ON THE SUBMETRIZABILITY NUMBER AND i-WEIGHT OF QUASI-UNIFORM SPACES AND PARATOPOLOGICAL GROUPS

TARAS BANAKH AND ALEX RAVSKY

Abstract. We derive many upper bounds on the submetrizability number and i-weight of paratopological groups and topological monoids with open shifts. In particular, we prove that each first countable Hausdorff paratopological group is submetrizable thus answering a problem of Arhangel’skii posed in 2002. Also we construct an example of a zero-dimensional (and hence regular) Hausdorff paratopological abelian group G with countable pseudocharacter which is not submetrizable. In fact, all results on the i-weight and submetrizability are derived from more general results concerning normally quasi-uniformizable and bi-quasi-uniformizable spaces.

Introduction

This paper was motivated by the following problem of Arhangel’skii [1, 3.11] (also repeated by Tkachenko in his survey [24, 2.1]): Does every first countable Hausdorff paratopological group admit a weaker metrizable topology? A surprisingly simple answer to this problem was given by the authors in [4]. We just observed that each Hausdorff paratopological group G carries a natural uniformity generated by the base consisting of entourages \(\{(x, y) \in G \times G : y \in U^{-1}xU \cap U^{-1}yU \} \) where U runs over open neighborhoods of the unit e in G. In [4] this uniformity was called the quasi-Roelecke uniformity on G and denoted by Q. If G is first-countable, then the quasi-Roelecke uniformity Q is metrizable, which implies that the space G is submetrizable. Moreover, if the quasi-Roelecke uniformity Q is ω-bounded, then the topology generated by the uniformity Q is metrizable and separable, which implies that G has countable i-weight, i.e., admits a continuous injective map onto a metrizable separable space.

In fact, for the submetrizability of G it suffices to require the countability of the pseudocharacter $\psi(Q)$ of Q, i.e., the existence of a countable subfamily $\mathcal{U} \subset Q$ such that $\bigcap\mathcal{U} = \Delta_X$. So, the aim of the paper is to detect paratopological groups G whose quasi-Roelecke uniformity Q has countable pseudocharacter. For this we shall find some upper bounds on the pseudocharacter $\psi(Q)$. These bounds will give us upper bounds on the submetrizability number $sm(G)$ and the i-weight $iw(G)$ of a paratopological group G. In fact, the obtained upper bounds on $sm(G)$ and $iw(G)$ have uniform nature and depends on the properties of the two canonical quasi-uniformities L and R on G called the left and right quasi-uniformities of G. These quasi-uniformities are studied in Sections 5 and 6. In Sections 3 and 4 we study properties of topological spaces whose topology is generated by two quasi-uniformities which are compatible in some sense (more precisely, are \pm-subcommuting or normally \pm-subcommuting). In Section 3 we prove that any two normally \pm-subcommuting quasi-uniformities are normal in the sense of [4]. This motivates the study of topological spaces whose topology is generated by a normal quasi-uniformity. For such spaces we obtain some upper bounds on the i-weight, which is done in Section 4. Section 1 has preliminary character. It contains the necessary information of topological spaces, quasi-uniform spaces, and their cardinal characteristics. In Section 7 we present two counterexamples to some natural conjectures concerning submetrizable paratopological groups.

1. Preliminaries

In this section we collect known information on topological spaces, quasi-uniformities, and their cardinal characteristics. For a set X by $|X|$ we denote its cardinality. By ω we denote the set of all finite ordinals and by $\mathbb{N} = \omega \setminus \{0\}$ the set of natural numbers.

For a cardinal κ by $\log(\kappa)$ we denote the smallest cardinal λ such that $2^\lambda \geq \kappa$.

1991 Mathematics Subject Classification. 54D10; 54D15; 54E15; 22A30.

Key words and phrases. Submetrizable space, i-weight, pre-uniformity, quasi-uniformity, paratopological group, topological monoid.

The first author has been partially financed by NCN grant DEC-2012/07/D/ST1/02087.
1.1. Topological spaces and their cardinal characteristics. For a subset A of a topological space X by \overline{A} and A° and \overline{A} we denote the closure, interior and interior of the closure of the set A in X, respectively.

A family \mathcal{N} of subsets of a topological space X is called a network of the topology of X if each open set $U \subset X$ can be written as the union $\bigcup \mathcal{U}$ of some subfamily $\mathcal{U} \subset \mathcal{N}$. If each set $N \in \mathcal{N}$ is open in X, then \mathcal{N} is a base of the topology of X.

A subset D of a topological space X is called strongly discrete if each point $x \in D$ has a neighborhood $U_x \subset X$ such that the family $(U_x)_{x \in D}$ is discrete in the sense that each point $z \in X$ has a neighborhood that meets at most one set U_x, $x \in D$. It is easy to see that each strongly discrete subset of (a T_1-space) X is discrete (and closed) in X. A topological space X is called (strongly) σ-discrete if X can be written as the countable union $X = \bigcup_{n \in \omega} X_n$ of (strongly) discrete subsets of X.

A topological space X is called

- Hausdorff if any two distinct points $x, y \in X$ have disjoint open neighborhoods $O_x \ni x$ and $O_y \ni y$;
- collectively Hausdorff if each closed discrete subset of X is strongly discrete in X;
- functionally Hausdorff if for any two distinct points $x, y \in X$ there is a continuous function $f : X \to \mathbb{R}$ such that $f(x) \neq f(y)$;
- regular if for any point $x \in X$ and a neighborhood $O_x \subset X$ there is a neighborhood $V_x \subset X$ of x such that $\overline{V}_x \subset O_x$;
- completely regular if for any point $x \in X$ and a neighborhood $O_x \subset X$ there is a continuous function $f : X \to [0, 1]$ such that $f(x) = 0$ and $f^{-1}(0, 1) \subset O_x$;
- quasi-regular if each non-empty open set $U \subset X$ contains the closure \overline{V} of another non-empty open set $V \subset X$;
- submetrizable if X admits a continuous metric (or equivalently, admits a continuous injective map into a metrizable space).

It is clear that each submetrizable space is functionally Hausdorff.

In Section 2 we shall need the following property of strongly σ-discrete spaces.

Proposition 1.1. Each strongly σ-discrete Tychonoff space X is zero-dimensional and submetrizable. Moreover, X admits an injective continuous map into the Cantor cube $\{0, 1\}^\kappa$ of weight $\kappa = \log(|X|)$.

Proof. The proposition trivially holds if X is discrete. So, we assume that X is not discrete and hence infinite. Write X as the countable union $X = \bigcup_{n \in \omega} X_n$ of pairwise strongly discrete non-empty subsets X_n of X. Let βX be the Stone-Čech compactification of X. Using the strong discreteness of each X_n, we can extend each continuous bounded function $f : X_n \to \mathbb{R}$ to a continuous bounded function on X. This implies that the closure \overline{X}_n of X_n in βX is homeomorphic to the Stone-Cech compactification βX_n of the discrete space X_n and hence has covering dimension dim(βX_n) = 0 (see [10] 3.6.7 and 7.1.17]). By the Countable Sum Theorem [10] 3.1.8 for covering dimension in normal spaces, the σ-compact (and hence normal) space $Z = \bigcup_{n \in \omega} \overline{X}_n$ has covering dimension dim(Z) = 0, which implies that its subspace $X = \bigcup_{n \in \omega} X_n$ is zero-dimensional.

Now we prove that X is submetrizable. For every $n \in \omega$ and every $x \in X_n$ we can choose a closed-and-open neighborhood $U_x \subset X$ of x such that $U_x \cap \bigcup_{k < n} X_k = \emptyset$ and the indexed family $(U_x)_{x \in X_n}$ is discrete in X. Then the union $\bigcup_{x \in X_n} U_x$ is a closed-and-open subset in X and the function $d_n : X \times X \to \{0, 1\}$ defined by

$$d_n(x, y) = \begin{cases} 0, & \text{if } x, y \in U_x \text{ for some } x \in X_n \text{ or } x, y \not\in \bigcup_{z \in X_n} U_z, \\ 1, & \text{otherwise}, \end{cases}$$

is a continuous pseudometric on X. Consequently, the function $d = \max_{n \in \omega} \frac{1}{\kappa} d_n$ is a continuous metric on X, which implies that X is submetrizable.

It follows that the space X admits a continuous injective map into the countable product $\prod_{n \in \omega} D_n$ of discrete spaces D_n of cardinality $|D_n| = 1 + |X_n| \leq |X|$. By definition of the cardinal $\kappa = \log(|X|)$, every discrete space D_n, $n \in \omega$, admits an injective (and necessarily continuous) map into the Cantor cube $\{0, 1\}^\kappa$. Then $\prod_{n \in \omega} D_n$ and hence X also admits a continuous injective map into $\{0, 1\}^\kappa$. \square

For a cover \mathcal{U} of a set X and a subset $A \subset X$ we put $\mathcal{S}^0(A; \mathcal{U}) = A$ and $\mathcal{S}^{n+1}(A; \mathcal{U}) = \bigcup \{ U \in \mathcal{U} : U \cap \mathcal{S}^n(A; \mathcal{U}) \neq \emptyset \}$ for $n \geq 0$.

1.2. Cardinal characteristics of topological spaces, I. For a topological space X let

- $nw(X) = \min\{|N| : \mathcal{N} \text{ is a network of the topology of } X\}$ be the network weight of X;
- $d(X) = \min\{|A| : A \subset X, \overline{A} = X\}$ be the density of X;
- $hd(X) = \sup\{ d(Y) : Y \subset X \}$ the hereditary density of X;
The cardinal characteristics \(nw, d, s, e, c, l \) are well-known in General Topology (see [9], [13]) whereas \(\bar{l}, \bar{l}^* \) are relatively new and notations for these cardinal characteristics are not fixed yet. For example, the weak Lindelöf number \(\bar{l} \) often is denoted by \(wL \), but in [13] §3 it is denoted by \(wc \) and called the weak covering number. According to [21], the weak extent \(l^* \) can be called the star cardinality. Spaces with countable weak extent are called star-Lindelöf in [20] and strongly star-Lindelöf in [8]. Observe that \(e \leq de \) and \(e(X) = de(X) \) for any T\(_1\)-space \(X \).

The relations between the above cardinal invariants are described in the following version of Hodel’s diagram [13]. In this diagram an arrow \(f \to g \) (resp \(f \rightarrow g \)) indicates that \(f(X) \leq g(X) \) for any (T\(_1\)) space \(X \).

\[
\begin{array}{cccccccc}
l^* & \quad \Rightarrow & de & \quad \Rightarrow & l & \quad \Rightarrow & hd & \quad \Rightarrow \\
dc & \quad \Rightarrow & e & \quad \Rightarrow & s & \quad \Rightarrow & nw & \quad \Rightarrow \\
\bar{l} & \quad \Rightarrow & c & \quad \Rightarrow & d & \quad \Rightarrow & hd \\
\end{array}
\]

In fact, the cardinal characteristics \(d, l, \bar{l}, l^* \) are initial representatives of the hierarchy of cardinal characteristics \(l^{n} \) and \(\bar{l}^{n} \), \(n \in \mathbb{N} \), describing star-covering properties of topological spaces (see the survey paper [20] of Matveev for more information on this subject).

For a topological space \(X \) and an integer number \(n \geq 0 \) let

- \(l^{n}(X) \) be the smallest cardinal \(\kappa \) such that for every open cover \(\mathcal{U} \) of \(X \) there is a subset \(A \subset X \) of cardinality \(|A| \leq \kappa \) such that \(\mathcal{S}^{n}(A; \mathcal{U}) = X \);
- \(\bar{l}^{n}(X) \) be the smallest cardinal \(\kappa \) such that for every open cover \(\mathcal{U} \) of \(X \) there is a subset \(A \subset X \) of cardinality \(|A| \leq \kappa \) such that \(\mathcal{S}^{n}(A; \mathcal{U}) \) is dense in \(X \);
- \(l^{n+\frac{1}{2}}(X) \) be the smallest cardinal \(\kappa \) such that every open cover \(\mathcal{U} \) of \(X \) contains a subfamily \(\mathcal{V} \subset \mathcal{U} \) of cardinality \(|\mathcal{V}| \leq \kappa \) such that \(\mathcal{S}^{n}(\bigcup \mathcal{V}; \mathcal{U}) = X \);
- \(\bar{l}^{n+\frac{1}{2}}(X) \) be the smallest cardinal \(\kappa \) such that every open cover \(\mathcal{U} \) of \(X \) contains a subfamily \(\mathcal{V} \subset \mathcal{U} \) of cardinality \(|\mathcal{V}| \leq \kappa \) such that \(\mathcal{S}^{n}(\bigcup \mathcal{V}; \mathcal{U}) \) is dense in \(X \);
- \(l^{\omega}(X) = \min_{n \in \mathbb{N}} l^{n}(X) \) and \(\bar{l}^{\omega} = \min_{n \in \mathbb{N}} \bar{l}^{n}(X) \).

Observe that \(l^{0} = |.|, \bar{l}^{0} = d, l^{\frac{1}{2}} = l, \bar{l}^{\frac{1}{2}} = \bar{l}, \) and \(l^{1} = l^* \).

In [7] the cardinal characteristics \(l^{n} \) and \(\bar{l}^{n} \) are denoted by \(st_{n}l \) and \(st_{n}\bar{l} \), respectively. In [8] spaces \(X \) with countable \(l^{n+\frac{1}{2}}(X) \) and \(\bar{l}^{n}(X) \) are called \(n\)-star-Lindelöf and strongly \(n\)-star Lindelöf, respectively.

The following diagram describes provable inequalities between cardinal characteristics \(l^{n}, \bar{l}^{n}, l^{n+\frac{1}{2}}, \) and \(\bar{l}^{n+\frac{1}{2}} \) for \(n \in \mathbb{N} \). For two cardinal characteristics \(f,g \) an arrow \(f \rightarrow g \) indicates that \(f(X) \leq g(X) \) for any topological space \(X \).

\[
\begin{array}{cccccccc}
l^{\omega} & \quad \Rightarrow & l^{(n+1)} & \quad \Rightarrow & l^{(n+\frac{1}{2})} & \quad \Rightarrow & l^{n} & \quad \Rightarrow & l^{1} & \quad \Rightarrow & de & \quad \Rightarrow & l^{\frac{1}{2}} & \quad \Rightarrow & hd \\
\bar{l}^{\omega} & \quad \Rightarrow & \bar{l}^{(n+\frac{1}{2})} & \quad \Rightarrow & \bar{l}^{n} & \quad \Rightarrow & \bar{l}^{(n-\frac{1}{2})} & \quad \Rightarrow & \bar{l}^{\frac{1}{2}} & \quad \Rightarrow & c & \quad \Rightarrow & \bar{l}^{0} & \quad \Rightarrow & d & \quad \Rightarrow \\
\end{array}
\]
The unique non-trivial inequalities $l^{*1} \leq dc$ and $\bar{l}^{*1} \leq dc$ in this diagram follow from the next proposition whose proof can be found in [5].

Proposition 1.2. Any topological space X has $l^{*1}(X) \leq dc(X)$ and $\bar{l}^{*1}(X) \leq dc(X)$.

For quasi-regular spaces many star-covering properties are equivalent. Let us recall that a topological space X is called **quasi-regular** if each non-empty open set $U \subset X$ contains the closure $\overline{\overline{U}}$ of another non-empty open set V in X. The following proposition was proved in [9] (and for regular spaces in [8]).

Proposition 1.3. Let X be a quasi-regular space. Then

1. $dc(X) = \bar{l}^{*1}(X) = l^{*\omega}(X)$.
2. If X is normal, then $dc(X) = \bar{l}^{*1}(X)$.
3. If X is perfectly normal, then $dc(X) = c(X) = \bar{l}^{*\frac{1}{2}}(X)$.
4. If X is collectively Hausdorff, then $dc(X) = de(X) = l^{*1}(X)$.
5. If X is paracompact, then $dc(X) = l(X)$.
6. If X is perfectly paracompact, then $dc(X) = hd(X)$.

Proposition 1.3 implies that for quasi-regular spaces the diagram describing the relations between the cardinal characteristics simplifies to the following form.

![Diagram](image)

Next, we consider some local cardinal characteristics of topological spaces. Let X be a topological space, x be a point of X, and N_x be the family of all open neighborhoods of x in X.

- The **character** $\chi_x(X)$ of X at x is the smallest cardinality of a neighborhood base at x.
- The **pseudocharacter** $\psi_x(X)$ of X at x is the smallest cardinality of a subfamily $\mathcal{U} \subset N_x$ such that $\bigcap \mathcal{U} = N_x$.
- The **closed pseudocharacter** $\overline{\psi}_x(X)$ of X at x is the smallest cardinality of a subfamily $\mathcal{U} \subset N_x$ such that $\bigcap_{U \in \mathcal{U}} \overline{U} = \bigcap_{V \in N_x} \overline{V}$.

It is easy to see that for any point x of a Hausdorff topological space X we get

$$\psi_x(X) \leq \overline{\psi}_x(X) \leq \chi_x(X).$$

The cardinals

$$\chi(X) = \sup_{x \in X} \chi_x(X), \quad \psi(X) = \sup_{x \in X} \psi_x(X), \quad \text{and} \quad \overline{\psi}(X) = \sup_{x \in X} \overline{\psi}_x(X)$$

are called the **character**, the **pseudocharacter**, and the **closed pseudocharacter** of X, respectively. It follows that

$$\psi(X) \leq \overline{\psi}(X) \leq \chi(X)$$

for any Hausdorff topological space X.

