Biological activities of plant extracts from *Ficus elastica* and *Selaginella vogelii*: An antimalarial, antitrypanosomal and cytotoxicity evaluation

Jean Emmanuel Mboosso Teinkela, Xavier Siwe Noundou, Edwige Laure Nguemfo, Franck Meyer, Rene Wintjens, Michelle Isaacs, Albert Emmanuel Mpondo Mpondo, Heinrich C. Hoppe, Rui Werner Maçedo Krause, Anatole Guy Blaise Azebaze

Département des Sciences Biologiques, Faculté de Médecine et des Sciences Pharmaceutiques (FMSM), Université de Douala, BP 2701 Douala, Cameroon

Laboratory of Biopolymers and Supramolecular Nanomaterials, Faculté de Pharmacie, Université Libre de Bruxelles (ULB), Campus Plaine (CP 206/4), Boulevard du Triomphe, 1050 Brussels, Belgium

Laboratory of Biopolymers and Supramolecular Nanomaterials, Faculté de Pharmacie, Université Libre de Bruxelles (ULB), Campus Plaine (CP 206/4), Boulevard du Triomphe, 1050 Brussels, Belgium

Département des Sciences Biologiques, Faculté de Médecine et des Sciences Pharmaceutiques (FMSM), Université de Douala, BP 2701 Douala, Cameroon

Department of Biochemistry and Microbiology, Rhodes University, Grahamstown 6140, South Africa

Faculté de Pharmacie, Université Libre de Bruxelles (ULB), Campus Plaine (CP 206/4), Boulevard du Triomphe, 1050 Brussels, Belgium

Département de Pharmacie, Faculté de Médecine et des Sciences Pharmaceutiques (FMSP), Université de Douala, BP 2701 Douala, Cameroon

Laboratory of Biopolymers and Supramolecular Nanomaterials, Faculté de Pharmacie, Université Libre de Bruxelles (ULB), Campus Plaine (CP 206/4), Boulevard du Triomphe, 1050 Brussels, Belgium

Department of Biochemistry and Microbiology, Rhodes University, Grahamstown 6140, South Africa

*Corresponding author at: Département des Sciences Biologiques, Faculté de Médecine et des Sciences Pharmaceutiques (FMSP), Université de Douala, BP 2701 Douala, Cameroon. Laboratory of Biopolymers and Supramolecular Nanomaterials, Faculté de Pharmacie, Université Libre de Bruxelles (ULB), Campus Plaine (CP 206/4), Boulevard du Triomphe, 1050 Brussels, Belgium.

E-mail addresses: jmbosso@ulb.ac.be, embosso@yahoo.fr (J.E. Mboosso Teinkela).

Peer review under responsibility of King Saud University.

Abstract

The cytotoxic, antiplasmodial, and antitrypanosomal activities of two medicinal plants traditionally used in Cameroon were evaluated. Wood of *Ficus elastica* Roxb. ex Hornem. aerial roots (Moraceae) and *Selaginella vogelii* Spring (Selaginellaceae) leaves were collected from two different sites in Cameroon. *In vitro* cell-growth inhibition activities were assessed on methanol extract of plant materials against *Plasmodium falciparum* strain 3D7 and *Trypanosoma brucei* brucei, as well as against HeLa human cervical carcinoma cells. Criteria for activity were an IC$_{50}$ value < 10 µg/mL. The extract of *S. vogelii* did not significantly reduce the viability of *P. falciparum* at a concentration of 25 µg/mL but dramatically affected the trypanosome growth with an IC$_{50}$ of 2.4 µg/mL. In contrast, at the same concentration, the extract of *F. elastica* exhibited trypanocidal activity (IC$_{50}$ value of 9.5 µg/mL) and trypanocidal (IC$_{50}$ value of 0.9 µg/mL) activity. Both extracts presented low cytotoxic effects on HeLa cancer cell line. These results indicate that the selected medicinal plants could be further investigated for identifying compounds that may be responsible for the observed activities and that may represent new leads in parasitical drug discovery.

© 2017 The Authors. Production and hosting by Elsevier B.V. on behalf of King Saud University. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Natural products have been used since millennia for the treatment of human diseases and as a result, a large proportion of current drugs in modern medicine have been developed from natural molecules. The search for new biologically active natural products continues to be an intense field of research (Newman et al., 2015). Indeed, the high natural biodiversity represents a broad range of diverse chemical structures with potentially new molecules having promising biological activities. Such new natural molecules can often serve as chemical templates for the design and the synthesis of novel drugs.

