Long range Coulomb interactions in bilayer graphene

D. S. L. Abergel and Tapash Chakraborty

Department of Physics and Astronomy, University of Manitoba, Winnipeg MB, R3T 2N2, Canada.

We report on our studies of interacting electrons in bilayer graphene in a magnetic field. We demonstrate that the long range Coulomb interactions between electrons in this material are highly important and account for the band asymmetry in recent optical magneto-absorption experiments [1]. We show that in the unbiased bilayer (where both layers are at the same electrostatic potential), the interactions can cause mixing of Landau levels in moderate magnetic fields. For the biased bilayer (when the two layers are at different potentials), we demonstrate that the interactions are responsible for a change in the total spin of the ground state for half-filled Landau levels in the valence band.

Monolayer graphene is a two-dimensional hexagonal crystal of carbon atoms whose gapless, relativistic-like, linear low energy dispersion has made it the subject of intense study since it was first isolated in 2004 [2]. Bilayer graphene (BLG) [3], the subject of our present study consists of a pair of monolayers bound by relatively weak dimer bonds formed perpendicular to the monolayer planes. Both the conduction and valence bands have low energy structure consisting of two quadratic branches separated by the energy associated with the dimer bond, γ_1, and the lower conduction band and upper valence band are degenerate at the K points of the Brillouin zone. The existence of chiral charge carriers with a Berry’s phase of 2π was confirmed in the observation of the integer quantum Hall effect [4] where the low energy Landau level (LL) spectrum is approximately linear in the field with $E_n \approx \pm h\omega_c \sqrt{n(n+1)}$ for $n \geq 0$ where ω_c is the cyclotron frequency, and the spectrum includes a doubly degenerate LL at zero energy [5]. It has been predicted theoretically [3, 5, 6, 7] and observed experimentally [8, 9], that a gap can be induced in the low energy band structure by breaking the symmetry between the two layers. Switching of the conduction current by sweeping the Fermi energy through the gapped region has been observed at low temperatures [10], and this has lead to a surge of interest in gapped BLG.

While the single particle theory of BLG is well known [3, 5, 6, 7], it has been shown that the electron-electron interactions are significant in monolayer graphene [11, 12]. The Coulomb interaction (CI) has been studied in the ungapped bilayer [13], while the biasing potential was considered in the context of a ferromagnetic transition due to short-range interactions in the mean-field approximation at zero magnetic field [14], and the absence of contribution to the intra-LL cyclotron resonance from the electron interactions has been predicted within Hartree-Fock theory [13]. However, the effect of the long range CI on the ground state of the biased system in a magnetic field has not been investigated, and we address this problem in the current Letter.

We find that the long range nature of the CI makes significant changes to the properties of the low energy charge carriers for BLG in a magnetic field. The interactions are significantly stronger for electrons in the lowest LL, and this manifests itself in an observable way by lifting the degeneracy of the cyclotron resonance transitions at filling factors $\pm 4 [1, 16]$. It also allows the possibility of mixing of the LLs which were well-separated in energy when the CIs were not considered. By calculating the explicit form of the ground state wave function, we show how this mixing fundamentally changes the nature of the ground state in the biased bilayer, by inducing a finite spin polarization for half-filled LLs.

We model BLG as two sheets, each containing two inequivalent triangular sublattices (labelled A and B) of carbon atoms. In the Bernal stacking arrangement, the inter-layer bonds consist of dimers formed from atomic orbitals associated with the A sublattice in one layer and the B sublattice in the other (see Fig. 1), and the energy associated with this bond is denoted γ_1 [17]. We allow for a static electric potential U to be applied between the layers, so that the upper (lower) layer has potential $U/2$ ($-U/2$). In a strong magnetic field we can write the tight-binding Hamiltonian using a four component single valley basis where $\xi = \pm 1$ labels the valley [3] as

$$H_0 = \begin{pmatrix} \xi U/2 & 0 & 0 & \xi v_F \pi^\dagger \\ 0 & -\xi U/2 & \xi v_F \pi & 0 \\ 0 & \xi v_F \pi^\dagger & -\xi U/2 & \gamma_1 \\ \xi v_F \pi & 0 & \gamma_1 & U/2 \end{pmatrix} \tag{1}$$

