2) + \gamma_2,$$

$$(x-u_2)^{-4}: \frac{1}{4} \gamma_2 (\gamma_2^2 - 4 \gamma_2 + 3) = 0,$$
$$(x-u_2)^{-3}: \frac{1}{2} \gamma_2 (\gamma_2 - 1) \gamma_1 (u_2 - u_1) + \gamma_1,$$

which give

$$\gamma_1 = \gamma_2 = 1.$$

$b = \exp \left((z/u(t))^\gamma \right)$

First, it can be shown that $\gamma = 0, 1, 2, 3...$

Consider $\gamma = 1$. Substituting $b(z, u(t), t) = \exp(z/u(t))$ into (3.6) we get:

$$\left(-\frac{u^2}{u_x} + \frac{1}{2} \frac{\ddot{u}}{u^2} \right) x + V_t - H_t - \frac{1}{2} \frac{u}{u_x} - \frac{1}{2} V'x = 0.$$

Applying ∂_{z}^{2} gives:

$$V''_{t} - \frac{1}{2u} V''' = 0.$$

Notice that the function $U(z, \dot{u}, u, t)$ satisfies the same equation even if we do not impose the condition $U = V(x, t) - H(u, u, t)$. Under assumption $U = V(x, t) - H(\dot{u}, u, t)$ we have:

$$V''' = V''_{t} = 0.$$

This leads to

$$V(x, t) = \frac{\alpha}{2} x^2 + b(t)x + c(t), \quad \alpha = \text{const.}. \quad (A.16)$$
Plugging it back to (A.13) we obtain the following two equations (as coefficients behind x^1 and x^0):

$$
\begin{align*}
\ddot{u} &= 2\frac{\ddot{u}}{u} - 2\dot{b}u^2 + \alpha u, \\
H_t &= \frac{1}{2}\frac{\dot{u}^2}{u^2} + \dot{c} - \frac{1}{2}\frac{b}{u}.
\end{align*}
\tag{A.17}
$$

Case 2 in (4.9)

Here it may be useful to use variable $u = u_1 - \frac{1}{2}\sqrt{c - 4t}$ (then $\ddot{u} = \ddot{u}_1 + \frac{1}{\sqrt{c - 4t}}$). Then

$$
H = \frac{1}{2}(\ddot{u}_1 + \frac{1}{\sqrt{c - 4t}})^2 + V(u_1) = \frac{1}{2}\ddot{u}_1^2 + V(u_1 + \frac{1}{2}\sqrt{c - 4t})
\tag{A.18}
$$

and, therefore,

$$
\begin{align*}
V_t(x) - H_t - \frac{1}{2(x-u_1)}(V'(x) - \ddot{u}_1 - 2(c - 4t)^{-\frac{3}{2}} - 2\frac{V(x) - V(u_1)}{x-u_1}) \\
- \frac{1}{2(x-u_2)}(V'(x) - \ddot{u}_2 + 2(c - 4t)^{-\frac{3}{2}} - 2\frac{V(x) - V(u_2)}{x-u_2}) = 0
\end{align*}
$$

Cancellation of the first order poles at $x = u_{1,2}$ yields $\ddot{u}_1 = -V'(u_1) - 2(c - 4t)^{-\frac{3}{2}}$. On this equation $H_t = V_t(u_1) - V'(u_1)\frac{1}{\sqrt{c - 4t}}$. Thus we arrive to

$$
\begin{align*}
V_t(x) - V_t(u_1) + V'(u_1)\frac{1}{\sqrt{c - 4t}} - \frac{1}{2(x-u_1)}(V'(x) + V'(u_1) - 2\frac{V(x) - V(u_1)}{x-u_1}) \\
- \frac{1}{2(x-u_2)}(V'(x) + V'(u_1) - 2\frac{V(x) - V(u_2)}{x-u_2}) = 0
\end{align*}
\tag{A.19}
$$

By analogy with (4.12) we get

$$
\begin{align*}
V_t^V(x) &= 0 \\
-20V_t^{IV}(x) + V_t^{VI}(x) &= 0 \\
-13V_t^V(x) + 120V_t^{III}(x) &= 0 \tag{A.20} \\
V_t^{IV}(x) - 6V_t^{II}(x) &= 0 \\
6\partial_x V_t(x) - V_t^{III}(x) + \left(-\frac{16}{13} + \frac{4}{13}\right)V_t^{III}(x) &= 0
\end{align*}
$$

From two upper equations it follows that $V(x)$ is the 6-th degree polynomial. Plugging it into (A.20) drops the degree to 4 (similar to the Painlevé I, II cases). However, after substituting it back into (A.19) we get only trivial solution

$$
V(x, t) = f(t).
$$

Appendix B: Elliptic Functions

Here we give a short version of the Appendix in [2].
Theta-functions.