Plants have historically proven their value as a rich source of molecules with therapeutic potential and many major current drugs are natural-products–derived compounds (Newman and Cragg, 2016). The natural products firstly commercialized for therapeutic use are morphine, isolated from *Papaver somniferum* (Rosenblum et al., 2008) and aspirin, based on the natural product salicin from *Salix alba* (Dias et al., 2012). Since these pioneering drugs, many other plant-derived molecules have been added to the current therapeutic arsenal of medicine, such as artemisinin from *Artemisia annua* used against malaria, capsaicin from...
Capsicum annuum used as pain relievers, the two cannabinoids, i.e. dronabinol and cannabidiol from Cannabis sativa used inter alia to treat nausea and vomiting caused by chemotherapy, paclitaxel from Taxus brevifolia for treating lung, ovarian and breast cancers, silymarin from the seeds of Silybum marianum for the treatment of liver diseases, and tiotropium, a derivative of atropine from Atropa belladonna used as a bronchodilator in the management of chronic obstructive pulmonary disease (Veeresham, 2012).

Healing with medicinal plants is the basis of traditional medicine (Neuwinger, 2000). Although having a long tradition in alternative medicine, Cameroon has been largely underexplored for new biologically active natural products. The biological effects of extracts from two Cameroon plant materials were here investigated. The Moraceae plant family includes Ficus as one of the main genus with biological activities already described such as antiplasmodial (Muregi et al., 2003), antioxidant (Phan et al., 2012), anticancer (Mbosso et al., 2012, 2015, 2016a, 2016b), antimicrobial (Mbosso et al., 2012, 2015, 2016b), antifungal (Galati et al., 2001), antidiarrhoeal (Mandal and Kumar, 2002), anti-pyretic (Rao et al., 2002) and gastroprotective (Rao et al., 2008). Note that the latex of some species of Ficus is exploited in traditional folk medicine for its antihelminthic activity in South and Central America (de-Amorin et al., 1999). The parasiticidal property of this genus has been ascribed to the presence of ficin (Pistelli et al., 2000) and it was also demonstrated that the latex of Ficus elastica Roxb. ex Hornm. (Moraceae) showed a significant antischistosomal activity (Seif el-Din et al., 2014). Leaf extract of F. elastica is employed as a diuretic agent besides treating skin infections and allergies (Phan et al., 2012).

Different species of Selaginella genus are exploited in traditional medicine for their anti-nociceptive, anti-inflammatory, antmutagenic, anti-spasmodic, cytotoxic, immune and antiretroviral properties (Jiofack et al., 2010). In addition, chemo-taxonomic studies have revealed that the genus Selaginella contains a variety of secondary metabolites namely alkaloids, phenolic compounds, terpenoids and many other classes of compounds exhibiting antioxidant, anticancer, antimicrobial, anti-protozoal, antiviral, anti-inflammatory and antiallergic properties (Morat, 1997). Hence, species of Selaginella genus have a fairly large spectrum of activity related to medication spanning cancer, cardiovascular diseases, diabetes, gastritis, hepatitis, skin diseases and urinary tract infections (Almeida et al., 2013). To the best of our knowledge, very few biological and phytochemical studies were conducted on the species Selaginella vogelii Spring (Selaginellaceae). The aim of the present study is to evaluate two medicinal plant extracts from Cameroon, i.e. the wood of F. elastica aerial roots and S. vogelii leaves, for their in vitro antiplasmodial, antitypansomonal and cytotoxic potential.

2. Experimental

2.1. Plant materials

The wood of F. elastica aerial roots was collected in Yaoundé in August 2015 and S. vogelii leaves in Ngwei I in May 2015. The plant’s identification was established by a member of the National Herbarium of Cameroon (NHC), where voucher specimens (No. 65646 HNC for F. elastica and No. 12000 HNC for S. vogelii) were deposited. After Air-drying, the plants materials were crushed into a fine powder by using an electric grinder.

2.2. Extraction

Macerate of the dried aliquot (5.50 kg of F. elastica and 7.50 kg of S. vogelii) was obtained using methanol (20 and 30 L, respectively) on two accounts for 48 h at room temperature (27 ± 2 °C) (Mohamad et al., 2011). After filtration (Whatman Number One, 320 mm, 4 µm) and evaporation at low pressure using a rotary evaporator (bath at 40 °C), 15 g and 280 g of extracts were obtained for F. elastica and S. vogelii, respectively.

