Determination of focal spot size of high-energy microfocal X-ray source based on HfO$_2$-coated single-bounce ellipsoidal glass monocapillary X-ray condenser

Y B Wang1,2, S K Shao1,2, X Y Zhang1,2, Y F Li1,2, X P Sun1,2, Z G Liu1,2 and T X Sun1,2,3

1Laboratory of Beam Technology of Ministry of Education, College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875, China
2Beijing Radiation Center, Beijing 100875, China

E-mail: stxbeijing@163.com

Abstract. A method based on the single-bounce ellipsoidal monocapillary X-ray condenser (SEGMXC) was improved for determining the focal spot size of the high-energy microfocal X-ray source. HfO$_2$ was selected as the high-density material (\approx9.68g/cm3) and coated on the inner surface of the SEGMXC by the atomic layer deposition method. The focal spot size of a microfocal spot X-ray source was obtained as 33.14 ± 0.02 μm and the relative deviation of the effective size given by the manufacturer was 5.3%.

1. Introduction

X-ray sources play an important role in the science of material analysis [1-2]. Although high-energy X-ray source are available [3-6], the actual dimensions of many focal spots are larger than the nominal sizes given by the manufacturers [7]. Therefore, the accurate determination of the focal spot size of the X-ray source is vital for the design and application of X-ray sources [8-9]. The pinhole method is a traditional method of measuring the focal spot size of the X-ray source [7,10]. However, the pinhole method requires multiple shots and large magnification. In addition, due to the influence of the penumbra, the pinhole should be smaller than the focal spot size and that increases the requirement of the manufacture [10-13], which makes this method has no advantage on the measurement of the microfocal spot X-ray source. The slit and resolution pattern method are other two common methods for determining the size of the focal spot. The scanner is not required in these methods and the exposure times are shorter. However, the slit method requires a spread function of the slit and the resolution pattern method requires low contrast measurement [10-14]. The size of the focused beam of the polycapillary X-ray collimator is related to the size of the focal spot of the X-ray source. The polycapillary X-ray collimator, therefore, can be used in measuring the focal spot size, especially for the microfocal spot X-ray source [15-16]. The focal spot size and the focal depth can be obtained simultaneously by the single-bounce ellipsoidal monocapillary X-ray condenser (SEGMXC) [17]. However, it is hard to manufacture the SEGMXC into an ideal ellipsoidal shape. Duo to the penetration of the high-energy X-ray, none of the above methods are suitable for measuring the focal spot size of the high-energy X-ray source.

According to the principle of the total reflection of the X-ray, the critical angle of the total reflection of the X-ray is proportional to the density of the reflector [18]. Therefore, to determine the focal spot size of the high energy X-ray source. The atomic layer deposition (ALD) was used to deposit the high-
density material on the inner surface of the SEGCMXC. Due high conformality and good chemical control of ALD, it is widely used for the deposition of protective on miniaturized, highly reflective surfaces [19-22]. Compared with the electrophores deposition method, ALD implies a lower roughness. Therefore, ALD has the advantage in depositing high-density materials on the inner surface of the SEGCMXC.

In this paper, the method based on the SEGCMXC was improved for determining the focal spot size of the high energy microfocal X-ray source. HfO₂ was selected as the high-density material (~9.68g/cm³) and coated on the inner surface of the SEGCMXC by the ALD method. The focal spot size of a microfocal spot X-ray source was obtained through this method.

2. Theoretical basis
The SEGCMXC is commonly used as a condenser device of X-rays, the incident X-rays undergo repeated total external reflection until they exit out of the SEGCMXC [23]. Total external reflection can occur as long as the grazing angle \(\theta \) is not greater than the critical angle of total reflection (figure 1) and the critical angle of total reflection \(\theta_c \) can be estimated as follows:

\[
\theta_c = \frac{20.3 \sqrt{\rho}}{E_i(\text{keV})} \text{(mrad)}
\]

where \(E_i \) is energy of the incident X-ray, and \(\rho \) is density of the reflector.

