Constructal entransy dissipation rate minimization for “disc-to-point” heat conduction

XIAO QingHua, CHEN LinGen* & SUN FengRui

Postgraduate School of Naval University of Engineering, Wuhan 430033, China

Received March 25, 2010; accepted May 27, 2010

Based on constructal theory, “disc-to-point” heat conduction is optimized by minimizing the entransy dissipation rate whereby a critical point is determined that distributes the high-conductivity material according to optimized radial or branch patterns. The results show that the critical point is determined by the product of the thermal conductivity ratio of the two materials and the volume fraction of the high-conductivity material allocated to the entire volume. The notion of optimal heat transfer performance can be attributed to the disc based on the entransy dissipation extremum principle. Comparing the results based on EDR minimization (entransy dissipation rate minimization) with those based on MTD minimization (maximum temperature difference minimization), one finds that the performance derived from the two optimization procedures are different. When the product of the thermal conductivity ratio and volume fraction is 30, the critical point of the former procedure is that for which the nondimensional radius of the disc equals 1.75, while that of the latter procedure is that for which this radius of the disc equals 2.18. Comparing heat transfer performances from the two procedures, the mean heat transfer temperature difference is decreased more for the former procedure thereby receiving an improved performance quota.

constructal theory, entransy dissipation rate, “disc-to-point” heat conduction, generalized thermodynamic optimization

Citation: Xiao Q H, Chen L G, Sun F R. Constructal entransy dissipation rate minimization for “disc-to-point” heat conduction. Chinese Sci Bull, 2011, 56: 102–112, doi: 10.1007/s11434-010-4081-8

The necessity to cool electronic devices grows ever higher as electronic devices become ever smaller. Convective and radiative means are not feasible because of the finite spaces involved with small-scaled electronic devices. Heat conduction appears as the best option. Since the constructal theory was put forward by Bejan and applied to optimization problems involving heat conduction [1], constructal theory has been developing rapidly [2–15] and has provided new research impetus into heat transfer problems [16–28]. Cooling electronic devices can be described as a “disc-to-point” heat conduction problem; essentially, how to determine the optimal distribution of a high-conductivity material through a given disc such that the heat generated in the disc is conveyed most effectively to a single point. Rocha et al. [29] determined the optimal structure and distribution of the high-conductivity material by decreasing the thermal resistance via minimizing maximum temperature differences as the optimization criterion for heat conduction problems within a disc. da Silva et al. [30] studied a disc uniformly-slotted with radially-distributed rectangular blades and optimized the blade structures made of high-conductivity material by following the same optimization procedure. Rocha et al. [31] further validated their analytic solution of [29] with numerical simulations, optimized the tree channels with loops and compared heat conduction performances of radial-patterned and branch-patterned discs. However, constructal optimizations of “disc-point” heat conduction problems do not reflect global heat conduction performances by minimizing maximum thermal resistances (maximum temperature differences) as in [29–31]. From definitions of heat transfer potential capacity and heat transfer potential capacity dissipation function obtained from
heat transfer theory, Guo et al. [32] pointed out that their physical meanings can be reinterpreted as a heat transfer ability measure and its dissipation rate in heat transfer processes respectively. Guo et al. [33] introduced definitively a new physical quantity called “entransy” that describes the heat transfer ability and proposed the entransy dissipation extremum principle stated as follows: for a fixed boundary heat flux, the conduction process is optimized when the entransy dissipation is minimized (minimum temperature difference), while for a fixed boundary temperature, the conduction process is optimized when the entransy dissipation is maximized (maximum heat flux).

An equivalent thermal resistance for multi-dimensional heat conduction problems is defined based on entransy dissipation. An equivalent thermal resistance reflects an entransy dissipation extremum principle stated as follows: for a fixed boundary heat flux, the conduction process is optimized when the entransy dissipation is minimized (minimum heat flux). The physical meaning of entransy which is a new physical quantity reflecting heat conduction problems is defined based on entransy dissipation. An equivalent thermal resistance reflects an entransy dissipation extremum principle stated as follows: for a fixed boundary heat flux, the conduction process is optimized when the entransy dissipation is minimized (minimum temperature difference), while for a fixed boundary temperature, the conduction process is optimized when the entransy dissipation is maximized (maximum heat flux).

An equivalent thermal resistance for multi-dimensional heat conduction problems is defined based on entransy dissipation. An equivalent thermal resistance reflects an entransy dissipation extremum principle stated as follows: for a fixed boundary heat flux, the conduction process is optimized when the entransy dissipation is minimized (minimum heat flux). The physical meaning of entransy which is a new physical quantity reflecting heat conduction problems is defined based on entransy dissipation. An equivalent thermal resistance reflects an entransy dissipation extremum principle stated as follows: for a fixed boundary heat flux, the conduction process is optimized when the entransy dissipation is minimized (minimum temperature difference), while for a fixed boundary temperature, the conduction process is optimized when the entransy dissipation is maximized (maximum heat flux).

1 Definition of entransy dissipation rate

Entransy which is a new physical quantity reflecting heat transfer ability of an object was defined in [33] as

$$E_{sh} = \frac{1}{2} Q_{sh} T,$$

(1)

where Q_{sh} is the thermal capacity of an object with constant volume, T represents the thermal potential. The entransy dissipation function which represents the entransy dissipation per unit time and per unit volume is deduced [33] as

$$\dot{E}_{sh} = \dot{q} \cdot \nabla T,$$

(2)

where \dot{q} is thermal current density vector, and ∇T is the temperature gradient. In steady-state heat conduction, \dot{E}_{sh} can be calculated as the difference between the entransy input and the entransy output of the object, i.e.

$$\dot{E}_{sh} = \dot{E}_{sh,in} - \dot{E}_{sh,out}.$$

(3)

The entransy dissipation rate of the whole volume in the “volume-to-point” conduction is

$$\dot{E}_{sh} = \int \dot{E}_{sh} \, dv.$$

(4)

The equivalent thermal resistance for multi-dimensional heat conduction problems with specified heat flux boundary condition is given as follows [33]:

$$R_s = \frac{\dot{Q}_s}{\dot{E}_{sh}},$$

(5)

where \dot{Q}_s is the thermal current. The mean temperature difference for multi-dimensional heat conduction can be expressed as

$$\Delta T = R_s \dot{Q}_s.$$

(6)

2 Radial-patterned disc

The cooling model of radial-patterned disc is shown in Figure 1 [29]. The radius of disc is R_0 and the thermal conductivity is k_0. The heat current ($q = q^* \pi R_0^2$, where q^* is the heat generation rate) which is generated uniformly in the disc flows through the high-conductivity paths towards the center (T_0) of the disc. The thermal conductivity of the material is k_0 and the thickness is D_0. The number of the high-conductivity paths which are distributed uniformly over the disc is N. The temperature of the disc is above T_0, and the rim is adiabatic.

