\wp-ADIC CONTINUOUS FAMILIES OF DRINFELD EIGENFORMS OF FINITE SLOPE

SHIN HATTORI

Abstract. Let p be a rational prime, v_p the normalized p-adic valuation on \mathbb{Z}, $q > 1$ a p-power and $A = \mathbb{F}_q[t]$. Let $\wp \in A$ be an irreducible polynomial and $n \in A$ a non-zero element which is prime to \wp. Let $k \geq 2$ and $r \geq 1$ be integers. We denote by $S_k(\Gamma_1(n\wp^r))$ the space of Drinfeld cuspforms of level $\Gamma_1(n\wp^r)$ and weight k for $\mathbb{F}_q(t)$. Let $n \geq 1$ be an integer and $a \geq 0$ a rational number. Suppose that $n\wp$ has a prime factor of degree one and the generalized eigenspace in $S_k(\Gamma_1(n\wp^r))$ of slope a is one-dimensional. In this paper, under an assumption that a is sufficiently small, we construct a family $\{F_k \mid v_p(k' - k) \geq \log_p (p^n + a)\}$ of Hecke eigenforms $F_k \in S_k(\Gamma_1(n\wp^r))$ of slope a such that, for any $q \in A$, the Hecke eigenvalues of F_k and $F_{k'}$ at q are congruent modulo \wp^κ with some $\kappa > p^n(a(k' - k) - p^n - a)$.

1. Introduction

Let p be a rational prime, $q > 1$ a p-power and \mathbb{F}_q the field of q elements. Put $A = \mathbb{F}_q[t]$ and $K = \mathbb{F}_q(t)$. Let $\wp \in A$ be an irreducible polynomial of positive degree, n a non-zero element of A which is prime to \wp and $r \geq 1$ an integer. Put $A_r = A/\wp(r)$ and $\kappa(\wp) = A/\wp$. We denote by K_\wp the \wp-adic completion of K, by \mathbb{C}_\wp the \wp-adic completion of an algebraic closure of K_\wp and by $v_\wp: \mathbb{C}_\wp \to \mathbb{Q} \cup \{+\infty\}$ the \wp-adic additive valuation on \mathbb{C}_\wp normalized as $v_\wp(\wp) = 1$. Similarly, we denote by K_\wp the $(1/t)$-adic completion of K and by \mathbb{C}_\wp the $(1/t)$-adic completion of an algebraic closure of K_\wp. Let \bar{K} be the algebraic closure of K inside \mathbb{C}_\wp and we fix an embedding of K-algebras $\iota_\wp: \bar{K} \to \mathbb{C}_\wp$. For any $x \in \bar{K}$, we define its normalized \wp-adic valuation by $v_\wp(\iota_\wp(x))$. Let $\Omega = \mathbb{P}^1(\mathbb{C}_\wp) \setminus \mathbb{P}^1(K_\wp)$ be the Drinfeld upper half plane, which has a natural structure of a rigid analytic variety over K_\wp.

Let Γ be a subgroup of $SL_2(A)$ and k an integer. A Drinfeld modular form of level Γ and weight k is a rigid analytic function on Ω satisfying

$$f \left(\frac{az + b}{cz + d} \right) = (cz + d)^k f(z) \quad \text{for any } \gamma = \left(\begin{array}{cc} a & b \\ c & d \end{array} \right) \in \Gamma, z \in \Omega$$

Date: July 23, 2019.
and a holomorphy condition at cusps. It is considered as a function field analogue of the notion of elliptic modular form.

Recently, \(\wp \)-adic properties of Drinfeld modular forms have attracted attention and have been studied actively (for example, [BV1, BV2, BV3, Gos, Hat1, Hat2, PZ, Vin]). However, though we have a highly developed theory of \(p \)-adic analytic families of elliptic eigenforms of finite slope, \(\wp \)-adic properties of Drinfeld modular forms are much less well-understood compared to the elliptic case. One of the difficulties in the Drinfeld case is that, since the group \(\mathcal{O}_K^{\wp} \) is topologically of infinitely generated, analogues of the completed group ring \(\mathbb{Z}_p[[\mathbb{Z}_p]] \) are not Noetherian, and it seems that we have no good definition of characteristic power series applicable to non-Noetherian base rings, as mentioned in [Buz2, paragraph before Lemma 2.3].

In this paper, we will construct families of Drinfeld eigenforms in which Hecke eigenvalues vary in a \(\wp \)-adically continuous way. For the precise statement, we fix some notation. For any \(m \in \mathfrak{m} \subseteq A_r \), we put

\[
\Gamma_1(m) = \left\{ \gamma \in SL_2(A) \mid \gamma \equiv \begin{pmatrix} 1 & * \\ 0 & 1 \end{pmatrix} \text{ mod } m \right\}.
\]

Let \(\Theta \) be any subgroup of \(1 + \wp A_r \subseteq A_r^\times \). We define

\[
\Gamma_0^\Theta(\wp^r) = \left\{ \gamma \in SL_2(A) \mid \gamma \text{ mod } \wp^r \in \begin{pmatrix} \Theta & * \\ 0 & \Theta \end{pmatrix} \right\} \subseteq \Gamma_1(\wp)
\]

and \(\Gamma_1^\Theta(n, \wp^r) = \Gamma_1(n) \cap \Gamma_0^\Theta(\wp^r) \), which satisfies \(\Gamma_1^{(1)}(n, \wp^r) = \Gamma_1(n\wp^r) \).

Let \(k \geq 2 \) be an integer. For any non-zero element \(Q \in A \), the Hecke operator \(T_Q \) acts on the \(\mathbb{C}_\infty \)-vector space \(S_k(\Gamma_1^\Theta(n, \wp^r)) \) of Drinfeld cuspforms of level \(\Gamma_1^\Theta(n, \wp^r) \) and weight \(k \). The operator \(T_Q \) is also denoted by \(U \). Since they stabilize an \(A \)-lattice \(V_k(A) \) (Proposition 2.2), every eigenvalue of \(T_Q \) is integral over \(A \). The normalized \(\wp \)-adic valuation of an eigenvalue of \(U \) is called slope, and we denote by \(d(k, a) \) the dimension of the generalized \(U \)-eigenspace for the eigenvalues of slope \(a \). For any Hecke eigenform \(F \), its \(T_Q \)-eigenvalue is denoted by \(\lambda_Q(F) \). We denote by \(v_p \) the \(p \)-adic valuation on \(\mathbb{Z} \) satisfying \(v_p(p) = 1 \). Then the main theorem of this paper (Theorem 4.1) gives the following, which we will prove in §4.1.

Theorem 1.1. Suppose that \(n\wp \) has a prime factor \(\pi \) of degree one. Let \(n \geq 1 \) and \(k \geq 2 \) be integers. Put \(d = [\Gamma_1(\pi) : \Gamma_1^\Theta(n, \wp^r)], \varepsilon = d(k, 0) \)
and
\[D_2(n, d, \varepsilon) = \frac{1}{d} \left\{ \sqrt{2dp^n + (d - \varepsilon + 1)(2d - \varepsilon - 1)} - \frac{3}{2}d + \varepsilon \right\}, \]
\[D(n, d, \varepsilon) = \min \left\{ p^n \left(\frac{4 + dp^n - d}{4 + 2dp^n - 2\varepsilon} \right), D_2(n, d, \varepsilon) \right\}. \]

Let \(a \) be any non-negative rational number satisfying
\[a < \min\{D(n, d, \varepsilon), k - 1\}. \]

Suppose \(d(k, a) = 1 \). Then, for any integer \(k' \geq k \) satisfying
\[v_p(k' - k) \geq \log_p(p^n + a), \]
there exists a Hecke eigenform \(F_{k'} \in S_k(\Gamma_1^0(n, \varphi^r)) \) of slope \(a \) such that for any \(Q \) we have
\[v_p(v_p(\lambda_Q(F_{k'}) - \lambda_Q(F_k))) > p^\omega(k' - k) - p^n - a. \]

In fact, what we will prove allow nebentypus characters at \(\varphi \) (Remark 4.2).

For example, in the case of \(n = 1, \varphi = t \) and \(r = 1 \), we have \(\Gamma_1^0(n, \varphi^r) = \Gamma_1(t) \), \(d = \varepsilon = 1 \) and \(D(n, 1, 1) = \sqrt{2p^n} - \frac{1}{2} \). In this case, Theorem 1.1 implies that, for any Hecke eigenform \(F_k \) of slope zero in \(S_k(\Gamma_1(t)) \), the \(T_Q \)-eigenvalue \(\lambda_Q(F_k) \) is \(t \)-adically arbitrarily close to those coming from Hecke eigenforms with \(A \)-expansion [Pet], which shows \(\lambda_Q(F_k) = 1 \) for any \(Q \) (Proposition 4.3). This suggests that, though we will prove constancy results of the dimension of slope zero cuspforms with respect to \(k \) and \(r \) (Proposition 3.4 and Proposition 3.5), Hida theory for the level \(\Gamma_0(t^r) \) should be trivial (Remark 4.5).

We also note that families constructed in Theorem 1.1 contain Hecke eigenforms whose Hecke eigenvalue at \(Q \) is not a power of \(Q \) (§4.2), and thus they capture a more subtle \(\varphi \)-adic structure of Hecke eigenvalues than the theory of \(A \)-expansions.

Let us explain the idea of the proof of Theorem 1.1. Note that a usual method to construct \(p \)-adic families of eigenforms of finite slope in the number field case is the use of the Riesz theory [Col, Buz2], which is not available for our case at present, due to the lack of a notion of characteristic power series over non-Noetherian Banach algebras. Instead, we follow an idea of Buzzard [Buz1] by which he constructed \(p \)-adically continuous families of quaternionic eigenforms over \(Q \).

First we will prove a variant of the Gouvêa-Mazur conjecture (Proposition 3.11), which implies \(d(k, a) = d(k', a) \) if \(k \) and \(k' \) are highly congruent \(p \)-adically and \(a \) is sufficiently small. With the assumption \(d(k, a) = 1 \), it produces Hecke eigenforms \(F_k \) and \(F_{k'} \) of slope \(a \) in
weights \(k \) and \(k' \), respectively. For this part, we employ the same idea as in [Hat2]: a lower bound of elementary divisors of the representing matrix of \(U \) with some basis and a perturbation lemma [Ked, Theorem 4.4.2] yield the equality. To obtain such a bound (Corollary 3.8), we need to define Hecke operators acting on the Steinberg complex (2.2) with respect to \(\Gamma_1^\varphi(n, \varphi^r) \), which is done in \(\S 2.3 \). Note that similar Hecke operators on a Steinberg complex in an adelic setting are given in [Böc, \S 6.4].

Then, a weight reduction map (\(\S 3.2 \)) yields a Drinfeld cuspform \(G \) of weight \(k \) such that, for \(m = v_p(k' - k) \), the element \(G \mod \varphi^m \) is a Hecke eigenform with the same eigenvalues as those of \(F_{k'} \mod \varphi^m \). Now the point is that, if two lines generated by \(F_{k'} \) and \(G \) are highly congruent in some sense, then we can show that the eigenvalues of \(F_{k'} \) and \(G \mod \varphi^m \) are also highly congruent, which gives Theorem 1.1; otherwise the two lines are so far apart that, again by the Gouvèa-Mazur variant mentioned above, they produce \(U \)-eigenvalues of slope \(a \) with multiplicity more than one, which contradicts \(d(k, a) = 1 \) (Theorem 4.1).

Acknowledgements. The author would like to thank Gebhard Böckle for suggesting him to look for \(\varphi \)-adically continuous families of Drinfeld eigenforms instead of \(\varphi \)-adically analytic ones, and David Goss for a helpful discussion. This work was supported by JSPS KAKENHI Grant Number JP17K05177.

2. Drinfeld cuspforms via the Steinberg module

For any arithmetic subgroup \(\Gamma \) of \(SL_2(A) \) and any integer \(k \geq 2 \), we denote by \(S_k(\Gamma) \) the space of Drinfeld cuspforms of level \(\Gamma \) and weight \(k \). In this section, we first recall an interpretation of \(S_k(\Gamma) \) using the Steinberg module due to Teitelbaum [Tei, p. 506], following the normalization of [Böc, \S 5]. We also introduce Hecke operators acting on the Steinberg complex. Using them, we define an \(A \)-lattice of the space of Drinfeld cuspforms which is stable under the Hecke action.

2.1. Steinberg module. For any \(A \)-algebra \(B \), we consider \(B^2 \) as the set of row vectors, and define a left action \(\circ \) of \(GL_2(B) \) on it by \(\gamma \circ x = x\gamma^{-1} \). Let \(T \) be the Bruhat-Tits tree for \(SL_2(K_x) \). We denote by \(T_0 \) the set of vertices of \(T \), which is the set of \(K_x^\times \)-equivalence classes of \(\mathcal{O}_{K_x} \)-lattices in \(K_x^2 \), and by \(T_1 \) the set of its edges. The oriented graph associated with \(T \) and the set of oriented edges are denoted by \(T^o \) and \(T_1^o \), respectively. For any oriented edge \(e \), we denote its origin by \(o(e) \),
its terminus by \(t(e) \) and the opposite edge by \(-e\). The group \(\{ \pm 1 \} \) acts on \(T_1^o \) by \((-1) e = -e\).

