Strong maximum principle for a sublinear elliptic problem at resonance

Giovanni Anello, Filippo Cammaroto and Luca Vilasi

Department of Mathematical and Computer Sciences, Physical Sciences and Earth Sciences, University of Messina, Viale F. Stagno d'Alcontres, 31 - 98166 Messina, Italy

Received 17 March 2022, appeared 12 July 2022
Communicated by Patrizia Pucci

Abstract. We examine the semilinear resonant problem

$$-\Delta u = \lambda_1 u + \lambda g(u) \quad \text{in } \Omega, \quad u \geq 0 \quad \text{in } \Omega, \quad u_{|\partial \Omega} = 0,$$

where $\Omega \subset \mathbb{R}^N$ is a smooth, bounded domain, λ_1 is the first eigenvalue of $-\Delta$ in Ω, $\lambda > 0$. Inspired by a previous result in literature involving power-type nonlinearities, we consider here a generic sublinear term g and single out conditions to ensure: the existence of solutions for all $\lambda > 0$; the validity of the strong maximum principle for sufficiently small λ. The proof rests upon variational arguments.

Keywords: resonant problem, existence, maximum principle.

2020 Mathematics Subject Classification: 35J20, 35J25, 35J61.

1 Introduction

Let $\Omega \subset \mathbb{R}^N$, $N \geq 1$, be a bounded domain of class C^2, and let λ_1 be the first eigenvalue of $-\Delta$ in Ω with Dirichlet boundary conditions. The issue of the existence of solutions of the problem

$$\begin{cases}
-\Delta u = \lambda_1 u + u^{s-1} - \mu u^{r-1} & \text{in } \Omega \\
u \geq 0 & \text{in } \Omega \\
u = 0 & \text{on } \partial \Omega,
\end{cases}$$

(1.1)

$s \in (1,2)$, $r \in (1,s)$, and $\mu > 0$, has been the subject of study of the recent [3]. As a distinctive feature, the right-hand side term $f(t) := \lambda_1 t + t^{s-1} - \mu t^{r-1}$ in (1.1) is not locally Lipschitz near 0, and moreover satisfies the sign property

$$f^{-1}((-\infty,0]) \supseteq (0,a], \quad \text{for some } a > 0.$$

As a result, from the celebrated paper [13] (see also [8]), it is known that the strong maximum principle may fail to be valid in this context. By adopting minimax and perturbation
techniques, the author of [3] showed instead that such a principle does hold as long as the perturbation parameter is chosen sufficiently large. More precisely, the main results in [3] state that problem (1.1) has non-zero solutions for the entire positive range of μ; positive solutions for μ large enough.

The fact that, after a rescaling, (1.1) can be turned into the problem

$$\begin{cases}
-\Delta u = \lambda_1 u + \lambda (u^s - 1 - u^r - 1) & \text{in } \Omega \\
u \geq 0 & \text{in } \Omega \\
u = 0 & \text{on } \partial \Omega,
\end{cases}$$

(1.2)

for a suitable $\lambda > 0$, raises the natural question whether, as explicitly expressed in [3, Remark 2.4], the same results mentioned above continue to hold when the powers in (1.2) are replaced by a generic nonlinear term g. And, if it is so, it would be interesting of course to identify some “minimal” structure conditions on g for the validity of such results. In the present paper we address these questions and consider the problem

$$\begin{cases}
-\Delta u = \lambda_1 u + \lambda g(u) & \text{in } \Omega \\
u \geq 0 & \text{in } \Omega \\
u = 0 & \text{on } \partial \Omega,
\end{cases}$$

(P$_\lambda$)

where $g : [0, +\infty) \to \mathbb{R}$ is continuous, $g(0) = 0$, and obeys the following conditions:

(g_1) there exists $q \in (1, 2)$ such that $k_1 := \sup_{t > 0} \frac{|g(t)|}{1 + t^{q-1}} < +\infty$;

(g_2) $\lim_{t \to 0^+} \frac{g(t)}{t} = -\infty$;

(g_3) $\liminf_{t \to +\infty} G(t) > 0$;

(g_4) $\lim_{t \to +\infty} (g(t)t - 2G(t)) = -\infty$,

where, as usual,

$$G(t) := \int_0^t g(s)ds, \quad \text{for all } t \geq 0.$$

Problems like (P$_\lambda$) are being investigated since Landesman and Lazer’s pioneering work [9], in which sufficient conditions, based on the interaction between the nonlinearity and the spectrum of the linear operator, were given for them to have a solution. Noteworthy contributions following that work can be found in [2, 5, 12] and also in [6, 7, 10, 11, 14] (see the related references as well) in which several classes of elliptic problems at resonance are investigated via variational and topological methods.