The HfO₂ film was coated on the inner surface of the SEGCMXC, according to Eq. (1), \(\theta_c \) was increased by 2.1 times (the density of the glass is ~2.23 g/cm³), which meant that the highest energy that the SEGCMXC could focus was increased by 2.1 times. Generally, the glass capillary X-ray condenser can focus the X-ray with energy below 35 keV [24]. Therefore, the HfO₂-coated SEGCMXC can focus the X-ray with energy up to 74 keV.

The X-ray source \(S \) is positioned at the focus of ellipsoid and the image \(I \) of the focused X-ray by the SEGCMXC is at the other focus of the ellipsoid (figure 1).

The relation between the size of the X-ray source \(Z_s \) and the image size \(Z_i \) is as follows [24]:

\[
Z_i = C \left(\frac{L + L_s}{F} \right) Z_s + 2(L + \frac{L_s}{2}) \alpha
\]

where \(C \) is a correction factor and \(\alpha \) is the slope error of the SEGCMXC. These two parameters can be measured based on an X-ray source with a variable focal spot size [24]. Therefore, Eq. (2) can be reduced to the following form:

\[
Z_s = \frac{F}{C(L + L_s)} Z_i - 2(L + \frac{L_s}{2}) \frac{F}{(L + L_s)} \alpha
\]
Here Z_i can be obtained by the knife-edge scanning method, and for a certain SBEGMXC, Eq. (3) is a linear function. $F \frac{L}{C(L+L_s)}$ can be considered as the proportionality coefficient K, while $-2(L + \frac{L_s}{2}) \frac{F}{(L+L_s)} \alpha$ can be considered as the intercept B. Therefore, Eq. (3) can be reduced to

$$Z_s = KZ_i + B$$

(4)

Thus, the value of Z_s can be obtained by measurement and calculation.

3. Experimental

3.1. HfO$_2$-coated SBEGMXC

A commercial Ke-Micro T-ALD 100A setup was used for HfO$_2$ depositing, Hf(N(CH$_3$)$_2$)$_4$ was selected as the hafnium precursor, deionized water as the water precursor and the purity nitrogen with a flow rate of 14 standard cubic centimeters per minute (sccm) as the carrier and purging gas.

The parameters of one ALD cycle are listed in Table 1:

Parameters of one ALD cycle	Pulse time of Hf(N(CH$_3$)$_2$)$_4$ (s)	First purging time (s)	Pulse time of H$_2$O (s)	Second purging time (s)	Reaction temperature (°C)	Deposition pressure (torr)
0.13	50.00	0.02	50.00	250	0.1	

1700 ALD cycles were set to deposit HfO$_2$ on the inner surface of the SBEGMXC.

In this paper, a SBEGMXC was fabricated by drawing tower method [25-26], and the SBEGMXC was coated before it was cut into the design length. After coating, the SBEGMXC was cut into the design length, and the scanning electron microscope (SME) method was used to obtain the thickness of HfO$_2$ film at the cut section (figure 2).

![Figure 2. SEM image of the cut section of the HfO$_2$-coated SBEGMXC.](image-url)
According to the results of SME, the HfO$_2$ film thickness is about 34 nm, and X-rays did not penetrate beyond this thickness outside the capillary wall [27].

The parameters of the HfO$_2$-coated SBEGMXC (figure 3) are listed in table 2.

Table 2. Parameters of SBEGMXC.

SBEGMXC	
Effective length (mm)	50.000
Input radius (mm)	0.380
Output radius (mm)	0.491
Major semi-axis (mm)	500.000
Minor semi-axis (mm)	0.600

![Figure 3. Photo of SBEGMXC.](image)

3.2. Determination of C and α

In this paper, a microfocus X-ray source with a W target (L9631 HAMAMATSU, Japan) and a high-energy X-ray detector system (X-123 CdTe AMETEK, USA) were used to obtain C and α in Eq.(2) [21]. The focal depth of this X-ray source was 16.5 mm, and the focal spot size of this X-ray source was continuously adjusted from 15 to 80 μm by changing its output power (figure 4).

![Figure 4. The relation between the output power and the focal spot size of the X-ray source.](image)
The voltage of the X-ray source was set as 65 kV and the current was changed to obtain the different focal spot size. The C and α were obtained as 1.2 and 53.7 μrad, respectively.