Let \(\Gamma \) be an arithmetic subgroup of \(SL_2(A) \) [Böc, §3.4], and we assume \(\Gamma \) to be \(p' \)-torsion free (namely, every element of \(\Gamma \) of finite order has \(p \)-power order). The group \(\Gamma \) acts on \(T \) and \(T^o \) via the natural inclusion \(\Gamma \to GL_2(K_\infty) \). We say a vertex or an oriented edge of \(T \) is \(\Gamma \)-stable if its stabilizer subgroup in \(\Gamma \) is trivial, and \(\Gamma \)-unstable otherwise. We denote by \(T^o_0 \) and \(T^o_\Gamma \) the subsets of \(\Gamma \)-stable elements. For any \(\Gamma \)-unstable vertex \(v \), its stabilizer subgroup in \(\Gamma \) is a non-trivial finite \(p \)-group and thus fixes a unique rational end which we denote by \(b(v) \) [Ser, Ch. II, §2.9].

For any ring \(R \) and any set \(S \), we write \(R[S] \) for the free \(R \)-module with basis \(\{ [s] \mid s \in S \} \). When \(S \) admits a left action of \(\Gamma \), the \(R \)-module \(R[S] \) also admits a natural left action of the group ring \(R[\Gamma] \) which we denote by \(\circ \). In this case, we also define a right action of \(\Gamma \) on \(R[S] \) by \([s] \gamma = \gamma^{-1} \circ [s] \), which makes it a right \(R[\Gamma] \)-module.

Put
\[
\mathbb{Z}[\bar{T}^{\text{st}}_1] = \mathbb{Z}[T_1^{\text{st}}]/\langle [e] + [-e] \mid e \in T^{\text{st}}_1 \rangle.
\]
We define a surjection of \(\mathbb{Z}[\Gamma] \)-modules \(\partial_\Gamma : \mathbb{Z}[\bar{T}^{\text{st}}_1] \to \mathbb{Z}[T^{\text{st}}_0] \) by \(\partial_\Gamma(e) = [t(e)] - [o(e)] \), where we put \([v] = 0 \) in \(\mathbb{Z}[T^{\text{st}}_0] \) for any \(\Gamma \)-unstable vertex \(v \). It factors as \(\partial_\Gamma : \mathbb{Z}[\bar{T}^{\text{st}}_1] \to \mathbb{Z}[T^{\text{st}}_0] \). Note that the both sides of this map are free left \(\mathbb{Z}[\Gamma] \)-modules of finite rank.

We define the Steinberg module \(St \) as the kernel of the natural augmentation map
\[
\mathbb{Z}[\mathbb{P}^1(K)] \to \mathbb{Z},
\]
on which the group \(GL_2(K) \) acts via
\[
\gamma \circ (x : y) = (x : y)^{-1} \gamma, \quad (x : y) \in \mathbb{P}^1(K).
\]
We consider it as a left \(\mathbb{Z}[\Gamma] \)-module via the natural inclusion \(\Gamma \to GL_2(K) \). Then the Steinberg module \(St \) is a finitely generated projective \(\mathbb{Z}[\Gamma] \)-module which sits in the split exact sequence
\[
0 \longrightarrow St \longrightarrow \mathbb{Z}[\bar{T}^{\text{st}}_1] \overset{\partial_\Gamma}{\longrightarrow} \mathbb{Z}[T^{\text{st}}_0] \longrightarrow 0.
\]
We consider these three left \(\mathbb{Z}[\Gamma] \)-modules as right \(\mathbb{Z}[\Gamma] \)-modules via the action \([s] \mapsto [s] \gamma \).

2.2. Drinfeld cuspforms and harmonic cocycles. For any integer \(k \geq 2 \) and any \(A \)-algebra \(B \), we denote by \(H_{k-2}(B) \) the \(B \)-submodule of the polynomial ring \(B[X, Y] \) consisting of homogeneous polynomials of degree \(k-2 \). We consider the left action of the multiplicative monoid \(M_2(B) \) on \(H_{k-2}(B) \) defined by \((\gamma \circ X, \gamma \circ Y) = (X, Y) \gamma \). On \(GL_2(B) \),
it agrees with the natural left action on Sym^k(\text{Hom}_B(B^2, B)) induced by the action \circ on B^2 after identifying (X, Y) with the dual basis for the basis $((1, 0), (0, 1))$ of B^2. Let

$$V_k(B) = \text{Hom}_B(H_{k-2}(B), B).$$

We denote the dual basis of the free B-module $V_k(B)$ with respect to the basis $\{X^iY^{k-2-i} \mid 0 \leq i \leq k - 2\}$ of $H_{k-2}(B)$ by

$$\{(X^iY^{k-2-i})^\vee \mid 0 \leq i \leq k - 2\}.$$

We also denote by \circ the natural left action of $GL_2(B)$ on $V_k(B)$ induced by that on $H_{k-2}(B)$. For $\gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in GL_2(B)$, $P(X, Y) \in H_{k-2}(B)$ and $\omega \in V_k(B)$, this action is given by

$$(\gamma \circ \omega)(P(X, Y)) = \omega(\gamma^{-1} \circ P(X, Y)) = \det(\gamma)^{2-k}\omega(P(dX - cY, -bX + aY))$$
as in [Böc, p. 51]. The group Γ acts on $H_{k-2}(B)$ and $V_k(B)$ via the natural map $\Gamma \to GL_2(B)$. Moreover, the monoid

$$M^{-1} = \{\xi \in GL_2(K) \mid \xi^{-1} \in M_2(A)\}$$

acts on $V_k(B)$ by

$$(\xi \circ \omega)(P(X, Y)) = \omega(\xi^{-1} \circ P(X, Y)).$$

Put $V_k(B) = \text{St} \otimes_{\mathbb{Z}[\Gamma]} V_k(B)$ and

$$\mathcal{L}_{1,k}(B) = \mathbb{Z}[\mathcal{T}`st]^1 \otimes_{\mathbb{Z}[\Gamma]} V_k(B), \quad \mathcal{L}_{0,k}(B) = \mathbb{Z}[\mathcal{T}`st]^0 \otimes_{\mathbb{Z}[\Gamma]} V_k(B).$$

We have the split exact sequence

$$\begin{array}{c}
0 \longrightarrow V_k(B) \longrightarrow \mathcal{L}_{1,k}(B) \overset{\mathcal{L}_{0,k}(B)}{\longrightarrow} 0
\end{array}$$

which is functorial on B and compatible with any base change of B. Let B' be any A-subalgebra of B. Since the $\mathbb{Z}[\Gamma]$-module St is projective, the natural maps $V_k(B') \to V_k(B)$, $\mathcal{L}_{1,k}(B') \to \mathcal{L}_{1,k}(B)$ and $\mathcal{L}_{0,k}(B') \to \mathcal{L}_{0,k}(B)$ are injective.

Let $\Lambda_1 \subseteq \mathcal{T}`st$ be a complete set of representatives of $\Gamma \setminus \mathcal{T}`st/\{\pm 1\}$. By [Ser, Ch. II, §1.2, Corollary], for any element $e \in \mathcal{T}`st$ we can write uniquely

$$r(e) = \varepsilon e \gamma e \quad (\varepsilon e \in \{\pm 1\}, \gamma e \in \Gamma, r(e) \in \Lambda_1).$$

Note that $r(e)$, εe and γe depend on the choice of Λ_1. The right $\mathbb{Z}[\Gamma]$-module $\mathbb{Z}[\mathcal{T}`st]$ is free with basis $\{[e] \mid e \in \Lambda_1\}$ and thus, for any
\(A\)-algebra \(B\), any element \(x\) of \(\mathcal{L}_{1,k}(B)\) can be written uniquely as
\[x = \sum_{e \in \Lambda_1} [e] \otimes \omega_e, \quad \omega_e \in V_k(B).\]

Definition 2.1. Let \(M\) be a module. A map \(c : \mathcal{T}_1^o \rightarrow M\) is said to be a harmonic cocycle if the following conditions are satisfied:

1. For any \(v \in \mathcal{T}_0\), we have
 \[\sum_{e \in \mathcal{T}_0^\ast, t(e) = v} c(e) = 0.\]
2. For any \(e \in \mathcal{T}_1^o\), we have \(c(-e) = -c(e)\).

Any harmonic cocycle \(c\) is determined by its values at \(\Gamma\)-stable edges, as follows. For any \(e \in \mathcal{T}_1^o\), an edge \(e' \in \mathcal{T}_1^{\text{str}}\) is said to be a source of \(e\) if the following conditions hold:

- When \(e\) is \(\Gamma\)-stable, we require \(e' = e\).
- When \(e\) is \(\Gamma\)-unstable, we require that a vertex \(v\) of \(e'\) is \(\Gamma\)-unstable, \(e\) lies on the unique half line from \(v\) to \(b(v)\) and \(e\) has the same orientation as \(e'\) with respect to this half line.

We denote by \(\text{src}(e)\) the set of sources of \(e\). Then Definition 2.1 (1) gives
\[(2.4) \quad c(e) = \sum_{e' \in \text{src}(e)} c(e').\]
Moreover, for any \(\gamma \in \Gamma\), we have
\[(2.5) \quad \text{src}(\gamma(e)) = \gamma(\text{src}(e)), \quad \text{src}(-e) = -\text{src}(e).\]

For any \(A\)-algebra \(B\), we denote by \(C^{\text{har}}_k(\Gamma, B)\) the set of harmonic cocycles \(c : \mathcal{T}_1^o \rightarrow V_k(B)\) which is \(\Gamma\)-equivariant (namely, \(c(\gamma(e)) = \gamma \circ c(e)\) for any \(\gamma \in \Gamma\) and \(e \in \mathcal{T}_1^o\)). For any rigid analytic function \(f\) on \(\Omega\) and \(e \in \mathcal{T}_1^o\), we can define an element \(\text{Res}(f)(e) \in V_k(\mathbb{C}_\infty)\), which gives an isomorphism of \(\mathbb{C}_\infty\)-vector spaces
\[\text{Res}_\Gamma : S_k(\Gamma) \rightarrow C^{\text{har}}_k(\Gamma, \mathbb{C}_\infty), \quad f \mapsto (e \mapsto \text{Res}(f)(e))\]
([Tei, Theorem 16], see also [Böc, Theorem 5.10]). By [Böc, (17)], the slash operator defined by
\[(f|k\gamma)(z) = \det(\gamma)^{k-1}(cz + d)^{-k} f \left(\frac{az + b}{cz + d} \right), \quad \gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \text{GL}_2(K)\]
satisfies \(\text{Res}(f|k\gamma)(e) = \gamma^{-1} \circ \text{Res}(f)(\gamma(e))\).
On the other hand, the argument in [Tei, p. 506] shows that for any A-algebra B, we have a B-linear isomorphism

$$\Phi_\Gamma : C^\text{har}_k(\Gamma, B) \to \mathcal{V}_k(B), \quad \Phi_\Gamma(c) = \sum_{e \in \Lambda_1} [e] \otimes c(e),$$

which is independent of the choice of a complete set of representatives Λ_1. This implies that, for any morphism $B \to B'$ of A-algebras, the natural map

$$C^\text{har}_k(\Gamma, B) \otimes_B B' \to C^\text{har}_k(\Gamma, B')$$

is an isomorphism. Moreover, we obtain an isomorphism

$$\Phi_\Gamma \circ \text{Res}_\Gamma : S_k(\Gamma) \to \mathcal{V}_k(\mathbb{C}_\infty).$$

In particular, for any A-subalgebra B of \mathbb{C}_∞, we have an injection

$$\mathcal{V}_k(B) \to \mathcal{V}_k(\mathbb{C}_\infty) \simeq S_k(\Gamma).$$

2.3. **Hecke operators.** For any non-zero element $Q \in A$, we have a Hecke operator T_Q acting on $S_k(\Gamma)$ defined as follows. Write

$$\Gamma \begin{pmatrix} 1 & 0 \\ 0 & Q \end{pmatrix} \Gamma = \prod_{i \in I(\Gamma, Q)} \Gamma \xi_i,$$

where $\{\xi_i | i \in I(\Gamma, Q)\}$ is a complete set of representatives of the right coset space $\Gamma \backslash \Gamma \begin{pmatrix} 1 & 0 \\ 0 & Q \end{pmatrix} \Gamma$. For any $f \in S_k(\Gamma)$, we put

$$T_Qf = \sum_{i \in I(\Gamma, Q)} f|_{\xi_i}.$$

For any A-algebra B, we define a Hecke operator T^har_Q on $C^\text{har}_k(\Gamma, B)$ as follows. Note that ξ^{-1}_i is an element of the monoid M^{-1}. For any $c \in C^\text{har}_k(\Gamma, B)$ and $e \in T^\text{po}_i$, we put

$$T^\text{har}_Q(c)(e) = \sum_{i \in I(\Gamma, Q)} \xi^{-1}_i \circ c(\xi_i(e)).$$

