Research Article

A Green Antioxidant Activity-Integrated Dual-Standard Method for Rapid Evaluation of the Quality of Traditional Chinese Medicine Xuebijing Injection by On-Line DPPH-CE-DAD

Jin Li,1 Jiao Liu,1 Wei Liu,1 Xie-an Yu,1 Jun Cao,2 Mingrui An,3 Xiuyi Gao,1 and Yan-xu Chang1

1Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
2College of Material Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 310036, China
3Department of Surgery, University of Michigan, Ann Arbor, MI 48109, USA

Correspondence should be addressed to Jun Cao; caojun91@163.com and Yan-xu Chang; tcmcyx@126.com

Received 26 July 2016; Accepted 30 August 2016

Copyright © 2016 Jin Li et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Much attention has been focused on treatment of sepsis which leads to high mortality all over the world in every year. Antioxidant activity seems to play a prominent role in the treatment of sepsis exhibited by Xuebijing injection. The aim of the present research was to develop an on-line 1, 1-diphenyl-2-picrylhydrazyl- (DPPH-) capillary electrophoresis-diode array detector (on-line DPPH-CE-DAD) method for rapidly assessing antioxidant properties and efficacious material basis of antioxidant activity as a way of quality control of Xuebijing injection. Several parameters affecting the separation were investigated, including the pH and concentrations of buffer, SDS, β-CD, and organic modifier as well as voltage and cassette temperature. Compared to previous traditional method, this improved method shortened the experimental cycle and became more efficient because it was successfully applied to analyze total antioxidant activity and contents of twelve antioxidants of Xuebijing injection under the same condition. The results revealed that the on-line DPPH-CE-DAD method was a reagent-saving, rapid, feasible, and green technique for quality control of Xuebijing injection in terms of pharmacological activity and contents of active ingredients. It also offered new opportunities for the analysis of antioxidant activity of complex matrix.

1. Introduction

Sepsis, a systemic inflammatory response syndrome caused by infection, is confirmed to be accompanied with the presence of bacteria or highly suspicious focus of infection [1]. Despite the use of antibiotic combination and good supportive therapy and care, treatment for sepsis is still unsatisfactory. The mortality from severe sepsis remains high between 34 and 43% [2]. In a recent septic immunomodulatory study, the traditional Chinese medicine (TCM) attracted much attention for its therapeutic concepts of integration and balanced regulation [3]. Xuebijing (XBJ) injection, extracted from Carthami flos, Paeoniae Radix Rubra, Chuanxiong Rhizoma, Salviae miltiorrhizae, and Angelicae sinensis Radix, is a traditional Chinese medicine that has been approved for many years by the State Food and Drug Administration (SFDA) of China to clinically treat sepsis [4]. Recent studies has also shown that XBJ is effective for the treatment of serious complications of sepsis, such as hematopoietic injury [4], disseminated intravascular coagulation [5], hematopoietic injury [6], and lung injury [1]. It has been reported that oxidative stress was caused by the pathological process of viral infection and antioxidants could reduce oxidative stress [7, 8]. It has also been demonstrated that Xuebijing injection could decrease the levels of reactive oxygen species (ROS) by increasing glutathione and superoxide dismutase (SOD) levels [4]. Thus, it can be speculated that Xuebijing injection possesses antioxidant properties. However, the underlying
Traditional methods of quality control of TCMs included High-Performance Liquid Chromatography (HPLC), Gas Chromatography-Mass Spectrometry (GC-MS), and HPLC-MS [9–11]. Because these methods are limited in determining the contents of compounds, they cannot meet our needs to comprehensively assess the quality of TCMs expected in combination for their pharmacological effect [12]. Therefore, the dual-standard quality assessment was introduced in this study to establish a simple and feasible method to screen the antioxidant components and evaluate the quality of Xuebijing injection.

1, 1-Diphenyl-2-picrylhydrazyl (DPPH) which is a radical-containing compound is usually used to quantify the antioxidant activity of various samples [13, 14]. Various methods were used for the assessment of antioxidants in complex samples, such as the DPPH radical with a spectrophotometer, dot-blot test on a thin-layer chromatography (TLC) plate, and on-line HPLC-DPPH assay [14–16]. These pharmacological methods can lead to long cycle, false positives and can be harmful to the environment. Recently, high-performance capillary electrophoresis (HPCE), as a green separation technology, offers an alternative method that has many advantages compared to other methods, in that it provides good resolution of the sample with a shorter run time, uses less harmful solvents, and is not influenced by color pigments [17, 18].

