Research Article

Modified Three-Term Liu–Storey Conjugate Gradient Method for Solving Unconstrained Optimization Problems and Image Restoration Problems

Yulun Wu 1, Mengxiang Zhang 1, and Yan Li 2

1 College of Mathematics and Information Science, Guangxi University, Nanning, Guangxi, China
2 College of Mathematics and Statistics, Baise University, Baise, Guangxi, China

Correspondence should be addressed to Yan Li; lybsxy@163.com

Received 26 July 2020; Accepted 28 September 2020; Published 19 October 2020

Academic Editor: Wenjie Liu

Copyright © 2020 Yulun Wu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

A new three-term conjugate gradient method is proposed in this article. The new method was able to solve unconstrained optimization problems, image restoration problems, and compressed sensing problems. The method is the convex combination of the steepest descent method and the classical LS method. Without any linear search, the new method has sufficient descent property and trust region property. Unlike previous methods, the information for the function \(f(x) \) is assigned to \(d_k \). Next, we make some reasonable assumptions and establish the global convergence of this method under the condition of using the modified Armijo line search. The results of subsequent numerical experiments prove that the new algorithm is more competitive than other algorithms and has a good application prospect.

1. Introduction

Consider the following unconstrained optimization:

\[
\min \{ f(x) \mid x \in \mathbb{R}^n \}, \quad f : \mathbb{R}^n \to \mathbb{R}.
\]

(1)

According to the research of other scholars, there are abounding effective forms to solve unconstrained optimization problems. For example, there are the steepest descent method, Newton method, and conjugate gradient method [1–8]. The nonlinear conjugate gradient method is a very effective method for solving large-scale unconstrained optimization problems. The conjugate gradient method has attracted more and more attention [9–14] because it is easy to calculate and has low memory requirement and application in many fields [15–18]. The conjugate gradient iteration formula of (1) is defined as

\[
x_{k+1} = x_k + \alpha_k d_k, \quad k = 0, 1, 2, \ldots,
\]

(2)

where \(\alpha_k \) is the step size of the \(k \)th iteration obtained by a certain line search rule and \(d_k \) is search direction of step \(k \), which are two important factors for solving unconstrained optimization problems. Among them, \(d_k \) is defined as

\[
d_k = \begin{cases}
 -g_k, & \text{if } k = 0, \\
 -g_k + \beta_k d_{k-1}, & \text{if } k \geq 1,
\end{cases}
\]

(3)

where the parameter \(\beta_k \), called the CG parameter is a scalar and \(g_k = \nabla f(x_k) \). The method of calculating the CG parameters will affect the performance and stability of the whole algorithm, so CG parameters play an utterly significant part. Among the nonlinear conjugate gradient method, we set \(y_k = g_k - g_{k-1} \) and let \(\| \cdot \| \) represent the Euclidean norm. Then, the classical methods include the following:

- HS method [19] (the parameter \(\beta_k^{\text{HS}} = g_k^T y_k / \| g_k \|^2 \))
- FR method [20] (the parameter \(\beta_k^{\text{FR}} = \| g_k \|^2 / \| g_{k-1} \|^2 \))
- PRP method [21, 22] (the parameter \(\beta_k^{\text{PRP}} = g_k^T y_k / \| g_{k-1} \| \))
- LS method [23] (the parameter \(\beta_k^{\text{LS}} = g_k^T y_k / -d_{k-1}^T g_{k-1} \))
This paper mainly studies the Liu–Storey method. At the earliest, Liu and Storey proposed a conjugate gradient method to solve the optimization problem in [9]. In this paper, they demonstrate the convergence of the method when using Wolfe line search. The experimental results show that the algorithm is feasible. Later, it was called the LS method. The LS method is the same as the PRP method with exact linear search. Therefore, the LS method and the PRP method have similar forms. As is known to all, the HS method have similar forms. As is known to all, the HS method to solve the optimization problem in [9]. In this paper, they demonstrate the convergence of the method and the descent property. Therefore, this kind of method has been concerned by many scholars. The conjugate gradient method with three terms was first proposed by Zhang et al. [27]; they defined \(d_k \) as

\[
d_k = \begin{cases}
-g_k, & k = 0, \\
-g_k + \beta_k^{NL} d_{k-1} + \theta_k \left(y_k - s_k \right), & k \geq 1,
\end{cases}
\]

where \(y_k = g_k - g_{k-1}, \ s_k = x_k - x_{k-1} \) and

\[
\beta_k^{NL} = \frac{\| y_k \|^2}{\| d_k \|^2}, \quad \theta_k = \frac{g_k^T y_k}{\| g_k \|^2},
\]

Nevertheless, this method assumes a minimum step size, and the main reason is the lack of direction of the trust zone. Therefore, a number of scholars have considered the combination of conjugate gradient method and trust region property. The three-term conjugate gradient algorithm is easy to converge because it automatically has sufficient descent. Therefore, this kind of method has been concerned by many scholars. The conjugate gradient method with three terms was first proposed by Yuan et al. [27]; they defined \(d_k \) as

\[
d_k = \begin{cases}
-g_k, & k = 0, \\
-g_k + \frac{g_k^T y_k d_{k-1}}{\| g_k \|^2}, & k \geq 1.
\end{cases}
\]

Recently, a three-term conjugate gradient algorithm was proposed in Yuan’s paper [28]. The search direction \(d_k \) of this algorithm is a based on LS method and the gradient descent method. On the basis of Yuan’s research, a modified three-term conjugate gradient method is proposed, which has more functional information than the original method, where \(d_k \) is computed by

\[
d_k = \begin{cases}
-g_k, & k = 0, \\
-\theta_k g_k + (1 - \theta_k) \frac{g_k^T y_k d_{k-1} - d_{k-1} g_k y_k}{\max \{ 2\lambda \| d_{k-1} \| \| y_k \|, \| d_{k-1} \| \}}, & k \geq 1,
\end{cases}
\]

where \(y_k = g_k - g_{k-1}, \ s_k = x_k - x_{k-1} \), constant \(\lambda \in (0, 1) \), and

\[
\theta_k = \frac{\| y_k \|^2}{y_k^T s_k^*},
\]

\[
y_k^* = y_k + s_k^*,
\]

\[
\gamma_k = \max \left\{ 0, \frac{g(x_k) + g(x_{k+1}) s_k + 2 (f(x_k) - f(x_{k+1}))}{\| s_k \|^2} \right\}.
\]

The vector \(y_k^* \) not only has gradient information but also has functional information, with good theoretical results and numerical performance (see [29]). One might think that the resulting method is indeed better than the original one; that is why we use \(y_k^* \) instead of \(y_k \).