Since c is Γ-equivariant, we see that $T^\text{har}_Q(c)$ is a harmonic cocycle which is independent of the choice of a complete set of representatives $\{\xi_i | i \in I(\Gamma, Q)\}$. For any $\delta \in \Gamma$, the set $\{\xi_i \delta | i \in I(\Gamma, Q)\}$ is also a complete set of representatives of the same right coset space. This yields $T^\text{har}_Q(c) \in C^\text{har}_k(\Gamma, B)$. By [Böc, (17)], for any A-subalgebra B of \mathbb{C}_∞, the endomorphism T^har_Q is identified with the restriction on $C^\text{har}_k(\Gamma, B) \subseteq C^\text{har}_k(\Gamma, \mathbb{C}_\infty)$ of the Hecke operator T_Q on $S_k(\Gamma)$ via the isomorphism $\text{Res}_\Gamma : S_k(\Gamma) \to C^\text{har}_k(\Gamma, \mathbb{C}_\infty)$.
We also introduce a Hecke operator $T_{1,Q}$ on $L_{1,k}(B)$ as follows. We denote by $C_{1,k}^\pm(\Gamma, B)$ the set of Γ-equivariant maps $c : \mathcal{T}_{1}^{\ast} \to V_k(B)$ satisfying $c(-e) = -c(e)$ for any $e \in \mathcal{T}_{1}^{\ast}$. Then the map

$$\Phi_{1,\Gamma} : C_{1,k}^\pm(\Gamma, B) \to L_{1,k}(B), \quad \Phi_{1,\Gamma}(c) = \sum_{e \in \Lambda_1} [e] \otimes c(e)$$

is independent of the choice of Λ_1. By the uniqueness of the expression (2.3), we see that it is an isomorphism. For any $c \in C_{1,k}^\pm(\Gamma, B)$ and $e \in \mathcal{T}_{1}^{\ast}$, we put

$$T_{1,Q}^\pm(e)(e) = \sum_{\epsilon \in I(\Gamma, Q)} \sum_{e' \in \text{src}(e)} \xi_i^{-1} \circ c(e').$$

By (2.5), it is independent of the choice of $\{\xi_i\}$, and the same argument as in the case of $T_{1,Q}^{\text{har}}$ shows that it defines an endomorphism $T_{1,Q}^\pm$ on $C_{1,k}^\pm(\Gamma, B)$. Now we put

$$T_{1,Q} = \Phi_{1,\Gamma} \circ T_{1,Q}^\pm \circ \Phi_{1,\Gamma}^{-1}.$$

From the construction, we see that $T_{1,Q}$ is independent of the choices of Λ_1 and $\{\Lambda_1\}$. For an explicit description of $T_{1,Q}$, fix a complete set of representatives Λ_1 and take any element $x = \sum_{e \in \Lambda_1} [e] \otimes \omega_e$ of $L_{1,k}(B)$. For any $e' \in \mathcal{T}_{1}^{\ast}$, we have

$$\Phi_{1,\Gamma}^{-1}(x)(e') = \epsilon_e \gamma_e^{-1} \circ \omega_{r(e')},$$

where ϵ_e, γ_e, and $r(e')$ are defined as (2.3) using Λ_1. Hence we obtain

$$T_{1,Q}(x) = \sum_{e \in \Lambda_1} [e] \otimes \sum_{\epsilon \in I(\Gamma, Q)} \sum_{e' \in \text{src}(e)} \epsilon_e \gamma_e^{-1} \circ \omega_{r(e')}.$$

Proposition 2.2. The restriction of $T_{1,Q}$ on the submodule $\mathcal{V}_k(B) \subseteq L_{1,k}(B)$ agrees with $T_{1,Q}^{\text{har}}$ via the isomorphism $\Phi_T : C_{k}^{\text{har}}(\Gamma, B) \to \mathcal{V}_k(B)$. In particular, $\mathcal{V}_k(B)$ is stable under $T_{1,Q}$, and if B is an A-subalgebra of $\mathbb{C}_\mathfrak{r}$, then $\mathcal{V}_k(B)$ defines a B-lattice of $S_k(\Gamma)$ which is stable under Hecke operators.

Proof. Take any $c \in C_{k}^{\text{har}}(\Gamma, B)$. Since $c(r(e')) = \epsilon_e \gamma_e \epsilon' e'(e')$, (2.4) yields

$$T_{1,Q}(\Phi_T(c)) = \sum_{e \in \Lambda_1} [e] \otimes \sum_{\epsilon \in I(\Gamma, Q)} \sum_{e' \in \text{src}(e)} \xi_i^{-1} \circ c(e')$$

$$= \sum_{e \in \Lambda_1} [e] \otimes \sum_{\epsilon \in I(\Gamma, Q)} \xi_i^{-1} \circ c(e') = \sum_{e \in \Lambda_1} [e] \otimes T_{1,Q}^{\text{har}}(c)(e),$$

which agrees with $\Phi_T(T_{1,Q}^{\text{har}}(c))$. □
3. Variation of Gouvêa-Mazur type

Let \(n \in A \) be a non-zero polynomial which is prime to \(\wp \) and \(r \geq 1 \) an integer. For any \(A \)-algebra \(B \) and any integer \(m \geq 1 \), put
\[
B_m = B/\wp^m B.
\]
Note that, since we have the canonical section \([-] : \kappa(\wp) \to \mathcal{O}_{K_{\wp}} \) of the natural surjection \(\mathcal{O}_{K_{\wp}} \to \kappa(\wp) \), we can consider \(B_m \) canonically as a \(\kappa(\wp) \)-algebra.

Let \(\Theta \) be any subgroup of \(1 + \wp A_r \). We define \(\Gamma_1^\Theta(\wp^r) = \left\{ \gamma \in SL_2(A) \mid \gamma \mod \wp^r \in \left(\begin{array}{cc} \Theta & * \\ 0 & \Theta \end{array} \right) \right\} \subseteq \Gamma_1(\wp) \)
and \(\Gamma_1^\Theta(n, \wp^r) = \Gamma_1(\mathfrak{n}) \cap \Gamma_1^\Theta(\wp^r) \). The subgroup \(\Gamma_1^\Theta(n, \wp^r) \) of \(SL_2(A) \) is \(\wp^r \)-torsion free and contains \(\Gamma_1^\Theta(n, \wp^r) = \Gamma_1(n \wp^r) \). When \(\Theta = 1 + \wp A_r \), we also denote \(\Gamma_1^\Theta(\wp^r) \) and \(\Gamma_1^\Theta(n, \wp^r) \) by \(\Gamma_1^\Theta(\wp^r) \) and \(\Gamma_1^\Theta(n, \wp^r) \), respectively. For \(\Gamma_1^\Theta(n, \wp^r) \), we fix a complete set of representatives \(\Lambda_1 \) as in §2.2.

For Hecke operators of level \(\Gamma_1^\Theta(n, \wp^r) \), we also write \(U = T_p, \ U_1 = T_{1,p} \).

Let \(d(k, a) \) be the dimension of the generalized \(U \)-eigenspace in \(S_k(\Gamma_1^\Theta(n, \wp^r)) \) of slope \(a \). In this section, we prove \(p \)-adic local constancy results for \(d(k, a) \) with respect to \(k \), which generalize the Gouvêa-Mazur conjecture [Hat2, Theorem 1.1] for the case of level \(\Gamma_1(t) \).

3.1. Hecke operators of level \(\Gamma_1^\Theta(n, \wp^r) \). Let \(Q \in A \) be any non-zero element. Write
\[
\Gamma_1^\Theta(n, \wp^r) \left(\begin{array}{cc} 1 & 0 \\ 0 & Q \end{array} \right) \Gamma_1^\Theta(n, \wp^r) = \prod_{\chi \in I(Q)} \Gamma_1^\Theta(n, \wp^r) \xi_\chi.
\]
For any \(\gamma \in \Gamma_1^\Theta(n, \wp^r), \ i \in I(Q) \) and \(\lambda \in \kappa(\wp)^\times \), we have
\[
(3.1) \quad \gamma \xi_i = \left(\begin{array}{cc} 1 & * \\ 0 & Q \end{array} \right), \quad \gamma = \left(\begin{array}{cc} \lambda^{-1} & 0 \\ 0 & \lambda \end{array} \right) \equiv \left(\begin{array}{cc} \lambda^{-1} & * \\ 0 & \lambda \end{array} \right) \mod \wp.
\]

Consider the Hecke operator \(T_Q \) acting on the \(\mathbb{C}_\wp \)-vector space \(S_k(\Gamma_1^\Theta(n, \wp^r)) \), which preserves the \(A \)-lattice \(\mathcal{V}_k(A) \) by Proposition 2.2. To describe it explicitly for the case where \(Q \) is irreducible, we fix a complete set of representatives \(R_Q \) of \(A/(Q) \). When \(Q \) divides \(n \wp^r \), we have \(I(Q) = R_Q \) and
\[
(T_Q f)(z) = \frac{1}{Q} \sum_{\beta \in R_Q} f \left(\frac{z + \beta}{Q} \right).
\]
When Q does not divide n_{\wp^r}, we can find $R, S \in A$ satisfying $RQ - n_{\wp^r}S = 1$. Put
\[
\eta_0 = \begin{pmatrix} R & S \\ n_{\wp^r} & Q \end{pmatrix}, \quad \xi_0 = \begin{pmatrix} RQ & S \\ n_{\wp^r}Q & Q \end{pmatrix} = \eta_0 \begin{pmatrix} Q & 0 \\ 0 & 1 \end{pmatrix}.
\]
Then we have $I(Q) = \{ \circ \} \cup R_Q$ and
\[
(T_Q f)(z) = Q^{k-1} \langle Q \rangle_{n_{\wp^r}} f(Qz) + \frac{1}{Q} \sum_{\beta \in R_Q} f \left(\frac{z + \beta}{Q} \right),
\]
where $\langle Q \rangle_{n_{\wp^r}}$ is the diamond operator acting on $S_k(\Gamma_{\wp}(n, \wp^r))$ defined by $f \mapsto f|_{k\eta_0}$.

Note that the natural map
\[
SL_2(A) \to SL_2(A/(n_{\wp^r})) \simeq SL_2(A/(n)) \times SL_2(A_{\wp})
\]
is surjective. For any $\lambda \in \kappa(\wp)^{\times}$, we choose $\eta_\lambda \in SL_2(A)$ satisfying
\[
(3.2) \quad \eta_\lambda \mod n = I, \quad \eta_\lambda \mod \wp^r = \begin{pmatrix} [\lambda]^{-1} & 0 \\ 0 & [\lambda] \end{pmatrix}
\]
and put
\[
\langle \lambda \rangle_{\wp^r} f = f|_{k\eta_\lambda}.
\]
By
\[
(3.3) \quad \Gamma_1(n_{\wp^r}) \subseteq \Gamma_{\wp}^0(n, \wp^r), \quad \eta_\lambda^{-1} \Gamma_{\wp}^0(n, \wp^r) \eta_\lambda = \Gamma_{\wp}^0(n, \wp^r),
\]
this is independent of the choice of η_λ and defines an action of $\kappa(\wp)^{\times}$ on $S_k(\Gamma_{\wp}^0(n, \wp^r))$.

For any $\kappa(\wp)[[\kappa(\wp)^{\times}]]$-module M and any character $\chi : \kappa(\wp)^{\times} \to \kappa(\wp)^{\times}$, we denote by $M(\chi)$ the maximal $\kappa(\wp)$-subspace of M on which any $\lambda \in \kappa(\wp)^{\times}$ acts via $\chi(\lambda)$. Since the order of the group $\kappa(\wp)^{\times}$ is prime to p, we have the projector
\[
\varepsilon_\chi : M \to M(\chi), \quad \varepsilon_\chi(m) = - \sum_{\lambda \in \kappa(\wp)^{\times}} \chi(\lambda)^{-1}(\lambda \cdot m)
\]
and the decomposition into χ-parts
\[
M = \bigoplus_{\chi} M(\chi),
\]
where the sum runs over the set of such characters $\kappa(\wp)^{\times} \to \kappa(\wp)^{\times}$.
We consider \bar{K} as a $\kappa(p)\wp -$algebra by the unique map $\kappa(\wp) \to \bar{K}$ which commutes the diagram

\[
\begin{array}{ccc}
\kappa(\wp) & \longrightarrow & \bar{K} \\
\downarrow & & \downarrow \iota_\wp \\
\mathbb{C}_p & \longrightarrow & \mathbb{C}_p \\
\end{array}
\]

Then we have

\[
S_k(\Gamma^\wp_1(n, \wp^r)) = \bigoplus_\chi S_k(\Gamma^\wp_1(n, \wp^r))(\chi).
\]

Note that, when an irreducible polynomial Q does not divide $n\wp^r$, we may further assume that η_λ satisfies

\[
\eta_\lambda = \begin{pmatrix} a & b \\ c & d \end{pmatrix}, \quad a \not\in (Q).
\]

Using this, for any irreducible polynomial Q we can show

\[
\Gamma^\wp_1(n, \wp^r)\eta_\lambda^{-1} \begin{pmatrix} 1 & 0 \\ 0 & Q \end{pmatrix} \eta_\lambda \Gamma^\wp_1(n, \wp^r) = \Gamma^\wp_1(n, \wp^r) \begin{pmatrix} 1 & 0 \\ 0 & Q \end{pmatrix} \Gamma^\wp_1(n, \wp^r).
\]

