On the Impossibility of Dipole Modulation in E and B Mode Polarization Fields of CMB

Rahul Kothari*

Indian Institute of Technology Madras, Chennai 600036

Abstract

Cosmic Microwave Background Radiation is characterized by T, Q and U fields. A dipole modulation in these fields has been studied in different contexts. E and B are derived from Q and U fields with the help of the so called 'eth' operator. In this short write-up, I do a systematic analysis to demonstrate that a dipole modulation in E mode polarization can’t be introduced. Although, the analysis has been done for the E mode, a similar exercise can be repeated for B mode as well. It has been explicitly demonstrated that the introduction of a dipole modulation leads to a contradiction and hence such a modulation isn’t allowed.

1 Introduction

The Cosmic Microwave Background Radiation (from now on to be referred as CMB) is characterized by T, Q and U fields. T field is invariant under a rotation in the tangent plane perpendicular to the given direction of observation \hat{n} [1], so that it can be expanded in terms of the ‘usual’ spherical harmonics (i.e., spin zero spherical harmonics) as

$$T(\hat{n}) = \sum_{l=0}^{\infty} \sum_{m=-l}^{l} T_{lm} Y_{lm}. \tag{1.1}$$

It is to be noted that in general $T_{lm} \neq 0$ for a given l. Using orthogonality properties of spherical harmonics Equation (1.1) can be inverted to obtain

$$T_{lm} = \int T(\hat{n}) Y_{lm}^{*} d\Omega. \tag{1.2}$$

The temperature field satisfies the conditions of statistical isotropy until a potential violation in it was reported in 2003 and was termed as hemispherical power asymmetry [2]. A dipole modulation of the following form

$$\bar{T}(\hat{n}) = T(\hat{n}) \left[1 + \hat{\lambda} \cdot \hat{n} \right], \tag{1.2}$$

has been studied in this context [3–6]. It turns out that this type of modulation leads to a correlation between l and $l \pm 1$ multipole coefficients [7].

The fields Q and U on the other hand are not spin 0. The combination $Q \pm iU$ behaves in a specific manner upon rotation in the tangent plane, due to which it turns out to be spin ± 2. Thus they can be expanded in terms of spin ± 2 spherical harmonics as (here $sY_{lm} \equiv Y_{s,lm}$):

$$Q \pm iU = \sum_{l=0}^{\infty} \sum_{m=-l}^{l} a_{\pm2,lm} Y_{\pm2,lm}. \tag{1.3}$$

Using the orthogonality properties of the spin s spherical harmonics, Equation (1.3) can be inverted to obtain

$$a_{\pm2,lm} = \int (Q \pm iU) Y_{\pm2,lm}^{*} d\Omega. \tag{1.4}$$

*Email Address – rahulko@physics.iitm.ac.in, quantummechanicskothari@gmail.com
Although Equation (1.3) looks similar to Equation (1.1), it turns out that the sum over l in Equation (1.3) must start from $l = 2$.

Spin 0 fields are easier to work with as compared to spin ±2 fields. By applying the $\bar{\partial}$ operator [8] appropriately, we can obtain a scalar (i.e., a spin 0 field) from Q and U fields [1]:

$$E = \frac{1}{2} [\bar{\partial}^2 (Q - iU) + \bar{\partial}^2 (Q + iU)].$$ \hfill (1.5)

The field E being a scalar (i.e. spin 0 field) will have the following harmonic decomposition similar to Eq. (1.1).

$$E = \sum_{l=0}^{\infty} \sum_{m=-l}^{l} E_{lm} Y_{lm}. \hfill (1.6)$$

In spite of similarity between Equations (1.1) and (1.6), E field is fundamentally different from T field. On account of properties of spin weighted spherical harmonics $Y_{\pm 2lm}$, it turns out that $E_{lm} = 0$ when $l < 2$. In Section (2) this very fact is used to demonstrate the impossibility of dipole modulation in the E field.

2 Mathematical Analysis

The basic strategy to prove the impossibility of dipole modulation in the polarization fields (E and B) is as follows. First of all on account of the properties of the spin ±2 spherical harmonics [12, 13] it follows that $Y_{\pm 2lm} = 0$ when $l < 2$, thus the sum must start from $l = 2$. Using this fact, Theorem (1) concludes $E_{lm} = 0$ when $l < 2$ and finally in Corollary (1) which is also the main result of this write up, shows the impossibility of dipole modulation in E mode polarization. First of all I demonstrate that $E_{lm} = 0$ when $l < 2$.