Coming back to (P$_\lambda$), our approach develops along the same line of reasoning as [3]. We prove initially that (P$_\lambda$) has at least a non-zero solution for all $\lambda > 0$. This is accomplished by considering a sequence of problems near resonance whose solutions are shown to converge to a solution of the original problem. In this regard, assumption (g_4) comes into play to prove the boundedness of the sequence of approximating solutions. Then, by exploiting the classical decomposition of $H^1_0(\Omega)$ into the first eigenspace and its orthogonal complement, we show
for sufficiently small λ, the set of solutions to (P_{λ}) is contained in the interior of the positive cone of $C^1_0(\overline{\Omega})$. It still remains an open question to investigate the uniqueness of positive solutions to (P_{λ}) (in the one-dimensional case and for power-nonlinearities it has instead been established in [4]), as well as the existence of non-zero solutions compactly supported in Ω, in the spirit of [8].

Our main results, Theorems 2.3 and 2.4, are stated and proved in the coming section. Before going on, we arrange some notation and the variational framework for (P_{λ}). We set

$$\|u\| := \left(\int_{\Omega} |\nabla u|^2 \, dx\right)^{\frac{1}{2}},$$

for all $u \in H^1_0(\Omega)$, and denote by $\|\cdot\|_p$, $p \in [1, +\infty)$, the classical L^p-norm on Ω. We also set

$$c_p := \sup_{u \in H^1_0(\Omega) \setminus \{0\}} \frac{\|u\|}{\|u\|_p}$$

for each $p \geq 1$, with $p \leq \frac{2N}{N-2}$ if $N \geq 3$, and denote by ϕ_1 the positive eigenfunction associated with λ_1 and normalized with respect to $\|\cdot\|_\infty$. We recall that the first two eigenvalues λ_1, λ_2 of $-\Delta$ in Ω admit the variational characterization

$$\lambda_1 = \inf_{u \in H^1_0(\Omega) \setminus \{0\}} \frac{\|u\|^2}{\|u\|_2^2}, \quad \lambda_2 = \inf_{u \in \text{span}\{\phi_1\}^\perp \setminus \{0\}} \frac{\|u\|^2}{\|u\|_2^2}.$$

Given a set $E \subset \mathbb{R}^N$, its Lebesgue measure will be denoted by the symbol $|E|$. Throughout this paper, the symbols C, C_1, C_2, \ldots represent generic positive constants whose exact value may change from occurrence to occurrence.

For all $\lambda > 0$, we denote by $I_{\lambda} : H^1_0(\Omega) \to \mathbb{R}$ the energy functional associated with (P_{λ}),

$$I_{\lambda}(u) := \frac{1}{2} \|u\|^2 - \frac{\lambda_1}{2} \|u\|_2^2 - \lambda \int_{\Omega} G(u_+) \, dx,$$

for all $u \in H^1_0(\Omega)$, where $u_+ = \max\{u, 0\}$. By a weak solution to (P_{λ}) we mean any $u \in C^0(\overline{\Omega}) \cap H^1_0(\Omega)$ verifying

$$\int_{\Omega} (\nabla u \nabla v - \lambda_1 u v - \lambda g(u) v) \, dx = 0, \quad \text{for all } v \in H^1_0(\Omega).$$

2 Results

As already mentioned, we start by considering a sequence of approximating problems.

Lemma 2.1. For each $\lambda > 0$, there exists $\tilde{n} \in \mathbb{N}$ such that the problem

$$\begin{cases}
-\Delta u = \left(\lambda_1 - \frac{1}{n}\right) u + \lambda g(u) & \text{in } \Omega \\
u \geq 0 & \text{in } \Omega \\
u = 0 & \text{on } \partial \Omega,
\end{cases}
$$

admits a non-zero weak solution u_n, with positive energy, for all $n \geq \tilde{n}$.

Proof. Fix $\lambda > 0$ and let $n \in \mathbb{N}$ with $n > \frac{1}{\lambda_1}$. Let us first show that the energy functional $I_n : H^1_0(\Omega) \to \mathbb{R}$ corresponding to (P_n),

$$I_n(u) := I_\lambda(u) + \frac{1}{2n} \|u_+\|_2^2 = \frac{1}{2} \|u\|^2 - \frac{1}{2} \left(\lambda_1 - \frac{1}{n}\right) \|u_+\|_2^2 - \lambda \int_\Omega G(u_+) dx,$$ \tag{2.1}

for all $u \in H^1_0(\Omega)$, has the mountain pass geometry for sufficiently large $n \in \mathbb{N}$.

Fix $k \in (2, 2^*)$ and set

$$M := \frac{k}{2} \sup_{t > 0} \frac{\lambda_1 t^2 + 2 \lambda G(t)}{t^k}.$$

By (g_1) and (g_2) one has $0 < M < +\infty$ and $\frac{1}{2} t^2 + \lambda G(t) \leq \frac{M}{k} t^k$, for all $t > 0$. Then, defining

$$R := \left(M c_1^k\right)^{\frac{1}{k}},$$

we easily obtain

$$\inf_{u \in S_R} I_n(u) \geq \inf_{\|u\| = R} \left(\frac{1}{2} \|u\|^2 - \frac{M}{k} \|u\|^k\right) \geq \inf_{\|u\| = R} \left(\frac{1}{2} \|u\|^2 - \frac{M c_1^k}{k} \|u\|^k\right) = \left(\frac{1}{2} - \frac{1}{k}\right) R^2 > 0,$$ \tag{2.2}

for any $n \in \mathbb{N}$, where $S_R := \{u \in H^1_0(\Omega) : \|u\| = R\}$.

