Nanostructured IrO\textsubscript{x} supported on N-doped TiO\textsubscript{2} as an efficient electrocatalyst towards acidic oxygen evolution reaction\textdagup

Guoqiang Li, Hongrui Jia, Huan Liu, Xin Yang and Meng-Chang Lin

Reducing the Ir consumption without compromising the catalytic performance for the oxygen evolution reaction (OER) is highly paramount to promote the extensive development of the environmentally-friendly solid polymer electrolyte water electrolysis (SPEWE) system. Herein, TiO\textsubscript{2} is doped with N through facile NH\textsubscript{3} gas treatment and innovatively employed to support IrO\textsubscript{x} nanoparticles towards acidic OER. N-doping action not only dramatically boosts the electrical conductivity and dispersing/anchoring effects of TiO\textsubscript{2}, but also effectively improves the electron-transfer procedure. As a result, the IrO\textsubscript{x}/N–TiO\textsubscript{2} electrocatalyst exhibits prominent catalyst utilization, catalytic activity and stability. Specifically, the overpotential required to deliver 10 mA cm-2 is only 270 mV, and the mass activity climbs to 278.7 A g\textsubscript{Ir}-1 @ 1.55 V\textsubscript{RH}. Moreover, the single cell voltage is only 1.761 V @ 2.0 A cm-2 when adopting IrO\textsubscript{x}/N–TiO\textsubscript{2} as the anode catalyst, which is 44 mV lower than that of the commercial IrO\textsubscript{2} counterpart.

Introduction

Energy shortage and environmental issues urgently call for clean and sustainable fuels; due to the high energy density, extensive sources and environmental friendliness, hydrogen (H\textsubscript{2}) is regarded as a promising alternative to traditional fossil fuels.1–3 At present, H\textsubscript{2} is mainly generated from coal gasification and methane-steam reforming; irreconcilable conflict between the hydrogen production and environmental destruction is bound to exist.4–5 Alternatively, photocatalytic hydrogen production is also very popular, due to the endless solar energy and environmental friendliness.5–6 More notably, water electrolysis powered by renewable electricity is regarded as an extremely promising technique, especially the solid polymer electrolyte water electrolysis (SPEWE) with prominent advantages of high H\textsubscript{2} purity, high current density, low ohmic loss, compact system design and rapid system response, has attracted widespread research focus.7–13 The oxygen evolution reaction (OER) occurring on the anode side of a water electrolyzer dominates the overall efficiency because of the sluggish kinetics.12,14–16 At present, Ir and Ru oxides are still the most representative OER electrocatalysts, especially the Ir oxide with more prominent practical potentiality, regrettably, extremely low reserve of Ir element in the earth’s crust (0.001 ppm) impedes its widespread application.17–21 Hence, reducing the Ir consumption without compromising the OER catalytic performance is highly paramount.

Benefiting from the comprehensive support effect including effective dispersing, anchoring, electronic structure modulation and coordination, support materials have achieved widespread application in several typical electrocatalytic systems, such as the hydrogen oxidation/evolution reactions (HOR/HER),22–26 oxygen reduction reaction/OER (ORR/OER),27–29 CO\textsubscript{2} reduction reaction (CO\textsubscript{2}RR),30,31 N\textsubscript{2} reduction reaction (N\textsubscript{2}RR),32,33 etc. Among them, high anodic potential and harsh acidic circumstances make the widely used carbon-based materials unstable as the support towards acidic OER,34,35 seeking for suitable corrosion-resistant support candidate is urgently yet highly challenging.

