Title: Confirming the presence of *Legionella pneumophila* in your water system: A review of current *Legionella* testing methods

Authors: James T Walker\(^1\) and Paul McDermott\(^2\)

\(^1\) Walker on Water, 23 Anderson Road, Salisbury.SP1 3DX. Email: jimmywalker@walkeronwater.org

\(^2\) 55 Fields Road, Alsager, Stoke on Trent. ST7 2NA

Running title: Confirming the presence of *L. pneumophila* in water systems

Keywords: *Legionella* spp., *Legionella pneumophila*, patients, risk, test-methods, Legionnaires’ disease

Journal: J AOAC

Abstract (248 words)

Legionnaires’ disease has been recognized since 1976 and *Legionella pneumophila*, still accounts for more than 95% of cases. Approaches in countries, including France, suggest that focusing risk reduction specifically on *L. pneumophila* is an effective strategy, as detecting *L. pneumophila* has advantages over targeting multiple species of *Legionella*. In terms of assays, the historically accepted plate culture method takes 10 days for confirmed *Legionella* spp. results, has variabilities which affect trending and comparisons, requires highly trained personnel to identify colonies on a plate in specialist laboratories and does not recover viable-but-non-culturable (VBNC) bacteria. Polymerase chain reaction is sensitive, specific and provides results in less than 24h and determines the presence/absence of *Legionella* spp. and/or *L. pneumophila* DNA. Whilst specialist personnel and laboratories are generally required, there are now on-site PCR options but there is no agreement on comparing genomic units to colony forming units and action limits. Immunomagnetic

© The Author(s) 2021. Published by Oxford University Press on behalf of AOAC INTERNATIONAL. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
separation assays are culture-independent, detect multiple *Legionella* species and results are available in 24h, with automated processing options. Field-use lateral flow devices provide presence/absence determination of *L. pneumophila* serogroup 1 where sufficient cells are present, but testing potable waters is problematic. Liquid culture most probable number (MPN) assays provide confirmed *L. pneumophila* results in 7 days that are equivalent to or exceed plate culture, are robust and reproducible and can be performed in a variety of laboratory settings. MPN isolates can be obtained for epidemiological investigations. This accessible, non-technical review will be of particular interest to building owners, operators, risk managers and water safety groups to make informed decisions to reduce the risk of *L. pneumophila*.

**Introduction**

The recent worldwide COVID-19 pandemic has made many of us reappraise how we manage our water systems and has created a pressing need to address the risk of *Legionella pneumophila* proliferation in unused buildings. As many countries entered lock down, hospitals were busy reorganising to accommodate the anticipated increase in demand for intensive care units, meaning that some hospital areas were taken out of use temporarily as they were being repurposed. In the UK, exhibition centres were turned into Nightingale Hospitals in a matter of weeks. Buildings in towns and cities were closed as their populations entered lockdown and healthcare disciplines such as dentistry came to a standstill. This meant dramatic changes in the of use of water systems, with the consequent risk of microbial proliferation of waterborne pathogens and in particular *L. pneumophila* (1).
The importance of maintaining management of water systems during the pandemic was highlighted by evidence from China that showed that half of COVID-19 fatalities had experienced a secondary hospital-acquired infection and that 20% of those infected were positive for IgM antibodies for L. pneumophila (2, 3). In response to COVID-19, several microbiologists collaborated on European guidance for water safety groups (WSG), responsible persons and building managers to provide advice to lessen the risk from legionellae¹ during building closures and their subsequent opening when COVID-19 restrictions were eased. This included guidance for hospitals, other healthcare facilities and dental surgeries on the precautions that should be applied to minimise risks developing and the tests that should be conducted to provide evidence that water systems are safe to use when buildings are reoccupied (4, 5). This accessible non-technical review sets out to provide guidance on effective microbiological monitoring for duty holders ³ and those charged with responsibilities to devise, implement and manage strategies to control risks from exposure to legionellae arising from water systems. This accessible non-technical review sets out to provide additional information on effective microbiological monitoring and testing that will enable duty holders² to control risks from exposure of legionellae arising from water systems. In the UK at least, this role is assigned either to multidisciplinary groups, such as WSGs (reference BS 8680: 2020), or an individual, referred to as the ‘responsible person’ (6, 7). The information presented here will inform decisions on testing for Legionella, whether applied routinely in the normal course of operations, as part of recommissioning procedures following emergency lockdown of buildings, or in response to other

¹ Legionellae is the plural trivial nae used to describe all bacteria belonging to the Legionella family
² Under health and safety law in Great Britain, the duty holder is either the employer, a self-employed person or a person or organization that is in control of premises in connection with a trade or business
emergency situations, such as a case of or an outbreak of Legionnaires’ disease, where microbiological testing might be required. In this review, the term ‘WSG’ is used throughout and refers equally to situations where oversight of risk management falls to an individual responsible person.

Legionnaires’ disease

Legionnaires’ disease is a severe, frequently deadly form of pneumonia that is caused by bacteria belonging to the family Legionellaceae (commonly known as *Legionella*). The family comprises over 60 species and more than 70 serogroups: (8) however the most clinically significant species is *L. pneumophila*. *L. pneumophila* was only identified and named in 1976, but it is now clear that this microorganism was responsible for outbreaks in man-made water systems for a number of decades prior to this (9). In the USA, there has been an almost 900% increase in legionellosis\(^3\) since 2000 with *Legionella* being the most reported cause of outbreaks of infectious disease linked to drinking water from 2013 to 2014 (10). *Legionella* has also been responsible for the majority of admissions to hospitals (88%) and all deaths associated with outbreaks of waterborne infection associated with drinking water (10). Despite the introduction of legislation and guidance in the intervening years, there has also been an almost year on year increase in Legionnaires’ disease cases in Europe from 2014 to 2018 (11). Over the last five years of data the notification rates have nearly doubled. Not only were the notification rates for 2018 the highest ever observed for the EU/EEA, but the 2018 data demonstrated that there was a 23% increase in the number of cases compared to 2017 (11).

\(^3\) Legionellosis is the collective term used to describe illness due to infections caused by *Legionella* and include Legionnaires’ disease and the less severe, non-pneumonic Pontiac fever and Lochgoilhead fever.
There are likely to be a number of factors that have contributed to the increased prevalence of Legionnaires' disease, including heightened awareness of the disease leading to increased case reporting, better diagnostic techniques, and also to an ageing population with more people susceptible to infection and with an increasing prevalence of comorbidities (12). It is acknowledged widely that in many countries, the incidence of Legionnaires’ disease cases are underreported e.g., in the USA alone it is considered that only 2.5%–4.5% of actual cases are reported to the CDC (13, 14).

Although 19 of the more than 60 Legionella species that have been recorded to have caused at least one infection, a single species, L. pneumophila, is responsible for 95% or more of Legionnaires’ disease (15–17), led by the particularly virulent L. pneumophila serogroup1. The European Centre for Disease Prevention and Control shows this has been consistent over time; annual data from patient cultures in 17 countries (n=4,719) from 2009 to 2014 identified L. pneumophila as the cause of the disease in 97% of cases. (18) According to Public Health England (PHE), species other than L. pneumophila account for less than 1% of all Legionnaires’ disease cases in England and Wales (19). In Japan the story is similar; 98% of all cases between 2008 and 2016 were caused by L. pneumophila (20).

Whilst legionellae are ubiquitous in natural freshwater and anthropogenic water systems, the site source of the infectious bacteria for most sporadic cases and even some outbreaks, remains unknown (21). However, inhalation of infectious aerosols from contaminated water systems is considered the most common route of exposure and both potable and non-potable systems pose risks. Legionella infections have
been traced to contaminated water distribution systems (22), showers, faucets, toilets (23, 24), cooling towers (25) and spa pools (26). Evaporative cooling systems, such as cooling towers and related systems, are especially important because of their potential to allow the growth of large numbers of legionellae, if they are not managed effectively, and their potential to transmit infectious aerosols over large distances (27).

Management and monitoring of water systems

Many people perceive that the water supplied by utility companies to be clean and harmless. However, whilst the supplied water is wholesome and safe for drinking, cooking and bathing, it is not sterile. Proactive water management is needed because even in water systems that are well designed, waterborne pathogens such as *Legionella* can proliferate to an extent that they pose risks to users of the water system, including staff, visitors and, in particular, certain patients receiving care in a hospital (28, 29). In some water systems, it is inherently difficult to control the growth of legionellae. This is especially true in large buildings with complex water systems, including many hospital buildings, or if water systems are designed poorly, which makes maintaining safe water temperatures problematic. Some buildings have also been modified in ways that exacerbate these problems and some have been constructed using materials that encourage the development of biofilms and provide pockets within the water system where legionellae can thrive.

Because many of the hazards within different buildings and evaporative cooling systems are similar, common principles underpin the various national and international guidelines and standards for water management. These include
identification of high-risk areas, maintenance of appropriate temperatures and
disinfectant concentrations, system cleanliness and water turnover. Whatever the
specific suite of controls applied to the water system, regular checks need to be
made to provide assurances that the controls are effective and risks from exposure
to legionellae continue to be managed effectively. As part of the overall
management strategy, periodic sampling and testing for the presence of legionellae
in water systems is essential to determine whether the risk control strategies applied
are being effective in reducing the microbial risk.