Now, let us show that there exist $u_1 \in H^1_0(\Omega)$, with $\|u_1\| > R$, and $\bar{n} \in \mathbb{N}$, such that $I_n(u_1) < 0$ for all $n \geq \bar{n}$. Owing to (g_3), there exist $L, b > 0$ such that

$$G(t) \geq L, \quad \text{for all } t \geq b.$$

If we denote by

$$E_\gamma := \{x \in \Omega : \phi_1(x) < \gamma\},$$

with $\gamma > 0$, then there exists $\gamma_1 > 0$ such that

$$L > \frac{k_1(bq + b^\theta)|E_\gamma|}{q(|\Omega| - |E_\gamma|)}, \quad \text{for all } \gamma \in (0, \gamma_1).$$ \tag{2.3}

Fix $\bar{\gamma} \in \mathbb{R}$ satisfying

$$0 < \bar{\gamma} < \min\left\{\gamma_1, \frac{b}{R}\right\}.$$

Since the function $\psi(t) := q\bar{\gamma} t + \bar{\gamma}^\theta t^\theta$ is continuous in $(0, +\infty)$ and $\psi\left(\frac{b}{\bar{\gamma}}\right) = bq + b^\theta$, thanks to (2.3), there exists $\bar{t} > \frac{b}{\bar{\gamma}}$ such that

$$L > \frac{k_1(q\bar{\gamma}\bar{t} + \bar{\gamma}^\theta \bar{t}^\theta)|E_{\bar{\gamma}}|}{q(|\Omega| - |E_{\bar{\gamma}}|)}.$$ \tag{2.4}
With the aid of (g₁) and (2.4) we then obtain

\[
\int_{\Omega} G(\tilde{I} \phi_1) dx = \int_{E_\\gamma} G(\tilde{I} \phi_1) dx + \int_{\{\phi_1 \geq \gamma\}} G(\tilde{I} \phi_1) dx \\
\geq -k_1 \int_{E_\\gamma} \left(\tilde{I} \phi_1 + \frac{(\tilde{I} \phi_1)^q}{q} \right) dx + \int_{\{\phi_1 \geq \gamma\}} G(\tilde{I} \phi_1) dx \\
\geq -k_1 \left(\tilde{I}_\\gamma + \frac{1}{q} \phi_1^q \right) |E_\\gamma| + L(|\Omega| - |E_\\gamma|) \\
> 0.
\]

As a result, there exists \(\bar{n} \in \mathbb{N} \), with \(\bar{n} > \frac{1}{\lambda_1} \), such that

\[
I_n(\tilde{I} \phi_1) = \frac{r^2}{2n} \|\phi_1\|^2 - \lambda \int_{\Omega} G(\tilde{I} \phi_1) dx < 0
\]

for all \(n \geq \bar{n} \). Therefore, the functional \(I_n \) satisfies the geometric conditions required by the mountain pass theorem for all \(n \geq \bar{n} \).

Moreover, by (g₁) and Sobolev embeddings, one has

\[
I_n(u) \geq \frac{1}{2n\lambda_1} \|u\|^2 - \lambda k_1 \left(\int_{\Omega} |u| dx + \frac{1}{q} \int_{\Omega} |u|^q dx \right) \\
\geq \frac{1}{2n\lambda_1} \|u\|^2 - \lambda c_1 k_1 \|u\| - \frac{\lambda c_1 k_1}{q} \|u\|^q,
\]

and thus \(I_n(u) \to +\infty \) as \(\|u\| \to +\infty \). This fact, in addition to standard arguments (see for instance Example 38.25 of [15]), ensures that \(I_n \) satisfies the Palais–Smale condition. Then, by invoking the classical mountain pass theorem, \(I_n \) admits a critical point \(u_n \in H^1_0(\Omega) \setminus \{0\} \) for all \(n \geq \bar{n} \), and, by (2.2), one also has

\[
I_n(u_n) = \inf_{\gamma \in \Gamma} \max_{t \in [0,1]} I_n(\gamma(t)) \geq \left(\frac{1}{2} - \frac{1}{k} \right) R^2,
\]

where \(\Gamma := \{ \gamma \in C^0([0,1], H^1_0(\Omega)) : \gamma(0) = 0, \gamma(1) = u_1 \} \). This concludes the proof.

Lemma 2.2. Let \(\lambda > 0 \), \(\bar{n} \in \mathbb{N} \) and let \(u_n \), with \(n \geq \bar{n} \), be as in Lemma 2.1. Then, the sequence \(\{u_n\}_{n \geq \bar{n}} \) is bounded in \(H^1_0(\Omega) \).

