Crystal Structure of Catechol O-Methyltransferase Complexed with Nitecapone

Hiroshi Iijima,*a Katsuki Takebe,b Mamoru Suzuki,c Hiroko Kobayashi,a Tomoko Takamiya,a Hiroaki Saito,a Norio Niwa,a and Takao Kuwada-Kusunosed

a School of Pharmacy, Nihon University; 7–7–1 Narashinodai, Funabashi, Chiba 274–8555, Japan; b Oral and Maxillofacial Surgery II, Osaka University Graduate School of Dentistry; Suita, Osaka 565–0871, Japan; c Institute for Protein Research, Osaka University; 3–2 Yamadaoka, Suita, Osaka 565–0871, Japan; d School of Dentistry at Matsudo, Nihon University; 2–870–1 Sakaemacho Nishi, Matsudo, Chiba 271–8587, Japan.

Received January 7, 2020; accepted February 19, 2020

Catechol O-methyltransferase (COMT) is known as an important drug-target protein in the field of Parkinson's disease. All clinically approved COMT inhibitors bring a 5-substituted-3-nitrocatechol ring as a pharmacophore, and they bind to COMT with S-adenosylmethionine (SAM) and an Mg2+ ion to form a quaternary complex (COMT/SAM/Mg2+/inhibitor). However, structural information about such quaternary complexes is only available for a few inhibitors. Here, a new crystal structure of COMT complexed with nitecapone (5), SAM and Mg2+ is revealed. Comparison of the structures of these complexes indicates that conformation of the catechol binding pocket is almost constant regardless of structure of the inhibitors. The only restriction of the side chain of inhibitors (i.e., the substituent at the 5-position of 3-nitrocatechol) seems to be that it does not make steric repulsion with COMT. However, recent crystallographic and biochemical studies suggest that COMT is a flexible protein, and its conformational flexibility seems crucial for its catalytic process. Based on this information, implications of these quaternary inhibitor complexes were investigated. Met 40 in the α2α3-loop makes atomic contacts with SAM or S-adenosylhomocysteine and the 3-position of the catechol inhibitor. This interaction seems to play a critical role in the affinity of the inhibitor and to stabilize the COMT/SAM/Mg2+/nitrocatechol inhibitor complex by fixing the flexible α2α3-loop.

Key words catechol O-methyltransferase; nitecapone; crystal structure

Introduction

Catechol O-methyltransferase (COMT) is an important enzyme that catalyzes O-methylation of a wide variety of endogenous and exogenous catechol substrates. COMT catalyzes the transfer of a methyl group from S-adenosylmethionine (SAM) to catechol substrates such as noradrenaline, adrenaline and dopamine as well as 2-hydroxyestriadiol.1

COMT inhibitors are used to enhance the uptake of levodopa in patients with Parkinson's disease.2 Levodopa, a precursor of dopamine in the central nervous system, is the most efficacious and tolerated medicine for Parkinson's disease. Levodopa is taken up through the neutral amino acid transporters to pass the blood–brain barrier, but it is highly susceptible to decarboxylation catalyzed by dopa decarboxylase in the peripheral circulation. To prevent the decrease of levodopa in the circulation, dopa decarboxylase inhibitors (DDIs) are used with levodopa. This treatment enhances the bioavailability of levodopa by extending its half-life, which enhances its clinical effect. However, inhibition of the decarboxylation pathway by DDIs leads to enhanced formation of 3-O-methyltyrosine by COMT as an alternative pathway. Use of COMT inhibitor in combination with levodopa/DDI is rationalized with the following four major reasons: (1) inhibitors protect levodopa in circulation and improve its bioavailability; (2) because the COMT metabolite, 3-O-methyltyrosine, competes with levodopa in the amino acid transporters in the gut and blood–brain barrier, suppression of the generation of 3-O-methyltyrosine is advantageous; (3) COMT inhibition is proven effective to avoid the wearing-off phenomenon; and (4) COMT produces S-adenosylhomocysteine (SAH), which is related with many cardiovascular events.3 The inhibition of COMT reduces the undesirable generation of SAH. It should be noted that the usual dose of levodopa is 600–750 mg/d when used with a DDI. Given that 600 mg (3 mmol) of levodopa is exclusively metabolized by COMT, 1.2 g of SAH would be produced.