Up to now, acid-resistant metal compounds based on Ti and Sn elements have been widely researched and confirmed the effectiveness as support materials on catalyzing OER. It is well-known that TiO\textsubscript{2} and SnO\textsubscript{2} are semiconductors with poor electrical conductivity, active species supported on them are strictly limited to participate the reaction. There are two mainstream strategies to overcome this issue, nonstoichiometric and heteroatom-doping treatments. The electrical conductivity of TiO\textsubscript{2} that generally below 10-4 S cm-1 can dramatically increase to ultrahigh 103 S cm-1 of nonstoichiometric Ti\textsubscript{1-x}O\textsubscript{x}.36,37 Gago et al. synthesized Ir/Ti\textsubscript{1-x}O\textsubscript{x} catalyst with TiO\textsubscript{2} as the support, the mass activity was as high as 4.2 A g\textsubscript{Ir}-1 @ 1.48 V, remarkably larger than that of Ir-black (1.6 A g\textsubscript{Ir}-1), indicating the improved...
Ir metal utilization.28 Hu et al. applied Nb-doped TiO\textsubscript{2} to support IrO\textsubscript{2} nanoparticles, the mass activity significantly increased from 198 A g510 −1 of unsupported IrO\textsubscript{2} to 471 A g510 −1 of supported IrO\textsubscript{2}/Nb-TiO\textsubscript{2} at 1.6 V, accompanied with enhanced stability.29 For SnO\textsubscript{2}, Sb-doped SnO\textsubscript{2} (ATO) is the most common improver. Böhm et al. prepared macroporous ATO with the electrical conductivity of 3.6 S cm−1, obviously higher than that of SnO\textsubscript{2} (3.8 × 10−4 S cm−1), the corresponding IrO\textsubscript{2}/ATO catalyst exhibited the mass activity of 63 A g510 −1 at 1.53 V and enhanced stability.30 Similarly, Strasser et al. also confirmed the promoting effect of ATO support on the Ir nanodendrites.31 Expect for the metal oxide, metal nitride such as TiN also displays promising support effect. Xing et al. revealed the high electrical conductivity (28.18 S cm−1) of TiN, and its effectiveness of dispersing, anchoring and electronic structure modulation on IrO\textsubscript{2}/Ir nanoparticles.32 Afterwards, Hu et al. verified that TiN significantly improved the IrO\textsubscript{2} utilization, the mass activity climbed to 874 A g510 −1 at 1.6 V.33

As another style of heteroatom-doping treatment, non-metal such as N, B, F, P can also be doped into TiO\textsubscript{2} and generally applied in various photocatalytic systems. Saini et al. synthesized N–TiO\textsubscript{2} and B–TiO\textsubscript{2} through a sol–gel route and verified the effectiveness on the photocatalytic degradation of emerging micro-pollutants.43 Xu et al. successfully prepared F–TiO\textsubscript{2}, which showed enhanced photocatalytic activity for the phenol degradation.44 Chevalier et al. also prepared F–TiO\textsubscript{2} by an emulsions method and exhibited remarkably higher efficiency for the photocatalytic degradation of nitrobenzene.45 O’Shea et al. co-doped TiO\textsubscript{2} with N, F and P, the photocatalytic activity of this modified TiO\textsubscript{2} to produce hydroxyl radicals under ultra violet (UV) and visible light irradiation can be dramatically improved.46 These cases mentioned-above mainly benefit from the decreased band-gap and the red-shift of light absorption profile to the visible region of TiO\textsubscript{2} through non-metal element doping.

Herein, we successfully doped TiO\textsubscript{2} with N element and synthesized IrO\textsubscript{2}/N–TiO\textsubscript{2} electrocatalyst to catalyze OER. N-doping procedure dramatically increases the electrical conductivity of TiO\textsubscript{2}, and subsequently improves the dispersing/stabilizing effects on IrO\textsubscript{2}, weakens the oxidative dissolution of Ir species. Satisfactory, enhanced catalyst utilization and catalytic performance are simultaneously realized.

