Evolution of T1 Relaxation, ADC, and Fractional Anisotropy during Early Brain Maturation: A Serial Imaging Study on Preterm Infants

XJ. Schneider, T. Kober, M. Bickle Graz, R. Meuli, P.S. Hüppi, P. Hagmann, and A.C. Truttmann

ABSTRACT

BACKGROUND AND PURPOSE: The alteration of brain maturation in preterm infants contributes to neurodevelopmental disabilities during childhood. Serial imaging allows understanding of the mechanisms leading to dysmaturation in the preterm brain. The purpose of the present study was to provide reference quantitative MR imaging measures across time in preterm infants, by using ADC, fractional anisotropy, and T1 maps obtained by using the magnetization-prepared dual rapid acquisition of gradient echo technique.

MATERIALS AND METHODS: We included preterm neonates born at <30 weeks of gestational age without major brain lesions on early cranial sonography and performed 3 MRIs (3T) from birth to term-equivalent age. Multiple measurements (ADC, fractional anisotropy, and T1 relaxation) were performed on each examination in 12 defined white and gray matter ROIs.

RESULTS: We acquired 107 MRIs (35 early, 33 intermediary, and 39 at term-equivalent age) in 39 cerebral low-risk preterm infants. Measures of T1 relaxation time showed a gradual and significant decrease with time in a region- and hemispheric-specific manner. ADC values showed a similar decline with time, but with more variability than T1 relaxation. An increase of fractional anisotropy values was observed in WM regions and inversely a decrease in the cortex.

CONCLUSIONS: The gradual change with time reflects the progressive maturation of the cerebral microstructure in white and gray matter. Our study provides reference trajectories from 25 to 40 weeks of gestation of T1 relaxation, ADC, and fractional anisotropy values in low-risk preterm infants. We speculate that deviation thereof might reflect disturbed cerebral maturation; the correlation of this disturbed maturation with neurodevelopmental outcome remains to be addressed.

ABBREVIATIONS: FA = fractional anisotropy; GA = gestational age; MP2RAGE = magnetization-prepared dual rapid acquisition of gradient echo; PLIC = posterior limb of the internal capsule; \(R^2 \) = correlation coefficient adjusted for the degree of freedom; TEA = term-equivalent age; GRAPPA = generalized autocalibrating parallel acquisition

Offering a prognosis for the neurodevelopment of very preterm infants remains a challenge, as has recently been shown.1 Yet, prematurity still carries a high burden of impairment in survivors, affecting motor, cognitive, and socioemotional development.2,3 While the motor deficits are frequently linked to moderate or severe WM lesions such as cystic periventricular leukomalacia or large intraparenchymal hemorrhage, the cognitive abnormalities are probably more related to the mixed picture of brain injury and alteration of cerebral development,4 coined by Volpe as diffuse encephalopathy of prematurity.5 A large body of work in the past decades has been devoted to new techniques of...
MR imaging, specifically addressing the question of the matura-
tion of the preterm brain.

Longitudinal imaging of the growing brain between 25 and 40
weeks of gestation allows assessing neuronal differentiation, gyral
maturation, connecting fiber development, and early myelina-
tion.6 To analyze these features of normal/abnormal maturation,
efficient tools and reference values are still lacking. Several au-
thors have described serial quantitative measures by using appar-
ent diffusion coefficients and fractional anisotropy (FA) in vari-
ous cohorts.7-11 These sequences probe tissue microstructure and
are used as markers of maturation, especially for axonal and den-
ritic organization and myelination. Recently, magnetization-
prepared dual rapid acquisition of gradient echo (MP2RAGE)
emerged as a new technique, which, by obtaining a purely T1-
weighted image, allows the extraction of whole-brain T1 tissue
relaxation time maps to provide quantitative tissue characteriza-
tion.12 The descriptive properties of T1 relaxometry are of particular
interest in the preterm population because they give structural infor-
mation about tissue, such as water content and lipid and macromol-
ecule composition, and draw a picture of the chronologic matura-
tion of myelin. Moreover, there is a lack of quantitative T1 values for the
assessment of brain development.11,13-15

In this serial imaging study in very preterm infants with cere-
bral low risk, we aimed to provide, for the first time, reference
values for T1 relaxation time, and we hypothesized that their evo-
lution is comparable with that of ADC and FA values, conferring
greater and more precise information about tissue structure.