Today, COMT inhibitors attract certain interest in the field of schizophrenia as the membrane-bound form of COMT plays a critical role in the clearance of dopamine in the prefrontal cortex in contrast to that in the mid-brain, in which major clearance of dopamine is made by its transporters.4 COMT inhibition could be important for the treatment of psychotic disorder in the future.

Selective and orally active COMT inhibitors have been developed since the mid-1980s, and most of them are 3-nitrocatechol derivatives (Fig. 1). Among them, entacapone (1) and tolcapone (2) have been used clinically since the mid-1990s.5 Entacapone is a peripherally active COMT inhibitor whereas tolcapone penetrates the blood–brain barrier, though with low efficiency, and works in brain, too. Tolcapone occasionally causes hepatotoxicity and is not approved in Japan. Entacapone is regarded as being safer, but its half-life is shorter such that frequent dosing is necessary. Opicapone (3), also carrying a 3-nitrocatechol pharmacophore, was approved in the European Union in 2016.6 The effect of opicapone is reported to last longer than that of entacapone and tolcapone. Administration of opicapone once a day is regarded adequate to reduce the wearing-off phenomenon. As 3-nitrocatechol structurally resembles 2,4-dinitrophenol, which is known as an uncoupler
of mitochondrial proton transfer,7 scaffolds other than 3-nitrocatechol have been under development to reduce hepatic toxicity. To design a new type of inhibitor, understanding the structural features of the interaction between nitrocatechol inhibitors and COMT is important.

Here, we report a crystal structure of soluble form of rat COMT (S-COMT) complexed with SAM, Mg2+ and nitecapone (5) to investigate the interaction between the enzyme and the inhibitor.

Experimental

Expression and Purification Rat S-COMT was expressed as a fusion protein with glutathione S-transferase. Details of the construction of the expression plasmid, protein expression and purification are supplied as supplemental material.

Recombinant rat S-COMT protein carries a wild-type rat S-COMT sequence with two additional amino acid residues (GS) derived from the expression plasmid at the N-terminus. The amino acid sequence of the recombinant rat S-COMT used in this study is as follows: GSMGDTKEQRLRYVQN AKPGDPQSVLEAIDTYCTQKEWAMNVGDAGQIMDAV IREYSPSLVLELGAYCGYSAVRMLLQPGARLTMEM NPDYAITQMLNFLAQDCLKVTILNGASQDLIPQLKKKY DVDTLDVFLDHWHOQYRLPDTVLEKCIQLRKGTVLL ADNVIPGTPDFLAVRGSSSFECTHYSSYLEYMKVVD GLEKAIYQGSPPDKS, where the underlined M represents Met 1 of the native sequence. In this paper, we adopted amino acid numbering based on the native S-COMT sequence.

Crystallization, Diffraction Measurement and Structure Refinement Set-up of the crystallization experiments was completed within 2 d after the purification.

To a solution of rat S-COMT (1.4 mg/mL, 55 \(\mu \)M, in phosphate buffered saline (PBS) containing 1 mM dithiothreitol (DTT)) was added 10 mM aqueous solution of SAM, 50 mM dimethyl sulfoxide (DMSO) solution of nitecapone and 2 M aqueous solution of MgCl\textsubscript{2} to give final concentrations of 150 \(\mu \)M, 750 \(\mu \)M and 2 mM, respectively. The mixture was incubated for 2 h at 20°C and then concentrated to 9.1
tein Data Bank ID: 1VID as a search model. The structure model was refined using Protein Data Bank under accession code 6LFE. The nitecapone complex was solved at 1.6 Å resolution. Figure 2 shows a schematic diagram of the complex. Nitecapone chelates with a six-coordination Mg$^{2+}$ ion, which is coordinated by a water molecule, the side chain carbonyl oxygen atom (Oα) of Asn 170 and carboxylates (O$_{carb}$) of Asp 141 and Asp 169.

