Why there is a difference between optimal doping for maximal T_c and critical doping for highest ρ_s in cuprate superconductors?

Zheyu Huang, Huaisong Zhao, and Shiping Feng*
Department of Physics, Beijing Normal University, Beijing 100875, China

A long-standing puzzle is why there is a difference between the optimal doping $\delta_{\text{optimal}} \approx 0.15$ for the maximal superconducting (SC) transition temperature T_c and the critical doping $\delta_{\text{critical}} \approx 0.19$ for the highest superfluid density ρ_s in cuprate superconductors? This puzzle is calling for an explanation. Within the kinetic energy driven SC mechanism, it is shown that except the quasiparticle coherence, ρ_s is dominated by the bare pair gap, while T_c is set by the effective pair gap. By calculation of the ratio of the effective and the bare pair gaps, it is shown that the coupling strength decreases with increasing doping. This doping dependence of the coupling strength induces a shift from the critical doping for the maximal value of the bare pair gap parameter to the optimal doping for the maximal value of the effective pair gap parameter, which leads to a difference between the optimal doping for the maximal T_c and the critical doping for the highest ρ_s.

In this paper, we try to answer this question. Experimentally, the measured energy gap $\Delta(k)$ is an effective energy gap Δ_{eff}, which incorporates both the coupling strength and the bare energy gap $\Delta(k)$. Theoretically, the kinetic energy driven SC mechanism has been developed12, where T_c is controlled by both the effective charge carrier pair gap and the quasiparticle coherence. Within this kinetic energy driven SC mechanism, we calculate the doping dependence of the coupling strength V_{eff}, and the result shows that V_{eff} smoothly decreases upon increasing doping from a strong-coupling case in the underdoped regime to a weak-coupling side in the overdoped regime. Our results also show that the maximal value of the bare charge carrier pair gap parameter appears around the critical doping $\delta_{\text{critical}} \approx 0.19$, then as a natural consequence, the highest ρ_s occurs around this same critical doping. However, the special doping dependence of V_{eff} shifts this critical doping for the maximal value of the bare charge carrier pair gap parameter to the optimal doping $\delta_{\text{optimal}} \approx 0.15$ for the maximal value of the effective charge carrier pair gap parameter, which leads to that T_c exhibits a maximum around the optimal doping.

Cuprate superconductors have a layered structure consisting of the two-dimensional CuO$_2$ planes separated by insulating layers2. The single common feature is the presence of the CuO$_2$ plane, and it seems evident that the unusual behaviors of cuprate superconductors are dominated by this CuO$_2$ plane2. In this case, it has been argued that the essential physics of the doped CuO$_2$ plane is properly accounted by the t-J model on a square lattice13. However, for discussions of the difference between the optimal doping for the maximal T_c and the critical doping for the highest ρ_s, the t-J model can be...