According to the distribution of high-conductivity paths, the disc can be divided into a number of equal sectors, $N=2\pi R_0/(2D_0)$. The radial boundary (dotted line) of each
sector is adiabatic. Each sector as depicted in Figure 2 is a fundamental element and \(N \) sectors fit in a complete disc arrangement. One assumes \(N \gg 1 \) so that each sector is sufficiently slender to be approximated by an isosceles triangle of base \(2H_0 \) and height \(R_0 \). The profile of the element is fixed

\[
A_0 = H_0 R_0, \tag{7}
\]

where \(H_0 \) and \(R_0 \) vary.

The fraction of high-conductivity material allocated to the disc is also fixed,

\[
\phi_0 = \frac{D_0 R_0}{H_0 R_0} = \frac{D_0}{H_0} \ll 1. \tag{8}
\]

The aspect ratio of the element, \(H_0/R_0 \), and the number of the elements is unknown.

The ratio of the thermal conductivities is assumed to be large, \(\tilde{k} = k / k_o \gg 1 \). The direction of the heat conduction in the element is considered to be parallel to the \(y \)-axis and that in the \(k_p \) blade parallel to the \(r \)-axis.

The element has \(r \)-axial symmetry, so one only needs to consider the upper-half sector. The equation for heat conduction through the \(k_0 \) area is [1]

\[
\frac{\partial^2 T}{\partial y^2} + q^\alpha k_0 = 0, \tag{9}
\]

with the boundary conditions

\[
\frac{\partial T}{\partial y} = 0, \quad y = \frac{H_0}{R_0} (R_0 - r), \tag{10}
\]

\[
T = T(r), \quad y = 0, \tag{11}
\]

where \(T(r) \) is the temperature of the central \(k_p \) blade. Solving eq. (9) yields

\[
T - T(r) = \frac{q^\alpha}{k_0} \left[\frac{H_0}{R_0} (R_0 - r) y - \frac{y^2}{2} \right]. \tag{12}
\]

The equation for heat conduction through the \(k_p \) blade is

\[
\frac{\partial}{\partial r} (k_p D_0 \frac{\partial T}{\partial r}) + 2q^\alpha \frac{H_0}{R_0} (R_0 - r) = 0, \tag{13}
\]

with boundary conditions

\[
\frac{\partial T}{\partial r} = 0, \quad r = 0, \tag{14}
\]

\[
T = T_0, \quad r = R_0. \tag{15}
\]

Solving eq. (13) yields

\[
T(r) - T_0 = -\frac{2q^\alpha}{k_p D_0 R_0} \left(\frac{R_0}{2} r^2 - \frac{R_0^3}{6} - \frac{R_0^3}{3} \right). \tag{16}
\]

Eliminating \(T(r) \) from eqs. (12) and (16) yields the distribution of temperature differences of the element for \(y > 0 \)

\[
T - T_0 = \frac{q^\alpha}{k_0} \left[\frac{H_0}{R_0} (R_0 - r) y - \frac{y^2}{2} \right] - \frac{2q^\alpha}{R_0 k_p \phi_0} \left(\frac{R_0}{2} r^3 - \frac{R_0^3}{6} - \frac{R_0^3}{3} \right). \tag{17}
\]

The entransy dissipation rate of the element is

\[
E_{\text{entr}} = 2 \int_0^{R_0} \int_0^{H_0} q^\alpha [T(r, y) - T_0] \mathrm{d}r \mathrm{d}y = q^\alpha k_0^{-1} \left(\frac{1}{6} \frac{H_0}{R_0} + \frac{8}{15k_0} \frac{R_0}{H_0} \right). \tag{18}
\]

By optimizing eq. (18) with respect to \(H_0/R_0 \), the optimal \(H_0/R_0 \) the corresponding minimal entransy dissipation rate, the mean temperature difference and maximum temperature difference are, respectively,

\[
\left(\frac{H_0}{R_0} \right)_{\text{opt}} = \frac{4}{(5\tilde{k}\phi_0)^{1/2}} \ll 1, \tag{19}
\]
\[E_{\text{side,\theta}} = \frac{4q^2 A^2}{3\sqrt{5}} k_0^{-1} (\tilde{k}\phi_h)^{-1/2}, \]
\[\Delta T_0 = \frac{4}{3\sqrt{5}} A_0 q^* k_0^{-1} (\tilde{k}\phi_h)^{-1/2} = 0.596 A_0 q^* k_0^{-1} (\tilde{k}\phi_h)^{-1/2}, \]
\[\Delta T_{0,\text{max}} = \frac{17}{6\sqrt{5}} A_0 q^* k_0^{-1} (\tilde{k}\phi_h)^{-1/2} = 1.267 A_0 q^* k_0^{-1} (\tilde{k}\phi_h)^{-1/2}. \]

However, the optimal aspect ratio of the element obtained in [29] based on MTD minimization was
\[\left(\frac{H_h}{R_0} \right)_{\text{opt}} = \frac{2}{(3k\phi_h)^{1/2}} \ll 1. \]

Moreover, the corresponding mean temperature difference and the maximum temperature difference are, respectively,
\[\Delta T_0' = \frac{17}{15\sqrt{3}} A_0 q^* k_0^{-1} (\tilde{k}\phi_h)^{-1/2} = 0.654 A_0 q^* k_0^{-1} (\tilde{k}\phi_h)^{-1/2}, \]
\[\Delta T_{0,\text{max}}' = \frac{2}{\sqrt{3}} A_0 q^* k_0^{-1} (\tilde{k}\phi_h)^{-1/2} = 1.155 A_0 q^* k_0^{-1} (\tilde{k}\phi_h)^{-1/2}. \]

From eqs. (19) and (23), one can see that the optimal construct of the element based on EDR minimization is different from that based on MTD minimization. The minimal values of the mean temperature difference of heat transfer and of the maximum temperature difference based on the former (solid line) and the latter (dotted line) minimizations are shown in Figure 3. One can see that the optimal construct based on the former can decrease the mean temperature difference to a great extent compared with the optimal construct based on the latter, with a clear improvement in the heat transfer performance.

