Diagonalization of boundary transfer matrix
for the $U_{q,p}(\hat{sl}(3, \mathbb{C}))$ ABF model

October 20, 2009

Takeo KOJIMA

Department of Mathematics, College of Science and Technology, Nihon University,
Surugadai, Chiyoda-ku, Tokyo 101-0062, JAPAN

Abstract

We construct a free field realization of the ground state of the boundary transfer matrix
for the $U_{q,p}(\hat{sl}(3, \mathbb{C}))$ ABF model. Using this ground state and type-II vertex operator, we
have a diagonalization of the boundary transfer matrix.

1 Introduction

The vertex operator approach [1, 2] provides a powerful method to study solvable models. In [1] authors diagonalized the XXZ-transfer matrix on infinite spin chain by vertex operators. Sklyanin [3] begin systematic approach to boundary condition generalization in the framework of the algebraic Bethe ansatz. In periodic boundary condition, we construct a family of commuting transfer matrix from a solution of the Yang-Baxter equation. Sklyanin showed that similar construction is possible with the aid of a solution of the boundary Yang-Baxter equation. In open boundary condition, we construct a family of commuting transfer matrix from both a solution of the Yang-Baxter equation and a solution of the boundary Yang-Baxter equation.

the authors diagonalized the boundary XXZ-transfer matrix on semi-infinite spin chain by vertex operators. The vertex operator approach was extended to higher-rank boundary XXZ-model in [9].

The vertex operator approach to solvable model was originally formulated for vertex type model such as the XXZ-model [1], and then extended to the face type model such as the Andrews-Baxter-Forrester (ABF) model [4, 10]. The ABF model is described by the elliptic algebra $U_{q,p}(\hat{sl}(2, \mathbb{C}))$. The $U_{q,p}(\hat{sl}(3, \mathbb{C}))$ ABF model we are going to study in this paper were introduced in [5], as the higher-rank generalization of the ABF model introduced in [4]. In this paper we diagonalize the boundary transfer matrix for the $U_{q,p}(\hat{sl}(3, \mathbb{C}))$ ABF model by vertex operator approach. We construct a free field realization of the ground-state of the commuting boundary transfer matrix. Using this groundstate and type-II vertex operators for the elliptic algebra, we get a diagonalization of the boundary transfer matrix of the $U_{q,p}(\hat{sl}(3, \mathbb{C}))$ ABF model. The result of this paper gives a higher-rank generalization of the ABF model [7].

The text is organized as follows. In section 2 we recall the boundary $U_{q,p}(\hat{sl}(3, \mathbb{C}))$ ABF model, and introduce the boundary transfer matrix. In section 3 we recall the free field realization of the vertex operators. In section 4 we construct a free field realization of the ground-state of the boundary transfer matrix, and give a diagonalization of the boundary transfer matrix by using the type-II vertex operators.

2 Boundary $U_{q,p}(\hat{sl}(3, \mathbb{C}))$ ABF model

We recall the boundary $U_{q,p}(\hat{sl}(3, \mathbb{C}))$ ABF model.

2.1 Bulk Boltzmann weights

The $U_{q,p}(\hat{sl}(3, \mathbb{C}))$ ABF model has two parameters x and r. We assume $0 < x < 1$ and $r \geq 5$ ($r \in \mathbb{Z}$). We set the elliptic theta function $[u]$ by

$$[u] = x^{\frac{x^2}{2}} u_2^{-\nu} \Theta_{x^2}(x^{2u}). \quad (2.1)$$

Here we have used

$$\Theta_q(z) = (q, q)_\infty(z; q)_\infty(q/z; q)_\infty, \quad (2.2)$$

$$\quad (z; q_1, q_2, \cdots, q_m)_\infty = \prod_{j_1, j_2, \cdots, j_m = 0}^{\infty}(1 - q_1^{j_1} q_2^{j_2} \cdots q_m^{j_m} z). \quad (2.3)$$
Let $\epsilon_\mu(1 \leq \mu \leq 3)$ be the orthonormal basis of \mathbb{R}^3 with the inner product $(\epsilon_\mu | \epsilon_\nu) = \delta_{\mu,\nu}$. Let us set $\bar{\epsilon}_\mu = \epsilon_\mu - \epsilon$ where $\epsilon = \frac{1}{3} \sum_{\nu=1}^{3} \epsilon_\nu$. The type $\widehat{sl}(3,\mathbb{C})$ weight lattice is the linear span of $\bar{\epsilon}_\mu$.