2.3. Antiplasmodial activity

Malaria parasites (Plasmodium falciparum strain 3D7) were maintained in RPMI 1640 medium containing 2 mM L-glutamine and 25 mM Hepes (Lonza). The medium was further supplemented with 5% Albumax II, 20 mM glucose, 0.65 mM hypoxanthine, 60 µg/mL gentamycin and 2–4% hematocrit human red blood cells. The parasites were cultured at 37 °C under an atmosphere of 5% CO2, 5% O2, 90% N2 in sealed T25 or T75 culture flasks. For screening samples against malaria parasites, 25 µg/mL of natural extracts were added to parasite cultures in 96-well plates and incubated for 48 h in a 37 °C CO2 incubator. After 48 h, the plates were removed from the incubator and 20 µL of culture were removed from each well and mixed with 125 µL of a mixture of Malstat solution and NBT/PES solution in a fresh 96-well plate. The parasite lactate dehydrogenase (pLDH) activity was measured by absorbance at 620 nm in a 96 well plate reader. The Abs620 reading in each well was thus an indication of both the pLDH activity and the number of parasites in that well.

2.4. Antitypansomonal activity

Trypanosoma brucei (T. b.) parasites are the causative agents of African sleeping sickness (human African trypanosomiasis) in humans and Nagana (animal African trypanosomiasis) in cattle. The subspecies responsible for Nagana, Trypanosoma brucei brucei (T.b. brucei) is not infective to humans and is commonly used for drug screening. To assess antitypansomonal activity, in vitro cultures of T.b. brucei in 96-well plates were performed at a fixed concentration of 25 µg/mL for natural extracts (unless otherwise stated). After an incubation period of 48 h, the number of parasites surviving drug exposure was determined by adding a resazurin based reagent. The reagent contains resazurin which was reduced to resorufin by living cells. Resorufin is a fluorophore (Excitation560 Emission590) and can thus be quantified in a multiwell fluorescence plate reader.

2.5. Cytotoxic activity

To assess the overt cytotoxicity of the extracts, they were incubated at a fixed concentration of 62.5 µg/mL (unless otherwise stated) in 96-well plates containing HeLa (human cervix adenocarcinoma, maintained in a culture medium made of Dulbecco’s Modified Eagle’s Medium (DMEM) with 5 mM L-glutamine (Lonza), supplemented with 10% fetal bovine serum (FBS) and antibiotics (penicillin/streptomycin/fungizone - PSF) cells for 24 h. The numbers of cells surviving drug exposure were counted using the resazurin based reagent and resorufin fluorescence quantified (Excitation560/Emisision590) in a multiwell plate reader.

2.6. Single concentration screening

For each compound concentration, % parasitermia or cell viability was calculated. Extracts were tested in triplicate wells, and a standard deviation (SD) was derived. For comparative purposes, chloroquine (an anti-malarial drug) or emetine (which induced cell apoptosis) or pentamidine (an existing drug used in the treatment of trypanosomiasis) was used as a positive control drug standard at a 0 µM for the first two drugs or at 1 µM in case of pentamidine.
2.7. Dose response

For each sample, percentage viability was obtained against Log (extract concentration) and the IC_{50} (50% inhibitory concentration) determined from the resulting dose-response curve by non-linear regression using Prism 5 for Windows, Version 5.02 (graph Pad Software, Inc) program. For comparative purposes, chloroquine, pentamidine and emetine were employed as drug standards according to the type of test performed. Chloroquine, pentamidine and emetine yielded IC_{50} values in the range of 0.00001–100 μM. Extracts were tested in a range extending from 250 to 0.011 μg/mL (3-fold-dilutions) for antiplasmodial and antitrypanosomal assays, and from 125 to 0.057 μg/mL (also in a 3-fold dilution series) for cytotoxic assays. In antiplasmodial assay, the R^2 coefficient of determination was calculated to be 0.95, 0.99 and 0.99 for the methanol extract of Selaginella vogelii leaves (EBSVF), the wood methanol extract of Ficus elastica aerial roots (EBRFE) and chloroquine, respectively. In antitrypanosomal assay, the coefficient was R^2 = 0.99 for the three samples, EBSVF, EBRFE and pentamidine. In cytotoxic assay, the R^2 coefficient was computed as 0.93, 0.99 and 0.98 for EBSVF, EBRFE and emetine, respectively.

3. Results and discussion

3.1. Antiplasmodial activity

As observed in Fig. 1, the methanol extract of S. vogelii leaves (EBSVF) at a concentration of 25 μg/ml slightly decreased the viability of Plasmodium falciparum (58.3 ± 2.1%) with an IC_{50} value of 32.2 μg/mL. In contrast, at the same concentration, the wood methanol extract of F. elastica aerial roots (EBRFE) reduced the viability of Plasmodium falciparum to approximatively 0% with an IC_{50} value of 9.5 μg/mL, and therefore demonstrated an antiplasmodial activity. The chloroquine used as reference drug showed an IC_{50} value of 7.9 nM. However, this result needs to be re-examined in conjunction with the cytotoxicity results to ensure that the decrease in viability is not caused by a general cytotoxicity of the EBRFE extract.