The (closed) pseudocharacter is upper bounded by the (closed) diagonal number defined as follows. Let X be a Hausdorff topological space. By $\Delta_x = \{(x,y) \in X \times X : x = y\}$ we denote the **diagonal** of the square $X \times X$.

- The **diagonal number** $\Delta(X)$ of X is the smallest cardinality of a family \mathcal{U} of open subsets of $X \times X$ such that $\bigcap \mathcal{U} = \Delta_x$.
- The **closed diagonal number** $\overline{\Delta}(X)$ of X is the smallest cardinality of a family \mathcal{U} of open subsets of $X \times X$ such that $\bigcap_{U \in \mathcal{U}} \overline{U} = \Delta_x$.

It is easy to see that $\psi(X) \leq \Delta(X) \leq \overline{\Delta}(X)$ and $\overline{\psi}(X) \leq \overline{\Delta}(X)$ for any Hausdorff space X.

Following [12] [2.1] we say that a space X has **regular G_δ-diagonal** if $\Delta(X) \leq \omega$ (resp. $\overline{\Delta}(X) \leq \omega$).

The (closed) diagonal number of a functionally Hausdorff space X is upper bounded by

- the **submetrizability number** $sm(X)$ of X, defined as the smallest number of continuous pseudometrics which separate points of X, and

$$sm(X) = \sup \{ |\mathcal{F}| : \mathcal{F} \text{ is a family of continuous pseudometrics on } X \}.$$
the \textit{i-weight} $iw(X)$ of X, defined as the smallest number of continuous real-valued functions that separate points of X.

The following diagram describes relations between these cardinal characteristics. In this diagram for two cardinal characteristics f,g an arrow $f \to g$ indicates that $f(X) \leq g(X)$ for any functionally Hausdorff topological space X.

![Diagram](image)

The unique non-trivial inequality $iw \leq sm \cdot \log dc$ in this diagram is proved in the following proposition.

Proposition 1.4. Each infinite functionally Hausdorff space X has

$$iw(X) \cdot \omega = sm(X) \cdot \log(dc(X)) \quad \text{and} \quad |X| \leq dc(X)^{\omega \cdot sm(X)} \leq 2^{\omega \cdot iu(X)}.$$

Proof. The inequality $sm(X) \cdot \log(dc(X)) \leq iw(X) \cdot \omega$ follows from the inequalities $sm(X) \leq iw(X)$ and $dc(X) \leq |X| \leq [0, 1]^{iu(X)} = 2^{iu(X)}$, the latter of which implies $\log(dc(X)) \leq \log(2^{iu(X)}) = iw(X) \cdot \omega$.

Now we prove the inequalities $iw(X) \cdot \omega \leq sm(X) \cdot \log(dc(X))$ and $|X| \leq dc(X)^{\omega \cdot sm(X)}$. The definition of the submetrizability number implies that X admits a continuous injective map $f : X \to \prod_{\alpha \in sm(X)} M_\alpha$ into the Tychonoff product of $sm(X)$ many metric spaces M_α. We lose no generality assuming that each metric space M_α is a continuous image of X and hence $d(M_\alpha) = dc(M_\alpha) \leq dc(X)$ and $|M_\alpha| \leq d(M_\alpha)^\omega$. Then

$$|X| \leq \prod_{\alpha \in sm(X)} |M_\alpha| \leq \prod_{\alpha \in sm(X)} d(M_\alpha)^\omega \leq \prod_{\alpha \in sm(X)} dc(X)^\omega = dc(X)^{\omega \cdot sm(X)}.$$

By [H 4.4.9], for every $\alpha \in sm(X)$ the metric space M_α admits a topological embedding into the countable power H^κ_ω of the hedgehog $H_\kappa = \{ (x_i)_{i \in \kappa} : \{ i \in \kappa : x_i \neq 0 \} \leq 1 \}$ with $\kappa = dc(X) \geq d(M_\alpha)$ many spines. The hedgehog H_κ can be thought as a cone over a discrete space D of cardinality κ. The discrete space D admits an injective continuous map into the Tychonoff cube $[0, 1]^{\log(\kappa)}$. Consequently, H_κ admits an injective continuous map into the cone over the Tychonoff cube $[0, 1]^{\log(\kappa)}$, which implies that $iw(H_\kappa) \leq \log(\kappa) = \log(dc(X))$ and $iw(H^\kappa_\omega) \leq \log(dc(X)) \cdot \omega = \log(dc(X))$. Then $iw(X) \leq sm(X) \cdot iw(H^\kappa_\omega) \leq sm(X) \cdot \log(dc(X))$. This completes the proof of the equality $iw(X) \cdot \omega = sm(X) \cdot \log(dc(X))$.

To complete the proof of the proposition, observe that

$$|X| \leq dc(X)^{\omega \cdot sm(X)} \leq (2^{\log(dc(X))})^{\omega \cdot sm(X)} = 2^{\omega \cdot \log(dc(X)) \cdot \omega \cdot sm(X)} = 2^{\omega \cdot iu(X)}.$$

\[\blacksquare\]

1.3. **Pre-uniform spaces and their cardinal characteristics.** By an \textit{entourage} on a set X we understand any subset $U \subset X \times X$ containing the diagonal $\Delta_X = \{(x, y) \in X \times X : x = y\}$ of $X \times X$. For an entourage U on X, point $x \in X$ and subset $A \subset X$ let $B(x; U) = \{ y \in X : (x, y) \in U \}$ be the \textit{U-ball} centered at x, and $B(A; U) = \bigcup_{a \in A} B(a; U)$ be the \textit{U-neighborhood} of A in X.

Now we define some operations on entourages. For two entourages U, V on X let

$$U^{-1} = \{(x, y) \in X \times X : (y, x) \in U\}$$

be the \textit{inverse} entourage and

$$UV = \{(x, z) \in X \times X : \exists y \in X \text{ such that } (x, y) \in U \text{ and } (y, z) \in V\}$$

be the \textit{composition} of U and V. It is easy to see that $(UV)^{-1} = V^{-1}U^{-1}$. For every entourage U on X define its powers U^n, $n \in \mathbb{Z}$, by the formula: $U^0 = \Delta_X$ and $U^{n+1} = U^n U$, $U^{-n} = U^{-n} U^{-1}$ for $n \in \omega$. Define also the \textit{alternating powers} U^{+n} and U^{-n} of U by the recursive formulas: $U^{\pm 0} = U^{\mp 0} = \Delta_X$, and $U^{\pm (n+1)} = U U^{\mp n}$, $U^{\mp (n+1)} = U^{-1} U^{\pm n}$ for $n \geq 0$. If U is an entourage on a topological space X, then put $U = \bigcup_{x \in X} B(x; U)$ be the closure of U in the product $X_d \times X$ where X_d is the set X endowed with the discrete topology.

The following lemma proved in [L] shows that the alternating power $U^{\pm n}$ on an entourage U is equivalent to taking the star with respect to the cover $U = \{ B(x; U) : x \in X \}$.

Lemma 1.5. For any entourage U on a set X and a point $x \in X$ we get $B(x; U^{-1} U) = St(x; U)$ where $U = \{ B(x; U) : x \in X \}$. Consequently, $B(x; U^{\pm n}) = B(x; (U^{-1} U)^n) = St^n(x; U)$ for every $n \in \mathbb{N}$.

A family \mathcal{U} of entourages on a set X is called a \textit{uniformity} on X if it satisfies the following four axioms:

(1) for any $U \in \mathcal{U}$, every entourage $V \subset X \times X$ containing U belongs to \mathcal{U};
(U2) for any entourages \(U, V \in \mathcal{U} \) there is an entourage \(W \in \mathcal{U} \) such that \(W \subset U \cap V \);

(U3) for any entourage \(U \in \mathcal{U} \) there is an entourage \(V \in \mathcal{U} \) such that \(VV \subset U \);

(U4) for any entourage \(U \in \mathcal{U} \) there is an entourage \(V \in \mathcal{U} \) such that \(V \subset U^{-1} \).

A family \(\mathcal{U} \) of entourages on \(X \) is called a quasi-uniformity (resp. pre-uniformity) on \(X \) if it satisfies the axioms (U1)–(U3) (resp. (U1)–(U2)). So, each uniformity is a quasi-uniformity and each quasi-uniformity is a pre-uniformity. Observe that a pre-uniformity is just a filter of entourages on \(X \).

A subfamily \(\mathcal{B} \subset \mathcal{U} \) is called a base of a pre-uniformity \(\mathcal{U} \) on \(X \) if each entourage \(U \in \mathcal{U} \) contains some entourage \(B \in \mathcal{B} \). Each base of a preuniformity satisfies the axiom (U2). Conversely, each family \(\mathcal{B} \) of entourages on \(X \) satisfying the axiom (U2) is a base of a unique pre-uniformity \(\langle \mathcal{B} \rangle \) consisting of entourages \(U \subset X \times X \) containing some entourage \(B \in \mathcal{B} \). If the base \(\mathcal{B} \) satisfies the axiom (U3) (and (U4)), then the pre-uniformity \(\langle \mathcal{B} \rangle \) is a quasi-uniformity (and a uniformity).

Next we define some operations over preuniformities. Given two preuniformities \(\mathcal{U}, \mathcal{V} \) on a set \(X \) put
\[
\mathcal{U}^{-1} = \{ U^{-1} : U \in \mathcal{U} \}, \quad \mathcal{U} \cap \mathcal{V} = \{ U \cap V : U \in \mathcal{U}, V \in \mathcal{V} \}, \quad \mathcal{U} \cup \mathcal{V} = \{ U \cup V : U \in \mathcal{U}, V \in \mathcal{V} \}
\]
and let \(\mathcal{U} \mathcal{V} \) be the pre-uniformity generated by the base \(\{ UV : U \in \mathcal{U}, V \in \mathcal{V} \} \). For every \(n \in \omega \) let \(\mathcal{U}^{\pm n}, \mathcal{U}^{\mp n}, \mathcal{U}^{\wedge n}, \mathcal{U}^{\vee n} \) be the pre-uniformities generated by the bases \(\{ U^{\pm n} : U \in \mathcal{U} \}, \{ U^{\mp n} : U \in \mathcal{U} \}, \{ U^{\wedge n} \cap U^{\mp n} : U \in \mathcal{U} \}, \{ U^{\wedge n} \setminus U^{\mp n} : U \in \mathcal{U} \} \), respectively. Observe that \(\mathcal{U}^{\wedge n} = \mathcal{U}^{\pm n} \wedge \mathcal{U}^{\mp n} \) and \(\mathcal{U}^{\vee n} = \mathcal{U}^{\pm n} \vee \mathcal{U}^{\mp n} \). For a pre-uniformity \(\mathcal{U} \) on a topological space \(X \) let \(\mathcal{U} \) be the pre-uniformity generated by the base \(\{ U : U \in \mathcal{U} \} \).

The pre-uniformities \(\mathcal{U}^{\pm n}, \mathcal{U}^{\mp n}, \mathcal{U}^{\wedge n}, \mathcal{U}^{\vee n} \) feet into the following diagram (in which an arrow \(\mathcal{V} \to \mathcal{W} \) indicates that \(\mathcal{V} \subset \mathcal{W} \)):

\[
\begin{array}{ccc}
\mathcal{U}^{\pm n} & \mathcal{U}^{\mp n} & \mathcal{U}^{\wedge n} \\
\mathcal{U}^{\vee(n+1)} \downarrow & & \mathcal{U}^{\vee n} \downarrow \mathcal{U}^{\vee(n-1)} \\
\mathcal{U}^{\wedge n} \uparrow & & \mathcal{U}^{\mp n}
\end{array}
\]

We shall say that a preuniformity \(\mathcal{U} \) on \(X \) is
- \(\pm n \)-separated if \(\bigcap \mathcal{U}^{\pm n} = \Delta_X \);
- \(\mp n \)-separated if \(\bigcap \mathcal{U}^{\mp n} = \Delta_X \);
- \(n \)-separated if \(\mathcal{U} \) is both \(\pm n \)-separated and \(\mp n \)-separated.

Observe that for an odd number \(n \) a pre-uniformity \(\mathcal{U} \) is \(n \)-separated if and only if it is \(\pm n \)-separated if and only if it is \(\mp n \)-separated (this follows from the equality \((U^{\pm n})^{-1} = U^{\mp n} \) holding for every entourage \(U \)).

This equivalence does not hold for even \(n \).

Example 1.6. For every \(m \in \mathbb{N} \) consider the entourage \(U_m = \{(x, y) \in \mathbb{R}_+ \times \mathbb{R}_+ : y \in \{ x \} \cup \{ x + m, \infty \} \} \) on the half-line \(\mathbb{R}_+ = [0, \infty) \). The family \(\{ U_m \}_{m \in \mathbb{N}} \) is a base of a quasi-uniformity \(\mathcal{U} \) on \(\mathbb{R}_+ \) which is \(\mp 2 \)-separated but not \(\pm 2 \)-separated.

Each preuniformity \(\mathcal{U} \) on a set \(X \) generates a topology \(\tau_\mathcal{U} \) consisting of all subsets \(W \subset X \) such that for each point \(x \in W \) there is an entourage \(U \in \mathcal{U} \) with \(B(x; U) \subset W \). This topology \(\tau_\mathcal{U} \) will be referred to as the topology generated by the pre-uniformity \(\mathcal{U} \). If \(\mathcal{U} \) is a quasi-uniformity, then for each point \(x \in X \) the family of balls \(\{ B(x; U) : U \in \mathcal{U} \} \) is a neighborhood base of the topology \(\tau_\mathcal{U} \) at \(x \). This implies that for a quasi-uniformity \(\mathcal{U} \) on a set \(X \) the topology \(\tau_\mathcal{U} \) is Hausdorff if and only if for any distinct points \(x, y \in X \) there is an entourage \(U \in \mathcal{U} \) such that \(B(x; U) \cap B(y; U) = \emptyset \) if and only if \(\bigcap U^{-1} = \Delta_X \) if and only if the quasi-uniformity \(\mathcal{U} \) is \(\pm 2 \)-separated. It is known (see [16] or [17]) that the topology of each topological space \(X \) is generated by a suitable quasi-uniformity (in particular, the Pervin quasi-uniformity, generated by the subbase consisting of the entourages \((U \times U) \cup ((X \setminus U) \times X) \) where \(U \) runs over open sets in \(X \)).

Now we consider some cardinal characteristics of pre-uniformities. Let \(\mathcal{U} \) be a pre-uniformity on a topological space \(X \).

- The *boundedness number* \(\ell(\mathcal{U}) \) of \(\mathcal{U} \) is defined as the smallest cardinal \(\kappa \) such that for any entourage \(U \in \mathcal{U} \) there is a subset \(A \subset X \) of cardinality \(|A| \leq \kappa \) such that \(B(A; U) = X \);

- the *weak boundedness number* \(\ell(\mathcal{U}) \) of \(\mathcal{U} \) is defined as the smallest cardinal \(\kappa \) such that for any entourage \(U \in \mathcal{U} \) there is a subset \(A \subset X \) of cardinality \(|A| \leq \kappa \) such that \(B(A; U) \) is dense in \(X \);

- the *character* \(\chi(\mathcal{U}) \) of \(\mathcal{U} \) is the smallest cardinality of a subfamily \(\mathcal{V} \subset \mathcal{U} \) such that each entourage \(U \in \mathcal{U} \) contains some entourage \(V \in \mathcal{V} \);
the pseudocharacter $\psi(U)$ of U is the smallest cardinality of a subfamily $\mathcal{V} \subset \mathcal{U}$ such that $\bigcap \mathcal{V} = \bigcap \mathcal{U}$;

- the closed pseudocharacter $\overline{\psi}(U)$ of U is the smallest cardinality of a subfamily $\mathcal{V} \subset \mathcal{U}$ such that for every $x \in X$ we get $\bigcap_{V \in \mathcal{V}} B(x;V) = \bigcap_{U \in \mathcal{U}} B(x;U)$ (so, $\overline{\psi}(U) = \psi(U)$);

- the local pseudocharacter $\psi(U)$ of U is the smallest cardinal κ such that for every $x \in X$ there is a subfamily $\mathcal{V}_x \subset \mathcal{U}$ of cardinality $|\mathcal{V}_x| \leq \kappa$ such that $\bigcap_{V \in \mathcal{V}_x} B(x;V) = \bigcap_{U \in \mathcal{U}} B(x;U)$.

For any Hausdorff topological space X and a quasi-uniformity U generating the topology of X we get the inequalities $\psi(X) = \psi(U) \leq \overline{\psi}(U) \leq \psi(U)$ and $\chi(X) \leq \chi(U)$, which fit into the following diagram (in which an arrow $a \rightarrow b$ indicates that $a \leq b$).

$$
\begin{align*}
\psi(X) & \rightarrow \overline{\psi}(X) \rightarrow \chi(X) \\
\psi(U) & \rightarrow \overline{\psi}(U) \rightarrow \chi(U)
\end{align*}
$$

The boundedness number $\ell(U)$ combined with the pseudocharacter $\psi^2(U)$ can be used to produce a simple upper bound on the cardinality of a $\exists 2$-separated pre-uniform space (cf. [4, 4.3]).

Proposition 1.7. Any set X has cardinality $|X| \leq \ell(U)^{\psi^2(U)}$ for any $\exists 2$-separated pre-uniformity U on a set X.

