Analysis of beef meatballs with rat meat adulteration using Fourier Transform Infrared (FTIR) spectroscopy in combination with chemometrics

Dwi Lestari, Abdul Rohman, Syofyan Syofyan, Nancy Dewi Yuliana, Nor Kartini Bt. Abu Bakar, and Dachriyanus Hamidi

*Faculty of Pharmacy, Universitas Andalas, Padang, Indonesia; †Faculty of Pharmacy, Universitas Muhammadiyah Kalimantan Timur, Samarinda, Indonesia; ‡Center of Excellence, Institute for Halal Industry and Systems, Universitas Gadjah Mada, Yogyakarta, Indonesia; §Department of Food Science and Technology, IPB University, Bogor, Indonesia; ¶Department of Chemistry, Faculty of Science, Universiti Malaya, Malaysia

ABSTRACT

Indonesia is a country with a majority Muslim population, and the halal food consumed should be assured. One type of food that must be considered halal is food from meat products. Due to the price difference between halal meat and non-halal meat, some unethical producers try to adulterate beef with non-halal meat of rat meat. The research objective was to employ FTIR spectroscopy in combination with chemometrics for the analysis of rat meat adulteration in beef meatballs. Lipid components in meatballs containing beef, rat meat, or its binary mixture were extracted using three extraction methods, namely Bligh and Dyer, Folch, and Soxhlet methods. The lipid components extracted were then analyzed using FTIR spectroscopy and FTIR spectra obtained were used as variables during chemometrics modeling. The absorbance values of FTIR spectra of lipid components extracted by Bligh and Dyer, Folch, and Soxhlet methods at selected wavenumbers regions of 3100–800 cm⁻¹ were selected for discrimination between beef meatballs and meatballs adulterated with rat meat using chemometrics of linear discriminant analysis (LDA). LDA was successfully used to classify lipid components extracted by three lipid extraction methods from beef meatballs and rat meatballs with accuracy levels of 100%. The prediction of rat meatballs was successfully determined using multivariate calibrations of Partial Least Square (PLS) and Principle Component Regression (PCR) using optimized conditions. The difference in lipid composition, as indicated in FTIR spectra profiles of the analyzed samples, is used as a fingerprint technique for the analysis of rat meat in beef meatballs for halal authentication purposes.

INTRODUCTION

Currently, Indonesia is the largest Muslim community globally, and along with the increased awareness of Indonesian Muslim to consume only safe and halal foods, the halal authenticity of food products in Indonesia is mandatory according to Indonesia Act No. 33, the year 2014 Halal Products Assurance.¹,² One of the favorite meat-based foods of the Indonesian Muslim community is meatballs typically made of chicken, beef, or fish. As protein sources needed for human growth, meatballs must be subjected to Halal certification because the main component used in preparing meatballs is meat, which could come from halal meat sources or non-halal ones. Due to price discrepancy between halal and non-halal meats, some producers try to substitute or blend halal meat with non-halal meat. This study was aimed to analyze beef meatballs with rat meat adulteration using FTIR spectroscopy in combination with chemometrics.

CONTACT

Dachriyanus Hamidi dachriyanus@phar.unand.ac.id Faculty of Pharmacy, Universitas Andalas, Padang, 25175, Indonesia

© 2022 Dwi Lestari, Abdul Rohman, Syofyan Syofyan, Dachriyanus Hamidi, Nancy Dewi Yuliana and Nor Kartini Bt. Abu Bakar. Published with license by Taylor & Francis Group, LLC. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
such as beef with non-halal meats such as pork, canine meat, or rat meat.3,4 Rat meat (RM) is potential meat to be used as a meat adulterant in beef meatballs because RM can be obtained free from local farmers; therefore, the identification of RM in meatballs is must for halal authentication analysis of beef meatballs.5

Several analytical methods have been proposed, developed, and validated for the authentication of meatball products based on meat components, such as polymerase chain reaction (PCR), Real-time PCR using specific,6 and other techniques including multiplex PCR has been applied successfully for the analysis of rat’s DNA with specific and accurate results,6,7 gas chromatography equipped by flame ionization detector8,9 and mass spectrometer10 are a useful technique for RM identification through fatty acid compositional analysis, while protein-based methods using enzyme-linked immunosorbent assay (ELISA) offered RM detection utilizing the specific reaction of an antigen with an antibody.11 However, these methods typically involve extensive sample preparation steps and need some expensive reagents; therefore, rapid, simple, and reliable methods based on molecular spectroscopic methods are currently evolving as emerging analytical techniques for meat authentication.12

Vibrational spectroscopy based on the interaction of electromagnetic radiation and analyte(s) including Fourier transform infrared (FTIR) spectroscopy has emerged as a powerful instrumental technique applied in food analysis because of its property as fingerprinting.13 Combined with multivariate data analysis or chemometrics FTIR spectra have been successfully applied for analysis of meatball adulterations by analyzing lipid components using Soxhlet, Folch, and Bligh & Dyer methods.14 The combination of FTIR spectra-chemometrics is reported to authenticate beef meatballs from pork,15 wild boar meat,16 dog meat,14 and rat meat.17 However, the performance of FTIR and chemometrics for the analysis of rat meat adulteration in beef meatballs using different extraction techniques has not been reported yet. Therefore, the objective of this study was to optimize FTIR spectroscopy and chemometrics of classification and multivariate calibrations for authentication analysis of beef meatball from rat meat through analysis of lipid components extracted from different extraction techniques.