Then (3.3) yields

\[
\prod_{i \in I(Q)} \Gamma^\wp_1(n, \wp^r)\xi_\eta_\lambda = \Gamma^\wp_1(n, \wp^r) \begin{pmatrix} 1 & 0 \\ 0 & Q \end{pmatrix} \Gamma^\wp_1(n, \wp^r) = \prod_{i \in I(Q)} \Gamma^\wp_1(n, \wp^r)\eta_\lambda\xi_i.
\]

Thus T_Q commutes with $\langle \lambda \rangle_{\wp^r}$ and $S_k(\Gamma^\wp_1(n, \wp^r))(\chi)$ is stable under Hecke operators. We denote by $d(k, \chi, a)$ be the dimension of the generalized U-eigenspace in $S_k(\Gamma^\wp_1(n, \wp^r))(\chi)$ of slope a. To indicate the level, we often write

\[
d(k, a) = d(\Gamma^\wp_1(n, \wp^r), k, a), \quad d(k, \chi, a) = d(\Gamma^\wp_1(n, \wp^r), k, \chi, a).
\]

For any A-algebra B, we also have the diamond operator $\langle \lambda \rangle_{\wp^r}$

\[
\langle \lambda \rangle_{\wp^r} \in \text{End}(C^\text{har}_k(\Gamma^\wp_1(n, \wp^r), B)), \quad c \mapsto (e \mapsto \eta_\lambda^{-1} \circ c(\eta_\lambda(e))),
\]

which is compatible with that on $S_k(\Gamma^\wp_1(n, \wp^r))$ when $B = \mathbb{C}_\infty$. From (3.3) we see that e is $\Gamma^\wp_1(n, \wp^r)$-stable if and only $\eta_\lambda(e)$ is, and thus the corresponding operators on $V_k(B)$ and $L_{1,k}(B)$ are given by

\[
\langle \lambda \rangle_{\wp^r}(\sum_{e \in \Lambda_1} [e] \otimes \omega e) = \sum_{e \in \Lambda_1} [e] \otimes \varepsilon_{\eta_\lambda(e)}(\eta_\lambda^{-1} \gamma^{-1}_{\eta_\lambda(e)}) \circ \omega_{\eta_\lambda(e)}.
\]
When B is also a $\kappa(\wp)$-algebra, we have the decomposition
\[C_k^{\text{hat}}(\Gamma_{-1}^0(n, \wp^r), B) = \bigoplus_{\chi} C_k^{\text{hat}}(\Gamma_{-1}^0(n, \wp^r), B)(\chi) \]
and similarly for $L_{1,k}(B)$ and $V_k(B)$. These summands are stable under Hecke operators by (3.4).

3.2. **Weight reduction.** Let $N \geq 1$ be any integer. For any A-algebra B, the B-linear map
\[\mu_{k,N} : H_{k-2}(B) \to H_{k-2+N}(B), \quad X^iY^{k-2-i} \mapsto X^{i+N}Y^{k-2-i} \]
induces the dual map
\[\rho_{k,N} : V_{k+N}(B) \to V_k(B), \quad (X^iY^{k+N-2-i})^\vee \mapsto \begin{cases} (X^{i-N}Y^{k+N-2-i})^\vee & (i \geq N) \\ 0 & (i < N) \end{cases}. \]
It is a surjection whose kernel is
\[V_{k+N}(B) = \bigoplus_{i < N} B(X^iY^{k+N-2-i})^\vee. \]

Lemma 3.1. Let $n \geq 0$ be any non-negative integer, \bar{B} any A_{p^n}-algebra and $\lambda \in \kappa(\wp)^\times$. Let $\xi \in M_2(A)$ be any element satisfying
\[\xi = \begin{pmatrix} a & b \\ c & d \end{pmatrix}, \quad a \equiv \wp = \lambda, \quad c \equiv 0 \mod \wp. \]
Let m be the order of λ in $\kappa(\wp)^\times$. Then, for any element $\omega \in V_{k+p^nm}(\bar{B})$, we have
\[\xi^{-1} \circ \rho_{k,p^nm}(\omega) = \rho_{k,p^nm}(\xi^{-1} \circ \omega). \]
In particular, for any integer $m' \geq 1$, the map $\rho_{k,p^{n+m'}} : V_{k+p^{n+m'}}(\bar{B}) \to V_k(\bar{B})$ is $\Gamma_0^0(n, \wp^r)$-equivariant and its kernel $V_{k+p^{n+m'}}(\bar{B})$ is $\Gamma_0^0(n, \wp^r)$-stable.

Proof. In the ring A_{p^n}, we can write $a = [\lambda] + \wp a'$ with some $a' \in A_{p^n}$. For any integer $i \in [0, k - 2]$, the assumption $\wp^m \bar{B} = 0$ implies
\[\xi \circ \mu_{k,p^nm}(X^iY^{k-2-i}) = (aX + cY)^{p^m+i}(bX + dY)^{k-2-i} \]
\[= (a^{p^n}X^{p^n} + c^{p^n}Y^{p^n})^m(aX + cY)^i(bX + dY)^{k-2-i} \]
\[= ([\lambda]^{p^n}X^{p^n})^m(aX + cY)^i(bX + dY)^{k-2-i} \]
\[= X^{p^m}(aX + cY)^i(bX + dY)^{k-2-i} \]
\[= \mu_{k,p^nm}(\xi \circ (X^iY^{k-2-i})). \]
Taking the dual yields the lemma. \qed
By Lemma 3.1, for any A_p^ω-algebra \bar{B} and any integer $m' \geq 1$, we obtain the surjection
\[1 \otimes \rho_{k,p^n m'} : V_{k+p^n m'}(\bar{B}) \rightarrow \mathcal{V}_k(\bar{B}) \]
and similarly for $\mathcal{L}_{1,k}(\bar{B})$.

Lemma 3.2. For any A_p^ω-algebra \bar{B}, the maps
\[1 \otimes \rho_{k,p^n} : V_{k+p^n}(\bar{B}) \rightarrow \mathcal{V}_k(\bar{B}), \quad \mathcal{L}_{1,k+p^n}(\bar{B}) \rightarrow \mathcal{L}_{1,k}(\bar{B}) \]
commute with Hecke operators. Moreover, the maps
\[1 \otimes \rho_{k,p^n(q^d'-1)} : V_{k+p^n(q^d'-1)}(\bar{B}) \rightarrow \mathcal{V}_k(\bar{B}), \quad \mathcal{L}_{1,k+p^n(q^d'-1)}(\bar{B}) \rightarrow \mathcal{L}_{1,k}(\bar{B}) \]
commute with $\langle \lambda \rangle_{\mathfrak{p}^r}$ for any $\lambda \in \kappa(\mathfrak{p})^\times$. In particular, the \bar{B}-submodules
\[V_{k+p^n}(\bar{B}), \quad V_{k+p^n(q^d'-1)}(\bar{B}) \]
are stable under Hecke operators.

Proof. It is enough to show the assertions on $\mathcal{L}_{1,k}(\bar{B})$. By (2.6) and (3.5), we reduce ourselves to showing that, for any $\gamma \in \Gamma^\mathfrak{p}(\mathfrak{n}, \mathfrak{p}^r)$, $i \in I(Q)$, $\lambda \in \kappa(\mathfrak{p})^\times$, $\omega \in V_{k+p^n}(\bar{B})$ and $\omega' \in V_{k+p^n(q^d'-1)}(\bar{B})$, we have
\[(\gamma \xi_i)^{-1} \circ \rho_{k,p^n}(\omega) = \rho_{k,p^n}((\gamma \xi_i)^{-1} \circ \omega), \]
\[(\gamma \eta_i)^{-1} \circ \rho_{k,p^n(q^d'-1)}(\omega') = \rho_{k,p^n(q^d'-1)}((\gamma \eta_i)^{-1} \circ \omega'). \]
By (3.1), this follows from Lemma 3.1. \hfill \square

3.3. Dimension of slope zero cuspforms

Using harmonic cocycles, the proofs of [Hid1, Corollary 8.2 and Proposition 8.3] can be adapted to obtain constancy results for the dimension of slope zero cuspforms with respect to the weight and the level at \mathfrak{p}. First we prove the following key lemma.

Lemma 3.3. Let B be any flat A-algebra. For any $s \in \text{St}$ and any integer $j \in [0, k-2]$, the element $s \otimes (X^jY^{k-2-j})^\vee \in \mathcal{V}_k(B)$ satisfies
\[U(s \otimes (X^jY^{k-2-j})^\vee) \in \varphi^{k-2-j}\mathcal{V}_k(B). \]

Proof. For any non-negative integer m, we have the commutative diagram with exact rows
\[\begin{array}{cccccc}
0 & \longrightarrow & \mathcal{V}_k(B) & \longrightarrow & \mathcal{L}_{1,k}(B) & \longrightarrow & \mathcal{L}_{0,k}(B) & \longrightarrow & 0 \\
& & \downarrow & \quad & \quad & \quad & \quad & \downarrow & \\
0 & \longrightarrow & \mathcal{V}_k(B_m) & \longrightarrow & \mathcal{L}_{1,k}(B_m) & \longrightarrow & \mathcal{L}_{0,k}(B_m) & \longrightarrow & 0.
\end{array} \]
Since the structure map $A \to B$ is flat, we see that $\varphi^m \mathcal{V}_k(B)$ and $\varphi^m \mathcal{L}_{1,k}(B)$ are the kernels of the left two vertical maps. Thus it suffices to show $\mathcal{U}_1(s \otimes (X^jY^{k-2-j})^e) \subset \varphi^{k-2-j} \mathcal{L}_{1,k}(B)$.

Any element of St is a \mathbb{Z}-linear combination of elements of $\mathbb{Z}[\bar{T}_{1,\varphi}]$ of the form $[e]_\alpha$ with $e \in \Lambda_1$ and $\alpha \in \Gamma^\varphi_1(n, \varphi^r)$. Moreover, for any $\omega \in V_k(B)$, we have $[e]_\alpha \otimes \omega = [e] \otimes \alpha \circ \omega$. By (2.6), it is enough to show that, for any $i \in I(\varphi)$, $\gamma \in \Gamma^\varphi_1(n, \varphi^r)$ and integers $j, l \in [0, k - 2]$, we have

$$((\gamma \xi_i)^{-1} \circ (X^jY^{k-2-j})^e)(X^lY^{k-2-l}) \subset \varphi^{k-2-j} B.$$

Write $\gamma \xi_i = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$. Then the above evaluation is equal to

$$(X^jY^{k-2-j})^e((aX + cY)^l(bX + dY)^{k-2-l}).$$

By (3.1) we have $c, d \equiv 0 \bmod \varphi$ and the coefficient of X^jY^{k-2-j} in the product $(aX + cY)^l(bX + dY)^{k-2-l}$ is divisible by φ^{k-2-j}. This concludes the proof.

Proposition 3.4. (1) $d(\Gamma^\varphi_1(n, \varphi^r), k, 0)$ is independent of k.

(2) For any character $\chi : \kappa(\varphi)^\chi \to \kappa(\varphi)^\chi$, we have

$$k_1 \equiv k_2 \bmod q^d - 1 \Rightarrow d(\Gamma^\varphi_1(n, \varphi^r), k_1, \chi, 0) = d(\Gamma^\varphi_1(n, \varphi^r), k_2, \chi, 0).$$

Proof. Note that $d(\Gamma^\varphi_1(n, \varphi^r), k, 0)$ is equal to the degree of the polynomial

$$\det(I - UX; \mathcal{V}_k(\kappa(\varphi))).$$

By Lemma 3.2 for $n = 0$, we have the exact sequence

$$0 \longrightarrow \mathcal{V}_{k+1}^{<1}(\kappa(\varphi)) \longrightarrow \mathcal{V}_{k+1}(\kappa(\varphi)) \longrightarrow \mathcal{V}_k(\kappa(\varphi)) \longrightarrow 0$$

whose maps are compatible with Hecke operators. Since $(k+1) - 2 > 0$, Lemma 3.3 implies $U = 0$ on $\mathcal{V}_{k+1}^{<1}(\kappa(\varphi))$ and thus we have

$$\det(I - UX; \mathcal{V}_{k+1}^{<1}(\kappa(\varphi))) = 1,$$

which yields the assertion (1). Since Lemma 3.2 also gives the exact sequence

$$0 \longrightarrow \mathcal{V}_{k+p^{-1}}^{<p^{-1}}(\kappa(\varphi))(\chi) \longrightarrow \mathcal{V}_{k+p^{-1}}(\kappa(\varphi))(\chi) \longrightarrow \mathcal{V}_k(\kappa(\varphi))(\chi) \longrightarrow 0,$$

the assertion (2) follows similarly.

Proposition 3.5. $d(\Gamma^\varphi_1(n, \varphi^r), k, 0)$ and $d(\Gamma^\varphi_1(n, \varphi^r), k, \chi, 0)$ are independent of $r \geq 1$.