Proof. The pre-uniformity U^{ψ^2}, being separated, contains a subfamily $\mathcal{V} \subset \mathcal{U}$ of cardinality $|\mathcal{V}| = \psi(U^{\psi^2})$ such that $\bigcap_{V \in \mathcal{V}} V^{-1}V = \Delta X$. By the definition of the boundedness number $\ell(U)$, for every entourage $V \in \mathcal{V}$ there is a subset $L_V \subset X$ of cardinality $|L_V| \leq \ell(U)$ such that $X = B(L_V;V)$. For every $x \in X$ choose a function $f_x \in \prod_{V \in \mathcal{V}} L_V$ assigning to every entourage $V \in \mathcal{V}$ a point $f_x(V) \in L_V$ such that $x \in B(f_x(V);V)$. We claim that for any distinct points $x, y \in X$ the functions f_x, f_y are distinct. Indeed, the choice of the family V yields an entourage $V \in \mathcal{V}$ such that $(x, y) \notin V^{-1}V$. Then $f_x(V) \neq f_y(V)$ and hence $f_x \neq f_y$. This implies that

$$|X| \leq \prod_{V \in \mathcal{V}} |L_V| \leq |\chi(X)|^{\mathcal{V}|} = \ell(U)^{\psi(U^{\psi^2})}. $$

\[\square \]

Following [4] we define a quasi-uniformity U on a topological space X to be normal if for any subset $A \subset X$ and entourage $U \in \mathcal{U}$ we get $\overline{A} \subset \overline{B(A;U)}$. A topological space X is called normally quasi-uniformizable if the topology of X is generated by a normal quasi-uniformity. Normally quasi-uniformizable spaces possess the following important normality-type property proved in [4].

Theorem 1.8. Let X be a topological space and U be a normal quasi-uniformity generating the topology of X. Then for every subset $A \subset X$ and entourage $U \in \mathcal{U}$ there exists a continuous function $f : X \rightarrow [0, 1]$ such that $A \subset f^{-1}(0)$ and $f([0, 1)) \subset \overline{B(A;U)}$.

1.4. **Cardinal characteristics of topological spaces.** Let X be a topological space. An entourage U on X is called a neighborhood assignment if for every $x \in X$ the U-ball $B(x;U)$ is a neighborhood of x. The family \mathcal{U}_X of all neighborhood assignments on a topological space X is a pre-uniformity called the universal pre-uniformity on X. It contains any pre-uniformity generating the topology of X and is equal to the union of all pre-uniformities generating the topology of X.

The universal pre-uniformity \mathcal{U}_X contains

- the universal quasi-uniformity $q\mathcal{U}_X = \bigcup \{ U \subset \mathcal{U}_X : U$ is a quasi-uniformity on $X \}$, and

- the universal uniformity $\mathcal{U}_X = \bigcup \{ U \subset \mathcal{U}_X : U$ is a uniformity on $X \}$

of X. It is clear that $\mathcal{U}_X \subset q\mathcal{U}_X \subset \mathcal{U}_X$. The interplay between the universal pre-uniformities \mathcal{U}_X, $q\mathcal{U}_X$ and \mathcal{U}_X are studied in [5].

Since the topology of any topological space is generated by a quasi-uniformity, the universal quasi-uniformity $q\mathcal{U}_X$ generates the topology of X. In contrast, the universal uniformity \mathcal{U}_X generates the topology of X if and only if the space X is completely regular.

Cardinal characteristics of the pre-uniformities \mathcal{U}_X, $q\mathcal{U}_X$ and \mathcal{U}_X or their alternating powers can be considered as cardinal characteristics of the topological space X. In particular, for a Hausdorff space X we have the equalities:

$$
\chi(X) = \chi(\mathcal{U}_X), \quad \psi(X) = \psi(\mathcal{U}_X), \quad \overline{\psi}(X) = \overline{\psi}(\mathcal{U}_X), \quad \Delta(X) = \psi(\mathcal{U}_X^{\psi^2}).
$$
The last equality follows from Lemma [1.3]. On the other hand, the boundedness number $\ell(p\mathcal{U}_X)$ of $p\mathcal{U}_X$ coincides with the Lindelöf number $l(X)$ of X.

Observe that for the universal pre-uniformity $p\mathcal{U}_X$ on a Hausdorff topological space X the upper bound $|X| \leq \ell(p\mathcal{U}_X)^{\psi(p\mathcal{U}_X^{\infty})}$ proved in Proposition [1.7] turns into the known upper bound $|X| \leq l(X)^{\Delta(X)}$.

Having in mind the equality $l(X) = \ell(p\mathcal{U}_X)$, for every $n \in \mathbb{N}$ let us define the following cardinal characteristics:

\[
\ell^\pm(X) := \ell(p\mathcal{U}_X\pm n), \quad \ell^\mp(X) := \ell(p\mathcal{U}_X^\mp n), \quad \ell^n(X) := \ell(p\mathcal{U}_X^n), \quad \ell^{\infty}(X) := \ell(p\mathcal{U}_X^{\infty}),
\]

\[
q\ell^\pm(X) := \ell(qp\mathcal{U}_X\pm n), \quad q\ell^n(X) := \ell(qp\mathcal{U}_X^n), \quad q\ell^{\infty}(X) := \ell(qp\mathcal{U}_X^{\infty}).
\]

Let also

\[
\ell^\omega(X) = \min_{n \in \mathbb{N}} q\ell^n(X), \quad q\ell^\omega(X) = \min_{n \in \mathbb{N}} q\ell^n(X), \quad \text{and} \quad u\ell(X) = \ell(\mathcal{U}_X).
\]

Observe that $u\ell(X) = \ell(\mathcal{U}_X^\pm) = \ell(\mathcal{U}_X^n) = \ell(\mathcal{U}_X^{\infty})$ for every $n \in \mathbb{N}$ (this follows from the equality $\mathcal{U}_X = \mathcal{U}_X^\pm = \mathcal{U}_X^n$ holding for every $n \in \mathbb{N}$).

The above cardinal characteristics were introduced and studied in [5].

Some inequalities between the cardinal characteristics $\ell^\pm, \ell^\mp, \ell^n, q\ell^n, q\ell^{\infty}, \ell^{\infty}$, and $u\ell$ are described in the following diagram in which an arrow $a \to b$ indicates that $a(X) \leq b(X)$ for any topological space X.

It turns out that the cardinal invariants $l^\pm, l^\mp, \bar{l}^n, \tilde{l}^n$, and $\tilde{l}^n\frac{1}{2}$ can be expressed via the cardinal invariants $\ell^\pm, \ell^\mp, \ell^n, \ell^\infty$ for a suitable number m. The following proposition is proved in [5] (or can be easily derived from the definitions).

Proposition 1.9. For every $n \in \omega$ we have the equalities:

\[
l^n = \ell^{\pm 2n}, \quad \bar{l}^n = \ell^{\mp 2n}, \quad l^n\frac{1}{2} = \ell^{\pm (2n+1)}, \quad \tilde{l}^n\frac{1}{2} = \ell^{\pm (2n+1)}.
\]

The following proposition (proved in [5]) describes the relation of the cardinal invariants ℓ^\pm, ℓ^\mp to classical cardinal invariants.

Proposition 1.10. Let X be a topological space. Then

1. $\ell^{\infty}(X) \leq s(X) \leq q\ell^{\infty}(X) \leq \ell^{\infty}(X) \leq nw(X)$;
2. $e(X) \leq de(X) \leq q\ell^{\pm 1}(X) \leq \ell^{\pm 1}(X) = l(X)$;
3. $c(X) \leq q\ell^{\mp 1}(X) \leq \ell^{\mp 1}(X) \leq d(X)$;
4. If X is quasi-regular, then $\ell^{\pm 3}(X) = \ell^{\pm 3}(X) = \ell^{\infty}(X) = d(X)$;
5. If X is completely regular, then $q\ell^{\pm 3}(X) = q\ell^{\infty}(X) = u\ell(X) = d(X)$.

Taking into account Propositions [1.3, 1.9, and 1.10] we see that for quasi-regular spaces the cardinal characteristics $\ell^\pm, \ell^\mp, \ell^n, \ell^\infty$ relate to other cardinal characteristics of topological spaces as follows.
The space X is uniformizable if and only if $\alpha \in X$ for some generating the topology of X. In this section we apply Theorem 1.8 to derive some upper bounds on the i-weight of a normally quasi-uniformizable space.

Proposition 2.1. Let X be a topological space whose topology is generated by a normal quasi-uniformity \mathcal{U}. The space X has i-weight $iw(X) \leq \kappa$ for some cardinal κ if there exists a family of subsets $\{A_\alpha\}_{\alpha \in \kappa}$ of X and a family of entourages $\{U_\alpha\}_{\alpha \in \kappa} \subset \mathcal{U}$ such that for any distinct points $x, y \in X$ there is $\alpha \in \kappa$ such that $x \in A_\alpha$ and $y \notin B(A_\alpha; U_\alpha)$.

Proof. For every $\alpha \in \kappa$ apply Theorem 1.8 to construct a continuous map $f_\alpha : X \to [0,1]$ such that $f_\alpha(A_\alpha) \subset \{0\}$ and $f_\alpha^{-1}([0,1)) \subset B(A_\alpha; U_\alpha)$. It follows that the family of continuous maps $\{f_\alpha\}_{\alpha \in \kappa}$ separates points of X. So, $iw(X) \leq \kappa$.

This proposition will be used to prove:

Theorem 2.2. A Hausdorff space X has i-weight $iw(X) \leq \psi(A^{-1}\mathcal{U}) \cdot \ell(A)$ for any normal quasi-uniformity \mathcal{U} generating the topology of X and any pre-uniformity \mathcal{A} on X such that $\bigcap A^{-1}\mathcal{U} \neq \emptyset$.

Proof. If the cardinal $\psi(A^{-1}\mathcal{U})$ is finite, then $\psi(A^{-1}\mathcal{U}) = 1$, which implies that $A^{-1}A = A = U$ for some $A \in \mathcal{A}$ and $U \in \mathcal{U}$. In this case $\ell(A) = \ell(A)$ and hence $iw(X) \leq \ell(A)$.

So, we assume that the cardinal $\kappa = \psi(A^{-1}\mathcal{U})$ is infinite. Since $\bigcap A^{-1}\mathcal{U} = \Delta_X$, we can choose subfamilies $(A_\alpha)_{\alpha \in \kappa} \subset \mathcal{A}$ and $(U_\alpha)_{\alpha \in \kappa} \subset \mathcal{U}$ such that $\bigcap_{\alpha \in \kappa} B(x, A_\alpha^{-1}A_\alpha U_\alpha) = \{x\}$ for every $x \in X$. For every $\alpha \leq \kappa$ choose a subset $Z_\alpha \subset X$ of cardinality $\ell(A)$ such that $X = B(Z_\alpha; A_\alpha)$. Consider the family of sets $Z = \bigcup_{\alpha \in \kappa} \{B(z; A_\alpha) : z \in Z_\alpha\}$. We claim that for any distinct points $x, y \in X$ there is a set $Z \in Z$ and ordinal $\alpha \in \kappa$ such that $x \in Z$ and $y \notin B(Z; A_\alpha)$.

By the choice of the families (A_α), (U_α), for the points x, y there is an index $\alpha \in \kappa$ such that $y \notin B(x; A_\alpha^{-1}A_\alpha U_\alpha)$. Since $X = B(Z_\alpha; A_\alpha)$, we can find a point $z \in Z_\alpha$ such that $x \in B(z; A_\alpha)$ and hence...
$z \in B(x; A^{-1}_\alpha)$. We claim that the set $Z = B(z; A_\alpha) \in \mathcal{Z}$ has the required properties: $x \in Z$ and $y \notin \overline{B(Z; U_{\alpha})}$. To derive a contradiction, assume that $y \in B(Z; U_{\alpha})$, which implies
\[y \in B(Z; U_{\alpha}) = B(B(z; A_\alpha); U_{\alpha}) = B(z; A_\alpha U_{\alpha}) \subset B(B(x; A^{-1}_\alpha); A_\alpha U_{\alpha}) = B(x; A^{-1}_\alpha A_\alpha U_{\alpha}). \]
But this contradicts the choice of the index α.

This contradiction allows us to apply Proposition 2.1 and conclude that
\[iw(X) \leq |Z| \cdot \kappa \leq \sum_{\alpha \in \kappa} |Z_\alpha| \cdot \kappa \leq \kappa^2 \cdot \ell(A) = \overline{\psi(A^{-1} A U)} \cdot \ell(A). \]

\[\square \]

Applying Theorem 2.2 to some concrete pre-uniformities A, we get the following corollary.

Corollary 2.3. Let X be a functionally Hausdorff space and U be a normal quasi-uniformity generating the topology of X. If for some $n \in \mathbb{N}$ the quasi-uniformity U is
1. $\pm(4n - 2)$-separated, then $iw(X) \leq \overline{\psi(U^{\pm(4n - 3)})} \cdot \ell(U^{\ell(2n - 1)}) \leq \chi(U) \cdot q \ell^{\ell(2n - 1)}(X)$;
2. $\mp(4n - 1)$-separated, then $iw(X) \leq \overline{\psi(U^\mp(4n - 2)}) \cdot \ell(U^{\ell(2n - 1)}) \leq \chi(U) \cdot q \ell^{\ell(2n - 1)}(X)$;
3. $\pm(4n)$-separated, then $iw(X) \leq \overline{\psi(U^{\pm(4n - 1)})} \cdot \ell(U^{\ell(2n)}) \leq \chi(U) \cdot q \ell^{\ell(2n)}(X)$;
4. $\mp(4n + 1)$-separated, then $iw(X) \leq \overline{\psi(U^\mp(4n - 2)}) \cdot \ell(U^\mp(2n)) \leq \chi(U) \cdot q \ell^{\ell(2n)}(X)$.

Proof. 1. If U is $\pm(4n - 2)$-separated, then for the pre-uniformity $A = U^{\pm(2n - 1)} \cup U^{\ell(2n - 1)}$ we get
\[A^{-1} A U \subset U^{\pm(2n - 1)} U^{\pm(2n - 1)} U = U^{\pm(4n - 3)} U = U^{\pm(4n - 3)} \]
and hence $\bigcap A^{-1} A U = \bigcap A^{-1} A U^{\ell(2n - 1)} = \bigcap U^{\pm(4n - 2)} = \Delta_X$. Applying Theorem 2.2 to the pre-uniformity $A = U^{\ell(2n - 1)}$, we get
\[iw(X) \leq \overline{\psi(U^{\pm(4n - 3)})} \cdot \ell(U^{\ell(2n - 1)}) \leq \chi(U) \cdot q \ell^{\ell(2n - 1)}(X). \]

2. If U is $\mp(4n - 1)$-separated, then for the pre-uniformity $A = U^{\pm(2n - 1)}$ we get
\[A^{-1} A U = U^{\mp(2n - 1)} U^{\pm(2n - 1)} U = U^{\mp(4n - 2)} U = U^{\mp(4n - 2)} \]
and hence $\bigcap A^{-1} A U = \bigcap A^{-1} A U^{\pm(2n - 1)} = \bigcap U^{\mp(4n - 1)} = \Delta_X$. Applying Theorem 2.2 to the pre-uniformity $A = U^{\mp(2n - 1)}$, we get
\[iw(X) \leq \overline{\psi(U^{\mp(4n - 2)})} \cdot \ell(U^{\pm(2n - 1)}) \leq \chi(U) \cdot q \ell^{\ell(2n - 1)}(X). \]

3. If U is $\pm(4n)$-separated, then for the pre-uniformity $A = U^{\ell(2n)}$ we get
\[A^{-1} A U \subset U^{\pm(2n)} U^{\ell(2n)} U = U^{\pm(4n - 1)} U = U^{\pm(4n - 1)} \]
and hence $\bigcap A^{-1} A U = \bigcap A^{-1} A U^{\pm(2n)} = \bigcap U^{\pm(4n)} = \Delta_X$. Applying Theorem 2.2 to the pre-uniformity $A = U^{\ell(2n)}$, we get
\[iw(X) \leq \overline{\psi(U^{\pm(4n - 1)})} \cdot \ell(U^{\pm(2n)} \cup U^{\ell(2n)}) \leq \chi(U) \cdot q \ell^{\ell(2n)}(X). \]

4. If U is $\mp(4n + 1)$-separated, then for the pre-uniformity $A = U^\mp(2n)$ we get
\[A^{-1} A U = U^{\mp(2n)} U^{\mp(2n)} U = U^{\mp(4n)} \]
and hence $\bigcap A^{-1} A U = \bigcap A^{-1} A U^{\mp(2n)} = \bigcap U^{\mp(4n + 1)} = \Delta_X$. Applying Theorem 2.2 to the pre-uniformity $A = U^{\mp(2n)}$, we get
\[iw(X) \leq \overline{\psi(U^{\mp(4n - 2)})} \cdot \ell(U^{\mp(2n)}) \leq \chi(U) \cdot q \ell^{\ell(2n)}(X). \]

\[\square \]

Corollary 2.4. If X is a Hausdorff space and U is a normal quasi-uniformity generating the topology of X, then the space X has i-weight $iw(X) \leq \overline{\psi(U)} \cdot \ell(U \cup U^{-1}) \leq \chi(U) \cdot \ell(U^{\ell(1)})$. Moreover, if the quasi-uniformity U is
1. ∓ 3-separated, then $iw(X) \leq \overline{\psi(U^3)} \cdot \ell(U) \leq \chi(U) \cdot q \ell^{\ell(2)}(X)$;
2. ± 4-separated, then $iw(X) \leq \overline{\psi(U^{\pm 3})} \cdot \ell(U^{\ell(2)}) \leq \chi(U) \cdot q \ell^{\ell(2)}(X)$.
Consequently, the space X is functionally Hausdorff.

