Searching Scenes by Abstracting Things

Svetlana Kordumovaa,\!*, Jan C. van Gemertb, Cees G. M. Snoeka,c, Arnold W. M. Smeuldersa

aUniversity of Amsterdam, Science Park 904, Amsterdam, the Netherlands
bDelft University of Technology, Mekelweg 4, Delft, the Netherlands
cQualcomm Research Netherlands, Science Park 400, Amsterdam, the Netherlands

Abstract

In this paper we propose to represent a scene as an abstraction of “things”. We start from “things” as generated by modern object proposals, and we investigate their immediately observable properties: position, size, aspect ratio and color, and those only. Where the recent successes and excitement of the field lie in object identification, we represent the scene composition independent of object identities. We make three contributions in this work. First, we study simple observable properties of “things”, and call it things syntax. Second, we propose translating the things syntax in linguistic abstract statements and study their descriptive effect to retrieve scenes. Thirdly, we propose querying of scenes with abstract block illustrations and study their effectiveness to discriminate among different types of scenes. The benefit of abstract statements and block illustrations is that we generate them directly from the images, without any learning beforehand as in the standard attribute learning. Surprisingly, we show that even though we use the simplest of features from “things” layout and no learning at all, we can still retrieve scenes reasonably well.

1. Introduction

In general, scenes provide the context by which objects receive their meaning. A picture of the sea makes the large pile in the middle a likely candidate to be an iceberg or an oil tanker. And reversely, the understanding of scenes can be derived from the objects in the scene. The types of objects may be important, such as a

*Corresponding author

\textit{Email address:} svetlana.kordumova@gmail.com (Svetlana Kordumova)
Figure 1: (a-b): The scene type does not change when particular object are replaced by others in a similar semantic object-class. (c-d): Scene semantics are violated, not because the objects do not belong but because they deviate from their typical shape, size and placement in the scene. Images (c-d) © Réne Magritte (fair-use).

cow and another cow and a tree to denominate the scene as a meadow. With the current achievements of object recognition [1, 2] some objects may contribute much to the recognition of the scene [3, 4]. Other objects may contribute little or noting, like a handkerchief or a smartphone as they may occur in any scene. Where the recent successes and excitement of the field lie in object identification [1, 2], in this paper we argue that next to object types, there is another source of information contributing to what makes a scene.

We note on the basis of cognitive experiments [5] that object composition provides by itself a clue for the recognition of scenes. The reference shows that humans can recognize scenes even when individual objects are reduced to blobs that only retain their size, aspect ratio and position. As a consequence, when position and size are violated a scene may appear disorganized, see Figure 1. By violating these basic properties, recognizing objects in scenes by humans resulted in reaction time and accuracy deficit [6]. There are reasons why the scene has a
specific spatial layout. Objects obey the laws of physics. They must be supported by a horizontal surface. Two objects cannot occupy the same physical space. Next to physical reasons, objects also have a certain semantic likelihood of appearing in a particular scene [7]. Imagine going to a friend’s housewarming party, you have never seen the house before, but you will not be surprised to see a coffee table next to the sofa in the living room, or framed pictures on the walls, and you will go look under the sink for disposing the waste. Next to position, object size is dependent on cultural habits, human size and purpose [8]. The purpose of a sofa is for sitting so it needs to accommodate a person, whereas the purpose of a cup is to be held in hands and accordingly it is designed smaller. Object size also relates to scene depth [9], which in turn affects the number of objects [10]. All of this provides ample motivation to study the compositional layout of objects in a scene.

We have found that the removal of all object identities, and calling all objects in the scene “things”, reveals a preference for a scene-type specific composition of things in a scene. A theater and a marching band, a soccer crowd and a forest will all demonstrate a certain spatial regularity of the things they are made of, albeit a spatial regularity of a different kind each. The interior of a sleeping room will usually demonstrate a limited number of spatial layouts, which contribute to the recognition of the scene. In this paper, we start from “things” as generated by modern object proposals, referred to as objectness [11], PRIM [12], or selective search [13]. We note that some works have referred to a thing only if it is an “object that has a specific size and shape”, and to stuff for “material defined by a homogeneous or repetitive pattern of fine-scale properties, but has no specific or distinctive spatial extent or shape” [14, 15]. In our work we name all existing objects, parts and stuff under “things”. We investigate image representations composing the ensemble of these things, on the basis of their immediately observable features: position, size, aspect ratio and color, and those only, see Figure 2. We could refer to the representation as sceneness, SRIM, or selective layout, but we prefer to use things syntax.

To relate visual information with linguistic meaning is another challenging and open area of research. Linguistic descriptions are usually generated using object identities [4, 16, 17] or attributes [18]. In this paper we take a different approach and generate descriptions with abstract statements only from the immediately observable features of “things”, for example “Green small squared thing at top middle” or “Blue large wide thing at top right”. Whereas [4, 16, 17, 18, 19] use manual annotations and require learning to generate linguistic descriptions, we generate linguistic statements from the image itself. We investigate the effectiveness of the abstract statements to retrieve scenes without the need for examples.
Furthermore, we investigate querying the things syntax with abstract block illustrations, as presented in Figure 5, inspired by Mondrians neoplastic style [20]. Mondrian studies the order of the most abstract forms to designate a feeling for the scene as a whole. The painting Victory Boogie Woogie is a good example of expressing the crowdedness of a joyful city. In our work, different from [19], we remove object identities and use only abstract block illustrations that preserve the immediate observable properties of things, see Figure 2. We study the effectiveness of block illustrations to search scenes.

We make three contributions in this work. First, on the basis of the above motivation, we approximately localize the things in a scene as the output of objectness [11], selective search [13], and PRIM [12], and study the properties of their immediate observables without proceeding to identify these things by type. Second, we study abstraction of the things syntax by translating it into abstract statements and their effectiveness to query scenes. And thirdly, we study abstraction of scenes into block illustrations of things to search among different types of scenes.

2. Related Work

Scene representation. To represent and to recognize scenes more approaches have been proposed than we can cover here. We make no attempt to be complete. Instead, we summarize the main research strands which developed from low level statistics, e.g., [3, 21, 22, 23], through mid-level unnamed discriminative regions, e.g., [24, 25, 26, 27] to high-level representations consisting of objects identity scores, e.g., [4, 28] or attributes [18, 29]. Each of these are successful in their own right and for their intended purpose. In this paper we follow a different path to search the categories of scenes and while doing so we demonstrate that for scene recognition there is another informative cue besides appearance features and object types.
Scene statistics. We take as inspiration the work of Greene [7], who investigates object statistics like object density, unique object density, mean object size, and variability of objects, to discriminate scenes. These statistics are calculated from manually annotated objects in scene images, with known object types. Interestingly, Greene shows that this ensemble of statistics is sufficient for above-chance scene recognition. Motivated by these results, we investigate immediately observable properties of nameless things. Thanks to the modern object proposals methods [11, 13, 12], we can benefit from automatically suggested locations of things. We investigate how close do the immediate observable properties of automatically generated object proposals come to the properties of manually annotated objects, and compare their discriminative power for retrieving scenes.