The aspect ratio (eq. (19)) determines the number of elements which fit in a complete disc arrangement
\[N_{\text{opt}} = \frac{\pi}{4} (3\tilde{k}\phi_h)^{1/2} = 1.756 (3\tilde{k}\phi_h)^{1/2} \gg 1, \]
so eq. (19) shows that the optimal aspect ratio agrees with the above assumption.

The area of the entire disc is determined by eq. (26),
\[A = \pi R_0^2 = N A_0 = \frac{\pi}{4} (5\tilde{k}\phi_h)^{1/2} A_0. \]

And thus, the radius of the disc is
\[R_0 = \frac{A_0^{1/2}}{2} (5\tilde{k}\phi_h)^{1/4} = 0.748 A_0^{1/2} (5\tilde{k}\phi_h)^{1/4}. \]

The corresponding dimensionless mean thermal resistance and dimensionless maximum thermal resistance of the entire disc are, respectively,
\[\tilde{R}_{\text{opt}} = \frac{\Delta T_0' q^* A/k_0}{A} = \frac{16}{15\pi k\phi_h}, \]
\[\tilde{R}_{0,\text{max}} = \frac{\Delta T_{0,\text{max}}' q^* A/k_0}{A} = \frac{34}{15\pi k\phi_h}. \]

The radius of the disc is not determined but results from the optimization, and depends on A_0, ϕ_h, and \tilde{k}. The product $\tilde{k}\phi_h$ is an important quantity. Large $\tilde{k}\phi_h$ signifies more high-conductivity material, a more slender element and a disc with larger radius. These properties will be discussed further in association with Figure 10.

The number of disc elements in the disc and the radius of the disc obtained in [29] based on MTD minimization were, respectively,
\[N_\text{opt} = \frac{\pi}{2} (3\tilde{k}\phi_h)^{1/2} = 2.721 (3\tilde{k}\phi_h)^{1/2} \gg 1, \]
\[R_0' = (A/k_0)^{1/2} (3\tilde{k}\phi_h)^{1/4} = 0.931 A_0^{1/2} (3\tilde{k}\phi_h)^{1/4}. \]

The corresponding dimensionless mean thermal resistance and dimensionless maximum thermal resistance are, respectively,
\[\tilde{R}_0' = \frac{\Delta T_{0,\text{max}}' q^* A/k_0}{A} = \frac{34}{45\pi k\phi_h}. \]

eqs. (24) and (34) are derived from the results in [29] by the author of this paper.

Comparing eq. (26) with (31), and (28) with (32) one can see that both the number of elements and the radius of the disc based on EDR minimization are smaller than those based on MTD minimization. That is, the A in eq. (33) or (34) is not equal to the A in eq. (29) or (30). Therefore, the mean thermal resistance and the maximum thermal resistance of the entire radial-patterned disc based on EDR minimization are not compared with those based on MTD.
minimization in this paper.

3 Branch-patterned disc

This paper considers the branch-patterned disc with first order assembly [29]. Here, only the perimeter of the branch-patterned disc is assembled by many elemental sectors of the radial-patterned disc, as shown in Figure 4. \(R, k_0, q, q^*, T_0, \) and \(k_p \) all have the same meaning as discussed in the previous section. The difference from the previous is the distribution of high conductivity material: one \(k_p \) blade (thickness is \(D_1 \)) stretches radially to a distance \(R_1 \) away from the disc center, continues with a number \(n \) of tributaries (with thickness \(D_0 \) and length \(R_0 \)) that terminate on the rim.

The \(A \) sector with one stem \((R_1, D_1) \) and \(n \) tributaries \((R_0, D_0) \), as shown in Figure 5, is analyzed in this section. \(T_c \) is the confluence of the stem and tributaries.

To apply the results of the last section, the \(A \) sector is considered to be a combination of \(n \) small \(A_0 \) sectors of aspect ratio \(H_0/R_0 \) and a central \(A_1 \) sector of aspect ratio \(H_1/R_1 \) [29].

One assumes that each peripheral sector of radius \(R_0 \) is slender enough such that eq. (19) is correct:

\[
\frac{H_o}{R_0} = \frac{4}{(5k\phi)}^{1/2}, \quad \phi_0 = \frac{D_0}{H_0}, \quad A_0 = H_q R_0.
\]

The \(T_c \) end of the high-conductivity blade of the central sector of radius \(R_1 \) is not adiabatic, so eq. (19) for the central sector is incorrect. For this reason, the aspect ratio \(H_1/R_1 \) of the central sector is free to vary.

\[
\frac{H_1}{R_1} \approx \frac{\alpha}{2}, \quad A_1 = H_1 R_1,
\]

where the tip angle \(\alpha \) of the central sector is a function of \(n \) and \(R \). The number of peripheral \(A_0 \) elements of the disc is \(N=2\pi R/(2H_0) \), and the number of central \(A_1 \) sectors of the disc is \(N/n \). Then, angle \(\alpha \) is

\[
\alpha = \frac{2\pi n}{N} = 2n R H_0 = \frac{4n H_1^{1/2}}{R(5k\phi)^{1/2}}.
\]

And thus, the area of a central sector is

\[
A_1 = \frac{\alpha}{2} R_1^2 \approx \frac{2n R A_0^{1/2}}{(5k\phi)^{1/4}} \left(1 - \frac{A_0^{1/2}(5k\phi)^{1/4}}{2R} \right)^2,
\]

where \(R_1 \approx R - R_0 \). Not all of the \(A_0 \) elements have the radius \(R_0 \), so eq. (38) is approximate.