$$P = \sum_{\mu=1}^{3} \mathbb{Z}\bar{\epsilon}_\mu. \quad (2.4)$$

Note $\sum_{\mu=1}^{3} \bar{\epsilon}_\mu = 0$. Let the simple root $\alpha_\mu = \bar{\epsilon}_\mu - \bar{\epsilon}_{\mu+1}$ ($\mu = 1, 2$). For $a \in P$ we set

$$a_{\mu,\nu} = a_\mu - a_\nu, \quad a_\mu = (a + \rho | \bar{\epsilon}_\mu), \quad (2.5)$$

where $\rho = 2\bar{\epsilon}_1 + \bar{\epsilon}_2$. The Boltzmann weights $W\left(\begin{array}{cc} a & b \\ c & d \end{array} \middle| u \right)$ are given by

$$W\left(\begin{array}{cc} a + 2\bar{\epsilon}_\mu & a + \bar{\epsilon}_\mu \\ a + \bar{\epsilon}_\mu & a \end{array} \middle| u \right) = r_1(u), \quad (2.6)$$

$$W\left(\begin{array}{cc} a + \bar{\epsilon}_\mu & a + \bar{\epsilon}_\mu \\ a + \bar{\epsilon}_\nu & a \end{array} \middle| u \right) = r_1(u) \frac{|[a_{\mu,\nu} - 1]|}{|u - 1||a_{\mu,\nu}|}, \quad (2.7)$$

$$W\left(\begin{array}{cc} a + \bar{\epsilon}_\mu & a + \bar{\epsilon}_\nu \\ a + \bar{\epsilon}_\nu & a \end{array} \middle| u \right) = r_1(u) \frac{|u - a_{\mu,\nu}|}{|u - 1||a_{\mu,\nu}|}. \quad (2.8)$$

Otherwise are zero. The function $r_1(u)$ is given by

$$r_1(u) = z^{-\frac{1}{2}} \frac{h_1(z^{-1})}{h(z)}, \quad h_1(z) = \frac{(x^2 z; x^{2r} z^2; x^6)^\infty (x^{2r+1} z; x^{2r} z^6)^\infty}{(x^{2r+1} z; x^{2r} z^6)^\infty (x^6 z; x^{2r} z^6)^\infty}. \quad (2.9)$$

Here we have used $z = x^{2u}$. The Boltzmann weights satisfy the following relations.

1) Yang-Baxter equation:

$$\sum_g W\left(\begin{array}{cc} d & e \\ c & g \end{array} \middle| u_1 \right) W\left(\begin{array}{cc} c & g \\ b & a \end{array} \middle| u_2 \right) W\left(\begin{array}{cc} e & f \\ g & a \end{array} \middle| u_1 - u_2 \right) = \sum_g W\left(\begin{array}{cc} g & f \\ b & a \end{array} \middle| u_1 \right) W\left(\begin{array}{cc} d & e \\ g & f \end{array} \middle| u_2 \right) W\left(\begin{array}{cc} d & g \\ c & b \end{array} \middle| u_1 - u_2 \right). \quad (2.10)$$

2) The first inversion relation:

$$\sum_g W\left(\begin{array}{cc} c & g \\ b & a \end{array} \middle| -u \right) W\left(\begin{array}{cc} c & d \\ g & a \end{array} \middle| u \right) = \delta_{b,d}. \quad (2.11)$$

3) The second inversion relation:

$$\sum_g G_g W\left(\begin{array}{cc} g & b \\ d & c \end{array} \middle| 3-u \right) W\left(\begin{array}{cc} g & d \\ b & a \end{array} \middle| u \right) = \delta_{a,c} \frac{G_b G_d}{G_a}. \quad (2.12)$$

where $G_a = [a_{1,2}][a_{1,3}][a_{2,3}]$. The Boltzmann weights are related to the elliptic algebra $U_{q,p}(\widehat{sl}(3,\mathbb{C}))$.

3
2.2 Boundary Boltzmann weights

In [8] the boundary Boltzmann weights $K \begin{pmatrix} a & b \\ c & u \end{pmatrix}$ are given by

$$K \begin{pmatrix} k + \epsilon_\mu \\ k \end{pmatrix} = z^{2(-\frac{\epsilon_1}{4} + \epsilon_{1|k})} \frac{\epsilon}{h(z)} \frac{[c - u][k_{1,\mu} + c + u]}{[c + u][k_{1,\mu} + c - u]}, \quad (c \in \mathbb{R}; \mu = 1, 2, 3). \quad (2.13)$$

Otherwise are zero. The function $h(z)$ is given in (4.18). They satisfy the boundary Yang-Baxter equation,

$$\sum_{f,g} W \begin{pmatrix} c & f \\ b & a \end{pmatrix} u - v \quad W \begin{pmatrix} c & d \\ f & g \end{pmatrix} u + v \quad K \begin{pmatrix} g & u \\ f & u \end{pmatrix} K \begin{pmatrix} e & v \\ d & g \end{pmatrix} = \sum_{f,g} W \begin{pmatrix} c & d \\ f & e \end{pmatrix} u - v \quad W \begin{pmatrix} c & f \\ b & g \end{pmatrix} u + v \quad K \begin{pmatrix} g & u \\ f & u \end{pmatrix} K \begin{pmatrix} e & v \\ d & g \end{pmatrix}. \quad (2.14)$$

