A model-independent null test on the cosmological constant

Savvas Nesseris1* and Arman Shafieloo2*

1The Niels Bohr International Academy and DISCOVERY Centre, The Niels Bohr Institute, Blegdamsvej 17, DK-2100 Copenhagen Ø, Denmark
2Department of Physics, University of Oxford, 1 Keble Road, Oxford OX1 3NP

ABSTRACT

We use the Om statistic and the genetic algorithms (GAs) in order to derive a null test on the spatially flat cosmological constant model Lambda cold dark matter (ΛCDM). This is done in two steps: first, we apply the GAs to the Constitution SNIa data in order to acquire a model-independent reconstruction of the expansion history of the Universe \(H(z) \) and secondly, we use the reconstructed \(H(z) \) in conjunction with the Om statistic, which is constant only for the ΛCDM model, to derive our constraints. We find that while ΛCDM is consistent with the data at the 2σ level, some deviations from ΛCDM model at low redshifts can be accommodated.

Key words: cosmological parameters – cosmology: theory – dark energy.

1 INTRODUCTION

In the previous decade it was discovered that the Universe is undergoing an accelerated expansion (Readhead et al. 2004; Riess et al. 2004; Spergel et al. 2007). This acceleration is usually attributed either to a cosmic fluid with negative pressure dubbed dark energy or to an infrared (IR) modification of gravity. In order to identify the properties of dark energy or the structure of the IR modification of gravity it is necessary to know to a high precision the rate of the expansion of the Universe, parametrized as \(H \equiv \dot{a}/a \), where \(a = 1/(1+z) \) is the scalefactor and \(z \) is the redshift of the cosmological probe, as it is measured by the observations.

The behaviour of the expansion of the Universe can be identified by studying two functions, the equation of state (EOS) \(w(z) \equiv P/\rho \), which can be rewritten as

\[
w(z) = -1 + \frac{1}{3}(1+z) \frac{d}{dz} \ln(\delta H(z)^2),
\]

where \(\delta H(z)^2 = H(z)^2/H_0^2 - \Omega_{m0}(1+z)^3 \) accounts for all terms in the Friedmann equation not related to matter and the deceleration parameter \(q(z) \equiv -\ddot{a}/a \dot{a} \), which can be rewritten as

\[
q(z) = -1 + (1+z) \frac{d}{dz} \ln(H(z)).
\]

Obviously, the cosmological constant \(w(z) = -1 \) corresponds to a constant dark energy density, while in general \(w(z) \) can be time dependent. Also, an important parameter is the value of the deceleration parameter today, i.e. \(q(z = 0) \equiv q_0 \), which for the cosmological constant model in general relativity (GR) it is \(q_0 = -1 + 3\Omega_{m0}/2 \).

However, despite all the recent progress the origin of the accelerated expansion of the universe still remains unknown with many possibilities still remaining open, see for example Perivolaropoulos (2006). The simplest choice that agrees well with the data is a positive cosmological constant which has to be small enough to have started dominating the universe at late times. As it was demonstrated by the 7-yr Wilkinson Microwave Anisotropy Probe (WMAP) data (Komatsu et al. 2010), the cosmological constant remains the best candidate and has the advantage of having only one free parameter related to the properties of the dark energy. None the less, this model fails to explain why the cosmological constant is so small that it can only dominate the universe at late times, a problem known as the coincidence problem and there are a few cosmological observations which differ from its predictions (Perivolaropoulos 2008; Perivolaropoulos & Shafieloo 2009).

A very important complication in the investigation of the behaviour of dark energy occurs due to the bias introduced by the parametrizations used. At the moment, there is a multitude of available phenomenological ansätze for the dark energy EOS parameter \(w \) or dark energy density, each with its own merits and limitations (see Sahni & Starobinsky 2006, and references therein). The interpretation of the Type Ia supernova (SNIa) data has been shown to depend greatly on the type of parametrization used to perform a data fit (Sahni & Starobinsky 2006; Shafieloo, Sahni & Starobinsky 2009). Choosing a priori a model for dark energy can thus adversely affect the validity of the fitting method and lead to compromised or misleading results.