Proof. Let \(n \in \mathbb{N} \), \(n \geq \bar{n} \). By standard regularity theory, \(u_n \in C^{1,\alpha}(\overline{\Omega}) \), for some \(\alpha \in (0,1) \). For any \(\bar{n} \in \mathbb{N} \), \(n \geq \bar{n} \) there exist, uniquely determined, \(t_n \in \mathbb{R} \) and \(w_n \in \text{span}\{\phi_1\}^\perp \) such that

\[
u_n = t_n \phi_1 + w_n.
\]

It is straightforward to verify that \(w_n \in C^{1,\alpha}(\overline{\Omega}) \) is a weak solution to

\[
\begin{cases}
-\Delta u = \left(\lambda_1 - \frac{1}{n} \right) u + \lambda g(t_n \phi_1 + u) - \frac{t_n}{n} \phi_1 & \text{in } \Omega \\
u \geq 0 & \text{in } \Omega \\
u = 0 & \text{on } \partial \Omega,
\end{cases}
\]

(2.6)
and therefore, also by \((g_1)\), one has
\[
\|w_n\|^2 \leq \left(\frac{\lambda_1 - \frac{1}{n}}{\lambda_2} \right) \|w_n\|^2 + \lambda \int_{\Omega} g(t_n \phi_1 + w_n) w_n \, dx \\
\leq \left(\frac{\lambda_1 - \frac{1}{n}}{\lambda_2} \right) \|w_n\|^2 + \lambda k_1 \|w_n\|_1 + \lambda k_1 t_n^{q-1} \|\phi_1\|_{\infty}^{q-1} \|w_n\|_1 + \lambda k_1 \|w_n\|_q^q.
\]
(2.7)

From (2.7), it follows that
\[
\|w_n\| \leq C \left((1 + t_n^{q-1}) + \|w_n\|^{q-1} \right),
\]
(2.8)

for some \(C > 0\). We claim that the sequence \(\{t_n\}_{n \geq 0}\) is bounded in \(\mathbb{R}\). Arguing by contradiction, assume that, up to a subsequence, \(t_n \to +\infty\) as \(n \to +\infty\). Without loss of generality, we can assume that \(t_n \geq 1\) for all \(n \geq n\) and, since
\[
y^{q-1} \leq C_1 + \frac{1}{2C} \leq C_1 t_n^{q-1} + \frac{1}{2C} y, \quad \text{for all} \quad y > 0,
\]
from (2.8) we deduce
\[
\|w_n\| \leq 2C t_n^{q-1} + C \|w_n\|^{q-1} \leq 2C t_n^{q-1} + CC_1 t_n^{q-1} + \frac{1}{2} \|w_n\|,
\]
and then
\[
\|w_n\| \leq C_2 t_n^{q-1}.
\]

Therefore, fixing \(p > \max \left\{ \frac{N}{q}, \frac{q}{q-1} \right\} \), we obtain
\[
\|w_n\|_\infty \leq C_3 \left(\|w_n\|_p + \|g(t_n \phi_1 + w_n)\|_p + \frac{t_n}{n} \|\phi_1\|_p \right) \\
\leq C_4 \left(\|w_n\|_\infty^{\frac{p-1}{q}} \|w_n\|_1 + 1 + t_n^{q-1} + \|w_n\|_{\infty}^{q-1} - \|w_n\|_q^q + \frac{t_n}{n} \right) \\
\leq C_5 \left(\|w_n\|_\infty^{\frac{p-1}{q}} t_n^{q-1} + t_n^{q-1} + \|w_n\|_{\infty}^{q-1} - \|w_n\|_q^q \frac{q(q-1)}{p(q-1)} + \frac{t_n}{n} \right).
\]

Dividing the first and the last side of the previous inequality by \(t_n\) and bearing in mind that \(y^m \leq 1 + y\), for all \(m \in [0,1]\) and \(y > 0\), we get
\[
\left\| \frac{w_n}{t_n} \right\|_\infty \leq C_5 \left(\left\| \frac{w_n}{t_n} \right\|_\infty^{\frac{p-1}{q}} t_n^{q-2} + t_n^{q-2} + \left\| \frac{w_n}{t_n} \right\|_{\infty}^{q-1} - \frac{q(q-1)}{p(q-1)} + \left(1 + \frac{t_n}{n}\right) \right) \\
\leq C_5 \left(t_n^{q-2} + \left(1 + \frac{t_n}{n}\right) \right) \left(1 + \left\| \frac{w_n}{t_n} \right\|_\infty + \frac{1}{n}\right) \\
\leq C_5 \left(t_n^{q-2} + 2 t_n^{q-2} \left(1 + \left\| \frac{w_n}{t_n} \right\|_\infty + \frac{1}{n}\right) \right).
\]

It follows that
\[
\left(1 - 2C_5 t_n^{q-2}\right) \left\| \frac{w_n}{t_n} \right\|_\infty \leq 3C_5 t_n^{q-2} + \frac{C_5}{n},
\]
and, as a consequence,
\[
\lim_{n \to +\infty} \left\| \frac{w_n}{t_n} \right\|_\infty = 0.
\]
i.e.,

\[\frac{u_n}{t_n} \to \phi_1 \quad \text{uniformly in } \overline{\Omega}. \]