2.3 Vertex operator

Following the general scheme of algebraic approach in solvable lattice models, we give the type-I vertex operators. Let us consider the corner transfer matrices $A(z), B(z), C(z), D(z)$ which represent NW, SW, SE, NE quadrants, respectively. The space $\mathcal{H}_{l,k}$ of the eigenvectors of $A(z)$ is parametrized by $l, k \in P$. Let us introduce the type-I vertex operator $\Phi^{(a,b)}(z)$. We denote by $\Phi^{(k+\epsilon_j,k)}(z^{-1})$ the half-infinite transfer matrix extending to infinity in the north. This is an operator

$$\Phi^{(k+\epsilon_j,k)}(z^{-1}) : \mathcal{H}_{l,k} \rightarrow \mathcal{H}_{l,k+\epsilon_j}.$$

The operator $\Phi^{(a,b)}(z) = 0$ for $a - b \neq \epsilon_j$. Similarly, we introduce dual type-I vertex operator $\Phi^{*^{(a,b)}}(z)$. We denote by $\Phi^{*(k,k+\epsilon_j)}(z)$ the half-infinite transfer matrix extending to infinity in the west. This is an operator

$$\Phi^{*(k,k+\epsilon_j)}(z) : \mathcal{H}_{l,k+\epsilon_j} \rightarrow \mathcal{H}_{l,k}.$$

The operator $\Phi^{(a,b)}(z) = 0$ for $b - a \neq \epsilon_j$. They satisfy the following relations.

(1) Commutation relation

$$\Phi^{(c,b)}(z_1)\Phi^{(b,a)}(z_2) = \sum_d W \begin{pmatrix} c & d \\ b & a \end{pmatrix} u_1 - u_2 \quad \Phi^{(c,d)}(z_2)\Phi^{(d,a)}(z_1). \quad (2.15)$$
(2) Inversion relation
\[\sum_g \Phi^{*(a,g)}(z) \Phi^{(g,a)}(z) = 1, \quad \Phi^{(a,b)}(z) \Phi^{*(b,c)}(z) = \delta_{a,c}. \quad (2.16) \]
Later we give a free field realization of the vertex operators acting on the bosonic Fock space.

2.4 Boundary transfer matrix

We define the boundary transfer matrix
\[T_B^{(k)}(z) = \sum_{j=1,2,3} \Phi^{*(k,k+\bar{\epsilon}_j)}(z) K \begin{pmatrix} k + \bar{\epsilon}_j & k \end{pmatrix} u \Phi^{(k+\bar{\epsilon}_j,k)}(z^{-1}). \quad (2.17) \]
The boundary Yang-Baxter equation implies the commutativity.
\[[T_B^{(k)}(z_1), T_B^{(k)}(z_2)] = 0. \quad (2.18) \]
Our problem of this paper is to diagonalize the boundary transfer matrix \(T_B^{(k)}(z) \).

3 Free field realization

We give a free field realization of the vertex operators [11, 12].

3.1 Boson

We set the bosonic oscillators \(\beta_m^i, (i = 1, 2; m \in \mathbb{Z}) \) by
\[[\beta_m^i, \beta_n^j] = \begin{cases} m [r-1]_x [2m]_x [3m]_x \delta_{m+n,0} & (j = k) \\ -m x^3 \exp(j-k) [r-1]_x [m]_x [3m]_x \delta_{m+n,0} & (j \neq k). \end{cases} \quad (3.1) \]
Here the symbol \([a]_x = \frac{e^a - x^a}{x-1} \). Let us set \(\beta_m^3 \) by \(\sum_{j=1}^3 x^{-2jm} \beta_m^j = 0 \). The above commutation relations are valid for all \(1 \leq j, k \leq 3 \). We also introduce the zero-mode operators \(P_\alpha, Q_\alpha, (\alpha \in P) \) by
\[[iP_\alpha, Q_\beta] = (\alpha|\beta), \quad (\alpha, \beta \in P). \quad (3.2) \]
In what follows we deal with the bosonic Fock space \(\mathcal{F}_{l,k}(l, k \in P) \) generated by \(\beta_m^j(m > 0) \) over the vacuum vector \(|l, k\rangle \):
\[\mathcal{F}_{l,k} = \mathbb{C}[\{\beta_{-1}^i, \beta_{-2}^j, \cdots \}_{j=1,2,3}]|l, k\rangle. \quad (3.3) \]
where
\[
\beta_m^j |k, l\rangle = 0, \quad (m > 0),
\]
\[
P_\alpha |l, k\rangle = \left(\alpha \left(\sqrt{\frac{r}{r - 1}} - \sqrt{\frac{r - 1}{r}} \right) \right) |l, k\rangle,
\]
\[
|l, k\rangle = e^{i \sqrt{\frac{r - 1}{r}} Q_l - \sqrt{\frac{r}{r - 1}} Q_k} |0, 0\rangle.
\]

3.2 Vertex operator

We give a free field realization of the type-I vertex operators [11], associated with the elliptic algebra \(U_{q,p}(\hat{sl}(3,\mathbb{C})) \) [13, 14]. Let us set \(P(z), Q(z), R_j^i(z), S_j^i(z) (j = 1, 2) \) by
\[
P(z) = \sum_{m>0} \frac{1}{m} \beta_{-m}^1 z^m, \quad Q(z) = - \sum_{m>0} \frac{1}{m} \beta_{-m}^1 z^{-m},
\]
\[
R_j^i(z) = - \sum_{m>0} \frac{1}{m} (\beta_{-m}^j - \beta_{-m}^{j+1}) x^{jm} z^m, \quad S_j^i(z) = \sum_{m>0} \frac{1}{m} (\beta_{-m}^j - \beta_{-m}^{j+1}) x^{-jm} z^{-m}.
\]

