SOME RESULTS ON η-RICCI SOLITON AND GRADIENT ρ-EINSTEIN SOLITON IN A COMPLETE RIEMANNIAN MANIFOLD

ABSOS ALI SHAIKH1 AND CHANDAN KUMAR MONDAL2

Abstract. The main purpose of the paper is to prove that if a compact Riemannian manifold admits a gradient ρ-Einstein soliton such that the gradient Einstein potential is a non-trivial conformal vector field, then the manifold is isometric to the Euclidean sphere. We have showed that a Riemannian manifold satisfying gradient ρ-Einstein soliton with convex Einstein potential possesses non-negative scalar curvature. We have also deduced a sufficient condition for a Riemannian manifold to be compact which satisfies almost η-Ricci soliton (see Theorem 2).

1. Introduction

In 1982, Hamilton [10] introduced the notion of Ricci flow in a Riemannian manifold (M, g_0) to find the various geometric and topological structures of Riemannian manifolds. The Ricci flow is defined by an evolution equation for metrics on (M, g_0):

$$\frac{\partial}{\partial t} g(t) = -2Ric, \quad g(0) = g_0.$$

A Ricci soliton on a Riemannian manifold (M, g) is a generalization of Einstein metric and is defined as

$$Ric + \frac{1}{2} \mathcal{L}_X g = \lambda g,$$

where X is a smooth vector field on M, \mathcal{L} denotes the Lie-derivative operator and $\lambda \in \mathbb{R}$. It is observed that Ricci solitons are self-similar solutions to the Ricci flow. Ricci soliton is called shrinking, steady or expanding according as $\lambda > 0$, $\lambda = 0$ or $\lambda < 0$, respectively. The vector field X is called the potential vector field of the Ricci soliton. If X is either Killing or vanishing vector field, then Ricci soliton is called trivial Ricci soliton and (1) reduces to an Einstein metric. If X becomes the gradient of a smooth function $f \in C^\infty(M)$, the ring of smooth functions on M, then the Ricci soliton is called gradient Ricci soliton and (1) reduces...
to the form

\[\text{Ric} + \nabla^2 f = \lambda g, \]

where \(\nabla^2 f \) is the Hessian of \(f \). Perelman [12] showed that Ricci soliton on any complete manifold is always a gradient Ricci soliton. If we replace the constant \(\lambda \) in (1) with a smooth function \(\lambda \in C^\infty(M) \), called soliton function, then we say that \((M, g)\) is an almost Ricci soliton, see ([3], [4], [14]).

Almost gradient Ricci soliton motivated Catino [7] to introduce a new class of Riemannian metrics which are natural generalization of Einstein metrics. In particular, a Riemannian manifold \((M^n, g), n \geq 2\), is called a generalized quasi-Einstein manifold if there are smooth functions \(f, \lambda \) and \(\mu \) on \(M \) such that

\[\text{Ric} + \nabla^2 f = \lambda g + \mu \eta \otimes \eta, \]

Cho and Kimura [9] further generalized the notion of Ricci soliton and developed the concept of \(\eta \)-Ricci soliton. If a Riemannian manifold \(M \) satisfies

\[\text{Ric} + \frac{1}{2} L_X g = \lambda g + \mu \eta \otimes \eta, \]

for some constant \(\lambda \) and \(\mu \), then \(M \) is said to admit \(\eta \)-Ricci soliton with soliton vector field \(X \). A further generalization is the notion of almost \(\eta \)-Ricci soliton defined by Blaga [5].

Definition 1.1. [5] A complete Riemannian manifold \((M, g)\) is said to satisfy almost \(\eta \)-Ricci soliton if there exists a smooth vector field \(X \in \chi(M) \), the algebra of smooth vector fields on \(M \), such that

\[\text{Ric} + \frac{1}{2} L_X g = \lambda g + \mu \eta \otimes \eta, \]

where \(\lambda \) and \(\mu \) are smooth functions on \(M \) and \(\eta \) is an 1-form on \(M \).

