Midpoint and trapezoid type inequalities for multiplicatively convex functions

A. Berhail, B. Meftah

1, 2 Department of Mathematics, 08 May 1945 University-Guelma, Algeria

Abstract. In this paper, we first prove two new identities for multiplicatively differentiable functions. Based on this identity, we establish a midpoint and trapezoid type inequalities for multiplicatively convex functions. Applications to special means are also given.

1 Introduction

The concept of convexity plays an important and very central role in many areas, and has a close relationship in the development of the theory of inequalities, which is an important tool in the study of some properties of solutions of differential equations as well as in the error estimates of quadrature formulas. Let \(I \) be an interval of real numbers.

Definition 1.1 ([17]). A function \(f : I \to \mathbb{R} \) is said to be convex, if

\[
f (tx + (1-t)y) \leq tf(x) + (1-t)f(y)
\]

holds for all \(x, y \in I \) and all \(t \in [0, 1] \).

Definition 1.2 ([17]). A positive function \(f : I \to \mathbb{R} \) is said to be logarithmically convex or multiplicatively convex, if

\[
f(tx + (1-t)y) \leq [f(x)]^t [f(y)]^{1-t}
\]

holds for all \(x, y \in I \) and all \(t \in [0, 1] \).

\[\text{2010 MSC: 26D10, 26D15, 26A51.}\]

\[\text{Keywords: Non-Newtonian calculus, Milne inequality, multiplicatively convex functions}\]

\[\text{Corresponding author: Berhail Amel (E-mail: berhail.amel@univ-guelma.dz)}\]

\[\text{Amel Berhail (E-mail: berhail.amel@univ-guelma.dz)}\]

\[\text{Badri Meftah (E-mail: badrimeftah@yahoo.fr)}\]
The fundamental inequality for convex functions is undoubtedly the Hermite-Hadamard inequality, which can be stated as follows: For every convex function f on the interval $[a, b]$ with $a < b$, we have

$$f\left(\frac{a+b}{2}\right) \leq \frac{1}{b-a} \int_a^b f(x) \, dx \leq \frac{f(a)+f(b)}{2}. \quad (1.1)$$

If the function f is concave, then (1.1) holds in the reverse direction see [17].

In [6], Dragomir and Agarwal established some trapezoid type inequalities for functions whose absolute value of the first derivatives are convex

$$\left|\frac{f(a)+f(b)}{2} - \frac{1}{b-a} \int_a^b f(x) \, dx\right| \leq \frac{b-a}{8} (|f'(a)| + |f'(b)|). \quad (1.2)$$

In [16], Pearce and Pečarić proved some midpoint type inequalities for functions whose absolute value of the first derivatives are convex

$$\left|f\left(\frac{a+b}{2}\right) - \frac{1}{b-a} \int_a^b f(x) \, dx\right| \leq \frac{b-a}{8} (|f'(a)| + |f'(b)|). \quad (1.3)$$

Concerning some papers dealing with some quadrature see [9, 10, 11] and references therein.

In 1967, Grossman and Katz, created the first non-Newtonian calculation system, called geometric calculation. Over the next few years they had created an infinite family of non-Newtonian calculi, thus modifying the classical calculus introduced by Newton and Leibniz in the 17th century each of which differed markedly from the classical calculus of Newton and Leibniz known today as the non-Newtonian calculus or the multiplicative calculus, where the ordinary product and ratio are used respectively as sum and exponential difference over the domain of positive real numbers see [8]. This calculation is useful for dealing with exponentially varying functions.

The complete mathematical description of multiplicative calculus was given by Bashirov et al. [4]. Also in the literature, there remains a trace of a similar calculation proposed by the mathematical biologists Volterra and Hostinsky [18] in 1938 called the Volterra calculation which is identified as a particular case of multiplicative calculation.

Recently, Ali et al. [1], gave the analogue of the Hermite-Hadamard inequality for multiplicatively convex functions

Theorem 1.3. Let f be a positive and multiplicatively convex function on interval $[a, b]$, then the following inequalities hold

$$f\left(\frac{a+b}{2}\right) \leq \left(\int_a^b f(x) \, dx\right)^{\frac{1}{b-a}} \leq \sqrt{f(a)f(b)}. \quad (1.4)$$
Also, they proved the inequalities for the product and the quotient of two multiplicatively convex functions. In [2], Ali et al. studied the Hermite-Hadamard type inequalities for multiplicatively ϕ-convex and log-ϕ-convex functions. In [12] and [14], Özcan generalized the results obtained in [1] for s-convex and h-convex functions respectively. In [13], Özcan gave the analogue of Hermite-Hadamard type inequalities for multiplicatively ϕ-invex functions. In [15], Özcan proposed the Hermite-Hadamard type inequalities for multiplicatively h-ϕ-invex functions.

