Autoimmune channelopathies: new antibody-mediated disorders of the central nervous system

Angela Vincent

Address: Department of Clinical Neurology, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Oxford OX3 9DS, UK
Email: angela.vincent@imm.ox.ac.uk

F1000 Biology Reports
2009, 1:61 (doi:10.3410/B1-61)

The electronic version of this article is the complete one and can be found at: http://F1000.com/Reports/Biology/content/1/61

Abstract

Contrary to established wisdom, there now appear to be antibody-mediated central nervous system (CNS) disorders. Over the last few years, a number of patients have been defined with antibodies to voltage-gated (VGKC) or ligand-gated (NMDAR, GlyR) ion channels or ungated water (AQP4) channels. Some of the disorders improve spontaneously over time, others may be more chronic and relapsing-remitting, but immunotherapies reduce antibody levels and improve clinical outcomes. These are exciting developments that herald a new era of immunotherapy-responsive CNS diseases, and they raise interesting questions regarding the aetiological and pathogenic mechanisms mediating these conditions.

Introduction and context

Autoimmune channelopathies are becoming one of the exciting areas of neurological diseases in clinical practice because, though relatively uncommon (collectively perhaps 20 per million per year), diagnosis of these conditions usually indicates a significant clinical improvement following immunotherapies that reduce autoantibody levels. The field stems from three decades of research into myasthenia gravis and the Lambert-Eaton myasthenic syndrome [1,2]; in these conditions, autoantibodies to muscle nicotinic acetylcholine receptors (AChRs) or voltage-gated calcium channels (P/Q-type), respectively, are the main pathogenic agents and cause destruction and/or downregulation of their targets, leading to neuromuscular junction transmission failure (Table 1) which can be demonstrated in animal models. Newer disorders of peripheral neurotransmission include (a) peripheral nerve hyperexcitability syndromes with antibodies binding to 125I-dendrotoxin-labelled shaker-type (Kv1) voltage-gated potassium channels (VGKCs) extracted from mammalian cortex [3] and (b) autonomic neuropathies with antibodies to 125I-epibatidine-labelled ganglionic nicotinic AChRs [4]. Over the last decade or so, a new family of antibody-associated diseases has emerged that is beginning to overturn previous concepts that regarded the brain as immune-privileged and protected by an impermeable blood-brain barrier. First, glutamate receptor (GluR3) antibodies were present in children with the very rare but devastating form of epilepsy called Rasmussen encephalitis [5], but these findings were not always confirmed in other cohorts of patients [6], and the main pathology is now thought to be cellular rather than antibody-driven [7]. The paradigm shift really began with the finding of very high VGKC antibody levels in patients with limbic encephalitis – which includes seizures, psychological disturbance, memory loss and high signal on magnetic resonance imaging (MRI) in the medial temporal lobes – who responded convincingly to immunotherapies such as plasma exchange (which removes circulating plasma components such as antibodies and replaces them with substitute plasma proteins; see Figure 1) [8-10]. Until then, limbic encephalitis was almost always recognised as ‘paraneoplastic’ (that is, associated with a T cell-mediated immune response to a tumour [11]) and with a poor response to treatments. The VGKC
Major recent advances

Some patients presenting with symptoms of cognitive problems, psychiatric disturbance or epilepsy were found to have antibodies that bound to the proximal dendrites of the hippocampal neuronal [16], distinct from the binding of VGKC antibodies more distally [8,16]; many of these antibodies were subsequently shown to be directed against N-methyl-D-aspartate receptors (NMDARs) (NR1/NR2B) [17], with NR1 as the main target [18]. Most of these patients progressed to a more complex phenotype with movement disorders or catatonia, mutism, sleep disturbance and autonomic dysfunction [17,18]. At first, the syndrome was associated with ovarian teratomas in young women, but in these cases, unlike the traditional paraneoplastic disorders [11], the conditions improved when the tumour was removed and immunotherapies given [17]. Now many nonparaneoplastic cases are being identified and the phenotype is widening to include both male and female adults, teenagers, and even young children [18,19] (S Irani, A Vincent, unpublished data). These NMDAR antibodies may be different from those measured by binding to linear peptide sequences of NR2A/NR2B seen in neuropsychiatric patients [20] and have the potential to be pathogenic since they target extracellular domains on NR1/NR2B transfected human embryonic kidney cells and substantially reduce the expression of these subunits in primary cultures of hippocampal neurons [18]. The NMDAR antibodies were most easily detected in the cerebrospinal fluid (CSF) (at 1:10) compared with serum (at 1:400), and there is substantial intrathecal synthesis of the specific antibody [18] (Table 2); nevertheless, in absolute terms, serum levels are higher than CSF levels. Recently, antibodies to AMPAR (a-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor) GluR1/GluR2 were identified in another form of limbic encephalitis that was mostly cancer-related. These patients also showed treatment responses but tended to relapse [21].

