Packaging interventions in low temperature preservation of fish—a review

Abstract

Consumers demand for fresh or fresh like fish products without altering its natural quality attributes will be met by using low temperature preservation particularly chilling. Low temperature preservation is widely practiced in the industry to overcome the spoilage of fish. However, low temperature alone has limited shelf-life which lead to the introduction of innovative packaging interventions ranging from high barrier packaging material to most recent active packaging technologies. Vacuum packaging (VP) and modified atmosphere packaging (MAP) helped in reviving the fresh fish industry ads they helped in improving safety as well as shelf life considerably. The recent active packaging technologies especially O2 scavenger and CO2 emitters have additional advantage of very limited capital investment compared to VP and MAP technologies. Present article gives a brief of recent advancements of these packaging innovations for fish preservation under chilled or refrigerated storage condition.

Keywords: fish, chilling, vacuum packaging, modified atmosphere packaging, active packaging

Abbreviations: VP, vacuum packaging; MAP, modified atmosphere packaging; PUFA, poly-unsaturated fatty acids; EPA, eicosapentaenoic acid; DHA, docosahexaenoic acid; NPN, non-protein nitrogen; GRAS, generally recognized-as-safe; MA, modified atmosphere; AP, active packaging

Highlights

i. Chilling/refrigerated fish preservation is the most widely preferred as it has limited effects on sensorial quality.

ii. Vacuum packaging and modified atmosphere packaging improves safety and shelf life of fishes.

iii. Active packaging technologies are most effective packaging interventions in improving shelf life of fish.

Introduction

Consumption of fish is increasing globally due to increasing evidence of positive benefits for medical conditions like constipation, cardiovascular diseases, obesity, hypertension and certain variety of cancer. World per capita apparent fish consumption increased from an average of 9.9kg in the 1960s to 19.2kg in 2012. Fish is the main source of protein in many parts of the world. Fish is a rich source of dietary proteins and omega-3 (n-3) fatty acids which reduces cholesterol levels. Various health benefits have been attributed to the consumption of fish like cardioprotective benefits, improved pregnancy outcomes, fewer preterm and low birth weight deliveries. Though fish is highly nutritious, it is also highly perishable due to the presence of high moisture, protein and highly oxidizable polyunsaturated fatty acids (PUFA), making it vulnerable to various biochemical, physical and microbial forms of deterioration throughout the production chain. Proper preservation of fish assumes greater importance to reduce the wastage of nutritious food commodity. Among the various preservation methods available, low temperature preservation especially chilling or refrigerated storage has attracted interest of many researchers as it induces minimal changes in the texture and other characteristics of fish. However, it has limited shelf life depending on the species of fish. Although various researchers have reported beneficial effects of using innovative packaging technologies like vacuum packaging, modified atmosphere packaging and active packaging technologies on the safety and shelf life of fish products, there is no report on the detailed review in these aspects. In this review, an attempt was made to compile data obtained from literature related to the packaging interventions to enhance the quality and shelf life of fish products preserved in low temperature storage conditions.

NUTRITIVE BENEFITS OF FISH

Health, nutrition and convenience are the most demanding, challenging and major drivers in the global food industry. The fresh fish and seafood’s rank third (12% growth rate) among the food categories with the fastest overall growth worldwide in 2006, next to drinkable yogurt (18%) and fresh soup (18%). Seafood products have attracted considerable attention as a source of high amounts of important nutritional components like high-quality protein, essential vitamins and minerals and healthful polyunsaturated fatty acids to the human diet. Fish is regarded as one of the cheapest animal protein sources and it accounts for about 40% of the total animal protein intake of an average person in the tropics. Societies with high fish intake have considerably lower rates of acute myocardial infarctions, other heart diseases and atherosclerosis, arthritis, asthma and other inflammatory or self-immune illnesses or certain types of cancer. The highest life expectancies in Japan could be attributed to their high seafood consumption. The above mentioned benefits are thought to be due to rich omega-3 poly unsaturated fatty acids content (Ω-3 PUFA). Furthermore, dietary intake of Ω-3 PUFA was inversely related to the risk of impaired cognitive function. Ω-3 PUFA are also critical for normal neural and visual development in the human foetus. The two important Ω-3 PUFAs, EPA (Eicosapentaenoic acid) and DHA (Docosahexaenoic acid) are available to consumers mainly...
through a diet rich in fish. Studies also indicated that dietary factors such as DHA have neuroprotective effects which help in preventing Alzheimer’s disease.\(^\text{11}\) Nutrition recommendations in many countries suggest that fish should be an integral part of a nutritious human diet. In many countries, seafood consumption has increased considerably due to the above benefits. As fish is highly nutritious it is also highly perishable due to its high moisture content, protein and highly oxidizable PUFA. Due to this fish and fish products are vulnerable to various biochemical, physical and microbial forms of deterioration throughout the production chain (catch to retail sale) which leads to the breakdown of protein and lipid fractions and the formation of amine (volatile and biogenic) and hypoxanthine. In spite of the potential health benefits related to fish consumption, eating of fish containing oxidized fatty acids limited health benefit. The fish lipid containing high amount of polysaturated fatty acids are known to be highly susceptible to oxidative breakdown\(^\text{12-13}\) and heat catalysts strongly for the initiation of lipid peroxidation.\(^\text{14-23}\) These oxidation products can lead to certain medical disorders, such as higher risk of atherosclerosis,\(^\text{24}\) oxidative stress, and exacerbate at heterogenesis by incorporating into lipoproteins,\(^\text{25}\) and serious alterations in membrane composition, fluidity, and function.\(^\text{26}\) These leads to deterioration in sensory quality, a loss of nutritional value, and negative modifications of the physical properties of fish muscle.\(^\text{27-28}\) In order to increase the average amount of fish consumption, good quality seafood that is well prepared and conveniently packed should be available.\(^\text{27}\)

Spoilage of fish

The principal constituents of fish muscle are water (66-89%), protein (16-21%), lipids (0.25-25%) and ash (1.2-1.5%). The myofibrillar protein, actin and myosin (2/3 of proteins) play an essential role when fish swims. The water soluble proteins are mostly enzymes.\(^\text{29}\) Fish and shellfish are highly perishable, because of the intrinsic factors (for example, high \(a_\text{w}\), neutral pH, presence of autolytic enzymes, highly digestible proteins and highly unsaturated fatty acids, large amounts of non-protein nitrogen (NPN), the presence of TMAO as part of NPN fraction, mainly in marine fishes) and the extrinsic factors (for example, temperature, processing and packaging atmosphere).\(^\text{30-38}\) The fish spoilage is also due to the high metabolic rate of the species, with enzymes that remain active after death, causing protein hydrolysis.\(^\text{37}\) The rate of deterioration is associated with many factors such as fish species, size and lipid content, condition at the moment of capture, microbial load, and storage temperature.\(^\text{38-40}\) Enzymatic and chemical reactions are usually responsible for the initial loss of freshness, whereas microbial activity is responsible for the obvious spoilage, thereby establishing product shelf life and resulting in heavy economic loss. In living muscle cells, a wide variety of controlled biological (enzymatic) reactions occurs. In the dead cells, these reactions continue or take place in a disturbed way, and sensory changes, chemical and enzymatic reactions are triggered in fish muscle, resulting in the gradual loss of fish freshness.\(^\text{38-41}\) Animals maintain energy for living through the oxidation of all kinds of organic compounds in their bodies. Due to the decrease in oxygen supply to the tissue after fish death, anaerobic metabolism takes over, resulting in the conversion of glycogen to lactic acid. With a decrease in ATP content and creatinine phosphate\(^\text{42-43}\) actin and myosin gradually associate to form inextensible actomyosin (onset of rigor mortis) which leads to stiffening and rigid condition of muscle tissues. Fish generally exhibit rigor mortis starting from about 1 to 6h after death when ATP is being depleted below a certain critical level in the muscle.\(^\text{44}\) The reduced pH due to accumulation of lactic acid and lowering ATP interact with other biochemical processes occurring after death, especially myofibrillar proteolysis. Lysoosomal cathepsins, neutral calcium-activated cathepains and proteasomes are the three proteolytic systems which should bring about the post mortem changes resulting in flesh deterioration. Calpains may initiate the disintegration of the Z line by a titae cleavage,\(^\text{45}\) which weakens the titan-\(\alpha\)-actinin interaction and results in the release of intact-\(\alpha\)-actinin from Z lines.\(^\text{46}\) Similarly, cathepsins and proteasomes have been reported to induce muscle softening.\(^\text{47-49}\) Rigor mortis disappears in a short time even under the most favourable storage conditions. Immediately thereafter, the decomposition of the highly complex protein of the fish muscle into simpler protein, polypeptides and amino acids starts to take place. These changes are known as autolysis. While autolysis is proceeding, bacterial decomposition begins, which is the most complex and important of all the changing processes. Although the flesh of the freshly caught fish is sterile, the external surfaces carry a considerable bacterial load. In the gutted fish, the bacteria proceeds from the kidney, along the cardinal vein, which lies beneath the backbone in the caudal region of the fish and breaking up the corpuscles and finally entering the tail flesh. Apart from this, improper handling also causes the bacterial contamination. A bacterium thus enters degrades fish constituents, particularly non-protein nitrogen compounds and induces the development of off-odors and flavors typically associated with fish spoilage.\(^\text{50}\) The rate of spoilage depends on several factors, the nature of fish species and the handling and storage conditions etc.\(^\text{28-31}\) These changes coupled with the chemical activities mainly lipid oxidation, leads to loss of quality and subsequent spoilage which makes the fish unfit for human consumption. To minimize these changes there by spoilage and to maintain the quality of fish products for prolonged period various preservation methods are being employed worldwide.