The need to counteract this problem paved the way for the consideration of a complementary set of non-parametric reconstruction techniques (Daly & Djorgovski 2003; Saini 2003; Wang & Mukherjee 2004; Wang 2009; Clarkson & Zunckel 2010) and model-independent approaches (Alam, Sahni & Starobinsky 2003; Wang & Tegmark 2005; Shafieloo et al. 2006; Shafieloo 2007; Shafieloo & Clarkson 2010). These try to minimize the ambiguity due to a possibly biased assumption for \(w \) by fitting the original data sets without using any parameters related to some specific model. The result of these methods can then be interpreted in the context of a dark energy model of choice. Non-parametric reconstructions can thus corroborate parametric methods and provide more credibility. However, they too suffer from a different set of problems, mainly
the need to resort to differentiation of noisy data, which can itself introduce great errors.

In this paper, we present a method that can be used as a model-independent approach in testing the standard cosmological model. This is done by using the genetic algorithm (GA) technique, first used in the analysis of SNIa data in Bogdanos & Nesseris (2009). The GAs represent a method for non-parametric reconstruction of the dark energy EOS parameter \(w \), based on the notions of GAs and grammatical evolution (GE). GAs are more useful and efficient than usual techniques when

(i) the parameter space is very large, too complex or not enough understood, as is the case with dark energy;
(ii) domain knowledge is scarce or expert knowledge is difficult to encode to narrow the search space;
(iii) traditional search methods give poor results or completely fail.

Naturally, therefore, they have been used with success in many fields where one of the above situations is encountered, like the computational science, engineering and economics. Recently, they have also been applied to study high-energy physics (Becks, Hahn & Hemker 1994; Allanach, Grellscheid & Quevedo 2004; Rojo & Latorre 2004), gravitational wave detection (Crowder, Cornish & Reddinger 2006) and gravitational lensing (Brewer & Lewis 2005). Since the nature of dark energy still remains a mystery, this makes it for us an ideal candidate to use the GAs as a means to analyse the SNIa data and extract model-independent constraints on the behaviour of the dark energy. In Section 2 we briefly describe the Om statistic, while in Section 3 we provide an overview of the general methodology of the GA paradigm and finally, we present our results in Section 4.

2 THE OM STATISTIC

The recently introduced Om diagnostic (Sahni, Shafieloo & Starobinsky 2008) (also look at Zurcken & Clarkson 2008) enables us to distinguish Lambda cold dark matter (ΛCDM) from other dark energy models without directly involving the cosmic EOS. The Om diagnostic is defined as

\[
\text{Om}(x) = \frac{h^2(x) - 1}{x^3 - 1}, \quad x = 1 + z, \quad h(x) = H(x)/H_0. \tag{3}
\]

For dark energy with a constant EOS \(w = \text{const} \),

\[
h^2(x) = \Omega_{0m} x^3 + (1 - \Omega_{0m}) x^w, \quad \alpha = 3(1 + w) \tag{4}
\]

(we assume that the universe is spatially flat for simplicity). Consequently,

\[
\text{Om}(x) = \Omega_{0m} (1 - \Omega_{0m}) x^{w - 1} x^3 - 1. \tag{5}
\]

from where we find \(\text{Om}(x) = \Omega_{0m} \) in ΛCDM, whereas \(\text{Om}(x) > \Omega_{0m} \) in quintessence (\(\alpha > 0 \)) while \(\text{Om}(x) < \Omega_{0m} \) in phantom (\(\alpha < 0 \)). We therefore conclude that \(\text{Om}(x) - \Omega_{0m} = 0 \) if dark energy is a cosmological constant. Note that since \(\Omega_A + \Omega_{0m} \approx 1 \) in ΛCDM, this model contains standard cold dark matter (SCDM) (\(\Omega_{0m} = 1, \Omega_A = 0 \)) as an important limiting case. Consequently the Om diagnostic cannot distinguish between large and small values of the cosmological constant unless the value of the matter density is independently known. In other words, the Om diagnostic provides us with a null test of the cosmological constant. This is a simple consequence of the fact that \(h^2(x) \) plotted against \(x^3 \) results in a straight line for ΛCDM, whose slope is given by \(\Omega_{0m} \). For other dark energy models the line describing \(\text{Om}(x) \) is curved, since the equality

\[
\frac{d[h^2]}{dx^3} = \text{constant} \tag{6}
\]

(which always holds for ΛCDM for any \(\alpha = 1 + z \)) is satisfied in quintessence/phantom type models only at redshifts significantly greater than unity, when the effects of dark energy on the expansion rate can safely be ignored. As a result the efficiency of the Om diagnostic improves at low redshifts (\(z < 2 \)) precisely where there is likely to be an abundance of cosmological data in the coming years!