\textbf{Materials and methods}

\textbf{Materials}

Rat meat (Rattus norvegicus) was obtained from Godean, Sleman, Yogyakarta. Beef meat, spices, and other meatball additives were obtained from Colombo Market, Kaliurang, Yogyakarta, Indonesia. The entire samples were stored at \(-18^\circ\text{C}\) before being used to make reference meatballs. The reagents and solvents used were of pro-analytical grade.

\textbf{Preparation meatballs}

Preparation of reference meatballs of beef, rat meat, and the mixture of beef-rat meat.15 The prepared meatballs consisted of 90% meat and 10% additional ingredients (starch, garlic, salt, pepper, and sugar). The content of rat meat in beef meatballs was varied in 0%, 10%, 20%, 30%, 40%, 50%, 75%, and 100%. Meatballs are made by emulsifying 90% meat and 10% additional ingredients into the mixture. The meat dough is formed into balls and cooked for 10–20 minutes in boiling water (100°C).

\textbf{Preparation calibration and validation samples}

Calibration and validation standards were prepared by mixing rat meat into beef meatballs at concentrations of 0%, 10%, 20%, 30%, 40%, 50%, 75%, and 100% to observe the difference in lipid spectra. The fat from the meatballs (0–100%) was extracted in triplicate using three different lipid extraction methods, namely the Bligh and Dyer, Folch, and Soxhlet methods.
Acid hydrolysis
To improve extraction efficiency, acid hydrolysis could be used to release the bound lipids attached to protein and carbohydrates.[18] Twenty grams of reference meatball was hydrolyzed using 200 mL of 1 N Hydrochloric Acid and heated for 15–25 minutes in a water bath (60–65°C), and then the sample was filtered.[19]

Extraction of lipid components using Bligh Dyer
Extraction of lipid using Bligh and Dyer was carried out according to[8,20,21] with slight modification. The acid hydrolyzed samples were then put into two centrifuge tubes, each of the tubes contained approximately 10.0 g of sample. 30 mL of dichloromethane-methanol (1:2 v/v) was added to each tube. The mixture was vortexed for 15 min, centrifuged (10 min, 3000 rpm), and filtered by Whatman filter paper. The filtrate from each tube was collected together in a separating funnel. The residue that remained in the tube was added with 10 mL dichloromethane, vortexed for 15 min, centrifuged (10 min, 3000 rpm), and filtered by Whatman filter paper. The filtrate was collected with the previous filtrate. The filtrate was mixed with 20 mL of distilled water and shaken vigorously. The mixture was allowed to stand until the biphasic system appeared. The upper aqueous phase was discarded. The lower phase (dichloromethane) was separated through anhydrous sodium sulfate. The dichloromethane was evaporated using a vacuum rotary evaporator at 40°C. The lipid extract was then transferred into the vial and evaporated at 40°C using an oven until the solvent was completely removed.

Extraction of lipid components using Folch
Extraction of lipid components using Folch was carried out according to[8,21,22] with slight modification. Samples of meatballs as much as 20.0 g, which had been acid hydrolyzed, were mixed with 400 mL of dichloromethane-methanol (2:1 v/v). The mixture was homogenized in a Turrax homogenizer (10 min, 13,500 rpm) and filtered by Whatman filter paper. The filtrate was placed in a separating funnel, mixed with 20 mL of distilled water, and shaken vigorously. The mixture was allowed to stand until the biphasic system was formed. The upper (aqueous) phase was discarded. Anhydrous sodium sulfate was added into the lower phase (dichloromethane), mixed, and filtered by Whatman filter paper. The dichloromethane was evaporated by a rotary evaporator under a vacuum at 40°C. A thick lipid extract was then transferred into the vial and evaporated at 40°C using an oven until the solvent was completely removed.