Proof. Put $\Gamma_r = \Gamma^p_1(n, \wp^r)$. Let κ be an algebraic closure of $\kappa(\wp)$. We reduce ourselves to showing that the multiplicities of non-zero eigenvalues of U acting on $C^\text{har}_k(\Gamma_r, \kappa)$ and $C^\text{har}_k(\Gamma_r, \kappa)(\chi)$ are independent of r. These are the same as the dimensions of the generalized eigenspaces $C^\text{har}_k(\Gamma_r, \kappa)^\text{ord}$ and $C^\text{har}_k(\Gamma_r, \kappa)(\chi)^\text{ord}$ of non-zero eigenvalues, respectively.

Since any $c \in C^\text{har}_k(\Gamma_r, \kappa)$ is also Γ_r-equivariant, we have the natural inclusion $\iota: C^\text{har}_k(\Gamma_r, \kappa) \to C^\text{har}_k(\Gamma_r, \kappa)^\text{ord}$.

Since we have $\Gamma_r(\begin{pmatrix} 1 & 0 \\ 0 & \wp \end{pmatrix}) \Gamma_r = \bigoplus_{\beta \in R_\wp} \Gamma_{r+1} \xi_\beta$, $\xi_\beta = \begin{pmatrix} 1 & \beta \\ 0 & \wp \end{pmatrix}$, we obtain a map $s: C^\text{har}_k(\Gamma_{r+1}, \kappa) \to C^\text{har}_k(\Gamma_r, \kappa)$ by

$$s(c)(e) = \sum_{\beta \in R_\wp} \xi_\beta^{-1} \circ c(\xi_\beta(e)),$$

which makes the following diagram commutative.

$$\begin{array}{ccc}
C^\text{har}_k(\Gamma_r, \kappa) & \xrightarrow{\iota} & C^\text{har}_k(\Gamma_{r+1}, \kappa) \\
U \downarrow & & \downarrow U \\
C^\text{har}_k(\Gamma_r, \kappa) & \xrightarrow{\iota} & C^\text{har}_k(\Gamma_{r+1}, \kappa)
\end{array}$$

From this we see that ι and s commute with U and, since U is isomorphic on $C^\text{har}_k(\Gamma_r, \kappa)^\text{ord}$, the map ι gives an isomorphism $\iota^\text{ord}: C^\text{har}_k(\Gamma_r, \kappa)^\text{ord} \to C^\text{har}_k(\Gamma_{r+1}, \kappa)^\text{ord}$.

This settles the assertion on $d(\Gamma^p_1(n, \wp^r), k, 0)$. Moreover, since the diamond operator $\langle \lambda \rangle_{\wp^r}$ is independent of the choice of η_λ satisfying (3.2), we also have

$$\langle \lambda \rangle_{\wp^{r+1}} \circ \iota = \iota \circ \langle \lambda \rangle_{\wp^r}.$$

Since U commutes with diamond operators, the map ι^ord also induces an isomorphism $C^\text{har}_k(\Gamma_r, \kappa)(\chi)^\text{ord} \to C^\text{har}_k(\Gamma_{r+1}, \kappa)(\chi)^\text{ord}$, from which the assertion on $d(\Gamma^p_1(n, \wp^r), k, \chi, 0)$ follows. \qed
3.4. Representing matrix of U. Let E/K_φ be a finite extension of complete valuation fields. We extend the normalized φ-adic valuation v_φ naturally to E. We denote by \mathcal{O}_E the integer ring of E.

Lemma 3.6. Suppose that n_φ has a prime factor π of degree one. Then the right $\mathbb{Z}[\Gamma_1^\Theta(n, \varphi^r)]$-module St is free of rank $[\Gamma_1(\pi) : \Gamma_1^\Theta(n, \varphi^r)]$, where the rank is independent of the choice of such π.

Proof. Note that, from $\Gamma_1^\Theta(n, \varphi^r) \subseteq \Gamma_1(n_\varphi)$, we see that the former is a subgroup of $\Gamma_1(\pi)$. We can show that a fundamental domain of $\Gamma_1(\pi) \setminus T$ is the same as the picture of [LM, §7], and that it has no $\Gamma_1(\pi)$-stable vertex and only one $\Gamma_1(\pi)$-stable (unoriented) edge. By (2.1), the right $\mathbb{Z}[\Gamma_1(\pi)]$-module St is free of rank one. Thus the right $\mathbb{Z}[\Gamma_1^\Theta(n, \varphi^r)]$-module St is free of rank $[\Gamma_1(\pi) : \Gamma_1^\Theta(n, \varphi^r)]$. Since we have

$$[\Gamma_1(\pi) : \Gamma_1^\Theta(n, \varphi^r)] = \left[SL_2(A) : \Gamma_1^\Theta(n, \varphi^r) \right] \left[SL_2(\mathbb{F}_q) : \left\{ \begin{pmatrix} 1 & a \\ 0 & 1 \end{pmatrix} \right\} \right]^{-1},$$

the rank is independent of π. \hfill \Box

In the sequel, we assume that n_φ has a prime factor π of degree one. Under this assumption, Lemma 3.6 implies that the right $\mathbb{Z}[\Gamma_1^\Theta(n, \varphi^r)]$-module St is free of rank d, where we put

$$d = [\Gamma_1(\pi) : \Gamma_1^\Theta(n, \varphi^r)].$$

Hence, for any A-algebra B, the B-module $V_k(B)$ is free of rank $d(k-1)$. We fix an ordered basis \mathfrak{B}_k of the free A-module $V_k(A)$, as follows. Take an ordered basis (s_1, \ldots, s_d) of the right $\mathbb{Z}[\Gamma_1^\Theta(n, \varphi^r)]$-module St. The set

$$\mathfrak{B}_k = \{ v_{i,j} = s_i \otimes (X^j Y^{r-k-2-j})^\nu \mid 1 \leq i \leq d, \ 0 \leq j \leq k-2 \}$$

forms a basis of the A-module $V_k(A)$, and we order it as

$$v_{1,0}, v_{2,0}, \ldots, v_{d,0}, v_{1,1}, v_{2,1}, \ldots, v_{d,1}, v_{1,2}, \ldots \ldots$$

For any A-algebra B, the ordered basis of the B-module $V_k(B)$ induced by \mathfrak{B}_k is also denoted abusively by \mathfrak{B}_k. We denote by $U^{(k)}$ the representing matrix of U acting on the \mathcal{O}_E-module $V_k(\mathcal{O}_E)$ with respect to the ordered basis \mathfrak{B}_k. Then Lemma 3.3 gives

$$U(v_{i,j}) \in \varphi^{k-2-j} V_k(\mathcal{O}_E).$$

(3.6)

In order to study perturbation of $U^{(k)}$, we use the following lemma of [Ked]. Note that the assumption of $B \in GL_n(F)$ there is superfluous.
Lemma 3.7 ([Ked], Proposition 4.4). Let L be any positive integer and $A, B ∈ M_L(\mathcal{O}_E)$. Let $s_1 ≤ s_2 ≤ ⋯ ≤ s_L$ be the elementary divisors of A. Namely, they are the normalized $φ$-adic valuations of diagonal entries of the Smith normal form of A. Let $s'_1 ≤ s'_2 ≤ ⋯ ≤ s'_L$ be the elementary divisors of AB. Then we have

$$s'_i ≥ s_i \text{ for any } i.$$

The same inequality also holds for the elementary divisors of BA.

Corollary 3.8. Suppose that $\mathfrak{n}_φ$ has a prime factor $π$ of degree one. Put $d = \left[\Gamma_1(π) : \Gamma_1^φ(\mathfrak{n}, φ') \right]$. Let $s_1 ≤ s_2 ≤ ⋯ ≤ s_{d(k-1)}$ be the elementary divisors of $U^{(k)}$. Then we have

$$s_i ≥ \left\lfloor \frac{i - 1}{d} \right\rfloor.$$

Proof. By (3.6), the matrix $U^{(k)}$ can be written as

$$U^{(k)} = B \text{diag}(φ^{k-2}, \ldots, φ^{k-2}, φ, 1, \ldots, 1),$$

where $B ∈ M_{d(k-1)}(\mathcal{O}_E)$ and the diagonal entries of the last matrix are $\{φ^j \mid 0 ≤ j ≤ k - 2\}$, each with multiplicity d. Then the corollary follows from Lemma 3.7.

Corollary 3.9. Let $n ≥ 0$ be any non-negative integer. Then, for some matrices B_1, B_2, B_3, B_4 with entries in \mathcal{O}_E, we have

$$U^{(k+p^n)} = \left(\begin{array}{c|c} φ^{k-1}B_1 & B_2 \\ \hline φ^{p^n}B_3 & U^{(k)} + φ^{p^n}B_4 \end{array} \right).$$

Proof. By Lemma 3.2, the lower right block is congruent to $U^{(k)}$ and the lower left block is zero modulo $φ^{p^n}$. By (3.6), the entries on the upper left block are divisible by $φ^{k-1}$. This concludes the proof.

For the U-operator acting on $V_k(\mathcal{O}_E)(χ)$, we have a similar description of its representing matrix $U^{(k)}_χ$ as follows.

Proposition 3.10. Suppose that $\mathfrak{n}_φ$ has a prime factor $π$ of degree one. Put $d = \left[\Gamma_1(π) : \Gamma_1^φ(\mathfrak{n}, φ') \right]$.

1. For any integer $i ≥ 0$, the i-th smallest elementary divisor $s_{χ,i}$ of $U^{(k)}_χ$ satisfies

$$s_{χ,i} ≥ \left\lfloor \frac{i - 1}{d} \right\rfloor.$$
(2) Let $n \geq 0$ be any non-negative integer. Then, with some bases of $V_k(O_E)(\chi)$ and $V_{k+p^n(q^d-1)}(O_E)(\chi)$, the representing matrices $U_\chi^{(k)}$ and $U_\chi^{(k+p^n(q^d-1))}$ of U acting on them satisfies

$$U_\chi^{(k+p^n(q^d-1))} = \left(\begin{array}{ccc} \varphi^{k-1}B_1 & B_2 \\ \varphi^{n}B_3 & U_\chi^{(k)} + \varphi^n B_4 \end{array} \right)$$

for some matrices B_1, B_2, B_3, B_4 with entries in O_E.

Proof. We have the decomposition

$$V_k(O_E) = \bigoplus_\chi V_k(O_E)(\chi),$$

where each summand is stable under Hecke operators. Thus any elementary divisor of $U_\chi^{(k)}$ is also an elementary divisor of $U^{(k)}$, and $s_{\chi,i}$ equals the i'-th smallest elementary divisor $s_{\ell'}$ of $U^{(k)}$ with some $i' \geq i$. Hence the assertion (1) follows from Corollary 3.8.

For (2), put $m = q^d - 1$, $k' = k + p^nm$ and consider the weight reduction map

$$\rho = 1 \otimes \rho_{k,p^nm} : V_{k'}(O_{E,p^n}) \to V_k(O_{E,p^n}).$$

By Lemma 3.1, we can define the tensor product over $\mathbb{Z}[\Gamma_1^\Theta(n, \varphi^r)]$

$$V_{k'}^{<p^nm}(O_{E,p^n}) = St \otimes_{\mathbb{Z}[\Gamma_1^\Theta(n, \varphi^r)]} V_{k'}^{<p^nm}(O_{E,p^n}),$$

which sits in the split exact sequence of O_{E,p^n}-modules

$$0 \longrightarrow V_{k'}^{<p^nm}(O_{E,p^n}) \longrightarrow V_{k'}(O_{E,p^n}) \longrightarrow V_k(O_{E,p^n}) \longrightarrow 0.$$

By Lemma 3.2, the map ρ is compatible with Hecke operators and $\langle \lambda \rangle_{\varphi^r}$ for any $\lambda \in \kappa(\varphi)^\times$. Thus the map ρ also induces the split exact sequence

$$0 \longrightarrow V_{k'}^{<p^nm}(O_{E,p^n})(\chi) \longrightarrow V_{k'}(O_{E,p^n})(\chi) \longrightarrow V_k(O_{E,p^n})(\chi) \longrightarrow 0.$$

Let $\varepsilon_\chi : V_{k'}(O_E) \to V_{k'}(O_E)(\chi)$ be the projector to the χ-part. Let κ_E be the residue field of E. Consider the basis $v_{i,j} = s_i \otimes (X^jY^{k'-2-j})^v$ of $V_{k'}(O_E)$ as before and its image $\bar{v}_{i,j}$ in $V_{k'}(O_E)$. Note that, for any $j < p^nm$, the image of $\varepsilon_\chi(v_{i,j})$ in $V_{k'}(O_{E,p^n})(\chi)$ lies in $V_{k'}^{<p^nm}(O_{E,p^n})(\chi)$. Since the set

$$\{\varepsilon_\chi(\bar{v}_{i,j}) \mid 1 \leq i \leq d, \ 0 \leq j \leq p^nm - 1\}$$

spans the κ_E-vector space $V_{k'}^{<p^nm}(\kappa_E)(\chi)$, there exists a subset $\Sigma \subseteq [1, d] \times [0, p^nm - 1]$ such that the elements $\varepsilon_\chi(\bar{v}_{i,j})$ for $(i, j) \in \Sigma$ form its basis.
Now take a lift $\mathfrak{B}_{k',x,k}$ of a basis of $V_k(O_E,p^n)(\chi)$ by the composite
\[V_k(O_E)(\chi) \to V_k(O_E,p^n)(\chi) \to V_k(O_E,p^n)(\chi). \]
Since the image of the set
\[\mathfrak{B}_{k',x,k} = \{ \varepsilon \chi(v_{i,j}) \mid (i, j) \in \Sigma \} \subseteq \mathfrak{B}_{k',x,k} \]
in $V_k(O_E)(\chi)$ forms its basis, we see that $\mathfrak{B}_{k',x,k}$ itself forms a basis of $V_k(O_E,p^n)(\chi)$. Moreover, by Nakayama’s lemma, the images of $\varepsilon \chi(v_{i,j})$ in $V_k(O_E,p^n)$ for $(i, j) \in \Sigma$ form a basis of $V_k(p^n,\varepsilon)(O_E,p^n)(\chi)$.