In a previous paper, we reported our preliminary finding that the on-line DPPH-CE-DAD conditions for determination of the total antioxidant activity and contents of antioxidants were entirely different [18]. If two conditions can be integrated into the same condition, thus the total time needed for the experiment will be significantly cut down and less intensive labor will be achieved. Taking this into account, we have developed a single method that permits the separation and quantification of DPPH and the antioxidants under the same condition by integrating two separation methods into one step. The on-line DPPH-capillary electrophoresis-diode array detector (on-line DPPH-CE-DAD) in a run was selected as a typical example to develop a simple and feasible dual-standard method to screen the antioxidant components and evaluate the quality of Xuebijing (XBJ) injection. The feasibility and precision of on-line DPPH-CE-DAD were discussed in our present report. Schematic diagram of online DPPH-CE-DAD method was shown in Figure 1. The improved DPPH-CE-DAD method provided a green, environmental protection and rapid approach to quantitatively analyze total antioxidant activity and contents of antioxidants of Xuebijing injection and other TCMs in short time. An antioxidant activity-integrated dual-standard method by online DPPH-CE-DAD will become the advantageous tool for quality control of TCMs.

2. Materials and Methods

2.1. Chemicals and Reagents. Standard substances including oxyaeoninflorin, hydroxysafflor yellow A, protocatechuic aldehyde, peoniflorin, rosmarinic acid, salvianolic acid B, and sodium danshensu were individually dissolved with deionized water. Caffeic acid, ferulic acid, rutin, and isoquercitrin were individually dissolved with 50% methanol. Senkyunolide I was dissolved with methanol. Appropriate amount of the standards was mixed to prepare a standard solution containing twelve compounds. DPPH solution was dissolved with methanol at a concentration of 1 mg/mL for each day of analysis and stored in the dark prior to use. Standard solutions and samples were stored at 4°C.

2.2. Preparation of Standard Solutions. Oxyaeoninflorin, hydroxysafflor yellow A, protocatechuic aldehyde, peoniflorin, rosmarinic acid, salvianolic acid B, and sodium danshensu were individually dissolved with deionized water. Caffeic acid, ferulic acid, rutin, and isoquercitrin were individually dissolved with 50% methanol. Senkyunolide I was dissolved with methanol. Appropriate amount of the standards was mixed to prepare a standard solution containing twelve compounds. DPPH solution was dissolved with methanol at a concentration of 1 mg/mL for each day of analysis and stored in the dark prior to use. Standard solutions and samples were stored at 4°C.

2.3. Preparation of Quality Control Samples. Quality control (QC) samples of oxyaeoninflorin, hydroxysafflor yellow A, protocatechuic aldehyde, peoniflorin, rosmarinic acid, salvianolic acid B, sodium danshensu, caffeic acid, ferulic acid, senkyunolide I, rutin, and isoquercitrin were prepared by diluting appropriate mixed standard solutions to make three concentration levels (low, medium, and high), respectively.

2.4. Preparation of Samples. The Xuebijing injection samples were centrifuged at 14,000 rpm for 10 min. Supernatant was then filtrated through 0.22-μm nylon prior to injection. The different concentration of Xuebijing injection was diluted with deionized water and analyzed by HPCE.

2.5. Apparatus and Conditions of DPPH-CE-DAD Method. Capillary electrophoresis was carried out on an Agilent technologies HPCE 7100 (Agilent, Germany) equipped with a diode array detector and a sample tray temperature control system. Agilent ChemStation software for instrumental control and data processing was used. The analysis was performed on an uncoated capillary with effective length of 52 cm and an internal diameter of 50 μm (Ruifeng, Hebei, China). Before the new capillary was initiated, it was flushed with 1.0 M NaOH for 10 min, followed by 0.1 M NaOH for 10 min and deionized water for 10 min. In between each sample throughout the experiment, the capillary was rinsed with 0.1 M NaOH for 3 min, deionized water for 3 min, and buffer for 3 min, successively. The electrolyte buffer was a solution containing 20 mM NaH₂PO₄ (pH 5.5), 100 mM sodium dodecyl sulfate (SDS), 10 mM β-cyclodextrin (β-CD), and 5% ACN (v/v). To estimate the total antioxidant activity and...
screen antioxidants of Xuebijing injection, hydrodynamic injection was used for sample solution at 50 mbar for 8 s followed by DPPH solution at 50 mbar pressure for 2 s (experimental group). Subsequently, a positive voltage was applied at 25 kV, with a capillary temperature of 22°C. Analytes and DPPH were monitored at 280 nm and 517 nm, respectively. Control group I was defined as Xuebijing injection on-line spiked methanol, and control group II was defined as DPPH solution on-line spiked deionized water.