In [3], Ali et al. investigate the Ostrowski and the Simpson type inequalities for multiplicatively convex functions. Motivated by all the above papers, in this study we propose two new identities for multiplicatively differentiable functions, based on these identities we establish a midpoint and trapezoid type inequalities for multiplicatively convex functions. Applications to special means are also given.

2 Preliminaries

In this section we begin by recalling some definitions, properties and notions of derivation as well as multiplicative integration

Definition 2.1 ([4]). Let $f : \mathbb{R} \to \mathbb{R}^+$ be a positive function. The multiplicative derivative of the function f noted by f^* is defined as follows

$$
\frac{d^* f}{dt} = f^* (t) = \lim_{h \to 0} \left(\frac{f(t+h)}{f(t)} \right)^{\frac{1}{h}}.
$$

Remark 2.2. If f has positive values and is differentiable at t, then f^* exists and the relation between f^* and ordinary derivative f' is as follows:

$$
 f^* (t) = e^{(\ln f(t))'} = e^{f'(t)}.
$$

The multiplicative derivative admits the following properties:

Theorem 2.3 ([4]). Let f and g be multiplicatively differentiable functions, and c is arbitrary constant. Then functions $cf, fg, f + g, f / g$ and fg are * differentiable and

- $(cf)^* (t) = f^* (t)$.
- $(fg)^* (t) = f^* (t) g^* (t)$.
- $(f + g)^* (t) = f^* (t) g^* (t)$.
- $(f / g)^* (t) = f^* (t) g^* (t)$.

3
\[
\left(\frac{f}{g} \right)^* (t) = \frac{f^*(t)}{g^*(t)}.
\]

\[
(fg)^* (t) = f^*(t)g(t) f (t)g'(t).
\]

In [4], Bashirov et al. introduced the concept of the \(^*\) integral called multiplicative integral which is noted
\[
\int_a^b f(t) \ dt = \exp \left(\int_a^b \ln(f(t)) \ dt \right).
\]

Which the sum of the terms of the product is used in the definition of a classical Riemann integral of \(f\) over \([a, b]\), while the product of the terms raised to the power is used in the definition of the multiplicative integral of \(f\) over \([a, b]\).

The relationship between the Riemann integral and the multiplicative integral is as follows:

Proposition 2.4 (4). If \(f\) is Riemann integrable on \([a, b]\), then \(f\) is multiplicative integrable on \([a, b]\) and

\[
\int_a^b (f(t))^p \ dt = \exp \left(\int_a^b \ln(f(t)) \ dt \right).
\]

Moreover, Bashirov et al. show that multiplicative integral has the following results and properties:

Theorem 2.5 ([4]). Let \(f\) be a positive and Riemann integrable on \([a, b]\), then \(f\) is multiplicative integrable on \([a, b]\) and

\[
\int_a^b (f(t))^p \ dt = \left(\int_a^b (f(t))^p \ dt \right)^{1/p}.
\]

\[
\int_a^b (f(t)g(t))^p \ dt = \left(\int_a^b (f(t))^p \ dt \right) \left(\int_a^b (g(t))^p \ dt \right).
\]

\[
\int_a^b \left(\frac{f(t)}{g(t)} \right)^p \ dt = \frac{\int_a^b (f(t))^p \ dt}{\int_a^b (g(t))^p \ dt}.
\]

\[
\int_a^b (f(t))^p \ dt = \int_a^c (f(t))^p \ dt \int_c^b (f(t))^p \ dt, a < c < b.
\]

\[
\int_a^b (f(t))^p \ dt = 1 \quad \text{and} \quad \int_a^b (f(t))^p \ dt = \left(\int_a^b (f(t))^p \ dt \right)^{-1}.
\]
Theorem 2.6 (Multiplicative Integration by Parts [4]). Let \(f : [a, b] \to \mathbb{R} \) be multiplicative differentiable, let \(g : [a, b] \to \mathbb{R} \) be differentiable so the function \(f^g \) is multiplicative integrable, and
\[
\int_a^b \left(f^*(t) g(t) \right) dt = \frac{f(b)g(b) - f(a)g(a)}{f(a)^2} = \frac{1}{\int_a^b f(t) g(t) dt}.
\]