Motivated by Proposition 3.1, let us introduce the following

Definition 3.2. Two quasi-uniformities L and R on a set X are called

- **commuting** if $LR = RL$;
- **\pm-subcommuting** if $LR^{-1} \subset R^{-1}L$ and $RL^{-1} \subset L^{-1}R$;

A topological space X is defined to be **bi- quasi-uniformizable** if the topology of X is generated by two \pm-subcommuting quasi-uniformities.

Theorem 3.3. For any \pm-subcommuting quasi-uniformities L, R generating the topology τ of a topological space X the pre-uniformity $Q = LR^{-1} \vee RL^{-1}$ is a uniformity generating a completely regular topology τ_Q, weaker than the topology τ of X. If the space X is Hausdorff, then the topology τ_Q generated by the uniformity Q is Tychonoff, the space X is functionally Hausdorff and has submetrizability number

$$sm(X) \leq \psi(Q) \cdot \log(\ell(Q)) \leq \chi(L) \cdot \chi(R) \cdot \log(dc(X)).$$

and i-weight

$$iw(X) \leq \psi(Q) \cdot \log(\ell(X)) \leq \chi(L) \cdot \chi(R) \cdot \log(dc(X)).$$

Proof. By Proposition 3.1, the pre-uniformity Q is a quasi-uniformity. Since $Q^{-1} = Q$, it is a uniformity. Then the topology τ_Q generated by the uniformity Q is Tychonoff (see [9, 8.1.13]) Since $Q \subset L$, the topology τ_Q is weaker than the topology $\tau_L = \tau$ of the space X.

Now assume that the topology τ is Hausdorff. In this case for any distinct points $x, y \in X$ we can find entourages $L \in L$ and $R \in R$ such that $B(x; L) \cap B(y; R) = \emptyset$. Then $y \notin B(x; LR^{-1})$ and hence $(y, x) \notin \bigcap Q$, which means that the uniformity Q is separated and the topology τ_Q generated by Q is Tychonoff. Consequently, the space X is functionally Hausdorff.

To show that $sm(X) \leq \psi(Q)$, fix a subfamily $V \subset Q$ of cardinality $|V| = \psi(Q)$ such that $\bigcap V = \Delta_X$. By [9, 8.1.11], for every entourage $V \in Q$ there exists a continuous pseudometric d_V on X such that the entourage $[d_V]_{<1} = \{(x, y) \in X \times X : d_V(x, y) < 1\}$ is contained in V. Then the family of pseudometrics $D = \{d_V\}_{V \in Q}$ separates points of X, which implies that $sm(X) \leq |D| \leq |V| = \psi(Q)$.

Taking into account that the topological weight of a metric space is equal to its boundedness number, which does not exceed the discrete cellularity, and applying Proposition 3.1, we conclude that

$$iw(X) \leq \psi(Q) \cdot \log(\ell(X)) \leq \chi(L) \cdot \chi(R) \cdot \log(dc(X)).$$

\square
Theorem 3.3 implies:

Corollary 3.4. Each Hausdorff bi-quasi-uniformizable topological space is functionally Hausdorff.

We do not know if this corollary can be reversed.

Problem 3.5. Is each functionally Hausdorff space bi-quasi-uniformizable?

Proposition 3.6. Let \(L, R \) be two \(\pm \)-subcommuting quasi-uniformities generating the same Hausdorff topology on \(X \). If the quasi-uniformities \(L^{-1}, R^{-1} \) generate the same topology on \(X \), then the quasi-uniformities \(L \) and \(R \) are 3-separated.

Proof. Given two distinct points \(x, y \in X \) we shall find an entourage \(R \in R \) such that \((x, y) \notin R^{-1}RR^{-1} \). Since the topology generated by the quasi-uniformities \(L \) and \(R \) on \(X \) is Hausdorff, there are two entourages \(L \in L \) and \(R \in R \) such that \(B(x; R) \cap B(y; L) = \emptyset \) and hence \((x, y) \notin RL^{-1}L^{-1} \). Replacing \(R \) by a smaller entourage, we can additionally assume that \(B(y; R) \subset B(y; L) \). Then \(B(x; R) \cap B(y; RL) = \emptyset \) and hence \(y \notin B(x; RL^{-1}R^{-1}) \).

Since the quasi-uniformities \(L \) and \(R \) are \(\pm \)-subcommuting, for the entourages \(L \) and \(R \) there are entourages \(\bar{L} \in L \) and \(\bar{R} \in R \) such that \(\bar{L}^{-1} \bar{R} \subset RL^{-1} \). Since quasi-uniformities \(L^{-1} \) and \(R^{-1} \) generate the same topology on \(X \), for the entourage \(\bar{L}^{-1} \) there is an entourage \(\bar{R} \in R \) such that \(B(x; \bar{R}^{-1}) \subset B(x; \bar{L}^{-1}) \). Then for the entourage \(R = \bar{R} \cap R \) we get \(B(x; R^{-1}RR^{-1}) \subset B(x; R^{-1}R^{-1}) \subset B(x; RL^{-1}R^{-1}) \subset B(x; RL^{-1}R^{-1}) \) and hence \(y \notin B(x; R^{-1}RR^{-1}) \). So, \(\bigcap \bar{R}^{-1}R^{-1} = \Delta_X \) and after inversion, \(\bigcap R^{-1}R = \Delta_X \), which means that the quasi-uniformity \(R \) is 3-separated. By analogy we can prove that the quasi-uniformity \(L \) is 3-separated. \(\square \)

4. Normally bi-quasi-uniformizable spaces

Observe that for two quasi-uniformities \(L, R \) on a set \(X \) the inclusion \(LR^{-1} \subset R^{-1}L \) is equivalent to the existence for every entourages \(L \in L \) and \(R \in R \) two entourages \(\bar{L} \in L \) and \(\bar{R} \in R \) such that \(\bar{R}^{-1} \bar{L} \subset LR^{-1} \). Changing the order of quantifiers in this property we obtain the following notion.

Definition 4.1. A topological space \(X \) is called normally bi-quasi-uniformizable if its topology is generated by quasi-uniformities \(L \) and \(R \) satisfying the following properties:

- \(\forall L \in L \exists \bar{L} \in L \forall R \in R \exists \bar{R} \in R \) such that \(\bar{R}^{-1} \bar{L} \subset LR^{-1} \) and \(\bar{L}^{-1} \bar{R} \subset RL^{-1} \);
- \(\forall R \in R \exists \bar{R} \in R \forall L \in L \exists \bar{L} \in L \) such that \(\bar{L}^{-1} \bar{R} \subset RL^{-1} \) and \(\bar{R}^{-1} \bar{L} \subset RL^{-1} \).

In this case we shall say that the quasi-uniformities \(L \) and \(R \) are normally \(\pm \)-subcommuting.

By analogy we can introduce normally commuting quasi-uniformities.

Definition 4.2. Two quasi-uniformities \(L \) and \(R \) on a set \(X \) are defined to be normally commuting if it satisfy the following two conditions:

- \(\forall L \in L \exists \bar{L} \in L \forall R \in R \exists \bar{R} \in R \) such that \(\bar{R} \bar{L} \subset LR \) and \(\bar{L} \bar{R} \subset RL \);
- \(\forall R \in R \exists \bar{R} \in R \forall L \in L \exists \bar{L} \in L \) such that \(\bar{L} \bar{R} \subset RL \) and \(\bar{R} \bar{L} \subset RL \).

Proposition 4.3. Any two normally \(\pm \)-subcommuting quasi-uniformities \(L, R \) generating the same topology on a set \(X \) are normal. Consequently, each normally bi-quasi-uniformizable topological space is normally quasi-uniformizable.

Proof. To show that \(L \) is normal, fix a subset \(A \subset X \) and entourage \(L \in L \). Since \(L \) and \(R \) are normally \(\pm \)-subcommuting, for the entourage \(L \) there exists an entourage \(\bar{L} \in L \) such that for every entourage \(R \in R \) there is an entourage \(\bar{R} \in R \) with \(\bar{L}^{-1} \bar{R} \subset RL^{-1} \). We claim that \(B(A; L) \subset B(A; \bar{L}) \). Given any point \(x \in B(A; \bar{L}) \), we need to show that \(x \in B(A; \bar{L}) \). Since \(O(x) \subset X \), find an entourage \(R \in R \) such that \(B(x; R) \subset O(x) \). By the choice of the entourage \(\bar{L} \), for the entourage \(R \) there is an entourage \(\bar{R} \in R \) such that \(\bar{L}^{-1} \bar{R} \subset RL^{-1} \). It follows from \(x \in B(A; \bar{L}) \) that \(B(x; \bar{L}^{-1}) \cap A \neq \emptyset \) and hence \(\emptyset \neq B(x; \bar{L}^{-1}R) \cap A \subset B(x; RL^{-1}) \cap A \). Then \(\emptyset \neq B(x; R) \cap B(A; L) \subset O(x) \cap B(A; L) \), which means \(x \in B(A; L) \). So, \(B(A; \bar{L}) \subset B(A; L) \) and hence \(A \subset B(A; \bar{L}) \circ B(A; L) \), which means that \(L \) is normal. By analogy we can prove the normality of the quasi-uniformity \(R \). \(\square \)

Theorem 4.4. If \(L \) and \(R \) are two normally \(\pm \)-subcommuting quasi-uniformities generating the topology of a Hausdorff topological space \(X \), then the quasi-uniformities \(LR^{-1} \) and \(R^{-1}L \) are 1-separated and have pseudocharacter

\[
(1) \quad \psi(LR^{-1}) = \psi(R^{-1}L) \leq \psi(LL^{-1}) \cdot \ell(L^{-1}) \leq \psi(LL^{-1}) \cdot q(\ell^{-1})(X);
\]
(2) \(\psi(LR^{-1}) = \psi(RL^{-1}) \leq \psi(L^{-1}L) \cdot \ell(L) \leq \psi(L^{-1}L) \cdot q \ell^{\pm 2}(X) \) if \(L^{-1}, R^{-1} \) are normally \(\pm \)-subcommuting and generate the same topology on \(X \).

(3) \(\psi(LR^{-1}) = \psi(RL^{-1}) \leq \psi(LL^{-1}L) \cdot \ell(LL^{-1}L) \leq \psi(L^{-1}L) \cdot q \ell^{\pm 2}(X) \) if the quasi-uniformities \(L \) and \(R \) are normally commuting and \(\bigcap \LL^{-1}L = \Delta_X \).

(4) \(\psi(LR^{-1}) = \psi(RL^{-1}) \leq \psi(A^{-1}A) \cdot \ell(A) \cdot \ell^{\pm 2}(X) \) for any pre-uniformity \(A \) on \(X \) such that \(\bigcap A^{-1}A = \Delta_X \).

Proof. First we show that the quasi-uniformities \(LR^{-1} \) and \(RL^{-1} \) are 1-separated. Since the topology of \(X \) is Hausdorff, for any distinct points \(x, y \in X \) we can find two disjoint open sets \(O_x \ni x \) and \(O_y \ni y \). Taking into account that the quasi-uniformities \(L \) and \(R \) generate the topology of \(X \), we can find two entourages \(L \in \mathcal{L} \) and \(R \in \mathcal{R} \) such that \(B(x; L) \subset O_x \) and \(B(y; R) \subset O_y \). Then \(B(x; L) \cap B(y; R) = \emptyset \) and hence \(y \notin B(x; LR^{-1}) \) and \(x \notin B(y; RL^{-1}) \), which implies that \(\bigcap LR^{-1} = \Delta_X = \bigcap RL^{-1} \). So, the quasi-uniformities \(LR^{-1} \) and \(RL^{-1} \) are 1-separated. Taking into account that \(LR^{-1} = RL^{-1} \) we conclude that \(\psi(LR^{-1}) = \psi(RL^{-1}) \).

1. Now we shall prove the inequality \(\psi(LR^{-1}) \leq \psi(LL^{-1}L) \cdot \ell(L^{-1}) \). Fix a family of entourages \(\Lambda \subset \mathcal{L} \) of cardinality \(|\Lambda| \leq \psi(LL^{-1}L) \) such that \(\bigcap_{L \in \Lambda} LL^{-1}L = \Delta_X \). Replacing every \(L \in \Lambda \) by a smaller entourage, we can assume that \(\bigcap_{L \in \Lambda} (LL)(LL)^{-1} = \Delta_X \).

Since the quasi-uniformities \(L \) and \(R \) are normally \(\pm \)-subcommuting, for the entourage \(L \in \mathcal{L} \) there exists an entourage \(\tilde{L} \in \mathcal{L} \) such that for any entourage \(R \in \mathcal{R} \) there exists an entourage \(\tilde{R} \in \mathcal{R} \) such that \(\tilde{L}^{-1}\tilde{R} \subset RL^{-1} \). Replacing \(L \) by \(L \cap \tilde{L} \), we can assume that \(L \subset \tilde{L} \). For the entourage \(L \) choose a subset \(Z_L \subset X \) of cardinality \(|Z_L| \leq \ell(L^{-1}) \) such that \(X = B(Z_L; \tilde{L}^{-1}) \). For every \(z \in Z_L \) choose an entourage \(R_z \in \mathcal{R} \) such that \(B(z; R_z) \subset B(z; L) \). By the choice of \(\tilde{L} \), for the entourage \(R_z \) there exists an entourage \(\tilde{R}_z \in \mathcal{R} \) such that \(\tilde{L}^{-1}\tilde{R}_z \subset R_z L^{-1} \). Consider the family

\[
\mathcal{P} = \bigcup_{L \in \Lambda} \{(L, \tilde{R}_z) : z \in Z_L \} \subset \mathcal{L} \times \mathcal{R}.
\]

We claim that for any distinct points \(x, y \in X \) there is a pair \((L, \tilde{R}_z) \in \mathcal{P} \) such that \(B(x; L) \cap B(y; \tilde{R}_z) = \emptyset \).

By the choice of the family \(\Lambda \), there is an entourage \(L \in \Lambda \) such that \(x \notin B(y; LL^{-1}L^{-1}) \). Since \(y \in X = B(Z_L; \tilde{L}^{-1}) \), there exists a point \(z \in Z_L \) such that \(y \in B(z; \tilde{L}^{-1}) \) and hence \(z \in B(y; \tilde{L}) \). We claim that the pair \((L, \tilde{R}_z) \in \mathcal{P} \) has the desired property: \(B(x; L) \cap B(y; \tilde{R}_z) = \emptyset \). Assuming that \(B(x; L) \cap B(y; \tilde{R}_z) \neq \emptyset \), we would conclude that

\[
x \in B(y; \tilde{R}_z L^{-1}) \subset B(z; \tilde{L}^{-1}\tilde{R}_z L^{-1}) \subset B(z; R_z L^{-1} L^{-1}) \subset B(z; LL^{-1}L^{-1}) \subset B(y; \tilde{L}LL^{-1} L^{-1}) \subset B(y; LLL^{-1} L^{-1})
\]

which contradicts the choice of \(L \). So \(B(x; L) \cap B(y; \tilde{R}_z) = \emptyset \), which is equivalent to \(y \notin B(x; L\tilde{R}_z) \). Then

\[
\psi(LR^{-1}) \leq |\mathcal{P}| \leq \sum_{L \in \Lambda} |Z_L| \leq |\Lambda| \cdot \ell(L^{-1}) \leq \psi(LL^{-1}L) \cdot \ell(L^{-1}L).
\]

2. If the quasi-uniformities \(\mathcal{L}^{-1} \) and \(\mathcal{R}^{-1} \) are normally \(\pm \)-subcommuting and generate the same topology on \(X \), then by Proposition 3.4 this topology is Hausdorff, which allows us to apply the first item to the quasi-uniformities \(\mathcal{L}^{-1}, \mathcal{R}^{-1} \) and obtain the upper bound \(\psi(L^{-1}R) \leq \psi(L^{-1}L) \cdot \ell(L) \). The \(\pm \)-subcommutativity of \(\mathcal{L}^{-1} \) and \(\mathcal{R}^{-1} \) implies that \(\psi(R(L^{-1}) \leq \psi(L^{-1}R) \). So,

\[
\psi(LR^{-1}) = \psi(RL^{-1}) \leq \psi(LL^{-1}L) \leq \psi(L^{-1}L) \cdot \ell(L) \leq \psi(L^{-1}L) \cdot q \ell^{\pm 2}(X).
\]

3. Next, assuming that the quasi-uniformities \(\mathcal{L} \) and \(\mathcal{R} \) are normally commuting and \(\bigcap \LL^{-1}L = \Delta_X \), we prove the inequality \(\psi(R(L^{-1}) = \psi(LR^{-1}) \leq \psi(LL^{-1}L) \cdot \ell(LL^{-1}L) \cdot \ell)L^{-1}L \). Fix a subfamily \(\Lambda \subset \mathcal{L} \) of cardinality \(|\Lambda| = \psi(LL^{-1}L) \) such that \(\bigcap_{L \in \Lambda} LL^{-1}L = \Delta_X \). Replacing every entourage \(L \in \Lambda \) by a smaller entourage, we can assume that \(\bigcap_{L \in \Lambda} L^2L^{-1}L^{-1}L = \Delta_X \).