So, fixing \(\gamma \in (0, \|\phi_1\|_{\infty}) \), we can find \(E \subset \Omega \), with \(|E| > 0 \), and \(\bar{n} \in \mathbb{N} \), \(\bar{n} \geq \tilde{n} \), such that

\[u_n(x) \geq \gamma t_n, \quad \text{for all } n \geq \tilde{n} \quad \text{and} \quad x \in E. \]

At this point, set

\[\delta := \sup_{t > 0} (g(t)t - 2G(t)) \in [0, +\infty), \]

and let \(\bar{\ell} > 0 \) such that

\[g(t) \leq \frac{(\delta + 1)|\Omega|}{|E|}, \quad \text{for all } t \geq \bar{\ell}, \]

and \(n^* \geq \tilde{n} \) such that \(t_n \geq \frac{\bar{\ell}}{\gamma} \) for all \(n \geq n^* \). Then, for all \(n \geq n^* \), taking also (2.5) into account, we obtain

\[0 < \int_{\Omega} (g(u_n)u_n - 2G(u_n))dx \]

\[= \int_{\Omega \setminus E} (g(u_n)u_n - 2G(u_n))dx + \int_E (g(u_n)u_n - 2G(u_n))dx \]

\[\leq \delta|\Omega| - (\delta + 1)|\Omega| < 0, \]

a contradiction. Therefore, the sequence \(\{t_n\}_{n \geq \bar{n}} \) is bounded in \(\mathbb{R} \) and (2.8) yields the boundedness of \(\{w_n\}_{n \geq \bar{n}} \) in \(H^1_0(\Omega) \), as well. As a consequence, we get the boundedness of \(\{u_n\}_{n \geq \bar{n}} \) in \(H^1_0(\Omega) \), as desired.

Collecting the results of the previous lemmas, it is now easy to derive our first existence result.

Theorem 2.3. For all \(\lambda > 0 \), problem \((P_\lambda) \) has at least one non-zero solution.

Proof. Let \(\{u_n\} \) be the sequence of solutions to \((P_n) \) in Lemma 2.1. By Lemma 2.2 there exists \(u^* \in H^1_0(\Omega) \) such that, up to a subsequence,

\[u_n \to u^* \quad \text{in } H^1_0(\Omega), \quad u_n \to u^* \quad \text{in } L^p(\Omega), \quad \text{for all } p \in [1, 2^*). \]

Fixing \(v \in H^1_0(\Omega) \) and taking the limit as \(n \to +\infty \) in the identity \(I_n'(u_n)(v) = 0 \), we get \(I_n'(u^*)(v) = 0 \), i.e. \(u^* \) is a weak solution to \((P_\lambda) \). To justify that \(u^* \neq 0 \), observe that, by (2.5) one has

\[0 < \left(\frac{1}{2} - \frac{1}{k} \right) R^2 \]

\[\leq \lambda \int_{\Omega} (g(u_n)u_n dx - 2G(u_n))dx \]

\[\leq \lambda k_1 \left(\|u_n\|_1 + \|u_n\|_q^q \right) + 2\lambda k_1 \left(\|u_n\|_1 + \frac{1}{q} \|u_n\|_q^q \right), \]

and so, letting \(n \to +\infty \), the conclusion is achieved.
We now show that, when λ approaches zero, every non-zero solution to (P_{λ}) is actually positive. To this aim, for all $\lambda > 0$, set

$$S_{\lambda} := \{ u \in H^1_0(\Omega) \setminus \{0\} : u \text{ is a solution to } (P_{\lambda}) \},$$

and denote by P the interior of the positive cone of $C^1_0(\Omega)$, i.e.

$$P := \left\{ u \in C^1_0(\Omega) : u > 0 \text{ in } \Omega, \frac{\partial u}{\partial \nu} < 0 \text{ on } \partial \Omega \right\},$$

v being the unit outer normal to $\partial \Omega$. Our second result reads as follows:

Theorem 2.4. There exists $\Lambda^* > 0$ such that for each $\lambda \in (0, \Lambda^*)$, $S_{\lambda} \subset P$.

Proof. We first observe that, by the regularity theory of elliptic equations, for all $\lambda > 0$ and $u_{\lambda} \in S_{\lambda}$, one has $u_{\lambda} \in C^{1,\alpha}(\Omega)$, for some $\alpha \in (0, 1)$.

If $u_{\lambda} \in S_{\lambda}$, it is straightforward to check that $v_{\lambda} := \lambda^{-1} u_{\lambda}$ is a solution to the problem

$$\left\{ \begin{array}{ll}
-\Delta u = \lambda_1 u + g(\lambda u) & \text{in } \Omega \\
u \geq 0 & \text{in } \Omega \\
u = 0 & \text{on } \partial \Omega,
\end{array} \right. \quad (\tilde{P}_{\lambda})$$

clearly equivalent to (P_{λ}). Note that (g_2) ensures the existence of some $a > 0$ such that $g(t) < 0$ for all $t \in (0, a)$, and moreover it must hold

$$\|v_{\lambda}\|_{\infty} \geq \frac{a}{\lambda}, \quad (2.9)$$

otherwise we would get $g(u_{\lambda}) < 0$ in $\Omega \setminus u_{\lambda}^{-1}(0)$, and so

$$\|u_{\lambda}\|^2 - \lambda_1 \|u_{\lambda}\|^2 = \lambda \int_{\Omega} g(u_{\lambda}) u_{\lambda} dx < 0,$$

against the definition of λ_1. From now on, we will then focus on (\tilde{P}_{λ}). We split the proof in several steps.