Consequently, in comparison with control group II, the magnitude of decrease of DPPH peak seen in the electrophoretogram of the experimental group can be used to assess the antioxidant activity of the sample. Similarly, the magnitude of decrease of composition peak seen in the electrophoretogram of the experimental group can be used as a basis of antioxidant activity of Xuebijing injection when compared to control group I.

3. Results and Discussion

3.1. Optimization of On-Line DPPH-CE-DAD for Determination of Total Antioxidant Activity and Multicomponents of Xuebijing Injection. The electrophoresis system was optimized by adjusting the pH and concentrations of buffer, SDS, β-CD, and organic modifier as well as voltage and cassette temperature. The running electrolyte for sample analysis was similar to that described previously [18], except that it was made possible to simultaneously separate and quantify DPPH and the antioxidants in one step by the newly DPPH-CE-DAD method.

As is known, DPPH is not stable and would produce other substances in acid or alkaline conditions. The pH is the most significant variable influencing the performance of DPPH in comparison with other parameters. Hence, the pH were varied from 5.0 to 8.0 for sample separation while employing a running electrolyte comprising 20 mM NaH$_2$PO$_4$, 100 mM SDS, 10 mM β-CD, and 5% ACN (v/v). When the pH was at 7, 8, and 9, the peak shapes of all compounds were poor. At pH 5.0–6.0, acceptable separation was obtained for all the constituents and prolonged migration time was obtained with decreasing pH of the buffer, revealing that the migration velocity of weak electrolyte and the velocity of the electroosmotic flow (EOF) changed by regulating the pH [19]. From the results, pH of 5.5 was considered satisfactory with respect to migration time (Figure 2(a)).

Ion strength or concentrations of buffer have significant effects on solute mobility and separation efficiency [20]. NaH$_2$PO$_4$ buffer at concentrations within the range of 0–40 mM under constant instrumentation conditions was investigated. Comparing the concentration of NaH$_2$PO$_4$ buffer from 0 to 10 mM which could not reach the baseline separation, 20–40 mM gave a good separation efficiency and resolution for each analyte. However, prolonged migration time was obtained at 30–40 mM as shown in Figure 2(b).
The NaH₂PO₄ buffer concentration for sample and DPPH determination was set at 20 mM.

The effects of SDS concentrations of 0, 10, 30, 50, 80, 100, and 150 mM for sample separation were tested. As can be seen from Figure 2(c), prolonged migration time was obtained with increase in the concentration of SDS. At low SDS concentrations (0–80 mM), the separation of protocatechuic aldehyde, peoniflorin, salvianolic acid B, sodium
Evidence-Based Complementary and Alternative Medicine

Slightly shortened migration time was observed with increase in the concentration of sodium danshensu. With these values established, voltages (25–35 kV) and cassette temperatures (20–25 °C) which also influence the peak separation were investigated. A shorter migration time and poor resolution were obtained at a higher voltage (30 kV), while a general increase of migration time was found at a lower voltage (20 kV) (Figure 2(f)). Thus, a positive voltage of 25 kV was chosen as the optimum separation voltage. The cassette temperature was finally set at 22 °C.

Based on our previous research [18], 20 mM Na2HPO4 (pH 6.0) + 50 mM SDS was the optimized condition for analyzing DPPH. However, an optimal condition comprising an electrolyte containing 20 mM NaH2PO4 (pH 5.5), 100 mM SDS, 10 mM β-CD, and 5% ACN (v/v) with the voltage and temperature setting at 25 kV and 22 °C was employed in all of our subsequent experiments, thereby reaching a balance between evaluating total antioxidant activity and screening antioxidants of Xuebijing injection in one step.

### 3.2. On-Line Determination of Total Antioxidant Activity of Sample

DPPH assay based on the reduction of absorbance at 517 nm of the stable DPPH radical by an antiradical is easy and potentially accurate for measuring the general radical scavenging capabilities of antioxidants [23]. Relying on the proposed DPPH-CODAD method as described above, the absorbance of DPPH on-line spiked Xuebijing injection (experimental group) was relatively weak compared to that of the on-line spiked deionized water (control group) because DPPH would react with antioxidants of Xuebijing injection in the capillary after injecting separately (Figure 3). The relative percentage of inhibition of DPPH was determined by the following equation: [Inhibition (%)] = (P0 − Pi)/P0 × 100%. P0 was peak area of DPPH (on-line spiked deionized water) and Pi was peak area of DPPH (on-line spiked Xuebijing injection). In the total antioxidant activity assay of samples, Xuebijing injections with different diluted times were on-line spiked with DPPH, respectively, to carry out the maximal inhibitory concentration at 50% (IC50) which denotes the diluted times of sample required to scavenge 50% of DPPH radicals. Table 1 displayed the IC50 values of 10 batches of samples.