FIG. 1: The lattice structure of bilayer graphene. The upper (lower) lattice is shown by solid (dashed) lines. (a) The top-down view; (b) the side-on view projected along the axis between the two arrows in (a).
where π and π^\dagger are the operators corresponding to electron hops between neighboring atoms (in opposite sublattices in the same layer). The spectrum ε_n^ξ is found from the quartic polynomial $[2]$ derived from the Schrödinger equation associated with the Hamiltonian in Eq. 11, where $n \in \{0, 1, 2, \ldots\}$. Additionally, we denote the band of a particular LL by placing a $'+'$ ("-" after the level index for the conduction (valence) band. The wave functions ϕ_i where the functions ϕ_0 and ϕ_{\pm} are defined for the conduction (valence) band. The wave function of a particular LL by placing a $'+'$ ("-" in front of the LL index for the conduction (valence) band. The wave function is normalized to unity. There are also levels with $n = 0 \pm$, which have wave functions $\psi_n^0 = e^{ik_y} (\varphi_0, 0, 0, 0)$, and $\psi_n^0 = e^{ik_y} (\varphi_0, 0, 0, 0)$ with $\varepsilon = \pm \delta$; and ψ_n^0 and ψ_n^0 are defined as higher LLs above with the appropriate substitutions for n and ξ. When $U = 0$, these four states are degenerate, yielding the eight-fold degeneracy (including the factor of 2 for spin) seen in the integer quantum Hall effect in BLG [4]. We include the fermionic properties of the electrons by constructing Slater determinants for the non-interacting many body basis wave functions.

To include the effects of the long-range CI we consider the Hamiltonian

$$\mathcal{H}_{\text{Coul}} = \frac{1}{2} \sum_{i \neq j} \frac{e^2}{\epsilon|\vec{r}_i - \vec{r}_j|}$$

where the vectors $\vec{r}_{i,j}$ label the positions of the electrons, and $\epsilon = 4\pi\epsilon_0\kappa$ is the dielectric constant of graphene. For graphene mounted on an SiO$_2$ substrate, $\kappa = 2.5$ [21]. Our analysis is conducted by employing the exact diagonalization scheme [20] in which we calculate the linear combination of non-interacting basis states which gives the ground state of the Hamiltonian $\mathcal{H} = \mathcal{H}_0 + \mathcal{H}_{\text{Coul}}$. This method entails dividing the infinite sheet into rectangular cells of dimension $L_x \times L_y$ [21] and applying periodic boundary conditions to the wavefunctions at the edges of each cell. The matrix elements of the interaction over the single particle states are evaluated exactly, and the interaction between the cells is taken into account by adding the Madelung energy of a charged lattice [21].

The single particle states included in the Hilbert space from which the non-interacting many body basis is constructed are as follows. There are four relevant quantum numbers: The LL index n, the valley ξ, the spin σ, and the momentum $k = \pi m/L_x$. The values of the momentum are fixed when the boundary conditions are applied to the cell, and are labelled by $0 \leq m \leq M - 1$ with $M = L_x L_y / (2\pi \lambda_B^2)$. The LLs selected are governed by the details of the system we wish to model, and M is set by computational restraints. Our model includes all inter-electron screening effects since we calculate the exact matrix elements of the full Coulomb interaction, and it is well known that filled Landau levels with energy significantly below the Fermi level do not make additional contributions.

In order to reduce the size of the many body system (and so improve the calculation speed), we see that the Hamiltonian conserves the total momentum \mathbf{S} = $\sum m_i$ mod M. Therefore, we can perform a separate diagonalization for each value of μ, and reduce the basis size to approximately the $1/M$th part. We define $S = \sum_i S_i$ to be the total spin of the many electron system, and since there is no spin-dependent term in the Hamiltonian, S_z (the projection of S on the z axis) is a good quantum number. Therefore we fix S_z to its minimum value whilst still being able to recover all eigenstates of S^2 [12], further reducing the many body basis size.

We consider two cases: Firstly we demonstrate the strength of the interaction by calculating the shift in the energy of each LL due to interactions for $U = 0$ (an unbiased bilayer) and apply the results to recent experimental data. Then we examine the system where the filling factor is negative, the inter-layer potential sizeable, and the magnetic field strong. In this case, we observe changes in the total spin of the ground state as a function of U and the magnetic field strength B.

We model the unbiased bilayer near half-filling by taking a single particle Hilbert space consisting of electrons in the $0+$ and $0-$ LLs with all possible spin and valley states at $U = 0$. Each integer value of the filling factor ν is simulated by taking the number of electrons $N = (\nu + 4)M$, and we have $M = 3$. Table II(a) shows the results of diagonalizing the resulting many body Hamiltonian and evaluating the change in energy from the non-interacting ground state for integer filling factors. We notice that the energy shift per electron reduces slightly as the LL fills.

In Table II(b), we show the energy shift due to the CI for electrons in higher LLs (i.e. for levels with $|n| \geq 1$).