Results and discussion

Fig. 1a illustrates the procedure to synthesize N–TiO\textsubscript{2} support through NH\textsubscript{4} treatment and IrO\textsubscript{2}/N–TiO\textsubscript{2} catalyst through ethylene glycol (EG) refluxing reduction method, respectively. Interestingly, the as-obtained N–TiO\textsubscript{2} appears light-blue color, apparently different from TiO\textsubscript{2} with pure-white, implying the band gap change due to the N-doping treatment. As shown in Fig. 1b, the common X-ray diffraction (XRD) peaks of N–TiO\textsubscript{2} and TiO\textsubscript{2} ascribe to the anatase phase of TiO\textsubscript{2}.47 The apparently sharper diffraction peaks of N–TiO\textsubscript{2} indicate the enlarged crystal size through the heating treatment. Notably in the inset of Fig. 1b, the N–TiO\textsubscript{2} (101) crystal diffraction face slightly moves to a lower diffraction angle compared with TiO\textsubscript{2}, demonstrating the successful incorporation of N into the TiO\textsubscript{2} lattice. Furthermore, IrO\textsubscript{2}/N–TiO\textsubscript{2}, IrO\textsubscript{2}/TiO\textsubscript{2} and IrO\textsubscript{2} show common crystal diffraction facets of (111), (200), (220) and (311) (Fig. 1c), ascribing to the cubic phase of Ir.48,49 Meanwhile, diffraction peaks of anatase phase TiO\textsubscript{2} are also apparently recognized for the supported catalysts.

The morphology characteristics of these as-prepared samples were revealed by transmission electron microscopy (TEM). As shown in Fig. S1 (ESI†), N peak appears distinctly in the energy-dispersive X-ray spectroscopy (EDX), and the atomic/weight contents of N element are 3.60 at%/1.89 wt%, respectively, again verifies the effective doping procedure. TEM image in Fig. 1d shows the uniform dispersion of IrO\textsubscript{2} nanoparticles on the N–TiO\textsubscript{2} support, while the relatively nonuniform dispersion appears when using TiO\textsubscript{2} support (Fig. 1f). The keys lie in the formation of Ti3+ species and the oxygen vacancies due to the N-doping treatment.50,51 Ti3+ with reductibility can easily adsorb the IrCl\textsubscript{4}2− precursor ion with high-valent Ir4+ species during the synthesis process, and oxygen vacancies can act as the anchoring sites for effectively adsorbing IrCl\textsubscript{4}2−. Therefore, improved dispersion of IrO\textsubscript{x} on N–TiO\textsubscript{2} is acquired. Furthermore, unsupported IrO\textsubscript{2} catalyst displays more noticeable particles aggregation (Fig. 1h). IrO\textsubscript{2}/N–TiO\textsubscript{2} and IrO\textsubscript{2}/TiO\textsubscript{2} were further characterized by the high-resolution TEM (HRTEM) (Fig. 1e and g), for the supported IrO\textsubscript{2} nanoparticles, the interplanar spacings of 0.224 and 0.225 nm are all slightly larger than that of the standard Ir (111) crystal facet with 0.221 nm (JCPDS no. 06-0598), implying that the formation of surface oxidation state can enlarge the interplanar spacing of metallic Ir to some extent. Similarly, Luo et al. has reported that the interplanar spacing of Ir (111) crystal facet increased to 0.225 nm when alloyed with W metal.52 For N–TiO\textsubscript{2}, the interplanar spacing of 0.355 nm is slightly larger than that of the standard TiO\textsubscript{2} (101) crystal facet with 0.352 nm (JCPDS No. 21-1272), mainly resulted from the partly substitution of O2− ion by N−3 ion with larger radius. By contrast, IrO\textsubscript{2}/TiO\textsubscript{2} displays standard TiO\textsubscript{2} (101) crystal facet. Moreover, the adjacent IrO\textsubscript{2} and N–TiO\textsubscript{2} (TiO\textsubscript{2}) nanoparticles confirm the supported structure. The HAADF-STEM and corresponding elemental mapping images (Fig. S2, ESI†) of IrO\textsubscript{2}/N–TiO\textsubscript{2} reveal that Ir, N, O and Ti element are uniformly distributed throughout the IrO\textsubscript{2}/N–TiO\textsubscript{2} nanoparticles.