Let us set the basic operators \(U(z), F_{\alpha_1}(z), F_{\alpha_2}(z) \) on the Fock space \(\mathcal{F}_{l,k} \).
\[
U(z) = z^{r-1} e^{-i \sqrt{\frac{r - 1}{r}} Q_{\alpha_1} z - \sqrt{\frac{r}{r - 1}} P_{\alpha_1} e^{P(z)} e^{Q(z)}},
\]
\[
F_{\alpha_j}(z) = z^{r-1} e^{i \sqrt{\frac{r}{r - 1}} Q_{\alpha_j} z - \sqrt{\frac{r - 1}{r}} P_{\alpha_j} e^{R_j^i(z)} e^{S_j^i(z)}},
\]

In what follows we set
\[
\pi_{\mu} = \sqrt{r(r - 1)} P_{\mu}, \quad \pi_{\mu\nu} = \pi_{\mu} - \pi_{\nu}.
\]

Then \(\pi_{\mu\nu} \) acts on \(\mathcal{F}_{l,k} \) as an integer \((\epsilon_{\mu} - \epsilon_{\nu}) (rl - (r - 1)k)\). We give the free field realization of the type-I vertex operators.
\[
\Phi_1(z) = U(z),
\]
\[
\Phi_2(z) = \oint_{C_1} \frac{dw_1}{w_1} U(z) F_{\alpha_1}(w_1) \frac{[v_1 - u + \frac{1}{2} - \pi_{1,2}]}{[v_1 - u - \frac{1}{2}]},
\]
\[
\Phi_3(z) = \oint_{C_2} \oint_{C_2} \frac{dw_1}{w_1} \frac{dw_2}{w_2} U(z) F_{\alpha_1}(w_1) F_{\alpha_2}(w_2) \frac{[v_1 - u + \frac{1}{2} - \pi_{1,3}]}{[v_1 - u - \frac{1}{2}]},
\]

Here we set \(z = x^{2u}, w_j = x^{2v_j} (j = 1, 2) \). We take the integration contours to be simple closed curves around the origin satisfying
\[
C_1: |z| < |w_1| < x^{|z|},
\]
\[
C_2: |z| < |w_1| < x^{-1}|z|, \quad x|w_1| < |w_2| < x^{-1}|w_1|.
\]
We identify $\Phi^{(k+\epsilon_j,k)}(z) = \Phi_j(z)$.

Let us introduce the type-II vertex operators [12], associated with the elliptic algebra $U_{q,p}(\hat{sl}(3,\mathbb{C}))$. The type-II vertex operators represents the excitations. Let us set $r^* = r - 1$. Let us set the elliptic theta function $[u]^*$ by

$$[u]^* = x^{u^2} \Theta_{x^2r^*}(x^{2u}). \quad (3.12)$$

Let us set $P^*(z), Q^*(z), R^j_+(z), S^j_+(z) (j = 1, 2)$ by

$$P^*(z) = -\sum_{m>0} \frac{[rm]_x}{m[r^*m]_x} \beta^1_m z^m, \quad Q^*(z) = \sum_{m>0} \frac{[rm]_x}{m[r^*m]_x} \beta^{-1}_m z^{-m}, \quad (3.13)$$

$$R^j_+(z) = \sum_{m>0} \frac{[rm]_x}{m[r^*m]_x} (\beta^j_m - \beta^{-j+1}_m) x^{jm} z^m, \quad S^j_+(z) = -\sum_{m>0} \frac{[rm]_x}{m[r^*m]_x} (\beta^j_m - \beta^{-j+1}_m) x^{-jm} z^{-m}. \quad (3.14)$$

Let us set the basic operators $V(z), E_{a_1}(z), E_{a_2}(z)$ on the Fock space $\mathcal{F}_{l,k}$.

$$V(z) = z^{\sum l_i} e^{i\sum Q_{l_1} z \sqrt{\sum P_{l_1}}} e^{P^*(z)} e^{Q^*(z)}, \quad (3.15)$$

$$F_{a_j}(z) = z^{\sum l_i} e^{-i\sum Q_{l_1} z \sqrt{\sum P_{l_1}}} e^{P^*(z)} e^{S^j_+(z)}. \quad (3.16)$$

We give a free field realization of the type-II vertex operators.

$$\Psi^1(z) = V(z), \quad (3.17)$$

$$\Psi^2_2(z) = \oint \frac{dw_1}{w_1} V(z) E_{a_1}(w_1) \frac{[v_1 - u - \frac{1}{2} + \pi_{1,2}]^*}{[v_1 - u + \frac{1}{2}]^*}, \quad (3.18)$$

$$\Psi^3_3(z) = \oint \oint \frac{dw_1}{w_1} \frac{dw_2}{w_2} V(z) E_{a_1}(w_1) E_{a_2}(w_2) \frac{[v_1 - u - \frac{1}{2} + \pi_{1,3}]^* [v_2 - v_1 - \frac{1}{2} + \pi_{2,3}]^*}{[v_1 - u + \frac{1}{2}]^* [v_2 - v_1 + \frac{1}{2}]^*}. \quad (3.19)$$