Step 1. We show that there exist two constants $C^*, \Lambda_0 > 0$ such that, for any $\lambda \in (0, \Lambda_0]$ and for any $v_{\lambda} \in S_{\lambda}$,

$$\|v_{\lambda}\| \geq \frac{C^*}{\lambda}. \quad (2.10)$$

Fix $\beta > \max\{ \frac{N}{2}, \frac{1}{q-1} \}$. By [1, Theorem 8.2] and the embedding $W^{2,\beta}(\Omega) \hookrightarrow C^1(\overline{\Omega})$, one has $v_{\lambda} \in W^{2,\beta}(\Omega)$ and there exists a constant $C_0 > 0$, independent of λ, such that

$$\|v_{\lambda}\|_{C^1(\overline{\Omega})} \leq C_0 \left((\lambda_1 + 1) \|v_{\lambda}\|_{\beta} + \|g(\lambda v_{\lambda})\|_{\beta} \right). \quad (2.11)$$

So, by (g_1) and Hölder’s inequality, we get

$$\int_{\Omega} |g(\lambda v_{\lambda})|^\beta dx \leq k_1^\beta \int_{\Omega} \left(1 + (\lambda v_{\lambda})^{q-1} \right)^\beta dx \leq 2^{\beta-1} k_1^\beta \left(|\Omega| + \lambda^{\beta(q-1)} \|v_{\lambda}\|_{\infty}^{\beta(q-1)-1} \|v_{\lambda}\|_{1} \right),$$
and therefore

\[
\|v_\lambda\|_\infty \leq C_0 \left((\lambda_1 + 1) \|v_\lambda\|_\infty^{\frac{\delta - 1}{\delta}} \|v_\lambda\|_1^{\frac{1}{\delta}} + 2 \frac{\beta - 1}{\beta} k_1 \left(\|\Omega\|^{\frac{1}{\beta}} + \lambda^{q-1} \|v_\lambda\|_\infty^{\frac{q-1}{\beta}} \|v_\lambda\|_1^{\frac{1}{\beta}} \right) \right).
\]

Now, dividing by \(\|v_\lambda\|_\infty^{\frac{\delta - 1}{\delta}}\) both sides of the previous inequality and taking (2.9) into account, we obtain,

\[
\left(\frac{a}{\lambda} \right)^{\frac{1}{\beta}} \leq \|v_\lambda\|_\infty^{\frac{1}{\beta}} \leq C_1 \left(\|v_\lambda\|_1^{\frac{1}{\beta}} + \|v_\lambda\|_\infty^{\frac{1 - \delta}{\beta}} + \lambda^{q-1} \|v_\lambda\|_\infty^{q-2} \|v_\lambda\|_1^{\frac{1}{\beta}} \right)
\]

\[
\leq C_1 \left(\|v_\lambda\|_1^{\frac{1}{\beta}} + a^{1 - \delta} \lambda^{\frac{1 - \delta}{\beta}} + a^{q-2} \lambda \|v_\lambda\|_1^{\frac{1}{\beta}} \right)
\]

(2.12)

\[
\leq C_2 \left((1 + \lambda) \|v_\lambda\|_1^{\frac{1}{\beta}} + \lambda^{\frac{\delta - 1}{\beta}} \right).
\]

Now, if \(0 < \lambda \leq \min\{1, a(2C_2)^{-\beta}\} := \Lambda_0\), one has

\[
\|v_\lambda\|_1^{\frac{1}{\beta}} \geq \frac{1}{2C_2} \left(\frac{a}{\lambda} \right)^{\frac{1}{\beta}} - \frac{1}{2} \geq \frac{1}{4C_2} \left(\frac{a}{\lambda} \right)^{\frac{1}{\beta}}
\]

and hence (2.10) is fulfilled with \(C^* = a(4C_2)^{-\beta}\). Since of course \(\|v_\lambda\| \to +\infty\) as \(\lambda \to 0^+\), by (2.12) we can determine \(C_3 > 0\) and \(\Lambda_1 \in (0, \Lambda_0]\) such that \(\|v_\lambda\| \geq 1\) and

\[
\|v_\lambda\|_\infty \leq C_3 \|v_\lambda\| \tag{2.13}
\]

for any \(\lambda \in (0, \Lambda_1]\). For the rest of the proof, we assume \(\lambda \in (0, \Lambda_1]\).