X-ray photoelectron spectroscopy (XPS) was applied to investigate the surface structure of the samples. The binding energy of all peaks has been calibrated with the C 1s orbit of 284.6 eV. XPS survey spectrum for N–TiO\textsubscript{2} (Fig. S3a, ESI†) depicts the typical Ti 2p, O 1s/KLL and N 1s orbits, and the atomic content of N is 3.79 at%, almost in accordance with the EDX result. After supporting IrO\textsubscript{2}, Ir 4p/4d/4f orbits can also be clearly recognized (Fig. S3b, ESI†). The N 1s spectrum for IrO\textsubscript{2}/N–TiO\textsubscript{2} was deconvoluted and obtained only one prominent peak (Fig. 2a). This peak at 396.70 eV is assigned to the substitutional N in Ti–N bonds, indicating that the N atoms enter into the TiO\textsubscript{2} lattice through replacing the O atoms.50,53 Compared with IrO\textsubscript{2}, the Ir 4f spectra for IrO\textsubscript{2}/N–TiO\textsubscript{2} and IrO\textsubscript{2}/TiO\textsubscript{2} all shifted negatively to lower electronic binding energy direction (Fig. 2b and S3c, ESI†), indicating the electron-
transfer process from N–TiO2 and TiO2 to IrOx. Especially the IrOx/N–TiO2 with the Ir 4f7/2 orbit locates at 61.10 eV, lower by 0.16 and 0.24 eV than those of IrOx/TiO2 and IrOx (Table S1, ESI†), respectively. Next, the relative contents of Ir⁰ and Ir⁴⁺ species were obtained through deconvoluting the Ir 4f spectra, and shown in Table S1 (ESI†). For IrOx/N–TiO2, the content of Ir⁰ species is the highest one with 66.1% (64.1% for IrOx/TiO2 and 63.2% for IrOx), mainly due to the more significant electron-transfer effect. In addition, the contents of Ir⁴⁺ species all surpass 30%, confirming the formation of IrOx oxide component on the catalyst surface.

The electrical conductivity of N–TiO2 was measured to reach 0.13 S cm⁻¹, apparently higher than that of TiO2 (7.9 × 10⁻⁶ S cm⁻¹). The significant effect of the N-doping treatment on improving the electrical conductivity of TiO2 is undoubtable, which is beneficial for driving the supported active sites to participate the reaction. The main reason should be that strongly correlated interaction emerges between N and Ti due to the N-doping treatment, which will lead the electrons in the 3d orbit of Ti move to the 2p orbit of N. Consequently, conduction band becomes lower, band gap becomes narrower and the electrical conductivity is bound to improve.Ş6,Ş6 Cyclic voltammogram (CV) tests at high scanning rate of 300 mV s⁻¹ were firstly performed in N₂-saturated 0.5 M H₂SO₄ solution (Fig. 3a), subsequently, the outer charge (Qouter) that assesses the accessible active surface and directly correlates with the OER activity was obtained through integrating the CV curve between 0.70 and 1.40 V.Ş6,Ş5,Ş6 As shown in the inset of Fig. 3a, the Qouter of IrOx/N–TiO2 is 8.93 mC, about 2.83 times of IrOx/TiO2 (3.16 mC) and 1.28 times of IrOx (6.97 mC), respectively. The improvement mainly resulted from the enhanced dispersing effect and electrical conductivity of the N–TiO2 support. Furthermore, although the better dispersion of IrOx nanoparticles on TiO2 than the unsupported IrOx, the ultralow electrical conductivity of TiO2 can strictly limit the effective participation of the supported IrOx in OER, hence, the Qouter is apparently lower than that of the IrOx catalyst. During the linear sweep voltammetry (LSV) tests (Fig. 3b), the overpotentials of the catalysts to deliver current density of 10 mA cm⁻² follow this order: IrOx/N–TiO2 (270 mV) < IrOx (286 mV) < IrOx(CM) (307 mV) < IrOx/TiO2 (313 mV). Furthermore, IrOx/N–TiO2 shows competitively catalytic effect compared with those reported supported Ir-based
catalysts (Table S2, ESI†). As for the pure supports, N–TiO2 and TiO2 all perform nearly negligible catalytic activity for OER, although N–TiO2 performs slightly better. The corresponding mass activity curves are shown in Fig. 3c, IrOx/N–TiO2 (278.7 A gIr−1) exhibits 2.70 and 2.50 times higher mass activity than those of IrOx/TiO2 (75.4 A gIr−1) and IrOx (79.7 A gIr−1) at 1.55 V, respectively. Meanwhile, it outperforms the majority of the ever reported catalysts with similar types (Table S3, ESI†). Therefore, N–TiO2 significantly improves the catalyst utilization of IrOx for OER.