Meanwhile, a completely different condition was found to be associated with antibodies to a water channel. Neuromyelitis optica (NMO, or Devic disease) has usually been considered to be part of the spectrum of inflammatory demyelinating disorders, of which multiple sclerosis is the best known. However, NMO is a distinct inflammatory condition of the optic nerves which involves severe visual failure and inflammation of the spinal cord causing longitudinally extensive transverse myelitis (at least three spinal cord segments with high signal on MRI), that leads to para- or tetraparesis, sensory deficits and bladder disturbances. Patients show variable recovery with immunomodulatory treatments but accumulate disability over time, and mortality is high if the disease is not appropriately treated [22]. In 2004, antibodies binding around small vessels, under
the pia and in Virchow-Robin spaces were defined by immunofluorescence [23], and the target was subsequently identified as aquaporin-4 (AQP4), the only water channel expressed strongly in the brain (and also in kidney and stomach) [24]. Antibodies to AQP4 bind to the astrocyte endfeet that abut CNS blood vessels and are thought to be important contributors to the integrity of the blood-brain barrier. The antibodies lead to substantial loss of surface AQP4 by internalisation and activate complement with formation of the membrane attack complex, leading to cellular damage [25]. They also reduce astrocyte expression of excitatory amino acid transporter 2 (EAAT2) with reduced reuptake of glutamate [26] and hence potential excitotoxic damage. Interestingly, it seems that AQP4 and EAAT2 are part of a macromolecular complex [25]. Whether these changes alone lead to the substantial inflammatory infiltrates, areas of demyelination, loss of AQP4 and sometimes necrosis that are found in lesions [27,28] is not yet clear, but increases in antibody levels are associated with clinical relapses, and AQP4 antibodies decrease in parallel with clinical improvement after
Future directions

There are some important lessons that arise out of these exciting advances. Once defined, the antibodies are best identified by binding to native proteins extracted from mammalian tissue in mild detergents (VGKCs), or better yet, identified by binding to native proteins extracted from exciting advances. Once defined, the antibodies are best used to model the in vivo effects of these recently discovered antibodies on neuronal cell cultures. In the future, one hopes that these studies will extend to examining the effects of these newly discovered antibodies on neuronal activity in brain slices in vitro and in animal models in vivo.

Considering the diversity of ion channels and receptors in the nervous system, it would be strange if there were no other autoimmune channelopathies to be discovered.

immunosuppression [29]; overall, there seems little doubt that the antibodies contribute to the pathology [22].

Finally, another receptor target is emerging in patients with rare spinal and brain stem syndromes. In one adult male who presented with excessive startle and progressive encephalomyelitis with rigidity and myoclonus (PERM), a form of stiff person syndrome, antibodies to glycine receptor alpha 1 pentamers (GlyR1s) were identified [30]. The GlyR1 antibodies disappeared with treatment and the patient made a substantial clinical recovery. These antibodies are now being found in other patients with related disorders (A Vincent, I Leite, H-M Meinck, unpublished data).

Table 2. Central nervous system autoimmune channelopathies

Examples	VGKC-Ab-limbic encephalitis	NMDAR-Ab encephalitis	AMPAR-Ab encephalitis	Neuromyelitis optica	Glycine receptor antibody-associated disorder
Typical symptoms	Memory loss, seizures, psychiatric or psychological disturbance	Psychosis, bizarre behaviours, mutism, cataonia, movement disorders, hypothalamic dysfunction	Memory loss, confusion, seizures, agitation	Optic nerve inflammation with visual loss	Excessive startle, rigidity, myoclonic jerks
Target	Dendrotoxin-binding CNS VGKC (Kv1.1, 1.2, 1.6)	Increased internalisation	GluR1/2 dimers, epitopes on GluR1 or GluR2	Very rare	Very rare
Tumour association or other pathology	Ovarian teratomas in young women	Breast cancer, small-cell lung cancer, thymoma	Increased internalisation	Complement-mediated mechanisms important	Not common
Main pathogenic mechanism	Increased internalisation	Increased internalisation	Complement-mediated mechanisms not explored	Increased internalisation of AQP4 and increased turnover of EAAT1 in astrocytes	No evidence to date
Disease course	Self-limiting in most cases	Tumour cases do well after removal and treatments	Responds to immunotherapies but has tendency to relapse	Historically a severe relapsing remitting disease with bad prognosis	First patient described returned to work after intense immunotherapies
Intra-thecal synthesis of specific antibody	1.5 to 40, variable but sometimes high	Tumour cases may do less well and have a tendency to relapse	10 to 30, High	May do better with intensive immunotherapies	1.5 to >50, variable but sometimes very high
Normal	<1.5	Normal	High	Little or none (<1.5)	1.5 to >50, variable but sometimes very high