According to the meaning of \(y_k^* \) and \(s_k^* \), the following inequality is obtained:

\[
y_k^T s_k^* \geq \frac{\| y_k \|^2}{\| y_k \|^2} \| s_k \|^2 + \| y_k \|^2 > 0.
\]

Therefore,

\[
\theta_k = \frac{\| y_k \|^2}{y_k^T s_k^*} \in (0, 1).
\]

In [28], Yuan et al. used modified Armijo linear search, which selects the largest \(\alpha_k \) as the step size in set \{ \(\alpha_k \alpha_k = \alpha_k \rho^l, \ l \in \{1, 2, 3, \ldots\} \) \} such that

\[
f(x_k + \alpha_k d_k) \leq f(x_k) + \delta g_k^T d_k,
\]

where \(\alpha_k \) is the trial step length, which is often set to 1, and \(\rho \in (0, 1), \ \delta \in (0, 1) \) are given constants. As is known to all, Armijo line search technology is a basic and the cheapest method. It is used in various algorithms [30–32]. Basically, a number of other methods of line search can be regarded as a modification of Armijo line search. In an unpublished article by Yuan, a new modification of Armijo linear search was designed based on [16, 33], which is defined as

\[
f(x_k + \alpha_k d_k) \leq f(x_k) + \gamma \alpha_k g_k^T d_k + \alpha_k \min \left\{ -\gamma_1 g_k^T d_k, \frac{\alpha_k g_k^T d_k}{\| d_k \|^2} \right\},
\]

where \(\gamma \in (0, 1), \ \gamma_1 \in (0, \gamma), \) and \(\alpha_k = \max \{ \rho^l | l = 0, 1, 2, 3, \ldots \} \) satisfying (12). The modification of Armijo
linear search is verified to be effective in improving the efficiency of the algorithm.

The following is an introduction to the paper: In the second section, we propose an improvement algorithm and establish two important properties (sufficient descent property and trust region property) of the algorithm without using linear search. Then, some other properties of the algorithm are given, and the global convergence of the algorithm is proved under appropriate assumptions. The third section gives numerical experiments on normal unconstrained optimization problems, image restoration problems, and compressive sensing problems. In the last section, the conclusion of this paper is given.

2. Conjugate Gradient Algorithm and Convergence Analysis

This section will give a new modified Liu–Storey method combining (7) and (12), as shown below:

Lemma 1. d_k is generated by formula (7); then, it clears that

$$g_k^T d_k \leq -\|g_k\|^2.$$

(13)

$$\|g_k\| \leq \|d_k\| \leq \lambda^* \|g_k\|.$$

(14)

Proof. When $k = 0$, it is obvious that $g_k^T d_0 = -\|g_0\|^2$ and $\|d_0\| = \|g_0\|$. When $k > 0$, we have

$$g_k^T d_k = g_k^T [-\theta_k g_k + (1 - \theta_k) \left(\frac{g_k^T y_k^* d_{k-1} - d_k^T g_k y_k^*}{\max \{2\|d_{k-1}\|, g_k^T y_k^* - d_k^T g_k y_k^*\}} \right)]$$

$$= -\theta_k \|g_k\|^2 + (1 - \theta_k) \left(\frac{g_k^T y_k^* d_{k-1} - d_k^T g_k y_k^*}{\max \{2\|d_{k-1}\|, g_k^T y_k^* - d_k^T g_k y_k^*\}} \right)$$

$$= -\theta_k \|g_k\|^2.$$

(15)

Using (10), we have $g_k^T d_k < -\|g_k\|^2$, and then, (13) holds. Also,

$$\max \{2\|d_{k-1}\| g_k^T y_k^*, -d_k^T g_k y_k^*\} \geq 2\|d_{k-1}\| g_k^T y_k^*.$$

(16)

Then, we have

$$\|d_k\| = \|g_k + (1 - \theta_k) \left(\frac{g_k^T y_k^* d_{k-1} - d_k^T g_k y_k^*}{\max \{2\|d_{k-1}\|, g_k^T y_k^* - d_k^T g_k y_k^*\}} \right) \| g_k\|$$

$$\leq \theta_k \|g_k\| + (1 - \theta_k) \left(\frac{g_k^T y_k^* \|d_{k-1}\| + \|d_{k-1}\| g_k^T y_k^*}{\max \{2\|d_{k-1}\|, g_k^T y_k^* - d_k^T g_k y_k^*\}} \right)$$

$$\leq \theta_k \|g_k\| + (1 - \theta_k) \left(\frac{\|g_k\| g_k^T y_k^* \|d_{k-1}\| + \|d_{k-1}\| g_k^T y_k^*}{2\|d_{k-1}\| g_k^T y_k^*} \right)$$

$$\leq \left(\theta_k + \frac{(1 - \theta_k) g_k^T y_k^*}{\lambda} \right) \|g_k\|.$$

(17)

Setting $\lambda^* = (\theta_k + (1 - \theta_k)/\lambda)$, we get the right half of inequality (14). By Cauchy–Schwarz inequality (13), we obviously get the left half of inequality (14). So, we get the results we want to prove.

Then, we will focus on the global convergence of the algorithm. In order to achieve this goal, we have to make the following assumptions.

Assumption 1

(a) The level set $L_0 = \{x|x < f(x)\}$ is bounded

(b) Function: $f(x): \mathbb{R} \rightarrow \mathbb{R}$ is continuously differentiable and the gradient $g(x)$ is Lipschitz continuous, and there exists a constant (Lipschitz constant) $L > 0$ such that

$$\|g(x) - g(y)\| \leq L\|x - y\|, \quad \forall x, y \in \mathbb{R}^n.$$

(18)

Theorem 1. Assumption 1 is kept true, and then, there is a positive constant α, which satisfies (12) in Algorithm 1.