To evaluate the reaction kinetics, Tafel slopes extracted from the LSV curves were firstly investigated (Fig. 3d). IrOx/N–TiO2 possesses the smallest value of 52.2 mV dec−1, indicating the most favorable OER kinetics. Subsequently, electrochemical impedance spectroscopy (EIS) tests were performed, the corresponding Nyquist plots are depicted in Fig. 3e and an equivalent circuit (EC) was adopted to fit them. As a key component, R_{ct} represents the charge transfer resistance.22 The R_{ct} of IrOx/N–TiO2 is only 14.5 Ω, apparently smaller than those of IrOx/TiO2 (35.3 Ω), IrOx (20.6 Ω) and IrO2(CM) (35.3 Ω) (Table S4, ESI†), indicating the fastest charge transfer rate during the reaction.

Reaction stability was evaluated through galvanostatic mode, as shown in Fig. 3f, the potentials increase to varying degrees, indicating the degradation of catalytic activity. Even so, IrOx/N–TiO2 maintains favorable stability, the potential only increased by 23.8 mV after 10 h, outperforms other counterparts (39.5 mV for IrOx/TiO2, 60.2 mV for IrOx, 45.7 mV for IrO2(CM)) (Fig. 3g). Subsequently, LSV tests were applied again to investigate the maintained catalytic activity after the stability tests (Fig. S4, ESI†). IrOx/N–TiO2 still shows outstanding performance, with the potential only increased by 21.7 mV at 10 mA cm−2. Inductively coupled plasma optical emission spectroscopy (ICP-OES) analysis was also carried to investigate the electrochemically dissolved Ir species (Fig. 3h). Thanks to the transferred electrons from N–TiO2, the Ir mass-loss ratio of supported IrOx is only 14.86%, by contrast, the values of IrOx/TiO2 and IrOx reach as high as 25.46 and 31.65%, respectively. Hence, N–TiO2 can weaken the oxidative dissolution of Ir species.

Fig. 2 (a) High-resolution XPS spectrum of the deconvoluted N 1s for IrOx/N–TiO2. (b) The comparison of the XPS spectra of Ir 4f for IrOx/N–TiO2, IrOx/TiO2 and IrOx. High-resolution XPS spectra of the deconvoluted Ir 4f for (c) IrOx/N–TiO2 and (d) IrOx.
A two-electrode cell driving overall water splitting was assembled by employing IrO$_x$/N–TiO$_2$, IrO$_x$ and IrO$_2$(CM) as the anode catalysts, Pt/C(CM) as the cathode catalyst. Polarization curves are shown in Fig. 4a, the IrO$_x$/N–TiO$_2$-based cell performs the lowest voltage of 1.785 V to deliver 100 mA cm$^{-2}$, meaning the total overpotential of only 555 mV. Compared with IrO$_x$/Pt/C(CM) and IrO$_2$(CM)/Pt/C(CM), 46 and 118 mV can be saved at 100 mA cm$^{-2}$, respectively. Furthermore, IrO$_x$/N–TiO$_2$/Pt/C(CM) exhibits favorable stability during the 20 h galvanostatic tests at constant 10 mA cm$^{-2}$ (Fig. 4b). The structural stability was confirmed by TEM characterization and shown in Fig. 4c, well dispersion of IrO$_x$ nanoparticles on the whole verifies the enhanced anchoring effect of N–TiO$_2$.