It is important to note that the aim of water management programs is not the
complete eradication of all waterborne pathogens. As the water entering buildings is
not sterile, water management programs are there to identify and prevent / control
the risk of contracting waterborne diseases (7, 30).

Where people are exposed to environmental pathogens, it could be argued that
monitoring of risk reduction strategies should focus on the presence of those specific
bacteria that present the highest risk, rather than a wider cross-section of bacteria
which may exist within the water system, but present minimal health risk. In the case
of Legionella, species other than L. pneumophila, such as L. anisa or L. bozemani,
may be found present in building water, but figures show that these species
represent less than 1% of total Legionnaires’ disease cases (31). Similarly,
although a nationwide study of cooling towers in the US documented that 47% of
isolates were non-pneumophila Legionella species, to date, zero cooling tower
outbreaks in the US have been linked to species other than L. pneumophila (32). In
France, 98% of Legionnaires’ disease cases were attributable to L. pneumophila and
no other species of *Legionella* have been associated with outbreaks from cooling
towers (33, 34). Given the very low prevalence of disease caused by other species,
and that, less resources should be required to test water solely for *L. pneumophila*,
more extensive microbiological testing of water systems could be achieved at the
same cost, if a more focused approach to testing is adopted (35).

Legionella monitoring policies are evolving

A number of countries have guidelines or standards to help achieve *Legionella*
control. However, the guidance on bacterial monitoring, which most often advocates
evaluating the presence and levels of any species of *Legionella* rather than *L.
pneumophila*, is based on limited empirical evidence, primarily observations and data
gathered during outbreak investigations (36). Not surprisingly, then, these guidance
and regulations vary widely with regard to the location, frequency, and thresholds for
action when testing, as well as on the question of what microbiological parameters
should be monitored. It should be noted that, while testing requirements vary from
country to country, action is always required when *L. pneumophila* is detected at
levels above threshold limits (37). Over the last decade, guidelines have continued to
evolve, with a shift in parameters, from *Legionella* spp. to *L. pneumophila* in France
in 2011, and an expanded set of *Legionella* testing method options being accepted
by regulatory bodies. The Spanish Standard body recently added PCR to its UNE
100030: 2017 (38). In the UK, the HSE recommend that the analysis of water
samples for legionellae should be performed in UKAS-accredited laboratories with
the current ISO standard methods for the detection and enumeration of legionellae
included within the scope of accreditation, but HSE also advises that alternative
quantitative testing methods may be used as long as they have been validated using ISO 17994 (39). More recently the UK’s Standing Committee of Analysts added an MPN method to its ‘Blue Book’ for Legionella methods “The determination of Legionella bacteria in waters and other environmental samples (2020) – Part 2 – Culture Methods for their detection and enumeration.” (40) The language in the European Drinking Water Directive draft, finalized in 2020 in Brussels, also seems to reflect the changing nature of the field (37). The document directs Member Countries to implement a risk-based approach and clearly cites the established ISO 11731:2017 method for its minimum testing requirement but also states that “For risk based verification monitoring and to complement culture methods, also other methods, such as ISO/TS 12869, rapid culture methods, non-culture-based methods, and molecular-based methods, in particular qPCR, can be used” (37).

Evidence following the change in the French national policy suggests that implementing control measures both for cooling towers and hospital water networks, and focusing specifically on L. pneumophila, can be an effective and cost-effective strategy to control Legionnaires’ disease (41). Reports have indicated that nosocomial cases have decreased from 20% to 5-6% and that the percentage of these cases in comparison to the total number of explained cases has decreased from 33% to around 20% (1998 to 2018) with a lack of outbreaks in the last decade (42, 43).

Risk reduction strategies that focus on the presence of specific species of bacteria that present the greatest risk is not unprecedented. For example, Pseudomonas aeruginosa is tested for routinely in hospital augmented care areas to assess the
efficacy of control measures and risk levels, rather than monitoring all species of *Pseudomonas* (35), despite the fact that other species of *Pseudomonas* cause infections, albeit rarely (44). Likewise, testing for *L. pneumophila* rather than other species within the genus identifies the presence of the most significant pathogen whilst also providing an indication that conditions exist within the water system being monitored that could allow other pathogenic strains to grow. Actions should be taken that address the presence of legionellae and to reduce risks of exposure to the bacteria.

Historical perspective of microbiological investigations

One of main challenges of environmental testing to assess risks from Legionnaires’ disease has been the ability to detect *L. pneumophila* consistently, given the limitations of traditional methods. In 1976, over 5000 microscopy tests and 14 different types of bacterial culture media were developed in attempts to grow the organism that had caused the outbreak of pneumonic disease during the annual convention of the American Legion at the Bellevue Hotel in Philadelphia (45). However, isolation of the microorganism was no easy task and eluded CDC scientists until early 1977 when the organism was finally isolated and named *Legionella pneumophila*. “Legionella”, in honour of the American Legion victims and “pneumophila” after the acute pneumonia caused by the bacterial infection. The plate culture media that were developed then were specifically designed to grow *L. pneumophila*. Those media have been refined in the intervening years, but are still primarily selective for *L. pneumophila*, though other species can be isolated if sufficient numbers of colonies are selected for identification. A particular issue with
these selective media is that they are not absolutely selective, such that agar plates can be overgrown with other, faster growing microorganisms which can obscure colonies of *L. pneumophila* if they are also present in the water sample that is being tested. This can be a particular problem when legionellae are only present in water samples only at low levels. The identification of single colonies may be difficult without a considerable amount of prior experience by the laboratory analyst. (46). This creates the potential for false-negative result being reported and therefore a false sense of confidence for the WSG charged with managing the risks in a facility.

The problems inherent in the isolation media meant that, for clinical diagnosis of Legionnaires’ disease, guinea pigs were still widely used until 1983; for the isolation of legionellae from autopsy and other clinical specimens. This, as much as anything, drove investigations to develop more sensitive and selective nutrient media (47, 48). The inclusion of additives, such as glycine and antibiotics, including vancomycin, polymyxin, and cycloheximide in “GVPC” agar, were designed to suppress the growth of accompanying microorganisms (49–51).

The isolation of legionellae from environmental samples was particularly challenging because the bacteria may be present at low levels, requiring water samples to be filtered (or centrifuged) in order to concentrate the number of bacteria from the sample and improve recovery.

In attempts to address the problem of plate overgrowth by faster-growing commensal bacteria, researchers exploited the enhanced survival rates of legionellae in acidic conditions (pH 2.0) and also their relative heat-tolerance (able to withstand
temperatures of >50˚C) (52–55). These acid-tolerant and heat-tolerant traits were used in the development of pre-treatment steps in the laboratory procedures for the isolation of *L. pneumophila* on BCYE and GVPC agar plates. However, not all species of legionellae are recovered equally using these pre-treatments and Dennis *et al.* (1984) noted that whilst *L. pneumophila* had a decimal reduction time of 111 minutes in water at 50˚C, its related species, *L. micdadei*, had a decimal reduction time of between 2.4 – 7.5 minutes, meaning that the latter would be less likely to be recovered using this methodology (55). The original 1970s methods and these pre-treatment steps that were developed in the 1980s, are still included in the internationally recognised standard for the enumeration of legionellae (ISO 11731-2: 2017). Consequently, particular acid- and heat-tolerant species of legionellae, such as *L. pneumophila* are selected for positively and other, less tolerant species are likely to be lost during the pre-treatment stages and will not appear as colonies on the laboratory plates.

Limitations of ISO 11731-2:2017 are acknowledged in the scope of the standard, which clarifies that the methods described in this document do not recover all species of *Legionella*, and that plate methods may recover various species but cannot be counted on to reliably detect all species of the bacteria. At the same time, even though *L. pneumophila* is relatively tolerant to the pretreatments, that does not mean that it (and other more tolerant species) is immune to their effects and that some loss of viability can be expected, with fewer colonies of these bacteria appearing on agar plates compared to those if the pretreatment steps are omitted. It should also be noted that some loss of recovery of legionellae, including *L.*
*Pneumophila*, can be expected during the filtration (or centrifugation) steps that are applied.

The deficiencies of the standard method have been acknowledged previously and researchers from the New York City Department of Health made reference to the risk of not detecting *L. pneumophila* when using the standard plate method only. This resulted in an amendment for cooling tower outbreak investigation protocols to require the use of both the traditional plate and the MPN culture methods to “maximize the likelihood that Lp1 (*L. pneumophila* serogroup 1) could be isolated from a given water sample (56).

Despite these and other drawbacks, the traditional plate culture method is often referred to as the ‘gold standard’, but it could be argued that it is far from that. Not least among the criticisms of the method is the lengthy incubation period of 10 days, which introduces a significant delay in obtaining results. This delay can be of great importance in outbreak investigations when information on the safety of potential sources of infection is needed urgently. Shorter reporting timeframes are also valuable for routine monitoring activities and to provide assurances that remedial actions that may have been performed in response to other indicators of loss of control, have been effective.