Fish preservation

The two major problems with respect to marketing and distribution of seafood’s are their high perish ability and poor hygienic quality.\(^\text{56}\) To overcome these problems various preservation methods are being practiced. The principle aim of fish preservation is to delay, reduce or inhibit the enzymatic, chemical and microbial spoilage. This is achieved by controlling the storage temperature, maintaining proper water activity, pH or by using chemical preservatives.\(^\text{52}\) The concept of temperature control as a means to prolong shelf life is well understood, and the response of enzymatic, chemical and bacterial activity to temperature has been widely studied.\(^\text{55-57}\) Fish spoilage depends mostly on temperature, which controls to a large extent the bacterial and the autolytic breakdowns. Preservation technique by temperature control is of two ways, either by lowering or increasing the temperature. Methods involving the lowering of temperature are chilling and freezing. In chilling, the temperature of the fish is lowered immediately to reduce the autolytic and bacterial changes. To slow down the mechanisms involved in quality loss, the fish should be refrigerated immediately after capture until consumed.\(^\text{31,58}\) In freezing, the products are cooled below a temperature of -35°C to arrest the enzymatic and bacterial activities completely to prolong the shelf life.\(^\text{65}\) The freezing and frozen storage of fish have been largely used to retain their sensory and nutritional properties before consumption.\(^\text{60-62}\) However, protein denaturation, toughening of the texture, excessive drip loss during thawing and high operating costs associated with freezing and frozen storage are some of the disadvantages.\(^\text{63,64}\) Canning is another method, in which the temperature is increased to more than 100°C to inactivate all the enzymes and bacterial including

Citation: Mohan CO, Ravishankar CN, Srinivasa GTK. Packaging interventions in low temperature preservation of fish-a review. MOJ Food Process Technol. 2016;2(1):13–25. DOI: 10.15406/mojfpt.2016.02.00026
Packaging interventions in low temperature preservation of fish- a review

Citation: Mohan CO, Ravishankar CN, Srivinasa GTK. Packaging interventions in low temperature preservation of fish-a review. MJF Food Process Technol. 2016;2(1):13–25. DOI: 10.15406/mjfpt.2016.02.00026

spores. Apart from these various other methods such as drying and salting, smoking, irradiation by gamma radiation, addition of chemical preservative agents, high pressure processing, sous-vide, pulsed electric field are employed as a means of preserving fish and fish products and have shown some degrees of effectiveness.

Each preservation method possesses some significant disadvantages like deterioration of fish quality and modification of freshness, lack of stability, and excessive cost. However global demand for fresh mildly preserved, convenient with better keeping quality fishery products is increasing. This can be achieved by chilled storage of fish.

Chilling of fish

Shelf life extension of fish is of importance to allow the transport of products to distant markets at lower cost. Chilling has proven to effectively delay bacterial growth and prolong the shelf life of fish. Various types of chilling systems have been used for seafood products including the conventional flake ice, refrigerated seawater, ozonised refrigerated water, slurry ice and dry ice (solid carbon dioxide). Although chilling is very effective in delaying the spoilage it will not inhibit the spoilage completely as the enzymes and bacteria will be active at the chilled temperature. During chilled storage of fish, significant deterioration of sensory quality and loss of nutritional value have been detected as a result of changes in chemical constituents, that lead to a strong effect on the commercial value. The storage life of chilled fish in flake ice, slurry ice, ozone-slurry ice of fish products are limited to 2-3 days depending on the species.

With the aim of reducing loss in freshness and improving the keeping quality of fish, chilling in combination with chemical preservative treatments, or innovative packaging techniques like modified atmosphere packaging, vacuum packaging and very recently active packaging techniques are employed.

Chemical treatments

The flesh of the freshly caught fish is regarded as sterile and their surfaces will carry contaminants, which are easily transferred to the flesh. The fresh and minimally processed fish products provide a good substrate for microbial growth. Such substrate may allow proliferation of native microflora. Thus, there is much interest in developing safer packaging methods to reduce the contamination. Wash water chlorinated up to 2ppm is routinely applied to reduce microbial contamination in produce processing lines. However, the use of chlorine is of concern due to the potential formation of harmful by-products and can only achieve approximately 2 to 3 log reductions of native microflora. Thus, there is much interest in developing safer and more effective sanitizers and preservatives. Various chemicals dip treatment such as Cetylpyridinium chloride, chlorine dioxide, potassium sorbate, sodium lactate and lactic acid have been used in various food systems including fish products. Among these sodium salts of the low molecular weight organic acids, such as acetic, lactic and citric, have been used extensively to control microbial growth, improve sensory attributes and extend the shelf life of various food systems. In addition to their suppressing effect on the growth of food spoilage bacteria by reducing the water activity, organic salts of sodium acetate, lactate and citrate were shown to possess antibacterial activities against various food-borne pathogens. These salts are widely available, economical and generally recognized-as-safe (GRAS) by the U.S. Code of Federal Regulations. Chemical preservative treatments coupled with the advanced packaging technologies and refrigerated storage will enhance the storage life of fish products.

Packaging innovations for fish preservation

Packaging makes food more convenient and gives the food greater safety assurance from microorganisms, biological and chemical changes so that the packaged foods may have a longer shelf life. Due to increased demands for greater stringency in relation to hygiene and safety issues associated with fresh and processed fish products, coupled with ever-increasing demands by retailers for cost-effective extensions to product shelf-lives and the requirement to meet consumer expectations in relation to convenience and quality (increased product range, easy use and minimum product preparation, provision of more product information and packaging impact on the environment), the food packaging industry has rapidly developed to meet and satisfy expectations. Packaging fresh fishery product is carried out to avoid contamination, delay spoilage, permit some enzymatic activity to improve tenderness, reduce weight loss, and where applicable, to ensure an oxymyoglobin or cherry-red colour in red meats at retail or customer level. As a result, packaging has become an indispensable element in the food manufacturing process. Among the packaging technologies developed by and for the food industry, vacuum and modified atmosphere packaging has led the evolution of fresh and minimally processed food preservation, especially in meat and fishery products for the past two decades.

Vacuum packaging (VP): It is well established that, the spoilage of fish is mainly due to the growth and proliferation of aerobic spoilage bacterial and the oxidation of lipid and pigments. This can be reduced by using the vacuum packaging technique in which, the air present in the pack is completely evacuated by applying vacuum. Vacuum packaging is one of the natural preservation packaging methods which can greatly enhance the shelf life and overall quality of muscle foods for a long time. In addition, packaging conditions that reduce the amount of oxygen present in the package are known to extend the shelf life of product by inhibiting the growth of aerobic spoilage bacteria. This technique is particularly useful in fatty fishes, where the development of undesirable odour due to the oxidation of fat is the major problem. Ozogul et al. studied vacuum packaging fillets from sardines (Sardine pilchardus). Chouliara et al. reported the beneficial effects of combining vacuum packaging with irradiation in Sea breams. However this technique is not suitable for all kinds of products. By employing this technique, it is not possible to remove the oxygen entrapped in the food. Moreover, the permeability of the packaging film will alter the package atmosphere. Hence more efficient technique has to be developed.

