Complete mitochondrial genome sequencing of *Oxycarenus laetus* (Hemiptera: Lygaeidae) from two geographically distinct regions of India

Shruthi Chalil Sureshan¹, Ruchi Vivekanand Tanavade¹, Sewali Ghosh², Saswati Ghosh³, Raja Natesan Sella⁴ & Habeeb Shaik Mohideen¹

Oxycarenus laetus is a seed-sap sucking pest affecting a variety of crops, including cotton plants. Rising incidence and pesticide resistance by *O. laetus* have been reported from India and neighbouring countries. In this study, *O. laetus* samples were collected from Bhatinda and Coimbatore (India). Pure mtDNA was isolated and sequenced using Illumina MiSeq. Both the samples were found to be identical species (99.9%), and the complete genome was circular (15,672 bp), consisting of 13 PCGs, 2 rRNA, 23 tRNA genes, and a 962 bp control region. The mitogenome is 74.1% AT-rich, 0.11 AT, and − 0.19 GC skewed. All the genes had ATN as the start codon except cox1 (TTG), and an additional trnT was predicted. Nearly all tRNAs folded into the clover-leaf structure, except trnS1 and trnV. The intergenic space between trnH and nad4, considered as a synapomorphy of Lygaeoidea, was displaced. Two 5 bp motifs AATGA and ACCTA, two tandem repeats, and a few microsatellite sequences, were also found. The phylogenetic tree was constructed using 36 mitogenomes from 7 super-families of Hemiptera by employing rigorous bootstrapping and ML. Ours is the first study to sequence the complete mitogenome of *O. laetus* or any *Oxycarenus* species. The findings from this study would further help in the evolutionary studies of Lygaeidae.

Abbreviations

Abbreviation	Description
mtDNA	Mitochondrial DNA
BTI	Bhatinda
CBE	Coimbatore

Polyphagous seed feeding dusky cotton bug *Oxycarenus laetus* infects various crops, especially cotton plants and the Malvaceae family¹. Its incidence is on the rise, and it is reported from 100+ countries²,³. The life duration of this insect lasts from 35 to 45 days through five nymphal stages to develop into a fully grown adult⁴. Reports suggest the incidence of secondary pests is steeply increasing on cotton, especially the *Oxycarenus spp.*⁵, including on the Bt varieties. The trend is similar in nearby China and Pakistan⁶; it has become resistant to several pesticides, and synergistic actions were required to control it⁷.

Mitochondrial DNA has been a very significant marker in population and evolutionary studies. Uniparental transmission to offspring, high copy number per cell, and susceptibility to rapid evolution render mtDNA highly variable⁸. Though resistance to arthropods due to mtDNA is yet to be ascertained, several studies have reported cryptic species as one of the reasons; arising due to mutations either in the mtDNA or nuclear DNA. Uniparental maternal inheritance involving mtDNA has been reported as one of the reasons for the difference between

¹Biinformatics and Entomoinformatics Lab, Department of Genetic Engineering, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India. ²Department of Advanced Zoology and Biotechnology, Guru Nanak College, Chennai 600042, Tamil Nadu, India. ³Department of Virology, King Institute of Preventive Medicine and Research, Chennai 600032, Tamil Nadu, India. ⁴Membrane Protein Lab, Department of Genetic Engineering, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India. *email: habeeb_skm@yahoo.co.in
susceptible and resistant species. Recently, Ding et al., by employing mitochondrial genome and transcriptome sequencing, identified the role of mitochondrial genes ATP8 and NAD5 and the associated amino acid mutations to be rendering resistance to pyrethroid by A. sinensis population.

Due to its conserved nature and critical genetic markers, mtDNA has become the primary source for phylogenomics. Identification of insects is crucial to managing endangered, protected, and invasive species in the ecosystem. Insect mitogenome size ranges from 14,503 to 19,517 bp. Most insects code for typical 37 genes, including 13 protein coding genes (PCGs), 22 tRNA genes and 2 rRNA genes, and a control region. The most prominent non-coding region is the control region, also called the A + T rich region, responsible for transcription and translation. It is assumed to be analogous to the oriC. Despite the technological advancements in biotechnology, there are only 9046 insect mitogenomes, of which 1016 are from the order Hemiptera and only four from its Lygaeidae family (as of 26/06/2020) which provides much scope in insect mitogenomic studies.

It has been found that the North Indian fields had a higher incidence and resistance to pesticides by this bug in comparison to the South Indian cotton fields. It could be due to the existence of different/cryptic species altogether or due to mutations in the detoxification system. In this study, the mitogenome of O. laetus (Bhatinda, N. India (BTI) and Coimbatore, S. India (CBE)) was wholly sequenced and annotated, making it the first such study in the genus Oxyccarenus. Samples are collected from two locations that differ drastically in climate, soil conditions, and geography. This study was done to understand if two different species inhabit these regions. Studying the mitogenome of this insect could open up new avenues in Hemiptera research and its phylogenomics and better pest control.

Materials and methods
Sample collection. Samples of O. laetus were collected from the post harvested cotton fields located in Punjab Agriculture University, BTI (Punjab), and Tamilnadu Agriculture University, CBE (Tamilnadu) in India, with the help of scientists (species confirmation) and staff. Cotton bolls carrying O. laetus were plucked and transferred to transparent plastic boxes with their mouths covered with muslin cloth and transported to the laboratory. They were reared until an ample population was raised to extract mtDNA. Insects were reared on cotton bolls and maintained at 16:8 h of light/dark photoperiod, 27 °C, and 55% humidity. All the experiments were performed on the F1 generation population. All the chemicals and reagents used in this study were of finite grade.

