National checklist for aquatic alien species in Germany

Stephan Gollasch¹ and Stefan Nehring²

¹GoConsult, Bahrenfelder Str. 73a, 22765 Hamburg, Germany
E-mail: sgollasch@aol.com, Internet: www.gollaschconsulting.de
²AeT umweltplanung, Bismarckstraße 19, 56068 Koblenz Germany
E-mail: nehring@aeT-umweltplanung.de, Internet: www.aeT-umweltplanung.de

Received 5 November 2006; accepted in revised form 4 December 2006

Abstract

More than 140 aquatic alien species (AAS) have been reported from coastlines of the North Sea and the Baltic Sea and from inland waters within the national borders of Germany. The majority of these species has established self-sustaining populations. The most important vectors of introduction are shipping, species imports for aquaculture purposes and species imports as part of the ornamental trade. Several AAS have reached German waters via shipping canals. Many species show a locally limited distribution, but almost half of all AAS have spread successfully across larger areas. Several introduced species are abundant and approximately 20% of all AAS in Germany can be considered as invasive. Prime source regions are the north-western Atlantic, the Indo-Pacific, and the Ponto-Caspian region. For all source regions considered, the invasion rate has been increasing since the end of the last century.

Key words: Germany, North Sea, Baltic Sea, inland waters, aquatic species introductions, shipping, aquaculture, population status, invasive

Introduction

Invasive alien species may threaten native species, alter habitats, and even affect ecosystem function (e.g. Eno et al. 1997, Nehring and Leuchs 1999, Wolff 2005), and thus represent a significant risk to the receiving environments. Following direct habitat destruction, invasive alien species are considered as the second most important cause of global biodiversity change (CBD 2000).

One of the first summaries of aquatic invaders in German coastal waters was prepared by Gollasch (1996). In 1997 Eno et al. published a summary of coastal aquatic alien species in the United Kingdom. Nehring and Leuchs (1999), Nehring (2000a), and Tittizer et al. (2000) published overviews on “neozoans” of the German macroinvertebrate fauna. In 1999, Reise et al. published a summary of invasive species in the North Sea and several regional updates were published thereafter: e.g. Weidema (2000) for Nordic countries, Nehring (2005) and AeT umweltplanung (2006) for Germany, Jensen and Knudsen (2005) for Denmark and Wolff (2005) for The Netherlands. In 2006 Gollasch published an overview on introduced aquatic species known from European coasts. Here we update the earlier summaries of alien species in German inland and coastal waters. Another data set of aquatic invaders, which contains more comprehensive information for each species listed, is prepared by the authors for the currently ongoing EU-Programme Delivering Alien Invasive Species Inventories for Europe (DAISIE, see http://www.daisie.se for details).
Aquatic alien species (AAS) in Germany

A total of 141 non-native taxa were reported from the waters considered in this overview, i.e. the coasts of the North Sea and the Baltic Sea and the inland waters within the national borders of Germany (Annex). The vast majority of these species were introduced by ship traffic and, intentionally, by stocking or for aquaculture. Species which reached the region on their own i.e. via drift with currents, swimming, or other ways of natural range expansion, were excluded from this overview. Most AAS have been reported from inland waters, followed by the coastal waters of the North Sea and the Baltic Sea.

More than two thirds of the known introduced species have established self-sustaining populations (Table 1). Some species were only recorded over a certain time period (e.g. the Hydrozoa Bougainvillia macloviana Lesson, 1830 the Anthozoa Haliplanella luciae (Verrill, 1898) and the Bivalvia Crassostrea virginica (Gmelin, 1791) and have since become extinct (Annex).

Region	All species	Established species
Baltic Sea	34	28
North Sea	62	49
Inland waters	86	82

Intentional fish introductions were predominantly motivated by a perceived improvement to the inland fisheries. About 70 “alien” fish species have been recorded in German waters (Geiter et al. 2002). A two century history of fish stocking and translocation makes it impossible to reconstruct the native range of most alien commercial fish species and their phylogeographic structure might also have been obscured. Consequently, some of these 70 species are considered as cryptogenic (see below). At present, ten fish species have been recognized as aliens and are established in self-sustaining populations with locally restricted distribution.

The invasion rate has been increasing in all waters since the end of the last century, with the highest rate of increase found in inland waters (Figure 1). It is anticipated that more species were found in recent years as new findings are usually published with a time-lag. Many of the alien species are at least locally abundant (Table 2) and nearly half of all AAS have spread successfully across a larger area. A few alien species have developed large populations and mass developments have been observed as, for example, for the Chinese mitten crab Eriocheir sinensis Milne-Edwards, 1854 in German inland waters (Figure 2).

Figure 1. Number of aquatic species introductions into German waters for 20 year intervals between 1850 and 2006.

The invasion rate has been increasing in all waters since the end of the last century, with the highest rate of increase found in inland waters (Figure 1). It is anticipated that more species were found in recent years as new findings are usually published with a time-lag. Many of the alien species are at least locally abundant (Table 2) and nearly half of all AAS have spread successfully across a larger area. A few alien species have developed large populations and mass developments have been observed as, for example, for the Chinese mitten crab Eriocheir sinensis Milne-Edwards, 1854 in German inland waters (Figure 2).
Major natural hydrographical and topographical differences exist between the three aquatic ecosystems considered (i.e., inland waters, North Sea and Baltic Sea coasts). These differences are also reflected in a distinct occurrence of alien species.

Some species where only found in single or a few records, i.e. the decapod Callinectes sapidus Rathbun, 1896, the anthozoan Cercocephum pedunculatus (Pennant, 1777), the hydroid Gonionemus vertens Agassiz, 1862, the horseshoe crab Limulus polyphemus Linnaeus, 1758 and the fish Neogobius kessleri (Günther, 1861) (Annex).

Table 2. Population status of aquatic alien species known from German waters

Population Status	Baltic Sea	North Sea	Inland Waters
Unknown	1	1	
Extinct	1	4	1
Single record(s)	1	4	1
Rare	6	16	33
Local	11	16	29
Common	1	5	10
Abundant	13	16	14
Total	33	62	86

The relationship between salinity and species diversity is well known. In contrast to freshwater and pure seawater, brackish waters are characterized by the lowest number of indigenous species (“Artenminimum” sensu Remane 1934) and seem to provide opportunities for alien species invasions. It has recently been shown for German waters that the brackish areas of estuaries have been invaded more frequently by alien macroinvertebrate species than rocky or sandy sea shores or inland waters (Nehring 2006a). The author also stated that a low indigenous species richness in aquatic communities facilitates invasions of "new" species, but the frequency and intensity (or size) of the inoculation are critical components in determining colonization success. Brackish waters seem to have many open ecological niches and are often exposed to intensive international ship traffic. Thus, these habitats have the highest potential for species introductions. In addition, estuaries are subjected to a two-sided invasion pressure by alien species via the ocean (e.g., due to shipping) and via inland waters (e.g., canal constructions).

Since the 1980s, polychaetes of the genus Marenzelleria have appeared in the North Sea and Baltic Sea. The taxonomic identification of the species, which were introduced with ballast water discharge of ocean going ships, was rather difficult and led to confusions and misidentifications. Sikorski and Bick (2004) showed that at least two Marenzelleria species occur in German waters: Marenzelleria neglecta Sikorski et Bick, 2004 and M. viridis (Verrill, 1873) (former taxonomic determinations and synonyms for M. neglecta are: M. viridis, M. cf. viridis and M. Type II, and for M. viridis: M. wireni Augener, 1913, M. cf. wireni and M. Type I). After the first appearance of M. viridis in 1979 in a Scottish estuary, the species arrived at the German North Sea coast in 1983 (Essink and Kleef 1986). First individuals of M. viridis were found in the German Baltic Sea by 2004 (Bastrop and Blank 2006). Since 1985 M. neglecta occurs along the German Baltic Sea coast (Bick and Burckhardt 1989). In 1996 the polychaete was detected in the Kiel Canal (connecting the North Sea with the Baltic Sea) as well as in the Elbe estuary (North Sea) and by 1997 M. neglecta had arrived in the Weser estuary (Nehring and Leuchs 2000). Both Marenzelleria species spread rapidly and became the predominant polychaete worms in German coastal waters. In the estuaries of the German North Sea coast both Marenzelleria species show distinct occurrences due to the salinity gradient (Nehring and Leuchs 2001). M. viridis prevails in the mesohaline zone, while M. neglecta colonizes mainly the oligohaline zone. In the area between the two zones, both species occur sympatrically.

While many alien species seem to remain insignificant additions to the native biota of Germany, approximately 20 % of the introduced species show invasive behaviour (sensu CBD 2000). The following provides a simple classification, modified after Jansson (1994) and Hopkins (2000), to document the different impacts of introduced alien species in the recipient ecosystem, viz:

- Disruption of existing interactions between species or food web links (e.g., predators, prey, grazers, and competition) - e.g. Crassostrea gigas (Thunberg, 1793) (Bivalvia), Dikerogammarus villosus (Sovinsky, 1894) (Amphipoda), Dreissena polymorpha (Pallas, 1771) (Bivalvia);
- Hybridisation with native and other alien species, resulting in changes of biological and
genetic diversity. Potential candidates in German waters: *Acipenser* spp. (Pisces), *Crassostrea gigas* (Bivalvia), *Lepomis* spp. (Pisces), *Spartina anglica* Hubbard, 1968 (Poacea);
- Introduction of parasites and disease agents. The introduced species may function as a host for pathogens or parasites which affect indigenous species - e.g., *Anguillicola crassus* (Kuwahara, Niimi et Hagaki, 1974) (Nematoda), *Orconectes limosus* (Rafinesque, 1817) (Decapoda);
- Habitat modification - e.g., *Chelicorophium curvispinum* (Sars, 1895) (Amphipoda), *Crassostrea gigas* (Bivalvia), *Hypania invalida* (Grube, 1860) (Polychaeta), *Sargassum muticum* (Yendo) Fensholt, 1955 (Phaeophyceae);
- Impact on species used in fisheries and aquaculture, resulting in decrease of output - e.g., *Anguillicola crassus* (Nematoda), *Eriocheir sinensis* (Decapoda), *Crassostrea gigas* (Bivalvia);
- Impact on resource users may result in harmful consequences on human health and well-being, recreation, and socio-economics - e.g., *Crassostrea gigas* (Bivalvia), *Elodea canadensis* Michaux, 1803 (Hydrocharitaceae), *Spartina anglica* (Poacea).

