Running title: Reappraisal of empathy neural networks

The neural networks underlying reappraisal of empathy for pain

Navot Naor1*, Christiane Rohr2, Lina H Schaare2, Chirag Limbachia1, Simone Shamay-Tsoory3, Hadas Okon-Singer3

1University of Maryland at College Park, 4094 Campus Dr., College Park, Maryland 20742-5031, United States

2Max Planck Institute for Human Cognitive and Brain Sciences, Department of Neurology Leipzig, Sachsen, Germany

3University of Haifa, Israel

*Corresponding author:
Navot Naor
Department of Psychology
University of Maryland, Biology/Psychology Building, 4094 Campus Dr., College Park, MD 20742
+1-202-758-4810
Total number of words – 4087

© The Author(s) 2020. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com
Abstract:

Emotion regulation plays a central role in empathy. Only by successfully regulating our own emotions can we reliably use them in order to interpret the content and valence of others’ emotions correctly. In an fMRI-based experiment, we show that regulating one’s emotion via reappraisal modulated biased emotional intensity ratings following an empathy for pain manipulation. Task based analysis revealed increased activity in the right IFG when painful emotions were regulated using reappraisal, whereas empathic feelings that were not regulated resulted in increased activity bilaterally in the precuneus, SMG and MFG, as well as the right parahippocampal gyrus. Functional connectivity analysis indicated that the right IFG plays a role in the regulation of empathy for pain, through its connections with regions in the empathy for pain network. Furthermore, These connections were further modulated as a function of the type of regulation used:

In sum, our results suggest that accurate empathic judgment (i.e. empathy that is unbiased) relies on a complex interaction between neural regions involved in emotion regulation and regions associated with empathy for pain. Thus, demonstrating the importance of emotion regulation in the formulation of complex social systems and sheds light on the intricate network implicated in this complex process.

Key Words: Empathy, Emotion Regulation, Reappraisal, gPPI, IFG
Our emotions can help us respond effectively and adaptively to the complex world that surrounds us. They can also, however, become destructive and unhelpful, making us more confused rather than providing us more clarity (Gross, 2013). For this reason, being able to regulate our emotions by amplifying those that encourage adaptive responses and diminishing those that do not is central to our wellbeing. A common strategy that individuals use to regulate their emotions is cognitive reappraisal—a process through which individuals reconstruct an emotional situation in a way that alters its emotional impact, for example by reconstructing a horror film as a parody (McRae, Ciesielski, & Gross, 2012).

Traditionally, the study of emotion regulation focused on intrinsic and basic emotions (e.g., fear, anger or disgust; Gross, 2013). Recently, however, growing research interest is being directed toward more complex emotional situations provoked during interpersonal interactions. One such complex emotional situation is the experience of empathy, which is the focus of this paper. *Empathy* is generally defined as an individual’s ability to vicariously experience the thoughts and feelings of another person, thus generating connections between individuals. As part of the empathic process, individuals use their own emotions and experiences as a reference point for understanding the mental states of others. Thus, it follows that empathy is influenced by the control individuals exert over their own emotional experiences (Decety, 2010, Naor et al., 2018).
The tendency to use one’s own emotions while at the same time regulating them is even more relevant in the context of empathy for pain, i.e., the ability to partake of the pain felt by others (Fitzgibbon, Giummarra, Georgiou-Karistianis, Enticott, & Bradshaw, 2010). Empathy for pain has been the major focus of empathy research in social neuroscience and other related fields (Singer & Lamm, 2009), highlighting the importance of empathy for pain in daily life. For example, we recently demonstrated that the use of reappraisal to regulate emotions can influence the empathic process and eliminate biases in judging emotional facial intensity (Naor et al., 2018). The ability to accurately judge the intensity of emotional facial expressions can be considered to be one type of empathic accuracy (Ickes et al., 1990). The ability to identify others’ emotions based on the observation of facial expressions has been linked to the ability to share such feelings (Enticott, Johnston, Herring, Hoy, & Fitzgerald, 2008), a key concept in empathy (Blais, Roy, Fiset, Arguin, & Gosselin, 2012; Singer, 2006). Judgment of morphed faces has been used as a measure of empathic accuracy in previous works, for example in studies that showed participants dynamic facial expressions and asked them to continuously judge the intensity of the emotional expressions (e.g. Hall, & Schmid Mast, 2007; Zaki, Bolger, & Ochsner, 2008; Zaki, Weber, Bolger, & Ochsner, 2009). Furthermore, reduction in the ability to make accurate emotional intensity inferences from morphed static face images has been associated with conditions marked by impairments in empathy, such as cocaine users (Kuypers, Steenbergen, Theunissen, Toennes, & Ramaekers, 2015), patients with
ventromedical prefrontal cortex lesions (Jenkins et al., 2014) and individuals with autistic spectrum disorder (Smith, Montagne, Perrett, Gill, & Gallagher, 2010). A recent study demonstrated a cognitive bias for judgments of pain only when these judgments were made after the participant experienced empathy for pain, yielding exaggerated assessment of emotional intensity compared to the presented intensity. Nevertheless, that bias disappeared when participants used reappraisal to regulate their empathy (Naor et al., 2018).

The neural networks underlying the process of modulating empathy for pain in the context of emotion regulation have yet to be explored. Empathy relies heavily on areas of the salience network, namely the anterior insula (AI) and the anterior cingulate cortex (ACC) (Menon & Uddin 2010; Seeley 2007). Conversely, emotion regulation, and mainly reappraisal-based downward regulation, is associated with executive control and limbic networks, namely the prefrontal cortex and the amygdala (Seeley 2007, Menon & Uddin 2010). An accumulating body of research highlights the utility of examining functional connectivity when assessing the relationships between cognitive and affective processes, as well as their corresponding brain processes.