The Jacobi’s theta-functions \(\vartheta_a(z) = \vartheta_a(z|\tau) \), \(a = 0, 1, 2, 3 \), are defined by the formulas

\[
\vartheta_1(z) = -\sum_{k \in \mathbb{Z}} \exp \left(\pi i \tau (k + \frac{1}{2})^2 + 2\pi i (z + \frac{1}{2})(k + \frac{1}{2}) \right),
\]

\[
\vartheta_2(z) = \sum_{k \in \mathbb{Z}} \exp \left(\pi i \tau (k + \frac{1}{2})^2 + 2\pi i z(k + \frac{1}{2}) \right),
\]

\[
\vartheta_3(z) = \sum_{k \in \mathbb{Z}} \exp \left(\pi i \tau k^2 + 2\pi i z k \right),
\]

\[
\vartheta_0(z) = \sum_{k \in \mathbb{Z}} \exp \left(\pi i \tau k^2 + 2\pi i (z + \frac{1}{2}) \right),
\]

where \(\tau \) is a complex parameter (the modular parameter) such that \(\text{Im} \, \tau > 0 \). Set

\[
\omega_0 = 0, \quad \omega_1 = \frac{1}{2}, \quad \omega_2 = \frac{1 + \tau}{2}, \quad \omega_3 = \frac{\tau}{2},
\]

then the function \(\vartheta_a(z) \) has simple zeros at the points of the lattice \(\omega_{a-1} + \mathbb{Z} + \mathbb{Z} \tau \) (here \(\omega_a \equiv \omega_{a+4} \)).

Weierstrass \(\wp \)-function.

The Weierstrass \(\wp \)-function is defined as

\[
\wp(z) = -\partial_z^2 \log \vartheta_1(z) - 2\eta,
\]

where

\[
\eta = -\frac{1}{6} \frac{\vartheta_1'''(0)}{\vartheta_1'(0)} = -\frac{2\pi i}{3} \partial_\tau \log \vartheta_1'(0|\tau).
\]

Its derivative is given by

\[
\wp'(z) = -\frac{2 (\vartheta_1'(0))^3}{\vartheta_2(0) \vartheta_3(0) \vartheta_0(0)} \frac{\vartheta_2(z) \vartheta_3(z) \vartheta_0(z)}{\vartheta_1^3(z)}.
\]

The values at the half-periods

\[
e_1 = \wp(\omega_1), \quad e_2 = \wp(\omega_2), \quad e_3 = \wp(\omega_3)
\]

have special properties. For example, \(e_1 + e_2 + e_3 = 0 \). The differences \(e_j - e_k \) can be represented in two different ways:

\[
e_1 - e_2 = \pi^2 \vartheta_0^4(0) = 4\pi i \partial_\tau \log \frac{\vartheta_3(0)}{\vartheta_2(0)},
\]

\[
e_1 - e_3 = \pi^2 \vartheta_3^4(0) = 4\pi i \partial_\tau \log \frac{\vartheta_0(0)}{\vartheta_2(0)}.
\]

\[
e_2 - e_3 = \pi^2 \vartheta_2^4(0) = 4\pi i \partial_\tau \log \frac{\vartheta_0(0)}{\vartheta_3(0)}.
\]
The second representation is a consequence of the heat equation (B.26) (see below):

\[e_k = 4\pi i \partial_\tau \left(\frac{1}{3} \log \vartheta'_1(0) - \log \vartheta_{k+1}(0) \right) \]

(B.7)
or

\[\pi i \partial_\tau \log(e_j - e_k) = -e_i - 2\eta, \]

(B.8)

where \(\{jkl\} \) - any cyclic permutation of \(\{123\} \). The \(\varphi \)-function satisfies the differential equation

\[(\varphi'(z))^2 = 4(\varphi(z) - e_1)(\varphi(z) - e_2)(\varphi(z) - e_3). \]

(B.9)

We also mention the formulae

\[\varphi(z) - e_k = \frac{(\varphi'_1(0))^2 \varphi^2_{k+1}(z)}{\varphi^2_{k+1}(0) \varphi^2_1(z)}. \]

(B.10)

Eisenstein functions and \(\Phi \)-function.

By definition

\[E_1(z) = \partial_z \log \vartheta_1(z), \quad E_2(z) = -\partial_z E_1(z) = -\partial^2_z \log \vartheta_1(z) = \varphi(z) + 2\eta. \]

(B.11)

Behavior on the lattice:

\[E_1(z + 1) = E_1(z), \quad E_1(z + \tau) = E_1(z) - 2\pi i, \]

(B.12)

\[E_2(z + 1) = E_2(z), \quad E_2(z + \tau) = E_2(z). \]

(B.13)

The local expansion near \(z = 0 \):

\[E_1(z) = \frac{1}{z} - 2\eta z + \ldots, \quad E_2(z) = \frac{1}{z^2} + 2\eta + \ldots \]

Values at half-periods:

\[E_1(\omega_j) = -2\pi i \partial_\tau \omega_j \]

(B.14)

and, therefore,

\[E_1(\omega_j) + E_1(\omega_k) = E_1(\omega_j + \omega_k) \]

(B.15)

holds true for any different \(j, k = 1, 2, 3 \).