![Figure 2](image)

Figure 2. Mass upstream migration of juvenile Chinese mitten crabs, *Eriocheir sinensis*, in the Elbe River near Hamburg in 1998. Photo Stephan Gollasch

Although we have some information about some of the direct impacts of AAS, the longer-term ecological consequences for native plant and animal communities and the scale on which biodiversity is modified by invasive species is still poorly understood. Analyses of the economic effects of AAS are also needed.

![Figure 3](image)

Figure 3. Introduction vectors of aquatic alien species in German waters

The most important vectors for species introductions in the Baltic Sea and the North Sea are shipping and species imports for aquaculture. In inland waters most AAS invasions are attributed to canal constructions facilitating species migrations, to the release of species that have been imported with the ornamental trade, stocking and ship traffic (Figure 3).

Prime source regions for AAS that have invaded German waters are the Ponto-Caspian area, the north-western Atlantic and the Indo-Pacific for the Baltic Sea, the northern Pacific, the Indo-Pacific, the north-western Atlantic for the North Sea, and north America and the Ponto-Caspian area for inland waters (Figure 4).

Cryptogenic species

The native range of some of the species which have been considered as alien is controversial. These species are referred to as cryptogenic.
species, i.e., species that are neither native or introduced (Carlton 1996). Those species include the polychaetes *Aphelochaeta marioni* (Saint-Joseph, 1894), *Microphthalmus similes* Bobretzky, 1870, *Nereis virens* Sars, 1835, *Polydora ligerica* (Ferronière, 1898) and the Dinophyceae *Prorocentrum redfieldii* Bursa, 1959 (Annex). As those species may be introduced, they were included in the Annex for reasons of comparison.

Figure 4. Source regions of aquatic alien species in German waters

Another interesting case is a turbellarian sampled from a ship hull in a German port. After careful taxonomic consideration it was found that this species is new to science and it was described as *Cryptostylochus hullensis* Faubel et Gollasch, 1996 (Polycladida, Acotylea, Plathelminthes). Because this flatworm is only known from this single sample, the native range remains unclear (Faubel and Gollasch 1996). The species was never found again in German waters and is therefore not included in the species list attached.

Species introductions and climate change

We excluded species that reached German waters from their known distribution range by natural means such as range expansion from e.g., the north-east Atlantic or the Mediterranean Sea. It has been hypothesized that temporary or permanent climate change facilitates natural range expansion (Nehring 1998a, Stachowicz et al. 2002). Franke et al. (1999) and Franke and Gutow (2004) reported several nonindigenous species from the North Sea near Helgoland which are known to occur west of the British Channel and/or in the Mediterranean Sea. Examples include the decapods *Palaemon longirostris* Milne Edwards, 1837, *Portumnus latipes* (Pennant, 1777), the Polychaeta *Sabellaria alveolata* (Linnaeus, 1767) and the Bacillariophyceae *Thalassiosira hendeyi* Hasle et Fryxell, 1977.

The cord-grass *Spartina anglica*, a fertile hybrid of the European species *S. maritima* (Curtis) Fernald, 1916 and the North-American species *S. alterniflora* Loiseleur-Deslongchamps, 1807, was introduced into the Wadden Sea in the 1920s to promote sediment accumulation. However, the intended stabilization of mudflats was not always achieved. Recently this alien species has spread naturally into the tidal zone, where it displaces the native glass-word *Salicornia stricta* Dumort, 1868 (Figure 5). This range extension may have been promoted by higher spring temperatures. *S. anglica* may further benefit from climate change and may become more abundant in the near future, resulting in unforeseeable consequences for coastal protection (Nehring 2003, Nehring and Adsersen 2006).

Warm water effluents as hot spots of species invasions

Alien species, native to warmer climate regimes, may also have colonised the North Sea in localities with unusual high water temperatures, e.g. near cooling water outlets of power plants. One example is the Pacific polychaete *Ficopomatus enigmaticus* (Fauvel, 1923). This brackish water species was first recorded in the London Docks, United Kingdom in 1922 (Eno et al. 1997), in the port of Vlissingen, The Netherlands in 1967 near a power plant (Wolff 2005) and also in the German Port of Emden in
close vicinity of a power plant (Kühl 1977a). Today, *F. enigmaticus* is widespread in coastal areas of all North Sea countries.

Another species which "benefited" from locally heated waters is the freshwater Asiatic clam *Corbicula fluminea* (O.F. Müller 1756) which was first found in Europe in 1989 near the port of Rotterdam, The Netherlands (Wolff 2005). In 1990 it was collected from the German section of the Rhine River (Figure 6), in 1997 from the Danube, and in 1998 from the Elbe (Tittizer et al. 2000). It has been suggested that the successful dispersal of the Asiatic clam in European waters is correlated with winter water temperature minima of 2 °C (Schöll 2000). In Germany, temperatures of inland waters frequently drop below 2 °C in winter and consequently *C. fluminea* should have limited opportunities for establishment. However, industrial and residential discharges of warm water into many German rivers have raised winter temperature almost permanently above 2°C, thereby promoting the establishment of *C. fluminea* in high abundances (Galil et al. 2007).

Species findings attributed to drift

Newly recorded species may also have reached German coastal regions by drift with exceptional water inflow due to rare hydrodynamic situations or storms. In some cases, such as for the Bacillariophyceae *Corethron criophilum* Castracane, 1886 and *Rhizosolenia indica* Peragallo, 1892, the Cirripedia *Lepas anatifera* Linnaeus, 1758 and *Lepas fascicularis* Ellis et Solander, 1786, the Decapoda *Pachygrapsus marmoratus* (Fabricius, 1787) and the clupeid fish *Sardina pilchardus* Walbaum, 1792 this has resulted in a temporary occurrence outside of their native range (Luther 1987, Nehring 1998b, Ehrich and Stransky 2001, G. Meurs (Nationalpark-Zentrum Multimar Wattforum, Tönning, Germany) pers. comm.). These species have not been included in the Annex.

In October 2006 the Ctenophore *Mnemiopsis leidyi* Agassiz, 1865 has been found for the first time along the German part of the Baltic Sea coast (U. Sommer and J. Javidpour (Leibniz-Institut für Meereswissenschaften, Kiel, Germany) pers. comm.). Recently it was also found in Dutch estuaries (Faasse and Bayha 2006, this issue), in the Skagerrak and Kattegatt (Hansson 2006, this issue) and in southern Norway (A. Jelmert (Floedevigen Research Station, His, Norway) pers. comm.), but not yet along the German North Sea coast. This western Atlantic species was possibly transported into the Baltic by easterly directed water currents or introduced by human activities, however, its current alien status is unkown.

Canals as invasion corridors

The natural barriers between river and sea basins that have existed since the end of the Pleistocene have been largely eliminated by canals built during the last centuries. The occurrence of 26 alien species in German waters can be attributed to canal construction. The following examples highlight the importance of shipping canals as invasion corridors.

The opening of the Bug-Pripyat Canal in 1784, which connects the Dnieper-Pripyat...
system to the rivers Bug and Vistula, was of crucial importance for the early and frequent occurrence of Ponto-Caspian species in northern Europe (e.g., the invasive zebra mussel *Dreissena polymorpha*). After the opening of the Main-Danube Canal in Germany in 1992, which connects the Rhine River and the Danube River, this southern corridor is today the most important link between the Ponto-Caspian area and western Europe. Recently, several Ponto-Caspian species have been found in increasing abundances in the German rivers Main and Rhine (e.g. the isopod *Jaera istri* [Schleuter and Schleuter 1995]). In contrast Bernauer and Jansen (2006) reported that the polychaete *Hypania invalida* decreased in numbers in the upper Rhine River between 2003 and 2004.

In 1995 the Ponto-Caspian amphipod *Dikerogammarus villosus* arrived in the Rhine basin via the Main-Danube-Canal (Tittizer et al. 2000). Since then this new invader has dispersed over large distances in a short period of time and in 2000 the first organisms were observed in the German/Polish river Odra (Müller et al. 2001). This dynamic geographic expansion of *D. villosus* in Germany was facilitated by several man-made canals in northern Germany which created connections to all large river systems (Rhine, Weser, Elbe, Odra). Due to the rapidly increasing population density of this invasive amphipod it became a major component of the macrobenthic fauna in German freshwater systems, eliminating both native and other alien amphipod species (Tittizer et al. 2000, Haas et al. 2002, Nehring 2005).

More Ponto-Caspian species, mainly invertebrates and fishes, are expected to migrate into the North Sea basin via the Main-Danube-Canal. Especially those species which already occur in the upper and middle Danube will likely arrive in the North Sea basin soon.

The Chinese mitten crab (*Eriocheir sinensis*), introduced with ships and first recorded in the Aller River in 1912 (Schnakenbeck 1924, Marquard 1926), was reported from the North Sea coast in 1915 (Schnakenbeck 1924), and from the Baltic Sea in 1932 (Boettger 1933a, Peters 1933). *E. sinensis* was also found in the Kiel Canal in the 1920s (Neubaur 1936), and it was subsequently recorded from the Wadden Sea (Cole 1982, Kühl 1977b, Adema 1991, Nehring 2000b, Van der Velde et al. 2000).
species in transit. It should be noted that the zebra mussel was first recorded in the North American Great Lakes in the 1980s, but ships from its donor region arrived in the lakes since many decades before the species was introduced, i.e. it took quite some time and probably multiple discharge events until all factors triggering the invasion were right.