The remarkable activity of quinine and related drugs and the success of artemisinin have stimulated the search for new plant-derived antimalarials. A large number of plants have been screened for antiplasmodial activity (Krettli, 2009). S. Vogelii has not previously been explored as an antimalarial treatment in traditional Cameroonian medicine and was selected owing to the cytotoxic effect of the genus (Jiofack et al., 2010). Multiple efficacy parameters for in vitro antimalarial activity have been proposed (Cos et al., 2006). For crude extracts, IC_{50} values should certainly be below 100 mg/mL (Cos et al., 2006) although most promising antimalarial extracts exhibit IC_{50} values under 10 mg/mL (Krettli, 2009; Soh and Benoit-Vical, 2007). Here, the wood methanol extract of F. elastica aerial roots (EBRFE) revealed an IC_{50} value lower than 10 μg/mL against P. falciparum, arising as a good candidate for further bioassay-guided fractionation. By comparison, hexane extracts of F. thonningii were endowed with strong activity against NF54 and K1 strains of P. Falciparum with IC_{50} values of 2.7 and 10.4 μg/mL, respectively (Falade et al., 2014). F. ovata Vahl bark also demonstrated a high activity with an IC_{50} value of 4.8 μg/mL (Bwalya et al., 2011). In contrast, the methanol extract of F. platyphylla had a weak activity against 3D7 and K1 strains of P. Falciparum with IC_{50} values of 15.3 and 13.8 μg/mL, respectively (Shuaibu et al., 2008).

According to a recent study, two bioflavonoids, hinokiflavone and 2,3-dihydrohinokiflavone, isolated from Selaginella bryopteris possessed an in vitro antiprotozoal activity against P. falciparum K1 (IC_{50} values of 2.3 and 4.5 μM, respectively) (Kunert et al., 2008). Thus, the weak parasiticidal property of crude extract EBSVF might be attributed to the presence of these bioflavonoids at low concentrations. Indeed, it is well-established that the Selaginella genus is a rich source of steroids, bioflavonoids and lignans (Almeida et al., 2013). Three fractions (toluene, ethyl acetate and butanol) obtained from an ethanolic extract of S. Bryopteris, also showed an antiplasmodial activity against P. falciparum K1 strain with IC_{50} values of 4.6, 1.0, and below 5 μg/mL, respectively (Kunert et al., 2008).

3.2. Antitrypanosomal activity

The methanol extract from S. vogelii leaves (EBSVF) affected the growth of trypanosomes at 25 μg/mL concentration with a percentage of viable parasites estimated to be 0.3 ± 0.1% (see Fig. 2). The methanol extract of F. elastica (EBRFE) also reduced the viability of T. b. brucei at the same concentration, giving 2.0 ± 0.1% of viability, thus exhibiting an antitrypanosomal property. Furthermore, EBSVF and EBRFE extracts were both in the lower range of IC_{50} values (2.4 and 0.9 μg/mL, respectively), whereas the reference drug pentamidine exhibited an IC_{50} value of 0.17 nM (Table 1).

The two plants have not previously been used as antitrypanosomal treatment in traditional Cameroonian medicine and were
selected because of the cytotoxic effect of *Selaginella* genus and of the parasiticidal property of *F. elastica* (Pistelli et al., 2000; Seif el-Din et al., 2014). Interestingly, *F. elastica* has been traditionally used for treating skin infections and allergies, as well as a diuretic agent (Phan et al., 2012) while the *vogelii* genus has been employed to treat cancer, cardiovascular diseases, diabetes, gastritis, hepatitis, skin disorders, and urinary tract infections (Almeida et al., 2013). However, no antiparasitic activities have been reported to date from both plants.

According to Weniger et al., ginkgetin is the second most studied bi-flavonoid of the *Selaginella* genus. This compound has an *in vitro* antiparasitological property against *T. Cruzi* (Weniger et al., 2006). Hinokiflavone isolated from *S. bryopteris* also possesses an *in vitro* antiparasitological activity against *Trypanosoma* sp (Weniger et al., 2006; Kunert et al., 2008). The crude extract EBSVF may also contain a high concentration of such bioflavonoids responsible for the antiparasitological activity in the *S. vogelii* species. On the other hand, three fractions of ethanolic extract from *S. bryopteris* (toluene, ethyl acetate and butanol) did not show antiparasitological activities against *T. Brucei rhodesiene*, yielding IC\(_{50}\) values of 24.1, 12.4 and 28.5 \(\mu\)g/mL, respectively and against *T. Cruzi* with IC\(_{50}\) values higher than 30, 20.5, and above 30 \(\mu\)g/mL, respectively (Kunert et al., 2008).