3.3. Method Validation. The calibration graphs of twelve antioxidants of Xuebijing injection were established with the peak area ratio as ordinate (y) versus the concentration

---

**Table 1: The result of IC50 values of 10 batches of samples (n = 3).**

| Sample  | IC50 (μg/mL) |
|---------|-------------|
| 1301291 | 16.3        |
| 1303041 | 14.5        |
| 1303051 | 17.2        |
| 1303071 | 16.6        |
| 1302221 | 9.40        |
| 1302231 | 16.8        |
| 1303021 | 17.7        |
| 1303042 | 11.7        |
| 1303031 | 6.70        |
| 1302051 | 7.40        |

---

**Figure 3: Capillary electropherograms of DPPH:** DPPH (blue) and on-line mixed with Xuebijing injection (red). Experimental conditions: 50 μm i.d. × 375 μm o.d. × 60.5 cm length (52 cm effective length), uncoated; 20 mM NaH2PO4 (pH 5.5), 100 mM SDS, 10 μM β-CD, 5% (v/v) ACN, voltage, 25 kV; temperature, 22° C; detection wavelength, 517 nm; pressure injection, 50 mbar for 2 s.
The precision and accuracy of the proposed method was evaluated by injecting repetitive quality control samples of twelve compounds with equivalent amount of the standard solution. The results of recoveries of twelve compounds listed in Table 2 were all in the range of 97.4%–102% and the RSDs were below 4.8%.

The stability expressed by peak area was evaluated by injecting repetitive quality control samples of twelve compounds at low, medium, and high concentrations and DPPH in the CE equipment over 24 h. Table 3 showed that the accuracies of antioxidants were within the range of 94.3%–104% and the RSDs of all compounds and DPPH were below 8.5%, respectively. The result confirmed that they were stable for 24 h at 4°C.

All these data indicated that electrophoretic assay method was acceptable and could be applied in determining the total antioxidant activity of the multicomponents of Xuebijing injection.

### Table 2: The calibration curves, linearity ranges, LODs, LOQs, and recoveries of twelve compounds (n = 6).

| Compounds                  | Regression equation | $R^2$ | Linearity range (µg/mL) | LOD (µg/mL) | LOQ (µg/mL) | Recovery Average (%) | RSD (%) |
|----------------------------|---------------------|-------|-------------------------|-------------|-------------|----------------------|---------|
| Oxypaeoniflorin            | $y = 0.0658x + 0.3049$ | 0.9991 | 33.3–400                | 10.0        | 12.0        | 101.1                | 4.6     |
| Hydroxysafflor yellow A    | $y = 0.3099x - 1.1776$ | 0.9999 | 25–600                  | 1.2         | 3.8         | 97.4                 | 2.9     |
| Protocatechuic aldehyde    | $y = 0.6055x - 0.2398$ | 0.9996 | 4.2–50                  | 1.2         | 4.1         | 101.0                | 3.5     |
| Peoniflorin                | $y = 0.1948x - 0.6145$ | 0.9998 | 62.5–2000               | 1.5         | 5.0         | 98.2                 | 1.4     |
| Rosmarinic acid            | $y = 0.3097x - 0.0843$ | 0.9990 | 5.8–70                  | 1.5         | 5.6         | 101.1                | 3.7     |
| Salvianolic acid B         | $y = 0.2089x - 0.526$  | 0.9995 | 10–120                  | 3.0         | 9.4         | 100.1                | 4.5     |
| Sodium danshensu           | $y = 0.1248x - 0.311$  | 0.9982 | 13–156                  | 4.0         | 13.0        | 99.7                 | 4.8     |
| Caffeic acid               | $y = 0.8707x - 0.2758$ | 0.9995 | 2.5–30                  | 0.8         | 2.5         | 99.3                 | 4.8     |
| Ferulic acid               | $y = 0.8666x - 0.3651$ | 0.9995 | 2.5–60                  | 0.8         | 2.5         | 101.9                | 2.7     |
| Senkyunolide I             | $y = 0.198x - 0.8145$  | 0.9993 | 20–480                  | 5.0         | 17.4        | 97.7                 | 3.9     |
| Rutin                      | $y = 0.2938x - 1.0819$ | 0.9990 | 13–156                  | 4.0         | 13.0        | 99.5                 | 3.9     |
| Isoquercitrin              | $y = 0.3888x - 0.0695$ | 0.9991 | 11–132                  | 3.5         | 11.0        | 102.3                | 2.5     |
Table 3: Intraday and interday accuracy and precision and stability of twelve compounds and DPPH (n = 6).