"Why do we need to go active right now?"

The number of invaders was increasing towards the end of the last century. Several investigations have shown that since 1950s the number of new records of invaders have clearly increased (Figure 1). Further new free trade agreements and ship improvements (see above) may have increased the invasion rate even further, thereby indicating the need for immediate action with the aim to reduce the number of new alien species arrivals.

"Biological invasions are a natural phenomenon and happen anyway. The only thing we do is to speed up the process"

This is simply not true as there is no natural means to transport a species from e.g. North America to Australia. Biogeographical textbooks describe the Pacific Ocean as a migration barrier as the duration of the zooplankton larval phase is too short to enable a distribution across the Pacific with natural means. Human mediated vectors, such as ballast water or hull fouling transports, are essential for a species to become dispersed across the Pacific. Also, freshwater species cannot reach new habitats separated by marine waters. However, ballast water releases from e.g. the freshwater port of St. Petersburg (Russia) in the port of Hamburg (Germany) may introduce species which could not reach the area by natural means due to the higher salinity in the western Baltic and North Sea.

"Humans should not interfere with species distributions"

Invasion biologists know that biological components and their interaction in an environment are not a stable process. It was also agreed that initiatives should not be undertaken to hinder natural migration activities of species. However, human mediated species introductions should be kept to a minimum as a precautionary approach. Case histories have shown severe, unwanted impacts of invaders which were introduced unintentionally with e.g. ballast water or associated with aquaculture imports. Natural migrations and human mediated species introductions should clearly be treated separately.

“Only 10% of the invaders show a significant impact”

This statement refers to the "10s-rule". The rule was originally postulated based on invasion histories in terrestrial habitats. The figure was revised frequently. No matter how detailed these revisions were it has to be noted that each invasion has its impact on the recipient region. In some cases the impact is quite clear, in other instances the impact is not as obvious. Further, in many cases an impact is only noted when the invader forms a mass development which may occur long time after the initial introduction. In invasion biology it is not the quantity which matters, but the quality, i.e. just one introduced species may severely impact the receiving environment.

“Phytoplankton species are not matter of discussion as these species are distributed world-wide anyway”

It was documented that the number of phytoplankton blooms increased during the last two decades world-wide and it was suggested that this was supported not only by eutrophication but also by biological invasions. The recent occurrence of potentially toxin producing phytoplankton species in the North Sea is a good indication that we should be prepared for additional invaders of this kind.

“Keep the ballast water onboard as long as possible and the species will die over time”

Although many species die during the first days in ballast tanks, scientific studies have shown that after more than 4 months living zooplankton can be found in ballast tanks and under certain circumstances zooplankton species even reproduce in ballast tanks (Gollasch et al. 2000a,b, Gollasch et al. 2002). Further, some plankton species are enabled to form resting stages that survive unfavourable conditions for years or decades. Therefore, keeping ballast water onboard for longer periods of time is not a measure to significantly reduce the risk of species invasions.
The exchange of ballast water in high seas is an appropriate means to reduce the number of invaders. The exchange of ballast water in mid-ocean can reduce the abundance and diversity of taxa in ballast water. It is further unlikely that coastal organisms taken up in ports survive open ocean conditions where ballast water is exchanged – and plankton from high seas is unlikely to survive in coastal areas. In contrast to this assumption scientists showed that the exchange of ballast water could increase the species diversity in ballast tanks, especially in many domestic shipping routes, where no deep water exchange zones occur. Also the number of individuals in ballast tanks may increase when ballast water exchange is undertaken in zones with e.g. phytoplankton blooms. Ballast water exchange is therefore recommended as a very first management option, but effective treatment measures are urgently needed to avoid ballast water mediated species invasions in the future.

The future of alien species introductions into German waters and their potential impacts

The publication of recently introduced species in scientific journals is sometimes a time consuming process, and it is likely that by the time this checklist is published new alien species have already invaded German waters. These may include the Rapana venosa (Valenciennes, 1846) (Gastropda), which was observed for the first time in the south-western North Sea in 2005 (Kerckhof et al. 2006), but outside German national waters. This species was already known from European waters and the new findings in the North Sea likely represent a secondary introduction. However, the occurrence of this species in various locations in Europe may also be a result of multiple introductions from its native range. Noting its potential to spread, it is anticipated that this species may be found in German waters soon.

The recent spread of C. gigas is likely triggered by (a) recent warm summers which support its recruitment and by (b) the absence of cold winters which promote recruitment of M. edulis. In northern Europe the Pacific oyster may benefit from global warming and may become more abundant than mussel beds have ever been (Diederich et al. 2005, Nehring 2006b).

Because the impact of introduced species is potentially enormous, and very unpredictable, we should be aware of new species introductions. One known source of alien species is ship’s ballast water which can contain millions of organisms and that is discharged in our coastal waters every day. Other vectors of introductions include species that are transported in the hull fouling of ships (Gollasch et al. 2000a, b, Nehring 2001, Gollasch 2002, Gollasch et al. 2002) and canal migrations. The latter have increased in magnitude and frequency over the past decade(s) (Harka and Biro 2004, Nehring 2005, Galil et al. 2007).

Similar to a worldwide trend, the rate of invasion of AAS has also increased in German waters since the 1950s, and will probably continue to rise due to the effects of climate change. The introduction of C. gigas and other species, is likely to increase in the future.
change and further improvements in ship design. It is hoped that measures, such as ballast water treatment to reduce the organism load or the installation of migration barriers such as deterrent electrical systems, salt or freshwater water locks, and air bubble curtains to reduce the uncontrolled range expansion of alien species via canals are taken soon to protect our waters from new species invasions and their potentially detrimental effects.

Acknowledgements

The authors are grateful to a large number of colleagues who contributed to this inventory, but we cannot mention them individually here as the list would be too long. We also thank Dr. Wolfgang Jansen (North/South Consultants Inc., Winnipeg, Canada) for his critical review of the manuscript and for language editing. Gollasch is a contributing partner in the EU-funded DAISIE Programme (SSPI-CT-2003-511202, see also www.daisie.se).

References

Adema JPHM (1991) De krabben van Nederland en België (Crustacea, Decapoda, Brachyura). Nationaal Natuurhistorisch Museum, Leiden. 244 pp
AET umweltplanung (2006) Aquatic aliens in German inland and coastal waters. http://www.aquatic-aliens.de
Ankel WE (1935) Die Pantoffelschnecke, ein Schädling der Auster. Natur und Volk 65: 173-176
Arndt H and Schnese W (1986) Population dynamics and production of Acartia tonsa (Copepoda: Calanoida) in the Darß-Zingst estuary, southern Baltic. Ophelia Suppl. 4: 329-334
Arndt W (1931) Die Tierwelt des Nordostseekanals und ihr Lebensraum. Der Naturforscher 8
Arnold A (1990) Die neue Bréhm-Bücherei. Eingebürgerte Fischarten. A. Ziemsen Verlag, Wittenberg Lutherstadt, 144 pp
Ax P (1952) Eine Brackwasser-Lebensgemeinschaft an Holzpflähen des Nord-Ostsee-Kanals. Kieler Meeresforsch. 9: 229-243
Bartsch I and Kuhlenkamp R (2000) The marine macroalgae of Helgoland (North Sea): an annotated list of records between 1845 and 1999. Helgoland Marine Research 54: 160-189
Bastrop R and Blank M (2006) Multiple invasions - a polychaete genus enters the Baltic Sea. Biol. Inv. 18 (in press)
Bastrop R, Röhner M, Sturmhauser C and Jürs K (1997) Where did Marenzelleria spp. (Polychaeta: Spionidae) in Europe come from? Aquatic Ecol. 31: 119-136
Bäthe J (1995) Die Makroinvertebraten-Fauna der Weser. Limmologie aktuell 6: 175-190
Benjamin-Jutting T Van (1922) Zoet en Brackwatermollusken. Flora en fauna Zuiderzee, Den Helder, 391–410
Bernauer D, Kappus B and Jansen W (1996) Noozoen in Kraftwerksproben und Begleituntersuchungen am nördlichen Oberrhein. In: Gebhardt H, Kinzelbäch R and Schmidt-Fischer S (eds) Gebietsfremde Tierarten. Auswirkungen auf einheimische Arten, Lebensgemeinschaften und Biotope. Economed, Landsberg, 87-96
Bernauer D and Jansen W (2006) Recent invasions of exotic macroinvertebrates and loss of native species in the upper Rhine River, Germany. Aquatic Invasions 1: 55-71
Bick A and Burckhardt R (1989) Erstnachweis von Marenzelleria viridis (Polychaeta Spionidae) für den Ostseeraum, mit einem Bestimmungsschlüssel der Spioniden der Ostsee. Mitt. Zool. Mus. Berlin. 65(2): 237-247
Bick A and Zettler ML (1997) On the identity and distribution of two species of Marenzelleria (Polychaeta, Spionidae) in Europe and North America. Aquatic Ecol. 31: 137-148
Bishop MWH (1947) Establishment of an immigrant barnacle in British coastal waters. Nature (Lond.) 159: 501–502
Boettger CR (1933a) Die Ausbreitung der Wollhandkrabbe in Europa. Sitzungsber. Ges. naturforsch. Freunde, Berlin 1933, 399-415
Boettger CR (1933b) Über die Ausbreitung der Muschel Congeria cochleata Nyst in europäischen Gewässern und ihr Auftreten im Nordostseekanal. Zool. Anz. 101: 43-48
Boettger CR (1934) Der nordamerikanische Flüßkrebs Cambarus affinis SAY in Deutschland. Sitzungsber. Ges. naturforsch. Freunde, 149-157
Bousfield EL (1958) Fresh-water amphipod crustaceans of glaciated North America. Canad. Field-Natural. 72(2): 55-118
Broch H (1924) Cirripedia thoracica von Norwegen und dem norwegischen Nordmeer. Eine systematische und biologisch-tiergeographische Studie. Vidensk. Skr., Kistinia (Mat.-nat. Kl.) 17: 1-121
Buchmann K, Mellergaard S and Koie M (1987) Pseudodactylogyrus infections in eel: a review. Diseases Aquat. Org. 3: 51-57
Buitemjik AM and Holthuis LB (1949) Note on the Zuiderzee polychaete genus enters the Baltic Sea. Biol. Inv. 18 (in press)
Carlton JT (1996) Marine bioinvasions: The alteration of marine ecosystems by nonindigenous species. Oceanography 9: 1-7
Caspers H (1950) Die Lebensgemeinschaft der Helgoländer Austernbank. Helgoländer wiss. Meeresunters. 3: 119-169
CBD 2000. Global strategy on invasive alien species. Convention on Biological Diversity, UNEP/CBD/SBSTTA/6/INF/9, 1-52
Checklist for aquatic alien species in Germany