The overall structure of the COMT/SAM/Mg$^{2+}$/nitecapone complex overlaps well with the known COMT structures carrying SAM, Mg$^{2+}$ and 3,5-dintrocatechol complexes (Protein Data Bank ID: 1VID, 2A7E, 3BWM, 3BMY; Hereafter, a 4-character identification code represents the Protein Data Bank ID). The root-mean-square deviation of Cα fit value between the COMT/SAM/Mg$^{2+}$/nitecapone complex and 1VID was 0.30 Å (the smallest) and that with 3BMY was 0.35 Å (the largest).

Discussion

Several crystal structures of COMT complexed with a nitrocatechol inhibitor are known: 3,5-dinitrocatechol (4, 1VID, 3A7E, 3BWM, and 5LSA), tolcapone (2, 3S68), BIA 3–335 (6, 1HID) and BIA 8–176 (7, 2CL5). Including the nitecapone complex, these structures well overlap each other. Figure 3 shows a comparison of the structure of COMT/nitrocatechol complex with known nitrocatechol inhibitors. We aligned the structures by fitting the Cα positions of the β1 (L61 : L65) and β4 (M137 : L140) strands as the topology of these two β-strands are most conserved among COMT crystal structures. Figure 3(a) shows the superimposed Cα traces. The overall structure is highly conserved. Slight conformational differences were observed at the α7β4- and β6β7-loops. Figure 3(b) shows a close-up view of the surrounding environment of inhibitors. Positions of the nitrocatechol scaffold, the Mg$^{2+}$ ion and the surrounding amino acid residues are highly conserved. The side chain (i.e., the substituted group at the 5-position) of nitrocatechol

Table 1. Crystallographic Data Collection
Diffraction source
Wavelength (Å)
Temperature (K)
Detector
Rotation range per image (°)
Total rotation range (°)
Exposure time per image (s)
Space group
a, b, c (Å)
α, β, γ (°)
Resolution range (Å)
Total No. of reflections
No. of unique reflections
Completeness (%)
Redundancy
Rmerge (%)
CC1/2

Values in parentheses are for the highest resolution shell. $I(hkl) = \sum_i I_i \sum_{j(hkl)}$, where $I(hkl)$ is the intensity for the hkl reflection, I_i is the average intensity of all reflection with indices $i(hkl)$.

Data Collection and Processing The X-ray diffraction experiments were performed in the BL41XU beamline of Spring-8 (Harima, Hyogo, Japan) with a wavelength of 1.000 Å and diffraction data were collected from 0° to 180° with an oscillation range of 0.1°. The datasets were integrated and processing using the XDS Package and scaled using Aimless from the CCP4 suite. The crystal structure was solved by molecular replacement methods with MOLREP using the structure of rat S-COMT (Protein Data Bank ID: 1VID) as a search model. The structure model was refined using PHENIX and REFMAC5. Manual model building was performed using Coot. The atomic coordinates and the structure factors of rat S-COMT/SAM/Mg$^{2+}$/nitecapone complex are deposited in the Protein Data Bank under accession code 6LFE.

Results

Crystallography The crystals of COMT/SAM/Mg$^{2+}$/nitecapone complex belonged to space group P2$_1$2$_1$2$_1$, with unit cell parameters: $a = 46.67$ Å, $b = 53.23$ Å, $c = 80.79$ Å and $α = β = γ = 90.00$°. We determined the structure at 1.6 Å resolution and refined it to R_{work} and R_{free} values of 14.47 and 16.95%, respectively. The crystallographic summary is given in Table 1 (data collection) and Table 2 (refinement).