Extraction and validation of mitochondrial DNA. A mixed population of adult O. laetus weighing 200 mg from both locations was macerated in 10 ml of homogenization buffer (0.4 M sucrose, 50 mM Tris HCl pH 7.5, 50 mM EDTA, 1% BSA, 10 mM β-mercaptoethanol). The mixture was centrifuged at 3500 rpm for 5 min at 4 °C. The supernatant was collected and centrifuged twice to remove cell debris and nuclear DNA. The supernatant was then centrifuged at 14,000 rpm for 15 min to pellet the mitochondria and resuspended in DNase-RNase free water. Traces of nuclear DNA were removed by incubating the mixture in 2.5 U of DNase I and DNase buffer (Qiagen) for 30 min. The action of DNase was terminated by adding 30 µl of 0.5 M EDTA. The mixture was again centrifuged at 12,000 rpm for 5 min, and the pellet was resuspended in 500 µl lysis buffer (100 mM Tris pH 8, 10 mM EDTA, 2% SDS, 15 µl of 20 mg/ml proteinase K), and the mixture was incubated at 55 °C for 1 h.

Then, 140 µl of 5 M NaCl and 250 µl of 2% CTAB were added to the mixture and incubated at 62 °C for 25 min. RNA contamination was removed by adding 10 µl of 20 mg/ml RNase A and incubation at 37 °C for one hour. An equal volume of chloroform:isoamyl alcohol (24:1) was added to the mixture and centrifuged at 14,000 rpm for 15 min. The top aqueous phase was collected, and the step was repeated. The final aqueous phase was collected, and two volumes of isopropanol was added and incubated at 20 °C for one hour. The mtDNA was precipitated by centrifugation at 14,000 rpm for 15 min and washed with 70% ethanol. The air-dried pellet was then dissolved in 20–30 µl of TE buffer and quantitated using NanoDrop.

The purity of the isolated mitochondrial DNA was assessed by amplifying COI (mitochondrial genome-specific) and Histone 4 gene (nuclear genome-specific). Table 1 shows the primers used in this study. The following conditions were used to amplify the COI gene: initial denaturation at 94 °C for 5 min; 30 cycles of final denaturation at 94 °C for 1 min, annealing at 52 °C for 1 min, elongation at 72 °C for 2 min 30 s; and final elongation at 72 °C for 5 min. Conditions used for amplifying Histone 4 gene are as follows: initial denaturation at 94 °C for 3 min; followed by 30 cycles of final denaturation at 94 °C for 1 min, annealing at 52 °C for 1 min, elongation at 72 °C for 1 min; and final elongation for 5 min. PCR products were visualized on 1% agarose gel.

Table 1. Primers used in the study.

Name	Sequence
COI-forward	GGTCAACAAATCTAAAAGATATTGG
COI-reverse	TAAAACCTGAGGTTGACCAAAAAATCA
Histone4-forward	ATTCCACTCTGTGGATAAGC
Histone4-reverse	ACACCTGGCGTCCTTTAAAAGT
tRNH-NADH5-gap-forward	TTTCCCAATCACAATAAATTTAACAAA
tRNH-NADH5-gap-reverse	TTGGGTCATTCTTTTTCAAG

Studying the mitogenome of this insect could open up new avenues in Hemiptera research and its phylogenomics and better pest control.
Mitogenome sequencing and assembly. Nextera XT DNA Library preparation protocol was followed for library preparation using 1 ng of fragmented and tagged quantified DNA. The DNA was tagged using Amplicon Tagment Mix present in the Nextera XT kit. The DNA was then subjected to 12 cycles of indexing-PCR, and the product was purified by high-prep magnetic beads and quantified. The DNA samples were sequenced De novo using MiSeq Illumina sequencer to generate paired-end reads of length 75 bp. Raw data generated in this study were submitted to NCBI’s SRA Archives (PRJNA520830). The raw reads were proofread using FastQC and the low-quality reads and adapter sequences were filtered using Trimmmomatic (0.38 v) and Cutadapt (2.8v). The high-quality reads were assembled using NOVOPlasty.

Sequence analysis, annotation, and visualization. MITOS-1 and MITOS-2 were used to annotate the assembled mitogenome. The PCGs were confirmed by using ORF Finder, and BlastN confirmed rRNA and tRNAs. The control region was validated by aligning it with the transcriptome of data generated in our previous study (SRX5329347) using standalone BLAST. MEGA 7.0 was used to determine nucleotide composition, codon usage, and relative synonymous codon usage (RSCU). Skewness in the mitogenome was calculated using the formula: AT-skew = (A - T)/(A + T); GC-skew = (G - C)/(G + C). Tandem repeats in the mitogenome were identified using Tandem Repeats Finder. Secondary structures of tRNA were predicted using Mfold. The CGView Server was used to generate the circular map of the mitogenome.

Cross verification of the rearrangement of intergenic region. The rearrangement of the conserved intergenic region of Lygaeidae was verified by designing primers to target and amplify the specific spacer. The amplified product was sequenced using the Sanger method and aligned with the assembled mitogenome. Table 1 lists the primer pair used for verification. PCR conditions used were as follows: initial denaturation at 94 °C for 3 min; 30 cycles of denaturation at 94 °C for 1 min, annealing at 57 °C for 1 min, elongation at 72 °C for 1 min; and final elongation at 72 °C for 5 min (Fig. S1).