For the central \(A_1 \) sector the equation for heat conduction through the \(k_p \) blade is

\[
\frac{\partial}{\partial r}(k_p D_1 \frac{\partial T}{\partial r}) + 2q^* \frac{H_1}{R_1} (R_1 - r) = 0,
\]

with boundary conditions

\[
k_p D_1 \frac{\partial T}{\partial r} + q^* n A_0 = 0, \quad r = 0,
\]

\[
T = T_o, \quad r = R_1.
\]

Solving eq. (39) yields

\[
T(r) - T_o = \frac{q^* R_o}{k_p D_1} \left(\frac{2}{3} A_1 + n A_0 \right)
\]

\[
- \frac{q^*}{k_p D_1} \left[n A_0 + \frac{2H_1}{R_1} (R_1^2 - r^2) - \frac{1}{6} \right].
\]

Invoking the boundary condition \(T=T_o \) at \(r=0 \) yields

\[
T_c - T_o = \frac{q^* R_o}{k_p D_1} \left(\frac{2}{3} A_1 + n A_0 \right).
\]

The distribution of the temperature in the \(k_0 \) area is the same as eq. (12), so the distribution of temperature difference of central \(A_1 \) sector for \(\gamma > 0 \) is
\[T - T_0 = \frac{q^* A}{k_D} \left(\frac{H_i}{R_i} - r \right) - \frac{q^* R_i}{k_D} \left(\frac{2}{3} A_i + n A_0 \right) \]

\[- \frac{q^*}{k_D} n A_r + \frac{2H_i}{R_i} \left(\frac{R_i}{2} - r^2 \right) \]. \hspace{1cm} (44)

The entransy dissipation rate of central sector \(A_1 \) is

\[\dot{E}_{\text{chd}} = 2 \int_0^{\phi} \int_0^{\phi_0} q^*(T - T_0) \, d\phi \, d\phi_0 \]

\[= \frac{q^* A}{30 k_D} \left(\frac{5kA_i^2 D_i}{R_i^2} + 16 R_i A_i + 20 n R_i A_0 \right). \hspace{1cm} (45) \]

The entransy dissipation rate of \(A_0 \) element is composed of the entransy dissipation rate introduced by the heat current \(q^* A_0 \) flowing through \(A_0 \) element and the entransy dissipation rate introduced by the heat current \(q^* A_0 \) flowing through high-conductivity blade of central sector \(A_1 \). In fact, it can be derived from the definition of the entransy dissipation rate:

\[\dot{E}_{\text{chp}} = \int_A q^*(T - T_0) \, d\phi \, d\phi_0 \]

\[= q^* \int_A (T - T_0) \, d\phi \, d\phi_0 + q^* \int_A (T - T_0) \, d\phi \, d\phi_0. \hspace{1cm} (46) \]

The entransy dissipation rate introduced by the heat current \(q^* A_0 \) flowing through \(A_0 \) element (the first term on the right-hand side of eq. (46)) can be given by eq. (20). The entransy dissipation rate introduced by the heat current \(q^* A_0 \) flowing through high-conductivity blade of central sector \(A_1 \) (the second term on the right-hand side of eq. (46)) can be given by \(q^* A_0 (T - T_0) \). Thus, the entransy dissipation rate of \(A_0 \) element is

\[\dot{E}_{\text{chp}} = \frac{4 q^2 A_0^2}{3 \sqrt{5} k_0} \left(\frac{k_0}{k_D} \right)^{1/2} + q^* A_0 (T - T_0) \]

\[= \frac{4 q^2 A_0^2}{3 \sqrt{5} k_0} \left(\frac{k_0}{k_D} \right)^{1/2} + A_0 \frac{q^* R_i}{k_D} \left(\frac{2}{3} A_i + n A_0 \right). \hspace{1cm} (47) \]

The entransy dissipation rate of \(A \) sector is

\[\dot{E}_{\text{chp}} = \dot{E}_{\text{chp}} + \dot{E}_{\text{chp}} = \]

\[\frac{q^2 A_0}{30 k_D} \left(\frac{5kA_i^2 D_i}{R_i^2} + 16 R_i A_i \right) \]

\[+ n A_0 q^2 \left[\frac{4 A_0}{3 \sqrt{5} k_0} \left(\frac{k_0}{k_D} \right)^{1/2} + \frac{R_i}{k_D} \left(\frac{4}{3} A_i + n A_0 \right) \right]. \hspace{1cm} (48) \]

After some algebra, eq. (48) becomes

\[\dot{E}_{\text{chp}} = q^2 A_0 \left[\frac{4 A_0}{3 \sqrt{5} k_0} \left(\frac{k_0}{k_D} \right)^{1/2} + \frac{R_i}{k_D} \left(\frac{4}{3} A_i + n A_0 \right) \right] \]

\[= 300 R_i D \left(\frac{k_0}{k_D} \right)^{1/2} \left[-320 \sqrt{5} n R_i \left(\frac{k_0}{k_D} \right)^{1/2} \right] \]

\[+ 256 \times 5^2 n R_i + 25 \times 5^2 n^2 D \left(\frac{k_0}{k_D} \right)^{1/2} \]

\[+ 40 \times 5^2 n R_i \left(\frac{k_0}{k_D} \right)^{1/2} \left(7 \sqrt{5} + 2 n D \frac{k_0}{k_D} \right) \]

\[- 20 R_i \left(\frac{k_0}{k_D} \right)^{1/2} \left[4 \sqrt{5} D \left(2n^2 - 1 \right) \frac{k_0}{k_D} + 35 n \right] \]

\[- 40 n R_i \left(\frac{k_0}{k_D} \right)^{1/2} \left(\sqrt{5} + 5 n D \frac{k_0}{k_D} \right). \hspace{1cm} (49) \]

where \(D = D_1 / D_0 \) is the ratio of thicknesses of high-conductivity blades, and \(\bar{R} = R / A_1^{1/2} \) is the dimensionless radius of the disc. The corresponding mean temperature difference of heat transfer is

\[\Delta T = \frac{5^2 q^* A_0 k_0^2}{600 R_i D \left(\frac{k_0}{k_D} \right)^{1/2}} \left[-320 \sqrt{5} n R_i \left(\frac{k_0}{k_D} \right)^{1/2} \right] \]

\[+ 256 \times 5^2 n R_i + 25 \times 5^2 n^2 D \left(\frac{k_0}{k_D} \right)^{1/2} \]

\[+ 40 \times 5^2 n R_i \left(\frac{k_0}{k_D} \right)^{1/2} \left(7 \sqrt{5} + 2 n D \frac{k_0}{k_D} \right) \]

\[- 20 R_i \left(\frac{k_0}{k_D} \right)^{1/2} \left[4 \sqrt{5} D \left(2n^2 - 1 \right) \frac{k_0}{k_D} + 35 n \right] \]

\[- 40 n R_i \left(\frac{k_0}{k_D} \right)^{1/2} \left(\sqrt{5} + 5 n D \frac{k_0}{k_D} \right). \hspace{1cm} (50) \]

The fraction of high-conductivity material allocated to the disc is

\[\phi = \frac{A_v}{n R^2} = \frac{N D_0 R_0 + n D_1 R_1}{n R^2} \]

\[= \frac{(5k_0^2)^{1/4} A_v}{2 R} \left[\frac{D_0}{n R^2} \left(\frac{5k_0^2}{k_D^2} \right)^{1/4} \right]. \hspace{1cm} (51) \]

Eq. (51) determines the relationship among \(n, \bar{D}, \bar{R}, \bar{k} \) and \(\phi \). Because \(\phi = 0.1 \) and \(\bar{k} = 300 \), the relation between \(\bar{D} \) and \(\phi_0 \) is obtained when \(n \) and \(\bar{R} \) are given.