Object proposals. We use the recent achievements of the localization of objects to find things in a scene [30, 31, 12, 32, 13, 33, 34]. The goal of these methods is to find locations in an image that have a high likelihood to contain an object. By being efficient in suggesting the most likely locations, these methods allow more computation time to be spent on feature representations and classifying their identify for object detection, which has led to great successes. Very often the proposed locations are around an object part or around some texture shapes. Since we are considering things, there is no longer an objective to identify an object. An object part can often be considered as an object in its own right, for example buildings in a cityscape have windows, apartments and individual bricks. In natural scenes, this recursive fragmentation follows certain rules biasing the statistics of size towards a Weibull distribution [35]. Starting from [30, 13, 12] we consider their output locations in a form of a bounding box over an image to hold a thing, and we refer to them as things proposals in the rest of the paper. We gladly use their valuable output, right or wrong, without proceeding to classify the content of their boxes into an object type, as these methods are designed for. In this paper we are satisfied with the position, size, aspect ratio and color of the proposed boxes to represent the ensemble of just the things.

Semantic scene representation. Predicting written descriptions from visual information is an interesting and challenging problem [36, 17, 16, 37, 38, 39, 40]. All these works use a variety of approaches, like generating semantic sentences relying on object detectors [4, 17], relying on semantic attributes [18, 16, 39, 37], using a large corpus to extract written descriptions [36, 38], language statistics [40] or generating verbs by looking into spatial relationships of objects [17]. Notable efforts have also been done in creating datasets with semantic descriptions and sentences [41, 42]. In this paper we take a different approach by removing objects, attributes and verbs from written descriptions. We describe a scene by
mapping properties of things to adjectives and adverbs, for example, *Green small squared thing at top middle* or *Blue large wide thing at top right*.

Zero-shot recognition. The benefit of having high-level written descriptions of images is that they enable humans and computers to communicate with natural language. One popular application is zero-shot recognition as pioneered by Fahradi et al. [16] and Lampert et al. [29]. In a zero-shot setting, there are no available category labels on images to learn from, instead human descriptions of zero-shot classes are gathered and matched against detected scores of attributes or object detectors in test images. This setting requires gathering annotations and learning models of attributes [37, 29, 16] or objects detectors [43, 4], from the same scope as the test classes. For example animal attributes can not be used to recognize vehicles. Images from the zero-shot classes are usually shown to humans in the description process, since if a person has never a seen an *archeological excavation* scene, it would be difficult to provide attributes for it. In this paper we remove all scope-dependent object identities and attributes, and represent scenes as an ensemble of “things”. We pose the question, *Can we retrieve a scene with only abstract statements of immediately observable things properties?*. An important benefit of the abstract statements is that they are generated directly from images, without the need to learn any attribute or object detectors beforehand.

Visual abstraction. Zitnik et al. [19] have investigated the potential of using abstract images to study high-level semantics, like semantically important features, relations between saliency-memorability of objects, and mapping of sentences to abstract scenes. A dataset of abstract images is collected by asking users to draw images with clip art objects of children, trees, animals, food, toys etc. The authors number four benefits of abstract images: 1) they remove the reliance on noisy low level object and attribute detectors 2) they avoid tedious hand labeling on images, 3) they allow for direct study of high level semantics, and 4) allow to automatically generate sets of semantically similar images. We stand inspired and propose to investigate abstract images from a different perspective, using nameless things. Different from [19] we remove all object identities and create abstract block illustrations capturing the position, ratio, size and color of things in a scene. Abstract images have also been investigated as a modality for zero-shot recognition by Antol et al. [44]. The authors argue that visual modality is needed because some images are not easy to be described in semantic terms, like images of interactions between people, which is also the topic of their work. Since we are interested in scene images, we note that describing scenes in semantic terms is also difficult in a number of situations. For example, when children between the age of 5 to 6 are asked to describe a memory, they show more accurate infor-
mation by drawing the scene than when they describe it semantically [45]. Also there are scenes where object identities are unknown, but their ensemble of things is well defined, like cosmic and microscopic scenes, architectural inspiration or abstract paintings. We investigate searching scenes by block abstractions.

In this paper, rather than using sophisticated scene representations, we evaluate simple features from the composition of “things” in the scene, from which we define query representations based on simple linguistic statements and simple block illustrations.

3. Things syntax

Starting from three object proposal methods [30, 13, 12], we consider their output locations in an image to hold a thing. The output locations are bounded with a box and we refer to them as windows. We use the bounding box window \(w \) to calculate the thing properties. For horizontal position and vertical position we use the center coordinates \(w_x \) and \(w_y \) of its window \(w \). Thing size is approximated with the window width and height \(w_s = w_w w_h \) whereas shape is measured by the aspect ratio

\[
 w_r = \begin{cases}
 0.5 (w_w / w_h) & \text{if } o_w \geq o_h \\
 0.5 (w_h / w_w + 1) & \text{if } o_w < o_h,
 \end{cases}
\]

which has a value of 0.5 for square objects, a value between 0 ≤ \(w_r \) < 0.5 for tall objects and a value 0.5 < \(w_r \) < 1 for broad objects. We also measure the dominant color \(w_c \) of the thing window with eleven basic colors as defined by [46].

The accidental image sensor resolution influences thing window size and position. If an image is scaled by a factor \(f \), the windows will be scaled accordingly. The window center will move to \((fw_x, fw_y)\) and the window size will become \(fw_w, fw_h\). Window aspect ratio is invariant to the image resolution since \(\frac{fw_w}{fw_h} = \frac{w_w}{w_h} \). We obtain resolution invariance for window position and size by normalizing with the image width \(I_w \) and height \(I_h \) as \(\frac{w_x}{I_w} \) since \(\frac{fw_x}{I_w} = \frac{w_x}{I_w} \). We also investigated translation and scale invariance of thing windows, but we found that adding these invariants does not affect the discriminative potential of things windows.