Representing U by the basis $\mathfrak{B}_{k',x,k}$, we see that the lower blocks of the resulting matrix are as stated in (2). Moreover, since U and $\langle \lambda \rangle_{p^r}$ commute with each other, (3.6) yields
\[U(\varepsilon \chi(v_{i,j})) = \varepsilon \chi(U(v_{i,j})) \in \varphi'^{k-2-j}V_k(O_E)(\chi) \]
for any $j < p^n m$, and thus the upper left block is divisible by φ'^{k-1}. This concludes the proof. \(\square\)

3.5. Perturbation. Let E/K_p be a finite extension inside \mathbb{C}_p. Let V be an E-vector space of finite dimension and $T : V \to V$ an E-linear endomorphism. For an eigenvector of T with eigenvalue $\lambda \in \mathbb{C}_p$, we refer to $v_p(\lambda)$ as its slope. For any rational number a, we denote by $d(T,a)$ the multiplicity of T-eigenvalues of slope a. If B is the representing matrix of T with some basis of V, we also denote it by $d(B,a)$.

Proposition 3.11. Let d_0, n and L be positive integers. Let $B \in M_L(O_E)$ be a matrix such that its i-th smallest elementary divisor s_i satisfies $s_i \geq \left\lfloor \frac{a_i-1}{d_0} \right\rfloor$ for any i. Put $\varepsilon_0 = d(B,0)$ and
\[C_1(n, d_0, \varepsilon_0) = p^n \left(\frac{4 + d_0 p^n - d_0}{4 + 2 d_0 p^n - 2 \varepsilon_0} \right) \in (0, p^n). \]
Moreover, we put $q_1 = r_1 = 0$ and for any $l \geq 2$, we write $q_l = \left\lfloor \frac{l-2}{d_0} \right\rfloor$ and $r_l = l - 2 - d_0 q_l$. We define $C_2(n, d_0, \varepsilon_0)$ as
\[\min \left\{ \frac{2 p^n + d_0 q_{l}(q_{l+1}) + 2 q_{l}(r_{l+1})}{2(l-\varepsilon_0)} \mid \varepsilon_0 < l \leq 1 + d_0 p^n \right\} \]
and put
\[C(n, d_0, \varepsilon_0) = \min \{ C_1(n, d_0, \varepsilon_0), C_2(n, d_0, \varepsilon_0) \} \in (0, p^n). \]
Let $B' \in M_L(O_E)$ be any matrix satisfying $B' - B \in \varphi'^{p^n} M_L(O_E)$. Let a be any non-negative rational number satisfying
\[a < C(n, d_0, \varepsilon_0). \]
Then we have
\[d(B, a) = d(B', a). \]

Proof. We put
\[P_B(X) = \det(I - BX) = \sum b_l X^l, \quad P_{B'}(X) = \det(I - B'X) = \sum b_l' X^l. \]
Then \(b_l \) is, up to a sign, the sum of principal \(l \times l \) minors of \(B \). Since \(P_B \equiv P_{B'} \mod \wp \), we have \(d(B', 0) = d(B, 0) = \varepsilon_0 \). From the assumption on elementary divisors, we see that if \(i > d_0 \), then any \(i \times i \) minor of \(B \) is divisible by \(\wp \). This yields \(\varepsilon_0 \leq d_0 \).

By [Ked, Theorem 4.4.2], for any \(l \geq 0 \) we have
\[v_\wp(b_l - b_l') \geq p^n + \sum_{j=1}^{l-1} \min \left\{ \left[\frac{j-1}{d_0} \right], p^n \right\}. \]
Here we mean that the second term of the right-hand side is zero for \(l \leq 1 \). Let \(R \) be the right-hand side of the inequality. We claim that for any \(l > \varepsilon_0 \), we have
\[a < C(n, d_0, \varepsilon_0) \Rightarrow R > a(l - \varepsilon_0). \]
Indeed, when \(l > 1 + d_0p^n \), we have
\[
R = p^n + \sum_{j=1}^{d_0p^n} \left\lfloor \frac{j-1}{d_0} \right\rfloor + \sum_{j=1}^{l-1} p^n = p^n(l - d_0p^n) + \frac{1}{2}d_0p^n(p^n - 1)
\]
\[= \frac{1}{2}p^n(2l - d_0 - d_0p^n). \]
Then \(R > a(l - \varepsilon_0) \) if and only if
\[(p^n - a)l - \frac{1}{2}p^n d_0(1 + p^n) + a\varepsilon_0 > 0. \]
Since the condition \(a < C(n, d_0, \varepsilon_0) \) yields \(p^n > a \), the left-hand side of (3.7) is increasing with respect to \(l \). Thus (3.7) holds for any \(l > 1 + d_0p^n \) if and only if it holds for \(l = 2 + d_0p^n \), which is equivalent to \(a < C_1(n, d_0, \varepsilon_0) \).

On the other hand, when \(l \leq 1 + d_0p^n \), we have
\[R = p^n + \frac{1}{2}d_0q_l(q_l - 1) + q_l(r_l + 1), \]
from which the claim follows.

Let \(N_B \) and \(N_{B'} \) be the Newton polygons of \(P_B \) and \(P_{B'} \), respectively. It suffices to show that the segments of \(N_B \) and \(N_{B'} \) with slope less than \(C(n, d_0, \varepsilon_0) \) agree with each other. Suppose the contrary and take the smallest slope \(a < C(n, d_0, \varepsilon_0) \) satisfying \(d(B, a) \neq d(B', a) \).
Let \((l, y)\) be the right endpoint of the segment of slope \(a\) in either of \(N_B\) or \(N_B'\). Since \(d(B, 0) = d(B', 0)\), we have \(a > 0\) and \(l > \varepsilon_0\). Then the above claim yields
\[
y \leq a(l - \varepsilon_0) < v_p(b_l - b'_l).
\]
Since \(y \in \{v_p(b_l), v_p(b'_l)\}\), we have \(v_p(b_l) = v_p(b'_l)\). Since \(a\) is minimal, this implies that slope \(a\) appears in both of \(N_B\) and \(N_B'\). Applying the same argument to the right endpoint of the segment of slope \(a\) in the other Newton polygon, we obtain \(d(B, a) = d(B', a)\). This is the contradiction. \(\square\)

By a similar argument, we can show a slightly different perturbation result as follows.

Proposition 3.12. With the notation in Proposition 3.11, we suppose that the following conditions hold.

1. If \(p = 2\), then \(n \geq 3\) or \(d_0 - \varepsilon_0 \leq 1\).
2. \(2p^n > n(d_0n + 2 + d_0 - 2\varepsilon_0)\).

Then, for any non-negative rational number \(a \leq n\), we have
\[
d(B, a) = d(B', a).
\]

Proof. Let \(R\) be as in the proof of Proposition 3.11. We claim \(R > n(l - \varepsilon_0)\) for any \(l > \varepsilon_0\) under the assumptions (1) and (2).

Indeed, when \(l > 1 + d_0p^n\), we have \(R > n(l - \varepsilon_0)\) for any such \(l\) if and only if \(n < C_1(n, d_0, \varepsilon_0)\), namely
\[
d_0p^n(\frac{1}{2}p^n - n) + 2(p^n - n) + n\varepsilon_0 \geq \frac{1}{2}d_0p^n.
\]

If \(p \geq 3\) or \(n \geq 3\), then we have \(\frac{1}{2}p^n - n \geq \frac{1}{2}\) and the above inequality holds. If \(p = 2\) and \(n < 3\), it is equivalent to \(d_0 - \varepsilon_0 \leq 1\). Thus, under the condition (1), we have \(R > n(l - \varepsilon_0)\) in this case.

Let us consider the case of \(l \leq 1 + d_0p^n\). Note that \(l = 1\) is allowed only if \(\varepsilon_0 = 0\), in which case the claim holds by \(R = p^n > n\). For \(l \geq 2\), by (3.8) we have \(R > n(l - \varepsilon_0)\) if and only if
\[
2p^n + d_0\left(q_l - n + \frac{r_l + 1}{d_0} - \frac{1}{2}\right)^2 - d_0\left(-n + \frac{r_l + 1}{d_0} - \frac{1}{2}\right)^2 > 2n(r_l + 2 - \varepsilon_0).
\]

Note \(\frac{r_l + 1}{d_0} - \frac{1}{2} \in [-\frac{1}{2}, \frac{1}{2}]\). Since \(q_l\) and \(n\) are integers, we have
\[
d_0\left(q_l - n + \frac{r_l + 1}{d_0} - \frac{1}{2}\right)^2 \geq d_0\left(\frac{r_l + 1}{d_0} - \frac{1}{2}\right)^2.
\]
Thus the above inequality holds if
\[2p^n + d_0 \left(\frac{r_1 + 1}{d_0} - \frac{1}{2} \right)^2 - d_0 \left(-n + \frac{r_1 + 1}{d_0} - \frac{1}{2} \right)^2 > 2n(r_1 + 2 - \varepsilon_0), \]
which is equivalent to the condition (2) and the claim follows. Now the same reasoning as in the proof of Proposition 3.11 shows \(d(B, a) = d(B', a) \).

3.6. **Dimension variation.** For the \(U \)-operators acting on \(V_k(K_\varphi) \) and \(V(\mathcal{K}_\varphi) (\chi) \), we denote \(d(U, a) \) also by
\[
d(k, a) = d(\Gamma_1^\varphi(n, \varphi^\chi), k, a), \quad d(k, \chi, a) = d(\Gamma_1^\varphi(n, \varphi^\chi), k, \chi, a),
\]
respectively. Note that they agree with the previously defined ones for \(S_k(\Gamma_1^\varphi(n, \varphi^\chi)) \) and \(S_k(\Gamma_1^\varphi(n, \varphi^\chi))(\chi) \).

Now the following theorems give generalizations of [Hat2, Theorem 1.1].

Theorem 3.13. Suppose that \(n \varphi \) has a prime factor \(\pi \) of degree one. Let \(n \geq 1 \) and \(k \geq 2 \) be any integers. Put \(d = \left[\Gamma_1(\pi) : \Gamma_1^\varphi(n, \varphi^\chi) \right] \) and \(\varepsilon = d(k, 0) \). Let \(a \) be any non-negative rational number satisfying
\[
a < \min\{ C(n, d, \varepsilon), k - 1 \}.
\]
Then, for any integer \(k' \geq k \), we have
\[
k' \equiv k \mod p^n \Rightarrow d(k', a) = d(k, a).
\]

Proof. By Proposition 3.4 (1), we may assume \(k' = k + p^n \). By Corollary 3.9, we can write \(U^{(k+p^n)} + \varphi^{p^n}W = V \) with \(W \in M_{d(k+p^n-1)}(\mathcal{O}_{K_\varphi}) \) and
\[
V = \left(\begin{array}{c} \varphi^{k-1}B_1 \\ B_2 \end{array} \right), \quad B_1 \in M_{dp^n}(\mathcal{O}_{K_\varphi}), \quad B_2 \in M_{dp^n, d(k-1)}(\mathcal{O}_{K_\varphi}).
\]
Corollary 3.8 and Proposition 3.4 (1) show that \(U^{(k+p^n)} \) satisfies the assumptions of Proposition 3.11. Hence we obtain \(d(k + p^n, a) = d(V, a) \).
By [Hat2, Lemma 2.3 (2)], the matrix \(\varphi^{k-1}B_1 \) has no eigenvalue of slope less than \(k - 1 \). Since \(a < k - 1 \), we also have \(d(V, a) = d(k, a) \). This concludes the proof.

Theorem 3.14. Suppose that \(n \varphi \) has a prime factor \(\pi \) of degree one. Let \(n \geq 1 \) and \(k \geq 2 \) be any integers. Let \(\chi : \kappa(\varphi)^X \rightarrow \kappa(\varphi)^X \) be any character. Put \(d = \left[\Gamma_1(\pi) : \Gamma_1^\varphi(n, \varphi^\chi) \right] \) and \(\varepsilon_\chi = d(k, \chi, 0) \). Let \(a \) be any non-negative rational number satisfying
\[
a < \min\{ C(n, d, \varepsilon_\chi), k - 1 \}.
\]
Then, for any integer \(k' \geq k \), we have
\[
k' \equiv k \mod p^n(q^d - 1) \Rightarrow d(k', \chi, a) = d(k, \chi, a).
\]
Proof. This follows in the same way as Theorem 3.13, using Proposition 3.10 and Proposition 3.4 (2).