For a constant EOS, \(1 + w \simeq (\text{Om}(z) - \Omega_{0m}) (1 - \Omega_{0m})^{-1} \) at \(z \ll 1 \), consequently a larger \(\text{Om}(z) \) is indicative of a larger \(w \); while at high \(z \), \(\text{Om}(z) \to \Omega_{0m} \), as shown in Fig. 1.

On the other hand, for quintessence as well as phantom the line describing \(\text{Om}(x) \) is curved, which helps distinguish these models from ΛCDM even if the value of the matter density is not accurately known – see Fig. 1.

In practice, the construction of Om requires a knowledge of the Hubble parameter, \(h(z) \), which can be determined using a number of model-independent approaches (Alam et al. 2003; Sahni et al. 2003; Wang & Tegmark 2005; Shafieloo et al. 2006; Shafieloo 2007; Shafieloo & Clarkson 2010).

3 GENETIC ALGORITHMS

3.1 Overview

GAs were introduced as a computational analogy of adaptive systems. They are modelled loosely on the principles of the evolution via natural selection, employing a population of individuals that undergo selection in the presence of variation-inducing operators such as mutation and crossover. The encoding of the chromosomes is called the genome or genotype and is composed, in loose correspondence to actual DNA genomes, by a series of representative ‘genes’. Depending on the problem, the genome can be a series

Figure 1. The Om diagnostic is shown as a function of redshift for dark energy models with \(\Omega_{0m} = 0.27 \) and \(w = -1, -0.8, -0.6, -0.4, -0.2 \) (bottom to top). For phantom models (not shown) Om would have the opposite curvature.
(vector) of binary numbers, decimal integers, machine precision
integers or reals or more complex data structures.

In order to evaluate the individual chromosomes a fitness func-
tion is used and reproductive success usually varies with fitness.
The fitness function is a map between the gene sequence of the
chromosomes (genotype) and a number of attributes (phenotype),
directly related to the properties of a wanted solution. Often the
fitness function is used to determine a ‘distance’ of a candidate so-

The algorithm begins with an initial population of candidate solu-
tions, which is usually randomly generated. Although GAs are
relatively insensitive to initial conditions, i.e. the population we
start from is not very significant, but using some prescription for
producing this seed generation can affect the speed of convergence.
In each successive step, the fitness functions for the chromosomes
of the population are evaluated and a number of genetic operators
(mutation and crossover) are applied to produce the next generation.
This process continues until some termination criteria are reached,
e.g. obtain a solution with fitness greater than some pre-defined
threshold or reach a maximum number of generations. The latter is
imposed as a condition to ensure that the algorithm terminates even
if we cannot get the desired level of fitness.

The various steps of the algorithm can be summarized as follows.

(i) Randomly generate an initial population \(M(0) \).
(ii) Compute and save the fitness for each individual \(m \) in the
current population \(M(t) \) so that \(p(m) \) is proportional to the fitness.
(iii) Define selection probabilities \(p(m) \) for each individual \(m \) in
\(M(t) \) by probabilistically selecting individuals from \(M(t) \) to produce offspring via genetic operators (crossover and
mutation).
(iv) Generate \(M(t+1) \) by probabilistically selecting individuals
from \(M(t) \) to produce offspring via genetic operators (crossover).
(v) Repeat step (ii) until a satisfying solution is obtained, or a
maximum number of generations reached.

We should stress that the initial population \(M(0) \) will only depend
on the choice of the grammar and therefore it can only affect on how
fast the algorithm will converge to the minimum. Using the wrong
grammar may result in the GA being trapped in a local minimum.
Also, two important parameters that affect the transition from the
population \(M(t) \) to \(M(t+1) \) are the selection rate and the mutation
rate. The selection rate is typically of the order of 10 per cent and
it affects how many of the individuals, after they are ranked with
respect to their fitness, will be allowed to produce offspring. The
mutation rate is usually of the order of 5 per cent and it expresses
the probability that an arbitrary part of the genetic sequence will be
changed from its previous state. This is done in order to maintain the
genetic diversity from one generation of a population to the next.

The paradigm of GAs described above is usually the one applied
to solving most of the problems presented to GAs. Though it might
not find the best solution, more often than not, it would come up
with a partially optimal solution. A more detailed overview and its
application in cosmology can be found in Bogdanos & Nesseris.