Extraction using Soxhlet
Samples of meatballs that had been acid hydrolyzed as much as 50.0 g were wrapped with filter paper and placed into the Soxhlet apparatus. 438 mL of petroleum ether was used as extracting solvent. The extraction was performed for 8 h at 100°C (±50 cycles). The lipid extract was added with anhydrous sodium sulfate, mixed, filtered by Whatman filter paper, and then evaporated by vacuum rotary evaporator at 40°C. The lipid extract was then transferred into the vial and evaporated at 40°C using an oven until the solvent was completely removed.[8]

FTIR spectral measurement
Fourier Transform Infrared Spectroscopy (FTIR Nicolet iS20) using detector DTGS (deuterated triglycerine sulfate) was connected to software OMNIC. The samples were directly placed into multibounce attenuated total reflectance (ATR) crystal and scanned using resolution of 8 cm-1 and number of scanning 32. All spectra were measured at mid infrared region (4000–650 cm-1) using air as background. All spectra were recorded as absorbance mode for facilitating quantitative analysis according to Lambert-Beer law. The data obtained were managed using the software of TQ Analyst.
Linear Discriminant Analysis (LDA)

Linear Discriminant Analysis is used to discriminate between adulterated beef and rat meat. The sample consisted of beef mixed with rat meat at different concentrations covering 10–75%. The Coomans plot is built to discriminate between beef and rat meat.

Chemometrics analysis

FTIR spectra of the lipid obtained from three different techniques were subjected to chemometrics of LDA and multivariate calibrations (PLS and PCR). Based on series FTIR spectra, LDA is used to find mathematical models capable of detecting the membership of each object to its proper class. After obtaining a classification model, it is possible to predict if unknown items belong to one of the defined classes. The precision of PLS and PCR calibration model for quantification of rat meat in meatball was evaluated using coefficient of determination, while the precision during calibration and validation models were evaluated using root mean square error of calibration (RMSEC) and root mean square error of prediction (RMSEP).

Results and discussion

Extraction of lipid components in meatballs containing beef and rat meat using different methods revealed that Soxhlet extraction provide better results than using the Bligh Dyer method or the Folch method because Soxhlet extraction was more straightforward, and the yield of lipid components obtained by Soxhlet was also higher than those in Bligh Dyer and Folch methods\(^{[21,23]}\). In addition, the yield of lipid components extracted by the Folch method is higher than the Bligh dyer method because the ratio of solvent to sample in Folch is higher than that in Bligh dyer. The color of the lipid components obtained using the Bligh Dyer and Folch method is dark brown, while the Soxhlet method is yellowish-white.\(^{[8]}\)

The IR spectroscopy technique is a fast method in identifying samples, providing important information, and establishing certain absorption bands associated with functional groups.\(^{[24]}\) Fats and oils are chemically triglycerides that can be analyzed using FTIR spectroscopy, and IR spectroscopy is an ideal technique for the analysis of edible fats and oils because they could be applied directly in a neat shape to ATR crystals or passed through a flow cell.\(^{[15]}\) FTIR spectroscopy is a powerful analytical method for authentication analysis of fats and oils due to its nature as a fingerprint technique.\(^{[5]}\)

This study uses reference meatballs because for the development of predictive models using FTIR; therefore, it can be used to categorize beef meatballs and rat meatballs or a mixture of beef and rat meatballs. Lipids obtained from the extraction of meatballs containing beef and rat meat were analyzed using FTIR spectroscopy in the middle infrared region (4000–650 cm\(^{-1}\)) combined with chemometrics of multivariate calibration and supervised pattern recognition of linear discriminant analysis (LDA) to discriminate between adulterated beef and rat meat.

The representative spectra of lipid obtained from the extraction of beef and rat meatballs using the Bligh and Dyer, Folch, and Soxhlet methods are demonstrated in Figure 1. the spectra physically similar when an observation using the naked eyes and show the general characteristics of the absorption bands for triglycerides in which the main component is composed of these fats are triglycerides.\(^{[15]}\) The fingerprint technique means that there are no two compounds or samples having the same spectra in terms of amount and intensity of peaks, FTIR spectroscopy could be used to extract a difference among these fats. Table 1 contains the assignment of prominent peaks. The peak at about 3002–3009 cm\(^{-1}\) is due to the C-H strain vibration at = C-H cis. The – CH\(_2\) functional group peaks at 2920–2921 cm\(^{-1}\) and 2852 cm\(^{-1}\), respectively, due to asymmetric and symmetrical vibrations. A peak indicates the carbonyl group (C = O) of the triglyceride ester at 1743 cm\(^{-1}\). Methylene and methyl groups can also be observed in the 1462 cm\(^{-1}\) and 1375–1377 cm\(^{-1}\) regions due to their bending vibrations. The absorption of carbonyl (C = O) ester bonds was observed at a frequency of 1743 cm\(^{-1}\) with strong intensity
due to the large difference in electronegativity of carbon and hydrogen atoms. The bands at 1235, 1158, 1117, 1097, and 721 cm\(^{-1}\) result from overlapping methylene shake vibrations and out-of-plane bending vibrations of cis substituted olefins.