There is very little information available on the antiparasitological effects of the genus *Ficus*. Methanol extract stem bark of *Ficus platyphylla* showed an antiparasitological activity with minimum lethal concentrations of 25 \(\mu\)g/mL (Sawadogo et al., 2012). Methanol stem bark extract of *Ficus sycomorus*, ceased *T. b. brucei* motility *in vitro* within the incubation time of less than one hour but with low IC\(_{50}\) value (4 mg/mL) (Nwodo et al., 2015).

3.3. Cytotoxic activity

The methanol extract of *S. vogelii* leaves (EBSVF) and the wood methanol extract of *F. elastica* aerial roots (EBRFE) showed IC\(_{50}\) values at 20 \(\mu\)g/mL, whereas standard drug emetine exhibited an IC\(_{50}\) value of 0.04 \(\mu\)M (Table 1 and Fig. 3). A very low cytotoxic activity against HeLa cells was thereby observed for both extracts. Indeed, none of the two extracts were cytotoxic at 62.5 \(\mu\)g/mL.

These plants have rather a great significance for their traditional use in the treatment of other pathologies than cancer. *Ficus thonningii* and *F. platyphylla* showed very weak cytotoxicity with IC\(_{50}\) values \(\geq1500.0\) \(\mu\)g/mL on NBMH mammalian cell lines (Shuaibu et al., 2008). The ethanolic extracts from *S. bryopteris* did not display significant cytotoxic activity against the rat skeletal myoblast cell line (L-6 cells) with IC\(_{50}\) values >90, 32.6, and >90 \(\mu\)g/mL for extracting solvents, toluene, ethyl acetate, and butanol, respectively (Kunert et al., 2008).

However, the very weak cytotoxic activity observed here for EBSVF is contrary to that observed for other species of the *Selaginella* genus. For instance, in previous work, two compounds (a biflavone, 2,2',3,3'-tetrahydrodorobustaflavone 7,4',7'-trimethyl ether and the biflavonoid, robustaflavone 7,4',7'-trimethyl ether) isolated from the methanol extract of *S. doederleini* (whole plants) exhibited a good cytotoxic activity against the colorectal carcinoma cells HCT116 with IC\(_{50}\) values of 19.1 and 15.6 \(\mu\)g/mL, respectively and against the bronchioalveolar carcinoma NCI-H358 with IC\(_{50}\) values of 23.5 and 20.1 \(\mu\)g/mL, respectively (Lee et al., 2008). The ethyl acetate extract of *S. moellendorffii* inhibited the growth of ovarian adenocarcinoma cancer cells (Setyawans, 2011). *S. delicatula* behaves like an anticancer agent (Chen et al., 2005) as well as *S. doederleini* (Li et al., 2014). Water extract of *S. doederleini* has a moderate antimutagenic activity against the benz[a]pyrene-induced mutation associated with cancer cell progression (Lee and Lin, 1988). *S. labordei* was reported to have anti cancer features (Tan et al., 2009).

S. tamariscina is probably the most powerful medicinal plant from the *Selaginella* genus. This plant is widely employed as an anticancer, antioxidant and as an anti-inflammatory agent (Le et al., 2012). It also possesses the following properties: anti-bacterial, anti-hypertensive, and anti-hyperglycemic effects.

Table 1

Tested extracts or compounds	Antimalarial IC\(_{50}\) (in \(\mu\)g/mL)	Antiparasitological IC\(_{50}\) (in \(\mu\)g/mL)	Cytotoxicity IC\(_{50}\) (in \(\mu\)g/mL)
EBSVF\(^a\)	32.2	2.4	24.5
EBRFE\(^b\)	9.5	0.9	20.9
Reference drug\(^c\)	0.0079	0.00017	0.04

IC\(_{50}\): 50% inhibitory concentration, i.e. the concentration of extract/compound that reduces by 50% the growth or proliferation of cells.

The number of replicates was 3.

\(^{a}\) (EBSVF) methanol extract of *Selaginella vogelii* leaves.

\(^{b}\) (EBRFE) wood methanol extract of *Ficus elastica* aerial roots.

\(^{c}\) Reference drugs, i.e. chloroquine, emetine and pentamidine for antimalarial, cytotoxicity and antiparasitological activities, respectively used at a concentration of 10 \(\mu\)M for the first two drugs or at 1 \(\mu\)M in case of pentamidine.