*This is calculated as (cerebrospinal fluid [CSF] titre of specific antibody/concentration of CSF IgG) / (serum titre of specific antibody/concentration of serum IgG). Values above 1.5 are usually considered indicative of synthesis within the CSF compartment rather than the result of passive leakage. The values given are based on our unpublished experience and from data presented in [18,21]. It needs to be appreciated that the normal serum IgG concentration is about 400 times higher than the normal CSF IgG concentration. Therefore, even in the presence of substantial intra-thecal synthesis, the serum concentration of specific antibody will be higher than the CSF concentration. Ab, antibody; AMPAR, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor; AQP4, aquaporin-4; CNS, central nervous system; EAAT1, excitatory amino acid transporter 2; GluR, glutamate receptor; GlyR, glycine receptor; NMDAR, N-methyl-D-aspartate receptor; VGKC, voltage-gated potassium channel.
diagnosed and treated. Until now, most of the target channels have been identified by a candidate approach, but if the target for binding to the cultured cells is sufficiently abundant, as appears to be the case for AMPARs [21], it is possible to immunoprecipitate the target using the relatively pure CSF IgG from the patients [21]; this technique has potential for identifying new targets in the future. Even the total patient plasma IgG can be used to identify antigens by this approach when a suitable cell preparation or cell line is identified [32].

In each of these diseases, CSF antibodies are found, and there is often evidence of high concentrations of CSF-specific antibody relative to CSF IgG concentration when compared with similar measurements in serum (‘intrathecal synthesis’, Table 2), but the absolute concentration of antibody is still higher in serum than in CSF. A major question, therefore, is whether the antibodies that are pathogenic come directly from the blood into the CNS parenchyma via a ‘leaky’ or damaged blood-brain barrier or whether the disorders require the presence of specific antibodies in the CSF. The latter could be the result of passive diffusion across the choroid plexus and/or intrathecal synthesis by B cells that have gained entry to the CNS and synthesise the antibodies in the intrathecal compartment. These considerations are not purely academic. Does intrathecal synthesis decrease with current systemic treatments and increase if the patient relapses? Do immune responses ever begin in the CNS and remain undetectable in the serum? And importantly, should drugs and therapies be specifically targeted to the CSF compartment rather than to the systemic immune system? These are just some of the questions that arise from the identification of these new autoimmune disorders, and the answers will likely come from both focused human studies and animal models.

Abbreviations

AChR, acetylcholine receptor; AMPAR, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor; AQP4, aquaporin-4; Caspr2, contactin-associated protein 2; CNS, central nervous system; CSF, cerebrospinal fluid; EAAT2, excitatory amino acid transporter 2; GluR, glutamate receptor; GlyR1, glycin receptor alpha 1 pentamer; MRI, magnetic resonance imaging; PERM, progressive receptor; GlyR1, glycine receptor alpha 1 pentamer; EAAT2, excitatory amino acid transporter 2; GluR, glutamate receptor; CNS, central nervous system; CSF, cerebrospinal fluid; AQP4, aquaporin-4; Caspr2, contactin-associated protein hydroxy-5-methyl-4-isoxazolepropionic acid receptor; animal models.

Acknowledgements

I am very grateful to my colleagues Sarosh Irani, Sian Alexander, Luigi Zuliani, M Isabel Leite, Patrick Waters and Bethan Lang for their helpful comments and for providing their unpublished images and data for this review.