Phylogenetic analysis. The phylogenetic study was done using 35 other species from hemipteran superfamilies. These included Aphidoidea, Cimicoidea, Reduvioidae, Pentatomoidae, Coreoidea, Pyrrhocoroidea, and Lygaeoidea (Table 4). Similar methodology as was followed by was employed with few changes as was needed for this study. The significant difference here was that we used whole mitogenomes instead of PCGs, intending to study the relationship among the selected data as a function of complete mitogenome. Both PhyML online server and raxMLGUI were used to construct the phylogenetic tree. The mitogenomes were aligned using MUSCLE, conserved regions were identified, and the unreliable regions in the data were removed using the Gblocks program. In the raxmGUI, ML + bootstrapping analysis was done involving 1000 replications invoking the GTR+GAMMAI substitution model. The resulting tree was visualized using TreeDyn. We also used the Bayesian Inference server to generate a phylogenetic tree in MrBayes v3.2.7 in order to validate the tree. Markov chain Monte Carlo (MCMC) simulations were run involving 1,000,000 generations with sampling every 1000 generations and the process was continued until the average standard deviation of split frequencies < 0.01. The first 25% sample trees were discarded in the burn-in process and the remaining trees were used to form the consensus tree and posterior probability (PP) values.

Results Genome organization and structure of O. laetus. The MiSeq data of BTI and CBE samples of O. laetus was submitted to the NCBI SRA database under the accession numbers SRR11024516 and SRR11024517, respectively. The study was done to understand whether there exists a different species of the genus Oxycarenus similar to O. laetus, which might be the reason for higher incidence and resistance. The study results are such that the mitogenomes of both the samples were highly identical (99.9%), confirming both to be identical species. Therefore, to maintain clarity of reading, findings of only one sample will be discussed hereafter, unless mentioned elsewhere in the manuscript.

The mitogenome of O. laetus had all the general characteristics of other similar insects. The 15,672 bp long mitogenome is double-stranded and circular, consisting of typical 13 PCGs, 2 rRNA, and 23 tRNA genes. A unique feature witnessed was 38 genes instead of the typical 37 genes and a control region spanning 962 bp. The major J-strand had 24, and the minority N-strand harbours 14 of these 38 genes. Gene overlaps were observed in their mitogenomes. Though this was witnessed in the gene tRNA-threonine, which could have occurred due to anticodon mutation or replication slipping. The gene arrangement was similar to the ancestral arrangement with a significant change in the intergenic space between nad4 and tRNA-H, which is reduced to 11 bp. Another striking feature was the duplication of the gene tRNA-threonine, which could have occurred due to anticodon mutation or replication slipping. The displacement of tRNA-H, closer to nad4 and shortening of the 41 bp non-coding region to 11 bp was validated by aligning the concerned region of the assembled data with the Sanger sequencing, and 100% identity was obtained, confirming the displacement as shown in Fig. S2. Lygaeidae have a unique synapomorphy by having an unusual spacer between tRNA-His and nad4 in their mitogenomes. Though this was witnessed in O. laetus mitogenome, perhaps on the other end, a feature that is generally expected to be in Lygaeidae.

Nucleotide composition and codon usage. Nucleotide composition is highly skewed towards A/T, a common feature in mitogenomes, and the AT content was 74.22%, and the rest being GC content (25.6%) (Table 3). The standard range for Hemiptera ranges between 69.53–83.53% and 73.15–76.04% in the case of
Lygaeoidae (Table 4). The AT skew observed was 0.11, indicating adenines more in number than thymines, and the GC skew of −0.19 indicates cytosines outnumbering guanines by a whisker. A similar trend was observed with PCGs as well. The PCGs in the J strand have AT skew of −0.025 and a GC skew of −0.130. At the same time, PCGs in the N strand have AT skew of −0.35 and a GC skew of 0.244. They are indicating that J-strand PCGs are much less AT and GC skewed than N-strand genes. The rRNA genes have a GC content of 25.7% and 22.6% for \(\text{rrnS} \) and \(\text{rrnL} \), respectively. \(G. \ pallidipennis \) is found to closely match the statistics obtained for the \(O. \ laetus \) when the comparison is made among the Lygaeoidae (Table 3). After analyzing 100 + genomes, Wei et al., reported GC skewness as an indication of oriC inversion associated with replication orientation and AT skew dictating gene direction and codon usage, both related to the mitogenome strand asymmetry39.

A slight variation in the average codons used among our samples was seen and found 14 bp less in BTI. However, a more extensive analysis revealed that the codon AUU (isoleucine) = 311.0 and GCG (Alanine) = 4.0 were having the highest and lowest frequencies in both the samples (Table 7). Predominant codons like Ile, Met, Phe, and Leu were entirely composed of A and T nucleotides. The nucleotide composition of each codon observed for the entire genome shows that the possibility of A occurring at the first position is 42.4, the second position