| Compounds                | Concentrations (µg/mL) | Intraday Accuracy (%) | Intraday RSD (%) | Interday Accuracy (%) | Interday RSD (%) | Stability for 24h Remains (%) | Stability for 24h RSD (%) |
|--------------------------|------------------------|-----------------------|-----------------|-----------------------|-----------------|-----------------------------|--------------------------|
|                         |                        |                       |                 |                       |                 |                             |                          |
| Oxypaeoniflorin          | 66.7                   | 94.9                  | 3.4             | 97.8                  | 2.8             | 97.2                        | 3.7                      |
|                         | 133.3                  | 97.6                  | 2.3             | 97.5                  | 0.5             | 99.9                        | 3.4                      |
|                         | 400                    | 96.6                  | 2.7             | 98.1                  | 1.4             | 96.5                        | 0.9                      |
| Hydroxysafflor yellow A  | 50                     | 97.8                  | 1.1             | 97.5                  | 0.2             | 100.9                       | 4.5                      |
|                         | 100                    | 92.1                  | 4.1             | 97.0                  | 4.9             | 95.0                        | 4.7                      |
|                         | 300                    | 96.7                  | 5.1             | 98.4                  | 2.3             | 97.1                        | 0.8                      |
| Protocatechuic aldehyde  | 8.3                    | 103.7                 | 4.9             | 97.8                  | 4.9             | 97.4                        | 8.5                      |
|                         | 16.7                   | 97.4                  | 2.6             | 100.3                 | 2.8             | 99.4                        | 3.0                      |
|                         | 50                     | 100.6                 | 0.9             | 98.5                  | 3.1             | 101.3                       | 0.9                      |
| Peoniflorin              | 166.7                  | 102.1                 | 0.4             | 98.7                  | 3.0             | 101.9                       | 0.3                      |
|                         | 333.3                  | 100.6                 | 0.8             | 98.6                  | 1.9             | 101.5                       | 1.3                      |
|                         | 1000                   | 101.8                 | 0.2             | 99.2                  | 2.7             | 103.4                       | 2.2                      |
| Rosmarinic acid          | 11.7                   | 95.8                  | 3.7             | 98.8                  | 4.5             | 95.6                        | 0.2                      |
|                         | 23.3                   | 102.2                 | 3.5             | 102.8                 | 1.5             | 102.6                       | 0.6                      |
|                         | 70                     | 101.9                 | 3.0             | 102.3                 | 0.4             | 101.9                       | 0.6                      |
| Salvianolic acid B       | 20                     | 96.5                  | 4.0             | 98.2                  | 1.7             | 97.7                        | 2.0                      |
|                         | 40                     | 98.7                  | 2.9             | 96.1                  | 2.2             | 99.2                        | 0.8                      |
|                         | 120                    | 98.4                  | 4.0             | 96.7                  | 4.1             | 98.0                        | 0.4                      |
| Sodium danshensu         | 26                     | 101.6                 | 4.4             | 101.7                 | 0.2             | 103.6                       | 2.9                      |
|                         | 52                     | 104.7                 | 2.4             | 104.2                 | 1.3             | 103.7                       | 1.3                      |
|                         | 156                    | 102.9                 | 3.6             | 101.5                 | 1.1             | 102.1                       | 1.0                      |
| Caffeic acid             | 5                      | 105.2                 | 4.5             | 99.5                  | 4.6             | 103.9                       | 1.5                      |
|                         | 10                     | 100.2                 | 2.8             | 96.5                  | 3.6             | 98.9                        | 1.8                      |
|                         | 30                     | 97.8                  | 2.8             | 97.2                  | 1.2             | 97.7                        | 0.3                      |
| Ferulic acid             | 5                      | 102.0                 | 4.7             | 100.4                 | 3.7             | 100.3                       | 2.0                      |
|                         | 10                     | 100.7                 | 2.8             | 97.7                  | 3.1             | 101.9                       | 1.8                      |
|                         | 30                     | 94.4                  | 1.7             | 97.0                  | 2.5             | 97.4                        | 4.5                      |
| Senkyunolide I           | 40                     | 99.2                  | 3.9             | 100.3                 | 2.8             | 97.9                        | 1.7                      |
|                         | 80                     | 101.4                 | 2.3             | 100.2                 | 1.3             | 101.7                       | 0.4                      |
|                         | 240                    | 100.7                 | 0.8             | 101.8                 | 0.9             | 101.2                       | 0.7                      |
| Rutin                    | 26                     | 103.0                 | 3.6             | 101.3                 | 1.4             | 100.1                       | 3.8                      |
|                         | 52                     | 97.0                  | 1.5             | 97.8                  | 0.8             | 94.3                        | 4.0                      |
|                         | 156                    | 99.7                  | 2.2             | 97.5                  | 2.5             | 99.5                        | 0.3                      |
| Isoquercitrin            | 22                     | 100.0                 | 3.3             | 97.4                  | 2.2             | 97.8                        | 3.0                      |
|                         | 44                     | 100.7                 | 4.9             | 100.2                 | 1.3             | 99.8                        | 1.0                      |
|                         | 132                    | 104.2                 | 1.7             | 100.6                 | 3.6             | 101.4                       | 3.7                      |
| DPPH                     | 1000                   | —                     | 2.4             | —                     | 0.9             | —                           | —                        |