The difference of the GA over the standard analysis of the data,
i.e. having an a priori defined model with some free parameters,
is that the obtained values of the best-fitting parameters are model
dependent and in general models with more parameters tend to give
better fits to the data. This is where the GA approach starts to depart
from the ordinary parametric method. Our goal is to minimize a
function, not using a candidate model function for the distance
modulo and varying parameters, but through a stochastic process
based on a GA evolution. This way, no prior knowledge of a dark
energy model is needed to obtain a solution and our result will be
completely parameter-free.

In simpler terms, the GA method does not require an a priori
assumption for a dark energy (DE) model, but uses the data them-
selves to find this model. Also, it is parameter-free as the end result
does not have any free parameters that can be changed in order to fit
the data. So, in this sense this method has far less bias than any of
the standard methods for the reconstruction of the expansion history
of the Universe. This is the main reason for the use of the GAs in
this paper.

3.2 General methodology

We first outline the course of action we follow to apply the GA
paradigm in the case of SNIa data. For the application of GA and
GE on the data set, we use a modified version of the \(GDF \) (Tsoulos,
Gavrili & Dermatas 2006) tool,\(^1\) which uses GE as a method to
fit data sets of arbitrary size and dimensionality. This program uses
the tournament selection method for crossover. \(GDF \) requires a set of
input data (train set), an (optional) test sample and a grammar to be
used for the generation of functional expressions. The output is an
expression for the function which best fits the train set data.

Since the SNIa data points are given in terms of the distance
modulo \(\mu_{\text{obs}}(z_i) \), the fitness function for the GA we have chosen is
equal to \(-\chi^2_{\text{SNIa}} \), where

\[
\chi^2_{\text{SNIa}} = \sum_{i=1}^{N} \left(\frac{\mu_{\text{obs}}(z_i) - \mu_{\text{GA}}(z_i)}{\sigma_{\mu,i}} \right)^2,
\]

where for the constitution set \(N = 397 \) and \(\sigma_{\mu,i}^2 \) are the errors due to
flux uncertainties, intrinsic dispersion of SNIa absolute magnitude
and peculiar velocity dispersion and \(\mu_{\text{GA}}(z_i) \) is the reduced distance
modulo obtained for each chromosome of the population by the
GA.

An advantage of our method is the fact that neither the \(\chi^2_{\text{SNIa}} \) nor
the \(\mu_{\text{GA}}(z) \) depend on any parameters. Also, as it can be seen from
equation (7), our method does not make an assumption of flatness
or not in order to fit the data. Flatness (or non-flatness) only comes
into play when one tries to find the luminosity distance \(d_L(z) \) and the
underlying dark energy model given the best-fitting form of \(\mu_{\text{GA}}(z) \).
So, in this aspect the result produced by the GA is independent of the
assumption of flatness as well.

The GA evaluates (7) in each evolutionary step for every chromo-
some of the population. The one with the best fitness will con-
ssequently have the smallest \(\chi^2_{\text{SNIa}} \) and will be the best candidate
solution in its generation. Of all the steps in the execution of the
algorithm, the evaluation of the fitness is the most expensive. \(GDF \)
is appropriately modified to use (7) as the basis of its fitness calcu-
lation.

After the execution of the GA, we obtain an expression \(\mu_{\text{GA}}(z) \)
for the reduced distance modulo as the solution of best fitness and
the corresponding \(\chi^2_{\text{SNIa}} \). Using this we can, through differentiation,
obtain other functions or parameters of interest, such as the Om
statistic or the deceleration parameter \(q \). For example, for a flat
Universe the Hubble parameter will be given by

\[
H(z) = \frac{d}{dz} \left(\frac{10^{\mu_{\text{GA}}(z)/5}}{1 + z} \right),
\]

and then the deceleration parameter can be found by equation (2).

\(^1\) http://cpc.cs.qub.ac.uk/summaries/ADXC
3.3 An example

In this section we will briefly describe a simple example of how the GA determines the best fit. We will avoid describing the technicalities, like the binary representation of the solutions, and instead we will concentrate on how the generations evolve, how many and which individuals are chosen for the next generation, etc.

As we mentioned earlier, the choice of the grammar is very important; however, in order to keep our example as simple as possible we will assume that our grammar includes only basic functions like polynomials x, x^2, etc., the trigonometric functions $\sin(x), \cos(x)$, the exponential e^x and the logarithm $\ln(x)$.