If \(X \) is the gradient of \(f \in C^\infty(M) \), then \((M, g)\) is called a gradient almost \(\eta \)-Ricci soliton. Hence (3) reduces to the form

\[\text{Ric} + \nabla^2 f = \lambda g + \mu \eta \otimes \eta. \]

Instead of Ricci flow, Catino and Mazzieri [6] considered the following gradient flow

\[\frac{\partial}{\partial t} g(t) = -2(\text{Ric} - \frac{1}{2} Rg), \]

and introduced the concept of gradient Einstein soliton in a Riemannian manifold, where \(R \) is the scalar curvature of the manifold.
Definition 1.2. [6] A Riemannian manifold (M, g) of dimension n is said to be the gradient Einstein Ricci soliton if

$$Ric - \frac{1}{2}Rg + \nabla^2 f = \lambda g,$$

for some function $f \in C^\infty(M)$ and some constant $\lambda \in \mathbb{R}$.

A more general type gradient Einstein soliton has been deduced by considering the following Ricci-Bourguignon flows [8]:

$$\frac{\partial}{\partial t}g(t) = -2(Ric - \rho Rg),$$

where ρ is a real non-zero constant.

Definition 1.3. [6] A Riemannian manifold (M, g) of dimension $n \geq 3$ is said to be the gradient ρ-Einstein Ricci soliton if

$$Ric + \nabla^2 f = \lambda g + \rho Rg, \quad \rho \in \mathbb{R}, \quad \rho \neq 0,$$

for some function $f \in C^\infty(M)$ and some constant $\lambda \in \mathbb{R}$. The function f is called Einstein potential. The gradient ρ-Einstein soliton is called expanding if $\lambda < 0$, steady if $\lambda = 0$ and shrinking if $\lambda > 0$.

The paper is arranged as follows: Section 2 discusses some basic concepts of Riemannian manifold and some definitions, which are needed for the rest of the paper. Section 3 deals with the study of almost η-Ricci soliton in a complete Riemannian manifold and it is shown that in a compact manifold the potential of such soliton turns into the Hodge-de Rham potential, up to a constant. In this section we have also deduced a sufficient condition for a Riemannian manifold admitting almost η-Ricci soliton to be compact. In the last section as the main result of the paper we have proved that a compact Riemannian manifold satisfying a gradient ρ-Einstein soliton with gradient of Einstein potential as a conformal vector field, is isometric to the Euclidean sphere. We have also studied some properties of gradient ρ-Einstein soliton in a complete Riemannian manifold. Among others it is proved that if (M, g) is a compact gradient ρ-Einstein soliton with ρ as non-positive real number and gradient of the Einstein potential is a conformal vector field, then such soliton can never be expanding.

2. Preliminaries

Throughout this paper by M we mean a complete Riemannian manifold of dimension n endowed with some positive definite metric g unless otherwise stated. In this section we have discussed some rudimentary facts of M (for reference see [13]). The tangent space at the point
\(p \in M\) is denoted by \(T_p M\). The geodesic with initial point \(p\) and final point \(q\) is denoted by \(\gamma_{pq}\). A smooth section of the tangent bundle \(TM\) is called smooth vector field. The gradient of a smooth function \(u : M \to \mathbb{R}\) at the point \(p \in M\) is defined by \(\nabla u(p) = g^{ij} \frac{\partial u}{\partial x^j} \big|_p\). It is the unique vector field such that any smooth vector field \(X\) in \(M\) satisfies \(g(\nabla u, X) = X(u)\). The Hessian \(\text{Hess}(u)\) is the symmetric \((0, 2)\)-tensor field and is defined by \(\nabla^2 u(X, Y) = \text{Hess}(u)(X, Y) = g(\nabla_X \nabla u, Y)\) for all smooth vector fields \(X, Y\) of \(M\). In local coordinates this can be written as

\[
(\nabla^2 u)_{ij} = \partial_{ij} u - \Gamma^k_{ij} \partial_k u,
\]

where \(\Gamma^k_{ij}\) is the Christoffel symbol of \(g\). For any vector field \(X \in \chi(M)\) and a covariant tensor field \(\omega\) of order \(r\) on \(M\), the Lie derivative of \(\omega\) with respect to \(X\) is defined by

\[
(L_X \omega)(X_1, \ldots, X_r) = X(\omega(X_1, \ldots, X_r)) - \sum_{i=1}^r \omega(X_1, \ldots, [X, X_i], \ldots, X_n),
\]

where \(X_i \in \chi(M)\) for \(i = 1, \ldots, r\). In particular, when \(\omega = g\), then

\[
(L_X g)(Y, Z) = g(\nabla_Y X, Z) + g(Y, \nabla_Z X)\]

for \(Y, Z \in \chi(M)\).