MATERIALS AND METHODS

Patients

Neonates born before 30 weeks of gestation between February
2011 and May 2013 in our level III neonatology unit were consid-
ered for inclusion during the first days of life. Noninclusion
criteria were the following: severe cardiorespiratory instability,
intraventricular hemorrhage grade III and/or parenchymal hemor-
rhagic infarction on early sonography, severe congenital malforma-
tions, and genetic abnormalities. Patients who subsequently de-
veloped severe lesions on MR imaging, who died during the study, or
who had abnormal neurologic assessment at term equivalent age
(TEA) according to the Hammersmith Neonatal Neurologic Exami-
nation16 were excluded from the final analysis. We thus defined the
remaining patients as “cerebral low-risk.” Neonatal variables were
registered prospectively from the medical records.

Ethics approval was provided by the local committee, and
written informed consent was obtained. Specific risks arising
from imaging children younger than 2 years of age were assessed
by the medical team and the institutional review board before the
MR imaging examination.

MR Imaging

We planned 3 sequential MRIs: The first was during the first 2–3
weeks of life, the third at TEA, and the second in-between (from
10 to 20 days of life for the first part of the cohort and at 34–35
weeks of gestational age for the second part). All MRIs were per-
formed on a 3T Magnetom Trio system (Siemens, Erlangen, Ger-
many). A neonatal MR imaging–compatible incubator (Nomag;
LMT Medical Systems, Luebeck, Germany) equipped with a ded-
icated 8-channel neonatal head coil was used. Monitoring was
provided during scanning (temperature, heart rate, oxygen satu-
rating), and respiratory support was applied when necessary. Pa-
tients received no sedation and wore protective earmuffs (MiniMuffs; Natus Medical, San Carlos, California). A neonatol-
ologist and a neonatal nurse were present throughout the examina-
tion. The cerebral MR imaging protocol included the following:
1) inversion recovery T1-weighted TSE axial (in-plane resolution,
0.6 mm; section thickness, 3 mm with 10% gap; 35 sections; TR,
8000 ms; TE, 17 ms; FOV, 160 mm; acceleration factor gener-
alized autocalibrating partially parallel acquisition (GRAPPA) = 2;
measurement time, 3 minutes 14 seconds); 2) T2-weighted TSE
axial (in-plane resolution, 0.2 mm; section thickness, 2.5 mm with
a 10% gap; 35 sections; TR, 4520 ms; TE, 143 ms; FOV, 160 mm;
acceleration factor GRAPPA = 2; measurement time, 4 minutes
15 seconds); 3) T2-weighted TSE coronal (in-plane resolution, 0.4
mm; section thickness, 1.2 mm with a 10% gap; 100 sections; TR,
5410 ms; TE, 159 ms; FOV, 200 mm; acceleration factor
GRAPPA = 2; measurement time, 4 minutes 59 seconds); 4) 3D
MP2RAGE (in-plane resolution, 0.7 mm; section thickness, 1.2 mm;
TR, 4000 ms; TE, 3.17 ms; FOV, 190 mm; TI 1, 900 ms; TI 2, 2200 ms;
acceleration factor GRAPPA = 2; measurement time, 4 minutes 58
seconds); 5) DTI (in-plane resolution, 2 mm; section thickness, 2
mm with no gap; 43 sections; TR, 5200 ms; TE, 84 ms; FOV, 192 mm;
b-value 1, 0 s/mm2; b-value 2, 1000 s/mm2; diffusion encoding direc-
tions, 82 and 5 B0 images; acceleration factor GRAPPA = 3; mea-
surement time, 7 minutes 29 seconds). The standard ADC and FA
maps generated by the scanner software were used in this study. No
additional motion and eddy current corrections were performed.

The vendor computes ADC and FA maps according to Basser et al17
by using a least square estimation of the tensor.

Using T2, inversion recovery T1, and MP2RAGE, we calcu-
lated scores for severity at TEA according to Kidokoro et al,18
including 6 items in the WM and 7 items in the GM and cerebel-
num. A global score (WM + GM and cerebellum score) was cal-
culated and classified as normal (0–3), mild (4–7), moderate (8–
11), and severe (≥12). Two neonatologists experienced in reading
MR imaging calculated the score. Intraventricular hemorrhages
were graded according to Papile,19 and WM and cerebellar lesions
were also described.