Theorem 1. Given that E field as per Equation (1.5) can be obtained by an application of $\bar{\partial}$ operator on the Q and U fields, the spherical harmonic coefficients $E_{lm} = 0$ when $l < 2$.

Proof. First of all, apply the $\bar{\partial}$ operator on both sides of Equation (1.3) and knowing the operation of this operator on spin spherical harmonics [9], we obtain:

$$\bar{\partial}^2 (Q + iU) = \sum_{l=0}^{\infty} \sum_{m=-l}^{l} \left[\sqrt{\frac{(l+2)!}{(l-2)!}} a_{2lm} Y_{lm}, \right], \hfill (2.1)$$

$$\bar{\partial}^2 (Q - iU) = \sum_{l=0}^{\infty} \sum_{m=-l}^{l} \left[\sqrt{\frac{(l+2)!}{(l-2)!}} a_{-2lm} Y_{lm}. \right]. \hfill (2.2)$$

Here I can start the sum from $l = 0$ since the harmonic coefficients $a_{\pm 2lm} = 0$ anyway. Using Equations (2.1) and (2.2) in (1.5), we get

$$E = \frac{1}{2} \sum_{l=0}^{\infty} \sum_{m=-l}^{l} \left[\sqrt{\frac{(l+2)!}{(l-2)!}} (a_{2lm} + a_{-2lm}) Y_{lm}. \right]. \hfill (2.3)$$

Furthermore using, Equation (1.6) and orthogonality property of the spherical harmonics we finally get

$$E_{lm} = \frac{1}{2} \sqrt{\frac{(l+2)!}{(l-2)!}} (a_{2lm} + a_{-2lm}).$$

Now $a_{\pm 2lm} = 0$ for $l = 0$ and 1, therefore $E_{lm} = 0$ when $l = 0$ and 1, i.e., when $l < 2$. \hfill \Box

Thus since $E_{lm} = 0$ when $l < 2$, we can start the sum from $l = 2$ in Equation (1.6). Due to this very deduction, the E field is fundamentally different from T field, although both are scalars. Finally we reach to the main result of this article.

Corollary 1. Given that E is a scalar field under a rotation in the tangent plane, a dipole modulation of the following form

$$\hat{E} = E \left(1 + A \hat{\lambda} \cdot \hat{n} \right), \hfill (2.4)$$

in it is not possible. Here $\hat{\lambda}$ is given fixed direction and A is magnitude of modulation.
Proof. Here we proceed with proof by contradiction. I’ll demonstrate that if we assume the modulated field \(\bar{E} \) as scalar and perform its harmonic decomposition as per Equation (1.6), then its harmonic coefficients \(\bar{E}_{lm} \) aren’t zero when \(l = 1 \) which thus contradicts Theorem (1). The most general direction for the two vectors would be

\[
\hat{\lambda} = (\cos \Phi \sin \Theta, \sin \Phi \sin \Theta, \cos \Theta), \quad \hat{n} = (\cos \phi \sin \theta, \sin \phi \sin \theta, \cos \theta)
\]

Let us assume that \(\bar{E} \) is a scalar field, therefore its harmonic decomposition can be performed as

\[
\bar{E} = \sum_{l'=0}^{\infty} \sum_{m'=-l'}^{l'} \bar{E}_{l'm'} Y_{l'm'}.
\]

Here I am not apriori assuming that \(\bar{E}_{lm} = 0 \) when \(l < 2 \). Now using Equations (2.5) and (1.6) in (2.4), we obtain

\[
\sum_{l'=0}^{\infty} \sum_{m'=-l'}^{l'} \bar{E}_{l'm'} Y_{l'm'} = [1 + A (\cos \Phi \sin \Theta \cos \phi \sin \theta + \sin \Phi \sin \Theta \sin \phi \sin \theta + \cos \Theta \cos \theta)] \sum_{l'=0}^{\infty} \sum_{m'=-l'}^{l'} E_{l'm'} Y_{l'm'}.
\]

We can use orthogonality property of spherical harmonics and properties of associated Legendre Polynomials [10], whence it can be shown that

\[
\bar{E}_{lm} = E_{lm} + \frac{A \sin \Theta}{2} e^{-i \Phi} [E_{l+1,m-1} g(l+1,-m+1,-m+1) - E_{l-1,m-1} g(l,m,m)]
\]

\[+ A \cos \Theta [g(l+1,-m+1,m) E_{l+1,m} + g(l+1,m,-m-1) E_{l-1,m}] + \]

\[
\frac{A \sin \Theta}{2} e^{i \Phi} [E_{l-1,m+1} g(l,-m,-m) - E_{l+1,m+1} g(l+1,m+1,m+1)],
\]

here the function \(g(l,m,n) \) is

\[
g(l,m,n) = \sqrt{\frac{(l + m - 1)(l + n)}{(2l + 1)(2l - 1)}},
\]