Lemma 2.7 ([3]). Let \(f : [a, b] \to \mathbb{R} \) be multiplicative differentiable, let \(g : [a, b] \to \mathbb{R} \) and let \(h : J \subset \mathbb{R} \to \mathbb{R} \) be two differentiable functions. Then we have
\[
\int_a^b \left(f^*(h(t)) g(h(t)) \right) dt = \frac{f(b)g(b) - f(a)g(a)}{f(a)^2} = \frac{1}{\int_a^b f(h(t)) g(t) dt}.
\]

3 Main results

In order to prove our results, we need the following lemmas

Lemma 3.1. Let \(f : [a, b] \to \mathbb{R}^+ \) be a multiplicative differentiable mapping on \([a, b]\) with \(a < b \). If \(f^* \) is multiplicative integrable on \([a, b]\), then we have the following identity for multiplicative integrals
\[
f^\left(\frac{a+b}{2}\right) \left(\int_a^b f(u) du \right)^{\frac{1}{a+2}}
= \left(\int_0^1 \left(\left(1 - t \right) a + \left(\frac{a+b}{2} \right) t \right)^{\frac{b-a}{4}} \right)^{\frac{1}{b-a}}
\]

Proof. Let
\[
I_1 = \left(\int_0^1 \left(\left(1 - t \right) a + \left(\frac{a+b}{2} \right) t \right)^{\frac{b-a}{4}} \right)^{\frac{1}{b-a}}
\]

and
\[
I_2 = \left(\int_0^1 \left(\left(1 - t \right) \left(\frac{a+b}{2} + tb \right) \left(t-1 \right) \right)^{\frac{b-a}{4}} \right)^{\frac{1}{b-a}}.
\]
Using the integration by parts for multiplicative integrals, from \(I_1 \) we have

\[
I_1 = \left(\int_0^1 f^* \left((1 - t) a + t \frac{a + b}{2} \right)^{b-a} \right)^{b-a}
\]

\[
= \int_0^1 f^* \left((1 - t) a + t \frac{a + b}{2} \right)^{b-a} dt
\]

\[
= \int_0^1 f^* \left((1 - t) a + t \frac{a + b}{2} \right)^{b-a} \frac{1}{2} dt
\]

\[
= \frac{\left(f \left(\frac{a+b}{2} \right) \right)^{1/2}}{b} \left(\frac{1}{\int \left(f \left(1-t \right) \frac{a+b}{2} + tb \right)^{b-a} dt} \right)
\]

\[
= \left(f \left(\frac{a+b}{2} \right) \right)^{1/2} \left(\frac{1}{\int \left(f \left(1-t \right) \frac{a+b}{2} + tb \right)^{b-a} dt} \right)
\]

Similarly, we have

\[
I_2 = \left(\int_0^1 f^* \left((1 - t) \frac{a+b}{2} + tb \right)^{t-1} \right)^{b-a}
\]

\[
= \int_0^1 f^* \left((1 - t) \frac{a+b}{2} + tb \right)^{b-a} (t-1) dt
\]

\[
= \frac{\left(f \left(\frac{a+b}{2} \right) \right)^{1/2}}{b} \left(\frac{1}{\int \left(f \left(1-t \right) \frac{a+b}{2} + tb \right)^{b-a} dt} \right)
\]

\[
= \left(f \left(\frac{a+b}{2} \right) \right)^{1/2} \left(\frac{1}{\int \left(f \left(1-t \right) \frac{a+b}{2} + tb \right)^{b-a} dt} \right)
\]

Multiplying above equalities we get the desired result.

The proof is completed. \(\square \)
Lemma 3.2. Let $f : [a, b] \rightarrow \mathbb{R}^+$ be a multiplicative differentiable mapping on $[a, b]$ with $a < b$. If f^* is multiplicative integrable on $[a, b]$, then we have the following identity for multiplicative integrals

$$G(f(a), f(b)) \left(\frac{1}{b-a} \int_a^b f(u) \, du \right) = \left(\int_0^1 \left(f^* \left(\left(1 - t \right) a + tb \right) \right)^{\frac{b-a}{2}} \, dt \right)^{\frac{b-a}{2}}, (3.1)$$

where G is the geometric mean i.e. $G(\alpha, \beta) = \sqrt{\alpha \beta}$ for $\alpha, \beta > 0$.