Given a vector field \(X\), the divergence of \(X\) is defined by

\[
div(X) = \frac{1}{\sqrt{|g|}} \frac{\partial}{\partial x^j} \sqrt{|g|} X^j,
\]

where \(g = \det(g_{ij})\) and \(X^j \frac{\partial}{\partial x^j}\). The Laplacian of \(u\) is defined by \(\Delta u = div(\nabla u)\).

Definition 2.1. [17] A \(C^2\)-function \(u : M \to \mathbb{R}\) is said to be harmonic if \(\Delta u = 0\). The function \(u\) is called subharmonic (resp. superharmonic) if \(\Delta \geq 0\) (resp. \(\Delta u \leq 0\)), where \(\Delta\) is the Laplacian operator in \(M\).

Definition 2.2. [15] A function \(u : M \to \mathbb{R}\) is called convex if the following inequality holds

\[
u \circ \gamma(t) \leq (1 - t) \circ \gamma(0) + t \circ \gamma(1) \quad \forall t \in [0, 1],
\]

and for any geodesic \(\gamma : [0, 1] \to M\). And in case of \(u\) is differentiable, then \(u\) is convex if and only if \(u\) satisfies

\[
g(\nabla u, X)_x \leq u(exp_x \nabla u) - u(x), \quad \forall X \in T_x M.
\]
3. Some results of almost η-Ricci soliton in a compact Riemannian manifold

We consider M as a compact orientable Riemannian manifold and $X \in \chi(M)$. Then Hodge-de Rham decomposition theorem [2] implies that X can be expressed as

$$X = \nabla h + Y,$$

where $h \in C^\infty(M)$ and $\text{div}(Y) = 0$. The function h is called the Hodge-de Rham potential [3].

Theorem 1. Let (M, g, X, λ) be a compact gradient almost η-Ricci soliton. If M is also a gradient almost η-Ricci soliton with potential function f then, up to a constant, f equals to the Hodge-de Rham potential.

Proof. Since (M, g, X, λ) is a compact almost η-Ricci soliton, so taking trace of (3), we get

$$R + \text{div}(X) = \lambda n + \text{tr}(\mu \eta \otimes \eta).$$

Now Hodge-de Rham decomposition implies that $\text{div}(X) = \Delta h$, hence from the above equation, we obtain

$$R = \lambda n - \Delta h + \text{tr}(\mu \eta \otimes \eta).$$

Again since M is gradient almost η-Ricci soliton with Perelman potential f, hence taking trace of (4), we have

$$R = \lambda n - \Delta f + \text{tr}(\mu \eta \otimes \eta).$$

Equating the last two equations, we get $\Delta (f - h) = 0$. Hence $f - h$ is a harmonic function in M, but M is compact. Hence $f = h + c$, for some constant c. \square

Theorem 2. Let (M, g) be a complete Riemannian manifold satisfying

(6) $$\text{Ric} + \frac{1}{2} \mathcal{L}_g \geq \lambda g + \mu \eta \otimes \eta,$$

where X is a smooth vector field, μ and λ are smooth functions and η is an 1-form. Then M is compact if $\|X\|$ is bounded and one of the following conditions holds:

(i) $\lambda \geq 0$ and $\mu > c > 0$,
(ii) $\lambda > c > 0$ and $\mu \geq 0$,

for some constant $c > 0$.

Proof. Let $p \in M$ be a fixed point and $\gamma : (0, \infty] \to M$ be a geodesic ray such that $\gamma(0) = p$. Then along γ we calculate

$$\mathcal{L}_X g(\gamma', \gamma') = 2g(\nabla_{\gamma'} X, \gamma') = 2 \frac{d}{dt} [g(X, \gamma')] .$$
Now from (6) and above equation, we have
\[\int_0^T \text{Ric}(\gamma', \gamma') dt \geq \int_0^T \lambda(\gamma(t)) g(\gamma', \gamma') dt - \int_0^T \frac{d}{dt} [g(X, \gamma')] dt + \int_0^T \mu(\gamma(t)) (\eta \otimes \eta)(\gamma', \gamma') dt \]
\[= \int_0^T \lambda(\gamma(t)) dt + g(X_p, \gamma'(0)) - g(X_{\gamma(T)}, \gamma'(T)) + \int_0^T \mu(\gamma(t)) \eta^2(\gamma') dt \]
\[\geq \int_0^T \lambda(\gamma(t)) dt + g(X_p, \gamma'(0)) - \|X_{\gamma(T)}\| + \int_0^T \mu(\gamma(t)) \eta^2(\gamma') dt. \]