Proof. We construct such a function

$$\varphi(\alpha) = f(x_k + ad_k) - f_k - \delta \alpha g_k^T d_k - \alpha \min \left[-\delta_1 g_k^T d_k, \frac{\alpha}{2} \right] d_k^2.$$

(19)

From Assumption 1, $f(x_k + ad_k)$ and f_k are bounded, note that $0 < \delta_1 < 1$, and from (13), we have $g_k^T d_k \leq 0$. Obviously, $\varphi(0) = 0$ holds. Now, we discuss the following two scenarios:

Case 1: if $\min \left[-\delta_1 g_k^T d_k, \frac{\alpha}{2} \right] d_k^2 = -\delta_1 g_k^T d_k$, then

$$\varphi(\alpha) = f(x_k + ad_k) - f_k - \delta \alpha g_k^T d_k - \alpha \delta_1 g_k^T d_k = \alpha \left(1 - \delta_1 + \delta\right) g_k^T d_k + \alpha (a)$$

(20)

$$< 0.$$

Case 2: if $\min \left[-\delta_1 g_k^T d_k, \frac{\alpha}{2} \right] d_k^2 = \frac{\alpha}{2} \right] d_k^2$, then

$$\varphi(\alpha) = f(x_k + ad_k) - f_k - \delta \alpha g_k^T d_k - \delta \left(\alpha^2/2\right) d_k^2$$

Same as Case 1, we have

$$\varphi(\alpha) = f(x_k + ad_k) - f_k - \delta \alpha g_k^T d_k - \delta \left(\alpha^2/2\right) d_k^2$$

(21)

$$= \alpha \left(1 - \delta_1 + \delta\right) g_k^T d_k + \alpha (a)$$

$$< 0.$$

So, from (20) and (21), there exists, at least, a positive constant ω such that $\varphi(\omega) < 0$, which also implies that there
that we obtain evidently, Algorithm 1 is well defined. □

Let Assumption 1 be satisfied and the iterative sequence \(x_k, f_k \) be generated by Algorithm 1. After that, we obtain

\[
\lim_{k \to \infty} \|g_k\| = 0. \tag{24}
\]

Proof. We will use the contradiction to draw this conclusion. When (24) is not correct, there exists a constant \(\varepsilon_0 > 0 \) such that

\[
\|g_k\| \geq \varepsilon_0, \quad \forall k > 0. \tag{25}
\]

From the third step of the Algorithm (12), we have

\[
f(x_k + a_k d_k) - f_k \leq \gamma_1 a_k g_k^T d_k + \alpha_k \min \left[-\gamma_1 g_k^T d_k, \gamma \frac{\alpha_k}{2\rho} \|d_k\| \right] \leq (\gamma - \gamma_1) a_k g_k^T d_k, \tag{26}
\]

namely,

\[
(\gamma_1 - \gamma) a_k g_k^T d_k \leq f_0 - f_1,
\]

\[
(\gamma_1 - \gamma) a_k g_k^T d_k \leq f_1 - f_2,
\]

\[
\ldots
\]

\[
(\gamma_1 - \gamma) a_k g_k^T d_k \leq f_k - f_{k+1},
\]

\[
\ldots,
\]

and summing up the two sides of the abovementioned inequalities and from Assumption 1 (ii), it is obtained that

\[
(\gamma - \gamma_1) \sum_{k=0}^{\infty} a_k \|g_k\|^2 \leq (\gamma - \gamma) \sum_{k=0}^{\infty} a_k g_k^T d_k \leq f_0 - f_{\infty} < +\infty. \tag{27}
\]

Thus, from (28), we have

\[
a_k \|g_k\|^2 \to 0, \quad k \to \infty. \tag{29}
\]

Now, our certificates are divided into the following two cases:

Case 1: the step size \(a_k > 0 \) as \(k \to \infty \). From (29), it is obvious that \(\|g_k\| \to 0 \) as \(k \to \infty \). This contradicts (24).

Case 2: the step size \(a_k \to 0 \) as \(k \to \infty \).

From Algorithm 1, for the obtained step size \(\alpha_k \), it is clear that \(\alpha_k / \rho \) does not satisfy (12), and by (13) and (14),

\[
f \left(x_k + \frac{\alpha_k}{\rho} d_k \right) - f(x_k) = \gamma \frac{\alpha_k}{\rho} g_k^T d_k + \alpha_k \min \left[-\gamma_1 g_k^T d_k, \gamma \frac{\alpha_k}{2\rho} \|d_k\|^2 \right] > -\gamma \frac{\alpha_k}{\rho} \|g_k\|^2 + \alpha_k \min \left[-\gamma_1 g_k^T d_k, \gamma \frac{\alpha_k}{2\rho} \|d_k\|^2 \right]
\]

\[
> (\gamma - \gamma_1) \frac{\alpha_k}{\rho} g_k^2,
\]

where \(\gamma_0 = \min \{ \gamma_1, \gamma (\alpha/2\rho) \} \); then, according to the mean value theorem, there exists an \(\zeta_k \in (0, 1) \) such that

\[
f \left(x_k + \frac{\alpha_k}{\rho} d_k \right) - f(x_k) > (\gamma - \gamma_1) \frac{\alpha_k}{\rho} g_k^2 \tag{30}
\]

ALGORITHM 1: Three-term modified Liu–Storey conjugate gradient (TTMLS) algorithm.

Input: input parameters \(\varepsilon \in (0, 1), \gamma \in (0, 1), \gamma_1 \in (0, \gamma) \) and \(\rho \in (0, 1) \).

Output: \(x_k, f_k \).

(1) For an initial solution \(x_0 \in \mathbb{R}^n \) compute \(d_0 = -g(x_0) \); set \(k = 0 \);

(2) while \(\|g_k\| > \varepsilon \) do

(3) Find \(\alpha_k = \max\{\rho^{|i|} i = 0, 1, 2, \ldots \} \) satisfying (12).

(4) Set \(x_{k+1} = x_k + \alpha_k d_k \).

(5) Compute \(d_k \) by (7).

(6) \(k = k + 1 \).

(7) End
\[
 f\left(x_k + \frac{\alpha_k}{\rho}d_k\right) - f(x_k) = \frac{\alpha_k}{\rho} g\left(x_k + \frac{\alpha_k}{\rho}d_k\right)^T d_k
 = \frac{\alpha_k}{\rho} g(x_k)^T d_k + \frac{\alpha_k}{\rho} g(x_k)^T d_k
 \leq \left(\frac{\alpha_k}{\rho}\right)^2 L\|d_k\|^2 + \frac{\alpha_k}{\rho} g(x_k)^T d_k
 \leq L\left(\frac{\alpha_k}{\rho}\right)^2 \|d_k\|^2 - \alpha_k \|g_k\|^2.
\]

(31)

Combined with (30)–(32), we have
\[
 \alpha_k > \rho(1 + \gamma_0 - \gamma)\|g_k\|^2 \geq \rho(1 + \gamma_0 - \gamma) \frac{1}{L(\lambda^*)^2}.
\]

(32)

So, we get the contradiction. Thus, result (24) is true, and this completes the proof. \qed

3. Numerical Experiments

In this section, we have designed three experiments to study the computational efficiency and performance of the proposed algorithm. The first subsection is normal unconstrained optimization problems, the second subsection is the image restoration problem, and the third subsection is compressive sensing problems. All the programs are compiled with Matlab R2017a and implemented on an Intel(R) Core(TM) i7-4710MQ CPU @ 2.50 GHz, RAM 8.0 GB, and the Windows 10 operating system.