In this study, LDA is used to predict the class membership of unknown samples (beef meatball, rat meatball, and beef-rat meatball mixture) using FTIR spectra measurements at specific wavenumber regions as variables.\[^{12}\] **Figure 2** clearly shows that both groups are separated, without classification objects observed. The absorbance values at wavenumbers regions of 3100–800 cm\(^{-1}\) were used to discriminate lipid components extracted by Folch, Bligh Dyer Method, and Soxhlet Method. These absorbances were then converted to Mahalanobis distance and used as variables for grouping beef meatball, rat meatball, and mixture beef-rat meatball to form the Cooman’s plot. This indicated that

Table 1. The functional groups and modes of vibration of lipids extracted from 100% rat meatball and 100% beef meatball\[^{26–32}\]

Assignment	Wavenumber (cm\(^{-1}\))	Functional Group	Intensity
a	3002–3009	Cis C = CH stretching	Medium
b	2920–2922	C-HCH stretching vibration	Very strong
c	2852	C-HCH stretching vibration	Very strong
d	1743	Carbonyl C = O ester	Very strong
e	1462	C-HCH stretching vibration	Medium
f	1375–1377	C-CH\(_3\) scissoring bending	Medium
g	1196–1235	C-C Alkane	Medium
h	1158–1172	C-H in plane	Medium
i	1097–1117	C-O from ester	Medium
j	965–969	CH = CH (trans)	Medium
k	719–721	C-H = CH\(_{-}\) bending (out of plane)	Medium
LDA successfully distinguished between beef meatball and beef-rat meatball mixture. Misclassification occur due to close chemical composition similarities between groups or the incorrect selection of wavenumbers.
Two multivariate calibrations of PLS and PCR were used to facilitate the quantitative analysis of meat adulterants. PLS and PCR are the most common multivariate used in chemometrics. In this study, both PLS and PCR models were used to generate calibration. The factors used in the PLS model were automatically selected by the TQ software when method calibrated. Both models represented higher R2 values (close to 1), in comparison PLS model showed superiority over PCR model in terms of lower RMSEC and RMSEP. The statistical parameters used for accuracy evaluation were coefficient of determination (R2) between actual values, and FTIR predicted values. For precision evaluation, RMSEC and RMSEP were used. Tables 2, 3, and 4 showed the summary results of PLS and PCR during the analysis of lipid components extracted from beef–rat meatballs using three different lipid extraction method statistics parameters used as criteria were coefficient of determination (R2) between actual values and FTIR predicted values for accuracy evaluation and RMSEC and RMSEP for evaluation of precision. The selection of FTIR spectral condition was based on its capability to provide high and low values of RMSEC and RMSEP. The FTIR spectral condition was optimized during PLS and PCR modeling to provide high R2 values and low RMSEC and RMSEP values. Linearity was indicated by the

Wavenumber (cm⁻¹)	Multivariate calibration	Spectra	Calibration	Prediction		
			RMSEC	R²	RMSEP	R²
1500–1000	PLS	Normal	0.0835	0.9572	0.0815	0.9594
		1st Derivative	0.0589	0.9790	0.0537	0.9826
		2nd Derivative	**0.0202**	**0.9975**	**0.0514**	**0.9937**
	PCR	Normal	0.0766	0.9641	0.0788	0.9621
		1st Derivative	0.0479	0.9862	0.0437	0.9887
		2nd Derivative	0.0616	0.9770	0.0657	0.9783
1400–800	PLS	Normal	0.0786	0.9623	0.0793	0.9615
		1st Derivative	0.0649	0.9744	0.0814	0.9603
		2nd Derivative	0.241	0.5493	0.256	0.4751
	PCR	Normal	0.0618	0.9768	0.0660	0.9737
		1st Derivative	0.0590	0.9789	0.0625	0.9765
		2nd Derivative	0.0360	0.9922	0.172	0.8471
1800–1000	PLS	Normal	0.0847	0.9560	0.0837	0.9572
		1st Derivative	0.107	0.9293	0.105	0.9324
		2nd Derivative	0.214	0.6707	0.218	0.6580
	PCR	Normal	0.0810	0.9599	0.0790	0.9620
		1st Derivative	0.0518	0.9838	0.0523	0.9835
		2nd Derivative	0.0384	0.9911	0.0498	0.9832
2800–1800	PLS	Normal	0.0208	0.9974	0.0494	0.9866
		1st Derivative	0.00256	1.0000	0.150	0.8953
		2nd Derivative	0.00143	1.0000	0.165	0.8823
	PCR	Normal	0.0159	0.9985	0.0462	0.9891
		1st Derivative	0.0205	0.9975	0.153	0.8994
		2nd Derivative	0.0201	0.9976	0.168	0.8643
3700–3200	PLS	Normal	0.0775	0.9634	0.0793	0.9616
		1st Derivative	0.0564	0.9807	0.0558	0.9814
		2nd Derivative	0.107	0.9293	0.132	0.9046
	PCR	Normal	0.0791	0.9618	0.0812	0.9597
		1st Derivative	0.0490	0.9855	0.0500	0.9852
		2nd Derivative	0.0370	0.9917	0.0815	0.9881
3700–3200 dan 1500–1000	PLS	Normal	0.0658	0.9737	0.145	0.9124
		1st Derivative	0.0819	0.9590	0.174	0.8496
		2nd Derivative	0.0922	0.9477	0.181	0.8341

* The selection condition was assigned with bold.
Table 3. The optimization wavenumbers region of multivariate calibration for beef meatballs, rat meatballs, and mixed beef-rat meatballs using lipid extraction Folch Method.