Hence, the current study aimed at exploring the functional connectivity among the neural networks involved both in upregulating and in downregulating empathy for pain. To this end, we employed the task developed by Naor et al. (2018) in an fMRI setting. In short, participants observed scenarios of painful or non-painful situations. They were then...
asked to rate the degree of affect in faces that depicted either a painful or a happy expression. In half of the trials, participants were asked to empathize with the scenario, while in the other half they were asked to reappraise their empathy. Empathic engagement with the painful scenario is hypothesized to lead to empathy, which will affect the participants' emotional state and lead them to judge other people’s levels of pain inaccurately but will not affect the accuracy of their valence judgment of other emotions. Conversely, the use of reappraisal will downregulate the participant's own emotional state, resulting in more accurate empathic judgment.

In addition, we hypothesised that 1) the experience of empathy for pain would result in increased activity in the salience network, mainly the AI and the ACC; 2) downregulation of empathy for pain via reappraisal would result in increased activity in regions associated with executive control and decreased activity in limbic networks; and 3) the degree of activity in the prefrontal-limbic network would affect the degree of cognitive bias, such that the greater the functional connectivity between regions related to emotion regulation and those related to empathy, the lesser the bias would be. To this end, in addition to a GLM-based fMRI data analysis, we also conducted a generalized psychophysiological interaction (gPPI) analysis to explore the functional networks underlying the differences between bias scores after observation of painful scenarios under reappraise and watch conditions. This analysis enabled us to pinpoint the brain
Running title: *Reappraisal of empathy neural networks*

regions that exhibit higher functional coupling during the process of downward regulation of empathy.

Methods

Participants

Thirty-three healthy participants were recruited from the student population at Ben-Gurion University of the Negev (14 male; age=24.65; SD=1.76) in return for payment. The Ethics Committee at Soroka Medical Centre approved the experiment (Approval Number 0114-15-SOR). All participants had normal or corrected-to-normal vision. Participants were screened for neurological or psychiatric history, as well as for any metal implants that might interfere with the scanning. All participants signed an informed consent form prior to participating. Two participants were excluded from the final analysis due to technical failures in the scanning session that resulted in the loss of behavioural data.

Materials

We used a set of 23 matched coloured pictures showing hands and feet in painful and non-painful scenarios. Each painful scenario was matched with a non-painful scenario that involved all the same components except the painful element. In addition, the experiment employed a well-validated set of faces (Blais, Roy, Fiset, Arguin, & Gosselin, 2012. http://mapageweb.umontreal.ca/gosselif/STOIC.rar). Emotional expressions were morphed with neutral ones to create a sequential morph of 100 pictures. Eight models were used (four female), each depicting two emotions (happy and painful) at six levels of
Running title: *Reappraisal of empathy neural networks*

intensity (40%, 50%, 60%, 70%, 80%, and 90%). For more detailed information, please see Naor et al. (2018).

Experimental Procedure

The behavioural procedure was similar to the procedure used in previous research at our lab (Naor et al., 2018). Each experimental trial began with a 4,000 ms presentation of either a painful or a non-painful scenario picture taken from the painful/non-painful scenario pictures set. Two thousand ms into the presentation, a colorful frame appeared instructing participants which regulation strategy to employ—REAPPRAISE or EMPATHIC WATCH. The painful/non-painful scenario picture remained on the screen with the colorful frame for additional 2,000 ms. After the painful/non-painful scenario picture disappeared, participants were shown a picture from the facial expression set. Participants were then given 6,000 ms to judge the intensity of the emotion shown in the facial expression on a scale ranging from 1 to 100. After 6,000 ms, the scale disappeared and a fixation cross appeared for 3,000 to 5,000 ms before the next trial. A total of four models (either a male or a female, matching the participant’s sex) were used in the experiment. For each model, six morphed painful faces and six morphed happy faces were selected. For statistical power, we ran each stimuli combination twice, yielding a total trial count of 96 (4 models X 6 morphed faces X 2 emotions X 2 repetitions), divided into two experimental runs of 48 trials each in the scanner. The complete instructions are reported in Appendix 1.
Behavioural analysis

A three-way repeated measures ANOVA was calculated to examine the effect of the presented scenario (painful/non-painful), the presented emotional expression (happy/painful) and the regulation strategy deployed (REAPPRAISAL/EMPATHIC WATCH) on participants’ judgment of emotional intensity. The dependent variable in the ANOVA analysis was the calculated bias score, which is the averaged difference between the actual observed intensity and the judged intensity.

To further examine the effect of scenario and expression on bias, a 2x2 repeated measures ANOVA was independently calculated for each regulation strategy, with the presented scenario (painful/non-painful) and the presented emotional expression (happy/painful) as dependent variables and the bias score as the independent variable.

fMRI data preprocessing

FMRI data were processed using FEAT (FMRI Expert Analysis Tool) Version 6.00, a toolbox of FSL (FMRIB's Software Library, www.fmrib.ox.ac.uk/fsl). Functional images were registered to high-resolution structural images using Boundary Based Registration (BBR) (Greve & Fischl, 2009). The high-resolution structural image was registered to the standard space using FLIRT (Jenkinson, & Smith, 2001, Jenkinson et al., 2002) and then further refined using FNIRT nonlinear registration (Andersson, Jenkinson, & Smith, 2013).
Running title: Reappraisal of empathy neural networks

The following pre-statistical processing was applied: Motion correction was carried out using MCFLIRT with options for extended motion parameters (i.e., standard motion parameters plus their derivatives and the squares of their derivatives) (Jenkinson, Bannister, Brady, & Smith, 2002); non-brain removal using BET (Smith 2002). We further scrubbed the volumes' framewise displacement>0.9mm. Participants for whom more than 10% of the volumes passed this threshold (i.e., more than 38 volumes) were excluded from the analysis. Spatial smoothing using a Gaussian kernel of FWHM 5mm; grand-mean intensity normalization of the entire 4D dataset by a single multiplicative factor; and high pass temporal filtering (Gaussian-weighted least-squares straight line fitting, with sigma=50.0s). Denoising was carried out with ICA-AROMA in FSL by conducting single-subject independent component analysis (ICA) to remove motion components from each participant's functional data (Pruim, Mennes, Buitelaar, & Beckmann, 2015a; Pruim et al., 2015b). ICA-AROMA was selected as it was shown to be highly effective in accounting for motion related variance (Ciric, R., Wolf, Power, Roalf, Baum, Ruparel, ... & Gur, 2017; Pruim, et al., 2015a).