Another useful function is

\[\Phi(u, z) = \frac{\vartheta_1(u + z)\vartheta'_1(0)}{\vartheta_1(u)\vartheta_1(z)}. \]

(B.16)

It has the following properties:

\[\Phi(u, z) = \Phi(z, u), \]

\[\Phi(-u, -z) = -\Phi(u, z), \]

\[\Phi(u, z)\Phi(-u, z) = \varphi(z) - \varphi(u) \]

(B.17)

\[\Phi(u, z)\Phi(w, z) = \Phi(u + w, z)(E_1(z) + E_1(u) + E_1(w) - E_1(z + u + w)). \]

(B.18)
\[\Phi(u, z) = \frac{1}{z} + E_1(u) + \frac{z}{2}(E_1^2(u) - \varphi(u)) + O(z^2). \quad (B.19) \]

\[\partial_z \Phi(u, z) = \Phi(u, z)(E_1(u + z) - E_1(z)). \quad (B.20) \]

Behavior on the lattice:

\[\Phi(u, z + 1) = \Phi(u, z), \quad \Phi(u, z + \tau) = e^{-2\pi i u} \Phi(u, z). \quad (B.21) \]

It is also convenient to introduce

\[\varphi_j(z) = e^{2\pi i z \partial_t \omega_j} \Phi(z, \omega_j), \quad j = 1, 2, 3 \quad (B.22) \]

with properties:

\[\varphi_j^2(z) = \varphi(z) - e_j, \quad \varphi_j^2(z) - \varphi_k^2(z) = e_k - e_j \quad (B.23) \]

\[\varphi_j(z) \varphi_k(z) = \varphi_l(z)(E_1(z) + E_1(\omega_l) - E_1(z + \omega_l)). \quad (B.24) \]

\[\partial_z \varphi_j(z) = \varphi_j(z)[E_1(z + \omega_j) - E_1(\omega_j) - E_1(z)] = -\varphi_k(z) \varphi_l(z), \quad (B.25) \]

where \(j, k, l \) is any cyclic permutation of 1, 2, 3.

Heat equation and related formulae

All the theta-functions satisfy the “heat equation”

\[4\pi i \partial_\tau \vartheta_a(z|\tau) = \partial_z^2 \vartheta_a(z|\tau) \quad (B.26) \]

or

\[2\partial_t \vartheta_a(z) = \partial_z^2 \vartheta_a(z) \quad t = \frac{\tau}{2\pi i}. \]

One can also introduce the “heat coefficient” \(\kappa = \frac{1}{2\pi i} \) and rewrite the heat equation in the form \(\partial_\tau \vartheta_a(z|\tau) = \frac{\kappa}{2} \partial_z^2 \vartheta_a(z|\tau) \). All formulas for derivatives of elliptic functions with respect to the modular parameter are based on the heat equation.

The \(\tau \)-derivatives are given by the following

Proposition 6.1 The identities

\[\partial_\tau \Phi(z, u) = \kappa \partial_z \partial_u \Phi(z, u), \quad (B.27) \]

\[\partial_\tau E_1(z) = \frac{\kappa}{2} \partial_z(E_1^2(z) - \varphi(z)), \quad (B.28) \]

\[\partial_\tau E_2(z) = \kappa E_1(z)E_2(z) - \kappa E_2^2(z) + \frac{\kappa}{2} \varphi''(z), \quad (B.29) \]

with the “heat coefficient” \(\kappa = \frac{1}{2\pi i} \), hold true.
The proof can be found in [2].

Introduce now

\[X(x, t) = \frac{\varphi(x) - e_1}{e_2 - e_1}, \quad T(t) = \frac{e_3 - e_1}{e_2 - e_1} = \left(\frac{\partial_3(0|\tau)}{\vartheta_0(0|\tau)} \right)^4. \]

(B.30)

Then we have

\[X = \frac{\varphi(x) - e_1}{e_2 - e_1}, \quad X - 1 = \frac{\varphi(x) - e_2}{e_2 - e_1}, \quad X - T = \frac{\varphi(x) - e_3}{e_2 - e_1}, \]

and, therefore,

\[\left(\frac{\partial X}{\partial x} \right)^2 = 4(e_2 - e_1) X(X - 1)(X - T) \]

(B.32)

\[\frac{\partial^2 X}{\partial x^2} = 2(e_2 - e_1) X(X - 1)(X - T) \left(\frac{1}{X} + \frac{1}{X - 1} + \frac{1}{X - T} \right). \]

(B.33)

Let us give some more relations:

\[\frac{(e_2 - e_1)T}{X} = \varphi(x + \omega_1) - e_1, \]

(B.34)

\[- \frac{(e_2 - e_1)(T - 1)}{X - 1} = \varphi(x + \omega_2) - e_2, \]

\[\frac{(e_2 - e_1)T(T - 1)}{X - T} = \varphi(x + \omega_3) - e_3, \]

(B.35)

\[\frac{\partial T}{\partial t} = 2(e_2 - e_1)T(T - 1). \]

(B.36)

The following identity holds true\(^6\):

\[\frac{\partial X}{\partial t} = \frac{\partial X}{\partial x} \frac{\varphi'_0(x)}{\vartheta_0(x)} \]

(B.37)

or

\[\partial_T X = \kappa \partial_x X \left(E_1(z + \omega_3) - E_1(\omega_3) \right) = \kappa \partial_x X \partial_z \log \theta_0(z). \]

(B.38)

Appendix C: U-V pairs for P\(_1\)-P\(_V\)

Here we list the U-V pairs for P\(_1\)-P\(_V\) satisfying zero curvature equation (1.2) and admitting the quantum Painlevé-Calogero correspondence. The P\(_{VI}\) case is too complicated. In principle, it is gauge equivalent to different types of known elliptic 2 \times 2 U-V pairs (see [30], [31]) which are in their turn related by Hecke transformations [55, 56].