Wavenumber (cm\(^{-1}\))	Multivariate calibration	Spectra	Calibration	Prediction		
		RMSEC	R\(^2\)	RMSEP	R\(^2\)	
1500–1000	PLS	Normal	0.159	0.8635	0.164	0.8554
	1\(^{st}\) Derivative	0.000404	1.000	0.0137	0.9994	
	2\(^{nd}\) Derivative	0.00309	0.9952	0.0317	0.9950	
	PCR	Normal	0.140	0.8956	0.143	0.8911
	1\(^{st}\) Derivative	0.0315	0.9950	0.0307	0.9956	
	2\(^{nd}\) Derivative	0.0591	0.9822	0.0603	0.9817	
1400–800	PLS	Normal	0.296	0.3407	0.296	0.3406
	1\(^{st}\) Derivative	0.00188	1.000	0.0100	0.9997	
	2\(^{nd}\) Derivative					
1800–1000	PLS	Normal	0.292	0.3746	0.292	0.3743
	1\(^{st}\) Derivative	0.0122	0.9992	0.0298	0.9955	
	2\(^{nd}\) Derivative	0.128	0.9136	0.144	0.8903	
	PCR	Normal	0.112	0.9343	0.113	0.9340
	1\(^{st}\) Derivative	0.0391	0.9923	0.0512	0.9868	
	2\(^{nd}\) Derivative	0.0600	0.9816	0.0672	0.9773	
2800–1800	PLS	Normal	0.310	0.1682	0.310	0.1730
	1\(^{st}\) Derivative	0.0888	0.9594	0.164	0.9475	
	2\(^{nd}\) Derivative	0.0413	0.9914	0.153	0.9603	
	PCR	Normal	0.0712	0.9741	0.0925	0.9639
	1\(^{st}\) Derivative	0.119	0.9238	0.179	0.9006	
	2\(^{nd}\) Derivative	0.748	0.8821	0.219	0.7760	
3700–3200	PLS	Normal	0.0576	0.9831	0.0747	0.9738
	1\(^{st}\) Derivative	0.00521	0.9999	0.115	0.9569	
	2\(^{nd}\) Derivative	0.113	0.9339	0.155	0.8940	
	PCR	Normal	0.0693	0.9755	0.0825	0.9682
	1\(^{st}\) Derivative	0.189	0.7994	0.220	0.7236	
	2\(^{nd}\) Derivative	0.169	0.8443	0.226	0.7389	

* The selection condition was assigned with bold.

The value of R\(^2\) getting closer to 1.\(^{[1]}\) RMSEP value is used to determine the errors occurring in the calibration model. The smaller the RMSEC value, the smaller the error from the calibration process.\(^{[27]}\)

Based on the optimization, PLS in Bligh Dyer method using the 2\(^{nd}\) derivative spectrum in the wavenumber region 1500–1000 cm\(^{-1}\) provide the best model, with an R\(^2\) calibration value of 0.9975, RMSEC value of 0.0202, R\(^2\) validation value of 0.9937, and RMSEP value of 0.0514. PLS in Folch method using the 1\(^{st}\) derivative spectrum in the wavenumber region 1400–800 cm\(^{-1}\) was also preferred for quantifying rat meat in meatballs with an R\(^2\) calibration value of 0.99999, RMSEC value of 0.00188, R\(^2\) validation value of 0.9997, and RMSEP value of 0.0100. The lipid components extracted from meatballs using Soxhlet were also quantified using PLS applying normal spectrum in the wavenumber region of 1500–1000 cm\(^{-1}\) with R\(^2\) calibration value of 0.9985, RMSEC value of 0.0172, R\(^2\) validation value of 0.9972, and RMSEP value of 0.0284. Figure 3 reveals the correlation between the actual value of lipid components of meatballs extracted by Bligh Dyer Method [A], Folch Method [B], and Soxhlet Method [C] with FTIR predicted values facilitated by PLS. Based on high values of R2 and low values of RMSEC and RMSEP. These results suggested that FTIR spectroscopy in combination with LDA and PLSR is an effective means for authentication of beef meat from rat meatballs. A close relationship between actual values (x-axis) and FTIR predicted values (y-axis) existed in Figure 3 means that the PLSR method is adequate to detect and predict the level of rat meat.
Table 4. The optimization wavenumbers region of multivariate calibration for beef meatballs, rat meatballs, and mixed beef-rat meatballs using lipid extraction Soxhlet Method.