Twelve ROIs were identified with anatomic landmarks on 5
different sections for the WM (frontal, central, parietal, posterior
limb of internal capsule [PLIC]; corpus callosum genu and splen-
um; and optic radiations) and the GM (frontal, perirolandic, and
parietal cortices; thalamus; and lentiform nucleus). Freehand
ROIs were drawn to maximize the size and avoid the risk of
GM/WM contamination, as shown in On-line Fig 1. Each ROI
was placed on the DTI sequence to measure ADC and FA and on the
T1 map obtained from the MP2RAGE sequence to calculate the
effective T1 relaxation time.12

Neurodevelopmental Outcome

The patients were offered neurodevelopmental follow-up at 6 and
18 months of corrected age. A developmental pediatrician blinded
to the neuroimaging findings performed a developmental assess-
ment by using the Bayley Scales of Infant Development II, which
entails a mental developmental index and a psychomotor devel-
Clinical variables describing the total population, the low-risk cohort, and the excluded patients

Total Cohort	Low-Risk Cohort	Excluded	P Value	
No. of patients (%)	51	39 (76.5)	12 (23.5)	
GA (weeks, days) (median) (range)	27 4/7 (25 0/7–31 4/7)	27 4/7 (25 5/7–30)	28 1/7 (25 0/7–31 4/7)	NS
Female (%)	29 (56.9)	19 (48.7)	10 (83)	<.05
Weight (g) (median) (range)	889 (517–1590)	900 (560–1485)	727.5 (517–1590)	NS
Small for GA (weight <10th percentile) (%)	12 (23.5)	8 (20.5)	4 (33.3)	NS
Multiple births (%)	12 (23.5)	6 (15.4)	6 (50)	<.05
Chorioamnionitis (%)	21 (41.2)	16 (41.0)	5 (41.7)	NS
Antenatal steroids (%)	45 (88.2)	34 (87.2)	11 (91.7)	NS
All BPD/severe BPD (%)	26 (51.0)/9 (17.6)	17 (43.6)/5 (12.8)	9 (75.0)/4 (33.3)	NS
Postnatal steroids (%)	7 (13.7)	2 (5.1)	5 (41.7)	<.05
Treated patent ductus arteriosus (%)	25 (49.0)	17 (43.6)	6 (66.7)	NS
Early-onset sepsis (%)	13 (25.5)	11 (28.2)	2 (16.7)	NS
Late-onset sepsis (%)	17 (33.3)	13 (33.3)	4 (33.3)	NS
Necrotizing enterocolitis (%)	2 (3.9)	0 (0)	2 (16.7)	NS
Treated retinopathy of prematurity (%)	3 (5.9)	1 (2.6)	2 (16.7)	NS
Death (%)	2 (3.9)	0 (0)	2 (16.7)	NS
6-Mo PDI (median) (range)	98 (74–118)	98 (86–118)	93 (74–102)	<.05
6-Mo MDI (median) (range)	88 (49–111)	88 (62–111)	78.5 (49–88)	<.05
18-Mo MDI (median) (range)	93 (65–127)	93 (65–127)	87 (79–101)	NS
18-Mo PDI (median) (range)	83 (49–103)	84 (55–103)	71 (49–95)	<.05

Note: MDC indicates mental developmental index; PDI, psychomotor developmental index; BPD, bronchopulmonary dysplasia; NS, nonsignificant.

Clinical variables describing the total population, the low-risk cohort, and the excluded patients

Statistical Analyses

Statistical analyses were performed by using Matlab R2014b (MathWorks, Natick, Massachusetts) and STATA 13.0 (StataCorp, College Station, Texas). The different associations were analyzed with linear and quadratic regression. The correlation coefficient adjusted for the df (R_{adj}^2) was used to identify the model with the best explanatory power. The Pearson linear correlation (R) was used to compare T1 relaxation time and ADC or FA values. The dispersion of ADC and T1 values was compared with a 1-sided t test applied on the normalized root mean square error of each marker. Demographic and neonatal variables were compared with the Student t test (continuous variables) and with the Fisher exact test (categoric variables). Statistical significance was defined as $P < .05$.