The first step in the GA is setting up a random initial population $M(0)$ which can be any simple combination of these functions, e.g. $\mu_{GA,1}(z) = \ln(z), \mu_{GA,2}(z) = -1 + z + z^2$ and $\mu_{GA,3}(z) = \sin(z)$. The number of candidate solutions (chromosomes) in the genetic population is usually a few hundreds and later on we will use the value of 500.

Next, the algorithm measures the fitness of each solution by calculating their χ^2, i.e. for our simple example $\chi_1^2 = 80.579.9, \chi_2^2 = 292.767.0$ and $\chi_3^2 = 412.928.0$. The selection per se is done by implementing the ‘tournament selection’ method which involves running several ‘tournaments’, sorting the population with respect to the fitness of each individual and after that a fixed percentage, adjusted by the selection rate (see the previous subsection), of the population is chosen. As we mentioned, the selection rate is of the order of 10 per cent of the total population, but let us assume that the two out of the three candidate solutions [$\mu_{GA,1}(z)$ and $\mu_{GA,2}(z)$] are chosen for the sake of simplicity.

The reproduction of these two solutions will be done by the crossover and mutation operations. The crossover will randomly combine parts of the ‘parent’ solutions, for example in one such realization this may be schematically shown as

$$\mu_{GA,1}(z) \oplus \mu_{GA,2}(z) \rightarrow (\bar{\mu}_{GA,1}(z), \bar{\mu}_{GA,2}(z), \bar{\mu}_{GA,3}(z))$$

$$= (\ln(z^2), -1 + \ln(z^2), -1 + \ln(z^2)).$$

After this is done, the GA will proceed to implement the mutation operation. The probability for mutation is adjusted by the mutation rate, which as we mentioned is typically of the order of 5 per cent. In our example this may be a change in the value of some term or the change in the value of a coefficient. For example, for the candidate solution $\bar{\mu}_{GA,3}(z)$ this can be schematically shown as $\bar{\mu}_{GA,3}(z) = -1 + \ln(z) \rightarrow -1 + \ln(z^3)$, where the power of the z term was mutated from 1 to 3.

Finally, at the end of the first round we have the three candidate solutions

$$M(1) = (\bar{\mu}_{GA,1}(z), \bar{\mu}_{GA,2}(z), \bar{\mu}_{GA,3}(z))$$

$$= (\ln(z^2), -1 + \ln(z^2), -1 + \ln(z^2)).$$

At the beginning of the next round the fitness of each individual will again be determined, which for our population will be $(\chi_1^2, \chi_2^2, \chi_3^2) = (3909.2, 18435, 113.327)$, and the selection and the other operations will proceed as before. It is easily seen that even after one generation the χ^2 of the candidate solutions has decreased dramatically and as we will see in the next section, it only takes a bit more than 100 generations to reach an acceptable χ^2 and about 500–1000 generations to start converging on the minimum.

After a pre-determined number of generations, usually of the order of 10^4, has been reached or some other criteria have been met, the GA will finish, with the best candidate solution of the last generation being the best fit to the data.

4 RESULTS

We will now examine a number of different configurations, highlighted in Table 1. In order to keep our analysis as simple as possible we will use a basic grammar that includes polynomials like x, x^2, etc., the trigonometric functions $\sin(x), \cos(x)$, the exponential e^x and the logarithm $\ln(x)$ and a second grammar that includes the basic grammar and the Legendre polynomials. For the analysis we will use the Constitution SNIa data set of Hicken et al. (2009) consisting of 397 SNIa. The steps followed for the usual minimization of (7) in terms of its parameters are described in details in Nesseris & Perivolaropoulos (2004, 2005), Lazkoz, Nesseris & Perivolaropoulos (2005) and Nesseris & Perivolaropoulos (2007).

In Fig. 2 we show the fitness (equal to $-\chi^2$) as a function of the number of generations. Clearly, all configurations seem to have converged very early or to be very close to converging to their minimum. An exception is case 3 which even after 3000 generations still has not converged and we had to run the simulation for another 3000 generations to check its convergence. Since we want to compare the

Table 1. The different cases considered in the analysis. The basic grammar includes polynomials, trigonometric functions, exponentials and logarithms. For ΛCDM the best fit corresponds to $\Omega_m = 0.289$.

Case	Grammar	χ^2_{\min}
Case 1	Basic grammar	465.19
Case 2	Basic grammar + Legendre polyn.	477.87
Case 3	Only poly. in grammar (3000 gen.)	468.19
Case 4	Only poly. in grammar (6000 gen.)	462.56
ΛCDM	$H(z)^2 = H_0^2[(\Omega_m+1)+1-\Omega_m] = 465.51$	
A null test on the cosmological constant

Figure 2. The fitness (equal to \(-\chi^2\)) as a function of the number of generations. The magenta line corresponds to case 1, the green line to case 2 and the blue line to case 3. The inset graphic shows case 4.