Fig. 2. Dose-response curve for trypanosome assay.
As concerns its anticancer activity, *S. tamariscina* was reported to exhibit several functions: it can inhibit the invasion and metastatic activities of lung cancer cells, as well as the growth of metastatic A549 cell and shows significant tumoricidal effects against cultured HL-60 human leukemia cells (*Lee et al., 1996*); induces the expression of tumor suppressor gene of p53 (*Lee et al., 1996*); degrades U937 leukemia cancer cells (*Lee et al., 1996; Yang et al., 2007*); reduces the proliferation of nucleus antigen cell from stomach epithelium (*Lee et al., 1999*); and acts as chemo-preventive for gastric cancer (*Lee et al., 1999*). As concerns its antiprotozoal and antitrypanosomal activities without toxicity on HeLa cells which suggested that the effects on parasite cultures may not arise from a general cytotoxic effect of crude extracts.

Finally, as EBRFE and EBSVF extracts showed substantial antiprotozoal and antityranosomal activities without toxicity on HeLa cells which suggested that the effects on parasite cultures may not arise from a general cytotoxic effect of crude extracts.

4. Conclusions

This study has demonstrated that the crude extracts of the wood of *F. elastica* aerial roots and *S. vogelii* leaves presented low antiparasitic and very important antityranosomal activities associated with a low cytotoxicity. The comparison between the parasiticidal and cytotoxicity effects suggests that the decreased viability of parasites may not be caused by a general cytotoxicity of the extracts. These results indicate that the selected medicinal plants should be explored more actively in order to isolate the main compounds responsible for the parasiticidal action. It is important to mention that to the best of our knowledge, this study represents the first report on cytotoxic, antimalarial and antityranosomal evaluation for the wood of *F. elastica* aerial roots and *S. vogelii* leaves. The obtained results support to some extent the traditional uses of these plants for the treatment of parasitic diseases. Isolation, purification, and structure elucidation of constituents from these plants are warranted to support discovery of novel antiparasitidal and/or antityranosomal compounds.

Acknowledgments

Support of this project was provided by the Laboratory of Bioorganic Chemistry, Analytical and Structural, Department de Chemistry, Faculty of Sciences, University of Douala. We thank the support of Victor Nana and Oum Olivier (National Herbarium of Cameroon) for the botanical identification. This research project was supported by the South African Medical Research Council (MRC) with funds from National Treasury under its Economic Competitiveness and Support Package, and Rhodes University Sandisa Imbewu. RW is Research Associate at the National Fund for Scientific Research FNRS-FRS (Belgium). X Siwe Noundou is grateful for a Rhodes University Post-Doctoral Research Fellowship.

Competing interest

The authors declare no conflict of interest.

References

Almeida, S., Macedo, F., Oliveira, F., 2013. Phytochemistry of the genus Selaginella (Selaginellaceae). J. Med. Plants Res. 7, 1858–1868.

Bwalya, A.G., Phiri, P., Kaiser, M., Tadsemit, D., 2011. Evaluation of the in vitro antimalarial and malaria prophylactic activity of eight Ficus species. Planta Med., 77–81, 16. http://dx.doi.org/10.1055/s-0031-1282130.

Chen, J.J., Duh, C.Y., Chen, J.F., 2005. New cytotoxic biflavonoids from Selaginella delicatula. Planta Med. 71, 659–665.

Cos, P., Vlietinck, A.J., Berge, D.V., Maes, L., 2006. Anti-infective potential of natural products: How to develop a stronger in vitro ‘proof-of-concept’. J. Ethnopharmacol. 106, 290–302.

De-Amorin, A.H., Borba, H.R., Carauta, L.D., Kaplan, M.A., 1999. Anthelminthic activity of the latex of *Ficus carica*. J. Ethnopharmacol. 64, 255–258.

Dias, D.A., Urban, S., Rosnerer, U., 2012. A historical overview of natural products in drug discovery. Metabolites 2, 303–336.

Falade, M.O., Akinboye, D.O., Ghotoso, G.O., Ajayioba, E.O., Hippi, T.C., Abidun, O. O., Oduola, A.M.J., 2014. In vitro and in vivo antimalarial activity of ficus thonningii Blume (Moraceae) and Lophira alata Banks (Ochnaceae), identified from the ethnomedicine of the Nigerian middle belt. J. Parasitol. Res. 2014. Article ID 972853, 6p. http://dx.doi.org/10.1155/2014/972853.

Galati, E.M., Monforte, M.T., Tripodo, M.M., D’aguno, A., Mondello, M.R., 2001. Antitoxin activity of Opuntia ficus indica (L.) Mill. (Cactaceae): ultrastructural study. J. Ethnopharmacol. 76, 1–9.

Jofack, T., Fokunang, C., Guerje, N., Kemeuze, V., Fongnzossie, E., Nkongmeneck, B. A., mapongmetsem, P.M., Tsbang, N., 2010. Ethnobotanical uses of medicinal plants of two ethnecological regions of Cameroon. Int. J. Med. Med. Sci. 2, 60–79.