The last inequality follows from Cauchy-Schwarz inequality. If any one of the conditions (i) and (ii) holds, then above inequality implies that
\[\int_0^\infty \text{Ric}(\gamma', \gamma') dt = \infty. \]

Hence Ambrose’s compactness theorem [1] implies that \(M \) is compact.

\[\square \]

4. Gradient \(\rho \)-Einstein soliton in a compact Riemannian manifold

Throughout this section \(M \) is a complete Riemannian manifold with dimension \(n \geq 2 \).

Theorem 3. [16] Suppose \((M, g)\) is a compact Riemannian manifold with constant scalar curvature and \(M \) admits a non-trivial conformal vector field \(X \). If \(\mathcal{L}_X \text{Ric} = \alpha g \) for some \(\alpha \in C^\infty(M) \), then \(M \) is isometric to the Euclidean sphere \(\mathbb{S}^n \).

Let \((M, g)\) be a gradient \(\rho \)-Einstein soliton. Then
\[\text{Ric} + \nabla^2 f = \rho R g + \lambda g. \]

If \(\nabla f \) is conformal vector field, then \(\nabla^2 f = \psi g \), for some \(\psi \in C^\infty(M) \). Hence above equation reduces to the form
\[(7) \quad \text{Ric} = (\rho R + \lambda - \psi) g. \]

Hence Ricci curvature depends only on the points of \(M \). Then it follows from Schur’s lemma that \(R \) is constant. Again by taking \(X = \nabla f \), we have
\[\mathcal{L}_X \text{Ric} = (\rho R + \lambda - \psi) \mathcal{L}_X g = (\rho R + \lambda - \psi) \psi g. \]

Hence from Theorem 3 we can state the main theorem of the paper:

Theorem 4. Let \((M, g)\) be a compact gradient \(\rho \)-Einstein soliton with Einstein potential \(f \). If \(\nabla f \) is a non-trivial conformal vector field, then \(M \) is isometric to the Euclidean sphere \(\mathbb{S}^n \).
Theorem 5. [16] If M is compact with constant scalar curvature and admits a non-trivial conformal vector field $X: \mathcal{L}_X g = 2\psi g$, $\psi \neq 0$, then
\[
\int_M \psi dV = 0.
\]
Taking the trace in (7), we get
\[
R = n(\rho R + \lambda - \psi),
\]
which implies that
\[
\int_M (1 - n\rho)R = n \int_M (\lambda - \psi).
\]
If X is conformal vector field and M is of constant scalar curvature, then applying Theorem 5 we get
\[
R \int_M (1 - n\rho) = n \int_M \lambda.
\]
Now if $\lambda < 0$, then the above equation becomes
\[
R \int_M (1 - n\rho) < 0.
\]
If M is compact, then Theorem 4 implies that M is isometric to \mathbb{S}^n. Since isometry preserves scalar curvature so $R > 0$. Hence the above equation implies that
\[
Vol(M) < n \int_M \rho.
\]
Hence we can state the following:

Theorem 6. Let (M, g) be a compact gradient ρ-Einstein soliton with Einstein potential f and $\rho \leq 0$. If ∇f is conformal vector field then M is shrinking or steady gradient ρ-Einstein soliton.

Lemma 7. [6] Let (M, g) be gradient ρ-Einstein Ricci soliton with Einstein potential f. Then we have
\[
\Delta f = -(1 - n\rho)R + n\lambda.
\]

Proposition 8. Suppose (M, g) is an expanding or steady gradient ρ-Einstein Ricci soliton with Einstein potential f and $n\rho > 1$. If f is a convex function, then M has non-negative scalar curvature.