The parent compounds of cuprate superconductors are Mott insulators with an antiferromagnetic long-range order (AFLRO)2. However, this AFLRO is suppressed by doped charge carriers, then superconductivity arises from the binding of charge carriers into Cooper pairs3, thereby forming a superfluid with a superconducting (SC) energy gap $\Delta(k)$ in the single-particle excitation spectrum. This energy gap is corresponding to the energy for breaking a Cooper pair of the charge carriers and creating two excited states4, while the superfluid density ρ_s is proportional to the squared amplitude of the macroscopic wave function5, and therefore describes the SC charge carriers. In this case, both $\Delta(k)$ and ρ_s are thus two fundamental parameters whose variation as a function of doping and temperature provides important information crucial to understanding the details of the SC state2. After intensive investigations over more than two decades, some essential features of the evolution of the SC state in cuprate superconductors with doping have been experimentally established$^{5-11}$: where the measured energy gap parameter $\bar{\Delta}$ and the SC transition temperature T_c show a domelike shape doping dependence, i.e., the maximal $\bar{\Delta}$ and T_c occur around the optimal doping $\delta_{\text{optimal}} \approx 0.15$, and then decrease in both the underdoped and the overdoped regimes5. Moreover, the experimental measurements6 throughout the SC dome show that the superfluid density ρ_s appears from the starting point of the SC dome, and then increases with increasing doping in the lower doped regime. However, this ρ_s reaches its highest value around the critical doping $\delta_{\text{critical}} \approx 0.19$, and then decreases at the higher doped regime, eventually disappearing together with $\bar{\Delta}$ at the end of the SC dome. In particular, it has been shown5 that the maximal T_c around the optimal doping and the peak of ρ_s around the critical doping is a common feature of cuprate superconductors. Since $\bar{\Delta}$ measures the strength of the binding of charge carriers into Cooper pairs5, while ρ_s is a measure of the phase stiffness5, therefore $\bar{\Delta}$ and ρ_s separately describe the different aspects of the same SC charge carriers. In this case, a long-standing...
extended by including the exponential Peierls factors as,
\[H = -t \sum_{\langle \ell \ell' \rangle} P_{\ell \eta} C_{\ell \sigma}^{\dagger} C_{\ell' \sigma} + t' \sum_{\langle \ell \ell' \rangle} P_{\ell' \eta'} C_{\ell \sigma}^{\dagger} C_{\ell' \sigma} + \mu \sum_{\ell} C_{\ell \sigma}^{\dagger} C_{\ell \sigma} + J \sum_{\ell} S_{\ell} \cdot S_{\ell + \eta}, \]
(1)

supplemented by an important on-site local constraint \(\sum_{\sigma} C_{\ell \sigma}^{\dagger} C_{\ell \sigma} \leq 1 \) to remove the double occupancy, where the summation is over all sites \(\ell \), and for each \(\ell \), over its nearest-neighbors (NNN) \(\eta \) or the next nearest-neighbors (NNN) \(\eta' \), \(C_{\ell \sigma}^{\dagger} \) and \(C_{\ell \sigma} \) are electron operators that respectively create and annihilate electrons with spin \(\sigma \), \(S_{\ell} = (S_{\ell}^{x}, S_{\ell}^{y}, S_{\ell}^{z}) \) are spin operators, and \(\mu \) is the chemical potential. The exponential Peierls factors \(P_{\ell \eta} = e^{-i/(\varepsilon_{\ell}(h)A(t)\eta)} \) and \(P_{\ell' \eta'} = e^{-i/(\varepsilon_{\ell'}(h)A(t)\eta')} \) account for the coupling of electrons to an external magnetic field in terms of the vector potential \(A(t) \). To incorporate the electron single occupancy local constraint in the \(t-J \) model [1], the charge-spin separation (CSS) fermion-spin theory [2,16] has been proposed, where a spin-up annihilation (spin-down annihilation) operator for the physical electron is given by a composite operator as \(C_{\ell \sigma} = h_{\ell \sigma}^{\dagger} S_{\ell}^{z} \) (\(C_{\ell \sigma} = h_{\ell \sigma}^{\dagger} S_{\ell}^{+} \)), with the spinful fermion operator \(h_{\ell \sigma} = e^{-i/\varepsilon_{\ell}(h)} h_{\ell} \) that describes the charge degree of freedom of the electron together with some effects of spin configuration rearrangements due to the presence of the doped hole itself (charge carrier), while the spin operator \(S_{\ell} \) represents the spin degree of freedom of the electron, then the electron single occupancy local constraint is satisfied in analytical calculations. In this CSS fermion-spin representation, the \(t-J \) model [1] can be rewritten as,
\[H = t \sum_{\ell \eta} P_{\ell \eta} (h_{\ell + \eta}^{\dagger} h_{\ell \eta} h_{\ell + \eta \eta}^{\dagger} S_{\ell + \eta \eta}^{z} + h_{\ell + \eta \eta}^{\dagger} h_{\ell \eta} h_{\ell + \eta \eta}^{\dagger} S_{\ell + \eta \eta}^{z}) - t' \sum_{\ell \eta'} P_{\ell \eta'} (h_{\ell + \eta}^{\dagger} h_{\ell \eta'} h_{\ell + \eta \eta'}^{\dagger} S_{\ell + \eta \eta'}^{z} + h_{\ell + \eta \eta'}^{\dagger} h_{\ell \eta'} h_{\ell + \eta \eta'}^{\dagger} S_{\ell + \eta \eta'}^{z}) - \mu \sum_{\ell} h_{\ell \sigma}^{\dagger} h_{\ell \sigma} + J_{\text{eff}} \sum_{\ell} S_{\ell} \cdot S_{\ell + \eta}, \]
(2)