RESULTS

Description of the Population

Among 126 eligible patients, 51 preterm neonates were recruited. Reasons for not being included were parental refusal (n = 26), early death (n = 9), cardiorespiratory instability (n = 13), early transfer to peripheral hospital (n = 11), or absent recruiting person (n = 16). Twelve patients were excluded from the final analysis because of severe lesions on brain MR imaging (MR imaging scores ≥8 or parenchymal hemorrhagic infarction), death, withdrawal of consent, or abnormal neurologic examination findings at TEA. We thus show the characteristics of the population based on 39 cerebral low-risk preterm neonates (Table).

Conventional MR Imaging and Scoring System

One hundred seven MR imaging examinations were performed; 35 early, 33 intermediary, and 39 at TEA. Thirty patients underwent 3 serial MRIs, 8 patients had 2, and 1 patient had only 1. The assessment of the image quality allowed considering 86% of the scans as good or with minimal motion artifacts.

Several mild cerebral lesions were diagnosed on the conventional sequences, including intraventricular hemorrhages grade I (n = 5) and grade II (n = 2), punctuate WM lesions (n = 3), and punctuate cerebellar hemorrhages (n = 4). Two patients had 2 types of lesions (intraventricular hemorrhage grade I and punctuate WM lesions).

The scoring system could be applied on 37 MRIs at TEA: The global score was within the normal range for 16 and mildly abnormal for 21 patients, and no patient had a moderate or severe score. The MR images and scoring system, including brain metrics, are detailed in On-line Table 1.

Quantitative Measures

T1 Relaxation. In Fig 1A, T1 relaxation values (milliseconds) measured in the 12 ROIs of the right and left hemispheres on the serial images of the 39 patients are presented. Maturation in the different cerebral regions was reflected by a gradual decrease of T1 with time. The PLIC matured the fastest (R_{adj}^2 = 0.8242, $P = 8.09 \times 10^{-81}$). The values in the WM of the corona radiata showed a fast and continuous decrease until TEA (R_{adj}^2 = 0.663, $P = 1.61 \times 10^{-21}$). The parietal ($R_{adj}^2 = 0.2833$, $P = 2.00 \times 10^{-17}$) and frontal WM ($R_{adj}^2 = 0.0803$, $P = 5.65 \times 10^{-8}$) matured along a shoulder curve, which peaks around 30 weeks of gestational age (GA). The deep GM matured simultaneous to WM, especially the thalamus ($R_{adj}^2 = 0.6814$, $P = 5.66 \times 10^{-49}$) and the lentiform nucleus ($R_{adj}^2 = 0.3747$, $P = 1.06 \times 10^{-24}$). The cortex showed little change with time. The maturation in the different areas of the cortex at TEA was gradual: first in the perirolandic, then in the parietal, and finally in the frontal cortex (see On-line Table 2 for T1 values).

ADC values are represented in Fig 1B, and strengths of the correlations were less strong in almost all the regions (PLIC: $R_{adj}^2 = 0.4816$, $P = 8.31 \times 10^{-32}$; central WM: $R_{adj}^2 = 0.566$, $P =$
2.54 × 10⁻⁴⁰, thalamus: $R_{adj}^2 = 0.4855, P = 9.42 \times 10^{-32}$, except for parietal WM ($R_{adj}^2 = 0.3048, P = 1.20 \times 10^{-18}$), frontal WM ($R_{adj}^2 = 0.312, P = 4.05 \times 10^{-19}$), and the lentiform nucleus ($R_{adj}^2 = 0.6718, P = 3.20 \times 10^{-57}$).

The evolution of FA with time is shown in Fig 1C. The maturation was most visible in the PLIC ($R_{adj}^2 = 0.5386, P = 5.19 \times 10^{-37}$), the optic radiation ($R_{adj}^2 = 0.3465, P = 3.05 \times 10^{-21}$), and the corpus callosum (splenium: $R_{adj}^2 = 0.2159, P = 5.24 \times 10^{-7}$; genu: $R_{adj}^2 = 0.1126, P = 9.27 \times 10^{-5}$), with a gradual increase in these regions. At the same time, FA decreased in the cortical GM (parietal: $R_{adj}^2 = 0.4535, P = 1.70 \times 10^{-31}$; frontal: $R_{adj}^2 = 0.199, P = 3.67 \times 10^{-12}$; perirolandic: $R_{adj}^2 = 0.4889, P = 7.50 \times 10^{-32}$).