References

1. Vincent A: Unravelling the pathogenesis of myasthenia gravis. Nat Rev Immunol 2002, 2:797-804.
2. Vincent A, Lang B, Kleopa KA: Autoimmune channelopathies and related neurological disorders. Neuron 2006, 52:123-38.
3. Hart IK, Waters C, Vincent A, Newland C, Beeson D, Pongs O, Morris C, Newsom-Davis J: Autoantibodies detected to expressed K+ channels are implicated in neuromyotonia. Ann Neurol 1997, 41:238-46.
4. Vernino S, Low PA, Fealey RD, Stewart JD, Farrugia G, Lennon VA: Autoantibodies to ganglionic acetylcholine receptors in autoimmune autonomic neuropathies. N Engl J Med 2000, 343:847-55.
5. Rogers SW, Andrews pl, Gahring LC, Whisentand T, Cauley K, Crain B, Hughes TE, Heinemann SF, McNamara JO: Autoantibodies to glutamate receptor GluR3 in Rasmussen's encephalitis. Science 1994, 265:648-51.
6. Watson R, Jiang Y, Bermudez I, Houlihan L, Clover L, McKnight K, Cross JH, Hart IK, Roubertie A, Valmier J, Hart Y, Palace J, Beeson D, Vincent A, Lang B: Absence of antibodies to glutamate receptor type 3 (GluR3) in Rasmussen encephalitis. Neurology 2004, 63:43-50.
7. Bien CG, Granata T, Anzozzi C, Cross JH, Dulac O, Kurthen M, Lassmann H, Mantegazza R, Vilemure JG, Spreafico R, Elger CE: Pathogenesis, diagnosis and treatment of Rasmussen encephalitis: a European consensus statement. Brain 2005, 128:454-71.
8. Buckley C, Oger J, Clover L, Tuzun E, Carpenter K, Jackson M, Vincent A: Potassium channel antibodies in two patients with reversible limbic encephalitis. Ann Neurol 2001, 50:73-8.
9. Vincent A, Buckley C, Schott JM, Baker I, Dewar BK, Detert N, Clover L, Parkinson A, Bien CG, Onner S, Lang B, Rossor MN, Palace J: Potassium channel antibody-associated encephalopathy: a potentially immunotherapy-responsive form of limbic encephalitis. Brain 2004, 127:701-12.
10. Thieben Mj, Lennon VA, Boeve BF, Aksamit AJ, Keegan M, Vernino S: Potentially reversible autoimmune limbic encephalitis with neuronal potassium channel antibody. Neurology 2004, 62:1777-82.
11. Dalmau J, Rosenfeld MR: Paraneoplastic syndromes of the CNS. Lancet Neurol 2008, 7:327-40.
12. McKnight K, Jiang Y, Hart Y, Cavey A, Wroe S, Blank M, Shoenfeld Y, Vincent A, Palace J, Lang B: Serum antibodies in epilepsy and seizure-associated disorders. Neurology 2005, 65:1730-6.
13. Irani SR, Buckley C, Cockrell OC, Rudge P, Johnson MR, Smith S: Immunotherapeutics-responsive seizures-like episodes with potassium channel antibodies. Neurology 2008, 71:1647-8.
14. Liguori R, Vincent A, Clover L, Avoni P, Piazz G, Cortelli P, Baruzzi A, Carey T, Gambetti P, Lugaresi E, Montagna P, Morvan's syndrome: peripheral and central nervous system and cardiac involvement with antibodies to voltage-gated potassium channels. Brain 2001, 124:2417-26.
15. Kleopa KA, Elman LB, Lang B, Vincent A, Scherer SS: Neuromyotonia and limbic encephalitis sera target mature Shaker-type K+ channels: subunit specificity correlates with clinical manifestations. Brain 2006, 129:1570-84.
16. Ances BM, Vitaliani R, Taylor RA, Liebkind DS, Voloschin A, Houghton DJ, Galeota SL, Dichter M, Alavi A, Rosenfeld MR, Dalmau J: Treatment-responsive limbic encephalitis identified by
neuropil antibodies: MRI and PET correlates. Brain 2005, 128:1764-77.

17. Dalmau J, Tuzun E, Wu HY, Masjuan J, Rossi JE, Voloschin A, Baehring JM, Shimazaki H, Koide R, King D, Mason W, Sansing LH, Dichter MA, Rosenfeld MR, Lynch DR: Paraneoplastic anti-N-methyl-D-aspartate receptor encephalitis associated with ovarian teratoma. Ann Neurol 2007, 61:25-36.

18. Dalmau J, Gleichman AJ, Hughes EG, Rossi JE, Peng X, Lai M, Dessain SK, Rosenfeld MR, Balice-Gordon R, Lynch DR: Anti-NMDA-receptor encephalitis: case series and analysis of the effects of antibodies. Lancet Neurol 2008, 7:1091-8.

19. Niehusmann P, Dalmau J, Rudlowski C, Vincent A, Elger CE, Rossi JE, Bien CG: Diagnostic value of n-methyl-D-aspartate receptor antibodies in women with new-onset epilepsy. Arch Neurol 2009, 66:458-64.