Figure 6 shows the dimensionless mean temperature difference (\(\bar{T} = \Delta T / (q^* A_0 / k_0) \)) based on EDR minimization, the dimensionless maximum temperature difference (\(\bar{T} = \Delta T_{\text{max}} / (q^* A_0 / k_0) \)) based on MTD minimization, and \(\bar{D} \) versus \(\phi_0 \) characteristics with \(n = 2 \) and \(\bar{R} = 4 \). From
the figure, one can see that the optimal constructs corresponding to \(\tilde{T} \) and \(\tilde{T} \) respectively, are different from each other: the values of \(\phi_{\text{opt}} \) are 0.122 and 0.092 respectively, the values of \(\tilde{D} \) are 1.3324 and 2.3726 respectively, and the values of \(\tilde{T} \) corresponded to \(\tilde{T}_{\text{min}} \) and \(\tilde{T}_{\text{min}} \) are 0.1078 and 0.1147 respectively. The calculations show that the mean temperature difference of the A sector corresponding to the former decreases by 6.02% compared with that corresponding to the latter. The optimal construct based on EDR minimization can improve the heat transfer efficiency.

Figure 7 shows the effects of the dimensionless radius \(\tilde{R} \) on the optimal constructs (\(\phi_{\text{opt}}, \tilde{D}_{\text{opt}}, \tilde{T}_{\text{min}} \) or \(\tilde{T}_{\text{min}} \)) based on EDR minimization (solid line) and MTD minimization (dotted lines) respectively. From the figure, one can see that when \(\tilde{R} \) increases, \(\phi_{\text{opt}} \) increases, \(\tilde{D}_{\text{opt}} \) decreases and \(\tilde{T}_{\text{min}} \) first decreases and then increases based on EDR minimization. \(\tilde{T}_{\text{min}} \) increases, \(\phi_{\text{opt}} \) decreases and \(\tilde{D}_{\text{opt}} \) increases slowly based on MTD minimization. Evidently, the optimal constructs corresponding to \(\tilde{T}_{\text{min}} \) and \(\tilde{T}_{\text{min}} \) are different from each other. One can see also that when \(\tilde{R} \) is small the values of \(\tilde{D}_{\text{opt}} \) and \(\phi_{\text{opt}} \) corresponding to \(\tilde{T}_{\text{min}} \) and \(\tilde{T}_{\text{min}} \) respectively, tend to be equal.

Note that all the solid lines vanish below \(\tilde{R} = 1.75 \) and all the dotted lines vanish below \(\tilde{R} = 2.18 \). These phenomena will be explained in the following text.

Figure 7 shows the optimal number of peripheral elements:

\[
N_{\text{opt}} = \pi \tilde{R} (5k \phi_{\text{opt}})^{1/4} / 2.
\]

When \(\tilde{R}_{\text{opt}} \) shrinks to zero (hence \(\phi_{\text{opt}} = \phi \)), \(\tilde{R} = 1.75 \). The branch-patterned disc reduces to a radial-patterned disc. For this reason, the solid lines in Figure 7 vanish below \(\tilde{R} = 1.75 \). Similarly, the dotted lines in Figure 7 vanish below \(\tilde{R} = 2.18 \) based on MTD minimization [29]. \(\tilde{R}_{\text{opt}} \) based on EDR minimization and \(\tilde{R}_{\text{opt}} \) based on MTD minimization both increase and tend to be equal as \(\tilde{R} \) increases. For the same \(\tilde{R} \), the former is larger than the latter. The former increases as \(n \) increases, but the latter is independent of \(n \).

Figure 8 shows the effects of the number \((n) \) of tributaries on the optimal constructs based on EDR minimization (solid line) and MTD minimization (dotted line) respectively, with \(\tilde{R} = 4 \). From the figure, one can see that the optimal constructs (\(\phi_{\text{opt}}, \tilde{D}_{\text{opt}}, \tilde{T}_{\text{min}} \)) of the former increase with \(n \). For the latter, \(\tilde{D}_{\text{opt}} \) also increases with \(n \), but \(\phi_{\text{opt}} \) and \(\tilde{T}_{\text{min}} \) are both independent of \(n \) and equal 0.092 and 0.3745, respectively. Comparing the solid lines with the dotted lines in the figure, one sees that \(\phi_{\text{opt}} \) corresponding to the former is larger, but the \(\tilde{D}_{\text{opt}} \) corresponding to the former decreases by 6.02% compared with that corresponding to the latter.
is smaller. A larger D_{opt} means that an elemental insert (D_0) is thinner relative to the stem (D_1).

In each of the cases optimized in Figures 6–8 the elemental area and dimensionless radius of the disc were fixed. This means that the minimization of dimensionless mean thermal resistance of the entire disc is equivalent to the minimization of \tilde{T}:

$$\tilde{R}_{\text{opt}} = \frac{\Delta T}{q\pi R^2 / k_0} = \frac{\tilde{T}}{\pi R^2}$$

$$= \frac{1}{600 \pi R^2 D \left(k_0 \phi \right)^2} \left[-320 \sqrt{5} n \tilde{R} \left(k_0 \phi \right)^{1/2}
+ 256 \times 5^4 n R^6 + 25 \times 5^4 n^2 D \left(k_0 \phi \right)^3
+ 40 \times 5^4 n R^6 \left(k_0 \phi \right) \left(3 \sqrt{5} n D \left(k_0 \phi \right) + 5 \right)
+ 40 \times 5^4 n R^6 \left(k_0 \phi \right)^2 \left(7 \sqrt{5} + 2 n D \left(k_0 \phi \right) \right)
- 20 \tilde{R} \left(k_0 \phi \right)^{3/2} \left(4 \sqrt{5} D \left(2n^2 - 1 \right) \left(k_0 \phi \right) + 35 n \right)
- 40 n \tilde{R} \left(k_0 \phi \right)^{5/2} \left(\sqrt{5} + 5nD \left(k_0 \phi \right) \right) \right].$$