Overall Structure The structure of COMT/SAM/Mg$^{2+}$/nitecapone complex was solved at 1.6 Å resolution. Figure 2 shows a schematic diagram of the complex. Nitecapone chelates with a six-coordination Mg$^{2+}$ ion, which is coordinated by a water molecule, the side chain carbonyl oxygen atom (O$_α$) of Asn 170 and carboxylates (O$_{carb}$) of Asp 141 and Asp 169. The overall structure of the COMT/SAM/Mg$^{2+}$/nitecapone complex overlaps well with the known COMT structures carrying SAM, Mg$^{2+}$ and 3,5-dintrocatechol complexes (Protein Data Bank ID: 1VID, 2A7E, 3BWM, 3BMY; Hereafter, a 4-character identification code represents the Protein Data Bank ID). The root-mean-square deviation of Cα fit value between the COMT/SAM/Mg$^{2+}$/nitecapone complex and 1VID was 0.30 Å (the smallest) and that with 3BMY was 0.35 Å (the largest).

Discussion Several crystal structures of COMT complexed with a nitrocatechol inhibitor are known: 3,5-dinitrocatechol (4, 1VID, 3A7E, 3BWM, and 5LSA), tolcapone (2, 3S68), BIA 3–335 (6, 1HID) and BIA 8–176 (7, 2CL5). Including the nitecapone complex, these structures well overlap each other. Figure 3 shows a comparison of the structure of COMT/nitrocatechol complex with known nitrocatechol inhibitors. We aligned the structures by fitting the Cα positions of the β1 (L61 : L65) and β4 (M137 : L140) strands as the topology of these two β-strands are most conserved among COMT crystal structures. Figure 3(a) shows the superimposed Cα traces. The overall structure is highly conserved. Slight conformational differences were observed at the α7β4- and β6β7-loops. Figure 3(b) shows a close-up view of the surrounding environment of inhibitors. Positions of the nitrocatechol scaffold, the Mg$^{2+}$ ion and the surrounding amino acid residues are highly conserved. The side chain (i.e., the substituted group at the 5-position) of nitrocatechol

Table 2. Refinement Statistics
Resolution range (Å)
Completeness (%)
No. of reflections, working set
No. of reflections, test set
Final R_{work}
Final R_{free}
No. of non-H atoms
Ligand
Water
Total
R.m.s. deviations
Bonds (Å)
Angles (°)
Average B factors (Å2)
Protein
Ligand
Water
All atoms
Ramachandran plot
Most favoured (%)
Allowed (%)
Disallowed (%)

Values in parentheses are for the highest resolution shell. $I(hkl) = \sum_i I_i \sum_{j(hkl)}$, where $I(hkl)$ is the intensity for the hkl reflection, I_i is the average intensity of all reflection with indices $i(hkl)$.
rings extends to outside of the binding pocket. Conformation of the flexible loops, the a2a3- and β6β7-loops, are conserved. However, the interactions between the loops and the side chain moiety of inhibitors are not obvious, and this is common among the COMT/SAM/Mg\(^{2+}\)/nitrocatechol inhibitor complexes. This fact suggests that the nitrocatechol scaffold of inhibitors contributes more to the binding energy than the side chain moiety.

Recently, new COMT inhibitors that have catechol scaffolds but no nitro substitution at the 3-position were reported. Examples are 4-aryl-7,8-dihydroxycoumarine (8, 2ZVI), 6-aryl-4-hydroxyquinazolin (9 and 10, 5P9Z and 5P9O) and 5-aryl-3-hydroxy-1-methyl-2-pyridone (11, 5PA0). These inhibitors substitute the 3-nitro group of the dinitrocatechol ring with small fragments. For example, inhibitor 8 replaces the nitro group with a lactone functional group. It should be noted that these non-nitrocatechol-type inhibitors are all complexed with a Mg\(^{2+}\) ion and a SAH molecule. The volume of the methyl group of SAM was occupied by the fragment atoms that supersede the nitro group of nitrocatechol-type inhibitors. The conformation of COMT bound with SAH, Mg\(^{2+}\) and these non-nitrocatechol-type inhibitors is similar to the known nitrocatechol inhibitor complexes. Met 40 in the a2a3-loop is the only amino acid residue that is near the 3-substitution moiety. The side chain of Met 40 is located over the β3-strand (Leu61:Leu65) and the β6 strand (Met137:Leu14) were rms-fitted. COMT/SAM/Mg\(^{2+}\)/nitrocatechol complex: white, 1VID: red, 3S68: blue, 1HID: green, and 2CL5: orange. Panel (b): Close-up view of inhibitor binding site. The side chain atoms of Met 40 make contacts with SAM and the 3-nitro group. Color scheme is same as in panel (a). Panel (c): Interaction of Met 40 with SAM and nitecapone. Molecular volumes of nitecapone and SAM are represented in green and orange. Side chain of Met 40 is represented in yellow. The volumes were calculated using MOLCAD software available in SYBYL-X 2.1.1 software package (Certara, LP, Princeton, NJ, U.S.A.). Hydrogen atoms of hydroxy and carboxylic groups are not included.