Step 2. We now show that, writing \(v_\lambda\) as

\[
v_\lambda = t_\lambda \phi_1 + w_\lambda,
\]

with \(t_\lambda \in \mathbb{R}\) and \(w_\lambda \in \text{span}\{\phi_1\}^\perp\), then it holds

\[
\|w_\lambda\|_{C^0(\Omega)} \leq \tilde{C} \|v_\lambda\|_1^{\frac{1}{\beta}}, \tag{2.14}
\]

for some \(\tilde{C} > 0\). By the same arguments as [3], it is easily seen that \(t_\lambda > 0\) and that \(w_\lambda\) is a weak solution to

\[
\begin{cases}
-\Delta u = \lambda_1 u + g(\lambda v_\lambda) & \text{in } \Omega \\
 u = 0 & \text{on } \partial \Omega.
\end{cases} \tag{2.15}
\]

The relation \(I_a'(v_\lambda)(\phi_1) = 0\) and the definition of \(\phi_1\) imply that

\[
\int_\Omega \nabla v_\lambda \nabla \phi_1 dx - \lambda_1 \int_\Omega v_\lambda \phi_1 dx - \int_\Omega g(\lambda v_\lambda) \phi_1 dx = - \int_\Omega g(\lambda v_\lambda) \phi_1 dx = 0,
\]

and therefore

\[
\int_\Omega g(\lambda v_\lambda) w_\lambda dx = \int_\Omega g(\lambda v_\lambda)(v_\lambda - t_\lambda \phi_1) dx = \int_\Omega g(\lambda v_\lambda) v_\lambda dx.
\]
So, we get
\[
\|w_\lambda\|^2 = \lambda_1 \|w_\lambda\|^2 + \int_\Omega g(\lambda v_\lambda) w_\lambda \, dx \\
\leq \frac{\lambda_1}{\lambda_2} \|w_\lambda\|^2 + \int_\Omega g(\lambda v_\lambda) v_\lambda \, dx \\
\leq \frac{\lambda_1}{\lambda_2} \|w_\lambda\|^2 + k_1 \left(\|v_\lambda\|_1 + \lambda^{q-1} \|v_\lambda\|_q^q \right) \\
\leq \frac{\lambda_1}{\lambda_2} \|w_\lambda\|^2 + C_4 \|v_\lambda\|^q,
\]
from which we deduce the estimate
\[
\|w_\lambda\|^2 \leq C_5 \|v_\lambda\|^q
\] (2.16)
being \(C_5 = \frac{\lambda_1 C_4}{\lambda_2 \lambda_1}\). By applying the same arguments as before to the function \(w_\lambda\) and bearing in mind also (2.13) and (2.16), we obtain
\[
\|w_\lambda\|_{C^1(\Omega)} \leq C_6 \left((\lambda_1 + 1) \|w_\lambda\|_\beta + \|g(\lambda v_\lambda)\|_\beta \right) \\
\leq C_6 \left((\lambda_1 + 1) \|w_\lambda\|_{C^1(\Omega)} \|v_\lambda\|_1^\frac{\gamma}{\alpha} + 2 \frac{\beta_1}{\gamma} k_1 \left(|\Omega|^\frac{1}{\gamma} + \lambda^{q-1} \|v_\lambda\|_\infty^{q-1-\frac{1}{\gamma}} \|v_\lambda\|_1^{\frac{1}{\gamma}} \right) \right) \\
\leq C_7 \left(\|w_\lambda\|_{C^1(\Omega)} \|v_\lambda\|_1^{\frac{q}{\gamma}} + 1 + \lambda^{q-1} \|v_\lambda\|^{q-1} \right) \\
\leq C_7 \left(\|w_\lambda\|_{C^1(\Omega)} \|v_\lambda\|_1^{\frac{q}{\gamma}} + 2 \|v_\lambda\|^{q-1} \right).
\]
So, either
\[
\|w_\lambda\|_{C^1(\Omega)} \leq 2 C_7 \|w_\lambda\|_{C^1(\Omega)} \|v_\lambda\|_1^{\frac{q}{\gamma}}
\] or
\[
\|w_\lambda\|_{C^1(\Omega)} \leq 4 C_7 \|v_\lambda\|^{q-1}.
\]
In any case, we get
\[
\|w_\lambda\|_{C^1(\Omega)} \leq \tilde{C} \|v_\lambda\|^{\frac{q}{2}}
\] (2.17)
where \(\tilde{C} = 4 C_7\), as desired.