Proof. Using integration by parts for multiplicative integrals, on the right side of (3.1) we have

$$I = \left(\int_0^1 \left(f^* \left(\left(1 - t \right) a + tb \right) \right)^{\frac{b-a}{2}} \, dt \right)^{\frac{b-a}{2}} \int_0^b \frac{1}{f((1-t)a+tb)^{d^2}} \, dt$$

$$= \frac{(f(b))^{\frac{b-a}{2}}}{(f(a))^{\frac{b-a}{4}}} \int_0^b \frac{1}{f((1-t)a+tb)^{d^2}} \, dt$$

$$= \left(\int_0^1 \left(f^* \left(\left(1 - t \right) a + tb \right) \right)^{\frac{b-a}{2}} \, dt \right)^{\frac{b-a}{2}} \frac{1}{f(f((1-t)a+tb)^{d^2})} = G(f(a), f(b)) \left(\int_a^b f(u) \, du \right)^{\frac{b-a}{2}}.$$

The proof is completed. □

Theorem 3.3. Let $f : [a, b] \rightarrow \mathbb{R}^+$ be a multiplicative differentiable mapping on $[a, b]$ with $a < b$. If f^* is multiplicative convex on $[a, b]$, then we have

$$\left| f \left(\frac{a+b}{2} \right) \left(\int_a^b f(u) \, du \right)^{\frac{1}{3}} \right| \leq \left((f^*(a)) \left(f^* \left(\frac{a+b}{2} \right) \right)^4 \left(f^*(b) \right) \right)^{\frac{b-a}{12}}.$$

Proof. From Lemma (3.1), properties of multiplicative integral and the multiplicative convexity
of \(f^* \), we have
\[
\left| f \left(\frac{a+b}{2} \right) \left(\int_a^b \left(f(u) \right)^d u \right)^{1/t} \right|
\leq \left(\exp \frac{b-a}{4} \int_0^1 \ln \left(f^* \left((1-t) \ a + t \frac{a+b}{2} \right) \right) \right) dt
\times \left(\exp \frac{b-a}{4} \int_0^1 \ln \left(f^* \left((1-t) \ \frac{a+b}{2} + tb \right)^t \right) \right) dt
\leq \left(\exp \frac{b-a}{4} \int_0^1 t \ln \left(f^* \left((1-t) \ a + t \frac{a+b}{2} \right) \right) \right) dt
\times \left(\exp \frac{b-a}{4} \int_0^1 (1-t) \ln \left(f^* \left((1-t) \ \frac{a+b}{2} + tb \right) \right) \right) dt
\leq \left(\exp \frac{b-a}{4} \int_0^1 (t (1-t) \ln (f^*(a)) + t^2 \ln (f^*(a))) \right) dt
\times \left(\exp \frac{b-a}{4} \int_0^1 (1-t)^2 \ln \left(f^* \left(\frac{a+b}{2} \right) \right) + t (1-t) \ln (f^*(b)) \right) dt
\leq \left(\exp \frac{b-a}{4} \ln f^*(a) \int_0^1 t (1-t) dt + \ln f^* \left(\frac{a+b}{2} \right) \int_0^1 t^2 dt \right)
\times \left(\exp \frac{b-a}{4} \left(\ln f^*(a) \int_0^1 t (1-t) dt + \ln f^* \left(\frac{a+b}{2} \right) \int_0^1 t^2 dt \right) \right)
\leq \left(\exp \frac{b-a}{4} \left(\frac{1}{6} \ln f^*(a) + \frac{1}{3} \ln f^* \left(\frac{a+b}{2} \right) \right) \right)
\times \left(\exp \frac{b-a}{4} \left(\frac{1}{3} \ln f^* \left(\frac{a+b}{2} \right) + \frac{1}{6} \ln f^* (b) \right) \right)
Then, we obtain
\[
\left| f\left(\frac{a+b}{2}\right) \left(\int_a^b f(u) \, du \right)^{1/n} \right| \leq \left(f^*(a) b \left(f^*\left(\frac{a+b}{2}\right)\right)^{\frac{3}{8}} \left(f^*(b)\right)^{\frac{5}{8}} \right)^\frac{1}{n+1}
\]
\[= \left(f^*(a) \left(f^*\left(\frac{a+b}{2}\right)\right)^{\frac{3}{4}} \left(f^*(b)\right)^{\frac{1}{4}} \right)^\frac{1}{n+1}.
\]