Name	Start	Strand	Size (bp)	Anticodon	Start codon	Stop codon	Intergenic nucleotides
\(\text{trnI} \)	1–62	J	62	GAT	–	–	0
\(\text{trnQ} \)	60–128	N	69	TTG	–	–	–1
\(\text{trnM} \)	128–195	J	68	CAT	–	–	0
\(\text{nad2} \)	196–1185	J	990	–	ATT	TAA	–2
\(\text{trnW} \)	1184–1246	J	63	TCA	–	–	–8
\(\text{trnC} \)	1239–1300	N	62	GCA	–	–	0
\(\text{trnY} \)	1301–1362	N	62	GTA	–	–	1
\(\text{cox1} \)	1364–2902	J	1539	–	TTG	TAA	–5
\(\text{cox2} \)	2898–2962	J	65	TAC	–	–	0
\(\text{trnK} \)	3639–3709	J	71	AAG	–	–	0
\(\text{trnD} \)	3710–3775	J	66	GTC	–	–	0
\(\text{atp8} \)	3776–3934	J	159	–	ATT	TAA	–7
\(\text{atp6} \)	3928–4593	J	666	–	ATG	TAA	–1
\(\text{cox3} \)	4593–5379	J	787	–	ATG	T	0
\(\text{trnG} \)	5380–5445	J	66	GGA	–	–	0
\(\text{nad3} \)	5446–5799	J	354	–	ATA	TAA	0
\(\text{trnA} \)	5800–5862	J	63	TGC	–	–	0
\(\text{trnR} \)	5863–5925	J	63	TGC	–	–	0
\(\text{trnN} \)	5926–5993	J	68	GAT	–	–	–1
\(\text{trnS1} \)	5993–6061	J	69	GCT	–	–	–1
\(\text{trnE} \)	6061–6125	J	65	TTC	–	–	0
\(\text{trnF} \)	6126–6188	N	63	GAA	–	–	–1
\(\text{nad5} \)	6188–7861	N	1674	–	ATT	TAA	41
\(\text{trnH} \)	7901–7962	N	62	GTG	–	–	2
\(\text{nad4} \)	7965–9284	N	1320	–	ATG	TAA	–7
\(\text{nad4} \)	9278–9559	N	282	–	ATT	TAA	2
\(\text{trnL} \)	9562–9623	J	62	TGT	–	–	–1
\(\text{trnT} \)	9823–9884	J	62	TGT	–	–	–1
\(\text{nadP} \)	9885–9948	N	64	TGG	–	–	1
\(\text{nad6} \)	9950–10,417	J	468	–	ATT	TAA	–1
\(\text{cob} \)	10,417–11,553	J	1137	–	ATG	TAG	–2
\(\text{trnS2} \)	11,552–11,620	J	69	TGA	–	–	17
\(\text{nadL} \)	11,637–12,566	N	930	–	ATA	TAA	–6
\(\text{trnL1} \)	12,561–12,626	N	66	TAG	–	–	–25
\(\text{rrnL} \)	12,602–13,845	N	1244	–	–	–	30
\(\text{trnV} \)	13,876–13,942	N	67	TAC	–	–	1
\(\text{rrnS} \)	13,944–14,710	N	767	–	–	–	–1
Control region	14,710–15,672	–	962	–	–	–	–

Table 2. Mitochondrial genome organization of \(O. \ laetus \). J majority strand, N minority strand, –ve overlapping genes, +ve intergenic space.
is 39.0, and the third position is 42.6. It was 33.0, 34.0, and 42.6; 10.4, 10.8, and 9.8; and 15.3, 15.4, and 14.1 for T, G, and C nucleotides, respectively.

The relative synonymous codon usage (RSCU) for each amino acid was calculated (Table 4), and a graph was manually generated. It is the number of times a codon is repeated in relation to the uniform synonymous codon usage, i.e., all codons of amino acid have the same chances of appearing in the sequence. It can be observed from Fig. 2 that all the codons of all amino acids have been strictly used, but the distribution is not equal. This distribution can act as markers for identification at the species level and intra-ordinal level.

Protein coding genes. All the identified 13 PCGs were confirmed for length and sequence by comparing them with the Illumina HiSeq RNA-Seq data generated by our lab for another study (SRR8526511 and SRR8526512). The results obtained from the MITOS2 server agreed with the cross-comparison and verification with the transcriptomic data (results not shown). As shown in Table 2 above, twelve genes have ATN as a start codon, only cox1 has TTG, which can be seen as a start codon for cox1 in many other species. Four PCGs (nad2, Cox2, nad3, nad1) have ATA as their start codon, four other genes (atp8, nad5, nad4l, and nad6) have ATT as their start codon. The genes atp6, cox3, nad4, cob start with codon ATG. Almost all the genes end with the typical non-sense codon, but few genes have incomplete/different termination codons like cox2 ending with AAA, cox3 ending with an incomplete codon: T-. The majority of the genes are found on the J-strand with much lower AT and GC Skew. Each PCG was aligned and compared with 35 other species to confirm consensus sequences and significant motifs.

Further, from Table 5, we can infer that there was not a vast difference between AT and CG richness between rRNA, tRNA, and most PCGs. However, the cytochrome family of PCGs cox1, cox2, cox3, and cob had a higher representation of GC than the other components of the mitogenome. These genes had an average of 30% GC content which was much lower, 17–26% for other PCGs. The pattern followed by the cytochrome family of genes was also evident for the control region. It has been known that the cytochrome family of genes, primarily, cox1 and cob, are used as markers for eukaryotic species identification and evolutionary studies. The higher incidence of GC in these PCGs may well be attributed to being less prone to environmental mutations, codon usage, and therefore, species identity is maintained.

Figure 1. Circular map of the mitogenome of *O. laetus*. The above figure tells us the location of PCGs, tRNAs, rRNAs, and control region. The inner green, purple and black circles show the -ve GC skew, +ve GC skew, and GC content.
Table 3. Comparison of skewness in other insect species.

Table 3.