3.1. Normal Unconstrained Optimization Problems

In order to test the numerical performance of the TTMLS algorithm, the NLS algorithm [28], LS method with the normal WWP line search (LS-WWP), and PRP method with the normal WWP line search (PRP-WWP) are also experimented as the comparison group. The results can be seen in Tables 1–4. The data used in the experiment are as follows:

- **Dimension:** we choose 3000 dimensions, 6000 dimensions, and 9000 dimensions to test.
- **Parameters:** all the algorithms run with \(\gamma = 0.6, \gamma_1 = 0.3, \rho = 0.9, \) and \(\epsilon = 10^{-6} \).
- **Stop rule:** (the Himmelblau stop rule [34]): if \(|f(x_k)| > e_1 \), let stop \(_1 = |f(x_k) - f(x_{k+1})|/f(x_k) \); otherwise, let stop \(_1 = |f(x_k) - f(x_{k+1})|\). If conditions \(\|g(x)\| < \epsilon \) or stop \(_1 < e_2 \) are satisfied or the iteration number of more than 1000 is satisfied, we stop the process, where \(e_1 = e_2 = 10^{-7} \).
- **Symbol representation:** NI: the iteration number. NFG: the total number of function and gradient evaluations. CPU: the CPU time in seconds.

Text problems: we have tested 74 unconstrained optimization problems, and the list of problems can be seen in Yuan’s work [16].

Dolan and Moré [35] provided a way to analyze the efficiency of these algorithms. From Figures 1–3, we can see that the performance of the TTMLS algorithm, TTMLS algorithm, and NLS algorithm is significantly better than that of the LS-WWP method and PRP-WWP method. Figures 1 and 2 show that the TTMLS algorithm and NLS algorithm can better approximate to the target function than the LS-WWP algorithm and PRP-WWP algorithm; thus, the number of iterations and the total number of function and gradient evaluation are smaller. The reason is that the search direction \(d_k \) of the TTMLS algorithm contains more function information. Also, the CPU time in Figure 4, TTMLS algorithm is basically the same as the NLS algorithm, which is better than the other two. To sum up, the proposed algorithm has significant advantages.

3.2. Image Restoration Problems

The image restoration problem is a difficult problem in the field of optimization. We will use the TTMLS algorithm and NLS algorithm to minimize \(Z \) to recover the original image from an image corrupted by impulse noise. Afterwards, we compare the performance of the two algorithms. The data used in the experiment are as follows:

- **Parameters:** all the algorithms run with \(\gamma = 0.6, \gamma_1 = 0.3, \rho = 0.9, \) and \(\gamma = 0.7 \).
- **Stop rule:** if \(\|g_{k+1} - g_k\|/\|g_k\| < 10^{-4} \) or \(\|x_{k+1} - x_k\|/\|x_k\| < 10^{-4} \) is satisfied, we stop the process. Symbol representation: CPU: the CPU time in seconds. Total: the total CPU time of the four pictures.
- **The information of noise:** 30%, 45%, and 60% salt-and-pepper noise.
- **Text problems:** we restore the original image from the image destroyed by impulsive noise. The experiments chose Lena (512 \(\times \) 512), Barbara (512 \(\times \) 512), Man (1024 \(\times \) 1024), and Baboon (512 \(\times \) 512) as the test images.

From Figures 4–6, we can Table 5 see that both algorithms can recover 30%, 45%, and 60% salt-and-pepper noise images very well. The data show that, for image restoration problems, the TTMLS algorithm has shorter CPU time than the NLS algorithm when the salt-and-pepper noise is 30%, 45%, and 60%. In conclusion, the TTMLS algorithm is promising and competitive.

3.3. Compressive Sensing Problems

The main work of this section is to accurately recover the image from a few of random projections by compressive sensing. The experimental method derives from the model proposed by Dai and Sha [36]. Then, the performance of the TTMLS algorithm and LS method with line search (12) is compared.

It is noted that the gradients \(g_k \) and \(d_k \) are square matrices in this experiment, and the matrix obtained by
Table 1: Test results of the TTMLS algorithm.