3.5. Sample Analysis. The developed DPPH-CE-DAD method was applied for analyzing the contents of twelve antioxidants of 10 batches of Xuebijing injection under the optimized conditions. Figure 5 displayed the typical chromatographic profile of the sample. The results of the sample analysis for oxypaeoniflorin, hydroxysafflor yellow A, protocatechuic aldehyde, peoniflorin, rosmarinic acid, salvianolic acid B, sodium danshensu, caffeic acid, ferulic acid, senkyunolide I, rutin, and isoquercitrin were in the range of 39.1–54.6 µg/mL, 381.2–529.4 µg/mL, 15.4–27.3 µg/mL, 1736.6–1980.9 µg/mL, 10.8–25.4 µg/mL, 6.9–17.4 µg/mL, 13.1–24.7 µg/mL, 9.4–14.6 µg/mL, 32.0–37.0 µg/mL, 266.1–382.4 µg/mL, 18.8–28.0 µg/mL, and 26.7–40.2 µg/mL, respectively, which illustrated major difference in the concentrations of twelve antioxidants of each batch of Xuebijing injection (Table 4).

Given the difference in the IC_{50} values of 10 batches, it was likely to be as a result of the different contents of antioxidants. As shown in Figure 6, the data from total content of twelve compounds with antioxidant activity across 10 batches of Xuebijing injections showed a good correlation (R^2 = 0.931) with above-referred data of determination of.
total antioxidant activity of samples. The result illustrated that twelve selected antioxidants can serve as key quality control markers to maintain batch-to-batch uniformity and efficacy. It was also validated that the proposed method was feasible and accurate in determining the total antioxidant activity with multiple active ingredients for quality control of TCMs.

**4. Conclusions**

To improve the previous DPPH-CE-DAD method, we developed a simple method that made it possible to separate and quantify DPPH and the antioxidants under the same condition. In the course of on-line mixing DPPH and sample, the magnitude of decrease of DPPH peak seen in the electrophoretogram could calculate the total antioxidant activity of Xuebijing injection. Similarly, twelve antioxidant active ingredients containing oxypaeoniflorin, hydroxysafflor yellow A, protocatechuic aldehyde, peoniflorin, rosmarinic acid, salvianolic acid B, sodium danshensu, caffeic acid, ferulic acid, senkyunolide I, rutin, and isoquercitrin were rapidly screened relying on the magnitude of decrease of composition peak seen. Results illustrated that the advantages of this developed method were reagent-saving, rapid, feasible, and green technique which is not harmful to the environment. The improved on-line DPPH-CE-DAD method
| Samples  | Oxypaeoniflorin | Hydroxysafflor yellow A | Protocatechuc aldehyde | Peoniflorin | Rosmarinic acid | Salvianolic acid | Sodium danshensu | Caffeic acid | Ferulic acid | Senkyunolide I | Rutin | Isoquercitrin |
|----------|----------------|-------------------------|------------------------|------------|----------------|----------------|-----------------|--------------|--------------|----------------|-------|---------------|
| 1301291  | 49.4           | 381.2                   | 15.7                   | 1962.9     | 19.1           | 17.4           | 21.6            | 12.4         | 36.5         | 332.4          | 23.0  | 32.0          |
| 1303041  | 44.2           | 482.2                   | 24.5                   | 1806.2     | 16.9           | 11.0           | 22.6            | 9.5          | 33.9         | 382.4          | 26.6  | 32.7          |
| 1303071  | 39.3           | 466.7                   | 15.4                   | 1892.3     | 15.7           | 18.4           | 22.1            | 9.4          | 36.7         | 362.3          | 28.0  | 32.1          |
| 1303221  | 39.3           | 529.4                   | 19.2                   | 1736.6     | 14.0           | 18.4           | 24.7            | 7.4          | 33.2         | 266.1          | 20.9  | 32.3          |
| 1302231  | 40.9           | 440.2                   | 21.3                   | 1899.8     | 16.6           | 13.9           | 23.6            | 9.6          | 35.3         | 352.0          | 23.8  | 32.6          |
| 1303201  | 48.1           | 415.4                   | 21.1                   | 1980.9     | 15.2           | 11.94          | 13.7            | 11.4         | 32.0         | 369.3          | 18.8  | 31.8          |
| 1303042  | 46.3           | 426.6                   | 273                    | 1881.6     | 25.4           | 12.2           | 23.5            | 14.0         | 37.0         | 312.6          | 21.2  | 40.2          |
| 1303031  | 54.6           | 389.9                   | 24.1                   | 1751.2     | 10.8           | 6.9            | 13.1            | 9.7          | 34.6         | 371.5          | 21.2  | 26.7          |
| 1302031  | 46.1           | 405.7                   | 24.3                   | 1840.6     | 18.4           | 13.3           | 19.7            | 14.6         | 34.8         | 280.9          | 21.1  | 36.6          |
achieved the goal in analyzing the total antioxidant activity and contents of antioxidants of Xuebijing injection in one step and was applicable to evaluate the quality of TCMs which exerted directly their antioxidant effects on the radical itself. Furthermore, this presented approach can be applied in evaluating the antioxidant activity of unknown molecules.