Modified atmosphere packaging (MAP): Marketing of modified atmosphere (MA) packaged foods have increased, as food manufacturers have attempted to meet consumer demands for fresh, refrigerated foods with extended shelf-life. It is also used widely, as a supplement to ice or refrigeration to delay spoilage and extend the shelf life of fresh fishery products while maintaining a high-quality end product. A modified atmosphere can be defined as one that is possible to remove the oxygen entrapped in the food. Moreover, the O₂ permeability of the packaging film will alter the package atmosphere. Hence more efficient technique has to be developed.
and quality of food/produce.128,129 Oxygen, CO\textsubscript{2}, and N\textsubscript{2}, are most often used in MAP.127,130 Other gases such as, nitrous and nitric oxides, sulphur dioxide, ethylene, chlorine,133 as well as ozone and propylene oxide136 have been suggested for a variety of products and investigated experimentally. However, due to safety, regulatory and cost considerations, they have not been applied commercially. These gases are combined in three ways for use in modified atmospheres: inert blanketing using N\textsubscript{2}, semi-reactive blanketing using CO\textsubscript{2},N\textsubscript{2} or O\textsubscript{2}:CO\textsubscript{2}:N\textsubscript{2} or fully reactive blanketing using CO\textsubscript{2} or CO\textsubscript{2}:O\textsubscript{2}.126,130

The principle of MAP is the replacement of air in the package with a different fixed gas mixture. CO\textsubscript{2} is the most important gas used in MAP of fish, because of its bacteriostatic and fungistatic properties.131 It inhibits growth of many spoilage bacteria and the inhibition is increased with increased CO\textsubscript{2}-concentration in the atmosphere and reduced temperature. CO\textsubscript{2} is highly soluble in water and fat, and the solubility increases greatly with decreased temperature. The solubility in water at 0\textdegree C and 1 atmosphere is 3.38g CO\textsubscript{2}/kg water, however, at 20\textdegree C the solubility is reduced to 1.73g CO\textsubscript{2}/kg water.127 Therefore, the effectiveness of the gas is always conditioned by the storage temperature with increased inhibition of bacterial growth as temperature is decreased.131-133 The solubility of CO\textsubscript{2} leads to dissolved CO\textsubscript{2} in the food product,132 according to the following equation:

\[
\text{CO}_2(g) + \text{H}_2\text{O}(l) \rightleftharpoons \text{HCO}_3^- + \text{H}^+ \rightleftharpoons \text{CO}_3^{2-} + 2\text{H}^+
\]

For pH values less than 8, typical of seafood, the concentration of carbonate ions may be neglected.136

\[
\text{CO}_3^- + \text{H}_2\text{O} \rightleftharpoons \text{H}_2\text{CO}_3 \rightleftharpoons \text{HCO}_3^- + \text{H}^+
\]

According to Henry’s law, the concentration of CO\textsubscript{2} in the food is dependent on the water and fat content of the product, and on the partial pressure of CO\textsubscript{2} in the atmosphere.131 The growth inhibition of microorganisms in MA is determined by the concentration of dissolved CO\textsubscript{2} in the product.130,130 The preservation effect of MAP is due to the drop in surface pH in MA products because of the acidic effect of dissolved CO\textsubscript{2} but this could not entirely explain all of CO\textsubscript{2}’s bacteriostatic effect.140 The possibility of intracellular accumulation of CO\textsubscript{2} would upset the normal physiological equilibrium by slowing down enzymatic processes.146 Thus, the effect of CO\textsubscript{2} on bacterial growth is complex and four mechanisms of CO\textsubscript{2} on micro-organisms has been identified:136,141-143

i. Alteration of cell membrane functions including effects on nutrient uptake and absorption

ii. Direct inhibition of enzymes or decrease in the rate of enzyme reactions

iii. Penetration of bacterial membranes, leading to intracellular pH changes

iv. Direct changes in the physico-chemical properties of proteins.

Probably a combination of all these activities account for the bacteriostatic effect. A certain amount (depending on the foodstuff) of CO\textsubscript{2} has to dissolve into the product to inhibit bacterial growth.144 The ratio between the volume of gas and volume of food product (G/P ratio) should be usually 2:1 or 3:1 (gas:food product). This high G/P ratio is also necessary to prevent package collapse because of the CO\textsubscript{2} solubility in wet foods. The CO\textsubscript{2} solubility could also alter the food-water holding capacity and thus increase drip.145

Nitrogen (N\textsubscript{2}) is an inert and tasteless gas, and is mostly used as a filler gas in MAP, because of its low solubility in water and fat.146,147 N\textsubscript{2} is used to replace O\textsubscript{2} in packages to delay oxidative rancidity and to inhibit the growth of aerobic microorganisms, as an alternative to vacuum packaging. The use of oxygen in MAP is normally set as low as possible to inhibit the growth of aerobic spoilage bacteria. Its presence is reported to increase oxidative rancidity.131 However, for some products oxygen could or should be used. High levels of oxygen are used in red meat and red fish meat, to maintain the red colour of the meat, to reduce and retard browning caused by formation of metmyoglobin.148 O\textsubscript{2} in MA-packages of fresh fish will also inhibit reduction of TMAO to TMA.149

Vacuum packaging and MAP, with high CO\textsubscript{2} levels (25-100%), extends the shelf-life of fish products from few days to a week or more compared with air storage, depending on species and temperature.89,135,141-150 A shelf-life extension of 25-100% have been reported for fishery products.150-151 Shelf life of some fishes under air, vacuum and MAP are given in Table 1.

In spite of the various advantages, there are some limitations of vacuum and modified packaging method. The atmosphere within a vacuum and modified atmosphere pack may alter during storage due to reactions between components of the atmosphere and the product and/or due to transmission of gases in or out of the pack through the packaging film.152 There is an increased concern about the growth/survival of micro-aerophilic psychrotrophic pathogens.153 Modified atmosphere packaging usually extends the neutral taste period of fish rather than the initial fresh quality period.154 Too high CO\textsubscript{2} concentrations in the atmosphere may have negative impact on drip loss, color, texture, and flavor in the product. These can be explained by the pH drop caused by CO\textsubscript{2} dissolving in the muscle tissue, resulting in a decrease in the water-holding capacity of the proteins, the denaturation of muscle and pigment protein, as well as the development of sour odor and flavor.155,156-158 Due to the specific requirement of the consumers, diversity of product characteristics and basic fish packaging demands and applications, any packaging technologies that offer to deliver more product and quality control in an economic manner would be accepted universally. Active packaging is one such packaging approaches currently exist which has great potential to substitute vacuum and modified atmosphere packaging technologies.

Active packaging: Over the past few years, there has been an increase in the demand for fresh, mildly preserved convenience foods that have better fresh-like qualities. In addition, changes in retail and distribution practices such as centralization of activities, new trends (e.g. internet shopping) and inter-nationalization of markets, resulting in increased distribution distances and longer storage times of a set of different products with different temperature requirements, are putting huge demands on the food packaging industry. Traditional packaging concepts are limited in their ability to prolong the shelf-life of food products. This promoted the industry to develop new and improved methods for maintaining food quality and extending shelf life. Due to the complexities involved with fish products many considerations are involved in choosing an acceptable packaging technology. One of the...
areas of research that has shown promise is that of active packaging (AP). Active packaging is an innovative concept that can be defined as a type of packaging that changes the condition of the packaging and maintains these conditions throughout the storage period to extend shelf-life or to improve safety or sensory properties while maintaining the quality of packaged food.168–170

Active packaging (AP) performs some desired role other than providing an inert barrier between the product and external conditions,167,168,171–173 and combines advances in food technology, biotechnology, packaging and material science, in an effort to comply with consumer demands for ‘fresh like’ products.174 Active packaging technique is either gas-flushing or more recently gas-scavenging or emitting systems added to emit (e.g., N₂, CO₂, ethanol) and/or to remove (e.g., O₂, CO₂, odour,) gases during packaging or distribution. In case of a gas-scavenging or emitting system, reactive compounds are either contained in individual sachets or stickers associated to the packaging material or, more recently, directly incorporated into the packaging material. Major active packaging techniques are concerned with substances that absorb oxygen, ethylene, moisture, carbon dioxide, flavors/odours and those which release carbon dioxide, antimicrobial agents, antioxidants and flavors. Examples of currently known active packaging systems and their applications are given in Table 2. The most important active packaging concepts for fishery products include O₂ scavenging, CO₂ emitters, moisture regulators, antimicrobial packaging concepts, antioxidant release, release or absorption of flavors and odours.