Nr	Dim	TTMLS algorithm			
		NI NFG CPU			
1	3000	6 26 0.203125			
1	6000	6 26 0.109375			
1	9000	6 26 0.234375			
2	3000	85 402 3.640625			
2	6000	90 426 6.171875			
2	9000	91 434 9.125			
3	3000	6 32 0.0625			
3	6000	6 32 0.0625			
3	9000	6 32 0.0625			
4	3000	5 26 0.0625			
4	6000	5 26 0.109375			
4	9000	5 26 0.171875			
5	3000	5 26 0.015625			
5	6000	5 26 0.0625			
5	9000	5 26 0.0625			
6	3000	4 20 0.0625			
6	6000	4 20 0.0625			
6	9000	4 20 0.0625			
7	3000	78 342 0.140625			
7	6000	80 353 0.234375			
7	9000	80 354 0.328125			
8	3000	10 40 0.03125			
8	6000	10 40 0.0625			
8	9000	10 40 0.0625			
9	3000	6 20 0			
9	6000	6 20 0.0625			
9	9000	6 20 0			
10	3000	3 14 0.0625			
10	6000	3 14 0.0625			
10	9000	3 14 0.0625			
11	3000	1000 2999			
		2.359375			
11	6000	1000 2999			
		4.625			
12	3000	1000 2999			
		6.859375			
12	6000	3 14 0.0625			
12	9000	3 14 0.0625			
13	3000	4 17 0			
13	6000	4 17 0.0625			
13	9000	4 17 0			
14	3000	7 38 0.25			
14	6000	7 38 0.375			
14	9000	7 38 0.46875			
15	3000	7 38 0.1875			
15	6000	7 38 0.265625			
15	9000	7 38 0.390625			
16	3000	4 20 0			
16	6000	4 20 0.046875			
16	9000	4 20 0.0625			
17	3000	5 26 0.125			
17	6000	5 26 0.140625			
17	9000	5 26 0.25			
18	3000	1000 3073			
18	6000	1000 3073			
		0.8125			
18	9000	1000 3073			
		1.894375			
19	3000	10 29 0.0625			
19	6000	10 29 0.0625			
19	9000	10 29 0.125			
20	3000	7 38 0.0625			
20	6000	7 38 0.0625			
Nr	Dim	NI	NFG	CPU	
----	-----	----	-----	-------	
40	6000	5	26	0.15625	
40	9000	5	26	0.25	
41	3000	73	312	0.0625	
41	6000	73	312	0.140625	
41	9000	73	312	0.265625	
42	3000	37	204	0.1875	
42	6000	30	170	0.296875	
42	9000	43	238	0.59375	
43	3000	5	26	0.140625	
43	6000	5	26	0.25	
43	9000	5	26	0.359375	
44	3000	5	26	0.1875	
44	6000	5	26	0.25	
44	9000	5	26	0.3125	
45	3000	5	26	0.265625	
45	6000	5	26	0.265625	
45	9000	5	26	0.28125	
46	3000	5	26	0.28125	
46	6000	5	26	0.28125	
46	9000	5	26	0.28125	
47	3000	82	368	3.9375	
47	6000	85	386	11.29688	
47	9000	87	396	23.98438	
48	3000	6	32	0.1875	
48	6000	6	32	0.171875	
48	9000	6	32	0.3125	
49	3000	78	342	0.0625	
49	6000	80	353	0.1875	
49	9000	80	354	0.296875	
50	3000	78	342	0.9375	
50	6000	80	353	1.8125	
50	9000	80	354	1.825875	
51	3000	7	38	0.125	
51	6000	7	38	0.28125	
51	9000	7	38	0.375	
52	3000	4	20	0.0625	
52	6000	4	20	0.125	
52	9000	4	20	0.0625	
53	3000	1000	3032	0.875	
53	6000	1000	3032	1.609375	
53	9000	1000	3033	2.4375	
54	3000	5	26	0	
54	6000	5	26	0	
54	9000	5	26	0.0625	
55	3000	24	74	0.19375	
55	6000	26	80	0.375	
55	9000	26	80	0.875	
56	3000	1000	3010	0.90625	
56	6000	1000	3010	1.6875	
56	9000	1000	3010	2.46875	
57	3000	5	26	0.125	
57	6000	5	26	0.21875	
Nr	Dim	NLS algorithm	NI	NFG	CPU
----	-----	---------------	----	-----	---------
1	3000	5	26		0.125
1	6000	5	26		0.140625
1	9000	5	26		0.21875
2	3000	92	428		4.078125
2	6000	102	472		7.15625
2	9000	97	457		7.84375
3	3000	6	32		0.0625
3	6000	6	32		0
3	9000	6	32		0
4	3000	5	26		0.0625
4	6000	5	26		0.109375
4	9000	5	26		0
5	3000	5	26		0
5	6000	5	26		0
5	9000	5	26		0
6	3000	4	20		0
6	6000	4	20		0.0625
7	3000	83	361		0.125
7	6000	85	370		0.25
7	9000	86	377		0.34375
8	3000	1000	3046		2.078125
8	6000	10	40		0.0625
8	9000	10	40		0.0625
9	3000	6	20		0.0625
9	6000	6	20		0
9	9000	6	20		0.0625
10	3000	3	14		0
10	6000	3	14		0
10	9000	3	14		0.0625
11	3000	1000	2999		2.8125
11	6000	1000	2999		5.296875
11	9000	1000	2999		7.8125
12	3000	3	14		0
12	6000	3	14		0.03125
12	9000	3	14		0
13	3000	4	17		0
13	6000	4	17		0.0625
13	9000	4	17		0
14	3000	7	38		0.203125
14	6000	7	38		0.375
14	9000	7	38		0
15	3000	7	38		0.453125
15	6000	7	38		0.1875
15	9000	7	38		0.3125
16	3000	4	20		0
16	6000	4	20		0
16	9000	4	20		0.0625
17	3000	5	26		0.125
17	6000	5	26		0.140625
17	9000	5	26		0
18	3000	1000	3075		0.75
18	6000	1000	3075		1.234375
18	9000	1000	3075		2.048675
19	3000	10	29		0
19	6000	10	29		0.0625
19	9000	10	29		0.1875
20	3000	7	38		0.0625
20	6000	7	38		0.0625
Nr	Dim	NI	NLS algorithm	NFG	CPU
----	-----	----	---------------	-----	------
40	6000	5	26	0.140625	
40	9000	5	26	0.25	
41	3000	79	334	0.125	
41	6000	79	334	0.171875	
41	9000	79	334	0.25	
42	3000	46	235	0.25	
42	6000	39	204	0.4375	
42	9000	55	272	0.71875	
43	3000	5	26	0.125	
43	6000	5	26	0.25	
43	9000	5	26	0.3125	
44	3000	5	26	0.125	
44	6000	5	26	0.15625	
44	9000	5	26	0.25	
45	3000	5	26	0.190375	
45	6000	5	26	0.28125	
45	9000	5	26	0.3125	
46	3000	5	26	0.078125	
46	6000	5	26	0.21875	
46	9000	5	26	0.375	
47	3000	88	390	6.078125	
47	6000	91	406	19.84375	
47	9000	92	415	41.73438	
48	3000	6	32	0.125	
48	6000	6	32	0.1875	
48	9000	6	32	0.234375	
49	3000	83	361	0.125	
49	6000	85	370	0.171875	
49	9000	86	377	0.1875	
50	3000	83	361	1.125	
50	6000	85	370	2.0625	
50	9000	86	377	2.453125	
51	3000	7	38	0.1875	
51	6000	7	38	0.25	
51	9000	7	38	0.296875	
52	3000	4	20	0.0625	
52	6000	4	20	0.0625	
52	9000	4	20	0.15625	
53	3000	1000	3015	1.03125	
53	6000	1000	3016	1.8125	
53	9000	1000	3016	2.859375	
54	3000	5	26	0	
54	6000	5	26	0.0625	
54	9000	5	26	0	
55	3000	24	74	0.1875	
55	6000	26	80	0.421875	
55	9000	26	80	0.51625	
56	3000	788	2374	0.875	
56	6000	788	2374	1.59375	
56	9000	788	2374	2.234375	
57	3000	5	26	0.125	
57	6000	5	26	0.203125	
Table 3: Test results of the LS-WWP algorithm.