Because \tilde{T}_{min} is almost proportional to \tilde{R}, the minimized dimensionless mean thermal resistance ($\tilde{R}_{\text{opt}, \text{min}} = \tilde{T}_{\text{min}} \left(\pi R^2 \right)$) is almost proportional to \tilde{R}^{-1}. $\tilde{R}_{\text{opt}, \text{min}}$ depends on \tilde{R}, k, ϕ and n. However, the minimized dimensionless maximum thermal resistance ($\tilde{R}_{\text{opt}, \text{max}} = \tilde{T}_{\text{max}} \left(\pi R^2 \right)$) [29] is independent of n as shown in Figure 9. Based on the same elemental area and the same amounts and properties of conductive materials (ϕ, k), one compares $\tilde{R}_{\text{opt}, \text{min}}$ with \tilde{R}_{opt} for different n as shown in Figure 9 (solid line). The dimensionless radius of the radial-patterned disc is (cf. eq. (28))

$$\tilde{R} = (5k\phi)^{1/4} / 2.$$

This dimensionless radius \tilde{R} is fixed when \tilde{k} and ϕ are fixed. The dimensionless radius \tilde{R} of a branch-patterned disc in Figure 4 can be free to vary. This is why in Figure 9 $\tilde{R}_{\text{opt}}(\tilde{R})$ is a point and $\tilde{R}_{\text{opt}, \text{min}}(\tilde{R})$ is a curve. From the solid lines in the figure, one can see that $\tilde{R}_{\text{opt}, \text{min}}(\tilde{R})$ increases with n. When \tilde{R} exceeds 1.75, the global resistance is smaller when the high-conductivity material is distributed according to the optimized branched pattern. That is, $\tilde{R} = 1.75$ is a critical point that whether the high-conductivity material is distributed according to the optimized radial pattern or branched pattern. Tables 1 and 2 list the key results of parameters of some \tilde{R} points. Based on EDR minimization, radial-patterned disc has 10 elemental sectors for $\tilde{R} = 1.75$, and the branch-patterned disc has 30 peripheral elements for $\tilde{R} = 5$ and 64 peripheral elements for $\tilde{R} = 10$.

Table 1: Optimal construct based on EDR minimization (this paper)

\tilde{R}	n	R_{opt}	$R_{\text{opt}, \text{min}}$	N_{opt}	R_{opt}	D_{opt}	ϕ_{opt}
1.75	2	0.0113	0.0018	10	3.1138	1.1674	0.1350
5	2	0.0028	0.0014	30	7.9429	0.8003	0.1910
10	4	0.0020	0.0058	64	7.9402	1.5861	0.1920

Table 2: Optimal construct based on MTD minimization (ref. [29])

\tilde{R}	n	R_{opt}	$R_{\text{opt}, \text{min}}$	N_{opt}	R_{opt}	D_{opt}	ϕ_{opt}
2.18	2	0.0141	0.0065	15	2.8966	2.5159	0.0870
5	2	0.0065	0.0065	34	7.9938	5.0317	0.0870
10	4	0.0058	0.0058	64	7.9938	5.9460	0.0720
Based on Figure 9 (solid line), Figure 10 (solid line) shows the effects of \tilde{k} and ϕ on the dimensionless mean thermal resistance with $n = 2$, $30 < \tilde{k} < 1000$ and $0.01 < \phi < 0.1$. The dotted lines reproduce the results in [29]. The point $\tilde{R}_{\text{opt}}(\tilde{R})$ and the curve $\tilde{R}_{\text{i, min}}(\tilde{R})$ in Figure 9 with $n = 2$ is a special case of Figure 10. Figure 10 includes all these results with $n = 2$. From the solid lines in the figure, one can see that when the dimensionless radius \tilde{R} exceeds that of the optimized branch-patterned disc, lower mean thermal resistance is achieved when the high-conductivity material is distributed according to the branch pattern. The mean thermal resistance can also be decreased and the heat transfer performance is improved by increasing $\tilde{k}\phi$.

Figure 11 shows the comparison between the mean thermal resistances based on both EDR and MTD minimizations, with different n. The dotted lines which are derived from the results of [29] vanish below $\tilde{R} = 2.18$. From the figure, one can see that the difference between the two mean thermal resistances decreases as \tilde{R} decreases. The former is smaller than the latter and clearly improves the heat transfer performance of the disc with the larger value of \tilde{R}.

4 Conclusions

The entransy dissipation extremum principle provides new academic justification and criterion for heat transfer optimizations. This paper imposes minimum temperature differences for given heat flux that satisfies the minimum entransy dissipation principle. When the entransy dissipation rate is minimal, the mean temperature difference of heat transfer is minimal and the heat transfer performance is optimal. The constructal problem of cooling a disc was analyzed and discussed based on EDR minimization. The results showed that the construct of optimal heat transfer performance of the system can be designed based on this entransy dissipation extremum principle. From Figures 3, 6–11, one can see that the difference between the optimal constructs for the two objectives is evident. ϕ_{opt} corresponding to the former is larger than ϕ_{opt} corresponding to the latter, and \tilde{D}_{opt} corresponding to the former is smaller than \tilde{D}_{opt} corresponding to the latter for a given \tilde{R}. When \tilde{R} increases, ϕ_{opt} increases, \tilde{D}_{opt} decreases, and \tilde{T}_{min} first decreases and then increases based on EDR minimization; \tilde{T}_{min} increases, ϕ_{opt} decreases and \tilde{D}_{opt} increases slowly based on MTD minimization. When $\phi = 0.1$ and $\tilde{k} = 300$, for the former $\tilde{R} = 1.75$ is the critical point determining whether the high-conductivity material is distributed according to radial or branch patterns, and for the latter, $\tilde{R} = 2.18$ is the critical point. These are all the differences for the two optimization objectives, one based on EDR minimization and the other on MTD minimization. Additionally, compared with optimal construct based on the latter, the optimal construct based on the former can decrease the mean temperature difference of heat transfer to a greater extent, and clearly improves the heat transfer performance. The constructal optimization based on MTD minimization amounted to limiting maximum temperatures, and the constructal optimization based on EDR minimization amounted to decreasing the mean temperature difference of heat transfer of the disc and improving the heat transfer performance. Therefore, the optimal constructal design corresponding to the minimal mean thermal resistance should be adopted by limiting maximum temperature.