Each thing window is represented by: horizontal position, vertical position, size, ratio and color, resulting in a 1x5 dimensional vector \(w = [w_x, w_y, w_s, w_r, w_c] \). The ensemble of all windows properties in an image forms the things syntax. If an image has \(n \) thing windows, represented as vectors \(\{w_i\}_{i=1}^{n} \), then the image things syntax is represented by stacking all windows vectors in a matrix
\[
W_{nx5} = \left[\begin{array}{c}
W_1 \\
W_2 \\
\vdots \\
W_n \\
\end{array} \right] = \left[\begin{array}{c}
w_{1x}, w_{1y}, w_{1s}, w_{1r}, w_{1c} \\
w_{2x}, w_{2y}, w_{2s}, w_{2r}, w_{2c} \\
\vdots \\
w_{nx}, w_{ny}, w_{ns}, w_{nr}, w_{nc} \\
\end{array} \right].
\]

3.1. Query by abstract linguistic statements

To formalize a scene image in linguistic statements, the things syntax needs grounding in natural language. Such a grounding can be obtained by quantizing the window properties of things to human understandable statements. Since we purposely ignore object names, we disregard nouns, and map window properties to adjectives (small, green, tall) and adverbs (left, middle, right). We chose three levels since humans tend to use three denotations for object properties. For example, horizontal position can be quantized to the three words (left, middle, right) and size can be mapped to (small, medium, large). In Figure 3 we summarize the set of rules we define to translate the horizontal position, vertical position, size and shape into a things vocabulary composed of adverbs and adjectives. We also map the color of the things windows on one of the eleven dominant color names [46].

Histogram representation. Mapping a continuous property of a thing window, such as its x-position \(w_x\), to a single word such as ‘left’ requires setting binning boundaries for quantization. We quantize each thing property separately and combine them in one histogram representation later. Each bin in the histogram represents an occurrence value for one combination of things properties, and one sentence like “Green large tall thing at bottom left” can be created. A straightforward solution for binning is to split the axis of each window property value in equal bins \([0, \frac{1}{3}, \frac{2}{3}]\). However, things windows may not be uniformly distributed, and thus frequent words may bias the description. On a separate holdout set we calculate simple statistics of things properties to obtain an equal probability of word occurrence. The holdout set can be any scene images, downloaded from internet for example, or by ignoring the annotations on an existing scene dataset, since we calculate statistics directly from the images and we do not need annotations. With a histogram \(h\) of three bins over the training images, the word bin boundaries are obtained by splitting the histogram in three parts with equal probability weight, i.e., \(\sum_{i_1}^{i_2} h(i) = \sum_{i_1+1}^{i_2+1} h(i) = \sum_{i_2+1}^{1} h(i)\), where \(i_1\) and \(i_2\) indicate the bin separator. In Figure 3 we show word boundaries obtained in this manner on a holdout set. With binning boundaries we can quantize properties to words, and
Figure 3: Binning boundaries for quantization of the continuous things properties: horizontal position, vertical position, size and shape, to a single word like left, top, small and wide. We quantize each thing property separately and combine them in one histogram representation later. We use eleven colors to represent the most dominant color in a thing window. Thus for each thing an abstract statement like Green small wide thing at top left can be created.

thus convert a set of things windows to a probability distribution over statements. If for horizontal position, vertical position, size and ratio we use 3 words, and for color we use 11 words [46], the histogram representation of the probability distribution over all statements combinations will be 3x3x3x3x11 dimensional.

Query by abstract statements. Since the abstract statements are in a human understandable form, they allow us to search unseen scene classes. For example, if the unseen class is a bedroom, the formal statements allow, in principle, for a description of this class with “wide big brown thing in the center, small squared things left and right”. When abstract statements like this are provided for a scene, we can easily create a histogram representation. Creating a histogram representation from abstract statements is a reverse process of translating the things properties into abstract statements described above. Each statement stands for the properties of one thing, and is counted in one bin of the histogram representation. The value of each bin is a count on how many times the corresponding statement was used to describe a particular scene. At test time, we compare the histogram representation of scenes with the histogram representation of test images to compute probability score of a test image belonging to a scene class. This procedure is equivalent to the attribute representation of Lampert et al. [29]. The difference is that for unknown scenes as representations they use a distribution of an attributes occurrence, whereas we use a histogram of abstract statements. This allows us to use the same Direct Attribute Prediction (DAP) model for ranking test images by probability scores. The DAP-model assigns a test image to a most likely scene z_1, \ldots, z_L with $$\text{argmax}_l p(z = l | x) = \text{argmax}_l \prod_{m=1}^M \frac{p(a_{zm} | x)}{p(a_{zm})},$$ where $p(a_{zm} | x)$ is
the probability value of the attribute detector of $a_{z_l}^{a_l}$ applied on the test image x, and $p(a_{z_l}^{a_l})$ is the value of the m-th attribute occurring in scene z_l. In our case we have statement representations per scene instead of attributes. One important difference in this formulation is that $p(a_{z_l}^{a_l}|x)$ in [29] is calculated from attribute detectors, pre-learned on another independent manually annotated set. We calculate the probability distribution over statements of a test image x directly from its things properties. In this way the search process is simplified without the need for any learning.

3.2. Query by abstract block illustrations

To search by block illustration of a scene, it is not required for one to remember and draw the exact shape of things. As long as one can mimic the basic size, form, position and dominant color of things in the scene.

Fisher vector representation. To represent the block illustrations and the things syntax of images, we employ the popular Fisher vector encoding [22]. On a holdout set H, for each scene image $\{I|I \in H\}$ we compute its things syntax W_I^{nx5}. We merge all $\{W_I^{nx5}, I \in H\}$, in one matrix W_H holding all things properties of the holdout set, and compute Gaussian Mixture Model (GMM) prototypes.
of W_H. A GMM with K components models the probability of all things windows properties $w \in W_H$, given the model λ by $P(w|\lambda) = \sum_{i=1}^{k} t_i g(w|\mu_i, \Sigma_i)$, where g is the Gaussian function and $\sum_{i=1}^{k} t_i = 1$. For a new block illustration I or image I, it’s things properties are encoded with the derivative of the mean and variance to the GMM prototypes [22] as $\nabla_{\mu_k} \log g_k(w) = \gamma_k(w) \left(\frac{w-\mu_k}{\sigma_k^2} \right)$, and $\nabla_{\sigma_k} \log g_k(w) = \gamma_k(w) \left[\frac{(w-\mu_k)^2}{\sigma_k^2} - \frac{1}{\sigma_k} \right]$, where w is one row of the things syntax matrix W_I, μ_k denotes the mean, and σ_k^2 the diagonal of the covariance matrix Σ_k of Gaussian g_k, and $\gamma_k(w)$ are the soft assignment responsibilities of window w to Gaussian k. The final Fisher vector representation of the things syntax is created as a concatenation of $\nabla_{\mu_k} \log g_k(w)$ and $\nabla_{\sigma_k} \log g_k(w)$ for each Gaussian prototype k. Simply said, the procedure of the Fisher vector encoding of the things syntax is equivalent to the Fisher vector encoding of SIFT vectors [22]. The only difference in our case is that instead of using a 128-dimensional SIFT vector sampled from dense or salient points of an image, we use a 5-dimensional vector of individual thing window properties in an image. The rest of the procedure is identical.