For each ROI, we produced reference values stratified by gestational weeks, expressed as mean ± SD for T1, ADC, and FA (On-line Table 2).

There was a significant and strong correlation between the T1 relaxation time and ADC values for all the ROIs and all MR images at different gestational ages (Pearson correlation $R^2 = 0.616, P < .001$). Furthermore, T1 values exhibited a significantly lower dispersion than ADC values ($P = 1.06 \times 10^{-4}$). The correlation between T1 relaxation and FA (Pearson correlation $R^2 = -0.128$) was negative and less significant.

DISCUSSION

The present study provides quantitative reference values for cerebral development, based on 107 MRIs acquired between 25 and 40 weeks in 39 very preterm infants. We used a newly developed sequence, MP2RAGE, which gives the T1 relaxation time, and compared it with MR imaging markers, ADC and FA. The selected cohort can be considered cerebral-low-risk, according to the exclusion criteria. Our findings were comparable with existing data (On-line Tables 3 and 4) issued from fetuses and preterm infants, detailed below.

Given fetal diffusion values and maturation curves obtained between 22 and 36 weeks, our findings of ADC and FA values were comparable with the ones presented by different groups,20–22
though subtle differences between fetuses at 37 weeks of gestation and preterm infants at TEA were reported. No fetal data of T_1 values are available.

While a multitude of data exist for preterm infants at TEA, only a few studies have described the longitudinal evolution of quantitative brain MR imaging markers. In the late 1990s, Huppi et al. reported changes of ADC and FA in the WM of preterm infants between early life and TEA. Their group showed differences in WM fiber organization and delay of development at TEA compared with term. Miller et al., by using DTI, also showed serial differences in maturation in 23 infants with and without WM injury. Later, Nossin-Manor et al. assessed tissue organization longitudinally and were able to show a difference in maturation according to the different ROIs and the different techniques used, such as magnetization transfer, DTI, and T_1 imaging. Recently Kersbergen et al. provided reference diffusivity values from scans obtained between 30 weeks and TEA. Compared with these studies, our ADC and FA values were similar to those in Nossin-Manor and Partridge et al., and FA values were slightly higher than those reported by other groups. The relatively large heterogeneity of FA values in the literature is difficult to explain with certainty. However, it may involve several potential confounders: 1) b-value ranges from 600 to 1000 s/mm^2; 2) slightly different tensor reconstruction strategies; 3) drawing and selection of the ROIs (this may actually be the main causative agent), and 4) some unsuspected systematic differences between the cohorts.

Concerning T_1 relaxometry, only a few studies relate T_1 values in infancy, neonates and premature infants, albeit it provides reliable quantitative measures and high contrast images. We were able not only to measure T_1 relaxometry serially in premature brains but also to show a strong correlation between ADC and T_1 values, enhancing its validity toward clinical use. Moreover, we described a closer distribution of T_1 values compared with ADC, in particular at TEA. Compared with existing data, our findings were similar. When performing serial imaging of preterm brain by using specific MR imaging markers, it is important to understand the different

FIG 1. Continued. ADC values.
processes involved in brain maturation during the last trimester of gestation, such as neuronal differentiation, premyelination with water-content reduction, increase of lipid concentration, maturation of preoligodendrocytes, and finally the beginning of axonal myelination and development of connecting fibers.

Diffusion and T1 relaxation time are sensitive to changes in tissue water content and compartmentalization. Mean diffusivity reflects intra- and extracellular water mobility and provides information about cellular and axonal density and myelination. Moreover, T1 relaxation time also provides information about lipid concentration associated with myelin production, cholesterol, and macromolecules (galactocerebrosides) and can, therefore, be considered as an optimal marker of brain maturation. FA represents a measure of tissue directionality sensitive to the degree of axonal alignment, fiber diameter, and consecutive early processes of premyelination.