The shortcomings of plate culture have led to several innovative approaches to detecting and, in some cases, attempting to enumerate legionellae in water samples. All methods have a role to play in *Legionella* risk management strategies; which one...
is used in preference to another will depend on the purpose of the testing and the
timeframes in which the results must be reported.

Microbiological Methods

Microbiological testing is an important element of the overall monitoring programme
and there are a number of recognized methods available for detecting legionellae in
water systems compared to a decade or so ago. Each has relative merits and
potential drawbacks so the question is, how does a WSG decide on the most
effective testing method? In this paper, we review a number of those microbiological
methods that are currently available and discuss their relative advantages and
disadvantages.

Plate culture

There are a number of advantages of using plate culture including (i) its ability to
compare with historical samples, (ii) growth of viable cells provides a means of
quantifying the numbers of legionellae present, and (iii) it can be used to recover
clinical and environmental isolates that can then be used to determine whether there
is a link between a water system and a case of infection. These are valuable traits,
but disadvantages also exist for the standard method also.

Plate culture, such as those published by the International Organization for
Standardization (ISO 11731; 2017), and Standard Methods for the Examination of
Water and Wastewater the U.S. Centers for Disease Control and Prevention (CDC)
method is still the most commonly used method for environmental surveillance of
Legionella. This method estimates the number of legionellae in water samples,
presented as colony forming units (cfu) per unit volume of water sampled and is usually expressed as cfu/L. The method includes potable, industrial, waste, and natural water samples and involves the collection and transportation of (usually) 1 litre aliquots of water (57–59). Depending on the water matrix to be processed, laboratory personnel must choose from four procedures, four treatments and four selective culture media. This means there are 14 possible procedural scenarios for each sample if the ISO 11731-2 (2017) procedure is used (58).

It is worth noting that, in the national foreword to the UK’s publication of the ISO standard (BS EN ISO 11731-2: 2017 [insert reference]), the British Standards Institution (BSI) commented that it had voted against the approval of ISO 11731-2 (2017) as a European Standard. Although BSI was obliged to publish the standard, it cited, amongst other things, potential variations and interpretations, not only between the method options, but also within each method, that would lead to different approaches being taken by different laboratories and that this could yield different results.

Uncertainty in inter-laboratory precision and accuracy of plate methods for Legionella detection is well recognised (60). In the EU, Public Health England administer an external quality assessment (EQA) Legionella isolation scheme to provide checks on the consistency of results produced by different laboratories that examine water samples for the presence of legionellae (61). In the USA, to ensure laboratory capacity for outbreak investigations, the CDC felt the need to establish the Environmental Legionella Isolation Techniques Evaluation (ELITE) program that
enables laboratories to evaluate their *Legionella* isolation techniques by using standardized, blind samples and is based on semi-annual proficiency testing (46).

Whilst the culture plate method has been refined since the 1970s, and more options provided, the basic process remains remarkably unchanged. The complexity and multiple numbers of plates that are built into the procedure are required because the approximate number of legionellae in any given water sample is usually is unknown. Given this, the analysts undertaking these tests must use any additional information that accompanies the water sample, combined with their own knowledge and experience of water systems, to select and run the procedure which will give the best chance of growing countable numbers of colonies on the culture medium without interference from other commensal microorganisms.

In addition to the problems that fast-growing commensal microorganisms present in obscuring colonies of legionellae on agar plates, there are issues regarding the number of colonies required on each plate to provide statistical validity to the enumeration process. According to BS EN ISO 11731-2 (2017), the range varies according to whether one is counting a single strain of Legionella (10 – 300 cfu/plate), or whether there are interfering microorganisms present (10 to 150 cfu/plate) and where the membrane filter technique is used (10 - 80 cfu/filter). So the many different ranges to count has the potential to introduce further variation in the interpretation of results.

Filters can present further problems, especially when filters are placed on the agar surface. This is because colony sizes can vary and the much reduced surface area
of the membranes compared to that of a standard plate can make counting colonies that develop and overlap one another problematic (62, 63).

Laboratory analysts must be skilled and experienced in identifying colonies of legionellae and must use their discretion when examining a large number of plates, some of which may be overgrown. Such individual interpretation of not just counts, but also the identification of isolated colonies introduces an element of subjectivity to the process (62, 64, 65).

As has been said, legionellae grow very slowly on solid growth media, and whilst the ISO standard does not specify a definitive laboratory incubation time for plates, a range of between 7 to 10 days is given. In practice, most laboratories incubate plates for at least 10 days. For the CDC and Standard Methods, a minimum of 9 days is required for presumptive colonies to be confirmed with BCYE or blood agar plates.

Further delays in receiving confirmed results from sampling are introduced by transportation, accession of samples, reading plates and then reporting the results, depending on the laboratory performing the analysis. This means that results from testing may not be available for 2 weeks and building managers, public health officials and clinicians may have to delay making important decisions, such as whether it is necessary to implement decontamination strategies for water systems or parts of them.

4 morphologically distinctive bacterial colonies can usually be detected within 3 to 5 days and identified presumptively as Legionella species prior to identification being confirmed by specific immunologic typing of the isolated bacteria or by molecular analysis)
Other limitations of the plate culture method include its inability to recover legionellae in the viable but non-culturable (VBNC) state, the significance of which, in relation to the likelihood of VBNC cells to cause infection, remains uncertain (66). As has been said, the plate culture media that are used were optimized to allow growth of \textit{L. pneumophila}, which means that not all species within the genus, and which in relatively rare cases are associated with disease, are recovered (67). There are also costs associated with collecting (often 1L) and transporting large numbers of samples to laboratories that may be significant distances away (68). Some studies suggest that sampling strategies that involve sending samples to external laboratories can introduce further inaccuracies, where variations in the period of time that samples are held prior to culturing can alter results significantly by up to 50% within 6 hours and up to $2 \log_{10}$ difference after 24 hours (69). Although other studies have not found a statistically significant difference with holding times of up to 72 hours, processing samples as soon as possible is good practice (68).

Most probable number (MPN) methods

MPN quantification is a liquid culture method for the selection, identification, and quantification of bacteria and one system has been developed for the detection \textit{L. pneumophila} in water samples. Sample preparation for potable waters is simple and straightforward and does not require high temperature pre-treatments, or concentration steps, such as centrifugation or filtering. When processing non-potable waters, a brief pre-treatment step is required. The method uses a powdered
growth medium, to which a measured aliquot of the sample is added. The reconstituted medium contains a defined growth substrate that selects positively for the growth of *L. pneumophila* only and suppresses the growth of other commensal microorganisms that might be present in the water sample. Enumeration is achieved by placing 100 mL of the prepared sample/medium solution into a sealable quantification device which is then incubated at 39°C ± 0.5°C or 37°C ± 0.5°C for potable and non-potable samples, respectively. Once sealed and after a 7-day incubation, *L. pneumophila* numbers can be determined by counting those cells of the quantification device that show growth of the bacterium (indicated by a change in colour and/or turbidity of the growth medium) and determining the quantification by consulting an MPN table lookup table.

The advantages of the MPN method include the ease with which the tests can be performed and the unambiguous results that are obtained (70, 71). The single protocol per matrix (rather than the multiple potential routines offered by ISO 11731-2 (2017)) for potable water alone and the reliance on a simple determination of a binary colour/no-colour result, rather than subjective identification of colonies by different analysts, reduces the measurement uncertainty obtained from MPN results. This consistency is likely to provide advantages for WSGs or others that have responsibilities for water systems that use Legionella trending data to make their water safety decisions. In addition, MPN testing provides confirmed numbers of *L. pneumophila* in the sample at 7 days, which can expedite actions that might need to be taken based on test results. Because MPN is a culture-based method, viable bacteria can be recovered from positive wells in the blister pack and cultured further if required for investigational purposes during single case or outbreak investigations.
However, this could be considered a limitation as it does require an additional culture step.

Laboratory studies have shown that the MPN method generates higher counts, on average and has a higher specificity for *L. pneumophila* (97.9%) in comparison to the ISO 11731-2 (2017) method (95.3%) (58, 70, 72). The higher counts may be due to improved recovery rates of *L. pneumophila* in a liquid growth medium compared to an agar medium, as has been demonstrated for other bacteria (73) and/or to the fact that bacteria are not damaged by filtration or centrifugation steps. Importantly, from an infection risk control perspective, studies have demonstrated equivalence in results from the MPN assay and the ISO standard in terms of cfu/L. This means that MPN results can be applied directly to national action levels, allowing the implementation of appropriate remediation measures and other actions that the results from sampling and testing for the bacterium might prompt to ensure the ongoing safety of water systems (39, 72, 74).

In some applications, e.g., for water samples that have high numbers of non-Legionella organisms, such as those from cooling towers, MPN has been shown to have several advantages over the plate method, with a significant increase in sensitivity for *L. pneumophila* (75).