![Table I](...)
We have taken a single particle Hilbert space consisting of all spin and valley states within one LL. The filling factor \(\nu_n \) within LL \(n \) can range between 0 (corresponding to an empty level) and 4 (a filled level), so that \(\nu_n = 4 \) and \(\nu_{n+1} = 0 \) describe the same overall filling factor. The number of electrons is set by \(N = \nu_n M \), and in order to allow direct comparison with the lowest LL we restrict ourselves to \(M = 3 \). The energy associated with the interaction of electrons is very similar in each of the higher LLs, and that the interaction energy per particle is slightly reduced as the LL is filled. We have verified that the results are identical in the valence band.

Together, Tables I(a,b) show that the effect of the long range CI\(s \) is considerable, and that for this value of the magnetic field \((B = 3\, T) \) the shift in the higher LLs is only about two-thirds that of the lowest LL. This difference in the shift will reveal itself in the infra-red absorption spectrum of bilayer graphene, since the energy of the optical transitions depends entirely on the direct energy spacing between levels. At \(U = 0 \) and \(\nu = -4 \), the lowest energy transition is from the 1− level to the 0± level, while at \(\nu = +4 \) the lowest energy transition is from 0± to 1+. Therefore, if the 0± is shifted with respect to the two \(|n| = 1 \) levels, the degeneracy of these two transitions predicted in the single particle theory [10] will be lifted. In Figure 2 we show the predictions of our theory in comparison to recent experimental data [1]. Panes (a) and (b) show comparison of the valence band transitions (i.e. for \(\nu = -4 \)) for two values of \(\gamma_1 \) and three values of \(v_F \).

The energies of the excited state is calculated as the sum of the full interacting energy of \(N−1 \) electrons in the 1− level and 1 electron in the 0± level (where we assume no LL mixing because the magnetic field is strong). The transition energy is the difference between this and the energy of \(N \) interacting electrons in the 1− level. Pane (c) shows the comparison of theoretical and experimental data in both bands for the best values of parameters.

FIG. 2: Electron-hole asymmetry in the inter-LL optical transition energy. The experimental data (represented as points) are taken from Ref. 1. Fig. 2. In (a) and (b), \(\tilde{v} = v_F/(10^3\, \text{ms}^{-1}) \); in (c) we take \(\gamma_1 = 0.4\, \text{eV}, \) \(v_F = 9.5 \times 10^3\, \text{ms}^{-1}; M = 6 \) throughout.

FIG. 3: (a) The energy shift per electron of filled LLs. (b) The absolute energy per electron of filled LLs showing the crossing between the \(n = 0\pm \) degenerate level and the higher LLs in the valence band. In both plots \(U = 0, \) and \(M = 5, 7. \)

The correspondence to our theory is clear.

In Fig. 3 we show the energy shift and absolute energy of filled LLs as a function of the magnetic field. The strength of the interaction scales with \(e^2/(\epsilon\lambda_B) \propto \sqrt{B} \) with a roughly constant coefficient, while the LL spacing goes as \(\hbar\omega_c \propto B, \) so for lower values of the field, the \(n = 0\pm \) level crosses the 2− and 1− levels as shown in Fig. 3(b). The data shown here were calculated with \(\kappa = 2.5, \) modelling graphene [18] deposited on an SiO\(_2\) substrate. For suspended graphene (where \(\kappa \approx 1 \)), it is conceivable that the effect of the interaction would be even stronger. Additionally, the effect of the inter-layer potential is to bring together the valence band LLs with low index [7], so it is plausible that the interactions will cause significant mixing between these levels.

Now we turn our attention to the system with an inter-layer potential applied, so that \(U \neq 0, \) with a finite gap between the 0+ and 0− levels and non-zero filling factor, it is possible to consider the negatively-doped system by taking only those single particle states which are in the valence band. Therefore we select the single particle states which form the Slater determinants describing the non-interacting basis states by taking all spin and valley states within one LL. The filling factor \(\nu \) goes as \(n \), while the LL spacing causes significant mixing between these levels.

In Figure 3 we show the predictions of our theory in comparison to recent experimental data [1]. Panes (a) and (b) show comparison of the valence band transitions (i.e. for \(\nu = -4 \)) for two values of \(\gamma_1 \) and three values of \(v_F \). The energy of the excited state is calculated as the sum of the full interacting energy of \(N−1 \) electrons in the 1− level and 1 electron in the 0± level (where we assume no LL mixing because the magnetic field is strong). The transition energy is the difference between this and the energy of \(N \) interacting electrons in the 1− level. Pane (c) shows the comparison of theoretical and experimental data in both bands for the best values of parameters.