Krettli, A.U., 2009. Antimalarial drug discovery: screening of Brazilian medicinal plants and purified compounds. Expert Opin. Drug Discov. 4, 95–108.

Kunert, O., Swamy, R.C., Kaiser, M., Presser, A., Buzzi, S., Rao, A.A.V.N., Schuhly, W., 2008. Antiparasitidal and leishmanicidal activity of bisflavonoids from *Selaginella bryopteris*. Phytochemistry 79. 79. Article ID 972853, 6p. http://dx.doi.org/10.1155/2014/972853.

Teinkela et al. / Saudi Journal of Biological Sciences 25 (2018) 117–122

Lee, M.H., Do, T.T., Hoang, T.H., Chau, V.M., Nguyen, T.D., 2012. Toxicity and anticancer effects of an extract from *Selaginella tamariscina* on a mice model. J. Ethnopharmacol. 71, 659–665.

Nat. Prod. Res. 26, 1130–1134.

Lee, H., Lin, J.Y., 1988. Antimitogenic activity of extracts from anticancer drugs in Chinese medicine. Mutation Res. 204, 229–234.
Lee, I.S., Nishikawa, A., Furukawa, F., Kasahara, K., Kim, S.U., 1999. Effects of Selaginella tamariscina on in vitro tumor cell growth. p53 expression, G1 arrest and in vivo gastric cell proliferation. Cancer Lett. 144, 93–99.

Lee, H.S., Oh, W.K., Kim, B.Y., Ahn, S.C., Kang, D.O., Shin, D.I., Kim, J., Mheen, T.I., Ahn, J.S., 1996. Inhibition of phospholipase Cγ1 activity by amantoflavone isolated from Selaginella tamariscina. Planta Med. 62, 293–296.

Lee, N.-Y., Min, H.-Y., Lee, J., Nam, J.-W., Lee, Y.-J., Han, A.-R., Wiryawan, A., Suprapto, W., Lee, S.K., Seo, E.-K., 2008. Identification of a new cytotoxic biflavonone from Selaginella doederleinii. Chem. Pharm. Bull. (Tokyo) 56, 1360–1361.

Li, S., Zhao, M., Li, Y., Sui, Y., Yao, H., Huang, L., Lin, X., 2014. Preparative isolation of six anti-tumour biflavonoids from Selaginella Doederleinii Hieron by high-speed counter-current chromatography. Phytochem. Anal. 25, 127–133.

Mandal, S.C., Kumar, C.K.A., 2002. Study of anti-diarrhoeal activity of Ficus hispida leaf extract in rats. Fitoterapia 73, 663–667.

Mbosso, T.J.E., Assob, N.J.C., Meyer, F., Lenta, N.B., Ngouela, S., Lallemand, B., Mathieu, V., Van Antwerpen, P., Njunda, A.L., Adiego, D., Tsamo, E., Looze, Y., Kiss, R., Wintjens, R., 2012. Ceramide, Cerebroside and triterpenoid saponin from the bark of aerial roots of Ficus elastica (Moraceae). Phytochemistry 83, 95–103.

Mbosso, T.J.E., Kamdem, L.M., Assob, N.J.C., Meyer, F., Ebelle, S.D.C., Lenta, N.B., Tchouankeu, J.C., Tsamo, E., Looze, Y., Adiego, D., Azebaze, G.A.B., Wintjens, R., 2015. In vitro evaluation of antimicrobial and antidioproliferative activities for compounds isolated from the Ficus bubu Warb. (Moraceae) fruits: chemotaxonomic significance. Drug Del. Lett. 5, 122–131.

Mbosso, T.J.E., Siwe Noundou, X., Ngouela, S., Lagen, B., Tchouankeu, J.C., Tsamo, E., Looze, Y., Adiego, D., Azebaze, G.A.B., Wintjens, R., 2016a. Identification of compounds with anti-proliferative activity from the Wood of Ficus elastica Roxb. ex Homem. aerial roots. Fitoterapia 112, 65–67.

Mbosso, T.J.E., Nguedia, A.J.C., Meyer, F., Donfack, V.E., Lenta, N.B., Ngouela, S., Tsamo, E., Adiego, D., Azebaze, G.A.B., Wintjens, R., 2016b. In vitro antimicrobial and anti-proliferative activities of plant extracts from Spathodea campanulata, Ficus bubu, and Carrica papaya. Carbohydr. Biol. 54, 1086–1095.

Miao, N., Tao, H., Tong, C., Xuan, H., Zhang, G., 1996. The Selaginella tamariscina (Beauv.) spring complex in the treatment of experimental diabetes and its effect on blood rheology. Zhongguo Zhong Yao Za Zhi 21, 493–495.