Query by block illustrations. When block illustrations I for a scene are available, we can create a Fisher vector representation of the scene. This representation allows us to search images of an unseen scene class. We merge all window properties of block illustrations for a scene S into one things syntax matrix W_S of the scene. This matrix holds the layout of things within the scene through its things properties. Following the procedure described above, we create a Fisher vector representation from W_S. To retrieve test images of an unseen scene class, we first compute a Fisher vector representation of the image, and compare it to the scene Fisher vector representation. Different similarity measures and metric learning can be adopted to measure the similarity between the Fisher vector representation of a scene and the image. For now we simply use an Euclidian Distance to rank the test images. We summarize the process of creating things syntax representations in Figure 4.

4. Datasets

For the experiments we use both standard scene datasets, and abstract datasets we automatically generate from object annotations. Creating abstract datasets in this manner, examples shown in Figure 5, is different from when statements and block illustrations are provided directly by humans, see Figure 6 for comparison.
Image	a) Things proposals	b) Annotated things
Football field		
	Black medium squared at top middle.	Green large squared at bottom middle.
	Green large squared at bottom middle.	Green small tall at bottom left.
	Green medium tall at center right.	Green small tall at bottom right.
	Green medium tall at center left.	Black medium squared at top middle.
	Grey medium squared at top left.	Grey large wide at top middle.
Beach		
	Blue large wide at center.	Grey large wide at top right.
	Blue large wide at top right.	Grey small squared at bottom left.
	White small wide at center middle.	Blue large wide at bottom left.
	Grey large wide at top middle.	Grey large wide at center middle.
	Grey large wide at bottom middle.	Grey large wide at bottom middle.
	Grey large wide at bottom middle.	Black small tall at bottom right.
Skyscrapers		
	Black small tall at bottom left.	Black medium tall at bottom left.
	White large tall at top middle.	Black small squared at bottom left.
	Black medium tall at bottom left.	Blue large squared at center middle.
	Blue large tall at top middle.	Green medium wide at bottom middle.
	Black large tall at center left.	Grey medium wide at bottom middle.

Figure 5: Examples of block illustrations and abstract statements for three scene images, automatically generated from (a) selective search things proposals, and (b) human annotated things. The color is calculated from the dominant color in the bounding box window. Note that the human annotated objects are not complete, however, they are a reasonable and best available approximation.

However, this is the best approximation we can get for free. We describe the datasets below.

SUN2012-14Scenes has 1,400 images in 14 classes we select from SUN397 [47], with an objective to have object annotations for at least 100 images per scene. We use this dataset for comparison between properties of human annotated things and
Figure 6: Block illustrations and abstract statements manually created. We asked three independent humans to provide statements and block illustrations for three scenes using only their memory of a scene, without looking at any image examples. Interestingly, we observe that sensible descriptions can be provided in this manner, even though this is not the way humans normally communicate or describe scenes in everyday life. Additionally, they are quite diverse for each individual.

properties of automatically generated things by [30, 13, 12].

Indoor67 [48] has 15,620 images from 67 indoor scenes like bedroom, restaurant, winecellar. All scenes have at least 100 images per category, with a provided 80-20 training-test splits. For experiment 1, we use the training-test split as a given. For experiment 2 and 3, since we do not need any examples for training,
we use the 80 images as test images for searching without examples. The remaining 20 images we use as a holdout set, where we ignore their class annotations.

SUNAttributes [18] contains 14,340 images hierarchically grouped in 3 levels, starting from fine-grained scenes in level three, growing into more general scene categories in level two and one. Level one has 3 general classes: *indoor*, *outdoor natural* and *outdoor man made*. Level two has 16 high level scene categories like *shopping and dining* or *water, ice, snow*, and level three has all 717 fine-grained scenes like *airport ticket counter, bicycle racks, canyon*, with 20 images for each scene, which we use for testing.

Indoor67-AbstractStatements. Many of the Indoor67 images have object annotations provided with the LabelMe toolbox [49] in a shape of a polygon. We ignore the object names, consider them as nameless things and calculate their properties from a bounding box surrounding the polygon. As color we use the most dominant color in the bounding box, computed as in [46]. From the things properties we generate sentences for free as described in Section 3.1, and use them to generate 67 scene representations, in a form of a histogram, for each scene to query by.

Indoor67-AbstractBlocks. Similarly as in the AbstractStatements-67 dataset, we reuse the LabelMe annotations from Indoor67, to automatically generate abstract block illustrations. We ignore the objects type and appearance, and we use the position, size, ratio and the dominant color of the things properties to generate block illustrations. From the block illustrations we compute Fisher vector representations for each of the 67 scenes to query by.

SUN717-AbstractStatements. The SUNAttributes dataset also comes with object annotations from the LabelMe toolbox in the form of polygons. Similar as in the creation of Indoor67-AbstractStatements, we ignore the object annotations and generate bounding boxes around the polygons to hold things. For all image things we generate abstract statements. By grouping the abstract statements per image of all three levels from SUNAttributes, we generate 3, 16 and 717 scene representations of abstract statements respectively to query by.

SUN717-AbstractBlocks. We use the thing properties calculated from the object annotations on SUNAttributes to also generate abstract block illustrations. From the block illustrations we create 3, 16 and 717 scene class representations, in a Fisher vector form, for level one, two and three respectively.

We will make all abstract dataset available online upon acceptance.
Table 1: Comparison between things properties distribution of three things proposal methods and human annotated things on the SUN2012-14Scenes dataset, measured with the Kullback-Leibler divergence. The results are computed by averaging the KL divergence over all scene classes. The closest distributions are shown in bold. Each proposal method has a best approximation to the human annotated things for different property, each successful in their own right. When we compare this KL values with the maximum inter-class KL divergences of human things properties as reference numbers, 0.584 for horizontal, 0.248 for vertical, 0.651 for size, 0.292 for ratio and 6.068 for color, as shown in Figure 7, we conclude that the properties of things proposal methods come close to the properties of human annotated things.