fMRI task within-participant analysis

Statistical analysis was conducted using FILM with local autocorrelation correction (Woolrich, Ripley, Brady, & Smith, 2001). The time-series model included eight EVs to account for the eight contrasts in the experimental design. Each trial lasted approximately ten seconds (with a 500 milliseconds jitter) and included two seconds of initial scenario
Running title: Reappraisal of empathy neural networks

viewing, a two-second regulation period, and a six-second judgment phase. A double gamma HRF was used, and the extended motion parameters served as an indicator function to model out single TRs identified to have excessive motion according to a framewise displacement > 0.9 mm. The second-level analysis, in which contrast estimates were averaged over within-subject runs, was conducted using a fixed-effects model by forcing the random effects variance to zero in FLAME (FMRIB’s Local Analysis of Mixed Effects; Beckmann, Jenkinson & Smith, 2003; Woolrich, Behrens, Beckmann, Jenkinson, & Smith, 2004, Woolrich, 2008). Each 10-second trial was modelled in its entirety to ensure an optimal fit across the data. Specifically, the first two-second period was modelled as the observation period, the next two-second period was modelled as the regulation period and finally the subsequent six seconds were modelled as the judgment time.

fMRI task group activity analysis

Group analysis was conducted using FLAME (FMRIB’s Local Analysis of Mixed Effects) stage 1 (Beckmann, Jenkinson, & Smith, 2003; Woolrich, et al., 2004; Woolrich, 2008). Based on Gaussian Random Field (GRF) theory, Z (Gaussianised T/F) statistic images underwent parametric thresholding using clusters determined by z > 3.1 and a corrected cluster significance threshold of p > 0.05 (Worsley 2001). We separately examined differences between regulation following painful scenarios and regulation following non-painful scenarios for each regulation strategy (i.e., reappraisal and empathic watch). The
Running title: Reappraisal of empathy neural networks

results of those contrasts were then contrasted themselves to account for the unique effect of each regulation type.

After the whole-brain group analysis, a generalized psychophysiological interaction (gPPI) analysis (Friston, Buechel, Fink, Morris, Rolls, & Dolan, 1997; McLaren, Ries, Xu, & Johnson, 2012; O’Reilly, Woolrich, Behrens, Smith, & Johansen-Berg, 2012) was conducted in FSL FEAT to examine functional connectivity in networks involved in the use of reappraisal of empathy for pain. This analysis examined the interaction between activity in the seed region—which was selected based on the task analysis (i.e., the IFG and the SMG)—and activity in all other voxels in the brain as a function of task condition, i.e. REAPPRAISAL (painful/non-painful) and EMPATHIC WATCH (painful/non-painful). The gPPI analysis matrix included all EVs of the original task from the group analysis to control for the main effect of task. Judgments of painful facial expression following painful scenario under the REAPPRAISE and EMPATHIC WATCH conditions were used as the psychological parameter. The physiological parameter was the time course of the seed region in the right IFG (based on the results of the task analysis, as reported in the Results section below). Finally, the mathematical product of the psychological variable and the physiological variable constituted the interaction term. A mixed-effects group-level regression was employed using FLAME 1 and the results were thresholded at z > 3.1 and p < 0.05 corrected for multiple comparisons.
Results

Behavioural findings

A three-way repeated-measures ANOVA with Bonferroni correction for multiple comparisons revealed a greater bias for judgments of painful facial expressions than for those of happy facial expressions [F(1,30) = 8.759, p = .006, \(\eta^2_p = .226 \)]. In addition, main effects emerged for regulation instructions [F(1,30) = 5.210, p = .006; \(\eta^2_p = .226 \)], scenario [F(1,23) = 5.210, p = .03; \(\eta^2_p = .148 \)], and the interaction between them [F(1,30) = 10.160, p = .003; \(\eta^2_p = .253 \)]. As predicted, the bias for painful facial expressions was higher when participants watched the scenario empathically compared to the condition in which they reappraised their feelings [F(1,30) = 2.112, p = .157; \(\eta^2_p = .066 \)]. The bias for painful facial expression was also higher for conditions that followed painful scenarios than for non-painful ones [F(1,30) = 2.667, p = .14; \(\eta^2_p = .082 \)]. Moreover, all three conditions interacted, so that the greatest bias was found during trials in which judgments of painful facial expressions were made following empathic watch of a painful scenario [F(1,30) = 4.928, p = .034; \(\eta^2_p = .141 \)].

Insert Figure 2 here

Figure 2 portrays the results of further testing the source of the three-way interaction using a 2X2 repeated-measures ANOVA with Bonferroni correction for multiple comparisons. Under EMPATHIC WATCH, we found a greater bias in judgments of painful
facial expressions compared to happy facial expressions \[F(1,30) = 12.007, p = .002, \eta_p^2 = .286\], as well as a greater bias in judgments made after exposure to painful scenarios compared to non-painful ones \[F(1,30) = 11.430, p = .002, \eta_p^2 = .276\]. In addition, an interaction emerged between facial expression and scenario \[F(1,30) = 7.289, p = .011, \eta_p^2 = .195\]. Table 1 depicts the follow-up t-tests conducted to examine the source of this interaction. A paired sample t-test revealed a greater bias for painful facial expressions in judgments following painful scenarios than in judgments following non-painful scenarios (Table 1). A similar Bonferroni corrected ANOVA for REAPPRAISE trials did not yield significant results for scenario \[F(1,30) = 2.667, \text{ N.S.}\], emotion \[F(1,30) = 1.205, \text{ N.S.}\], or the interactions between them \[F(1,30) = 1.386, \text{ N.S.}\]. Moreover, the bias score for painful expressions following painful scenarios in EMPATHIC WATCH trials was significantly higher than in REAPPRAISE trials \(t = 3.677\), \(df = 30\), \(p = 0.001\)\(^1\).