To scrutinize the practical application potential of IrO$_x$/N–TiO$_2$, proton exchange membrane water electrolysis (PEMWE) single cell was assembled with Nafion® 115 proton exchange membrane as the SPE, IrO$_x$/N–TiO$_2$ as the anode catalyst and Pt/C(CM) as the cathode catalyst. By contrast, the IrO$_2$(CM)/Pt/C(CM)-based cell was also assembled. For IrO$_x$/N–TiO$_2$/Pt/C(CM), the required voltages to deliver 1 and 2 A cm$^{-2}$ are only 1.672 and 1.761 V, respectively, lower by 41.44 mV than those of IrO$_2$(CM)/Pt/C(CM) (Fig. 4d). Finally, long-term stability tests of IrO$_x$/N–TiO$_2$/Pt/C(CM)-based cell were performed at constant 0.5 and 2.0 A cm$^{-2}$ for 300 h, respectively (Fig. 4e). Significant degradations at the beginning of the stability tests (0–14 h for 0.5 A cm$^{-2}$; 0–23.5 h for 2.0 A cm$^{-2}$) are observed, which could be ascribed to two main reasons, the mass transfer polarization and the modification of the oxidation state at the anode catalyst surface.58 The overall, initial and subsequent degradation rates are calculated and shown in Fig. 4f. Apparently, the stability performance at 2.0 A cm$^{-2}$ (overall/initial/subsequent degradation rates of 234/1570/101.6 mV h$^{-1}$) is inferior to that at 0.5 A cm$^{-2}$ (overall/initial/ subsequent degradation rates of 92.2/979.5/48.6 mV h$^{-1}$), mainly resulted from the more seriously oxidative dissolution of Ir species and the damage of other cell components under harsher environment.

However, compared with these reported PEMWE cells employing Ir-based anode catalysts,59–65 this IrO$_x$/N–TiO$_2$/Pt/C(CM)-based cell displays relatively mediocre level for the stability performance. Therefore, systematic optimization of the cell fabrication should be the further research emphasis for enhancing the practical cell performance, especially the operating stability.
Conclusions

In summary, supported IrO$_x$/N–TiO$_2$ catalyst was synthesized to effectively catalyze OER. N–TiO$_2$ exhibits comprehensive support effect, firstly, the remarkably high electrical conductivity of 0.13 S cm$^{-1}$ is beneficial for driving the active sites to adequately participate the reaction. Secondly, N–TiO$_2$ can effectively disperse and anchor the IrO$_x$ nanoparticles. Thirdly, prominent electron-transfer from N–TiO$_2$ to IrO$_x$ significantly weakens the electrochemically oxidative dissolution of Ir species. Consequently, IrO$_x$/N–TiO$_2$ performs enhanced catalytic performance, the required overpotential to drive 10 mA cm$^{-2}$ is only 270 mV, accompanied with improved catalyst utilization, favorable reaction kinetics and enhanced stability. Moreover, the single cell employing IrO$_x$/N–TiO$_2$ performs the voltages of only 1.672 V @ 1 A cm$^{-2}$ and 1.761 V @ 2 A cm$^{-2}$.

Author contributions

G. L. conceived and coordinated the research. G. L. and H. J. conducted the catalyst preparation, physical characterization and electrochemical measurement. G. L., X. Y. and M-C. L. contributed to the analysis of experiment results. The manuscript was primarily written and modified by G. L. and H. L. All authors contributed to the discussion and manuscript review.

Conflicts of interest

There are no conflicts to declare.

Acknowledgements

This work was supported by the Elite Program of Shandong University of Science and Technology (0104060540812), and the Qingdao Scientific and Technological Innovation High-Level Talents Project: Aluminum-Ion Power and Energy Storage Battery (17-2-1-1-zhc).