The integration contours C_1 encloses the poles at $w_1 = x^{-1+2sr} z, (s = 0, 1, 2, \cdots)$, but not the poles at $w_1 = x^{1-2sr} z, (s = 0, 1, 2, \cdots)$. The integration of $\Psi^3_3(z)$ is carried out in the order w_2, w_1 along the contours C_2 which encloses the poles the poles at $w_{j+1} = x^{-1+2sr} w_j, (s = 0, 1, 2, \cdots ; j = 1, 2)$, but not the poles at $w_{j+1} = x^{1-2sr} w_j, (s = 0, 1, 2, \cdots ; j = 1, 2)$. Here we set $w_0 = z$. Let us set the type-II Boltzmann weights $W^* \left(\begin{array}{cc} a & b \\ c & d \end{array} \right) u$ are given by

$$W^* \left(\begin{array}{cc} a + 2\epsilon_\mu & a + \bar{\epsilon}_\mu \\ a + \bar{\epsilon}_\mu & a \end{array} \right) u = r^*_1(u), \quad (3.20)$$

$$W^* \left(\begin{array}{cc} a + \epsilon_\mu + \epsilon_\nu & a + \bar{\epsilon}_\mu \\ a + \bar{\epsilon}_\nu & a \end{array} \right) u = r^*_1(u) \frac{[u]^*[a_{\mu,\nu} - 1]^*}{[u - 1]^*[a_{\mu,\nu}]^*}. \quad (3.21)$$
The type-I and type-II vertex operators commute modulo the "energy function" G where

\[W^*(a + \bar{e}_{\mu} + \bar{e}_{\nu} \mid a + \bar{e}_{\nu}) = \frac{r_1^*(u)[u - a_{\mu,\nu}]^*[1]^*}{[u - 1]^*[a_{\mu,\nu}]^*}. \] (3.22)

Otherwise are zero. The function $r_1^*(u)$ is given by

\[r_1^*(u) = \frac{z^2 \bar{h}_1^*(z^{-1})}{h_1^*(z)}, \quad h_1^*(z) = \frac{(z; x^{2\nu}, x^{6})_{\infty}(x^4 z; x^{2\nu}, x^{6})_{\infty}}{(x^{2\nu}; z; x^{2\nu}, x^{6})_{\infty}(x^6 z; x^{2\nu}, x^{6})_{\infty}}. \] (3.23)

The Boltzmann weights satisfy the following relations.

1. Yang-Baxter equation:

\[\sum_g W^*(d \mid c \mid e \mid g \mid u_1) W^*(c \mid b \mid a \mid g \mid u_2) W^*(e \mid a \mid f \mid g \mid u_1 - u_2) = \sum_g W^*(g \mid b \mid a \mid u_1) W^*(d \mid c \mid f \mid g \mid u_2) W^*(d \mid a \mid g \mid c \mid u_1 - u_2). \] (3.24)

2. The first inversion relation:

\[\sum_g W^*(c \mid g \mid b \mid a \mid -u) W^*(c \mid d \mid g \mid a \mid u) = \delta_{b,d}. \] (3.25)

3. The second inversion relation:

\[\sum_g G_g^* W^*(g \mid b \mid d \mid c \mid 3 - u) W^*(g \mid d \mid b \mid a \mid u) = \delta_{a,c} \frac{G_d^* G_g^*}{G_a^*}. \] (3.26)

where $G_g^* = [a_{1,2}]^*[a_{1,3}]^*[a_{2,3}]^*$. The type-II vertex operators satisfy the following relations.

\[\Phi_{\mu_1}^*(z_1) \Phi_{\mu_2}^*(z_2) = \sum_{\epsilon_{\mu_1'} + \epsilon_{\mu_2'} = \epsilon_{\mu_1} + \epsilon_{\mu_2}} W^*(k + \bar{e}_{\mu_1} + \bar{e}_{\mu_2} \mid k + \bar{e}_{\mu_1'} \mid k + \bar{e}_{\mu_2'} \mid k + \bar{e}_{\mu_2} \mid u_2 - u_1) \Phi_{\mu_2'}^*(z_2) \Phi_{\mu_1'}^*(z_1). \] (3.27)

The type-I and type-II vertex operators commute modulo the "energy function" $\chi(z)$.

\[\Phi_{\mu_1}(z_1) \Psi_{\mu_2}^*(z_2) = \chi(z_1/z_2) \Psi_{\mu_2}(z_2) \Phi_{\mu_1}(z_1). \] (3.28)

Here we have set

\[\chi(z) = \frac{z^2}{(x^{-3}; x^6)_{\infty}(x^5 z; x^6)_{\infty}}. \] (3.29)
4 Boundary state

In this section we construct the free field realization of the ground state of the boundary transfer matrix of the $U_{q,p}(\mathfrak{sl}(3, \mathbb{C}))$ ABF model, which give higher-rank generalization of [7]. We construct the free field realization of the ground state on the Fock space $\mathcal{F}_{l,k}$. Precisely the Fock space $\mathcal{F}_{l,k}$ is different from the space of the state $\mathcal{H}_{l,k}$. The space of state $\mathcal{H}_{l,k}$ is obtained by the cohomological argument from the Fock space $\mathcal{F}_{l,k}$ by using the so-called screening operators. In this paper we omit the detailed of the screening operators and consider the operators acting on the Fock space $\mathcal{F}_{l,k}$.