Christiansen ME (1969) Decapoda Brachyura. Marine invertebrates of Scandinavia 2: 1-143
Universitetsforlaget, Oslo

Cohen AN and Carlton JT (1995) Nonindigenous aquatic species in a United States estuary: a case study of the biological invasions of the San Francisco Bay and Delta. A Report for the US Fish and Wildlife Service, Washington D.C., and the National Sea Grant College Program, Connecticut Sea Grant, 201 pp

Cole HA (1982) Status (1980) of Introductions of Non-indigenous Marine Species to North Atlantic Waters, ICES Cooperative Research Report 116, 87 pp

Dahl F (1891) Untersuchungen über die Thierwelt der Unterelbe. Ber. Komm. wiss. Unters. deutsch. Meere Kiel 1887-1891: 6: 150-185

Diederich S, Nehls G, van Beusekom JEE and Reise K (2005) Dehus P (1990) Die Verbreitung der Flußkrebse (Decapoda: Astacidae, Cambaridae) in Schleswig-Holstein. Faun.-Ökol. Mitt. 6: 95-105

Diederich S, Nehls G, van Beusekom JEE and Reise K (2005) Introduced Pacific oysters (Crassostrea gigas) and Wolff WJ (eds) Flora and vegetation of the Wadden Sea: an indication of a warming trend in the North Sea? Helgoländer Meeresunters. 52: 347-357

Eno NC, Clark RA and Sanders WG (eds.) (1997) Non-indigenous Marine Species to North Atlantic Waters, ICES. Ecological Studies Vol. 193, Springer, Berlin: 59-74

Essink K and Kleef HL (1986) Establishment of a population of the Spionid worm Marenzelleria in the Ems Estuary (the Netherlands, Fed. Rep. of Germany). Proceedings of COST-647 Workshop "Intertidal Soft Sediments", Dec. 1986, St. Valery-sur-Somme, France. 5 pp

Essink K and Kleef HL (1986) Establishment of a population of the Spionid worm Marenzelleria in the Ems Estuary (the Netherlands, Fed. Rep. of Germany). Proceedings of COST-647 Workshop "Intertidal Soft Sediments", Dec. 1986, St. Valery-sur-Somme, France. 5 pp

Eggers TO and Anlauf A (2005) Development of sturgeon catches in German waters. Helgoländer Meeresunters. 52: 235-242

Eggers TO and Martens A (2004) Bestimmungsschlüssel der Süßwasser-Amphipoda (Crustacea: Amphipoda) erreicht die Elbe. Lauterbornia 55: 125-128

Eggers TO and Martens A (2004) Bestimmungsschlüssel der Süßwasser-Amphipoda (Crustacea: Amphipoda) erreicht die Elbe. Lauterbornia 55: 125-128

Eno NC, Clark RA and Sanders WG (eds.) (1997) Non-indigenous Marine Species to North Atlantic Waters, ICES. Ecological Studies Vol. 193, Springer, Berlin: 59-74

Essink K and Kleef HL (1986) Establishment of a population of the Spionid worm Marenzelleria in the Ems Estuary (the Netherlands, Fed. Rep. of Germany). Proceedings of COST-647 Workshop "Intertidal Soft Sediments", Dec. 1986, St. Valery-sur-Somme, France. 5 pp

Essink K (1985) On the appearance of the American jackknife clam Ensis directus (Conrad, 1865) (Mollusca, Clupeidae) in the Dutch Wadden Sea. Basteria 22(5): 923-937

Faulb A and Gollasch S (1996) Cryptostylochus hullensis n. sp. (Polycladida, Acotyla, Phathelminthes): a possible case of transoceanic dispersal on a ships hull. Helgoländer Meeresunters. 50: 533-537

Fletcher RL and Farrell P (1999) Introduced brown algae in the North East Atlantic, with particular respect to Undaria pinnatifida (Harvey) Suringar. Helgoländer Meeresunters. 52: 259-275

Franke HD and Gutow L (2004) Long-term changes in the macrozoobenthos around the rocky island of Helgoland (German Bight, North Sea). Helgol. Mar. Res. 58: 303-310

Franke HD, Gutow L and Janke M (1999) The recent arrival of the oceanic isopod Idotea bicaudata Bosc off Helgoland (German Bight, North Sea): an indication of a warming trend in the North Sea? Helgoländer Meeresunters. 52: 347-357

Franz HW (1992) Der Rhein und seine Besiedlung im Wandel: Schwebstoffzehrende Organismen (Hydrozoa, Kaptopzoa und Bryozoa) als Indikatoren für den ökologischen Zustand eines Gewässers. Pollichia-Buch 25: 1-167

Galil BS, Nehring S and Panov V (2007) Waterways as invasion highways - Impacts of climate change and globalization. In: Nentwig W (ed.) Biological invasions. Verlag, Stuttgart, Germany, 368 pp

Gessner J, Debus L, Filipiak J, Spratte S, Skora KE and Arndt G-M (1999) Development of sturgeon catches in German and adjacent waters since 1980. Journal of Applied Ichthyology 15: 136-141

Gollasch S, Lenz J, Damme M and Andres HG (2000a) Untersuchungen des Arteintrages durch den internationalen Schiffsverkehr unter besonderer Berücksichtigung nichtheimischer Arten. Diss., Univ. Hamburg; Verlag Dr. Kovac, Hamburg, 314 pp

Gollasch S, Rosenthal H, Botnen H Hamer J, Laing I, Leppäkoski E, Macdonald E, Minchin D, Nauke M, Olenin S, Utting S, Voigt M and Wallentinus I (2000b) Survival of tropical ballast water organisms during a cruise from the Indian Ocean to the North Sea. J. Plankton Res. 22(5): 923-937

Gollasch S, Riemann-Zürneck K (1996) Transoceanic dispersal of benthic macrofauna: Haliplanella luciae (Verrill, 1898) (Anthozoa, Actiniaria) found on a ship's hull in a shipyard dock in Hamburg Harbour, Germany. Helgoländer Meeresunters. 50: 253-258

Gollasch S (1996) Untersuchungen des Arteintrages durch den internationalen Schiffsverkehr unter besonderer Berücksichtigung nichtheimischer Arten. Diss., Univ. Hamburg; Verlag Dr. Kovac, Hamburg, 314 pp

Gollasch S, Lenz J, Dammer M and Andres HG (2000a) Survival of tropical ballast water organisms during a cruise from the Indian Ocean to the North Sea. J. Plankton Res. 22(5): 923-937