NCBI Acc.#	Species	Family	A	G	C	T	Total	AT%	GC%	AT skew	GC skew
NC_015424.1	Agriocentrus dohrni	Reduviidae	178	121	157	455	801	70.94	29.06	0.01	-0.11
NC_012441.1	Acyrthosiphon pisum	Aphididae	172	120	156	450	808	70.40	29.60	0.01	-0.10
NC_012446.1	Aeschnotus notatus	Rhopalidae	171	119	154	443	844	74.00	26.00	0.01	-0.11
MT430940.1	Aphis gossypii	Aphididae	170	118	152	440	830	72.40	27.60	0.01	-0.10
HQ902161.1	Apolygus lucorum	Miridae	168	116	150	434	834	71.00	29.00	0.00	-0.11
JX39706.1	Chauliops fallax	Miridae	166	114	148	436	826	70.80	29.20	0.01	-0.11
NC_012464.1	Coptosoma bifaria	Pentatomidae	165	113	147	423	825	71.50	28.50	0.01	-0.10
JQ739179.1	Coridius chinensis	Miridae	164	112	146	422	822	70.80	29.20	0.01	-0.11
NC_042436.1	Euscopus rufipes	Cryptocercidae	163	111	145	417	820	72.70	27.30	0.00	-0.10
NC_012462.1	Riptortus pedestris	Miridae	162	109	143	411	805	70.10	29.90	0.01	-0.11

Non-coding regions. The control region is the largest functional non-coding entity in the mitogenomes, with a length of 962 bp. There are four major spacers spread throughout the genome, ranging from 17 to 200 bp. Small gaps of 1–3 bp were also observed between the genes. The important rearrangement region of 41 bp is found between nad5 and trnH. The two largest spacers measuring 200 bp in length are found between trnI and trnT, other small intergenic spaces were found between trnS2 and nad1, trnL and trnV. The spacer between trnS and nad1 is common in most insects. The conserved sequence block (CSB) region has two consensus regions, indicating that tandem duplication and random loss (TDRD) process could be a common intermediate step. Non-coding regions are found in all arthropods sequenced, with a few prevalent motifs noted: (1) Tandem/microsatellite repeats (CSB), (2) Poly-thymine sequence, (3) AT-rich region, (4) A stem-loop structure. We identified all these motifs in our mitogenomes. Some additional striking features were also seen in other insects. Two types of tandem repeats were identified with a consensus size of 22 copy number 2 and another with size 20 and copy number 3 spread across the genome except in the control region.
As mentioned earlier, we identified 23 tRNAs in the O. laetus mitogenome rather than the regular 22, lengths ranging from 60 to 72 bp. The structures predicted were clover-leaf or isoforms with a few exceptions: trnS1(AGN), in which the DHU arm (dihydrouridine) was reduced to just a loop of 6 bp, which is the case for most metazoans (Fig. S3)46. The trnV had formed two loops in both the DHU and TCYC arms. A duplicate of trnT0 was identified as trnT1, which has a similar structure to trnS1 and resembled its isoform due to the reduction of the TCYC arm to a loop, though the sequence was highly similar to trnT0. These features proved that this novel gene order could be explained by the tandem duplication/random loss (TDRL) model37.

The wobble and mismatch pairs common in insects’ tRNA were corrected by comparing data from two software MITOS224 and tRNAScan-SE47.

Keeping with the trend of mitogenome patterns, two rRNA genes were identified and further aligned with 35 other species to confirm the lengths and motifs. The large subunit gene of rRNA was 1244 bp in length and positioned between trnV and trnL-1. The GC content was about 22.6%, and the gene is AT-rich. The smaller subunit gene of rRNA was 767 bp in length with a slightly higher GC content of 25.8%.

Table 4. Codon count and relative synonymous codon usage in O. laetus mitochondrial PCGs.

Codon	Count	RSCU									
UUU(F)	203	−1.5	UCU(S)	70	−1.25	UAU(Y)	224	−1.53	UGU(C)	56	−1.51
UUC(F)	68	−0.5	UCC(S)	42	−0.75	UAC(Y)	68	−0.47	UGC(C)	18	−0.49
UUA(L)	310	−3.22	UCA(S)	93	−1.66	UAA(*)	248	−1.56	UGA(W)	86	−1.51
UUG(L)	44	−0.46	UCG(S)	11	−0.2	UAG(*)	70	−0.44	UGG(W)	28	−0.49
CUA(L)	81	−0.84	CUG(P)	87	−1.43	CAU(H)	71	−1.3	CGU(R)	43	−1.13
CUC(L)	23	−0.24	CCC(P)	63	−1.03	CAC(H)	38	−0.7	CGC(R)	88	−0.7
CUA(L)	22	−0.16	CCA(P)	90	−1.31	CAU(Q)	139	−1.54	CGA(R)	19	−1.65
CUG(L)	20	−0.22	CGG(P)	14	−0.23	CAG(Q)	68	−0.46	CGG(R)	86	−0.52
AUU(I)	311	−1.48	ACU(T)	94	−1.32	AAU(N)	308	−1.45	AGU(S)	78	−1.04
AUC(I)	110	−0.52	ACC(T)	62	−0.87	AAC(N)	118	−0.55	AGC(G)	43	−0.77
AUA(M)	289	−1.71	ACA(T)	114	−1.6	AAA(K)	391	−1.53	AGA(S)	78	−1.61
AUG(M)	49	−0.29	ACC(T)	15	−0.21	AAG(K)	120	−0.47	AGG(S)	41	−0.73
GUU(V)	49	−1.2	GCU(A)	42	−1.57	GAU(D)	55	−1.43	GGU(G)	27	−1.13
GUC(V)	20	−0.56	GCC(A)	24	−0.9	GAC(D)	22	−0.57	GGC(G)	7	−0.29
GUA(V)	80	−1.96	GCA(A)	37	−1.38	GAA(E)	98	−1.65	GGA(G)	46	−1.92
GUG(V)	11	−0.27	GCG(A)	4	−0.15	GAG(E)	24	−0.35	GGG(G)	16	−0.67