Nr	Dim	LI	NFG	CPU
1	3000	1000	5998	20.5625
1	6000	1000	5986	39.26563
1	9000	1000	5986	52.96875
2	3000	63	228	0.375
2	6000	66	231	0.765625
2	9000	61	223	1.046875
3	3000	325	1076	0.3125
3	6000	1000	5206	1.828125
3	9000	1000	5685	2.65625
4	3000	1000	5934	11.5
4	6000	1000	5835	22.32813
4	9000	1000	5206	31.6875
5	3000	132	819	0.4375
5	6000	133	826	0.765625
5	9000	134	832	1.203125
6	3000	48	198	0.125
6	6000	51	207	0.125
6	9000	43	202	0.1875
7	3000	1000	5994	1.71875
7	6000	1000	5994	3
7	9000	1000	5994	4.375
8	3000	33	136	0.125
8	6000	33	136	0.125
8	9000	32	130	0.140625
9	3000	4	19	0.0625
9	6000	4	19	0
9	9000	4	19	0.0625
10	3000	2	9	0
10	6000	2	9	0
10	9000	2	9	0.0625
11	3000	1000	3001	2.671875
11	6000	1000	3001	5.046875
11	9000	1000	3001	7.828125
12	3000	18	105	0.125
12	6000	19	111	0.25
12	9000	19	111	0.359375
13	3000	3	13	0
13	6000	6	33	0.1875
13	9000	5	27	0.265625
14	3000	15	44	0.0625
14	6000	15	44	0.265625
14	9000	5	27	0.28125
15	3000	1000	3010	19
15	6000	1000	3010	29.40625
15	9000	1000	3010	35.84375
16	3000	22	72	0.0625
16	6000	15	84	0.125
16	9000	15	81	0.15625
17	3000	74	432	1.625
17	6000	74	432	2.96875
17	9000	74	432	4.046875
18	3000	7	42	0.0625
18	6000	8	48	0.0625
18	9000	8	48	0.0625
19	3000	4	18	0
19	6000	4	18	0.0625
19	9000	4	18	0.09375
20	3000	14	74	0
20	6000	14	74	0.046875

Table 3: Continued.

Nr	Dim	LI	NFG	CPU
20	9000	14	74	0.0625
21	3000	45	150	0.0625
21	6000	21	111	0.125
22	3000	20	111	0.171875
22	6000	12	58	0.125
22	9000	12	58	0.09375
23	3000	1000	5959	11.54688
23	6000	1000	5959	22.4375
23	9000	1000	5959	31.98438
24	3000	1000	5959	31.98438
24	6000	1000	5959	22.4375
24	9000	1000	5959	31.98438
25	3000	1000	5959	31.98438
25	6000	1000	5959	31.98438
25	9000	1000	5959	31.98438

Mathematical Problems in Engineering
Table 3: Continued.

Nr	Dim	NI	NFG	CPU	
40	6000	1000	5898	41.26563	
40	9000	1000	5867	55.25	
41	3000	1000	3003	0.96875	
41	6000	1000	3003	1.640625	
41	9000	1000	3003	2.421875	
42	3000	6	26	0	
42	6000	6	26	0.0625	
42	9000	7	32	0.0625	
43	3000	8	46	0.25	
43	6000	8	46	0.4375	
43	9000	8	46	0.5625	
44	3000	12	68	0.328125	
44	6000	11	62	0.6875	
44	9000	11	62	0.6875	
45	3000	9	50	0.25	
45	6000	9	50	0.375	
45	9000	9	50	0.5625	
46	3000	563	3367	16.0625	
46	6000	708	4237	33.29688	
46	9000	812	4864	51.15625	
47	3000	144	435	11.59375	
47	6000	293	882	72.65625	
47	9000	446	1341	230.6875	
48	3000	51	294	0.8125	
48	6000	50	288	1.5	
48	9000	50	288	2.078125	
49	3000	9	50	0.25	
49	6000	9	50	0.375	
49	9000	9	50	0.5625	
50	3000	1000	5994	3.359375	
50	6000	1000	5994	17.14063	
50	9000	1000	5994	31.34375	
51	3000	14	50	0.1875	
51	6000	13	47	0.375	
51	9000	13	47	0.40625	
52	3000	39	208	0.25	
52	6000	42	224	0.5	
52	9000	43	227	0.71875	
53	3000	14	50	0.1875	
53	6000	13	47	0.375	
53	9000	13	47	0.40625	
54	3000	39	208	0.25	
54	6000	42	224	0.5	
54	9000	43	227	0.71875	
55	3000	6	32	0.0625	
55	6000	6	32	0.1875	
55	9000	6	32	0.1875	
56	3000	1000	2999	1.0625	
56	6000	1000	2999	2.0625	
56	9000	1000	2999	2.75	
57	3000	9	50	0.25	
57	6000	9	50	0.375	
58	9000	9	50	0.378125	
58	3000	9	50	0.53125	
58	6000	9	50	0.53125	
59	9000	9	50	0.53125	
59	3000	9	50	0.53125	
59	6000	9	50	0.53125	
60	3000	563	3367	16.15625	
60	6000	710	4252	33.78125	
60	9000	1000	3013	43.10938	
61	3000	6	32	0.0625	
61	6000	6	32	0.1875	
61	9000	6	32	0.1875	
62	3000	1000	5955	1.4375	
62	6000	1000	5958	2.59375	
62	9000	1000	5955	3.71875	
63	3000	1000	5958	3.96875	
63	6000	1000	5958	3.96875	
63	9000	1000	5958	3.96875	
Nr	Dim	PRP-WWP	NFG	CPU	
----	-----	---------	-----	-----	
1	3000	11	67	0.3125	
2	6000	22	89	0.625	
3	9000	21	86	0.78125	
4	3000	70	242	0.4375	
5	6000	80	263	0.90625	
6	9000	76	255	1.21875	
7	3000	33	109	0	
8	6000	7	36	0	
9	9000	6	36	0	
10	3000	7	42	0.125	
11	6000	10	56	0.25	
12	9000	12	71	0.40625	
13	3000	19	88	0.0625	
14	6000	19	88	0.109375	
15	9000	19	88	0.15625	
16	3000	70	255	0.109375	
17	6000	74	274	0.171875	
18	9000	85	304	0.296875	
19	3000	3000	3044	1.0625	
20	6000	1000	3044	2.09375	
21	9000	1000	3044	2.8125	
22	3000	23	97	0.0625	
23	6000	23	97	0.125	
24	9000	23	97	0.15625	
25	3000	5	25	0	
26	6000	5	25	0	
27	9000	5	25	0	
28	3000	9	42	0.125	
29	6000	9	42	0.125	
30	9000	9	42	0	
31	3000	26	95	0.046875	
32	6000	19	83	0.125	
33	9000	19	83	0.15625	
34	3000	13	67	0.0625	
35	6000	13	67	0.0625	
36	9000	13	67	0.140625	
37	3000	1000	3017	8.953125	
38	6000	1000	3023	17.34375	
39	9000	1000	3018	3.8125	
40	3000	10	42	0	
41	6000	10	42	0	
42	9000	10	42	0.0625	
43	3000	5	25	0	
44	6000	5	25	0	
45	9000	5	25	0	
46	3000	2	9	0	
47	6000	2	9	0	
48	9000	2	9	0	
49	3000	2	9	0	
50	6000	2	9	0	
51	9000	2	9	0	
52	3000	2	9	0	
53	6000	2	9	0	
54	9000	2	9	0	
Nr	Dim	PRP-WWP	NI	NFG	CPU
-----	------	---------	-----	-----	------
40	6000	1000	3282	36.375	
40	9000	1000	3144	42.73438	
41	3000	19	73	0	
41	6000	19	73	0	
41	9000	19	73	0.0625	
42	3000	11	43	0.0625	
42	6000	11	46	0.0625	
42	9000	11	46	0.0625	
43	3000	7	40	0.203125	
43	6000	8	46	0.4375	
43	9000	8	46	0.46875	
44	3000	12	68	0.3125	
44	6000	11	62	0.453125	
44	9000	11	62	0.71875	
45	3000	9	50	0.25	
45	6000	9	50	0.46875	
45	9000	9	50	0.546875	
46	3000	260	835	6.0625	
46	6000	529	1613	18.75	
46	9000	611	1859	26.6875	
47	3000	46	161	3.59375	
47	6000	57	181	13.54688	
47	9000	84	347	40.0625	
48	3000	53	165	0.5625	
48	6000	46	144	0.875	
48	9000	40	126	0.953125	
49	3000	1000	3113	0.75	
49	6000	1000	3116	1.328125	
49	9000	1000	3140	1.96875	
50	3000	1000	3245	11.32813	
50	6000	1000	3086	19.51563	
50	9000	1000	3054	24.78125	
51	3000	7	37	0.125	
51	6000	7	40	0.25	
51	9000	7	40	0.4375	
52	3000	93	355	0.53125	
52	6000	99	373	1.171875	
52	9000	107	401	1.875	
53	3000	1000	3022	0.875	
53	6000	1000	3022	1.671875	
53	9000	1000	3022	2.34375	
54	3000	47	216	0.0625	
54	6000	32	165	0.0625	
54	9000	56	272	0.203125	
55	3000	5	25	0.0625	
55	6000	5	25	0.125	
55	9000	5	25	0.1875	
56	3000	1000	3012	0.984375	
56	6000	1000	3012	1.671875	
56	9000	1000	3012	2.5625	
57	3000	9	50	0.1875	
57	6000	9	50	0.390625	
Table 5: CPU times of the TTMLS algorithm and NLS algorithm in seconds.