The proof is completed. \(\square\)

Corollaire 3.4. In Theorem (3.3), If we assume that \(f^* \leq M\), we get
\[
\left| f\left(\frac{a+b}{2}\right) \left(\int_a^b f(u) \, du \right)^{1/n} \right| \leq M^{\frac{b-a}{4}}.
\]

Corollaire 3.5. In Theorem (3.3), using the multiplicative convexity of \(f^*\) i.e.
\[
f^*\left(\frac{a+b}{2}\right) \leq \sqrt{f^*(a)f^*(b)},
\]
we obtain
\[
\left| f\left(\frac{a+b}{2}\right) \left(\int_a^b f(u) \, du \right)^{1/n} \right| \leq (f^*(a)f^*(b))^{\frac{b-a}{4n}}.
\]

Theorem 3.6. Let \(f : [a, b] \to \mathbb{R}^+\) be a multiplicative differentiable mapping on \([a, b]\) with \(a < b\). If \(f^*\) is multiplicative convex on \([a, b]\), then we have
\[
\left| G\left(f(a), f(b)\right) \left(\int_a^b f(u) \, du \right)^{1/n} \right| \leq (f^*(a)f^*(b))^{\frac{b-a}{8}},
\]
where \(G\) is the geometric mean.

Proof. From Lemma (3.2), properties of multiplicative integral and the multiplicative convexity
of f^*, we have

$$
\left| \left((f(a))^2 \left(f \left(\frac{a+b}{2} \right) \right) ^{-1} f(b)^2 \right)^\frac{1}{\pi - \tau} \left(\int_a^b f(u)^{\frac{\delta}{\pi}} \right) \right|
\leq \exp \frac{b-a}{2} \int_0^1 (|2t-1| \ln |f^*(1-t)(a+tb)|) \, dt
= \exp \frac{b-a}{2} \int_0^1 (|2t-1| \ln (f^*(a))^{1-t} (f^*(b))^t) \, dt
\leq \exp \frac{b-a}{2} \int_0^1 (|2t-1| \ln (f^*(a)) + t \ln (f^*(b))) \, dt
= \exp \frac{b-a}{2} \left(\ln (f^*(a)) \int_0^1 |2t-1| (1-t) \, dt + \ln (f^*(b)) \int_0^1 |2t-1| t \, dt \right)
= \left(\exp \frac{b-a}{2} \left(\ln (f^*(a)) \int_0^1 |2t-1| (1-t) \, dt \right) \right)
\times \left(\exp \frac{b-a}{2} \left(\ln (f^*(b)) \int_0^1 |2t-1| t \, dt \right) \right)
= \left(\exp \frac{b-a}{2} \left(\frac{1}{4} \ln (f^*(a)) \right) \right) \left(\exp \frac{b-a}{2} \left(\frac{1}{4} \ln (f^*(b)) \right) \right)
= (f^*(a)f^*(b))^\frac{b-a}{8}.
$$

The proof is completed.

Corollaire 3.7. In Theorem (3.6), if we assume that $f^* \leq M$, we get

$$
\left| G(f(a), f(b)) \left(\int_a^b f(u)^{\frac{\delta}{\pi}} \right) ^{\frac{1}{\pi - \tau}} \right| \leq M^\frac{b-a}{4}.
$$
4 Applications to special means

We shall consider the means for arbitrary real numbers \(a, b\)

The Arithmetic mean:
\[
A(a, b) = \frac{a + b}{2},
\]

The harmonic mean:
\[
H(a, b) = \frac{2ab}{a + b}, \quad a, b > 0\]

The logarithmic means:
\[
L(a, b) = \frac{b - a}{\ln b - \ln a}, \quad a, b > 0 \text{ and } a \neq b.
\]

The \(p\)-Logarithmic mean:
\[
L_p(a, b) = \left(\frac{b^{p+1} - a^{p+1}}{(p+1)(b-a)}\right)^{\frac{1}{p}}, \quad a, b > 0, a \neq b \text{ and } p \in \mathbb{R} \backslash \{-1, 0\}.
\]

Proposition 4.1. Let \(a, b \in \mathbb{R}\) with \(0 < a < b\), then we have
\[
e^{A_p(a, b) - L_p(a, b)} \leq \left(e^{a^{p+1} + b^{p+1}}\right)^{\frac{p(b-a)}{8}}.
\]

Proof. The assertion follows from Corollary (3.5), applied to the function \(f(t) = e^{pt}\) with \(p \geq 2\)

whose \(f^*(x) = e^{p^{p-1}}\) and \(\left(\int_a^b f(u)\,du\right)^{\frac{1}{p}} = \exp(-L_p(a, b))\).