To draw brain maturational trajectories in very preterm infants, we used the above-mentioned 3 imaging biomarkers. In the WM fiber tracts (PLIC, optic radiation, and corona radiata), the linear decline of ADC and T1 reflects reduction in water content, fiber packaging, and early processes of myelination, especially for the PLIC from 36 weeks onward. In these structures, the steep slope of FA represents the progressive development of unidirectional (PLIC) or multidirectional (corona radiata) fibers. The splenium and genu of the corpus callosum consist of tightly packed fibers with a high degree of coherent parallel organization, which myelinate only at 3 and 5 months after term, respectively. This feature accounts for little change with time for ADC and T1 values and high absolute FA values. In the frontal and parietal WM, we observed a shouldered curve on ADC and T1 maps that could be explained by the inclusion of the subplate zone that peaks between 29 to 32 gestational weeks and then gradually disappears. The subplate has a high water content, is particularly voluminous in the frontal WM, and accounts for elevated ADC and T1 values.

In the basal ganglia and thalamus, the ADC and T1 values showed a gradual decrease due to fast neuronal densification with

FIG 1. Continued. FA values.
ongoing myelination, as described starting around 26 weeks.29 In FA, these subcortical GM structures exhibited little change with time because of the low directionality of neuronal and glial content. In the frontal and parietal cortex, the evolution of ADC and T1 values showed a shouldered curve with maximum values around 35 weeks, possibly related to programmed cell death and additional neuropil before 35 weeks32-35 and higher neuronal attenuation afterward. The perirolandic cortex seemed to mature faster than other cortical regions, and this accelerated maturation has been described in areas with primary function, such as the sensorimotor cortex.34,35 The observed decline of the FA is attributed to the preferential reduction in the radial component of water diffusivity, reflecting the loss of the radial glial cells and the extension of dendrites of pyramidal cells.32-35

The present study has a number of limitations. We assumed that our cohort was at cerebral low-risk, given their clinical evolution and the absence of major cerebral lesions. Neurodevelopmental outcome at 6 and 18 months showed that no patient had cerebral palsy, blindness, or hearing loss, and the distribution of developmental scores was typical for this population of preterm infants. Furthermore, because patients with moderate or severe brain lesions were scarce, we could not compare their values with those obtained from the selected low-risk patients. Finally, comparison with healthy control fetuses and term neonates was not available.

In this study, we propose reference values of T1 relaxometry, which could represent a precise and complementary tool to investigate brain development with time. We speculate that deviation of the described trajectories might reflect disturbed maturation, and this could add valuable information for the diagnosis of encephalopathy of prematurity.4,5 Kinney and Volpe28 described “altered developmental trajectories, combined with acquired insults and reparative phenomena” to characterize this entity, in which all the structures detailed above are affected. Oligodendrocyte differentiation, axonal growth, subplate organization, and maturation of the subcortical structures represent features that are likely to be affected by prematurity.

CONCLUSIONS
Our study evaluated, longitudinally and serially, the cerebral developmental trajectories of a cohort of cerebral low-risk preterm infants born at fewer than 30 weeks of gestation. On the successive MP2RAGE and DTI sequences, we observed a gradual decline with time of ADC and T1 relaxation time and changes of FA in the described 12 ROIs, reflecting the specific and sequential maturational changes occurring during development in the WM and GM microstructures. T1 maps confer high contrast, are easy to analyze, and thus appear as a promising complementary biomarker of cerebral maturation. We provide reference values for T1 relaxation, ADC, and FA, and we speculate that deviation thereof might reflect disturbed cerebral maturation; the correlation of this disturbed maturation with neurodevelopmental outcome remains to be addressed.

ACKNOWLEDGMENTS
We thank Professor J.-F. Tolsa for his tremendous support.

Disclosures: Juliane Schneider—RELATIVE. Swiss National Science Foundation, Comments: National Grant (No. 33CM30 –12400) allocated to a multidisciplinary project on brain development in preterm infants, performed in 3 academic sites, of which the University Hospital of Lausanne is 1 partners; Support for Travel to Meetings for the Study or Other Purposes. Swiss National Science Foundation (National Grant [No. 33CM30 –12400]. Tobias Kobler—UNRELATED. Employment I have been an employee of Siemens Healthcare Switzerland since 2011. Petra S. Hüppi—RELATIVE. Grant: Swiss National Science Foundation*. UNRELATED. Grants/Grants Pending: Swiss National Science Foundation.* European Commission.* Nestle Research Center.* Patric Hagmann—RELATIVE. Grant: Leenaards Foundation*; UNRELATED. Grants/Grants Pending: Swiss National Science Foundation.* Anita Truttmann—RELATIVE. Grant: Swiss National Science Foundation.* Money paid to the institution.