5. Experiments

5.1. Comparing automatically proposed and manually annotated things

Do they behave similar? We first consider the question whether properties from things obtained with proposal methods are distributed similarly as things taken from manual things annotations. We generate things proposals with three recent methods: objectness [11], selective search [13] and prime object proposals (PRIM) [12], and we consider manually annotated things from the SUN2012-14Scenes dataset. Although the human annotations in SUN2012-14Scenes are not intended to be a complete ground truth of all things contained in a scene, they are the best approximation available to us. We compute the distributions of things properties per image by binning. We measure the distribution divergence of things proposals property \(Q \) to the human annotated thing property \(P \) with the Kullback-Leibler divergence \(D_{KL}(P || Q) = \sum_i \ln \left(\frac{P(i)}{Q(i)} \right) P(i) \). The Kullback-Leibler divergence measures the expected loss of information when distribution \(Q \) is used to approximate the true distribution \(P \). A low score represents a good fit.

Analysis. We present the mean Kullback-Leibler divergence scores over all scenes, between the things properties of proposal methods and human annotated things in Table 1. The lower the KL divergence score, the more similar the distributions are for that property. Results show that proposals reasonably approximate human annotation statistics with an expected average loss of only 5-10%, except for size and color. The difficulty in estimating the color is due to its computation over the full window, i.e., it is a joint statistic over all four dimensions and thus
affected by errors in any of them. If we take as reference numbers the maximum inter-class KL divergences of human things properties, with 0.584 for horizontal, 0.248 for vertical, 0.651 for size, 0.292 for ratio and 6.068 for color, as shown in Figure 7, we conclude that the properties of things proposal methods come close to the properties of human annotated things. In Figure 7 we also show the minimum values and heat maps of the KL divergence between scene classes per property, for both human annotated things and selective search things. Interestingly, we see a similar pattern between the properties of selective search things and human annotated things. For color, the same scenes have max/min values. For horizontal position of selective search things, highway differs most from the rest of the scenes. We believe this is so because a highway scene usually has things lined

Figure 7: Heat maps per property of Kullback-Leibler (KL) divergence between scenes, for (a) selective search things and (b) human annotated things, with pointed maximum (red) and minimum (green) values. The lower the KL divergence score, the more similar the scenes are for that property. Interestingly, we see a similar pattern between the properties of selective search things and human annotated things, indicating the suitability of things proposal methods to approximate true things as annotated by humans.
horizontally, like the highway, sky, ground, which is not the case within the other 13 scenes. However, we observed that the human annotated things of highway are mostly on the cars on the highway, missing the horizontally aligned things in the scene. Interestingly, some of the most similar scenes are, for horizontal: hotel room - waiting room, size: building facade - skyscraper and aspect ratio: waiting room - bathroom. Most distinctive are, for horizontal: highway - forest broadleaf, vertical: skyscraper - street and aspect ratio: highway - skyscraper. The examples show that the things properties capture scene information, the similar scenes are indeed close, and the dissimilar ones are far for a given things property. Investigating the matter further, we show the distribution curves for the properties of human annotations and all three things proposals for four scenes in Figure 8.

All proposed things follow the distributions of the horizontal and vertical posi-
tion properties close to the horizontal and vertical position properties of human annotated things. Object size is overestimated, which may be due to the proposals used in object recognition where larger objects are the norm. Aspect-ratio is coming close reasonably well, except objectness, which tends to generate overly long or broad windows. The things proposals are not perfect, but we conclude that they are a suitable approximation of real objects in a scene. As new and better object proposal methods are being introduced [50, 51], we can expect that the approximation will only improve.

Are they as discriminative? Next we study whether the object proposal window properties are as discriminative as human annotated things. We use the SUN2012-14Scenes dataset with 50 images for training and 50 for testing, and we use the Indoor67 dataset with 67 indoor scene classes using the author suggested splits. As representation we rely on the things syntax with the Fisher vector, calculated using a 1,024 component GMMs. For learning we train one-vs-rest Support Vector Machine with the RBF kernel, and we evaluate with accuracy.

Results. When using as representation the things syntax of human annotations encoded with the Fisher vector, on SUN2012-14Scenes we achieve an accuracy of 57.6%. The Fisher vectors of things syntax from automatically generated things proposals with selective search come close with an accuracy of 54.0%, with PRIM proposals 52.1%, and 32.2% for objectness things. For comparison, On 14 classes the random recognition rate is 7.14%. The results show that the things syntax has a discriminative potential, and the discriminative potential of things proposals, especially the one from selective search, approximates the discriminative potential of human annotated things reasonably. Thus, we use things proposals from selective search in the rest of our experiments.

On Indoor67 the things syntax of selective search encoded with the Fisher Vector achieves an accuracy of 25.8%. The accuracy with GIST [3] is 29.6%, and when GIST is combined with the things syntax the accuracy reaches 38.9%. This shows that the things syntax is orthogonal to GIST, capturing new information. We also recognize the advances in deep learning and the power of the features of a Convolutional Neural Network (CNN) [52, 53]. For example, when using features from one layer before the last of GoogleNet [54], the accuracy on Indoor67 is 66.8%. When we combine these features with the things syntax, the result improves slightly to 68.5%. This shows that the things syntax also captures some new information not learned by the CNN. Overall, we show that the things syntax has some discriminative power. Yet, the main aim of the things syntax is not to improve the scene classification, the CNN features do a much better job at it. The aim and the added benefit is to generate an example-free abstract description
without the need for learning, where all the others, including deep learning, use examples to learn human understandable representations.

Overall, in this experiment we have shown that the things syntax holds discriminative information, that the information from proposed things comes close to human annotated things. We investigate the abstract descriptions from the things syntax in the next experiments.

5.2. Query by abstract statements

In this experiment we investigate the use of abstract statements to describe a scene, like “blue wide thing at top center, green medium tall thing at bottom left”, as described in Section 3.1, and their descriptive potential in a retrieval setting. We use statements from the SUN717-AbstractStatements and Indoor67-AbstractStatements datasets, and test on the images from SUNAttributes and Indoor67. We investigate three parameters of the abstract statements for scene retrieval, evaluate with mean average precision (MAP), and we summarize the results in Figure 9.