Notes and references

1 X. J. Zeng, D. R. Duan, X. F. Zhang, X. H. Li, K. Li, R. H. Yu and M. Moskovits, J. Mater. Chem. C, 2022, 10, 4140–4147.
2 L. G. Li, P. T. Wang, Q. Shao and X. Q. Huang, Adv. Mater., 2022, 33, 2004243.
3 S. Roy, Z. H. Huang, A. Bhunia, A. Castner, A. K. Gupta, X. D. Zou and S. Ott, J. Am. Chem. Soc., 2019, 141, 15942–15950.
4 X. X. Zou and Y. Zhang, Chem. Soc. Rev., 2015, 44, 5148–5180.
5 G. F. Liao, C. X. Li, X. Z. Li and B. Z. Fang, Cell Rep. Phys. Sci., 2021, 2, 100355.
6 G. F. Liao, C. X. Li, S.-Y. Liu, B. Z. Fang and H. M. Yang, Phys. Rep., 2022, 983, 1–41.
7 G. F. Liao, C. X. Li, S.-Y. Liu, B. Z. Fang and H. M. Yang, Trends Chem., 2022, 4, 111–127.
8 G. F. Liao, X. Y. Tao and B. Z. Fang, Matter, 2022, 5, 377–379.
9 Z. W. Lei, T. Y. Wang, B. T. Zhao, W. B. Cai, Y. Liu, S. H. Jiao, Q. Li, R. G. Cao and M. L. Liu, Adv. Energy Mater., 2020, 10, 2000478.
51 L. H. Fu, X. Hu, Y. B. Li, G. Z. Cheng and W. Luo, *Nanoscale*, 2019, 11, 8898–8905.
52 Q. Q. Chen, A. Ozkan, B. Chattopadhyay, K. Baert, C. Poleunis, A. Tromont, R. Snyders, A. Delcorde, H. Terryn, M. P. Delplancke-Ogletree, Y. H. Geerts and F. Reniers, *Langmuir*, 2019, 35, 7161–7168.
53 Y. Wang, C. X. Feng, M. Zhang, J. J. Yang and Z. J. Zhang, *Appl. Catal., B*, 2010, 100, 84–90.
54 L. Xu, C. Q. Tang, L. Dai, D. H. Tang and X. G. Ma, *Acta Phys. Sin.*, 2007, 56, 1048–1053.
55 G. F. Li, H. M. Yu, X. Y. Wang, D. L. Yang, Y. K. Li, Z. G. Shao and B. L. Yi, *J. Power Sources*, 2014, 249, 175–184.
56 W. Hu, Y. Q. Wang, X. H. Hu, Y. Q. Zhou and S. L. Chen, *J. Mater. Chem.*, 2012, 22, 6010–6016.
57 R. P. Ma, Y. Wang, G. Q. Li, L. Yang, S. W. Liu, Z. Jin, X. Zhao, J. J. Ge and W. Xing, *Nano Res.*, 2021, 14, 4321–4327.
58 S. Siracusano, S. Trocino, N. Briguglio, F. Pantò and A. S. Aricò, *J. Power Sources*, 2020, 468, 228390.
59 G. F. Li, H. M. Yu, W. Song, X. Y. Wang, Y. K. Li, Z. G. Shao and B. L. Yi, *Int. J. Hydrogen Energy*, 2012, 37, 16786–16794.
60 J. B. Cheng, H. M. Zhang, G. B. Chen and Y. N. Zhang, *Electrochim. Acta*, 2009, 54, 6250–6256.
61 K. A. Lewinski, D. F. van der Vliet and S. M. Luopa, *ECS Trans.*, 2015, 69, 893–917.
62 M. Möckl, M. F. Ernst, M. Kornherr, F. Allebrod, M. Bernt, J. Byrknes, C. Eickes, C. Gebauer, A. Moskovtseva and H. A. Gasteiger, *J. Electrochem. Soc.*, 2022, 169, 064505.
63 S. C. Sun, Z. G. Shao, H. M. Yu, G. F. Li and B. L. Yi, *J. Power Sources*, 2014, 267, 515–520.
64 G. F. Li, H. M. Yu, X. Y. Wang, S. C. Sun, Y. K. Li, Z. G. Shao and B. L. Yi, *Phys. Chem. Chem. Phys.*, 2013, 15, 2858–2866.
65 C. Rakousky, U. Reimer, K. Wippermann, S. Kuhri, M. Carmo, W. Lueke and D. Stolten, *J. Power Sources*, 2017, 342, 38–47.