Another potential attraction of the MPN method is that the test is simple to perform and requires little in the way of specialist laboratory equipment. This introduces the possibility of on-site sampling and testing by suitably trained and competent
operatives, for example in a hospital setting. This type of arrangement would reduce further the overall reporting time, as it eliminates time taken for transportation of samples to, and to receive results from, a 3rd party testing laboratory. As with any analytical testing, whether on-site or off-site, some form of ongoing quality assurance scheme is advantageous, as is appropriate accreditation of the method in any 3rd party laboratory performing the testing.

Perhaps of less significance, but worthy of mention, is that the currently available MPN method processes water samples of 100ml (compared to 0.5 to 1L samples required for solid medium tests), so sample transport costs and the environmental impact of transportation are likely to be lowered.

The MPN method only detects *L. pneumophila* and other legionellae will not grow in the liquid medium. This might be perceived as a disadvantage of the method and it would be if a particular sampling strategy sought to detect and count only non-*pneumophila* species. However, given the clinical significance of *L. pneumophila*, discussed earlier in this paper, such a non-*pneumophila* only sampling strategy for routine monitoring of control measures seems unlikely. Indeed, it could be argued that detecting *L. pneumophila* in a water sample could be taken as an indication that conditions exist within the water system, from which the sample was derived, that are conducive to the growth of other species of legionellae, as well as *L. pneumophila*. Given the improved results compared to standard plate culture, MPN could be a useful tool in determining whether such conditions existed.
Assurance that the MPN method is at least as effective in detecting and enumerating *L. pneumophila* in water samples as the standard plate count methods can be gained from the UK’s Standing Committee of Analysts, that has updated its publication *The determination of Legionella bacteria in waters and other environmental samples (2020) – Part 2 – Culture methods for their detection and enumeration* to include MPN as a recommended method alongside plate count. Inclusion in the “Blue Book” indicates that the MPN method has been fully validated for the detection of *L. pneumophila* from potable and related water systems (40).

Polymerase Chain Reaction (PCR)

Polymerase chain reaction (PCR) was first developed in the 1980s and since then the technique has been developed and applied in a wide range of applications. More recently it has been used for the detection of legionellae in water systems and in clinical specimens taken from patients suffering from Legionnaires’ disease (76–78).

To begin the analysis, environmental water samples are first collected and filtered. The bacteria are eluted from the filter and lysed in an appropriate buffer solution, and the DNA is extracted and used for amplification and quantification. PCR works by cycling between high and low temperatures to separate (denature) DNA in the sample and then attach (anneal) DNA molecules called ‘primers’ that are specific for the target DNA and which direct an enzyme called DNA polymerase to copy the target gene sequence. At each round of heating and cooling (a thermal cycle) the amount of target DNA in the sample is amplified exponentially until it reaches a point at which it is measurable using fluorescent dyes. With quantitative PCR (qPCR), the amount of target DNA produced following a given number of thermal cycles can be
used to determine how many copies of the DNA (and hence an indication of the number of bacteria) were present in the original water sample and provide a result measured in genomic units (GU).

A number of publications have described the use of qPCR methods for the detection of legionellae in water samples and a number of commercial Legionella PCR systems are available including on-site qPCR detection systems (76, 78–82).

The high reproducibility and quantitative aspects of qPCR has seen it accepted by the Association Française de Normalisation (AFNOR) and ISO as a standard method for the detection and quantification of *Legionella* spp. and *L. pneumophila* (standards NF T90-471 and ISO/TS 12869:2012, respectively) (AFNOR, 2015; ISO, 2012). The PCR method described in ISO 12869:2012 is also referenced as an alternative method in the 2020 Europe Drinking Water Directive text. However, currently national and international guidance cites action limits for the control of Legionella in CFU and there is lack of agreement in the scientific community on the comparison and interpretation of genomic units in comparison to CFU.

The main advantages to qPCR over plate culture and MPN are the rapid turnaround and sensitivity/specificity (100%). In particular, samples can be processed, and results reported within 24 hours. In a comparison to plate culture and qPCR, Collins et al., demonstrated that PCR had a 100% negative predictive value (NVP, i.e., the probability that a sample with no legionellae in it tests negative compared to culture (83). In addition, qPCR was the only method able to detect Legionella in a hired birthing pool incorporating a heater and a recirculation pump which had been filled in advance of labour and direct sequence based typing on the qPCR positive samples provided epidemiological typing data to assist investigations (84).
One of the anomalies of PCR is the increased number of positive samples in comparison to culture (85). Whiley et al., aggregated the results of 28 studies and reported 72% (2856/3967) tested positive for the presence of *Legionella* spp. using qPCR and 34% (1331/3967) using culture (85). Such anomalies may be accounted for by the presence of DNA from damaged, stressed or VBNC cells present in a sample, particularly in chemically treated water, which can make assessments of the effectiveness of control or remediation efforts to reduce bacterial numbers problematic (86, 87). To address the difficulties caused by damaged cell and/or VBNC legionellae, qPCR methods have been developed that incorporate the use of ethidium or propidium monoazide (88–90), which render cell free DNA unavailable to detection by the PCR reaction chemistry. However, whilst methods to assess viability are now available, as yet, they lack standardization. This means that a degree of uncertainty remains in the results of analyses.

PCR has now been around for several decades and has been proposed as the definitive assay that will provide answers to the key questions about the presence of *Legionella* in water samples and was projected to become the dominate test. To date this has not happened, and the plate culture assay is still the historically accepted method of choice. In the UK, plate culture was used during the investigation of the “Heads of the Valleys” outbreak in Wales in 2010 and PCR was used to complement the results from plate culture. However, there was a lack of interpretation and understanding between genomic units and CFU which caused confusion and concern as the PCR results indicated a number of positive samples that subsequently tested negative by culture. (91) As a result there was a lack of
confidence in PCR even as an investigative tool and as a consequence, many water system managers still continue to use the old historically acceptable plate culture processes. And of course not all water laboratories have the molecular microbiology facilities, equipment, financial resources or trained staff for routine molecular analyses. (92)

Immunomagnetic separation (IMS)

Immunomagnetic separation (IMS), a technique that uses small super-magnetic particles or beads coated with antibodies against surface antigens of bacterial cells, has been available since the early 1990s (93, 94). It provides a simple but powerful method for specific capture, recovery and concentration of the desired microorganism.

The *Legionella* detection system is based on IMS that uses anti-*Legionella species* immune-modified magnetic beads coupled to enzyme-linked colorimetric detection (65). In principle, the original water sample is concentrated by filtration according to ISO 11731-2 (2017) and the cells eluted and analysed. A suspension of anti-*Legionella* species immunomodified magnetic beads is added. Where cells of legionellae are present in the prepared sample, they bind to the antibodies immobilized onto the surface of the magnetic beads to form bacteria/bead complexes. The complexes are then separated by a magnet field, washed, resuspended and then incubated with a horseradish peroxidase (HRP)-conjugated anti-*Legionella* antibody to form labeled complexes which are visualized by the colorimetric reaction developed when HRP substrates are added.
There are several advantages of the IMS technology including high sensitivity and specificity (96.6% and 100%, respectively) with a reported efficiency of 97.8% when compared against culture (ISO 11731-2: 2017) (58). The false positivity has been reported to be 0% and the false negative value reported as 3.4% (95). In a comparative trial of culture, IMS and PCR, Diaz-Flores et al., reported that *Legionella* spp. were detected by culture in 7 (25.9%) of 27 samples and eighteen (66.7%) of the 27 samples were positive by the IMS method (65). Other advantages to the IMS methods include rapid analysis which, because the method does not rely on the growth of legionellae, can be available in a few hours even in heavily contaminated waters and in the presence of growth inhibitors (65). Hence, IMS appears to be particularly useful in the early identification of potential risk sources in a Legionnaires’ disease outbreak for rapid implementations of interventions (96). Manufactures also claim efficient detection of multiple species of legionellae in water samples, although it is not clear precisely which species are detected and which are not.

Despite the perceived benefits of IMS assays, they have not yet been adopted widely by the scientific community or testing laboratories. Whilst the manufacturers claim that this method is simple and easy to perform, their instructions cite many individual steps. However, they also claim that experienced laboratory technicians can undertake the test in one hour with batches of tests being run simultaneously.

The manufacturer has now announced that automated-methods are now available to address some of these processing issues. One of the systems enables full on site
automation and the other automated process which is carried out in the laboratory still requires sample preparation. (97)

Whilst the anti-bodies bind to antigens in the cell wall it is feasible that the magnetic beads may attach to and detect VBNC and damaged cells or fragments of cell walls and as such may overestimate detection rates in comparison to culture-based methods. The manufacturer provides a conversion formula so that the colorimetric signals produced by IMS methods, combined with photometer readout, can be described in “equivalent colony forming units” (CFUeq) enabling some reference to national action levels (96, 97).

Lateral flow technologies

Devices based on lateral flow (LF) technologies were developed initially for clinical diagnostic purposes to detect L. pneumophila antigen, which is excreted in the urine of patients suffering with Legionnaires’ disease; the urinary antigen test. A limitation of most commercially available clinical diagnostic tests is that they can only detect L. pneumophila serogroup 1 antigen, meaning that other serogroups of L. pneumophila (and other species within the genus) that could be the cause of disease, would be missed. More recently, LF has been adapted for testing environmental water samples, but as with the clinical tests, only L. pneumophila serogroup 1 is detected.