When cooling ever larger heat-generating discs, the second order assembly of the branch-patterned disc can be considered based on the work of this paper. The sector with tip angle β in Figure 5 is composed of a number of optimized A sectors as discussed in section 3. Deductions process of entransy dissipation rate of these second-order assemblies are similar as in section 3. The curve of the mean thermal resistance of the second order assembly will intersect the existing curve (Figure 9) of the mean thermal resistance of the first order assembly, and the intersecting point will be the critical point that the high-conductivity material.
should be distributed according to the first order assembly or the second order assembly. The work in this paper has fully described the effect of EDR minimization. Based on EDR minimization, the constructal optimization of the second (or higher) order assembly of the disc can be further performed for heat conduction.

This work was supported by the National Natural Science Foundation of China (10905093), the Program for New Century Excellent Talents in University of China (NCET-04-1006) and the Foundation for the Author of National Excellent Doctoral Dissertation of China (200136).

1 Bejan A. Constructal-theory network of conducting paths for cooling a heat generating volume. Trans ASME, J Heat Transfer, 1997, 40: 799–816
2 Bejan A. Shape and Structure, from Engineering to Nature. Cambridge: Cambridge University Press, 2000
3 Zhou S, Chen L, Sun F. Constructal theory: A new direction for generalized thermohydraulic optimization (in Chinese). J Thermal Sci. Tech., 2004, 3: 283–292
4 Rosa R, Reis A, Miguel A. Proceedings of the Symposium Bejan’s Constructal Theory of Shape and Structure. Evora: University of Evora, Portugal, 2004, 219
5 Bejan A, Lorente S. The Constructal Law (La Loi Constructale). Evora, Portugal, 2004, 219
6 Bejan A, Lorente S. Constructal multi-scale and multi-objective structures. Int J Energy Res, 2005, 29: 689–710
7 Bejan A, Lorente S, Miguel A, et al. Along with Constructal Theory. UNIL FGSE Workshop Series No. 1, Hernandez J, Cosinschi M, eds., University of Lausanne, Faculty of Geosciences and the Environment, Switzerland, 2006
8 da Silva A, Lorente S, Bejan A. Constructal multi-scale structures for maximal heat transfer density. Energy, The Int J, 2006, 31: 620–635
9 Reis A. Constructal theory: From engineering to physics, and how flow systems develop shape and structure. Appl Mech Rev, 2006, 59: 269–282
10 Bejan A, Lorente S. Constructal theory of generation of configuration in nature and engineering. J Appl Phys, 2006, 100: 041301
11 Bejan A, Marden J H. Unifying constructal theory for scale effects in running, swimming and flying. J Exp Biol, 2006, 209: 238–248
12 Bejan A, Merks G. Constructal Theory of Social Dynamics. New York: Springer, 2007
13 Bejan A, Lorente S. Design with Constructal Theory. New Jersey: Wiley, 2008
14 Bejan A, Marden J H. The constructal unification of biological and geophysical design. Phys Life Rev, 2009, 6: 85–102
15 Bejan A, Lorente S, Miguel A, et al. Constructal Human Dynamics, Security & Sustainability. Amsterdam: IOS Press, 2009
16 Neagu M, Bejan A. Constructal-theory tree networks of “constant” thermal resistance. J Appl Phys, 1999, 86: 1136–1144
17 Neagu M, Bejan A. Three-dimensional tree constructs of “constant” thermal resistance. J Appl Phys, 1999, 86: 7107–7115
18 Almogbel M, Bejan A. Constructal optimization of nonuniformly distributed tree-shaped flow structures for conduction. Int J Heat Mass Transfer, 2001, 44: 4185–4194
19 Ghodoossi S, Egricnan N. Conductive cooling of triangular shaped electronic components using constructal theory. Energy Convers Mgmt, 2004, 45: 811–828
20 Zhou S, Chen L, Sun F. Constructal theory in designing photovoltaic cell (in Chinese). Prog Nat Sci, 2006, 16: 1500–1505
21 Wu W, Chen L, Sun F. Improvement of tree-like network constructal method for heat conduction optimization. Sci China Ser E-Tech Sci, 2006, 49: 332–341
22 Zhou S, Chen L, Sun F. Entropy generation minimization for “volume-point” conduction based on constructal theory (in Chinese). J Thermal Sci Tech, 2007, 6: 294–299
23 Wu W, Chen L, Sun F. On the “area to point” flow problem based on constructal theory. Energy Convers Mgmt, 2007, 48: 101–105
24 Zhou S, Chen L, Sun F. Optimization of constructal volume-point conduction with variable cross-section conduction path. Energy Convers Mgmt, 2007, 48: 106–111
25 Zhou S, Chen L, Sun F. Constructal optimization for solid-gas reactors based on triangular element. Sci China Ser E-Tech Sci, 2008, 51: 1554–1562
26 Wei S, Chen L, Sun F. The volume-point constructal optimization for discrete variable cross-section conduction path. Appl Energy, 2009, 86: 1111–1118
27 Boichot R, Luo L, Fan Y. Tree-network structure generation for heat conduction by cellular automation. Energy Convers Mgmt, 2009, 50: 376–386
28 Xie Z, Chen L, Sun F. Constructal optimization of a vertical insulated wall based on a complex-objective combining heat flow and strength. Sci China Tech Sci, 2010, 53: 2278–2290
29 Rocha L A O, Lorente S, Bejan A. Constructal design for cooling a disc-shaped area by conduction. Int J Heat Mass Transfer, 2002, 45: 1643–1652
30 da Silva A K, Vasile C, Bejan A. Disc cooled with high-conductivity inserts that extend inward from the perimeter. Int J Heat Mass Transfer, 2004, 47: 4257–4263
31 Rocha L A O, Lorente S, Bejan A. Conduction tree networks with loops for cooling a heat generating volume. Int J Heat Mass Transfer, 2006, 49: 2626–2635
32 Guo Z, Cheng X, Xie Z. Least dissipation principle of heat transport potential capacity and its application in heat conduction optimization. Chinese Sci Bull, 2003, 48: 406–410