Noise Level	Lena (s)	Barbara (s)	Man (s)	Baboon (s)	Total (s)
30% noise	18.813	24.094	100.813	22.922	166.642
TTMLS algorithm	19.547	26.703	108.281	25.391	179.922
NLS algorithm	38.344	39.125	205.125	35.406	318.000
45% noise	42.421	41.688	218.344	39.422	341.875
TTMLS algorithm	91.063	84.203	417.047	79.656	671.969
NLS algorithm	97.938	88.984	438.156	87.547	712.625
60% noise	91.063	84.203	417.047	79.656	671.969
TTMLS algorithm	97.938	88.984	438.156	87.547	712.625

Figure 1: An overview of the performance of these four algorithms (NI).

Figure 2: An overview of the performance of these four algorithms (NFG).

Figure 3: An overview of the performance of these four algorithms (CPU).
Figure 4: From left to right: the images disturbed by 30% salt-and-pepper noise, the images restored by the TTMLS algorithm, and the images restored by the NLS algorithm.
Figure 5: From left to right: the images disturbed by 45% salt-and-pepper noise, the images restored by the TTMLS algorithm, and the images restored by the NLS algorithm.
Figure 6: From left to right: the images disturbed by 60% salt-and-pepper noise, the images restored by the TTMLS algorithm, and the images restored by the NLS algorithm.
Figure 7: From left to right: the original images, the images restored by the TTMLS algorithm, and the images restored by the LS algorithm.
$g_k^T d_k$ may appear as a singular matrix, which results in the invalidation of the algorithm. But, when we calculate d_{k+1}, we only need the value of $g_k^T d_k$ without knowing the information of this square matrix, so in this experiment, we set $g_k^T d_k = \|g_k^T d_k\|_{\infty}$ in d_{k+1}. The data used in the experiment are as follows:

Parameters: all the algorithms run with $\gamma = 0.6$, $\gamma_1 = 0.3$, $\rho = 0.9$, and $\gamma = 0.7$.

Stop rule: if $\|g_k^T d_k\|_{\infty} < 10^{-3}$ or the number of iterations exceeds 500 is satisfied, we stop the process.

Symbol representation: PSNR: Peak Signal-to-Noise Ratio. It is an objective criterion for image evaluation.

Text problems: compressive sensing problems. The experiments chose Camera man (256×256), Fruits (256×256), Lena (256×256), and Baboon (256×256) as the test images.

From Figure 7 and Table 6, we can see that both algorithms are effective in compression sensing problems. Meanwhile, from the experimental data, we can see that the TTMLS algorithm has more advantages than the LS algorithm.

4. Conclusions

In this paper, based on the well-known LS method and combined with improved Armijo linear search, this paper presents a three-term conjugate gradient algorithm. Without any linear search, the search direction of the new three-term conjugate algorithm is proved to have two good properties: sufficient descent and trust region properties. Also, the global convergence of the algorithm is established. The numerical results indicate that the new algorithm is effective. The good performance of the algorithm in image restoration problems and compressive sensing problems also proves that the algorithm is competitive.

Data Availability

Data used in this study can be obtained from the corresponding author on reasonable request.

Conflicts of Interest

There are no potential conflicts of interest.

Acknowledgments

The authors want to thank the support of the funds. This work was supported by the High Level Innovation Teams and Excellent Scholars Program in Guangxi Institutions of Higher Education (Grant no. [2019] 32), the National Natural Science Foundation of China (Grant no. 11661009), the Guangxi Natural Science Foundation (No. 2020GXNSFAA159069), and the Guangxi Natural Science Key Foundation (No. 2017GXNSFDA198046).

References

[1] Y.-H. Dai, "New properties of a nonlinear conjugate gradient method," *Numerische Mathematik*, vol. 89, no. 1, pp. 83–98, 2001.

[2] L. Grippo and S. Lucidi, "A globally convergent version of the Polak-Ribière conjugate gradient method," *Mathematical Programming* vol. 78, no. 3, pp. 375–391, 1997.

[3] J. Nocedal and S. Wright, "Numerical optimization," in *Springer Series in Operations Research*, Springer, Berlin, Germany, 2nd edition, 2006.

[4] Z. Shi, "Restricted PR conjugate gradient method and its global convergence," *Advances in Mathematics*, vol. 31, pp. 47–55, 2002.