![Fig. 3. The Structure of COMT/SAM/Mg\(^{2+}\)/Nitecapone Complex](image)

The complex is compared with other COMT structures holding various type of nitrocatechol inhibitors (wall-eye stereo presentation). VID: 3,5-dinitrocatechol (4), 3568: tolcapone (2), IVID: BIA3-335 (5) and 2CL5: BIA8-176 (6), where IVID, 3568, 1VID and 2CL5 are the IDs of the PDB. Panel (a): Co traces, the position of the Mg\(^{2+}\) ion and inhibitor are compared. Co atoms of the β1 strand (Leu61:Leu65) and the β4 strand (Met137:Leu14) were rms-fitted. COMT/SAM/Mg\(^{2+}\)/Nitecapone complex: white, IVID: red, 3568: blue, IVID: green, and 2CL5: orange. Panel (b): Close-up view of inhibitor binding site. The side chain atoms of Met 40 make contacts with SAM and the 3-nitro group. Color scheme is same as in panel (a). Panel (c): Interaction of Met 40 with SAM and nitecapone. Molecular volumes of nitecapone and SAM are represented in green and orange. Side chain of Met 40 is represented in yellow. The volumes were calculated using MOLCAD software available in SYBYL-X 2.1.1 software package (Certara, LP, Princeton, NJ, U.S.A.). Hydrogen atoms of hydroxy and carboxylic groups are not included.
commodate with SAH or SAM. Unfortunately, the inhibitory potency of 13 has not been revealed yet.

The speculation that the interaction between Met 40, SAM and the catechol inhibitor stabilizes the α2α3-loop and brings tight binding of the inhibitor to COMT might be rationalized by the success of the bi-substrate type inhibitors such as 14–17.15) The structures of COMT complexed with bi-substrate-type inhibitors also show the interaction of Met 40 in a similar manner as was observed in the 3-substituted catechol-type inhibitors. In contrast, in the complex of COMT/SAM/Mg²⁺ (2ZTH), the α2α3-loop is disordered and the atomic coordinates of Met 40 could not be determined. In the complex of COMT/SAH (3U81), the α2α3-loop is located away from SAH. Met 40 plays an important role in the interaction between the 3-substituted moiety of catechol inhibitor and SAM/SAH.

Domain swap dimers of COMT/SAM/Mg²⁺/dinitrocatechol are known (5FHR, 5FHQ). Although the β7 strands of the two COMT molecules are swapped, the α2α3-loop keeps almost the same conformation of the monomer complex, and the Met 40-dinitrocatechol-SAM contact is conserved. In the same way, Met 40-SAH-8-hydroxyquinazolin-4-one interaction was conserved in a domain swap dimer structure (5P9U).

Besides Met 40, Pro174 which is located on the β5ε9-loop makes interactions with the catechol ring of the inhibitors. In the crystal structures of COMT with any catechol-type inhibitor, including nitrocatechol, Pro174 creates a hydrophobic interaction with the catechol ring. Any catechol-type inhibitor would gain binding affinity by chelating Mg²⁺.