Wavenumber (cm⁻¹)	Multivariate calibration	Spectra	Calibration			
------------------	--------------------------	---------	-------------			
			RMSEC	R²	RMSEP	R²
1500–1000	PLS	Normal	0.0172	0.9985	0.0284	0.9972
		1st Derivative	0.0863	0.9617	0.0861	0.9621
		2nd Derivative	0.0812	0.9661	0.0793	0.9682
		Normal	0.0355	0.9936	0.0418	0.9922
		1st Derivative	0.0572	0.9833	0.0592	0.9838
		2nd Derivative	0.0569	0.9835	0.0523	0.9886
1400–800	PLS	Normal	0.0434	0.9905	0.0476	0.9894
		1st Derivative	0.0804	0.9668	0.0778	0.9692
		2nd Derivative	0.0778	0.9690	0.0792	0.9683
		Normal	0.0389	0.9923	0.0403	0.9924
		1st Derivative	0.0560	0.9840	0.0555	0.9849
		2nd Derivative	0.0583	0.9827	0.0584	0.9839
1800–1000	PLS	Normal	0.0543	0.9850	0.0565	0.9841
		1st Derivative	0.0786	0.9683	0.0787	0.9683
		2nd Derivative	0.0905	0.9577	0.0885	0.9598
		Normal	0.0263	0.9965	0.0444	0.9919
		1st Derivative	0.0449	0.9898	0.0466	0.9890
		2nd Derivative	0.0430	0.9906	0.0443	0.9900
2800–1800	PLS	Normal	0.0996	0.9486	0.102	0.9499
		1st Derivative	0.00336	0.9999	0.151	0.8967
		2nd Derivative	0.00677	1.000	0.153	0.9084
		Normal	0.0536	0.9854	0.732	0.9791
		1st Derivative	0.215	0.7317	0.240	0.6675
		2nd Derivative	0.169	0.8435	0.226	0.7410
3700–3200	PLS	Normal	0.157	0.8673	0.171	0.8442
		1st Derivative	0.186	0.8070	0.218	0.7291
		2nd Derivative	0.0153	0.9988	0.139	0.9319
		Normal	0.0484	0.9881	0.0459	0.9908
		1st Derivative	0.207	0.7545	0.204	0.8187
		2nd Derivative	0.0939	0.9544	0.171	0.8968

* The selection condition was assigned with bold.

in beef meatball samples so FTIR spectroscopy in combination with multivariate calibrations is an accurate and precise method for simultaneous quantitative analysis of beef and rat meat in meatball formulation.

Conclusion

FTIR spectroscopy is a powerful analytical method for authentication analysis of fats due to its nature as a fingerprint technique. The FTIR spectral condition was optimized during PLS and PCR modeling to provide high R² values and low RMSEC and RMSEP values. Linearity was indicated by the value of R² getting closer to 1. The data obtained were managed using the software of TQ Analyst. FTIR spectra in combination with chemometrics of Linear Discriminant Analysis (LDA) have been successfully applied for the reliable classification of beef meat ball, rat meatball, and beef-rat meatball mixture. Multivariate calibrations of PLS and PCR offered a fast and dependable method for authenticating beef meatballs from rat meat, applying FTIR spectral absorbances as a variable with acceptable accuracy and precision. FTIR spectroscopy and chemometrics is a reliable technique for screening the presence of non-halal meat intended for halal authentication analysis.
Figure 3. The correlation between the actual value of lipid components of meatballs extracted by Bligh Dyer Method [A], Folch Method [B], and Soxhlet Method [C] with FTIR predicted values facilitated by Partial Least Square calibrations (PLS).

Acknowledgments

The authors would like to thank the Indonesian Collaborative Research for funding this study through Research Grant no T/49/UN.16.17/PT.01.03/KO-RKI-C (Mitra)/2022
Disclosure statement

No potential conflict of interest was reported by the authors.

ORCID

Dwi Lestari http://orcid.org/0000-0001-8355-8947
Abdul Rohman http://orcid.org/0000-0002-1141-7093
Syofyan Syofyan http://orcid.org/0000-0002-9803-1870
Nancy Dewi Yuliana http://orcid.org/0000-0003-0249-3753
Nor Kartini B. Abu Bakar http://orcid.org/0000-0002-4380-6704
Dachriyanus Hamidi http://orcid.org/0000-0002-1857-9001

References

[1] Mursyidi, A. The Role of Chemical Analysis in the Halal Authentication of Food and Pharmaceutical Products. J. Food Pharm. Sci. 2013, I, 1–4.

[2] Rohman, A.; Pebriyanti, N.; Sismindari, W.; Windarsih, A.; Ramadhani, D.; Larasati, R.; Yulisa, H. Real-time Polymerase Chain Reaction for Identification of Dog Meat in Adulterated Beef Meatball Using Specific Primer Targeting on cytochrome-b for Halal Authentication. Int. J. Food Prop. 2020, 23(1), 2231–2241. DOI: 10.1080/10942912.2020.1844748.

[3] Hossain, M. A. M.; Uddin, S. M. K.; Sultana, S.; Bonny, S. Q.; Khan, M. F.; Chowdhury, Z. Z.; Johan, M. R.; Ali, M. E. Heptaplex Polymerase Chain Reaction Assay for the Simultaneous Detection of Beef, Buffalo, Chicken, Cat, Dog, Pork, and Fish in Raw and heat-treated Food Products. J. Agric. Food Chem. 2019, 67(29), 8268–8278. DOI: 10.1021/acs.jafc.9b02518.