The LF detection assay uses a plastic paddle in which capillary flow technology binds a coloured antibody to any L. pneumophila serogroup 1 antigen that is present
in the sample. When the sample is positive, this is indicated by two red lines; one line to show that the test has been completed successfully and the other to indicate the presence of antigen. In a number of assays the sensitivity has been shown to be too low for the determination of *L. pneumophila* serogroup 1 in some environmental water samples (98, 99). However, the limit of detection can be improved and is reported to be approximately 100 colony forming units per litre when an additional filtration step is implemented (100).

Nonetheless, there are several advantages to LF devices, including the reduced time taken (under an hour) for a positive result, that the test kits are small lightweight, portable, easy to use on site for all types of water and that interpretation of the result is visual such that specialist personnel and laboratory infrastructure is not required.

As with any test, LF has a number of disadvantages; the test is not quantitative and so only provides an indication that *L. pneumophila* serogroup 1 is either present or absent in the water sample tested (100). Where a quantitative result is required or where there is a need to detect other species of *Legionella*, or serogroups of *L. pneumophila*, then other tests would need to be performed.

Discussion

The WHO, ECDC and CDC have clearly identified *Legionella* as the number one microbial pathogen in water systems for more than a decade (15, 17, 101). Many countries have implemented regulations, guidance and standards to assist in the control of waterborne pathogens and in particular *Legionella* spp. Yet outbreaks
continue to occur (102–105). While researchers have identified more than 62 species of Legionella, \textit{L. pneumophila} is responsible for >94% of the culture-confirmed Legionnaires’ disease cases notified in 2018 in the EU/EEA (European Legionnaires’ disease Surveillance Network annual meeting 2019, unpublished data) and non-pneumophila strains only account for less than 1% of clinical cases in England and Wales (19). To reduce the risk of Legionnaires’ disease, WSGs and responsible persons need to ensure that water management strategies are effective in controlling the risks that cause Legionnaires’ disease, namely the presence of \textit{Legionella}. Hence, should routine inspection and microbiological monitoring be implemented to assess the presence of the most pathogenic species, namely \textit{L. pneumophila}, instead of identifying a range of \textit{Legionella} species, almost all of which represent a much lower health risk than \textit{L. pneumophila}?

There is now a range of commercially available tests that WSGs can select to undertake microbiological testing of their water system to assess risk control strategies for legionellae, including the historically accepted plate culture, the MPN assay, PCR, IMS assay and LF devices. The appropriate choice will depend on the WSG’s priorities and the purpose of the testing that is undertaken. WSGs will need to consider:

- Whether testing is required purely for routine monitoring of controls to proactively ensure risk is managed?
- Whether parts of the water system harbour \textit{L. pneumophila} at undetectable levels?
- Whether longitudinal and consistent data are required for trending purposes?
• Whether sampling at more sites or more frequently is required and there are concerns about resources or sample collection and transport logistics?
• Whether there are benefits from having testing done on-site?
• Whether there is a benefit from quicker return times for test results?

Some of the considerations to be taken into account are captured in a summary table including rapidity of testing, sensitivity, specificity, quantification, quality assurance and validation of the assay (Table 2). Different approaches can be taken depending on the WSG’s priorities.

Is the result required that day?
Where results are required the same day, the currently available choices appear to be either LF, IMS or PCR. LF is quick and easy to undertake on site by non-specialists and gives a qualitative (i.e., non-quantitative) presence/absence determination with results dependent on the number of legionellae cells present, with a positive much more likely to be obtained from a water system where contamination would be at higher concentrations, such as cooling tower, rather than from a potable water network. For semi-quantitative analyses, PCR or IMS could be selected with samples typically forwarded to a specialist laboratory and results reported within 24h.

Can the sample be processed on-site?
All WSGs are likely to be evaluating the best use of their finite resources, whether it be to optimize the number of samples analyzed or to simplify logistics efforts. WSGs may value an internal chain of custody, in which case, on-site testing and the ability
to use in-house staff to allow greater flexibility for sampling and timing of analysis could be considered advantageous. For those that wish to carry out analysis on-site, then the LF, some PCR methods and MPN methods could be undertaken by non-specialist, but suitably trained, personnel.

Is a quantitative result required?

National regulatory and guidance standards set action levels to provide recommended actions to be taken depending on numbers of legionellae that are detected in a water system (39). Where a truly quantitative test is required, then either plate culture or MPN can used or PCR or IMS where a semi-quantitative result will suffice. It should be remembered that action limits are almost always stated in CFUs, therefore, a regulatory agency accepted means of reporting, based on CFU per volume, may be needed, requiring culture-based methodology. Reliable quantitative results are also needed for WSGs looking for unexpected or unacceptable increases in Legionella numbers. WSGs need consistency in test results so that they can be confident that changes in the number of legionellae detected correspond to actual changes in their water system rather than to the inherent variability in the detection method used. In this case, among these options, a simple quantitative test with high repeatability, such as MPN, may be desirable. MPN will provide a quantitative result for L. pneumophila, has a higher sensitivity for potable water and is equivalent in terms of cfu/L when compared to plate culture. (35, 72, 74, 106)
Is there a need to respond to an identified problem from legionellae other than *L. pneumophila*?

If the WSG is undertaking routine monitoring for a facility where non-pneumophila *Legionella* spp. have previously caused infections or could pose a risk to, for example, high-risk patients in hospitals, either plate culture or PCR can be used to identify these less common *Legionella* species and they would be detected by IMS, although this would not provide speciation. Neither LF or MPN would detect non-pneumophila legionellae. The WSG should of course use caution when assessing the results for non-pneumophila *Legionella* spp. This is because the presence or growth of non-pneumophila species in a water system could indicate that suitable growth conditions for *L. pneumophila* have at some point been achieved. As such, these organisms should be seen as indicators of system colonization and appropriate action taken on their detection.

**Summary**

By considering carefully their needs and priorities, WSGs can make informed decisions about testing approaches and methods which best help them achieve their goal of reducing Legionnaires’ disease risk. The plate culture method is a historically accepted technique but has issues of recovery due to overgrowth, requires highly specialist facilities and equipment and highly trained personnel. Interpretation of plate counts can be subjective and introduce test result variability that is unrelated to the facility water quality. PCR is sensitive, specific and, like the plate count method, has been accepted by international standardization bodies. It is rapid, providing results in less than 24h, but concerns remain over interpretation and reporting numerical results for use with published action levels. IMS technologies are able to
provide results within 24h and whilst the manual method requires a number of
different steps there is now an automated process. LF devices provide rapid
presence absence results but only where sufficient legionellae are present in
samples. In contrast, MPN in comparison to the other methods, provides a simple,
robust, and reproducible process that is validated and recognized by standardization
bodies and can be used on site as well as in the laboratory setting where
accreditation and external quality assessments can be undertaken. MPN detects
only *L. pneumophila*, but with greater sensitivity than the plate count methods and so
has the potential for use as a powerful monitoring tool that can be used in
conjunction with action levels in approximately half the time required for plate culture.

Conflict of Interest

JW and PM received funding from Idexx Inc for their contributions in writing this
manuscript.

Acknowledgement

JW would like to dedicate this manuscript to the late Wilko van der Lugt, a practical
microbiologist who had an interest and life-long passion with *Legionella* and to Tina
Bradley, another scientist who was held in high regard, shared her knowledge with
many and left us too soon. To Emmalyn, Ben and Florence who have brought great
joy into our lives.

References:

1. Knirsch, C.A., Jakob, K., Schoonmaker, D., Kiehlbauch, J.A., Wong, S.J., Della-
Latta, P., Whittier, S., Layton, M., & Scully, B. (2000) *Am. J. Med.* **108**, 290–295.
doi:10.1016/s0002-9343(99)00459-3
2. Zhou, M., Zhang, X., & Qu, J. (2020) Front. Med. doi:10.1007/s11684-020-0767-8

3. Xing, Q., Li, G., Xing, Y., Chen, T., Li, W., Ni, W., Deng, K., Gao, R., Chen, C., Gao, Y., Li, Q., Yu, G., Tong, J., Li, W., Hao, G., Sun, Y., Zhang, A., Wu, Q., Li, Z., & Pan, S. (2020) medRxiv 2020.02.29.20027698. doi:10.1101/2020.02.29.20027698

4. ESGLI Guidance for managing Legionella in dental water systems during the COVID-19 pandemic (2020) https://www.escmid.org/research_projects/study_groups/study_groups_g_n/legionella_infections/ [accessed on January 5th, 2021]

5. ESGLI Guidance for managing Legionella in nursing & care home water systems during the COVID-19 pandemic (2020) https://www.escmid.org/research_projects/study_groups/study_groups_g_n/legionella_infections/ [accessed on January 5th, 2021]

6. BSI BS 8680 - Water Quality. Water Safety Plans. Code of practice (2020) https://shop.bsigroup.com/ProductDetail?pid=000000000030364472 [accessed on January 5th, 2021]