4.1 Bogoliubov transformation

The commutation relations of bosons $\hat{\beta}_m^j$ are not symmetric. Hence it is convenient to introduce new generators of bosons α_m^1, α_m^2 whose commutation relations are symmetric.

$$\alpha_m^1 = x^{-m}(\beta_m^1 - \beta_m^2), \quad \alpha_m^2 = x^{-2m}(\beta_m^2 - \beta_m^3).$$

They satisfy the following commutation relations.

$$[\alpha_m^j, \alpha_n^k] = \left\{ \begin{array}{ll}
m \frac{[r-1]m}{[r]m} \frac{[2m]_x}{[m]_x} \delta_{m+n,0} & (j = k) \\
-m \frac{[r-1]m}{[r]m} \delta_{m+n,0} & (j \neq k).
\end{array} \right.$$ \hspace{1cm} (4.2)

Let us set

$$F_0 = -\sum_{m>0} \frac{1}{m} \frac{[r]m}{[r-1]m} \frac{[2m]_x}{[3m]_x} (2m) \alpha_m^1 \alpha_m^1 + 2m \alpha_m^1 \alpha_m^2 + 2m \alpha_m^2 \alpha_m^2).$$ \hspace{1cm} (4.3)

The adjoint action of e^{F_0} has the effect of a Bogoliubov transformation,

$$e^{-F_0} \alpha_m^j e^{F_0} = \alpha_m^j - \beta_m^j \quad (m > 0, j = 1, 2),$$

and

$$e^{-F_0} \beta_m^j e^{F_0} = -\beta_m^j \quad (m > 0),$$

$$e^{-F_0} \beta_m^j e^{F_0} = (x^{2m-1}) \beta_m^j - x^{2m} \beta_m^j \quad (m > 0),$$

$$e^{-F_0} \beta_m^j e^{F_0} = \beta_m^j \quad (m > 0, j = 1, 2).$$

Proposition 4.1

$$e^{-F_0} e^{Q(z)} e^{F_0} = \sqrt{(x^{2r+4z-2}; x^{2r}, x^6)_\infty (x^{2r}, x^6)_\infty (x^{2r-2}; x^{2r}, x^6)_\infty} e^{P(1/z) e^{Q(z)}},$$ \hspace{1cm} (4.9)

$$e^{-F_0} e^{S_j(z)} e^{F_0} = \sqrt{(1 - z^{-2}) (x^{2r-2} z^{-2}; x^{2r})_\infty} e^{R_j(1/z) e^{S_j(z)}} \quad (j = 1, 2).$$ \hspace{1cm} (4.10)
4.2 Boundary state

Let us set the bosonic operator F by

$$F = F_0 + F_1,$$ \hspace{1cm} (4.11)

where F_0 is given in (4.3) and F_1 is given by

$$F_1 = \sum_{m>0} (D_1(m)\beta^+_{-m} + D_2(m)\beta^-_{-m}).$$ \hspace{1cm} (4.12)

Here we set

$$D_1(m) = \frac{x^{-m}[(r - 2c + 2 - 2\pi_{1,3})m]_x - [(r - 2c - 1)m]_x + x^{(r - 2c - 2\pi_{1,2})m} [m]_x}{m[(r - 1)m]_x},$$

$$D_2(m) = \frac{x^m([(r - 2c + 2 - 2\pi_{1,3})m]_x - [(r - 2c - 2\pi_{1,2})m]_x)}{m[(r - 1)m]_x} - \theta_m \left(\frac{x^m [m/2]_x^+] [m/2]_x^-}{m[(r - 1)m]_x} \right),$$

where

$$[a]_x^+ = ax + a^{-x}, \quad \theta_m(x) = \begin{cases} x & (m : even) \\ 0 & (m : odd) \end{cases}.$$

Let us set the vector

$$|B\rangle_{l,k} = e^F |l, k\rangle.$$ \hspace{1cm} (4.15)

We call this vector $|B\rangle_{l,k}$ the boundary state.