Since the quasi-uniformities \(\mathcal{L} \) and \(\mathcal{R} \) are normally commuting and normally \(\pm \)-subcommuting, for every entourage \(L \in \Lambda \) there exists an entourage \(\tilde{L} \in \mathcal{L} \), \(\tilde{L} \subset L \), such that for every entourage \(R \in \mathcal{R} \) there exists an entourage \(\tilde{R} \in \mathcal{R} \) such that \(\tilde{L} \tilde{R} \subset RL \) and \(\tilde{L}^{-1}\tilde{R} \subset RL^{-1} \).

By the definition of the boundedness number \(\ell(LL^{-1}L^{-1}L) \), for every \(L \in \Lambda \) there exists a subset \(A_L \subset X \) of cardinality \(|A_L| \leq \ell(LL^{-1}L^{-1}L) \) such that \(X = B(A_L; L\tilde{L}^{-1}L^{-1}L) \).

For every point \(a \in A_L \) choose an entourage \(R_a \in \mathcal{R} \) such that \(B(a; R_a) \subset B(a; L) \). By the choice of \(\tilde{L} \) for the entourage \(R_a \) there exists an entourage \(\tilde{R}_a \in \mathcal{L} \) such that \(\tilde{L}\tilde{R}_a \subset R_a L \), and for the entourage \(\tilde{R}_a \in \mathcal{R} \) there
is an entourage $\tilde{R}_a \in R$ such that $\tilde{L}^{-1}\tilde{R}_a \subset \tilde{R}_a L^{-1}$. Consider the family of pairs

$$ \mathcal{P} = \bigcup_{L \in \mathcal{A}} \{(L, \tilde{R}_a) : a \in A_L\} \subset \mathcal{L} \times R. $$

We claim that for any distinct points $x, y \in X$ there exists a pair $(L, R) \in \mathcal{P}$ such that $B(x; L) \cap B(y; R) = \emptyset$.

Given two distinct points $x, y \in X$, find an entourage $L \in \mathcal{A}$ such that $(x, y) \notin L^{2L^{-3}}L$.

Since $y \in X = B(L; \tilde{L} L^{-1} \cap \tilde{L}^{-1}\tilde{L})$, we can find a point $a \in A_L$ such that $y \in B(a; \tilde{L} L^{-1} \cap \tilde{L}^{-1}\tilde{L})$ and hence $y \in B(a; \tilde{L} L^{-1})$ and $a \in B(y; \tilde{L}^{-1}\tilde{L}) \subset B(y; L^{-1}L)$. We claim that $B(x; L) \cap B(y; \tilde{R}_a) = \emptyset$. To derive a contradiction, assume that $B(x; L) \cap B(y; \tilde{R}_a) \neq \emptyset$. Observe that

$$ B(y; \tilde{R}_a) \subset B(a; \tilde{L} L^{-1}) \subset B(a; R L^{-1}\tilde{L}) \subset B(y; L^{-1}L). $$

Then $\emptyset \neq B(x; L) \cap B(y; \tilde{R}_a) \subset B(x; L) \cap B(y; L^{-1}L L^{-1}L)$ implies $y \notin B(x; L^{2L^{-3}}L)$, which contradicts the choice of the entourage L. This contradiction shows that $B(x; L) \cap B(y; \tilde{R}_a) = \emptyset$ and hence

$$ \psi(\mathcal{R}^{-1}) = \psi(\mathcal{L} \mathcal{L}^{-1}) \leq |\mathcal{P}| \leq \sum_{L \in \mathcal{A}} |A_L| \leq \psi(\mathcal{A}^{-1} \mathcal{A}) \cdot \ell(\mathcal{A}) \cdot \ell^{2}(X). $$

4. Finally we prove that $\psi(\mathcal{R}^{-1}) = \psi(\mathcal{L} \mathcal{L}^{-1}) \leq \|\mathcal{P}\| \leq \sum_{L \in \mathcal{A}} |A_L| \leq \psi(\mathcal{A}^{-1} \mathcal{A}) \cdot \ell(\mathcal{A}) \cdot \ell^{2}(X)$ for any pre-uniformity A on X such that $\bigcap_{L \in \mathcal{A}} A_L = \Delta_X$. If $\psi(\mathcal{A}^{-1} \mathcal{A}) = 1$, which implies that $A^{-1} AL = \Delta_X = A = L$ for some $A \in \mathcal{A}$ and $L \in \mathcal{L}$. In this case $\ell(\mathcal{A}) = |X|$ and the topological space X is discrete. Then for every point $x \in X$ we can choose an entourage $R_x \in R$ such that $B(x; R_x) = \{x\}$. Then $\bigcap_{x \in X} R_x \mathcal{L}^{-1} = \bigcup_{x \in X} R_x = \Delta_X$ and hence $\psi(\mathcal{R}^{-1}) \leq |X| \leq \ell(\mathcal{A}) \leq \psi(\mathcal{A}^{-1} \mathcal{A}) \cdot \ell(\mathcal{A}) \cdot \ell^{2}(X)$.

So, we assume that the cardinal $\kappa = \psi(\mathcal{A}^{-1} \mathcal{A})$ is infinite. Since $\bigcap_{L \in \mathcal{A}} A_L = \Delta_X$, we can choose subfamilies $(A_{\alpha})_{\alpha \in \kappa} \subset A$ and $(L_{\alpha})_{\alpha \in \kappa} \subset \mathcal{L}$ such that $\bigcap_{\alpha \in \kappa} B(x; A_{\alpha}^{-1}A_{\alpha} \mathcal{L}^{-1}_{\alpha}) = \{x\}$ for every $x \in X$.

For every $\alpha \in \kappa$ consider the entourage $A_{\alpha} \in A$ and find a subset $Z_{\alpha} \subset X$ of cardinality $|Z_{\alpha}| \leq \ell(\mathcal{A})$ such that $X = B(Z_{\alpha}; A_{\alpha})$. Since the quasi-uniformities \mathcal{L} and \mathcal{R} are normally \pm-subcommuting, for the entourage L_{α} there is an entourage \tilde{L}_{α} such that for every $R \in \mathcal{R}$ there is $\tilde{R}_a \in \mathcal{R}$ such that $\tilde{L}_\alpha^{-1} \tilde{R}_a \subset R \mathcal{L}^{-1}_{\alpha}$.

Now fix any point $z \in Z_{\alpha}$. The normality of the quasi-uniformity \mathcal{L} (proved in Proposition 4.3) guarantees that $B(z; A_{\alpha} \mathcal{L}^{-1}_{\alpha}) \subset B(z; A_{\alpha} \mathcal{L}^{-1}_{\alpha})$. Put $W_{\alpha,z} = B(z; A_{\alpha} \mathcal{L}^{-1}_{\alpha})$. For every point $y \in X \setminus W_{\alpha,z}$ choose an entourage $R_{\alpha,y} \in \mathcal{R}$ such that $B(y; R_{\alpha,y}) \cap B(z; A_{\alpha} \mathcal{L}^{-1}_{\alpha}) = \emptyset$ and hence $B(y; R_{\alpha,y} \mathcal{L}^{-1}_{\alpha}) \cap B(z; A_{\alpha} L_{\alpha}) = \emptyset$. For every $y \in X \setminus B(z; A_{\alpha} \mathcal{L}^{-1}_{\alpha})$ we can replace $R_{\alpha,y}$ by a smaller entourage and assume additionally that $B(y; R_{\alpha,y})$ is disjoint with $B(z; A_{\alpha} \mathcal{L}^{-1}_{\alpha})$.

By the choice of the entourage L_{α} for every $y \in X \setminus W_{\alpha,z}$ there is an entourage $\tilde{R}_y \in \mathcal{R}$ such that $\tilde{R}_y \subset R_{\alpha,y}$ and $\tilde{R}_y \subset R_{\alpha,z} \subset R_{\alpha,y} \mathcal{L}^{-1}_{\alpha}$. For every $y \in W_{\alpha,z}$ choose an entourage $\tilde{R}_y \in \mathcal{R}$ such that $B(y; \tilde{R}_y) \subset W_{\alpha,z}$. Now consider the neighborhood assignment $V = \bigcup_{y \in X} (y) \times B(y; R_y \cap L_{\alpha})$. By the definition of $\ell^{2}(X)$, there exists a subset $A_{\alpha} \subset X$ of cardinality $|A_{\alpha}| \leq \ell^{2}(X)$ such that $X = B(Z_{\alpha}; V V^{-1})$.

Consider the family $\mathcal{P} = \bigcup_{\alpha \in \kappa} \bigcup_{y \in A_{\alpha}} \{(L_{\alpha}, \tilde{R}_a) : a \in A_L\} \subset \mathcal{L} \times R$. We claim that for any distinct points $x, y \in X$ there is a pair $(L, R) \in \mathcal{P}$ such that $B(x; L) \cap B(y; R) = \emptyset$.

Indeed, for the points $x, y \in X$ we can find an ordinal $\alpha \in \kappa$ such that $y \notin B(z; A_{\alpha} \mathcal{L}^{-1}_{\alpha})$. Since $X = B(Z_{\alpha}; A_{\alpha})$, there is a point $z \in Z_{\alpha}$ such that $x \in B(z; A_{\alpha})$. Then $y \notin B(z; A_{\alpha} \mathcal{L}^{-1}_{\alpha})$ and hence $B(y; \tilde{R}_a) \subset B(y; R_{\alpha,y}) \mathcal{L}^{-1}_{\alpha}$ is disjoint with $B(z; A_{\alpha} \mathcal{L}^{-1}_{\alpha})$.

Since $y \in X = B(a; V V^{-1})$, there is a point $a \in A_{\alpha}$ such that $y \in B(a; V V^{-1})$, which implies that $\emptyset \neq B(y; V \cap B(a; V) = B(y; R_y \cap L_{\alpha}) \cap B(a; \tilde{R}_a \cap L_{\alpha})$ and hence $y \in B(a; \tilde{R}_a \cap L_{\alpha})$. Since $B(y; \tilde{R}_a) \cap B(a; \tilde{R}_a \cap L_{\alpha}) = \emptyset$ and $B(a; R_y \cap L_{\alpha}) = \emptyset$. Now observe that the \tilde{R}_a-ball $B(y; \tilde{R}_a) \subset B(a; V V^{-1} \tilde{R}_a) \subset B(a; R_y \cap L_{\alpha})$ is disjoint with the L_{α}-ball $B(x; L_{\alpha}) \subset B(z; A_{\alpha} L_{\alpha})$.

The family \mathcal{P} witnesses that

$$ \psi(\mathcal{R}^{-1}) = \psi(\mathcal{R} \mathcal{L}^{-1}) \leq |\mathcal{P}| \leq \psi(\mathcal{A}^{-1} \mathcal{A}) \cdot \ell(\mathcal{A}) \cdot \ell^{2}(X). $$

Taking into account that $\psi(\mathcal{R} \mathcal{L}^{-1} \cap \mathcal{L} \mathcal{L}^{-1}) \leq \psi(\mathcal{R}^{-1})$, and applying Theorem 4.4 we obtain:

Theorem 4.5. Let X be a Hausdorff topological space and \mathcal{L}, \mathcal{R} be two normally \pm-subcommuting quasi-uniformities generating the topology of X. Then the uniformity $\mathcal{Q} = \mathcal{L} \mathcal{L}^{-1} \cap \mathcal{R} R^{-1}$ has pseudocharacter:

1. $\psi(\mathcal{Q}) \leq \psi(\mathcal{L}) \cdot \ell(\mathcal{L} \mathcal{L}^{-1}) \cdot \ell^{2}(X);$
(2) $\psi(Q) \leq \psi(\mathcal{L}\mathcal{L}^{-1}) \cdot \ell(\mathcal{L}^{-1}) \leq \psi(\mathcal{L}\mathcal{L}^{+2}) \cdot q\ell^{+1}(X)$.

Moreover, if the quasi-uniformity \mathcal{L} is

(3) \exists 3-separated, then $\psi(Q) \leq \overline{\psi}(\mathcal{L}^{-1} \mathcal{L}) \cdot (\mathcal{L} \cdot \ell(\mathcal{L}) \leq \overline{\psi}(\mathcal{L}^{+2}) \cdot \ell^{+1}(X)$.

(4) ±4-separated, then $\psi(Q) \leq \overline{\psi}(\mathcal{L}^{-1} \mathcal{L}) \cdot (\ell(\mathcal{L}^{-1}) \lor \mathcal{L}^{-1} \mathcal{L}) \cdot \ell^{+2}(X) \leq \overline{\psi}(\mathcal{L}^{+3}) \cdot \ell^{+2}(X)$;

(5) \exists 5-separated, then $\psi(Q) \leq \overline{\psi}(\mathcal{L}^{-1} \mathcal{L}^{-1} \mathcal{L}) \cdot (\mathcal{L}^{-1} \mathcal{L}) \cdot \ell^{+3}(X) \leq \overline{\psi}(\mathcal{L}^{+4}) \cdot q\ell^{+2}(X) \cdot \ell^{+2}(X)$;

(6) ±6-separated, then $\psi(Q) \leq \overline{\psi}(\mathcal{L}^{-1} \mathcal{L}^{-1} \mathcal{L}) \cdot \ell^{+2}(X) = \overline{\psi}(\mathcal{L}^{+5}) \cdot \ell^{+2}(X)$.

If the quasi-uniformities \mathcal{L} and \mathcal{R} are normally commuting and 3-separated, then

(7) $\psi(Q) \leq \psi(\mathcal{L}^{-1} \mathcal{L}) \cdot (\mathcal{L}^{-1} \lor \mathcal{L}) \leq \psi(\mathcal{L}^{+3}) \cdot q\ell^{+2}(X)$.

If the quasi-uniformities \mathcal{L}^{-1}, \mathcal{R}^{-1} are normally \pm-subcommuting and generate the same topology on X, then

(8) $\psi(Q) \leq \psi(\mathcal{L}^{-1} \mathcal{L}) \cdot (\ell(\mathcal{L}) \leq \psi(\mathcal{L}^{+2}) \cdot \ell^{+1}(X)$ and

(9) $\psi(Q) \leq \psi(\mathcal{L}^{-1} \lor \mathcal{L}^{-1} \mathcal{L}) \cdot (\ell(\mathcal{L}) \leq \psi(\mathcal{L}^{+2}) \cdot q\ell^{+1}(X) \cdot q\ell^{+1}(X)$.

Proof. 1. The first inequality follows from Theorem 4.3(4) applied to the pre-uniformity $\mathcal{A} = \mathcal{U} \lor \mathcal{U}^{-1}$.

2. The second item follows from Theorem 4.3(4).

3-6. The items (3)–(6) follow from Theorem 4.3(4) applied to the pre-uniformities \mathcal{L}, $\mathcal{L}^{-1} \lor \mathcal{L}^{-1} \mathcal{L}$, and $\mathcal{L} \mathcal{L}^{-1}$, respectively.

7. The seventh item follows from Theorem 4.3(3).

8.9. Assume that the quasi-uniformities \mathcal{L}^{-1}, \mathcal{R}^{-1} are normally \pm-subcommuting and generate the same topology on X. The inequalities $\psi(Q) \leq \psi(\mathcal{L}^{-1} \mathcal{L}) \cdot (\ell(\mathcal{L}) \leq \psi(\mathcal{L}^{+2}) \cdot q\ell^{+1}(X)$ follow from Theorem 4.3(2).

To prove that $\psi(Q) \leq \psi(\mathcal{L}^{-1} \lor \mathcal{L}^{-1} \mathcal{L}) \cdot (\ell(\mathcal{L}) \leq \psi(\mathcal{L}^{+2}) \cdot \ell^{+1}(X)$, fix a subset $A \subset \mathcal{L}$ of cardinality $|A| = \psi(\mathcal{L}^{-1} \lor \mathcal{L}^{-1} \mathcal{L})$ such that $\bigcap_{A \in \mathcal{L}} \mathcal{L}^{-1} \lor \mathcal{L}^{-1} \mathcal{L} \neq \emptyset$. Replacing every $L \in A$ by a smaller entourage, we can assume that $\bigcap_{L \in A} L^{-2} \lor L^{-2} \subset \Delta_X$. Since the quasi-uniformities \mathcal{L}, \mathcal{R} are normally \pm-subcommuting and the quasi-uniformities \mathcal{L}^{-1}, \mathcal{R}^{-1} are normally \pm-subcommuting, for every $L \in A$ there exists an entourage $\tilde{L} \subset \mathcal{L}$ with $\tilde{L} \subset L$ such that for every $R \in \mathcal{R}$ there is $\tilde{R} \subset \mathcal{R}$ such that $\tilde{L}^{-1} \tilde{L} \subset R^{-1} \mathcal{L}$ and $\tilde{R}^{-1} \subset R^{-1} L^{-1}$.

For every $L \in A$ fix a subset $Z_L \subset X$ of cardinality $|Z_L| \leq (L)(\mathcal{L}^{-1}) \subset \Delta_X$. Given any distinct points x, y find an entourage $L \in A$ such that $(x, y) \notin L^{-2} \lor L^{-2} L^{-2}$ and hence $(x, y) \notin L^{-2} L^{-2}$ or $(x, y) \notin L^{-2} L^{-1}$. If $(x, y) \notin L^{-2} L^{-2}$, then $B(y; L^{2}) \cap B(x; L^{2}) = \emptyset$. Since $y \in X = B(Z_L; L)$, there is $z \in Z_L$ such that $y \in B(\tilde{L}; L)$, then $z \in B(y; L^{2})$ and the L-ball $B(z; LL) \subset B(y; LL)$ does not intersect $B(x; L^{2})$, which implies $B(z; LL^{2}) \cap B(x; L) = \emptyset$. Observe that $B(y; \tilde{R}_z) \subset B(z; \tilde{L}^{-1} \tilde{R}_z) \subset B(z; R_z^{1} \mathcal{L}^{-1} \subset B(z; LL^{-1})$ and hence $B(y; \tilde{R}_z) \cap B(x; L) \subset B(z; LL^{-1}) \cap B(x; L) = \emptyset$. So, $(x, y) \notin \tilde{L}^{-1} \tilde{R}_z^{-1}$ and hence $(x, y) \notin \tilde{L}^{-1} \tilde{R}_z^{-1}$.