In this study we have determined a new crystal structure of COMT complexed with nitrocatechol. Through investigation of a series of COMT inhibitors, we suggest the importance of the α2α3-loop, especially the contribution of the side chain atoms of Met 40 as well as the gatekeeper residue Pro174 on the β5ε9-loop and chelate formation with Mg²⁺. The side chain of the nitrocatechol did not seem to contribute much to the binding affinity and thus modification of the side chain can be a rational strategy to improve properties such as solubility, metabolism or target specificity of the 3-substituted catechol-type inhibitors.

Acknowledgments This research was partially supported by Nihon University Multidisciplinary Research Grant for 2017, JSPS KAKENHI Grant Number JP15K08034 and Platform Project for Supporting Drug Discovery and Life Science Research (Basis for Supporting Innovative Drug Discovery and Life Science Research (BINDS)) from AMED under Grant Number JP18am0101070 (0318). This work was performed in part under the Collaborative Research Program of Institute for Protein Research, Osaka University, CR-18-05.

Conflict of Interest The authors declare no conflict of interest.

Supplementary Materials The online version of this article contains supplementary materials.

References

1) “International review of neurobiology Vol. 95, Basic aspect of catechol-O-methyltransferase and clinical applications of its inhibitors,” ed. by Nissen E., Academic Press, Cambridge, MA, 2010.
2) Eggert K., Skogar O., Amar K., Luotonen L., Koopmanni M., Leisonen M., Nissinen H., Oertel W., J. Neural Transm. (Vienna), 117, 333–342 (2010).
3) Müller T., Kuhn W., Eur. J. Clin. Pharmacol., 62, 447–450 (2006).
4) O’Tuathaigh C. M., Desbonnet L., Lee P., Waddington J. L., CNS Neurol. Disord. Drug Targets, 11, 282–291 (2012).
5) Marsala S. Z., Gioulis M., Ceravolo R., Tinazzi M., Clin. Neuropharmacol., 35, 185–190 (2012).
6) Bonifacio M. J., Torrão L., Loureiro A. I., Palma P. N., Wright L., C. Soares-da-Silva P., Br. J. Pharmacol., 172, 1739–1752 (2015).
7) Sibille B., Ronot X., Filipp C., Noguea V., Keriel C., Leverve X., Cytometry, 32, 102–108 (1999).
8) Kabash W., Acta Crystallogr. D Biol. Crystallogr., 66, 125–132 (2010).
9) Evans P. R., Murshudov G. N., Acta Crystallogr. D Biol. Crystallogr., 69, 1204–1214 (2013).
10) Vidgren J., Svensson L. A., Liljas A., Nature (London), 368, 354–358 (1994).
11) Adams P. D., Afonine P. V., Bunkóczi G., Chen V. B., Davis I. W., Echols N., Headd J. J., Hung L. W., Kapral G. J., Grosse-Kunstleve R. W., McCoy A. J., Moriarty N. W., Oeffner R., Read R. J., Richardson D. C., Richardson J. S., Terwilliger T. C., Zwart P. H., Acta Crystallogr. D Biol. Crystallogr., 66, 213–221 (2010).
12) Murshudov G. N., Skubák P., Lebedev A. A., Pannu N. S., Steiner R. A., Nicholls R. A., Winn M. D., Long F., Vagin A. A., Acta Crystallogr. D Biol. Crystallogr., 67, 355–367 (2011).
13) Emsley P., Lohkamp B., Scott W. G., Cowtan K., Acta Crystallogr. D Biol. Crystallogr., 66, 486–501 (2010).
14) Harrison S. T., Poslusney M. S., Mulhern J. J., Zhao Z., Kett N. R., Schubert J. W., Melamed J. Y., Allison T. J., Patel S. B., Sanders J. M., Sharma S., Smith R. F., Hall D. L., Robinson R. G., Sachs N. A., Hutson P. H., Wolkenberg S. E., Barrow J. C., Med. Chem. Lett., 6, 318–323 (2015).
15) Ellermann M., Jakob-Roetne R., Lerner C., Borroni E., Schlatter D., Roth D., Ehler A., Rudolph M. G., Diederich F., Angew. Chem. Int. Ed. Engl., 48, 9092–9096 (2009).