\(^6\)This formula was proved by K. Takasaki in [35] by comparison of analytic properties of the both sides. In [2] the proof was given by a direct computation.
Painlevé I
\[4\ddot{u} = 6u^2 + t, \quad (C.1) \]
\[H_1(p, u) = \frac{p^2}{2} - \frac{u^3}{2} - \frac{tu}{4}, \quad (C.2) \]
\[U(x, t) = \begin{pmatrix} \dot{u} & x - u \\ x^2 + xu + u^2 + \frac{1}{2} t & -\dot{u} \end{pmatrix}, \quad V(x, t) = \begin{pmatrix} 0 & \frac{1}{2} \\ \frac{1}{2} x + u & 0 \end{pmatrix}. \quad (C.3) \]

Painlevé II
\[\ddot{u} = 2u^3 + tu - \alpha, \quad (C.4) \]
\[H_{II}(p, u) = \frac{p^2}{2} - \frac{1}{2} \left(u^3 + \frac{t}{2}\right)^2 + \alpha u, \quad (C.5) \]
\[U = \begin{pmatrix} x^2 + \dot{u} - u^2 & x - u \\ (x + u)(2u^2 - 2\dot{u} + t) - 2\alpha - 1 & -x^2 - \dot{u} + u^2 \end{pmatrix}, \quad (C.6) \]
\[V = \begin{pmatrix} \frac{x + u}{2} & \frac{1}{2} \\ u^2 - \dot{u} + \frac{1}{2} & -\frac{x + u}{2} \end{pmatrix}. \quad (C.7) \]

Painlevé III
\[2\ddot{u} = e^t(\alpha e^{2u} + \beta e^{-2u}) + e^{2t}(\gamma e^{4u} + \delta e^{-4u}). \quad (C.8) \]
\[H_{III}(p, u) = \frac{p^2}{2} - \nu^2 e^t \cosh(2u - 2\vartheta) - \mu^2 e^{2t} \cosh(4u). \quad (C.9) \]
\[U_{11} = \dot{u}e^{2u-2x} + \theta \left(1 - e^{2u-2x}\right) + \frac{1}{2}\left(e^{2x+t} - e^{2u-2x} - e^{4u+t-2x} + 1\right), \quad (C.10) \]
\[U_{12} = e^\frac{t}{2}\left(e^{-u+x} - e^{u-x}\right), \quad (C.11) \]
\[U_{21} = \dot{u}^2 e^{u-\frac{3}{4}x}\left(e^{2x} + e^{2u}\right) - \dot{u}e^{u-\frac{5}{4}x}\left(1 + 2\theta\right)e^{2u} + \mu^2 e^{4u+t} \]
\[+ \theta^2 \left(-e^{u-\frac{5}{4}x} + e^{3u-\frac{1}{4}x}\right) + \theta \left(e^{3u-\frac{9}{4}x} - e^{5u+\frac{1}{4}x-3x}\right) + 4\gamma e^{-u+\frac{t}{2} - 3x} \]
\[-4\chi e^{-3u+\frac{9}{2}x} + e^{-u+\frac{5}{4}x-3x} \]
\[+ \frac{1}{4}\left(e^{u-\frac{3}{4}x+2e^{3u+\frac{5}{4}x} + e^{5u+\frac{1}{4}x} + e^{3u-\frac{9}{4}x} - 2e^{5u+\frac{1}{4}x - 3x} - e^{7u+\frac{9}{4}x - 3x}\right). \quad (C.12) \]
\[V_{11} = -\frac{1}{2}\dot{u}\left(e^{2u-2x} + 1\right) + \theta \left(1 + e^{2u-2x}\right) + \frac{1}{4}\left(e^{2x+t} + e^{2u-2x} + e^{4u+t-2x} + 1 + 2e^{2u+t}\right), \quad (C.13) \]
\[V_{12} = \frac{1}{2}e^\frac{t}{2}\left(e^{-u+x} + e^{u-x}\right), \quad (C.14) \]