Most widely used active packaging technology in the food industry is O₂ scavenger followed by antimicrobial packaging. For many foods, lipid oxidation is a major quality concern resulting in a variety of breakdown products which produce undesirable off-odours and flavors. Hence O₂ may cause off-flavors (e.g. rancidity as a result of lipid oxidation), colour changes (e.g. discoloration of pigments such as carotenoids, oxidation), nutrient losses (e.g. oxidation of vitamin E, β-carotene, ascorbic acid) and accelerates microbial spoilage thereby causing significant reduction in the shelf life. Hence controlling O₂ assumes greater importance. Although this can be achieved by vacuum packaging and MAP, these technologies do not always remove O₂ completely. Moreover, the O₂ that permeates through the packaging film cannot be removed by these techniques. Use of an O₂ scavenger will help in solving these difficulties. O₂ scavengers were first commercialized by Japan’s Mitsubishi Gas Chemical Company (Ageless®) in 1970. O₂ scavengers are able to eliminate oxygen contained in the packaging headspace and in the product or permeating through the packaging material during storage. O₂ scavengers are widely used to slow down or to prevent deterioration due to product components oxidation and/or growth of microorganisms or survival of insects.131 O₂ scavengers are efficient in preventing discoloration of cured meats and tea, rancidity problems in high fat foods including fishes, mould spoilage of intermediate and high moisture bakery products or oxidative flavor changes in coffee.176–179 O₂ scavenging concepts are mainly based on, iron powder oxidation, ascorbic acid oxidation, photosensitive dye oxidation, enzymatic oxidation (e.g. glucose oxidase and alcohol oxidase), unsaturated fatty acids (e.g. oleic or linolenic acid), rice extract or immobilized yeast on a solid substrate.180 The main cause of spoilage of many foods is microbial growth on the product surface. Antimicrobial packaging, which are grouped among active packaging, contains small amounts of natural or synthetic antimicrobial agent. The strategy of antimicrobial packaging film depends on release of antimicrobial agent incorporated into a packaging material on to food surface. Thus, antimicrobial packaging film may delay or even prevent the growth of microorganisms on the product surface leading to extension of the shelf life with improved safety. As in MAP foods, the function of carbon dioxide within a packaging environment is to suppress microbial growth to extend the shelf life. CO₂ has a prevailing inhibitory effect on bacterial growth. It is particularly effective against gram-negative, aerobic spoilage bacteria such as pseudomonas species that causes off-colour and flavors in fish.181 The overall effect of CO₂ is to increase both the lag phase and the generation time of spoilage microorganisms. Over the years this has been achieved by modified atmosphere packaging, in which a package is flushed with a mixture of gases including carbon dioxide at sufficient levels. However the concentration of CO₂ in the MAP foods will vary during storage period which lead to the development of CO₂ emitters which can emit continuously throughout the storage period. Various chemical combinations like sodium bicarbonate, citric acid, sodium dihydrogen phosphate, ferrous carbonate etc have been used to develop CO₂ emitters.182 Considerable shelf life advantage was obtained for Seer fish packed under CO₂ emitters.183–185 Shelf life of fishery products in active packaging systems are given in Table 3. Other active packaging systems that are expected to find increased attention in the future include colour containing films, light absorbing or regulating system, susceptors for microwave heating, gas permeable/breathable films, anti-fogging films and insect repellant packages.

Table 1 Shelf life of fishery products in air, vacuum and modified atmosphere packs

Type of fish	Storage temp (°C)	Atmosphere	Shelf life (Days)	Reference
Catfish fillets	4	75:25:0	38-40	Reddy et al.184
	4	Vacuum	20-24	
Cod (Gadusmorhua) fillets	1	Air	9	Woyewoda et al.185
	1	60:40:0	12	

Citation: Mohan CO, Ravishankar CN, Srinivasa GTK. Packaging interventions in low temperature preservation of fish- a review. MOJ Food Process Technol. 2016;2(1):13–25. DOI: 10.15406/mojfpt.2016.02.00026
Type of fish	Storage temp (°C)	Atmosphere CO₂:N₂:O₂	Shelf life (Days)	Reference
Cod (G. morhua) fillets	2	40:60:0	11	Guldager et al.186
	2	40:40:20	13	
	4	Air	20-24	
Cod fillets	4	75:25:0	55-60	Reddy et al.197
	4	Vacuum	24-27	
Cod fillets	0	40:30:30	12.5	Cann et al.156
	0	Vacuum	9	
	2	100:0:0	10	
	2	60:40:0	10	
Cod (G. morhua) whole	2	40:60:0	9-10	Jensen et al.194
	2	Vacuum	8-9	
	2	Air	~7	
Cod (G. morhua) whole/fillets	0	Air	12-13	Villemure et al.199
Cod (G. morhua) fillets	4	100:0:0	40-53	Post et al.190
	3	100:0:0	49	
Cod, blue (Araperciscolias)	3	Vacuum	14	Penny et al.195
	3	Air	14	
Haddock (Melanogrammus aeglefinus) whole	0	40:30:30	10	Dhananjaya et al.192
	0	Air	8	
Haddock (M. aeglefinus) fillets	0	60:20:20	14	Dhananjaya et al.192
Herring (Clupeaharengus) whole and fillets	0	60:40:0	14	Dhananjaya et al.192
	0	Air	12	
	4	Air	24-27	
Salmon fillets	4	75:25:0	55-62	Reddy et al.195
	4	Vacuum	34-38	
	-1	Air	9	
Snapper (Chrysophrysauratus) fillets	-1	40:60:0	9	Scott et al.194
	-1	100:0:0	18	
Type of active packaging system	Substances used	Applications		
--------------------------------	--	--		
O\textsubscript{2} absorbing	Chemical systems (powdered iron oxide, catechol, ferrous carbonate, iron-sulfur, sulfite salt-copper sulfate, photosensitive dye oxidation, ascorbic acid oxidation, catalytic conversion of oxygen by platinum catalyst) Enzymatic systems (glucose oxidase-glucose, alcohol oxidase-ethanol vapour)	Fresh and dry fish, sausages, smoked and cured meats, roasted nuts, coffee, cereals, chocolate, cheese, bread, cakes, pastries, fruit juice, ready to drink tea, beer, wine,		
CO\textsubscript{2} absorbing	Calcium hydroxide, sodium hydroxide or potassium hydroxide	Roasted coffee, fruit, cheese, poultry products		
CO\textsubscript{2} emitting	Ascorbic acid, ferrous carbonate, metal halide	Fresh fish and meat, nuts, potato chips		
Moisture absorbing	Silica gel, propylene glycol, polyvinyl alcohol, diatomaceous earth	Fish and meat, all dry products, cheese, bread, biscuits		
Ethylene absorbing	Activated charcoal, silica gel-potassium permanganate, kieselgurh, bentonite, fuller’s earth, silicon dioxide powder, powdered oya stone, zeolite, ozone	Fruits and vegetables		
Ethanol emitting	Encapsulated ethanol	Fresh and Semi dry Fish, cheese, high moisture bakery products		
Antimicrobial releasing	Sorbates, benzoates, propionates, ethanol, ozone, peroxide, sulfur dioxide, antibiotics, silver-zeolite, quaternary ammonium salts	Fish, meat, cheese, fruits, bread, cakes		
Antioxidant releasing	BHA, BHT, TBHQ, ascorbic acid, tocopherol	Fish, cereals		
Flavor absorbing	Baking soda, active charcoal	Fish, fruit juices		
Flavor releasing	Many food flavors	Fish, ground coffee, ice cream		
Colour containing	Various food colours	Surimi		
Anti-fogging and anti-sticking	Biaxially oriented vinylon, compression rolled oriented HDPE	Fresh fruits and vegetable		
Light absorbing/ regulating	UV blocking agents, hydroxyl benzophenone	Milk, pizza		
Microwave susceptors	Metalized thermoplastics	Ready to eat meals		
Insect repellant	Low toxicity fumigants (pyrethrins, permethrin)	Dry fish, cereals		
Table 3: Shelf life of fishery products stored under different packaging conditions

Type of fish	Storage temp (°C)	Packaging atmosphere	Shelf life (Days)	Reference
Catfish steaks	0-2	Air	10	Mohan et al.
		O_2 Scavenger	20	
Seer fish steaks	0-2	Air	12	Mohan et al.
		O_2 Scavenger	20	
		Air	12	
Seer fish steaks	0-2	Control O_2 Scavenger	20	Mohan et al.
		Sodium acetate treated O_2 Scavenger	25	
Indian Oil Sardine	0-2	Edible chitosan coating	~8-10	Mohan et al.

Acknowledgements

Authors would like to thank Director, ICAR-Central Institute of Fisheries Technology, Cochin for permitting to publish this. The support and help rendered by the staffs of Fish Processing Division of Central Institute of Fisheries Technology, Cochin is highly acknowledged.

Conflict of interest

The author declares no conflict of interest.