Insert Table 1 here

Neuroimaging findings

Functional activity results

To examine the effect of emotion regulation following empathy for pain, we first compared [A] EMPATHIC WATCH trials during exposure to painful scenarios to [B]

\(^1\) This comparison is not orthogonal and is shown only to demonstrate the full scope of the effect.
Reappraisal of empathy neural networks

EMPATHIC WATCH trials during exposure to non-painful scenarios. Increased activity related to empathy for pain was found in regions of the salience network, including the bilateral Insula and the IFG, as well as in the left MFG and the right ACC (Table 2). Then, we compared [C] REAPPRAISE trials following exposure to painful scenarios to [D] REAPPRAISE trials following exposure to non-painful scenarios. Increased activity was found in regions associated with executive control, including the left parietal lobule, as well as regions from the salience network including the bilateral AI. Results of the whole-brain analysis are reported in Table 2 and Figure 3. To examine the effect of reappraisal, we subtracted the unique activity of both regulation strategies from each other [i.e., (A-B)-(C-D)]. This analysis revealed increased activity during REAPPRAISE trials in the right IFG, whereas for EMPATHIC WATCH, increased activity was found in left SMG, the right precuneus and the right MFG. The results of the whole-brain analysis are reported in Table 3 and Figure 4.

Functional connectivity results

Two independent gPPI analyses were carried out, employing a seed region in the right IFG based on the effect of reappraisal vs. empathic watch. These analyses showed divergent
Running title: Reappraisal of empathy neural networks

patterns for empathizing with painful vs. non-painful scenarios as well as for reappraising painful vs. non-painful scenarios. Specifically, empathizing with painful scenarios was associated with increased connectivity with the mid-cingulate and ACC, as well as with the bilateral postcentral cortex. Conversely, during reappraisal of painful vs. non-painful scenarios, increased connectivity was found between the IFG and the bilateral lateral occipital cortex, as well as with the left IFG, left posterior insula and left parahippocampal gyrus. Detailed functional connectivity results are reported in Table 4, with key findings illustrated in Figure 5.

Insert Table 4 here

Figure 5 insert here

Discussion

The aim of the present study was to examine the neural networks that facilitate the influence of emotion regulation on judgment biases following empathic feelings for the pain of others. To this end, we employed a paradigm that measures biases while participants judge painful facial expressions as a result of the experience of empathy for pain (Naor et al., 2018). We compared judgment biases following empathic feelings for the pain of others to conditions in which participants regulated their empathy using reappraisal.
Replicating our previous work (Naor et al., 2018), the current findings show that the experience of empathy for pain yields a cognitive bias while judging painful facial expressions after experiencing empathy for pain. These biases are eliminated following down-regulation of empathic feelings via reappraisal. Furthermore, these biases are limited to judgments of painful expressions following empathy for pain and do not occur when participants judge happy facial expressions or when they are exposed to non-painful scenarios. These findings support our previous results and show that when individuals naturally feel empathy for the pain of another, they develop a strong bias in their ability to accurately judge the intensity of the pain felt by that other, leading to their perception of the pain as stronger than it really is. We show that reappraisal can eliminate this bias in judgment, resulting in accurate emotion judgments.

The current study adds to our previous behavioural research by showing that regulation of empathy for pain via reappraisal is associated with increased activity in the right IFG. The up-regulation of empathy for pain via empathic watch led to increased activity in a diffused network of regions known to be involved in empathy for pain, including the left SMG, the right precuneus, and the right MFG. In addition, neural regions previously associated both with empathy for pain and with reappraisal (e.g., anterior and posterior regions of the left SMG within the IPL as well as the parietal operculum – empathy for pain: Costantini, Galati, Romani, & Aglioti, 2008; Li, Zhang, Li, Zhang, Jin, & Li, 2019. Morawetz et al., 2015) were involved when participants employed reappraisal
Running title: **Reappraisal of empathy neural networks**

following exposure to painful scenarios. A gPPI analysis revealed increased functional connectivity between the right IFG and regions of the network involved in empathy for pain. Interestingly, different regulation strategies resulted in increased connectivity with different parts of the network. Empathic watch resulted in increased connectivity with regions involved in processing of self-pain, while reappraisal resulted in increased connectivity with regions involved in simulation of others pain, as well as self-pain processing (Shamay-Tsoory, 2011).

Activation in the left SMG and the right MFG was found during empathic watch only, suggesting that these two regions play a critical role and are associated with the process of feeling empathy for the pain of others. The following discussion considers the potential role of each of these regions in the regulation of empathy for pain and its influence on judgment biases.

The involvement of the right IFG in regulation of empathy for pain coincides with previous findings outlining a role for the IFG in down-regulation of emotion via reappraisal (Ochsner et al., 2012), and specifically in regulation of social emotions (Grecucci, Giorgetta, Bonini, & Sanfey, 2013). Moreover, the right IFG alongside the putamen and the SMA have been implicated in emotion regulation via motor inhibition, such as in expressive suppression where individuals physically suppress emotional facial expressions in order to alter their emotions (Vanderhasselt, Kühn, & De Raedt, 2012). These findings suggest that the involvement of the right IFG in the current task following regulation of
Empathic watch of painful scenarios was associated with increased activity in the left SMG, the right precuneus, and the right MFG. The MFG and the adjacent precentral gyrus have been implicated in up-regulation of emotions (Grecucci et al., 2013; Frank et al., 2014). While empathic watch, unlike reappraisal, is not a classical regulation strategy, it does possess all the requirements of such a strategy as it is meant to amplify and elongate a previously exciting emotion (Gross, 2013). Furthermore, among other sub-regions, the MFG encompasses the dorsolateral prefrontal cortex (DLPFC), which is a central region in cognitive empathy (Kalbe et al., 2010). Researchers have suggested that empathy can be viewed as a complex system that includes two distinct sub-systems: emotional empathy and cognitive empathy. Whereas emotional empathy represents the ability to share others' emotion and includes empathy for pain, cognitive empathy allows for the involvement of more cognitively complex processes, such as perspective-taking and mentalizing (Shamay-Tsoory, Aharon-Peretz & Perry, 2009). Engagement of the DLPFC in emotional empathy is an uncommon finding and may point to the involvement of cognitive empathy in the up-regulation of empathy. An additional indication of this potential role of the DLPFC in empathy for pain emerges from the functional connectivity analysis (see below).
Running title: Reappraisal of empathy neural networks