32
\[V_{21} = \frac{1}{2}u^2 e^{u-\frac{t}{2}+3x}(e^{2x}-e^{2u}) - \frac{1}{2} \dot{u} e^{u-\frac{t}{2}+3x}(e^{2x}+e^{2u+t+2x}-(1+2\theta)e^{2u}-e^{4u+t}) \]

\[-\frac{\theta^2}{2} \left(e^{u-\frac{t}{2}-x} + e^{3u-\frac{t}{2}-3x} \right) - \frac{\theta}{2} \left(e^{3u-\frac{t}{2}-3x} + e^{5u+\frac{t}{2}-3x} + 2\lambda e^{-u+\frac{t}{2}-x} \right) \]

\[-2\chi \left(e^{-3u+\frac{3t}{2}-x} - e^{-u+\frac{3t}{2}-3x} \right) \]

\[+ \frac{1}{8} \left(e^{u-\frac{t}{2}-x} + 2e^{3u+\frac{t}{2}-x} + e^{5u+\frac{3t}{2}-x} - e^{3u-\frac{t}{2}-3x} - 2e^{5u+\frac{5t}{2}-3x} - e^{7u+\frac{3t}{2}-3x} \right). \]

Notice, that an interesting equation holds:

\[\partial_x \left(U_{21} e^{2x} \right) = 2 \left(V_{21} e^{2x} \right) \tag{C.16} \]

(in this case \(X = e^{2x} \)). Therefore, some relation exists between \(U_{21} \) and \(V_{21} \) elements just as for (12)-elements. For example, for \(P_{11} \) we have \(\partial_x U_{21} = 2V_{21} \).

Truncated Painlevé III\(^{[57]}\) \(\ddot{u} = 2\nu^2 e^t \sinh(2u) \)

\[\begin{pmatrix} \dot{u} & 2\nu e^{t/2} \sinh(x-u) \\ 2\nu e^{t/2} \sinh(x+u) & -\dot{u} \end{pmatrix} \tag{C.17} \]

\[\begin{pmatrix} 0 & \nu e^{t/2} \cosh(x-u) \\ \nu e^{t/2} \cosh(x+u) & 0 \end{pmatrix} \tag{C.18} \]

Painlevé IV

\[\ddot{u} = \frac{3}{4} u^5 + 2tu^3 + (t^2 - \alpha)u + \frac{\beta}{2u^3}, \tag{C.19} \]

\[H_{IV}^{(\alpha,\beta)}(p, u) = \frac{p^2}{2} - \frac{u^6}{8} - t\frac{u^4}{2} - \frac{1}{2} \left(t^2 - \alpha \right) u^2 + \frac{\beta}{4u^2}; \tag{C.20} \]

\[\begin{pmatrix} \frac{x^3}{2} + tx + \frac{Q+\frac{1}{2}}{x} & x^2 - u^2 \\ \frac{Q^2 + \frac{3}{2}}{u^2x^2} - Q - \alpha - 1 & -\frac{x^3}{2} - tx - \frac{Q+\frac{1}{2}}{x} \end{pmatrix} \tag{C.21} \]

\[\begin{pmatrix} \frac{x^2 + u^2}{2} + t & x \\ -\frac{Q+\alpha + 1}{x} & -\frac{x^2 + u^2}{2} - t \end{pmatrix} \tag{C.22} \]

where

\[Q = \dot{u}u - \frac{u^4}{2} - tu^2. \]
Painlevé V

\[
\ddot{u} = -\frac{2\alpha \cosh u}{\sinh^3 u} - \frac{2\beta \sinh u}{\cosh^3 u} - \gamma e^{2t} \sinh(2u) - \frac{1}{2} \delta e^{4t} \sinh(4u) ,
\]

(C.23)

\[
H_V(p, u) = \frac{p^2}{2} - \frac{\alpha}{\sinh^2 x} - \frac{\beta}{\cosh^2 x} + \frac{\gamma e^{2t}}{2} \cosh(2x) + \frac{\delta e^{4t}}{8} \cosh(4x) ,
\]

(C.24)

\[
U_{11} = \dot{u} \frac{\sinh(2u)}{\sinh(2x)} - \frac{2\sigma}{\sinh(2x)} \left(\cosh(2x) - \cosh(2u) \right)
\]

(C.25)

\[
U_{12} = e^t \left(\cosh(2x) - \cosh(2u) \right).
\]

(C.26)

\[
U_{21} = \dot{u} \frac{e^{-t}}{\sinh(2x)} \left(\cosh(2u) + \cosh(2x) \right)
\]

(C.27)

\[
V_{11} = \frac{1}{2} e^{2t} \left(\cosh(2x) + \cosh(2u) \right) - 2\sigma + \frac{1}{2} ,
\]

(C.28)

\[
V_{12} = e^t \sinh(2x) ,
\]

\[
V_{21} = \frac{e^{-t}}{\sinh(2x)} \left(\left(\frac{\ddot{u}}{2} - \frac{1}{2} \dot{u} e^{2t} \sinh(2u) \right)^2 + \frac{4\xi^2}{\cosh^2(u)} - 4\frac{\xi^2 + 2\sigma}{\sinh^2(u)} - 4\sigma^2 \coth^2(u) \right).
\]

Acknowledgments

We are grateful to A.Morozov for discussions. The work was supported in part by Ministry of Science and Education of Russian Federation under contract 8207. The work of A.Zabrodin was also supported in part by RFBR grant 11-02-01220, by joint RFBR grants 12-02-91052-CNRS, 12-02-92108-JSPS, by grant NSh-3349.2012.2 for support of leading scientific schools. The work of A.Zotov was also supported in part by RFBR-12-01-00482, RFBR-12-01-33071 mol_a_ved, by joint RFBR-13-02-90470 Ukr_f_a, by the Russian President fund MK-1646.2011.1 and by the ”Dynasty” fund.