3.3. Experimental setup

An X-ray source with a W target (MAX-ULI-L-8-2-10-W, TRUFOCUS, USA) was used as a sample of the measurement. The focal depth F_d is given as 15.7 mm and the effective size given by the manufacturer as 35 μm. The voltage of the X-ray source was set as 65 kV and the current was set as 10 mA. The high energy X-ray detector system (X-123 CdTe AMETEK, USA) was used as the detector. The X-ray source, the HfO$_2$-coated SBEGMXC and the detector was positioned on the same axis (figure 5). A lead knife edge (2 cm in thickness) was used to scan the focal spot of the SBEGMXC.

![Figure 5. Sketch of the experiment.](image)

F_b is the distance between the beryllium window and the entrance of the SBDGMXC.

4. Results

The counts of K_α characteristic line (58.0keV) of the W target was selected to obtain Z_i by knife edge scanning method and took the FWHM of the scanning curve as the size of the high energy focal spot. In this experiment, Z_i was measured by from direction (figure 6) and the average value of Z_i was $309.1 \pm 0.2 \mu$m.

![Figure 6. Sketch of the knife-edge scanning directions.](image)
Other parameters are listed in Table 3.

Table 3. Parameters obtained by the experiment.

Parameters	Value
L (mm)	393.0
L₀ (mm)	50.0
F₆ (mm)	41.3
F₄ (mm)	15.7

According to the experimental results and Eq. (4), Zᵢ was obtained as $33.14 ± 0.02 \mu m$. The relative deviation of the effective size from the one given by the manufacturer was 5.3%. This discrepancy may be due to deviation of the measurement of the slope error of the SBEGMXC and the error of knife-edge scanning, as well as the deviation of the optical alignment. We also used the knife-edge scanning method [7] to measure the focal spot size of the X-ray source, which was assessed as $46.24 ± 0.02 \mu m$. The relative deviation of the effective size from the one given by the manufacturer was 32.11%.

5. Summary

The ALD method can efficiently deposit the high-density material and improve the SBEGMXC to focus higher energy. The HfO₂-coated SBEGMXC can obtain the high-energy microfocal spot size of the X-ray source effectively. The comparative analysis of the results obtained via the HfO₂-coated SBEGMXC method and the knife-edge scanning method proved the superiority of the former method. The difficulties of measurement caused by X-ray penetration are effectively mitigated by the HfO₂-coated SBEGMXC method, while the SBEGMXC shape is not constrained by the X-ray source size. This method has potential value in the fabrication and calibration of high-energy microfocal X-ray sources.

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grants Nos. 11675019 and 11875087)