[5] Z. Wei, S. Yao, and L. Liu, "The convergence properties of some new conjugate gradient methods," *Applied Mathematics and Computation*, vol. 183, no. 2, pp. 1341–1350, 2006.

[6] G. Yuan, X. Wang, and Z. Sheng, "Family weak conjugate gradient algorithms and their convergence analysis for nonconvex functions," *Numerical Algorithms*, vol. 84, no. 3, pp. 935–956, 2020.

[7] W. Zhou, "A short note on the global convergence of the unmodified PRP method," *Optimization Letters*, vol. 7, no. 6, pp. 1367–1372, 2013.

[8] D. Li and M. Fukushima, "On the global convergence of the BFGS method for nonconvex unconstrained optimization problems," *SIAM Journal on Optimization*, vol. 11, pp. 1054–1064, 1999.

[9] N. Andrei, "An unconstrained optimization test functions collection," *Advanced Modeling Optimization*, vol. 10, pp. 147–161, 2008.

[10] J. C. Gilbert and J. Nocedal, "Global convergence properties of conjugate gradient methods for optimization," *Siam Journal on Optimization*, vol. 2, no. 1, pp. 21–42, 1992.

[11] X. Li and Q. Ruan, "A modified PRP conjugate gradient algorithm with trust region for optimization problems," *Numerical Functional Analysis and Optimization*, vol. 32, no. 5, pp. 496–506, 2011.

[12] Z. Wei, G. Li, and Q. Li, "Global convergence of the Polak-Ribiere-Polyak conjugate gradient method with an Armijo-type inexact line search for nonconvex unconstrained optimization problems," *Mathematics of Computation*, 2008.

[13] G. Yu, L. Guan, and Z. Wei, " Globally convergent Polak-Ribiere-Polyak conjugate gradient methods under a modified Wolfe line search," *Applied Mathematics and Computation*, vol. 215, no. 8, pp. 3082–3090, 2009.

[14] L. Zhang, W. Zhou, and D. Li, "Global convergence of a modified Fletcher-Reeves conjugate gradient method with Armijo-type line search," *Numerische Mathematik*, vol. 104, no. 4, pp. 561–572, 2006.

[15] F. Wen and X. Yang, "Skewness of return distribution and coefficient of risk premium," *Journal of Systems Science and Complexity*, vol. 22, no. 3, pp. 360–371, 2009.
[16] G. Yuan, J. Lu, and Z. Wang, “The PRP conjugate gradient algorithm with a modified WWP line search and its application in the image restoration problems,” *Applied Numerical Mathematics*, vol. 152, pp. 1–11, 2020.

[17] G. Yuan, Z. Wei, and Y. Yang, “The global convergence of the Polak-Ribiére-Polyak conjugate gradient algorithm under inexact line search for nonconvex functions,” *Journal of Computational and Applied Mathematics*, vol. 362, pp. 262–275, 2019.

[18] W. Zhou and F. Wang, “A PRP-based residual method for large-scale monotone nonlinear equations,” *Applied Mathematics and Computation*, vol. 261, pp. 1–7, 2015.

[19] M. R. Hestenes and E. Stiefel, “Methods of conjugate gradients for solving linear systems,” *Journal of Research of the National Bureau of Standards*, vol. 49, no. 6, pp. 409–436, 1952.

[20] R. Fletcher and C. Reeves, “Function minimization by conjugate gradients,” *The Computer Journal*, vol. 7, no. 2, pp. 149–154, 1964.

[21] E. Polak and G. Ribière, “Note sur la convergence de méthodes de directions conjuguées,” *Revue Française d’Informatique et de Recherche Opérationnelle. Série Rouge*, vol. 3, no. 16, pp. 35–43, 1969.

[22] B. T. Polyak, “The conjugate gradient method in extremal problems,” *USSR Computational Mathematics and Mathematical Physics*, vol. 9, no. 4, pp. 94–112, 1969.

[23] Y. Liu and C. Storey, “Efficient generalized conjugate gradient algorithms, part 1: theory,” *Journal of Optimization Theory and Applications*, vol. 69, no. 1, pp. 129–137, 1991.

[24] R. Fletcher, *Practical Method of Optimization Vol. I: Unconstrained Optimization*, John Wiley & Sons, New York, NY, USA, 1987.

[25] Y. H. Dai and Y. Yuan, “A nonlinear conjugate gradient method with a strong global convergence property,” *SIAM Journal on Optimization*, vol. 10, no. 1, pp. 177–182, 1999.

[26] Z. Li, “A new Liu-Storey type nonlinear conjugate gradient method for unconstrained optimization problems,” *Journal of Computational and Applied Mathematics*, vol. 225, no. 1, pp. 146–157, 2009.

[27] L. Zhang, W. Zhou, and D.-H. Li, “A descent modified Polak-Ribiére-Polyak conjugate gradient method and its global convergence,” *IMA Journal of Numerical Analysis*, vol. 26, no. 4, pp. 629–640, 2006.

[28] G. Yuan, T. Li, and W. Hu, “A conjugate gradient algorithm for large-scale nonlinear equations and image restoration problems,” *Applied Numerical Mathematics*, vol. 147, pp. 129–141, 2020.

[29] G. Yuan and Z. Wei, “Convergence analysis of a modified BFGS method on convex minimizations,” *Computational Optimization and Applications*, vol. 47, no. 2, pp. 237–255, 2010.

[30] Z. Dai and F. Wen, “Global convergence of a modified hestenes-stiefel nonlinear conjugate gradient method with armijo line search,” *Numerical Algorithms*, vol. 59, no. 1, pp. 79–93, 2012.

[31] M. Li and A. Qu, “Some sufficient descent conjugate gradient methods and their global convergence,” *Computational and Applied Mathematics*, vol. 33, pp. 333–347, 2004.

[32] L. Zhang, W. Zhou, and D. Li, “Global convergence of the dy conjugate gradient method with armijo line search for unconstrained optimization problems,” *Optimization Methods and Software*, vol. 22, no. 3, pp. 511–517, 2007.

[33] G. Yuan, Z. Wei, and X. Lu, “Global convergence of BFGS and PRP methods under a modified weak Wolfe-Powell line search,” *Applied Mathematical Modelling*, vol. 47, pp. 811–825, 2017.

[34] Y. Yuan and W. Sun, *Theory and Methods of Optimization*, Science Press of China, Beijing, China, 1999.

[35] E. Dolan and J. Moré, “Benchmarking optimization software with performance profiles,” *Mathematical Programming*, vol. 91, no. 2, pp. 201–213, 2001.

[36] Q. Dai and W. Sha, “The physics of compressive sensing and the gradient-based recovery algorithms,” *Mathematics*, 2009.