[4] Gunarti, A.; Ningrum, K. P.; Gandjar, I. G.; Salamah, N. Authentication of Sprague Dawley Rats (Rattus Norwegicus) Fat with gc-ms (Gas chromatography-mass Spectrometry) Combined with Chemometrics. Int. J. Appl. Pharm. 2021, 110, 134–139. DOI: 10.22159/ijap.2021v13i2.40130.

[5] Rahmania, H.; Sudjadi,.; Rohman, A. The Employment of FTIR Spectroscopy in Combination with Chemometrics for Analysis of Rat Meat in Meatball Formulation. Meat Sci. 2015, 100, 301–305. DOI: 10.1016/j.meatsci.2014.10.028.

[6] Widyasari, Y. I.; Sudjadi, S.; Rohman, A. Detection of Rat Meat Adulteration in Meat Ball Formulations Employing Real Time PCR. Asian J. Anim. Sci. 2015, 9(6), 460–465. DOI: 10.3923/ajas.2015.460.465.

[7] Cahyadi, M.; Wibowo, T.; Pramono, A.; Abdurrahman, Z. H. A Novel Multiplex-PCR Assay to Detect Three Non–Halal Meats Contained in Meatball Using Mitochondrial 12S rRNA Gene. Food Sci. Anim. Resour. 2020, 40(4), 628–635. DOI: 10.5851/kosfa.2020.e40.

[8] Pebriyanti, R. B.; Rohman, A.; Lukitaningsih, E. Sudjadi Development of FTIR Spectroscopy in Combination with Chemometrics for Analysis of Rat Meat in Beef Sausage Employing Three Lipid Extraction Systems. Int. J. Food Prop. 2017, 20, 1995–2005. DOI: 10.1080/10992912.2017.1361969.

[9] Gunarti, A.; Gandjar, I. G.; Jannah, N. M. Authentication of Wistar Rat Fats with Gas Chromatography Mass Spectrometry Combined by Chemometrics. Potravin. Slovak J. Food Sci. 2020, 14, 52–57. DOI: 10.5219/122950.1229.1229.

[10] Utami, P. I.; Rahayu, W. S.; Nugraha, I.; Rochana, A. N. Fatty Acid Analysis of Lipid Extracted from Rats by Gas Chromatography-Mass Spectrometry Method. IOP Conf. Ser. Mater. Sci. Eng. 2018, 288, 012115. DOI: 10.1088/1757-899X/288/1/012115.

[11] Chen, X.; Ran, D.; Zeng, L.; Xin, M. Immunoassay of Cooked Wild Rat Meat by ELISA with a Highly Specific Antibody Targeting heat-resistant Proteins. Food Agric. Immunol. 2020, 31(1), 533–544. DOI: 10.1080/09540105.2020.1740180.

[12] Rohman, A.; Windarsih, A. The Application of Molecular Spectroscopy in Combination with Chemometrics for Halal Authentication Analysis: A Review. Int. J. Mol. Sci. 2020, 21(14), 1–18. DOI: 10.3390/ijms21145155.

[13] Singh, S. K.; Jha, S. K.; Chaudhary, A.; Yadava, R. D. S.; Rai, S. B. Quality Control of Herbal Medicines by Using Spectroscopic Techniques and Multivariate Statistical Analysis. Pharm. Biol. 2010, 48(2), 134–141. DOI: 10.3109/13880200903593888.

[14] Rahayu, W. S.; Martono, S.; Sudjadi, S.; Rohman, A. The Potential Use of Infrared Spectroscopy and Multivariate Analysis for Differentiation of Beef Meatball from Dog Meat for Halal Authentication Analysis. J. Adv. Vet. Anim. Res. 2018, 5(3), 307–314. DOI: 10.5455/javar.2018.e281.

[15] Rohman, A.; Sismindari,.; Erwanto, Y.; Che Man, Y. B. Analysis of Pork Adulteration in Beef Meatball Using Fourier Transform Infrared (FTIR) Spectroscopy. Meat Sci. 2011, 88, 91–95. DOI: 10.1016/j.meatsci.2010.12.007.
Ahda, M.; Guntarti, A.; Kusbardani, A.; Melianto, Y. Authenticity Analysis of Beef Meatball Adulteration with Wild Boar Using FTIR Spectroscopy Combined with Chemometrics. *J. Microbiol. Biotechnol. Food Sci.* 2020, 9(5), 937–940. DOI: 10.15414/jmbfs.2020.9.5.937-940.

Rohman, A. The Employment of Fourier Transform Infrared Spectroscopy Coupled with Chemometrics Techniques for Traceability and Authentication of Meat and Meat Products. *J. Adv. Vet. Anim. Res.* 2019, 6(1), 9–17. DOI: 10.5455/javar.2019.0306.