If $(x, y) \notin L^{-2} L^{-2}$, then $B(y; L^{-2}) \cap B(x; L^{-2}) = \emptyset$. Since $y \in X = B(Z_L; L)$, there is $z \in Z_L$ such that $y \in B(z; \tilde{L})$. Then $z \in B(y; L^{-2}) \subset B(y; L^{-1})$ and the L^{-2}-ball $B(z; L^{-1}) \subset B(y; L^{-2})$ does not intersect $B(x; L^{-2})$, which implies $B(z; L^{-1} L) \cap B(x; L^{-1}) = \emptyset$. Observe that $B(y; \tilde{R}_z^{-1}) \subset B(z; \tilde{L}^{-1} \tilde{R}_z^{-1}) \subset B(z; R_z^{-1} L^{-1} \subset B(z; L^{-1} L) and hence $B(y; \tilde{R}_z^{-1}) \cap B(x; L^{-1}) \subset B(z; L^{-1} L) \cap B(x; L^{-1}) = \emptyset$. So, $(x, y) \notin \tilde{L}^{-1} \tilde{R}_z$. Since $\tilde{R}_z \tilde{L}^{-1} \subset L^{-1} \tilde{L}_z$, we get also $(x, y) \notin \tilde{R}_z \tilde{L}^{-1}$.

This completes the proof of the equality $\bigcap_{L \in A} \mathcal{L}^{-1} \lor \mathcal{L}^{-1} \mathcal{L} = \Delta_X$, which implies the desired inequality

$$\psi(Q) \leq |P| \leq \sum_{L \in A} |Z_L| \leq \psi(\mathcal{L}^{-1} \lor \mathcal{L}^{-1} \mathcal{L}) \cdot (\ell(\mathcal{L}) \cdot \ell(\mathcal{L}^{-1}) - \ell(\mathcal{L}^{-1})$$.

\[\square \]

In Section 6 we shall need the following upper bound on the local pseudocharacters $\psi(\mathcal{L}^{-1})$ and $\psi(\mathcal{R}^{-1})$ of normally \pm-subcommuting quasi-uniformities \mathcal{L} and \mathcal{R}.

Proposition 4.6. If the topology of a Hausdorff space X is generated by two normally \pm-subcommuting quasi-uniformities \mathcal{L} and \mathcal{R}, then $\psi(\mathcal{L}^{-1}) \leq \overline{\psi}(X) \cdot \ell(\mathcal{L}^{-1})$ and $\psi(\mathcal{R}^{-1}) \leq \overline{\psi}(X) \cdot \ell(\mathcal{L}^{-1})$.

Proof. First we prove that $\hat{\psi}(LL^{-1}) \leq \hat{\psi}(X) \cdot \ell^{\leq 2}(X)$. Fix any point $x \in X$. Since the topology of X is generated by the quasi-uniformity \mathcal{R}, we can fix a subfamily $\mathcal{R}_x \subseteq \mathcal{R}$ of cardinality $|\mathcal{R}_x| \leq \overline{\psi}(X) \leq \hat{\psi}(X)$ such that $\bigcap_{\mathcal{R}_x} B(x; RR\mathcal{R}) = \{x\}$.

By the normality of the quasi-uniformity \mathcal{R}, for every $R \in \mathcal{R}_x$ we get $B(x; RR) \subseteq B(x; RR\mathcal{R})$. Then for every point $z \in X \setminus B(x; RR\mathcal{R})$ we can find an entourage $L_z \in \mathcal{L}$ such that $B(z; L_z \cap L_z) \cap B(x; RR) = \emptyset$. For every point $z \in B(x; RR)$ choose an entourage $L_z \in \mathcal{L}$ such that $B(z; L_z \cap L_z) \subseteq B(x; RR)$. Since the quasi-uniformities \mathcal{L} and \mathcal{R} are normally \pm-subcommuting, for the entourage $R \in \mathcal{R}$ there is an entourage $\tilde{R} \in \mathcal{R}$ such that for every entourage $L \in \mathcal{L}$ there is an entourage $\tilde{L} \in \mathcal{L}$ such that $\tilde{R} \cap L \subseteq \mathcal{L}$. In particular, for every $z \in \mathcal{L}$ there is an entourage $\tilde{L}_z \in \mathcal{L}$ such that $\tilde{R} \cap L \subseteq \mathcal{L}$. Replacing \tilde{L}_z by a smaller entourage we can assume that $\tilde{L}_z \subseteq L_z$ and $B(z; \tilde{L}_z) \subseteq B(x; R)$.

By the definition of $\ell^{\leq 2}(X)$, for the neighborhood assignment $N_R = \bigcup_{z \in X} \{z\} \times B(z; \tilde{L}_z \cap \tilde{R})$ there is a subset $Z_R \subseteq X$ of cardinality $|Z_R| \leq \ell^{\leq 2}(X)$ such that $X = B(Z_R; N_R N_R^{-1})$.

We claim that the subfamily $\mathcal{L}' = \bigcap_{\mathcal{L} \subseteq \mathcal{L}} B(x; LL^{-1}) = \{x\}$. Given any point $y \in X \setminus \{x\}$, find an entourage $R \in \mathcal{R}_x$ such that $y \notin B(x; RR\mathcal{R})$. Since $y \in X = B(Z_R; N_R N_R^{-1})$, there is a point $z \in Z_R$ such that $y \notin B(z; N_R N_R^{-1})$ and hence $B(y; L_y \cap \tilde{R}) \cap B(z; L_z \cap \tilde{R}) = B(y; N_R \cap B(z; N_R) \neq \emptyset$ and $y \in B(z; \tilde{L}_z \cap \tilde{R})$. Since $y \notin B(x; RR\mathcal{R})$, the choice of the entourages L_y, L_z implies that $z \notin B(x; RR\mathcal{R})$. We claim that $B(y; \tilde{L}_z) \cap B(x; \tilde{L}_z) = \emptyset$. To derive a contradiction, assume that $B(y; \tilde{L}_z) \cap B(x; \tilde{L}_z) \neq \emptyset$. Then

$$\emptyset \neq B(y; \tilde{L}_z) \cap B(x; \tilde{L}_z) \subseteq B(z; \tilde{L}_z \cap \tilde{R}) \cap B(x; R) \cap B(z; \tilde{L}_z \cap \tilde{R})$$

and hence $B(z; L_z \cap \tilde{L}_z \cap \tilde{R}) \neq \emptyset$, which contradicts the choice of the entourage L_z. This contradiction completes the proof of the inequality $\hat{\psi}(LL^{-1}) \leq \hat{\psi}(X) \cdot \ell^{\leq 2}(X)$.

By analogy (or changing \mathcal{L} and \mathcal{R} by their places) we can prove that $\hat{\psi}(RR^{-1}) \leq \hat{\psi}(X) \cdot \ell^{\leq 2}(X)$. \square

5. QUASI-UNIFORMITIES ON TOPOLOGICAL MONOIDS

A topological monoid is a topological semigroup X possessing a (necessarily unique) two-sided unit $e \in X$. We shall say that a topological monoid S has open shifts if for any elements $a, b \in X$ the two-sided shift $s_{a,b} : X \to X$, $s_{a,b} : x \mapsto axb$, is an open map.

A typical example of a topological monoid with open shifts is a paratopological group, i.e., a group endowed with a topology making the group operation $G \times G \to G$, $(x, y) \mapsto xy$, continuous.

The closed half-line $[0, \infty)$ endowed the Sorgenfrey topology (generated by the base $B = \{[a, b) : 0 \leq a < b < \infty\}$) and the operation of addition of real numbers is a topological monoid with open shifts, which is not a (paratopological) group.

Each topological monoid X carries five natural quasi-uniformities:

- the left quasi-uniformity \mathcal{L}, generated by the base $\{(x, y) \in X \times X : y \in xU\} : U \in \mathcal{N}_e$,
- the right quasi-uniformity \mathcal{R}, generated by the base $\{(x, y) \in X \times X : y \in xu\} : U \in \mathcal{N}_e$,
- the two-sided quasi-uniformity $\mathcal{L} \vee \mathcal{R}$, generated by the base $\{(x, y) \in X \times X : y \in xu \cap xU\} : U \in \mathcal{N}_e$,
- the Roelcke quasi-uniformity $\mathcal{RL} = \mathcal{L} \vee \mathcal{R}$, generated by the base $\{(x, y) \in X \times X : y \in xu \cap xU\} : U \in \mathcal{N}_e$,

and

- the quasi-Roelcke uniformity $\mathcal{Q} = \mathcal{RL}^{-1} \cap \mathcal{RL}^{-2}$, generated by the base $\{(x, y) \in X \times X : xu \cap yU \neq \emptyset \neq Uy \cap xu\} : U \in \mathcal{N}_e$.

Here by \mathcal{N}_e we denote the family of all open neighborhoods of the unit e in X. The quasi-uniformities \mathcal{L}, \mathcal{R}, $\mathcal{L} \vee \mathcal{R}$, and \mathcal{RL} are well-known in the theory of topological and paratopological groups (see [22, Ch.2], [2, §1.8]). The quasi-Roelcke uniformity was recently introduced in [4]. It should be mentioned that on topological groups the quasi-Roelcke uniformity coincides with the Roelcke (quasi-)uniformity. The following diagram describes the relation between these five quasi-uniformities (an arrow $U \to V$ in the diagram indicates that $U \subseteq V$).

```
\begin{tikzpicture}
    \node (L) at (0,0) {$\mathcal{L}$};
    \node (R) at (1,0) {$\mathcal{R}$};
    \node (Q) at (0.5,-1) {$\mathcal{RL}$};
    \node (LOR) at (0.5,0.5) {$\mathcal{L} \vee \mathcal{R}$};

    \draw[->] (L) -- (LOR);
    \draw[->] (LOR) -- (Q);
    \draw[->] (Q) -- (R);
    \draw[->] (L) -- (Q);
    \draw[->] (R) -- (Q);
\end{tikzpicture}
```
If a topological monoid X has open shifts, then the quasi-uniformities \mathcal{L}, \mathcal{R}, $\mathcal{L} \lor \mathcal{R}$ and \mathcal{RL} generate the original topology of X (see [15, 18]) whereas the quasi-Roelcke uniformity \mathcal{Q} generates a topology $\tau_\mathcal{Q}$, which is (in general, strictly) weaker than the topology τ of X. If X is a paratopological group, then the topology $\tau_\mathcal{Q}$ on G coincides with the joint $\tau_2 \lor (\tau^{-1})_2$ of the second oscillator topologies considered by the authors in [3]. The topology $\tau_\mathcal{Q}$ turns the paratopological group into a quasi-topological group, i.e., a group endowed with a topology in which the inversion and all shifts are continuous (see Proposition 6.3).

Proposition 5.1. On each topological monoid X with open shifts the quasi-uniformities \mathcal{L} and \mathcal{R} are normally commuting, normally \pm-subcommuting, and normal. The topology of X is Hausdorff if and only if the quasi-Roelcke uniformity $\mathcal{Q} = \mathcal{L}\mathcal{R}^{-1} \lor \mathcal{RL}^{-1}$ on X is separated.

Proof. To see that the quasi-uniformities \mathcal{L} and \mathcal{R} are normally commuting, fix any entourage $L \in \mathcal{L}$ and find a neighborhood $U \subset G$ of the unit e such that $L = \{(x, y) \in X \times X : y \in xU\} \subset L$. Given any entourage $R \in \mathcal{R}$, find a neighborhood $V \subset G$ of the unit e such that $R = \{(x, y) \in X \times X : y \in Vx\} \subset R$. Then

$$\tilde{L} \tilde{R} = \{(x, y) \in X \times X : \exists z \in X \text{ such that } (x, z) \in \tilde{L} \text{ and } (z, y) \in \tilde{R}\} = \{(x, y) \in X \times X : \exists z \in xU \text{ and } y \in Vz\} = \{(x, y) \in X \times X : y \in (Vx)U\} = \tilde{R} \tilde{L} \subset RL \cap LR.$$

This implies that the quasi-uniformities \mathcal{L} and \mathcal{R} are normally commuting.

Next, we prove that $L^{-1} \tilde{R} \subset \tilde{R} L^{-1} \subset RL^{-1}$. Given any pair $(x, y) \in \tilde{L}^{-1} \tilde{R}$, find a point $z \in X$ such that $(x, z) \in \tilde{L}^{-1}$ and $(z, y) \in \tilde{R}$. Then $x \in zU$ and $y \in Vz$. So, we can find points $u \in U$ and $v \in V$ such that $x = zu$ and $y = vz$. Multiplying $x = zu$ by v, we get $vx = vz u = yu$ and hence $(x, vx) \in \tilde{R}$ and $(y, vx) = (y, yu) \in \tilde{L}$, which implies that $(x, y) \in \tilde{R} \tilde{L}^{-1} \subset RL^{-1}$. So, $\tilde{L}^{-1} \tilde{R} \subset \tilde{R} L^{-1} \subset RL^{-1}$. By analogy we can prove that $\tilde{R}^{-1} \tilde{L} \subset L^{-1} \tilde{R} \subset LR^{-1}$.

By Proposition 3.1, the quasi-uniformities \mathcal{L} and \mathcal{R}, being normally \pm-subcommuting, are normal.

If X is Hausdorff, then for any distinct points $x, y \in X$ we can find a neighborhood $U \subset X$ of the unit e such that $Ux \cap yU = \emptyset$. Then for the entourages $L = \{(x, y) \in X : y \in xU\} \in \mathcal{L}$ and $R = \{(x, y) \in X \times X : y \in Ux\}$ we get $y \notin B(x; RL^{-1}) \supset B(x; RL^{-1} \cap LR^{-1})$. This means that $\Delta_X \subset \mathcal{Q}$ and the quasi-Roelcke uniformity \mathcal{Q} is separated.

Now assume that the quasi-Roelcke uniformity \mathcal{Q} is separated. Given two distinct points $x, y \in X$, find two entourages $L \in \mathcal{L}$ and $R \in \mathcal{R}$ such that $(x, y) \notin LR^{-1} \cap RL^{-1}$ and hence $(x, y) \notin LR^{-1}$ or $(x, y) \notin RL^{-1}$.

For the entourages L, R, find a neighborhood $U \subset X$ of e such that $(x, y) \in X \times X : y \in xU \subset L$ and $(x, y) \in X \times X : y \in Ux \subset R$. If $(x, y) \notin LR^{-1}$, then $xU \cap yU = \emptyset$. If $(x, y) \notin RL^{-1}$, then $Ux \cap yU = \emptyset$. In both cases the points x, y have disjoint neighborhoods in X, which means that X is Hausdorff. \square

Proposition 5.1 and Theorem 3.1 imply:

Theorem 5.2. Each Hausdorff topological monoid X with open shifts is functionally Hausdorff and has submetrizability number $sm(X) \leq \psi(\mathcal{Q}) \leq \chi(X)$ and i-weight $iw(X) \leq \psi(\mathcal{Q}) \cdot \log(\ell(\mathcal{Q})) \leq \chi(X) \cdot \log(d(\mathcal{Q})).$

Observe that for a paratopological group G the quasi-Roelcke uniformity \mathcal{Q} generates the topology of G if and only if G is a topological group.

Problem 5.3. Study properties of topological monoids S with open shifts whose topology is generated by the quasi-Roelcke uniformity \mathcal{Q}.

6. **The Submetrizability Number and i-Weight of Paratopological Groups**

In this section we apply the results of the preceding sections to paratopological groups, i.e., groups G endowed with a topology making the group operation $G \times G \to G$, $(x, y) \mapsto xy$, continuous. It is easy to see that the inversion map $G \to G$, $x \mapsto x^{-1}$, is a uniform homeomorphism of the quasi-uniform spaces (G, L^{-1}) and (G, R) and also a uniform homeomorphism of the quasi-uniform spaces (G, \mathcal{R}^{-1}) and (G, \mathcal{L}). This observation combined with Propositions 3.6 and 6.1 implies:

Proposition 6.1. On each paratopological group G

1. the quasi-uniformities \mathcal{L} and \mathcal{R} are normally commuting, normally \pm-subcommuting, and normal;
2. the quasi-uniformities L^{-1} and R^{-1} are normally commuting, normally \pm-subcommuting, and generate the same topology on G.
If the topology of G is Hausdorff, then the quasi-uniformities \mathcal{L} and \mathcal{R} are 3-separated and the quasi-Roelcke uniformity $Q = LR^{-1} \vee RL^{-1}$ is separated.

Next, we prove that a paratopological group endowed with the quasi-Roelcke uniformity is a uniform quasi-topological group.

Definition 6.2. A uniform quasi-topological group is a group G endowed with a uniformity U such that the inversion $G \to G, x \mapsto x^{-1}$, is uniformly continuous and for every $a,b \in G$ the shifts $s_{a,b} : G \to G, s_{a,b} : x \mapsto axb$, is uniformly continuous.