Now \(\bar{E}_{lm} \) for \(l = 1 \) and \(m = 0 \) is

\[
\bar{E}_{1,0} = A \sqrt{\frac{2}{5}} \left[\cos \Theta \sqrt{\frac{2}{3}} E_{2,0} - \sin \Theta \Re(e^{i \Phi} E_{2,1}) \right] \neq 0,
\]

where \(\Re(z) \) denotes the real part of \(z \in \mathbb{C} \). This contradicts Theorem (1) and hence dipole modulation of the type given in Equation (2.4) isn’t possible.

3 Conclusion

This article systematically demonstrates that the dipole modulation in the polarization fields \(E \) and \(B \) isn’t possible. It must be pointed out that the result doesn’t mean that a difference in \(E \) mode power can’t/won’t be found, what this means is that the power difference can’t be accounted to a dipole modulation in \(E \) field. This is different from the temperature case where infact the power difference in the \(T \) mode was phenomenologically studied using such a modulation.

But no such problem arises when one tries to modulate \(Q \) and \(U \) fields. Interestingly, it too leads to a correlation between \(l \) and \(l \pm 1 \) multipoles [11], just like the temperature case.

4 Acknowledgements

Rahul Kothari is thankful to Shamik Ghosh and Prof. Pankaj Jain for discussions related to the proofs. He is grateful to Prof. Zibin and Prof. Chulba for their comments. He also sincerely acknowledges the Institute Post Doctoral Fellowship of IIT Madras.
References

[1] Matias Zaldarriaga and Uros Seljak. An all Sky Analysis of Polarization in the Microwave Background. Phys. Rev., D55:1830–1840, 1997.

[2] H. K. Eriksen, F. K. Hansen, A. J. Banday, K. M. Górski, and P. B. Lilje. Asymmetries in the cosmic microwave background anisotropy field. The Astrophysical Journal, 605(1):14, 2004.

[3] Christopher Gordon, Wayne Hu, Dragan Huterer, and Tom Crawford. Spontaneous isotropy breaking: A mechanism for CMB multipole alignments. Phys. Rev. D, 72(10):103002, 2005.

[4] Christopher Gordon. Broken Isotropy from a Linear Modulation of the Primordial Perturbations. The Astrophysical Journal, 656(2):636, 2007.

[5] Simon Prunet, Jean-Philippe Uzan, Francis Bernardeau, and Tristan Brunier. Constraints on mode couplings and modulation of the CMB with WMAP data. Phys. Rev. D, 71:083508, 2005.

[6] C. L. Bennett et. al. Seven-year wilkinson microwave anisotropy probe (wmap) observations: Are there cosmic microwave background anomalies? The Astrophysical Journal Supplement Series, 192(2):17, 2011.

[7] Pranati K. Rath and Pankaj Jain. Testing the dipole modulation model in CMBR. Journal of Cosmology and Astroparticle Physics, 2013(12):014, 2013.

[8] J. N. Goldberg, A. J. MacFarlane, E. T. Newman, F. Rohrlich, and E. C. G. Sudarshan. Spin s spherical harmonics and edth. J. Math. Phys., 8:2155, 1967.

[9] E. T. Newman and Roger Penrose. Note on the Bondi-Metzner-Sachs Group. J. Math. Phys., 7(5):863, 1966.

[10] G.B. Arfken and H.J. Weber. Mathematical Methods for Physicists. Elsevier, 2010.

[11] Shamik Ghosh, Rahul Kothari, Pankaj Jain, and Pranati K.Rath. Dipole modulation of cosmic microwave background temperature and polarization. Journal of Cosmology and Astroparticle Physics, 2016(01):046, 2016.

[12] Tevian Dray. The Relationship between monopole harmonics and spin-weighted spherical harmonics. Journal of Mathematical Physics, 26(5):1030–1033, 1985.

[13] Tevian Dray. A unified treatment of wigner \mathcal{D} functions, spin-weighted spherical harmonics, and monopole harmonics. Journal of Mathematical Physics, 27(3):781–792, 1986.