The plots show that there is an abrupt change in the total
spin of the ground state, and a range of parameters where there is a non-zero polarization of the spin. This transition is not directly related to the crossings of the single particle states, since the position and slope of the transitions do not match the corresponding lines superimposed on the plots. This effect is therefore purely due to the CI, and in particular to the exchange contribution which acts to minimize the energy of spin-polarized many body states.

Figure 3(c) shows the occupation of the single particle levels in the interacting many body ground state of the \(\nu = -2 \) system. For simplicity, we display only the LL index of the states. The actual ground state is a coherent combination of several non-interacting basis states, where the combination of LL indices is consistent but different arrangements of momentum and valley states each come with identical prefactors in the linear combination. In the lower-right region of the parameter space, the electrons occupy as many of the 1− states as possible. Moving toward the upper-left region, the 0− levels become successively more populated. The absence of spin polarization in regions 1 and 3 is caused by the pairing of electrons in the same valley. In region two, where there are six electrons per LL, this pairing is incomplete and the spin polarization finite. The pattern of filling in the two regions of the \(\nu = -6 \) system is identical.

In conclusion, we have shown that the long range CI between electrons plays an important rôle near the Dirac point in BLG. In the unbiased case, the interactions will cause a change in the cyclotron resonance energies associated with the 0± LL, and LL mixing between the 0± and 1− levels is induced for moderate magnetic fields. If an inter-layer bias is applied to split the valence and conduction bands, the electron-electron interactions precipitate a transition in the total spin of the ground state of half-filled LLs for certain ranges of parameters. Various experimental techniques to measure ground state spin polarizations in the quantum Hall effect regime were reported earlier and might prove to be useful here as well. This effect will have fundamental implications for the design of devices made from this material.

We acknowledge support from the Canada Research Chairs Program, and the NSERC Discovery Grant.

FIG. 4: The total spin of the ground state of the (a) \(\nu = -2 \) and (b) \(\nu = -6 \) systems. \(M = 2 \) and \(N = (\nu + 8)M \). The lines show the crossing points of the single particle states. The graining is due to the finite interval between data points. (c) The occupancy of the single electron states in the interacting many body ground state for each region of the plot in (a). The \(z \)-projection of the total spin is fixed at zero as described in the text.

1. E. A. Henriksen, et al., Phys. Rev. Lett. 100, 087403 (2008).
2. K. S. Novoselov, et al., Science 306, 666 (2004); A. K. Geim, and K. S. Novoselov, Nat. Mat. 6, 183 (2007).
3. E. McCann, D. S. L. Abergel, and V. I. Fal’ko, Solid State Commun. 143, 110 (2007).
4. K. S. Novoselov, et al., Nat. Phys. 2, 177 (2006).
5. E. McCann and V. I. Fal’ko, Phys. Rev. Lett. 96, 086805 (2006).
6. E. McCann, Phys. Rev. B 74, 161403(R) (2006).
7. J. M. Pereira, Jr., F. M. Peeters, and P. Vasilopoulos, Phys. Rev. B 76, 115419 (2007).
8. T. Ohta, et al., Science 313, 951 (2006).
9. E. V. Castro, et al., Phys. Rev. Lett. 99, 216802 (2007).
10. J. B. Oostinga, et al., Nat. Mat. 7, 151 (2007).
11. A. Iyengar, et al., Phys. Rev. B 75, 125430 (2007).
12. T. Chakraborty and P. Pietiläinen, Europhys. Lett. 80, 37007 (2007).
13. J. Nilsson, et al., Phys. Rev. B 73, 214418 (2006).
14. E. V. Castro, et al., Phys. Rev. Lett. 100, 186803 (2008).
15. Y. Barlas, et al., Phys. Rev. Lett. 101, 097601 (2008).
16. D. S. L. Abergel and V. I. Falko, Phys. Rev. B 75, 155430 (2007).
17. We have not considered the effect of direct \(A \rightarrow B \) hops for sites in opposite layers, parameterized by \(\gamma_3 \approx 0.3 \text{eV} \), since this does not lead to any additional states being coupled by the CI, and will therefore not make any qualitative changes to the physics we describe.
18. T. Ando, J. Phys. Soc. Jpn. 75, 074716 (2006).
19. For details, see T. Chakraborty and P. Pietiläinen, The Quantum Hall Effects, second edition (Springer-Verlag, Berlin, 1995), pp. 41-3.
20. Throughout, we assume that \(L_x = L_y \).
21. C. Kittel, Introduction to Solid State Physics, eighth edition (Wiley, Hoboken NJ, 2005), pp. 63-4.
22. R. G. Clark, et al., Phys. Rev. Lett. 62, 1536 (1989); I. V. Kukushkin, K. v. Klitzing, and K. Eberl, ibid. 82, 3665 (1999).