33 Guo Z, Zhu H, Liang X. Entransy—A physical quantity describing heat transfer ability. Int J Heat Mass Transfer, 2007, 50: 2545–2556
34 Han G, Zhu H, Cheng X, et al. Transfer similarity among heat conduction, elastic motion and electric conduction (in Chinese). J Eng Thermophys, 2005, 26: 1022–1024
35 Han G, Guo Z. Physical mechanism of heat conduction ability dissipation and its analytical expression (in Chinese). Proc CSEE, 2007, 27: 98–102
36 Zhu H, Chen J, Guo Z. Electricity and thermal analogous experimental study for entransy dissipation extreme principle (in Chinese). Prog Nat Sci, 2007, 17: 1692–1698
37 Cheng X, Meng J, Guo Z. Potential capacity dissipation minimization and entropy generation minimization in heat conduction optimization (in Chinese). J Eng Thermophys, 2005, 26: 1034–1036
38 Han G, Guo Z. Two different thermal optimization objective functions: dissipation of heat transport potential capacity and entropy production (in Chinese). J Eng Thermophys, 2007, 27: 811–813
39 Liu H, Guo Z, Meng J. Analyses for entransy dissipation and heat resistance in heat exchangers (in Chinese). Prog Nat Sci, 2008, 18: 1186–1190
40 Song W, Meng J, Liang X, et al. Demonstration of uniformity principle of temperature difference field for one-dimensional heat exchangers (in Chinese). J Chem Industry Eng, 2008, 59: 2460–2464
41 Chen Q, Ren J, Guo Z. Fluid flow field synergy principle and its application to drag reduction. Chinese Sci Bull, 2008, 53: 1768–1772
42 Chen Q, Ren J. Generalized thermal resistance for convective heat transfer and its relation to entransy dissipation. Chinese Sci Bull, 2008, 53: 3753–3761
43 Liu X, Meng J, Guo Z. Entransy generation extremum and entransy dissipation extremum for heat exchanger optimization. Chinese Sci Bull, 2009, 54: 943–947
44 Liu X, Guo Z. A novel method for heat exchanger analysis (in Chinese). Acta Phys Sin, 2009, 58: 4766–4771
45 Chen Q, Ren J, Guo Z. Field synergy analysis and optimization of decontamination ventilation designs. Int J Heat Mass Transfer, 2008, 51: 873–881
46 Chen Q, Wang M, Pan N, et al. Optimization principles for convective heat transfer. Energy, 2009, 34: 1199–1206
47 Wu J, Liang X. Application of entransy dissipation extremum principle in radiative heat transfer optimization. Sci China Ser E-Tech Sci,
48 Wang S, Chen Q, Zhang B, et al. A general theoretical principle for single-phase convective heat transfer enhancement. Sci China Ser E-Tech Sci, 2009, 52: 3521–3526
49 Chen Q, Ren J, Guo Z. The extremum principle of mass entransy dissipation and its application to decontamination ventilation designs in space station cabins. Chinese Sci Bull, 2009, 54: 2862–2870
50 Liu W, Liu Z, Guo Z. Physical quantity synergy in laminar flow field of convective heat transfer and analysis of heat transfer enhancement. Chinese Sci Bull, 2009, 54: 3579–3586
51 Wu L, Li Z, Song Y. Field synergy principle of heat and mass transfer. Chinese Sci Bull, 2009, 54: 4604–4609
52 Wang S, Chen Q, Zhang B. An equation of entransy and its application. Chinese Sci Bull, 2009, 54: 3572–3578
53 Xia S, Chen L, Sun F. Optimization for entransy dissipation minimization in heat exchanger. Chinese Sci Bull, 2009, 54: 3587–3595
54 Guo J, Cheng L, Xu M. Entransy dissipation number and its application to heat exchanger performance evaluation. Chinese Sci Bull, 2009, 54: 2708–2713
55 Chen L, Chen Q, Li Z, et al. Optimization for a heat exchanger couple based on the minimum thermal resistance principle. Int J Heat Mass Transfer, 2009, 52: 4778–4784
56 Xia S, Chen L, Sun F. Entransy dissipation minimization for liquid-solid phase processes. Sci China-Tech Sci, 2010, 53: 960–968
57 Xia S, Chen L, Sun F. Optimal paths for minimizing entransy dissipation during heat transfer processes with generalized radiative heat transfer law. Appl Math Modell, 2010, 34: 2242–2255
58 Li Z, Guo Z. Field Synergy Principle of Heat Convection Optimization (in Chinese). Beijing: Science Press, 2010
59 Guo Z, Liu X, Tao W, et al. Effectiveness-thermal resistance method for heat exchanger design and analysis. Int J Heat Mass Transfer, 2010, 53: 2877–2884
60 Wei S, Chen L, Sun F. “Volume-point” heat conduction constructal optimization with entransy dissipation minimization objective based on rectangular element. Sci China Ser E-Tech Sci, 2008, 51: 1283–1295
61 Wei S, Chen L, Sun F. “Volume-point” heat conduction constructal optimization with entransy dissipation minimization objective based on triangular element. Thermal Sci, 2010, 14: 1075–1088
62 Wei S, Chen L, Sun F. Constructual entropy dissipation minimization for “volume-point” heat conduction without the premise of optimized last-order construct. Int J Exergy, 2010, 7: 627–639
63 Wei S, Chen L, Sun F. Constructual optimization of discrete and continuous-variable cross-section conducting path based on entransy dissipation rate minimization. Sci China-Tech Sci, 2010, 53: 1666–1677
64 Wei S, Chen L, Sun F. Constructual multidisciplinary optimization of electromagnet based on entransy dissipation minimization. Sci China Ser E-Tech Sci, 2009, 52: 2981–2989
65 Wei S, Chen L, Sun F. Constructual complex-objective optimization of electromagnet based on magnetic induction and maximum temperature difference. Rev Mexi Fis, 2010, 56: 245–250
66 Xia Z, Chen L, Sun F. Constructual optimization for geometry of cavity by taking entransy dissipation minimization as objective. Sci China Ser E-Tech Sci, 2009, 52: 3504–3513
67 Xia Z, Chen L, Sun F. Constructual optimization on T-shaped cavity based on entransy dissipation minimization. Chinese Sci Bull, 2009, 54: 4418–4427

Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.