Competing Interests
The authors have declared that there are no competing interests regarding the publication of this paper.

Authors’ Contributions
Jiao Liu and first author Jin Li contributed equally to this study.

Acknowledgments
This research was supported by National Natural Science Foundation of China (81503213 and 81303140), Stated Key Development Program for Basic Research of China (no. 973:2012CB723504), and the State Science & Technology Commission of MOST of China (2014ZX09304307-001-005 and 2014ZX09201022-004).

References
[1] M. W. Liu, Y. H. Wang, C. Y. Qian, and H. Li, “Xuebijing exerts protective effects on lung permeability leakage and lung injury by upregulating Toll-interacting protein expression in rats with sepsis,” International Journal of Molecular Medicine, vol. 34, no. 6, pp. 1492–1504, 2014.

[2] H. Wisplinghoff, T. Bischoff, S. M. Tallent, H. Seifert, R. P. Wenzel, and M. B. Edmond, “Nosocomial bloodstream infections in US hospitals: analysis of 24,179 cases from a prospective nationwide surveillance study,” Clinical Infectious Diseases, vol. 39, no. 3, pp. 309–317, 2004.

[3] X.-D. He, Y. Wang, Q. Wu et al., “Xuebijing protects rats from sepsis challenged with Acinetobacter baumannii by promoting annexin A1 expression and inhibiting proinflammatory cytokines secretion,” Evidence-Based Complementary and Alternative Medicine, vol. 2013, Article ID 804940, 11 pages, 2013.

[4] D. G. Li, L. Lu, J. L. Zhang et al., “Mitigating the effects of Xuebijing Injection on hematopoietic cell injury induced by total body irradiation with γ rays by decreasing reactive oxygen species levels,” International Journal of Molecular Sciences, vol. 15, no. 6, pp. 10541–10553, 2014.

[5] Q. Yin and C. S. Li, “Treatment effects of xuebijing injection in severe septic patients with disseminated intravascular coagulation,” Evidence-Based Complementary and Alternative Medicine, vol. 2014, Article ID 949254, 6 pages, 2014.

[6] Y. Guo, Y. Wang, X. Huang et al., “Determination of hydroxysafflor yellow A in biological fluids of patients with traumatic brain injury by UPLC-ESI-MS/MS after injection of xuebijing,” Biomedical Chromatography, vol. 28, no. 8, pp. 1090–1095, 2014.

[7] C. Deblanc, F. Robert, T. Pinard et al., “Pre-infection of pigs with Mycoplasma hypopneumoniae induces oxidative stress that influences outcomes of a subsequent infection with a swine influenza virus of H1N1 subtype,” Veterinary Microbiology, vol. 162, no. 2–4, pp. 643–651, 2013.

[8] S. Kelekçi, O. Eviyağlı, V. Sen et al., “The relationships between clinical outcome and the levels of total antioxidant capacity (TAC) and coenzyme Q (CoQ10) in children with pandemic influenza (H1N1) and seasonal flu,” European Review for Medical and Pharmacological Sciences, vol. 16, no. 8, pp. 1033–1038, 2012.