7. HSE (2013) Legionnaires’ disease. ACOP https://www.hse.gov.uk/pubns/books/l8.htm [accessed on January 5th, 2021]

8. Gomez-Valero, L., Rusniok, C., Rolando, M., Neou, M., Dervins-Ravault, D., Demirtas, J., Rouy, Z., Moore, R.J., Chen, H., Petty, N.K., Jarraud, S., Etienne, J., Steinert, M., Heuner, K., Gribaldo, S., Médigue, C., Glöckner, G., Hartland, E.L., & Buchrieser, C. (2014) Genome Biol 15. doi:10.1186/s13059-014-0505-0

9. McDade, J.E., Shepard, C.C., Fraser, D.W., Tsai, T.R., Redus, M.A., & Dowdle, W.R. (1977) New England Journal of Medicine 297, 1197–1203. doi:10.1056/NEJM197712012972202

10. Benedict, K.M. (2017) MMWR Morb Mortal Wkly Rep 66. doi:10.15585/mmwr.mm6644a3

11. ECDC (2020) https://www.ecdc.europa.eu/sites/default/files/documents/AER_for_2018_Legionnaires.pdf [accessed on January 5th, 2021]

12. Cunha, B.A., Burillo, A., & Bouza, E. (2016) Lancet 387, 376–385. doi:10.1016/S0140-6736(15)60078-2

13. Burillo, A., Pedro-Botet, M.L., & Bouza, E. (2017) Infect. Dis. Clin. North Am. 31, 7–27. doi:10.1016/j.idc.2016.10.002

14. Benin, A.L., Benson, R.F., & Besser, R.E. (2002) Clin. Infect. Dis. 35, 1039–1046. doi:10.1086/342903

15. Bartram, J. (Ed) (2007) https://www.who.int/water_sanitation_health/publications/legionella/en/
16. Muder, R.R. & Victor, L.Y. (2002) *Clin Infect Dis* **35**, 990–998. doi:10.1086/342884

17. ECDC (2019) *European Centre for Disease Prevention and Control* https://www.ecdc.europa.eu/en/publications-data/legionnaires-disease-annual-epidemiological-report-2017 [accessed on January 5th, 2021]

18. ECDC (2017) http://dx.publications.europa.eu/10.2900/692621 [accessed on January 5th, 2021] [accessed on January 5th, 2021]

19. Public Health England Legionnaires’ disease in residents of England and Wales – 2016. (2018) https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/696376/2016_Annual_Report_final.pdf [accessed on January 5th, 2021]

20. Amemura-Maekawa, J., Kura, F., Chida, K., Ohya, H., Kanatani, J., Isobe, J., Tanaka, S., Nakajima, H., Hiratsuka, T., Yoshino, S., Sakata, M., Murai, M., Ohnishi, M., & Japan, W.G. for L. in (2018) *Appl. Environ. Microbiol.* **84**, doi:10.1128/AEM.00721-18

21. Den Boer, J.W., Bruin, J.P., Verhoef, L.P.B., Van der Zwaluw, K., Jansen, R., & Yzerman, E.P.F. (2008) *Clin. Microbiol. Infect.* **14**, 459–466. doi:10.1111/j.1469-0691.2008.01973.x

22. Hines, S.A., Chappie, D.J., Lordo, R.A., Miller, B.D., Janke, R.J., Lindquist, H.A., Fox, K.R., Ernst, H.S., & Taft, S.C. (2014) *Water Res.* **56**, 203–213. doi:10.1016/j.watres.2014.02.013

23. Vincenti, S., de Waure, C., Raponi, M., Teleman, A.A., Boninti, F., Bruno, S., Boccia, S., Damiani, G., & Laurenti, P. (2019) *Sci. Total Environ.* **657**, 248–253. doi:10.1016/j.scitotenv.2018.12.036

24. Gavaldà, L., García-Nuñez, M., Quero, S., Gutierrez-Milla, C., & Sabrià, M. (2019) *Water Res.* **149**, 460–466. doi:10.1016/j.watres.2018.11.032

25. Thornley, C.N., Harte, D.J., Weir, R.P., Allen, L.J., Knightbridge, K.J., & Wood, P.R.T. (2017) *Epidemiol. Infect.* **145**, 2382–2389. doi:10.1017/S0950268817001170

26. Leoni, E., Catalani, F., Marin, S., & Dallolio, L. (2018) *Int J Environ Res Public Health* **15**, doi:10.3390/ijerph15081612

27. Walser, S., Dg, G., B, B., C, H., B, L., & Ce, H. (2014) *Internat J Hyg Environl Health* **217**. Available at: https://pubmed.ncbi.nlm.nih.gov/24100053/

28. Bédard, E., Paranjape, K., Lalancette, C., Villon, M., Quach, C., Laferrière, C., Faucher, S.P., & Prévost, M. (2019) *Water Res.* **156**, 277–286. doi:10.1016/j.watres.2019.03.019

29. Beatson, S.A. & Bartley, P.B. (2017) *Clin Infect Dis* **64**, 1260–1262. doi:10.1093/cid/cix156
30. ANSI/ASHRAE Standard 188-2018, Legionellosis: Risk management for building water systems (2018) https://www.ashrae.org/technical-resources/bookstore/ansi-ashrae-standard-188-2018-legionellosis-risk-management-for-building-water-systems [accessed on January 5th, 2021]

31. Kruse, E.-B., Wehner, A., & Wisplinghoff, H. (2016) Am J Infect Control 44, 470–474. doi:10.1016/j.ajic.2015.10.025

32. Llewellyn, A.C., Lucas, C.E., Roberts, S.E., Brown, E.W., Nayak, B.S., Raphael, B.H., & Winchell, J.M. (2017) PLOS ONE 12, e0189937. doi:10.1371/journal.pone.0189937

33. Legionella / Legionnaires’ disease | Anses - Agence nationale de sécurité sanitaire de l’alimentation, de l’environnement et du travail (2011) https://www.anses.fr/en/content/legionella-legionnaires-disease [accessed on January 5th, 2021]

34. Campese, C., Bitar, D., Jarraud, S., Maine, C., Forey, F., Etienne, J., Desenclos, J.C., Saura, C., & Che, D. (2011) Int J Infect Dis 15, e30–e37. doi:10.1016/j.ijid.2010.09.007

35. Scaturro, M., Buffoni, M., Girolamo, A., Cristino, S., Girolamini, L., Mazzotta, M., Bucci Sabattini, M.A., Zaccaro, C.M., Chetti, L., Laboratory, M.A.N., Bella, A., Rota, M.C., & Ricci, M.L. (2020) Pathogens 9, 690. doi:10.3390/pathogens9090690

36. Van Kenhove, E., Dinne, K., Janssens, A., & Laverge, J. (2019) Am J Infect Control 47, 968–978. doi:10.1016/j.ajic.2018.10.006

37. European Union, Revision of the drinking water directive - European Parliament (2020) https://data.consilium.europa.eu/doc/document/ST-5813-2020-INIT/en/pdf [accessed on January 5th, 2021]

38. ANECA UNE 100030:2017 Guidelines for prevention and control of proliferation and spread of Legionella in facilities https://www.une.org/encuentra-tu-norma/busca-tu-norma?c=N0058186 [accessed on January 5th, 2021]

39. HSE (2014) Technical Guidance http://www.hse.gov.uk/pubns/books/hsg274.htm [accessed on January 5th, 2021]

40. SCA (2020) The determination of Legionella bacteria in waters and other environmental samples (2020) – Part 2 – Culture Methods for their detection and enumeration 0–59. doi:10.1016/0043-1354(85)90111-3 [accessed on January 5th, 2021]

41. Ministry of Health Guide technique: l’eau dans les établissements de santé. 2005:129 (2005) http://nosobase.chu-lyon.fr/Reglementation/2005/guide_eau_etabs.pdf [accessed on January 5th, 2021]

42. Hartemann, P. (2019) Clin Microbiol Infect Dis 4. doi:10.15761/CMID.1000151
43. Hartemann, P. & Hautemaniere, A. (2011) *Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz* **54**, 724–727. doi:10.1007/s00103-011-1290-5

44. DHSC Health Technical Memorandum (HTM) 04-01: Safe water in healthcare premises. (2017) https://www.gov.uk/government/publications/hot-and-cold-water-supply-storage-and-distribution-systems-for-healthcare-premises [accessed on January 5th, 2021]

45. McDade, J.E., Shepard, C.C., Fraser, D.W., Tsai, T.R., Redus, M.A., & Dowdle, W.R. (1977) *N Engl J Med* **297**, 1197–1203. doi:10.1056/NEJM197712012972202