We further examined changes in functional connectivity with the right IFG, which showed enhanced activity during the task, using gPPI analysis. One interesting result is that the IFG, a region involved in the simulation of pain, showed higher connectivity with the insula as well as with the contralateral IFG during reappraisal trials. Whereas during empathic watch trials higher connectivity was found with the ACC. While the IFG is related to the simulation of pain, both the insula and the ACC are part of the empathy for pain network, reportedly responding to observed and felt pain (Shamay-Tsoory, 2011). Yet it seems that each regulation strategy triggers different parts of that network.

Our findings have implications that go beyond a scientific examination of empathy and its functions. Indeed, our approach could add to the framework of Research Domain Criteria (RDoC) project and may serve as a basis for future therapeutic protocols. By validating experimental tasks and protocols the RDoC is aiming to change the way mental disorders are being classified (Morris, & Cuthbert, 2012). Gur and Gur (2016) used a simple emotional faces recognition test to show that individuals with schizophrenia exhibit dysfunctional patterns of facial emotion identification. They concluded that an emotion identification performance index of the RDoC’s social cognition domain should be developed and could be used to improve the diagnostics, research focus, and eventually treatment of schizophrenia. In line with this conclusion, the task developed in our work can serve as an implicit tool to examine emotion identification in social contexts. Furthermore, it can shed light on the impact of emotion regulation on biases in social
Running title: Reappraisal of empathy neural networks

contexts and the neural networks mediating them, among healthy individuals and clinical populations.

In this study we sought to describe the neural network involved in regulation of empathy for pain. The study does, however, have some potential limitations. First, the stimuli used were artificially morphed images of actors portraying emotional facial expressions rather than real representations of individuals experiencing pain. Second, it is possible that the bias in judgment of painful facial expression resulted from greater sensitivity to the visual features portrayed in these expressions, which may be linked to empathic accuracy, rather than from their emotional value per se. Additionally, happy faces were used as control stimuli because they have been shown to be easy to differentiate from painful faces (Naor et al., 2018) and are therefore less likely to skew our results due to mislabeling the perceived emotion, even at low intensities. Nevertheless, we cannot rule out the possibility that the observed differences between happy and painful expressions stem from other factors, such as processing difficulty. Finally, the empathic watch cue was employed as a control condition for the reappraisal condition. However, we cannot rule out the possibility that these instructions enhanced empathy.

This paper is the first to measure and describe the functional networks underlying biased empathic accuracy following empathy for pain. Additional work is required to uncover the depth and complexity of the interaction between emotion regulation and
Running title: Reappraisal of empathy neural networks

prosocial emotions, as well as the neural networks that govern these interactions. Recent views on emotional processing maintain that such complex behaviour is mediated by large cortical and subcortical dynamic brain networks (Pessoa, 2017; 2018). This research represents an initial attempt to map these networks in the context of regulation of empathy for pain and empathic accuracy. The results also raise questions about the differences and similarities between the experience of pain and that of empathy for pain. Rütgen et al. (2015) found that the experience of empathy for pain relies on the same neural responses as well as the same neurotransmitter activity associated with the first-hand experience of pain (for more on this view see: MacDonald, & Leary, 2005). Conversely, Singer et al. (2004) claimed that the neural networks involved both in self-pain and in empathy for pain go only as far as regions associated with the affective qualities of pain and not those concerned with its sensory qualities (for more on this view see: Lamm, Decety, & Singer, 2011). Whether empathy for pain and first-hand experience of pain share the same neural underpinnings and networks in full, in part or not at all, it would be interesting to compare how such experiences affect empathic accuracy, as well as to examine the effect of emotion regulation on the way such experiences bias empathic accuracy.

In this paper we attempted to map the neural network that facilitates the regulation of empathy for pain in order to make accurate empathic judgments. Our results demonstrate the importance of emotion regulation in the formulation of complex
Running title: Reappraisal of empathy neural networks

social systems. Although the literature on empathy is based largely on the premise that adaptive empathic reactions require emotion regulation (Jackson, & Decety, 2004), little research has directly explored the contribution of emotion regulation to accurate empathic responses, especially with respect to reappraisal. Indeed, even though empathy is inherently emotional in nature, research on empathy seems to remain primarily focused on shared emotions and not on the way these shared emotions are regulated. Understanding the mechanisms underlying empathy regulation is important given that the purpose of empathy is to alleviate the distress of a suffering target.

Funding: There are no funders to report for this submission.

Declaration of interest: The authors declare no conflict of interest
Running title: Reappraisal of empathy neural networks

References

Andersson, J., Jenkinson, M., & Smith, S. M. (2013). Non-linear registration, aka spatial normalisation. FMRIB Analysis Group Technical Reports. TR07JA2. www.fmrib.ox.ac.uk analysis/techrep. Accessed 17/10/17.

Beckmann, C. F., Jenkinson, M., & Smith, S. M. (2003). General multilevel linear modeling for group analysis in FMRI. Neuroimage, 20(2), 1052-1063.

Blais, C., Roy, C., Fiset, D., Arguin, M., & Gosselin, F. (2012). The eyes are not the window to basic emotions. Neuropsychologia, 50(12), 2830-2838.

Chun, J. W., Park, H. J., Park, I. H., & Kim, J. J. (2012). Common and differential brain responses in men and women to nonverbal emotional vocalizations by the same and opposite sex. Neuroscience letters, 515(2), 157-161.

Coll, M. P., Tremblay, M. P. B., & Jackson, P. L. (2017). The effect of tDCS over the right temporo-parietal junction on pain empathy. Neuropsychologia, 100, 110-119.