REFERENCES
1. Van’t Hooft J, van der Lee JH, Opmeer BC, et al. Predicting developmental outcomes in premature infants by term equivalent MRI: systematic review and meta-analysis. Syst Rev 2015;4:71 CrossRef Medline
2. Moore T, Hennessy EM, Myles J, et al. Neurological and developmental outcome in extremely preterm children born in England in 1995 and 2006: the EPICure studies. BMJ 2012;345:e7961 CrossRef Medline
3. Marret S, Marchand-Martin L, Picaud JC, et al; EPINAGE Study Group. Brain injury in very preterm children and neurosensory and cognitive disabilities during childhood: the EPINAGE cohort study. PLoS One 2013;8:e62683 CrossRef Medline
4. Back SA, Miller SP. Brain injury in premature neonates: a primary cerebral dysmaturation disorder? Ann Neurol 2014;75:469–86 CrossRef Medline
5. Volpe JJ. Brain injury in premature infants: a complex amalgam of destructive and developmental disturbances. Lancet Neurol 2009;8:110–24 CrossRef Medline
6. Volpe JJ. Neuronal proliferation, migration, organization, and myelination. In: Neurology of the Newborn. 5th ed. New York: Saunders; 2008:51–117
7. Miller SP, Vigneron DB, Henry RG, et al. Serial quantitative diffusion tensor MRI of the premature brain: development in newborns with and without injury. J Magn Reson Imaging 2002;16:621–32 CrossRef Medline
8. Kersbergen KJ, Leemans A, Groenendaal F, et al. Microstructural brain development between 30 and 40 weeks corrected age in a longitudinal cohort of extremely preterm infants. Neuroimage 2014;103:214–24 CrossRef Medline
9. Hüppi PS, Maier SE, Peled S, et al. Microstructural development of human newborn cerebral white matter assessed in vivo by diffusion tensor magnetic resonance imaging. Pediatr Res 1998;44:584–90 CrossRef Medline
10. Chau V, Symes A, Grunau RE, et al. Abnormal brain maturation in preterm neonates associated with adverse developmental outcomes. Neurology 2013;81:2082–89 CrossRef Medline
11. Nossin-Manor R, Card D, Morris D, et al. Quantitative MRI in the very preterm brain: assessing tissue organization and myelination using magnetization transfer, diffusion tensor and T1 imaging. Neuroimage 2013;64:505–16 CrossRef Medline
12. Marques JP, Kober T, Krueger G, et al. MP2RAGE, a self bias-field corrected sequence for improved segmentation and T1-mapping at high field. Neuroimage 2010;49:1271–81 CrossRef Medline
13. Deoni SC, Dean DC 3rd, O’Muircheartaigh J, et al. Investigating white matter development in infancy and early childhood using myelin water fraction and relaxation time mapping. Neuroimage 2012;63:1038–53 CrossRef Medline
14. Williams LA, Gelman N, Picot PA, et al. Neonatal brain: regional variability of in vivo MR imaging relaxation rates at 3.0 T—initial experience. Radiology 2005;235:595–603 CrossRef Medline
15. Maitre NL, Slaughter JC, Stark AR, et al. Validation of a brain MRI relaxometry protocol to measure effects of preterm birth at a flexible postnatal age. BMC Pediatr 2014;14:84 CrossRef Medline
16. Dubowitz LM, Dubowitz V, Palmer P, et al. A new approach to the...
neurological assessment of the preterm and full-term newborn infant. "Brain Dev" 1980;2:3–14 CrossRef Medline

17. Basser PJ, Mattiello J, LeBihan D. MR diffusion tensor spectroscopy and imaging. "Biophys J" 1994;66:259–67 CrossRef Medline

18. Kidokoro H, Neil JJ, Inder TE. New MR imaging assessment tool to define brain abnormalities in very preterm infants at term. "AJNR Am J Neuroradiol" 2013;34:2208–14 CrossRef Medline

19. Papile LA, Burstein J, Burstein R, et al. Incidence and evolution of subependymal and intraventricular hemorrhage: a study of infants with birth weights less than 1,500 gm. "J Pediatr" 1978;92:529–34 CrossRef Medline