References

1. The State of World Fisheries and Aquaculture: Opportunities and Challenges. Food and agriculture organization of the United Nations; 2014.
2. Sloan AE. Great ideas from around the world. Food Technology. 2007;61(10):21–33.
3. Ackman RG. Marine biogenic lipids, fats and oils. USA: CRC Press; 1989. 472 p.
4. Pielot G. Le poisson aliment. Composition et interet nutritionnel. Cahiers de Nutrition et Dietetique. 1987;XXII:317–335.
5. INA, Smith JP, Simpson BK. Spoilage and shelf life extension of fresh fish and shellfish. Crit Rev Food Sci Nutr. 1996;36(1-2):87–121.
6. Sadiku SOE, Oladimeji AA. Relationship of proximate composition of Latex niloticus (L), Synodontis synodontis, Schall and Sarotherodon galilaeus from Zaria dam, Nigeria. Bioscience Resource Communication. 1991;3(1):29–40.
7. Bang HO, Dyerberg J. Lipid metabolism in Greenland Eskimos. Advances in Nutritional Research. 1980;31:1–32.
8. Sanchez-Muniz FJ, Viejo JM, Medina R. Consideraciones sobre el consumo de pescado azul y riesgo cardiovascular con especial referencia a la composición en ácidos grasos de las familias n-9, n-6, y n-3. Nutricion Clinica. 1991;11:30–40.
9. Simopoulos AP. The Return of ω-3 Fatty Acids Into the Food Supply in Land-Based Animal Foods Products and Their Health Effects. The Center for Genetics, Nutrition and Health; 1998.
10. Shahidi F, Botta JR. Sea foods: Chemistry, processing technology and quality. Chapman and Hall; 1994. p. 3–9.
11. Clemens R, Pressman P. Food and Alzheimer’s disease. Food Technology. 2007;61(10):16–22.
12. Frankel EN. Lipid oxidation: mechanism, products, and biological significance. Journal of American Oil Chemists Society. 1984;61(12):1908–1916.
13. Hultin HO. Potential lipid oxidation problems in fatty fish. Fatty fish utilization. Upgrading from proceedings of a National Technical Conference ‘Feed to Food’ UNC Sea grant college program; 1998. p. 185–223.
14. Ingemannson T, Kaufmann P, Petterson A. Lipid deterioration in frozen stored muscle tissue of rainbow trout (Onchorhynchus mykiss) in relation to water temperature and carotenoid content. In: Huss HH, et al. editors. Quality Assurance in the Fish Industry. Netherland: Elsevier Science Publications; 1992. p. 29–39.
15. SantAna LS, Mancini-Filho J. Influence of the addition of antioxidants in vivo on the fatty acids composition of fish fillets. Food Chemistry. 2000;68(2):175–178.
16. Giani E, Masi I, Galli C. Heated fat, vitamin E and vascular eicosanoids. Lipids. 1985;20(7):439–448.
17. Tanaka M, Xueyi Z, Nagashia Y, et al. Effect of high pressure on the lipid oxidation in sardine meat. Nippon Suisan Gakkaishi. 1991;57(5):957–963.
18. Auborg S, Gallardo JM, Medina I. Changes in lipids during different sterilizing conditions in canning albacore (Thunnus alalunga) in oil. International Journal of Food Science & Technology. 1997;32(5):427–431.
19. Yang CM, Grey AA, Archer MC, et al. Rapid quantification of thermal oxidation products in fats and oils by IHNMR spectroscopy. Nutr Cancer. 1998;30(1):64–68.
20. Kingston ER, Monahan FJ, Buckley DJ, et al. Lipid oxidation in cooked pork as affected by vitamin E, cooking and storage conditions. Journal of Food Science. 1998;63(3):386–389.
21. Kubow S. Lipid oxidation products in food and atherogenesis. Nutr Rev. 1993;51(2):33–40.
22. Penunmetcha M, Khan N, Parthasarathy S. Dietary oxidized fatty acids: an atherogenic risk? J Lipid Res. 2000;41(9):1473–1480.

Citation

Mohan CO, Ravishankar CN, Srinivasa GTK. Packaging interventions in low temperature preservation of fish-a review. MOJ Food Process Technol. 2016;2(1):13–25. DOI: 10.15406/mofjpt.2016.02.00026
23. Hochgraf E, Mokady S, Cogan U. Dietary oxidized linoleic acid modifies lipid composition of rat liver microsomes and increases their fluidity. *Journal of Nutrition*. 1997;127(5):681–686.

24. Bennour M, El Marrakchi A, Bouchrih N, et al. Chemical and microbiological assessments of mackerel (*Scomber scombrus*) stored in ice. *Journal of Food Protection*. 1991;54(784):789–792.

25. Nunes M, Batista L, Morao de Campos R. Physical, chemical and sensory analysis of sardine (*Sardina pilchardus*) stored in ice. *Journal of the Science of Food Agriculture*. 1992;59:37–43.

26. Olafsdottir G, Martinsdottir E, Oehlenschlager J, et al. Methods to evaluate fish freshness in research and industry. *Trends in Food Science & Technology*. 1997;8:258–265.

27. Schellekens M. New research issues in sous-vide cooking. *Trends in Food Science & Technology*. 1996;7(8):256–262.

28. Borrensen T. Chemical composition. In: HH Huss editor. *Quality and Quality Changes in Fresh Fish*. Denmark: FAO; 1995. p. 20–34.

29. Huss HH, Dalgaard P, Gram L. Microbiology of fish and fish products. In: Luten JB, et al. editors. *Seafood from Producer to Consumer*. Integrated Approach to Quality. Netharlands: Elsevier; 1996. p. 413–430.

30. Reay GA, Shewan JM. The spoilage of fish and its preservation by chilling. *Advances in Food Research*. 1949;2:343–398.

31. Gram L, Huss HH. Microbiological spoilage of fish and fish products. *International Journal of Food Microbiology*. 1996;33(1):121–137.

32. Reddy GVS, Sirkar LN. Preprocessing ice storage effects on functional properties of fish mince muscle. *Journal of Food Science*. 1991;56:965–968.

33. Shenouda SYK. Theories of protein denaturation during frozen storage of fish. *Advances in Food Research*. 1980;26:275–281.

34. Herbert RA, Shewan JM. Precursors of volatile sulphides in spoiling North Sea cod. *Journal of the Science of Food & Agriculture*. 1975;26(8):1195–1202.

35. Herbert RA, Shewan JM. Roles played by bacterial and autolytic enzymes in the production of volatile sulphides in spoiling North Sea cod. *Journal of the Science of Food & Agriculture*. 1976;27(1):49–54.

36. Hebard CE, Flick GJ, Martin RE. Occurrence and significance of trimethylamine oxide and its derivatives in fish and shellfish. In: Martin RE, et al. editors. *Chemistry and Biochemistry of Marine Food Product*. USA: AVI Publishing; 1982. p. 149–304.

37. Sikorski ZE, Kolakowska A, Burt JR. Post-harvest biochemical and microbial changes. In: ZE Sikorski editor. *Seafood: Resources, nutritional composition and preservation*. Boca Raton Fla, USA: CRC Press; 1990. p. 53–75.

38. Lavety J, Afolabi OA, Love RM. The connective tissue of fish. IX Gaping in farmed species. *International Journal of Food Science & Technology*. 1988;23(1):23–30.

39. Robb DHF, Kestin SC, Wariss PD. Muscle activity at slaughter: I Changes in flesh colour and gaping in rainbow trout. *Aquaculture*. 2000;182(3–4):261–269.

40. Schehan EM, O'Connor TP, Buckley DJ, et al. Effect of dietary fat intake on the quality of raw and smoked salmon. *Irish Journal of Agriculture & Food Research*. 1996;35(1):37–42.

41. Botta JR. Freshness quality of sea foods: A review. In: Shahidi F, et al. editors. *Sea foods: Chemistry, Processing Technology and Quality*. London, UK: Blackie Academic and Professional; 1994. p. 140–167.

42. Bate-Smith EC, Bendall JR. Rigor mortis and adenosine tri phosphate. *The Journal of Physiology*. 1947;106(2):177–185.

43. Bate-Smith EC, Bendall JR. Factors determining the time course of rigor mortis. *J Physiol*. 1949;110(1-2):47–65.

44. Frazer DI, Dingle JR, Hines JA, et al. Nucleotide degradation monitored by thin layer chromatography and associated post mortem changes in relaxed cod muscle. *Journal of the Fisheries Research Board of Canada*. 1967;24(8):1837–1841.