Costantini, M., Galati, G., Romani, G. L., & Aglioti, S. M. (2008). Empathic neural reactivity to noxious stimuli delivered to body parts and non-corporeal objects. European Journal of Neuroscience, 28(6), 1222-1230.

Decety, J. (2010). The neurodevelopment of empathy in humans. Developmental neuroscience, 32(4), 257-267.

Decety, J., & Ickes, W. (2011). The social neuroscience of empathy. MIT Press.

Decety, J., & Lamm, C. (2011). 15 Empathy versus Personal Distress: Recent Evidence from Social Neuroscience. The social neuroscience of empathy, 199.
Reappraisal of empathy neural networks

Frank, D. W., Dewitt, M., Hudgens-Haney, M., Schaeffer, D. J., Ball, B. H., Schwarz, N. F., ... & Sabatinelli, D. (2014). Emotion regulation: quantitative meta-analysis of functional activity and deactivity. Neuroscience & Biobehavioral Reviews, 45, 202-211.

Friston, K. J., Buechel, C., Fink, G. R., Morris, J., Rolls, E., & Dolan, R. J. (1997). Psychophysiological and modulatory interactions in neuroimaging. Neuroimage, 6(3), 218-229.

Grecucci, A., Giorgetta, C., Bonini, N., & Sanfey, A. G. (2013). Reappraising social emotions: the role of inferior frontal gyrus, temporo-parietal junction and insula in interpersonal emotion regulation. Frontiers in Human Neuroscience, 7, 523.

Greve, D. N., & Fischl, B. (2009). Accurate and robust brain image alignment using boundary-based registration. Neuroimage, 48(1), 63-72.

Gur, R. C., & Gur, R. E. (2016). Social cognition as an RDoC domain. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 171(1), 132-141.

Jackson, P. L., Brunet, E., Meltzoff, A. N., & Decety, J. (2006). Empathy examined through the neural mechanisms involved in imagining how I feel versus how you feel pain. Neuropsychologia, 44(5), 752-761.

Jenkinson, M., & Smith, S. (2001). A global optimisation method for robust affine registration of brain images. Medical image analysis, 5(2), 143-156.
Reappraisal of empathy neural networks

Jenkinson, M., Bannister, P., Brady, M., & Smith, S. (2002). Improved optimization for the robust and accurate linear registration and motion correction of brain images. Neuroimage, 17(2), 825-841.

Johnston, P., Mayes, A., Hughes, M., & Young, A. W. (2013). Brain networks subserving the evaluation of static and dynamic facial expressions. Cortex, 49(9), 2462-2472.

Lamm, C., Bukowski, H., & Silani, G. (2016). From shared to distinct self–other representations in empathy: evidence from neurotypical function and socio-cognitive disorders. Philosophical Transactions of the Royal Society B: Biological Sciences, 371(1686), 20150083.

Lamm, C., Decety, J., & Singer, T. (2011). Meta-analytic evidence for common and distinct neural networks associated with directly experienced pain and empathy for pain. Neuroimage, 54(3), 2492-2502.

Lamm, C., Nusbaum, H. C., Meltzoff, A. N., & Decety, J. (2007). What are you feeling? Using functional magnetic resonance imaging to assess the modulation of sensory and affective responses during empathy for pain. PloS one, 2(12), e1292.

Li, Y., Zhang, T., Li, W., Zhang, J., Jin, Z., & Li, L. (2019). Linking brain structure and activation in anterior insula cortex to explain the trait empathy for pain. Human brain mapping.

MacDonald, G., & Leary, M. R. (2005). Why does social exclusion hurt? The relationship between social and physical pain. Psychological bulletin, 131(2), 202.
Running title: Reappraisal of empathy neural networks

McLaren, D. G., Ries, M. L., Xu, G., & Johnson, S. C. (2012). A generalized form of context-dependent psychophysiological interactions (gPPI): a comparison to standard approaches. Neuroimage, 61(4), 1277-1286.

McRae, K., Ciesielski, B., & Gross, J. J. (2012). Unpacking cognitive reappraisal: goals, tactics, and outcomes. Emotion, 12(2), 250.

Morawetz, C., Bode, S., Baudewig, J., & Heekeren, H. R. (2017). Effective amygdala-prefrontal connectivity predicts individual differences in successful emotion regulation. Social cognitive and affective neuroscience, 12(4), 569-585.

Morawetz, C., Bode, S., Baudewig, J., Kirilina, E., & Heekeren, H. R. (2015). Changes in effective connectivity between dorsal and ventral prefrontal regions moderate emotion regulation. Cerebral Cortex, 26(5), 1923-1937.

Morris, S. E., & Cuthbert, B. N. (2012). Research Domain Criteria: cognitive systems, neural circuits, and dimensions of behavior. Dialogues in clinical neuroscience, 14(1), 29.

Naor, N., Shamay-Tsoory, S. G., Sheppes, G., & Okon-Singer, H. (2017). The impact of empathy and reappraisal on emotional intensity recognition. Cognition and Emotion, 1-16.

O’Reilly, J. X., Woolrich, M. W., Behrens, T. E., Smith, S. M., & Johansen-Berg, H. (2012). Tools of the trade: psychophysiological interactions and functional connectivity. Social cognitive and affective neuroscience, 7(5), 604-609.
Ochsner, K. N., Silvers, J. A., & Buhle, J. T. (2012). Functional imaging studies of emotion regulation: a synthetic review and evolving model of the cognitive control of emotion. Annals of the New York Academy of Sciences, 1251(1), E1-E24.

Pessoa, L. (2017). A Network Model of the Emotional Brain. Trends in Cognitive Sciences.

Pessoa, L. (2018). Understanding emotion with brain networks. Current Opinion in Behavioral Sciences, 19, 19-25.

Rabin, J. S., Gilboa, A., Stuss, D. T., Mar, R. A., & Rosenbaum, R. S. (2010). Common and unique neural correlates of autobiographical memory and theory of mind. Journal of Cognitive Neuroscience, 22(6), 1095-1111.