46. Lucas, C.E., Taylor, T.H., & Fields, B.S. (2011) *Wat Res* **45**, 4428–4436. doi:10.1016/j.watres.2011.05.030

47. Warren, W.J. & Miller, R.D. (1979) *J Clin Microbiol* **10**, 50–55

48. Ristroph, J.D., Hedlund, K.W., & Allen, R.G. (1980) *J Clin Microbiol* **11**, 19–21

49. Fitzgeorge, R.B. & Dennis, P.J. (1983) *J Hyg (Lond)* **91**, 179–187

50. Edelstein, P.H. (1981) *J Clin Microbiol* **14**, 298–303

51. Fricke, C., Xu, J., Jiang, F.-L., Liu, Y., Harms, H., & Maskow, T. (2020) *Microb Biotechnol* **13**, 1262–1272. doi:10.1111/1751-7915.13563

52. Greaves, P.W. (1980) *J. Clin. Pathol.* **33**, 581–584. doi:10.1136/jcp.33.6.581

53. Bopp, C.A., Sumner, J.W., Morris, G.K., & Wells, J.G. (1981) *J. Clin. Microbiol.* **13**, 714–719

54. Müller, H.E. (1981) *Zentralbl Bakteriol Mikrobiol Hyg B* **172**, 524–527

55. Dennis, P.J., Green, D., & Jones, B.P.C. (1984) *J Appl Bacteriol* **56**, 349–350. doi:10.1111/j.1365-2672.1984.tb01359.x

56. Hughes, S., Novak, J., Rubinstein, I., Chekoff, Y., Silver, S., Patricio, E., Wang, J., DeVito, A., Gonzalez, E., Omorogie, E., & Rakeman, J. (2019) Association of Public Health Laboratories (APHL) https://www.aphl.org/conferences/annualmeeting/Documents/Poster-full-list-web-5-5.pdf

57. APHA (2018) *Standard methods for the examination of water and wastewater* https://www.standardmethods.org/doi/abs/10.2105/SMWW.2882.201 [accessed on January 5th, 2021]. doi:10.2105/SMWW.2882.201

58. ISO (2017). Available at: https://www.iso.org/obp/ui/#iso:std:iso:11731:ed-2:v1:en. Accessed on 18 June 2020

59. US EPA (2019) https://www.epa.gov/esam/procedures-recovery-legionella-environment [accessed on January 5th, 2021]
60. NAS (2019) Management of Legionella in Water Systems  
http://www.ncbi.nlm.nih.gov/books/NBK555109/ [accessed on January 5th, 2021]

61. PHE Proficiency testing for food, water and environmental microbiology.  
https://www.gov.uk/government/collections/external-quality-assessment-eqa-and-proficiency-testing-pt-for-food-water-and-environmental-microbiology (2014)  
GOV.UK https://www.gov.uk/government/collections/external-quality-assessment-eqa-and-proficiency-testing-pt-for-food-water-and-environmental-microbiology [accessed on January 5th, 2021]

62. Rech, M.M., Swalla, B.M., & Dobranic, J.K. (2018) Curr. Microbiol. 75, 1282–1289. doi:10.1007/s00284-018-1522-0

63. Swalla, B.M., Knight, T., Pednault, A., Broder, D., & Newport, V. (2018) The Analyst 26, 47–51

64. Carvalho, F.R.S., Vazoller, R.F., Foronda, A.S., & Pellizari, V.H. (2007) Curr Microbiol 55, 288–293. doi:10.1007/s00284-006-0589-1

65. Díaz-Flores, Á., Montero, J.C., Castro, F.J., Alejandres, E.M., Bayón, C., Solís, I., Fernández-Lafuente, R., & Rodríguez, G. (2015) BMC Microbiol 15, 91. doi:10.1186/s12866-015-0423-7

66. Hussong, D., Colwell, R.R., O’Brien, M., Weiss, E., Pearson, A.D., Weiner, R.M., & Burge, W.D. (1987) Bio/Technology 5, 947–950. doi:10.1038/nbt0987-947

67. Lee, T.C., Vickers, R.M., Yu, V.L., & Wagener, M.M. (1993) J Clin Microbiol 31, 2764–2768

68. Czapor, M., Yassin, M., Mietzner, S., Rihs, J., & Stout, J. (2015) Americ J Infect Cont 43, S30–S31. doi:10.1016/j.ajic.2015.04.077

69. McCoy, W.F., Downes, E.L., Leonidas, L.F., Cain, M.F., Sherman, D.L., Chen, K., Devender, S., & Neville, M.J. (2012) Water Res. 46, 3497–3506. doi:10.1016/j.watres.2012.03.062

70. Spies, K., Pleischl, S., Lange, B., Langer, B., Hübner, I., Jurzik, L., Luden, K., & Exner, M. (2018) Int J Hyg Environ Health 221, 1047–1053. doi:10.1016/j.ijheh.2018.07.006

71. WMS (2018) https://www.wmsoc.org.uk/downloads/RMLG-Legiolert-Factsheet-Final-1.0.pdf [accessed on January 5th, 2021]

72. Sartory, D.P., Spies, K., Lange, B., Schneider, S., & Langer, B. (2017) Lett. Appl. Microbiol. 64, 271–275. doi:10.1111/lam.12719

73. Ahn, Y., Kim, J.M., Ahn, H., Lee, Y.-J., LiPuma, J.J., Hussong, D., & Cerniglia, C.E. (2014) J. Ind. Microbiol. Biotechnol. 41, 1109–1118. doi:10.1007/s10295-014-1442-3

74. AFNOR Legiolert/Quanti-Tray Legiolert for the enumeration of Legionella pneumophila in water for human consumption and industrial waters (2019)
75. Barrette, I. (2019) J AOAC Int 102, 1235–1240. doi:10.5740/jaoacint.18-0245

76. Lee, J.V., Lai, S., Exner, M., Lenz, J., Gaia, V., Casati, S., Hartemann, P., Lück, C., Pangon, B., Ricci, M.L., Scaturo, M., Fontana, S., Sabria, M., Sánchez, I., Assaf, S., & Surman-Lee, S. (2011) J. Appl. Microbiol. 110, 1032–1044. doi:10.1111/j.1365-2672.2011.04957.x

77. Toplitsch, D., Platzer, S., Pfeifer, B., Hautz, J., Mascher, F., & Kittinger, C. (2018) Water 10, 1012. doi:10.3390/w10081012

78. Wellinghausen, N., Frost, C., & Marre, R. (2001) Appl. Environ. Microbiol. 67, 3985–3993. doi:10.1128/aem.67.9.3985-3993.2001

79. Collins, S., Stevenson, D., Walker, J., & Bennett, A. (2017) J. Appl. Microbiol. 122, 1692–1703. doi:10.1111/jam.13461

80. Grúas, C., Llambi, S., & Arruga, M.V. (2014) Arch. Microbiol. 196, 63–71. doi:10.1007/s00203-013-0934-2

81. Stojek, N.M., Wójcik-Fatla, A., & Dutkiewicz, J. (2012) Ann Agric Environ Med. 19, 295–298

82. Ahmed, S., Liwak-Muir, U., Walker, D., Zoldowski, A., Mears, A., Golovan, S., Mohr, S., Lem, P., & Harder, C. (2019) J Water Health 17, 237–253. doi:10.2166/wh.2019.252

83. Collins, S., Jorgensen, F., Willis, C., & Walker, J. (2015) J Appl Microbiol 119, 1158–1169. doi:10.1111/jam.12911

84. Collins, S.L., Afshar, B., Walker, J.T., Aird, H., Naik, F., Parry-Ford, F., Phin, N., Harrison, T.G., Chalker, V.J., Sorrell, S., & Cresswell, T. (2016) Epidemiol Infect 144, 796–802. doi:10.1017/S0950268815001983

85. Whiley, H. & Taylor, M. (2016) Crit. Rev. Microbiol. 42, 65–74. doi:10.3109/1040841X.2014.885930

86. Kuchta, J.M., States, S.J., McNamara, A.M., Wadowsky, R.M., & Yee, R.B. (1983) Appl. Environ. Microbiol. 46, 1134–1139

87. Shih, H.-Y. & Lin, Y.E. (2006) Appl Environ Microbiol 72, 6859–6859. doi:10.1128/AEM.00968-06

88. Chen, N.-T. & Chang, C.-W. (2010) J. Appl. Microbiol. 109, 623–634. doi:10.1111/j.1365-2672.2010.04678.x

89. Delgado-Viscogliosi, P., Solignac, L., & Delattre, J.-M. (2009) Appl. Environ. Microbiol. 75, 3502–3512. doi:10.1128/AEM.02878-08
90. Johnson, W.J., Jjemba, P.K., Bukhari, Z., & LeChevallier, M. (2018) *JAWWA* **110**. doi:10.5942/jawwa.2018.110.0021

91. Keramarou, M. & Evans, M.R. (2010) *Eurosurveillance* **15**. doi:10.2807/eese.15.42.19691-en

92. LeChevallier, M.W. (2019) *AWWA Water Science* **1**, e1139. doi:10.1002/aws2.1139

93. Olsvik, O., Popovic, T., Skjerve, E., Cudjoe, K.S., Hornes, E., Ugelstad, J., & Uhlén, M. (1994) *Clin Microbiol Rev* **7**, 43–54

94. Safarik, I., Horska, K., Pospiskova, K., & Safarikova, M. (2012) *Anal Bioanal Chem* **404**, 1257–1273. doi:10.1007/s00216-012-6056-x

