COUNIVERSAL SPACES WHICH ARE EQUIVARIANTLY COMMUTATIVE RING SPECTRA

J.P.C. GREENLEES

Abstract. We identify which couniversal spaces have suspension spectra equivalent to commutative orthogonal ring G-spectra for a compact Lie group G. These are precisely those whose cofamily is closed under passage to finite index subgroups. Equivalently these are the couniversal spaces admitting an action of an E_∞^G-operad.

Contents

1. Introduction 1
2. Operadic preliminaries 2
3. McClure’s argument 3
4. Generalizing McClure’s argument 3

1. Introduction

For a compact Lie group G, Theorem 4.7 shows that a number of simple G-equivariant homotopy types have suspension spectra which are commutative orthogonal ring G-spectra. Because equivariant commutativity implies a large amount of additional structure, including norm maps, this has significant implications.

These homotopy types are naturally used for isotropic decompositions of the sphere, and as such they play a significant role in understanding the structure of G-equivariant spectra where G is a torus in [3]. That analysis involves constructing the model category of rational G-spectra for a torus G from a diagram of much simpler model categories. The simplest way to do this is to construct the simpler model categories as categories of modules over commutative ring G-spectra, and for this diagram to arise from a diagram of commutative ring G-spectra.

The homotopy types of the ring G-spectra are apparent from the construction, and it remains to show that they are indeed commutative ring G-spectra. If the ambient category of G-spectra is the category of orthogonal spectra, the commutative monoids admit multiplicative norm maps, which is a substantial restriction on the homotopy type. Accordingly, [3] works instead with the Blumberg-Hill category of orthogonal L-spectra [1], where many more G-spectra admit the structure of commutative rings.

The motivating application of the present note is to show that in fact the ring spectra required in the construction of [3] can be represented by commutative rings in the category

[1] I am grateful to M.Hill and M.Kedziorek for the conversation at EuroTalbot17 when we observed that we knew of no obstruction to Corollary [4.8]
orthogonal G-spectra. It follows that the the argument of [3] can be conducted directly in the category of orthogonal G-spectra rather than in the more elaborate category of spectra with an L-action.

2. Operadic preliminaries

There are rare examples of spectra which are obviously strictly commutative rings, but it is much more usual to show that a spectrum admits the action of a suitable operad, and then use general results to show this means the homotopy type is represented by a ring spectrum.

2.A. N_∞-operads. In the equivariant world there is a range of essentially different operads governing commutative ring spectra: these are the N_∞-operads of Blumberg-Hill [2]. These are operads O in G-spaces whose n-th term $O(n)$ is a universal space for a family $\mathcal{F}O(n)$ of subgroups of $G \times \Sigma_n$: it is essential that $O(n)$ is G-fixed and Σ_n-free, but within that class there is a wide range of options. We need only discuss the two extreme types of N_∞-G-operads.

At one extreme we have the non-equivariant E_∞-operads, which are as free as possible whilst being G-fixed. Equivalently, the n-th term is the universal space for the family

$$\mathcal{F}(n) = \{H \times 1 \subseteq G \times \Sigma_n \mid H \subseteq G\}.$$

There are of course many E_∞-operads, and we write E_∞ for a chosen one. For example we might use the linear isometries operad on a G-fixed universe, but we will use no special properties of the operad.

At the other extreme we have the $E_{G\infty}$-operads which are as fixed as possible whilst their n-th term is Σ_n-free, so their n-th term is a universal space for the family

$$\mathcal{F}_{G}(n) = \{\Gamma \mid \Gamma \cap \Sigma_n = 1\}.$$

There are of course many $E_{G\infty}$-operads, and we write $E_{G\infty}$ for a chosen one. For example we might use the linear isometries operad on a complete G-universe, but we will use no special properties of the operad. We pause to recall that if $\Gamma \cap \Sigma_n = 1$ then Γ is a ‘graph subgroup’ in the sense that we have $\Gamma = \Gamma(L, \alpha)$ for some subgroup L of G and some homomorphism $\alpha : L \rightarrow \Sigma_n$, where $\Gamma(L, \alpha) = \{(x, \alpha(x)) \mid x \in L\}$.