Figure 2. Relative synonymous codon usage.

tRNAs and rRNAs. As mentioned earlier, we identified 23 tRNAs in the O. laetus mitogenome rather than the regular 22, lengths ranging from 60 to 72 bp. The structures predicted were clover-leaf or isoforms with a few exceptions: trnS1(AGN), in which the DHU arm (dihydrouridine) was reduced to just a loop of 6 bp, which is the case for most metazoans (Fig. S3)46. The trnV had formed two loops in both the DHU and TCYC arms. A duplicate of trnT0 was identified as trnT1, which has a similar structure to trnS1 and resembled its isoform due to the reduction of the TCYC arm to a loop, though the sequence was highly similar to trnT0. These features proved that this novel gene order could be explained by the tandem duplication/random loss (TDRL) model37. The wobble and mismatch pairs common in insects’ tRNA were corrected by comparing data from two software MITOS224 and tRNAScan-SE47.

Keeping with the trend of mitogenome patterns, two rRNA genes were identified and further aligned with 35 other species to confirm the lengths and motifs. The large subunit gene of rRNA was 1244 bp in length and positioned between trnV and trnL-1. The GC content was about 22.6%, and the gene is AT-rich. The smaller subunit gene of rRNA was 767 bp in length with a slightly higher GC content of 25.8%.

Phylogenetic analysis. We used only one O. laetus (CBE) mitogenome to maintain equality with the 35 other species’ mitogenomes and avoid any skewness/influence of our mitogenome on the final tree. Seven dif-
Different super-families chosen in this study belonged to Hemiptera (Aphidoidea, Cimicoidea, Reduvioida, Pentatomomorpha, Coreoidea, Pyrrhocoroidea, and Lygaeoidea). Hemiptera is one of the largest and diverse groups of insects which has more than 110 genera. GAMMA + P-Invar model parameter estimates were based on the 13,883 alignment patterns with the help of the GTR substitution matrix, and the overall tree length is 16.016.

In the phylogenetic tree shown in Fig. 3 and Fig. S4 (Bayesian inference method), it can be seen that all the species are well placed under their respective super-families. All the 11 Lygaeoidea super-family species have found themselves accommodated in a polyphyletic clade, including species from the Lygaeidae to which O. laetus belongs. Studies have confirmed that Lygaeidae is polyphyletic, meaning evolution from several common ancestors. Incidentally, scientists have differed over the years on the lineage of Lygaeidae. They have concluded the need for further studies to reach a consensus on this, as the super-family Lygaeoidea consists of several sub-families within itself.

O. laetus remains a separate member among the selected Lygaeoidea species closely related to Y. parallelus (Berytidae), resulting in Lygaeus sp., and N. plebeius in one clade and M. inconspicuous and K. resedae resedae in the other. The rigorous phylogenetic analysis supported by higher branch confirmation values only confirms the clustering and relationships already documented and established. In our earlier study, we had identified the species and studied its phylogenetic relationship with other species using COI sequences. Also, the clustering of O. laetus in the Lygaeoidea only confirms this study’s sequencing, assembly, and annotation accuracy. However,

O. laetus	Total size (bp)	A	T	G	C	GC%	AT%	AT Skew	GC Skew
mtgenome	15,672	6471	5161	1633	2389	25.664	74.222	0.117	−0.188
nad2	990	381	407	91	111	20.404	79.596	−0.033	−0.099
cox1	1539	492	533	222	271	32.034	67.966	−0.058	−0.099
cox2	675	249	223	86	117	30.074	69.926	0.055	−0.153
atp8	159	71	54	11	23	21.384	78.616	0.136	−0.353
atp6	666	244	245	71	106	26.577	73.423	−0.002	−0.198
cox3	787	285	270	106	128	29.479	70.521	0.027	−0.086
nad3	354	136	129	36	53	25.141	74.859	0.026	−0.191
nad5	1674	430	485	234	152	23.059	76.882	−0.332	0.212
nad4	1320	315	680	202	122	24.545	75.379	−0.367	0.247
nad4l	282	64	153	47	18	23.050	76.950	−0.410	0.446
nad6	468	173	214	34	47	17.308	82.692	−0.106	−0.160
cob	1137	376	438	141	182	28.408	71.592	−0.076	−0.127
nad1	930	232	468	142	88	24.731	75.269	−0.337	0.235
tRNA genes	1497	575	547	215	159	24.983	74.950	0.024	0.150
rRNA genes	2011	659	873	301	178	23.819	76.181	−0.140	0.257
Control region	962	328	336	93	202	30.665	69.023	−0.012	−0.369

Table 5. Nucleotide composition and skewness of the mitogenome of O. laetus.

Position	Length	Repeats	Sequence
14,754	2	3	CCCCCCC
14,848	2	3	TATATA
14,858	2	5	TATATATA
14,963	4	3	ATTTATTTATTT
15,196	2	3	CCCCCCC
15,259	2	3	CACACA
15,353	2	3	AAAAAA

Table 6. Microsatellites in the control region.