Figure 3. The SNIa distance modulus against the redshift. The red line represents the best-fitting \(\Lambda CDM\) model with \(\Omega_m = 0.289\) while the magenta, blue, green and cyan (best-fitting) lines correspond to cases 1–4, respectively.

Figure 4. The Om statistic against the redshift. The black dashed line represents the \(\Lambda CDM\) value of \(\Omega_m = 0.289\) while the magenta, blue, green and cyan (best-fitting) lines correspond to cases 1–4, respectively.

Figure 5. The deceleration parameter \(q\) against the redshift. The red line represents the best-fitting \(\Lambda CDM\) model with \(\Omega_m = 0.289\) while the magenta, blue, green and cyan (best-fitting) lines correspond to cases 1–4, respectively.

configurations with equal standards, i.e. number of generations etc., we will treat this case (case 4) separately.

As it can be seen from Table 1 and Fig. 3, most configurations agree well with the data and actually have a minimum \(\chi^2\) comparable or even better with respect to \(\Lambda CDM\). An exception to this is case 2, where the best fit differs from \(\Lambda CDM\) by a \(\Delta\chi^2 = 12\) thus providing a much poorer fit. The reason for this is the fact that by increasing the grammar we effectively increase the landscape in which the algorithm has to search and therefore we are making the fit poorer as the GA will take much much longer to converge.

In Figs 4 and 5 we show the corresponding results of each case for the Om statistic and the deceleration parameter \(q(z)\) (our best-fitting function corresponds to the cyan line). Due to the presence of trigonometric functions into the best fit and the fact that the Om statistic is derived from the Hubble parameter by differentiation, case 1 exhibits strong oscillations. This is also apparent in the corresponding plot for the deceleration parameter for case 2 (magenta line, Fig. 5).

As it can be seen in Fig. 1, a constant \(w\) (but different from \(w = -1\)) forces the Om statistic to be a monotonic function that is located completely either above or below the constant case (\(\Omega_m = 0.289\)). However, none of the curves in Fig. 4 is a monotonic function and all of them cross the constant Om case several times. Also, all cases remain reasonably close to the \(\Lambda CDM\) value of \(\Omega_m = 0.289\) for intermediate redshifts but deviate from that value at high or low redshifts. Therefore, this could be the effect of a time-dependent EOS \(w(z)\) instead of a constant \(w\). Comparing with Fig. 1, it is possible that this behaviour is due to an EOS \(w(z)\) more negative than \(-1\).

This is also supported from Figs 4 and 5 as at low redshifts all cases predict a much different form of acceleration than the best-fitting \(\Lambda CDM\). In Figs 4 and 5 our best-fitting results show an overall slowing down of the acceleration at the low redshifts [which is in concordance with results presented in Shafieloo et al. (2009) with a very rapid increase of acceleration at the very low redshifts]. These are very similar with the results presented in fig. 2 of Shafieloo & Clarkson (2010) where smoothing method of reconstruction of the expansion history of the universe is being used. It is obvious that when two very different model-independent approaches reach to a similar result, we must be on the right track and very close to the best possible result. However, theoretical interpretation of these results is beyond the scope of this paper. In fact there might be very different mechanisms that result to a similar expansion.
history of the universe as we reconstructed in this paper (e.g. see Csaki, Kaloper & Terning 2002; Alam et al. 2003; Kelly et al. 2010; Sullivan et al. 2010).

In Fig. 6 we show the Om statistic as a function of the redshift z. The black line corresponds to the best fit of case 4, while the grey-shaded area to the 2σ error region. The error region was calculated by implementing a bootstrap Monte Carlo simulation as discussed in the previous section. Note that the overall slowing down of the acceleration at the low redshifts cannot be clearly seen from this figure as the errors are quite symmetrical around the best-fitting ΛCDM value. However, as we mentioned earlier this is clearly seen by the behaviour of the deceleration parameter in Fig. 5.

As it can be seen in Fig. 6, ΛCDM remains consistent with the data at the 2σ level but at the same time, some deviations from the standard ΛCDM model can be accommodated. Due to the large error bars of the current data sets, many dark energy models are still consistent with them but we expect this to change in the near future with the advent of high-quality SNIa observations.