2.B. Commutative monoids and $E_{G\infty}$-operads. The relevance of $E_{G\infty}$-operads is the connection to the standard symmetric monoidal product of spectra.

Lemma 2.1. The commutative monoids in the category of orthogonal G-spectra are the $E_{G\infty}$-algebras.

Proof: This uses the traditional argument of [6, 15.5], using [4, B.117], which in turn corrects [3, III.8.4]. We note that the statement in [4] is only given for finite groups, but the argument applies as written to arbitrary compact Lie groups, giving the full replacement for the statement in [3]. □
2.C. **Endomorphism operads.** The other piece of standard material is to consider the endomorphism operad \mathcal{E}_Y on a based space Y, defined by

$$\mathcal{E}_Y(n) = \text{Map}_*(Y^\wedge n, Y).$$

We automatically find Y is an \mathcal{E}_Y-algebra. Equally, if Y is a based G-space \mathcal{E}_Y is an operad in G-spaces and Y is an algebra over it.

3. McClure’s argument

McClure [7] argued as follows to construct an E_∞-operad acting on $\tilde{E}G$.

First we consider the endomorphism operad $E_{\tilde{E}G}$, and then note that passage to fixed points gives a map

$$\phi(n) : \mathcal{E}_{\tilde{E}G}(n)^G = \text{Map}_*^G(\tilde{E}G^\wedge n, \tilde{E}G) \longrightarrow \text{Map}_*(S^0, S^0).$$

We write

$$D_{M_C}(n) = \phi(n)^{-1}(id),$$

and note that this is also an operad acting on $\tilde{E}G$. Because $\phi(n)$ is a weak equivalence $D_{M_C}(n)$ is contractible, so that $E_\infty \times D_{M_C}$ is an E_∞-operad acting on $\tilde{E}G$ as required.

4. Generalizing McClure’s argument

4.A. **Couniversal spaces.** Given a group G and a family \mathcal{F} of subgroups of G, we say that $\tilde{E}\mathcal{F} = S^0 \ast E\mathcal{F}$ is the **couniversal space** for the complementary cofamily $\text{All} \setminus \mathcal{F}$. Simplifying notation, for a cofamily \mathcal{C}, we write simply

$$EC = \tilde{E}(C^c).$$

This has two essential features: it has geometric isotropy C, and $(EC)^H = S^0$ whenever $H \in \mathcal{C}$.

4.B. **The endomorphism operad of a cofamily.** We consider the endomorphism operad of EC:

$$\mathcal{E}_{EC}(n) = \text{Map}_*(EC^\wedge n, EC).$$

The following partial information about the homotopy type of this space will be useful later.

Lemma 4.1. Given cofamilies \mathcal{C} and \mathcal{D} the space

$$\text{map}_*(EC, ED)$$

has the following properties

- It is H-contractible if $H \not\in \mathcal{C} \cap \mathcal{D}$
- It is H-couniversal if no subgroup of H lies in $\mathcal{D} \setminus \mathcal{C}$

Proof: It is clear that if H is not in $\mathcal{C} \cap \mathcal{D}$ then $\text{map}_*(EC, ED)$ is H-contractible, since one or other of the spaces is.

If $H \in \mathcal{C} \cap \mathcal{D}$ we wish to argue that the map

$$\text{map}_*(EC, ED)^H \longrightarrow \text{map}_*(S^0, S^0) = S^0$$

is an equivalence. In other words, that any H-map $f : EC \longrightarrow ED$ is determined by the map from $S^0 \longrightarrow ED$. The obstruction to extension and uniqueness lie in $[EC_+^c \wedge S^k, ED]^H$, which vanishes unless H has a subgroup $K \in \mathcal{D} \setminus \mathcal{C}$.

□
4.C. **The couniversal operad of a cofamily.** There is a $G \times \Sigma_n$-map $i_n : S^0 = (S^0)^\wedge n \to (EC)^\wedge n$ inducing a $G \times \Sigma_n$-map

$$i_n^* : \mathcal{E}_{EC}(n) = Map_\ast(EC^\wedge n, EC) \to Map_\ast(S^0, EC) = EC.$$

We take

$$DC(n) = (i_n^*)^{-1}(1).$$

We note that when $C = \mathcal{N}T$ consists of the non-trivial subgroups the fixed point set $\mathcal{D}\mathcal{N}T^G = D_{\mathcal{M}C}$ is McClure’s operad.