Gollasch S, Rosenthal H, Botnen H Hamer J, Laing I, Leppäkoski E, Macdonald E, Minchin D, Nauke M, Olenin S, Utting S, Voigt M and Wallentinus I (2000b) Survival of tropical ballast water organisms during a cruise from the Indian Ocean to the North Sea. J. Plankton Res. 22(5): 923-937
short-term and long-term ocean-going voyages. Internat. Rev. Hydrobiol. 85(5-6): 597-608
Gollasch S (2002) The importance of ship hull fouling as a vector of species introductions into the North Sea. Biofouling 18(2): 105-121
Gollasch S, Macdonald E, Belson S, Botnén H, Christensen J, Hamer J, Houvenaghel G, Jelmert A, Lucas I, Masson D, McCollin T, Olenin S, Persson A, Wallentinus I, Wettsteyn B and Wittling T (2002) Life in Ballast Tanks. 217-231 pp. In: Leppäkoski E, Gollasch S and Olenin S (eds.): Invasive Aquatic Species of Europe: Distribution, Impacts and Management. KLUWER Academic Publishers, Dordrecht, The Netherlands. 583 pp
Gollasch S (2006) Overview on Introduced Aquatic Species in European Navigational and Adjacent Waters. Helgol. Mar. Res. 60: 84-89
Gollasch S, Galil BS and Cohen A (eds.) (2006). Bridging Divides – Maritime Canals as Invasion Corridors. SPRINGER Academic Publishers, Dordrecht, The Netherlands. 315 pp
González-Ortegón E, Cuesta JA and Schubart CD (2006) First report of the oriental shrimp Palaemon macrodactylus Rathbun, 1902 (Decapoda, Caridea, Palaemonidae) from German waters. Helgol. Mar. Res., online, visited 2006-09-12
Gruner H-E (1962) Schwimmkrabben. In: Pax F (ed.) Meeresprodukte. Gebrüder Borntraeger, Berlin, 336-340
Gruner H-E (1965) Krebstiere oder Crustacea. V. Isopoda. In: Dahl F (ed.). Die Tierwelt Deutschlands und der angrenzenden Meeresteile nach ihren Merkmalen und nach ihrer Lebensweise. Teil 51 und 53. Verlag G. Fischer, Jena, 380 pp
Gruza P (1999) The Odra River Estuary as a gateway for alien species immigration to the Baltic Sea basin. Acta hydrochim. hydrobiol. 27(5): 374-382
Gugel J (1995) Erstnachweis von Gymnodinium nov., a widely distributed marine planktonic diatom. Nordic Journal of Botany 3: 593-608
Hasle GR (1990) Diatoms of the Oslo Fjord and Skagerrak. Species new to the area: immigrants or overlooked in the past? Blytta 48: 33-38
Hauer J (1950) Der nordamerikanische Strudelwurm Austropotamobius torrentium in Nordeuropas, Band III, Heft 2. Schweizerbart'sche Verlagsbuchhandlung, Stuttgart, 147 pp
Hickel W, Hagmeier E and Brebes G (1971) Gymnodinium blooms in the Helgoland Bight (North Sea) during August 1968. Helgoländer wiss. Meeresunters. 22: 401-416
Hinkelmann A (1899) Die Fische und sonstigen Nutztiere des Kaiser-Wilhelm-Kanals mit besonderer Berücksichtigung der Lebensverhältnisse des Herings. Die Heimat. 9: 173-178
Hocking PPC (1975) Eerste bijdrage tot een nauwkeuriger kennis der sessielle Cirripedien. PhD thesis, University of Leiden. 94 pp
Holthuis LB (1950) Decapoda. A. Natantia, Macrura. Reptantia, Anomura en Stomatopoda. Fauna van Nederland 15: 1-120
Hopkins CCE (2000) A review of introductions and transfers of alien marine species in the North Sea area. Report to the Norwegian Ministry of the Environment. Aquatic Marine Advisers, 74 pp
Hopkins CCE (2001) Actual and potential effects of introduced marine organisms in Norwegian waters, including Svalbard. Research Report 2001-1, 53 pp. Norwegian Directorate for Nature Management.
Huber MGJ and Schubart CD (2005) Distribution and reproductive biology of Austroplatomobius torrentium in Bavaria and documentation of a contact zone with the alien crayfish Pacifastacus leniusculus. Bull. Fr. Pêche 376/377: 759-776
Hussner A (2005) Aquatische Neophyten in NRW. http://www.aquaticheneophyten.de
Möbius K (1887) Schlußbericht über den Versuch des deutschen Fischereivereins, kanadische Austern in der Ostsee anzusiedeln. Deutscher Fischerei Verein. Mitt. Section Küsten- und Hochseefisch. 1

Müller O, Zettler ML and Gruszka P (2001) Verbreitung und Status von Dikerogammarus villosus (Sovinski 1894) (Crustacea: Amphipoda) in der mittleren und unteren Strom-Oder und den angrenzenden Wasserstraßen. Lauterbornia 41: 105-112

Muess BJ and Dahlström P (1968) Süßwasserfische. BLV Verlagsgesellschaft, München. 224 pp

Nehring S (2006c) The Ponto-Caspian amphipod Obesogammarus obesus (Sars, 1894) arrived the Rhine River via the Main-Danube Canal. Aquatic Invasions 1: 148-153

Nehring S and Adsersen H (2006) NOBANIS - Invasive Alien Species Fact Sheet - Spartina anglica. Online Database of the North European and Baltic Network on Invasive Alien Species - NOBANIS www.nobanis.org, 12 pp

Nehring S and Leuchs H (1999) Neozoa (Makrozoobenthos) an der deutschen Nordseeküste - Eine Übersicht. Bundesanstalt für Gewässerkunde Koblenz, Bericht BfG-1200, 131 pp

Nehring S and Leuchs H (2000) NOBANIS www.nobanis.org, 12 pp

Neubaur R (1936) Ein neuer Mitbewohner schleswig-holsteinischer Fischgewässer. Fischerf. Zeit. 39: 725-726

Neuhaus E (1933) Studien über das Stettiner Haff und seine Nebengewässer. Zeitschr. Fisch. u. deren Hilfswiss. 31: 427-489

Ojaveer H, Gollasch S, Olenin S, Jaanus A, Kotta J, Laine AO, Minde A, Normant M and Panov V (in press) Chinese mitten crab Eriocheir sinensis (H. Milne-Edwards, 1853) (Crustacea, Decapoda, Panopeidae). Senckenbergiana marit. 32: 105-122

Nehring S (2000a) Neozoa im Makrozoobenthos der deutschen Ostseeküste. Lauterbornia 39: 117-126

Nehring S and Leuchs H (2001) Das BfG-Ästuarmonitoring und seine Nebengewässer. Zeitschr. Fisch. u. deren Hilfswiss. 31: 427-489

Nehrings A (1938) The Chinese Mitten Crab. Smithsonian Rep., 361-375

Pax F (1920) Die Aktinienfauna von Büsum. Schr. Zool. Stat. Büsum Meeress., 5: 1-24

Pax F (1936) Anthozoa. In: Grimpe G and W gle R (eds.) Die Tierwelt der Nord- und Ostsee. Bd. 30, Akad. Verlagsges. Becker und Erler, Leipzig, 317 pp

Peters N (1933) B. Lebenskundlicher Teil. In: Peters N and Panning A (eds.) Die chinesische Wollhandkrabbe (Eriocheir sinensis H. MILNE-EDWARDS) in Deutschland. Akademische Verlagsgesellschaft mbH, Leipzig, 59-156

Peters N and Hoppe H (1938) Über Bekämpfung und Verwertung der Wollhandkrabbe. Mitt. Hamb. zool. Mus. Inst., Hamburg 47: 140-171

Petersen KS, Rasmussen KL, Heinemeier J and Rud N (1992) Clams before Columbus? Nature 359: 679

Podura P, Ehlt H and Roos P (2001) Erstnachweis von Echinogammarus trichiatus (Crustacea: Amphipoda) im Rhein. Lauterbornia 41: 129-133

Post D and Landmann M (1994) Verbreitungssatlas der Fließwasserfauna in Ostfriesland. Staatl. Amt Wasser Abfall, 141 pp

Potel S, Geissen HP and Dohmen GP (1998) Erste Nachweise von Barbronia weberi (Blanchard 1897) (Hirudinea: Salifidae) im deutschen Rheingebiet. Lauterbornia 33: 1-4

Rady GA (1913) Anleitung zu den Grundzügen für die Entwicklungs einer Austernkultur an unserer deutschen Nordseeküste. Lehen aus der Zeit zur Hebung der Küstenfischerei. Hans Hofmann, Norden.

S. Gollasch and S. Nehring
Tittizer T, Schöll F, Banning M, Haybach A and Schleuter M (2000) Aquatische Neozoen im Makrozoobenthos der Binnenwasserstraßen Deutschlands. Lauterbornia 39: 1-72

Tobias W (1972) Ist der Schlammröhrenwurm *Branchiura sowerbyi* BEDDARD 1982 (Oligochaeta: Tubificidae) ein tropischer Einwanderer im Untermain? Natur and Museum 102(3): 93-107

Utting SD and Spencer BE (1992) Introductions of marine bivalve mollusces into the United Kingdom for commercial culture - Case histories. ICES Mar. Sci. Symp. 194, 84-91

Van der Velde G, Rajagopal S, Kelleher B, Musko IB and bij de Vaate A (2000) Ecological impact of crustacean invaders: general considerations and examples from the Rhine River. In: von Vaupel Klein JC and Schramm FR (eds.) The biodiversity crisis and Crustacea. Proc. 4th Int. Crustacean Congress, Amsterdam, The Netherlands, July 20-24, 1998. Balkema, Rotterdam, 3-33

Van Urk RM (1987) *Ensis americanus* (Binney) (syn. *E. directus* auct. non Conrad) a recent introduction from Atlantic North America. J. Conchology 32: 329-333

Von Cosel R, Dörjes J and Mühlenhardt-Siegel U (1982) Die amerikanische Schwertmuschel *Ensis directus* (Conrad) in der Deutschen Bucht 1. Zoogeographie und Taxonomie im Vergleich mit dem einheimischen Schwertmuschel-Arten. Senckenbergiana marit. 14: 147-173

Vranovsky M and Sporka F (1998) *Urnatella gracilis* Leidy 1851 (Kamptozoa) auch in der March. Lauterbornia 33: 85-93

Vrieling EG, Koenan RPT, Naganaki K, Ishida Y, Peperzak L, Gieskes WW and Veenhuis M (1995) *Chattonella* and *Fibrocapsa* (Raphidophyceae): first observation of, potentially harmful, red tide organisms in Dutch coastal waters. Neth. J. Sea Res. 33: 183-191

Wallentinus I (submitted) Chapter 2 Introductions and Transfers of Plants. Status of introductions of non-indigenous marine species to North Atlantic waters 1981-1990. ICES Cooperative Research Report 231, 1-43

Wawrzyniak-Wydrowska B and Gruszka P (2005) Population dynamics of alien gammarids species in the River Odra estuary. Hydrobiologia, 539: 13-25

Weidema IR (2000) Introduced species in the Nordic countries. Nordic Council of Ministers, Copenhagen. Nord Environment, 2000:13, 242 pp.