Step 3 (conclusion). Taking (2.10) and (2.16) into account, for \(0 < \lambda \leq \min\{1, \Lambda_0, \Lambda_1, \Lambda_2\}\), where \(\Lambda_2 := \left(\frac{1}{2C_5}\right)^{\frac{1}{q-2}} C^*\), we obtain
\[
t_\lambda^2 \geq \frac{\|v_\lambda\|^2 - C_5 \|v_\lambda\|_q^q}{\|\phi_1\|^2} \geq \frac{\|v_\lambda\|^2}{\|\phi_1\|^2} \left(1 - \frac{C_5 C^*^{q-2}}{\lambda^{q-2}} \right) \geq \frac{\|v_\lambda\|^2}{2 \|\phi_1\|^2} = C_8 \|v_\lambda\|^2,
\] (2.18)
where \(C_8 = \frac{1}{2\|\phi_1\|^2}\). For this range of \(\lambda\), in view of (2.17), we then obtain
\[
\left\| t_\lambda^{-1} v_\lambda - \phi_1 \right\|_{C^1(\Omega)} = t_\lambda^{-1} \|w_\lambda\|_{C^1(\Omega)} \leq \tilde{C} C_8^{-\frac{1}{2}} \|v_\lambda\|^{\frac{q}{2}-1} \leq C_9 \lambda^{1-\frac{q}{2}}
\]
with \(C_9 = \tilde{C} C_8^{-\frac{1}{2}} C^*^{\frac{1}{2}-1}\). Since \(\phi_1 \in \mathcal{P}\) and \(\mathcal{P}\) is an open subset of \(C^1(\Omega)\), there exists \(\delta > 0\) such that
\[
\{ u \in C^1(\Omega) : \|u - \phi_1\|_{C^1(\Omega)} < \delta \} \subset \mathcal{P}.
\]
So, setting \(\Lambda_3 := \left(\frac{C_9}{\delta}\right)^{\frac{1}{q-2}}\), for all \(0 < \lambda \leq \min\{1, \Lambda_0, \Lambda_1, \Lambda_2, \Lambda_3\} := \Lambda^*\), one has \(t_\lambda^{-1} v_\lambda \in \mathcal{P}\) and hence \(v_\lambda \in \mathcal{P}\). This concludes the proof. \(\square\)
Acknowledgements

The authors are members of the Gruppo Nazionale per l’Analisi Matematica, la ProbabilitÃ­ e le loro Applicazioni (GNAMPA) of the Istituto Nazionale di Alta Matematica (INdAM).

References

[1] S. Agmon, The L^p approach to the Dirichlet problem I. Regularity theorems, *Ann. Scuola Norm. Sup. Pisa* 13(1959), 405–448. MR125306

[2] S. Ahmad, A. C. Lazer, J. L. Paul, Elementary critical point theory and perturbations of elliptic boundary value problems at resonance, *Indiana Univ. Math. J.* 25(1976), 933–944. https://doi.org/10.1512/iumj.1976.25.25074

[3] G. Anello, Existence results and strong maximum principle for a resonant sublinear elliptic problem, *Minimax Theory Appl.* 4(2019), No. 2, 217–229. MR3973626

[4] G. Anello, L. Vilasi, Uniqueness of positive and compacton-type solutions for a resonant quasilinear problem, *Topol. Methods Nonlinear Anal.* 49(2016), No. 2, 565–575. https://doi.org/10.12775/tmna.2016.090

[5] P. Bartolo, V. Benci, D. Fortunato, Abstract critical point theorems and applications to some nonlinear problems with strong resonance at infinity, *Nonlinear Anal.* 7(1983), 981–1012. https://doi.org/10.1016/0362-546X(83)90115-3

[6] D. G. Costa, E. A. B. Silva, Existence of solution for a class of resonant elliptic problems, *J. Math. Anal. Appl.* 175(1993), 411–424. https://doi.org/10.1006/jmaa.1993.1180

[7] J. V. A. Gonçalves, O. H. Miyagaki, Three solutions for a strongly resonant elliptic problem, *Nonlinear Anal.* 24(1995), No. 2, 265–272. https://doi.org/10.1016/0362-546X(94)E0016-A

[8] Y. Ilyasov, Y. Egorov, Hopf boundary maximum principle violation for semilinear elliptic equations, *Nonlinear Anal.* 72(2010), 3346–3355. https://doi.org/10.1016/j.na.2009.12.015

[9] E. M. Landesman, A. C. Lazer, Nonlinear perturbations of linear elliptic boundary value problems at resonance, *J. Math. Mech.* 19(1970), 609–623. MR0267269

[10] S. Liu, Multiple solutions for elliptic resonant problems, *Proc. Roy. Soc. Edinburgh Sect. A* 138(2008), No. 6, 1281–1289. https://doi.org/10.1017/S0308210507000443

[11] M. Schechter, Strong resonance problems for elliptic semilinear boundary value problems, *J. Operator Theory* 30(1993), No. 2, 301–314. MR1305509

[12] K. Thews, Nontrivial solutions of elliptic equations at resonance, *Proc. Roy. Soc. Edinburgh Sect. A* 85(1980), 119–129. https://doi.org/10.1017/S0308210500011732

[13] J. L. Vázquez, A strong maximum principle for some quasilinear elliptic equations, *Appl. Math. Optim.* 12(1984), 191–202. https://doi.org/10.1007/BF01449041
[14] X. P. Wu, C. L. Tang, Some existence theorems for elliptic resonant problems, *J. Math. Anal. Appl.* **264**(2001), 133–146. https://doi.org/10.1006/jmaa.2001.7660

[15] E. Zeidler, *Nonlinear functional analysis and its applications III*, Springer, Berlin, 1985. https://doi.org/10.1007/978-1-4612-5020-3