[9] K. Zhai, G. Gao, W. Cao, L. Zhao, X. Fang, and H. Duan, “Simultaneous HPLC determination of four active compounds in fengshiding capsules, a Chinese medicine,” Indian Journal of Pharmaceutical Sciences, vol. 76, no. 5, pp. 445–449, 2014.

[10] S. Jiang, P. Lai, J. Li, and G. Wang, “Antioxidant activities and essential oil composition of Herba Artemisiae Scopariae from China,” Journal of Oleo Science, vol. 61, no. 5, pp. 291–295, 2012.

[11] S. Xiao, R. R. Yu, N. Ai, and X. H. Fan, “Rapid screening natural-origin lipase inhibitors from hypolipidemic decoctions by ultrafiltration combined with liquid chromatography-mass spectrometry,” Journal of Pharmaceutical and Biomedical Analysis, vol. 104, pp. 67–74, 2015.

[12] H.-T. Liu, Y.-F. Wang, O. Olaleye et al., “Characterization of in vivo antioxidant constituents and dual-standard quality assessment of Danhong injection,” Biomedical Chromatography, vol. 27, no. 5, pp. 655–663, 2013.

[13] R. G. de Oliveira Jr., G. R. Souza, A. L. Guimarães et al., “Dried extracts of Enchorilium spectabile (Bromeliaceae) present antioxidant and photoprotective activities in vitro,” Journal of Young Pharmacists, vol. 5, no. 3, pp. 102–105, 2013.

[14] H. A. G. Niederländer, T. A. van Beek, A. Bartasius, and I. I. Koleva, “Antioxidant activity assays on-line with liquid chromatography,” Journal of Chromatography A, vol. 1210, no. 2, pp. 121–134, 2008.

[15] S. Agatonovic-Kustrin, D. Babazadeh Ortakand, D. W. Morton, and A. P. Yusof, “Rapid evaluation and comparison of natural products and antioxidant activity in calendula, feverfew, and German chamomile extracts,” Journal of Chromatography A, vol. 1385, pp. 103–110, 2015.

[16] Y. Zhang, S. Shi, Y. Wang, and K. Huang, “Target-guided isolation and purification of antioxidants from Selaginella sinensis by offline coupling of DPPH-HPLC and HSCCC experiments,” Journal of Chromatography B: Biomedical Sciences and Applications, vol. 879, no. 2, pp. 191–196, 2011.

[17] S. Vshivkov, E. Pshenichnov, Z. Golubenko, A. Akhunov, S. Namazov, and R. D. Stipanovic, “Capillary electrophoresis to quantitate gossypol enantiomers in cotton flower petals and seed,” Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, vol. 908, pp. 94–97, 2012.

[18] Y. Chang, J. Liu, Y. Bai et al., “The activity-integrated method for quality assessment of reduning injection by on-line DPPH-CE-DAD,” PLoS ONE, vol. 9, no. 9, Article ID e006254, 2014.

[19] S. Orlandini, R. Gotti, and S. Furlanetto, “Multivariate optimization of capillary electrophoresis methods: a critical review,” Journal of Pharmaceutical and Biomedical Analysis, vol. 87, pp. 290–307, 2014.

[20] H. H. Yeh, Y. H. Yang, J. Y. Ko, and S. H. Chen, “Rapid determination of piracetam in human plasma and cerebrospinal fluid by micellar electrokinetic chromatography with sample direct injection,” Journal of Chromatography A, vol. 1120, no. 1–2, pp. 27–34, 2006.

[21] F. K. Liu, “Preconcentration and separation of neutral steroid analytes using a combination of sweeping micellar electrokinetic chromatography and a Au nanoparticle-coated solid phase
extractionsorbent," *Journal of Chromatography A*, vol. 1215, no. 1-2, pp. 194–202, 2008.

[22] R. Gottardo, A. Bertaso, J. Pascali et al., “Micellar electrokinetic chromatography: a new simple tool for the analysis of synthetic cannabinoids in herbal blends and for the rapid estimation of their log $P$ values,” *Journal of Chromatography A*, vol. 1267, pp. 198–205, 2012.

[23] O. A. Chat, M. H. Najar, M. A. Mir, G. M. Rather, and A. A. Dar, “Effects of surfactant micelles on solubilization and DPPH radical scavenging activity of Rutin,” *Journal of Colloid and Interface Science*, vol. 355, no. 1, pp. 140–149, 2011.