In Fig. 7 we show a histogram of the bootstrap distribution found from the Monte Carlo simulation that was used to create the error regions of Fig. 6.

Figure 6. The Om statistic as a function of redshift. The black line corresponds to case 4 (the best fit), while the grey-shaded area to the 2σ error region. The error region was calculated by implementing a bootstrap Monte Carlo simulation (see text for details).

Figure 7. Histogram of the bootstrap distribution found from the Monte Carlo simulation that was used to create the error regions of Fig. 6.

On the other hand, the Om diagnostic (Sahni et al. 2008) enables us to distinguish ΛCDM from other dark energy models without directly involving the cosmic EOS.

Our methodology is completely model independent and it can be summarized in two steps: first, we applied the GA to the Constitution SNIa data in order to acquire a model-independent reconstruction of the expansion history of the Universe $H(z)$. After we reconstructed $H(z)$, the second step was to use it in conjunction with the Om statistic and derive our null test.

Our main result was that ΛCDM remains consistent with the data at the 2σ level, see Fig. 6, but at the same time, some deviations from the standard ΛCDM model can be accommodated and this is also in accordance with the data especially at low redshifts (see the behaviour of the best fit in Fig. 6).

However, we should mention that the slowing down at low redshifts for the constitution set mentioned earlier can also be seen with the standard analysis with the Chevalier-Polarski-Linder (CPL) ansatz (see Sanchez, Nesseris & Perivolaropoulos 2009) but only for the constitution set. For the other SNIa data sets the reverse trend (speeding up the acceleration at low z) was observed. For this reason and due to the fact that the current data still have quite large errors we believe that the full potential of our method, while it is very promising, will only be realized in the near future when more high-quality SNIa data will become available. When this happens, the error region at low z in Fig. 6 will be small enough for the Om statistic to completely discriminate between ΛCDM and the various dark energy models.

5 CONCLUSIONS

We used the Om statistic and the GAs in order to derive a null test on the cosmological constant model ΛCDM. Our interest in the GAs stems from the fact that they represent a method for non-parametric reconstruction of the expansion history of the universe, based on the notions of GAs and GE. These kinds of algorithms are more useful and efficient than usual techniques especially when the problem under examination is not well understood, as is the case with dark energy. Since the nature of dark energy still remains a mystery, this makes it for us an ideal candidate to use the GAs as a means to analyse the SNIa data and extract model-independent constraints on the behaviour of the dark energy. On the other hand, the Om diagnostic (Sahni et al. 2008) enables us to distinguish ΛCDM from other dark energy models without directly involving the cosmic EOS.

Our methodology is completely model independent and it can be summarized in two steps: first, we applied the GA to the Constitution SNIa data in order to acquire a model-independent reconstruction of the expansion history of the Universe $H(z)$. After we reconstructed $H(z)$, the second step was to use it in conjunction with the Om statistic and derive our null test.

Our main result was that ΛCDM remains consistent with the data at the 2σ level, see Fig. 6, but at the same time, some deviations from the standard ΛCDM model can be accommodated and this is also in accordance with the data especially at low redshifts (see the behaviour of the best fit in Fig. 6).

However, we should mention that the slowing down at low redshifts for the constitution set mentioned earlier can also be seen with the standard analysis with the Chevalier-Polarski-Linder (CPL) ansatz (see Sanchez, Nesseris & Perivolaropoulos 2009) but only for the constitution set. For the other SNIa data sets the reverse trend (speeding up the acceleration at low z) was observed. For this reason and due to the fact that the current data still have quite large errors we believe that the full potential of our method, while it is very promising, will only be realized in the near future when more high-quality SNIa data will become available. When this happens, the error region at low z in Fig. 6 will be small enough for the Om statistic to completely discriminate between ΛCDM and the various dark energy models.