Proposition 4.2 The boundary state $|B\rangle_{l,k}$ has the following properties.

$$e^{Q(z)} |B\rangle_{l,k} = h(z) e^{P(1/z)} |B\rangle_{l,k},$$ \hspace{1cm} (4.16)

$$e^{S_j(w)} |B\rangle_{l,k} = g_j(w) e^{R_j(1/w)} |B\rangle_{l,k}, \quad (j = 1, 2).$$ \hspace{1cm} (4.17)

Here the functions $h(z), g_j(w)(j = 1, 2)$ are given by

$$h(z) = \frac{(x^{2r+4} z^{-2}; x^{2r}, x^{12})_{\infty} (x^{8} z^{-2}; x^{2r}, x^{12})_{\infty}}{(x^{12} z^{-2}; x^{2r}, x^{12})_{\infty} (x^{2r} z^{-2}; x^{2r}, x^{12})_{\infty}} \times \frac{(x^{2r+6-2c+2\pi_{1,2}} z^{-1}; x^{2r}, x^{12})_{\infty} (x^{2c+2} z^{-1}; x^{2r}, x^{12})_{\infty}}{(x^{2r-2c+2\pi_{1,2}} z^{-1}; x^{2r}, x^{12})_{\infty} (x^{2r+6} z^{-1}; x^{2r}, x^{12})_{\infty}} \times$$

$$\times \frac{(x^{2r+4-2c-2\pi_{1,2}} z^{-1}; x^{2r}, x^{12})_{\infty} (x^{2c+2+2\pi_{1,2}} z^{-1}; x^{2r}, x^{12})_{\infty}}{(x^{2r+4-2c-2\pi_{1,2}} z^{-1}; x^{2r}, x^{12})_{\infty} (x^{2c+2+2\pi_{1,2}} z^{-1}; x^{2r}, x^{12})_{\infty}}.$$
Theorem 4.3

The boundary state

\[
\varphi \in (x^{2r+6-2c-2\pi_{1,3} z^{-1}}; x^{2r}, x^{12})_\infty (x^{2c+2\pi_{1,3} z^{-1}}; x^{2r}, x^{12})_\infty,
\]
(4.18)

\[
g_1(w) = (1 - 1/w^2) (x^{2c+1} + 1/w; x^{2r})_\infty (x^{2r-2c-2\pi_{1,2}} + 1/w; x^{2r})_\infty,
\]
(4.19)

\[
g_2(w) = (1 - 1/w^2) (x^{2c+2\pi_{1,2}} + 1/w; x^{2r})_\infty (x^{2r-2c-2\pi_{1,3}} + 1/w; x^{2r})_\infty.
\]
(4.20)

The parameters \(l, k \in P \) are determined by the boundary conditions. The parameter \(k \) represents the central height. The parameter \(l \) represents the asymptotic boundary height. In what follows we consider the case \(k = l \in P \) for simplicity. For more general \(l, k \in P \), there exist similar boundary state. We construct the eigenvector of the commuting boundary transfer matrix, \([T_B^{(k)}(z_1), T_B^{(k)}(z_2)] = 0\). The following is the main result of this paper.

Theorem 4.3

The boundary state \(|B\rangle_{k,k} \) is the eigenvector of boundary transfer matrix \(T_B^{(k)}(z) \).

\[
T_B^{(k)}(z)|B\rangle_{k,k} = |B\rangle_{k,k}.
\]
(4.21)

Corollary 4.4

Using the type-II vertex operators, we get general eigenvectors of the boundary transfer matrix \(T_B^{(k)}(z) \).

\[
T_B^{(k)}(z) \cdot \Psi_{\mu_1}^* (\xi_1) \cdots \Psi_{\mu_M}^* (\xi_M) |B\rangle_{k,k} = \prod_{j=1}^M \chi(1/z\xi_j) \chi(\xi_j/z) \cdot \Psi_{\mu_1}^* (\xi_1) \cdots \Psi_{\mu_M}^* (\xi_M) |B\rangle_{k,k},
\]
(4.22)

where \(\chi(z) \) is given by (3.29).

Here we sketch proof of main theorem 4.3. Acting the vertex operator \(\Phi^{(k+\ell_j,k)}(z) \) to the condition \(T_B^{(k)}(z)|B\rangle_{k,k} = |B\rangle_{k,k} \) from the left, we get the following necessary and sufficient condition.

\[
z^{\frac{1}{2}}(-\tau^{-1} + (\ell_j 1)) h(z) [c - u] \tau_{1,j} + c + u] \Phi_j(z^{-1}) |B\rangle_{k,k} = (z \leftrightarrow z^{-1}) (j = 1, 2, 3).
\]
(4.23)

Here we used the inversion relation of the type-I vertex operators. In the case of \(j = 1 \), after some calculation, LHS becomes the following

\[
h(z)h(z^{-1}) [c - u] [c + u] e^{P(z) + P(1/z)} |B\rangle_{k,k},
\]
which is invariant $z \leftrightarrow z^{-1}$. Hence the relation (4.23) for $j = 1$ holds. In the case of $j = 2, 3$, after some calculation as similar as [9], the relation (4.23) are reduced to the following theta identity.

$$\frac{[v + k + c - \frac{1}{2}] [v - c - \frac{1}{2}]}{[-v + k + c - \frac{1}{2}] [-v - c - \frac{1}{2}]} = \frac{[c - u] [k + c + u] [u - v + \frac{1}{2} - k] [v - u + \frac{1}{2}] - [c + u] [k + c - u] [-u - v + \frac{1}{2} - k] [-v + u + \frac{1}{2}]}{[c - u] [k + c + u] [u + v + \frac{1}{2} - k] [v - u + \frac{1}{2}] - [c + u] [k + c - u] [-u + v + \frac{1}{2} - k] [v + u + \frac{1}{2}].}$$ (4.24)

Later the author will write complete proof of this theorem, $U_{q,p}(\hat{sl}(N, \mathbb{C}))$ version and generalization of asymptotic boundary condition $l \in P$ in the another place [15]. Our proof is different from those given in [7] even for $U_{q,p}(\hat{sl}(2, \mathbb{C}))$ case.