References

[1] A. Zabrodin, A. Zotov, Quantum Painlevé-Calogero Correspondence, J. Math. Phys. 53, 073507 (2012); arXiv:1107.5672 [math-ph].

[2] A. Zabrodin, A. Zotov, Quantum Painlevé-Calogero Correspondence for Painlevé VI, J. Math. Phys. 53, 073508 (2012); arXiv:1107.5672 [math-ph].
[3] P. Painlevé, Memoire sur les équations différentielles dont l’intégrale générale est uniforme, Bull. Soc. Math. Phys. France 28 (1900) 201-261;
P. Painlevé, Sur les équations différentielles du second ordre et d’ordre supérieur dont l’intégrale générale est uniforme, Acta Math. 21 (1902) 1-85.

[4] R. Fuchs, Sur quelques équations différentielles linéaires du second ordre, C. R. Acad. Sci. (Paris) 141 (1905) 555-558.

[5] B. Gambier, Sur les équations différentielles du second ordre et du premier degré dont l’intégrale générale est à points critique fixés, C. R. Acad. Sci. (Paris) 142 (1906) 266-269.

[6] K. Iwasaki, H. Kimura, S. Shimomura, M. Yoshida, From Gauss to Painlevé, a modern theory of special functions, Aspects of Mathematics, E16, Friedr. Vieweg & Sohn, Braunschweig, 1991.

[7] The Painleve Property. One Century Later, CRM Series in Mathematical Physics, XXVI, R. Conte (Ed.), 1999, 810 p.

[8] H. Flaschka and A. Newell, Monodromy- and spectrum-preserving deformations. I Commun. Math. Phys. 76 (1980) 65-116.

[9] E. Barouch, B. McCoy, C. Tracy and T. Wu, Zero field susceptibility of the two-dimensional Ising model near T_c, Phys. Rev. Lett. 31 (1973) 1409-1411.

[10] M. Jimbo, T. Miwa, Y. Mori and M. Sato, Density matrix of an impenetrable gas and the fifth Painlevé transcendent, Physica D1 (1980) 80-158.

[11] E. Brézin and V. Kazakov, Exactly solvable field theories of closed strings, Phys. Lett. B236 (1990) 144-150;
D. Gross and A. Migdal, Nonperturbative two-dimensional quantum gravity, Phys. Rev. Lett. 64 (1990) 127-130;
M. Douglas and S. Shenker, Strings in less than one dimension, Nuclear Physics B335 (1990) 635-654.

[12] B. Dubrovin, Geometry of 2D topological field theories, Integrable systems and quantum groups (Montecatini Terme, 1993), Lecture Notes in Math., vol. 1620, Springer, Berlin 1996, pp. 120-348;
B. Dubrovin, Painlevé equations in 2D topological field theories, In: Painleve Property, One Century Later, Cargèse, 1996, arXiv:math.AG/9803107.

[13] Al. Zamolodchikov, Painlevé III and 2D polymers, Nuclear Physics B432 (1994) 427-456.

[14] C. Tracy and H. Widom, Fredholm determinants, differential equations and matrix models, Commun. Math. Phys. 163 (1994) 33-72.

[15] P. Forrester and N. Witte, Application of the τ-function theory of Painlevé equations to random matrices: PIV, PII and the GUE, Commun. Math. Phys. 219 (2001) 357-398;
P. Forrester and N. Witte, Random matrix theory and the sixth Painlevé equation, J. Phys. A: Math. Gen. 39 (2006) 12211-12233.

[16] S.-Y. Lee, R. Teodorescu and P. Wiegmann, Viscous shocks in Hele-Shaw flow and Stokes phenomena of the Painleve I transcendent, Physica D240 (2011) 1080-1091.

[17] M. Jimbo, H. Nagoya and J. Sun, Remarks on the confluent KZ equation for sl2 and quantum Painlevé equations, J. Phys. A: Math. Theor. 41 (2008) 175205;
H. Nagoya, Hypergeometric solutions to Schrödinger equations for the quantum Painlevé equations, Journ. Math Phys. 52 (2011) 083509.

[18] O. Gamayun, N. Iorgov and O. Lisovyy, Conformal field theory of Painlevé VI, JHEP, Vol. 2012, No. 10 (2012), 38; arXiv:1207.0787 [hep-th]

[19] V. Fateev and I. Litvinov, On AGT conjecture, JHEP 1002 (2010) 014. arXiv:0912.0504
[20] A. Marshakov, A. Mironov and A. Morozov, On AGT relations with surface operator insertion and stationary limit of beta-ensembles, J. Geom. Phys. 61 (2011) 1203-1222.