ACKNOWLEDGMENTS

The authors acknowledge use of the ddf program. The source code is freely available from http://cpc.cs.qub.ac.uk/summaries/ADXC. The authors would like to thank L. Perivolaropoulos and an anonymous referee for very useful comments on the manuscript. SN would like to thank C. Bogdanos for very fruitful discussions and the Laboratoire de Physique Théorique (LPT) in Orsay for the warm hospitality during his stay there. SN is supported by the Niels Bohr International Academy, the Danish Research Council under FNU Grant No. 272-08-0285 and the DISCOVERY centre. AS acknowledges the support of the EU FP6 Marie Curie Research and Training Network ‘UniverseNet’ (MRTN-CT-2006-035863). AS would like to thank the Niels Bohr International Academy and DISCOVERY Centre where part of this work was undertaken.
REFERENCES
Alam U., Sahni V., Starobinsky A. A., 2003, J. Cosmol. Astropart. Phys., 304, 2
Allanach B. C., Grellscheid D., Quevedo F., 2004, J. High Energy Phys., 407, 69
Becks K. H., Hahn S., Hemker A., 1994, Physikalische Blatter, 50, 238
Bogdanos C., Nesseris S., 2009, J. Cosmol. Astropart. Phys., 905, 6
Brewer B. J., Lewis G. F., 2005, Publ. Astron. Soc. Australia, 22, 128
Clarkson C., Zunckel C., 2010, Phys. Rev. Lett., 104, 211301
Crowder J., Cornish N. J., Reddinger L., 2006, Phys. Rev. D, 73, 63011
Csaki C., Kaloper N., Terning J., 2002, Phys. Rev. Lett., 88, 161302
Daly R. A., Djorgovski S. G., 2003, ApJ, 597, 9
Efron B., 1982, Society of Industrial and Applied Mathematics, CBMS-NSF
Monographs 38
Hicken M., Wood-Vasey W. M., Blondin S., Challis P., Jha S., Kelly P. L., Rest A., Kirshner R. P., 2009, ApJ, 700, 1097
Kelly P., Hickern M., Burke D. L., Mandel K. S., Kirshner R. P., 2010, ApJ, 715, 743
Komatsu E. et al., 2010, preprint (arXiv:1001.4538)
Lazkoz R., Nesseris S., Perivolaropoulos L., 2005, J. Cosmol. Astropart. Phys., 511, 10
Nesseris S., Perivolaropoulos L., 2004, Phys. Rev. D, 70, 43531
Nesseris S., Perivolaropoulos L., 2005, Phys. Rev. D, 72, 123519
Nesseris S., Perivolaropoulos L., 2007, J. Cosmol. Astropart. Phys., 701, 18
Perivolaropoulos L., 2006, in AIP Conf. Proc. Vol. 848. Am. Inst. Phys., New York, p. 698
Perivolaropoulos L., 2008, preprint (arXiv:0811.4684)
Perivolaropoulos L., Shafieloo A., 2009, Phys. Rev. D, 79, 123502
Press W. H., Teukolsky S. A., Vetterling W. T., Flannery B. P., 1994, Numerical Recipes. Cambridge Univ. Press, Cambridge
Readhead A. C. S. et al., 2004, ApJ, 609, 498
Riess A. G. et al., (Supernova Search Team Collaboration), 2004, ApJ, 607, 665
Rojo J., Latorre J. I., 2004, J. High Energy Phys., 401, 55
Sahni V., Starobinsky A., 2006, Int. J. Modern Phys. D, 15, 2105
Sahni V., Saini T. D., Starobinsky A. A., Alam U., 2003, J. Exp. Theor. Phys. Lett., 77, 201 (Pisma Zh. Eksp. Teor. Fiz., 77, 249)
Sahni V., Shafieloo A., Starobinsky A. A., 2008, Phys. Rev. D, 78, 103502
Saini T. D., 2003, MNRAS, 344, 129
Sanchez J. C. B., Nesseris S., Perivolaropoulos L., 2009, J. Cosmol. Astropart. Phys., 911, 29
Shafieloo A., 2007, MNRAS, 380, 1573
Shafieloo A., Clarkson C., 2010, Phys. Rev. D, 81, 83537
Shafieloo A., Alam U., Sahni V., Starobinsky A. A., 2006, MNRAS, 366, 1081
Shafieloo A., Sahni V., Starobinsky A. A., 2009, Phys. Rev. D, 80, 101301
Spergel D. N. et al., (WMAP Collaboration), 2007, ApJS, 170, 377
Sullivan M. et al., 2010, MNRAS, 406, 782
Tsoulos I. G., Gavrilis D., Dermatas E., 2006, Comput. Phys. Communications, 174, 555
Wang Y., 2009, Phys. Rev. D, 80, 123525
Wang Y., Mukherjee P., 2004, ApJ, 606, 654
Wang Y., Tegmark M., 2005, Phys. Rev. D, 71, 103513
Zunckel C., Clarkson C., 2008, Phys. Rev. Lett., 101, 181301

This paper has been typeset from a TeX file prepared by the author.