Acknowledgement

The author would like to thank the organizing committee of VIII-th International Workshop Lie theory and its applications in Physics, held in Varna, Bulgaria 2009. This work is partly supported by the Grant-in Aid for Scientific Research C(21540228) from Japan Society for the Promotion of Science.

A Some formulae

$$h(z) = \exp \left(- \sum_{m > 0} \frac{1}{2m} \left[(r - 1) m \right]_{x} \left[2m \right]_{x} z^{-2m} - \sum_{m > 0} \left(\frac{2m}{3m} \right)_{x} \left(D_{1}(m) - \frac{x^{-3m}}{3m} D_{2}(m) \right) z^{-m} \right),$$

$$g_{1}(z) = \exp \left(- \sum_{m > 0} \frac{1}{2m} \left[(r - 1) m \right]_{x} \left(x^{m} + x^{-m} \right) z^{-2m} + \sum_{m > 0} \left(\frac{2m}{3m} \right)_{x} (D_{1}(m) - x^{-2m} D_{2}(m)) z^{-m} \right),$$

$$g_{2}(z) = \exp \left(- \sum_{m > 0} \frac{1}{2m} \left[(r - 1) m \right]_{x} \left(x^{m} + x^{-m} \right) z^{-2m} + \sum_{m > 0} \left(\frac{2m}{3m} \right)_{x} D_{2}(m) x^{-m} z^{-m} \right).$$

References

[1] B.Davis, O.Foda, M.Jimbo, T.Miwa and A.Nakayashiki, Diagonalization of the XXZ Hamiltonian by vertex operators, *Commun.Math.Phys.* **151**, 89- (1993).
[2] M.Jimbo and T.Miwa, Algebraic Analysis of Solvable Lattice Models, CBMS Regional Conference Series in Mathematics, Vol 85, Providence, RI:AMS, (1994).

[3] E.K.Sklyanin, Boundary condition for integrable quantum system, J.Phys.A21, 2375-(1988).

[4] G.E.Andrews, R.J.Baxter and P.J.Forrester, Eight-vertex SOS model and generalized Rogers-Ramanujan-type identities, J.Stat.Phys.35, 193- (1984).

[5] M.Jimbo, T.Miwa and M.Okado, Local state probabilities of solvable lattice models: an \(A^{(1)}_{n-1} \) family, Nucl.Phys.B300 [FS22], 74- (1988).

[6] M.Jimbo, R.Kedem, T.Kojima, H.Konno and T.Miwa, XXZ chain with a boundary, Nucl.Phys.B441[FS], 437- (1995).

[7] T.Miwa and R.Weston, Boundary ABF models, Nucl.Phys.B486[PM], 517- (1997).

[8] M.T.Batchelor, V.Fridkin, A.Kuniba, Y.K.Zhou, Solutions of the reflection equation for face and vertex models associated with \(A^{(1)}_n, B^{(1)}_n, C^{(1)}_n \) and \(A^{(2)}_n \), Phys.Lett.B376 no.4, 266-(1996).

[9] H.Furutsu and T.Kojima, The \(U_q(\widehat{sl}_n) \) analogue of the XXZ chain with a boundary, J.Math.Phys. 41, no.7, 4413- (2000).

[10] S.Lukyanov and Ya.Pugai, Multi-point local height probabilities in the integrable RSOS model, Nucl.Phys.B473[FS], 631- (1996).

[11] Y.Asai, M.Jimbo, T.Miwa, Ya.Pugai, Bosonization of vertex operators for the \(A^{(1)}_{n-1} \) face model, J.Phys.A29, 6595- (1996).

[12] H.Furutsu, T.Kojima and Y.Quano, Type-II vertex operators for the \(A^{(1)}_{n-1} \) face model, Int.J.Mod.Phys.A15 no.10, 1533- (2000).

[13] M.Jimbo, H.Konno, S.Odake and J.Shiraishi: Elliptic Algebra \(U_{q,p}(\widehat{sl}_2) \): Drinfeld currents and vertex operators, Commun.Math.Phys.199, 605- (1999).

[14] T.Kojima and H.Konno : The Elliptic Algebra \(U_{q,p}(\widehat{sl}_N) \) and the Drinfeld Realization of the Elliptic Quantum Group \(B_{q,\lambda}(\widehat{sl}_N) \), Commun.Math.Phys.237, 405- (2003).

[15] T.Kojima, in preparation.