45. Astier C, Labbe JP, Roustan C, et al. Sarcomeric disorganization in post-mortem fish muscles. *Comp Biochem Physiol B*. 1991;100(3):459–465.

46. Papa I, Alvarez C, Verrez-Bagnis V, et al. Post mortem release of fish white muscle a-actinin as a marker of disorganization. *Journal of the Science of Food & Agriculture*. 1996;72(1):63–70.

47. Yamashita M, Konagaya S. Hydrolytic action of salmon cathepsin B and L to muscle structural proteins in respect of muscle softening. *Nippon Suisan Gakkaishi*. 1991;57(10):1917–1922.

48. Goll DE, Thompson VF, Taylor RG, et al. Role of the calpain system in muscle growth. *Biochimie*. 1992;74(3):225–237.

49. Lamare M, Taylor RG, Farout L, et al. Changes in protease activity during postmortem aging of bovine muscle. *Meat Science*. 2002;61(2):199–204.

50. Ababouch LH, Affal ME, Benabdeljelil H, et al. Quantitative changes in bacteria, amino acids and biogenic amines in sardine (*Sardinapilchardus*) stored at ambient temperature (25 to 28°C) and in ice. *International Journal of Food Science & Technology*. 1991;26:297–306.

51. Whittle K, Hardy R, Hobbs G. Chilled fish and fishery products. In: Gormley T editor. *Chilled Foods: The State of the Art*. New York, USA: Elsevier Applied Science; 1990. p. 87–116.

52. Gould GW. *Mechanisms of action of food preservation procedures*. London, UK: Elsevier Applied Science; 1989.

53. Olley J, Ratkowsky DA. Temperature function integration and its importance in the storage and distribution of flesh foods above the freezing point. *Food Technology Australia*. 1973;25:66–73.

54. Ratkowsky DA, Olley J, McMeekin TA, et al. Relationship between temperature and growth rate of bacterial cultures. *J Bacteriol*. 1982;149(1):1–5.

55. Ratkowsky DA, Lowry RK, McMeekin TA, et al. Model for bacterial culture growth rate throughout the entire biokinetic temperature range. *J Bacteriol*. 1983;154(3):1222–1226.

56. Bremner HA, Olley J, Vail AMA. Estimating time-temperature effects by a rapid systematic sensory method. In: DE Kramer, et al. editors. *Seafood Quality Determination*. Amsterdam, UK: Elsevier Science; 1987. p. 413–435.

57. McMeekin TA, Olley J, Ross T. Application of predictive microbiology to assure the quality and safety of fish and fish products. In: HH Huss et al. editors. *Developments in Food Science: Quality Assurance in the Fish Industry*. Holland, UK: Elsevier; 1991. p. 459–478.

58. Sumner JL, Gorczyca E, Cohen D, et al. Do fish from tropical waters spoil less rapidly in ice than fish from temperate waters? *Food Technology Australia*. 1984;36:328–329.

59. Clucas JJ, Ward AR. Post-harvest fisheries development: A Guide to Handling, Preservation, Processing and Quality. Kent, ME44TB: Chatham Maritime; 1996. p. 84–128.

60. Erickson M. Lipid oxidation: Flavor and nutritional quality deterioration in frozen foods. In: M Erickson, et al. editors. *Quality in Frozen Food*. New York, USA: Chapman & Hall; 1997. p. 141–173.

61. Madrid A, Madrid J, Madrid R. *Tecnologia del pescado y productos derivados*. Madrid Vicente, SA, Madrid, Ediciones y Mundi-Prensa Libros, Spain; 1994. p. 45–103.
Packaging interventions in low temperature preservation of fish: a review

62. Lakshmisha IP, Ravishankar CN, Ninan G, et al. Effect of freezing time on the quality of Indian mackerel (Rastrelliger kanagurta) during frozen storage. *J Food Sci.* 2008;73(7):S345–353.

63. Careche M, Li-Chan ECY. Structural changes in cod myosin after modification with formaldehyde or frozen storage. *Journal of Food Science.* 1997;62(4):717–723.

64. Chang CC, Regenstein JM. Textural changes and functional properties of cod mince proteins as affected by kidney tissue and cryoprotectants. *Journal of Food Science.* 1997;62(2):299–304.

65. Ball CO, Olson FCW. Sterilization in *Food Technology.* New York, USA: McGraw-Hill Book Co; 1957. 654 p.

66. Stumbo CR. *Thermocohesiology in Food Processing.* 2nd ed. New York, USA: Academic Press Inc; 1973. 329 p.

67. Mohan CO. *Thermal Processing of Prawn Kuruma (Penaeus indicus) in Retortable Pouch and Aluminium Can: Dissertation Submitted in Partial Fulfilment of Degree of Master of Fisheries Science (Post Harvest Technology).* India: Central Institute of Fisheries Education (Deemed University), 2004. 125 p.

68. Mohan CO, Ravishankar CN, Bindu J, et al. Effect of thermal processing on texture and subjective sensory characteristics of Prawn kuruma in retortable pouches and aluminium cans. *Journal of Food Science.* 2006;71(6):S496–500.

69. Mohan CO, Ravishankar CN, Srinivasa Gopal TK, et al. Thermal processing of Prawn kuruma in retortable pouches and aluminium cans. *International Journal of Food Science and Technology.* 2008;43(2):200–207.

70. Mohan CO, Remya S, Ravishankar CN, et al. Effect of filling ingredient on the quality of canned yellowfin tuna (Thunnus albacares). *International Journal of Food Science and Technology.* 2014;49(6):1557–1564.

71. Mohan CO, Remya S, Murthy LN, et al. Effect of filling medium on histamine content and quality of canned yellowfin tuna (Thunnus albacares). *Food Control.* 2015;50:320–327.

72. Biji KB, Shamsheer RM, Mohan CO, et al. Effect of thermal processing on the biochemical constituents of green mussel (Perna viridis) in Tin-free-steel cans. *Journal of Food Science & Technology.* 2015;52(10):6804–6809.

73. Ahmed IO, Alur MD, Kamat AS, et al. Influence of processing on the extension of shelf-life of Ngiltfish (Sillaginopsis) by gamma radiation. *Journal of Food Science & Technology.* 1997;32(4):325–331.

74. Fu AH, Sebranek JG, Murano EA. Survival of Listeria monocytogenes, Yersinia enterocolitica and Escherichia coli O157:H7 and quality changes after irradiation of beef steaks and ground beef. *Journal of Food Science.* 1995;60(5):972–977.

75. Shenoy K, Murano EA, Olson DG. Survival of heat shocked Yersinia enterocolitica after irradiation in ground pork. *Int J Food Microbiol.* 1998;39(1-2):133–137.

76. IAEA. *Preservation of fish by irradiation.* International Atomic Energy Agency, Proceeding of a panel. Vienna, Austria; 1970. p. 75–104.

77. WHO. Safety and nutritional adequacy of irradiated food. Switzerland: World Health Organization; 1994.

78. Kunta US, Savagaon KA, Ghadi SV, et al. Radiation preservation of sea foods. Review of Research in India. *International Atomic Energy Agency.* 1973. p. 402–425.

79. Huss HH. *Quality and quality changes in fresh fish.* FAO Fisheries technical paper T348. Italy: Food & Agriculture Organization of the United Nations and Danish Int. development agency (FAO/DANIDA); 1995. 195 p.

80. Chang KLB, Chang JJ, Shiau CY, et al. Biochemical microbiological and sensory changes of sea bass (Lateolabrax japonicus) under partial freezing and refrigerated storage. *J Agric Food Chem.* 1998;46(2):682–686.

81. Kraus L. Refrigerated sea water treatment of herring and mackerel for human consumption. In: J Burt, et a. editors. *Pelagic fish: The resource and its exploitation.* UK: Fishing News Books; 1992. p. 342–343.

82. Sugita H, Asai T, Hayashi K, et al. Application of ozone disinfection to remove Enterococcus seriolidica, Pasteurellapiscida and Vibrio anguillarum from sea water. *Applied Environmental Microbiology.* 1992;58(12):4072–4075.

83. Kotters J, Pradur A, Skura B, et al. Observations and experiments on extending shelf life of rockfish (Sebastes spp.) products with ozone. *Journal of Applied Ichthyology.* 1997;13(1):1–8.

84. Huidobro A, Mendes R, Nunes ML. Slaughtering of gilthead seabream (Sparus aurata) in liquid ice: Influence on fish quality. *European Food Research Technology.* 2001;213(4):267–272.

85. Huidobro A, Lopez-Caballero M, Mendes R. Onboard processing of deepwater pink shrimp (Parapeneus longirostris) with liquid ice: effect on quality. *European Food Research Technology.* 2002;214(6):469–475.