20. DeGiorgio LA, Konstantinov KN, Lee SC, Hardin JA, Volpe BT, Diamond B: A subset of lupus anti-DNA antibodies cross-reacts with the NR2 glutamate receptor in systemic lupus erythematosus. Nat Med 2001, 7:1189-93.

21. Lai M, Hughes EG, Peng X, Zhou L, Gleichman AJ, Shu H, Matá S, Kremens D, Vitaliani R, Geschwind MD, Bataller L, Kalb RG, Davis R, Graus F, Lynch DR, Balice-Gordon R, Dalmau J: AMPA receptor antibodies in limbic encephalitis alter synaptic receptor location. Ann Neurol 2009, 65:424-34.

22. Jarius S, Paul F, Franciotta D, Waters P, Zipp F, Hohlfeld R, Vincent A, Wildemann B: Mechanisms of disease: aquaporin-4 antibodies in neuromyelitis optica. Nat Clin Pract Neurol 2008, 4:202-14.

23. Lennon VA, Wingerchuk DM, Kryzer TJ, Pittocck SJ, Lucchinetti CF, Fujihara K, Nakashima I, Weinshenker BG: A serum autoantibody marker of neuromyelitis optica: distinction from multiple sclerosis. Lancet 2004, 364:2106-12.

24. Lennon VA, Kryzer TJ, Pittocck SJ, Verkman AS, Hinson SR: IgG marker of optic-spinal multiple sclerosis binds to the aquaporin-4 water channel. J Exp Med 2005, 202:473-7.

25. Hinson SR, Pittocck SJ, Lucchinetti CF, Roemer SF, Fryer JP, Kryzer TJ, Lennon VA: Pathogenic potential of IgG binding to water channel extracellular domain in neuromyelitis optica. Neurology 2007, 69:2221-31.

26. Hinson SR, Roemer SF, Lucchinetti CF, Fryer JP, Kryzer TJ, Chamberlain JL, Howe CL, Pittocck SJ, Lennon VA: Aquaporin-4-binding autoantibodies in patients with neuromyelitis optica impair glutamate transport by down-regulating EAAT2. J Exp Med 2008, 205:2473-81.

27. Misu T, Fujihara K, Kakita A, Konno H, Nakamura M, Watanabe S, Takahashi T, Nakashima I, Takahashi H, Itoyama Y: Loss of aquaporin 4 in lesions of neuromyelitis optica: distinction from multiple sclerosis. Brain 2007, 130:1224-34.

28. Roemer SF, Parisi JE, Lennon VA, Benarroch EE, Lassman H, Bruck W, Mandler RN, Weinshenker BG, Pittocck SJ, Wingerchuk DM, Lucchinetti CF: Pattern-specific loss of aquaporin-4 immunoreactivity distinguishes neuromyelitis optica from multiple sclerosis. Brain 2007, 130:1194-205.

29. Jarius S, Aboul-Enein F, Waters P, Kuenz B, Hauser A, Berger T, Lang W, Reindl M, Vincent A, Schenk W, Penzien J: Antibody to aquaporin-4 in the long-term course of neuromyelitis optica. Brain 2008, 131:3072-80.

30. Hutchinson M, Waters P, McHugh J, Gorman G, O’Riordan S, Connolly S, Hager H, Yu P, Becker CM, Vincent A: Progressive encephalomyelitis, rigidity, and myoclonus: a novel glycine receptor antibody. Neurology 2008, 71:1291-2.

31. Leite ML, Jacob S, Viegas S, Cossins J, Clover L, Morgan BP, Beeson D, Willcox N, Vincent A: IgG1 antibodies to acetylcholine receptors in ‘seronegative’ myasthenia gravis. Brain 2008, 131:1940-52.

32. Littleton E, Dreger M, Palace J, Vincent A: Immunocapture and identification of cell membrane protein antigenic targets of serum antibodies. Mol Cell Proteomics 2009, 8:1688-96.

33. Schimmel M, Bien CG, Vincent A, Schenk W, Penzien J: Successful treatment of anti-N-Methyl-D-aspartate receptor encephalitis presenting with catatonia. Arch Dis Child 2009, 94:314-6.

34. Waters P, Jarius S, Littleton E, Leite ML, Jacob S, Gray B, Geraldes R, Vale T, Jacob A, Palace J, Maxwell S, Beeson D, Vincent A: Aquaporin-4 antibodies in neuromyelitis optica and longitudinally extensive transverse myelitis. Arch Neurol 2008, 65:913-9.