Influence of binning. First, we investigate the influence of the number of bins for horizontal position, vertical position, size and aspect ratio. Rather than restricting the binning to three annotations for objects, like \((\text{left, middle, right})\) or \((\text{top, center, bottom})\), we can easily add more bins to represent the statements, e.g. \((\text{most-left, left, center, right, most-right})\). The number of bins for color is always

Figure 9: Result of investigating abstract statements for retrieving scenes: (a) influence of the number of bins used to quantize the things syntax into histograms and statements, (b) descriptive influence per property on Indoor67, (c) influence of abstract statements quality by adding noise to object annotations on Indoor67.
fixed to 11, as defined in [46]. We test on images of all three levels from the SUNAttributes dataset and Indoor67. In Figure 9 (a), we show retrieval results with bin sizes varying from 3 to 11. We observe that on more general categories, like level one and two of SUNAttributes, using more bins/more precise descriptions of the things properties does not help, whereas, for fine-grained scenes it results in better retrieval MAP. For example on the SUNAttributes 717 scenes the mean average precision grows from 2.25% to 4.06%, and on Indoor67 from 5.24% to 7.04%. We conclude, when more precise statements are available for fine-grained scenes, the better the scene retrieval will be.

Influence per property. We investigate how well the thing properties perform independently. In this way, we generate a scene representation for each property, by having statements composed of one word only, as “left” things, or “tall” things, or “small” things. We create scene representations from AbstractStatements-67 and evaluate on Indoor67. The results are shown in Figure 9 (b). Ratio and color are the best performing properties. We assume this is because they are both scale invariant, whereas the other properties are not. For example, if things are captured closely or from far away, the aspect ratio and color will be consistent, whereas the position and size of things in the image will change.

Influence of statements quality. The abstract statements we generate in the AbstractStatements-67 and the SUN717-AbstractStatements datasets are by using human annotated things. To approximate a more realistic scenario where the abstract statements will be provided directly from users, we add noise to the bounding box things annotations. We generate the noise from a Gaussian distribution with mean 0, and standard deviations of [2, 4, 6, 8, 10, 15, 20] pixels, and we scale the images to a maximum dimension of 320px. We investigate adding noise on Indoor67-AbstractStatements and test on Indoor67. We add noise on each property separately, as well as on all properties together and present results in Figure 9 (c). As expected, adding noise has some effects the retrieval results. For example when adding noise on all thing properties together up to 10px, the MAP goes down from 5.24% to 4.90%, and for 20px noise it goes down to 4.64%. Interestingly adding noise up to 6px on the things width, the results even improve marginally. This happens when a mistake is made with the binning, the noise acts as a correction mechanism. Overall, we conclude that the quality of the object location can tolerate displacement without hurting the scene retrieval substantivally.

5.3. Query by block illustrations

In the third experiment we investigate to what extent we can retrieve an unseen scene using block illustrations of things. As a representation of block illustrations
and things syntax from test images we use Fisher vector encoding, as described in Section 3.2. We use Fisher vector representations per scene, created from block illustrations of SUN717-AbstractBlocks and Indoor67-AbstractBlocks datasets, to query scenes in test images from SUNAttributes and Indoor67. We investigate three parameters of the Fisher representation in a scene retrieval setting, we evaluate with mean average precision, and summarize the results in Figure 10.

Influence of GMM components. The Fisher vector encoding depends on the number of GMM prototypes, therefore, we investigate their influence. We compute the GMM prototypes on a holdout set of Indoor67. In Figure 10 (a) we show results on SUNAttributes, including all three levels, and Indoor67. As expected, since more prototypes capture a better variation of the windows properties, they result in richer Fisher vector representation and higher MAP. On the third level of SUNAttributes the MAP grows from 5.37% for 128 prototypes, to 14.75% for 4,069 prototypes. On Indoor67 similar improvement fashion of the MAP is followed, from 8.99% to 15.71%. The results grow slowly after 1,024 prototypes. Therefore we use 1,024 component GMMs in the rest of the experiments.

Influence per property. We investigate scene retrieval using query by block illustrations per property. To do so, we generate scene Fisher representations from only one window property at a time from the Indoor67-AbstractBlocks dataset and test on the Indoor67 dataset. We show the results in Figure 10 (b).
Table 2: Comparison of scene retrieval MAP results, using query by semantic representations and query by our abstract representations, statements and block illustrations. Surprisingly, by using abstract representations of simple things properties and no learning at all, we manage to retrieve scenes reasonably. The abstract representations in some cases show even better retrieval performance than the semantic representations, which require learning beforehand.

MAP results follow similar trend as in the scene retrieval setting with abstract statements, with ratio being most descriptive. Color shows a different behavior, having a lower MAP from size and ratio. We believe this is so, because in the histogram representations of statements we use exactly 11 bin values for color, thus being more precise, whereas the Fisher vector encodes the color with 1024 GMMs.

Influence of block illustrations quality. In the Indoor67-AbstractBlocks dataset, we generate the block illustrations from human annotated things. In order to approximate a more realistic drawing scenario, we add Gaussian noise to the human annotations and summarize the results in Figure 10 (c). If we add noise only to the position, or only to the width or height of the windows, the MAP is moderately affected up to a deviation of 8 pixels. If noise is added to all the window properties at once the MAP drops more rapidly. We conclude that abstract block drawings can be used to retrieve scenes when the boxes in the block illustrations deviate up to around 8 pixels from the true objects.

5.4. Abstract vs Semantic

In the last experiment we compare our abstract representations, query by statements and query by block illustrations, to four other representations involving semantic descriptions of object identities [4], object attributes [16], general classemes categories trained from Flickr [28] and 1000 ImageNet objects [2]. Each method has different number of semantic classes, object bank with 177, object attributes with 67, classemes with 2,659, and ImageNet with 1,000 semantic classes. For all methods we use the available software online, provided by the authors, to get se-
Figure 11: Confusion matrices on the Indoor67 dataset of our abstract representations and other semantic representations. In the confusion matrices of the abstract representations, the diagonal line can be clearly seen, depicting true positives for all scene classes. In the semantic representations most scenes get misclassified into few scenes that have an accidental overlap with a semantic class, which can be seen with the strong vertical red line responses in the confusion matrices. Overall, when there is no direct semantic information available aimed for the scope of the unseen classes, abstract descriptions of things syntax are a good alternative representation.
Figure 12: Top retrieved images for the best performing scene of six methods on Indoor67, and their average precision. Interestingly, since the abstract statements and block illustrations capture the properties of things layout, the best performing scene is corridor, which indeed has a specific things layout. The semantic methods use appearance features and their best performing scene depends on the performance of the semantic classes within. We conclude, the things syntax captures the scene things layout, and it can be used to retrieve scenes with abstract descriptions which require no learning at all.
On a test image we run the clasesmes software as provided by the authors, and get clasesmes scores. To calculate a ranking score of a test image for a scene, we use the DAP model as proposed by [29] between the clasesmes scene representation and the clasesmes scores of the test image. The same procedure we repeat for all semantic methods. We realize we use these methods in a different way than they were originally intended to be used. The reason we choose these works is because the semantic information they provide is not directly aimed to describe scenes, like the case of provided scene attributes in [29]. Our goal is to show that when semantic information is used, it is beneficial to correlate the semantics to the category of the test classes, like annotations of animal attributes for animal classes [55], or scene attributes for scene classes [29]. We believe that when no direct semantic information to the category of the test classes is available, abstract descriptions are a good alternative, since they generalize well to any unseen category. We show this on scene categories.