where \(J_{\text{eff}} = (1 - \delta)^{2} J \), and \(\delta = \langle h_{\ell \sigma}^{\dagger} h_{\ell \sigma} \rangle / \langle h_{\ell \sigma}^{\dagger} h_{\ell \sigma} \rangle \) is the doping concentration.

Since the experimental measurements [2] have shown that in the real space the gap function and the pairing force have a range of one lattice spacing, the bare energy gap parameter can be expressed as \(\Delta = \langle C_{\ell \sigma}^{\dagger} C_{\ell \sigma} \rangle = \langle h_{\ell \sigma}^{\dagger} h_{\ell \sigma} \rangle \). In the doped regime without AFLRO, the spin correlation functions \(\langle S_{\ell}^{z} S_{\ell + \eta}^{z} \rangle = \chi_{1} \), and then the bare energy gap parameter can be rewritten as \(\Delta = -\chi_{1} \Delta_{h} \), with the bare charge carrier pair gap parameter \(\Delta_{h} = \langle h_{\ell + \eta \eta}^{\dagger} h_{\ell + \eta \eta} - h_{\ell + \eta \eta}^{\dagger} h_{\ell \eta} \rangle \), which shows that the bare energy gap is closely related to the bare charge carrier pair gap, therefore the essential physics in the SC state is dominated by the corresponding one in the charge carrier pairing state. For a microscopic description of the SC state in cuprate superconductors, the kinetic energy driven SC mechanism has been developed [12] based on the \(t-J \) model [1], where the charge carrier interaction directly from the kinetic energy by exchanging spin excitations induces a d-wave charge carrier pairing state, and then their condensation reveals the SC ground-state. Moreover, this SC state is controlled by both the effective energy gap and the quasiparticle coherence. Within this kinetic energy driven SC mechanism, the full charge carrier Green’s function in the zero magnetic field case has been obtained explicitly in the Nambu representation as [15,16],
\[G(k, \omega_{n}) = \frac{\omega_{n} \tau_{0} + \xi_{k} \tau_{3} - \Delta_{h}(k) \tau_{1}}{(\omega_{n}^{2} - E_{hk}^{2})^{2}}, \]
(3)

where \(\tau_{0} \) is the unit matrix, \(\tau_{1} \) and \(\tau_{3} \) are Pauli matrices, the renormalized charge carrier excitation spectrum \(\xi_{k} = Z_{hf}(\xi_{k}) \), with the mean-field charge carrier excitation spectrum \(\xi_{k} = Z_{hf}(\xi_{k}) \), where the charge carrier interaction directly from the kinetic energy by exchanging spin excitations induces a d-wave charge carrier pairing state, and then their condensation reveals the SC ground-state. Moreover, this SC state is controlled by both the effective energy gap and the quasiparticle coherence. Within this kinetic energy driven SC mechanism, the full charge carrier Green’s function in the zero magnetic field case has been obtained explicitly in the Nambu representation as [15,16],
\[G(k, \omega_{n}) = \frac{\omega_{n} \tau_{0} + \xi_{k} \tau_{3} - \Delta_{h}(k) \tau_{1}}{(\omega_{n}^{2} - E_{hk}^{2})^{2}}, \]
(3)

