Supporting Information

Rec. Nat. Prod. X:X (202X) XX-XX

Myrrhalindenane C, A New Eudesmane Sesquiterpenoid From *Lindera Myrrha* Roots

Hoang-Dung Nguyen 1,2, Huy Truong Nguyen 3, Thi-Hoai-Thu Nguyen 4, Jirapast Sichaem 5, Huu-Hung Nguyen 6, Ngoc-Hong Nguyen 7 and Thuc-Huy Duong 8

1Institute of Tropical Biology, Vietnam Academy of Science and Technology, Ho Chi Minh City, Vietnam
2NTT Hi-Tech Institute, Nguyen Tat Thanh University, Ho Chi Minh city, Vietnam
3Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City, Vietnam
4Faculty of Basic Sciences, University of Medicine and Pharmacy at Ho Chi Minh City, 217 Hong Bang Street, District 5, Ho Chi Minh City 700000, Vietnam
5Research Unit in Natural Products Chemistry and Bioactivities, Faculty of Science and Technology, Thammasat University Lampang Campus, Lampang 52190, Thailand
6Faculty of Applied Technology, School of Engineering and Technology, Van Lang University, 45 Nguyen Khac Nhu, District 1, Ho Chi Minh City, Vietnam
7CirTech Institute, HUTECH University, 475 A Dien Bien Phu Street, Binh Thanh District, Ho Chi Minh City 700000, Vietnam
8Department of Chemistry, Ho Chi Minh City University of Education, Ho Chi Minh City, Vietnam

Table of Contents	Page
Figure S1: HRESIMS spectrum of 1.	3
Figure S2: The 1H NMR spectrum of 1 in acetone-d6.	4
Figure S3: The 13C NMR spectrum of 1 in acetone-d6.	5
Figure S4: The HSQC spectrum of 1 in acetone-d6.	6
Figure S5: The HMBC spectrum of 1 in acetone-d6.	7
Figure S6: The HMBC spectrum of 1 in acetone-d6 (expansion).	8
Figure S7: The NOESY spectrum of 1 in acetone-d6.	9
Figure S8: The NOESY spectrum of 1 in acetone-d6 (expansion).	9
Figure S9: ECD spectrum of 1.	10
Figure S10: Four possible stereoisomers of 1.	11
Figure S11: The 1H NMR spectrum of 2 in DMSO-d6.	12
Figure S12: The 13C NMR spectrum of 2 in DMSO-d6.	13
Figure S13: HMBC spectrum of 2 in DMSO-d6.	14

© 2022 ACG Publications. All rights reserved.
Figure S14:	The 1H and 13C NMR spectrum of 3 in methanol-d_4	15
Figure S15:	HSQC and HMBC spectra of 3 in methanol-d_4	16
Figure S16:	The 1H NMR spectrum of 4 in acetone-d_6	17
Figure S17:	The 1H and 13C NMR spectrum of 5 in acetone-d_6	18
Figure S18:	The HMBC spectrum of 5 in acetone-d_6	19
Figure S19:	The 1H and 13C NMR spectrum of 6 in methanol-d_4	20
Figure S20:	The 1H NMR spectrum of 7 in acetone-d_6	21
Figure S21:	The 1H and 13C NMR spectrum of 8 in acetone-d_6	22
Figure S22:	UV and IR spectra of 1	23
Figure S23:	SciFinder searching for 1	24
Table S1:	1H NMR (500 MHz, δ_{H}, multi, (J in Hz) and 13C NMR (125 MHz) spectral data of comparison of compound 1 and eudebeiolide J	25
Figure S1: HRESIMS spectrum of 1.
Figure S2: The 1H NMR spectrum of 1 in DMSO-d_6.
Figure S3: The 13C NMR spectrum of 1 in DMSO-d_6.
Figure S4: The HSQC spectrum of 1 in DMSO-d_6.
Figure S5: The HMBC spectrum of 1 in DMSO-d_6.

© 2022 ACG Publications. All rights reserved.
Figure S6: The HMBC spectrum of 1 in DMSO-d_6 (expansion).
Figure S7: The NOESY spectrum of 1 in DMSO-d_6.
Figure S8: The NOESY spectrum of 1 in DMSO-d_6 (expansion).
Figure S9: ECD spectrum of 1.

Figure S10: Four possible stereoisomers of 1.
Figure S11: The 1H NMR spectrum of 2 in DMSO-d_6.

© 2022 ACG Publications. All rights reserved.
Figure S12: The 13C NMR spectrum of 2 in DMSO-d_6.
Figure S13: HMBC spectrum of 2 in DMSO-d_6.

© 2022 ACG Publications. All rights reserved.
Figure S14: The 1H and 13C NMR spectrum of 3 in methanol-d_4
Figure S15: HSQC and HMBC spectra of 3 in methanol-d_4
Figure S16: The 1H NMR spectrum of 4 in acetone-d_6.

© 2022 ACG Publications. All rights reserved.
Figure S17: The 1H and 13C NMR spectrum of 5 in acetone-d_6
Figure S18: The HMBC spectrum of 5 in acetone-d_6
Figure S19: The 1H and 13C NMR spectrum of 6 in methanol-d_4
Figure S20: The 1H NMR spectrum of 7 in acetone-d_6
Figure S21: The 1H and 13C NMR spectrum of 8 in acetone-d_6
Figure S22: UV and IR spectra of 1.
Figure S23: Scifinder searching for 1.
Table S1. 1H NMR (500 MHz, δ_H, multi, (J in Hz) and 13C NMR (125 MHz) spectral data of comparison of compound 1 and eudebeiolide J

No.	1 (DMSO-d_6)		Eudebeiolide J [1] (methanol-d_4)	
	δ_H (J in Hz)	δ_C	δ_H (J in Hz)	δ_C
1	3.21, d, $J = 4.0$	76.6	3.37, d, $J = 4.2$	75.8
2	3.84, m	70.4	4.24, brs	68.0
3	5.57, brs	122.9	5.31, s	124.9
4	137.7	137.1		
5	2.21, d, $J = 13.5$	39.9	2.36, brd, $J = 13.5$	43.8
6	2.96, d, $J = 10.0$	22.3	2.95, dd, $J = 13.2, 3.6$	24.3
	2.18, dd, $J = 13.5, 10.0$	161.6	2.26, td, $J = 13.2, 1.2$	163.0
7	1.88, d, $J = 13.5$	45.4	2.07, d, $J = 13.2$	46.1
8	1.86, d, $J = 13.5$	104.6	1.97, d, $J = 13.2$	106.1
9	1.73, s	7.9	1.83, s	42.0
10	1.03, s	171.8	1.13, s	122.9
11	4.01, dd, $J = 13.5, 5.5$	62.8	1.78, d, $J = 0.6$	174.6
12	3.90, dd, $J = 13.5, 5.5$			
13	1.03, s	16.1	1.13, s	16.4
14	4.85, d, $J = 4.0$	8.2		
15	4.80, d, $J = 4.5$			
16	7.12, s			

[1] H.-J. Jang, S. Lee, S.-J. Lee, H.-J. Lim, K. Jung, Y.H. Kim, S.W. Lee and M.-C. Rho (2017). Anti-inflammatory activity of eudesmane-type sesquiterpenoids from *Salvia plebeia*, *J. Nat. Prod.* 80, 2666-2676.