Rohr, C. S., Villringer, A., Solms-Baruth, C., van der Meer, E., Margulies, D. S., & Okon-Singer, H. (2016). The neural networks of subjectively evaluated emotional conflicts. Human brain mapping, 37(6), 2234-2246.

Rütgen, M., Seidel, E. M., Silani, G., Riečanský, I., Hummer, A., Windischberger, C., ... & Lamm, C. (2015). Placebo analgesia and its opioidergic regulation suggest that empathy for pain is grounded in self pain. Proceedings of the National Academy of Sciences, 112(41), E5638-E5646.

Shamay-Tsoory, S. G., Aharon-Peretz, J., & Perry, D. (2009). Two systems for empathy: a double dissociation between emotional and cognitive empathy in inferior frontal gyrus versus ventromedial prefrontal lesions. Brain, 132(3), 617-627.
Running title: Reappraisal of empathy neural networks

Sheppes, G., & Meiran, N. (2007). Better late than never? On the dynamics of online regulation of sadness using distraction and cognitive reappraisal. Personality and Social Psychology Bulletin, 33(11), 1518-1532.

Silani, G., Lamm, C., Ruff, C. C., & Singer, T. (2013). Right supramarginal gyrus is crucial to overcome emotional egocentricity bias in social judgments. Journal of Neuroscience, 33(39), 15466-15476.

Singer, T., Seymour, B., O'doherty, J., Kaube, H., Dolan, R. J., & Frith, C. D. (2004). Empathy for pain involves the affective but not sensory components of pain. Science, 303(5661), 1157-1162.

Smith, S. M. (2002). Fast robust automated brain extraction. Human brain mapping, 17(3), 143-155.

Thiruchselvam, R., Blechert, J., Sheppes, G., Rydstrom, A., & Gross, J. J. (2011). The temporal dynamics of emotion regulation: an EEG study of distraction and reappraisal. Biological psychology, 87(1), 84-92.

Thompson, A. E., & Voyer, D. (2014). Sex differences in the ability to recognise non-verbal displays of emotion: A meta-analysis. Cognition and Emotion, 28(7), 1164-1195.

Vanderhasselt, M. A., Kühn, S., & De Raedt, R. (2012). ‘Put on your poker face’: neural systems supporting the anticipation for expressive suppression and cognitive reappraisal. Social Cognitive and Affective Neuroscience, 8(8), 903-910.
Running title: Reappraisal of empathy neural networks

Woolrich, M. (2008). Robust group analysis using outlier inference. Neuroimage, 41(2), 286-301.

Woolrich, M. W., Behrens, T. E., Beckmann, C. F., Jenkinson, M., & Smith, S. M. (2004). Multilevel linear modelling for FMRI group analysis using Bayesian inference. Neuroimage, 21(4), 1732-1747.

Woolrich, M. W., Ripley, B. D., Brady, M., & Smith, S. M. (2001). Temporal autocorrelation in univariate linear modeling of FMRI data. Neuroimage, 14(6), 1370-1386.

Worsley, K. J. (2001). Statistical analysis of activity images. Functional MRI: An introduction to methods, 14(1), 251-70.
Figure Legends:

Figure 1. Example of a painful scenario with a neutral face. A picture depicting either a painful or a non-painful scenario appeared for 2,000 ms. Then, an instruction to REAPPRAISE (red frame) or to employ EMPATHIC WATCH (blue frame) appeared for an additional 2,000 ms. After participants viewed the scenario, they were shown a picture depicting an emotional version morphed between 100% neutral and 100% emotion (pain or happy) and were given 6,000 ms to assess the emotional intensity of the presented face.
Running title: *Reappraisal of empathy neural networks*

Figure 2. Three-way repeated-measures ANOVA of regulation strategy (reappraise/empathic watch), with scenario (painful/non-painful) and emotion (painful/happy) as within-subject factors and bias score as a dependent variable, *p < .005 **p < .001.
Figure 3. A + B: Results of empathic watch for painful vs. non painful scenarios. C + D: Results of reappraisal of painful vs. non painful scenarios. Clusters were derived at $z > 3.1$ and (corrected) cluster significance $p < 0.05$. IFG – inferior frontal gyrus; SMG – supramarginal gyrus.
Figure 4. A + B: Results of empathic watch larger than reappraisal. C: Results of reappraisal larger than empathic watch. Clusters were derived at $z > 3.1$ and (corrected) cluster significance $p < 0.05$. SMG – supramarginal gyrus.
Figure 5. Results of the gPPI functional connectivity analyses, with the time series of a seed in the right IFG (in pink) and the activity during judgments of painful facial expression when empathically watching painful scenarios compared to neutral scenarios (A) and during judgments of painful facial expression when reappraising painful scenarios compared to neutral scenarios (B). Clusters were derived at $z > 3.1$ and (corrected) cluster significance $p < 0.05$.
Running title: Reappraisal of empathy neural networks

Table 1. Bias scores, mean differences and t values for WATCH and REAPPRAISE conditions.

Condition	Scenario	Emotion	Bias Score (SD)	Mean Difference	T-test value
Watch	Non-painful	Pain	.461 (16.04)	10.671	4.019**
	Pain		11.132 (7.834)		
	Non-painful	Happy	-.617 (6.946)	1.274	0.556
	Pain		.657 (15.256)		
Reappraise	Non-painful	Pain	-.059 (17.907)	2.781	2.165*
	Pain		2.722 (13.58)		
	Non-painful	Happy	-.852 (14.38)	0.748	0.507
	Pain		.103 (12.475)		

** P<.001, *P<.05. While the interaction between emotion and scenario in EMPATHIC WATCH trials was significant [F(1,30) = 7.289, p = .011, \(\eta_p^2 = .195 \)], there was no similar interaction in REAPPRAISE trials [F(1,30) = 1.386, N.S.].
Table 2. A whole-brain analysis of the effects of EMPATHIC WATCH for painful emotion larger than non-painful emotion and the effects of REAPPRAISE for painful emotion larger than non-painful emotion. Regions were classified using the Harvard-Oxford Atlas, $z > 3.1$ and (corrected) cluster significance $p < 0.05$. Z-MAX values represent peak activity for the cluster. MNI coordinates.