where \(\tau_{0} \) is the unit matrix, \(\tau_{1} \) and \(\tau_{3} \) are Pauli matrices, the renormalized charge carrier excitation spectrum \(\xi_{k} = Z_{hf}(\xi_{k}) \), with the mean-field charge carrier excitation spectrum \(\xi_{k} = Z_{hf}(\xi_{k}) \), while the quasiparticle coherent weight \(Z_{hf} \) is directly associated with the self-energy \(\Sigma_{\text{hs}}^{(k, \omega)}(k, \omega) \) in the particle-hole channel as \(Z_{hf}^{-1} = 1 - \text{Re} \Sigma_{\text{hs}}^{(k, \omega)}(k, \omega) \), with the antisymmetric part of \(\Sigma_{\text{hs}}^{(k, \omega)}(k, \omega) \), where the self-energies \(\Sigma_{\text{hs}}^{(k, \omega)}(k, \omega) \) and \(\Sigma_{\text{hs}}^{(k, \omega)}(k, \omega) \) have been given in Refs. [16,18]. In this case, the effective charge carrier pair gap parameter \(\Delta_{h} \), \(Z_{hf} \), and all the other order parameters have been determined by the self-consistent calculation [16,18]. For a convenience in the following discussions, the self-consistently calculated result [18] of \(\Delta_{h} \) versus doping for temperature \(T = 0.002J \) with parameters \(t/J = 2.5 \) and \(t'/t = 0.3 \) is replotted in Fig. [1], where the maximal \(\Delta_{h} \) occurs around the optimal doping \(\delta_{\text{optimal}} \approx 0.15 \), and then decreases in both the underdoped and the overdoped regimes.

With the help of the Green’s function [13], the bare charge carrier pair gap parameter \(\Delta_{h} \) can be evaluated explicitly as,
\[\Delta_{h} = \frac{1}{2N} \sum_{k} \text{Im} \langle \text{cos} k_{x} - \text{cos} k_{y} \rangle^{2} Z_{hf} \frac{\Delta_{h} \tau_{3}}{E_{hk}} \tan \frac{1}{2} \beta E_{hk}, \]
(4)

Since the pairing force and this \(\Delta_{h} \) have been incorporated into the effective charge carrier pair gap parameter \(\Delta_{h} \), the strength \(V_{\text{eff}} \) of the attractive interaction mediated by spin excitations in the kinetic energy driven SC mechanism can therefore be obtained in terms of the ratio of \(\Delta_{h} \) and \(\Delta_{h} \) as,
\[V_{\text{eff}} = \frac{\Delta_{h}}{\Delta_{h}}, \]
(5)
is shown that T_c increases with increasing doping in the underdoped regime, and exhibits a maximum around the optimal doping, then decreases with increasing doping in the overdoped regime, in good agreement with the experimental results of cuprate superconductors. In particular, T_c that is set by the effective pair gap and the quasiparticle coherence has been observed experimentally in cuprate superconductors. We believe that this property may be a common feature for all superconductors, since in spite of the electron-phonon SC mechanism, T_c in the conventional superconductors is also determined by the effective pair gap and the quasiparticle coherence.

Although both Δ_h and Δ_b measure the strength of the binding of charge carriers into charge carrier pairs, Δ_h is an experimentally measurable quantity, while Δ_b is not. In this case, we have calculated the doping dependence of V_{eff} and Δ_h, and the results of (a) V_{eff} and (b) Δ_h as a function of doping for $T = 0.002J$ with parameters $t/J = 2.5$ and $t'/t = 0.3$. The essential physics of the domelike shape doping dependence of T_c in cuprate superconductors can be attributed to a competition between the kinetic energy (δt) and magnetic energy (J). The parent compounds of cuprate superconductors are the Mott insulators, when charge carriers are doped into a Mott insulator, there is a gain in the kinetic energy per charge carrier proportional to t due to hopping, however, at the same time, the magnetic energy is decreased, costing an energy of approximately J per site. As a consequence, the strength of the spin excitation spectrum decreases with increasing doping, which leads to a decrease of the coupling strength V_{eff} with increasing doping in the framework of the kinetic energy driven SC mechanism. Moreover, in the underdoped regime, the coupling strength V_{eff} in Fig. 2(a) is very strong, this implies that the most doped charge carriers can be bound into the charge carrier pairs, then the number of the charge carrier pairs and T_c increase with increasing doping. However, in the overdoped regime, the coupling strength V_{eff} is relatively weak. In this case, not all doped charge carriers can be bound to form the charge carrier pairs by this weakly attractive interaction, and therefore the number of the charge carrier pairs and T_c decrease with increasing doping. In particular, the optimal doping is a balance point, where the number of the charge carrier pairs and the coupling strength V_{eff} are optimally matched. This is why the T_c in cuprate superconductors exhibits a domelike shape doping dependence.
Now we turn to discuss the doping dependence of the superfluid density. The external magnetic field $\mathbf{B} = \text{rot} \mathbf{A}$ applied to the system usually represents a large perturbation, but the induced field generated by supercurrents cancels the external field over most of the volume of the sample. As a consequence, the net field acts only very near the surface on a scale of the magnetic field penetration depth, and then it can be treated as a weak perturbation on the system as a whole. In this case, the Meissner effect can be successfully studied within the linear response approach, where the response current density J_μ and the vector potential A_ν are related by a nonlocal kernel of the response function $K_{\mu\nu}$ as,