[21] A. Mironov, A. Morozov, S. Shakirov, Towards a proof of AGT conjecture by methods of matrix models, Int. J. Mod. Phys. A27 (2012) 1230001, arXiv:1011.5629.

[22] A. Mironov, A. Morozov, Y. Zenkevich, A. Zotov, Spectral Duality in Integrable Systems from AGT Conjecture, JETP Letters, Vol. 97, Num. 1 (2013); arXiv:1204.0913 [hep-th].

[23] A. Mironov, A. Morozov, B. Runov, Y. Zenkevich, A. Zotov, Spectral Duality Between Heisenberg Chain and Gaudin Model, Lett.Math.Phys. (2012), to appear, DOI: 10.1007/s11005-012-0595-0; arXiv:1206.6349 [hep-th].

[24] R. Garnier, Sur des equations différentielles du troisième ordre dont l'intégrale générale est uniforme et sur une classe d'équations nouvelles d'ordre supérieur dont l'intégrale générale a ses points critique fixes, Ann. Ecol. Norm. Sup. 29 (1912) 1-126.

[25] L. Schlesinger, Über eine Klasse von Differentialsystemen beliebiger Ordnung mit festen kritischen Punkten, J. Reine u. Angew. Math. 141 (1912) 96-145.

[26] M. Jimbo, T. Miwa and K. Ueno, Monodromy preserving deformation of linear ordinary differential equations with rational coefficients I. General theory and τ-function, Physica D 2 (1981) 306-352.

[27] M. Jimbo and T. Miwa, Monodromy preserving deformation of linear ordinary differential equations with rational coefficients II, Physica D 2 (1981) 407-448.

[28] M. Jimbo and T. Miwa, Monodromy preserving deformation of linear ordinary differential equations with rational coefficients III, Physica D 4 (1981) 26-46.

[29] A. Its, V. Novokshenov, The isomonodromic deformation method in the theory of Painlevé equations, Lecture Notes in Math. 1191 (1986), Berlin: Springer.

[30] A. Zotov, Elliptic linear problem for Calogero-Inozemtsev model and Painlevé VI equation, Lett. Math. Phys. 67 (2004) 153-165, arXiv:hep-th/0310260.

[31] A. Levin, M. Olshanetsky and A. Zotov, Painlevé-Calogero correspondence, Calogero-Moser-Sutherland models (Montreal, 1997), CRM Ser. Math. Phys., Springer 2000, pp. 313–332, arXiv: alg-geom/9706010.

[32] E. Ince, Ordinary differential equations, Dover, 1956.

[33] A. Levin and M. Olshanetsky, Painlevé-Calogero correspondence, Calogero-Moser-Sutherland models (Montreal, 1997), CRM Ser. Math. Phys., Springer 2000, pp. 313–332, arXiv: alg-geom/9706010.

[34] A. Takasaki, Painlevé-Calogero correspondence revisited, J. Math. Phys. 42 (2001) 1443-1473.

[35] B. Suleimanov, The Hamiltonian property of Painlevé equations and the method of isomonodromic deformations, Differential Equations 30:5 (1994) 726-732 (Translated from Differentialnie Uravneniya 30:5 (1994) 791-796).

[36] B. Suleimanov, “Quantizations” of the second Painlevé equation and the problem of the equivalence of its L-A pairs, Theor. Math. Phys. 156 (2008) 1280-1291 (Translated from Teor. Mat. Fys. 156 (2008) 364-377).
A. Alexandrov, V. Kazakov, S. Leurent, Z. Tsuboi and A. Zabrodin, *Classical tau-function for quantum spin chains*, arXiv:1112.3310 [math-ph].

A. Zabrodin, *The master T-operator for vertex models with trigonometric R-matrices as classical tau-function*, arXiv:1205.4152 [math-ph].

A. Zabrodin, *Bethe ansatz and Hirota equation in integrable models*, arXiv:1211.4428 [math-ph].

I. Krichever, O. Lipan, P. Wiegmann and A. Zabrodin, *Quantum integrable systems and elliptic solutions of classical discrete nonlinear equations*, Commun. Math. Phys. 188 (1997) 267-304.

A. Zabrodin, *Discrete Hirota equation in quantum integrable models*, Int. J. Mod. Phys. B11 (1997) 3125-3158;
A. Zabrodin, *Hirota equation and Bethe ansatz*, Teor. Mat. Fyz., 116 (1998) 54-100 (English translation: Theor. Math. Phys. 116 (1998) 782-819).

V. Kazakov, A. Sorin and A. Zabrodin, *Supersymmetric Bethe ansatz and Baxter equations from discrete Hirota dynamics*, Nucl. Phys. B790 (2008) 345-413;
A. Zabrodin, *Bäcklund transformations for difference Hirota equation and supersymmetric Bethe ansatz*, Teor. Mat. Fyz. 155 (2008) 74-93 (English translation: Theor. Math. Phys. 155 (2008) 567-584).