Proposition 6.3. Any paratopological group G endowed with the quasi-Roelcke uniformity $Q = LR^{-1} \vee RL^{-1}$ is a uniform quasi-topological group.

Proof. Observe that for any neighborhood $V \in \mathcal{N}_c$ and points $x,y \in G$ the inclusion $y \in V_xV^{-1} \cap V^{-1}xV$ is equivalent to $y^{-1} \in Vx^{-1}V^{-1} \cap V^{-1}x^{-1}V$, which implies that the inversion map $G \to G, x \mapsto x^{-1}$, is uniformly continuous.

Next, we show that for every $a,b \in G$ the shift $s_{a,b} : G \to G, s_{a,b} : x \mapsto axb$, is uniformly continuous. Fix any neighborhood $V \in \mathcal{N}_c$ of e. By the continuity of the shifts on G, there exists a neighborhood $U \subset V$ of e such that $aU \subset Va,Ub \subset bV, Ua^{-1} \subset a^{-1}V$, and $b^{-1}U \subset bV^{-1}$. Inverting the two latter inclusions, we get $aU^{-1} \subset V^{-1}a$ and $U^{-1}b \subset bV^{-1}$. Then for any points $x,y \in G$ with $y \in U^{-1}xU \cap UxU^{-1}$, we get $yab \in aU^{-1}xUb \cap aUxU^{-1}b \subset V^{-1}axbV \cap VaxbV^{-1}$, which means that the shift $s_{a,b}$ is uniformly continuous.

The following theorem is a partial case of Theorem 5.2.

Theorem 6.4. Each Hausdorff paratopological group G is functionally Hausdorff and has submetrizability number $sm(G) \leq \psi(Q) \leq \chi(G)$ and i-weight $iw(G) \leq \psi(Q) \cdot \log(\ell(Q)) \leq \chi(G) \cdot \log(\ell(G))$.

In light of this theorem it is important to have upper bound on the pseudocharacter $\psi(Q)$ of the quasi-Roelcke uniformity. Such upper bounds are given in the following theorem, which unifies or generalizes the results of [23] and [19].

Theorem 6.5. For any Hausdorff paratopological group G its quasi-Roelcke uniformity $Q = LR^{-1} \vee RL^{-1}$ has pseudocharacter

1. $\psi(Q) \leq \min\{\psi(L^{-1}) \cdot \ell(L^{-1}), \psi(L^{-1}L) \cdot \ell(L)\} \leq \psi(G) \cdot \ell^{\pm 2}(G) \cdot \min\{\ell(L), \ell(L^{-1})\} \leq \psi(G) \cdot \ell^{\pm 2}(G) \cdot \min\{q^{\pm 1}(G), q^{\pm 1}(G)\}$;
2. $\psi(Q) \leq \psi(L^{-1} \vee L^{-1}L) \cdot \ell(L^{-1}) \cdot \ell(L) \leq \psi(L^{\pm 2}) \cdot q^{\pm 1}(G) \cdot q^{\pm 1}(G)$;
3. $\psi(Q) \leq \psi(L^{-1}L^{-1} \vee L^{-1}L) \leq \psi(L^{\pm 3}) \cdot q^{\pm 2}(G)$.

Moreover, if the quasi-uniformity is

4. ∓ 4-separated, then $\psi(Q) \leq \psi(L^{-1}L^{-1}L^{-1}) \cdot \ell^{\pm 2}(X) \leq \psi(L^{\pm 4}) \cdot q^{\pm 2}(X) \cdot \ell^{\pm 2}(G)$;
5. ± 6-separated, then $\psi(Q) \leq \psi(L^{-1}L^{-1}L^{-1}) \cdot \ell^{\pm 2}(G) \leq \psi(L^{\pm 5}) \cdot \ell^{\pm 2}(G)$.

Proof. 1. The inequality $\psi(Q) \leq \psi(L^{-1}) \cdot \ell(L^{-1})$ follows from Theorem 4.6(2), which also implies $\psi(Q) \leq \psi(R^{-1}) \cdot \ell(R^{-1}) \leq \psi(L^{-1}L) \cdot \ell(L)$. By Proposition 4.6, $\psi(L^{-1}L^{-1}) = \psi(L^{-1}) \leq \psi(Q) \cdot q^{\pm 2}(G)$ and $\psi(L^{-1}L) = \psi(R^{-1}) = \psi(Q) \cdot \ell^{\pm 2}(G)$, which implies

$$\min\{\psi(L^{-1}L^{-1}) \cdot \ell(L^{-1}), \psi(L^{-1}L^{-1}L^{-1}) \cdot \ell(L^{-1})\} \leq \psi(Q) \cdot \ell^{\pm 2}(G) \cdot \min\{\ell(L), \ell(L^{-1})\}.$$

2, 3. The upper bounds from the second and third items follow from Theorem 4.6(9,7) and Proposition 6.1.

4. Assume that the quasi-uniformity \mathcal{L} is ∓ 4-separated. Then we can choose a subfamily $U \subset \mathcal{N}_c$ of cardinality $|U| = \psi(L^{-1}L^{-1}L^{-1})$ such that $\bigcap_{U \in \mathcal{U}} U^{-1}UU^{-1}U = \{e\}$. Replacing every U by a smaller neighborhood of e, we can assume that $\bigcap_{U \in \mathcal{U}} U^{-1}UU^{-1}U = \{e\}$. Since $U^{-1}UU^{-1}U \subset U^{-1}(U^{-1}UU^{-1}U)$, we conclude that $\bigcap_{U \in \mathcal{U}} U^{-1}UU^{-1}U = \{e\}$ and $\psi(L^{-1}L^{-1}L^{-1}) \leq |U| = \psi(L^{-1}L^{-1}L^{-1})$. Applying Theorem 4.6(4) to the pre-uniformity $\mathcal{A} = \mathcal{L}^{-1}$, we get the upper bound

$$\psi(Q) \leq \psi(A^{-1}AU) \cdot \ell(A) \cdot \ell^{\pm 2}(G) = \psi(L^{-1}L^{-1}L^{-1}L^{-1}) \cdot \ell(L^{-1}L^{-1}) \cdot \ell^{\pm 2}(G) = \psi(L^{-1}LL^{-1}L^{-1}) \cdot \ell(L^{-1}L^{-1}L^{-1}) \cdot \ell(L^{-1}L^{-1}L^{-1}) \cdot \ell^{\pm 2}(G).$$

5. The fifth item follows from Theorem 4.6(6).
7. Two counterexamples

In this section we construct two examples of paratopological groups that have some rather unexpected properties.

7.1. A paratopological group with countable pseudocharacter which is not submetrizable. In Theorem 6.3.1 we proved that for each Hausdorff paratopological group G its quasi-Roelcke uniformity has pseudocharacter $\psi(Q) \leq \varphi(G) \cdot \ell(\mathcal{L}) \cdot \min\{\ell(\mathcal{L}), \ell(\mathcal{L}^{-1})\}$. It is natural to ask if this upper bound can be improved to $\psi(Q) \leq \psi(G)$. In this section we show that this inequality is not true in general. Namely, we present an example of a zero-dimensional (and hence) Hausdorff abelian paratopological group which has countable pseudocharacter but is not submetrizable. Some properties of this group can be proved only under Martin Axiom [27], whose topological equivalent says that each countabably cellular compact Hausdorff space is κ-Baire for every cardinal $\kappa < \mathfrak{c}$. We say that a topological space X is κ-Baire if for any family \mathcal{U} consisting of κ many open dense subsets of X the intersection $\bigcap \mathcal{U}$ is dense in X. Under Martin’s Axiom for σ-centered posets, each separable compact Hausdorff space is κ-Baire for every cardinal $\kappa < \mathfrak{c}$. This implies that under Martin’s Axiom (for σ-centered posets) the space \mathbb{Z}^κ endowed with the Tychonoff product topology is κ-Baire for every cardinal $\kappa < \mathfrak{c}$. Here \mathfrak{c} stands for the cardinality of continuum. In the statement (4) of the following theorem by \mathfrak{d} we denote the cofinality the partially ordered set $(\mathbb{N}^\kappa, \leq)$. It is known [26] that $\omega_1 \leq \mathfrak{d} \leq \mathfrak{c}$ and $\mathfrak{d} = \mathfrak{c}$ under Martin’s Axiom (for countable posets).

Let κ be an uncountable cardinal. On the group \mathbb{Z}^κ of all functions $g : \kappa \to \mathbb{Z}$ consider the shift-invariant topology τ_γ whose neighborhood base at the zero function $e : \kappa \to \mathbb{Z}$ consists of the sets

$$W_{F, m} = \{g \in \mathbb{Z}^\kappa : g|F = 0, \ g(\kappa) \subset \{0\} \cup [m, \infty)\}$$

where $m \in \mathbb{N}$ and F runs over finite subsets of κ. The group \mathbb{Z}^κ endowed with the topology τ_γ is a paratopological group, denoted by \mathbb{Z}^κ. Since the group \mathbb{Z}^κ is abelian, the fours standard uniformities of \mathbb{Z}^κ coincide (i.e., $\mathcal{L} = \mathcal{R} = \mathcal{L} \vee \mathcal{R} = \mathcal{R} \mathcal{L}$) whereas the quasi-Roelcke uniformity Q coincides with the pre-uniformities $\mathcal{L} \mathcal{L}^{-1}$ and $\mathcal{R} \mathcal{R}^{-1}$.

Theorem 7.1. For any uncountable cardinal κ the paratopological group $G = \mathbb{Z}^\kappa$ has the following properties:

1. G is a zero-dimensional (and hence regular) Hausdorff abelian paratopological group;
2. the topology on G induced by the quasi-Roelcke uniformity Q coincides with the Tychonoff product topology τ on \mathbb{Z}^κ;
3. $\psi(Q) = \chi(G) = \kappa$ but $\psi(G) = \varphi(G) = \omega$;
4. $\ell(Q) = \omega$ but $\ell(\mathcal{L}) \geq \mathfrak{d} > \omega$;
5. $c(G) \geq \kappa$ but $dc(G) = \omega$;
6. $iw(G) \cdot \omega = sm(G) \cdot \omega \geq \log(2^\kappa)$.
7. If $2^\kappa > \mathfrak{c}$, then G is not submetrizable.
8. If the space \mathbb{Z}^κ is κ-Baire, then G fails to have G_δ-diagonal and hence is not submetrizable.

Proof. 1. It is clear that the topology τ_γ on \mathbb{Z}^κ is stronger than the Tychonoff product topology τ on \mathbb{Z}^κ. This implies that the paratopological group $G = \mathbb{Z}^\kappa$ is Hausdorff. Observing that each basic neighborhood $W_{F, m}$ of the zero function $e \in \mathbb{Z}^\kappa$ is τ_γ-closed, we conclude that it is τ_γ-closed, which implies that the space \mathbb{Z}^κ is zero-dimensional and hence regular.

2. Observe that for every basic neighborhood $W_{F, m}$ of zero, the set $W_{F, m} - W_{F, m}$ coincides with the basic neighborhood $W_F = \{g \in \mathbb{Z}^\kappa : g|F = 0\}$ of zero in the Tychonoff product topology τ. This implies that τ coincides with the topology induced by the quasi-Roelcke uniformity Q.

3. The equality $\chi(G) = \kappa = \psi(Q)$ easily follows from the definition of the topology τ_γ and the fact that the quasi-Roelcke uniformity Q generates the Tychonoff product topology on \mathbb{Z}^κ. To see that $\psi(G) = \varphi(G) = \omega$, observe that $\bigcap_{m \in \mathbb{N}} W_{0, m} = \{e\}$.

4. To see that $\ell(Q) = \omega$, take any basic open neighborhood $W_{F, m}$ of zero in the group G and observe that $Z^F = \{g \in \mathbb{Z}^\kappa : g|\kappa \setminus F = 0\}$ is a countable subgroup of G such that $G = Z^F + (W_{F, m} - W_{F, m})$, which implies that $\ell(Q) \leq \omega$. On the other hand, the boundedness number $\ell(\mathcal{L})$ of the left quasi-uniformity on the paratopological group \mathbb{Z}^κ is equal to the cofinality of the partially ordered set $(\mathbb{N}^\kappa, \leq)$ which is not smaller that \mathfrak{d}, the cofinality of the partially ordered set $(\mathbb{N}^\kappa, \leq)$.

5. For every $x \in \kappa$ denote by $\delta_x : \kappa \to \{0, 1\} \subset \mathbb{Z}$ the characteristic function of the singleton $\{x\}$ and let $U_x = \delta_x + W_{\{x\}, 2}$ be a basic neighborhood of δ_x. We claim that for any distinct points $x, y \in \kappa$ the sets U_x and U_y are disjoint. To derive a contradiction, assume that $U_x \cap U_y$ contains some function $f \in \mathbb{Z}^\kappa$. The inclusion
$f \in U_x$ implies that $f(x) = \delta_x(x) = 1$. On the other hand, if $f \in U_y$ implies $f(x) \in \{\delta_y(x)\} \cup \{\delta_y(x) + 2, \infty\} = \{0\} \cup [2, \infty) \neq \emptyset$. So, the closed-and-open sets U_x, $x \in \kappa$, are pairwise disjoint and hence $|c(G)| \geq |\{U_x\}_{x \in \kappa}| = \kappa$.

By Proposition 11.10 $dc(G) = \ell^{\omega+1}(G)$. So, it suffices to prove that $\ell^{\omega+1}(G) = \omega$. Given a neighborhood assignment V on G, we need to find a countable subset $C \subset G$ such that $B(C; AVV^{-1}VV^{-1}) = G$. Using Zorn’s Lemma, find a maximal subset $C \subset G$ such that $B(x; VV^{-1}) \cap B(y; VV^{-1}) = \emptyset$ for any distinct points $x, y \in C$. By the maximality of C, for every $x \in G$ there is a point $c \in C$ such that $B(c; V V^{-1}) \cap B(x; V V^{-1}) \neq \emptyset$, which implies $x \in B(C; V V^{-1} V V^{-1})$ and hence $X = B(C; V V^{-1} V V^{-1})$. It remains to prove that the set C is countable. To derive a contradiction, assume that C is uncountable. For every $x \in G$ find a finite subset $F_x \subset \kappa$ and a positive number $m_x \in \mathbb{N}$ such that $x + W_{F_x, m_x} \subset B(x; V)$. By the Δ-system Lemma 16.1, the uncountable set C contains an uncountable subset $D \subset C$ such that the family $(F_x)_{x \in D}$ is a Δ-system with kernel K, which means that $F_x \cap F_y = K$ for any distinct points $x, y \in D$. For every $n \in \mathbb{N}$ and $f \in Z^K$ consider the subset $D_{n,f} = \{x \in D : f(K) = \kappa, m_x \leq n, \sup_{\alpha \in F_x} |x(\alpha)| \leq n\}$ of D and observe that $D = \bigcup_{n \in \mathbb{N}} \bigcup_{f \in Z^K} D_{n,f}$. By the Pigeonhole Principle, for some $n \in \mathbb{N}$ and $f \in Z^K$ the set $D_{n,f}$ is countable. Consider the clopen subset $Z^K(f) = \{x \in Z^\kappa : x[K] = f\}$ of Z^κ. Since $Z^K(f)$ is a Baire space, for some $m \in \mathbb{N}$ the set $X_m = \{x \in Z^\kappa(f) : m_x = m\}$ is not nowhere dense in $Z^\kappa(f)$. Consequently, there is a finite subset $K \subset \kappa$ containing K and a function $f_0 : K \rightarrow Z$ such that the set $X_m \cap Z^\kappa(f_0)$ is dense in $Z^\kappa(f) = \{x \in Z^\kappa : x[K] = f\}$. Since the family $(F_x \setminus K)_{x \in D}$ is disjoint, the set $\{x \in D : (F_x \setminus K) \cap K = \emptyset\}$ is finite, so we can find two functions $x, y \in D_{n,f}$ such that $(F_x \cup F_y) \cap K = K$. Put $K = F_x \cup F_y \cup K$ and choose any function $f : K \rightarrow Z$ such that $f(K) = f_0$ and $f(\alpha) = x(\alpha) - n - m$ for any $\alpha \in K \setminus K$. The function f determines a non-empty open subset $Z^\kappa(f) = \{x \in Z^\kappa : x[K] = f\}$, which contains some function $z \in X_m$ (by the density of $X_m \cap Z^\kappa(f)$ in $Z^\kappa(f)$). Choose a function $z \in Z^\kappa(f)$ such that $\exists f_x = z[F_x]$ and $\exists (\alpha) \geq \max\{m + z(\alpha), m_x + x(\alpha)\}$ for every $\alpha \in K \setminus F_x$. Then $\exists (z + W_{F_x, m}) \cap (x + W_{F_x, m_x}) \subset B(z; V) \cap B(x; V)$, which implies $z \in B(x; V V^{-1})$.

By analogy we can prove that $z \in B(y; V V^{-1})$. So, $B(x; V V^{-1}) \cap B(y; V V^{-1}) \neq \emptyset$, which contradicts the choice of the set $C \ni x, y$. This contradiction shows that C is countable and hence $dc(G) = \ell^{\omega+1}(G) = \omega$.

6. By Proposition 14 iw$(G) \cdot \omega = sm(G) \cdot \log(dc(G)) = \sm(G) \cdot \omega$. On the other hand, $2^\kappa = |G| \leq |\{0, 1\}^{iw(G)}| = |\{0, 1\}^{iw(G)}| \omega$ implies that $\log(2^\kappa) \leq iw(G) \cdot \omega$.