Welcomme RL (1988) International introductions of inland aquatic species. FAO Fish. Tech. Pap. 294: 318

Werner B (1950) Die Meduse *Gonionemus murbachii* MAYER im Sylder Wattenmeer. Zool. Jb. 78: 471-505

WGITMO (2005) Report of the Working Group on Introductions and Transfers of Marine Organisms. ICES CM 2005/ACME:05 Ref. E.: 173 pp. available at http://www.ices.dk

WGITMO (2006) Report of the ICES Working Group on Introductions and Transfers of Marine Organisms. Oostende, Belgium. 234 pp. available at http://www.ices.dk

Wiltshire KH and Dürselen C-D (2004) Revision and quality analysis of the Helgoland Reede long-term phytoplankton data archive. Helgol. Mar. Res. 58: 252-268

Winkler HM, Skora K, Repecka R, Ploks M, Neelov A, Urho L, Gushin A and Jespersen H (2000) Checklist and status of fish species in the Baltic Sea. ICES CM 2000/Mini:11, 15 pp

Wolff T (1977) The Horseshoe Crab (*Limulus polyphemus*) in North European waters. Vidensk. Meddr Dansk Naturh. Foren. 140: 39-52

Wolff WJ (2005) Non-indigenous marine and estuarine species in The Netherlands. Zoologische Mededelingen. 79:1-1:116

Wundsch HH (1912) Eine neue Spezies des Genus *Corophium* Latr. aus dem Müggelsee bei Berlin. Zool. Anz. 39: 729-738

Zibrowius H (1991) Ongoing modification of the Mediterranean marine fauna and flora by the establishment of exotic species. Bull. Mus. Hist. Nat. Marseille 51: 83-107
Annex

Aquatic alien species reported from coastal areas of the North Sea and Baltic Sea and from inland waters within the national borders of Germany. Species which arrived by drift or other means of natural range expansion were not considered. IAS = an invasive alien species which threatens ecosystems, habitats or native species (sensu CBD 2000)