Mohamad, S., Zin, N.M., Wahab, H.A., Ibrahim, P., Sulaiman, S.F., Zahariuluddin, A.S.M., Noor, S.S.M., 2011. Antituberculosis potential of some ethnobotanically selected Malaysian plants. J. Ethnopharmacol. 133, 323–326.

Morat, P., 1997. Flore de Madagasar et des Comores - Selaginellacées. Museum National d'Histoire Naturelle. Laboratoire de Phanérogamie, Paris, pp. 21–22.

Muregi, F.W., Chhabra, S.C., Njagi, E.N.M., Lang'at-Thoruwa, C.C., Njue, W.M., Orago, A.S.S., Omar, S.A., Ng'ende, I.O., 2003. In vitro antimalarial activity of plants used in Kisii, Kenya against malaria and their chloroquine potentional effects. J. Ethnopharmacol. 84, 235–239.

Newman, D.J., Cragg, G.M., 2016. Natural products as sources of new drugs from 1981 to 2014. J. Nat. Prod. 79, 629–661.

Newman, D.J., Cragg, G.M., Kingston, D.G.I., 2015. In: Wermuth, C.G., Aldous, D., Raboison, P., Rognan, D. (Eds.), The Practice of Medicinal Chemistry, 4th ed. Elsevier, Amsterdam, pp. 101–139.

Nwodo, N.J., Ibezie, A., Ntie-Kang, F., Adikwu, U.M., Mbah, J.C., 2015. Anti-trypansomiac activity of nigerian plants and their constituents. Molecules 20, 7750–7771.

Phan, V.K., Chau, V.M., Nguyen, X.N., Bui, H.T., Tran, H.Q., Hoang, L.T.A., Nguyen, X.C., Truong, N.H., Seung, H.K., Jin, K.K., Hae-Dong, J., Young, H.K., 2012. Chemical constituents of the Ficus elastica leaves and their antioxidant activities. Bull. Kor. Chem. Soc. 33, 3461–3464.

Pistelli, L., Chiellini, E.E., Moselli, I., 2000. Flavonoids from Ficus pumila. Biochem. Syst. Ecol. 28, 287–289.

Rao, B.R., Anupama, K., Anand, S.K.R.L., Murugesan, T., Pal, M., Mandal, S.C., 2002. Evaluation of anti-pyretic potential of Ficus racemosa bark. Phytomedicine 9, 731–733.

Rao, C.V., Verma, A.R., Vijayakumar, M., Rastogi, S., 2008. Gastroprotective effect of standardized extract Ficus glomerata fruit on experimental gastric ulcers in rats. J. Ethnopharmacol. 115, 323–326.

Rosenblum, A., Marsch, L., Herman, J., Russell, K.P., 2008. Opioids and the treatment of chronic pain: controversies, current status, and future directions. Expert. Opin. Pharmacother. 16, 405–416.

Sawadogo, W.R., Le Douaran, G., Maciu, A., Borie, C., Leiseau, P.M., Figadère, B., Guissou, I.P., Nacoula, O.G., 2012. In vitro antileishmanial and antitrypanosomal activities of five medicinal plants from Burkina Faso. Parasitol. Res. 110, 1779–1783.

Seif el-Din, S.H., El-Lakkany, N.M., Mohamed, M.A., Hamed, M.M., Sterner, O., Botros, S.S., 2014. Potential effect of the medicinal plants Calotropis procera, Ficus elastica and Zingiber officinale against Schistosoma mansoni in mice. Pharm. Biol. 52, 144–150.

Seijyawan, A.D., 2011. Review: Natural products from Genus Selaginella (Selaginellaceae), Nusantara Biosci. 3, 44–58.

Shoaib, M.N., Wuyep, P.A., Yanagi, T., Hirayama, K., Tanaka, T., Kouno, I., 2008. The use of microfluorometric method for activity-guided isolation of antiplasmodial compound from plant extracts. Parasitol. Res. 102, 1119–1127.

Shoaib, M.N., Wuyep, P.A., Yanagi, T., Hirayama, K., Tanaka, T., Kouno, I., 2008. The use of microfluorometric method for activity-guided isolation of antiplasmodial compound from plant extracts. Parasitol. Res. 102, 1119–1127.

So, P.N., Benoit-Vical, F., 2007. Are West African plants a source of future antimalarial drugs? J. Ethnopharmacol. 114, 130–140.

Tan, W.J., Xu, J.C., Li, L., Chen, K.L., 2009. Bioactive compounds of inhibiting xanthine oxidase from Selaginella labrosa. Nat. Prod. Res. 23, 393–398.

Veeresham, C., 2012. Natural products derived from plants as a source of drugs. J. Adv. Pharm. Technol. Res. 3, 200–201. http://dx.doi.org/10.4103/2231-4040.104709.