$$J_\mu(q, \omega) = - \sum_{\nu=1,2,3} K_{\mu\nu}(q, \omega) A_\nu(q, \omega). \quad (6)$$

This kernel of the response function in Eq. (6) can be separated into two parts as $K_{\mu\nu}(q, \omega) = K^{(d)}_{\mu\nu}(q, \omega) + K^{(p)}_{\mu\nu}(q, \omega)$, where $K^{(d)}_{\mu\nu}$ and $K^{(p)}_{\mu\nu}$ are the corresponding diamagnetic and paramagnetic parts, respectively, and are closely related to the current-current correlation function. The vector potential \mathbf{A} has been coupled to electrons, which are now represented by $C_{\uparrow} = h^\dagger_\uparrow S^-_\uparrow$ and $C_{\downarrow} = h^\dagger_\downarrow S^+_\downarrow$ in the CSS fermion-spin representation. In this case, the electron polarization operator is expressed as $\mathbf{P} = -e \sum_i \mathbf{R}_i C^\dagger_i \mathbf{C}_i = e \sum_i \mathbf{R}_i h^\dagger \mathbf{h}_i$, and then the current operator \mathbf{j} in the presence of the vector potential A_ν is obtained by evaluating the time-derivative of this polarization operator. According to this current operator \mathbf{j}, the diamagnetic and paramagnetic parts of the response kernel have been evaluated as:

$$K^{(d)}_{\mu\nu}(q, 0) = -\frac{4e^2}{\hbar^2}(\chi_{\uparrow}\phi_1 t - 2\chi_2 \phi_2 t')\delta_{\mu\nu} = \frac{1}{\lambda^2_s}\delta_{\mu\nu}, \quad (7a)$$

$$K^{(p)}_{\mu\nu}(q, 0) = \frac{1}{N} \sum_k \gamma_{\mu\nu}(\mathbf{k} + \mathbf{q}, \mathbf{k}) \gamma^*_{\nu\mu}(\mathbf{k} + \mathbf{q}, \mathbf{k}) |L_1(k, q)| + L_2(k, q)] = K^{(p)}_{\mu\nu}(q, 0) \delta_{\mu\nu}, \quad (7b)$$

where the charge carrier particle-hole parameters $\phi_1 = (h^\dagger_{\uparrow+i\sigma} h_{\downarrow+i\sigma})$ and $\phi_2 = (h^\dagger_{\uparrow-i\sigma} h_{\downarrow-i\sigma})$, $\lambda^{-2}_s = -4e^2(\chi_{\uparrow}\phi_1 t - 2\chi_2 \phi_2 t')/\hbar^2$, while the functions $L_1(k, q, \omega)$ and $L_2(k, q, \omega)$ have been given in Ref. 22. In particular, we22 have shown that in the long wavelength limit, i.e., $|\mathbf{q}| \rightarrow 0$, $K^{(p)}_{\mu\nu}(q \rightarrow 0, 0) = 0$ at $T = 0$, reflecting that the long wavelength electromagnetic response is determined by the diamagnetic part of the kernel only. However, at $T = T_c$, $K^{(p)}_{\mu\nu}(q \rightarrow 0, 0) = -(1/\lambda^2_s)$, which exactly cancels the diamagnetic part of the response kernel (7a), and then the Meissner effect is obtained for all $T \leq T_c$. With the help of the response kernel in Eq. (7), the magnetic field penetration depth $\lambda(T)$ by taking into account the two-dimensional geometry of cuprate superconductors within the specular reflection model has been evaluated as:

$$\lambda(T) = \frac{1}{B} \int_0^\infty h_\uparrow(x) \, dx = \frac{2}{\pi} \int_0^\infty \frac{dq_\perp}{\mu_0 K_{yy}(q_\perp, 0) + q_\perp^2}, \quad (8)$$

then the superfluid density $\rho_s(T)$ is obtained as $\rho_s(T) = \lambda^{-2}(T)$.

![FIG. 4: The superfluid density as a function of doping for temperature $T = 0.002J$ with parameters $t/J = 2.5$, $t'/t = 0.3$, and $J = 1000K$. Inset: the corresponding experimental results of cuprate superconductors taken from Ref. [10].](image)

In this case, for the discussions of the difference between the optimal doping for the maximal T_c and the critical doping for the highest ρ_s, the result of ρ_s as a function of doping at $T = 0.002J$ with $t/J = 2.5$, $t'/t = 0.3$, and $J = 1000K$ is replotted in Fig. 4 in comparison with the corresponding experimental data of cuprate superconductors (inset). The result in Fig. 4 shows clearly that ρ_s increases with increasing doping in the lower doped regime, and reaches a maximum around the critical doping $\delta_{\text{critical}} \approx 0.195$, then decreases in the higher doped regime, in good agreement with the experimental results of cuprate superconductors. In particular, this anticipated value of the critical doping $\delta_{\text{critical}} \approx 0.195$ is very close to the critical doping $\delta_{\text{critical}} \approx 0.19$ obtained experimentally for different families of cuprate superconductors.
(d\lambda/d\delta)_{\delta=\delta_{\text{critical}}} = 0. In this case, (d\lambda/d\delta)_{\delta=\delta_{\text{critical}}} = 0 can be expressed in terms of Eq. (3) as,

$$\left[\frac{d\lambda}{d\delta} \right]_{\delta=\delta_{\text{critical}}} = - \frac{2\mu_0}{\pi} \int_0^\infty dq_x \left[\frac{1}{|\mu_0 K_{yy}(q_x, 0, 0) + q_\parallel^2|} \times \frac{dK_{yy}(q_x, 0, 0)}{d\delta} \right]_{\delta=\delta_{\text{critical}}} = 0,$$

(9)

then it is straightforward to obtain from Eq. (7) that when $(d\rho_s/d\delta)_{\delta=\delta_{\text{critical}}} = 0, (d\Delta_h/d\delta)_{\delta=\delta_{\text{critical}}} = 0$, which shows that the doping effects from the coupling strength V_{eff} and all the other order parameters upon ρ_s are canceled each other, then both the maximal Δ_h and the highest ρ_s appear at the same critical doping. Moreover, both ρ_s and Δ_h are the bare quantities and separately describe the different aspects of the same SC charge carriers. In this case, the domelike shape of the doping dependence of ρ_s with the highest value appeared around the critical doping is a natural consequence of the domelike shape of the doping dependence of Δ_h with the maximal value appeared around the same critical doping within the kinetic energy driven SC mechanism. In other words, except the quasiparticle coherence, ρ_s is dominated by the bare charge carrier pair gap parameter Δ_h, while T_c is set by the effective charge carrier pair gap parameter Δ_h, this is why there is a difference between the optimal doping for the maximal T_c and the critical doping for the highest ρ_s in cuprate superconductors. Finally, we have noted that ρ_s dominated by the bare energy gap parameter in cuprate superconductors has been observed from the photoemission experiments. Since in the SC state, the photoemission peak intensity as a function of doping scales with ρ_s, then a measurement of the coherent component in the quasiparticle excitation has been suggested as an indirect measure of the bare energy gap parameter in cuprate superconductors.