86. Losada V, Píoéiro C, Barros-Velasques J, et al. Effect of slurry ice on chemical changes related to quality loss during European hake (Merluccius merluccius) chilled storage. *European Food Research Technology.* 2004;219(1):27–31.

87. Zeng QZ, Thorarinsdottir KA, Olafsdottir G. Quality changes of shrimp (Pandalus borealis) stored under different cooling conditions. *Journal of Food Science.* 2005;70(7):S459–466.

88. Jeyasekaran G, Ganesan P, JeyaShakila R, et al. Dry ice as a novel chilling medium along with water ice for short-term preservation of fish Emperor breans, lethrinus (Lethinus miniatus). *Innovative Food Science & Emerging Technologies.* 2004;5(4):485–493.

89. Stammen K, Gerdes D, Caporaso F. Modified atmosphere packaging of seafood. *Critical Reviews in Food Science & Technology.* 1990;29(5):301–331.

90. Mohan CO, Ravishankar CN, Srinivasa Gopal TK. Effect of O, scavenger on the shelf life of catfish (Pangasiussutchi) steaks during chilled storage. *Journal of the Science of Food and Agriculture.* 2007;87(3):442–448.

91. Ozogul Y, Ozogul F, Gokbulut C. Quality assessment of wild European eel (Anguilla anguilla) stored in ice. *Food Chemistry.* 2006;95(3):458–465.

92. Pons-Sanchez-Cascado S, Vidal-Carou MC, Nunes ML, et al. Sensory analysis to assess the freshness of Mediterranean anchovies (Engraulis encrasischeus) stored in ice. *Food Control.* 2006;17(7):564–569.

93. Ruiz-Capillas C, Moral A. Sensory and biochemical aspects of quality of whole big eye tuna (Thunnus obesus) during bulk storage in controlled atmospheres. *Food Chemistry.* 2005;89:347–354.

94. Ozogul Y, Ozogul F, Kuley E, et al. Biochemical, sensory and microbiological attributes of wild turbot (Scophthalmus maximus), from the Black Sea, during chilled storage. *Food Chemistry.* 2006;99(4):752–758.

95. Ozogul Y, Kuley E, Ozogul Y. Sensory, chemical and microbiological quality parameters in sea bream (Sparus aurata) stored in ice or wrapped in cling film or in aluminium foil at 2±1°C. *International Journal of Food Science & Technology.* 2007;42(8):903–909.

96. Losada V, Pino C, Barros-Velasquez J, et al. Inhibition of chemical changes related to freshness loss during storage of horse mackerel (Trachurus trachurus) in slurry ice. *Food Chemistry.* 2005;93:619–625.

Citation: Mohan CO, Ravishankar CN, Srinivasa GTK. Packaging interventions in low temperature preservation of fish: a review. *MOJ Food Process Technol.* 2016;2(1):13–25. DOI: 10.15406/mofjpt.2016.02.00026
Packaging interventions in low temperature preservation of fish: a review

97. Campos CA, Losada V, Rodriguez O, et al. Evaluation of an ozone–slurry ice combined refrigeration system for the storage of farmed turbot (Psetta maxima). Food Chemistry. 2006;97(2):223–230.

98. Richardson SD, Thurston Jr AD, Caughman TV, et al. Chemical by products of chlorine and alternative disinfectants. Food Technology. 1998;52:58–61.

99. Ukudo DO, Sapers GM. Effect of sanitizer treatments on Salmonella stanley attached to the surface of cantaloupe and cell transfer to fresh-cut tissues during cutting practices. J Food Prot. 2001;64(9):1286–1291.

100. Mayer BK, Ward DR. Microbiology of finfish and finfish processing. In DR Ward, et al. editors. Microbiology of Marine Food Products. New York, USA: Von Nostrand Reinhold; 1991. p. 3–17.

101. Kosak PH, Toledo RT. Effects of microbiological decontamination on the storage stability of fresh fish. Journal of Food Science. 1981;46(4):1012–1014.

102. Lin WF, Huang TS, Cornell JA, et al. Bactericidal activity of aqueous chlorine and chlorine dioxide solutions in a fish model system. Journal of Food Science. 1996;61(5):1030–1034.

103. Nykanen A, Lapvetelainen A, Kallio H, et al. Effects of Whey, Whey-derived lactate and sodium lactate on the surface microbial counts of rainbow trout packed in vacuum pouches. LWT: Food Science & Technology. 1998;31(4):361–365.

104. Aran N. The effect of calcium and sodium lactates on growth from spores of Bacillus cereus and Clostridium perfringens in a ‘sous-vide’ beef goulash under temperature abuse. International Journal of Food Microbiology. 2001;63(1-2):117–123.

105. Miller RK, Acuff GR. Sodium lactate affects pathogens in cooked beef. Journal of Food Science. 1994;59(1):15–19.

106. Gist S, Sehested K, Zeuthen P. Growth suppression of Listeria monocytogenes in a meat product. International Journal of Food Microbiology. 1994;24(1-2):283–293.

107. Schluter JH, Glass KA, Loeffelholz J, et al. The effects of diacetaet with nitrate, lactate or pedocin on the viability of Listeria monocytogenes in turkey surillaries. International Journal of Food Microbiology. 1993;19(4):271–281.

108. Shelfe LA, Addala L. Inhibition of Listeria monocytogenes and other bacteria by sodium diacetaet. Int J Food Microbiol. 1994;14(2):103–115.

109. Pelroy GA, Eklund MW, Paranjpye RN, et al. Inhibition of Clostridium botulinum types A and E toxin formation by sodium nitrate and sodium chloride in hot-process (smoked) salmon. Journal of Food Protection. 1982;45:833–841.

110. Hyttia E, Eerola S, Hielm S, et al. Sodium nitrate and potassium nitrate in control of nonproteolytic Clostridium botulinum outgrowth and toxigenesis in vacuum packed cold-smoked rainbow trout. Int J Food Microbiol. 1997;37:63–72.

111. Sallam KI. Chemical, sensory and shelf life evaluation of sliced salmon treated with salts of organic acids. Food Chem. 2007;101(2):592–600.

112. Sallam KI. Antimicrobial and antioxidant effects of sodium acetate and sodium citrate in refrigerated sliced salmon. Food control. 2007;18(5):566–575.

113. Manju S, Mohan CO, Mallick AK, et al. Influence of vacuum packaging and organic acid treatment on the chilled shelf life of perch fillet (Etpolus suratensis, Bloch 1970). Journal of Food Quality. 2008;31(3):347–365.

114. Maca JV, Miler RK, Acuff GR. Microbiological, sensory and chemical characteristics of vacuum packed ground beef patties treated with salts of organic acids. Journal of Food Science. 1997;62(3):591–596.

115. Sallam KI, Samejima K. Microbiological and chemical quality of ground beef treated with sodium lactate and sodium chloride during refrigerated storage. Lebenswiss Technol. 2004;37(8):865–871.

116. Zhuang RY, Huang YW, Beuchat LR. Quality changes during refrigerated storage of packaged shrimp and catfish fillets treated with sodium acetate or propyl gallocate. Journal of Food Science. 1996;61(1):241–244.

117. Lee YL, Cesario T, Owens J, et al. Antibacterial activity of citrate and acetate. Nutrition. 2002;18(7-8):665–666.

118. Mbandi E, Shelef LA. Enhanced inhibition of Listeria monocytogenes and Salmonella enteritidis in meat by combinations of sodium lactate and diacetaet. Journal of Food Protection. 2001;64(5):640–644.

119. Mc William L, Stewart CS. Susceptability of Escherichia coli O157 and non-O157 isolates to lactate. Letters in Applied Microbiology. 2002;35:176–180.

120. Brody AL. Packaging of Food. In: AL Brody, et al. editors. The Wiley encyclopedia of packaging. 2nd ed. New York, USA: Wiley; 1997;4(6):381.

121. Chen HM, Meyers SP, Hardy RW, et al. Color stability of astaxanthin pigmented rainbow trout under various packaging conditions. Journal of Food Science. 1988;49(5):1337–1340.

122. Sikorski ZE, Sun P. Preservation of seafood quality. In: F Shahidi, et al. editors. Seafoods: Chemistry, Processing, Technology and Quality. Glasgow, UK: Blackie Academic & Professional; 1994. p. 168–195.

123. Sahoo J and Kumar N. Quality of vacuum packaged muscle foods stored under frozen conditions: a review. Journal of Food Research and Technology. 2005;42(3):209–213.