Proof. The convexity of f implies that f is subharmonic [11], i.e., $\Delta f \geq 0$. Hence (10) implies that
\[
(1 - n\rho)R - n\lambda \leq 0.
\]
Now take $1 - n\rho = -h$, where $h > 0$ is a real constant. Then we get

$$R \geq -\frac{n\lambda}{h}.$$ \hspace{1cm} (11)

Since M is expanding or steady, so $\lambda \leq 0$. Hence we can conclude from (11) that $R \geq 0$. \hfill \square

The following can be easily derived from (10):

Proposition 9. Suppose (M, g) is a steady gradient ρ-Einstein Ricci soliton with Einstein potential f and $n\rho > 1$. If f is a harmonic function, then the scalar curvature of M vanishes.

Integrating (8) on M, we get

$$R(1 - n\rho)Vol(M) = n\lambda Vol(M),$$

which yields

$$R = \frac{n\lambda}{1 - n\rho}.$$ \hspace{1cm} (9)

If $R > 0$, then $n\lambda > 1 - n\rho$, i.e., $\rho > \frac{1}{n}(1 - n\lambda)$. Hence Theorem 4 implies that

Proposition 10. Let (M, g) be a compact gradient ρ-Einstein soliton with Einstein potential f. If ∇f is a non-trivial conformal vector field, then ρ satisfies

$$\rho > \frac{1}{n}(1 - n\lambda).$$

Acknowledgment

The second author greatly acknowledges to The University Grants Commission, Government of India for the award of Junior Research Fellowship.

References

[1] Ambrose, W., *A Theorem of Myers*, Duke Math. J., 24 (1957), 345–348.

[2] Aquino, C., Barros, A. and Ribeiro, E. Jr., *Some applications of the Hodge-de Rham decomposition to Ricci solitons* Results. Math., 60 (2011), 235–246.

[3] Barros, A. and Ribeiro Jr, E., *Some characterizations for compact almost Ricci soliton*, Proc. Amer. Math. Soc., 140(3) (2011), 1033–1040.

[4] Barros, A., Gomes, J. N. and Ribeiro Jr, E., *A note on rigidity of the almost Ricci soliton*, Archiv der Mathematik, 100(5) (2013), 481–490.

[5] Blaga, A. M., *Almost η-Ricci solitons in $(LCS)_n$-manifolds*, to appear in Bull. Belg. Math. Soc. Simon Stevin.

[6] Catino, G. and Mazzieri, I., *Gradient Einstein solitons*, Nonlinear Anal., 132 (2016), 66–94.

[7] Catino, G., *Generalized quasi-Einstein manifolds with harmonic weyl tensor*, Math. Z., 271 (2012) 751–756.
[8] Catino, G., Cremaschi, L., Djadli, Z., Mantegazza, C. and Mazzieri, L., *The Ricci-Bourguignon flow*, Pacific J. Math., **287**(2) (2017) 337–370.

[9] Cho, J. T. and Kimura, M., *Ricci solitons and real hypersurfaces in a complex space form*, Tohoku Math. J., **61**(2) (2009), 205–212.

[10] Hamilton, R. S., *Three-manifolds with positive Ricci curvature*, J. Differ. Geom., **17** (1982), 255–306.

[11] Greene, R. E. and Wu, H., *On the subharmonicity and plurisubharmonicity of a geodesic convex function*, Indiana Univ. Math. J., **22** (1971), 641–653.

[12] Perelman, G., *The entropy formula for the Ricci flow and its geometric applications*, arXiv:math/0211159 (2002).

[13] Petersen, P., *Riemannian geometry*, Springer-Verlag, New York, **2006**.

[14] Pigola, S. and Rigoli, M., Rimoldi, M. and Setti, A., *Ricci almost solitons*, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), **10** (2011), 757–799.

[15] Udriște, C., *Convex Functions and Optimization Methods on Riemannian Manifolds*, Kluwer Academic Publisher, **1994**.

[16] Yano, K., *Integral formula in Riemannian geometry*, Marcel Dekker, Inc., **1970**.

[17] Yau, S. T., *Harmonic functions on complete riemannian manifolds*, Commu. Pure Appl. Math., **28** (1975), 201–228.

1,2The University of Burdwan, Department of Mathematics, Golapbag, Burdwan-713104, West Bengal, India.

1E-mail:aask2003@yahoo.co.in, aashaikh@math.buruniv.ac.in

2E-mail:chan.alge@gmail.com