Lemma 4.2. DC is an operad acting on EC. □

Using this, we will show that for suitable cofamilies C, the space EC is an algebra over an N_∞-operad with more highly structured algebras than E_∞.

4.D. **Permutation powers and cofamilies.** Let us think of the symmetric group Σ_n as the permutations of $\{1, 2, \ldots, n\}$. We consider the group $G \times \Sigma_n$ and let $p : G \times \Sigma_n \to \Sigma_n$ and $\pi : G \times \Sigma_n \to G$ be the projections.

If C is a cofamily of subgroups of G, we view EC as a trivial Σ_{n-1}-space and form the nth smash power $(EC)^\wedge n$ and view it as a $G \times \Sigma_n$-space.

Lemma 4.3. The $G \times \Sigma_n$-space $EC^\wedge n$ is couniversal.

Proof: Consider any G-space X and form the $G \times \Sigma_n$-space $X^\wedge n$. We will consider fixed points under a subgroup $\Delta \subseteq G \times \Sigma_n$.

Consider the orbits o_1, \ldots, o_s of $\{1, \ldots, n\}$ under $p(\Delta)$, and choose orbit representatives $d_i \in o_i$. Now write $\Delta_i = p^{-1}((\Sigma_n)_{d_i}) \cap \Delta$ for the subgroup of Δ fixing d_i.

We then see that there is a homeomorphism

$$h : \bigwedge_{i=1}^s X^{\pi(\Delta_i)} \cong (X^\wedge n)^\Delta.$$

The ith factor in the domain gives the d_ith coordinate in $X^\wedge n$ and hence determines the coordinates in o_i. More precisely, if $m \in o_i$ we may choose $\delta \in \Delta$ with $p(\delta)(d_i) = m$, and then

$$h(x_1 \wedge \ldots \wedge x_s)_m = \pi(\delta)x_i.$$

Since x_i is fixed by Δ_i this is independent of the choice of δ. The verification that h is a homeomorphism is straightforward.

Applying this to $X = EC$ we see that X^Δ is always either S^0 or contractible. The collection of subgroups for which it is S^0 is obviously a cofamily.

□

If we write $C(C, n)$ for the geometric isotropy of $EC^\wedge n$, then by the lemma $EC^\wedge n \simeq EC(C, n)$.

Lemma 4.4.

$$C(C, n) \subseteq \pi^*C$$
Proof: We show that if Δ is not in the right hand side it is not in the left hand side.

If $\pi(\Delta)$ does not lie in \mathcal{C}, then $(EC)^{\pi(\Delta)} \neq S^0$. Suppose then that $x = x(1) \in EC \setminus S^0$ is a non-trivial element of \mathcal{C} fixed by $\pi(\Delta)$. Now write $x(i) = \sigma^i x(1)$ where $\sigma = (123 \cdots n)$. We then have $x = x(1) \wedge w(2) \wedge \cdots \wedge w(n)$ fixed by $\pi(\Delta) \times \Sigma_n$ and hence by its subgroup Δ. Hence $\Delta \not\in C(\mathcal{C}, n)$.

\medskip

Lemma 4.5. If \mathcal{C} is closed under passage to finite index subgroups then

$$\pi^* \mathcal{C} \cap \mathcal{F}_G(n) \subseteq C(\mathcal{C}, n)$$

Proof: Suppose $\Delta \subseteq G \times \Sigma_n$ lies in the intersection, which is to say $L := \pi(\Delta) \in \mathcal{C}$, and $\Delta = \Gamma(L, \alpha)$ is a graph subgroup. We will show that $\Delta \in C(\mathcal{C}, n)$. Since $C(\mathcal{C}, n)$ is a cofamily, it suffices to show that the subgroup $\Delta' = \Gamma(L_e, \alpha|_{L_e})$ lies in $C(\mathcal{C}, n)$, where L_e is the identity component of L.