I. Krichever, *Elliptic solutions of the Kadomtsev-Petviashvili equation and integrable systems of particles*, Funk. Anal. i ego Pril. 14:4 (1980) 45-54 (translation: Funct. Anal. Appl., 14:4 (1980) 282-290);
I. Krichever, *On rational solutions of the Kadomtsev-Petviashvili equation and on integrable systems of N particles on the line*, Funct. Anal. Appl. 12:1 (1978) 76-78;
I. Krichever and A. Zabrodin, *Spin generalization of the Ruijsenaars-Schneider model, non-abelian 2D Toda chain and representations of Sklyanin algebra*, Uspekhi Mat. Nauk, 50:6 (1995) 3-56 (translation: Russ. Math. Surv., 50:6 (1995) 1101-1150).

F. Calogero, *On a functional equation connected with integrable many-body problems*, Lettere Al Nuovo Cimento, Vol. 16, 3 (1976) 77-80;
V.M. Buchstaber and A.M. Perelomov, *On the functional equation related to the quantum three-body problem*, Contemporary mathematical physics, Amer. Math. Soc. Transl. Ser. 2, 175, (1996) 15-34; arXiv:math-ph/0205032;
H.W. Braden and V.M. Buchstaber, *Integrable systems with pairwise interactions and functional equations*, arXiv:hep-th/9411240.

P. Painlevé, *Sur les équations différentielles du second ordre à points critiques fixes*, C. R. Acad. Sci. (Paris) 143 (1906) 1111-1117.

V.I. Inozemtsev, *Lax representation with spectral parameter on a torus for integrable particle systems*, Lett. Math. Phys. 17 (1989) 11-17.

Yu.Manin, *Sixth Painlevé equation, universal elliptic curve, and mirror of P²*, AMS Transl. (2) 186 (1998) 131-151.

K. Takasaki, *Elliptic Calogero-Moser systems and isomonodromic deformations*, J. Math. Phys. 40, (1999) 57-87

B. Dubrovin and M. Mazzocco, *Monodromy of certain Painlevé-VI transcendent and reflection groups*, Invent. Math. 141 (2000), no. 1, 55147;
D. Guzzetti, *The elliptic representation of the general Painlevé VI equation*, Commun. on Pure and Appl. Math., Vol. 55, 10, (2002) 12801363;
P. Boalch, *From Klein to Painlevé via Fourier, Laplace and Jimbo*, Proc. of the London Math. Soc., Vol. 90, 01, (2005) 167-208;
D. Guzzetti, *A Review on The Sixth Painlevé Equation*, arXiv:1210.0311 [math.CA].

V. Bazhanov and V. Mangazeev, *The eight-vertex model and Painlevé VI*, J. Phys. A: Math. Gen. 39 (2006) 12235-12243.
[52] D. P. Novikov, *The 2×2 matrix Schlesinger system and the Belavin-Polyakov-Zamolodchikov system*, Theor. Math. Phys., 161:2 (2009), 1485-1496.

[53] B. Suleimanov, "Quantization" of higher hamiltonian analogues of the Painleve I and Painleve II equations with two degrees of freedom, [arXiv:1204.4006](https://arxiv.org/abs/1204.4006) [nlin.SI].

[54] T. Tsuda, *Universal characters, integrable chains and the Painlevé equations*, Advances in Mathematics, Vol. 197, 2, (2005) 587-606.

[55] A. Levin, M. Olshanetsky, A. Zotov, *Hitchin Systems - Symplectic Hecke Correspondence and Two-dimensional Version*, Commun. Math. Phys., Vol. 236, Num. 1 (2003) 93-133; [arXiv:nlin/0110045](https://arxiv.org/abs/nlin/0110045) [nlin.SI];
A.M. Levin, M.A. Olshanetsky, A.V. Smirnov, A.V. Zotov, *Characteristic Classes and Hitchin Systems. General Construction*, Commun. Math. Phys., Vol. 316, Num. 1 (2012) 1-44; [arXiv:1006.0702](https://arxiv.org/abs/1006.0702) [math-ph].

[56] A.M. Levin, M.A. Olshanetsky, A.V. Smirnov, A.V. Zotov, *Calogero-Moser systems for simple Lie groups and characteristic classes of bundles*, Journal of Geometry and Physics 62 (2012) 1810-1850; [arXiv:1007.4127](https://arxiv.org/abs/1007.4127) [math-ph];
A.M. Levin, M.A. Olshanetsky, A.V. Smirnov, A.V. Zotov, *Hecke Transformations of Conformal Blocks in WZW Theory. I. KZB Equations for Non-trivial Bundles*, SIGMA 8 (2012), 095, 37 pages; [arXiv:1207.4386](https://arxiv.org/abs/1207.4386) [math-ph];
A.M. Levin, M.A. Olshanetsky, A.V. Smirnov, A.V. Zotov, *Characteristic Classes of SL(N)-Bundles and Quantum Dynamical Elliptic R-Matrices*, Journal of Physics A: Mathematical and Theoretical, to appear; [arXiv:1208.5750](https://arxiv.org/abs/1208.5750) [math-ph].

[57] G. Aminov and S. Arthamonov, *New 2x2-matrix linear problems for Painlevé equations*, arXiv: 1112.4688 [nlin.SI].