Theorem 3.15. Suppose that \(n \) has a prime factor \(\pi \) of degree one. Let \(n \uparrow \) and \(k \uparrow 2 \) be any integers and \(a \leq n \) any non-negative rational number. Put \(d = [\Gamma_1^*(\pi) : \Gamma_1^*(n, \varphi)] \) and \(\varepsilon = d(k, 0) \). Suppose that the following conditions hold.

(1) If \(p = 2 \), then \(n \uparrow 3 \) or \(d \varepsilon \leq 1 \).
(2) \(2p^n > n(dn + 2 + d - 2\varepsilon) \).

Then, for any integer \(k' \geq k \), we have

\[a \leq k - 1, \ k' \equiv k \mod p^n \Rightarrow d(k', a) = d(k, a) \]

Proof. This follows in the same way as Theorem 3.13, using Proposition 3.12 instead of Proposition 3.11.

It will be necessary to use an increasing function no more than \(C(n, d, \varepsilon) \) instead of itself. Here we give an example.

Lemma 3.16. Let \(n, d \uparrow 1 \) and \(\varepsilon \geq 0 \) be any integers satisfying \(\varepsilon \leq d \). Put

\[
D_2(n, d, \varepsilon) = \frac{1}{d} \left\{ \sqrt{2dp^n + (d - \varepsilon + 1)(2d - \varepsilon - 1)} - \frac{3}{2}d + \varepsilon \right\},
\]

\[
D(n, d, \varepsilon) = \min\{C_1(n, d, \varepsilon), D_2(n, d, \varepsilon)\}.
\]

Then \(D(n, d, \varepsilon) \) is an increasing function of \(n \) satisfying \(D(n, d, \varepsilon) \leq C(n, d, \varepsilon) \).

Proof. Since \(C_1(n, d, \varepsilon) \) is increasing for \(n \uparrow 1 \), it suffices to show

\[D_2(n, d, \varepsilon) \leq C_2(n, d, \varepsilon) \].

Put \(m = d - \varepsilon + 1 \) and \(x = dq + m \uparrow 1 \). Since \(r_1 \in [0, d - 1] \), for any \(l > \varepsilon \) we have

\[\frac{2p^n + dq(q - 1) + 2q(r_1 + 1)}{2(l - \varepsilon)} \geq \frac{2p^n + dq(q - 1) + 2q}{2x} \]

The right-hand side equals

\[
\frac{1}{2x} \left\{ 2p^n + d \left(\frac{x - m}{d} \right) \left(\frac{x - m}{d} - 1 \right) + 2 \left(\frac{x - m}{d} \right) \right\}
= \frac{x}{2d} + \frac{1}{2dx} (2dp^n + m(m + d - 2)) - \frac{m}{d} - \frac{1}{2} + \frac{1}{d}.
\]

By the inequality of arithmetic and geometric means, it is no less than \(D_2(n, d, \varepsilon) \) and the lemma follows.
When \(n = 1, \varphi = t \) and \(r = 1 \), we have \(\Gamma_1^{\varphi}(n, \varphi^r) = \Gamma_1(t) \), \(d = 1 \) and \(\varepsilon = 1 \) by [Hat2, Lemma 2.4], which yields
\[
C_1(n, 1, 1) = p^n \left(\frac{p^n + 3}{2p^n + 2} \right) \geq D_2(n, 1, 1) = \sqrt{2p^n} - \frac{1}{2}.
\]
Thus we obtain\((3.9) \)
\[
D(n, 1, 1) = \sqrt{2p^n} - \frac{1}{2} > 0
\]
and Theorem 3.13 gives the following improvement of [Hat2, Theorem 1.1].

Corollary 3.17. Suppose \(n = 1, \varphi = t \) and \(r = 1 \). Let \(k \geq 2 \) be any integer and \(a \) any non-negative rational number. Let \(n \geq 1 \) be any integer satisfying
\[
\frac{1}{2} \left(a + \frac{1}{2} \right)^2 < p^n.
\]
Then, for any integer \(k' \geq k \), we have
\[
a < k - 1, \quad k' \equiv k \mod p^n \Rightarrow d(\Gamma_1(t), k', a) = d(\Gamma_1(t), k, a).
\]

4. \(\varphi \)-ADIC CONTINUOUS FAMILY

We say \(F \in V_k(\mathbb{C}_p) \) is a Hecke eigenform if it is a non-zero eigenvector of \(T_Q \) for any \(Q \in A \). We denote by \(\lambda_Q(F) \) the \(T_Q \)-eigenvalue of \(F \). Since Hecke operators commute with each other, if \(d(k, a) = 1 \) (resp. \(d(k, \chi, a) = 1 \)) then any non-zero \(U \)-eigenform in \(V_k(\mathbb{C}_p) \) (resp. \(V_k(\mathbb{C}_p)(\chi) \)) of slope \(a \) is a Hecke eigenform.

4.1. **Construction of the family.** Now we prove the following main theorem of this paper.

Theorem 4.1. Suppose that \(n \varphi \) has a prime factor \(\pi \) of degree one. Let \(n \geq 1 \) and \(k_1 \geq 2 \) be any integers. Put \(d = [\Gamma_1(\pi) : \Gamma_1^{\varphi}(n, \varphi^r)] \) and \(\varepsilon = d(k_1, 0) \). Let \(a \) be any non-negative rational number satisfying
\[
a < \min\{C(n, d, \varepsilon), k_1 - 1\}.
\]
Let \(n' \geq 1 \) be any integer satisfying
\[
p^n - p^{n'} - a \geq 0, \quad a < C(n', d, \varepsilon).
\]
Suppose \(d(k_1, a) = 1 \). Let \(F_1 \in V_{k_1}(\mathbb{C}_p) \) be a Hecke eigenform of slope \(a \). Then, for any integer \(k_2 \geq k_1 \) satisfying
\[
k_2 \equiv k_1 \mod p^n,
\]
we have $d(k_2,a) = 1$ and thus there exists a Hecke eigenform $F_2 \in \mathcal{V}_{k_2}(\mathbb{C}_p)$ of slope a which is unique up to a scalar multiple. Moreover, for any Q we have

$$v_p(\lambda_Q(F_1) - \lambda_Q(F_2)) > p^n - p^{n'} - a.$$

(4.1)

Proof. By Proposition 3.4 (1), we may assume $(k_1, k_2) = (k, k + p^n)$ for some integer $k \geq 2$. Theorem 3.13 yields $d(k + p^n, a) = 1$ and any non-zero U-eigenform $F_2 \in \mathcal{V}_{k_2}(\mathbb{C}_p)$ of slope a is a Hecke eigenform. Take a finite extension E/K_p inside \mathbb{C}_p containing $\lambda_Q(F_1)$ and $\lambda_Q(F_1)$ for $i = 1, 2$. We may assume $F_i \in \mathcal{V}_{k_i}(\mathcal{O}_E)$. We identify $\mathcal{V}_{k_i}(\mathcal{O}_E)$ with $\mathcal{O}_E^{d(k_i-1)}$ via the ordered basis \mathfrak{B}_{k_i}. Then we can write

$$F_2 = \begin{pmatrix} x \\ y \end{pmatrix}, \quad x \in \mathcal{O}_E^{dp^n}, \quad y \in \mathcal{O}_E^{d(k-1)},$$

where each entry of x is the coefficient of $v_{s,t} \in \mathfrak{B}_{k_2}$ in F_2 with $t < p^n$. For any integer N and $z = (z_1, \ldots, z_N) \in \mathcal{O}_E^N$, we put

$$v_p(z) = \min\{v_p(z_i) \mid i = 1, \ldots, N\}.$$

Replacing F_i by its scalar multiple, we may assume $v_p(F_i) = 0$.

For any $H \in \mathcal{V}_{k_i}(\mathcal{O}_E)$, we denote by H its image by the natural map $\mathcal{V}_{k_i}(\mathcal{O}_E) \to \mathcal{V}_{k_i}(\mathcal{O}_{E,p^n})$. Consider the weight reduction map

$$1 \otimes \rho_{k,p^n} : \mathcal{V}_{k+p^n}(\mathcal{O}_{E,p^n}) \to \mathcal{V}_k(\mathcal{O}_{E,p^n})$$

as in §3.2, which we denote by ρ. Then $\rho(F_2) = y \mod \phi^{p^n}$.

We claim $v_p(y) \leq a$. Indeed, if $v_p(x) \geq v_p(y)$, then the assumption $v_p(F_2) = 0$ yields $v_p(y) = 0$. If $v_p(x) < v_p(y)$, then $v_p(x) = 0$ and Corollary 3.9 gives

$$\lambda_{\psi}(F_2)x = \phi^{k-1}B_1x + B_2y.$$

Since $v_p(\lambda_{\psi}(F_2)) = a < k - 1$, this forces $v_p(y) \leq a$ and the claim follows.

Take $G_1 \in \mathcal{V}_k(\mathcal{O}_E)$ satisfying $\bar{G}_1 = \rho(F_2)$. By Lemma 3.2, we have

$$T_Q(G_1) \equiv \lambda_Q(F_2)G_1, \quad U(G_1) \equiv \lambda_{\psi}(F_2)G_1 \mod \phi^{p^n}\mathcal{V}_k(\mathcal{O}_E).$$

(4.2)

Since we have $a < C(n, d, \varepsilon) < p^n$, the above claim yields $v_p(G_1) \leq a$. If $G_1 \in \mathcal{O}_EF_1$, then G_1 is a Hecke eigenform with the same eigenvalues as those of F_1. Thus we have

$$\lambda_Q(F_1)\bar{G}_1 = T_Q(\bar{G}_1) = \lambda_Q(F_2)\bar{G}_1,$$

which gives

$$v_p(\lambda_Q(F_1) - \lambda_Q(F_2)) \geq p^n - a.$$

(4.3)
Suppose $G_1 \notin \mathcal{O}_E F_1$, and take $H_1 \in \mathcal{V}_k(\mathcal{O}_E)$ such that F_1 and H_1 form a basis of a direct summand of $\mathcal{V}_k(\mathcal{O}_E)$ containing G_1. Write

$$G_1 = \alpha F_1 + \beta H_1, \quad \alpha, \beta \in \mathcal{O}_E.$$

Then $\beta \neq 0$. By (4.2), for any $R \in \{\wp, Q\}$ we have

$$\lambda_R(F_2) G_1 \equiv T_R(G_1) = \alpha \lambda_R(F_1) F_1 + \beta T_R(H_1) \mod \wp^n \mathcal{V}_k(\mathcal{O}_E).$$

Combined with (4.4), this implies

$$\beta T_R(H_1) \equiv \alpha (\lambda_R(F_2) - \lambda_R(F_1)) F_1 + \beta \lambda_R(F_2) H_1 \mod \wp^n \mathcal{V}_k(\mathcal{O}_E)$$

and thus we obtain

$$\alpha (\lambda_R(F_1) - \lambda_R(F_2)) \equiv 0 \mod (\beta, \wp^n).$$

Put $b = v_\wp(\beta)$. Suppose $b > p^n - p^{d'}$. Since $v_\wp(F_1) = 0$ and

$$v_\wp(G_1) \leq a \leq p^n - p^{d'} < b,$$

(4.4) gives $v_\wp(\alpha) \leq a$ and (4.6) yields

$$v_\wp(\lambda_Q(F_1) - \lambda_Q(F_2)) > p^n - p^{d'} - a.$$

Suppose $b \leq p^n - p^{d'}$. In this case we have $\beta^{-1} \wp^n \in \mathcal{O}_E$ and by (4.6) we can write

$$\alpha (\lambda_\wp(F_2) - \lambda_\wp(F_1)) = \beta \nu$$

with some $\nu \in \mathcal{O}_E$. Then (4.5) shows

$$U(H_1) \equiv \nu F_1 + \lambda_\wp(F_2) H_1 \mod \beta^{-1} \wp^n \mathcal{V}_k(\mathcal{O}_E).$$

Take an ordered basis $(F_1, H_1, \tilde{v}_3, \ldots, \tilde{v}_{d(k-1)})$ of the \mathcal{O}_E-module $\mathcal{V}_k(\mathcal{O}_E)$, and we denote by $\tilde{U}^{(k)}$ the representing matrix of U with respect to it. By (4.8), we can write

$$U(H_1) = \nu F_1 + \lambda_\wp(F_2) H_1 \mod \beta^{-1} \wp^n \mathcal{V}_k(\mathcal{O}_E).$$

Note that the elementary divisors of $\tilde{U}^{(k)}$ and $U^{(k)}$ agree with each other. Let V be the element of $M_{d(k-1)}(\mathcal{O}_E)$ with the same columns as those of $\tilde{U}^{(k)}$ except the second column which we require to be

$$V = \begin{pmatrix} \nu \\ \lambda_\wp(F_2) \\ \cdots \\ 0 \end{pmatrix}.$$
Then we have \(d(V, a) \geq 2 \). On the other hand, since \(p^n - b \geq p^{n'} \), the assumption \(a < C(n', d, \varepsilon) \) and Proposition 3.11 yield \(d(V, a) = d(k, a) = 1 \), which is the contradiction. Thus the case \(b \leq p^n - p^{n'} \) never occurs. Now the theorem follows from (4.3) and (4.7).