124. Mendes R, Goncalvez A. Effect of soluble CO2 stabilization and vacuum packaging in the shelf life of farmed sea bream and sea bass fillets. Journal of Food Science and Technology. 2008;43(9):1678–1687.

125. Rajeesh R, Ravishankar CN, Srinivasa Gopal TK, et al. Effect of vacuum packaging and sodium acetate on the shelf life of seer fish during iced storage. Packaging Technology & Science. 2002;15(5):241–245.

126. Ozogul F, Polat A, Ozogul Y. The effects of modified atmosphere packaging and vacuum packaging on chemical, sensory and microbiological changes of sardines (Sardinula chardus). Food Chemistry. 2004;85(1):49–57.

127. Chouliara I, Savvidis IN, Panagiotaakis N, et al. Preservation of salted, vacuum-packaged, refrigerated sea bream (Sparus aurata) fillets by irradiation: microbiological, chemical and sensory attributes. Food Microbiology. 2004;21(3):351–359.

128. Moleyar V, Narasimhan P. Modified atmosphere packaging of vegetables: an appraisal. Crit Rev Food Sci Nutr. 1989;31(4):267–278.

129. Phillips CA. Review: modified atmosphere packaging and its effects on the microbiological quality and safety of produce. International Journal of Food Science & Technology. 1996;31(6):463–479.

130. Parry RT. Introduction. In: RT Parry editor. Principles and applications of MAP of foods. New York, USA: Blackie Academic and Professional; 1993. p.1–18.

131. Seideman SC, Durland PR. The utilization of modified gas atmosphere packaging from fresh meat: A review. Journal of Food Quality. 1984;6(3):239–252.

132. Knoche W. Chemical reactions of CO2 in water. In: C Bauer, et al. editors. Biophysics and Physiology of Carbon Dioxide. Erlin, Germany: Springer-Verlag; 1980. p. 3–11.

133. Haines RB. The influence of carbon dioxide on the rate of multiplication of certain bacteria, as judged by viable counts. Journal of the Society of Chemical Industry. 1933;52:13–17.

134. Gill CO, Tan KH. Effect of carbon dioxide on growth of meat spoilage bacteria. Appl Environ Microbiol. 1980;39(2):317–319.

135. Ogrydziak DM, Brown WD. Temperature effects in modified-atmosphere storage of sea foods. Food Technology. 1982;36:86–96.

Citation: Mohan CO, Ravishankar CN, Srinivasa GTK. Packaging interventions in low temperature preservation of fish-a review. MOJ Food Process Technol. 2016;2(1):13–25. DOI: 10.15406/mojfpt.2016.02.00026
Packaging interventions in low temperature preservation of fish- a review

Citation: Mohan CO, Ravishankar CN, Srinivasa GTK. Packaging interventions in low temperature preservation of fish-a review. MOJ Food Process Technol. 2016;2(1):13–25. DOI: 10.15406/mofjpt.2016.02.00026
Packaging interventions in low temperature preservation of fish—a review

172. Hotchkiss JH. Recent research in MAP and active packaging systems. In Abstracts, 27th Annual Convention. Australia: Australian Institute of Food Science and Technology; 1995. p. 104.

173. Ravishankar CN, Mohan CO, Sreenath PG, et al. Principles and Applications of Active and intelligent packaging Systems in Food: a review. In: NF McManus, et al. editors. Fisheries: Management, Economics and Perspectives. New York, USA: NOVA Publishers; 2009. p. 271–293.

174. Mohan CO. Active and Intelligent packaging for fishery products. In: J Joseph, et al. editors. Post Harvest Technology of Freshwater Fish. India: Central Institute of Fisheries Technology; 2009. p. 295–312.

175. Miltz J, Passy N, Mannheim CH. Trends and applications of active packaging systems. In: Ackerman P, et al. (Eds.), Foods and Packaging Materials: Chemical Interactions. Milton Road, Cambridge, USA: Royal Society of Chemistry; 1997. p. 201–210.

176. Brody AL, Strupinsky ER, Kline LR. Active Packaging for Food Applications. Pennsylvania, USA: Technomic Publishing Company; 2001. 236 p.

177. Berenson S, Saguy IS. Oxygen absorbers for extension of crackers shelf-life. LWT-Food Science & Technology. 1998;31(1):1–5.

178. Gill CO, McGinnis JC. The use of oxygen scavengers to prevent the transient discoloration of ground-beef packaged under controlled, oxygen-depleted atmospheres. Meat Sci. 1995;41(1):19–27.

179. Smith JP, Hoshino J, Abe Y. Interactive packaging involving sachet technology. In: ML Rooney editor. Active food packaging. London, UK: Blackie Academic and Professional; 1995. p. 143–173.

180. Mohan CO, Ravishankar CN, Srinivasa Gopal TK, et al. Biogenic amines formation in Seer fish (Scomberomorus commerson) steaks packed with O2-scavenger during chilled storage. Food Research International. 2009;42(3):411–416.

181. Floros JD, Dock LL, Han JH. Active packaging technologies and applications. Food Cosmetics & Drug Packaging. 1997;20:10–17.

182. Mohan CO. Shelf Life Extension of Seer Fish (Scomberomorus Commerson) Steaks Using O2 Scavenger and CO2 Emitters in Chilled Condition. Fish and Fishery Science (Post Harvest Technology). India: Central Institute of Fisheries Education (Deemed University); 2008. 248 p.

183. Mohan CO, Ravishankar CN, Srinivasa Gopal TK, et al. Nucleotide breakdown products of seer fish (Scomberomorus commerson) steaks stored in O2 scavenger packs during chilled storage. Innovative Food Science and Emerging Technologies. 2009;10(2):272–278.

184. Mohan CO, Ravishankar CN, Srinivasa Gopal TK, et al. Effect of chitosan edible coating on the quality of double filleted Indian oil sardine (Sardinella longiceps) during chilled storage. Food Hydrocolloids. 2012;26(1):167–174.

185. Reddy NR, Roman MG, Villanueva M, et al. Shelf life and C. botulinum toxin development during storage of modified atmosphere- packaged fresh catfish fillets. Journal of Food Science. 1997;62:878–884.

186. Woyewoda AD, Bhig EG, Shaw SJ. Controlled and modified atmosphere storage of cod fillets. Canadian Institute of Food Science & Technology Journal. 1984;17:24–34.

187. Guldager HS, Beknæs N, Østerberg C, et al. Thawed cod fillets spoil less rapidly than unfrozen fillets when stored under modified atmosphere at 2°C. J Food Prot. 1998;61(9):1129–1136.

188. Reddy NR, Solomon HM, Rhodehamel EJ. Comparison of margin of safety between sensory spoilage and onset of Clostridium botulinum toxin development during storage of modified atmosphere (MA)-packaged fresh marine cod fillets with MA-packaged aquacultured fish fillets. Journal of Food Safety. 1999;19:171–183.

189. Jensen MH, Petersen A, Rüge EH, et al. Storage of chilled cod under vacuum and at various concentrations of carbon dioxide. In: JJ Connell editor. Advances in Fish Science and Technology. Surrey, UK: Fishing News Books; 1980. p. 294–297.

190. Villemure G, Simard RE, Picard G. Bulk storage of cod fillets and gutted cod (Gadus morlma) under carbon dioxide atmosphere. Journal of Food Science. 1986;51:317–320.

191. Post LS, Lee DA, Solberg M, et al. Development of botulinic toxin and sensory deterioration during storage of vacuum and modified atmosphere packaged fish fillets. Journal of Food Science. 1985;50:990–996.

192. Penny N, Bell RG, Cunnings TL. Extension of the chilled storage life of smoked blue cod (Parapercis colias) by carbon dioxide packaging. International Journal of Food Science & Technology. 1994;29:167–178.

193. Dhananjaya S, Stroud GD. Chemical and sensory changes in haddock and herring stored under modified atmosphere. International Journal of Food Science & Technology. 1994;29:575–583.

194. Reddy NR, Solomon HM, Høy H, et al. Shelf-life and toxin development by Clostridium botulinum during storage of modified-atmosphere-packaged fresh aquaculturated salmon fillets. Journal of Food Protection. 1997;60:1055–1063.

195. Scott DN, Fletcher GC, Hogg MG. Storage of snapper fillets in modified atmospheres at -1°C. Food Technology Australia. 1986;38(6):234–238.

Citation: Mohan CO, Ravishankar CN, Srinivasa GTK. Packaging interventions in low temperature preservation of fish—a review. MOJ Food Process Technol. 2016;2(1):13–25. DOI: 10.15406/mojfpt.2016.02.00026