Species	Year of first record and recipient region	Origin / donor area	Vector	Pathway	Impact or potential impact / invasiveness	References		
PHYTOPLANKTON								
Dinophyceae								
Karenia (= Gymnodinium mikimotoi (Miyake et Kominami ex Oda) Hansen et Moestrup, 2000)	1966	Pacific	unintentional	ships	bloom forming	Hickel et al. 1971		
Prorocentrum redfieldii Bursa, 1959	<1999	unclear	unintentional	ships?	bloom forming	Nehring 1998b, Elbrächter 1999		
Chattonella antiqua (Hada) Ono, 1980	1991	Pacific?	unintentional	Ships	potentially toxic	Elbrächter 1994, Vriezing et al. 1995, Lu and Göbel 2000		
Chattonella marina (Subrahmanyan) Hara et Chihara, 1982	1991	Pacific?	unintentional	Ships	potentially toxic	Elbrächter 1994		
Fibrocapsa japonica Toriumi et Takano, 1973	1991	Pacific?	unintentional	Ships	toxic / IAS	Elbrächter 1994		
Bacillariophyceae								
Coscinodiscus wailesii Gran et Angst, 1931	1977	Indo-Pacific	unintentional	aquaculture	competition, bloom forming / IAS competition	Hasle 1990, Laing 1999, Wiltshire & Dürselen 2004		
Odontella sinensis (Greville) Grunow, 1884	1904	Indo-Pacific	unintentional	Ships	toxic / IAS	Ostenfeld 1908		
Thalassiosira punctigera (Castracane) Hasle, 1983	<1983	Indo-Pacific	unintentional	aquaculture	unknown	Hasle 1983, 1990		
MACROPHYTES								
Pteridophyta								
Azolla filiculoides Lamarck, 1783	1980s	S America	intentional	ornamental trade	unknown	Hussner 2005		
Spermatophyta								
Apiaceae								
Hydrocotyle ranunculoides Linnaeus, 1781	2004	N America	intentional	ornamental trade	competition, habitat modification/ IAS	Hussner 2005		
Crassulaceae								
Crassula helmitii (Kirk) Cockayne, 1907	1980s	Australia	intentional	ornamental trade	competition, habitat modification / IAS	Kowarik 2003, Hussner 2005		
Hydrocharitaceae								
Egeria densa Planchnon, 1849	1980s	S America	intentional	ornamental trade	unknown	Kowarik 2003, Hussner 2005		
Elodea canadensis Michaux, 1803	1859	N America	intentional	ornamental trade	competition, habitat modification / IAS	Kowarik 2003, Hussner 2005, Arndt 1931, Kowarik 2003, Hussner 2005, Wallentinus submitted		
Elodea nuttallii (Planchon) St. John, 1920	1953	N America	intentional	ornamental trade	competition, habitat modification / IAS	Kowarik 2003, Hussner 2005, Wallentinus submitted		
Species	Year of first record and recipient region	Origin / donor area	Vector	Pathway	Impact or potential impact / invasiveness	References		
---------	--	---------------------	--------	---------	--	------------		
Vallisneria spiralis Linnaeus, 1753	1966	N America	intentional	ornamental trade	unknown	Kowarik 2003, Hussner 2005		
Lemna minuta Kunth, 1816	1983	N America	intentional	ornamental trade	unknown	Kowarik 2003		
Lemna turionifera Landolt, 1975 Haloragaceae	1965	N America	intentional	ornamental trade	unknown	Kowarik 2003		
Myriophyllum aquaticum (Velloso) Verdouc, 1973	1980s	S America	intentional	ornamental trade	unknown	Hussner 2005		
Myriophyllum heterophyllum Michaux, 1803	1962	N America	intentional	ornamental trade	unknown	Kowarik 2003		
Spartina anglica Hubbard, 1968	1927	W Atlantic	intentional	planting	competition, habitat modification, hybridisation? / IAS	Kolumbe 1931, Dijkema 1983, Wallentinus submitted		
Phaeophyceae								
Ascophyllum nodosum (Linnaeus) Le Jolis, 1863	1990s	unclear	unknown	unknown	unknown	Bartsch and Kuhlenkamp 2000, Wallentinus submitted		
Colpomenia peregrina (Sauvageau) Hamel, 1937 Agardh, 1820	1905	Pacific	unintentional	aquaculture	unknown	Fletcher and Farrell 1999 Wallentinus 1999, Hopkins 2001		
Fucus evanesens Agardh, 1820	1989	N Pacific	unintentional	ships	competition, habitat modification, hybridization	Wallentinus 1992, Bartsch and Kuhlenkamp 2000, Wallentinus submitted		
Sargassum muticum (Yendo) Fensholt, 1955	1988	N Pacific	unintentional	aquaculture	fouling, habitat modification / IAS	Wallentinus 1992, Bartsch and Kuhlenkamp 2000, Wallentinus submitted		
Rhodophyceae								
Bonnemaisonia hamifera Hariot, 1891	<1959	N Pacific	unintentional	aquaculture	competition	Kylin 1930, Bartsch and Kuhlenkamp 2000 Wallentinus pers. comm., Schories and Selig 2006 Nehls 2004, Schories and Selig 2006 Wallentinus 1999, Maggs and Stegenga 1999		
Dasys baillouiviana (Gmelin) Montagne, 1841	2002	W Atlantic	unintentional	aquaculture	unknown	Wallentinus pers. comm., Schories and Selig 2006 Nehls 2004, Schories and Selig 2006 Wallentinus 1999, Maggs and Stegenga 1999		
Gracilaria vermiculophylla (Ohmi) Papenfuss, 1967	2005	2002	Pacific	unintentional	aquaculture	unknown		
Polysiphonia harveyi Bailey, 1848	1960s	N Pacific	unintentional	aquaculture	unknown			
Chlorophyceae								
Codium fragile ssp. tomentosoides (van Goor) Silva, 1955	1930s	N Pacific	unintentional	aquaculture	competition, fouling, habitat modification	Bartsch and Kuhlenkamp 2000, Wallentinus submitted		
ZOOPLANKTON								
Mnemiopsis leidyi Agassiz, 1865	2006	unclear	unknown	unknown	unknown	Javidpour and Sommer pers. comm.		
Species	Year of first record and recipient region	Origin / donor area	Vector	Pathway	Impact or potential impact / invasiveness	References		
-------------------------------	--	---------------------	------------	------------------------	---	--		
Crustacea								
Acartia tonsa Dana,1848	<1981 1931	Baltic Sea	North Sea	Inland waters				
Ameira diversans	1970s	Baltic Sea	North Sea	Inland waters	competition	Klie 1933, Arndt and Schnese 1986		
Nicholls, 1939						Scheibel 1974		
Cercopagis pengoi (Ostroousov, 1891)	2004	Baltic Sea	North Sea	Inland waters	competition, predation	Gruzka pers. com. in WGITMO 2005		
MACROZOOBENTHOS								
Porifera								
Eunapius carteri	1993	Baltic Sea	North Sea	Inland waters	ornamental trade	Gugel 1995, Nehring 2002		
Bimeria francisciana	<1952	Baltic Sea	North Sea	Inland waters	ships	Schütz 1963a,b, Cohen and Carlton 1995		
Torrey, 1902								
Bougainvillea macloviana	1895	Baltic Sea	North Sea	Inland waters	ships	Hartlaub 1897, Broch 1924		
Lesson, 1830						Kirchenpauer 1862, Hinkelmann 1899, Schulze 1899, Gruzka 1999		
Cordylophora caspia	1870	Baltic Sea	North Sea	Inland waters	ships	Hartlaub 1897, Broch 1924		
(Pallas, 1771)						Kirchenpauer 1862, Hinkelmann 1899, Schulze 1899, Gruzka 1999		
Cruspedacusta sowerbyi	1923	Baltic Sea	North Sea	Inland waters	ornamental trade	Tittizer 1996, Tittizer et al. 2000		
Lancaster, 1880						Werner 1950, Tams-Lyche 1964		
Goninomenus vertens	1947	Baltic Sea	North Sea	Inland waters	ships	Hartlaub 1911, Kühl 1962		
Agassiz, 1862								
Nemopsis bachei	1942	Baltic Sea	North Sea	Inland waters	ships	Hartlaub 1911, Kühl 1962		
Agassiz, 1849								
Anthozoa								
Cereus pedunculatus	1921	Baltic Sea	North Sea	Inland waters	ships	Müllenger 1921, Pax 1936		
(Pennaunt, 1777)						Pax 1936, Kluijver 1991		
Diadumene cincta	1928	Baltic Sea	North Sea	Inland waters	aquaculture competition	Pax 1920, Gollasch and Riemann-Zünneck 1996		
(Stephenson, 1925)								
Haliplanaella luciae (= lineata) (Verrill, 1898)	1920	Baltic Sea	North Sea	Inland waters	ships	Pax 1920, Gollasch and Riemann-Zünneck 1996		
Bivalvia								
Congeria leucophaeta	<1996 <1994	Baltic Sea	North Sea	Inland waters	competition, fouling	Boettger 1933b, Post and Landmann 1994, Jungbluth 1996, Kinzelbach 1991, Meister 1997, Nehring 2002, Meyer-Waarden 1964, Utting and Spencer 1992, Reise 1998a,b		
(Conrad, 1831)								
Corbicula fluminalis (O.F. Müller, 1774)	1984	Baltic Sea	North Sea	Inland waters	competition, IAS			
Corbicula fluminea (O.F. Müller, 1756)	1997	Baltic Sea	North Sea	Inland waters	competition, IAS			
Crassostrea angulata (Lamarck, 1819)	1911	Baltic Sea	North Sea	Inland waters	competition, IAS			
Crassostrea gigas (Thunberg, 1793)	1991	Baltic Sea	North Sea	Inland waters	competition, IAS			
Crassostrea virginica (Gmelin, 1791)	<1887 <1911	Baltic Sea	North Sea	Inland waters	competition, IAS			
Species	Year of first record and recipient region	Origin / donor area	Vector	Pathway	Impact or potential impact / invasiveness	References		
---------	--	---------------------	--------	---------	--	------------		
Dreissena polymorpha (Pallas, 1771)	1828	1835	1824	Ponto-Caspian	unintentional canal competition, fouling, habitat modification, parasite carrier / IAS	Dahl 1891, Bentheim-Juttling 1922, Arndt 1931, Thiemenmann 1950		
Ensis americanus (Binney, 1870)	1993	1979	NW Atlantic	unintentional ships	competition, habitat modification / IAS	Von Cosel et al. 1982, Essink 1985, van Urk 1987, Gürs et al. 1993 Arndt 1931, Petersen et al. 1992, Reise 1998, Nehring 2000a		
Mya arenaria (Linnaeus, 1758)	<1200	<1200	<1931	NW Atlantic	unintentional ships competition?	Arndt 1931, Petersen et al. 1992, Reise 1998, Nehring 2000a		
Petricola pholadiformis Lamarck, 1818	1927	1896	NW Atlantic	unintentional aquaculture	competition, habitat modification	Schlesch 1932, Kuckuck 1957, Knudsen 1988, Jensen & Knudsen 2005		
Teredo navalis Linnaeus, 1758	<1993	<1808	Indo-Pacific?	unintentional ships	habitat modification / IAS	Hahn 1956, Schütz 1961, Sordyl et al. 1998		
Unio mancus Lamarck, 1819	<1922			S Europe	unintentional canal	Tittizer et al. 2000		
Crepidula fornicata (Linnaeus, 1758)	1934			W Atlantic	unintentional aquaculture	competition, habitat modification, parasite carrier unknown	Havinga 1929, Ankel 1935, Kuckuck 1957, Minchin et al 1995 Geiter et al. 2002	
Gyraulus parvus (Say, 1817)	1981			N America	intentional ornamental trade	canal parasite carrier	Thienemann 1950, Junghuhn 1996, Nehring 2002 Geiter et al. 2002	
Lithogyphus naticoides (Pfeiffer, 1828)	1883			E Europe	unintentional ornamental trade	canal parasite carrier	Thienemann 1950, Junghuhn 1996, Nehring 2002 Geiter et al. 2002	
Menetus dilatatus (Gould, 1841)	1980			N America	intentional ornamental trade	unknown	Geiter et al. 2002	
Physella acuta (Draparnaud, 1805)	1895			SW Europe	intentional ornamental trade	unknown	Sukopp & Brande 1984, Junghuhn 1996, Nehring 2002 Junguhn 1996, Nehring 2002 Geiter et al. 2002	
Physella heterostropha (Say, 1817)	<1927			N America	intentional ornamental trade	unknown	Thienemann 1950, Cole 1982	
Planorbiella duryi (Weatherby, 1879)	1980s			N America	intentional ornamental trade	unknown	Geiter et al. 2002	
Potamopyrgus antipodarum (Gray, 1843)	1900			New Zealand	unintentional ships	competition, parasite carrier	Thienemann 1950, Cole 1982	
Platyhelminthes								
Dendrocoelum romanum-danubiale (Codreanu, 1949)	1992			Ponto-Caspian	unintentional canal	unknown	Tittizer et al. 2000, Nehring 2002 Hauer 1950, Tittizer 1996, Nehring 2002	
Dugesia tigrina (Girard, 1850)	1931			N America	unintentional ornamental trade	unknown	Tittizer et al. 2000, Nehring 2002	
Kamptozoa								
Urnatella gracilis Leidy, 1851	1960			N America	unintentional ships	unknown	Franz 1992, Vranovsky and Sporka 1998, Geiter et al. 2002	
Species	Year of first record and recipient region	Origin / donor area	Vector	Pathway	Impact or potential impact / invasiveness	References		
---------	--	---------------------	--------	---------	--	------------		
Oligochaeta								
Branchiura sowerbyi (Beddard, 1892)	1959	W Pacific	unintentional	ornamental trade	habitat modification	Tobias 1972, Tittizer 1996, Gruszka 1999, Nehring 2002		
Polychaeta								
Aphelochaeta marioni (Saint-Joseph, 1894)	1938	unclear	unknown	unknown	unknown	Caspers 1950		
Ficopomatus enigmaticus (Fauvel, 1923)	1975	S Pacific	unintentional	ships	fouling	Kühl 1977a, Cole 1982, Zibrowius 1991		
Hypania invalida (Grube, 1860)	1995	Ponto-Caspian	unintentional	canal	habitat modification	Kothe 1968, Tittizer 1996, Nehring 2002		
Marenzelleria neglecta (= cf. viridis) Sikorski et Bick, 2004	1985	NW Atlantic	unintentional	ships	competition, habitat modification, predation / IAS	Bick and Burchhardt 1989, Bick and Zettler 1997, Bastrop et al. 1997, Sikorski and Bick 2004, Essink and Kleef 1986, Bick and Burchhardt 1989, Bick and Zettler 1997, Sikorski and Bick 2004		
Marenzelleria viridis (= cf. wireni) (Verrill, 1873)	2004	NW Atlantic	unintentional	ships	competition, habitat modification, predation / IAS	Essink and Kleef 1986, Bick and Burchhardt 1989, Bick and Zettler 1997, Sikorski and Bick 2004		
Microphthalmus similis Bobretzky, 1870	1962	unclear	unknown	unknown	unknown	Hartmann-Schröder and Stripp 1968		
Nereis virens Sars, 1835	1920s	unclear	unintentional?	ships?	predation	Reibisch 1926, Hagmeier and Kändler 1927, Hartmann-Schröder 1996, Augener 1940, Jaeckel 1962, Hartmann-Schröder 1996, Hauser 1973, Hartmann-Schröder 1996		
Polydora ligerica (Ferronière, 1898)	<1932	unclear	unknown	unknown	unknown	Augener 1940, Jaeckel 1962, Hartmann-Schröder 1996		
Tharyx killariensis (Southern, 1914)	1972	unclear	unintentional?	aquaculture?	unknown	Hauser 1973, Hartmann-Schröder 1996		
Crustacea								
Astacus leptodactylus Eschscholtz, 1823	1910s	Ponto-Caspian	intentional	stocking	unknown	Geiter et al. 2002, Souty-Grosset et al. 2006		
Atyaeophyra desmarestii (Millet, 1831)	1932	Mediterranea	unintentional	canal	unknown	De Lattin 1967, Tittizer 1996, Tittizer et al. 2000, Nehring 2002		
Balanus improvisus Darwin, 1854	1867	1858	<1899	W Atlantic	unintentional	ships	fouling, habitat modification	Kirchenpauer 1862, Hoek 1875, Dechow 1920, Broch 1924, Bäthe 1995
Callinectes sapidus Rathbun, 1896	1964	NW Atlantic	unintentional	ships	predation	Gruner 1962, Kühl 1965		
Caprellida mutica Schurin, 1935	2004	Pacific	unintentional	ships	clogging of gear?	Schrey and Buschbaum 2006		
Species	Year of first record and recipient region	Origin / donor area	Vector	Pathway	Impact or potential impact / invasiveness	References		
--	--	---------------------	--------	---------	--	---		
Chelicorophium curvispinum (Sars, 1895)	1932	Baltic Sea 1920s	1912	unintentional canal	competition, habitat modification / IAS	Wundsch 1912, Schlienz 1922, Neuhaus 1933, Tittizer 1996, Bernauer et al. 1996, Gruszka 1999, Nehring 2002		
Chelicorophium robustum (Sars, 1895)	2004	Ponto-Caspian	unknown	canal	unknown	Eggers and Martens 2004		
Corophium sextonae Crawford, 1937	1997	S Pacific	1997	unintentional ships	competition	Nehring and Leucha 1999		
Crangonyx pseudogracilis Bousfield, 1958	1992	N America	1992	unintentional stocking?	unknown	Bernauer et al. 1996		
Dikerogammarus haemobaphes (Eichwald, 1841)	1993	Ponto-Caspian	1993	unintentional canal	competition	Tittizer 1996, Nehring 2002, Wawrzyniak-Wydrowska and Gruszka 2005		
Dikerogammarus villosus (Sovinsky, 1894)	1995	Ponto-Caspian	1995	unintentional canal	competition, predation / IAS	Tittizer 1996, Nehring 2002		
Echinogammarus berrilloni (Catta, 1878)	1924	Mediterranean	1924	unintentional canal	unknown	Tittizer 1996, Nehring 2002		
Echinogammarus ischnus (Stebbing, 1899)	1977	Ponto-Caspian	1977	unintentional canal	unknown	Tittizer 1996, Nehring 2002		
Echinogammarus trichiatus (Martynov, 1932)	2000	Ponto-Caspian	2000	unintentional canal	unknown	Podraza et al. 2001, Nehring 2002		
Elminius modestus Darwin, 1854	1953	S Pacific	1953	unintentional ships	competition?, fouling	Bishop 1947, Käh 1954		
Eriocheir sinensis Milne-Edwards, 1854	1932	NW Pacific	1932	unintentional ships	competition, habitat modification, parasite carrier, predation / IAS	Schnakenbeck 1924, Marquard 1926, Boettger 1933, Peters 1933, Peters and Hoppe 1938, Panning 1938, Bousfield 1958, Schmitz 1960, Klein 1969, Bulnheim 1976, Nehring 2002, Wawrzyniak-Wydrowska and Gruszka 2005		
Gammarus tigrinus Sexton, 1939	1975	NW Atlantic	1975	intentional stocking	competition, parasite carrier, predation	Boettger 1933, Peters and Hoppe 1938, Panning 1938, Bousfield 1958, Schmitz 1960, Klein 1969, Bulnheim 1976, Nehring 2002, Wawrzyniak-Wydrowska and Gruszka 2005		
Hemimysis anomala Sars, 1907	1997	Ponto-Caspian	1997	unintentional canal	competition, predation	Faasse 1998, Ketelaars et al. 1999, Nehring 2002		
Jaera stii Vieuille, 1979	1995	Ponto-Caspian	1995	unintentional canal	unknown	Kothe 1968, Tittizer 1996, Nehring 2002		
Limnornysis benedeni Czerniavsky, 1882	1997	Ponto-Caspian	1997	unintentional canal	unknown	Tittizer et al 2000, Nehring 2002		
Obesogammarus crassus (Sars, 1894)	2004	Ponto-Caspian	2004	unintentional canal	unknown	Eggers and Anlauf 2005		
Obesogammarus obesus (Sars, 1894)	2004	Ponto-Caspian	2004	unintentional canal	unknown	Nehring 2006c		
Orchestia cavimana Heller, 1865	1920	Ponto-Caspian	1920	unintentional ships	unknown	Schlienz 1922, Tittizer 1996		
Checklist for aquatic alien species in Germany