Proposition 4.2. Let \(a, b \in \mathbb{R}\) with \(0 < a < b\), then we have
\[
e^{H^{-1}(a, b) - L^{-1}(a, b)} \leq e^{-\frac{b-a}{4e^2}}.
\]

Proof. The assertion follows from Corollary (3.7) applied to the function \(f(t) = e^{\frac{1}{t}}\) whose \(f^*(x) = e^{-\frac{1}{b}}, M = e^{-\frac{1}{b}}\) and \(\left(\int_a^b f(u)\,du\right)^{\frac{1}{b}} = \exp(-L^{-1}(a, b))\).

References

[1] M. A. Ali, M. Abbas, Z. Zhang, I. B. Sial and R. Arif, On integral inequalities for product and quotient of two multiplicatively convex functions. Asian research journal of mathematics, 12 (2019), no. 3, 1-11.

[2] M. A. Ali, M. Abbas and A. A. Zafer, On some Hermite-Hadamard integral inequalities in multiplicative calculus. J. Ineq. Special Func. 10 (2019), no.1, 111-122.

[3] M. A. Ali, H. Budak, M. Z. Sarikaya and Z. Zhang, Ostrowski and Simpson type inequalities for multiplicative integrals. Proyecciones 40 (2021), no. 3, 743-763.

[4] A. E. Bashirov, E.M. Kurpınar and A. Özyapıcı, Multiplicative calculus and its applications. J. Math. Anal. Appl. 337 (2008), no. 1, 36-48.
[5] H. Budak and K. Özçelik, On Hermite-Hadamard type inequalities for multiplicative fractional integrals. Miskolc Math. Notes 21 (2020), no. 1, 91–99.

[6] S. S. Dragomir and R. P. Agarwal, Two inequalities for differentiable mappings and applications to special means of real numbers and to trapezoidal formula. Appl. Math. Lett. 11 (1998), no. 5, 91–95.

[7] H. Fu, Y. Peng and T. Du, Some inequalities for multiplicative tempered fractional integrals involving the λ-incomplete gamma functions. AIMS Math. 6 (2021), no. 7, 7456–7478.

[8] M. Grossman and R. Katz, Non-Newtonian calculus. Lee Press, Pigeon Cove, Mass., 1972.

[9] A. Kashuri, B. Meftah and P.O. Mohammed, Some weighted Simpson type inequalities for differentiable s-convex functions and their applications. J. Frac. Calc. & Nonlinear Sys. 1 (2021) no. 1, 75-94.

[10] B. Meftah, M. Merad, N. Ouanas and A. Souahi, Some new Hermite-Hadamard type inequalities for functions whose n^{th} derivatives are convex. Acta Comment. Univ. Tartu. Math. 23 (2019), no. 2, 163-178.

[11] B. Meftah and K. Mekalfa, Some weighted trapezoidal type inequalities via h-preinvexity. Rad Hrvat. Akad. Znan. Umjet. Mat. Znan. 24 (2020), 81-97.

[12] S. Özcan, Hermite-hadamard type inequalities for multiplicatively s-convex functions. Cumhuriyet Science Journal, 41 (2020), no. 1, 245-259.

[13] S. Özcan, Some integral inequalities of Hermite-Hadamard type for multiplicatively preinvex functions. AIMS Math. 5 (2020), no. 2, 1505–1518.

[14] S. Özcan, Hermite-Hadamard type inequalities for multiplicatively h-convex functions. Konuralp J. Math. 8 (2020), no. 1, 158–164.

[15] S. Özcan, Hermite-Hadamard type inequalities for multiplicatively h-preinvex functions. Turk. J. Anal. Number Theory. 9 (2021), no.3, 65-70.

[16] C. E. M. Pearce and J. Pečarić, Inequalities for differentiable mappings with application to special means and quadrature formulae. Appl. Math. Lett. 13 (2000), no. 2, 51–55.

[17] J. E. Pečarić, F. Proschan and Y. L. Tong, Convex functions, partial orderings, and statistical applications. Mathematics in Science and Engineering, 187. Academic Press, Inc., Boston, MA, 1992.

[18] V. Volterra and B. Hostinsky, Operations Infinitesimales Lineaires, Gauthier-Villars, Paris, 1938.