Indices	Period size	Copy number	Consensus size	Percent matches	Percent indels	Score	A	C	G	T	Entropy (0–2)	Consensus seq
5756–5799	22	2	22	91	8	72	54	2	9	34	1.44	TATATTAGAATGAAC TAAATA
13,503–13,564	22	3	20	79	11	70	54	1	0	43	1.09	TAAATTTAAATTTAA TTTAA

Table 7. Tandem repeats in the mitogenome of O. laetus.
Discussion

The species *O. laetus*, although a secondary pest of the cotton plant, is a severe threat to the overall quality and quantity of cotton produce. The insect is widely distributed in various parts of Asia irrespective of climate and soil conditions. The emphasis of this study was to sequence and annotate the complete mitogenome to understand if the two species from these locations are different from each other that might be rendering higher pesticide resistance in BTI (N. India). As both the BTI and CBE samples essentially have identical mitogenomes, the species are the same. Hence, the probability of mutation in the detox system could be assumed as the reason for its survival under such relatively high pesticide and harsh conditions, which the gene expression studies can establish.

The mtDNA is responsible for various essential physiological functions, primarily oxidative phosphorylation. Genes such as NAD and Cytochrome oxidase play vital roles in the ETC pathway. Although the gut microbes are primarily responsible for digestion of harmful pesticides, it works in association with the gut cells for the ultimate goal of respiration. Therefore, the mitochondrial genes are indirectly involved in the digestion of pesticides and insecticides. Targeting these genes and other pathways, such as P450, GST, ABC, and others, can help eradicate pests without reliance on harmful chemicals. There has been massive research on mtDNA of insects due to its smaller size, comparative and phylogenetic analysis being the majority. The order Hemiptera also has such comparative and phylogenetic studies. This provides data on intra-ordinal and inter-ordinal relations amongst different insect species. The Lygaeidae family under this order comprises many important pests and species, yet there always will be opportunities for betterment. Since there are no similar prior mitogenomic studies in Lygaeoidea/Lygaeidae, we could not compare our results. Nevertheless, results obtained from this study will make a significant contribution to future studies involving the Lygaeidae family under the Lygaeoidea super-family.

Figure 3. Phylogenetic relationship inferred among 36 whole mitochondrial genomes from seven different super-families of Hemiptera. The above tree shows *O. laetus* and other member species are clustered under their respective super-families.
only four have completely sequenced and analysed mitogenomes. This type of analysis provides a perspective for other research and even helps understand evolution to some extent.

In this study, the mitochondrial genome of *O. laetus* has been sequenced, thoroughly analysed, annotated, and compared with 35 other species from Hemiptera. The gene order is similar to the ancestral arrangement except for a few rearrangements. The genome organization was similar to almost all Hemipterans. Unlike the typical 37 genes, 38 genes were determined; this included 13 PCGs, 23 tRNAs, and 2 rRNAs. The gene order was compared with other species from other genera also. There were 16 overlaps observed between the genes which were more or less similar to other species. The highest was 25 bp obtained between *trnL1* and *trnL2*. Another conserved overlap of 7 bp was observed between *atp8* and *atp6*, and *nad4* and *nad4l* were also observed in Melon thrips. The control region is the largest non-coding region obtained.

Almost all the PCGs started with the start codon ATN; only the *cox1* gene has TGT as its start codon, again observed in other species as well. The genes end with complete stop codons except for *cox2* and *cox3*. All the features obtained concerning the PCGs are ancestral and do not vary much from what is already known. The codon usage, AT, and GC skews were all similar to the range obtained for Hemipterans.

Some striking differences have been found in both samples, but deflect from the common are: one of them is the duplication of tRNA-Threonine, which increased the number of tRNAs to 23. The duplicates are labeled as *trnT1_0* and *trnT1_1*. The duplicate has a similar structure to *trnS1* and resembled its isoform due to the reduction of the TycA arm to a loop. Similar observations were seen in *Reduvius tenebrosus*. This novel rearrangement has been explained by the tandem duplication/random loss (TDRL) model. All the other tRNA structures predicted were clover-leaf, with the above two exceptions. This feature has not been observed for previously sequenced mitogenomes but is seen for newly annotated ones, hinting at mutation and evolution.

The second striking difference observed was the gene rearrangement of the intergenic space between *trnH* and *nad4*, which is considered a synapomorphy of Lygaeoidea, which was reduced to 11 bp, as opposed to 41 bp in the same super-family.

The control region is relatively smaller in length with 962 bp. All the standard features of the control region, similar to the study of *C. fallax*, were observed except for the tandem repeats. Microsatellite repeats replacing the tandem repeats were also observed in various species such as *Panaurus albomaculatus*.

Conclusion

The taxonomy of Hemiptera has always put up several challenging questions, and researchers across the globe have done extensive studies. The emphasis of this study was to find if there exist another cryptic sister species in the two extreme regions of India—Coimbatore, and Bhatinda, where cotton crop scientists witnessed different levels of bug infestation. As the study concludes, the mitogenomes were 99.9% identical and gave us an understanding of their presence in these two places. The mitogenome sequenced provides many genetic markers from PCGs to control regions for identification purposes.