However, since Σ_n is discrete $\alpha|_{L_e}$ is trivial, so that $\Delta' = \Gamma(L_e, \text{const}) = L_e$. However $L = \pi(\Delta)$ lies in \mathcal{C}, so its finite index subgroup L_e also lies in \mathcal{C} by hypothesis:

$$(EC^{\wedge n})^\Delta \subseteq (EC^{\wedge n})^{\Delta'} = (EC^{L_e})^{\wedge n} = (S^0)^{\wedge n} = S^0.$$

Hence $(EC^{\wedge n})^\Delta = S^0$ as required.

\medskip

Lemma 4.6. The map

$$i^*_n : \mathcal{E}_{EC}(n) = \text{map}_*(EC^n, EC) \longrightarrow \text{map}_*(S^0, EC) = EC$$

is an $\mathcal{F}_G(n)$-equivalence.

Proof: We observe that by Lemmas 4.4 and 4.5 if $H \in \mathcal{F}_G(n)$ then $C(\mathcal{C}, n)|_H = \pi_* \mathcal{C}|_H$. The result follows from Lemma 4.1.

\medskip

4.E. McClure's argument extended. We now apply the above to the operad DC of Subsection 4.B.

Theorem 4.7. If \mathcal{C} is a cofamily then the space EC is an E^G_∞-algebra if and only if \mathcal{C} is closed under passage to finite index subgroups.

Proof: If there is a finite index inclusion $K \subseteq H$ of subgroups with $H \in \mathcal{C}$ and $K \not\in \mathcal{C}$, then the assumption that EC is E^G_∞ leads to a contradiction. Indeed $\pi^H_0(EC) = 0$ so that $1 = 0$ in that ring. On the other hand, by Segal-tom Dieck splitting, $\pi^H_0(EC) \neq 0$ so that $1 \neq 0$ in $\pi^H_0(EC)$. The existence of a norm map then gives a contradiction since norm$_H^H(1) = 1$.

Now suppose \mathcal{C} is closed under passage to finite index subgroups. By Lemma 4.2 there is an action of DC on EC, and hence also an action of $E^G_\infty \times DC$. It remains to show that the nth term in this operad is universal for $\mathcal{F}_G(n)$. In other words, we need to show that if $\Gamma \in \mathcal{F}_G(n)$ is a graph subgroup then $DC(n)^\Gamma \simeq *$.

Now by Lemma 4.6 the map

$$i^*_n : \mathcal{E}_{EC}(n) = \text{map}_*(EC^n, EC) \longrightarrow \text{map}_*(S^0, EC) = EC$$

is an $\mathcal{F}_G(n)$-equivalence, and hence $DC(n)$ is $\mathcal{F}_G(n)$-contractible as required.
Corollary 4.8. If G is a torus and K is a connected subgroup then $S^{\infty V(K)} = \bigcup_{V^K = 0} S^V$ is an E^G_∞-algebra.

Proof: The space $S^{\infty V(K)}$ is couniversal for the cofamily $V(K) = \{H \mid H \supseteq K\}$ of subgroups containing K. Since K is connected $V(K)$ is closed under passage to finite index subgroups. \qed

References

[1] A. J. Blumberg and M. A. Hill. G-symmetric monoidal categories of modules over equivariant commutative ring spectra. In preparation.
[2] A. J. Blumberg and M. A. Hill. Operadic multiplications in equivariant spectra, norms, and transfers. Adv. Math., 285:658–708, 2015.
[3] J. P. C. Greenlees and B. Shipley. An algebraic model for rational torus-equivariant spectra. arXiv: 1101:2511.
[4] M. A. Hill, M. J. Hopkins, and D. C. Ravenel. On the nonexistence of elements of Kervaire invariant one. Ann. of Math. (2), 184(1):1–262, 2016.
[5] M. A. Mandell and J. P. May. Equivariant orthogonal spectra and S-modules. Mem. Amer. Math. Soc., 159(755):x+108, 2002.
[6] M. A. Mandell, J. P. May, S. Schwede, and B. Shipley. Model categories of diagram spectra. Proc. London Math. Soc. (3), 82(2):441–512, 2001.
[7] J. E. McClure. E_∞-ring structures for Tate spectra. Proc. Amer. Math. Soc., 124(6):1917–1922, 1996.

School of Mathematics and Statistics, Hicks Building, Sheffield S3 7RH. UK.
E-mail address: j.greenlees@sheffield.ac.uk