7. If $\theta > \kappa$, then $sm(G) \cdot \omega \geq \log^*(\theta) \geq \log^{(\omega)}(\theta^+) > \omega$, which implies that $sm(G) > \omega$ and hence G is not submetrizable.

8. Suppose that the space Z^κ is κ-Baier. Assuming that the space G is κ^κ has G_δ-diagonal, we can apply Theorem 2.2 in [12] and find a countable family $(U_n)_{n \in \omega}$ open covers of G, which separates the points of G in the sense that for every distinct points $f, g \in G$ there is $n \in \mathbb{N}$ such that no set $U \in U_n$ contains both points f and g. Since the space G is zero-dimensional, we can assume that each set $U \in \bigcup_{n \in \omega} U_n$ is closed-and-open in G. Put $U_0 = \{G\}$.

We shall construct an increasing sequence $(F_n)_{n \in \omega}$ of finite subsets and a sequence $f_n \in Z^{F_n}$, $n \in \omega$, of functions such that for every $n \in \omega$ the clopen set $Z^\kappa(f_n) = \{f \in Z^\kappa : f|F_n = f_n\}$ is contained in $U_n \cap Z^\kappa(f_{n-1})$ for some set $U_n \in U_n$.

We start the inductive construction letting $F_0 = \emptyset$ and $f_0 : \emptyset \to Z$ be the unique function. Then $Z^\kappa(f_0) = Z^\kappa \in U_0$. Assume that for some $n \in \omega$ we have defined a finite set $F_{n-1} \subset \kappa$ and a function $f_{n-1} \in Z^{F_{n-1}}$ such that $Z^\kappa(f_{n-1}) \subset U_{n-1}$ for some $U_{n-1} \in U_{n-1}$.

The F be the family of all triples (F, f, m) where F is a finite subset of κ containing F_{n-1}, $f : F \to Z$ is a function extending the function f_{n-1} and $m \in \mathbb{N}$ is a positive integer. Observe that $|F| = \kappa$. For every function $g \in \kappa^\kappa$ choose a closed-and-open subset $U_g \in U_n$ containing g and choose a finite subset $F_g \subset \kappa$ containing F_{n-1} and a number m_g such that $g + W_{F_g, m_g} \subset U_g$. For every triple $(F, f, m) \in F$ consider the subset $Z(F, f, m) = \{g \in Z^\kappa : (F_g, g|F_g, m_g) = (F, f, m)\}$ and observe that $Z^\kappa(f_{n-1}) = \bigcup_{(F, f, m) \in F} Z(F, f, m)$. Since the space $Z^\kappa(f_{n-1})$ is κ-Baier, there is a triple $(F, f, m) \in F$ such that the set $Z(F, f, m)$ is not nowhere dense in $Z^\kappa(f_{n-1})$. Consequently we can find a finite set $F_n \subset \kappa$ and a function $f_n \in Z^{F_n}$ such that for the basic open set $Z^\kappa(f_n) = \{g \in Z^\kappa : g|F_n = f_n\}$ the intersection $Z^\kappa(f_n) \cap Z(F, f, m)$ is dense in $Z^\kappa(f_n)$. It follows that $F_n \supset F \supset F_{n-1}$ and $f_n|F = f$. Choose any point $g \in Z(F, f, m) \cap Z^\kappa(f_n)$. We claim that $Z^\kappa(f_n) \subset U_g \in U$. Assuming that $Z^\kappa(f_n) \not\subset U_g$, choose a function $h \in Z^\kappa(f_n) \setminus U_g$ and find a basic neighborhood $h + W_{F_h, m} \subset Z^\kappa(f_n) \setminus U_g$ of h. It follows from the inclusion $h + W_{F_h, m} \subset Z^\kappa(f_n)$ that $E \supset F_n \supset F$ and $h|F_n = f_n$. Then $f = f_n|F = f$. Choose a function $h : \kappa \to Z$ such that $h|E = h|E$ and $h(x) = \max\{g(x) + m, h(x) + 1\}$ for every $x \in \kappa \setminus E$. Then $h \in (h + W_{F_h, m}) \subset (Z^\kappa(f_n) \setminus U_g) \cup U_g = \emptyset$, which is a desired contradiction completing the inductive step.

After completing the inductive construction, consider the countable set $F_\omega = \bigcup_{n \in \omega} F_n$ and the function $f_\omega : F_\omega \to Z$ such that $f_\omega|F_n = f_n$ for all $n \in \omega$. Since the complement $\kappa \setminus F_\omega$ is not empty, the “cube”
Corollary 7.2. For every cardinal \(\kappa \geq \kappa \) the paratopological group \(\uparrow \mathbb{Z}^\kappa \) has countable pseudocharacter but fails to be submetrizable.

It is known \([27]\) that under Martin’s Axiom the space \(\mathbb{Z}^\kappa \) is \(\kappa \)-Baire for every cardinal \(\kappa < \kappa \). This fact combined with Theorem 7.6 implies the following MA-improvement of Corollary 7.2.

Corollary 7.3. Under Martin’s Axiom, for any uncountable cardinal \(\kappa \) the paratopological group \(\uparrow \mathbb{Z}^\kappa \) has countable pseudocharacter but fails to be submetrizable.

Problem 7.4. Can the space \(\uparrow \mathbb{Z}^\omega \) be submetrizable in some model of ZFC?

In Theorem 6.4 we proved that the paratopological group \(G = \uparrow \mathbb{Z}^\omega \) has \(d(G) \geq c(G) \geq \kappa \) and \(dc(G) = \omega \). By Propositions 1.3 and 1.10 \(\ell^{\omega_1}(G) = \ell^{\omega_1}(G) = dc(G) = \omega \). It would be interesting to know the values of some other cardinal characteristics of \(G \), intermediate between \(dc(G) \) and \(c(G) \).

Problem 7.5. For the paratopological group \(G = \uparrow \mathbb{Z}^\kappa \) calculate the values of cardinal characteristics \(\ell^{\pm n}(G) \), \(\ell^{\pm n}(G) \), \(\ell^{\pm n}(G) \) for all \(n \in \mathbb{N} \).

7.2. A submetrizable paratopological group whose quasi-Roecke uniformity has uncountable pseudocharacter. By Theorem 6.4 each Hausdorff paratopological group \(G \) has submetrizability number \(sm(G) \leq \psi(\mathbb{Q}) \). This inequality can be strict as shown by an example constructed in this subsection.

Given an uncountable cardinal \(\kappa \) in the paratopological group \(\uparrow \mathbb{Z}^\kappa \) consider the subgroup \(H = \{ f \in \uparrow \mathbb{Z}^\kappa : |\text{supp}(f)| < \omega \} \) consisting of functions \(f : \kappa \to \mathbb{Z} \) that have finite support \(\text{supp}(f) = \{ \alpha \in \kappa : f(\alpha) \neq 0 \} \). A neighborhood base of \(H \) at zero consists of the sets

\[W_{F,m} = \{ h \in H : h \neq 0, h(\kappa) \in \{0\} \cup [m, \infty) \} \]

where \(F \) runs over finite subsets of \(\kappa \) and \(m \in \mathbb{N} \).

Theorem 7.6. For any uncountable cardinal \(\kappa \) the paratopological group \(H \) has the following properties:

1. \(H \) is a zero-dimensional (and hence regular) Hausdorff abelian paratopological group;
2. \(H \) is strongly \(\sigma \)-discrete and submetrizable;
3. \(iw(H) \cdot \omega = \log(\kappa) \);
4. \(\psi(H) = \chi(H) = \kappa \) but \(\psi(H) = \overline{\psi(H)} = \omega \);
5. \(\ell(Q) = \omega \) but \(\ell(L) = dc(H) = \kappa \).

Proof. The items (1), (2), (5) follow (or can be proved by analogy with) the corresponding items of Theorem 7.1.

(2)–(3): To see that the space \(H \) is strongly \(\sigma \)-discrete, write \(H = \bigcup_{n,m \in \mathbb{N}} H_{n,m} \) where \(H_{n,m} = \{ h \in \uparrow \mathbb{Z}^\kappa : |\text{supp}(h)| = n, \| h \| \leq m \} \) and \(\| h \| = \sup_{\alpha \in \kappa} |h(\alpha)| \). We claim that each set \(H_{n,m} \) is strongly discrete in \(\uparrow \mathbb{Z}^\kappa \).

To each function \(h \in H_{n,m} \) assign the neighborhood \(U_{h} = h + W_{\text{supp}(h),m+1} \). Given any two distinct functions \(g, h \in H_{n,m} \), we shall prove that \(U_{g} \cap U_{h} = \emptyset \). Assuming that \(U_{g} \cap U_{h} \) contains some function \(f \in H \), we would conclude that \(|\text{supp}(g)| = |\text{supp}(g)| \) and \(|\text{supp}(h)| = |\text{supp}(h)| \). So, \(g|\text{supp}(g)| = h|\text{supp}(h)| \) and \(g \neq h \) implies \(\text{supp}(g) \neq \text{supp}(h) \). Since \(|\text{supp}(g)| = |\text{supp}(h)| = n \), there is \(\alpha \in \text{supp}(g) \) \(\text{supp}(h) \) such that \(g(\alpha) \neq 0 = h(\alpha) \). Then \(f(\alpha) \in \{ g(\alpha) \} \cap \{ m+1, \infty \} = \emptyset \), which is a contradiction showing that the indexed family \((U_{h})_{h \in H_{n,m}} \) is disjoint.

To show that this family \((U_{h})_{h \in H_{n,m}} \) is discrete, for every function \(g \in H \setminus \bigcup_{h \in H_{n,m}} U_{h} \) consider its neighborhood \(U_{g} = g + W_{\text{supp}(g),m+1} \). We claim that \(U_{g} \cap U_{h} = \emptyset \) for every \(h \in H_{n,m} \). Assume conversely that for some \(h \in H_{n,m} \) the intersection \(U_{g} \cap U_{h} \) contains a function \(f \in H \). Then \(f|\text{supp}(g)| = g|\text{supp}(g)| \) and \(f|\text{supp}(h)| = h|\text{supp}(h)| \). If \(\text{supp}(h) \setminus \text{supp}(g) \neq \emptyset \), then we can find \(\alpha \in \text{supp}(h) \setminus \text{supp}(g) \) and conclude that \(f(\alpha) = h(\alpha) \neq 0 = g(\alpha) \) and hence \(f(\alpha) \in \{ g(\alpha) \} \cap \{ m+1, \infty \} = \emptyset \), which is a contradiction. So, \(\text{supp}(g) \setminus \text{supp}(h) \) and \(\text{supp}(h) \setminus \text{supp}(g) \). It follows from \(g \notin U_{h} \) that for some \(\alpha \in \kappa \setminus \text{supp}(h) \) we get \(g(\alpha) \notin \{0\} \cup \{m+1, \infty \} \). Then \(\alpha \in \text{supp}(g) \) and \(f(\alpha) = g(\alpha) \notin \{ m+1, \infty \} \). On the other hand, the inclusion \(f \in U_{h} \) and \(f(\alpha) = 0 = h(\alpha) \) implies \(f(\alpha) \in \{ m+1, \infty \} \). This contradiction completes the proof of the equality \(U_{g} \cap U_{h} = \emptyset \), which shows that the family \((U_{h})_{h \in H_{n,m}} \) is discrete in \(H \) and the set \(H_{n,m} \) is strongly discrete in \(H \). Then the space \(H = \bigcup_{n,m \in \mathbb{N}} H_{n,m} \) is strongly \(\sigma \)-discrete. By Proposition 1.1 it is submetrizable and has \(i \)-weight \(iw(H) \cdot \omega = \log(|H|) = \log(\kappa) \).

- \(Z^\kappa(f_\omega) = \{ g \in Z^\kappa : g|Z_\omega = f_\omega \} \) contains two distinct functions \(f, g \). By the choice of the family \((U_n)_{n \in \omega} \) there is a number \(n \in \omega \) such that no set \(U \in \mathcal{U} \) contains both points \(f \) and \(g \). On the other hand, by the inductive construction, \(f, g \in Z^\kappa(f_\omega) \subset Z^\kappa(f_n) \subset U_n \) for some set \(U_n \in \mathcal{U} \), which is a desired contradiction completing the proof of the theorem.

- \(\mathcal{U} \cdot h \subset U \cdot h \) for all \(\mathcal{U} \in \mathcal{U} \). We claim that each set \(U_{h} \in H_{n,m} \) is strongly \(\kappa \)-discrete. By Proposition 1.1 it is submetrizable and has \(i \)-weight \(iw(H) \cdot \omega = \log(|H|) = \log(\kappa) \).
References

[1] A.V. Arhangel’skii, Topological invariants in algebraic environment, In: Recent Progress in General Topology II, M. Hušek and J. van Mill, Eds., pp. 157. Noth-Holland, Elsevier, Amsterdam 2002.

[2] A. Arhangel’skii, M. Tkachenko, Topological groups and related structures, Atlantis Press, Paris; World Sci. Publ. Co. Pte. Ltd., Hackensack, NJ, 2008.

[3] T. Banakh, O. Ravsky, Oscillator topologies on a paratopological group and related number invariants, Third International Algebraic Conference in the Ukraine (Ukrainian), 140–153, Natsional. Akad. Nauk Ukraine, Inst. Mat., Kiev, 2002.

[4] T. Banakh, A.Ravsky, Regular paratopological groups are completely regular, preprint (http://arxiv.org/abs/1410.1504).

[5] T. Banakh, A.Ravsky, Verbal covering properties of topological spaces, preprint (http://arxiv.org/abs/1503.04480).

[6] D. Basile, A. Bella, G. Ridderbos, Weak extent, submetrizability and diagonal degrees, Houston J. Math. 40:1 (2014), 255–266.

[7] J. Cao, Recent progress in some aspects of star covering properties, General geometric topology and its applications (Japanese) (Kyoto, 2001), Surikaisekikenkyusho Kokyuroku No. 1248 (2002), 12–17.

[8] E.K. van Douwen, G.M. Reed, A.W. Roscoe, I.J. Tree, Star covering properties, Topology Appl. 39:1 (1991), 71–103.

[9] R. Engelking, General Topology, Heldermann Verlag, Berlin, 1989.

[10] R. Engelking, Theory of dimensions finite and infinite, Heldermann Verlag, Lemgo, 1995.

[11] P. Fletcher, W. Lindgren, Quasi-uniform spaces, Lecture Notes in Pure and Applied Mathematics, 77. Marcel Dekker, Inc., New York, 1982.

[12] G. Gruenhage, Generalized metric spaces, Handbook of set-theoretic topology, 423–501, North-Holland, Amsterdam, 1984.

[13] R. Hodel, Cardinal functions. I, Handbook of set-theoretic topology, 1–61, North-Holland, Amsterdam, 1984.

[14] W. Just, M. Weese, Discovering modern set theory. II. Set-theoretic tools for every mathematician, Graduate Studies in Mathematics, 18. American Mathematical Society, Providence, RI, 1997.

[15] H.-P. Kunzi, Quasi-uniform spaces in the year 2001, Recent Progress in General Topology. II, 313–344, North-Holland, Amsterdam, 2002.

[16] H.-P. Kunzi, Quasi-uniform spaces in the year 2001, Recent Progress in General Topology, II, 313–344, North-Holland, Amsterdam, 2002.

[17] H.-P. Kunzi, Quasi-uniform spaces in the year 2001, Recent Progress in General Topology, II, 313–344, North-Holland, Amsterdam, 2002.

[18] H.P. Kunzi, J. Marín, S. Romaguera, Quasi-uniformities on topological semigroups and bicompletion, Semigroup Forum 62:3 (2001), 403–422.

[19] F. Lin, C. Liu, On paratopological groups, Topology Appl. 159:10-11 (2012), 2764–2773.

[20] M. Matveev, A Survey on Star Covering Properties, preprint; (available at http://at.yorku.ca/v/a/a/a/19.htm).

[21] J. van Mill, V.V. Tkachuk, R.G. Wilson, Classes defined by stars and neighbourhood assignments, Topology Appl. 154:10 (2007), 2127–2134.

[22] W. Roelcke, S. Dierolf, Uniform structures on topological groups and their quotients, Advanced Book Program. McGraw-Hill International Book Co., New York, 1981.

[23] I. Sánchez, Condensations of paratopological groups, Topology Appl. 180 (2015) 124–131.

[24] M. Tkachenko, Semitopological and paratopological groups vs topological groups, Recent Progress in General Topology. III, 825–882, Atlantis Press, Paris, 2014.

[25] M. Tkachenko, Axioms of separation in semitopological groups and related functors, Topology Appl. 161 (2014), 364–376.

[26] J. Vaughan, Small uncountable cardinals and topology, Open problems in topology, 195–218, North-Holland, Amsterdam, 1990.

[27] W. Weiss, Versions of Martin’s axiom, Handbook of set-theoretic topology, 827–886, North-Holland, Amsterdam, 1984.

[28] L.H. Xie, L. Lin, Submetrizability in paratopological groups, Topology Proc. 44 (2014), 139–149.

T. Banakh: Ivan Franko National University of Lviv (Ukraine), and Jan Kochanowski University in Kielce (Poland)
E-mail address: t.o.banakh@gmail.com

A. Ravsky:Pidstryhach Institute for Applied Problems of Mechanics and Mathematics of National Academy of Sciences, Lviv, Ukraine
E-mail address: oravsky@mail.ru