Our study is the first detailed mitochondrial genomic study in the genus *Oxycarenus*. We also have found some novel rearrangements in the mitogenome, which will help understand the genus's evolution and ecology. The results obtained from this study, along with the whole genome of this species when available, would provide possibly new and exciting prospects that could help in biocontrol and mitigating resistance of this economically important species. From the resistance to pesticide perspective, further studies involving whole transcriptomic approaches may lead to vital discoveries. Therefore, the data and the findings from this study would further help in the evolutionary studies of Oxycarenidae, Lygaeidae, and Hemiptera in the future.

Received: 29 March 2021; Accepted: 18 November 2021
Published online: 09 December 2021

References

1. Holtz, T. Qualitative analysis of potential consequences associated with the introduction of the cottonseed bug (*Oxycarenus hyalinipennis*) into the United States. USDAAPHIS Publ. (2006).
2. Slater, J. A. & Baranowski, R. M. The occurrence of *Oxycarenus hyalinipennis* (Costa) (Hemiptera: Lygaeidae) in the West Indies and new Lygaeidae records for the Turks and Caicos Islands of Providenciales and North Caicos. *Florida Entomol. 77*, 495–497 (1994).
3. EPPO. PQR database (version 4.6). Paris, France: European and Mediterranean Plant Protection Organization. (2007).
4. Thangavelu, K. Population dynamics of the dusky cotton bug *Oxycarenus laetus* Kirby in relation to climatic variation (Heteroptera: Lygaeidae). *Proc. Indian Acad. Sci. Sect. B, Anim. Sci.* 87*, 387–395 (1978).
5. Mohan, S. et al. Integrated pest management package for cotton. (2014).
6. Melmed, S. et al. Safety and efficacy of oral octocriptol in acromegaly: Results of a multicenter phase III trial. *J. Clin. Endocrinol. Metab.* 100*, 1699–1708 (2015).
7. Ijaz, M. & Shad, S. A. Inheritance mode and realized heritability of resistance to imidacloprid in *Oxycarenus hyalinipennis* (Costa) (Hemiptera: Lygaeidae) in the West Indies and new Lygaeidae records for the Turks and Caicos Islands of Providenciales and North Caicos. *Florida Entomol. 77*, 495–497 (1994).
8. Legros, F., Malka, F., Franchon, P., Lombès, A. & Rojo, M. Organization and dynamics of human mitochondrial DNA. *J. Cell Sci.* 117*, 2653–2662 (2004).
9. Van Leeuwen, T. et al. Mitochondrial heteroplasmy and the evolution of insecticide resistance: Non-Mendelian inheritance in action. *Proc. Natl. Acad. Sci. USA 105*, 5980–5985 (2008).
10. Ding, Y. R. et al. Mitochondrial genes associated with pyrethroid resistance revealed by mitochondrial genome and transcriptome analyses in the malaria vector *Anopheles sinensis* (Diptera: Culicidae). *Pest Manag. Sci.* 76*, 769–778 (2020).
11. Mandal, S. D., Chhakchhuak, L., Gurusubramanian, G. & Kumar, N. S. Mitochondrial markers for identification and phylogenetic studies in insects: A review. *DNA Barcodes 2*, 1–9 (2014).
12. Karaborklu, S., Azizoglu, U. & Azizoglu, Z. B. Recombinant entomopathogenic agents: A review of biotechnological approaches to pest insect control. *World J. Microbiol. Biotechnol. 34*, 14 (2017).
57. Ranasinghe, A. N., VishnuPriya, V. & Gayathri, R. Phylogeny relationship of Lygaeidae species using cytochrome oxidase subunit 1 sequences. Drug Invent. Today 11, 2301–2305 (2019).
58. Chakraborty, R. et al. The complete mitochondrial genome of Melon thrips, Thrips palmi (Thripinae): Comparative analysis. PLoS One 13, (2018).
59. Jiang, P. et al. Duplication and Remolding of tRNA Genes in the Mitochondrial Genome of Reduvius tenebrosus (Hemiptera: Reduviidae). Int. J. Mol. Sci. 17, 931 (2016).
60. Shi, W., Gong, L., Wang, S.-Y., Mao, X.-G. & Kong, X.-Y. Tandem duplication and random loss for mitogenome rearrangement in Symphurus (Teleost: Pleuronectiformes). BMC Genomics 16, 355 (2015).
61. Cameron, S. L. Insect mitochondrial genomics: Implications for evolution and phylogeny. Annu. Rev. Entomol. 59, 95–117 (2014).

Acknowledgements
This study is funded by DST-SERB, India under the young scientist scheme: file#- YSS/2014/000293. Authors thank the administration and management of SRM IST for all the support provided. Authors thank faculty and staff of Punjab Agriculture University, Bhatinda, CICR, Sirsa and TNAU, Coimbatore for helping us with the samples. We also thank Dr. K.P. Sanjayan (Guru Nanak College, Chennai) and Dr. Rishi Kumar (CICR, Sirsa) for their key inputs and taxonomy validation.

Author contributions
H.S.M. designed the work, methodology, secured the grant. H.S.M., S.C.S., R.N.S. wrote the manuscript. S.C.S., R.V.T., Se.G. & H.S.M. performed all the in-silico analysis; S.C.S., R.V.T. and Sa.G. executed the wet lab experiments.

Funding
This article was funded by DST-SERB (Grant no. YSS/2014/000293).

Competing interests
The authors declare no competing interests.

Additional information
Supplementary Information The online version contains supplementary material available at https://doi.org/10.1038/s41598-021-02881-0.

Correspondence and requests for materials should be addressed to H.S.M.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

© The Author(s) 2021