Voxels	Z-MAX	MAX X	MAX Y	MAX Z	R/L	Description
949	4.43	50	14	-2	R	Insular Cortex, Inferior Frontal Gyrus, Precentral Gyrus, Superior Temporal Gyrus, Postcentral Gyrus, Frontal Orbital Cortex.
923	4.66	-44	2	2	L	Insular Cortex, Inferior Frontal Gyrus, Middle Frontal Gyrus, Precentral Gyrus, Superior Temporal Gyrus, Postcentral Gyrus, Frontal Orbital Cortex.
646	4.07	-62	-22	28	L	Superior Temporal Gyrus, Postcentral Gyrus, Superior Parietal Lobule, Supramarginal Gyrus, anterior and posterior division, Angular Gyrus.
332	4.13	0	16	32		Superior Frontal Gyrus, Juxtapositional Lobule Cortex, Paracingulate Gyrus, Anterior Cingulate Gyrus.
546	4.32	-62	-42	46	L	Superior Temporal Gyrus, posterior division, Superior Parietal Lobule Postcentral Gyrus, Supramarginal Gyrus, anterior and posterior divisions, Angular Gyrus.
466	3.84	60	-46	44	R	Superior Temporal Gyrus, posterior division, Postcentral Gyrus Supramarginal Gyrus, anterior and posterior division, Angular Gyrus.
364	4.21	46	24	-4	R	Insular Cortex, Inferior Frontal Gyrus, Frontal Orbital Cortex
272	3.93	-38	10	-6	L	Insular Cortex, Inferior Frontal Gyrus
Table 3. Results of whole-brain analysis for EMPATHIC WATCH effect larger than REAPPRAISE effect, and REAPPRAISE effect larger than EMPATHIC WATCH effect. Regions were classified using the Harvard-Oxford Atlas, \(z > 3.1 \) and (corrected) cluster significance \(p < 0.05 \). Z-MAX values represent peak activity for the cluster. MNI coordinates.

Voxels	Z-MAX	X	Y	Z	R/L	Description
109	3.72	-30	-56	50	L	Superior Parietal Lobule, Lateral Occipital Cortex - superior division, Angular Gyrus, Supramarginal Gyrus - posterior division
69	3.58	-6	-98	0	L	Occipital Pole
61	3.98	22	-46	-16	R	Parahippocampal Gyrus, posterior division
46	3.53	4	-66	22	R	Precentral Gyrus, Postcentral Gyrus, Middle Frontal Gyrus
25	3.39	54	-4	52	R	Precentral Gyrus, Postcentral Gyrus, Middle Frontal Gyrus
45	4.12	56	42	-10	R	Inferior Frontal Gyrus

EMPATHIC WATCH effect > REAPPRAISE effect ([A-B] - [C-D])

REAPPRAISE effect > EMPATHIC WATCH effect ([C-D] - [A-B])
Running title: *Reappraisal of empathy neural networks*

Table 4. Results of gPPI analysis for the effects of EMPATHIC WATCH and REAPPRAISAL, with the time series of a seed in the IFG. Regions were classified using the Harvard-Oxford Atlas, $z > 3.1$ and (corrected) cluster significance $p < 0.05$. Z-MAX values represent peak activity for the cluster. MNI coordinates.

Functional connectivity of the IFG during EMPATHIC WATCH condition

Volume	Z-MAX	X	Y	Z	R/L
215	3.041	20	-50	14	R Precuneus, Suprachalcarine Cortex
110	3.1602	-28	-50	16	L Precuneus, Suprachalcarine Cortex
105	2.7229	-38	-38	58	L Postcentral Gyrus
57	2.9896	-32	-24	40	L Postcentral Gyrus
44	2.8075	-16	20	34	L Middle cingulate Gyrus
38	2.8298	2	-18	48	R Mid-cingulate, Supplementary Motor Area
37	2.6564	-64	4	-4	L Superior Temporal Gyrus
35	2.7188	-50	-20	28	L Supramarginal Gyrus
33	2.473	4	-2	36	R Anterior Cingulate Gyrus
31	2.7528	-4	-28	-4	L Thalamus
27	2.6531	22	-46	34	R Precuneus
22	2.8328	-54	-4	-28	L Middle Temporal Gyrus
21	2.7157	54	-40	54	R Supramarginal Gyrus

Non-Painful scenario > Painful scenario

Volume	Max Int	X	Y	Z	R/L
110	-2.9173	56	-34	-6	R Middle Temporal Gyrus
67	-2.9378	-2	-42	-8	L Cerebellum Left I-IV
35	-2.7737	-44	22	12	L Inferior Frontal Gyrus
34	-2.8068	-10	48	42	L Superior Frontal Gyrus

Functional connectivity of the IFG during REAPPRAISAL condition

Volume	Max Int	X	Y	Z	R/L
166	3.0999	-48	-74	20	L Lateral Occipital Cortex
Running title: **Reappraisal of empathy neural networks**

80	3.1135	32	-88	24	R	Lateral Occipital Cortex
48	2.6958	-60	8	6	L	Inferior Frontal Gyrus
41	2.5736	-40	-38	18	L	Insula
40	2.8461	-32	-8	-30	L	Parahippocampal Gyrus, Temporal Fusiform Cortex
30	2.591	-58	-34	-6	L	Middle Temporal Gyrus
26	2.5268	-60	-16	8	L	Planum Temporale
24	2.8386	-22	-64	70	L	Lateral Occipital Cortex
21	2.5674	-52	-8	-28	L	Inferior Temporal Gyrus
166	3.0999	-48	-74	20	L	Lateral Occipital Cortex
80	3.1135	32	-88	24	R	Lateral Occipital Cortex

Non-Painful scenario > Painful scenario

24	-2.7775	70	-40	20	R	Supramarginal Gyrus