References

[1] Chipera S J and Bish D L 2001 Baseline studies of the clay minerals society source clays: powder X-ray diffraction analyses. *Clay. Clay Miner.* 49(5) 398-409
[2] Limodin N, Rethore J, Adrien J, Buñièrre J Y, Hild F and Roux S 2011 Analysis and artifact correction for volume correlation measurements using tomographic images from a laboratory X-ray source. *Exp. Mech.* 51(6) 959-70
[3] Kohara S, Itou M, Suzuya K, Inamura Y, Sakurai Y, Ohishi Y and Takata M 2007 Structural studies of disordered materials using high-energy x-ray diffraction from ambient to extreme conditions *J. Phys.-Condens. Mat.* 19(50) 506101
[4] Harada M and Sakurai K 1999 K-line X-ray fluorescence analysis of high-Z elements *Spectrochim. Acta B* 54(1) 29-39
[5] Chen G, Bennett G and Perticone D 2007 Dual-energy X-ray radiography for automatic high-Z material detection *Nucl. Instrum. Meth. B* 261(1-2) 356-9
[6] Gigante G E and Sciuti S 1984 A multipurpose energy dispersive x-ray spectrometer for low, medium and high-Z materials analysis *Int. J. Appl. Radiat. Is.* 35(6) 481-8
[7] Robinson A and Grimshaw G M 1975 Measurement of the focal spot size of diagnostic x-ray tubes--a comparison of pinhole and resolution methods *Br. J. Radiol.* 48 572-80
[8] Slama L A, Riis H L, Sabet M, Barnes M P, Ebert M A, Chan S and Rowshanfarzad P 2019 Beam focal spot intrafraction motion and gantry angle dependence: A study of Varian linac focal spot alignment *Phys. Medica* 63 41-7
[9] Oh L C, Lau K K, Devapasundaram A, Buchan K, Kuganesan A and Huynh M 2019 Efficacy of fine focal spot technique in CT angiography of neck Br. J. Radiol. 92 20190083
[10] Roemer D 2007 X-Ray Fluorescence with doubly curved crystal optics (USA.: University of Albany of State University of New York)
[11] Bavendiek K, Ewert U, Riedo A, Heike U and Zscherpel U 2012 New measurement methods of focal spot size and shape of X-ray tubes in digital radiological applications in comparison to current standards 18th World Conf. Nondestructive Testing pp 16-20
[12] Everson J D and Gray J E 1897 Focal-spot measurement: comparison of slit, pinhole, and star resolution pattern techniques Radiology 165 261-4
[13] Watson S A 1993 Real-time spot size measurement for pulsed high-energy radiographic machines Proc. Int. Conf. Particle Accelerators (USA.: Washington) pp 2447-9
[14] Law J 1993 Measurement of focal spot size in mammography X-ray tubes Brit. J. Radiol 66 44
[15] Romanov A Yu 2004 Measurement of the parameters of the focal spot of an X-ray tube using Kumakhov optics. Meas. Tech. 47(7) 20-2
[16] Sun T, Ding X, Liu Z, Luo P, Pan Q, Li C and Zhang M 2008 Measurements of focal spot size for X-ray source by using polycapillary collimator Atomic Energ. Sci. Tech. 42(7) 633-6
[17] Wang Y B, Zhu Y, Sun T X, Sun X P, Liu Z G, Li F Z, Jiang B W, Zhang X Y and Zhang F S 2007 Determination of parameters of X-ray source based on single-bounce ellipsoidal monocapillary X-ray condenser Opt. Precis. Eng. 25(11) 2872-7
[18] Hirsch G 2000 Development of novel tapered-monocapillary optics AIP Conf. Proceedings pp 253-7
[19] Johnson R W, Hultqvist A and Bent S F 2014 A brief review of atomic layer deposition: from fundamentals to applications Mater. Today 17(5) 236-46
[20] Mackus A J M, Bol A A and Kessels W M M 2014 The use of atomic layer deposition in advanced nanopatterning Nanoscale 6(19) 10941-60
[21] Cianci E, Lamperti A, Tallarida G, Zanucoli M, Fiegna C, Lamagna L, and Wiemer C. 2018 Advanced protective coatings for reflectivity enhancement by low temperature atomic layer deposition of HfO2 on Al surfaces for micromirror applications Sensor Actuat. A-Phys. 282 124-31
[22] Marichy C, Bechelany M and Pinna N 2012 Atomic Layer Deposition of Nanostructured Materials for Energy and Environmental Applications Adv. Mater. 24 1017-32
[23] Huang R and Bilderback D H 2006 Single-bounce monocapillaries for focusing synchrotron radiation: modeling, measurements and theoretical limits J. Synchrotron Radiat. 13 74-84
[24] Sun T and Ding X 2004 Study on the measurement of properties of polycapillary X-ray lens Nucl. Instrum. Meth. B 226 651-8
[25] Wang Y, Zhang X, Li Y, Sun X, Shao S, Liu Z and Sun T 2019 Measuring the average slope error of a single-bounce ellipsoidal glass monocapillary X-ray condenser based on an X-ray source with an adjustable source size Nucl. Instrum. Meth. A 934 36-40
[26] Huang R and Bilderback D H 2006 Single-bounce monocapillaries for focusing synchrotron radiation: modeling, measurements and theoretical limits J. Synchrotron Radiat. 13(1) 74-84
[27] Matsuura Y, Oyama T and Miyagi M 2005 Soft-x-ray hollow fiber optics with inner metal coating Appl. Opt. 44 6193-6