95. Bedrina, B., Macián, S., Solís, I., Fernández-Lafuente, R., Baldrich, E., & Rodríguez, G. (2013) *BMC Microbiol* **13**, 88. doi:10.1186/1471-2180-13-88

96. Cebrían, F., Montero, J.C., & Fernández, P.J. (2018) *BMC Infect Dis* **18**, 696–704. doi:10.1186/s12879-018-3605-8

97. Rodríguez, G. (2018) *J Bacteriol Mycol* **5**, 1–5

98. Koide, M., Haranaga, S., Higa, F., Tateyama, M., Yamane, N., & Fujita, J. (2007) *Jap J Infect Dis* **60**, 214–216

99. Sun, Z., Bai, X., Chen, X., McCrae, D., & Saaski, E. (2013) in *4th International Conference on Biology, Environment and Chemistry* **58**, pp 125-130 DOI: 10.7763/IPCBE

100. Soria, E., Yanez, A., Murtula, R., & Catalan, V. (2012) in In: *Detection of Pathogens in Water Using Micro and Nano-Technology*. G. Zuccheri & N Asproulis (Eds). IWA Publishing, IWA Publishing

101. CDC Legionnaire’s Disease Surveillance Summary Report, United States 2016-2017 (2017) 50 https://www.cdc.gov/legionella/health-depts/surv-reporting/2016-17-surv-report-508.pdf [accessed on January 5th, 2021]

102. Crook, B., Willerton, L., Smith, D., Wilson, L., Poran, V., Helps, J., & McDermott, P. (2020) *Int J Hyg Environ Health* **224**, 1–7

103. Faccini, M., Russo, A.G., Bonini, M., Tunesi, S., Murtas, R., Sandrini, M., Senatore, S., Lamberti, A., Ciconali, G., & Cammarata, S. (2020) *Eurosurveillance* **25**, 1–9

104. Nakamura, I., Amemura-Maekawa, J., Kura, F., Kobayashi, T., Sato, A., Watanabe, H., & Matsumoto, T. (2020) *Int J Infect Dis* **93**, 300–304

105. Puri, S., Boudreaux-Kelly, M., Walker, J.D., Clancy, C.J., & Decker, B.K. (2020) *Int J Environ Res Public Health* **17**, 533–539
106. Petrisek, R. & Hall, J. (2018) *J Water Health* **16**, 25–33. doi:10.2166/wh.2017.118
Table 1. Methods used for the detection of *Legionella* from water samples

| Test Method          | Plate Culture | MPN          | qPCR            | IMS               | Lateral Flow |
|----------------------|---------------|--------------|-----------------|-------------------|--------------|
| Time to results      | 7-14 days     | 7 days       | Same day        | Same day          | Same day     |
| Presence/Absence     | Yes           | Yes          | Yes             | Yes               | Yes          |
| Quantification       | Yes (CFU)     | Yes (CFU)    | Yes (genomic units) | Semi-quantitative | No           |
| Live or dead cells   | Live          | Live         | Detects DNA from all cells | Live and potentially dead/damaged cells | Live and potentially dead/damaged cells |
| Detect VBNC          | No            | No           | Yes             | Yes               | Yes          |
| Legionella spp.      | Yes           | No           | Yes             | Yes               | -            |
| *L. pneumophila*     | Yes           | Yes          | Yes             | Yes@              | Yes          |
| Isolate available    | Yes           | Yes          | No              | No                | No           |
|                  |                  |                  |                  |                  |                  |
|------------------|------------------|------------------|------------------|------------------|------------------|
| **Sensitivity**  | low(106)         | 98%              | Sensitivity is   | 95.3%            | 100 CFU/L,      |
|                  |                  |                  | better than      |                  |                  |
|                  |                  |                  | culture methods  |                  |                  |
| **Specificity**  | 95.3%            | >97.9%           | 100%             | 88.4%            | Unknown          |
| **Limit of detection** | 1 CFU per 100ml(77) | ≥1 organisms/100 mL | 480 GU/L (107) | equivalent to culture | Unknown |
| **False positive** | 83%(69)         | < 4%             | Yes - but lower | 11.6%            | Unknown          |
|                  |                  |                  | if Free DNA      |                  |                  |
|                  |                  |                  | Removal Solution |                  |                  |
|                  |                  |                  | (FDRS) used      |                  |                  |
| **False negative** | 74%(69)         | 4.2%             | No - high        | 4.7%             | Unknown          |
|                  |                  |                  | negative         |                  |                  |
|                  |                  |                  | predictive value |                  |                  |
| Validation | Comparison against other techniques (58, 70, 108) | Comparison according to ISO 17994 against ISO 11731-2:2017 and ISO 11731 Equivalence according to (74) and approved and accepted in the SCA “Blue Book” (39) | NF validation; NF T90-471; ISO /TS 12869 Certified by the AOAC Research Institute. Meets the standard ISO-17381 “Water quality – Selection and application of ready-to-use test kits” methods in water analysis” | Unknown |
|---|---|---|---|---|

ScholarOne Support phone: 434-964-4100 email: ts.mcsupport@thomson.com
| Sample Preparation | Only for non-potable samples | Yes | Yes | Yes | Yes |
|-------------------|-----------------------------|-----|-----|-----|-----|
| On-site Test      | No                          | Yes* | Yes** | Yes* | Yes |
| Laboratory Test   | Yes                         | No  | Yes | Yes | No |
| Routine monitoring| Routine                     | Routine | Routine | Routine | Routine |
| Specialist expertise required | Yes | No | Yes | Yes, training provided | No |
| Advantages         | Compares with historical samples | Rapid sample preparation and processing | High specificity, sensitivity | Same day sample processing to result | Small, rapid, portable, no training required, easy interpretation |
|                    | Accepted measure of viability and quantification by regulators and standard bodies | Rapid assay processing | Low detection limits and the | | |
|                    | Recovery of isolates for epidemiologic investigations | | | | |
| Requires ≤ 100ml | No pretreatment step for potable samples. | No specialist laboratory required |
|------------------|------------------------------------------|----------------------------------|
|                  | No pretreatment step for potable samples. |
|                  | High sensitivity and specificity for *L. pneumophila* |
|                  | possibility to quantify the concentration of the microorganisms in the samples using real-time PCR. |
| Disadvantages                                      | Isolates can be recovered | Requires sophisticated equipment, appropriate specialist installations and trained personnel. | Need high presence of *L. pneumophila* | Manual method requires high presence of *L. pneumophila*. |
|---------------------------------------------------|---------------------------|------------------------------------------------------------------------------------------|----------------------------------------|--------------------------------------------------------|
| Length of time for results (7-14 days)            | 7 days                    | Inability to detect VNBC state (66)                                                      |                                        |Presence/absence only                               |
| Low sensitivity                                   |                           | Detects only *L. pneumophila*                                                             |                                        |                                                        |
| Loss of viability of bacteria after collection, difficulty in isolating *Legionella* in samples contaminated with other microbial (93) |                           | Detects only *L. pneumophila*                                                             |                                        |                                                        |
| Presence of interfering microbiota and the inability to detect VBNC state (66) |                           | Detects only *L. pneumophila*                                                             |                                        |                                                        |
| Both accompanying organisms and inhibitors may cause a rate of inconclusive results (65) |                           | Detects only *L. pneumophila*                                                             |                                        |                                                        |

Designed for *L. pneumophila* so does not recover all species of *Legionella*.
Interpretation of isolates on agar can be problematic (58).

Inter-laboratory variations have been reported (109).

Collection of 1\text{l} samples is cumbersome and transportation costly.

Pretreatment steps required carried out by specialist laboratory.

| Key publications | (58) | (34, 62, 70, 72, 75, 110–112) | (76, 77, 79–82, 82, 83, 90) | (65, 93–95, 113, 114) | (98, 99) |

* On site in this context refers to inhouse testing without the need for a standard microbiology laboratory.

Environmental samples may cause false negatives. False positives can be caused by the inability of PCR to differentiate between cells and free DNA.
** At the time of writing this applies to one method.

@ does not distinguish between *L. pneumophila* and *Legionella* spp.
Table 2
Considerations for method choice

| Test Method     | Plate Culture | MPN | qPCR | IMS | Lateral flow |
|-----------------|---------------|-----|------|-----|--------------|
| Presence/Absence| y             | y   | y    | y   | y            |
| Quantification  | y             | y   | n    | n   | n            |
| *Legionella* spp.* | n             | y   | y    | y   | Y            |
| L. *pneumophila* | y             | y   | y    | y   | y            |
| On site         | n             | y*  | y**  | y*  | y            |
| Laboratory      | y             | y   | y    | y   | n            |
| Same day        | n             | n   | y    | n   | Y            |
| 7 days          | > 7 days      | = 7 days | < 7 days | < 7 days | < 7 days |
| 8-14 days       | y             | < 8-14 days | < 8-14 days | < 8-14 days | < 8-14 days |

* On site in this context refers to inhouse testing without the need for a standard microbiology laboratory.

** At the time of writing this applies to one method.