Remark 4.2. Putting \(\varepsilon = d(k_1, \chi, 0) \) and assuming \(d(k_1, \chi, a) = 1 \), the same proof using Proposition 3.10 and Theorem 3.14 shows that we can construct, from a Hecke eigenform \(F_1 \in \mathcal{V}_k(C_p)(\chi) \) of slope \(a \), a Hecke eigenform \(F_2 \in \mathcal{V}_{k_2}(C_p)(\chi) \) of slope \(a \), satisfying (4.1) for any integer \(k_2 \geq k_1 \) with

\[
k_2 = k_1 + m(n)(q^d - 1).
\]

Proof of Theorem 1.1. Suppose that \(n, k \) and \(a \) satisfy the assumptions of Theorem 1.1. Take any \(k' \geq k \) satisfying

\[
m = v_p(k' - k) \geq \log_p(p^n + a).
\]

Since \(n \leq m \) and \(D(n, d, \varepsilon) \) is an increasing function of \(n \) satisfying \(D(n, d, \varepsilon) \leq C(n, d, \varepsilon) \), we have

\[
a < \min\{ C(m, d, \varepsilon), k - 1 \}, \quad p^n - p^{n'} + a \geq 0, \quad a < C(n, d, \varepsilon).
\]

Note that, if \(d(k, a) = 1 \), then any \(U \)-eigenform of slope \(a \) in \(\mathcal{V}_k(C_p) \) is identified with a scalar multiple of that in \(\mathcal{V}_k(K) \subseteq S_k(\Gamma_1^0(n, \psi^r)) \) via the fixed embedding \(\iota_\psi \). Thus Theorem 4.1 produces a Hecke eigenform \(F_k' \in S_k(\Gamma_1^0(n, \psi^r)) \) such that for any \(Q \) we have

\[
v_p(\iota_\psi(\lambda_Q(F_{k'})) - \lambda_Q(F_k)) > p^n - p^{n'} - a.
\]

This concludes the proof of Theorem 1.1. \qed

4.2. **Examples.** We assume \(n = 1, \varphi = t, r = 1 \) and \(\Gamma_1^0(n, \psi^r) = \Gamma_1(t) \). In this case we have \(d = 1 \) and \(d(k, 0) = 1 \) for any \(k \geq 2 \). In the following, we give examples of congruences between Hecke eigenvalues obtained by Theorem 1.1 for this case, using results of [BV2, LM, Pet]. Note that the Hecke operator at \(Q \) considered in [BV2, Pet] is \(QT_Q \) with our normalization.

4.2.1. **Slope zero forms.** By \(d(k, 0) = 1 \), any \(U \)-eigenform of slope zero in \(S_k(\Gamma_1(t)) \) is a member of a \(t \)-adic continuous family obtained by Theorem 1.1. Some of such eigenforms can be given by the theory of \(A \)-expansions [Pet].

For any integer \(k \geq 3 \) satisfying \(k \equiv 2 \mod q - 1 \), Petrov constructed an element \(f_{k,1} \in S_k(SL_2(A)) \) with \(A \)-expansion [Pet, Theorem 1.3]. We know that \(f_{k,1} \) is a Hecke eigenform whose Hecke eigenvalue at \(Q \) is one for any \(Q \); this follows from a formula for the Hecke action [Pet, p. 2252] and \(c_a = a^{k-n} \).
For such k, let $f_{k,1}^{(t)} \in S_k(\Gamma_1(t))$ be the t-stabilization of $f_{k,1}$ of finite slope, namely
$$f_{k,1}^{(t)}(z) = f_{k,1}(z) - t^{k-1}f_{k,1}(tz).$$

It is non-zero by [Pet, Theorem 2.2]. Moreover, we can show that $f_{k,1}^{(t)}$ is a Hecke eigenform which also satisfies $\lambda_Q(f_{k,1}^{(t)}) = 1$ for any Q.

Proposition 4.3. Let $k \geq 2$ be any integer and F_k any non-zero element of $S_k(\Gamma_1(t))$ of slope zero. Then we have $\lambda_Q(F_k) = 1$ for any Q.

Proof. Let $r \in \{0, 1, \ldots, q-2\}$ be an integer satisfying $k \equiv r \mod q - 1$. For $a = 0$, we see from (3.9) that the assumptions of Theorem 1.1 are satisfied by $n = 1$. Then, for any integer $s \geq 1$, we obtain a Hecke eigenform of slope zero
$$F_{k'} \in S_{k'}(\Gamma_1(t)), \quad k' = k + (q + 1 - r)q^s$$
such that, with the fixed embedding $\iota_t : \bar{K} \to \mathbb{C}_t$, we have
$$\iota_t(\lambda_Q(F_{k'})) \equiv \iota_t(\lambda_Q(F_k)) \mod t^{s-p} \quad \text{for any } Q.$$

Since $k' \geq 3, k' \equiv 2 \mod q - 1$ and $d(k',0) = 1$, we see that $F_{k'}$ is a scalar multiple of $f_{k,1}^{(t)}$ and thus $\lambda_Q(F_{k'}) = 1$. Since s is arbitrary, this implies $\lambda_Q(F_k) = 1$. \hfill \Box

Corollary 4.4. Let $k \geq 2$ and $r \geq 1$ be any integers. Then there exists a unique character $\chi : \kappa(\varphi)^\times \to \kappa(\varphi)^\times$ satisfying $d(\Gamma_0^p(t')\backslash \Gamma_0^p(t')/(\chi)) = 1$ and any Hecke eigenform F of slope zero in $S_k(\Gamma_0^p(t'))$ satisfies $\lambda_Q(F) = 1$ for any Q.

Proof. Since $\Gamma_0^p(t) = \Gamma_1(t)$, Proposition 3.5 implies $d(\Gamma_0^p(t'), k, 0) = 1$. Since we have
$$d(\Gamma_0^p(t'), k, 0) = \sum_{\chi} d(\Gamma_0^p(t'), k, \chi, 0),$$
the uniqueness of χ and the assertion on the dimension follow. Let F_k be any Hecke eigenform of slope zero in $S_k(\Gamma_1(t))$. Since the natural inclusion $S_k(\Gamma_1(t)) \to S_k(\Gamma_0^p(t'))$ is compatible with Hecke operators, F is a scalar multiple of the image of F_k. Hence the last assertion follows from Proposition 4.3. \hfill \Box

Remark 4.5. Note that, since the only p-power root of unity in \mathbb{C}_p is one, there exists no non-trivial finite order character $1 + \varphi \mathcal{O}_{K_p} \to \mathbb{C}_p$. Thus it seems to the author that, if we try to generalize Hida theory including [Hid2, §7.3, Theorem 3] to Drinfeld cusps forms of level $\Gamma_1(t')$, then it would be natural to restrict ourselves to those of level $\Gamma_0^p(t')$. However, Corollary 4.4 shows that such a generalization is trivial.
4.2.2. **Slope one forms.** Let us consider the case $p = q = 3$ and $a = 1$. Since $D(1, 1, 1) = \sqrt{6} - \frac{1}{2} = 1.949 \ldots$, the assumptions of Theorem 1.1 are satisfied by $k \geq 3$ and $n = 1$. Then a computation using [BV2, (17)] shows $d(10, 1) = 1$. Let G_{10} and G_{19} be any non-zero Drinfeld cusp forms of level $\Gamma_1(t)$ and slope one in weights 10 and 19, respectively. Then Theorem 1.1 gives

\[
(4.9) \quad v_t(\iota_t(\lambda_0(G_{10}) - \lambda_0(G_{19}))) > 5
\]

for any Q.

For $Q = t$, using [BV2, (17)] we can show that $\lambda_0(G_{10}) = -t - t^3$, and $\lambda_t(G_{19})$ is a root of the polynomial

\[
X^4 + (t + t^3)X^3 + (-t^8 + t^{10} + t^{12} + t^{14} + t^{16})X^2 \\
+ (-t^9 - t^{11} + t^{13} + t^{15} + t^{17} + t^{19})X + (-t^{18} - t^{20} + t^{24} + t^{26} + t^{28})
\]

(see also [Val]). Put $\iota_t(\lambda_t(G_{19})) = ty$ with $v_t(y) = 0$. Then we obtain $g^3(y + 1 + t^2) \equiv 0 \bmod t^6$ and $\iota_t(\lambda_t(G_{10})) = \iota_t(\lambda_t(G_{19})) \bmod t^7$, which satisfies (4.9). In fact, plugging in $X = -t - t^3 + Z$ to the polynomial above yields $v_t(\iota_t(\lambda_0(G_{10}) - \lambda_0(G_{19}))) = 9$.

We identify $S_4(\Gamma_1(t))$ with \mathbb{C}^{k-1} via the ordered basis

\[
\{c_j(\gamma_0) = c_j(\bar{e}) \mid 0 \leq j \leq k - 2\}
\]

defined in [LM, BV2]. Then G_{10} is identified with the vector

\[
^t(0, 1 + t^2, 0, -(1 + t^2), 0, -t^2, 0, 1, 0).
\]

Thus $\lambda_{1+t}(G_{10})$ agrees with the evaluation $T_{1+t}(G_{10})(\gamma_0)(X^7Y)$ after identifying G_{10} with a harmonic cocycle. By [LM, (7.1)], we have $\lambda_{1+t}(G_{10}) = 1 - t - t^3$. On the other hand, by computing the characteristic polynomial of T_{1+t} acting on $S_{19}(\Gamma_1(t))$ using [LM, (7.1)] and plugging in $X = 1 - t - t^3 + Z$ into it, (4.9) implies $v_t(\iota_t(\lambda_{1+t}(G_{10}) - \lambda_{1+t}(G_{19}))) = 9$.

Note that, since these eigenvalues are not powers of t or $1 + t$, the Hecke eigenforms G_{10} and G_{19} are not the t-stabilizations of Hecke eigenforms with A-expansion.

References

[BV1] A. Bandini and M. Valentino: *On the Atkin U_t-operator for $\Gamma_1(t)$-invariant Drinfeld cusp forms*, Int. J. Number Theory 14 (2018), no. 10, 2599–2616.

[BV2] A. Bandini and M. Valentino: *On the Atkin U_t-operator for $\Gamma_0(t)$-invariant Drinfeld cusp forms*, to appear in Proc. Amer. Math. Soc..

[BV3] A. Bandini and M. Valentino: *On the structure and slopes of Drinfeld cusp forms*, preprint, arXiv:1812.02032v1.
[Böc] G. Böckle: An Eichler-Shimura isomorphism over function fields between Drinfeld modular forms and cohomology classes of crystals, preprint, available at http://typo.iwr.uni-heidelberg.de/groups/arith-geom/home/members/gebhard-boeckle/publications/

[Buz1] K. Buzzard: p-adic modular forms on definite quaternion algebra, unpublished notes, available at http://wwwf.imperial.ac.uk/~buzzard/maths/research/notes/

[Buz2] K. Buzzard: Eigenvarieties, L-functions and Galois representations, 59–120, London Math. Soc. Lecture Note Ser., 320, Cambridge Univ. Press, Cambridge, 2007.

[Col] R. F. Coleman: p-adic Banach spaces and families of modular forms, Invent. Math. 127 (1997), no. 3, 417–479.

[Gos] D. Goss: A construction of v-adic modular forms, J. Number Theory 136 (2014), 330–338.

[Hat1] S. Hattori: Duality of Drinfeld modules and ϕ-adic properties of Drinfeld modular forms, preprint, available at http://www.comm.tcu.ac.jp/shinh/

[Hat2] S. Hattori: Dimension variation of Gouvêa-Mazur type for Drinfeld cusp-forms of level Γ1(q), to appear in Int. Math. Res. Not.

[Hid1] H. Hida: On p-adic Hecke algebras for GL2 over totally real fields, Ann. of Math. (2) 128 (1988), no. 2, 295–384.

[Hid2] H. Hida: Elementary theory of L-functions and Eisenstein series, London Mathematical Society Student Texts 26, Cambridge University Press, Cambridge, 1993.

[Ked] K. S. Kedlaya: p-adic differential equations, Cambridge Studies in Advanced Mathematics 125, Cambridge University Press, Cambridge, 2010.

[LM] W.-C. W. Li and Y. Meemark: Hecke operators on Drinfeld cusp forms, J. Number Theory 128 (2008), no. 7, 1941–1965.

[PZ] M. A. Papanikolas and G. Zeng: Theta operators, Goss polynomials, and v-adic modular forms, J. Théor. Nombres Bordeaux 29 (2017), no. 3, 729-753.

[Pet] A. Petrov: A-expansions of Drinfeld modular forms, J. Number Theory 133 (2013), no. 7, 2247–2266.

[Ser] J.-P. Serre: Trees, Corrected 2nd printing of the 1980 English translation, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2003.

[Tei] J. T. Teitelbaum: The Poisson kernel for Drinfeld modular curves, J. Amer. Math. Soc. 4 (1991), no. 3, 491–511.

[Val] M. Valentino: Table 4, available at https://sites.google.com/site/mariavalentino84/publications/CharPoly_Ut_Gamma1_Blocks_q3.pdf

[Vin] C. Vincent: On the trace and norm maps from Γ0(p) to GL2(A), J. Number Theory 142 (2014), 18–43.