20. Schneider MM, Berman JJ, Baumer FM, et al. Normative apparent diffusion coefficient values in the developing fetal brain. "AJNR Am J Neuroradiol" 2009;30:1799–803 CrossRef Medline

21. Schneider JF, Confort-Gouny S, Le Fur Y, et al. Diffusion-weighted imaging in normal fetal brain maturation. "Eur Radiol" 2007;17:2422–29 CrossRef Medline

22. Trivedi R, Gupta RK, Husain N, et al. Region-specific maturation of cerebral cortex in human fetal brain: diffusion tensor imaging and histology. "Neuroradiology" 2009;51:567–76 CrossRef Medline

23. Viola A, Confort-Gouny S, Schneider JF, et al. Is brain maturation comparable in fetuses and premature neonates at term equivalent age? "AJNR Am J Neuroradiol" 2011;32:1451–58 CrossRef Medline

24. Rose J, Vassar R, Cahill-Rowley K, et al. Brain microstructural development at near-term age in very-low-birth-weight preterm infants: an atlas-based diffusion imaging study. "Neuroimage" 2014;86:244–56 CrossRef Medline

25. Oishi K, Mori S, Donohue PK, et al. Multi-contrast human neonatal brain atlas: application to normal neonate development analysis. "Neuroimage" 2011;56:8–20 CrossRef Medline

26. Partridge SC, Mukherjee P, Henry RG, et al. Diffusion tensor imaging: serial quantitation of white matter tract maturity in premature newborns. "Neuroimage" 2004;22:1302–14 CrossRef Medline

27. Chung AW, Thomas DL, Ordidge RI, et al. Diffusion tensor parameters and principal eigenvector coherence: relation to b-value intervals and field strength. "Magn Reson Imaging" 2013;31:742–47 CrossRef Medline

28. Kinney HC, Volpe JJ. Modeling the encephalopathy of prematurity in animals: the important role of translational research. "Neuro Res Int" 2012;2012:295389 CrossRef Medline

29. Counsell SJ, Maalouf EF, Fletcher AM, et al. MR imaging assessment of myelination in the very preterm brain. "AJNR Am J Neuroradiol" 2002;23:872–81 Medline

30. Kostović I, Jovanov-Milošević N, Radoš M, et al. Perinatal and early postnatal reorganization of the subplate and related cellular compartments in the human cerebral wall as revealed by histological and MRI approaches. "Brain Struct Funct" 2014;219:231–53 CrossRef Medline

31. Raybaud C, Ahmad T, Rastegar N, et al. The premature brain: developmental and lesion anatomy. "Neuroradiology" 2013;55(suppl 2):23–40 CrossRef Medline

32. Dudink J, Buijs J, Govaert P, et al. Diffusion tensor imaging of the cortical plate and subplate in very-low-birth-weight infants. "Pediatr Radiol" 2010;40:1397–404 CrossRef Medline

33. McKinstry RC, Mathur A, Miller JH, et al. Radial organization of developing preterm human cerebral cortex revealed by non-invasive water diffusion anisotropy MRI. "Cereb Cortex" 2002;12:1237–43 CrossRef Medline

34. Ball G, Srinivasan L, Aljabar P, et al. Development of cortical microstructure in the preterm human brain. "Proc Natl Acad Sci U S A" 2013;110:9541–46 CrossRef Medline

35. Deipolyi AR, Mukherjee P, Gill K, et al. Comparing microstructural and macrostructural development of the cerebral cortex in premature newborns: diffusion tensor imaging versus cortical gyration. "Neuroimage" 2005;27:579–86 CrossRef Medline

36. Rose J, Butler EE, Lamont LE, et al. Neonatal brain structure on MRI and diffusion tensor imaging, sex, and neurodevelopment in very-low-birthweight preterm children. "Dev Med Child Neurol" 2009;51:526–35 CrossRef Medline

37. Cheong JL, Thompson DK, Wand HX, et al. Abnormal white matter signal on MR Imaging is related to abnormal tissue microstructure. "AJNR Am J Neuroradiol" 2009;30:623–28 CrossRef Medline

38. Jones RA, Palasis S, Grattan-Smith JD. MRI of the neonatal brain: optimization of spin-echo parameters. "AJR Am J Roentgenol" 2004;182:367–72 Medline