In conclusion, within the framework of the kinetic energy driven SC mechanism, we have discussed the origin of the difference between the optimal doping for the maximal T_c and the critical doping for the highest ρ_s in cuprate superconductors. By calculation of the ratio of the effective and bare charge carrier pair gap parameters, we have shown that the coupling strength decreases with increasing doping. This special doping dependence of the coupling strength induces an important shift from the critical doping $\delta_{\text{critical}} \approx 0.195$ for the maximal value of the bare charge carrier pair gap parameter to the optimal doping $\delta_{\text{optimal}} \approx 0.15$ for the maximal value of the effective charge carrier pair gap parameter, which leads to a difference between the optimal doping for the maximal T_c and the critical doping for the highest ρ_s in cuprate superconductors.

Acknowledgments

This work was supported by the funds from the Ministry of Science and Technology of China under Grant Nos. 2011CB921700 and 2012CB824103, and the National Natural Science Foundation of China under Grant Nos. 11074023 and 11274044.

* To whom correspondence should be addressed, E-mail: splfeng@bnu.edu.cn

1 See, e.g., M. A. Kastner et al., Rev. Mod. Phys. 70, 897 (1998).

2 See, e.g., C. C. Tsuei and J. R. Kirtley, Rev. Mod. Phys. 72, 969 (2000).

3 See, e.g., J. R. Schrieffer, Theory of Superconductivity (Addison-Wesley, San Francisco, 1964).

4 See, e.g., B. A. Bons and W. N. Hardy, in Physical Properties of High Temperature Superconductors V, edited by D. M. Ginsberg (World Scientific, Singapore, 1996).

5 See, e.g., S. Hüfner et al., Rep. Prog. Phys. 71, 062501 (2008).

6 See, e.g., M. R. Plessl et al., Physica C 176, 95 (1991).

7 H. Ding et al., Phys. Rev. Lett. 87, 227001 (2001).

8 H. Ding et al., Phys. Rev. Lett. 87, 1764 (1993); D. M. Broun et al., Phys. Rev. Lett. 99, 237003 (2007).

9 C. Bernhard et al., Phys. Rev. Lett. 86, 1614 (2001).

10 T. R. Lemberger et al., Phys. Rev. B 83, 140507(R) (2011).

11 P. W. Anderson, Science 235, 1196 (1987).

12 See, e.g., A. A. Abrikosov, Fundamentals of the Theory of Metals (Elsevier Science Publishers B. V., 1988).

13 Shiping Feng, Jihong Qin, and Tianxing Ma, J. Phys.: Condens. Matter 16, 343 (2004).

14 See, e.g., the review, Shiping Feng et al., Int. J. Mod. Phys. B 22, 3757 (2008).

15 H. Ding et al., Phys. Rev. B 54, R9678 (1996); Z. X. Shen et al., Phys. Rev. Lett. 70, 1553 (1993).

16 Huaiming Guo and Shiping Feng, Phys. Lett. A 361, 382 (2007); Yu Lan, Jihong Qin, and Shiping Feng, Phys. Rev. B 76, 014533 (2007).

17 A. A. Kordyuk et al., Eur. Phys. J. Special Topics 188, 153 (2010).

18 G. M. Eliashberg, Sov. Phys. JETP 11, 696 (1960); D. J. Scalapino, J. R. Schrieffer, and J. W. Wilkins, Phys. Rev. 148, 263 (1966).

19 H. Fukuyama, H. Ebisawa, and Y. Wada, Prog. Theor. Phys. 42, 494 (1969); H. Fukuyama, Prog. Theor. Phys. 42, 1284 (1969).

20 Shiping Feng, Zheyu Huang, and Huaisong Zhao, Physica C 470, 1968 (2010); Zheyu Huang, Huaisong Zhao, and Shiping Feng, Phys. Rev. B 83, 144524, (2011).

21 R. H. He et al., Phys. Rev. B 69, 220502(R) (2004); D. L. Feng et al., Science 289, 277 (2000).