We present mean average precision results in Table 2. Since the object attributes [16] are intended for a different purpose, they do not generalize well to scenes. Object bank [4] is successful when one of its objects has an (accidental) relationship with the scene of interest. Unfortunately, most scenes have a low average precision as an overlap with the objects in the bank is missing. Classemes [28] detectors are trained from weakly supervised images, but their representation is more rich, having over 2K semantic classes, and results in better MAP in general. Similar to object bank, if the objects in the 1,000 ImageNet objects overlap with the scenes, it results in good average precision, else it fails. In a scenario where there is no semantic information for the intended category available, our abstract representation is more general, leading to reasonable accuracy values in almost all settings. This can be clearly seen in Figure 11, where we show confusion matrices on the Indoor67 dataset of our abstract representations and other semantic representations. When there is a good overlap of the scene class with the object, like for example closet which is an object class in ImageNet and a scene class in Indoor67, then there is a strong response as seen in the red lines in Figure 11. We show top retrieved images of the best performing scene for all methods on the Indoor67 dataset in Figure 12. Interestingly, since the abstract statements and block illustrations capture the properties of things layout, the best performing scene is corridor, which indeed has a specific things layout. The other methods use appearance features, and the best performing scene depends on the performance of their semantic classes. Overall we conclude that when there is no direct semantic information available for unseen classes in a scene retrieval setting, abstract descriptions of things syntax are a good alternative. An added
benefit of our work is that it does not require any labeled examples to build the representation. The abstract things syntax is directly generated from the image itself.

6. Conclusions

In this paper we open up further understanding of the rules composing the visual world around us, the potential to combine the objects layout information, and the recognition of scenes without the need to keep semantics like object types or attributes. We show that next to object types, there is another source of information defining what makes a scene. Object types are unknown in abstract paintings, architecture inspiration, microscopic and cosmic observation, while their “things” composition is well observable. Thus, to describe images of these compositions in an abstract manner is inevitable. We give preference to the composition of “things” as an indicator for the type of scene. We start from “things” as defined by modern object proposals, and investigate their immediately observable features: position, size, aspect ratio and color. We name the ensemble of things properties as things syntax, and we investigate its effectiveness to represent and retrieve a scene. From four experiments we conclude, (1) the distribution of thing-features from proposal methods approximates the distribution of thing-features from human annotated things closely. We investigate and analyze the discriminative potential and properties of the things syntax when translated into (2) abstract language statements and (3) abstract block illustrations for scene retrieval. In both cases we show that things aspect ratio is the most informative property, also that scenes can still be retrieved if their things deviate up to 8 pixels from the true objects, and by providing more precise abstract statements, i.e. more bins in the histogram representations, or by using more GMM prototypes in the Fisher vector representations of block illustrations, the retrieval results on fine-grained scenes improves. At last, (4) we compare the abstract things syntax representations with four other semantic representations which are not directly aimed for scenes. We show that when there is an accidental overlap of the semantic classes with the scene class, using semantics is beneficial. However, when there is no accidental overlap, the abstract descriptions of things syntax are a good alternative, and in some cases show even better retrieval performance than the semantic representations which require learning beforehand. Overall and surprisingly, we show that even though we use the simplest of features from things layout, we can still retrieve scenes reasonably well, and with an additional benefit that we do not require any learning examples.
Acknowledgements

This research is supported by the STW STORY project and the Dutch national program COMMIT.

References

[1] M. Everingham, S. M. A. Eslami, L. Van Gool, C. K. I. Williams, J. Winn, A. Zisserman, The Pascal Visual Object Classes Challenge: A Retrospective, IJCV 111 (1) (2015) 98–136.

[2] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, L. Fei-Fei, ImageNet Large Scale Visual Recognition Challenge, IJCV (2015) 1–42.

[3] A. Oliva, A. Torralba, Modeling the Shape of the Scene: A Holistic Representation of the Spatial Envelope, IJCV 42 (3) (2001) 145–175.

[4] L.-J. Li, H. Su, Y. Lim, L. Fei-Fei, Object Bank: An Object-Level Image Representation for High-Level Visual Recognition, IJCV 107 (1) (2014) 20–39.

[5] P. G. Schyns, A. Oliva, From blobs to boundary edges: Evidence for time- and spatial-scale-dependent scene recognition, Psychological Science 5 (4) (1994) 195–200.

[6] I. Biederman, R. J. Mezzanotte, J. C. Rabinowitz, Scene perception: detecting and judging objects undergoing relational violations., Cognitive psychology 14 (2) (1982) 143–177.

[7] M. R. Greene, Statistics of High-level Scene Context, Frontiers in Psychology 4 (777) (2013) 777–777.

[8] V. Delaitre, D. Fouhey, I. Laptev, J. Sivic, A. Gupta, A. Efros, Scene semantics from long-term observation of people, in: ECCV, 2012.

[9] A. Torralba, A. Oliva, Depth Estimation from Image Structure, PAMI 24 (9) (2002) 1226–1238.

[10] I. Biederman, On the semantics of a glance at a scene, Perceptual Organization (8) (1981) 213–263.
[11] B. Alexe, T. Deselaers, V. Ferrari, Measuring the Objectness of Image Windows, PAMI 34 (11) (2012) 2189–2202.

[12] S. Manen, M. Guillaumin, L. Van Gool, Prime Object Proposals with Randomized Prims Algorithm, in: ICCV, 2013.

[13] J. Uijlings, K. van de Sande, T. Gevers, A. Smeulders, Selective Search for Object Recognition, IJCV 104 (2) (2013) 154–171.