Species	Year of first record and recipient region	Origin / donor area	Vector	Pathway	Impact or potential impact / invasiveness	References
Orconectes immutis (Hagen, 1870)	1997	N America	intentional	ornamental trade	parasite carrier, habitat modification / IAS	Geiter 1998, Souty-Grosset et al. 2006
Orconectes limosus (Rafinesque, 1817)	1890	NE America	intentional	stocking	parasite carrier, competition, predation / IAS	Schellenberg 1928, Boettger 1934, Sukopp and Brande 1984
Pacifastacus leniusculus (Dana, 1852)	1980s	N America	intentional	stocking	parasite carrier, competition, predation, habitat modification / IAS	Huber and Schubart 2005, Souty-Grosset et al. 2006
Palaemon macrodactylus Rathbun, 1902	2004	SE Asia	unintentional	ships	unknown	González-Ortega et al. 2006
Pontogammarus robustoides (Sars, 1894)	1994	Ponto-Caspian	unintentional	canal	competition, hybridization, predation	Rudolph 1997, Nehring 2002, Wawrzyniak-Wydrowska and Grużka 2005
Proasellus canalis (Dollfus, 1892)	<1987	Mediterranean	unintentional	canal	unknown	Gruner 1965, Post and Landmann 1994, Tittizer 1996, Nehring 2002
Proasellus meridianus (Racovitza, 1919)	1930s	W Europa	unintentional	canal	unknown	Thienemann 1950, Gruner 1965, Tittizer 1996, Nehring 2002, Souty-Grosset et al. 2006
Procambarus clarkii (Girard, 1852)	1990s	N America	intentional	ornamental trade	parasite carrier, competition, predation, habitat modification / IAS	Geiter et al. 2002, Souty-Grosset et al. 2006
Rhithropanopeus harrisi (Gould, 1841)	1936	NW Atlantic	unintentional	ships	competition, predation	Neubauer 1936, Buitendijk and Holthuis 1949, Christiansen 1969, Van der Velde et al. 2000, Kühn 1977b, Cole 1982, Adema 1991, Tittizer 1996, Nehring 2000b
Chelicerata						
Caspihalacarus hyrcanus Vietz, 1928	<2006	Ponto-Caspian	unintentional	canal	unknown	Martens et al. 2006
Limulus polyphemus Linnaeus, 1758	1866	NW Atlantic	intentional	ornamental trade	unknown	Lloyd 1874, Holthuis 1950, Wolff 1977
Bryozoa						
Pectinatella magnifica (Leidy, 1851)	1883	N America	unintentional	ships	unknown	Tittizer et al. 2000, Nehring 2002, Kneplein 1887, Ax 1952
Victorella pavida Saville Kent, 1870	1911	Indo-Pacific?	unintentional	ships	competition, predation, habitat change	
Ascidiaea						
Styela clava Herdman, 1882	1997	N Pacific	unintentional	ships	competition, fouling	Millar 1960, Reise 1998a,b

267
Species	Year of first record and recipient region	Origin / donor area	Vector	Pathway	Impact or potential impact / invasiveness	References	
Acipenser baerii Brandt, 1869	1980s	1980s	Russia	intentional stocking	hybridisation	Spratte and Hartmann 1997, Gessner et al. 1999	
Acipenser gueldenstaedti Brandt et Ratzeberg, 1833	<1990s		unclear	intentional stocking	hybridisation	Gerstmeier and Romig 1998	
Acipenser ruthenus Linnaeus, 1758	<1992		unclear	intentional stocking	hybridisation	Gerstmeier and Romig 1998, Gessner et al. 1999	
Acipenser transmontanus Richardson, 1836	<1990s		N America	intentional stocking	hybridisation	WGITMO 2006	
Ameiurus (= Ictalurus) melas (Rafinesque, 1820)	1990s		N America	intentional stocking	competition, predation	Welcomme 1988, Spratte and Hartmann 1997	
Ameiurus (= Ictalurus) nebulosus (Lexueur, 1819)	1885		N America	intentional stocking	competition	Spratte and Hartmann 1997	
Carassius auratus (Linnaeus, 1758)	<1560		Asia	intentional stocking	hybridization	Arnold 1990	
Coregonus peled (Gmelin, 1789)	1965		Asia	intentional stocking	hybridization, predation	Geiter et al. 2002	
Lepomis cyanellus Rafinesque, 1819	1965		N America	intentional stocking	hybridization	Arnold 1990	
Lepomis gibbosus (Linnaeus, 1758)	1880		N America	intentional stocking	competition, predation, hybridisation, competition, predation	Welcomme 1988, Spratte and Hartmann 1997	
Neogobius kessleri (Günther, 1861)	<2004		unclear	unknown	unknown	Harka & Biro 2004	
Neogobius melanostomus (Pallas, 1811)	1999		Ponto-Caspian	intentional canal	competition, predation, hybridisation, competition, predation, competition, predation, competition, predation	Winkler et al. 2000, Szaniawksa and Dobryzcka-Krehel 2004	
Oncorhyncus mykiss (Walbaum, 1792)	1882		N America	intentional stocking	unknown	Welcomme 1988, Spratte and Hartmann 1997, Winkler et al. 2000	
Proterorhinus marmoratus (Pallas, 1811)	1999		Ponto-Caspian	intentional canal	unknown	Schad 2000, Harka and Biro 2004	
Pseudorasbora parva (Temminck et Schlelegel, 1846)	1984		E Asia	intentional stocking	competition	Spratte and Hartmann 1997	
Salvelinus fontinalis (Mitchill, 1814)	1890		NW Atlantic	intentional stocking	competition, hybridisation, predation	Muus and Dahlström 1968	
Umbra krameri Wallbaum, 1792	<1997		unclear	intentional ornamental trade	unknown	Spratte and Hartmann 1997, Duncker 1939, Spratte and Hartmann 1997	
Umbra pygmaea (De Kay, 1842)	1924		1910s	N America	intentional	ornamental trade	competition
AMPHIBIAN							
Anura							
Rana catesbeiana Shaw, 1802	1990s		N America	intentional	ornamental trade	predation / IAS	
PARASITES							
Oomycota							
Aphanomyces astaci Schikora, 1906	1878		N America	unintentional	stocking	crayfish parasite / IAS	Dehus 1990
Species	Year of first record and recipient region	Origin / donor area	Vector	Pathway	Impact or potential impact / invasiveness	References	
--	--	---------------------	--------	--------------	---	------------	
Acanthocephala							
Parateniasentis ambiguus (van Cleave, 1921)	1987	N America	stocking	eel parasite	Taraschewski et al. 1987		
Platyhelminthes							
Pseudodactylogyrus anguillae	1980s	E Asia	stocking	eel parasite	Buchmann et al. 1987, Sures and Streit 2001		
Pseudodactylogyrus bini (Kikuchi, 1929)	1980s	E Asia	stocking	eel parasite	Buchmann et al. 1987, Sures and Streit 2001		
Nematoda							
Anguillicola crassus (Kuwahara, Niimi et Hagaki, 1974)	1980s, 1980s	E Asia	stocking	eel parasite / IAS	Taraschewski et al. 1987, Minchin and Rosenthal 2002		
Barbronia weberi (Blanchard, 1897)	1994	S Asia	ornamental trade	predation	Potel et al. 1998		
Caspiodella fadejewi (Epshtein, 1961)	1999s	Ponton-Caspian	canal	fish leech	Geissen and Schöll 1998		
Piscicola haranti Jarry, 1960	1999s	Ponton-Caspian	canal	fish leech	Schimmer 1995, Tittizer et al. 2000		
Xironogiton victoriensis Gelder et Hall, 1990	2003	N America	stocking	crayfish parasite	Martens et al. in press		