Hewavitharana, G. G.; Perera, D. N.; Navaratne, S. B.; Wickramasinghe, I. Extraction Methods of Fat from Food Samples and Preparation of Fatty Acid Methyl Esters for Gas Chromatography: A Review. *Arab. J. Chem.* 2020, 13(8), 6865–6875. DOI: 10.1016/j.arabjc.2020.06.039.

King, J. W., Eller FJ, Snyder JM, Johnson JH, McKeith FK, Stites CR. Lipid Extract.pdf. *J. Agric. Food Chem.* 1996, 44, 2700–2704.

Bligh, E. G.; Dyer, W. J. Canadian Journal of Biochemistry and Physiology Issued by the National Research Council of Canada A Rapid Method of Total Lipid Extraction and Purification1. *Can. J. Biochem. Physiol.* 1959, 37(1), 911–917. DOI: 10.1139/y59-099.

Pérez-Palacios, T.; Ruiz, J.; Martin, D.; Muriel, E.; Antequera, T. Comparison of Different Methods for Total Lipid Quantification in Meat and Meat Products. *Food Chem.* 2008, 110(4), 1025–1029. DOI: 10.1016/j.foodchem.2008.03.026.

Folch, J.; Lees, M.; Sloane Stanley, G. H. A Simple Method for the Isolation and Purification of Total Lipides from Animal Tissues. *J. Biol. Chem.* 1957, 226(1), 497–509. DOI: 10.1016/0021-9258(18)64849-5.

Pérez-Palacios, T.; Ruiz, J.; Ferreira, I. M. P. L. V. O.; Petisca, C.; Antequera, T. Effect of Solvent to Sample Ratio on Total Lipid Extracted and Fatty Acid Composition in Meat Products within Different Fat Content. *Meat Sci.* 2012, 91(3), 369–373. DOI: 10.1016/j.meatsci.2012.02.021.

Bendini, A.; Cerretani, L.; Di Virgilio, F.; Belloni, P.; Bonoli-Carbognin, M.; Lercker, G. Preliminary Evaluation of the Application of the FTIR Spectroscopy to Control the Geographic Origin and Quality of Virgin Olive Oils. *J. Food Qual.* 2007, 30(4), 424–437. DOI: 10.1111/j.1745-4557.2007.00132.x.

Pavia, D.L.; Lampman, G.M.; Kriz, G.S. Introduction to Spectroscopy; Vondeling, J., Kiselica, S., Eds.; Thomson Learning, 2001; pp. 263–266 ISBN 0-303-031961-7.

Guilén, M. D.; Cabo, N. Characterization of Edible Oils and Lard by Fourier Transform Infrared Spectroscopy. Relationships between Composition and Frequency of Concrete Bands in the Fingerprint Region. *JAOCS, J. Am. Oil Chem. Soc.* 1997, 74(10), 1281–1286. DOI: 10.1007/s11746-997-0058-4.

Zhao, H.; Wang, F.; Yang, Q. Origin Traceability of Peanut Kernels Based on multi-element Fingerprinting Combined with Multivariate Data Analysis. *J. Sci. Food Agric.* 2020, 100(10), 4040–4048. DOI: 10.1002/jsfa.10449.

Mahesar, S. A.; Shah, S. N.; Mahesar, A. W.; Kandhro, A. A.; Khaskheli, A. R.; Menghwar, P.; Sherazi, S. T. H. A Chemometric Approach for the Quantification of Free Fatty Acids in Cottonseed Oil by Fourier Transform Infrared Spectroscopy. *Int. J. Food Prop.* 2017, 20(8), 1913–1920. DOI: 10.1080/10942912.2016.1223129.

Fadzillalah, N. A.; Che Man, Y. B.; Rohman, A. FTIR Spectroscopy Combined with Chemometric for Analysis of Sesame Oil Adulterated with Corn Oils. *Int. J. Food Prop.* 2014, 17(6), 1275–1282. DOI: 10.1080/10942912.2012.689409.

Rohman, A.; Sismindari; Erwan, Y.; Che Man, Y.B. Analysis of pork adulteration in beef meatball using Fourier transform infrared (FTIR) spectroscopy. *Meat Sci.* 2011, 88, 91–95. DOI: 10.1016/j.meatsci.2010.12.007.

Lerma-Garcia, M.J.; Ramis-Ramos, G.; Herrero-Martinez, J.M.; Simó-Álonso, E.F. Authentication of extra virgin olive oils by Fourier-transform infrared spectroscopy. *Food Chem.* 2010, 118, 78–83. DOI: 10.1016/j.foodchem.2009.04.092.

Zhang, Q.; Liu, C.; Sun, Z.; Hu, X.; Shen, Q.; Wu, J. Authentication of edible vegetable oils adulterated with used frying oil by Fourier Transform Infrared Spectroscopy. *Food Chem.* 2012, 132, 1607–1613. DOI: 10.1016/j.foodchem.2011.11.129.