[14] D. A. Forsyth, J. Malik, M. M. Fleck, H. Greenspan, T. Leung, S. Belongie, C. Carson, C. Bregler, Finding Pictures of Objects in Large Collections of Images, Tech. Rep., University of California, Berkeley, 1996.

[15] G. Heitz, D. Koller, Learning Spatial Context: Using Stuff to Find Things, in: ECCV, 2008.

[16] A. Farhadi, I. Endres, D. Hoiem, D. Forsyth, Describing objects by their attributes, in: CVPR, 2009.

[17] G. Kulkarni, V. Premraj, S. Dhar, S. Li, Y. Choi, A. C. Berg, T. L. Berg, Baby talk: Understanding and generating image descriptions, in: CVPR, 2011.

[18] G. Patterson, J. Hays, SUN Attribute Database: Discovering, Annotating, and Recognizing Scene Attributes, in: CVPR, 2012.

[19] C. L. Zitnick, R. Vedantam, D. Parikh, Adopting Abstract Images for Semantic Scene Understanding, PAMI PP (2014) 1.

[20] P. Mondriaan, Neo-Plasticism in Painting, in: De Stijl, 1917.

[21] J. Wu, J. M. Rehg, CENTRIST: A Visual Descriptor for Scene Categorization, PAMI 33 (8) (2011) 1489–1501.

[22] J. Sánchez, F. Perronnin, T. Mensink, J. J. Verbeek, Image Classification with the Fisher Vector: Theory and Practice, IJCV 105 (3) (2013) 222–245.

[23] Y. Gong, L. Wang, R. Guo, S. Lazebnik, Multi-Scale Orderless Pooling of Deep Convolutional Activation Features, in: ECCV, 2014.

[24] C. Gu, J. Lim, P. Arbeláez, J. Malik, Recognition using regions, in: CVPR, 2009.
[25] S. Gould, R. Fulton, D. Koller, Decomposing a scene into geometric and semantically consistent regions, in: CVPR, 2009.

[26] C. Doersch, A. Gupta, A. A. Efros, Mid-Level Visual Element Discovery as Discriminative Mode Seeking, in: NIPS, 2013.

[27] M. Juneja, A. Vedaldi, C. Jawahar, A. Zisserman, Blocks that Shout: Distinctive Parts for Scene Classification, in: CVPR, 2013.

[28] A. Bergamo, L. Torresani, Classes and Other Classifier-Based Features for Efficient Object Categorization, PAMI 36 (10) (2014) 1988–2001.

[29] C. H. Lampert, H. Nickisch, S. Harmeling, Attribute-Based Classification for Zero-Shot Visual Object Categorization, PAMI 36 (3) (2014) 453–465.

[30] B. Alexe, T. Deselaers, V. Ferrari, What is an object?, in: CVPR, 2010.

[31] I. Endres, D. Hoiem, Category independent object proposals, in: ECCV, 2010.

[32] E. Rahtu, J. Kannala, M. Blaschko, Learning a category independent object detection cascade, in: ICCV, 2011.

[33] P. Krähenbühl, V. Koltun, Geodesic Object Proposals, in: ECCV, 2014.

[34] C. L. Zitnick, P. Dollár, Edge Boxes: Locating Object Proposals from Edges, in: ECCV, 2014.

[35] J.-M. Geusebroek, A. W. M. Smeulders, A Six-Stimulus Theory for Stochastic Texture, IJCV 62 (1-2) (2005) 7–16.

[36] A. Farhadi, M. Hejrati, M. A. Sadeghi, P. Young, C. Rashtchian, J. Hockenmaier, D. Forsyth, Every Picture Tells a Story: Generating Sentences from Images, in: ECCV, 2010.

[37] D. Parikh, K. Grauman, Relative attributes, in: ICCV, 2011.

[38] V. Ordonez, G. Kulkarni, T. L. Berg, Im2Text: Describing Images Using 1 Million Captioned Photographs, in: NIPS, 2011.

[39] T. L. Berg, A. C. Berg, J. Shih, Automatic Attribute Discovery and Characterization from Noisy Web Data, in: ECCV, 2010.
[40] Y. Yang, C. L. Teo, H. Daumé, III, Y. Aloimonos, Corpus-guided Sentence Generation of Natural Images, in: EMNLP, 2011.

[41] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár, C. Zitnick, Microsoft COCO: Common Objects in Context, in: ECCV, vol. 8693, 2014.

[42] C. Rashtchian, P. Young, M. Hodosh, J. Hockenmaier, Collecting Image Annotations Using Amazon’s Mechanical Turk, in: CSLDAMT, 2010.

[43] M. Jain, J. C. van Gemert, T. Mensink, C. G. M. Snoek, Objects2action: Classifying and localizing actions without any video example, in: ICCV, 2015.

[44] S. Antol, C. L. Zitnick, D. Parikh, Zero-Shot Learning via Visual Abstraction, in: ECCV, 2014.

[45] S. Butler, J. Gross, H. Hayne, The effect of drawing on memory performance in young children, Developmental Psychology (4) (1995) 597–608.

[46] J. van de Weijer, C. Schmid, J. Verbeek, D. Larlus, Learning Color Names for Real-World Applications, TIP 18 (7) (2009) 1512–1523.

[47] J. Xiao, J. Hays, K. A. Ehinger, A. Oliva, A. Torralba, Sun database: Large-scale scene recognition from abbey to zoo, in: CVPR, 2010.

[48] A. Quattoni, A. Torralba, Recognizing indoor scenes, in: CVPR, 2009.

[49] B. C. Russell, A. Torralba, K. P. M., W. T. Freeman, LabelMe: A Database and Web-Based Tool for Image Annotation, IJCV 77 (1-3) (2008) 157–173.

[50] P. Dollár, C. L. Zitnick, Fast Edge Detection using Structured Forests, PAMI 37 (8) (2015) 1558–1570.

[51] S. Ren, K. He, R. B. Girshick, J. Sun, Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks, in: CoRR, 2015.

[52] A. Krizhevsky, I. Sutskever, G. E. Hinton, ImageNet Classification with Deep Convolutional Neural Networks, in: NIPS, 2012.

[53] M. D. Zeiler, R. Fergus, Visualizing and Understanding Convolutional Networks, in: ECCV, 2014.

30
[54] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, A. Rabinovich, Going Deeper with Convolutions, in: CVPR, 2015.

[55] C. H. Lampert, H. Nickisch, S. Harmeling, Learning to detect unseen object classes by between class attribute transfer, in: CVPR, 2009.